

Accelerate Encrypt/Decrypt Operation in Functional Encryption

YSS TEAM

Members: Yi-Chuan Liang, Shin-Wei Chiu, Shan-Jung Hou

Advisor: Shih-Hao Hung

Performance, Application and Security Laboratory (PAS Lab)

Mentors: CK Lee, Frank Lin, Jay, Tian Zheng (NVIDIA)

NARLabs 國家實驗研究院

國家高速網路與計算中心 National Center for High-performance Computing

Functional Encryption apply in Machine Learning Service

- Machine learning as a Service (MaaS) is apply for medical, financial, or other types of sensitive data, not only require accurate prediction but also careful to maintaining data privacy and security.
- It is important for server to provide fast and secure service
- Functional Encryption is one of the cryptosystem mechanisms used for data privacy In Master Secret Key

- What's the algorithmic motif?
- What parts are you focusing on?

Functional Encryption apply in Machine Learning Service

- Using FE on deep learning operation
- It won't affect 1st layer's activation function and other layers' operations

$$a = g(sk_f(W) \cdot enc(X) + b) = g(f(WX) + b)$$

NARLabs 國家實驗研究院

Profiling Functional Encryption Operation

- Setup(1^λ,1^ℓ)
 - (**G**,p,g) \leftarrow GroupGen(1^{ℓ}), and **s**=(s₁, ..., s_{ℓ}) \leftarrow Z_p^{ℓ}
 - set $mpk = (h_i = g^{Si})_{i \in M}$ and msk = s
- Encrypt(mpk, x)
 - choose a random r ←Z_p and compute ct₀=g^r, ct_i=h_i^r · g^{xi}, ∀ i ∈ [ℓ]
 - return ct = (ct_0, ct_i) , $\forall i \in [\ell]$
- KeyDerive(msk, y)
 - return secret key sk_v=<y,s>

$$\begin{aligned} \textbf{Decrypt(\textit{mpk}, ct, sk}_{\textbf{y}}) &= \frac{\prod_{i \in [\ell]} \operatorname{ct}_{i}^{y_{i}}}{\operatorname{ct}_{0}^{\mathbf{sk}_{\mathbf{y}}}} = \frac{\prod_{i \in [\ell]} (g^{s_{i}r + x_{i}})^{y_{i}}}{g^{r(\sum_{i \in [\ell]} y_{i}s_{i})}} \\ &= g^{\sum_{i \in [\ell]} y_{i}s_{i}r + \sum_{i \in [\ell]} y_{i}x_{i} - r(\sum_{i \in [\ell]} y_{i}s_{i})} \\ &= g^{\sum_{i \in [\ell]} y_{i}x_{i}} = g^{\langle \mathbf{x}, \mathbf{y} \rangle}. \end{aligned}$$

Need faster $\Pi_{i \in I}$ ct_i and logarithm operation

[12] Bourse, Florian. Functional encryption for inner-product evaluations. 2017.

亙

Evolution and Strategy

- What was your goal coming here?
 - Speedup decryption operation in FE
- What was your initial strategy?
 - Using GPU to parallel Baby-Step-Giant-Step Algorithm to solve discrete logarithm

Baby Step Giant Step Algorithm

- Methodology
 - cuCollections (check)
 - XMP (not yet)

Algorithm 1: Baby Step Giant Step

```
Input: g (generator), p (1024bit present prime),
Output: a

/* Know p, g and x=g^a mod p, find exponent a

/* Step1 Create a Giant step table in GPU share memory

m = \sqrt{(p-1)}, a = im + j \text{ where } i, j \in \{0 \dots m-1\} 

for i=0 to range \sqrt{p} do

insert \text{ result of } (xg^i \text{ mod } p) \text{ in to Giant table}

/* Step2 parallel compute baby step in threads

4 while unmatch \text{ in Giant table do}

insert \text{ compute result of } (g^j \text{ mod } p)

insert \text{ product table do}

insert \text{ compute result of } (g^j \text{ mod } p)

insert \text{ compute result of } (g^j \text{ mod } p)

insert \text{ compute result of } (g^j \text{ mod } p)

insert \text{ compute result of } (g^j \text{ mod } p)

insert \text{ compute result of } (g^j \text{ mod } p)

insert \text{ compute result of } (g^j \text{ mod } p)

insert \text{ compute result of } (g^j \text{ mod } p)

insert \text{ compute result of } (g^j \text{ mod } p)

insert \text{ compute result of } (g^j \text{ mod } p)

insert \text{ compute result of } (g^j \text{ mod } p)

insert \text{ compute result of } (g^j \text{ mod } p)
```

國家高速網路與計算中心

National Center for High-performance Computing

Giant step: Parallel Insert

Baby step: Parallel Find

Nsight Profiling

- bit_length 32
- vector length 100
- Speedup 2.2

 Increase bit length and vector length will speed up more

Nsight Profiling

OpenACC

BSGS Experiment

- Increase input ciphertext length on Cuda kernel
- GPU A100

FE+NN Experiment

- LeNet-5, Batch size 64
- Training time speedup 2.5x ~

CPU Training Time					
Framework	Enc	Training time			
LeNet-5	-	4h			
FE + LeNet (baseline)	3h	11h33m			
parallel enc + parallel training	1h40m	6h6m			
Parallel Enc + Opt Dec + Parallel training	1h40m	about 5h			

Expect

Energy Efficiency

INPUTS			
# CPU Cores	128		
# GPUs (A100)	1		
Application Speedup	2.2x		

Node Replacement 17.6x

GPU NODE POWER SAVINGS					
	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Savings		
Compute Power (W)	19,360	6,500	12,860		
Networking Power (W)	817	93	724		
Total Power (W)	20,177	6,593	13,584		

Node Power efficiency 3.1x

ANNUAL ENERGY SAVINGS PER GPU NODE					
	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Savings		
Compute Power (kWh/year)	169,594	56,940	112,654		
Networking Power (kWh/year)	7,159	814	6,346		
Total Power (kWh/year)	176,753	57,754	118,999		

 \$/kWh
 \$
 0.34

 Annual Cost Savings
 \$
 40,459.82

 3-year Cost Savings
 \$
 121,379.45

Metric Tons of CO2 Gasoline Cars Driven for 1 year Seedlings Trees grown for 10 years 84 18 1,395

(source: Link)

Result and Final Profile

- What were you able to accomplish?
 - In BSGS Algorithm, we got a two-time speedup methodology.
 - Increasing kernel utilization can increase the speed-up factor.

- What did you learn?
 - Create a new algorithm?
 - Transform BSGS code to CUDA code.
 - Nsight and NVTX profiling tools

What problems have you encountered?

- Issues with algorithm
 - Increase kernel utilization
- Tool lack of features
 - cuCollections only support 64bit key not support XMP format as a key
- System setup
 - Co-compile with c, cuda, cuCollections, XMP and other libraries.

Future Work and Wishlist

- Will you continue development?
 - Next Step: Replace GPM to XMP in CUDA kernel,
 - Future plans : Combine FE and MaaS
 - Compare Encryption operation with OpenMP version and OpenACC version.
- What sustained resources/support will be critical for your work after the event?
 - Support from CUDA programming technique knowledge from NVIDIA and computing resource from NCHC
- Wishlist
 - Automatic Tools (OpenMP -> OpenACC)
 - Lesson

Summary

- Bit_lengths bigger than 32bit are better for GPU parallel computing.
- In this Hackathon event, our team learned GPU parallel computing skills from mentors.
- We also use Nsight and NVTX Profiling tools to analyze programs for optimization
- Mentors give our team many helpful suggestions and research directions.
- We will keep going to Optimize our project.

Thank you

