Vaja 63, Meritve spektra z uklonsko mrežico

Jure Kos

15.4.2022

Uvod

Uklonska mrežica je ploščica, v kateri so enakomerno, na gosto zarezane tanke črte. Razmik med zaporednima zarezama je mrežna konstanta.

Skozi mrežico pravokotno posvetimo z vzporednim curkom svetloba. Svetloba se pri prehodu skozi reže, uklanja. Curki uklonjene svetlobe med seboj interferirajo. Ko je sledeči pogoj izpolnjen, se curki ojačajo v smereh:

$$d\sin\alpha = n\lambda$$

d je mrežna konstanta, α pa kot med smerjo vpadajočega in uklonjenega curka, n pa iznačuje red curka. Najvišji red je določen z razmerjem d/λ

Če mrežico zasučemo tako, da oklepa določen kot φ glede na pravokotnico, se uklonjeni curki premaknejo. Dobimo jih v smereh ϑ in ϑ' glede na vpadli curek, v katerih velja

$$d[\sin(\vartheta' + \varphi) - \sin\varphi] = n\lambda$$

$$d[\sin(\vartheta - \varphi) + \sin\varphi] = n\lambda$$

Če svetimo v uklonsko mrežico s svetlobo, katere izvir je razredčen plin (živosrebrne pare), ne dobimo zveznega, temveč črtast spekter ojačitev in oslabitev.

Naloga

S spektroskopom na uklonsko mrežico izmeri spekter živosrebrne pare.

Potrebščine

- 1. Živosrebrna svetilka z dušilko
- 2. uklonska mrežica z mrežno konstanto $(d=\frac{1}{600}mm)$ 3. spektroskop

Meritve in obdelava podatkov

Uklonska mrežica v pravokotni legi

Prvi in drugi red ojačitve pri $\varphi=0^{\circ},$ merjeno v levo:

$\alpha[^{\circ}] \pm 0.1^{\circ}$	$\lambda[nm] \pm 50nm$
12,5	361
16,2	465
17,3	496
17,4	498
19,3	275
23,2	328
24,4	344
24,5	346

Prvi in drugi red ojačitve pri $\varphi=0^{\circ},$ merjeno v desno

$\alpha[^{\circ}] \pm 0.1^{\circ}$	$\lambda[nm] \pm 50nm$
11,0	318
15,0	431
16,1	462
16,2	465
18,1	259
22,3	316
23,4	331
23,5	332

Uklonska mrežica v zasukana za kot φ

Prvi, drugi in tretji red ojačitve pri $\varphi=20^{\circ},$ merjeno v levo:

α [°] ± 0.1 °	$\lambda[nm] \pm 50nm$
19,2	483
22,9	472
24,0	506
24,1	508
34,1	390
35,6	403
/	/
/	/
41,8	299
44,1	309
44,3	310

Prvi red ojačitve pri $\varphi=20^\circ,$ merjeno v desno:

$\alpha[^{\circ}] \pm 0.1^{\circ}$	$\lambda[nm] \pm 50nm$
13,5	349
18,7	472
20,2	506
20,3	508