Computer Organization and Architecture

Me lol

October 28, 2025

Notes

- PYQs of BEX/BEI/BCT's CT603 are combined.
- BEX's and BCT's are kept with normal font.
- BEI's are kept with this styling to differentiate.
- Regular exam's questions are kept as **bold** while back exam are kept as normal font.
- Months are marked as:
 - Ba: Baisakh
 - Jth: Jestha
 - Asa: Ashar
 - Shr: Shrawan
 - Bh: Bhadra
 - Ash: Ashwin
 - Ka: Kartik
 - Mng: Mangsir
 - Po: Poush
 - Ma: Magh
 - Ch: Chaitra

Contents

1	\mathbf{Intr}	oduction 4
	1.1	Computer organization and architecture
	1.2	Structure and function
	1.3	Designing for performance
		0 0 1
	1.4	Interconnection structures
	1.5	Bus interconnection
	1.6	PCI
0	C	tual Duranasia a III. it
2		tral Processing Unit 5
	2.1	CPU Structure and Function
	2.2	Arithmetic and Logic Unit
	2.3	Instruction Formats
	2.4	Data Transfer and Manipulation
	2.5	Addressing Modes
	2.6	RISC and CISC
	2.7	64 – Bit Processor
	۷.1	04 DR 1 10Cessor
3	Con	trol Unit
•	3.1	Control Memory
	3.2	V
	3.3	Computer configuration
	3.4	Microinstruction Format
	3.5	Symbolic Microinstructions
	3.6	Symbolic Microprogram
	3.7	Control Unit Operation
	3.8	Design of Control Unit
4	Pipe	eline and Vector processing 9
	4.1^{-}	Pipelining
	4.2	Parallel Processing
	4.3	Arithmetic Pipeline
	4.4	Instruction Pipeline
		<u>.</u>
	4.5	RISC Pipeline
	4.6	Vector Processing
	4.7	Array Processing
_		. A 1/1 / /
5		nputer Arithmetic 11
	5.1	Addition Algorithm
	5.2	Subtraction Algorithm
	5.3	Multiplication Algorithm
	5.4	Division Algorithm
	5.5	Logical Operation
	0.0	2001cm o permitter 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 Memory System		mory System 13
	6.1	Microcomputer Memory
	6.2	Characteristics of memory systems
	6.3	· ·
		The Memory Hierarchy
	6.4	Internal and External memory

	6.5	Cache memory principles	13
	6.6	Elements of Cache design	13
		6.6.1 Cache size	13
		6.6.2 Mapping function	13
		6.6.3 Replacement algorithm	14
		6.6.4 Write policy	14
		6.6.5 Number of caches	
7	Inp	out-Output organization	15
	$7.\overline{1}$	Peripheral devices	15
	7.2	I/O modules	
	7.3	Input-Output interface	15
	7.4	Modes of transfer	15
		7.4.1 Programmed I/O	15
		7.4.2 Interrupt-driven I/O	
		7.4.3 Direct Memory access	
	7.5	I/O Processors	
	7.6	Data Communication Processor	16
8	Mu	ltiprocessors	17
	8.1	Characteristics of multiprocessors	17
	8.2	Interconnection Structures	
	8.3	Interprocessor Communication and Synchronization	

1 Introduction

(3 Hours/6 Marks)

1.1 Computer organization and architecture

- 1. Define computer architecture. [2] (**75 Ch**) [1.5] (81 Bh) [1] (**72 Ch**)
- 2. Define computer organization. [1.5] (81 Bh) [1] (72 Ch)
- 3. Differentiate between computer organization and architecture. [2] (71 Ch, 78 Ka) [3] (72 Ka)
- 4. Explain the design goals and performance metrics for a computer system regarding its organization and architecture. [5] (76 Ash)

1.2 Structure and function

- 1. Define structure and function of a computer system. [4] (80 Ba)
- |→Explain about the structural and functional viewpoint of a computer. [4] (79 Bh)
- 2. Explain the functional view and four types of operations used in computer. [6] (68 Ch)

1.3 Designing for performance

- 1. What are the driving factors behind the need to design for performance? [4] (71 Shr)
- 2. How can we maintain a performance balance between processor and memory? [2] (**72 Ch**)

 |→ What is performance balance and why it is required? [3] (70 Asa)

1.4 Interconnection structures

- 1. Explain the Interconnection structures of computer. [6] (82 Ba, 75 Ash)

 |→ Definition [2] (73 Shr)
 - $|\rightarrow$ Definition [2] (73 Shr) $|\rightarrow$ Explain different types. [4] (73 Shr)
- 2. Explain the interconnection of CPU with Memory and I/O devices along with different operations over them. [3+3] (70 Ch)

1.5 Bus interconnection

- 1. What do you understand by Bus Interconnection. [2] (71 Shr)
- 2. What does the width of address bus represent in a system? [2] (75 Ch,71 Ch)
- 3. Explain different elements of bus design. [2] (79 Bh) [3] (70 Asa)
- 4. Discuss the limitations of using single bus system to connect different devices.
 - [2] (75 Ch, 72 Ch)
- 5. Compare and explain the bus structure of typical computer system. [4] (78 Ka)
 6. Explain different types of bus arbitration and compare them. [6] (78 Bh)
- 7. Why is bus hierarchy required? [2] (71 Ch)
- 8. Discuss about the usage of a Multiple Hierarchical Bus Architecture over single bus system.
- 8. Discuss about the usage of a Multiple Hierarchical Bus Architecture over single bus system.

 [6] (80 Bh)

1.6 PCI

1. What is PCI? [1] (76 Ash) \rightarrow Describe PCI bus configuration. [3] (81 Ba)

2 Central Processing Unit

(10 Hours/18 Marks)

2.1 CPU Structure and Function

- Explain the component of CPU.
 Draw the instruction cycle state diagram with example.
 ⇒ Draw instruction cycle, state diagram with interrupt and explain it.
 ⇒ Explain instruction cycle state diagram.
 ⇒ Explain instruction cycle state diagram with interrupt handling.
 [2] (78 Ch)
 [6] (76 Ch)
 [74 Ch)
 [81 Ba)
 [9] (80 Ba)
 [10] (81 Bh)
- $|\rightarrow$ Explain the computer functions with different cycles. [3] (72 Ka)

[6] (**71 Ch**)

3. Explain the general organization of register in CPU.

2.2 Arithmetic and Logic Unit

- 1. What are the stages of ALU design? [2] (70 Asa)
- 2. Design a 1-bit ALU which can perform addition, AND, OR, and X-OR operations. [4] (80 Bh)
- 3. Design a 2-bit ALU that can perform subtraction, AND, OR and XOR. [8] (**75 Ch**) |→2-bit ALU performing addition, subtraction, OR and XOR. [6] (70 Asa)

2.3 Instruction Formats

- 1. What do you mean by instruction format? [4] (72 Ch)
- 2. Explain the different types of instruction formats. [3] (71 Ch) [4] (80 Bh)
- 3. Explain Instruction Format with its types? [2] (71 Shr)
- 4. What are the most common fields in an instruction. [2] (68 Ch)
- 5. Explain the logical and bit manipulation instruction with example. [4] (82 Ba)
- 6. Write down the code to evaluate in three address, two address, one address and zero address instruction format.
 - a. Y = (A-B/C)*[D+(E*G)][8] (**81** Bh,**76** Ch) b. X = ((A+B)/C) + (D-E)[8] (**79 Bh**) c. Y = (A+B)/C + D/(E*F)[8] (**75** Ch) d. $X = (P+Q) \times (R+S)$ [8] (**74** Ch) e. X = (A-B*F)*C+D/E[8] (**72** Ch) f. $X = (A+B) \times (C+D)$ [5] (**71 Ch**) [6] (**68 Ch**, 71 Shr) g. Y = A/B + (CxD) + F(H/G)[8] (**70** Ch h. Y = A + (B*C) + D[8] (**68 Ba**) i. Y = AB + (F/G) + CD[8] (**67** Asa) j. Y = ((A+B) * (C-D))/E[8] (82 Ba) k. N = ((P-QxR)/S)+(T/U)+VxW)[8] (81 Ba) $1. X = \frac{A-B+Cx(DxE-F)}{(DxE-F)}$ [8] (80 Ba)

m. $Y = (A-B/C) \times (D+E\times G)/F$	[8] (78 Ka)
n. $Y = (W+X) * (Y-Z)$	[8] (76 Ash)
o. (In present sources, operation is not given. If found, please contact)	[8] (75 Ash)
p. $Y = A * (B+D/C)+(G*E)/F$	[8] (73 Shr)
q. $Y = (A+B)^*(C+D)+G/E^*F$	[8] (72 Ka)

2.4 Data Transfer and Manipulation

1. Explain data transfer instruction with example.

[4] (81 Bh)

2. Explain different types of data manipulation instructions with example. [8] (78 Bh)
 |→What are the three types of data manipulation instructions used in computer? Explain. [8] (67 Asa)

2.5 Addressing Modes

1. What is addressing mode?

[2] (**80** Bh,76 Ch,68 Ch)

2. Differentiate between Immediate and direct addressing modes.

[4] (**81** Bh)

3. Describe the displacement addressing mode with example.

[4] (82 Ba)

4. Write down the need for addressing modes.

[2] (**74** Ch)

5. Comparision of different types of addressing modes.

[6] (**76 Ch**) [8] (76 Ash) [10] (72 Ka)

 \rightarrow with adv/disadv.

[10] (78 Ka)

 \rightarrow with algorithm as well as adv/disadv.

[8] (**68 Ba**)

6. Write down different types of addressing mode and:

 \rightarrow Explain with adv/disadv.

[8] (81 Ba, 80 Ba) [10] (**70 Ch**)

 $|\rightarrow$ Explain with suitable example.

[6] (80 Bh, 79 Bh,74 Ch) [8] (68 Ch, 70 Asa)

7. Following instructions are given:

[10] (73 Shr)

- a. LDA 2000H
- b. MVI B, 32H
- c. STAX D
- d. MOV A, B

Which addressing modes are used in the above instructions? Explain briefly about them.

8. Describe the operation of LD (load) instruction under various addressing modes with syntax.

[4] (**71 Ch**)

2.6 RISC and CISC

1. Comparison between RISC and CISC architecture. [4] (71 Shr) [6] (78 Bh,72 Ch, 75 Ash)

2.7 64 – Bit Processor

3 Control Unit

(6 Hours/10 Marks)

3.1 Control Memory

1. Explain the organization of a control memory.

[4] (71 Shr)

2. Explain block diagram of micro-programmed control organization.

[4] (76 Ash)

3.2 Addressing sequencing

1. What is address sequencing?

[3] (71 Ch,67 Asa)

2. Explain address sequencing with the help of a block diagram.

[5] (**80** Bh, 72 Ka)

 $\mid \rightarrow$ Explain the selection of address for control memory with its block diagram.

[7] (72 Ch,71 Ch,68 Ch)

- 3. How does a sequencing logic work in micro-programmed control unit to execute a micro-program?

 [6] (70 Ch)
- 4. Explain the address sequencing capabilities required in a control memory.

[5] (67 Asa)

3.3 Computer configuration

3.4 Microinstruction Format

1. Explain the microinstruction format.

[3] (**80 Bh**) [4] (81 Ba) [5] (72 Ka)

 \rightarrow with example.

[5] **(81 Bh)** [6] (71 Shr)

 $|\rightarrow$ Explain various fields in micro-instruction format with neat and clean block diagram.

[3] **(68 Ch)**

3.5 Symbolic Microinstructions

1. How address of micro instruction is generated by next address generator in control unit? Explain with suitable diagram. [8] (76 Ch)

3.6 Symbolic Microprogram

1. Write a microprogram for the fetch cycle and addition cycle.

[5] (81 Bh)

2. Differentiate between symbolic and bianry micro instruction.

[4] (81 Ba)

3. Explain the operation of microprogram sequencer used in microprogrammed control unit.

[5] **(79 Bh)**

4. Explain with diagram the working of microprogram sequencer for control memory.

[6] (78 Ka)

5. Write down the symbolic microprogram for fetch routine and addition execute routine.

[4] (78 Ka)

6. Describe various fields in micro-instruction format with diagram showing different fields.

[6] (76 Ash)

7. Write micro program for fetch cycle.

[4] (73 Shr)

3.7 Control Unit Operation

1. What are the types of control signals? [3] (68 Ba)

2. Explain the basic hardwired control unit components. [4] (82 Ba)

- 3. Explain microprogrammed control unit with block diagram. [5] (79 Bh, 80 Ba)

 |→(diagram not asked explicitly, just operation) [7] (68 Ba)
- 4. Differentiate between hardwired and microprogrammed control unit.

[4] (74 Ch, 70 Asa) [5] (75 Ch, 70 Ch, 80 Ba)

5. Explain the organization structure of a microprogram control unit and the generation of control signals using microprogram. [10] (78 Bh)

3.8 Design of Control Unit

1. Explain the micro program sequencer used in microprogrammed control unit. [6] (**74 Ch**) |→ Draw & explain block diagram of micro-programmed sequencer for control memory.

[5] (**75 Ch**) [10] (75 Ash)

- 2. Explain microinstruction format used in microprogramming control unit. [6] (73 Shr)
- 3. What factors cause micro-programmed control unit to be selected over hardwired control unit.

 [3] (72 Ch)
- 4. Explain with steps involved when you are designing

 $|\rightarrow$ hardwired control unit. [6] (82 Ba)

 \rightarrow micro-program control unit. [6] (70 Asa)

4 Pipeline and Vector processing

(5 Hours/10 Marks)

4.1 Pipelining

1. What is Pipelining? [1] (81 Bh) \rightarrow Define pipeline. [1] (72 Ka)

2. Explain types of pipelining. [3] (72 Ka)

3. How can we prove that pipelining improves the performance of a computer? [4] (81 Ba)

4. Derive the expression showing speed up ratio equals number of segments in pipeline. [3] (75 Ch)

5. Discuss in detail about data dependency problem that arises in pipelining along with its solution.

[5] (75 Ch)

4.2 Parallel Processing

1. Explain the Flynn's classification of computer system. [4] (81 Bh,72 Ch)

2. Discuss about parallel processing. [4] (71 Shr)

3. How parallel processing can be achieved in pipelining, explain it with time-space diagram for four segments pipeline having six tasks. [6] (71 Shr)

4.3 Arithmetic Pipeline

1. Explain the instruction pipeline with example. [4] (79 Bh) [5] (71 Ch,70 Ch) |→Explain in detail how the arithmetic pipeline increases the performance of a system. [7] (73 Shr)

2. Explain arithmetic pipeline for solving floating-point addition/subtraction. [5] (81 Ba)

4.4 Instruction Pipeline

1. Explain the instruction pipeline with example. [5] (71 Ch,70 Ch)

2. Describe four stage instruction pipeline. [4] (81 Bh) [5] (76 Ch, 78 Ka) |→ Explain with example. [8] (70 Asa)

 \rightarrow Explain with diagram. [6] (82 Ba)

3. Explain six stage instruction pipeline with example. [10] (75 Ash)

4. How pipeline processing is done in an instruction pipeline? [3] (78 Ka)

5. Construct time-space diagram for four instructions with four-stage pipeline and show how pipelining reduces the execution time? [5] (81 Ba)

 $|\rightarrow$ Explain the operation of instruction pipeline for processing four segment instruction cycle with the help of space-time diagram. [6] (81 Ba)

 $|\rightarrow$ Draw a time-space diagram for four segments having six tasks. [6] (76 Ch)

- 6. Show that the speedup factor for a pipelined processor is equal to the number of stages in a pipeline. [4] (80 Bh)
- 7. Explain about the different types of conflicts that can be seen in a pipeline. [6] (80 Bh)
 |→ Discuss pipeline conflicts with examples. [4] (82 Ba)
- 8. What is meant by hazard in pipelining? [2] (76 Ash) [4] (78 Bh)
- 9. Describe different types of pipeline hazards. [4] (76 Ash) |→ with example. [6] (79 Bh, 72 Ka)
- 10. What is instruction hazard in pipeline? [2] (70 Asa)
- 11. Explain with example data and control hazards in pipeline conflict. [6] (78 Bh)
- 12. How can you overcome hazards? [2] (76 Ash)
- 13. Explain control pipeline hazard and its solutions. [6] (72 Ch)

4.5 RISC Pipeline

1. RISC has the ability to use efficient instruction pipeline. Justify. [3] (73 Shr)

4.6 Vector Processing

4.7 Array Processing

Computer Arithmetic 5

(8 Hours/14 Marks)

5.1 Addition Algorithm

1. Explain the floating-point addition and subtraction process \rightarrow with example. [3+3] (81 Bh, 79 Bh, 78 Bh) [7] (73 Shr) \rightarrow with flowchart and example. [6] (78 Ka) [10] (**74 Ch**)

2. Draw a flowchart of floating point subtraction.

[4] (70 Asa)

5.2 Subtraction Algorithm

2. Explain booth's algorithm.

5.3 Multiplication Algorithm

1. Draw a flowchart for Booth's multiplication algorithm for signed multiplication. [4] (78 Ka) [5] (**81 Bh**)

[3] (70 Ch) [4] (80 Bh,68 Ch,67 Asa, 72 Ka) [5] (76 Ch)

 \rightarrow with example and give hardware requirement diagram. [10] (75 Ash) \rightarrow Explain with hardware algorithm with diagram. [5] (**72** Ch) \rightarrow Write the algorithm. [5] (76 Ash, 71 Shr) [4] (**71** Ch)

3. Design a booth multiplication algorithm hardware.

4. Multiply using Booth's multiplication algorithm. $\rightarrow -6 \times 7$ [5] (**81 Bh**, 80 Ba) \rightarrow -7 x 3 [6] (**74** Ch) \rightarrow -6 x 12 [6] (72 Ka)

 $\rightarrow 10 \times (-7)$ [6] (81 Ba) [5] (**76** Ch) $\rightarrow 10 \times (-5)$ $\rightarrow 5 \text{ x} - 6$ [4] (**72** Ch) $|\to (9) \times (-3)$ [5] (71 Shr)

 $\rightarrow 23 \text{ x} - 21$ [4] (**68** Ch) $\rightarrow 9 \times 4$ [6] (**80 Bh**)

 $\rightarrow 8 \times 4$ [5] (76 Ash) $\rightarrow 8 \times 9$ [3] (**70** Ch) $\rightarrow 6 \times 7$ [4] (**67** Asa)

 \rightarrow -7 x -10 [4] (78 Ka) \rightarrow -6 x -11 [6] (**75** Ch) $\rightarrow -5 \text{ x } -9$ [5] (**72** Ch)

Division Algorithm 5.4

1. How division operation can be performed? Explain with its hardware implementation.

[10] (70 Asa)2. Draw the flowchart for Restoring Division. [4] (81 Ba, 72 Ka)

3. Draw the flowchart for Non-restoring Division. [4] (79 Bh)

 \rightarrow Explain signed binary division algorithm. [4] (73 Shr)

[3] (**75** Ch) [5] (**78** Bh) 4. Explain non-restoring division algorithm.

 \rightarrow with flowchart. [5] (82 Ba, 80 Ba) [8] (**70 Ch**) \rightarrow with flowchart and example.

5. Draw the flowchart for division of floating point numbers. [4] (**72** Ch,**71** Ch) 6. Explain floating point division algorithm. [6] (**68 Ch**) 7. Compare restoring division algorithm with non restoring algorithm. [4] (71 Shr) [6] (**80 Bh**, 76 Ash, 75 Ash) $|\rightarrow$ with example. [6] (**76** Ch) [8] (**68** Ba) 8. Divide using restoring division. $|\!\rightarrow\!\frac{11}{5}\\|\!\rightarrow\!13/5$ [6] (81 Ba) [6] (**79 Bh**) $\rightarrow 10/3$ [7] (**75** Ch) 9. Divide using non-restoring algorithm. $\rightarrow 12/5$ [5] (82 Ba, 80 Ba) [5] (**78 Bh**) $\rightarrow 10/5$ [4] (73 Shr) $\rightarrow 15/4$

5.5 Logical Operation

6 Memory System

(5 Hours/8 Marks)

6.1 Microcomputer Memory

6.2 Characteristics of memory systems

Explain in briefly the characteristics of a memory system. [3] (81 Ba)
 Write characteristics of memory system. [3] (73 Ch) [4] (75 Ch, 75 Ash) [8] (68 Ba)

6.3 The Memory Hierarchy

What is memory hierarchy and why it is formed in computer system?
 |→ Why memory hierarchy is required in computer system?
 [2] (71 Shr)
 [3] (82 Ba)

2. Draw the memory hierarchy. [2] (**72 Ch**, 72 Ka)

6.4 Internal and External memory

6.5 Cache memory principles

1. Describe the cache memory principles. [3] (81 Bh)

2. Describe cache operation briefly. [2] (76 Ash)

3. Describe cache organization. [4] (71 Ch)

6.6 Elements of Cache design

1. Explain the various types of elements of cache design. [4] (75 Ash)

6.6.1 Cache size

6.6.2 Mapping function

1. Define cache mapping techniques. [2] (76 Ch,68 Ba)

2. Why cache management is necessary in mapping process? [2] (67 Asa)

3. Explain various mapping methods used in cashe memory organization and compare each of them with example.

[6] (71 Ch) [10] (78 Ka)

|→ only explain.

[6] (75 Ash)

4. Differentiate between direct mapping and set associative mapping. [5] (81 Bh) [7] (81 Ba)

5. Differentiate between direct and associative mapping address structure. [6] (67 Asa)

6. Differentiate between associative and set associative mapping with example. [5] (70 Ch)

7. What are the major differences between different cache mapping techniques? [2] (70 Asa)

|→ DIfferentiate among direct, associative and set associative mapping. [8] (68 Ba)

8.	Explain direct cache mapping technique with example. $ \rightarrow$ with diagram. $ \rightarrow$ with organization diagram and example. $ \rightarrow$ with merits and demerits.		[7] (80 Bh [4] (76 Ch [6] (71 Shr [6] (72 Ch
9.	Suppose main memory has 64 blocks and cache memory has 8 blocks we memory are used, show how mapping is performed in direct mapping tech $ \rightarrow$ main memory is 32 blocks, rest is same. $ \rightarrow$ main memory is 32 blocks, cache has 8 blocks when 12 blocks are used.	nique.	blocks of mai [6] (75 Ch [6] (70 Asa [6] (74 Ch
10.	What is set associative mapping?	[2] (81	Ba) [3] (79 Bh
11.	Explain how set associative mapping technique combines the feature of mapping technique.		and associativ Ba) [5] (73 Shr
12.	Explain about associative mapping technique. $ \rightarrow$ with example.		[6] (76 Ash [6] (72 Ka
6.6. 3	Replacement algorithm		
1.	Explain different replacement algorithm technique used in cache memory.	[3] (81	Ba) [5] (79 Bh
2.	Explain LRU replacement algorithm in case of hit and miss with suitable $ \to$ Explain teh LRU replacement algorithm with example.	exampl	e. [8] (78 Bh [5] (82 Ba
3.	Why replacement algorithm is necessary in associative mapping? $ \to$ Why replacement algorithm is used when designing cache? Explain with	h exan	[4] (76 Chaple. [8] (67 Asa
6.6. 4	Write policy		
1		[6]	(00 DL 70 CL

1. Explain different write policy techniques in cache memory. [3] (**80** Bh, 73 Shr)

6.6.5 Number of caches

7 Input-Output organization

(6 Hours/10 Marks)

7.1 Peripheral devices

7.2 I/O modules

1. What are the functions of IO Modules?

[3] (71 Shr)

7.3 Input-Output interface

1. Elaborate the roles of IO interface in a computer system.

[4] (**79** Bh,**71** Ch)

2. Explain three reasons behind the requirement of IO interfaces.

[3] (75 Ch)

3. Explain IO interface.

[2] (**74 Ch**)

 \rightarrow with example.

[6] (**68 Ba**)

- 4. What are the four types of IO commands that an interface receive during the communication link between the processor and peripherals? [4] (67 Asa)
- 5. Explain the IO bus and interface modules.

[4] (**67 Asa**)

7.4 Modes of transfer

1. Explain three IO techniques for input of a block of data.

[6] (**80** Bh)

2. Differentiate between isolated and memory mapped IO.

[4] (78 Bh,72 Ch)

3. Why memory address spaces are reduced memory mapped IO?

[2] (**75 Ch**)

7.4.1 Programmed I/O

1. Explain how data transfer is performed with programmed IO technique with necessary diagram.

[6] (79 Bh)

7.4.2 Interrupt-driven I/O

1. Differentiate between programmed I/O and iterrupt driven I/O.

[5] **(81 Bh**)

- 2. How does a computer know which device issued the interrupt; if multiple devices, how does the selection take place? [5] (73 Shr)
- 3. What are the different types of priority interrupt?

[4] (72 Ka)

4. What is the purpose of priority interrupt; explain priority interrupt types with key characteristics.

[7] (71 Shr)

7.4.3 Direct Memory access

- 1. With the help of a neat diagram, explain how DMA technique is used to transfer data in a computer system. [6] (78 Bh) [7] (81 Ba)
 - $\mid \rightarrow$ Explain DMA controller with suitable block diagram.

[5] (**75 Ch**, 81 Ba) [6] (**72 Ch**, 78 Ka) [8] (76 Ash)

- 2. How does DMA have request over the CPU when both request a memory transfer? [2] (76 Ash)
- 3. How DMA technique is different from programmed IO?

[4] (78 Ka)

4. Compare among program IO, interrupt drive IO and DMA.

[8] (**76** Ch,**74** Ch,**68** Ba) [10] (70 Asa)

5. Mention three possible configurations of DMA and compare them.

[8] (67 Asa)

- 6. Describe the drawbacks of programmed IO and interrupt driven IO and explain how DMA overcomes their drawbacks. [6] (71 Ch)
 - $\mid \rightarrow$ How does DMA overcome the problems of programmed IO and interrupt driven IO techniques? [5] (70 Ch)

7.5 I/O Processors

1. Explain the CPU and IOP communication channel using diagram.

[5] (**81** Bh)

2. Compare and contrast between DMA and I/O processor.

[5] (82 Ba)

3. Why IOP is used in IO organization?

[3] (81 Ba, 75 Ash) [5] (**70 Ch**, 73 Shr)

4. Show the role of IO processor to assist the operation of the CPU.

[4] (80 Bh)

 $5.\,$ Explain CPU-IOP Communication with diagram.

[5] (82 Ba, 81 Ba) [6] (72 Ka) [7] (75 Ash)

7.6 Data Communication Processor

1. Why data communication processor is required in IO ogranization?

[2] (**76 Ch**)

8 Multiprocessors

(2 Hours/4 Marks)

8.1 Characteristics of multiprocessors

- 1. List out the characteristics of a multiprocessor. [4] (80 Bh,70 Ch)
- 2. Describe how the multiprocessor systems increase the performance level and reliability.

[4] (73 Shr)

3. Explain about multiprocessor and multiprocessing in brief.

[4] (72 Ka)

4. How can multiprocessor be classified according to their memory organization? Explain.

[4] (**71** Ch)

8.2 Interconnection Structures

- Discuss about loosely-coupled and tightly-coupled architecture. [4] (81 Ba)
 Difference between them. [4] (78 Ka)
- 2. Discuss about tightly-coupled multiprocessor with block diagram. [4] (76 Ash)
- 3. Explain the crossbar switch interconnection structure with block diagram. [4] (81 Ba)
- 4. Differentiate Crossbar switch and Multistage switching network.
 |→Briefly discuss 8x8 omega switching networking with example.
 |→Explain hypercube interconnection network with example.
 [4] (71 Shr)
 [4] (82 Ba)
 [4] (76 Ch)
- 5. Compare and contrast the interconnection structures used in multiprocessing environment.

[4] (**79** Bh, **78** Bh)

8.3 Interprocessor Communication and Synchronization

- 1. Briefly discuss on inter-process communication and synchronization. [5] (81 Bh)
- 2. Explain inter-process synchronization with example. [4] (74 Ch, 70 Asa)
 |→ with suitable mechanism. [4] (72 Ch)
- 3. Explain various configurations of OS in multiprocessor system. [4] (74 Ch)