Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 2

Solución primer parcial - 27 de abril de 2017.

Ejercicio 1. Encontrar todos los $a, b \in \mathbb{N}$ tales que a + b = 407 y mcm(a, b) = 210 mcd(a, b). **Solución:** Sean d = mcd(a, b) y $a = da^*$, $b = db^*$. Como

$$d(a^* + b^*) = a + b = 11 \cdot 37$$

entonces $d \mid 407 \text{ y } d \in \{1, 11, 37, 407\}.$

Por otro lado, como mcm(a, b) mcd(a, b) = ab, tenemos

$$d^2a^*b^* = ab = 210 \operatorname{mcd}(a, b)^2 = 2 \cdot 3 \cdot 5 \cdot 7d^2.$$

Por lo tanto

$$a^*b^* = 2 \cdot 3 \cdot 5 \cdot 7$$
.

Recordemos que $mcd(a^*, b^*) = 1$ por lo tanto $a^* \in \{1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210\}$. Veamos para que d hay alguna solución.

- Si d=1 entonces $a^*+b^*=407$, y mirando entre las opciones para a^* y b^* vemos que ninguna llega a sumar 407.
- Si d=11 entonces $a^*+b^*=37$, dentro de las opciones para a^* y b^* , recordar que $a^*b^*=210$, las únicas que funcionan son $(a^*,b^*)=(7,30)$ y $(a^*,b^*)=(30,7)$.
- Si d=37 entonces $a^*+b^*=11$, ninguna de las opciones para a^* y b^* funcionan.
- Si d = 407 entonces $a^* + b^* = 1$ y ninguna de las opciones para a^* y b^* funcionan.

Por lo tanto las soluciones son $(a, b) = (7 \cdot 11 = 77, 30 \cdot 11) = (77, 330)$ y (a, b) = (330, 77).

Ejercicio 2. Sean $a, b, c \in \mathbb{Z}$ con $(a, b) \neq (0, 0)$. Probar que la ecuación diofántica

$$ax + by = c$$

tiene solución si y solo si $mcd(a, b) \mid c$.

Solución: Sea d = mcd(a, b). Como $(a, b) \neq (0, 0)$ tenemos que $d \neq 0$.

 (\longrightarrow) Si la ecuación tiene solución, entonces existen $x_0, y_0 \in \mathbb{Z}$ tales que $ax_0 + by_0 = c$ Como $d \mid a \ y \ d \mid b$, entonces $d \mid ax_0 + by_0 = c$.

 (\longleftarrow) Supongamos que $d \mid c$ y veamos que la ecuación tiene solución:

Como $d \mid c$ existe $k \in \mathbb{Z}$ tal que c = dk. Por la identidad de Bezout existen $x', y' \in \mathbb{Z}$ tales que ax' + by' = d. Multiplicando ambos lados de la ecuación por k, obtenemos que a(x'k) + b(y'k) = c, y por lo tanto $x_0 = x'k$, $y_0 = y'k$ es una solución de la ecuación ax + by = c.

Ejercicio 3.

 \mathbf{a} . Hallar el menor x natural que verifica

$$\begin{cases} x \equiv 6 \pmod{13} \\ x \equiv 62 \pmod{103} \end{cases}$$

- **b.** Si (n, e) = (1339, 311) calcular E(11), donde E es la función de cifrado del criptosistema RSA con clave pública (n, e).
- c. Sabiendo que $1339 = 13 \cdot 103$ calcular la función de descifrado D del criptosistema RSA para la clave pública (n, e) de la parte anterior.
- d. Sean $n = p \cdot q$, con p, q primos, y $0 < e < \varphi(n)$ con $mcd(e, \varphi(n)) = 1$. Dadas las funciones de cifrado E y descifrado D del criptosistema RSA para (n, e), probar que $D(E(x)) \equiv x$ (mód n) cuando mcd(x, n) = 1.

Solución:

a. Sabemos que el sistema tiene solución por TCR ya que 13 y 103 son coprimos. Combinando las dos congruencias obtenemos que

$$x = 62 + 103k \equiv 6 \pmod{13}$$
.

Ahora, como $103 \equiv -1 \pmod{13}$ y $62 \equiv -3 \pmod{13}$ vemos que k = 4 y $x \equiv 474 \pmod{13 \cdot 103}$. Por lo tanto, la solución buscada es

$$x = 474.$$

b. Tenemos que calcular $x \equiv 11^{311}$ (mód 1339), con $0 \le x < 1339$. Como 1339 = $13 \cdot 103$ y TCR, esto es equivalente a resolver el sistema

$$\left\{ \begin{array}{ll} x & \equiv & 11^{311} \pmod{13} \\ x & \equiv & 11^{311} \pmod{103} \end{array} \right., x \in \mathbb{Z}.$$

En la primer congruencia podemos aplicar el teorema de Euler ya que 11 y 13 son coprimos. Como $311 \equiv -1 \pmod{12}$ y $\varphi(13) = 12$ tenemos que

$$11^{311} \equiv 11^{-1} \pmod{13} \equiv (-2)^{-1} \pmod{13} \equiv -7 \pmod{13} \equiv 6 \pmod{13}.$$

Para la segunda congruencia también podemos aplicar Euler y como 311 $\equiv 5 \pmod{102}$ entonces

$$11^{311} \equiv 11^5 \pmod{103} \equiv 18 \cdot 18 \cdot 11 \pmod{103} \equiv 15 \cdot 11 \pmod{103} \equiv 62 \pmod{103}.$$

Entonces, por lo visto en la primer parte del ejercicio vemos que

$$E(x) = 474.$$

c. Para hallar D tenemos que hallar $0 \le d < \varphi(n) = 1224$ tal que $e \cdot d \equiv 1$ (mód 1339). O sea, hallar el inverso de e módulo 1339. Para ello aplicamos el algoritmo extendido de Euclides para hallar la identidad de Bezout

$$1224 \cdot (-140) + 311 \cdot 511 = 1$$
,

y por lo tanto d = 551 y $D(y) = y^{551}$ (mód 1339).

d. Como $D(E(x)) \equiv x^{ed} \pmod{n}$, debemos probar que $x^{ed} \equiv x \pmod{n}$. Por la construcción del sistema RSA tenemos que $ed \equiv 1 \pmod{\varphi(n)}$, es decir que $ed = \varphi(n) + 1$.

Ahora como mcd(x, n) = 1, el Teorema de Euler dice que

$$x^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Entonces

$$x^{ed} = x^{\varphi(n)k+1} = (x^{\varphi}(n))^k \cdot x \equiv 1^k \cdot x \equiv x \pmod{n}$$
.

Ejercicio 4. Demostrar la siguiente versión del teorema chino del resto. Sean m_1 , m_2 enteros coprimos y a_1 , $a_2 \in \mathbb{Z}$, entonces el sistema

$$\left\{ \begin{array}{ll} x & \equiv & a_1 \pmod{m_1} \\ x & \equiv & a_2 \pmod{m_2} \end{array}, x \in \mathbb{Z}, \right.$$

tiene solución y es única módulo m_1m_2 .

Solución: La primer congruencia es equivalente a que existe $s \in \mathbb{Z}$ tal que $x = a_1 + m_1 s$, y la segunda congruencia a que exista $t \in \mathbb{Z}$ tal que $x = a_2 + m_2 t$. Igualando ambas ecuaciones obtenemos

$$a_1 + m_1 s = a_2 + m_2 t ,$$

o lo que es lo mismo

$$m_1 s - m_2 t = a_2 - a_1$$
.

Como $\operatorname{mcd}(m_1, m_2) = 1$, esta ecuación siempre tiene solución en \mathbb{Z} (por el ejercicio 2). Ahora si $s_0, t_0 \in \mathbb{Z}$ es una solución, tenemos que $x = a_1 + m_1 s_0 = a_2 + m_2 t_0$ es una solución al sistema de congruencias planteado.

Para ver la unicidad de la solución módulo $m_1 m_2$, consideremos $x_0 y x_1$ dos soluciones. Entonces $x_0 \equiv x_1 \pmod{m_1}$ y $x_0 \equiv x_1 \pmod{m_2}$. Dicho de otro modo, $m_1 \mid (x_0 - x_1) y m_2 \mid (x_0 - x_1)$. Pero como $\operatorname{mcd}(m_1, m_2) = 1$ esto implica que $m_1 m_2 \mid (x_0 - x_1)$, es decir que $x_0 \equiv x_1 \pmod{m_1 m_2}$.