Weak and strong deality (Ref: See. 8.2.2)

Let $d^* = Supg(\lambda, V) = Sup inf L(X, \lambda, V)$ $\int_{\lambda, Y}^{*} \lambda_{,Y} \times X$ $p^* = inf Sup L(X, \lambda, Y)$ $\chi \lambda_{,Y}$

weak duality: d* < p*

Strong duality: d* = p* , duality gap = 0 [dt - p*]

Condition for strong duality

Stris holds only for some siduations

· States condition (ket: 8.2.3)

Sp(X) LO + 121(1)m then strong duality holds

X* 2) Primal optimal point

(A*, 7) 2) is the dual optimal point.

KKT Conditions

 $f_i(x) \le 0 + i_{21(1)} m$ $h(x) \ge 0 + i_{21(1)} p$ $f_i(x) \ge 0 + i_{21(1)} m$

$$\Delta_{i}^{+} f_{i}^{+} (x_{i}) = 0 + \sum_{j=1}^{m} y_{j}^{*} \Delta_{j}^{+} (x_{i}) + \sum_{j=1}^{m} y_{j}^{*} \Delta_{j}^{+} (x_{i}) = 0$$

Under strong duality

$$f_{6}(x^{*}) = g(x^{*}, v^{*})$$

 $\Rightarrow f_{6}(x^{*}) = \inf_{x} (f_{6}(x) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{m} v_{i}^{*} h_{i}(x))$

$$f_o(x^*) \leq f_o(x^*) + \left[\sum_{i=1}^{M} \lambda_i^* f_i(x^*) + \sum_{i=1}^{N+} \lambda_i^* h_i(x^*)\right]$$

$$f_{\circ}(x^{+}) \leq f_{\circ}(x^{+})$$

since each term non positive

This condition is known as complimentary stackness (ref. 5.2.2)

Supposting hyporplane Interpretation of KKT condition

nunimise
$$f_0(x)$$

Sobject to $f_1(x) \le 0$, $i \ge 1(1)$ m

Let, so is convex, f: f: I = I(I)m are convex let $x^* \in \mathbb{R}^n$, $x^* \in \mathbb{R}^m$ satisfy ket condition

Then show that Ofo(xx) T(x-x*) > 0 + Forsible x.

X ke a feasible solution

$$f:(x) \leq 0$$

(Sine reason for the above (See chapter sand4))

(from the above condition (1)

$$R.H.S = \sum_{i} \lambda_{i}^{*} f_{i}(x^{*}) + \sum_{i} \nabla_{i} \nabla_{i} (x^{*}) (x - x^{*})$$

Since,
$$S^{-th}$$
 Condition of KKT is
$$\nabla f_{o}(x^{+}) + \sum_{i \ge 1}^{m} \lambda^{i +} f_{i}(x^{+}) = 0$$

$$\Rightarrow \sum_{i \ge 1}^{m} \lambda^{i +} f_{i}(x^{+}) = -\nabla f_{o}(X^{+})$$

$$\Rightarrow \sum_{i=1}^{m} \lambda^{*} \int_{f_{i}} (x^{*})(x - X^{*}) \geq -\nabla f_{o}(x^{*})^{T}(x - x^{*})$$