CSCI596 Assignment 2—Parallel Computation of π

Due: September 19 (Wed), 2018

The purpose of this assignment is to acquire hands-on experience on the *scalability analysis* of a parallel program — one of the key skills you learn in this class. We use a simple application that utilizes the function you have written for assignment 1 (where the purpose was to obtain a confidence that MPI_send() and MPI_Recv() are sufficient to build any parallel programs, using a concrete example of global reduction.)

Part I: Programming

Write a message passing interface (MPI) program, global_pi.c, to compute the value of π based on the lecture note on "Parallel Computation of Pi" and using the global_sum() function you have implemented in assignment 1.

(Assignment)

1. Submit the source code of global pi.c.

(Note)

• Insert MPI_Wtime() function (which takes no argument and returns the wall-clock time in seconds as double) to measure the running time of the program.

Part II: Scalability

In this assignment, we measure the scalability of global pi.c.

(Assignment)

- 2. (*Fixed problem-size scaling*) Run your global_pi.c with the fixed number of quadrature points, $N_{\text{BIN}} = 10^7$, varying the number of compute nodes = 1, 2, 4 and 8 with processor per node 1 (*i.e.*, the number of processors P = 1, 2, 4 and 8). Plot the fixed problem-size parallel efficiency as a function of P.
- 3. (*Isogranular scaling*) Run global_pi.c with the constant number of quadrature points per processor, $N_{\text{BIN}}/P = 10^7$, per processor for P = 1, 2, 4 and 8. Plot the isogranular parallel efficiency as a function of P.