Microprocessor System Design

Omid Fatemi (omid@fatemi.net)

Outline

- Objectives
- Administration
- Digital System Design
- Microprocessors History
- Structure, Registers
- Assembly language, Programming

Objectives

- Basic understanding of the operation of microprocessors.
 - Assembly language for control and interfacing applications
- Basic Techniques for using microprocessors.
- Intel 80x86 family
- Microcontrollers and embedded design
- AVR, 8051, PIC, ARM based microcontrollers
- Interfacing
- Embedded and real-time system design

Administration

- Text book:
 - The 80x86 IBM PC and Compatible Computers (Vol. 1 and 2)
 - ARM
 - AVR Microcontroller and Embedded Systems
- Instructor: Omid Fatemi (omid@fatemi.net)

Office: new building, room 608

Office Hours: Sat. 11:00 – 12:00 or by appt.

- Web: http://mec.ut.ac.ir/course/view.php?id=17449
- Course: 3961810120701 1 ریز پردازنده
- شماره دانشجویی خود به عنوان نام کاربری و کد ملی به عنوان گذرواژه
 - دانشجویانی که از ترم گذشته در سامانه ثبت بوده اند باید با همان نام کاربری و گذرواژه قبلی وارد سامانه شوند.
 - دانشجویانی که مشخصات آنها از قبیل شماره تماس و کدپستی در گلستان کامل نباشد در سامانه آموزش الکترونیکی ثبت نخواهند شد.

http://utec.ut.ac.ir/web/offering/166: London of Tehran 4

Administration (2)

- Class is flipped
 - Lectures: out of class
 - Fast review in class
- Class work:
 - In group.
 - Discussion is allowed
 - Writing should be own work.
- Quiz:
 - Closed book, no discussion and talking.
 - Copying, looking at other's work is not allowed
- Everything is in site.
- Next session:
 - Because of watching video and assignment: Monday

Grading

- Class is flipped
- 5% Video watching (how to assess? Closed quiz, class work and quiz)
- 15% lab work (bring your laptops. Possible?)
- Projects (5) 25% (bonus: 10%)
 - PCB should be designed
 - -written report
- 55% Final Exam and Mid-term
- 5% bonus for class material

Digital System Design Applications

- Signal processing
- Control systems
- Communications
- Micro-computers
- Robotics
- Multimedia
- Internet, Distance learning

Solutions

- LSI chips
 - PCB, 74 series
- VLSI design (ASIC)
 - Standard cells
 - Gate arrays
 - FPGA
- Embedded micro controllers, Real-time Operating systems
- General purpose processors
- Special purpose processors
- System on a chip (SoC)
- Hardware, Firmware and Software

Microprocessor Based

- More reliable
- Less expensive
- Easier to debug
- Easier to maintain
- Easier to upgrade
- Disadvantage:
 - Speed
 - Less flexible in terms of signals
 - More power consumption

Design Process

Hardware, Firmware and Software

Design Process Steps

- Define requirements
- Develop specifications
- Preliminary design
- Intermediate design
- Detailed design
- Implementation
- Verification and acceptance

Microprocessors

They accept programs

History

- 1940: vacuum tubes
 - ENIAC: 130000 watts, 150 square meter
- 1950: transistors
 - 1959: first IC
- 1971: 4004 by Intel
 - 4-bit, 2300 transistor
- 1970s: 8080/85, Z80, 6800, 6500
 - Appliances, computers
- 1980s: RISC
- 1990s: Embedded
- 2000s: Multi-cores

Intel's Microprocessors and Moore's law

From Intel Site

It all started 30 years ago, November 1971

- •Intel began development of the first microprocessor in 1969 as part of a project to design a set of chips for a family of programmable calculators from Japanese calculator manufacturer Busicom.
- •Originally, Busicom owned the rights to the microprocessor having paid Intel \$60,000. Realizing the potential for the "brain" chip, Intel offered to return the \$60,000 in exchange for the rights to the microprocessor design.
- •Busicom agreed and Intel introduced the 4004 to the worldwide market on November 15, 1971. The 4004 sold for \$200 each. The key to the success of the microprocessor idea was to provide a software programmable device. Prior to the invention of the programmable microprocessor, chips were designed to perform specific "fixed" functions.

Today's state-of-the-art Pentium® 4 Processor

- •The latest direct descendant of the 4004 is the Intel® Pentium® 4 processor for desktop personal computers.
- •Today's cutting edge Pentium 4 microprocessor operates at 2 billion cycles per second.
- •It took 28 years to go from a speed of 108,000 cycles per second performance in the 4004 brain chip to 1 billion cycles per second (1 gigahertz) with the Intel® Pentium® III processor and only 18 months to break the 2 gigahertz barrier with the August announcement of the latest Pentium 4 microprocessor.

Pentium 4 processor-based personal computers (at price points ranging from under \$1,000 to \$2,000) are fueling the latest trends in home computing - from digital music and home digital movie making to photo-realistic 3D images and visual environments delivered on and off the net in advanced games, education and shopping experiences.

Numbering and Coding Systems

- Decimal and binary systems
- Converting
- Hexadecimal and converting
- Counting and addition
- 2's complement and subtraction
- ASCII code, Unicode, utf-8
- Bit, Nibble, Byte, Word,

IDE bus South bridge North bridge

Video adaptor

PCI bus

ISA bus

DRAM

Video memory

Socket-7 for processor

Level-2 cache

8086/8 Internal Organization

How does a CPU work?

- Combinational or sequential?
 - − Hybrid → sequential
- Inputs to the state machine (sequential circuit)?
 - Clock
 - Program
- What it does with a program?
 - Reads from memory, where?
 - Program counter, Instruction pointer (IP)
 - Understands it (decode), then?
 - Execute, then?
 - Next instruction

A Simple Program

• Program:

- Move value 21H into register AL
- Add value 42H to register AL
- Store AL in memory location 33D0H

Memory contents (instruction part)

```
- 1500
- 1501
- 1502
- 1503
- 42
- 1504
- 35 (A2 in pentium)
- 1505
- D0
- 1506
- 33
```

• Execution?

Registers (Temporary Storage)

- One or two bytes (in 8088)
- 8-bit register:

• 16-bit register:

- Registers:
 - AX, BX, CX, DX
 - AH, AL, BH, BL, CH, CL, DH, DL

Registers by Category

Category	Bits	Register Names
General	16	AX, BX, CX, DX
	8	AH, AL, BH, BL, CH, CL, DH, DL
Pointer	16	SP (stack pointer), BP (base pointer)
Index	16	SI (source index), DI (destination index)
Segment	16	CS (code segment), DS (data segment), SS (stack segment), ES (extra segment)
Instruction	16	IP (instruction pointer)
Flag	16	FR (flag register)

Assembly Programming

- CPU works in binary
- All instructions, data are in binary
- Binary instructions (0, 1) are Machine Language
 - Or even hexadecimal representation
- Assembly language
 - Mnemonics
 - Low level
- Assembler
- Linker

Assembler versus Machine Code

```
ADD
      AX, BX
                    ;AX gets value AX+BX
SUB
      AX, BX
                    ;AX gets value AX-BX
                    ;AX gets bitwise AND of AX and BX
AND
      AX, BX
INC
                    ;AX gets its original value plus 1
      AX
DEC
    BX
                    ;BX gets its original value minus 1
MOV
      AX, BX
                   ;AX gets values in BX
                                                01 a19fe
                                    93ee:db1e
        ASSEMBLER
                                    93ee:db1f
                                               D8
                                                    a19ff
                                    93ee:db20 | 29 | a1a00
     01 D8
                      01 D8
                                    93ee:db21 | D8 |
                                                    a1a01
                                    93ee:db22
                                                21
                                                    a1a02
     29 D8
                      29 D8 LOADER
            LINKER
     21 D8
                      21 D8
                                  → 93ee:db23 | D8 |
                                                    a1a03
     40
                                    93ee:db24 | 40 |
                                                    a1a04
                      40
                                    93ee:db25 | 4B | a1a05
     4B
                      4B
                                    93ee:db26 | 8B |
                                                    a1a06
     8B C3
                      8B C3
                                                C3 la1a07
                                    93ee: db27
                                       logical
                                               physical physical
                                       address
                                               memory address
```

Summary

- Digital System Design
 - Microprocessor based
 - Hardware, software and firmware
- Microprocessors
- History
- Numbering systems
- Internal Organization
- Registers, segments
- Assembly language