Dinámica de Robots

Grupo 5

- Crespi Malena Nerea 01739/9 Naiouf Tomás 01741/3 Stanchi Oscar Agustín 01732/2

Cinemática de Robots

- Ciencia que estudia los movimientos de un cuerpo (sin considerar las fuerzas que intervienen en él).
 - Ejemplos de Fuerzas: rozamiento entre motores, el torque del motor, efecto coriolis (movimiento brusco del brazo robótico genera que este se caiga), la gravedad, etc.
- Existen dos tipos de Sistemas Cinemáticos:
 - o Cinemático Directo
 - Sirve para determina la posición y orientación del robot a partir de los valores o coordenadas articulares del robot (ángulos de los servos).
 - o Cinemático Inverso
 - Sirve para determinar los movimientos angulares (articulaciones o juntas o eslabones) para poder llegar a un punto específico a partir de la posición y orientación deseada.
 - $\circ \quad \text{Coordenadas Articulares: } q_1,\,q_2,\,q_3,\,...\,,\,q_n \text{ (donde } q_i=f_k(x,y,z,\alpha,\beta,\gamma) \text{ con } k=1..n \text{ (GDL)}$
 - $\circ \quad \text{Posicion y Orientacion: } \\ x = f_x(q_1, ..., q_n), \\ y = f_y(q_1, ..., q_n), \\ z = f_z(q_1, ..., q_n), \\ \alpha = f_\alpha(q_1, ..., q_n), \\ \beta = f_\beta(q_1, ..., q_n), \\ \gamma = f_\gamma(q_1, ..., q_n), \\ \gamma = f_\gamma($
 - o Cinemática Directa ⇔ Cinemática Inversa
 - Cinemática Directa: se usa para pasar de coordenadas articulares a posición y orientación.
 - Cinemática Inversa: se usa para pasar de posición y orientación a coordenadas articulares.
 - Existen 2 métodos: Método Geométrico y Método de D-H (o algebraico, es más complejo pero más fácil de entender).

Sistema de Coordenadas

- Sólo se puede rotar y/o desplazar según la regla de la mano derecha con respecto a x o z.
- Un ángulo o desplazamiento será positivo sólo si sigue la regla de la mano derecha.
 - Se pueden realizar rotaciones o traslaciones negativas.

Matriz de Rotación

- Matrices de Rotación (con respecto al eje x o al eje z).
 - Nos indican cuántos grados va a rotar un eslabón con respecto al eje x o al eje z.
- Si también se desea hacer una translación se colocarán los valores de x y z.

$$T(x,lpha) = egin{bmatrix} 1 & 0 & 0 & x \ 0 & \coslpha & -\sinlpha & y \ 0 & \sinlpha & \coslpha & z \ 0 & 0 & 0 & 1 \end{bmatrix} \hspace{1cm} T(z, heta) = egin{bmatrix} \cos heta & -\sin heta & 0 & x \ \sinlpha & \coslpha & 0 & y \ 0 & 0 & 1 & z \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T(z, heta) = egin{bmatrix} \cos heta & -\sin heta & 0 & x \ \sinlpha & \coslpha & 0 & y \ 0 & 0 & 1 & z \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Tabla de Denavit-Hartenberg

• Desplazamientos:

- Se notan en a para el eje x.
- Se notan en d para el eje z.

• Rotaciones:

- Se notan en α para el eje x.
- \circ Se notan en θ para el eje z.

$\bullet \quad {\rm Cada\ transformación\ homogénea\ ^{i-1}A_{_i}}$ está conformada por:

- \circ RotZ (θ_i), TrasZ (d_i), TrasX (a_i) y RotX (α_i).
- o Cada una de las filas representa los parámetros para llegar del sistema i-1 al sistema i.

Tabla de Denavit-Hartenberg

Articulaciones	θ_{i}	d _i	a _i	α_{i}
1				
n				

- Según la articulación con la que trabajemos será con la cual determinaremos los valores para cada fila de la tabla.
- La idea es llegar a la matriz de transformación homogénea para luego llegar a encontrar la matriz del robot y luego encontrar la matriz jacobiana.

Parámetros de Denavit-Hartenberg

- θ_i : son los movimientos necesarios para que la posición x_{i-1} este paralela a x_i (es un ángulo).
- d_i: distancia que existe entre x_{i-1} y x_i (sistema de referencia cartesiano).
 - o Salvo que el brazo tenga movimiento por piston para su altura, suele ser una constante L_i.
- a_i: distancia que existe entre z_{i-1} y z_i con respecto a x_{i-1}.
- α_i : determina el ángulo que debe existir entre z_{i-1} y z_i para que ambos ejes estén paralelos (o sea, viendo hacia la misma dirección y sentido).

Matriz de Transformación Homogénea

$$i^{-1}A_i = egin{pmatrix} \cos(heta_i) & -\cos(lpha_i)\sin(heta_i) & \sin(lpha_i)\sin(heta_i) & a_i\cos(heta_i) \ \sin(lpha_i) & \cos(lpha_i)\cos(heta_i) & -\sin(lpha_i)\cos(heta_i) & a_i\sin(heta_i) \ 0 & \sin(lpha_i) & \cos(lpha_i) & d_i \ 0 & 0 & 1 \end{pmatrix}$$

- Luego de calcular las n matrices (i=1..n), cada una de ellas será la matriz de cada una de las articulaciones del robot.
 - \circ Ejemplo: la matriz 0A1 o $A_{0/1}$ es la matriz de la articulación 1 respecto a 0.

Matriz del Robot

$$T = 0A1 * 1A2 * 2A3 * ... = \prod_{i=1}^{n} {}^{i-1}A_i$$

- La última columna devuelve los 3 valores para determinar la posición del robot (x,y,z).
 - Esto es fundamental para encontrar las velocidades del robot a partir de la matriz jacobiana.
- Ejemplo:

$$^0A_3=egin{pmatrix} \cdots & \cdots & x=f_x(q_1,\ldots,q_n) \ \cdots & \cdots & y=f_y(q_1,\ldots,q_n) \ \cdots & \cdots & z=f_z(q_1,\ldots,q_n) \ 0 & 0 & 1 \end{pmatrix}$$

Matriz Jacobiana

Matriz Jacobiana (cont.)

- En robótica la matriz Jacobiana describe las relaciones entre las velocidades articulares (θ_i) y las velocidades lineales y de rotación del efector final (x_i) .
 - Se define en robótica al *efector final* como la forma de identificar a la herramienta que está unida a la última junta del brazo robótico.

Matriz Jacobiana (cont.)

Relaciones Diferenciales:

$$\begin{split} x &= f_x(q_1,q_2,\ldots,q_n) & y &= f_y(q_1,q_2,\ldots,q_n) & z &= f_z(q_1,q_2,\ldots,q_n) \\ \alpha &= f_\alpha(q_1,q_2,\ldots,q_n) & \beta &= f_\beta(q_1,q_2,\ldots,q_n) & \gamma &= f_\gamma(q_1,q_2,\ldots,q_n) \\ \\ \dot{x} &= \sum_1^n \frac{\partial f_x}{\partial q_i} \dot{q}_i & \dot{y} &= \sum_1^n \frac{\partial f_y}{\partial q_i} \dot{q}_i & \dot{z} &= \sum_1^n \frac{\partial f_z}{\partial q_i} \dot{q}_i \\ \\ \dot{\alpha} &= \sum_1^n \frac{\partial f_\alpha}{\partial q_i} \dot{q}_i & \dot{\beta} &= \sum_1^n \frac{\partial f_\beta}{\partial q_i} \dot{q}_i & \dot{\gamma} &= \sum_1^n \frac{\partial f_\gamma}{\partial q_i} \dot{q}_i \end{split}$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{bmatrix} = \mathbf{J} \cdot \begin{bmatrix} \dot{q}_i \\ \vdots \\ \vdots \\ \dot{q}_n \end{bmatrix} \qquad \text{con } \mathbf{J} = \begin{bmatrix} \frac{\partial f_x}{\partial q_1} & \cdots & \frac{\partial f_x}{\partial q_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_\gamma}{\partial q_1} & \cdots & \frac{\partial f_\gamma}{\partial q_n} \end{bmatrix} \quad \Rightarrow \quad \mathbf{Matriz Jacobiana}$$

Jacobiana Inversa

- Inversión simbólica de la matriz jacobiana:
 - o Gran complejidad: matriz 6x6 de funciones trigonométricas.
- Evaluación e inversión numérica de la matriz jacobiana:
 - Necesidad de recómputo continuo.
 - En ocasiones J no es cuadrada: Matriz Pseudoinversa de Moore-Penrose.
 - En ocasiones el determinante de J es nulo: Configuraciones Singulares.

$$egin{aligned} q_1 &= f_1(x,y,z,lpha,eta,\gamma) & egin{bmatrix} \dot{q}_1 \ dots \ q_n &= f_n(x,y,z,lpha,eta,\gamma) \ dots \ \dot{q}_n \end{aligned} egin{bmatrix} \dot{\dot{q}}_1 \ dots \ \dot{\dot{q}}_n \end{aligned} egin{bmatrix} \dot{\dot{x}} \ dots \ \dot{\dot{z}} \ \dot{\dot{q}}_n \end{aligned} egin{bmatrix} \dot{\dot{x}} \ dots \ \dot{\dot{z}} \ \dot{\dot{q}}_n \end{aligned} egin{bmatrix} \dot{\dot{x}} \ \dot{\dot{z}} \ \dot{\dot{z}} \ \dot{\dot{q}}_n \end{aligned} egin{bmatrix} \dot{\dot{x}} \ \dot{\dot{z}} \ \dot{\dot{z}} \ \dot{\dot{z}} \ \dot{\dot{z}} \end{aligned} egin{bmatrix} \frac{\partial f_1}{\partial x} & \cdots & \frac{\partial f_1}{\partial \gamma} \ \dot{\dot{z}} \ \dot{\dot{z}} \ \dot{\dot{z}} \ \dot{\dot{z}} \end{aligned} egin{bmatrix} \frac{\partial f_2}{\partial x} & \cdots & \frac{\partial f_n}{\partial \gamma} \end{aligned} egin{bmatrix} \frac{\partial f_2}{\partial x} & \cdots & \frac{\partial f_n}{\partial \gamma} \end{aligned}$$

Pseudoinversa de Moore-Penrose

- Es una generalización de la matriz inversa de una matriz singular (∄ A⁻¹).
 - Está definida para todas las matrices.
 - Incluso las no cuadradas o las que no tienen rango completo $(rango(A) = m con A_{(mxn)})$.
- Facilita el enunciado y la prueba de resultados del álgebra lineal.
 - Un uso común es el de computar una solución de "ajuste óptimo" (por cuadrados mínimos) de un sistema de ecuaciones lineales que no posee solución.
- Axioma: si la matriz A es invertible, el sistema de ecuaciones Ax = b tiene solución única dada por $x = A^{-1}b$.
 - $\circ \quad \Rightarrow \therefore \ x_{l_s} = A^+b \ resuelve \ b = Ax_{l_s} \ sii \ b \in rango(A) \ (n\'umero \ de \ filas/columnas \ LI).$
 - Subíndice "ls": solución por mínimos cuadrados (least squares approximation).

Pseudoinversa de Moore-Penrose (cont.)

• Si m = n (matriz cuadrada) y A es no singular (\exists A⁻¹), A⁻¹ satisface de manera trivial las cuatro condiciones de Penrose y por lo tanto:

$$A^{+} = A^{-1}$$

• Si m > n y las columnas de A son linealmente independientes (concepto: "rango columna completo"):

$$A^{+} = (A^{T}A)^{-1}A^{T}$$

- Se dice que A^+ es la inversa *izquierda* de A ya que $A^+A = I$.
 - \circ Recordar que A⁻¹ es la inversa bilateral ya que A⁻¹A = AA⁻¹ = I donde I es la matriz identidad.

Conclusiones Primarias

- La pseudoinversa nos permite proporcionar una alternativa para resolver sistemas Ax = b cuando A no tiene inversa (mediante mínimos cuadrados).
- Por lo tanto, basta con multiplicar $J(\theta)^+$ con \tilde{x} para obtener la solución del sistema de ecuaciones $J(\theta)\tilde{\theta} = \tilde{x}$, es decir, realizar el cálculo de $\tilde{\theta} = J(\theta)^+\tilde{x}$.

¿Cálculo Diferencial en un Microcontrolador?

Cálculo Numérico de la Matriz Jacobiana

1. Calcular los sistemas de referencia absolutos con respecto a la base del robot, es decir, las matrices de transformación homogéneas 0A1, ..., 0An etc.

- 2. La tercera columna corresponde al vector \mathbf{z}_{i} de cada uno de los sistemas de referencia.
- 3. La cuarta columna corresponde al vector \mathbf{x}_i de posiciones absolutas de los sistemas de referencia con respecto al sistema de referencia de la base del robot.

Cálculo Numérico de la Matriz Jacobiana (cont.)

Sabiendo que $z_0 = [0 \ 0 \ 1]$ y $t_0 = [0 \ 0 \ 0]$ (por definición), se define a la matriz jacobiana de manera numérica como (matriz de 6xn):

$$J=\left(egin{array}{cccc} z_0 imes(t_n-t_0) & \ldots & z_{n-1} imes(t_n-t_{n-1})\ z_0 & \ldots & z_{n-1} \end{array}
ight)$$

- Cada columna de la matriz representa a cada una de las articulaciones.
- Las primeras 3 filas representan la ponderación de la velocidad lineal para los ejes x v z respectivamente.
- \circ Ejemplo: siendo la fila 1 = (-70 0 0 0 0 0) para un robot de 6 GDL, entonces $\hat{x} = -70*q_1$ Las últimas 3 filas representan la ponderación de la velocidad angular para $\hat{\omega}_x$ $\acute{\omega}_z$ respectivamente. Ejemplo: siendo la fila 6 = (1 0 0 1 0 1) para un robot de 6 GDL, entonces $\acute{\omega}_z=q_1+q_4+q_6$

Configuraciones Singulares

- Jacobiano (determinante de la matriz jacobiana) nulo.
 - \circ det(J) = |J| = 0 \Rightarrow Matriz Singular (\nexists A⁻¹).
 - Incremento infinitesimal en coordenadas cartesianas implica incremento infinito en coordenadas articulares.
 - En las inmediaciones de las configuraciones singulares, el pretender que el extremo del robot se mueva a velocidad constante, obligaría a movimientos de las articulaciones a velocidades inabordables por sus actuadores.
 - o Implica pérdida de algún grado de libertad.
- Tipos de Singularidades:
 - o En los límites del espacio de trabajo del robot.
 - El extremo se encuentra en algún punto límite de trabajo interior o exterior.
 - o En el interior del espacio de trabajo del robot.
 - Alineación de dos o más ejes de las articulaciones del robot.
- Estos casos requieren su estudio y eliminación.

Bibliografía

- Cinemática de Robot 3GDL Método de Denavit-Hartenberg YouTube
 - https://www.youtube.com/watch?v=TNxo6Ft6JJc
 - https://www.voutube.com/watch?v=UR4wmwFUTmA
 - https://www.voutube.com/watch?v=fzUMecsvmv0
- Denavit-Hartenberg Parameters Wikipedia
 - https://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters
- Tabla de Denavit-Hartenberg explicada paso a paso con Inventor y Matlab | Robótica YouTube
 - o https://www.voutube.com/watch?v=Myrw7-hAEm8
- Cinemática Inversa Robot Antropomórfico 3 GDL YouTube
 - https://www.youtube.com/watch?v=BH5b2Hwibn8
- Cómo Calcular la Jacobiana de un Brazo Robot: Ejemplo Numérico | Sistemas Robotizados YouTube
 - https://www.youtube.com/watch?v=G5BRcxLpHGw
- Otras:
 - o https://es.slideshare.net/rubenborja/matriz-jacobiana
 - o http://www.esi2.us.es/~vivas/avr2iaei/CIN_ROB.pdf
 - o http://icaro.eii.us.es/descargas/Tema%20 4 %20parte 4 y ultima.pdf
 - o http://ee263.stanford.edu/lectures/ls.pdf
 - http://ocw.uc3m.es/matematicas/algebra-lineal/teoria/algebra teoria 14.pdf
 - o https://es.wikipedia.org/wiki/Pseudoinversa de Moore-Penrose
 - o https://groups.csail.mit.edu/drl/journal-club/papers/033005/buss-2004.pdf
 - http://www-assig.fib.upc.es/~rob/protegit/treballs/Q2-03-04/general/enders.htm

Anexo A - GDL, Home y Movimiento

- Grados de Libertad (GDL o DOF): se considera grado de libertad a cada servo que permita un movimiento.
 - o Giro sobre la base
 - o Hombro
 - \circ Codo
 - o Muñeca
 - \circ Dedos (+ servos = + falanges)
- Posición HOME: posición en la debe iniciar los movimientos y en la que debe quedar al finalizar la operación, siendo este el determinado estado de reposo de las articulaciones.
 - No debe forzar las mismas, ni tampoco ser incomodo al ambiente (plegado).
- Velocidad del Movimiento
 - Si se da solo la posición final, el movimiento puede ser brusco ⇒ enviar comandos por pasos.

Anexo B - Límites y Tipos de Servomecanismos

- Límites Físicos de los Movimientos: limitaciones de los servos.
 - o 90, 180 o 360 grados (este último generalmente continuo).
- Sistema de Control en Lazo Abierto
 - En estos sistemas de control no hay señal de salida monitoreada para generar una señal de control.
- Sistema de Control en Lazo Cerrado
 - Se monitorea la señal de salida en forma continua para compararla con la señal de referencia y calcular la señal de error.
 - La señal de error es aplicada al controlador para generar la señal de control y tratar de llevar la señal de salida al valor deseado. También es llamado control realimentado.

Gracias