Notes on Serge Lang's Algebra

Amanuel Tewodros

June 23, 2025

Contents

1	Groups	5
2	Rings	9
3	Modules	13

4 CONTENTS

Chapter 1

Groups

Theorem 1 (Sylow Theorems). Let G be a finite group with p divides |G|, where p is a prime. Then

- 1. There exists a Sylow p-subgroup of G.
- 2. The number of Sylow p-subgroups of G is congruent to 1 modulo p and divides |G|.
- 3. All Sylow p-subgroups of G are conjugate.

Proof. If $H \leq G$ with [G:H] coprime with p, then by induction H and therefore G contains a Sylow p-group. Otherwise, by the class equation,

$$|G| = |Z(G)| + \sum_{x} [G : N_{x}(G)],$$

it follows Z(G) is divisible by p and thus $\langle g \rangle \leq Z(G)$ for some $g \in Z(G)$ with exponenet = p. Inducting on the order of G, $G/\langle g \rangle$ contains a Sylow p-subgroup, say $S/\langle g \rangle$ that is the image of $S \leq G$ that is a Sylow p-subgroup of G.

Let $P,Q \in \operatorname{Syl}_p(G)$. P does not normalize Q because otherwise $PQ \subseteq G$ and $p^m = |PQ| > |P|$, a contradiction. Let $S = \{P_1, \dots, P_k\}$ be the conjugates of P and let \mathcal{O}_i be the orbit of P_i by the action P on the set S by conjugation. Then $|\mathcal{O}_i| = [P:N_P(P_i)] = [P:N_G(P_i) \cap P] = [P:P_i \cap P] \implies k = 1 \mod p$.

If $P,Q\in \mathrm{Syl}_p(G)$ are not conjugates, then Q is not conjugate with conjugates of P. Consider the action of the elements of Q on the set $\{gPg^{-1}:g\in G\}=\{P_1,\ldots,P_m\}$. Then

$$|\mathcal{O}_{P_i}| = [Q : N_Q(P_i)] = [Q : P_i \cap Q],$$

where the latter equality follows because $P_i(N_G(P_i) \cap Q)$ is a p-group that contains P_i with order $\leq |P_i|$ (a Sylow p-group) and thus $N_G(P_i) \cap Q \leq P_i$. Since Q is not a conjugate of P, $[Q:Q\cap P_i]=p^k$, k>0 and \mathcal{O}_{P_i} is divisible by p and the number of conjugates of P which is $\sum_i |\mathcal{O}_{P_i}|=0 \mod p$, a contradiction.

Theorem 2. If |G| = pq for primes p < q, then $G = \mathbb{Z}/pq\mathbb{Z}$ if $p \nmid q - 1$ else $G = \mathbb{Z}/pq\mathbb{Z}$ of $G = \mathbb{Z}/q\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$ for some non-trvial semi-direct product.

Proof. If q > p, $n_q = 1$ and thus $Q \in \operatorname{Syl}_q(G)$ is normal. $|\operatorname{Aut}(\mathbb{Z}/q\mathbb{Z})| = q - 1$, therefore, there is a nontrivial map $\phi : \mathbb{Z}/p\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/q\mathbb{Z})$ if $p \mid q - 1$

Theorem 3 (Fundamental Theorem of Finitely Generated Abelian Groups). Let A be a finite abelian group and let A(p) be the subgroup of all elements with order that is a power of p. Then

$$\prod_{A(p)\neq\{1\}}A(p)=A.$$

Proof. Clearly the map $\phi: \prod_p A(p) \to A$ defined by $\phi((x_p)) = \prod_p x_p$ is an endomorphism. We show that ϕ is injective and surjective. Let $\phi((x_p)) = 1$ for some $x = (x_p) \in \prod_p A(p)$. Let q be a prime with $A(q) \neq \{1\}$. Then

$$x_q = \prod_{p \neq q} x_p^{-1}.$$

Let m be the least common multiple of the primes powers on the right hand side, i.e. powers of $p \neq q$. Then $x_q^m = 1$. But, $x_q^{q^r} = 1$ too. Consequently, $x_q^{(m,q^r)} = x_q^1 = x_q = 1$. Thus $\prod_p x_p = 1$ iff all $x_p = 1$ and $\ker \phi = \{1\}$.

To prove surjectivity, let $x \in A$ with $x^m = 1$ such that $m = \prod p_i^{r_i}$. By Euclidean algorithm, $1 = \sum_i u_i \prod_{j \neq i} p_j^{r_j}$ and thus $x = \prod_i x^{u_i \prod_{j \neq i} p_j^{r_j}}$ with $x^{u_i \prod_{j \neq i} p_j^{r_j}} \in A(p_i)$.

Why nilpotence and the existence of normal Sylow sub-groups are equivalent?: If $P,Q \in \operatorname{Syl}_p(G)$ then $N_P(Q) = P \cap Q < P,Q$ and thus Z(G) is always < G. Thus $P = Q \iff G$ nilpotent.

The number of ways G **acts on** H: = # of homomorphisms from G to Aut(H) = # subgroups of order $|G|/|H^*|$.

Theorem 4. If $n \geq 5$ then S_n is not solvable.

Proof. Let S_n decompose as $S_n = H_m \supset \cdots \supset H_0 = \{1\}$. Clearly, S_n contains all 3-cycles. We also know since H_n/H_{n-1} is abelian $(abc)(ade)(acb)(aed) = (adebc)(aedcb) = (abd) \in H_{m-1}$. By induction all 3 cycles are in $\{1\}$, a contradiction.

Theorem 5. A_n is simple for all $n \geq 5$.

A priori: A_n can be generated by 3-cycles and 3-cycles are conjugates.

Proof. Let $N \subseteq A_n$. Let $\sigma \in N$. We show that σ is a 3-cycle or $\sigma = \text{id}$. The former implies $N = A_n$ and the latter implies N is the trivial subgroup. Let σ have the maximal number of fixed points in N.

Lrt all σ 's orbits have size 2 and it does not fix elements i,j. If σ is (ijk) for some k, we are done. Otherwise, $\langle \sigma \rangle > \langle (ij)(rs) \rangle$ for some r,s because σ is an even permutation and not a 3-cycle. Let $\tau = (rsk)$ for some k. Then $\tau' = \tau \sigma \tau^{-1} \sigma^{-1} \in N$. But $\tau' = (i,j)\sigma$ contradicting σ fixes the maximal number of points. Thus at least one σ 's orbit has more than 2 elements.

Therefore, $\sigma = (ijk)(rs)\theta$ where θ is possible identity permutation. By similar argumenta as above picking $\tau' = (rsk)$, σ can not be the element of N with maximal fixed points unless it contains all of A_n .

Properties of Common Non-Abelian Groups

- Dihedral Group: D_{2n}
 - $-\cong \mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ acting by inversion
 - $= \{a, b | a^n, b^2, baba\}$
- Binary Dihedral Group/ Dicyclic Group: DiC(4n)
 - $-\cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ acting by inversion
 - $= \{a, b | a^n, b^4, baba\}$
- Generalized Quaternions: $Q_{2^{n+2}}$
 - $-\cong \mathbb{Z}/2^n\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$ acting by inversion
 - $= \{a, b | a^{2^n}, b^4, baba\}$
- *Holomorph Group*: Hol(G)
 - $-\cong G \rtimes \operatorname{Aut}(G)$
 - if G is $\mathbb{Z}/p\mathbb{Z}$, p prime, $\operatorname{Hol}(G)$ is isomorphic to the generalized affine group

Notes on Category Theory

- A category C is a collection of **objects** Ob(C), along with a set of maps, called **morphisms** between any two objects $A, B \in Ob(C)$ denoted by Mor(A, B).
- Morphisms follow the law of composition.
- · Three axioms
 - 1. **CAT 1** Mor(A, B) and Mor(A', B') are disjoint unless (A, B) = (A', B'), in which case they are equal.
 - 2. **CAT 2** For every $A \in \text{Ob}(\mathcal{C})$, there exists a morphism, id_A in Mor(A, A) that acts as a left and right identity for the elements of Mor(A, B) and Mor(B, A) resp. for all B.
 - 3. **CAT 3** The law of composition of morphisms is associative.
- The **operation** of a group G on an object $A \in Ob(\mathcal{C})$ is a homomorphism from G to Aut(A). It is also called a **representation**.

• Given a category \mathcal{C} , we can construct a new category \mathcal{D} where the objects are the morphisms of \mathcal{C} and the morphisms between two objects f, f' are defined by a pair of momorphism (ϕ, ψ) that make the following diagram commute:

• An object P of a category C is called **universally attracting** (resp. **universally repelling**) if there is exists a *unique* morphism from (resp. to) every object to(resp. from) P. If it is both, it is called **universal object**.

Chapter 2

Rings

Proposition 6. For two ideals \mathfrak{a} , \mathfrak{b} of a ring A, if $\mathfrak{a} + \mathfrak{b} = A$, then $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b}$.

Proof. Clearly, $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$. Thus, it suffices to prove the contra-positive relation. Since 1 = a + b for some $a \in \mathfrak{a}, b \in \mathfrak{b}, c = c \cdot a + c \cdot b$ for all $c \in A$. Of course, if $c \in \mathfrak{a} \cap \mathfrak{b}$, $c \cdot a + c \cdot b \in \mathfrak{ab}$.

Let A be a ring and let $\lambda : \mathbb{Z} \to A$ given by

$$\lambda(n) = \underbrace{1_A + \dots + 1_A}_{n \text{ times}}.$$

Then $\ker \lambda = \langle n \rangle$ for some $n \geq 0$. If $\langle n \rangle$ is a prime ideal, then we say A has characteristic n.

Proposition 7. If S is a set with more than two elements and A is a ring with $1_A \neq 0_A$, then Map(S, A) is not an integral domain.

Proof. Let $\{\} \neq T \subset S$

$$f(x) = \begin{cases} 1_A \text{ if } x \in T \\ 0_A \text{ if } x \in S - T \end{cases} \quad \text{and } g(x) = 1_A - f(x).$$

$$fg = 0_{\operatorname{Map}(S,A)}.$$

If \mathfrak{p} is a prime ideal in a ring A, then it means

- 1. A/\mathfrak{p} is an integral domain.
- 2. $xy \in \mathfrak{p} \implies x \in \mathfrak{p} \text{ or } y \in \mathfrak{p}$.

The ideal $\{0_A\}$ is a prime ideal of A iff A is an integral domain.

Proof. (\Longrightarrow) $A/\{0_A\}\cong A$, thus A should be an integral domain. (\Longleftrightarrow). If A is an integral domain, then $xy\in\{0_A\}\implies x=\{0_A\}$ or $y\in\{0_A\}$.

10 CHAPTER 2. RINGS

Theorem 8 (Chinese Remainder Theorem). Let $\mathfrak{a}_1, \ldots \mathfrak{a}_n$ be ideals of a ring A such that $\mathfrak{a}_i + \mathfrak{a}_j = A$ for any $i \neq j$. Let x_i be elements of A. Then there is an element $x \in A$ such that $x \equiv x_i \mod \mathfrak{a}_i$.

Proof. If n=2, $A=\mathfrak{a}_1+\mathfrak{a}_2$, and thus $1_A=a_1+a_2$ for some $a_i\in\mathfrak{a}_i$. Then $x=x_1a_1+x_2a_2$ satisfies the statement.

If n > 2, then $a_i + b_i = 1_A$ for some $a_i \in \mathfrak{a}_1$ and $b_i \in \mathfrak{a}_{j>1}$. Thus the product $\prod_i (a_i + b_i) = 1_A$. In other words,

$$A = \mathfrak{a}_1 + \prod_{i=2}^n \mathfrak{a}_i.$$

By the case for n = 2, there is an element y_1 such that,

$$y_1 \equiv 1_A \mod \mathfrak{a}_1 \text{ and } y_1 \equiv 0_A \mod \left(\prod_{i=2}^n \mathfrak{a}_i\right)$$

Since $\prod_{i=2}^n \mathfrak{a}_i \subseteq \bigcap_{i=2}^n \mathfrak{a}_i$, it follows that $y_1 \in \mathfrak{a}_i$ for all i > 1 and therefore, $y \equiv 0_A \mod \mathfrak{a}_i$ for i > 1. Carrying out the same procedure in similar fashion to obtain y_2, \ldots, y_n such that

$$y_i \equiv 1_A \mod \mathfrak{a}_i$$
 and $y_i \equiv 0_A \mod \mathfrak{a}_j$, $j \neq i$,

we see that $x = \sum_{i=1}^{n} x_i y_i$ satisfies the statement of the theorem.

A non-zero polynomial f of degree d over a commutative ring A is homogenous iff for every set of n+1 algebraically independent elements u, t_1, \ldots, t_n over A,

$$f(ut_1,\ldots,ut_n)=u^df(t_1,\ldots,t_n).$$

Proof. Let $f(X) = \sum_{(v)} a_{(v)} X_1^{v_1} \cdots X_n^{v_n}$. If f is homogenous of degree d, $v_1 + \cdots + v_n = d$ for all $a_{(v)} \neq 0$. $f(ut_1, \ldots, ut_n) = \sum_{(v)} a_{(v)} (ut_1)^{v_1} \cdots (ut_n)^{v_n}$. Since A is commutative, this is equal to $\sum_{(v)} a_{(v)} u^{v_1 + \cdots + v_n} t_1^{v_1} \cdots t_n^{v_n}$.

On the other hand, if $f(ut_1,\ldots,ut_n)=u^df(t_1,\ldots,t_n)$ m, then $\sum_{(v)}a_{(v)}u^{v_1+\cdots+v_n}=f(u1_A,\ldots,u1_A)=u^df(1_A,\ldots,1_A)=u^d\sum_{(v)}a_{(v)}$. This is a polynomial in u over A and equality is assured iff $u^d=u^{v_1+\cdots v_n}$.

Let G be a monid and let A[G] be the set of all mappings $\alpha:G\to A$ such that $\alpha(x)=0$ for almost all $x\in G$. Addition is defined ordinarily and multiplication is defined as

$$\alpha\beta(z) = \sum_{xy=z} \alpha(x)\beta(y).$$

Then A[G] is a ring. A more convenient notation can be acheived if we define $a \cdot x$ as

$$a \cdot x(z) = \begin{cases} a \text{ if } z = x \\ 0 \text{ if otherwise.} \end{cases}$$

This way we can define, $\alpha = \sum_{x \in G} \alpha(x) \cdot x$, and

$$\left(\sum_{x \in G} a_x \cdot x\right) \left(\sum_{y \in G} b_y \cdot y\right) = \left(\sum_{x,y} a_x b_y \cdot xy\right)$$

$$\left(\sum_{x\in G}a_x\cdot x\right)+\left(\sum_{x\in G}b_x\cdot y\right)=\left(\sum_{x\in G}(a_x+b_x)\cdot x\right),$$

where $\{a_z\}_{z\in G}$, $\{b_z\}_{z\in G}$ are the elements of A, most of them equal to 0.

The injective homomorphisms $x \mapsto 1_A \cdot x$ and $a \mapsto a \cdot e$ show that G and A are embedded in A[G].

Let A be a communitative ring and S be a multiplicative subset ¹. For $a, a' \in A$ and $s, s' \in S$, we say

$$(a,s) \sim (a',s')$$

if there is $s_1 \in S$ such that

$$s_1(as'-sa')=0.$$

 \sim is an equivalence relation.

Proof. Symmetry and Reflexitvness are trivial. Transitivity can be verified as follows. Let $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$. Then for some $s_1, s_2 \in S$, we have

$$s_1ad = s_1bc$$

$$s_2 de = s_2 c f$$

Multiplying both sides of first and the second equation by s_2f and s_1b , it follows that $(s_1s_2d)(af-be)=0$.

This construction of ring is called **ring of fraction of** A **by** S, $S^{-1}A$. The homomorphism $A \mapsto S^{-1}A$ defined by $a \mapsto a/1_A$ is a universal object (See 1). If A is an integral domain, then $S^{-1}A$ is the field of fractions.

If A has a unique maximal ideal, it is called a **local ring.** An intersting example is $A_{\mathfrak{p}} = S^{-1}A$, where S is the multiplicative subset $A - \mathfrak{p}$.

Principal Ideal Domains and Unique Factorization

Let A be an prinicipal integral domain. We say a divides b if b = ac for some $c \in A$

Definition 9. *d* is called the greatest common divisor of *a* and *b* if and only if c|a and $c|b \implies c|d$.

Proposition 10. *If* $d = \gcd(a, b)$, then ar + bs = d for some $r, s \in A$.

 $^{^{1}}$ A subset containting 1_{A} and closed under multiplication

12 CHAPTER 2. RINGS

Proof. Let a = dx and b = dy. Because d is a gcd of a and b, for $c \notin A^* c \mid x \implies c \nmid y$ and vice versa, thus gcd(x, y) is a unit in A.

Now, $A \subseteq \langle x, y \rangle$. To show that, let $\langle z \rangle = \langle x, y \rangle$. Since $x, y \in \langle x, y \rangle$, $x = w_1 z$ and $y = w_2 z$. But then z should be a unit in A and thus $1_A \in \langle x, y \rangle$. The proposition follows directly.

The proof also shows if $\langle a, b \rangle = \langle c \rangle$, then $c = \gcd(a, b)$.

Definition 11. We call $p \in A$ irreducible if p = ab for some $a, b \in A$, then $\{a, b\} \cap A^* \neq \emptyset$. If $c \in A$ can be written as a product of a unit in A and a product of some irreducibles in A, we call the product **a factorization** of c. If every non-zero element of A has a unique factorization (upto commutativity) we call A a **unique factorization domain (UFD)** or **factorial ring**.

Theorem 12. If A is a principal ideal domain, then A is a UFD.

Proof. Existence: Let S be the set of ideals of A generated by elements a_i that don't have factorization. Let $S \neq \emptyset$. Then $\langle a_1 \rangle \in S$.. Consider the chain,

$$\langle a_1 \rangle \subsetneq \langle a_2 \rangle \subsetneq \cdots \subsetneq \langle a_n \rangle \subsetneq \cdots$$

Because, A is a principal ideal domain $\bigcup_i \langle a_i \rangle = \langle a \rangle$ for some $a \in A$. However, $\langle a_i \rangle \subset \langle a_{i+1} \rangle$, $a \in \langle a_n \rangle$ for some n and the chain is finite. Thus if $\langle a \rangle \subsetneq \langle b \rangle$, then b admits factorization.

Remark 13. The fact that A is a principal ideal domain is important in constructing the chain. Consider the following chain if $A = \mathbb{Q}$, for example

$$\langle 1/2 \rangle \subsetneq \langle 1/4 \rangle \subsetneq \cdots \subsetneq \langle 1/2^n \rangle \subsetneq \cdots$$

The union of these ideals = \mathbb{Q} which is not a principal ideal.

Now, consider a. Clearly, a is not an irreducible. Thus Assume a = bc. But $\langle a \rangle \subsetneq \langle b \rangle$. Thus b (and also c) admits factorization and by induction a does making S empty.

Uniqueness First, we prove that irreducibility implies primality. Let p be irreducible and let $p \mid ab$. If $p \nmid a$ then $\gcd(a, p) = 1_A$ and $1_A = ax + py \implies b = abx + pby = p(c'x + by)$ for some c.

$$a = up_1 \cdots p_r = vq_1 \cdots q_s$$
,

 $p_1 \mid q_1 \cdots q_s$ and WLOG, $q_1 = u_1 p_1$. Thus $u p_2 \cdots p_r = v u_1 q_2 \cdots q_s$. The argument completes by induction.

Chapter 3

Modules

The concept of rings is motivated by the properties of a set of *endomorphims* on an (additive) abelian group. Left R-modules are the abelian groups M such that there is a ring homomorphism $R \to \operatorname{End}(M)$.

Example: If J is an ideal of a ring A, then we can define an operation of an element $a,b \in A$ on A/J as $a \cdot (x+J) \mapsto ax+J$. This mapping is an endomorphim of A/J because $a \cdot (x+y+J) = a \cdot (x+J) + a \cdot (y+J)$. We can define the a ring homomorphism from $A \to \operatorname{End}(A/J)$ trivially. Therefore, A defines a module structure over A/J.

To show a group M is A-module, it suffices to show that for $a, b \in A$, $x, y \in M$

$$a(x + y) = ax + ay$$
 and $(a + b)x = ax + by$,

These conditions are equivalent to showing there is a ring homomorphism from the actions of elements of A on M to $\operatorname{End}(M)$.

Some basic constructions from the companion. Let M be an A-module.

- 1. For $N \subseteq M$, $\{r \in A : rN = 0\}$ forms an left ideal in A.
- 2. For $N \subseteq M$, $\{r \in A : rM \subseteq N\}$ forms a right ideal of A.
- 3. For $N \leq M$, $\{r \in A : rN \subseteq N\}$ forms a subring.
- 4. If *N* is a submodule, then the ideals in 1 and 2 are 2-sided. Here, it is important to point out that when *N* is a submodule, then closure of the actions of *A* on *N* is maintained.

If $x \in M$, then $Rx \cong R/I$, where I is the annhilator ideal of $\{x\}$ as in 1.

Every ideal (left, right and 2-sided) and subring of A can be constructed in the above way

Definition 14. A **module-homomorphism** is an additive group homomorphism $f: M \to M'$ from modules M to module M' and such that f(ax) = af(x).

If f is module-homomorphism from M to M' then the kernel and the image of f are submodules of M and M' respectively.

Proof. Clearly, $\ker f \subseteq M$ because f is a group homomorphism. Let $a \in A$ and $x \in \ker f$. f(ax) = af(x) = 0. Hence, the kernel of f is a submodule of M. Again, $\operatorname{Im} f \subseteq M'$. $af(x) = f(ax) \in \operatorname{Im} f$.

M'/f(M) is a universal(inital) among the modules N with homomorphism $g:M'\to N$ such that $g\circ f=0$. That is the following diagram commutes and \hat{g} is unique:

This is dual with the kernel of f which is a terminal object among modules N with homomorphism $g:N\to M$ such that $f\circ g=0$. Thus, it is called the **cokernel** of f.

Definition 15. A **monomorphism** is a module-homomorphism $u: N \to M$ characterized by the exact sequence $0 \to N \stackrel{u}{\to} M$. Similarly, an **epimorphism** is characterized by dual exact sequence $N \stackrel{u}{\to} M \to 0$.

These definitions concide with the definitions of one-to-one homomorphisms and surjective homomorphism in the category of modules over a ring R.

Definition 16. For a commutative 1 ring A, we say K is an A-algebra, if K is a module with E a A-bilinear map $g: E \times E \to E$.

In the companion, the following remark is left.

Let A be a commutative ring. Then

associative, unital A-algebra $R \equiv Ring R$ with a homomorphism $f: A \rightarrow Z(R)$.

¹the concept of algebras does not make much sense with non-commutative rings

f is a way of endcoding the bilinear operator, and why it's into the center of R is mainly because we require $a \cdot xy = (a \cdot x)y = x(a \cdot y) := f(a)xy = (f(a)x)y = xf(a)y$

Another intersting remark is that algebras are abstractions of the natural structure of A-module-endomorphims of a module M, $\operatorname{End}_A(M)$, just like rings abstract the endomorphims of an abelian group.

A sequence $\cdots \to A \xrightarrow{f} B \xrightarrow{g} C \to \cdots$ is called exact if Im $f = \ker g$. We denote the group of of A-homomorphisms from A-module X to Y by $\operatorname{Hom}_A(X,Y)$.

Proposition 17. Let X, X', X'' and Y be A-modules. Then the short sequence

$$X' \xrightarrow{\lambda} X \xrightarrow{\mu} X'' \to 0$$

is exact if and only if

$$\operatorname{Hom}_A(X',Y) \stackrel{\lambda'}{\leftarrow} \operatorname{Hom}_A(X,Y) \stackrel{\mu'}{\leftarrow} \operatorname{Hom}_A(X'',Y) \leftarrow 0$$

is exact for all Y.

Remark 18. This proposition is analogous to the duality of linear maps in vector spaces.

Proof. Suppose the first sequence is exact. Then the following statements hold:

- (i) Im $\lambda = \ker \mu$
- (ii) Im u = X''.

Let $g\mapsto g\circ\lambda=0$. Since ${\rm Im}\ \lambda\subseteq \ker g, g$ factors through $X/{\rm Im}\ \lambda$. By i and ii, $X/{\rm Im}\ \lambda\cong {\rm Im}\ \mu=X''$ which implies $g=f\circ\mu$ for some $f\in {\rm Hom}(X'',Y)$. This shows $\ker\lambda'\subseteq {\rm Im}\ \mu'$. Similarly, let $h\circ\mu\in {\rm Im}\ \mu'$. By i, the composition of this with λ , $h\circ\mu\circ\lambda=0$, implying ${\rm Im}\ \mu'\subseteq \ker\lambda'$ (thus ${\rm Im}\ \mu'=\ker\lambda'$). The first implication of the proposition follows from the fact that if $f\mapsto f\circ\mu=0$ for some $f:X''\to Y$, then f=0 by ii.

The proof of the converse is an easy application of the following common technique: To study the consequences of a condition holding for all morphisms of a given sort, consider a universal example.

Suppose the second sequence is exact, i.e.,

- (i) $\ker \lambda' = \operatorname{Im} \mu'$
- (ii) $\ker \mu' = 0$.

By i, $\ker \lambda' \supseteq \operatorname{Im} \mu'$. That is, for every Y and $f: X'' \to Y$ $f \circ \mu \circ \lambda = 0$. Now, consider the universal example for all fs, i.e., the category of morphisms from X'' which is id, the identity morphisms. id $\circ \mu \circ \lambda = \mu \circ \lambda = 0$ implies $\ker \mu \supseteq \operatorname{Im} \lambda$.

Similarly, the condition $\ker \lambda' \subseteq \operatorname{Im} \mu'$ implies for every Y, a map $g: X \to Y$ such that $g \circ \lambda = 0$ can be factored through X''. The universal object of all morphisms from

 $X \to Y$ which are 0 at Im λ is the canonical homomorphism $q: X \to X/\text{Im }\lambda$. Hence $q = f \circ \mu$ which is obviously 0 on Im λ and thus $\ker q = \text{Im }\lambda \supseteq \ker \mu$.

Finally, the universal object of morphisms from $X'' \to Y$ annihilated by Im μ is the canonical morphism $p: X'' \to X'' / \text{Im } \mu$. However, ii implies p=0 and $X'' \cong \text{Im } \mu$ which completes the proof.

Let $\{M\}_{i\in I}$ be a family of submodules of M. Then we have the induced homomorphism

$$\lambda_*: \bigoplus_{i\in I} M_i \to M$$

defind by $\lambda_*((x_i)) = \sum x_i$. If λ_* is isomporphism, then we call the family $\{M\}_{i \in I}$, **direct sum decomposition** of M as we have

$$\bigoplus M_i = M.$$

Otherwise, if λ_* is only surjective, we can write

$$M = \sum_{i} M_{i}$$

Remark 19. This notion is analogous to linear independence and direct sums in linear algebra.

Let M_1, M_2, N be modules. Then we have the following isomorphism of abelian groups

$$\operatorname{Hom}(M_1 \oplus M_2, N) \cong \operatorname{Hom}(M_1, N) \times \operatorname{Hom}(M_2, N)$$

$$\operatorname{Hom}(N, M_1 \times M_2) \cong \operatorname{Hom}(N, M_1) \times \operatorname{Hom}(N, M_2)$$

The first isomorphism follows from the association $f \mapsto (f_1, f_2)$ where f is an element of the LHS group and $f_i : M_i \to N$ are the homomorphisms defined by $f_i = f \circ I_i$. The second one follows with similar associations.

Proposition 20. Let the following sequence of modules be exact:

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

The following conditions are equivalent

- 1. There is a homomorphism $\varphi: M'' \to M$ such that $id = g \circ \varphi$.
- 2. There is a homomorphism $\psi: M \to M'$ such that $id = \psi \circ f$.

If these conditions are satisfied, then we have the following isomporphisms:

$$M = \ker g \oplus \operatorname{Im} \varphi = \ker \psi \oplus \operatorname{Im} f \cong M' \oplus M''.$$

The general idea is the exactness of the sequence makes M factorize into $M' \times M/M'$ in group theory terms.

Proof. Let $x \in M$. Then $x - \varphi(g(x)) \in \ker g$ by definition. Thus $x = (x - \varphi(g(x))) + \varphi(g(x)) \in \ker g + \operatorname{Im} \varphi$. This sum is direct because $\ker g \cap \operatorname{Im} \varphi = 0$. The others isomorphisms follow immediately.

Definition 21. A **free module** is an *A*-module that admits a basis.

Proposition 22. Let M be a free module with basis $\{x_i\}_{i\in I}$ and let $\mathfrak a$ be a two-sided ideal of A. Then

- 1. αM is also a submodule of M that is also α -module.
- 2. Each ax_i a submodule of Ax_i .
- 3. We have the module isomorphism

$$M/\mathfrak{a}M\cong\bigoplus_{i\in I}Ax_i/\mathfrak{a}x_i.$$

- 4. Ax_i/ax_i is isomorphic to A/a as A-module
- 5. Suppose A is commutative. Then A/a is a ring. Furthermore M/aM is a free over A/a and Ax_i/ax_i is a free over A/a. If $\overline{x_i}$ is the image of x_i under the canonical homomorphism $Ax_i \to Ax_i/ax_i$, then $\overline{x_i}$ is the basis of Ax_i/ax_i .

Proof. We go through the statements one by one:

- 1. Let $x \in M$. Then $x = \sum_{i \in I} a_i x_i$ uniquely for $\{a_i\}_{i \in I} \subseteq A$. By definition, $\mathfrak{a}M = \{\sum yx : y \in \mathfrak{a}, x \in M\}$. But $yx = \sum_i ya_i x_i = \sum_i y_i x_i \in M$ where $y_i \in \mathfrak{a}$ because \mathfrak{a} is two-sided ideal.
- 2. Clearly, $\mathfrak{a}x_i \subseteq Ax_i$. Let $a', b' \in \mathfrak{a}$ and $a, b, c \in A$. Ax_i is a A-module because $(a+b)cx_i = (ac+bc)x_i = acx_i + bcx_i$ and $c(a'x_i + b'x_i) = c(a+b)x_i = (ca+cb)x_i = cax_i + cbx_i$. The statement follows from $A\mathfrak{a}x_i \subseteq \mathfrak{a}x_i$
- 3. By definition, $M = \bigoplus_{i \in I} Ax_i$. Consider the isomprohism

$$\sum_{i\in I} a_i x_i \mapsto (a_i x_i)_{i\in I}$$

which induces the isomorphism

$$\sum_{i\in I} a_i x_i + \mathfrak{a} M \mapsto (a_i x_i + \mathfrak{a} M)_{i\in I}.$$

Since $\mathfrak{a}M$ is a \mathfrak{a} -module and $a_ix_i + \mathfrak{a}M = a_ix_i + \mathfrak{a}x_i$, and $Ax_i/\mathfrak{a}x_i$ is an A/\mathfrak{a} -module, the statement is true.

- 4. Consider the isomorphism $1_A \mapsto x_i$.
- 5. A/\mathfrak{a} is a ring of cosets of \mathfrak{a} . $M/\mathfrak{a}M$ is free as the basis $\{x_i\}_{i\in I}$, serves as a basis for $M/\mathfrak{a}M$ over A/\mathfrak{a} .

We say an exact sequence of abelian groups

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

splits if $B \cong A \oplus C$.

For Example: The sequence

$$0 \to \mathbb{Z}/2\mathbb{Z} \stackrel{x \mapsto x}{\to} \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \stackrel{-1}{\to} \mathbb{Z}/2\mathbb{Z} \to 0$$

splits but

$$0 \to \mathbb{Z}/2\mathbb{Z} \overset{x \mapsto 2x}{\to} \mathbb{Z}/4\mathbb{Z} \overset{\text{mod } 2}{\to} \mathbb{Z}/2\mathbb{Z} \to 0$$

does not split.

Proposition 23. Every surjective module-homomorphism from a A-module, M to a **free** a A-module F splits.

Proof. Let $\phi: M \to F$ be a surjective homomorphism. By the first isomorphism theorem, $F \cong M/\ker \phi$. Let $\{x_i + \ker \phi\}_{i \in I}$ form the basis of $M/\ker \phi$. Define $\psi: M/\ker \phi \to M$ as

$$\psi\bigg(\sum_{i\in I}a_ix_i+\ker\phi\bigg)=\sum_{i\in I}a_ix_i.$$

Clearly $\phi \circ \psi = id$

F need not be a free module for $A \to F$ to split. Modules that admit splitting like the above are called **projective**. Here are four equivalent conditions that are satisfied by a projective module P:

1. Given a homomorphism $f: P \to M$ and a subjective homomorphism $g: M' \to M$, there exists a homomorphism $h: P \to M'$ that makes the following diagram commute:

$$M' \xrightarrow{g} M \longrightarrow 0$$

- 2. The exact sequence $0 \to M' \to M \to P \to 0$ splits
- 3. There exists a module M such that $P \oplus M$ is free.
- 4. The functor $M \mapsto \operatorname{Hom}_A(P, M)$ is exact.

Proof. We only leave the proof of $(4) \Longrightarrow (1)$ as the rest is found in the book. Consider (4) is true, i.e, if $0 \to M'' \to M' \stackrel{g}{\to} M \to 0$ is exact, $0 \to \operatorname{Hom}_A(P, M'') \to \operatorname{Hom}_A(P, M') \stackrel{\lambda}{\to} \operatorname{Hom}_A(P, M) \to 0$ is also exact. Since λ is surjective, for any $f \in \operatorname{Hom}_A(P, M)$, we can find $h \in \operatorname{Hom}_A(P, M')$ such that $\lambda(h) = g \circ h = f$. \square

Proposition 24. Let V be a vector space. Let Γ be the set of generators of V and S be a set of any linearly independent elements. Then, there is a basis \mathfrak{B} such that $S \subseteq \mathfrak{B} \subseteq \Gamma$.

Proof. Let $\mathfrak I$ be the sets $T\supseteq S$ that are linearly independent. Assuming $V\neq \{0\}$, $\mathfrak I$ is non-empty. Clearly $\mathfrak I$ is a poset by ascending inclusion. Since if $T_i\subseteq T_{i+1}\in \mathfrak I$ then $T_i\cup T_{i+1}$ is linearly independent making $\mathfrak I$ an inductively orderd set. By zorns lemma, there is a maximal element of $\mathfrak I$. Let's call that $\mathfrak B$ and let $\langle B\rangle=W$. If $W\neq V$, then there is $x\in V$ such that $x\neq \sum_{y\in \mathfrak B}a_yy$ making $\mathfrak B\cup x$ linearly independent and contradicting maximality of $\mathfrak B$. Thus V=W.

Proposition 25. Let V, U be vector spaces over field K and let $V \xrightarrow{f} U$ be homomorphism. Then we have

$$\dim_K V = \dim_K \ker f + \dim_K \operatorname{Im} f$$
.

Proof. Let $\{w_i\}_{i\in I}$ and $\{u_i\}_{i\in I}$ be the basis of ker f and Im f resp. Let $\{v_i\}_{i\in I}$ be a family of elements such that $f(v_i) = u_i$. Let $x \in V$. Then we have,

$$f(x) = \sum_{i \in I} a_i u_i,$$

where $\{a_i\}_{i\in I}$ is a family in K such that all except finit of them are 0. This implies,

$$y = x - \sum_{i \in I} a_i v_i \in \ker f.$$

However, ker f is a vector field and $y = \sum_i b_i w_i$. This implies

$$x = \sum_{i \in I} a_i v_i + \sum_{j \in I} b_j w_j.$$

Proving $\{v_i, w_i\}_{i \in I}$ generates V. It remains to show that this generator is linearly independent.

Let
$$0 = \sum_{i \in I} a_i v_i + \sum_{j \in I} b_j w_j$$
. Then $f(\sum_{i \in I} a_i v_i + \sum_{j \in I} b_j w_j) = 0 + \sum_{i \in I} a_i f(v_i) + 0 = \sum_{i \in I} a_i u_i = 0 \implies a_i = 0 \implies b_j = 0$.

An important insight from the companion: A free left R-module with rank n is isomorphic to a standard module R^n . This helps us derive the following facts about modules over non-field ring:

- If $R \xrightarrow{f} S$ is a homomorphism and m, n are positive integers such that $R^m \cong R^n$, then $S^m \cong S^n$.
 - If $\mathcal M$ is a (isomorphic) transformation from $R^m \to R^n$, then is $f(\mathcal M)$ is too from $S^m \to S^n$.
- If there is a homomorphism onto a field (division ring), then all left R-modules have a fixed number of elements in their basis.

This follows by taking $f = R \mapsto R/I$ where I is a maximal ideal.

Warning: Modules over non-commutative rings do not necessarily have unique ranks.

 $^{^2}$ By standard, we mean where the action of R is trivial as in linear algebra

Dual Space and Dual Module

Let *E* be a free module over a commutative ring *A*. We denote the **dual module**, $\operatorname{Hom}_A(E, A)$, of *E* by E^{\vee} and we call the elements of E^{\vee} as **functionals**.

If $x \in E$, then x induces a map $\langle x, - \rangle$ from E^{\vee} to itself defined by $\langle x, f \rangle = f(x)$.

The map $\theta: E \to E^{\vee\vee}$ is not surjective for the following reason. In infinite-dimensional modules over a field $A, E^{\vee\vee}$ is also infinite dimensional. However, x can be expressed as a linear combination of the basis of E and so is $\theta(x)$.

Proposition 26. If E is free, so is E^{\vee} . Moreover, rank $E = \operatorname{rank} E^{\vee}$

Theorem 27. Let E be finite dimensional. The map $x \xrightarrow{\phi} (f \mapsto \langle x, f \rangle)$ is an isomorphism from E to $E^{\vee\vee}$.

Theorem 28. Let U, V, W be finite-dimensional free modules over commutative ring A. If the sequence

$$0 \rightarrow W \rightarrow V \rightarrow U \rightarrow 0$$

is exact, then so is

$$0 \to U^{\vee} \to V^{\vee} \to W^{\vee}$$
.

Why it is called a sequence splits? A short sequence

$$0 \to C \to C \oplus B \stackrel{g}{\to} B \to A$$

is **splits** into

$$0 \to C \to C \to 0 \to 0$$

$$0 \rightarrow 0 \rightarrow B \rightarrow B \rightarrow 0$$

We require a right inverse map g', i.e., that satisfies $id = g \circ g' : B \to C \oplus B$, to say so, the action of this map on C would be 0 and the action on B would be g^{-1}

Modules over Principal Ideal Domains

Theorem 29. Let R be a principal ideal domain and let F be a free R-module. If M is a submodule of F, then M is free with rank less than or equal to rank F.

sketch. Let M_i be the submodule of M generated by the basis subset $\{x_1, \ldots, x_i\}$. Let \mathfrak{a}_{i+1} denote the set of coffecients of x_{i+1} in $M-M_i$. If $\mathfrak{a}_{i+1}=0$, we are done. If not, observe that $RM_i \subseteq M_i$ and $\mathfrak{a}_{i+1}=\langle a_{i+1}\rangle$ for some $a_{i+1}\in R$. Let $w:=\sum_{j\leq i}b_jx_j+a_{i+1}x_{i+1}$. Then $M_{i+1}=M_i+Rw$.

Remark 30. The PID nature of R permits the constructions of *generators* w_i of M corresponsing to the generators x_i

NB: Finitely generated modules are factor modules of a free module.

Definition 31. An R-module M is called a **torsion** module if for some $x \in M$, there is an element $a \in R$ such that ax = 0. We denote the module that contain all torsion elements by M_{tor} .

Theorem 32. Let E be finitely generated. The factor module E/E_{tor} is free and there is a free submodule F of E such that

$$E = E_{tor} \oplus F$$
.

Modules ove PID exhibit similar characteristics as abelian groups. For example, the cyclic p-groups are analogous to a moule generated by an element x modulo a prime ideal, i.e Rx/(p)x. We call a module of type (r_1, \ldots, r_k) if is a product of modules isomorphic to $R/(p^{r_i})$. The following two theorems support the similarity even more by stating the equivalent statements to the fundamental theorem of abelian groups.

Theorem 33. Let R be a princial ideal domain and let E be a finitely generated torsion module over R. Let E(p) denote all elements of E with exponent³ that is a power of a prime element $p \in R$. Then E has the decomposition

$$E=\bigoplus_{p}E(p),$$

where the direct sum is over p such that $E(p) \neq 0$. Moreover, for each p, we have

$$E(p) = R/(p^{v_1}) \oplus \cdots \oplus R/(p^{v_r})$$

with $1 \le v_1 \le \cdots \le v_r$ that are determined uniquely.

 E_m := the kernel of the map $x \mapsto mx$ in E.

Proof. Let a be an exponent of E. Consider the map $x \mapsto ax$. Let a = bc with (b,c) = (1). Let xb + yc = 1. Then v = vxb + vyc where $vxb \in E_c$ and $vyc \in E_b$. Moreover, $E_b \cap E_c = 0$. Thus $E_a = E_b \oplus E_c$. By induction, the stated decomposition of E follows. Next, we show that E(p) is a direct sum as stated.

The intuition for such decomposition of E(p) comes from boxing all elements of E(p) with the same period⁴ into a direct summand.

We will use induction. Consider the canonical map from $E(p) \to E(p)/(x)$ where x is an element of E(p) with maximal period, p^r . Suppose $\{\overline{y_1}, \ldots, \overline{y_m}\}$ are independent⁵ elements of E(p)/(x) with representatives $\{y_1, \ldots, y_m\}$ in E(p). If p^{n_i} is the period of $\overline{y_i}$, then $p^{n_i}y_i = p^scx$ for some $c \in R$, $p \nmid c$. By assumption, $r \geq s$, thus $p^{n_i-s+r} = s$

³An exponent of a module M (an element of a module x resp.) is an element m of R such that mE (resp. mx) is 0

⁴A period T of an element x is an element of R such that the kernel of the mao $a \mapsto ax$ equals $\langle T \rangle$

⁵We call a family of elements $\{y_i\}$ of a module M independent if $\sum_i a_i y_i = 0 \iff a_i y_i = 0 \ \forall i$

 $0 \implies n_i - s + r \le r \implies n_i \le s$. Therefore the element $y_i - p^{s-n}cx$ is well-defined and has period equal to that of $\overline{y_i}$.

Moreover the set $\{x, y_1, \dots, y_m\}$ is independent because if $bx + \sum_i a_i y_i = 0$, then $\sum_i a_i \overline{y_i} = 0$ which can not happen unless $a_i \overline{y_i} = 0$ for all i. But by previous part of the proof, this implies all period $c_i \mid a_i \implies a_i y_i = 0$ and bx = 0.

Thus, E(p) has m+1 independent elements x, y_1, \dots, y_m . It is clear that $(x, y_1, \dots, y_m) = (x) \oplus (y_1) \oplus \dots \oplus (y_m)$ by independece. Note that if $w \in E$ has period t, then $(w) \cong R/\langle t \rangle$. This proves the existence of such decomposition.

Uniquness of the decomposition follows as following. Let (s_1, \ldots, s_m) and (r_1, \ldots, r_n) be two types of E(p) with $s_i \leq s_{i+1}$ and $r_i \leq r_{i+1}$. WLOG, let $s_i < r_i$ be the first different entries. Clearly, there is an element $x \in E(p)$ with period p^{s_i} . However, no such element exist in $R/(p^{r_i}) \oplus \cdots \oplus R/(p^{r_n})$. Thus $s_i = r_i$.

Remark 34. The proof of theorem 7.8 on the book utilizes a trick to select a basis set with particular property. The trick relies (generally speaking) on the fact that functionals capture the properties of basis.

For example: The dimenstion of a free module M is equal to $\max_{\lambda \in M^{\vee}} \dim \lambda(M)$.

Direct and Inverse Limits

Let I be a directed set. Let $\{A_i\}_{i\in I}$ be a family of A-modules and let $\{f_{i,j}:A_i\to A_j\}$ be a family of A-homomorphism satisfying

$$f_{i,i} = \mathrm{id}$$

$$f_{i,k} = f_{j,k} \circ f_{i,j} \text{ if } i < j.$$

We call this family of morphisms, a **directed family of morphisms**. When we have a family like $\{A_i\}$, we want to study their properties together. The **direct limit** has the required algebraic properties to do so and it's defined as follows.

Consturct a category $\mathcal C$ by defining $\mathrm{Ob}(\mathcal C)$ as the pair (A,f_i) with A in the family of modules and $f_i:A_i\to A$ that makes the following diagram commute

where the morphisms are f_i themselves. The direct limit $(B = \varinjlim A_i, h_i)$ is the universal object of this category, i.e., for every (C, g_i) in this category there is a unique homomorphism t that makes the following diagram commute