HMM Algorithms

Peter Bell

Automatic Speech Recognition— ASR Lecture 3 20 January 2020

Overview

HMM algorithms

- HMM recap
- HMM algorithms
 - Likelihood computation (forward algorithm)
 - Finding the most probable state sequence (Viterbi algorithm)
 - Estimating the parameters (forward-backward and EM algorithms)

Overview

HMM algorithms

- HMM recap
- HMM algorithms
 - Likelihood computation (forward algorithm)
 - Finding the most probable state sequence (Viterbi algorithm)
 - Estimating the parameters (forward-backward and EM algorithms)

Warning: the maths continues!

Recap: the HMM

- A generative model for the sequence $X = (x_1, \dots, x_T)$
- Discrete states q_t are unobserved
- ullet q_{t+1} is conditionally independent of q_1,\ldots,q_{t-1} , given q_t
- Observations x_t are conditionally independent of each other, given q_t .

HMMs for ASR

The three-state left-to-right topology for phones:

Computing likelihoods with the HMM

Joint likelihood of X and $Q = (q_1, \ldots, q_T)$:

$$P(X,Q|\lambda) = P(q_1)P(\mathbf{x}_1|q_1)P(q_2|q_1)P(\mathbf{x}_2|q_2)...$$
(1)

$$= P(q_1)P(\mathbf{x}_1|q_1) \prod_{t=2}^{\prime} P(q_t|q_{t-1})P(\mathbf{x}_t|q_t)$$
 (2)

 $P(q_t)$ denotes the initial occupancy probability of each state

HMM parameters

The parameters of the model, λ , are given by:

- Transition probabilities $a_{kj} = P(q_{t+1} = j | q_t = k)$
- Observation probabilities $b_j(\mathbf{x}) = P(\mathbf{x}|q=j)$

The three problems of HMMs

Working with HMMs requires the solution of three problems:

- **1 Likelihood** Determine the overall likelihood of an observation sequence $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_t, \dots, \mathbf{x}_T)$ being generated by a known HMM topology, \mathcal{M} .
 - \rightarrow the forward algorithm

The three problems of HMMs

Working with HMMs requires the solution of three problems:

- **1 Likelihood** Determine the overall likelihood of an observation sequence $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_t, \dots, \mathbf{x}_T)$ being generated by a known HMM topology, \mathcal{M} .
 - \rightarrow the forward algorithm
- ② Decoding and alignment Given an observation sequence and an HMM, determine the most probable hidden state sequence → the Viterbi algorithm

The three problems of HMMs

Working with HMMs requires the solution of three problems:

- **1 Likelihood** Determine the overall likelihood of an observation sequence $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_t, \dots, \mathbf{x}_T)$ being generated by a known HMM topology, \mathcal{M} .
 - \rightarrow the forward algorithm
- ② Decoding and alignment Given an observation sequence and an HMM, determine the most probable hidden state sequence → the Viterbi algorithm
- **Training** Given an observation sequence and an HMM, learn the state occupation probabilities, in order to find the best HMM parameters $\lambda = \{\{a_{jk}\}, \{b_j()\}\}$
 - \rightarrow the *forward-backward* and *EM* algorithms

Notes on the HMM topology

By the HMM topology, \mathcal{M} , we can mean:

- A restricted left-to-right topology based on a known word/sentence, leading to a "trellis-like" structure over time
- A much less restricted topology based on a grammar or language model – or something in between
- The forward/backward algorithms are not (generally) suitable for unrestricted topologies

Example: trellis for /k ae t/

• Goal: determine $p(\mathbf{X} | \mathcal{M})$

- Goal: determine $p(\mathbf{X} | \mathcal{M})$
- Sum over all possible state sequences $Q=(q_1,\ldots,q_T)$ that could result in the observation sequence ${\pmb X}$

$$\begin{split} p(\mathbf{X}|\mathcal{M}) &= \sum_{Q \in \mathcal{Q}} P(\mathbf{X}, Q|\mathcal{M}) \\ &= P(q_1) P(\mathbf{x}_1|q_1) \prod_{t=2}^T P(q_t|q_{t-1}) P(\mathbf{x}_t|q_t) \end{split}$$

- Goal: determine $p(\mathbf{X} | \mathcal{M})$
- Sum over all possible state sequences $Q=(q_1,\ldots,q_T)$ that could result in the observation sequence ${\pmb X}$

$$egin{aligned}
ho(\mathbf{X}|\mathcal{M}) &= \sum_{Q \in \mathcal{Q}} P(\mathbf{X}, Q|\mathcal{M}) \ &= P(q_1)P(\mathbf{x}_1|q_1)\prod_{t=2}^T P(q_t|q_{t-1})P(\mathbf{x}_t|q_t) \end{aligned}$$

• How many paths Q do we have to calculate?

$$\sim \underbrace{N \times N \times \cdots N}_{\text{T times}} = N^T \qquad N: \text{ number of HMM states}$$

$$T: \text{ length of observation}$$

e.g.
$$N^T \approx 10^{10}$$
 for $N = 3$, $T = 20$

- Goal: determine $p(\mathbf{X} | \mathcal{M})$
- Sum over all possible state sequences $Q=(q_1,\ldots,q_T)$ that could result in the observation sequence \boldsymbol{X}

$$egin{aligned}
ho(\mathbf{X}|\mathcal{M}) &= \sum_{Q \in \mathcal{Q}} P(\mathbf{X}, Q|\mathcal{M}) \ &= P(q_1)P(\mathbf{x}_1|q_1)\prod_{t=2}^T P(q_t|q_{t-1})P(\mathbf{x}_t|q_t) \end{aligned}$$

• How many paths Q do we have to calculate?

$$\sim \underbrace{N \times N \times \cdots N}_{\text{T times}} = N^{\text{T}} \qquad N: \text{ number of HMM states}$$

$$T: \text{ length of observation}$$

e.g. $N^T \approx 10^{10} \text{ for } N \!=\! 3, \ T \!=\! 20$

• Computation complexity of multiplication: $O(2TN^T)$

Likelihood: The Forward algorithm

The **Forward algorithm**:

 Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)

Likelihood: The Forward algorithm

The **Forward algorithm**:

- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)
- Reduces the computational complexity to $O(TN^2)$

Likelihood: The Forward algorithm

The **Forward algorithm**:

- Rather than enumerating each sequence, compute the probabilities recursively (exploiting the Markov assumption)
- Reduces the computational complexity to $O(TN^2)$
- Visualise the problem as a state-time trellis

The forward probability

Define the *Forward probability*, $\alpha_t(j)$: the probability of observing the observation sequence $\mathbf{x}_1 \dots \mathbf{x}_t$ and being in state j at time t:

$$\alpha_j(t) = p(\mathbf{x}_1, \dots, \mathbf{x}_t, q_t = j | \mathcal{M})$$

We can recursively compute this probability

Initial and final state probabilities

It what follows it is convenient to define:

• an additional single initial state $S_I = 0$, with transition probabilities

$$a_{0j}=P(q_1=j)$$

denoting the probability of starting in state j

- a single final state, S_E , with transition probabilities a_{jE} denoting the probability of the model terminating in state j.
- S_I and S_E are both non-emitting

1. Likelihood: The Forward recursion

Initialisation

$$\alpha_j(0) = 1 \qquad j = 0$$
 $\alpha_j(0) = 0 \qquad j \neq 0$

Recursion

$$\alpha_j(t) = \sum_{i=1}^J \alpha_i(t-1)a_{ij}b_j(\mathbf{x}_t) \qquad 1 \leq j \leq J, \ 1 \leq t \leq T$$

Termination

$$p(\mathbf{X} | \mathcal{M}) = \alpha_E = \sum_{i=1}^{J} \alpha_i(T) a_{iE}$$

 s_I : initial state, s_E : final state

1. Likelihood: Forward Recursion

$$\alpha_j(t) = p(\mathbf{x}_1, \dots, \mathbf{x}_t, q_t = j | \mathcal{M}) = \sum_{i=1}^J \alpha_i(t-1)a_{ij}b_j(\mathbf{x}_t)$$

 Instead of summing over all possible state sequences, just consider just the most probable path:

$$P^*(X|\mathcal{M}) = \max_{Q \in \mathcal{Q}} P(X, Q|\mathcal{M})$$

 Instead of summing over all possible state sequences, just consider just the most probable path:

$$P^*(X|\mathcal{M}) = \max_{Q \in \mathcal{Q}} P(X, Q|\mathcal{M})$$

 Achieve this by changing the summation to a maximisation in the forward algorithm recursion:

$$V_j(t) = \max_i V_i(t-1)a_{ij}b_j(\mathbf{x}_t)$$

 Instead of summing over all possible state sequences, just consider just the most probable path:

$$P^*(X|\mathcal{M}) = \max_{Q \in \mathcal{Q}} P(X, Q|\mathcal{M})$$

 Achieve this by changing the summation to a maximisation in the forward algorithm recursion:

$$V_j(t) = \max_i V_i(t-1)a_{ij}b_j(\mathbf{x}_t)$$

• If we are performing decoding or forced alignment, then only the most likely path is needed

 Instead of summing over all possible state sequences, just consider just the most probable path:

$$P^*(X|\mathcal{M}) = \max_{Q \in \mathcal{Q}} P(X, Q|\mathcal{M})$$

 Achieve this by changing the summation to a maximisation in the forward algorithm recursion:

$$V_j(t) = \max_i V_i(t-1)a_{ij}b_j(\mathbf{x}_t)$$

- If we are performing decoding or forced alignment, then only the most likely path is needed
- In training, it can be used as an approximation

 Instead of summing over all possible state sequences, just consider just the most probable path:

$$P^*(X|\mathcal{M}) = \max_{Q \in \mathcal{Q}} P(X, Q|\mathcal{M})$$

 Achieve this by changing the summation to a maximisation in the forward algorithm recursion:

$$V_j(t) = \max_i V_i(t-1)a_{ij}b_j(\mathbf{x}_t)$$

- If we are performing decoding or forced alignment, then only the most likely path is needed
- In training, it can be used as an approximation
- We need to keep track of the states that make up this path by keeping a sequence of backpointers to enable a Viterbi backtrace: the backpointer for each state at each time indicates the previous state on the most probable path

Viterbi Recursion

$$V_j(t) = \max_i V_i(t-1)a_{ij}b_j(\mathbf{x}_t)$$

Likelihood of the most probable path

Viterbi Recursion

Backpointers to the previous state on the most probable path

2. Decoding: The Viterbi algorithm

Initialisation

$$V_0(0) = 1$$

 $V_j(0) = 0$ if $j \neq 0$
 $B_j(0) = 0$

2. Decoding: The Viterbi algorithm

Initialisation

$$V_0(0) = 1$$

 $V_j(0) = 0$ if $j \neq 0$
 $B_j(0) = 0$

Recursion

$$egin{aligned} V_j(t) &= \max_{i=1}^J V_i(t-1) a_{ij} b_j(\mathbf{x}_t) \ B_j(t) &= rg \max_{i=1}^J V_i(t-1) a_{ij} b_j(\mathbf{x}_t) \end{aligned}$$

2. Decoding: The Viterbi algorithm

Initialisation

$$V_0(0) = 1$$

 $V_j(0) = 0$ if $j \neq 0$
 $B_j(0) = 0$

Recursion

$$egin{aligned} V_j(t) &= \max_{i=1}^J V_i(t-1) a_{ij} b_j(\mathbf{x}_t) \ B_j(t) &= rg \max_{i=1}^J V_i(t-1) a_{ij} b_j(\mathbf{x}_t) \end{aligned}$$

Termination

$$P^* = V_E = \max_{i=1}^J V_T(i) a_{iE}$$

 $s_T^* = B_E = \arg\max_{i=1}^J V_i(T) a_{iE}$

Viterbi Backtrace

Backtrace to find the state sequence of the most probable path

3. Training: Forward-Backward algorithm

 \bullet Goal: Efficiently estimate the parameters of an HMM ${\cal M}$ from an observation sequence

3. Training: Forward-Backward algorithm

- ullet Goal: Efficiently estimate the parameters of an HMM ${\cal M}$ from an observation sequence
- Assume single Gaussian output probability distribution

$$b_j(\mathbf{x}) = p(\mathbf{x} | j) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

3. Training: Forward-Backward algorithm

- \bullet Goal: Efficiently estimate the parameters of an HMM ${\cal M}$ from an observation sequence
- Assume single Gaussian output probability distribution

$$b_j(\mathbf{x}) =
ho(\mathbf{x} | j) = \mathcal{N}(\mathbf{x}; oldsymbol{\mu}_j, oldsymbol{\Sigma}_j)$$

- Parameters \mathcal{M} :
 - Transition probabilities a_{ij} :

$$\sum_{j} a_{ij} = 1$$

• Gaussian parameters for state j: mean vector μ_j ; covariance matrix Σ_j

• If we knew the state-time alignment, then each observation feature vector could be assigned to a specific state

- If we knew the state-time alignment, then each observation feature vector could be assigned to a specific state
- A state-time alignment can be obtained using the most probable path obtained by Viterbi decoding

- If we knew the state-time alignment, then each observation feature vector could be assigned to a specific state
- A state-time alignment can be obtained using the most probable path obtained by Viterbi decoding
- Maximum likelihood estimate of a_{ij} , if $C(i \rightarrow j)$ is the count of transitions from i to j

$$\hat{a}_{ij} = \frac{C(i \to j)}{\sum_{k} C(i \to k)}$$

- If we knew the state-time alignment, then each observation feature vector could be assigned to a specific state
- A state-time alignment can be obtained using the most probable path obtained by Viterbi decoding
- Maximum likelihood estimate of a_{ij} , if $C(i \rightarrow j)$ is the count of transitions from i to j

$$\hat{a}_{ij} = \frac{C(i \to j)}{\sum_{k} C(i \to k)}$$

 Likewise if Z_j is the set of observed acoustic feature vectors assigned to state j, we can use the standard maximum likelihood estimates for the mean and the covariance:

$$\hat{\boldsymbol{\mu}}_{j} = \frac{\sum_{\boldsymbol{x} \in Z_{j}} \boldsymbol{x}}{|Z_{j}|}$$

$$\hat{\boldsymbol{\Sigma}}_{j} = \frac{\sum_{\boldsymbol{x} \in Z_{j}} (\boldsymbol{x} - \hat{\boldsymbol{\mu}}_{j}) (\boldsymbol{x} - \hat{\boldsymbol{\mu}}_{j})^{T}}{|Z_{j}|}$$

• Viterbi training is an approximation—we would like to consider *all* possible paths

- Viterbi training is an approximation—we would like to consider *all* possible paths
- In this case rather than having a hard state-time alignment we estimate a probability

- Viterbi training is an approximation—we would like to consider all possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability $\gamma_j(t)$ of occupying state j at time t given the sequence of observations.
 - Compare with component occupation probability in a GMM

- Viterbi training is an approximation—we would like to consider all possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability $\gamma_j(t)$ of occupying state j at time t given the sequence of observations.
 - Compare with component occupation probability in a GMM
- We can use this for an iterative algorithm for HMM training: the EM algorithm (whose adaption to HMM is called 'Baum-Welch algorithm')

- Viterbi training is an approximation—we would like to consider all possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability $\gamma_j(t)$ of occupying state j at time t given the sequence of observations.
 - Compare with component occupation probability in a GMM
- We can use this for an iterative algorithm for HMM training: the EM algorithm (whose adaption to HMM is called 'Baum-Welch algorithm')
- Each iteration has two steps:

- Viterbi training is an approximation—we would like to consider all possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability $\gamma_j(t)$ of occupying state j at time t given the sequence of observations.
 - Compare with component occupation probability in a GMM
- We can use this for an iterative algorithm for HMM training: the EM algorithm (whose adaption to HMM is called 'Baum-Welch algorithm')
- Each iteration has two steps:
 - E-step estimate the state occupation probabilities (Expectation)

- Viterbi training is an approximation—we would like to consider all possible paths
- In this case rather than having a hard state-time alignment we estimate a probability
- State occupation probability: The probability $\gamma_j(t)$ of occupying state j at time t given the sequence of observations.
 - Compare with component occupation probability in a GMM
- We can use this for an iterative algorithm for HMM training: the EM algorithm (whose adaption to HMM is called 'Baum-Welch algorithm')
- Each iteration has two steps:
 - E-step estimate the state occupation probabilities (Expectation)
 - M-step re-estimate the HMM parameters based on the estimated state occupation probabilities (Maximisation)

 To estimate the state occupation probabilities it is useful to define (recursively) another set of probabilities—the Backward probabilities

$$\beta_j(t) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T | q_t = j, \mathcal{M})$$

The probability of future observations given a the HMM is in state j at time t

 To estimate the state occupation probabilities it is useful to define (recursively) another set of probabilities—the Backward probabilities

$$\beta_j(t) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T | q_t = j, \mathcal{M})$$

The probability of future observations given a the HMM is in state j at time t

• These can be recursively computed (going backwards in time)

 To estimate the state occupation probabilities it is useful to define (recursively) another set of probabilities—the Backward probabilities

$$\beta_j(t) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T | q_t = j, \mathcal{M})$$

The probability of future observations given a the HMM is in state j at time t

- These can be recursively computed (going backwards in time)
 - Initialisation

$$\beta_i(T) = a_{iE}$$

 To estimate the state occupation probabilities it is useful to define (recursively) another set of probabilities—the Backward probabilities

$$\beta_j(t) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T | q_t = j, \mathcal{M})$$

The probability of future observations given a the HMM is in state j at time t

- These can be recursively computed (going backwards in time)
 - Initialisation

$$\beta_i(T) = a_{iE}$$

Recursion

$$eta_i(t) = \sum_{j=1}^J a_{ij} b_j(\mathbf{x}_{t+1}) eta_j(t+1) \quad ext{for } t = T-1, \dots, 1$$

 To estimate the state occupation probabilities it is useful to define (recursively) another set of probabilities—the Backward probabilities

$$\beta_j(t) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T | q_t = j, \mathcal{M})$$

The probability of future observations given a the HMM is in state j at time t

- These can be recursively computed (going backwards in time)
 - Initialisation

$$\beta_i(T) = a_{iE}$$

Recursion

$$eta_i(t) = \sum_{j=1}^J a_{ij} b_j(\mathbf{x}_{t+1}) eta_j(t+1) \quad ext{for } t = T-1, \dots, 1$$

Termination

$$ho(\mathbf{X} \mid \mathcal{M}) = eta_0(0) = \sum_{j=1}^J a_{0j} b_j(\mathbf{x}_1) eta_j(1) = lpha_{\mathcal{E}}$$

Backward Recursion

$$\beta_j(t) = p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_T | q_t = j, \mathcal{M}) = \sum_{j=1}^J a_{ij} b_j(\mathbf{x}_{t+1}) \beta_j(t+1)$$

State Occupation Probability

- The state occupation probability $\gamma_j(t)$ is the probability of occupying state j at time t given the sequence of observations
- Express in terms of the forward and backward probabilities:

$$\gamma_j(t) = P(q_t = j | \mathbf{X}, \mathcal{M}) = \frac{1}{\alpha_E} \alpha_j(t) \beta_j(t)$$

recalling that $p(\mathbf{X} | \mathcal{M}) = \alpha_E$

Since

$$\alpha_{j}(t)\beta_{j}(t) = p(\mathbf{x}_{1}, \dots, \mathbf{x}_{t}, q_{t} = j | \mathcal{M})$$

$$p(\mathbf{x}_{t+1}, \dots, \mathbf{x}_{T} | q_{t} = j, \mathcal{M})$$

$$= p(\mathbf{x}_{1}, \dots, \mathbf{x}_{t}, \mathbf{x}_{t+1}, \dots, \mathbf{x}_{T}, q_{t} = j | \mathcal{M})$$

$$= p(\mathbf{X}, q_{t} = j | \mathcal{M})$$

$$P(q_t = j | \mathbf{X}, \mathcal{M}) = \frac{p(\mathbf{X}, q_t = j | \mathcal{M})}{p(\mathbf{X} | \mathcal{M})}$$

Re-estimation of Gaussian parameters

- The sum of state occupation probabilities through time for a state, may be regarded as a "soft" count
- We can use this "soft" alignment to re-estimate the HMM parameters:

$$\hat{\boldsymbol{\mu}}_{j} = \frac{\sum_{t=1}^{T} \gamma_{j}(t) \boldsymbol{x}_{t}}{\sum_{t=1}^{T} \gamma_{j}(t)}$$

$$\hat{\boldsymbol{\Sigma}}_{j} = \frac{\sum_{t=1}^{T} \gamma_{j}(t) (\boldsymbol{x}_{t} - \hat{\boldsymbol{\mu}}_{j}) (\boldsymbol{x} - \hat{\boldsymbol{\mu}}_{j})^{T}}{\sum_{t=1}^{T} \gamma_{j}(t)}$$

Re-estimation of transition probabilities

• Similarly to the state occupation probability, we can estimate $\xi_{i,j}(t)$, the probability of being in i at time t and j at t+1, given the observations:

$$\begin{aligned} \xi_t(i,j) &= P(q_t = i, q_{t+1} = j | \mathbf{X}, \mathcal{M}) \\ &= \frac{p(q_t = i, q_{t+1} = j, \mathbf{X} | \mathcal{M})}{p(\mathbf{X} | \mathcal{M})} \\ &= \frac{\alpha_i(t) a_{ij} b_j(\mathbf{x}_{t+1}) \beta_j(t+1)}{\alpha_E} \end{aligned}$$

• We can use this to re-estimate the transition probabilities

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T} \xi_{i,j}(t)}{\sum_{k=1}^{J} \sum_{t=1}^{T} \xi_{i,k}(t)}$$

Pulling it all together

 Iterative estimation of HMM parameters using the EM algorithm. At each iteration

E step For all time-state pairs

- Recursively compute the forward probabilities $\alpha_i(t)$ and backward probabilities $\beta_i(t)$
- ② Compute the state occupation probabilities $\gamma_j(t)$ and $\xi_{i,j}(t)$
- M step Based on the estimated state occupation probabilities re-estimate the HMM parameters: mean vectors μ_j , covariance matrices Σ_j and transition probabilities a_{ij}
- The application of the EM algorithm to HMM training is sometimes called the Forward-Backward algorithm or Baum-Welch algorithm

Extension to a corpus of utterances

- We usually train from a large corpus of R utterances
- If \mathbf{x}_t^r is the tth frame of the rth utterance \mathbf{X}^r then we can compute the probabilities $\alpha_j^r(t)$, $\beta_j^r(t)$, $\gamma_j^r(t)$ and $\xi_{i,j}^r(t)$ as before
- The re-estimates are as before, except we must sum over the *R* utterances, eg:

$$\hat{\boldsymbol{\mu}}_j = \frac{\sum_{r=1}^R \sum_{t=1}^T \gamma_j^r(t) \boldsymbol{x}_t^r}{\sum_{r=1}^R \sum_{t=1}^T \gamma_j^r(t)}$$

Extension to a corpus of utterances

- We usually train from a large corpus of R utterances
- If \mathbf{x}_t^r is the tth frame of the rth utterance \mathbf{X}^r then we can compute the probabilities $\alpha_j^r(t)$, $\beta_j^r(t)$, $\gamma_j^r(t)$ and $\xi_{i,j}^r(t)$ as before
- The re-estimates are as before, except we must sum over the *R* utterances, eg:

$$\hat{\boldsymbol{\mu}}_j = \frac{\sum_{r=1}^R \sum_{t=1}^T \gamma_j^r(t) \boldsymbol{x}_t^r}{\sum_{r=1}^R \sum_{t=1}^T \gamma_j^r(t)}$$

• In addition, we usually employ "embedded training", in which fine tuning of phone labelling with "forced Viterbi alignment" or forced alignment is involved. (For details see Section 9.7 in Jurafsky and Martin's SLP)

Extension to Gaussian mixture model (GMM)

- The assumption of a Gaussian distribution at each state is very strong; in practice the acoustic feature vectors associated with a state may be strongly non-Gaussian
- In this case an *M*-component Gaussian mixture model is an appropriate density function:

$$b_j(\mathbf{x}) = p(\mathbf{x} | q = j) = \sum_{m=1}^{M} c_{jm} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm})$$

Given enough components, this family of functions can model any distribution.

 Train using the EM algorithm, in which the component estimation probabilities are estimated in the E-step

EM training of HMM/GMM

• Rather than estimating the state-time alignment, we estimate the component/state-time alignment, and component-state occupation probabilities $\gamma_{im}(t)$: the probability of occupying mixture component m of state i at time t.

 $(\xi_{tm}(j))$ in Jurafsky and Martin's SLP)

• We can thus re-estimate the mean of mixture component m of state i as follows

$$\hat{\boldsymbol{\mu}}_{jm} = \frac{\sum_{t=1}^{T} \gamma_{jm}(t) \boldsymbol{x}_{t}}{\sum_{t=1}^{T} \gamma_{jm}(t)}$$

And likewise for the covariance matrices (mixture models often use diagonal covariance matrices)

• The mixture coefficients are re-estimated in a similar way to transition probabilities:

$$\hat{c}_{jm} = rac{\sum_{t=1}^{T} \gamma_{jm}(t)}{\sum_{m'=1}^{M} \sum_{t=1}^{T} \gamma_{jm'}(t)}$$

Doing the computation

- The forward, backward and Viterbi recursions result in a long sequence of probabilities being multiplied
- This can cause floating point underflow problems
- In practice computations are performed in the log domain (in which multiplies become adds)
- Working in the log domain also avoids needing to perform the exponentiation when computing Gaussians

Summary: HMMs

- HMMs provide a generative model for statistical speech recognition
- Three key problems
 - Omputing the overall likelihood: the Forward algorithm
 - ② Decoding the most likely state sequence: the Viterbi algorithm
 - Sestimating the most likely parameters: the EM (Forward-Backward) algorithm
- Solutions to these problems are tractable due to the two key HMM assumptions
 - Conditional independence of observations given the current state
 - Markov assumption on the states

References: HMMs

- Gales and Young (2007). "The Application of Hidden Markov Models in Speech Recognition", Foundations and Trends in Signal Processing, 1 (3), 195–304: section 2.2.
- Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.): sections 6.1-6.5; 9.2; 9.4. (Errata at http://www.cs.colorado.edu/~martin/SLP/Errata/ SLP2-PIEV-Errata.html)
- Rabiner and Juang (1989). "An introduction to hidden Markov models", IEEE ASSP Magazine, 3 (1), 4–16.
- Renals and Hain (2010). "Speech Recognition",
 Computational Linguistics and Natural Language Processing Handbook, Clark, Fox and Lappin (eds.), Blackwells.