Deep Generative Models

Lecture 5

Roman Isachenko

2024, Spring

Forward pass (Loss function)

$$\mathbf{z} = \mathbf{x} + \int_{t_1}^{t_0} \mathbf{f}_{\theta}(\mathbf{z}(t), t) dt, \quad L(\mathbf{z}) = -\log p(\mathbf{x}|\theta)$$

$$L(\mathbf{z}) = -\log p(\mathbf{z}) + \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial \mathbf{f}_{\theta}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}\right) dt$$

Adjoint functions

$$\mathbf{a_z}(t) = \frac{\partial L}{\partial \mathbf{z}(t)}; \quad \mathbf{a_{\theta}}(t) = \frac{\partial L}{\partial \boldsymbol{\theta}(t)}.$$

These functions show how the gradient of the loss depends on the hidden state $\mathbf{z}(t)$ and parameters θ .

Theorem (Pontryagin)

$$\frac{d\mathbf{a}_{\mathbf{z}}(t)}{dt} = -\mathbf{a}_{\mathbf{z}}(t)^{T} \cdot \frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \mathbf{z}}; \quad \frac{d\mathbf{a}_{\boldsymbol{\theta}}(t)}{dt} = -\mathbf{a}_{\mathbf{z}}(t)^{T} \cdot \frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \boldsymbol{\theta}}.$$

Forward pass

$$\mathbf{z} = \mathbf{z}(t_0) = \int_{t_0}^{t_1} \mathbf{f}_{m{ heta}}(\mathbf{z}(t),t) dt + \mathbf{x} \quad \Rightarrow \quad \mathsf{ODE} \; \mathsf{Solver}$$

Backward pass

$$\begin{split} &\frac{\partial L}{\partial \boldsymbol{\theta}(t_1)} = \boldsymbol{a}_{\boldsymbol{\theta}}(t_1) = -\int_{t_0}^{t_1} \boldsymbol{a}_{\boldsymbol{z}}(t)^T \frac{\partial \boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{z}(t),t)}{\partial \boldsymbol{\theta}(t)} dt + 0 \\ &\frac{\partial L}{\partial \boldsymbol{z}(t_1)} = \boldsymbol{a}_{\boldsymbol{z}}(t_1) = -\int_{t_0}^{t_1} \boldsymbol{a}_{\boldsymbol{z}}(t)^T \frac{\partial \boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{z}(t),t)}{\partial \boldsymbol{z}(t)} dt + \frac{\partial L}{\partial \boldsymbol{z}(t_0)} \\ &\boldsymbol{z}(t_1) = -\int_{t_1}^{t_0} \boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{z}(t),t) dt + \boldsymbol{z}_0. \end{split} \right\} \Rightarrow \text{ODE Solver}$$

Note: These scary formulas are the standard backprop in the discrete case.

Bayes theorem

$$p(\mathbf{t}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{\int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}}$$

- x observed variables, t unobserved variables (latent variables/parameters);
- $p(\mathbf{x}|\mathbf{t})$ likelihood;
- $p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}$ evidence;
- $ightharpoonup p(\mathbf{t})$ prior distribution, $p(\mathbf{t}|\mathbf{x})$ posterior distribution.

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

Latent variable models (LVM)

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}.$$

MLE problem for LVM

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \log p(\mathbf{X}|\boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p(\mathbf{x}_i|\boldsymbol{\theta}) = \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log \int p(\mathbf{x}_i|\mathbf{z}_i,\boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i. \end{aligned}$$

Naive Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta}),$$
 where $\mathbf{z}_k \sim p(\mathbf{z})$.

ELBO derivation 1 (inequality)

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} \geq \mathbb{E}_q \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} = \mathcal{L}(q, \boldsymbol{\theta})$$

ELBO derivation 2 (equality)

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x}, \theta)p(\mathbf{x}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \\ = \log p(\mathbf{x}|\theta) - KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta))$$

Variational decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})) \geq \mathcal{L}(q,\boldsymbol{\theta}).$$

Variational lower Bound (ELBO)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \mathcal{L}(q,oldsymbol{ heta}) + \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},oldsymbol{ heta})) \geq \mathcal{L}(q,oldsymbol{ heta}).$$

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z})||p(\mathbf{z})) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

Instead of maximizing incomplete likelihood, maximize ELBO

$$\max_{oldsymbol{ heta}} p(\mathbf{x}|oldsymbol{ heta}) \quad o \quad \max_{oldsymbol{a},oldsymbol{ heta}} \mathcal{L}(oldsymbol{q},oldsymbol{ heta})$$

 Maximization of ELBO by variational distribution q is equivalent to minimization of KL

$$rg \max_{q} \mathcal{L}(q, oldsymbol{ heta}) \equiv rg \min_{q} \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, oldsymbol{ heta})).$$

7/30

1. EM-algorithm

Amortized inference ELBO gradients, reparametrization trick

2. Variational autoencoder (VAE)

3. Data dequantization

1. EM-algorithm

Amortized inference ELBO gradients, reparametrization trick

Variational autoencoder (VAE)

3. Data dequantization

EM-algorithm

$$\mathcal{L}(q, \theta) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - \mathcal{K}L(q(\mathbf{z})||p(\mathbf{z})) =$$

$$= \mathbb{E}_q \left[\log p(\mathbf{x}|\mathbf{z}, \theta) - \log \frac{q(\mathbf{z})}{p(\mathbf{z})} \right] d\mathbf{z} \to \max_{q, \theta}.$$

Block-coordinate optimization

- lnitialize θ^* ;
- ▶ E-step $(\mathcal{L}(q, \theta) \to \mathsf{max}_q)$

$$egin{aligned} q^*(\mathbf{z}) &= rg \max_q \mathcal{L}(q, oldsymbol{ heta}^*) = \ &= rg \min_q \mathit{KL}(q(\mathbf{z}) || \mathit{p}(\mathbf{z} | \mathbf{x}, oldsymbol{ heta}^*)) = \mathit{p}(\mathbf{z} | \mathbf{x}, oldsymbol{ heta}^*); \end{aligned}$$

▶ M-step $(\mathcal{L}(q, \theta) \rightarrow \mathsf{max}_{\theta})$

$$\theta^* = \arg\max_{oldsymbol{ heta}} \mathcal{L}(q^*, oldsymbol{ heta});$$

Repeat E-step and M-step until convergence.

EM-algorithm illustration

1. EM-algorithm

Amortized inference

ELBO gradients, reparametrization trick

2. Variational autoencoder (VAE)

3. Data dequantization

Amortized variational inference

E-step

$$q(\mathbf{z}) = rg \max_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = rg \min_{q} \mathit{KL}(q||p) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*).$$

- ▶ q(z) approximates true posterior distribution $p(z|x, \theta^*)$, that is why it is called **variational posterior**;
- \triangleright $p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*)$ could be **intractable**;
- $ightharpoonup q(\mathbf{z})$ is different for each object \mathbf{x} .

Idea

Restrict a family of all possible distributions $q(\mathbf{z})$ to a parametric class $q(\mathbf{z}|\mathbf{x},\phi)$ conditioned on samples \mathbf{x} with parameters ϕ .

Variational Bayes

E-step

$$\phi_k = \phi_{k-1} + \eta \cdot \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$oldsymbol{ heta}_k = oldsymbol{ heta}_{k-1} + \eta \cdot
abla_{oldsymbol{ heta}} \mathcal{L}(oldsymbol{\phi}_k, oldsymbol{ heta})|_{oldsymbol{ heta} = oldsymbol{ heta}_{k-1}}$$

Variational EM illustration

► E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$\theta_k = \theta_{k-1} + \eta \nabla_{\theta} \mathcal{L}(\phi_k, \theta)|_{\theta = \theta_{k-1}}$$

Variational EM-algorithm

ELBO

$$\log p(\mathbf{x}|\mathbf{\theta}) = \mathcal{L}(\phi, \mathbf{\theta}) + \mathit{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}|\mathbf{x}, \mathbf{\theta})) \geq \mathcal{L}(\phi, \mathbf{\theta}).$$

► E-step

$$\phi_k = \phi_{k-1} + \eta \cdot \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}},$$

where ϕ – parameters of variational posterior distribution $q(\mathbf{z}|\mathbf{x},\phi)$.

M-step

$$\theta_k = \theta_{k-1} + \eta \cdot \nabla_{\theta} \mathcal{L}(\phi_k, \theta)|_{\theta = \theta_{k-1}},$$

where θ – parameters of the generative distribution $p(\mathbf{x}|\mathbf{z},\theta)$. Now all that is left is to obtain gradients: $\nabla_{\phi}\mathcal{L}(\phi,\theta)$, $\nabla_{\theta}\mathcal{L}(\phi,\theta)$. **Challenge:** Number of samples n could be huge (we need derive the **unbiased** stochastic gradients).

1. EM-algorithm

Amortized inference ELBO gradients, reparametrization trick

2. Variational autoencoder (VAE)

3. Data dequantization

ELBO gradients, (M-step, $\nabla_{\theta} \mathcal{L}(\phi, \theta)$)

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) - \log rac{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})}{p(\mathbf{z})}
ight]
ightarrow \max_{\phi, oldsymbol{ heta}}.$$

M-step: $\nabla_{\theta} \mathcal{L}(\phi, \theta)$

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}(m{\phi}, m{ heta}) &= \int q(\mathbf{z}|\mathbf{x}, m{\phi})
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}, m{ heta}) d\mathbf{z} pprox \\ &pprox
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}^*, m{ heta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, m{\phi}). \end{aligned}$$

Naive Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})p(\mathbf{z})d\mathbf{z} \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_{k},\boldsymbol{\theta}), \quad \mathbf{z}^{*} \sim p(\mathbf{z}).$$

The variational posterior $q(\mathbf{z}|\mathbf{x}, \phi)$ assigns typically more probability mass in a smaller region than the prior $p(\mathbf{z})$.

ELBO gradients, (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

E-step:
$$\nabla_{\phi} \mathcal{L}(\phi, \theta)$$

Difference from M-step: density function $q(\mathbf{z}|\mathbf{x}, \phi)$ depends on the parameters ϕ , it is impossible to use the Monte-Carlo estimation:

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \left[\log p(\mathbf{x}|\mathbf{z}, \theta) - \log \frac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})} \right] d\mathbf{z}$$

$$\neq \int q(\mathbf{z}|\mathbf{x}, \phi) \nabla_{\phi} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) - \log \frac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})} \right] d\mathbf{z}$$

Reparametrization trick (LOTUS trick)

$$ightharpoonup r(x) = \mathcal{N}(0,1), \ y = \sigma \cdot x + \mu, \ p(y|\theta) = \mathcal{N}(\mu,\sigma^2), \ \theta = [\mu,\sigma].$$

$$lackbox{f \epsilon}^* \sim r(m{\epsilon}), \quad {f z} = {f g}_{m{\phi}}({f x}, m{\epsilon}), \quad {f z} \sim q({f z}|{f x}, m{\phi})$$

$$egin{aligned}
abla_{\phi} \int q(\mathbf{z}|\mathbf{x},\phi)\mathbf{f}(\mathbf{z})d\mathbf{z} &= \left.
abla_{\phi} \int r(\epsilon)\mathbf{f}(\mathbf{z})d\epsilon \right|_{\mathbf{z}=\mathbf{g}_{\phi}(\mathbf{x},\epsilon)} \\ &= \int r(\epsilon)
abla_{\phi}\mathbf{f}(\mathbf{g}_{\phi}(\mathbf{x},\epsilon))d\epsilon pprox
abla_{\phi}\mathbf{f}(\mathbf{g}_{\phi}(\mathbf{x},\epsilon^*)) \end{aligned}$$

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

$$= \int r(\epsilon) \nabla_{\phi} \log p(\mathbf{x}|\mathbf{g}_{\phi}(\mathbf{x}, \epsilon), \theta) d\epsilon - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

$$\approx \nabla_{\phi} \log p(\mathbf{x}|\mathbf{g}_{\phi}(\mathbf{x}, \epsilon^{*}), \theta) - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

Variational assumption

$$\begin{split} r(\epsilon) &= \mathcal{N}(\mathbf{0}, \mathbf{I}); \quad q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})). \\ \mathbf{z} &= \mathbf{g}_{\phi}(\mathbf{x}, \epsilon) = \sigma_{\phi}(\mathbf{x}) \odot \epsilon + \mu_{\phi}(\mathbf{x}). \end{split}$$

Here $\mu_{\phi}(\cdot)$, $\sigma_{\phi}(\cdot)$ are parameterized functions (outputs of neural network).

- p(z) prior distribution on latent variables z. We could specify any distribution that we want. Let say $p(z) = \mathcal{N}(0, \mathbf{I})$.
- $p(\mathbf{x}|\mathbf{z}, \theta)$ generative distibution. Since it is a parameterized function let it be neural network with parameters θ .

1. EM-algorithm

Amortized inference ELBO gradients, reparametrization trick

2. Variational autoencoder (VAE)

3. Data dequantization

Generative models zoo

Variational autoencoder (VAE)

Final EM-algorithm

- ▶ pick random sample \mathbf{x}_i , $i \sim U[1, n]$.
- compute the objective:

$$oldsymbol{\epsilon}^* \sim r(oldsymbol{\epsilon}); \quad \mathbf{z}^* = \mathbf{g}_{oldsymbol{\phi}}(\mathbf{x}, oldsymbol{\epsilon}^*);$$
 $\mathcal{L}(oldsymbol{\phi}, oldsymbol{ heta}) pprox \log p(\mathbf{x}|\mathbf{z}^*, oldsymbol{ heta}) - \mathit{KL}(q(\mathbf{z}^*|\mathbf{x}, oldsymbol{\phi})||p(\mathbf{z}^*)).$

lacktriangle compute a stochastic gradients w.r.t. ϕ and heta

$$abla_{\phi} \mathcal{L}(\phi, \theta) pprox
abla_{\phi} \log p(\mathbf{x}|\mathbf{g}_{\phi}(\mathbf{x}, \epsilon^*), \theta) -
abla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})); \\
\nabla_{\theta} \mathcal{L}(\phi, \theta) pprox
abla_{\theta} \log p(\mathbf{x}|\mathbf{z}^*, \theta).$$

• update θ , ϕ according to the selected optimization method (SGD, Adam, etc):

$$\phi := \phi + \eta \cdot \nabla_{\phi} \mathcal{L}(\phi, \theta),$$

 $\theta := \theta + \eta \cdot \nabla_{\theta} \mathcal{L}(\phi, \theta).$

Variational autoencoder (VAE)

- VAE learns stochastic mapping between x-space, from complicated distribution π(x), and a latent z-space, with simple distribution.
- The generative model learns a joint distribution $p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$, with a prior distribution $p(\mathbf{z})$, and a stochastic decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- The stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ (inference model), approximates the true but intractable posterior $p(\mathbf{z}|\mathbf{x}, \theta)$ of the generative model.

Variational Autoencoder

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) - \log rac{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})}{p(\mathbf{z})}
ight]
ightarrow \max_{\phi, oldsymbol{\phi}}.$$

Variational autoencoder (VAE)

- lacksquare Encoder $q(\mathbf{z}|\mathbf{x},\phi) = \mathsf{NN}_e(\mathbf{x},\phi)$ outputs $\mu_\phi(\mathbf{x})$ and $\sigma_\phi(\mathbf{x})$.
- ▶ Decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathsf{NN}_d(\mathbf{z}, \boldsymbol{\theta})$ outputs parameters of the sample distribution.

image credit:

1. EM-algorithm

Amortized inference ELBO gradients, reparametrization trick

- Variational autoencoder (VAE)
- 3. Data dequantization

Discrete data vs continuous model

Let our data \mathbf{y} comes from discrete distribution $\Pi(\mathbf{y})$ and we have continuous model $p(\mathbf{x}|\theta) = \mathsf{NN}(\mathbf{x},\theta)$.

- ▶ Images (and not only images) are discrete data, pixels lie in the integer domain ({0, 255}).
- By fitting a continuous density model $p(\mathbf{x}|\theta)$ to discrete data $\Pi(\mathbf{y})$, one can produce a degenerate solution with all probability mass on discrete values.

Discrete model

- Use **discrete** model (e.x. $P(\mathbf{y}|\boldsymbol{\theta}) = \mathsf{Cat}(\boldsymbol{\pi}(\boldsymbol{\theta}))$).
- ▶ Minimize any suitable divergence measure $D(\Pi, P)$.
- ► NF works only with continuous data **x** (there are discrete NF, see papers below).
- If pixel value is not presented in the train data, it won't be predicted.

Discrete data vs continuous model

Continuous model

- Use **continuous** model (e.x. $p(\mathbf{x}|\theta) = \mathcal{N}(\mu_{\theta}(\mathbf{x}), \sigma_{\theta}^2(\mathbf{x}))$), but
 - **discretize** model (make the model outputs discrete): transform $p(\mathbf{x}|\theta)$ to $P(\mathbf{y}|\theta)$;
 - **dequantize** data (make the data continuous): transform $\Pi(y)$ to $\pi(x)$.
- Continuous distribution knows numerical relationships.

CIFAR-10 pixel values distribution

Uniform dequantization

Let dequantize discrete distribution $\Pi(\mathbf{y})$ to continuous distribution $\pi(\mathbf{x})$ in the following way: $\mathbf{x} = \mathbf{y} + \mathbf{u}$, where $\mathbf{u} \sim U[0,1]$.

Theorem

Fitting continuous model $p(\mathbf{x}|\boldsymbol{\theta})$ on uniformly dequantized data is equivalent to maximization of a lower bound on log-likelihood for a discrete model:

$$P(\mathbf{y}|\boldsymbol{\theta}) = \int_{U[0.1]} p(\mathbf{y} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u}$$

Proof

$$\begin{split} \mathbb{E}_{\pi} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \int \pi(\mathbf{x}) \log p(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x} = \sum \Pi(\mathbf{y}) \int_{U[0,1]} \log p(\mathbf{y} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u} \leq \\ &\leq \sum \Pi(\mathbf{y}) \log \int_{U[0,1]} p(\mathbf{y} + \mathbf{u}|\boldsymbol{\theta}) d\mathbf{u} = \\ &= \sum \Pi(\mathbf{y}) \log P(\mathbf{y}|\boldsymbol{\theta}) = \mathbb{E}_{\Pi} \log P(\mathbf{y}|\boldsymbol{\theta}). \end{split}$$

Summary

- The general variational EM algorithm maximizes ELBO objective for LVM model to find MLE for parameters θ.
- Amortized variational inference allows to efficiently compute the stochastic gradients for ELBO using Monte-Carlo estimation.
- The reparametrization trick gets unbiased gradients w.r.t to the variational posterior distribution $q(\mathbf{z}|\mathbf{x}, \phi)$.
- ► The VAE model is an LVM with two neural network: stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ and stochastic decoder $p(\mathbf{x}|\mathbf{z}, \theta)$.
- ▶ Lots of data are discrete. We able to discretize the model or to dequantize our data to use continuous model.
- Uniform dequantization helps to make discrete data continuous. It gives us lower bound on the log-likelihood.