4.2

ИССЛЕДОВАНИЕ ЭНЕРГЕТИЧЕСКОГО СПЕКТРА β -ЧАСТИЦ И ОПРЕДЕЛЕНИЕ ИХ МАКСИМАЛЬНОЙ ЭНЕРГИИ ПРИ ПОМОЩИ МАГНИТНОГО СПЕКТРОМЕТРА

Северилов Павел, 674

1 Теоретическое введение

Бета-распад это самопроизвольное преваращение ядер, при котором их массовове число не изменяется, а заряд изменяется на единицу. В данной работе мы будем иметь дело с электронным распадом:

$${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}X + e^{-} + \widetilde{\nu} \tag{1}$$

Освобождающаяся в результате распада энергия делится между исходным ядром, электроном и нейтрино. При этом доля энергии, уносимая ядром крайне мала, так что вся энергия делится между нейтрино и электроном. Поэтому электроны могут иметь любую энергию от нулевой до некоторой макимальной энергии, высвобождаемой при распаде.

Вероятность $d\omega$ того, что электрон вылетит с имульсом d^3p , а нейтрино с импульсом d^3k равна произведению этих дифференциалов, но мы должны учесть также закон сохранения энергии.

$$E_e - E - ck = 0 (2)$$

Энергия электрона связана с импульсом обычным образом:

$$E = c\sqrt{p^2 + m^2c^2} - mc^2 (3)$$

Таким образом, вероятность $d\omega$ принимает вид:

$$d\omega = D\delta(E_e - E - ck)d^3pd^3k = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_{\tilde{\nu}}$$
(4)

D можно считать с хорошей точностью константой. В этом случае можно проинтегрировать по всем углам и по абсолютному значению импульса нейтрино. В этом случае δ -функция исчезнет, а ck всюду заменится на E_e-E . После умножения на полное число распадов выражение примет вид:

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp$$
 (5)

В нерелятивистском случае выражение упрощается и принимает вид:

$$\frac{\mathrm{d}N}{\mathrm{d}E} \simeq \sqrt{E}(E_e - E)^2 \tag{6}$$

2 Экспериментальная установка

Энергия определяется с помощью β -спектрометров. В работе используется магнитный спектрометр с короткой линзой. Как показывает расчет, для заряженных

Северилов Павел, 674

Рис. 1: Форма спектра β -частиц при разрешенных переходах

Рис. 2: Схема β -спектрометра с короткой линзой

частиц тонкая катушка эквивалентна линзе:

$$\frac{1}{f} \simeq \frac{I^2}{p_e^2} \tag{7}$$

При заданной силе тока на входное окно счетчика собираются электроны с определенным импульсом.

3 Экспериментальные данные

Подготовили установку к работе согласно пунктам 1-4 лабника и запустили ПЭВМ в режим проведения измерения спектра. Измерения проводим по 80 секунд, изменяя ток магнитной линзы через 0.2 ампера. В результате чего получаем с учётом фона график

Северилов Павел, 674

Таблица 1: Экспериментальные данные

J, A	N, 1/s	$N-N_p, 1/s$	p, kEv/s	T, kEv	mkFermi
0.00	0.537	0	0.0	0.0	0.00
0.20	0.662	0.125	47.2	2.2	1090.2827
0.40	0.750	0.75	94.5	8.7	502.3433
0.60	0.737	0.737	141.7	19.3	265.2887
0.80	0.887	0.887	188.9	33.8	227.8703
1.00	1.225	1.225	236.2	51.9	228.4715
1.20	1.974	1.974	283.4	73.3	251.2913
1.40	3.774	3.774	330.6	97.6	299.2490
1.60	5.411	5.411	377.9	124.5	300.5525
1.80	7.135	7.135	425.1	153.7	293.0708
2.00	9.009	9.009	472.3	184.9	283.5516
2.20	9.634	9.634	519.6	217.7	254.6791
2.40	11.271	11.271	566.8	252.1	242.7953
2.60	11.196	11.196	614.0	287.8	214.5730
2.80	10.071	10.071	661.3	324.7	181.5877
3.00	8.972	8.972	708.5	362.5	154.0041
3.20	6.798	6.798	755.7	401.3	120.4367
3.40	4.548	4.548	803.0	440.8	88.0248
3.60	2.562	2.562	850.2	480.9	57.3972
3.80	1.687	1.687	897.4	521.7	39.8869
4.00	1.837	1.837	944.7	563.0	39.2674
4.20	13.895	13.895	991.9	604.8	116.9969
4.25	12.271	12.271	1003.7	615.3	107.7232
4.30	15.132	15.132	1015.5	625.8	118.0532
4.40	10.459	10.459	1039.1	647.0	94.0356
4.60	1.637	1.637	1086.4	689.5	29.2900

Построим график Ферми-Кюри.

По точке пересечения графика с осью абсцисс определим максимальную энергию электронов в β -спектре. $E_{max}=580.77kEv$

Рис. 3: Форма спектра β -частиц при разрешенных переходах

4 Вывод и обсуждение результатов

В проделанной работе было исследовано явление β -распада ^{137}Cs . Выявлен «полудискретный» характер спектра: непрерывная часть обеспечивается за счет рождения двух частиц, дискретный пик — рождение конверсионных электронов. Непрерывность спектра доказывает существование антинейтрино и его рождение в процессе β^- распада. Также было выяснено существование конверсионных электронов — частиц, испускаемых в результате перехода ядра на более низкий энергетический уровень. Их энергетический спектр является уже дискретным, т.к. их энергия строго привязана к энергиям электронных уровней в атоме. Также была определена максимальная энергия электронов в β -спектре: $E_{max} = 580.77kEv$

Северилов Павел, 674

Рис. 4: График Ферми-Кюри