Sekvenční dělení

INP 2019 FIT VUT v Brně

Příklad 2293: 51 (dekadicky vs binárně, n = 6) Posunutý dělitel

$\frac{22}{00}$: 51 = 0	10001 <u>1</u> 110101 -000000	:	1100110000000 = 0 (i	= 0)
$\begin{array}{r} 22\underline{9}3 : 51 = 04 \\ -204 \end{array}$	100011 <u>1</u> 10101 -11001 <u>1</u>	:	11001100000 = 01	
0253 : 51 = 044 - 204	010100 <u>1</u> 0101 -000000	:	1100110000 = 010	
49 (zbytek)	0101001 <u>0</u> 101 -110011	:	110011000 = 0101	
	11111 <u>1</u> 01 -110011	:	11001100 = 01011	
V kroku <i>i</i> se pokoušíme odečíst od průběžného	001100 <u>0</u> 1 -000000	:	1100110 = 010110	
zbytku <i>R_i</i> posunutý	00110001	:	110011 = 0101100	(44)

110001 (49, zbytek)

Dělení čísel s pevnou řádovou čárkou

Budeme se zabývat dělením čísel s pevnou řádovou čárkou bez znaménka. Pro jednotlivé činitele operace dělení zavedeme symboly

dělenec

dělitel d

Q podíl

i-tý bit podílu

R. *i*-tý (průběžný) zbytek

Máme vypočítat Q, R tak, aby byla splněna rovnice

$$D = Q \cdot d + R, \qquad 0 \le |R| < d.$$

Pro d, Q, R máme k dispozici n bitů, pro D vyhradíme 2n bitů.

Nejdříve si ukážeme dělení čísel bez znamének, resp. dělení jejich absolutních hodnot.

Pozor, *d* je nutné posunout o *n* bitů doleva.

Postup dělení a HW realizace

Při rozhodování o hodnotě bitu podílu $q_{n,i}$ jsme postupovali podle vztahů: je-li $2^{n-i} d$ menší než nebo rovno R_n pak $q_{n,i} = 1$, je-li $2^{n-i} d$ **větší** než R_i , pak $q_{n-i} = 0$.

 $Q = q_n \dots q_0$ Nový zbytek se vypočte:

$$R_{i+1} := R_i - q_{n-i} 2^{n-i} d$$

2

dělitel 2ⁿ⁻ⁱ d

Modifikovaný postup – <u>d</u> je v pevné poloze

HW realizace z předchozího obrázku vyžaduje uchovávat hodnotu dělitele na 2*n* bitech a používat 2*n* bitovou odčítačku / sčítačku => zbytečně drahé.

V praxi se posouvá dílčí/průběžný zbytek vlevo a *d* je v pevné poloze (posunut o 2ⁿ bitů), takže

$$R_{i+1} := 2R_i - q_{n-i} d 2^n$$

Dále označme $d' = d \cdot 2^n$

Pravidlo pro určení q_{n-i}

Z příkladu plyne pravidlo pro určení q_{n-i} :

když
$$d'$$
 je **větší** než $2R_p$ pak $q_{n-i} = 0$, jinak $q_{n-i} = 1$.

V praxi se porovnávání čísel založené na použití komparátorů nepoužívá. Odečtení se provede vždy (zkusmo), tedy

když
$$2R_i$$
 - d' je **menší** než 0, pak $q_{n-i} = 0$, jinak $q_{n-i} = 1$.

Dělení – modifikovaný postup (38:5)

(Praxe: posuv Rivlevo, d v pevné poloze)

D=10	0110	d=101 ($=101 (d' = d.2^n = 101000)$			
Q= q ₂	2 q 1 q 0	= 1	11	$R_{i+1} = 2R_i - q_{n-i}d'$		
i=0	100110x -101000 10010x	_	2R ₀ =2D q ₂ d' R ₁	$d' < 2R_0$	=>	Q= 1
i=1	10010xx -101000 1000xx	_	2R ₁ q ₁ d' R ₂	d' < 2R ₁	=>	Q=11
i=2	1000xxx -101000 011xxx	_	$2R_2$ q_0d' R = 011	$d' < 2R_2$	=>	Q=111

i i

Dva postupy dělení

- a) Je-li $q_{n,j}=0$, pak je výsledek "zkušebního" odečtení $R_{i+1}'=2R_i-d'$. Správný zbytek má ale být $R_{i+1}=2R_i$. Správný zbytek dostaneme opravou, přičtením +d', což nazýváme **restaurací nezáporného zbytku** (návrat k nezápornému zbytku), tedy $R_{i+1}:=R_{i+1}'+d'$. Je-li pravděpodobnost výskytu jedničky v podílu Q rovna 1/2, potřebujeme pro n odečtení v průměru ještě n/2 krát přičítat.
- b) Postup bez restaurace nezáporného zbytku (bez návratu k nezápornému zbytku):

když
$$q_{n-i}=1$$
 (R_i větší než 0), použijeme vztah $R_{i+1}:=2R_i-d'$, když $q_{n-i}=0$, použijeme vztah $R_{i+1}:=2R_i+d'$.

Postup je úspornější, protože v každém kroku jen přičítáme d', nebo odčítáme d', nikdy neprovádíme obě operace. Při dělení bez restaurace tedy provedeme n aritmetických operací (+ nebo -), při dělení s restaurací 3/2 n operací.

7

30=00011110, 7=0111, -7=1001

0011110X	2D
+1001	<u>-d</u>
1 100110x	<0 => c3 = 0
100110xx	posuv
+0111	+d
0 00010xx	>0 => c2 = 1
00010xxx	posuv
+1001	<u>-d</u>
1 0100xxx	<0 => c1 = 0
0100xxxx	posuv
+0111	+d

1011xxxx

+0111

Příklad: 30:7=4. zb 2

bez návratu k

nezápornému zbytku

0010xxxx zbytek 2

<0 => c0 = 0

Základní stavební prvek: konfigurovatelná sčítačka/odčítačka

remainder (3) remainder out Controlled Add/Subtract http://www.cs.umbc.edu/portal/help/VHDL

c03

34

r14 🗸

Princip realizace kombinační 4b děličky (bez návratu k nezápornému zbytku)

dividend

(2)

quotient

(3)

Dělení SRT

+d (korekce na kladný zbytek)

Dělení čísel se znaménkem se po dlouhou dobu převádělo na dělení absolutních hodnot a dodatečné určení znaménka výsledku. Tuto nedokonalost odstranil algoritmus SRT autorů Sweeneyhó, Robertsona a Tochera (1958). Prováděné operace se pro každý krok určují "zejména" podle nejvyšších bitů průběžného zbytku R_i .

Pro demonstraci principu uvedeme základní metodu, kdy se operace provádí podle 3 nejvyšších bitů R_i.

Ri	d>0 bit podílu	d>0 operace	d<0 bit podílu	d<0 operace
000 111	0	posuv vlevo	0	posuv vlevo
001 010 011	1	-d, posuv vlevo	-1	+d, posuv vlevo
101 110 100	-1	+d, posuv vlevo	1	-d, posuv vlevo

49=00110001, 7=0111, -7=1001 -49=11001111 (d>0)

divisor(3,)

r36 4

remainder_in

xor

fadd

c25 r25 L

CAS

divisor

c14 14

Uplatníme váhy
$$2^{n}...2^{0}$$

Q = -1 1 0 1 -1, tj.
 $-16+8+0+2-1 = -7$

Příklad:

-49:7=-7, zb. 0 SRT

(1)

(0)

Ri	d>0	d>0	d<0	d<0
	bit podílu	operace	bit podílu	operace
000	0	posuv	0	posuv
111		vlevo		vlevo
001	1	-d,	-1	+d,
010		posuv		posuv
011		vlevo		vlevo
101	-1	+d,	1	-d,
110		posuv		posuv
100		vlevo		vlevo

Pozn. V případě záporného zbytku je zapotřebí provést korekci na kladný zbytek a **zvýšit** (pro d<0), popř. snížit (pro d>0) Q o 1.

12

Reálný algoritmus dělení SRT

Praktické realizace postupu SRT určují hodnotu číslice podílu podle více bitů průběžného (okamžitého) zbytku a podle více bitů dělitele.

Dále pracují s kódováním "několik bitů najednou".

Například v Pentiu se určují číslice podílu **podle 7 bitů průběžného zbytku a podle 5 bitů hodnoty dělitele**. Používá se radix 4.

Chyba dělení u Pentia (listopad 1994, ztráta \$475M) Figure 4-3 Missing Terms in P-O Plot

Figure 4-4 Missing Terms in P-O Plot

Figure 4-4 Missing Terms in P-O

0 misto +2 v I: NV, REM, TRANSC. F.

13

Obvodové realizace dělení: Shrnutí

- Sekvenční děličky
 - viz předchozí slidy
- Kombinační dělička
 - založena na úplné odčítačce
 - obvodová struktura je podobná kombinační násobičce
- Iterační dělička
 - viz další přednáška