Riemann'sche Metriken

2.1. Definition einer Riemann'schen Metrik und Struktur

Eine Riemann'sche Metrik (oder Riemann'sche Struktur) auf einer differenzierbaren Mannigfaltigkeit M ist dadurch gegeben, dass jedem Punkt $p \in M$ ein Skalarprodukt $\langle \cdot, \cdot \rangle_p \equiv g_p(\cdot, \cdot)$ in T_pM zugeordnet wird.

Diese Zuordnung soll differenzierbar sein, das heißt für alle lokalen Koordinaten $\phi: U \to \mathbb{R}^n$; $q \mapsto (x^1(q), \dots, x^n(q))$ sind die Funktionen

$$U \to \mathbb{R}$$

$$g_{ij}: \quad q \mapsto g_{ij}(q) \coloneqq \left\langle \left. \frac{\partial}{\partial x^i} \right|_q, \left. \frac{\partial}{\partial x^j} \right|_q \right\rangle_q$$

 C^{∞} für $1 \leq i, j \leq n$. Die $(n \times n)$ -Matrix $(g_{ij}(q))$ ist symmetrisch und positiv definit für alle $q \in U$.

Insbesondere gilt für $v = \sum_{i=1}^n a_i \frac{\partial}{\partial x^i} \Big|_q$ und $w = \sum_{j=1}^n b_j \frac{\partial}{\partial x^i} \Big|_q \in T_p M$:

$$\langle v, w \rangle_q = \sum_{i,j=1}^n a_i b_j g_{ij}(q)$$

Definition

Eine Riemann'sche Mannigfaltigkeit ist ein Paar (M, g) (oder $(M, \langle \cdot, \cdot \rangle)$) bestehend aus einer differenzierbaren Mannigfaltigkeit M und einer Riemann'schen Struktur auf M.

Bemerkung: Ist g nicht positiv definit (d.h. $g_p(v,v) \ge 0$ und $g_p(v,v) = 0 \iff v = 0$), sondern nur semi-definit, so heißt g Pseudo-Riemann'sche Struktur. Zum Beispiel der \mathbb{R}^4 versehen mit der Form $x^2 + y^2 + z^2 - t^2$ modelliert die Minkowski-Raum-Zeit der speziellen Relativitätstheorie. Mehr dazu etwa in B. O'Neill: Semi-Riemannian Geometry.

Der Isometrie-Begriff auf Riemann'schen Mannigfaltigkeiten: Ein Diffeomorphismus $\Phi:(M,\langle\cdot,\cdot\rangle)\to (N,\langle\cdot,\cdot\rangle)$ zwischen Riemann'schen Mannigfaltigkeiten heißt Isometrie falls für alle $p\in M$ und alle $v,w\in T_pM$ gilt:

$$\langle\langle d\Phi_p(v), d\Phi_p(w)\rangle\rangle_{\Phi_p} = \langle v, w\rangle_p \qquad (*)$$

Ein lokaler Diffeomorphismus $\Phi: U \to V \ (U \subset M, V \subset N)$ heißt lokale Isometrie falls (*) gilt für alle $q \in U$ und alle $v, w \in T_qM$.

2.2. Beispiele und Konstruktionen

2.2.1. n-dimensionaler Euklidischer Raum

 $M = \mathbb{R}^n$ mit Atlas {id} ist eine Riemann'sche Struktur mit dem Standard-Skalarprodukt $\langle \cdot, \cdot \rangle$. Dabei ist $g_{ij}(p) = \left\langle \frac{\partial}{\partial x^i} \Big|_p, \frac{\partial}{\partial x^j} \Big|_p \right\rangle = \left\langle e_i, e_j \right\rangle = \delta_{ij}$, also ist $(g_{ij}(p))$ die Einheitsmatrix.

2.2.2. n-dimensionale hyperbolische Räume

 $M = H^n := \{x = (x^1, \dots, x^n) \in \mathbb{R}^n \mid x_n > 0\}$. Dies ist eine offene Teilmenge von \mathbb{R}^n , also eine offene Untermannigfaltigkeit.

Die Riemann'sche Metrik ist dann

$$g_{ij}(x) := \begin{cases} \frac{1}{(x^n)^2} & 1 \le i = j \le n \\ 0 & i \ne j \end{cases}$$

und die Matrix

$$(g_{ij}(x)) = \begin{pmatrix} \frac{1}{(x^n)^2} & 0\\ & \ddots & \\ 0 & \frac{1}{(x^n)^2} \end{pmatrix}$$

positiv definit und symmetrisch, also ist (H^n, g) eine Riemann'sche Mannigfaltigkeit und ist ein Modell für n-dimensionale hyperbolische Geometrien.

2.2.3. Konstruktion von neuen Riemann'schen Mannigfaltigkeiten aus gegebenen

Sei $\Phi: M^m \to N^{n=m+k}$ sei eine Immersion. Weiter sei auf N eine Riemann'sche Struktur $\langle \langle \cdot, \cdot \rangle \rangle$ gegeben. Diese induziert eine Riemann'sche Metrik $\langle \cdot, \cdot \rangle$ auf M:

Für
$$p \in M$$
, $u, v \in T_pM$ setze: $\langle u, v \rangle_p := \langle \langle d\Phi_p u, d\Phi_p v \rangle \rangle_{\Phi(p)}$

Zu zeigen ist: $\langle \cdot, \cdot \rangle_p$ ist symmetrisch, bilinear und positiv definit. Die Symmetrie und Bilinearität ist klar. Zu überprüfen: Ist $\langle \cdot, \cdot \rangle$ positiv definit? Es ist $\langle u, u \rangle_p \geq 0$. Ist $0 = \langle u, u \rangle_p = \langle \langle d\Phi_p u, d\Phi_p u \rangle \rangle_{\Phi(p)}$, so ist $d\Phi_p u = 0 \xrightarrow{\Phi \text{ injektiv}} u = 0$

Die Abbildung $\Phi: (M, \langle \cdot, \cdot \rangle) \to (N, \langle \cdot, \cdot \rangle)$ heißt isometrische Immersion von M in N.

Beispiel

Flächen im \mathbb{R}^3 mit Standardskalarprodukt, wobei $\Phi = i : F \hookrightarrow \mathbb{R}^3$ die Inklusionsabbildung ist. Die so induzierte Riemann'sche Metrik auf F heißt die 1. Fundamentalform von F. Für $u, v \in T_pF$ gilt dann:

$$\langle u, v \rangle \coloneqq \langle di_p u, di_p v \rangle = \langle u, v \rangle$$

wobei das letzte Skalarprodukt das Standardskalarprodukt ist.

Analog kann man mit anderen Untermannigfaltigkeiten des $(\mathbb{R}^m, \langle \cdot, \cdot \rangle)$ vorgehen. So kan man $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\} \subset \mathbb{R}^{n+1}$ mit der vom Standardskalarprodukt in \mathbb{R}^{n+1} induzierten Riemann'schen Metrik versehen. Diese heißt sphärische Geometrie.

Bemerkung: Die klassischen Geometrien (euklidische, hyperbolische, sphärische) sind Spezialfälle der Riemman'schen Geometrien.

2.2.4. Riemann'sche Produkte

Seien $(M_1, \langle \cdot, \cdot \rangle^{(1)})$, $(M_2, \langle \cdot, \cdot \rangle^{(2)})$ zwei Riemann'sche Mannigfaltigkeiten. $M_1 \times M_2$ ist eine differenzierbare Mannigfaltigkeit. Weiter haben wir die zwei kanonischen Projektionen auf die Faktoren:

$$\pi_1: M_1 \times M_2 \to M_1$$
 $\pi_2: M_1 \times M_2 \to M_2$ $(m_1, m_2) \mapsto m_1$ $(m_1, m_2) \mapsto m_2$

Definition (Riemann'sche Produktmetrik)

Riemann'sche Produktmetrik auf $M_1 \times M_2$ ist für alle $u, v \in T_{(p,q)}(M_1 \times M_2)$ und für alle $(p,q) \in M_1 \times M_2$:

$$\langle u, v \rangle_{(p,q)} := \left\langle d\pi_{1(p,q)} u, d\pi_{1(p,q)} v \right\rangle^{(1)} + \left\langle d\pi_{2(p,q)} u, d\pi_{2(p,q)} v \right\rangle^{(2)}$$

(Kurz:
$$||u||^2 = \langle u, u \rangle = \langle u_1, u_1 \rangle^{(1)} + \langle u_2, u_2 \rangle^{(2)} = ||u_1||^2 + ||u_2||^2$$
)

 $\langle \cdot, \cdot \rangle_{(p,q)}$ ist symmetrisch und positiv bilinear. Es ist auch positiv definit:

$$0 = \langle u, u \rangle \implies \frac{d\pi_1 u = 0}{d\pi_2 u = 0} \} \implies u = 0,$$

da $u = d\pi_1 u \oplus d\pi_2 u$.

Beispiele

(1)
$$(\mathbb{R}^n, \langle \cdot, \cdot \rangle) = \prod_{i=1}^n (\mathbb{R}^1, \langle \cdot, \cdot \rangle). (a_1, \dots, a_n) = a \in T_x \mathbb{R}^n; ||a||^2 = \sum_{i=1}^n a_i^2$$

(2) Flacher Torus:

 $T^2 := S^1 \times S^1$, wobei jeder Faktor S^1 mit der kanonischen Riemann'schen Metrik, induziert von \mathbb{R}^2 , versehen ist. Wir betrachten lokale Koordinaten (s,t). Dann:

$$T_{(s,t)}(S^1 \times S^1) = \mathbb{R} \left. \frac{\partial}{\partial s} \right|_s \oplus \mathbb{R} \left. \frac{\partial}{\partial t} \right|_t$$

Sei nun $u, v \in T_{(s,t)}(S^1 \times S^1)$ mit $u = a \frac{\partial}{\partial s} + b \frac{\partial}{\partial t}$ und $v = c \frac{\partial}{\partial s} + d \frac{\partial}{\partial t}$. Das heißt: $d\pi_1 u = a \frac{\partial}{\partial s}$ und $d\pi_2 u = b \frac{\partial}{\partial t}$. Ohne Einschränkung sei $\left\langle \frac{\partial}{\partial s}, \frac{\partial}{\partial s} \right\rangle = 1$ und $\left\langle \frac{\partial}{\partial t}, \frac{\partial}{\partial t} \right\rangle = 1$

Die Riemann'sche Produktmetrik auf T^2 bezüglich lokalen Koordinaten (s,t):

$$g_{11}(s,t) = \left\langle d\pi_1 \left(\frac{\partial}{\partial s} + 0 \right), d\pi_1 \left(\frac{\partial}{\partial s} + 0 \right) \right\rangle + \left\langle d\pi_2 \left(\frac{\partial}{\partial s} + 0 \right), d\pi_2 \left(\frac{\partial}{\partial s} + 0 \right) \right\rangle$$
$$= \left\langle \frac{\partial}{\partial s}, \frac{\partial}{\partial s} \right\rangle + \langle 0, 0 \rangle = 1$$

Analog: $g_{22}(s,t) = \cdots = \left\langle \frac{\partial}{\partial t}, \frac{\partial}{\partial t} \right\rangle = 1$

$$g_{12}(s,t) = \left\langle d\pi_1 \left(\frac{\partial}{\partial s} + 0 \right), d\pi_1 \left(\frac{\partial}{\partial t} + 0 \right) \right\rangle + \left\langle d\pi_2 \left(\frac{\partial}{\partial s} + 0 \right), d\pi_2 \left(\frac{\partial}{\partial t} + 0 \right) \right\rangle$$
$$= \left\langle \frac{\partial}{\partial s}, 0 \right\rangle + \left\langle 0, \frac{\partial}{\partial s} \right\rangle = 0$$

also ist

$$(g_{ij}(s,t)) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

das heißt: \mathbb{T}^2 mit Produktmetrik ist lokal isometrisch zur euklidischen Ebene.

 $\underset{\sim}{\mathbb{Z}}$ T² und \mathbb{R}^2 sind nicht global isometrisch (sonst wären sie homöomoph, aber \mathbb{R}^2 ist nicht kompakt, während T² kompakt ist).

2.3. Existenz von Riemann'schen Metriken

Satz 2.1 (Existenz der Riemann'schen Metrik)

Auf jeder n-dimensionalen differenzierbaren Mannigfaltigkeit existiert eine Riemann'sche Metrik.

Beweis

Wir gehen in zwei Schritten vor:

1. Schritt (lokale Konstruktion für Kartengebiete)

Gegeben eine Karte $\varphi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$, $p \mapsto \varphi_{\alpha}(p) = (x_{\alpha}^1(p), \dots, x_{\alpha}^n(p))$. Wir benötigen $\frac{n(n+1)}{2}$ C^{∞} -Funktionen $g_{ij}: U_{\alpha} \to \mathbb{R}$, so dass die $n \times n$ -Matrix $(g_{ij}(q))$ positiv definit wird für alle $q \in U_{\alpha}$.

Eine Möglichkeit: Wähle Standardskalarprodukt $\langle \cdot, \cdot \rangle$ auf $\varphi_{\alpha}(U_{\alpha}) \subset \mathbb{R}^{n}$, das heißt $\langle e_{i}, e_{j} \rangle = \delta_{ij}$ und setze für alle $u, v \in TqM, q \in U_{\alpha}$:

$$g_{\alpha}(u,v) := \langle d\varphi_{\alpha}|_{q}(u), d\varphi_{\alpha}|_{q}(v) \rangle_{\varphi_{\alpha}(q)}$$

das heißt φ_{α} wird zu einer lokalen Isometrie gemacht.

Weil
$$d\varphi_{\alpha}|_{q}\left(\frac{\partial}{\partial x^{i}}|_{q}\right) = e_{i}$$
 für $i = 1, \dots, n$ gilt, ist

$$g_{ij}^{(\alpha)}(q) = g_{\alpha} \left(\frac{\partial}{\partial x^{i}} \Big|_{q}, \frac{\partial}{\partial x^{j}} \Big|_{q} \right) = \langle e_{i}, e_{j} \rangle = \delta_{ij}.$$

2. Schritt (Globale Konstruktion)

Wir nehmen ein Hilfsmittel aus der Differential-Topologie:

Satz 2.2 ("Zerlegung der Eins")

Sein M eine differenzierbare Mannigfaltigkeit (insbesondere Hausdorff'sch und es existiert eine abzählbare Basis) und $(U_{\alpha})_{\alpha \in A}$ eine (offene) Überdeckung von M von Karten.

Dann existiert eine lokal endliche Überdeckung $(V_k)_{k\in I}$ und C^{∞} -Funktionen $f_k: M \to \mathbb{R}$ mit

- (1) Jedes V_k liegt in einem $U_{\alpha=\alpha(k)}$.
- (2) $f_k \ge 0$ auf \bar{V}_k und $f_k = 0$ auf dem Komplement von \bar{V}_k . (Das heißt: Der Träger von f_k ist eine Teilmenge von \bar{V}_k)
- (3) $(\sum_{k\in I} f_k) = 1$ für alle $p \in M$. Diese Summe ist immer endlich, da die Überdeckung lokal endlich ist.

Lokal Endlich: Für jeden Punkt $p \in M$ existiert eine Umgebung U = U(p) mit $U \cap V_k \neq \emptyset$ für nur endlich viele $k \in I$

Beweis (von Satz 2.2)

siehe zum Beispiel: Gromoll-Klingenberg-Meyer, "Riemann'sche Geometrie im Großen".

Für die Konstruktion einer Riemann'schen Metrik auf M "verschmiert" oder "glättet" man jetzt alle im ersten Schritt konstruierten lokalen Riemann'schen Metriken $g_k : g_{\alpha}|_{V_k}$ wie folgt:

Sei $p \in M$ beliebig und $u, v \in T_pM$. Setze

$$\langle u, v \rangle_p := \sum_{k \in I} f_k(p) \cdot g_k(p) (u, v)$$

Diese Summe ist endlich, da $f_k(p) \neq 0$ nur für endlich viele k.

Ist $\langle \cdot, \cdot \rangle_p$ ein Skalarprodukt auf T_pM ?

- Symetrie und Bilinearität sind klar.
- Positivität:

$$\langle u, u \rangle_p = \sum_{k \in I} \underbrace{f_k(p)}_{\geq 0} \underbrace{g_k(u, u)}_{\geq 0} \geq 0.$$

• Definitheit: Sei $\langle u, u \rangle_p = 0$, dann ist für jedes k $f_k(p)g_k(u, u) = 0$. Wegen Punkt (3) von Satz 2.2 existiert mindestens ein $k_0 \in I$, so dass $f_{k_0}(p) > 0$. Daher ist $g_{k_0}(u, u) = 0$, woraus u = 0 folgt, da g_{k_0} positiv definit ist.

Bemerkung (Riemannsche Metrik ist nicht eindeutig): Im \mathbb{R}^n ist durch jede positiv definite Bilinearform ein Skalarprodukt und damit eine Riemannsche Metrik gegeben.

2.4. Anwendung: Länge von Kurven

Sei $c:I\to M$ eine differenzierbare Kurve in einer Riemann'schen Mannigfaltigkeit M. Dann ist die Länge von c

$$L(c) := \int_{I} \sqrt{\langle c'(t), c'(t) \rangle} dt = \int_{I} ||c'(t)|| dt$$

(Ein Spezialfall sind C^{∞} -Kurven in \mathbb{R}^n versehen mit Standardskalarprodukt)

Die Länge ist unabhängig von der Parametrisierung der Kurve und invariant unter Isometrien $\Phi: (M, \langle \cdot, \cdot \rangle_1) \to (N, \langle \cdot, \cdot \rangle_2)$, also $L(\Phi \circ c) = L(c)$, da $L(\Phi \circ c) = \int_I \|(\Phi \circ c)'\|_2 dt = \int_I \|d\Phi_{c(t)}c'(t)\|_2 dt \stackrel{\Phi \text{ iso.}}{=} \int_I \|c'\|_1 dt = L(c)$.