TESTE INTERMÉDIO DE MATEMÁTICA A

RESOLUÇÃO - VERSÃO 1

Grupo I

1. $2 \times 4! = 2 \times 24 = 48$

Resposta **B**

2. A linha do Triângulo de Pascal em que o segundo elemento é 2009 é a linha que contém os elementos da forma $^{2009}C_k$, em que $\,k\,$ varia de $\,0\,$ a $\,2009$. Esta linha tem $\,2010\,$ elementos.

Tem-se $^{2009}C_2=2\,017\,036$, pelo que $^{2009}C_2$ é maior do que $\it um$ $\it milhão$.

Por isso, apenas os dois primeiros e os dois últimos elementos dessa linha não são maiores do que *um milhão*.

A resposta correcta é, portanto, 2010-4, ou seja, 2006

Resposta C

- **3.** Representa-se a seguir, para cada uma das quatro alternativas do valor médio:
 - a área correspondente a P(X < 40), a ponteado;
 - a área correspondente a P(X > 50), a tracejado.

A alternativa em que $\ P(X>50)$ é inferior a $\ P(X<40)$ é aquela em que o valor médio da variável é $\ 42.$

Resposta A

4. $P\left(A \mid B\right)$ significa, no contexto do problema, «probabilidade de o número do cartão escolhido ser maior do que $\sqrt{30}$, sabendo que o cartão escolhido é um círculo».

Como sabemos que o cartão escolhido é um círculo, existem quatro casos possíveis $(2,\,4,\,5$ e 7)

Destes quatro números, apenas o 7~ é maior do que $\sqrt{30}$

Portanto,
$$P(A \mid B) = \frac{1}{4}$$

Resposta B

5. O *Zé Mão Quente* falha 10% dos lances livres que executa. Portanto, ao executar um lance livre, a probabilidade de o concretizar é igual a 0,9

Numa série de oito lances livres, tem-se:

- 0.9^8 é a probabilidade de o *Zé Mão Quente* concretizar os oito lances livres:
- $^8C_7 \times 0.9^7 \times 0.1$ é a probabilidade de o *Zé Mão Quente* concretizar sete lances livres.

Assim, $0.9^8+{}^8C_7\times0.9^7\times0.1$ é a probabilidade do acontecimento «o *Zé Mão Quente* concretiza sete ou oito lances livres», pelo que $1-0.9^8-{}^8C_7\times0.9^7\times0.1$ é a probabilidade do acontecimento contrário desse.

Tem-se, assim, que $~1-0.9^8-~^8C_7\times 0.9^7\times 0.1~$ é a probabilidade do acontecimento «o Zé Mão Quente concretiza no máximo seis lances livres».

Resposta C

Grupo II

1.1.
$$2 \times {}^{17}A_4 = 114240$$

1.2.
$$\frac{2 \times {}^{5}C_{3} + 5 \times {}^{4}C_{3}}{{}^{10}C_{3}} = \frac{1}{3}$$

1.3.
$$\frac{2 \times 5}{5 \times 5} = \frac{2}{5}$$

2.1.
$$\begin{cases} 0.2 + a + 0.2 + b + 0.1 + 0.15 = 1 \\ 1 \times 0.2 + 2 \times a + 3 \times 0.2 + 4 \times b + 5 \times 0.1 + 6 \times 0.15 = 3.4 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} a+b=0.35 \\ 2a+4b=1.2 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} a = 0.1 \\ b = 0.25 \end{cases}$$

2.2. Tem-se:
$$P(C) = 0.2 + 0.2 + 0.1 = 0.5$$
 e $P(D) = 0.1 + 0.15 = 0.25$

$$\mathrm{Logo},\ P(C)\times P(D)=0,125$$

Por outro lado, tem-se
$$P(C \cap D) = P(\{5\}) = 0.1$$

Como $P(C\cap D)\neq P(C)\times P(D)$, os acontecimentos C e D não são independentes.

3.1.
$$P(A) \times [P(B|A) - 1] + P(\overline{A} \cup \overline{B}) =$$

$$= P(A) \times P(B|A) - P(A) + P(\overline{A \cap B}) =$$

$$= P(A \cap B) - P(A) + 1 - P(A \cap B) = 1 - P(A) = P(\overline{A})$$

3.2. Em relação à experiência aleatória «escolher, ao acaso, um atleta participante no encontro desportivo», sejam A e B os acontecimentos:

A: «O atleta é português»

 $B: \mathrm{«O}$ atleta é do sexo feminino»

Consequentemente:

- a informação «metade dos atletas portugueses que participam no encontro são do sexo feminino» traduz-se por P(B|A)=0.5
- a informação «escolhido ao acaso um atleta participante no encontro, a probabilidade de ele ser estrangeiro ou do sexo masculino é 90%» traduz-se por

$$P(\overline{A} \cup \overline{B}) = 0.9$$

Portanto, de acordo com a igualdade da alínea anterior, tem-se:

$$P(A) \times (0.5 - 1) + 0.9 = P(\overline{A})$$

Donde vem:

$$-0.5P(A) + 0.9 = 1 - P(A) \Leftrightarrow 0.5P(A) = 0.1 \Leftrightarrow P(A) = \frac{1}{5}$$

Como $\frac{1}{5} \times 200 = 40$, participam no encontro 40 atletas portugueses.

4. Um enunciado possível é o seguinte:

Um saco contém dez bolas, sendo sete azuis e três verdes. Retiram-se, ao acaso, cinco bolas do saco e observa-se a cor de cada bola.

Qual é a probabilidade de pelo menos quatro dessas bolas serem azuis?