

介绍

本文档提供了用于控制和配置部分的命令和属性API描述。接口版本跟踪任何功能上的变化对API(命令,属性,字段,枚举等)。该文件的版本跟踪任何文字改动汇总或AP组件的说明文字。的命令列在汇总表链接到命令的详细信息。性能列在汇总表链接到物业详细资料。在汇总表中的功能,可用的列列出了第一个实施的命令或财产的固件版本。在汇总表中的条目会链接到一个细节部分,其中包含字段的寄存器视图。点击在寄存器视图中的字段将自动展开相应的字段的详细信息。在现场详细链接回寄存器视图上按钮。每个寄存器视图标题链接回到汇总表项。这些超链接提供了双点击进入从上到下。

命令摘要

		BOOT_COMMANDS							
数	名称	简介	可用的功能						
0X02	POWER_UP	命令以电的设备,然后选择操作模式和功能。	revB1B						
		COMMON_COMMANDS							
数	名称	简介	可用的功能						
0x00	NOP	无操作命令。	revB1B						
0X01	PART_INFO	报告有关设备的基本信息。	revB1B						
0X10	(10 FUNC_INFO 返回设备的功能版本信息。								
0x11									
0X12	GET_PROPERTY	检索的一个或多个属性的值	revB1B						
0X13	GPIO_PIN_CFG	配置GPIO引脚。	revB1B						
0X15	X11 - MIN								
0X20	OX20 GET_INT_STATUS 将返回所有可能的中断事件的中断状态(包括状态和暂挂)。任选地,有被用来清除锁存(待定)中断事件。								
0X33	REQUEST_DEVICE_STATE	要求当前的设备状态和通道。	revB1B						
0X34	CHANGE_STATE	手动芯片切换到所希望的操作状态。	revB1B						
0×44	READ_CMD_BUFF	用于读取CTS和命令响应。	revB1B						
0x50	FRR_A_READ	读取快速响应寄存器(FRR)开始FRR_A。	revB1B						
0X51	FRR_B_READ	读取快速响应寄存器(FRR)开始FRR_B。	revB1B						
0x53	FRR_C_READ	读取快速响应寄存器(FRR)开始FRR_C。	revB1B						
0x57	FRR_D_READ	读取快速响应寄存器(FRR)开始FRR_D。	revB1B						
		IR_CAL_COMMANDS							
数	名称	简介	可用的功能						
0X17	IRCAL	镜像抑制校准。	revB1B						
		TX_COMMANDS							
数	名称	简介	可用的功能						
	START_TX	切换到数据包的TX状态,并开始传送。	revB1B						
0x66	WRITE_TX_FIFO	写入数据字节(s)到TX FIFO。	revB1B						

		RX_COMMANDS	1
数	名称	简介	可用的功能
0X16	PACKET_INFO	返回最后接收到的数据包有关的变量字段的长度信息,以及(可选)覆盖字段 的长度。	revB1B
0X22	GET_MODEM_STATUS	返回调制解调器中断组(包括状态和暂挂)的中断状态。任选地,它可以被用 来清除锁存(待定)中断事件。	revB1B
0X32	START_RX	切换到RX状态,并开始数据包的接收。	revB1B
0x36	RX_HOP	手动跳变到一个新的频率,而在RX模式。	revB1B
0x77	READ_RX_FIFO	从RX FIFO中读取数据字节(s)。	revB1B
		ADVANCED_COMMANDS	
数	名称	简介	可用的功能
0X14	GET_ADC_READING	执行使用辅助ADC转换,并返回这些转换的结果。	revB1B
0X18	PROTOCOL_CFG	设置了芯片指定的协议。	revB1B
0X21	GET_PH_STATUS	返回包处理器中断组(包括状态和暂挂)的中断状态。任选地,它可以被用来 清除锁存(待定)中断事件。	revB1B
0x23	GET_CHIP_STATUS	返回芯片中断组(包括状态和暂挂)的中断状态。任选地,它可以被用来清除锁存(待定)中断事件。	revB1B

属性摘要

				全局((0x00)	
	组	数	名称	默认	简介	可用的功能
	0x00	0x00	GLOBAL_XO_TUNE	0X40	配置内部电容的频率调谐银行晶体振荡器。	revB1B
	0x00	0X01	GLOBAL_CLK_CFG	0x00	时钟配置选项。	revB1B
	0x00		GLOBAL_LOW_BATT_THRESH	0X18	配置的阈值电压低电池电压检测。	revB1B
	0x00	0X03	GLOBAL_CONFIG	0X20	全局配置设置。	revB1B
	0x00	0x04	GLOBAL_WUT_CONFIG	0x00	一般唤醒定时器功能配置。	revB1B
	0x00	0X05 0X06	GLOBAL_WUT_M	0x00 0X01	配置唤醒定时器(WUT)值的尾数。	revB1B
	0x00	0X07	GLOBAL_WUT_R	0X60	配置唤醒定时器(WUT)值的指数。	revB1B
	0x00	0X08	GLOBAL_WUT_LDC	0x00	配置的时间段后自动唤醒在最不发达国家的模式下芯片 仍然有效。	revB1B
	0x00	0X09	GLOBAL_WUT_CAL	0x00	如果控制在32K RC振荡器的校准将在武汉理工大学的间隔进行。	revB1B
	<u> </u>		-	INT_CTL	_ (0X01)	
	组	数	名称	默认	简介	可用的功能
	0X01	0x00	INT_CTL_ENABLE	0x04	此属性提供对全局,以产生硬件中断在NIRQ脚使三个中断组(芯片,调制解调器和包处理器)的。	revB1B
	0X01	0X01	INT_CTL_PH_ENABLE	0x00	启用包处理器中断组内的个别中断源产生一个硬件中断的NIRQ输出引脚。	revB1B
	0X01	0X02	INT_CTL_MODEM_ENABLE	0x00	启用调制解调器中断组内的单个中断源产生一个硬件中断的NIRQ输出引脚。	revB1B
	0X01	0X03	INT_CTL_CHIP_ENABLE	0x04	使芯片中断组内的单个中断源产生一个硬件中断的 NIRQ输出引脚。	revB1B
	<u> </u>			FRR_CT	L (0X02)	
	组	数	名称	默认	简介	可用的功能
	0X02	0x00	FRR_CTL_A_MODE	0X01	快速响应寄存器的配置。	revB1B
	0X02	0X01	FRR_CTL_B_MODE	0X02	快速响应寄存器B的配置。	revB1B
	0X02		FRR_CTL_C_MODE	0X09	快速响应寄存器C配置。	revB1B
	0X02	0X03	FRR_CTL_D_MODE	0x00	快速响应寄存器D配置。	revB1B
					(OX10)	
	组	数	名称	默认	简介	可用的功能
	0X10		PREAMBLE_TX_LENGTH	0X08	配置TX前导的长度。	revB1B
	0X10		PREAMBLE_CONFIG_STD_1	0X14	配置接收与标准序言模式的数据包组成。	revB1B
	0X10		PREAMBLE_CONFIG_NSTD	0x00	配置有非标前导图案的分组的发送/接收的。	revB1B
	0X10		PREAMBLE_CONFIG_STD_2	0X0F	超时时间的接待与标准序言模式的数据包时配置。	revB1B
	0X10		PREAMBLE_CONFIG	0X21	一般配置位序言领域。	revB1B
	0X10	0X05 0X06 0X07 0X08	PREAMBLE_PATTERN	0x00 0x00 0x00 0x00	配置位值描述非标准序言格局。	revB1B
	0X10	0X09	PREAMBLE_POSTAMBLE_CONFIG	0x00	配置的后置功能和后置模式位。	revB1B
	0X10	0X0A 0X0B 0X0C 0X0D	PREAMBLE_POSTAMBLE_PATTER	0x00	定义后置模式。	revB1B
				同步。	(0x11)	
	组	数	名称	默认	简介	可用的功能
1 1	0x11	0x00	SYNC CONFIG	0X01	同步字配置位。	revB1B

	0x11	0X01 0X02 0X03 0x04	SYNC_BITS	0X2D 0xd4 0X2D 0xd4	同步字。	revB
				PKT	(0X12)	
	组	数	名称	默认	简介	可用的
	0X12		PKT_CRC_CONFIG	0x00	选择一个CRC多项式和种子。	revB
	0X12	0X01 0X02	PKT_WHT_POLY	0X01 0X08	为PN发生器(例如,数据美白)16位多项式的值	revB
	0X12	0X03 0x04	PKT_WHT_SEED	为0xff 0xff的	为PN发生器(例如,数据美白)16位种子值	revB
	0X12		PKT_WHT_BIT_NUM	0x00	该LFSR(用于生成PN/数据白化序列)的位被用来作 为输出位数据加扰进行选择。	revB
	0X12	0X06	PKT CONFIG1	0x00	一般配置位的数据包的发送或接收。	revB
	0X12		PKT LEN	0x00	配置位接收一个可变长度的数据包。	revB
	0X12		PKT LEN FIELD SOURCE	0x00	包含接收到的数据包长度字节(s)字段编号。	revB
	0X12		PKT_LEN_ADJUST	0x00	提供用于调整/接收的数据包的长度值(以适应不同的限 定的总数据包长度的方法)的偏移量。	revB
	0X12	0X0B	PKT_TX_THRESHOLD	0X30	TX FIFO几乎是空的门槛。	revB
	0X12		PKT_RX_THRESHOLD	0X30	RX FIFO几乎满阈值。	revB
	0X12	0X0D	PKT_FIELD_1_LENGTH	0x00	无符号的13位字段1的长度值。	revB
		0x0E的		0x00		
	0X12		PKT_FIELD_1_CONFIG	0x00	通用数据处理和数据包配置位字段1。	revB
	0X12		PKT_FIELD_1_CRC_CONFIG	0x00	配置跨字段1 CRC控制位。	revB
	0X12	0x11 0X12	PKT_FIELD_2_LENGTH	0x00 0x00	无符号的13位字段2的长度值。	revB
	0X12		PKT_FIELD_2_CONFIG	0x00	通用数据处理和数据包配置位字段2。	revB
	0X12		PKT_FIELD_2_CRC_CONFIG	0x00	配置跨场2 CRC控制位。	revB
	0X12	0X15 0X16	PKT_FIELD_3_LENGTH	0x00 0x00	无符号的13位字段3的长度值。	revB
	0X12		PKT_FIELD_3_CONFIG	0x00	通用数据处理和数据包配置位字段3。	revB
	0X12		PKT_FIELD_3_CRC_CONFIG	0x00	配置跨字段3的CRC控制位。	revB
	0X12	0×19 0X1A	PKT_FIELD_4_LENGTH	0x00 0x00	无符号的13位字段4长度值。	revB
	0X12	0X1B	PKT_FIELD_4_CONFIG	0x00	通用数据处理和数据包配置位字段4。	revB
	0X12	为0x1c	PKT_FIELD_4_CRC_CONFIG	0x00	配置跨字段4 CRC控制位。	revB
	0X12	0x1d 0X1E	PKT_FIELD_5_LENGTH	0x00 0x00	无符号的13位字段5的长度值。	revB
	0X12		PKT_FIELD_5_CONFIG	0x00	通用数据处理和数据包配置位字段5。	revB
	0X12	0X20	PKT_FIELD_5_CRC_CONFIG	0x00	配置跨字段5 CRC控制位。	revB
	0X12	0X21 0X22	PKT_RX_FIELD_1_LENGTH	0x00 0x00	无符号的13位RX场1长度值。	revB
	0X12	0x23	PKT_RX_FIELD_1_CONFIG	0x00	通用数据处理和数据包配置位为RX场1。	revB
	0X12	0X24	PKT_RX_FIELD_1_CRC_CONFIG	0x00	配置跨RX场1 CRC控制位。	revB
	0X12	0X25	PKT_RX_FIELD_2_LENGTH	0x00	无符号的13位RX场2的长度值。	revB
	0)/40	0X26		0x00		5
	0X12	0X27 为0x28	PKT_RX_FIELD_2_CONFIG PKT_RX_FIELD_2_CRC_CONFIG	0x00	通用数据处理和数据包配置位为RX场2。 配置跨RX场2 CRC控制位。	revB revB
	0X12 0X12	0X29	PKT_RX_FIELD_2_CRC_CONFIG	0x00 0x00	无符号的13位RX字段3的长度值。	revB
	0X12	0X2A 0x2B中	PKT_RX_FIELD_3_CONFIG	0x00 0x00	通用数据处理和数据包配置位为RX字段3。	revB
	0X12		PKT_RX_FIELD_3_CONFIG	0x00	配置跨RX字段3的CRC控制位。	revB
	0X12	0X2D 0X2E	PKT_RX_FIELD_4_LENGTH	0x00 0x00	无符号的13位RX字段4的长度值。	revB
	01/10		DICT DV FIELD 1 001:5:0		(第四数相从用和数相与时四位 / 5v之中,	
	0X12		PKT_RX_FIELD_4_CONFIG	0x00	通用数据处理和数据包配置位为RX字段4。	revB
	0X12 0X12	0X31	PKT_RX_FIELD_4_CRC_CONFIG PKT_RX_FIELD_5_LENGTH	0x00 0x00	配置跨RX字段4 CRC控制位。 无符号的13位RX字段5的长度值。	revB revB
	0.712	0X32		0x00		revB
	0X12 0X12		PKT_RX_FIELD_5_CONFIG PKT_RX_FIELD_5_CRC_CONFIG	0x00 0x00	通用数据处理和数据包配置位为RX字段5。 配置跨RX字段5 CRC控制位。	revB revB
	VAIZ	U/\U4	IL WILLOW LIEED 2 ONG CONFIG		配直跨RA子校5 GRO控制位。 器(0X20)	IEAD
Ш	组	数	名称	默认	简介	可用的
	到 0X20		名称 MODEM_MOD_TYPE	秋 VX 0X02	选择的调制类型。在TX模式,另外选择调制源。	可用的 revB
	0X20 0X20	0X00	MODEM_MOD_TYPE MODEM_MAP_CONTROL	0X02 0x80的		revB
	U/\2U	0//01	MODENI_MAI _OONTROL	0,000 11	控制极性和发射的映射和接收位。	ICVD
	0X20	0X02	MODEM_DSM_CTRL	0X07	杂项控制位Δ-Σ调制器 (DSM) 在PLL合成器。	revB
		0X03		0X0F		
	0X20	0x04 0X05	MODEM_DATA_RATE	的0x42 0X40	用于确定TX数据速率的无符号的24位值	revB

		0X06				

0X20	0X08 0X09	MODEM_TX_NCO_MODE	0xc9 有0xC3 0x80的	TX高斯滤波器的过采样率和无符号26位TX数控振荡器(NCO)模数字节3。	revB1
0X20	UXUC	MODEM_FREQ_DEV	0x00 0X06 0xd3的	17位无符号TX频率偏差字。	revB1
0X20	0X0D 0x0E的	MODEM_FREQ_OFFSET	0x00 0x00	频率偏移调整(16位有符号数)。	revB1
0X20		MODEM_TX_FILTER_COEFF_8	0x67	TX频谱整形滤波器的系数8。	revB1E
0X20	0X10	MODEM_TX_FILTER_COEFF_7	0X60	TX频谱整形滤波器的系数7。	revB1I
0X20	0x11	MODEM_TX_FILTER_COEFF_6	送出0x4d	TX频谱整形滤波器的系数6。	revB1I
0X20	0X12	MODEM_TX_FILTER_COEFF_5	0x36	TX频谱整形滤波器的系数五日。	revB1
0X20	0X13	MODEM_TX_FILTER_COEFF_4	0X21	TX频谱整形滤波器的系数4。	revB1
0X20	0X14	MODEM_TX_FILTER_COEFF_3	0x11	TX频谱整形滤波器的系数3。	revB1I
0X20		MODEM_TX_FILTER_COEFF_2	0X08	TX频谱整形滤波器的第二系数。	revB1I
0X20		MODEM_TX_FILTER_COEFF_1	0X03	TX频谱整形滤波器的系数1。	revB1I
0X20	0X17	MODEM_TX_FILTER_COEFF_0	0X01	TX频谱整形滤波器的第0系数。	revB1I
0X20		MODEM_TX_RAMP_DELAY	0X01	TX减速延迟设置。	revB1E
0X20	0×19	MODEM_MDM_CTRL	0x00	MDM控制。	revB1
0X20	0X1A	MODEM_IF_CONTROL	0X08	选择固定中频,缩放中频,或RX调制解调器操作的零中频模式。	revB1
	0X1B		0X03		
0X20	0x1c 0x1d	MODEM_IF_FREQ	0XC0 0x00	中频频率设定(18位有符号数)。	revB1I
0720	0715	MODEM DECIMATION CECA	0X10	比克了二人抽取比例的级联和八粒化滤池型(CIC)	revB16
0X20 0X20		MODEM_DECIMATION_CFG1 MODEM_DECIMATION_CFG0	0X10 0X20	指定了三个抽取比例的级联积分梳状滤波器(CIC)。 指定其他参数,抽取比例为级联积分梳状滤波器	revB1I
0X20	0X22 0x23	MODEM_BCR_OSR	0x00 0x4b	(CIC)。 RX BCR /切片机过采样率(12位无符号数)。	revB1I
0X20	0X24	MODEM_BCR_NCO_OFFSET	0X06 0xd3的 0XA0	RX BCR NCO偏移值(无符号22位数字)。	revB1I
0X20	0X27 为 0x28	MODEM_BCR_GAIN	0X06 0xd3的	无符号的11位RX BCR环路增益值。	revB1I
0X20	0X29	MODEM_BCR_GEAR	0X02	RX BCR环齿轮控制。	revB1I
0X20	0X2A	MODEM_BCR_MISC1	0XC0	杂项控制位为RX BCR循环。	revB1I
0X20		MODEM_BCR_MISC0	0x00	杂项RX BCR回路控制。	revB1l
0X20	0X2C	MODEM_AFC_GEAR	0x00	RX AFC环路齿轮控制。	revB1I
0X20		MODEM_AFC_WAIT	0x23	RX AFC环路等待时间控制。	revB1I
0X20	UXZF的	MODEM_AFC_GAIN	0X83 ×69	设置基于PLL的收购AFC环路的增益,并提供了其他控制位AFC功能。	revB1I
	0X30	MODEM AFC LIMITER	0x00	设置亚冠限幅值。	revB1I
0X20	UX31		0X40	Herrich and District	
0X20	0X31 0X32	MODEM_AFC_MISC	0XA0	指定杂AFC控制位。	
0X20 0X20	0X31 0X32 0X33	MODEM_AFC_MISC MODEM_AFC_ZIFOFF	0XA0 0x00	亚冠固定频率偏移的零中频模式。	revB1I
0X20 0X20 0X20	0X31 0X32 0X33 0X34	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL	0XA0 0x00 0x00	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。	revB1E revB1E revB1E
0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL	0XA0 0x00 0x00 0XE0	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。	revB16 revB16 revB16
0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE	0XA0 0x00 0x00 0XE0 0x11	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。	revB1I revB1I revB1I revB1I
0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_RFPD_DECAY	0XA0 0x00 0x00 0XE0 0x11 0X10	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。	revB1I revB1I revB1I revB1I
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_RFPD_DECAY MODEM_AGC_IFPD_DECAY	0XA0 0x00 0x00 0XE0 0x11 0X10 0X10	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。	revB1I revB1I revB1I revB1I revB1I
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A 的0x3B	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_RFPD_DECAY MODEM_AGC_IFPD_DECAY MODEM_FSK4_GAIN1	0XA0 0x00 0x00 0XE0 0x11 0X10 0X10 0X0B	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。 指定4(G)FSK ISI抑制二级分行的增益因子。	revB1I revB1I revB1I revB1I revB1I revB1I
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A 的0x3B 值0x3c	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_RFPD_DECAY MODEM_AGC_IFPD_DECAY MODEM_FSK4_GAIN1 MODEM_FSK4_GAIN0	0XA0 0x00 0x00 0XE0 0x11 0X10 0X10	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。	revB1I revB1I revB1I revB1I revB1I revB1I
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A 的0x3B 值0x3c 0x3D之 间0x3E	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_RFPD_DECAY MODEM_AGC_IFPD_DECAY MODEM_FSK4_GAIN1 MODEM_FSK4_GAIN0	0XA0 0x00 0x00 0XE0 0x11 0X10 0X10 0X0B	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。 指定4(G)FSK ISI抑制二级分行的增益因子。	revB1I revB1I revB1I revB1I revB1I revB1I revB1I
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A 的0x3B 值0x3c 0x3D之 间0x3E	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_RFPD_DECAY MODEM_AGC_IFPD_DECAY MODEM_FSK4_GAIN1 MODEM_FSK4_GAIN0 MODEM_FSK4_TH	0XA0 0x00 0x00 0XE0 0x11 0X10 0X10 0X0B 为0x1c	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。 指定4(G)FSK ISI抑制二级分行的增益因子。 指定4(G)FSK ISI抑制主要分支的增益因子。	revB1I revB1I revB1I revB1I revB1I revB1I revB1I
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A 的0x3B 值0x3c 0x3D之 间0x3E 的	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_IFPD_DECAY MODEM_AGC_IFPD_DECAY MODEM_FSK4_GAIN1 MODEM_FSK4_GAIN0 MODEM_FSK4_TH MODEM_FSK4_MAP	0XA0 0x00 0x00 0XE0 0x11 0X10 0X10 0X0B 为0x1c 0X40 0x00	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。 指定4(G)FSK ISI抑制二级分行的增益因子。 指定4(G)FSK ISI抑制主要分支的增益因子。 16位4(G)FSK切片机的门槛。 4(G)FSK符号映射代码。	revB1I revB1I revB1I revB1I revB1I revB1I revB1I revB1I
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A 的0x3B 值0x3c 0x3D之 间0x3E 的	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_IFPD_DECAY MODEM_AGC_IFPD_DECAY MODEM_FSK4_GAIN1 MODEM_FSK4_GAIN0 MODEM_FSK4_TH MODEM_FSK4_MAP MODEM_OOK_PDTC	0XA0 0x00 0x00 0XE0 0x11 0X10 0X10 0X0B 为0x1c 0X40 0x00 0x00 0x2B中	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。 指定4(G)FSK ISI抑制二级分行的增益因子。 指定4(G)FSK ISI抑制主要分支的增益因子。 16位4(G)FSK切片机的门槛。 4(G)FSK符号映射代码。 配置OOK峰值检波器的攻击和衰减时间。	revB1E
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A 的0x3B 值0x3c 0x3D之 间0x3E 的	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_IFPD_DECAY MODEM_AGC_IFPD_DECAY MODEM_FSK4_GAIN1 MODEM_FSK4_GAIN0 MODEM_FSK4_TH MODEM_FSK4_MAP MODEM_OOK_PDTC MODEM_OOK_BLOPK	0XA0 0x00 0x00 0XE0 0x11 0X10 0X10 0X0B 为0x1c 0X40 0x00 0x2B中 0X0C	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。 指定4(G)FSK ISI抑制二级分行的增益因子。 指定4(G)FSK ISI抑制主要分支的增益因子。 16位4(G)FSK切片机的门槛。 4(G)FSK符号映射代码。 配置OOK峰值检波器的攻击和衰减时间。 配置OOK峰值检测器的限幅基准电平。	revB1I revB1I revB1I revB1I revB1I revB1I revB1I revB1I revB1I
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A 的0x3B 值0x3c 间0x3C 间0x3E 的 0X40 0X41	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_IFPD_DECAY MODEM_AGC_IFPD_DECAY MODEM_FSK4_GAIN1 MODEM_FSK4_GAIN0 MODEM_FSK4_TH MODEM_FSK4_MAP MODEM_OOK_PDTC	0XA0 0x00 0x00 0XE0 0x11 0X10 0X10 0X0B 为0x1c 0X40 0x00 0x00 0x2B中	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。 指定4(G)FSK ISI抑制二级分行的增益因子。 指定4(G)FSK ISI抑制主要分支的增益因子。 16位4(G)FSK切片机的门槛。 4(G)FSK符号映射代码。 配置OOK峰值检波器的攻击和衰减时间。 配置OOK峰值检测器的限幅基准电平。 OOK控制。 选择用于一个OOK信号的解调的检测器(S),或使用	revB1E revB1E revB1E revB1E revB1E revB1E revB1E revB1E
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A 的0x3B 值0x3c 0x3D之 间0x3E 的 0X40 0X41 的0x42	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_IFPD_DECAY MODEM_AGC_IFPD_DECAY MODEM_FSK4_GAIN1 MODEM_FSK4_GAIN0 MODEM_FSK4_TH MODEM_FSK4_MAP MODEM_OOK_PDTC MODEM_OOK_BLOPK MODEM_OOK_CNT1	0XA0 0x00 0x00 0XE0 0X11 0X10 0X10 0X0B 为0x1c 0X40 0x00 0x2B中 0X0C 0xa4	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。 指定4(G)FSK IS即制二级分行的增益因子。 指定4(G)FSK IS即制主要分支的增益因子。 16位4(G)FSK IS即制主要分支的增益因子。 16位4(G)FSK IS即制主要分支的增益因子。 00K峰值检波器的攻击和衰减时间。 配置OOK峰值检波器的攻击和衰减时间。 配置OOK峰值检测器的限幅基准电平。 00K控制。 选择用于一个OOK信号的解调的检测器(S),或使用非同步解调器时为(G)的FSK信号的解调。 定义和控制搜索周期长度为移动平均和最小-最大的探	revB1l
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A 的0x3B 值0x3c 0x3D之 间0x3E 的 0X40 0X41 的0x42	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_RFPD_DECAY MODEM_AGC_IFPD_DECAY MODEM_FSK4_GAIN1 MODEM_FSK4_GAIN0 MODEM_FSK4_TH MODEM_FSK4_MAP MODEM_OOK_PDTC MODEM_OOK_BLOPK MODEM_OOK_CNT1 MODEM_OOK_MISC	0XA0 0x00 0x00 0XE0 0X11 0X10 0X10 0X0B 为0x1c 0X40 0x00 0x2B中 0X0C 0xa4 0X03	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。 指定4(G)FSK ISI抑制二级分行的增益因子。 指定4(G)FSK ISI抑制主要分支的增益因子。 16位4(G)FSK切片机的门槛。 4(G)FSK符号映射代码。 配置OOK峰值检波器的攻击和衰减时间。 配置OOK峰值检测器的限幅基准电平。 OOK控制。 选择用于一个OOK信号的解调的检测器(S),或使用非同步解调器时为(G)的FSK信号的解调。	revB1I
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A 的0x3B 值0x3c 0x3D之 间0x3E 的 0X41 的0x42 0x43	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_IFPD_DECAY MODEM_AGC_IFPD_DECAY MODEM_FSK4_GAIN1 MODEM_FSK4_GAIN0 MODEM_FSK4_TH MODEM_FSK4_MAP MODEM_OOK_PDTC MODEM_OOK_BLOPK MODEM_OOK_CNT1 MODEM_OOK_MISC MODEM_RAW_SEARCH	0XA0 0x00 0x00 0XE0 0x11 0X10 0X10 0X0B 为0x1c 0X40 0x00 0x2B中 0X0C 0xa4 0X03	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。 指定4(G)FSK ISI抑制二级分行的增益因子。 指定4(G)FSK ISI抑制主要分支的增益因子。 16位4(G)FSK ISI抑制主要分支的增益因子。 16位4(G)FSK ISI抑制主要分支的增益因子。 00K增值检波器的攻击和衰减时间。 配置OOK峰值检波器的攻击和衰减时间。 配置OOK峰值检测器的限幅基准电平。 00K控制。 选择用于一个OOK信号的解调的检测器(S),或使用非同步解调器时为(G)的FSK信号的解调。 定义和控制搜索周期长度为移动平均和最小 - 最大的探测器。	revB1II
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A 的0x3B 值0x3c 0x3D之 间0x3E 的 0X40 0X41 0X42 0x43	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_RFPD_DECAY MODEM_AGC_IFPD_DECAY MODEM_FSK4_GAIN1 MODEM_FSK4_GAIN0 MODEM_FSK4_TH MODEM_FSK4_MAP MODEM_OOK_PDTC MODEM_OOK_BLOPK MODEM_OOK_CNT1 MODEM_OOK_MISC MODEM_RAW_SEARCH MODEM_RAW_CONTROL	0XA0 0x00 0x00 0XE0 0x11 0X10 0X10 0X08 为0x1c 0X40 0x00 0x2B中 0X0C 0x28中 0X0C 0x34 0X03	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。 指定4(G)FSK ISI抑制二级分行的增益因子。 指定4(G)FSK ISI抑制主要分支的增益因子。 16位4(G)FSK ISI抑制主要分支的增益因子。 16位4(G)FSK切片机的门槛。 4(G)FSK符号映射代码。 配置OOK峰值检波器的攻击和衰减时间。 配置OOK峰值检波器的取幅基准电平。 OOK控制。 选择用于一个OOK信号的解调的检测器(S),或使用非同步解调器时为(G)的FSK信号的解调。 定义和控制搜索周期长度为移动平均和最小 - 最大的探测器。	revB1E
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A 的0x3B 值0x3c 0x3D之 间0x3E 的 0X40 0X41 0X41 0x42 0x43	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_IFPD_DECAY MODEM_AGC_IFPD_DECAY MODEM_FSK4_GAIN1 MODEM_FSK4_GAIN0 MODEM_FSK4_TH MODEM_FSK4_MAP MODEM_OOK_PDTC MODEM_OOK_BLOPK MODEM_OOK_MISC MODEM_RAW_SEARCH MODEM_RAW_CONTROL MODEM_RAW_EYE	0XA0 0x00 0x00 0XE0 0x11 0X10 0X10 0X0B 为0x1c 0X40 0x00 0x2B中 0X0C 0xa4 0X03 0X56 0X02 0x02 0x00 0xA3执行	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。 指定4(G)FSK ISI抑制二级分行的增益因子。 指定4(G)FSK ISI抑制主要分支的增益因子。 16位4(G)FSK ISI抑制主要分支的增益因子。 16位4(G)FSK ISI抑制主要分支的增益因子。 00K峰值检波器的攻击和衰减时间。 配置OOK峰值检波器的攻击和衰减时间。 配置OOK峰值检测器的限幅基准电平。 00K控制。 选择用于一个OOK信号的解调的检测器(S),或使用非同步解调器时为(G)的FSK信号的解调。 定义和控制搜索周期长度为移动平均和最小 - 最大的探测器。 定义增益和使能控制对原材料/非标准模式。	revB1I
0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20 0X20	0X31 0X32 0X33 0X34 的0x35 0X38 0X39 0X3A 的0x3B 值0x3c 0x3D之 间0x3E 的 0X40 0X41 0X42 0x43	MODEM_AFC_MISC MODEM_AFC_ZIFOFF MODEM_ADC_CTRL MODEM_AGC_CONTROL MODEM_AGC_WINDOW_SIZE MODEM_AGC_IFPD_DECAY MODEM_AGC_IFPD_DECAY MODEM_FSK4_GAIN1 MODEM_FSK4_GAIN0 MODEM_FSK4_TH MODEM_FSK4_MAP MODEM_OOK_PDTC MODEM_OOK_BLOPK MODEM_OOK_MISC MODEM_RAW_SEARCH MODEM_RAW_CONTROL MODEM_RAW_EYE MODEM_ANT_DIV_MODE	0XA0 0x00 0x00 0XE0 0x11 0X10 0X10 0X0B 为0x1c 0X40 0x00 0x2B中 0X0C 0xa4 0X03 0X56 0X02 0x02 0x02 0x02 0x02 0x02	亚冠固定频率偏移的零中频模式。 Σ-ΔADC的控制。 其他控制位在RX链的自动增益控制(AGC)功能。 指定测量的尺寸和用于AGC算法解决的窗口。 把RF峰值检测器的衰减时间。 设置中频峰值检测器的衰减时间。 指定4(G)FSK ISI抑制二级分行的增益因子。 指定4(G)FSK ISI抑制主要分支的增益因子。 16位4(G)FSK ISI抑制主要分支的增益因子。 16位4(G)FSK ISI抑制主要分支的增益因子。 00K峰值检波器的攻击和衰减时间。 配置OOK峰值检波器的攻击和衰减时间。 配置OOK峰值检测器的限幅基准电平。 00K控制。 选择用于一个OOK信号的解调的检测器(S),或使用非同步解调器时为(G)的FSK信号的解调。 定义和控制搜索周期长度为移动平均和最小 - 最大的探测器。 定义增益和使能控制对原材料/非标准模式。 11位眼开检测器阈值。 天线分集模式设置。	revB1II

1	UXZU	UX4C 送出	MODEM K22 CONTROL	UXUI	控制 中均 関 ス 中 初 に の に の に の に の に の に の に の に の に の に	iena i a
	0X20	0x4d	MODEM_RSSI_CONTROL2	0x00	跳转RSSI检测控制。	revB1B
+	0X20 0X20	0x4e 0X51	MODEM_RSSI_COMP MODEM_CLKGEN_BAND	0X40 0X08	RSSI的补偿值。 选择PLL频率合成器的输出分频比为频带的功能。	revB1B revB1B
]	07120	07101		MODEM_CH	HFLT (0X21)	10000
_	组	数	名称	默认	简介	可用的功
	0X21	0x00 0X01 0X02 0X03 0x04 0X05 0X06 0X07 0X08 0X09 0X0A 0X0B 0X0C 0X0D 0x0E的 0X11	MODEM_CHFLT_RX1_CHFLT_CO	0xff的 0xba 0X0F 0X51 0xcf 0xa9 0xc9 0XFC有 0X1B 0X0F 0X01 0xFC有 会将0xfd 0X15 0xF的 0x00 0X0F	滤波器的系数为所述第一组的RX滤波器系数。	revB1B
	0X21	0X12 0X13 0X14 0X15 0X16 0X17 0X18 ×19 0X1A 0X1B 0X1c 0X1d 0X1E 0X20 0X21 0X22 0X23	MODEM_CHFLT_RX2_CHFLT_CO	为0xff 的0xC4 0X30 到0x7f 0xf5 0xb5 0XB8 写0xDE 0X05 0X17 0X16 0X0C	滤波器的系数为所述第二组的RX滤波器系数。	revB1B
			The state of the s		0X22)	1
]						1
]	组	数	名称	默认	简介	可用的功
]	组 0X22	数 0x00	名称 PA_MODE PA_PWR_LVL			可用的功 revB1B

	0X22	0X03	PA_TC	的0x5d	配置PA	斜坡参数。	revB1B
	0X22		PA_RAMP_EX	0x00		邻PA斜坡信号的时间常数。	revB1B
	0X22		PA_RAMP_DOWN_DELAY	0x23		启动延迟斜坡下降到禁用PA输出的。	revB1B
	OALL	07100			H (0x23)		107212
]	组	数	名称	默认	II (UXEU)	 简介	可用的功能
	0x23	0x00	SYNTH_PFDCP_CPFF	0X2C	前馈由着	一百万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万万	revB1B
	0x23	0X01	SYNTH_PFDCP_CPINT	0x0E的	_	· · · · · · · · · · · · · · · · · · ·	revB1B
						示系数(Kv值)为集成的路径和前馈路径上的	
	0x23	0X02	SYNTH_VCO_KV	0X0B		皆变容二极管。	revB1B
	0x23	0X03	SYNTH_LPFILT3	0x04	电阻R2	的环路滤波器的前馈路径值。	revB1B
	0x23	0x04	SYNTH_LPFILT2	0X0C	在环路派	悲波器的前馈路径电容C2的值。	revB1B
	0x23	0X05	SYNTH_LPFILT1	为0x73	电容器C	C1和C3中的环路滤波器的前馈路径的值。	revB1B
	0x23		SYNTH_LPFILT0	0X03		贵环路滤波器的有源放大器的偏置电流。	revB1B
	0x23	0X07	SYNTH_VCO_KVCAL	0X05	缩放压挡	空振荡器的整个千伏。	revB1B
					H (0X30)		
	组	数	名称	默认		简介	可用的功能
	0X30	0x00	MATCH_VALUE_1	0x00		库与-ING(逐位)的面膜1的值与接收到的匹配1 均结果进行比较匹配值。	revB1B
	0X30	0X01	MATCH_MASK_1	0x00		在逻辑上与-ED(逐位)与匹配1个字节。	revB1B
	0X30		MATCH_CTRL_1	0x00		居包匹配的功能,并匹配字节1的配置。	revB1B
	0X30	0X03	MATCH_VALUE_2	0x00		量与-ING(逐位)的面具2值与接收到的第2场字 果进行比较匹配值。	revB1B
H	0X30	0x04	MATCH MASK 2	0x00		在逻辑上与-ED(逐位)与匹配2个字节。	revB1B
H	0X30		MATCH_CTRL_2	0x00		72 12 12 12 12 12 13 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	revB1B
	0X30	0X06	MATCH VALUE 3			缉与-ING(逐位)的面膜3值与接收到的第3场比	revB1B
	0X30	0X06	IMATCH_VALUE_3	0x00		的结果进行比较匹配值。	revB1B
	0X30	0X07	MATCH_MASK_3	0x00		生逻辑上与-ED(逐位)与匹配3个字节。	revB1B
	0X30	0X08	MATCH_CTRL_3	0x00		记字节3。	revB1B
	0X30	0X09	MATCH_VALUE_4	0x00		量与-ING(逐位)的面具4值与接收到的匹配4个 吉果进行比较匹配值。	revB1B
	0X30	0X0A	MATCH_MASK_4	0x00	屏蔽值在	在逻辑上与-ED(逐位)与匹配4个字节。	revB1B
	0X30	0X0B	MATCH_CTRL_4	0x00	配置匹西	记字节4。	revB1B
				FREQ_CON	NTROL ()X40)	
	组	数	名称		默认	简介	可用的功能
	0X40	0x00	FREQ_CONTROL_INTE		0x3c	压裂-N分频PLL频率合成器整数除法号码。	revB1B
	0X40	0X01 0X02 0X03	FREQ_CONTROL_FRAC		0X08 0x00 0x00	FRAC-N分频PLL部分号码。	revB1B
	0X40	0x04 0X05	FREQ_CONTROL_CHANNEL_STE	EP_SIZE	0x00 0x00	EZ频率编程通道步长。	revB1B
	0X40	0X06	FREQ_CONTROL_W_SIZE		0X20	校准过程中计数VCO频率设置窗口选通期间 (在晶体参考时钟周期数)。	revB1B
	0X40	0X07	FREQ_CONTROL_VCOCNT_RX_A	ADJ	为0xff	调整目标计数在RX模式VCO校准。	revB1B
\exists				RX_HC	OP (0x50)	
	组	数	名称	默认		简介	可用的功能
	0x50	0x00	RX_HOP_CONTROL	0x04	配置选项	页为自动接收合功能。	revB1B
	0x50	0X01	RX_HOP_TABLE_SIZE	0X01	指定的领	K目(信道)的在RX合表的数目。	revB1B
	0x50	0X02	RX_HOP_TABLE_ENTRY[0]	0x00	定义条目	目在RX跳频表(N = 0至63)	revB1B
	0x50	0X03	RX_HOP_TABLE_ENTRY[1]	0X01	_	目在RX跳频表(N = 0至63)	revB1B
	0x50	0x04	RX_HOP_TABLE_ENTRY[2]	0X02	_	目在RX跳频表(N = 0至63)	revB1B
	0x50		RX_HOP_TABLE_ENTRY[3]	0X03		目在RX跳频表(N = 0至63)	revB1B
Щ	0x50	0X06	RX_HOP_TABLE_ENTRY[4]	0x04		目在RX跳频表(N = 0至63)	revB1B
$\vdash \vdash$	0x50	0X07	RX_HOP_TABLE_ENTRY[5]	0X05		目在RX跳频表(N = 0至63)	revB1B
Щ	0x50	0X08	RX_HOP_TABLE_ENTRY[6]	0X06		目在RX跳频表(N = 0至63)	revB1B
\vdash	0x50	0X09	RX_HOP_TABLE_ENTRY[7]	0X07	_	目在RX跳频表(N = 0至63) ヨカDVW 頓ま(N = 0至63)	revB1B
\vdash	0x50		RX_HOP_TABLE_ENTRY[8]	80X0		目在RX跳频表(N = 0至63) 日本RX跳频表(N = 0至63)	revB1B
$\vdash\vdash$	0x50	0X0B	RX_HOP_TABLE_ENTRY[9] RX_HOP_TABLE_ENTRY[10]	0X09		目在RX跳频表(N = 0至63) 目在RX跳频表(N = 0至63)	revB1B
\vdash	0x50 0x50	0X0C 0X0D	RX_HOP_TABLE_ENTRY[10] RX_HOP_TABLE_ENTRY[11]	0X0A 0X0B		日在RX跳频表(N = 0至63) 日在RX跳频表(N = 0至63)	revB1B revB1B
H	0x50		RX_HOP_TABLE_ENTRY[12]	0X0C	_	日在RX跳频表(N = 0至63) 日在RX跳频表(N = 0至63)	revB1B
H	0x50		RX_HOP_TABLE_ENTRY[13]	0X0D	_	日在RX跳频表(N = 0至63)	revB1B
\vdash	0x50	0X10	RX_HOP_TABLE_ENTRY[14]	0x0E的		目在 RX 跳频表(N = 0 至 63)	revB1B
	0x50	0x11	RX_HOP_TABLE_ENTRY[15]	0X0F		目在RX跳频表(N=0至63)	revB1B
	0x50	0X12	RX_HOP_TABLE_ENTRY[16]	0X10		目在RX跳频表(N = 0至63)	revB1B
	0x50	0X13	RX_HOP_TABLE_ENTRY[17]	0x11		目在RX跳频表(N = 0至63)	revB1B
	0x50	0X14	RX_HOP_TABLE_ENTRY[18]	0X12	_	目在RX跳频表(N = 0至63)	revB1B
	0x50	0X15	RX_HOP_TABLE_ENTRY[19]	0X13	定义条目	目在RX跳频表(N = 0至63)	revB1B
	07100					1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	0x50	0X16	RX_HOP_TABLE_ENTRY [20]	0X14		目在RX跳频表(N = 0至63)	revB1B
	0x50 0x50	0X17	RX_HOP_TABLE_ENTRY [21]	0X15	定义条目	目在RX跳频表(N = 0至63) 目在RX跳频表(N = 0至63)	revB1B
	0x50	0X17 0X18			定义条目 定义条目	目在RX跳频表(N = 0至63)	

0x50 0X1A RX_HOP_TABLE_ENTRY [24] 0X18 定义条目在RX跳频表(N = 0至63)	revB1B
0x50 0X1B RX_HOP_TABLE_ENTRY [25] 0×19 定义条目在RX跳频表(N = 0至63)	revB1B
0x50 为0x1c RX_HOP_TABLE_ENTRY [26] 0X1A 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0x1d RX_HOP_TABLE_ENTRY[27] 0X1B 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0X1E RX_HOP_TABLE_ENTRY[28] 为0x1c 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0x1F的 RX_HOP_TABLE_ENTRY[29] 0x1d 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0X20 RX_HOP_TABLE_ENTRY[30] 0X1E 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0X21 RX_HOP_TABLE_ENTRY[31] 0x1F的 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0X22 RX_HOP_TABLE_ENTRY[32] 0X20 定义条目在RX跳频表(N = 0至63)	revB1B
0x50 0x23 RX_HOP_TABLE_ENTRY[33] 0X21 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0X24 RX_HOP_TABLE_ENTRY[34] 0X22 定义条目在RX跳频表(N = 0至63)	revB1B
0x50 0X25 RX_HOP_TABLE_ENTRY[35] 0x23 定义条目在RX跳频表(N = 0至63)	revB1B
0x50 0X26 RX_HOP_TABLE_ENTRY[36] 0X24 定义条目在RX跳频表(N = 0至63)	revB1B
0x50 0X27 RX_HOP_TABLE_ENTRY[37] 0X25 定义条目在RX跳频表(N = 0至63)	revB1B
0x50 为0x28 RX_HOP_TABLE_ENTRY [38] 0X26 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0X29 RX_HOP_TABLE_ENTRY[39] 0X27 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0X2A RX_HOP_TABLE_ENTRY[40] 为0x28 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0x2B中 RX_HOP_TABLE_ENTRY [41] 0X29 定义条目在RX跳频表(N = 0至63)	revB1B
0x50 0X2C RX_HOP_TABLE_ENTRY[42] 0X2A 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0X2D RX_HOP_TABLE_ENTRY[43] 0x2B中 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0X2E RX_HOP_TABLE_ENTRY[44] 0X2C 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0x2F的 RX_HOP_TABLE_ENTRY[45] 0X2D 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0X30 RX_HOP_TABLE_ENTRY[46] 0X2E 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0X31 RX_HOP_TABLE_ENTRY[47] 0x2F的 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0X32 RX_HOP_TABLE_ENTRY [48] 0X30 定义条目在RX跳频表 (N = 0至63)	revB1B
0x50 0X33 RX_HOP_TABLE_ENTRY [49] 0X31 定义条目在RX跳频表(N = 0至63)	revB1B
0x50 0X34 RX_HOP_TABLE_ENTRY [50] 0X32 定义条目在RX跳频表 (N = 0至63)	revB1B
0x50 的0x35 RX_HOP_TABLE_ENTRY [51] 0X33 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0x36 RX_HOP_TABLE_ENTRY[52] 0X34 定义条目在RX跳频表(N = 0至63)	revB1B
0x50 0x37 RX_HOP_TABLE_ENTRY [53] 的0x35 定义条目在RX跳频表(N = 0至63)	revB1B
0x50 0X38 RX_HOP_TABLE_ENTRY [54] 0x36 定义条目在RX跳频表(N = 0至63)	revB1B
0x50 0X39 RX_HOP_TABLE_ENTRY[55] 0x37 定义条目在RX跳频表(N = 0至63)	revB1B
0x500X3ARX_HOP_TABLE_ENTRY[56]0X38定义条目在RX跳频表(N=0至63)	revB1B
0x50 的0x3B RX_HOP_TABLE_ENTRY[57] 0X39 定义条目在RX跳频表(N=0至63)	revB1B
0x50 值0x3c RX_HOP_TABLE_ENTRY[58] 0X3A 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0x3D之 间 RX_HOP_TABLE_ENTRY [59] 的0x3B 定义条目在RX跳频表(N = 0至63)	revB1B
0x50 0x3E的 RX_HOP_TABLE_ENTRY[60] 值0x3c 定义条目在RX跳频表(N=0至63)	revB1B
0x50 的0x3F RX_HOP_TABLE_ENTRY[61] 0x3D之间 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0X40 RX_HOP_TABLE_ENTRY[62] 0x3E的 定义条目在RX跳频表(N=0至63)	revB1B
0x50 0X41 RX_HOP_TABLE_ENTRY[63] 的0x3F 定义条目在RX跳频表(N=0至63)	revB1B

命令详细信息

BOOT_COMMANDS

POWER_UP

- 数量: 0X02
- 摘要: 命令到电的设备, 然后选择操作模式和功能。
- 目的:
 - 。 此命令必须发出完成上电顺序的设备。发出POWER_UP命令POR序列完成后,和CTS是很高的。CTS可以使用轮询READ_CMD_BUFF。

 - 在该补丁下载到芯片的情况下,补丁必须下载发出POWER_UP命令之前。上电完成时,CTS高。此命令可能需要较长时间才能完成比其他命令,该芯片还进行了一些内部校准。
 - 。 这些校准包括启动时钟振荡器和对晶体振荡器的32kHz的RC振荡器校准; 因此,有必要通过XO_FREQ参数来指定晶体振荡器的频率。
- stream参数:

	POWER	R_UP strean	参	数								
指数	名称	名称 7 65432										
0x00	CMD			()X()2						
0X01	BOOT_OPTIONS	PATCH	0				F	UN	С			
0X02	XTAL_OPTIONS	0	0 0 0 0 0 0 TCXC									
0X03		XO_FREQ [31:24]										
0x04	XO FREQ	XO_FREQ [23:16]										
0X05	XO_I KEQ		ΧO	_FI	RE	Q[15:	[8]				
0X06			XC)_F	RE	XO_FREQ [7:0]						

回复流:

	Р	OWE	R U	回复	流						

	名称	7	6		5	4	4	3	3	2		1		0			
:00	CTS						C	TS									
_ OPTI(TCHA 〕说明 〕格式	: 选择补丁树	莫式或	文 正常	常启	动植	莫式	٥										
		2	名称							值					描述		可用的功能
	NO_PATCI	Н						T		0				式。	由FUNC参数指定功		
	PATCH									1		(选择	补丁已经应用。验证 的功能(由FUNC参 匹配和引导的设备。		
FUNC [5:0 □ 说明 □ 格式	选择装置追		記される おおお おおま おおま おおま おま おま おま おま おま おま おま おま		动田	寸被	加達	载的		件明 直	央係	象的	功	能。			可用的功能
	PRO									1		(芯片成系列 EZRadi c 模式。	PRO	
	: 如果选择的 一起使用。				信号	号从	外音	部T((连	接:	到 〉	KIN弓	脚)得出,或者从[内部晶(
		- 2	名称					4		值		,		43 ±1	描述	: -H- mr	可用的功能
	XTAL									0		(产生			
	тсхо									1		(参考 得。	信号是从外部TCXC	而	
_FREQ XO_FREG = 说明	:	/I IP						15.14		/		المارية	$r \rightarrow$		示称值是30000000 (

- □ 类型: U32
- □ 闵: 0x17d7840
- □ 马克斯: 0x1e84800
- 默认: 0x0

回复场

⊟стѕ

- ☐ CTS [7:0]▲
 - □ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。□ 类型: U8

COMMON_COMMANDS

NOP

- 数量: 0x00
- 总结:没有操作命令。
- - 。 这个命令可以被用来确保与该设备已确定的通信。在收到该命令后,芯片执行,除非返回CTS没有任何动作。
- stream参数:

NOP stream参数													
指数	名称	7	6	5	4	3	2	1	0				
0x00	CMD	0x00											

回复流:

	NOP回复流											
	指数	名称	7	6	5	4	3	2	1	0		
	0x00	CTS	CTS									

论据场

回复场

⊟стѕ

- □ CTS [7:0]▲
 □ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。□ 类型: U8

- 数量: 0X01
- 摘要: 报告有关设备的基本信息。
- - 。 返回产品编号,产品版本,ROM ID等
- stream参数:

	PAF	RT_IN	IFO s	tream	参数				
指数	名称	7	6	5	4	3	2	1	0
0x00	CMD	0X01							

回复流:

	P	PART	INFO	回复	流								
指数	名称	7	6	5	4	3	2	1	0				
0x00	CTS		CTS										
0X01	CHIPREV		CHIPREV										
0X02	第一部分				第[1	5:8]							
0X03	另 即刀	PART [7:0]											
0x04	PBUILD	PBUILD											
0X05	ID				ID [′	15:8]							
0X06	ID.	ID [7:0]											
0X07	客户	客户											
80X0	ROMID	ROMID											

论据场

但如何
<u>回</u> 复场
⊟cts
□ CTS [7:0]▲
□ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。
□ 类型: U8
□CHIPREV
□ CHIPREV [7:0]▲
□ 说明:芯片掩膜版本。
□ 类型: U8
□第一部分
□ 第[15:0]▲
□ 说明:型号(例如, si4461将返回 - 0x4461)。
□ 类型: U16
⊟PBUILD
□ PBUILD [7:0](△
□ 描述: 部分生成。
□ 类型: U8

- □ ID [15:0]△
 - □ 说明: 同上。
 - □ 类型: U16
- 国客户
 - □ 客户[7:0]▲
 - □ 说明: 客户ID。 □ 类型: U8
- \Box ROMID
 - □ ROMID [7:0] □ 说明: ROM ID。 □ 类型: U8

FUNC_INFO

- 数量: 0X10
- 简介: 返回设备的功能版本信息。
- - 。 返回功能版本号为当前加载的功能模式。对比与PART_INFO。
- stream参数:

FUNC_INFO stream参数												
指数	名称	7	6	5	4	3	2	1	0			
0x00	CMD	0X10										

回复流:

FUNC_INFO回复流													
指数	名称	7	6	5	4	3	2	1	0				
0x00	CTS	CTS											
0X01	REVEXT	REVEXT											
0X02	REVBRANCH	REVBRANCH											

0x04 版权所有 X<		0X03	REVINT	REVINT								
0X05		0x04	版权	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
0X06 FUNC FUNC		0X05	放权別有		Χ	Χ	Χ	Χ	Χ	Χ	Χ	
		0X06	FUNC	FUNC								

论据场

回复场

⊟cts

- ☐ CTS [7:0]▲
 - □ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。
 - 类型: U8
- REVEXT [7:0]
 - □ 说明:外部版本号。
 - 类型: U8
 - □ 闵: 0X0
 - □ 马克斯: 0xff的
 - □ 默认: 0x0

⊟REVBRANCH

- REVBRANCH [7:0]▲
 - □ 说明: 分公司版本号。
 - □ 类型: U8
 - □ 闵: 0X0
 - □ 马克斯: 0xff的
 - □ 默认: 0x0

□REVINT

- □ REVINT [7:0]
 - □ 说明:内部版本号。
 - □ 类型: U8
 - □ 闵: 0X0
 - □ 马克斯: 0xff的
- 默认: 0x0

FUNC

- ☐ FUNC [7:0]▲
 - □ 说明: 当前功能模式。
 - □ 类型: U8

SET_PROPERTY

- 数量: 为0x11
- 摘要:设置一个或多个属性的值。
- 目的:
 - o 该命令用于设置一个或多个属性的值。性质类似于传递给API命令参数,但预计不会经常改变。它们通常用于配置各种内部电路块的操作。
 - 属性可以由用户的软件的较高层控制。设置一些属性可能不会导致设备立即采取行动;然而,该属性一旦生效,它使用的是发出属性的命令。
 - 。 影响类似的电路模块或功能(例如,调制解调器或PA或合成器属性)属性被组合在一起并共享同一组参数值。该组中的每个属性都有一个不同的偏置号或索引。
 - 一个属性可以通过设置NUM_PROPS参数= 0x01,而START_PROP参数设置为特定属性的偏置号,后跟一个数据字节,表示该属性的期望值进行配置。
 - 。 多个连续的性质可以通过设置NUM_PROPS参数等于期望的属性的数目时,START_PROP参数设置到连续的属性的块中的第一个属性的偏移数,随后的数据字节表示的所希望的值的字符串被配置的属性。
 - 。 属性,这些属性可以与一个单一的SET_PROPERTY命令设置的最大数目是12。
- stream参数:

	SET_PROPERTY stream参数												
	指数	名称	7	6	5	4	3	2	1	0			
	0x00	CMD		0x11									
	0X01	集团		集团									
	0X02	NUM_PROPS	NUM_PROPS										
	0X03	START_PROP	START_PROP										
	0x04	数据[0]	数据										
+													
	0X0F	数据[11]	数据										

• 回复流:

	SET	Γ_PR	OPEF	SET_PROPERTY回复流												
指数	名称	7	6	5	4	3	2	1	0							
0x00	CTS	CTS														

论据场

二集团

- □ 集团[7:0]▲
 - □ 说明:选择要配置的属性组。
 - □ 类型: U8

□NUM_PROPS

□ NUM_PROPS [7:0]▲
□ 说明:选择相邻的属性被写入的数目,开始于START_PROP。
□ 类型: U8
□ 闵: 0X1
□ 最大: 位于0xC
\bigs \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
START_PROP
□ START_PROP [7:0]▲
□ 说明:选择指定的组中的偏移号的属性或索引。可用的属性是由部分的数量和确定FUNC:POWER_UP选择。
□ 类型: U8
□DATA [0 11]
□ DATA [7:0]▲
□ 描述:值被写入到位于START_PROP + N的属性这个参数是不相关的,如果NUM_PROPS <n +1(其中n是数据索引)。<="" td=""></n>
□ 类型: U8
回复场
⊟cts
□ CTS [7:0]▲
□ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。
□ 类型: U8
□ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。

GET_PROPERTY

- 数量: 0X12
- 摘要: 获取一个或多个属性值
- 目的:
 - 。 此命令检索的一个或多个属性的值。性质类似于传递给API命令参数,但预计不会经常改变。它们通常用于配置各种内部电路块的操作。返回的值表示在默认属性值*POWER_UP*或先前设定的值*SET_PROPERTY*命令。
 - 。 影响类似的电路模块或功能(例如,调制解调器或PA或合成器属性)属性被组合在一起并共享同一组参数值。该组中的每个属性都有一个不同的偏置号或索引。
 - 一个属性可以通过设置NUM_PROPS参数= 0x01和的START_PROP参数设置为特定财产的补偿号进行检索。回复流的第一个数据字节表示该属性的值。
 - 多个连续的性质可以通过设置NUM_PROPS参数等于期望的属性的数量和START_PROP参数设置到连续的属性的块中的第一个属性的偏置 号进行检索。回复流的数据字节表示在他们的偏置号的顺序将连续属性的值。
 - 。 可检索与单个GET_PROPERTY命令属性的最大数目是16。
- stream参数:

GET_PROPERTY stream参数													
指数	名称	7	6	5	4	3	2	1	0				
0x00	CMD		0X12										
0X01	集团	集团											
0X02	NUM_PROPS		NUM_PROPS										
0X03	START_PROP	START_PROP											

回复流:

	GET_PROPERTY回复流												
	指数	名称	7	6	5	4	3	2	1	0			
	0x00	CTS		CTS									
	0X01	数据[0]	数据										
+													
	0X10	数据[15]	数据										

论据场 三集团 □ 集团[7:0]▲ □ 说明:选择要检索的属性组。 ■ 类型: U8 □NUM_PROPS ■ NUM_PROPS [7:0] □说明:选择要检索,开始在START_PROP连续属性的数量。 □ 类型: U8 □ 闵: 0X1 □ 马克斯: 0X10 □ 默认: 0x0 ∃START_PROP ■ START_PROP [7:0] □ 说明:选择指定的组中的偏移号的属性或索引。可用的属性是由部分的数量和确定FUNC: POWER_UP选择 ■ 类型: U8

回复场

⊟стѕ

□ CTS [7:0]

□ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。

□ 类型: U8

□DATA [0 ... 15]

□ DATA [7:0] ▲

□ 说明:	位于起始START_PROP属性检索值。	在此字段中的字节响应是不相关的起始DATA [NUM_	_PROPS]和contiuing到数据响应字段的
末端。			
□ 类型:	U8		

GPIO_PIN_CFG

- 数量: 0X13
- 摘要: 配置*GPIO*引脚。
- 目的:

 - 。 每个引脚提供了一个弱上拉电阻(**~1**兆欧)可单独启用或禁用。它建议禁用的上拉电阻,当引脚配置为输入,从外部源(除开漏源等)驱
 - 。 通过这个命令有着相似的硬件特性所引用的引脚(即,驱动能力,上拉电阻,输入/输出可配置),但可以提供对不同组的信号。具体来说, NIRQ和SDO引脚是不是"信号等效"的GPIO引脚。
- stream参数:

	GPIO_PIN_CFG stream参数									
	指数	名称	7	6	5	4	3	2	1	0
	0x00	CMD	0X13							
	0X01	GPIO [0]	0 PULL_CTL GPIO_MODE					Ш		
+										
	0x04	GPIO [3]	0	PULL_CTL	GPIO_MODE			Ш		
	0X05	NIRQ	0	PULL_CTL NIRQ_MODE			Ξ			
	0X06	SDO	0	PULL_CTL SDO_MODE			Ξ			
	0X07	GEN_CONFIG	0	DRV_STRENGTH		0	0	0	0	0

• 回复流:

	GPIO_PIN_CFG回复流										
	指数	名称	7	6	5	4 3	2 1 0				
	0x00	CTS		CTS							
	0X01	GPIO [0]	GPIO_STATE	Х	GPIC	_MO	DE				
+											
	0x04	GPIO [3]	GPIO_STATE	Χ	GPIC	_MO	DE				
	0X05	NIRQ	NIRQ_STATE	Χ	NIRQ	_MO	DE				
	0X06	SDO	SDO_STATE	X	SDO	_MO	DE				
	0X07	GEN_CONFIG	X	DRV_STF	RENGTH	XX	XXX				

论据场 **⊟GPIO [0 ... 3]**

- □ PULL_CTL▲
 □ 说明:该引脚上拉控制。
 □ 格式:枚举

名称	值	描述	可用的功能
PULL_DIS	0	□ 禁止上拉电阻(建议如果引脚 从外部源,不是一个开漏源等 驱动设置)。	
PULL_EN	1	□ 使上拉电阻。	

- ☐ GPIO_MODE [5:0]▲
 - □ 说明: 该引脚模式。□ 格式: 枚举

名称	值	描述	可用的 功能
DONOTHING	0	□ 这个引脚的行为是不会被修改。	
三态	1	□ 输入和输出驱动器被禁止。	
DRIVE0	2	□ 引脚被配置为CMOS输出和驱动为低电平。	
DRIVE1	3	□ 引脚被配置为CMOS输出和驱动为高电平。	
输入	4	□ 引脚被配置为一个CMOS输入。这是用于需要引脚为输入(例如,TXDATA输入TX直接模式)所有GPIO功能。然而,该引脚为输入的配置不另外选择哪些内部电路接收输入;该功能是由其他属性控制(如适用)。	
32K_CLK	5	□ 选中使用输出32 kHz的时钟 GLOBAL_CLK_CFG: CLK_32K_SEL。输 出,如果没有启用32 kHz的时钟低。	
BOOT_CLK	6	□ 输出启动时钟信号。这个信号将只存在时, 芯片处于SPI_ACTIVE状态,因为这是在开 机时钟处于活动状态的唯一的国家。	
DN_CLK	7	□ 输出的分频时钟信号(或在SPIACTIVE状态的划分启动时钟信号)。此输出为低,而芯片是在睡眠状态下作为源(如晶振)为不运行的分频时钟信号,并输出划分XtalOsc信号在所有其他国家。该分频器使用配置的DIVIDED_CLK_SEL:	

	I	GLOBAL CLK CFG。
CTS	8	□ 清除发送信号。此输出goes高时命令处理程 序能够接收新的命令,并且是否则低。
INV_CTS	9	□ 倒清除发送信号。此输出变为低电平清楚何 时发送一个新的命令,而且是高,否则。
CMD_OVERLAP	10	□ 此输出为低电平,除非出现一个命令重叠 (即另一个命令之前的命令处理程序完成处 理以前的命令发送)。当命令发生重叠,这 个输出变为高电平,直到CTS的上升沿。
SDO	11	□ 输出串行数据输出(SDO)信号为SPI总 线。
POR	12	□ 在上电复位该输出变为低电平和高电平上电 复位完成后。
CAL_WUT	13	□ 此输出通常是低,高脉冲的校准计时器到期时的32 kHz时钟的一个周期。32 kHz的时钟必须以使用校准计时器被激活。校准定时器周期是使用配置GLOBAL_WUT_CONFIG: WUT_CAL_PERIOD并启用GLOBAL_WUT_CONFIG: CAL_EN。
WUT	14	□ 此输出通常是低,高脉冲2 (WUT_R +1) 的唤醒定时器 (WUT) 届满后的32 kHz的时钟周期。32 kHz的时钟必须以使用WUT被启用。在WUT的周期是利用配置GLOBAL_WUT_M和GLOBAL_WUT_R并通过启用GLOBAL_WUT_CONFIG: WUT_EN。
EN_PA	15	□ 此输出为高电平时,内部的PA已启用。
TX_DATA_CLK	16	□ 输出TX数据时钟信号。这个信号是一个方波 在选定的TX数据速率,并且是用于在TX直接 同步模式(即,在与被配置为TX数据输入的 销相结合)一起使用。
RX_DATA_CLK	17	□ 输出RX数据CLK信号。这个信号是名义上被 同步到所接收的数据速率的方波,并且通常 用于锁存RX数据信号转换成主机MCU。
EN_LNA	18	□此输出变为低电平时,内部LNA已启用。
TX_DATA	19	□ 输出对TX数据位从TX FIFO拉出并传送到TX 调制器。这是一个输出信号(主要用于诊断目的)并没有被用作输入端,用于TX直接同步/异步模式。
RX_DATA	20	□ 输出解调后的接收数据流,同步和再定时由 当地RX数据时钟后。
RX_RAW_DATA	21	□ 输出解调后的接收原始数据流,前同步和再 定时由地方接收数据时钟。
ANTENNA_1_SW	22	□ 用于天线分集操作过程中的RF开关控制天线 1开关信号。这个信号通常假定天线-2开关信 号(除了在睡眠状态下)的互补极性。
ANTENNA_2_SW	23	□ 用于天线分集操作过程中的RF开关控制天 线-2开关信号。这个信号通常假定天线-1开 关信号(除了在睡眠状态下)的互补极性。
VALID_PREAMBLE	24	□ 此输出变为高电平检测到有效的序言时,返 回低收或同步字超时发生后,包。
INVALID_PREAMBLE	25	□ 输出低电平正常,脉冲输出高电平时是不是 一段时间(由确定的范围内检测到的序言 PREAMBLE_CONFIG_STD_2: RX_PREAMBLE_TIMEOUT)启用解调器 后。
SYNC_WORD_DETECT	26	□ 此输出为高电平同步字检测时,返回低的数 据包被接收后。
文建会	27	□ 空闲信道评估。此输出goes高时电流RSSI信号超过了设定的阈值MODEM_RSSI_THRESH财产,为低时,电流RSSI低于阈值。这是一个实时(非锁定)信号。
IN_SLEEP	28	□ 此输出为高电平时,芯片不处于睡眠状态, 变为低电平时处于睡眠状态。
TX_STATE	32	□ 此输出设置为高,而在德克萨斯州,是否则 低。该TX_STATE和RX_STATE信号通常用 于外围电路(例如,T/R开关)的控制权。
RX_STATE	33	□ 此输出设置为高,而在RX状态且否则低。该 TX_STATE和RX_STATE信号通常用于外围 电路(例如,T/R开关)的控制权。
RX_FIFO_FULL	34	□ 这个输出是高的,而存储在RX FIFO中的字 节数超过由PKT_RX_THRESHOLD属性设定 的阈值,并且是否则低。
TX_FIFO_EMPTY	35	□ 这个输出是高,而空的空间中的字节TX FIFO的数目超过由PKT_TX_THRESHOLD 属性设定的阈值,并且是否则低。
		□ 该输出为高,而在电池电压下降到低于由

LOW_BATT	36	GLOBAL_LOW_BATT_THRESH属性设定的 阈值,并且是否则低。	
CCA_LATCH	37	□ 如果当前RSSI信号超过了设定的阈值,此输出为高电平MODEM_RSSI_THRESH财产并保持高电平(即锁存),即使当前RSSI信号随后下降到低于阈值。在检测到同步字或退出接收状态信号变低。	
的跳频	38	□ 此输出切换(即切换从低到高,或高到低) 每当RX合表内自动跳发生。此信号不影响通 过起始的手动跳RX_HOP命令。	
HOP_TABLE_WRAP	39	□ 此输出切换(即切换从低到高,或高到低) 时自动跳表套。此信号不影响通过起始的手 动跳 <i>RX HOP</i> 命令。	

⊟NIRQ

ΡI	ш	1 (СТ	ıſ	A	

名称	值	描述	可用的功能			
PULL_DIS	0	□ 禁止上拉电阻(建议如果引脚 从外部源,不是一个开漏源等 驱动设置)。				
PULL_EN	1	□ 使上拉电阻。				

- □ NIRQ_MODE [5:0] □ 说明:该引脚模式。 □ 格式: 枚举

名称	值	描述	可用的功 能
DONOTHING	0	□ 这个引脚的行为是不会被修改。	
三态	1	□ 输入和输出驱动器被禁止。	
DRIVE0	2	□ 引脚被配置为CMOS输出和驱动为 低电平。	
DRIVE1	3	□ 引脚被配置为CMOS输出和驱动为 高电平。	
输入	4	□ 引脚被配置为一个CMOS输入。这 是用于需要引脚为输入(例如, TXDATA输入TX直接模式)所有 GPIO功能。然而,该引脚为输入的 配置不另外选择哪些内部电路接收 输入;该功能是由其他属性控制(如 适用)。	
DN_CLK	7	□ 输出的分频时钟信号(或在SPI ACTIVE状态的划分启动时钟信号)。此输出为低,而芯片是在睡眠状态下作为源(如晶振)为不运行的分频时钟信号,并输出划分 XtalOsc信号在所有其他国家。该分频器使用配置的 DIVIDED_CLK_SEL: GLOBAL_CLK_CFG。	
CTS	8	□ 清除发送信号。此输出goes高时命 令处理程序能够接收新的命令,并 且是否则低。	
SDO	11	□ 输出串行数据输出(SDO)信号为 SPI总线。	
POR	12	□ 在上电复位该输出变为低电平和高 电平上电复位完成后。	
EN_PA	15	□ 此输出为高电平时,内部的PA已启 用。	
TX_DATA_CLK	16	□ 输出TX数据时钟信号。这个信号是 一个方波在选定的TX数据速率,并 且是用于在TX直接同步模式(即, 在与被配置为TX数据输入的销相结 合)一起使用。	
RX_DATA_CLK	17	□ 输出RX数据CLK信号。这个信号是 名义上被同步到所接收的数据速率 的方波,并且通常用于锁存RX数据 信号转换成主机MCU。	
EN_LNA	18	□ 此输出变为低电平时,内部LNA已 启用。	
TX_DATA	19	□ 输出对TX数据位从TX FIFO拉出并 传送到TX调制器。这是一个输出信 号(主要用于诊断目的)并没有被 用作输入端,用于TX直接同步/异步 模式。	
RX_DATA	20	□ 输出解调后的接收数据流,同步和 再定时由当地RX数据时钟后。	
		□ 输出解调后的接收原始数据流,前	

RX_RAW_DATA	21	同步和再定时由地方接收数据时
ANTENNA_1_SW	22	钟。 □ 用于天线分集操作过程中的RF开关 控制天线1开关信号。这个信号通常 假定天线-2开关信号(除了在睡眠 状态下)的互补极性。
ANTENNA_2_SW	23	□ 用于天线分集操作过程中的RF开关 控制天线-2开关信号。这个信号通 常假定天线-1开关信号(除了在睡 眠状态下)的互补极性。
VALID_PREAMBLE	24	□ 此输出变为高电平检测到有效的序言时,返回低收或同步字超时发生 后,包。
INVALID_PREAMBLE	25	□ 输出低电平正常,脉冲输出高电平时是不是一段时间(由确定的范围内检测到的序言 PREAMBLE_CONFIG_STD_2: RX_PREAMBLE_TIMEOUT)启用解调器后。
SYNC_WORD_DETECT	26	□ 此输出为高电平同步字检测时,返 回低的数据包被接收后。
文建会	27	□ 空闲信道评估。此输出goes高时电 流RSSI信号超过了设定的阈 值MODEM_RSSI_THRESH财产, 为低时,电流RSSI低于阈值。这是 一个实时(非锁定)信号。
NIRQ	39	□ 低电平有效的中断信号。

⊟spo

□ PULL_CTL▲□ 说明:该引脚上拉控制。□ 格式: 枚举

名称	值	描述	可用的功能
PULL_DIS	0	□ 禁止上拉电阻(建议如果引脚 从外部源,不是一个开漏源等 驱动设置)。	
PULL_EN	1	□ 使上拉电阻。	

□ SDO_MODE [5:0] □ 说明: 该引脚模式。 □ 格式: 枚举

枚举			
名称	值	描述	可用的 功能
DONOTHING	0	□ 这个引脚的行为是不会被修改。	
三态	1	□ 输入和输出驱动器被禁止。	
DRIVE0	2	□ 引脚被配置为CMOS输出和驱动为低电平。	
DRIVE1	3	□ 引脚被配置为CMOS输出和驱动为高电平。	
输入	4	□ 引脚被配置为一个CMOS输入。这是用于需要引脚为输入(例如,TXDATA输入TX直接模式)所有GPIO功能。然而,该引脚为输入的配置不另外选择哪些内部电路接收输入;该功能是由其他属性控制(如适用)。	
32K_CLK	5	□ 选中使用输出32 kHz的时钟 GLOBAL_CLK_CFG: CLK_32K_SEL。输 出,如果没有启用32 kHz的时钟低。	
DN_CLK	7	□ 输出的分频时钟信号(或在SPIACTIVE状态的划分启动时钟信号)。此输出为低,而芯片是在睡眠状态下作为源(如晶振)为不运行的分频时钟信号,并输出划分XtalOsc信号在所有其他国家。该分频器使用配置的DIVIDED_CLK_SEL: GLOBAL_CLK_CFG。	
стѕ	8	□ 清除发送信号。此输出goes高时命令处理程 序能够接收新的命令,并且是否则低。	
SDO	11	□ 输出串行数据输出(SDO)信号为SPI总 线。	
POR	12	□ 在上电复位该输出变为低电平和高电平上电复位完成后。	
WUT	14	□ 此输出通常是低,高脉冲2 (WUT_R +1) 的唤 醒定时器 (WUT) 届满后的32 kHz的时钟周 期。32 kHz的时钟必须以使用WUT被启用。 在WUT的周期是利用配置 GLOBAL_WUT_M 和GLOBAL_WUT_R并通过启用 GLOBAL_WUT_CONFIG: WUT_EN。	
EN_PA	15	□ 此输出为高电平时,内部的PA已启用。	
TX_DATA_CLK	16	□ 输出TX数据时钟信号。这个信号是一个方波 在选定的TX数据速率,并且是用于在TX直接 同步模式(即,在与被配置为TX数据输入的 销相结合)一起使用。	
	1		ı

RX_DATA_CLK	17	□ 输出RX数据CLK信号。这个信号是名义上被 同步到所接收的数据速率的方波,并且通常 用于锁存RX数据信号转换成主机MCU。	
EN_LNA	18	□ 此输出变为低电平时,内部LNA已启用。	
TX_DATA	19	□ 输出对TX数据位从TX FIFO拉出并传送到TX 调制器。这是一个输出信号(主要用于诊断目的)并没有被用作输入端,用于TX直接同步/异步模式。	
RX_DATA	20	□ 输出解调后的接收数据流,同步和再定时由 当地 RX 数据时钟后。	
RX_RAW_DATA	21	□ 输出解调后的接收原始数据流,前同步和再 定时由地方接收数据时钟。	
ANTENNA_1_SW	22	□ 用于天线分集操作过程中的RF开关控制天线 1开关信号。这个信号通常假定天线-2开关信 号(除了在睡眠状态下)的互补极性。	
ANTENNA_2_SW	23	□ 用于天线分集操作过程中的RF开关控制天 线-2开关信号。这个信号通常假定天线-1开 关信号(除了在睡眠状态下)的互补极性。	
VALID_PREAMBLE	24	□ 此输出变为高电平检测到有效的序言时,返 回低收或同步字超时发生后,包。	
INVALID_PREAMBLE	25	□ 输出低电平正常,脉冲输出高电平时是不是一段时间(由确定的范围内检测到的序言 PREAMBLE_CONFIG_STD_2: RX_PREAMBLE_TIMEOUT)启用解调器 后。	
SYNC_WORD_DETECT	26	□ 此输出为高电平同步字检测时,返回低的数 据包被接收后。	
文建会	27	□ 空闲信道评估。此输出goes高时电流RSSI信号超过了设定的阈值MODEM_RSSI_THRESH财产,为低时,电流RSSI低于阈值。这是一个实时(非锁定)信号。	

□GEN_CONFIG

□ DRV_STRENGTH [1:0]▲ □ 说明:

□ 选择驱动强度的配置为输出这些GPIO / NIRQ / SDO引脚的电平。

□ 驱动强度的选择的级别同时适用于所有的输出引脚,但下列情况除外: GPIOO将表现出较弱的驱动力比其它GPIO引脚,但只在最 低的驱动强度设置; 其驱动力是相同的所有其他设置。

□ 格式: 枚举

名称	值	描述	可用的功能
高	0	□ 配置为输出的GPIO将有最高的驱动强度。	
MED_HIGH	1	□ 配置为输出的GPIO将有一个中等驱动强度。	
MED_LOW	2	□ 配置为输出的GPIO将有一个中等驱动强度。	
低	3	□ 配置为输出的GPIO将有最低的驱动强度。	

回复场

⊟стѕ

- □ CTS [7:0]▲
 - □ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。□ 类型: U8

⊟GPIO [0 ... 3]

- ☐ GPIO_STATE ▲
 - □ 说明:读回引脚上的逻辑电平。
 - □ 格式: 枚举

名称 名称	值	描述	可用的功能
INACTIVE	0	□ 脚被读回0。	
ACTIVE	1	□ 脚被读回一1。	

☐ GPIO_MODE [5:0]▲

- □ 说明:读回当前选定的功能引脚的枚举。 □ 格式:枚举

名称	值	描述	可用的 功能
DONOTHING	0	□ 这个引脚的行为是不会被修改。	
三态	1	□ 输入和输出驱动器被禁止。	
DRIVE0	2	□ 引脚被配置为CMOS输出和驱动为低电平。	
DRIVE1	3	□ 引脚被配置为CMOS输出和驱动为高电平。	
输入	4	□ 引脚被配置为一个CMOS输入。这是用于需要引脚为输入(例如,TXDATA输入TX直接模式)所有GPIO功能。然而,该引脚为输入的配置不另外选择哪些内部电路接收输入;该功能是由其他属性控制(如适用)。	
		□ 选中使用输出32 kHz的时钟	

32K_CLK	5	GLOBAL_CLK_CFG: CLK_32K_SEL。输出,如果没有启用32 kHz的时钟低。
BOOT_CLK	6	□ 输出启动时钟信号。这个信号将只存在时, 芯片处于SPI_ACTIVE状态,因为这是在开 机时钟处于活动状态的唯一的国家。
DN_CLK	7	□ 输出的分频时钟信号(或在SPIACTIVE状态的划分启动时钟信号)。此输出为低,而芯片是在睡眠状态下作为源(如晶振)为不运行的分频时钟信号,并输出划分XtalOsc信号在所有其他国家。该分频器使用配置的DIVIDED_CLK_SEL: GLOBAL_CLK_CFG。
CTS	8	□ 清除发送信号。此输出goes高时命令处理程 序能够接收新的命令,并且是否则低。
INV_CTS	9	□ 倒清除发送信号。此输出变为低电平清楚何 时发送一个新的命令,而且是高,否则。
CMD_OVERLAP	10	□ 此输出为低电平,除非出现一个命令重叠 (即另一个命令之前的命令处理程序完成处 理以前的命令发送)。当命令发生重叠,这 个输出变为高电平,直到CTS的上升沿。
SDO	11	□ 输出串行数据输出(SDO)信号为SPI总 线。
POR	12	□ 在上电复位该输出变为低电平和高电平上电 复位完成后。
CAL_WUT	13	□ 此输出通常是低,高脉冲的校准计时器到期时的32 kHz时钟的一个周期。32 kHz的时钟必须以使用校准计时器被激活。校准定时器周期是使用配置GLOBAL_WUT_CONFIG: WUT_CAL_PERIOD并启用GLOBAL_WUT_CONFIG: CAL_EN。
WUT	14	□ 此输出通常是低,高脉冲2 (WUT_R +1) 的唤 醒定时器 (WUT) 届满后的32 kHz的时钟周 期。32 kHz的时钟必须以使用WUT被启用。 在WUT的周期是利用配置GLOBAL_WUT_M 和GLOBAL_WUT_R并通过启用 GLOBAL_WUT_CONFIG: WUT_EN。
EN_PA	15	□ 此输出为高电平时,内部的PA已启用。 □ 输出TX数据时钟信号。这个信号是一个方波
TX_DATA_CLK	16	TANK TANK TANK TANK TANK TANK TANK TANK
RX_DATA_CLK	17	□ 输出RX数据CLK信号。这个信号是名义上被 同步到所接收的数据速率的方波,并且通常 用于锁存RX数据信号转换成主机MCU。
EN_LNA	18	□ 此输出变为低电平时,内部LNA已启用。 □ 输出对TX数据位从TX FIFO拉出并传送到TX
TX_DATA	19	调制器。这是一个输出信号(主要用于诊断目的)并没有被用作输入端,用于TX直接同步/异步模式。
RX_DATA	20	□ 输出解调后的接收数据流,同步和再定时由 当地RX数据时钟后。
RX_RAW_DATA	21	□ 输出解调后的接收原始数据流,前同步和再 定时由地方接收数据时钟。
ANTENNA_1_SW	22	□ 用于天线分集操作过程中的RF开关控制天线 1开关信号。这个信号通常假定天线-2开关信 号(除了在睡眠状态下)的互补极性。
ANTENNA_2_SW	23	□ 用于天线分集操作过程中的RF开关控制天 线-2开关信号。这个信号通常假定天线-1开 关信号(除了在睡眠状态下)的互补极性。
VALID_PREAMBLE	24	□ 此输出变为高电平检测到有效的序言时,返 回低收或同步字超时发生后,包。
INVALID_PREAMBLE	25	□ 输出低电平正常,脉冲输出高电平时是不是 一段时间(由确定的范围内检测到的序言 PREAMBLE_CONFIG_STD_2: RX_PREAMBLE_TIMEOUT)启用解调器 后。
SYNC_WORD_DETECT	26	□ 此输出为高电平同步字检测时,返回低的数据包被接收后。
文建会	27	□ 空闲信道评估。此输出goes高时电流RSSI信号超过了设定的阈值MODEM_RSSI_THRESH财产,为低时,电流RSSI低于阈值。这是一个实时(非锁定)信号。
IN_SLEEP	28	□ 此输出为高电平时,芯片不处于睡眠状态, 变为低电平时处于睡眠状态。
TX_STATE	32	□ 此输出设置为高,而在德克萨斯州,是否则 低。该TX STATE和RX STATE信号通常用

		于外围电路(例如,T/R开关)的控制权。	
RX_STATE	33	□ 此输出设置为高,而在RX状态且否则低。该 TX_STATE和RX_STATE信号通常用于外围 电路(例如,T/R开关)的控制权。	
RX_FIFO_FULL	34	□ 这个输出是高的,而存储在RX FIFO中的字 节数超过由PKT_RX_THRESHOLD属性设定 的阈值,并且是否则低。	
TX_FIFO_EMPTY	35	□ 这个输出是高,而空的空间中的字节TX FIFO的数目超过由PKT_TX_THRESHOLD 属性设定的阈值,并且是否则低。	
LOW_BATT	36	□ 该输出为高,而在电池电压下降到低于由 GLOBAL_LOW_BATT_THRESH属性设定的 阈值,并且是否则低。	
CCA_LATCH	37	□ 如果当前RSSI信号超过了设定的阈值,此输出为高电平MODEM_RSSI_THRESH财产并保持高电平(即锁存),即使当前RSSI信号随后下降到低于阈值。在检测到同步字或退出接收状态信号变低。	
的跳频	38	□ 此输出切换(即切换从低到高,或高到低) 每当RX合表内自动跳发生。此信号不影响通 过起始的手动跳RX_HOP命令。	
HOP_TABLE_WRAP	39	□ 此输出切换(即切换从低到高,或高到低) 时自动跳表套。此信号不影响通过起始的手 动跳RX HOP命令。	

⊟NIRQ

□ NIRQ_STATE▲
□ 说明:读回的NIRQ引脚上的逻辑电平。
□ 格式: 枚举

名称	值	描述	可用的功能
INACTIVE	0	□ 脚被读回0。	
ACTIVE	1	□ 脚被读同一1。	

名称	值	描述	可用的功 能
DONOTHING	0	□ 这个引脚的行为是不会被修改。	
三态	1	□ 输入和输出驱动器被禁止。	
DRIVE0	2	□ 引脚被配置为CMOS输出和驱动为 低电平。	
DRIVE1	3	□ 引脚被配置为CMOS输出和驱动为 高电平。	
输入	4	□ 引脚被配置为一个CMOS输入。这 是用于需要引脚为输入(例如, TXDATA输入TX直接模式)所有 GPIO功能。然而,该引脚为输入的 配置不另外选择哪些内部电路接收 输入;该功能是由其他属性控制(如 适用)。	
DN_CLK	7	□ 输出的分频时钟信号(或在SPI ACTIVE状态的划分启动时钟信号)。此输出为低,而芯片是在睡眠状态下作为源(如晶振)为不运行的分频时钟信号,并输出划分 XtalOsc信号在所有其他国家。该分频器使用配置的 DIVIDED_CLK_SEL: GLOBAL_CLK_CFG。	
стѕ	8	□ 清除发送信号。此输出goes高时命 令处理程序能够接收新的命令,并 且是否则低。	
SDO	11	□ 输出串行数据输出(SDO)信号为 SPI总线。	
POR	12	□ 在上电复位该输出变为低电平和高 电平上电复位完成后。	
EN_PA	15	□ 此输出为高电平时,内部的PA已启 用。	
TX_DATA_CLK	16	□ 输出TX数据时钟信号。这个信号是 一个方波在选定的TX数据速率,并 且是用于在TX直接同步模式(即, 在与被配置为TX数据输入的销相结 合)一起使用。	
RX_DATA_CLK	17	□ 输出RX数据CLK信号。这个信号是 名义上被同步到所接收的数据速率 的方波,并且通常用于锁存RX数据 信号转换成主机MCU。	
		□ 此输出变为低电平时,内部LNA已	

EN_LNA	18	启用。
TX_DATA	19	□ 输出对TX数据位从TX FIFO拉出并 传送到TX调制器。这是一个输出信 号(主要用于诊断目的)并没有被 用作输入端,用于TX直接同步/异步 模式。
RX_DATA	20	□ 输出解调后的接收数据流,同步和 再定时由当地RX数据时钟后。
RX_RAW_DATA	21	□ 输出解调后的接收原始数据流,前 同步和再定时由地方接收数据时 钟。
ANTENNA_1_SW	22	□ 用于天线分集操作过程中的RF开关 控制天线1开关信号。这个信号通常 假定天线-2开关信号(除了在睡眠 状态下)的互补极性。
ANTENNA_2_SW	23	□ 用于天线分集操作过程中的RF开关 控制天线-2开关信号。这个信号通 常假定天线-1开关信号(除了在睡 眠状态下)的互补极性。
VALID_PREAMBLE	24	□ 此输出变为高电平检测到有效的序言时,返回低收或同步字超时发生 后,包。
INVALID_PREAMBLE	25	□ 输出低电平正常,脉冲输出高电平时是不是一段时间(由确定的范围内检测到的序言 PREAMBLE_CONFIG_STD_2: RX_PREAMBLE_TIMEOUT)启用解调器后。
SYNC_WORD_DETECT	26	□ 此输出为高电平同步字检测时,返 回低的数据包被接收后。
文建会	27	□ 空闲信道评估。此输出goes高时电 流RSSI信号超过了设定的阈 值MODEM_RSSI_THRESH财产, 为低时,电流RSSI低于阈值。这是 一个实时(非锁定)信号。
NIRQ	39	□ 低电平有效的中断信号。

⊟spo

□ SDO_STATE □ 说明:读回在SDO引脚上的逻辑电平。□ 格式:枚举

	名称	值	描述	可用的功能		
	INACTIVE	0	□ 脚被读回0。			
	ACTIVE	1	□ 脚被读回一1。			
 □ SDO_MODE [5:0]▲ □ 说明:读回当前选定的功能SDO引脚的枚举。 						
□ 格式:	枚举	1		⊒ III 44		

枚举			
名称	值	描述	可用的 功能
DONOTHING	0	□ 这个引脚的行为是不会被修改。	
三态	1	□ 输入和输出驱动器被禁止。	
DRIVE0	2	□ 引脚被配置为CMOS输出和驱动为低电平。	
DRIVE1	3	□ 引脚被配置为CMOS输出和驱动为高电平。	
输入	4	□ 引脚被配置为一个CMOS输入。这是用于需要引脚为输入(例如,TXDATA输入TX直接模式)所有GPIO功能。然而,该引脚为输入的配置不另外选择哪些内部电路接收输入;该功能是由其他属性控制(如适用)。	
32K_CLK	5	□ 选中使用输出32 kHz的时钟 GLOBAL_CLK_CFG: CLK_32K_SEL。输 出,如果没有启用32 kHz的时钟低。	
DN_CLK	7	□ 输出的分频时钟信号(或在SPIACTIVE状态的划分启动时钟信号)。此输出为低,而芯片是在睡眠状态下作为源(如晶振)为不运行的分频时钟信号,并输出划分XtalOsc信号在所有其他国家。该分频器使用配置的DIVIDED_CLK_SEL: GLOBAL_CLK_CFG。	
CTS	8	□ 清除发送信号。此输出goes高时命令处理程 序能够接收新的命令,并且是否则低。	
SDO	11	□ 输出串行数据输出(SDO)信号为SPI总 线。	
POR	12	□ 在上电复位该输出变为低电平和高电平上电复位完成后。	
WUT	14	□ 此输出通常是低,高脉冲2 (WUT_R +1) 的唤醒定时器 (WUT) 届满后的32 kHz的时钟周期。32 kHz的时钟必须以使用WUT被启用。在WUT的周期是利用配置GLOBAL_WUT_M	

		和 <i>GLOBAL_WUT_R</i> 并通过启用 <i>GLOBAL_WUT_CONFIG: WUT_EN</i> 。
		GLOBAL_WOT_CONTIG: WOT_EN
EN_PA	15	□ 此输出为高电平时,内部的PA已启用。
TX_DATA_CLK	16	□ 输出TX数据时钟信号。这个信号是一个方波 在选定的TX数据速率,并且是用于在TX直接 同步模式(即,在与被配置为TX数据输入的 销相结合)一起使用。
RX_DATA_CLK	17	□ 输出RX数据CLK信号。这个信号是名义上被 同步到所接收的数据速率的方波,并且通常 用于锁存RX数据信号转换成主机MCU。
EN_LNA	18	□ 此输出变为低电平时,内部LNA已启用。
TX_DATA	19	□ 输出对TX数据位从TX FIFO拉出并传送到TX 调制器。这是一个输出信号(主要用于诊断目的)并没有被用作输入端,用于TX直接同步/异步模式。
RX_DATA	20	□ 输出解调后的接收数据流,同步和再定时由 当地RX数据时钟后。
RX_RAW_DATA	21	□ 输出解调后的接收原始数据流,前同步和再 定时由地方接收数据时钟。
ANTENNA_1_SW	22	□ 用于天线分集操作过程中的RF开关控制天线 1开关信号。这个信号通常假定天线-2开关信 号(除了在睡眠状态下)的互补极性。
ANTENNA_2_SW	23	□ 用于天线分集操作过程中的RF开关控制天 线-2开关信号。这个信号通常假定天线-1开 关信号(除了在睡眠状态下)的互补极性。
VALID_PREAMBLE	24	□ 此输出变为高电平检测到有效的序言时,返 回低收或同步字超时发生后,包。
INVALID_PREAMBLE	25	□ 输出低电平正常,脉冲输出高电平时是不是 一段时间(由确定的范围内检测到的序言 PREAMBLE_CONFIG_STD_2: RX_PREAMBLE_TIMEOUT)启用解调器 后。
SYNC_WORD_DETECT	26	□ 此输出为高电平同步字检测时,返回低的数 据包被接收后。
文建会	27	□ 空闲信道评估。此输出goes高时电流RSSI信号超过了设定的阈值MODEM_RSSI_THRESH财产,为低时,电流RSSI低于阈值。这是一个实时(非锁定)信号。

□GEN_CONFIG

- - □ 格式: 枚举

名称	值	描述	可用的功能
高	0	□ 配置为输出的GPIO将有最高的驱动强度。	
MED_HIGH	1	□ 配置为输出的GPIO将有一个中等驱动强度。	
MED_LOW	2	□ 配置为输出的GPIO将有一个 中等驱动强度。	
低	3	□ 配置为输出的GPIO将有最低的驱动强度。	

FIFO_INFO

- 摘要:访问在TX和RX FIFO的当前字节数,并提供复位FIFO等。
- 目的:
 - 。 该芯片提供了两个独立的64字节的FIFO存储器,用于存储发送和接收数据的目的。(当GLOBAL_CONFIG: FIFO_MODE。位被设置,这 两个FIFO被组合成一个单一的129个字节的共享FIFO)
 - 。 此命令的应答流返回存储在RX FIFO接收的字节数电流,并在TX FIFO中剩余的空字节数。
 - 。 该命令也可以被用来复位个别的FIFO。这通常用于错误恢复(例如,在RX模式遇到CRC错误之后)。一个尚未被检索从RX FIFO任何有效的数据都将丢失作为复位的结果; 建议读取这些数据之前,一个复位。FIFO的不需要前电后初次使用时被重置。
 - 。 该FIFO复位功能(如果已启用)是返回的字节数在FIFO的前处理。因此,应答流的FIFO_INFO命令重置的FIFO将返回字节数,用于指示 FIFO是空的。
 - 。 阿FIFO复位命令不应该发送的同时,积极接收或发送数据包,因为这样可能会损坏的索引指针到FIFO和导致存储的信息丢失。
 - 。 该FIFO: TX和FIFO: RX位是自清; 也就是说,没有必要将命令发送两次(例如,用复位位设置在第一时间,并且清除了2次)。
- stream参数:

	FIF	0_1	NFO	strea	am参	数			
指数	名称	7	6	5	4	3	2	1	0
0x00	CMD	0X15							
0X01	FIFO	0	0	0	0	0	0	RX	TX

• 回复流:

		FIFO_	INF	O 回 2	复流					
	指数	名称	7	6	5	4	3	2	1	0
	0x00	CTS				C	TS			
	0X01	RX_FIFO_COUNT		RX_FIFO_COUNT						
	0X02	TX_FIFO_SPACE			TX	_FIF()_SP	ACE		

论据场

⊟FIFO

□ RX

□ 说明:

■ 重置RX FIFO。

□ 在属性中指定的RX FIFO模式GLOBAL_CONFIG: FIFO_MODE复位后才会有效。

□ 格式: 枚举

名称	值	描述	可用的功能
假	0	□ 不要复位RX数据FIFO。	
真	1	□ 重设接收数据FIFO。	

□ TX

□ 说明:

■ 复位TX FIFO。

□ 在属性中指定的TX FIFO模式GLOBAL_CONFIG: FIFO_MODE复位后才会有效。

□ 格式: 枚举

名称	值	描述	可用的功能
假	0	□ 不要复位TX数据FIFO。	
真	1	□ 复位TX数据FIFO。	

回复场

⊟стѕ

☐ CTS [7:0]▲

- □ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。
- 类型: U8

□RX_FIFO_COUNT

RX_FIFO_COUNT [7:0]

- 说明:返回当前存储在RX FIFO接收的字节数。
- □ 类型: U8

☐TX_FIFO_SPACE

- TX_FIFO_SPACE [7:0]
 - □ 说明:返回的空字节数(即空间)目前在TX FIFO可用。
 - 类型: U8

GET_INT_STATUS

- 数量: 0X20
- 摘要: 返回所有可能的中断事件的中断状态(包括状态和暂挂)。任选地,它可以被用来清除锁存(待定)中断事件。
- 目的:
 - 将返回所有可能的中断事件的当前的中断状态(包括状态和暂挂)以及可选清除挂起的中断。
 - 。 状态指示一个内部中断事件,如前导/同步字检测,数据包发送/接收等。例如,PREAMBLE_DETECT低检测到有效的序言之前,但goes高时序言到达并被成功地检测到的当前状态。状态为终止相应的内部中断事件或停止时自动清零。
 - 。 PENDING简单锁存相应状态的上升沿,并不会改变,直到被清除 GET_INT_STATUS 命令
 - (或*GET_CHIP_STATUS,GET_PH_STATUS,GET_MODEM_STATUS*)。例如,PREAMBLE_DETECT_PEND低检测到有效的序言 之前,变为高电平与PREAMBLE_DETECT,并保持高电平,直到被清除。
 - 。它可以通过读取状态和暂挂响应字节轮询中断,因为他们始终保持最新状态。此外,挂起的中断可能会生成一个硬件中断的NIRQ输出引脚,如果中断是通过启用*INT_CTL_ENABLE*,*INT_CTL_PH_ENABLE*,*INT_CTL_MODEM_ENABLE和INT_CTL_CHIP_ENABLE*属
 - 。 发送GET_INT_STATUS命令没有输入参数,结果在清除所有挂起的中断。
 - 。 当挂起的中断被清除时,得到的答复反映流清场前的状态。
- stream参数:

指数	名称	7	6	5
0x00	CMD			
0X01	PH_CLR_PEND	FILTER_MATCH_PEND_CLR	FILTER_MISS_PEND_CLR	PACKET_SENT_PEND_CLR
0X02	MODEM_CLR_PEND	0	POSTAMBLE_DETECT_PEND_CLR	INVALID_SYNC_PEND_CLR
0X03	CHIP_CLR_PEND	0	CAL_PEND_CLR	FIFO_UNDERFLOW_OVERFLOW_ERROR_P

回复流:

					GET_INT_STA
指数	名称	7	6	5	
0x00	CTS				<u> </u>
0X01	INT_PEND	X	X	Х	
0X02	INT_STATUS	X	X	X	
0X03	PH_PEND	FILTER_MATCH_PEND	FILTER_MISS_PEND	PACKET_SENT_PEND	PACKE
0x04	PH_STATUS	FILTER_MATCH	FILTER_MISS	PACKET_SENT	PA
0X05	MODEM_PEND	X	POSTAMBLE_DETECT_PEND	INVALID_SYNC_PEND	RSSI_
0X06	MODEM_STATUS	X	POSTAMBLE_DETECT	INVALID_SYNC	RS
ii -					

0X07 CHIP_PEND	X	CAL_PEND	FIFO_UNDERFLOW_OVERFLOW_ERROR_PEN	D STATE_0
0X08 CHIP_STATUS	X	CAL	FIFO_UNDERFLOW_OVERFLOW_ERROR	STAT
论据场				
□PH_CLR_PEND □ FILTER MATCH PE	END CLRA			
□ 说明:如果清陽□ 类型:BOOL	k,清除任何未决FILTER_	_MATCH中断。如果设置,离	7开中断挂起。	
☐ FILTER_MISS_PENI		MICC中枢 加田汎盟 南耳	rts NC 445 to	
□ 类型: BOOL		_MISS中断。如果设置,离开	中断往起。	
□ PACKET_SENT_PE□ 说明:如果清陽		T_SENT中断。如果设置,离	开中断挂起。	
□ 类型: BOOL □ PACKET_RX_PEND				
□ 说明: 如果清陽		T_RX中断。如果设置,离开	中断挂起。	
□ 类型: BOOL □ CRC_ERROR_PENI				
□ 说明:如果清陽□ 类型:BOOL	È,清除任何未决 CRC_EF	RROR中断。如果设置,离开	中断挂起。	
☐ TX_FIFO_ALMOST_		D_ALMOST_EMPTY中断。如	1用公署	
□ 类型: BOOL	_	J_ALIVIOS1_EIVIP I 1 中國。 知	1木以且, 內月 中朝往起。	
□ RX_FIFO_ALMOST_□ 说明:如果清陽	_FULL_PEND_CLR▲) 余,清除任何未决 RX_FIF(D_ALMOST_FULL中断。如归	果设置,离开中断挂起。	
□ 类型: BOOL □ MODEM_CLR_PEND				
□ POSTAMBLE_DETE		ADLE DETECTOR to HE	ᇇᅋᅠᄚᅚᄼᄡᄯᆉᆉ	
□ 类型: BOOL		MBLE_DETECT中断。如果证	又且, 呙开中坳在起。	
□ INVALID_SYNC_PEI□ 说明:如果清陽		_SYNC中断。如果设置,离	开中断挂起。	
□ 类型: BOOL □ RSSI_JUMP_PEND_	CLR			
		JMP中断。如果设置,离开中	1断挂起。	
■ RSSI_PEND_CLR▲			t-	
□ 类型: BOOL	_	中断。如果设置,离开中断挂	起。	
□ INVALID_PREAMBL□ 说明:如果清陽		_PREAMBLE中断。如果设置	置,离开中断 挂起。	
□ 类型: BOOL □ PREAMBLE DETEC				
□ 说明: 如果清陽		BLE_DETECT中断。如果设	置,离开中断挂起。	
□ 类型: BOOL □ SYNC_DETECT_PE	:ND_CLR			
□ 说明: 如果清陽□ 类型: BOOL	è,清除任何未决 SYNC_ D	DETECT中断。如果设置,离	开中断挂起。	
CHIP_CLR_PEND CAL_PEND_CLR				
□ 说明: 如果清陽	余,清除任何未决的 CAL 中	」断。如果设置, 离开中断挂	起。	
□ 类型: BOOL □ FIFO_UNDERFLOW	_OVERFLOW_ERROR_F	PEND_CLR		
□ 说明:如果清陽□ 类型:BOOL	è,清除任何未决FIFO_UN	NDERFLOW_OVERFLOW_I	ERROR中断。如果设置,离开中断挂起。	
☐ STATE_CHANGE_F		CHANGE 中断。如果设置,	喀 开山栎井起	
□ 类型: BOOL	_	OTIANOE中断。如水灰直,	MATTER STATES	
	D_CLRAD 余,清除任何未决CMD_EF	RROR中断。如果设置,离开	中断挂起。	
□ 类型: BOOL □ CHIP_READY_PENI	D_CLRA			
□ 说明:如果清陽□ 类型:BOOL	k,清除任何未决CHIP_RE	EADY中断。如果设置,离开	中断挂起。	
□ LOW_BATT_PEND_			NC++. ±0	
□ 类型: BOOL_	_	ATT 中断。如果设置,离开中	划在起。	
□ WUT_PEND_CLR □□ 说明:如果清陽		新。如果设置,离开中断挂起	۰	
□ 类型: BOOL				
回复场 ⊒cts				
☐ CTS [7:0]▲				
□ 说明:清除发送 □ 类型: U8	5。表明前一个命令执行完	E成和响应字节流(如果有的·	话)是有效的。接下来的命令可被发送。	
□ CHIP_INT_PEND				
□ 说明: 如果设置	量,启用CHIP_PEND位被	置位指示中断挂起。见 GET _	_INT_STATUS: CHIP_STATUS领域的芯片状态中断组	内的触发
事件。 □ 类型: BOOL				

E	MODE	M_INT_PEND	
	□ i		启用MODEM_PEND位被置位指示中断挂起。见 <i>GET_INT_STATUS: MODEM_STATUS</i> 领域的调制解调器中断组
		型: BOOL _PEND	
	□ ij	 .明:如果设置,	启用PH_PEND位被置位指示中断挂起。见 <i>GET_INT_STATUS:PH_STATUS</i> 领域,为包处理器中断组内的触发事
		。 型: BOOL	
	T_STAT	US	
		NT_STATUS. .明:如果设置,	芯片状态中断组有一个中断挂起。见GET_INT_STATUS: CHIP_STATUS领域的芯片状态中断组内的触发事件。
=		型: BOOL M_INT_STATUS	
	□ i	明: 如果设置,	。」。 调制解调器中断组有一个中断挂起。见 <i>GET_INT_STATUS:MODEM_STATUS</i> 领域的调制解调器中断组内的触发
		件。 型: BOOL	
		_STATUSA	包处理器中断组有一个中断挂起。见 <i>GET_INT_STATUS: PH_STATUS</i> 领域,为包处理器中断组内的触发事件。
_	□ 梦	型: BOOL	已处理益中划组有 中划任起。光GE1_INT_STATUS: FIT_STATUS 表现,为已处理益中划组的的服众事件。
	H_PEND	MATCH PEN	IDA
	□ i	.明:如果设置,	FILTER_MATCH状态位的上升沿被检测到,因此一个FILTER_MATCH中断挂起。请参阅相关的FILTER_MATCH状态
	□ 梦	更多的细节。 型:BOOL	
E		_MISS_PEND 明. 如果设置,	▲」 FILTER_MISS状态位的上升沿被检测到,因此一个FILTER_MISS中断挂起。请参阅相关的FILTER_MISS状态位更多
	É*	细节。 型: BOOL	
\subseteq	PACKE	T_SENT_PEN	
		.明:如果设置, .更多的细节。	PACKET_SENT状态位的上升沿被检测到,因此一个PACKET_SENT中断挂起。请参阅相关的PACKET_SENT状态
	口类	型: BOOL _	
	□ i		PACKET_RX状态位的上升沿被检测到,因此一个PACKET_RX中断挂起。请参阅相关的PACKET_RX状态位更多的
		节。 型: BOOL	
	CRC_E	RROR_PEND	
	É*	细节。	CRC_ERROR状态位的上升沿被检测到,因此一个CRC_ERROR中断挂起。请参阅相关的CRC_ERROR状态位更多
E	-	型: BOOL O ALMOST E	MPTY_PEND
	□ i	明:如果设置,	TX_FIFO_ALMOST_EMPTY状态位的上升沿被检测到,因此一个TX_FIFO_ALMOST_EMPTY中断挂起。请参阅相关
	□ ≱	型: BOOL	MOST_EMPTY状态位更多的细节。
		O_ALMOST_F .明:如果设置,	·ULL_PENDIAI RX_FIFO_ALMOST_FULL状态位的上升沿被检测到,因此一个RX_FIFO_ALMOST_FULL中断挂起。请参阅相关的
	R	X_FIFO_ALMO 型: BOOL	DST_FULL状态位更多的细节。
	H_STAT	JS	
		_MATCH▲ 朗·设定以指表	示输入数据包的匹配滤波器。清除时进入RX状态,或者如果RX重新启动。
	口类	型: BOOL	
	□ i		传入的数据包被丢弃,因为过滤器不匹配。清除时进入RX状态,或者如果RX重新启动。
<u></u>		型: BOOL T SENT	
	□ i	明:设置为显示	示在TX FIFO的数据字节被成功发送。在进入TX状态清除。
	PACKE	型: BOOL T_RX📤	
			示数据的字节数预期已经成功地接收并放置在RX FIFO。所有启用的包处理器功能(如CRC校验,过滤器匹配)必须成 KET_RX中断完成。
_	口 孝	型: BOOL	
		RROR▲ 明:设置以表明	明接收到的CRC校验字节(s)不匹配计算的CRC校验值。在进入接收状态,或者如果RX清零重新开始。
Е	-	型: BOOL O_ALMOST_E	MPTY
	□ ij	明:设定以指示	示在TX FIFO空间量等于或大于 <i>PKT_TX_THRESHOLD</i> 值。该中断可用于信号主机MCU来存储更多的数据字节到TX
			了一种手段来处理数据包长度大于TX FIFO(大小即64个字节,或在共享FIFO模式129字节)。清除,如果数据在TX (T_TX_THRESHOLD值。
E	-	型: BOOL O_ALMOST_F	:ULLA
	□ ij	明:设定以指示	示存储在接收FIFO的字节数等于或大于 <i>PKT_RX_THRESHOLD</i> 值。该中断可用于信号主机MCU读取更多的数据字节
	F	FO的数据量小	而提供了一种手段来处理数据包长度大于RX FIFO(大小即64个字节,或在共享FIFO模式129字节)。清除,如果在RX于 <i>PKT_TX_THRESHOLD</i> 值。
- NA		型: BOOL	
	POSTA	MBLE_DETEC	
	□ ij P	.明:如果设置, OSTAMBLE D	POSTAMBLE_DETECT状态位的上升沿被检测到,因此一个POSTAMBLE_DETECT中断挂起。请参阅相关的ETECT状态位更多的细节。
-	□ ≱	型: BOOL	
	, IIAA WEI	D_SYNC_PENI	

					INVALID_SYNC状态位的上升沿被检测到,因此一个INVALID_SYNC中断挂起。请参阅相关的INVALID_SYNC状态位
			更多的 光刑.	细节。 BOOL	
	R			_PEND	
		□į	兑明:		RSSI_JUMP状态位的上升沿被检测到,因此一个RSSI_JUMP中断挂起。请参阅相关的RSSI_JUMP状态位更多的细
			节。 米利	BOOL	
	R		PEND		
		□ į	兑明:	如果设置,	RSSI状态位的上升沿被检测到,因此一个RSSI中断挂起。请参阅相关的RSSI状态位更多的细节。
	II.			BOOL	
	II N	JAVAL	iD_PF 5 明・	KEAIVIBLE 加里设署	_PEND[
					MBLE状态位更多的细节。
	_	_		BOOL	
	Р				「_PEND 📤 PREAMBLE_DETECT状态位的上升沿被检测到,因此一个PREAMBLE_DETECT中断挂起。请参阅相关的
					TECT状态位更多的细节。
	_			BOOL	
	S			ECT_PEN 加里设置	DD_ SYNC_DETECT状态位的上升沿被检测到,因此一个SYNC_DETECT中断挂起。请参阅相关的SYNC_DETECT状态。
				的细节。	TO THO DETECTAL TO THE DETECTATION TO THE DETECTAL TO THE DET
_				BOOL	
			STAT		NTA
	· P			E_DETE(如果 1-4 个	字节接收到的数据相匹配的POSTAMBLE_PATTERN_XX属性中定义的位模式设置。后同步码的检测,也必须在启
		F	∄PRE	AMBLE_	POSTAMBLE_CONFIG属性。清除在进入RX,或者如果RX重新启动。
				BOOL	
	II\			NC▲ 该脉冲时	有效同步字(匹配的SYNC_BITS_XX属性中定义的比特模式)没有允许的搜索超时周期内检测到的高自清信号。如果
					字言,搜索超时时间是同步字长度+4位。如果配置成接收一个非标准前导码时,搜索超时周期是由定
					TX_LENGTH属性。
	R		类型: JUMP	BOOL	
					电流RSSI值跳跃超过在所定义的阈值自清信号MODEM_RSSI_JUMP_THRESH财产。
_			类型:	BOOL	
	R	SSE		加里坐前	的RSSI值已经超出了定义的阈值 <i>MODEM_RSSI_THRESH</i> 财产。在进入接收状态,或者如果RX清零重新开始。
				知本当前1 BOOL	的NOOI直已经起山 1 足入的网直MODEM_NOOI_TIMESIM)。在近八按收价芯,或有如木M和零星刷开始。
	IN	IVAL	ID_PF	REAMBLE	
					表明已发生以下任一自清信号: 1)没有允许的搜索超时周期内检测到有效的序言,或b)锁存RSSI值低于
					_THRESH值,芯片已启用要检查此条件。对于前导码的搜索超时时间被配置在PREAMBLE_CONFIG_STD_2,而 SH_AT_LATCH功能被配置在MODEM_RSSI_CONTROL。
				BOOL	
	Р			_DETEC	
					配的预期序言模式位模式。如果配置为接收标准序言,位的预期模式是" 010101"在定义的阈值长度 DNFIG_STD_1。如果配置成接收一个非标准前导码,比特的预期模式是由PREAMBLE_PATTERN_XX和定
		, ,	义 <i>PRE</i>	AMBLE_	CONFIG_NSTD属性。当SYNC被检测到,在进入RX状态,或RX是启动时被清除。
				BOOL	
	S			ECT▲ 设置当接i	收到同步字模式匹配的SYNC_BITS_XX属性中定义的比特模式。收到一个数据包时清零(有效或无效),在进入RX状
					重新启动。
□				BOOL	
⊟с⊦			ND PEND	A	
					校准状态位的上升沿被检测到,因此一个CAL中断挂起。请参阅相关的校准状态位更多的细节。
	_			BOOL	OVEREI OW ERROR REND
	F				OVERFLOW_ERROR_PEND— FIFO_UNDERFLOW_OVERFLOW_ERROR状态位的上升沿被检测到,因此一个
					OW_OVERFLOW_ERROR中断挂起。请参阅相关的FIFO_UNDERFLOW_OVERFLOW_ERROR状态位更多的细节。
		_		BOOL	
	S			ANGE_PE 加里设置	:NDI
				更多的细	
				BOOL	
	C			DR_PEND 加里设置	▲ CMD_ERROR状态位的上升沿被检测到,因此一个CMD_ERROR中断挂起。请参阅相关的CMD_ERROR状态位更多
			九奶 的细节		OMD_LITTOPY,心区由上升有数型物型,因此一下OMD_LITTOPY,可且是。相多两有人的OMD_LITTOPY,心区文文
_	-			BOOL	
	С			Y_PEND 加里设置。	≜」 CHIP_READY状态位的上升沿被检测到,因此一个CHIP_READY中断挂起。请参阅相关的CHIP_READY状态位更多
			元明: 的细节		O.MNENDTINEE的工作用吸性物类,因此一下O.MNENDTITE的ITE。用多网络人的O.MNENDTINEE文字
_				BOOL	
	L			_PEND▲ 加里设置	LOW_BATT状态位的上升沿被检测到,因此一个LOW_BATT中断挂起。请参阅相关的LOW_BATT状态位更多的细
			死吩 : 节。	邓不以且:	LOW_DATEM心。但的工力有吸触对到,四地一下LOW_DATE中的往晚。 有多网相大的LOW_DATEM总型更多的细
_			类型:	BOOL	
	M		PEND 5日.		WUT状态位的上升沿被检测到,因此一个WUT中断挂起。请参阅相关的WUT状态位更多的细节。
			类型:	BOOL	VVOIVA心区的工力的效理模型,因此。(VVOIT例注起。用多网有大的VVOIA态性更多的细节。
⊟C+	41F	ST	ATUS	;	

□ CAL

□ 说明:脉冲高,表明一个RC32K校准事件被挂起自我清除信号。如果发生这种情况,RC32K振荡器将被标定在接下来的过渡到睡眠/待
机状态。
□ 类型: BOOL
☐ FIFO_UNDERFLOW_OVERFLOW_ERROR A
□ 描述: 设置以指示所接收或发送的字节数超过RX或TX FIFO的大小,分别(即,共享FIFO当64字节用于每个FIFO,或129字节)。根
据这样的下溢/上溢事件,则FIFO(s)将需要被复位。通过发出一个清除 <i>FIFO_INFO</i> 命令重置的FIFO。
□ 类型:BOOL
■ STATE_CHANGE
□ 说明:设置为表示从一个状态到另一个运行状态成功过渡。当一个状态转换过程中清除。
□ 类型: BOOL
□ CMD_ERROR □ 说明:脉冲高以指示错误自我清除信号发生在一个命令的处理。例如,不正确的命令/属性ID发送,或试图写一个属性,它是给定属性
□ 说明: 脉冲向以指示错误自找相际信号及生任一个叩ぐ的处理。例如,不正确的叩ぐ/属性□及达,或试图与一个属性,它定结定属性组之外。
型之が。
□ CHIP READY
□ 说明:设定显示芯片(该POWER_UP序列结束后)已经到了它已准备好接受命令的状态时,或者当红外校准过程结束。当芯片处于关
机或当红外校准已经开始清除。
□ 类型: BOOL
LOW BATTA
□ 说明: 脉冲高指示WUT (唤醒定时器) 自清信号已过期。
□ 类型: BOOL
□ WUT≜
□ 说明:设置为显示电池电压低于阈值设置 <i>GLOBAL_LOW_BATT_THRESH</i> 。清零,表明电池电压高于阈值设
置 <i>GLOBAL_LOW_BATT_THRESH</i> 。
□ 类型: BOOL

REQUEST_DEVICE_STATE

- 数量: 0X33
- 摘要:请求当前的设备状态和通道。
- 目的:
 - 此命令返回有关当前运行状态和设备的调谐频率信道的信息。
 - 返回当前频道号是非常有用的自动跳频应用程序,以确定该设备找到一个有效的信号频率。
 - 。 这是不可能的这个命令返回设备的状态值,表示芯片处于睡眠或待机模式,如发送一个SPI命令,而该芯片是在睡眠或待机模式下的非常行为保证了它醒来成SPI_ACTIVE模式。
- stream参数:

	REQUEST_	DEV	CE_S	TAT	E stre	eam参	数			
指数 名称 7 6 5 4 3 2 1 0										
0x00	CMD				0.	X33				

回复流:

	REQUEST_DEVIC	E_	ST	ATI	□	复流			
指数	名称	7	6	5	4	3	2	1	0
0x00	CTS					C	ΓS		
0X01	CURR_STATE	Х	Χ	Χ	Χ	I	//AIN_	STAT	E
0X02	CURRENT_CHANNEL			CU	RR	ENT_	_CHA	NNEL	

论据场

回复场

⊟стѕ

☐ CTS [7:0]▲

□ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。

□ 类型: U8

□CURR_STATE

■ MAIN_STATE [3:0]▲

□ 描述:返回设备的当前运行状态。请参阅数据表公布有关这些操作模式的更多细节。

□ 格式: 枚举

名称	值	描述	可用的功能
睡眠	1	□ (不适用)	
SPI_ACTIVE	2	□ SPI_ACTIVE状态。	
就绪	3	□ 就绪状态。	
READY2	4	□ 另一个枚举就绪状态。	
TX_TUNE	5	■ TX_TUNE状态。	
RX_TUNE	6	■ RX_TUNE状态。	
TX	7	■ TX状态。	
RX	8	■ RX状态。	

□CURRENT_CHANNEL

☐ CURRENT_CHANNEL [7:0] △

□ 说明:返回当前收听的频道。

■ 类型: U8

- 数量: 0X34
- 摘要: 手动芯片切换到所需的工作状态。
- 目的:
 - o 该芯片通常管理在自动操作状态之间转换所需的步骤。例如,一个数据包的传输可能需要: 醒来从休眠模式芯片,使晶振(就绪模式),校 准VCO和调谐PLL频率合成器(TX_TUNE模式),使PA和数据包(传送模式的传播),并返回到空闲状态。这个顺序是由内部状态机正常
 - 。 该命令提供了手动切换到所希望的操作状态。
 - 。 这个命令可以被用来输入TX或RX模式下,如果需要的话。然而,操作这些模式通常需要规范的前切换模式的其他参数(例如,信道号,数 据包的字节数等)。出于这个原因,提供了单独的START_TX和START_RX命令,基本上完成了CHANGE_STATE = TX或RX功能,同时通 过所需参数字节。
- stream参数:

	CHANG	E_S	TA	TE:	stre	am参数					
指数	名称	7	6	5	4	3	2	1	0		
0x00	CMD					0X	(34				
0X01 NEXT_STATE1 0 0 0 0 NEW_STATE											

回复流:

	CH	ANGE	_ST/	\TE □	复流					
指数 名称 7 6 5 4 3 2 1 0										
0x00	CTS				C.	TS				

论据场

□NEXT_STATE1

- NEW_STATE [3:0]▲
 - □ 说明:工作状态切换到立即。请参阅数据表公布有关这些操作模式的更多细节。 □ 格式: 枚举

:			
名称	值	描述	可用的功能
NOCHANGE	0	□ 没有变化,保持在目前的状 态。	
睡眠	1	□ 根据32K RC振荡器所选择的 操作模式休眠或待机状态, GLOBAL_CLK_CFG: CLK_32K_SEL。	
SPI_ACTIVE	2	□ SPI_ACTIVE状态。	
就绪	3	□ 就绪状态。	
TX_TUNE	5	□ TX_TUNE状态。	
RX_TUNE	6	□ RX_TUNE状态。	
TX	7	□ TX状态。	
RX	8	□ RX状态。	

回复场

⊟стѕ

- □ CTS [7:0]
 - □ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。
 - 类型: U8

READ_CMD_BUFF

- 数量: 0×44
- 简介:用于读取CTS和命令响应。
- 目的:
 - o API命令的处理是通过在芯片中的命令处理程序处理。随后的命令可能不会被发送到芯片已经完成了第一个命令的处理。该芯片表示通过发 出一个清除发送(CTS)信号接收响应数据的另一个命令和可用性的能力;这是必要的主机MCU轮询芯片为这个CTS信号。CTS信号可通过 SPI命令进行查询,或在GPIO线或上NIRQ引脚中断监测。
 - 。 此命令用于通过SPI总线轮询CTS信号。该NSEL线被拉低,随后SDI上发送READ_CMD_BUFF命令。虽然NSEL保持低电平,另外八个时 钟脉冲发送的SCLK和CTS响应字节被读取SDO上。如果CTS响应字节不是0xFF的,主机MCU应该拉NSEL高重复投票程序。
 - 如果CTS响应字节是0xFF,主机MCU应该保持NSEL低电平,并提供额外的SCLK时钟周期读出尽可能多的响应字节(在SDO)。主机MCU 应该拉NSEL高的读取响应流完成时。
 - o 该命令的主要功能是确定当CTS变高,从而定义这个命令可以被发送,而CTS是低的。该命令本身不会造成CTS变低。
 - 。 尝试从命令缓冲区读取响应字节,而CTS是不是0xFF的将返回无效结果。响应字节是有效的,只有CTS = 0xFF的。
- stream参数:

	READ_	CMD	BUF	Fstr	eam参	≩数			
指数	名称	7	6	5	4	3	2	1	0
0x00 CMD 0×44									

回复流:

		REA	D_CN	/ID_B	UFF	回复流	Ĺ				
	指数	名称	7	6	5	4	3	2	1	0	
	0x00										
	0X01 BYTE [0] CMD_BUFF										
+											
	0X10	字节[15]				CMD_	BUF	F			

论据场

<u>回</u>复场

⊟CTS

- □ CTS [7:0]
 - □ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。
- 类型: U8

□字节[0 ... 15]

- ☐ CMD_BUFF [7:0]▲
 - □ 说明:该命令响应缓冲区的字节0-15。
 - □ 类型: U8

FRR_A_READ

- 数量: 0x50
- 摘要: 读取快速响应寄存器 (FRR) 开始FRR A。
- 目的:
 - 。 该芯片提供了四个快速响应寄存器(FRR),可能会立即而不需要监督和检查CTS被读取,从而提高在该内容可能会被检索的速度。
 - 。 财政资源规则寄存器可以通过FRR_X_READ命令来读取以突发方式。在最初的16个时钟周期,每个额外的8个时钟周期将时钟出以循环的方式在接下来的快速响应寄存器的内容。例如:如果*FRR_A_READ*命令发出后,寄存器将被读取的顺序ABCD,而如果*FRR_B_READ*命令发出后,寄存器将被读取的顺序BCDA等。
 - 。 此命令不会导致CTS变低,并且可以发送和回复阅读,而CTS是低的。该命令ID应该在时钟的SDI则答复,应时钟上SDO无需拉高NSEL。
 - 该FRR_CTL_X_MODE属性用来选择将被FRR_X_READ命令返回的具体参数值。请参阅文字说明FRR_CTL_X_MODE了解有关选择FRR寄存器中保存的参数(S)的更多细节。
- stream参数:

	FRR	_A_R	EAD	strea	m参数	ζ				
指数 名称 7 6 5 4 3 2 1 0										
0x00	CMD				0x	:50				

回复流:

	FRR	_A_F	READ	回复	流				
指数	名称	7	6	5	4	3	2	1	0
0x00	FRR_A_VALUE			FF	RR_A	_VAL	.UE		
0X01	FRR_B_VALUE			FF	RR_B	_VAL	.UE		
0X02	FRR_C_VALUE			FF	RR_C	_VAL	.UE		
0X03	FRR_D_VALUE			FF	RR_D	_VAL	.UE		

论据场

回复场

☐FRR_A_VALUE

- ☐ FRR_A_VALUE [7:0]▲
 - □ 说明: 值在快速响应寄存器A。
 - □ 类型: U8

☐FRR_B_VALUE

- ☐ FRR_B_VALUE [7:0]▲
 - □ 说明: 值在快速响应寄存器B。
 - □ 类型: U8

⊟FRR_C_VALUE

- ☐ FRR_C_VALUE [7:0]▲
 - □ 说明: 值在快速响应寄存器C.
 - □ 类型: U8

□FRR_D_VALUE

- ☐ FRR_D_VALUE [7:0]▲
 - □ 说明: 值在快速响应寄存器D。
 - □ 类型: U8

FRR_B_READ

- 数量: 0X51
- 摘要:读取快速响应寄存器(FRR)开始FRR_B。
- 目的:
 - o 该芯片提供了四个快速响应寄存器(FRR),可能会立即而不需要监督和检查CTS被读取,从而提高在该内容可能会被检索的速度。
 - 。 财政资源规则寄存器可以通过FRR_X_READ命令来读取以突发方式。在最初的16个时钟周期,每个额外的8个时钟周期将时钟出以循环的方式在接下来的快速响应寄存器的内容。例如:如果*FRR_A_READ*命令发出后,寄存器将被读取的顺序ABCD,而如果*FRR_B_READ*命令发出后,寄存器将被读取的顺序BCDA等。
 - 。 此命令不会导致CTS变低,并且可以发送和回复阅读,而CTS是低的。该命令ID应该在时钟的SDI则答复,应时钟上SDO无需拉高NSEL。
 - 。 该FRR_CTL_X_MODE属性用来选择将被FRR_X_READ命令返回的具体参数值。请参阅文字说明FRR_CTL_X_MODE了解有关选择FRR寄存器中保存的参数(S)的更多细节。
- stream参数:

	FRR	B_R	EAD	strea	m参数	ζ					
指数 名称 7 6 5 4 3 2 1 0											
0x00	CMD				0 <i>X</i>	(51					

• 回复流:

	FRR	_B_F	READ	回复	流				
指数	名称	7	6	5	4	3	2	1	0
0x00	FRR_B_VALUE			FF	RR_B	_VAL	UE		
0X01	FRR_C_VALUE			FF	RR_C	_VAL	LUE		
0X02	FRR_D_VALUE			FF	RR_D	_VAL	_UE		
0X03	FRR_A_VALUE			FF	RR_A	_VAL	UE		

论据场

回复场

□FRR_B_VALUE

☐ FRR B VALUE [7:0]▲

□ 说明: 值在快速响应寄存器B。

□ 类型: U8

☐FRR_C_VALUE

☐ FRR_C_VALUE [7:0]▲

□ 说明: 值在快速响应寄存器C.

□ 类型: U8

☐FRR_D_VALUE

☐ FRR_D_VALUE [7:0]▲

□ 说明: 值在快速响应寄存器D。

□ 类型: U8

☐FRR_A_VALUE

☐ FRR_A_VALUE [7:0]▲

□ 说明: 值在快速响应寄存器A。

□ 类型: U8

FRR_C_READ

- 数量: 0x53
- 摘要:读取快速响应寄存器(FRR)开始FRR_C。
- 目的:
 - o 该芯片提供了四个快速响应寄存器(FRR),可能会立即而不需要监督和检查CTS被读取,从而提高在该内容可能会被检索的速度。
 - 。 财政资源规则寄存器可以通过FRR_X_READ命令来读取以突发方式。在最初的16个时钟周期,每个额外的8个时钟周期将时钟出以循环的方式在接下来的快速响应寄存器的内容。例如:如果*FRR_A_READ*命令发出后,寄存器将被读取的顺序ABCD,而如果*FRR_B_READ*命令发出后,寄存器将被读取的顺序BCDA等。
 - 。 此命令不会导致CTS变低,并且可以发送和回复阅读,而CTS是低的。该命令ID应该在时钟的SDI则答复,应时钟上SDO无需拉高NSEL。
 - 。 该FRR_CTL_X_MODE属性用来选择将被FRR_X_READ命令返回的具体参数值。请参阅文字说明FRR_CTL_X_MODE了解有关选择FRR寄存器中保存的参数(S)的更多细节。
- stream参数:

FRR_C_READ stream参数											
指数 名称 7 6 5 4 3 2 1 0											
0x00 CMD 0x53											

• 回复流:

FRR_C_READ回复流												
指数	名称	7	6	5	4	3	2	1	0			
0x00 FRR_C_VALUE FRR_C_VALUE												
0X01	FRR_D_VALUE	FRR_D_VALUE										
0X02	FRR_A_VALUE	FRR_A_VALUE										
0X03	FRR_B_VALUE			FF	RR_B	_VAL	UE					

论据场

回复场

□FRR_C_VALUE

☐ FRR_C_VALUE [7:0]▲

□ 说明: 值在快速响应寄存器C.

□ 类型: U8

☐FRR_D_VALUE

FRR_D_VALUE [7:0]

□ 说明: 值在快速响应寄存器**D**。

□ 类型: U8

□FRR_A_VALUE

FRR_A_VALUE [7:0]

□ 说明: 值在快速响应寄存器A。

□ 类型: U8

□FRR_B_VALUE

☐ FRR_B_VALUE [7:0]▲

□ 说明: 值在快速响应寄存器B。

□ 类型: U8

FRR_D_READ

- 数量: 0x57
- 摘要: 读取快速响应寄存器 (FRR) 开始FRR_D。
- 目的:
 - 。 该芯片提供了四个快速响应寄存器(FRR),可能会立即而不需要监督和检查CTS被读取,从而提高在该内容可能会被检索的速度。
 - 。 财政资源规则寄存器可以通过FRR_X_READ命令来读取以突发方式。在最初的16个时钟周期,每个额外的8个时钟周期将时钟出以循环的方式在接下来的快速响应寄存器的内容。例如:如果*FRR_A_READ*命令发出后,寄存器将被读取的顺序ABCD,而如果*FRR_B_READ*命令发出后,寄存器将被读取的顺序BCDA等。
 - 。 此命令不会导致CTS变低,并且可以发送和回复阅读,而CTS是低的。该命令ID应该在时钟的SDI则答复,应时钟上SDO无需拉高NSEL。
 - 。 该FRR_CTL_X_MODE属性用来选择将被FRR_X_READ命令返回的具体参数值。请参阅文字说明FRR_CTL_X_MODE了解有关选择FRR寄存器中保存的参数(S)的更多细节。
- stream参数:

FRR_D_READ stream参数										
指数 名称 7 6 5 4 3 2 1 0										
0x00 CMD 0x57										

回复流:

	FRR_D_READ 回复流												
	指数	名称	7	6	5	4	3	2	1	0			
0x00 FRR_D_VALUE FRR_D_VALUE													
	0X01	FRR_A_VALUE			FF	RR_A	_VAL	UE					
	0X02	FRR_B_VALUE	FRR_B_VALUE										
	0X03	FRR_C_VALUE			FF	RR_C	_VAL	UE					

论据场

回复场

☐FRR_D_VALUE

- ☐ FRR_D_VALUE [7:0]▲
 - □ 说明: 值在快速响应寄存器D。
- 类型: U8

☐FRR_A_VALUE

- FRR_A_VALUE [7:0]▲
 - □ 说明: 值在快速响应寄存器A。
 - □ 类型: U8

□FRR_B_VALUE

- ☐ FRR_B_VALUE [7:0]▲
 - □ 说明: 值在快速响应寄存器B。
 - □ 类型: U8

□FRR_C_VALUE

- ☐ FRR_C_VALUE [7:0]▲
 - □ 说明: 值在快速响应寄存器C.
 - □ 类型: U8

IR_CAL_COMMANDS

IRCAL

- 数量: 0X17
- 摘要: 镜像抑制校准。
- 目的:
 - 执行图像抑制校准。完成后可以通过查询CTS或监视等待CHIP_READY中断源。
- stream参数:

	IRCAL stream参数												
指数	名称	7	6	5	4	3	2 1 0						
0x00 CMD 0X17													
0X01	SEARCHING_STEP_SIZE	0	INITIAL_PH_AMP	FINE_ST	EP_SIZE	COARSE_S	TEP_SIZE						
0X02	SEARCHING_RSSI_AVG	0	0	RSSI_FI	NE_AVG	0	0 RSSI_COARSE_AVG						
0X03	RX_CHAIN_SETTING1	EN_HRMNIC_GEN	IRCLKDIV	RF_SOUR	CE_PWR	CLOSE_SHUNT_SWITCH	PGA_GAIN						
0x04	RX_CHAIN_SETTING2		0000			0	0 0 ADC_HIGH_GAIN						

• 回复流:

IRCAL回复流										
指数 名称 7 6 5 4 3 2 1 0										
0x00	CTS	CTS								

论据场

□SEARCHING_STEP_SIZE

- ☐ INITIAL_PH_AMP
 - □ 说明:初始**pH**值和放大器值时启动红外线校准。

□ 格式:	枚举			
	名称	值	描述	可用的功能
	ENUM 0	1	□ 使用零相位和幅度值作为初始	
		I	值。	
	ENUM 1	0	□ 使用以前的标定值作为初始	
	-		值。	
☐ FINE_STEF	³ _SIZE [1:0] 3 步骤精细步进的大小。写一个 0 值会	吸细华		
□ 烷明: □ 类型:		哈细少。		
	STEP_SIZE [3:0]			
	粗步步进尺寸。写一个 0 值会略粗步			
类型:				
⊟SEARCHING_				
☐ RSSI_FINE		7 v+ /m	JE VIII.	
	有多少测量(2 ^平均)每RSSI测量	,而精细	步 进。	
□ 格式:	名称	值		可用的功能
	ENUM_0	0	□ 1测量。	可用的初胞
	ENUM 1	1	□ 2测量。	1
	ENUM 2	2		
	ENUM 3	3	□ 8测量。	
E PSSI COA	RSE AVG [1:0]	3	□ 8侧里。]
□ 祝35_00人		, 而粗步	0	
□ 格式:				
•••	名称	值	描述	可用的功能
	ENUM_0	0	□ 1测量。	
	ENUM_1	1	□ 2测量。	
	ENUM 2	2	□ 4次测量。	
	ENUM_3	3	□ 8测量。	
⊟RX_CHAIN_S				1
■ EN_HRMN	IC GENA			
	- 启用谐波发生器。			
□ 格式:				
	名称	值	描述	可用的功能
	ENUM_0	0	□ 未启用。	
	ENUM_1	1	□ 启用。	
□ IRCLKDIV				
	设置irclkdiv。			
□ 格式:		<i>I</i> +-	LH- V IV	T III 44 -1. 4k
	名称	值	描述	可用的功能
	ENUM_0	0	□ 设置为标称增益。	
	ENUM_1	1	□ 谐波为N×30兆赫。	
_	DE_PWR [1:0]▲			
□ 烷明: □ 格式:	内部发生器的功率(默认3)。			
U 111 XI.	名称	值	描述	可用的功能
	ENUM_0	0	□最小的。	17/11/11/20/182
	ENUM_1	1	□ 小。	
	ENUM 2	2	□大。	
	ENUM 3	3		
E CLOSE SI	HUNT SWITCH	3	□ 取入印。	
	· 关闭旁路开关。			
□ 格式:				
_ 14-71	名称	值	描述	可用的功能
	ENUM_0	0	□ 开放式LNA输入旁路开关。	
	ENUM 1	1	□ 关闭打开LNA输入旁路开关。	
□ PGA_GAIN	[2:0]			1
□ 说明:	设置PGA增益。			
□ 格式:	枚举			
	名称	值	描述	可用的功能
	ENUM_0	0	□ 6分贝。	
	ENUM_1	1	□ 9分贝。	
	ENUM_2	2	□ 12分贝。	
	ENUM_3	3	□ 6分贝。	
	ENUM_4	4	□ 6分贝。	
	ENUM_5	5	□ 6分贝。	
	ENUM_6	6	□ 0分贝。	
	ENUM_7	7	□ 3分贝。	
⊟RX_CHAIN_S	ETTING2	<u>u</u>		
☐ ADC_HIGH	I_GAIN≜			
	设置ADC的高增益。			
□ 格式:		,,,		l - e · · · ·
	名称	值	描述	可用的功能
	ENUM_0	0	□ 设置为标称增益。	
	ENUM_1	1	□ 设置为高增益。	

П			
	C.	T	3
	E) (C.

TS [7:0]▲
□ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。

□ 类型: U8

TX_COMMANDS

START_TX

- 数量: 0X31
- 摘要:切换到TX状态,并启动一个数据包的传输。
- 目的:
 - 。 这个命令将改变芯片到TX状态,并开始数据包的发送。根据不同的参数START的值时,传输的开始可以被延迟,直到一定的条件得到满足。
 - 。 几个可选参数可以通过使用此命令。如果这些参数值不会被发送,其先前设定的值仍然在使用中。该参数值在休眠模式下被保留一段时间,因此只需要写入时,他们改变。
 - 该芯片可以被配置为将所述数据包的传输之后自动进入所期望的操作状态。
 - 。 该芯片将不会返回CTS高,直到该芯片已进入TX状态。
- stream参数:

START_TX stream参数											
指数	名称	7	6	5	4	3	2	1	0		
0x00	CMD	0X31									
0X01	通道	通道									
0X02	条件	TXC	OMPLE	ETE_ST	ATE	0	重发	开	始		
0X03	TX LEN	0 0 0 TX_LEN [12:8]									
0x04	IX_LLIN	TX_LEN [7:0]									

回复流:

START_TX回复流										
指数 名称 7 6 5 4 3 2 1 0									0	
0x00	CTS	CTS								

论据场

三通道

☐ CHANNEL [7:0]▲

说明	:

- □ 选择要在其上传输的频道号码。请参阅FREQ_CONTROL_CHANNEL_STEP_SIZE了解有关信道的方法来芯片的频率调谐的更多细节。
- □ 如果信道参数字节不通过使用命令,芯片将调谐到在任何一个START_TX或START_RX命令中指定的最后一个通道;保留了通道值的内部变量是由这两个命令共享。
- □ 类型: U8
- □ 闵: 0X0
- □ 马克斯: 0xff的
- □ 默认: 0x0

□条件

☐ TXCOMPLETE_STATE [3:0] ▲

□ 说明:

- □ 该参数选择的芯片的所希望的操作状态的数据包发送结束时自动进入。
- □ 如果这个参数没有通过使用命令,芯片将继续使用以前配置的价值。如果没有值先前已配置(即,在POWER_UP),3=就绪状态的默认值。

□ 格式: 枚举

仅午			
名称	值	描述	可用的功能
NOCHANGE	0	□ 不要从先前发送 TXCOMPLETE_STATE改 变。(无变化不必留在TX模式 的效果。)	
睡眠	1	■ 睡眠或待机状态,根据 operotion所选择的32K RC振 荡器模式 GLOBAL_CLK_CFG: CLK_32K_SEL。	
SPI_ACTIVE	2	□ SPIACTIVE状态。	
就绪	3	□ 就绪状态。	
READY2	4	□ 另一个枚举就绪状态。	
TX_TUNE	5	□ TX_TUNE状态。	
RX_TUNE	6	■ RX_TUNE状态。	
版权所有	7	□ 保留,不要使用。	
RX	8	□ RX状态。	

□ 重发▲

□ 说明:

□ 选择当前数据包是否将只是前一个数据包的重发,或是否在当前数据包会从TX FIFO发送新的数据。

	名称	值	描述	可用的功能	
ENUN	1_0	0	□ 发送已经写入到TX FIFO的数据。如果TX FIFO为空,将出现一个FIFO下溢中断。		
ENUN	1_1	1	□ 再次发送最后一个数据包。		
TART [1:0]▲ □ 说明:选择: □ 格式: <u>枚举</u>	条件赖以传输将开始。				
	名称	值	描述	可用的功能	
即		0	□ 立即开始TX。		
WUT		1	□ 德克萨斯州开始的唤醒定时器 到期时。		
更新		3	□ 更新TX参数(要使用的后续数据包),但不进入TX模式。		
□ 如果山 编码等 □ 如果山 在这种 (例如) 只PKT_FIELD_1_X的。有: 字段为0,数据字节数被发送。 情况下字节(如每五个数据字1,数据美白在一个领域,但不定发位被设置TX_LEN参数仍然	数据字节 效载荷长。 到由PKT_ 段可以为 是另一个	TX_LEN数字传输,使用数据字段的度被限制为在此情况下8191个字节。 度被限制为在此情况下8191个字节。 FIELD_X_LENGTH属性的值(S)指 8191字节的长度进行配置)。这种值 ,曼彻斯特编码在一个领域,但不是	旨定的。有效载 效法是必要的,	荷长度被限制在5×8191 = 如果现场具体的处理是理想

WRITE_TX_FIFO

□ CTS [7:0]

■ 类型: U8

回复场 ⊟cts

- 数量: 0x66
- 摘要: 将数据写入字节(s)到TX FIFO。
- 目的:
 - 。 该芯片提供了两个独立的64字节的FIFO存储器,用于存储发送和接收数据的目的。(当GLOBAL_CONFIG: FIFO_MODE。位被设置,这 两个FIFO被组合成一个单一的129个字节的共享FIFO)
 - 。 此命令是用来写数据字节(s)进入TX FIFO。该WRITE_TX_FIFO命令应在时钟上的SDI(其次是数据字节(s)写入)无需拉高NSEL。如 果你写的比TX FIFO更多的数据字节可以拿着它会产生一个FIFO溢出中断事件。
 - 。 此命令不会导致CTS变低,并且可以被发送,而CTS是低的。这个命令没有响应,读取,从而无需发送此命令后,监察旅。

□ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。

• stream参数:

		WRITE	_TX	_FIFC) stre	am参	数					
	指数	名称	7	6	5	4	3	2	1	0		
	0x00	CMD		0x66								
	0X01	数据[0]				数	[据					
+		***										
	M	数据[N]			•	数	[据					

论据场

□DATA [0, ..., N] (不定长数组流)

□ DATA [7:0] ▲

□ 说明:数据写入到TX FIFO

■ 类型: U8

RX COMMANDS

PACKET_INFO

- 数量: 0X16
- 简介: 返回接收到的最后一个数据包有关的变量字段的长度信息,以及(可选)覆盖字段的长度。
- 目的:
 - 。 该芯片提供的功能,接收的数据包中的有效载荷字段(S)的一个变长,与接收到的字节(s)嵌入一个事先固定长度的字段中指定其长度。 这个命令可以被用来检索长度字节(s)的值(即,返回的可变长度字段的长度)。请参阅文字描述的PKT_LEN和 PKT_LEN_FIELD_SOURCE了解有关接收一个可变长度的数据包的更多细节。
 - o 该命令返回的值只描述可变长度字段的长度由指向PKT_LEN: DST_FIELD参数。这个值可能不一样的有效载荷的总长度,因为有效载荷可 以包含除了可变长度字段几个固定长度的字段。如果没有先前的可变长度数据包被接收,则返回值将为0。

- 。 长度[15:0]响应值被清除后,进入接收模式;因此,PACKET_INFO命令应该接收到一个有效的数据包后,发送和之前重新进入RX模式,否 则响应值永远是零。
- 。 这个命令可能有五个可选参数发出。如果这些参数遵循,它们的值被用来覆盖,最初是通过发出配置数据包长度值START_RX与非零 RX_LEN value命令,或通过编程PKT_RX_FIELD_X_LENGTH属性。
- 这个功能被提供,以支持在应用中的长度值,不能由芯片本身(由于特殊的编码,例如,3-,6编码)萃取可变长度数据包的功能。在这种 应用中,所有的数据字段定义为固定长度字段; 主机MCU中的第一个字段解码接收到的字节长度(S),随后发出PACKET_INFO接收接收 数据包的过程中命令来修改后续字段的"固定"的长度。请联系Silicon Labs公司支持这个功能的帮助。
- 。 在802.15.4g接收模式下,FCS字节长度镶嵌在FHR被包括通知FCS字节数的主机在FIFO下在MAC有效载荷。如果FCS是0,2被添加到返回 的长度; 如果FCS是1, 4被添加到返回的长度。
- stream参数:

	PACKET	_INI	FO s	stre	am参	数				
指数	名称	7	6	5	4	3	2	1	0	
0x00	CMD	0X16								
0X01	FIELD_NUMBER	0 0 0 FIELD_NUM								
0X02	LEN	LEN [15:8]								
0X03	LEIN	LEN [7:0]								
0x04	LEN DIFF	LEN_DIFF [15:8]								
0X05	LLIN_DII I	LEN_DIFF [7:0]								

回复流:

	P#	CKE	T_IN	FO⊡	复流						
指数	名称	7	6	5	4	3	2	1	0		
0x00	CTS	CTS									
0X01	长度	LENGTH [15:8]									
0X02	区区				长月	£[7:0]					

论据场

☐FIELD NUMBER

- ☐ FIELD_NUM [4:0]▲
 - □ 说明:选择数据字段的长度每LEN [15:0]和LEN_DIFF [15:0]参数将被修改。
 - □ 格式: 枚举

:_			
名称	值	描述	可用的功能
ENUM_0	0	□ 不要覆盖任何数据字段的长度。	
ENUM_1	1	□ 覆盖PKT_FIELD_1_LENGTH 的设定值,或RX_LEN在 START_RX命令的值。	
ENUM_2	2	■ 覆盖PKT_FIELD_2_LENGTH 的设定值。	
ENUM_3	4	■ 覆盖PKT_FIELD_3_LENGTH 的设定值。	
ENUM_4	8	■ 覆盖PKT_FIELD_4_LENGTH 的设定值。	
ENUM_5	16	□ 覆盖PKT_FIELD_5_LENGTH 的设定值。	

Ε

	ENUM_5	16	的设定值。	
类型:类型:公马克!□ 马默□ LEN_DIFF□ LEN_Ü□ 型□ 図:-	选择数据字段由FIELD_NUM参数指U16 IX1 所: 0x1FFF的 : 0x0 [15:0] 指定新的长度值(LEN指定[15:0])和或在START_RX通过: RX_LEN参数这是一个有符号的16位值,用正值表通过LEN_DIFF参数作为的一部分PA行了计算比较)。 S16 为0x8000 所: 是0x7fff]原来的七)。 示增加字	度(以字节为单位)。 长度值之间的差额(以字节为单位) 安段长度和负值指示字段长度的减少。	
回复场 三CTS				

- ☐ CTS [7:0]▲ □ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。
- □ 类型: U8

日长度

- ☐ LENGTH [15:0] ▲
 - □ 说明: 返回可变长度字段值,从最后一个接收可变长度的数据包中提取
 - □ 类型: U16

GET_MODEM_STATUS

- 数量: 0X22
- 摘要: 返回调制解调器中断组(包括状态和暂挂)的中断状态。任选地,它可以被用来清除锁存(待定)中断事件。
- 目的:
 - 。 返回Modem的当前的中断状态中断事件(包括状态和暂挂)以及可选清除挂起的中断。
 - 。请参阅GET_INT_STATUS命令有关状态和暂挂中断之间的差异的更多细节。
 - 。 发送GET_MODEM_STATUS命令没有输入参数的结果清除所有挂起的中断。
 - 。 当挂起的中断被清除时,得到的答复反映流清场前的状态。
- stream参数:

				GET_MODEM_ST	ATUS stream参数
指数	名称	7 6	5	4	3
0x00	CMD				0X22
0X01	MODEM_CLR_PEND	0 POSTAMBLE_DETECT_PEND_CLR	INVALID_SYNC_PEND_CLR	RSSI_JUMP_PEND_CLI	RSSI_PEND_CLR

回复流:

					GET_MODEM_STA	TUS回复流						
指数	名称	7	6	5	4	3	2					
0x00	CTS			CTS								
0X01	MODEM_PEND	Χ	POSTAMBLE_DETECT_PEND	INVALID_SYNC_PEND	RSSI_JUMP_PEND	RSSI_PEND	INVALID_PREAMBLE_					
0X02	MODEM_STATUS	Χ	POSTAMBLE_DETECT	INVALID_SYNC	RSSI_JUMP	RSSI	INVALID_PREAMB					
0X03	CURR_RSSI		CURR_RSSI									
0x04	LATCH_RSSI					LATCH_R	RSSI					
0X05	ANT1_RSSI					ANT1_R	SSI					
0X06	ANT2_RSSI					ANT2_R	SSI					
0X07	AFC_FREQ_OFFSET				AFC	_FREQ_OFF	SET [15:8]					
80X0	AI O_I NEQ_OI I SEI			AFC_FREQ_OFFSET [7:0]								

论据场

-	MO	DEI	vi i	CI	R	PFI	ND

- POSTAMBLE_DETECT_PEND_CLR
 说明: 如果清除,清除任何未决POSTAMBLE_DETECT中断。如果设置,离开中断挂起。
 类型: BOOL
 INVALID_SYNC_PEND_CLR
 说明: 如果清除,清除任何未决INVALID_SYNC中断。如果设置,离开中断挂起。
 类型: BOOL
 RSSI_JUMP_PEND_CLR
 说明: 如果清除,清除任何未决RSSI_JUMP中断。如果设置,离开中断挂起。
- ☐ RSSI_PEND_CLR
 - □ 说明:如果清除,清除任何未决的RSSI中断。如果设置,离开中断挂起。
 - □ 类型: BOOL
- ☐ INVALID_PREAMBLE_PEND_CLR.
 - □ 说明:如果清除,清除任何未决INVALID_PREAMBLE中断。如果设置,离开中断挂起。
 - □ 类型: BOOL
- PREAMBLE_DETECT_PEND_CLR▲
 - □ 说明:如果清除,清除任何未决PREAMBLE_DETECT中断。如果设置,离开中断挂起。
 - □ 类型: BOOL
- ☐ SYNC_DETECT_PEND_CLR
 - □ 说明:如果清除,清除任何未决SYNC_DETECT中断。如果设置,离开中断挂起。
- □ 类型: BOOL

回复场

⊟cts

- □ CTS [7:0]
 - □ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。
 - □ 类型: U8

□MODEM_PEND

- POSTAMBLE_DETECT_PEND
 - □ 说明:如果设置,POSTAMBLE_DETECT状态位的上升沿被检测到,因此一个POSTAMBLE_DETECT中断挂起。请参阅相关的POSTAMBLE_DETECT状态位更多的细节。
 - □ 类型: BOOL
- ☐ INVALID SYNC PEND▲
 - □ 说明:如果设置,INVALID_SYNC状态位的上升沿被检测到,因此一个INVALID_SYNC中断挂起。请参阅相关的INVALID_SYNC状态位更多的细节。
 - □ 类型: BOOL
- RSSI_JUMP_PEND▲
 - □说明:如果设置,RSSI_JUMP状态位的上升沿被检测到,因此一个RSSI_JUMP中断挂起。请参阅相关的RSSI_JUMP状态位更多的细节。
 - □ 类型: BOOL
- RSSI_PEND▲
 - □说明:如果设置,RSS\状态位的上升沿被检测到,因此一个RSSI中断挂起。请参阅相关的RSS\状态位更多的细节。
 - □ 类型: BOOL
- ☐ INVALID_PREAMBLE_PEND ☐
 - □ 说明:如果设置,INVALID_PREAMBLE状态位的上升沿被检测到,因此一个INVALID_PREAMBLE中断挂起。请参阅相关的

INVALID_PREAMBLE状态位更多的细节。 □ 类型: BOOL
□ PREAMBLE_DETECT_PEND▲
□ 说明:如果设置,PREAMBLE_DETECT状态位的上升沿被检测到,因此一个PREAMBLE_DETECT中断挂起。请参阅相关的
PREAMBLE_DETECT状态位更多的细节。
□ 类型: BOOL
□ SYNC_DETECT_PEND▲
□ 说明:如果设置,SYNC_DETECT状态位的上升沿被检测到,因此一个SYNC_DETECT中断挂起。请参阅相关的SYNC_DETECT状态
位更多的细节。
□ 类型:BOOL
□MODEM_STATUS
□ POSTAMBLE_DETECTA
□ 说明:如果1-4个字节接收到的数据相匹配的POSTAMBLE_PATTERN_XX属性中定义的位模式设置。后同步码的检测,也必须在启
用 <i>PREAMBLE_POSTAMBLE_CONFIG</i> 属性。清除在进入RX,或者如果RX重新启动。
□ 类型:BOOL
□ INVALID_SYNCA
□ 说明,该脉冲时有效同步字(匹配的SYNC_BITS_XX属性中定义的比特模式)没有允许的搜索超时周期内检测到的高自清信号。如果
配置为接收标准序言,搜索超时时间是同步字长度+4位。如果配置成接收一个非标准前导码时,搜索超时周期是由定
_ 义 <i>PREAMBLE_TX_LENGTH</i> 属性。
□ 类型. BOOL
□ RSSI_JUMP.
□ 说明:脉冲高时电流RSSI值跳跃超过在所定义的阈值自清信号MODEM_RSSI_JUMP_THRESH财产。
□ 类型: BOOL
RSSA
□ 说明:如果当前的RSSI值已经超出了定义的阈值 <i>MODEM_RSSI_THRESH</i> 财产。在进入接收状态,或者如果RX清零重新开始。
□ 类型: BOOL
□ INVALID_PREAMBLE▲ □ NVALID_PREAMBLE▲ □ Number = 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10
□ 说明: 脉冲高,表明已发生以下任一自清信号: 1) 没有允许的搜索超时周期内检测到有效的序言,或b) 锁存RSSI值低于
<i>MODEM_RSSI_THRESH</i> 值,芯片已启用要检查此条件。对于前导码的搜索超时时间被配置在 <i>PREAMBLE_CONFIG_STD_2</i> ,而CHECK_THRESH_AT_LATCH功能被配置在 <i>MODEM_RSSI_CONTROL</i> 。
□ 类型: BOOL
□ PREAMBLE DETECTA
□ 说明: 当收到匹配的预期序言模式位模式。如果配置为接收标准序言,位的预期模式是" 010101"在定义的阈值长度
PREAMBLE_CONFIG_STD_1。如果配置成接收一个非标准前导码,比特的预期模式是由PREAMBLE_PATTERN_XX和定
义 <i>PREAMBLE_CONFIG_NSTD</i> 属性。当SYNC被检测到,在进入RX状态,或RX是启动时被清除。
□ 类型: BOOL
□ SYNC DETECTA
□ 说明:设置当接收到同步字模式匹配的SYNC_BITS_XX属性中定义的比特模式。收到一个数据包时清零(有效或无效),在进入RX状
态,或者如果RX重新启动。
□ 类型: BOOL
□curr_rssi
□ CURR_RSSI[7:0]
□ 描述:目前的RSSI从调制解调器读取。
类型: U8
□LATCH_RSSI
□ LATCH_RSSI[7:0].
□ 说明:锁定的RSSI从调制解调器读取所配置MODEM_RSSI_CONTROL。在进入RX模式或RX重新启动重置为0。
类型: U8
LANT1_RSSI
□ ANT1_RSSI[7:0]
□ 说明:ANT1的天线分集算法的评估过程中的RSSI。在序言评价RSSI值被锁存,仅可用于检测同步字后读。
类型: U8
EANT2_RSSI
□ ANT2_RSSI[7:0]▲
□ 说明:ANT2的天线分集算法的评估过程中的RSSI。在序言评价RSSI值被锁存,仅可用于检测同步字后读。
□ 类型: U8
EAFC_FREQ_OFFSET
□ AFC_FREQ_OFFSET [15:0]▲
□ 说明:这是由PLL AFC反馈回路产生的AFC值在接收模式。
□ 类型: U16

START_RX

- 数量: 0X32
- 摘要:切换到RX状态,并开始数据包的接收。
- 目的:

 - 。 这个命令将改变芯片RX状态,并开始数据包的接收。根据不同的参数START的值时,接收的开始可以被延迟,直到一定的条件得到满足。 。 几个可选参数可以通过使用此命令。如果这些参数值不会被发送,其先前设定的值仍然在使用中。该参数值在休眠模式下被保留一段时间, 因此只需要写入时, 他们改变。
 - 。 该芯片可以被配置为接收该分组后,自动进入不同的运行状态,根据该数据包的接收成功或失败。 该芯片将不会返回CTS高,直到该芯片已进入RX状态。
- stream参数:

	START_RX stream参数										
指数	名称	7	6	5	4	3	2	1	0		
0x00	CMD		0X32								
0X01	通道		通道								
0X02	条件	0	0	0	0	0	0	0	开始		
0X03	RX_LEN	0	0 0 0 RX_LEN [12:8]								

	0x04			RX_LEN [7:0]						
	0X05	NEXT_STATE1	0	0	0	0	RXTIMEOUT_STATE			
	0X06	NEXT_STATE2	0	0	0	0	RXVALID_STATE			
	0X07	NEXT_STATE3	0	0	0	0	RXINVALID_STATE			

回复流:

Ī	START_RX回复流										
Ī		指数	名称	7	6	5	4	3	2	1	0
Ī		0x00	CTS	CTS							

三通道

☐ CHANNEL [7:0] △

	>>4	HH	
_	说	ᆸᇊ	

- □ 选择要在其上接收的频道号码。请参阅FREQ_CONTROL_CHANNEL_STEP_SIZE了解有关信道的方法来芯片的频率调谐的更多细节。
- □ 如果信道参数字节不通过使用命令,芯片将调谐到在任何一个指定的最后一个通道START_TX或START_RX命令;保留了通道值的内部变量是由这两个命令共享。
- 类型: U8
- □ 闵: 0X0
- □ 马克斯: Oxff的
- □ 默认: 0x0

□条件

- □ 开始▲
 - □ 说明: 选择条件赖以接收将启动。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 立即开始接收。	
ENUM_1	1	□ 开始时,RX唤醒定时器超 时。	

□RX_LEN

- □ RX LEN [12:0] ▲
 - ☲ 说明:
 - □ 指定要接收的数据包的数据字段(次)的字节数。
 - □ 如果此字段为非零值,数据包将被用的数据字节RX_LEN数量众多,使用数据字段的配置选项(如CRC校验,数据美白,曼彻斯特编码等)只PKT_FIELD_1_X的。有效载荷长度被限制为在此情况下8191个字节。
 - □ 如果这个字段是零,是由PKT_FIELD_X_LENGTH物业的价值(S)指定的数据字节要接收的数量。有效载荷长度被限制在 5×8191 = 40955在这种情况下字节(如每五个数据字段可以为8191字节的长度进行配置)。这种做法是必要的,如果现场具体的处理是理想的(例如,数据美白在一个领域,但不是另一个,曼彻斯特编码在一个领域,但不是另一个,等等)。
 - □ 类型: U16
 - 闵: 0X0
 - □ 马克斯: 0x1FFF的
 - □ 默认: 0x0

□NEXT STATE1

- ☐ RXTIMEOUT_STATE [3:0] ▲
 - □ 说明:
 - □ 此参数选择的芯片所需的工作状态,以在前导检测的超时自动进入。请参阅*PREAMBLE_CONFIG_STD_2*了解有关序言检测超时的配置细节。
 - □ 如果这个参数没有通过使用命令,芯片将继续使用以前配置的价值。如果没有值先前已配置(即,在POWER_UP),0=默认值RX状态保持使用。
 - □ 格式: 枚举

名称	值	描述	可用的功能
NOCHANGE	0	■ 如果RXTIMEOUT发生在RX状态依然存在。	
睡眠	1	□ 根据32K RC振荡器所选择的 操作模式休眠或待机状态, GLOBAL_CLK_CFG: CLK_32K_SEL。	
SPI_ACTIVE	2	□ SPIACTIVE状态。	
就绪	3	□ 就绪状态。	
READY2	4	□ 另一个枚举就绪状态。	
TX_TUNE	5	■ TX_TUNE状态。	
RX_TUNE	6	■ RX_TUNE状态。	
TX	7	□ TX状态。	
RX	8	□ RX状态(简要退出并重新进 入RX状态重新武装的收购另 一包)。	

□NEXT_STATE2

- ☐ RXVALID_STATE [3:0]▲
 - □ 说明:
 - □ 该参数选择的芯片的所希望的运行状态,以在接收到一个有效数据包的自动输入。一个数据包被认为是有效的,如果CRC校验通过,而如果匹配字节检查验证(如果已启用)。如果没有CRC也不匹配功能启用时,一个数据包被认为是有效的接收指定的字节数时。
 - □ 如果这个参数没有通过使用命令,芯片将继续使用以前配置的价值。如果没有值先前已配置(即,在POWER_UP),3=就绪状态的默认值。
 - □ 格式: 枚举

名称	值	描述	可用的功能
REMAIN	0	□ 保持在RX状态(但不要重新 武装获取一个数据包)。	
睡眠	1	■ 睡眠或待机状态,根据 operotion所选择的32K RC振 荡器模式 GLOBAL_CLK_CFG: CLK_32K_SEL。	
SPI_ACTIVE	2	□ SPIACTIVE状态。	
就绪	3	□ 就绪状态。	
READY2	4	□ 另一个枚举就绪状态。	
TX_TUNE	5	■ TX_TUNE状态。	
RX_TUNE	6	■ RX_TUNE状态。	
TX	7	□ TX状态。	
RX	8	□ RX状态(简要退出并重新进 入RX状态重新武装的收购另 一包)。	

□NEXT_STATE3

- RXINVALID_STATE [3:0]▲
 - □ 说明:
 - □ 该参数选择的芯片的所希望的运行状态,以在接收到一个无效的分组的自动输入。如果CRC校验失败,或如果匹配字节校验失败(如果已启用)的数据包被视为无效。
 - □ 如果这个参数没有通过使用命令,芯片将继续使用以前配置的价值。如果没有值先前已配置(即,在POWER_UP),3=就绪状态的默认值。
 - □ 格式: 枚举

似 宇			
名称	值	描述	可用的功能
REMAIN	0	□ 保持在RX状态(但不要重新 武装获取一个数据包)。	
睡眠	1	■ 睡眠或待机状态,根据 operotion所选择的32K RC振 荡器模式 GLOBAL_CLK_CFG: CLK_32K_SEL。	
SPI_ACTIVE	2	□ SPIACTIVE状态。	
就绪	3	□就绪状态。	
READY2	4	□ 另一个枚举就绪状态。	
TX_TUNE	5	□ TX_TUNE状态。	
RX_TUNE	6	□ RX_TUNE状态。	
TX	7	□ TX状态。	
RX	8	□ RX状态(简要退出并重新进入RX状态重新武装的收购另一包)。	

回复场

⊟стѕ

- ☐ CTS [7:0]▲
 - □ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。
 - □ 类型: U8

RX_HOP

- 数量: 0x36
- 摘要: 手动跳跃到一个新的频率,而在RX模式。
- 目的:
 - 。 该芯片提供了自动频率从一个接收信道跳频到另一个当满足一定的条件。然而,用户可能希望保留的主机MCU内(例如,在未通过内置的自动跳频功能支持的条件跳频时)RX跳跃控制。
 - 。 此命令为"手动"跳频; 也就是说,在快速通过主机MCU的要求调整到一个新的RX频率(相当满足一定的条件接收,自动跳频)。
 - 。 通过直接传递频率调谐参数(INTE,压裂和VCO_CNT)与命令,避免某些内部的计算步骤和跳的调谐速度提高(相对于简单地重新发出 START_RX命令与新希望的频道号码)。这些参数输入的值应说明所要的RX信道中心频率(即,不移位的RX LO频率)。
 - 。 任意的频率(在同一频带内)可以用这个命令来调整; 有对于频率不要求落在给定的信道间隔的增量。然而,相同的输出分频器设置(如设置MODEM_CLKGEN_BAND属性)用于所有的频率,并因此调谐频率可能无法跨越输出分频器带断裂跨越。
 - o 这个命令通常发出的同时已经在RX模式,并会导致芯片跳跃到由参数所指定的频率,并开始寻找一个序言。
 - 。该VCO_CNT参数是必需的,以支持该VCO校准在每个调谐频率。这通常是在内部计算出的芯片的参数; 然而,内部计算需要的时间,从而 跳速度可通过预先计算并从主机MCU通过该参数进行改进。请联系Silicon Labs的支持与VCO_CNT值计算的援助。
- stream参数:

RX_HOP stream参数									
指数	名称	7	6	5	4	3	2	1	0
0x00	CMD		0x36						
0X01	INTE		INTE						
0X02		0 0 0 0 FRAC [19:16]							
0X03	FRAC					FRAC	[15:8]		
0x04						FRAC	[7:0]		
0X05	VCO_CNT	VCO_CNT [15:8]							
0X06		VCO_CNT [7:0]							

■ 回复流:		
R	X_HOP回复流	
指数名称	7 6 5 4 3 2 1 0	
0x00 CTS	CTS	
	为分数N PLL合成器的总的分频数的整数部 明 <i>FREQ_CONTROL_INTE</i> 了解有关频率让	
□ 类型: U8□ 闵: 0X0□ 最大: 到0x7f□ 默认: 0x0 □FRAC		
□ FRAC [19:0]		
	为分数N PLL合成器的总的分频数的小数部明 <i>FREQ_CONTROL_INTE</i> 了解有关频率让	
□VCO_CNT □ VCO_CNT [15:0]▲	hVCO校准算法所需的目标计数。	
回复场 □CTS □ CTS [7:0] △ □ 说明:清除发送。表 □ 类型: U8	長明前一个命令执行完成和响应字节流(如皇	果有的话)是有效的。接下来的命令可被发送。

READ_RX_FIFO

- 数量: 0x77
- 摘要: 从*RX FIFO*中读取数据字节(s)。
- 目的:
 - 。 该芯片提供了两个独立的64字节的FIFO存储器,用于存储发送和接收数据的目的。(当*GLOBAL_CONFIG: FIFO_MODE*。位被设置,这两个FIFO被组合成一个单一的129个字节的共享FIFO)
 - 此命令用于从RX FIFO读出的数据字节(s)。该READ_RX_FIFO命令应在时钟SDI和答复应时钟上SDO无需拉高NSEL。如果你读多个数据字节比RX FIFO包含它会产生一个FIFO下溢中断事件。
 - 。 此命令不会导致CTS变低,并且可以被发送,而CTS是低的。这个命令没有响应,读取,从而无需发送此命令后,监察旅。
- stream参数:

READ_RX_FIFO stream参数									
指数 名称 7 6 5 4 3 2 1 0									
0x00	CMD	0x77							

回复流:

	READ_RX_FIFO回复流										
	指数 名称 7 6 5 4 3 2 1 0										
	0x00	数据[0]	数据								
+		•••									
	М	数据[N]	数据								

论据场

回复场

□DATA [0, ..., N] (不定长数组流)

- ☐ DATA [7:0]♠
 - □ 说明:从RX FIFO读取数据
 - □ 类型: U8

ADVANCED_COMMANDS

- 数量: 0X14
- 摘要: 执行使用辅助ADC转换,并返回这些转换的结果。
- 目的:
 - 。 该芯片用于测量各种模拟参数,并以数字形式返回它们的值的目的提供了一个辅助模拟至数字转换器(ADC)。该ADC采用逐次逼近寄存器(SAR)架构,实现11位分辨率,带位的9位有效位数(ENOB)。
 - 。 该ADC可以被配置为测量内部电池的电压,一个内部温度传感器,或施加到选定的GPIO引脚的外部电压。多于一种类型的测量可以在同一 时间被启动; 该转换结果将被顺序执行, 所有转换后的值返回。
 - 。 ADC能够1.8VDC至3.6VDC芯片的工作电源电压范围内将任何电池的电压。
- stream参数:

	GET_ADC_READING stream参数											
指数	名称	名称 7 6 5 4 3 2 1 0										
0x00	CMD	MD 0X14										
0X01	ADC_EN	0	0	0 TEMPERATURE_EN	BATTERY_VOLTAGE_EN ADC_GPIO_EN ADC_GPIO_PI							
0X02	2 ADC_CFG UDTIME GPIO_ATT											

• 回复流:

GET_ADC_READING回复流									
指数	名称	称 76543 2 1 0						0	
0x00	CTS		CTS						
0X01	- GPIO_ADC	Χ	X X X X X GPIO_ADC [10:8]						10:8]
0X02		GPIO_ADC [7:0]							
0X03	BATTERY ADC	Χ	Χ	Χ	Χ	Χ	BATTI	ERY_ADC	[10:8]
0x04	BATTERT_ADC		BATTERY_ADC [7:0]						
0X05	TEMP ADC	Χ	Χ	Χ	Χ	Χ	TEN	IP_ADC [10:8]
0X06	TEMP_ADO	TEMP_ADC [7:0]							

论据场

□ADC_EN

☐ TEMPERATURE_EN▲

□ 格式: 枚举

(人)字			
名称	值	描述	可用的功能
ENUM_0	0	□ 不执行温度ADC转换。在 TEMP_ADC回复值将始终是 量0x000。	
ENUM_1	1	 □ 执行温度的ADC转换。在 TEMP_ADC回复值将是温度 (摄氏度) = (四千零九十六 分之八百九十九) * TEMP_ADC - 293。 	

BATTERY VOLTAGE EN

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 不执行电池电压的ADC转换。 在BATTERY_ADC回复值将始 终是量0x000。	
ENUM_1	1	□ 进行电池电压的ADC转换。在 BATTERY_ADC应答值将是 VBAT (V) = 3 * BATTERY ADC/1280。	

■ ADC_GPIO_EN▲

□ 格式: 枚举

-K-T			
名称	值	描述	可用的功能
ENUM_0	0	□ 不要执行应用到选定的GPIO 引脚的电压ADC转换。在 GPIO_ADC回复值将始终是量 0x000。	
ENUM_1	1	□ 执行施加到所选择的GPIO引脚上的电压的ADC转换。在GPIO_ADC应答值将是VGPIO(V) = GPIO_ADC/GPIO_ADC_DIV, 其中GPIO_ADC_DIV是由GPIO_ATT参数的选择定义的衰减因子。	

☐ ADC_GPIO_PIN [1:0]▲

- □选择GPIO引脚上执行转换外部施加的电压。
- □ 所选GPIO引脚也必须配置为输入引脚或三态引脚(通过使用GPIO_PIN_CFG命令)。

□ 格式: 枚举

:_ 似乎			
名称	值	描述	可用的功能
ENUM_0	0	□ GPIO0上的电压会由ADC转换。	
		☐ GPIO1上的电压会由ADC转	

ENUM_1	1	换。		
ENUM_2	2	□ GPIO2上的电压会由ADC转 换。		
ENUM_3	3	□ GPIO3上的电压会由ADC转换。		
:01📤				
选择的ADC转换速率。其中A	DC RATE = SY	/S CLK / 12/2 ^(UDTIME +1)。选	择较短的转换时	间 (即更快的转换索) 今月
低的ADC分辨率和较长的转换	英时间将导致更高	哥的ADC分辨率。		内 (研发展的)(放中/ 公司
		UDTIME =是0xA) ADC转换率建议。 ADC_CFG = 0x00,则UDTIME参数		= 305赫兹的ADC辖地迪索
			小的医压力 000	
称 SYS_CLK = 30兆赫)的默		, 100_01 0 0,000, X, 00 1 IIVIE 9 X		一 5050/// 公子[八日〇十八]大还平
称SYS_CLK = 30兆赫)的默U8		7.150_01 G		- 000mm 25 l j ハロ ロイマ j 大) (本) 牛
称SYS_CLK = 30兆赫)的默 U8 [3:0]▲		7.150_01 G		- 000mm 弦 ロハレ 0 47 1大)を 牛
称 SYS_CLK = 30 兆赫)的默 U8 [3:0] 选择衰减因子被内部施加到电	认值。 J压上的 GPIO 引服	却,转换之前由 ADC 。这有效地延长	了电压可转化的	范围内。
称\$Y\$_CLK = 30兆赫)的默 U8 [3:0]▲ 选择衰减因子被内部施加到电 如果ADC_CFG参数字节不发	认值。 J压上的 GPIO 引服		了电压可转化的	范围内。
称SYS_CLK = 30兆赫)的默 U8 [3:0] 选择衰减因子被内部施加到电 如果ADC_CFG参数字节不发	认值。 J压上的 GPIO 引服	却,转换之前由 ADC 。这有效地延长	了电压可转化的	范围内。
称\$Y\$_CLK = 30兆赫)的默 U8 [3:0]▲ 选择衰减因子被内部施加到电 如果ADC_CFG参数字节不发 枚举	认值。 L压上的 GPIO 引 送,或设置ADC	[—] 却,转换之前由ADC。这有效地延长 C_CFG = 0x00,则GPIO_ATT参数将	了电压可转化的 承担为 0x5 = 0 的	范围内。
称\$Y\$_CLK = 30兆赫)的默U8 [3:0]▲ 选择衰减因子被内部施加到电 如果ADC_CFG参数字节不发 枚举	认值。 L压上的GPIO引 送,或设置ADC 值	即,转换之前由ADC。这有效地延长 C_CFG = 0x00,则GPIO_ATT参数将 描述 □ ADC的测量范围为0~0.8 V。 GPIO_ADC_DIV = 2560。 □ ADC的测量范围为0~1.6 V。	了电压可转化的 承担为 0x5 = 0 的	范围内。
称SYS_CLK = 30兆赫)的默U8 [3:0] 选择衰减因子被内部施加到电如果ADC_CFG参数字节不发 枚举 24称 0P8	认值。 是压上的GPIO引展送,或设置ADC 值 0	脚,转换之前由ADC。这有效地延长 C_CFG = 0x00,则GPIO_ATT参数将 描述 □ ADC的测量范围为0~0.8 V。 GPIO_ADC_DIV = 2560。 □ ADC的测量范围为0~1.6 V。 GPIO_ADC_DIV = 1280。	了电压可转化的 承担为 0x5 = 0 的	范围内。
称\$Y\$_CLK = 30兆赫)的默U8 [3:0]▲ 选择衰减因子被内部施加到电如果ADC_CFG参数字节不发枚举 名称 0P8	认值。 B压上的GPIO引引送,或设置ADC 值 0	即,转换之前由ADC。这有效地延长 C_CFG = 0x00,则GPIO_ATT参数将 描述 □ ADC的测量范围为0~0.8 V。 GPIO_ADC_DIV = 2560。 □ ADC的测量范围为0~1.6 V。	了电压可转化的 承担为 0x5 = 0 的	范围内。
称SYS_CLK = 30兆赫)的默 U8 3:0]▲ 选择衰减因子被内部施加到电 如果ADC_CFG参数字节不发 枚举 名称 0P8 1P6 3P2	认值。 是压上的GPIO引度 送,或设置ADC 值 0 4	期,转换之前由ADC。这有效地延长 C_CFG = 0x00,则GPIO_ATT参数将 描述 □ ADC的测量范围为0~0.8 V。 GPIO_ADC_DIV = 2560。 □ ADC的测量范围为0~1.6 V。 GPIO_ADC_DIV = 1280。 □ ADC的测量范围为0~3.2 V。	了电压可转化的 承担为 0x5 = 0 的	范围内。
称SYS_CLK = 30兆赫)的默U8 [3:0] 选择衰减因子被内部施加到电如果ADC_CFG参数字节不发 枚举 28称 0P8	认值。 是压上的GPIO引展送,或设置ADC 值 0	期,转换之前由ADC。这有效地延长 C_CFG = 0x00,则GPIO_ATT参数将 描述 ADC的测量范围为0~0.8 V。 GPIO_ADC_DIV = 2560。 ADC的测量范围为0~1.6 V。 GPIO_ADC_DIV = 1280。 ADC的测量范围为0~3.2 V。 GPIO_ADC_DIV = 640。 ADC的测量范围是0到2.4 V. GPIO_ADC_DIV = 853.33。	了电压可转化的 承担为 0x5 = 0 的	范围内。
称SYS_CLK = 30兆赫)的默U8 [3:0] 选择衰减因子被内部施加到电如果ADC_CFG参数字节不发 枚举 2 名称 0P8 1P6 3P2	认值。 是压上的GPIO引度 送,或设置ADC 值 0 4	期,转换之前由ADC。这有效地延长 C_CFG = 0x00,则GPIO_ATT参数将 描述 □ ADC的测量范围为0~0.8 V。 GPIO_ADC_DIV = 2560。 □ ADC的测量范围为0~1.6 V。 GPIO_ADC_DIV = 1280。 □ ADC的测量范围为0~3.2 V。 GPIO_ADC_DIV = 640。 □ ADC的测量范围是0到2.4 V.	了电压可转化的 承担为 0x5 = 0 的	范围内。

回复场

⊟стѕ

- □ CTS

⊟GPIO_ADC

- ☐ GPIO_ADC [10:0]▲
 - □ 说明:
 - □ 返回选定的GPIO引脚上的电压,作为转换的辅助ADC。
 - □ 应答值将是VGPIO(V)= GPIO_ADC / GPIO_ADC_DIV,其中GPIO_ADC_DIV是由GPIO_ATT参数的选择定义的衰减因子。
- □ 类型: U16

\square BATTERY_ADC

- BATTERY_ADC [10:0]▲
 - □ 说明:
 - □ 返回电池的电压,作为转换的辅助ADC。
 - □ 应答值将是VBAT (V) = 3 * BATTERY_ADC/1280。
- □ 类型: U16

□TEMP_ADC

- ☐ TEMP_ADC [10:0]▲
 - □ 说明:返回温度,如转换的辅助ADC.The回复值将是温度(摄氏度)=(四千零九十六分之八百九十九)*TEMP_ADC-293。
 - □ 类型: U16

PROTOCOL_CFG

- 数量: 0X18
- 简介:设置芯片了指定的协议。
- 目的:
- stream参数:

PROTOCOL_CFG stream参数											
指数 名称 7 6 5 4 3 2 1											
0x00	CMD		0X18								
0X01	协议		协议								

• 回复流:

PROTOCOL_CFG回复流										
指数 名称 7 6 5 4 3 2 1 0										
0x00	CTS		CTS							

论据场

日协议

□ 协议[7:0]▲

□ 说明:选择哪种协议来配置芯片。 □ 格式: 枚举

٠.	(人)十			
	名称	值	描述	可用的功能

通用	0	□ 数据包格式是通用的,数据包 处理性能没有动态重编程。
IE154G	1	□ 包格式IEEE802.15.4g标准。以下属性重写: PKT_CRC_CONFIG, CRC_ENDIAN / BIT_ORDER 在PKT_CONFG1为TX和RX, PKT_FIELD_1_CRC_CONFIG 为RX。数据包处理程序组中的 其他适用的属性仍然需要进行 编程。字段1应具有16比特的 长度,使其包含 PKT_LEN_FIELD_SOURCE 设为1为RX的PHR。PSDU字 段应利用现场2长度可变。字 段2的长度应被设置为允许包 括预期的FCS的长度的最大 值。可以预料,在FCS将主机 计算,并在空中发射。PHR和 FCS将被放在FIFO用于检索和 检查主机。因此,CRC校验不 应该被启用。

回复场 **二CTS**

☐ CTS [7:0]
▲

- □ 说明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。
- □ 类型: U8

GET_PH_STATUS

- 数量: 0X21
- 简介: 返回包处理器中断组(包括状态和暂挂)的中断状态。任选地,它可以被用来清除锁存(待定)中断事件。
- 目的:
 - 。 返回的包处理器中断事件当前的中断状态(包括状态和暂挂)以及可选清除挂起的中断。
 - 。请参阅GET_INT_STATUS命令有关状态和暂挂中断之间的差异的更多细节。
 - 。 发送GET_PH_STATUS命令没有输入参数的结果清除所有挂起的中断。
 - 。 当挂起的中断被清除时,得到的答复反映流清场前的状态。
- stream参数:

	GET_PH_STATUS stream参数										
指数	名称	7	6	5	4						
0x00	CMD				0X21	1					
0X01	PH_CLR_PEND	FILTER_MATCH_PEND_CLR	FILTER MISS PEND CLR	PACKET_SENT_PEND_CLR	PACKET_RX_PEND_CLR	CRO					

• 回复流:

		GET_PH_STATUS回复流										
指数	名称	7	6	5	4	3	2					
0x00	CTS				(CTS						
0X01	PH_PEND	FILTER_MATCH_PEND	FILTER_MISS_PEND	PACKET_SENT_PEND	PACKET_RX_PEND	CRC_ERROR_PEND	X TX_FI					
0X02	PH_STATUS	FILTER_MATCH	FILTER_MISS	PACKET_SENT	PACKET_RX	CRC_ERROR	X TX					

论据场

□PH_CLR_PEND

- ☐ FILTER_MATCH_PEND_CLR.
 - □ 说明:如果清除,清除任何未决FILTER_MATCH中断。如果设置,离开中断挂起。
- 类型: BOOL
- ☐ FILTER MISS PEND CLRA
 - □ 说明:如果清除,清除任何未决FILTER_MISS中断。如果设置,离开中断挂起。
 - □ 类型: BOOL
- ☐ PACKET_SENT_PEND_CLR♠
 - □ 说明:如果清除,清除任何未决PACKET_SENT中断。如果设置,离开中断挂起。
 - □ 类型: BOOL
- □ PACKET_RX_PEND_CLR
 - □ 说明:如果清除,清除任何未决PACKET_RX中断。如果设置,离开中断挂起。
 - □ 类型: BOOL
- ☐ CRC_ERROR_PEND_CLR△
 - □说明:如果清除,清除任何未决CRC_ERROR中断。如果设置,离开中断挂起。
 - □ 类型: BOOL
- ☐ TX_FIFO_ALMOST_EMPTY_PEND_CLR
 - □ 说明:如果清除,清除任何未决TX_FIFO_ALMOST_EMPTY中断。如果设置,离开中断挂起。
- □ 类型: BOOL
- RX_FIFO_ALMOST_FULL_PEND_CLR
 - □ 说明:如果清除,清除任何未决RX_FIFO_ALMOST_FULL中断。如果设置,离开中断挂起。
 - □ 类型: BOOL

⊟стѕ	
□ CTS [7:0	
	明:清除发送。表明前一个命令执行完成和响应字节流(如果有的话)是有效的。接下来的命令可被发送。
	型: U8
□PH_PEND	
	_MATCH_PENDIA
	明:如果设置,FILTER_MATCH状态位的上升沿被检测到,因此一个FILTER_MATCH中断挂起。请参阅相关的FILTER_MATCH状态 更多的细节。
	更多的细胞。 型: BOOL
	±. bool MISS_PEND⊡
	明:如果设置,FILTER_MISS状态位的上升沿被检测到,因此一个FILTER_MISS中断挂起。请参阅相关的FILTER_MISS状态位更多
	细节。
	December 1980 D
	T_SENT_PEND (a)
	明:如果设置,PACKET_SENT状态位的上升沿被检测到,因此一个PACKET_SENT中断挂起。请参阅相关的PACKET_SENT状态
位 一米	更多的细节。 型 : BOOL
	至: BOOL T_RX_PENDA
□ I XORE	明:如果设置,PACKET_RX状态位的上升沿被检测到,因此一个PACKET_RX中断挂起。请参阅相关的PACKET_RX状态位更多的
	节。
	型: BOOL
	RROR_PEND. □
	明:如果设置,CRC_ERROR状态位的上升沿被检测到,因此一个CRC_ERROR中断挂起。请参阅相关的CRC_ERROR状态位更多
	细节。
	型: BOOL D_ALMOST_EMPTY_PEND▲
	可以
的	TX_FIFO_ALMOST_EMPTY状态位更多的细节。
	型: BOOL
	O_ALMOST_FULL_PEND.
	明:如果设置,RX_FIFO_ALMOST_FULL状态位的上升沿被检测到,因此一个RX_FIFO_ALMOST_FULL中断挂起。请参阅相关的
	K_FIFO_ALMOST_FULL状态位更多的细节。 型: BOOL
□PH_STATU	
☐ FILTER	
	明:设定以指示输入数据包的匹配滤波器。清除时进入RX状态,或者如果RX重新启动。
	型: BOOL
□ FILTER	
	明:设置指示传入的数据包被丢弃,因为过滤器不匹配。清除时进入RX状态,或者如果RX重新启动。
	型: BOOL
□ PACKE	I_SENT® 明:设置为显示在TX FIFO的数据字节被成功发送。在进入TX状态清除。
	奶: 灰直为亚尔在IXTII O的数值于 P被成为反应。在近入IX机态捐除。 型:BOOL
□ PACKE	
	明:设定以指示数据的字节数预期已经成功地接收并放置在RX FIFO。所有启用的包处理器功能(如CRC校验,过滤器匹配)必须成
	才能产生PACKET_RX中断完成。
	型: BOOL
□ CRC_E	
	明:设置以表明接收到的CRC校验字节(s)不匹配计算的CRC校验值。在进入接收状态,或者如果RX清零重新开始。 型:BOOL
	±: BOOL O ALMOST EMPTY▲
	明:设定以指示在TX FIFO空间量等于或大于 <i>PKT_TX_THRESHOLD</i> 值。该中断可用于信号主机MCU来存储更多的数据字节到TX
	FO,从而提供了一种手段来处理数据包长度大于TX FIFO(大小即64个字节,或在共享FIFO模式129字节)。清除,如果数据在TX
FII	FO的量小于 <i>PKT_TX_THRESHOLD</i> 值。
	型: BOOL
_	O_ALMOST_FULLA
	明:设定以指示存储在接收FIFO的字节数等于或大于 <i>PKT_RX_THRESHOLD</i> 值。该中断可用于信号主机MCU读取更多的数据字节
	RX FIFO,从而提供了一种手段来处理数据包长度大于RX FIFO(大小即64个字节,或在共享FIFO模式129字节)。清除,如果在RX FOC的数据导业于RX TV
	FO的数据量小于 <i>PKT_TX_THRESHOLD</i> 值。 型: BOOL
- 天	±. book

GET_CHIP_STATUS

- 数量: 0x23
- 简介: 返回芯片中断组(包括状态和暂挂)的中断状态。任选地,它可以被用来清除锁存(待定)中断事件。
- 目的:
 - 返回芯片的电流中断状态中断事件(包括状态和暂挂)以及可选清除挂起的中断。
 - 。 请参阅GET_INT_STATUS命令有关状态和暂挂中断之间的差异的更多细节。 发送GET_CHIP_STATUS命令没有输入参数的结果清除所有挂起的中断。 当挂起的中断被清除时,得到的答复反映流清场前的状态。
- stream参数:

	GET_CHIP_STATUS stream参数													
指数	名称	7	6			5					4			
0x00	CMD											0x2	3	
0X01	CHIP_CLR_PEND	0 C	CAL_PEND_C	LR FIFC	_UNDERFLOW	_OVERFLO	V_ERROR	_PEND_	_CLR	STATE_	_CHANGE_	_PEND_C	LR	CMD_E

回复流:

				GET CHI	P_STATUS回复流	
指数	名称	7	6	5	4	3
00x0	CTS				CTS	•
X01	CHIP_PEND	_		FIFO_UNDERFLOW_OVERFLOW_ERROR_PEND		
X02	CHIP_STATUS	X	CAL	FIFO_UNDERFLOW_OVERFLOW_ERROR	STATE_CHANGE	CMD_ERROR
(U3 C	MD_ERR_STATU	5			CMD_ERR_STA1	105
居场						
	CLR_PEND					
	L_PEND_CLR A D 说明, 加里清除.	澅₿	全任何未决的	JCAL中断。如果设置,离开中断挂起。		
	〕类型: BOOL					
				ROR_PEND_CLR丛 IFO_UNDERFLOW_OVERFLOW_ERROR中断。如绿	电设置 南亚山栎牡耙	
	」	1111	小江門水坝	"O_ONDER EOW_OVER EOW_ERROR PBIS 947	人以且, 內月 下断注起。	
	ATE_CHANGE_PE			TATE CHANCE THE THE REPORT TO THE STATE OF T		
	」	₹用 P	ホ往門木伏る	TATE_CHANGE中断。如果设置,离开中断挂起。		
	D_ERROR_PEND_			The second land of the second land to the		
	」说明:如果清除, 〕类型:BOOL	消	余仕何未决 C	MD_ERROR中断。如果设置,离开中断挂起。		
∃ СНІ	P_READY_PEND_					
	〕说明:如果清除,〕类型:BOOL	清陽	余任何未决C	HIP_READY中断。如果设置,离开中断挂起。		
	N_BATT_PEND_C	LR≜	.)			
		清陽	余任何未决L	OW_BATT中断。如果设置,离开中断挂起。		
	〕类型:BOOL T_PEND_CLR▲					
	□说明:如果清除,	清陽	余任何未决 V	/UT中断。如果设置,离开中断挂起。		
	〕类型: BOOL					
夏场						
TS	2.17.01					
	S [7:0]▲ □ 说明:清除发送。	表明	明前一个命令	·执行完成和响应字节流(如果有的话)是有效的。接	下来的命令可被发送。	
	〕类型: U8					
	PEND L PENDA					
		校》	隹状态位的上	:升沿被检测到,因此一个CAL中断挂起。请参阅相关	的校准状态位更多的细节。	
	】类型: BOOL) / E		DOD DENDA		
	O_UNDERFLOW_(〕说明:如果设置,	FIF	O UNDERF	ROR_PENDISTICON_ERROR状态位的上升沿被检测到	到,因此一个	
	FIFO_UNDERFL			N_ERROR中断挂起。请参阅相关的FIFO_UNDERFL		R状态位更多的细节。
	】类型: BOOL ATE CHANGE PE	ND				
	〕说明:如果设置,	ST		GE状态位的上升沿被检测到,因此一个STATE_CHA	NGE中断挂起。请参阅相关	关的STATE_CHANGE
	状态位更多的细节 】类型:BOOL	ť.				
	D_ERROR_PEND	A				
		CM	ID_ERROR	状态位的上升沿被检测到,因此一个CMD_ERROR中	断挂起。请参阅相关的CM	D_ERROR状态位更多
	的细节。 〕类型:BOOL					
□ CHI	P_READY_PEND@	A.				
	」说明:如果设置, 的细节。	СН	IP_READY∤	状态位的上升沿被检测到,因此一个CHIP_READY中国	断挂起。请参阅相关的 CHI	P_READY状态位更多
	】类型: BOOL					
	N_BATT_PEND▲	1.0	M DATTH-	大台的上书孔神经测到。 国业,ALOM DATT由账件:	ね 連条図担子的IOM DA	ATT化大冶再夕的細
	」	LO	W_BATI4A	^{医位的上升沿被检测到,因此一个LOW_BATT中断挂}	匹。	ATI扒念位史多的细
	类型: BOOL					
	T_PEND▲ 〕说明:如果设置,	WI	JT状态位的	二升沿被检测到,因此一个 WUT 中断挂起。请参阅相关	k的 WUT 状态位更多的细节	Î
	〕类型: BOOL				CHALL CONTROL MANAGEMENT AND	
HIP_: □ CAI	STATUS					
		長明−	一个RC32K村	交准事件被挂起自我清除信号。如果发生这种情况,R	C32K振荡器将被标定在接	下来的过渡到睡眠/待
	机状态。 〕类型:BOOL					
	」	OVE	RFLOW ER	RORA		
	□描述:设置以指示	·所挂	妾收或发送的]字节数超过RX或TX FIFO的大小,分别(即,共享F) ,或 129 字节)。根
	据这样的下溢/上》 】类型:BOOL	益事/	作,则FIFO	(s) 将需要被复位。通过发出一个清除FIFO_INFO命	i 令里置的FIFO。	
∃ STA	ATE_CHANGE					
		-从-	一个状态到另	一个运行状态成功过渡。当一个状态转换过程中清除		
	〕类型:BOOL D_ERROR▲					
		示车	告误白我清贤	;信号发生在一个命令的处理。例如,不正确的命令/屌	属性ID发送,或试图写一个	属性,它是给定属性
		4,4,1				
	组之外。 3 类型: BOOL	473.1				

	设定显示芯片(该POWER_UP序列 省红外校准已经开始清除。	结束后)	已经到了它已准备好接受命令的状态	5时,或者当红	外校准过程结束。	当芯片处于关
□ 类型:						
☐ LOW_BAT						
□ 说明:	脉冲高指示WUT(唤醒定时器)自治	情信号已:	过期。			
□ 类型:	BOOL					
■ WUT▲						
□ 说明:	设置为显示电池电压低于阈值设置	GLOBAL_	_LOW_BATT_THRESH。清零,表明	月电池电压高于	阈值设	
置 GL	OBAL LOW BATT THRESH。					
□ 类型:						
□CMD_ERR_S						
	STATUS [7:0]▲					
	最后命令错误原因。只有有效的, 如	u果CMD	ERROR状态位被置位。			
□ 格式:			_		_	
	名称	值	描述	可用的功能		
	CMD_ERROR_NONE	0	□没有错误。			
	CMD_ERROR_BAD_COMMAND	16	□ 错误的命令发出。			
	CMD_ERROR_BAD_ARG	17	□ Argment在发出命令(S) 是			
	_		无效的。			
	CMD ERROR COMMAND BUSY	18	□ 命令发出前一个命令完成之			
	CIVID_ETATOL CONTINUATED_BOOT	10	前。			
	CMD ERROR BAD BOOTMODE	49	□ 无效的bootmode提供			

□ 坏物业编号拨备

房产详细信息

全局

GLOBAL_XO_TUNE

- 组: 0x00
- 索引: 0x00
- 摘要:配置内部电容频率调谐银行晶体振荡器。
- 目的:
 - 。 该芯片提供内部可调电容器组用于调谐晶体振荡器的频率的目的。这些电容有效地出现在分流从XIN和XOUT引脚到GND。

64

- 。 TUNE_VALUE = 0x00对应于最低的调谐电容值,从而振荡频率最高,而TUNE_VALUE = 0x7F的对应于最高的调谐电容值和振荡的最低频 率。每个LSB代码对应于电容~70 fF的变化。
- 。 总频率调节范围(对于典型的30 MHz的晶体坯)大约是±100ppm以下。

CMD_ERROR_BAD_PROPERTY

- 默认: 0X40
- 寄存器查看:

		GLOBAL_XO_TUNE														
指数	7	6	6 5 4 3 2 1													
0x00	0		TUNE_VALUE													
			默认													
	0				0X40)	0X40									

□字段详细信息

- TUNE_VALUE [6:0]
 - □ 格式: 枚举

名称	值	描述	可用的功能
FASTEST_FREQUENCY	0	■ 最低的电容(即,最高振荡频率)	
SLOWEST_FREQUENCY	127	□ 最高电容(即最低振荡频率)	

GLOBAL_CLK_CFG

- 组: 0x00
- 索引: 0X01
- 摘要: 时钟配置选项。
- 目的:
 - 。 该芯片提供了对选定的GPIO引脚输出的各种时钟信号。这是需要配置这些时钟信号使用唤醒定时器(WUT)或GPIO时钟输出之前。

 - 。 该时钟信号(S)的源可来自系统时钟(例如,晶体振荡器或外部参考源),或从32K RC / Xtal振荡器。 。 从系统时钟(例如,晶体振荡器或外部参考源)产生的时钟信号可以由一个可配置的分频比被进一步划分,为选定的DMIDED_CLK_SEL字 段。在SPI_ACTIVE模式(即,当晶体振荡器被禁止)的输出信号从分割引导时钟信号导出的。 。 32K的时钟源可以来自内部32K RC振荡器获得,或从内部晶体振荡器与外部32K晶体空白作业。

 - 。 在32K XTAL OSC被使用的情况下,晶坯必须放在整个GPIO0和GPIO1引脚,从而使这些引脚不可用于任何其他目的。此外,GPIO0和 GPIO1引脚必须以支持振荡模式被定义为输入引脚或三态引脚(通过使用GPIO_PIN_CFG命令)。
- 默认值: 0x00
- 寄存器查看:

			GLOBAL_CLK_CFG						
	指数	7	6	5	4	3	2	1	0
	0X01	0	DIVIDED_CLK_EN	DIVIDE	ED_CLI	K_SEL	0	CLK_3	2K_SEL
			默认						
ſ		П					П		

0	0X0	0X0	0	0X0		
一点机光细点自						
□字段详细信息 □ DIVIDED_0						
□ blvlbeb_\ □ 格式:						
_ 11 X		名称	值		描述	可用的功能
	DISABLE		0	□ 分为.	系统时钟输出被禁止。	
	启用		1	□ 分为.	系统时钟输出使能。	
□ DIVIDED_0	CLK_SEL [2:0]					
□ 格式:	:_枚举					
	:	名称	值		描述	可用的功能
	DIV_1		0	□ 时钟:	渝出系统时钟除以1。	
	DIV_2		1	□ 时钟:	输出系统时钟除以2。	
	DIV_3		2	□ 时钟:	输出系统时钟除以3。	
	DIV_7_5		3	□ 时钟:	渝出系统时钟的7.5分。	
	DIV_10		4	□ 时钟:	输出的系统时钟除以10。	
	DIV_15		5	□ 时钟:	输出系统时钟除以15。	
	DIV_30		6	□ 时钟:	输出系统时钟除以30。	
☐ CLK_32K_	SEL [1:0]					
□ 格式:						
		名称	值		描述	可用的功能
	关闭		0	☐ 32 kl	Hz的时钟被禁止。	
	RC		1	□ 32 kl 器驱	Hz的时钟由内部RC振荡 动。	
	水晶		2	荡器	Hz的时钟是由内部晶体振与整个GPIO0和GPIO1引的外部32K晶体空白操作	

GLOBAL_LOW_BATT_THRESH

- 组: 0x00
- 索引: 0X02
- 摘要: 配置的阈值电压低电池电压检测。
- 目的:
 - 。 该芯片提供低电池电压检测(LBD)的能力。电池电压进行比较这种配置属性,使用专用的内部电压比较器的阈值电压。
 - · LBD的函数的结果可以实时观看的GPIO引脚,或可被用来产生一个中断事件。
 - 。 在LBD的功能必须在可以启用GLOBAL_WUT_CONFIG属性。电池电压测量由唤醒定时器(WUT)定义的时间间隔,因此仅当WUT是另外 启用。(当然,主机MCU可以发起在通过任何时候电池电压的测量 $GET_ADC_READING$ 命令。)。低电阈值是可配置的从1.5V到3.05V以50mV的增量,并且由下面的公式给出: $VDD_THRESH = \left(\frac{30+THRESHOLD}{20}\right)V$

$$VDD_THRESH = \left(\frac{30+THRESHOLD}{20}\right)V$$

- 默认: 0X18
- 寄存器查看:

		GLOBAL_LOW_BATT_THRESH									
指数	7	6	5	4	3	2	1	0			
0X02	0	0	0		-	阈值		-			
				默	认						
	0	0	0		•	0X18	•	•			

□字段详细信息

- □ 阈值[4:0]▲
 - □ 闵: 0X0
 - □ 马克斯: 0x1F
 - □ 默认: 0X18

GLOBAL_CONFIG

- 组: 0x00
- 索引: 0X03
- 摘要: 全局配置设置。
- 目的:
 - 。 此属性配置设置会影响该芯片的一般操作模式。
 - 如果指定了一个非泛型协议,该芯片被放置到协议识别状态。
- 默认: 0X20
- 寄存器查看:

		GLOBAL_CONFIG							
指数	7	6	5	4	3 2 1	0			
0X03	0	版权所有	SEQUENCER_MODE	FIFO_MODE	协议	POWER_MODE			
				默认					

0 0X0	0X1	0X0	0X0	0X0	<u> </u>		
□字段详细信息							
□ 版权所有▲	0x0	被写入1注意,	建议设	置不符合此位	的当前默认值(唤醒)值係	R留字段 。	
□ 说明:							
, Е	序),来处理API指。 的时间延迟可能会稍	令所需要的时 6微可变的,在	间可能 正常运	不固定。其结果 作。	是,在时间,其中的芯片	实际进入TX模式	家"功能(例如,中断服务系 式发出START_TX命令和点 为仅由一个固定的(更长)
ĺ		TART_TX的测					之间的时间延迟是固定的和
j 	运行的定时器计数的 睡眠/ SPI_ACTIVE到 TX_TUNE到TX = 0x	J'X'周期。 JTX = 0x1F4	= 500次		一个时钟Fxtal/30兆赫(即	1微秒时钟滴答	的名义晶体FXTAL为30 M
	准备TX = 0x96 = 150 RX到TX = 0x96 = 15 枚举						
	名称	ζ	ſ	Ĭ.	描述	可用的功能	1
	保证		(和 対	SEL(与START_TX命令 :联)变高的保证一段时间 ;时进入TX模式。时间周期 :于当前的芯片状态。		
			-		START_TX命令后尽可能		1
□ FIFO_MODE □ 说明: □ i	该芯片通常提供两个 当此位被设置,这两	j个FIFO被组合	 5的FIF(6成一个	」 快地 ○存储器,用于 ○单一的129个	u进入TX模式。 存储发送和接收数据的目的 字节的共享FIFO。用户必须		】 据被切换发送/接收模式,?
□ FIFO_MODE □ 说明:	EI▲ 该芯片通常提供两个 当此位被设置,这两 存储的数据可能会丢 共享FIFO模式下不会 枚举	i个FIFO被组合 长之前发送或 全生效,直到	 	D存储器,用于 单一的129个 ² FIFO空间检索 IFO_INFO指令	建进入TX模式。 存储发送和接收数据的目的	顶确保所有的数	据被切换发送/接收模式,看
□ FIFO_MODE □ 说明:	该芯片通常提供两个 当此位被设置,这两 存储的数据可能会丢 共享FIFO模式下不会	i个FIFO被组合 长之前发送或 全生效,直到	 方的FIF(D存储器,用于单一的129个5 FIFO空间检索 IFO_INFO指令	担进入TX模式。 存储发送和接收数据的目的	可用的功能 可用的功能	据被切换发送/接收模式,
□ FIFO_MODE □ 说明: □ i □ A □ A □ A	EI■ 该芯片通常提供两个 当此位被设置,这两 存储的数据可能会丢 共享FIFO模式下不会 枚举 名称 SPLIT_FIFO	j个FIFO被组合 会失之前发送或 会生效,直到	的FIF() 成一个 以从共享 (通过F	快地 快地 中の129个2 手の空间检索 FO_INFO指令 TX利 市力	存储发送和接收数据的目的 字节的共享FIFO。用户必须。)执行的FIFO复位后。 描述 PIRX FIFO是独立的,64字 (小的一对。	可用的功能 可用的功能	据被切换发送/接收模式,有 据被切换发送/接收模式,有 1
□ FIFO_MODE □ 说明: □ i □ i □ k式:	EI■ 该芯片通常提供两个 当此位被设置,这两 存储的数据可能会丢 共享FIFO模式下不会 枚举	j个FIFO被组合 会失之前发送或 会生效,直到	的FIF(快地 快地 中の129个2 手の空间检索 FO_INFO指令 TX利 サス	存储发送和接收数据的目的 存储为其享FIFO。用户必须。)执行的FIFO复位后。 描述 PIRX FIFO是独立的,64字	可用的功能 可用的功能	据被切换发送/接收模式,
□ FIFO_MODE □ 说明: □ ** □ ** □ ** □ ** □ ** □ ** □ ** □ *	这芯片通常提供两个当此位被设置,这两天格的数据可能会丢块享FIFO模式下不会枚举名称SPLIT_FIFO HALF_DUPLEX_FI 某些协议(例如,IE 默认操作模式是接收如果这个字段被设置	i个FIFO被组合 法失之前发送或 法生效,直到 (FO EEE 802.15.4g (一个通用的数 1, 该芯片变成	方的FIFC 方成一个 方成人共享 (加)规定 规 短 数 概 数 数 数 数 数 数 数 数 一个 个 个 个 个 个 个 个 个 个 (通 一 (6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	快地	存储发送和接收数据的目的字节的共享FIFO。用户必须。)执行的FIFO复位后。 描述 PIRX FIFO是独立的,64字(小的一对。 RX FIFO共享与129字节(的缓冲区。 处理的动态重新配置。 以理的处理被配置之前数据(文其数据包处理所收到的	可用的功能 可用的功能 包的接收和保持 报头字节(s)]
□ FIFO_MODE □ 说明: □ A 式: □ 协议[2:0] ♠ □ 协议[9:0] ♠	is i	i个FIFO被组合 法失之前发送或 法生效,直到 (FO EEE 802.15.4g (一个通用的数 1, 该芯片变成	市的FIF(市) 成一个 京从共享 (通过F () 规包格	快地	存储发送和接收数据的目的字节的共享FIFO。用户必须。)执行的FIFO复位后。 描述 PRX FIFO是独立的,64字(小的一对。 RX FIFO共享与129字节(的缓冲区。 处理的动态重新配置。 12望的处理被配置之前数据(变其数据包处理所收到的描述	可用的功能 回的接收和保持]
□ FIFO_MODE □ 说明: □ A式: □ 协议[2:0]♠ □ 株式: □ 格式:	这芯片通常提供两个当此位被设置,这两天格的数据可能会丢块享FIFO模式下不会枚举名称SPLIT_FIFO HALF_DUPLEX_FI 某些协议(例如,IE 默认操作模式是接收如果这个字段被设置	i个FIFO被组合 法失之前发送或 法生效,直到 (FO EEE 802.15.4g (一个通用的数 1, 该芯片变成	方的FIF(方的大人 方的大人 一个字 一个字 一个 一个字 一个 一个字 一个字 一个字 一个字 一个字 一	快地	存储发送和接收数据的目的字节的共享FIFO。用户必须。)执行的FIFO复位后。 描述 PRX FIFO是独立的,64字(小的一对。 RX FIFO共享与129字节的缓冲区。 处理的动态重新配置。 1型的处理被配置之前数据(变其数据包处理所收到的描述。	可用的功能 可用的功能 包的接收和保持 报头字节(s)]
□ FIFO_MODE □	is z h 通常提供两个当此位被设置可能会不会的工作。 名称 SPLIT_FIFO HALF_DUPLEX_FI 某些协议(例如,E 数以操作字段被设如果这个文章 名称 通用	i个FIFO被组合 法失之前发送或 法生效,直到 (FO EEE 802.15.4g (一个通用的数 1, 该芯片变成	方的FIF(方式从共过F (位 (位 (位 (位 (位 (位 (位 () () ()	快地	存储发送和接收数据的目的字节的共享FIFO。用户必须。)执行的FIFO复位后。 描述 PRX FIFO是独立的,64字(小的一对。 RX FIFO共享与129字节的缓冲区。 处理的动态重新配置。 12望的处理被配置之前数据仅变其数据包处理所收到的描述。	可用的功能 可用的功能 包的接收和保持 报头字节(s) 可用的功能]
□ FIFO_MODE □	is in part i	「个FIFO被组结 注失之前发送或 注失之前发送或 下O EEE 802.15.4。 (二个面用的数点,) 「一个高的性能 可调整模式,!	方的FIF(个字下)	快地	存储发送和接收数据的目的 字节的共享FIFO。用户必须。)执行的FIFO复位后。 描述	可用的功能 可用的功能 包的接收和保持 报头字节(s) 可用的功能]
□ FIFO_MODE □	is in part i	「个FIFO被组合 一次上的发送或 上次上的发送或 上次上的发送或 上次上的数据, 上次上的数据表的 一个高的性能 和调整模式, 上出版数据表的	方的FIF(个字下)	快地	存储发送和接收数据的目的 字节的共享FIFO。用户必须。)执行的FIFO复位后。 描述	可用的功能 可用的功能 包的接收和保持 报头字节(s) 可用的功能	, 持有效的数据包的持续时间 的函数。
□ FIFO_MODE □	该芯片通常提供两个两人的工作。 这芯片通常提供两个两人的工作。 这芯片通常设置可能会不会有力。 这一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	「个FIFO被组合 一次上的发送或 上次上的发送或 上次上的发送或 上次上的数据, 上次上的数据表的 一个高的性能 和调整模式, 上出版数据表的	的 所以	快地	存储发送和接收数据的目的字节的共享FIFO。用户必须。)执行的FIFO复位后。 描述 PRX FIFO是独立的,64字文小的一对。 RX FIFO共享与129字节小的缓冲区。 处理的动态重新配置。前数据的处理被配置之前数据包处理所收到的 描述 它包格式是通用的,数据包包性能没有动态重编程。 这式IEEE802.15.4g标准。 自和CRC被选择作为数据包头的一个函数。	可用的功能 可用的功能 包的接收和保持 报头字节(s) 可用的功能	, 持有效的数据包的持续时间 的函数。

GLOBAL_WUT_CONFIG

- 组: 0x00
- 索引: 0x04
- 摘要: 一般唤醒定时器功能配置。

信号到计时器(次)。

- 目的:
 - 。 该芯片包含可用于唤醒芯片以周期性的间隔集成定时器。这个属性是用来启用和配置相关的唤醒定时器(WUT)的各种功能,如低电池电压检测(LBD)和低占空比(LDC)的操作。
 - 。在武汉理工大学计数32K时钟信号的周期,因而32K时钟源(无论是内部32K RC振荡器或内部晶体振荡器与外部32K晶体坯)也必须通过启用G/OBA/C/K CFG属性,以获得武汉理工大学的功能。
 - 用GLOBAL_CLK_CFG属性,以获得武汉理工大学的功能。 • 在32K RC振荡器的频率会随温度变化,并因此需要定期重新校准。在32K RC振荡器最初的校准过程中POWER_UP命令从SDN状态退出之
 - 后。 • 有两种不同的方法,其中的32K RC振荡器的重新校准可配置。一种方法是通过设置使重新校准GLOBAL_WUT_CONFIG: CAL_EN位,并通过选择所需的校准期间GLOBAL_WUT_CONFIG: WUT_CAL_PERIOD参数。另一种方法是离开GLOBAL_WUT_CONFIG: CAL_EN位清零,但在配置一个非零值GLOBAL_WUT_CAL财产,导致校准的WUT周期的倍数。在两种方法中,32K RC振荡器必须能够提供一个时钟

- 。在32K RC振荡器的校准是通过它的频率比较了30 MHz的晶振的执行。因此,在30兆赫XTAL振荡器自动校准期间启动,从而增加在平均电流消耗。选择一个较长的价值GLOBAL_WUT_CAL或GLOBAL_WUT_CONFIG: WUT_CAL_PERIOD建议降低平均电流消耗。
- 。 最不发达国家的模式提供自动唤醒接收器,以检查是否一个有效的信号是可用的(最不发达国家RX模式)。
- 默认值: 0x00
- 寄存器查看:

	GLOBAL_WUT_CONFIG								
指数	7	6	5	4	3	2	1	0	
0x04	WUT_L	.DC_EN	WUT_	CAL_P	ERIOD	WUT_LBD_EN	WUT_EN	CAL_EN	
		默认							
	02	0X0 0X0 0X0 0X0 0X0							

$\overline{}$						
-1	캏	比	i盖	细	信	旨

- WUT_LDC_EN [1:0]▲
 - □ 说明: 启用或禁用LDC操作,并选择最不发达国家的运作模式。
 - □ 格式: 枚举

名称	值	描述	可用的功能
DISABLE_LDC	0	□ 禁用LDC操作。	
RX_LDC	1	□ 最不发达国家的接收模式。	

■ WUT_CAL_PERIOD [2:0]▲

71,1	

□ 选择为32K RC振荡器的定期重新校准的时间间隔。

□ 校准必须另外通过设置来启用WUT_CONFIG: CAL_EN位, 否则这个领域没有任何效果。

□ 格式: 枚举

· <u>仅干</u>			
名称	值	描述	可用的功能
1_SEC	0	□ 1秒。	
2_SEC	1	□ 2秒。	
4_SEC	2	□ 4秒。	
8_SEC	3	□ 8秒。	
4_SEC 8_SEC 16_SEC	4	□ 16秒。	
32_SEC	5	□ 32秒。	
64_SEC	6	□ 64秒。	
128_SEC	7	□ 128秒。	

■ WUT_LBD_EN▲

□ 说明:

□ "当高,使电池低电压检测(LBD)的功能。

□ 电池的电压与对比*GLOBAL_LOW_BATT_THRESH*值(通过使用一个专用的内部电压比较器)是WUT间隔期满时执行。

□ 格式: 枚举

·	_	_	
名称	值	描述	可用的功能
DISABLE_LBD	0	□ 禁用LBD功能。	
ENABLE LBD	1	□ 使LBD功能。	

■ WUT_EN▲

说明:	说明:	启用或禁用WUT。	不先启用WUT可以得到从WUT	(例如,	LBD或LDC)	衍生的任何其他功能。	它仍然还需要启用一	个
32K时	钟源W	'UT。						

□ 格式: 枚举

• •				
	名称	值	描述	可用的功能
	DISABLE_WUT	0	□ 禁用唤醒定时器。	
	ENABLE WUT	1	□ 启用唤醒定时器。	

□ CAL_EN▲

□ 说明:

□ "选择芯片是否会每隔一段时间醒来,执行32K RC振荡器的校准。

□ 当启用时,校准时间间隔由控制WUT_CAL_PERIOD: GLOBAL_WUT_CONFIG参数。

□ 格式: 枚举

人			
名称	值	描述	可用的功能
DISABLE_CAL	0	□ 禁用32K RC振荡器校准计时器。	
ENABLE_CAL	1	□ 启用32K RC振荡器校准计时器。	

GLOBAL_WUT_M

- 组: 0x00
- 索引: 0X05 0X06 ...
- 摘要: 配置唤醒定时器 (WUT) 值的尾数。
- 目的:
 - 。 该芯片包含可用于唤醒芯片以周期性的间隔集成定时器。在武汉理工大学是由启用WUT_EN: GLOBAL_WUT_CONFIG位。
 - 。 该WUT_M和WUT_R值应使WUT_EN位之前进行配置。在它被随意修改WUT_M/R的值的情况下,WUT_EN位应先禁用,然后重新启用定时器值被修改之后。
 - 。 该时钟源WUT是采取从内部32 kHz RC振荡器或内部32 kHz晶振(与32 kHz晶振的空白之间放置GPIO0和GPIO1引脚一起工作)。因此,一个32K时钟源必须启用(通过*GLOBAL_CLK_CFG*为了使计时器有一个时钟信号进行计数属性)。
 - 。 在WUT的周期由下列公式计算:

$$WUT_PERIOD_sec = WUT_M \times (\frac{4 \times 2^{WUT_R}}{32768})sec$$

。 此属性设置的值尾数WUT_M。WUT_M = 0的值是一个合法的值,但也会有同样的效果WUT_M = 1。

- 。 该WUT_M值仅用于在定义WUT的期间,和(不像WUT_R值)在限定低占空比(LDC)的持续时间是不共享的。
- 。 该芯片可以被配置为在WUT期满时产生一个中断事件。
- 。此外,GPIO引脚可以被配置为输出一个实时信号与编程WUT期间。该信号的占空比可以是50%以上外,与输出脉冲高为2^(WUT_R 1)的 32K时钟的周期。
- 默认值: 0x00, 0X01
- 寄存器查看:

			(GLOBA	L_WUT	_M					
指数	7	7 6 5 4 3 2 1 0									
0X05				WUT_	M [15:8]					
0X06				WUT	_M [7:0]						
				異	犬认						
0X05		0X0									
0X06			•	0	X1			•			

□字段详细信息

- WUT_M [15:0]
 - □ 功能描述: 配置公式期内的尾数。
 - □ 闵: 0X1
 - □ 马克斯: 0xFFFF的
 - 默认: 0X1

GLOBAL_WUT_R

- 组: 0x00
- 索引: 0X07
- 摘要:配置唤醒定时器(WUT)值的指数。
- 目的:
 - 。 该芯片包含可用于唤醒芯片以周期性的间隔集成定时器。请参阅文字说明GLOBAL WUT M了解有关设置WUT时期更多的细节。
 - 。 此属性设置的指数WUT_R的价值。WUT_R = 0的值是一个合法的值,但具有相同的效果WUT_R = 1,最大允许值是WUT_R = 0X14 = 20D。
 - 。 该WUT_R值定义WUT和最不发达国家的模式存续期内,与该只用在定义WUT期间的WUT_M值的对比之间共享。
 - 在大多数应用中,武汉理工大学是用来从一个低电流状态,如睡眠模式唤醒。该WUT_SLEEP位用于选择芯片是否返回WUT期满后进入睡眠模式,或保留在SPI_ACTIVE模式。如果芯片已经处于一个较高的当前操作状态(例如,调整或RX模式)时WUT过期,也不会回落到睡眠或SPI_ACTIVE模式,但将继续留在指挥作战状态。
- 默认: 0X60
- 寄存器查看:

			GLOBAL_WUT_R					
指数	7	6	5	4	3	2	1	0
0X07	C	00	WUT_SLEEP	WUT_R				
			默认					
	02	X1	0X1			0X0)	

□字段详细信息

- WUT_SLEEP
 - □说明: WUT期满后选择工作状态。
 - □ 格式: 枚举

1人十			
名称	值	描述	可用的功能
就绪	0	■ 武汉理工大学后去 SPI_ACTIVE状态。	
睡眠	1	□ 武汉理工大学后进入睡眠状 态。	

- ─ WUT_R [4:0]
 - □ 功能描述:配置公式WUT期间的指数值。
 - □ 闵: 0X0
 - □ 马克斯: 0X14
 - □ 默认: 0x0

GLOBAL_WUT_LDC

- 组: 0x00
- 索引: 0X08
- 摘要: 配置的时间段后自动唤醒在最不发达国家模式芯片保持活跃。
- 目的:
 - 该芯片包含用于确定时间后自动唤醒在最不发达国家的模式在芯片内仍然有效长度集成定时器。
 - 。 该LDC活跃期间由下式给出如下公式:

$$LDC_PERIOD_sec = WUT_LDC \times (\frac{4 \times 2^{WUT_R}}{32768sec})$$

- 。 此属性设置的值尾数WUT_LDC。WUT_LDC = 0的值是一个合法的值,但也会有同样的效果WUT_LDC = 1,WUT_R(指数)值在定义WUT期间共享。
- 。 该时钟源WUT是采取从内部32 kHz RC振荡器或内部32 kHz晶振(与32 kHz晶振的空白之间放置GPIO0和GPIO1引脚一起工作)。因此,一个32K时钟源必须为使计时器有一个时钟信号进行计数使能(通过GLOBAL_CLK_CFG属性)。
- 。 最不发达国家周期确定的时间芯片保持在主动模式下的长度,而WUT周期确定的时间芯片保持非活动状态的长度。因此,时间连续唤醒周期 之间的总量为LDC_PERIOD + WUT_PERIOD。

- 。 的时间段在主动模式下使用了可小于所定义的LDC_PERIOD。例如:如果LDC_PERIOD内检测和前LDC_PERIOD期满完全接收到有效的接收数据包,该芯片将紧接在分组的末尾时返回到WUT状态。
- 默认值: 0x00
- 寄存器查看:

			GI	_OBAL_	WUT_L	DC.					
指数	7	7 6 5 4 3 2 1 0									
0X08		-	•	WUT	LDC	-	•	-			
				默	认						
			•	0	X0		•				

□字段详细信息

- ─ WUT_LDC [7:0]
 - □ 说明:
 - □配置公式的最不发达国家模式激活时间段的尾数。
 - □ 操作的模式,最不发达国家必须启用(通过: WUT_LDC_EN GLOBAL_WUT_CONFIG此参数生效场)。
 - 闵: 0X1
 - □ 马克斯: Oxff的
 - 默认: 0x0

GLOBAL_WUT_CAL

- 组: 0x00
- 索引: 0X09
- 总结:如果控件的32K RC振荡器的校准将在武汉理工大学的间隔进行。
- 目的:
 - 。 该芯片提供了两种不同的配置32K RC振荡器的重新校准期间的方法。一种方法是让一个校准计时器,然后选择以1秒为各种倍数的校准间隔(见GLOBAL_WUT_CONFIG属性); 另一方法涉及在编程WUT间隔配置的整数倍进行校准。
 - 。 该*GLOBAL_WUT_CAL*属性配置WUT间隔的所需的整数倍在其上执行校准(即,上面提到的第二种方法)。的WUT_CAL = 0x00值禁用此功能。任何非零值将导致32K RC振荡器对WUT间隔的整数倍校准。例如: WUT_CAL = 0X01将校准每间隔武汉理工大学,WUT_CAL = 0X02将校准的每一秒间隔武汉理工大学,等等。
 - 。 该GLOBAL_WUT_CONFIG: CAL_EN位也必须被清除的校准时间这个方法被激活。
- 默认值: 0x00
- 寄存器查看:

		GLOBAL_WUT_CAL									
指数	7	7 6 5 4 3 2 1 0									
0X09				WUT	_CAL						
		默认									
		<u> </u>		02	X0	<u> </u>	<u> </u>				

□字段详细信息

- ☐ WUT_CAL [7:0]▲
 - □ 说明:
 - □ 选择WUT期间在其上执行的32K RC振荡器校准的多。
 - □ 该GLOBAL_WUT_CONFIG: CAL_EN位也必须被清除的校准时间这个方法被激活。
 - □ 闵: 0X0
 - □ 马克斯: 0xff的
 - 默认: 0x0

INT_CTL

INT_CTL_ENABLE

- 组: 0X01
- 索引: 0x00
- 简介:此属性提供对全局,以产生硬件中断在NIRQ脚使三个中断组(芯片,调制解调器和包处理器)的。
- 目的:
 - 使顶层的中断源产生硬件中断在NIRQ引脚。
 - 。 这三个中断组的芯片,调制解调器和包处理器。他们每个人都包含多个可能的中断源必须通过单独启用INT_CTL_PH_ENABLE,INT_CTL_MODEM_ENABLE,INT_CTL_CHIP_ENABLE属性。
 - 。 请注意,该酒店只提供了对NIRQ输出引脚的硬件中断指示全局使能/禁止。即使在指示上的NIRQ输出引脚被禁止内部中断事件仍有可能产生。通过轮询GPIO引脚,或通过中断事件可能随时 被监控*GET_INT_STATUS,GET_CHIP_STATUS,GET_PH_STATUS*,或*GET_MODEM_STATUS*命令。
- 默认值: 0x04
- 寄存器查看:

		INT_CTL_ENABLE											
指数	7	6	5	4	. 3		2		1			0	
0x00	0	C	0	0	0	CHIP_INT	_STATUS	_EN	MODEM_INT_STATUS_	ΕN	PH_INT_	STATUS	_EN
									默认				
	0	C	0	0	0		0X1		0X0			0X0	

□字段详细信息

- ☐ CHIP_INT_STATUS_EN▲
 - □ 格式: 枚举

	名称	值	描述	可用的功能
	禁用	0	■ 禁用芯片组的状态中等待处理 的中断从断言nNIRQ。	
	启用	1	□ 使芯片组的状态中等待处理的 中断断言nNIRQ。	
□ MODEM_IN □ 格式:	IT_STATUS_EN▲ _枚举			
	名称	值	描述	可用的功能
	禁用	0	□ 禁用调制解调器组挂起的中断 从断言nNIRQ。	
	启用	1	□ 启用调制解调器组中挂起中断 断言nNIRQ。	
□ PH_INT_S1 □ 格式:				

值

0

1

INT CTL PH ENABLE

禁用

启用

- 组: 0X01
- 索引: 0X01
- 摘要: 启用包处理器中断组内的单个中断源产生一个硬件中断的NIRQ输出引脚。

名称

- 目的:
 - · 为了产生一个硬件中断在NIRQ输出引脚使能包处理器中断组内的单个中断源。
 - 。 为了充分使一个硬件中断,就必须启用这两个单独的中断源(此属性中),以及相应的中断组(例如, 设置INT CTL ENABLE: PH_INT_STATUS_EN)
 - 。 请注意,即使中断源未使能产生一个硬件中断NIRQ,给定的中断事件仍然可能在芯片内发生,并且可以通过轮询监视GPIO引脚,或通过 GET_INT_STATUS或GET_PH_STATUS命令。

描述

从断言nNIRQ。

言nNIRQ。

□禁用包处理器组中挂起的中断

□ 启用包处理器组中挂起中断断

可用的功能

- 默认值: 0x00
- 寄存器查看:

		INT_CTL_PH_ENABLE								
指数	7	6	5	4	3	2	1			
0X01	FILTER_MATCH_EN	FILTER_MISS_EN	PACKET_SENT_EN	PACKET_RX_EN	CRC_ERROR_EN	0	TX_FIFO_ALMOST_EMPTY_EN F			
					默认					
	0X0	0X0	0X0	0X0	0X0	0X0	0X0			

□字段详细信息

- ☐ FILTER_MATCH_EN▲
 - □ 说明:如果设置,启用FILTER_MATCH中断的FILTER_MATCH状态位上升沿。看到在状态位*GET_INT_STATUS*上的中断源的详细信 息。
 - 默认: 0x0
- ☐ FILTER_MISS_EN▲
 - □ 说明:如果设置,启用FILTER_MISS中断的FILTER_MISS状态位上升沿。看到在状态位*GET_INT_STATUS*上的中断源的详细信息。 ■ 默认: 0x0
- □ PACKET_SENT_EN▲
 - □ 说明:如果设置,启用PACKET_SENT中断的PACKET_SENT状态位上升沿。看到在状态位*GET_INT_STATUS*上的中断源的详细信 息。
 - □ 默认: 0x0
- ☐ PACKET RX EN▲
 - □ 说明:如果设置,启用PACKET RX中断的PACKET RX状态位上升沿。看到在状态位GET INT STATUS上的中断源的详细信息。
 - □ 默认: 0x0
- □ CRC_ERROR_EN
 - □ 说明:如果设置,启用CRC_ERROR中断的CRC_ERROR状态位上升沿。看到在状态位*GET_INT_STATUS*上的中断源的详细信息。 □ 默认: 0x0
- ☐ TX_FIFO_ALMOST_EMPTY_EN
 - □ 说明:如果设置,启用TX_FIFO_ALMOST_EMPTY中断的TX_FIFO_ALMOST_EMPTY状态位上升沿。看到在状态 位*GET_INT_STATUS*上的中断源的详细信息。
 - □ 默认: 0x0
- RX FIFO ALMOST FULL EN
 - □ 说明:如果设置,启用RX_FIFO_ALMOST_FULL中断的RX_FIFO_ALMOST_FULL状态位上升沿。看到在状态位*GET_INT_STATUS* 上的中断源的详细信息。
 - □ 默认: 0x0

INT CTL MODEM ENABLE

- 组: 0X01
- 索引: 0X02
- 摘要: 启用调制解调器中断组内的单个中断源产生一个硬件中断的NIRQ输出引脚。
- 目的:
 - 为了产生一个硬件中断在NIRQ输出引脚使能modem中断集团内个别中断源。
 - o 为了充分使一个硬件中断,就必须启用这两个单独的中断源(本物业内),以及相应的中断组(例如,设置INT_CTL_ENABLE: MODEM INT STATUS EN) .
 - 。 请注意,即使中断源未使能产生一个硬件中断NIRQ,给定的中断事件仍然可能在芯片内发生,并且可以通过轮询监视GPIO引脚,或通过

GET_INT_STATUS或GET_MODEM_STATUS命令。

- 默认值: 0x00
- 寄存器查看:

		INT_CTL_MODEM_ENABLE									
指数	7	6	5	4	3	2	1				
0X02	0	POSTAMBLE_DETECT_EN	INVALID_SYNC_EN	RSSI_JUMP_EN	RSSI_EN	INVALID_PREAMBLE_EN	PREAMBLE_DETECT_EN				
					默认						
	0X0	0X0	0X0	0X0	0X0	0X0	0X0				

□字段详细信息

POSTA	MRIF	DETECT	FNA

- □ 说明:如果设置,启用POSTAMBLE_DETECT中断的POSTAMBLE_DETECT状态位上升沿。看到在状态位*GET_INT_STATUS*上的中断源的详细信息。
- 默认: 0x0
- INVALID SYNC ENA
 - □ 说明:如果设置,启用INVALID_SYNC中断的INVALID_SYNC状态位上升沿。看到在状态位*GET_INT_STATUS*上的中断源的详细信息。
 - □ 默认: 0x0
- ☐ RSSI_JUMP_EN▲
 - 回说明:如果设置,启用RSSI_JUMP中断的RSSI_JUMP状态位上升沿。看到在状态位*GET_INT_STATUS*上的中断源的详细信息。
- □ 默认: 0x0 □ RSSI_EN▲
 - □ 说明:如果设置,允许对RSSI状态位上升沿RSSI中断。看到在状态位*GET_INT_STATUS*上的中断源的详细信息。
 - 默认: 0x0
- □ INVALID_PREAMBLE_EN
 - □ 说明:如果设置,启用INVALID_PREAMBLE中断的INVALID_PREAMBLE状态位上升沿。看到在状态位*GET_INT_STATUS*上的中断源的详细信息。
 - 默认: 0x0
- □ PREAMBLE_DETECT_EN
 - □ 说明:如果设置,启用PREAMBLE_DETECT中断的PREAMBLE_DETECT状态位上升沿。看到在状态位*GET_INT_STATUS*上的中断源的详细信息。
 - 默认: 0x0
- SYNC DETECT EN▲
 - □ 说明:如果设置,启用SYNC_DETECT中断的SYNC_DETECT状态位上升沿。看到在状态位*GET_INT_STATUS*上的中断源的详细信息。
 - □ 默认: 0x0

INT_CTL_CHIP_ENABLE

- 组: 0X01
- 索引: 0X03
- 摘要: 使芯片中断组内的个别中断源产生一个硬件中断的NIRQ输出引脚。
- 目的:
 - · 为了产生一个硬件中断在NIRQ输出引脚使芯片中断集团内个别中断源。
 - 。 为了充分使一个硬件中断,就必须启用这两个单独的中断源(本物业内),以及相应的中断组(例如,设置*INT_CTL_ENABLE*: *CHIP_INT_STATUS_EN*)。
 - 。 请注意,即使中断源未使能产生一个硬件中断NIRQ,给定的中断事件仍然可能在芯片内发生,并且可以通过轮询监视GPIO引脚,或通过 *GET_INT_STATUS*或*GET_CHIP_STATUS*命令。
- 默认值: 0x04
- 寄存器查看:

		INT_CTL_CHIP_ENABLE								
指数	7	6	5	4	3	2	1			
0X03	3 0	CAL_EN	FIFO_UNDERFLOW_OVERFLOW_ERROR_EN	STATE_CHANGE_EN	CMD_ERROR_EN	CHIP_READY_EN	LOW_BATT_EN			
	默认									
	0	0X0	0X0	0X0	0X0	0X1	0X0			

□字段详细信息

- □ CAL_EN
 - □ 说明:如果设置,使CAL中断的校准状态位上升沿。看到在状态位GET_INT_STATUS上的中断源的详细信息。
 - □ 默认: 0x0
- FIFO UNDERFLOW OVERFLOW ERROR EN
 - □说明:如果设置,启用FIFO_UNDERFLOW_OVERFLOW_ERROR中断的FIFO_UNDERFLOW_OVERFLOW_ERROR状态位上升沿。 看到在状态位*GET_INT_STATUS*上的中断源的详细信息。
 - □ 默认: 0x0
- STATE CHANGE EN▲
 - □ 说明:如果设置,启用STATE_CHANGE中断的STATE_CHANGE状态位上升沿。看到在状态位*GET_INT_STATUS*上的中断源的详细信息。
 - □ 默认: 0x0
- ☐ CMD_ERROR_EN
 - □ 说明:如果设置,启用CMD_ERROR中断的CMD_ERROR状态位上升沿。看到在状态位*GET_INT_STATUS*上的中断源的详细信息。□ 默认: 0x0
- □ CHIP_READY_EN▲
 - □ 说明:如果设置,启用CHIP_READY中断的CHIP_READY状态位上升沿。看到在状态位*GET_INT_STATUS*上的中断源的详细信息。
 - □ 默认: 0X1
- □ LOW BATT EN▲
 - □ 说明:如果设置,启用LOW_BATT中断的LOW_BATT状态位上升沿。看到在状态位*GET_INT_STATUS*上的中断源的详细信息。

□ 默认: 0x0 □ WUT_EN▲

□ 说明:如果设置,允许对WUT状态位上升沿WUT中断。看到在状态位GET INT STATUS上的中断源的详细信息。

□ 默认: 0x0

FRR_CTL

FRR_CTL_A_MODE

- 组: 0X02
- 索引: 0x00
- 摘要: 快速响应寄存器的配置。
- 目的:
 - 。 该芯片提供了四个快速响应寄存器(FRR),可能会立即而不需要监督和检查CTS被读取,从而提高在该内容可能会被检索的速度。
 - 。 该FRR_CTL_X_MODE属性用于选择特定的参数值(从下面的枚举列表中选择),将被FRR_X_READ命令返回。此属性选择在FRR_A持有及FRR_A_READ命令返回的参数。
 - 财政资源规则寄存器可以通过FRR_X_READ命令来读取以突发方式。在最初的16个时钟周期,每个额外的8个时钟周期将时钟出以循环的方式在接下来的快速响应寄存器的内容。例如:如果发出FRR_A_READ命令,寄存器将被读取的顺序ABCD,而如果在发出FRR_B_READ命令,寄存器将被读取的顺序BCDA等。
- 默认: 0X01
- 寄存器查看:

		FRR_CTL_A_MODE							
指数	7	6	5	4	3	2	1	0	
0x00		FRR_A_MODE							
				C)X1				

□字段详细信息

☐ FRR_A_MODE [7:0]

□ 格式: 枚举

权 争			
名称	值	描述	可用的功能
禁用	0	□ 禁用。始终读回0。	
INT_STATUS	1	□ 全球的地位。	
INT_PEND	2	□ 全局中断挂起。	
INT_PH_STATUS	3	□ 包处理器状态。	
INT_PH_PEND	4	□ 包处理器中断挂起。	
INT_MODEM_STATUS	5	□ 调制解调器状态。	
INT_MODEM_PEND	6	□ 调制解调器中断挂起。	
INT_CHIP_STATUS	7	□ 芯片状态。	
INT_CHIP_PEND	8	□ 芯片状态中断挂起。	
CURRENT_STATE	9	□ 当前状态。	
LATCHED_RSSI	10	□ 在定义锁定RSSI值 MODEM_RSSI_CONTROL: 锁 存。	

FRR_CTL_B_MODE

- 组: 0X02
- 索引: 0X01
- 摘要:快速响应寄存器B配置。
- 桐安:目的:
 - 。 此属性选择在FRR_B持有及FRR_B_READ命令返回的参数。
 - 。请参阅文字说明FRR_CTL_A_MODE了解有关快速响应寄存器(FRR)功能的更多细节。
- 默认: 0X02
- 寄存器查看:

		FRR_CTL_B_MODE								
指数	7	6	5	4	3	2	1	0		
0X01		FRR_B_MODE								
			•	()X2		•			

□字段详细信息

☐ FRR_B_MODE [7:0]▲

□ 格式: 枚举

名称	值	描述	可用的功能
禁用	0	□ 禁用。始终读回0。	
INT_STATUS	1	□全球的地位。	
INT_PEND	2	□ 全局中断挂起。	
INT_PH_STATUS	3	□包处理器状态。	
INT_PH_PEND	4	□ 包处理器中断挂起。	
INT_MODEM_STATUS	5	□ 调制解调器状态。	

INT_MODEM_PEND	6	□ 调制解调器中断挂起。
INT_CHIP_STATUS	7	□ 芯片状态。
INT_CHIP_PEND	8	□ 芯片状态中断挂起。
CURRENT_STATE	9	□ 当前状态。
LATCHED_RSSI	10	□ 在定义锁定RSSI值 MODEM_RSSI_CONTROL: 锁 存。

FRR_CTL_C_MODE

- 组: 0X02
- 索引: 0X02
- 摘要:快速响应寄存器C配置。
- 目的:

 - 此属性选择在FRR_C持有及FRR_C_READ命令返回的参数。请参阅文字说明FRR_CTL_A_MODE了解有关快速响应寄存器(FRR)功能的更多细节。
- 默认: 0X09
- 寄存器查看:

		FRR_CTL_C_MODE							
指数	7	7 6 5 4 3 2 1 0							
0X02		FRR_C_MODE							
				(0x9				

□字段详细信息

□ FRR_C_MODE [7:0]▲
□ 格式: 枚举

名称	值	描述	可用的功能
禁用	0	□ 禁用。始终读回0。	
INT_STATUS	1	□ 全球的地位。	
INT_PEND	2	□ 全局中断挂起。	
INT_PH_STATUS	3	□ 包处理器状态。	
INT_PH_PEND	4	□ 包处理器中断挂起。	
INT_MODEM_STATUS	5	□ 调制解调器状态。	
INT_MODEM_PEND	6	□ 调制解调器中断挂起。	
INT_CHIP_STATUS	7	□ 芯片状态。	
INT_CHIP_PEND	8	□ 芯片状态中断挂起。	
CURRENT_STATE	9	□ 当前状态。	
LATCHED_RSSI	10	□ 在定义锁定RSSI值 MODEM_RSSI_CONTROL: 锁 存。	-

FRR_CTL_D_MODE

- 组: 0X02
- 索引: 0X03
- 摘要: 快速响应寄存器D配置。
- - 。 此属性选择在FRR_D持有及FRR_D_READ命令返回的参数。
 - 请参阅文字说明FRR_CTL_A_MODE了解有关快速响应寄存器(FRR)功能的更多细节。
- 默认值: 0x00
- 寄存器查看:

		FRR_CTL_D_MODE							
指数	7	7 6 5 4 3 2 1 0							
0X03		FRR_D_MODE							
		默认							
			•	()X0	•		•	

□字段详细信息

☐ FRR_D_MODE [7:0]

□ 格式: 枚举

仅宁			
名称	值	描述	可用的功能
禁用	0	□ 禁用。始终读回0。	
INT_STATUS	1	□ 全球的地位。	
INT_PEND	2	□ 全局中断挂起。	
INT_PH_STATUS	3	□ 包处理器状态。	
INT_PH_PEND	4	□ 包处理器中断挂起。	
INT_MODEM_STATUS	5	□ 调制解调器状态。	
INT_MODEM_PEND	6	□ 调制解调器中断挂起。	
INT_CHIP_STATUS	7	□芯片状态。	
INT_CHIP_PEND	8	□ 芯片状态中断挂起。	
	1		

CURRENT_STATE	9	□ 当前状态。
LATCHED_RSSI	10	□ 在定义锁定RSSI值 MODEM_RSSI_CONTROL: 锁 存。

序言

PREAMBLE_TX_LENGTH

- 组: 0X10
- 索引: 0x00
- 摘要: 配置TX序言长度。
- 目的:
 - 。 这个属性是用来配置序言场在TX模式的长度为标准和非标准的序言。
 - 此属性不使用的芯片在接收模式接收一个非标准序言时除外。在这种情况下,这个属性必须与预期序言长度(以提供对同步字搜索算法上的超时限制)进行配置。
 - 。 此属性仅适用于TX包处理器FIFO模式; 如果TX直接同步或TX直接异步模式的选择(见MODEM_MOD_TYPE性),是从上一个GPIO引脚和没有自动字段结构的实时TXDATA输入流中获得的整个传输是可能的。
 - 此属性的单位是不是位或字节,这取决于价值PREAMBLE_CONFIG: LENGTH_CONFIG.
 - 。 设置PREAMBLE_TX_LENGTH = 0x00是有效的值,并且将导致跳过序言字段的传输;在这种情况下,该同步字将是第一个发送的字段。
- 默认: 0X08
- 寄存器查看:

		PREAMBLE_TX_LENGTH										
指数	7	7 6 5 4 3 2 1 0										
0x00		TX_LENGTH										
		默认										
		位于 0x8										

□字段详细信息

- TX LENGTH [7:0]▲
 - □ 说明:在TX序言的长度来发送,以位或字节(取决于值的单位PREAMBLE_CONFIG: LENGTH_CONFIG)。
 - □ 闵: 0X0
 - □ 马克斯: Oxff的
 - □ 默认: 位于0x8

PREAMBLE_CONFIG_STD_1

- 组: 0X10
- 索引: 0X01
- 摘要:接待与标准序言模式的数据包的配置。
- 目的
 - 。 在这个属性中的字段是否仅适用于RX模式,并主要适用于接收标准序言模式(例如,1010或0101模式)。
 - 。 然而,见附注上RX_THRESH接待非标准序言模式的过程中所需的配置。
- 默认: 0X14
- 寄存器查看:

	PREAMBLE_CONFIG_STD_1									
指数	7	6 5 4 3 2					1	0		
0X01	SKIP_SYNC_TIMEOUT	RX_THRESH								
	默认	默认								
	0X0 0X14									

□字段详细信息

- ☐ SKIP_SYNC_TIMEOUT
 ☐
 - □ 说明:
 - □ 在接收到一个标准序言图案,该芯片识别同步字字段的开始作为一个序列的比特不匹配一个... 1010 ...的图案。检测同步字的预计发生在此后不久(在同步字字段的编程长度)。
 - □ 该位只影响在接待标准序言的超时功能;这是不可能跳过接收一个非标准序言中的同步字超时功能。
 - □ 格式: 枚举

名称	值	描述	可用的功能
DISABLE	0	□ 如果没有找到同步字,系统将 超时并返回寻找序言。	
启用	1	□ 同步字搜索超时被忽略,芯片 仍然不断寻找同步字。	

RX_THRESH [6:0]

- □ 说明:
 - □ 配置标准前导位(例如,1010或0101),必须连续接收到检测到有效的前导码的数量。一个标准的序言资格期间不允许误码。
 - □ 接收一个非标准的序言在此领域没有确定检测阈值(这是通过设置*PREAMBLE_CONFIG_NSTD: PATTERN_LENGTH*)。然 而,在接到一个非标准序言时,这个字段应该被配置为一个温和的值(例如,0X14为0x20)的搜索同步字,可能会出现的其他过 目 22 kbl
 - □ 检测PREAMBLE_VALID信号的通常使用的芯片作为触发事件为齿轮切换内部时钟计时循环或AFC功能。
 - □ 设置RX_THRESH = 0x00是一个有效的值,将导致跳过前导的检查/资格; 后立即进入接收模式的PREAMBLE_VALID信号将被置高。
- □ 闵: 0X0
- □ 最大: 到0x7f

PREAMBLE_CONFIG_NSTD

- 组: 0X10
- 索引: 0X02
- 总结: 与非标前同步信号模式的分组的发送/接收的配置。
- 。 在这个属性的字段只适用于非标准序言模式(例如,比1010或0101模式等)的数据包的发送和接收。
- 默认值: 0x00
- 寄存器查看:

		PREAMBLE_CONFIG_NSTD										
指数	7	6	5	4	4 3 2 1							
0X02	RX	RX_ERRORS PATTERN_LENGTH										
				默ì	人							
		0X0 0X0										

□字段详细信息

☐ RX_ERRORS [2:0]▲

- □ 说明:
 - □ 接待处和非标准序言格局鉴定过程中所允许的位错误数。
 - □ 被允许时被配置为接收标准序言图案无位误差;但是,有可能配置芯片接收非标准的序言,但是可以定义要匹配的模式,一个标准 的前言中,从而提供了一种装置,用于容忍误码。
- 闵: 0X0
- □ 马克斯: 0x7的
- □ 默认: 0x0
- □ PATTERN_LENGTH [4:0]▲
 - □ 说明:
 - □ 该值的定义非标准序言的重复模式(加1)指定的长度(以位为单位)。在图案中的位的实际值是在PREAMBLE PATTERN XX 属性中指定;该PATTERN_LENGTH场仅确定如何将这些指定的比特值的多传输为重复模式。
 - □ 在TX模式下,如果TX前导码(由所限定的总长度*PREAMBLE_TX_LENGTH*属性)长于PATTERN_LENGTH中,图案将被重复 必要的传输。
 - □ 在接收模式下接收一个非标准的前言中时,此字段确定必须接收到检测到有效的同步码前同步码的比特数。也就是说, PATTERN LENGTH字段提供了类似的检测阈值的功能为一个非标准的序言作为 PREAMBLE CONFIG STD 1: RX THRESH 提供了一个标准的序言。
 - □ 闵: 0X0
 - □ 马克斯: 0x1F
 - □ 默认: 0x0

PREAMBLE_CONFIG_STD_2

- 组: 0X10
- 索引: 0X03
- 摘要: 超时期间接待与标准序言模式的数据包时配置。
- 目的:
 - o 在初始接收和采集一个数据包时,它是非常有用的定义超时时间来限制时间的芯片仍然在沟道等待传入的数据包的数量。这个属性允许这个 序言搜索超时时间配置。
 - o 如果未在指定的超时时间内找到了一个有效的序言,一个INVALID_PREAMBLE事件被生成,并且可以用来产生从RX模式的中断和/或出口 处自动进行。
 - 。 在这个属性中的字段是否仅适用于RX模式,并只适用于接收标准序言模式(例如,1010或0101模式)。当被配置成接收一个非标准的前导 样式检测INVALID_PREAMBLE的是不可能的。
 - 两个不同的超时配置字段提供允许有显著不同长度和位分辨率的超时周期的定义。
- 默认值: 0X0F
- 寄存器查看:

	PREAMBLE_CONFIG_STD_2										
指数	7 6 5 4 3 2 1					1	0				
0X03	RX_PREAMBLE_TIMEOUT_EXTEND RX_PREAMBLE_TIMEOUT										
		默认									
		0)	K 0			0)	ΚF				

□字段详细信息

- RX_PREAMBLE_TIMEOUT_EXTEND [3:0]
 - □ 说明:
 - □ 的时间长度(以15个半字节为单位,即60位,最多225个半字节)确定的前导码不存在前向搜索前导码,和一个 INVALID PREAMBLE信号/中断。
 - □ 如果该字段的值是非零,则RX_PREAMBLE_TIMEOUT字段的值将被忽略。
 - □ 此字段允许非常长的RX超时周期和典型地用于应用程序,其中对RX住上一信道,并等待对TX数据包的到达。
 - □ 闵: 0X0
 - □ 马克斯: 0XF
 - 默认: 0x0
- ☐ RX_PREAMBLE_TIMEOUT [3:0] ▲
 - □ 描述:时间(半字节即4位)确定的前导不存在之前,搜索序言,以及INVALID_PREAMBLE信号/中断长度产生。的RX超时时间这个长 度通常用于RX通道扫描或跳频应用。此字段仅适用,如果RX_PREAMBLE_TIMEOUT_EXTEND字段的值是零。
 - □ 闵: 0X0
 - □ 马克斯: 0XF
 - □ 默认值: 0XF

PREAMBLE_CONFIG

- 组: 0X10索引: 0x04
- 摘要: 常规配置位序言领域。
- 目的:
- 杂项序言配置位。
- 默认: 0X21寄存器查看:

	PREAMBLE_CONFIG										
指数	7 6	5	4	3	2	1	0				
0x04	0 0	PREAM_FIRST_1_OR_0	LENGTH_CONFIG	MAN_CONST	MAN_ENABLE	STANDAR	D_PREAM				
	默认										
	0 0	0X1	0X0	0X0	0X0	0.	X1				

						_		
指数 7 6		5	4		3	2	1	0
0x04 0 0	PREA	M_FIRST_1_OR_0	LENGTH_C	ONFIG	MAN_CONS	TMAN_ENABLE	STANDARD	_PREAM
					默认			
0 0)	0X1	0X0		0X0	0X0	0X	1
∃字段详: □ PRE	EAM_FI]描述:	RST_1_OR_0 家位应该被设置为 丰标准)的函数,第					计算器应该正	确地配置に
	□ 格式:		1 PEADLE	L (D1)	u, 你在UTUI	文(小)E 1010/。		
_	- III 24.	名利	· · · · · · · · · · · · · · · · · · ·		值	描述		可用的功
		FIRST_0	14.		0		送的比特是	17/11/13/55
		FIRST_1			1 1	在数据包首先发送 1 。	送的比特是	
							节为单位。	
		名称	ĸ	,	值	描述		可用的功
		四位			产	[<i>PREAMBLE_TX</i> :都在啃。	《_LENGTH财	
		字节			1 位 性	的单 [PREAMBLE_TX [以字节为单位。	(_LENGTH属	
	N_CON 〕说明: 〕格式:	曼彻斯特编码通常 枚举		图案替			模式(或反之	
		名和	际		值	描述		可用的功
		NO_CON			0	当曼彻斯特编码是 启用通过设置MAI 位和STANDARD_ 0X2(即标准序言 0101),后曼彻斯特 STANDARD_PRI 0X1(即标准序言),后曼彻斯特色 是01100110。	N_ENABLE _PREAM = _FREAM = _F模式是 	
		CONST			1	当曼彻斯特编码是启用通过设置MAI位和STANDARD。 0X2,预曼彻斯特恒定为1的模式所 101010101。如果 STANDARD。即果 STANDARD。即果 时,预曼农供替, 特发送的比特将是 10101010。	N_ENABLE _PREAM = _PREAM = _FP言格局将 取代,而后 切比特将是 EAM = 0X1 图案将与常数 和后曼彻斯	
	N_ENAE 〕说明: 〕格式:	该位使能或禁用曼	物斯特编码/触	解码直	径只有序言领	域。该位是适用于	于TX和RX模式	t.
		名和	称		值	描述		可用的功
		NO_MAN			0	序言字段没有曼彻 码。	切斯特编码/解	
		EN_MAN				序言场曼彻斯特编	扁码/解码。	
	NDAR		X和RX模式,	但具有				1
		名称		值		描述		可用的

□ 传送模式:发送非标准序言(在 PREAMBLE_PATTERN_XX定 义)作为一个重复的模式,直到 达到所定义的半字节/字节

PRE_NS	0	数 <i>PREAMBLE_TX_LENGTH</i> 。 ■ RX模式: 期望接收的非标准的 前同步信号模式 (在 PREAMBLE_PATTERN_XX定 义)至少一次,并产生一个 PREAMBLE_VALID信号/中断时由PATTERN_LENGTH指定模式 的比特数的第一检测。
PRE_1010	1	□ 传送模式:传输标准1010序言 直到达到所定义的半字节/字节 数PREAMBLE_TX_LENGTH。 □ 接收模式:预计将收到一个标准 的1010或0101序言。在接收模 式中,0X1或0X2在这一领域中 的结果相同的操作的值。
PRE_0101	2	□ 传送模式:传输标准0101序言 直到达到所定义的半字节/字节 数PREAMBLE_TX_LENGTH。 □ 接收模式:预计将收到一个标准 的1010或0101序言。在接收模 式中,0X1或0X2在这一领域中 的结果相同的操作的值。

PREAMBLE_PATTERN

- 组: 0X10
- 索引: 0X05 ... 0X08
- 摘要:该位值描述非标准序言模式配置。
- 目的:
 - 。 该PREAMBLE_PATTERN属性定义在TX模式,预计在RX模式要接收的模式进行传输的模式,但只有当*PREAMBLE_CONFIG: STANDARD_PREAM*已经被设置为0x0(即,使用非标准的序言)。
 - 。 该PREAMBLE_PATTERN属性用于定义实际的位值描述非标准序言图案; *PREAMBLE_CONFIG_NSTD: PATTERN_LENGTH*用于定义如何PREAMBLE_PATTERN值的多少位被使用。
 - 。 在TX模式下,如果值*PREAMBLE_TX_LENGTH*大于*PREAMBLE_CONFIG_NSTD: PATTERN_LENGTH*,本PREAMBLE_PATTERN将被重复地发送,直到位的完整号码已被发送。
 - 在RX模式下,通过定义位的完整号码PREAMBLE_CONFIG_NSTD: PATTERN_LENGTH 必须一次PREAMBLE_VALID信号/中断产生之前收到。
 - 如果曼彻斯特编码/解码启用,PREAMBLE_PATTERN属性的值表示在芯片(即在TX模式曼彻斯特编码后,或之前在RX模式曼彻斯特解码)。
 - 。 该PREAMBLE_PATTERN的位总是发送0-31位时,明智的(例如0位先发送)。
- 默认值: 0x00, 0x00, 0x00, 0x00
- 寄存器查看:

		PREAMBLE_PATTERN											
指数	7	6	5	4	3	2	2 1 0						
0X05		PATTERN [31:24]											
0X06		PATTERN [23:16]											
0X07		PATTERN [15:8]											
0X08				PATT	ERN [7:	0]							
				ET.	默认								
0X05				(0X0								
0X06				(0X0								
0X07				(0X0								
0X08				(0X0								

□字段详细信息

- □ PATTERN [31:0] ▲
 - □ 说明: 非标序言模式位要发送或预计能够收回。
 - □ 闵: 0X0
 - □ 马克斯: 为0xffffffff
 - □ 默认: 0x0

PREAMBLE_POSTAMBLE_CONFIG

- 组: 0X10
- 索引: 0X09
- 总结: 后记功能和后置模式位配置。
- 目的:
 - 该芯片提供到搜索字节的嵌入有效载荷数据字段中的特定模式(S),并采取行动,或在检测到该模式产生一个中断事件的能力。这种功能被称为一个后同步。
 - 。 该属性可以实现此功能,并配置它的功能方面,如后记的大小,并采取在检测到的动作。
 - 。 该芯片将只搜索一个后置模式,一旦同步字检测(即后置模式必须嵌入的有效载荷数据字段内)。这是不可能使用后同步功能,如果没有同步字或没有检测到。
- 默认值: 0x00
- 寄存器查看:

	PREAMBLE_POSTAMBLE_CONFIG									
指数	7		6		5	4	3 2	1	(0
0X09	POSTAMBLE_ENABLE	PKT_VALID_	ON	POSTAMBLE	0	0	0 0	POSTAM	BLE	SIZE
	默认									
	0X0		0X0)	0	0	0 0	0.	X0	

□字段详细信息

- □ POSTAMBLE_ENABLE □ 说明: 启用/禁用检测后置模式。
 - □ 格式: 枚举

名称	值	描述	可用的功能
假	0	□ 禁用检测后置的。	
真	1	□ 能够检测一个后置的。检测后 置会产生一个 POSTAMBLE_DETECT中断 事件。	

- □ PKT_VALID_ON_POSTAMBLE □ 说明:
 - - □ 选择将在检测到一个后置的应采取的行动。 □ 该位没有如果POSTAMBLE_ENABLE未设置生效。
 - □ 格式: 枚举

名称	值	描述	可用的功能
假	0	□ 检测后置后的数据包的接收将继续下去。然而, POSTAMBLE_DETECT中断 事件仍然产生,可用于通知主 机MCU。	
真	1	□ 数据包的接收将停止在检测后 置和部分将过渡到由指定的状 态START_RX: RXVALID_STATE。	

- POSTAMBLE_SIZE [1:0]▲
 - □ 说明: 选择的后记图案的大小。□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 后同步码字长为8位,并在所 定义的位模 式 <i>POSTAMBLE_PATTERN</i> [31:24]。	
ENUM_1	1	□ 后同步码字为16位,与在规定 的位模 式 <i>POSTAMBLE_PATTERN</i> [31:16]。	
ENUM_2	2	□ 后同步字是24位,与中定义的 位模 式 <i>POSTAMBLE_PATTERN</i> [31:8]。	
ENUM_3	3	□ 后同步码字为32位,与在规定 的位模 式 <i>POSTAMBLE_PATTERN</i> [31:0]。	

PREAMBLE_POSTAMBLE_PATTERN

- 组: 0X10
- 索引: 0X0A ... 0X0D
- 摘要: 定义后置模式。
- 目的:
- 。 请参阅*PREAMBLE_POSTAMBLE_CONFIG*了解有关的后记功能配置的详细信息。 默认值: 0x00,0x00,0x00,0x00
- 寄存器查看:

		PR	EAMBL	E_POS	TAMBL	E_PAT	TERN				
指数	7	6	5	4	3	2	1	0			
0X0A		POSTAMBLE_PATTERN [31:24]									
0X0B		POSTAMBLE_PATTERN [23:16]									
0X0C		POSTAMBLE_PATTERN [15:8]									
0X0D		POSTAMBLE_PATTERN [7:0]									
				黒	犬认						
0X0A				C)X0						
0X0B				C)X0						
0X0C		0X0									
0X0D		•	•	C)X0	•					

□字段详细信息

☐ POSTAMBLE_PATTERN [31:0]▲

		〕说明:定义 〕闵: 0X0 〕马克斯: 为 〕默认: 0x0	0xfffffff						
同步	÷								
SYN	C_CON	IFIG							
• :	目的: • 杂項	00 步字配置位 烦配置同步学 字节 3 ,其 (01	P位。注:同步字的每 [、] 次是字节 2 等)		送/小端方式	(即至少	有显著位在前)接收。同	步字的字节(s)是发送/接收降序排列(即第
	LIA NV	_	SYNC_C						
•	指数 0x00	7 SKIP TX	6 5 4 RX ERRORS	3 4FSK	2 MANCH	1 0 长度			
	0,000	OKII _IX	默认		WANOTT	K/X			
		0X0	0X0	0X0	0X0	0X1			
E	字段详组 SKIF								
			名称		值		描述	可用的功能	
		SYN	IC_XMIT		0	字节:	字被发送。包括同步字的 数是由长度字段此相同属 定义的。		
		NO_ ERRORS [2	SYNC_XMIT		1	SKIP	字是不会传染。注: _TX位只影响TX操作, 不影响接收同步字。		
	□ □ □ 4FSI)闵: 0X0 〕马克斯: 0 〕默认: 0x0) 学	,在接收[的比特错计			
			名称		值		描述	可用的功能	
		禁用			0	键控	字是不是4(G)的频移 调制。 字是4(G)的频移键控		
		启用			1	调制			
		说明: 如果	更对位/芯片数量的增加		启用, MOL	DEM_MA	AP_CONTROL: ENMAN	CH也应设置; 过可用的功能	· 这导致了同步字的扩展搜索超时
		禁用			0	□ 同步:		可用的功能	
		启用			1		字是曼彻斯特编码。		
	□ 长度	[1:0]				-			
		格式: 枚革	· 名称		值		描述	可用的功能	1
		LEN	L1_BYTES		0	度。	字是1字节(8位)的长 同步字字节3 [31:24]被使 ,其在规定 //NC_BITS属性。	可用的勿能	
		LEN	I_2_BYTES		1	同步 [:] 用(: 它们!	字是2字节(16位)长。 字字节3和2个[31:16]被使 按降序排列),用在定义 的值SYNC_BITS财产。		
		LEN	I_3_BYTES		2	长。 [31:8 列)	字是3个字节(24位) 同步字中的字节3,2,和1]被使用(按降序排 ,并在所定义的它们的 (NC_BITS属性。		
		LEN	_4_BYTES		3	同步 [31:0 列)	字是4字节(32位)长。 字中的字节3,2,1和0]被使用(按降序排 ,并在所定义的它们的 (NC_BITS属性。		
					<u> </u>	ш•1		<u>I</u>	I

SYNC_BITS

- 组: 0x11
- 索引数量: 0x01 ... 0x04
- 摘要: 同步字。
- 目的:
 - 。 定义同步字的价值为TX和RX操作。注:按降序排列虽然同步字字节(s)是发送/接收(即字节3第一,其次是字节2等),每发送一个字节/ 小端方式 (即至少有显著位接收第一次)。
- 默认值: 0X2D, 0xd4, 0X2D, 0xd4
- 寄存器查看:

		SYNC_BITS										
指数	7	6	5	4	3	2	1	0				
0X01		BITS [31:24]										
0X02		BITS [23:16]										
0X03		BITS [15:8]										
0x04		BITS [7:0]										
				默	认							
0X01				0X	2D							
0X02				0×	d4							
0X03		0X2D										
0x04				0x	d4							

□字段详细信息

- BITS [31:0] ▲
 - □ 说明: 位

 - □ 闵: 0X0 □ 马克斯: 为0xfffffff
 - □ 默认值: 0x2dd42dd4

PKT

PKT_CRC_CONFIG

- 组: 0X12
- 索引: 0x00
- 摘要: 选择一个CRC多项式和种子。
- 目的:
 - 。 该芯片包含一个32位CRC引擎,用于生成与各选择的数据字段进行比较校验的目的。这个属性是用来选择所需的CRC多项式和CRC种子
 - 。 如果一个8位CRC多项式被选择时,所得到的校验和的长度为1字节。如果一个16位CRC多项式被选择时,所得到的校验和的长度为2个字 节。如果一个32位CRC多项式被选择时,所得到的校验和的长度为4个字节。
 - 。在这个属性的配置位是共同的TX和RX模式;然而,此属性时,自动数据包处理被启用(例如,当使用在TX FIFO在TX模式调制源时,或者是 只适用PKT_CONFIG1: PH_RX_DISABLE被清除在RX模式)。
- 默认值: 0x00
- 寄存器查看:

	PKT_CRC_CONFIG								
指数	7	6	5	4	3	2	1	0	
0x00	CRC_SEED 000 CRC_POLYNOMIAL						۸L		
	默认								
	0X0 0X0 0X0								

□字段详细信息

□ CRC_SEED▲ □ 格式: 枚举

名称	值	描述	可用的功能
CRC_SEED_0	0	□ 使用全0的CRC种子。	
CRC_SEED_1	1	□ 使用全1的CRC种子。	

☐ CRC_POLYNOMIAL [3:0] ▲

□ 格式: 枚举

名称	值	描述	可用的功能
NO_CRC	0	□ CRC-16-DNP: X16 + X13 + X12 + X11 + X10 + X8 + X6 + X5 + X2 +1 (使用MBUS)。	
ITU_T_CRC8	1	☐ ITU-T CRC8: X8 + X2 + X +1。	
IEC_16	2	☐ IEC-16: X16 + X14 + X12 + X11 + X9 + X8 + X7 + X4 + X +1。	
BAICHEVA_16	3	☐ Baicheva-16: X16 + X15 + X12 + X7 + X6 + X4 + X3 +1。	
CRC_16_IBM	4	□ CRC-16 (IBM) : X16 + X15 + X2 +1。	

ССПТ_16	5	□ ССП-16: X16 + X12 + X5 +1。
KOOPMAN	6	□ 库普曼: X32 + X30 + X29 + X28 + X26 + X20 + X19 + X17 + X16 + X15 + X11 + X10 + X7 + X6 + X4 + X2 + X +1。
IEEE_802_3	7	☐ IEEE 802.3: X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1。
Castagnoli酒店	8	□ Castagnoli酒店: X32 + X28 + X27 + X26 + X25 + X23 + X22 + X20 + X19 + X18 + X14 + X13 + X11 + X10 + X9 + X8 + X6 +1。

PKT_WHT_POLY

- 组: 0X12
- 索引: 0X01 0X02 ...
- 简介: 16位多项式的PN发生器(例如,数据美白)值
- 目的:
 - 。 该芯片包含一个16位线性反馈移位寄存器(LFSR),用于产生一个伪随机数(PN)的目的。所得到的PN序列可以用于数据美白/去白化由 异或与指定的字段的数据比特的输出。
 - 的PN序列也可以通过MODEM_MOD_TYPE属性的配置中使用的调制源的TXDATA流。这是非常有用的测试目的(例如,BER测试)。
 - 。 由LFSR产生的PN序列是由选定的16位多项式和起始种子值来确定。这个属性定义了多项式。
 - 。在一般情况下,它是理想的选择的多项式的值,结果在一个最大长度序列运行,其中,PN模式的长度=2^N-1(例如,模式长度=511比特 的PN9序列)。可能有一个以上的多项式的值,这将导致在所希望的长度的PN序列;下列多项式的值被提供作为示例,各种流行的PN序列的 长度。
 - - PN6: PKT_WHT_POLY = 0x0030.

 - PN9: PKT_WHT_POLY = 0x0108。- PN11: PKT_WHT_POLY =成0x0500。
 - - PN13: PKT WHT POLY = 0x1B00.
 - - PN15: PKT_WHT_POLY = 0x6000.
 - 。 相关的PN序列的产生额外的属性是PKT WHT SEED和PKT WHT BIT NUM。
- 默认值: 0X01, 0X08
- 寄存器查看:

	PKT_WHT_POLY										
指数	7	6	5	4	3	2	1	0			
0X01	WHT_POLY[15:8]										
0X02		WHT_POLY[7:0]									
				-	默认						
0X01		0X1									
0X02				位	于0x8						

□字段详细信息

- WHT_POLY [15:0] ▲
 - □ 说明: 定义了16位PN多项式的值。
 - □ 闵: 0X0
 - □ 马克斯: 0xFFFF的
 - □ 默认值: 量0x108

PKT_WHT_SEED

- 索引: 0X03 ... 0x04
- 摘要: 为PN发生器(例如,数据美自)16位种子值
- 目的:
 - 由LFSR产生的PN序列是由选定的16位多项式和起始种子值来确定。此属性定义的起始种子值。
 - o 种子值决定了PN序列的起始状态,但不会影响序列的比特顺序。
 - 。 请参阅文字说明PKT_WHT_POLY了解有关的PN发生器的配置的更多细节。
- 默认值: 0xff的, 255
- 寄存器查看:

	PKT_WHT_SEED											
指数	7	6	5	4	3	2	1	0				
0X03	WHT_SEED [15:8]											
0x04		WHT_SEED [7:0]										
				點								
0X03		为0xff										
0x04				为	0xff							

□字段详细信息

- WHT_SEED [15:0] ▲
 - □ 说明: 定义了16位PN种子值。

)闵:0X0)马克斯:0xFFFF	= 的					
)默认值: 0xFFFF						
WHT	BIT_NUM						
组: 0X12	2						
索引: 0>	(05						
总结: 该 目的:	LFSR (用于生成)	<i>PN /</i> 数据白化序列)	的位被用来	作为输出位用	一大选择数据的加扰。		
	属性确定的16位线	性反馈移位寄存器的	位被作为输	出比特,与有	· 	运算时,数据自	1化被启用。
		会影响PN序列的起点					
 请参	影阅又字说明₽K /_ 累性还允许特殊的	_WHT_POLY了解有 其子软件的粉捉美白	天的PN友生 和CPC質注	E器的配置的5	更多细节。 B的建姓后德教位塞方哭正	党的其 王碩 姓 的	的实现相比)的配置。这是
					用支持进一步的细节。	市口坐 1 夾川口	7天观相记/ 时配直。 心定,
默认值:	0x00		·				
寄存器查	看:						
		PKT_WHT_BIT_	NUM				
指数	7	6	5 4 3	2 1 0			
0X05	SW_WHT_CTRL		0 0 WI	HT_BIT_NUM			
	0)/0	默认	0.40	0)/0			
	0X0	0X0	0X0 0	0X0			
]今 61.24.4	加冷自						
字段详织	_						
	_WHT_CTRL▲ 〕说明:启用软件。	美白过的数据句					
ä	· 格式: 枚举	大口及的效抗区。					
		名称	值		描述	可用的功能	
	DISABLE		0		基于软件的数据白化算		
				法。	基于软件的数据白化算		
	启用		1	法。	至 扒 円 剱 竹 口 化 丹		
	CRC_CTRL		l .			l .	1
						SW_WHT_CTF	RL位美白。如果不使用基于
	的美白,CRC校 格式:枚举	验功能,必须在包处	:理器进行配	L置(见PKT_	CRC_CONFIG) 。		
	1 相共: 仅午	名称	值		描述	可用的功能]
	DISABLE		0	□ 禁用	基于软件的CRC引擎。	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	启用		1	□ 启用	基于软件的CRC引擎。		
	_BIT_NUM [3:0]						
	格式: 枚举	h Th	/±:	1	44.44	三田台社 体	1
		名称	值	□ 第0	描述 立被选择作为输出位数据	可用的功能	
	ENUM_0		0	美白			
	ENUM_1		1	□ 位1	坡选择作为输出位数据美		
				自。	坡选择作为输出位数据美		
	ENUM_2		2	自。	双匹拜作为制击包数据美		
	ENUM_3		3		披选择作为输出位数据美		
	LINOW_3		3	白。			
	ENUM_4		4	□ 第 4 4 美白	位被选择作为输出位数据		
	ENUM_5		5	□ 比特 美白	5被选择作为输出位数据		
			_		立被选择作为输出位数据		
	ENUM_6		6	美白	٥		
	ENUM_7		7		位被选择作为输出位数据		
				美白	。 位被选择作为输出位数据		-
	ENUM_8		8	美白			
	ENUM_9		9		立被选择作为输出位数据		
			3	美白			
	ENUM_10		10	□ □ 位10)被选择作为输出位数据美		

□ 位**11**被选择作为输出位数据美白。

□ 位**12**被选择作为输出位数据美白。

□ 位13被选择作为输出位数据美

□ 位**14**被选择作为输出位数据美白。

□ 位15被选择作为输出位数据美

白。

11

12

13

14

15

ENUM_11

ENUM_12

ENUM_13

ENUM_14

ENUM_15

PKT_CONFIG1

- 组: 0X12
- 索引: 0X06
- 摘要: 常规配置位的数据包的发送或接收。
- 目的:
- 此属性提供了一般的配置位的数据包的发送或接收。
 在这个属性的配置位一般都是以双方共同的TX和RX模式;一个例外是PH_RX_DISABLE位,这是仅适用于RX模式。
 默认证: 0x00
- 寄存器查看:

		PKT_CONFIG1									
指数	7	6	5	4	3	2	1	0			
0X06	PH_FIELD_SPLIT	PH_RX_DISABLE	4FSK_EN	0	MANCH_POL	CRC_INVERT	CRC_ENDIAN	BIT_ORDER			
	默认										
	0X0 0X0 0X0 0X0 0X0 0X0 0X0 0X0										

6 PH_FIELD_SPLIT PH_RX_DISABLE 4 0X0 0X0	FSK_EN			2	1		0
1		0	MANCH_POL	CRC_INVERT	CRC_EN	NDIAN E	BIT_OR
,			默认				
	0X0	0X0	0X0	0X0	0X0	C	0X0
#详细信息 PH_FIELD_SPLIT	(转变之间)	的字具	受级属性(例如性的定义。也)	1,字段长度,	数据白化 能够使用 三式(物 和RX模性从属性 (1220,	等)。 I的 TX 和	
DV DICADLE			0x123	+ □10 ∘			
说明:该位控制的自动数据包处理: 化等),不可用,除非数据包处理: 位。							
□ 说明:该位控制的自动数据包处理: 化等),不可用,除非数据包处理: 位。 □ 格式: 枚举		E: 数		是可用在TX模		-启用/零	*用数据
□ 说明:该位控制的自动数据包处理: 化等),不可用,除非数据包处理: 位。 □ 格式:枚举		E: 数 值	据包处理始终	是可用在TX模 描述	式;有用于	-启用/零	
□ 说明:该位控制的自动数据包处理: 化等),不可用,除非数据包处理: 位。 □ 格式: 枚举		E: 数	据包处理始终	是可用在TX模 描述 器在接收模式	式;有用于	-启用/零	*用数据
□ 说明:该位控制的自动数据包处理: 化等),不可用,除非数据包处理; 位。 □ 格式:枚举		E: 数 值	据包处理始终	是可用在TX模 描述	式;有用于	-启用/零	*用数据
化等),不可用,除非数据包处理(位。 □ 格式: 枚举 ————————————————————————————————————	已启用。注 4(G)FS	值 0 1 K处环	据包处理始终 ②包处理 ②包处理 用。 明制解调器 C置PH值来处理	是可用在TX模: 描述 器在接收模式 器在接收模式 器在接收模式 是必须另外配置 里数据流的RX F	式;有用于 下启用。 下被禁 为通过适 FIFO是位	可用的 当的设置对(而)	竹功能 置4(G)
□ 说明:该位控制的自动数据包处理:化等),不可用,除非数据包处理:位。 □ 格式:枚举 ———————————————————————————————————	已启用。注 4(G)FS	直 0 1 K 处理	据包处理始终 ②包处理 ②包处理 用。 明制解调器 C置PH值来处理	是可用在TX模: 描述 器在接收模式 器在接收模式 器不接收模式 是必须另外配置 里数据流的RX F 描述 调器是不是在4	式;有用于 下启用。 下被禁 为通过适 FIFO是位	可用的 当的设置对(而)	竹功能 竹功能 置4(G)

□ 格式: 枚举

(人)			
名称	值	描述	可用的功能
PATTERN_10	0	□ 0被编码到/从一个10曼彻斯特 图案解码,和一个1被编码到/ 从一个01曼彻斯特图案解码。	
PATTERN_01	1	□ 0被编码到/从一个01曼彻斯特 图案解码,和一个1被编码到/ 从一个10曼彻斯特图案解码。	

□ CRC_INVERT □ 说明:该位决定是否在发送或接收的CRC校验每个比特的极性反转。□ 格式: 枚举

名称	值	描述	可用的功能
NO_INVERT	0	□ 发送/接收的每个CRC校验位 与非极性反转。	
INVERT_CRC	1	□ 在TX模式,计算CRC校验和,然后反转传输之前每一个校验位的极性。在RX模式,反转每个接收的CRC校验位前比较极性。在这两种模式中,在FIFO中的数据保持不变。	

		1 284	ᄪᄪ											
		〕说			的CRC	校验的字节发达	送或接收	7的顺序	*					
				注意:如果-	个16位(CRC多项式被	选中 (右	E PKT _		CONFIG),	所得到的校	验和的长度	为2/	个字节。如果一个32位CRC多项
		枚		式被选择时, 枚举	所得到的	的校验和的长度	E为4个	字节。						
		y TH	14.	7人十	名称		值			描述		可用的功	1能	
				LSBYTE_FIF	RST		0			字节接收/传字节到高字				
				MSBYTE_FI	RST		1		CRC	字节接收/在字节到低字	顺序传送:			
	□ BIT_	OR	DE	R.								· ·		
		说]所有数据	居字段的比特的	的发送/排	安 收顺序	序。注:	序言和同步	5字字段始终分	发送或接收L	_SB7	生前此位的状态 (小端) 无关。
				这个位不影响	字节的发	发送/接收顺序。	例如:	字节的	的传输料	将匹配在其中	它们被存储在	在TX FIFO的	勺顺月	序。不过,该位选择每个字节是
						ndian或little-en 副的实时观察			多脚) 自	的数据位 カ	4. 公 反 映 在 空	由接口上白	己的	真实时间,明智的序列; 位顺序
				反转只存储在			\ I	OI IO	3 /J44 / L	11901/11/12/	17. 从外压工		⊔н,	A 大可呼, 勿目的/17/1, 应/吸/1
		丨格	式:	枚举	b 11.		/			LIL V IS		T = # 4/ =1	Δk	
					名称		值		Med	描述	字段(大端)	可用的功	形	
				MSBIT_FIRS	T		0		的所 收第	有字节。第7 一时间明智的	'位是传送/接 内。			
				LSBIT_FIRS	Т		1		所有		没(小端)的 泛发送/接收的			
● ● ● ● ■	目的: 。 该是 。 此原 DS	K08 是	立 支	适用于RX模式 的字段的末尾 .D参数指向。 字段的接收长	变长度的 。,只有当 接收为完整 作为完惠 整体 管值索的长	数据包。此属 始自动包处理器 度值SRC_FIE 各的数据包可以 被提取,并使 定度值,该命令	启用(LD: P 【包括除 用返回的	即 <i>PKT</i> KT_LE 了可变 的 <i>PAC</i>	_CON N_FIE 长度字 KET_II	FIG1: PH_ ELD_SOUR(译段等固定长 NFO命令,真	RX_DISABL CE值。所接收 度的字段,总 或可直接检索	E被清除)。 女到的长度值 数据包长度 从RX FIFO	直总月 €可じ 中 IN_	是描述字段的可变长度由 从比所接收到的长度值不同。只 _FIFO位设置该事件。如果使 度值后,进入RX模式清零。
	41× 161-	L,	- 1			KT_LEN		4						
F	指数 0X08	7	0	5 ENDIAN	4 □ →	3 IN_FIFO	2	1 ST_FIEI	0	-				
-	υλύδ	U	U	ENDIAN	尺寸	默认	טכ	oi_FIE	רח	1				
H		0	0	0X0	0X0	0X0		0X0		1				
_		<u> 1</u>	- 1				1			1				

_	,-	ĽП	14	/am	1-	白	
-	-	F	7 +:	ZHI	1=	Ħ	

- □ ENDIAN
 - □ 说明: 该接收到的字段的长度值可以是长度为一个或两个字节。在事件接收到的字段长度值是两个字节的长度(即,大小位),尾数位 确定接收到的字段长度值是否首先考虑的第一个最显著字节或至少显著字节。
 - □ 格式: 枚举

名称 值 描述 可用的功能 □ 接收到的字段长度值是第一个 小 0 至少显著字节。 □ 接收到的字段长度值是最显著 1 字节在前。

□ 尺寸▲

□ 说明:该接收到的字段的长度值可以是长度为一个或两个字节。SIZE位确定接收到的字段长度值的长度。□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	■ 接收到的字段长度值占一个字 节。	
ENUM_1	1	■ 接收到的字段长度值是两个字 节的长度。	

■ IN FIFO

□ 描述:该芯片提供脱光接收到的字段长度字节(s)并存储在RX FIFO只有效载荷数据字节的能力。□ 格式: 枚举

枚半			
名称	值	描述	可用的功能
сит_оит	0	□ 包含长度字段值接收到的数据 字节不把在RX FIFO。	
LEAVE_IN	1	□ 被放置在RX FIFO包含字段长度值接收到的数据字节。存储的值表示接收到的长度数据字节之前,由LEN_ADJUST价值调整(如适用)的值。	

■ DST_FIELD [2:0]

□ 描述:此值确定哪些数据字段将被设置为一个可变长度的字段。该值必须大于该值在*PKT_LEN_FIELD_SOURCE*: *SRC_FIELD* (即,可变长度字段必须位于包含字段长度字节后场)。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用可变长度的数据包模式; 芯片接收到固定长分组与由 PKT_FIELD_X_LENGTH属性 中指定的字段的长度,或由传 递给该数据包的长度值指定 START_RX命令。	
ENUM_1	1	□ 不允许的值(字段1可以不被 配置为可变长度字段)。	
ENUM_2	2	□ 字段 2 被配置为可变长度字 段。	
ENUM_3	3	□ 字段 3 被配置为可变长度字 段。	
ENUM_4	4	□ 字段4被配置为可变长度字 段。	
ENUM_5	5	□ 字段5被配置为可变长度字段。	
ENUM_6	6	□ 禁用可变长度的数据包模式; 芯片接收到固定长分组与由 PKT_FIELD_X_LENGTH属性 中指定的字段的长度。然而, 所接收到的字段的长度值是从 指定SRC_FIELD捕获并可以 检索与PKT_INFO命令。	
ENUM_7	7	□ 禁用可变长度的数据包模式; 芯片接收到固定长分组与由 PKT_FIELD_X_LENGTH属性 中指定的字段的长度。然而, 所接收到的字段的长度值是从 指定SRC_FIELD捕获并可以 检索与PKT_INFO命令。	

PKT_LEN_FIELD_SOURCE

- 组: 0X12
- 索引: 0X09
- 摘要: 包含接收到的数据包长度字节(s)视场数。
- 目的:
 - 。 此属性配置芯片用于接收可变长度的数据包,并且其中定义了字段的长度是在该数据包。数据包长度字节(s)必须是最后一个字节(s)在一个固定长度的字段,必须先可变长度字段。
 - 。 这个属性只适用于RX模式,并仅在自动包处理器被使能(即,在PKT_CONFIG1属性的PH_RX_DISABLE位被清零)。
- 默认值: 0x00
- 寄存器查看:

		PKT_LEN_FIELD_SOURCE										
指数	7	6	5	5 4 3 2 1 0								
0X09	0	0	0	0	0	SRC_FIELD						
		默认										
	0	0	0	0 0 0 0 0X0								

□字段详细信息

☐ SRC_FIELD [2:0]▲

□说明:此值确定哪些数据字段将被处理为包含数据包长度字节(s)。该SRC_FIELD值必须小于该值*PKT_LEN: DST_FIELD*(即,可变长度字段必须位于包含数据包长度字节后场)。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 字段1被处理为包含数据包长 度字节(s)。	
ENUM_1	1	□ 字段1被处理为包含数据包长 度字节(s)。	
ENUM_2	2	□ 场2被处理为包含数据包长度 字节(s)。	
ENUM_3	3	□ 字段3被处理为含有该数据包 长度字节(s)。	
ENUM_4	4	□ 字段4处理为含有该数据包长 度字节(s)。	
ENUM_5	5	□ 不允许的值(字段5可以不被 配置为包含在数据包长度字 节)。	

- 组: 0X12
- 索引: 0X0A
- 摘要:提供调整/接收的数据包的长度值(以适应不同的限定的总数据包长度的方法)的偏移量。
- 目的:
 - 。 它可以定义在各种不同的方式(例如,包括/不包括分组长度字节,包括/不包括CRC字节,等等)此属性提供调节/抵消所接收的分组的长度的装置,一个数据包的总长度值以符合大范围的数据包长度的实现。
 - 。 此属性仅适用于RX模式,只有当自动包处理器被激活(即在该PH_RX_DISABLE位PKT_CONFIG1属性被清除)。

 - 。 该LEN ADJUST字段所要求的恒定值通常被定义在一个协议规范或监管标准,或者可以从说明书中得出。
 - 。 该芯片的默认处理方式是接收到的数据包的长度值不包括该数据包的字节长度,不包括CRC字节。在这样的情况下,LEN_ADJUST字段应该设置为0x00。
 - 如果接收到的报文长度值包括数据包长度的字节和/或CRC字节,它的有效数值必须通过添加负偏移被减小。在这样的情况下, LEN_ADJUST字段应该设置为额外的字节数(在2的补码格式)的负值。例如:所发送的数据包具有一个2字节的数据包长度字段后跟一个10字节的有效载荷字段,和包含在数据包长度字节=0X000C=12个字节的值。LEN_ADJUST的值应设置=0xFE的=-2。
 - 。 该LEN_ADJUST字段是一个符号的值。
 - 。数据包长度字节(s)由返回的值*PACKET_INFO*命令反映了从所接收的分组之前,由LEN_ADJUST值调整所提取的值。该值存储在RX FIFO(在事件中*PKT_LEN: IN_FIFO*位)也代表了未经调整的长度值。
- 默认值: 0x00
- 寄存器查看:

		PKT_LEN_ADJUST										
指数	7	7 6 5 4 3 2 1 0										
0X0A		LEN_ADJUST										
		默认										
				()X0							

□字段详细信息

- □ LEN ADJUST [7:0]▲
 - □ 描述: LEN_ADJUST字段的值被添加到分组长度字节(s)的接收值; 其结果是用来配置指定的可变长度字段的长度。
 - □ 类型: S8
 - □ 闵: -0x80的
 - □ 最大: 到0x7f
 - 默认: 0x0

PKT_TX_THRESHOLD

- 组: 0X12
- 索引: 0X0B
- 简介: TX FIFO几乎是空的门槛。
- 目的:
 - 。 该芯片提供了两个独立的64字节的FIFO存储器,用于存储发送和接收数据的目的。(当*GLOBAL_CONFIG: FIFO_MODE*。位被设置,这两个FIFO被组合成一个单一的129个字节的共享FIFO)
 - 。 此属性用于设置TX FIFO的阈值。一个中断事件时的在TX FIFO空的空间量等于或大于该阈值生成的。
 - 。 该TX_FIFO_ALMOST_EMPTY中断可用于对信号进行主机MCU来存储多个数据字节到TX FIFO,从而提供了一种装置,用于处理数据包的长度大于在TX FIFO(的大小,即,64个字节,或在共享FIFO 129字节模式)。
- 默认: 0X30
- 寄存器查看:

		PKT_TX_THRESHOLD										
指数	7	7 6 5 4 3 2 1 0										
0X0B		TX_THRESHOLD										
		默认										
				02	X30							

□字段详细信息

- ☐ TX_THRESHOLD [7:0]▲
 - □ 说明:设置TX FIFO几乎空门限,以字节数。
 - □ 闵: 0X0
 - □ 马克斯: 0X40
 - □ 默认: 0X30

PKT_RX_THRESHOLD

- 组: 0X12
- 索引: 0X0C
- 简介: *RX FIFO*几乎满阈值。
- 目的:
 - 。 该芯片提供了两个独立的64字节的FIFO存储器,用于存储发送和接收数据的目的。(当*GLOBAL_CONFIG: FIFO_MODE*。位被设置,这两个FIFO被组合成一个单一的129个字节的共享FIFO)
 - 。 此属性用于设置在RX FIFO阈值。一个中断事件时存储在RX FIFO中的字节数等于或大于该阈值的生成。
 - 。 该RX_FIFO_ALMOST_FULL中断可用于信号主机MCU读取更多的数据字节从RX FIFO,从而提供了一种手段来处理数据包长度大于RX FIFO(大小即64个字节,或在共享FIFO 129字节模式)。
- 默认: 0X30
- 寄存器查看:

	PK	T_RX_	THRES	HOLD	

指数	7	6	5	4	3	2	1	0
0X0C				RX_TH	RESHO	LD		
				ETY.	狀认			
				C	X30			

三字段详细信息

- RX_THRESHOLD [7:0]
 - □ 说明:设置RX FIFO几乎满的阈值,以字节数。
 - □ 闵: 0X0
 - □ 马克斯: 0X40
 - □ 默认: 0X30

PKT_FIELD_1_LENGTH

- 组: 0X12
- 索引: 0X0D ... 0x0E的
- 摘要: 无符号13位字段1的长度值。
- 目的:
 - 。 该PKT_FIELD_1_LENGTH属性指定的字节字段1的长度。该字段长度为一个无符号的13位值。
 - 。 的有效载荷为单独字段的分区被设置,以支持可变长度的分组,并允许不同形式的数据处理(例如,曼彻斯特编码,数据白化等),在不同的领域。
 - 。 这些属性是适用于TX模式仅当START_TX命令与参数TX_LEN = 0。
 - A)接收数据包处理是通过清除启用: 只有在下列情况下这些属性适用于RX模式PKT_CONFIG1: PH_RX_DISABLE,和b)的
 START_RX命令与参数RX_LEN = 0,和c) PKT_CONFIG1: PH_FIELD_SPLIT被清除。(如果PKT_CONFIG1: PH_FIELD_SPLIT位被置位,在接收模式中的各个字段的长度由PKT_RX_FIELD_LENGTH_XX性质来确定。)
 - 。零在这个属性的值表示该字段不使用。在TX模式下,数据将被检索从TX FIFO直到遇到第一个字段,其长度已经被设置为零。在接收模式下,数据将被存储在RX FIFO中,直到再次遇到的第一个字段的长度已经设置为零。它是可能的(尽管不常见)来设置的字段1 = 0的字节长度,因为这将表明没有有效数据的一个数据包的发送/接收的。
 - 。 字段1不能被配置为一个可变长度字段, 因为有可能包含可变长字节(s)没有前一场。
- 默认值: 0x00, 0x00
- 寄存器查看:

		PKT_FIELD_1_LENGTH									
指数	7	6	5	4	3	2	1	0			
0X0D	0	0	0		FIELD_1_LENGTH [12:8]						
0x0E的		FIELD_1_LENGTH [7:0]									
					默	认					
0X0D	0	0	0	0 0X0							
0x0E的					0)	X0					

□字段详细信息

- ☐ FIELD 1 LENGTH [12:0]▲
 - □ 说明: 位字段长度为12~0。
 - □ 闵: 0X0
 - □ 马克斯: 0x1FFF的
 - 默认: 0x0

PKT_FIELD_1_CONFIG

- 组: 0X12
- 索引: 0X0F
- 摘要:通用数据处理和数据包配置位字段1。
- 目的:
 - 将有效载荷送入不同的领域的划分是为了支持功能,如可变长度的数据包和特定领域的数据处理(如曼彻斯特编码,数据白化等)。此属性提供了配置位上场1场特定的处理。
 - 在这个属性的配置位是共同的TX和RX模式依赖于PKT_CONFIG1: PH_FIELD_SPLIT; 然而,此属性时,自动数据包处理被启用(例如,当使用在TX FIFO在TX模式调制源时,或者是只适用PKT_CONFIG1: PH_RX_DISABLE被清除在RX模式)。
- 默认值: 0x00
- 寄存器查看:

		PKT_FIELD_1_CONFIG									
指数	7	6	5	4	3	2	1	0			
0X0F	0	0	0	4FSK	0	PN_START	漂白	MANCH			
						默认					
	0	0	0	0X0	0	0X0	0X0	0X0			

□字段详细信息

- □ 4FSK
 - □ 说明:
 - □ 该芯片支持的(G)FSK调制方式,即跨越某些字段2(G)FSK和4(G)FSK在其他领域领域的具体配置。在这种情况下,调制解调器必须为整个数据包4(G)FSK操作(通过设置被配置*MODEM_MOD_TYPE*属性),和包处理器然后在一个场逐场的基础上,从处理数据流配置在FIFO作为位双(4(G)FSK)或单位(为2(G)FSK)。
 - □ 当图4(G)的FSK跨越一个字段启用,PH拉两个比特的FIFO,并将它们发送到TX调制器将要发送的一对四偏差水平。
 - □ 当4(G) FSK是跨越领域禁用,PH值拉一个比特从FIFO,并与相应的两个比特映射到外两级跑偏层次替换它。虽然在TX调制器保持配置为四个级别偏差(由*MODEM_MOD_TYPE*的属性),仅使用两个外差水平有效地导致跨越该字段2(G)的FSK调制。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用4(G)FSK数据在此场 处理。	
ENUM_1	1	□ 启用此字段4(G)FSK数据 处理。	

□ PN START

- □ 说明:
 - □ 该芯片包含一个线性反馈移位寄存器(LFSR),用于产生一个伪随机数(PN)的目的。数据美白/去白化可能由异或从得到的PN 序列的输出与指定的字段的数据比特来获得。
 - □ 该位控制的PN引擎是否是新鲜装载它的种子值(PKT_WHT_SEED_XX指定)在这个领域的开始,或在PN引擎是否继续计算自 其最后的状态(即,从以前的数据包)。注意:对于该PN发动机的种子值可以仅在字段1的开始被加载;不可能重新加载在数据包 中的任何其它地方的种子值。
- □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 使用来自前一个数据包最后的 状态继续PN发生。	
ENUM_1	1	□ 加载PN引擎与种子值字段1的 开始。	

□ 漂白▲

- □ 说明:
 - □ 当自动数据包处理被激活(例如,当使用在TX FIFO在TX模式调制源时,或者当在PKT_CONFIG1财产PH_RX_DISABLE位被清除在RX模式)的数据美白/去美白功能才可用。
 - □ 在接收模式下,数据去白化函数仅在存储在RX FIFO位来执行; 收到实时观察(上GPIO引脚)的数据位是前输出去美白。
 - □ 启用数据美白不影响过度的空中数据速率。

□ 格式: 枚举

· <u> </u>			
名称	值	描述	可用的功能
ENUM_0	0	□ 在这一领域禁用数据美白/去美 白。	
ENUM_1	1	□ 在这一领域实现数据美白/去美 白。	

■ MANCH▲

- □ 说明:
 - □ 曼彻斯特编码操作者用两片图案(例如,每一个'0'位具有'10'图案和每个'1'位具有'01'的位模式,或反之亦然)替换每个位。所需的编码极性由*PKT_CONFIG1: MANCH_POL*。
 - □ 使曼彻斯特编码在一个或多个字段,不影响过度的无线数据传输速率;整个数据包内的每个比特/码片在相同的数据速率(由 MODEM_DATA_RATE_X属性指定的)被发送。曼彻斯特编码简单地会影响发送(例如,通过更换一位有两个芯片)的比特/芯片数量。
 - □ 在接收模式中,曼彻斯特解码功能只对存储在RX FIFO位来执行;接收到的实时观察(在GPIO引脚)的数据比特在解码之前被输出。
- □ 格式: 枚举

名称	值	值 描述	
ENUM_0	0	□ 禁用曼彻斯特编码/解码在这个 领域。	
ENUM_1	1	□ 启用这一领域的曼彻斯特编码/ 解码。	

PKT_FIELD_1_CRC_CONFIG

- 组: 0X12
- 索引: 0X10
- 摘要: 跨场1 CRC控制位配置。
- 目的:
 - 。 这个属性是用来控制计算,传输,和CRC的校验整个字段1。
- 默认值: 0x00
- 寄存器查看:

		PKT_FIELD_1_CRC_CONFIG									
指数	7	6	5	4	3	2	1	0			
0X10	CRC_START	0	SEND_CRC	0	CHECK_CRC	0	CRC_ENABLE	0			
	0X0	0X0	0X0	0X0	0X0	0X0	0X0	0X0			

□字段详细信息

- ☐ CRC START▲
 - □ 说明:
 - □ 该芯片包含可用于各种多项式和种子值的配置(参考PKT_CRC_CONFIG属性)一个32位的CRC引擎。该位控制CRC引擎是否新鲜装载它的种子值(*PKT_CRC_CONFIG: CRC_SEED*)在该领域的开始,或CRC引擎是否继续计算自其最后的状态(即,从以前的数据包)。注意: CRC引擎的种子值可以仅在字段1的开始被加载; 不可能重新加载在数据包中的任何其它地方的种子值。 该位是适用于TX和RX模式。
 - □ 如果在RX模式和PKT_CONFIG1: PH_FIELD_SPLIT被置位,该位被忽略,CRC_START功能是从相应的PKT RX FIELD X CRC CONFIG属性获得。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 使用来自前一个数据包的最后 一个状态继续CRC计算。	
		□ 与种子值装入CRC引擎在使用 这个字段的开始	

ENUM_1	1	PKT_CRC_CONFIG: CRC_SEED。		
□ SEND_CRC▲	1			1
□ 说明:该位仅适用于TX模式,并确定是否	累计CRC	校验将在这一领域的末尾进行传输。		
□ 格式: 枚举				7
名称	值	描述	可用的功能	
ENUM_0	0	□ 在这一领域的结尾不要发送 CRC。		
ENUM_1	1	□ 发送CRC在这一领域的末尾。		
□ CHECK_CRC▲				•
□ 说明:				
□ 这个位仅在RX模式,并且确定是否是				
□ 如果PKT_CONFIG1: PH_FIELD_S			功能是从相应的	J
PKT_RX_FIELD_X_CRC_CONFIG	禺性犾侍。			
名称	值	描述	可用的功能	1
47	1111.		円用的切能	4
ENUM_0	0	□ 在这一领域的结尾不检查 CRC。		
ENUM_1	1	□ 检查CRC在这一领域的末尾。		
□ CRC_ENABLE.				
□ 说明:				
□ 该位是适用于TX和RX模式,并允许	计算CRC	校验放在该字段。注: 启用CRC计算	2跨字段小会目2	功在外地的最终结果中的CRC的
验传输/检查。	D		C ENIADI ETLA	K E II 40 2 44
□ 如果在RX模式和 PKT_CONFIG1:			_ENABLE 切能	2是从相应的
PKT_RX_FIELD_X_CRC_CONFIG	尚 注 3天1号。			
名称	值	描述	可用的功能	1
ENUM 0	0	□ 禁用CRC计算在这个领域。	4 / 14 H 4 - 24 III	1
ENUM 1	1	□ 启用CRC计算在这个领域。		1
LINOW_1		□ 川川]

PKT_FIELD_2_LENGTH

- 组: 0X12
- 索引: 0x11 ... 0X12
- 摘要: 无符号13位字段2的长度值。
- 目的:
 - 。 该PKT_FIELD_2_LENGTH属性指定的字节字段2的长度。该字段长度为一个无符号的13位值。
 - 。 场2可以通过设置适当的值被配置为一个可变长度的字段PKT_LEN: DST_FIELD; 然而,它也是必要的,前一字段包含长度可变的字节(s)。如果配置为一个可变长度字段,此属性必须被设置了表示字段的最大长度的预期值。
 - 。 请参阅文字说明PKT_FIELD_1_LENGTH了解有关字段长度配置的更多细节。
- 默认值: 0x00, 0x00
- 寄存器查看:

		PKT_FIELD_2_LENGTH									
指数	7	6	5	4	3	2	1	0			
0x11	0	0	0		FIELD_	_2_LENG1	TH [12:8]				
0X12				F	IELD_2_L	ENGTH [7:	0]				
					默	认					
0x11	0	0	0 0 0X0								
0X12					0)	X0					

□字段详细信息

- ☐ FIELD_2_LENGTH [12:0]▲
 - □ 说明: 位字段长度为12~0。
 - □ 闵: 0X0
 - □ 马克斯: 0x1FFF的
 - □ 默认: 0x0

PKT_FIELD_2_CONFIG

- 组: 0X12
- 索引: 0X13
- 摘要:通用数据处理和数据包配置位字段2。
- 目的:
 - 将有效载荷送入不同的领域的划分是为了支持功能,如可变长度的数据包和特定领域的数据处理(如曼彻斯特编码,数据白化等)。此属性提供了配置位在区域2场特定的处理。
 - 在这个属性的配置位是共同的TX和RX模式依赖于PKT_CONFIG1: PH_FIELD_SPLIT;然而,此属性时,自动数据包处理被启用(例如,当使用在TX FIFO在TX模式调制源时,或者是只适用PKT_CONFIG1: PH_RX_DISABLE被清除在RX模式)。
- 默认值: 0x00
- 寄存器查看:

		PKT_FIELD_2_CONFIG							
指数	7	6	5	4	3	2	1	0	
0X13	0	0	0	4FSK	0	0	漂白	MANCH	
		默认							

1010	0 0 0 0X0 0 0X0		0X0		
字段详细信息					
■ 4FSK					
□ 说明:		11 44 Annn	website (O) FOUTH (O) FOUT	tt //L /55 L-P /55 L-P /54	日化町里 大学科林切工
	解调器必须为整个数据包4(G)F、 上,从处理数据流配置在FIFO作为 当图4(G)的FSK跨越一个字段启	SK操作(道 位双(4 (用,PH拉	些字段2(G)FSK和4(G)FSK在 通过设置被配置 <i>MODEM_MOD_TYP</i> G)FSK)或单位(为2(G)FSK) 两个比特的FIFO,并将它们发送到TX	E属性),和包 。 K 调制器将要发达	处理器然后在一个场逐场的 送的一对四偏差水平。
			比特从FIFO,并与相应的两个比特映		
□ 格式:		DEM_MOD	TYPE 的属性),仅使用两个外差水	《半有效地导致》	跨越该字段2(G)的FSK调
□ 俗八:	: <u>枚</u> 年 名称	值	描述	可用的功能	1
			□ 禁用 4 (G) FSK 数据在此场	.17/11/13/5/11/2	
	ENUM_0	0	处理。		
	ENUM_1	1	□ 启用此字段4(G)FSK数据		
	ENOW_1	'	处理。		
□漂白▲					
	当自动数据包处理被激活(例如, 除在RX模式)的数据美白/去美白巧	力能才可用		_	
	当自动数据包处理被激活(例如,除在RX模式)的数据美白/去美白巧在接收模式下,数据去白化函数仅启用数据美白不影响过度的空中数: 枚举	的能才可用 在存储在 R 据速率。	。 X FIFO位来执行; 收到实时观察(上C	- GPIO引脚)的数	
	当自动数据包处理被激活(例如,除在RX模式)的数据美白/去美白巧在接收模式下,数据去白化函数仅启用数据美白不影响过度的空中数:	力能才可用 在存储在R 据速率。	。 X FIFO位来执行; 收到实时观察(上C 描述	ー GPIO引脚)的数 □ 可用的功能	
	当自动数据包处理被激活(例如,除在RX模式)的数据美白/去美白巧在接收模式下,数据去白化函数仅启用数据美白不影响过度的空中数: 枚举	的能才可用 在存储在 R 据速率。	。 X FIFO位来执行; 收到实时观察(上C	ー GPIO引脚)的数 □ 可用的功能	
	当自动数据包处理被激活(例如,除在RX模式)的数据美白/去美白巧在接收模式下,数据去白化函数仅启用数据美白不影响过度的空中数:	力能才可用 在存储在R 据速率。	。 X FIFO位来执行; 收到实时观察(上C 描述 在这一领域禁用数据美白/去美	一 GPIO引脚)的数 可用的功能	
□ 格式:	当自动数据包处理被激活(例如,除在RX模式)的数据美白/去美白巧在接收模式下,数据去白化函数仅启用数据美白不影响过度的空中数: 枚举 名称 ENUM_0	力能才可用 在存储在R 据速率。 值 0	。 X FIFO位来执行; 收到实时观察(上C 描述 □ 在这一领域禁用数据美白/去美白。 □ 在这一领域实现数据美白/去美	一 GPIO引脚)的数 可用的功能	
□ AANCH □ 说明:	当自动数据包处理被激活(例如,除在RX模式)的数据美白/去美白巧在接收模式下,数据去白化函数仅启用数据美白不影响过度的空中数:枚举名称 ENUM_0 ENUM_1 :	か能才可用 在存储在R 据速率。 值 0	。 X FIFO位来执行; 收到实时观察(上C 描述 □ 在这一领域禁用数据美白/去美白。 □ 在这一领域实现数据美白/去美白。	一 GPIO引脚)的数 可用的功能	一 一 女据位是前输出去美白。]
□ AANCH □ 说明:	当自动数据包处理被激活(例如,除在RX模式)的数据美白/去美白巧在接收模式下,数据去白化函数仅启用数据美白不影响过度的空中数: 枚举 名称	か能オ可用 在存储在R 据速率。 値 0 1	。 X FIFO位来执行; 收到实时观察(上C 描述 □ 在这一领域禁用数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 - 个'0'位具有'10'图案和每个'1'位具有'	一 GPIO引脚)的数 可用的功能	一 一 女据位是前输出去美白。]
□ AANCH □ 说明:	当自动数据包处理被激活(例如,除在RX模式)的数据美白/去美白巧在接收模式下,数据去白化函数仅启用数据美白不影响过度的空中数:枚举名称 ENUM_0 ENUM_1 : 曼彻斯特编码操作者用两片图案(的编码极性由PKT_CONFIG1: M/	力能才可用 在存储在R 据速率。 值 0 1 例如,每一 ANCH_PC	。 X FIFO位来执行; 收到实时观察(上C 描述 □ 在这一领域禁用数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 个'0'位具有'10'图案和每个'1'位具有'0L。	一 GPIO引脚)的数 可用的功能 01'的位模式,写	一 一 女据位是前输出去美白。]
□ AANCH □ 说明:	当自动数据包处理被激活(例如,除在RX模式)的数据美白/去美白巧在接收模式下,数据去白化函数仅启用数据美白不影响过度的空中数: 枚举名称	力能才可用 在存储在R 据速率 值 0 1 1 例如,,每一 ANCH_PC,不影响过	。 X FIFO位来执行; 收到实时观察(上C 描述 □ 在这一领域禁用数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 个'0'位具有'10'图案和每个'1'位具有'0'L。 赴度的无线数据传输速率; 整个数据包	- GPIO引脚)的数 可用的功能 01'的位模式,可 内的每个比特/和	一 一 女据位是前输出去美白。
□ AANCH □ 说明:	当自动数据包处理被激活(例如,除在RX模式)的数据美白/去美白巧在接收模式下,数据去白化函数仅启用数据美白不影响过度的空中数:枚举名称ENUM_0 ENUM_1 : 曼彻斯特编码操作者用两片图案(约编码极性由 <i>PKT_CONFIG1</i> : <i>M</i> /使曼彻斯特编码在一个或多个字段MODEM_DATA_RATE_X属性指定片数量。	加能才可用 在存存率。 值 0 1 例如,,每一 ANCH_PO (ANCH	。 X FIFO位来执行; 收到实时观察(上C 描述 □ 在这一领域禁用数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/法美白。	一 GPIO 引脚)的数 可用的功能 O1' 的位模式,可 内的每个比特// (例如,通过更	一 一 女据位是前输出去美白。 过反之亦然)替换每个位。 或反之亦然)替换每个位。 马片在相同的数据速率(由 1换一位有两个芯片)的比特
□ AANCH □ 说明:	当自动数据包处理被激活(例如,除在RX模式)的数据美白/去美白巧在接收模式下,数据去白化函数仅启用数据美白不影响过度的空中数:枚举名称ENUM_0 ENUM_1 : 曼彻斯特编码操作者用两片图案(约1)的编码极性由PKT_CONFIG1:M/使曼彻斯特编码在一个或多个字段MODEM_DATA_RATE_X属性指定片数量。 在接收模式中,曼彻斯特解码功能	加能才可用 在存存率。 值 0 1 例如,,每一 ANCH_PO (ANCH	。 X FIFO位来执行; 收到实时观察(上C 描述 □ 在这一领域禁用数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 个'0'位具有'10'图案和每个'1'位具有'0'L。 赴度的无线数据传输速率; 整个数据包	一 GPIO 引脚)的数 可用的功能 O1' 的位模式,可 内的每个比特// (例如,通过更	一 一 女据位是前输出去美白。 过反之亦然)替换每个位。 或反之亦然)替换每个位。 马片在相同的数据速率(由 1换一位有两个芯片)的比特
■ MANCH ● 说明	当自动数据包处理被激活(例如,除在RX模式)的数据美白/去美白巧在接收模式下,数据去白化函数仅启用数据美白不影响过度的空中数据数据美白不影响过度的空中数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据	加能才可用 在存存率。 值 0 1 例如,,每一 ANCH_PO (ANCH	。 X FIFO位来执行; 收到实时观察(上C 描述 □ 在这一领域禁用数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/法美白。	一 GPIO 引脚)的数 可用的功能 O1' 的位模式,可 内的每个比特// (例如,通过更	一 一 女据位是前输出去美白。 或反之亦然)替换每个位。
□ AANCH □ 说明:	当自动数据包处理被激活(例如,除在RX模式)的数据美白/去美白巧在接收模式下,数据去白化函数仅启用数据美白不影响过度的空中数:枚举名称 ENUM_0 ENUM_1 : 曼彻斯特编码操作者用两片图案(例编码极性由PKT_CONFIG1:M/使。例为MODEM_DATA_RATE_X属性指定片数量。在接收模式中,曼彻斯特解码功能出。:枚举	加能才可在R 在存存率。 值 0 1 例如, 4 P P 问题的 存储	。 X FIFO位来执行; 收到实时观察(上C 描述 □ 在这一领域禁用数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在X 中心心具有'10'图案和每个'1'位具有'0'L。 □ 定的无线数据传输速率; 整个数据包送。曼彻斯特编码简单地会影响发送 □ ERX FIFO位来执行; 接收到的实时观象	一	一 一 女据位是前输出去美白。 或反之亦然)替换每个位。
■ MANCH ● 说明	当自动数据包处理被激活(例如,除在RX模式)的数据美白/去美白巧在接收模式下,数据去白化函数仅启用数据美白不影响过度的空中数据数据美白不影响过度的空中数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据	加能才可用 在存存率。 值 0 1 例如,,每一 ANCH_PO (ANCH	。 X FIFO位来执行; 收到实时观察(上C 描述 □ 在这一领域禁用数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/去美白。 □ 在这一领域实现数据美白/法美白。	一 GPIO 引脚)的数 可用的功能 O1' 的位模式,可 内的每个比特// (例如,通过更	一 一 女据位是前输出去美白。 或反之亦然)替换每个位。

PKT_

- 组: 0X12
- 索引: 0X14
- 摘要: 跨场2 CRC控制位配置。
- 目的:
 - 。 这个属性是用来控制计算,传输,和CRC的校验整个字段2。
- 默认值: 0x00
- 寄存器查看:

		PKT_FIELD_2_CRC_CONFIG						
指数	7	6	5	4	3	2	1	0
0X14	0	0	SEND_CRC	0	CHECK_CRC	0	CRC_ENABLE	0
					默认			
	0	0	0X0	0X0	0X0	0X0	0X0	0X0

□字段详细信息

■ SEND_CRC▲

- □ 说明:该位仅适用于TX模式,并确定是否累计CRC校验将在这一领域的末尾进行传输。
- □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 在这一领域的结尾不要发送 CRC。	
ENUM_1	1	□ 发送CRC在这一领域的末尾。	

- ☐ CHECK_CRC▲
 - □ 说明:
 - □ 这个位仅在RX模式,并且确定是否累计CRC校验将在这个字段的结束进行检查。 □ 如果*PKT_CONFIG1: PH_FIELD_SPLIT*位被置位,该位被忽略,CHECK_CRC功能是从相应的 PKT_RX_FIELD_X_CRC_CONFIG属性获得。

 格式: 枚举

1人十			
名称	值	描述	可用的功能
		□ 在这一领域的结尾不检查	

	ENUM_0	0	CRC.		
	ENUM_1	1	□ 检查CRC在这一领域的末尾。		
□ CRC_ENAB	BLE.				
□ 说明:					
į	验传输/检查。		校验放在该字段。注: 启用CRC计算		
	如果在RX模式和 <i>PKT_CONFIG1: I</i>	PH_FIEL	D_SPLIT被置位,该位被忽略,CRC	_ENABLE功能	是从相应的
	PKT_RX_FIELD_X_CRC_CONFIG	属性获得。			
□ 格式:	枚举				
	名称	值	描述	可用的功能	
	ENUM_0	0	□ 禁用CRC计算在这个领域。		

□ 启用CRC计算在这个领域。

PKT_FIELD_3_LENGTH

- 组: 0X12
- 索引: 0X15 ... 0X16
- 摘要: 无符号13位字段3的长度值。

ENUM 1

- 目的:
 - 。 该PKT_FIELD_3_LENGTH属性指定的字节字段3的长度。该字段长度为一个无符号的13位值。
 - 字段3中,可通过设置适当的值被配置为一个可变长度的字段PKT_LEN: DST_FIELD;然而,它也是必要的,前一字段包含长度可变的字 节(s)。如果配置为一个可变长度字段,此属性必须被设置了表示字段的最大长度的预期值。
 - 。 请参阅文字说明PKT_FIELD_1_LENGTH了解有关字段长度配置的更多细节。
- 默认值: 0x00, 0x00
- 寄存器查看:

		PKT_FIELD_3_LENGTH								
指数	7	6	5	4	3	2	1	0		
0X15	0	0	0		FIELD_	_3_LENG1	TH [12:8]			
0X16				F	IELD_3_L	ENGTH [7:	0]			
					默	认				
0X15	0	0	0			0X0				
0X16					0)	X0				

□字段详细信息

- ☐ FIELD 3 LENGTH [12:0]▲
 - □ 说明: 位字段长度为12~0。
 - □ 闵: 0X0
 - □ 马克斯: 0x1FFF的
 - □ 默认: 0x0

PKT FIELD 3 CONFIG

- 组: 0X12
- 索引: 0X17
- 摘要: 通用数据处理和数据包配置位字段3。
- 目的:
 - 将有效载荷送入不同的领域的划分是为了支持功能,如可变长度的数据包和特定领域的数据处理(如曼彻斯特编码,数据白化等)。此属性 提供了配置位的字段3场特定的处理。
 - o 在这个属性的配置位是共同的TX和RX模式依赖于PKT_CONFIG1: PH_FIELD_SPLIT;然而,此属性时,自动数据包处理被启用(例如, 当使用在TX FIFO在TX模式调制源时,或者是只适用PKT CONFIG1: PH RX DISABLE被清除在RX模式)。
- 默认值: 0x00
- 寄存器查看:

		PKT_FIELD_3_CONFIG							
指数	7	7 6 5 4 3 2 1 0							
0X17	0	0	0	4FSK	0	0	漂白	MANCH	
		默认							
	0	0	0	0X0	0	0	0X0	0X0	

□字段详细信息

- 4FSK
 - □ 说明:
 - □ 该芯片支持的(G)FSK调制方式,即跨越某些字段2(G)FSK和4(G)FSK在其他领域领域的具体配置。在这种情况下,调制 解调器必须为整个数据包4(G)FSK操作(通过设置被配置*MODEM_MOD_TYPE*属性),和包处理器然后在一个场逐场的基础 上,从处理数据流配置在FIFO作为位双(4(G)FSK)或单位(为2(G)FSK)。
 - □ 当图4(G)的FSK跨越一个字段启用,PH拉两个比特的FIFO,并将它们发送到TX调制器将要发送的一对四偏差水平。
 - □ 当4(G)FSK是跨越领域禁用,PH值拉一个比特从FIFO,并与相应的两个比特映射到外两级跑偏层次替换它。虽然在TX调制器 保持配置为四个级别偏差(由MODEM_MOD_TYPE的属性),仅使用两个外差水平有效地导致跨越该字段2(G)的FSK调制。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用4(G)FSK数据在此场 处理。	
ENUM_1	1	□ 启用此字段4(G)FSK数据 处理。	

			〈 FIFO 在TX模式调制源时,或者当在	PKT_CONFIG ²	1财产PH_RX_DISABLE位被清
	在接收模式下,数据去白化函数仅在 启用数据美白不影响过度的空中数据	存储在R	。 X FIFO位来执行; 收到实时观察(上G	PIO引脚)的数	t据位是前输出去美白。
	名称	值	描述	可用的功能	
	ENUM_0	0	□ 在这一领域禁用数据美白/去美 白。		
	ENUM_1	1	□ 在这一领域实现数据美白/去美 白。		
	的编码极性由PKT_CONFIG1: MAI 使曼彻斯特编码在一个或多个字段, MODEM_DATA_RATE_X属性指定的 片数量。 在接收模式中,曼彻斯特解码功能只 出。 枚举	NCH_PO 不影响过 的)被发达 对存储在	度的无线数据传输速率;整个数据包内	内的每个比特/平 (例如,通过更 (在 GPIO 引肽	号片在相同的数据速率(由 接一位有两个芯片)的比特/芯
	名称	值	描述	可用的功能	
	ENUM_0	0	□ 禁用曼彻斯特编码/解码在这个 领域。		
	ENUM_1	1	□ 启用这一领域的曼彻斯特编码/ 解码。		
T_FIELD_3_C	RC_CONFIG				

PK.

- 组: 0X12
- 索引: 0X18
- 摘要: 跨区域3的CRC控制位配置。
- 目的:
 - 。 这个属性是用来控制计算,传输,和CRC的校验整个字段3。
- 默认值: 0x00
- 寄存器查看:

		PKT_FIELD_3_CRC_CONFIG							
指数	7 6	5	4	3	2	1	0		
0X18	0 0	SEND_CRC	0	CHECK_CRC	0	CRC_ENABLE	0		
		默认							
	0 0	0X0	0X0	0X0	0X0	0X0	0X0		

□字段详细信息

- ☐ SEND_CRC▲
 - □ 说明:该位仅适用于TX模式,并确定是否累计CRC校验将在这一领域的末尾进行传输。
 - □ 格式: 枚举

12.1			
名称	值	描述	可用的功能
ENUM_0	0	□ 在这一领域的结尾不要发送 CRC。	
ENUM_1	1	□ 发送CRC在这一领域的末尾。	

☐ CHECK CRC▲

□ 说明:

□ 这个位仅在RX模式,并且确定是否累计CRC校验将在这个字段的结束进行检查。

□ 如果*PKT_CONFIG1: PH_FIELD_SPLIT*位被置位,该位被忽略,CHECK_CRC功能是从相应的 PKT_RX_FIELD_X_CRC_CONFIG属性获得。

□ 格式: 枚挙

名称	值	描述	可用的功能
ENUM_0	0	□ 在这一领域的结尾不检查 CRC。	
ENUM_1	1	□ 检查CRC在这一领域的末尾。	

☐ CRC_ENABLE ▲

□ 说明:

- □ 该位是适用于TX和RX模式,并允许计算CRC校验放在该字段。注:启用CRC计算跨字段不会自动在外地的最终结果中的CRC校 验传输/检查。
- □ 如果在RX模式和 PKT_CONFIG1: PH_FIELD_SPLIT被置位,该位被忽略, CRC_ENABLE功能是从相应的 PKT_RX_FIELD_X_CRC_CONFIG属性获得。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用CRC计算在这个领域。	
ENUM_1	1	□ 启用CRC计算在这个领域。	

PKT_FIELD_4_LENGTH

- 索引: 0×19 ... 0X1A
- 摘要: 无符号13位字段4长度值。
- 目的:
 - 。 该PKT_FIELD_4_LENGTH属性指定的字节字段4的长度。该字段长度为一个无符号的13位值。
 - 字段4可以通过设定适当的值被配置为一个可变长度的字段PKT_LEN: DST_FIELD;然而,它也是必要的,前一字段包含长度可变的字节(s)。如果配置为一个可变长度字段,此属性必须被设置了表示字段的最大长度的预期值。
 - 。请参阅文字说明PKT_FIELD_1_LENGTH了解有关字段长度配置的更多细节。
- 默认值: 0x00, 0x00
- 寄存器查看:

		PKT_FIELD_4_LENGTH										
指数	7	6	5	4	3	2	1	0				
0×19	0	0 0 0 FIELD_4_LENGTH [12:8]										
0X1A		FIELD_4_LENGTH [7:0]										
					默	认						
0×19	0	0 0 0 0X0										
0X1A					0)	X0						

- ☐ FIELD_4_LENGTH [12:0]▲
 - □ 说明: 位字段长度为12~0。
 - □ 闵: 0X0
 - 马克斯: 0x1FFF的
 - □ 默认: 0x0

PKT_FIELD_4_CONFIG

- 组: 0X12
- 索引: 0X1B
- 摘要: 通用数据处理和数据包配置位字段4。
- 目的:
 - 将有效载荷送入不同的领域的划分是为了支持功能,如可变长度的数据包和特定领域的数据处理(如曼彻斯特编码,数据白化等)。此属性提供了配置位的字段4场特定的处理。
 - 。 在这个属性的配置位是共同的TX和RX模式依赖于PKT_CONFIG1: PH_FIELD_SPLIT; 然而,此属性时,自动数据包处理被启用(例如,当使用在TX FIFO在TX模式调制源时,或者是只适用PKT_CONFIG1: PH_RX_DISABLE被清除在RX模式)。
- 默认值: 0x00
- 寄存器查看:

		PKT_FIELD_4_CONFIG									
指数	7	6	5	4	3	2	1	0			
0X1B	0	0	0	4FSK	0	0	漂白	MANCH			
						默讠	l				
	0	0	0	0X0	0	0	0X0	0X0			

□字段详细信息

- 4FSK▲
 - □ 说明:
 - □ 该芯片支持的(G)FSK调制方式,即跨越某些字段2(G)FSK和4(G)FSK在其他领域领域的具体配置。在这种情况下,调制解调器必须为整个数据包4(G)FSK操作(通过设置被配置*MODEM_MOD_TYPE*属性),和包处理器然后在一个场逐场的基础上,从处理数据流配置在FIFO作为位双(4(G)FSK)或单位(为2(G)FSK)。
 - □ 当图4(G)的FSK跨越一个字段启用,PH拉两个比特的FIFO,并将它们发送到TX调制器将要发送的一对四偏差水平。
 - □ 当4(G) FSK是跨越领域禁用,PH值拉一个比特从FIFO,并与相应的两个比特映射到外两级跑偏层次替换它。虽然在TX调制器保持配置为四个级别偏差(由*MODEM_MOD_TYPE*的属性),仅使用两个外差水平有效地导致跨越该字段2(G)的FSK调制。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	 □ 禁用4 (G) FSK数据在此场 处理。	
ENUM_1	1	□ 启用此字段4(G)FSK数据 处理。	

□ 漂白▲

- □ 说明:
 - □ 当自动数据包处理被激活(例如,当使用在TX FIFO在TX模式调制源时,或者当在PKT_CONFIG1财产PH_RX_DISABLE位被清除在RX模式)的数据美白/去美白功能才可用。
 - □ 在接收模式下,数据去白化函数仅在存储在RX FIFO位来执行; 收到实时观察(上GPIO引脚)的数据位是前输出去美白。
 - □ 启用数据美白不影响过度的空中数据速率。
- □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 在这一领域禁用数据美白/去美白。	
ENUM_1	1	□ 在这一领域实现数据美白/去美 白。	

■ MANCH▲

- □ 说明:
 - □ 曼彻斯特编码操作者用两片图案(例如,每一个'0'位具有'10'图案和每个'1'位具有'01'的位模式,或反之亦然)替换每个位。所需的编码极性由*PKT_CONFIG1: MANCH_POL*。
 - □ 使曼彻斯特编码在一个或多个字段,不影响过度的无线数据传输速率;整个数据包内的每个比特/码片在相同的数据速率(由

MODEM_DATA_RATE_X属性指定的)被发送。曼彻斯特编码简单地会影响发送(例如,通过更换一位有两个芯片)的比特/芯片数量。

□ 在接收模式中,曼彻斯特解码功能只对存储在RX FIFO位来执行;接收到的实时观察(在GPIO引脚)的数据比特在解码之前被输出。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用曼彻斯特编码/解码在这个 领域。	
ENUM_1	1	□ 启用这一领域的曼彻斯特编码/ 解码。	

PKT_FIELD_4_CRC_CONFIG

- 组: 0X12
- 指标: 0x1c
- 摘要: 跨字段4 CRC控制位配置。
- 目的:
 - 。 这个属性是用来控制计算,传输,和CRC的校验整个字段4。
- 默认值: 0x00
- 寄存器查看:

		PKT_FIELD_4_CRC_CONFIG										
指数	7	6	5	4	4 3			1	0			
为0x1c	0	0	SEND_CRC	0	CHECK_C	RC	0	CRC_ENABLE	0			
		默认										
	0	0	0X0	0X0	0X0		0X0	0X0	0X0			

□字段详细信息

- ☐ SEND_CRC▲
 - □ 说明:该位仅适用于TX模式,并确定是否累计CRC校验将在这一领域的末尾进行传输。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 在这一领域的结尾不要发送 CRC。	
ENUM_1	1	□ 发送CRC在这一领域的末尾。	

- ☐ CHECK CRC▲
 - □ 说明:
 - □ 这个位仅在RX模式,并且确定是否累计CRC校验将在这个字段的结束进行检查。
 - □ 如果*PKT_CONFIG1: PH_FIELD_SPLIT*位被置位,该位被忽略,CHECK_CRC功能是从相应的 PKT_RX_FIELD_X_CRC_CONFIG属性获得。
 - □ 格式: 枚举

٠.	100 1			
	名称	值	描述	可用的功能
	ENUM_0	0	□ 在这一领域的结尾不检查 CRC。	
	ENUM_1	1	□ 检查CRC在这一领域的末尾。	

- ☐ CRC ENABLE
 - □ 说明:
 - □ 该位是适用于TX和RX模式,并允许计算CRC校验放在该字段。注:启用CRC计算跨字段不会自动在外地的最终结果中的CRC校验传输/检查。
 - □ 如果在RX模式和 *PKT_CONFIG1*: *PH_FIELD_SPLIT*被置位,该位被忽略,CRC_ENABLE功能是从相应的 PKT_RX_FIELD_X_CRC_CONFIG属性获得。
 - □ 格式: 枚举

12.1			
名称	值	描述	可用的功能
ENUM_0	0	□ 禁用CRC计算在这个领域。	
ENUM_1	1	□ 启用CRC计算在这个领域。	

PKT_FIELD_5_LENGTH

- 组: 0X12
- 索引: 0x1d ... 0X1E
- 摘要: 无符号13位字段5的长度值。
- 目的:
 - 。 该PKT_FIELD_5_LENGTH物业以字节为单位指定字段5的长度。该字段长度为一个无符号的13位值。
 - 。 字段5可以通过设定适当的值被配置为一个可变长度的字段PKT_LEN: DST_FIELD; 然而,它也是必要的,前一字段包含长度可变的字节(s)。如果配置为一个可变长度字段,此属性必须被设置了表示字段的最大长度的预期值。
 - 。 请参阅文字说明PKT_FIELD_1_LENGTH了解有关字段长度配置的更多细节。
- 默认值: 0x00, 0x00
- 寄存器查看:

		PKT_FIELD_5_LENGTH										
指数	7	6	5	4	3	2	1	0				
0x1d	0	0 0 0 FIELD_5_LENGTH [12:8]										
0X1E		FIELD_5_LENGTH [7:0]										
					默	认						
0x1d	0	0 0 0 0X0										

□ 闵:	_LENC 引:位 ^生 0X0 三斯:0	字段长度为 12 ~)x1FFF的	∽ 0∘							
PKT_FIELD_5_	CON	FIG								
 组: 0X12 索引: 0x1F 摘要: 通用数: 目的: 将有效载 提供了酉 在这个盾 	据处理 战荷送之 已置位的 居性的 ETX FI	和数据包配置 入不同的领域的 的字段5场特定 配置位是共同的	的划分 的处理 的 TX 和	是为 里。 I RX 模	莫式依赖	于 <i>PKT_</i> (CONFIG1:		而,此属性时,	7特编码,数据白化等)。此属性 自动数据包处理被启用(例如,)。
		PKT_	FIELD)_5_	CONFIG	}				
	6 5	4		2	1		0			
0x1F的 0	0 0	4FSK		0 t认	漂白	MA	ANCH			
0	0 0	0X0		0	0X0	(0X0			
	月: 该解上当当保本 二二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	器必须为整个 从处理数据流 4(G)的FSk (G) FSK是路 配置为四个级	数据包配置在 《跨越· 跨越领与 别偏差	24((EFIF(一个与 或禁戶	G)FSK O作为位 字段启用 目,PH值	操作(通 双(4 () ,PH拉 直拉一个l	通过设置被m G)FSK)。 两个比特的 比特从FIFO 	 配置MODEM_MOD_TYF 或单位(为2(G)FSK) FIFO,并将它们发送到T ,并与相应的两个比特明 。 指述 (G)FSK数据在此场 	PE 属性),和包 。 X调制器将要发 快射到外两级跑(//	具体配置。在这种情况下,调制。 处理器然后在一个场逐场的基础 送的一对四偏差水平。 偏层次替换它。虽然在TX调制器 跨越该字段2(G)的FSK调制。
_	EN	JM_1				1	□ 启用」 处理。	此字段4(G)FSK数据		
0	当自 全接 在接 启用 社	ERX模式)的数 收模式下,数 数据美白不影 举	牧据美↓ 据去自 响过度	白/去 日化函	美白功能 数仅在	を才可用。 存储在R) 速率。 値	。 X FIFO位来	模式调制源时,或者当在 执行; 收到实时观察(上 描述 一领域禁用数据美白/去美	GPIO引脚)的数	1财产PH_RX_DISABLE位被清 女据位是前输出去美白。
	EN	JM_0				0	白。			
	EN	JM_1				1	□ 在这· 白。	一领域实现数据美白/去美		
0	月: 曼彻 的使曼 MOI 片数	码极性由 <i>PKT</i> 彻斯特编码在 DEM_DATA_F [量。	_CON 一个词 RATE_	IFIG 成多个 X属	1: MAN 字段, 性指定的	CH_PO 不影响过 J)被发达	个' 0' 位具有 <i>L</i> 。 度的无线数 送。曼彻斯特	据传输速率; 整个数据包 寺编码简单地会影响发送	内的每个比特/和 (例如,通过更	或反之亦然)替换每个位。所需 码片在相同的数据速率(由 5换一位有两个芯片)的比特/芯 即)的数据比特在解码之前被输
□ 格式								FIT A IS		1
		名	称			值	一林田	描述 最初斯特德和 <i>姆</i> 和左拉名	可用的功能	
	EN	0_ML				0	领域。			
	EN	JM_1				1	□ 启用 ³ 解码。	这一领域的曼彻斯特编码	1/	

PKT_FIELD_5_CRC_CONFIG

0X1E

0X0

- 组: 0X12
 索引: 0X20
 摘要: 跨字段5 CRC控制位配置。
 目的:

- 。 这个属性是用来控制计算, 传输, 和CRC的校验场对面5。
- 默认值: 0x00
- 寄存器查看:

Ī			PKT_FIELD_5_CRC_CONFIG											
Ī	指数	7	6	5	4	3	2	1	0					
Ī	0X20	0	0	SEND_CRC	0	CHECK_CRC	0	CRC_ENABLE	0					
Ī			默认											
Ī		0	0	0X0	0X0	0X0	0X0	0X0	0X0					

三字段详细信息

☐ SEND	CRC A
--------	-------

- □ 说明:该位仅适用于TX模式,并确定是否累计CRC校验将在这一领域的末尾进行传输。
- □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 在这一领域的结尾不要发送 CRC。	
ENUM_1	1	□ 发送CRC在这一领域的末尾。	

☐ CHECK CRC▲

□ 说明:

- □ 这个位仅在RX模式,并且确定是否累计CRC校验将在这个字段的结束进行检查。
- □ 如果PKT CONFIG1: PH FIELD SPLIT位被置位,该位被忽略,CHECK CRC功能是从相应的 PKT_RX_FIELD_X_CRC_CONFIG属性获得。

□ 格式: 枚举

12. 1			
名称	值	描述	可用的功能
ENUM_0	0	□ 在这一领域的结尾不检查 CRC。	
ENUM_1	1	□ 检查CRC在这一领域的末尾。	

☐ CRC_ENABLE ▲

□ 说明:

- □ 该位是适用于TX和RX模式,并允许计算CRC校验放在该字段。注:启用CRC计算跨字段不会自动在外地的最终结果中的CRC校 验传输/检查。
- □ 如果在RX模式和 PKT_CONFIG1: PH_FIELD_SPLIT被置位,该位被忽略,CRC_ENABLE功能是从相应的 PKT_RX_FIELD_X_CRC_CONFIG属性获得。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用CRC计算在这个领域。	
ENUM_1	1	□ 启用CRC计算在这个领域。	

PKT_RX_FIELD_1_LENGTH

- 组: 0X12
- 索引: 0X21 ... 0X22
- 摘要:无符号13位RX场1长度值。
- 目的:
 - 。 该PKT_RX_FIELD_1_LENGTH属性指定的字节字段1的长度。该字段长度为一个无符号的13位值。
 - 的有效载荷为单独字段的分区被设置,以支持可变长度的分组,并允许不同形式的数据处理(例如,曼彻斯特编码,数据白化等),在不同 的领域。
 - 。 这些特性适用于RX模式只有在下列条件:a)接收数据包处理是通过清除PKT_CONFIG1财产PH_RX_DISABLE位使能,和b)的 START_RX命令与参数RX_LEN = 0,和c)PKT_CONFIG1:PH_FIELD_SPLIT被设置。(如果PKT_CONFIG1:PH_FIELD_SPLIT被清 除,在接收模式中的各个字段的长度由PKT_FIELD_LENGTH_XX特性决定的,TX和RX模式之间共享。)
 - 。零在这个属性的值表示该字段不使用。在接收模式下,数据将被存储在RX FIFO中,直到再次遇到的第一个字段的长度已经设置为零。它是可能的(尽管不常见)来设置的字段1=0的字节长度,因为这将表明没有有效数据的一个数据包的发送/接收的。

 - 。 字段1不能被配置为一个可变长度字段, 因为有可能包含可变长字节(s)没有前一场。
- 默认值: 0x00, 0x00
- 寄存器查看:

		PKT_RX_FIELD_1_LENGTH								
指数	7	6	5	4	4 3 2 1 0					
0X21	0	0	0		RX_FIELD_1_LENGTH [12:8]					
0X22		RX_FIELD_1_LENGTH [7:0]								
		默认								
0X21	0	0 0 0 0 0X0								
0X22				•	0	X0	•	•		

□字段详细信息

- □ RX_FIELD_1_LENGTH [12:0]
 - □ 说明: rx_field_length
 - □ 闵: 0X0
 - □ 马克斯: 0x1FFF的
 - □ 默认: 0x0

PKT_RX_FIELD_1_CONFIG

- 组: 0X12
- 索引: 0x23

- 摘要: 通用数据处理和数据包配置位为RX场1。
- 目的:
 - 将有效载荷送入不同的领域的划分是为了支持功能,如可变长度的数据包和特定领域的数据处理(如曼彻斯特编码,数据白化等)。此属性提供了配置位在RX场1场特定的处理。
 - 。 此属性不适用于TX模式。
 - 。 只有在下列情况下此属性适用于RX模式:
 - 。 RX数据包处理是通过清除启用PKT_CONFIG1: PH_RX_DISABLE, 和
 - PKT_CONFIG1: PH_FIELD_SPLIT设置。如果PH_FIELD_SPLIT位被清零,通用分组配置位RX模式的各个字段由PKT_FIELD_X_CONFIG属性(TX和RX模式之间共享)来确定。
- 默认值: 0x00
- 寄存器查看:

		PKT_RX_FIELD_1_CONFIG							
指数	7	6	5	4	3	2	1	0	
0x23	0	0	0	4FSK	0	PN_START	漂白	MANCH	
		默认							
	0	0	0	0X0	0	0X0	0X0	0X0	

□字段详细信息	_	字	鹍	详	细	信	良
---------	---	---	---	---	---	---	---

☐ 4FSK

□ 说明:

□ 该芯片支持的(G) FSK调制方式,	即跨越某些字段2(G)FSK和4	l(G)FSK在其他领域领	负域的具体配置。	在这种情况下,	调制
解调器必须为整个数据包4(G)FS	K操作(通过设置被配置MODE	M_MOD_TYPE属性),	和包处理器然后	后在一个场逐场的	与基础
上,从外理数据流配置在FIFO作为作	カ双 (4 (G) FSK) 或单位 (失	2 (G) FSK) 。			

- □ 当图4(G)的FSK跨越一个字段启用,PH拉两个比特的FIFO,并将它们发送到TX调制器将要发送的一对四偏差水平。
- □ 当4(G) FSK是跨越领域禁用,PH值拉一个比特从FIFO,并与相应的两个比特映射到外两级跑偏层次替换它。虽然在TX调制器保持配置为四个级别偏差(由MODEM MOD TYPE的属性),仅使用两个外差水平有效地导致跨越该字段2(G)的FSK调制。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用4(G)FSK数据在此场 处理。	
ENUM_1	1	□ 启用此字段4(G)FSK数据 处理。	

☐ PN_START

□ 说明:

- □ 该芯片包含一个线性反馈移位寄存器(LFSR),用于产生一个伪随机数(PN)的目的。数据美白/去白化可能由异或从得到的PN 序列的输出与指定的字段的数据比特来获得。
- □ 该位控制的PN引擎是否是新鲜装载它的种子值(PKT_WHT_SEED_XX指定)在这个领域的开始,或在PN引擎是否继续计算自 其最后的状态(即,从以前的数据包)。注意:对于该PN发动机的种子值可以仅在字段1的开始被加载;不可能重新加载在数据包中的任何其它地方的种子值。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	1	□ 使用来自前一个数据包最后的 状态继续PN发生。	
ENUM_1	1	□ 加载PN引擎与种子值字段1的 开始。	

□ 漂白▲

- □ 说明:
 - □ 当自动数据包处理被激活(例如,当使用在TX FIFO在TX模式调制源时,或者当在PKT_CONFIG1财产PH_RX_DISABLE位被清除在RX模式)的数据美白/去美白功能才可用。
 - □ 在接收模式下,数据去白化函数仅在存储在RX FIFO位来执行; 收到实时观察(上GPIO引脚)的数据位是前输出去美白。
 - □ 启用数据美白不影响过度的空中数据速率。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 在这一领域禁用数据美白/去美白。	
ENUM_1	1	□ 在这一领域实现数据美白/去美 白。	

■ MANCH▲

□ 说明:

- □ 曼彻斯特编码操作者用两片图案(例如,每一个'0'位具有'10'图案和每个'1'位具有'01'的位模式,或反之亦然)替换每个位。所需的编码极性由*PKT_CONFIG1: MANCH_POL*。
- □ 使曼彻斯特编码在一个或多个字段,不影响过度的无线数据传输速率;整个数据包内的每个比特/码片在相同的数据速率(由 MODEM_DATA_RATE_X属性指定的)被发送。曼彻斯特编码简单地会影响发送(例如,通过更换一位有两个芯片)的比特/芯片数量。
- □ 在接收模式中,曼彻斯特解码功能只对存储在RX FIFO位来执行; 接收到的实时观察(在GPIO引脚)的数据比特在解码之前被输出。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	 □ 禁用曼彻斯特解码在这个领域。	
ENUM_1	1	□ 启用这一领域的曼彻斯特解 码。	

PKT_RX_FIELD_1_CRC_CONFIG

- 索引: 0X24
- 摘要: 跨RX场1 CRC控制位配置。
- 目的:
 - 。 这个属性是用来控制计算,传输,和CRC的校验整个RX字段1。
- 默认值: 0x00
- 寄存器查看:

	PKT_RX_FIELD_1_CRC_CONFIG										
指数	7 6 5 4 3 2 1 0										
0X24	CRC_START	0	0	0	CHECK_CRC	0	CRC_ENABLE	0			
	默认										
	0X0	0X0	0	0	0X0	0X0	0X0	0X0			

- ☐ CRC_START ▲
 - □ 说明:
 - □ 该芯片包含可用于各种多项式和种子值的配置(参照一个32位的CRC引擎PKT_CRC_CONFIGIENEL。该位控制CRC引擎是否新鲜装载它的种子值(PKT_CRC_CONFIG: CRC_SEED)在该领域的开始,或CRC引擎是否继续计算自其最后的状态(即,从以前的数据包)。注意:CRC引擎的种子值可以仅在字段1的开始被加载是不可能重新加载在数据包中的任何其它地方的种子值。
 - □ 该位仅适用于RX模式和PKT_CONFIG1: PH_FIELD_SPLIT设置。如果PH_FIELD_SPLIT位被清零时,该位被忽略,CRC_START功能是从相应的PKT_FIELD_X_CRC_CONFIG属性获得。

格式, 枚举

· <u> </u>			
名称	值	描述	可用的功能
ENUM_0	0	□ 使用来自前一个数据包的最后 一个状态继续CRC计算。	
ENUM_1	1	□ 与种子值装入CRC引擎在使用 这个字段的开始 PKT_CRC_CONFIG: CRC_SEED。	

- □ CHECK_CRC
 - □ 描述: 这个决定是否积累了CRC校验将在这一领域的末尾进行检查。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 在这一领域的结尾不检查 CRC。	
ENUM_1	1	□ 检查CRC在这一领域的末尾。	

- ☐ CRC_ENABLE ▲
 - □说明:该位使能CRC校验计算在这个领域。注:启用CRC计算跨字段不会自动在外地的最终结果中的CRC校验传输/检查。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用CRC计算在这个领域。	
ENUM_1	1	□ 启用CRC计算在这个领域。	

PKT_RX_FIELD_2_LENGTH

- 组: 0X12
- 索引: 0X25 ... 0X26
- 摘要:无符号13位RX场2的长度值。
- 目的:
 - 。 该PKT_RX_FIELD_2_LENGTH属性指定的字节字段2的长度。该字段长度为一个无符号的13位值。
 - RX区域2可以通过设置适当的值被配置为一个可变长度的字段PKT_LEN: DST_FIELD;然而,它也是必要的,前一字段包含长度可变的字节(s)。如果配置为一个可变长度字段,此属性必须被设置了表示字段的最大长度的预期值。
 - 。 请参阅文字说明 $PKT_RX_FIELD_1_LENGTH$ 了解有关字段长度配置的更多细节。
- 默认值: 0x00, 0x00
- 寄存器查看:

	DICT DV FIELD A LENGTH											
		PKT_RX_FIELD_2_LENGTH										
指数	7	6	5	4	4 3 2 1							
0X25	0	0	0		RX_FIELD_2_LENGTH [12:8]							
0X26	RX_FIELD_2_LENGTH [7:0]											
		默认										
0X25	0	0 0 0 0X0										
0X26	0X0											

□字段详细信息

- RX_FIELD_2_LENGTH [12:0]
 - □ 说明: rx_field_length
 - □ 闵: 0X0
 - □ 马克斯: 0x1FFF的
 - □ 默认: 0x0

PKT_RX_FIELD_2_CONFIG

- 组: 0X12
- 索引: 0X27

- 摘要: 通用数据处理和数据包配置位为RX场2。
- 目的:
 - 将有效载荷送入不同的领域的划分是为了支持功能,如可变长度的数据包和特定领域的数据处理(如曼彻斯特编码,数据白化等)。此属性 提供了配置位在RX场2场特定的处理。
 - 。 此属性不适用于TX模式。
 - 。 只有在下列情况下此属性适用于RX模式:
 - 。 RX数据包处理是通过清除启用PKT_CONFIG1: PH_RX_DISABLE, 和
 - *PKT_CONFIG1*: *PH_FIELD_SPLI*T设置。如果PH_FIELD_SPLIT位被清零,通用分组配置位RX模式的各个字段由 PKT_FIELD_X_CONFIG属性(TX和RX模式之间共享)来确定。
- 默认值: 0x00
- 寄存器查看:

		PKT_RX_FIELD_2_CONFIG								
指数	7 6 5 4 3 2 1 0							0		
0X27	0	0	0	4FSK	0	0	漂白	MANCH		
	默认									
	0	0	0	0X0	0	0	0X0	0X0		

三字段详细信息

□ 4FSK

□ 说明:

- □ 该芯片支持的(G)FSK调制方式,即跨越某些字段2(G)FSK和4(G)FSK在其他领域领域的具体配置。在这种情况下,调制解调器必须为整个数据包4(G)FSK操作(通过设置被配置*MODEM_MOD_TYPE*属性),和包处理器然后在一个场逐场的基础上,从处理数据流配置在FIFO作为位双(4(G)FSK)或单位(为2(G)FSK)。
- □ 当图4(G)的FSK跨越一个字段启用,PH拉两个比特的FIFO,并将它们发送到TX调制器将要发送的一对四偏差水平。
- □ 当4 (G) FSK是跨越领域禁用,PH值拉一个比特从FIFO,并与相应的两个比特映射到外两级跑偏层次替换它。虽然在TX调制器保持配置为四个级别偏差(由*MODEM_MOD_TYPE*的属性),仅使用两个外差水平有效地导致跨越该字段2(G)的FSK调制。

□ 格式: 枚举

名称	值	可用的功能	
ENUM_0	0	□ 禁用4 (G) FSK数据在此场 处理。	
ENUM_1	1	□ 启用此字段4(G)FSK数据 处理。	

□ 漂白▲

□ 说明:

- □ 当自动数据包处理被激活(例如,当使用在TX FIFO在TX模式调制源时,或者当在PKT_CONFIG1财产PH_RX_DISABLE位被清除在RX模式)的数据美白/去美白功能才可用。
- \square 在接收模式下,数据去白化函数仅在存储在RX FIFO位来执行; 收到实时观察(上GPIO引脚)的数据位是前输出去美白。
- □ 启用数据美白不影响过度的空中数据速率。

□ 格式: 枚举

名称	值	描述	可用的功能						
ENUM_0	0	□ 在这一领域禁用数据美白/去美白。							
ENUM_1	1	□ 在这一领域实现数据美白/去美白。							

■ MANCH▲

□ 说明:

- □ 曼彻斯特编码操作者用两片图案(例如,每一个'0'位具有'10'图案和每个'1'位具有'01'的位模式,或反之亦然)替换每个位。所需的编码极性由*PKT_CONFIG1: MANCH_POL*。
- □ 使曼彻斯特编码在一个或多个字段,不影响过度的无线数据传输速率;整个数据包内的每个比特/码片在相同的数据速率(由 MODEM_DATA_RATE_X属性指定的)被发送。曼彻斯特编码简单地会影响发送(例如,通过更换一位有两个芯片)的比特/芯片数量。
- □ 在接收模式中,曼彻斯特解码功能只对存储在RX FIFO位来执行;接收到的实时观察(在GPIO引脚)的数据比特在解码之前被输出。

□ 格式: 枚举

名称	值	描述	可用的功能						
ENUM_0	0	□ 禁用曼彻斯特解码在这个领域。							
ENUM_1	1	□ 启用这一领域的曼彻斯特解 码。							

PKT_RX_FIELD_2_CRC_CONFIG

- 组: 0X12
- 索引: 为0x28
- 摘要: 跨RX场2 CRC控制位配置。
- 目的:
 - 。 这个属性是用来控制计算,传输,和CRC的校验整个RX场2。
- 默认值: 0x00
- 寄存器查看:

	PKT_RX_FIELD_2_CRC_CONFIG									
指数	7	6	5	4	3	2	1	0		
为0x28	0	0	0	0	CHECK_CRC	0	CRC_ENABLE	0		
默认										
	0	0	0	0	0X0	0X0	0X0	0X0		

□字段详细信息
□ CHECK CRC▲
□ 描述. 这个

□ 描述: 这个决定是否积累了CRC校验将在这一领域的末尾进行检查。

□ 格式: 枚举

- 1人十			
名称	值	描述	可用的功能
ENUM_0	0	□ 在这一领域的结尾不检查 CRC。	
ENUM_1	1	□ 检查CRC在这一领域的末尾。	

□ CRC_ENABLE ♠

□说明:该位使能CRC校验计算在这个领域。注:启用CRC计算跨字段不会自动在外地的最终结果中的CRC校验传输/检查。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用CRC计算在这个领域。	
ENUM_1	1	□ 启用CRC计算在这个领域。	

PKT_RX_FIELD_3_LENGTH

- 组: 0X12
- 索引: 0X29 ... 0X2A
- 摘要:无符号13位RX字段3的长度值。
- 目的:
 - 。 该PKT_RX_FIELD_3_LENGTH属性指定的字节字段3的长度。该字段长度为一个无符号的13位值。
 - 。 RX区域3可以通过设置适当的值被配置为一个可变长度的字段PKT_LEN: DST_FIELD; 然而,它也是必要的,前一字段包含长度可变的字节(s)。如果配置为一个可变长度字段,此属性必须被设置了表示字段的最大长度的预期值。
 - 。请参阅文字说明PKT_RX_FIELD_1_LENGTH了解有关字段长度配置的更多细节。
- 默认值: 0x00, 0x00
- 寄存器查看:

		PKT_RX_FIELD_3_LENGTH										
指数	7	6	5	4	3	2	1	0				
0X29	0	0 0 0 RX_FIELD_3_LENGTH [12:8]										
0X2A				RX	_FIELD_3	_LENGTH	[7:0]					
					馬							
0X29	0	0 0 0 0 0X0										
0X2A					0	X0						

□字段详细信息

- RX_FIELD_3_LENGTH [12:0]
 - □ 说明: rx_field_length
 - 闵: 0X0
 - □ 马克斯: 0x1FFF的
 - □ 默认: 0x0

PKT_RX_FIELD_3_CONFIG

- 组: 0X12
- 索引: 0x2B访问
- 摘要:通用数据处理和数据包配置位为RX字段3。
- 目的:
 - 。 将有效载荷送入不同的领域的划分是为了支持功能,如可变长度的数据包和特定领域的数据处理(如曼彻斯特编码,数据白化等)。此属性 提供了配置位在RX场3场特定的处理。
 - 。 此属性不适用于TX模式。
 - 。 只有在下列情况下此属性适用于RX模式:
 - 。 RX数据包处理是通过清除启用PKT_CONFIG1: PH_RX_DISABLE, 和
 - *PKT_CONFIG1*: *PH_FIELD_SPLIT*设置。如果PH_FIELD_SPLIT位被清零,通用分组配置位RX模式的各个字段由 PKT_FIELD_X_CONFIG属性(TX和RX模式之间共享)来确定。
- 默认值: 0x00
- 寄存器查看:

		PKT_RX_FIELD_3_CONFIG										
指数	7	7 6 5 4 3 2 1 0										
0x2B中	0	0	0	4FSK	0	0	漂白	MANCH				
		默认										
	0	0 0 0 0 000 0 000 000										

□字段详细信息

■ 4FSK▲

□ 说明:

- □ 该芯片支持的(G) FSK调制方式,即跨越某些字段2(G) FSK和4(G) FSK在其他领域领域的具体配置。在这种情况下,调制解调器必须为整个数据包4(G) FSK操作(通过设置被配置*MODEM_MOD_TYPE*属性),和包处理器然后在一个场逐场的基础上,从处理数据流配置在FIFO作为位双(4(G) FSK)或单位(为2(G) FSK)。
- □ 当图4(G)的FSK跨越一个字段启用,PH拉两个比特的FIFO,并将它们发送到TX调制器将要发送的一对四偏差水平。
- □ 当4(G)FSK是跨越领域禁用,PH值拉一个比特从FIFO,并与相应的两个比特映射到外两级跑偏层次替换它。虽然在TX调制器保持配置为四个级别偏差(由*MODEM MOD TYPE*的属性),仅使用两个外差水平有效地导致跨越该字段2(G)的FSK调制。

格式:	枚举

名称	值	描述	

				可用的功能	
	ENUM_0	0	□ 禁用4 (G) FSK数据在此场 处理。		
	ENUM_1	1	□ 启用此字段4(G)FSK数据 处理。		
□ 漂白▲ □ 说明:					
	当自动数据包处理被激活(例如,当除在RX模式)的数据美白/去美白功在接收模式下,数据去白化函数仅在启用数据美白不影响过度的空中数据	能才可用。 存储在R		_	
	名称	值	描述	可用的功能	
	ENUM_0	0	□ 在这一领域禁用数据美白/去美白。		
	ENUM_1	1	□ 在这一领域实现数据美白/去美白。		
■ MANCH▲					-
□ 说明:	· 曼彻斯特编码操作者用两片图案(例 的编码极性由 <i>PKT_CONFIG1:MAI</i>	-)1' 的位模式,或	哎反之亦然)替换每个位。所需
	使曼彻斯特编码在一个或多个字段, MODEM_DATA_RATE_X属性指定的数量。		度的无线数据传输速率;整个数据包; 送。曼彻斯特编码简单地会影响发送		

描述

□ 禁用曼彻斯特解码在这个领

□ 启用这一领域的曼彻斯特解

域。

可用的功能

PKT_RX_FIELD_3_CRC_CONFIG

出。 □ 格式: 枚举

ENUM_0

ENUM 1

- 组: 0X12
- 指标: 0x2c上

- 摘要:跨RX字段3的CRC控制位配置。
- 目的:
 - 。 这个属性是用来控制计算,传输,和CRC的校验整个RX字段3。

名称

值

0

1

- 默认值: 0x00
- 寄存器查看:

		PKT_RX_FIELD_3_CRC_CONFIG									
指数	7	6	5	4	3	2	1	0			
0X2C	0 0 0 0 CHECK_CRC					0	CRC_ENABLE	0			
	默认										
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0X0	0X0	0X0			
	U	0000 000 000 000									

□字段详细信息

- ☐ CHECK_CRC▲
 - □ 描述:这个决定是否积累了CRC校验将在这一领域的末尾进行检查。
 - □ 格式: 枚举

٧.	人			
	名称	值	描述	可用的功能
	ENUM_0	0	□ 在这一领域的结尾不检查 CRC。	
	ENUM_1	1	□ 检查CRC在这一领域的末尾。	

☐ CRC_ENABLE ▲

- □说明:该位使能CRC校验计算在这个领域。注:启用CRC计算跨字段不会自动在外地的最终结果中的CRC校验传输/检查。
- □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用CRC计算在这个领域。	
ENUM_1	1	□ 启用CRC计算在这个领域。	

PKT_RX_FIELD_4_LENGTH

- 组: 0X12
- 索引: 0X2D ... 0X2E
- 摘要: 无符号13位RX字段4的长度值。
- 目的:
 - 。 该PKT_RX_FIELD_4_LENGTH属性指定的字节字段4的长度。该字段长度为一个无符号的13位值。
 - 。 RX场4可以通过设定适当的值被配置为一个可变长度的字段PKT_LEN: DST_FIELD; 然而,它也是必要的,前一字段包含长度可变的字节 (s)。如果配置为一个可变长度字段,此属性必须被设置了表示字段的最大长度的预期值。
 - 。 请参阅文字说明PKT_RX_FIELD_1_LENGTH了解有关字段长度配置的更多细节。
- 默认值: 0x00, 0x00
- 寄存器查看:

		PKT_RX_FIELD_4_LENGTH										
指数	7	6	5	4	3	2	1	0				
0X2D	0	0	0		RX_FIEL	D_4_LENG	GTH [12:8]					
0X2E				RX	_FIELD_4	_LENGTH	[7:0]					
					黒							
0X2D	0	0 0 0 0 0X0										
0X2E					0	X0						

- RX_FIELD_4_LENGTH [12:0]
 - □ 说明: rx_field_length
 - 闵: 0X0
 - □ 马克斯: 0x1FFF的
 - 默认: 0x0

PKT_RX_FIELD_4_CONFIG

- 组: 0X12
- 索引: 0x2F的
- 摘要:通用数据处理和数据包配置位为RX字段4。
- 目的:
 - 。 将有效载荷送入不同的领域的划分是为了支持功能,如可变长度的数据包和特定领域的数据处理(如曼彻斯特编码,数据白化等)。此属性提供了配置位在RX场4场特定的处理。
 - 。此属性不适用于TX模式。
 - 。 只有在下列情况下此属性适用于RX模式:
 - 。 RX数据包处理是通过清除启用PKT CONFIG1: PH RX DISABLE, 和
 - PKT_CONFIG1: PH_FIELD_SPLIT设置。如果PH_FIELD_SPLIT位被清零,通用分组配置位RX模式的各个字段由 PKT_FIELD_X_CONFIG属性(TX和RX模式之间共享)来确定。
- 默认值: 0x00
- 寄存器查看:

		PKT_RX_FIELD_4_CONFIG										
指数	7	7 6 5 4 3 2 1 0										
0x2F的	0	0	0	4FSK	0	0	漂白	MANCH				
		默认										
	0	0 0 0 0 00 00 00 00 00										

□字段详细信息

☐ 4FSKA

- □ 说明:
 - □ 该芯片支持的(G) FSK调制方式,即跨越某些字段2(G) FSK和4(G) FSK在其他领域领域的具体配置。在这种情况下,调制解调器必须为整个数据包4(G) FSK操作(通过设置被配置*MODEM_MOD_TYPE*属性),和包处理器然后在一个场逐场的基础上,从处理数据流配置在FIFO作为位双(4(G) FSK)或单位(为2(G) FSK)。
 - □ 当图4(G)的FSK跨越一个字段启用,PH拉两个比特的FIFO,并将它们发送到TX调制器将要发送的一对四偏差水平。
 - □ 当4(G)FSK是跨越领域禁用,PH值拉一个比特从FIFO,并与相应的两个比特映射到外两级跑偏层次替换它。虽然在TX调制器保持配置为四个级别偏差(由*MODEM_MOD_TYPE*的属性),仅使用两个外差水平有效地导致跨越该字段2(G)的FSK调制。
- □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用4 (G) FSK数据在此场 处理。	
ENUM_1	1	□ 启用此字段4(G)FSK数据 处理。	

□ 漂白▲

- · □ 说明:
 - □ 当自动数据包处理被激活(例如,当使用在TX FIFO在TX模式调制源时,或者当在PKT_CONFIG1财产PH_RX_DISABLE位被清除在RX模式)的数据美白/去美白功能才可用。
 - □ 在接收模式下,数据去白化函数仅在存储在RX FIFO位来执行; 收到实时观察(上GPIO引脚)的数据位是前输出去美白。
 - □ 启用数据美白不影响过度的空中数据速率。
- □ 格式: 枚举

12.1			
名称	值	描述	可用的功能
ENUM_0	0	□ 在这一领域禁用数据美白/去美 白。	
ENUM_1	1	□ 在这一领域实现数据美白/去美 白。	

■ MANCH▲

- □ 说明:
 - □ 曼彻斯特编码操作者用两片图案(例如,每一个'0'位具有'10'图案和每个'1'位具有'01'的位模式,或反之亦然)替换每个位。所需的编码极性由*PKT_CONFIG1: MANCH_POL*。
 - □ 使曼彻斯特编码在一个或多个字段,不影响过度的无线数据传输速率;整个数据包内的每个比特/码片在相同的数据速率(由 MODEM_DATA_RATE_X属性指定的)被发送。曼彻斯特编码简单地会影响发送(例如,通过更换一位有两个芯片)的比特/芯片数量。
 - □ 在接收模式中,曼彻斯特解码功能只对存储在RX FIFO位来执行;接收到的实时观察(在GPIO引脚)的数据比特在解码之前被输出。
- □ 格式: 枚举

K-1				
名称	值	描述	可用的功能	
		□ 禁用曼彻斯特解码在这个领		

ENUM_0	0	域。	
ENUM_1	1	□ 启用这一领域的曼彻斯特解 码。	

PKT_RX_FIELD_4_CRC_CONFIG

- 组: 0X12
- 索引: 0X30
- 摘要: 跨RX字段4 CRC控制位配置。
- 目的:
 - 。 这个属性是用来控制计算,传输,和CRC的校验整个RX字段4。
- 默认值: 0x00
- 寄存器查看:

		PKT_RX_FIELD_4_CRC_CONFIG							
指数	7	6	5	4	3	2	1	0	
0X30	0	0	0	0	CHECK_CRC	0	CRC_ENABLE	0	
		默认							
	0	0	0	0	0X0	0X0	0X0	0X0	

□字段详细信息

- ☐ CHECK CRC▲
 - □ 描述: 这个决定是否积累了CRC校验将在这一领域的末尾进行检查。
 - □ 格式: 枚举

٠.	100			
	名称	值	描述	可用的功能
	ENUM_0	0	□ 在这一领域的结尾不检查 CRC。	
	ENUM_1	1	□ 检查CRC在这一领域的末尾。	

- ☐ CRC_ENABLE ▲
 - □ 说明:该位使能CRC校验计算在这个领域。注:启用CRC计算跨字段不会自动在外地的最终结果中的CRC校验传输/检查。□ 格式:<u>枚举</u>

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用CRC计算在这个领域。	
ENUM_1	1	□ 启用CRC计算在这个领域。	

PKT_RX_FIELD_5_LENGTH

- 组: 0X12
- 索引: 0X31 ... 0X32
- 摘要: 无符号13位RX字段5的长度值。
- 目的:
 - 。 该PKT_RX_FIELD_5_LENGTH物业以字节为单位指定字段5的长度。该字段长度为一个无符号的13位值。
 - 。 RX字段5, 可通过设置适当的值被配置为一个可变长度的字段PKT_LEN: DST_FIELD; 然而, 它也是必要的, 前一字段包含长度可变的字 节(s)。如果配置为一个可变长度字段,此属性必须被设置了表示字段的最大长度的预期值。
 - 。请参阅文字说明PKT_RX_FIELD_1_LENGTH了解有关字段长度配置的更多细节。
- 默认值: 0x00, 0x00
- 寄存器查看:

		PKT_RX_FIELD_5_LENGTH								
指数	7	6	5	4	3	2	1	0		
0X31	0	0	0		RX_FIEL	D_5_LENG	GTH [12:8]			
0X32		RX_FIELD_5_LENGTH [7:0]								
		默认								
0X31	0	0	0		0X0					
0X32					0	X0				

□字段详细信息

- RX_FIELD_5_LENGTH [12:0]
 - 说明: rx_field_length
 - □ 闵: 0X0
 - □ 马克斯: 0x1FFF的
 - 默认: 0x0

PKT_RX_FIELD_5_CONFIG

- 组: 0X12
- 索引: 0X33
- 摘要:通用数据处理和数据包配置位为RX字段5。
- 目的:
 - 将有效载荷送入不同的领域的划分是为了支持功能,如可变长度的数据包和特定领域的数据处理(如曼彻斯特编码,数据白化等)。此属性 提供了配置位在RX场5场特定的处理。
 - 。 此属性不适用于TX模式。
 - 。 只有在下列情况下此属性适用于RX模式:
 - 。 RX数据包处理是通过清除启用PKT_CONFIG1: PH_RX_DISABLE, 和
 - 。 PKT_CONFIG1: PH_FIELD_SPLIT设置。如果PH_FIELD_SPLIT位被清零,通用分组配置位RX模式的各个字段由

PKT_FIELD_X_CONFIG属性(TX和RX模式之间共享)来确定。

- 默认值: 0x00
- 寄存器查看:

		PKT_RX_FIELD_5_CONFIG							
指数	7	7 6 5 4 3 2 1 0							
0X33	0	0	0	4FSK	0	0	漂白	MANCH	
		默认							
	0	0	0	0X0	0	0	0X0	0X0	

日字	段	详	细	信	息
----	---	---	---	---	---

4	FS	K	A

- □ 说明:
 - □ 该芯片支持的(G) FSK调制方式,即跨越某些字段2(G) FSK和4(G) FSK在其他领域领域的具体配置。在这种情况下,调制解调器必须为整个数据包4(G) FSK操作(通过设置被配置*MODEM_MOD_TYPE*属性),和包处理器然后在一个场逐场的基础上,从处理数据流配置在FIFO作为位双(4(G) FSK)或单位(为2(G) FSK)。
 - □ 当图4(G)的FSK跨越一个字段启用,PH拉两个比特的FIFO,并将它们发送到TX调制器将要发送的一对四偏差水平。
 - □ 当4(G) FSK是跨越领域禁用,PH值拉一个比特从FIFO,并与相应的两个比特映射到外两级跑偏层次替换它。虽然在TX调制器保持配置为四个级别偏差(由*MODEM_MOD_TYPE*的属性),仅使用两个外差水平有效地导致跨越该字段2(G)的FSK调制。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用4(G)FSK数据在此场 处理。	
ENUM_1	1	□ 启用此字段4(G)FSK数据 处理。	

□ 漂白▲

- □ 说明:
 - □ 当自动数据包处理被激活(例如,当使用在TX FIFO在TX模式调制源时,或者当在PKT_CONFIG1财产PH_RX_DISABLE位被清除在RX模式)的数据美白/去美白功能才可用。
 - □ 在接收模式下,数据去白化函数仅在存储在RX FIFO位来执行; 收到实时观察(上GPIO引脚)的数据位是前输出去美白。
 - □ 启用数据美白不影响过度的空中数据速率。

□ 格式: 枚举

八十			
名称	值	描述	可用的功能
ENUM_0	0	□ 在这一领域禁用数据美白/去美白。	
ENUM_1	1	□ 在这一领域实现数据美白/去美 白。	

■ MANCH▲

- □ 说明:
 - □ 曼彻斯特编码操作者用两片图案(例如,每一个'0'位具有'10'图案和每个'1'位具有'01'的位模式,或反之亦然)替换每个位。所需的编码极性由*PKT_CONFIG1: MANCH_POL*。
 - □ 使曼彻斯特编码在一个或多个字段,不影响过度的无线数据传输速率;整个数据包内的每个比特/码片在相同的数据速率(由 MODEM_DATA_RATE_X属性指定的)被发送。曼彻斯特编码简单地会影响发送(例如,通过更换一位有两个芯片)的比特/芯片数量。
 - □ 在接收模式中,曼彻斯特解码功能只对存储在RX FIFO位来执行;接收到的实时观察(在GPIO引脚)的数据比特在解码之前被输出。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	 □ 禁用曼彻斯特解码在这个领域。	
ENUM_1	1	□ 启用这一领域的曼彻斯特解 码。	

PKT_RX_FIELD_5_CRC_CONFIG

- 组: 0X12
- 索引: 0X34
- 摘要: 跨RX字段5 CRC控制位配置。
- 目的:
 - 。 这个属性是用来控制计算, 传输, 和CRC的校验整个RX字段5。
- 默认值: 0x00
- 寄存器查看:

		PKT_RX_FIELD_5_CRC_CONFIG							
指数	7	6	5	4	3	2	1	0	
0X34	0	0	0	0	CHECK_CRC	0	CRC_ENABLE	0	
		默认							
	0	0	0	0	0X0	0X0	0X0	0X0	

□字段详细信息

- ☐ CHECK_CRC▲
 - □ 描述:这个决定是否积累了CRC校验将在这一领域的末尾进行检查。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 在这一领域的结尾不检查 CRC。	

	ENUM_1	1	□ 检查CRC在这一领域的末尾。		
□ CRC_ENA □ 说明:		个领域。注:启	用CRC计算跨字段不会自动在外地的	的最终结果中的 C	RC校验传输/检查。
□ 格式:	枚举				
	名称 ENUM 0		描述 □ 禁用CRC计算在这个领域。	可用的功能	
	ENUM_1	1	□ 启用CRC计算在这个领域。		
	_	l .			
目的:	I类型。在 <i>TX</i> 模式,另外选择证 置调制解调器的芯片为以下调制 ,此属性还用于选择TX数据流 器必须为唯一的一种类型,在整 预域。如果4(G)FSK的支持 以图4(G)FSK模式为整个 MODEN 7	制类型的传输/接 的源,以及TX类 整个分组调制的短,有可能一个特数据包,然后在 1_MOD_TYPE	收: OOK, 2 (G) FSK, 及4 (G) 数据流是从一个同步或异步源(直接模 发送/接收进行配置; 这是不可能的(定领域的基础上, 2 (G) FSK和4 (包处理器执行特殊的数据处理实现的	模式)。 列如)使用OOK G)FSK之间进 ²	调制在某些领域和(G)
0x00 TX_DIRE	CT_MODE_TYPE TX_DIREC	T_MODE_GPIO 默认	MOD_SOURCE MOD_TYPE		
	0X0	0X0	0X0 0X2		
□ 说明: □	这个位决定实时TX数据流(原且仅当MOD_SOURCE字段也在TX直接同步模式,该芯片设响应通过输出一个位为每个时2FSK,2GFSK)的支持。在TX直接异步模式,主机MC边沿跃迁。OOK和2FSK都支4(G)FSK并不在任TX直接	a被设置为TX直持 通过输出TX位时针 钟周期;该芯片在 U控制发射数据设持,但2GFSK不	中(GPIO_PIN_CFG = 0X10)控制 生时钟在TX时钟的后续下降沿这个新 速率;该RFIC没有知识的输入TX数据 支持这种模式。	数据传输速率。自 所数据位。所有	E机MCU接收TX时钟的上的2级调制模式(OOK,
□ 榴八:	名称	值	描述	可用的功能	
	同步	0	□ 直接模式工作在同步模式,适 用于德克萨斯州只。		
	异步	1	□ 直接模式工作在异步方式,适 用于德克萨斯州只。不支持 GFSK。		
☐ TX_DIREC	T_MODE_GPIO [1:0]		Of Oits		
	此字段决定了GPIO引脚被选F字段也被设置为TX直接模式。 此字段不会自动配置选定的G脚GPIO_PIN_CFG=0x04访	PIO引脚为数字输	作为在TX直接模式的调制数据源。这 俞入引脚;它仍然需要通过设置额外面		
•	名称	值	描述	可用的功能	
	GPIO0	0	□ TX直接模式使用GPIO0作为数据源。		
	GPIO1	1	□ TX直接模式使用GPIO1作为数据源。		
	GPIO2	2	□ TX直接模式使用GPIO2作为数据源。		
	GPIO3	3	□ TX直接模式使用GPIO3作为数据源。	(
□ MOD_SOU □ 说明: □ 格式:	在TX模式该位选择调制源。	 它只在 TX 模式是			
□ 俗八:	名称	值	描述	可用的功能	
	包	0	□ 调制是从TX FIFO中源包处理		
			器。		

1

调制是来自GPIO引脚来提供 实时的(即,德克萨斯州直接 模式),为选定的 TX_DIRECT_MODE_GPIO领

□ 该调制是从内部伪随机数生成

域。

直接

	175	2	器源。枘的长度和序列由 PKT WHT POLY XX属性设		
			置。		
■ MOD_TYPI	Ē [2:0] <u></u>				'
□ 说明:	: 这一领域将调制解调器设定为调制所	雪米刑的	发 送或接收		
	目前除了CW模式(一个TX-唯一功能				
□ 格式:		1			1
	名称	值	描述	可用的功能	
	CW	0	□ CW。		
	OOK 2FSK	1 2	☐ OOK。 ☐ 2FSK。		
	2GFSK	3	□ 2FSK。		
	4FSK	4	☐ 4FSK。		
	4GFSK	5	☐ 4GFSK。		
		I			I
MODEM_MAP_C	CONTROL				
MODELIII_IIIAI _C	JONI NOL				
• 组: 0X20					
• 索引: 0X01	- In 42 64 64 no 64 In 20				
	和发射的映射和接收位。				
。 该芯片提信	供反转的 TX 和 RX 数据位的极性的功能				
	NCH位信号的芯片来调节"搜索同步字	"超时事件	的同步字配置为同步曼彻斯特编码及	及4(G)FSK编	码周期。这种配置目前不支持,
	ANCH位的设置在内部被忽略。				
 寄存器查看: 	,				
<u> </u>					
11. 101	MODEM_MAP_CONTRO				
指数 7		4	3 2 1 0		
0X01 ENMA	ANCH ENINV_RXBIT ENINV_TXBIT E	:NINV_FL	0 000		
0X	默认 (1 0X0 0X0	0X0	0X0000		
07	0.00 0.00	0/\0			
□字段详细信息					
□ ENMANCH					
□ 说明:					TTA (O) FOUNDE
	设置时,在信号调节芯片中出现的"独目前不支持此配置;该ENMANCH位的			为 曼彻斯特编码	i及4(G)FSK编码。
□ 格式 :	· · · · · · · · · · · · · · · · · · ·	17 区且工 r	1 叶瓜次小小品。		
	名称	值	描述	可用的功能	
	ENUM_0	0	□ 不要调整同步字超时曼彻斯特		
		_	编码。		
	ENUM_1	1	□ 调整同步字超时曼彻斯特编码。		
☐ ENINV_RX	BITA		H-2 0		ı
□ 说明:					
	启用/禁用整个RX数据比特流的反转。				2码或数据去增白)后发生。
□ 格式:	出现在实时上的GPIO引脚(如果选择 · 枚举	筆丿 的剱か	古世符傚仪相,如符仔储住RXFIFU中	P的	
_ 111.71.	名称	值	描述	可用的功能	
	ENUM_0	0	□ 不要颠倒RX数据位。		
	ENUM_1	1	□ 反转RX数据位。		
■ ENINV_TX					
□ 说明:	: 启用/禁用整个TX数据比特流的反转,	在由 败,	与之前 为了注入调制聚产生的 的	物据位流的反转	·应用于TY调制(FIFO 直接从
	GPIO引脚,或者PN发生器)的所有			X 7日 1至 70 日 7 7 X 4 7	应用 , 不确即(IIIO ,且该//
	在OOK模式,这有一个不断变化的T	X-ON位为	TX-OFF位的效果明显,反之亦然。		
	在2(G)FSK模式,这种具有改变A此位(即非反转)的结果在一个'1'T)				
Ö	在图4(G)FSK模式,产生的效果取	\ 剱据位员 汉决干所的	别到+FUEV人小偏左小十的私队反正 R	I.。 TX数据位(以f	前映射到一个4(G)FSK偏差电
	平)可能导致相反的偏差级别的传输		211 1177 137 137 137 137 137 137 137 137		No.
□ 格式:			III.N.B.		1
	名称	值	描述	可用的功能	
	ENUM_0	0	□ 不要颠倒TX数据位。		
■ ENINV_FD	ENUM_1	1	□ 反转TX数据位。		I
□ LNIIV_I □ 说明:					
	启用/禁用频率偏差的TX 2 (G) FSk				RX模式下不起作用。
	在如图2(G)FSK模式,该位具有标				VDIT) 连带体子的体型标节中
	在4(G)FSK模式下,该位结果在训映射。	可耐波形尽	〈谀, 赵�� 配个问丁反相 X 数据位流(、週 UENINV_I)	NDII / ,
□ 格式:					
	名称	值	描述 不反转的频率偏差的极性。	可用的功能	

ENUM_0 ENUM_1

□逆转的频率偏差的极性。

MODEM DSM CTRL

- 组: 0X20
- 索引: 0X02
- 简介: 杂项控制位Δ-Σ调制器(DSM) 在PLL合成器。
- 目的:
 - 。 此属性提供了几个其他的控制位帝斯曼功能,如时钟源,抖动和调制器的顺序。这些控制位主要用于工程诊断目的,而Silicon Labs公司不建议更改由WDS计算器建议值(与DSM_LSB位可能是个例外)。
 - 一些DSM分数N PLL合成器可以呈现离散的音调或模式相关马刺的频率控制字的某些分数值。分手这些色调或图案的一个常见方法是将一个类噪声(伪随机)的比特序列加至频率控制字的最低有效位;这被称为"抖动"。该芯片提供了有利的抖动和选择两种不同类型的抖动的;然而,Silicon Labs还没有观察到有必要启用此功能,并建议抖动仍然禁用。
 的分数频率值通常在许多DSM的图案相关的杂散产生的确切的权力,以2(例如,0.5,0.25,0.125,等等)。除了抖动,消除模式相关马
 - 。的分数频率值通常在许多DSM的图案相关的杂散产生的确切的权力,以2(例如,0.5, 0.25, 0.125, 等等)。除了抖动,消除模式相关马刺的另一种常用的方法是简单地保证了频率控制字始终是一个奇数值,因此可以永远是一个准确的功率为-2。该芯片提供了内部强制频率控制字总是被设置为高的LSB,从而导致一个奇怪的值(无论由用户编程的频率控制字)。这个功能是由DSM_LSB位控制。获得的频率控制字的奇值的缺点是频率调谐分辨率有效2倍的系数(例如,在915M频段57.22赫兹调谐分辨率,而不是28.61赫兹调谐分辨率)降低。Silicon Labs公司并不知悉需要启用该功能无显著模式相关的马刺已经观察到;然而,在WDS计算器目前建议设置此位,并缺席需要极其精细的频率控制分辨率,Silicon Labs还建议不要更改此设置。
- 默认: 0X07
- 寄存器查看:

	MODEM_DSM_CTRL							
指数	7	6	5	4	3	2	1	0
0X02	DSMCLK_SEL	DSM_MODE	DSMDT_EN	DSMDTTP	DSM_RST	DSM_LSB	DSM_C	ORDER
	默认							
	0X0	0X0	0X0	0X0	0X0	0X1	0x3	3的

3字段详细信息

■ DSMCLK	SEL	
----------	-----	--

- □ 说明:选择时钟源的DSM。
- □ 格式: 枚举

• <u>¼</u> +			
名称	值	描述	可用的功能
ENUM_0	0	□ 帝斯曼时钟来自30 MHz的PLL 反馈时钟。	
ENUM_1	1	□ 帝斯曼时钟来自30 MHz晶体时钟。	

=	DSM	MOI)F

- □ 说明:选择在PLL合成器使用DSM的类型。
- □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	■ MASH 1-1-1帝斯曼将被选中。	
ENUM_1	1	□ 单回路帝斯曼将被选中。	

- DSMDT_EN▲
 - □ 说明:
 - □ 选择在DSM抖动是否已启用。
 - □ 当启用时,抖动的类型是由DSMDTTP位控制。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 帝斯曼抖动被禁用。	
ENUM_1	1	■ DSM抖动被启用。	

- □ DSMDTTP▲
 - □ 说明:
 - □选择加入帝斯曼抖动类型。
 - □ 伪随机抖动序列的比特可以被看作是1/0位或1/-1个比特; 后一种方法是DC平衡的,而前者的方法有效地增加了½LSB频率偏移的频率控制字。
 - □ 该位没有任何影响,除非抖动是通过设置DSMDT_EN位启用。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 1/0被添加到帝斯曼输入LSB。	
ENUM_1	1	□ +1 / -1加入到帝斯曼输入 LSB。	

- ☐ DSM_RST ☐
 - □ 说明: 提供复位帝斯曼的方法。
 - □ 格式: 枚举

名称	值	描述	可用的功能
启用	0	□ 帝斯曼处于运行状态(复位不 活跃)。	
复位	1	□ 帝斯曼将在复位状态,直到它 是明确的。	

- □ DSM_LSB▲
 - □ 说明:
 - □ 选择DSM频率控制字的最低位是否总是被迫高,导致频率控制字的奇数值。
 - □ 如果启用,有效频率调谐分辨率降低。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 在帝斯曼输入的LSB是不变的	

	ENUM_1	1	□ 在帝斯曼输入的LSB被内部强制为高(即频率控制字是被迫 永远是一个奇数值)。	
RD	ER [1:0]			
明:	选择DSM的顺序。			
式:	枚举			
	名称	值	描述	可用的功能
	ENUM_0	0	□ 0秩序,0连续输出。	
	ENUM_1	1	□ 1级,无噪声整形。	
	ENUM 2	2	□ 二阶, MASH 1-1。	

3

MODEM DATA RATE

□ DSM O □ 说 格

- 组: 0X20
- 索引: 0X03 ... 0X05
- 简介: 用于确定TX数据速率无符号24位值

ENUM 3

- 目的:
 - TX数据速率从从TX数控振荡器(NCO),一个内部时钟信号导出的。
 - 。 该TX NCO提供时钟信号在最终所需TX数据速率的可配置多个; 确切的采样率取决于调制模式 (OOK / FSK / GFSK) 和所选择的数据速率。
 - 。 该值MODEM_DATA_RATE属性适用于与配合MODEM_TX_NCO_MODE属性和TXOSR字段,以提供所需的数据速率。其结果是,在各单 位MODEM_DATA_RATE属性是不固定的。然而,作为一般指引,该值MODEM_DATA_RATE属性将是要么1X,2X,4X,10X,20X, 40X或所需的数据速率(比特每秒)。

■ 三阶, MASH 1-1-1。

- 。 请参阅文字说明MODEM TX NCO MODE了解有关TX数控振荡器 (NCO) 的更多细节,以及的角色MODEM TX NCO MODE和 MODEM_DATA_RATE在设置TX数据传输速率性能。
- 。 的默认值MODEM DATA RATE和MODEM TX NCO MODE特性导致的100 kbps的数据速率。
- 默认值: 0X0F, 的0x42, 0X40
- 寄存器查看:

		MODEM_DATA_RATE											
指数	7	6	5	4	3	2	1	0					
0X03		DATA_RATE [23:16]											
0x04		DATA_RATE [15:8]											
0X05		DATA_RATE [7:0]											
					默认								
0X03		0XF											
0x04		的0x42											
0X05				(0X40								

□字段详细信息

- DATA RATE [23:0] ▲
 - □ 说明:数据速率
 - □ 闵: 0X0
 - □ 马克斯: 0XFFFFFF
 - □ 默认值: 0xf4240

MODEM_TX_NCO_MODE

- 组: 0X20
- 索引: 0X06 ... 0X09
- 简介: TX高斯滤波器的过采样率和无符号26位TX数控振荡器(NCO)模数字节3。
- 目的:
 - 。 该芯片包含一个TX数控振荡器(NCO),用于在所希望的数据传输速率的可配置多个产生的内部时钟信号的目的。
 - 。 为工作2GFSK和4GFSK模式,采样率是由TXOSR字段配置和可选10X,20X,和40X之间。过采样的NCO时钟信号被用于合成各个偏差的 步骤的高斯滤波调制波形,并且因此不一定必须是在所期望的数据速率更高的倍数。
 - o 对于操作OOK, 2FSK, 4FSK和模式, 没有内在的需要创建一个过采样时钟; 唯一需要的信号是在所希望的数据速率的TXCLK信号。但是, 可以很方便地使用相同的NCO时钟电路,从而通过首先产生的NCO时钟信号的10倍过采样率和随后除以乘10得到的TXCLK数据速率信号。
 - 。 在NCO是由该时钟由晶体振荡器频率(FXTAL)的储液器,具有最大计数限制(弹性模量)等于值MODEM TX NCO MODE属性,并且 在每个时钟周期存储由设定值 $MODEM_DATA_RATE$ 属性。因此,累加器值超过了其最大计数限制在由以下公式给出的速率: $NCO_CLK_FREQ = (\frac{MODEM_DATA_RATE \times Fxtal_Hz}{MODEM_TX_NCO_MODE})$

$$NCO_CLK_FREQ = (\frac{MODEM_DATA_RATE \times Fxtal_Hz}{MODEM_TX_NCO_MODE})$$

由累加器所产生的溢出脉冲是在TX NCO时钟信号。

。 实际TX数据速率(以及TXCLK信号的频率)由下式给出:

$$TX_DATA_RATE = (\frac{NCO_CLK_FREQ}{TXOSR})$$

- 。 在2GFSK或4GFSK模式,TXOSR值可增至20倍或40倍(从10倍其标称值)。这增加过采样率的结果与更精细的偏差的步骤的高斯滤波调 制波形,从而降低了调制边带构件。20倍或40倍的过采样率选项仅适用于较低的数据速率;WDS的计算器会自动提示TXOSR中选定的数据 速率可能的最高值。如果被选中的20倍或40倍的过采样率,对所输入的值MODEM_DATA_RATE属性也应由2x或4x(分别)进行缩放,以 保持所要求的TX数据速率。
- 。 对于输入的值MODEM_TX_NCO_MODE属性建议要么FXTAL或Fxtal/10(例如,0x1C9C380 = 30M十进制或0x02DC6C0 = 3M小数,假设 晶振频率为30MHz)。WDS的计算器会自动提示相应的值作为数据传输速率(FXTAL为DR> 200kbps的,和Fxtal/10为DR≥200kbps的)的 函数。这提供了数据率的不同调节分辨率。
- 。 该MODEM TX NCO MODE和MODEM DATA RATE属性影响仅在TX数据传输速率,但在配置的数据传输速率在RX模式没有影响。
- 。 的默认值MODEM_DATA_RATE和MODEM_TX_NCO_MODE特性导致的100 kbps的数据速率。
- 默认值: 0X01, 0xc9, 有0xC3, 0x80的
- 寄存器杳看:

		MODEM_TX_NCO_MODE											
指数	7	6	5	4	3	2	1	0					
0X06	0	0	0	0	TXOS	SR [1:0]	NCOMOD [25:24]						
0X07		NCOMOD [23:16]											
0X08		NCOMOD [15:8]											
0X09						NCOMO	D [7:0]						
						默も	l						
0X06	0	0	0	0	0	X0	0.	X1					
0X07		0xc9											
0X08		有0xC3											
0X09						0x80	的						

- ☐ TXOSR [1:0]
 - □ 说明:设置用于合成高斯滤波调制波形的内部NCO时钟信号的过采样率。此字段是唯一有效的GFSK模式。
 - □ 格式: 枚举

:			
名称	值	描述	可用的功能
ENUM_0	0	□ TX高斯滤波器的过采样率是 10倍。	
ENUM_1	1	□ TX高斯滤波器的过采样率是 40倍。	
ENUM_2	2	□ TX高斯滤波器的过采样率是 20倍。	
ENUM_3	3	□ 保留,不要使用。	

- NCOMOD [25:0]
 - □ 说明:设置在TX NCO时钟发生电路中使用的蓄能器的弹性模量(最大计数值)。
 - □ 闵: 0X0
 - □ 马克斯: 0x3fffff
 - □ 默认值: 0x1c9c380

MODEM_FREQ_DEV

- 组: 0X20
- 索引: 0X0A ... 0X0C
- 简介: 17位无符号TX频率偏差字。
- 目的:
 - 。 TX频率偏差是由一个无符号的17位值指定。此属性定义的频率偏差值。
 - 。 该MODEM_FREQ_DEV属性的单位是在PLL合成器的LSB调谐分辨率的增量,并且是晶体频率,因此功能和输出频率波段。该公式用于计算MODEM_FREQ_DEV属性的值由下式给出下列公式:

$$MODEM_FREQ_DEV = \left(\frac{2^{19} \times outdiv \times Desired_Dev_Hz}{N_{PRESC} \times freq_xo}\right)$$

- 。 输出分频器值OUTDIV被配置为期望的频带的功能,并且在属性中指定MODEM_CLKGEN_BAND: BAND。
- 。 预分频器的分频值NPRESC配置为选定的合成性能模式的功能,可能需要对值NPRESC = 2或NPRESC = 4,在属性中指定 *MODEM_CLKGEN_BAND*: SY_SEL。
- 。 2 (G) FSK模式,指定的值是峰值偏差。为4 (G) FSK模式(如果支持的话),则指定的值的内偏差(即,信道的中心频率和最接近的符号偏差电平之间)。
- 。 该MODEM_FREQ_DEV属性仅是用来在TX模式。
- 默认值: 0x00, 0X06, 0xd3的
- 寄存器查看:

		MODEM_FREQ_DEV										
指数	7 6 5 4 3 2 1 0						0					
0X0A	0	0	0	0	0	0	0	FREQDEV				
0X0B		FREQDEV [15:8]										
0X0C						FRE	QDE	EV [7:0]				
							默讠	Į.				
0X0A	0	0	0	0	0	0	0	0X0				
0X0B		0X6										
0X0C							0xd3	的				

□字段详细信息

☐ FREQDEV [16:0]▲

■ 默认值: 0x6d3

MODEM_FREQ_OFFSET

- 组: 0X20
- 索引: 0X0D ... 0x0E的
- 简介: 频率偏移调整(16位有符号数)。
- 目的:
 - 。 在TX模式下,MODEM_FREQ_OFFSET值是用于提供一个偏移到编程TX频率。这使得TX频率的微调,以占TX参考频率(例如,晶振频率

误差)的可变性。

- 在RX模式时PLL AFC是残疾人,MODEM_FREQ_OFFSET值是用于提供一个偏移的编程RX频率。此属性在RX模式没有功能与PLL AFC启用。具体来说,读取此属性不返回RX模式估计AFC频率误差;该频率误差值可从以下方式获得*GET MODEM_STATUS*命令。
- 。 频率偏移调整是一个有符号的16位值。此属性定义的频率偏移值。
- 。 该MODEM_FREQ_OFFSET属性的单位是在PLL合成器的LSB调谐分辨率的增量,并且是晶体参考频率,因此功能和输出频率波段。该公式用于计算MODEM_FREQ_OFFSET属性的值由下式给出下列公式:

$$MODEM_FREQ_OFFSET = \left(\frac{2^{19} \times outdiv \times Desired_Offset_Hz}{N_{PRESC} \times freq_xo}\right)$$

- 。 请参阅文字说明FREQ CONTROL INTE了解有关频率计算的更多细节。
- 。 此属性表示以Hz为单位的绝对范围是晶体参考频率和输出频率频带的功能,但范围为+/-937.5千赫在915M带至+/-468.7千赫在450M带等
- 默认值: 0x00, 0x00
- 寄存器查看:

		MODEM_FREQ_OFFSET										
指数	7	7 6 5 4 3 2 1 0										
0X0D		FREQOFFSET [15:8]										
0x0E的		FREQOFFSET [7:0]										
				黒	犬认							
0X0D		0X0										
0x0E的				()X0							

三字段详细信息

☐ FREQOFFSET [15:0]▲

■ 默认: 0x0

MODEM_TX_FILTER_COEFF_8

- 组: 0X20
- 索引: 0X0F
- 简介: TX频谱整形滤波器的系数8。
- 目的:
 - 。 该芯片可以应用频谱整形滤波器函数(例如高斯滤波)到TX数据流中。该过滤器被实现为一个17抽头的FIR数字滤波器,因此在内部共有17滤波器系数。但是,抽头系数的值是对称的: Coeff16 = Coeff0, Coeff15 = Coeff1等。因此,仅需要存储一个共9系数(Coeff8通Coeff0);内部电路通过对称获得的剩余系数。
 - 。 此属性指定TX整形滤波器的系数8。
 - 由默认提供的过滤功能建议系数值是高斯滤波与B*T=0.5。其他过滤功能是可能的;请联系Silicon Labs公司的滤波器系数的值。
 - 。 的频谱整形滤波器功能用于只在TX模式下,并且当使用TX直接异步模式下不可用。
- 默认值: 0x67
- 寄存器查看:

		MODEM_TX_FILTER_COEFF_8										
指数	7	7 6 5 4 3 2 1 0										
0X0F		TXCOE8										
		默认										
		•	•	0:	x67		•					

□字段详细信息

- TXCOE8 [7:0] ▲
 - □ 默认值: 0x67

MODEM_TX_FILTER_COEFF_7

- 组: 0X20
- 索引: 0X10
- 简介: TX频谱整形滤波器的系数七日。
- 目的:
 - 。 此属性指定TX整形滤波器的系数7。
 - 。 请参阅文字说明MODEM_TX_FILTER_COEFF_8 了解有关TX频谱整形滤波更多的细节。
- 默认: 0X60
- 寄存器查看:

		MODEM_TX_FILTER_COEFF_7										
指数	7	7 6 5 4 3 2 1 0										
0X10		TXCOE7										
		默认										
				0)	<60							

□字段详细信息

- TXCOE7 [7:0]
 - 默认: 0X60

- 组: 0X20
- 索引: 0x11
- 简介: TX频谱整形滤波器的系数6。
- 目的:
 - 。 此属性指定TX整形滤波器的系数6。
 - 。 请参阅文字说明MODEM_TX_FILTER_COEFF_8了解有关TX频谱整形滤波更多的细节。
- 默认值: 送出0x4d
- 寄存器查看:

			MODEM_TX_FILTER_COEFF_6									
	指数	7 6 5 4 3 2 1										
Ī	0x11		TXCOE6									
Ī			默认									
			送出 0x4d									

- ☐ TXCOE6 [7:0]
 - □ 默认值: 送出0x4d

MODEM_TX_FILTER_COEFF_5

- 组: 0X20
- 索引: 0X12
- 简介: TX频谱整形滤波器的系数五日。
- 目的:
 - 。 此属性指定TX整形滤波器的系数五日。
 - 。 请参阅文字说明MODEM_TX_FILTER_COEFF_8 了解有关TX频谱整形滤波更多的细节。
- 默认值: 0x36
- 寄存器查看:

	MODEM_TX_FILTER_COEFF_5											
指数	7	6	5	4	3	2	1	0				
0X12		TXCOE5										
		默认										
				0:	x36							

□字段详细信息

■ TXCOE5 [7:0]

□ 默认值: 0x36

MODEM_TX_FILTER_COEFF_4

- 组: 0X20
- 索引: 0X13
- 简介: TX频谱整形滤波器的系数4。
- 目的:
 - 。 此属性指定TX整形滤波器的系数4。
 - 。 请参阅文字说明MODEM_TX_FILTER_COEFF_8 了解有关TX频谱整形滤波更多的细节。
- 默认: 0X21
- 寄存器查看:

	MODEM_TX_FILTER_COEFF_4										
指数	7	6	5	4	3	2	1	0			
0X13		TXCOE4									
		默认									
				0>	〈21						

□字段详细信息

- ☐ TXCOE4 [7:0]
 - □ 默认: 0X21

MODEM_TX_FILTER_COEFF_3

- 组: 0X20
- 索引: 0X14
- 简介: TX频谱整形滤波器的系数3。
- 目的:
 - 。 此属性指定TX整形滤波器的系数3。
 - 。请参阅文字说明MODEM_TX_FILTER_COEFF_8了解有关TX频谱整形滤波更多的细节。
- 默认值: 0x11
- 寄存器查看:

ĺ			MODEM_TX_FILTER_COEFF_3										
ĺ	指数	7	6	5	4	3	2	1	0				
	0X14		TXCOE3										
ŀ													

0x11	

- ☐ TXCOE3 [7:0] ▲
 - □ 默认值: 0x11

MODEM_TX_FILTER_COEFF_2

- 组: 0X20
- 索引: 0X15
- 简介: TX频谱整形滤波器的第二个系数。
- 目的:
 - 。 此属性指定TX整形滤波器的第二个系数。
 - 。 请参阅文字说明MODEM_TX_FILTER_COEFF_8 了解有关TX频谱整形滤波更多的细节。
- 默认: 0X08
- 寄存器查看:

	MODEM_TX_FILTER_COEFF_2										
指数	7	6	5	4	3	2	1	0			
0X15		TXCOE2									
		默认									
				位	F0x8						

□字段详细信息

■ TXCOE2 [7:0]

□ 默认: 位于0x8

MODEM_TX_FILTER_COEFF_1

- 组: 0X20
- 索引: 0X16
- 简介: TX频谱整形滤波器的系数1。
- 目的:
 - 。 此属性指定TX整形滤波器的系数1。
 - 。 请参阅文字说明MODEM_TX_FILTER_COEFF_8 了解有关TX频谱整形滤波更多的细节。
- 默认值: 0×03
- 寄存器查看:

		MODEM_TX_FILTER_COEFF_1											
指数	7	6	5	4	3	2	1	0					
0X16		TXCOE1											
		默认											
				0x	3的								

□字段详细信息

- ☐ TXCOE1 [7:0]▲
 - □ 默认值: 0x3的

MODEM_TX_FILTER_COEFF_0

- 组: 0X20
- 索引: 0X17
- 简介: TX频谱整形滤波器的第0系数。
- 目的:
 - 。 此属性指定TX整形滤波器的第0系数。
 - 。 请参阅文字说明MODEM_TX_FILTER_COEFF_8 了解有关TX频谱整形滤波更多的细节。
- 默认: 0X01
- 寄存器查看:

		MODEM_TX_FILTER_COEFF_0										
指数	7	7 6 5 4 3 2 1 0										
0X17		TXCOE0										
		默认										
				0	X1							

□字段详细信息

- ☐ TXCOE0 [7:0]
 - □ 默认: 0X1

MODEM_TX_RAMP_DELAY

- 组: 0X20
- 索引: 0X18

- 简介: TX减速延迟设置。
- 目的:
 - 。 此属性指定一个2(G)FSK或4(G)FSK数据包的最终符号传输和PA的输出功率的斜坡下降的开始之间的延迟时间。这种配置的延迟时间,确保所有符号已经完全传输输出功率的任何减少发生之前。
 - 。 此属性仅适用于TX模式,并采用OOK调制时,没有任何影响。
 - 。 延迟的单位是比特/符号周期。WDS的计算器显示一个适当的延迟值,作为所选择的调制类型和数据速率的函数。
- 默认: 0X01
- 寄存器查看:

		MODEM_TX_RAMP_DELAY											
指数	7	6	5	4	3	2 1 0							
0X18	0	0	0	0	0	RAMP_DLY							
		默认											
	0	0	0	0	0	0X1							

- □ RAMP_DLY [2:0] ▲
 - □ 闵: 0X1
 - □ 马克斯: 0x7的
 - 默认: 0X1

MODEM_MDM_CTRL

- 组: 0X20
- 指数: 0×19
- 摘要: MDM控制。
- 目的:
 - 。 探测器的选择和PM模式的配置。
- 默认值: 0x00
- 寄存器查看:

	MODEM_MDM_CTRL										
指数	7	6	5	4	3	2	1	0			
0×19	PH_SRC_SEL	0	0	0	0	0	0	0			
	默认										
	0X0	0	0	0	0	0	0	0			

□字段详细信息

- □ PH SRC SEL▲
 - □ 说明: BCR/切片机相源选择。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 从输入计算机相输出。	
ENUM_1	1	□ 输入从检测器的输出。	

MODEM_IF_CONTROL

- 组: 0X20
- 索引: 0X1A
- 摘要:选择固定中频,缩放中频,或RX调制解调器操作的零中频模式。
- 目的:
 - 。 该芯片通常与经营一个固定的中频FXTAL / 64(例如,30.0兆赫/ 64 = 468.75千赫)的频率。作为低侧混频器喷射方案被使用,这将这个图象响应于2 * 468.75千赫= 937.5千赫低于所需的信道。
 - 。 这是可能的配置芯片操作与较低的IF频率,由下式给出: FIF = FXTAL / (64 * N)。 因为这个值是与所述固定的中频频率的比例因子"N",它被称为鳞中频模式。
 - 。 比例因子"N"(也因此而得到的缩放的IF频率)自动地由WDS计算器建议作为所选择的数据速率的函数,具有较低的中频频率产生较低的数据速率。比例因子"N"始终是一个整数值,并且通常(但不总是)2(例如,N=2^M)的一个电源。
 - 当期望的频率比通常从操作的固定中频模式产生的其他定位图像响应缩放中频模式可能是有用的。
 - 。另外,也可以配置到零操作F频率,与好处是图像的响应频率被淘汰的芯片。然而,该芯片的接收灵敏度是在零F模式有所降低。此外, RFIC目前不支持在接收零中频模式的OOK调制信号。
 - 。 该MODEM_IF_FREQ属性的值应该设置按照这个属性(即,到IF频率为固定中频或缩放中频模式的适当的值,或以零对零中频模式的 值)。
 - 。 如果零IF位被设置,FIXIF位应被清除。
- 默认: 0X08
- 寄存器查看:

	MODEM_IF_CONTROL										
指数	7	6	5	4	3	2	1	0			
0X1A	0	0	0	零IF	FIXIF	0	00				
		默认									
	0	0	0	0X0	0X1	0	0	X0			

□字段详细信息

□ 零IF▲

□ 格式: 枚举

名称	值	描述	可用的功能
华中师范	0	□ 非零中频模式(即固定IF或可 伸缩的中频模式)。	
ZERO	1	□零IF模式。	

□ FIXIF♠

□ 格式: 枚举

名称	值	描述	可用的功能
SCALED	0	□ 规模较小的中频模式。	
固定	1	□固定中频模式。	

MODEM_IF_FREQ

- 组: 0X20
- 索引: 0X1B ... 0x1d
- 摘要: IF频率设置(18位有符号数)。
- 目的:
 - 在RX模式,该芯片采用低侧搅拌机注入方案(除了在零中频模式时)。该FREQ_CONTROL_INTE和FREQ_CONTROL_FRAC属性定义的信道中心频率;为了接受这个频率,芯片会自动通过相等于中频频率向下转移的RX LO频率。
 - 。 该MODEM IF FREQ属性定义了在RX LO频率偏移量。
 - 。 这个值是一个有符号的18位号码。这是总结与PLL频率合成器的频率控制字,因此必须包含以提供在频率的向下位移为负值。
 - · 在固定IF和定标中频模式下,IF频率由下式给出下列公式:

$$IF_FREQ_Hz = (\frac{freq_xo}{64 \times N})$$

其中N=1的固定中频模式和N=2,3,4...调整式中频模式。例如:在固定的中频模式与30.0 MHz的标称晶体频率,IF频率为30MHz/64=468.75千赫。在缩放中频模式下,比例因子'N'始终是一个整数值,通常(但并不总是)2(例如,N=2的幂次方^米)。

- 。 在零中频模式,MODEM_IF_FREQ应设置= 0x00000到。
- o 在的单位MODEM_IF_FREQ属性是在PLL合成器的LSB调谐分辨率的增量,并且是晶体参考频率,因此功能和输出频率波段。该公式用于计算的正表示MODEM_IF_FREQ属性是由以下公式:

別属性定田以下公式:
$$MODEM_IF_FREQ = (\frac{2^{19} \times outdiv \times IF_FREQ_HZ}{Npresc \times freq_xo})$$

- 。 输出分频器值OUTDIV被配置为期望的频带的功能,并且在属性中指定MODEM CLKGEN BAND: BAND.
- 。 预分频器的分频值NPRESC配置为选定的合成性能模式的功能,可能需要对值NPRESC = 2或NPRESC = 4,在属性中指定 *MODEM CLKGEN BAND*: SY SEL。
- 例如:标称固定中频模式如果468.75kHz的频率在915 MHz频段运行时(OUTDIV = 4)与30 MHz晶体,MODEM_IF_FREQ = 16384 = 为0x4000计算出的积极表示。
- 。 适当的值,以编入MODEM_IF_FREQ属性是计算正表示,例如,0x3C000的补充。
- 默认值: 0×03, 为0xC0, 0x00
- 寄存器查看:

		MODEM_IF_FREQ										
指数	7 6 5 4 3 2 1 0											
0X1B	0	0 0 0 0 0 0 IF_FREQ[17:16]										
为0x1c		IF_FREQ [15:8]										
0x1d							IF_FREQ [7:0]					
							默认					
0X1B	0	0	0	0	0	0	0x	3的				
为0x1c		0XC0										
0x1d							0X0					

□字段详细信息

- ☐ IF_FREQ [17:0]▲
 - ____ 描述: 18位IF频率。
 - □ 默认值: 0x3c000

MODEM_DECIMATION_CFG1

- 组: 0X20
- 索引: 0X1E
- 摘要: 规定了三个抽取比例的级联积分梳状滤波器(CIC)。
- 目的:
 - RX通道选择带通滤波是由一个数字滤波器对RX调制解调器电路块内。该滤波器的带宽为滤波器抽头系数的函数,并且在过滤器的时钟或采样率。也就是说,使用相同的一组滤波器抽头系数与不同滤波器的时钟速率将导致不同的滤波器的带宽。
 - 。从RX的A / D转换器的高速I / Q数据样本由一个可编程的比例,以提供所需的采样率的数字滤波器的输入端抽取。抽取比例是由这个属性的 NDEC0,NDEC1和NDEC2值确定,因此这些值(在MODEM_CHFLT_RX1_CHFLT_COEXX指定的滤波器抽头系数一起)确定的接收信道 选择滤波器的带宽。
 - 。 每个抽取电路块的抽取比为2 NDEC。在(G)FSK模式RX数据样本穿过两个级联抽取块,从而抽取比为2 (NDEC1 + NDEC2)。在OOK模式,后解调接收数据样本通过与抽取比2的额外抽取块NDEC0。如果不是在OOK模式,该抽取系数应设置NDEC0 = 0。
 - 。 有一个额外的多相滤波器和抽取电路块,由位于NDEC0/1/2系数控制的抽取之前。这种"预抽取器"块的抽取比被
 - MODEM_DECIMATION_CFG0属性内位控制。总抽取比例是单个电路块的传动比的乘积。
- 默认: 0X10
- 寄存器查看:

	指数	7	6	5	4	3	2	1	0	
	0X1E	ND	EC2	ND	NDEC0			0		
Γ					默认					
Г		0	X0	0	X1		0X0		0	

- NDEC2 [1:0]▲
 - □ 说明:
 - □ 抽取系数的CIC滤波器两个级联抽取电路块的第二个。
 - □ 抽取率为2 NDEC2。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 1抽取。	
ENUM_1	1	□ 2抽取。	
ENUM_2	2	□ 4抽取。	
ENUM_3	3	□ 8抽取。	

■ NDEC1 [1:0]

- □ 说明:
 - □抽取系数为两个级联抽取电路模块中的CIC滤波器的第一个。
 - 抽取率为2 NDEC1。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 1抽取。	
ENUM_1	1	□ 2抽取。	
ENUM_2	2	□ 4抽取。	
ENUM_3	3	□ 8抽取。	

- NDEC0 [2:0]
 - □ 说明:
 - □ 抽取系数用于在OOK接收用在RX调制解调器的额外抽取电路块。
 - □ 抽取率为2 NDEC0。
 - □ NDEC0应该被设置为0,当未在OOK模式。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 1抽取。	
ENUM_1	1	□ 2抽取。	
ENUM_2	2	□ 4抽取。	
ENUM_3	3	□ 8抽取。	
ENUM_4	4	□ 16抽取。	
ENUM_5	5	□ 32抽取。	
ENUM_6	6	□ 64抽取。	
ENUM_7	7	□ 128抽取。	

MODEM_DECIMATION_CFG0

- 组: 0X20
- 索引: 0x1F
- 简介: 杂项指定参数和抽取比例的级联积分梳状滤波器(CIC)。
- 目的:
 - 在RX通道选择带通滤波器是一个数字滤波器,名义上是27抽头的长度。通过设置CHFLT_LOPW位,有可能配置滤波器只有15抽头;的15抽头滤波器的优点是在电流消耗和滤波处理延迟的降低的过滤性能(例如,相邻信道选择性)为代价减少。在电流消耗的减少依赖于所选择的数据速率,但通常是约100至200微安。
 - 。 作为频道选择的带通滤波器是一个数字滤波器,它本身具有的sin(x)/x响应,介绍整个通带中的振幅一定的斜率。的影响可以忽略不计的低带宽滤波器; 对更高带宽滤波器在整个通带内的幅度斜率接近10分贝。该芯片具有下垂补偿滤波器,提供了一个反向的sin(x)/X的响应; 当使能(通过清除DROOPFLTBYP位),这个补偿滤波器有效地平展在整个通带内的幅度响应。该位是默认(补偿滤波器使能)清零,Silicon Labs公司不建议改变此配置。
 - 。 该RFIC提供位于抽取电路块和CIC数字滤波器之前的一个可配置的多相位滤波器。这种"预抽取"过滤器可以被配置(由DWN3BYP和DWN2BYP)位来选择2个或3个(除了由NDEC0/1/2系数在MODEM_DECIMATION_CFG1属性中选择的抽取因子)的额外抽取因子。如果没有额外的抽取因子是需要的,同时抽取乘2和抽取乘3的电路可通过同时设置DWN2BYP和DWN3BYP位绕过。
 - 。 在非常低的数据速率,灵敏度可以通过增加RX调制解调器的数字增益得到改善。设置RXGAINX2位通过加倍抽取固定按8级紧跟在RX的A / D转换器的增益实现这一点。WDS的计算器会自动建议用以下1 kbps的数据速率工作时,设置此位。
- 默认: 0X20
- 寄存器查看:

	MODEM_DECIMATION_CFG0										
指数	7	6	5	4	3	2	1	0			
0x1F 的	CHFLT_LOPW	DROOPFLTBYP	DWN3BYP	DWN2BYP	0	0	0	RXGAINX2			
		默认									
	0X0	0X0	0X1	0X0	0	0	0	0X0			

□字段详细信息

- ☐ CHFLT LOPW▲
 - □ 说明:选择信道选择滤波器(正常模式,或性能降低的低功率模式)的操作模式。
 - □ 格式: 枚举

•			
名称	值	描述	

		l I	可用的功能
			可用的初胞
ENUM_0	0	□ 普通模式(27抽头滤波器)	
ENUM_1	1	□ 降低性能低功耗模式(15 抽头 滤波器)	
DROOPFLTBYP			
□ 说明: 启用或绕过下垂补偿滤波器。□ 格式: 枚举			
名称	值	描述	可用的功能
ENUM 0	0	□ 使下垂补偿滤波器。	4714 74 74 136
ENUM_1	1	□ 绕过下垂补偿滤波器。	
DWN3BYP			
□ 说明:			
□ 选择或绕过抽取乘3多相滤波器(位于			
■ 该DWN3BYP和DWN2BYP位可以同时	付设置(包括过滤器绕过),但位不应该被同时	付清除。
□ 格式: 枚举		Turk I	
名称	值	描述	可用的功能
ENUM_0	0	□ 使抽取乘3多相滤波器	
ENUM_1	0	□ 使抽取乘3多相滤波器 □ 绕过抽取乘3多相滤波器。	
ENUM_1 DWN2BYP			
ENUM_1 DWN2BYP ④ □ 说明:	1	□ 绕过抽取乘3多相滤波器。	
ENUM_1 DWN2BYP □ 说明: □ 选择或绕过抽取乘2多相滤波器(位于	1	□ 绕过抽取乘3多相滤波器。 常抽取阶段和CIC滤波器)。	计连阶
ENUM_1 DWN2BYP 说明:	1	□ 绕过抽取乘3多相滤波器。 常抽取阶段和CIC滤波器)。	时清除 。
ENUM_1 DWN2BYP▲ □ 说明: □ 选择或绕过抽取乘2多相滤波器(位于 □ 该DWN3BYP和DWN2BYP位可以同时	1	□ 绕过抽取乘3多相滤波器。 常抽取阶段和CIC滤波器)。	时清除。 可用的功能
ENUM_1 DWN2BYP → 说明: 选择或绕过抽取乘2多相滤波器(位于 该DWN3BYP和DWN2BYP位可以同时 格式: 枚举	1 于前的正符 讨设置(□ 绕过抽取乘3多相滤波器。 常抽取阶段和CIC滤波器)。 包括过滤器绕过),但位不应该被同时	
ENUM_1 DWN2BYPA □ 说明: □ 选择或绕过抽取乘2多相滤波器(位于 该DWN3BYP和DWN2BYP位可以同时 格式: 枚举	1 于前的正常 可设置(值	□ 绕过抽取乘3多相滤波器。 常抽取阶段和CIC滤波器)。 包括过滤器绕过),但位不应该被同时 描述	
ENUM_1 DWN2BYP▲ □ 说明: □ 选择或绕过抽取乘2多相滤波器(位于□ 该DWN3BYP和DWN2BYP位可以同日□ 格式: 枚举	1 于前的正常 村设置(² 值 0 1	□ 绕过抽取乘3多相滤波器。 常抽取阶段和CIC滤波器)。 包括过滤器绕过),但位不应该被同时 描述 □ 选择抽取乘2多相滤波器。 □ 绕过抽取乘2多相滤波器。	可用的功能
ENUM_1 DWN2BYP □ 说明: □ 选择或绕过抽取乘2多相滤波器(位于□ 该DWN3BYP和DWN2BYP位可以同时□ 格式: 枚举	1 于前的正常 村设置(² 值 0 1	□ 绕过抽取乘3多相滤波器。 常抽取阶段和CIC滤波器)。 包括过滤器绕过),但位不应该被同时 描述 □ 选择抽取乘2多相滤波器。 □ 绕过抽取乘2多相滤波器。	可用的功能
ENUM_1 DWN2BYP▲ □ 说明: □ 选择或绕过抽取乘2多相滤波器(位于 □ 该DWN3BYP和DWN2BYP位可以同时 □ 格式: 枚举	1 于前的正常 村设置(² 值 0 1	□ 绕过抽取乘3多相滤波器。 常抽取阶段和CIC滤波器)。 包括过滤器绕过),但位不应该被同时 描述 □ 选择抽取乘2多相滤波器。 □ 绕过抽取乘2多相滤波器。	可用的功能
ENUM_1 DWN2BYP □ □ 说明: □ 选择或绕过抽取乘2多相滤波器(位于□ 该DWN3BYP和DWN2BYP位可以同时□ 格式: 枚举	1 F前的正常 村设置(值 0 1	□ 绕过抽取乘3多相滤波器。 常抽取阶段和CIC滤波器)。 包括过滤器绕过),但位不应该被同时 描述 □ 选择抽取乘2多相滤波器。 □ 绕过抽取乘2多相滤波器。 器)用于在低数据速率提高灵敏度的目	可用的功能

MODEM_BCR_OSR

- 组: 0X20
- 索引: 0X22 ... 0x23
- 简介: RX BCR /切片机过采样率(12位无符号数)。
- 目的:
 - RX调制解调器芯片中包含一个数控振荡器(NCO),用于同步的本地的位时钟与接收到的数据流的目的。该NCO的时间是由一个叫位时钟恢复(BCR)的闭环反馈回路保持。
 - 在BCR循环采样速度比RX数据传输速率更高。采样率和RX数据速率之间的比值称为BCR过采样率(OSR),与OSR=8~12中的典型值。OSR的所需值的计算公式为信道滤波器带宽和RX数据速率的函数以及反映低时钟抖动(高采样率)和低的电流消耗和提高相邻信道滤波器衰减(低采样率)之间的折衷。
 - 。 在BCR循环采样时钟由晶体振荡器产生通过一系列decimations的,因此,采样速率由NDEC2,NDEC1,NDEC0,DWN3BYP和 DWN2BYP bits在控制*MODEM_DECIMATION_CFG*属性。在(G)FSK模式,信道滤波器和BCR循环使用相同的采样时钟速率;在OOK模式下,BCR循环通过另外配置NDEC0参数使用较低的采样时钟速率。
 - 。 编入的12位的值*MODEM_BCR_OSR*属性表示目标值OSR乘以8倍速(可替代地,12比特的值可以被看作是一个9位整数部分和第3位的小数部分)。例如:对于一个目标值OSR = 11.75,价值的*MODEM_BCR_OSR* = 0x5e者。
 - 。 这个属性定义了RX BCR /切片机过采样率。
- 默认值: 0x00, 0x4b
- 寄存器查看:

		MODEM_BCR_OSR										
指数	7 6 5 4 3 2 1 0											
0X22	0	0	0	0	0 RXOSR [11:8]							
0x23					RXOS	R [7:0]						
					默	:认						
0X22	0	0 0 0 0 0X0										
0x23					0>	4b						

□字段详细信息

- RXOSR [11:0] ▲
 - □ 简介: RX符号过采样率在BCR /切片机。
 - 默认值: 0x4b

MODEM_BCR_NCO_OFFSET

- 组: 0X20
- 索引: 0X24 ... 0X26
- 简介: RX BCR NCO偏移值(无符号22位数字)。
- 目的:
 - RX调制解调器芯片中包含一个数控振荡器(NCO),用于同步的本地的位时钟与接收到的数据流的目的。该NCO的时间是由一个叫位时钟恢复(BCR)的闭环反馈回路保持。
 - 。该NCO操作通过在BCR采样时钟信号的每个刻度积累了编程的偏移值(见MODEM_BCR_OSR的BCR/切片采样时钟的更多细节)。在该

累加器溢出因此是字宽累加器,编程的偏移值,并在BCR过采样时钟频率的函数的速率。

- 。 NCO累加器产生一个脉冲,每次溢出; 编程的偏移值被选择为使得由累加器所产生的脉冲的速度等于所需的接收数据速率。
- 。 编入的22位值MODEM_BCR_NCO_OFFSET属性表示的价值目标偏移乘以64倍(或者22位值可以被看作是一个16位的整数部分和第6位小数部分)。例如:对于一个目标偏移值的偏移= 5592.40625,价值MODEM_BCR_NCO_OFFSET = 0x05761A。
- 默认值: 0X06, 0xd3的, 0XA0
- 寄存器查看:

		MODEM_BCR_NCO_OFFSET										
指数	7 6 5 4 3 2 1 0											
0X24	0	0			NCOF	F [21:16]						
0X25				NC	OFF [15	5:8]						
0X26				NC	OFF [7	:0]						
					默认							
0X24	0	0 0 0X6										
0X25		0xd3的										
0X26					0XA0							

□字段详细信息

- NCOFF [21:0] ▲
 - □ 说明: RX BCR NCO偏移值。
 - 默认值: 0x6d3a0

MODEM_BCR_GAIN

- 组: 0X20
- 索引: 0X27 ...为0x28
- 摘要: 无符号11位RX BCR环路增益值。
- 目的:
 - 。 RX调制解调器芯片中包含一个数控振荡器(NCO),用于同步的本地的位时钟与接收到的数据流的目的。该NCO的时间是由一个叫位时钟恢复(BCR)的闭环反馈回路保持。(请参阅文字说明*MODEM_BCR_NCO_OFFSET*了解有关BCR士官的更多细节。)
 - 在BCR NCO提供了一个本地时钟信号,在所需的数据速率; 然而,还需要对本地时钟信号的相位同步到所接收的数据流的方法。这个相位调整是通过测量本地的位时钟和接收的数据流之间的相位差,并通过反馈回路控制的手段调整所述比特时钟的相位来实现的。
 - 此属性调整的BCR反馈回路的增益。增益效果在快速采集时机的很大价值,但增加时钟抖动,而收益较低的值可以提供较低的时钟抖动,但速度慢定时采集。
 - 。 该芯片提供了数据包交换过程中的环路增益(即"换档")在一个可配置点。这使得芯片最初使用高环路增益值(导致快速获取定时的接收序言的过程中),接着是低环路增益值(导致低时钟抖动接收的有效载荷的过程中)。
 - 。 在时钟恢复增益MODEM_BCR_GAIN是一个无符号11位值,作为一个共同的"基线"增益值; 它是由单独选择的比例因子进一步缩放以确定前和变速后所使用的有效的环路增益的值。这些比例因子指定MODEM BCR GEAR: CRFAST和MODEM BCR GEAR: CRSLOW。
- 默认值: 0X06, 0xd3的
- 寄存器查看:

		MODEM_BCR_GAIN										
指数	7	6	5	4	3	2	1	0				
0X27	0	0	0	0	0		CRGAIN [10:8	3]				
为0x28						CRGAIN [7	:0]					
						默认						
0X27	0	0	0	0	0	0X6						
为0x28		0xd3的										

□字段详细信息

- ☐ CRGAIN [10:0] ▲
 - □ 说明: 时钟恢复定时环路增益。
 - 默认值: 0x6d3

MODEM_BCR_GEAR

- 组: 0X20
- 索引: 0X29
- 简介: RX BCR环齿轮控制。
- 目的:
 - 。 RX BCR环齿轮控制。
 - 。 位时钟恢复增益的减少值换档(以减少时钟抖动)后,通常需要。在这两个齿轮模式在BCR环路增益是从基线时钟恢复增益值(crgain在 MODEM_BCR_GAIN_x属性),在该属性指定的crfast和crslow值换算得到的。注:在较大的位时钟恢复增益值较低crfast或crslow结果值。
- 默认: 0X02
- 寄存器查看:

		MODEM_BCR_GEAR							
指数	7	6	5	4	3	2	1	0	
0X29	0	0		CRFAST	-	CRSLOW			
		默认							
	0	0		0X0			0X2		

□字段详细信息

- □ CRFAST [2:0]
 - □ 说明:快速定时增益适用于齿轮切换发生之前。有效BCR环路增益的计算公式为: crgain / (2 ^ crfast)。
 - □ 默认: 0x0

	□ CI	RSLOW [□ 描述: □ 默认值	时间慢增益应加	用于齿车	论切换发生后。	。有效BC	R环路	增益的计算	工公式为:crg	gain /()	2 ^ crslow)) 。		
MOI	DEM_	BCR_N	IISC1											
•	目的:	0X2A 杂项控制 比属性将F : 0XC0	位为 <i>RX BCR</i> 循 RX BCR循环中的		 走项。									
					MODE	/I_BCR_I	/IISC1							
	指数	7	6 YP SLICEFBBY	5	4	3	LAT	2	1		0 MIDDT			
	UAZA	DUKEDD	TF SLICEFBB	rolo	KINCOCOWIF	默认	_LATI	JRGAINA2	DIS_IVIIDE	I ESC_	IVIIDET			
		0X1	0X1	0	0X0	0X0		0X0	0X0	02	X0			
			在IF降频转换信如果得不到赔偿在正常操作中,该位禁用了反馈枚举	, 这种 所测量	残余频率误差 的残留频率误	医可能会降 民差作为反 这通常只用 值 0	低BCF 馈提供 于诊断	R和切片机 给BCR和 行目的或接 打 补偿期限反 启用(正常	的跟踪和切片 切片,以补偿 收的特殊的测 描述 馈给BCR跟	十数据位 尝它们的 则试信号 踪环路	(分别)自]性能。	的能力 BER测		
			禁用			1		於伝朔喉及 绕过(禁用		坏小的				
		LICEFBB □ 说明: □ 格式:	请参阅文字说		EM_BCR_M		CRFBE			更多细节				
				名称		值			描述 :馈到切片机	戸田	可用的功	力能		
			启用			0		(正常运行	.) 。					
			禁用			1	- 2	补偿期限反 (禁用)。	馈到限幅器	被旁路				
	□ RX	XNCOCO	MP					(条用)。						
		0	RX调制解调器。明MODEM_BC 在NCO的自由过 在接收到数据包 该位允许芯片通 计,然后用于该 这种补偿通常只	R_NC 运行频率 上,在数 i过获取 运分组的	O_OFFSET了 逐通常设定为固 据速率大的设 用于从接收到 其余部分。	了解有关Be国定值(足 国定值(足 受差的情况 目的数据本	CR士官 适用于所 下,在 :身NCC	了的更多细 介选的数据 EBCR环路 D频率的新	节。) 速率),并存 可能无法维持	生整个数 寺跟踪未	双据包使用。 :取得实际打	。 接收至 前言与	的目的。(请参阅文字说 到的数据速率的更精确的位字段期间获得这个新NCO	古计。
			禁用	1110		0		•		皮禁用	-1711113/2	J 116		
			水川			0	0	(正常运行	·)。 O 频率补偿已	J 🖒				
			启用			1		生BCRNC 用。	U殎伞শ伝□	2后				
			该位决定位置, 此位无影响,如	果RXN		不是也设置		阅文字说		OMP进-				
				名称		值	0		描述 (即序字和	口止之	可用的功	力能		
			SAMP_PREAM	/IBLE_I	END	0	į	之间的边界 补偿进行采		NCO				
			SAMP_PREAM	/BLE_	VALID	1	U 1	仕检测PRE BCR NCO	EAMBLE_VA 补偿进行采料	ALID的 羊。				
	□ CI		选择BCR环路埠 这个增益增加适											
			_	名称		值			描述		可用的功	力能		
			华中师范			0		BCR环路增 作)。	曾益不加倍(正常操				
	_		倍增			1		BCR环路增	曾益一倍。					
		C MIDD	m a l											

倍增 □ DIS_MIDPT▲

□ 说明:	:					
			本地RX位时钟同步的接收到的数据比			
			居位而不是在比特边界的相位的采样过	程的灵敏性可能	能会降低。在极端情况下	,采村
	相位信息可能不足以驱动回路的BCF					
	这中间点采样条件可以由故意"拖延"	的BCR循	环稍微被发现和纠正。			
	此功能仅适用于一2(G)的FSK信号	号的解调 与	5标准'1010'使用同步解调器前同步	信号模式。		
□ 格式:	: 枚举					
	名称	值	描述	可用的功能	1	
	启用	0	□ 的一个BCR中点相位采样条件 通过重置NCO校正启用(正常 操作)。			
	禁用	1	□ 的BCR中点相位采样条件重置 士官校正被禁用。		1	
□ ESC_MIDF □ 说明: □ 格式:	:选择"踢"的BCR循环逃脱中点相位别	2样条件,	如针对DIS_MIDPT位的方法。			
	名称	值	描述	可用的功能	1	
	ESCAPE_1CLK	0	□ 在检测到BCR中点相位采样条件,士官将停止运行一个采样时钟逃跑。		ı	
	ESCAPE_PHASE_ERR	1	□ 在检测到BCR中点相位采样的 条件下,电流的相位误差被添 加到NCO逃脱。			

MODEM_BCR_MISC0

- 组: 0X20
- 索引: 0x2B访问
- 简介: 杂项RX BCR回路控制。
- 由的: 。 此属性将RX BCR循环中的其他选项。 默认值: 0x00 寄存器查看:

		MODEM_BCR_MISC0							
指数	7	6	5	4	3	2	1	0	
0x2B中	ADCWATCH	ADCRST	DISTOGG	PH0SIZE	0	0	0	0	
			默认						
	0X0	0X0	0X0	0X0	0	0	0	0	

□字段详细信息

☐ ADCWATCH▲

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ ADC看门狗被禁止。	
ENUM_1	1	□ ADC看门狗被启用。如果无效前同步码被检测到,并没有检测到1010模式,ADC将被复位。	

□ ADCRST▲

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ ADC看门狗被禁止。	
ENUM_1	1	□ 从AGC环路启用ADC复位。 如果IF-PD的当前和以前的高 门槛突破,ADC将被复位。	

□ DISTOGG▲

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 正常。	
ENUM_1	1	□ 启用。如果相位的差分输出为 零,则鉴别器的输出将被翻 转。	

□ PH0SIZE▲ □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	■ 连续5个零相位差分输出将导 致RX机器复位。	
ENUM_1	1	□ 连续3个零相位差输出将导致 RX机器复位。	

MODEM_AFC_GEAR

- 组: 0X20
- 指标: 0x2c上
- 简介: RX AFC环路齿轮控制。

- 目的:
 - 。 选择的齿轮切换源为RX亚冠和BCR两种。
 - 。 增益为RX在亚冠快速和慢速两种模式(即前,后齿轮切换)的控制
- 默认值: 0x00
- 寄存器查看:

	MODEM_AFC_GEAR							
指数	7	6	5	4	3	2	1	0
0X2C	GEA	R_SW	Al	C_FA	ST	AF	C_SLC	WC
		默认						
	0	X0		0X0			0X0	

GEAR	SW	[1:0]	A

□ 说明: 选择后将会发生齿轮切换的事件。齿轮同步开关影响BCR跟踪环路以及基于PLL的AFC环路(如果已启用)。

□ 格式: 枚举

	_	
值	描述	可用的功能
0	□ 序言检测 - 检测序言后切换齿轮。	
1	□ 同步字检测 - 检测同步字后, 开关装置。	
2	中点频率误差检测-开关齿轮时,在异步解调器最小-最大探测器的估计频率误差小于半眼阈值的连续号码查询周期。注意:连续号码查询期间被定义MODEM_RAW_SEARCH:SCH_FRZTH,而每个搜索周期(位)的长度被定义为MODEM_RAW_SEARCH:SCHPRD_HI。	
3	□ 序言检测 - 检测序言后开关齿轮 (同gear_sw = 0)	
	0 1 2	□ 序言检测 - 检测序言后切换齿轮。 □ 同步字检测 - 检测同步字后,开关装置。□ 中点频率误差检测-开关齿轮时,在异步解调器最小-最大探测器的估计频率误差小于半眼阈值的连续号码查询期间被定义 MODEM_RAW_SEARCH: SCH_FRZTH,而每个搜索周期(位)的长度被定义为 MODEM_RAW_SEARCH: SCHPRD_HI。 □ 序言检测 - 检测序言后开关齿

= 4	\FC	FAST	12.01	A

- 7员	BE	١.

□ 设置PII 为基础的AFC环路收购前齿轮切换	€ □	左杜诗思踪描式)	的描考

- □ 在AFC环路的增益是一个基线增益值和,根据齿轮切换不同的比例因子的乘积。被指定的基准增益值*MODEM_AFC_GAIN*而比例因子由AFC_FAST和AFC_SLOW参数保持。
- □ 的AFC环路中的快速跟踪模式的增益被MODEM_AFC_GAIN * 2 · AFC_FAST, 因而AFC_FAST结果在较慢的AFC跟踪速度前齿轮切换为较大的值。
- □ 闵: 0X0
- □ 马克斯: 0x7的
- □ 默认: 0x0

☐ AFC_SLOW [2:0]▲

□ 说明:

- □ 设置PLL为基础的AFC收购环齿轮切换后(即在低速跟踪模式)的增益。
- □ 在AFC环路的增益是一个基线增益值和,根据齿轮切换不同的比例因子的乘积。被指定的基准增益值*MODEM_AFC_GAIN*而比例因子由AFC_FAST和AFC_SLOW参数保持。
- □ 在AFC环路在慢跟踪模式的增益MODEM_AFC_GAIN * 2 -AFC_SLOW,因而AFC_SLOW导致较慢的亚冠跟踪速度齿轮切换后,一个更大的值。
- □ 闵: 0X0
- □ 马克斯: 0x7的
- □ 默认: 0x0

MODEM_AFC_WAIT

- 组: 0X20
- 索引: 0X2D
- 简介: RX AFC环路等待时间控制。
- 目的:
 - 。 该芯片提供了自动频率校正(AFC)在RX模式以改善接收信号的频率误差在链路的存在。初步收购数据包(例如,在序言中)在频率误差 测量和校正,使数据包的其余部分的优化接收。
 - 。 AFC的由芯片提供一种形式由从PLL合成器调节RX LO信号的频率运行,并努力以定位下变频的中频通带的中心的中频信号。这基于PLL的 AFC的形式从而工作在模拟域;该芯片还提供了其它形式的AFC的操作是在RX调制解调器的数字域。在MODEM_AFC_WAIT财产SHWAIT和 LGWAIT参数只影响基于PLL的亚冠。
 - 各AFC校正周期包括: a) 测量的频率误差,b) 调节锁相环的频率,和c) 使PLL来解决之前,采取频率误差的另一次测量。
 - 。该SHWAIT和LGWAIT参数确定的时间周期允许的PLL每个亚冠调整周期后定居。两种不同的等待期(短期和长期)提供,具体取决于之前或之后的齿轮切换亚冠算法是否正在运行。
 - 。等待时间是在符号周期的倍数,因此改变作为数据速率的函数。在更高的数据速率(即,较短的符号周期),则SHWAIT和LGWAIT参数的值,可能需要被增加,以提供足够的时间为PLL校正之后重新沉淀。WDS的计算器会自动建议适当的值作为选择的数据速率的函数。
- 默认值: 0x23
- 寄存器查看:

			М	ODEM_	AFC_V	VAIT		
指数	7	6	5	4	3	2	1	0
0X2D		SH\	NAIT			LG	WAIT	
				默	认			
		•		•		•		•

	0X2	0x3的	
□字段详	细信息		-
	WAIT [3:0]		
	∃ 说明:		
	□ 这指定已经发生齿轮切换	之前,每PLL AFC校正周期的等	等待时间。该SHWAIT参数通常设定为比LGWAIT参数越小,速度采集速度
	之前的齿轮切换通常是可		
	□ 实际等待时间是(SHWA		
		. AFC校正将齿轮切换前发生,也	2就是说,PLL AFC是齿轮切换前禁用。
	□ 闵: 0X0		
	□ 马克斯: 0XF		
	□ 默认值:0X2 WAIT [3:0]▲		
	WAIT [3.0]⊆] ∃ 说明:		
	_ 00,74	を 后毎PLL AFC校正周期的等待所	才间。该LGWAIT参数通常设置为一个值大于SHWAIT参数越大,齿轮切换
	后失去平衡数据作为鲁楠		1746 从2017年10月 11日 11日 11日 11日 11日 11日 11日 11日 11日 11
	□ 实际等待时间是(LGWA		
	□ 当设置为'0',那么会发生	E齿轮切换后无PLL AFC校正,以	D锁相环的AFC齿轮切换后停用。
	□ 如果MODEM_AFC_MIS	SC: ENAFCFRZ设置,不会有F	PLL AFC校正齿轮切换后,无论LGWAIT的价值。
	□ 闵: 0X0		
	□ 马克斯: 0XF		
(□ 默认值: 0x3的		

ı

MODEM_AFC_GAIN

- 组: 0X20
- 索引: 0X2E 0x2F的...
- 摘要:将基于PLL的收购AFC环路的增益,并提供了其他控制位AFC功能。

1

目的:

1

1

- 。 该芯片提供了自动频率校正(AFC)功能,其中所接收的信号的频率误差被测量并用于调整PLL频率合成器以定位下变频的中频的中频带宽
- 。 在AFC算法使用一个反馈回路来跟踪所述输入信号的频率。在AFC环路的增益是一个基线增益值和,根据齿轮切换不同的比例因子的乘积。 通过这个属性(一个无符号13位值)指定的基准增益值,而规模因素保持由MODEM_AFC_GEAR: AFC_FAST和 MODEM_AFC_GEAR: AFC_SLOW参数。
- 。 该ENAFC参数使频率误差估计电路。
- 。 该AFCBD参数使RX带宽的数据包中动态切换。请参阅MODEM_CHFLT_RX2_CHFLT_COE有关使用自适应接收带宽的进一步详情。
- 默认值: 0X83, 0×69
- 寄存器查看:

		MODE	M_AFC	_GAI	N				
指数	7	6	5	4	3	2	1	0	
0X2E	ENAFC	NAFC AFCBD 0 AFCGAIN [12:8] AFCGAIN [7:0]							
0x2F的		AF(CGAIN [7:0]					
			默认						
0X2E	0X1	0X0	0X0			0x3的	j		
0x2F的			0×69				•	•	

□字段详细信息

- ENAFC▲
 - □ 说明:
 - □ 当设置,使估算的频率误差。
 - □ 由估计的频率误差可以反馈给压裂N分频PLL,BCR和切片。注:使每个单独的AFC功能是在执行MODEM_BCR_MISC1和 MODEM_AFC_MISC属性。
 - □ 格式: 枚举

名称	值	描述	可用的功能
DISABLE	0	□ 频率误差的估计被禁用。这样 有效地禁止所有形式的亚冠 (包括基于PLL的亚冠以及切 片机和BCR补偿)。	
启用	1	□ 频率误差的估计被启用。	

- □ AFCBD♠
 - □ 说明:如果设置,使整个包采用自适应接收带宽。
 - □ 格式: 枚举

DV 1			
名称	值	描述	可用的功 能
DISABLE	0	□ 自适应接收带宽被禁用。在指定的接收信道 滤波器系 数MODEM_CHFLT_RX1_CHFLT_COE用 于整个数据包。	
启用	1	□ 自适应接收带宽被启用。在指定的接收信道 滤波器系 数MODEM_CHFLT_RX1_CHFLT_COE之 前使用的齿轮切换,并在规定的系 数MODEM_CHFLT_RX2_CHFLT_COE齿 轮切换后使用。	

■ AFCGAIN [12:0]▲

□ 描述: 13位AFC环路增益值。

			DX0 斯: 0x1FFF 值: 0x369	的									
MOD	EM_A	FC_L	IMITER										
• \$ • \$ • \$	— 组: 0X2 索引: 0X	- !0 X30 (
• mil	。 该 的 。 此	中心信 [。] 属性提位 重置为。 0x00,	号。 供多远亚冠趾 从信道中心频	限踪环路可	以从指挥信								以定位下变频的中频的中频带宽。一旦达到此限制,亚足联算法
ſ				MODEM	_AFC_LIM	IITER							
	指数	7	6	5 4	3	2	1)				
-	0X30 0X31	0			AFCLIM [1: CLIM [7:0]	4:8]							
	0/(01			711	默认								
	0X30	0			0X0								
L	0X31	1			0X40								
		CLIM [14]说明: □	4:0]▲ 15位亚冠限 在AFC限制 AFCLIM [1:	器值应被看	f 作是一个	14位的	[1] 值加」	上一个陈	加位,位	吏得一			道中心频率重新定位。 [14] = '0',则AFC限制器值是
)X0 斯: 是0x7fff : 0X40										
MOD	EM_A	FO N	ucc										
• 14 ·	目的:	X32 定杂 A 定其他位 0XA0	<i>FC</i> 控制位。 位的AFC功能	能控制。									
Г					MODE	EM_AF	C MIS	sc				7	
-	指数	7	6	5	MODE	4		3		2	1 0		
	0X32 EI	NAFCF	RZ ENFBP	LL EN2TB_	_EST ENF			IAFC_C	LKSW	0 N	ON_FRZEN 0		
-		0X1	0X0	0X	1	默认 0X0		0X0) (0X0	0X0 0X	0	
		AFCFR	Z▲ : 选择亚足□	- 朕是否将工	作在整个数	数据包,	或齿	轮切换质	三会被冻	结。	,	_	
		- 1424		名称			值			描述		可用的功能	
			AFC_PKT AFC_FRZ	N AFTED	GEAR SI	ΔΛ/	1				生整个数据包。 刃换后冻结。		
								1			L频率合成器的#	L 页率。	I
		11124.		名称			值			描述		可用的功能	
			DISABLE_ ENABLE				0				值反馈到PLL。 直反馈到PLL。		
			 ST▲ : 选择AFC			平均或計		1				 	」 的估计开发频率误差的估计。
		- 1H ≁ V•	28.11	名称			值			描述		可用的功能]
			AFC_COR	R_MA			0	扫	器的移动 深测器研	平均4 制的#	使用在异步解调 线或最小 - 最大 顷率估计。		
			AFC_COF	R_2TB			1	2 イ ド	器的 2 * T 占计。该	b的估 位必彡	使用在同步解调 计制定的频率 顶正确接收使用 能的数据包进行		

□ ENFZPME	END[A]				
□ 说明					
	选择亚足联是否会冻结在年底的"				
	」如果很长的前导码被使用,并且非常 亚足联可能会更早冻结,由齿轮切护			l。设置ENAFC	;FRZ位将优先于设置此位(即,
□ 格式		你玩吃	0		
	名称	值	描述	可用的功能]
	NO_AFC_FRZN	0	□ 亚足联将不会在序言的结尾被 冻结。		
	AFC_FRZN_PREAMBLE	1	□ 亚足联将在序言的结尾被冻 结。		
■ ENAFC_C					<u> </u>
□ 说明		A 11 B			Z ZUD OD 44 (2 rd 64
	〕选择是否将时钟源2 * Tb的频率估计。 〕 当与ENFZPMEND位一起使用,该位				
	的。				
	该位有没有影响,如果EN2TB_EST	位是不是	也设置(例如,如果异步解调器正在	使用中。)	
□ 格式		壮	描述	可用的功能	٦
	名称	值		可用的功能	-
	NO_CLK_SW	0	切换。		_
	OLK OW TO DOD DOLK	4	□ 时钟源为2 * Tb的频率估计是		
	CLK_SW_TO_BCR_BCLK	1	在检测PREAMBLE_VALID的 切换到BCR的位时钟。		
□ NON_FRZ	ENA	II.	944551= 0. (#4 E. 44) c		1
□ 说明					
	〕选择AFC校正到PLL是否冻结。 〕该位只能具有一个非常具体的芯片配	黑的效用	(a) 所述导生解调盟左使用力 (b)	运 捆制米刑 不	EOOK 和A)是小是士龄测导
	是用来开发的限幅阈值电平(如配置			以明即矢至小	走OOK,和C/取小·取入位例4
)当以这种方式构造,该芯片通常将资	s结AFC核	医正到PLL时遇到的连续的1或0的足够	的长度时,由	于芯片可能不能在给定的搜索时
	间内正确估计频率误差。				
)的连续编号的搜索周期被定义为MO		<i>IW_SEARCH</i> : SCH_FRZTH,而每	个搜索周期的长	长度被定义为
<u> </u>	MODEM_RAW_SEARCH: SCHP	RD_HI。			
□ 格式	: 似学				=

描述

□ 如果为1或0超出该搜索周期的

□ 如果为1或0超出该搜索周期的

将保持启用。

连续串中遇到的PLL AFC校正

连续串中遇到的PLL AFC校正

可用的功能

MODEM_AFC_ZIFOFF

- 组: 0X20
- 索引: 0X33
- 摘要: 亚冠固定频率偏移在零中频模式。
- 目的:
- 亚冠固定频率偏移的零中频模式。 默认值: 0x00
- 寄存器查看:

			MC	DEM_A	AFC_ZIF	OFF		
指数	7	6	5	4	3	2	1	0
0X33				ZEF	ROFF			
				黒	计认			
				0	X0			

名称

AFC_FRZN_CONSEC_BITS

AFC_ALWAYS_EN

值

0

1

□字段详细信息

- ZEROFF [7:0] ▲
 - □ 默认: 0x0

MODEM_ADC_CTRL

- 组: 0X20
- 索引: 0X34
- 摘要: *Σ-ΔADC*的控制。
- 目的:
 - 。 此属性配置中的 Σ - Δ ADC的各种选项。
- 默认值: 0x00寄存器查看:

				МС	DEM_ADC_CT	RL		
指数	7	6	5	4	3	2	1	0
0X34	0	0	0	HGAIN	EN_DRST	0	REALADC	0
					默认			

0 0 000 000 000	(0 0 0X	0 0	
□字段详细信息 □ HGAIN			
名称	值	描述	可用的功能
ENUM_0	1	□ 增加了12分贝增益为ADC输入的红外校准。	
□ EN_DRST □ 格式:_枚举			
名称	值	描述	可用的功能
DISABLE	0	■ 通过调制解调器禁用直接复位。	
启用	1	■ 通过调制解调器能够直接复位。	
□ REALADC ▲ □ 格式: 枚举			
名称	值	描述	可用的功能
复	0	□ ADC的复杂模式。	
REAL	1	■ ADC的实模式。	

MODEM_AGC_CONTROL

- 组: 0X20
- 索引: 的0x35
- 简介: 杂项控制位自动增益控制在RX链(AGC)功能。
- 目的:
 - 此属性提供了几个其他的控制位为AGC功能。这些控制位主要用于工程诊断目的; Silicon Labs公司不建议更改由WDS计算器建议值,除非需要,以适应不同寻常的客户应用程序。
- 默认值: 0XE0
- 寄存器查看:

	MODEM_AGC_CONTROL										
指数	7	6	5	4	3	2	1	0			
的 0x35	AGCOVPKT	IFPDSLOW	RFPDSLOW	SGI_N	AGC_SLOW	0	ADC_GAIN_COR_EN	RST_PKDT_PERIOD			
		默认									
	0X1	0X1	0X1	0X0	0X0	0	0X0	0X0			

□字段详细信息

- □ AGCOVPKT♠
 - □ 说明:
 - □ 选择是否在AGC工作在整个数据包,或仅收购序言中。
 - □ 降低增益(在信号电平增加的情况下)总是被允许在任何时候,不管该位的状态。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 完整的自动增益控制操作只收购序言中。增益增加时(在信号电平的降低的情况下),在包的其余部分是不允许的。	
ENUM_1	1	□ 自动增益控制功能的操作,在 整个数据包。	

☐ IFPDSLOW

- □ 说明:
 - □ 该芯片包含在IF链的峰值检测器,用于感测信号电平的IF的PGA的输出的目的。从这些峰值检测器中的信息用于由AGC算法来调整RX链(PGA和低噪声放大器)的增益。
 - □ 在这一事件的信号电平急剧增加,这是可取的,以减少迅速别的压缩可能会发生在接收链中的增益。该IFPDSLOW位控制增益降低到PGA的步长大小,从而影响了AGC的响应时间的斜率或速度。
 - □ 该位影响的收益只下降率;增加增益总是在3个dB步长进行。
- □ 格式: 枚举

٠:	权 华			
	名称	值	描述	可用的功能
	ENUM_0	0	□ 中频可编程增益回路将执行 在-3 dB步进第一所需的增益 下降,但如果进一步降低增益 要求(由于信号电平超过峰值 检测器阈值的连续标志)会切 换到-6 dB步骤。	
	ENUM_1	1	□ 中频可编程增益循环将一直执 行在-3 dB步进增益减小。	

- ☐ RFPDSLOW
 - □ 说明:
 - □ 该芯片包含RF峰值检测器,用于感测的信号电平在LNA的输出的目的。从这些峰值检测器中的信息用于由AGC算法来调整RX链(PGA和低噪声放大器)的增益。
 - □ 在这一事件的信号电平急剧增加,这是可取的,以减少迅速别的压缩可能会发生在接收链中的增益。该RFPDSLOW位控制增益 降低到LNA的步长大小,从而影响了AGC的响应时间的斜率或速度。
 - □ 该位影响的收益只下降率;增加增益总是在3个dB步长进行。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 射频可编程增益回路将执行 在-3 dB步进第一所需的增益 下降,但如果进一步降低增益 要求(由于信号电平超过峰值 检测器阈值的连续标志)会切 换到-6 dB步骤。	
ENUM_1	1	□ 射频可编程增益循环将一直执 行在-3 dB步进增益减小。	

□ SGI_N[△]

□ 说明

- □ 该位是有效仅在ANT-DIV模式,并只采集序言(当两个天线的信号强度被评估)的期间。
- □ 这个功能被提供以防止在RX链的暂时过载,由于最终选择一个强的天线的,经过第一调整增益到一个高的值上的弱天线的低信号 的评价的结果。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 在信号减少AGC增益的增加是可以避免的。	
ENUM_1	1	□ 在信号减少AGC增益的增加是 允许的。	

■ AGC_SLOW

□ 说明:

- □ 在AGC循环(包括测量窗口期和收益稳定的窗口期)的周期通常是由配置MODEM_AGC_WINDOW_SIZE财产。
- □ 在该事件,该自动增益控制循环的速度不能被配置到一个足够低的值时,AGC的速度可以由8倍的附加因子可以减少通过设置 AGC_SLOW位。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 正常AGC速度。	
ENUM_1	1	□ AGC速度由8倍降低。	

- ☐ ADC_GAIN_COR_EN
 - □ 说明:选择RX的A/D转换器的输入增益是否被检测到的最小的AGC增益状态时降低。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	■ ADC输入增益调整被禁用。	
ENUM_1	1	□ ADC输入增益是由6 dB, 当检测到的最小AGC增益的情况时减小。	

- RST_PKDT_PERIOD ▲
 - □ 说明:选择在哪个IF和RF峰值检波器被重置期间。
 - □ 格式: 枚举

: 仅宁			
名称	值	描述	可用的功能
ENUM_0	0	□ 峰值检测器被重置,只有当在 增益中的变化是由峰值检测器 的输出表示。	
ENUM_1	1	□ 峰值检测器被重置AGC算法的 每一个周期上。	

MODEM_AGC_WINDOW_SIZE

- 组: 0X20
- 索引: 0X38
- 摘要: 指定了测量的尺寸和用于AGC算法解决的窗口。
- 目的:
 - AGC算法的一个周期包括一个测量窗口期, (潜在)的增益调整, 而收益稳定的窗口期。
 - 在测量窗口期间,该信号电平是由峰值检测器位于所述LNA和PGA增益级的输出测量。增益调整(向上或向下),取决于是否测得的信号电 平下降的幅度阈值窗口内执行。
 - 。 两个测量窗口和增益稳定窗口的周期是可调的。这是必要的测量窗口足够长,以允许正弦中频信号的峰值的捕获。作为所使用的芯片的IF频 率是可配置的,则测量窗口也必须是可配置的。
 - 。 该MEASWIN和SETTLEWIN字段的单位是在过采样时钟的位时钟恢复(BCR)循环时段(例如,通常为8至12倍的所接收的数据速率)。
 - 。 倘若为MEASWIN和SETTLEWIN的最大值所得到的窗口时间不足够长,它们的有效的值,可以同时提高了8倍的因子通过设置在该 AGC_SLOW位MODEM_AGC_CONTROL属性。(这种需要是不太可能发生。)
- 默认值: 0x11
- 寄存器查看:

		MODEM_AGC_WINDOW_SIZE								
指数	7	6	5	4	3	2	1	0		
0X38		MEA	SWIN	-	SETTLEWIN					
		默认								
		0	X1		0X1					

□字段详细信息

- MEASWIN [3:0]
 - □ 说明:
 - □ 大小的信号电平的测量窗口的AGC算法。
 - □ 有效的测量时间是:

□ 闵: 0X1 □ 马克斯: 0XF		
□ 默认: 0X1		
☐ SETTLEWIN [3:0] ☐		
□ 说明:		
□ 尺寸为AGC算法的增益稳定	〒窗口 。	
□ 有效的建立时间是:		
	$SETTLE_TIME = (\frac{SETTLE}{TIME})$	$WIN \times 2^{3 \times AGCSLOW}$
	$SEIILE_IIME = ($	F_{SBCR}
□ 闵: 0X1		
□ 马克斯: 0XF		
□ 默认: 0X1		

MODEM_AGC_RFPD_DECAY

- 组: 0X20
- 索引: 0X39
- 简介:设置RF峰值检波器的衰减时间。
- 目的:
 - 。 该芯片包含在LNA用于感测的信号电平在LNA的输出目的的RF峰值检波器。从这些峰值检测器中的信息用于由AGC算法来调整RX链(PGA 和低噪声放大器)的增益。

 $MEAS_TIME = (\frac{MEASWIN \times 2^{3 \times AGCSLOW}}{E}$

 F_{SBCR}

- 它通常是可取的AGC电路,以迅速进攻(迅速减小增益时,信号电平的增加),但衰减慢(缓慢增加增益时,信号电平降低)。为了实现慢衰减,该芯片要求的峰值检波器表示一个连续的数字"信号低于阈值"的条件前的增益增加。的要求一致的适应症增益增加是可取 的,以防止增益抖动。连续的适应症所需要的数量是由RFPD DECAY值进行设置。
- 。 它通常建议设置MODEM_AGC_IFPD_DECAY和MODEM_AGC_RFPD_DECAY属性相同的值。
- 默认: 0X10
- 寄存器查看:

		MODEM_AGC_RFPD_DECAY										
指数	7	6	5	4	3	2	1	0				
0X39		RFPD_DECAY										
				馬	认							
			•	02	K10	•	•	•				

□字段详细信息

☐ RFPD_DECAY [7:0]▲

- □ 说明:指定数目的连续自动增益控制周期的RF峰值检波器必须给予持续增加增益指示,增益增加是允许前。
- □ 闵: 0X1
- □ 马克斯: 0xff的
- 默认: 0X10

MODEM_AGC_IFPD_DECAY

- 组: 0X20
- 索引: 0X3A
- 简介:设置*IF*峰值检波器的衰减时间。
- 目的:
 - 。 该芯片包含在IF链的峰值检测器,用于感测信号电平的IF的PGA的输出的目的。从这些峰值检测器中的信息用于由AGC算法来调整RX链 (PGA和低噪声放大器)的增益。

 - 。 它通常是可取的AGC电路,以迅速进攻(迅速减小增益时,信号电平的增加),但衰减慢(缓慢增加增益时,信号电平降低)。 为了实现慢衰减,该芯片要求的峰值检波器表示一个连续的数字"信号低于阈值"的条件前的增益增加。的要求一致的适应症增益增加是可取 的,以防止增益抖动。连续的适应症所需要的数量是由IFPD_DECAY值进行设置。
 - 。 它通常建议设置MODEM_AGC_IFPD_DECAY和MODEM_AGC_RFPD_DECAY属性相同的值。
- 默认: 0X10
- 寄存器查看:

		MODEM_AGC_IFPD_DECAY										
指数	7	6	5	4	3	2	1	0				
0X3A		IFPD_DECAY										
				黒	犬认							
		•		0.	X10			•				

□字段详细信息

☐ IFPD_DECAY [7:0]▲

- □ 说明: 指定数目的连续自动增益控制周期的中频峰值检波器必须给予持续增加增益指示,增益增加是允许前。
- □ 闵: 0X1
- □ 马克斯: 0xff的
- 默认: 0X10

MODEM_FSK4_GAIN1

- 组: 0X20
- 索引: 的0x3B

- 摘要: 指定4(G) FSK ISI抑制二级分行的增益因子。
- 目的:
 - · 控制4(G)FSK抑制增益。
- 默认值: 0X0B
- 寄存器查看:

	MODEM_FSK4_GAIN1										
指数	7	6 5 4 3 2 1						0			
的0x3B	4FSK_ISIS_DISABLE 4FSK_GAIN1										
	默认										
	0X0 0XB										

- ☐ 4FSK_ISIS_DISABLE▲
 - □ 描述: 4 (G) FSK二相位补偿因子。
 - □ 格式: 枚举

名称	值	描述	可用的功能	
ENUM_0	0	□正常。		
ENUM_1	1	□ 禁用4 (G) FSK ISI抑制。		

- ☐ 4FSK_GAIN1 [6:0]
 - □ 说明:获得二级分行的因素4(G)FSKISI抑制。
 - 默认值: 0XB

MODEM_FSK4_GAIN0

- 组: 0X20
- 索引: 值0x3c
- 摘要: 指定4(G) FSK ISI抑制主要分支的增益因子。
- 目的:
 - · 控制4(G)FSK抑制增益。
- 默认值: 0x1c
- 寄存器查看:

	MODEM_FSK4_GAIN0										
指数	7	6 5 4 3 2 1									
值0x3c	0	0 4FSK_GAIN0									
		默认									
	0X0		为0x1c								

□字段详细信息

- ☐ 4FSK_GAIN0 [6:0]
 - □ 默认值: 0x1c

MODEM_FSK4_TH

- 组: 0X20
- 索引: ...的0x3D 0x3E的
- 简介: 16位4 (G) FSK切片机的门槛。
- 目的:
- 。 16第4位(G) FSK切片机的门槛。
- 默认值: 0X40, 0x00
- 寄存器查看:

	MODEM_FSK4_TH											
指数	7	6	5	4	3	2	1	0				
0x3D之 间	4FSKTH [15:8]											
0x3E的		4FSKTH [7:0]										
		默认										
0x3D之 间		0X40										
0x3E的	0X0											

□字段详细信息

- ☐ 4FSKTH [15:0]
 - □ 默认: 为0x4000

MODEM_FSK4_MAP

- 组: 0X20
- 索引: 的0x3F
- 摘要: 4 (G) FSK符号映射代码。
- 目的:
 - 。 该芯片是能够发送和接收4(G)的FSK调制。在这种类型的调制,对数据比特被编码/解码为1-的-4可能的频率偏差水平。此属性控制位对映射成偏差的水平。

- 。 四个偏差水平均匀地间隔开并围绕该通道的中心频率对称。作为一个例子,该偏差电平与电平之间10kHz的间隔为4(G)的FSK调制协议将是: -15kHz的, -5kHz的, 5千赫和15千赫。
- 。 按照惯例,这四个偏差水平通常被称为-3Δf的,-1ΔF,1ΔF和ΔF3的水平。这种命名约定源于这一事实外偏差(即,信道的中心频率和最外侧的偏离电平之间的差值)总是3倍的内偏差。
- 。有24个独特的方法,使对位可被映射到四个偏差水平。这些方法列举如下。枚举的编码读取(从左至右)为:-3Δf的,-1ΔF,1ΔF和ΔF3。
- 。 使用 $MODEM_FSK4_MAP = 0x00$ 作为一个例子,一对位'00'将被映射到-3 Δ f的水平,提供了对位'01'将被映射到-1 Δ F水平,提供了对位'11'到1 Δ F水平,和'10'对位的3 Δ F水平。
- 。 该链路的TX和RX侧使用相同的4(G)FSK符号映射是很重要的,否则,建立的链路可能是不可能的。此外,测试设备供应商可能无法全部使用相同的默认符号映射; 设置1枚的实验室测试设备的工作可能不与其他工作。
- 默认值: 0x00
- 寄存器查看:

	MODEM_FSK4_MAP										
指数	7	7 6 5 4 3 2 1 0									
的0x3F		4FSKMAP									
		默认									
		0X0									

三字段详细信息

- ☐ 4FSKMAP [7:0]
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	☐ `00`01`11`10	
ENUM_1	1	☐ `00`01`10`11	
ENUM_2	2	□ `00`11`01`10	
ENUM_3	3	☐ `00`11`10`01	
ENUM_4	4	□ `00`10`01`11	
ENUM_5	5	`00`10`11`01	
ENUM_6	6	□ '01'00'11'10	
ENUM_7	7	`01`00`10`11	
ENUM_8	8	□ `01`11`00`10	
ENUM_9	9	□ `01`11`10`00	
ENUM_10	10	`01`10`00`11	
ENUM_11	11	□ `01`10`11`00	
ENUM_12	12	`11`00`01`10	
ENUM_13	13	`11`00`10`01	
ENUM_14	14	`11`01`00`10	
ENUM_15	15	□ `11`01`10`00	
ENUM_16	16	☐ `11`10`00`01	
ENUM_17	17	☐ `11`10`01`00	
ENUM_18	18	☐ `10`00`01`11	
ENUM_19	19	☐ `10`00`11`01	
ENUM_20	20	☐ `10`01`00`11	
ENUM_21	21	☐ `10`01`11`00	
ENUM_22	22	☐ `10`11`00`01	
ENUM_23	23	☐ `10`11`01`00	

MODEM_OOK_PDTC

- 组: 0X20
- 索引: 0X40
- 摘要: 配置OOK峰值检波器的攻击和衰减时间。
- 目的:
 - 。 该芯片提供了两种不同的开发的OOK信号的解调切片的参考电平的方法:峰值检测和移动平均滤波器。此属性配置OOK峰值检波器的攻击和衰减时间。
 - 。 的速率峰值检波器充电或放电是成正比的2-ATTACK或2^{衰减}。因此,更大的攻击和衰减参数值导致较慢的攻击和衰减时间分别。
 - 。 请参阅MODEM_OOK_MISC香港对OOK解调所用的检测器(S)的配置的更多细节。
- 默认值: 0x2B访问
- 寄存器查看:

	MODEM_OOK_PDTC										
指数	7	6	5	4	3	2	1	0			
0X40	0	攻击 衰变									
		默认									
	0		0X2		0XB						

□字段详细信息

- □ 攻击[2:0]▲
 - □ 说明:选择的OOK峰值检波器的攻击时间。峰值检测器电荷成比例的速率为2 -ATTACK。
 - 闵: 0X0
 - □ 马克斯: 0x7的
 - □ 默认值: 0X2
- □ 衰减[3:0]▲
 - □ 描述:选择的OOK峰值检测器的衰减时间。峰值检测器的放电的速率正比于2^{-衰减}。

	(X0 i: 0XF i: 0XB																
ИOD	EM_C	00	K_B	LOPK																
• 复 • 排 • 期	目的: 。 该 基	OX4 配置 芯 に に に に に に に に に に に る る と る と る り る り る り る り る り る り る り る	OOK 片提供 已平。 基准电 (OC	共了两种	不同的	切片参考。 的开发的 O O }贝的峰值	OK信号的						和移动平	·均滤波器。	此属	性配置	置OOI	〈 峰值	金测器 的	限幅
Г		1			N.	MODEM_C	OK BI	OBK			_									
	指数		7	6	5		3	2	Τ,	1	0									
	0X41						/_PK	•		•										
		-					大认 F0xC													
	(V_PI □ 说 □ 贷	K [7:0 说明: 引: 02 马克斯	设置 O C	j	直检波器在	分贝低于	千峰值才	<平测	量的可	选数字切》	计参考电平	0							
ИOD	EM_C	00	K C	NT1																
• 指 • 目	対 要 的対 要 的	OK OK : 0x	控制 空制。 a4	•		MODEM	OOK O	·NT4				٦								
1	旨数	7	6	5		MODEM 4	_00K_0	3 3		2	1)								
(的)x42	2P_	MAP	OOKF	RZEN	MA_FRE	QDWNR	AW_S	YN SI	LICER_	志 名									
		0)	' 0	0)/	4		默认	0)//0		0)//	lov/									
		0>	(2	0X	1	0X0)	0X0		0X1	0X)								
	字段详 回 S2			1:0]📤																
	(内	各式:	枚举		名称			/古			描述		可用的功	L ék					
			•	ENUM_	0	- 名 / 小			<u>值</u>		S2p_map			可用的以	J FIE					
				ENUM_	1				1		S2p_map									
			L	ENUM_					2		S2p_map									
		o i	RZEN 说明:			>效果检测	序言之后	i o	3	_ U;	S2p_map	oing 3.		<u> </u>						
	,	_ 1	1 -4.	八十		名称			值			描述		可用的功	力能					
				ENUM_	0				0		正常。	1								
				ENUM_	1				1	1		异后AGC和 内阈值输出:								
	(= RA (□ i □	説明: 明□□□ 以 : SYN	AFC增益 它建议设 0x0 如果设	益应增 设置此	马探测器引加16倍,如16倍,如 位为铷比为	如果该位 为 1Kbps 和	被设置和/或更	。 小的h	以避免	溢出。	如果选择马	探测器的	竹 频率误差估	古算。					

名称

值

描述

□ 鉴别的切片机输出去噪信号由

可用的功能

ENUM_0	0	位时钟。	
ENUM_1	1	□ 鉴别的切片机输出去噪信号由 采样时钟来减少周转时间。	

□ 静噪[1:0]▲

□ 格式: 枚举

· <u>K</u> T			
名称	值	描述	可用的功能
ENUM_0	0	□ 静噪功能是关闭的。	
ENUM_1	1	□ 当没有接收到信号,就没有切 换RX数据输出。	
ENUM_2	2	□ 当PM没有检测到,没有切换 RX数据输出。	
ENUM_3	3	□ 当未检测到任何信号或PM, 没有切换RX数据输出。	

MODEM_OOK_MISC

- 组: 0X20
- 索引: 0x43
- 摘要:选择用于一个OOK信号的解调的检测器(S),或使用异步解调时要(G)FSK信号的解调。
- 目的:
 - 。在芯片内部实现两种不同类型的解调器电路:一个同步解调器和一个异步解调器。同步解调器通常是用于接收(G)与标准前导码和数据包结构的FSK信号,而异步解调器通常是用于接收(G)的FSK信号具有非标准前导码和数据包的结构,以及用于所有OOK信号。
 - 内的非同步解调器,几种不同类型的检测器可以被选择为建立参考电压电平切片所接收到的数据位。
 - 这个属性是用来探测器之间的下列类型的选择: 移动平均滤波器,峰值检波器和一个最小-最大探测器。
 - 。 移动平均滤波器探测器建立基于以前的数据位平均切片阈值电平,因此最适合当数据流是平衡的,包含了大量的位转换(例如,一个序言图案或曼彻斯特编码的数据)。这种类型的检测器可同时用于OOK和(G)的FSK信号。
 - 。 峰值检测器建立了限幅阈值电平为dB的峰值测量的信号电平低于一个可选择的数目。这种类型的探测器仅适用于OOK信号。
 - 。 最小 最大检测器建立了限幅阈值电平的最大和最小检测到的频率偏差电平之间的中间点。这种类型的探测器仅适用于(G)的FSK信号。
- 默认值: 0×03
- 寄存器查看:

	MODEM_OOK_MISC									
指数	7	6		4	3	2	1	0		
0x43	OOKFASTMA	0	0	0	00		探测器			
		默认								
	0X0 0 0 0X0 0X0 0x3的									

□字段详细信息

■ OOKFASTMA▲

□ 说明:

- □ 选择的移动平均滤波器窗口(用于建立从先前的数据比特的限幅阈值的值)的长度是否为直接指定由MODEM_RAW_SEARCH属性,或在该值MODEM_RAW_SEARCH被有效地增加了2倍。
- □ 该位是解调的OOK信号,只有当有效的,并且允许交易掉的限幅阈值的精度与响应时间的OOK数据包的第一个位(s)。
- □ 格式: 枚举

. 12. 1	_		
名称	值	描述	可用的功能
NORMAL_MA_WINDOW	0	□正常。	
LONG MA WINDOW	1	□ 部署较长马讨滤器窗口。	

□ 探测器[1:0]▲

□ 说明: 选择用于建立用于数据的异步解调的限幅阈值检测器的类型。

□ 格式: 枚举

名称	值	描述	可用的功能
MA_PK	0	□ 两个峰值检波器和移动平均滤 波器检测器被使用; 两个检测器 的输出进行逻辑AND运算在一 起以提供最终RX数据流。解调 OOK信号,只有当此选项适 用。	
PK	1	□ PThe峰值检测器被选择以确定 限幅阈值电平。解调OOK信号 时选择所述峰值检测器的仅适 用。峰值检测器的攻击和衰减 时间是通过控 制MODEM_OOK_PDTC属 性。	
马	2	□ 移动平均滤波器检测器被选择 以建立限幅阈值电平。选择MA 过滤器是适用于任何的OOK信 号或(G)FSK信号用一个非常 规的(即"遗产")的数据包结构 的解调。千年生态系统评估过 滤器窗口长度是通过 MODEM_RAW_SEARCH属性 配置。	
		□ 最小-最大检测器被选择以确定 限幅阈值电平作为将测量的频 率偏移电平之间的中间点。用	

MEAN	3	一个非常规的(即"遗产")的数据包结构解调(G)FSK信号时,选择最小-最大探测器是适用的。搜索窗口的长度(超过该最小-最大频率值的测量)是通过配置MODEM_RAW_SEARCH属性。
------	---	---

MODEM_RAW_SEARCH

- 组: 0X20
- ▶ 指数: 0×44
- 摘要: 定义和控制搜索周期长度为移动平均和最小-最大的探测器。
- 目的:
 - 。 在芯片内部实现两种不同类型的解调器电路: 一个同步解调器和一个异步解调器。同步解调器通常是用于接收(G)与标准前导码和数据包结构的FSK信号,而异步解调器通常是用于接收(G)的FSK信号具有非标准前导码和数据包的结构,以及用于所有OOK信号。
 - 。内的非同步解调器,几种不同类型的检测器可以被选择为建立参考电压电平切片所接收到的数据比特,包括一个移动平均滤波器,峰值检波器,以及一个最小-最大检测器。在异步解调器所用检测器的类型中选择了MODEM_OOK_MISC属性

的移动平均滤波器和最小-最大探测器都建立基于对先前的数据比特的值的限幅阈值电平。这个属性是用来配置以前的数据比特数(即搜索窗口长度)超过该均线和最小-最大探测器建立切片阈值电平。

- 该搜索周期长度可能前齿轮切换和齿轮切换后配置为不同的值。更短的搜索时间窗口通常是前齿轮切换选中,作为序言字段通常包含正规位转换和快速的收购是可取的。较长的搜索时间窗口的选择通常是齿轮切换后,作为有效载荷字段可能包含极不平衡的数据和不规则的位转换;作为结果,需要较长的搜索期间可能需要捕获的数据位的两种极性对准确建立限幅阈值电平的。
- 。 或者, 所述限幅阈值的搜索引擎可以被"冻结"在齿轮切换, 使得没有进一步调整限幅阈值电平是在整个数据包的其余部分制成。
- 默认: 0X56
- 寄存器查看:

	MODEM_RAW_SEARCH											
指数	7	6	5	4	3	2	1	0				
0×44	SCH_FRZEN	SCI	SCH_FRZTH			RD_HI	SCHPRD_LOW					
	0X0	0X0 为0x5 0X1 0X2										

□字段详细信息

- □ SCH_FRZEN

 ▲
 - □ 说明:选择在齿轮切换的移动平均或最小-最大切片门槛搜索引擎是否被冻结。
 - □ 格式: 枚举

名称	值	描述	可用的功能
禁用	0	□ 在切换至低速挡,不要冻结移 动平均或最小-最大切片门槛 搜索引擎。	
启用	1	□ 在切换到低速档冻结移动平均 或最小 - 最大切片门槛搜索引 擎。	

☐ SCH_FRZTH [2:0]▲

- □ 说明:
 - □ 此字段仅具有一个非常具体的芯片配置的效果: a) 本异步解调器正在使用中。b) 本调制类型不是OOK。三) 最小-最大探测器是用来开发的限幅阈值电平(如配置在MODEM_OOK_MISC属性)。d) 在频率稳定齿轮切换选择(如配置在MODEM_AFC_GEAR属性)。
 - □ 当以这种方式配置,芯片将档位开关,当最小-最大探测器的估计频率误差保持在一个等于0.5*窗口MODEM_RAW_EYE的连续号码查询周期。
 - □ 的连续编号的搜索期间由SCH_FRZTH所定义,而每个搜索周期的长度是由SCHPRD_HI定义。
- □ 闵: 0X1
- □ 马克斯: 0x7的
- □ 默认: 为0x5_
- □ SCHPRD_HI[1:0]▲
 - □ 说明:选择搜索时间窗口长度(位周期)在其移动平均滤波器或最小-最大探测确立切片阈值电平,前齿轮切换(即高速档时)。

□ 格式: 枚举

全 称	值	描述	可用的功能
SEARCH_2TB	0	□ 搜索窗口期=2*TB	
SEARCH_4TB	1	□ 搜索窗口期=4*TB	
SEARCH_8TB	2	□ 搜索窗口期=8*TB	
SEARCH_16TB	3	□ 搜索窗口期= 16 * TB	

- SCHPRD LOW [1:0]▲
 - □ 说明: 选择搜索时间窗口长度(位周期)在其移动平均滤波器或最小-最大探测确立切片阈值电平,齿轮切换后(即,低挡时)。
 - □ 格式: 枚举

名称	值	描述	可用的功能
SEARCH_2TB	0	□ 搜索窗口期=2*TB	
SEARCH_4TB	1	□ 搜索窗口期=4*TB	
SEARCH_8TB	2	□ 搜索窗口期=8*TB	
SEARCH_16TB	3	□ 搜索窗口期= 16 * TB	

MODEM_RAW_CONTROL

- 索引: 0X45
- 摘要: 定义增益和使能控制对原材料/非标准模式。
- - 。 定义增益和使能控制对原材料/非标准模式。
- 默认: 0X02
- 寄存器查看:

		MODEM_RAW_CONTROL												
指数	7	6	5 4	3	2	1	0							
0X45	UNSTDPK	CONSCHK_BYP	0 0	PM_PA	ATTERN	RAW	/GAIN							
		默认												
	0X0	0X0	0 0	0	X0	0	X2							

- UNSTDPK▲
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 标准包模式。	
ENUM_1	1	□ 硕士或平均频率误差估算。	

□ CONSCHK_BYP▲

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 如果unstdpk是'1',和 conschk_byp = '0', 在'Sch_Period'连续 的'1'或'0'的有效载荷数据将停 止的平均值被更新。	
ENUM_1	1	□ 正常。	•

- ☐ PM_PATTERN [1:0]▲
 - □ 说明: PM模式的配置。前导检测是内部调制解调器完成。 □ 格式: 枚举

似牛							
名称	值	描述	可用的功能				
1010	0	□ 如果序言有'1010'模式,调制 解调器,建议工作在标准的数 据包模式。					
CONSECUTIVE_ONE	1	□ 如果序言有超过32位连续'1'的 模式,调制解调器推荐工作非 标包模式。					
CONSECUTIVE_ZERO	2	□ 如果序言有超过32位连续 的'0'模式,调制解调器,建议 在非标包模式工作。					
随机	3	□ 如果序言是随机数据,调制解 调器推荐工作的非标包模式。					

- RAWGAIN [1:0]
 - □ 说明:原始数据MA滤波器的增益。
 □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 增益=8。	
ENUM_1	1	□ 增益=4。	
ENUM_2	2	□ 增益= 2。	
ENUM_3	3	□ 增益= 1。	

MODEM_RAW_EYE

- 组: 0X20
- 索引: 0X46 ... 0X47
- 简介: 11位眼开检测器阈值。
- 目的:
- 11位眼开检测器阈值。 默认值: 0x00, 0xA3执行
- 寄存器查看:

	MODEM_RAW_EYE								
指数	7	6	5	4	3	2	1	0	
0X46	0	0	0	0	0	RAWEYE [10:8]			
0X47		RAWEYE [7:0]							
		默认							
0X46	0	0	0	0	0	0X0			
0X47	0xA3执行								

- RAWEYE [10:0] ▲
 - □ 描述: 眼睛开检测器阈值。 □ 默认值: 0xA3执行

MODEM_ANT_DIV_MODE

- 组: 0X20
- 索引: 0X48
- 简介: 天线分集模式设置。
- 目的:
 - 。 该芯片提供了自动天线分集(AntDiv)功能。在AntDiv操作中,在两个空间上分离的天线的信号强度进行评估和更强的天线被选择为接收在 该数据包的剩余部分,从而提高链路质量的衰落是由于多路径传播的存在。此属性配置不同的控制位AntDiv算法。
 - 。 AntDiv功能只能接收一个标准的序言(即1010或0101模式)的数据包的过程。
 - 。 启用AntDiv算法创建所需的外部RF开关控制的信号,但不输出这些GPIO引脚(S)上。它仍然需要另外配置相应的GPIO引脚(S)输出ANTENNA_1_SW和ANTENNA_2_SW控制信号。
 - 。 作为强天线没有数据包的到达之前已知的,AntDiv算法天线之间与由ANWAIT参数确定的周期进行切换。这种切换动作继续进行,直到一个PREAMBLE_VALID信号在天线中的一个检测到。
 - 。 的RSSI电平为天线的计算和存储在存储器中。然后,该算法简单地选择备用天线,并再次计算的RSSI电平。两个RSSI电平进行比较,并在芯片选择用于该数据包的剩余部分的强的天线。
 - 。因为有可能是位同步过程中的天线切换过程中的一些轻微的损失,该芯片符合序言供选择好天线后第二次。在这个^{第二}阶段评价中,前同步码检测阈值减小到一个较小的值如在指定*MODEM_ANT_DIV_CONTROL: ANT2PM_THD*参数。
 - 如果对1的信号强度ST天线是足够强的,没有必要以评估对另一付天线中的链路质量没有进一步改善的信号强度将通过选择一个更强的信号来获得。在这种情况下,在2评估阶段^{第二}天线可以完全跳过,由SKIP2PH和SKIP2PHTH参数控制。
- 默认: 0X02
- 寄存器查看:

		MODEM_ANT_DIV_MODE									
指数	7	6	5	4	3	2	1	0			
0X48	SWANT_TIMER		BYP1P5	SKIP2PH	SKIP2PHTH	A١	۱W/	ΑIT			
		默认									
	02	X0	0X0	0X0	0X0		0X2	2			

三字段详细信息

■ SWANT TIMER [1:0] ▲

□ 说明:

- □ 选择等待的RSSI值在2到稳定的位周期^数 Nd 的AntDiv算法的相位天线的评价。
- □ 延迟一定量是必要的,以允许对2的新的信号电平的^{第二}天线通过整个RX链的旅行,并成为稳定的(即,RX处理延迟)。
- □ 此字段有没有影响,如果不工作的AntDiv模式。
- □ 的延迟时间(在比特周期)取决于平均化的RSSI信号(由所选择的执行量*MODEM_ANT_DIV_CONTROL*: *MATAP*位),并且由下式给出:

 $T = (SWANT_TIMER \times 2) + 9bitperiods$

(MATAP = 0)

 $T = (SWANT_TIMER \times 2) + 13bitperiods$

(MATAP = 1)

□ 格式: 枚举

· <u>K</u> +							
名称	值	描述	可用的功能				
ENUM_0	0	□ 9位周期(MATAP = 0), 13 个位周期(MATAP = 1)					
ENUM_1	1	□ 11位周期(MATAP = 0),15个位周期(MATAP = 1)					
ENUM_2	2	□ 13位周期(MATAP = 0),17个位周期(MATAP = 1)					
ENUM_3	3	□ 15位周期(MATAP = 0),19个位周期(MATAP = 1)					

■ BYP1P5▲

□ 说明:

- □ 启用/禁用对**2**偏置^{第二}阶段^为天线的评价。
- □ 根据定义,一个PREAMBLE_VALID信号是在最初的(1检测到ST相位)的天线评价,并表示在该天线上的信号强度可能足以接收该数据包。用这个参数,该芯片可以被配置为选择备用天线仅在^{第二}阶段的天线评价超过了对1的信号强度ST天线由偏压的选定量。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 偏置=0分贝(^{第二} ,如果它的 信号强度超过1天线会被选中 ST任何金额天线)。	
ENUM_1	1	□ 偏压= 1.5分贝(^{第二} ,如果它的信号强度超过1天线会被选中 ST 由超过1.5 dB天线)。	

□ SKIP2PH ■

□ 说明:

- □ 使2 ^次跳跃的数据包,其中的1的相对信号强度的天线评价相ST天线评价相超过SKIP2PHTH选择的阈值,从而降低了数据包的采集时间。
- □ 如果1的信号强度ST天线评价阶段不超过该阈值时,AntDiv算法进行与第2 次的天线评价阶段。

□ 格式: 枚挙

名称	值	描述	可用的功能
ENUM_0	0	□ 该AntDiv算法总是会评估两个 天线的信号强度。	

ENUM_1	1	□ 该AntDiv算法计算在初始的天 线(即,在其上首先检测 PREAMBLE_VALID信号的天 线)的信号强度,但会跳过另 一付天线的评价时的相对信号 强度(高于背景噪声电平)超 过SKIP2PHTH指定的阈值。		
□ SKIP2PHTH値 □ 说明:				
□ 选择用于确定当 2 的信号强度阈值 ^{十二}	次天线评	价的相位可以被跳过。		
□ 这个阈值不是一个绝对值,而是在最	初的天线	(即,对其中的1的RSSI之间测量的	相对值 ST PREAMBLE_VALID指示被发 有作为一个近似"分贝以上的背景噪声电	t现)和 平"的阈
□ 此参数没有如果SKIP2PH位是不是也 □ 格式: 枚举	也设置生效	΄ ¢.		
名称	值	描述	可用的功能	
ENUM_0	0	□ 16 分贝阈值设置为跳过 ^{第二} 阶段天线检测。		
ENUM_1	1	□ 11 分贝阈值设置为跳过 ^{第二} 阶 段天线检测。		
□ ANWAIT [2:0]▲ □ 说明:				
□ 配別: □ 配置前的数据包的到达天线切换选择	之间的时	间段。(在初始搜索阶段的周期切换	是必要的,因为更强的天线没有之前的	J数据包
的到达已知的。)	D: 4#-4			
□ 此字段有没有影响,如果不工作的 Ai □ 天线切换之间的时间周期是在比特周	期的增量			t :
(AFC启用)	T = (A	$NWAIT + 2) \times 2 + 3bitper$	iods	
(AFC禁用) □ 闵: 0X0 □ 马克斯: 0x7的				

MODEM_ANT_DIV_CONTROL

□ 默认值: 0X2

- 组: 0X20
- 索引: 0X49

- 摘要: 指定天线分集算法控制。
- 目的:
 - 。 该芯片提供了自动天线分集(AntDiv)功能。此属性配置不同的控制位AntDiv算法。
 - 。 请参阅文字说明MODEM_ANT_DIV_MODE了解有关天线分集功能的更多细节。
- 默认值: 0x80的
- 寄存器查看:

	MODEM_ANT_DIV_CONTROL								
指数	7	6	5	4	3	2	1	0	
0X49	ANT2PM_THD			MATAP	AN ⁻	TDIV	版权所有		
	默认								
		位于0x8		0X0	0	X0	0X0		

三字段详细信息

- ANT2PM_THD [3:0] ▲
 - □ 说明:
 - □ 位同步的一些轻微的损失可能会在天线切换过程中被引入。因此,有必要重新获取位定时和重新获得资格认证的序言最终选择最 佳的天线后。
 - □ 在这个重新鉴定过程中,序言检测阈值降低(从指定的值*PREAMBLE_CONFIG_STD_1: RX_THRESH*场)在ANT2PM_THD参 数指定的值越小。
 - □ 此字段有没有影响,如果不工作的AntDiv模式。
 - □ 闵: 0X0
 - □ 马克斯: 0XF
 - □ 默认: 位于0x8
- MATAP▲
 - □ 说明:
 - □配置通过选择抽头的数目为一移动平均的RSSI测量平均表现的量。
 - □ 更大的平均化使得所测得的RSSI值降低的噪声的变化,但会导致较长的所需的测量时间。
 - □ 此位无影响,如果不工作的AntDiv模式。
 - □ 格式: 枚举

1XT			
名称	值	描述	可用的功能
ENUM_0	0	□ 移动平均滤波器抽头长度为8* 钺收购前第一 PREAMBLE_VALID信号,和 4*钺此后的。	
ENUM_1	1	□ 移动平均滤波器抽头长度为8 * Tb的。	

明:				
□ "启用/禁用AntDiv算法的运算,从ī	而导致产生适	当的天线开关控制的控制信号。		
□ GPIO引脚(s)必须使用另外配置	GPIO PIN C	FG输出ANTENNA 1 SW和由Ant[Div算法生成ANTE	ENNA 2 SW控
■ 该ANTENNA_1_SW和ANTENNA				
式: 枚举				
名称	值	描述	可用的功能	
		□ RX状态:		
		ANTENNA_1_SW和		
		-		
RX_AUTO	2			
				
		–		
				
		D DV 供太.		
RX_AUTO	2	ANTENNA_2_SW = AntDiv算法 非RX状态: 非RX状态: ANTENNA_1_SW = 1和 ANTENNA_2_SW = 0 睡眠状态: ANTENNA_1_SW = 0和 ANTENNA_2_SW = 0。 RX状态: ANTENNA_1_SW = 1和 ANTENNA_1_SW = 1和 ANTENNA_2_SW = 0		-

0

□ 版权所有▲

■ ANTDIV [1:0]▲

□ 说明:保留位(应该始终被写为0)。

□ 默认: 0x0

固定

MODEM_RSSI_THRESH

• 组: 0X20

- 索引: 为0x4A
- 摘要: 配置RSSI阈值。
- 目的:
 - 。 选择门槛空闲信道评估(CCA)和代RSSI中断。
 - 如果当前RSSI值高于此阈值,一个GPIO引脚配置为输出CCA信号会很高。
 - 如果当前的RSSI值超过超过这个阈值,则RSSI将产生中断。
 - 。 如果在启用*MODEM_RSSI_CONTROL*属性,锁定的RSSI值也可以比较反对这个门槛。比较的目的是判断是否锁定的RSSI值低于(不高于)阈值; 如果是这样,该芯片进入到指定*START_RX: NEXT_STATE1: RXTIMEOUT_STATE*并产生一个PREAMBLE_INVALID中断。

ANTENNA_1_SW = 1和 ANTENNA 2 SW = 0

ANTENNA_1_SW = 0和 ANTENNA_2_SW = 0。

□ 睡眠状态:

- 默认值: 0xff的
- 寄存器查看:

		MODEM_RSSI_THRESH											
指数	7	7 6 5 4 3 2 1 0											
为0x4A				RSSI_	THRESI	1							
				黒	犬认								
				为	0xff								

□字段详细信息

- ☐ RSSI_THRESH [7:0]▲
 - □ 说明:选择阈值,空闲信道评估和生成的RSSI中断(根据与当前RSSI值比较)。
 - □ 闵: 0X0
 - □ 马克斯: 0xff的
 - □ 默认值: 0xff的

MODEM_RSSI_JUMP_THRESH

- 组: 0X20
- 索引: 0x4b
- 摘要: 配置*RSSI*跳转检测阈值。
- 目的:
 - 。 该芯片提供检测RSSI一个跳变,并采取行动的结果的能力。请参阅MODEM_RSSI_CONTROL2了解有关的RSSI检测跳转功能配置的详细信息。
 - 。 这个属性设定为RSSI跳检测阈值,步长为1dB。如果RSSI水平的变化(内测的时间量)超过此阈值时,一个跳跃的RSSI检测中断事件将会产生。
- 默认值: 0X0C
- 寄存器查看:

		MODEM_RSSI_JUMP_THRESH											
非	旨数	7	6	6 5 4 3 2 1 0									
0:	x4b	0			RS	SSUMPT	THD						
					黒	犬认							
		0				位于0x0)						

		JJMPT 〕说明: 〕闵:(〕最大:	HD [6:0] 设置跳转RSSI检测阈值,步长为1d)X0 到0x7f 位于0xC	В.					
MOD	DEM R	SSI (CONTROL						
•	4: 0X2 指标: 0X 指标: 0X 指标: 平 目的: 。 选持 。 O逆	0 (4c 均模式 军,如与 (T_MO 连择位足 (01	和锁定时间报告 <i>RSSI</i> 值(<i>S</i>)的控制 果RSSI值被锁存,并且在什么时候在 <i>DEM_STATUS</i> 命令。 周期指的RSSI值测量或平均数量。 的RSSI值进行比较的选择 <i>MODEM_R</i>	分组中					
			MODEM_RSSI_CONTR	OL					
	指数	7 6	5			2 1 0			
	0x4c	0 0	CHECK_THRESH_AT_LATCH 默认		平均	锁存			
		0 0	0X0		0X0	0X1			
	E	CK_T 说明:	HRESH_AT_LATCH☐ 如果该位被启用,锁定的RSSI值进行 <i>START_RX: RXTIMEOUT_STATE</i> 该锁定的RSSI超过阈值不会产生RSS	和IN	VALID_	_PREAM	MBLE中断将被断言。如果	具锁定的RSSI高	
		10 24.	名称	值			描述	可用的功能	
			DISABLE	0		□ 锁存后 查。	后禁止使用的RSSI阈值检		
			启用	1			存后的RSSI阈值检查。		
		〕说明: □	"选择在其上的RSSI值被测量和平均 该位的设置会影响当前RSSI和锁定的	_, ,,,		<u>=</u> = 0			
			名称	值			描述	可用的功能	
			AVERAGE4	0		更新, 期的 [。]	值是在1*TB位周期间隔 但总是反映较4*铽位周 平均值。		
			ВІТ1	2		□ RSSI 期。	值更新一次1*铽位周		
		〕说明: 	在选择在哪个锁定RSSI值被锁存数据 某些闭锁时点是仅当平均通过设置平					,	
		〕格式:	枚举 名称	值	ı		描述	可用的功能]
			禁用	0			器被禁用。在锁定的RSS		
			序言				可值将始终为0。 器的RSSI在序言检测。		
			同步	1 2			器的RSSI在同步字检测。		
			RX_STATE1	3		□ 锁存器	器的RSSI在4 * Tb的接收 后(7 *铽,如果平均=		
			RX_STATE2	4			适用于平均= 0)锁存器 Sl在8*铽接收后启用。		
			RX_STATE3	5		□(仅i 的RS 启用。	适用于平均= 0)锁存器 SI为12 * Tb的接收后将		
			RX_STATE4	6			适用于平均= 0)锁存器 Sl为16 * Tb的接收后将		

□(仅适用于平均= 0)锁存器的RSSI在20 *铽接收后将启用。

7

MODEM_RSSI_CONTROL2

RX_STATE5

- 索引: 送出0x4d
- 摘要: RSSI跳检测控制。
- 目的:
 - 。 该芯片提供检测RSSI一个跳变,并采取行动的结果的能力。此功能可在检测的干扰,或从次要传入的数据包"冲突"是有用的。
 - o 此属性配置的RSSI跳检测的各个方面。该芯片是可检测跳变在RSSI在任一方向(即,无论是一个信号增加或减少的信号)。可同时启用跳 检测两种极性,导致检测跳转时或跳向下的。
 - 。 在RSSI的变化必须超过设定的阈值MODEM_RSSI_JUMP_THRESH被报告为RSSI跳转事件之前。该芯片可配置在检测到的RSSI跳转到复 位RX状态机,从而自动开始重新捕获的数据包。该芯片还可以被配置为产生中断,如通过启用INT_CTL_MODEM_ENABLE: RSSI JUMP EN位。
 - 。 此功能的目的是检测在RSSI电平的突然变化,并且不会在RSSI电平缓慢渐进的变化做出反应。这是通过比较在一个可编程的时间周期(由 JMPDLYLEN参数选择)中的RSSI电平的差来实现的。以这种方式,该芯片有效地评估中的RSSI电平的变化的斜率。
 - 所期望的分组的到达(即,从接收到的噪声接收有效信号的过渡)将很可能被检测为一个RSSI跳转事件。出于这个原因,建议启用此功能在 中间包(即后信号的资格,如PREAMBLE_VALID。)
- 默认值: 0x00
- 寄存器查看:

		MODEM_RSSI_CONTROL2									
指数	7	6	5	4	3	2	1	0			
送出 0x4d	0	0	RSSIJMP_DWN	RSSIJMP_UP	ENRSSIJMP	JMPDLYLEN	ENJMPRX	0			
	默认										
	0	0	0X0	0X0	0X0	0X0	0X0	0			

字	段	详	组	11	i	息
$\overline{}$		0	<u> ۱</u>	1.6	4 5	_

RSSLIMP	DWN

- □ 说明: 启用/禁用检测的RSSI跃在向下的方向。
- □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 检测RSSI跳断的被禁用。	
ENUM 1	1	■ 检测RSSI跳转减已启用。	

RSSIJMP UP

□ 说明:	启用/禁用检测的RSSI跃在向_	上的:	方向
-------	------------------	-----	----

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 检测RSSI的跳跃型的被禁用。	
ENUM_1	1	□ 检测RSSI跳转后新的已启用。	

■ ENRSSIJMP

计片	пΠ	
ルだ	멧	:

- □ 启用/禁用RSS跳检测。该位之前,必须跳转方向位(RSSIMP_UP和RSSIMP_DWN)生效启用。
- □ 当RSSI的差(2*铽或4*Tb的时间间隔计算)超过一个RSSI检测跳转中断事件将产生MODEM_RSSI_JUMP_THRESH值。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 跳转RSSI检测被禁用。	
ENUM_1	1	□ 跳转RSSI检测已启用。	

☐ JMPDLYLEN

\W HD	选择指在RSSI电平之	· · · · · · · · · · · · · · · · · · ·
152.0月・		无极测量的时间周期

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ RSSI检测跳转测量的2 * Tb的时间间隔之间。	
ENUM_1	1	□ RSSI检测跳转测量的4 * Tb的时间间隔之间。	

■ ENJMPRX

□ 说明:如果设置,跳跃的RSSI检测将迫使RX机器复位。

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 接收状态机将不会因跳的RSSI 检测复位。	
ENUM_1	1	□ 接收状态机将在跳转的RSSI检 测复位。	

MODEM RSSI COMP

- 组: 0X20
- 索引: 0x4e
- 摘要: RSSI补偿值。
- 目的:
 - 。 该芯片提供了通过返回的接收信号强度指示(RSSI)值GET_MODEM_STATUS命令。返回的RSSI值是一个8位的无符号字,其值正比于所 接收到的信号的强度。由返回的RSSI值GET_MODEM_STATUS命令是在每比特大约0.5分贝增量。
 - 。 Silicon Labs公司无法知道确切的RX匹配的拓扑结构,并在所有客户使用的匹配元件值。客户应用程序可能在预选滤波,外部LNA或RF开关 的存在与否而改变。其结果是,硅Labs并不保证一个给定RSSI值对应于一个精确的RF输入功率电平(以dBm为单位)。
 - 。 该芯片提供了一个补偿的RSSI(或偏移)的值,在该事件是用户期望返回的RSSI值校准到一个确切的RF输入电平。该 值MODEM RSSI COMP属性被添加到内部测得的RSSI电平,从而改变由返回的RSSI值GET MODEM STATUS命令。该 MODEM_RSSI_COMP值在1 dB增量,因而深受1码改变补偿值将导致由返回的RSSI值GET_MODEM_STATUS 2码命令改变。返回的 RSS値可以由下式被转换为一个近似的RF输入电平(单位为dBm): $RF_LEVEL_dBm = \frac{RSSI_VALUE}{2} - MODEM_RSSI_COMP - 70$

- 。 该默认值MODEM_RSSI_COMP属性为0X32 = 50小数。这是一个足够的偏移值,以使返回的RSSI值,用于测量噪声(即无信号)大于零稍大。一个更大的补偿值将向上调整返回的RSSI值,和一个较低的值将向下调整RSSI值。
- 默认: 0X40
- 寄存器查看:

		MODEM_RSSI_COMP											
指数	7	6 5 4 3 2 1 0											
0x4e	0	0 RSSI_COMP											
		默认											
	0				0X40	•		•					

- RSSI_COMP [6:0]▲
 - □描述:补偿(或偏移量),以测得的RSSI值。
 - □ 闵: 0X0
 - □ 最大: 到0x7f
 - □ 默认: 0X40

MODEM_CLKGEN_BAND

- 组: 0X20
- 索引: 0X51
- 摘要: 选择PLL合成器的输出分频比为频带的功能。
- 目的:
 - 。 选择在该PLL频率合成器的作为所需的工作频带的一个函数的输出可配置的分频器的分频比。
 - 配置PLL合成器的高性能和低功耗工作模式,允许调谐分辨率和电流消耗之间进行权衡。
- 默认: 0X08
- 寄存器查看:

		MODEM_CLKGEN_BAND											
指数	7	6	5	2	1	0							
0X51	0	0 0 0 0 SY_SEL BAND											
					默认								
	0	0	0	0	0X1		0X0						

□字段详细信息

- ☐ SY_SEL
 - □ 说明:选择在PLL分频器反馈路径中的固定分频器模量的值,从而允许改进的调谐分辨率和频率合成器的量化噪声之间的折衷在略微增加的电流消耗为代价的。在计算公式公布*FREQ_CONTROL_INTE和FREQ_CONTROL_FRAC*假设该位被设置为'1';当清除此位联系Silicon Labs公司与频率计算的援助。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 低功耗模式(固定分频器= DN-×4)。约200微安比高性 能模式更少的电流,但与PLL 合成器的粗调谐分辨率。	
ENUM_1	1	□ 高性能模式(固定分频器= DIV-×2)。	

□ 带[2:0]▲

- 证别:选择PLL频率合成器的输出分压比适当所需频段。在PLL合成器的VCO工作在约3.6千兆赫;通过在PLL频率合成器的输出可配置的分频器(OUTDIV)交换获得在很宽的频带范围内的操作,例如,OUTDIV = DIV-×4 900 MHz频段。
- □ 格式: 枚举

名称	值	描述	可用的功能
FVCO_DIV_4	0	□ 输出为FVCO/4。	
FVCO_DIV_6	1	□ 输出FVCO/6。	
FVCO_DIV_8	2	□ 输出FVCO/8。	
FVCO_DIV_12	3	□ 输出FVCO/12。	
FVCO_DIV_16	4	□ 输出FVCO/16。	
FVCO_DIV_24	5	□ 输出FVCO/24。	
FVCO_DIV_24_2	6	□ 输出FVCO/24。	
FVCO_DIV_24_3	7	□ 输出FVCO/24。	

MODEM_CHFLT

MODEM_CHFLT_RX1_CHFLT_COE

- 组: 0X21
- 索引: 0x00 ... 0x11
- 摘要:对于首套RX滤波器系数的滤波器系数。
- 目的:
 - 。 该芯片实现RX通道选择带通滤波在数字域中作为FIR滤波器。该MODEM_CHFLT_RX1_CHFLT_COE属性定义为滤波器抽头系数的值。
 - 。 该芯片提供了两套不同的RX滤波器系数(MODEM_CHFLT_RX1和MODEM_CHFLT_RX2)的。此属性定义为第一组滤波器系数的值; 又见文本说明MODEM_CHFLT_RX2 CHFLT_COE属性为第二组滤波器系数和使用整个数据包接收自适应滤波器带宽的讨论。

- 。 默认情况下,数字滤波器27抽头的长度。但是,有可能配置在RX调制解调器的信道选择滤波器,仅15抽头;的15抽头滤波器的优点是滤波处 理延迟以减小滤波性能 (例如,相邻信道选择性)为代价减少。
- o 的抽头系数的值是对称的;也就是说,COEFF26的值=COEFF0,COEFF25=COEFF1,依此类推。因此,仅需要存储14的滤波器系数;内 部电路通过对称获得的剩余系数。在降低的性能状态(例如,15抽头滤波器)操作时,系数的编程值是相同的,但较低的六个系数不被使 用。
- 。 每个滤波器抽头系数是一个10位有符号值。低8位每个系数都在索引0x00到0X0D持有物业,而最高两位是通过为0x11的索引0x0E的挤进属 性。
- 。 Silicon Labs公司已预先计算的15组不同的滤波器抽头系数。WDS的计算器会建议这些过滤器集之一,根据接收有用信号所需的RX滤波器的 带宽。滤波器的带宽是两个所选择的滤波器组,以及在滤波器的时钟抽取比例(见的函数MODEM_DECIMATION_CFG1/0属性)
- 默认值: 0xff的,0xba,0X0F,0X51,0xcf,0xa9,0xc9,0xFC有,0X1B,0X1E,0X0F,0X01,0xFC有,会将0xfd,0X15,为0xff,0x00,
- 寄存器查看:

	MODEM_CHFLT_RX1_CHFLT_COE												
指数	7	6	5	4	3	2	1	0					
0x00			F	RX1_CHFLT	_COE13	[7:0]							
0X01													
0X02	RX1_CHFLT_COE11 [7:0]												
0X03	RX1_CHFLT_COE10 [7:0]												
0x04	RX1_CHFLT_COE9 [7:0]												
0X05	RX1_CHFLT_COE8 [7:0]												
0X06	RX1_CHFLT_COE7 [7:0]												
0X07				RX1_CHFL1	COE6	[7:0]							
80X0				RX1_CHFL1	COE5	[7:0]							
0X09				RX1_CHFL1	COE4	[7:0]							
0X0A				RX1_CHFL1	COE3	[7:0]							
0X0B				RX1_CHFL1	COE2	[7:0]							
0X0C				RX1_CHFL1									
0X0D				RX1_CHFL1									
	RX1_CHF	LT_COE10	RX1_CH	FLT_COE11	RX1_CH	HFLT_COE	12 RX1_0	CHFLT_COE13					
的		9:8]		9:8]		[9:8]		[9:8]					
0X0F		FLT_COE6		FLT_COE7	RX1_C	HFLT_COE	8 RX1_	CHFLT_COE9					
		9:8]	-	9:8]		[9:8]		[9:8]					
0X10		FLT_COE2		FLT_COE3	RX1_C	HFLT_COE	4 RX1_	CHFLT_COE5					
0/(10	[9	9:8]	[9:8]		[9:8]		[9:8]					
0x11	0	0	0	0	RX1_C	HFLT_COE	0 RX1_	CHFLT_COE1					
				m /v	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	[9:8]		[9:8]					
0.00					认								
0x00					Oxff								
0X01					ba KF								
0X02													
0X03 0x04					(51 (cf								
0X04					кст :a9								
0X05					.a9 :c9								
0X06					C有								
0X07					1B								
0X09					1E								
0X09					KF								
0X0B					X1 X1								
0X0C					C有								
0X0C					Oxfd								
0x0E					ONIU								
的	C)X0	()X1		0X1		0X1					
0X0F	0)	x3 的	0:	x3 的		0x3的		0x3的					
0X10)X0)X0		0X0		0X0					
0x11	0	0	0	0		0x3的		0x3的					

- ☐ RX1_CHFLT_COE13 [9:0] ▲
 - 说明: rx1_chflt_coe13
 - □ 默认: 到0x1FF
- - 默认值: 0x1ba
- □ RX1_CHFLT_COE11 [9:0] ▲
 □ 说明: rx1_chflt_coe11

 - □ 默认值: 0x10f
- RX1_CHFLT_COE10 [9:0] ▲
 - 说明: rx1_chflt_coe10
 - 默认: 0X51
- □ RX1_CHFLT_COE9 [9:0] ▲
 - □ 说明: rx1_chflt_coe9 ■ 默认值: 0x3cf
- ☐ RX1_CHFLT_COE8 [9:0]▲

□ 说明: rx1_chflt_coe8
□ 默认值: 0x3a9
☐ RX1_CHFLT_COE7 [9:0]
□ 说明: rx1_chflt_coe7
■ 默认值: 0x3c9
☐ RX1_CHFLT_COE6 [9:0]
□ 说明: rx1_chflt_coe6
■ 默认值: 0x3fc
RX1_CHFLT_COE5 [9:0]
□ 说明: rx1_chflt_coe5
■ 默认值: 0X1B
☐ RX1_CHFLT_COE4 [9:0]
□ 说明: rx1_chflt_coe4
■ 默认值: 0X1E
☐ RX1_CHFLT_COE3 [9:0]
■ 说明: rx1_chflt_coe3
■ 默认值: 0XF
☐ RX1_CHFLT_COE2 [9:0]
□ 说明: rx1_chflt_coe2
□ 默认: 0X1
☐ RX1_CHFLT_COE1 [9:0]
□ 说明: rx1_chflt_coe1
■ 默认值: 0x3fc
☐ RX1_CHFLT_COE0 [9:0]
□ 说明: rx1_chflt_coe0
■ 默认值: 0x3fd

MODEM_CHFLT_RX2_CHFLT_COE

- 组: 0X21
- 索引: 0X12 ... 0x23
- 摘要: 为第二套RX滤波器系数的滤波器系数。
- 目的:
 - 。 该芯片提供了两套不同的RX滤波器系数(MODEM_CHFLT_RX1和MODEM_CHFLT_RX2)的。这个属性定义了第二组滤波器系数的值; 又见文本说明*MODEM_CHFLT_RX1_CHFLT_COE*属性滤波器抽头系数的配置进行了一般性讨论。
 - 提供了两套不同的滤波器抽头系数(即滤波器带宽),以允许缩小接收的带宽后,基于PLL的AFC算法获取的信号,并在滤波器的通带为中心的。无残留频率误差,滤波器带宽可以减小传递的信号仅调制带宽,从而提高了灵敏度在该分组的其余部分。
 - 。 当PLL AFC启用(通过设置这种自适应接收带宽功能只适用: ENFBPLL MODEM_AFC_MISC,自适应接收带宽功能被启用(通过设置) MODEM_AFC_GAIN: AFCBD)。
 - 。 当自适应接收带宽功能启用时,第一组滤波器系数(在规定的MODEM_CHFLT_RX1_CHFLT_COE属性)是前齿轮切换(例如,检测 PREAMBLE_VALID的),而第二组滤波器系数(在定义的有效MODEM_CHFLT_RX2_CHFLT_COE属性)是齿轮切换后生效。当自适应接收带宽被禁止时,所述第一滤波器系数集合,用于整个数据包。
- 默认值: 0xff的,的0xC4,0X30,到0x7f,0xf5,0xb5,0XB8,写0xDE,0X05,0X17,0X16,0X0C,0X03,0x00,0X15,为0xff,0x00,0x00
- 寄存器查看:

	MODEM_CHFLT_RX2_CHFLT_COE												
指数	7	6	5	4	3	2	1	0					
0X12		·	F	RX2_CHFLT	_COE13 [7:0]	•	-					
0X13	RX2_CHFLT_COE12 [7:0]												
0X14	RX2_CHFLT_COE11 [7:0]												
0X15	RX2_CHFLT_COE10 [7:0]												
0X16	RX2_CHFLT_COE9 [7:0]												
0X17				RX2_CHFL1	_COE8 [7	[0]							
0X18				RX2_CHFL1	_COE7 [7	[0]							
0×19				RX2_CHFL1		-							
0X1A				RX2_CHFL1		-							
0X1B				RX2_CHFL1	_COE4 [7	[0]							
为 0x1c	RX2_CHFLT_COE3 [7:0]												
0x1d				RX2_CHFL1	_COE2 [7	[0:							
0X1E				RX2_CHFL1	_COE1 [7	[0]							
0x1F 的				RX2_CHFL1	_COE0 [7	[0]							
0X20	_	FLT_COE10 9:8]	_	FLT_COE11 9:8]	_	FLT_COE12 9:8]	_	IFLT_COE13 [9:8]					
0X21	_	FLT_COE6 9:8]	_	FLT_COE7 9:8]	_	FLT_COE8 9:8]	_	HFLT_COE9 [9:8]					
0X22	_	FLT_COE2 9:8]	_	FLT_COE3 9:8]		FLT_COE4 9:8]		HFLT_COE5 [9:8]					
0x23	0 0 0 RX2_CHFLT_COE0 RX2_CHFLT_COE1												
		•	•	默	认		•						
0X12				为(Oxff								
0X13				的0	xC4								
0X14				0X	30								
0X15	到0x7f												

0X16	0xf5										
0X17	ÛxD5										
0X18				0X	B8						
0×19				写0:	kDE						
0X1A				为()x5						
0X1B				0X	17						
为				ΩV	16						
0x1c		0X16									
0x1d	位于0xC										
0X1E		0x3 的									
0x1F				0)	(0						
的				07	(0						
0X20	C	0X0 0X1 0X1 0X1									
0X21	0>	0x3的 0x3的 0x3的 0x3的									
0X22	0	0X0 0X0 0X0 0X0									
0x23	0	0	0 0 000 000								

三字段详细信息

- RX2_CHFLT_COE13 [9:0]
 - 说明: rx2_chflt_coe13
 - 默认:到0x1FF
- ☐ RX2_CHFLT_COE12 [9:0]
 - □ 说明: rx2_chflt_coe12
- 默认值: 0x1c4
- □ RX2_CHFLT_COE11 [9:0] ▲
 □ 说明: rx2_chflt_coe11

 - □ 默认值: 量0x130
- ☐ RX2_CHFLT_COE10 [9:0]
 - 说明: rx2_chflt_coe10
 - □ 默认: 到0x7f
- □ RX2_CHFLT_COE9 [9:0]
 - 说明: rx2_chflt_coe9
- 默认值: 0x3f5
- ☐ RX2_CHFLT_COE8 [9:0] ▲ ■ 说明: rx2_chflt_coe8
 - □ 默认值: 0x3b5
- ☐ RX2_CHFLT_COE7 [9:0]
 - 说明: rx2 chflt coe7
- 默认值: 0x3b8
- RX2_CHFLT_COE6 [9:0] ▲
 - □ 说明: rx2 chflt coe6
 - 默认值: 0x3de
- RX2_CHFLT_COE5 [9:0] ▲
 - □ 说明: rx2_chflt_coe5
 - □ 默认: 为0x5
- RX2_CHFLT_COE4 [9:0]
 - □ 说明: rx2_chflt_coe4
 - 默认: 0X17
- RX2_CHFLT_COE3 [9:0]
 - 说明: rx2_chflt_coe3
 - 默认: 0X16
- □ RX2_CHFLT_COE2 [9:0]
 - 说明: rx2_chflt_coe2
 - □ 默认: 位于0xC
- RX2_CHFLT_COE1 [9:0]
 - □ 说明: rx2 chflt coe1
 - □ 默认值: 0x3的
- RX2_CHFLT_COE0 [9:0]
 - □ 说明: rx2_chflt_coe0
 - □ 默认: 0x0

PA

PA_MODE

- 组: 0X22
- 索引: 0x00
- 摘要:选择PA的工作模式,并选择PA功率调整(即步长)的分辨率。
- 目的:

 - 。 PA的输出电路被设计为作为一个开关型放大器,或者作为一个开关可编程电流源。 。 此属性选择PA的工作模式。一个开关式放大器(匹配的E类或方波操作)通常会提供更高的输出功率和更好的电流效率,同时开关电流放大 器通常会提供的输出功率更线性的控制和更好的功率平坦度比变化VDD电源电压。
 - 。 输出功率电平是通过配置PA_PWR_LVL财产和(在开关电流模式下运行时)的PA_BIAS_CLKDUTY财产。
 - 。 该芯片提供了TXRAMP引脚斜坡外部PA的控制信号。此信号可启用/通过这个属性的EXT_PA_RAMP位禁用;在设置在外部斜坡信号本身的 结构PA RAMP_EX属性。
 - 。该Si446x家族(例如,Si4460/61/63/64)内的不同的芯片包含各种尺寸和PA的输出设备组。这些被选择以获得所需的输出功率水平和功率 调整步长。此配置会自动在芯片内部,根据芯片类型来处理;该PA_SEL字段不需要被配置为获得在PA的正确操作。然而,在继续这个参数

设置为WDS建议值(S)没有坏处。

- 默认: 0X08
- 寄存器查看:

	PA_MODE											
指数	7	6	5	4	3	2	1	0				
0x00	EXT_PA_RAMP	0	0 PA_SEL 0 PA_MC					PA_MODE				
			默	认			•					
	0X0	0X0		0>	(2		0X0	0X0				

□字段详细信息

- EXT PA RAMP▲
 - □ 说明:
 - □ 当设置,使得在TXRAMP引脚上的信号斜坡外部PA的控制权。
 - □ 外部斜坡信号的特性是通过配置PA_RAMP_EX属性。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用外部TX斜坡信号。	
ENUM_1	1	□ 启用外部TX斜坡信号。	

□ PA_SEL [3:0]

□ 说明:

□选择的PA输出设备的相应基团和尺寸以获得所需的输出功率水平和功率调整步长,根据芯片类型。

□ 不推荐使用枚举比下面列出的其他的。

□ 格式: 枚举

:_ 似乎			
名称	值	描述	可用的功能
HP_FINE	1	□ Si4463/64: 较低的最大功率,而具有更精细的步长(〜 2倍)。	
HP_COARSE	2	□ Si4463/64: 更高的最大功率,而具有较大的步长。	
MP	6	□ Si4460: 低功耗应用。	
唱片	8	□ Si4461:中等功率应用。	

□ PA_MODE

- □ 说明:选择PA的工作模式。
- □ 格式: 枚举

٠.				
	名称	值	描述	可用的功能
	骑士	0	□ 开关放大器模式(用于E类或 方波匹配)。	
	深港西部通道	1	□ 开关电流模式。	

PA_PWR_LVL

- 组: 0X22
- 索引: 0X01
- 简介: PA的输出功率电平配置。
- 目的:
 - 。 功率放大器电路中的芯片包含一个输出装置,它的尺寸可以通过启用/禁用不同的数字设备的手指来调整。选择能增加TX输出功率更高价值的结果
 - 。 输出功率和功能的设备指的数量之间的关系不一定是线性的,并且是依赖于操作的PA的模式(例如,E类或开关电流)时,驱动信号的输出电路的占空比, V DD电源电压,以及输出匹配。因此,有没有简单的公式来关联PA_PWR_LVL属性的设置的输出功率以dBm为单位的绝对值。
 - TX输出功率的调整分辨率非常细(步长<0.1分贝)附近的最大功率设置运行时,但变粗的输出功率电平被降低。
- 默认: 到0x7f
- 寄存器查看:

		PA_PWR_LVL							
指数	7	6	5	4	3	2	1	0	
0X01	0				DDAC				
			默认						
	0				到0x7f				

□字段详细信息

- □ DDAC [6:0]△
 - □ 说明: 选择使能输出装置的手指的数量,以产生增加的输出功率更大的值。
 - □ 闵: 0X0
 - □ 最大: 到0x7f
 - □ 默认: 到0x7f

PA_BIAS_CLKDUTY

- 组: 0X22
- 索引: 0X02
- 摘要: PA偏置和在TX时钟源占空比的配置。
- 目的:
 - PA的输出电路被设计为作为一个开关型放大器,或者作为一个开关可编程电流源。操作的PA的模式是通过PA_MODE属性中选择; 偏置电流 (当作为切换可编程电流源供电)和驱动TX时钟源的占空比,通过该属性选取。

- 默认值: 0x00
- 寄存器查看:

	PA_BIAS_CLKDUTY								
指数	7	6	5	4	3	2	1	0	
0X02	CLK	_DUTY			转	播			
		l							
	0			02	X0	•	•		

- □ CLK_DUTY [1:0] ▲
 - □ 说明:
 - □ 此参数调整驱动模式(单端或互补)及TX时钟源PA输出设备的占空比。
 - □ Silicon Labs公司建议使用下面列出的模式,因为他们已经优化了上市的芯片和相应的输出功率水平。
 - □ 格式: 枚举

٧.	似宇			
	名称	值	描述	可用的功能
	DIFF_50	0	□ 互补驱动信号,50%占空比。 建议与Si4463/Si4464高功率 (例如,+20 dBm的)的应 用,并以此为Si4461中等功率 的选项(例如,+13至+16 dBm的)应用。	
	SINGLE_25	3	□ 单端驱动信号,25%占空比。 建议与Si4460低功耗(例如, +10至+13 dBm或更低)的应 用,并以此为Si4461中等功率 (例如,+13至+16 dBm的) 应用程序的选项。	

■ OB [5:0]

- □ 说明:
 - □ 当PA被配置为工作在开关电流模式下,输出设备充当可编程电流源。电流源被在RF频率接通和断开由CLK_DUTY参数选择的驱动信号,从而提供了可编程的电流脉冲对负载。
 - □ 此参数选择每启用输出设备手指偏置电流的大小。启用输出装置的手指的总数是由选定的PA_PWR_LVL属性,并且因此总PA的偏置电流等于Bias_Current_per_Finger * Number_Enabled_Fingers。
 - □ 此参数的步长为 10μ A增量。有一个固定的 10μ A的偏置电流加入到这个字段中选择的值(例如,OB = 0 = 10μ A,OB = 1 = 20μ A,等)
 - □ 此参数时PA_MODE =开关放大器没有影响。
- □ 闵: 0X0
- □ 最大: 的0x3F
- □ 默认: 0x0

PA_TC

- 组: 0X22
- 索引: 0X03
- 简介: PA的斜坡参数配置。
- 目的:
 - 。 该芯片提供的PA功率斜坡,以尽量减少频谱溅射,开关瞬变。
 - 。在TC值指定的时间常数的PA功率的上升和下降沿的斜坡。这个时间常数是适用于将TX数据包中(G)的FSK模式的上升沿和下降沿两者,以及在OOK模式单个数据位。因此很难精确地定义为不同的测量方法可以用于斜坡时间(例如,10%到90%的上升时间,对最终值1分贝等)但是,近似斜坡时间由下式给出:

$$RAMP_TIME = (\frac{20\mu sec}{32-TC})$$

而介乎约0.6usec至20微秒。然而,在(G)FSK模式,建议TC的设定值不能超过0x1D=29=6.67usec。

- 。 该FSK_MOD_DLY值指定从PA斜坡的上升沿一个额外的延迟时间,以在(G)的FSK调制的第一个比特。它是可配置在2至30微秒的4微秒 为单位的范围内,并且加入到约3比特/码元的特性调制延迟。
- 。 该FSK_MOD_DLY参数的目的是为了确保在(G)的FSK调制不开始的PA功率斜坡之前已经完成。在(G)FSK模式,FSK_MOD_DLY的值应设定为TC的选定值很好地工作。该FSK_MOD_DLY参数在OOK模式下不起作用。
- 默认: 的0x5d
- 寄存器查看:

	PA_TC								
指数	7	6	5	4	3	2	1	0	
0X03	F	SK_MOD_DL	_Y			TC			
		默认							
		0X2 0x1d							

- FSK_MOD_DLY[2:0]▲
 - □说明: 在(G) FSK模式下,该规定从PA斜坡的上升沿额外的延迟的(G) FSK调制的开始。
 - □ 格式: 枚举

7人十			
名称	值	描述	可用的功能
2_US	0	□ 开始(G)FSK调制延迟了一 个额外的2微秒	
6_US	1	□ 开始(G)FSK调制延迟了一 个额外的6µsec	

10_US	2	□ 开始(G)FSK调制延迟了一 个额外的10微秒	
14_US	3	□ 开始(G) FSK调制延迟了一 个额外的14µsec	
18_US	4	□ 开始(G)FSK调制延迟了一 个额外的18µsec	
22_US	5	□ 开始(G) FSK调制延迟了一 个额外的22µsec	
26_US	6	□ 开始(G)FSK调制延迟了一 个额外的26µsec	
30_US	7	□ 开始(G)FSK调制延迟了一 个额外的30µsec	

□ TC [4:0]

□ 说明: 指定的时间常数PA功率的上升和下降沿的斜坡。

□ 闵: 0X0

□ 马克斯: 0x1F

■ 默认值: 0x1d

PA_RAMP_EX

• 组: 0X22

• 索引: 0x04

• 摘要: 选择外部PA斜坡信号的时间常数。

目的:

。 该芯片提供了TXRAMP引脚斜坡外部PA的控制信号。此属性选择TXRAMP信号的上升时间常数。该信号可以启用/禁用通过在该 EXT_PA_RAMP位*PA_MODE*财产。

。 斜坡信号的时间常数是由下面的公式确定:

$$RampTime = (\frac{20\mu sec}{32-TC})$$

- 。 该TXRAMP信号的幅度范围固定在从0V升温至3.0V。在这一事件的VDD电源电压的芯片降低,TXRAMP信号的电压上限将约为VDD 0.1V。
- 。 此属性不影响内部的PA的斜坡时间常数。
- 默认值: 0x00
- 寄存器查看:

		PA_RAMP_EX							
指数	7	6	5	4	3	2	1	0	
0x04		00	00			٦	C		
				默	认				
		0)	< 0			0	X0		

□字段详细信息

- ☐ TC [3:0]▲
 - ່ 说明:
 - □ 选择在TXRAMP引脚上的外部PA斜坡信号的上升时间(无论是向上还是向下)。
 - □ 斜坡时间由下式确定:

$$RampTime = (\frac{20\mu sec}{32-TC})$$

□ 闵: 0X0

□ 马克斯: 0XF

□ 默认: 0x0

PA_RAMP_DOWN_DELAY

- 组: 0X22
- 索引: 0X05
- 摘要:从PA的启动延迟斜坡下降到禁用PA输出的。
- 目的:
 - 。 由所选择的斜坡时间常数*PA_TC*: *TC*字段控制施加到PA的输出设备(s)的模拟偏置电压的斜坡。射频驱动信号到PA的输出设备必须保持有效,直到完成减速过程,否则斜波形会突然终止。此属性延迟功率放大器模块的完整关机,直到模拟斜坡下降完成。
 - 。 这个参数的单位是微秒。这个延迟时间必须大于或等于指定的斜坡时间*PA_TC: TC*,但不得大于RAMP_DOWN_DELAY = 为0x28 = 40对于大多数应用程序,这是可以接受离开这个酒店在它的默认值。
 - 。 这个属性有因加速过程没有任何影响。
- 默认值: 0x23
- 寄存器查看:

		PA_RAMP_DOWN_DELAY								
指数	7	7 6 5 4 3 2 1 0								
0X05			RA	MP_DC	WN_DI	ELAY				
				黒	犬认					
				0	x23					

- RAMP DOWN DELAY[7:0]▲
 - □ 说明:选择减速过程的开始和PA输出的禁用之间的延迟时间(以微秒)。

闵:	0X1	
马克	斯:	为0x28
野社	佶.	0x23

合成器

SYNTH_PFDCP_CPFF

- 组: 0x23
- 索引: 0x00
- 摘要: 前馈电荷泵电流的选择。
- 目的:
 - 。 电荷泵和环路滤波器的PLL频率合成器具有两个路径: 一个不可分割的路径和一个前馈路径。此属性调整电荷泵增益(即,电流)的前馈路
 - 。 在MSB的编码(位5)的CP_FF_CUR场的反转。其结果,没有为CP_FF_CUR = 0X20的值所得到的最小电荷泵增益设置,而CP_FF_CUR = 0x00对应于中间范围的电荷泵增益设置和0x1F的对应于最大电荷泵增益设置。
 - 。 电荷泵馈电流的步长或分辨率为5微安的增量。因此,由CP_FF_CUR字段提供的值的范围是从0微安到315微安。
 - 。 CP_FF_CUR_TEST是一个测试位,不推荐一般用户应用。该CP_FF_CUR_TEST位是不是二进制加权与CP_FF_CUR领域,而是提供了一 个额外的160微安,当设置。
 - o 注意:属性的合成器组的主要目的是调整PLL环路带宽的值适合于所选择的数据速率。Silicon Labs公司不建议修改这些属性远离由WDS计 算器建议值。
- 默认值: 0X2C
- 寄存器查看:

		SYNTH_PFDCP_CPFF										
指数	7	6 5 4 3 2 1										
0x00	0	CP_FF_CUR_TEST	CP_FF_CUR									
		<u> </u>										
	0	0X0			0>	(2C						

□字段详细信息

□ CP_FF_CUR_TEST▲ □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 不要增加电荷泵电流。使用 CP_FF_CUR定义的值。	
ENUM_1	1	□ 增加160微安的CP_FF_CUR 定义电荷泵电流。	

□ CP FF CUR [5:0]

□ 格式: 枚挙

名称	值	描述	可用的功能
ENUM_32	32	□ 0微安。	
ENUM_33	33	□ 5微安。	
ENUM_64	63	□ 155微安。	
ENUM_0	0	□ 160微安。	
ENUM_1	1	□ 165微安。	
ENUM_31	31	□ 315微安。	

SYNTH_PFDCP_CPINT

- 组: 0x23
- 索引: 0X01
- 摘要:集成电荷泵电流的选择。
- 目的:
 - o 电荷泵和环路滤波器的PLL频率合成器具有两个路径:一个不可分割的路径和一个前馈路径。此属性调整电荷泵增益(即,电流)的积分路 径。
 - 。 在MSB的编码的CP_INT_CUR字段(3位)被反转。其结果,没有为CP_INT_CUR = 0X08的值所得到的最小电荷泵增益设置,而 CP_INT_CUR = 0x00对应于中间范围的电荷泵增益设置和0X07对应于最大电荷泵增益设置。
 - 。 电荷泵馈电流的步长或分辨率为5微安的增量。因此,由CP_INT_CUR字段提供的值的范围是从0微安到75微安。
 - 。 注意:属性的合成器组的主要目的是调整PLL环路带宽的值适合于所选择的数据速率。Silicon Labs公司不建议修改这些属性远离由WDS计 算器建议值。
- 默认值: 0x0E的
- 寄存器查看:

		SYNTH_PFDCP_CPINT											
指数	7	6	5	4	3	2	1	0					
0X01	0	0	0	0	CP_INT_CUR								
		默认											
	0	0	0	0		0	XE	•					

□字段详细信息

□ CP_INT_CUR [3:0]

□ 格式: 枚举

名称	值	描述	可用的功能
ENUM_8	8	□ 0微安。	

ENUM_9	9	□ 5微安。
ENUM_10	10	□ 10微安。
ENUM_11	11	□ 15微安。
ENUM_12	12	□ 20微安。
ENUM_13	13	□ 25微安。
ENUM_14	14	□ 30微安。
ENUM_15	15	□ 35微安。
ENUM_0	0	□ 40微安。
ENUM_1	1	□ 45微安。
ENUM_2	2	□ 50微安。
ENUM_3	3	□ 55微安。
ENUM_4	4	□ 60微安。
ENUM_5	5	□ 65微安。
ENUM_6	6	□ 70微安。
ENUM_7	7	□ 最大75微安。

SYNTH_VCO_KV

- 组: 0x23
- 索引: 0X02
- 摘要:增益定标因子(Kv值)为集成路径和前馈路径上的VCO调谐变容二极管。
- 目的:
 - 。 电荷泵,环路滤波器,压控振荡器和调谐变容二极管中的PLL频率合成器具有两个路径:一个不可分割的路径和一个前馈路径。此属性调整增益的缩放因子(Kv值)的调谐变容二极管在两个积分路径与前馈路径。增益因子的调节是通过在不同数目的变容管器件的开关内部完成。
 - 注意:属性的合成器组的主要目的是调整PLL环路带宽的值适合于所选择的数据速率。Silicon Labs公司不建议修改这些属性远离由WDS计算器建议值。
- 默认值: 0X0B
- 寄存器查看:

		SYNTH_VCO_KV									
指数	7	6	5	4	3	2	1	0			
0X02	0	0	0	版权所有	版权所有 KV_DIR		KV_INT				
					默认						
	0	0	0	0X0	0.	X2	0x3的				

□字段详细信息

- □ 版权所有▲
 - □ 说明:保留。总是写0。
 - □ 默认: 0x0
- □ KV_DIR [1:0]
 - □ 说明:在调谐变容二极管的增益(Kv_dir)的前馈路径(即直接路径)的比例因子。
 - □ 格式: 枚举

名称	值	描述	可用的功能
GND	0	□ 设置前馈(即直接)路径调变容二极管的输入端口 VCO到GND(仅用于测试目的)。	
半	1	□ 套kv_dir到其最大值的1/2。	
MAX	2	□ 套kv_dir其最大的价值。	
ENUM_3	3	■ 套kv_dir到其最大值(同kv_dir = 2)。	

─ KV_INT [1:0]

- □ 说明: 设置在调谐用变容增益(Kv_int)中的积分路径的缩放因子。
- □ 格式: 枚举

名称	值	描述	可用的功能
GND	0	□ 设置该VCO到GND积分路径 调谐变容二极管的输入端口 (仅用于测试目的)。	
33PERCENT	1	□ 套kv_int到其最大值的1/3。	
66PENCENT	2	□ 套kv_int到其最大值的2/3。	
MAX	3	□ 套kv_int其最大的价值。	

SYNTH_LPFILT3

- 组: 0x23
- 索引: 0X03
- 摘要: 电阻R2的环路滤波器的前馈路径值。
- 目的:
 - 。 在该前馈路径中的环路滤波器包含三个低通滤波器的极点: R1-C1, R2-C2, 和R 3-C 3。
 - 。 该LPF_FF_R2字段调整电阻器R2的值,并由此调整R2-C2的低通滤波器的极点的截止频率。
 - 。此外,电阻R2影响晶体管GM级的前馈路径的DC增益。增加R2的值有增加的前馈路径的增益的影响。
 - 。 R2的值在18千欧为单位,范围从1810k Ω 的最低值到最高144K Ω 。
 - 注意:属性的合成器组的主要目的是调整PLL环路带宽的值适合于所选择的数据速率。Silicon Labs公司不建议修改这些属性远离由WDS计算器建议值。

- 默认值: 0x04
- 寄存器查看:

		SYNTH_LPFILT3											
指数	7	6	5	4	3	2	1	0					
0X03	0	0	0	0	0	LPF_FF_R2							
		默认											
	0	0	0	0	0		位于0x4						

□ LPF_FF_R2 [2:0] ▲ □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	R2 = 18KΩ	
ENUM_1	1	R2 = 36KΩ	
ENUM_2	2	R2 = 54KΩ	
ENUM_3	3	R2 = 72KΩ	
ENUM_4	4	R2 = 90KΩ	
ENUM_5	5	R2 = 108KΩ	
ENUM_6	6	R2 = 126KΩ	
ENUM_7	7	R2 = 144KΩ	

SYNTH_LPFILT2

- 组: 0x23
- 索引: 0x04
- 摘要: 在环路滤波器的前馈路径电容C2的值。
- 目的:
 - 。 在该前馈路径中的环路滤波器包含三个低通滤波器的极点: R1-C1, R2-C2, 和R3-C3。
 - 。 该LPF_FF_C2字段调整电容器C2的值,从而调整R2-C2的低通滤波器的极点的截止频率。
 - 。 C2的值是在335 fF的递增,范围从877 fF的最低值到最高11.25 pF的。
 - o 注意:属性的合成器组的主要目的是调整PLL环路带宽的值适合于所选择的数据速率。Silicon Labs公司不建议修改这些属性远离由WDS计 算器建议值。
- 默认值: 0X0C
- 寄存器查看:

		SYNTH_LPFILT2											
指数	7	6	5	4	3	2	1	0					
0x04	0	0	0		L	_PF_FF_	C2						
		默认											
	0	0	0			位于0xC)						

□字段详细信息

☐ LPF_FF_C2 [4:0]▲

□ 格式: 枚举

· 人人一			
名称	值	描述	可用的功能
ENUM_0	0	□ C2 = 877 fF的。	
ENUM_1	31	□ C2 = 11.25 pF的。	

SYNTH_LPFILT1

- 组: 0x23
- 索引: 0X05
- 摘要: 电容C1和C3在环路滤波器的前馈路径值。
- 目的:
 - 。 在该前馈路径中的环路滤波器包含三个低通滤波器的极点: R1-C1, R2-C2, 和R3-C3。
 - 。 该LPF_FF_C3字段调整电容器C3的值,从而调整R3-C3的低通滤波器的极点的截止频率。电阻器R3的值是不可调的,并固定在R3= $2K\Omega$.
 - 。 C3的值在1 pF的增量,从9 pF的最低值,最高12 pF的的。
 - 。 电容器C1的总值是由一个3位二进制加权字段LPF FF C1在380 ff的增量,和一个2位的偏移量字段LPF FF C1 CODE在1 pF的增量,外

 - 。 注意:属性的合成器组的主要目的是调整PLL环路带宽的值适合于所选择的数据速率。Silicon Labs公司不建议修改这些属性远离由WDS计 算器建议值。
- 默认: 为0x73
- 寄存器查看:

		SYNTH_LPFILT1									
指数	7	6 5 4			3	2	1	0			
0X05	0	LPF_FF_C1			LPF_FF_	C1_CODE	LPF_FF_C3				
	0		0x7的	j	0	0x	3的				

- □ LPF_FF_C1 [2:0]
 - □ 说明: 设置C1的微调值在380 fF的增量,范围从4.55 pF到7.21 pF的。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ C1 = 4.55 pF的。	
ENUM_1	1	□ C1 = 4.93 pF的。	
ENUM_2	2	□ C1 = 5.31 pF的。	
ENUM_3	3	□ C1 = 5.69 pF的。	
ENUM_4	4	□ C1 = 6.07 pF的。	
ENUM_5	5	□ C1 = 6.45 pF的。	
ENUM_6	6	□ C1 = 6.83 pF的。	
ENUM_7	7	□ C1 = 7.21 pF的。	

- □ LPF_FF_C1_CODE [1:0]▲
 □ 说明: C1偏位的在1pF的增量值,范围0PF到3pF的。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 增量C1 = 0 pF的。	
ENUM_1	1	□ 三角洲C1 = 1 pF的。	
ENUM_2	2	□ 三角洲C1 = 2 pF的。	
ENUM_3	3	□ 三角洲C1 = 3 pF的。	

- □ LPF_FF_C3 [1:0] □ 说明: 设置C3的在1pF的增量值,范围9PF来为12pF。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ C3 = 9 pF的。	
ENUM_1	1	□ C3 = 10 pF的。	
ENUM_2	2	□ C3 = 11 pF的。	
ENUM_3	3	□ C3 = 12 pF的。	

SYNTH_LPFILT0

- 组: 0x23
- 索引: 0X06
- 摘要: 在对前馈环路滤波器的有源放大器的偏置电流。
- 目的:
 - o 在该PLL频率合成器环路滤波器包括一个积分器路径和一个前馈路径的。前馈路径由一个有源放大器(单晶体管GM级)有三个低通滤波器 极点和一个右半平面零点的。
 - 。 此属性选择有源放大器的偏置电流。调节偏置电流具有变化从而影响PLL环路带宽和环路动态放大器的DC增益的附加效果。对于合成器组 中的所有其他属性建议设置假设SYNTH_LPFILT0 = 0×03 =100μA的默认值。在偏置电流的不同值被选择的情况下,它会成为必要的,以保 持所要求的PLL环路带宽来修改所有其他合成器的属性。出于这个原因,Silicon Labs还建议该属性在其默认值离开。
- 默认值: 0×03
- 寄存器查看:

		SYNTH_LPFILT0									
指数	7	6	5	4	3	2	1 0				
0X06	0	0	0	0	0	0	LPF_FF_BIAS				
		默认									
	0	0	0	0	0	0	0x3的				

□字段详细信息

- □ LPF_FF_BIAS [1:0]
 - □ 说明: 选择在该前馈环路滤波器路径放大器的偏置电流。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 25微安。	
ENUM_1	1	□ 34微安。	
ENUM_2	2	□ 50微安。	
ENUM_3	3	□ 100微安。	

SYNTH_VCO_KVCAL

- 组: 0x23
- 索引: 0X07
- 摘要:缩放VCO的整个千伏。
- 目的:
 - 。 尺度上的VCO KV,用于所有参数。
- 默认: 0X05
- 寄存器查看:

I			SYNTH_VCO_KVCAL									
	指数	7	6	5	4	3	2	1	0			
	0X07	0	0	0	LADR_SELECT	LADR_SELECT KVCA						
					默认							
	•	0	0	0	0X0		为	0x5				

- ☐ LADR SELECT ▲
 - □ 说明: 启用VCO阶梯。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 禁用VCO的阶梯。	
ENUM_1	1	□ 启用VCO阶梯。	

■ KVCAL [3:0]

- □ 说明: 设置在VCO梯子其中0是最大电压设定和15是最小电压设定缩放。
- □ 闵: 0X0
- □ 马克斯: 0XF
- □ 默认: 为0x5

MATCH

MATCH_VALUE_1

- 组: 0X30
- 索引: 0x00
- 摘要:以具有逻辑AND-ING(逐位)的面膜1的值与接收到的匹配1个字节的结果进行比较匹配值。
- 目的:
 - 该芯片提供了对数据字段(次)最多4个字节匹配功能。这通常是用来实现一个报头校验和检查广播能力。
 - 。 匹配功能,包括采取一个指定的数据字节的接收到的值,在逻辑上与一个编程面膜值和-ing它,然后将结果与编程的目标匹配值进行比较。 这种比较的逻辑结果(TRUE或FALSE),可以在逻辑上与其余的比赛字节比较的结果相结合; 最终的逻辑结果决定了整体的包是否被认为 是匹配
 - 。 这个属性定义了目标匹配1值与逻辑AND-ING(逐位)的面膜1的值与接收到的匹配1个字节的结果进行比较。
 - 。请参阅文字说明MATCH_MASK_1和MATCH_CTRL_1了解有关比赛的字节功能的更多细节。
- 默认值: 0x00
- 寄存器查看:

		MATCH_VALUE_1									
指数	7	7 6 5 4 3 2 1 0									
0x00		VALUE_1									
		默认									
		0X0									

□字段详细信息

- ☐ VALUE_1 [7:0] ▲
 - □ 说明: 1匹配值与逻辑AND-ING(逐位)的面膜1的值与接收到的匹配1个字节的结果进行比较。
 - □ 闵: 0X0
 - □ 马克斯: 0xff的
 - □ 默认: 0x0

MATCH_MASK_1

- 组: 0X30
- 索引: 0X01
- 摘要: 面膜值在逻辑上和-ED (逐位) 与匹配1个字节。
- 目的:
 - 。 该芯片提供了对数据字段(次)最多**4**个字节匹配功能。这通常是用来实现一个报头校验和检查广播能力。
 - 匹配功能,包括采取一个指定的数据字节的接收到的值,在逻辑上与一个编程面膜值和-ing它,然后将结果与编程的目标匹配值进行比较。这种比较的逻辑结果(TRUE或FALSE),可以在逻辑上与其余的比赛字节比较的结果相结合; 最终的逻辑结果决定了整体的包是否被认为是匹配。
 - 。 这个属性定义了面膜1的值在逻辑上和-ED(逐位)与匹配1个字节,前与目标匹配1值比较。例如:如果希望只匹配前4位的匹配1个字节,就必须设置MATCH_MASK_1 [7:0] = 31:8。
 - 。 请参阅文字说明MATCH VALUE 1和MATCH CTRL 1了解有关比赛的字节功能的更多细节。
- 默认值: 0x00
- 寄存器查看:

		MATCH_MASK_1									
指数	7	7 6 5 4 3 2 1 0									
0X01		MASK_1									
		默认									
		•	0X0								

□字段详细信息

- MASK_1 [7:0] ▲
 - □ 描述: 面膜值被logicalled和 海关与匹配1个字节。
 - □ 闵: 0X0
 - □ 马克斯: 0xff的
 - □ 默认: 0x0

MATCH_CTRL_1

- 索引: 0X02
- 摘要: 启用数据包匹配的功能,并匹配字节1的配置。
- 目的:
 - o 该芯片提供了对数据字段(次)最多4个字节匹配功能。这通常是用来实现一个报头校验和检查广播能力。
 - 。 匹配功能,包括采取一个指定的数据字节的接收到的值,在逻辑上与一个编程面膜值和-ing它,然后将结果与编程的目标匹配值进行比较。 这种比较的逻辑结果(TRUE或FALSE),可以在逻辑上与其余的比赛字节比较的结果相结合; 最终的逻辑结果决定了整体的包是否被认为
 - 相应的匹配字节的位置是由OFFSET [4:0]字段中指定的每个MATCH_CTRL_X物业内。这个值代表了所接收到的数据字节相匹配,相对于同步字的结束的位置(字节数)的偏移量。设置偏置= 0将导致立即匹配的第一个字节之后的同步字,OFFSET = 1将匹配的第二个字节,等等。
 - 。 全场字节偏移量(S)必须在非降序排列;也就是说,匹配的1个字节的偏移位置必须小于或等于第2场字节的位置,如同2字节的位置必须小于或等于的匹配3字节的位置,并依此类推。两个(或多个)匹配的字节可以具有相同的偏移量的位置。如同所有字节必须位于前32个字节以下的同步字之内,但不必彼此相邻。对所有匹配字节的默认值偏移=0;如果任何匹配字节的偏移值设定为一个非零值,较高匹配字节的偏移值也必须被设置为等于(或更高)的偏移量的位置,否则非递减的要求将被侵犯。
 - 。 该MATCH_EN位(仅在发现*MATCH_CTRL_1*属性)用于启用/禁用所有匹配字节的匹配功能。如果该位被清零,匹配功能是不管的匹配属性组中的所有其他属性的内容无效。
 - 极性位是用来配置对匹配字节的比较的逻辑结果的极性。如果极性= 0,如果比较匹配的逻辑结果为TRUE。如果极性= 1,逻辑结果为TRUE,如果比较不匹配。
 - 。逻辑位(仅在发现*MATCH_CTRL_2/3/*4的属性)决定了在指定的比赛字节比较的逻辑结果将与从以前的比赛(ES)的逻辑结果相结合。如果逻辑=0,从指定的字节匹配的结果是逻辑与运算从以前的匹配字段(S)的逻辑结果。如果逻辑=1,结果是与OR'ed从以前的匹配字段(S)的逻辑结果。
 - 。 这种灵活性在逻辑允许建设的匹配功能,如: ! Match_1或Match_2与Match_3与Match_4!
- 默认值: 0x00
- 寄存器查看:

		MATCH_CTRL_1										
指数	7	5	4	3	2	1	0					
0X02	极性	极性 MATCH_EN 0 OFFSET										
		默认										
	0X0	0X0	0			0X0)					

三字段详细信息

- □ 极性▲
 - □ 描述: 配置对匹配字节的比较的逻辑结果的极性。
 - □ 格式: 枚举

to the	店	44.44	可用的抽丝
名称	值	描述	可用的功能
ENUM_0	0	□ 若比较匹配的逻辑结果为 TRUE。	
ENUM_1	1	□ 合乎逻辑的结果是TRUE,如果比较不匹配。	

- MATCH_EN
 - □ 说明:该位为分组比赛能力的整体启用/禁用功能。
 - □ 格式: 枚举

名称	值	描述	可用的功能
MATCH_DISABLE	1	□ 禁用数据包匹配功能。	
MATCH_ENABLE	1	□ 使数据包匹配功能。	

- □ OFFSET [4:0]
 - □ 说明: 偏移匹配字节的位置, 相对于同步字的结尾。
 - □ 闵: 0X0
 - □ 马克斯: 0x1F
 - □ 默认: 0x0

MATCH_VALUE_2

- 组: 0X30
- 索引: 0X03
- 摘要:以具有逻辑AND-ING(逐位)的面具2值与接收到的第2场字节的结果进行比较匹配值。
- 目的:
 - 。 这个属性定义了目标匹配2值与逻辑AND-ING(逐位)的面具2值与接收到的匹配2个字节的结果进行比较。请参阅文字说明MATCH_VALUE_1,MATCH_MASK_1和MATCH_CTRL_1了解有关比赛的字节功能的更多细节。
- 默认值: 0x00
- 寄存器查看:

	MATCH_VALUE_2								
指数	7	6	5	4	3	2	1	0	
0X03		VALUE_2							
		默认							
		0X0							

- □ VALUE_2 [7:0]▲
 - □ 说明: 匹配2的值与逻辑AND-ING(逐位)的面具2值与接收到的第2场字节的结果进行比较。
 - □ 闵: 0X0
 - □ 马克斯: 0xff的
 - □ 默认: 0x0

- 组: 0X30
- 索引: 0x04
- 摘要: 面膜值在逻辑上和-ED(逐位)与匹配2个字节。
- 目的:
 - 。 这个属性定义了遮罩2的值在逻辑上和-ED(逐位)与匹配2个字节,前与目标匹配2值比较。
 - 。 请参阅文字说明MATCH_VALUE_1,MATCH_MASK_1和MATCH_CTRL_1了解有关比赛的字节功能的更多细节。
- 默认值: 0x00
- 寄存器查看:

		MATCH_MASK_2								
指数	7	6	5	4	3	2	1	0		
0x04		MASK_2								
		默认								
		0X0								

- MASK_2 [7:0]
 - □ 描述: 面膜值被logicalled和 海关与匹配2个字节。
 - □ 闵: 0X0
 - □ 马克斯: Oxff的
 - 默认: 0x0

MATCH_CTRL_2

- 组: 0X30
- 索引: 0X05
- 摘要:如同字节2的配置。
- 目的:
 - 。 此属性包含的配置位匹配2个字节。
 - 。 请参阅文字说明MATCH_VALUE_1,MATCH_MASK_1和MATCH_CTRL_1了解有关比赛的字节功能的更多细节。
- 默认值: 0x00
- 寄存器查看:

	MATCH_CTRL_2								
指数	7	7 6 5 4 3 2 1 0							
0X05	极性	极性 逻辑 0 OFFSET							
		默认							
	0X0	0X0 0X0 0 0X0							

三字段详细信息

- □ 极性▲
 - □ 描述: 配置对匹配字节的比较的逻辑结果的极性。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 若比较匹配的逻辑结果为 TRUE。	
ENUM_1	1	□ 合乎逻辑的结果是TRUE,如 果比较不匹配。	

□ 逻辑▲

- □ 说明: 配置如何从这场比赛字节的比较合乎逻辑的结果是结合从以前的匹配字段(S)的逻辑结果。
- □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 这场比赛的字节的逻辑结果是 逻辑与运算从以前的匹配字段 (S)的逻辑结果。	
ENUM_1	1	□ 这场比赛的字节的逻辑结果与 OR'ed从以前的匹配字段 (S)的逻辑结果。	

☐ OFFSET [4:0]▲

- □ 说明:偏移匹配字节的位置,相对于同步字的结尾。
- □ 闵: 0X0
- □ 马克斯: 0x1F
- □ 默认: 0x0

MATCH_VALUE_3

- 组: 0X30
- 索引: 0X06
- 摘要:以具有逻辑AND-ING(逐位)的面膜3值与接收到的匹配3个字节的结果进行比较匹配值。
- 目的:
 - 。 这个属性定义了目标匹配3的值与逻辑AND-ING(逐位)的面膜3值与接收到的匹配3个字节的结果进行比较。请参阅文字说明MATCH_VALUE_1,MATCH_MASK_1和MATCH_CTRL_1了解有关比赛的字节功能的更多细节。
- 默认值: 0x00
- 寄存器查看:

	指数	7	6	5	4	3	2	1	0
	0X06				VAL	UE_3			
Ī			默认						
ĺ			0X0						

- VALUE_3 [7:0]
 - □ 描述: 比赛3值与逻辑AND-ING(逐位)的面膜3值与接收到的匹配3个字节的结果进行比较。
 - □ 闵: 0X0
 - □ 马克斯: 0xff的
 - □ 默认: 0x0

MATCH_MASK_3

- 组: 0X30
- 索引: 0X07
- 简介: 面膜值在逻辑上和-ED (逐位) 与匹配3个字节。
- 目的:
 - 。 这个属性定义了面膜3值在逻辑上和-ED(逐位)与匹配3个字节,前与目标匹配3个值进行比较。
 - 。 请参阅文字说明MATCH_VALUE_1, MATCH_MASK_1和MATCH_CTRL_1了解有关比赛的字节功能的更多细节。
- 默认值: 0x00
- 寄存器查看:

		MATCH_MASK_3								
指数	7	7 6 5 4 3 2 1 0								
0X07		MASK_3								
		默认								
			•	0	X0	•		•		

□字段详细信息

- MASK_3 [7:0] ▲
 - □ 描述: 面膜值被logicalled和 海关与匹配3个字节。
 - □ 闵: 0X0
 - □ 马克斯: 0xff的
 - □ 默认: 0x0

MATCH_CTRL_3

- 组: 0X30
- 索引: 0X08
- 摘要:如同字节3的配置。
- 目的:
 - 此属性包含的配置位匹配3个字节。
 - 。 请参阅文字说明MATCH_VALUE_1, MATCH_MASK_1和MATCH_CTRL_1了解有关比赛的字节功能的更多细节。
- 默认值: 0x00
- 寄存器查看:

	MATCH_CTRL_3									
指数	7	7 6 5 4 3 2 1 0								
0X08	极性	极性 逻辑 0 OFFSET								
		默认								
	0X0	0X0								

三字段详细信息

- □ 极性▲
 - □ 描述: 配置对匹配字节的比较的逻辑结果的极性。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 若比较匹配的逻辑结果为 TRUE。	
ENUM_1	1	□ 合乎逻辑的结果是TRUE,如果比较不匹配。	

□ 逻辑▲

- □ 说明: 配置如何从这场比赛字节的比较合乎逻辑的结果是结合从以前的匹配字段(S)的逻辑结果。
- □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 这场比赛的字节的逻辑结果是 逻辑与运算从以前的匹配字段 (S)的逻辑结果。	
ENUM_1	1	□ 这场比赛的字节的逻辑结果与 OR'ed从以前的匹配字段 (S)的逻辑结果。	

- ☐ OFFSET [4:0]▲
 - □ 说明:偏移匹配字节的位置,相对于同步字的结尾。
 - □ 闵: 0X0
 - □ 马克斯: 0x1F

MATCH_VALUE_4

- 组: 0X30
- 索引: 0X09
- 摘要:以具有逻辑AND-ING(逐位)的面具4值与接收到的匹配4个字节的结果进行比较匹配值。
- 日的。
 - 。 这个属性定义了目标匹配4价值与逻辑AND-ING(逐位)的面具4值与接收到的匹配4个字节的结果进行比较。请参阅文字说明MATCH_VALUE_1,MATCH_MASK_1和MATCH_CTRL_1了解有关比赛的字节功能的更多细节。
- 默认值: 0x00
- 寄存器查看:

		MATCH_VALUE_4										
指数	7	6	5	4	3	2	1	0				
0X09		VALUE_4										
		默认										
		0X0										

□字段详细信息

- VALUE 4 [7:0]
 - □ 说明: 第4场价值与逻辑AND-ING(逐位)的面具4值与接收到的匹配4个字节的结果进行比较。
 - □ 闵: 0X0
 - □ 马克斯: Oxff的
 - □ 默认: 0x0

MATCH_MASK_4

- 组: 0X30
- 索引: 0X0A
- 简介:面膜值在逻辑上和-ED(逐位)与匹配4个字节。
- 目的:
 - 。 这个属性定义了遮罩4的值是逻辑与-ED(逐位)与匹配4个字节,前与目标匹配4个值比较。
 - 。 请参阅文字说明MATCH_VALUE_1, MATCH_MASK_1和MATCH_CTRL_1了解有关比赛的字节功能的更多细节。
- 默认值: 0x00
- 寄存器查看:

		MATCH_MASK_4										
指数	7	6	5	4	3	2	1	0				
0X0A		MASK_4										
		默认										
		0X0										

□字段详细信息

- ☐ MASK_4 [7:0]△
 - □ 描述: 面膜值被logicalled和 海关与匹配4个字节。
 - □ 闵: 0X0
 - □ 马克斯: 0xff的
 - □ 默认: 0x0

MATCH_CTRL_4

- 组: 0X30
- 索引: 0X0B
- 摘要:如同字节4的配置。
- 目的:
 - 。 此属性包含的配置位匹配4个字节。
 - 。 请参阅文字说明MATCH_VALUE_1, MATCH_MASK_1和MATCH_CTRL_1了解有关比赛的字节功能的更多细节。
- 默认值: 0x00
- 寄存器查看:

	MATCH_CTRL_4									
指数	7	5	4	3	2	1	0			
0X0B	极性 逻辑 0 OFFSET									
	默认									
	0X0	0X0	0			0X0				

- □ 极性▲
 - □ 描述: 配置对匹配字节的比较的逻辑结果的极性。
 - □ 格式: 枚举

名称	值	描述	可用的功能
ENUM_0	0	□ 若比较匹配的逻辑结果为 TRUE。	
ENUM_1	1	□ 合乎逻辑的结果是TRUE,如 果比较不匹配。	

_	1 mm 1 mm
	399 75H A
	10 11 -

□ 说明: 配置如何从这场比赛字节的比较合乎逻辑的结果是结合从以前的匹配字段(S)的逻辑结果。

□ 格式: 枚举

:			
名称	值	描述	可用的功能
ENUM_0	0	□ 这场比赛的字节的逻辑结果是 逻辑与运算从以前的匹配字段 (S)的逻辑结果。	
ENUM_1	1	□ 这场比赛的字节的逻辑结果与 OR'ed从以前的匹配字段 (S)的逻辑结果。	

☐ OFFSET [4:0]▲

□ 说明: 偏移匹配字节的位置, 相对于同步字的结尾。

□ 闵: 0X0

□ 马克斯: 0x1F

□ 默认: 0x0

FREQ_CONTROL

FREQ_CONTROL_INTE

• 组: 0X40

• 索引: 0x00

• 摘要: 压裂-N分频PLL频率合成器整数除法号码。

目的:

。 总的分频比N分频PLL频率合成器由一个整数部分和小数部分。这个属性定义了整数除法号码; 小数分频值中指定属性 FREQ CONTROL FRAC。

· 是计算公式的RF信道频率作为整数和小数分频值的函数如下:

$$RF_{Channel_{Hz}} = \left(fc_{inte} + \frac{fc_{frac}}{2^{19}}\right) \times \left(\frac{N_{PRESC} \times freq_xo}{outdiv}\right)$$

• 输出分频器值OUTDIV被配置为期望的频带的功能,并且在属性中指定MODEM_CLKGEN_BAND: BAND。

。 预分频器的分频值N PRESC配置为选定的合成性能模式的功能,可能需要对值NPRESC = 2或NPRESC = 4,在属性中指定 *MODEM_CLKGEN_BAND*: *SY_SEL*。

。 整个FC _{压裂}字为20位的长度,但在MSB应始终被设置为1,并且因此,术语FC _{压裂} / 2 ¹⁹将始终是1和2之间的值。其结果是,所述整数术语 FC _{英特}应当减少1例:N的总所需的分频比= 60.135应当被实现为_{集成} FC = 59,FC _{压裂} / 2 ¹⁹ = 1.135。

。 修改此属性将不会生效,直到从TX或RX状态的芯片退出,然后重新进入状态。

• 默认值: 值0x3c

• 寄存器查看:

		FREQ_CONTROL_INTE										
指数	7	6	5	4	3	2	1	0				
0x00	0		INTE									
		默认										
	0		值0x3c									

三字段详细信息

☐ INTE [6:0]▲

□ 闵: 0X0

□ 最大: 到0x7f

□ 默认值: 值0x3c

FREQ_CONTROL_FRAC

• 组: 0X40

• 索引: 0X01 0X03 ...

• 摘要: 压裂-N分频PLL部分号码。

目的:

。 请参阅文字说明FREQ_CONTROL_INTE了解有关频率计算的更多细节。

• 默认值: 0x08和0x00, 0x00

• 寄存器查看:

		FREQ_CONTROL_FRAC											
指数	7	6	5	4	3	2	1	0					
0X01	0	0 0 0 0 FRAC [19:16]											
0X02		FRAC [15:8]											
0X03		FRAC [7:0]											
					馬	计认							
0X01	0	0	0	0	位于0x8								
0X02		0X0											
0X03			0X0										

□字段详细信息

☐ FRAC [19:0]▲

□ 说明: 变频调速小数部分

闵:	0X0)
马克	斯:	0xfffff
默认	· +	00008x01

FREQ_CONTROL_CHANNEL_STEP_SIZE

- 组: 0X40
- 索引: 0x04 ... 0X05
- 简介: EZ频率编程通道步长。
- 目的:
 - 。 该EZ频率编程方法允许用户通过选择一个所需信道数,给定的基频和信道步长来控制频率。这个属性定义了无符号16位通道步长值。
 - 在的单位FREQ_CONTROL_CHANNEL_STEP_SIZE属性是在PLL频率合成器的LSB调谐分辨率的增量,并且因此晶体参考频率的函数,并输出频带。该公式用于计算FREQ_CONTROL_CHANNEL_STEP_SIZE属性的值由下式给出下列公式:

 $FREQ_CTRL_CHAN_STEP_SIZE = \frac{2^{19} \times outdiv \times Desired_Stepsize_Hz}{N_{PRESC} \times freq_xo}$

- 。 输出分频器值OUTDIV被配置为期望的频带的功能,并且在属性中指定MODEM_CLKGEN_BAND: BAND。
- 。 预分频器的分频值N PRESC配置为选定的合成性能模式的功能,可能需要对值NPRESC = 2或NPRESC = 4,在属性中指定 *MODEM_CLKGEN_BAND*: *SY_SEL*。
- 。 基本频率是由指定的FREQ_CONTROL_INTE和FREQ_CONTROL_FRAC属性。
- 。 通道数由传递到CHANNEL参数字节指定START_TX或START_RX命令。
- 。 所命令的信道频率是由下式给出:

 $Center_Freg = Base_Freg + Channel_Number \times Desired_Step_Size_Hz$

- 默认值: 0x00, 0x00
- 寄存器查看:

	FREQ_CONTROL_CHANNEL_STEP_SIZE											
指数	7	6	5	4	3	2	1	0				
0x04		CHANNEL_STEP_SIZE [15:8]										
0X05		CHANNEL_STEP_SIZE [7:0]										
		默认										
0x04		0X0										
0X05				0.	X0							

□字段详细信息

- ☐ CHANNEL_STEP_SIZE [15:0]▲
 - □ 说明: 通道步长
 - □ 闵: 0X0
 - □ 马克斯: 0xFFFF的
 - 默认: 0x0

FREQ_CONTROL_W_SIZE

- 组: 0X40
- 索引: 0X06
- 摘要:校准期间计数VCO频率设置窗口选通期间(在晶体参考时钟周期数)。
- 目的:
 - o 该芯片在每个新的指令执行频率的VCO校准。这是通过计数VCO频率的周期,并比较了预期的目标计数值来完成的。
 - 在此期间,VCO频率的周期进行计数的窗口的长度由该属性指定。该单位是在晶体参考频率(例如,30 MHz时钟周期)的周期。
 - 。 此属性并不需要改变,因为晶体参考频率的函数; 芯片自动计算出目标的VCO的计数值作为晶体参考频率的函数,因此该属性可以保持不变。Silicon Labs的建议始终将此属性设置为0x20。
- 默认: 0X20
- 寄存器查看:

		FREQ_CONTROL_W_SIZE											
指数	7	6	5	4	3	2	1	0					
0X06		W_SIZE											
		默认											
		0X20											

□字段详细信息

- W SIZE [7:0]▲
 - □ 闵: 0X0
 - □ 马克斯: Oxff的
 - □ 默认: 0X20

FREQ_CONTROL_VCOCNT_RX_ADJ

- 组: 0X40
- 索引: 0X07
- 摘要:调整目标计数在RX模式VCO校准。
- 目的:

- 。 该芯片在每个新的指令执行频率的VCO校准。这是通过计数VCO频率的周期,并比较了预期的目标计数值来完成的。由于操作的芯片的默 认模式,采用了低中频架构与低侧搅拌机注射,RX LO必须在接收模式下向下移动的频率。预期目标计数值的变化,因为这转变频率的结 果。
- o 这个字段是一个符号值,表示由该目标计数值必须在RX模式进行调整的金额。
- 默认值: 0xff的
- 寄存器查看:

		FREQ_CONTROL_VCOCNT_RX_ADJ										
指数	7	7 6 5 4 3 2 1 0										
0X07	VCOCNT_RX_ADJ											
		默认										
				为	0xff							

- □ VCOCNT_RX_ADJ [7:0]
 ▲
 - □ 类型: S8
 - □ 闵: -0x80的
 - □ 最大: 到0x7f
 - 默认值: 0xff的

RX_HOP

RX_HOP_CONTROL

- 组: 0x50
- 索引: 0x00
- 摘要: 为自动接收合功能配置选项。
- 目的:
 - 。 该芯片提供了自动频率从一个接收信道跳频到另一个当满足一定的条件。这降低了管理这样一个通道扫描应用程序所需的主机MCU控制量。 。 此属性选择的条件下,该芯片会自动跳,并设置了跳跃期权的RSSI超时值。

 - 。 请参阅文字说明RX_HOP_TABLE_SIZE和RX_HOP_TABLE_ENTRY_X了解有关的RX跳表的详细配置信息。
- 默认值: 0x04
- 寄存器查看:

		RX_HOP_CONTROL							
指数	7	6	5	4	3	2	1	0	
0x00	0	H	IOP_EI	N	RSSI_TIMEOUT				
	默认								
	0		0X0		位于 0x4				

- ☐ HOP_EN [2:0]
 ☐ 说明: 启用自动接收跳频,并选择条件(s),据此,将发生RX一跳。
 ☐ 格式: 枚举

枚举			
名称	值	描述	可用的功 能
HOP_DISABLE	0	□ 跳禁用。	
HOP_PM_TO	1	□ 跳上INVALID_PREAMBLE事件(即RX序言超时)的芯片可能的动作是: a) 合,如果没有PREAMBLE_VALID信号在RX序言超时时间在(一套届满前检测PREAMBLE_CONFIG_STD_2。财产) b)不得在通道上如果PREAMBLE_VALID信号在RX序言超时期限届满前检测。	
HOP_RSSI_PM_TO	2	□ 跳上INVALID_PREAMBLE或RSSI 超时事件(次)。芯片的可能的动作是: a)合如果没有PREAMBLE_VALID 信号在RX序言超时周期期满之前检测到的,或者如果所测量的电流的RSSI电平不超过RSSI阈值(在设置MODEM_RSSI_THRESH期满之前属性)在RSSI超时周期(以先到为准)。 二)保持在通道上,如果PREAMBLE_VALID信号在RX序言超时期限届满前检测,以及当前的RSSI电平超过RSSI的超时期限届满前的RSSI阈值水平。	
		□ 跳上INVALID_PREAMBLE或无效的 同步字事件(次)。该芯片的可能 的动作是: a)合,如果没有	

HOP_PM_SYNC_TO	3	PREAMBLE_VALID信号在RX序言超时期满之前检测到,或者如果没有检测到有效同步字。 二)保持在通道上,如果PREAMBLE_VALID信号届满前检测在RX序言超时时间,并有效同步字检测。	
HOP_RSSI_PM_SYNC_TO	4	□ 跳上INVALID_PREAMBLE或RSSI 超时或无效的同步字事件(次)。该芯片的可能的动作是:a)合,如果没有PREAMBLE_VALID信号在RX序言超时期满之前检测到,或者如果测得的电流RSSI电平不超过RSSI阈值的RSSI超时期限届满前,或者如果未检测到有效同步字。 二)保持在通过上,如果PREAMBLE_VALID信号在RX序言超时期限届满前检测,以及当前的RSSI电平超过RSSI超时期限届满前的RSSI电平超过RSSI超时期限届满前的RSSI阈值水平,并有效的同步检测字。	

RSSI_TIMEOUT [3:0]

- □ 说明:
 - □ 该芯片可以被配置为跳如果测得的电流的RSSI电平并不一定超时周期内超过阈值电平。
 - □ 此字段设置RSSI超时时间,单位为啃。
- □ 闵: 0X0
- □ 马克斯: 0XF
- □ 默认: 位于0x4

RX_HOP_TABLE_SIZE

- 组: 0x50
- 索引: 0X01
- 摘要: 指定条目(信道)的在RX合表的数目。
- 目的:
 - 。 该芯片提供了自动频率从一个接收信道跳频到另一个当满足一定的条件。
 - 。 此属性指定的条目(信道)的在RX合表的数目。该RX合表可能多达64个通道的长度。
 - 。 请参阅文字说明RX_HOP_CONTROL了解有关的RX合功能配置的详细信息。
- 默认: 0X01
- 寄存器查看:

		RX_HOP_TABLE_SIZE							
指数	7	6	5	4	3	2	1	0	
0X01	0	RX_HOP_TABLE_SIZE							
		默认							
	0	0 0X1							

三字段详细信息

- RX_HOP_TABLE_SIZE [6:0]
 - □ 说明:指定条目在RX合表的数目。
 - □ 闵: 0X1
 - □ 马克斯: 0X40
 - □ 默认: 0X1

RX_HOP_TABLE_ENTRY [0 ... 63]

- 组: 0x50
- 指数: 0X02 0X41 ...
- 摘要: 定义在*RX*跳表的条目(*N* = *0* ∽ *63*)
- 目的:
 - 该芯片提供了自动频率从一个接收信道跳频到另一个当满足一定的条件。
 - 所需的跳频或信道扫描序列由信道编号的表中指定。 此属性指定在RX跳表的第N项的频道号码。
 - 如果它的值是CHANNEL_NUM = 0xFF的在RX合表条目被跳过。
 - 。在RX跳表的频道号码值可能会以随机的方式进入,而不必按升序或排序顺序。然而,START_RX命令应该用CHANNEL参数字节的值等于在RX跳表的第一个条目的CHANNEL_NUM调用。
 - 重复的信道号值是允许在表中。
 - 。 请参阅文字说明RX_HOP_CONTROL了解有关的RX合功能配置的详细信息。
- 默认值: 见汇总表
- 寄存器查看:

	RX_HOP_TABLE_ENTRY (N]							
指数	7 6 5 4 3 2 1						1	0
Ñ	CHANNEL_NUM							
	默认							
	Ñ							

□字段详细信息	日字段
☐ CHANNEL_NUM [7:0]▲	\equiv C
□ 说明:此属性指定用于N通道号 ^日 在RX合表项。	
□ 缺省情况: 无	

版权所有©2012-2013 Silicon Laboratories 公司保留所有权利。