Komutativna algebra - 7. domača naloga

Benjamin Benčina, 27192018

28. april 2020

Nal. 1: Naj bo R cel Noetherski kolobar.

(a) Pokažimo, da je R kolobar z enolično faktorizacijo (UFD) natanko tedaj, ko so vsi minimalni praideali nad glavnimi ideali spet glavni ideali.

Privzemimo najprej, da je R UFD in vzemimo poljuben glavni ideal (a). Ker je R Noetherski kolobar, so po posledici 7.20 s predavanj minimalni praideali nad (a) točno izolirani praideali ideala (a), torej minimalni elementi množice $\operatorname{Ass}((a))$. Ker je R Noetherski, ima vsak ideal minimalno primarno dekompozicijo, zato naj bo $\{Q_1,\ldots,Q_n\}$ minimalna primarna dekompozicija za ideal (a). Po izreku 7.19 velja $\operatorname{Ass}((a)) = \{P_1,\ldots,P_n\}$, kjer je $P_i = \sqrt{Q_i}$. Ker je R UFD, naj bo $a = p_1^{k_1} \cdots p_m^{k_m}$ do vrstnega reda in asociacije enoličen zapis elementa a kot produkt praelementov. Ker je $a \in \bigcap_{i=1}^m Q_i \subseteq \bigcap_{i=1}^m P_i$, vsak od idealov P_i vsebuje vsaj eno potenco nekega praelementa p_j . Ker smo dobili ideale P_i iz minimalne dekompozicije in ker je radikal preseka enak preseku radikalov, je n = m in (po preindeksiranju) zaradi minimalnosti praidealov velja $P_i = (p_i)$.

Obratno, naj bo vsak minimalni praideal nad glavnim idealom tudi glavni. Uporabili bomo dejstvo (izrek Kaplanskega), da je cel kolobar UFD natanko tedaj, ko vsak praideal vsebuje praelement. Naj bo Q nek praideal. Vzemimo poljuben neničelen element $a \in Q$ in si oglejmo glavni ideal (a). Na isti način kot zgoraj dobimo (končno) množico minimalnih praidealov nad (a). Ker je Q praideal, ki vsebuje (a), mora obstajati nek minimalni praideal P_i nad (a), da velja $(a) \subseteq P_i \subseteq Q$. Po predpostavki je $P_i = (p)$, kjer pa je p praelement v R, ker je R domena. Očitno torej Q vsebuje neničelen praelement.

(b) Dokažimo še, da če je R UFD, potem je vsak minimalni praideal glavni. To seveda sledi direktno iz prejšnje točke, saj je ideal (0) glavni na trivialen način (ta točka je na nek način poseben primer prejšnje).

<u>Nal. 2:</u> Naj bo P praideal komutativnega kolobarja R in naj bo $\varphi \colon R \to R_P$ standarden lokalizacijski homomorfizem, definiran s predpisom $r \mapsto \frac{r}{1}$. Označimo $S_P(0) = \ker \varphi$.

(a) Dokažimo, da je $S_P(0)$ vsebovan v vsakem P-primarnem idealu.

Najprej pokažimo vsebovanost $S_P(0) \subseteq P$. Naj bo $a \in S_P(0)$, torej $\frac{a}{1} = 0$. Potem obstaja element $u \in R \setminus P$, da je ua = 0. Ker očitno $u \notin P$, velja $a \in P$, saj je P praideal.

Sedaj vzemimo poljuben P-primaren ideal Q, torej $P = \sqrt{Q}$. Posebej velja $Q \subseteq P$. Po lemi 7.21 s predavanj velja $(Q^e)^c = Q$ in $(S_P(0)^e)^c = S_P(0)$. Potem pa velja

$$S_P(0) = (0)^c \subset (Q^e)^c = Q.$$

(b) Dokažimo še, da je ideal $S_P(0)$ P-primaren natanko tedaj, ko je P minimalni praideal.

Recimo, da je $S_P(0)$ P-primaren, torej naj bo $\sqrt{S_P(0)} = P$ in vzemimo poljuben $x \in P^e \lhd R_P$. Potem je $x = \frac{p}{s}$ za neka elementa $p \in P$ in $s \in R \setminus P$. Po predpostavki obstaja $n \in \mathbb{N}$, da je $p^n \in S_P(0) = \ker \varphi$, torej $x^n = \frac{p^n}{s^n} = 0$. Sledi, da je P^e vsebovan v nilradikalu kolobarja R_P , ki pa je presek vseh praidealov v kolobarju R_P , torej je R_P minimalni praideal. Hkrati pa so praideali v R_P v bijekciji s praideali v R, ki so vsebovani v P, torej je P^e tudi maksimalen ideal v R_P . Od tod sledi, da je P^e edini praideal v R_P , torej je P minimalni ideal v R.

Obratno privzemimo, da je P minimalni praideal v R. Potem ima R_P natanko en praideal P^e . Od tod sledi, da je nilradikal kolobarja R_P kar enak idealu P^e . Torej za vsak $p \in P$ obstaja tak $n \in \mathbb{N}$, da je $\left(\frac{p}{1}\right)^n = 0$. Od tod sledi, da je $p^n \in S_P(0)$, torej $P \subseteq \sqrt{S_P(0)}$. Obratna inkluzija sledi direktno iz $S_P(0) \subseteq P$ (dokaz v prejšnji točki).

Zakaj je $S_P(0)$ primaren? Naj bo $ab \in S_P(0) \subseteq P$. Ker je P praideal, je vsaj eden od njiju gotovo v P, naj bo to na primer b. Če tudi $a \in P$, je dokaz končan, zato privzemimo $a \notin P$. Ker $ab \in S_P(0)$, obstaja $u \in R \setminus P$, da uab = 0, vendar je $a \in R \setminus P$, zato vb = 0 za $v = ua \in R \setminus P$. Torej $b \in S_P(0)$, kar pokrije še drugo možnost. S tem je dokaz končan.

Opomba: Zakaj je nilradikal komutativnega kolobarja enak preseku njegovih praidealov? Naj bo r element nilradikala kolobarja R in naj bo $P \in \operatorname{Spec} R$. Potem $r^n = 0$ za neko število $n \in \mathbb{N}$. Potem je $r \cdot r^{n-1} = 0 \in P$ in sledi $r \in P$ ali $r^{n-1} \in P$, saj je P praideal. Po indukciji na $m \leq n-1$ s ponavljanjem tega postopka za drugi primer dobimo $r^m \in P$ za vsak $m = 1, \ldots, n-1$, v posebnem primeru $r \in P$. Ker je bil praideal izbran poljubno, je $r \in P$ za vsak $P \in \operatorname{Spec} R$, torej je nilradikal kolobarja R vsebovan v preseku vseh praidealov. Obratno privzemimo, da x ni element nilradikala kolobarja R. Oglejmo si množico

$$A = \{J \lhd R; \ \forall m \in \mathbb{N} \colon x^m \notin J\}$$

Ta množica ni prazna, saj $(0) \in A$. Delno jo uredimo z običajno inkluzijo. Vsaka veriga $J_1 \subseteq J_2 \subseteq \cdots$ ima naravno zgornjo mejo $J = \bigcup_{j \geq 0} J_j \in A$. Po Zornovi lemi obstaja maksimalen element $M \in A$. Dokažimo, da je M praideal. Naj velja $ab \in M$, vendar $a, b \notin M$. Potem je M strogo vsebovan v M + (a) in M + (b), nobeden od teh dveh idealov pa ni v množici A, saj je M njen maksimalni element. Torej obstajata $r, s \in \mathbb{N}$, da je $x^r \in M + (a)$ in $x^s \in M + (b)$. Vendar pa je potem $x^{r+s} = x^r x^s \in M + (ab) = M \in A$, kar je protislovje. Od tod sledi, da če x ni v nilradikalu kolobarja R, potem x ni v sebovan v nobenem praidealu. Ekvivalentno je presek vseh praidealov vsebovan v nilradikalu kolobarja R.