Linear algebra Exercises

Kristoffer Klokker 2022

Contents

1	Wee	ek 36	7
	1.1	Which equation are linear in x_1 , x_2 and x_3	7
		1.1.1 $x_1 + 5x_2 - \sqrt{2}x^3 = 1$	7
		1.1.2 $x_{\frac{1}{2}} = -7x_2 + 3x_3$	7
		1.1.3 $x_1^{3/5} - 2x_2 + x_3 = 4$	7
	1.2	Convert from matrix form to equation form	7
	1.3	Convert from equations to matrix	7
	1.4	Determine if the solution hold in the following system	7
	1.5	Determine if the following matrices are in echoleon form or	
		reduced echelon form	8
2	Wee	ek 38	8
	2.1	Show that the determinant og the matix is 0	8
	2.2	Is the following matrix invertible	8
	2.3	Find the standard matrix for the transformation defined by	
		the equations	8
	2.4	Is a linear function a transformation of R	9
	2.5	The images of the standard basis vectors for \mathbb{R}^3 are given for a	
		linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$. Find the standard matrix	
		for the transformation and find $T(x)$	9
	2.6	Find the standard matrix A for the linear transformation T :	
		$R^2 \to R^2$ for which	9
3	Wee	ek 39	10
	3.1	Determine if the set is a vector space	10
		3.1.1 <i>n</i> -tuples of real numbers that have the form $(x, x,, x)$	
		with the standard operations \mathbb{R}^n	10
		3.1.2 The set of matrices in the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$	11
	3.2	Use the subspace test to determine if it a subspace of \mathbb{R}^3	11
	3.3	Use the subspace test to determine if it a subspace of $F(-\infty, \infty)$	12
	3.4	Use the subspace test to determine the a bounded set of se-	
		quence of real number is a subspace of the sequence of real	
		number in an infinite tuple	12
	3.5	Verify that $\mathbb{M}_{m,n}(\mathbb{R})$ is a vector space	12
	3.6	Which if the following are linear combination of $u = (0, -2, 2)$	
		and $v = (1, 3, -1)$	13
		$3.6.1 (2,2,2) \dots \dots \dots \dots \dots \dots$	13
		3.6.2 (0.4.5)	13

	$3.6.3 (0,0,0) \dots \dots$	14
3.7	Explain why the following form linearly dependent sets of vectors	14
3.8	Determien whether the vectors are linearly independent in \mathbb{R}^3	14
3.9	Show that the following set of vectors forms a basis for \mathbb{R}^2	14
3.10	Show that the following polynomials form a basis for P_2	15
3.11	Find the coordinate vector of v relative to the basis $S =$	
	$\{v_1, v_2, v_3\}$ for R^3	15
3.12	In each part let $T_a: \mathbb{R}^3 \to \mathbb{R}^3$ be multiplication by A, and let	
	$\{e_1, e_2, e_3\}$ be the standard basis for R^3 . Determine whether	
	the set $\{T_A(e_1), T_A(e_2), T_A(e_1), \}$ is linearly independent in \mathbb{R}^2	15
	$3.12.1 A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ -1 & 2 & 0 \end{bmatrix} \dots \dots \dots$	15
	$\begin{vmatrix} -1 & 2 & 0 \end{vmatrix}$	
	$\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$	
	$3.12.2 A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & -1 & 2 \end{bmatrix} \dots \dots \dots \dots \dots \dots \dots \dots$	15
	$\begin{bmatrix} 0 & -1 & 2 \end{bmatrix}$	
3.13	In each part, find a basis for the given subspace of R^3 , and	
	state its dimension	16
	3.13.1 The plane $3x - 2y + 5z = 0$	16
	3.13.2 The plane $x - y = 0$	16
	3.13.3 The line $x = 2t, y = -t, z = 4t \dots$	17
	3.13.4 All vectors of the form (a, b, c) , where $b = a + c$	17
3.14	Find a standard basis vector for R^3 that can be added to the	
	set, to produce a bassi for \mathbb{R}^3 / Enlarge to vector set to a basis	18
	$3.14.1 v_1 = (-1, 2, 3), v_2 = (1, -2, -2) \dots \dots \dots$	18
	3.14.2 $v_1 = (1, -1, 0), v_2 = (3, 1, -2)$	18
3.15	Find a bassi for the subspace of R^3 that is spanned by the	
	vectors $v_1 = (1, 0, 0), v_2 = (1, 0, 1), v_3 = (2, 0, 1), v_4 = (3, 3, 3, 4)$	18
3.16	Consider the bases $B = \{u_1, u_2\}$ and $B' = \{u'_1, u'_2\}$ for R^2	
	NOT DONE	19
	3.16.1 Find the transmission matrix from B to B'	19
	3.16.2 Find the transmission matrix from B to B'	19
	3.16.3 Calculate the vector in both spaces	19
3.17	Let V be the space spanned by $f_1 = \sin x$ and $f_2 = \cos x$	20
	3.17.1 Show that $g_1 = 2\sin x + \cos x$ and $g_2 = 3\cos x$ form a	
	basis for V	20
	3.17.2 Find the transition matrix from $B = \{f_1, f_2\}$ to $B' =$	
	$\{g_1,g_2\}$	20
	3.17.3 Find the transition matrix from $B' = \{g_1, g_2\}$ to $B = \{g_1, g_2\}$	G -
	$\{f_1,f_2\}$	21

		3.17.4 Find h in the two basis	21
	3.18	Which of these are linear transistions and what is their kernel	21
	3.19	Let $T: P_2 \to P_3$ be the linear transformation defined by	
		T(p(x)) = xp(x), which are kernels to T	22
	3.20	Consider the basis $S = \{v_1, v_2\}$ for R^2 where $v_1 = (1, 1)$ and	
		$v_2 = (1,0)$ and let T be a linear transformation, find $T(5,-3)$	22
	3.21	Are the following operator one-to-one	22
	3.22	Are the following transformation one-to-one, determine using	
		kernel	23
	3.23	Is multiplication by the matrix one-to-one?	23
	3.24	Dertermine if the transformation is one-to-one	23
4	Wee	ek 40	23
	4.1	Determine if the transformation is isomorphic	23
	4.2	Determine if the transformation is isomorphic	24
	4.3	Find isomorphism between the spaces	24
		4.3.1 All 3×3 symmetric matrices and R^6	24
		4.3.2 All 2×2 matrices and R^4 in two ways	24
	4.4	Is the transformation isomorphic?	24
	4.5	Let $T: P_2 \to P_1$ be the linear transformation $T(a_1 + a_1x +$	
		$(a_2x^2) = (a_0 + a_1) - (2a_1 + 3a_2)x \dots \dots \dots \dots \dots \dots$	25
		4.5.1 Find the matrix for the linear transformation T relatie	
		to the standard bases $B = \{1, x, x^2\}$ and $B' = \{1, x\}$	
		for P_2 and P_1	25
		4.5.2 Validate the matrix $[T]_{B',B}$ satisfies for every vector	
		$x = c_0 + c_1 x + c_2 x^2 \text{ in } P_2 \dots \dots$	26
	4.6	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear operator defined by $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) =$	
		$\begin{bmatrix} x_1 - x_2 \\ x_1 + x_2 \end{bmatrix} \text{ and let } B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right\} \text{ be the basis } \dots \dots \dots$	26
		4.6.1 Find $[T]_B$	26
		4.6.2 Verify $[T]_B$	26
		$\begin{bmatrix} x_1 + 2x_2 \end{bmatrix}$	
	4.7	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} x_1 + 2x_2 \\ -x_1 \\ 0 \end{bmatrix}$	27
		4.7.1 Find the matrix $[T]_{B',B}$ relative to bases $B' = \{v_1, v_2, v_3\}$	
		and $B = \{u_1, u_2\}$	27
	4.8	Let $v_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$, and let $A = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$ be the	
		matrix for $T: \mathbb{R}^2 \to \mathbb{R}^2$ relative to the basis $B = \{v_1, v_2\}$	28
		4.8.1 Find $[T(v_1)]_B$ and $[T(v_2)]_B$	28

	4.0	4.8.2 Find $T(v_1)$ and $T(v_2)$	28
	4.9	Let $D: P_2 \to P_2$ be the differentiation operator $D(P) = p'(x)$.	28
		4.9.1 Find the matrix for D relative to the basis $B = \{p_1, p_2, p_3\}$	20
		for P_2 in which $p_1 = 1, p_2 = x, p_3 = 2 - 3x + 8x^2$	28
	4.10	4.9.2 Use the matrix to compute $D(6 - 6x + 23x^2)$ Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator and let B and B' be	28
	4.10	Let $I: N \to N$ be a linear operator and let D and D be	
		bases for R^2 for which $[T]_B = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$ and $P_{B \to B'} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$.	20
	4 1 1	Find the matrix for T relative to the basis B'	29
	4.11	$T: P_1 \to P_1$ is defined by $T(a_0 + a_1 x) = -a_0 + (a_0 + a_1)x$	
		B is the standard basis for P_1 and $B' = \{q_1, q_2\}$ where $q_1 = q_1$	20
	4.10	$x+1, q_2=x-1$. Find T relative to the basis B	29
		Check that x is an eigenvector of A and find the eigenvalue	30
		Check that x is an eigenvector of A and find the eigenvalue	30
	4.14	Find the characteristic equation, the eigenvalues, and bases	0.1
		for the eigenspaces of the matrix	31
		$4.14.1 \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \dots \dots \dots \dots \dots$	31
		$4.14.2 \begin{bmatrix} -2 & -7 \\ 1 & 2 \end{bmatrix} \underbrace{}_{} \dots $	32
			٠ <u>ـ</u>
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	34
		$\begin{bmatrix} -2 & 0 & 1 \end{bmatrix}$	
		Find the characteristic equation by inspection	35
		Find eigenvalues and basis, for $T(x,y) = (x+4y,2x+3y)$	36
	4.17	Show that A and B are not similar matrices	36
		$4.17.1 A = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 3 & -2 \end{bmatrix} \dots \dots \dots \dots$	36
		$\begin{bmatrix} 2 & 0 & -2 \end{bmatrix}$	
	4.18	Find the matrix P that diagonalizes $\begin{bmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \dots \dots$	38
		┕	
	4.19	Find the geometric and algebraic multiplicity of each eigen-	
		$\begin{bmatrix} -1 & 4 & -2 \end{bmatrix}$	
		value of $\begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$, and if it diagonalizable	40
	4.00	$\begin{bmatrix} 0 & 3 \end{bmatrix}^{10}$	40
	4.20	Compute $\begin{bmatrix} 0 & 3 \\ 2 & -1 \end{bmatrix}^{10}$	42
5	Wee	ek 41	43

5.1	Compute the standard inner product of $U = \begin{bmatrix} 3 & -2 \\ 4 & 8 \end{bmatrix}$, $V =$	
	$\begin{bmatrix} -1 & 3 \\ 1 & 1 \end{bmatrix} \dots \dots \dots \dots \dots \dots$	43
5.2	Compute the standard inner product of $p = -2 + x + 3x^2$,	
	$q = 4 - 7x^2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	43
5.3	Determine whether the vectors are orthogonal with repsect to	
	the euclidean inner product	43
5.4	Determine if the vectors are orthogonal and/or orthonormal	
	respect to the inner product	43
5.5	Transform the basis $\{(1,1,1),(-1,1,0),(1,2,1)\}$ into an or-	
	thonormal basis	44
5.6	Determine if the matrix is orthogonal, and if so find the inverse	44
5.7	For the matrix $A = \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{bmatrix}$	44
	5.7.1 Verify that A is orthogonally diagonalisable	44
	5.7.2 Find the orthogonal matrix P such that $P^{-1}AP$ is di-	
	agonal	45
	5.7.3 Calculate A^{10}	45
5.8	Find the characteristic equation, and the dimensions of the	
	eigenspaces by inspections	46
	$5.8.1 \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \dots \dots$	46
	$5.8.2 \begin{bmatrix} \lambda - 1 & 4 & -2 \\ 4 & \lambda - 1 & 2 \\ -2 & 2 & \lambda + 2 \end{bmatrix} \dots \dots \dots$	46

1 Week 36

1.1 Which equation are linear in x_1 , x_2 and x_3

$$1.1.1 \quad x_1 + 5x_2 - \sqrt{2}x^3 = 1$$

This is a linear equation

1.1.2
$$x_1 = -7x_2 + 3x_3$$

This is a linear equation

1.1.3
$$x_1^{3/5} - 2x_2 + x_3 = 4$$

This is not a linear equation with x_1 having a power

1.2 Convert from matrix form to equation form

$$\begin{bmatrix} 2 & 0 & 0 \\ 3 & -4 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
$$2x_1 = 0$$
$$3x_1 - 4x_2 = 0$$
$$x_2 = 1$$

1.3 Convert from equations to matrix

$$-6x_1 - x_2 + 3x_3 = 4$$

$$5x_2 - x_3 = 1$$

$$\begin{bmatrix} -6 & -1 & 3 & 4\\ 0 & 5 & -1 & 1 \end{bmatrix}$$

1.4 Determine if the solution hold in the following system

$$(5,8,1) x + 2y - 2z = 3 3x - y + z = 1 -x + 5y - 5z = 5$$

$$5 + 2(8) - 2(1) = 3$$

$$19 = 3$$

By the first equation the solution does not hold

1.5 Determine if the following matrices are in echoleon form or reduced echelon form

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Reduced echelon form
$$\begin{bmatrix} 1 & -3 & 4 & 7 \end{bmatrix}$$

 $\begin{bmatrix} 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 5 \end{bmatrix}$

Echelon form

2 Week 38

2.1 Show that the determinant og the matix is 0

$$\begin{bmatrix} -2 & 8 & 1 & 4 \\ 3 & 2 & 5 & 1 \\ 1 & 10 & 6 & 5 \\ 4 & -6 & 4 & -3 \end{bmatrix}$$

Column 2 and 4 are proportional to eachother therefore making the det=0

2.2 Is the following matrix invertible

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & 3 & 2 \\ -2 & 0 & -4 \end{bmatrix}$$

The determinant is -6 and therefore not zero and therefore invertible

2.3 Find the standard matrix for the transformation defined by the equations

$$w_1 = 7x_1 + 2x_2 - 8x_3$$
$$w_2 = -x_2 + 5x_3$$
$$w_3 = 4x_1 + 7x_2 - x_3$$

$$\begin{bmatrix} 7 & 2 & -8 \\ 0 & -1 & 5 \\ 4 & 7 & -1 \end{bmatrix}$$

2.4 Is a linear function a transformation of R

Yes the linear function can be a transform of the space R

2.5 The images of the standard basis vectors for R^3 are given for a linear transformation $T: R^3 \to R^3$. Find the standard matrix for the transformation and find T(x)

$$T(e_1) = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$$

$$T(e_2) = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$T(e_3) = \begin{bmatrix} 4 \\ -3 \\ -1 \end{bmatrix}$$

$$x = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 4 \\ 3 & 0 & -3 \\ 0 & 1 & -1 \end{bmatrix}$$

$$T(x) = \begin{bmatrix} 2 \\ 6 \\ 1 \end{bmatrix}$$

2.6 Find the standard matrix A for the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ for which

$$T(\begin{bmatrix}1\\1\end{bmatrix}) = \begin{bmatrix}1\\-2\end{bmatrix}, T(\begin{bmatrix}2\\3\end{bmatrix}) = \begin{bmatrix}-2\\5\end{bmatrix}$$

$$\begin{bmatrix} 1\\0 \end{bmatrix} = c_1 \begin{bmatrix} 1\\1 \end{bmatrix} + c_2 \begin{bmatrix} 2\\3 \end{bmatrix}$$

$$\begin{bmatrix} 0\\1 \end{bmatrix} = k_1 \begin{bmatrix} 1\\1 \end{bmatrix} + k_2 \begin{bmatrix} 2\\3 \end{bmatrix}$$
c variable found by
$$\begin{bmatrix} 1&2&1\\1&3&0 \end{bmatrix}$$
k variable found by
$$\begin{bmatrix} 1&2&0\\1&3&1 \end{bmatrix}$$
Gauss jordian magic!
$$c_1 = 3, c_2 = -1, k_1 = -2, k_2 = 1$$

$$T(\begin{bmatrix} 1\\0 \end{bmatrix}) = 3T(\begin{bmatrix} 1\\1 \end{bmatrix}) + (-1)T(\begin{bmatrix} 2\\3 \end{bmatrix})$$

$$= \begin{bmatrix} 3\\-6 \end{bmatrix} - \begin{bmatrix} -2\\5 \end{bmatrix} = \begin{bmatrix} 5\\-11 \end{bmatrix}$$

$$T(\begin{bmatrix} 0\\1 \end{bmatrix}) = -2T(\begin{bmatrix} 1\\1 \end{bmatrix}) + 1T(\begin{bmatrix} 2\\3 \end{bmatrix})$$

$$= \begin{bmatrix} -2\\4 \end{bmatrix} + \begin{bmatrix} -2\\5 \end{bmatrix} = \begin{bmatrix} -4\\9 \end{bmatrix}$$

$$A = \begin{bmatrix} 5&-4\\-11&9 \end{bmatrix}$$

3 Week 39

3.1 Determine if the set is a vector space

- 3.1.1 *n*-tuples of real numbers that have the form (x, x, ..., x) with the standard opeations \mathbb{R}^n
 - $u, v \in V \to v + u \in V$ True
 - x + v = v + u True
 - u + (v + w) = (u + v) + w True
 - Thezerovectorexists True (0,0,0,0)

- There exists a u in V such u + (-u) = 0 True
- $uk \in V$ where k is a scalar True
- k(u+v) = kv + ku True
- k(mu) = (km)u True
- 1u = u True

3.1.2 The set of matrices in the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$

- $u, v \in V \to v + u \in V$ True
- x + v = v + u True
- u + (v + w) = (u + v) + w True
- Thezerovectorexists True a=0 and b=0
- There exists a u in V such u + (-u) = 0 True
- $uk \in V$ where k is a scalar True
- k(u+v) = kv + ku True
- k(mu) = (km)u True
- 1u = u True

3.2 Use the subspace test to determine if it a subspace of R^3

- (a,0,0) $(a_1,0,0)$ + $(a_2,0,0)$ = $(a_3,0,0)$ and $k(a_1,0,0)$ = $(a_2,0,0)$, therefore it is a subspace
- (a,1,1) $(a_1,0,0)$ + $(a_2,1,1)$ = $(a_3,2,2)$ which is in not in the space and therefore not a subspace
- (a, b, c) where $b = a + c (a_1, b_1, c_1) + (a_2, b_2, c_2) = (a_1 + a_2, a_1 + a_2 + c_1 + c_2, c_1 + c_2)$ and $k(a_1, b_1, c_1) = (ka_1, k(a_1 + c_1), c_1)$ which holds true and therefore is a subspace

3.3 Use the subspace test to determine if it a subspace of $F(-\infty,\infty)$

- All functions f in $F(-\infty, \infty)$ for which f(0) = 0 $f_1(0) + f_2(0) = 0$ and $k \cdot f_1(0) = k \cdot 0 = 0$ therefore it is a subspace
- All functions f in $F(-\infty, \infty)$ for which $f(0) = 1 f_1(0) + f_2(0) = 2$ therefore making it not a subspace

3.4 Use the subspace test to determine the a bounded set of sequence of real number is a subspace of the sequence of real number in an infinite tuple

The operations are defined as

$$(a_n)_{n \in N} + (b_n)_{n \in N} := (a_n + b_n)_{n \in N}$$

$$k \cdot (a_n)_{n \in N} := (ka_n)_n$$

The sequence is bounded by a C value such $-C \le a_n \le C$.

The bounded sequence will be a subspace if we defined $a_n + b_n \leq C$ and $ka_n \leq C$

3.5 Verify that $\mathbb{M}_{m,n}(\mathbb{R})$ is a vector space

- $u, v \in V \rightarrow v + u \in V$ True
- x + v = v + u True
- u + (v + w) = (u + v) + w True
- Thezerovectorexists True everything in the matrix equal 0
- There exists a u in V such u + (-u) = 0 True
- $uk \in V$ where k is a scalar True
- k(u+v) = kv + ku True
- k(mu) = (km)u True in the case that the size of matrices unlike $k_{2,1}, u_{2,2}, m_{2,1}$
- 1u = u True

3.6 Which if the following are linear combination of u=(0,-2,2) and v=(1,3,-1)

3.6.1 (2, 2, 2)

$$(2,2,2) = k_1(0,-2,2) + k_2(1,3,-1)$$

$$= (k_1 + k_2, -2k_1 + 3k_2, 2k_1 - k_2)$$

$$k_1 + k_2 = 2$$

$$-2k_1 + 3k_2 = 2$$

$$2k_1 - k_2 = 2$$

$$k_1 = 0.8$$

$$k_2 = 1.2$$

It can be seen that the third condition is not met and therefore it is not a linear combination

3.6.2 (0, 4, 5)

$$(0,4,5) = k_1(0,-2,2) + k_2(1,3,-1)$$

$$= (k_1 + k_2, -2k_1 + 3k_2, 2k_1 - k_2)$$

$$k_1 + k_2 = 0$$

$$-2k_1 + 3k_2 = 4$$

$$2k_1 - k_2 = 5$$

$$k_1 = -0.8$$

$$k_2 = 0.8$$

It can be seen that the second equation is not met and therefore it is not a linear combination

3.6.3 (0, 0, 0)

$$(0,4,5) = k_1(0,-2,2) + k_2(1,3,-1)$$

$$= (k_1 + k_2, -2k_1 + 3k_2, 2k_1 - k_2)$$

$$k_1 + k_2 = 0$$

$$-2k_1 + 3k_2 = 0$$

$$2k_1 - k_2 = 0$$

$$k_1 = 0$$

$$k_2 = 0$$

This is a linear combination and by definition origo will always be a linear combination since a linear transformation does not move it.

3.7 Explain why the following form linearly dependent sets of vectors

- $u_1=(-1,2,4)$ and $u_2=(5,-10,-20)$ in \mathbb{R}^3 Vector u_2 is a scalar multiple of $-5u_1$
- $u_1 = (3, -1), u_2 = (4, 5), u_3 = (-4, 7)$ in \mathbb{R}^2 A linearly independent system would only need 2 vectors therefore making it dependent

3.8 Determien whether the vectors are linearly independent in \mathbb{R}^3

- (3,8,7),(1,5,3,7),(2,-1,2,6),(4,2,6,4) Each vector is a none scalar of each other such the zero test can only be performed with only 0 coefficients
- (3,0,-3,6), (0,2,3,1), (0,-2,-2,0), (-2,1,2,1) Each vector is a none scalar and by the zero test shows the only solution is 0 coefficients

3.9 Show that the following set of vectors forms a basis for R^2

 $\{(2,1),(3,0)\}$

It can be seen that the determinant of $\begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$ is -3 and therefore not 0 and therefore the rows are linearly independent

Show that the following polynomials form a basis 3.10for P_2

$${x^2+1, x^{-2}-1, 2x-1}$$

It can be seen that the determinant of $\begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & 2 \\ 1 & 1 & 0 \end{bmatrix}$ is -4 and therefore not 0 and therefore the column vectors 0 and therefore the column vectors span the s

Find the coordinate vector of v relative to the 3.11 basis $S = \{v_1, v_2, v_3\}$ for R^3

$$v = (2, -1, 3); v_1 = (1, 0, 0), v_2 = (2, 2, 0), v_3 = (3, 3, 3)$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 3 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 12 \end{bmatrix}$$

In each part let $T_a: \mathbb{R}^3 \to \mathbb{R}^3$ be multiplication by 3.12 A, and let $\{e_1, e_2, e_3\}$ be the standard basis for \mathbb{R}^3 . Determine whether the set $\{T_A(e_1), T_A(e_2), T_A(e_1), \}$ is linearly independent in \mathbb{R}^2

3.12.1
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ -1 & 2 & 0 \end{bmatrix}$$

Since the determinant of A is not zero means that $\{T_A(e_1), T_A(e_2), T_A(e_1), \}$ is linearly independent

3.12.2
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & -1 & 2 \end{bmatrix}$$

Since the determinant of A is zero means that $\{T_A(e_1), T_A(e_2), T_A(e_1), \}$ is linearly dependent

15

- 3.13 In each part, find a basis for the given subspace of R^3 , and state its dimension.
- **3.13.1** The plane 3x 2y + 5z = 0

$$y = 1.5x + 2.5z$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ 1.5x + 2.5z \\ z \end{bmatrix}$$

$$= x \begin{bmatrix} 1 \\ 1.5 \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 2.5 \\ 1 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} 1 \\ 1.5 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2.5 \\ 1 \end{bmatrix} \right\}$$

Since the matrices are non zero and linearly independent they are the basis.

3.13.2 The plane x - y = 0

$$x = y$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ y \end{bmatrix}$$

$$= y \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

3.13.3 The line x = 2t, y = -t, z = 4t

$$y = -0.5x$$

$$z = 2x$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ -0.5x \\ 2x \end{bmatrix}$$

$$= x \begin{bmatrix} 1 \\ -0.5 \\ 2 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} 1 \\ -0.5 \\ 2 \end{bmatrix} \right\}$$

3.13.4 All vectors of the form (a, b, c), where b = a + c

$$b = a + c$$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a \\ a + c \\ c \end{bmatrix}$$

$$= a \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$$

Since the matrices are non zero and linearly independent they are the basis.

3.14 Find a standard basis vector for \mathbb{R}^3 that can be added to the set, to produce a bassi for \mathbb{R}^3 / Enlarge to vector set to a basis

3.14.1
$$v_1 = (-1, 2, 3), v_2 = (1, -2, -2)$$

$$det\begin{pmatrix} -1 & 2 & 3 \\ 1 & -2 & -2 \\ a & b & c \end{pmatrix} = -1 \cdot det\begin{pmatrix} 2 & 3 \\ b & c \end{pmatrix} - 2 \cdot det\begin{pmatrix} 1 & -2 \\ a & c \end{pmatrix} + 3 \cdot det\begin{pmatrix} 1 & -2 \\ a & b \end{pmatrix}$$

$$= -(2c - 3b) - 2(1c - (-2a)) + 3(ab - (-2a))$$

$$= 2c + 3b - 2c - 4a + 3ab - 2a$$

$$= 3b - 6a + 3ab$$

$$0 \neq 3b - 6a + 3ab$$

Therefore the missing vector in the form (a, b, c), c can be any value and a and b must values such the last statement holds true. Otherwise the determinant will be 0 and the vectors would be linearly dependent.

3.14.2
$$v_1 = (1, -1, 0), v_2 = (3, 1, -2)$$

$$det(\begin{bmatrix} 1 & -1 & 0 \\ 3 & 1 & -2 \\ a & b & c \end{bmatrix}) = 1 \cdot det(\begin{bmatrix} 1 & -2 \\ b & c \end{bmatrix}) - (-1) \cdot det(\begin{bmatrix} 3 & -2 \\ a & c \end{bmatrix}) + 0 \cdot det(\begin{bmatrix} 3 & 1 \\ a & b \end{bmatrix})$$

$$= 1(1c - 2b) + 1(3c - (-2a))$$

$$= c - 2b + 3c + 2a$$

$$0 \neq 2a + 2b + 2c$$

$$2a \neq -2b - 2c$$

$$a \neq -b - c$$

Therefor in the missing vector in the form (a, b, c) it must hold true that a is not equal to -b - c. Otherwise the determinant will be 0 and the vectors would be linearly dependent.

3.15 Find a bassi for the subspace of R^3 that is spanned by the vectors $v_1 = (1, 0, 0), v_2 = (1, 0, 1), v_3 = (2, 0, 1), v_4 = (3, 3, 3, 4)$

By setting it up in a matrix and using gauss elimination the basis vectors can be found (1,0,0),(0,0,1)

3.16 Consider the bases $B = \{u_1, u_2\}$ and $B' = \{u'_1, u'_2\}$ for R^2 NOT DONE

$$u_1 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, u_2 = \begin{bmatrix} 4 \\ -1 \end{bmatrix}, u'_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, u'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

3.16.1 Find the transmission matrix from B to B'

[new basis — old basis]

$$\begin{bmatrix} 1 & -1 & 2 & 4 \\ 3 & -1 & 2 & 1 \end{bmatrix}$$

Reducing gives

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -2 & -5 \end{bmatrix}$$

Therefore making the transistion matrix

$$\begin{bmatrix} 0 & -1 \\ -2 & -5 \end{bmatrix}$$

3.16.2 Find the transmission matrix from B to B'

[new basis — old basis]

$$\begin{bmatrix} 2 & 4 & 1 & -1 \\ 2 & 1 & 3 & -1 \end{bmatrix}$$

Reducing gives

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Therefore making the transistion matrix

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

3.16.3 Calculate the vector in both spaces

$$w = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$$

$$[w]_b = B \cdot w$$

$$[w]_b = 3 \begin{bmatrix} 2 \\ 2 \end{bmatrix} - 5 \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

$$[w]_b = \begin{bmatrix} -14 \\ 11 \end{bmatrix}$$

$$[w]_{b'} = \begin{bmatrix} 0 & -1 \\ -2 & 5 \end{bmatrix} \cdot [w]_b$$

$$[w]_{b'} = -14 \begin{bmatrix} 0 \\ -2 \end{bmatrix} + 11 \begin{bmatrix} -1 \\ 5 \end{bmatrix}$$

$$[w]_{b'} = \begin{bmatrix} -11 \\ 37 \end{bmatrix}$$

$$[w]_{b'} = 3 \begin{bmatrix} 1 \\ 3 \end{bmatrix} - 5 \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$[w]_{b'} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

- 3.17 Let V be the space spanned by $f_1 = \sin x$ and $f_2 = \cos x$
- 3.17.1 Show that $g_1 = 2 \sin x + \cos x$ and $g_2 = 3 \cos x$ form a basis for V

It can be seen that since one consist

3.17.2 Find the transition matrix from $B = \{f_1, f_2\}$ to $B' = \{g_1, g_2\}$

$$x_1 \cdot (2\sin x + \cos x) + x_3 \cdot 3\cos x = \sin x$$

$$x_2 \cdot (2\sin x + \cos x) + x_4 \cdot 3\cos x = \cos x$$

$$x_1 = \frac{1}{2}$$

$$x_2 = -\frac{1}{6}$$

$$x_3 = 0$$

$$x_4 = \frac{1}{3}$$

$$\begin{bmatrix} \frac{1}{2} & 0\\ -\frac{1}{6} & \frac{1}{3} \end{bmatrix}$$

3.17.3 Find the transition matrix from $B' = \{g_1, g_2\}$ to $B = \{f_1, f_2\}$

$$x_1 \cdot (\sin x) + x_3 \cdot \cos x = 2\sin x + \cos x$$

$$x_2 \cdot (\sin x) + x_4 \cdot \cos x = 3\cos x$$

$$x_1 = 2$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_4 = 3$$

$$\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$$

3.17.4 Find h in the two basis

$$h = \begin{bmatrix} 2\sin x \\ -5\cos x \end{bmatrix}$$

$$[h]_B = \begin{bmatrix} \sin x \\ \cos x \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = h$$

$$x_1 = 2$$

$$x_2 = -5$$

$$[h]_B = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$$

$$[h]_{B'} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{1}{6} & \frac{1}{3} \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -5 \end{bmatrix} [h]_{B'} = \begin{bmatrix} 2 \cdot \frac{1}{2} - 5 \cdot 0 \\ 2 \cdot (-\frac{1}{6}) - 5 \cdot \frac{1}{3} \end{bmatrix}$$

$$[h]_{B'} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$[h]_{B'} = \begin{bmatrix} 2\sin x + \cos x \\ 3\cos x \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = h$$

$$x_1 = 1$$

$$x_2 = -2$$

3.18 Which of these are linear transistions and what is their kernel

- $T(A) = A^2$ Not linear
- T(A) = tr(A) all matrices in the form $\begin{bmatrix} a & b \\ c & -a \end{bmatrix}$

- $T(A) = A + A^T$ all matrices in the form $\begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$
- 3.19 Let $T: P_2 \to P_3$ be the linear transformation defined by T(p(x)) = xp(x). which are kernels to T
 - x^2 false
 - 0 true
 - x + 1 false
 - -x false
- 3.20 Consider the basis $S = \{v_1, v_2\}$ for R^2 where $v_1 = (1,1)$ and $v_2 = (1,0)$ and let T be a linear transformation, find T(5,-3)

$$\begin{bmatrix} x_1 & x_3 \\ x_2 & x_4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
$$\begin{bmatrix} x_1 & x_3 \\ x_2 & x_4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$$
$$x_1 + x_3 = 1$$
$$x_2 + x_4 = -2$$
$$x_1 = -4$$
$$x_2 = 1$$
$$x_3 = 1 - (-4) = 5$$
$$x_4 = -2 - 1 = -3$$
$$\begin{bmatrix} -4 & 5 \\ 1 & -3 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ -3 \end{bmatrix} = \begin{bmatrix} -35 \\ 14 \end{bmatrix}$$

- 3.21 Are the following operator one-to-one
 - Orthogonal projection onto x axis in \mathbb{R}^2 false
 - $\bullet\,$ The reflection abouth the y axis in R^2 true
 - The reflection about the line y = x in \mathbb{R}^2 true

3.22 Are the following transformation one-to-one, determine using kernel

- $T: \mathbb{R}^2 \to \mathbb{R}^2$ where T(x,y) = (y,x) only kernel is $\{(0,0)\}$ therefore it is one-to-one
- $T: \mathbb{R}^3 \to \mathbb{R}^2$ where T(x,y,z) = (x+y+z,x-y-z) only kernel is $\{(0,0)\}$ therefore it is one-to-one

3.23 Is multiplication by the matrix one-to-one?

$$\begin{bmatrix} 1 & 2 \\ 2 & -4 \\ -3 & 6 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$1x_1 - 2x_2 = 0$$
$$2x_1 - 4x_2 = 0$$
$$-3x_1 + 6x_2 = 0$$
$$x_1 = 2x_2$$

It can be seen as long that $x_1 = 2x_2$ the result will be zero therefore the kernel is not $\{0\}$ therefore making it not one-to-one

3.24 Dertermine if the transformation is one-to-one

- $T: V \to W$; nullity(T) = 0 T is one-to-one
- $T: V \to W \operatorname{rank}(T) = \dim(V)$ T is one-to-one
- $T: V \to W \ dim(W) < dim(V)$ T is not one-to-one

4 Week 40

4.1 Determine if the transformation is isomorphic

$$c_0 + c_1 x \rightarrow (c_0 - c_1, c_1)$$

From P_1 to \mathbb{R}^2

ker(T): $\{c_0 = 0, c_1 = 0\}$ therefore making it one-to-one, and onto since every vector is obtainable, making it isomorphic

4.2 Determine if the transformation is isomorphic

$$a + bx + cx^2 + dx^3 \rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

from P_3 to M_{22} . Isomorphic

4.3 Find isomorphism between the spaces

4.3.1 All 3×3 symmetric matrices and R^6

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ x_2 & x_4 & x_5 \\ x_3 & x_5 & x_6 \end{bmatrix} \to (x_1, x_2, x_3, x_4, x_5, x_6)$$

4.3.2 All 2×2 matrices and R^4 in two ways

$$\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$$
$$(x_1, x_2, x_3, x_4) (x_2, x_3, x_4, x_1)$$

4.4 Is the transformation isomorphic?

- $\begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 2 \\ -1 & 1 & 0 \end{bmatrix}$ the determinant is -3 therefore it is linear independent and isomorphic
- $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 2 \\ -1 & 1 & 0 \end{bmatrix}$ the determinant is 0 therefore linear dependent and not isomorphic

- **4.5** Let $T: P_2 \to P_1$ be the linear transformation $T(a_1 + a_1x + a_2x^2) = (a_0 + a_1) (2a_1 + 3a_2)x$
- 4.5.1 Find the matrix for the linear transformation T relatie to the standard bases $B = \{1, x, x^2\}$ and $B' = \{1, x\}$ for P_2 and P_1

$$b_{1} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$

$$b_{2} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$

$$b_{3} = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$

$$T(b_{1}) = 1 = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$

$$T(b_{2}) = 1 - 2x = \begin{bmatrix} 1\\-2\\0\\0 \end{bmatrix}$$

$$T(b_{3}) = -3x = \begin{bmatrix} 0\\-3\\0\\0 \end{bmatrix}$$

$$[T(b_{1})]_{B'} = b'_{1} = \begin{bmatrix} 1\\0\\0\\-3 \end{bmatrix}$$

$$[T(b_{2})]_{B'} = b'_{1} - 2b'_{2} = \begin{bmatrix} 1\\-2\\-3\\0 \end{bmatrix}$$

$$[T(b_{3})]_{B'} = -3b'_{2} = \begin{bmatrix} 0\\-3\\0\\-3 \end{bmatrix}$$

$$[T]_{B',B} = \begin{bmatrix} 1&1&0\\0&-2&-3\\0&-3&-3 \end{bmatrix}$$

4.5.2 Validate the matrix $[T]_{B',B}$ satisfies for every vector $x = c_0 + c_1x + c_2x^2$ in P_2

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} c_0, c_1, c_2 \end{bmatrix} = \begin{bmatrix} c_0 + c_2 x \\ -2c_2 - 3c_3 \end{bmatrix}$$

- 4.6 Let $T: R^2 \to R^2$ be the linear operator defined by $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} x_1 x_2 \\ x_1 + x_2 \end{bmatrix}$ and let $B = \{\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}\}$ be the basis
- **4.6.1** Find $[T]_B$

$$T(\begin{bmatrix} 1 \\ 1 \end{bmatrix}) = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

$$T(\begin{bmatrix} -1 \\ 0 \end{bmatrix}) = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$[T]_B = \begin{bmatrix} 0 & -1 \\ 2 & -1 \end{bmatrix}$$

4.6.2 Verify $[T]_B$

$$[T]_B[x]_B = [T(x)]_B$$

$$\begin{bmatrix} 0 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$$

$$T(\begin{bmatrix} 1 \\ 2 \end{bmatrix}) = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

- **4.7** Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be $T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = \begin{bmatrix} x_1 + 2x_2 \\ -x_1 \\ 0 \end{bmatrix}$
- 4.7.1 Find the matrix $[T]_{B',B}$ relative to bases $B' = \{v_1, v_2, v_3\}$ and $B = \{u_1, u_2\}$

$$u_{1} = \begin{bmatrix} 1\\3 \end{bmatrix}$$

$$u_{2} = \begin{bmatrix} -2\\4 \end{bmatrix}$$

$$v_{1} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

$$v_{2} = \begin{bmatrix} 2\\2\\0 \end{bmatrix}$$

$$v_{3} = \begin{bmatrix} 3\\0\\0 \end{bmatrix}$$

$$T(u_{1}) = \begin{bmatrix} 7\\-1\\0 \end{bmatrix}$$

$$T(u_{2}) = \begin{bmatrix} 6\\2\\0 \end{bmatrix}$$

$$[T(u_{1})]_{B} = \begin{bmatrix} 0\\-0.5\\\frac{8}{3} \end{bmatrix}$$

$$[T(u_{2})]_{B} = \begin{bmatrix} 0\\1\\\frac{4}{3} \end{bmatrix}$$

$$[T]_{B',B} = \begin{bmatrix} 0&0\\-0.5&1\\\frac{8}{3}&\frac{4}{3} \end{bmatrix}$$

- 4.8 Let $v_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$, and let $A = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$ be the matrix for $T: R^2 \to R^2$ relative to the basis $B = \{v_1, v_2\}$
- **4.8.1** Find $[T(v_1)]_B$ and $[T(v_2)]_B$

$$[T(v_1)]_B = \begin{bmatrix} 1 \\ -2 \end{bmatrix} [T(v_2)]_B = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$$

- **4.8.2** Find $T(v_1)$ and $T(v_2)$
- **4.9** Let $D: P_2 \to P_2$ be the differentiation operator D(P) = p'(x)
- **4.9.1** Find the matrix for *D* relative to the basis $B = \{p_1, p_2, p_3\}$ for P_2 in which $p_1 = 1, p_2 = x, p_3 = 2 3x + 8x^2$

$$\begin{bmatrix} 0 & 1 & 3 \\ 0 & 0 & 16 \\ 0 & 0 & 0 \end{bmatrix}$$

4.9.2 Use the matrix to compute $D(6 - 6x + 23x^2)$

$$\begin{bmatrix} 0 & 1 & 3 \\ 0 & 0 & 16 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ -6 \\ 23 \end{bmatrix} = \begin{bmatrix} 63 \\ 368 \\ 0 \end{bmatrix}$$
$$63 + 368x$$

4.10 Let $T: R^2 \to R^2$ be a linear operator and let B and B' be bases for R^2 for which $[T]_B = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$ and $P_{B \to B'} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$. Find the matrix for T relative to the basis B'

$$P^{-1} = P_{B' \to B} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$

$$T_{B'} = P_{B \to B'} T_B P_{B' \to B}$$

$$\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 8 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 6 & -10 \\ 2 & -3 \end{bmatrix}$$

4.11 $T: P_1 \to P_1$ is defined by $T(a_0+a_1x) = -a_0+(a_0+a_1)x$ B is the standard basis for P_1 and $B' = \{q_1, q_2\}$ where $q_1 = x + 1, q_2 = x - 1$. Find T relative to the basis B

$$T_B = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$B' = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$B'^{-1} = \begin{bmatrix} 0.5 & 0.5 \\ -0.5 & 0.5 \end{bmatrix}$$

$$B'^{-1}T_BB' = \begin{bmatrix} 0.5 & 0.5 \\ 1.5 & -0.5 \end{bmatrix}$$

4.12 Check that x is an eigenvector of A and find the eigenvalue

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$
$$x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$Ax = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
$$\lambda = -1$$

4.13 Check that x is an eigenvector of A and find the eigenvalue

$$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}$$
$$x = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
$$Ax = \begin{bmatrix} 5 \\ 10 \\ 5 \end{bmatrix}$$
$$\lambda = 5$$

4.14 Find the characteristic equation, the eigenvalues, and bases for the eigenspaces of the matrix

$\mathbf{4.14.1} \quad \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$

$$det\begin{pmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}) = 0$$

$$det\begin{pmatrix} \begin{bmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{bmatrix} \end{pmatrix} = 0$$

$$(\lambda - 1)(\lambda - 3) - (-4 \cdot -2) = 0$$

$$\lambda^2 - \lambda - 3\lambda + 3 - 8 = 0$$

$$\lambda^2 - 4\lambda - 5 = 0$$

$$\lambda = (5, -1)$$

$$\begin{bmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -4 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 - x_2 = 0$$

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -4 \\ -2 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 + 2x_2 = 0$$

$$\begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

$$4.14.2 \quad \begin{bmatrix} -2 & -7 \\ 1 & 2 \end{bmatrix}$$

$$det\begin{pmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} -2 & -7 \\ 1 & 2 \end{bmatrix} \end{pmatrix} = 0$$
$$det\begin{pmatrix} \begin{bmatrix} \lambda + 2 & 7 \\ -1 & \lambda - 2 \end{bmatrix} \end{pmatrix} = 0$$
$$(\lambda - 2)(\lambda - 2) - (7 \cdot -1) = 0$$
$$\lambda^2 + 3 = 0$$

No real solutions

$$\mathbf{4.14.3} \quad \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

$$det\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} - \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}) = 0$$
$$det\begin{pmatrix} \begin{bmatrix} \lambda - 4 & 0 & -1 \\ 2 & \lambda - 1 & 0 \\ 2 & 0 & \lambda - 1 \end{bmatrix}) = 0$$
$$x^3 - 6x^2 + 11x - 6 = 0$$
$$x = (1, 2, 3)$$

$$x = 1$$

$$\begin{bmatrix} \lambda - 4 & 0 & -1 \\ 2 & \lambda - 1 & 0 \\ 2 & 0 & \lambda - 1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 0 & -1 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 = 0 \land x_3 = 0$$

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$x = 2$$

$$\begin{bmatrix} \lambda - 4 & 0 & -1 \\ 2 & \lambda - 1 & 0 \\ 2 & 0 & \lambda - 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 0 & -1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 - 0.5x_3 = 0 \land x_2 - x_3 = 0$$

$$\begin{bmatrix} 0.5 \\ 1 \\ 1 \end{bmatrix}$$

$$x = 3$$

$$\begin{bmatrix} \lambda - 4 & 0 & -1 \\ 2 & \lambda - 1 & 0 \\ 2 & 0 & \lambda - 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & -1 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 + x_3 = 0$$

$$x_2 - x_3 = 0$$

$$\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

4.15 Find the characteristic equation by inspection

$$\begin{bmatrix} 3 & 0 & 0 \\ -2 & 7 & 0 \\ 4 & 8 & 1 \end{bmatrix}$$

Lower triangle therefore

$$(x-3)(x-7)(x-1) = 0$$

4.16 Find eigenvalues and basis, for T(x,y) = (x+4y, 2x+3y)

$$\begin{bmatrix} x & 4y \\ 2x & 3y \end{bmatrix}$$

$$det(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}) = 0$$

$$det(\begin{bmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{bmatrix}) = 0$$

$$x^2 - 4x - 5 = 0$$

$$x = (5, -1)$$

$$x = 5$$

$$\begin{bmatrix} 4 & -4 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x_1 - x_2 = 0$$

$$\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$x = -1$$

$$\begin{bmatrix} -2 & -4 \\ -2 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x_1 + 2x_2 = 0$$

$$\begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

4.17 Show that A and B are not similar matrices

4.17.1
$$A = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 3 & -2 \end{bmatrix}$$

$$det(A) = -1$$

$$det(B) = -2$$

Therefore since they do not equal they can not be similar

4.18 Find the matrix P that diagonalizes $\begin{bmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

$$det\begin{pmatrix} \lambda - 2 & 0 & 2 \\ 0 & \lambda - 3 & 0 \\ 0 & 0 & \lambda - 3 \end{pmatrix}) = 0$$
$$(x - 2)(x - 3)^2 = 0$$
$$x = (2, 3)$$

$$x = 2$$

$$\begin{bmatrix} 0 & 0 & 2 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_2 = 0$$

$$x_3 = 0$$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$x = 3$$

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 + 2x_3 = 0$$

$$\begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P^{-1} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$38$$

$$P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

4.19 Find the geometric and algebraic multiplicity of each eigenvalue of $\begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$, and if it diagonalizable

$$det\begin{pmatrix} \lambda + 1 & -4 & 2 \\ 3 & \lambda - 4 & 0 \\ 3 & -1 & \lambda - 3 \end{pmatrix}) = 0$$
$$x^3 - 6x^2 + 11x - 6 = 0$$
$$x = (1, 2, 3)$$

$$x = 1$$

$$alg : 1$$

$$\begin{bmatrix} 2 & -4 & 2 \\ 3 & -3 & 0 \\ 3 & -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 - x_3 = 0$$

$$x_2 - x_3 = 0$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

geo: 1 since the whole space can be made with 1 vector

$$x = 2$$

$$alg : 1$$

$$\begin{bmatrix} 3 & -4 & 2 \\ 3 & -2 & 0 \\ 3 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 - \frac{2}{3}x_3 = 0$$

$$x_2 - x_3 = 0$$

$$\begin{bmatrix} \frac{2}{3} \\ 1 \\ 1 \end{bmatrix}$$

geo: 1 since the whole space can be made with 1 vector

$$x = 3$$

$$alg : 1$$

$$\begin{bmatrix} 4 & -4 & 2 \\ 3 & -1 & 0 \\ 3 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1 - 0.25x_3 = 0$$

$$x_2 - 0.75x_3 = 0$$

$$\begin{bmatrix} 0.25 \\ 0.75 \\ 1 \end{bmatrix}$$

geo: 1 since the whole space can be made with 1 vector

4.20 Compute $\begin{bmatrix} 0 & 3 \\ 2 & -1 \end{bmatrix}^{10}$

$$det(\begin{bmatrix} \lambda & -3 \\ -2 & \lambda + 1 \end{bmatrix}) = 0$$
$$x^2 + x - 6 = 0$$
$$x = (2, -3)$$

$$x = 2$$

$$\begin{bmatrix} 2 & -3 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x_1 - 1.5x_2 = 0$$

$$\begin{bmatrix} 1.5 \\ 1 \end{bmatrix}$$

$$x = -3$$

$$\begin{bmatrix} -3 & -3 \\ -2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x_1 + x_2 = 0$$

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$P = \begin{bmatrix} 1.5 & 1 \\ 1 & -1 \end{bmatrix}$$

$$P^{-1} = \begin{bmatrix} 0.4 & 0.4 \\ 0.4 & -0.6 \end{bmatrix}$$

$$D = P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$D = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$$

$$A^{10} = PD^{10}p^{-1}$$

$$A^{10} = \begin{bmatrix} 24234 & -34815 \\ -23210 & 35839 \end{bmatrix}$$

5 Week 41

5.1 Compute the standard inner product of $U = \begin{bmatrix} 3 & -2 \\ 4 & 8 \end{bmatrix}$,

$$V = \begin{bmatrix} -1 & 3 \\ 1 & 1 \end{bmatrix}$$

$$< U, V > 3 \cdot (-1) + (-2) \cdot 3 + 4 \cdot 1 + 8 \cdot 1$$

$$< U, V > = -3 - 6 + 4 + 8 = 3$$

5.2 Compute the standard inner product of $p = -2 + x + 3x^2$, $q = 4 - 7x^2$

$$< p, q >$$
 $-2 \cdot 4 + 1 \cdot 0 + 3 \cdot (-7)$
 $< p, q >= -8 + 0 - 21 = -29$

5.3 Determine whether the vectors are orthogonal with repsect to the euclidean inner product

•
$$u = (-1, 3, 2), v = (4, 2, -1) - \langle u, v \rangle = -4 + 6 - 2 = 0$$

•
$$u = (-2, -2, -2), v = (1, 1, 1) - \langle u, v \rangle = -2 - 2 - 2 = -4$$

•
$$u = (a, b), v = (-b, a) - \langle u, v \rangle = -ab + ab = 0$$

Only the last and the first vectors are orthogonal relative given the inner product is 0

5.4 Determine if the vectors are orthogonal and/or orthonormal respect to the inner product

•
$$(0,1), (2,0)$$
 - $<>=0$

•
$$(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) - <> = 0$$

•
$$(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}), -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}))$$
 - <>= -1

The two first are orthogonal relative and the third has an orthonormal basis

5.5 Transform the basis $\{(1,1,1),(-1,1,0),(1,2,1)\}$ into an orthonormal basis

$$u_{1} = (1, 1, 1)$$

$$u_{2} = (-1, 1, 0) - \frac{\langle (-1, 1, 0), (1, 1, 1) \rangle}{|(1, 1, 1)|^{2}} (1, 1, 1)$$

$$u_{2} = (-1, 1, 0) - \frac{0}{\sqrt{3}^{2}} (1, 1, 1)$$

$$u_{2} = (-1, 1, 0) - (0, 0, 0) = (-1, 1, 0)$$

$$u_{3} = (1, 2, 1) - \frac{\langle (1, 2, 1), (1, 1, 1) \rangle}{|(1, 1, 1)|^{2}} (1, 1, 1) - \frac{\langle (1, 2, 1), (-1, 1, 0) \rangle}{|(-1, 1, 0)|^{2}} (-1, 1, 0)$$

$$u_{3} = (1, 2, 1) - \frac{4}{\sqrt{3}^{2}} (1, 1, 1) - \frac{1}{\sqrt{2}^{2}} (-1, 1, 0)$$

$$u_{3} = (1, 2, 1) - (\frac{4}{3}, \frac{4}{3}, \frac{4}{3}) - (-0.5, 0.5, 0)$$

$$u_{3} = (\frac{1}{6}, \frac{1}{6}, -\frac{1}{3})$$

$$u_{1} = \frac{1}{\sqrt{2}} (-1, 1, 0)$$

$$u_{2} = \frac{1}{\sqrt{2}} (-1, 1, 0)$$

$$u_{3} = \frac{\sqrt{6}}{6} (\frac{1}{6}, \frac{1}{6}, -\frac{1}{3})$$

5.6 Determine if the matrix is orthogonal, and if so find the inverse

•
$$a = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 - $a^T = a^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

•
$$a = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} - a^T = a^{-1} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

5.7 For the matrix
$$A = \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{bmatrix}$$

5.7.1 Verify that A is orthogonally diagonalisable

It can be seen that A is symmetric therefore it is orthogonally diagonalizable

5.7.2 Find the orthogonal matrix P such that $P^{-1}AP$ is diagonal

$$det\left(\begin{bmatrix} \lambda - \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \lambda - \frac{3}{2} \end{bmatrix}\right) = 0$$
$$x^2 - 3x + 2 = 0$$
$$x = (1, 2)$$

$$x = 1$$

$$\left(\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x_1 - x_2 = 0 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$x = 2$$

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x_1 + x_2 = 0$$

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$P^{-1} = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{bmatrix}$$

$$D = P^{T}AP = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

5.7.3 Calculate A^{10}

$$P^{-1}D^{10}P = \begin{bmatrix} 512.5 & -511.5 \\ -511.5 & 512.5 \end{bmatrix}$$

- 5.8 Find the characteristic equation, and the dimensions of the eigenspaces by inspections
- $5.8.1 \quad \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

$$det\begin{pmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 4 \end{pmatrix} = 0$$
$$x^2 - 5x = 0$$
$$x = (0, 5)$$
$$dim(0) = 1$$
$$dim(5) = 1$$

5.8.2
$$\begin{bmatrix} \lambda - 1 & 4 & -2 \\ 4 & \lambda - 1 & 2 \\ -2 & 2 & \lambda + 2 \end{bmatrix}$$

$$det \begin{bmatrix} \lambda - 1 & 4 & -2 \\ 4 & \lambda - 1 & 2 \\ -2 & 2 & \lambda + 2 \end{bmatrix}) = 0$$
$$x = (6, -3, -3)$$
$$dim(6) = 3$$
$$dim(-3) = 2$$