DESCRIPTION

These are ultraviolet-light erasable and electrically reprogrammable 32 768-bit (4096-word by 8-bit) EPROMS. They incorporate N-channel silicon-gate MOS technology, and are designed for microprocessor programming applications.

FEATURES

• Fast programming:

200s/32 768 bits (typ)

●Access time M5L 2732K:

450ns (max)

M5L 2732K-6:

550ns (max)

- Static circuits are used throughout
- Inputs and outputs TTL-compatible in read and program modes
- •Single 5V power supply for read mode
- (25V power supply required for program)

 •Low power dissipation: Operating: 787mW (max)

Standby:

157 mW (max)

●Single-location programming

(requires one 50ms pulse/address)

•Interchangeable with Intel's 2732 in pin configuration

APPLICATION

Computers and peripheral equipment

FUNCTION

Read

Set the \overline{CE} and \overline{OE} terminals to the read mode (low-level). Low-level input to \overline{CE} and \overline{OE} and address signals to the address inputs (A₀ \sim A₁₁) make the data contents of the designated address location available at the data inputs/outputs (D₀ \sim D₇). When the \overline{CE} or \overline{OE} signal is high, data inputs/outputs (D₀ \sim D₇) are in a floating state.

When the $\overline{\text{CE}}$ signal is high, the device is in the standby mode or power-down mode.

Programming

The chip enters the programming mode when 25V is supplied to the \overline{OE}/V_{PP} input. A location is designated by address signals $A_0 \sim A_{11}$, and the data to be programmed must be applied at 8 bits in parallel to the data inputs $D_0 \sim D_7$. A program pulse, an active low pulse, to the \overline{CE} at this state will effect the programming operation. Only one programming is required, but its width must satisfy the condition $45\text{ms} \leq t_{W(CE)} \leq 55\text{ms}$.

Erase

Erase is effected by exposure to ultraviolet light with a wavelength of 2537 \mathring{A} at an intensity of approximately 15Ws/cm².

Mode selection

(Unit: V)

				(0)11(: 17
Pin Mode	CE	0E/V _{PP}	Vcc	Outputs
Read	VIL	VIL	5	Output
Deselect	V _{IL} ~V _{IH}	ViH	5	Floating
Power down	V _{IH}	VIL~VIH	5	Floating
Program	Pulsed VIH to VIL	25	5	Input
Program verify	VIL	VIL	5	Output
Program inhibit	VIH	25	5	Floating

HANDLING PRECAUTIONS

- Sunlight and fluorescent light may contain ultraviolet light sufficient to erase the programmed information.
 For any operation in the read mode, the transparent window should be covered with opaque tape.
- 2. High voltages are used when programming, and the conditions under which is it performed must be carefully controlled to prevent the application of excessively high voltages. Specifically, the voltage applied to V_{PP} should be kept below 26V including overshoot. Special precautions should be taken at the time of power-on.
- Before erasing, clean the surface of the transparent lid to remove completely oily impurities or paste, which may impede irradiation and affect the erasing characteristics.

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Conditions	Limits	Unit
V ₁₁	Input voltage, OE/Vpp input	With respect to GND	-0.3-26.5	٧
V ₁₂	V ₁₂ Input voltage, V _{CC} , address, $\overline{\text{CE}}$, data inputs		-0.3~6	V
Topr	Operating free air temperature range		0~70	°C
Tstg	Storage temperature range		−65~125	°C

READ OPERATION

Recommended Operating Conditions (Ta = 0 ~ 70℃. unless otherwise noted)

Symbol	Parameter		Limits		
Symbol	rarameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.75	5	5.25	V
GND	Supply voltage		0		V
VIL	Low-level input voltage	-0.1		0.8	٧
ViH	High-level input voltage	2.2		V _{CC} + 1	· V

Electrical Characteristics ($Ta=0\sim70\,\text{°C}$, $~V_{CC}=5V\pm5\%$, unless otherwise noted.)

0	D	T	1	Limits		
Symbol	Parameter	Test conditions	Min	Typ (Note 1)	Max	Unit
l _{IL1}	High-level input current, address, $\overline{\text{CE}}$ input	V _I = 5.25V			10	μА
I _{IL2}	High-level input current, \overline{OE}/V_{PP} input	V _I =4.75V			10	μА
loz	Off-state output current	$V_0 = 5.25V$, $\overline{OE} = 5 V$			10	μΑ
1001	Supply current from V _{CC} (standby)	$\overline{CE} = V_{IH}, \overline{OE} = V_{IL}$		15	30	m A
ICC2	Supply current from V _{CC} (operating)	$\overline{OE} = \overline{CE} = V_{IL}$		85	150	mA
VoL	Low-level output voltage	I _{OL} = 2.1mA			0.45	V
Voн	High-level output voltage	I _{OH} = - 400μΑ	2.4			V

Switching Characteristics ($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5 \text{ V} + 5 \%$, unless otherwise noted.)

Cl	Decomptor		Tana and disiona		Limits			
Symbol	Parame	Parameter Test conditions	naitions	Min	Typ (Note 1)	Max	Unit	
•	Add-on- oppose time	M5L 2732K	0F - 0F - V	1 < 2000			450	ns
ta(A)	Address access time	M5L 2732K - 6	OE = CE = VIL				550	ns
•	Chin and have a	M5L 2732K	ōF V				450	ns
ta(CE)	Chip enable access time	M5L 2732K - 6	OE = VIL	,			550	ns
•	0	M5L 2732K	0F - V			100	150	ns
ta(OE)	Output enable access time	M5L 2732K - 6	GE = VIL	100pF+1TTL			200	ns
tv(OE)	Data valid time after output	enable	CE = V _{IL}		0		100	ns
tv(CE)	Data valid time after chip sel	ect	OE = VIL		0		100	ns
tv(A)	Data valid time after address		$\overline{OE} = \overline{CE} = V_{1L}$		0			ns

Note 1: at Ta = 25°C and normal supply voltage.

TIMING DIAGRAMS (Read Operation) When power-Down Mode Not Used

Power-Down Mode

PROGRAM MODE

Recommended Operating Conditions (Ta = 25 + 5 °C, unless otherwise noted.)

Symbol			Limits			
Symbol	Parameter	Min	Nom	Max	Unit	
Vcc	Supply voltage	4.75	5	5.25	V	
V _{PP}	Supply voltage	24	25	26	V	
GNG	Supply voltage		0		V	
VIL	Low-level input voltage	- 0.1		0.8	V	
ViH	High-level input voltage	2.2		Vcc + 1	٧	

Electrical Characteristics (Ta = 25 \pm 5 °C, V_{CC} = 5 V \pm 5 %. V_{PP} = 25 \pm 1 V, unless otherwise noted.)

Symbol	•	T	Limits			l lada
Symbol	Parameter Parameter	Test conditions	Min	Тур	Max	Unit
liL.	High-level input current, address, \overline{CE} inputs	V _{IN} = 5.25V			10	μΑ
lpp	Supply current from V _{PP}	CE = V _{IL}			30	mA
loc	Supply current from V _{CC}				150	mA

$\textbf{Timing Requirements} \ \, (\ \, \text{Ta} = 25 \pm 5 \ \, \text{C} \, , \ \, \text{V}_{CC} = 5 \, \text{V} \pm \, 5 \, \, \%, \ \, \text{V}_{PP} = 25 \pm 1 \, \text{V}, \ \, \text{unless otherwise noted.})$

0			Limits			Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Onit
tsu(A-CE)	Address setup time before chip enable		2			μS
tsu(OE- CE)	Output enable setup time before chip enable		2	-		μS
tsu(DQ-CE)	Data input setup time before chip enable		2			μS
th(CE-A)	Address hold time after chip enable		2			μs
th(ce- oe)	Output enable hold time after chip enable		2			μS
th(CE-DQ)	Data input hold time after chip enable		2			μS
th(VPPL-OEH)	Chip enable high hold time after V _{PP} low		2			μS
tw(ce)	Chip enable pulse width		45	50	55,	ms

$\textbf{Switching Characteristics} \quad \text{Ta} = 25 \pm \ 5 \ \text{°C} \ . \quad \text{V}_{CC} = \ 5 \ \text{V} \pm \ 5 \ \text{\%}, \quad \text{V}_{PP} = 25 \pm \ 1 \ \text{V}, \text{ unless otherwise noted.})$

Symbol Parameter	Test conditions	Limits			Unit	
	rarameter	rest conditions	Min	Тур	Max	Offic
tv(ce)pr	Data valid time after chip enable in program mode		0		120	ns

Timing Diagram (for Program and Verify)

