Documentation for A Fortran 90 library for multitaper spectrum analysis

1 Introduction

The present documentation is for the Fortran 90 Library for multitaper spectral analysis as presented in

Prieto, G. A., R. L. Parker and F. L. Vernon (2008). A Fortran 90 library for multitaper spectrum analysis. Submitted to Computers and Geosciences, February 2008.

It is intended to be a comprehensive and easy to use collection of subroutines for univariate and multivariate spectral analysis. There are two main methods implemented here, the original adaptive multitaper spectrum (Thomson, 1982) and the sine multitaper method (Riedel and Sidorenko, 1995).

2 Requirements

The first requirement is to have a Fortran 90 or 95 compiler available in your machine. If you want to be able to obtain figures from the programs, *gplot* needs to be installed as well. This library has been tested using the Absoft Compiler in a Mac OS X system, and using the Sun Compiler in the Unix environment. More recently I am using the Intel compiler on an Intel Mac machine. Since we are taking advantage of features in Fortran 90 such as optional arguments and modules not available in F77, a F90/F95 compiler is needed. Most of the things you can do in F77 can be compiled by F90, so there is no reason not to use F90 instead (of course this is a personal opinion, not necessarily shared by my co-authors.).

A second requirement is that you have to edit the Makefile a little bit to adjust to your specific compiler options. There are small differences between compilers, especially the option to look for modules. You edit the Makefile to be able to search the modules used by this library. This release has a set of short programs to reproduce the figures presented in the paper (Prieto et al., 2008).

3 Univariate subroutines

In this documentation the main subroutines calls are explained.

3.1 mtspec

This subroutine uses Thomson's spectrum estimation method (Thomson, 1982) and outputs the power spectral density (PSD), and if requested performs F-test for line components, returns such as a jackknife 95% confidence interval, the y_k 's, which contain the phase information, the weights of the different eigenspectra, etc.

The basic way to call this subroutine is

A description of all the variables is presented in Table 1. This particular subroutine performs all calculations in double precision, but accepts both single as well as double precision arguments. Note that if double precision is requested, all variables need to be double precision (except integers).

Taking advantage of Fortran 90 optional arguments, the user can request additional outputs or different form of calculations (e.g., F-test line reshaping, different weighting, quadratic multitaper, etc.).

If for example the user would also like to have the jackknife error estimate, the call would be:

which will return the appropriate jackknife estimate in the array jack, featuring the 5% and the 95% confidence intervals. A more complete description of the optional parameters is presented in Table 2.

Table 1: mtspec mandatory argument	Table 1:	mtspec	mandatory	arguments
------------------------------------	----------	--------	-----------	-----------

Var	Type	I/O	Dimension	Description
npts	integer	input	1x1	number of points in time series
dt	real	input	1x1	the sampling interval
x	real	input	$npts \times 1$	the real time series
tbp	real	input	1x1	the time-bandwidth product
kspec	integer	input	1x1	the number of tapers to use
nf	integer	input	1x1	number freq. bins
freq	real	output	$nf \times 1$	the real frequency vector
spec	real	output	$nf \times 1$	the spectrum estimate

Table 2: mtspec optional arguments

Var	Double	I/O	Dimension	Description
yk	complex	output	npts x kspec	the eigencoefficients
wt	real	output	nf x kspec	weights
err	real	output	nf x 2	95% jackknife c.i.
se	real	output	$nf \times 1$	ndf for each freq bin
sk	real	output	nf x kspec	the eigenspectra (y_k^2)
verb	integer	input	1 x 1	verbal option
				0 - default, no verbose
				1 - print various steps
qispec	integer	input	npts x kspec	Use quadratic method
				0 - default, standard method
				1 - quadratic method
adapt	integer	input	1×1	adaptive multitaper
				0 - default, adaptive MT
				1 - constant weights
rshape	integer	input	1×1	F-test periodic components
				1 - remove lines
				2 - remove lines around 60 Hz.
				other - reshape spectrum
fcrit	real	input	1 x 1	F-test threshold probability
				rshape present
fstat	real	output	$_{ m nf}$	F statistics (rshape present)

3.2 mtspec with zero padding

In many cases it is advantageous to pad the data series with zeros. It that case, it is not recomended to pad the data before tapering, and I prefer to taper and then pad with zeros. This is performed internally inside the subroutine by calling

call mtspec(npts,nfft,dt,x,tbp,kspec,nf,freq,spec)

where $\mathtt{nfft} \geq \mathtt{npts}$. All other optional arguments can still be added as explained above.

Be aware that the number of frequency points nf, has to be either npts/2+1 or nfft/2+1, depending on the type of call. The output will then be a frequency vector freq(nf) containing all the frequency bins, and the spectrum spec(nf) with the power spectrum of the time series.

3.3 sine_psd

The subroutine is in charge of estimating the adaptive sine multitaper as in Riedel and Sidorenko (1995). If requested it will also calculate the sine multi-

taper with a constant number of tapers. The basic call is:

```
call sine_psd (npts,dt,x,ntap,ntimes,fact,nf,freq,spec)
```

The arguments are explained in Table 3. If the user wants a constant number of tapers, just have the integer ntap be greater than 1. This parameter overrides the following two, so if an adaptive sine multitaper is required, ntap = 0.

Var	Type	I/O	Dimension	Description
npts	integer	input	1x1	number of points in time series
dt	real	input	1x1	the sampling interval
x	real	input	npts x 1	the real data series
ntap	integer	input	1x1	number of tapers to avg
				0 - default, adaptive method
ntimes	integer	input	1x1	number of iterations
fact	real	input	1x1	degree of smoothing
				1.0 - default
				range 0.0 to 1.0
nf	integer	input	1x1	number freq. bins
freq	real	output	$nf \times 1$	the real frequency vector
spec	real	output	$nf \times 1$	the spectrum estimate

Table 3: sine_psd mandatory arguments

The subroutine also has some optional arguments, including the number of tapers used at each frequency bin (useful for uncertainties), and the approximate 95% confidence intervals. The call would then be:

call sine_psd (npts,dt,x,ntap,ntimes,fact,nf,freq,spec,kopt,err)

Table 4 briefly provides information about this two arguments.

Table 4: sine_psd optional arguments

Var	Type	I/O	Dimension	Description
kopt	integer	output	nf x 1	number of tapers used
err	real	output	nf x 2	95% confidence intervals

4 Multivariate subroutines

Various multivariate subroutines are available, for coherence and transfer function estimation and deconvolution. Table 5 provides a complete description

of the arguments for all multivariate subroutines. To keep the documentation short, I only present examples of simple calls for all multivariate subroutines.

Using Thomson's multitaper method the user can find three subroutines with corresponding calls:

To use the sine multitaper method for coherence analysis type:

```
call sine_cohe (npts,dt,xi,xj,ntap,ntimes,fact,nf,p,freq,cohe)
```

For a complete description of all mandatory and optional arguments, consult Table 5.

Germán A. Prieto Stanford, California February 6, 2008

References

- Prieto, G. A., Vernon, F. L., Masters, G., and Thomson, D. J. (2005). Multitaper Wigner-Ville spectrum for detecting dispersive signals from earthquake records. In *Proc. of the Thirty-nine Asilomar Conf. on Signals, Systems and Computers*, pages 938–941. IEEE.
- Prieto, G. A., Parker, R. L., and Vernon, F. L. (2008). A fortran 90 library for multitaper spectrum analysis. Submitted to Computers and Geosciences.
- Riedel, K. S. and Sidorenko, A. (1995). Minimum bias multiple taper spectral estimation. *IEEE Trans. on Signal Processing*, **43**, 188–195.
- Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. In *Proceedings* of the IEEE, volume 70, pages 1055–1096.
- Thomson, D. J. (1990). Quadratic-Inverse spectrum estimates: applications to paleoclimatology. *Phys. Trans. R. Soc. London A*, **332**, 539–597.
- Thomson, D. J. (1994). An overview of multiple-window and quadratic-inverse spectrum estimation methods. In *ICASSP* 94, volume VI, pages 185–194.

Table 5: Multivariate subroutines arguments

Docomination	Description	number of points in xi, xj	allows for zero padding	sampling interval	real data series 1	real data series 2	time-bandwidth product	number of tapers	number of frequency bins	prob. of zero coherence	number of tapers to avg	number of iterations	degree of smoothing	real frequency vector	coherence output	transfer function output	time domain deconv result	phase between two signals	spectrum of signal xi	spectrum of signal xj	bound for null hypothesis of no coherence	confidence interval for coherence	confidence interval for phase	complex cross-spectrum, positive frequencies only	choose either adaptive or constant wieghts	force zero mean in complex transfer function	spectral ratio of two series	apply cosine filter with fmax	number of tapers used
Dimoneion Cubroutines alguments	Sanioutiles	all	mt_transfer, mt_deconv	all	all	all	all, except sine_cohe	all, except sine_cohe	all	all	only sine_cohe	only sine_cohe	only sine_cohe	all	all	all	all	mt_cohe, sine_cohe	all	all	mt_cohe, sine_cohe	mt_cohe, sine_cohe	mt_cohe, sine_cohe	$\operatorname{mt_transfer}$	mt_transfer, mt_deconv	mt_transfer, mt_deconv	only mt_deconv	only mt_deconv	only sine_cohe
Dimonejon	Differentiation	1 x 1	1 x 1	1 x 1	$npts \times 1$	$npts \times 1$	1 x 1	1 x 1	1 x 1	$nf \times 1$	1 x 1	1 x 1	1 x 1	$nf \times 1$	$nf \times 1$	nfft x 1	$nfft \times 1$	$nf \times 1$	$nf \times 1$	$nf \times 1$	$\rm nf \ x \ 1$	$nf \ge 2$	$nf \ge 2$	$nf \times 1$	1 x 1	1 x 1	$nf \times 1$	1 x 1	$nf \ge 1$
O/I	1/0	input	input	input	input	input	input	input	input	input	input	input	input	output, optional	output, optional	output, optional	output, optional	output, optional	output, optional	output, optional	output, optiona;	output, optional	output, optional	output, optional	input, optional	input, optional	output, optional	input, optional	output, optional
Taybo	туре	$_{ m integer}$	integer	real	real	real	real	integer	integer	real	integer	integer	real	real	real	complex	real	real	real	real	real	real	real	complex	integer	integer	real	real	integer
Von	A GII	$_{ m npts}$	nfft	dt	.ix	.X.	tbp	kspec	fu	р	ntap	ntimes	fact	fred	cohe	trf	tfun	phase	speci	specj	conf	cohe_ci	phase_ci	csbec	iadapt	demean	spec_ratio	fmax	kopt