

Explainable machine learning

From scalars to vectors

Kristoffer Knutsen Wickstrøm *UiT Machine Learning Group and Visual Intelligence*

Schedule

- First lecture Introduction to explainable artificial intelligence (XAI)
 - Why do we need explainability?
 - How do we get explainability?
 - Challenges in XAI
- Second lecture XAI in representation learning
 - How to explain vectorial representations of data?
 - Why are standard XAI techniques not suitable.
 - Representation learning explainability with RELAX

What is explainability?

A tool for answering the question "why?"¹

What is explainability?

A tool for answering the question "why?"¹

What is explainability?

A tool for answering the question "why?"¹

S. Lapuschkin et.al., 2019¹

C. Vondrick et.al., 2013²

¹S. Lapuschkin, et al., "Unmasking Clever Hans predictors and assessing what machines really learn". Nature Communications, 2019. ²C. Vondrick, et al., "HOGgles: Visualizing Object Detection Features". ICCV, 2013

Why do we need explainability?

- Do we need it?
- Many motivating factors¹:
 - Trust
 - Causality
 - Informativeness
 - Fair and ethical decision making

Yann LeCun @ylecun · 5 Feb 2020

We often hear that AI systems must provide explanations and establish causal relationships, particularly for life-critical applications.

Yes, that can be useful. Or at least reassuring....

1/n

Yann LeCun @ylecun · 5 Feb 2020

A good example is how a wing causes lift. The computational fluid dynamics model, based on Navier-Stokes equations, works just fine. But there is no completely-accurate intuitive "explanation" of why airplanes fly. 3/n

Why do we need explainability?

- Many motivating factors:
 - Trust
 - Causality
 - Informativeness
 - Fair and ethical decision making

S. Gautam et.al., 2022²

The Economist, 2022

¹Z. Lipton, "The Mythos of model intepretability". ICML Workshop, 2016.

Why do we <u>not</u> have explainability?

- Deep learning is the dominant force in contemporary machine learning.
 - Black box models.
- A known issue, but has become more pressing with recent success¹
- Not limited to deep learning²

How do we get explainability?

- A vast number of competing methods!
- No clearly superior method
 - More on that later

Method		Abbrv.	Method		Abbrv.
Anchors	[148]	ANCH	Layer-wise Relevance Propagation (full)	[13]	LRP
ApproShapley (Shapley Value Sampling)	[29]	AS	LRP (composite strategy)	[103], [126]	LRP-CN
Class Activation Mapping	[206]	CAM	LRP (specific variants)	[13], [126]	LRP-*
Contextual Prediction Difference Analysis	[56]	CPDA	Local Interpretable Model-agnostic Explanations	[147]	LIME
DeconvNet	[201]	DCN	Meaningful Perturbation	[47]	MP
DeepLIFT	[170]	DL	NeuronConductance	[36]	NC
DeepLIFT (Rescale)	[170]	DLR	NeuronGuidedBackprop	[178]	NGB
DeepLIFT SHAP	[116]	DLSHAP	NeuronIntegratedGradients	[172]	NIG
Deep Taylor Decomposition	[127]	DTD	Occlusion Analysis	[201]	OCC
ExcitationBackprop	[202]	EB	PatternAttribution	[90]	PA
ExtremalPerturbation	[46]	EP	PatternNet	[90]	PN
GNNExplainer	[198]	GNNEXP	Prediction Difference Analysis	[208]	PDA
GNN-LRP	[162]	GLRP	Randomized Input Sampling for Explanation	[142]	RISE
GradCAM	[167]	GC	Saliency Analysis / Gradient	[14], [174]	SA
Gradient SHAP	[116]	GSHAP	SHapley Additive exPlanations	[116]	SHAP
Gradient × Input	[170]	GI	SHAP Interaction Index	[115]	SHAPII
GuidedBackprop	[178]	GB	SmoothGrad	[176]	SG
Guided GradCam	[167]	GGC	SmoothGrad ²	[76]	SG-SQ
Integrated Gradients	[183]	IG	Spectral Relevance Analysis	[104]	SpRAy
Internal Influence	[110]	II	TreeExplainer	[115]	TEXP
Kernel SHAP	[116]	KSHAP	VarGrad	[1]	VG
LayerConductance	[172]	LC	Testing with Concept Activation Vectors	[89]	TCAV
Local Rule-based Explanations	[58]	LORE	TotalConductance	[36]	TC

W. Samek et.al., 20211

Important distinctions in XAI

- Local versus global explanations
 - Explain prediction versus explain model

- With or without access to inner-workings of model
- Explainable versus non-explainable methods
 - Inherently explainable models:
 - · Linear models and decision tress.
 - The Occam dilemma¹

K. Bykov, 2022¹

 Accuracy generally requires more complex prediction methods. Simple and interpretable functions do not make the most accurate predictors.

L. Breiman, 2001²

A taxonomy of XAI methods

Propagation-based explainability

- One way to think about explainability:
 - How does a change in the input affect the prediction for a class?
 - Just the gradient!: $\frac{dy_c}{dx} = g$
- Local and model-aware
- Simple, fast, and intuitive
- Numerous variants

Limitations of propagation-based methods

- Nosiy due to gradient shattering¹
- Can sometimes feel "unintuitive"

Fig. 3. Two difficulties encountered when explaining DNNs. Left: shattered gradient effect causing gradients to be highly varying and too noisy to be used for explanation. Right: pathological minima in the function, making it difficult to search for meaningful reference points.

Permutation-based explainability

- Perturb the input and measure change in prediction score
- Local and model agnostic

Figure 1. An example of a mask learned (right) by blurring an image (middle) to suppress the softmax probability of its target class (left: original image; softmax scores above images).

R. Fong et.al., 2017

Limitations of perturbation-based methods

- Requires optimizing or sampling per sample:
 - Can be slow
- How to replace input parts is non-trivial

R. Fong et.al., 2017

Surrogate-based explainability

- Train a simple interpretable model to explain the black box model
- Very versatile!

The recipe for training local surrogate models:

- Select your instance of interest for which you want to have an explanation of its black box prediction.
- · Perturb your dataset and get the black box predictions for these new points.
- Weight the new samples according to their proximity to the instance of interest.
- · Train a weighted, interpretable model on the dataset with the variations.
- Explain the prediction by interpreting the local model.

C. Molnar¹

Limitations of surrogate-based explainablity

- Need to train the simple classifier:
 - Can give different explanation for same sample due to optimization or the Rashomon effect¹
- Lacks robustness²

Challenges for contemporary XAI

- Numerous recent advances in XAI
- However, many challenges on the horizon:
 - Disagreement among methods or what makes a "good explanation?"
 - How to go beyond explaining "just" scalar predictions
 - How to model uncertainty in explanations?
 - How to explain highly complex input data?

Challenges for contemporary XAI

- Numerous recent advances in XAI
- However, many challenges on the horizon:
 - Disagreement among methods or what makes a "good explanation?"
 - How to go beyond explaining "just" scalar predictions.
 - How to model uncertainty in explanations?
 - How to explain highly complex input data?

What makes a good explanation?

What is the best explanation in the following example?

J. Macdonald et.al., 2019¹

What makes a good explanation?

- XAI lacks ground truth explanation for verification
- A result of the challenge of unverifiability¹
- Also known as the disagreement problem²
- Two directions to tackle this challenge:
 - Quantitative analysis
 - Self-explainable models

Route 1: quantitative analysis

- Define desirable properties for the explanation to fulfil
- Quantus: recent toolbox for quantitative analysis¹
- Quantitative analysis categories:
 - Localization
 - Faithfulness
 - Robustness
 - Complexity
- Faithfulness example ->

Route 2: Self-explainable models

- Do not explain the model, build explainability into the model¹
- ProtoPnet²:
 - Add prototypes to network
 - Prototypes are related to concepts
- Drawback:
 - Additional complexity
 - Can hurt performance

S. Gautam et.al., 20223

¹C. Rudin, "Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead". Nature Machine Intelligence, 2019

²C. Chen et al., "This Looks Like That: Deep Learning for Interpretable Image Recognition". NeurIPS, 2019

³S. Gautam et al., "This looks more like that: Enhancing Self-Explaining Models by Prototypical Relevance Propagation". Pattern Recognition, 2022.

Break before next seminar

- In next seminar:
 - XAI in representation learning
 - How to explain representations?