Dwi Sulistya Kusumaningrum, M.Pd
Teknik Informatika
UBP Karawang

Metode Terbuka

- Metode iterasi titik tetap (iterasi sederhana)
- Metode Newton-Raphson
- motode Secant

• Tidak seperti pada metode tertutup, metode terbuka tidak memerlukan selang yang mengurung akar. Yang diperlukan hanya sebuah tebakan awal akar atau dua buah tebakan yang tidak perlu mengurung akar.

- Metode iterasi titik tetap dinamakan juga metode iterasi sederhana
 / metode langsung / metode sulih beruntun.
- Kesederhanaan metode ini karena pembentukan prosedur iterasinya mudah dibentuk, sebagai berikut:
- Prinsip: suatu kurva f(x) = 0 diubah terlebih dahulu menjadi persamaan baru dalam bentuk x = g(x)

- Syarat yang harus dipenuhi agar proses iterasi hasilnya konvergen adalah $|g'(x)| \le 1$
- Gantilah menjadi $\mathbf{x} = \mathbf{g}(\mathbf{x})$ yang baru sampai didapatkan hasil yang konvergen
- Data awal berupa Xo

$$f(x) = 0$$

$$x = g(x)$$

$$X_{i+1} = g(x_i)$$

• Contoh f(x) = 0 diubah menjadi x = g(x)

$$f(x) = x^3 - 2x^2 - 5x - 4 = 0$$

$$x = \frac{x^3 - 2x^2 - 4}{5}$$

Syarat konvergen

$$f_1(x) = x$$

 $f_2(x) = g(x)$ $|g'(x)| < 1$

Syarat Divergen

$$f_1(x) = x$$

 $f_2(x) = g(x)$ $|g'(x)| \ge 1$

contoh

• Carilah akar persamaan

$$f(x) = x^2 - 2x - 3 = 0$$
 dengan metode iterasi titik tetap.

Gunakan $\varepsilon = 0.000001$

- Terdapat beberapa kemungkinan prosedur iterasi yang dapat dibentuk
- (a) $x^2 2x 3 = 0$

$$x^2 = 2x + 3$$

$$x = \sqrt{(2x+3)}$$

- Dalam hal ini $g(x) = \sqrt{(2x+3)}$
- Prosedur iterasinya adalah $x_{r+1} = \sqrt{(2x_r + 3)}$
- Ambil terkaan awal $X_0 = 4$
- Maka tabel iterasinya adalah:

r	Xr	$ x_{r+1}-x_r $	
0	4,000000	-	
1	3,316625	0,683375	
2	3,103748	0,212877	
3	3,034385	0,069362	
4	3,011440	0,022945	Hampiran akar
5	3,003811	0,007629	x = 3,000000
6	3,001270	0,002541	,
7	3,000423	0,000847	Konvergen monoton
8	3,000141	0,000282	
9	3,000047	0,000094	
10	3,000016	0,000031	
11	3,000005	0,000010	
12	3,000002	0,000003	
13	3,000001	0,000001	
14	3,000000	0,000000	

$$x^2 - 2x - 3 = 0$$

$$x(x-2)=3$$

 $x = \frac{1}{(x-2)}$

• Dalam hal ini
$$g(x) = \frac{3}{(x-2)}$$

- Prosedur iterasinya adalah
- Ambil terkaan awal Xo = 4
- Maka tabel iterasinya adalah:

r	Xr	$ x_{r+1} - x_r $
0	4,000000	-
1	1,500000	2,500000
2	-6,000000	7,500000
3	-0,375000	5,625000
4	-1,263158	0,888158
5	-0,919355	0,343803
6	-1,027624	0,108269
7	-0,990876	0,036748
8	-1,003051	0,012175
9	-0,998984	0,004066
10	-1,000339	0,001355
11	-0,999887	0,000452
12	-1,000038	0,000151
13	-0,999987	0,000050
14	-1,000004	0,000017
15	-0,999999	0,000006
16	-1,000000	0,000002
17	-1,000000	0,000001

Hampiran akar x = -1,000000

Konvergen berosilasi

$$x^{2} - 2x - 3 = 0$$
$$x = \frac{(x^{2} - 3)}{2}$$

• Dalam hal ini
$$g(x) = \frac{(x^2 - 3)}{2}$$

- Prosedur iterasinya adalah
- Ambil terkaan awal Xo = 4
- Maka tabel iterasinya adalah:

r	Xr	$ x_{r+1}-x_r $
0	4,000000	_
1	6,500000	2,500000
2	19,625000	13,125000
3	191,070313	171,445312
4	18252,432159	18061,361847
		•••

Ternyata iterasinya Divergen

artinya akarnya belum tentu ada

Kesimpulan

• Metode titik tetap tidak selalu menghasilkan konvergensi karena tergantung dari bentuk fungsi f(x) = g(x) yang digunakan.

• Karena metode ini tidak konsisten maka jarang digunakan.