

BUM – 09 Zkouška tahem

Autor cvičení: Ing. Josef Zapletal, Ph.D., Ing. Libor Válka, CSc., ÚMVI FSI VUT v Brně

NEZBYTNÉ ZNALOSTI

Chování pevného tělesa za působení vnějších sil. Pružnost, pevnost, plasticita, houževnatost, napětí smluvní a skutečné, deformace poměrná a skutečná, poissonovo číslo, smykové a normálové napětí, Hookeův zákon, modul pružnosti,

Elastická a plastická deformace, jejich mechanismy. Skluz dislokací. Princip zkoušky tahem. Poměrné zkušební těleso. Napěťové a deformační charakteristiky. Smluvní tahový diagram, skutečný tahový diagram. Tahová houževnatost. Mechanismy zpevnění polykrystalu.

🖎 Úkoly k řešení 🗷

- O jaký druh zkoušky se jedná u zkoušky tahem vzhledem k podmínkám zatěžování? Nakreslete schematicky zkušební zařízení. Napište vztahy pro výpočet smluvního napětí a poměrné deformace.
- 2. Vysvětlete, jaký smysl má součinitel proporcionality u zkušebních těles obecného průřezu a s odvozením pro válcové zk. tyče.
- 3. Zakreslete a definujte do přiložených tahových diagramů oblasti s rozdílnými mechanismy elasticko-plastické deformace. Vysvětlete podstatu výskytu výrazné meze kluzu a u jakých konstrukčních materiálů může vzniknout.
- 4. Definujte pomocí materiálových konstant elastickou oblast tahového diagramu. Na základě výpočtu Poissonovy konstanty μ a modulu pružnosti v tahu E určete typ testovaného materiálu. Hodnoty zjištěné v elastické oblasti tahového diagramu:
 - $D_0 = 6 \text{ mm}, L_0 = 50 \text{ mm}, F = 6 \text{ kN}, \Delta L = 0.2653 \text{ mm}, \Delta D = -0.01051 \text{ mm}.$
- 5. Vysvětlete pojem "mez plastické nestability", popište děje probíhající v oblasti před a za mezí plastické nestability. Na základě zákona zachování objemu určete změnu průměru zkušební tyče když: D0 = 10 mm, L0 = 50 mm, ΔL = 28,16 mm.
- 6. Určete složky celkové deformace, když víte, že: E = 70 GPa, $\sigma = 700$ MPa, $\varepsilon_t = 20\%$.
- 7. Vyhodnocením přiložených záznamů tahových zkoušek stanovte hodnoty základních napěťových a deformačních charakteristik zkoumaných materiálů; výsledky doplňte do tabulky.

□ Literatura □

- 1. Ptáček, L. a kol.: Nauka o materiálu I, CERM, 2001, str. 432 445.
- 2. Veles, P.: Mechanické vlastnosti a skúšanie kovov, 1. vyd. Bratislava: Alfa, 1985.
- 3. Pluhař, J. a kol.: Fyzikální metalurgie a mezní stavy materiálů, STNL / Alfa, 1987.
- 4. Smallman, R. A.: Moderní nauka o kovech, STNL, 1964.
- 5. Vlach, B.: Mezní stavy materiálů (6MS), Podklady ke studiu, dostupné z: http://ime.fme.vutbr.cz
- 6. ČSN EN ISO 6892-1 Kovové materiály Zkouška tahem Zkušební metoda za pokojové teploty.
- 7. DIN 50125 Testing of metallic materials Tensile test pieces, 2009.

3. Zakreslete a definujte do tahových diagramů oblasti s rozdílnými mechanismy elasticko-plastické deformace. Vysvětlete podstatu výskytu výrazné meze kluzu a u jakých konstrukčních materiálů může vzniknout.

Oblast 1:

Oblast 2:

Oblast 3:

Oblast L:

	Definujte pomocí materiálových konstant elastickou oblast tahového diagramu. Na základě výpočtu Poissonovy konstanty μ a modulu pružnosti v tahu E určete typ testovaného materiálu. Hodnoty zjištěné v elastické oblasti tahového diagramu:
	$D_0 = 6 \text{ mm}, L_0 = 50 \text{ mm}, F = 6 \text{ kN}, \ \Delta L = 0.2653 \text{ mm}, \Delta D = -0.01051 \text{ mm}.$
5.	Vysvětlete pojem "mez plastické nestability", popište děje probíhající v oblasti před a za mezí plastické nestability. Na základě zákona zachování objemu určete změnu průměru zkušební tyče když: $D_0=10$ mm, $L_0=50$ mm, $\Delta L=28,16$ mm.
6.	Určete složky (elastickou a plastickou deformaci) celkové deformace, když víte, že:

 $E = 70 \text{ GPa}, \ \sigma = 700 \text{ MPa}, \ \varepsilon_{t} = 20\%.$

7. Vyhodnocením záznamů tahových zkoušek stanovte hodnoty základních napěťových a deformačních charakteristik zkoumaných materiálů; výsledky doplňte do tabulky.

						<u> </u>				
	d_0	d_{u}	L_0	Lu	E	$R_{ m eH}$	$R_{ m eL}$	$R_{p0.2}$	$F_{ m m}$	R_{m}
Materiál	mm	mm	mm	mm	GPa	MPa	MPa	MPa	N	MPa
Ocel	9,94	4,4	50		210					
Slitina Al	9,92	9,24	50		74					
Slitina Mg	5,93	4,83	30		42					

	R_{B}	A_{g}	A	Z
Materiál	MPa	%	%	%
Ocel				
Slitina Al				
Slitina Mg				

Vz. 1: Tahová křivka a detail nespojitosti u nízkouhlíkové oceli

Vz. 2: Tahová křivka hliníkové slitiny AlCu4Mg (EN AW-2024 T351)

Vz. 3: Tahová křivka hořčíkové slitiny MgAl6Zn1 (AZ61)