Lecture note 3: Image processing

프로젝트 기반 딥러닝 이미지처리 한국인공지능아카데미 x Hub Academy

강사 : 김형욱 (hyounguk1112@gmail.com)

Agenda

- 1 Computer Image
- 2 Image processing
- 3 Image feature
- Practice : Color filtering

Computer Image

Human vision system

Human vision system

Human vision system

Rod and Cone

- 간상세포(Rod): 약한 자극의 어두운 빛에도 반응
- 원추세포(Cone): 비교적 강한 자극의 밝은 빛에 반응 → 3 종류

Machine vision system

Bayer filter and Bayer pattern

그림1: 3가지 종류의 Bayer filter

그림2: Bayer pattern

Bayer pattern: How to make RGB format?

Bayer filter 의 보간법 (Interpolation)

1. RGB format

1. RGB format

RGB of each pixel = 3 values = (R, G, B)

- 1. RGB format : color palette
 - To define any color, specify (R, G, B) values.
 - <u>0 is minimum and 1 (혹은 255) is maximum. /</u> 16,777,216가지 색상 표현 가능

2. Gray format

Gray of each pixel = 1 values = intensity of brightness

Pixel Values in an Intensity Image Define Gray Levels

2. Binary image (or mask image)

Pixels in a Binary Image Have Two Possible Values: 0 or 1

Image coordinate (좌표계)

Image coordinate (좌표계)

Discrete Timeline

Frame per second(fps)

영화: 1/24

BW NTSC TV: 1/30

Color NTSC TV: 1/29.97

PAL/SECAM TV: 1/25

HDTV: 1/30

UHDTV: 1/60, 1/120

$$30 \times \frac{1000}{1001} \cong 29.97$$

동영상을 표현하는 시간 도메인 및 프레임 간격

Discrete Timeline

이름	해상도	비율	설명
nHD	640×360	16:9	Full HD의 1/9 ^[21] . one n inth of a Full HD frame
qHD	960×540	16:9	Full HD의 1/4. one quarter of Full-HD
HD	1280×720	16:9	Full HD 의 4/9. 720p ^[22] , 720i
HD+	1600×900	16:9	HD Plus
FHD	1920×1080	16:9	Full HD ^[23] 1080p, 1080i
WQHD/QHD	2560×1440	16:9	HD의 4배. Quad HD/Quad HD, 2K ^[24] , 1440p, 1440i
QHD+	3200×1800	16:9	Quad HD Plus ^[25]
UHD	3840×2160	16:9	Full HD의 4배. Ultra HD, 4K[26] 4K UHD
UHD+	5120×2880	16:9	Ultra HD Plus, 5K ^[27]
FUHD	7680×4320	16:9	Ultra HD의 4배. Full Ultra HD, 8K[28] 8K UHD

Digital Image: RGB format

Image processing

영상처리(Image processing)

- 영상이 가진 노이즈를 줄이거나, 분석을 위해 단순화(불필요한 정보 제거) 하는 과정
- 절차적 / 병렬적으로 한 가지 프로그램에서 여러가지 영상처리기법이 사용될 수 있음.
- 딥러닝 방식의 AI 프로그램 이전에만 사용되는 것(preprocessing)은 아니다. 반대로 딥러닝을 사용해준 후 원하는 특정 정보를 얻기 위해 후처리(postprocessing)로 사용되는 경우도 많다.
- Opencv는 대표적으로 사용되는 영상처리/분석 라이브러리로, C++/Python 등의 프로그래밍 언어를 지원한다.

Geometric transform of Images

변환(Transform)이란 수학적으로 표현하면 아래와 같습니다.

"좌표 x를 좌표 x'로 변환하는 함수"

예로는 사이즈 변경(Scaling), 위치변경(Translation), 회전(Rotation) 등이 있습니다.

변환의 종류에는 몇가지 분류가 있습니다.

- 강체변환(Rigid-Body) : 크기 및 각도가 보존(ex; Translation, Rotation)
- 유사변환(Similarity) : 크기는 변하고 각도는 보존(ex; Scaling)
- 선형변환(Linear): Vector 공간에서의 이동. 이동변환은 제외.
- Affine: 선형변환과 이동변환까지 포함. 선의 수평성은 유지.(ex;사각형->평행사변형)
- Perspective : Affine 변환에 수평성도 유지되지 않음. 원근변환

Geometric transform of Images

- 1. Scaling(or resizing, 크기 변화)
- 2. Translation(영상 이동)
- 3. Rotation(영상회전)
- 4. Geometric transform
 - Affine
 - Perspective

Cropping

- 영상처리 중 가장 빈도수가 높은 처리 방법 중 하나이다.
- 영상 내 노이즈를 배제하고, 분석 대상을 좁혀 연산량과 성능을 증가시킬 수 있다.
- 자동화할 시 Padding이 필요할 수 있다.

Color filtering

- Cropping과 함께 영상처리 중 가장 빈도수가 높은 처리 방법 중 하나이다.
- HSV 값들을 사용하여, object에 대한 색의 범위를 정해주고, filtering한다.

Tip : color filtering을 하여 object를 구하는 것이 아니라, object를 color filtering하기 좋은 것이 좋은 응용인 경우가 많다.

Image feature

기본적으로 분류는 데이터가 가지고 있는 값들을 사용한다.

영상의 경우도 그럴까?

기본적으로 분류는 데이터가 가지고 있는 값들을 사용한다.

영상의 경우도 그럴까?

영상의 개별 픽셀값들을 통한 분류는 매우 어렵다!

각 클래스의 객체는 공통적으로 가지고 있는 하위 개념들을 통해 구성됨(추상화 개념) 만일 분류 문제를 풀기 위한 하위 개념들을 찾아낼 수 있다면 픽셀 단위로는 해결하기 어려웠던 문제를 풀 수 있다.

각 영상(data)를 하위 개념들의 조합(new representation)으로 나타낼 수 있다면, 머신러닝 알고리즘을 통해 더 나은 성능을 보이는 분류 모델을 학습할 수 있다.

Convolutional filter(1)

- 1. **영상의 특징**을 분석하기 위해서는 픽셀 단위가 아닌 픽셀들이 이루는 상관성(패턴)을 분석할 필요가 있다.
- 2. 영상과 같은 행렬의 지역 상관성을 분석하는데 적합한 컨볼루션 필터(Convolutional Filter)가 유용한 분석 도구가 될 수 있음.
- 3. 컨볼루션 필터는 가중치 공간 필터(Weighted spatial filter)로 가중치 값에 따라 다양한 영상처리가 가능함.

Convolutional filter(2)

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Averaging filter

Bluring

Sobel filter Edge detecting

Calculation of Convolutions(1)

Calculation of Convolutions(2)

30	3,	2_2	1	0
02	02	10	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Ref: towardsdatascience.com

Example: Averaging filter

⟨5x5 average filter⟩

〈Gaussian filter〉

Example: Averaging filter

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

	1	2	1
$\frac{1}{16} \times$	2	4	2
	1	2	1

(1) Averaging filter

Averaging window Sizes:

원본	3
5	9
15	35

(2) Sobel filter(edge feature)

-2 0 0 -2 Original image

Result of Sobel operator

(3) harris corner detector(corner feature)

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

(3) harris corner detector(corner feature)

Convolutional filter(3)

컨볼루션의 다양한 이름

- 영상으로부터 불필요한 정보를 제거할 때: Filter
- 주어진 문제에 적합한 정보를 얻기 위할 때: Feature
- 동일한 사이즈의 영상 패치(patch)를 하나의 값으로 치환할 때 : Kernel

올바른 컨볼루션 필터의 가중치를 선택하는 것은 성공적인 분석에 가장 중요함 => 어떻게 최적의 가중치를 찾을까?

What is good feature?

A prominent part or characteristic of an image

Why?

images of only one object could be different with scale, rotation, lighting, perspective imaging, partial occlusion

What is good feature?

Well-designed features

Thank you!