Appendix A

1. Derivation of $\hat{\beta}$ for ordinary least squares

Let b be an estimator of β

$$(y - X_{rea}b)'(y - X_{rea}b) = y'y - 2b'X'_{rea}y + b'X'_{rea}X_{rea}b$$

Differentiating by a and setting the derivative to 0 to derive the local minimum/maximum,

$$egin{split} rac{d}{db}(y'y-2b'X'_{reg}y+b'X'_{reg}X_{reg}b)&=0\ -2X'_{reg}y+2X'_{reg}X_{reg}b&=0\ X'_{reg}X_{reg}b&=X'_{reg}y \end{split}$$

$$\hat{\beta} = b = (X'_{reg}X_{reg})^{-1}X'_{reg}y$$
 (if the inverse of $X'_{reg}X_{reg}$ is unique)

2. Condition for unique $\hat{\beta}$

 $rank(X'X) = column \ rank \ of \ X \rightarrow if \ X$ has full column $rank, \ X'X$ is full rank and invertible and $\hat{\beta}$ is unique.

3. Definitions of SST, SSR, SSE and $\hat{\sigma}^2$

Total sum of squares (SST) =
$$\sum_{i=1}^{n} (y_i - \bar{y})^2$$

= $\sum_{i=1}^{n} y_i^2 - 2 \sum_{i=1}^{n} y_i \bar{y} + \sum_{i=1}^{n} \bar{y}^2$
= $\sum_{i=1}^{n} y_i^2 - 2 \bar{y} \sum_{i=1}^{n} y_i + \sum_{i=1}^{n} \bar{y}^2$
= $\sum_{i=1}^{n} y_i^2 - 2 \bar{y} n \bar{y} + n \bar{y}^2$
= $\sum_{i=1}^{n} y_i^2 - n \bar{y}^2$
= $y'y - n \bar{y}^2$

$$\begin{split} \sum_{i=1}^{n} \hat{\epsilon}_{i} &= j'(y - \hat{y}) \\ &= \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \end{bmatrix} X_{reg}'(y - X\hat{\beta}) \text{ since the first column of } X_{reg} \text{ is j} \\ &= \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \end{bmatrix} X_{reg}'(y - X_{reg}(X_{reg}'X_{reg})^{-1}X_{reg}'y) \\ &= \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \end{bmatrix} X_{reg}'(I - X_{reg}(X_{reg}'X_{reg})^{-1}X_{reg}'y) \\ &= \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \end{bmatrix} (X_{reg}' - X_{reg}'X_{reg}(X_{reg}'X_{reg})^{-1}X_{reg}'y) \\ &= 0 \end{split}$$

$$\hat{y} = y - \hat{\epsilon}$$

$$\begin{split} \hat{\bar{y}} &= \bar{y} - \hat{\bar{\epsilon}} \\ &= \bar{y} - \frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_{i} \\ &= \bar{y} \end{split}$$

$$\begin{split} \text{Regression sum of squares (SSR)} &= \sum_{i=1}^n (\hat{y}_i - \bar{\hat{y}})^2 \\ &= \sum_{i=1}^n (\hat{\beta}^{'} x_{(i)} - \bar{\hat{y}})^2 \\ &= \sum_{i=1}^n (\hat{\beta}^{'} x_{(i)})^2 - 2 \sum_{i=1}^n \hat{\beta}^{'} x_{(i)} \bar{\hat{y}} + \sum_{i=1}^n \bar{\hat{y}}^2 \\ &= (X_{reg} \hat{\beta})^{'} X_{reg} \hat{\beta} - 2 \bar{\hat{y}} \sum_{i=1}^n \hat{\beta}^{'} x_{(i)} + \sum_{i=1}^n \bar{\hat{y}}^2 \\ &= \hat{\beta}^{'} X_{reg}^{'} X_{reg} \hat{\beta} - 2 \bar{\hat{y}} n \bar{\hat{y}} + n \bar{\hat{y}}^2 \\ &= \hat{\beta}^{'} X_{reg}^{'} X_{reg} (X_{reg}^{'} X_{reg})^{-1} X_{reg}^{'} y - n \bar{\hat{y}}^2 \\ &= \hat{\beta}^{'} X_{reg}^{'} y - n \bar{y}^2 \end{split}$$

Sum of squared error (SSE) =
$$\sum_{i=1}^{n} (\hat{\epsilon}_{i} - \bar{\hat{\epsilon}})^{2}$$

$$= \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} (\operatorname{since} \sum_{i=1}^{n} \hat{\epsilon} = 0 \rightarrow \bar{\hat{\epsilon}} = 0)$$

$$= (y - X_{reg}\hat{\beta})'(y - X_{reg}\hat{\beta})$$

$$= y'y - 2\hat{\beta}'X'_{reg}y + \hat{\beta}'X'_{reg}X_{reg}\hat{\beta}$$

$$= y'y - 2\hat{\beta}'X'_{reg}y + \hat{\beta}'X'_{reg}X_{reg}(X'_{reg}X_{reg})^{-1}X'_{reg}y$$

$$= y'y - \hat{\beta}'X'_{reg}y = y'(I - X_{reg}(X'_{reg}X_{reg})^{-1}X'_{reg})y$$

It can be verified that SST=SSR+SSE.

$$\hat{\sigma}^2 = rac{SSE}{n-p-1}$$

4. Derivation of distribution of $\hat{\beta}$

$$\begin{split} \hat{cov}(\hat{\beta}) &= \hat{cov}((X'_{reg}X_{reg})^{-1}X'_{reg}y) \\ &= (X'_{reg}X_{reg})^{-1}X'_{reg}\hat{var}(y)((X'_{reg}X_{reg})^{-1}X'_{reg})' \\ &= (X'_{reg}X_{reg})^{-1}X'_{reg}\hat{var}(y)X_{reg}(X'_{reg}X_{reg})^{-1} \\ &= (X'_{reg}X_{reg})^{-1}X'_{reg}\hat{\sigma}^2X_{reg}(X'_{reg}X_{reg})^{-1} \\ &= \hat{\sigma}^2(X'_{reg}X_{reg})^{-1} \end{split}$$

$$\hat{eta} \sim N(eta, \sigma^2(X_{reg}'X_{reg})^{-1})$$

5. Definition and some properties of an idempotent matrix

Idempotent

A square matrix A is idempotent if it satisfies $A^2=A, A^\prime=A$. Properties

rank(A)=trace(A)

I-A is idempotent.

(I-A)A=0 and A(I-A)=0

6. Derivation of t-statistic

Let $P_A = A(A'A)^{-1}A$. P_A is idempotent.

$$egin{aligned} rac{\hat{\epsilon}'\hat{\epsilon}}{\sigma^2} &= rac{((I-X_{reg}\hat{eta})y)'((I-X_{reg}\hat{eta})y)}{\sigma^2} \ &= rac{y'(I-X_{reg}(X_{reg}'X_{reg})^{-1}X_{reg}')'(I-X_{reg}(X_{reg}'X_{reg})^{-1}X_{reg}')y}{\sigma^2} \ &= rac{y'(I-P_{X_{reg}})y}{\sigma^2} ext{ since } I-P_{X_{reg}} ext{ is idempotent} \ &= rac{y'}{\sigma}(I-P_{X_{reg}})rac{y}{\sigma} \end{aligned}$$

Theorem 1

Let $y \sim N_n(\mu, \Sigma)$, let A be a $n \times n$ symmetric matrix. Then $y'Ay \sim \chi^2(rank(A), \frac{1}{2}\mu'A\mu)$ iff $\Sigma^{\frac{1}{2}}A\Sigma^{\frac{1}{2}}$ is idempotent.

Since $\frac{y}{\sigma} \sim N_n(\frac{\mu_y}{\sigma}, \frac{1}{\sigma}\sigma^2I\frac{1}{\sigma}=I)$, $I-P_{X_{reg}}$ is symmetric and $I^{\frac{1}{2}}(I-P_{X_{reg}})I^{\frac{1}{2}}$ is idempotent,

(Statement 1)

$$\begin{split} \frac{y'}{\sigma}(I-P_{X_{reg}})\frac{y}{\sigma} &\sim \chi^2(rank(I-P_{X_{reg}}),\frac{1}{2}\frac{(X_{reg}\beta)'}{\sigma}(I-P_{X_{reg}})\frac{X_{reg}\beta}{\sigma}) \\ &= \chi^2(trace(I-P_{X_{reg}}),\frac{1}{2}\frac{(X_{reg}\beta)'}{\sigma}(X_{reg}\beta-X_{reg}(X_{reg}'X_{reg})^{-1}X_{reg}'X_{reg}\beta)\frac{1}{\sigma}) \text{ since } I-P_{X_{reg}} \text{ is idempotent} \\ &= \chi^2(n-trace(P_{X_{reg}}),0) \\ &= \chi^2(n-rank(X_{reg}(X_{reg}'X_{reg})^{-1}X_{reg}')) \text{ since } P_{X_{reg}} \text{ is idempotent} \\ &= \chi^2(n-rank((X_{reg}'X_{reg})^{-1}X_{reg}'X_{reg})) \\ &= \chi^2(n-(p+1)) \\ &= \chi^2(n-p-1) \end{split}$$

$$\frac{I - P_{X_{reg}}}{\sigma^2} * ((X'_{reg}X_{reg})^{-1}X'_{reg})' = \frac{X_{reg}(X'_{reg}X_{reg})^{-1} - X_{reg}(X'_{reg}X_{reg})^{-1}X'_{reg}X_{reg}(X'_{reg}X_{reg})^{-1}}{\sigma^2}$$

$$= 0$$

Hence, $\frac{\hat{\epsilon}'\hat{\epsilon}}{\sigma^2}$ and $\hat{\beta}$ are independent.

Definition

If $y \sim N(\mu,1), u \sim \chi^2(p),$ and y and u are independent, $t = \frac{y}{\sqrt{u/p}} \sim t(p,\mu)$

$$t = \frac{\frac{\hat{\beta}_k}{\sigma\sqrt{(X'_{reg}X_{reg})_{kk}^{-1}}}}{\sqrt{\frac{\hat{\epsilon}'\hat{\epsilon}}{\sigma^2}/(n-p-1)}}$$

$$= \frac{\frac{\hat{\beta}_k}{\sigma\sqrt{(X'_{reg}X_{reg})_{kk}^{-1}}}}{\sqrt{\frac{\sum_{t=1}^{n}(\hat{\epsilon}_t - \check{\epsilon})^2}{\sigma^2(n-p-1)}}} \text{ since } \hat{\epsilon} = 0$$

$$= \frac{\frac{\hat{\beta}_k}{\sqrt{(X'_{reg}X_{reg})_{kk}^{-1}}}}{\sqrt{\frac{SSE}{n-p-1}}}$$

$$= \frac{\hat{\beta}_k}{\hat{\sigma}\sqrt{(X'_{reg}X_{reg})_{kk}^{-1}}}$$

$$= \frac{\hat{\beta}_k}{\hat{\sigma}\sqrt{(X'_{reg}X_{reg})_{kk}^{-1}}}$$

$$= \frac{\hat{\beta}_k}{\hat{sd}(\hat{\beta}_k)} \sim t_{n-p-1, \frac{\beta_k}{\sigma\sqrt{(X'_{reg}X_{reg})_{kk}^{-1}}}}$$

t-test can be used to determined whether a predictor is significant in the model.

$$egin{aligned} H_0: eta_k &= 0 ext{ then } t = rac{eta_k}{\hat{sd}(\hat{eta}_k)} \sim t_{n-p-1} \ H_1: eta_k &
eq 0 ext{ then } t = rac{\hat{eta}_k}{\hat{sd}(\hat{eta}_k)} \sim t_{n-p-1, rac{eta_k}{\sigma\sqrt{(\chi'_{reg}\chi_{reg})_{kk}^{-1}}}} \ & ext{or } t = rac{\hat{eta}_k - eta_k}{\hat{sd}(\hat{eta}_k)} \sim t_{n-p-1} \end{aligned}$$

7. Derivation of F-statistic

F-test is used to compare 2 models where a model uses a subset of predictors used in the other model

WLOG, let model B be the model that uses a subset of predictors used in model A. Both models include the intercept term.

Let p_A be the no. of predictors used in model A (not counting intercept term), p_B be the no. of predictors used in model B (not counting intercept term)

$$\begin{split} SSR_A - SSR_B &= \hat{\beta}_A^{'} X_A^{'} y - n \bar{y}^2 - (\hat{\beta}_B^{'} X_B^{'} y - n \bar{y}^2) \\ &= \hat{\beta}_A^{'} X_A^{'} y - \hat{\beta}_B^{'} X_B^{'} y \\ &= ((X_A^{'} X_A)^{-1} X_A^{'} y)^{'} X_A^{'} y - ((X_B^{'} X_B)^{-1} X_B^{'} y)^{'} X_B^{'} y \\ &= y^{'} (X_A (X_A^{'} X_A)^{-1} X_A^{'} - X_B (X_B^{'} X_B)^{-1} X_B^{'}) y \\ &= y^{'} (P_{X_A} - P_{X_B}) y \\ &(X_A (X_A^{'} X_A)^{-1} X_A^{'}) X_A = X_A \\ &(X_A (X_A^{'} X_A)^{-1} X_A^{'}) [X_B - X_{A-B}] = [X_B - X_{A-B}] \end{split}$$

$$(X_A(X_A'X_A)^{-1}X_A')X_B=X_B$$

$$P_{X_A}X_B = X_B$$

$$P_{X_A}X_B(X_B'X_B)^{-1}X_B' = X_B(X_B'X_B)^{-1}X_B'$$

$$P_{X_A}P_{X_B}=P_{X_B}$$

$$(P_{X_A} - P_{X_B})(P_{X_A} - P_{X_B}) = P_{X_A}^2 - P_{X_B}P_{X_A} - P_{X_A}P_{X_B} + P_{X_B}^2$$

 $= P_{X_A} - (P'_{X_A}P'_{X_B})' - P_{X_B} + P_{X_B} \text{ since } P_{X_A}, P_{X_B} \text{ are idempotent}$
 $= P_{X_A} - (P_{X_A}P_{X_B})' - P_{X_B} + P_{X_B}$
 $= P_{X_A} - P'_{X_B} - P_{X_B} + P_{X_B}$
 $= P_{X_A} - P_{X_B}$

$$(P_{X_A} - P_{X_B})' = P'_{X_A} - P'_{X_B}$$

= $P_{X_A} - P_{X_B}$

Hence, $P_{X_A} - P_{X_B}$ is idempotent.

Since rank and trace of an idempotent matrix is equal,

$$rank(P_{X_A} - P_{X_B}) = trace(P_{X_A} - P_{X_B})$$

 $= trace(P_{X_A}) - trace(P_{X_B})$
 $= trace(X_A(X'_AX_A)^{-1}X'_A) - trace(X_B(X'_BX_B)^{-1}X'_B)$
 $= trace((X'_AX_A)^{-1}X'_AX_A) - trace((X'_BX_B)^{-1}X'_BX_B)$
 $= trace(I_{p_A+1}) - trace(I_{p_B+1})$
 $= p_A + 1 - (p_B + 1)$
 $= p_A - p_B$

Since $\frac{y}{\sigma} \sim N_n(\frac{X_{A-B}\beta_{A-B}}{\sigma}, I)$, $P_{X_A} - P_{X_B}$ is symmetric & $I^{\frac{1}{2}}(P_{X_A} - P_{X_B})I^{\frac{1}{2}}$ is idempotent, according to theorem 1 under appendix A6,

$$\begin{split} \frac{y'}{\sigma}(P_{X_A} - P_{X_B}) \frac{y}{\sigma} \sim & \chi^2(rank(P_{X_A} - P_{X_B}), \frac{1}{2} \frac{\mu'_y}{\sigma}(P_{X_A} - P_{X_B}) \frac{\mu_y}{\sigma}) \\ &= \chi^2(p_A - p_B, \frac{(X_{A-B}\beta_{A-B})'(P_{X_A} - P_{X_B})(X_{A-B}\beta_{A-B})}{2\sigma^2}) \\ &= \chi^2(p_A - p_B, \frac{\beta'_{A-B}X'_{A-B}(X_A(X'_AX_A)^{-1}X'_A - X_B(X'_BX_B)^{-1}X'_B)(X_{A-B}\beta_{A-B})}{2\sigma^2}) \\ &= \chi^2(p_A - p_B, \frac{\beta'_{A-B}(X'_{A-B}X_A(X'_AX_A)^{-1}X'_A - X'_{A-B}X_B(X'_BX_B)^{-1}X'_B)X_{A-B}\beta_{A-B}}{2\sigma^2}) \\ &= \chi^2(p_A - p_B, \frac{\beta'_{A-B}(X'_{A-B} - X'_{A-B}X_B(X'_BX_B)^{-1}X'_B)X_{A-B}\beta_{A-B}}{2\sigma^2}) \\ &= \chi^2(p_A - p_B, \frac{\beta'_{A-B}(X'_{A-B} - X'_{A-B}X_B(X'_BX_B)^{-1}X'_B)X_{A-B}\beta_{A-B}}{2\sigma^2}) \end{split}$$

$$rac{y'(I-P_{X_A})y}{\sigma^2} \sim \chi^2(n-p_A-1)$$

see statement 1 under appendix A6

$$\frac{I - P_{X_A}}{\sigma^2} * \frac{P_{X_A} - P_{X_B}}{\sigma^2} = \frac{0 - (I - P_{X_A})(P_{X_B})}{\sigma^4}$$
$$= 0$$

Hence, $\frac{\hat{\epsilon_A}'\hat{\epsilon_A}}{\sigma^2}=\frac{SSE_A}{\sigma^2}$ and $\frac{y'(P_{X_A}-P_{X_B})y}{\sigma^2}$ are independent.

Definition

If $u \sim \chi^2(p,\lambda), v \sim \chi^2(q)$, with u and v independent, then $F = \frac{u/p}{v/q} \sim F(p,q,\lambda)$ $h = p_A - p_B$

 eta_{A-B} represents the eta coefficients of predictors in model A but not in model B. X_{A-B} be the subset of columns (in the form of a matrix) of X_A excluding the columns in X_B

$$F = rac{rac{y'(P_{X_A} - P_{X_B})y}{\sigma^2}/(p_A - p_B)}{rac{y'(I - P_{X_A})y}{\sigma^2}/(n - p_A - 1)} = rac{rac{SSR_A - SSR_B}{h}}{rac{SSE_A}{n - p_A - 1}}$$

$$H_0: eta_{A-B} = 0 ext{ then } F \sim F_{h,n-p_A-1}$$

$$H_1: \beta_{A-B} \neq 0$$
 then $F \sim F_{h,n-p_A-1,\delta}$

8. F-test (case for full model vs intercept model)

$$\begin{split} \hat{\epsilon}_{intercept} &= y - X_{reg} (X_{reg}' X_{reg})^{-1} X_{reg}' y \\ &= y - j (j'j)^{-1} j' y \\ &= y - \frac{1}{n} j j' y \\ &= y - \frac{1}{n} j \sum_{i=1}^{n} y \\ &= y - \bar{y} j \end{split}$$

$$SSR_{intercept} = SST_{intercept} - SSE_{intercept}$$

$$= \sum_{i=1}^{n} (y - \bar{y})^2 - (y - \bar{y}j)'(y - \bar{y}j)$$

$$= 0$$

$$F = rac{rac{SSR_{full} - SSR_{intercept}}{(p+1)-1}}{rac{SSE_{full}}{n-p-1}} = rac{rac{SSR_{full}}{n-p-1}}{rac{SSE_{full}}{n-p-1}} ext{ since } SSR_{intercept} = 0 = rac{SSR_{full}}{rac{p}{n-p-1}} = rac{SSR_{full}}{rac{p}{n-p-1}} = rac{SSR_{full}}{rac{p}{n-p-1}}$$

9. Derivation for partial correlation

 x_j and X_{-j} make up all the columns of X_{reg} .

$$\begin{split} \text{Partial correlation} &= \hat{\rho}_{x_{j}y.X_{-j}} \\ &= \frac{\sum_{i=1}^{n} (\hat{\epsilon}_{x_{j} \text{ on } X_{-j},i} - \overline{\hat{\epsilon}}_{x_{j}}) (\hat{\epsilon}_{y \text{ on } X_{-j},i} - \overline{\hat{\epsilon}}_{y \text{ on } X_{-j}})}{\sqrt{\sum_{i=1}^{n} (\hat{\epsilon}_{x_{j} \text{ on } X_{-j},i} - \overline{\hat{\epsilon}}_{x_{j} \text{ on } X_{-j}})^{2}} \sqrt{\sum_{i=1}^{n} (\hat{\epsilon}_{y \text{ on } X_{-j},i} - \overline{\hat{\epsilon}}_{y \text{ on } X_{-j}})^{2}}} \\ &= \frac{\sum_{i=1}^{n} \hat{\epsilon}_{x_{j} \text{ on } X_{-j},i} \hat{\epsilon}_{y \text{ on } X_{-j},i}}{\sqrt{\sum_{i=1}^{n} \hat{\epsilon}_{x_{j} \text{ on } X_{-j},i}^{2}}} \end{split}$$

Equivalently (second definition),

$$\hat{
ho}_{x_jy.X_{-j}} = rac{t_j}{\sqrt{t_j^2+(n-p-1)}}$$

where t_j is the t-value associated with x_j when regressing y on X_{reg} .

Tedious proof of second definition Schur complement (definition only)

$$\begin{split} M^{-1} &= \begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} \\ &= \begin{bmatrix} (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C(A - BD^{-1}C)^{-1} & D^{-1} + D^{-1}C(A - BD^{-1}C)^{-1}BD^{-1} \end{bmatrix} \\ &= \begin{bmatrix} (M/D)^{-1} & -(M/D)^{-1}BD^{-1} \\ -D^{-1}C(M/D)^{-1} & D^{-1} + D^{-1}C(M/D)^{-1}BD^{-1} \end{bmatrix} \text{ letting } M/D = A - BD^{-1}C \end{split}$$

$$\begin{split} \frac{\sum_{i=1}^{n} \hat{\epsilon}_{x_{j} \text{ on } X_{-j,i}} \hat{\epsilon}_{y \text{ on } X_{-j,i}}}{\sqrt{\sum_{i=1}^{n} \hat{\epsilon}_{x_{j}}^{2} \text{ on } X_{-j,i}}} &= \frac{(x_{j} - X_{-j} \hat{\beta}_{x_{j} \text{ on } X_{-j}})'(y - X_{-j} \hat{\beta}_{y \text{ on } X_{-j}})}{\sqrt{(x'_{j} x_{j} - \hat{\beta}'_{x_{j} \text{ on } X_{-j}} X'_{-j} x_{j})(y'y - \hat{\beta}'_{y \text{ on } X_{-j}} X'_{-j} y)}} \\ &= \frac{(x_{j} - X_{-j} (X'_{-j} X_{-j})^{-1} X'_{-j} x_{j})'(y - X_{-j} (X'_{-j} X_{-j})^{-1} X'_{-j} y)}{\sqrt{(x'_{j} x_{j} - x'_{j} X_{-j} (X'_{-j} X_{-j})^{-1} X'_{-j} x_{j})(y'y - y' X_{-j} (X'_{-j} X_{-j})^{-1} X'_{-j} y)}} \\ &= \frac{x'_{j} (I - P_{X_{-j}}) y}{\sqrt{(x'_{j} x_{j} - x'_{j} P_{X_{-j}} x_{j})(y'y - y' P_{X_{-j}} y)}} \\ &= \frac{x'_{j} (I - P_{X_{-j}}) y}{\sqrt{x'_{j} x_{j} y'y - x'_{j} P_{X_{-j}} x_{j} y'y - x'_{j} x_{j} y' P_{X_{-j}} y - x'_{j} P_{X_{-j}} x_{j} y' P_{X_{-j}} y}} \\ &= \frac{x'_{j} \hat{\epsilon}_{y \text{ on } X_{-j}}}{\sqrt{x'_{j} x_{j} y'y - x'_{j} P_{X_{-j}} x_{j} y'y - x'_{j} x_{j} y' P_{X_{-j}} y - x'_{j} P_{X_{-j}} x_{j} y' P_{X_{-j}} y}} \end{split}$$

Let $X_{reg} < j >$ denote the matrix where the first column of X_{reg} is swapped with x_j

$$\begin{split} t_{j}^{2} &= \frac{\hat{\beta}_{j}^{2}}{\hat{\sigma}^{2}(X'_{reg < j>} X_{reg < j>})_{jj}^{-1}} \\ &= \frac{\hat{\beta}_{j}^{2}}{\hat{\sigma}^{2}(\begin{bmatrix} x'_{j} \\ X'_{-j} \end{bmatrix}[x_{j} \quad X_{-j}])_{11}^{-1}} \\ &= \frac{\hat{\beta}_{j}^{2}}{\frac{y'y - \hat{\beta}'_{reg < j>} X'_{reg < j>} y}{n-p-1}(\begin{bmatrix} x'_{j}x_{j} & x'_{j}X_{-j} \\ X'_{-j}x_{j} & X'_{-j}X_{-j} \end{bmatrix}^{-1})_{11}} \\ &= \frac{\hat{\beta}_{j}^{2}}{\frac{y'y - \hat{\beta}'_{reg < j>} X'_{reg < j>} y}{n-p-1}(x'_{j}x_{j} - x'_{j}X_{-j}(X'_{-j}X_{-j})^{-1}X'_{-j}x_{j})^{-1}} \\ &= \frac{\hat{\beta}_{j}^{2}}{\frac{y'y - \hat{\beta}'_{reg < j>} X'_{reg < j>} y}{n-p-1} \frac{1}{\sum_{l=1}^{n} \hat{\epsilon}_{x_{l} \text{ on } X_{-j} l}^{2}} \end{split}$$

$$\begin{split} \hat{\beta}_{reg < j>} &= (X'_{reg < j>} X_{reg < j>})^{-1} X'_{reg < j>} y \\ &= \begin{bmatrix} x'_j x_j & x'_j X_{-j} \\ X'_{-j} x_j & X'_{-j} X_{-j} \end{bmatrix}^{-1} \begin{bmatrix} x'_j \\ X'_{-j} \end{bmatrix} y \\ &= \begin{bmatrix} \frac{1}{\sum_{i=1}^n \hat{\epsilon}^2_{x_j \text{ on } X_{-j}^i}} & -\frac{x'_j X_{-j} (X'_{-j} X_{-j})^{-1}}{\sum_{i=1}^n \hat{\epsilon}^2_{x_j \text{ on } X_{-j}^i}} \\ -\frac{(X'_{-j} X_{-j})^{-1} X'_{-j} x_j}{\sum_{i=1}^n \hat{\epsilon}^2_{x_j \text{ on } X_{-j}^i}} & (X'_{-j} X_{-j})^{-1} + \frac{(X'_{-j} X_{-j})^{-1} X'_{-j} x_j x_j X_{-j} (X'_{-j} X_{-j})^{-1}}{\sum_{i=1}^n \hat{\epsilon}^2_{x_j \text{ on } X_{-j}^i}} \end{bmatrix} \begin{bmatrix} x'_j \\ X'_{-j} \end{bmatrix} y \\ &= \begin{bmatrix} \frac{x'_j y - x'_j X_{-j} (X'_{-j} X_{-j})^{-1} X'_{-j} y - \frac{(X'_{-j} X_{-j})^{-1} X'_{-j} y}{\sum_{i=1}^n \hat{\epsilon}^2_{x_j \text{ on } X_{-j}^i}} \\ -\frac{(X'_{-j} X_{-j})^{-1} X'_{-j} x_j x'_j y}{\sum_{i=1}^n \hat{\epsilon}^2_{x_j \text{ on } X_{-j}^i}} + (X'_{-j} X_{-j})^{-1} X'_{-j} y + \frac{(X'_{-j} X_{-j})^{-1} X'_{-j} x_j x'_j X_{-j} (X'_{-j} X_{-j})^{-1} X'_{-j} y}{\sum_{i=1}^n \hat{\epsilon}^2_{x_j \text{ on } X_{-j}^i}} \end{bmatrix}$$
 (Schur complement)
$$&= \frac{1}{\sum_{i=1}^n \hat{\epsilon}^2_{x_j \text{ on } X_{-j}^i}} \begin{bmatrix} x'_j y + \hat{\beta}_{y \text{ on } X_{-j}} \sum_{i=1}^n \hat{\epsilon}^2_{x_j \text{ on } X_{-j}^i} + \hat{\beta}_{x_j \text{ on } X_{-j}^i} x'_j X_{-j} \hat{\beta}_{y \text{ on } X_{-j}} \end{bmatrix} \\ &= \frac{1}{\sum_{i=1}^n \hat{\epsilon}^2_{x_j \text{ on } X_{-j}^i}} \begin{bmatrix} -\hat{\beta}_{x_j \text{ on } X_{-j}^i} x'_j y + \hat{\beta}_{y \text{ on } X_{-j}} \sum_{i=1}^n \hat{\epsilon}^2_{x_j \text{ on } X_{-j}^i} + \hat{\beta}_{x_j \text{ on } X_{-j}^i} x'_j X_{-j} \hat{\beta}_{y \text{ on } X_{-j}} \end{bmatrix}$$

$$\begin{split} &\frac{f_{j}}{\sqrt{t_{j}^{2} + (n - p - 1)}} \\ &= \frac{\hat{\beta}_{j}}{\sqrt{\frac{y'y - \hat{\beta}'_{reg < j} > X'_{reg < j} > y}{n - p - 1}}} \frac{\hat{\beta}_{j}}{\sum_{n - p - 1}^{n} \frac{\hat{\beta}_{j}}{\sum_{t - 1}^{n} \hat{\epsilon}_{x_{j}}^{2} \text{on } X_{-j}, t}}} \\ &= \frac{\hat{\beta}_{j}^{2}}{\sqrt{\hat{\beta}_{j}^{2} + (n - p - 1)} \frac{\hat{\beta}_{j}}{\sum_{t - 1}^{n} \hat{\epsilon}_{x_{j}}^{2} \text{on } X_{-j}, t}} + (n - p - 1)} \frac{\hat{\beta}_{j}}{\sqrt{\hat{\beta}_{j}^{2} + (n - p - 1)} \frac{y'y - \hat{\beta}'_{reg < j} > X'_{reg < j} > y}{n - p - 1}} \frac{1}{\sum_{t - 1}^{n} \hat{\epsilon}_{x_{j}}^{2} \text{on } X_{-j}, t}} \\ &= \frac{\hat{\beta}_{j}}{\sqrt{\hat{\beta}_{j}^{2} + \frac{y'y - \hat{\beta}'}{\sum_{t - 1}^{n} \hat{\epsilon}_{x_{j}, t}^{2}}}} \frac{1}{\sum_{t - 1}^{n} \hat{\epsilon}_{x_{j}}^{2} \text{on } X_{-j}, t}} \\ &= \frac{\hat{\beta}_{j}}{\sqrt{\frac{(x'_{j} \hat{\epsilon}_{y} \text{on } X_{-j})^{2}}{(\sum_{t - 1}^{n} \hat{\epsilon}_{x_{j}}^{2} \text{on } X_{-j}, t}}} + \frac{y'y - \hat{\beta}'_{reg < j} > X'_{reg < j} > y}{\sum_{t - 1}^{n} \hat{\epsilon}_{x_{j}}^{2} \text{on } X_{-j}, t}} \\ &= \frac{x'_{j} \hat{\epsilon}_{y} \text{ on } X_{-j}}{\sqrt{(x'_{j} \hat{\epsilon}_{y} \text{ on } X_{-j})^{2} + (y'y - \hat{\beta}'_{reg < j} > X'_{reg < j} > y)} \sum_{i = 1}^{n} \hat{\epsilon}_{x_{j}}^{2} \text{ on } X_{-j}, i}}} \end{aligned}$$

$$= \frac{x_{j}^{'}\hat{\epsilon}_{y \text{ on } X_{-j}}}{\left(x_{j}^{'}\hat{\epsilon}_{y \text{ on } X_{-j}}\right)^{2} + (y'y - \frac{1}{\sum_{i=1}^{n}\hat{\epsilon}_{j,\text{on } X_{-j}}^{j}} \left[-\hat{\beta}_{x_{j} \text{ on } X_{-j}}x_{j}^{'}y + \hat{\beta}_{y \text{ on } X_{-j}}\sum_{i=1}^{n}\hat{\epsilon}_{x_{j} \text{ on } X_{-j}}^{j}X_{-j}\hat{\beta}_{y \text{ on } X_{-j}}^{'}\right]} - \hat{\beta}_{x_{j} \text{ on } X_{-j}}x_{j}^{'}y + \hat{\beta}_{y \text{ on } X_{-j}}\sum_{i=1}^{n}\hat{\epsilon}_{x_{j} \text{ on } X_{-j}}^{j}X_{-j}\hat{\beta}_{y \text{ on } X_{-j}}^{'}\right]} - \hat{\beta}_{x_{j} \text{ on } X_{-j}}x_{j}^{'}y + \hat{\beta}_{y \text{ on } X_{-j}}\sum_{i=1}^{n}\hat{\epsilon}_{x_{j} \text{ on } X_{-j}}^{j}X_{-j}\hat{\beta}_{y \text{ on } X_{-j}}^{'}$$

$$= \frac{x_{j}^{'}\hat{\epsilon}_{y \text{ on } X_{-j}}}{(x_{j}^{'}(I - P_{X_{-j}})y^{2} + (y'y - \frac{1}{\sum_{i=1}^{n}\hat{\epsilon}_{x_{j} \text{ on } X_{-j}}}(\hat{\epsilon}_{y \text{ on } X_{-j}}^{'}x_{j}y - y'x_{j}\hat{\beta}_{x_{j} \text{ on } X_{-j}}^{'}X_{-j}^{'}y + \hat{\beta}_{y \text{ on } X_{-j}^{'}X_{-j}^{'}y + \hat{\beta}_{y \text{ on } X_{-j}^{'}y + \hat{\beta}_{y \text{ on } X_{-j}^{'}x_{-j}^{'}y + \hat{\beta}_{y \text{$$

10. Log-likelihood of residuals (LL)

According to linear assumption 4, each e_i is normally distributed with $\mu_i = 0$ and $\sigma = \sigma_1 = \sigma_2 = ...$ for i=1,2,...,n

$$P(\epsilon_i) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{\epsilon_i^2}{2\sigma^2}}$$

$$\begin{split} f_{\epsilon}(\epsilon_{1},\epsilon_{2},\ldots,\epsilon_{n}) &= \frac{1}{2\pi^{n/2}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\epsilon-\mu_{\epsilon})'\Sigma^{-1}(\epsilon-\mu_{\epsilon})} \\ &= \frac{1}{(2\pi)^{n/2}\prod_{i=1}^{n}\sigma_{i}} e^{-\frac{1}{2}(\epsilon-\mu_{\epsilon})'\begin{bmatrix}\sigma_{1}^{2} & 0 & \dots \\ 0 & \sigma_{2}^{2} & \dots \\ 0 & \dots & \sigma_{n}^{2}\end{bmatrix}^{-1}(\epsilon-\mu_{\epsilon})} \\ &= \frac{1}{(2\pi)^{n/2}\prod_{i=1}^{n}\sigma_{i}} e^{-\frac{1}{2}(\epsilon-\mu_{\epsilon})'\begin{bmatrix}\sigma^{2} & 0 & \dots \\ 0 & \sigma^{2} & \dots \\ 0 & \dots & \sigma^{2}\end{bmatrix}^{-1}(\epsilon-\mu_{\epsilon})} \\ &= \prod_{i=1}^{n}\frac{1}{(2\pi)^{1/2}\sigma} e^{-\frac{1}{2\sigma^{2}}(\epsilon_{i}-0)^{2}} \\ &= \prod_{i=1}^{n}\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{\epsilon_{i}^{2}}{2\sigma^{2}}} \\ &= \prod_{i=1}^{n}f(\epsilon_{i}) \end{split}$$

This proves independence of error terms, so the log-likelihood can be taken to be,

$$log(\prod_{i=1}^{n} P(\epsilon_i)) = -nlog(\sigma) - 0.5nlog(2\pi) - \frac{\sum_{i=1}^{n} \epsilon_i^2}{2\sigma^2}$$

11. Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Mallows's ${\cal C}_p$

Presented below are 3 common sets of definitions for AIC and BIC. C_p is omitted since it is proportional to AIC, and so stepwise selection using C_p or AIC will yield the same model.

Common throughout all definitions is the log(n) term used in the penalty of BIC. BIC imposes a heavier penalty when 2 < log(n) or n > 7.

Definition 1

AIC=-2*Log-likelihood of residuals + 2(p+1) BIC=-2*Log-likelihood of residuals + (p+1)log(n)

Definition 2

$$AIC = rac{1}{n\hat{\sigma}^2}(SSE + 2p\hat{\sigma}^2)$$

 $BIC = rac{1}{n\hat{\sigma}^2}(SSE + p\hat{\sigma}^2log(n))$

Definition 3

$$AIC = nlog(\frac{SSE}{n}) + 2(p+1)$$
 $BIC = nlog(\frac{SSE}{n}) + (p+1)log(n)$

12. Leverage

$$egin{aligned} Leverage &= H_{ii} \ &= h_i \ &= \gamma_i' X_{reg} (X_{reg}' X_{reg})^{-1} X_{reg}' \gamma_i \ &= x_{(i)}' (X_{reg}' X_{reg})^{-1} x_{(i)} \end{aligned}$$

where H is the hat matrix= $P_{X_{reg}} = X_{reg}(X'_{reg}X_{reg})^{-1}X'_{reg}$ and γ_i is a column vector with 1 on the i_{th} term and 0 otherwise

For only one regressor,

$$\begin{split} h_{i} &= x_{(i)}'(\begin{bmatrix} j' \\ x_{1}' \end{bmatrix}[j \quad x_{1}])^{-1}x_{(i)} \\ &= x_{(i)}'\begin{bmatrix} n & \sum_{i=1}^{n} x_{i1} \\ \sum_{i=1}^{n} x_{i1} & \sum_{i=1}^{n} x_{i1}^{2} \end{bmatrix}^{-1}x_{(i)} \\ &= x_{(i)}'\frac{1}{n \sum_{i=1}^{n} x_{i1}^{2} - (\sum_{i=1}^{n} x_{i1})^{2}} \begin{bmatrix} \sum_{i=1}^{n} x_{i1}^{2} & -\sum_{i=1}^{n} x_{i1} \\ -\sum_{i=1}^{n} x_{i1} & n \end{bmatrix} x_{(i)} \\ &= x_{(i)}'\frac{1}{n \sum_{i=1}^{n} x_{i1}^{2} - n^{2}\bar{x}_{.1}^{2}} \begin{bmatrix} \sum_{i=1}^{n} x_{i1}^{2} & -\sum_{i=1}^{n} x_{i1} \\ -\sum_{i=1}^{n} x_{i1} & n \end{bmatrix} x_{(i)} \\ &= \frac{1}{n(\sum_{i=1}^{n} x_{i1}^{2} - n\bar{x}_{.1}^{2})} [\sum_{i=1}^{n} x_{i1}^{2} - x_{i1} \sum_{i=1}^{n} x_{i1} & \sum_{i=1}^{n} x_{i1} + x_{i1}n] x_{(i)} \\ &= \frac{1}{n(\sum_{i=1}^{n} x_{i1}^{2} - n\bar{x}_{.1}^{2})} (\sum_{i=1}^{n} x_{i1}^{2} - 2x_{i1} \sum_{i=1}^{n} x_{i1} + x_{i1}^{2}n) \\ &= \frac{1}{n(\sum_{i=1}^{n} x_{i1}^{2} - n\bar{x}_{.1}^{2})} (\sum_{i=1}^{n} x_{i1}^{2} - n\bar{x}_{.1}^{2} + n\bar{x}_{.1}^{2} - 2x_{i1}n\bar{x}_{.1} + x_{i1}^{2}n) \\ &= \frac{1}{n(\sum_{i=1}^{n} x_{i1}^{2} - n\bar{x}_{.1}^{2})} (\sum_{i=1}^{n} x_{i1}^{2} - n\bar{x}_{.1}^{2} + n\bar{x}_{.1}^{2} - x_{i1})^{2} \\ &= \frac{1}{n} + \frac{(x_{i1} - \bar{x}_{.1})^{2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{.1})^{2}} \\ &= \frac{1}{n} + \frac{(x_{i} - \bar{x})^{2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{.1})^{2}} (\text{since there is only 1 regressor}) \end{split}$$

$$egin{aligned} \sum_{i=1}^n h_i &= trace(H) \ &= trace(X_{reg}(X'_{reg}X_{reg})^{-1}X'_{reg}) \ &= trace((X'_{reg}X_{reg})^{-1}X'_{reg}X_{reg}) \ &= p+1 \end{aligned}$$
 $ar{h} = rac{p+1}{n} pprox rac{p}{n} ext{ when n is large}$

The practise is if 2p/n < 1 (additional constraint to ensure n is large enough relative to p), $h_i > \frac{2p}{n}$ is an indication of large leverage.

13. Internally/Externally studentized residual

$$egin{aligned} \hat{\epsilon} &= y - X_{reg} \hat{eta} \ &= y - Hy \ &= (I - H)y \end{aligned}$$
 $var(\hat{\epsilon}) = \sigma^2 (I - H)(I - H)' \ &= \sigma^2 (I - H) ext{ since H is idempotent}$
 $var(\hat{\epsilon}_i) = \sigma^2 (1 - h_i)$

$$i_{th}$$
 internally studentized residuals = $t_i = \frac{\epsilon_i}{\sqrt{\hat{\sigma}^2(1-h_i)}}$

The internally studentized residual adjusts residuals for differences in variances, even though variances of true error terms should be equal to each other (according to the 2nd linear assumptions).

$$i_{th}$$
 externally studentized residual =
$$\frac{\hat{\epsilon}_i}{\sqrt{\hat{\sigma}_{(-i)}^2(1-h_i)}}$$

where $\hat{\sigma}^2_{(-i)}$ is derived from the regression of X against y with observation i removed i.e $\hat{\sigma}^2_{(-i)} = \frac{SSE_{(-i)}}{(n-1)-p-1}$

By excluding the effects of the ith observation on the MSE, it is more evident on whether the ith residual is improbably large for the fitted model.

Equivalently (second definition),

$$i_{th} \text{ externally studentized residual} = t_i \sqrt{\frac{n-p-2}{n-p-1-t_i^2}}$$

where t_i is the ith internally studentized residual (not to be confused with t-statistic here)

Obtaining the externally studentized residuals using the second definition avoids refitting a linear regression for each externally studentized residual.

Tedious proof of second definition

Sherman-Morrison formula (definition only)

Suppose A is invertible and u,v are column vectors. Then if A + uv' is invertible,

$$(A+uv')^{-1} = A^{-1} - \frac{A^{-1}uv'A^{-1}}{1+v'A^{-1}u}$$

$$egin{aligned} X'_{reg} X_{reg} &= \left[egin{array}{cc} x_{(i)} & X'_{(-i)}
ight] \left[egin{array}{c} x'_{(i)} \ X_{(-i)} \end{array}
ight] \ &= \left[egin{array}{cc} x_{(i)} & X'_{(-i)} & X'_{(-i)} \end{array}
ight] \end{aligned}$$

$$\begin{split} (X'_{(-i)}X_{(-i)})^{-1} &= \left[\, X'_{reg}X_{reg} - x_{(i)}x'_{(i)} \, \right] \\ &= (X'_{reg}X_{reg})^{-1} + \frac{(X'_{reg}X_{reg})^{-1}x_{(i)}x'_{(i)}(X'_{reg}X_{reg})^{-1}}{1 - x'_{(i)}(X'_{reg}X_{reg})^{-1}x_{(i)}} \\ &= (X'_{reg}X_{reg})^{-1} + \frac{(X'_{reg}X_{reg})^{-1}x_{(i)}x'_{(i)}(X'_{reg}X_{reg})^{-1}}{1 - h_i} \end{split}$$

$$\begin{split} t_i \sqrt{\frac{n-p-2}{n-p-1-t_i^2}} &= \frac{\hat{\epsilon}_i}{\sqrt{\hat{\sigma}^2(1-h_i)}} \sqrt{\frac{n-p-2}{n-p-1-\frac{\hat{\epsilon}_i^2}{\hat{\sigma}^2(1-h_i)}}} \\ &= \frac{\hat{\epsilon}_i}{\sqrt{\hat{\sigma}^2(1-h_i)}} \sqrt{\frac{n-p-2}{\frac{(n-p-1)\hat{\sigma}^2(1-h_i)-\hat{\epsilon}_i^2}{\hat{\sigma}^2(1-h_i)}}} \\ &= \hat{\epsilon}_i \sqrt{\frac{n-p-2}{SSE(1-h_i)-\hat{\epsilon}_i^2}} \end{split}$$

$$\begin{split} &\frac{\hat{\epsilon}_{i}}{\sqrt{\hat{\sigma}_{(-i)}^{2}(1-h_{i})}} \\ &= \frac{\hat{\epsilon}_{i}}{\sqrt{\hat{\sigma}_{(-i)}^{2}(1-h_{i})}} \\ &= \frac{\hat{\epsilon}_{i}}{\sqrt{\frac{\hat{\sigma}_{(-i)}^{2}(1-h_{i})}{\sqrt{\frac{y_{(-i)}'(I-X_{(-i)}'X_{(-i)}')y_{(-i)}}{(n-1)-p-1}}}} \frac{\hat{\epsilon}_{i}}{\sqrt{\frac{y_{(-i)}'(I-X_{(-i)}(X_{(-i)}'X_{(-i)}')y_{(-i)}}{(n-1)-p-1}} \frac{\hat{\epsilon}_{i}}{\sqrt{\frac{y_{(-i)}'(I-X_{(-i)}((X_{reg}'X_{reg})^{-1}+\frac{(X_{reg}'X_{reg})^{-1}z_{(i)}z_{(i)}'(X_{reg}'X_{reg})^{-1}}{1-h_{i}})X_{(-i)}'y_{(-i)}}} \frac{\hat{\epsilon}_{i}}{\sqrt{\frac{y_{(-i)}'y_{(-i)}-y_{(-i)}'X_{(-i)}(X_{reg}'X_{reg})^{-1}X_{(-i)}'y_{(-i)}-X_{(-i)}'y_{(-i)}}{n-p-2}}}} \frac{\hat{\epsilon}_{i}}{\sqrt{\frac{y_{(-i)}'y_{(-i)}-y_{(-i)}'X_{(-i)}(X_{reg}'X_{reg})^{-1}X_{(-i)}'y_{(-i)}-X_{(-i)}'y_{(-i)}}{n-p-2}}} (1-h_{i})}} \\ &= \hat{\epsilon}_{i}\sqrt{\frac{n-p-2}{\sqrt{\frac{y_{(-i)}'y_{(-i)}-y_{(-i)}'X_{(-i)}(X_{reg}'X_{reg})^{-1}X_{(-i)}'y_{(-i)}}}{n-p-2}}} \frac{n-p-2}{n-p-2}} (1-h_{i})} \\ &= \hat{\epsilon}_{i}\sqrt{\frac{n-p-2}{\sqrt{\frac{y_{(-i)}'y_{(-i)}-y_{(-i)}'X_{(-i)}(X_{reg}'X_{reg})^{-1}X_{(-i)}'y_{(-i)}}}{n-p-2}}} \frac{n-p-2}{n-p-2}} \\ &= \frac{n-p-2}{\sqrt{\frac{y_{(-i)}'y_{(-i)}-y_{(-i)}'X_{(-i)}(X_{reg}'X_{reg})^{-1}X_{(-i)}'y_{(-i)}}}{n-p-2}} \frac{n-p-2}{n-p-2}} \\ &= \frac{n-p-2}{n-p-2} \frac{n-p-2}{n-p-2}} \frac{n-p-2}{n-p-2}} \frac{n-p-2}{n-p-2}} \frac{n-p-2}{n-p-2}} \frac{n-p-2}{n-p-2} \frac{n-p-2}{n-p-2}} \frac{n-p-2}{n-p-2} \frac{n-p-2}{n-p-2}} \frac{n$$

By comparison, I will verify that,

$$SSE(1-h_i) - \hat{\epsilon}_i^2 = (y_{(-i)}'y_{(-i)} - y_{(-i)}'X_{(-i)}(X_{reg}'X_{reg})^{-1}X_{(-i)}'y_{(-i)})(1-h_i) - y_{(-i)}'X_{(-i)}(X_{reg}'X_{reg})^{-1}x_{(i)}(X_{reg}'X_{reg})^{-1}X_{(-i)}'y_{(-i)}(1-h_i) - y_{(-i)}'X_{(-i)}(X_{reg}'X_{reg})^{-1}X_{(-i)}'y_{(-i)}(1-h_i) - y_{(-i)}'X_{(-i)}(1-h_i) - y_{(-i)}'X_{(-i)$$

$$\begin{split} SSE &= y'(I - P_{X_{reg}})y \\ &= y'(I - X_{reg}(X'_{reg}X_{reg})^{-1}X'_{reg})y \\ &= \left[y_{i} \quad y'_{(-i)}\right](I - \left[\begin{matrix} x'_{(i)} \\ X_{(-i)} \end{matrix}](X'_{reg}X_{reg})^{-1}\left[\begin{matrix} x_{(i)} & X'_{(-i)} \end{matrix}]\right)\left[\begin{matrix} y_{i} \\ y_{(-i)} \end{matrix}] \\ &= y_{i}^{2} + y'_{(-i)}y_{(-i)} - (y_{i}x'_{(i)} + y'_{(-i)}X_{(-i)})(X'_{reg}X_{reg})^{-1}(x_{(i)}y_{i} + X'_{(-i)}y_{(-i)}) \\ &= y_{i}^{2} + y'_{(-i)}y_{(-i)} - y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}x_{(i)}y_{i} - y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} - y'_{(-i)}X_{(-i)}(X'_{reg}X_{reg})^{-1}x_{(i)}y_{i} \\ &- y'_{(-i)}X_{(-i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} \\ &= \left(y'_{(-i)}y_{(-i)} - y'_{(-i)}X_{(-i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)}\right) + y_{i}^{2} - y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}x_{(i)}y_{i} \\ &- 2y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} \end{split}$$

Let
$$c = y_{(-i)}' y_{(-i)} - y_{(-i)}' X_{(-i)} (X_{reg}' X_{reg})^{-1} X_{(-i)}' y_{(-i)}$$

$$\begin{split} SSE(1-h_{i}) - \hat{\epsilon}_{i}^{2} \\ &= c(1-h_{i}) + (y_{i}^{2} - y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}x_{(i)}y_{i} - 2y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)})(1-h_{i}) - \hat{\epsilon}_{i}^{2} \\ &= c(1-h_{i}) + (y_{i}^{2} - y_{i}h_{i}y_{i} - 2y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)})(1-h_{i}) - (y_{i} - x'_{(i)}(X'_{reg}X_{reg})^{-1}\left[x_{(i)} - X'_{(-i)}\right]\left[\frac{y_{i}}{y_{(-i)}}\right])^{2} \\ &= c(1-h_{i}) + (y_{i}^{2} - y_{i}h_{i}y_{i} - 2y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)})(1-h_{i}) - (y_{i} - x'_{(i)}(X'_{reg}X_{reg})^{-1}(x_{(i)}y_{i} + X'_{(-i)}y_{(-i)}))^{2} \\ &= c(1-h_{i}) + (y_{i}^{2} - y_{i}h_{i}y_{i} - 2y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)})(1-h_{i}) - (y_{i} - h_{i}y_{i} - x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)})^{2} \\ &= c(1-h_{i}) + y_{i}^{2} - y_{i}h_{i}y_{i} - 2y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} \\ &- y_{i}^{2}h_{i} + y_{i}h_{i}y_{i}h_{i} + 2y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)}h_{i} \\ &- y_{i}^{2} + 2y_{i}h_{i}y_{i} + 2y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} - h_{i}y_{i}h_{i}y_{i} - 2h_{i}y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} \\ &- x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} \\ &= c(1-h_{i}) + A - B - 2C \\ &- B + D + 2E \\ &- A + 2B + 2C - D - 2E \\ &- A'_{(-i)}X_{(-i)}(X'_{reg}X_{reg})^{-1}x_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} \\ &= c(1-h_{i}) - y'_{(-i)}X_{(-i)}(X'_{reg}X_{reg})^{-1}x_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} \\ &= c(1-h_{i}) - y'_{(-i)}X_{(-i)}(X'_{reg}X_{reg})^{-1}x_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} \\ &= c(1-h_{i}) - y'_{(-i)}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} \\ &= c(1-h_{i}) - y'_{(-i)}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}(X'_{reg}X_{r$$

Plots

a. Internally/externally studentized residuals against predicted y

Points are expected to be randomly scattered (linear assumption 3) within a band (linear assumption 2) around each level of y (linear assumption 1).

- b. Internally/externally studentized residuals against time Points are expected to be randomly scattered (linear assumption 3) within a band (linear assumption 2) around 0 (linear assumption 1).
 - c. Normal QQplot of residuals

Check that error terms are normally distributed (assumption 4).

14. Cook's distance

Definition

Let $\hat{\beta}_{(-i)}$ be the coefficients obtained from the regression of y on X_{reg} with the ith observation removed,

$$\begin{split} i_{th} & \operatorname{cook's \; distance} = D_i = \frac{(\hat{\beta} - \hat{\beta}_{(-i)})' X'_{reg} X_{reg} (\hat{\beta} - \hat{\beta}_{(-i)})}{(p+1)\sigma^2} \\ &= \frac{(X_{reg} (\hat{\beta} - \hat{\beta}_{(-i)}))' X_{reg} (\hat{\beta} - \hat{\beta}_{(-i)})}{(p+1)\sigma^2} \\ &= \frac{(X_{reg} \hat{\beta} - X_{reg} \hat{\beta}_{(-i)})' (X_{reg} \hat{\beta} - X_{reg} \hat{\beta}_{(-i)})}{(p+1)\sigma^2} \\ &= \frac{\sum_{j=1}^{n} (\hat{y}_j - \hat{y}_{j(-i)})^2}{(p+1)\sigma^2} \end{split}$$

where $\hat{y}_{j(-i)}$ is the predicted value for y_j with the coefficients derived from the regression of y on X_{reg} with observation i removed.

Equivalently (second definition),

$$D_i = rac{\hat{\epsilon}_i^2}{(p+1)\hat{\sigma}^2}rac{h_i}{(1-h_i)^2}$$

Obtaining the cook's distance using the second definition avoids refitting a linear regression for each cook's distance.

If D_i exceeds a certain threshold, the observation is suspected to be influential. Common thresholds used are 1, 4/n and 4/(n-p-1). Alternatively, a percentile of over 50 for the F(p, n-p-1) distribution can be used to indicate a highly influential point.

Proof for second definition

$$\begin{split} \hat{\epsilon}_{i}^{2} &= \left(y_{i} - x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{reg}y\right)^{2} \\ &= \left(y_{i} - x'_{(i)}(X'_{reg}X_{reg})^{-1}\left[x_{(i)} - X'_{(-i)}\right]\left[y_{(-i)}\right]\right)^{2} \\ &= \left(y_{i} - x'_{(i)}(X'_{reg}X_{reg})^{-1}(x_{(i)}y_{i} + X'_{(-i)}y_{(-i)})\right)^{2} \\ &= \left(y_{i} - x'_{(i)}(X'_{reg}X_{reg})^{-1}x_{(i)}y_{i} - x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)}\right)^{2} \\ &= y_{i}^{2} + \left(x'_{(i)}(X'_{reg}X_{reg})^{-1}x_{(i)}y_{i}\right)^{2} + \left(x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)}\right)^{2} - 2y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}x_{(i)}y_{i} \\ &- 2y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} + 2x'_{(i)}(X'_{reg}X_{reg})^{-1}x_{(i)}y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} \\ &= y_{i}^{2} + \left(h_{i}y_{i}\right)^{2} + \left(x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)}\right)^{2} - 2h_{i}y_{i}^{2} - 2y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} \\ &+ 2h_{i}y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} \\ \\ D_{i} &= \frac{(\hat{\beta} - \hat{\beta}_{(-i)})'X'_{reg}X_{reg}(\hat{\beta} - \hat{\beta}_{(-i)})}{(p+1)\sigma^{2}} \\ &= \frac{((X'_{reg}X_{reg})^{-1}X'_{reg}y - ((X'_{reg}X_{reg})^{-1} + \frac{(X'_{reg}X_{reg})^{-1}X'_{reg}y_{reg}((X'_{reg}X_{reg})^{-1}X'_{reg}y - (X'_{(-i)}X_{(-i)})^{-1}X'_{(-i)}y_{(-i)}}{(p+1)\sigma^{2}} \\ &= \frac{((X'_{reg}X_{reg})^{-1}X'_{reg}y - ((X'_{reg}X_{reg})^{-1} + \frac{(X'_{reg}X_{reg})^{-1}X'_{reg}y_{reg}((X'_{reg}X_{reg})^{-1} + \frac{(X'_{reg}X_{reg})^{-1}X'_{reg}y_{reg}((X'_{reg}X_{reg})^{-1} + \frac{(X'_{reg}X_{reg})^{-1}X'_{reg}y_{reg}(X'_{reg}X_{reg})_{reg}((X'_{reg}X_{reg})^{-1} - (X'_{(-i)}y_{(-i)})^{-1}X'_{(-i)}y_{(-i)})}{(p+1)\sigma^{2}} \\ &= \frac{(Y'_{x_{reg}}X_{reg})^{-1}X'_{reg}y - ((X'_{reg}X_{reg})^{-1} + \frac{(X'_{reg}X_{reg})^{-1}X'_{reg}y_{reg}((X'_{reg}X_{reg})^{-1} + \frac{(X'_{reg}X_{reg})^{-1}X'_{reg}y_{reg}(X'_{reg}X_{reg})_{reg}(X'_{reg}X_{reg})^{-1}}{(X'_{reg}X_{reg})^{-1}(X'_{reg}X_{reg})^{-1} + \frac{(X'_{reg}X_{reg}X_{reg})^{-1}X'_{reg}y_{reg}(X'_{reg}X_{reg})_{reg}(X'_{reg}X_{reg})^{-1}}{(X'_{reg}X_{reg})^{-1}(X'_{reg}X_{reg})^{-1}(X'_{reg}X_{reg})^{-1}(X'_{reg}X_{reg})^{-1}(X'_{reg}X_{reg})^{-1}(X'_{reg}X_{reg})^{-1}(X'_$$

By comparison, I will verify that

$$\begin{aligned} & ((1-h_i)y'X_{reg} - y'_{-i})X_{(-i)}((1-h_i) + (X'_{reg}X_{reg})^{-1}x_{(ij}x'_{(j)}))((1-h_i)(X'_{reg}X_{reg})^{-1}X'_{reg}y - ((1-h_i)(X'_{reg}X_{reg})^{-1} + (X'_{reg}X_{reg})^{-1}x_{(ij}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)}) = \hat{\epsilon}_i^2h_i \\ & ((1-h_i)y'X_{reg} - y'_{-i})X_{(-i)}((1-h_i) + (X'_{reg}X_{reg})^{-1}x_{(i)}x'_{(j)}))((1-h_i)(X'_{reg}X_{reg})^{-1}X'_{reg}y - ((1-h_i)(X'_{reg}X_{reg})^{-1} + (X'_{reg}X_{reg})^{-1}x_{(i)}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)}) \\ & = ((1-h_i)\left[y_i \quad y'_{(-i)}\right]\left[\begin{matrix} x'_{(i)} \\ X_{(-i)} \end{matrix}\right] - (1-h_i)y'_{(-i)}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}y_{(-i)} \\ & ((1-h_i)(X'_{reg}X_{reg})^{-1}\left[x_{(i)} \quad X'_{(-i)}\right]\left[\begin{matrix} y_{i} \\ y_{(-i)} \end{matrix}\right] - (1-h_i)(X'_{reg}X_{reg})^{-1}X_{(-i)}y_{(-i)} \\ & ((1-h_i)(X'_{reg}X_{reg})^{-1}x_{(i)}X'_{(i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}y_{(-i)} \\ & - (X'_{reg}X_{reg})^{-1}x_{(i)}X'_{(i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}y_{(-i)} \\ & = ((1-h_i)y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X'_{(-i)}y_{(-i)} \\ & = ((1-h_i)y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}(x'_{(i)}y_{(-i)}) \\ & = (1-h_i)y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X_{(i)}y_{(-i)} \\ & - (1-h_i)y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X_{(i)}y_{(-i)} \\ & - (1-h_i)y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X_{(i)}y_{(-i)} \\ & - (1-h_i)y_{i}x'_{(i)}(X'_{reg}X_{reg})^{-1}X_{(i)}y_{(-i)} \\ & + y'_{(-i)}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}y_{(-i)} \\ & + (1-h_i)y_{i}x_{i}y_{i}(X'_{reg}X_{reg})^{-1}X_{(i)}X'_{i}y_{i}(X'_{reg}X_{reg})^{-1}X_{(-i)}y_{(-i)} \\ & + y'_{(-i)}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}y_{(-i)} \\ & + y'_{(-i)}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}(Y_{reg}X_{reg})^{-1}X_{(-i)}y_{(-i)} \\ & + y'_{(-i)}X_{(-i)}(X'_{reg}X_{reg})^{-1}X_{(-i)}(X'_$$

15. Condition number

$$\text{Condition number} = \sqrt{\frac{\lambda_{max}}{\lambda_{min}}}$$

where λ_{max} is the maximum eigenvalue of X'X and λ_{min} is the minimum eigenvalue of X'X

Common interpretation

condition number < 100 implies no serious multicollinearity is present $100 \le {\rm condition\ number} < 1000$ implies moderate to strong multicollinearity is present condition number ≥ 1000 implies strong multicollinearity is present

16. Condition index

$$i_{th}$$
 condition index = $\sqrt{\frac{\lambda_{max}}{\lambda_i}}$

Estimated number of near-linear dependencies = No. of condition indices more than 1000

17. Variance inflation factor (VIF)

Intuitively, multicollinearity leads to larger $var(\hat{\beta})$ since a feature is closely substitutable by other features, leading to $\hat{\beta}$.

WLOG, let $X_{reg} < j >$ denote the matrix where the first column of X_{reg} is swapped with x_j

$$\begin{split} \hat{var}(\hat{\beta}_{j}) &= \sigma^{2}((X'_{reg < j>} X_{reg < j>})^{-1})_{11} \\ &= \sigma^{2}((\begin{bmatrix} x'_{j} \\ X'_{-j} \end{bmatrix} [x_{j} \quad X_{-j}])^{-1})_{11} \\ &= \sigma^{2}(\begin{bmatrix} x'_{j}x_{j} & x'_{j}X_{-j} \\ X'_{-j}x_{j} & X'_{-j}X_{-j} \end{bmatrix}^{-1})_{11} \\ &= \sigma^{2}(x'_{j}x_{j} - x'_{j}X_{-j}(X'_{-j}X_{-j})^{-1}X'_{-j}x_{j})^{-1}(\text{Schur complement}) \\ &= \sigma^{2}(x'_{j}x_{j} - \hat{\beta}'_{j \text{ on } -j}X'_{-j}x_{j})^{-1} \text{ where } \hat{\beta}'_{j \text{ on } -j} \text{ is the coefficients of regressing } x_{j} \text{ on } X_{-j} \\ &= \frac{\sigma^{2}}{SSE_{j \text{ on } -j}} \\ &= \frac{\sigma^{2}}{SST_{j \text{ on } -j} - SSR_{j \text{ on } -j}} \\ &= \frac{\sigma^{2}}{SST_{j \text{ on } -j}(1 - \frac{SSR_{j \text{ on } -j}}{SST_{j \text{ on } -j}})} \\ &= \frac{\sigma^{2}}{SST_{j \text{ on } -j}} * \frac{1}{(1 - R_{j \text{ on } -j}^{2})} \end{split}$$

where $R_{j \text{ on } - j}^2$ is obtained from the regression of x_j on the remaining p-1 predictors and intercept

$$VIF_j = C_{jj} \sum_{i=1}^n (x_{ij} - \bar{x}_j) = rac{1}{1 - R_{j ext{ on } -j}^2}, j = 1, 2, \dots, k$$

where
$$C = (X'_{reg}X_{reg})^{-1} \propto \hat{cov}(\hat{\beta})$$

Common interpretation

VIF < 1 implies no serious multicollinearity is present $1 \le VIF < 5$ implies moderate to strong multicollinearity is present $VIF \ge 5$ implies strong multicollinearity is present

18. Derivation of $\hat{\beta}$ for ridge regression

 X_{reg} is assumed to be standardised.

Let b be an estimator of β

$$(y-X_{reg}b)^{'}(y-X_{reg}b)+\lambda b^{\prime}b=y^{\prime}y-2b^{'}X_{reg}^{'}y+b^{'}X_{reg}^{'}X_{reg}b+\lambda b^{\prime}b$$

Differentiating by b and setting the derivative to 0 to derive the local minimum/maximum,

$$rac{d}{db}(y'y - 2b'X'_{reg}y + b'X'_{reg}X_{reg}b + \lambda b'b) = 0$$
 $-2X'_{reg}y + 2X'_{reg}X_{reg}b + 2\lambda b = 0$
 $X'_{reg}X_{reg}b + \lambda b = X'_{reg}y$

$$\hat{eta} = b = (X'_{reg}X_{reg} + \lambda I)^{-1}X'_{reg}y$$
 (if the inverse of $X'_{reg}X_{reg} + \lambda I$ is unique)

19. Finding $\hat{\beta}$ for lasso regression

 X_{reg} is assumed to be standardised.

Proximal gradient descent

Let $r(\beta)$ denote a regularization function separable in β , b be an estimator of β .

$$\begin{split} & \operatorname{Loss} \operatorname{function} f(b) = \frac{1}{2n} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} + \lambda r(b) \\ & = \frac{1}{2n} ||y - X_{reg}b||_{2}^{2} + \lambda r(b) \\ & = \frac{1}{2n} ||(y - X_{reg}\beta^{(k)}) + (X_{reg}\beta^{(k)} - X_{reg}b)||_{2}^{2} + \lambda r(b) \\ & = \frac{1}{2n} \left[||y - X_{reg}\beta^{(k)}||_{2}^{2} + ||X_{reg}\beta^{(k)} - X_{reg}b||_{2}^{2} + 2(y - X_{reg}\beta^{(k)})'(X_{reg}\beta^{(k)} - X_{reg}b) \right] + \lambda r(b) \\ & = \frac{1}{2n} \left[||y - X_{reg}\beta^{(k)}||_{2}^{2} + ||X_{reg}(\beta^{(k)} - b)||_{2}^{2} + 2(y - X_{reg}\beta^{(k)})'(X_{reg}\beta^{(k)} - X_{reg}b) \right] + \lambda r(b) \\ & \leq \frac{1}{2n} \left[||y - X_{reg}\beta^{(k)}||_{2}^{2} + ||X_{reg}||_{op}^{2} ||\beta^{(k)} - b||_{2}^{2} + 2(y - X_{reg}\beta^{(k)})'X_{reg}(\beta^{(k)} - b) \right] + \lambda r(b) \\ & \text{where } ||X_{reg}||_{op} \text{ is the operator norm of } X_{reg} \text{ i.e. square root of the largest eigenvalue of } X_{reg}'X_{reg} \\ & < \frac{1}{2n} \left[||y - X_{reg}\beta^{(k)}||_{2}^{2} + \frac{1}{\tau} ||\beta^{(k)} - b||_{2}^{2} + 2(y - X_{reg}\beta^{(k)})'X_{reg}(\beta^{(k)} - b) \right] + \lambda r(b) \\ & \text{where } 0 < \tau < \frac{1}{||X_{reg}||_{op}^{2}}, \frac{1}{\tau} > ||X_{reg}||_{op}^{2} \\ & = \frac{1}{2n\tau} (\tau ||y - X_{reg}\beta^{(k)}||_{2}^{2} + ||\beta^{(k)} - b||_{2}^{2} + 2\tau (y - X_{reg}\beta^{(k)})'X_{reg}(\beta^{(k)} - b) + 2n\tau \lambda r(b)) \\ & = \frac{1}{2n\tau} (\tau ||y - X_{reg}\beta^{(k)}||_{2}^{2} - \tau^{2}||X_{reg}'(y - X_{reg}\beta^{(k)})||_{2}^{2} + ||\tau X_{reg}'(y - X_{reg}\beta^{(k)}) + (\beta^{(k)} - b)||_{2}^{2} + 2n\tau \lambda r(b)) \\ & = g(b) \end{split}$$

 $argmin_b(Loss function g(b)) = \beta^{(k+1)}$

$$= argmin_{\beta}(||\tau X'_{reg}(y - X_{reg}\beta^{(k)}) + (\beta^{(k)} - b)||_{2}^{2} + 2n\tau\lambda r(b))$$

Let
$$z = \tau X'_{reg}(y - X_{reg}\beta^{(k)}) + \beta^{(k)} = \beta^{(k)} - \tau X'_{reg}(X_{reg}\beta^{(k)} - y)$$

Since $||z-b||_2^2$ and r(b) are separable in b,

(Statement 2)

Differentiating $||z - b||_2^2 + \tau \lambda r(b)$ with respect to b_j for j=1,2,...p and setting derivative to 0, $-2(z_j - b_j) + 2n\tau \lambda \frac{dr(b)}{db_j} = 0$

In the case of lasso,

$$0 = \begin{cases} -2(z_j - b_j) + 2n\tau\lambda sign(b_j) \text{ if } b_j \neq 0 \\ [-2z_j - 2n\tau\lambda, -2z_j + 2n\tau\lambda] \text{ if } b_j = 0 \end{cases}$$

$$\text{If } b_j = 0, 0 \in [-2z_j - 2n\tau\lambda, -2z_j + 2n\tau\lambda]$$

$$0 > -2z_j - 2n\tau\lambda, 0 < -2z_j + 2n\tau\lambda$$

$$-n\tau\lambda < z_j < n\tau\lambda$$

$$-n\tau\lambda < z_j < n\tau\lambda$$

$$\beta_j = \begin{cases} \frac{2z_j + 2n\tau\lambda}{2} = z_j + n\tau\lambda \text{ if } b_j < 0 \text{ or } z_j < -n\tau\lambda \\ 0 \text{ if } -n\tau\lambda < z_j < n\tau\lambda \\ \frac{2z_j - 2n\tau\lambda}{2} = z_j - n\tau\lambda \text{ if } b_j > 0 \text{ or } z_j > n\tau\lambda \end{cases}$$

More compactly,

$$b_i = ST(z^{(k)}, n\tau\lambda) = max(|z^{(k)}| - n\tau\lambda, 0) * sign(z^{(k)})$$

Procedure

Step 1:
$$\beta^{(0)} = 0, 0 < \tau < \frac{1}{||X_{reg}||_{op}^2}$$

Step 2: Repeat until $||\beta^{(k+1)} - \beta^{(k)}||_2$ is small or for a fixed number of iterations. For each iteration k,

(a)
$$z^{(k)} = \beta^{(k)} - \tau X'_{reg}(X_{reg}\beta^{(k)} - y)$$

(b) $\beta^{(k+1)} = max(|z^{(k)}| - n\tau\lambda, 0) * sign(z^{(k)})$

Addition of Nesterov's accelerated gradient (NAG) step increases the convergence rate of the algorithm from $O(\frac{1}{k})$ to $O(\frac{1}{k^2})$.

In particular the loops in step 2 becomes,

$$(a)\ v = eta^{(k-1)} + rac{j-2}{j+1}(eta^{(k-1)} - eta^{(k-2)})$$

(b)
$$z^{(k)} = v - \tau X'_{reg}(X_{reg}v - y)$$

(c)
$$\beta^{(k)} = max(|z^{(k)}| - n\tau\lambda, 0) * sign(z^{(k)})$$

20. Finding $\hat{\beta}$ for elastic net regression

 X_{reg} is assumed to be standardised.

$$\text{Loss function} = \frac{1}{2n} \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \rho \sum_{i=1}^p |\beta_j| + \frac{\lambda(1-\rho)}{2} \sum_{i=1}^p \beta_j^2$$

b be an estimator of β

Following statement 2 (derivative) under appendix A19, it can be shown that

$$\begin{split} &-2(z_j-b_j)+2n\tau\lambda\rho\frac{d\sum_{k=1}^p|b_k|}{db_j}+2n\tau\lambda\frac{(1-\rho)}{2}\frac{d\sum_{k=1}^pb_k^2}{db_j}=0\\ &-2(z_j-b_j)+2n\tau\lambda\rho\frac{d\sum_{k=1}^p|b_k|}{db_j}+2n\tau\lambda(1-\rho)b_j=0\\ &0=\begin{cases} -2(z_j-b_j)+2n\tau\lambda\rho sign(b_j)+2n\tau\lambda(1-\rho)b_j \text{ if } b_j\neq 0\\ [-2z_j-2n\tau\lambda\rho,-2z_j+2n\tau\lambda\rho] \text{ if } b_j=0 \end{cases}\\ &\text{If } b_j=0, 0\in[-2z_j-2n\tau\lambda\rho,-2z_j+2n\tau\lambda\rho]\\ &0>-2z_j-2n\tau\lambda\rho, 0<-2z_j+2n\tau\lambda\rho\\ &-n\tau\lambda\rho< z_j< n\tau\lambda\rho\\ &-n\tau\lambda\rho< z_j< n\tau\lambda\rho\\ &0 \text{ if } -n\tau\lambda\rho< z_j< n\tau\lambda\rho\\ &0 \text{ if } -n\tau\lambda\rho< z_j< n\tau\lambda\rho\\ &0 \text{ if } -n\tau\lambda\rho< z_j< n\tau\lambda\rho\\ &\frac{2z_j-2n\tau\lambda\rho}{2+2n\tau\lambda(1-\rho)}=\frac{z_j-n\tau\lambda\rho}{1+n\tau\lambda(1-\rho)} \text{ if } b_j>0 \text{ or } z_j> n\tau\lambda\rho \end{split}$$

More compactly,

$$b_j = \frac{ST(z^{(k)}, n\tau\lambda\rho)}{1 + n\tau\lambda(1-\rho)} * sign(z^{(k)}) = \frac{max(|z^{(k)}| - n\tau\lambda\rho, 0)}{1 + n\tau\lambda(1-\rho)} * sign(z^{(k)})$$

Procedure (with Nesterov's accelerated gradient step)

Step 1:
$$\beta^{(0)} = 0, 0 < \tau < \frac{1}{||X_{reg}||_{op}^2}$$

Step 2: Repeat until $||\beta^{(k+1)} - \beta^{(k)}||_2$ is small or for a fixed number of iterations. For each iteration k,

$$egin{align} (a) \ v &= eta^{(k-1)} + rac{j-2}{j+1} (eta^{(k-1)} - eta^{(k-2)}) \ (b) \ z^{(k)} &= v - au X'_{reg} (X_{reg} v - y) \ (c) \ eta^{(k)} &= rac{max(|z^{(k)}| - n au \lambda
ho, 0)}{1 + n au \lambda (1 -
ho)} * sign(z^{(k)}) \ \end{cases}$$

21. Finding \hat{eta} for SCAD regression

$$J_{\lambda,a}(eta_j) = \left\{ egin{aligned} \lambda |eta_j| & ext{if } |eta_j| \leq \lambda \ -rac{eta_j^2 - 2a\lambda |eta_j| + \lambda^2}{2(a-1)} & ext{if } \lambda < |eta_j| \leq a\lambda \ rac{(a+1)\lambda^2}{2} & ext{if } |eta_j| > a\lambda \end{aligned}
ight.$$

where $\lambda > 0$. $a \ge 1$

$$rac{dJ_{\lambda,a}(eta_j)}{deta_j} = egin{cases} \lambda sign(eta_j) ext{ if } |eta_j| \leq \lambda, eta_j
eq 0 \ [-\lambda,\lambda] ext{ if } eta_j = 0 \ -rac{2eta_j - 2a\lambda sign(eta_j)}{2(a-1)} = rac{a\lambda sign(eta_j) - eta_j}{a-1} ext{ if } \lambda < |eta_j| \leq a\lambda \ 0 ext{ if } |eta_j| > a\lambda \end{cases}$$

$$\text{Loss function} = \frac{1}{2(n-1)} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{j=1}^{p} J_{\lambda,a}(\beta_j)$$

 $\text{Differentiating } \frac{1}{2(n-1)} \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \sum_{j=1}^p J_{\lambda,a}(b_j) \text{ with respect to } b_j \text{ for j=1,2,...p and setting derivative to 0, }$

$$\begin{split} &-\frac{1}{n-1}(y-b_0-\sum_{k=1}^p b_k x_k)' x_j + \frac{dJ_{\lambda,a}(b_j)}{db_j} = 0\\ &-\frac{1}{n-1}(y-b_0-\sum_{k=1}^p b_k x_k)' x_j + \frac{1}{n-1}b_j x_j' x_j + \frac{dJ_{\lambda,a}(b_j)}{db_j} = 0 \end{split}$$

Let z_j denote $\frac{1}{n-1}(y-b_0-\sum_{k=1,k\neq j}^pb_kx_k)'x_j$

$$-z_j + \frac{1}{n-1}b_jx_j'x_j + \frac{dJ_{\lambda,a}(b_j)}{db_j} = 0$$

$$b_j = \begin{cases} \frac{z_j - \lambda sign(b_j)}{\frac{1}{n-1}x_j'x_j} \text{ if } |b_j| \leq \lambda \\ 0 \text{ if } z_j \in [-\lambda, \lambda] \\ \frac{\frac{1}{n-1}(a-1)r_j'x_j - a\lambda sign(b_j)}{\frac{1}{n-1}(a-1)x_j'x_j - 1} = \frac{z_j - \frac{a}{a-1}\lambda sign(b_j)}{\frac{1}{n-1}x_j'x_j - \frac{1}{a-1}} \text{ if } \lambda < |b_j| \leq a\lambda \\ \frac{z}{\frac{1}{n-1}x_j'x_j} \text{ if } |b_j| > a\lambda \end{cases}$$

Since x_j is standardised,

$$rac{1}{n-1}\sum_{i=1}^n(x_j^{(i)}-ar{x}_j)^2=rac{\langle x_j,x_j
angle}{n-1}=1 \ \langle x_j,x_j
angle=x_j'x_j=n-1$$

$$b_j = \left\{ egin{aligned} z_j - \lambda sign(b_j) ext{ if } |b_j| \leq \lambda \ rac{z_j - rac{a}{a-1} \lambda sign(b_j)}{1 - rac{1}{a-1}} ext{ if } \lambda < |b_j| \leq a \lambda \ z_j ext{ if } |b_j| > a \lambda \end{aligned}
ight.$$

If a>2

$$\lambda < rac{a-1}{a-2}(z_j - rac{a}{a-1}\lambda) \le a\lambda$$
 $rac{a-2}{a-1}\lambda < z_j - rac{a}{a-1}\lambda \le rac{a-2}{a-1}a\lambda$
 $rac{a-2}{a-1}\lambda + rac{a}{a-1}\lambda < z_j \le rac{a-2}{a-1}a\lambda + rac{a}{a-1}\lambda$
 $rac{2a-2}{a-1}\lambda < z_j \le rac{a^2-a}{a-1}\lambda$
 $2\lambda < z_i \le a\lambda$

Similarly,

$$egin{aligned} -a\lambda &\leq rac{a-1}{a-2}(z_j+rac{a}{a-1}\lambda) < -\lambda \ &-rac{a-2}{a-1}a\lambda \leq z_j+rac{a}{a-1}\lambda < -rac{a-2}{a-1}\lambda \ &-rac{a-2}{a-1}a\lambda -rac{a}{a-1}\lambda \leq z_j < -rac{a-2}{a-1}\lambda -rac{a}{a-1}\lambda \ &rac{a-a^2}{a-1}\lambda \leq z_j < rac{2-2a}{a-1}\lambda \ &-a\lambda \leq z_j < -2a\lambda \end{aligned}$$

$$b_j = \begin{cases} z_j + \lambda \text{ if } -\lambda \leq b_j \leq 0 \text{ or } -2\lambda \leq z_j < \lambda \\ 0 \text{ if } z_j \in [-\lambda, \lambda] \\ z_j - \lambda \text{ if } 0 < b_j \leq \lambda \text{ or } \lambda < z_j \leq 2\lambda \\ \frac{a-1}{a-2} (z_j - \frac{a}{a-1} \lambda) \text{ if } \lambda < b_j \leq a\lambda \text{ or } 2\lambda < z_j \leq a\lambda \\ \frac{a-1}{a-2} (z_j + \frac{a}{a-1} \lambda) \text{ if } -a\lambda \leq b_j < -\lambda \text{ or } -a\lambda \leq z_j < -2\lambda \\ z_j \text{ if } |b_j| > a\lambda \text{ or } |z_j| > a\lambda \end{cases}$$

where a is additionally constrained on a>2 More concisely,

$$b_j = \left\{egin{array}{l} ST(z_j,\lambda) ext{ if } |z_j| \leq 2\lambda \ rac{ST(z_j,rac{a}{a-1}\lambda)}{1-rac{1}{a-1}} ext{ if } 2\lambda < |z_j| \leq a\lambda \ z_j ext{ if } |z_j| > a\lambda \end{array}
ight.$$

Let
$$r = y - b_0 - \sum_{k=1}^{p} b_k x_k$$

$$z_j = rac{1}{n-1}(r+b_jx_j)'x_j = rac{1}{n-1}r'x_j + rac{1}{n-1}b_jx_j'x_j = rac{1}{n-1}r'x_j + b_j$$

Procedure

Step 1: $\beta^{(0)} = 0$,

Step 2:
$$\beta_0^{(0)} = \bar{y}, r = y - \bar{y}$$

Step 3: Repeat until $||\beta^{(k+1)} - \beta^{(k)}||_2$ is small or for a fixed number of iterations. For each iteration k,

$$\begin{aligned} \text{(a) For j=1,...,p,} \\ \text{(i) } z_j &= \frac{1}{n-1} r' x_j + \beta_j^{(k-1)} \\ \text{(ii) } \beta_j^{(k)} &= \begin{cases} ST(z_j,\lambda) \text{ if } |z_j| \leq 2\lambda \\ \frac{ST(z_j,\frac{a}{a-1}\lambda)}{1-\frac{1}{a-1}} \text{ if } 2\lambda < |z_j| \leq a\lambda \\ z_j \text{ if } |z_j| > a\lambda \end{cases} \\ \text{(iii) Set } r \leftarrow r - (\beta_j^{(k)} - \beta_j^{(k-1)}) x_j \end{aligned}$$

Appendix B

1. Residual mean deviance of decision trees

Residual mean deviance =
$$\frac{RSS}{n - |T|}$$

where |T| is the number of terminal nodes

2. Correlation between principal component and original feature

X is assumed to be standardised.

$$\begin{split} \rho_{z_{j},x_{k}} &= \frac{cov(\sum_{j=1}^{p} e_{ij}x_{j}, x_{k})}{\sqrt{\lambda_{j}}\sqrt{\sigma_{kk}}} \\ &= \frac{\sum_{j=1}^{p} e_{ij}cov(x_{j}, x_{k})}{\sqrt{\lambda_{j}}\sqrt{\sigma_{kk}}} \\ &= \frac{\text{kth row of } \Sigma e_{j}}{\sqrt{\lambda_{j}}\sqrt{\sigma_{kk}}} \\ &= \frac{\text{kth row of } \lambda e_{j}}{\sqrt{\lambda_{j}}\sqrt{\sigma_{kk}}} \\ &= \frac{e_{jk}\lambda_{j}}{\sqrt{\lambda_{j}}\sqrt{\sigma_{kk}}} \\ &= \frac{e_{jk}\sqrt{\lambda_{j}}}{\sqrt{\sigma_{kk}}} \end{split}$$

3. Explanation and proof for PLS

Restating the procedure of PLS,

Procedure

Step 1. Standardize/demean X

Step 2. Set
$$x_j^{(0)} = x_j, j = 1, ..., p$$

Step 3. For m=1,...,M

(a) Compute
$$\phi_{mj} = \langle x_i^{(m-1)}, y \rangle$$
 for each j

(b) Construct
$$z_m = \sum_{j=1}^p \phi_{mj} x_j^{(m-1)}$$

$$ext{(c)} \; x_j^{(m)} = x_j^{(m-1)} - rac{\langle z_m, x_j^{(m-1)}
angle}{\langle z_m, z_m
angle} z_m$$

Step 4.
$$\hat{y} = \bar{y}1 + \sum_{m=1}^{M} \frac{\langle z_m, y \rangle}{\langle z_m, z_m \rangle} z_m$$

For each standardized/demeaned predictor,

$$rac{1}{n-1}\sum_{i=1}^n(x_j^{(i)}-ar{x}_j)^2=rac{\langle x_j,x_j
angle}{n-1}$$

Regressing y on x_j ,

regression coefficient of
$$x_j = (x_j'x_j)^{-1}x_j'y$$

$$= \frac{\langle x_j, y \rangle}{\langle x_j, x_j \rangle}$$

$$= \frac{\langle x_j, y \rangle}{\langle x_j, y \rangle}$$

The weights of the first PLS component are equally proportional to the dot product of the corresponding demeaned predictor and the response variable. Exact coefficients are not required since the scaling of PLS components in the final regression model does not affect prediction outcome.

For your information only,

$$corr(x_{j}, y) = \frac{\sum_{i=1}^{n} (x_{j}^{(i)} - \bar{x}_{j})(y_{i} - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_{j}^{(i)} - \bar{x}_{j})^{2} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}}$$

$$= \frac{\sum_{i=1}^{n} (x_{j}^{(i)} - \bar{x}_{j})y_{i} - \sum_{i=1}^{n} (x_{j}^{(i)} - \bar{x}_{j})\bar{y}}{\sqrt{(n-1)\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}}$$

$$= \frac{\langle x_{j}, y \rangle}{\sqrt{(n-1)\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}}$$

 \propto regression coefficient of x_j when y is regressed on x_j

At the end of the first iteration,

$$egin{aligned} residuals_{x_j^{(0)}} &= x_j^{(0)} - rac{\langle z_1, x_j^{(0)}
angle}{\langle z_1, z_1
angle} z_1 \ &= x_j^{(1)} \end{aligned}$$

Assuming
$$\bar{x}_{j}^{(k)}=0$$
 ,

$$\begin{split} \bar{x}_{j}^{(k+1)} &= \bar{x}_{j}^{(k)} - \frac{\langle z_{k+1}, x_{j}^{(k)} \rangle}{\langle z_{k+1}, z_{k+1} \rangle} \bar{z}_{k+1} \\ &= 0 - \frac{\langle z_{k+1}, x_{j}^{(k)} \rangle}{\langle z_{k+1}, z_{k+1} \rangle} \sum_{j=1}^{p} \phi_{(k+1),j} \bar{x}_{j}^{(k)} \\ &= 0 \end{split}$$

Iteratively, this shows that $\bar{x}_j^{(k)}=0$ for k=0,1,2,...,M by mathematical induction (base step is direct from demeaning of predictors). This simplifies the construction of weights of

all PLS components (not just applicable to the first PLS component) to the dot product between y and $x_j^{(k)}$ at the kth iteration.

For each $t \in \mathbb{Z}_{\geq 1}$, let P(t) be the proposition that

$$\langle x_{j}^{(t)}, z_{i} \rangle = 0$$
 for i=1,2,...,t and j=1,2,...,p

(Base step)

P(1) is true because

$$egin{aligned} \langle x_j^{(1)}, z_1
angle &= \langle x_j^{(0)} - rac{\langle z_1, x_j^{(0)}
angle}{\langle z_1, z_1
angle} z_1, z_1
angle \\ &= \langle x_j^{(0)}, z_1
angle - rac{\langle z_1, x_j^{(0)}
angle}{\langle z_1, z_1
angle} \langle z_1, z_1
angle \\ &= 0 \end{aligned}$$

(Induction step)

Let $k \in \mathbb{Z}_{\geq 1}$ such that P(k) is true i.e.

$$\langle x_{j}^{(k)}, z_{i} \rangle = 0 \text{ for i=1,2,...,k, j=1,2,...,p}$$

$$\begin{aligned} \langle x_{j}^{(k+1)}, z_{i} \rangle &= \langle x_{j}^{(k)} - \frac{\langle z_{k+1}, x_{j}^{(k)} \rangle}{\langle z_{k+1}, z_{k+1} \rangle} z_{k+1}, z_{i} \rangle \\ &= \langle x_{j}^{(k)}, z_{i} \rangle - \frac{\langle z_{k+1}, x_{j}^{(k)} \rangle}{\langle z_{k+1}, z_{k+1} \rangle} \langle z_{k+1}, z_{i} \rangle \\ &= - \frac{\langle z_{k+1}, x_{j}^{(k)} \rangle}{\langle z_{k+1}, z_{k+1} \rangle} \langle \sum_{j=1}^{p} \phi_{(k+1), j} x_{j}^{(k)}, z_{i} \rangle \\ &= 0 \end{aligned}$$

When i=k+1,

$$\begin{split} \langle x_{j}^{(k+1)}, z_{k+1} \rangle &= \langle x_{j}^{(k)} - \frac{\langle z_{k+1}, x_{j}^{(k)} \rangle}{\langle z_{k+1}, z_{k+1} \rangle} z_{k+1}, z_{k+1} \rangle \\ &= \langle x_{j}^{(k)}, z_{k+1} \rangle - \frac{\langle z_{k+1}, x_{j}^{(k)} \rangle}{\langle z_{k+1}, z_{k+1} \rangle} \langle z_{k+1}, z_{k+1} \rangle \\ &= 0 \end{split}$$

Hence, $\forall n \in \mathbb{Z}_{\geq 1} \ \mathrm{P(t)} \ \mathrm{is} \ \mathrm{true}.$

WLOG, assume that the lastest derived principal component is in the last column of Z i.e. z_i is orthogonal to $x_j^{(t-1)}$ for i=1,2,..,(t-1),

$$\begin{split} \hat{\beta}^{(t-1)} &= (Z'Z)^{-1}Z'x_j^{(t-1)} \\ &= (\begin{bmatrix} Z_{-t}' \\ z_t' \end{bmatrix} [Z_{-t} \quad z_t])^{-1} \begin{bmatrix} Z_{-t}' \\ z_t' \end{bmatrix} x_j^{(t-1)} \\ &= (\begin{bmatrix} Z_{-t}' \\ z_t' \end{bmatrix} [Z_{-t} \quad z_t])^{-1} \begin{bmatrix} Z_{-t}'x_j^{(t-1)} \\ z_t'x_j^{(t-1)} \end{bmatrix} \\ &= \begin{bmatrix} Z_{-t}'Z_{-t} \quad Z_{-t}'z_t \\ z_t'Z_{-t} \quad z_t'z_t \end{bmatrix}^{-1} \begin{bmatrix} Z_{-t}'x_j^{(t-1)} \\ z_t'x_j^{(t-1)} \end{bmatrix} \\ &= \begin{bmatrix} Z_{-t}'Z_{-t} \quad 0 \\ 0 \quad z_t'z_t \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ z_t'x_j^{(t-1)} \end{bmatrix} \\ &= \begin{bmatrix} (Z_{-t}'Z_{-t})^{-1} \quad 0 \\ 0 \quad (z_t'z_t)^{-1} \end{bmatrix} \begin{bmatrix} 0 \\ z_t'x_j^{(t-1)} \end{bmatrix} \\ &= \begin{bmatrix} 0 \\ (z_t'z_t)^{-1}z_t'x_j^{(t-1)} \end{bmatrix} \end{split}$$

4. Theorem supporting SIR's assumption

Theorem

If distribution of standardised X is elliptically symmetric and $p(y|x) = f(\eta_1'x, \eta_2'x, ..., \eta_K'x)$ for some function $f: R^K \to R$, then the centered inverse regression curve lies in the subspace spanned by $\{\eta_1, \eta_2, ..., \eta_K\}$.

Box Cox transformations can be used to transform X variables to become more normally-distributed.

5. Some other optimisers for neural networks

Nesterov accelerated gradient

Procedure

Step 1: Initialize $\theta^{(0)}$ randomly. Set $v^{(0)}=0, t=0$.

Step 2. While training loss not converged,

(a)
$$t \leftarrow t + 1$$

(b) $v^{(t)} \leftarrow \gamma v^{(t-1)} + \eta \nabla_{\theta} L(\theta^{(t-1)} - \gamma v^{(t-1)})$
(c) $\theta^{(t)} \leftarrow \theta^{(t-1)} - v^{(t)}$

Gradient

Adagrad

Step 1: Initialize $\theta^{(0)}$ randomly. Set $t=0, G^{(0)}=0$.

Step 2. While training loss not converged,

(a)
$$t \leftarrow t+1$$

(b)
$$g^{(t)} \leftarrow \nabla_{\theta} L(\theta^{(t-1)})$$

(c)
$$G^{(t)} \leftarrow G^{(t-1)} + g^{(t)} \circ g^{(t)}$$
 where \circ represent the pointwise (Hadamard) product

(d)
$$\theta^{(t)} \leftarrow \theta^{(t-1)} - \eta g^{(t)} \oslash (\sqrt{G^{(t)} + \epsilon})$$
 where \oslash represents the pointwise (Hadamard) division

The square root in 2(d) is applied elementwise.

The default is $\epsilon=10^{-8}, \eta=0.01$. Adagrad eliminates the need for η to be tuned.

Adadelta

Step 1: Initialize $\theta^{(0)}$ randomly. Set $t = 0, h^{(0)} = 0$.

Step 2. While training loss not converged,

(a)
$$t \leftarrow t+1$$

(b)
$$g^{(t)} \leftarrow \nabla_{\theta} L(\theta^{(t-1)})$$

(c)
$$h^{(t)} \leftarrow \gamma h^{(t-1)} + (1-\gamma)g^{(t)} \circ g^{(t)}$$
 where \circ represent the pointwise (Hadamard) product

(c)
$$s^{(t)} \leftarrow -\eta g^{(t)} \oslash (\sqrt{h^{(t)} + \epsilon})$$
 where \oslash represents the pointwise (Hadamard) division

(c)
$$u^{(t)} \leftarrow \gamma u^{(t-1)} + (1 - \gamma) s^{(t)}$$

$$\text{(d) } \theta^{(t)} \leftarrow \theta^{(t-1)} - g^{(t)} \circ u^{(t-1)} \oslash (\sqrt{h^{(t)} + \epsilon})$$

where $h^{(t)}$ estimates $E(g^2)$, $u^{(t)}$ estimates $E(\Delta\theta^2)$ and $\sqrt{h^{(t)}+\epsilon}$ estimates root mean squared (RMS) error at iteration t

The default is $\gamma = 0.9$.

Root mean squared propagation (RMSprop)

Procedure

Step 1: Initialize $\theta^{(0)}$ randomly. Set $v^{(0)}=0, t=0$.

Step 2. While training loss not converged,

(a)
$$t \leftarrow t+1$$

(b)
$$g^{(t)} \leftarrow \nabla_{\theta} L(\theta^{(t-1)})$$

(c)
$$v^{(t)} \leftarrow \beta_2 v^{(t-1)} + (1-\beta_2) g^{(t)} \circ g^{(t)}$$
 where \circ represent the pointwise (Hadamard) product

$$\text{(d)} \ \hat{v}^{(t)} \leftarrow \frac{v^{(t)}}{(1-\beta_2^t)}$$

(e)
$$\theta^{(t)} \leftarrow \theta^{(t-1)} - \eta g^{(t)} \oslash (\sqrt{\hat{v}^{(t)}} + \epsilon)$$
 where \oslash represents the pointwise (Hadamard) division

The default is $\beta_2=0.9, \epsilon=10^{-7}$. Only η needs to be tuned.

Appendix C Predictors

	Abbreviation	Name
1	absacc	Absolute accruals
2	acc	Working capital accruals
3	age	No. of years since first Compustat coverage
4	agr	Asset growth
5	b/m	Book-to-market (macro)
6	baspread	Bid-ask spread
7	bm	Book-to-market
8	cash	Cash holdings
9	cashdebt	Cash flow to debt
10	cashpr	Cash productivity
11	cfp	Cash flow to price ratio
12	chcsho	Change in shares outstanding
13	chinv	Change in inventory
14	chmom	Change in 6-month momentum
15	chtx	Change in tax expense
16	cinvest	Corporate investment
17	convind	Convertible debt indicator
18	currat	Current ratio

19	depr	Depreciation/PP&E
20	dfy	Default spread (macro)
21	divi	Dividend initiation
22	divo	Dividend omission
23	dolvol	Dollar trading volume
24	dp	Dividend-price ratio (macro)
25	dy	Dividend to price
26	e/p	Earnings to price (macro)
27	egr	Growth in common shareholder equity
28	ер	Earnings to price
29	gma	Gross profitability
30	grcapx	Growth in capital expenditures
31	herf	Industry sales
32	hire	concentration
33	ill	Illiquidity
34	indmom	Industry momentum
35	invest	Capital expenditures and inventory
36	lev	Leverage
37	lgr	Growth in long-term debt
38	maxret	Maximum daily return

39	mom12m	12-month momentum
40	mom1m	1-month momentum
41	mom36m	36-month momentum
42	mom6m	6-month momentum
43	ms	Financial statement score
44	mve_ia	Industry adjusted size
45	mvel1	Size/Market capitalization
46	nincr	Number of earnings increases
47	ntis	Net equity expansion (macro)
48	operprof	Operating profitability
49	orgcap	Organizational capital
50	pchcurrat	% change in current ratio
51	pchdepr	% change in depreciation
52	pchgm_pchsale	% change in gross margin - % change in sale
53	pchquick	% change in quick ratio
54	pchsale_pchrect	% change in sale - % change in A/R

55	pchsale_pchxsg a	% change in sale - % change in SG&A
56	pctacc	Percent accruals
57	ps	Financial statements score
58	quick	Quick ratio
59	rd	R&D increase
60	ret	Monthly return
61	retvol	Return volatility
62	roaq	Return on assets
63	roavol	Earnings volatility
64	roeq	Return on equity
65	roic	Return on invested capital
66	rsup	Revenue surprise
67	salecash	Sales to cash
68	saleinv	Sales to inventory
69	salerec	Sales to receivables
70	securedind	Secured debt indicator
71	sgr	Sales growth
72	sin	Sin stocks
73	sp	Sales to price
74	std_dolvol	Volatility of liquidity (dollar trading volume)
75	std_turn	Volatility of liquidity (share turnover)

76	svar	Stock variance (macro)
77	tang	Debt capacity/firm tangibility
78	tb	Tax income to book income
79	tbl	3-months US treasury bill-rate (macro)
80	tms	Term spread (macro)
81	turn	Share turnover
82	zerotrade	Zero trading days