Assignment 1: What is the impact of VSL on school absenteeism?

a. Pre-treatment effect analysis

i.

In this dataset, we consider absenteeism for children in school. On average, the children of the households in this dataset missed 16.45763 days of school every month before the implementation of the program and its promotion.

To counter this, a government implemented a Village Savings and Loan Program, accompanied by a randomized control trial where they led a campaign promoting the VSL program in randomly selected villages. In this case, 51.21% of the households were part of the treatment group (in villages where the VSL program was promoted) and 48.79% were in the control group (where the program was not promoted).

Overall, by the end of the campaign 12.75% of the individuals were participating in the program and it was found that all of them were part of the treatment group. This suggested that none of the households in the control group participated in the microcredit program at the endline.

In addition, when considering whether the households participating in the program were pro-government or anti-government, we find that all the households who decided to participate in the program were pro-government. This helped conclude that the effect of the program on absenteeism might also be influenced by the effect of being pro-government on absenteeism.

ii.

EXPERIMENTAL CONDITIONS	CONTROL	TREATMENT	DIFFERENCE
age_hh	46.46562	45.86179	-0.60383
	[14.53959]	[14.36723]	[0.21982]
age_sp	40.83357	40.55736	-0.27621
	[12.72111]	[12.80636]	[0.19413]
educ_hh	2.887169	3.06289	0.175721
	[2.803986]	[2.87855]	[0.04325]
educ_sp	2.620673	2.70551	0.084837
	[2.549188]	[2.674839]	[0.03976]
female_hh (binary)	0.077762	0.0745257	-0.0032363
	[0.2678602]	[0.2626839]	[0.00403]
indigenous (binary)	0.350403	0.3690154	0.0186124
	[0.4772093]	[0.4826471]	[0.00730]
dirtfloor (binary)	0.5865339	0.6124661	0.0259322
	[0.4925717]	[0.4872973]	[0.00745]
bathroom (binary)	0.6230441	0.6350497	0.0120056
	[0.4847387]	[0.481525]	[0.00735]
land (binary)	2.095306	2.057362	-0.037944
	[2.957626]	[3.345568]	[0.04809]
progov (binary)	0.4495021	0.5045167	0.0550146
	[0.4975614]	[0.5000926]	[0.00760]

b. Regression analysis and presentation of results

İ.

Source	ss	df	MS	Number of obs	=	2,161
Model Residual	4632.61404 61925.978	1 2,159	4632.61404 28.6827133	R-squared	=	161.51 0.0000 0.0696
Total	66558.592	2,160	30.814163	- Adj R-squared Root MSE	=	0.0692 5.3556
days	Coef.	Std. Err.	t	P> t [95% Co	onf.	Interval]
treatment _cons	-2.92873 15.73978	.2304498 .1643417		0.000 -3.3806 0.000 15.41		-2.476803 16.06207

$$\widehat{D}_i = 15.74 - 2.92 \text{ treatment}_i$$
(1)

Note: this table shows the results of regressions examining the change in average number of days children in households missed schools in the past 30 days, depending on whether the child was in the treatment group. D^{\wedge} is the predicted number of days absent.

ii.

Source	ss	df	MS		er of obs	=	1,032
Model Residual	9371.9357 26965.507	1 1,030	9371.935 26.180103	7 Prob 89 R-sq	uared	=	357.98 0.0000 0.2579
Total	36337.4427	1,031	35.244852	-	R-squared MSE	=	0.2572 5.1166
days	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
treatment _cons	-6.040963 15.63983	.319284 .2332991	-18.92 67.04	0.000 0.000	-6.66748 15.1820	-	-5.414441 16.09762

(2)
$$\widehat{D}_i = 15.64 - 6.04 \text{ treatment }_i$$
 (0.23) (0.32)

Note: this table shows the results of regressions examining the change in average numbers of days children in households missed schools in the past 30 days among households that are pro-government. It calculates the effect on days if the child was part of the treatment or not .

iii.

Source	SS	df	MS		er of obs 2158)	=	2,161 208.47
Model Residual	10777.1312 55781.4609	2 2,158	5388.56559 25.8486844	Prob R-sq	·	=	0.0000 0.1619
Total	66558.592	2,160	30.814163	•	•	=	
days	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
treatment progov _cons	-2.764991 -3.379836 17.27057	.2190265 .2192153 .1849256	-12.62 -15.42 93.39	0.000 0.000 0.000	-3.194516 -3.809731 16.90792	Ĺ	-2.335466 -2.94994 17.63322

(3)
$$\widehat{D}_{i} = 17.27 - 2.76 \text{ treatment}_{i} - 3.38 \text{ progov}_{i}$$

$$(0.18) \quad (0.22)$$

Source	SS	df	MS	Numbe	r of obs	=	2,161
				F(12,	2148)	=	62.26
Model	17175.2862	12	1431.27385	Prob	> F	=	0.0000
Residual	49383.3059	2,148	22.9903659	R-squ	ared	=	0.2580
				Adj R	-squared	=	0.2539
Total	66558.592	2,160	30.814163	Root	MSE	=	4.7948
days	Coefficient	Std. err	. t	P> t	[95%	conf.	interval]
treatment	.279567	.2857831	0.98	0.328	2808	734	.8400074
participation	-6.354367	.414164	-15.34	0.000	-7.166	571	-5.542162
progov	.1128626	.3119205	0.36	0.718	498	835	.7245602
age_hh	.0195598	.0134372	1.46	0.146	0067	915	.0459111
age_sp	0112076	.0148881	-0.75	0.452	0404	042	.017989
educ_hh	0118987	.0455727	-0.26	0.794	1012	699	.0774724
educ_sp	.0237019	.0498443	0.48	0.634	0740	462	.12145
female_hh	1.069567	.403428	2.65	0.008	.2784	168	1.860717
indigenous	9457889	.2266839	-4.17	0.000	-1.390	332	5012461
dirtfloor	5459723	.2284214	-2.39	0.017	9939	224	0980221
bathroom	0855203	.2176394	-0.39	0.694	5123	261	.3412856
land	0756914	.0328616	-2.30	0.021	1401	353	0112475
_cons	15.99262	.6278872	25.47	0.000	14.76	129	17.22395

.

Note: this table provides the results of regressions examining the changes in average numbers of days children in households missed schools in the past 30 days whether the child is part of the treatment group and whether they are in a pro-government household.

$$\begin{split} & (4) \\ & \hat{D_i} = & 15.99 + 0.28 \textit{treatment}_i - 6.35 \textit{ participation}_i + 0.11 \textit{ progov}_i + 0.02 \textit{ age } _\textit{hh}_i - 0.01 \textit{age } _\textit{sp}_i - 0.01 \textit{educ } _\textit{hh}_i + 0.02 \textit{educ } _\textit{sp}_i \\ & + 1.06 \textit{ female } _\textit{hh}_i - 0.95 \textit{indigenous}_i - 0.55 \textit{dirtfloor}_i - 0.09 \textit{bathroom}_i - 0.08 \textit{land}_i \end{split}$$

Note: this table provides the results of regressions examining the changes in average numbers of days children in households missed schools in the past 30 days, controlling for whether the child was part of the treatment, whether they participated in the VSL program, and controlling for other variables like whether the household is pro government, the age of head of household and spouse, education of the head of household and spouse, whether the head of the household is a woman or if they speak an indigenous language, wealth (as shown by 'dirtfloor', 'bathroom' and 'land').

i۷.

Dependent Variable	(1) Days	(2) Days	(3) Days	(4) Days
Treatment (Endline)	-2.93873 [0.2304498]		-2.764991 [0.2190265]	0.279567 [0.2857831]
Treatment* Endline* Progov		-6.040963 [0.319284]		
Progov			-3.379836 [0.2192153]	0.1128626 [0.3119205]
Participation				-6.354367 [0.414164]
Age_hh				0.0195598 [0.0134372]
Age_sp				-0.0112076 [0.0148881]
Educ_hh				-0.0118987 [0.0455727]
Educ_sp				0.0237019 [0.0498443]
female_hh				1.069567 [0.403428]
Indigenous				-0.9457889 [0.2266839]
Dirtfloor				-0.5459723 [0.2284214]
Bathroom				-0.0855203 [0.2176394]
Land				-0.0756914 [0.0328616]
Mean of Dependent Variable	16.44976	16.44976	16.44976	16.44976
Observations	4323	4323	4323	4323
R-squared	0.0696	0.2579	0.1619	0.2580

c. Discussion of results and further analysis

i.

Firstly, we found that the VSL program had a causal impact on absenteeism. This was evident in the regressions run in which we analyzed the relationship between days absent and the independent variables in both treatment and control groups.

When we look at absenteeism more precisely, we see that at the endline, households who did not participate in the program still missed 15.84225 days of school per month on average. On the other hand, we found that the households that participated in the program then missed only 9.5988865 days of school per month on average.

The first regression shows that the treatment has an impact on absenteeism, whilst the second and third regression indicate that this effect is increased when the households are pro-government. However, when we control for participation (evident in the fourth regression), those effects disappear. As a result, we found that only participation in the program impacts absenteeism, by reducing the days missed by 6 on average.

As participation in the program can be impacted by other variables such as the households being pro-government or other, we used the treatment as an instrumental variable to isolate the effect of the program, outside of other variables.

ii.

We would like to have a variable showing the number of children of schooling age per household. We believe there will be a positive relationship between the number of children in a household of school age and school absenteeism. We also believe there to be greater program participation for larger households. Given income is controlled for, larger Households with more children of schooling age will face a greater burden. A larger number of children of schooling age will mean that the costs associated with schooling will represent a larger percentage of household income. This assumption was highlighted by (Romero & Lee, 2008), with larger families having "[chronically absent]" children in school. Therefore we expect that larger households will be more likely to participate in the program. In addition, we anticipate that the program effect may be even larger for large households as opposed to small households on school absenteeism. This is due to our hypothesis that children in larger families may be more prone to school absenteeism due to a lower amount of income available per child; holding the assumption that income is spread evenly per child.

Furthermore, for children whose Family participated in the Programme we would also like to measure years of completed education and adult wages. These variables would help extend the analysis, as we

expect there to be an inverse relationship between school absenteeism and years of completed education. + adult wages. Did the children of families in the program continue school for a longer time? Did the program have an impact on their wages? If true, the program may also prove viable in being a solution to increasing years of completed education, and increasing adult wages.

Reference:

 Romero, M., & Lee, Y.-S. (2008). The Influence of Maternal and Family Risk on Chronic Absenteeism in Early Schooling. New York, NY: Columbia Univ. National Center for Children in Poverty.