Errors in classification

			Cond	lition		
			(as determined by "Gold standard")			
		Total population	Condition positive	Condition negative	Prevalence = Σ Condition positive Σ Total population	
	Test outcome	Test outcome positive	True positive	False positive (Type I error)	Positive predictive value (PPV, Precision) = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	False discovery rate (FDR) = Σ False positive Σ Test outcome positive
01		Test outcome negative	False negative (Type II error)	True negative	False omission rate (FOR) = Σ False negative Σ Test outcome negative	Negative predictive value (NPV) = Σ True negative Σ Test outcome negative
		Positive likelihood ratio (LR+) = TPR/FPR	True positive rate (TPR, Sensitivity, Recall) = Σ True positive Σ Condition positive	False positive rate (FPR, Fallout) =	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	
		Negative likelihood ratio (LR-) = FNR/TNR	False negative rate (FNR) = Σ False negative Σ Condition positive	True negative rate (TNR, Specificity, SPC) = Σ True negative Σ Condition negative		
		Diagnostic odds ratio				

(DOR) = LR+/LR-

Classify using their votes

Classify using their votes

Model performance: "How many times did I get it right?"

Classify using their votes

Model performance: "How many times did I get it right?"

Accuracy: % correct prediction of all predictions

Classify using their votes

Model performance: "How many times did I get it right?"

Accuracy: % correct prediction of all predictions

95% accuracy: Good job!

Classify using health records and tests

Classify using health records and tests

"How many times did I get it right?"

Accuracy: % correct prediction of all predictions

Classify using health records and tests

"How many times did I get it right?"

Accuracy: % correct prediction of all predictions

Imagine the stupidest predictor: "Always guess healthy"

Classify using health records and tests

"How many times did I get it right?"

Accuracy: % correct prediction of all predictions

Imagine the stupidest predictor: "Always guess healthy"

What will the accuracy be?

Classify using health records and tests

"How many times did I get it right?"

Accuracy: % correct prediction of all predictions

Imagine the stupidest predictor: "Always guess healthy"

What will the accuracy be?
It will be right 99% of the time!
You won't catch any sick people. Useless.

	P' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

	Spam (Predicted)	Non-Spam (Predicted)
Spam (Actual)	27	6
Non-Spam (Actual)	10	57

Recall (Sensitivity) = TP / (TP + FN)

Precision = TP / (TP+FP)

Specificity = TN / (TN + FP)

Accuracy = (TP + TN) / (TP + TN + FP + FN)

	Spam (Predicted)	Non-Spam (Predicted)
Spam (Actual)	27	6
Non-Spam (Actual)	10	57

Recall (Sensitivity) = TP / (TP + FN) = .82

Precision = TP / (TP+FP) = .73

Specificity = TN / (TN + FP) = .85

Accuracy = (TP + TN) / (TP + TN + FP + FN) = .84

Precision: Out of all cases I <u>predicted as positive</u>, how many times was I right?

Precision: Out of all cases I <u>predicted as positive</u>, how many times was I right? (% times I was right when I told somebody they had leukemia)

Precision: Out of all cases I <u>predicted as positive</u>, how many times was I right? (% times I was right when I told somebody they had leukemia)

Recall: Out of all the (few) positive cases, how many did I find

Precision: Out of all cases I <u>predicted as positive</u>, how many times was I right? (% times I was right when I told somebody they had leukemia)

Recall: Out of all the (few) positive cases,
how many did I find
(% of actual leukemia patients I could catch with
my classifier)

	Spam (Predicted)	Non-Spam (Predicted)
Spam (Actual)	0	10
Non-Spam (Actual)	0	990

Recall (Sensitivity) = TP / (TP + FN) = 0/10 = 0

Precision = TP / (TP+FP) = $0/0 \rightarrow undefined!$

Specificity = TN / (TN + FP) = 100%

Accuracy = (TP + TN) / (TP + TN + FP + FN) = 99%

	P' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

```
Precision = TP / (TP + FP)
Recall = TP / (TP + FN)
```

	P' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Focusing on a single class (positive: the one with small prevalence) in skewed cases

Precision =
$$TP / (TP + FP)$$

Recall = $TP / (TP + FN)$

	P' (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Focusing on a single class (positive: the one with small prevalence) in skewed cases

Precision =
$$TP / (TP + FP)$$

Recall =
$$TP / (TP + FN)$$

F1 = 2 *
$$\frac{\text{precision * recall}}{\text{precision + recall}}$$

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

Higher threshold: More sure about positives lower recall, higher precision lower True Positive Rate, lower False Positive Rate

Lower threshold: Better at catching positives higher recall, less precision higher True Positive Rate, higher False Positive Rate Each threshold is a different model

Plot their True Positive Rate & False Positive Rate

Receiver Operating Characteristic

Lower threshold: Better at catching positives higher recall, less precision higher True Positive Rate, higher False Positive Rate

Higher threshold: More sure about positives lower recall, higher precision lower True Positive Rate, lower False Positive Rate

Area under curve (AUC)
An evaluation of a classification algorithm (including all possible thresholds)

from sklearn.metrics import

Classification metrics

See the *Classification metrics* section of the user guide for further details.

metrics.accuracy_score(y_true, y_pred[,])	Accuracy classification score.
metrics.auc(x, y[, reorder])	Compute Area Under the Curve (AUC) using the trapezoidal rule
<pre>metrics.average_precision_score(y_true, y_score)</pre>	Compute average precision (AP) from prediction scores
<pre>metrics.classification_report(y_true, y_pred)</pre>	Build a text report showing the main classification metrics
<pre>metrics.confusion_matrix(y_true, y_pred[,])</pre>	Compute confusion matrix to evaluate the accuracy of a classification
<pre>metrics.fl_score(y_true, y_pred[, labels,])</pre>	Compute the F1 score, also known as balanced F-score or F-measure
metrics.fbeta_score(y_true, y_pred, beta[,])	Compute the F-beta score
<pre>metrics.hamming_loss(y_true, y_pred[, classes])</pre>	Compute the average Hamming loss.
<pre>metrics.hinge_loss(y_true, pred_decision[,])</pre>	Average hinge loss (non-regularized)
<pre>metrics.jaccard_similarity_score(y_true, y_pred)</pre>	Jaccard similarity coefficient score
metrics.log_loss(y_true, y_pred[, eps,])	Log loss, aka logistic loss or cross-entropy loss.
metrics .matthews_corrcoef(y_true, y_pred)	Compute the Matthews correlation coefficient (MCC) for binary classes
metrics .precision_recall_curve(y_true,)	Compute precision-recall pairs for different probability thresholds
metrics.precision_recall_fscore_support()	Compute precision, recall, F-measure and support for each class
metrics.precision_score(y_true, y_pred[,])	Compute the precision
metrics.recall_score(y_true, y_pred[,])	Compute the recall
<pre>metrics.roc_auc_score(y_true, y_score[,])</pre>	Compute Area Under the Curve (AUC) from prediction scores
metrics.roc_curve(y_true, y_score[,])	Compute Receiver operating characteristic (ROC)
metrics.zero_one_ioss(y_true, y_pred[,])	Zero-one classification loss.

Always remember,

Fit the model to a training set,

Calculate performance
(accuracy, precision, recall, f1, AUC, etc.)
on a test set
or (better) on a k-fold cross validation scheme