EXPERIMENT #3

Frequency Response for Circuit 1

Output voltage is obtained using voltage division between the 1 k Ω resistor (R_o) and $Z_{R//C}$.

$$Z_{R||C} = \frac{R}{1 + j\omega RC}$$

Transfer function

$$H(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)} = \frac{R_o}{R_o + Z_{R||C}} = \frac{R_o(1 + j\omega RC)}{R_o(1 + j\omega RC) + R} = \frac{R_o}{R + R_o} \frac{(1 + j\omega RC)}{(1 + \frac{j\omega R_o RC}{R + R_o})}$$

$$|H|_{dB} = 20 \log\left(\frac{R_o}{R + R_o}\right) + 20 \log(1 + j\omega RC) - 20 \log\left(1 + \frac{j\omega R_o RC}{R + R_o}\right)$$

$$-40 \text{ dB}$$

Corner Frequencies at

$$\omega_1 = \frac{1}{RC} = 1000 \text{ rad/s}$$
 $f_1 = 160 \text{ Hz}$ (zero)

and

$$\omega_2 = \frac{R + R_0}{R_0 RC} = 101,000 \text{ rad/s}$$
 $f_2 = 16 \times 10^3 \text{ Hz}$ (pole)

In the instructions, they were asked to find fz and fp. These are the zero and pole (corner frequencies) of the transfer function. There are 2 ways of getting them: 1. From the phase shift plot at +/- 45 degree 2. From the magnitude plot: find the corner of the asymptotic plots.

Alice Rueda 1 Ryerson University

October 28, 2020 Prepared for ELE 302 TAs

Frequency Response for Circuit 2

To get the transfer function H(jw), we need to find $v_{\text{1}}/\,v_{\text{i}}$ and $v_{\text{2}/}\,v_{\text{1}},$ and $v_{\text{o}/}\,v_{\text{2}}$

$$H(j\omega) = \frac{V_o}{V_2} \frac{V_2}{V_1} \frac{V_1}{V_i} = H_3 H_2 H_1$$

- 1) Using voltage division to get v_1/v_i $H_1 = \frac{V_1}{V_i} = \frac{1}{1+j\omega R_1 C_1}$ corner frequency at $\omega_1 = \frac{1}{R_1 C_1} = 37\,$ k rad/s $f_1 = 5,893\,$ Hz
 - $H_1 = \frac{V_1}{V_i} = \frac{1}{1 + j\omega R_1 C_1}$ k rad/s $f_1 = 5,893 \text{ Hz}$
- 2) Non-inverting amplifier (or nodal analysis at Pin 2) to get $v_{2/} v_1$ $H_2 = \frac{V_2}{V_4} = 1 + \frac{R_3}{R_2}$
- 3) Using voltage division to get v_0/v_2 $H_3 = \frac{V_0}{V_2} = \frac{j\omega R_4 C_2}{1 + j\omega R_4 C_2}$ corner frequency at $\omega_2 = \frac{1}{R_4 C_2} = 3.7$ k rad/s $f_2 = 589$ Hz and a zero at the origin

Combining all three stages together, one zero and two poles:

With a constant gain of $(1+R_3/R_2)R_4C_2 = 0.001$ 20 log(0.001) = -60 dB at $\omega = 1$ rad/s (f=0.16 Hz)

Time-mode phase angle: $deltaT/T \times 360 = deltaT \times f \times 360$ (output Leading: output at left of input is +ve)

XY-mode phase angle: Please follow the instructions from ELE 202 Experiment instruction as below:

