Stat 88: Probability & Mathematical Statistics in Data Science

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Lecture 40: 4/30/2021

Chapter 12

Finishing up regression

https://xkcd.com/1725/

The individual response Y_i and the average response \bar{Y}

- Y_i are normal with expectation $\beta_0 + \beta_1 x_i$ and variance σ^2
- Note that the individual responses are independent of each other.
- Let \overline{Y} be the average response.
- $E(\bar{Y}) = \beta_0 + \beta_1 \bar{x}$ (the expected average response is the *signal* at the average value of the predictor variable)
- $Var(\bar{Y}) = \frac{\sigma^2}{n}$ (only involves the error variance since the randomness in the Y_i 's comes only from the errors or noise)
- Since \overline{Y} is a linear combination of independent normally distributed random variables, it is also normal.

The estimated slope β_1

- The least squares estimate of the true slope β_1 is $\hat{\beta}_1 = \frac{\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})(Y_i-\bar{Y})}{\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2}$
- Notice that $\hat{\beta}_1$ is random (because of the Y_i).
- Also, since Y_i is normal, and \overline{Y} is normal, so is $Y_i \overline{Y}$, therefore $\hat{\beta}_1$ is also normally distributed
- $E(Y_i \overline{Y}) = \beta_1(x_i \overline{x})$
- $E(\hat{\beta}_1) = \beta_1$, so $\hat{\beta}_1$ is an **unbiased** estimator of β_1
- $Var(\hat{\beta}) = \frac{\sigma^2}{\sum_{i=1}^n (x_i \bar{x})^2}$ (to be taken as fact, proof beyond the scope of this class)

SD of the estimated slope $\hat{\beta}_1$

•
$$SD(\hat{\beta}_1) = \frac{\sigma}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

• Need to estimate σ , which we will do by using the SD of the residuals. The larger the n, the better our estimate of σ

$$\hat{\sigma} = SD(D_1, D_2, ..., D_n) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (D_i - \overline{D})^2},$$

- $D_i = Y_i \hat{Y}_i = Y_i \hat{\beta}_0 \hat{\beta}_1 x_i$ (The D_i are the residuals and estimate the errors)
- Since we are estimating the SD from the data, we will call it the standard error of the estimator.
- That is, we will denote this estimated $SD(\hat{\beta}_1)$ by $SE(\hat{\beta}_1)$.

$$SE(\hat{\beta}_1) = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

Confidence intervals for β_1

•
$$SE(\hat{\beta}_1) = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$
, for large n , $SE(\hat{\beta}_1) \to SD(\hat{\beta}_1)$

Therefore, for large n, the distribution of $\hat{\beta}_1$, standardized, is approximately standard normal.

$$T = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} \sim N(0,1)$$

• A 95% CI for β_1 is given by $\hat{\beta}_1 \pm 2SE(\hat{\beta}_1)$

- Note that if the sample size is not large enough, the distribution of T is not necessarily normal, since the assumption that $SE(\hat{\beta}_1) \approx SD(\hat{\beta}_1)$ may not hold.
- In this situation, we model the distribution of T using a family of bell-shaped distributions, called the t-distributions.

Hypothesis tests to test $\beta_1 = 0$

- $\beta_1 = 0$ is a very important question: is there any linear relationship at all?
- A 95% CI for β_1 is given by $\hat{\beta}_1 \pm 2SE(\hat{\beta}_1)$: we can use this CI. If 0 is not in this interval, then we reject the null hypothesis of the slope being 0 at the 5% significance level.
- We can set up a test: H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$ and use the fact that under the null hypothesis,

$$T = \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)} \sim N(0,1)$$

• Let's look at the example from the text on pulse rates after looking at the tdistribution

The *t*-distribution

Rather than a normal curve, a t-curve is used. For regression, "degrees of freedom" for T equals n-2. For large enough n, use the normal curve.

(When the sample size n is large, so is n-2, so we might as well use the normal curve. When the sample is size is small, using the appropriate t curve gives more accurate answers.)

$$T = \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)}$$

Example (12.4.3)

slope, intercept, r, p, se_slope=

(1.142879681904831,

13.182572776013345,

0.6041870881060092,

1.7861044071652305e-24,

0.09938884436389145)

mean_active, sd_active

(91.29741379310344, 18.779629284683832)

c) Find the SD of the residuals.

mean_resting, sd_resting

(68.34913793103448, 9.927912546587986)

Quick look back

4/30/21