Chapter 5 \mathcal{NP} and Computational Intractability

Advanced algorithms on February 25, 2016

Huynh Tuong Nguyen Faculty of Computer Science and Engineering University of Technology - VNUHCM

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple equivalence

equivalence Reduction from special case

to general case

Reduction by encoding with gadgets

Acknowledgement

The material in this slide based on

- Stephen Cook (1971). The Complexity of Theorem Proving Procedures. Proceedings of the third annual ACM symposium on Theory of computing. pp. 151–158.
- Richard M. Karp (1972). Reducibility Among Combinatorial Problems. In R. E. Miller and J. W. Thatcher (editors).
 Complexity of Computer Computations. New York: Plenum. pp. 85–103.
- Michael R. Garey, David S. Johnson (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness (Series of Books in the Mathematical Sciences). San Francisco, Calif.: W. H. Freeman.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case Reduction by encoding with gadgets

Contents

1 Introduction

Motivation Decision problem Optimization problem \mathcal{NP} class

2 Resolution methodology

Polynomial-time reduction Some decision problems

3 Reduction strategies

Reduction by simple equivalence Reduction from special case to general case Reduction by encoding with gadgets

NP and Computationa Intractability

Huynh Tuong Nguyen

Introduction

Motivation

Decision problem
Optimization problem

 $\mathcal{NP}_{\mathsf{class}}$ Resolution

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple equivalence

equivalence Reduction from special case

gadgets

to general case

Reduction by encoding with

Resolution methods

- Pb. A
- Pb. *B*
- Pb. C
- Pb. *D*

Pb.: problem Algo.: algorithm

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

N P class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Resolution methods

- Pb. $A \leftarrow \text{Algo. } \Pi_A$
- Pb. $B \leftarrow \mathsf{Algo.} \ \Pi_B$
- Pb. $C \leftarrow \mathsf{Algo.} \ \Pi_C$
- Pb. $D \leftarrow \mathsf{Algo}$. Π_D

Pb.: problem Algo.: algorithm

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

N P class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple

equivalence Reduction from special

Reduction from special case to general case Reduction by encoding with

gadgets

Resolution methods

- Pb. $A \leftarrow \text{Algo. } \Pi_A$
- Pb. $B \leftarrow \text{Algo. } \Pi_B$
- Pb. $C \leftarrow \text{Algo. } \Pi_C$
- Pb. $D \leftarrow \text{Algo. } \Pi_D$

Pb.: problem Algo.: algorithm

Difficulty relation between Pbs.

- Pb. $A \leftarrow \mathsf{Algo}$. Π_A
- If Pb. $B \leq Pb. A$

 $\Pi_{A'}$: some simple modification of Π_A

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motiva

Decision problem
Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple

equivalence

Reduction from special case to general case Reduction by encoding with gadgets

Resolution methods

- Pb. $A \leftarrow \mathsf{Algo}$. Π_A
- Pb. $B \leftarrow \text{Algo. } \Pi_B$
- Pb. $C \leftarrow \text{Algo. } \Pi_C$
- Pb. $D \leftarrow \text{Algo. } \Pi_D$

Pb.: problem Algo.: algorithm

Difficulty relation between Pbs.

- Pb. $A \leftarrow \mathsf{Algo}$. Π_A
- If Pb. $B \leq Pb. A$
- $\exists \Pi_{A'}$: Pb. $B \leftarrow \text{Algo. } \Pi_{A'}$ (i.e. $\Pi_{A'} \equiv \Pi_{B}$)

 \leq : is more easy to solve than $\Pi_{A'}$: some simple modification of Π_{A}

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivat

Decision problem
Optimization problem

NP class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case Reduction by encoding with gadgets

Resolution methods

- Pb. $A \leftarrow \mathsf{Algo}$. Π_A
- Pb. $B \leftarrow \mathsf{Algo}$. Π_B
- Pb. $C \leftarrow \mathsf{Algo.} \ \Pi_C$
- Pb. $D \leftarrow \mathsf{Algo}$. Π_D

Pb.: problem Algo.: algorithm

Difficulty relation between Pbs.

- Pb. $A \leftarrow \text{Algo. } \Pi_A$
- If Pb. $B \leq Pb. A$
- $\exists \Pi_{A'}$: Pb. $B \leftarrow \text{Algo. } \Pi_{A'}$ (i.e. $\Pi_{A'} \equiv \Pi_{B}$)

 $\Pi_{A'}$: some simple modification of Π_A

 \exists Pb. X, \exists Algo. Π_X : $(A, B, C, D \leq X) \land (X \leftarrow \Pi_X)$?

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple

equivalence
Reduction from special case

to general case

Reduction by encoding with gadgets

Exercise

Problem HAMILTONIAN-CYCLE

Input: Given a digraph G = (V, E).

Goal: Decide whether there exists simple cycle that contains every node in \boldsymbol{V} .

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems Reduction strategies

Reduction strategies
Reduction by simple

Reduction by simple equivalence

equivalence Reduction from special case

to general case

Reduction by encoding with

Exercise

Problem HAMILTONIAN-CYCLE

Input: Given a digraph G = (V, E).

Goal: Decide whether there exists simple cycle that contains every node

in V.

Problem LONGEST-SIMPLE-PATH

Input: Given digraph G = (V, E) where $V = \{v_1, v_2, ..., v_n\}$ be a set of

nodes and $d(v_i, v_j)$ the distance between v_i and v_j .

Goal: Find a longest simple path from node u to node v.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Decision problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple

equivalence

gadgets

Reduction from special case to general case Reduction by encoding with

Solution

Algorithm

- $oldsymbol{0}$ Set the length of each edge in G to be 1
- 2 for each edge $(u, v) \in E$ do
- 3 find the longest simple path P from u to v in G.
- 4 if the length of P is n-1 then
- by adding edge (u, v) we obtain an Hamilton circuit in G.
- $oldsymbol{6}$ if no Hamilton circuit is found for every (u,v) then
- 7 print "no Hamilton circuit exists"

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem \mathcal{NP} class

Resolution methodology

gadgets

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case

to general case Reduction by encoding with

Solution

Algorithm

- 1 Set the length of each edge in G to be 1
- for each edge $(u, v) \in E$ do
- find the longest simple path P from u to v in G.
- if the length of P is n-1 then
- by adding edge (u,v) we obtain an Hamilton circuit in G.
- if no Hamilton circuit is found for every (u, v) then
- print "no Hamilton circuit exists"

If LONGEST-SIMPLE-PATH can be solved in polynomial time. then HAMILTONIAN-CYCLE can also be solved in polynomial time.

\mathcal{NP} and Computation Intractability

Huynh Tuong Nguyen

Contents

Introduction

Decision problem Optimization problem $\mathcal{NP}_{\mathsf{class}}$

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Solution

Algorithm

- 1 Set the length of each edge in G to be 1
- 2 for each edge $(u, v) \in E$ do
- find the longest simple path P from u to v in G.
- if the length of P is n-1 then **(4)**
- by adding edge (u,v) we obtain an Hamilton circuit in G.
- 6 if no Hamilton circuit is found for every (u, v) then
- print "no Hamilton circuit exists"

If LONGEST-SIMPLE-PATH can be solved in polynomial time. then HAMILTONIAN-CYCLE can also be solved in polynomial time.

Since HAMILTONIAN-CYCLE was proved to be \mathcal{NP} -complete. LONGEST-SIMPLE-PATH is also \mathcal{NP} -complete.

\mathcal{NP} and Computation Intractability

Huvnh Tuong Nguyen

Contents

Introduction

Decision problem

Optimization problem $\mathcal{NP}_{\mathsf{class}}$

Resolution methodology

> Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Decision problem

\mathcal{NP} and Computationa Intractability Huynh Tuong Nguyen

Definition

A 'y/n' question, with input of size n.

Contents

Introduction

Motivation

Decision problem

Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple

equivalence Reduction from special case

to general case Reduction by encoding with gadgets

Decision problem

Definition

A 'y/n' question, with input of size n.

Example

 Given k and n values, is k the maximum one among the values?

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem

Optimization problem \mathcal{NP} class

Resolution

methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Optimization problem

\mathcal{NP} and Computationa Intractability

Huynh Tuong Nguyen

Definition

Finding the best answer to a particular problem.

Contents

Introduction

Motivation

Decision problem

Optimization problem

$\mathcal{NP}_{\mathsf{class}}$

Resolution

methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple

equivalence

Reduction from special case to general case

Optimization problem

Definition

Finding the best answer to a particular problem.

Example

• Given a set S of integer values and a fitness function $f: \mathcal{S} \mapsto \mathcal{R}$, find a value $k \in \mathcal{S}$ such that f(k) is minimized?

\mathcal{NP} and Computation Intractability

Huvnh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem

Optimization problem

$\mathcal{NP}_{\mathsf{class}}$

Resolution

methodology Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple

equivalence

Reduction from special case to general case

Polynomial time

An algorithm A runs in polynomial time if for every input x, A terminates in at most p(|x|) "steps", where p(.) is some polynomial and |x| is length of x.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

\mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

to general case Reduction by encoding with gadgets

Polynomial time

An algorithm A runs in polynomial time if for every input x, A terminates in at most p(|x|) "steps", where p(.) is some polynomial and |x| is length of x.

Certifier

An algorithm to check that a solution answers ("yes" or "no" for decision problem).

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

\mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Certifier

An algorithm to check that a solution answers ("yes" or "no" for decision problem).

\mathcal{NP}

Decision problems for which there is a polynomial-time certifier.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

\mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

.....

Reduction strategies

Reduction by simple equivalence

Reduction from special case

to general case

Problem HAMILTONIAN-CYCLE

Input: Given a digraph G = (V, E).

Goal: Does there exists simple cycle that visites every node?

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

\mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case

to general case Reduction by encoding with gadgets

Problem HAMILTONIAN-CYCLE

Input: Given a digraph G = (V, E).

Goal: Does there exists simple cycle that visites every node?

Certificate

A permutation of the n nodes.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

\mathcal{NP} class

Resolution methodology

methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

to general case

Reduction by encoding with gadgets

Problem HAMILTONIAN-CYCLE

Input: Given a digraph G = (V, E).

Goal: Does there exists simple cycle that visites every node?

Certificate

A permutation of the n nodes.

Certifier

Check that the permutation contains each node in ${\cal V}$ exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

\mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

to general case Reduction by encoding with gadgets

Problem HAMILTONIAN-CYCLE

Input: Given a digraph G = (V, E).

Goal: Does there exists simple cycle that visites every node?

Certificate

A permutation of the n nodes.

Certifier

Check that the permutation contains each node in ${\cal V}$ exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

HAM-CYCLE is in \mathcal{NP} .

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

\mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple

equivalence Reduction from special case

Reduction from special car to general case

Problem HAMILTONIAN-CYCLE

Input: Given a digraph G = (V, E).

Goal: Does there exists simple cycle that visites every node?

Certificate

A permutation of the n nodes.

Certifier

Check that the permutation contains each node in ${\cal V}$ exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

HAM-CYCLE is in \mathcal{NP} .

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

$\mathcal{NP}_{\mathsf{class}}$

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple

equivalence Reduction from special case

Reduction from special case to general case

Problem HAMILTONIAN-CYCLE

Input: Given a digraph G = (V, E).

Goal: Does there exists simple cycle that visites every node?

Certificate

A permutation of the n nodes.

Certifier

Check that the permutation contains each node in ${\cal V}$ exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

HAM-CYCLE is in \mathcal{NP} .

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

 $\mathcal{NP}_{\mathsf{class}}$

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Problem HAMILTONIAN-CYCLE

Input: Given a digraph G = (V, E).

Goal: Does there exists simple cycle that visites every node?

Certificate

A permutation of the n nodes.

Certifier

Check that the permutation contains each node in ${\cal V}$ exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

HAM-CYCLE is in \mathcal{NP} .

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

\mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple

equivalence

Reduction from special case

to general case

Reduction by encoding with

Certifiers and Certificates: Partition

Problem PARTITION

Input: Given a set \mathcal{A} of n integer positive values $\{a_1, a_2, \ldots, a_n\}$ and $\sum_{i=1}^n a_i = 2B$.

Goal: Decide whether there is a split the integers into two subsets which sum to half (=B).

Certificate

A subset A_1 of A.

Certifier

Check whether $\sum_{a_i \in A_1} a_i = B$.

PARTITION is in \mathcal{NP} .

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

\mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple

equivalence

gadgets

Reduction from special case to general case Reduction by encoding with

P, NP, $\mathcal{E}XP$

 $\mathcal{P}\colon \mathsf{Decision}$ problems for which there is a polynomial-time algorithm. $\mathcal{EXP}\colon \mathsf{Decision}$ problems for which there is an exponential-time algorithm. $\mathcal{NP}\colon \mathsf{Decision}$ problems for which there is a polynomial-time certifier.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

\mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

P, NP, $\mathcal{E}XP$

 $\mathcal{P}\colon$ Decision problems for which there is a polynomial-time algorithm. $\mathcal{EXP}\colon$ Decision problems for which there is an exponential-time algorithm. $\mathcal{NP}\colon$ Decision problems for which there is a polynomial-time certifier.

$\mathcal{P} \subseteq \mathcal{NP}$

Consider any decision problem X in \mathcal{P} .

 \Rightarrow there exists a polynomial-time algorithm A that solves X.

It means that with an input, we know that it answers in polynomial-time (i.e., \exists polynomial-time certifier).

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

\mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

ome decision problem

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

to general case Reduction by encoding with gadgets

P, NP, $\mathcal{E}XP$

 \mathcal{P} : Decision problems for which there is a polynomial-time algorithm. \mathcal{EXP} : Decision problems for which there is an exponential-time algorithm. \mathcal{NP} : Decision problems for which there is a polynomial-time certifier.

$\mathcal{P} \subseteq \mathcal{NP}$

Consider any decision problem X in \mathcal{P} .

 \Rightarrow there exists a polynomial-time algorithm A that solves X. It means that with an input, we know that it answers in polynomial-time (i.e., \exists polynomial-time certifier).

$\mathcal{NP} \subset \mathcal{EXP}$

Consider any problem X in \mathcal{NP} .

By definition, there exists a polynomial-time certifier C for X.

To solve input x, run C on all possible certificates (exponential quantity). Return 'yes', if C returns 'yes' for any of these.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

\mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Polynomial-time reduction

Main idea

We can solve A in polynomial time if we can solve B in polynomial time!

Reduction

Problem A polynomial-time reduces to problem B if arbitrary instances of problem A can be solved using:

- Polynomial number of standard computational steps, plus
- ullet Polynomial number of calls to oracle that solves problem B.

Notation

 $A \leq_p B$

Remarks

Pay for time to write down instances sent to black box \Rightarrow instances of B must be of polynomial size.

Note: Cook reducibility (vs. Karp reducibility)

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Karp and Cook reductions [1971]

Karp reductions

Problem A is polynomial-time (Karp) reducible to Problem B if any instance of problem A can be solved using

- Polynomially many standard computation steps, plus
- One call on some instance to an (black-box) algorithm that solves Problem B

Cook reductions

Problem A is polynomial-time (Cook) reducible to Problem B if any instance of problem A can be solved using

- Polynomially many standard computation steps, plus
- Polynomially many calls on some instance(s) to an (black-box) algorithm that solves Problem B

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple

equivalence

Reduction from special case to general case

Polynomial-time reduction

Purpose

Classify problems according to relative difficulty.

Design algorithms

If $A \leq_p B$ and B can be solved in polynomial-time, then A can be solved in polynomial-time.

Etablish intractability

If $A \leq_p B$ and A cannot be solved in polynomial-time, then B cannot be solved in polynomial-time.

Etablish equivalence

If $A \leq_p B$ and $B \leq_p A$, then $A \cong_p B$.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

NPclass
Resolution
methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple

equivalence

Reduction from special case to general case Reduction by encoding with gadgets

Vertex Cover

Problem VERTEX-COVER (Phủ đỉnh)

Input: Given a graph G = (V, E) and an integer k.

Goal: Decide whether there is a vertex cover of size $\leq k$.

Vertex cover: vertice subset S ($S \subseteq V$) such that for each edge in G, at least one of its endpoints is in S.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction strategies Reduction by simple

equivalence

Reduction from special case to general case

Vertex Cover

Problem VERTEX-COVER (Phủ đỉnh)

Input: Given a graph G = (V, E) and an integer k.

Goal: Decide whether there is a vertex cover of size $\leq k$.

Vertex cover: vertice subset S ($S \subseteq V$) such that for each edge in G, at least one of its endpoints is in S.

Example

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

to general case Reduction by encoding with gadgets

Problem VERTEX-COVER (Phủ đỉnh)

Input: Given a graph G = (V, E) and an integer k.

Goal: Decide whether there is a vertex cover of size $\leq k$.

Vertex cover: vertice subset S ($S \subseteq V$) such that for each edge in G, at least one of its endpoints is in S.

Example

- Is there a vertex cover of size ≤ 6 ?
- Is there a vertex cover of size ≤ 3?

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

The second second

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Problem VERTEX-COVER (Phủ đỉnh)

Input: Given a graph G = (V, E) and an integer k.

Goal: Decide whether there is a vertex cover of size $\leq k$.

Vertex cover: vertice subset S ($S \subseteq V$) such that for each edge in G, at least one of its endpoints is in S.

Example

- Is there a vertex cover of size ≤ 6 ? Yes.
- Is there a vertex cover of size ≤ 3?

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Problem VERTEX-COVER (Phủ đỉnh)

Input: Given a graph G = (V, E) and an integer k.

Goal: Decide whether there is a vertex cover of size $\leq k$.

Vertex cover: vertice subset S ($S \subseteq V$) such that for each edge in G, at least one of its endpoints is in S.

Example

- Is there a vertex cover of size ≤ 6 ? Yes.
- Is there a vertex cover of size ≤ 3 ? No.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction strategies
Reduction by simple

equivalence

Reduction from special case to general case

Problem VERTEX-COVER (Phủ đỉnh)

Input: Given a graph G = (V, E) and an integer k.

Goal: Decide whether there is a vertex cover of size $\leq k$.

Vertex cover: vertice subset S ($S \subseteq V$) such that for each edge in G, at least one of its endpoints is in S.

Example

- Is there a vertex cover of size ≤ 6 ? Yes.
- Is there a vertex cover of size ≤ 3 ? No.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

Large and the

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Problem VERTEX-COVER (Phủ đỉnh)

Input: Given a graph G = (V, E) and an integer k.

Goal: Decide whether there is a vertex cover of size $\leq k$.

Vertex cover: vertice subset S ($S \subseteq V$) such that for each edge in G, at least one of its endpoints is in S.

Example

- Is there a vertex cover of size < 6? Yes.
- Is there a vertex cover of size < 3? No.

\mathcal{NP} and Computation Intractability

Huvnh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Problem VERTEX-COVER (Phủ đỉnh)

Input: Given a graph G = (V, E) and an integer k.

Goal: Decide whether there is a vertex cover of size $\leq k$.

Vertex cover: vertice subset S ($S \subseteq V$) such that for each edge in G, at least one of its endpoints is in S.

Example

- Is there a vertex cover of size ≤ 6 ? Yes.
- Is there a vertex cover of size ≤ 3? No.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

to general case Reduction by encoding with gadgets

Problem VERTEX-COVER (Phủ đỉnh)

Input: Given a graph G = (V, E) and an integer k.

Goal: Decide whether there is a vertex cover of size $\leq k$.

Vertex cover: vertice subset S ($S \subseteq V$) such that for each edge in G, at least one of its endpoints is in S.

Example

- Is there a vertex cover of size ≤ 6 ? Yes.
- Is there a vertex cover of size ≤ 3 ? No.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple

equivalence Reduction from special case

to general case

Problem INDEPEDENT-SET (tập đỉnh độc lập)

Input: Given a graph G = (V, E) and an integer k.

Goal: Decide whether there is an independent set of size $\geq k$.

Independent set: a set S of size $\geq k$ such that no two nodes in S are connected by an edge of E.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem Optimization problem

 $\mathcal{NP}_{\mathsf{class}}$ Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

to general case Reduction by encoding with gadgets

Problem INDEPEDENT-SET (tập đỉnh độc lập)

Input: Given a graph G = (V, E) and an integer k.

Goal: Decide whether there is an independent set of size $\geq k$. Independent set: a set S of size $\geq k$ such that no two nodes in S are connected by an edge of E.

Example

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem \mathcal{NP} class

Resolution

methodology Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Problem INDEPEDENT-SET (tập đỉnh độc lập)

Input: Given a graph G = (V, E) and an integer k.

Goal: Decide whether there is an independent set of size $\geq k$. Independent set: a set S of size $\geq k$ such that no two nodes in S are connected by an edge of E.

Example

- Is there a vertex cover of size ≥ 5 ?
- Is there a vertex cover of size ≥ 6 ?

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Reduction by encoding with

gadgets

Problem INDEPEDENT-SET (tập đỉnh độc lập)

Input: Given a graph G = (V, E) and an integer k.

Goal: Decide whether there is an independent set of size $\geq k$. Independent set: a set S of size $\geq k$ such that no two nodes in S are connected by an edge of E.

Example

- Is there a vertex cover of size ≥ 5 ? Yes.
- Is there a vertex cover of size ≥ 6 ?

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

inc accision problems

Reduction strategies

Reduction by simple

equivalence Reduction from special case

to general case

Reduction by encoding with

Reduction by en gadgets

Problem INDEPEDENT-SET (tập đỉnh độc lập)

Input: Given a graph G = (V, E) and an integer k.

Goal: Decide whether there is an independent set of size $\geq k$. Independent set: a set S of size $\geq k$ such that no two nodes in S are connected by an edge of E.

Example

- Is there a vertex cover of size > 5? Yes.
- Is there a vertex cover of size ≥ 6 ? No.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

me decision problems

Reduction strategies

Reduction by simple

equivalence Reduction from special case

to general case Reduction by encoding with

Reduction by end gadgets

Set Cover

Problem SET-COVER (phủ tập)

Input: Given a set U of elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k.

Goal: Decide whether there exists a collection of $\leq k$ of these sets whose union is equal to U.

Example

- *m* available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subset U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

 $U = \{1, 2, 3, 4, 5, 6, 7\}; k = 2.$ $\Rightarrow S_1 = \{3, 7\}; S_2 = \{3, 4, 5, 6\}; S_3 = \{1\};$ $S_4 = \{2, 4\}; S_5 = \{5\}; S_6 = \{1, 2, 6, 7\};$

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

NP class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction Strategies

equivalence

gadgets

Reduction from special case to general case Reduction by encoding with

Clique

Problem CLIQUE

Input: Given a graph G = (V, E) and a threshold k.

Goal: Decide whether there exists a clique of size k.

Clique: a set $C = \{v_1, v_2, \dots, v_k\} \subset V$ satisfies $(u, v) \in E$, $\forall u, v \in C$.

Example

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem Optimization problem

 $\mathcal{NP}_{\text{class}}$ Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

to general case Reduction by encoding with gadgets

Clique

Problem CLIQUE

Input: Given a graph G = (V, E) and a threshold k.

Goal: Decide whether there exists a clique of size k.

Clique: a set $C = \{v_1, v_2, \dots, v_k\} \subset V$ satisfies $(u, v) \in E$, $\forall u, v \in C$.

Example

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem Optimization problem

 $\mathcal{NP}_{\mathsf{class}}$ Resolution

methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple

equivalence Reduction from special case

to general case

Reduction by encoding with

Reduction by engadgets

Satisfiability

Problem SAT

Input: Given conjunctive normal form with n variables, x_1, x_2, \ldots, x_n . Goal: Decide whether there is an assignment of x_1, x_2, \ldots, x_n (setting each x_i to be 0 or 1) such that the formula is true (satisfied).

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem

Optimization problem $\mathcal{NP}_{\mathsf{class}}$

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

to general case Reduction by encoding with gadgets

Satisfiability

NP and Computationa Intractability

Huynh Tuong Nguyen

Problem SAT

Input: Given conjunctive normal form with n variables, x_1, x_2, \ldots, x_n . Goal: Decide whether there is an assignment of x_1, x_2, \ldots, x_n (setting each x_i to be 0 or 1) such that the formula is true (satisfied).

Problem 3-SAT

A sub problem of SAT where each clause contains exactly 3 literals.

Contents

Introduction

Motivation

Decision problem
Optimization problem

NP class

methodology

Polynomial-time reduction

orymormar time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case

to general case

Reduction by encoding with gadgets

Path and Cycle

Problem HAMILTONIAN-PATH

Input: Given a digraph G = (V, E).

Goal: Decide whether there exists simple path that contains every node

in V.

Problem HAMILTONIAN-CYCLE

Input: Given a digraph G = (V, E).

Goal: Decide whether there exists simple cycle that contains every node

in V.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

NP class

Resolution

methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple

equivalence

Reduction from special case to general case Reduction by encoding with

Path and Cycle

Problem HAMILTONIAN-PATH

Input: Given a digraph G = (V, E).

Goal: Decide whether there exists simple path that contains every node in V.

Problem HAMILTONIAN-CYCLE

Input: Given a digraph G = (V, E).

Goal: Decide whether there exists simple cycle that contains every node in ${\cal V}$

Problem LONGEST-PATH

Input: Given digraph G = (V, E) and a positive integer k.

Goal: Decide whether there exists a simple path of length at least k

edges.

Problem TSP

Input: Given a set of n cities and a pairwise distance function d(u, v).

Goal: Decide whether there is a tour of length $\leq D$.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction strategies
Reduction by simple

equivalence

Reduction from special case to general case

Numerical Problems

Problem PARTITION

Input: Given a set of n integer positive values $\{a_1, a_2, \ldots, a_n\}$ and $\sum_{i=1}^n a_i = 2B$.

Goal: Decide whether there is a split the integers into two subsets which sum to half (=B).

Problem SUBSET-SUM

Input: Given an integer positive value m and a set of n integer positive values $\{a_1, a_2, \ldots, a_n\}$.

Goal: Decide whether there exists a subset which sums to m.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem Optimization problem \mathcal{NP} class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

to general case Reduction by encoding with gadgets

Basic reduction strategies

Basic reduction strategies

- Reduction by simple equivalence
- Reduction from special case to general case
- Reduction by encoding with gadgets

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

 $\mathcal{NP}_{\mathsf{class}}$

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple

equivalence

Reduction from special case to general case

Reduction by simple equivalence

VERTEX-COVER \cong_p **INDEPENENT-SET**

S is an independent set iff V - S is a vertex cover.

\mathcal{NP} and Computation Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem Optimization problem \mathcal{NP} class

Resolution methodology

gadgets

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple

equivalence

Reduction from special case to general case Reduction by encoding with

Reduction by simple equivalence

VERTEX-COVER \cong_p **INDEPENENT-SET**

S is an independent set iff V - S is a vertex cover.

INDEPENENT-SET \cong_p CLIQUE

A clique of size k in a graph

An independent set of size *k* in its complement.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem Optimization problem \mathcal{NP} class

Resolution methodology

gadgets

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple

Reduction by simple equivalence

Reduction from special case to general case Reduction by encoding with

Reduction from special case to general case

3-SAT $≤_p$ SAT

Trivial

PARTITION $<_p$ SUBSET-SUM

Since PARTITION is a special case of SUBSET-SUM.

HAMILTONIAN-PATH \leq_p **HAMILTONIAN-CYCLE**

Given an instance G=(V,E) of HAMILTONIAN-PATH, create an instance of HAMILTONIAN-CYCLE by adding a dummy node which connect to all vertex $v \in V$.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem \mathcal{NP} class

Resolution methodology

gadgets

Polynomial-time reduction

Some decision problems

Reduction strategies
Reduction by simple

equivalence

Reduction from special case to general case

to general case

Reduction by encoding with

Reduction from special case to general case

HAMILTONIAN-CYCLE \leq_p **TSP**

Given an instance G = (V, E) of HAMILTONIAN-CYCLE, create n cities with distance function.

d(u,v)=1 if $(u,v)\in E$, and =2 if $(u,v)\notin E$

TSP instance has tour of length $\leq n$ iif G is Hamiltonian.

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

NP class

Resolution methodology

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

to general case

Reduction by encoding with gadgets

Reduction by encoding with gadgets

SUBSET-SUM \leq_p PARTITION

- Given a SUBSET-SUM instance, we construct a PARTITION instance (the construction given by a polynomial transformation): 'adding a new element x in the set with $x = |\sum_{i=1}^{n} a_i 2m|$ '.
- Then, show that SUBSET-SUM instance says 'Yes' iff the corresponding PARTITION instance says 'Yes'

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

 $\mathcal{NP}_{\mathsf{class}}$ Resolution

methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

Satisfiability reduces to Independent Set

$SAT \leq_p INDEPENDENT-SET$

Given an instance I of SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff I is satisfiable.

Example: $(\overline{x} \lor y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (y \lor \overline{x}).$

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

NP class

Resolution methodology

Polynomial-time reduction

Some decision problems Reduction strategies

Reduction strategies
Reduction by simple

equivalence

Reduction from special case to general case

Satisfiability reduces to Independent Set

$SAT <_{p} INDEPENDENT-SET$

Given an instance I of SAT, we construct an instance (G,k) of INDEPENDENT-SET that has an independent set of size k iff I is satisfiable.

Example: $(\overline{x} \lor y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (y \lor \overline{x}).$

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

NP class

Resolution methodology

Polynomial-time reduction

Some decision problems Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

to general case

Reduction by encoding with gadgets

SAT

$$\begin{aligned} C_1 &= \overline{x_1} \\ C_2 &= x_1 \vee x_2 \\ C_3 &= x_1 \vee \overline{x_2} \vee x_3 \\ C_4 &= \overline{x_4} \vee x_5 \vee x_6 \vee x_7 \end{aligned}$$

$$C_5 = \overline{x_3} \vee \overline{x_5} \vee x_1 \vee x_7 \vee \overline{x_2}$$

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

 $\mathcal{NP}_{\mathsf{class}}$

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

SAT

$$\begin{split} C_1 &= \overline{x_1} \\ C_2 &= x_1 \vee x_2 \\ C_3 &= x_1 \vee \overline{x_2} \vee x_3 \\ C_4 &= \overline{x_4} \vee x_5 \vee x_6 \vee x_7 \end{split}$$

$$C_5 = \overline{x_3} \vee \overline{x_5} \vee x_1 \vee x_7 \vee \overline{x_2}$$

3-SAT

$$C_{10} = \overline{x_1} \vee y_1 \vee y_1$$

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

NP class

Resolution methodology

Polynomial-time reduction

Some decision problems Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

SAT

$$\begin{split} C_1 &= \overline{x_1} \\ C_2 &= x_1 \vee x_2 \\ C_3 &= x_1 \vee \overline{x_2} \vee x_3 \\ C_4 &= \overline{x_4} \vee x_5 \vee x_6 \vee x_7 \end{split}$$

$$C_5 = \overline{x_3} \vee \overline{x_5} \vee x_1 \vee x_7 \vee \overline{x_2}$$

3-SAT

$$C_{10} = \overline{x_1} \lor y_1 \lor y_1$$

$$C_{20} = x_1 \lor x_2 \lor y_2$$

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

 $\mathcal{NP}_{\mathsf{class}}$ Resolution

methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

SAT

$$\begin{split} C_1 &= \overline{x_1} \\ C_2 &= x_1 \vee x_2 \\ C_3 &= x_1 \vee \overline{x_2} \vee x_3 \\ C_4 &= \overline{x_4} \vee x_5 \vee x_6 \vee x_7 \end{split}$$

$$C_5 = \overline{x_3} \vee \overline{x_5} \vee x_1 \vee x_7 \vee \overline{x_2}$$

3-SAT

$$C_{10} = \overline{x_1} \lor y_1 \lor y_1$$

$$C_{20} = x_1 \lor x_2 \lor y_2$$

$$C_{30} = x_1 \lor \overline{x_2} \lor x_3$$

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

NPclass Resolution methodology

equivalence

Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple

Reduction from special case to general case

SAT

$$\begin{split} C_1 &= \overline{x_1} \\ C_2 &= x_1 \vee x_2 \\ C_3 &= x_1 \vee \overline{x_2} \vee x_3 \\ C_4 &= \overline{x_4} \vee x_5 \vee x_6 \vee x_7 \end{split}$$

 $C_5 = \overline{x_3} \vee \overline{x_5} \vee x_1 \vee x_7 \vee \overline{x_2}$

3-SAT

$$C_{10} = \overline{x_1} \lor y_1 \lor y_1$$

$$C_{20} = x_1 \lor x_2 \lor y_2$$

$$C_{30} = x_1 \lor \overline{x_2} \lor x_3$$

$$C_{40} = \overline{x_4} \lor x_5 \lor y_3$$

$$C_{41} = \overline{y_3} \lor x_6 \lor x_7$$

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

NP class

Resolution methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple equivalence

Reduction from special case to general case

SAT

$$\begin{aligned} C_1 &= \overline{x_1} \\ C_2 &= x_1 \vee x_2 \\ C_3 &= x_1 \vee \overline{x_2} \vee x_3 \\ C_4 &= \overline{x_4} \vee x_5 \vee x_6 \vee x_7 \end{aligned}$$

$$C_5 = \overline{x_3} \vee \overline{x_5} \vee x_1 \vee x_7 \vee \overline{x_2}$$

3-SAT

$$C_{10} = \overline{x_1} \lor y_1 \lor y_1
C_{20} = x_1 \lor x_2 \lor y_2
C_{30} = x_1 \lor \overline{x_2} \lor x_3
C_{40} = \overline{x_4} \lor x_5 \lor y_3
C_{41} = \overline{y_3} \lor x_6 \lor x_7
C_{50} = \overline{x_3} \lor \overline{x_5} \lor y_4
C_{51} = \overline{y_4} \lor x_1 \lor y_5
C_{52} = \overline{y_5} \lor x_7 \lor y_6
C_{53} = \overline{y_6} \lor \overline{x_2} \lor y_7$$

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem

Optimization problem \mathcal{NP} class

Resolution methodology

> Polynomial-time reduction Some decision problems

Reduction strategies

Reduction by simple

equivalence

Reduction from special case to general case

Exercise

- 1 3-Satisfiability reduces to Directed Hamiltonian Cycle
- 2 3-Satisfiability reduces to Longest Path Problem
- 3 Hamiltonian Cycle reduces to Traveling Saleman Problem
- 4 3-Satisfiability reduces to Subset-Sum

NP and Computationa Intractability

Huynh Tuong Nguyen

Contents

Introduction

Motivation

Decision problem
Optimization problem

 $\mathcal{NP}_{\mathsf{class}}$ Resolution

methodology

Polynomial-time reduction

Some decision problems

Reduction strategies

Reduction by simple

equivalence

Reduction from special case

Reduction from special case to general case