GEOMETRIA E ALGEBRA LINEARE 2022/23 ESERCIZI PER CASA

1. Esercizi del 31 marzo

Scegli 3 fra gli esercizi seguenti e consegna le soluzioni il giorno mercoledí 5 aprile a lezione.

Esercizio 1.1. Determina la segnatura della matrice seguente, al variare di $t \in \mathbb{R}$:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & t \end{pmatrix},$$

Esercizio 1.2. Sia V=M(2) lo spazio formato dalle matrici reali 2×2 . Considera il prodotto scalare

$$\langle A, B \rangle = \operatorname{tr}(AB).$$

- (1) Esiste un sottospazio vettoriale $W\subset V$ di dimensione 1 tale che $W\subset W^{\perp}$?
- (2) Calcola la segnatura della restrizione del prodotto scalare al sottospazio $S \subset V$ formato da tutte le matrici simmetriche.
- (3) Calcola la segnatura della restrizione del prodotto scalare al sottospazio $A \subset V$ formato da tutte le matrici antisimmetriche.
- (4) Deduci la segnatura del prodotto scalare su V dalle informazioni precedenti.

Esercizio 1.3. Sia $\mathbb{R}_2[x]$ lo spazio formato dai polinomi reali di grado ≤ 2 . Considera il prodotto scalare su $\mathbb{R}_2[x]$ dato da

$$\langle p, q \rangle = p(0)q(0) + p'(0)q'(0) + p''(0)q''(0)$$

dove p' e p'' sono i polinomi ottenuti come derivata prima e seconda di p. Considera l'insieme $W \subset \mathbb{R}_2[x]$ formato da tutti i polinomi p(x) che si annullano in x=-1, cioè tali che p(-1)=0.

- Trova una base ortogonale per il prodotto scalare.
- Mostra che W è un sottospazio vettoriale e calcola la sua dimensione.
- Determina il sottospazio ortogonale W^{\perp} .

Esercizio 1.4. Costruisci una matrice S simmetrica 2×2 tale che il prodotto scalare su \mathbb{R}^2

$$g_S(x,y)={}^{\mathrm{t}}xSy$$

sia non degenere e tale che i vettori $\binom{1}{0}$ e $\binom{0}{1}$ siano isotropi.

Esercizio 1.5. Sia V spazio vettoriale dotato di un prodotto scalare g. Siano $U, W \subset V$ sottospazi vettoriali qualsiasi. Mostra i fatti seguenti:

- (1) Se $U \subset W$, allora $W^{\perp} \subset U^{\perp}$.
- (2) $U \subset (U^{\perp})^{\perp}$. Se g è definito positivo, allora $U = (U^{\perp})^{\perp}$.

2. Esercizi del 12 maggio

Scegli 3 fra gli esercizi seguenti e consegna le soluzioni il giorno mercoledí 17 maggio a lezione.

Esercizio 2.1. Sia θ l'angolo compreso tra $\pi/2$ e π radianti il cui coseno è uguale a -5/7. Sia r la retta passante per i punti P=(0,3,1) e Q=(1,1,2). Sia f(x)=Ax+b una rotazione di \mathbb{R}^3 di angolo θ attorno alla retta r.

- (1) Descrivi chiaramente che procedimento intendi utilizzare per calcolare A e b.
- (2) Determina A e b.

Esercizio 2.2. Si considerino i seguenti punti di \mathbb{R}^3

$$A = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \qquad C = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \qquad D = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$$

Si descriva una isometria F(x) = Ax + b di \mathbb{R}^3 tale che F(AB) = CD.

Esercizio 2.3. Considera nello spazio \mathbb{R}^3 la retta

$$r = \left\{ \begin{pmatrix} t \\ 1+t \\ -1 \end{pmatrix} \middle| \ t \in \mathbb{R} \right\}$$

ed il piano π di equazione y=2.

- (1) Descrivi una isometria f(x) = Ax + b con punti fissi tale che f(r) non intersechi π .
- (2) Descrivi una isometria f(x) = Ax + b senza punti fissi tale che f(r) non intersechi π .

Esercizio 2.4. Considera in \mathbb{R}^3 il piano

$$\pi = \{z = 1\}$$

e la retta

$$r = \left\{ \begin{pmatrix} 2+t \\ t \\ -1 \end{pmatrix} \mid t \in \mathbb{R} \right\}.$$

- (1) Determina la distanza fra π e r.
- (2) Determina equazioni cartesiane per il piano π' contenente r e perpendicolare a π .
- (3) Scrivi una isometria f(x) = Ax + b che sposti il piano π in π' .

Esercizio 2.5. Siano r e s due rette orientate incidenti in \mathbb{R}^3 . Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ una rotazione di angolo α intorno a r, e sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ una rotazione di angolo β intorno a s.

- (1) La composizione $f \circ g$ è sicuramente una rotazione di un certo angolo θ intorno ad una certa retta passante per $P = r \cap s$. Spiega perché questo è vero.
- (2) Nel caso in cui r e s sono ortogonali, determina $\cos \theta$ in funzione di $\cos \alpha$ e $\cos \beta$.

3. Esercizi del 19 maggio

Esercizio 3.1. Considera al variare di $h \in \mathbb{R}$ la conica

$$C_h = \left\{ x^2 - 2hxy + \frac{1}{2}y^2 - 2hx + \frac{1}{2} = 0 \right\} \subset \mathbb{R}^2.$$

Determina per ogni $h \in \mathbb{R}$ il tipo di conica (ellisse, parabola, ecc.) ed i suoi centri quando esistono. Se la conica è un'iperbole, determina gli asintoti.

Per h = 1, determina le due rette passanti per l'origine e tangenti alla conica C_1 .

Esercizio 3.2. Considera al variare di $t \in \mathbb{R}$ la conica

$$C_t = \{x^2 + (1-t)y^2 + 2tx - 2(1-t)y + 2 - t = 0\}.$$

Determina per ogni $t \in \mathbb{R}$ il tipo di conica ed i suoi centri quando esistono. Per quali $t \in \mathbb{R}$ la conica è una circonferenza? Se la conica è un'iperbole, determina gli asintoti.

Esercizio 3.3. Considera al variare di $k \in \mathbb{R}$ la conica

$$C_k = \{x^2 + 2kxy + y^2 + 2kx + 2ky + 2k - 2 = 0\}.$$

Determina per ogni $k \in \mathbb{R}$ il tipo di conica ed i suoi centri quando esistono. Per tutti i k per cui C_k è una ellisse, determina il rapporto fra l'asse maggiore e quello minore al variare di k. Per tutti i k per cui C_k è una iperbole, determina gli asintoti.