* Let's look at an impractical circuit to understand how the copacitor works in a rectifiensetup.

* a capacitor requires 57 amount of time for its voltage to reach a steady state value, where T = RC.

* If the copacitor is not given enough time, it will full to fully follow the applied voltage

The copocitor will be able to follow in no time!

- + t>57 usually, as Vs(+) is usually at 50 Hz, and RC is sufficiently smaller.
- * After T/4, i/p voltage starts de creasing.
- * At and upto T/4, Vp = Vs Vo > 0 -> diode ON
- * After T/4, Vp = V5 Vo <0, os Vs starts decreasing and Vo is held constant by the copocitor -> wiode slowly turns OFF.
- * As diode turns OFF, there will be no more current flow. Copocitor is unable to discharge as there is no load connected. Vo - remains constant.

* connecting a resistive load will affect the capacitor voltage graph.

Holf-wave rectifien with C (with load) -

$$V_0 = V_S - V_{p_0}$$

 $\Delta t = t_2 - t_1 (growth)$

For +ve holf cycle,

chorging 0.7

* of is the diode resistance (coor)

- * all voltage sources shorted
- * Reg is seen from capacitor terminals.

* Reg is a very small value.

* Charging time constant, Tch, is thus very small, so copacitor will charge fully by T/4.

discharging + At/After T/4, Vs-Vo LVDO

+ The diode will be reverse biosed, thus rendering the circuit -

* The copacitor will discharge through the lower following - 57 = 5RC.

- * One important condition to be met is that 57 >> T.
- * The copacitor voltage will decreak following exponential rule.

If 57 >> T condition is not met, consider the following scenarios -

(points have been marked on the graph)

- * At point (a), Vo > VDo and Vs = Vo (they intersect) + diode still off.
- * Afterpoint (a), as Vs increases (while Vo decreases), the diode will eventually become forward biased, turning it on again.
- * This hoppens when Vs > Vo + VDo -> this occurs out point (6)
- * point (highlights (in green) that the input at that moment is greater than the aup output by diode voltage drop. (Vs > Vo + VDO)
- (x point 6) and @ are the some, just marked on different lines)
- * From point (6) to (6), the diode is biased on -> copacitor will & charge
- * After point (a), the copocitor will discharge, as the diode is biased OFF.

 The copocitor will continue discharging until the point (b) is reached in next cycle.
- * The output now is relatively better, as it does not completely go down to 0 v, like it did without a capacitor.
- * The output fluctuates between a max and min level (voltage at point a and on respectively). This is called the ripple voltage, Vp.

* Vp should be as small as possible.

some points to note -

(i) of
$$t_1 \rightarrow V_0 = V_p - V_p$$
, where $V_p = V_m - V_{po}$ (point (b))

*
$$I = \frac{V_6 - V_{00} - V_0}{R} = \frac{V_m - V_{00} - V_P}{R} = \frac{V_m - V_{00} - (V_m - V_{00})}{R} = 0$$

(iv) When the diode is off, copocitor discharges through load in on exponentia monner.

(During discharging phase,
$$v_0 = V_p e^{-(\tau - \Delta t)/\tau}$$

$$\Rightarrow V_{\rho} - V_{\rho} = V_{\rho} \left[1 - \frac{\tau - \Delta t}{RC} + \left(\frac{\tau - \Delta t}{RC} \right)^{\frac{1}{2}} - \dots \right]$$

using the condition/opproximations: RC>>T DYKT

[f, R -> not changeable]

so we have to limit how high

* the analysis is similar to
that of half wave rectifier,
i.e, capacitor will have
charging and discharging phase
* Unlike with HW rectifier, in

Vo = Vs - 2VD0

instead of every other wele.

+ output for this cut is better with lower fluctuations.

SU	mmory	:							
_		i/p voltag peak	e ilp v. freq/period	0/ρ v. γ ρεωμ	o/p v.	0/6 190	of I	Λ ^{ιω}	% Vn
with	HW	٧m	f or, T	γm-V00	or T	Vm - V00 2	Vac/R	no need	V _P
	FW	V _m	f or, T	Vm -2V0.	2f or T/2	2Vm -2V00	Vac/R	4	Vp
with	нω	Vm	f or T	٧٣ - ١٥°	t or T	Vp- Vr 2	Vac/R	W	trc No
c)	FW	V _m	f or T	Vm-2700	2t or Th	Vp- <u>Vr</u>	Vac/R	Ŋ	VP ZIRC

Approximation for $V_D < < V_m$.

Otherwise, $V_{dc} = \frac{1}{T} \int_0^T v(t) dt$