Rank-76100 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_0^2 X_3 + X_1^2 X_2 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(2)$ is 76100

General information

Number of lines	3
Number of points	9
Number of singular points	0
Number of Eckardt points	1
Number of double points	0
Number of single points	6
Number of points off lines	2
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{3}
Type of lines on points	$3, 1^6, 0^2$

Singular Points

The surface has 0 singular points:

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \mathbf{Pl}(0, 0, 0, 1, 0, 0)_5$$

$$\ell_1 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_1$$

$$\ell_2 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_7$$

Rank of lines: (30, 34, 33)

Rank of points on Klein quadric: (5, 1, 7)

Eckardt Points

The surface has 1 Eckardt points:

 $0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1). T = 14$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 6 single points:

The single points on the surface are:

0 : $P_1 = (0,1,0,0)$ lies on line ℓ_0

 $1: P_2 = (0, 0, 1, 0)$ lies on line ℓ_1

2 : $P_7 = (0,1,1,0)$ lies on line ℓ_2

 $3: P_{10} = (0, 1, 0, 1)$ lies on line ℓ_0

The single points on the surface are:

Points on surface but on no line

The surface has 2 points not on any line:

The points on the surface but not on lines are:

 $0: P_4 = (1, 1, 1, 1)$

 $1: P_8 = (1, 1, 1, 0)$

Line Intersection Graph

 $\begin{array}{c|c}
0 & 1 & 2 \\
\hline
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 0
\end{array}$

4: $P_{12} = (0, 0, 1, 1)$ lies on line ℓ_1

5: $P_{14} = (0, 1, 1, 1)$ lies on line ℓ_2

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_3	P_3

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_3	P_3

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_3	P_3

The surface has 9 points:

The points on the surface are:

$$\begin{array}{lll} 0: \ P_1 = (0,1,0,0) & 4: \ P_7 = (0,1,1,0) & 8: \ P_{14} = (0,1,1,1) \\ 1: \ P_2 = (0,0,1,0) & 5: \ P_8 = (1,1,1,0) \\ 2: \ P_3 = (0,0,0,1) & 6: \ P_{10} = (0,1,0,1) \\ 3: \ P_4 = (1,1,1,1) & 7: \ P_{12} = (0,0,1,1) \end{array}$$