

AUTOMATED RESEARCH PAPER CATEGORIZATION

KAMENG HOSTEL

CONTENTS

- 1 Overview
- 2 Exploratory Data Analysis
- 3 Relating models with EDA
- **4** Model Justification
- **5** METRICS
- (6) Functions
- **7** Future Aspects
- (8) References

OVERVIEW

submission Contemporary paper platforms necessitate users to upload paper titles and abstracts, followed by the selection of appropriate categories for their submissions. However, the multitude of available categories poses a challenge for authors seeking optimal classification. Imagine a submission system that not only streamlines this but also enhances process user experience by offering intelligent category suggestions based on the paper's content.

EXPLORATORY DATA ANALYSIS

Number of Papers in Different Categories

EXPLORATORY DATA ANALYSIS

The length of Head is 5; The length of Mid is 37; The length of Tail is 15.

Through EDA we found that there are 23 rows with no information about the research paper. The following abstracts are:

- 'No abstract available.': 6,
- 'This paper has been withdrawn': 5,
- 'This paper has been withdrawn by the author.': 4,
- 'This paper has been withdrawn by the author(s), due an error in the proof.': 3,
- 'This submission has been withdrawn at the request of the author.': 3,
- 'This paper has been withdrawn by the author; a revised version is part of the \nauthor\'s phd-thesis "Quasi-logarithmic structures" (Zurich, 2007).': 2

STRATIFIED FOLD

```
from skmultilearn.model selection import iterative train test split
import numpy as np
mlb = MultiLabelBinarizer()
def balanced_split(df, mlb, test size=0.5):
    ind = np.expand_dims(np.arange(len(df)), axis=1)
    mlb.fit_transform(df['Categories'])
    labels = mlb.transform(df['Categories'])
    ind_train, _, ind_test, _ = iterative_train_test_split(
        ind, labels, test size
    return df.iloc[ind_train[:, 0]], df.iloc[ind_test[:, 0]]
df_train, df_tmp = balanced_split(df,mlb, test_size=0.2)
df_val, df_test = balanced_split(df_tmp,mlb, test_size=0.5)
```


MODEL JUSTIFICATION

Contextual Embeddings:

RoBERTa and DeBERTa use contextual embeddings, considering the entire context of a word in a sentence. This helps in capturing the relationships between words, which is crucial for understanding the context of each label in the context of the entire document. So, we did not text process the data.

Multi-Head Attention Mechanism:

The multi-head attention mechanism in transformer models, including RoBERTa and DeBERTa, allows the models to focus on different parts of the input sequence simultaneously.

This is advantageous for capturing hierarchical relationships within the text, which is often present in multi-label text classification tasks.

Performance on Benchmarks:

RoBERTa and DeBERTa
have demonstrated stateof-the-art performance on
various NLP benchmarks,
showcasing their
effectiveness in capturing
complex linguistic patterns
and improving
generalization across
different tasks, including
multi-label classification.

LOSS FUNCTION

Through EDA we can tell our training data is skewed. So, we used the Distributed Balanced loss function.

Model/ Loss Function	Reuters Total miF/maF	Reuters Head(≥35) miF/maF	Reuters Med(8-35) miF/maF	Reuters Tail(≤8) miF/maF	PubMed Total miF/maF	PubMed Head(≥50) miF/maF	PubMed Med(15-50) miF/maF	PubMed Tail(≤15) miF/maF
SVM	87.60/51.63	89.87/78.47	66.92/61.00	22.54/13.83	58.54/13.31	60.77/34.33	19.78/5.62	6.94/0.67
BCE	89.14/47.32	91.75/82.81	66.28/57.26	0.00/0.00	26.17/0.02	27.61/0.06	0.00/0.00	0.00/0.00
FL	89.97/56.83	91.83/82.64	76.16/70.63	27.40/15.37	58.30/13.94	60.43/33.69	26.39/8.15	8.58/0.86
CB	89.23/52.96	91.56/80.44	71.64/66.61	23.08/9.93	58.57/13.67	60.75/33.40	24.50/7.39	9.92/1.01
R-FL	89.47/54.35	91.59/80.39	72.86/66.69	25.00/14.22	57.90/14.66	59.85/34.09	30.32/9.70	11.45/1.15
NTR-FL	90.70/60.70	92.37/82.65	79.35/75.34	39.51/22.33	60.92/16.99	63.15 /38.85	33.14/11.39	15.86/1.82
DB-0FL	89.45/57.98	91.21/82.05	77.33/71.11	31.17/19.05	58.95/15.15	60.99/34.92	31.06/10.02	14.23/1.49
CB-NTR	90.74/63.31	92.46 /83.28	78.42/72.98	46.32/32.31	61.07 /18.40	63.02/39.95	37.18/13.43	24.15/2.97
DB	90.62/ 64.47	92.14/83.48	80.25/77.01	48.89 /31.39	60.63/19.19	62.39/ 40.48	41.14/15.33	24.19/3.08

We can observe that **DB** performed better than **BCE**

METRICS

Precision Recall FI Micro avg 0.75 0.75 0.76 Macro avg 0.72 0.72 0.71 Weighted 0.76 0.75 0.75 avg 0.81 0.81 0.77 Samples avg

FI Score

0.67

LB (Leader Board)

0.71

CV (Cross Validation)

METRICS

HOW CAN WE HELP STUDENTS USE A!?

As Language Models improve, it can be helpful for EFL teachers to adopt these tools and help their students learn how to use them effectively. Here are some practical ideas.

FUNCTIONS

Function: treatingzero_cases

```
Function: optimise_fl_score
```

```
def optimise_f1_score(true_labels: np.ndarray, pred_labels: np.ndarray):
    best_med_th = 0.5
   true_bools = [tl == 1 for tl in true_labels]
   micro_thresholds = (np.array(range(-45, 15)) / 100) + best_med_th
   f1_results, prec_results, recall_results = [], [], []
    for th in micro_thresholds:
        pred_bools = [pl > th for pl in pred_labels]
        test_f1 = f1_score(true_bools, pred_bools, average="macro", zero_division=0)
        test_precision = precision_score(
            true_bools, pred_bools, average="macro", zero_division=0
        test_recall = recall_score(
            true_bools, pred_bools, average="macro", zero_division=0
        f1_results.append(test_f1)
        prec_results.append(test_precision)
        recall_results.append(test_recall)
        best_f1_idx = np.argmax(f1_results)
    return micro_thresholds[best_f1_idx]
```


FUTURE ASPECTS

- (1) Cluster-based learning
- 2 Student-teacher model
- **3** Quantization
- 4 Pruning of model

REFERENCES

- 1 Roberta Ref.- https://arxiv.org/abs/1907.11692
- 2 Deberta Ref.- https://arxiv.org/abs/2006.03654
- 3 DB Loss Ref.- https://arxiv.org/abs/2109.04712

THANK YOU FOR LISTENING!

