

Algorithmique Avancée Examen réparti du 9 novembre 2009

Version du 10 novembre 2009

Examen de 2 heures, seuls sont autorisés le polycopié de cours, ainsi qu'une feuille-double rédigée personnellement ("anti-sèche"). Le barême est donné à titre indicatif.

Exercice 1 – Questions rapides [4 points]

1. Files de priorités.

- (a) On considère une file binomiale \mathcal{B} composée d'arbres binomiaux B_6 , B_4 , B_3 , B_1 , B_0 et une file binomiale \mathcal{B}' composée d'arbres binomiaux B_5 , B_2 , B_1 , B_0 . Donner la composition de la file binomiale \mathcal{B}'' obtenue par fusion des files \mathcal{B} et \mathcal{B}' .
- (b) On considère une file binomiale relâchée \mathcal{R} composée d'arbres binomiaux B_3 , B_3 , B_3 , B_3 , B_2 , B_1 , B_1 , B_0 . Donner la composition de la file binomiale \mathcal{B} obtenue par consolidation de la file \mathcal{R} .
- (c) On considère une file de Fibonacci \mathcal{F} dont les racines sont de degrés 1, 2 et 4. Quelle est la taille maximale de \mathcal{F} ? sa taille minimale?
- 2. Arbres 2-3-4. On considère A, un arbre 2-3-4 ayant 4 niveaux de nœuds, et on insère une nouvelle valeur v dans A, en faisant les éclatements à la descente. Soit x_1 , x_2 , x_3 , x_4 les nœuds du chemin suivi pour insérer v (x_1 est la racine, x_4 est une feuille). Calculer la variation du nombre de 2-nœuds, du nombre de 3-nœuds et du nombre de 4-nœuds dans chacun des cas suivants :
 - (a) x_1, x_2, x_3, x_4 sont des 4-nœuds;
 - (b) x_1, x_3 sont des 2-nœuds et x_2, x_4 sont des 4-nœuds;
 - (c) x_1, x_3 sont des 3-nœuds et x_2, x_4 sont des 4-nœuds.

Exercice 2 – Coût amorti de l'empilement dans une *multipile* [5 points]

Une *multipile* est une séquence infinie de piles P_0 , P_1 , P_2 , ..., où la *i*-ième pile P_i peut contenir jusqu'à 3^i éléments.

Lorsqu'on tente d'empiler un élément sur une pile P_i dont la capacité a été atteinte, on transfère d'abord tous les éléments de la pile P_i vers la pile P_{i+1} pour faire de la place dans P_i . Si P_{i+1} n'a pas suffisamment de place pour contenir les éléments de P_i , alors on vide d'abord P_{i+1} , etc.

On considère que déplacer un élément d'une pile vers une autre se fait en temps O(1).

- 1. Montrer que, dans le pire des cas, la complexité de l'empilement d'un élément sur une multipile contenant n éléments (c'est-à-dire l'empilement de cet élément sur la pile P_0 de la multipile) est en O(n).
- 2. Montrer que le coût amorti de l'opération d'empilement sur la multipile contenant n éléments est en $O(\log n)$.
 - (a) avec la méthode par agrégat;
 - (b) avec la méthode du potentiel (beaucoup plus difficile).

Exercice 3 – Hachage universel [6 points]

On suppose que les clefs sont des suites de k bits, $\mathcal{C} = \{0,1\}^k$, et que la taille de table de hachage est une puissance de 2, $m=2^p$. On définit une fonction de hachage par la donnée d'une matrice M de dimension $p \times k$, dont les entrées sont binaires (0 ou 1), et on associe à toute clef $x \in \{0,1\}^k$, l'adresse dont la représentation binaire est le vecteur résultant du produit de la matrice M par le vecteur x, calculé modulo $2:h_M(x)=M\cdot x$ [mod 2].

Par exemple, si

$$M = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$
 et $x = (1, 0, 0, 1)^T$

alors $h_M(x) = (0,1)^T$, et l'adresse de x dans la table est 1.

Remarque : on note v^T le vecteur ligne transposé du vecteur colonne v.

1. On donne

$$M = \left(\begin{array}{rrr} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}\right).$$

Calculer les valeurs de hachage de $x = (1, 0, 1, 1)^T$, de $y = (0, 0, 1, 0)^T$ et de $z = (1, 0, 1, 0)^T$, pour M.

- 2. Donner un algorithme qui calcule $h_M(x)$ en ajoutant les colonnes de M qui correspondent aux bits à 1 de x (noter que l'addition modulo 2 correspond à l'opérateur booléen OU-exclusif).
- 3. On considère l'ensemble $\mathcal{H} = \{h_M : \mathcal{C} \to \{0, ..., m-1\}, \text{ avec } M \in \{0, 1\}^{p \times k}\}$. Quel est le cardinal de \mathcal{H} ?
- 4. Montrer que pour tout couple de clefs différentes x et y (on suppose que le j-ème bit de x est différent du j-ème bit de y), quelles que soient les valeurs des colonnes M_i , pour $i \neq j$, de la matrice M, il existe une unique manière de déterminer la colonne M_j , de telle sorte que $h_M(x) = h_M(y)$.
- 5. En déduire que l'ensemble \mathcal{H} est universel.

Exercice 4 – Arbres doubles [5 points]

Un treap est une structure d'arbre binaire, où chaque nœud x possède une clef, notée clef(x), à laquelle est associée une priorité fixe, notée prio(x). Si x est un nœud qui a deux fils y et z, respectivement gauche et droit (l'un, l'autre ou les deux peuvent éventuellement ne pas exister), alors le treap vérifie :

- la propriété d'arbre binaire de recherche, clef(x) > clef(y) et clef(x) < clef(z);
- la propriété de tas-min, prio(x) < prio(y) et prio(x) < prio(z).
- 1. Montrer par récurrence forte que, lorsque les priorités sont toutes distinctes, il existe un *unique* arbre binaire qui vérifie les deux propriétés d'arbre binaire de recherche et de tas-min.
- 2. En utilisant les primitives sur les arbres binaires de recherche, auxquelles on ajoute des primitives de rotation, donner l'algorithme INSERTTREAP (c_x, p_x, T) qui insère la clef c_x associée à la priorité p_x dans le treap T.

Rappel: l'arbre résultant doit respecter la propriété d'arbre binaire de recherche, et celle de tas-min.

La figure ci-dessous représente les différentes étapes (insertion de la clef aux feuilles d'un ABR puis rotations pour tenir compte de la priorité) pour insérer la clef K de priorité 2, dans l'arbre initial T.

