Problem 1 (M.1)

a)	
Q =	1
I =	{
A =	

		q_1	q_2	q_3	q_4	q_5
δ:	1					
	0					

Explanation:		

Note: Remember to label your	start state and do	uble circle your a	ccepting states.	
		q_0		
	q_1		q_2	
Explanation:				
Problem 2.1 (M.2)				
a)				
b) I abal the states of in stan is	the borres in the	andon the FCA se	og through thor	
b) Label the states of in step in		order the roa go	es through them.	
$ \hspace{.05cm} ightarrow \hspace{.05cm} ightarrow \hspace{.05cm} ightarrow $	$\bigg \longrightarrow$	$ \longrightarrow\>$	$ \longrightarrow $	
c)				
○ Accept ○ Reject				

b)

Problem 2.2 (M.2)

For a sample input of 1100 the Turing Machine tape will start out looking like:

1	1	0	0	*	*	
---	---	---	---	---	---	--

† head

And after 2 steps will look like:

a 1	0	1	*	*	
-----	---	---	---	---	--

† head

For your answers fill out the tape in the same format given in the sample input.

O Accept O Reject

b)

Problem 3.1 (M.3)

a)									
Note:	Note: Remember to label your start state and double circle your accepting states.								
		q_1	q_2						
		(la	q_4						
		q_3	44						
Docum	nentation:								
q_1 :									
q_2 :									
q_3 :									
q_4 :									

Problem 3.2 (M.2)

$$\Sigma = \{a, b\}$$

			δ :	T	
	q_{start}	q_{ra}	q_{rb}		
a	$($ $, \alpha, L)$	(q_{ra}, a, L)	(q_{rb}, a, L)	(, ,)	(, ,)
b	$($ $, \beta, L)$	(q_{ra}, b, L)	(q_{rb}, b, L)	(, ,)	(, ,)
x	$(q_{rej} , \mathbf{x}, \mathbf{L})$	(q_{ra}, x, L)	(q_{rb}, x, L)	(, ,)	(, ,)
α	(q_{rej}, α, L)	$($, α , $L)$	$($, α , $L)$	(, ,)	(, ,)
β	(q_{rej} , β, L)	$(\qquad ,\beta ,\mathrm{L})$	$(\qquad ,\beta ,\mathrm{L})$	(, ,)	(, ,)
γ	(q_{rej} , γ, L)	(\qquad , γ, L)	$(\qquad , \gamma, \mathrm{L})$	(, ,)	(, ,)
*	$(q_{rej}, *, L)$	(, *, L)	(, *, L)	(, ,)	(, ,)
	(, ,)	(, ,)	(, ,)	(, ,)	(, ,)
	(, ,)	(, ,)	(, ,)	(, ,)	(, ,)
	(, ,)	(, ,)	(, ,)	(, ,)	(, ,)
	(, ,)	(, ,)	(, ,)	(, ,)	(, ,)

Documentatio	on for states on t	this page (no r	need to docume	ent states that w	ere provided):	

Use ·	this p	age if	you h	iave i	more t	than 5	state	es in	your '	Turing	Macl	hine i	for 3.	2.						
a	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
b	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
x	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
α	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
β	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
γ	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
*	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
	(,	,)	(,	,)	(,	,)	(,	,)	(,	,)
Docı	ıment	ation 1	for st	ates (on thi	s page	:													

Problem 3.3 (M.3)		
Description:		
Explanation:		