Lecture 7 Introduction to SAT and SMT

Why do we care?

- 1. Synthesis is combinatorial search, and so is SAT/SMT
- 2. SAT/SMT solvers are really good these days
- 3. ??? **←** this week
- 4. Profit!!!

Boolean SATisfiability

gin V tonic

Solution:

 $minor \mapsto T$

 $gin \mapsto F$

tonic \mapsto T

Satisfiability Modulo Theories

```
(gin V tonic) \Lambda (age < 21 \Rightarrow abv = 0) \Lambda (age = 20)
```

In the United States, "gin" is defined as an alcoholic beverage of no less than 40% ABV... Wikipedia

Satisfiability Modulo Theories

Popular Solvers

SMT-LIB

Uniform format for SMT problems understood by all solvers

```
(declare-fun age () Int)
(declare-fun abv () Int)
(declare-fun gin () Bool)
(declare-fun tonic () Bool)
(assert (or gin tonic))
(assert (implies (< age 21) (= abv 0)))
(assert (= age 20))
(assert (implies gin (>= abv 40)))
(check-sat)
(get-model)
```

This lecture

- 1. Demo: how to use Z3 to
 - solve constraints
 - verify programs
 - synthesize programs
- 2. How do SAT solvers work?
- 3. How do SMT solvers work?

Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

$$P = 4$$

Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

Can we always make them differ by at most 1?

Z3

to the rescue!

code: https://github.com/nadia-polikarpova/smt-talk

This lecture

- 1. Demo: how to use Z3 to
 - solve constraints
 - verify programs
 - synthesize programs
- 2. How do SAT solvers work?
- 3. How do SMT solvers work?

Let's generalize this into a program!

A program for partitioning

```
for i in range(P):
    sz[i] = if i < K: n/P + 1 else n/P</pre>
```

I want this program to work for all n! What should my K be?

A program for partitioning

```
for i in range(P):
    sz[i] = if i < 2: n/P + 1 else n/P</pre>
```

How do I check whether this program works for all *n*?

This lecture

- 1. Demo: how to use Z3 to
 - solve constraints
 - verify programs
 - synthesize programs
- 2. How do SAT solvers work?
- 3. How do SMT solvers work?

A program for partitioning

```
for i in range(P):
    sz[i] = if i < K: n/P + 1 else n/P</pre>
```

How do I ask *the solver* to pick the expression *K*?

This lecture

- 1. Demo: how to use Z3 to
 - solve constraints
 - verify programs
 - synthesize programs
- 2. How do SAT solvers work?
- 3. How do SMT solvers work?

The SAT problem

Input: propositional formula in CNF

The SAT problem

Problem: find a *satisfying assignment* (also called a *model*)

• or determine that the formula is *unsatisfiable*

$$(\neg a \lor \neg b) \land (b \lor c) \land (\neg a \lor \neg c \lor d) \land (b \lor \neg c \lor \neg d) \land (a \lor d)$$

a satisfying assignment:

$$\{a \mapsto 0, b \mapsto 1, c \mapsto 0, d \mapsto 1\}$$

can be written as a set of literals:

$$\{\neg a, b, \neg c, d\}$$

or as a formula:

$$\neg a \land b \land \neg c \land d$$

Naive solution

$$(\neg a \lor \neg b) \land (b \lor c) \land (\neg a \lor \neg c \lor d) \land (b \lor \neg c \lor \neg d) \land (a \lor d)$$

Build a truth table!

- We can't do fundamentally better: it's an NP-complete problem
- But we can do way better in practice for common instances

Intuition: Sudoku

Easy vs hard: what's the difference?

Copyright 2005 M. Feenstra, Den Haag

		9	7	4	8			
7								
	2		1		9			
		7				2	4	
	6	4		1		5	9	
	9	8				3		
			8		3		2	
								6
			2	7	5	9		

Copyright 2005 M. Feenstra, Den Haag

Most real-world SAT instances allow a lot of inference

[Davis, Logemann, Loveland '62]

State: current model M (a sequence of annotated literals)

$$M = a^{d} \neg b \ c$$
 decision literal

Transitions:

- decide $M \longrightarrow M l^d$ if / undefined in M
- unit-propagate $M \longrightarrow M \ l$ if there is a clause where all literals are false except I , which is undefined
- backtrack $Ml^dM' \longrightarrow M \neg l$ if there is a conflicting clause and M' has no decision literals
- fail $M \longrightarrow Unsat$ if there is a conflicting clause and no decision literals

DPLL: example

$$(\neg a \lor \neg b) \land (b \lor c) \land (\neg a \lor \neg c \lor d) \land (b \lor \neg c \lor \neg d) \land (a \lor d)$$

$$M = \emptyset$$
 decide a^d unit-propagate $a^d \neg b$ unit-propagate $a^d \neg b c$ unit-propagate $a^d \neg b c d$ unit-propagate $a^d \neg b c d$ backtrack $a^d \neg b c d$ unit-propagate $a^d \neg a d d$ decide unit-propagate $a^d \neg a d d d d$ SAT!

DPLL + clause learning

$$(\neg a \lor b) \land (\neg c \lor d) \land (\neg e \lor \neg f) \land (f \lor \neg b \lor \neg e) \land (\neg a \lor \neg e)$$

DPLL + clause learning

$$(\neg a \lor b) \land (\neg c \lor d) \land (\neg e \lor \neg f) \land (f \lor \neg b \lor \neg e) \land (\neg a \lor \neg e)$$

$$M = \emptyset$$
 decide a^d unit-propagate a^d b decide a^d b c^d unit-propagate a^d b c^d d decide a^d b c^d d e^d unit-propagate a^d b c^d d e^d unit-propagate a^d b c^d d e^d unit-propagate backjump a^d b $\neg e$

This lecture

- 1. Demo: how to use Z3 to
 - solve constraints
 - verify programs
 - synthesize programs
- 2. How do SAT solvers work?
- 3. How do SMT solvers work?

Beyond propositional logic

What if our formula looks like this?

$$(p \land \neg q \lor a = f(b-c)) \land (g(g(b) \neq c \lor a - c \leq 7))$$

• talks about integers, functions, sets, lists...

One idea: bit-blast everything and use SAT

- can only find solutions within bounds
- very inefficient, so bounds are small

Better idea: combine SAT with special solvers for theories

• they "natively understand" integers, functions, etc

First-order theories

theory = <function symbols, predicate symbols, axioms>

ground first-order formulas over functions and predicates

Example: theory of Equality and Uninterpreted Functions

EUF =
$$\{f, g, h, ...\}, \{=\}, \{$$

$$\forall x. x = x$$

$$\forall x y. x = y \Rightarrow y = x$$

$$\forall x y z. x = y \land y = z \Rightarrow x = z$$

$$\forall x y. x = y \Rightarrow f(x) = f(y)$$

$$\} >$$

The SMT problem

Theories for our purpose

a = b

theory = <function symbols, predicate symbols, axioms>

can decide consistency of conjunctions of literals

$$f(a) = c$$

 $f(b) \neq d$
 $c = d$
EUF solver
Inconsistent!

DPLL(T) architecture

Basic DPLL(T)

DPLL(T) architecture

Popular theories

Equality and Uninterpreted Functions

 $EUF = \langle \{f, g, h, ...\}, \{=\}\}$, axioms of equality & congruence>

Linear Integer Arithmetic

$$LIA = \{0, 1, ..., +, -\}, \{=, \leq\}, \text{ axioms of arithmetic}\}$$

Arrays

Arrays =
$$\langle \text{sel, store} \rangle$$
, $\{=\}$, $\forall a \ i \ v. \text{sel(store}(a, i, v), i) = v$
 $\forall a \ i \ j \ v. \ i \neq j \Rightarrow \text{sel(store}(a, i, v), j) = \text{sel}(a, j) >$

Theories can be combined!

Nelson-Oppen combination

Why do we care?

If we can encode a synthesis problem as SAT/SMT, we can use solvers to do the search for us

Get some inspiration from how solvers search

- Unit propagation similar to top-down propagation (pruning through inference of consequences of a guess)
- Backjumping / clause learning?
 - Feng, Martins, Bastani, Dillig: <u>Program synthesis using conflict-driven learning</u>. PLDI'18
- Coarse-grained reasoning and gradual refinement like in DPLL(T)?
 - Wang, Dillig, Singh: <u>Program synthesis using abstraction refinement</u>. POPL'18