

Introducción a las Bases de Datos

Dr. Leon Felipe Palafox Novack Ipalafox@up.edu.mx

0

Anuncios parroquiales

Examen 2

- Octubre 15 y 17:
 - Para ir acorde al calendario de nuestra clase:
 - Algebra Relacional
 - Va a ser en dos partes:
 - □ 1º Examen Individual
 - 2ª Evaluación Grupal

2

Algebra Relacional

Operaciones

R1 :=
$$\sigma_{c}(R2)$$

C es una condición

R1: =
$$\pi_L(R2)$$

L es una lista

R1: =
$$\pi_{[A+B \to C, A, A]}(R2)$$

$$\mathbb{R}3 := \mathbb{R}1 \bowtie_{c} \mathbb{R}2$$

Natural Join

- R3 := R1 ⋈ R2
 - Una variante del Theta-Join
 - Conecta dos relaciones:
 - Iguala atributos con el mismo nombre
 - Proyecta una copia de cada par de atributos igualados.

Natural - Join

R1

Plaza	Tienda	Número
Parque Delta	Starbucks	2
Parque Delta	Marti	1
Galerías Insurgentes	Starbucks	1
Galerías Insurgentes	Marti	1

R2

Plaza	Colonia
Parque Delta	Roma
Galerías Insurgentes	Del Valle
Perisur	Pedregal

Natural-Join

R3

Plaza	Tienda	Número	Colonia
Parque Delta	Starbucks	2	Roma
Parque Delta	Marti	1	Roma
Galerías Insurgentes	Starbucks	1	Del Valle
Galerías Insurgentes	Marti	1	Del Valle

3

Algebra Relacional / SQL

Joins

- Inner Join
- Outer Join
- Left Inner Join
- Left Outer Join
- Right Inner Join
- Right Outer Join

Tablas

Table A

id	Nombre	
1	Frodo	
2	Gandalf	
3	Harry Potter	
4	Darth Vader	

Table B

id	Nombre	
1	Kermit	
2	Frodo	
3	Darth Vader	
4	Jon Snow	

Inner Join

SELECT * FROM TableA
INNER JOIN TableB
ON TableA.name = TableB.name

id	name	id	name
1	Frodo	2	Frodo
4	Darth Vader	3	Darth Vader

Sólo los matches entre A y B

Outer Join

SELECT * FROM TableA

FULL OUTER JOIN TableB

ON TableA.name = TableB.name

Produce todos los elementos de A y B, y donde no existe un match, coloca un NULL.

Outer Join

id	name	id	name
1	Frodo	2	Frodo
2	Gandalf	NULL	NULL
3	Harry Potter	NULL	NULL
4	Darth Vader	3	Darth Vader
NULL	NULL	1	Kermit
NULL	NULL	4	Jon Snow

SELECT * FROM TableA **LEFT OUTER JOIN** TableB ON TableA.name = TableB.name

Produce todos los elementos de A con los elementos de B (si existen), si no hay un match, escribe NULL

id	name	id	name
1	Frodo	2	Frodo
2	Gandalf	NULL	NULL
3	Harry Potter	NULL	NULL
4	Darth Vader	3	Darth Vader

SELECT * FROM TableA LEFT OUTER JOIN TableB ON TableA.name = TableB.name WHERE TableB.id IS null

id	name	id	name
2	Gandalf	NULL	NULL
3	Harry Potter	NULL	NULL

Full Outer Join

SELECT * FROM TableA FULL OUTER JOIN TableB ON TableA.name = TableB.name WHERE TableA.id IS null OR TableB.id IS null

Full Outer Join

id	name	id	name
2	Gandalf	NULL	NULL
3	Harry Potter	NULL	NULL
NULL	NULL	1	Kermit
NULL	NULL	4	Jon Snow

Terminamos Álgebra Relacional!

Temario

- Nos quedan 7 semanas
- Examen 2 (1 Semana)
- SQL Python (3 Semanas)
 - Ejercicios
 - Problemas
- Blockchain Big DB (2 Semanas)

