

CONTROLE FUZZY TAKAGI-SUGENO DE UM PROCESSO DE QUATRO TANQUES VIA LMIS

Izabella Thaís Oliveira Gomes

Brasília, Maio de 2016

UNIVERSIDADE DE BRASILIA Faculdade de Tecnologia Curso de Graduação em Engenharia de Controle e Automação

TRABALHO DE GRADUAÇÃO

CONTROLE FUZZY TAKAGI-SUGENO DE UM PROCESSO DE QUATRO TANQUES VIA LMIS

Izabella Thaís Oliveira Gomes

Relatório submetido ao Departamento de Engenharia Elétrica como requisito parcial para obtenção do grau de Engenheiro de Controle e Automação.

Prof. Eduardo Stockler Tognetti, UnB/ ENE (Orientador)

Brasília, Dezembro de 2016

RESUMO

Este trabalho visa modelar, identificar, projetar e aplicar um sistema de controle fuzzy Takagi-Sugeno à uma planta industrial de quatro-tanques utilizando-se um Controlador Lógico Programável (CLP) Rockwell. Inicia-se o projeto partindo da revisão da modelagem do processo, segue-se então a identificação do sistema realizando-se outra modelagem matemática para as variáveis linguísticas fuzzy a serem incluídas no projeto. Propõe-se também um modelo para as regras de controle e para as faixas de operação para o sistema de inferência. Especifica-se em seguida os critérios de estabilidade e desempenho desejados e visa-se uma otimização destes critérios, se possível. Pretende-se realizar tal definição baseando-se nas normas H-infinito, H2 ou numa definição mista de ambas. A factibilidade do controle e sua otimização poderão ser desenvolvidas utilizando-se a teoria de Lyapunov aliada à flexibilidade da abordagem via desigualdades matriciais lineares (LMIs). Finaliza-se então com a aplicação do projeto desenvolvido no CLP, realização de testes na planta e coleta de dados dos resultados para validação do projeto.

Palavras Chave: fuzzy, Takagi-Sugeno, Controle, CLP, Lyapunov, LMI

SUMÁRIO

1 MODE	LAGEM DO PROCESSO DE QUATRO TANQUES	6
1.1	MODELAGEM FENOMENOLÓGICA	
1.2	MODELAGEM EM ESPAÇO DE ESTADOS	7
1.3	MODELAGEM FUZZY TAKAGI-SUGENO	8
1.3.1	Modelos fuzzy Takagi-Sugeno	8
	Aproximação por não-linearidade de setor	
1.3.2	Modelagem fuzzy Takagi-Sugeno	. 1
2 RESUL	_TADOS E ANÁLISE	.13
2.1	RESULTADOS DAS SIMULAÇÕES	. 13
2.1	ANÁLISE COMPARATIVA DOS MÉTODOS DE MODELAGEM	. 13
APÊNDI	CES	20

LISTA DE SÍMBOLOS

Símbolos Latinos

h_{i}	nível de líquido no tanque i	[cm]
a_i	área do tubo que flui para fora do tanque \emph{i}	[cm ²]
A_{i}	área da seção transversal do tanque i	[cm ²]
k_{i}	ganho da bomba i	
g	aceleração da gravidade	[m/s²]

Símbolos Gregos

 γ_i Taxa de líquido desviado para o tanque i

 V_i Tensão de entrada na bomba i (entrada manipulada) [V]

ho Massa específica da água

Grupos Adimensionais

Nu Número de NusseltRe Número de Reynolds

1 MODELAGEM DO PROCESSO DE QUATRO TANQUES

1.1 MODELAGEM FENOMENOLÓGICA

A modelagem fenomenológica do sistema, também chamada de modelagem caixa-branca, é baseada em um suposto conhecimento profundo do sistema e do modelo matemático que descreve cada fenômeno que ocorre para o devido funcionamento da planta.

O processo de quatro tanques é modelado com base na equação de Bernoulli para líquidos incompressíveis e nos princípios de conservação de massa, as quais são descritas nas equações (1) e (2), respectivamente.

$$\frac{\rho v_{wi}^{2}}{2} + \rho g h_{i} + P = constante \qquad (1)$$

$$\dot{V}_{i} = A_{i} \dot{h}_{i} = q_{in} - q_{out} \qquad (2)$$

Onde V_i é o volume de água no tanque i, q_{in} é o fluxo de entrada, q_{out} é o fluxo de saída, v_{w} é a velocidade de escoamento da água, P é a pressão e ρ massa específica da água. Assumindo a velocidade de escoamento v_{wi} na superfície da água é nula e que a altura h_i do nível de água no tanque i na parte inferior de cada tanque é zero, tem-se

$$\rho g h_i + P = constante$$
 (3)

$$\frac{\rho v_w^2}{2} + P = constante \quad (4)$$

Igualando as equações (3) e (4), obtém-se a velocidade de escoamento da água.

$$v_{wi} = \sqrt{2gh_i} \qquad (5)$$

O fluxo de saída do tanque é definido como o produto da velocidade de escoamento da água pela área da seção transversal da saída do tanque. Já o fluxo de entrada se relaciona diretamente com o ganho de cada bomba e as tensões de entrada aplicadas [1]. Portanto as equações que regem o funcionamento do sistema são apresentadas as seguir, onde \vec{h}_i é a variação da altura do tanque i, h_i é a altura do tanque i e v_j é a tensão de entrada na bomba i em um determinado instante de tempo, i = 1, 2, 3, 4 e j = 1, 2.

$$\dot{h}_{1} = -\frac{a_{1}}{A_{1}} \sqrt{2gh_{1}} + \frac{a_{3}}{A_{1}} \sqrt{2gh_{3}} + \frac{\gamma_{1}}{A_{1}} k_{1} v_{1}$$
 (6)

$$\dot{h}_2 = -\frac{a_2}{A_2} \sqrt{2gh_2} + \frac{a_4}{A_2} \sqrt{2gh_4} + \frac{\gamma_2}{A_2} k_2 v_2 \tag{7}$$

$$\dot{h}_3 = -\frac{a_3}{A_3} \sqrt{2gh_3} + \frac{(1-\gamma_2)}{A_3} k_2 \nu_2 \tag{8}$$

$$\dot{h_4} = -\frac{a_4}{A_4} \sqrt{2gh_4} + \frac{(1-\gamma_1)}{A_4} k_1 \nu_1 \tag{9}$$

1.2 MODELAGEM EM ESPAÇO DE ESTADOS

A modelagem fenomenológica permitiu a obtenção de equações não-lineares. Assim, para a modelagem do sistema em espaço de estados é preciso linearizar equações (1) a (4) que o descrevem. Para tanto, deve assumir h_i como as variáveis de estado e v_j como as entradas do sistema.

O que torna o sistema não-linear é a existência dos termos $\sqrt{h_i}$. O método de linearização aqui adotado garante apenas a correspondência com o sistema não-linear em torno de um ponto de operação pré-estabelecido, o qual é dado por $\bar{h_i}$ e $\bar{v_j}$ e que corresponde às alturas de cada tanque em regime permanente e às tensões de entrada das duas bombas, além disso, sabe-se que a derivadas das alturas em regime permanente é igual a zero. Portanto, em estado estacionário, tem-se

$$h_{i}(0) = \left[\bar{h}_{1} \bar{h}_{2} \bar{h}_{3} \bar{h}_{4} \right] \quad (10)$$

$$v_{j}(0) = \left[\bar{v}_{1} \bar{v}_{2} \right] \quad (11)$$

$$\dot{h}_{i}(0) = 0 \quad (12)$$

Assim, utilizando aproximação da série de Taylor de primeira ordem para os termos não lineares em torno do ponto de operação, obtém-se o seguinte jacobiano

$$\dot{h}_{i} = \dot{h}_{i}(\bar{h}_{1}, \bar{h}_{2}, \bar{h}_{3}, \bar{h}_{4}, \bar{v}_{1}, \bar{v}_{2}) + \sum_{k=1}^{4} \frac{\partial h_{i}}{\partial h_{k}} (h_{k} - \bar{h}_{k}) + \sum_{j=1}^{2} \frac{\partial h_{i}}{\partial v_{j}} (v_{j} - \bar{v}_{j})$$
(13)

Assumindo que $\Delta h_k = h_k - h_k$ e $\Delta v_j = v_j - v_j$, e a partir dos resultados obtidos da equação (8) obtém-se o sistema em espaço de estados conforme segue.

$$\begin{bmatrix} \dot{\Delta} \dot{h}_{1} \\ \dot{\Delta} \dot{h}_{2} \\ \dot{\Delta} \dot{h}_{3} \\ \dot{\Delta} \dot{h}_{4} \end{bmatrix} = \begin{bmatrix} -\frac{a_{1}\sqrt{2g}}{2A_{1}\sqrt{h_{1}}} & 0 & \frac{a_{3}\sqrt{2g}}{2A_{1}\sqrt{h_{3}}} & 0 \\ 0 & -\frac{a_{2}\sqrt{2g}}{2A_{2}\sqrt{h_{2}}} & 0 & \frac{a_{4}\sqrt{2g}}{2A_{2}\sqrt{h_{4}}} \\ 0 & 0 & -\frac{a_{3}\sqrt{2g}}{2A_{3}\sqrt{h_{3}}} & 0 \\ 0 & 0 & 0 & -\frac{a_{4}\sqrt{2g}}{2A_{4}\sqrt{h_{4}}} \end{bmatrix} \begin{bmatrix} \Delta h_{1} \\ \Delta h_{2} \\ \Delta h_{3} \\ \Delta h_{4} \end{bmatrix} + \begin{bmatrix} \frac{\gamma_{1}k_{1}}{A_{1}} & 0 \\ 0 & \frac{\gamma_{2}k_{2}}{A_{2}} \\ 0 & \frac{(1-\gamma_{2})k_{2}}{A_{3}} \\ \frac{(1-\gamma_{1})k_{1}}{A_{4}} & 0 \end{bmatrix} \begin{bmatrix} \Delta v_{1} \\ \Delta v_{2} \end{bmatrix}$$

$$(14)$$

1.3 MODELAGEM FUZZY TAKAGI-SUGENO

1.3.1 Modelos fuzzy Takagi-Sugeno

Lógica fuzzy [2], ou lógica nebulosa, é um conceito que surgiu com uma forma de processar dados permitindo a associação de conjuntos parciais, ou seja, de conjuntos que têm uma determinada faixa de probabilidade de aderir à um conceito esperado. Devido ao alto custo computacional exigido, apenas a partir da década de 1970 foi possível utilizar esta técnica em sistemas de controle. Lógica fuzzy não exige informações numéricas altamente precisas e provê sistemas de controle altamente adaptativos.

Com o grande crescimento de aplicações de lógica *fuzzy* em sistemas de controle, devido ao grande sucesso na aplicação em diferentes tipos de sistemas não lineares, surgiram diversos modelos que auxiliam em pesquisas e resoluções desse tipo problema. O modelo *fuzzy Takagi-Sugeno* [3] é descrito por regras do tipo Se-Então, que consistem em representações lineares de entrada e saída locais de um sistema não-linear. Desta forma,

Regra Modelo *i*:

SE
$$z_i(t) \notin M_{i1} e ... e z_p(t) \notin M_{ip}$$
,
 $ENT\tilde{A}O$ $x(t) = A_i x(t) + B_i u(t), i = 1,..., r$

Onde M_{ij} é o conjunto fuzzy, também chamado de grau de pertinência, r é o número de regras no modelo, que equivale ao número de termos não-lineares elevado ao quadrado; x(t) é o vetor de estados, u(t) é o vetor de entradas e A_i e B_i são os vértices do sistema.

Desta forma, o modelo fuzzy Takagi-Sugeno expressa uma dinâmica local para cada regra fuzzy modelada por um sistema linear. O resultado final da modelagem consiste na aplicação de cada uma destas regras. Modelagens feitas utilizando o método Takagi-Sugeno são, comprovadamente, aproximações universais. Sendo assim, é possível aplicá-la em inúmeros sistemas dinâmicos não lineares.

A modelagem em questão é dada a partir do modelo não-linear do sistema, do qual identificase as matrizes A e B de forma que o sistema se apresente conforme a equação (15).

$$\dot{x}(t) = A(x(t))x(t) + B(x(t))u(t)$$
 (15)

Observando as matrizes A e B é possível identificar as não linearidades presentes no sistema, as quais serão representadas aqui por $z_i(\mathbf{x}(t))$, onde i=1,...,n, sendo n o número de não linearidades presentes no sistema. Essas não-linearidades são chamadas de variáveis premissas e são, em sua maioria, funções das variáveis de estado, porém, para fins de simplificação, $z_i(\mathbf{x}(t))$ será denotado como z_i .

Sabendo quantas variáveis premissas diferentes o sistema possui, obtém-se o valor de r, portanto, o modelo possuirá r regras. Além disso, dado um par de entrada x(t) e saída u(t), o sistema fuzzy terá a seguinte configuração.

$$\dot{x} = \sum_{i=1}^{r} \mu_i(z(t)) \left\{ A_i x(t) + B_i u(t) \right\}$$
 (16)

Na equação (16), z(t) equivale ao vetor que contém todas das variáveis de premissa do sistema e $\mu_i(z(t))$ são as funções de pertinência do sistema, que são obtidas a partir dos graus de pertinência $M_{i1}(z_i(t))$ e $M_{i2}(z_i(t))$ do sistema relacionados a cada não-linearidade do sistema. A equação (17) apresentam relação matemática entre as funções de pertinência e os graus de pertinência. Para simplificar a notação, $\mu_i(z(t))$ será denotado como μ_i e $M_{ii}(z_i(t))$ como M_{ii} , j = 1, 2.

$$\mu_k = \prod_{i_1}^2 ... \prod_{i_n}^2 \left(M_{ii_1} ... M_{ni_n} \right)$$
 (17)

Lembrando que n é o número de não-linearidades do sistema. O somatório de todas as funções de pertinência do sistema deve ser igual a um, oi seja, $\sum_{k=1}^r \mu_k = 1$ e cada uma dessas

funções de pertinência devem apresentar valores numéricos positivos. De forma semelhante, os graus de pertinência também devem ser positivos e a faixa de valores que pode assumir está restrita no intervalo [0, 1]. Por fim, para cada par de graus de pertinência M_{ij} , j = 1, 2, a soma desses dois valores deve ser igual a um.

As estratégias utilizadas para obter a modelagem fuzzy Takagi-Sugeno de um sistema nãolinear são diversas. Porém, neste trabalho será utilizar-se-á aproximação por não-linearidade de setor, descrita na seção seguinte.

1.3.1.1 Aproximação por não-linearidade de setor

Considerando um sistema não-linear que produz resposta nula quando as variáveis de estado estão zeradas, ou seja, $\dot{x}(t)=f(x(t))$ e f(0)=0, a aproximação por não-linearidade de setor - do inglês sector nonlinearity approach [3] - visa encontrar um setor global dentro do qual o sistema esteja contido. Na Figura 1.1 é possível visualizar graficamente esta aproximação. Portanto, $\dot{x}(t)=f(x(t))\in [a_1\,a_2]\,x(t)$. É possível notar que todo o sistema é mapeado dentro deste setor global, portanto esta abordagem garante a construção de um modelo fuzzy exato.

Figura 1.1: Não-linearidade limitada por setor global [3]

Devido ao fato de os sistemas, em sua grande maioria, serem limitados fisicamente no que se refere às variáveis de entrada e saída, nem sempre é possível obter um setor global para o sistema não-linear em estudo. Desta forma, a aproximação passa a consistir em encontrar um setor local que descreva o sistema, respeitando as limitações impostas por este. O modelo fuzzy exato resultante da modelagem agora estará contido no setor local limitado por duas retas que passam pelos pontos —d e d, os quais estão diretamente relacionados com as restrições físicas do sistema. A Figura 1.2 permite visualizar graficamente a aproximação por setor local e também ilustra a não garantia de que a função esteja contida dentro do setor em regiões fora do intervalor [-d, d].

Figura 1.2: Não-linearidade limitada por setor local [3]

Conhecendo os limites do sistema não-linear e as equações matemáticas que o descreve, é possível encontrar a aproximação deste limitada a um setor local seguindo uma sequência de passos.

A princípio define-se os valores máximo e mínimo que cada uma das variáveis de premissa do modelo. O termo z_i , equivalerá ao valor mínimo que a variável de premissa z_i pode

assumir, das as restrições do sistema. Da mesma forma, z_i é o valor máximo assumido por

 z_i respeitando-se também os limites das variáveis de estado. A partir de então é possível obter os graus de pertinência M_{ij} , j = 1, 2, para cada não-linearidade, conforme mostram as equações (18) e (19).

$$M_{i1} = \frac{z_i - z_i}{z_i - z_i} \in [0,1] \quad (18)$$

$$M_{i2} = 1 - M_{i1} = \frac{z_i - z_i}{z_i - z_i} \in [0,1] \quad (19)$$

As funções de pertinência são calculadas conforme a equação (17). Para obter os vértices A_i e B_i para cada regra da modelagem, fazer as n elevado a dois combinações possíveis dos de z_i e z_i , de forma que cada combinação deva ser aplicada às matrizes A e B do modelo não-linear fornecendo, então, cada um dos vértices do modelo. Por fim, faz-se a defuzificação do sistema, confirme a equação (16).

1.3.2 Modelagem fuzzy Takagi-Sugeno

O modelo não-linear obtido na seção 1.1 descrito nas equações (6) a (9) pode ser reescrito conforme segue.

$$\begin{bmatrix} \dot{h}_{1} \\ \dot{h}_{2} \\ \dot{h}_{3} \\ \dot{h}_{4} \end{bmatrix} = \begin{bmatrix} -\frac{a_{1}}{A_{1}} \frac{\sqrt{2gh_{1}}}{h_{1}} & 0 & \frac{a_{3}}{A_{1}} \frac{\sqrt{2gh_{3}}}{h_{3}} & 0 \\ 0 & -\frac{a_{2}}{A_{2}} \frac{\sqrt{2gh_{2}}}{h_{2}} & 0 & \frac{a_{4}}{A_{2}} \frac{\sqrt{2gh_{4}}}{h_{4}} \\ 0 & 0 & -\frac{a_{3}}{A_{3}} \frac{\sqrt{2gh_{3}}}{h_{3}} & 0 \\ 0 & 0 & 0 & -\frac{a_{4}}{A_{4}} \frac{\sqrt{2gh_{4}}}{h_{4}} \end{bmatrix} \begin{bmatrix} h_{1} \\ h_{2} \\ h_{3} \\ h_{4} \end{bmatrix} + \begin{bmatrix} \frac{\gamma_{1}}{A_{1}} k_{1} & 0 \\ 0 & \frac{\gamma_{2}}{A_{2}} k_{2} \\ 0 & \frac{(1-\gamma_{2})}{A_{3}} k_{2} \\ \frac{(1-\gamma_{1})}{A_{4}} k_{1} & 0 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}$$
 (20)

Assim, é possível notar que o sistema possui quatro termos não lineares, o quais são mostrados na equação (21).

$$z_i = \frac{\sqrt{h_i}}{h_i}, \qquad i = 1, 2, 3, 4$$
 (21)

Deseja-se controlar a altura de cada tanque no intervalo [0, 23cm], onde 0 (zero) equivale ao tanque totalmente vazio. Como no ponto zero ocorre uma indeterminação que impossibilita os cálculos dos limitantes do processo, assume-se que a altura mínima para validação da

modelagem é de 0,01 cm para cada um dos tanques. Portanto, $z_i = \min(z_i) = \frac{\sqrt{23}}{23} = 0,2085$

e
$$\bar{z}_i = \max(z_i) = \frac{\sqrt{0,1}}{0,1} = 3,1623$$
.

Os graus de pertinência são
$$M_{i1} = \frac{z_i - 0,2085}{2,9538}$$
 e $M_{i1} = \frac{3,1623 - z_i}{2,9538}$, i = 1,2,3,4. Como o

sistema possui quatro não linearidades, o número de funções de pertinência será $2^4 = 16$. As dezesseis funções são obtidas conforme a equação (17). Os vértices são obtidos segundo a aplicação de todas as combinações possíveis dos valores de máximo e de mínimo assumidos pelas variáveis de premissa nas matrizes A e B do sistema não-linear mostrado em (20), de acordo com a Tabela 1.

Tabela 1.1 Valores que substituem as variáveis de premissa nas matrizes A e B do sistema não-linear para cada vértice.

	z_1	z_2	Z_3	Z_4
$a_1 \mathbf{e} b_1$	<i>Z</i> ₁ –	Z ₂	<i>Z</i> ₃	<i>z</i> ₄
a_2 e b_2	<i>Z</i> ₁	<i>z</i> ₂	<i>Z</i> ₃	- Z ₄
a_3 e b_3	<i>Z</i> ₁	<i>z</i> ₂	- Z ₃	<i>z</i> ₄
a_4 e b_4	<i>Z</i> ₁	<i>z</i> ₂	- Z ₃	- Z ₄
a_5 e b_5	<i>z</i> ₁ –	\overline{z}_2	<i>Z</i> ₃	<i>z</i> ₄ –
a_6 e b_6	<i>z</i> ₁ –	\overline{z}_2	Z ₃	- Z ₄
a_7 e b_7	Z₁ -	\overline{z}_2	\overline{z}_3	<i>Z</i> ₄
a_8 e b_8	<i>Z</i> ₁ –	\overline{z}_2	\overline{z}_3	- Z ₄
a_9 e b_9	\overline{z}_1	Z ₂	Z ₃	<i>z</i> ₄
a_{10} e b_{10}	$ z_1$	Z ₂	Z ₃ -	- Z ₄
a_{11} e b_{11}	$ z_1$	Z ₂	$ z_3$	<i>z</i> ₄
a_{12} e b_{12}	$ z_1$	<i>z</i> ₂	\overline{z}_3	- Z ₄
a_{13} e b_{13}	$ z_1$	\overline{z}_2	Z ₃	<i>z</i> ₄
$a_{_{14}}$ e $b_{_{14}}$	$ z_1$	\overline{z}_2	<i>Z</i> ₃	- Z ₄
a_{15} e b_{15}	- Z ₁	\overline{z}_2	$ Z_3$	Z ₄
a_{16} e b_{16}	- Z ₁	z_2	- Z ₃	z_4

Devido à complexidade do cálculos, o sistema foi calculado utilizando-se o software MATLAB® e os scripts utilizados podem ser consultados no Apêndice A.

2 RESULTADOS E ANÁLISE

2.1 RESULTADOS DAS SIMULAÇÕES

O sistema foi simulado no MATLAB® para as três modelagens feitas. A Figura 1.3 apresenta o resultado da simulação dos modelos não-linear, em espaço de estados e fuzzy Takagi-Sugeno em um intervalo de tempo de 1000 segundos. A configuração em espaço de estados foi modelada em torno do ponto $h_i(0) = [8.9, 9.97, 8.65, 9.67]$ e $v_i(0) = [00]$.

Figura 1.3: Resultado da simulação dos modelos não-linear, espaço de estados e fuzzy Takagi-Sugeno do processo de quatro tanques

Na figura 1.3 as curvas referentes à modelagem não-linear são representadas por linhas contínuas, as da modelagem em espaço de estados por linhas tracejadas e a modelagem fuzzy Takagi-Sugeno por linhas pontilhadas. Além disso, o nível h_1 do tanque 1 é representado em azul escuro, o nível h_2 do tanque 2 em verde, o nível h_3 do tanque 3 em vermelho e o nível h_4 do tanque 4 em azul claro.

2.1 ANÁLISE COMPARATIVA DOS MÉTODOS DE MODELAGEM

A partir da Figura 1.3 é possível verificar que a modelagem em espaço de estados é limitada a um único ponto de operação e não condiz com o modelo não-linearizado quando há uma mínima variação. Por outro lado, a modelagem fuzzy Takagi-Sugeno seguiu o modelo não-linear em todos os pontos.

Assim, foi possível verificar que o modelo fuzzy Takagi-Sugeno, de fato, fornece uma representação exata do modelo não-linear do processo.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Macêdo, Arthur Medeiros. Wiira, Mayara Cristina de Faria. Estudo de técnicas de controle aplicadas a uma bancada didática de quatro tanques. Disponível em: < http://www.ene.unb.br/estognetti/files/TG-TCC-ArthurMayara.pdf >. Acessado em 19/10/206.
- [2] Kaehler, Steven D. Fuzzy Logic An Introduction. Disponível em: < http://www.seattlerobotics.org/encoder/mar98/fuz/fl_part1.html#INTRODUCTION >. Acesso em 13/12/2016.
- [3] Tanaka, K. and Wang, H. (2001). Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley & Sons, New York, NY.
- [4] Roinila, Tomi. Vilkko, Mitto. Jaatinen, Antti. (2008). Corrected Mathematical Model of Quadruple Tank Process. Seoul, Korea.