Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡
illia.polosukhin@gmail.com

Carolina Dias Claudio Fortier

Programa de Pós-Graduação em Ciência da Computação Universidade Estadual do Ceará

O que veremos hoje...

- Porquê Atenção é tudo que você precisa?
- Incorporação de palavras Word2Vec
- A arquitetura Transformers:
 - Visão Geral
 - Encoders
 - Auto atenção
 - Codificação posicional
 - Conexão Residual
 - Normalização
 - Decoders
 - Fluxo de informações
 - Atenção Encoder / Decoder
 - Função de Perda
 - Retropropagação

Porque atenção é tudo que você precisa?

- Modelos Seq2Seq já implementavam o conceito de codificadores e decodificadores
- Para traduções, o estado da arte baseava-se em LSTM, GRU e CNN
- Algumas já usavam o conceito de atenção internamente

Arquitetura do modelo Sequência a Sequência

Arquitetura com mecanismo de atenção

Arquitetura Transformer

Você trocaria RNN Seq2Seq por Transformers?

Output Probabilities

Sim, porquê:

- **1. Paralelização**: No Transformer, especialmente no encoder, os tokens são processados em paralelo, o que acelera o treinamento.
- 2. Manipulação de Dependências de Longo Alcance: Os mecanismos de atenção permitem que o Transformer lide eficazmente com dependências de longo alcance entre palavras, o que é crítico para tarefas como tradução.
- **3. Escalabilidade**: O modelo escala bem com o tamanho do conjunto de dados e a dimensionalidade dos embeddings, oferecendo desempenho de ponta em grandes conjuntos de dados.
- **4. Menor Caminho de Dependência**: O Transformer reduz o número de "hops" ou operações sequenciais necessárias para conectar palavras distantes, o que pode tornar o treinamento mais eficiente e eficaz.

Sim, porquê:

- 5. Generalização para Outras Tarefas: A arquitetura do Transformer provou ser altamente eficaz não apenas para tradução, mas também para uma variedade de outras tarefas de processamento de linguagem natural, tornando-a mais versátil.
- **6. Treinamento mais Estável**: RNNs, especialmente LSTMs e GRUs, são conhecidos por serem difíceis de treinar eficazmente devido a problemas como desaparecimento e explosão do gradiente, que são menos prevalentes em Transformers.
- 7. Melhor Aprendizado de Representações: Devido aos mecanismos de atenção e à capacidade de capturar dependências de longo alcance, os Transformers geralmente aprendem representações de tokens mais ricas.

Uso de Transformers

- **1. Tradução Automática**: Foi a primeira aplicação para a qual os Transformers foram desenvolvidos.
- 2. Processamento de Linguagem Natural (PLN):
 - 1. Classificação de Texto
 - 2. Análise de Sentimento
 - 3. Resumo Automático
 - 4. Pergunta e Resposta
 - 5. Reconhecimento de Entidades Nomeadas
- Geração de Texto: Utilizados em chatbots, escrita assistida e outras tarefas de geração de linguagem.
- **4. Análise de Série Temporal**: Embora não seja uma aplicação clássica, os Transformers têm mostrado eficácia nesse campo.
- **5. Visão Computacional**: Modelos como o ViT (Vision Transformer) adaptam o Transformer para tarefas de classificação e segmentação de imagem.

Uso de Transformers

- **6. Reinforcement Learning**: Em combinação com técnicas de aprendizado por reforço, para tarefas como jogos e navegação autônoma.
- 7. Biologia Computacional: Utilizado em problemas como predição da estrutura de proteínas.
- 8. Música e Áudio: Para geração de música ou classificação de sinais de áudio.
- **9. Interpretação de Código e Programação Assistida**: Ajuda no autocomplete de código e detecção de bugs.
- **10. Multimodalidade**: Combinação de texto, imagem e outros tipos de dados para tarefas mais complexas.

Incorporação de Palavras – Word2Vec

Não é obrigatório mas...

- 1. Inicialização Eficiente: Iniciar com embeddings pré-treinados pode acelerar a convergência durante o treinamento do Transformer.
- 2. Representações Ricas: Word2Vec captura semântica e relações sintáticas que podem enriquecer as representações usadas pelo Transformer.
- **3. Uso de Conhecimento Externo**: Embeddings pré-treinados são geralmente treinados em grandes corpus, capturando informações que podem não estar presentes no conjunto de treinamento específico do Transformer.
- **4. Regularização**: Utilizar embeddings pré-treinados pode agir como uma forma de regularização, potencialmente melhorando a generalização do modelo para dados não vistos.
- **5. Economia Computacional**: Utilizar embeddings pré-treinados pode economizar recursos computacionais.

A arquitetura Word2Vec

Output Layer Softmax Classifier

Word2Vec, Skip-Gram

Source Text

Training Samples

(brown, quick) (brown, fox) (brown, jumps)

The quick brown fox jumps over the lazy dog. → (the, quick) (the, brown)

The quick brown fox jumps over the lazy dog. → (quick, the) (quick, brown) (quick, fox)

The quick brown fox jumps over the lazy dog. → (brown, the)

The quick brown fox jumps over the lazy dog.

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

Word2Vec, "O pulo do gato!"

Hidden Layer Weight Matrix

Word Vector Lookup Table!

Arquitetura Transformer

Olhando de cima...

Olhando de cima...

Encoders

Olhando de cima...

Olhando de cima...

Autoatenção

Intuição

Na frase "The animal didn't cross the street because it was too tired" a quem "it" se refere?

Passo 1 – Vetores de Entrada

Passo 2 – Cálculo do Score

Passo 3 – Divisão por sqrt(dk)

Passo 4 – Softmax

Passo 5 – Softmax X Value

Passo 5 – Sum(Vn)

Cálculo Matricial

Atenção Multi-cabeças

Atenção Multi-cabeças

Atenção Multi-cabeças

Codificação Posicional

Codificação Posicional

Feed-forward

$$\mathrm{FFN}(x) = \mathrm{ReLU}(xW_1 + b_1)W_2 + b_2$$

Residuais e Normalização

$$H(x) = F(x) + x$$

$$Norm(x) = \frac{x - \mu}{\sigma} \times \gamma + \beta$$

Onde μ e σ são a média e o desvio padrão das saídas da subcamada, e γ e β são parâmetros treináveis.

Parâmetros treináveis - Encoder

- 1. Matriz de Embedding de Palavras: Usada para converter tokens de entrada em vetores de embedding.
- 2. Matrizes de Pesos para Queries (Q), Keys (K) e Values (V) na Camada de Atenção:
 - 1. **WQ**: para transformar a entrada em queries
 - **2. WK**: para transformar a entrada em keys
 - **3. WV**: para transformar a entrada em values
- 3. Matriz de Pesos de Saída da Multi-Cabeça de Atenção (O):
 - 1. WO: para combinar as saídas das diferentes cabeças de atenção
- 4. Parâmetros da Camada de Normalização de Atenção: Geralmente são escalares beta e gama para cada dimensão do vetor.
- **5.** Matrizes de Pesos das Camadas Feed-Forward:
 - 1. W1 e b1: para a primeira camada linear
 - 2. W2 e b2: para a segunda camada linear
- **6.** Parâmetros da Camada de Normalização Feed-Forward: Geralmente são escalares beta e gama para cada dimensão do vetor.

Decoders

Olhando de cima...

Conexão entre os encoders e os decoders

Após o encoder realizar o processamento da sequência de entrada, a saída do último encoder é transformada em um conjunto de vetores K e V. Esses serão usados por cada decoder na camada de "atenção do encoder-decoder", que auxilia o decoder a focar nos lugares corretos da sequência de entrada.

Conexão entre os decoders

Os próximos passos repetem o processo até que o símbolo de fim ou início da sequência seja atingido, indicado que o decoder completou sua saída. A saída de cada passo vira a entrada do passo seguinte, como acontecia com os encoders. Também como nos encoders, nos decoders são realizados os embeddings dos inputs, juntamente com os argumentos posicionais para indicar a posição de cada

palavra.

1ª Subcamada: Multi-headed Attention (com máscara)

2ª Subcamada: Multi-headed Attention (entre camadas)

- Depois que o decoder processa sua própria sequência com a atenção autoregressiva, ele precisa "consultar" a sequência de entrada para gerar a saída correta. É aqui que entra o módulo de atenção inter-camadas. Esse módulo funciona como um módulo de atenção regular, mas as Queries (Q) vêm da saída do módulo anterior do decoder, enquanto as Keys (K) e Values (V) vêm da saída do encoder*.
- Isso permite que o decoder decida quais partes da entrada s\u00e3o relevantes para cada token que est\u00e1 sendo gerado.

*Esse processo é análogo ao processo de pesquisa no google. Digitamos uma pesquisa (a *query*) e isso vira uma *key* para retornar um *valu*e que buscamos.

3ª Subcamada: Rede Neural Feed-forward

- O decoder nos retorna como saída um vetor de números. Como transformar isso em uma palavra?
 Passando pela camada linear e pela camada softmax.
- A camada linear é uma rede neural completamente conectada que transforma esse vetor em outro vetor de números com o tamanho do vocabulário usado no treinamento (normalização).
- A camada softmax transforma esse vetor de números em um vetor de probabilidades (todas positivas e que somam a 1). Assim, a posição com a maior probabilidade é a palavra escolhida como a saída do passo atual.

Parâmetros Treináveis - Decoder

- Matrizes de Pesos para Queries (Q), Keys (K) e Values (V) na Camada de Atenção:
 - **1. WQ**: para transformar a entrada em queries
 - **2. WK**: para transformar a entrada em keys
 - **3. WV**: para transformar a entrada em values
- Matriz de Projeção de Saída: para retornar a saída para as dimensões originais.
- Feed-forward Neural Network: pesos e bias para cada uma das duas camadas densas.
- 4. Camadas de Normalização: vetor de escala (gama) e vetor de deslocamento (beta).

Resultados do Modelo Apresentado

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3\cdot 10^{19}$	

Referências

- O artigo seminal "Attention Is All You Need", usado como principal fonte de informação para o entendimento dos transformers.
- O guia "<u>The Illustrated Transformers</u>" como principal auxílio para a criação das apresentações.
- O artigo "A Survey of Transformers" foi utilizado como referência extra.

Dúvidas?