Elektrotehnički fakultet - Univerzitet u Beogradu Katedra za signale i sisteme

Neuralne mreže (13S053NM) Drugi projektni zadatak

Studenti sa brojevima indeksa B_1/G_1 i B_2/G_2 rade ovaj zadatak sa parametrima:

$$V = mod(B_1 + G_1 + B_2 + G_2, 7) + 1;$$

V	Objekat upravljanja	Opseg referenci	Ograničenje upravljanja
1	$G(s) = \frac{0.0004}{s^2 + 0.16s + 0.04}e^{-2s}$	$r \in [-0.4, +0.4]$	$u \in [-50, +50]$
2	$G(s) = \frac{-0.05s + 0.0075}{(s + 0.05)^2} e^{-3.6s}$	$r \in [-2, +2]$	$u \in [-1.2, +1.2]$
3	$G(s) = \frac{2}{1000s^3 + 500s^2 + 500s + 4}$	$r \in [-3, +3]$	$u \in [-15, +15]$
4	$G(s) = \frac{0.0125}{(s+0.05)^2} e^{-8s}$	$r \in [-2, +2]$	$u \in [-0.5, +0.5]$
5	$G(s) = \frac{0.03 - 0.1s}{(s + 0.1)^2} e^{-3s}$	$r \in [-2, +2]$	$u \in [-1.2, +1.2]$
6	$G(s) = \frac{0.05}{s^2 + 0.1s + 0.01}e^{-2s}$	$r \in [-25, +25]$	$u \in [-12, +12]$
7	$G(s) = \frac{0.0016}{(s+0.4)^2}e^{-2s}$	$r \in [-0.4, +0.4]$	$u \in [-100, +100]$

Napomena: član $e^{-\tau s}$ označava transportno kašnjenje u iznosu od τ sekundi. Koristiti blok Simulink/Continuous/Transport Delay, sa podešavanjem Time Delay = zadato τ .

- Opredeliti se za jedan od pristupa projektovanju fuzzy upravljanja: intuitivni ili fazifikacija konvencionalnog upravljanja. U skladu sa opredeljenjem, projektovati po izboru
 jedan sistem fuzzy upravljanja za praćenje referentne vrednosti objekta upravljanja zadatog varijantom V. Postupak projektovanja, usvojenu strukturu i konkretno podešavanje
 parametara regulatora navesti u izveštaju.
- Napraviti Simulink model sistema upravljanja, projektovanog u tački a), sa zadatim objektom u zatvorenoj sprezi. Realizovati odziv na step referentne vrednosti sa minimalne vrednosti na maksimalnu vrednost, specificiranu za sistem po varijanti V.
- Prikazati vremenske oblike signala upravljanja, regulisane varijable (signala na izlazu objekta upravljanja) i signala na neposrednom ulazu u fuzzy inference sistema. Na osnovu dobijenih rezultata sumirati osobine projektovanih sistema upravljanja i dati odgovarajuće komentare (sistem upravljanja ostvaruje ili ne ostvaruje grešku ustaljenog stanja i/ili preskok u odzivu na referencu/poremećaj, odziv upravljanog sistema je brži ili sporiji u odnosu na odziv objekta upravljanja u otvorenoj sprezi i slično).