Related Questions with Solutions

Questions

Quetion: 01

Suppose 0 < x < 1 and $(1 - x)^{-5/2}$ is expanded as ascending powers of x. A. then coefficient of x^r is $\frac{(2r+3)!}{3 \cdot 2^{2r+1} r! (r+1)!}$

B. if greatest term is t_5 , then 8/11 < x < 10/13

C. if greatest term is t_5 , then 10/13 < x < 4/5

D. none of these.

Solutions

Solution: 01

We have,
$$t_{r+1} = \frac{\left(\frac{-5}{2}\right)\left(\frac{-5}{2}-1\right)\left(\frac{-5}{2}-2\right)\dots\left(\frac{-5}{2}-r+1\right)}{r!}(-x)^r$$

$$= \frac{5\cdot7\cdot9\dots(2r+3)}{2^rr!}x^r(-1)^{2r}$$

$$= \frac{1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\dots(2r+3)}{1\cdot2\cdot3[4\cdot6\cdot8\dots(2r+2)]2^r(r!)}x^r$$

$$= \frac{(2r+3)!}{3\cdot2^{r+1}(r+1)!}\cdot\frac{1}{2^rr!}x^r = \frac{(2r+3)!}{3\cdot2^{2r+1}r!(r+1)!}x^r$$
 Since t_5 is the greatest term, $t_4 < t_5$ and $t_6 < t_5$.
$$\Rightarrow \frac{t_5}{t_4} > 1 \text{ and } \frac{t_6}{t_5} < 1.$$
 But $\frac{t_{r+1}}{t_r} = \frac{2r+3}{2r}x$ Thus, $\frac{t_5}{t_4} = \frac{11}{8}x$ and $\frac{t_6}{t_5} = \frac{13}{10}x$ Therefore, $\frac{11}{8}x > 1, \frac{13}{10}x < 1 \Rightarrow \frac{8}{11} < x < \frac{10}{13}$.

Correct Options

Answer:01

Correct Options: A, B