## Neural Networks (part 3)

Most of the materials are taken from here

Nastaran Okati

#### Outline

- Gradient Checks
- Sanity Checks in Learning
- Monitoring the Learning Process
- Parameter Updates

## 1. Gradient Checks

#### Gradient checks

- Comparing the analytic gradient to the numerical gradient.
- use the centered difference formula of the form:

$$\frac{df(x)}{dx} = \frac{f(x+h) - f(x-h)}{2h}$$

h is a very small number, in practice approximately 1e-5 or so

- How to compare the numerical and analytic gradient?
- Use the relative error:  $\frac{|f'_a f'_n|}{\max(|f'_a|, |f'_n|)}$ 
  - relative error > 1e-2 usually means the gradient is probably wrong
  - 1e-2 > relative error > 1e-4 should make you feel uncomfortable
  - 1e-4 > relative error is usually okay for objectives with kinks. But if there are no kinks (e.g. use of tanh nonlinearities and softmax), then 1e-4 is too high.
  - 1e-7 and less you should be happy.

### Gradient checking in deeper networks

- The deeper the network, the higher the relative errors will be
- So if you are gradient checking the input data for a 10-layer network, a relative error of 1e-2 might be okay because the errors build up on the way
- An error of 1e-2 for a single differentiable function likely indicates incorrect gradient.
- Use double precision

### Kinks in the objective

- Kinks refer to non-differentiable parts of an objective function
- Consider gradient checking the ReLU function at x=1e-6. What might happen?
- A Neural Network with an SVM classifier will contain many kinks due to ReLUs.
- It is possible to know if a kink was crossed in the evaluation of the loss. This can be done by keeping track of the identities of the parameters

### Gradient Check Tips and Tricks

- Use only few datapoints.
- Be careful with the step size h
- Don't let the regularization overwhelm the data.
- Remember to turn off any non-deterministic effects in the network, such as dropout, random data augmentations, etc.

- A gradient check is performed at a particular (and usually random), single point in the space of parameters.
- Even if the gradient check succeeds at that point, it is not immediately certain that the gradient is correctly implemented globally.

# 2. Sanity Checks before Learning

### Sanity Checks Tips

- Look for correct loss at chance performance.
  - It's best to first check the data loss alone
  - For example, for CIFAR-10 with a Softmax classifier we would expect the initial loss to be 2.302, because we expect a diffuse probability of 0.1 for each class (since there are 10 classes), and Softmax loss is the negative log probability of the correct class so: -ln(0.1) = 2.302.
  - If you're not seeing these losses there might be issue with initialization.

### Sanity Checks Tips

- Increasing the regularization strength should increase the loss
- Overfit a tiny subset of data
  - before training on the full dataset try to train on a tiny portion (e.g. 20 examples) and make sure you can achieve zero cost (set regularization to zero)
  - Unless you pass this sanity check with a small dataset it is not worth proceeding to the full dataset.
  - It may happen that you can overfit very small dataset but still have an incorrect implementation

# 3. Monitoring the Learning Process

### Monitoring the Learning Process

- There are multiple useful quantities you should monitor during training of a neural network
  - Loss function
  - Train/Val accuracy
  - Ratio of weights:updates
- The x-axis of the plots below are always in units of epochs

### Monitoring Loss Function

The first quantity that is useful to track during training is the loss, as it is evaluated on the individual batches during the forward pass.



### Monitoring Loss Function

- With low learning rates the improvements will be linear.
- With high learning rates they will start to look more exponential
- Higher learning rates will decay the loss faster, but they get stuck at worse values of loss (parameters are bouncing around chaotically, unable to settle in a nice spot)
- Too much noise in the loss function may indicates that the batch size is a little too low

### Monitoring Train/Val Accuracy

The second important quantity to track while training a classifier is the validation/training accuracy. This plot can give you valuable insights into the amount of overfitting in your model:



### Monitoring the Ratio of weights:updates

- The last quantity you might want to track is the ratio of the update magnitudes to the value magnitudes
- What are the updates?
- A rough heuristic is that this ratio should be somewhere around 1e-3.
- If it is lower than this then the learning rate might be too low. If it is higher then the learning rate is likely too high.

# 4. Parameter Updates

### Annealing Learning Rate

- With a high learning rate, the system contains too much kinetic energy and the parameter vector bounces around chaotically, unable to settle down into deeper, but narrower parts of the loss function.
- When to decay the learning rate?
- Decay it slowly or aggressively?

### Learning Rate Decay

- Step Decay: Reduce the learning rate by some factor every few epochs.
  - Typical values might be reducing the learning rate by a half every 5 epochs, or by 0.1 every 20 epochs.
  - Watch the validation error while training with a fixed learning rate, and reduce the learning rate by a constant (e.g. 0.5) whenever the validation error stops improving.

### Per-parameter adaptive learning rate methods

- All previous approaches we've discussed so far manipulated the learning rate globally and equally for all parameters.
- Tuning the learning rates is an expensive process, so much work has gone into devising methods that can adaptively tune the learning rates and even do so per parameter
  - Adagrad
  - RMSprop
  - Adam

### Adagrad

- The weights that receive high gradients will have their effective learning rate reduced, while weights that receive small or infrequent updates will have their effective learning rate increased.
- Keep track of per-parameter sum of squared gradients then normalize the parameter update step, element-wise

```
>>>cache += dx**2
>>>x += - learning_rate * dx / (np.sqrt(cache) + eps)
```

### RMSprop

- Adjusts the Adagrad method in a very simple way in an attempt to reduce its aggressive, monotonically decreasing learning rate.
- Modulates the learning rate of each weight based on the magnitudes of its gradients, which has a beneficial equalizing effect, but unlike Adagrad the updates do not get monotonically smaller.

```
>>>cache = decay_rate * cache + (1 - decay_rate) * dx**2
>>>x += - learning_rate * dx / (np.sqrt(cache) + eps)
```

#### Adam

- The update looks exactly as RMSProp update, except the "smooth" version of the gradient m is used instead of the raw gradient vector dx
- Recommended values in the paper are eps = 1e-8, beta1 = 0.9, beta2 = 0.999
- ▷ In practice Adam is currently recommended as the default algorithm to use

```
>>>m = beta1*m + (1-beta1)*dx
>>>v = beta2*v + (1-beta2)*(dx**2)
>>>x += - learning_rate * m / (np.sqrt(v) + eps)
```



### Hyperparameter Optimization

- Be careful with parameter ranges
- Prefer random search to grid search
- Stage your search from coarse to fine

# 4. Evaluation

#### Model Ensembles

- One reliable approach to improving the performance of Neural Networks by a few percent is to train multiple independent models, and at test time average their predictions
  - Same model, different initializations
  - Top models discovered during cross-validation
  - Running average of parameters during training
- Disadvantage of model ensembles is that they take longer to evaluate on test example.

#### What are Convolutional Neural Networks?

Wait until next session!



# Thanks! Any questions?