

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione



# IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (IMAD)

Lezione 3: Regressione lineare

Corso di Laurea Magistrale in INGEGNERIA INFORMATICA

**SPEAKER** 

Prof. Mirko Mazzoleni

**PLACE** 

Università degli Studi di Bergamo

# **Syllabus**

### Parte I: sistemi statici

- 1. Richiami di statistica
- 2. Teoria della stima
  - 2.1 Proprietà degli stimatori
- 3. Stima a minimi quadrati
  - 3.1 Stima di modelli lineari
  - 3.2 Algoritmo del gradient descent
- 4. Stima a massima verosimiglianza
  - 4.1 Proprietà della stima
  - 4.2 Stima di modelli lineari

#### 5. Regressione logistica

5.1 Stima di un modello di regressione logistica

#### 6. Fondamenti di machine learning

- 6.1 Bias-Variance tradeoff
- 6.2 Overfitting
- 6.3 Regolarizzazione
- 6.4 Validazione

#### 7. Cenni di stima Bayesiana

- 7.1 Probabilità congiunte, marginali e condizionate
- 7.2 Connessione con Filtro di Kalman



#### Parte I: sistemi statici

#### Stima parametrica $\widehat{\theta}$

- θ deterministico
  - NO assunzioni su ddp dei dati
    - ✓ Stima parametri popolazione
    - ✓ Stima modello lineare: minimi quadrati
  - SI assunzioni su ddp dei dati
    - ✓ Stima massima verosimiglianza parametri popolazione
    - ✓ Stima modello lineare: massima verosimiglianza
    - ✓ Regressione logistica
- θ variabile casuale
  - SI assunzioni su ddp dei dati
    - ✓ Stima Bayesiana

#### **Machine learning**



#### Stima parametrica $\hat{\theta}$

- <u>θ deterministico</u>
  - o NO assunzioni su ddp dei dati
    - ✓ Modelli lineari di pss
    - ✓ Predizione
    - ✓ Identificazione
    - ✓ Persistente eccitazione
    - ✓ Analisi asintotica metodi PEM
    - ✓ Analisi incertezza stima (numero dati finito)
    - √ Valutazione del modello

### **Outline**

- 1. Stima a minimi quadrati
- 2. Funzione di costo
- 3. Gradient descent
- 4. Proprietà dello stimatore a minimi quadrati
- 5. Esercizi con codice

### **Outline**

### 1. Stima a minimi quadrati

2. Funzione di costo

3. Gradient descent

4. Proprietà dello stimatore a minimi quadrati

5. Esercizi con codice

# Stima a minimi quadrati (least squares)

Abbiamo finora descritto i dati  $\mathcal{D} = \{y(1), y(2), ..., y(N)\}$  in termini della loro media e varianza, dando degli stimatori per queste quantità

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} y(i) \qquad S_{N-1}^{2} = \frac{1}{N-1} \cdot \sum_{i=1}^{N} (y(i) - \hat{\mu})^{2}$$

Supponiamo ora di **voler descrivere** (cioè, assumiamo che i dati abbiamo questa struttura) i dati tramite una **relazione lineare** 

$$y(i) = \theta_0 + \theta_1 \varphi_1(i) + \dots + \theta_{d-1} \varphi_{d-1}(i)$$

# Stima a minimi quadrati (least squares)

**Obiettivo:** Supponiamo di avere a disposizione N dati  $\mathcal{D} = \{(\varphi(1), y(1)), ..., (\varphi(N), y(N))\}.$ 

Trovare la relazione tra le variabili di input (regressori, features)  $\varphi \in \mathbb{R}^{(d-1)\times 1}$  e una variabile di output  $y \in \mathbb{R}$ , usando un **modello lineare** 

$$y(i) = \theta_0 + \theta_1 \varphi_1(i) + \dots + \theta_{d-1} \varphi_{d-1}(i) + \epsilon(i) = \sum_{j=0}^{d-1} \theta_j \, \varphi_j(i) + \, \epsilon(i)$$

$$= \boldsymbol{\varphi}^{\mathsf{T}}(i) \boldsymbol{\theta} + \epsilon(i) \qquad \boldsymbol{\varphi}_0 = 1$$

$$\overset{1 \times d}{\underset{[ \dots ]}{\text{osservazione}}} \quad \boldsymbol{\varphi} = [\varphi_0, \varphi_1, \dots, \varphi_{d-1}]^{\mathsf{T}} \in \mathbb{R}^{d \times 1}$$

$$\boldsymbol{\theta} = [\theta_0, \theta_1, \dots, \theta_{d-1}]^{\mathsf{T}} \in \mathbb{R}^{d \times 1}$$

- Il vettore  $\theta \in \mathbb{R}^{d \times 1}$  è il vettore dei parametri
- Il vettore  $\varphi(i) \in \mathbb{R}^{d \times 1}$  è il vettore delle features per la *i*-esima osservazione
- La quantità  $\epsilon(i) \in \mathbb{R}$  è l'errore dovuto ad una non perfetta spiegazione di y(i) tramite  $\varphi(i)$

# Esempio (stimare il prezzo delle case)

| 1                           | Singola feature $arphi_3$ Variabile di |    |                     |   |     |                          |                                                             |
|-----------------------------|----------------------------------------|----|---------------------|---|-----|--------------------------|-------------------------------------------------------------|
| Numero di<br>osservazioni N | Arc<br>(fee                            |    | # Camere da   # Pia |   | Età | Prezzo output y (1000\$) |                                                             |
|                             | 210                                    | )4 | 5                   | 1 | 45  | 115                      |                                                             |
|                             | 14:                                    | 16 | 3                   | 2 | 40  | 150                      |                                                             |
|                             | 15:                                    | 34 | 2                   | 1 | 30  | 210                      |                                                             |
|                             | :                                      |    | :                   | • | :   | •                        | Singola osservazione (regressore\features vector) $\varphi$ |

- Il numero delle righe è il numero di osservazioni N
- L'osservazione i-esima è il vettore  $\boldsymbol{\varphi}(i) = [\varphi_1(i) \ \varphi_2(i) \ \varphi_3(i) \ \varphi_4(i)]^{\mathsf{T}} \in \mathbb{R}^{4x1}$
- Ogni regressore  $\varphi$  ha associata una risposta  $y \in \mathbb{R}$  che vogliamo stimare

### QUIZ!

Nel grafico seguente, quante osservazioni

abbiamo?  $\{(\varphi(1), y(1)), ..., (\varphi(N), y(N))\}_{25}$ 

- $\square$  N = 10 osservazioni
- $\square$  N = 7 osservazioni
- $\square$  N = 9 osservazioni



## Interpretazione geometrica

#### Caso scalare (retta)

In questo caso c'è un solo regressore  $\varphi_1$  e due parametri  $\theta_0$ ,  $\theta_1$ 

$$y(i) = \theta_0 + \theta_1 \varphi_1(i) + \epsilon(i)$$



### Caso con 2 regressori (piano)

In questo caso ci sono due regressori  $\varphi_1$ ,  $\varphi_2$  e tre parametri  $\theta_0$ ,  $\theta_1$ ,  $\theta_2$ 

$$y(i) = \theta_0 + \theta_1 \varphi_1(i) + \theta_2 \varphi_2 + \epsilon(i)$$



#### **Esempio**

- y: peso [kg]
- $\varphi_1$ : altezza [m]
- $\varphi_2$ : età

### **Outline**

1. Stima a minimi quadrati

#### 2. Funzione di costo

3. Gradient descent

4. Proprietà dello stimatore a minimi quadrati

5. Esercizi con codice

### Funzione di costo

Regressione lineare: modello lineare + minimi quadrati

Il metodo della regressione lineare stima i parametri  $\theta$  minimizzando l'errore quadratico tra output osservati e stimati dal modello lineare

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$
Funzione di costo (cifra di merito)

 $J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{y(i)} - \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta})^{2} = \frac{1}{N} \sum_{i=1}^{N} \epsilon(i)^{2}$ 

Caso scalare senza intercetta,  $\theta_0 = 0$ 

$$y(i) = \theta_1 \varphi_1(i) + \epsilon(i)$$



Caso scalare con intercetta,  $\theta_0 \neq 0$ 

$$y(i) = \theta_0 + \theta_1 \varphi_1(i) + \epsilon(i)$$



# Minimizzazione della funzione di costo $J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y(i) - \varphi(i)^{T}\theta)^{2}$

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} (y(i) - \boldsymbol{\varphi}(i)^{\mathsf{T}} \boldsymbol{\theta})^{2}$$

$$\nabla J(\boldsymbol{\theta}) = \frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{0}_{d \times 1} \Rightarrow \frac{2}{N} \sum_{i=1}^{N} \boldsymbol{\varphi}(i) \cdot (y(i) - \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta}) = \mathbf{0}_{d \times 1} \Rightarrow \sum_{i=1}^{N} \boldsymbol{\varphi}(i)y(i) - \sum_{i=1}^{N} \boldsymbol{\varphi}(i)\boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta} = \mathbf{0}_{d \times 1} = \sum_{i=1}^{N} \boldsymbol{\varphi}(i)y(i) - \sum_{i=1}^{N} \boldsymbol{\varphi}(i)\boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta} = \mathbf{0}_{d \times 1} = \sum_{i=1}^{N} \boldsymbol{\varphi}(i)y(i) - \sum_{i=1}^{N} \boldsymbol{\varphi}(i)\boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta} = \mathbf{0}_{d \times 1} = \sum_{i=1}^{N} \boldsymbol{\varphi}(i)y(i) - \sum_{i=1}^{N} \boldsymbol{\varphi}(i)\boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta} = \mathbf{0}_{d \times 1} = \sum_{i=1}^{N} \boldsymbol{\varphi}(i)y(i) - \sum_{i=1}^{N} \boldsymbol{\varphi}(i)\boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta} = \mathbf{0}_{d \times 1} = \sum_{i=1}^{N} \boldsymbol{\varphi}(i)y(i) - \sum_{i=1}^{N} \boldsymbol{\varphi}(i)\boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta} = \mathbf{0}_{d \times 1} = \sum_{i=1}^{N} \boldsymbol{\varphi}(i)y(i) - \sum_{i=1}^{N} \boldsymbol{\varphi}(i)\boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta} = \mathbf{0}_{d \times 1} = \sum_{i=1}^{N} \boldsymbol{\varphi}(i)y(i) - \sum_{i=1}^{N} \boldsymbol{\varphi}(i)\boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta} = \mathbf{0}_{d \times 1} = \sum_{i=1}^{N} \boldsymbol{\varphi}(i)y(i) - \sum_{i=1}^{N} \boldsymbol{\varphi}(i)\boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta} = \mathbf{0}_{d \times 1} = \sum_{i=1}^{N} \boldsymbol{\varphi}(i)\boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\varphi}_{i} = \mathbf{0}_{d \times 1} = \sum_{i=1}^{N} \boldsymbol{\varphi}(i)\boldsymbol{\varphi}_{i} = \sum_{i=1}^{N} \boldsymbol{\varphi}(i)\boldsymbol{$$

$$\Rightarrow \left[\sum_{i=1}^{N} \boldsymbol{\varphi}(i) \boldsymbol{\varphi}^{\mathsf{T}}(i)\right]_{\substack{d \times 1 \\ [\vdots \ \vdots \ \vdots \ ]}}^{N} \boldsymbol{\varphi}(i) y(i)$$

$$\Rightarrow \left[\sum_{i=1}^{N} \boldsymbol{\varphi}(i) \boldsymbol{\varphi}^{\mathsf{T}}(i)\right] \boldsymbol{\theta} = \sum_{i=1}^{N} \boldsymbol{\varphi}(i) y(i) \\ \xrightarrow{d \times d} \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix}$$

Poiché il modello è lineare nei parametri e la misura dell'errore è quadratica, la funzione di costo è **convessa** → ammette un **minimo unico** (globale)

Nel caso della regressione lineare, il minimo può anche essere trovato in forma chiusa



### Funzione di costo: caso matriciale

Possiamo esprimere il problema della regressione lineare usando delle matrici

 $ilde{m{arphi}}$  Vettore dei regressori  $m{arphi}^{ extsf{T}}(1)$   $_{1 imes d}$ 

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_{d-1} \end{bmatrix} \quad Y = \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(N) \end{bmatrix} \quad E = \begin{bmatrix} \epsilon(1) \\ \epsilon(2) \\ \vdots \\ \epsilon(N) \end{bmatrix}$$

$$=\begin{bmatrix} \boldsymbol{\varphi}^{\top}(1) \\ \boldsymbol{\varphi}^{\top}(2) \\ \vdots \\ \boldsymbol{\varphi}^{\top}(N) \end{bmatrix} \quad Y = X \boldsymbol{\theta} + E \Rightarrow \\ N \times 1 \quad N \times d \quad N \times 1$$

$$J(\boldsymbol{\theta}) = \frac{1}{N} \|Y - X \boldsymbol{\theta}\|_{2}^{2} = \frac{1}{N} (Y - X \boldsymbol{\theta})^{\top} (Y - X \boldsymbol{\theta})$$

$$N \times 1 \quad N \times d \quad N \times 1$$

$$J(\boldsymbol{\theta}) = \frac{1}{N} \|Y - X\boldsymbol{\theta}\|_{2}^{2} = \frac{1}{N} (Y - X\boldsymbol{\theta})^{\mathsf{T}} (Y - X \boldsymbol{\theta})^{\mathsf{T}} (Y$$

### Funzione di costo: caso matriciale

E utile ricordare queste proprietà di derivazione matriciale (https://en.wikipedia.org/wiki/Matrix calculus)

$$\nabla_{\mathbf{x}}(\mathbf{x}^{\mathsf{T}} \cdot A \cdot \mathbf{x}) = (A + A^{\mathsf{T}}) \cdot \mathbf{x} \qquad \nabla_{\mathbf{x}}(\mathbf{x}^{\mathsf{T}} \cdot \mathbf{b}) = \mathbf{b}$$

$$1 \times d \ d \times d \ d \times 1 \qquad d \times d \qquad d \times 1$$

$$1 \times d \ d \times 1 \qquad d \times 1$$

$$J(\boldsymbol{\theta}) = \frac{1}{N} (Y - X\boldsymbol{\theta})^{\mathsf{T}} (Y - X\boldsymbol{\theta}) = \frac{1}{N} (Y^{\mathsf{T}} Y^{\mathsf{T}} X - Y^{\mathsf{T}} X \cdot \boldsymbol{\theta}^{d \times 1} - \boldsymbol{\theta}^{\mathsf{T}} \cdot X^{\mathsf{T}} Y^{\mathsf{T}} X + \boldsymbol{\theta}^{\mathsf{T}} \cdot X^{\mathsf{T}} X \cdot \boldsymbol{\theta}^{d \times 1})$$

$$= \frac{1}{N} (Y^{\mathsf{T}} Y - 2 \cdot \boldsymbol{\theta}^{\mathsf{T}} \cdot X^{\mathsf{T}} Y + \boldsymbol{\theta}^{\mathsf{T}} \cdot X^{\mathsf{T}} X \cdot \boldsymbol{\theta})$$

$$\nabla J(\boldsymbol{\theta}) = \mathbf{0} \Rightarrow \frac{1}{N} (-2X^{\mathsf{T}}Y + 2X^{\mathsf{T}}X\boldsymbol{\theta}) = \mathbf{0} \Rightarrow \qquad \widehat{\boldsymbol{\theta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$$

$$d \times 1 \qquad d \times d \qquad d \times N \qquad N \times 1$$

$$\widehat{\boldsymbol{\theta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$$

$$d \times 1 \qquad d \times d \qquad d \times N \quad N \times 1$$

# **Normal equations**

$$\widehat{\boldsymbol{\theta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$$

#### **Normal equations**

Cosa succede se  $X^TX$  non è invertibile?

- Regressori ridondanti (linearmente dipendenti)
  - $\checkmark \varphi_1$  = altezza in m
  - $\checkmark \varphi_2$  = altezza in feet
- Troppi regressori (e.g.  $N \leq d$ )
  - √ Rimuovere qualche regressore
  - ✓ Usare regolarizzazione (la vedremo più avanti...)

Si usa la **pseudo-inversa**. In MatLab:

theta\_hat = pinv(X'\*X)\*X\*Y

- Il metodo delle normal equation è **lento** se *d* è molto grande
  - ✓ Per risolvere questo problema, si usano metodi iterativi come il gradient descent

### **Outline**

1. Stima a minimi quadrati

2. Funzione di costo

#### 3. Gradient descent

4. Proprietà dello stimatore a minimi quadrati

5. Esercizi con codice

Il gradient descent è un metodo iterativo per minimizzare le funzioni differenziabili (ovvero funzioni in cui possiamo calcolare le derivate in ogni punto del dominio)

Consideriamo prima il caso scalare (abbiamo un solo parametro  $\theta \in \mathbb{R}$  da stimare)

Dato un valore iniziale  $\hat{\theta}^{(0)}$ , la stima  $\hat{\theta}^{(k+1)}$  del parametro  $\theta$  all'iterazione k+1 è:

$$\hat{\theta}_{1\times 1}^{(k+1)} = \hat{\theta}_{1\times 1}^{(k)} - \alpha \cdot \frac{\partial J(\theta)}{\partial \theta} \Big|_{\theta = \hat{\theta}^{(k)}}$$

 $\alpha \in \mathbb{R}_{>0}$ : learning rate

#### Caso scalare $\theta \in \mathbb{R}$

$$\widehat{\theta}^{(k+1)} = \widehat{\theta}^{(k)} - \alpha \cdot \frac{\partial J(\theta)}{\partial \theta} \Big|_{\theta = \widehat{\theta}^{(k)}}$$

$$\frac{dJ(\theta)}{d\theta}\Big|_{\theta=\widehat{\theta}^{(k)}} > 0 \Rightarrow \widehat{\theta}^{(k+1)} < \widehat{\theta}^{(k)}$$

# La nuova stima è più vicina al valore ottimale $\theta^*$



#### Caso scalare $\theta \in \mathbb{R}$

$$\widehat{\theta}^{(k+1)} = \widehat{\theta}^{(k)} - \alpha \cdot \frac{\partial J(\theta)}{\partial \theta} \Big|_{\theta = \widehat{\theta}^{(k)}}$$

$$\frac{dJ(\theta)}{d\theta}\Big|_{\theta=\widehat{\theta}^{(k)}} < 0 \Rightarrow \widehat{\theta}^{(k+1)} > \widehat{\theta}^{(k)}$$

# La nuova stima è più vicina al valore ottimale $\theta^*$



Nel caso generale **multivariabile** (i.e. stimare un vettore di parametri  $\theta \in \mathbb{R}^{d \times 1}$ ), dobbiamo sostituire la derivata con il **vettore gradiente**  $\nabla J(\theta) \in \mathbb{R}^{d \times 1}$ 

Dato un valore iniziale  $\hat{\theta}^{(0)}$ , la stima  $\hat{\theta}^{(k+1)}$  del vettore di parametri  $\theta$  all'iterazione k+1 è:

$$\widehat{\boldsymbol{\theta}}^{(k+1)} = \widehat{\boldsymbol{\theta}}^{(k)} - \alpha \cdot \nabla J(\boldsymbol{\theta}) \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^{(k)}}$$

 $\alpha \in \mathbb{R}_{>0}$ : learning rate

# Gradient descent: trick computazionale

Quando sono presenti più regressori (caso multivariabile) è utile normalizzarne i valori, in modo che l'algoritmo del gradient descent «faccia meno fatica» a raggiungere il minimo

Calcolo la media per ogni regressore (che non sia quello dell'intercetta)

$$\hat{\mu}_j = \frac{1}{N} \sum_{i=1}^{N} \varphi_j(i)$$
  $j = 1, ..., d-1$ 

Calcolo la varianza per ogni regressore (che non sia quello dell'intercetta)

$$\hat{\sigma}_{j}^{2} = \frac{1}{N} \sum_{i=1}^{N} (\varphi_{j}(i) - \mu_{j})^{2} \quad j = 1, ..., d-1$$

Sottraggo media e divido per deviazione standard

$$\varphi_j(i) = \frac{\varphi_j(i) - \hat{\mu}_j}{\sqrt{\hat{\sigma}_j^2}} \qquad j = 1, \dots, d-1$$
 usando LA STESSA MEDIA E LA STESSA VARIANZA calcolata sul dataset usato per stimare il modello

Normalizzare i nuovi dati per stimare il modello

# Gradient descent: trick computazionale

### Regressori non normalizzati



### Regressori normalizzati



### **Outline**

- 1. Stima a minimi quadrati
- 2. Funzione di costo
- 3. Gradient descent
- 4. Proprietà dello stimatore a minimi quadrati
- 5. Esercizi con codice

# Proprietà dello stimatore a minimi quadrati

<u>Dubbio legittimo:</u> come si comporta lo <u>stimatore a minimi quadrati</u> di un modello lineare nel caso in cui il sistema vero (che genera i dati) sia effettivamente lineare?

$$y(i) = \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta}^{0} + \epsilon(i)$$

Supponiamo che  $\epsilon(i)$  sia una variabile casuale a media nulla, con una certa varianza  $\lambda^2$ Nota: non stiamo assumendo nessuna specifica distribuzione di probabilità su  $\epsilon(i)$ 

Proprietà dello stimatore a minimi quadrati (nel caso del sistema di cui sopra)

- Lo stimatore è **corretto**:  $\mathbb{E}[\widehat{\boldsymbol{\theta}}] = \boldsymbol{\theta}^0$
- Supponendo inoltre che i rumori siano incorrelati  $\mathbb{E}[\epsilon(i)\epsilon(j)] = 0, \forall i \neq j$ , lo stimatore è

consistente: 
$$Var[\widehat{\boldsymbol{\theta}}] = \lambda^2 \cdot (X^T X)^{-1} = \lambda^2 \cdot P$$

### **Outline**

- 1. Stima a minimi quadrati
- 2. Funzione di costo
- 3. Gradient descent
- 4. Proprietà dello stimatore a minimi quadrati

#### 5. Esercizi con codice

# Esercizio 1: Stima dei profitti di un ristorante

**Problema:** il CEO di un franchising di ristoranti che sta valutando diverse città per l'apertura di un nuovo ristorante.

La catena ha già ristoranti in varie città e sono disponibili dati di profitti e di popolazione di questa città.

L'obiettivo è utilizzare questi dati per selezionare in quale città aprire la nuova attività

- Ogni città è descritta da:
  - $\checkmark \varphi_1$ : Popolazione [in 10000 unità]
- ✓ L'output y è il profitto [in 10000\$]
- Il dataset consiste di N=97 città con  $\varphi_1(i)$ , e y(i), per  $i=1,\ldots,N$



# Esercizio 2: stima dei prezzi delle case

Vogliamo **stimare** il **prezzo** delle case a Portland, Oregon. L'output *y* è quindi il prezzo

- Ogni casa è descritta da:
  - $\checkmark \varphi_1$ : Area [feet<sup>2</sup>]
  - $\checkmark \varphi_2$ : Numero di camere da letto
- II dataset consiste di N=47 case con  $\varphi_1(i), \varphi_2(i)$  e y(i), per  $i=1,\dots,N$

$$y(i) = \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta} + \epsilon(i)$$
  $\boldsymbol{\varphi}(i) = \begin{bmatrix} 1 & \varphi_1(i) & \varphi_2(i) \end{bmatrix}^{\mathsf{T}}$ 

$$X = \begin{bmatrix} \boldsymbol{\varphi}^{\mathsf{T}}(1) \\ \boldsymbol{\varphi}^{\mathsf{T}}(2) \\ \vdots \\ \boldsymbol{\varphi}^{\mathsf{T}}(N) \end{bmatrix} \qquad \boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} \qquad Y = \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(47) \end{bmatrix}$$

```
% Read data from file
data = csvread('ex2data.txt');
X = data(:, 1:2); % Features
y = data(:, 3); % Price
N = length(y); % Number of data
% Add intercept term to X
X = [ones(N, 1) X];
% Calculate the parameters from the normal equation
theta_hat = pinv(X'*X)*X'*y;
```

```
% Estimate the price of a 1650 sq-
ft, 3 br house
price_hat = [1 3 1650]*theta_hat;
```

Punto non visto durante la stima di  $\theta$ 

# Calcolare e implementare il gradiente

Come calcoliamo il gradiente? Supponiamo che il nostro modello sia

$$y = \theta_0 + \theta_1 \cdot \varphi + \epsilon$$

$$J(\theta_0, \theta_1) = \frac{1}{N} \sum_{i=1}^{N} (y(i) - \theta_0 - \theta_1 \cdot \varphi(i))^2 \qquad \Longrightarrow \qquad \nabla J(\theta_0, \theta_1) = \begin{bmatrix} \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0} & \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_1} \end{bmatrix}^T$$

$$\frac{\partial J(\boldsymbol{\theta}_0, \boldsymbol{\theta}_1)}{\partial \boldsymbol{\theta}_0} = \frac{2}{N} \sum_{i=1}^{N} (y(i) - \boldsymbol{\theta}_0 - \boldsymbol{\theta}_1 \cdot \varphi(i)) \cdot (-1) = -\frac{2}{N} X(:, 1)^{\mathsf{T}} \cdot (Y - X\boldsymbol{\theta})$$

$$\frac{\partial J(\boldsymbol{\theta}_0, \boldsymbol{\theta}_1)}{\partial \boldsymbol{\theta}_1} = \frac{2}{N} \sum_{i=1}^{N} \left( y(i) - \boldsymbol{\theta}_0 - \boldsymbol{\theta}_1 \cdot \varphi(i) \right) \cdot \left( -\varphi(i) \right) = -\frac{2}{N} X(:, 2)^{\mathsf{T}} \cdot (Y - X\boldsymbol{\theta})$$



# Calcolare e implementare il gradiente

In generale, se abbiamo **più di un regressore** (ovvero, un vettore  $\boldsymbol{\varphi} = [1 \ \varphi_1, \ \varphi_2, ..., \varphi_{d-1}]^{\top} \in \mathbb{R}^{d \times 1}$ ) possiamo implementare il gradient descent come di seguito:

For {

$$\boldsymbol{\theta}_0 = \boldsymbol{\theta}_0 - \boldsymbol{\alpha} \cdot \frac{2}{N} \sum_{i=1}^{N} (y(i) - \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta}) \cdot (-1)$$

$$\boldsymbol{\theta}_1 = \boldsymbol{\theta}_1 - \boldsymbol{\alpha} \cdot \frac{2}{N} \sum_{i=1}^{N} (y(i) - \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta}) \cdot (-\varphi_1(i))$$

:

$$\boldsymbol{\theta}_{d-1} = \boldsymbol{\theta}_{d-1} - \boldsymbol{\alpha} \cdot \frac{2}{N} \sum_{i=1}^{N} (y(i) - \boldsymbol{\varphi}^{\mathsf{T}}(i)\boldsymbol{\theta}) \cdot (-\boldsymbol{\varphi}_{d-1}(i))$$



UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione