The Calderón Problem

on Riemannian Manifolds

Colin Roberts

■ Introduce the Calderón problem.

- Introduce the Calderón problem.
- Discuss some of the current results and issues.

- Introduce the Calderón problem.
- Discuss some of the current results and issues.
- \blacksquare Rephrase the problem in a geometrical way.

- Introduce the Calderón problem.
- Discuss some of the current results and issues.
- Rephrase the problem in a geometrical way.
- Prove the problem in 2 dimensions using the boundary control method.

- Introduce the Calderón problem.
- Discuss some of the current results and issues.
- Rephrase the problem in a geometrical way.
- Prove the problem in 2 dimensions using the boundary control method.
- What can and can't we do to generalize this method?

Section 1

Introduction

Subsection 1

Calderón Problem

In 1980, Alberto Calderón proposed a problem in his paper On an inverse

boundary value problem.

■ He wanted to know if one can determine the conductivity of a domain by making voltage and current measurements along the boundary.

- He wanted to know if one can determine the conductivity of a domain by making voltage and current measurements along the boundary.
- making voltage and current measurements along the boundary.

 This is the Electrical Impedence Tomography problem.

- He wanted to know if one can determine the conductivity of a domain by making voltage and current measurements along the boundary.
- This is the Electrical Impedence Tomography problem.
- Originally his motivation was for oil prospecting.

- He wanted to know if one can determine the conductivity of a domain by making voltage and current measurements along the boundary.
- This is the Electrical Impedence Tomography problem.
- Originally his motivation was for oil prospecting.
- This problem sparked interest due to its usefulness in geophysical and medical imaging.

The two main groups working on this problem now are	

The two main groups working on this problem now are
■ Practitioners: Work with incomplete and noisy data to recover information
in the real world.

The two main groups working on this problem now are...

- Practitioners: Work with incomplete and noisy data to recover information in the real world.
- Theorists: Work in ideal scenarios with a chosen amount of information to see the scope of possibilities.

The two main groups working on this problem now are...

- Practitioners: Work with incomplete and noisy data to recover information in the real world.
- Theorists: Work in ideal scenarios with a chosen amount of information to see the scope of possibilities.

<u>Idea:</u> Given a domain Ω with interior Ω^+ that we cannot probe, can we determine the conductivity γ matrix by studying the boundary $\partial\Omega$?

■ Ω^+ is free of charges, hence $\nabla \cdot (\gamma \nabla u) = 0$ in Ω^+ where u is the electrostatic potential.

- Ω^+ is free of charges, hence $\nabla \cdot (\gamma \nabla u) = 0$ in Ω^+ where u is the electrostatic potential.
- Apply a known voltage f at the boundary $\partial\Omega$. Hence $f = u|_{\partial\Omega}$.

- Ω^+ is free of charges, hence $\nabla \cdot (\gamma \nabla u) = 0$ in Ω^+ where u is the electrostatic potential.
- Apply a known voltage f at the boundary $\partial\Omega$. Hence $f = u|_{\partial\Omega}$.
- Measure the current flux h through the boundary $\partial\Omega$. Hence, $h = \frac{\partial u}{\partial\nu}$.

- Ω^+ is free of charges, hence $\nabla \cdot (\gamma \nabla u) = 0$ in Ω^+ where u is the electrostatic potential.
- Apply a known voltage f at the boundary $\partial \Omega$. Hence $f = u|_{\partial \Omega}$.
- Measure the current flux h through the boundary $\partial\Omega$. Hence, $h = \frac{\partial u}{\partial\nu}$.
- This defines the voltage-to-current map Λ so that $\Lambda(f) = h$.

- Ω^+ is free of charges, hence $\nabla \cdot (\gamma \nabla u) = 0$ in Ω^+ where u is the electrostatic potential.
- Apply a known voltage f at the boundary $\partial\Omega$. Hence $f = u|_{\partial\Omega}$.
- Measure the current flux h through the boundary $\partial\Omega$. Hence, $h = \frac{\partial u}{\partial\nu}$.
- This defines the voltage-to-current map Λ so that $\Lambda(f) = h$.
- Can we determine the conductivity matrix γ from Λ ?

Section 2

The Calderón Problem on Riemannian Manifolds

Subsection 1

Preliminaries

■ Smooth n-dimensional manifold: A space that locally looks like (is C^{∞} diffeomorphic to) an open subset of \mathbb{R}^n .

- Smooth n-dimensional manifold: A space that locally looks like (is C^{∞} diffeomorphic to) an open subset of \mathbb{R}^n .
- Riemannian metric: A smoothly varying inner product defined on Ω . In coordinates, g takes the form of a symmetric and positive definite matrix with entries g_{jk} with inverse g^{jk} .

- Smooth n-dimensional manifold: A space that locally looks like (is C^{∞} diffeomorphic to) an open subset of \mathbb{R}^n .
- Riemannian metric: A smoothly varying inner product defined on Ω . In coordinates, g takes the form of a symmetric and positive definite matrix with entries g_{jk} with inverse g^{jk} .
- *Exterior algebra*: Differential forms with the wedge product \wedge .

- Smooth n-dimensional manifold: A space that locally looks like (is C^{∞} diffeomorphic to) an open subset of \mathbb{R}^n .
- Riemannian metric: A smoothly varying inner product defined on Ω . In coordinates, g takes the form of a symmetric and positive definite matrix with entries g_{jk} with inverse g^{jk} .
- Exterior algebra: Differential forms with the wedge product \wedge .
- *Hodge Star*: Attached to the exterior algebra when we also have a Riemannian metric. Gives an isomorphism between k and n k-forms.

1-Forms

2-Forms

3-Forms

•
$$k$$
-Form Inner Product: $\langle \alpha, \beta \rangle = \int_{\Omega} \alpha \wedge \star \beta$.

- k-Form Inner Product: $\langle \alpha, \beta \rangle = \int_{\Omega} \alpha \wedge \star \beta$.
- \blacksquare Exterior Derivative: Derivative operator d defined on k-forms.

- k-Form Inner Product: $\langle \alpha, \beta \rangle = \int_{\Omega} \alpha \wedge \star \beta$.
- \blacksquare Exterior Derivative: Derivative operator d defined on k-forms.
- Codifferential: Formal adjoint to d written as δ .

- k-Form Inner Product: $\langle \alpha, \beta \rangle = \int_{\Omega} \alpha \wedge \star \beta$.
- \blacksquare Exterior Derivative: Derivative operator d defined on k-forms.
- Codifferential: Formal adjoint to d written as δ .
- *Dirac Operator*: $D = d + \delta$.

- k-Form Inner Product: $\langle \alpha, \beta \rangle = \int_{\Omega} \alpha \wedge \star \beta$.
- \blacksquare Exterior Derivative: Derivative operator d defined on k-forms.
- Codifferential: Formal adjoint to d written as δ .
- *Dirac Operator*: $D = d + \delta$.
- Laplace-Beltrami Operator: $\Delta = d\delta + \delta d = D^2$ and in coordinates

$$\Delta f = \frac{1}{\sqrt{|g|}} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial}{\partial x^{i}} \sqrt{|g|} g^{ij} \frac{\partial}{\partial x^{j}} f$$

Subsection 2

Raphrasing EIT Problem in a Geometrical Language

■ Let (unknown) connected Ω be a smooth Riemannian manifold with boundary $\partial\Omega$.

- Let (unknown) connected Ω be a smooth Riemannian manifold with
- boundary $\partial\Omega$.

■ Replace conductivity be represented by (unknown) g since $\gamma^{jk} = \sqrt{|g|}g^{jk}$.

- Let (unknown) connected Ω be a smooth Riemannian manifold with
- boundary $\partial\Omega$.
- Replace conductivity be represented by (unknown) g since $\gamma^{jk} = \sqrt{|g|}g^{jk}$.

■ Let $\Delta u = 0$ in Ω^+ and u = f on $\partial \Omega$.

- Let (unknown) connected Ω be a smooth Riemannian manifold with boundary $\partial\Omega$.
- Replace conductivity be represented by (unknown) g since $\gamma^{jk} = \sqrt{|g|}g^{jk}$.
- Let $\Delta u = 0$ in Ω^+ and u = f on $\partial \Omega$.

■ Dirichlet-to-Neumann operator Λ maps Dirichlet data $f = u|_{\partial\Omega}$ to

 $g = \frac{\partial u}{\partial u} = \iota^*(\star du).$

- Let (unknown) connected Ω be a smooth Riemannian manifold with boundary $\partial\Omega$.
- Replace conductivity be represented by (unknown) g since $\gamma^{jk} = \sqrt{|g|}g^{jk}$.
- Let $\Delta u = 0$ in Ω^+ and u = f on $\partial \Omega$.

- Dirichlet-to-Neumann operator Λ maps Dirichlet data $f = u|_{\partial\Omega}$ to

 $g = \frac{\partial u}{\partial u} = \iota^*(\star du).$

■ Recover g from knowing Λ .

Subsection 3

Expected and Current Results

 $f \mapsto \Lambda(f)$ approximated by

$$\Lambda(f)_j = \sum_{k=1}^m \lambda_{jk} f_k.$$

 $f \mapsto \Lambda(f)$ approximated by

$$\Lambda(f)_j = \sum_{k=1}^m \lambda_{jk} f_k.$$

In the smooth setting,

$$\Lambda(f) = \int_{\partial\Omega} \lambda(x, y) f(y) dS(y).$$

 $f \mapsto \Lambda(f)$ approximated by

$$\Lambda(f)_j = \sum_{k=1}^m \lambda_{jk} f_k.$$

In the smooth setting,

$$\Lambda(f) = \int_{\partial \Omega} \lambda(x, y) f(y) dS(y).$$

So, g is a function of n variables that needs to be determined by the kernel λ which is 2n-2 variables.

■ n = 1 gives us an undetermined system.

- n = 1 gives us an undetermined system.
- \blacksquare n = 2 is well determined.

- n = 1 gives us an undetermined system.
- \blacksquare n = 2 is well determined.
- $n \ge 3$ is overdetermined.

In 2D, Δ is conformally invariant.

In 2D, Δ is conformally invariant.

Indeed, let $\tilde{g} = e^{2\phi}g$, then

$$\Delta_{\tilde{g}} = e^{-2\phi} \Delta_g + (n-2) e^{-2\phi} g^{jk} \frac{\partial \phi}{\partial x^k} \frac{\partial}{\partial x^j}$$

In 2D, Δ is conformally invariant.

Indeed, let $\tilde{g} = e^{2\phi}g$, then

$$\Delta_{\tilde{g}} = e^{-2\phi} \Delta_g + (n-2) e^{-2\phi} g^{jk} \frac{\partial \phi}{\partial x^k} \frac{\partial}{\partial x^j}$$

When n = 2, the extra term cancels.

1 Dimension

1 Dimension

■ The problem in 1 dimension is trivial.

1 Dimension

- The problem in 1 dimension is trivial.
- Can only know the total impedence between the two electrodes.

Isotropic Case

For g isotropic and $n \geq 3$ one can determine g from Λ . (Sylvester-Uhlmann 1987)

2 Dimensional Anisotropic

- \blacksquare Can recover g up to conformal class and can't do better.
- Proven by Lassas and Uhlmann in On Determining the Riemannian manifold from the Dirichlet to Neumann map.

3+ Dimensional Anisotropic

3+ Dimensional Anisotropic

■ For real analytic manifolds, the (scalar/classical) DN map determines the manifold up to isometry. This gives the topological information as well. (Lassas, Taylor, Uhlmann The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary.

3+ Dimensional Anisotropic

- For real analytic manifolds, the (scalar/classical) DN map determines the manifold up to isometry. This gives the topological information as well. (Lassas, Taylor, Uhlmann *The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary*.
- Can determine the boundary C^{∞} -jet of g in Lee and Uhlmann's Determining anisotropic real-analytic conductivities by boundary measurements.

3+ Dimensional Anisotropic

- For real analytic manifolds, the (scalar/classical) DN map determines the manifold up to isometry. This gives the topological information as well. (Lassas, Taylor, Uhlmann *The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary*.
- Can determine the boundary C^{∞} -jet of g in Lee and Uhlmann's Determining anisotropic real-analytic conductivities by boundary measurements.
- For smooth manifolds, the anisotropic problem is open. The goal is to recover the metric up to isometry.

Section 3

Boundary Control Method in 2 Dimensions

Theorem

Theorem

Two 2-dimensional compact orientable manifolds with single common boundary are conformally equivalent iff their DN-maps coincide.

Belishev's The Calderón Problem for Two-Dimensional Manifolds by the BC-Method.

 \blacksquare Surfaces are two dimensional and can be related to $\mathbb{C}.$

- \blacksquare Surfaces are two dimensional and can be related to \mathbb{C} .
- Holomorphic functions have components that are harmonic.

- \blacksquare Surfaces are two dimensional and can be related to \mathbb{C} .
- Holomorphic functions have components that are harmonic.
- Hilbert transform converts one harmonic function to another by connecting them via a single holomorphic function.

- \blacksquare Surfaces are two dimensional and can be related to \mathbb{C} .
- Holomorphic functions have components that are harmonic.
- Hilbert transform converts one harmonic function to another by connecting them via a single holomorphic function.
- Gelfand transform relates an algebra \mathcal{A} to the algebra of continuous functions on the spectrum of that algebra, $C(\operatorname{spec}\mathcal{A})$.

- \blacksquare Surfaces are two dimensional and can be related to \mathbb{C} .
- Holomorphic functions have components that are harmonic.
- Hilbert transform converts one harmonic function to another by connecting them via a single holomorphic function.
- Gelfand transform relates an algebra \mathcal{A} to the algebra of continuous functions on the spectrum of that algebra, $C(\operatorname{spec}\mathcal{A})$.
- This gives us a way to realize Ω from functions defined on Ω that we have access to.

■ From DN map, recover the algebra of holomorphic functions. (Lemma 1)

- From DN map, recover the algebra of holomorphic functions. (Lemma 1)
- Show that this algebra is generic. (Lemma 2)

- From DN map, recover the algebra of holomorphic functions. (Lemma 1)
- Show that this algebra is generic. (Lemma 2)
- Represent the trace algebra with the DN map. (Lemma 3)

- From DN map, recover the algebra of holomorphic functions. (Lemma 1)
- Show that this algebra is generic. (Lemma 2)
- Represent the trace algebra with the DN map. (Lemma 3)
- Construct the manifold. (Theorem)

■ We have the inclusion of the boundary $\iota: \partial\Omega \to \Omega$.

- We have the inclusion of the boundary $\iota: \partial\Omega \to \Omega$.
- The pullback $\iota^*: T^*\Omega \to T^*\partial\Omega$.

- We have the inclusion of the boundary $\iota: \partial\Omega \to \Omega$.
- The pullback $\iota^*: T^*\Omega \to T^*\partial\Omega$.
- Define Λ by $\iota^*(\star du)$ for a harmonic u.

- We have the inclusion of the boundary $\iota: \partial\Omega \to \Omega$.
- The pullback $\iota^*: T^*\Omega \to T^*\partial\Omega$.
- Define Λ by $\iota^*(\star du)$ for a harmonic u.
- Λ maps boundary k-forms to boundary n-k-1 forms.

Subsection 1

Lemma 1

Lemma 1

■ A function u satisfying $\Delta u = 0$ has a conjugate function v if and only if the trace $\iota^* u$ satisfies

$$\left[\Lambda + d\Lambda^{-1}d\right]\iota^*u = 0.$$

Lemma 1

■ A function u satisfying $\Delta u = 0$ has a conjugate function v if and only if the trace $\iota^* u$ satisfies

$$\left[\Lambda + d\Lambda^{-1}d\right]\iota^*u = 0.$$

 $dim Ran \left[\Lambda + d\Lambda^{-1} d \right] = \beta_1(\Omega).$

Corollary

 Λ completely determines the topology of $\Omega.$

Proof

- Since Ω is a single connected component, $\beta_0(\Omega) = 1$.
- We have $\beta_1(\Omega)$ from before.
- Since Ω is a surface with boundary, $\beta_2(\Omega) = 0$.
- Since Ω is two dimensional, $\beta_n(\Omega) = 0$ for $n \geq 3$.

■ Suppose we have homorphic complex function w = u + iv.

- Suppose we have homorphic complex function w = u + iv.
- Let u be a 0-form and v as a 2-form.

- Suppose we have homorphic complex function w = u + iv.
- \blacksquare Let u be a 0-form and v as a 2-form.
- Then $\frac{\partial}{\partial \overline{z}}$ is given by $D = d + \delta$.

- Suppose we have homorphic complex function w = u + iv.
- \blacksquare Let u be a 0-form and v as a 2-form.
- Then $\frac{\partial}{\partial \overline{z}}$ is given by $D = d + \delta$.
- Dw = 0 gives us the Cauchy-Riemann equations
- We call u and v conjugate by CREs.

Hilbert Transform

Hilbert Transform

■ We can get v from u via the Hilbert transform.

Hilbert Transform

- We can get v from u via the Hilbert transform.
- Define $\mathcal{H} = d\Lambda^{-1}$.

■ By Lemma 1 we can now create the algebra $\mathcal{A}(\Omega) \subset C(\Omega)$ from harmonic functions u with conjugates v by

$$\mathcal{A}(\Omega) \coloneqq \{w = u + iv\}.$$

Algebra since product of two holomorphic functions is holomorphic.

■ By Lemma 1 we can now create the algebra $\mathcal{A}(\Omega) \subset C(\Omega)$ from harmonic functions u with conjugates v by

$$\mathcal{A}(\Omega) \coloneqq \{w = u + iv\}.$$

Algebra since product of two holomorphic functions is holomorphic.

■ In isothermal coordinates, each $w \in \mathcal{A}(\Omega)$ is holomorphic.

■ By Lemma 1 we can now create the algebra $\mathcal{A}(\Omega) \subset C(\Omega)$ from harmonic functions u with conjugates v by

$$\mathcal{A}(\Omega) \coloneqq \{ w = u + iv \}.$$

Algebra since product of two holomorphic functions is holomorphic.

- In isothermal coordinates, each $w \in \mathcal{A}(\Omega)$ is holomorphic.
- This gives Ω a complex structure.

■ By Lemma 1 we can now create the algebra $\mathcal{A}(\Omega) \subset C(\Omega)$ from harmonic functions u with conjugates v by

$$\mathcal{A}(\Omega) \coloneqq \{w = u + iv\}.$$

Algebra since product of two holomorphic functions is holomorphic.

- In isothermal coordinates, each $w \in \mathcal{A}(\Omega)$ is holomorphic.
- This gives Ω a complex structure.
- This is analogous to having the Hodge star on a surface.

Subsection 2

Lemma 2

■ Let \mathcal{M} be the set of multiplicative linear functionals on a commutative Banach algebra \mathcal{A} .

- Let \mathcal{M} be the set of multiplicative linear functionals on a commutative Banach algebra \mathcal{A} .
- The Gelfand transform gives a way of representing an algebra \mathcal{A} as a function algebra $\hat{\mathcal{A}}$.

- Let \mathcal{M} be the set of multiplicative linear functionals on a commutative Banach algebra \mathcal{A} .
- The Gelfand transform gives a way of representing an algebra \mathcal{A} as a function algebra $\hat{\mathcal{A}}$.
- The Gelfand transform maps $a \in A$ to a function \hat{a} on M by

$$\hat{a}(\delta) \coloneqq \delta(a), \quad \delta \in \mathcal{M}.$$

- Let \mathcal{M} be the set of multiplicative linear functionals on a commutative Banach algebra \mathcal{A} .
- The Gelfand transform gives a way of representing an algebra \mathcal{A} as a function algebra $\hat{\mathcal{A}}$.
- The Gelfand transform maps $a \in \mathcal{A}$ to a function \hat{a} on \mathcal{M} by

$$\hat{a}(\delta) \coloneqq \delta(a), \quad \delta \in \mathcal{M}.$$

■ The Gelfand topology is the weakest topology on \mathcal{M} in which all \hat{a} are continuous. This makes \mathcal{M} compact.

- Let \mathcal{M} be the set of multiplicative linear functionals on a commutative Banach algebra \mathcal{A} .
- The Gelfand transform gives a way of representing an algebra \mathcal{A} as a function algebra $\hat{\mathcal{A}}$.
- The Gelfand transform maps $a \in A$ to a function \hat{a} on M by

$$\hat{a}(\delta) \coloneqq \delta(a), \quad \delta \in \mathcal{M}.$$

- The Gelfand topology is the weakest topology on \mathcal{M} in which all \hat{a} are continuous. This makes \mathcal{M} compact.
- \mathcal{M} with this topology is called the *spectrum* spec \mathcal{A} .

■ The Gelfand transform \hat{A} is a subalgebra of $C(\operatorname{spec} A)$ and $a \mapsto \hat{a}$ is an isometric isomorphism.

- The Gelfand transform \hat{A} is a subalgebra of $C(\operatorname{spec} A)$ and $a \mapsto \hat{a}$ is an isometric isomorphism.
- For a function algebra $A \subset C(X)$, take $\epsilon: X \to \operatorname{spec} A$ with $\epsilon(x) = \delta_x$.

- The Gelfand transform \hat{A} is a subalgebra of $C(\operatorname{spec} A)$ and $a \mapsto \hat{a}$ is an isometric isomorphism.
- For a function algebra $A \subset C(X)$, take $\epsilon: X \to \operatorname{spec} A$ with $\epsilon(x) = \delta_x$.
- A function algebra $A \subset C(X)$ is *generic* if ϵ is a homeomorphism.

- The Gelfand transform \hat{A} is a subalgebra of $C(\operatorname{spec} A)$ and $a \mapsto \hat{a}$ is an isometric isomorphism.
- For a function algebra $\mathcal{A} \subset C(X)$, take $\epsilon: X \to \operatorname{spec} \mathcal{A}$ with $\epsilon(x) = \delta_x$.
- A function algebra $A \subset C(X)$ is *generic* if ϵ is a homeomorphism.
- A generic algebra is (spatially) isomorphic to its Gelfand transform.

Lemma 2

Lemma 2

The algebra of holomorphic functions $\mathcal{A}(\Omega)$ is generic.

Importance

■ $\hat{\mathcal{A}}(\partial\Omega)$ is (spatially) isomorphic to $\mathcal{A}(\Omega)$ by taking the Gelfand transform of the trace.

Importance

- $\hat{\mathcal{A}}(\partial\Omega)$ is (spatially) isomorphic to $\mathcal{A}(\Omega)$ by taking the Gelfand transform of the trace.
- The lemma shows that $\epsilon: \Omega \to \operatorname{spec} \mathcal{A}(\Omega)$ is a homeomorphism, so we have determined Ω up to homeomorphism.

What's Left?

We can only have hope access to the trace algebra $\mathcal{A}(\partial\Omega)$. So we need to determine this to reach our goal.

Subsection 3

Lemma 3

Trace Algebra

Trace Algebra

■ The trace algebra $\mathcal{A}(\partial\Omega) \coloneqq \iota^* \mathcal{A}(\Omega)$ is isometrically isomorphic to $\mathcal{A}(\Omega)$ since

$$\|w\|_{\mathcal{A}(\Omega)} = \|\iota^* w\|_{\mathcal{A}(\partial\Omega)}$$

and since a holomorphic function is uniquely determined by its boundary values.

Lemma 3

We have the representation

$$\mathcal{A}(\partial\Omega) = \operatorname{clos}_{C(\partial\Omega)}\{f+ih\},\,$$

where h is conjugate to f by \mathcal{H} .

Subsection 4

Proof of the Main Theorem

Following these steps yields a manifold (Ω, g) with the DN map Λ .

■ Step 1: We know $g|_{\partial\Omega}$ by Lee and Uhlmann, and thus we know \mathcal{H} and $C^{\infty}(\partial\Omega)$. This allows us to recover the trace algebra $\mathcal{A}(\partial\Omega)$ using the representation in Lemma 3.

- Step 1: We know $g|_{\partial\Omega}$ by Lee and Uhlmann, and thus we know \mathcal{H} and $C^{\infty}(\partial\Omega)$. This allows us to recover the trace algebra $\mathcal{A}(\partial\Omega)$ using the representation in Lemma 3.
- Step 2: Then find spec $\mathcal{A}(\partial\Omega) = \Omega$ by Lemma 2.

- Step 1: We know $g|_{\partial\Omega}$ by Lee and Uhlmann, and thus we know \mathcal{H} and $C^{\infty}(\partial\Omega)$. This allows us to recover the trace algebra $\mathcal{A}(\partial\Omega)$ using the representation in Lemma 3.
- Step 2: Then find spec $\mathcal{A}(\partial\Omega) = \Omega$ by Lemma 2.
- Step 3: Next, the Gelfand transform $\hat{\mathcal{A}}(\partial\Omega) = \mathcal{A}(\Omega)$ by Lemma 2.

- Step 1: We know $g|_{\partial\Omega}$ by Lee and Uhlmann, and thus we know \mathcal{H} and $C^{\infty}(\partial\Omega)$. This allows us to recover the trace algebra $\mathcal{A}(\partial\Omega)$ using the representation in Lemma 3.
- Step 2: Then find spec $\mathcal{A}(\partial\Omega) = \Omega$ by Lemma 2.
- Step 3: Next, the Gelfand transform $\hat{\mathcal{A}}(\partial\Omega) = \mathcal{A}(\Omega)$ by Lemma 2.
- Step 4: $\mathcal{A}(\Omega)$ gives us the complex structure on Ω by Lemma 1.

- Step 1: We know $g|_{\partial\Omega}$ by Lee and Uhlmann, and thus we know \mathcal{H} and $C^{\infty}(\partial\Omega)$. This allows us to recover the trace algebra $\mathcal{A}(\partial\Omega)$ using the representation in Lemma 3.
- Step 2: Then find spec $\mathcal{A}(\partial\Omega) = \Omega$ by Lemma 2.
- Step 3: Next, the Gelfand transform $\hat{\mathcal{A}}(\partial\Omega) = \mathcal{A}(\Omega)$ by Lemma 2.
- Step 4: $\mathcal{A}(\Omega)$ gives us the complex structure on Ω by Lemma 1.
- Step 5: Equip Ω with a metric g conforming to this complex structure.

Section 4

Generalizing This Method

First Issue

First Issue

 \blacksquare No complex structure in higher dimensions.

lacktriangle Use a Clifford algebra/calculus structure to replace $\mathbb C.$

- \blacksquare Use a Clifford algebra/calculus structure to replace $\mathbb C.$
- The tools of Clifford analysis allow us to recover a notion of holomorphicity known as *monogenicity*.

- $lue{}$ Use a Clifford algebra/calculus structure to replace \mathbb{C} .
- The tools of Clifford analysis allow us to recover a notion of holomorphicity known as *monogenicity*.
- We can recover a similar algebra (Hardy space) of monogenic functions.

A Clifford algebra builds upon the exterior algebra of forms. Given a quadratic space (V, Q), we have

A Clifford algebra builds upon the exterior algebra of forms. Given a quadratic space (V, Q), we have

■ The quotient of the tensor algebra

$$C\ell(V,Q) = \bigoplus_{j=0}^{\infty} V^{\otimes j} / \langle v \otimes v - Q(v) \rangle.$$

A Clifford algebra builds upon the exterior algebra of forms. Given a quadratic space (V, Q), we have

■ The quotient of the tensor algebra

$$C\ell(V,Q) = \bigoplus_{j=0}^{\infty} V^{\otimes j} / \langle v \otimes v - Q(v) \rangle$$

■ If Q = g is an inner product, this yields a geometric product on vectors $u, v \in C\ell(V, g)$

$$uv = g(u, v) + u \wedge v.$$

A Clifford algebra builds upon the exterior algebra of forms. Given a quadratic space (V, Q), we have

■ The quotient of the tensor algebra

$$C\ell(V,Q) = \bigoplus_{j=0}^{\infty} V^{\otimes j} / \langle v \otimes v - Q(v) \rangle$$

■ If Q = g is an inner product, this yields a geometric product on vectors $u, v \in C\ell(V, g)$

$$uv = g(u, v) + u \wedge v.$$

• Geometric product can be extended to multivectors.

We have all seen Clifford algebras before. Indeed,

We have all seen Clifford algebras before. Indeed,

 $\blacksquare \ \mathbb{C} \cong \mathrm{C}\ell(\mathbb{R},-\cdot).$

We have all seen Clifford algebras before. Indeed,

- $\mathbb{C} \cong \mathrm{C}\ell(\mathbb{R}, -\cdot).$
- \mathbb{C} also lives inside of $\mathrm{C}\ell(\mathbb{R}^2,\cdot)$ as the even subalgebra. That is,

$$x + iy \iff 1x + e_1 \wedge e_2 y$$
,

where $e_1 \wedge e_2$ is the bivector (and psuedoscalar).

We have all seen Clifford algebras before. Indeed,

- \blacksquare $\mathbb{C} \cong \mathrm{C}\ell(\mathbb{R}, -\cdot).$
- \mathbb{C} also lives inside of $\mathrm{C}\ell(\mathbb{R}^2,\cdot)$ as the even subalgebra. That is,

$$x + iy \iff 1x + e_1 \wedge e_2 y$$
,

where $e_1 \wedge e_2$ is the bivector (and psuedoscalar).

■ \mathbb{H} lives inside of $\mathrm{C}\ell(\mathbb{R}^3,\cdot)$ as the even subalgebra.

■ We can replace $d + \delta$ with the Dirac operator D

$$D = \sum_{j=1}^{n} e_j \frac{\partial}{\partial x^j}.$$

• We can replace $d + \delta$ with the Dirac operator D

$$D = \sum_{j=1}^{n} e_j \frac{\partial}{\partial x^j}.$$

 $D^2 = \Delta.$

• We can replace $d + \delta$ with the Dirac operator D

$$D = \sum_{j=1}^{n} e_j \frac{\partial}{\partial x^j}.$$

- $D^2 = \Delta.$
- \blacksquare Elements in the kernel of D are monogenic.

• We can replace $d + \delta$ with the Dirac operator D

$$D = \sum_{j=1}^{n} e_j \frac{\partial}{\partial x^j}.$$

- $D^2 = \Delta.$
- \blacksquare Elements in the kernel of D are monogenic.
- Monogenic objects in even subalgebra have components that are harmonic.

• We can replace $d + \delta$ with the Dirac operator D

$$D = \sum_{j=1}^{n} e_j \frac{\partial}{\partial x^j}.$$

- $D^2 = \Delta.$
- \blacksquare Elements in the kernel of D are monogenic.
- Monogenic objects in even subalgebra have components that are harmonic.
- lacktriangle There are Cauchy integral and Hilbert transform type operators for D in arbitrary dimension.

In dimensions greater than 2, even subalgebra is noncommutative.

In dimensions greater than 2, even subalgebra is noncommutative.

■ The spectral theory for Belishev's solution required a commutative Banach algebra.

In dimensions greater than 2, even subalgebra is noncommutative.

- The spectral theory for Belishev's solution required a commutative Banach algebra.
- The spectral theory for noncommutative Banach algebras is not as developed.

In dimensions greater than 2, even subalgebra is noncommutative.

- The spectral theory for Belishev's solution required a commutative Banach algebra.
- The spectral theory for noncommutative Banach algebras is not as developed.
- There is still work to do here to find some way around this.

Section 5

Conclusion

■ Calderón proposed a useful and challenging problem for both theorists and practicioners.

- Calderón proposed a useful and challenging problem for both theorists and practicioners.
- Advances have been made in both areas.

- Calderón proposed a useful and challenging problem for both theorists and practicioners.
- Advances have been made in both areas.
- Ideal results are still not yet obtained.

■ Belishev solved the 2D problem using the boundary control method.

- Belishev solved the 2D problem using the boundary control method.
- It relies heavily on complex analysis and the spectral theory for commutative Banach algebras.

- Belishev solved the 2D problem using the boundary control method.
- It relies heavily on complex analysis and the spectral theory for commutative Banach algebras.
- These issues remain if we try to naively generalize this approach.

■ Clifford algebras and analysis replace the complex structure in arbitrary dimension.

- Clifford algebras and analysis replace the complex structure in arbitrary dimension.
- We can still construct the same algebra of holomorphic functions.

- Clifford algebras and analysis replace the complex structure in arbitrary dimension.
- We can still construct the same algebra of holomorphic functions.
- The relevant algebras are noncommutative for dimensions ≥ 3 .

- Clifford algebras and analysis replace the complex structure in arbitrary dimension.
- We can still construct the same algebra of holomorphic functions.
- The relevant algebras are noncommutative for dimensions ≥ 3 .
- There are possibly other tools at our disposal that may be able to replace the loss of commutivity.

Thank you!