Logică pentru informatică - note de curs

Universitatea Alexandru Ioan Cuza, Iași Facultatea de Informatică Anul universitar 2021-2022

> Ștefan Ciobâcă Andrei Arusoaie Rodica Condurache Cristian Masalagiu

Cuprins

1	Motivație și introducere	5
2	Structuri și signaturi	7
	2.1 Fisă de exerciții	10

Capitolul 1

Motivație și introducere

Logica de ordinul I, pe care o vom studia în continuare, este o extensie a logicii propoziționale, extensie care aduce un plus de expresivitate. Expresivitatea adițională este necesară pentru a putea modela anumite afirmații care nu pot fi exprimate în logica propozițională.

În logica propozițională, nu putem exprima într-un mod natural următoarea afirmatie: *Orice om este muritor*.

Pentru a modela o afirmație în logica propozițională, identificăm întâi propozițiile atomice. Apoi asociem fiecărei propoziții atomice o variabilă propozițională. Propozițiile atomice sunt propozițiile care nu pot fi împărțite în alte propoziții mai mici, care să fie conectate între ele prin conectorii logici \neg , \wedge , \vee , \rightarrow și respectiv \leftrightarrow .

Observăm că afirmația Orice om este muritor nu poate fi descompusă în afirmații indivizibile legate între ele prin conectorii logicii propoziționale, după cum este descris mai sus. Așadar, în logica propozițională, afirmația este atomică. Asociem întregii afirmații o variabilă propozițională $p \in A$.

Acum să modelăm afirmația Socrate este om. Evident, acestei a doua afirmații trebuie să îi asociem o altă variabilă propozițională $\mathbf{q} \in A$. Să presupunem că știm că \mathbf{p} și \mathbf{q} sunt adevărate. Formal, știm că lucrăm cu o atribuire $\tau:A\to B$ astfel încât $\tau(\mathbf{p})=1$ și $\tau(\mathbf{q})=1$. Putem trage concluzia ca afirmatia Socrate este muritor este adevărată în atribuirea τ ?

Nu, deoarece afirmației Socrate este muritor ar trebui să îi asociem o a treia variabilă propozițională \mathbf{r} și nu putem trage nicio concluzie asupra lui $\tau(\mathbf{r})$ din faptul că $\tau(\mathbf{p})=1$ și $\tau(\mathbf{q})=1$. Deci, din semantica logicii propoziționale, nu putem trage concluzia că \mathbf{r} este adevărată în orice atribuire în care \mathbf{p} și \mathbf{q} sunt adevărate, în ciuda faptului că, dacă orice om este muritor și Socrate este om atunci sigur Socrate este muritor. Această diferență între realitate și modelarea noastră ne indică faptul că modelarea nu este suficient

de bună.

Logica de ordinul I aduce, în plus față de logica propozițională, noțiunea de cuantificator (existențial sau universal) și noțiunea de predicat. Cuantificatorul universal este notat cu \forall (de la litera A întoarsă – all în limba engleză), iar cuantificatorul existențial este notat cu \exists (de la litera E întoarsă – exists în limba engleză).

Un predicat este o afirmație a cărei valoare de adevăr depinde de zero sau mai mulți parametri. De exemplu, pentru afirmația de mai sus, vom folosi două predicate: 0 și M. Predicatul 0 va fi definit astfel: 0(x) va fi adevărat când x este om. Predicatul M(x) este adevărat când x este muritor. Deoarece predicatele de mai sus au fiecare câte un singur argument/parametru, ele se numesc predicate unare. Predicatele generalizează variabilele propoziționale prin faptul că pot primi argumente. De fapt, variabilele propoziționale pot fi văzute ca predicate fără argumente.

Astfel, afirmația orice om este muritor va fi modelată prin formula

$$(\forall x.(O(x) \rightarrow M(x))),$$

care este citită astfel: $pentru\ orice\ x$, $dacă\ 0\ de\ x$, $atunci\ M\ de\ x$. Afirmația $Socrate\ este\ om\ va\ fi\ modelată\ prin\ formula\ 0(s)$, unde s este o $constant\ a$ prin care înțelegem Socrate, la fel cum prin constanta 0 ne referim la numărul natural zero. De exemplu, 0(s) este adevărat (deoarece s denotă un om), dar 0(l) este fals dacă, spre exemplu, l este o constantă care ține locul cățelului $L\ abus$.

Afirmația Socrate este muritor va fi reprezentată prin M(s) (deoarece constanta s se referă la Socrate). Afirmația M(s) este adevărată deoarece Socrate este muritor; la fel și afirmația M(l) este adevărată.

Vom vedea că în logica de ordinul I, formula M(s) este consecință a formulelor $(\forall x.(O(x) \to M(x)))$ și respectiv O(s). În acest sens, logica de ordinul I este suficient de expresivă pentru a explica din punct de vedere teoretic raționamentul prin care putem deduce că *Socrate este muritor* din faptul că *Orice om este muritor* și din faptul că *Socrate este om*.

Capitolul 2

Structuri și signaturi

Cu siguranță ați întâlnit deja mai multe formule din logica de ordinul I, fără să știți neapărat că aveți de a face cu logica de ordinul I. Fie următoare formulă:

$$\varphi = \Big(\forall x. \big(\forall y. (x < y \rightarrow \exists z. (x < z \land z < y)) \big) \Big).$$

Formula folosește un simbol < căruia îi corespunde un predicat binar < (adică o relație binară) definit astfel: <(x,y) este adevărat dacă x este mai mic strict decât y. Pentru multe predicate binare (inclusiv pentru <), pentru a simplifica scrierea, folosim notația infixată (x < y) în loc de notația prefixată (<(x,y)).

Este formula φ de mai sus adevărată? Formula afirmă că între orice două valori ale variabilelor x, y există o a treia valoare, a variabilei z. Formula este adevărată dacă domeniul variabilelor x, y, z este \mathbb{R} , dar este falsă dacă domeniul este \mathbb{N} (între orice două numere reale există un al treilea, dar între două numere naturale consecutive nu există niciun alt număr natural).

În general, formulele de ordinul I se referă la o anumită structură matematică.

Definiția 1 (Structură matematică). O structură matematică este un triplet S = (D, Pred, Fun), unde:

- D este o multime nevidă numită domeniu;
- fiecare $P \in Pred$ este predicat (de o aritate oarecare) peste mulțimea D;
- fiecare $f \in Fun$ este funcție (de o aritate oarecare) peste mulțimea D.

Iată câteva exemple de structuri matematice:

1.
$$(\mathbb{N}, \{<, =\}, \{+, 0, 1\});$$

Domeniul structurii este mulțimea numerelor naturale. Structura conține două predicate: < și =, ambele de aritate 2. Predicatul < este predicatul $mai\ mic$ pe numere naturale, iar predicatul = este predicatul de egalitate a numerelor naturale.

Funcția binară $+: \mathbb{N}^2 \to \mathbb{N}$ este funcția de adunare a numerelor naturale, iar structura contine și constantele $0 \in \mathbb{N}$ și $1 \in \mathbb{N}$.

2.
$$(\mathbb{R}, \{<, =\}, \{+, -, 0, 1\});$$

Această structură conține două predicate binare, < și =, precum și patru funcții peste \mathbb{R} : funcția binară +, funcția unară - și constantele $0, 1 \in \mathbb{R}$.

3.
$$(\mathbb{Z}, \{<,=\}, \{+,-,0,1\});$$

Această structură este similară cu structura precedentă, dar domeniul este mulțimea numerelor întregi.

4.
$$(B, \emptyset, \{\cdot, +, \bar{\ }\});$$

Această structură este o algebră booleană, unde domeniul este mulțimea valorilor de adevăr, iar funcțiile sunt cele cunoscute din prima jumătate a semestrului. Astfel de structuri, fără niciun predicat, se numesc structuri algebrice.

5.
$$(\mathbb{R}, \{<\}, \emptyset)$$
.

Această structură conține doar un predicat de aritate 2 (relația $mai\ mic$ peste \mathbb{R}) și nicio funcție. Structurile care nu conțin funcții se numesc structuri relaționale. Structurile relaționale cu domeniul finit se mai numesc baze de date relationale si se studiază în anul 2.

Când avem o formulă de ordinul I și dorim să îi evaluăm valoarea de adevăr, trebuie să fixăm structura în care lucrăm. Revenind la formula de mai devreme:

$$\varphi = \Big(\forall x. \big(\forall y. (x < y \rightarrow \exists z. (x < z \land z < y)) \big) \Big),$$

avem că această formulă este adevărată în structura $(\mathbb{R}, \{<,=\}, \{+,-,0,1\})$ (între orice două numere reale distincte există cel puțin un număr real) dar este falsă în structura $(\mathbb{Z}, \{<,=\}, \{+,-,0,1\})$ (deoarece nu între orice două numere întregi putem găsi un alt număr întreg – de exemplu între două numere întregi consecutive nu există niciun întreg). În primul caz, domeniul variabilelor x,y,z este \mathbb{R} și simbolului < îi corespunde predicatul $<\subseteq \mathbb{R}^2$. În al doilea caz, domeniul variabilelor x,y,z este \mathbb{Z} și simbolului < îi corespunde predicatul $<\subseteq \mathbb{Z}^2$.

Este posibil ca două structuri diferite să aibă un set de predicate și de funcții cu același nume. De exemplu, chiar structurile de mai devreme, $(\mathbb{R}, \{<,=\}, \{+,-,0,1\})$ și respectiv $(\mathbb{Z}, \{<,=\}, \{+,-,0,1\})$. Deși predicatul $<\subseteq \mathbb{R}^2$ este diferit de predicatul $<\subseteq \mathbb{Z}^2$, ele au același nume: <.

În general, în Matematică și în Informatică, nu facem diferența între un predicat și numele lui, respectiv între o funcție și numele funcției, dar în Logică diferența este extrem de importantă. În particular, dacă ne referim la numele unei funcții vom folosi sintagma simbol funcțional, iar dacă ne referim la numele unui predicat vom folosi sintagma simbol predicativ. De ce este importantă diferența dintre un simbol predicativ și un predicat? Deoarece vom avea (ne)voie să asociem simbolului predicativ diverse predicate, analog modului în care unei variabile într-un limbaj de programare imperativ îi putem asocia diverse valori.

Când ne interesează doar numele funcțiilor și predicatelor (nu și funcțiile și respectiv predicatele în sine), vom utiliza signaturi:

Definiția 2 (Signatură). O signatură Σ este un tuplu $\Sigma = (\mathcal{P}, \mathcal{F})$ unde \mathcal{P} este o mulțime de simboluri predicative și \mathcal{F} este o mulțime de simboluri funcționale. Fiecare simbol s (predicativ sau funcțional) are asociat un număr natural pe care îl vom numi aritatea simbolului și îl vom nota cu ar(s).

Unei signaturi îi putem asocia mai multe structuri:

Definiția 3 (Σ -structuri). Dacă $\Sigma = (\mathcal{P}, \mathcal{F})$ este o signatură, o Σ -structură este orice structură S = (D, Pred, Fun) astfel încât fiecărui simbol predicativ (sau funcțional) îi corespunde în mod unic un predicat (respectiv, o funcție).

Exemplul 4. Fie $\Sigma = (\{P,Q\}, \{f,i,a,b\})$ unde P,Q sunt simboluri predicative de aritate ar(P) = ar(Q) = 2 și f,i,a,b sunt simboluri funcționale cu aritățile: ar(f) = 2, ar(i) = 1 și ar(a) = ar(b) = 0.

Avem că $(\mathbb{R},\{<,=\},\{+,-,0,1\})$ și respectiv $(\mathbb{Z},\{<,=\},\{+,-,0,1\})$ sunt Σ -structuri.

Observație. Dupa cum se poate observa și în Exemplul 4, pentru simboluri predicative (e.g., P, Q) vom utiliza o culoare diferită față de culoarea simbolurilor funcționale (e.g., f, i, a, b). Pentru predicatele și funcțiile din structuri vom utiliza fontul obișnuit pentru formule matematice.

De retinut!

Structură = domeniu + predicate + funcții

Signatură = simboluri predicative + simboluri funcționale

Unei signaturi Σ îi putem asocia mai multe structuri, numite $\Sigma\text{-}$ structuri.

9

Notație. Mulțimea simbolurilor predicative dintr-o Σ -structură de aritate n este notată cu $\mathcal{P}_n = \{P \mid ar(P) = n\}$, iar mulțimea simbolurilor funcționale de aritate n este notată cu $\mathcal{F}_n = \{f \mid ar(f) = n\}$. Pentru cazul particular n = 0, \mathcal{F}_0 reprezintă mulțimea simbolurilor constante (simboluri funcționale de aritate 0).

2.1 Fișă de exerciții

Exercițiul 5. Identificați predicatele și funcțiile din textul de mai jos și stabiliți aritatea acestora. Care este domeniul acestora?

Ion este student. Orice student învață la Logică. Oricine învață la Logică trece examenul. Orice student este om. Există un om care nu a trecut examenul. Deci nu toți oamenii sunt studenți.

Exercițiul 6. Identificați predicatele și funcțiile din textul de mai jos și stabiliți aritatea acestora. Care este domeniul acestora?

Suma a două numere pare este un număr par.

Exercițiul 7. Identificați predicatele și funcțiile din textul de mai jos și stabiliți aritatea acestora. Care este domeniul acestora?

În jocul de șah, regina poate efectua o mutare dintr-o căsuță într-alta ddacă tura sau nebunul poate efectua aceeași mutare.

Exercițiul 8. Identificați predicatele și funcțiile din textul de mai jos și stabiliți aritatea acestora. Care este domeniul acestora?

Suma a două numere mai mari decât zero este mai mare decât zero.

Exercițiul 9. Identificați predicatele și funcțiile din textul de mai jos și stabiliți aritatea acestora. Care este domeniul acestora?

Numărul 7 este prim.

Exercițiul 10. Identificați predicatele și funcțiile din textul de mai jos și stabiliți aritatea acestora. Care este domeniul acestora?

10

Orice număr par mai mare decât 2 este suma a două numere prime.

Exercițiul 11. Identificați predicatele și funcțiile din textul de mai jos și stabiliți aritatea acestora. Care este domeniul acestora?

Dacă Pământul este plat, atunci 2 + 2 = 5.

Exercițiul 12. Identificați predicatele și funcțiile din textul de mai jos și stabiliți aritatea acestora. Care este domeniul acestora?

Pentru orice $\epsilon \in (0, \infty)$, există $\delta_{\epsilon} \in (0, \infty)$ astfel încât pentru orice $x \in \mathbb{R}$ cu $d(x_0, x) < \delta_{\epsilon}$, avem $d(f(x_0), f(x)) < \epsilon$.

11