Laboratorium Podstaw Fizyki

Nr cwiczenia						
Temat ćwiczenia						
Nazwisko i Imię prowadzącego kurs						
Wykonawca:						
Imię i Nazwisko nr indeksu, wydział						
Termin zajęć: dzień tygodnia, godzina						
Numer grupy ćwiczeniowej						
Data oddania sprawozdania:						
Ocena końcowa						
Zatwierdzam wyniki pomiarów.						
Data i podpis prowadzącego zajęcia						

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania poprawionego sprawozdania

0.1 Cel ćwiczenia:

Celem ćwiczenia jest zapoznanie się z podstawowymi pomiarami elektrycznymi, wyznaczenie zależności natężenia prądu elektrycznego płynącego przez opornik od przyłożonego napięcia oraz analiza otrzymanych wyników i nauka pisania sprawozdań.

0.2 Metoda pomiarowa

- Wykonano pomwiar bezpośredni opornika R1 i R2
- Wykonano pomiar bezpośredni opornośći szeregowej i równoległej rezystorów R1 i R2
- Zmieniono napięcie podawane z zasilacza na układ oporników i dla każdej wartości napięcia odczytano wartość prądu płynącego przez opornik

0.3 Spis przyrządów

- Multimetr METEX M890
 - 1. Pomiar oporu $\Delta R = 0,8\% \cdot rdg + 1 \cdot dgt; \text{ zakres } 24\Omega$
 - 2. Pomiar napięcia $\Delta U = 0,5\% \cdot rdg + 1 \cdot dgt; \text{ zakres } 2V,20V$
 - 3. Pomiar natężenia $\Delta I = 0,8\% \cdot rdg + 1 \cdot dgt; \text{ zakres } 20mA$ $\Delta I = 1,2\% \cdot rdg + 1 \cdot dgt; \text{ zakres } 200mA$
- Zasilacz stabilizowany
- Zestaw z opornikami
- Przewody elektryczne

0.4 Oznaczenia zmiennych

Opis oznaczeń:

- R_1 zmierzona rezystancja na oporniku R1
- R_2 zmierzona rezystancja na oporniku R2

 $u(R_1)$ - niepewność pomiaru rezytsancji opornika R1

 $u(R_2)$ - niepewność pomiaru rezytsancji opornika R2

U - napięcie elektryczne

u(U) - niepewność pomiaru napięcia

 ${\cal I}$ - natężenie prądu

u(I) - niepewność pomiaru natężenia prądu

 ${\cal R}_S$ - oporność szeregowa

 ${\cal R}_r$ - oporność równoległa

0.5 Wyniki pomiarów

0.5.1 Tabele pomiarowe

$R_1\left[\Omega\right]$	u(R ₁) [Ω]	R ₂ [Ω]	u(R ₂) [Ω]	R _s [Ω]	u(R _{s)} [Ω]	R _s [Ω] (ze wzoru)	u _c (R _s) [Ω]	R _r [Ω]	u(R _r) [Ω]	R _r [Ω] (ze wzoru)	u _c (R _r) [Ω]
126,30	0,76	163,10	0,93	288,0	1,50	289,40	1,20	71,20	0,51	71,18	0,30

Tabela 1

Lp.	U [V]	u(U) [V]	I [mA]	u(I) [mA]	Rs [Ω]	$u_c(R_s)[\Omega]$
1	3,25	0,067	10,85	0,11	299,54	0,69
2	4,72	0,071	15,77	0,13	299,30	0,52
3	6,27	0,076	21,40	0,16	292,99	0,41
4	7,79	0,080	26,70	0,18	291,76	0,36
5	9,44	0,085	32,30	0,21	292,26	0,32
6	12,26	0,093	42,00	0,25	291,90	0,28

Tabela 2

0.5.2 Wykresy

Wykres 1

$$a = 3,466408$$

$$u(a) = 0,017$$

$$b = -0,4276703$$

$$u(b) = 0, 12$$

$$R_s = \frac{1}{a} \approx 288,49 \ \Omega$$

0.6 Przykładowe obliczenia

Niepewność standardowa pomiaru prądu

$$u(I) = \frac{\Delta I}{\sqrt{3}} = \frac{0.8\% \cdot \text{rdg} + 1 \cdot \text{dgt}}{\sqrt{3}} = \frac{0.8\% \cdot 10,85 + 0,05}{\sqrt{3}} = 0,0789838337... \approx 0,079 [A]$$
(1)

Niepewność standardowa pomiaru napięcia

$$u(U) = \frac{0.5\% \cdot \text{rdg} + 1 \cdot \text{dgt}}{\sqrt{3}} = \frac{0.5\% \cdot 3.25 + 0.05}{\sqrt{3}} = 0.038250... \approx 0.039 [V]$$
(2)

Niepewność standardowa pomiaru rezystancji

$$u(R) = \frac{0.8\% \cdot \text{rdg} + 1 \cdot \text{dgt}}{\sqrt{3}} = \frac{0.8\% \cdot 126, 3 + 0.3}{\sqrt{3}} = 0.75658198... \approx 0.76 [\Omega]$$
(3)

Rezystancja

$$R = \frac{U}{I} = \frac{6,27}{0.0214} = 292.990654... \approx 292.99 [\Omega]$$
 (4)

Niepewność złożona pomiaru pośredniego rezystancji szeregowej

$$u_c(R_S) = \sqrt{\left[\frac{\partial R_s}{\partial R_1}\right]^2 \cdot u^2(R_1) + \left[\frac{\partial R_s}{\partial R_2}\right]^2 \cdot u^2(R_2)}$$

$$u_C(R_S) = \sqrt{u^2(R_1) + u^2(R_2)} = \sqrt{(0.76)^2 + (0.93)^2} = 1,196178804917... \approx 1.2$$
(6)

Niepewność złożona pomiaru pośredniego rezystancji równoległej

$$\mu u_c(R_r) = \sqrt{\left[\frac{\partial R_r}{\partial R_1}\right]^2 \cdot u^2(R_1) + \left[\frac{\partial R_r}{\partial R_2}\right]^2 \cdot u^2(R_2)}$$

$$u_C(R_r) = \sqrt{u^2(R_1) \cdot \left(\frac{R_2}{R_1 + R_2}\right)^4 + u^2(R_2) \cdot \left(\frac{R_1}{R_1 + R_2}\right)^4}$$
(7)

$$u_C(R_r) = \sqrt{(0.76)^2 \cdot (\frac{126.3}{163.1 + 126.3})^4 + (0.93)^2 \cdot (\frac{163.1}{126.3 + 163.1})^4} = 0,299409... \approx 0,30$$
(8)

0.7 Wnioski

- Oporność szeregowa uzyskana z pomiaru bezpośredniego jest równa 288(1,50) Ω co daje wynik zbliżony do wyniku uzyskanego obliczonego z równania teoretycznego, który wynosił 289,40(1,20) Ω potwierdzając przy tym słuszność wzoru na szeregowy opór zastępczy.
- Wyniki oporności szeregowej uzyskane z zastosowania prawa Ohma umieszczone w tabeli nr 2 zbliżone są z wynikami uzyskanymi przez pomiar bezpośredni oraz ze wzoru co może świadczyć o poprawnym przeprwadzeniu pomiarów i rachunków.
- Oporność równoległa z pomiaru bezpośredniego i pośredniego były równa odpowiednio 71,20(0,51) Ω i 71,18(0,30) Ω również potwierdzająć poprawność wykonanych pomiarów.