LC16 - Solvants

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

I. Modifications macroscopiques des molécules

3. Différents types de réaction

Catégorie	Solvant	Formule	Moment dipolaire (en Debye)	Permittivité relative à 25° <i>C</i>	Solvatation	
Polaire Protique	Eau	H_2O	1,85	78.5	Solvate fortement les	
	Méthanol	CH_3OH	1,70	32.6	anions	
	Ethanol	CH_3CH_2OH	1,69	24.3		
Polaire Aprotique	Diméthylformamide	$HCON(CH_3)_2$	3,82	36.7	Solvate fortement les	
	Diméthylesulfoxyde	CH_3SOCH_3	3,96	49	cations	
	Acétone	CH_3COCH_3	2,88	20.7		
Apolaire Aprotique	Cyclohexane	C_6H_{12}	0	2,02	Solvate peu les ions	
	Pentane	C_5H_{12}	0	1,84		

II. Mélanges

3. Coefficient de partage

Erlenmeyer: 20mL de (0,208 g de I_2 dans 100mL de C_6H_{12}) et 200 mL de H_2O + Agitation pendant 30 min

Décantation

Séparation et récupération des phases aqueuse et organique

Dosage par le thiosulfate de sodium (Na₂S₂O₃) de la phase aqueuse pour en déduire la concentration en I₂

Calcul du coefficient de partage K :
$$K = \frac{[I_2]_{C_6H_{12}}}{[I_2]_{H_2O}}$$

II. Mélanges

3. Coefficient de partage

$$I_{2(aq)} + 2 S_2 O_3^{2-}{}_{(aq)} = S_4 O_6^{2-}{}_{(aq)} + 2 I_{(aq)}^{-}$$

A l'équivalence, $n_{S_2O_3}^{2-}=2~n_{I_2}~{
m donc}~[I_2]^{aq}=rac{c_1V_{\acute{e}q}}{2V_{aq}}$

Par conservation de la quantité de matière, on a :

$$n_{I_{2}}^{tot} = n_{I_{2}}^{orga} + n_{I_{2}}^{aq}$$
 $C_{o}V_{orga} = n_{I_{2}}^{orga} + [I_{2}]^{aq}V_{\acute{e}q}$

On remonte donc à la concentration du diiode dans la phase organique :

$$[I_2]^{orga} = \frac{n_{I_2}^{orga}}{V_{orga}} = C_o - \frac{[I_2]^{aq} V_{\acute{e}q}}{V_{orga}}$$

III. Utilisations

1. Influence sur la cinétique d'une réaction

Réaction d'intérêt :

$${}^{t}Bu - Br + H_{2}O = {}^{t}Bu - OH + Br^{-} + H^{+}$$

	Eau	Acétone	Bromure de tertiobutyle
Mélange A	10 g	40 g	1 mL
Mélange B	30 g	20 g	1 mL

Bécher : Eau + Acétone, au bain thermostaté (40°C)

Cellule conductimétrique dans la solution et Agitation

Ajout du Chlorure de tertiobutyle, Arrêt de l'agitation

Mesure de la conductivité en fonction du temps

III. Utilisations

1. Influence sur la cinétique d'une réaction

	^tBu-Br	H_2O	^t Bu — OH	Br ⁻	H ⁺	Conductivité σ
t = 0	а	excès	0	0	0	σ_0
t	a - x	excès	X	X	X	$(\lambda_{H+}^0 + \lambda_{Br-}^0). x + \sigma_0$
t_{∞}	ε	excès	а	a	a	$(\lambda_{H+}^0 + \lambda_{Br-}^0)$. $a + \sigma_0$

Pour une réaction d'ordre 1 par rapport au bromure de tertio butyle :

$$V = k \left[{}^{t}Bu - Br \right] = k(a - x)$$

$$\ln \frac{a}{a-x} = kt \qquad \ln \frac{\sigma_{\infty} - \sigma_0}{\sigma_{\infty} - \sigma t} = kt$$

III. Utilisations

2. Extraction liquide-liquide

Fiole jaugée 100 mL : 0,2 g de I₂ dans du cyclohexane

Erlenmeyer : 20 mL de la solution précédente + 200 mL d'eau

Ampoule à décanter

