Banco de Dados

01 – Introdução a Banco de Dados

Prof^a Cristina Verçosa Pérez Barrios de Souza cristina.souza@pucpr.br

Tópicos

- > Conceitos iniciais
- > SGBD
 - Exemplos de aplicações de Banco de Dados
 - Comparação com Sistema de Arquivos
 - Níveis de Abstração
 - Instância x Esquema
 - DA x DBA
 - Modelo de Dados
 - Linguagem de Banco de Dados

> Dados

- São fatos conhecidos que podem ser registrados e que possuem um significado implícito. (Navathe, Elmasri – 2011).
- São valores armazenados e se constituem em "matéria-prima" para a obtenção de informação.

> Informação

 São dados processados e formatados com critérios definidos, com o objetivo de caracterizar e explicitar um elemento, fato ou situação.

> Conhecimento

- Integra elementos, informações e experiências, de forma complexa e adequada à interpretação e ao raciocínio humano.
- Propicia a tomada de decisão.

- > Exemplo 1: Dados x Informação x Conhecimento :
 - Um relatório com os dados de um laudo médico de um paciente se transforma em informações e conhecimento se for analisado por um médico ou enfermeiro.
 - Porém, se o relatório for lido pelo próprio paciente, provavelmente ele não conseguirá obter as mesmas conclusões.
- > Exemplo 2: Dados x Informação x Conhecimento:

Dados

- 12 Graus Celsius
- Velocidade do vento é 85 km / hora

Informação

- 12 Graus Celsius em Lisboa
- Velocidade do vento é 85 km / hora na freguesia de Santa Maria, em Lisboa

Conhecimento

 Se estão 12 Graus Celsius em Lisboa, a velocidade do vento é 85 km / hora na freguesia de Santa Maria e estamos em Novembro, então é provável que chova.

> Banco de Dados

- Coleção de dados relacionados
- Dados organizados com significado inerente, específico
 - > Uma organização aleatória de dados não é um banco de dados!
 - > Um banco de dados é projetado, construído e povoado com dados que possuem um objetivo específico.
 - > Ele possui um grupo de usuários e aplicações pré-concebidas, em que esses usuários estão interessados.
- Sistema de Banco de Dados
 - > Conjunto de dados inter-relacionados que são manipulados (apenas) por um sistema próprio (aplicação).
 - > Referenciados como **SGBD Sistema Gerenciador de Banco de Dados**

> Persistência

- Os dados de um BD são ditos persistentes porque não são dados efêmeros ou voláteis, como os dados de entrada e saída (IO), de instruções de controle, de resultados intermediários, etc., mantidos em memória (p. ex. RAM)
- Os dados de um BD persistem porque, uma vez aceitos pelo SGBD, só serão removidos por meio de uma solicitação explícita ao SGBD, não como mero efeito colateral, tal como o término de um programa de aplicação gravados em meio não volátil e gerenciados por aplicação específica

Um Banco de Dados é uma coleção de **dados persistentes**, utilizada por aplicações de empresas ou corporações

SGBD

SGBD – Sistema Gerenciador de Banco de Dados

Representação simplificada

Integração

 Elimina redundâncias desnecessárias de dados

Compartilhamento

 Diferentes aplicativos e usuários podem acessar os mesmos dados, pois o SGBD trata o acesso concorrente.

Exemplos de aplicações de Banco de Dados (1)

> Informações Corporativas / Empresariais:

- Vendas: clientes, produtos, compras
- Contabilidade: pagamentos, recebimentos, ativos
- Recursos Humanos: cadastro de funcionários, salários, impostos sobre a folha de pagamento

> Manufatura:

Gestão da produção, estoque, pedidos, cadeia de suprimentos.

> Bancos e Sistemas Financeiros:

- Cadastro de clientes, contas, empréstimos e transações bancárias.
- Transações com cartão de crédito
- Finanças: vendas e compras de instrumentos financeiros (ações e títulos; armazenamento de dados de mercado em tempo real)

Universidades:

Matrículas, notas

Exemplos de aplicações de Banco de Dados (2)

Companhias Aéreas:

Reservas, horários, destinos

> Telecomunicações:

- Registros de chamadas, textos e uso de dados,
- Geração de faturas mensais
- Manutenção de saldos em cartões telefônicos pré-pagos

> Serviços baseados na Web

- Varejistas online: rastreamento de pedidos, recomendações personalizadas
- Anúncios online

> Sistemas de Navegação:

- Localização de vários locais de interesse
- Rotas exatas de estradas, sistemas de trem, ônibus, etc.

SGBD – Sistema Gerenciador de Banco de Dados

- > Em inglês: **BDMS** *Database Management System*
- > Conjunto de dados associados a um conjunto de programas
- Ambiente apropriado e eficiente para recuperação e armazenamento de informações
- > Gerenciamento de grandes volumes de informações
 - Definição de estruturas de armazenamento
 - Definição de mecanismos de manipulação
- > Trata de questões de segurança, como:
 - Falhas, acesso não autorizado, aplicação de restrições (constrains), etc.

- > **SEM um SGBD**, temos apenas o **Sistema de Arquivos** (*File System*).
- Dessa forma, cada aplicativo / usuário cria e estrutura seus dados de forma independente, gerando problemas:
 - Redundância e Isolamento de dados: programas distintos utilizam os mesmos dados em arquivos e formatos de armazenamento diferentes.
 - Inconsistência de dados: não há como garantir que uma modificação de dados seja realizada nos diferentes arquivos em que estão armazenados.
 - Dificuldade no acesso aos dados: o acesso aos dados é feito apenas pelos programas de aplicativos que gerenciam esses dados.
 - Anomalias por acesso concorrente: os dados podem ficar inconsistentes se manipulados simultaneamente por aplicativos / usuários distintos, sem que haja uma coordenação do acesso.
 - Problemas de segurança: não é possível conceder acesso a parte dos dados.
 - Problemas de integridade dos dados: regras de negócios (restrições impostas aos dados) devem ser implementadas em sistemas aplicativos, de forma independente.

> SEM um SBGD:

dificuldade para tratar o acesso e manipulação concorrente de dados

Exemplo de acesso e manipulação concorrentes

> COM um SGBD

- Compartilhamento de dados: evita a redundância e isolamento de dados, pois estes passam a ser armazenados e acessados da mesma forma, controlados pelo SGBD.
- Inconsistência evitada: o SGBD é o único acesso aos dados (redundância reduzida), permitindo a propagação da alteração feita em um dado duplicado (redundância controlada).
- Facilidade de acesso aos dados: o SGBD é o único acesso aos dados.
- Suporte à Transação: evita os problemas do acesso concorrente, pois tem Duporte a Transações (várias operações de alteração são executadas em sequência, sem falha de nenhuma, para garantir a consistência de dados), que é dita atômica(indivisível). Caso alguma das operações da transação não seja realizada, o SGB garante o retorno dos dados ao seu valor anterior (rollback) à transação.
- Segurança Reforçada: o SGBD, além de ser o único acesso aos dados, também permite atribuir permissões diferentes (restrições de segurança) para usuários diferentes.
- A Integridade dos Dados pode ser mantida: é possível configurar regras de negócios (restrições impostas aos dados) no próprio SGBD.

O acesso aos dados é feito diretamente pelos aplicativos e/ou usuários

O acesso aos dados é feito através do SGBD, que faz a intermediação entre dados e usuários e/ou aplicativos.

SGBD – Independência de Dados

> Sistema Dependente de Dados

- A maneira como os dados estão armazenados fisicamente e a técnica para obter esses dados são determinadas pelos requisitos de uma aplicação.
- O conhecimento da representação física e da técnica de acesso está embutida no código da aplicação.

> Independência de Dados através de SGBDs

- Garante imunidade das aplicações a alterações na representação dos dados e na técnica de acesso.
- A ideia é armazenar os dados de forma independente dos sistemas de aplicação, uma vez que os dados são patrimônio da empresa / corporação.

SGBD – Independência de Dados

> Independência Física

- É a capacidade de modificar o esquema físico dos dados sem que isso gere qualquer necessidade de modificação no programa de aplicação que acessa os dados.
- Modificações físicas são necessárias eventualmente para otimizar o desempenho do SGBD.

> Independência Lógica

- É a capacidade de modificar o esquema lógico dos dados sem que isso gere qualquer necessidade de modificação no programa de aplicação que acessa os dados.
- O esquema lógico envolve a estrutura lógica de dados; alterar a estrutura lógica acontece, por exemplo, quando é preciso acrescentar uma nova informação ao banco (como novas moedas em um sistema bancário).

SGBD – Configuração Simplificada

* Programas em um SGBD podem ser: Procedimentos Armazenados (Stored Procedures) ou Funções (Functions)

SGBD – Benefícios

- > Permite uma visão abstrata dos dados
- Permite a redução de redundância de informações e de inconsistências, a partir da implementação de um projeto bem estruturado
- > Permite o compartilhamento de dados
- > Permite aplicação de restrições (constrains) de projeto:
 - Garante a integridade dos dados e
 - Reforça os padrões e regras de negócio da empresa
- Garante a independência de dados, mesmo com acesso simultâneo e concorrente
- > Permite a melhoria na segurança de dados

SGDB – Níveis de Abstração

> Nível Físico ou Nível Interno

- Nível de abstração mais baixo; descreve em detalhes a estrutura de armazenamento físico do banco de dados.
- Define um esquema interno que utiliza um modelo de dados físico.

> Nível Lógico ou Nível Conceitual

- Descreve, para a comunidade de usuários, quais dados estão armazenados no banco de dados, em um esquema conceitual: entidades, tipos de dados, conexões, operações de usuário e restrições.
- O usuário do Nível Lógico não precisa estar ciente da complexidade do nível físico, o que é chamado de independência de dados física.
- Os administradores de banco de dados, que precisam decidir que informações armazenar no banco de dados, usam o nível lógico de abstração.

> Nível de Visão (View) ou Nível Externo

- Nível de abstração mais alto; descreve apenas parte do banco de dados, em esquemas externos ou visões de usuário.
- Mesmo que o Nível Lógico use estruturas mais simples, a complexidade permanece em razão da variedade de informações armazenadas em um grande banco de dados. Contudo, muitos usuários não precisam de toda essa informação; em vez disso, eles precisam acessar apenas uma parte do banco de dados. Logo, Nível de Visão existe para simplificar sua interação dos usuários com o sistema.

SGDB – Níveis de Abstração

Instância x Esquema

- > Semelhante a tipos e variáveis em linguagens de programação
- > Esquema Lógico
 - Estrutura lógica geral do banco de dados
 - Exemplo: o banco de dados consiste em informações sobre um conjunto de clientes e contas em um banco e o relacionamento entre eles
 - Análogo ao tipo de informação de uma variável em um programa

> Instância

- Conteúdo real do banco de dados em um determinado momento
- Análogo ao valor de uma variável

SGDB – DA e DBA

- > DA Data Administrator
 - Ou Administrador de Dados
 - Pessoa que toma as decisões estratégicas e define normas de negócio em relação aos dados da empresa
- > DBA Database Administrator
 - Ou Administrador do Banco de Dados
 - Pessoa que fornece suporte técnico necessário para implementar as decisões do DA
 - Define questões relacionadas à estrutura física dos dados, relacionamentos, índices, etc.

SGDB – DA e DBA

> Funções do DA

Decidir o conteúdo das informações do BD em um Esquema Conceitual
 (Nível Lógico ou Nível Conceitual = visão de negócio)

> Funções do DBA

- Decidir a estrutura de armazenamento físico mais adequada para implementar o Esquema Conceitual (Nível Físico = visão técnica)
- Definir concessão de autorização para acesso a dados, para controlar que partes do banco de dados os vários usuários podem acessar.
- Implementar as estratégias de back-up e recovery
- Monitorar e adequar o desempenho

SGBD – Modelo de Dados

 Conjunto de ferramentas conceituais usadas para descrição de dados, relacionamento de dados, semânticas e regras de consistência

- Dentre os diferentes modelos de dados, destaca-se o Modelo Relacional
 - Baseado em registros
 - Usado para especificar a estrutura lógica do BD e sua implementação

SGBD – Modelo Relacional

- Representação dos dados em formas de tabelas, como conjunto de linhas e colunas:
 - Tuplas = linhas ou registros
 - Atributos = colunas
 - Domínios = conjunto de valores

Domínio

Atributo Cidade_Cliente Número_Conta Nome_Cliente Seguro_Social Rua_Cliente 192-83-7465 Johnson Alma Palo Alto A-101 Tupla 019-28-3746 Smith North A-125 Rye Stamford 182-173-6091 Turner Putnam A-305

SGDB – Linguagem de Banco de Dados

> Todo produto SGDB implementa uma linguagem

- > **DDL** Data Definition Language
 - cria um conjunto de tabelas que constituem um arquivo especial chamado de dicionário de dados ou diretório de dados

- > **DML** Data Manipulation Language
 - recuperação, inserção, remoção e modificação de informações no banco de dados

DDL - Data Definition Language

> Define o Esquema do BD

– Exemplo:

```
create table instrutor (
ID char(5), -- string tamanho fixo
nome varchar(20), -- string tamanho variável
depto_nome varchar(20), -- string tamanho variável
salario numeric(8,2)) -- até 2 casas decimais
```

Compilador DDL

- Gera um conjunto de modelos de tabela, armazenados em um dicionário de dados

Dicionário de Dados

- Contém metadados (ou seja, dados sobre dados)
- Esquema de banco de dados
- Restrições de integridade (integrity constraints)
 - > Chave primária (ID que identifica exclusivamente os instrutores)
- Autorização
 - > Quem pode acessar o que

DML – Data Manipulation Language

- > Também referenciada como linguagem de consulta
- > DML declarativa
 - usuário especifica quais dados necessita, sem especificar como obter esses dados
 - Também chamadas de DMLs não-procedurais

> SQL – Structured Query Language

- DML não-procedural
- Exemplo para encontrar todos os instrutores do departamento "Comp. Sci."

```
select nome
from instrutor
where dept_nome = 'Comp. Sci.'
```


SGBD – Estrutura Geral

Questões

- 1) Defina os seguintes termos e expressões:
 - SGBD
 - Dados persistentes
 - Integridade
 - Compartilhamento
 - DA
 - DBA
 - Linguagem de consulta

Questões

- 2) Descreva as principais vantagens e desvantagens de um SGBD
- 3) Quais as principais diferenças entre um sistema de arquivos e um sistema de banco de dados?
- 4) Diferencie esquema e instância de BD.
- 5) Diferencie independência lógica e física de dados.
- 6) Descreva os principais níveis de abstração de um sistema de banco de dados.

Questões

- 2) Descreva as principais vantagens e desvantagens de um SGBD
 - Slide 16
- 3) Quais as principais diferenças entre um sistema de arquivos e um sistema de banco de dados?
 - Slide 17
- 4) Diferencie esquema e instância de BD.
 - Slide 24
- 5) Diferencie independência lógica e física de dados.
 - Slide 19
- 6) Descreva os principais níveis de abstração de um sistema de banco de dados.
 - Slide 22