Práctica 2

Estadística descriptiva unidimensional

Contenido

1.	Fred	cuencias y porcentajes	1
		ficas	
		Diagrama de barras	
		Diagrama de sectores	
	2.3.	Histograma	5
	2.4.	Diagrama de caja	7
3.	Med	didas de centralización y dispersión	8
4.	Eier	cicios propuestos	10

Los ejemplos de esta práctica se realizarán con el conjunto de datos acero2.

1. Frecuencias y porcentajes

Para obtener las frecuencias y los porcentajes de las modalidades de una variable utilizaremos el menú *Estadísticos*.

R commander sólo calcula frecuencias y porcentajes de variables factor (cualitativas). No podemos obtener directamente la distribución de frecuencias de variables numéricas, antes tenemos que convertirlas en factor.

Ejemplo 1. Halla la distribución de frecuencias de la variable estadística *averias*.

Solución: Procede de la siguiente forma

Estadísticos → Resúmenes → Distribución de frecuencias

selecciona la variable averias y acepta.

Los pasos anteriores proporcionan el siguiente resultado:

- > .Table <- table(acero2\$averias)
- > .Table # counts for averias

No Si

89 28

> round(100*.Table/sum(.Table), 2) # percentages for averias

No Si

76.07 23.93

Así, se han obtenido el número de casos (frecuencia absoluta) y el porcentaje de cada modalidad de la variable *averias* dentro de la muestra.

Ejemplo 2. Halla la distribución de frecuencias de la variable estadística naverias.

Solución: En este caso, al tratarse una variable numérica, debes crear en primer lugar una nueva variable, fnaverias, de tipo factor, te recuerdo el proceso a seguir:

Datos → Modificar variables del conjunto de datos activo → Convertir variable numérica en factor y en la ventana emergente, selecciona la variable naverias, Utilizar números, escribe el nuevo nombre (fnaverias) y acepta.

Una vez hecho esto, siguiendo los pasos del ejemplo anterior (*Estadísticos* \rightarrow *Resúmenes* \rightarrow *Distribución de frecuencias*, selecciona la variable *fnaverias* y acepta), obtienes

```
> acero2$fnaverias <- as.factor(acero2$naverias)

> .Table <- table(acero2$fnaverias)

> .Table # counts for fnaverias

0 1 2 3 4

89 2 9 9 8

> round(100*.Table/sum(.Table), 2) # percentages for fnaverias

0 1 2 3 4

76.07 1.71 7.69 7.69 6.84
```

2. Gráficas

Para realizar representaciones gráficas emplearemos la opción del menú Gráficas.

R Commander sólo ejecuta los gráficos de sectores y de barras para variables de tipo factor (cualitativas). No podemos obtener directamente esa clase de gráficos para variables de tipo numérico, antes tenemos que convertirlas en factor.

2.1. Diagrama de barras

Ejemplo 3. Representa gráficamente la distribución de la variable averias mediante una gráfica de barras.

Solución: Se trata de una variable cualitativa, por lo que una forma adecuada de representarla gráficamente sería utilizar un diagrama de barras. Para obtener la gráfica sigue la ruta

Gráficas → Gráficas de barras

y rellena las pestañas de Datos y Opciones en la ventana emergente

En las ventanas de instrucciones y salida aparece la instrucción R para dibujar el gráfico de barras:

Barplot(averias, xlab="averias", ylab="Frecuencia", main="Diagrama de barras", label.bars=TRUE)

La gráfica obtenida es

2.2. Diagrama de sectores

Ejemplo 4. Representa gráficamente la distribución de la variable *temperatura* mediante un gráfico de sectores en el que figuren como etiquetas los porcentajes.

Solución: Sigue la ruta **Gáficas** → **Gráfica de sectores**, selecciona la variable temperatura, rellena la ventana emergente y acepta.

O bien, escribe en la ventana de instrucciones:

```
piechart(temperatura, xlab="temperatura", ylab="Porcentaje", main="Diagrama de sectores", col=rainbow_hcl(3), scale="percent")
```

y pincha en ejecutar.

2.3. Histograma

Sirve para representar variables estadísticas numéricas continuas.

Ejemplo 5. Representa el histograma de la variable *CO2*.

Solución: Sigue la secuencia **Gráficas** → **Histograma**, en la pestaña *Datos* de la ventana *Histograma* selecciona la variable *CO2*, pincha en la pestaña **opciones** y rellena la ventana de la forma siguiente

Y pincha en Aceptar.

Escribiendo en la ventana de instrucciones

Hist(acero2\$CO2, scale="frequency", breaks="Sturges", col="green", xlab="toneladas de CO2 por hora", ylab="Frecuencia", main="Histograma")

conseguimos el mismo resultado.

Notas:

- Por defecto, el número de barras del histograma se calcula automáticamente. Puede indicarse un número concreto en la opción *Número de clases*; sin embargo, *Rcmdr* considera ese número como una sugerencia (el cálculo del número de barras lo hace de forma que los hitos de los ejes queden entre dos barras y sean números redondos).
- Por defecto, la altura de las barras está expresada en frecuencias. Se pueden escoger también porcentajes o densidades, en la opción *Escala de los ejes*.

También podemos obtener los histogramas de una variable para cada nivel de un factor lo que nos permite realizar comparaciones.

Ejemplo 6. Obtén los histogramas de la variable CO2 para cada nivel de la variable linea.

Solución: Si en la pestaña Datos de la ventana Histograma tras seleccionar la variable CO2, pinchas gráfica por grupos y en la ventana grupos seleccionas la variable linea, obtendrás los histogramas de la variable CO2 según cada nivel de la variable linea.

2.4. Diagrama de caja

Ahora vamos a ver otra representación gráfica de las variables estadísticas cuantitativas continuas, los gráficos de caja, útiles para detectar valores atípicos y comparar la distribución de una variable estadística en distintas muestras.

Ejemplo 7. Obtén el diagrama de caja de la variable *CO2*.

Solución: Los pasos a seguir son

En la ventana de instrucciones aparece:

Boxplot(~ CO2, data=acero2, id=list(method="y"), ylab="CO2", main="Diagrama de caja")

El resultado es

A partir de dicho diagrama se observa, por ejemplo, que no existen datos atípicos para la variable *CO2* en esta muestra.

Ejemplo 8. Obtén el diagrama de caja de la variable CO2 para cada nivel de la variable linea.

Solución: Sigue los pasos del ejercicio anterior, pero en la pestaña Datos de la ventana Diagrama de caja pincha en Gráfica por grupos, en la ventana Grupos selecciona la variable linea y acepta.

En la ventana de instrucciones figura:

Boxplot(CO2~linea, data=acero2, id=list(method="y"), xlab="línea", ylab="CO2", main="Diagrama de caja")

El gráfico de caja por grupos es:

En el gráfico se observan dos valores atípicos:

- en la observación 8, 8ª hora del primer día en la línea A, en esa hora se emiten 169.8100 toneladas de CO2.
- en la observación 88, 2ª hora del segundo día en la línea C, en esa hora se emiten 218.3075 toneladas de CO2

3. Medidas de centralización y dispersión

En esta sección vamos a ver cómo podemos calcular medias, desviaciones típicas y percentiles de variables numéricas. Utilizaremos el menú *Estadísticos*.

Ejemplo 9. Calcula la media, la desviación típica, los cuartiles, el rango y el recorrido intercuartílico de la variable *naverias*.

Solución: Sigue los pasos


```
numSummary(acero2[,"naverias", drop=FALSE], statistics=c("mean", "sd", "IQR", "quantiles"), quantiles=c(0,.25,.5,.75,1))

mean sd IQR 0% 25% 50% 75% 100% n
0.6752137 1.292078 0 0 0 0 4 117
```

Los resultados nos indican que la media es de 0.6752137 averías por hora, con una desviación típica de 1.292078 averías por hora. Los tres cuartiles (25%, 50% y 75%) son iguales a 0. El número de averías varía desde 0 (el 0% es el valor mínimo de la muestra) hasta 4 (el 100% es el valor máximo de la muestra) por tanto el rango es 4. El recorrido intercuartílico (= IQR) es igual a 0.

Se observa que en, al menos, el 75% de las horas observadas no hubo averías (el percentil 75 es igual a 0).

Ejemplo 10. Calcula los principales estadísticos descriptivos de la variable CO2.

Solución: Sigue los pasos del ejercicio anterior pero selecciona la variable CO2.

```
numSummary(acero2[,"CO2", drop=FALSE], statistics=c("mean", "sd", "IQR", "quantiles"), quantiles=c(0,.25,.5,.75,1))

mean sd IQR 0% 25% 50% 75% 100% n
104.6281 41.38971 61.16 14.285 73.7175 105.3075 134.8775 218.3075 117
```

La emisión media de CO2 es de 104.63 toneladas/hora, con una desviación típica de 41.39 toneladas/hora. La emisión mínima de CO2 es 14.285 toneladas/hora y la máxima es 218.3075 toneladas/hora. El 25% de los casos analizados emiten 73.7175 toneladas de CO2/hora o menos; el 50 %, como mucho 105.3075 toneladas/hora y un 25% emite al menos 134.8775 toneladas de CO2/hora.

El botón *Resumir por grupos* nos permite obtener los resúmenes numéricos para cada modalidad de una variable factor. En este caso es conveniente marcar el estadístico "Coeficiente de variación" para poder comparar adecuadamente la dispersión respecto a la media. Por ejemplo, las medidas descriptivas de la variable CO2 según la línea de producción son:

```
numSummary(acero2[,"CO2",
                            drop=FALSE],
                                           groups=acero2$linea,
                                                                 statistics=c("mean",
                                                                                      "sd",
                                                                                            "IQR",
"quantiles", "cv"), quantiles=c(0,.25,.5,.75,1))
                            IQR
                                                0%
                                                        25%
                                                                  50%
                                                                                    100% CO2:n
  82.46763 29.70361 39.39625 0.3601850 25.8125
                                                    62.3125
                                                             75.2800 101.7088 169.8100
                                                                                             39
B 103.37429 44.83468 52.70250 0.4337121 14.2850
                                                    82.0750 108.4175 134.7775 183.2675
                                                                                             39
 128.04250 35.61952 40.27375 0.2781851 50.3175 105.6412 129.7475 145.9150 218.3075
                                                                                             39
```

Como puede observarse, en términos relativos es menor la dispersión del CO2 en la línea C que en la A, aunque su desviación típica sea mayor en la línea C que en la A.

4. Ejercicios propuestos

Lee el conjunto de datos mtcars del paquete datasets de R.

Ejercicio 1. Representa mediante un gráfico de sectores y un gráfico de barras la variable *carb*. ¿Qué representación gráfica es más adecuada?

Ejercicio 2. ¿Qué gráfico es apropiado para representar el consumo (*mpg*)? Represéntalo usando porcentajes en el eje de ordenadas.

Ejercicio 3. ¿Cuántos automóviles tienen cambio manual (am = 1)? ¿Cuál es el porcentaje de vehículos con cambio manual?

Ejercicio 4. Observa la distribución del peso (*wt*). ¿Cuánto vale el peso medio? ¿Cuánto vale la mediana? Calcula el rango y el recorrido intercuartílico.

Ejercicio 5. Del total de la muestra, ¿puede asegurarse que en al menos un 25% de los datos el consumo ha sido mayor de 21 mpg?, ¿podemos asegurar que más del 50% de los vehículos consumen más de 15'5 mpg y menos de 20 mpg?

Ejercicio 6. Realiza un gráfico para el consumo de los automóviles en el que aparezcan dos diagramas de cajas, uno para el consumo cuando el vehículo tiene cilindros en v y otro cuando tiene cilindros en serie. Comenta dicho gráfico. ¿Cuánto vale el consumo medio y el rango en cada uno de estos dos casos?

Soluciones

Ejercicio 1. Como *carb* es numérica debes convertirla primero en factor, las gráficas pedidas para *fcarb* (*carb* convertida en factor)son:

En este caso es más adecuado el gráfico de barras, porque las modalidades de la variable son cantidades, y la relación de orden entre ellas queda diluida por la representación circular.

Ejercicio 2. Como *mpg* es una variable cuantitativa continua podemos utilizar un histograma o un diagrama de caja. Ya que nos dicen que lo representemos usando porcentajes en el eje de ordenadas, dibujaremos un histograma

Ejercicio 3. Distribución de frecuencias de fam (am convertida en factor)

counts:

fam

01

19 13

¿Cuántos automóviles tienen cambio manual (am = 1)? 13.

percentages:

fam

0 1

59.38 40.62

¿Cuál es el porcentaje de vehículos con cambio manual? 40.62%.

Ejercicio 4.

mean sd IQR 0% 25% 50% 75% 100% n 3.21725 0.9784574 1.02875 1.513 2.58125 3.325 3.61 5.424 32

Peso medio = 3.21725 libras/1000 Mediana (50%) = 3.325 libras/1000 Rango = 5.424 – 1.513 = 3.911 RIC = 1.02875

Ejercicio 5.

mean sd IQR 0% 25% 50% 75% 100% n 20.09062 6.026948 7.375 10.4 15.425 19.2 22.8 33.9 32

¿Puede asegurarse que en al menos un 25% de los datos el consumo ha sido mayor de 21 mpg? Si ya que el percentil 75 es 22.8.

¿Podemos asegurar que más del 50% de los vehículos consumen más de 15'5 mpg y menos de 20 mpg? No porque el intervalo (15'5,20) está contenido en el intervalo [primer cuartil, tercer cuartil] = [15.425, 22.8], menos del 50% de los automóviles consumen más de 15'5 mpg y menos de 20 mpg.

Ejercicio 6. Diagrama de caja por grupos:

Resúmenes numéricos por grupos

```
mean sd IQR 0% 25% 50% 75% 100% data:n
0 16.61667 3.860699 4.300 10.4 14.775 15.65 19.075 26.0 18
1 24.55714 5.378978 8.225 17.8 21.400 22.80 29.625 33.9 14
```

Consumo medio si vs = 0: 16.61667 mpg y Rango si vs = 0: <math>26.0 - 10.4 = 15.6 Consumo medio si vs = 1: 24.55714 mpg y Rango si vs = 1: <math>33.9 - 17.8 = 16.1 medio si vs = 1: 33.9 - 17.8 = 16.1 medio si vs = 1.0 medio si vs = 1.0