

Patent Abstracts of Japan

PUBLICATION NUMBER

2000218664

PUBLICATION DATE

08-08-00

APPLICATION DATE

04-02-99

APPLICATION NUMBER

11026831

APPLICANT:

JAPAN STEEL WORKS LTD:THE;

INVENTOR:

YAKIMOTO KAZUTOSHI;

INT.CL.

B29C 45/50

TITLE

SCREW TYPE INJECTION MOLDING

APPARATUS

ABSTRACT :

PROBLEM TO BE SOLVED. To certainly prevent the backflow of a molten resin at the time of injection/dwelling while adding an auxiliary material such as a fiber or the like certainly and simply.

SOLUTION: A torpedo 7 arranged in a cylinder head 4 is allowed to advance and retreat in its axial direction by a torpedo linear drive means 16. The torpedo 7 has a reservoir 6 having a pressure receiving part 7b due to difference in level piercing therethough axially and a screw head 3 having a diameter almost same to that of the bottom surface of the screw groove 2a thereof is fitted and inserted in the large diameter portion 6a of the reservior 6 so as to be freely slidable in the peripheral and axial directions thereof. The torpedo 7 receives the pressure of a molten resin in its pressure receiving part 7b in addition to the acting force of the torpedo linear drive means 16 at the time of injection/dwelling to generate pressing force for pressing the seal part 7c of the torpedo 7 to the conical inner wall surface 4a of the cylinder head 4. During the flowing of the molten resin through the outer wall groove 8a of the torpedo 7, an auxiliary material such as a fiber or the like is added through the through-hole 4c of the cylinder head 4 by a plunger 21.

COPYRIGHT: (C)2000,JPO

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-218664 (P2000-218664A)

(43)公開日 平成12年8月8日(2000.8.8)

(51) Int.Cl.⁷
B 2 9 C 45/50

識別記号

FI B29C 45/50 デーマコート*(参考) 4 F 2 O 6

審査請求 未請求 請求項の数1 OL (全 8 頁)

(21) 出願番号

特願平11-26831

(22) 出願日

平成11年2月4日(1999.2.4)

(71)出顧人 000004215

株式会社日本製鋼所

東京都千代田区有楽町一丁目1番2号

(72) 発明者 焼本 数利

広島県広島市安芸区船越南1丁目6番1号

株式会社日本製鋼所内

(74)代理人 100095991

弁理士 阪本 善朗

Fターム(参考) 4F206 AB25 AD16 AM34 JA07 JF02

JF22 JM04 JM05 JQ26 JQ44

JQ45

(54) 【発明の名称】 スクリュ式射出成形装置

(57)【要約】

【課題】 射出・保圧時における溶融樹脂の逆流を確実 に防止するとともに、繊維等の副資材を確実かつ簡単に 添加する。

【解決手段】 シリンダヘッド4内に配設されたトーピード7は、トーピード用直線駆動手段16によって軸方向へ進退される。トーピード7は、段差による受圧部7 bを有する軸方向へ貫通したリザーバ6を備えており、大径部6aにスクリュ溝2aの底面とほぼ同径のスクリュヘッド3が周方向および軸方向へ摺動自在に嵌挿されている。射出・保圧時において、トーピード用直線駆動手段16の作用力に加えて、受圧部7bで溶融樹脂の圧力を受けてトーピード7のシール部7cを円錐状の内壁面4aに押し付ける押圧力が発生する。トーピード7の外壁溝8aを溶融樹脂が流動する間に、プランジャ21によって繊維等の副資材がシリンダヘッド4の貫通孔4cを経て添加される。

【特許請求の範囲】

【請求項1】 先端部にシリンダヘッド(4)が着脱自在に固着された加熱シリンダ(1)と、前記シリンダヘッドおよび前記加熱シリンダをそれぞれ加熱するための加熱手段(18)と、前記加熱シリンダ内に回転自在および軸方向へ進退自在に配設されたスクリュ(2)と、前記スクリュの先端部に一体的に設けられたスクリュへ(2a)の底面外径とほぼ同じ外径を有するスクリュへッド(3)と、前記シリンダヘッド内に軸方向へ摺動自在に配設された先端面が円錐状のトーピード(7)と、前記トーピードを軸方向へ進退させるためのトーピード用直線駆動手段(16)を備えたスクリュ式射出成形装置であって、

前記トーピードは、前記スクリュヘッドが周方向および 軸方向へ摺動自在に嵌挿された後端側の大径部(6 a) 並びに先端側の小径部(6b)からなるとともに両者の 連通部における段差による受圧部(7b)を有する軸方 向へ貫通したリザーバ(6)と、前記円錐状の先端面に おける前記小径部の開口部周縁をとり囲む部位に設けら れたシール部(7c)と、外壁面に周方向へ互いに間隔 をおいて形成された複数の軸方向へ延在する外壁溝(8 a)とを備え、前記トーピードを後退させて前記シリン ダヘッドの円錐状の内壁面(4a)から前記シール部を 離間させたときに前記リザーバと前記スクリュの先端部 における前記スクリュ溝とが連通されるように構成され ており、しかも、前記トーピード用直線駆動手段による 前記トーピードを前進させて前記シリンダヘッドの円錐 状の内壁面に前記シール部を押し付ける押圧力に加え て、射出・保圧時に前記受圧部にかかる溶融樹脂圧力に 起因する前記シリンダヘッドの円錐状の内壁面に前記シ ール部を押し付ける押圧力がかかるように構成され、か つ、前記シリンダヘッドを貫通する少なくとも1個の貫 通孔(4c)と、前記貫通孔に連通するホッパ(22) と、前記ホッパから前記貫通孔を経て前記トーピードの 前記外壁溝に副資材を供給するための押込部材(21) からなる副資材供給装置が配設されていることを特徴と するスクリュ式射出成形装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、射出充填される樹脂量にばらつきがなく超精密成形を実現できるスクリュ式射出成形装置に関するものである。

[0002]

【従来の技術】精密成形ができる従来のスクリュ式射出 成形装置の一例について説明する。

【0003】図5に示すように、先端にシリンダへッド 104が複数のボルト117等の固着手段によって着脱 自在に固着された加熱シリンダ101と、加熱シリンダ 101内に回転自在かつ軸方向へ進退自在に配設された スクリュ102と、シリンダへッド104の先端に配設 された射出ノズル105を備え、加熱シリンダ101およびシリンダヘッド104の外壁面にはバンドヒータ1 18等からなる加熱手段が配設されている。

【0004】シリンダヘッド104の筒状部104b内には、トーピード107が軸方向へ摺動自在に配設されており、このトーピード107は、シリンダヘッド104に突設された支持部材109に枢軸109aを介して枢着されたレバー110およびレバー110を矢印方向および反矢印方向へ回動させるためのロッド115を有する流体圧シリンダ111等からなるトーピード用直線駆動手段116によって軸方向へ進退される。

【0005】トーピード107は、スクリュ102と同径のスクリュヘッド103が周方向および軸方向へ摺動自在に嵌挿された軸方向へ貫通する貫通孔107bと、円錐状の先端面における貫通孔107bの開口部周縁をとり囲む部位に突設されたシール部107cと、外壁面に周方向へ互いに間隔をおいて形成された複数の軸方向へ延在する外壁溝108aと、円錐状の後端面に形成された外壁溝108aに対応する複数の後端溝108bを有する。

【0006】この従来のスクリュ式射出成形装置は、可塑化工程時にはトーピード107が後退され、シール部107cとシリンダヘッド104の円錐状の内壁面104aとが離間して間隙S。が生じ、溶融樹脂がスクリュ溝102a側から外壁溝108aを通してリザーバ106へ流れ計量が行なわれる。そして可塑化終了時にはトーピード107が前進され、シール部107cが円錐状の内壁面104aに当接されることにより、射出・保圧時における溶融樹脂の逆流が防止される。

[0007]

【発明が解決しようとする課題】上記従来の技術では、トーピード用直線駆動手段116の作用力によってトーピード107のシール部107cをシリンダヘッド104の円錐状の内壁面104aに押し付けることにより、リザーバ106内の溶融樹脂が外壁溝108aへ逆流するのを防止している。つまり、トーピード107のシール部107cをシリンダヘッドの内壁面104aに押し付ける力はトーピード用直線駆動手段116のみによって与えられている。このため、射出・保圧時におけるリザーバ106内の溶融樹脂の圧力によりトーピード107が後退し、トーピード107のシール部107cとシリンダヘッドの内壁面104aとの間に隙間が生じ、該隙間を通してトーピード107の外壁溝108aへ溶融樹脂が逆流して射出ノズル105を介して金型キャビティへ射出される溶融樹脂量が変動するおそれがある。

【0008】また、スクリュ102の前後進退の移動量は、成形条件によって大小に設定されるが、先端部のスクリュ溝102aがトーピード107の貫通孔107bの後端溝108bよりも後方に移動しないようなスクリュ102の移動量で成形を行なう場合、前記スクリュ溝

102aは、常に貫通孔107b内で前後に移動する。この場合には、前記スクリュ溝102a内の溶融樹脂は、後端溝108b、外壁溝108aおよび隙間S₀を通ってリザーバ106内に移動することができない。すなわち、スクリュ溝102a内の溶融樹脂は運転中に排出されることがない。そうすると、該スクリュ溝102aの溶融樹脂は、熱分解、熱劣化し、樹脂の変色や焼けなどの不良を起すことになる。その結果、成形品の品質にばらつきや不良が発生するという問題点があった。

【0009】本発明は、上記従来の技術の有する問題点に鑑みてなされたものであって、射出・保圧時における溶融樹脂の逆流を確実に防止することができるとともに、溶融樹脂滞留部が少なくて、しかも、溶融樹脂に対するパルプ繊維、ガラス繊維、各種粉粒体、木粉等の副資材の添加・混練を確実かつ簡単に行なうことができるスクリュ式射出成形装置を実現することを目的とするものである。

[0010]

【課題を解決するための手段】上記目的を達成するため に本発明のスクリュ式射出成形装置は、先端部にシリン ダヘッドが着脱自在に固着された加熱シリンダと、前記 シリンダヘッドおよび前記加熱シリンダをそれぞれ加熱 するための加熱手段と、前記加熱シリンダ内に回転自在 および軸方向へ進退自在に配設されたスクリュと、前記 スクリュの先端部に一体的に設けられたスクリュ溝の底 面外径とほぼ同じ外径を有するスクリュヘッドと、前記 シリンダヘッド内に軸方向へ摺動自在に配設された先端 面が円錐状のトーピードと、前記トーピードを軸方向へ 進退させるためのトーピード用直線駆動手段を備えたス クリュ式射出成形装置であって、前記トーピードは、前 記スクリュヘッドが周方向および軸方向へ摺動自在に嵌 挿された後端側の大径部並びに先端側の小径部からなる とともに両者の連通部における段差による受圧部を有す る軸方向へ貫通したリザーバと、前記円錐状の先端面に おける前記小径部の開口部周縁をとり囲む部位に設けら れたシール部と、外壁面に周方向へ互いに間隔をおいて 形成された複数の軸方向へ延在する外壁溝とを備え、前 記トーピードを後退させて前記シリンダヘッドの円錐状 の内壁面から前記シール部を離間させたときに前記リザ 一バと前記スクリュの先端部における前記スクリュ溝と が連通されるように構成されており、しかも、前記トー ピード用直線駆動手段による前記トーピードを前進させ て前記シリンダヘッドの円錐状の内壁面に前記シール部 を押し付ける押圧力に加えて、射出・保圧時に前記受圧 部にかかる溶融樹脂圧力に起因する前記シリンダヘッド の円錐状の内壁面に前記シール部を押し付ける押圧力が かかるように構成され、かつ、前記シリンダヘッドを貫 通する少なくとも1個の貫通孔と、前記貫通孔に連通す るホッパと、前記ホッパから前記貫通孔を経て前記トー ピードの前記外壁溝に副資材を供給するための押込部材

からなる副資材供給装置が配設されていることを特徴と するものである。

[0011]

【作用】可塑化工程においては、スクリュ溝からリザー バへ向かう溶融樹脂がトーピードの各外壁溝内を薄い層 となって流れており、このように流動する溶融樹脂に対 して、ホッパから供給されるパルプ繊維、ガラス繊維、 各種粉粒体、木粉等の副資材が押込部材によって圧入さ れる。

【0012】各外壁溝内を通過する溶融樹脂はシリンダ ヘッドの内壁に接触して流動するため、シリンダヘッド 外周に巻かれたヒータ等の加熱量を制御することによ り、溶融樹脂の温度条件等を極めて緻密に制御して、均 一で安定した溶融状態にすることができる。

【0013】また、溶融樹脂が流路断面積の狭い外壁溝を流動するに際して、溶融樹脂には外壁溝との間の速度 勾配に起因する剪断応力が作用し、この結果、溶融樹脂 および添加された副資材は混合・混練作用を受けるため、副資材が均一に混合・混練された溶融樹脂がリザーバに移送されることになる。

【0014】その結果、リザーバに貯留される溶融樹脂は、パルプ繊維、ガラス繊維、各種粉粒体、木粉等の副資材が確実に添加・混合され、しかも溶融状態の安定したものとなる。

【0015】射出・保圧時には、トーピード用直線駆動 手段による外部からの押圧力に加えて、トーピードの受 圧部にかかる溶融樹脂の圧力を用いてトーピードによる 逆流防止機能等を強化し、型締された金型へ射出される 樹脂量のバラつきを防ぐことができる。

【0016】計量された溶融樹脂の逆流等を防ぎ、かつ、温度条件等が緻密に制御され、しかも繊維等の副資材が確実に添加・混合されて安定した状態の溶融樹脂を射出することで、ヒケ等の欠陥が無くて高品質であり、しかも繊維等の副資材によって物性を大幅に向上させた成形品を安定して成形できる。

[0017]

【発明の実施の形態】本発明の一実施の形態を図面に基づいて説明する。

【0018】図1ないし図3に示すように、本実施の形態によるスクリュ式射出成形装置は、先端にシリンダヘッド4が複数のボルト17等の固着手段によって着脱自在に固着された加熱シリンダ1と、シリンダヘッド4および加熱シリンダ1をそれぞれ加熱するための加熱手段である両者の外壁面に設けられたバンドヒータ18と、加熱シリンダ1内に回転自在かつ軸方向へ移動自在に配設されたスクリュ2と、スクリュ2の先端部に一体的に設けられたスクリュ2と、スクリュ2の先端部に一体的に設けられたスクリュ本ッド3と、シリンダヘッド4の先端に配設された射出ノズル5と、シリンダヘッド4の筒状部4b内に軸方向へ摺動自在に配設されたトーピード7

と、トーピード7を軸方向へ進退させるためのトーピー ド用直線駆動手段16を備えている。

【0019】トーピード7は、スクリュヘッド3が周方 向および軸方向へ摺動自在に嵌挿された後端側の大径部 6 a並びに先端側の小径部6 bからなるとともに両者の 連通部における段差による受圧部76を有する軸方向へ 貫通するリザーバ6と、円錐状の先端面における小径部 6 bの開口部周縁をとり囲む部位に設けられたシール部 7 cを有し、シール部7 cをとり囲む外周側の部位に は、シール部7cがシリンダヘッド4の円錐状の内壁面 4 aに 当接されたときに隙間が生じる流路形成面が設け られている。また、トーピード7の外壁面には周方向へ 互いに間隔をおいて複数の軸方向へ延在する外壁溝8a が形成されており、各外壁溝8aの先端側は前記流路形 成面7 aに開放されているとともに後端側はトーピード 7の円錐状の後端面に設けられた後端溝8bによってス クリュ2の先端部におけるスクリュ溝2aに連通されて いる。さらに、トーピード7の外壁面の中の前記外壁溝 8aを避けた適宜部位に後述するトーピード用直線駆動 手段16のレバー10の一端側が挿入される係合穴8c が形成されている。

【0020】ここで、トーピード用直線駆動手段16の一例について説明する。

【0021】図1および図2に示すように、レバー10は、シリンダヘッド4に突設された支持部材9に枢軸9 aを介して回動自在に枢着されたものであって、その一端側がトーピード7の係合穴8c内に挿入されており、他端側は加熱シリンダ1の外壁に固着されたブラケット14にピン13を介して回動自在に枢着された流体圧シリンダ11によって伸縮されるロッド15にピン12を介して連結されている。このため、流体圧シリンダ11をロッド15を突き出す方向へ作動させると図1に示す矢印方向へレバー10が回動してトーピード7が後退し、逆にロッド15を引き込む方向へ作動させるとレバー10が図2に示す矢印方向へ回動してトーピード7が前進する。

【0022】なお、トーピード7の前進または後退による移動距離は0.3mm~2mm程度であるため、流体 圧シリンダ11のサイズは小さくてよい。

【0023】シリンダヘッド4は、その筒状部4bに貫通孔4cを備えており、貫通孔4cは、トーピード7の外壁溝8aからシリンダヘッド4の筒状部4bを径方向外方へ貫通してシリンダヘッド4の外壁面に開口する。【0024】貫通孔4cには、ポット20が当接され、ポット20内には、押込部材であるプランジャ21が摺動自在に嵌合する。プランジャ21は、ホッパ22の底壁を貫通してポット20内に嵌合し、ホッパ22から供給されるパルプ繊維、ガラス繊維、各種粉粒体、木粉等の副資材を、駆動シリンダ23から突き出されるプランジャ21によって、ポット20から貫通孔4cを経て、

外壁溝8aを流動する溶融樹脂に圧入するように構成されている。

【0025】必要であれば、ポット20の外側にバンド ヒータ等の加熱手段を設けてもよい。

【0026】プランジャ21によって供給される副資材は、可塑化工程において溶融樹脂が外壁溝8aをリザーバ6に向かって流動する過程で、溶融樹脂の流れに導入され、なおかつ外壁溝を溶融樹脂が流動する際に、溶融樹脂が流路内で受ける混合・混練作用により、溶融樹脂と副資材とが均一に混合・混練された状態でリザーバ6に蓄積される。

【0027】次に、動作について説明する。

【0028】可塑化工程時においては、図1に示すように、流体圧シリンダ11をロッド15を突き出す方向へ作動させてレバー10を矢印方向へ回動させることによってトーピード7を後退させ、トーピード7の先端面におけるシール部7cをシリンダへッド4の円錐状の内壁面4aから離間させることで、スクリュ溝2aとリザーバ6とを後端溝8b、外壁溝8aおよび間隙Sを介して連通させておき、スクリュ2を回転させる。

【0029】ついで、図示しないホッパから樹脂を投入すると、投入された樹脂は、回転するスクリュ2によって前方へ移送される間に混練・溶融されて順次後端溝8b、外壁溝8a、間隙Sを通してリザーバ6に貯留されて行き、リザーバ6に貯留された溶融樹脂の増加にともない樹脂圧力によってスクリュ2が回転しつつ後退し、リザーバ6に貯留された溶融樹脂が所定量に達したらスクリュ2が停止される。

【0030】一方、ホッパ22から供給されるパルプ繊維、ガラス繊維、各種粉粒体、木粉等の副資材は、前述のように、外壁溝8aを流動する溶融樹脂に添加され、溶融樹脂がリザーバに貯留されるときには、溶融樹脂が外壁溝8aを流動する際に溶融樹脂に与えられる混合、混練作用により、添加された副資材が充分に混練した状態となる。

【0031】この結果、溶融樹脂は、各外壁溝8aをリザーバ6に向かって流動する間に、シリンダヘッド4に接触して緻密に温度制御され、均一な溶融状態となり、溶融樹脂がリザーバ6に貯留されるときには、繊維等の副資材が添加・混練され、しかも安定した樹脂状態となる。

【0032】スクリュ2が停止すると同時に、流体圧シリンダ11をロッド15を引き込む方向へ作動させてレバー10を矢印方向へ回動させることでトーピード7を前進させ、トーピード7の先端面におけるシール部7cをシリンダヘッド4の円錐状の内壁面4aに当接させる。つまり樹脂流路を閉鎖する。この結果、可塑化工程終了と同時に、リザーバ6に貯留された溶融樹脂の外壁溝8aおよびスクリュ溝2aに向かう流路が閉鎖される。この場合、射出・保圧工程が開始されるまでの間

に、スクリュ溝2aからリザーバ6に向かって溶融樹脂が流入することがないので、射出・保圧工程開始直前のリザーバ6内の樹脂密度の安定性が維持される。また、プランジャ21による副資材の圧入は可塑化工程中のみであり、射出・保圧工程では副資材の投入は行なわれない。

【0033】射出・保圧時においては、図2に示すように、トーピード7の先端面におけるシール部7cとシリンダヘッド4の円錐状の内壁面4aとが当接した状態で、スクリュ2を前進させてリザーバ6に貯留された溶融樹脂を射出ノズル5を介して図示しない型締された金型のキャビティ内へ射出充填する。

【0034】この場合、リザーバ6内の溶融樹脂の圧力を受圧部7bで受けてトーピード7を前進させる方向の力が加えられるため、トーピード7のシール部7cをシリンダヘッド4の円錐状の内壁面4aに押し付ける押圧力はトーピード用直線駆動手段16による作用力にこの受圧部7bで受ける溶融樹脂の圧力による押圧力を加えたものとなり、リザーバ6側からスクリュ2側への溶融樹脂の逆流は確実に防止される。

【0035】溶融樹脂の逆流を防ぐことで、金型へ射出される樹脂量がバラつくことなく、また、前述のように、溶融樹脂の溶融状態を安定させ、かつ確実に副資材等を添加し、これを溶融樹脂に均一に混合・混練した良好な状態で射出を行なうことができるため、強度が高く、しかもヒケ等の欠陥が無くて高品質の成形品を安定して成形できる。

【0036】次に、可塑化工程時において、トーピード7の後端溝8bとスクリュ2の先端部におけるスクリュ 溝2aとの相対的位置が一定になるように可塑化する場合の動作について説明する。

【0037】① 図4の(a)は射出・保圧工程の完了時における状態を示し、射出・保圧工程が完了すると、まずレバー10を図4の(b)に示すように矢印方向へ回動させてトーピード7を後退させることで、トーピード7のシール部7cをシリンダヘッド4の円錐状の内壁面4aから離間させて樹脂流路を開き、他方、スクリュ2を所定の位置へ後退させておく。

【0038】② 上記のの工程ののち、可塑化工程に移行するが、スクリュ2は図4の(c)に示すように、軸方向には前記所定の位置に停止した状態で回転し、回転するスクリュ2によって混練・溶融された溶融樹脂は順次トーピード7の後端溝8b、外壁溝8aおよび間隙Sを通りリザーバ6に貯留される。トーピード7の各外壁溝8aには、ホッパ22から供給された繊維等の副資材がプランジャ21によって貫通孔4cを経て導入され、外壁溝8a内をリザーバ6に向かって流動する溶融樹脂に添加・混練される。リザーバ6に貯留された溶融樹脂の量が所定量に達したら、図4の(d)に示すように、レバー10を矢印方向へ回動させることによってトーピ

ード7を前進させてそのシール部7cをシリンダヘッド 4の円錐状の内壁面4aに当接させたのち、スクリュ2 の回転を止める。

【0039】③ 次に、図4の(d)の状態で、スクリュ2を前進させることによって、射出ノズル5を介して図示しない型締された金型のキャビティ内へリザーバ6に貯留された溶融樹脂を射出充填する。

【0040】この場合、リザーバ6内の溶融樹脂の圧力を受圧部7bで受けてトーピード7を前進させる方向の力が加えられるため、トーピード7のシール部7cをシリンダヘッド4の円錐状の内壁面4aに押し付ける押圧力はトーピード用直線駆動手段16による作用力にこの受圧部7bで受ける溶融樹脂の圧力による押圧力を加えたものとなり、リザーバ6側からスクリュ2側への溶融樹脂の逆流は確実に防止される。

【0041】上記実施例においてトーピード7に後端溝8bを形成したものを示したが、トーピード7を後退させたときに後端面と加熱シリンダ1の先端面との間に間隙が生じるようにトーピード7を構成した場合は後端溝8bは必ずしも形成する必要はない。

[0042]

【発明の効果】本発明は、上述のとおり構成されている ので、次に記載するような効果を奏する。

【0043】射出・保圧工程中におけるリザーバからスクリュ溝へ向かう溶融樹脂の逆流が確実に防止できるとともに、溶融樹脂の滞留部分が少なくなる。

【0044】また、可塑化工程時において、トーピードの外壁面に形成された外壁溝のみを通してリザーバへ溶融樹脂が薄い層となって流れるため、外壁溝を通過する溶融樹脂の状態を緻密に制御することができ、ひいてはリザーバに貯留された溶融樹脂の状態が均一なものとなる。

【0045】外壁溝を流動する溶融樹脂には貫通孔から パルプ繊維、ガラス繊維、各種粉粒体、木粉等の副資材 が確実かつ簡単に添加され、溶融樹脂と均一に混合・混 練される。

【0046】さらに、可塑化工程を終了した時点から、 射出・保圧工程が開始されるまでの間に、スクリュ溝からリザーバに向かって溶融樹脂が流入することがないので、射出・保圧工程開始直前のリザーバ内の樹脂密度が安定化される。

【0047】これらの結果、ヒケ等の欠陥がなく、また 繊維等の副資材が確実に添加された高品質で強度の高い 成形品を安定して成形できる。

【図面の簡単な説明】

【図1】一実施の形態によるスクリュ式射出成形装置を 示し、可塑化工程時における主要部の模式部分断面図で ある。

【図2】図1に示すスクリュ式射出成形装置の射出・保 圧工程時における主要部の模式部分断面図である。 【図3】本発明のスクリュ式射出成形装置におけるトーピードの一例を示す平面図である。

【図4】図1に示すスクリュ式射出成形装置において、スクリュ溝とトーピードの後端溝との相対位置を変化させないで可塑化工程を行なう場合の説明図である。

【図5】従来のスクリュ式射出成形装置の一例を示し、可塑化工程時における主要部の一模式部分断面図である。

【符号の説明】

- 1 加熱シリンダ
- 2 スクリュ .
- 2a スクリュ溝
- 3 スクリュヘッド
- 4 シリンダヘッド
- 4 a 円錐状の内壁面
- 4 b 筒状部
- 4 c 貫通孔
- 5 射出ノズル
- 6 リザーバ
- 6 a 大径部
- 6 b 小径部

- 7 トーピード
- 7 a 流路形成面
- 7 b 受圧部
- 7 c シール部
- 8a 外壁溝
- 8b 後端溝
- 8c 係合穴
- 9 支持部材
- 9a 枢軸
- 10 レバー
- 11 流体圧シリンダ
- 12,13 ピン
- 14 ブラケット
- 15 ロッド
- 16 トーピード用直線駆動手段
- 17 ボルト
- 18 バンドヒータ
- 20 ポット
- 21 プランジャ
- 22 ホッパ
- 23 駆動シリンダ

【図1】

【図3】

【図2】

【図4】

【図5】

