Nome: Rojat Rajesh Shetty (WID: 10477484

Assignment-4

Exencise 4.1 consider, a cantesian product on Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesian product on Cx Zx Z= (cx,x) |x, Exencise 4.1 consider, a cantesia

(1) perore that (G..) is a genoup.

The proposities of a group ane

(1) (a.b). (2 a(b.c) tor a.b.c. & a.G.

The Identity element

There is a inverse. a has inverse b state, ab=1.

() Lets check for associative. = both sides by (230)

((x,,,,),(d2,,,)), (x3,,,23) = (x,+x2, (-1), x1,22). (x3,,23)

= $(\alpha_1 + \alpha_2 + \alpha_3, (-1)^{\alpha_3} (-1)^{\alpha_2} \chi_1 + \chi_2) + \chi_3$

(x1, 11). ((0/2, 1/2). (0/3, 1/3)) = (0/2+0/3(-1) 0/3/12/13). (0/1, 1)

(x,121). (2+2, (1) 23,2+23) = (x,+x2+2, (-1) 2+43, (-1) x2+2)

(xitoz + x3, (-1) x3 ((-1) x2x1+x2)+23)= (xitx2+x3, (-1) x1+ (-1) x2+x3

co Itis associative.

Identity element

So Let assume (die) as identity element.

Si (
$$\alpha_{i}$$
, α_{i}). (die): (α_{i} , α_{i})

(α_{i} , α_{i}). (die): (α_{i} , α_{i})

(α_{i} , α_{i}). (α_{i} , α_{i})

(α_{i} , α_{i}). (α_{i} , α_{i})

(α_{i} , α_{i}). (α_{i} , α_{i})

Inverse Chill.

(α_{i} , α_{i}). (α_{i}).

and since he 242/ it is closed as product is allowed.

(checing commutative pourp). a) is (Gio) abelian? To prove (61,0) is abelian, we need to show a. 62 b.a (d, x, 1. (d, x2) = (d, 7/2). (d, 2) (4, + 2, (·1) 2/2/2 + (4, + 2, (-1) 4/2+21) so , From this we can say that it is not abelian 3) Is (G, .) finite? 9 EG , 9 n= e. (G,.) is not finite as G= ZI-Z 4 Zis infinite. suithe answer is no. (Gn.) is not timite. priore that every cyclic grap is abelian. Then use (z) to 4.) penore (G. .) is not exedic. To prove that it is cyclic, 62 (Q. ox) 1 in EZ] 50 (x, x)2. (x,x). (x,x) (x,x) (x,x) · (x+ x, (-1) x(+ n) if n= ~ (n ~, (-1)(n-1) ~ (n-2) ~ (-1) ~ (-1) ~ (-1) so forom this we can say energy cyclic group is abelian. since his not even abelian ... a isnot eyelic. invense of it can be true or false. (G, -) is not cy clic. Dues (G,.) have tonsing? 5) so, to have tonsion, we should how In {n {2}} SIT (0,71) 1= (0,0) so we can ton sof non toinial elements have timite order But in this case oncy (0,0) 1 = (0,0). I we can say that (Gr, .) doesnot have tooision,

(6) Is
$$\Pi_1: G \rightarrow Z$$
 defined by $(\alpha, x) \stackrel{\Pi}{=} \alpha$ homomorphism

$$= (\alpha, x) |\alpha|, x \in Z^{\perp}$$

$$G: \{(\alpha, x) |\alpha|, x \in Z^{\perp}\}$$

$$= (\alpha, +\alpha x, (-1)^{\alpha 2}x_1 + x_2)$$

$$for some a, b \in G$$

$$\Pi_1[(a_1 a_1) \cdot (b_1, b_2)] = \Pi_1[a_1, a_2] + \Pi_1(b_1, b_2)$$

$$\Pi_1[(a_1 a_1) \cdot (b_1, b_2)] = \Pi_1[a_1, a_2] + \Pi_1(b_1, b_2)$$

$$\Pi_1[a_1 + b_1, (-1)^{b_1} a_2 + b_1] = \Pi_1[a_1, a_2] + \Pi_1[b_1, b_2]$$

$$\Pi_1[a_1 + b_1] = a_1 + b_1$$

(7). is Ti: 6 7 2 defined by (4,21) 2 a homomosiphism 172: 6-121 where we know (q, x) 132 >1 for some a, b & 4

12((a,az).(b,1bz))2 Th(a,az)+11(b1,bz) 172 (a1+b1, (-1) biaz + bi) ? The (a1,92)+ [he (b1 bz) (1) b) artba, artbz. so it is not homomomphism.

4. 2 Exencise

Find 121 in U67. we know that value of no 67. su let calculate \$(n)2 n-1 2 67-1266. we have to calculate PPF (66) = 2x3x11.

$$2^{33} = 666 \pm 1$$

since none of the above rales gire = 1 20 4194304mod 67 nemainder of 1, we can conclude

. 33°

12/266 26 mod 612 64

Is 2 a posimitive groot modulo 31?

To check if a ila paimite nuot modulon.

Owenced to check ged (a.n)=1 must be tove.

1 compute PPF (leca) = pai - Akar

5) check if a uch) = 1 (each must be false) orifall conditions are stillisted it

-'. Wg (d (a,31)=1

V ppf (30) = 2.3.5.

$$2^{\frac{30}{8}} = 31$$

$$2^{\frac{30}{3}} = 31$$

$$2^{\frac{30}{5}} = 31$$

the output is false.

2 is not paimile modulo 31

Exencise 4.4 consider a set b- 12,22, -- 28) of eight element equipped with a binary operation. defined by the multiplicate table shown below ((6, .) is a group.

. 64 - 7							Ber Un	100	
	245	7(3	27	ス」	22	76	25	126	
	72								
	ત્ર			1					
	25				4 4 7				7 1 - 1
	x8.				The second second	The second secon			
	74								
	λ3				-	6)			
τ,	x	Ts	X	2 7	3 70	5	sc I	λy:	76
Z	201)(-	7 2	C6 20	5	208	73	Tg	Zy

we know that for abelian, it should satisfy
(a.b)2(b.a)

suit is abelien.

(3) Find 1X3)

Hence, we can conclude n=4.

· order of 1x312 4/

(x) is the minimal subgroup of or containing x.

cas in the minimal

contanya.

(5) find the coset 26. < 24> CX47 2 (. X6, X2) 26. {214,22 · . 26 . 24 = 23. 476. x2= x6 1 23,265 (6) Find x5 [a.b. b.a=e So satisfying this , we can say that 25. 27 22 + 27. 25- 22 when supred school of elected. (7) Is x7a posimétre element? 27- 777 74 24. 17225 Forom this, we can conclude X7 is not parimitive. 26. 27 - 26 x 2. x7 = x7. (8) is a cyclic? 247 X4 X427 2. 7 3= x3. 73 24 xa = xy = xy. 2473276. 272 27. 27: 24. 26.713= 72. 14. X72 75 115. 1172 Xa 22.73=23, X2. 272 x7.

112 71171 249

14371279

2871272.

26. 21271

21227272

λς λ₅. χ₅. χ₅. χ₄

χ₄. χ₅. χ₇

χ₇. χ₅. χ₇

χ₇. χ₅. χ₇

χ₇. χ₈. χ₇.

26° 26 · 26° 24 24 · 26° 23 13 · 26° 22 22 · 26° 26

Xg = Xg Xg = Xy

Ly 471z = X1

X1 Xg = X2

X2 Xg = Xg

So, From the above nesult we can say that, since i none of the element generate a,

Gris not cyclic

TO CHEETING THE VI