Fórmulas sobre Probabilidad y Variable Aleatoria

1. Probabilidad

1.1 σ-álgebra de eventos

Dado un espacio muestral S y una familia \mathscr{A} de subconjunto de S, esta familia será llamada σ -álgebra de eventos si tiene las propiedades siguientes:

- (\mathscr{A}_1) Si $A \in \mathscr{A} \Rightarrow A^C \in \mathscr{A}$
- (\mathscr{A}_2) $\emptyset \in \mathscr{A}$
- (\mathscr{A}_3) Si $A_1,A_2,\cdots,A_k,\cdots$ es cualquier sucesión numerable de eventos en \mathscr{A}_1 entor-

$$\operatorname{ces} \ \bigcup_{k=1}^{\infty} A_k \in \mathscr{A}$$

Propiedad 1 S ∈ Ad

Propiedad 2 Si A_1, A_2, \dots, A_N es una sucesión finita de eventos en \mathscr{A}_N entonces

$$\bigcup_{k=1}^N A_k \in \mathscr{A}$$

Propiedad 3 Si $A_1, A_2, \dots, A_k, \dots$ es cualquier sucesión numerable de eventos en \mathscr{A}_i

entonces
$$\bigcap_{k=1}^{\infty} A_k \in \mathscr{A}$$

Propiedad 4 Si A_1, A_2, \dots, A_N es una sucesión finita de eventos en \mathscr{A}_1 entonces

$$\bigcap_{k=1}^{N} A_k \in \mathscr{A}$$

Una familia definida según (\mathscr{A}) a (\mathscr{A}) , contiene a todos los eventos que podamos construir por unión e intersección de conjuntos, o sea \mathscr{A} es "cerrada" bajo estas operaciones.

1.2 Definición Axiomática de Probabilidad (Axiomas de Kolmogorov)

Sea S un espacio muestral asociado a un experimento aleatorio $\pmb{\epsilon}$, y sea $\mathscr A$ una σ -álgebra de eventos en S. Una probabilidad P definida sobre los eventos de S es una función que a cada evento A de la σ -álgebra, le asigna un número real, denotado P(A) y llamado Probabilidad de A, de modo que se satisfacen los axiomas:

- $(1) 0 \le P(A)$
- (2) P(S) = 1
- (3) Si $A_1,A_2,...A_n,...$ es una sucesión de eventos mutuamente excluyentes, entonces

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Propiedades de la Probabilidad

Proposición 1: $P(\emptyset) = 0$

Proposición 2: Si $A_1, A_2,...A_N$ es una sucesión de N eventos mutuamente excluyentes, entonces

$$P(\bigcup_{i=1}^{N} A_i) = \sum_{i=1}^{N} P(A_i)$$

FORMULAS EST-241 ESTADISTICA INFERENCIAL

Proposición 4: Si A y B son eventos arbitrarios, entonces:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Proposición 5: Si A y B son eventos tales que $A \subseteq B$, entonces:

$$P(A) \le P(B)$$

Corolario: En el contexto de la proposición anterior, se cumple:

$$0 \le P(A) \le P(B) \le 1$$

1.3 Probabilidad Geométrica

Sea un experimento aleatorio ${\bf \epsilon}$ consistente en tomar un punto al azar de un conjunto geométrico S que tiene una medida m(S) y sea A un evento del espacio muestral resultante. Si m(A) denota la medida de este evento, entonces la probabilidad de A es:

$$P(A) = \frac{m(A)}{m(S)}$$

1.4 Reglas de Conteo

• Principio de la Multiplicación

Si una 'operación' A puede realizarse u ocurrir de a maneras diferentes y otra 'operación' B puede realizarse de b maneras diferentes, entonces la operación compuesta AXB consistente en realizar A primero y luego realizar B, se puede realizar de (axb) maneras distintas.

• Principio de la Adición

Si una 'operación' A puede realizarse u ocurrir de a maneras diferentes y otra 'operación' B puede realizarse de b maneras diferentes, siendo ambas operaciones excluyentes, entonces la operación compuesta A ó B consistente en realizar A o realizar B pero no ambas, se puede realizar de (a+b) maneras distintas.

Permutaciones y Combinaciones

Factorial de un entero $N = N \times (N-1) \times (N-2) \times ... \times 3 \times 2 \times 1$. Adicionalmente definimos 0! = 1!

Proposición

El número total de Permutaciones de tamaño r tomadas de un conjunto con n elementos distintos es: $P_r^n = n!/(n-r)!$

Proposición (

El número total de de Combinaciones (subconjuntos) de tamaño r formadas a partir de un conjunto con n elementos es $C_r^n = n \sqrt[r]{(n-r)!} r!$

Serie geométrica: Si
$$-1 < r < r \Rightarrow \sum_{k=1}^{\infty} r^k = \frac{r}{1-r}$$
 y $\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$

Binomio de Newton:
$$(a+b)^n = \sum_{k=0}^n C_k^n a^k b^{n-k}$$

1.5 Probabilidad Condicional $P(B|A) = \frac{P(B \cap A)}{P(A)}$ = la probabilidad de B cuando S se reduce al evento A.

Regla del Producto
$$P(A \cap B) = P(B \mid A)P(A)$$
 y $P(A \cap B \cap C) = P(C \mid A \cap B)P(B \mid A)P(A)$

1.6 Independencia Dos eventos A y B se dicen Independientes si y sólo se cumple que $P(A\cap B)=P(A)P(B)$

1.7 Probabilidad Total

Sean $A_1,A_2,...,A_N$ eventos mutuamente excluyentes, todos con probabilidad positiva y tales que $\cup A_j = S$. Sea B otro evento de S. Entonces se cumple:

$$P(B) = \sum_{j} (B \mid A_{j}) P(A_{j})$$

1.8 Teorema de Baves

En el contexto del Teorema de Probabilidad Total, si además P(B)>0, entonce se cumple:

$$P(A_k \mid B) = \frac{P(B \mid A_k)P(A_k)}{\sum_{j} P(B|A_j)P(A_j)} \quad \forall k$$

2. Variable Aleatoria

2.1 Definición Si S es un espacio muestral, una variable aleatoria X, definida sobre S, es una función cuyo dominio es S y cuyo rángo es un conjunto de números reales que denotaremos R_Y .

2.1.2 Clasificación

Según R_X de una variable aleatoria X es **Continua si** R_X es un intervalo y X es **Discreta** Si R_X es un conjunto finito o numerable

2.2 Función de Probabilidad $P_{\rm v}(x)$

Si X es v.a. discreta, la función de probabilidad de X, es $P_{X}(x) = P(X = x)$

Propiedades de $P_{\chi}(x)$.

- (a) $0 \le P_X(x) \le 1$ $\forall x$
- (b) $\sum_{x \in R_x} P_x(x) = 1$ donde $x \in R_x$ indica que la suma se hace sobre todos los x que pertenecen a R_x
- (c) $P(X \in A) = \sum_{x \in A} P_X(x) \quad \forall A \subseteq R$

2.3 Función de Densidad

Si X es una v a. continua, una función de densidad de X, denotada $f_X(x)$, es una función no degativa y continua, tal que para todo intervalo $]a,b]\subseteq R_X$] se cumple:

$$P(a < X \le b) = \int_{a}^{b} f_X(x) dx$$

Propiedades

- (a) $0 \le f_X(x) \quad \forall x$
- (b) $\int_{-\infty}^{\infty} f_X(x) dx = \int_{R_X} f_X(x) dx =$
- (c) $P(X \in A) = \int_{A} f_{X}(x) dx$

FORMULAS EST-241 ESTADISTICA INFERENCIAL 2.4 Función de Distribución Acumulativa

Si X es una v.a., se define la Función de Distribución Acumulativa de X, denotada F_{Y} , mediante $F_{Y}(x)=P(X\leq x)$ $\forall x$ real

Propiedades de F_v(x)

- (1) $0 \le F_X(t) \le 1$ para todo t real.
- (2) $a < b \Rightarrow F_{y}(a) \le F_{y}(b)$
- (3) F_X es continua a la derecha ('diestro continua'), ie.

$$F_{X}(t) = Lim F_{X}(t+h)$$
 para todo t real

- (4) $\lim_{t \to \infty} F_x(t) = 0$ y $\lim_{t \to \infty} F_x(t) = 0$
- (5) $P[a < X \le b] = F_X(b) F_X(a)$
- (6) $P[X = b] = F_X(b) \lim_{b \to 0^+} F_X(b+h)$

Propiedades adicionales:

- (1) Si X es discreta, entonces $F_{X}\left(b\right)=\sum_{x,|x|\leq b}P_{X}\left(x\right)$
- (2) Si X es continua, entonces $\int_{-\infty}^{t} f_X(x) dx = F_X(t)$ para todo t real
- Si X es discreta con R_X = { $x_1, x_2, \ldots, x_{N-1}, x_N, \ldots$ } donde $x_1 < x_2 < \ldots < x_{N-1} < x_N \ldots$

Entonces
$$F_X(x_N) = \sum_{\substack{j=1 \ j=1}}^{N} (x_j)$$
 y también $P_X(x_N) = F_X(x_N) + F_X(x_{N-1})$

• Si X es continua, entonces $f_X(x) = F_X(x)$

2.5 Valor Esperado o Esperanza Matemática

Sea X variable aleatoria y H(X) una función de X:

$$E[H(X)] = \begin{cases} \sum_{x \in RX} H(x) P_X(x) & \text{si } X \text{ es Discreta} \\ \int_{-\infty}^{\infty} H(x) f_X(x) dx & \text{si } X \text{ es Continua} \end{cases}$$

La Media Poblacional $\mu = \mu_x = E(X)$

La Varianza Poblacional
$$\sigma^2 = \sigma_v^2 = V(X) := E[(X - \mu_v)^2]$$

Desigualdad de Tchebychev

X v.a. con media $\mu_{\scriptscriptstyle X}$ y desviación estándar $\sigma_{\scriptscriptstyle X}$. Sea k una constante positiva dada, entonces:

$$P[|X - \mu_X| < k\sigma_X] \ge 1 - \frac{1}{k^2}$$

Propiedad 1 E(c) = c.

Propiedad 2 $E[aH_1(X)+bH_2(X)]=aE[H_1(X)]+bE[H_2(X)]$. Corolarios

- (1) $V(X) = E(X^2) \mu_X^2$.
- (2) Si Y = a + bX $\forall X$, entonces E(Y) = a + bE(X) y $V(Y) = b^2V(X)$.

Función Generatriz de Momentos $M_{_X}(t) = E(e^{tX})$

Propiedades

- (1) $M_X^{(k)}(0) = E(X^k)$, si existe el valor esperado
- (2) X e Y variable aleatorias, entonces $M_X(t) = M_Y(t) \Leftrightarrow F_X = F_Y(t)$

Cálculo del valor esperado por desarrollo asintótico

Sea X v.a. con $E(X) = \mu$ y $V(X) = \sigma^2$. Sea H(X) función al menos dos veces diferenciable en $X = \mu$. Entonces se cumplen:

- a) $E[H(X)] \cong H(\mu) + \frac{H''(\mu)}{2}\sigma^2$
- b) $V[H(X)] \cong [H'(\mu)]^2 \sigma^2$

Fórmulas sobre las Principales Distribuciones

1. Distribución Binomial B(x;n,p)

$$P_X(x) = P(X = x) = C_x^n p^x q^{n-x}$$
 donde $x = 0,1,2,\dots,n$

$$E(X) = \mu_X = np$$
 ; $V(X) = \sigma_X^2 = npq$ Y $M_X(t) = (pe^t + q)^n$ $-\infty < t < \infty$

Uso

 $X=\ \#$ de veces que ocurre un determinado evento A sobre un total fijo de n repeticiones u observaciones independientes de un experimento.

Binomio de Newton: $(a+b)^n = \sum_{k=0}^n C_k^n a^k b^k$

2. <u>Distribución Geométrica</u> G(x;p)

$$P_X(x) = P(X = x) = pq^{x-1}$$
 $x = 1,2,3,...$

$$E(X) = \mu_X = 1/p$$
; $V(X) = \sigma_X^2 = q/p^2$ $_{Y} M_X(t) = \frac{pe^t}{1 - qe^t}$ $_{t < -\ln q}$.

Usc

 $X=\mbox{\#}$ de veces que se debe repetir un experimento hasta lograr que ocurra un determinado suceso A por primera vez.

Serie geometrica: Si $-1 < r < 1 \Rightarrow \sum_{k=1}^{\infty} r^k = \frac{r}{1-r}$ $Y = \sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$

3. Distribución de Pascal o Binomial Negativa Bn(x;r,p)

$$P_X(x) = P(X = x) = C_{r-1}^{x-1} p^r q^{x-r}$$
 $x = r, r+1, r+2, ...$

$$E(X) = \mu_X = r/p$$
 $V(X) = \sigma_X^2 = rq/p^2$.

Uso

X = # **de** veces que se debe repetir un experimento hasta lograr que ocurra un determinado suceso A por \mathbf{r} -ésima vez.

$$P_X(x) = P(X = x) = \frac{C_x^M C_{n-x}^{N-M}}{C^N}$$
 $x = 0,1,...,n$

$$E(X) = \mu_X = n \frac{M}{N} \quad V(X) = \sigma_X^2 = n(\frac{M}{N})(\frac{N-M}{N})(\frac{N-n}{N-1}) \quad M_X(t) \text{ es poco útil.}$$

Us

X=# de casos con una característica A de interés en una muestra de M casos tomados al azar y $\underline{\sin}$ reemplazo de una población de tamaño N de los cuales M en total tienen esa característica.

5. <u>Distribución de Poisson</u> $P(x;\lambda)$

$$P_X(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
 $x = 0,1,2,3,\dots$

$$E(X) = \mu_X = \lambda$$
; $V(X) = \sigma_X^2 = \lambda$ y $M_X(t) = e^{\lambda(e^t - 1)} - \infty < t < \infty$

Us

- Si $X \sim B(x; n, p)$, $n \to \infty$ y $p \to 0 \Rightarrow np \to \lambda$, entonces $B(x; n, p) \cong P(x; \lambda)$.
- ullet E evento que se presenta en puntos aleatorios del tiempo (o del espacio), tal que:
- (1) Para todo intervalo de longitud dt suficientemente pequeña, la probabilidad de observar una vez E es proporcional a dt, i.e.: $P(E \quad ocurre \quad una \quad vez \quad en \quad [t,t+dt]) = vdt \quad \forall \quad t \text{ real } (\varpi > 0) \; .$
- (2) Para todo intervalo de longitud dt suficientemente pequeña, la probabilidad de observar más de una vez E es nula i.e.: $P(E \quad ocurre \quad más \quad de \quad una \quad vez \quad en \quad [t,t+dt]) = 0 \; .$
- (3) Intervalos disjuntos son independientes en relación a la ocurrencia de ${\cal E}\,.$

Si t>0 es un valor dado y definimos X=# de veces que ocurre E en el intervalo $[0,t[\ \Rightarrow\ X\sim P(x;\lambda=wt)$ donde w= tasa de ocurrencias de E por unidad de tiempo.

6. Distribución Exponencial $Exp(x; \beta)$

$$f_X(x) = \beta e^{-\beta x} \quad x > 0$$

$$E(X) = \mu_X = 1/\beta$$
; $V(X) = \sigma_X^2 = 1/\beta^2$ $M_X(t) = (\frac{\beta}{\beta - t})$ $t < \beta$

Ųs

- Como un modelo en general
- En un proceso de Poisson, si T:= Tiempo que transcurre hasta que ocurre E por primera vez, entonces $T\sim Exp(t;\beta=w)$, donde w es la tasa de ocurrencias de E por unidad.

7. Distribución Gamma $\Gamma(x;\alpha,\beta)$

$$f_X(x) = \frac{x^{\alpha - 1} e^{-x/\beta}}{\beta^{\alpha} \Gamma(\alpha)} \quad x > 0$$

$$E(X) = \mu_X = \alpha\beta \quad ; \quad V(X) = \sigma_X^2 = \alpha\beta^2 \quad \text{y} \quad M_X(t) = \frac{1}{(1 - \beta t)^a} \quad \text{si} \quad t < \frac{1}{\beta}$$

Uso

- Como un modelo en general
- En un proceso de Poisson, si T:= Tiempo que transcurre hasta que ocurre por k-ésima vez, entonces $T \sim \Gamma(x; \alpha = k, \beta = 1/w)$

Función matemática Gamma
$$\Gamma(p) = \int\limits_0^\infty y^{p-1} e^y dy \quad p > 0$$

- (1) $\Gamma(p) = (p-1)\Gamma(p-1)$ p > 1
- (2) $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
- 8. Distribución Normal $N(\mu, \sigma^2)$

$$f_X(x) = \frac{e^{-(x-\mu)^2/2\sigma^2}}{\sqrt{2\pi}\sigma} \quad -\infty < x < \infty$$

$$E(X) = \mu_X = \mu$$
 , $V(X) = \sigma_X^2 = \sigma^2$ $M_X(t) = e^{i\mu_1 + \sigma^2}$ $-\infty < t < \infty$

Propiedad

$$X \sim N(\mu, \sigma^2)$$
 e $Y = a + bX \Rightarrow Y \sim N(a + b\mu, b^2\sigma^2)$

Usc

- Como un modelo en general
- Teorema del Límite Central $X_1, X_2, \cdots, X_n, \cdots$ variables aleatorias independientes con medias $\mu_1, \mu_2, \cdots, \mu_n, \cdots$ y varianzas $\sigma_1^2, \sigma_2^2, \cdots, \sigma_n^2, \cdots$ y $T \coloneqq \sum_{j=1}^n X_j$ donde el número n de sumandos es grande $(n \ge 30)$, $\Rightarrow T \sim N(\mu_T, \sigma_T^2)$, donde $\mu_T = \sum_{j=1}^n \mu_j$ y $\sigma_T^2 = \sum_{j=1}^n \sigma_j^2$
- $X \sim B(x;n,p)$ y n es "grande" $\Rightarrow P(X \le k) \approx P(Z \le \frac{k-np}{\sqrt{npq}})$
- 9. Distribución Lognormal $LogN(\mu, \sigma^2)$

$$f_X(x) = \frac{e^{-(\ln x - \mu)^2 / 2\sigma^2}}{x\sqrt{2\pi}\sigma}$$
 $x > 0$

 $X \sim LogN(\mu,\sigma^2) \Leftrightarrow \ln X \sim N(\mu,\sigma^2)$

$$\mu_{v} = E(X) = e^{\mu + \frac{1}{2}\sigma^{2}}; \quad \sigma_{X}^{2} = V(X) = e^{2\mu + 2\sigma^{2}} - e^{2\mu + \sigma^{2}} \quad y \quad E(X^{t}) = e^{i\mu + \frac{t^{2}}{2}\sigma^{2}}$$

• Como un modelo en general

- Teorema del Límite Central para productos: $W_1,W_2,\cdots,W_n,\cdots$ variables aleatorias positivas e independientes tales que existe $E(\ln W_j)$ y $V(\ln W_j)$ $\forall j$ y sea $W:=\prod_{j=1}^n W_j$ donde el número n de factores es grande $(n\geq 30)$, \Rightarrow $\ln W \sim N(\mu,\sigma^2)$, donde $\mu=\sum_{j=1}^n E(\ln W_j)$ y $\sigma^2=\sum_{j=1}^n V(\ln W_j)$
- 10. Distribución Uniforme $U(x; \alpha, \beta)$

$$f_X(x) = \frac{1}{\beta - \alpha}$$
 $\alpha \le x \le \beta$

$$E(X) = \mu_X = \frac{\alpha + \beta}{2}$$
; $V(X) = \sigma_X^2 = \frac{(\beta - \alpha)^2}{12}$. $M_X(t)$ es poco útil

Uso

Uso

- Como un modelo en general
- Se toma un punto al azar de $[\alpha,\beta]$ y X=Valor obtenido \Rightarrow $X\sim U(x;\alpha,\beta)$
- Si $Y \sim f_{Y}(y)$ y $X := F_{Y}(X) \Rightarrow X \sim U(x; 0, 1)$
- 11. Distribución beta $Beta(x; \alpha, \beta)$

$$f_x(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \ 0 \le x \le 1$$

$$E(X) = \mu_X = \frac{\alpha}{\alpha + \beta}$$
; $V(X) = \sigma_X^2 = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$. $M_X(t)$ es poco útil

IIeo

- Como un modelo para proporciones
- Función matemática Beta $B(\alpha,\beta)=\int_0^1 y^{\alpha-1}(1-y)^{\beta-1}dy=rac{\Gamma(\alpha)\,\Gamma(\beta)}{\Gamma(\alpha+\beta)}$

Fórmulas sobre Vector Aleatorio Bidimensional

3.1 Definición y Clasificación

Definición

Un vector aleatorio (X,Y) es un vector cuyas componentes son variables aleatorias X e Y definidas conjuntamente sobre el mismo espacio muestral. El conjunto de posibles parejas (X,Y) se denota R_{XY} y se llama Rango del vector (X,Y)

Clasificación

- (X,Y) se dice discreto si sus componentes son v.a. discretas
- (X,Y) se dice continuo si sus componentes son v.a. continuas
- (X,Y) es mixtos, si tiene una componente discreta y otra continua

3.2 Distribuciones Conjunta, Marginales y Condicionales

3.2.1 Caso discreto

Función de Probabilidad Conjunta

Si (X,Y) es vector aleatorio discreto, la función de probabilidad conjunta de (X,Y), denotada $P_{XY}(x,y)$, se define mediante:

$$P_{XY}(x, y) = P[(X = x) \cap (Y = y)]$$

Propiedades

- (a) $P_{XY}(x,y) \ge 0$
- (b) $\sum_{x} \sum_{y} P_{XY}(x, y) = 1$
- (c) $P[(X,Y) \in A] = \sum_{(x,y) \in A} P_{XY}(x,y)$

Función de Probabilidad Marginal

(X,Y) v.a.d, con función de probabilidad conjunta $P_{XY}(x,y)$, entonces La Función de Probabilidad Marginal de X es $P_X(x) = \sum P_{XY}(x,y)$

La Función de Probabilidad Marginal de Y es $P_{Y}(y) = \sum_{x} P_{XY}(x,y)$

Función de Probabilidad Condicional

Función de Probabilidad Condicional de Y dado que X=x, denotada $P_{Y\mid X}(y\mid x)$ es

$$P_{Y|X}(y|x) = \frac{P_{XY}(x,y)}{P_{X}(x)}$$
 con x valor dado tal que $P_{X}(x) > 0$

Function de Probabilidad Condicional de X dado que Y=y, denotada $P_{X|Y}(x|y)$ es

$$P_{X|Y}(x|y) = \frac{P_{XY}(x,y)}{P_{Y}(y)}$$
 con y valor dado tal que $P_{Y}(y) > 0$

3.2.2 Caso continuo

Función de Densidad Conjunta

Si (X,Y) es vector aleatorio continuo con rango R_{XY} , la función de densidad conjunta de (X,Y), denotada $f_{XY}(x,y)$ es una función continua tal que cumple: $f_{XY}(x,y) \geq 0 \; ; \; \iint\limits_{\mathbb{R}^2} f_{XY}(x,y) = 1 \; \; _{Y} \; P[(X,Y) \in A)] = \iint\limits_{\mathbb{R}^2} f_{XY}(x,y) \; \; \forall A \subseteq R_{XY}$

Nota (Integrales dobles)

1) Recordemos que si una función $f_{XY}(x,y)$ es continua sobre una región $A \subset R^2$ dada por $A = \{(x,y) \mid a \le x \le b, \ c \le y \le d\}$, entonces la integral doble $\iint_A f_{XY}(x,y)$

se calcula como una $\underline{\text{integral iterada}}$, primero sobre y luego sobre x, o también en el orden inverso (Teorema de Fubini). Esto es:

$$\iint\limits_A f_{XY}(x,y) = \int\limits_a^b \left[\int\limits_c^d f_{XY}(x,y) dy \right] dx = \int\limits_c^d \left[\int\limits_a^b f_{XY}(x,y) dx \right] dy.$$

FORMULAS EST-241 ESTADISTICA INFERENCIAL

2) También, si $A \subset \mathbb{R}^2$ se puede escribir como una región de fronteras definidas en términos de funciones, como $A = \{(x,y) \mid a \le x \le b, \ h_1(x) \le y \le h_2(x)\}$, entonces:

$$\iint_{A} f_{XY}(x, y) = \int_{a}^{b} \left[\int_{h_{1}(x)}^{h_{2}(x)} f_{XY}(x, y) dy \right] dx.$$

3) Análogamente, si $A \subset R^2$ es $A = \{(x,y) \mid g_1(y) \le x \le g_2(y), c \le y \le d\}$, entonces:

$$\iint_{A} f_{XY}(x, y) = \int_{c}^{d} \left[\int_{g_{1}(y)}^{g_{2}(y)} f_{XY}(x, y) dx \right] dy$$

Nótese finalmente que aunque en la definición se integra sobre todo R^2 , en la práctica la integral es sólo sobre R_{XY} , pues fuera de R_{XY} , $f_{XY}(x,y)=0$.

Función de Densidad Condicional

Función de Densidad Condicional de Y dado que X=x , denotada $f_{Y\mid X}(y\mid x)$ es

$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_X(x)}$$
 donde x es valor dado tal que $f_X(x) > 0$

Función de Densidad Condicional de X dado que Y = y, denotada $f_{X|Y}(x|y)$ es

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_{Y}(y)}$$
 donde y es valor dado tal que $f_{Y}(y) > 0$

3.2.3 Independencia

X e Y v.a. son independientes si:

$$P_{XY}(x, y) = P_X(x)P_Y(y)$$
 $\forall (x, y)$ (caso discreto)
 $f_{XY}(x, y) = f_Y(x)f_Y(y)$ $\forall (x, y)$ (caso continuo)

3.3 Valor Esperado

3.3.1 Definición

Si (X,Y) es vector aleatorio y H(X,Y) es una función de (X,Y), se define el Valor Esperado de H(X,Y), denotado E[H(X,Y)], mediante

$$E[H(X,Y)] = \begin{cases} \sum_{\substack{x \\ y \text{ of } X \text{ of } Y}} H(x,y) P_{XY}(x,y) & si \quad (X,Y) & es \quad discreto \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(x,y) f_{XY}(x,y) dx dy & si \quad (X,Y) & es \quad continuo \end{cases}$$

3.3.2 Casos Especiales

- $\mu_X := E[X] \quad \forall \mu_Y := E[Y]$ (medias poblacionales)
- $\sigma_X^2 \equiv V(X) := E[(X \mu_X)^2]$ y $\sigma_Y^2 \equiv V(Y) := E[(Y \mu_Y)^2]$ (varianzas poblacionales)

FORMULAS EST-241 ESTADISTICA INFERENCIAL

©Arturo Calderón G.

• $\sigma_{XY} \equiv Cov(X,Y) := E[(X-\mu_X)(Y-\mu_Y)]$ (Covarianza entre X e Y). Mide asociación **lineal** entre X e Y

Interpretación de σ_{yy} :

- $\sigma_{xy} > 0$ X e Y están asociadas directamente.
- $\sigma_{xy} < 0$ X e Y están asociadas inversamente.
- Si $\sigma_{XY}=0$, no hay relación lineal entre X e Y, aunque puede haber una relación no lineal

Coeficiente de Correlación de Pearson $\rho_{xy}=\frac{\sigma_{xy}}{\sigma_x\sigma_y}$, mide lo mismo que σ_{xy} per carece de unidades y está acotado entre -1 y 1

Propiedades de $ho_{\scriptscriptstyle XY}$

- $0 \le |\rho_{XY}| \le 1$
- $\rho_{yy} > 0$ indica asociación directa o positiva entre X e
- $ho_{XY} < 0$ indica asociación inversa o negativa entre X e
- $|\rho_{xy}|=1 \Leftrightarrow \text{Existen constantes } \alpha \text{ y } \beta \text{ tales que } Y=\alpha+\beta X$
- $|\rho_{YY}| \cong 1$ indica que entre X e Y hay asociación (lineal) 'fuerte'
- $|
 ho_{XY}|\cong 0$ indica que entre X e Y hay asociación (lineal) 'débil'

3.3.3 Propiedades del Valor Esperado

- E[C] = C para toda constante C
- Si $\alpha_1,\alpha_2,...,\alpha_n$ son constantes (o variables no aleatorias) y $H_1(X,Y),\ H_2(X,Y),$

... $H_n(X,Y)$ son funciones de (X,Y), entonces $E[\sum_{j=1}^n \alpha_j H_j(X,Y)] = \sum_{j=1}^n \alpha_j E[H_j(X,Y)]$

- Si X e Y son independientes entonces E[H(X)G(Y)] = E[H(X)]E[G(Y)]
- Cov(X,Y) = E[XY] E[X]E[Y]
- Si X e Y son independientes, entonces Cov(X,Y)=0
- Si $W = \alpha X + \beta Y$, donde α y β son constantes, entonces $\mu_W = E[W] = \alpha E[X] + \beta E[Y]$ y $\sigma_W^2 = V[W] = \alpha^2 V[X] + \beta^2 V[Y] + 2\alpha \beta Cov(X,Y)$

Propiedad:

Sean T = (X + Y) D = (X - Y) entonces:

- $\mu_T = \mu_X + \mu_Y$ $\sigma_T^2 = \sigma_X^2 + \sigma_Y^2 + 2\rho_{XY}\sigma_X\sigma_X$
- $\mu_D = \mu_X \mu_Y$ γ $\sigma_D^2 = \sigma_X^2 + \sigma_Y^2 2\rho_{XY}\sigma_X\sigma_X$

3.3.4 Esperanza Condicional E[Y | X]

$$E[H(X,Y) \mid X = x] = \begin{cases} \sum_{y} H(x,y) P_{Y|X}(y \mid x) & si \quad (X,Y) \quad es \quad discreto \\ \int_{-\infty}^{+\infty} H(x,y) f_{Y|X}(y \mid x) & si \quad (X,Y) \quad es \quad continuo \end{cases}$$

Casos especiales

• $\mu_{Y|X} = E[Y \mid X = x]$, es el valor esperado de Y en la distribución condicional de Y dado X = x. También se llama Función de Regresión de Y sobre X y

suele ser una función de X que se usa para pronosticar el valor de Y cuando se conoce el valor de X .

• $\sigma_{Y|X}^2 = V[Y \mid X = x] = E[Y^2 \mid X = x] - (E[Y \mid X = x])^2$, es la varianza condicional y mide la variación de Y alrededor de la función de regresión $E[Y \mid X] = \varphi(X)$

Propiedad

- $E(E[Y \mid X]) = E[\varphi(X)] = E[Y]$
- V(Y) = E(V[Y | X]) + V(E[Y | X])

3.3.5 Vector de Medias y Matriz de Varianza Covarianza

Vector de Medias y Matriz de Varianza-Covarianza

Sea
$$\begin{pmatrix} X \\ Y \end{pmatrix}$$
 vector aleatorio columna, el vector de medias de $\begin{pmatrix} X \\ Y \end{pmatrix}$ es $\mu = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}$ la matriz de varianza covarianza de $\begin{pmatrix} X \\ Y \end{pmatrix}$ es $\Sigma = \begin{pmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{pmatrix}$

Nota:

Se puede definir en general
$$E\begin{bmatrix} X \\ Y \end{bmatrix} := \begin{pmatrix} E(X) \\ E(Y) \end{pmatrix}$$
 y si $M = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$ es matriz aleatoria, definimos $E(M) = \begin{pmatrix} E(X_{11}) & E(X_{12}) \\ E(X_{21}) & E(X_{21}) \end{pmatrix}$.

Propiedad

•
$$\Sigma = \begin{pmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{pmatrix} = E \left[\begin{pmatrix} X - E(X) \\ Y - E(Y) \end{pmatrix} (X - E(X), Y - E(Y)) \right]$$

• $U_{2x1} = \begin{pmatrix} X \\ Y \end{pmatrix}$ vector aleatorio con vector de medias μ_U y matriz de varianza covarianza Σ_U ; sean $A_{2x2} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ y $B_{2x1} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ matrices dadas. Si

definimos el vector $V_{2\text{XI}} = AU + B$ (o sea $V_{2\text{XI}} = \begin{pmatrix} W \\ Z \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$),

entonces el vector de medias de V es $\mu_V = A\mu_U + B$ y su matriz de varianza covarianza es $\Sigma_V = A\Sigma_U A^T$ respectivamente.

3.4 Vector Aleatorio n-dimensional

Definición

Un vector cuyas componentes son n variables aleatorias definidas conjuntamente

- Un vector aleatorio n-dimensional (fila) es de la forma $\bar{\mathbf{X}}_{1m} = (X_1, X_2, ..., X_n)$
- vector aleatorio n-dimensional (columna) es de la forma $\vec{\mathbf{X}}_{n\times 1} = (X_1, X_2, ..., X_n)^T$.

Matriz aleatoria

Una matriz aleatoria M de orden $n \times m$ es una matriz $M = (M_{ii})_{m,m}$ de $n \times m$ variables aleatorias M_{ii} i=1,2,...,m definidas conjuntamente sobre mismo espacio muestral S .

Vector particionado

Cuando se tiene un vector aleatorio $X_{m,1} = (X_1, X_2, ..., X_n)^T$, a veces es útil separar partes de él, por ejemplo $X_{nxl} = (X_1, \dots, X_n, X_{n+1}, \dots, X_n)^T$ donde las primeras p componentes forman un subvector $X_{px1} = (X_1, \dots, X_p)^T$ de orden px1 y el resto de (n-p) components un subvector $X_{(n-p)x1} = (X_{p+1}, \cdots, X_n)^T$. En este contexto se escribe $X_{nx1} = (X_1 : X_2)^T$ donde $X_1 = (X_1, \dots, X_p)^T$ y $X_2 \neq (X_{n+1}, \dots, X_n)^T$. O más explícitamente, en formato de vector columna:

$$X_{nx1} = \begin{pmatrix} X_1 \\ \vdots \\ X_p \\ \cdots \\ X_{p+1} \\ \vdots \\ X_n \end{pmatrix} = \begin{pmatrix} X_1 \\ \cdots \\ X_2 \end{pmatrix} \text{ donde } X_1 = \begin{pmatrix} X_1 \\ \vdots \\ X_p \end{pmatrix} \times X_2 = \begin{pmatrix} X_{p+1} \\ \vdots \\ X_n \end{pmatrix}.$$

3.4.1 Distribuciones

Las nociones de distribución conjunta $f_{X_i,X_i,...X_n}(x_1,x_2,...,x_n)$; distribuciones marginales $f_{X_i}(x_1), f_{X_i}(x_2), ..., f_{X_i}(x_n)$; y condicionales $f_{X_i|X_i}(x_i|x_i)$, son extensiones directas del caso bivariado. En particular es importante:

Definición de Independencia.

 $X_1, X_2, ..., X_n$ se dicen independientes si:

$$f_{X_1 X_2 \dots X_n}(x_1, x_2, \dots, x_n) = f_{X_1}(x_1) f_{X_2}(x_2) \dots f_{X_n}(x_n) \equiv \prod_{i=1}^n f_{X_i}(x_j)$$

En verdad, se necesita que esta regla se cumpla con todos los subconjuntos de omponentes del vector, por ejemplo, debe cumplirse que $f_{X_1X_2}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2); \quad f_{X_1X_2X_3}(x_1,x_2,x_3) = f_{X_1}(x_1)f_{X_2}(x_2)f_{X_3}(x_3); \text{ etc.}$

En términos de vector particionado se escribe

• La función de distribución conjunta $f_{X,X_0,X}(x_1,x_2,\ldots,x_n) \equiv f_{X,X_0}(x_{n+1}) \equiv f_{X,X_0}(x_1,x_2)$,

- donde en la última expresión $X_1 \in \mathbb{R}^p$ y $X_2 \in \mathbb{R}^{n-p}$ son subvectores
- La distribución marginal del subvector $X_1 \in \mathbb{R}^p$ como $f_{X_1}(x_1,...,x_p) \equiv f_{X_{m1}}(x_{px1}) \equiv f_{X_1}(x_1)$

FORMULAS EST-241 ESTADISTICA INFERENCIAL

- La distribución marginal del subvector $X_2 \in \mathbb{R}^{n-p}$ como $f_{X_2}(x_{n+1},...,x_n) \equiv f_{X_{(n-p)\times 1}}(x_{(n-p)\times 1}) \equiv f_{X_2}(x_2)$
- La distribución condicional del subvector $X_i \in \mathbb{R}^p$, dado el subvector $X_2 \in R^{n-p}$, como $f_{X_1 \mid X_2}(x_1 \mid X_2) = \frac{f_{X_1 X_2}(x_1, x_2)}{f_{Y_1}(x_2)}$
- $X_1 \in \mathbb{R}^p$ y $X_2 \in \mathbb{R}^{n-p}$ son independientes si $f_{X_1X_2}(x_1, x_2) = f_{X_1}(x_1) f_{X_2}(x_2)$

3.4.2 Valor Esperado

- Media Poblacional de la componente X_i de $\vec{\mathbf{X}}$ $\mu_i \equiv \mu_{X_i} := E[X_i]$
- Varianza Poblacional de la componente X_i de $\bar{\mathbf{X}}$ $\sigma_i^2 = \sigma_X^2 := V[X_i] = E[(X_i \mu_i)^2]$
- Covarianza Poblacional entre las componentes X_i y X_i de $\hat{\mathbf{X}}$: $\sigma_{ij} \equiv \sigma_{X \cdot X} \equiv Cov(X_i, X_j) := E[(X_i - \mu_i)(X_j - \mu_j)]$
- Coeficiente de Correlación Lineal de Pearson entre X_i y X_i $\rho_{ij} \equiv \rho_{X_i X_j} := \frac{\sigma_{ij}}{\sigma_i \sigma}$
- Vector de Medias del vector (columna) $\vec{X} = (X_1, X_2, ..., X_n)^T$:

$$\mathbf{\mu}_{\widehat{\mathbf{x}}} = \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_n \end{bmatrix}_n$$

• Matriz de Varianza-covarianza del vector (columna) $\vec{\mathbf{X}} = (X_1, X_2, ..., X_n)^T$:

$$\Sigma_{j} = \left(\sigma_{ij}\right)_{n \times n} = \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} & \dots & \sigma_{1n} \\ \sigma_{21} & \sigma_{2}^{2} & \dots & \sigma_{2n} \\ \vdots & \vdots & \dots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_{n}^{2} \end{pmatrix}_{n \times n}$$

- Varianza Generalizada $VG := Det(\Sigma_{\bar{\mathbf{x}}}) = |\Sigma_{\bar{\mathbf{x}}}|$
- Vector de Medias del vector particionado $X_{nx1} = \begin{pmatrix} X_1 \\ \cdots \end{pmatrix}$. Se define mediante

$$\mu_{\mathbf{X}} = E(X_{nx_1}) = \begin{pmatrix} E(X_1) \\ \cdots \\ E(X_2) \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \cdots \\ \mu_2 \end{pmatrix} \text{ donde } \mu_1 = E(X_1) = \begin{pmatrix} E(X_1) \\ \vdots \\ E(X_p) \end{pmatrix} \text{ y } \mu_2 = E(X_2) = \begin{pmatrix} E(X_{p+1}) \\ \vdots \\ E(X_{n-p}) \end{pmatrix}$$

• Matriz de Varianza-covarianza del vector particionado $X_{nx1} = \begin{pmatrix} X_1 \\ \cdots \\ X_2 \end{pmatrix}$

$$\boldsymbol{\Sigma}_{\boldsymbol{X}} = \left(\boldsymbol{\sigma}_{ij}\right)_{n \times n} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix}_{n \times n} \quad \text{donde} \quad \boldsymbol{\Sigma}_{11} = \begin{pmatrix} \boldsymbol{\sigma}_{1}^{2} & \boldsymbol{\sigma}_{12} & \cdots & \boldsymbol{\sigma}_{1p} \\ \boldsymbol{\sigma}_{21} & \boldsymbol{\sigma}_{2}^{2} & \cdots & \boldsymbol{\sigma}_{2p} \\ \vdots & \vdots & & \vdots \\ \boldsymbol{\sigma}_{p1} & \boldsymbol{\sigma}_{p2} & \cdots & \boldsymbol{\sigma}_{p}^{2} \end{pmatrix}, \quad \boldsymbol{\Sigma}_{12} = \begin{pmatrix} \boldsymbol{\sigma}_{1(p+1)} & \cdots & \boldsymbol{\sigma}_{1n} \\ \boldsymbol{\sigma}_{2(p+1)} & \cdots & \boldsymbol{\sigma}_{2n} \\ \vdots & \vdots & \vdots \\ \boldsymbol{\sigma}_{p(p+1)} & \cdots & \boldsymbol{\sigma}_{pn} \end{pmatrix}$$

$$\Sigma_{21} = \begin{pmatrix} \sigma_{(p+1)1} & \cdots & \sigma_{(p+1)p} \\ \sigma_{(p+2)1} & \cdots & \sigma_{(p+2)p} \\ \vdots & \vdots & \vdots \\ \sigma_{n1} & \cdots & \sigma_{np} \end{pmatrix} \quad \text{y} \quad \Sigma_{22} = \begin{pmatrix} \sigma_{(p+1)(p+1)}^2 & \sigma_{(p+1)(p+2)} & \cdots & \sigma_{(p+1)n} \\ \sigma_{(p+2)(p+1)} & \sigma_{(p+2)(p+2)}^2 & \cdots & \sigma_{(p+2)n} \\ \vdots & \vdots & & \vdots \\ \sigma_{n(p+1)} & \sigma_{n(p+2)} & \cdots & \sigma_{np}^2 \end{pmatrix}. \quad \text{Nótese que } \Sigma_{11} \text{ es}$$

la matriz de varianza-covarianza de X_1 , Σ_{22} la matriz de varianza-covarianza de X_2 y $\Sigma_{12}=\Sigma_{21}^T$ es la matriz de covarianzas entre X_1 y X_2 .

Valor esperado de una matriz aleatoria

Sea M una matriz aleatoria de orden $n \times m$, $E(M) = \left(E(M_{ij})\right)_{n \times m}$

Propiedad

Si X_{nxl} es vector columna con vector de medias μ_X y matriz de varianza covarianza Σ_X , entonces se cumple que $\Sigma_X = E[(X - \mu_X)(X - \mu_X)^T]$.

Propiedad

Si $X_1 \in R^p$ y $X_2 \in R^{n-p}$ son vectores aleatorios columna con vectores de medias μ_1 y μ_2 respectivamente, entonces la matriz de covarianza Σ_{12} satisface $\Sigma_{12} = E \big[(X_1 - \mu_1)(X_2 - \mu_2)^T \big]$. Análogamente $\Sigma_{21} = E \big[(X_2 - \mu_2)(X_1 - \mu_1)^T \big]$

Propiedad

 $\Sigma_{\bar{\mathbf{X}}}$ es simétrica y semidefinida positiva, esto es $Y^T\Sigma_{\bar{\mathbf{X}}}Y\geq 0$ para todo vector no nulo $Y\in R^n$

Proposición

Sea \vec{X} vector aleatorio y sean $H_1(\vec{X}), H_2(\vec{X}), \dots, H_k(\vec{X})$ k funciones reales de \vec{X} (esto es $H_j: R^n \to R$). Sean $\alpha_1, \alpha_2, \dots, \alpha_k$ constantes (o también variables pero no aleatorias), entonces se cumple $E[\sum_{j=1}^k \alpha_j H_j(\vec{X})] = \sum_{j=1}^k \alpha_j E[H_j(\vec{X})]$

Proposición

Sea \vec{X} vector aleatorio y sean $H_1(\vec{X}), H_2(\vec{X}), ..., H_k(\vec{X})$ k funciones vectoriales de \vec{X} (esto es $H_j: R^n \to R^m$). Sean $\alpha_1, \alpha_2, ..., \alpha_k$ constantes (o también variables, pero no aleatorias), entonces se cumple $E[\sum_{i=1}^k \alpha_i H_j(\vec{X})] = \sum_{i=1}^k \alpha_i E[H_j(\vec{X})]$

Sea \vec{X} vector aleatorio n-dimensional $\vec{X}_{1:n} = (X_1, X_2, ..., X_n)$ de componentes **inde-**

pendientes entonces
$$E[\prod_{j=1}^{n} H_{j}(X_{j})] = \prod_{j=1}^{n} E[H_{j}(X_{j})]$$

Corolario

Sea \vec{X} vector aleatorio n-dimensional $\vec{X}_{1:n} = (X_1, X_2, ..., X_n)$ tal que sus componentes son independientes, entonces se cumple $\sigma_{ii} = Cov(X_i, X_j) = 0$

Proposición

Sea $\bar{\mathbf{X}}$ vector aleatorio n-dimensional $\bar{\mathbf{X}}_{1xn}=(X_1,X_2,...,X_n)$ y sean $\alpha_1,\alpha_2,\cdots,\alpha_n$ constantes (o también variables no aleatorias). Entonces:

•
$$E[\sum_{j=1}^{n} \alpha_j X_j] = \sum_{j=1}^{n} \alpha_j E[X_j]$$
 y $V[\sum_{j=1}^{n} \alpha_j X_j] = \sum_{j=1}^{n} \alpha_j^2 V[X_j] + 2\sum_{i < j} \alpha_i \alpha_j Cov(X_i, X_j)$

Corolario

Si
$$X_1, X_2, ..., X_n$$
 son independientes, entonces $E[\sum_{j=1}^n \alpha_j X_j] = \sum_{j=1}^n \alpha_j E[X_j]$ y

$$V[\sum_{j=1}^{n} \alpha_{j} X_{j}] = \sum_{j=1}^{n} \alpha_{j}^{2} V[X_{j}]. \text{ En particular } E[\sum_{j=1}^{n} X_{j}] = \sum_{j=1}^{n} E[X_{j}] \text{ v } V[\sum_{j=1}^{n} X_{j}] = \sum_{j=1}^{n} V[X_{j}]$$

Nota

Si
$$X_1, X_2, ..., X_n$$
 son independientes, entonces $E(\prod_{j=1}^n X_{j,j}) = \prod_{j=1}^n E(X_j)$ pero no ocurre lo

mismo con las varianzas, esto es: $V(\prod_{j=1}^{n} X_{j}) \neq \prod_{j=1}^{n} V(X_{j})$

Proposición

Si $A_{\scriptscriptstyle nxm}$ es matriz constante (o po aleatoria) entonces $E(A_{\scriptscriptstyle nxm})=A_{\scriptscriptstyle nxm}$

Proposición

Si A_{nxq} es matriz de constante (o no aleatoria) y M_{qxm} es matriz aleatoria entonces $E(A_{nxq}M_{qxm})=A_{nxq}E(M_{qxm})$. O en notación más simple E(AM)=AE(M).

Proposición

Si C_{pxm} es matriz de constante (o no aleatoria) y M_{nxp} es matriz aleatoria entonces $E(M_{nxp}C_{pxm})=E(M_{nxp})C_{pxm}$. O en notación más simple E(MC)=E(M)C. En general podemos escribir E(AMC+B)=AE(M)C+B donde A, B y C son matrices no aleatorias y M es matriz aleatoria.

Proposición

Sea $\vec{X}_{m\tau}$ vector columna con vector de medias $\mu_{\vec{X}}$ y matriz de varianza covarianza $\Sigma_{\vec{X}}$. Sea \vec{Y}_{mx1} otro vector tal que $\vec{Y}_{mx1} = A_{mxn} \vec{X}_{nx1} + B_{mx1}$ donde A_{mxn} y B_{mx1} son no aleatorias. Entonces $\mu_{\vec{Y}} = A \mu_{\vec{Y}} + B$ y $\Sigma_{\vec{Y}} = A \Sigma_{\vec{Y}} A^T$

Propiedad

Si \vec{X}_{nx1} tiene componentes con distribución normal con vector de medias $\mu_{\vec{X}}$ y matriz de varianza covarianza $\Sigma_{\vec{X}}$ y $\vec{Y}_{mx1} = A_{mxn} \vec{X} + B_{mx1}$ entonces \vec{Y}_{mx1} tiene componentes con distribución normal con $\mu_{\vec{Y}} = A \mu_{\vec{X}} + B$ y $\Sigma_{\vec{Y}} = A \Sigma_{\vec{X}} A^T$

Fórmulas sobre Muestreo y Estadísticas

4.1.1 Población

Si $X \sim f_X(x)$ variable aleatoria con rango R_X . La Población de X se define como el conjunto $\big\{(x,f_X(x))\,\big|\,x\in R_X\big\}$.

4.1.2 Muestra Aleatoria

Si X es variable aleatoria, una muestra aleatoria de tamaño n (m.a.) es un vector aleatorio n-dimensional $(X_1, X_2, ..., X_n)$ cuyas componentes representan el proceso de repetir n veces, y de manera independiente, el experimento aleatorio que genera a X, registrando los valores obtenidos.

Se cumple

- $R_X = R_{X_j}$; $f_{X_i}(x_j) = f_X(x_j)$ y $F_{X_i}(x_j) = F_X(x_j)$ $\forall j$
- $f_{X_1X_2...X_n}(x_1, x_2, ..., x_n) = f_{X_1}(x_1)f_{X_2}(x_2)...f_{X_n}(x_n) = f_{X_n}(x_1)f_{X_n}(x_2)...f_{X_n}(x_n) \equiv \prod_{i=1}^n f_{X_i}(x_i)$
- X₁,X₂,...,X_n son independiente e idénticamente distribuidas, lo que se denota i.i.d.

4.1.3 Estadística

Es una función $h(X_1, X_2, ..., X_n)$ que sólo depende de las componentes de la muestra aleatoria $(X_1, X_2, ..., X_n)$.

4.2 Propiedades de estadísticas importantes

•
$$\overline{X} := \frac{\sum_{j=1}^{n} X_{j}}{n}$$
 es la media muestral

•
$$S^2 := \frac{\sum_{j=1}^n (X_j - \overline{X})^2}{n-1} = \frac{\sum_{j=1}^n X_j^2 - n\overline{X}^2}{n-1}$$
 es la varianza muestral

Propiedad :

Si $(X_1,X_2,...,X_n)$ es m.a. tomada de la población de una v.a. X con media μ y varianza σ^2 , enconces $E[\overline{X}] = \mu$ y $V[\overline{X}] = \frac{\sigma^2}{n}$

Observación:

$$E(M_k) = m_k \text{ y } V(M_k) \frac{m_{2k} - (m_k)^2}{n}$$

Propiedad 2

$$E(S^2) = \sigma^2$$

Propiedad 3 (Ley de los Grandes Números para \overline{X})

Si $(X_1,X_2,...,X_n)$ es m.a. tomada de la población de una v.a. X con media μ y varianza σ^2 , entonces $\lim_{n\to\infty}P(|\overline{X}-\mu|\!\!\leq\!\!\varepsilon)\!=\!1$

Propiedad 4 (Teorema Central del Límite para \overline{X})

FORMULAS EST-241 ESTADISTICA INFERENCIAL

Sea $(X_1,X_2,...,X_n)$ m.a. tomada de la población de una v.a. X con media μ y varianza σ^2 finitas, entonces si n es suficientemente grande $(n \ge 30)$, se cumple que $Z = \frac{\overline{X} - \mu}{\sigma} = \sqrt{n}(\frac{\overline{X} - \mu}{\sigma}) \sim N(0,1)$

4.3 Distribuciones Asociadas al Muestreo de una Distribución Normal $\underline{}$

4.3.1 Distribución de \overline{X}

Sea $(X_1, X_2, ..., X_n)$ m.a. tomada de la población de una v.a. $X \sim N(\mu, \sigma^2)$. En este contexto se cumple que $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$ $\forall n$

4.3.2 Distribución asociada a S^2 .

Distribución Ji-Cuadrado $\chi^2(k)$ y propiedades

Sea W v.a. con distribución Gamma $\Gamma(\alpha=\frac{k}{2},\beta=2)$ donde k es entero positivo, diremos entonces que W tiene distribución Ji-Cuadrado de parámetro k. Este caso particular de la Gamma, se denota $\chi^2(k)$, i.e. $\chi^2(k) \equiv \Gamma(\alpha=\frac{k}{2},\beta=2)$. El

entero k es el único parámetro y se llama "Grados de libertad" de la distribución. Como se trata de un caso particular de la Gamma, tiene todas sus propiedades:

•
$$f_W(w) = \Gamma(\alpha = \frac{k}{2}, \beta = 2) = \chi^2(k) = \frac{\frac{k^2 - 1}{2} e^{-w/2}}{2^{\frac{k}{2}} \Gamma(\frac{k}{2})}$$

•
$$E[W] = \alpha \beta = \frac{k}{2} 2 = k$$
, $V[W] = \alpha \beta^2 = \frac{k}{2} 2^2 = 2k$ y $M_W(t) = \left(\frac{1}{1 - 2t}\right)^{\frac{k}{2}}$ si $t < \frac{1}{2}$

Propiedad 1 (Relación con la distribución normal estándar)

Si $Z \sim N(0,1)$ y definimos $W = Z^2$, entonces $W \sim \chi^2(k=1)$

Propiedad 2 (Propiedad Reproductiva)

Si $W_1 \sim \chi^2(k_1)$ $\chi^2 \sim \chi^2(k_2)$ son independientes entonces $(W_1 + W_2) \sim \chi^2(k = k_2 + k_2)$

Distribución asociada a S²

Si de una distribución normal $N(\mu,\sigma^2)$ se toma una m.a. $(X_1,X_2,...,X_n)$ de tamaño n y $W=(n-1)S^2/\sigma^2$, entonces $W=(n-1)S^2/\sigma^2\sim \chi^2(k=n-1)$

Distribución de S2

Si de una distribución normal $N(\mu,\sigma^2)$ se toma una m.a. $(X_1,X_2,...,X_n)$ de tamaño n, entonces $S^2 \sim \Gamma(\alpha=\frac{n-1}{2},\beta=\frac{2\sigma^2}{n-1})$

Corolario:

$$E[S^{2}] = \alpha \beta = \left(\frac{n-1}{2}\right) \left(\frac{2\sigma^{2}}{n-1}\right) = \sigma^{2} \quad \text{y} \quad V[S^{2}] = \alpha \beta^{2} = \left(\frac{n-1}{2}\right) \left(\frac{2\sigma^{2}}{n-1}\right)^{2} = \frac{2\sigma^{4}}{n-1}$$

4.4 Otras distribuciones importantes.

4.4.1 Distribución t de Student

Definición (Variable T de Student)

Sean $Z \sim N(0,1)$ y $W_1 \sim \chi^2(k)$ independientes. Se define la variable T, llamada variable t de Student, mediante: $T = \frac{Z}{\sqrt{W}}$

Proposición (Distribución t de Student)

La función de densidad de T es $f_T(t) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{k\pi}\Gamma(\frac{k}{2})}(1+\frac{t^2}{k})^{\frac{k+1}{2}}$ $-\infty < t < \infty$

siendo k parámetro de la distribución.

Propiedad

Si de una distribución normal $N(\mu,\sigma^2)$ se toma una m.a. $(X_1,X_2,...,X_n)$ de tamaño n y se define la variable t mediante $t=\frac{(\overline{X}-\mu)}{\sqrt{n}}$ entonces $t\sim t(k=n-1)$

4.4.2 Distribución F de Fisher

Definición (Variable F)

Sean V con distribución $\chi^2(k_1)$ y W con distribución $\chi^2(k_2)$, variables independientes. Se define la variable F mediante $F = \frac{V/k_1}{W/k_2}$.

Proposición (Distribución F de Fisher)

 $\text{La función de densidad de } F \text{ es } g_F(f) = \frac{\Gamma(\frac{k_1 + k_2}{2})}{\Gamma(\frac{k_1}{2})\Gamma(\frac{k_2}{2})} k_1^{\frac{k_1}{2}} k_2^{\frac{k_2}{2}} \frac{f^{\frac{k_1-k_2}{2}}}{(k_1 + k_2 f)^{\frac{k_1+k_2}{2}}}, \ f > 0$

 $k_{\rm l}$ es llamado "grados de libertad del numerador" y $k_{\rm 2}$ es llamado "grados de libertad del depominador".

Notación: $F \sim F(k_1, k_2)$

Propiedad

F tiene distribución $F(k_{\!\scriptscriptstyle 1},k_{\!\scriptscriptstyle 2})$ si y sólo si 1/F tiene distribución $F(k_{\!\scriptscriptstyle 2},k_{\!\scriptscriptstyle 1})\,.$

Propiedad

Sean Y_1 con distribución $N(\mu_1, \sigma_1^2)$ e Y_1 con distribución $N(\mu_2, \sigma_2^2)$ y sean S_1^2 y S_2^2 varianzas de respectivas muestras independientes de tamaños n y m. Entonces $F := \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n-1, m-1)$.

Propiedad

Si $T \sim t(k)$, entonces $T^2 \sim F(1,k)$

5.1 Definiciones básicas

FORMULAS EST-241 ESTADISTICA INFERENCIAL

Sea $X \sim f_{_X}(x;\theta)$ donde θ es parámetro o vector de parámetros de valor desconocido.

Fórmulas sobre Estimación Puntual

Espacio Paramétrico Θ es el conjunto de valores posibles para heta

Espacio de Información X es el conjunto de todas las muestras posibles de tamaño n $(X_1, X_2, ..., X_n)$

5.2 Estimador y Valor Estimado

Estimador

Un estimador de un parámetro θ es una estadística $\hat{\theta} = \hat{\theta}(X_1, X_2, ..., X_n)$ cuyo valos una vez tomada la m.a. se usa como aproximación de θ

Valor Estimado o Estimación

Es un valor particular del estimador $\theta = \theta(X_1, X_2, ..., X_n)$

5.3 Propiedades de un Buen Estimador

5.3.1 Insesgamiento

 $\hat{\theta}$ se dice Insesgado si $E(\hat{\theta}) = \theta \quad \forall \theta \in \Theta$

5.3.2 Eficiencia

Sean θ y $\tilde{\theta}$ dos estimadores <u>insesgados</u> del mismo parámetro θ . Diremos que $\hat{\theta}$ es más eficiente que $\tilde{\theta}$ si $V(\hat{\theta})\!<\!V(\tilde{\theta})$

Mejor Estimador Lineal Insesgado (MELI)

 $\hat{ heta}$ estimador de heta se dice Mejor Estimador Lineal Insesgado (MELI) de heta si:

$$(1) \qquad \hat{\theta} = \sum_{i=1}^{n} \alpha_{i} X_{j}$$

- (2) $E[\hat{\theta}] = \theta \quad \forall \theta \in \Theta$
- (3) $\hat{\theta}$ es de ${f varianza}$ ${f minima}$ en relación a cualquier otro estimador lineal e insesgado de ${f \theta}$

Construir el MELI equivale a resolver el Problema de optimización:

$$\min_{\alpha_j} V(\sum_{j=1}^n \alpha_j X_j) \quad \text{s.a} \quad E(\sum_{j=1}^n \alpha_j X_j) = \theta \quad \forall \theta \ \epsilon \ \Theta \ \text{donde las incógnitas son las}$$
 constantes $\alpha_1, \alpha_2, \ldots, \alpha_n$.

5.3.3 Consistencia

Sea $(X_1,X_2,...,X_n)$ m.a. de tamaño n y sea θ un estimador de θ . Diremos que θ es Consistente si $\lim_{n\to\infty} P(|\hat{\theta}-\theta|\leq \varepsilon)=1 \quad \forall \ \varepsilon>0$

En sentido estricto, como para cada n hay un estimador $\hat{\theta}$, debiera escribirse $\hat{\theta}_n$ y decirse que " $\hat{\theta}_n = \hat{\theta} (X_1, X_2, ..., X_n)$ es estimador consistente de θ si $\lim \ P(|\hat{\theta}_n - \theta| \le \mathcal{E}) = 1 \quad \forall \ \mathcal{E} > 0 \ \text{"}$

Proposición

- Si $\hat{ heta}$ es un estimador de heta tal que
- (1) $\lim_{n\to\infty} E(\hat{\theta}) = \theta$ ($\hat{\theta}$ es "asintóticamente insesgado") y
- (2) $\lim_{n\to\infty}V(\hat{\theta})=0$ ($\hat{\theta}$ es "asintóticamente eficiente")

Entonces $\hat{\theta}$ un estimador consistente de θ .

Definición (Límite en Probabilidad)

Sea $\{W_n\}$ una sucesión de variables aleatorias y sea C una constante. Se dio que C es el límite en probabilidad de $\{W_n\}$, lo que se denota escribiendo $PlimW_n=C$, si $\lim_{n\to\infty}P(|W_n-C|\leq\varepsilon)=1\ \forall\ \varepsilon>0$

Propiedades:

Sean $\{W_n\}$ y $\{V_n\}$ successiones tales que existen $P\lim W_n$ y $P\lim V_n$ entonces

- 1. $P \lim(W_n \pm V_n) = P \lim W_n \pm P \lim V_n$
- 2. $P \lim_{n \to \infty} (W_n \times V_n) = P \lim_{n \to \infty} W_n \times P \lim_{n \to \infty} V_n$
- 3. $P \lim_{N \to \infty} (W_n / V_n) = P \lim_{N \to \infty} (P \lim_{N \to \infty} V_n) =$

Proposición (Teorema de Slutsky)

Sea $\{W_n\}$ sucesión tal que existe $P\lim W_n$ y sea g(t) una función continua de t. Entonces $P\lim g(W_n) = g(P\lim W_n)$

Nota: $\hat{\theta}$ es estimador consistente de θ si \hat{y} sólo si $P \lim \hat{\theta} = \theta$.

5.4 Métodos de Estimación

5.4.1 Método de Momentos

Definiciones Básicas

Sean $X \sim f_X(x;\theta)$ una v.a. y $\theta = (\theta_1,\theta_2,...,\theta_p)$ vector de parámetros por estimar. La forma de $f_X(x;\theta)$ no necesariamente es conocida.

Momentos Poblacionales

El k-ésimo momento poblacional m_k se define mediante $m_k=E(X^k)$, si existe el correspondiente valor esperado

Momentos Muestrales

Si $(X_1, X_2, ..., X_n)$ es m.a. tomada de la población de X , el k-ésimo momento

muestral, \boldsymbol{M}_k se define mediante $\boldsymbol{M}_k = \frac{\displaystyle\sum_{j=1}^n \boldsymbol{X}_j^k}{n}$

Propiedad

 $M_{\scriptscriptstyle k}$ es estimador insesgado de $m_{\scriptscriptstyle k}$ y si existe $m_{\scriptscriptstyle 2k}$, además $M_{\scriptscriptstyle k}$ es estimador Consistente de $m_{\scriptscriptstyle k}$

FORMULAS EST-241 ESTADISTICA INFERENCIAL

Si m_k es función de $\theta_1,\theta_2,...,\theta_p$, o sea $m_k=h_k(\theta_1,\theta_2,...,\theta_p)$ k=1,2,...,p, de modo que se cumple:

$$m_1 = h_1(\theta_1, \theta_2, ..., \theta_p)$$

$$m_2 = h_2(\theta_1, \theta_2, ..., \theta_p)$$

$$\vdots$$

$$m_n = h_n(\theta_1, \theta_2, ..., \theta_n)$$

Diremos que $\hat{\theta}_1$, $\hat{\theta}_2$,..., $\hat{\theta}_p$ estimadores de θ_1 , θ_2 ,..., θ_p respectivamente, son estimadores obtenidos mediante el Método de Momentos, si son solución al sistema de ecuaciones:

$$\begin{split} \boldsymbol{M}_{1} &= h_{1}(\hat{\theta}_{1}, \hat{\theta}_{2}, ..., \hat{\theta}_{p}) \\ \boldsymbol{M}_{2} &= h_{2}(\hat{\theta}_{1}, \hat{\theta}_{2}, ..., \hat{\theta}_{p}) \\ &\vdots \\ \boldsymbol{M}_{p} &= h_{p}(\hat{\theta}_{1}, \hat{\theta}_{2}, ..., \hat{\theta}_{p}) \end{split}$$

5.4.2 Método de Máxima Verosimilitud

Función de Verosimilitud

Sea $X \sim f_X(x;\theta)$ donde θ es parámetro o vector de parámetros de valor desconocido, definimos la función de verosimilitud de θ , $L(\theta)$ como la distribución conjunta de la muestra vista como función del parámetro θ . Es decir $L(\theta) = \prod_{i=1}^n f_{X_j}(x_j;\theta)$ $\theta \in \Theta$

Estimador de Máxima Verosimilitud

El estimador de θ obtenido por el Método de Máxima Verosimilitud, es el estimador $\hat{\theta}$ que $\max L(\theta)$ o sea $\hat{\theta}$ es solución al problema:

$$\underbrace{M\acute{a}x}_{\theta}L(\theta)$$
 s.a $\theta \in \Theta$

Nota:

 $L(\theta)$ y $\ln(L(\theta))$ tienen los mismos puntos críticos, pero $\ln(L(\theta))$ suele tener una estructura más simple, por eso **es común obtener el estimador MV de** θ maximizando $\ln(L(\theta))$ en lugar de $L(\theta)$. La función $l(\theta) = \ln(L(\theta))$ se llama "función logyerosimilitud"

5.4.3 Método de Mínimos Cuadrados

Supongamos a Y, X y $\mathcal E$ tales que X es variable observable no aleatoria ("variable matemática"), Y es variable aleatoria observable y $\mathcal E$ es variable aleatoria $\underline{\mathrm{no}}$ observable. Supongamos que estas variables están relacionadas mediante la ecuación $Y = \varphi(X;\theta) + \mathcal E$, donde $\varphi(X;\theta)$ es función bien especificada (de forma conocida) y θ es un parámetro o vector de parámetros por estimar. La función $\varphi(X;\theta)$ puede considerarse una función de "enlace" entre la componente aleatoria Y del modelo y el residuo no sistemático y aleatorio $\mathcal E$. También se dice que $\varphi(X;\theta)$ es la "componente sistemática" del modelo y $\mathcal E$ la "componente aleatoria" del mismo.

Supuestos Clásicos

Dado el modelo $Y=\varphi(X;\theta)+\varepsilon$ y una m.a. de n parejas de observaciones (X_1,Y_1) , $(X_2,Y_2),\cdots,(X_n,Y_n)$ que satisfacen la correspondiente relación $Y_j=\varphi(X_j;\theta)+\varepsilon_j$, asumiremos que:

- (1) $E(\varepsilon_i) = 0 \quad \forall j$
- (2) $V(\varepsilon_i) = \sigma^2 \quad \forall j$ (Homogeneidad de varianzas u Homocedasticidad)
- (3) $Cov(\varepsilon_i, \varepsilon_j) = 0 \quad \forall i \neq j$ (No autocorrelación)
- (4) $\varphi(X;\theta)$ es una función sin error de especificación (de forma conocida y correcta)
- (5) X_i es variable no aleatoria o siéndolo tiene sus valores ya dados

Definición (Estimador de Mínimos Cuadrados Ordinarios MCO o LS)

Bajo los supuestos (1) a (5), definimos el estimador θ obtenido mediante el Método de Mínimos Cuadrados Ordinarios (MCO) como el valor θ que es solución al problema:

$$\min_{\theta} Q(\theta) = \sum_{j=1}^{n} [Y_j - \varphi(X_j; \theta)]^2 \quad \text{s.a } \theta \in \Theta$$

Modelo de Regresión Lineal sin intercepto $Y_j = \theta X_j + \varepsilon_j$

$$\hat{\theta} = \frac{\sum_{j=1}^{n} X_{j} Y_{j}}{\sum_{j=1}^{n} X_{j}^{2}} \text{ es el estimador MCO de } \theta$$

Modelo de Regresión Lineal con intercepto $Y_i = \alpha + \beta X_i + \varepsilon_i$.

Los estimadores MCO de β y α son respectivamente $\beta = \frac{\sum\limits_{j=1}^{n} X_{j} Y_{j} - n \overline{X} \overline{Y}}{\sum\limits_{j=1}^{n} X_{j}^{2} - n \overline{X}^{2}}$

$$\alpha = \overline{Y} - \beta \overline{X}$$

Fórmulas alternativas para eta y lpha

$$\beta = \sum_{j=1}^{n} X_{j} Y_{j} - n \overline{X} \overline{Y} = \sum_{j=1}^{n} (X_{j} - \overline{X}) Y_{j} = \sum_{j=1}^{n} (X_{j} - \overline{X}) (Y_{j} - \overline{Y}) = \sum_{j=1}^{n} (X_{j} - \overline{X})^{2} = \sum_{j=1}$$

$$\alpha = \frac{\overline{Y} \sum_{j=1}^{n} X^2 - \overline{X} \sum_{j=1}^{n} X_j Y_j}{\sum_{j=1}^{n} X_j^2 - n \overline{X}^2}$$

En el modelo $Y_j = \alpha + \beta X_j + \varepsilon_j$ y bajo los supuestos clásicos, los estimadores MCO α y β son MELI de α y β respectivamente.

Observación: Mejor Estimador Lineal Afín

Un estimador de forma $c_0 + \sum_{j=1} c_j Y_j$ ("función lineal afín") donde c_0 se convierte en una incógnita más del problema. Por lo general en el MELI con una función lineal afín, resulta que $c_0 = 0$ y por tanto es irrelevante la distinción entre función lineal $\sum_{j=1}^{n} c_j Y_j$ y función lineal afín $c_0 + \sum_{j=1}^{n} c_j Y_j$, pero para ciertos mo-

delos pueden presentarse diferencias y estimadores distintos.

5.4.4 Propiedades adicionales de estimadores Invarianza

Sean $\theta \in R^p$ y $\gamma \in R^q$ $(q \le p)$ parámetros tales que $\gamma = h(\theta)$. Sean $\widetilde{\theta}$ y γ estimadores de θ y γ respectivamente, obtenidos mediante un método \mathbf{M} . Diremos que el método \mathbf{M} tiene la propiedad de invarianza si se cumple $\gamma = h(\widetilde{\theta})$

Propiedad 1

En el contexto de la definición anterior, si la función $\gamma=h(\theta)$ además tiene inversa $\theta=h^{-1}(\gamma)$, entonces los métodos de Momentos, Máxima Verosimilitud y Mínimos Cuadrados tienen la propiedad de invarianza.

Propiedad 2

En general, el método de Máxima Verosimilitud tiene la propiedad de invarianza, esto es, si $\theta \in R^p$ y $\gamma \in R^q$ $(q \le p)$ son parámetros tales que $\gamma = h(\theta)$ y $\tilde{\theta}_{MV}$ y γ_{MV} son los estimadores máximo verosímiles de θ y γ respectivamente, entonces se cumple que $\gamma_{MV} = h(\tilde{\theta}_{MV})$

Distribución Asintótica del Estimador Máximo Verosímil

Sea X v.a. con distribución $f_X(x;\theta)$ con $\theta \in \Theta$ y sea $\hat{\theta}$ el estimador Máximo verosímil de θ . Entonces, bajo las "condiciones de regularidad" R1 a R6,

R1: Si $\theta \neq \theta' \Rightarrow f_{\mathcal{R}}(x;\theta') \neq f_{\mathcal{R}}(x;\theta')$.

R2: R_{ν} no depende de θ .

R3: El verdadero valor de 8 es "punto interior" del espacio paramétrico 0.

R4: $f_X(x;\theta)$ es función tres veces diferenciable de θ ($\exists \frac{d^{(2)}f_X(x;\theta)}{e^{i\Omega(\xi)}}$)

R5: $\frac{d^{(g)} \int fX(x,\theta) dx}{dx} = \int \frac{d^{(g)} fX(x,\theta)}{dx} dx$

 $R5: \frac{\partial \theta(\mathbf{z})}{\partial \theta(\mathbf{z})} = \int \frac{\partial \theta(\mathbf{z})}{\partial \theta(\mathbf{z})} dx$

R6: $\frac{d^{\infty}(x)(x)}{2g(x)} \le M(x)$ donde M(x) es una función definida en un entorno del verdadero valor de θ :

Si el tamaño de muestra n es grande, $\hat{\theta}$ tiene distribución normal: $\hat{\theta} \sim N(\theta, \sigma_A^2)$ donde

$$\sigma_{\hat{\theta}}^{2} = \left\{ nE\left[\left(\frac{\partial}{\partial \theta} \ln f_{X}(x; \theta)\right)^{2}\right] \right\}^{-1}.$$

Corolario

Bajo las condiciones de regularidad, el estimador MV $\hat{\pmb{\theta}}$ de $\pmb{\theta}$ es consistente y asintóticamente insesgado.

Fórmulas sobre Intervalos de Confianza

6.1 Definición de Intervalos de Confianza

Sea θ un parámetro, sean L_1 y L_2 dos estadísticos y sea $(1-\alpha)$ una probabilidad conocida. Diremos que $\left[L_1,L_2\right]$ es un Intervalo de Confianza (I.C.) para θ al nivel de $100(1-\alpha)\%$ de Confianza, si se cumple $P(L_1 \le \theta \le L_2) = 1-\alpha \quad \forall \theta \in \Theta$

Observación:

También se suele presentar el I.C. escribiendo lo siguiente:

$$L_1 \le \theta \le L_2$$
 100(1- α)% de Confianza

La construcción de un I.C. busca encontrar un intervalo que tenga alta probabilidad $1-\alpha$ y que a la vez sea de longitud mínima.

6.2 Metodología (Método de la Variable Base)

Sea $X \sim f_X(x;\theta)$ y sea $(X_1,X_2,...,X_n)$ m.a. tomada de la población deX. Dado un nivel de confianza $(1-\alpha)$, para construir un Intervalo de Confianza para θ :

- (a) Determinar una variable base $W=W(X_1,X_n,...,X_n;\theta)$ cuya estructura contenga al parámetro θ pero cuya distribución $g_w(w)$ no dependa de θ
- (b) Buscar en la distribución de W dos valores a y b tales que: $P(W(X_1,X_2,...,X_n;\theta) \leq a) = \alpha/2 = P(W(X_1,X_2,...,X_n;\theta) > b) \text{ y por tanto se cumpla}$ $P(a \leq W(X_1,X_2,...,X_n;\theta) \leq b) = 1 \alpha$
- (c) Dentro de la probabilidad anterior, despejar heta del interior del intervalo, de modo que se cumpla:

$$P(a \le W(X_1, X_2, ..., X_n; \theta) \le b) = P(L_1(X_1, X_2, ..., X_n; a, b) \le \theta \le L_2(X_1, X_2, ..., X_n; a, b)) = 1 - \alpha$$

Entonces el Intervalo de Confianza para θ al nivel 100(1- α)% es

$$[L_1(X_1, X_2, ..., X_n; a,b), L_2(X_1, X_2, ..., X_n; a,b)]$$

v se escribe

 $L(X_1, X_2, ..., X_n; a, b) \le \theta \le L_2(X_1, X_2, ..., X_n; a, b)$ al 100(1- α)% de Confianza

Fórmulas sobre Prueba o Contraste de Hipótesis

7.1 Elementos

Hipótesis Estadística

Es una afirmación acerca de la distribución poblacional asociada a una variable X . La denotamos mediante H .

Hipótesis Simple: Si H especifica totalmente la distribución de X Hipótesis Compuesta: Si H no especifica totalmente la distribución de X

Contraste Estadístico o Prueba de Hipótesis

FORMULAS EST-241 ESTADISTICA INFERENCIAL

Un sistema de análisis a partir del cual se toma la decisión de aceptar o rechazar una hipótesis estadística H_0 , mediante el análisis de una(s) muestra(s) aleatoria(s).

Hipótesis Planteada o Nula

Es aquella que se somete a prueba. La denotamos H_{o} ,

Hipótesis Alterna

Es aquella que nos queda si se rechaza H_0 . Esta hipótesis se denotará H_1 .

Normalmente $H_{\scriptscriptstyle \parallel}$ es el complemento de $H_{\scriptscriptstyle 0}$, dentro del contexto de investigación.

Región Crítica

Denotada C, es un evento cuya ocurrencia conduce al rechazo de H_0 .

Error Tipo I

Es el error que se produce si se rechaza H_0 injustamente siendo verdadera)

Error Tipo II

Es el error que se produce si se acepta H_0 siendo falsa

Rechazar H,

;Ocurre C?

Tomar la

muestra y

ver si

Aceptar H

Dada una región crítica C, es posible cometer ó el Error I ó el Error II. La probabilidad del Error I se denota α , y la probabilidad del Error II se denota β , esto es:

 $\alpha = P(ErrorI) = P(C \mid H_0 \quad es \quad verdadera) \;. \quad \text{Esta} \quad \text{probabilidad} \quad \alpha \quad \text{se} \quad \text{llama} \quad \text{tambi\'en}$ "Nivel de Significación del contraste" y mide el tamaño probabilístico de la región crítica

 $\beta = P(ErrorII) = P(C^c \mid H_0 \text{ es falsa})$

 $1-\beta=1-P(Error II)=1-P(C^c\mid H_0 \quad es \quad falsa) \quad \text{se llama "Potencia o poder del contraste"}.$

Nota:

- (1) α es apropiado si es menor o igual que 0.05 (o no mayor que 5%
- (2) La región C se construye en términos de algún estadístico, llamado "estadístico de contraste".

Región Crítica Óptima

Una región crítica C se dice "óptima" si para un nivel α dado, minimiza la probabilidad β . Las regiones críticas que figuran en los textos y/o paquetes estadísticos son optimas.

Aunque α y β no son complementarios, sí se puede demostrar que dado un tamaño de muestra n, α y β van en sentidos contrarios: O sea, si reducimos α entonces β "crece". Por eso, si deseamos que ambas probabilidades sean pequeñas, debemos hacer crecer el tamaño de muestra.

Se recomienda escribir la hipótesis de investigación como $H_{\scriptscriptstyle 1}$ y su negación como $H_{\scriptscriptstyle 0}$.

7.2 Hipótesis Simples vs Hipótesis Simples: Teorema de Neyman-Pearson

Sea $X \sim f_X(x;\theta)$ y supongamos que sólo hay dos valores posibles para $\theta: \theta = \theta_0$ o $\theta = \theta_1$ y tenemos que decidir entre una de las posibilidades. Si escribimos $H_0: \theta = \theta_0$ y $H_1: \theta = \theta_0$ estamos ante el caso de H_0 simple vs H_1 simple.

Supongamos ahora que el tamaño de muestra n es dado y que hemos fijado una probabilidad lpha conocida para el Error I.

Teorema de Neyman-Pearson

En el contexto anterior, la Región Crítica Optima C, o sea aquella que fijada la probabilidad α de Error I, minimiza la probabilidad β de Error II, es de la forma:

$$C = \left\{ (X_1, X_2, ..., X_n) \mid \frac{L(\theta = \theta_1)}{L(\theta = \theta_0)} \ge k \right\}$$

donde k satisface la ecuación

$$P\left(\frac{L(\theta = \theta_1)}{L(\theta = \theta_0)} \ge k \mid H_0 \quad es \quad verdadera\right) = \alpha$$

Sea $X \sim f_X(x;\theta)$ y supongamos que deseamos contrastar $H_0:\theta=\theta_0$ vs $H_1:\theta\in\omega$ donde ω es un conjunto conocido de valores alternativos para θ . Estamos ante el caso de H_0 simple vs H_1 compuesta.

Supongamos ahora que el tamaño de muestra n es dado y que hemos fijado una probabilidad lpha conocida para el Error I.

Para esta situación no existe un teorema como el de Neyman-Pearson que nos proporcione una región crítica C óptima que minimice la probabilidad β de Error II, pues esto depende de cómo es ω

Hipótesis Pseudospimple: Se define mediante $H_1:\theta=\theta_1$ $(\theta_1\in\omega)$ En este contexto $H_0:\theta=\theta_0$ vs $H_1:\theta\in\omega$ y $H_0:\theta=\theta_0$ vs $H_1:\theta\in\theta_1$ $(\theta_1\in\omega)$ son equivalentes y podemos aplicar el T. de Neyman-Pearson al juego anterior, donde θ_1 es un valor genérico de ω . Sea $C(\theta_1)$ la región crítica obtenida y supongamos que su construcción es uniformemente válida para todo $\theta_1\in\omega$. En este caso podemos garantizar que C es una región uniformemente óptima (óptima en todas las circunstancias). Este tipo de región crítica se llama Región Crítica Uniformemente Optima o Uniformemente Más Poderosa (UMP)

Región Crítica Uniformemente Optima (UMP)

FORMULAS EST-241 ESTADISTICA INFERENCIAL

Sea $X \sim f_X(x;\theta)$ y sea el juego de hipótesis $H_0:\theta = \theta_0$ vs $H_1:\theta \in \omega$ donde θ_0 y ω son conocidos, siendo ω un conjunto de valores alternativos para θ .

Una región crítica C es <u>Uniformemente Optima</u> (o Uniformemente Más Poderosa) si dado un Nivel α predeterminado y dado un tamaño de nuestra n, la Región Crítica C satisface el Teorema de Neyman-Pearson para todo $\theta \in \omega$, no dependiendo su forma del valor elegido de θ en ω .

Nota

- Si C es UMP, entonces $P(ErrorI) = P(C \mid H_0 \text{ es verdadera}) \le \alpha$ y $\beta = P(ErrorII) = P(C \mid H_0 \text{ es falsa})$ es mínima $\forall \theta_1 \in \overline{\omega}$
- No siempre existe la R.C. UMP

7.4 Hipótesis Compuestas vs Hipótesis Compuestas: Test de Razón de Verosimilitud

Este sistema de generar regiones críticas es bastante general y se aplica cuando no podemos generar una región crítica UMP.

Sea $X \sim f_{\nu}(x;\theta)$ sobre la cual tenemos la hipótesis nula $H_{0}:\theta \in \omega_{0}$ vs la hipótesis alterna $H_{\cdot}:\theta\in\omega_{\scriptscriptstyle 0}^{\scriptscriptstyle 0}$ (donde $\omega_{\scriptscriptstyle 0}$ es un conjunto bien definido y $\omega_{\scriptscriptstyle 0}^{\scriptscriptstyle 0}$ es su complemento.

Sea $\widehat{\theta}_0$ el estimador MV de θ bajo $H_0:\theta\in\omega_0$ o sea $\widehat{\theta}_0$ maximiza $L(\theta)$ sobr $\theta \in \omega_0$. La probabilidad de la m.a. bajo H_0 es $L(\hat{\theta}_0) = \prod_{i=1}^n f_X(X_i; \hat{\theta}_0)$

Sea $\hat{\theta}$ el estimador MV de θ en general, o sea sobre $\theta \in \omega_0 \cup \omega_0^c$ bilidad de la m.a. es $L(\hat{\theta}) = \prod f_X(x_i; \hat{\theta})$

Definición (Razón de verosimilitud)

El cociente o "razón de verosimilitud" es λ

$$0 \le \frac{L(\hat{\theta}_0)}{L(\hat{\theta})} \le 1.$$

Nota: Si $H_0: \theta \in \omega_0$ es cierta, esperamos

Definición (Región crítica de Razón de verosimilitud)

La región crítica de Razón de Verosimilitud C se define como el evento $C = \{(X_1, X_2, ..., X_n) \mid \lambda = \frac{\mathsf{L}(\theta_0)}{\mathsf{L}(\theta)} \leq \lambda_0 \} \text{ tal que } \lambda_0 \text{ satisface } P(\frac{\mathsf{L}(\theta_0)}{\mathsf{L}(\theta)} \leq \lambda_0 \mid \theta \in \omega_0) = \alpha$

Este test se llama Test de Razón de Verosimilitud"

Propiedad

Si n es "grande" y $H_0: \theta \in \omega_0$ es verdadera, entonces $-2\ln(\lambda) \sim \chi^2(r)$ donde **r** es el número de parámetros especificado por $H_0:\theta\in\omega_0$. Esta propiedad puede usarse para hallar el valor λ_n de determina la zona de rechazo en este test.

8.1 Uso del modelo de regresión lineal simple

Cuando salvo variaciones aleatorias, una determinada variable cuantitativa \boldsymbol{X} condiciona a otra variable cuantitativa Y de modo que cambios en X inducen cambios proporcionales en Y.

Geométricamente lo anterior equivale a que en un plano cartesiano XY, las parejas de valores (X, Y) siquen una trayectoria rectilínea. Algebraicamente la proporcionalidad equivale a que X e Y satisfacen la ecuación $Y = \alpha + \beta X + \varepsilon$ donde α y β son constantes características o sea ϵ "parámetros" y s es una variación aleatoria debida a que los agentes económicos no siempre tienen el mismo comportamiento.

8.2 Supuestos v parámetros del modelo lineal simple

Dado el modelo $Y_i = \alpha + \beta X_i + \varepsilon_i$, evaluado en una muestra aleatoria $(X_1,Y_1),(X_2,Y_2),\cdots,(X_n,Y_n)$ asumimos que:

(a)
$$E(\varepsilon_j) = 0 \quad \forall j$$

(b)
$$V(\varepsilon_i) = \sigma^2 = \text{constante} \quad \forall j$$

(c)
$$\rho_{\varepsilon_i \varepsilon_j} = 0 \quad \forall j \, \forall j'$$

(d) X es de valores predeterminados, medidos antes de registrar los valores

Los supuestos implican que $E(Y) = \alpha + \beta X$ y V(Y) =

Parámetros del modelo

- La constante lpha, es el valor esperado o promedio de Y cuando X es cero.
- La constante β , llamada la "pendiente" de la recta mide en cuántas unidades se espera que varíe Y cuando X aumenta en 1 unidad.
- σ^2 es la varianza del azar representado por el residuo aleatorio \mathcal{E} ; σ es la variación promedio arriba o debajo de la recta $Y = \alpha + \beta X + \beta X$

8.3 Los estimadores de mínimos cuadrados ordinarios (OLS)

Se obtienen aplicando el método de mínimos cuadrados a la función objetivo

$$Q(\alpha, \beta) = \sum_{j=1}^{n} [Y_j - \alpha - \beta X_j]^2$$
 que generan las "ecuaciones normales":

$$\begin{pmatrix} n & n\overline{X} \\ n\overline{X} & \sum_{j=1}^{n} X_{j}^{2} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \sum_{j=1}^{n} X_{j} Y_{j}$$

$$\beta = \sum_{j=1}^{n} X_{j} Y_{j} - n \overline{X} \overline{Y} ; \alpha = \overline{Y} - \beta \overline{X}$$

Estos mismos estimadores se obtienen aplicando Máxima Verosimilitud, bajo el supuesto adicional $\varepsilon \sim N(0, \sigma^2)$.

• La predicción de
$$E(Y)$$
 es $\hat{Y} = \alpha + \beta X$ o $\hat{Y}_j = \alpha + \beta X_j$; $\mathcal{E}_j = Y_j - \hat{Y}_j$ y $\sigma^2 = S_{\varepsilon}^2 = \frac{\sum\limits_{j=1}^n \mathcal{E}_j^2}{n-2}$

 $m{\cdot}$ $m{\beta}$ es una estimación y su "error de estimación" cuadrático es

$$S_{eta_i}^2 = \frac{\sigma^2}{\sum_{j=1}^n X_j^2 - n\overline{X}^2}$$
 y el Error Estándar de estimación de $oldsymbol{\beta}$ es

$$e.e.(\beta) \equiv S_{\beta} = \sqrt{\frac{\sigma^2}{\sum_{j=1}^{n} X_{j}^2 - n\overline{X}^2}} = \sqrt{\frac{\sigma^2}{(n-1)S_{\chi}^2}}$$

8.4 Aiuste del Modelo

Se mide qué tan bien son representa el modelo a los datos.

- Con la correlación $R=r_{yy}$ aunque no mide exactamente la coincidencia, la correlación de Pearson mide asociación, no necesariamente coincidencia.
- Con el Coeficiente \mathbb{R}^2

$$R^{2} = \frac{SCR}{SCT} = \frac{\sum_{j=1}^{n} (\hat{Y}_{j} - \overline{Y})^{2}}{\sum_{j=1}^{n} (Y_{j} - \overline{Y})^{2}} = \frac{Variabilidad\ en\ Y\ generada\ por\ X}{Variabilidad\ total\ en\ Y}$$

 R^2 mide la proporción de la variabilidad total en Y $^{\circ}$ que es "explicada" o atribuible a las diferencias en la variable independiente X a través de la regresión. Es la proporción de diferencias en Y que se deben a las diferencias en X .

Equivalentemente $100R^2\%$ es el porcentaje de variabilidad (por extensión, también se dice "% de la varianza") de Y explicada por el modelo.

Nota: Estimación de la correlación de Pearson $ho_{\scriptscriptstyle XY}$

Se puede probar que una estimación consistente de la correlación de Pearson ho_{yy} entre dos variables aleatorias X e Y es

$$\rho_{XY} \equiv r_{XY} = \frac{\sum_{j=1}^{n} (Y_j - \overline{Y})(X_j - \overline{X})}{(n-1)S_X S_Y} = \frac{\sum_{j=1}^{n} X_j Y_j - n \overline{X} \overline{Y}}{(n-1)S_X S_Y}.$$

Relación entre r_{xy} , p_{x}

$$\bullet \qquad \beta = \frac{r_{XY}S_Y}{S_X}$$

•
$$SCR = \sum_{j=1}^{n} (Y_{j} - \overline{Y})(X_{j} - \overline{X}) = \frac{r_{XY}S_{Y}}{S_{X}} \times r_{XY}(n-1)S_{X}S_{Y} = r_{XY}^{2}(n-1)S_{Y}^{2}$$

•
$$R^2 = \frac{SCR}{SCT} = \frac{r_{XY}^2 (n-1)S_Y^2}{(n-1)S_Y^2} = r_{XY}^2$$
,

•
$$SCE = SCT - SCR = (n-1)S_Y^2[1-r_{XY}^2]$$

8.5 Contrastes en el Análisis de Regresión.

Si asumimos $arepsilon \sim N(0,\sigma^2)$ además de los supuestos clásicos, tenemos

Proposición 1

(a)
$$\hat{\beta} \sim N(\beta_1, \sigma_{\beta_1}^2)$$
 donde $\sigma_{\beta_1}^2 = \frac{\sigma^2}{\sum_{i=1}^n X_j^2 - n\overline{X}^2}$

(b)
$$W = (n-2)\sigma^2/\sigma^2 \sim \chi^2(n-2)$$
. Es decir $SCE/\sigma^2 \sim \chi^2(n-2)$

$$t = \frac{(\beta_1 - \beta_1)}{S_{\beta_1}} \sim t(n-2) \text{ donde } S_{\beta_1} = \sqrt{\sum_{j=1}^n X_j^2 - n\overline{X}^2}$$

FORMULAS EST-241 ESTADISTICA INFERENCIAL

8.5.1 Contraste general sobre β

Para contrastar $H_0: \beta = b$ donde b es un valor hipotético predeterminado, con tra las distintas alternativas H_1 uni o bilaterales, alicando variantes de Teorema de Neyman-Pearson se llega a:

Como en general $t = \frac{(\beta - \beta)}{S_n} \sim t(n-2)$, entonces si $H_0: \beta_1 = b$ es cierta, el estadí

tico $t = \frac{(\beta_1 - b)}{S_{\rho}} \sim t(n-2)$ y E(t) = 0. Entonces un valor de t muy alejado de cero es buena razón para

rechazar $H_0: \beta = b$.

Considerando "muy alejados" de cero a los valores de t que tienen probabilidad menor que un nivel de significación α (no confundir con el intercepto del modelo!) predeterminado, llegamos a:

Hipótesis Nula	Hipótesis Alterna	Rechazar H_0 si	Tipo de contraste	
$H_0: \beta = b$	$H_1: \beta > b$	$t > t_{1-\alpha}$	Unilateral derecho	
	$H_1: \beta < b$	1<-1-0	Unilateral izquierdo	
	$H_1: \beta \neq b$	$ t > t_{1-\alpha/2}$	Bilateral	
$t_{1-\alpha}$ y $t_{1-\alpha/2}$ percentiles $1-\alpha$ y $1-\alpha/2$ de la tabla i de Student: $t(k=n-2)$				

8.5.2 Contraste de coeficiente nulo $H_{*}:\beta=0$

 $H_0: \beta=0$ equivale a decir que Y no depende de X. El estadístico de contraste es $t = \hat{\beta} / S_{R}$

Hipótesis Nula	Hipótesis Alterna	Rechazar H_0 si	Tipo de contraste	
	$H_1: \boldsymbol{\beta} > 0$	$t > t_{1-\alpha}$	Unilateral derecho	
$H_0: \beta=0$	$H_1: \beta < 0$	$t < -t_{1-\alpha}$	Unilateral izquierdo	
A (7)	$H_1: \beta \neq 0$	$ t > t_{1-\alpha/2}$	Bilateral	
$t_{1-\alpha}$ y $t_{1-\alpha/2}$ percentiles $1-\alpha$ y $1-\alpha/2$ de la tabla t de Student: $t(k=n-2)$				

v es posible pasar de un coeficiente a otro, entonces el con-

traste de $H_0: \beta=0$ es equivalente al de $H_0: \rho_{yy}=0$ y al de $H_0: R^2=0$

Ta consecuencia es que las hipótesis $H_0:eta=0$, $H_0:
ho_{xy}=0$ y $H_0:R^2=0$ son to-