NURBS Surfaces for Topology Optimization Problems

2023/2024

EL GODE Amal NAIM Mouna
REDOUANE Mohamed Youssef TOULER FOKA Camille Willy
ZAHI Ziad

Encadrant : ZERROUQ Salah-eddine

Introduction

Introduction

• Advantages:

- Modeling accuracy
- Design flexibility
- Material Optimization
- Cost Reduction

• Challenges:

- Computational complexity
- Memory Management

Primary Challenges Targeted

• The software is entirely written in **Python**

Python:

- Dynamic language
- More flexible
- Automatic memory management

• C/C++:

- Low-level language
- More concerned with memory management and system resources
- Detailed and complex code
- Typically faster

⇒ Goal: convert computations to a lower level language which is C

Topological Optimization (TO)

Mathematical method to find the optimum material distribution in a given volume subject to constraints

→ Solid Isotropic Material with Penalisation (SIMP)

Mathematical method for representing geometries

- Spline: Piecewise Polynomial Function
- B-spline: Spline Function with Minimal Support
- NURBS: Piecewise Rational Fraction Representation

Advantages

- Ease and accuracy of shape evaluation
- Ability to approximate complex shapes
- Compatible with CAD software

The NURBS surface is defined as:

$$S(u,v) = \sum_{i=0}^{n_u} \sum_{j=0}^{n_v} R_{i,j}(u,v) P_{i,j}$$

where:

- $R_{i,j}(u,v)$: Piecewise Rational Basis Functions
- $P_{i,j} = \{x_{i,j}, y_{i,j}, z_{i,j}\}$: Control Points

$$R_{i,j}(u,v) = \frac{N_{i,p}(u)N_{j,q}(v)w_{i,j}}{\sum_{k=0}^{n_u}\sum_{l=0}^{n_v}N_{k,p}(u)N_{l,q}(v)w_{k,l}}$$

where:

- $N_{i,p}(u)$, $N_{j,q}(v)$: Blending Functions
- p and q: NURBS Degrees along u and v directions
- w_{i,j}: Weights

The blending functions are recursively defined by means of the Bernstein's polynomials:

$$N_{i,0}(u) = egin{cases} 1 & ext{if } U_i \leq u < U_{i+1} \ 0 & ext{otherwise} \end{cases}$$

$$N_{i,p}(u) = \frac{u - U_i}{U_{i+p} - U_i} N_{i,p-1}(u) + \frac{U_{i+p+1} - u}{U_{i+p+1} - U_{i+1}} N_{i+1,p-1}(u)$$

U, **V**: knot vectors

Local Support Property

$$R_{i,j} = 0$$
 if (u, v) outside $[U_i, U_{i+p+1}] \times [V_j, V_{j+q+1}]$

Figure 1: Example of NURBS Surface. Source: "NURBS hyper-surfaces for 3D topology optimization problems", *Giulio Costa, Marco Montemurro and Jérôme Pailhès*

NURBS-Based SIMP Method

Compliance (\neq Stiffness)

How much a material deforms under an applied load

SIMP Method for Minimum Compliance Problem

Given a volume constraint, what is the optimal topology that minimizes compliance?

SIMP Method for Minimum Compliance Problem

Optimization Problem

```
min c(\rho_e) subject to: [K]\{U_{FEM}\}=\{F\} V(\rho_e)=fV_{\text{tot}} \rho_{\min}<\rho_e<1, \quad e=1,\dots,N_e
```

NURBS-Based SIMP Method

$$\rho(u, v) = \sum_{i=0}^{n_u} \sum_{j=0}^{n_v} R_{i,j}(u, v) \bar{\rho}_{i,j}$$

where $\bar{\rho}_{i,j}$ is the value of the fictitious density at each control point

• $\bar{\rho}_{i,j}$ and $w_{i,j}$ are collected in ξ and η

min
$$c(\rho(\boldsymbol{\xi}, \boldsymbol{\eta}))$$
 subject to: $[K]\{U_{FEM}\} = \{F\}$ $V(\rho_e) = fV_{\text{tot}}$ $\{g(\boldsymbol{\xi}, \boldsymbol{\eta})\} < \{0\}$

where $\{g(oldsymbol{\xi}, oldsymbol{\eta})\}$ is the vector collecting the constraints of different nature

Python Code Architecture

Output:

- Local_support
- BF_supprort
- IND_mask_active

Python Code Architecture

Output:

- Volume gradient
- Compliance gradient

C Code Architecture

Figure 2: Architecture of C version

Two problems faced in **C** implementation:

- No predifined structures for vectors , 2D/3D matrices or list vectors
- Big usage of memory space for large data structures (BF_support = 5GB matrix)

 \Rightarrow *Solution:* creation of new data structures suitable for our problem

```
typedef struct {
    double *data;
    int rows;
    int cols;
    int depth;
} Matrix;
```

Methods:

- Loading matrices
- Initializing matrices
- Matrix-vector product
- Hadamard product
- Extracting values/columns/ rows ..

```
typedef struct {
    double *data;
    int length;
} Vector;

typedef struct {
    Vector *vectors;
    int size;
} ListOfVectors;
```

Methods:

- Loading vectors
- Initializing vectors
- Adding vectors to lists
- Freeing list of vectors
- Eliminate duplicated values with hash function

Figure 3: Matrix in COO format


```
typedef struct {
    double *values;
    int *rowsIndices;
    int *colsIndices;
    int *depthsIndices;
    int nonZeroCount;
    int rows;
    int cols;
    int depth;
} COOMatrix:
```

Functions:

- Loading matrices in COO format
- Converting and storing dense Matrices in COO format
- Hadamard Matrix-vector product for COO matrices
- Subtract COOMatrices (also check if they are sorted)
- Select Row and columns

Validation 2D

der_topo is validated only in 3D implementation

2D Validation of Local_Support Function

Figure 4: Local_support matrix en C and Python

2D Validation of Functions

Matrix	Local_Support	BF_Support	IND_Mask_Active
Method	is_equal	AD	is_equal
Tolerence	0	10^{-10}	0

Table 1: Comparaison between matrices in python and C version

3D Validation of Functions

Figure 5: Local_support matrix en C and Python

3D Validation of Function

Matrix	Local_Support	BF_Support	IND_Mask_Active	der_W	der_CP	BF_Mask
Method	is_equal	AD	is_equal	AD	AD	is_equal
Tolerence	0	10^{-10}	0	10^{-7}	10^{-9}	0

Table 2: Comparaison between matrices in python and C version

Parallelism

Parallelism

Loops exhibiting significant temporal complexity were optimized through parallelization with OpenMP

Performance Comparaison

For 3D implementation:

Execution time to calculate Local_Support function

Figure 6: Execution time over number of processors

Calculation of Speed-up and Efficiency

• Speed-up: $S(p) = \frac{T(1)}{T(p)}$

• Efficiency:
$$E(p) = \frac{S(p)}{p} = \frac{T(1)}{p \times T(p)}$$

Figure 7: Calculation of Speed-up & Efficiency for 3D implementation of local_support function

Calculation of Speedup & Efficiency for der_Nurbs

Figure 8: Calculation of Speed-up & Efficiency for 3D implementation of der Nurbs

For 2D implementation:

Execution time to calculate Local_Support function in 2d

Figure 9: Calculation of Speed-up & Efficiency for 2D implementation of der Nurbs

Performance Summary

function	Local_Support_fun 2D	Local_Support_fun 3D	der_nurbs 3D
Sequential Code in Python	20.01 s	23.62 s	64.92 s
Sequential Code in C	8.08 s	11,82 s	10.80 s
Parallel Code in C with OpenMP	6.13 s	2.56 s	1.20 s

Table 3: Time comparaison between functions in Python and C version

Figure 10: Performance summary

Conclusion

Parallelism was successfully implemented using OpenMP, enhancing the performance of the C version

(COO)

Sparse COO matrices may not be as efficient and could be replaced with other types of sparse matrices

Cython library can be used to implement C in Python version

