#### **Text Classification**

-----

# Topic modelling and dimensionality reduction for documents

M. Vazirgiannis

Jan 2017

#### CATEGORIZATION / CLASSIFICATION

#### Given:

- A description of an instance, x∈X, where X is the instance language or instance space.
  - E.g: how to represent text documents.
- set of categories  $C = \{c_1, c_2, ..., c_n\}$

#### **Determine:**

• The category of x:  $c(x) \in C$ , where c(x) is a categorization function whose domain is X and whose range is C.



#### **EXAMPLES OF TEXT CATEGORIZATION**

```
LABELS=BINARY
   "spam" / "not spam"
LABELS=TOPICS
   "finance" / "sports" / "asia"
LABELS=OPINION
   "like" / "hate" / "neutral"
LABELS=AUTHOR
   "Shakespeare" / "Marlowe" / "Ben Jonson"
   The Federalist papers
```

#### Methods

# Supervised learning of document-label assignment function: Autonomy, Kana, MSN, Verity, ...

- Naive Bayes (simple, common method)
- k-Nearest Neighbors (simple, powerful)
- Support-vector machines (new, more powerful)
- ... plus many other methods
- No free lunch: requires hand-classified training data
- But can be built (and refined) by amateurs

# Bayesian Methods

- Learning and classification based on probability theory
- Bayes theorem plays a critical role

$$P(C, X) = P(C | X)P(X) = P(X | C)P(C)$$

- Build a generative model that approximates how data is produced
- Uses prior probability of each category given no information about an item.
- Categorization produces a posterior probability distribution over the possible categories given a description of an item.

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

# Maximum a posteriori Hypothesis

$$h_{MAP} \equiv \underset{h \in H}{\operatorname{argmax}} P(h \mid D)$$

$$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} \frac{P(D \mid h)P(h)}{P(D)}$$

#### **Max Likelihood**

If all hypotheses are a priori equally likely, we only need to consider the P(D|h) term:

$$h_{ML} \equiv \underset{h \in H}{\operatorname{argmax}} P(D \mid h)$$

## Naive Bayes Classifiers

Task: Classify a new instance based on a tuple of attribute values

$$\langle x_1, x_2, \dots, x_n \rangle$$

$$c_{MAP} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j \mid x_1, x_2, ..., x_n)$$

$$c_{MAP} = \underset{c_{j} \in C}{\operatorname{argmax}} \frac{P(x_{1}, x_{2}, ..., x_{n} \mid c_{j}) P(c_{j})}{P(c_{1}, c_{2}, ..., c_{n})}$$

$$c_{MAP} = \underset{c_{j} \in C}{\operatorname{argmax}} P(x_{1}, x_{2}, ..., x_{n} \mid c_{j}) P(c_{j})$$

# Naïve Bayes Classifier: Assumptions

$$P(c_j)$$

Can be estimated from the frequency of classes in the training examples.

$$P(x_1, x_2, ..., x_n | c_j)$$

Need very, very large number of training examples

⇒ Conditional Independence Assumption:

Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities.

# The Naïve Bayes Classifier



#### **Conditional Independence Assumption:**

features are independent of each other given the class:

$$P(X_1,...,X_5 \mid C) = P(X_1 \mid C) \bullet P(X_2 \mid C) \bullet \cdots \bullet P(X_5 \mid C)$$

# Learning the Model



Common practice:maximum likelihood simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N}$$

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_i)}$$

# Using Naive Bayes Classifiers to Classify Text: Basic method

Attributes are text positions, values are words.

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i} P(x_{i} \mid c_{j})$$

$$= \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) P(x_{1} = \text{"our"} \mid c_{j}) \cdots P(x_{n} = \text{"text"} \mid c_{j})$$

- Still too many possibilities
- Assume that classification is independent of the positions of the words
  - Use same parameters for each position

# Naïve Bayes Posterior Probabilities

- Classification results of naïve Bayes (the class with maximum posterior probability) are usually fairly accurate.
- However, due to the inadequacy of the conditional independence assumption, the actual posterior-probability numerical estimates are not.

Output probabilities are generally very close to 0 or 1.

#### Feature selection via Mutual Information

- We might not want to use all words, but just reliable, good discriminators
- In training set, choose *k* words which best discriminate the categories.
- One way is in terms of Mutual Information:

$$I(w,c) = \sum_{e_w \in \{0,1\}} \sum_{e_c \in \{0,1\}} p(e_w, e_c) \log \frac{p(e_w, e_c)}{p(e_w)p(e_c)}$$

For each word w and each category c

#### OTHER APPROACHES TO FEATURE SELECTION

- T-TEST
- CHI SQUARE
- TF/IDF

#### NAÏVE BAYES NOT SO NAIVE

- Naïve Bayes: First and Second place in KDD-CUP 97 competition, among 16 (then) state of the art algorithms
  - Robust to Irrelevant Features
  - Irrelevant Features cancel each other without affecting results
  - Instead Decision Trees & Nearest-Neighbor methods can heavily suffer from this.
- Very good in Domains with many <u>equally important</u> features
  - Decision Trees suffer from fragmentation in such cases especially if little data
- A good baseline for text classification
- Optimal if the Independence Assumptions hold:
  - If assumed independence is correct, then it is the Bayes Optimal Classifier for problem
- Very Fast:
  - Learning with one pass over the data; testing linear in the number of attributes, and document collection size
- Low Storage requirements
- Handles Missing Values

#### OTHER CLASSIFICATION METHODS

K-NN
DECISION TREES
LOGISTIC REGRESSION
SUPPORT VECTOR MACHINES

#### REFERENCES

- Mosteller, F., & Wallace, D. L. (1984). Applied Bayesian and Classical Inference: the Case of the Federalist Papers (2nd ed.). New York: Springer-Verlag.
- P. Pantel and D. Lin, 1998. "SPAMCOP: A Spam classification and organization program", In Proc. Of the 1998 workshop on learning for text categorization, AAAI
- Sebastiani, F., 2002, "Machine Learning in Automated Text Categorization", ACM Computing Surveys, 34(1), 1-47

#### Dim. Reduction-Eigenvectors

#### A: nxn matrix

- eigenvalues  $\lambda$ :  $|A-\lambda I|=0$
- Eigenvectors  $x : Ax = \lambda x$
- Matrix rank: # linearly independent rows or columns
- A real symmetric table A nxn can be expressed as:  $A=UAU^T$
- *U*'s columns are A's eigenvectors
- $A = U \Lambda U^T = \lambda_1 x_1 x_1^T + \lambda_2 x_2 x_2^T + \dots + \lambda_n x_n x_n^T$
- $x_I x_I^T$  represents projection via  $x_I$  ( $\lambda_i$  eigenvalue,  $x_i$  eigenvector)
- Interpretations:  $xx^T \text{ vs. } x^T x$

## Singular Value Decomposition (SVD)

Eigen values and eigenvectors decomposition is applied to square matrices. For non square matrices we apply **Singular Value Decomposition**.

Let **X** a mxn table,  $X = U\Sigma V^T$ 

U: orthogonal mxm, its columns are the eigenvectors of  $XX^T$ .

U,V define orthogonal basis:  $U^TU = VV^T = 1$ 

Σ: mxn contains A's singular values (square roots of XX<sup>T</sup> eigenvalues)

**V**: nxn, its columns are the eigenvectors of  $X^TX$ 

## Singular Value Decomposition (SVD) - I

#### Proof:

$$X = U\Sigma V^T, X^T = V\Sigma^T U^T = >$$

$$XX^{T} = U\Sigma(V^{T}V)\Sigma U^{T} = U\Sigma\Sigma^{T}U^{T}$$

Similarly:  $X^TX = V\Sigma^T\Sigma V^T$ 

Therefore: U: eigenvectors of  $XX^T$  (V: eigenvectors of  $X^TX$ )

 $\Sigma$ : sqrt of the eigenvalues of  $XX^T$ 

X k-dimensional representation:  $X_k = U_k \Sigma_k V_k^T$ 

#### Singular Value Decomposition (SVD) - II

#### Matrix approximation

$$X_k = U_k \Sigma_k V_k^T$$

The best rank k approximation Y' of a matrix X. (minimizing the <u>Frobenius norm</u>)

$$||A||_F^2 = \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2 = \operatorname{trace}(AA^H) = \sum_{i=1}^{\min\{m,n\}} \sigma_i^2$$

where  $A^H$  transpose of A,  $\sigma_i$  are the singular values of A, and the trace function is used.

#### **SVD** application - Latent Structure in documents

- Documents are represented based on the Vector Space Model
- Vector space model consists of the keywords contained in a document.
- •In many cases baseline keyword based performs poorly not able to detect synonyms.
- •Therefore document clustering is problematic
- •Example where of keyword matching with the query: "IDF in computer-based information look-up"

|      | access | document | retrieval | information | theory | database | indexing | computer |
|------|--------|----------|-----------|-------------|--------|----------|----------|----------|
| Doc1 | X      | X        | X         |             |        | X        | X        |          |
| Doc2 |        |          |           | X           | X      |          |          | x        |
| Doc3 |        |          | x         | X           |        |          |          | x        |

#### **Latent Semantic Indexing (LSI) -I**

- Finding similarity with exact keyword matching is problematic.
- Using SVD we process the initial document-term document.
- Then we choose the k larger singular values. The resulting matrix is of order k and is the most similar to the original one based on the Frobenius norm than any other k-order matrix.

#### **Latent Semantic Indexing (LSI) - II**

- The initial matrix is SVD decomposed as:  $A=ULV^T$
- Choosing the top-k singular values from L we have:

$$A_k = U_k L_k V_k^T$$
,

- $L_k$  is square kxk containing the top-k singular values of the diagonal in matrix  $L_k$
- $U_k$ , the mxk matrix containing the first k columns in U (left singular vectors)
- $V_k^{T_r}$  the kxn matrix containing the first k lines of  $V^T$  (right singular vectors)

Typical values for  $\varkappa \sim 200-300$  (empirically chosen based on experiments appearing in the bibliography)

#### LSI capabilities

- Term to term similarity:  $A_k A_k^T = U_k L_k^2 U_k^T$   $A_k = U_k L_k^V V_t$
- Document-document similarity:  $A_k^T A_k = V_k L_k^2 V_k^T$
- Term document similarity (as an element of the transformed
  - document matrix)
- Extended query capabilities transforming initial query q to

$$q_n: q_n = q^T U_k L_k^{-1}$$

- Thus  $q_n$  can be regarded a line in matrix  $V_k$ 

#### LSI application on a term – document matrix

C1: Human machine Interface for Lab ABC computer application

C2: A survey of user opinion of computer system response time

C3: The EPS user interface management system

C4: System and human system engineering testing of EPS

C5: Relation of user-perceived response time to error measurements

M1: The generation of random, binary unordered trees

M2: The intersection graph of path in trees

M3: Graph minors IV: Widths of trees and well-quasi-ordering

M4: Graph minors: A survey

The dataset consists of 2 classes, 1st: "human – computer interaction" (c1-c5)
 2nd: related to graph (m1-m4). After feature extraction the titles are represented as follows.

|           | C1 | C2 | C3 | C4 | C5 | M1 | M2 | М3 | M4 |
|-----------|----|----|----|----|----|----|----|----|----|
| human     | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
| Interface | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| computer  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| User      | 0  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  |
| System    | 0  | 1  | 1  | 2  | 0  | 0  | 0  | 0  | 0  |
| Response  | 0  | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| Time      | 0  | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| EPS       | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  |
| Survey    | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
| Trees     | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0  |
| Graph     | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  |
| Minors    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  |

 $A = ULV^T$ 

| _      |   |
|--------|---|
| Λ      | _ |
| $\neg$ | _ |

| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

#### $A = ULV^T$

| 0.22 | -0.11 | 0.29  | -0.41 | -0.11 | -0.34 | 0.52  | -0.06 | -0.41 | 0 | 0 | 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|---|---|---|
| 0.20 | -0.07 | 0.14  | -0.55 | 0.28  | 0.50  | -0.07 | -0.01 | -0.11 | 0 | 0 | 0 |
| 0.24 | 0.04  | -0.16 | -0.59 | -0.11 | -0.25 | -0.30 | 0.06  | 0.49  | 0 | 0 | 0 |
| 0.40 | 0.06  | -0.34 | 0.10  | 0.33  | 0.38  | 0.00  | 0.00  | 0.01  | 0 | 0 | 0 |
| 0.64 | -0.17 | 0.36  | 0.33  | -0.16 | -0.21 | -0.17 | 0.03  | 0.27  | 0 | 0 | 0 |
| 0.27 | 0.11  | -0.43 | 0.07  | 0.08  | -0.17 | 0.28  | -0.02 | -0.05 | 0 | 0 | 0 |
| 0.27 | 0.11  | -0.43 | 0.07  | 0.08  | -0.17 | 0.28  | -0.02 | -0.05 | 0 | 0 | 0 |
| 0.30 | -0.14 | 0.33  | 0.19  | 0.11  | 0.27  | 0.03  | -0.02 | -0.17 | 0 | 0 | 0 |
| 0.21 | 0.27  | -0.18 | -0.03 | -0.54 | 0.08  | -0.47 | -0.04 | -0.58 | 0 | 0 | 0 |
| 0.01 | 0.49  | 0.23  | 0.03  | 0.59  | -0.39 | -0.29 | 0.25  | -0.23 | 0 | 0 | 0 |
| 0.04 | 0.62  | 0.22  | 0.00  | -0.07 | 0.11  | 0.16  | -0.68 | 0.23  | 0 | 0 | 0 |
| 0.03 | 0.45  | 0.14  | -0.01 | -0.30 | 0.28  | 0.34  | 0.68  | 0.18  | 0 | 0 | 0 |

U=

 $A = ULV^T$ 

L=

| 3.3<br>4 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|----------|------|------|------|------|------|------|------|------|
| 0        | 2.54 | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 0        | 0    | 2.35 | 0    | 0    | 0    | 0    | 0    | 0    |
| 0        | 0    | 0    | 1.64 | 0    | 0    | 0    | 0    | 0    |
| 0        | 0    | 0    | 0    | 1.50 | 0    | 0    | 0    | 0    |
| 0        | 0    | 0    | 0    | 0    | 1.31 | 0    | 0    | 0    |
| 0        | 0    | 0    | 0    | 0    | 0    | 0.85 | 0    | 0    |
| 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0.56 | 0    |
| 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0.36 |
| 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

#### $A=ULV^T$

|    | 0.20 | -0.06 | 0.11  | -0.95 | 0.05  | -0.08 | 0.18  | -0.01 | -0.06 |
|----|------|-------|-------|-------|-------|-------|-------|-------|-------|
|    | 0.61 | 0.17  | -0.50 | -0.03 | -0.21 | -0.26 | -0.43 | 0.05  | 0.24  |
|    | 0.46 | -0.13 | 0.21  | 0.04  | 0.38  | 0.72  | -0.24 | 0.01  | 0.02  |
| V= | 0.54 | -0.23 | 0.57  | 0.27  | -0.21 | -0.37 | 0.26  | -0.02 | -0.08 |
|    | 0.28 | 0.11  | -0.51 | 0.15  | 0.33  | 0.03  | 0.67  | -0.06 | -0.26 |
|    | 0.00 | 0.19  | 0.10  | 0.02  | 0.39  | -0.30 | -0.34 | 0.45  | -0.62 |
|    | 0.01 | 0.44  | 0.19  | 0.02  | 0.35  | -0.21 | -0.15 | -0.76 | 0.02  |
|    | 0.02 | 0.62  | 0.25  | 0.01  | 0.15  | 0.00  | 0.25  | 0.45  | 0.52  |
|    | 0.08 | 0.53  | 0.08  | -0.03 | -0.60 | 0.36  | 0.04  | -0.07 | -0.45 |

#### Choosing the 2 largest singular values we have

|                | 0.22 | -0.11 |
|----------------|------|-------|
|                | 0.20 | -0.07 |
|                | 0.24 | 0.04  |
|                | 0.40 | 0.06  |
| $U_k =$        | 0.64 | -0.17 |
| O <sub>K</sub> | 0.27 | 0.11  |
|                | 0.27 | 0.11  |
|                | 0.30 | -0.14 |
|                | 0.21 | 0.27  |
|                | 0.01 | 0.49  |
|                | 0.04 | 0.62  |
|                | 0.03 | 0.45  |
|                |      |       |

$$L_k = \begin{bmatrix} 3.34 & 0 \\ 0 & 2.54 \end{bmatrix}$$

$$V_k^T = \begin{bmatrix} 0.20 & 0.6 & 0.46 & 0.54 & 0.28 & 0.00 & 0.02 & 0.02 & 0.08 \\ - & 0.06 & 7 & -0.13 & -0.23 & 0.11 & 0.19 & 0.44 & 0.62 & 0.53 \end{bmatrix}$$

# LSI (2 singular values)

|           | C1    | C2   | C3    | C4    | C5   | M1    | M2    | M3    | M4    |
|-----------|-------|------|-------|-------|------|-------|-------|-------|-------|
| human     | 0.16  | 0.40 | 0.38  | 0.47  | 0.18 | -0.05 | -0.12 | -0.16 | -0.09 |
| Interface | 0.14  | 0.37 | 0.33  | 0.40  | 0.16 | -0.03 | -0.07 | -0.10 | -0.04 |
| Computer  | 0.15  | 0.51 | 0.36  | 0.41  | 0.24 | 0.02  | 0.06  | 0.09  | 0.12  |
| User      | 0.26  | 0.84 | 0.61  | 0.70  | 0.39 | 0.03  | 0.08  | 0.12  | 0.19  |
| System    | 0.45  | 1.23 | 1.05  | 1.27  | 0.56 | -0.07 | -0.15 | -0.21 | -0.05 |
| Response  | 0.16  | 0.58 | 0.38  | 0.42  | 0.28 | 0.06  | 0.13  | 0.19  | 0.22  |
| Time      | 0.16  | 0.58 | 0.38  | 0.42  | 0.28 | 0.06  | 0.13  | 0.19  | 0.22  |
| EPS       | 0.22  | 0.55 | 0.51  | 0.63  | 0.24 | -0.07 | -0.14 | -0.20 | -0.11 |
| Survey    | 0.10  | 0.53 | 0.23  | 0.21  | 0.27 | 0.14  | 0.31  | 0.44  | 0.42  |
| Trees     | -0.06 | 0.23 | -0.14 | -0.27 | 0.14 | 0.24  | 0.55  | 0.77  | 0.66  |
| Graph     | -0.06 | 0.34 | -0.15 | -0.30 | 0.20 | 0.31  | 0.69  | 0.98  | 0.85  |
| Minors    | -0.04 | 0.25 | -0.10 | -0.21 | 0.15 | 0.22  | 0.50  | 0.71  | 0.62  |

 $A_k =$ 

# LSI Example

- Query: "human computer interaction" retrieves documents: c<sub>1</sub>,c<sub>2</sub>, c<sub>4</sub> but *not* c<sub>3</sub> and c<sub>5</sub>.
- If we submit the same query (based on the transformation shown before) to the transformed matrix we retrieve (using cosine similarity) all  $c_1$ - $c_5$  even if  $c_3$  and  $c_5$  have no common keyword to the query.
- According to the transformation for the queries we have:

# **Query transformation**

|           | query |
|-----------|-------|
| human     | 1     |
| Interface | 0     |
| computer  | 1     |
| User      | 0     |
| System    | 0     |
| Response  | 0     |
| Time      | 0     |
| EPS       | 0     |
| Survey    | 0     |
| Trees     | 0     |
| Graph     | 0     |
| Minors    | 0     |

|    | 1 |
|----|---|
|    | 0 |
|    | 1 |
|    | 0 |
|    | 0 |
| q= | 0 |
| ٩  | 0 |
|    | 0 |
|    | 0 |
|    | 0 |
|    | 0 |
|    | 0 |
| !  |   |

# **Query transformation**

| $q^T =$ | 1    | 0     | 1 | 0               | 0             | 0          | 0   | 0    | 0 | 0      | 0          | 0 |
|---------|------|-------|---|-----------------|---------------|------------|-----|------|---|--------|------------|---|
|         |      | 1     | ¬ |                 |               |            |     |      |   |        |            |   |
|         | 0.22 | -0.11 |   |                 |               |            |     |      |   |        |            |   |
|         | 0.20 | -0.07 |   |                 |               |            |     |      |   |        |            |   |
|         | 0.24 | 0.04  |   |                 |               |            |     |      |   |        |            |   |
|         | 0.40 | 0.06  |   |                 |               |            | 0.3 | 0    |   |        |            |   |
| $U_k =$ | 0.64 | -0.17 |   |                 | L             | <b>k</b> = | 0   | 0.39 | 9 |        |            |   |
| IX.     | 0.27 | 0.11  |   |                 |               |            |     |      |   |        |            |   |
|         | 0.27 | 0.11  |   |                 |               |            |     |      |   |        |            |   |
|         | 0.30 | -0.14 |   |                 |               |            |     |      |   |        |            |   |
|         | 0.21 | 0.27  |   | α.              | –aTI          | 1.1        | _   | 0.13 | 8 | -0.027 | <b>'</b> 3 |   |
|         | 0.01 | 0.49  |   | Чn <sup>-</sup> | - <b>4</b> '( | $J_kL_k$   |     |      |   |        |            |   |
|         | 0.04 | 0.62  |   |                 |               |            |     |      |   |        |            |   |
|         | 0.03 | 0.45  | 1 |                 |               |            |     |      |   |        |            |   |

Map docs to the 2 dim space  $V_k L_k =$ 

| 0.20 | -0.06 |
|------|-------|
| 0.61 | 0.17  |
| 0.46 | -0.13 |
| 0.54 | -0.23 |
| 0.28 | 0.11  |
| 0.00 | 0.19  |
| 0.01 | 0.44  |
| 0.02 | 0.62  |
| 0.08 | 0.53  |

| 2 24 | 0    |
|------|------|
| 3.34 | 0    |
| 0    | 2.54 |

| 0.67 | -0.15 |
|------|-------|
| 2.04 | 0.43  |
| 1.54 | -0.33 |
| 1.80 | -0.58 |
| 0.94 | 0.28  |
| 0.00 | 0.48  |
| 0.03 | 1.12  |
| 0.07 | 1.57  |
| 0.27 | 1.35  |

$$q_n L_k = \boxed{0.138 -0.0273}$$

| 3.34 | 0    | = | 0.46 | -0.069 |
|------|------|---|------|--------|
| 0    | 2.54 |   | 0.46 | -0.069 |



 Comparison of the transformed query to the new document vectors based on cosine similarity, where the similarity is computed as:

$$Cos(x,y) = \langle x,y \rangle / ||x|| . ||y||$$

Where 
$$x=(x_1,...,x_n), y=(y_1,...,y_n)$$

$$\langle x,y \rangle = x_1 * y_1 + \dots + x_n * y_n$$

 The cosine similarity matrix of query vector to the documents is:

|    | query |
|----|-------|
| C1 | 0.99  |
| C2 | 0.94  |
| C3 | 0.99  |
| C4 | 0.99  |
| C5 | 0.90  |
| M1 | -0.14 |
| M2 | -0.13 |
| M3 | -0.11 |
| M4 | 0.05  |



## **Topic Modeling**

- Flux of information: Wikipedia articles, blogs, Flickr images, astronomical survey data, social networking activity
- Need algorithms to organize, search, and understand this information.

#### Topic modeling

- aims at discovering the theme(s) of documents
- is a method for analyzing large quantities of unlabeled data.

### Topic is a probability distribution over a collection of words Topic model

- statistical relationship between a group of observed and latent (unknown) random variables
- specifies a probabilistic procedure to generate the topics—a generative model.
- provides a "thematic summary" of a collection of documents.
- answers the question themes documents discuss i.e. collection of news articles could discuss e.g. political, sports, and business related themes.

## **Probabilistic LSA**

- Probabilistic Latent Semantic Analysis (pLSA) is topic model method
- main goal: model co- occurrence information under a probabilistic framework to discover the underlying semantic structure of the data.
- Developed Th. Hofmann, 1999 = initially used for text-based applications (indexing, retrieval, clustering);
- spread in other fields: such as computer vision or audio processing.
- Goal of pLSA: use co-occurrence matrix to extract the "topics" and explain the documents as a mixture of them.

### **PLSA**

**Documents**:  $d \in D = \{d_1, \dots, d_N\}$ — observed variables, |D| = N

**Words**:  $W = \{W_1, \dots, W_M\}$ — observed variables, |W| = M

**Topics**:  $z \in Z = \{z_1, \dots, z_k\}$ —latent (or hidden) variables.

|Z|=K, has to be specified a priori.



- graphical model representation.
- generative process for each of the N documents.
- Nw: number of words in document d.
- Each word w has associated a latent topic z from which is generated.
- Shaded circles: observed variables,

## PLSA – Generative process

- select a document d with probability P(d).
- for each word  $w_i$ ,  $i \in \{1, \dots, N\}$  in document  $d_n$ :

Select a topic  $z_i$  from a multinomial conditioned as  $P(z/d_n)$ .

Select a word  $w_i$  from a multinomial conditioned as  $P(w|z_i)$ .

### **Assuming**

- bag-of-words model the joint distribution of the observed data factorize as a product:

$$P(\mathcal{D}, \mathcal{W}) = \prod_{(d,w)} P(d,w).$$

Conditional independence

$$P(w|d) = \sum_{z \in \mathcal{Z}} P(w|z)P(z|d)$$

$$P(w,d) = \sum_{z \in \mathcal{Z}} P(z)P(d|z)P(w|z).$$

## PLSA – mixture model

$$P(w|d) = \sum_{z \in \mathcal{Z}} P(w|z)P(z|d)$$

 $\begin{array}{ccc} \text{Documents} & \begin{array}{c} \text{Latent} \\ \text{Topics} \end{array} & \text{Words} \ \textbf{-} \end{array}$ 



The general structure of pLSA model.

- intermediate layer of latent topics links documents to words
- each document is a mixture of topics weighted by the probability P(z|d)
- each word expresses a topic with probability P(w|z).

$$L = \prod_{(d,w)} P(w|d) = \prod_{d \in \mathcal{D}} \prod_{w \in \mathcal{W}} P(w|d)^{n(d,w)}$$

n(d, w) frequency of word w in d

## PLSA – Log Likelihood Maximization

- Parameters can be estimated with Likelihood Maximization
- Find values maximizing predictive probability for observed word occurrences
- predictive probability of pLSA mixture: P(w|d), so the objective function is:

$$L = \prod_{(d,w)} P(w|d) = \prod_{d \in \mathcal{D}} \prod_{w \in \mathcal{W}} P(w|d)^{n(d,w)}$$

n(d, w) frequency of word w in dCan be solved with Expectation-Maximization (EM) algorithm for the log-likelihood:

$$\mathcal{L} = \log L = \sum_{d \in \mathcal{D}} \sum_{w \in \mathcal{W}} n(d, w)$$
$$\cdot \log \sum_{z \in \mathcal{Z}} P(w|z) P(z|d).$$

## PLSA – as Matrix Decomposition



A: document-term matrix.

**L**: document probabilities P (d|z).

**U**: diagonal matrix - prior probabilities of the topics P (z).

**R**: word probability P (w|z).

## References

- "Latent Dirichlet Allocation: Towards a Deeper Understanding Colorado Reed January 2012
- D. Blei. Introduction to probabilistic topic models. Communications of the ACM, 2011.
- Probabilistic Topic Models, David M. Blei, Department of Computer Science Princeton University, September 2, 2012
- Probabilistic Latent Semantic Analysis, Dan Oneata
- Thomas Hofmann. Probabilistic latent se- mantic indexing. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '99, pages 50–57, New York, NY, USA, 1999. ACM