

|     | Unit |                                                                                                                                                                                                                                                                                                                                                |    |     |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| Sr. | No.  | Question                                                                                                                                                                                                                                                                                                                                       | BL | CO  |
| 1.  | 1    | Discuss types of translators.                                                                                                                                                                                                                                                                                                                  | U  | CO1 |
| 2.  | 1    | Compare compiler v/s interpreter v/s assembler                                                                                                                                                                                                                                                                                                 |    |     |
| 3.  | 1    | Discuss analysis synthesis phase of compiler.                                                                                                                                                                                                                                                                                                  |    | CO1 |
| 4.  | 1    | Explain Phases of compiler.                                                                                                                                                                                                                                                                                                                    |    |     |
| 5.  | 1    | Describe output of all the phases of compiler for following expression:  1. Position=initial+rate*60 2. A=A+B*C*2 3. F=(9/5)*C+32 4. I=(p*n*r)/100                                                                                                                                                                                             | U  | CO1 |
| 6.  | 1    | Compare front end and back end                                                                                                                                                                                                                                                                                                                 | R  | CO1 |
| 7.  | 1    | Explain cousins of compiler.                                                                                                                                                                                                                                                                                                                   | U  | CO1 |
| 8.  | 1    | Discuss pass structure of compiler.                                                                                                                                                                                                                                                                                                            | U  | CO1 |
| 9.  | 1    | Write the effect of reducing the number of passes.                                                                                                                                                                                                                                                                                             | R  | CO1 |
| 10. | 1    | Explain types of Compilers.                                                                                                                                                                                                                                                                                                                    | U  | CO1 |
| 11. | 2    | Discuss interaction of scanner and parser.                                                                                                                                                                                                                                                                                                     | U  | CO2 |
| 12. | 2    | Describe token, pattern, and lexemes.                                                                                                                                                                                                                                                                                                          | U  | CO2 |
| 13. | 2    | Discuss input buffering methods.                                                                                                                                                                                                                                                                                                               | U  | CO2 |
| 14. | 2    | Design regular expression for the given language.                                                                                                                                                                                                                                                                                              | A  | CO2 |
| 15. | 2    | Discuss types of finite automata.                                                                                                                                                                                                                                                                                                              | U  | CO2 |
| 16. | 2    | Design NFA from regular expression for the given language.  1. abba 2. bb(a)* 3. (a b)* 4. a*   b* 5. a(a)*ab 6. aa*+ bb* 7. (a+b)*abb 8. 10(0+1)*1 9. (a+b)*a(a+b) 10. (0+1)*010(0+1)* 11. (010+00)*(10)* 12. 100(1)*00(0+1)*                                                                                                                 | A  | CO2 |
| 17. | 2    | Design NFA for given regular expression using Thompson's notation and then convert it into DFA. (using Subset construction) OR Explain subset construction method for constructing DFA from an NFA with an example.  1. (a+b)*a(a+b) 2. (a+b)*ab*a 3. (a   b)* ab 4. (a   b)*abb 5. (0 1)* 6. (0* 1*)* 7. (0 1)*011 8. a(a+b)*ab 9. b(a+b)*abb | A  | CO2 |
| 18. | 2    | Perform optimization on given DFA.                                                                                                                                                                                                                                                                                                             | A  | CO2 |
| 19. | 2    | Design DFA without constructing NFA from given regular expression. (Tree based                                                                                                                                                                                                                                                                 | A  | CO2 |



| method   1. (a   b)*abb#   2. (a   b)*abb#   2. (a   b)*abb#   3. a*(b*)*c*  c*)(a   c)*#   4. (a*b)*ab*a#   5. 0*1*(0/1)#   5. 0*1*(0/1)#   5. 0*1*(0/1)#   5. 0*1*(0/1)#   7. 0*2   7. 0*3   7. 0*2   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3   7. 0*3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                                             |                | T   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------|----------------|-----|
| 2. (a   b)*a#   3. a*(b*  c*)(a   c)*#   4. (a+b)*ab*a#   5. 0*1*(0/1)#   5. 0*1*(0/1)#   5. 0*1*(0/1)#   5. 0*1*(0/1)#   5. 0*1*(0/1)#   5. 0*1*(0/1)#   5. 0*1*(0/1)#   5. 0*1*(0/1)#   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7. 0   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                                             |                |     |
| 3. a*(b* c*)(a c)*#   4. (a+b)*ab*a#   5. 0*t*(9/1)#   20. 2   Discuss LEX Tool.   U   CO2   21. 3   Discuss role of parser.   U   CO3   22. 3   Explain context free grammar with example.   R   CO3   23. 3   Explain leftmost and rightmost derivation with example.   Co7   Perform leftmost or rightmost derivation for given string and grammar.   1. S>absb    b8sa    e (string: abab)     23. 3   2. S>A1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                                             |                |     |
| 4. (a+b)*ab*a#   5. o*1*(0/1)#     20. 2   Discuss LEX Tool.   U   CO2     21. 3   Discuss role of parser.   U   CO3     22. 3   Explain context free grammar with example.   R   CO3     23. 3   Explain leftmost and rightmost derivation with example.   Or     Perform leftmost or rightmost derivation for given string and grammar.   1. S→abs   bas   ε (string: abab)     2. S→A1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                                             |                |     |
| 20.   2   Discuss LEX Tool.   U   CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                                             |                |     |
| 20.         2         Discuss LEX Tool.         U         CO2           21.         3         Discuss role of parser.         U         CO3           22.         3         Explain context free grammar with example.         R         CO3           23.         Explain leftmost and rightmost derivation with example.         Or         R         CO3           23.         3         Explain leftmost or rightmost derivation for given string and grammar.         1. S→aSbS   bSaS   ε (string: abab)         U         CO3           23.         3         Explain leftmost or rightmost derivation for given string and grammar.         U         CO3           24.         3         Explain leftmost or rightmost derivation for given string and grammar.         U         CO3           25.         3 Dis   I   E   E   Id   E   Id   E   Id   E   Id   E   Id   Id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                                             |                |     |
| 21.         3         Discuss role of parser.         U         CO3           22.         3         Explain context free grammar with example.         R         CO3           22.         Sexplain leftmost and rightmost derivation with example.         Perform leftmost or rightmost derivation for given string and grammar.         U         CO3           23.         3         2. S→A1B. A→OA   ε B→OB   IB   ε (String: 1001)         U         CO3           24.         3. E→E+E   E <sup>TE</sup>   Id   (E)   -E (String: id+id*id)         A + S→ AS   Sa   ε (string: aa+a*)         U         CO3           25. S→SS+   SS* a (string: aa+a*)         Discuss Ambiguity with example.         S→ABA   A→AA   ε A→AA   Λ   ε A→AA   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A   ε A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |   | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                                                                             |                |     |
| 22.         3         Explain context free grammar with example.         R         CO3           23.         2         Explain leftmost and rightmost derivation with example.         U         CO3           23.         3         2.         S⇒ASIB   SaSI   ε (string: abab)         U         CO3           23.         3         2.         S⇒AIB   S⇒OSI   SI   ε (String: 1001)         A⇒OA   ε   B⇒OB   I (E)   - E (String: abaa')         U         CO3           24.         3         Discuss Ambiguity with example.         S⇒ASS   SSI   ε (string: aava'')         S⇒ABA   A⇒AA   ε   A⇒AA   Λ   A⇒AA   Λ   A⇒AA   ε   E   E   E   E   E   E   E   E   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                                             |                |     |
| Explain leftmost and rightmost derivation with example.  Or Perform leftmost or rightmost derivation for given string and grammar.  1. $S 	o aShS   bSaS   \epsilon (string: abab)$ 2. $S 	o A1B$ $A 	o 0A   \epsilon$ $B 	o 0B   1B   \epsilon (String: 1001)$ 3. $E 	o E 	o E   E 	o E   id   (E)   - E (String: id + id + id)$ 4. $S 	o aS   Sa   \epsilon (string: aa + a + a)$ Discuss Ambiguity with example.  S 	o a Sa bSS SSb SbS S 	o AABA A 	o AAA   \epsilon A \otimes AABA   \otimes \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                                             |                |     |
| Or   Perform leftmost or rightmost derivation for given string and grammar.   1.   S→aSbS   bSaS   ε (string: abab)   2.   S→A1B   A→0A   ε   B→0B   1B   ε (String: 1001)   3.   E→E+E   E*E   id   (E)   -E (String: id+id*id)   4.   S→aS   Sa   ε (string: aaaa*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22. | 3 | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                                                                             | R              | CO3 |
| Discuss Ambiguity with example. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23. | 3 | Or  Perform leftmost or rightmost derivation for given string and grammar.  1. $S \rightarrow aSbS \mid bSaS \mid \varepsilon \text{ (string: abab)}$ 2. $S \rightarrow A1B$ $A \rightarrow 0A \mid \varepsilon$ $B \rightarrow 0B \mid 1B \mid \varepsilon \text{ (String: 1001)}$ 3. $E \rightarrow E + E \mid E \neq E \mid id \mid (E) \mid -E \text{ (String: id+id*id)}$ 4. $S \rightarrow aS \mid Sa \mid \varepsilon \text{ (string: aaaa)}$ |             |                                                                                                             | U              | CO3 |
| 24. 3 $ \begin{array}{ c c c c c }\hline S \rightarrow a Sa bSS SSb SbS & S \rightarrow ABA, & S \rightarrow ABA \\ A \rightarrow aA \mid \epsilon & A \rightarrow aA \mid \Lambda \\ B \rightarrow bb \mid \epsilon & B \rightarrow bB \mid \Lambda \\ \hline S \rightarrow A \mid B & S \rightarrow S + S \mid S * S \mid a \mid b \\ A \rightarrow aAb \mid aabb & Write the unambiguous CFG based on precedence rules for the above grammar. Derive the parse tree for expression (a + a)*b \\ \hline 25. & 3 & Explain types of parsers. & U & CO3 \\ \hline 26. & 3 & Discuss backtracking with suitable example. & U & CO3 \\ \hline 26. & 3 & Discuss backtracking with suitable example. & U & CO3 \\ \hline 27. & A \rightarrow Abd \mid Aa \mid a & 1. S \rightarrow iEtS \mid iEtSeS \mid a \\ B \rightarrow Be \mid b & 2. A \rightarrow ad \mid a \mid ab \mid abc \mid x \\ 2. & A \rightarrow AB \mid AC \mid a \mid b \\ 3. & S \rightarrow A \mid B & A \rightarrow Ad \mid Ae \mid aB \mid aC \\ A \rightarrow ABC \mid Acd \mid a \mid aa & B \rightarrow bBC \mid f \\ C \rightarrow g & A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid x \\ A \rightarrow ABC \mid Acd \mid a \mid ab \mid abc \mid $ |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -           |                                                                                                             |                |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | S → ABA                                                                                                     |                |     |
| 24. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •           |                                                                                                             |                |     |
| 24. 3 $S \rightarrow A \mid B$ $A \rightarrow aAb \mid aabb$ Write the unambiguous CFG based on precedence rules for the above grammar. Derive the parse tree for expression $(a + a)*b$ U CO3  25. 3 Explain types of parsers. U CO3  26. 3 Discuss backtracking with suitable example. U CO3  Perform Left recursion and left factoring on given grammar. Left recursion Left factoring  1. $A \rightarrow Abd \mid Aa \mid a$ 1. $S \rightarrow \text{IETS} \mid \text{IETSES} \mid a$ $B \rightarrow \text{Be} \mid b$ 2. $A \rightarrow \text{Ad} \mid a \mid ab \mid abc \mid x$ 2. $A \rightarrow AB \mid AC \mid a \mid b$ 3. $S \rightarrow A$ 3. $S \rightarrow A \mid B$ 4. $A \rightarrow ABC \mid Ac \mid a \mid a$ B $A \rightarrow BC \mid Ac \mid a \mid a$ B $A \rightarrow BC \mid Ac \mid a \mid a$ B $A \rightarrow BC \mid Ac \mid a \mid a$ B $A \rightarrow BC \mid Ac \mid a \mid a$ B $A \rightarrow BC \mid Ac \mid a \mid a$ B $A \rightarrow BC \mid Ac \mid a \mid a$ B $A \rightarrow BC \mid Ac \mid a \mid a$ B $A \rightarrow BC \mid a$ CO3  28. 3 Explain Recursive Decent Parsing method. A CO3  Design LL(1) Parsing table for the given grammar.  1. $S \rightarrow aBa$ B $\rightarrow bB \mid \epsilon$ A CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •           | -                                                                                                           |                |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24. | 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •           | •                                                                                                           | Α              | CO3 |
| $ \begin{array}{ c c c c c } & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •           | • •                                                                                                         |                |     |
| Derive the parse tree for expression (a + a)*b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |   | -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                             |                |     |
| 26.       3       Discuss backtracking with suitable example.       U       C03         Perform Left recursion and left factoring on given grammar. Left recursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                             |                |     |
| Perform Left recursion and left factoring on given grammar.  Left recursion  1. A $\rightarrow$ Abd   Aa   a  B $\rightarrow$ Be   b  2. A $\rightarrow$ ad   a  ab   abc   x  2. A $\rightarrow$ AB   AC   a   b  3. S $\rightarrow$ A  3. S $\rightarrow$ A   B  A $\rightarrow$ ABC   Acd   a  aa  B $\rightarrow$ Bee   b  C $\rightarrow$ g  4. Exp $\rightarrow$ Exp+term   Exp-term    term  5. S $\rightarrow$ (L)   a  L $\rightarrow$ L, S   S  28. 3 Explain Recursive Decent Parsing method.  Design LL(1) Parsing table for the given grammar.  1. S $\rightarrow$ aBa  B $\rightarrow$ bB   $\epsilon$ A C03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25. | 3 | Explain types of parsers.                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                             | U              | CO3 |
| Left recursion  1. $A \rightarrow Abd \mid Aa \mid a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26. | 3 | Discuss backtracking with suitable example.                                                                                                                                                                                                                                                                                                                                                                                                          |             | ·.                                                                                                          | U              | CO3 |
| 28. 3 Explain Recursive Decent Parsing method. A CO3  Design LL(1) Parsing table for the given grammar.  1. $S \rightarrow aBa$ $B \rightarrow bB \mid \epsilon$ A CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27. | 3 | Left recursion  1. A→Abd   Aa   a                                                                                                                                                                                                                                                                                                                                                                                                                    | ū           | Left factoring  1. S→iEtS   iEtSeS   a  2. A→ ad   a   ab   abc   x  3. S→A  A→Ad   Ae   aB   aC  B→bBC   f | A              | СО3 |
| Design LL(1) Parsing table for the given grammar.  1. $S \rightarrow aBa$ $B \rightarrow bB \mid \epsilon$ A CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28. | 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                                             | A              | CO3 |
| 29. 3 1. $S \rightarrow aBa$<br>$B \rightarrow bB \mid \epsilon$ A CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20. |   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | mmar.                                                                                                       | <b>1</b> • • • | 300 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | • |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U           |                                                                                                             |                | con |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29. | 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                                             | A              | CO3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mmar is LL( | (1) or not.                                                                                                 |                |     |



|     |   | S→aB   € B→bC   € C→cS   €  3. Develop an LL(1) parser table for the following grammar and Parse the string using the parsing table: (id*id) + (id*id) E→TA A→+TA  € T→VB B→*VB  € V→id (E)  4. Develop an LL(1) parser table for following: S → iCtSeS   iCtS   a C→b  5. E→BA A→&BA  € B→true false 6. S → AaAb   BbBa A→ € B→€ 7. S→ aAB   bA   € A→ aAb   € B→bB   € 8. S→iCtSA   a A→eS   € C→b  9. S→ (L)   a L→ L,S   S  10. S→1AB   € A→1AC   0C B→0S |     |     |
|-----|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 30. | 3 | C→1 Define: Handle pruning and Handle.                                                                                                                                                                                                                                                                                                                                                                                                                        | R   | CO3 |
| 30. | J | Apply shift reduce parser for parsing given string using unambiguous grammar:                                                                                                                                                                                                                                                                                                                                                                                 | IV. | LUS |
| 31. | 3 | <ol> <li>id-id*id-id</li> <li>id+id*id</li> <li>id*id+id+id</li> <li>(id+id)*id</li> <li>id-id-id+id</li> </ol>                                                                                                                                                                                                                                                                                                                                               | A   | соз |
| 32. | 3 | Check the following grammar is operator grammar or not. Justify your answer.  Also prepare precedence matrix, and graph.  1. E→E+T T  T→T*F F  F→(E) id  2. E→EAE id  A→+ *  3. E→EOE  E→id  O→* + -                                                                                                                                                                                                                                                          | A   | CO3 |



|      |   |                                                                                   | Т  | ı          |
|------|---|-----------------------------------------------------------------------------------|----|------------|
|      |   | Design SLR parsing table for given grammar.                                       |    |            |
| 33.  |   | 1. S→AaBa   BbBa                                                                  |    |            |
|      |   | B→€                                                                               |    |            |
|      |   | A→€                                                                               |    |            |
|      | 3 | 2. E→ E+T   T                                                                     | Α  | CO3        |
|      | J | T→ TF   F                                                                         |    |            |
|      |   | F→ F*   a   b                                                                     |    |            |
|      |   | 3. E→ E+T   T                                                                     |    |            |
|      |   | $T \rightarrow T^*F \mid F$                                                       |    |            |
|      |   | $F \rightarrow (E) \mid id$                                                       |    |            |
|      |   | Design CLR parsing table for given grammar.                                       |    |            |
| 0.4  |   | 1. S→CC                                                                           |    | con        |
| 34.  | 3 | C→cC   d                                                                          | AC | CO3        |
|      |   | 2. S→aSA   €                                                                      |    |            |
|      |   | A→bS  c                                                                           |    |            |
|      |   | Design LALR parsing table for given grammar.  1. S→L=R                            |    |            |
|      |   |                                                                                   |    |            |
|      |   | S→R<br>L→*R                                                                       |    |            |
|      |   | L →id                                                                             |    |            |
| 35.  | 3 | R→L                                                                               | A  | CO3        |
|      |   | 2. S→Aa   bAc   dc   bda                                                          |    |            |
|      |   | A→d                                                                               |    |            |
|      |   | 3. S→CC                                                                           |    |            |
|      |   | C→ cC   d                                                                         |    |            |
| 36.  | 3 | Discuss YACC parser generator.                                                    |    | CO3        |
| 37.  | 3 | Explain Syntax directed definitions.                                              |    | CO3        |
| 38.  | 3 | Compare synthesized attribute v/s inherited attribute                             |    | CO3        |
|      |   | Design annotated parse tree for a given string.                                   |    |            |
|      |   | 1. 3*5+4n;                                                                        |    |            |
| 39.  | 3 | 2. (3+4)*(5+6)n;                                                                  | A  | CO3        |
|      |   | 3. 1*2*(3+4)n;                                                                    |    |            |
|      |   | Design Syntax directed definition to translates arithmetic expressions from infix | _  | 604        |
| 40.  | 4 | to prefix notation.                                                               | A  | CO4        |
| 41.  | 4 | Explain L-Attributed definition.                                                  |    | CO4        |
| 42.  | 4 | Explain syntax directed translation scheme with example.                          |    | CO4        |
| 43.  | 4 | Explain quadruple, triple, and indirect triple with example.                      |    | CO4        |
|      |   | Discuss various representations of three address code for a given example.        |    |            |
|      |   | 1. $(a = b * -c + b * -c)$                                                        |    |            |
|      |   | 2. a*-(b+c)                                                                       |    |            |
| 44.  | 4 | 3. a+a*(b-c)*d                                                                    | U  | CO4        |
|      |   | 4. ans=a+b*c/2.0                                                                  |    |            |
|      |   | 5. $x = -a * b + -a * b$                                                          |    |            |
|      |   | 6(a*b)+(c+d)-(a+b+c+d)                                                            |    |            |
| 45.  | 4 | Express following statement in form of DAG.                                       | U  | <b>CO4</b> |
| 1 -1 |   | 1. a=b*-c+b*-c                                                                    |    |            |



### Darshan Institute of Engineering & Technology BTech-SEM - VII | Question Bank 2101CS701 - Compiler Design | 2025

|     |   | 2 * (1) . (1) * 1                                                                  |   |            |
|-----|---|------------------------------------------------------------------------------------|---|------------|
|     |   | 2. $a + a * (b - c) + (b - c) * d$                                                 |   |            |
| 46. | 4 | Discuss source language issues.                                                    | U | CO4        |
| 47. | 4 | Explain activation record and activation tree.                                     | U | CO4        |
| 48. | 4 | Explain storage allocation strategies in brief.                                    | U | <b>CO4</b> |
| 49. | 5 | What is code optimization? Discuss its types.                                      | R | CO5        |
| 50. | 5 | Explain Machine independent code optimization techniques.                          | U | CO5        |
| 51. | 5 | Explain Machine dependent code optimization techniques.                            | U | CO5        |
| 52. | 5 | Explain peephole optimization.                                                     | U | CO5        |
| 53. | 5 | Discuss loop optimization.                                                         | U | CO5        |
| 54. | 5 | Discuss issues in code generation.                                                 | U | CO5        |
| 55. | 5 | Calculate instruction cost of given assembly code.                                 | A | CO5        |
| 56. | 5 | What is basic block? Write algorithm to partition a basic block.                   | U | CO5        |
| 57. | 5 | Discuss transformation on basic block.                                             | U | CO5        |
| 58. | 5 | Explain flowgraph with example.                                                    | U | CO5        |
| 59. | 5 | Describe code generation algorithm.                                                | U | CO5        |
| 60. | 5 | Design target code for given assignment statement using code generation algorithm. | U | CO5        |