K-jet Ampleness and Newton-Okounkov Bodies A Counterexample Analysis

Yi Lu

July 5, 2025

Outline

Construction of Newton-Okounkov Bodies

2 Kollár's Counterexample

3 Why Volume Alone Cannot Capture K-jet Ampleness

Basic Setup

- Let X be an irreducible projective variety of dimension d
- Let L be a big line bundle on X
- Fix a complete flag of irreducible subvarieties:

$$X = Y_0 \supset Y_1 \supset \cdots \supset Y_{d-1} \supset Y_d = \{pt\}$$

where dim $Y_i = d - i$ and each Y_i is smooth at point Y_d

Valuation Map - Definition

For any divisor D on X, define the valuation function:

$$\nu = \nu_{Y_{\bullet}} = \nu_{Y_{\bullet},D} : H^0(X, \mathcal{O}_X(D)) \to \mathbb{Z}^d \cup \{\infty\}$$

For each nonzero section $s \in H^0(X, \mathcal{O}_X(D))$:

$$\nu(s) = (\nu_1(s), \dots, \nu_d(s))$$

Recursive construction:

- $\nu_1(s) = \text{vanishing order of } s \text{ along } Y_1$
- After restricting s to Y_1 , $\nu_2(s) = \text{vanishing order along } Y_2$
- ullet Continue recursively until reaching the point Y_d

Valuation Properties

The valuation $\nu_{Y_{\bullet}}$ satisfies three key properties:

Valuation-like Properties

- (i) $\nu_{Y_{\bullet}}(s) = \infty$ if and only if s = 0
- (ii) Ordering \mathbb{Z}^d lexicographically:

$$\nu_{Y_{\bullet}}(s_1+s_2) \geq \min\{\nu_{Y_{\bullet}}(s_1),\nu_{Y_{\bullet}}(s_2)\}$$

for any non-zero sections $s_1, s_2 \in H^0(X, \mathcal{O}_X(D))$

(iii) Given sections $s \in H^0(X, \mathcal{O}_X(D))$ and $t \in H^0(X, \mathcal{O}_X(E))$:

$$\nu_{Y_{\bullet},D+E}(s\otimes t)=\nu_{Y_{\bullet},D}(s)+\nu_{Y_{\bullet},E}(t)$$

Newton-Okounkov Body Definition

Definition

The Newton-Okounkov body $\Delta_{Y_{\bullet}}(L)$ is the closed convex hull:

$$\Delta_{Y_{\bullet}}(L) = \overline{\bigcup_{m>1} \left\{ \frac{1}{m} \nu(s) \mid s \in H^{0}(X, L^{\otimes m}) \setminus \{0\} \right\}} \subset \mathbb{R}^{d}$$

Key Properties:

- Encodes asymptotic information about linear series
- Volume formula: $\operatorname{vol}_{\mathbb{R}^d}(\Delta(D)) = \frac{1}{d!}\operatorname{vol}_X(D)$
- Depends only on numerical equivalence class
- The valuation properties ensure convexity and well-definedness

Why Valuation Properties Matter

Property (ii) - Subadditivity:

- Ensures the Newton-Okounkov body is convex
- Critical for asymptotic analysis of linear series
- Connects to tropical geometry

Property (iii) - Multiplicativity:

- Makes the construction functorial
- Allows tensor product computations
- Essential for relating different line bundles

Lexicographic ordering:

- Natural total order on \mathbb{Z}^d
- ullet Respects the flag structure $Y_0\supset Y_1\supset\cdots\supset Y_d$
- Enables well-defined minimum in property (ii)

Infinitesimal Newton-Okounkov Bodies

Construction:

- Fix smooth point $x \in X$ and flag V_{\bullet} in tangent space $T_x X$
- Consider blow-up $\mu: X' = \mathrm{Bl}_{\mathsf{x}}(X) \to X$
- Induced flag on X':

$$X' \supseteq E = \mathbb{P}(T_x X) \supseteq \mathbb{P}(V_1) \supseteq \cdots \supseteq \{pt\}$$

- The valuation properties transfer to the blown-up setting
- For very general choice of (x, V_{\bullet}) , the bodies coincide

Kollár's Construction - Base Example

Setup: $X = E \times E$ (product of elliptic curves) For each $n \ge 2$, define:

$$A_n = nF_1 + (n^2 - n + 1)F_2 - (n - 1)\Delta$$

where:

- F_1, F_2 are fibers of the two projections
- ullet Δ is the diagonal
- \bullet A_n is ample

Let $R=F_1+F_2$, $B\in |2R|$ smooth, $f:Y\to X$ double cover branched along B Set $D_n=f^*A_n$ (also ample)

The "Needle" Newton-Okounkov Body

Flag choice: $Y \supset f^*C \supset pt$ where C is pullback of smooth curve in $|2F_1 + 2F_2 + \Delta|$

Key insight: As $n \to \infty$: $T(n) \sim \frac{1}{n^2}$, $N(n) \sim n^2$

Critical Calculations

Volume computation:

$$N(n) = 3n^2 - 4n + 7$$

$$T(n) = \frac{N(n)}{16} \left(1 - \sqrt{1 - \frac{32}{N(n)^2}} \right)$$

Jet ampleness results:

- nA_n is k-jet ample when $n \ge k + 2$
- But nD_n is **not** k-jet ample!
- Need $(k + N'')D_n$ where $N'' \sim n^2$

The "needle" effect:

- D_n has fixed volume: $vol(\Delta(D_n)) = 4$
- But $(k + N'')D_n$ has large volume: $\operatorname{vol}(\Delta((k + N'')D_n)) \sim (k + n^2)^2$
- Poor geometric shape: width $T(n) \sim \frac{1}{n^2}$
- Valuation detects this pathological behavior

Inverse of Di Rocco-Szemberg Theorem

Let t be the restriction of τ to Y and $\tilde{\pi}: Y \to X$ the restriction of p. The projection formula gives the decomposition:

$$H^0(Y, \tilde{\pi}^*L) = \bigoplus_{q=0}^{d-1} t^q H^0(X, L - qM)$$

Theorem (Lu)

If $\tilde{\pi}^*L$ is dk-jet ample, then L is k-jet ample.

Failed Conjectures

Natural conjectures that our example disproves:

Conjecture 1 (Volume-based)

If $vol(\Delta(L)) = \Omega(k^n)$, then L is k-jet ample.

Conjecture 2 (Shape-based)

For k-jet ample L, there exists simplex $\Delta' \subset \Delta(L)$ whose shape is parameterized by k.

Our counterexample: D_n requires coefficient $\sim n^2$ for k-jet ampleness! The valuation properties alone cannot prevent this pathological behavior.

The Fundamental Issue

Why volume fails:

- Newton-Okounkov bodies can be "needle-like"
- High volume concentrated in wrong directions
- Valuation captures vanishing orders but not geometric distribution

Numerical equivalence vs. jet ampleness:

- Newton-Okounkov bodies: invariant under numerical equivalence
- k-jet ampleness: **not** invariant under numerical equivalence
- This fundamental mismatch explains the failure
- Valuation properties preserve numerical equivalence

Infinitesimal Bodies - A Partial Solution

Better approach: Infinitesimal Newton-Okounkov bodies

Key Result

If for infinitesimal flag Y_{\bullet} over point x:

$$\Delta_{n+k+\varepsilon}^{-1}\subseteq\Delta_{Y_{\bullet}}(\pi^*(D))$$

then $K_X + D$ separates k-jets at x.

Advantages:

- Can capture single-point k-jet conditions
- More sensitive to local geometry
- Better suited for jet separation analysis
- Valuation properties still hold in infinitesimal setting

Limitations:

- Only handles single points (but general *k*-jet ampleness requires multiple points simultaneously
- Adjoint bundle appears

15 / 17

Future Directions

Promising research directions:

- Multi-point information: Extend infinitesimal construction to handle multiple points simultaneously
- Refined valuations: Investigate valuations that capture geometric shape, not just vanishing orders
- Higher dimensions: Extend computational methods beyond abelian surfaces
- Shape-sensitive measures: Develop invariants that combine valuation data with geometric constraints

Key insight: Need to incorporate **geometric shape** information beyond standard valuation properties!

Conclusion

Main contributions:

- **Counterexample:** Disproved volume-based characterization of *k*-jet ampleness
- Valuation analysis: Showed that standard valuation properties cannot prevent pathological behavior
- Geometric insight: Shape matters more than volume for jet conditions
- **Theoretical gap:** Identified fundamental mismatch between numerical invariance and jet ampleness

Broader impact:

- Reveals limitations of classical valuation theory for jet ampleness
- Suggests need for geometric refinements of Newton-Okounkov bodies

Thank you for your attention!

