ELF PVS Field Strength Measurements, April 1977

Peter R. Bannister Submarine Electromagnetic Systems Department

Naval Underwater Systems Center Newport, Rhode Island / New London, Connecticut

Approved for public release; distribution unlimited.

012 83 03 30

E

Preface

This report was prepared under NUSC Project No. A59007, "ELF Propagation RDT &E" (U), Principal Investigator, P. R. Bannister (Code 3411). Navy Program Element No. 11401N and Project No. X0792-SB, Naval Electronic Systems Command Communications Systems Project Office, D. Dyson (Code PME 110), Program Manager ELF Communications, Dr. B. Kruger (Code PME 110-XI).

The analysis and write up of this report was performed while the author was occupying the Research Chair in Applied Physics at the Naval Postgraduate School, Monterey, CA. The author would especially like to thank Professors Otto Heinz and John Dyer and Dean Bill Tolles for recommending him to occupy this post and NAVSEA (Code 63R) for sponsoring the Chair.

The Technical Reviewer for this report was Raymond F. Ingram.

Reviewed and Approved: 3 February 1983

D. F. Dence Head, Submarine Electromagnetic Systems Department

The author of this report is located at the New London Laboratory, Naval Underwater Systems Center, New London, Connecticut, 06320

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM						
1. REPORT NUMBER TR 6771 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER						
4. TITLE tond Subtitles	S. TYPE OF REPORT & PERIOD COVERED						
ELF PVS FIELD STRENGTH MEASUREMENTS - APRIL 1977							
	4. PERFORMING ORG. REPORT NUMBER						
7. AUTHORiss	4. CONTRACT OR GRANT NUMBERGY						
Peter R. Bannister							
9. PERFORMING ORGANIZATION NAME AND ADDRESS							
Naval Underwater Systems Center	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UMT NUMBERS						
New London Laboratory							
New London, CT 06320							
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE						
	3 February 1983						
	13. NUMBER OF PAGES						
14. MONITORING AGENCY NAME & ADDRESS if different from Controlling Offices	15. SECURITY CLASS, tof this reports						
	15s. DECLASSIFICATION / DOWNGRADING						
•	SCHEDULE						
Approved for public release; distribution unlimi	ted						
17. DISTRIBUTION STATEMENT tof the abstract entered in Block 28, if different from Reports							
18. SUPPLEMENTARY NOTES							
	n Geomagnetic Activity						
Greenland Sea							
20. ABSTRACT /Cuntinue on reverse side if necessary and identify by block numbers							
From September 1976 to December 1978, extre field-strength and effective-noise measurements operational submarines. The results of measurem and aboard a submarine located under the ice in during April 1977 are discussed. The principal average daytime and nightime field strengths mea are in excellent agreement with previous ELF mea	were taken aboard ents taken in Connecticut the Greenland Sea area result is that the sured aboard the submarine						

20. (Continued) -similar paths. As expected, the presence of the ice cap had no adverse effect on ELF reception.

TABLE OF CONTENTS

			Page
LIST OF ILLUSTRATIONS		•	. ii
GLOSSARY OF ABBREVIATIONS	•	•	. iv
INTRODUCTION	•	•	. 1
APRIL 1977 RESULTS	•	•	. 2
CONCLUSIONS	•	•	. 5
REFERENCES	•		. 10
APPENDIX A - GREENLAND-SEA-AREA SUBMARINE DAILY DATA	•	•	. A-1
APPENDIX B - APRIL 1977 CONNECTICUT DAILY DATA			. B-1

Acces	sion For	•
NTIS	GRA&I	X
DTIC	TAB	
Unann	ounced	
Justi	fication	
Ву		
Distr	ibution/	,
Avai	lability	Codes
	Avail a	nd/or
Dist	Specia	al
l	1 1	
Λ		
IH		

LIST OF ILLUSTRATIONS

Secretary and the second secon

Figure		Page
1	Greenland-Sea-Area Average Data Versus GMT	
	$(\psi = 291 \text{ deg})$, 4 to 26 April 1977	6
2	Greenland-Sea-Area SNR Distribution	
	$(\psi = 291 \text{ deg}, N = 338), \text{ April } 1977 \dots \dots \dots \dots$	7
3	Greenland-Sea-Area Submarine Data Versus GMT	
	$(\psi = 291 \text{ deg})$, 6 and 7 April 1977	8
4	Daily Comparison of Average SSTP, Nighttime,	
	and SRTP Field Strengths With Geomagnetic	
	Behavior, 4 to 12 April 1977	9
A-1	Submarine Data Versus GMT (ψ = 291 deg), 4 April 1977	A-2
A-2	Submarine Data Versus GMT (ψ = 291 deg), 5 April 1977	A-3
A-3	Submarine Data Versus GMT (ψ = 291 deg), 6 April 1977	A-4
A-4	Submarine Data Versus GMT (ψ = 291 deg), 8 April 1977	A-5
A-5	Submarine Data Versus GMT (ψ = 291 deg), 9 April 1977	A-6
A-6	Submarine Data Versus GMT (ψ = 291 deg), 10 April 1977	A-7
A-7	Submarine Data Versus GMT (ψ = 291 deg),	
	11 and 12 April 1977	A-8
A-8	Submarine Data Versus GMT (ψ = 291 deg),	
	15 and 16 April 1977	A-9
A-9	Submarine Data Versus GMT (ψ = 291 deg), 18 April 1977	A-10
A-10	Submarine Data Versus GMT (w = 291 deg). 21 April 1977	A-11
A-11	Submarine Data Versus GMT (ψ = 291 deg), 21 April 1977 Submarine Data Versus GMT (ψ = 291 deg), 22 April 1977	A-12
A-12	Submarine Data Warus GMT (ψ = 291 deg), 24 April 1977	A-13
A-13	Submarine Data Versus GMT (ψ = 291 deg), 26 April 1977	A-14
B-1	Connecticut Data Versus GMT (ψ = 291 deg), 1 April 1977	
B-2	Connecticut Data Versus GMT (ψ = 291 deg), 2 April 1977	B-3
B-3	Connecticut Data Versus GMT (ψ = 291 deg),	
<i>1</i> , 3	3 and 4 April 1977	B-4
B-4	Connecticut Data Versus GMT (ψ = 291 deg), 6 April 1977	B-5
B-5	Connecticut Data Versus GMT (ψ = 291 deg), 7 April 1977	B-6
B-6	Connecticut Data Versus GMT (ψ = 291 deg), 8 April 1977	B-7
B-7	Connecticut Data Versus GMT (ψ = 291 deg), 9 April 1977	B-8
B-8	Connecticut Data Versus GMT (ψ = 291 deg), 10 April 1977	B-9
B-9	Connecticut Data Versus GMT (ψ = 291 deg), 12 April 1977	
B-10	Connecticut Data Versus GMT (ψ = 291 deg), 13 April 1977	
B-11	Connecticut Data Versus GMT (ψ = 291 deg), 14 April 1977	
B-12	Connecticut Data Versus GMT (ψ = 291 deg), 16 April 1977	
B-13	Connecticut Data Versus GMT (ψ = 291 deg), 17 April 1977	
B-13	Connecticut Data Versus GMI (ψ = 291 deg), 17 April 1977	
B-14 B-15	Connecticut Data Versus GMT (ψ = 291 deg), 18 April 1977 Connecticut Data Versus GMT (ψ = 291 deg), 19 April 1977	
B-15	Connecticut Data Versus GMT (ψ = 291 deg), 19 April 1977 Connecticut Data Versus GMT (ψ = 291 deg), 20 April 1977	
	Connecticut Data Versus GMT (ψ = 291 deg), 20 April 1977 Connecticut Data Versus GMT (ψ = 291 deg), 21 April 1977	
B-17	Connecticut Data versus GMI ($\psi = 291$ deg), 21 April 1977	D-10

LIST OF ILLUSTRATIONS (Cont'd)

Figure														Page
B-18	Connecticut	Data	Versus	GMT	(ψ	=	291	deg),	22	Apri1	1977			B-19
B-19	Connecticut													
B-20	Connecticut	Data	Versus	GMT	ĺψ	=	291	deg),	24	April	1977			B-21
B-21	Connecticut													
B-22	Connecticut	Data	Versus	GMT	ψ̈́)	=	291	deg),	26	April	1977			B-23
B-23	Connecticut	Data	Versus	GMT	(ψ	=	291	deg),	27	April	1977		•	B-24
B-24	Connecticut	Data	Versus	GMT	(ψ	=	291	deg),	28	April	1977			B-25
B-25	Connecticut	Data	Versus	GMT	(ψ	=	291	deg),		_				
	28 and	29 Aj	pril 197	77 .										B-26

TR 6771

GLOSSARY OF ABBREVIATIONS

ELF Extremely low frequency

EW East-west

GMT Greenwich Mean Time

MSK Minimum shift keying

NS North-south

NUSC Naval Underwater Systems Center

PVS Propagation validation system

SNR Signal-to-noise ratio

SRTP Sunrise transition period

SSTP Sunset transition period

STIU Signal timing and interface unit

TTY Teletype

WTF Wisconsin Test Facility

ELF PVS FIELD STRENGTH MEASUREMENTS, APRIL 1977

INTRODUCTION

The ELF* propagation validation system (PVS) is composed of the U.S. Navy's extremely low frequency (ELF) Wisconsin Test Facility (WTF) and ELF receivers (AN/BSR-1; installed on submarines and at certain land sites. The WTF is located in the Chequamegon National Forest in north-central Wisconsin, about 8 km south of the village of Clam Lake. It consists of two 22.5 km antennas; one antenna is located approximately in the north-south (NS) direction and one is located approximately in the east-west (EW) direction. Each antenna is grounded at both ends. At 76 Hz, the electrical axis of the NS antenna is 14 deg east of north, while the electrical axis of the EW antenna is 114 deg east of north. The WTF antenna array can be steered electrically toward any particular location. Its radiated power is approximately 1 W.

The AN/BSR-1 receiver is composed of an AN/UYK-20 minicomputer, a signal timing and interface unit (STIU), a rubidium frequency time standard, two magnetic-tape recorders, and a preamplifier. The message output is on a teletype (TTY), which is used to control the receiver. The submarine receiving antenna is a buoyant cable 1.6 cm in diameter with electrodes spaced 300 m apart on a 580 m transmission line.

The system uses minimum shift keying (MSK) modulation with a center frequency of 76 Hz. The signalling scheme uses block orthogonal coding to make maximum use of the limited transmitter power available. The scheme provides the most efficient use of the transmitter for short messages.

During April 1977, the submarine involved in testing was located under the ice in the Greenland-Sea area at a range of approximately 4.5 Mm from WTF. Signal-strength, effective-noise, and signal-to-noise ratio (SNR) data were recorded automatically whenever the ELF receiving antenna was streamed, though no special operational posture was adopted to provide ELF reception. Unfortunately, because of an erroneous receiver setting, the relative-phase information obtained was in error.

In the submarine data, the depth and orientation are automatically accounted for by the receiver. The submarine data analyzed in this report have been taken at essentially constant depth and orientation for considerable periods of time. We also have a substantial amount of unreduced (as far as signal amplitude and phase are concerned) submarine data where the speed, depth, and orientation of the submarine were varying considerably. These particular data are not too useful for obtaining accurate signal amplitude and

^{*}ELF (formerly called SANGUINE/SEAFARER) is an arbitrary designation applied to ongoing extremely low frequency research by the U. S. Navy. The term designates work directed toward the implementation of an ELF shore-to-ship radio communication system.

phase information. However, they are very useful for obtaining information on messages received during submarine maneuvers.

In this report, we will discuss the results of these April 1977 submarine and Connecticut measurements and will compare them with previous measurements taken over similar paths.

APRIL 1977 RESULTS

During this time period, data were obtained on 15 days from the submarine in the Greenland-Sea area and from the Connecticut site on 25 days. The daily plots of signal strength, effective noise,* and SNR versus Greenwich Mean Time (GMT) are presented in appendix A for submarine data and in appendix B for Connecticut data.

The WTF antenna phasing angle (ψ) was 291 deg during April and the transmitting frequency was 76 ±4 Hz.

Presented in table 1 are the April 1977 Greenland-Sea-area submarine daily field-strength averages. These data are broken up into four time periods, which should be representative of

- 1. Nighttime propagation conditions (~0200 to 0600 GMT),
- 2. Sunrise transition period (SRTP) propagation conditions (~ 0600 to 1200 GMT),
 - 3. Daytime propagation conditions (~1200 to 2100 GMT), and
- 4. Sunset transition period (SSTP) propagation conditions (~2100 to 0200 GMT).

Referring to table 1, we see that there is a considerable day-to-day variation in the received field strengths. That is, the average field strength sometimes changes by 2 to 4 dB from one day to the next. This phenomenon is typical of ELF propagation on northern-latitude paths. 3 , 4

The 4 through 26 April average field-strength, SNR, and effective-noise values are plotted in figure 1† versus GMT. From this figure, we see that the highest field strengths were measured during the latter part of the sunrise and sunset transition periods (1000 to 1200 and 2330 to 0130 GMT), while the lowest field strengths were measured during the latter part of the nighttime period (0400 to 0600 GMT). The average daily effective-noise variation was approximately 5 dB with the minimum values measured during the early morning

^{*}The effective-noise spectrum level (in dBA/m· $\sqrt{1~\text{Hz}}$) is defined as the spectrum level of ELF noise at the signal frequency divided by the improvement (in SNR) using nonlinear processing.²

[†]Figures have been placed together at the end of this report or in the applicable appendix.

Table 1. April 1977 Greenland-Sea-Area Submarine
Daily Field-Strength Averages

Date	Night H _φ (dBA/m)	SRTP H _o (dBA/m)	Day H _ф (dBA/m)	SSTP H _o (dBA/m)
4/4	-153.5	-150.8	-	-149.7
4/5	-151.4	-150.0	-	-149.8
4/6	-152.3	~150.7	-149.9	-158.2
4/7	-155.9	-155.5	-153.2	-15
4/8	-152.1	-151.0	-150.6	-15
4/9	-152.2	-150.6	-	
4/10	-151.8	-153.1	-150.0	-14
4/11	-152.6	-	-	-
4/12	-152.2	-150.8	-	-
4/15	-	-151.5	-	-
4/16	-152.0	-149.6	-149.9	-
4/18	-	-	-150.2	-151.4
4/21	-150.9	-151.3	-	-
4/22	-151.2	-152.0	-152.6	-150.1
4/24	-155.2	-151.6	-152.5	-
4/26	-151.5	-150.3	-	-151.5
Monthly Average	-152.4	-151.2	-151.1	-150.6

hours (0300 to 0500 GMT) and the maximum values measured during the late afternoon hours (1800 to 2100 GMT).

A plot of the April 1977 Greenland-Sea-area SNR distribution (N = 338 30-min samples) is presented in figure 2. From this curve, we see that the predetection (in a 1-Hz bandwidth) SNR at optimum heading was greater than -8 dB 50 percent of the time and greater than -14 dB 98 percent of the time. The postdetection SNR (after 30 min integration time) was greater than 24.5 dB 50 percent of the time and greater than 18.5 dB 98 percent of the time.

During both January and March 1977, field-strength measurements were taken in Connecticut and aboard submarines located in the North-Atlantic/Norwegian-Sea

area. The daytime and nighttime attenuation rates inferred from these measurements were 1.25 and 0.9 dB/Mm, respectively, while the excitation factors were -1.0 dB during the day and -3.8 dB at night. 5,6 These values are consistent with previous measurements taken over similar propagation paths. 7,8

Referring to table 1, we see that the average April Greenland-Sea-area (~4.5 Mm from WTF) daytime, transition-period, and nighttime measured field strengths were -151.1, -150.9, and -152.4 dBA/m, respectively. Based on the abovementioned values of attenuation rate and excitation factor, the predicted field strengths at a range of 4.5 Mm are -151.2, -151.8, and -152.5 dBA/m, respectively. Note that there is excellent agreement between the measured and predicted Greenland-Sea-area daytime and nighttime field strengths. On the other hand, the measured transition-period field strengths were approximately 1 dB greater than predicted.

The most unusual field-strength and effective-noise variations measured on the submarine in the Greenland-Sea area occurred on 6 and 7 April. During this time, the average measured field strengths were 3 to 7 dB lower than during the preceding or succeeding days (see table 1). The 0000-1200 measured effective noise was approximately 8 dB lower than the monthly average.

Presented in figure 3 are the 6 and 7 April 1977 Greenland-Sea-area submarine data versus GMT. Here, we see that, from 2000 to 0030, the field strength decreased ~12 dB while the effective noise decreased ~11 dB. The signal strength then increased ~9 dB from 0030 to 0330, while the noise only increased about 2 dB. Both the signal and noise then remained fairly constant until the beginning of the daytime propagation period where they both increased.

On the other hand, the 7 April Connecticut nighttime field strengths were fairly constant. However, the night-to-day relative-phase variation ($\Delta \phi$) was only 13 deg compared to the monthly average of 23 deg, which implies a lower nighttime reflection height (and increased nighttime excitation factor). This is further borne out by the fact that the 7 April 0400 to 0800 nighttime field strengths were 1 to 2 dB greater than those during the preceding or succeeding nights (see appendix B).

Because some previous ELF field-strength variations appeared to be correlated with geomagnetic activity, $^{9-12}$ it would be of interest to compare the April measurements with geomagnetic activity. Presented in figure 4 are the daily comparisons of the average SSTP, nighttime, and SRTr field strengths (measured from 4 to 12 April) with the geomagnetic \mathbf{A}_k index for Fredericksburg, VA. (Note that minus \mathbf{H}_{ϕ} is plotted versus day of month.)

It is readily apparent from figure 4 that, during this particular period, increases in geomagnetic activity were accompanied by decreases in the SSTP, nighttime, and SRTP field strengths. In particular, during 7 April, when the magnetic activity was the greatest, the measured field strengths were the lowest.

CONCLUSIONS

The average daytime and nighttime field strengths measured aboard a submarine located under the ice in the Greenland-Sea area during April 1977 are in excellent agreement with previous ELF measurements over similar paths. As expected, the presence of the ice cap had no adverse effect on ELF reception.

Anomalous ELF field-strength and effective-noise variations were also correlated with geomagnetic activity. That is, increases in geomagnetic activity were usually accompanied by decreases in the received field strengths.

Figure 1. Greenland-Sea-Area Average Data Versus GMT (ψ = 291 deg), 4 to 26 April 1977

Figure 2. Greenland-Sea-Area SNR Distribution (ψ = 291 deg, N = 338), April 1977

Figure 3. Greenland-Sea-Area Submarine Data Versus GMT (ψ = 291 deg), 6 and 7 April 1977

Figure 4. Daily Comparison of Average SSTP, Nighttime, and SRTP Field Strengths With Geomagnetic Behavior, 4 to 12 April 1977

REFERENCES

- 1. P. R. Bannister, F. J. Williams, A. L. Dahlvig, and W. A. Kraimer, "Wisconsin Test Facility Transmitting Antenna Pattern and Steering Measurements," <u>IEEE Transactions on Communications</u>, vol. COM-22, no. 4, 1974, pp. 412-418.
- 2. J. E. Evans and A. S. Griffiths, "Design of a Sanguine Noise Processor Based Upon Worldwide Extremely Low Frequency (ELF) Recordings," <u>IEEE</u> Transactions on Communications, vol. COM-22, no. 4, 1974, pp. 528-539.
- 3. D. P. White, <u>ELF Propagation Measurements</u> (Phase III Fall 1971, Technical Note 1972-21, MIT Lincoln Laboratory, Lexington, MA, 31 July 1972.
- 4. J. R. Davis and W. D. Meyers, Observations of ELF Signal and Noise Variability on Northern Latitude Paths, NRL Report 7923, Naval Research Laboratory, Washington, DC, 11 November 1975.
- 5. P. R. Bannister, ELF PVS Field Strength Measurements, January 1977, NUSC Technical Report 6879, Naval Underwater Systems Center, New London, CT (to be published).
- 6. P. R. Bannister, <u>ELF PVS Field Strength Measurements</u>, <u>March 1977</u>, NUSC Technical Report 6769, Naval Underwater Systems Center, New London, CT (to be published).
- 7. P. R. Bannister, "Far-Field Extremely Low Frequency (ELF) Propagation Measurements, 1970-72," <u>IEEE Transactions on Communications</u>, vol. COM-22, no. 4, 1974, pp. 468-474.
- 8. P. R. Bannister, "Variations in Extremely Low Frequency Propagation Parameters," Journal of Atmospheric and Terrestrial Physics, vol. 37, no. 9, 1975, pp. 1203-1210.
- 9. J. R. Davis, "The Influence of Certain Ionospheric Phenomena on Extremely Low Frequency (ELF) Propagation," <u>IEEE Transactions on Communications</u>, vol. COM-22, no. 4, 1974, pp. 484-492.
- 10. J. R. Davis, "Localized Nighttime D-Region Disturbances and ELF Propagation," <u>Journal of Atmospheric and Terrestrial Physics</u>, vol. 38, no. 12, 1976, pp. 1309-1317.
- 11. P. R. Bannister, ELF Field Strength Measurements Made in Connecticut During 1976, NUSC Technical Report 5853, Naval Underwater Systems Center, New London, CT, 11 September 1978.
- 12. P. R. Bannister et al., Extremely Low Frequency (ELF) Propagation, NUSC Scientific and Engineering Studies, Naval Underwater Systems Center, New London, CT, February 1980, 550 pages.

Appendix A

GREENLAND-SEA-AREA SUBMARINE DAILY DATA

Daily field-strength, effective-noise, and SNR values for Greenland-Sea-area submarine data are plotted versus GMT in this appendix as figures A-1 through A-13. The WTF antenna phasing angle (ψ) was 291 deg during April and the transmitting frequency was 76 ± 4 Hz.

We can see that, with the exception of the 22 and 26 April data (figures A-11 and A-13), amplitude peak-to-trough variations of 5 dB or greater occurred during each day that included a nighttime measurement period. The largest variation (8.5 dB) during the nighttime measurement period (0200 to 0600 GMT) occurred on 9 April (figure A-5), while the largest variation measured (12.4 dB) occurred during the sunset transition period of 6/7 April (figure 3).

The field-strength behavior during 5, 8, 11, 12, 15, 16, 18, and 26 April was very close to the monthly average (± 1 dB). On 4 April (figure A-1), the nighttime field strength was approximately 2 dB lower than the monthly average, as was the 0400 to 0600 GMT nighttime field strength measured on 9 April (figure A-5).

The field strength measured during a 2-hr portion of the SRTP was approximately 4 dB lower than the monthly average on both 10 and 21 April (figures A-6 and A-10), while the 22 April daytime field strength (figure A-11) was approximately 1.5 dB lower throughout the whole daytime period.

During 24 April (figure A-12), the nighttime field strength was 3 dB lower than the monthly average. During the sunrise transition period, the field strength and SNR were characterized by 3 to 4 dB variations between successive samples, while the effective noise was essentially constant. The day-time field strength was also 1.5 dB lower than the monthly average.

It should be noted that all of the submarine effective-noise data presented in this report are contaminated to some degree by submarine-generated noise (external or internal to the submarine). Thus, the effective-noise values presented here are on the high side.

Figure A-1. Submarine Data Versus GMT (ψ = 291 deg), 4 April 1977

Figure A-2. Submarine Data Versus GMT (ψ = 291 deg), 5 April 1977

Figure A-3. Submarine Data Versus GMT (ψ = 291 deg), 6 April 1977

Figure A-4. Submarine Data Versus GMT (ψ = 291 deg), 8 April 1977

Figure A-5. Submarine Data Versus GMT (ψ = 291 deg), 9 April 1977

Figure A-6. Submarine Data Versus GMT (ψ = 291 deg), 10 April 1977

Figure A-7. Submarine Data Versus GMT (ψ = 291 deg), 11 and 12 April 1977

Figure A-8. Submarine Data Versus GMT (ψ = 291 deg), 15 and 16 April 1977

Figure A-9. Submarine Data Versus GMT (ψ = 291 deg), 18 April 1977

Figure A-10. Submarine Data Versus GMT (ψ = 291 deg), 21 April 1977

Figure A-11. Submarine Data Versus GMT (ψ = 291 deg), 22 April 1977

Figure A-12. Submarine Data Versus GMT (ψ = 291 deg), 24 April 1977

Figure A-13. Submarine Data Versus GMT (ψ = 291 deg), 26 April 1977

Appendix B

APRIL 1977 CONNECTICUT DAILY DATA

For the Connecticut measurements, the AN/BSR-1 receiver is located in Room 3111, Building 80, at the Naval Underwater Systems Center (NUSC), New London, CT. The loop receiving antenna is located at Fishers Island, NY (about 10 km from New London). The receiver and receiving antenna are connected by means of a microwave link from Fishers Island to NUSC. The receiving antenna is located approximately 50 m from an NUSC building at Fishers Island that houses the ELF preamplifier and associated circuitry.

As was previously mentioned,⁵ the Connecticut effective-noise measurements are sometimes contaminated by industrial noise. Thus, the effective-noise values presented in this appendix are on the high side.

The April daily field-strength (both amplitude and relative phase), effective-noise, and SNR values are plotted versus GMT in this appendix. The WTF antenna phasing angle (ψ) was 291 deg during April and the transmitting frequency was 76 ± 4 Hz.

For a WTF antenna phasing angle of 291 deg, the average Connecticut field strength should equal \sim -143.3 dBA/m during the day and \sim -145.5 dBA/m at night. Referring to figures B-1 through B-25, we see that, with the exception of the nighttime minimum-field-strength period, the field-strength levels are about as expected.

Amplitude peak-to-trough variations of 5 dB or greater occurred during 9 of the 25 days measured (April 1, 2, 4, 6, 14, 16, 18, 28, and 29). The largest variation (~6.5 dB) occurred on 1 and 18 April (figures B-1 and B-14).

The April night-to-day relative-phase variation was 23 \pm 5 deg, with the largest variation (31 deg) measured on 2 April (figure B-2) and the smallest (13 deg) measured on 7 April (figure B-5).

Figure B-1. Connecticut Data Versus GMT (ψ = 291 deg), 1 April 1977

Figure B-2. Connecticut Data Versus GMT (ψ = 291 deg), 2 April 1977

Figure B-3. Connecticut Data Versus GMT (ψ = 291 deg), 3 and 4 April 1977

Figure B-4. Connecticut Data Versus GMT (ψ = 291 deg), 6 April 1977

Figure B-5. Connecticut Data Versus GMT (ψ = 291 deg), 7 April 1977

Figure B-6. Connecticut Data Versus GMT (ψ = 291 deg), 8 April 1977

Figure B-7. Connecticut Data Versus GMT (ψ = 291 deg), 9 April 1977

Figure B-8. Connecticut Data Versus GMT (ψ = 291 deg), 10 April 1977

Figure B-9. Connecticut Data Versus GMT (ψ = 291 deg), 12 April 1977

Figure B-10. Connecticut Data Versus GMT (ψ = 291 deg), 13 April 1977

Figure B-11. Connecticut Data Versus GMT (ψ = 291 deg), 14 April 1977

Figure B-12. Connecticut Data Versus GMT (ψ = 291 deg), 16 April 1977

Figure B-13. Connecticut Data Versus GMT (ψ = 291 deg), 17 April 1977

Figure B-14. Connecticut Data Versus GMT (ψ = 291 deg), 18 April 1977

Figure B-15. Connecticut Data Versus GMT (ψ = 291 deg), 19 April 1977

Figure B-16. Connecticut Data Versus GMT (ψ = 291 deg), 20 April 1977

Figure B-17. Connecticut Data Versus GMT (ψ = 291 deg), 21 April 1977

Figure B-18. Connecticut Data Versus GMT (ψ = 291 deg), 22 April 1977

Figure B-19. Connecticut Data Versus GMT (ψ = 291 deg), 23 April 1977

Figure B-20. Connecticut Data Versus GMT (ψ = 291 deg), 24 April 1977

Figure B-21. Connecticut Data Versus GMT (ψ = 291 deg), 25 April 1977

Figure B-22. Connecticut Data Versus GMT (ψ = 291 deg), 26 April 1977

Figure B-23. Connecticut Data Versus GMT (ψ = 291 deg), 27 April 1977

Figure B-24. Connecticut Data Versus GMT (ψ = 291 deg), 28 April 1977

Figure B-25. Connecticut Data Versus GMT (ψ = 291 deg), 28 and 29 April 1977

INITIAL DISTRIBUTION LIST

Addressee	No. of Copies
DARPA	3
DTIC	15
ONR (Code 425GG (J. Heacock), 428IO (R. G. Joiner))	2
ONR Branch Office, Chicago, (Dr. Forrest L. Dowling)	
ASN (T. P. Quinn (for C ³), J. Hull (Rm 5E 779)	2
NRL (Library, Dr. J. R. Davis (Code 7550), Dr. Frank Kelly)	3
NOSC (Library, R. Pappart, D. Morfitt, J. Ferguson, J. Bickel	•
F. Snyder, C. Ramstedt, P. Hansen, K. Grauer, W. Hart)	10
NAVELECSYSCOM (PME 110-11 (Dr. G. Brunhart), PME 110-XI (Dr. 1	Bodo
Kruger), PME 110)	3
NAVAL SURFACE WEAPONS CENTER, WHITE OAK LAB. (J. Holmes, P. W	essel,
K. Bishop, R. Brown, J. Cunningham, B. DeSavage, Library)	7
DWTNSRDC ANNA (W. Andahazy, F. E. Baker, P. Field, D. Eversti	
B. Hood, D. Nixon)	6
NAVPGSCOL, MONTEREY (O. Heinz, P. Moose, A. Ochadl, K. Thomas	
W. Tolles, Library)	6
NCSC (K. R. Allen, R. H. Clark, M. J. Wynn, M. Cooper, Library	
DIRECTOR, DEFENSE NUCLEAR AGENCY, RAAE, DDST, RAEV	3
R&D Associates, P.O. Box 9695, Marina del Rey, CA 90291 (C. Greifinger, P. Greifinger)	2
Pacific-Sierra Research Corp., 1456 Cloverfield Boulevard,	2
Santa Monica, CA 90404 (E. C. Field)	1
Johns Hopkins University, Applied Physics Laboratory, Laurel	=
20810 (L. Hart, J. Giannini, H. Ko, I Sugai)	4
University of California, Scripps Institute of Oceanography	7
(C. S. Cox (Code A-030), H. G. Booker, J. Filloux, P. Young	z) 5
Lockheed Palo Alto Research Laboratory (W. Imhof, J. B. Reag	
E. E. Gaines, R. C. Gunton, R. E. Meyerott)	5
University of Texas, Geomagnetics and Electrical Geoscience	
Laboratory (F. X. Bostick, Jr.)	1
COMMANDER, AIR FORCE GEOPHYSICS LABORATORY (J. Aarons)	1
COMMANDER, ROME AIR DEVELOPMENT CENTER (J. P. Turtle,	
J. E. Rasmussen, W. I. Klemetti, P. A. Kossey, E. F. Alts	chuler) 5
Applied Science Associates, Inc., (Dr. Gary S. Brown)	
105 E. Chatham St., Apex, NC 27502	1
Computer Sciences Corp., Falls Church, VA 22046 (D. Blumberg	
Senator R. Mellenberg, R. Heppe, F. L. Eisenbarth)	4
MIT Lincoln Labs. (M. L. Burrows, D. P. White, D. K. Willim,	•
S. L. Bernstein, I. Richer)	5
Electromagnetic Sciences Lab. SRI International, Menlo Park,	1
94025 (Dr. David M. Bubenik) Communications Research Centre (Dr. John S. Belrose) P.O. Bo	
Station "H" Shirley Bay, Ottawa, Ontario, Canada K2H8S2	1
West Virginia University, Electrical Eng. Dept. (Prof. C. A.	-
Balanis)	1
Dr. Joseph P. deBettencourt, 18 Sterling St., West Newton, M.	
Dr. Marty Abromavage, IITRE, Div. E., 10W 35th St., Chicago,	
60616	1
Mr. Larry Ball, U.S. Dept. of Energy NURE Project Office, P.	Э.
Box 2567, Grand Junction, CO 81502	1

Addressee No.	of	Copies
STATE DEPARTMENT ACDA MA-AT, Rm. 5499, Washington, DC 20451 (ADM T. Davies, R. Booth, N. Carrera) GTE Sylvania, (R. Row, D. Boots, D. Esten) 189 B. St.	3	
Needham, MA 02194 HARVARD UNIVERSITY, Gordon McKay Lab. (Prof. R. W. P. King,	3	
Prof. T. T. Wu) University of Rhode Island, Dept. of Electrical Engineering (Prof. C. Polk)	2	
(FIGI. C. FOIK)	1	
University of Nebraska, Electrical Engineering Dept., (Prof. E. Bahar)	1	
University of Toronto, EE Dept. (Prof. Keith Balmain)	1	
NOAA/ERL (Dr. Donald E. Barrick)	1	
University of Colorado, EE Dept. (Prof. Petr Beckmann) Geophysical Observatory, Physics & Eng. Lab. DSIR Christchurch,	1	
New Zealand (Dr. Richard Barr)	1	
General Electric Co., (C. Zierdt, A. Steinmayer) 3198 Chestnut St., Philadelphia, PA 19101	2	
University of Arizona, Elec. Eng. Dept., Bldg. 20 (Prof. J. W. Wait) Tuscon, AZ 85721	1	
U.S. NAVAL ACADEMY, Dept. of Applied Science (Dr. Frank L. Chi)	1	
Stanford University, Radioscience Laboratory (Dr. Anthony		
Fraser-Smith), Durand Bldg., Rm. 205 Stanford University, Stanford Electronics Laboratory (Prof.	1	
Bob Helliwell)	1	
Colorado School of Mines, Department of Geophysics (Prof.		
A. Kaufman) Prof. George V. Keller, Chairman, Group Seven, Inc., Irongate II	1.	
Executive Plaza, 777 So. Wadsworth Blvd., Lakewood, CO 80226	1	
NOAA, Pacific Marine Environ. Lab. (Dr. Jim Larsen)	1	
MIT, Dept. of Earth/Planetary Sciences, Bldg. 54-314 (Prof.		
Gene Simmons)	1	
Colorado School of Mines (Dr. C. Stoyer) University of Victoria, (Prof. J. Weaver) Victoria, B.C.	1	
V8W 2Y2 Canada	1	
Mr. Donald Clark, c/o Naval Security Group Command, 3801 Nebrask	(a	
Ave., NW, Washington, DC 20390	1	
Prof. R. L. Dube, 13 Fairview Rd., Wilbraham, MA 01095	1	
U.S. Geological Survey, Rm. 1244 (Dr. Frank C. Frischknecht) Denver, CO 80225	1	
Mr. Larry Ginsberg, Mitre Corp., 1820 Dolly Madison Bldg. McLean, VA 22102	1	
Dr. Robert Morgan, Rt. 1, Box 187, Cedaredge, CO 81413	1	
Mr. A. D. Watt, Rt. 1, Box 183½, Cedaredge, CO 81413	1	
Dr. E. L. Maxwell, Atmospheric Sciences Dept., Colorado State University, Fort Collins, CO	1	
Mr. Al Morrison, Purvis Systems, 3530 Camino Del Rio North, Suite 200, San Diego, CA 92108	1	

Addressee No. of	Copies
NDRE, Division for Electronics (Dr. Trygve Larsen) P.O. Box 25, Kjeller, Norway	1
Belden Corp., Technical Research Center (Mr. Douglas O'Brien) Geneva, Illinois	1
University of Pennsylvania (Dr. Ralph Showers) Moore School of Elec. Eng., Philadelphia, PA 19174	1
University of Houston, Director, Dept of Elec. Eng. (Prof. Liang C. Shen)	1
The University of Connecticut, Physics Dept., (Prof. O. R. Gilliam), Storrs, CT 06268	1
Dr. David J. Thomson, Defence Research Establishment Pacific, F.M.O., Victoria, B.C., Canada	1
Dr. Robert Hansen, Box 215, Tarzana, CA 91356 The University of Kansas, Remote Sensing Laboratory (Prof.	1
R. K. Moore) Center for Research, Inc., Lawrence, Kansas	
University of Wisconsin, Dept. of Elec. Eng. (Prof. R. J. King) OT/ITS U.S. Dept. of Commerce (Dr. David A. Hill), Boulder, CO	1
Office of Telecommunications, Inst. for Telecommunications Services (Dr. Douglas D. Crombie, Director), Boulder, CO University of Colorado, Dept. of Electrical Eng. (Prof. David	1
	1
C. Chang)	_
Dr. K. P. Spies, ITS/NTIA, U.S. Dept. of Commerce The University of Connecticut, Dept. of Electrical Eng. & Computer Sci., Storrs, CT (Prof. Clarence Schultz,	1
	2
Prof. Mahmond A. Melehy)	2
Dr. Richard G. Geyer, 670 S. Estes St., Lakewood, CO University of California, Lawrence Livermore Lab.,	1
(R. J. Lytle, E. K. Miller) Kings College, Radiophysics Group (Prof. D. Llanwyn-Jones)	2
Strand, London WC2R 2LS, England Istituto di Elettrotechnica, Facotta di Ingegneria (Prof.	1
Giorgio Tacconi) Viale Cambiaso 6, 16145 Genova, Italy Universite des Sciences de Lille (Prof. R. Gabillard)	1
B.P. 36-59650 Villeneuve D'Ascq, Lille, France	1
Arthur D. Litte, Inc., (Dr. A. G. Emslie, Dr. R. L. Lagace, R&D Div., Acorn Park, Cambridge, MA 02140	1
University of Colorado, Dept. of Electrical Eng. (Prof. S. W. Maley)	1
University of Washington, EE Dept. (Prof. A. Ishimaru) Seattle Dr. Svante Westerland, Kiruna Geofysiska Institute	1
S981 01 Kiruna 1, Sweden Dr. Harry C. Koons, The aerospace Corp., P.O. Box 92957,	1
Los Angeles, CA 90009	1
Dr. Albert Essmann, Hoogewinkel 46, 23 Kiel 1, West Germany	ī
Glenn S. Smith, School of Elec. Eng. Georgia Tech. Atlanta, GA	1
Dr. T. Lee, CIRES, Campus Box 449, University of Colorado	1
Dr. Jack Williams, RCA Camden, Mail Stop 1-2, Camden, NJ 08102	1
Dr. Joseph Czika, Science Applications, Inc., 840 Westpark Dr.	•
McLean, VA 22101 Mr. Arnie Farstad, 390 So. 69th St., Boulder, CO 80303	1 1

Addressee	No.	of	Copies
NATO SACLANT ASW CENTER (Library) USGS, Branch of Electromagnetism and Geomagnetism		1	
(Dr. James Towle) Denver, CO		1	
NOAA, Pacific Maine Environ. Lab. (Dr. Jim Larsen) University of Texas at Dallas, Geosciences Division,		1	
(Dr. Mark Landisman) University of Wisconsin, Lewis G. Weeks Hall, Dept. of		1	
Geology and Geophysics (Dr. C. S. Clay) DCA/CCTC, Def Communication Agency, Code C672		1	
(Dr. Frank Moore)		1	
Argonne National Laboratory, Bldg. 12 (Dr. Tony Vallentino)		1	
IITRE, Div. E, Chicago (Dr. Marty Abromavage)		1	
The University of Manitoba, Elec. Eng. Dept. (Prof. A. Mohse Mr. Jerry Pucillo, Analytical Systems, Engineering Corp.,	(חי	1	
Newport, RI 02840		1	
Dr. Misac N. Nabighian, Newmont Exploration Ltd., Tuscon		1	
Dr. Fred Raab, Pohemus, P.O. Box 298, Essex Junction, VT 054 Dr. Louis H. Rorden, President, Develco, Inc., 404 Tasman Dr		1	
Sunnyvale, CA 94086		1	
Dr. Eivind Trane, NDRE, P.O. Box 25, 2007 Kjeller, Norway RCA David Sarnoff Research Center (K. Powers, J. Zennel,		1	
L. Stetz, H. Staras)		`4	
University of Illinois, Aeronomy Laboratory (Prof. C. F. Sech	rist) 1	
Dr. Cullen M. Crain, Rand Corp., Santa Monica		1	
Radioastronomisches Institute der Universität Bonn			
(Dr. H. Volland), 5300 Bonn-Endenich, Auf dem Hiigel 71		_	
West Germany		1	
Dr. John P. Wikswo, Jr., P.O. Box 120062 Acklen Station, Nashville		1	
Mr. Lars Brock-Nannestad, DDRB Osterbrogades Kaserne,		1	
2100 Copenhagen O, Denmark		1	
Institut de Physique du Globe (Dr. Edonard Selzer) 11 Quai S	St	•	
Bernard, Tour 24 Paris Ve, France	, ,	1	
Elektrophysikalisches Institut (Dr. Herbert König) Technisch	ıe		
Hochschule, Arcisstrasse 21, 8 Munich 2, West Germany		1	
Raytheon Company (Dr. Mario Grossi) Portsmouth, RI		1	
NISC, Code OOW (Mr. M. A. Koontz) Washington, DC		1	
Polytechnic Institute of Brooklyn (Prof. Leo Felsen)		1	
NOAA/ERL (Dr. Earl E. Gossard) R45X7, Boulder, CO 80302		1	
Dr. George H. Hagn, SRI-Washington, Rosslyn Plaza, Arlington	i	1	
NOAA/ERL (Dr. C. Gordon Little) R45		1	
Goddard Space Flight Ctr. (Dr. S. H. Durrani) Code 950		1	
ITS, Office of Telecom (Dr. Ken Steele) Boulder, CO 80302 NTIA/ITS, U.S. Dept. of Commerce (Dr. A. D. Spaulding)		1	
Stanford University, Elec. Eng. Dept. (Dr. O. G. Villard, Jr	• 1	1	
Dr. D. Middleton, 127 East 91st St., New York, NY 10028	• • J	1	
University of California, Elec. Eng. & Computer Sci. Dept., (Prof. K. K. Mei)		1	

Addressee No. of	Copies
California Inst. of Technology, Jet Propulsion Lab.,	
(Dr. Yahya Rahmat-Samii)	1
Raytheon Service Co. (Dr. M. Soyka) Mt. Laurel, NJ 08054	1
MITRE M/S W761 (Dr. W. Foster) McLean, VA	1
Max-Planck-Institut fur Aeromomie (Prof. P. Stubbe)	
3411 Katlenburg-Lindau 3 FRG	1
University of Otago, Physics Dept. (Prof. R. L. Dowden)	
Dunedin, New Zealand	1
University of Leicester, Physics Dept. (Prof. T. B. Jones)	
Leicester, England	1
Naval Weapons Center, China Lake, Code 3814 (Dr. R. J. Dinger)	1
Dr. Claudia D. Tesche, Lutech, Inc., P.O. Box 1263, Berkeley	1
National Aeronautical Est., National Research Council, Flight	
Research Lab., (Dr. C. D. Harwick) Ottawa, K1AOR6, Canada	1
Colorado Research and Prediction Laboratory, Inc.	
(Dr. R. H. Doherty, Dr. J. R. Johler) Boulder, CO	2
University of Alberta, Physics Dept. (Prof. R. P. Singh)	
Edmonton, Alberta, Canada	1
ARF Products Inc. (Mr. Larry Stolarczyk), Raton, NM	1
NAVSEA, Code 63R	1