NIVEAU BAC TLE D

Épreuve : Math'ematiques

Situation d'évaluation

Contexte: Un concours de danse

Pour la fête de Gani , le ministre de la culture organise dans chaque ville un concours de danse traditionnel .

Celui de Djougou a lieu à la place de l'indépendance . Pour cette manifestation , la direction des services techniques de la mairie de Djougou projette l'érection d'un podium. Sur ce podium sera aménagé :

- un espace ABC pour les danseurs,
- un point D pour l'animateur,
- un point N pour l'implantation d'une baffe pour amplifier le son ,
- un espace (Δ) pour la danse,
- un espace (S) pour la remise des récompenses,
- un espace (S') réservé aux trophées et médailles à distribuer.

Le travail est confié à Eptissam , directrice des services techniques .Elle se propose de repérer les différents emplacements réservés sur le podium. Elle désire aussi proposer une candidate qui représentera la mairie à ce concours .

Dans le plan du podium assimilé au plan complexe (\mathscr{P}) muni d'un repère orthonormé $(0; \overrightarrow{u}, \overrightarrow{v})$, les affixes a, b et c respectives des points A, B et C sont les racines du polynôme P tel que $P(z) = z^3 - 2z^2 - (4+4i)z - 16+16i$ où z désigne une variable complexe .Les coordonnées du point N dans l'espace muni du repère orthonormé $(o; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ sont $(\sin(\frac{\pi}{8}), \sin(\frac{3\pi}{8}), \cos(\frac{3\pi}{8}))$.

<u>Tâche</u>: Tu es invité(e) à aider Eptissam dans son travail en résolvant chacun des trois problèmes suivants.

Problème 1

- 1.a. Résous dans \mathbb{C} l'équation P(z) = 0, sachant que le points A appartient à la droite de repère $(0; \overrightarrow{u})$ et le point B appartient à la droite de repère $(0, \overrightarrow{v})$.
 - b. Sachant que les points A et B sont symétriques par rapport au point E détermine les coordonnées des points A, B, C et E.
 - c. Calcule $\frac{c-b}{a-b}$ et déduis-en la nature du triangle ABC.

- 2. En réalité les coordonnées des points A, B, C et E ont pour affixes respectives -1-i; -3+i; 2+i et i . Les points E et E désignent les barycentres respectifs des systèmes E et E
- a. Détermine les coordonnées des points H et K.
- b. Détermine géométriquement l'ensemble (Δ) des points M de \mathscr{P} tels que |z'|=1.
- 3.a. Ecris le nombre complexe $u=2-2e^{i\frac{\pi}{4}}$ sous forme algébrique puis sous forme trigonométrique .
 - b. Sachant que $\frac{3\pi}{8} = \frac{\pi}{2} \frac{\pi}{8}$, déduis-en la valeur exacte de $\sin(\frac{\pi}{8})$, $\sin(\frac{3\pi}{8})$ et de $\cos(\frac{3\pi}{8})$, puis les valeurs exactes des coordonnées du point N .

Problème 2

Les trophées ont la forme d'un cube ABCDEFGH.

On donne AD=8cm. Soient D', B', et E' respectivement les points des segments $[AD],\,[AB]$, [AE] tel que AD'=AB'=AE'=2cm.

On admettra que l'espace affine est orienté et que $\mathscr{R}=(A;\overrightarrow{AD'},\overrightarrow{AB'},\overrightarrow{AE'})$ est un repère orthonormé direct .

- 1. Calcule dans le repère ${\mathscr R}$ les coordonnées des sommets de ce cube .
- 2. Soient I le milieu du segment [HE] et J celui [CG]. Calcule en cm^2 l'aire du triangle FIJ.
- 3. Soit Q le projeté orthogonal de G à la droite (IJ) .

4.
$$\overrightarrow{u} = \frac{1}{\sqrt{2}}(-\overrightarrow{AD'} + \overrightarrow{AB'}).$$

- a. Démontre que \overrightarrow{u} est unitaire .
- b. Détermine les coordonnées du vecteur \overrightarrow{v} tel que $\mathscr{R}_1 = (A; \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{AE'})$ soit un repère orthonormé direct de l'espace.

Problème 3

L'espace est décoré par des cordes de portions des courbes des fonctions suivantes :

$$f(x) = \frac{x^3 - 3x - 1}{x - 1}; h(x) = \frac{x - 1}{\sqrt{x - 1}} + x; g(x) = \frac{\sqrt{2}}{2}x - \cos(x) \text{ et } v(x) = 2x^3 - 3x^2 + 4.$$

Partie A

- 1. Etudie les variations de g sur $[0; \pi]$.
- 2.a. Démontre que l'équation g(x) = 0 admet une solution et une seule x_0 dans $|0;\pi|$.
 - b. Retrouve le résultat précédent en construisant sur $[0; \pi]$ les courbes représentative des fonctions g_1 et g_2 définies par $g_1(x) = \frac{\sqrt{2}}{2}x$ et $g_2(x) = \cos(x)$.
 - 3. Démontre que x_0 appartient à [0,8;0,9]. Déduis-en une valeur approchée de x_0 à 10^{-2} près .

Partie B

- 4.a. Détermine le domaine de définition D_h de h.
 - b. Justifie que h est prolongeable par continuité en 1, puis définis ce prolongement
- 5.a. Etudie les variations de la fonction v définie sur \mathbb{R} par $v(x) = 2x^3 3x^2 + 4$.
 - b. Démontre que l'équation v(x)=0 admet une solution unique α telle que $-0.92 < \alpha < -0.91$.
 - c. Déduis –en le signe de v(x) suivant les valeurs de x.
 - 6. Soit g l'application définie de $]-\infty;0]$ dans $]-\infty;4]$ par g(x)=v(x).
 - a. Justifie que g admet une bijection réciproque g^{-1} .
 - b. Calcule $q^{-1}(0)$ et $q^{-1}(4)$.
 - c. Dresse le tableau de variation de f.

- 7.a. Justifie que l'ensemble de définition D de f est $D = \mathbb{R} \{1\}$.
 - b. Calcule les limites de f aux bornes de D .
- 8.a. Détermine la fonction dérivée f' de f puis vérifie que , pour tout $x \in D$ $f'(x) = \frac{v(x)}{(x-1)^2}.$
 - b. Déduis en le signe de f'(x), puis donne le sens de variation de f .
 - c. Dresse le tableau de variation de f.
- 9.a. Démontre que $f(\alpha) = \frac{3}{2}(\alpha 1 \frac{3}{\alpha 1})$.
 - b. Donne un encadrement de $f(\alpha)$
 - c. Construis la courbe (\mathscr{C}) de f .

types de tirages	les p éléments sont ordonnés	les p éléments sont distincts	Outils	Nbre tirage
tirages successifs avec remise	Oui	Non	p-uplet	n^p
tirages successifs sans remise	Oui	Oui	p-arrangement	A_n^p
tirages simultanés	Non	Oui	p-combinaison	C_n^p