

MATEMÁTICA I 525103-1

Primer Semestre 2016

DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción

CONECTIVOS Y TABLAS DE VERDAD.

La llamada lógica simbólica y la teoría de conjuntos nos permiten adquirir un simbolismo y el esquema de un razonamiento deductivo que permita razonar matemáticamente a través de un lenguaje apropiado.

Definición Una **proposición** es una expresión con sentido en un lenguaje, que afirma o niega algo y proporciona una información.

Se usa el término proposición para designar una expresión de la cual tenga sentido inequívoco decir si es verdadera o falsa en un cierto contexto. Simbolizaremos las proposiciones con letras minúsculas: p, q, r, s etc.

Los valores de verdad, verdadero (V) y falso (F), se consideran conceptos primitivos.

Definición Un **conectivo lógico** es un símbolo que permite obtener nuevas proposiciones a partir de proposiciones dadas. Los conectivos son : no; y; o; si ... entonces ... ; si y sólo si.

Las proposiciones pueden ser de dos tipos:

Atómicas o simples: las que no incluyen conectivos, por ejemplo:

p: "Pedrito es un niño muy estudioso",

q: "El padre de Pedrito es un hombre feliz"

Moleculares o **compuestas**: las que se obtienen combinando proposiciones atómicas mediante conectivos, por ejemplo:

r: "Si Pedrito es un niño muy estudioso, entonces el padre de Pedrito es un hombre feliz".

Definición Se llama **negación** de una proposición p, a la proposición no "p". La notación es $\sim p, -p, p'$

Observación La negación es el único conectivo que actúa sobre una sola proposición.

La proposición $\sim p$ es verdadera si la proposición p es falsa y, es falsa si p es verdadera. Esto se esquematiza con la llamada tabla de verdad siguiente:

p	$\sim p$
\overline{V}	F
\overline{F}	V

Definición Sean p y q dos proposiciones, se llama **conjunción** de las proposiciones p y q a la proposición p y q. La notación es $p \wedge q$.

La proposición $p \land q$ es verdadera sólo si p y q son ambas verdaderas y, es falsa si al menos una de ellas es falsa. Esto se esquematiza por medio de la siguiente tabla de verdad:

p	q	$p \wedge q$
V	V	V
\overline{V}	\overline{F}	F
\overline{F}	V	F
\overline{F}	F	F

Definición Sean p y q dos proposiciones, se llama **disyunción** de las proposiciones p y q a la proposición p o q. La notación es $p \vee q$.

La proposición $p \lor q$ es verdadera si al menos una de las proposiciones p ó q es verdadera y, es falsa si ambas son falsas. Esto se esquematiza con la siguiente tabla de verdad:

p	q	$p \lor q$
V	V	V
\overline{V}	F	V
\overline{F}	V	V
\overline{F}	\overline{F}	F

Definición Se llama condicional de las proposiciones p y q a la proposición si p entonces q. La primera proposición se llama antecedente y la otra consecuente. La notación es: $p \longrightarrow q$.

Se lee: si p entonces q o p es condición suficiente para q o q es condición necesaria para p.

La proposición $p \longrightarrow q$ es falsa sólo si p es verdadera y q es falsa, en los demás casos $p \longrightarrow q$ es verdadera. Esto se resume en la siguiente tabla de verdad:

\overline{p}	q	$p \longrightarrow q$
\overline{V}	V	V
\overline{V}	\overline{F}	F
\overline{F}	V	V
\overline{F}	\overline{F}	V

Definición Se llama **bicondicional** de las proposiciones p y q a la proposición p si sólo si q. La notación es $p \longleftrightarrow q$.

Se lee: p si y sólo si q ó p es condición necesaria y suficiente para q.

La proposición $p \longleftrightarrow q$ es verdadera si ambas p y q son verdaderas o ambas son falsas y, es falsa si p y q tienen distinto valor de verdad. Un resumen de èsto se ve en la siguiente tabla de verdad:

p	q	$p \longleftrightarrow q$
V	V	V
\overline{V}	F	F
\overline{F}	V	F
\overline{F}	\overline{F}	V

.ógica

Definición II Una proposición molecular se dice una:

- tautología si es siempre verdadera cualesquiera sean los valores de verdad de las proposiciones que la componen.
- **contradicción** si es siempre falsa, independientemente de los valores de verdad de las proposiciones componentes.
- contingencia si no es tautología ni contradicción.

Definición | Dos proposiciones p y q se dicen **logicamente** equivalentes si sus tablas de verdad son idénticas o bien, si su bicondicional es una tautología. La notación es $p \iff q$.

PROPIEDADES:

1. $\sim (\sim p) \iff p$ (doble negación)

Conmutatividad

- **2.** $p \wedge q \iff q \wedge p$
- **3.** $p \lor q \Longleftrightarrow q \lor p$
- **4.** $(p \longleftrightarrow q) \iff (q \longleftrightarrow p)$

Asociatividad

- **5.** $[(p \land q) \land r] \iff [p \land (q \land r)]$
- **6.** $[(p \lor q) \lor r] \iff [p \lor (q \lor r)]$
- 7. $[(p \longleftrightarrow q) \longleftrightarrow r] \iff [p \longleftrightarrow (q \longleftrightarrow r)]$

Distributividad

8.
$$[p \land (q \lor r)] \Longleftrightarrow [(p \land q) \lor (p \land r)]$$

9.
$$[p \lor (q \land r)] \iff [(p \lor q) \land (p \lor r)]$$

Leyes de De Morgan

10.
$$\sim (p \land q) \iff (\sim p \lor \sim q)$$

11.
$$\sim (p \lor q) \iff (\sim p \land \sim q)$$

Idempotencia

12.
$$(p \land p) \iff p$$

13.
$$(p \lor p) \Longleftrightarrow p$$

14.
$$\sim (p \longrightarrow q) \iff (p \land \sim q)$$

Definición Se dice que una proposición p implica lógicamente una proposición q si $p \longrightarrow q$ es una tautología . Se denota $p \Longrightarrow q$. Se lee: p implica q.

Inferir es una operación lógica que consiste en obtener, a partir de una o varias proposiciones (hipótesis), supuestamente verdaderas, otra proposición (tesis) que en tales condiciones resulta necesariamente verdadera.

Si se designa por H la **hipótesis** y por T la **tesis**, entonces T se infiere de H si y sólo si el condicional $H \longrightarrow T$ es una tautología, y la implicación lógica $H \Longrightarrow T$ se llama **teorema**.

Si $H \Longrightarrow T$ y $T \Longrightarrow H$, entonces se dice que $T \Longrightarrow H$ es el **teorema** recíproco de $H \Longrightarrow T$.

Si $H \Longrightarrow T$ y $\sim H \longrightarrow \sim T$ es una implicación lógica entonces $\sim H \Longrightarrow \sim T$ se llama **teorema contrario** de $H \Longrightarrow T$.

De la tautología $(p\longrightarrow q)\longleftrightarrow (\sim q\longrightarrow \sim p$) se deduce que los teoremas $H\Longrightarrow T$ y $\sim T\Longrightarrow \sim H$ son equivalentes y cada uno se llama **contrarecíproco** del otro.

La equivalencia entre los teoremas $H \Longrightarrow T$ y $\sim T \Rightarrow \sim H$ proporciona un método de demostración que consiste en demostrar el teorema contrarecíproco en lugar del teorema original.

CUANTIFICADORES LOGICOS

Definición Se llama función proporsicional a una expresión que contiene una o más variables y resulta ser una proposición si se asigna a la (o las) variables(s) valores específicos.

NOTACION: p(x), q(x,y), r(x,y,z,u)

p(x): x sujeto que tiene la propiedad p predicado

Definición Se llama **conjunto de validez** de p(x) al conjunto de todos los valores de x para los cuales p(x) es verdadera.

NOTACION: $V_P = \{x \in U : p(x) \}$

Es frecuente en matemática la presencia de proposiciones que aluden a objetos de un cierto universo y que su valor de verdad depende de dichos objetos. Para indicar que p(x) es una proposición verdadera para todo x del universo U y que q(x) es una proposición verdadera sólo para algunos elementos de U, se introducen dos símbolos especiales:

∀: llamado cuantificador universal que se lee cualquiera sea o para todo.

∃: llamado cuantificador existencial que se lee existe.

<u>Observaciones</u>

Si el conjunto de validez es unitario, entonces se escribe $\exists ! \ x, x \in U$, p(x) y se lee: existe un único $x \in U$ tal que p(x) es verdadera.

La negación de la proposición para todo x en U, p(x) es verdadera, es: no es verdad que para todo x en U, p(x) es verdadera, o equivalentemente: existe un x en U tal que la proposición $\sim p(x)$ es verdadera. Simbólicamente se escribe:

$$\sim (\forall x, x \in U, p(x)) \iff (\exists x, x \in U, \sim p(x))$$

La negación de la proposición existe un x en U tal que p(x) es verdadera es: no es verdad que existe un x en U tal que la proposición p(x) es verdadera lo que es equivalente a decir: para todo x en U, la proposición p(x) es falsa. Simbólicamente se escribe:

$$\sim (\exists x, x \in U, p(x)) \iff (\forall x, x \in U, \sim p(x))$$

La negación de la proposición existe un único x en U tal que p(x) es verdadera es :no existe ningún x en U tal que p(x) es verdadera o existen al menos dos elementos en U, x e y, tales que p(x) y p(y) son verdaderas. Simbólicamente se escribe:

$$\sim (\exists! \, x, \, x \in U, p(x)) \Longleftrightarrow \{(\forall \, x \in U, \sim p(x)) \lor (\exists \, x \in U, \exists \, y \in U, \, p(x), p(y))\}$$