Kaustubh gupta 2000290110080

Summary Report of Research Papers

Year of Publicatio n	A Flexible Representation of Quantum Images (FRQI) is proposed to provide a representation for images on
	Quantum Images (FRQI) is proposed to provide a
n	Quantum Images (FRQI) is proposed to provide a
	Quantum Images (FRQI) is proposed to provide a
2010	quantum computers in the form of a normalized state which captures information about colors and their corresponding positions in the images. A constructive polynomial preparation for the FRQI state from an initial state, an algorithm for quantum image compression (QIC), and processing operations for quantum images are combined to build the whole process for quantum image processing on FRQI. The simulation experiments on FRQI include storing, retrieving of images and a detection of a line in binary images by applying quantum Fourier transform as a processing operation. The compression ratios of QIC between groups of same color positions range from 68.75 to 90.63% on single digit images and 6.67—31.62% on the Lena image. The FRQI provides a foundation not only to express images but also to explore theoretical and practical aspects of image processing
	2010

2				In this paper, based on analysis of existing
				quantum image representations, a novel
	Zhang, Y., Lu, K			enhanced quantum representation (NEQR)
				fordigital images is proposed, which
				improves the latest flexible representation
	, Gao, Y. et al. <i>NEQR: a</i>			of quantum images (FRQI).
	novel enhanced			The newly proposed quantum image
	quantum			representation uses the basis state of a
	representation			qubit sequence to store the gray-scale
	of digital images. Quantu	springer		value of each pixel in the image for the first
	m Inf Process			time, instead of the probability amplitude of
	12, 2833–2860		2013	a qubit, as in FRQI. Because different basis
	(2013). https:// doi.org/10.100			states of qubit sequence are orthogonal,
	7/s11128-013-			different gray scales in the NEQR quantum
	0567-z			image can be distinguished. Performance
				comparisons with FRQI reveal that NEQR
				can achieve a quadratic speedup in
				quantum image preparation, increase the
				compression ratio of quantum images by
				approximately 1.5X, and retrieve digital
				images from quantum images accurately.
				Meanwhile, more quantum image
				operations related to gray-scale
				information in the image can be performed
				conveniently based on NEQR, for example
				partial color operations and statistical color
				operations. Therefore, the proposed NEQR
				quantum image model is more flexible and
				better suited for quantum image
				representation than other models in the
				literature.

generated by stochastic configurat (SC)algorithms. Bayesian It randomly assigns the input weight
--

Yan, Fei, Abdullah M. Iliyasu, and Salvador E. Venegas-Andraca. "A survey of quantum image representations." Quantum Information Processing 15.1 (2016): 1-35. https://link.spr inger.com/article/1 0.1007/s11128-015- 1195-6	springer	2015	It proposes and evaluates a new security- centric ranking algorithm built on top of the Elasticsearch engine to help users evade such apps. The algorithm calculatesan intrusiveness score for an app based onits requested permissions, received systemactions, and users' privacy preferences. Quantum image processing (QIMP) is devoted to utilizing the quantum computing technologies to capture, manipulate, and recover quantum images in different formats and for different purposes. Logically, percolating this requires that representations to encode images based on the quantum mechanical composition of any potential quantum computing hardware be conjured. This paper gathers the current mainstream quantum image representations (QIRs) and discusses the advances made in the area. Some similarities, differences, and likely applications for some of the available QIRs are reviewed. We believe this compendium will provide the readership an overview of progress witnessed in the area of QIMP while also simulating further interest to pursue more advanced research in it.

_				
5	Zhang, Yi, Kai Lu, and YingHui Gao. "QSobel: a novel quantum image edge extraction algorithm." Science China Information Sciences 58.1 (2015): 1-13. https://link.springer.com/article/10.1007/s11432-014-5158-9	springer	2014	Edge extraction is an indispensable task in digital image processing. With the sharp increase in the image data, real-time problem has become a limitation of the state of the art of edge extraction algorithms. In this paper, QSobel, a novel quantum image edge extraction algorithm is designed based on the flexible representation of quantum image (FRQI) and the famous edge extraction algorithm Sobel. Because FRQI utilizes the superposition state of qubit sequence to store all the pixels of an image, QSobel can calculate the Sobel gradients of the image intensity of all the pixels simultaneously. It is the main reason that QSobel can extract edges quite fast. Through designing and analyzing the quantum circuit of QSobel, we demonstrate that QSobel can extract edges in the computational complexity of $O(n^2)$ for a FRQI quantum image with a size of $2^n \times 2^n$. Compared with all the classical edge extraction algorithms and the existing quantum edge extraction algorithms, QSobel can utilize quantum parallel computation to reach a significant and exponential speedup. Hence, QSobel would resolve the real-time problem of image edge extraction.