ZESTAW 7

Wstęp do metod numerycznych grupy 1, 2.

- 1. Nierozwiązane zadania z poprzedniego zestawu.
- 2N. Skonstruować wielomian stopnia 10-go o losowych współczynnikach (rzeczywistych) następnie znaleźć jego pierwiastki. Jak zmienią się pierwiastki tego wielomianu gdy jeden z jego współczynników zostanie nieznacznie zaburzony? Powtórzyć ten sam eksperyment dla wielomianu Wilkinsona 10-go stopnia.
- 3N. Przedstaw graficznie na płaszczyźnie zespolonej baseny atrakcji poszczególnych miejsc zerowych (znalezionych przy pomocy metody Netwona) następujących wielomianów zmiennej zespolonej
 - (a) $f(z) = z^3 1$,
 - (b) $f(z) = z^5 1$,
 - (c) $f(z) = \frac{1}{4}z^3 \frac{5}{4}z$

dla z należącego do kwadratu o przekątnej: (a)-(b) (-1-i,1+i) oraz (c) (-10-10i,10+10i). Utworzony obrazek ma mieć minimalną rozdzielczość 800×800 pikseli. Punkty startowe pokolorować kolorami odpowiadających im miejsc zerowych.

- 4N. Jak zmienią się wyniki poprzedniego zadania, gdy zamiast metody Newtona zostanie wykorzystana metoda Haylley'a.
- 5N. Znajdź wszystkie wartości x_0 , dla jakich metoda Newtona będzie zbieżna do rozwiązania x^* równania $\arctan(x) = 0$.
- 6N. Zaimplementuj metody
 - (a) bisekcji,
 - (b) reguła falsi.
 - (c) siecznych,
 - (d) Newtona,
 - (e) Haylley'a,

Sprawdź jak będą działać dla funkcji

- (a) $f(x) = \sin x$,
- (b) $f(x) = \sin^2 x$.
- (c) $f(x) = (x-1)^5$,
- (d) $f(x) = (x-1)(x^4 4x^3 + 6x^2 4x + 1)$.
- 7N. Znaleźć z dokładnością do 10^{-6} miejsca zerowe wielomianu

$$f(x) = x^6 + x^5 - 4x^3 - 3x^2 - 2x - 3$$
 (1)

leżące w przedziałe [-3,0] posługując się metodami z poprzedniego zadania. W punktach (a)-(c) jako przedział początkowy wziąć [-3,0], w punktach (d)-(e) $x_0=-2$. Ilu iteracji potrzeba w każdym z tych przypadków?

8 Znajdź krotności wszystkich miejsc zerowych funkcji

$$f(x) = \left(x^2 - 1\right) \sinh^3 x \,. \tag{2}$$

9 *Algorytm Herona*. Bez posługiwania się pojęciem pochodnej udowodnij, że następująca iteracja

$$z_{n+1} = \frac{1}{2} \left(z_n + \frac{a}{z_n} \right), \tag{3}$$

gdzie a>0, jest zbieżna do \sqrt{a} dla wszystkich zespolonych punktów początkowych o dodatniej części rzeczywistej oraz do $-\sqrt{a}$ dla wszystkich zespolonych punktów początkowych o ujemnej części rzeczywistej. Wskazówka: rozważyć, jak $r_{n+1}=x_{n+1}-\sqrt{a}$ zależy od $r_n=x_n-\sqrt{a}$.

- 10 Czy korzystając z metody Newtona można znaleźć wartość 1/a (a > 0), nie wykonując dzielenia? Dla jakich x_0 metoda ta będzie zbieżna do 1/a, a dla jakich nie?
- 11 Pokazać, że wielomiam zmiennej rzeczywistej

$$f(x) = \frac{1}{4}x^3 - \frac{5}{4}x\tag{4}$$

ma w metodzie Newtona dwucykl. Znaleźć punty tworzące ten dwucykl.

12 Skonstruować funkcję, dla której metoda Halley'a może mieć dwucykl. Podać punty tworzące ten dwucykl.

Bartłomiej Dybiec
bartek@th.if.uj.edu.pl
http://th.if.uj.edu.pl/~bartek/metnum/