Модифицированная программа STALABS-М для моделирования параметров комплексов в растворах по данным физико-химических методов

<u>Крутиков А.А.,</u> Бухаров М.С., Гилязетдинов Э.М., Серов Н.Ю., Штырлин В.Г.

Казань 2022

Крутиков Александр Александрович разработчик C++, к.х.н.

Почта: i@aakrutikov.ru

github: sanblch

Диссертация: Термодинамика, стереоселективность образования и структура гомо- и гетеролигандных комплексов никеля(II) с аминокислотами.

Эта презентация: https://sanblch.github.io/mmm2022.pdf

Прямая задача расчета равновесного состава

Уравнение реакции общего вида:

$$\sum_{l}^{m_{l}} \nu_{jl} B_{l} \stackrel{\beta_{j}}{\rightleftharpoons} A_{j} \tag{1}$$

Уравнение закона действующих масс:

$$[A_{ij}] = \exp(heta_j + \sum_{l}^{m_l}
u_{jl} * ln[B_{il}])$$
 или $[A_{ij}] = eta_j * \prod_{l}^{m_l} [B_{il}]^{
u_{jl}}$ (2)

Уравнение материального баланса:

$$c_{jl} = \sum_{j}^{M} \nu_{jl} * [A_{ij}]$$

$$\tag{3}$$

 $[A_{ij}]$ - равновесная концентрация формы A_j , β_j - элемент вектора натуральных логарифмов констант равновесия в j-ой реакции, $\theta_j = ln\beta_j$, ν_{jl} - стехиометрический коэффициент компонента B_l в j-ой реакции для l-ой частицы, $[B_{il}]$, c_{il} - равновесная и общая концентрация l-ой базисной частицы в i-ом эксперименте

Пример матрицы стехиометрии

матрица стехиометрии				lgβ	равновесие
1	1	0	0	0	$Ni^{2+} = Ni^{2+}$
2	0	1	0_	0	$HisH_3^{2+} = HisH_3^{2+}$
3	0	1	-1	-1.9860	$HisH_3^{2+} - H^+ = HisH_2^+$
4	0	1	-2	-8.2510	$HisH_3^{2+} - 2H^+ = HisH$
5	0	1	-3	-17.454	$HisH_3^{2+} - 3H^+ = His^-$
6	0	1	-4	-34.754	$HisH_3^{2+} - 4H^+ = HisH_{-1}^{-2}$
7	1	1	-2	-5.32847	$Ni^{2+} + HisH_3^{2+} - 2H^+ = Ni(HisH)^{2+}$
8	1	1	-3	-8.7771	$Ni^{2+} + HisH_3^{2+} - 3H^+ = Ni(His)^+$
9	1	2	-4	-13.8245	$Ni^{2+} + HisH_3^{2+} - 4H^+ = Ni(HisH)_2^{2+}$
10	1	2	-5	-14.6652	$Ni^{2+} + 2HisH_3^{2+} - 5H^+ = Ni(His)(HisH)^+$
11	1	2	-6	-19.4300	$Ni^{2+} + 2HisH_3^{2+} - 6H^+ = Ni(His)_2$
12	1	2	-7	-32.5000	$Ni^{2+} + 2HisH_3^{2+} - 7H^+ = Ni(His)(HisH_{-1})^-$
13	1	2	-8	-46.0000	$Ni^{2+} + 2HisH_3^{2+} - 8H^+ = Ni(HisH_{-1})_2^{2-}$
14	1	3	-8	-27.2650	$Ni^{2+} + 3HisH_3^{2+} - 8H^+ = Ni(His)_2(HisH)$
15	1	3	-9	-14.9030	$Ni^{2+} + 3HisH_3^{2+} - 9H^+ = Ni(His)_3^-$
16	1	0	-1	-9.0300	$Ni^{2+} - H^+ = Ni(OH)^+$
17	1	0	-2	-19.4500	$Ni^{2+} - 2H^{+} = Ni(OH)_{2}$
18	1_	0	-3	-30.6700	$Ni^{2+} - 3H^{+} = Ni(OH)_{3}$

Расчет данных рН-метрии

Выражение функции Бьеррума в общем виде:

$$n_i^{\mathsf{Teop.}} = \frac{c_{iH} - [B_{iH}]}{c_{iL}} \tag{4}$$

Выражение функции Бьеррума для экспериментального вычисления:

$$n_{i}^{\text{эксп.}} = \frac{\frac{10^{lg[B_{iH}]}*(V_{0} + \Delta V_{i})}{f_{H}} - c_{0}^{T} * \Delta V_{i} - \frac{10^{lgK_{w} - lg[B_{iH}]}*(V_{0} + \Delta V_{i})}{f_{OH}}}{c_{iL} * V_{0}} + \alpha$$
(5)

 V_0 - исходный объем раствора, ΔV_i - добавленный объем титранта, c_0^T - общая концентрация титранта, f_H , f_{OH} - коэффициенты активности протона, гидроксид-иона, α - степень оттитрованности лиганда, L,H - индексы лиганда, протона.

Расчет данных спектрофотометрии

Функция отклика для метода многоволновой спектрофотометрии:

$$D^M = C^M * E (6)$$

 D^M - матрица поглощения системы, приведенная к единице концентрации поглощающей частицы, размерности NxW (W - количество длин волн), C^M - матрица массовых долей поглощающих частиц размерности NxS (S - количество поглощающих частиц), E - матрица молярных коэффициентов экстинкции размерности SxW.

Расчет молярных коэффициентов экстинкции:

$$E = (C^{M})^{-1} * D^{M}, N = W$$
 (7)

$$E = ((C^{M})^{T} * C^{M})^{-1} * (C^{M})^{T} * D^{M}, N \neq W$$
 (8)

FNNLS - метод быстрых неотрицательных наименьших квадратов:

$$r = (C^{M})^{T} * D^{M} - (C^{M})^{T} * C^{M} * E,$$
 (9)

r - вектор невязок.

Расчет спин-спиновой и спин-решеточной релаксации ядер растворителя

Парамагнитные вклады (р) в измеряемые времена релаксации T_1 и T_2 от M химических форм:

$$\frac{1}{T_{1p}} = \frac{1}{T_1} - \frac{1}{T_{1(A)}} = \sum_{j=1}^{M} K_{1j} * [A_j]$$
 (10)

$$\frac{1}{T_{2p}} = \frac{1}{T_2} - \frac{1}{T_{2(A)}} = \sum_{j=1}^{M} K_{2j} * [A_j]$$
 (11)

 $T_{1(A)}, T_{2(A)}$ - времена спин-спиновой и спин-решеточной релаксации ядер в чистом растворителе A_0

Расчет спин-спиновой и спин-решеточной релаксации ядер растворителя

Молярные коэффициенты спин-решеточной и спин-спиновой релаксации:

$$K_1 = \sum_{n=0}^{q-1} \frac{P'_{(n)}}{\tau_{(n)} + T_{1(n)}}$$
 (12)

$$K_{2} = \sum_{n=0}^{q-1} \frac{P'_{(n)}}{\tau_{(n)}} * \frac{T_{2(n)}^{-2} + T_{2(n)}^{-1} * \tau_{(n)}^{-1} + \Delta\omega_{(n)}^{2}}{(T_{2(n)}^{-1} + \tau_{(n)}^{-1})^{2} + \Delta\omega_{(n)}^{2}}$$
(13)

 $n=\overline{1,q},\ q$ - число неэквивалентных позиций, $P'_{(n)}=P_{(n)}/[A_j], P_{(n)}$ -вероятности пребывания ядер растворителя в n-ом положении формы $A_j,\ au_{(n)}$ - время жизни этих ядер в соответстующем положении, $T_{1(n)},\ T_{2(n)}$ - времена спин-решеточной и спин-спиновой релаксации ядер в n-ом положении, $\Delta\omega_{(n)}$ - разность ларморовых частот прецессий ядер между A_0 и n-ым положением формы A_j .

Расчет спин-спиновой и спин-решеточной релаксации ядер растворителя

Время жизни ядер растворителя в *п*-ом положении:

$$\tau_{(n)}^{-1} = k_0^{(n)} + \sum_{m=1}^{M_{(n)}} k_m^{(n)} * [A_{m(n)}]$$
 (14)

 $k_0^{(n)}, k_m^{(n)}$ - константы скорости реакций химического обмена первого и второго кинетического порядков без активации и с активацией некоторыми химическими формами, которые выделены в подмножества $\{A_{m(n)}, m=\overline{1,M_{(n)}}\}$ для каждого значения n.

Расчет целевой функции

Основное выражение целевой функции:

$$\Phi(\eta, \theta) = \sum_{k=1}^{s} \sum_{i=1}^{N_k} \frac{w_{ii} * (F_i^{\text{skcn.}} - F_i^{\text{teop.}})^2}{N_k - D}$$
 (15)

 η - набор спектральных, релаксационных и кинетических параметров N_k - число экспериментальных точек k-ого метода, $N=\sum_{k=1}^s N_k,$ D - число подбираемых параметров, w_{ii} - статический вес, дающийся соотношением $w_{ii}=1/(\sigma^2*F_{ki}^{\text{эксп.}}*F_{ki}^{\text{тeop.}}),\;\sigma_0\text{ - ошибка метода.}$

R-фактор Гамильтона:

$$R = \sqrt{\frac{\sum_{i}^{N} w_{ii} * (F_{i}^{\mathsf{skcn.}} - F_{i}^{\mathsf{Teop.}})^{2}}{\sum_{i}^{N} w_{ii} * (F_{i}^{\mathsf{skcn.}})^{2}}}$$
(16)

Расчет спектров поглощения

Рис.1 : (а) Спектры поглощения растворов при различных рН, (b) распределение долей накопления комплексов (α) в зависимости от рН в системе медь(II) — глицил-L-тирозин (GY·H) (1:2) в условиях СФ-титрования; (c) Реконструированные индивидуальные спектры поглощения комплексных форм меди(II) с глицил-L-тирозином (GY·H); $c_{Cu(II)}=3.90410^{-3}$ М, $c_{GYH}=8.10810^{-3}$ М; T=298 K, 1.0 М KNO_3

Расчет КД спектров

Рис.2 : Экспериментальный КД спектр (a) и реконструированный КД спектр индивидуальные спектры комплеков (b) в системе цинк(II) — L-цистеин 25.0 ° C на фоне 0.15 M NaCl: $1-CysH_2$, 2-Zn(Cys), $3-Zn(Cys)_2^{2-}$, $4-Zn_2(Cys)_2(CysH)^-$, $5-Zn_4(Cys)_6^{4-}$.

Расчет параметров ЯМ релаксации

Рис.3 : Зависимость молярного коэффициента спин-спиновой релаксации ($_2$) $^{-1}$ от рН в системе медь(II) — L-аргинин при соотношении металл/лиганд 1:20, T = 37 $^{\circ}$ C; $c_{Cu(II)} = 5.0110^{-3}$ M, $c_{L-Arg} = 1.00010^{-1}$ M, 0.15 M NaCl.

Оценка равновесных концентраций форм в многокомпонентной системе

Постановка задачи

- 1. Создать систему из 12 компонентов по данным 10 тройных систем
- 2. Добавить в систему бис-комплексы с теоретически расчитанными константами
- 3. Рассчитать равновесные концентрации

Оценка равновесных концентраций форм в многокомпонентной системе

Итоги

- 1. Матрица стехиометрии 166х13
- 2. Утилиты по работе с матрицами стехиометрии (объединение, упорядочивание)
- 3. toml-конфиг для сборки сложных систем из более простых
- 4. Визуализация matplotlib

Оценка равновесных концентраций форм в многокомпонентной системе

Рис.4: Диаграмма распределения комплексных форм в системе медь(II) — 1,10-фенантролин (Phen) — 10 природных аминокислот в широком диапазоне pH (минорные формы не обозначены) на фоне 0.15 M NaCl при $T=37.0\,^{\circ}C$. Концентрации меди(II) и Phen составляют 0.001 M, остальных десяти аминокислот — 0.1 M.

Вариант интерфейса программы

Демо-версия для браузера

https://github.com/sanblch/nilcc

Благодарю за внимание!