Experiment – 1.4

Student Name: Chetan Prakash UID: 23BCS13776

Branch: BE-CSE Section/Group: KRG-1B

Semester: 5th **Date:** 09-09-25

Subject Name: ADBMS Subject Code: 23CSP-333

Aim: To analyze functional dependencies in the given relations, identify candidate keys, classify attributes as prime or non-prime, remove redundant dependencies, and determine the highest normal form of the relation schemas for efficient and reliable database design.

Q1 Question:

Consider a relation R having attributes as R(ABCD), functional dependencies are given below:

Identify the set of candidate keys possible in relation R. List all the sets of prime and non-prime attributes.

Solution:

Candidate Keys:

- $AB^+ = \{A, B, C, D\} \rightarrow Key$
- $BC^+ = \{B, C, D, A\} \rightarrow Key$
- $BD^+ = \{B, D, A, C\} \rightarrow Key$

So, candidate keys = $\{AB, BC, BD\}$

Prime Attributes: A, B, C, D Non-Prime Attributes: Ø

Normal Form:

- $AB \rightarrow C$ is fine (AB is key).
- $C \rightarrow D$, $D \rightarrow A$ violate BCNF (LHS not key).
- But RHS (A, D) are prime \rightarrow valid in 3NF.

Highest Normal Form = 3NF

Q2 Question:

Relation R(ABCDE) having functional dependencies as:

Identify the set of candidate keys possible in relation R. List all the sets of prime and non-prime attributes.

Solution:

Given: R(A, B, C, D, E) with FDs: $A \rightarrow D$, $B \rightarrow A$, $BC \rightarrow D$, $AC \rightarrow BE$

Candidate Keys:

$$AC^+ = \{A,B,C,D,E\} \rightarrow Key$$

$$BC^+ = \{A,B,C,D,E\} \rightarrow Key$$

So candidate keys = $\{AC, BC\}$

Prime Attributes: A, B, C Non-Prime Attributes: D, E

Normal Form:

 $A \rightarrow D$: A not a superkey, D non-prime \rightarrow violates 3NF

Hence relation not in 2NF/3NF Highest Normal Form = 1NF

Q3 Question:

Consider a relation R having attributes as R(ABCDE), FD are given below:

Identify the set of CK possible in relation R. List all the sets of P and N-P attributes.

Solution:

Given: R(A,B,C,D,E) with FDs: $B\rightarrow A$, $A\rightarrow C$, $BC\rightarrow D$, $AC\rightarrow BE$

Candidate Keys:

$$A^+ = \{A,C,B,E,D\} \rightarrow Key$$

$$B^+ = \{B,A,C,E,D\} \rightarrow Key$$

So candidate keys = $\{A, B\}$

Prime Attributes: A, B

Non-Prime Attributes: C, D, E

Normal Form:

Every FD has a superkey LHS (B, A, BC, AC are all superkeys) \rightarrow satisfies BCNF.

Highest Normal Form = BCNF

Q4 Question:

Consider a relation R having attributes as R(ABCDEF), functional dependencies are given below:

Identify the set of candidate keys possible in relation R. List all the sets of prime and non-prime attributes.

Solution:

Given: R(A,B,C,D,E,F) with FDs: $A\rightarrow BCD$, $BC\rightarrow DE$, $B\rightarrow D$, $D\rightarrow A$

Candidate Keys:

$$A^+ = \{A,B,C,D,E\} \rightarrow \text{missing } F \rightarrow AF \text{ is key}$$

$$B^+$$
 (with F) \rightarrow BF^+ = {A,B,C,D,E,F} \rightarrow Key

$$D^+$$
 (with F) \rightarrow DF^+ = {A,B,C,D,E,F} \rightarrow Key

So candidate keys = $\{AF, BF, DF\}$

Prime Attributes: A, B, D, F

Non-Prime Attributes: C, E

Explanation:

 $A^+ = \{A,B,C,D,E\}$ (misses F) \Rightarrow AF key. BF and DF similarly cover all attributes.

Normal Form:

 $A \rightarrow C$ (A is part of key AF) gives a partial dependency determining non-prime $C \rightarrow$ violates 2NF.

Highest Normal Form = 1NF

Q5 Question:

Designing a student database involves certain dependencies, which are listed below:

The task here is to remove all the redundant FDs for efficient working OF DBMS

Solution:

Given: R(W, X, Y, Z) with FDs: $X \rightarrow Y$, $WZ \rightarrow X$, $WZ \rightarrow Y$, $Y \rightarrow W$, $Y \rightarrow X$, $Y \rightarrow Z$

Minimal Cover: $\{X \rightarrow Y, WZ \rightarrow X, Y \rightarrow W, Y \rightarrow Z\}$

Candidate Keys: X, Y, WZ

Discover. Learn. Empower.
Prime Attributes: W, X, Y, Z

Non-Prime Attributes: Ø

Explanation:

 $Y^+=\{Y,W,X,Z\}, X^+=\{X,Y,W,Z\}, WZ^+=\{W,Z,X,Y\}$ — each closure gives all attributes, so X, Y, WZ are keys. All attributes are prime.

Highest Normal Form: BCNF (every FD has a key as LHS).

Q6 Question:

Debix Pvt Ltd needs to maintain a database with dependent attributes ABCDEF. These attributes are functionally dependent on each other, for which the functional dependency set F is given as:

$$A \rightarrow BC, D \rightarrow E, BC \rightarrow D, A \rightarrow D$$

Consider a universal relation R1(A, B, C, D, E, F) with functional dependency set F; also, all attributes are simple and take atomic values only. Find the highest normal form along with the candidate keys with prime and non-prime attributes

Solution:

Given: R(A,B,C,D,E,F) with FDs: $A \rightarrow BC$, $D \rightarrow E$, $BC \rightarrow D$, $A \rightarrow D$

Candidate Key:

 $A^+ = \{A,B,C,D,E\} \rightarrow \text{missing } F \rightarrow AF \text{ is key}$

So candidate keys = $\{AF\}$

Prime Attributes: A, F

Non-Prime Attributes: B, C, D, E

Explanation:

A determines B,C,D,E but not F, so AF covers all attributes. Non-prime attributes (B,C,D,E) depend on A, which is only part of the key AF \rightarrow partial dependency \rightarrow violates 2NF.

Highest Normal Form = 1NF

Learning Outcomes

After completing these questions, students will be able to:

- 1. Apply closure method to find candidate keys.
- 2. Differentiate prime and non-prime attributes in a relation.
- 3. Detect and eliminate redundant functional dependencies.