inference optimized

Inferencing operational optimization

Model-based, dynamic global optimization

Asser Tantawi IBM Research

analysis observation

analyzer

- build functional and queueing models
- parameter estimation
- dynamic filtering

predictor

- time series analysis
- prediction analysis
- dynamic correction

decision making

optimizer

- create instance of optimization problem
- solve problem
- collaborative, hierarchical

knowledge

data repository

- objects containing information
- monitored, state, desired, status
- custom resources
- dynamic, efficient, persistent

profiler

- benchmark models
- vary batch size, seq length, FW, precision, ...

monitor

- collect real-time data
- GPUs, cluster, pods, serving FW, ...
- publish to Prometheus

controller

- adjust knobs
- feedback correction
- rule-based supervision

& objectives over-ride controls dashboard parameters policies set

manager

management

cria

inference system

queueing

balancing

model scaling

models

control

High level functional decomposition & components

control runtime for inference automation

Inference serving ptimization

dashboard

management

Problem scope

- memory demand
- performancecharacteristics(delay, throughput)

- cost
- memory size
- memory BW

GPU types

- classes of service
- arrival patterns
- service patterns

objectives

- min cost
- satisfy SLOs
- fairness, slack, power

decision variables

- GPU type
- number of replicas
- batch size

Request batching

N batch size $\tau(N)$ token service (processing) time (*ITL*) K number of tokens per request

Fitting token service time

precision	fp16
accelerator	A100
tokens	1024
back	vLLM
accCount	1

Queueing model of a model serving instance (replica)

parallelism

(batching)

avg request processing time =

avg num tokens per request *

avg token service time

load = request rate * avg request processing time

avg token delay = avg request response time / avg num tokens

server structure?

- single server
- multiple server
- state-dependent server
- queueing network

modeling batching

- Markovian assumptions
- state: number of requests in process
- λ request arrival rate
- K average number of tokens per request
- $\tau(n)$ average token service time given n batches
- N batch size (maximum)

$$\mu(n) = \frac{1}{\tau(n)}$$

$$\tau(n) \approx \alpha + \beta n$$

n requests processed in parallel

(j - N) requests waiting

rate limiting

requestRate	36.613	/min	p (0)	3.0013E-09		avgNumSystem	33.77
lambda	0.00061	/msec	maxN	200		avgNumServer	33.16
K	1024		pFull	1.0758E-11		avgNumQueue	0.61
N	48		effecTput	36.61299	req/m	utilization	0.691
alpha	19)	0.00061	/msec	avgRespTime	55,349
beta	1		P(N)	0.92202		avgSrvTime	54,349
lambda*K	0.62486163					avgWaitTime	1,000
					•	avgTokenServTime	53.1

Find
maximum request rate
s.t.
avgWaitTime <= target

target = 1.0 sec requestRate = 36.613 req/min

Accelerator data

Model data

Workload data

- accelerator profiles
 available, mem size, mem
 BW, cost
- GPU power idle and max power, reflection utilization

- model specs
 mem requirements
- model performance on accelerators
 token service time parameters
 max batch size at tokens

classes of service
 request arrivals rate, CoV
 model mix
 number of tokens (avg, CoV)
 ITL & wait SLO constraints

accelerator-data.json

model-data.json

serviceclass-data.json

Optimizer model

Find (near) optimal solution(s)

 forAll (service class, model) pairs accelerator profile number of replicas batch size

optimizer-data.json

decisions(s)

```
"MI300X": {
   "type": "MI300X",
    "multiplicity": 1,
    "memSize": 192.
   "memBW": 5300,
    "power" : {
       "idle": 220,
       "full": 750,
       "midPower": 650,
       "midUtil": 0.6
    "cost": 65.00
"2xA100": {
   "type": "A100",
   "multiplicity": 2,
    "memSize": 160,
    "memBW": 4000,
    "power" : {
       "idle": 300,
       "full": 800,
       "midPower": 640,
       "midUtil": 0.6
    "cost": 80.00
},
    accelerator-data.json
```

```
model-data.json
```

```
serviceclass-data.json
```

```
"name": "granite 20b",
"memSize": 60.
"perfData": [
    "name": "AIU2",
    "alpha": 297.8,
    "beta": 5.
   "maxBatchSize": 38,
   "atTokens": 512
    "name": "L4",
    "alpha": 198.53,
    "beta": 3.33,
    "maxBatchSize": 7,
    "atTokens": 512
```

```
"name": "Premium",
"load": [
        "name": "llama 7b",
        "slo-itl": 40.
        "slo-ttw": 500,
       "arrivalRate": 120,
        "avgLength": 1024,
        "arrivalCOV": 1.5,
        "serviceCOV": 1.5
        "name": "llama_13b",
        "slo-itl": 80,
        "slo-ttw": 500,
        "arrivalRate": 120,
        "avgLength": 1024,
        "arrivalCOV": 1.5,
        "serviceCOV": 1.5
    },
```

Accelerators Specs

Models Specs

Unlimited accelerators

- capacity planning
- cloud deployment
- separable optimization

Accelerator	ſ		
	Premium	Bronze	Free
llama_7b	G2	G2	G2
mistral_7b	G2	MI300X	MI300X
granite_13b	MI300X	MI300X	MI300X
llama_13b	G2	MI300X	MI300X
granite_20b	MI300X	MI300X	MI300X
llama3_8b	MI300X	MI300X	MI300X
granite_34b	MI300X	MI300X	MI300X
mixtral_8_7b	MI300X	MI300X	MI300X
llama_70b	2xMI300X	2xMI300X	2xMI300X

TotalCost 25,053.00

Unlimited accelerators - Dynamic

- change in request rates
- change in request lengths
- change/scale accelerators
- minimize change in accelerators and cost

Accelerator	Change		
	Premium	Bronze	Free
llama_7b			
mistral_7b		MI300X->G2	
granite_13b			MI300X->G2
llama_13b		MI300X->MI250	
granite_20b	MI300X->G2		
llama3_8b			
granite_34b			
mixtral_8_7b			
llama_70b			

TotalCost 11,427.00

Accelerator	Change		
	Premium	Bronze	Free
llama_7b			
mistral_7b		MI300X->G2	
granite_13b			MI300X->G2
llama_13b		MI300X->MI250	
granite_20b	MI300X->G2		
llama3_8b			
granite_34b			
mixtral_8_7b			
llama_70b			

Scale			
	Premium	Bronze	Free
llam a_7b	0	0	9
mistral_7b	-1		4
granite_13b	2	1	
llama_13b	1		5
granite_20b		-3	8
llama3_8b	1	0	0
granite_34b	-5	-4	-19
mixtral_8_7b	-9	-22	-37
llama_70b	3	-9	-26

Limited accelerators

- cluster deployment
- greedy optimization

Accelerato	ř		
	Free	Premium	Bronze
llama_7b	MI210	MI210	MI210
mistral_7b	MI210	MI250	MI210
granite_13b	A100	A100	MI300X
llama_13b	G2	A100	A100
granite_20b	MI250	A100	A100
llama3_8b	A100	A100	AIU2
granite_34b	2xG2	2xH100	2xH100
mixtral_8_7b	MI300X	2xG2	2xMI300X
llama_70b	2xMI300X	2xMI250	2xMI250

TotalCost 43,203.00

Limited accelerators - Dynamic

- change in request rates
- change in request lengths
- change/scale accelerators
- minimize change in accelerators and cost

Accelerator Cha	nge		
	Premium	Bronze	Free
llama_7b	MI210->MI250	MI210->G2	MI210->MI250
mistral_7b		MI210->MI250	
granite_13b		MI300X->MI250	A100->G2
llama_13b	A100->G2	A100->MI250	
granite_20b			
llama3_8b		AIU2->MI250	A100->G2
granite_34b	2xH100->MI250	2xH100->MI250	
mixtral_8_7b	2xG2->2xMI250	2xMI300X->G2	
llama_70b			

TotalCost 37,272.00

Accelerator Cha	nge		
	Premium	Bronze	Free
llama_7b	MI210->MI250	MI210->G2	MI210->MI250
mistral_7b		MI210->MI250	
granite_13b		MI300X->MI250	A100->G2
llama_13b	A100->G2	A100->MI250	
granite_20b			
llama3_8b		AIU2->MI250	A100->G2
granite_34b	2xH100->MI250	2xH100->MI250	
mixtral_8_7b	2xG2->2xMI250	2xMI300X->G2	
llama_70b			

Scale			
	Premium	Bronze	Free
llam a_7b			
mistral_7b	1		-9
granite_13b	-3		
llama_13b			51
granite_20b	-11	-19	-10
llam a3_8b	-8		
granite_34b			-28
mixtral_8_7b			0
llama_70b	-17	0	35

Backup

Request timing & definitions

amortize delay over all tokens

$$token \ delay = \frac{request \ response \ time}{K}$$

$$token\ delay\ \cong ITL + \frac{TFT}{K}$$

Objectives

- Optimize operational cost/performance/power
 - assignment of accelerator types
 - model replicas
 - model batch decision
 - meet SLOs
 - min cost and power
- Capacity planning and/or model placement & accelerator allocation

- Inference model optimization
- Improve model accuracy, efficiency, compute/memory requirements, ...
- Explore mechanisms for request queueing, balancing, ...
- Model sharing, adapters, multiplexing, ...
- GPU slicing mechanisms, DRA, migration, ...

sample case

requestRate	30 /min	p(0)	5.7982E-07	avgNumSystem	21.24
lambda	0.0005 /msec	maxN	200	avgNumServer	20.90
K	1024	pFull	2.0382E-17	avgNumQueue	0.34
N	32	effecTput	30.00000 req/m	utilization	0.653
alpha	19		0.00050 /msec	avgRespTime	42,481
beta	1	P(N)	0.93803	avgSrvTime	41,808
lambda*K	0.512			avgWaitTime	674
				avgTokenServTime	40.8

impact of batch size

ITL limiting

requestRate	35.200	/min	p(0)	1.0542E-08			avgNumSystem	30.23	
lambda	0.00059	/msec	maxN	200			avgNumServer	30.04	
K	1024		pFull	1.4442E-14			avgNumQueue	0.20	
N	48		effecTput	35.20031	req/m		utilization	0.626	
alpha	19		,	0.00059	/msec		avgRespTime	51,533	
beta	1		P(N)	0.96847			avgSrvTime	51,200	
lambda*K	0.600752				•		avgWaitTime	333	>
						a	/gTokenServTime	50.0	>

Find

maximum request rate

s.t.

avgTokenServTime <= target</pre>

target = 50 msec requestRate = 35.2 req/min

