MATH 4065 HW 7

David Chen, dc3451

December 4, 2020

1

(\Longrightarrow) Since we have that $f: U \to V$ is a local bijection on U, we have that for any $z \in U$, there is some small neighborhood D centered at z where $f: D \to f(D)$ is holomorphic and bijective; the proposition in the book then gives that $f'(w) \neq 0$ for every $w \in D$, in particular that $f'(z) \neq 0$. Since this holds for any $z \in U$, then we get that $f'(z) \neq 0$ for all $z \in U$.

 (\Leftarrow) Fix any $z_0 \in U$, and take a small enough neighborhood such that

$$f(z) = f(z_0) + a(z - z_0) + O((z - z_0)^2) \implies f(z) - f(z_0) = a(z - z_0) + O((z - z_0)^2)$$

which then gives that on a (possibly) smaller neighborhood, $|a(z-z_0)| > |O((z-z_0)^2)|$, so we get that $f(z) - f(z_0)$ has the same amount of roots as $a(z-z_0)$, which is exactly one: $z = z_0$ since $a = f'(z_0) \neq 0$. Then, we have that $f(z) \neq f(z_0)$ on the smaller neighborhood for $z \neq z_0$. Then, if we halve the radius of the neighborhood, we get some r > 0 such that $|z-z_0| \leq r \implies f(z) - f(z_0) \neq 0$ for $z \neq z_0$. Let m be the minimal value of $|f(z) - f(z_0)|$, which must be positive and attained since $|f(z) - f(z_0)|$ attains its minimum as a continuous function on a compact set and $f(z) - f(z_0) \neq 0$ for $|z-z_0| = r$. Now for $w \in V$ satisfying $|w-f(z_0)| < m$, we get that

$$|(f(z) - w) - (f(z) - f(z_0))| = |f(z_0) - w| < m \le |f(z) - f(z_0)|$$

on the boundary $|z-z_0|=r$. Then, Rouche's theorem gives that $f(z)-w=(f(z)-w-(f(z)-f(z_0)))+f(z)-f(z_0)$ must have the same amount of zeros as $f(z)-f(z_0)$ on $|z-z_0|< r$, namely one by the earlier fact that $f(z)\neq f(z_0)$ for $z\neq z_0$. This means that for any w within m of w_0 , f(z) assumes the value of w exactly once. Then, since f is uniformly continuous on $|z-z_0|\leq r$, we can shrink the neighborhood until the image of the neighborhood has diameter < m, such that $|f(z)-f(z_0)|< m$ for every z in the neighborhood. Now since this neighborhood is contained inside $|z-z_0|\leq r$, we get that f(z) assumes each output value at most once, and is thus injective. On this small neighborhood (call it D), we get what we want: $f:D\to f(D)$ is injective from above, and is trivially surjective, so it is a bijection.

First, we consider that from the chapter on logarithms, that for any non-vanishing holomorphic function in a simply connected region, f(z), that there is some function holomorphic function g(z) satisfying $f(z) = e^{g(z)}$. In particular, this lets us do the following: since F(z) = F'(z) = 0, we have that

$$F(z) = 0 + 0(z - z_0) + a_0(z - z_0)^2 + a_1(z - z_0)^3 + \dots = \sum_{n=0}^{\infty} a_n(z - z_0)^{n+2} = (z - z_0)^2 f(z)$$

where f(z) is some non-vanishing holomorphic function in a neighborhood of (z_0) (in particular, it takes $f(z_0) = a_0 = F''(z) \neq 0$, and we can shrink our neighborhood until 0 is no longer in the image of f). Then, we have that $f(z) = e^{h(z)}$ for some holomorphic h(z), so we get that $F(z) = ((z - z_0)e^{h(z)})^2$.

Abbreviate $(z - z_0)e^{h(z)} = g(z)$, and note that g is holomorphic. Then, we get that $F(z) = (g(z))^2$, so $F(z_0) = 0 \implies g(z_0) = 0$ and differentiating,

$$F''(z_0) = 2g''(z_0)g(z_0) + 2(g'(z_0))^2 = g(z_0)^2 \neq 0 \implies g'(z_0) \neq 0$$

Then, on some small neighborhood of z_0 (again, g' is continuous so just keep shrinking the neighborhood until it no longer contains 0) we get that $g'(z) \neq 0$. Then, by the last problem, g is a local bijection on this neighborhood, such that on a small neighborhood D of z_0 , g is conformal and admits a holomorphic inverse g^{-1} . Let r be the radius of a neighborhood of $g(z_0) = 0$ which is contained in the image of D under g (this exists, since g is holomorphic and thus an open mapping). Then, consider the paths given as follows:

$$\begin{cases} \Gamma_1 = g^{-1}(tr) & -0.5 \le t \le 0.5 \\ \Gamma_2 = g^{-1}(itr) & -0.5 \le t \le 0.5 \end{cases}$$

such that $F(\gamma_1) = (tr)^2 = r^2t^2$ which since t, r are both real is obviously minimal at t = 0 and is real. Similarly, $F(\gamma_2) = (itr)^2 = -r^2t^2$ which is again real and clearly maximal at t = 0. Furthermore, since g is conformal, it preserves angles, so since $\gamma_1 = tr$ and $\gamma_2 = itr$ are orthogonal (the first travels the real line and the second the imaginary line, so they are perpendicular), Γ_1 and Γ_2 must be orthogonal at $g^{-1}(0) = z_0$ as well.

4

Yes, we can define one explicitly. Consider first the conformal mapping $\mathbb{D} \to \mathbb{H}$ given in the chapter, $G(w) = i \frac{1-w}{1+w}$, which reduces the question to finding a holomorphic surjection $\mathbb{H} \to \mathbb{C}$. In particular, if we consider $H(z) = (z-i)^2$, we can see that $H \circ G$ is holomorphic since H is entire and G is holomorphic on \mathbb{D} , and thus $H \circ G$ is holomorphic on \mathbb{D} .

To see that $H \circ G$ is surjective, we first want to see that any complex number has a preimage under H in the upper half plane. In particular, take any $z = re^{i\theta} \in \mathbb{C}$, with $0 \le \theta < 2\pi$. Then, we have that $\sqrt{r}e^{i\theta/2} + i$ is a preimage of z under H, since $(\sqrt{r}e^{i\theta/2} + i - i)^2 = (\sqrt{r}e^{i\theta/2})^2 = re^{i\theta}$ as desired. Then, we have that $0 \le \theta/2 < \pi$ which gives that $\text{Im}(\sqrt{r}e^{i\theta/2}) \ge 0$, so $\text{Im}(\sqrt{r}e^{i\theta/2} + i) \ge 1 > 0$, so any $z \in \mathbb{C}$ has a preimage under f in the upper half plane.

Then, for any $z \in \mathbb{C}$, if H(w) = z, $w \in \mathbb{H}$, then we have that w has a preimage under G, since G is a conformal mapping between \mathbb{D} and \mathbb{H} , and so this gives a preimage $G^{-1}(w)$ for z under $H \circ G$, so it is surjective and we get what we want.

5

It is clearly holomorphic, since z is entire and 1/z is holomorphic on $\mathbb{C} \setminus \{0\}$, so z + 1/z is holomorphic on all of \mathbb{C} except the origin. Since the origin is not contained in the half disc, f is holomorphic.

Now,

$$f(x+yi) = -\frac{1}{2}\left(x+yi + \frac{1}{x+yi}\right) = -\frac{1}{2}\left(\frac{(x+yi)(x^2+y^2) + (x-yi)}{x^2+y^2}\right)$$

so $\text{Im}(f(x+yi)) = -\frac{y}{2(x^2+y^2)}(x^2+y^2-1)$, but since $x^2+y^2=|x+iy|^2<1$, we have that Im(f(x+yi))>0, so this takes values only in the upper half plane.

To see that f is bijective, consider that if we want f(z) = w, we arrive at

$$-\frac{1}{2}\left(z+\frac{1}{2}\right) = w \implies z^2 + 2wz + 1 = 0$$

which has solutions $z = -w \pm \sqrt{w^2 - 1}$ (choose the branch of the square root arbitrarily). Now the discriminant is nonzero for $w \neq \pm 1$, so for any $w \in \mathbb{H}$, we have that there are two distinct solutions $w \pm \sqrt{w^2 - 1}$. We want to show that exactly one always lies inside the half disc, which will give both injectivity and surjectivity.

Call the two roots z_1, z_2 . Then, we have that $z_1 + z_2 = -2w$ and $z_1z_2 = 1$, so $|z_1| = 1/|z_2|$, so if one of z_1, z_2 lie on the unit circle, then both lie on the unit circle; in particular, in this case they are inverses, so $z_1 = \overline{z_2} \implies z_1 + z_2$ is real, but -2w has negative imaginary part since $w \in \mathbb{H}$, so $\Rightarrow \Leftarrow$, so neither can lie on the unit circle. Then, exactly one of z_1 is in the unit disc, and the other is outside of it; consider now that one also must be in the upper half plane and the other the lower half plane, since if $z_1 = re^{i\theta}$, then $z_2 = 1/z_1 = r^{-1}e^{-i\theta}$, so if $\theta \in (0,\pi)$, then $z_1 \in \mathbb{H}$ and $z_2 \in -\mathbb{H}$, and if $\theta \in (\pi,2\pi)$, then $z_1 \in -\mathbb{H}$ and $z_2 \in \mathbb{H}$. Note that neither can be real, since then the other would be real and their sum could not have nonzero imaginary part. Then, since $z_1 + z_2 \in -\mathbb{H}$, the larger root must lie in $-\mathbb{H}$ and the smaller root must lie in \mathbb{H} (since $\mathrm{Im}(z_1) + \mathrm{Im}(z_2) = \sin(\theta)(r - 1/r)$, which is negative if and

only if either r > 1/r when $z_1 \in \mathbb{H}$ or r < 1/r when $z_1 \in -\mathbb{H}$, and in both cases, the smaller root is contained in \mathbb{H}) and since it has modulus < 1, lies in the upper half disc as desired. In particular, if we choose the square root to be the root with positive real part, I think that $-w + \sqrt{w^2 - 1}$ is the solution we want, but I can't explicitly show it. Thankfully, I don't need to!

10

We have that $G(z) = i\frac{1-z}{1+z}$ is a conformal mapping $\mathbb{D} \to \mathbb{H}$ with inverse $\frac{i-z}{i+z}$. Then, we have that $F \circ G$ is a holomorphic mapping from $\mathbb{D} \to \overline{\mathbb{D}}$, since $|F(z)| \leq 1$. However, we cannot have that |F(z)| = 1 since this would violate the maximum modulus principle, since F would attain a maximum somewhere on \mathbb{H} , so $F \circ G$ takes $\mathbb{D} \to \mathbb{D}$. Further, $(F \circ G)(0) = F(i) = 0$, so we can apply the Schwarz lemma: $|(F \circ G)(z)| \leq |z|$, and this gives is what we want:

$$|F(z)| = |(F \circ G \circ G^{-1})(z)| = \left| (F \circ G) \left(\frac{i-z}{i+z} \right) \right| \le \left| \frac{i-z}{i+z} \right| = \left| \frac{z-i}{z+i} \right|$$

11

We will first show this for M=R=1. First, note that since f has domain \mathbb{D} , an open set, $|f(z)| \neq 1$, or else f would be maximal on \mathbb{D} , so $f: \mathbb{D} \to \mathbb{D}$ is holomorphic. Consider the Möbius transformation $\psi(z) = \frac{f(0)-z}{1-\overline{f(0)}f(0)}$. Then, $\psi \circ f$ is $\mathbb{D} \to \mathbb{D}$ holomorphic and satisfies $\psi(0) = \frac{f(0)-f(0)}{1-\overline{f(0)}f(0)} = 0$, so applying the Schwarz lemma,

$$|(\psi \circ f)(z)| = \left| \frac{f(0) - f(z)}{1 - \overline{f(0)}f(z)} \right| = \left| \frac{f(z) - f(0)}{1 - \overline{f(0)}f(z)} \right| \le |z|$$

Since we have this for M=R=1, for the general case of $f:D(0,R)\to\mathbb{C}$ and $|f(z)|\leq M$, we can write define some $g(z)=\frac{f(Rz)}{M}$, which now takes $g:\mathbb{D}\to\mathbb{C}$ and satisfies $g(z)\leq 1$. Then,

$$\left| \frac{f(z) - f(0)}{M^2 - \overline{f(0)}f(z)} \right| = \left| \frac{Mg\left(\frac{z}{R}\right) - Mg(0)}{M^2 - \overline{Mg(0)}\left(Mg\left(\frac{z}{R}\right)\right)} \right| = \frac{1}{M} \left| \frac{g(w) - g(0)}{1 - \overline{g(0)}g(w)} \right|$$

where w = z/R. Then, from earlier,

$$\left|\frac{g(w)-g(0)}{1-\overline{g(0)}g(w)}\right| \leq |w| \implies \left|\frac{f(z)-f(0)}{M^2-\overline{f(0)}f(z)}\right| = \frac{1}{M}\left|\frac{g(w)-g(0)}{1-\overline{g(0)}g(w)}\right| \leq \frac{|w|}{M} = \frac{|z|}{MR}$$

which was what we wanted.

 \mathbf{a}

Let the two fixed points of f be z_1, z_2 , and consider the Möbius transformation $\psi(z) = \frac{z_1 - z}{1 - \overline{z_1} z}$ and the composition $\psi \circ f \circ \psi$, which takes $\mathbb{D} \to \mathbb{D}$ holomorphic. Then, we have that

$$(\psi \circ f \circ \psi)(0) = (\psi \circ f)(z_1) = \psi(z_1) = 0$$

so we can apply the Schwarz lemma.

Then, note that since ψ is an automorphism of the disc, there is some preimage of z_2 , say z'_2 distinct from 0 since ψ is a bijection, such that

$$(\psi \circ f \circ \psi)(z_2') = (\psi \circ f)(z_2) = \psi(z_2) = z_2'$$

since ψ is its own inverse.

Then, this gives us that $|(\psi \circ f \circ \psi)(z_2')| = |z_2'|$, so by the Schwarz lemma, $\psi \circ f \circ \psi$ is a rotation, say $(\psi \circ f \circ \psi)(z) = e^{i\theta}z$. But since we have that $(\psi \circ f \circ \psi)(z_2') = e^{i\theta}z_2' = z_2'$, we have that $\theta = 0$ and $\psi \circ f \circ \psi$ is the identity mapping. Then, we get that $\psi \circ \psi \circ f \circ \psi = \psi \implies f \circ \psi = \psi \implies f = \mathrm{id}$.

b

Not every holomorphic function $\mathbb{D} \to \mathbb{D}$ has a fixed point. Consider $F^{-1} \circ g \circ F$ where F is a conformal mapping $\mathbb{D} \to \mathbb{H}$ taking $z \mapsto \frac{i-z}{i+z}$ and g takes $z \mapsto z+1$. In particular, we already have what we want: $(F^1 \circ g \circ F)(z) = z \implies (g \circ F)(z) = F(z)$ but this would require g to have a fixed point F(z), but g has no fixed point since $z \neq z+1$ for any $z \in \mathbb{H}$. \Longrightarrow , so $F^{-1} \circ g \circ F$ is a holomorphic map $\mathbb{D} \to \mathbb{D}$ with no fixed points.

Explicitly, we get that

$$(F^{-1} \circ g \circ F)(z) = F^{-1} \left(\frac{i-z}{i+z} + 1 \right) = F^{-1} \left(\frac{2i}{i+z} \right) = i \frac{1 - \frac{2i}{i+z}}{1 + \frac{2i}{i+z}} = i \frac{z-i}{z+3i}$$

which has no fixed points in the unit disc $(i\frac{z-i}{z+3i}=z\implies (z-i)^2=0\implies z=i\notin\mathbb{D})$ while being holomorphic in $\mathbb D$ and taking values only in $\mathbb D$ (since the range of F^{-1} is $\mathbb D$).

8

If we can get F_1, \ldots, F_5 as in the book, then the function $\frac{1}{\pi} \arg(z) \circ F_5 \circ F_4 \circ F_3 \circ F_2 \circ F_1$ is (by a lemma from the book) a harmonic function on open first quadrant with the desired boundary conditions. The actual hard part is finding such conformal mappings.

For F_1 , we want a transformation that sends $\infty \to 1, 0 \to -1, 1 \to 0$. Then, we consider the Möbius transformation $F_1: z \mapsto \frac{z-1}{z+1}$. Now, the book already showed that $w \mapsto \frac{w+1}{w-1}$ takes the upper half disc to the first quadrant conformally, so we get compute the inverse to be exactly F_1 , which takes the first quadrant to the upper half disc conformally. We only need to check the boundary conditions are correct:

1. The imaginary axis is taken to the semicircle:

$$\left| \frac{ai-1}{ai+1} \right| = \left| \frac{(ai-1)^2}{a^2+1} \right| = \frac{1}{a^2+1} |ai-1|^2 = 1$$

- 2. [0,1] is taken to [-1,0]: $x \in [0,1]$ satisfies that $x-1 \le 0$, x+1 > 0, and |x-1| < |x+1|, so $\frac{x-1}{x+1} \in [0,1]$.
- 3. $(1, \infty)$ is taken to (0, 1), since $x \in (0, 1)$ satisfies that x 1 > 0, x + 1 > 0, and |x 1| < |x + 1|, so $\frac{x 1}{x + 1} \in (0, 1)$.

For F_2 , consider the principle branch of $\log(z)$, which takes the closed upper half disc (minus 0) to the pictured region $\{z \mid \text{Re}(z) \leq 0, 0 \leq \text{Im}(z) \leq 1\}$. The book already showed that this is a conformal mapping between the open upper half disc and the interior of the above region, so we only need to check the boundaries.

- 1. The semicircle is taken to the line Re(z) = 0, since $Re(\log(z)) = Re(\log(|z|) + i \arg(z)) = Re(i \arg(z)) = 0$.
- 2. (0,1) is taken to the line Im(z)=0, since $\arg(z)=0$ for $z\in(0,1)$.
- 3. (-1,0) is taken to line $\text{Im}(z) = \pi$, since $\arg(z) = \pi$ for $z \in (-1,0)$.

For F_3 , the mapping is $z \mapsto -iz$, which gives us what we want on inspection. For F_4 , the mapping is $z \mapsto \sin(z)$, as shown in the book to be conformal on this strip.

1. The half line $\text{Re}(z) = -\pi/2$, Im(z) > 0 gets taken to $(-\infty, -1)$, since we have that

$$\sin(z) = \frac{e^{-i\pi/2 - \operatorname{Im}(z)} - e^{i\pi/2 + \operatorname{Im}(z)}}{2i} = \frac{-i(e^{-\operatorname{Im}(z)} + e^{\operatorname{Im}(z)})}{2i} = -\frac{e^{-\operatorname{Im}(z)} + e^{\operatorname{Im}(z)}}{2} < -1$$

since $e^{-\operatorname{Im}(z)} + e^{\operatorname{Im}(z)} > 2$ since $\operatorname{Im}(z) > 0$ (note that $e^x + e^{-x}$ achieves a minimum of 2 at x = 0).

2. The half line $\text{Re}(z) = \pi/2$, Im(z) > 0 gets taken to $(1, \infty)$, since we have that

$$\sin(z) = \frac{e^{i\pi/2 - \operatorname{Im}(z)} - e^{i\pi/2 + \operatorname{Im}(z)}}{2i} = \frac{i(e^{-\operatorname{Im}(z)} + e^{\operatorname{Im}(z)})}{2i} = \frac{e^{-\operatorname{Im}(z)} + e^{\operatorname{Im}(z)}}{2} > 1$$

3. The interval $[\pi/2, \pi/2]$ gets taken to [-1, 1].

For F_5 , the mappings is $z \mapsto z - 1$, which is clearly what we want.

Now, we have that $\frac{1}{\pi}\arg(z)$ on the upper half plane is harmonic from the book, and takes values on the boundaries as follows: $x<0 \implies \frac{1}{\pi}\arg(x)=1$ and $x>0 \implies \frac{1}{\pi}\arg(x)=0$. Then, we have that under the series of mappings, the half lines $\{y=0,x>1\}$ and $\{x=0,y>0\}$ are taken to $(-\infty,-2)$ and (-2,0) respectively, and the interval $\{0< x<1,y=0\}$ is taken to $(0,\infty)$, so we have that $f=u\circ F_5\circ F_4\circ F_3\circ F_2\circ F_1$ satisfies that f is harmonic on the first quadrant and has the desired boundaries.