МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

Отчёт о выполнении лабораторной работы 4.3.2

Дифракция света на ультрозвуковой волне в жидкости

Автор: Макаров Лев Евгеньевич Б04-306

1 Введение

Цель работы:

1. Изучение дифракции света на синусоидальной акустической решётке и наблюдение фазовой решётки методом тёмного поля

В работе используются:

- оптическая скамья
- осветитель
- два длиннофокусных объектива
- кювета с жидкостью
- кварцевый излучатель с микрометрическим винтом
- генератор ультразвуковой частоты
- линза
- вертикальная нить на рейтере
- микроскоп

2 Теоретические сведения

В работе используются оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, горизонтальная нить на рейтере, микроскоп.

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n $(m\ll 1).$

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k=2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рис. 1.

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin\theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

Рис. 1: Дифракция световых волн на акустической решетке

$$\Lambda = m\lambda F/l_m \tag{4}$$

Скорость ультразвуковых воли в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

3 Экспериментальная установка

Схема установки представлена на рис. 2. Источник света Π с помощью конденсора K проецируется на входную щель S. Входная щель ориентирована горизонтально и прикрыта красным светофильтром Φ . Коллиматорный объектив O_1 посылает параллельный пучок на кювету с водой . Излучатель Q создаёт УЗ-волну. Параллельный пучок света, дифрагируя на стоячей звуковой волне, образует дифракционную картину в фокальной плоскости F камерного объектива O_2 . Картину можно наблюдать в микроскоп M.

Рис. 2: Схема установки для наблюдения дифракции на акустической фазовой решетке

Рис. 3: Устройство для вертикального переме
- Рис. 4: Проволока Пр, перекрестие П и реперщения излучателя ная линия Р
л в фокальной плоскости объектива ${\cal O}_2$

Дифракционные полосы ориентированы горизонтально. Расстояние между ними можно измерить с помощью микрометрического винта В.

Длина Λ ультразвуковой волны определяется с помощью уравнения (6):

$$\Lambda \sin \theta_m = m\lambda \tag{6}$$

Так как углы θ_m малые, то окончательное выражение можно упростить:

$$l_m = mf \frac{\lambda}{\Lambda} \tag{7}$$

где l_m – измеренное на опыте линейное расстояние между m-м и нулевым максимумами, а f – фокусное расстояние объектива O_2 .

Скорость распространения звука в воде можно рассчитать по формуле:

$$v = \Lambda \nu \tag{8}$$

если известна частота ν кварцевого излучателя

Метод темного поля

Схема установки для данного метода приведена на рис. 5.

С помощью вспомогательной линзы O, расположенной на оптической скамье за фокальной плоскостью объектива O_2 можно получить изображение задней плоскости. Перемещая микроскоп вдоль оптической оси, фокусируем его на плоскость P, где расположено четкое изображение a'b' какого-либо предмета ab, вплотную прижатого к стенке кюветы.

Рис. 5: Наблюдение акустической решетки методом тёмного поля

Метод тёмного поля основан на устранении центрального максимума с помощью специального экрана (перекрывается проволокой). В поле зрения микроскопа наблюдаются темные и светлые полосы. Расстояние между тёмными соответствует смещению в плоскости кюветы на $\Lambda/2$.

4 Результаты измерений и обработка данных

- 1. Соберем схему установки согласно рис. 2. Максимально откроем входную щель. Поместив лист бумаги между коллиматором и кюветой, убедимся, что она равномерно освещается. Проверим так же свет на выходе из прибора. Настроим микроскоп, отсчётное устройство и установим рабочую ширину щели 20 мкм.
- 2. Получим в поле зрения микроскопа дифракционную картину

Перемещая излучатель, оценим длину УЗ волны как удвоенное расстояние между наиболее четкими дифракционными картинами: $2\Lambda = 140 \cdot 10$ мкм. Подставим в уравнение (8), где частота кварцевого излучателя $\nu = 2{,}17$ МГц.

$$v = \Lambda \nu = 70 \cdot 10 \cdot 2{,}17 \approx 1519 \text{ m/c}$$

3. определим положение дифракционных полос.

Подберем частоту генератора, при которой видна дифракционная картина $\nu=2.17~\mathrm{M}\Gamma$ ц. Вращением лимба добъемся наилучшей картины, чтобы было видно максимальное число полос.

С помощью перекрестия и микрометрического винта определим координату Y каждой видной полосы. Результаты измерений запишем в таблицу 1.

- 1 на на 1: <i>Измерение положения полос при разных частота</i> :											
	положения, 1 дел = 4 мкм										
ν , Мгц	1	2	3	4	5	6	7	8	9	10	
2,17	50	34	16	3	-13	-32	-51	-65	-89	-95	
3,2			24	13	-20	-40	-77	-98			
1,93	135	121	107	93	80	64	42	30	20	6	
4,1			138	123	82	61	18	0			
2,7			117	104	81	61	31	17			

Таблица 1: Измерение положения полос при разных частотах

- 4. Повторим измерения предыдущего пункта для других частот, рещультаты измерений запишем в таблицу 1. Отключим генератор.
- 5. Закроем проволочкой центральный максимум и запишем показания винта: 622 дел.
- 6. Построим графики зависимости Y = Y(m) для каждой частоты.

Рис. 6: 3ависимости Y = Y(m)

Имея формулы (7) получаем:

$$l_m = mf\frac{\lambda}{\Lambda} = km \implies k = f\frac{\lambda}{\Lambda} \implies \Lambda = f\frac{\lambda}{k}$$

Посчитаем Λ для каждой частоты и запишем в таблицу 2. Для каждой частоты посчитаем скорость звука и запишем в таблицу 2.

Таблица 2: Bычисление Λ и v для каждой частоты

ν , Мгц	σ_{ν} , М Γ ц	k, mkm	σ_k , MKM	Λ , mm	σ_{Λ} , mm	v, м/с	σ_v , м/с
2,17	0,05	138	3	1,30	0,05	1400	100
3,20	0,05	202	9	0,89	0,05	1400	100
1,93	0,05	118	4	1,52	0,08	1450	100
4,10	0,05	240	5	0,75	0,03	1550	100
2,70	0,05	172	9	1,04	0,07	1400	100

7. Посчитаем все погрешности. Результаты по порядку величины совпадают с теоритическими.

Дальнейшие пункты работы не выполнялись.