MAC0329 – Álgebra booleana e circuitos digitais (Nina)

 DCC / IME-USP — Primeiro semestre de 2016

Projeto de circuito 1 (Data para entrega: até 01/04/2016)

O Logisim (http://www.cburch.com/logisim/) possui um display de 7 segmentos. O esquema dele é mostrado abaixo. A identificação numérica dos pinos de entrada adotada aqui é arbitrária (pode não corresponder a padrão nenhum).

Todos os dígitos de 0 a 9 podem ser "mostrados" nesse display ativando-se os segmentos adequados.

Supondo que consideramos a codificação binária dos dígitos, precisamos de 4 bits para codificar os 10 dígitos de 0 a 9. Vamos denotar por f_i a função que ativa o segmento i do display, i = 0, 1, 2, ..., 6. Assim, temos a seguinte tabela-verdade:

Entrada	Segmentos						
x_3 x_2 x_1 x_0	f_0	f_1	f_2	f_3	f_4	f_5	f_6
0 0 0 0	1	1	1	0	1	1	1
$0\ 0\ 0\ 1$	1	0	0	0	0	0	1
$0\ 0\ 1\ 0$	1	1	0	1	1	1	0
$0\ 0\ 1\ 1$	1	1	0	1	0	1	1
$0\ 1\ 0\ 0$	1	0	1	1	0	0	1
$0\ 1\ 0\ 1$	0	1	1	1	0	1	1
$0\ 1\ 1\ 0$	0	1	1	1	1	1	1
$0\ 1\ 1\ 1$	1	1	0	0	0	0	1
$1\ 0\ 0\ 0$	1	1	1	1	1	1	1
$1\ 0\ 0\ 1$	1	1	1	1	0	1	1
$1\ 0\ 1\ 0$	×	×	×	×	×	×	×
$1\ 0\ 1\ 1$	×	×	×	×	×	×	×
$1\ 1\ 0\ 0$	×	\times	\times	\times	×	\times	×
$1\ 1\ 0\ 1$	×	×	×	×	×	×	×
$1\ 1\ 1\ 0$	×	\times	\times	\times	\times	\times	\times
1 1 1 1	×	×	X	X	X	X	X

As entradas das 10 primeiras linhas da tabela correspondem à codificação binária dos dígitos de 0 a 9. Na saída das demais linhas encontramos o símbolo \times que

significa "don't care". Isto é, o valor das funções para as respectivas entradas não importa (pois estamos supondo que essas entradas não ocorrerão).

Tarefa: projetar um circuito que realiza a tabela-verdade acima. Isto é, as entradas do circuito são os 4 bits $x_3 x_2 x_1 x_0$ e a saída são as funções f_0 a f_6 . Essas saídas devem ser conectadas aos correspondentes pinos no display de 7 segmentos.

Implemente o circuito no Logsim e simule-o, variando a entrada de 0 a 9. Verifique que o dígito correspondente à entrada é mostrado corretamente no display.

Abaixo estão exemplos da visualização de uma implementação (o circuito em si está dentro da caixinha):

