Tong Wu

L +1-765-720-4989 | **≥** tongwu@princeton.edu | **⊕** Personal Website

☐ LinkedIn | ☐ GitHub | ☐ Google Scholar | ✔ X (Twitter)

RESEARCH INTEREST

My research aims to address the safety challenges of increasingly capable LLMs through simple, scalable methods grounded in rigorous theoretical principles. My work spans:

- **Reasoning Control.** I am intrigued by the emerging reasoning capabilities of modern LLMs. My recent work focuses on scalable techniques to improve their reliability and safety through *Thinking Intervention*, a novel paradigm for steering their internal reasoning trajectories.
- **Robust and Private RAG.** I have developed a certifiably robust RAG system (*RobustRAG*) with responses provably resilient to perturbations in retrieved documents. I also designed a differentially private in-context learning (*DP-ICL*) method that protects the context privacy.
- **Instruction Hierarchy.** I have worked on enhancing instruction hierarchy through architectural innovations (*ISE*) and robust verification mechanisms (*Task Shield*) that correctly prioritize critical instructions in LLM agents.

EDUCATION

• Princeton University

Ph.D. in Electrical and Computer Engineering

o Advisor: Prof. Prateek Mittal

• Washington University in St. Louis

B.S./M.S. in Computer Science and Mathematics

Advisor: Prof. Yevgeniy Vorobeychik

Aug. 2021 – Dec. 2025 (Expected)

Princeton, NJ, USA

Aug. 2018 – May 2021

St. Louis, MO, USA

EXPERIENCE

• Princeton University [)

Aug. 2021 – Present

- Proposed *Thinking Intervention*, a novel paradigm for safe and effective control of LLM reasoning processes.
- Developed a certifiably robust Retrieval-Augmented Generation (RAG) system resilient to corrupted retrieval.
- Designed a privacy-preserving in-context learning framework to mitigate LLM privacy risks.

Google [\(\bigsip \)]

May 2025 – *Aug.* 2025

- Designing rigorous instruction hierarchy mechanisms for the next generation of the Gemini reasoning model.
- Zoom Video Communications [)

May 2024 - Aug. 2024

- Proposed a novel architectural framework to strengthen instruction hierarchy in LLM.
- Microsoft [)

Aug. 2023 – Sep. 2023

- \circ Developed a high-efficiency content moderation model with a 10× speedup and 99% accuracy retention.
- NEC Laboratories America [

May 2021 - Aug. 2021

• Proposed a meta-learning framework for model personalization in event detection of dialysis patients.

PUBLICATIONS

*= EQUAL CONTRIBUTION

Selected Publications

- **1. Tong Wu**, Chong Xiang, Jiachen T. Wang, Weichen Yu, Chawin Sitawarin, Vikash Sehwag, Prateek Mittal (2025). **Does More Inference-Time Compute Really Help Robustness?**. *arXiv preprint*.
- **2. Tong Wu**, Chong Xiang, Jiachen T. Wang, G. Edward Suh, Prateek Mittal (2025). **Effectively Controlling Reasoning Models through Thinking Intervention**. *arXiv preprint*.
- 3. Tong Wu, Shujian Zhang, Kaiqiang Song, Silei Xu, Sanqiang Zhao, Ravi Agrawal, Sathish Reddy Indurthi, Chong Xiang, Prateek Mittal, Wenxuan Zhou (2025). Instructional Segment Embedding: Improving LLM Safety with Instruction Hierarchy. In International Conference on Learning Representations (ICLR).
- **4.** Chong Xiang*, **Tong Wu***, Zexuan Zhong, David Wagner, Danqi Chen, Prateek Mittal (2024). **Certifiably Robust RAG against Retrieval Corruption**. *arXiv preprint*.

- 5. Tong Wu*, Ashwinee Panda*, Jiachen T. Wang*, Prateek Mittal (2024). Privacy-Preserving In-Context Learning for Large Language Models. In *International Conference on Learning Representations (ICLR)*.
- **6.** Feiran Jia, **Tong Wu**, Xin Qin, Anna Squicciarini (2025). **The Task Shield: Enforcing Task Alignment to Defend Against Indirect Prompt Injection in LLM Agents**. In *The Association for Computational Linguistics (ACL)*.
- 7. Tong Wu, Feiran Jia, Xiangyu Qi, Jiachen T. Wang, Vikash Sehwag, Saeed Mahloujifar, Prateek Mittal (2023). Uncovering Adversarial Risks of Test-Time Adaptation. In *International Conference on Machine Learning (ICML)*.
- **8.** Tong Wu, Liang Tong, Yevgeniy Vorobeychik (2020). **Defending Against Physically Realizable Attacks on Image Classification**. In *International Conference on Learning Representations (ICLR)*. *Spotlight Presentation*.

Full Publications

- 9. Sihui Dai, Chong Xiang, Tong Wu, Prateek Mittal (2024). Position Paper: Beyond Robustness Against Single Attack Types. *arXiv preprint*.
- **10.** Jiachen T. Wang, **Tong Wu**, Dawn Song, Prateek Mittal, Ruoxi Jia (2024). **GREATS: Online Selection of High-Quality Data for LLM Training in Every Iteration**. In *Neural Information Processing Systems (NeurIPS)*. *Spotlight Presentation*.
- 11. Chong Xiang, Tong Wu, Sihui Dai, Jonathan Petit, Suman Jana, Prateek Mittal (2024). PatchCURE: Improving Certifiable Robustness, Model Utility, and Computation Efficiency of Adversarial Patch Defenses. In *USENIX Security Symposium (USENIX)*.
- **12.** Jiachen T. Wang, Saeed Mahloujifar, **Tong Wu**, Ruoxi Jia, Prateek Mittal (2023). **A Randomized Approach for Tight Privacy Accounting**. In *Neural Information Processing Systems* (*NeurIPS*).
- **13.** Xiangyu Qi, Tinghao Xie, Jiachen T. Wang, **Tong Wu**, Saeed Mahloujifar, Prateek Mittal (2023). **Towards a Proactive ML Approach for Detecting Backdoor Poison Samples**. In *USENIX Security Symposium* (*USENIX*).
- **14.** Chong Xiang, Chawin Sitawarin, **Tong Wu**, Prateek Mittal (2023). **Short: Certifiably Robust Perception Against Adversarial Patch Attacks: A Survey**. In *VehicleSec. Best Short/WIP Paper Award Runner-Up*.
- **15.** Tong Wu, Tianhao Wang, Vikash Sehwag, Saeed Mahloujifar, Prateek Mittal (2022). **Just Rotate It: Deploying Backdoor Attacks via Rotation Transformation**. In *AlSec*.
- **16.** Shaojie Wang, **Tong Wu**, Ayan Chakrabarti, Yevgeniy Vorobeychik (2022). **Adversarial Robustness of Deep Sensor Fusion Models**. In *IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*.
- 17. Yevgeniy Vorobeychik, Tong Wu, Liang Tong (2021). Systems and methods for defending against physical attacks on image classification. *US Patent*

PEER-REVIEW SERVICE

International Conference on Learning Penysoentations (ICLP)	2022 2024 2025
International Conference on Learning Representations (ICLR):	2022, 2024, 2025
Conference on Neural Information Processing Systems (NeurIPS):	2022, 2023, 2024, 2025
International Conference on Machine Learning (ICML):	2023, 2024, 2025
Conference on Language Modeling (COLM):	2025
• IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR):	2025
European Conference on Computer Vision (ECCV):	2024
• IEEE/CVF Winter Conference on Applications of Computer Vision (WACV):	2022, 2024, 2025
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD):	2022
AAAI Conference on Artificial Intelligence (AAAI):	2021
• IEEE Symposium on Security and Privacy (S&P):	2021
International Journal of Computer Vision (IJCV):	2021
HONORS AND AWARDS	
Research Excellence Award, Washington University in St. Louis,	2021
AAMAS Student Scholarship, AAMAS	2021
Washington University Undergraduate Research Conference Travel Award,	2020
Tau Beta Pi Honor Society,	2020
TEACHING EXPERIENCE	
Information Security, Princeton University,	2024

2019, 2020, 2021

Introduction to Machine Learning, Washington University in St. Louis