General Chemistry 1 (CHEM 1141)

Shawnee State University - Fall 2018 December 6, 2018

Exam #4A

Name	KEY										
Please write your full name, and the exam version (4A) that you have on the scantron sheet! (Bubble in the best answer choice for each question on the green & white scantron sheet in pencil!)											
Please ☑ check t	he box next to your correct section number.										
Section #:	☐ 1. (Monday Lab, 10:00 AM – 12:53 PM) — Dr. Wendi Fleeman ☐ 2. (Wednesday Lab, 10:00 AM – 12:53 PM)										
	☐ 3. (Monday Lab, 2:00 PM – 4:53 PM) — Dr. Andy Napper ☐ 4. (Wednesday Lab, 2:00 PM – 4:53 PM)										
	☐ 6. (Tuesday Lab, 12:30 PM – 3:23 PM) — Dr. Daniel Finnen										
	Multiple Choice: / 50										
	Q21: / 10										
	Q22:/10										
	Q23:/10										
	Q24:/10										
	Q25:/10										
	BONUS:										
	TOTAL: / 100										

Each problem in this section (multiple choice) is worth 2.5 points!

What type of **orbital** is shown below? Q1.

- - · · · · · &

unpaired es

- Which of the following atoms will be **paramagnetic**? Q2.
 - A) He

Zunpaired es

- B) Mg 15²2s²2p⁶3s²
 (C) O) 15²2s²2p⁴
- D) Zn 152252pt 3523p64523d10
- What period three element has the following ionization energies (all in kJ/mol)? Q3.

 $IE_1 = 1012, IE_2 = 1900, IE_3 = 2910, IE_4 = 4960, IE_5 = 6270, IE_6 = 22,200$

A) Cl

huge jump! core e removed?

- (B) P
- [Ne] 35²3p³

 valence (easier to remove)

 core (hard to remove!)
- C) S D) Si

- The chemical equation corresponding to the electron affinity for nitrogen is: Q4.
 - A) $N_2(g) + 6e^- \rightarrow 2N^{3-}(g)$
 - B) $N(g) \to N^{+}(g) + e^{-}$
 - C) $N(g) \to N^{-}(g) + e^{-}$
 - D) $e^- + N(g) \to N^-(g)$

- et gassous atom -> gassous anion
 - $e^- + \times (g) \longrightarrow \times (g)$

What type of bond is best shown by the overlap below? Q5.

- A) sp^3
- B) sigma
- C) pi
 - D) delta

- The reason that all the nitrogen-oxygen bonds in the nitrate ion are the same length is Q6. best explained in terms of nitrate having:

 A) more than one resonance structure

 (i)

 (i)

 (ii)

 (iii)

 (iv)

 (iv
 - A) more than one resonance structure)
 - B) the lowest set of formal charges possible
 - C) the most electronegative element on the outside of the ion
 - D) an expanded octet

- Arrange the following atoms in terms of increasing Z_{eff} (effective nuclear charge, Q7. lowest < highest) for their valence electrons:
 - A) Na < Si < Cl
 - B) Kr < Pb < K
 - C) F < N < Al
 - D) C < Si < Al

- What is the formal charge on the **nitrogen atom** in the cyanate ion shown below? Q8.

- A)-2
- B) -1
 - C) o
 - D) +1

The most correct Lewis structure for the ozone (O₃) molecule is: Q9.

Q10. Which of the following bonds would be the **least polar**?

A) H-F
$$\Delta E_{N} = |2.1 - 4.0| = 1.9$$
 | Smallest ΔE_{N}

The compound shown below is found in safflowers and serves as the chemical defense Q11. against nematodes (roundworms).

The total number of pi (π) bonds in this compound is:

- Q12. Each of the following sets of quantum numbers is supposed to specify an orbital. Choose the one set of quantum numbers that does NOT contain an error.
 - A) $n = 2, l = 2, m_l = -1$
 - B) $n = 2, l \stackrel{\times}{=} 2, m_l = -3$
 - C) n = 3, l = 2, $m_l = -3$

- n: 1,2,3,...
- *l: 0, ..., n-1
- Me: -l, ..., 0, ..., +l
- Me: +1/2
- Q13. Give the complete electron configuration for Mn:
 - A) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 4d⁵
 - B) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ 3d⁶
 - C) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 4p⁵
 - D) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁵
- Q14. Consider the molecule below. Determine the molecular geometry at each of the three labelled atoms.

- A) 1 = trigonal planar, 2 = tetrahedral,
- B) 1 = tetrahedral,
- 2 = tetrahedral,
- 3 = tetrahedral

- C) 1 = trigonal planar,
- 2 = tetrahedral,
- 3 = tetrahedral

- D) 1 = tetrahedral.
- 2 = tetrahedral,
- 3 = trigonal planar
- radius (Zeff 1) Q15. Of the following, which atom has the <u>largest</u> atomic radius?
 - A) Li
 - B) F
 - C) Na
 - D) Cl

Q17. Place the following in order of increasing radius (smallest < largest).

Q18. Place the following elements in order of decreasing electronegativity

Q19. Identify the **least polar** (most non-polar) compound:

Q20. Identify the compound with an atom that has an incomplete octet:

Each problem in this section (short answer) is worth 10 points !

All work must be show in order to receive credit!

You must use the factor-label (conversion-factor) method for all conversions!

Be sure to include units where applicable!

All numeric answers must be rounded to the correct number of significant figures!

Q21. Write full electron-configurations for the following species:

A) F
$$(s^2 2s^2 2p^5)$$

Write the orbital diagram for oxygen, O

Q22. Write valid Lewis structures for the following species. Be sure to include the total number of valence electrons as part of your answer.

A)
$$NO_2^-$$
 total #valence e-s: 18

(also, show all resonance structures)

$$\left[: \ddot{\circ} - \ddot{\mathsf{N}} = \ddot{\circ} \right] \hookrightarrow \left[\ddot{\circ} = \ddot{\mathsf{N}} - \ddot{\circ} : \right]$$

(also, show formal charges for each atom, and **explain** how you calculated them)

Q23. Use bond energies to calculate ΔH^{o}_{rxn} for the chemical equation given below. Be sure to draw valid Lewis structures of all reactants and products as part of your answer. Clearly explain your calculation!

$$4H_{2}(g) + 2CO(g) \rightarrow O_{2}(g) + 2CH_{4}(g)$$

$$H-H : C \equiv 0: \qquad \Rightarrow \qquad \ddot{o} = \ddot{o} \qquad H-C-H$$

$$H-H : C \equiv 0: \qquad \Rightarrow \qquad \ddot{h} \qquad H$$

$$H-H : C \equiv 0: \qquad H$$

$$H-C-H : C \equiv 0: \qquad H$$

Q24. Fill in the blanks:

Four valid quantum numbers for an electron in a 3-p orbital are: (A)

m = -l, ..., 0, ..., +l

(B) Give the proper name for the following rules/principles:

• Electrons occupy lower-energy orbitals before filling up higher-energy ones: Auf ban principle. (Building-up principle)

- Electrons occupy different orbitals within a subshell with parallel spins, before pairing up in the same orbital: Hund's cule.
- Every electron in an atom must have a unique set of quantum numbers: Pauli exclusion principle.
- A fourth period element that is an exception to the usual rules of forming electron (C) configurations is: Cr 60 Cu and has an abbreviated (noble-gas core) electron configuration of: [Ar]4s13d5 (OP) [Ar]4s13d10

26 +4x7= 34e-Q25. Predict the molecular geometry and polarity of SCl₄. Your answer should include: ☐ A valid Lewis structure ☐ The total number of valence electrons ☐ A sketch of the geometry using line/dash/wedge notation ☐ The value of the bond angle(s) written out ☐ The name of the molecular geometry ☐ A clear explanation of why SCl₄ is polar or non-polar à-s-a: I = bond dipoles. Cl is more EN than S. 5 repulsions! > e geom is trigonal bipyramidal: lp goes equatorial, not axial
(2 lp-bp@90°) (3 lp-bp@90°) mol. geom = See Saw (where atoms are! 2 republicm: 3 republished. Bonus Question ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ ተ What type of hybrid orbitals are used on the carbon atoms in ethylene, C₂H₄? 3 rep -> 120° (trigonal planas)
-so need to use sp² hybridization!

Type of hybrid orbital:

Hrep 2 3 4 5 6

ethylene

This page is intentionally left blank

Useful Information:

Bond	Bond Enthalpy (kJ/mol)	Bond	Bond Enthalpy (kJ/mol)
н—н	436.4	С—Н	414
н-о	460	с—с	347
с-о	351	C = C	620
C=O	745 (average)	C≡C	812
C=0	799 (in CO ₂)	0-0	142
C≡O	1077	0=0	498.7

IA	IIA	Periodic Table of the Elements									IIIA	IVA	VA	VIA	VIIA	VIIIA	
1																	18
1																	2
Н																	He
1.008	2											13	14	15	16	17	4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.60	126.9	131.3
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	175.0	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt					1145				
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]

"Rats! I thought lanthanoids and actanoids were gonna be giant robots or something."