Définition: langage de G

Soit G = (V, T, S, P) une grammaire syntagmatique. Le **langage créé à partir de** G (ou le **langage de** G), noté L(G), est l'ensemble de toutes les chaînes de terminaux qui sont dérivables à partir de l'axiome S. En d'autres mots,

$$L(G) = \{ w \in T^* \mid S \stackrel{*}{\Rightarrow} w \}.$$

Définition: diagramme d'états

Soit $M = (S, I, O, f, g, s_0)$ une machine à états finis. On peut la représenter en utilisant un **diagramme d'états**, qui est un graphe orienté avec arcs étiquetés. Dans de diagramme,

- chaque état est représenté par un cercle.
- chaque transition entre deux états est représentée par un arc orienté et étiqueté,
- chaque étiquette est une paire (valeur d'entrée, valeur de sortie).

Table d'états pour le distributeur automatique

S		f:S	$S \times I$	$I \rightarrow S$	S		$g: \mathcal{S}$	$S \times J$	$I \rightarrow 0$)
			I					I		
	5	10	25	B1	B2	5	10	25	B1	B2
s_0	s_1	s_2	s_5	s_0	s_0	n	n	n	n	n
s_1	s_2	s_3	s_6	s_1	$s_1 \\ s_2$	n	n	n	n	n
s_2	s_3	s_4	s_6	s_2	s_2	n	n	5	n	n
s_3	s_4	s_5	s_6	s_3	s_3	n	n	10	n	n
s_4	s_5	s_6	s_6	s_4	s_4	n	n	15	n	n
s_5	s_6	s_6	s_6	s_5	s_5				n	n
s_6	s_6	s_6	s_6	s_0	s_0	5	10	25	C	P

Diagramme d'états pour le distributeur automatique

Exemple table d'états – diagramme d'états

S	j	f	g	g
	0	<i>I</i> 1	0	1
s_0	s_1	s_0	1	0
s_1	s_3	s_0	1	1
s_2	s_1	s_2	0	1
s_3	s_2	s_1	0	0

Exemple de sortie produite par un machine

S	f		Į.	g
	0	<i>I</i> 1	0	<i>I</i> 1
s_0	s_1	s_0	1	0
s_1	s_3	s_0	1	1
s_2	s_1	s_2	0	1
s_3	s_2	s_1	0	0

I		1		1		0		1		1		0		1		1	
S	s_0		s_0		s_0		s_1		s_0		s_0		s_1		s_0		s_0
O		0		0		1		1	·	0	·	1	·	1		0	

Exemple de machine de Mealy: le retardateur

Le retardateur transforme la chaîne binaire $x_1x_2\cdots x_k$ en la chaîne $0x_1x_2\cdots x_{k-1}$. La machine est à l'état s_1 si l'entrée précédente était 1 et à l'état s_2 si l'entrée précédente était 0.

S	j	f	9	g
	0	<i>I</i> 1	0	$\frac{1}{1}$
s_0	s_2	s_1	0	0
s_1	s_2	s_1	1	1
s_2	s_2	s_1	0	0

Exemple de machine de Mealy: addition binaire

S		j	f			9	g	
			I				I	
					1		10	
s_0	s_0	s_0	s_0	s_1	0	1	1 0	0
s_1	s_0	s_1	s_1	s_1	1	0	0	1

Exemple de machine qui reconnaît un langage

Définition: machine de Moore

Une machine de Moore $M = (S, I, O, f, g, s_0)$ est constituée

- d'un ensemble fini d'états S,
- d'un alphabet d'entrée fini I,
- d'un alphabet de sortie fini O,
- d'une fonction de transition f : S × I → S qui attribue un nouvel état à chaque couple (état, entrée),
- d'une fonction de sortie $g: S \to O$ qui attribue une sortie à chaque état,
- d'un état initial s_0 .

table d'états – diagramme d'états

S	f		g
	1	I	
	0	1	
s_0	s_0	s_2	0
s_1	s_3	s_0	1
s_2	s_2	s_1	1
s_3	s_2	s_0	1

diagramme d'états – table d'états

S	f		g
	I		
	0	1	
s_0	s_1	s_2	1
s_1	s_1	s_0	1
s_2	s_1	s_2	0

Conversion Moore-Mealy

Conversion d'une machine de Moore, sous forme de diagramme d'états, en une machine de Mealy.

Conversion Moore-Mealy

Conversion d'une machine de Moore, sous forme de table d'états, en une machine de Mealy.

S	f		g
		I	
	0	1	
s_0	s_1	s_2	1
s_1	s_1	s_0	1
s_2	s_1	s_2	0

S	f		g	J
	I		1	Ţ
	0	1	0	1
s_0	s_1	s_2	1	0
s_1	s_1	s_0	1	1
s_2	s_1	s_2	1	0

Exemple de Conversion Mealy-Moore

Machine de Mealy

Machine de Moore équivalente

Définition: fermeture de Kleene

On suppose que A est un sous-ensemble de V^* . Alors, la **fermeture de Kleene** de A, notée A^* , est l'ensemble constitué des concaténations d'un nombre arbitraire de chaînes de A. Autrement dit,

$$A^* = \bigcup_{k=0}^{\infty} A^k.$$

Définition: machine à états finis sans sortie

Une machine à états finis sans sortie, également appelée automate fini,

 $M = (S, I, f, s_0, F)$ est constituée

- d'un ensemble fini d'états S,
- d'un alphabet d'entrée fini I,
- d'une fonction de transition f : S×I → S qui attribue un état suivant à chaque couple (état, entrée),
- d'un état initial s₀,
- et d'un sous-ensemble F de S constitué d'états finaux.

On peut représenter un automate fini en utilisant soit des tables d'états, soit des diagrammes d'états. Les états finaux sont indiqués dans les diagrammes d'états par des cercles doubles.

Définition: automate fini non déterministe

Un automate fini non déterministe (AFN)

 $M = (S, I, f, s_0, F)$ est constitué

- d'un ensemble fini d'états S,
- d'un alphabet d'entrée fini I,
- d'une fonction de transition f : S×I → P(S)
 qui attribue un ensemble d'états à chaque couple
 (état, entrée),
- d'un état initial s₀,
- et d'un sous-ensemble F de S constitué d'états finaux.

Table et Diagramme d'états pour un AFN

Soit l'automate fini $M = (S, I, f, s_0, F)$, où $S = \{s_0, s_1, s_2, s_3\}, I = \{0, 1\}, F = \{s_2, s_3\}.$

Exemple diagramme d'états – table d'états

Définition: langage reconnu

On dit que la chaîne x est **reconnue** ou **acceptée** par l'automate fini non déterministe $M = (S, I, f, s_0, F)$ s'il y a un état final dans l'ensemble de tous les états qu'on peut obtenir à partir de s_0 en consommant x.

Le **langage reconnu** ou **langage accepté** par la machine M, noté L(M), est l'ensemble de toutes les chaînes qui sont reconnues par M.

Exemple déterminisation d'un AFN (1)

Soit l'automate suivant à déterminiser:

Exemple déterminisation d'un AFN (2)

	f	
S	I	
	0	1
s_0	$\{s_0,s_2\}$	$\{s_1\}$
s_1	$\{s_3\}$	$\{s_4\}$
s_2	Ø	$\{s_4\}$
s_3	$\{s_3\}$	Ø
s_4	$\{s_3\}$	$\{s_3\}$

	j	f
S	1	[
	0	1
s_0	$\{s_0,s_2\}$	$\{s_1\}$
s_1	$\{s_3\}$	$\{s_4\}$
s_2	Ø	$\{s_4\}$
s_3	$\{s_3\}$	Ø
s_4	$\{s_3\}$	$\{s_3\}$
s_0, s_2	$\{s_0,s_2\}$	$\{s_1,s_4\}$
s_1, s_4	$\{s_3\}$	$\{s_3,s_4\}$
s_3, s_4	$\{s_3\}$	$\{s_3\}$

Exemple déterminisation d'un AFN (3)

Résulat de la dégterminisation:

Exemple de minimisation d'un AF.

Théorème de Kleene

THÉORÈME DE KLEENE: Un ensemble est régulier si et seulement si cet ensemble est reconnu par un automate fini.

DÉMONSTRATION: Un ensemble régulier est défini en fonction des expressions régulières qui sont définies récursivement. On peut prouver que tout ensemble régulier est reconnu par un automate fini si on peut démontrer que

- 1. \emptyset , $\{\epsilon\}$ et $\{a\}$ sont reconnus par un automate fini,
- 2. A.B et $A \cup B$ sont reconnus par un automate fini si A et B le sont,
- 3. A^* est reconnu par un automate fini si A l'est.

On peut aisément construire tous ces automates ...

Exemple

$$\begin{cases} Y_1 &= bY_2 + aY_3 \\ Y_2 &= bY_1 + aY_4 \\ Y_3 &= \epsilon + aY_4 + bY_2 \\ Y_4 &= \epsilon + (a+b)Y_4 \end{cases}$$

$$Y_4 = (a+b)^*$$

$$\begin{cases} Y_1 = bY_2 + aY_3 \\ Y_2 = bY_1 + a(a+b)^* \\ Y_3 = \epsilon + a(a+b)^* + bY_2 \end{cases}$$

Exemple (suite)

$$\begin{cases} Y_1 &= bbY_1 + ba(a+b)^* + aY_3 \\ Y_3 &= \epsilon + a(a+b)^* + bbY_1 + ba(a+b)^* \\ \text{D'où} \\ \begin{cases} Y_1 &= bbY_1 + ba(a+b)^* + aY_3 \\ Y_3 &= \epsilon + bbY_1 + (b+\epsilon)a(a+b)^* \end{cases}$$

On en déduit:

$$Y_1 = bbY_1 + ba(a+b)^* + a\epsilon + abbY_1 + a(b+\epsilon)a(a+b)^*$$

Finalement:

$$Y_1 = (abb + bb)^* (ba(a+b)^* + a(\epsilon + (b+\epsilon)a(a+b)^*))$$

Transformation grammaire rég. → automate fini

Soit G=(V,T,S,P) où $V=\{0,1,A,S\},\,T=\{0,1\}$ et les productions

- $S \rightarrow 1A$,
- $S \to 0$,
- $S \rightarrow \epsilon$,
- $A \rightarrow 0A$,
- $A \rightarrow 1A$,
- $A \rightarrow 1$.

 s_0 correspond à S, s_1 correspond à A et s_2 correspond à l'état final.

Transformation automate fini \rightarrow grammaire rég.

 $G=(V,T,S,P) \text{ où } V=\{A,B,S,0,1\},$ $T=\{0,1\},S,A \text{ et } B \text{ correspondent aux \'etats}$ $s_0,s_1 \text{ et } s_2, \text{ et } P=$

- $S \to 0A$,
- $S \rightarrow 1B$,
- $S \rightarrow 1$,
- $S \to \epsilon$,
- $A \rightarrow 0A$,
- A → 1B,
- $A \rightarrow 1$,
- $B \to 0A$,
- $B \rightarrow 1B$,
- $B \rightarrow 1$.