Assignment 15, Authomata Theory

Oleg Sivokon

<2016-01-01 Fri>

Contents

1	Pro	blems																		3
	1.1	Proble	m 1		•					•		•	•	•		•	•			3
		1.1.1	Answer 1		•															3
		1.1.2	Answer 2			•														4
	1.2	Proble	em 2			•														5
		1.2.1	Answer 3		•															5
	1.3	Proble	em 3		•															6
		1.3.1	Answer 4		•															6
	1.4	Proble	em 4							•		•		•	•	•	•	•		7
		1.4.1	Answer 5																	7

	1.4.2 Answer 6	8
1.5	Problem 5	8
	1.5.1 Answer 7	9

1 Problems

1.1 Problem 1

1. Show right-linear grammar equivalent to the automaton given below:

2. Build a finite automaton for the language given by the grammar rules:

$$\begin{split} S &\to bS \mid aR \\ R &\to bS \mid aaR \mid aa \mid b \; . \end{split}$$

1.1.1 Answer 1

First, I will extract the δ function from the given automaton. Then, I'll use the cases of this function to generate the grammar:

Rename the variables: $q_0 = S$, $q_1 = X$ and $q_2 = Y$, then the resulting grammar is given by:

$$S \rightarrow aX \mid bS \mid \epsilon$$
$$X \rightarrow aY \mid bX \mid bS$$
$$Y \rightarrow \epsilon .$$

All rules in this grammar are either of the form $V \to t$ or $v \to tW$, where V and W are variables and t is a terminal.

1.1.2 Answer 2

First, I will modify the grammar to make it easier to construct the δ for the desired automaton by introducing new rules: $X \to aR$, $Y \to a$ and $Z \to b$. Now we can rewrite the grammar:

$$\begin{split} S &\rightarrow bS \mid aR \\ R &\rightarrow bS \mid aX \mid aY \mid Z \\ X &\rightarrow aR \\ Y &\rightarrow a \\ Z &\rightarrow b \; . \end{split}$$

Renaming the variables: $S = q_0$, $R = q_1$, $X = q_2$, $Y = q_3$ and $Z = q_4$ gives the following δ function:

Having δ we can build the automaton:

1.2 Problem 2

Given a language $L = \{w \in \{a, b\}^* \mid \#_a(w) = \#_b(w)\}$, show context-free grammar G which accepts it.

1.2.1 Answer 3

L contains an empty string, thus G must have the $S \to \epsilon$ rule. Also, for any a is must add a b somewhere in the word. There are only two possible ways to do that: either a is before b or the other way around. Thus, we need to add two more rules: $S \to aSbS$ and $S \to bSaS$. Using structural induction on the length of the word generated by S we can also show that for any word in L there is a derivation in G. Hence G is given by:

$$S \to aSbS \mid bSaS \mid \epsilon$$
 .

1.3 Problem 3

Show a context-free grammar G accepting the language L defined as:

$$L = \{ dw_1 dw_2 d \dots w_n d \mid n \ge 4$$

$$\land \forall k : w_k \in \{ a, b, c \}^*$$

$$\land \exists k : (2 \ge k \ge n - 2 \land \#_c(w_{k+2}) = |w_k|) \}$$

1.3.1 Answer 4

The words in L will have to start with at least two repetitions of dw, followed by the part with a simplified requirement: there will be no restrictin on the value of k. Since context-free grammars are closed under concatenation, I will construct the grammar in steps.

1. G_1 is the grammar for two repetitions of dw:

$$\begin{split} S &\to dX \\ W &\to aW \mid bW \mid cW \mid \epsilon \\ X &\to WdY \\ Y &\to WdW \; . \end{split}$$

2. G_2 is the grammar that counts the number of letters in the k^{th} word and ensures that $k + 2^{th}$ word has as many c letters.

$$\begin{split} S &\to dCT \\ W &\to aW \mid bW \mid cW \mid \epsilon \\ C &\to aCc \mid bCc \mid cCc \mid dWd \\ T &\to TWd \mid d \;. \end{split}$$

C variable is used to count the number of letters in the k^{th} word. T variable is used to add zero or more repetitions of dw after the $k+2^{th}$ word was found. Followed by the final d. W is variable for generating arbitrary long wrods w_i .

Now, we can combine both grammars:

$$\begin{split} S &\rightarrow dX \\ W &\rightarrow aW \mid bW \mid cW \mid \epsilon \\ X &\rightarrow WdY \\ Y &\rightarrow WdWZ \\ Z &\rightarrow dCT \\ C &\rightarrow aCc \mid bCc \mid cCc \mid dWd \\ T &\rightarrow TWd \mid d \; . \end{split}$$

1.4 Problem 4

Given the grammar G:

$$\begin{split} S & \rightarrow ABC \mid bB \mid D \\ A & \rightarrow a \mid \epsilon \\ B & \rightarrow bB \mid \epsilon \\ C & \rightarrow c \\ D & \rightarrow Da \mid aDc \mid Dc \mid ac \mid a \mid c \; . \end{split}$$

- 1. Is G unambiguous?
- 2. Give an alternative description to L(G).

1.4.1 Answer 5

G is ambigous, it is possible to derive ac via:

1.
$$S \to ABC$$
, $A \to a$, $B \to \epsilon$ and $C \to c$.

2.
$$S \to D$$
, $D \to ac$.

1.4.2 Answer 6

L(G) is actually regular. If you look at all derivations from S separately, then ABC is equivalent to $(a + \epsilon)b^*c$, bB is equivalent to b^+ . And D is equivalent to $(a + c)^+$. The later can be proved by induction on the word length generated by D.

Base step: The word of length 1 can be generated by D, sinc it produces both a and c terminals.

Inductive step: Suppose we can derive the word $(a+c)^+$ of length n-1 using D rule, then the word of length n would be generated by either the $D \to Da$ or $D \to Dc$ rule.

Hence, by induction, D generates the language $(a+c)^+$.

Now $L(G) = (a+\epsilon)b^*c + b^+ + (a+c)^+$, since regular languages are closed under union.

1.5 Problem 5

Give a context-free grammar accepting the language

$$L = \{x + yz \mid |x| = |y|$$

$$\mid x, y \in 0, 1^*$$

$$\mid |x| \mod 2 = 0 \iff z = \mathbf{e}$$

$$\mid |x| \mod 2 = 1 \iff z = \mathbf{o}\}$$

1.5.1 Answer 7

The grammar G accepting L can be given as follows:

$$\begin{split} S &\to Oo \mid Ee \\ X &\to 00 \mid 01 \mid 10 \mid 11 \\ E &\to XEX \mid X + X \\ O &\to XOX \mid 0 + 0 \mid 0 + 1 \mid 1 + 0 \mid 1 + 1 \;. \end{split}$$

O variable is responsible for generating odd x and y while E is responsible for generating even sums. X generates all possible pairs of zeros and ones. It is easy to get convinced that E will generate all and only even sums (since concatenating X arbitrary number of times will produce only words of even length). Similarly, E will generate all and only odd sums.

Only odd sums can terminate in o and only even sums can terminate in e.

```
even_binary --> "00"; "11"; "01"; "10";
                 "00" , even_binary ;
                "10" , even_binary ; "01" , even_binary ;
                "11", even_binary.
odd_binary --> "0"; "1"; "1", even_binary; "0", even_binary.
odd_sums --> odd_binary , "+" , odd_binary.
even_sums --> even_binary , "+" , even_binary.
sums --> odd_sums, "o"; even_sums, "e".
print_helper(E) :-
    string_codes(X, E),
    (phrase(sums, E) ->
          format('\\item ~w \\textit{accepted}\n', [X])
     format('\\item ~w \\textit{rejected}\n', [X])).
assignment_15 :-
    format('$$\\begin{itemize}\n', []),
    Candidates = ['101+0010', '1111+0000e', '101+001', '1111+0000', 'abcd', '1010101', '0101+1010', '001+110e'],
    maplist(print_helper, Candidates),
    format('\\end{itemize}$$', []).
```

 $101{+}001o\ accepted$

 $1111{+}0000e\ accepted$

 $101{+}001\ rejected$

 $1111{+}0000\ rejected$

 ${\it abcd}\ \it rejected$

 $1010101\ rejected$

 $0101{+}1010o\ rejected$

 $001{+}110e\ rejected$