Single Cell Perturbation scPerturb

DS542 DL4DS Sicheng Yi (Tiger Yi) tigeryi@bu.edu

Table of Contents

- 1 Background
- 2 Data
- 3 Augmentation
- 4 Model
- 5 Result

NeurlPS 2023 Kaggle competition

scPerturb 3

Experimental setup 96-well treatment plates Fach well contains cells belonging to all cell types*. We computationally assign cell types to each cell, then partition the data into train and test splits. Healthy donor *Due to sampling noise or perturbation effects, some wells may be missing some cell **PBMCs** H O O O O O O O O O O O Cells from each well are chemically tagged and measured together. After sequencing, cells are computationally demultiplexed. H.O O.O.O O O O O O Compounds Positive controls (72 per plate, 144 total) (dabrafenib & belinostat) Negative controls This setup is repeated for each of the 3 donors with the same plate layout.

Background

PBMC: peripheral blood molecular cell

- T cells, NK cells, B cells, myeloid cells

144 compounds (drug, sm_names)

16 positive control: dabrafenib, belinostat

8 negative control: DMSO

scRNA-seq: raw RNA counts

scATAC-seq: chromatin peaks

DE differential expression

Differential Expression (DE) analysis

Calculating -log10(p-values)

This maintains privacy of the test set.

Fitting a linear model with Limma $f(g_i) = x_0 + x_1c_i + x_2l_i + x_3d_i + x_4p_i$

Where g_i is an indicator for each gene, and c_i , l_i , d_i , p_i , t_i are indicators of the compound, library, donor, and plate of observation i. Here each observation is a pseudobulked gene expression profile for all cells of a given type from a given well in the experiment.

P-values are calculated based on the significance of model weights for each compound for each gene

For training, the DE model is fit once

to all samples from the training set of

(compound, cell type) combinations.

For public and private test, the DE

model is fit to all data. Contestants will

not have access to this data.

Background

DE differential expression:

Identify change in gene expression level

Between control and perturbed cells

LIMMA: linear model

Calculate DE value

-log10(p-value) * sign(Log Fold Change)

144 drug compounds, 18000+ genes

EDA

Data

Test: Predict differential expression for majority of Myeloid cells and B cells

Train: 144 compounds in T, NK cells. 15 compounds + controls in Myeloid, B cells.

T cells: CD4+, CD8+, regulatory

Data - de_train

DE Train Sample (First 4 Rows and 6 Columns, Shortened SMILES)

cell_type	sm_name	sm_lincs_id	SMILES	control	A1BG	A1BG-AS1
NK cells	Clotrimazole	LSM-5341 C	lc1ccccc1C(c1c.	False	0.10472	-0.077524
T cells CD4+	Clotrimazole	LSM-5341 C	lc1ccccc1C(c1c.	False	0.915953	-0.88438
T cells CD8+	Clotrimazole	LSM-5341 C	lc1ccccc1C(c1c.	False	-0.387721	-0.305378
regulatory cells	Clotrimazole	LSM-5341 C	lc1ccccc1C(c1c.	False	0.232893	0.129029

Row (614): cell type, sm compound pairs

Column (18216):

18211 genes of DE value: -log10(p-value)

control: true or false

SMILES: single line 1D molecular structure

- + up regulated
- down regulated

number: -log10(p) Higher, more significant

Data - adata

	obs_id	gene	count	normalized_count
0	000006a87ba75b72	AATF	1	5.567933
1	000006a87ba75b72	ABHD12	1	5.567933
2	000006a87ba75b72	ABHD3	1	5.567933
3	000006a87ba75b72	AC004687.1	1	5.567933
4	000006a87ba75b72	AC009779.2	1	5.567933

obs_id	library_id	plate_name	well	row	col	cell_id	donor_id	cell_type	sm_lincs_id	sm_name
000006a87ba75b72	library_4	plate_4	F7	F	7	РВМС	donor_2	T cells CD4+	LSM-4944	MLN 2238
0000233976e3cd37	library_0	plate_3	D4	D	4	РВМС	donor_1	T cells CD4+	LSM-46203	BMS- 265246
0001533c5e876362	library_2	plate_0	B11	В	11	РВМС	donor_0	T regulatory cells	LSM-45663	Resminostat
00022f989630d14b	library_35	plate_2	E6	Е	6	РВМС	donor_0	T cells CD4+	LSM-43216	FK 866
0002560bd38ce03e	library_22	plate_4	В6	В	6	РВМС	donor_2	T cells CD4+	LSM-1099	Nilotinib

scRNA-seq

obs: individual cell

gene: column detrain

count: raw molecular counts of gene in cell

Norm: log(X+1)

Data - multiome

	obs_id	location	count	normalized_count
0	000225c1151ab841	AAMP	1	6.320659
1	000225c1151ab841	AASS	1	6.320659
2	000225c1151ab841	ABCC11	1	6.320659
3	000225c1151ab841	ABCC2	1	6.320659
4	000225c1151ab841	ABR	1	6.320659

	obs_id	cell_type	donor_id
0	000225c1151ab841	B cells	donor_0
1	0003c40a54367871	T cells CD4+	donor_2
2	0004bf574b822c3c	T cells CD4+	donor_2
3	000d59b5478f28e2	B cells	donor_0
4	0011b7473923d7b5	NK cells	donor_2

	location	gene_id	feature_type	genome	interval
0	A1BG	ENSG00000121410	Gene Expression	GRCh38	chr19:58353491-58353492
1	A1BG-AS1	ENSG00000268895	Gene Expression	GRCh38	chr19:58347750-58351970
2	A2M	ENSG00000175899	Gene Expression	GRCh38	chr12:9116156-9116157
3	A2M-AS1	ENSG00000245105	Gene Expression	GRCh38	chr12:9065162-9065177
4	A2ML1	ENSG00000166535	Gene Expression	GRCh38	chr12:8822620-8845004
158200	chrY:7765105-7765991	chrY:7765105-7765991	Peaks	GRCh38	chrY:7765105-7765991
158201	chrY:7814158-7815060	chrY:7814158-7815060	Peaks	GRCh38	chrY:7814158-7815060
158202	chrY:7818681-7819599	chrY:7818681-7819599	Peaks	GRCh38	chrY:7818681-7819599
158203	chrY:8535565-8536421	chrY:8535565-8536421	Peaks	GRCh38	chrY:8535565-8536421
158204	chrY:8537529-8538370	chrY:8537529-8538370	Peaks	GRCh38	chrY:8537529-8538370

scRNA-seq: gene expression

scATAC-seq: chormation peaks

Augmentation - mean, std of cell types, sm_name

```
de_cell_type = de_train.iloc[:, [0] + list(range(5, de_train.shape[1]))]
de_sm_name = de_train.iloc[:, [1] + list(range(5, de_train.shape[1]))]
mean_cell_type = de_cell_type.groupby('cell_type').mean().reset_index()
mean_sm_name = de_sm_name.groupby('sm_name').mean().reset_index()
std_cell_type = de_cell_type.groupby('cell_type').std().reset_index()
std_sm_name = de_sm_name.groupby('sm_name').std().reset_index()
```

	cell_type	A1BG	A1BG-AS1	A2M	A2M-AS1	A2MP1
0	B cells	1.380890	0.530585	1.340812	1.594307	4.927551
1	Myeloid cells	1.570336	0.752564	-2.856826	0.887845	6.658911
2	NK cells	0.417735	0.409016	-0.224808	-0.425929	0.282997
3	T cells CD4+	0.020208	0.116092	0.107412	-0.327098	-0.034363
4	T cells CD8+	0.028166	-0.063453	0.019265	0.038879	0.138214

	sm_name	A1BG	A1BG-AS1	A2M	A2M-AS1
0	5-(9- Isopropyl-8- methyl-2- morpholino- 9H-purin	0.300267	-0.112432	0.413144	1.468632
1	ABT-199 (GDC-0199)	-0.081286	0.007314	0.081242	-0.125777
2	ABT737	0.408012	0.322574	0.107448	-0.049174
3	AMD-070 (hydrochloride)	-0.031131	0.533648	0.124738	0.241484
4	AT 7867	0.242736	-0.275840	0.158312	0.267365

scPerturb ¹¹

Augmentation - SMILES

	sm_name	SMILES	cc1- c1c	n2ccc	CCc2cc	COc1cc	c1=0	NC	СС[С@@Н]23	Nc1ncnc2c1c
C	Clotrimazole	Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1	0	0	0	0	0	0	0	0
1	Mometasone Furoate	C[C@@H]1C[C@H]2[C@@H]3CCC4=CC(=0)C=C[C@]4(C) [C	0	0	0	0	0	0	0	0
2	! Idelalisib	CC[C@H](Nc1ncnc2[nH]cnc12)c1nc2cccc(F)c2c(=O)n	0	0	0	0	0	0	0	0
3	Vandetanib	COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1	0	0	0	0	0	0	0	0
4	Bosutinib	COc1cc(Nc2c(C#N)cnc3cc(OCCCN4CCN(C)CC4)c(OC)cc	0	0	0	1	0	0	0	0

Clc1ccccc1C(c1ccccc1)(c1ccccc1)n1ccnc1 Element_Count: {'Cl': 1, 'C': 22, 'N': 2}

scPerturb

Differential Expression MLP Compound Cell Type Representation Representation MLP MLP Cell Type Compound Feature Feature RNA-seq sm: SMILES ATAC-seq controls

Model

9

Results

	MLP	Transformer				
validation	0.86	0.90				
test	0.93	0.87				

Transformer seems to generalize better on the unseen test set.

Evaluation

We use the **Mean Rowwise Root Mean Squared Error** to score submissions, computed as follows:

MRRMSE =
$$\frac{1}{R} \sum_{i=1}^{R} \left(\frac{1}{n} \sum_{j=1}^{n} (y_{ij} - \hat{y}_{ij})^2 \right)^{1/2}$$

where R is the number of scored rows, and y_{ij} and \hat{y}_{ij} are the actual and predicted values, respectively, for row i and column j, and n is the number of columns.

scPerturb 14

