What the hell is the title of this paper?

Anonymous Author(s)

Affiliation Address email

Abstract

The abstract paragraph should be indented ½ inch (3 picas) on both the left- and right-hand margins. Use 10 point type, with a vertical spacing (leading) of 11 points. 2 The word **Abstract** must be centered, bold, and in point size 12. Two line spaces 3 precede the abstract. The abstract must be limited to one paragraph. 4

Introduction

19

20

21

22

23

26

27

28

29

30

31

37

Recent advances have allowed reinforcement learning (RL) [] to achieve impressive results in a wide variety of complex tasks, ranging from Atari [], to the game of Go [], to the control of sophisticated robotics systems []. The main limitation is that RL algorithms still require an enormous amount of 8 experience samples before successfully learning such complicated tasks. One of the most promising 9 10 solutions is transfer learning, which focuses on reusing past knowledge available to the agent in order to reduce the sample-complexity for learning new tasks. In the typical settings of transfer 11 in RL [], the agent is assumed to have already solved a set of source tasks generated from some 12 unknown distribution. Then, given a target task drawn from the same distribution, or a slightly 13 different one, the agent can rely on knowledge from the source tasks to speed-up the learning process. 14 This constitutes a significant advantage over plain RL, where the agent learns each new task from scratch independently of previous learning experience. Several algorithms have been proposed in the 16 literature to transfer experience samples [], policies/options [], rewards [], value functions [], features 17 [], and so on. We refer the reader to [] for a thorough survey on transfer in RL. 18

Exploration-based introduction One of the most relevant problems in this context is how to efficiently explore the target task based on knowledge from the source tasks. Intuitively, assuming the tasks under consideration share some similarities due to the common distribution, much better exploration strategies than uninformed ones (e.g., ϵ -greedy) can be adopted for quickly learning the target task. Among the appealing approaches for this problem we find Bayesian methods (e.g., []), which are able to model the uncertainty over the current task based on previous knowledge and drive exploration so that this uncertainty is reduced as quickly as possible. Similarly, model-based algorithms (e.g., []) typically transfer samples to improve their estimates of the task model and adopt classic count-based exploration to drive the agent towards regions where such estimates are more uncertain. However, all these approaches either require strong assumptions (for example, on the distribution involved in Bayesian methods) or do not scale well to large problems. This greatly limits their practical applicability.

In this work, we tackle such limitations by considering a more general approach. Similarly to [], we assume tasks to share similarities in their value functions and use the given source tasks to learn the distribution over such functions. Then, we use this distribution as a prior for learning the target task 33 and we propose and efficient variational approximation of the corresponding posterior. Leveraging on 34 recent ideas from randomized value functions ([]), we design a Thompson sampling-based algorithm 35 which efficiently explores the target task by repeatedly sampling from the posterior and acting greedily 36 w.r.t. (with respect to) the sampled value function. We show that our approach is very general, in the sense that it does not require any specific choice of function approximator or prior/posterior distribution models.

Maybe mention something about theory/experiments here

Transfer-based introduction Under the assumption that tasks follow a certain distribution, an 41 intuitive choice for designing a transfer algorithm is to attempt at charactering the uncertainty over the target task. Then, an ideal algorithm would leverage prior knowledge from the source tasks to interact with the target task in such a way that this uncertainty is reduced as quickly as possible. This simple 45 intuition makes Bayesian methods appealing approaches for transfer in RL, and many previous works 46 have been proposed in this direction. [] assume tasks share similarities in their dynamics and rewards and propose a hierarchical Bayesian model for the distribution of this two elements. Similarly, 47 [] assume tasks are similar in their value functions and design a different hierarchical Bayesian 48 model. More recently, [], and its extension [], consider tasks that share structure in their dynamics 49 which is governed by some hidden parameters, and propose efficient Bayesian models for quickly 50 learning such parameters in new tasks. However, all these algorithms require specific, and sometimes 51 restrictive, assumptions (e.g., on the distributions involved or the function approximators adopted), 52 which might limit their practical applicability. [Having more general algorithms that alleviate the 53 need of strong assumptions and can be easily adapted to different contexts is one of the most relevant 54 problems in current research.] 55

probabilistic? distributional?

In this work, we take a more general approach. Similarly to [], we assume tasks to share similarities in their value functions and use the given source tasks to learn the distribution over such functions. Then, we use this distribution as a prior for learning the target task and we propose and efficient variational approximation of the corresponding posterior. Leveraging on recent ideas from randomized value functions ([]), we design a Thompson sampling-based algorithm which efficiently explores the target task by repeatedly sampling from the posterior and acting greedily w.r.t. (with respect to) the sampled value function. We show that our approach is very general, in the sense that it does not require any specific choice of function approximator or prior/posterior distribution models.

Maybe mention something about theory/experiments here

The rest of this document is organized as follows...

Complete this when the structure is defined or simply remove it to save space.

2 Preliminaries

40

64

We define a Markov decision process (MDP) as a tuple $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, p_0, \gamma \rangle$, where \mathcal{S} is the state-space, A is a finite set of actions, $\mathcal{P}(\cdot|s,a)$ is the distribution of the next state s' given 69 that action a is taken in state $s, \mathcal{R}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is the reward function, p_0 is the initial-state 70 distribution, and $\gamma \in [0,1)$ is the discount factor. We assume the reward function to be uniformly 71 bounded by a constant $R_{max} > 0$. A deterministic policy $\pi : \mathcal{S} \to \mathcal{A}$ is a mapping from states 72 to actions. At the beginning of each episode of interaction, the initial state s_0 is drawn from p_0 . 73 Then, the agent takes the action $a_0 = \pi(s_0)$, receives a reward $\mathcal{R}(s_0, a_0)$, transitions to the next 74 state $s_1 \sim \mathcal{P}(\cdot|s_0, a_0)$, and the process is repeated. The goal is to find the policy maximizing the 75 long-term return over a possibly infinite horizon: $\max_{\pi} J(\pi) \triangleq \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r_t \mid \mathcal{M}, \pi]$. To this end, 76 we define the optimal value function $Q^*(s,a)$ as the expected return obtained by taking action a 77 in state s and following an optimal policy thereafter. Then, an optimal policy π^* is a policy that 78 is greedy with respect to the optimal value function, i.e., $\pi^*(s) = \operatorname{argmax}_a Q^*(s, a)$ for all states 79 s. It can be shown (e.g., [1]) that Q^* is the unique fixed-point of the optimal Bellman operator T80 defined by $TQ(s,a) = \mathcal{R}(s,a) + \gamma \mathbb{E}_{\mathcal{P}}[\max_{a'} Q(s',a')]$ for any value function Q. From now on, we 81 adopt the term Q-function to denote any plausible value function, i.e., any function $Q: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ 82 uniformly bounded by $\frac{R_{max}}{1-\gamma}$. 83

When learning the optimal value function, a quantity of interest is how close a given Q-function is to the fixed-point of the Bellman operator. This is given by its Bellman residual, defined by $B(Q) \triangleq TQ - Q$. Notice that Q is optimal if, and only if, B(Q)(s,a) = 0 for all s,a. Furthermore, if we assume the existence of a distribution ν over $\mathcal{S} \times \mathcal{A}$, the squared Bellman error of Q is

defined as the expected squared Bellman residual of Q under ν , $\|B(Q)\|_{\nu}^2 = \mathbb{E}_{\mu}\left[B^2(Q)\right]$. Although minimizing the empirical Bellman error is an appealing objective, it is well-known that an unbiased 89 estimator requires two independent samples of the next state s' of each s, a (e.g., []). In practice, 90 the empirical Bellman error is typically replaced by the TD error, which approximates the former 91 using a single transition sample. Given a dataset of N samples, the TD error is computed as $\|B(Q)\|_D^2 = \frac{1}{N} \sum_{i=1}^N (r_i + \gamma \max_{a'} Q(s_i', a') - Q(s_i, a_i))^2$. 92 93

Variational Transfer Learning

In this section, we describe our variational approach to transfer in RL. In Section 3.1, we start 95 by introducing our algorithm from a high-level perspective, in such a way that it can be used 96 for any choice of prior and posterior distributions. Then, in Sections 3.2 and 3.3, we propose 97 practical implementations based on Gaussian prior/posterior and mixture of Gaussian prior/posterior, respectively.

3.1 Algorithm

88

94

100

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

We begin with a simple consideration: the distribution \mathcal{D} over tasks clearly induces a distribution over 101 optimal Q-functions. Since, for any MDP, learning its optimal Q-function is sufficient for solving the 102 problem, one can safely replace the distribution over tasks with the distribution over their optimal 103 value functions. Furthermore, assume we know such distribution and we are given a new task τ to 104 solve. Our goal is to design an algorithm that efficiently explores τ so as to quickly adapt the prior 105 distribution in a Bayesian fashion to put all probability mass over the optimal Q-function of τ . 106 107

We consider a parametric family of Q-functions, $Q = \{Q_{\boldsymbol{w}} : \mathcal{S} \times \mathcal{A} \to \mathbb{R} \mid \boldsymbol{w} \in \mathbb{R}^K\}$. For simplicity, we assume each function in Q to be uniformly bounded by $\frac{R_{max}}{1-\gamma}$. Then, we can reduce our prior distribution over Q-functions to a prior distribution over weights p(w). Assume that we are given a dataset $D = \{(s_i, a_i, s_i', r_i) \mid i = 1, 2, \dots N\}$ of samples from some task τ that we want to solve. Then, the posterior distribution over weights given such dataset can be computed by applying Bayes theorem as $p(w|D) \propto p(D|w)p(w)$. Unfortunately, this cannot be directly used in practice since we do not have a model of the likelihood p(D|w). In such case, it is very common to make strong assumptions on the MDPs or the Q-functions so as to get tractable posteriors []. However, in our transfer settings all distributions involved depend on the family of tasks under consideration, and making such assumptions is likely to limit the applicability of the approach. Thus, we take a different approach to derive a more general and meaningful solution. Recall that our final goal is move all probability mass over the weights minimizing some empirical loss measure, which in our case is the TD error $||B(w)||_D^2$. Then, given a prior p(w), we know from PAC-Bayesian theory that the optimal Gibbs posterior takes the form []:

Cite somebody

cite Maillard

Cite Catoni

$$q(\boldsymbol{w}) = \frac{e^{-\Lambda \|B(\boldsymbol{w})\|_D^2} p(\boldsymbol{w})}{\int e^{-\Lambda \|B(\boldsymbol{w}')\|_D^2} p(d\boldsymbol{w}')}$$
(1)

for some parameter $\Lambda > 0$. Since Λ is typically chosen to increase with the number of samples N, in the remaining we set it to $\lambda^{-1}N$, for some constant $\lambda > 0$. Notice that, whenever the term $e^{-\Lambda \|B(\boldsymbol{w})\|_D^2}$ can be interpreted as the actual likelihood of D,q becomes a classic Bayesian posterior. Although we now have an appealing distribution, the integral at the denominator of (1) is intractable to compute even for simple Q-function models. Thus, we propose a variational approximation $q_{\mathcal{E}}$ by considering a simpler family of distributions parameterized by $\xi \in \Xi$. Then, our problem reduces to finding the variational parameters ξ such that q_{ξ} minimizes the Kullback-Leibler (KL) divergence w.r.t. the Gibbs posterior q. From the theory of variational inference (e.g., []), this can be shown to be equivalent to minimizing the well-known (negative) evidence lower bound (ELBO):

$$\min_{\boldsymbol{\xi} \in \Xi} \mathcal{L}(\boldsymbol{\xi}) = \mathbb{E}_{\boldsymbol{w} \sim q_{\boldsymbol{\xi}}} \left[\|B(\boldsymbol{w})\|_{D}^{2} \right] - \frac{\lambda}{N} KL \left(q_{\boldsymbol{\xi}}(\boldsymbol{w}) \| p(\boldsymbol{w}) \right)$$
(2)

Intuitively, the approximate posterior trades-off between placing probability mass over those weights w that have low TD error (first term), and staying close to the prior distribution (second term).

¹In practice, this is easily achieved by truncation.

Algorithm 1 Variational Transfer

134

135

136

137

138

139

140

141

142

143

144

145

146

147

149

150

151

152

153

154

155

156

Require: Target task τ , source Q-function weights W_s , batch sizes M_D and M_W , prior weight λ

```
1: Estimate prior p(w) from W_s
  2: Initialize variational parameters: \boldsymbol{\xi} \leftarrow \operatorname{argmin}_{\boldsymbol{\xi}} KL(q_{\boldsymbol{\xi}}||p)
  3: Initialize replay buffer: D = \emptyset
                Sample initial state: s_0 \sim p_0^{(\tau)}
  5:
  6:
                while s_h is not terminal do
  7:
                       Sample weights: \boldsymbol{w} \sim q_{\boldsymbol{\xi}}(\boldsymbol{w})
                      Take action a_h = \operatorname{argmax}_a Q_{\boldsymbol{w}}(s_h, a)
  8:
                     Observe transition s_{h+1} \sim \mathcal{P}^{(\tau)}(\cdot|s_h, a_h)

Collect reward r_h = \mathcal{R}^{(\tau)}(s_h, a_h)

Add sample to the replay buffer: D \leftarrow D \cup \langle s_h, a_h, r_h, s_{h+1} \rangle

Sample batch D' = \langle s_i, a_i, r_i, s_i' \rangle_{i=1}^{M_D} from D and \mathcal{W} = \{ \boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_{M_{\mathcal{W}}} \} from q_{\boldsymbol{\xi}}

Approximate objective: \mathcal{L}(\boldsymbol{\xi}) = \frac{1}{M_{\mathcal{W}}} \sum_{\boldsymbol{w} \in \mathcal{W}} \|B(\boldsymbol{w})\|_{D'}^2 - \frac{\lambda}{N} KL(q_{\boldsymbol{\xi}} \parallel p)
  9:
10:
11:
12:
13:
                      Compute the gradient \nabla_{\boldsymbol{\xi}} \mathcal{L}(\boldsymbol{\xi})
14:
15:
                       Update \xi in the direction of \nabla_{\xi} \mathcal{L}(\xi) using any stochastic optimizer (e.g., ADAM)
16:
                end while
17: until forever
```

Assuming that we are able to compute the gradients of (2) w.r.t. the variational parameters ξ , our objective can be easily optimized with any stochastic optimization algorithm.

We now highlight our general transfer procedure in Alg. 1, while deferring a description of practical implementations with specific choices for the distributions involved to the next two sections. Given a set of weights W_s from the source tasks, we start by estimating the prior distribution (line 1) and we initialize the variational parameters by minimizing the KL divergence w.r.t. such distribution² (line 2). Then, at each time step of interaction, we re-sample the weights from the current approximate posterior and act greedily w.r.t. the corresponding Q-function (lines 7,8). This resembles the well-known Thompson sampling approach adopted in multi-armed bandits []and allows our algorithm to efficiently explore the target task. In some sense, at each time we guess what is the task we are trying to solve based on our current belief and we act as if such guess were actually true. After collecting and storing the new experience (lines 9-11), we draw a batch of samples from the replay buffer and a batch of weights from the posterior (line 12). We use these to approximate the negative ELBO, compute its gradient, and finally update the variational parameters (lines 13-15).

The main advantage of our approach is that it exploits knowledge from the source tasks to perform an efficient adaptive exploration. Intuitively, during the first steps of interaction, our algorithm has no idea about what is the current task. However, it can rely on the learned prior to take early informed decisions. As the learning process goes on, it will quickly figure out which task is being solved, thus moving all probability mass over the weights minimizing the TD error. From that point, sampling from the posterior is approximately equivalent to deterministically taking such weights, and no more exploration will be performed. Finally, notice the generality of the proposed approach: as far as the objective \mathcal{L} is differentiable in the variational parameters $\boldsymbol{\xi}$, and its gradients can be efficiently computed, any function approximator for the Q-functions and any family for the pior and posterior distributions can be adopted. For the latter, we describe two practical choices in the next two sections.

3.2 Gaussian Variational Transfer

We now restrict ourselves to a specific choice of the prior and posterior families that makes our algorithm very efficient and easy to implement. We assume that optimal Q-functions according to our task distribution (or better, their weights) follow a multivariate Gaussian law. That is, we model the prior as $p(\boldsymbol{w}) = \mathcal{N}(\boldsymbol{\mu}_p, \boldsymbol{\Sigma}_p)$ and we learn its parameters from the set of source weights using, e.g., maximum likelihood estimation (with small regularization to make sure the covariance is positive

²If the prior and approximate posterior were in the same family of distributions we could simply set ξ to the prior parameters, however this does not always hold in practice.

definite). Then, our variational family is the set of all well-defined Gaussian distributions, i.e., the variational parameters are $\Xi = \{(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \mid \boldsymbol{\mu} \in \mathbb{R}^K, \boldsymbol{\Sigma} \in \mathbb{R}^{K \times K}, \boldsymbol{\Sigma} \succ 0\}$. To prevent the covariance from going not positive definite, we consider its Cholesky decomposition $\boldsymbol{\Sigma} = \boldsymbol{L}\boldsymbol{L}^T$ and learn the lower-triangular Cholesky factor L instead. Under Gaussian distributions, all quantity of interest for using Alg. 1 can be computed very easily. The KL divergence between the prior and approximate posterior can be computed in closed-form as:

$$KL\left(q_{\boldsymbol{\xi}}(\boldsymbol{w}) \mid\mid p(\boldsymbol{w})\right) = \frac{1}{2} \left(\log \frac{|\boldsymbol{\Sigma}_p|}{|\boldsymbol{\Sigma}|} + \operatorname{Tr}\left(\boldsymbol{\Sigma}_p^{-1} \boldsymbol{\Sigma}\right) + (\boldsymbol{\mu} - \boldsymbol{\mu}_p)^T \boldsymbol{\Sigma}_p^{-1} (\boldsymbol{\mu} - \boldsymbol{\mu}_p) - K\right)$$
(3)

for $\xi = (\mu, L)$ and $\Sigma = LL^T$. Its gradients with respect to the variational parameters are []:

Cite matrix cookboox

$$\nabla_{\boldsymbol{\mu}} KL\left(q_{\boldsymbol{\xi}}(\boldsymbol{w}) \mid\mid p(\boldsymbol{w})\right) = \boldsymbol{\Sigma}_{p}^{-1}(\boldsymbol{\mu} - \boldsymbol{\mu}_{p})$$
(4)

169

170

172

174

175

176

177

178

179

180

181

182

183

184 185 186

187

188

189

190 191

192

193

195

196

197

198

199

200

201

See the original paper for the proof.

$$\nabla_{\boldsymbol{L}} KL \left(q_{\boldsymbol{\xi}}(\boldsymbol{w}) \mid\mid p(\boldsymbol{w}) \right) = \boldsymbol{\Sigma}_{p}^{-1} \boldsymbol{L} - (\boldsymbol{L}^{-1})^{T}$$
(5)

Finally, the gradients w.r.t. the expected likelihood term of the variational objective (2) can be computed using the reparameterization trick (e.g., []):

 $\nabla_{\boldsymbol{\mu}} \mathbb{E}_{\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{L} \boldsymbol{L}^T)} \left[||B(\boldsymbol{w})||_D^2 \right] = \mathbb{E}_{\boldsymbol{v} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})} \left[\nabla_{\boldsymbol{w}} ||B(\boldsymbol{w})||_D^2 \right] \text{ for } \boldsymbol{w} = \boldsymbol{L} \boldsymbol{v} + \boldsymbol{\mu}$ (6)

Cite deepmind and another

$$\nabla_{\boldsymbol{L}} \mathbb{E}_{\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{L} \boldsymbol{L}^T)} \left[||B(\boldsymbol{w})||_D^2 \right] = \mathbb{E}_{\boldsymbol{v} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})} \left[\nabla_{\boldsymbol{w}} ||B(\boldsymbol{w})||_D^2 \cdot \boldsymbol{v}^T \right] \text{ for } \boldsymbol{w} = \boldsymbol{L} \boldsymbol{v} + \boldsymbol{\mu} \quad (7)$$

3.3 Mixture of Gaussian Variational Transfer

Although the Gaussian assumption of the previous section is very appealing as it allows for a simple and efficient way of computing the variational objective and its gradients, we believe that such assumption almost never holds in practice. In fact, even for families of tasks in which the reward and transition models follow a Gaussian law, the Q-values might be far from it. Depending on the family of tasks under consideration and, since we are learning a distribution over weights, on the chosen function approximator, the prior might have arbitrarily complex shapes. When the information loss due to the Gaussian approximation becomes too severe, the algorithm is likely too fail at transferring knowledge, thus reducing to almost random exploration. We now propose a variant to successfully solve this problem, while keeping the algorithm simple and efficient enough to be applied in practice. In order to capture arbitrarily complex distributions, we use a kernel estimator [] for learning our prior. Assume we are given a set W_s of weights from the source tasks. Then, our estimated prior places a single isotropic Gaussian over each weight: $p(\boldsymbol{w}) = \frac{1}{|W_s|} \sum_{\boldsymbol{w}_s \in \mathcal{W}_s} \mathcal{N}(\boldsymbol{w}|\boldsymbol{w}_s, \sigma_p^2 \boldsymbol{I})^3$. This takes the form of a mixture of Gaussians with equally weighted components. Consistently with the prior, we model our approximate posterior as a mixture of Gaussians. However, we allow a different number of components (typically much less than the prior's) and we adopt full covariances instead of only diagonals, so that our posterior has the potential to match complex distributions with less components. Using C components, our posterior is $q_{\boldsymbol{\xi}}(\boldsymbol{w}) = \frac{1}{C} \sum_{i=1}^{C} \mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$, with variational parameters $\boldsymbol{\xi} = (\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_C, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\Sigma}_C)$. Once again, we learn Cholesky factors instead of full covariances. Although this new model has the potential to capture much more complex distributions, it poses a major complication: the KL divergence between two mixture of Gaussians is well-known to have no closed-form equation. To solve this issue, we can rely on an upper bound to such quantity, so that negative ELBO we are optimizing still represents an upper bound on the KL between the approximate and true posterior. However, this turns out to be non-trivial as well. In fact, it is very easy to bound the KL between two mixtures with the KLs between each couple of components. However, the loss of information is such that minimizing the upper bound via gradient methods converges to a local optimum in which all components tend to go to the same point, thus almost reducing to the single Gaussian case. To solve this issue, we adopt the variational upper bound proposed in ∏, which we found to be able to preserve the needed information. We report it here for the sake of completeness.

Cite UB

Theorem 1. Let $p = \sum_i c_i^{(p)} f_i^{(p)}$ and $q = \sum_j c_j^{(q)} f_j^{(q)}$ be two mixture of Gaussian distributions, where $f_i^{(p)} = \mathcal{N}(\boldsymbol{\mu}_i^{(p)}, \boldsymbol{\Sigma}_i^{(p)})$ denotes the i-th component of p, $c_i^{(p)}$ denotes its weight, and similarly

³Notice that this is slightly different than the typical kernel estimator (e.g., [])

for q. Introduce two vectors $\chi^{(1)}$ and $\chi^{(2)}$ such that $c_i^{(p)} = \sum_j \chi_{j,i}^{(2)}$ and $c_j^{(q)} = \sum_i \chi_{i,j}^{(1)}$. Then:

$$KL(p||q) \le KL(\chi^{(2)}||\chi^{(1)}) + \sum_{i,j} \chi_{j,i}^{(2)} KL(f_i^{(p)}||f_j^{(q)})$$
 (8)

Our new algorithm replaces the KL with the above-mentioned upper bound. Each time we require its value, we have to recompute the parameters $\chi^{(1)}$ and $\chi^{(2)}$ that tighten the bound. As shown in [], this can be achieved by a simple fixed-point procedure. Furthermore, both terms in the approximate negative ELBO are now linear combinations of functions of the variational parameters for different components, thus their gradients can be straightforwardly derived from the ones of the Gaussian case.

cite them

3.4 Optimizing the TD error

206

207

209

210

211

237

238

241

242

From Sections 3.2 and 3.3, we know that differentiating the negative ELBO \mathcal{L} w.r.t. $\boldsymbol{\xi}$ requires differentiating $||B(w)||_D^2$ w.r.t. w. Unfortunately, the TD error is well-known to be non-differentiable due to the presence of the max operator. This rarely represents a problem since typical value-based 213 214 algorithms are actually semi-gradient methods, i.e., they do not differentiate the targets (see, e.g., 215 Chapter 11 of []). However, our transfer settings are rather different than common RL. In fact, our 216 algorithm is likely to always start from Q-functions that are very close to the optimum, and the 217 only thing that needs to be done is to adapt the weights in a direction of lower error (i.e., higher 218 likelihood) so as to quickly converge to the solution of the task that is being solved. Unfortunately, 219 this property cannot be guaranteed for most semi-gradient algorithms. Even worse, many online 220 RL algorithms combined with complex function approximators (e.g., DQNs) are well-known to be 221 unstable, especially when approaching the optimum, and require a lot of tuning and tricks to work well. This is obviously an undesirable property in our case, as we only aim at adapting already good 223 solutions. Thus, we consider using a residual gradient algorithm (after []). In order to differentiate 224 the targets, we replace the optimal Bellman operator with the mellow Bellman operator introduced in 225 [], which adopts a softened version of max called *mellowmax*: 226

Cite Sutton

Danu

Cite MM

$$\min_{a} Q_{\boldsymbol{w}}(s, a) = \frac{1}{\kappa} \log \frac{1}{|\mathcal{A}|} \sum_{a} e^{\kappa Q_{\boldsymbol{w}}(s, a)} \tag{9}$$

where κ is a hyperparameter and $|\mathcal{A}|$ is the number of actions. The mellow Bellman operator, which 227 we denote as \widetilde{T} , has several appealing properties that make it suitable for our settings: (i) it converges 228 to the maximum as $\kappa \to \infty$, (ii) it has a unique fixed point, and (iii) it is differentiable. Denoting 229 by $\widetilde{B}(w) = \widetilde{T}Q_w - Q_w$ the Bellman residual w.r.t. the mellow Bellman operator \widetilde{T} , we have 230 that the corresponding TD error, $\|\widetilde{B}(w)\|_{D}^{2}$, is now differentiable with respect to w. Although 231 residual algorithms have the sought guaranteed convergence, they are typically much slower than 232 their semi-gradient counterpart. This problem was addressed in [], where the authors proposed a 233 simple remedy consisting in projecting the gradient in a direction that sill guarantees convergence but 234 is also closer to the one of the semi-gradient, thus achieving higher learning speed. This can be easily 235 done by including a parameter $\psi \in [0,1]$ in the TD error gradient such that: 236

Baird again

$$\nabla_{\boldsymbol{w}} \left\| \widetilde{B}(\boldsymbol{w}) \right\|_{D}^{2} = \frac{2}{N} \sum_{i=1}^{N} b_{i}(\boldsymbol{w}) \left(\gamma \psi \nabla_{\boldsymbol{w}} \min_{\boldsymbol{a}'} Q_{\boldsymbol{w}}(s'_{i}, \boldsymbol{a}') - \nabla_{\boldsymbol{w}} Q_{\boldsymbol{w}}(s_{i}, a_{i}) \right)$$
(10)

where $b_i(\boldsymbol{w}) = r_i + \gamma \, \text{mm}_{a'} \, Q_{\boldsymbol{w}}(s_i', a') - Q_{\boldsymbol{w}}(s_i, a_i)$. Notice that ψ trades-off between the semi-gradient ($\psi = 0$) and the full residual gradient ($\psi = 1$). A good criterion for choosing such parameter is to start with values close to zero (to have faster learning) and move to higher values when approaching the optimum (to guarantee converge). Since in our case we are likely to start from this latter point, we consider only higher values (e.g., above 0.5).

4 Theoretical Analysis

In this section, we theoretically analyze our variational transfer algorithm...

A first important question that we need to answer is whether replacing max with mellow-max in the Bellman operator constitutes a strong approximation or not. It has been proved [] that the Cite MM

mellow Bellman operator is a contraction under the L_{∞} -norm and, thus, has a unique fixed-point. However, how such fixed-point differs from the one of the optimal Bellman operator remains an open question. Since mellow-max monotonically converges to max as $\kappa \to \infty$, it would be desirable if the corresponding operator also monotonically converged to the optimal one. We confirm that this property actually holds in the following theorem.

Theorem 2. Let V be the fixed-point of the optimal Bellman operator T, and Q the corresponding action-value function. Define the action-gap function g(s) as the difference between the value of the best action and the second best action at each state s. Let \widetilde{V} be the fixed-point of the mellow Bellman operator \widetilde{T} with parameter $\kappa > 0$ and denote by $\beta > 0$ the inverse temperature of the induced Boltzmann distribution (as in []). Let ν be a probability measure over the state-space. Then, for any $p \geq 1$:

Cite MM

$$\left\| V - \widetilde{V} \right\|_{\nu,p}^{p} \le \frac{2R_{max}}{(1 - \gamma)^{2}} \left\| 1 - \frac{1}{1 + |\mathcal{A}| e^{-\beta g}} \right\|_{\nu,p}^{p} \tag{11}$$

Theorem 3. Let Q^* be the fixed-point of the optimal Bellman operator T. Define the action-gap function g(s) as the difference between the value of the best action and the second best action at each state s. Let \widetilde{Q} be the fixed-point of the mellow Bellman operator \widetilde{T} with parameter $\kappa > 0$ and denote by $\beta_{\kappa} > 0$ the inverse temperature of the induced Boltzmann distribution (as in []). Let ν be a probability measure over the state-action space. Then, for any $p \geq 1$:

$$\left\| Q^* - \widetilde{Q} \right\|_{\nu,p}^p \le \frac{2\gamma R_{max}}{(1 - \gamma)^2} \left\| \frac{1}{1 + \frac{1}{|A|} e^{\beta_{\kappa} g}} \right\|_{\nu,p}^p \tag{12}$$

5 Related Works

Our approach is mostly related to []. Although we both assume the tasks to share similarities in their value functions, [] consider only linear approximators and adopt a hierarchical Bayesian model of the corresponding weights' distribution, which is assumed Gaussian. On the other hand, our variational approximation allows for more general distribution families and can be combined with non-linear approximators. Furthermore, [] propose a Dirichlet process model for the case where weights cluster into different classes, which relates to our mixture formulation of Sec. 3.3 and proves again the importance of capturing more complicated task distributions. Another related approach is [], where the authors propose a hierarchical Bayesian model for the distribution over tasks. Differently from our approach and [], they consider a distribution over transition probabilities and rewards, rather than value functions. In the same spirit of our method, they consider a Thompson sampling-based procedure which, at each iteration, samples a new task from the posterior and solves it, thus providing efficient exploration via the transferred knowledge. However, [] consider only finite MDPs, which poses a severe limitation in the algorithm's applicability. On the contrary, our approach can handle high dimensional tasks by allowing powerful function approximators.

Cite also HIP

Should we add more here or just leave a quick citation in the introduction?

The idea of exploration via value function randomization we build upon was first proposed in the RL community by []. The authors extend the well-known LSTD [] by adopting Bayesian linear regression to model the uncertainty over the predicted value function weights, and use that to perform a Thompson sampling-like procedure. Such approach was recently extended by [], where the approximator is replaced by a Bayesian neural network, leading to an algorithm capable of solving much more complicated problems. Both these algorithms rely on the Gaussian assumption and, since they work in plain RL settings, have no informative prior available. On the other hand, our variational approximation allows more complex distributions (e.g., mixtures) to be adopted, while knowledge from the source tasks allows us to learn very informative priors. Finally, the variational approximation technique we consider in this work has been previously adopted in [] to approximate an intractable posterior over the transition dynamics, which is then used to drive efficient exploration via an information-maximizing procedure.

Figure 1: Bla bla bla

Figure 2: Bla bla bla

6 Experiments

290

291 292

293

294

295

296

297

298

299

300

301

302 303

304

305

306

307

308

310

311

312

313

314

315

316

317

In this section, we provide an experimental evaluation of our approach. We begin by analyzing the behavior of our algorithm on a toy problem in Sec. 6.1. Then, in Sec. 6.2, we consider two classic control benchmarks, namely cartpole and mountain car. We conclude with a complex maze navigation task in Sec. 6.3. In all experiments, we compare the behavior of our variational transfer algorithm with Gaussian distributions (GVT) and with mixture of Gaussians (MGVT). To the best of our knowledge, no existing transfer algorithm is directly comparable to our approach from an experimental perspective.

Any better motivation?

6.1 The Rooms Problem

We consider an agent navigating in the rooms environment depicted in Fig. ??. The agent starts in the bottom-left corner and must move from one room to another to reach the goal position in the top-right corner. The rooms are connected by small doors whose positions are unknown to the agent. In particular, we consider two versions of the environment, with two rooms (Fig. ?? top) and three rooms (Fig. ?? bottom), respectively. The state-space is modeled as a 10×10 continuous grid, while the action-space is the set of 4 movement directions (up, right, down, left). After each action, the agent moves by 1 in the chosen direction and the final position is corrupted by Gaussian noise with 0.2 standard deviation. In case the agent hits a wall, its position remains unchanged. The reward is 1 when reaching the goal (after which the process terminates) and 0 otherwise, while the discount factor is $\gamma = 0.99$. We consider a distribution over tasks in which doors have a fixed width of 1, while their positions are sampled uniformly in [0.5, 9.5]. Since the agent does not know where the doors are located in advance and receives only very sparse feedback, it must efficiently explore the environment to figure out (i) their positions, and (ii) how to reach the goal. While this might be a complicated problem for plain RL, our transfer algorithm should be able to quickly figure out the door positions. In fact, notice that, although different, the optimal Q-functions for all tasks share some similarities. For example, once the agent has passed the last door before the goal, the Q-values are exactly the same in all tasks. This does not hold for positions nearby the start state. However, it is clear that there should be a preference over actions up and right, rather than down and left (which are worse in all tasks). Thus, we expect our algorithm to efficiently explore any target task.

- 318 6.2 Classic Control
- 319 6.3 Maze Navigation
- 320 7 Conclusion

321 References

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley
 & Sons, Inc., New York, NY, USA, 1994.

324 A Proofs

Theorem 2. Let V be the fixed-point of the optimal Bellman operator T, and Q the corresponding action-value function. Define the action-gap function g(s) as the difference between the value of the best action and the second best action at each state s. Let \widetilde{V} be the fixed-point of the mellow Bellman operator \widetilde{T} with parameter $\kappa > 0$ and denote by $\beta > 0$ the inverse temperature of the induced Boltzmann distribution (as in []). Let ν be a probability measure over the state-space. Then, Cite MM for any $p \geq 1$:

$$\left\|V - \widetilde{V}\right\|_{\nu,p}^{p} \le \frac{2R_{max}}{(1 - \gamma)^{2}} \left\|1 - \frac{1}{1 + |\mathcal{A}| e^{-\beta g}}\right\|_{\nu,p}^{p} \tag{11}$$

Proof. We begin by noticing that:

$$\begin{split} \left\| V - \widetilde{V} \right\|_{\nu,p}^{p} &= \left\| TV - \widetilde{T}\widetilde{V} \right\|_{\nu,p}^{p} \\ &= \left\| TV - \widetilde{T}V + \widetilde{T}V - \widetilde{T}\widetilde{V} \right\|_{\nu,p}^{p} \\ &\leq \left\| TV - \widetilde{T}V \right\|_{\nu,p}^{p} + \left\| \widetilde{T}V - \widetilde{T}\widetilde{V} \right\|_{\nu,p}^{p} \\ &\leq \left\| TV - \widetilde{T}V \right\|_{\nu,p}^{p} + \gamma \left\| V - \widetilde{V} \right\|_{\nu,p}^{p} \end{split}$$

where the first inequality follows from Minkowsky's inequality and the second one from the contraction property of the mellow Bellman operator. This implies that:

$$\left\|V - \widetilde{V}\right\|_{\nu,p}^{p} \le \frac{1}{1 - \gamma} \left\|TV - \widetilde{T}V\right\|_{\nu,p}^{p} \tag{13}$$

Let us bound the norm on the right-hand side separately. In order to do that, we will bound the function $\left|TV(s) - \widetilde{T}V(s)\right|$ point-wisely for any state s. By applying the definition of the optimal and mellow Bellman operators, we obtain:

$$\begin{aligned} \left| TV(s) - \widetilde{T}V(s) \right| &= \left| \max_{a} \{ R(s, a) + \gamma \mathbb{E} \left[V(s') \right] \} - \max_{a} \{ R(s, a) + \gamma \mathbb{E} \left[V(s') \right] \} \right| \\ &= \left| \max_{a} Q(s, a) - \min_{a} Q(s, a) \right| \end{aligned}$$

Recall that applying the mellow-max is equivalent to computing an expectation under a Boltzmann distribution with inverse temperature β induced by κ []. Thus, we can write:

Cite MM

$$\left| \max_{a} Q(s, a) - \min_{a} Q(s, a) \right| = \left| \sum_{a} \pi^{*}(a|s)Q(s, a) - \sum_{a} \pi_{\beta}(a|s)Q(s, a) \right|$$

$$= \left| \sum_{a} Q(s, a) \left(\pi^{*}(a|s) - \pi_{\beta}(a|s) \right) \right|$$

$$\leq \sum_{a} |Q(s, a)| \left| \pi^{*}(a|s) - \pi_{\beta}(a|s) \right|$$

$$\leq \frac{R_{max}}{1 - \gamma} \sum_{a} |\pi^{*}(a|s) - \pi_{\beta}(a|s)$$

$$(14)$$

where π^* is the optimal (deterministic) policy w.r.t. Q and π_{β} is the Boltzmann distribution induced by Q with inverse temperature β :

$$\pi_{\beta}(a|s) = \frac{e^{\beta Q(s,a)}}{\sum_{a'} e^{\beta Q(s,a')}}$$

Denote by $a_1(s)$ the optimal action for state s under Q. We can then write:

$$\sum_{a} |\pi^{*}(a|s) - \pi_{\beta}(a|s)| = |\pi^{*}(a_{1}(s)|s) - \pi_{\beta}(a_{1}(s)|s)| + \sum_{a \neq a_{1}(s)} |\pi^{*}(a|s) - \pi_{\beta}(a|s)|$$

$$= |1 - \pi_{\beta}(a_{1}(s)|s)| + \sum_{a \neq a_{1}(s)} |\pi_{\beta}(a|s)|$$

$$= 2|1 - \pi_{\beta}(a_{1}(s)|s)| \tag{15}$$

Finally, let us bound this last term:

$$|1 - \pi_{\beta}(a_{1}(s)|s)| = \left|1 - \frac{e^{\beta Q(s,a_{1}(s))}}{\sum_{a'} e^{\beta Q(s,a')}}\right|$$

$$= \left|1 - \frac{e^{\beta(Q(s,a_{1}(s)) - Q(s,a_{2}(s)))}}{\sum_{a'} e^{\beta(Q(s,a') - Q(s,a_{2}(s)))}}\right|$$

$$= \left|1 - \frac{e^{\beta g(s)}}{\sum_{a'} e^{\beta(Q(s,a') - Q(s,a_{2}(s)))}}\right|$$

$$= \left|1 - \frac{e^{\beta g(s)}}{e^{\beta g(s)} + \sum_{a' \neq a_{1}(s)} e^{\beta(Q(s,a') - Q(s,a_{2}(s)))}}\right|$$

$$\leq \left|1 - \frac{e^{\beta g(s)}}{e^{\beta g(s)} + |\mathcal{A}|}\right|$$

$$= \left|1 - \frac{1}{1 + |\mathcal{A}| e^{-\beta g(s)}}\right|$$
(16)

Combining Eq. (19), (20), and (21), we obtain:

$$\left| \max_{a} Q(s, a) - \min_{a} Q(s, a) \right| \le \frac{2R_{max}}{1 - \gamma} \left| 1 - \frac{1}{1 + |\mathcal{A}| e^{-\beta g(s)}} \right|$$

Taking the norm and plugging this into Eq. (17) concludes the proof. 344

Theorem 3. Let Q^* be the fixed-point of the optimal Bellman operator T. Define the action-gap 345 function g(s) as the difference between the value of the best action and the second best action at 346 each state s. Let \widetilde{Q} be the fixed-point of the mellow Bellman operator \widetilde{T} with parameter $\kappa > 0$ and 347 denote by $\beta_{\kappa} > 0$ the inverse temperature of the induced Boltzmann distribution (as in []). Let ν be a

probability measure over the state-action space. Then, for any p > 1:

$$\left\| Q^* - \widetilde{Q} \right\|_{\nu,p}^p \le \frac{2\gamma R_{max}}{(1-\gamma)^2} \left\| \frac{1}{1 + \frac{1}{|\mathcal{A}|} e^{\beta_{\kappa} g}} \right\|_{\nu,p}^p$$
 (12)

Proof. We begin by noticing that:

$$\begin{split} \left\| Q^* - \widetilde{Q} \right\|_{\nu,p}^p &= \left\| TQ^* - \widetilde{T} \widetilde{Q} \right\|_{\nu,p}^p \\ &= \left\| TQ^* - \widetilde{T}Q^* + \widetilde{T}Q^* - \widetilde{T} \widetilde{Q} \right\|_{\nu,p}^p \\ &\leq \left\| TQ^* - \widetilde{T}Q^* \right\|_{\nu,p}^p + \left\| \widetilde{T}Q^* - \widetilde{T} \widetilde{Q} \right\|_{\nu,p}^p \\ &\leq \left\| TQ^* - \widetilde{T}Q^* \right\|_{\nu,p}^p + \gamma \left\| Q^* - \widetilde{Q} \right\|_{\nu,p}^p \end{split}$$

where the first inequality follows from Minkowsky's inequality and the second one from the contraction property of the mellow Bellman operator. This implies that: 352

$$\|Q^* - \widetilde{Q}\|_{\nu,p}^p \le \frac{1}{1-\gamma} \|TQ^* - \widetilde{T}Q^*\|_{\nu,p}^p$$
 (17)

Let us bound the norm on the right-hand side separately. In order to do that, we will bound the function $\left|TQ^*(s,a) - \widetilde{T}Q^*(s,a)\right|$ point-wisely for any state s,a. By applying the definition of the optimal and mellow Bellman operators, we obtain:

$$\left| TQ^*(s,a) - \widetilde{T}Q^*(s,a) \right| = \left| R(s,a) + \gamma \mathbb{E} \left[\max_{a'} Q^*(s',a') \right] - R(s,a) - \gamma \mathbb{E} \left[\min_{a'} Q^*(s',a') \right] \right|
= \gamma \left| \mathbb{E} \left[\max_{a'} Q^*(s',a') \right] - \mathbb{E} \left[\min_{a'} Q^*(s',a') \right] \right|
\leq \gamma \mathbb{E} \left[\left| \max_{a'} Q^*(s',a') - \min_{a'} Q^*(s',a') \right| \right]$$
(18)

Thus, bounding this quantity reduces to bounding $|\max_a Q^*(s,a) - \min_a Q^*(s,a)|$ point-wisely

for any s. Recall that applying the mellow-max is equivalent to computing an expectation under a

Boltzmann distribution with inverse temperature β_{κ} induced by κ []. Thus, we can write:

Cite MM

$$\left| \max_{a} Q^{*}(s, a) - \min_{a} Q^{*}(s, a) \right| = \left| \sum_{a} \pi^{*}(a|s)Q^{*}(s, a) - \sum_{a} \pi_{\beta_{\kappa}}(a|s)Q^{*}(s, a) \right|$$

$$= \left| \sum_{a} Q^{*}(s, a) \left(\pi^{*}(a|s) - \pi_{\beta_{\kappa}}(a|s) \right) \right|$$

$$\leq \sum_{a} |Q^{*}(s, a)| |\pi^{*}(a|s) - \pi_{\beta_{\kappa}}(a|s)|$$

$$\leq \frac{R_{max}}{1 - \gamma} \sum_{a} |\pi^{*}(a|s) - \pi_{\beta_{\kappa}}(a|s)|$$
(19)

where π^* is the optimal (deterministic) policy w.r.t. Q^* and $\pi_{\beta_{\kappa}}$ is the Boltzmann distribution induced by Q^* with inverse temperature β_{κ} :

$$\pi_{\beta}(a|s) = \frac{e^{\beta_{\kappa} Q^*(s,a)}}{\sum_{a'} e^{\beta_{\kappa} Q^*(s,a')}}$$

Denote by $a_1(s)$ the optimal action for state s under Q^* . We can then write:

$$\sum_{a} |\pi^{*}(a|s) - \pi_{\beta_{\kappa}}(a|s)| = |\pi^{*}(a_{1}(s)|s) - \pi_{\beta_{\kappa}}(a_{1}(s)|s)| + \sum_{a \neq a_{1}(s)} |\pi^{*}(a|s) - \pi_{\beta_{\kappa}}(a|s)|$$

$$= |1 - \pi_{\beta_{\kappa}}(a_{1}(s)|s)| + \sum_{a \neq a_{1}(s)} |\pi_{\beta_{\kappa}}(a|s)|$$

$$= 2|1 - \pi_{\beta_{\kappa}}(a_{1}(s)|s)| \tag{20}$$

Finally, let us bound this last term:

$$|1 - \pi_{\beta_{\kappa}}(a_{1}(s)|s)| = \left|1 - \frac{e^{\beta_{\kappa}Q^{*}(s,a_{1}(s))}}{\sum_{a'}e^{\beta_{\kappa}Q^{*}(s,a')}}\right|$$

$$= \left|1 - \frac{e^{\beta_{\kappa}(Q^{*}(s,a_{1}(s)) - Q^{*}(s,a_{2}(s)))}}{\sum_{a'}e^{\beta_{\kappa}(Q^{*}(s,a') - Q^{*}(s,a_{2}(s)))}}\right|$$

$$= \left|1 - \frac{e^{\beta_{\kappa}g(s)}}{\sum_{a'}e^{\beta_{\kappa}(Q^{*}(s,a') - Q^{*}(s,a_{2}(s)))}}\right|$$

$$= \left|1 - \frac{e^{\beta_{\kappa}g(s)}}{e^{\beta_{\kappa}g(s)} + \sum_{a' \neq a_{1}(s)}e^{\beta_{\kappa}(Q^{*}(s,a') - Q^{*}(s,a_{2}(s)))}}\right|$$

$$\leq \left|1 - \frac{e^{\beta_{\kappa}g(s)}}{e^{\beta_{\kappa}g(s)} + |\mathcal{A}|}\right|$$

$$= \left|\frac{1}{1 + \frac{1}{|\mathcal{A}|}e^{\beta_{\kappa}g(s)}}\right|$$
(21)

363 Combining Eq. (19), (20), and (21), we obtain:

$$\left| \max_{a} Q(s, a) - \min_{a} Q(s, a) \right| \le \frac{2R_{max}}{1 - \gamma} \left| \frac{1}{1 + \frac{1}{|\mathcal{A}|} e^{\beta_{\kappa} g(s)}} \right|$$

Finally, using Eq. (18) we get:

$$\left| TQ^*(s,a) - \widetilde{T}Q^*(s,a) \right| \le \frac{2\gamma R_{max}}{1-\gamma} \left| \frac{1}{1 + \frac{1}{|\mathcal{A}|} e^{\beta_{\kappa} g(s)}} \right|$$

Taking the norm and plugging this into Eq. (17) concludes the proof.

Lemma 1. Let p and ν denote probability measures over Q-functions and state-action pairs, respectively. Assume Q^* is the unique fixed-point of the optimal Bellman operator T. Then, for any $\delta > 0$, with probability at least $1 - \delta$ over the choice of a Q-function Q, the following holds:

$$\|Q - Q^*\|_{\nu}^2 \le \frac{\mathbb{E}_p\left[\|B(Q)\|_{\nu}^2\right]}{(1 - \gamma)\delta}$$
 (22)

369 *Proof.* First notice that:

$$\begin{aligned} \|Q - Q^*\| &= \|Q + TQ - TQ - TQ^*\| \\ &\leq \|Q - TQ\| + \|TQ - TQ^*\| \\ &\leq \|Q - TQ\| + \gamma \|Q - Q^*\| \\ &= \|B(Q)\| + \gamma \|Q - Q^*\| \end{aligned}$$

which implies that:

$$||Q - Q^*|| \le \frac{1}{1 - \gamma} ||B(Q)||$$

Then we can write:

$$P(\|Q - Q^*\| > \epsilon) \le P(\|B(Q)\| > \epsilon(1 - \gamma)) \le \frac{\mathbb{E}_p\left[\|B(Q)\|_{\nu}^2\right]}{(1 - \gamma)\epsilon}$$

Settings the right-hand side equal to δ and solving for ϵ concludes the proof.

Corollary 1. Let p and ν denote probability measures over Q-functions and state-action pairs, respectively. Assume \widetilde{Q} is the unique fixed-point of the mellow Bellman operator \widetilde{T} . Then, for any $\delta > 0$, with probability at least $1 - \delta$ over the choice of a Q-function Q, the following holds:

$$\left\| Q - \widetilde{Q} \right\|_{\nu}^{2} \leq \frac{\mathbb{E}_{p} \left[\left\| \widetilde{B}(Q) \right\|_{\nu}^{2} \right]}{(1 - \gamma)\delta} \tag{23}$$

Lemma 2. Assume Q-functions belong to a parametric space of functions bounded by $\frac{R_{max}}{1-\gamma}$. Let p and q be arbitrary distributions over the parameter space W, and ν be a probability measure over $S \times A$. Consider a dataset D of N samples and define $v(w) \triangleq \mathbb{E}_{\nu} [Var_{\mathcal{P}}[b(w)]]$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following two inequalities hold simultaneously:

$$\mathbb{E}_{q}\left[\|B(\boldsymbol{w})\|_{\nu}^{2}\right] \leq \mathbb{E}_{q}\left[\|B(\boldsymbol{w})\|_{D}^{2}\right] - \mathbb{E}_{q}\left[v(\boldsymbol{w})\right] + \frac{\lambda}{N}KL(q||p) + 4\frac{R_{max}^{2}}{(1-\gamma)^{2}}\sqrt{\frac{\log\frac{2}{\delta}}{2N}}$$
(24)

$$\mathbb{E}_{q}\left[\left\|B(\boldsymbol{w})\right\|_{D}^{2}\right] \leq \mathbb{E}_{q}\left[\left\|B(\boldsymbol{w})\right\|_{\nu}^{2}\right] + \mathbb{E}_{q}\left[v(\boldsymbol{w})\right] + \frac{\lambda}{N}KL(q||p) + 4\frac{R_{max}^{2}}{(1-\gamma)^{2}}\sqrt{\frac{\log\frac{2}{\delta}}{2N}}$$
(25)

³⁸¹ *Proof.* From Hoeffding's inequality we have:

$$P\left(\left|\mathbb{E}_{\nu,\mathcal{P}}\left[\left\|B(\boldsymbol{w})\right\|_{D}^{2}\right]-\left\|B(\boldsymbol{w})\right\|_{D}^{2}\right|>\epsilon\right)\leq 2exp\left(-\frac{2N\epsilon^{2}}{\left(2\frac{R_{max}}{1-\gamma}\right)^{4}}\right)$$

which implies that, for any $\delta > 0$, with probability at least $1 - \delta$:

$$\left| \mathbb{E}_{\nu,\mathcal{P}} \left[\left\| B(\boldsymbol{w}) \right\|_D^2 \right] - \left\| B(\boldsymbol{w}) \right\|_D^2 \right| \le 4 \frac{R_{max}^2}{(1 - \gamma)^2} \sqrt{\frac{\log \frac{2}{\delta}}{2N}}$$

Under independence assumptions, the expected TD error can be re-written as:

$$\mathbb{E}_{\nu,\mathcal{P}}\left[\|B(\boldsymbol{w})\|_{D}^{2}\right] = \mathbb{E}_{\nu,\mathcal{P}}\left[\frac{1}{N}\sum_{i=1}^{N}(r_{i} + \gamma \min_{a'}Q_{\boldsymbol{w}}(s'_{i}, a') - Q_{\boldsymbol{w}}(s_{i}, a_{i}))^{2}\right]$$

$$= \mathbb{E}_{\nu,\mathcal{P}}\left[(R(s, a) + \gamma \min_{a'}Q_{\boldsymbol{w}}(s', a') - Q_{\boldsymbol{w}}(s, a))^{2}\right]$$

$$= \mathbb{E}_{\nu}\left[\mathbb{E}_{\mathcal{P}}\left[b(\boldsymbol{w})^{2}\right]\right]$$

$$= \mathbb{E}_{\nu}\left[Var_{\mathcal{P}}\left[b(\boldsymbol{w})\right] + \mathbb{E}_{\mathcal{P}}\left[b(\boldsymbol{w})\right]^{2}\right]$$

$$= v(\boldsymbol{w}) + \|B(\boldsymbol{w})\|_{\nu}^{2}$$

where $v(\boldsymbol{w}) \triangleq \mathbb{E}_{\nu} \left[Var_{\mathcal{P}} \left[b(\boldsymbol{w}) \right] \right]$. Thus:

$$\left| \|B(\boldsymbol{w})\|_{\nu}^{2} + v(\boldsymbol{w}) - \|B(\boldsymbol{w})\|_{D}^{2} \right| \leq 4 \frac{R_{max}^{2}}{(1 - \gamma)^{2}} \sqrt{\frac{\log \frac{2}{\delta}}{2N}}$$
 (26)

From the change of measure inequality [], we have that, for any measurable function f(w) and any two probability measures p and q:

erence for this

$$\log \mathbb{E}_p \left[e^{f(\boldsymbol{w})} \right] \ge \mathbb{E}_q \left[f(\boldsymbol{w}) \right] - KL(q||p)$$

Thus, multiplying both sides of (26) by $\lambda^{-1}N$ and applying the change of measure inequality with

388
$$f(\boldsymbol{w}) = \lambda^{-1} N \left| \|B(\boldsymbol{w})\|_{\nu}^2 + v(\boldsymbol{w}) - \|B(\boldsymbol{w})\|_D^2 \right|$$
, we obtain:

$$\mathbb{E}_{q}\left[f(\boldsymbol{w})\right] - KL(q||p) \le \log \mathbb{E}_{p}\left[e^{f(\boldsymbol{w})}\right] \le 4\frac{R_{max}^{2}\lambda^{-1}N}{(1-\gamma)^{2}}\sqrt{\frac{\log \frac{2}{\delta}}{2N}}$$

where the second inequality holds since the right-hand side of (26) does not depend on w. Finally, we can explicitly write:

$$\mathbb{E}_{q}\left[\left|\left\|B(\boldsymbol{w})\right\|_{\nu}^{2}+v(\boldsymbol{w})-\left\|B(\boldsymbol{w})\right\|_{D}^{2}\right|\right]\leq\frac{\lambda}{N}KL(q||p)+4\frac{R_{max}^{2}}{(1-\gamma)^{2}}\sqrt{\frac{\log\frac{2}{\delta}}{2N}}$$

391 from which the lemma follows straightforwardly.

Lemma 3. Let p be a prior distribution over the parameter space \mathcal{W} , and ν be a probability measure over $\mathcal{S} \times \mathcal{A}$. Assume $\hat{\xi}$ is the minimizer of $ELBO(\xi) = \mathbb{E}_{q_{\xi}} \left[\|B(\boldsymbol{w})\|_{D}^{2} \right] + \frac{\lambda}{N} KL(q_{\xi}||p)$ for a

394 dataset D of N samples. Define $v(w) \triangleq \mathbb{E}_{\nu} [Var_{\mathcal{P}}[b(w)]]$. Then, for any $\delta > 0$, with probability at

395 *least* $1 - \delta$.

$$\mathbb{E}_{q_{\xi}}\left[\left\|B(\boldsymbol{w})\right\|_{\nu}^{2}\right] \leq \inf_{\xi \in \Xi} \left\{\mathbb{E}_{q_{\xi}}\left[\left\|B(\boldsymbol{w})\right\|_{\nu}^{2}\right] + \mathbb{E}_{q_{\xi}}\left[v(\boldsymbol{w})\right] + 2\frac{\lambda}{N}KL(q_{\xi}||p)\right\} + 2\frac{R_{max}^{2}}{(1-\gamma)^{2}}\sqrt{\frac{\log\frac{2}{\delta}}{N}}$$

Proof. Let us use Lemma 2 for the specific choice $q=q_{\widehat{\xi}}$. From Eq. (24), we have:

$$\begin{split} \mathbb{E}_{q_{\widehat{\xi}}}\left[\left\|B(\boldsymbol{w})\right\|_{\nu}^{2}\right] &\leq \mathbb{E}_{q_{\widehat{\xi}}}\left[\left\|B(\boldsymbol{w})\right\|_{D}^{2}\right] - \mathbb{E}_{q_{\widehat{\xi}}}\left[v(\boldsymbol{w})\right] + \frac{\lambda}{N}KL(q_{\widehat{\xi}}||p) + 4\frac{R_{max}^{2}}{(1-\gamma)^{2}}\sqrt{\frac{\log\frac{2}{\delta}}{2N}} \\ &\leq \mathbb{E}_{q_{\widehat{\xi}}}\left[\left\|B(\boldsymbol{w})\right\|_{D}^{2}\right] + \frac{\lambda}{N}KL(q_{\widehat{\xi}}||p) + 4\frac{R_{max}^{2}}{(1-\gamma)^{2}}\sqrt{\frac{\log\frac{2}{\delta}}{2N}} \\ &= \inf_{\xi \in \Xi}\left\{\mathbb{E}_{q_{\xi}}\left[\left\|B(\boldsymbol{w})\right\|_{D}^{2}\right] + \frac{\lambda}{N}KL(q_{\xi}||p)\right\} + 4\frac{R_{max}^{2}}{(1-\gamma)^{2}}\sqrt{\frac{\log\frac{2}{\delta}}{2N}} \end{split}$$

where the second inequality holds since $v(\boldsymbol{w}) > 0$, while the equality holds from the definition of $\widehat{\xi}$.

We can now use Eq. (25) to bound $\mathbb{E}_{q_{\xi}} \left[\|B(\boldsymbol{w})\|_{D}^{2} \right]$, thus obtaining:

$$\mathbb{E}_{q_{\widehat{\xi}}}\left[\left\|B(\boldsymbol{w})\right\|_{\nu}^{2}\right] \leq \inf_{\xi \in \Xi} \left\{\mathbb{E}_{q_{\xi}}\left[\left\|B(\boldsymbol{w})\right\|_{\nu}^{2}\right] + \mathbb{E}_{q_{\xi}}\left[v(\boldsymbol{w})\right] + 2\frac{\lambda}{N}KL(q_{\xi}||p)\right\} + 2\frac{R_{max}^{2}}{(1-\gamma)^{2}}\sqrt{\frac{\log\frac{2}{\delta}}{N}}$$

399 This concludes the proof.

400 B Additional Details on the Experiments

- 401 B.1 The Rooms Problem
- 402 B.2 Classic Control
- 403 B.3 Maze Navigation

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420 421

422

423

424

426

- 404 Transfer approaches to mention:
 - Taylor 2009: survey
 - Konidaris and Barto transfer shaped reward functions PROs: this allows the agent to have a more goal-directed behavior, thus limiting unnecessary random exploration CONs: applicable only to simple problems, does not scale
 - Wilson 2007 propose a hierarchical Bayesian model for the distribution over tasks PROs it explicitly models the uncertainty over which tasks are being solved, thus quickly adapting to new ones and allowing informed exploration decisions to be taken
 - Lazaric 2008 transfer samples PROs select good samples, can scale to continuous domains CONs eps greedy is used
 - Taylor 2008 transfer samples for model-based RL PROs good exploration via model-based RL CONs does not scale, can negatively transfer when tasks are very different
 - Lazaric 2010 propose a hierarchical bayesian model for the distribution over value functions PROs quickly adapts to new tasks, non-parameteric (GP) models CONs scaling, strong assumptions (GPTD)
 - Fernandez and veloso 2006 propose an exploration strategy based on probabilistic policy reuse PROs good exploration (?) CONs Do not try to figure out which policies are good or bad
 - Brunskill propose a method to transfer in model based RL (E3) PROs theory, exploration CONs scaling
 - Barreto use successor features PROs simple, theory CONs eps-greedy exploration
- Exploration approaches to mention:
 - Osband 2014 propose a method to efficiently explore via randomized value functions
- Osband 2016 adapt such algorithm to DQNs

- Houthooft 2016 use variational inference to approximate the posterior distribution over parameters of the dynamics, and use that to drive exploration
- Azizzadenesheli 2018 extend Osband 2016 to use Bayesian DQN instead. Still makes Gaussian assumptions though