Adaptive Learning for High-dimensional Hamilton-Jacobi-Bellman Equations

Dec 2022

- Put on arxiv on 2019/11/11.
- Last revise on 2021/2/8.
- The authors are: Tenavi Nakamura-Zimmerer, Qi Gong, Wei Kang.
- Accepted by SISC on 2021.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Problem Formulation

We consider fixed final time optimal control problems (OCP) of the form

$$\begin{cases} & \underset{\boldsymbol{u}(\cdot) \in \mathbb{U}}{\text{minimize}} & J[\boldsymbol{u}(\cdot)] = F\left(\boldsymbol{x}\left(t_f\right)\right) + \int_0^{t_f} \mathcal{L}(t, \boldsymbol{x}, \boldsymbol{u}) dt \\ & \text{subject to} & \dot{\boldsymbol{x}}(t) = \boldsymbol{f}(t, \boldsymbol{x}, \boldsymbol{u}) \\ & & \boldsymbol{x}(0) = \boldsymbol{x}_0. \end{cases}$$

Here

- $\mathbf{x}(t):[0,t_f] \to \mathbb{X} \subseteq \mathbb{R}^n$ is the state;
- $u(t, \mathbf{x}) : [0, t_f] \times \mathbb{X} \to \mathbb{U} \subseteq \mathbb{R}^m$ is the control;
- $J[\boldsymbol{u}(\cdot)]$ is the cost functional, $F(x(t_f)): \mathbb{X} \to \mathbb{R}$ is the terminal cost, $\mathcal{L}(t, \boldsymbol{x}, \boldsymbol{u}): [0, t_f] \times \mathbb{X} \times \mathbb{U} \to \mathbb{R}$ is the running cost.

3/17

Open-loop and closed-loop

• For a given initial condition $x(0) = x_0$, many numerical methods exist to compute the optimal open-loop solution,

$$\boldsymbol{u} = \boldsymbol{u}^* (t; \boldsymbol{x}_0)$$

 Due to various sources of disturbance and real-time application requirements, for practical implementation one typically desires an optimal control in closed-loop feedback form,

$$\boldsymbol{u}=\boldsymbol{u}^*(t,\boldsymbol{x}),$$

which can be evaluated online given any $t \in [0, t_f]$ and a measurement of $x \in \mathbb{X}$.

Value function and HJB equation

• Define the value function $V(t, \mathbf{x}) : [0, t_f] \times \mathbb{X} \to \mathbb{R}$ as the optimal cost-to-go starting at (t, \mathbf{x}) . That is,

$$V(t, \mathbf{x}) := J[\mathbf{u}^*(\cdot)] = \begin{cases} \inf_{\mathbf{u}(\cdot) \in \mathbb{U}} & F(\mathbf{y}(t_f)) + \int_t^{t_f} \mathcal{L}(\tau, \mathbf{y}, \mathbf{u}) d\tau, \\ \text{s.t.} & \dot{\mathbf{y}}(\tau) = \mathbf{f}(\tau, \mathbf{y}, \mathbf{u}), \\ & \mathbf{y}(t) = \mathbf{x}. \end{cases}$$

 It can be shown that the value function is the unique viscosity solution of the Hamilton-Jacobi-Bellman (HJB) PDE,

$$\begin{cases} -V_t(t, \mathbf{x}) - \min_{\mathbf{u} \in \mathbb{U}} \left\{ \mathcal{L}(t, \mathbf{x}, \mathbf{u}) + [V_{\mathbf{x}}(t, \mathbf{x})]^T \mathbf{f}(t, \mathbf{x}, \mathbf{u}) \right\} = 0 \\ V(t_f, \mathbf{x}) = F(\mathbf{x}) \end{cases}$$

Adaptive HJB Dec 2022 5 / 17

Costate

- Defining the Hamiltonian $\mathcal{H}(t, \mathbf{x}, \lambda, \mathbf{u}) := \mathcal{L}(t, \mathbf{x}, \mathbf{u}) + \lambda^T \mathbf{f}(t, \mathbf{x}, \mathbf{u})$ where $\lambda(t) : [0, t_f] \to \mathbb{R}^n$ is the costate.
- The optimal control satisfies the Hamiltonian minimization condition,

$$u^*(t) = u^*(t, x; \lambda) = \underset{u \in \mathbb{U}}{\operatorname{arg min}} \mathcal{H}(t, x, \lambda, u).$$

The optimal feedback control is computed by substituting

$$\lambda(t) = V_{\mathbf{x}}(t, \mathbf{x})$$

to get

$$u^*(t, x) = u^*(t, x; V_x) = \underset{u \in \mathbb{U}}{\operatorname{arg min}} \mathcal{H}(t, x, V_x, u)$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Adaptive HJB Dec 2022 6 / 17

PMP

Pontryagin's Minimum Principle

$$\begin{cases} \dot{\boldsymbol{x}}(t) = \mathcal{H}_{\lambda} = \boldsymbol{f}(t, \boldsymbol{x}, \boldsymbol{u}^{*}(t, \boldsymbol{x}; \lambda)), & \boldsymbol{x}(0) = x_{0} \\ \dot{\lambda}(t) = -\mathcal{H}_{\boldsymbol{x}}(t, \boldsymbol{x}, \lambda, \boldsymbol{u}^{*}(t, \boldsymbol{x}; \lambda)), & \lambda(t_{f}) = F_{\boldsymbol{x}}(\boldsymbol{x}(t_{f})) \\ \dot{v}(t) = -\mathcal{L}(t, \boldsymbol{x}, \boldsymbol{u}^{*}(t, \boldsymbol{x}; \lambda)), & v(t_{f}) = F(\boldsymbol{x}(t_{f})) \end{cases}$$
(1)

• If we further assume that the solution is optimal, then along the characteristic $x(t; x_0)$ we have that

$$u^*(t, \mathbf{x}) = u^*(t; \mathbf{x}_0),$$

$$V(t, \mathbf{x}) = v(t; \mathbf{x}_0),$$

$$V_{\mathbf{x}}(t, \mathbf{x}) = \lambda(t; \mathbf{x}_0)$$

Neural network approximation of the value function

- Initial data generation;
- Model training;
- Adaptive data generation;
- Model refinement and validation;
- Feedback control.

8 / 17

Initial data generation

Specifically, by solving the BVP (1) from a set of randomly sampled initial conditions, we get a data set

$$\mathcal{D} = \left\{ \left(t^{(i)}, \mathbf{x}^{(i)} \right), V^{(i)} \right\}_{i=1}^{N_d},$$

where $(t^{(i)}, \mathbf{x}^{(i)})$ are the inputs, $V^{(i)} := V(t^{(i)}, \mathbf{x}^{(i)})$ are the outputs to be modeled, and $i = 1, 2, \ldots, N_d$ are the indices of the data points.

Train the Network

The NN is then trained by solving the nonlinear regression problem,

minimize
$$\frac{1}{N_d} \sum_{i=1}^{N_d} \left[V^{(i)} - V^{NN} \left(t^{(i)}, \boldsymbol{x}^{(i)}; \boldsymbol{\theta} \right) \right]^2$$

10 / 17

Physical-informed Learning

Obtain costate data $\lambda(t)$ is for each trajectory as a natural product of solving the BVP. Hence we have the augmented data set,

$$\mathcal{D} = \left\{ \left(t^{(i)}, \boldsymbol{x}^{(i)} \right), \left(V^{(i)}, \boldsymbol{\lambda}^{(i)} \right) \right\}_{i=1}^{N_d},$$

where $\boldsymbol{\lambda}^{(i)} := \boldsymbol{\lambda} \left(t^{(i)}; \boldsymbol{x}^{(i)} \right)$.

Adaptive HJB Dec 2022 11 / 17

Physical-informed Learning

We now define the physics-informed learning problem,

$$\underset{V}{\mathsf{minimize}_{\boldsymbol{\theta}}} \operatorname{loss}(\boldsymbol{\theta}; \mathcal{D}) := \underset{V}{\mathsf{loss}}(\boldsymbol{\theta}; \mathcal{D}) + \mu \cdot \operatorname{loss}_{\boldsymbol{\lambda}}(\boldsymbol{\theta}; \mathcal{D})$$

Here $\mu \ge 0$ is a scalar weight, the loss with respect to data is

$$\underset{V}{\mathsf{loss}}(\boldsymbol{\theta}; \mathcal{D}) := \frac{1}{N_d} \sum_{i=1}^{N_d} \left[V^{(i)} - V^{\mathrm{NN}} \left(t^{(i)}, \boldsymbol{x}^{(i)}; \boldsymbol{\theta} \right) \right]^2$$

and the gradient regularization is defined as

$$\underset{\boldsymbol{\lambda}}{\mathsf{loss}}(\boldsymbol{\theta}; \mathcal{D}) := \frac{1}{N_d} \sum_{i=1}^{N_d} \left\| \boldsymbol{\lambda}^{(i)} - V_{\boldsymbol{x}}^{\mathrm{NN}} \left(t^{(i)}, \boldsymbol{x}^{(i)}; \boldsymbol{\theta} \right) \right\|^2$$

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

Adaptive

"In this paper, we concentrate samples where $\|V_x^{\rm NN}(\cdot)\|$ is large. Regions of the value function with large gradients tend to be steep or complicated, and thus may benefit from having more data to learn from."

Well.....

Adaptive HJB

Adaptive

Algorithm 4.1 Adaptive sampling and model refinement

```
    Generate D<sup>1</sup><sub>train</sub> using time-marching

 2: for r = 1, 2, ... do
       Solve (3.3) for \theta
       if (4.8) is satisfied then
 4.
          return optimized parameters \theta and NN validation accuracy
       else
 6.
          while (4.9) is not satisfied do
 7:
             Sample candidate initial conditions x_0^{(i)}, i = 1, ..., N_c
 8:
             In parallel, predict \left\|V_{\boldsymbol{x}}^{\text{NN}}\left(0, x_{0}^{(i)}\right)\right\|, i = 1, \dots, N_{c}
 9:
             Choose the initial condition(s) with largest predicted gradient norm and
10:
             use NN warm start to solve the corresponding BVP(s) (2.11)
             Add the resulting trajectorie(s) to \mathcal{D}_{\text{train}}^{r+1}
11:
          end while
12.
13:
       end if
14: end for
```

Adaptive HJB

Solving the control

• Suppose that the system dynamics can be written in the form

$$\dot{x} = f(t, x) + g(t, x)u,$$

where $f(t, \mathbf{x}) : [0, t_f] \times \mathbb{X} \to \mathbb{R}^n, \mathbf{g}(t, \mathbf{x}) : [0, t_f] \times \mathbb{X} \to \mathbb{R}^{n \times m}$, and the control is unconstrained.

Further, suppose that the running cost is of the form

$$\mathcal{L}(t, \boldsymbol{x}, \boldsymbol{u}) = h(t, \boldsymbol{x}) + \boldsymbol{u}^T \boldsymbol{W} \boldsymbol{u},$$

for some convex function $h(t, \mathbf{x}) : [0, t_f] \times \mathbb{X} \to \mathbb{R}$ and some positive definite weight matrix $\mathbf{W} \in \mathbb{R}^{m \times m}$.

Adaptive HJB Dec 2022 15 / 17

Solving the control

Then the Hamiltonian is

$$\mathcal{H}(t, \mathbf{x}, \lambda, \mathbf{u}) = h(t, \mathbf{x}) + \mathbf{u}^T \mathbf{W} \mathbf{u} + \lambda^T \mathbf{f}(t, \mathbf{x}) + \lambda^T \mathbf{g}(t, \mathbf{x}) \mathbf{u}.$$

Now we apply PMP, which for unconstrained control requires

$$\mathbf{0}_{m\times 1} = \mathcal{H}_{\boldsymbol{u}}(t,\boldsymbol{x},\boldsymbol{\lambda},\boldsymbol{u}^*) = 2\boldsymbol{W}\boldsymbol{u}^* + \boldsymbol{g}^T(t,\boldsymbol{x})\boldsymbol{\lambda}.$$

• Letting $\lambda = V_x(t, x)$ and solving for u^* yields the optimal feedback control law in explicit form:

$$\boldsymbol{u}^*(t, \boldsymbol{x}; V_{\boldsymbol{x}}) = -\frac{1}{2} \boldsymbol{W}^{-1} \boldsymbol{g}^T(t, \boldsymbol{x}) V_{\boldsymbol{x}}(t, \boldsymbol{x})$$

Adaptive HJB Dec 2022 16 / 17

Validation

• The relative mean absolute error (RMAE)

$$\mathsf{RMAE}\left(\boldsymbol{\theta}; \mathcal{D}_{\mathrm{val}}\right) := \frac{\sum_{i=1}^{N_d} \left| V^{(i)} - V^{\mathrm{NN}}\left(t^{(i)}, \boldsymbol{x}^{(i)}; \boldsymbol{\theta}\right) \right|}{\sum_{i=1}^{N_d} \left| V^{(i)} \right|}$$

• Relative mean L² error

$$\mathsf{RM}\, L^2\left(\boldsymbol{\theta}; \mathcal{D}_{\mathrm{val}}\right) := \frac{\sum_{i=1}^{N_d} \left\|\boldsymbol{\lambda}^{(i)} - V_{\mathbf{x}}^{\mathrm{NN}}\left(t^{(i)}, \mathbf{x}^{(i)}; \boldsymbol{\theta}\right)\right\|_2}{\sum_{i=1}^{N_d} \left\|\boldsymbol{\lambda}^{(i)}\right\|_2}$$

Adaptive HJB Dec 2022 17