Programare liniară în numere întregi

Considerăm problema:

$$\inf \left\{ c^{\top} \cdot x \mid A \cdot x = b, x \in \mathbb{R}_{+}^{n}, \right\}$$
 (P*)

unde: $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, rang(A) = m < n.

$$\emptyset \neq \mathcal{K} \subsetneq \{1, 2, ..., n\}$$
 Problemă de programare liniară mixtă

$$\mathcal{K} = \{1, 2, ..., n\}$$
Problemă de programare liniară în numere întregi

Notaţii:
$$\begin{cases} \mathcal{P}_0 = \left\{ x \in \mathbb{R}^n \mid A \cdot x = b, \, x \geq \mathbf{0} \right\} \\ \mathcal{P}^* = \left\{ x \in \mathcal{P}_0 \mid x_k \in \mathbb{Z}, \, k \in \mathcal{K} \right\} \end{cases}$$
 Evident, $\mathcal{P}_0 \supset \mathcal{P}^*$

Putem considera problemele:

(P₀)
$$\inf \{c^{\top} \cdot x \mid x \in \mathcal{P}_0\}$$
 \Longrightarrow Se rezolvă cu algoritmul simplex.

(P*)
$$\inf \{c^{\top} \cdot x \mid x \in \mathcal{P}^*\}$$
 \Longrightarrow Trebuie elaborată o metodă!

Propoziție. Fie $\overline{x} \in \mathcal{P}_0$ soluția optimă a lui (P_0). Dacă $\overline{x} \in \mathcal{P}^*$, atunci \overline{x} este soluție optimă și pentru problema (P^*).

$$\begin{array}{c} \underline{\mathsf{Demonstratie.}} & \mathcal{P}_0 \supset \mathcal{P}^* \\ \mathsf{Avem:} & c^{\scriptscriptstyle \top} \cdot \overline{x} = \inf \left\{ c^{\scriptscriptstyle \top} \cdot x \, \middle| \, x \in \mathcal{P}_0 \right\} \leq \inf \left\{ c^{\scriptscriptstyle \top} \cdot x \, \middle| \, x \in \mathcal{P}^* \right\} \leq c^{\scriptscriptstyle \top} \cdot \overline{x} \\ \mathsf{Pe} \ \mathsf{de} \ \mathsf{alt} \ \mathsf{aparte,} \quad \overline{x} \in \mathcal{P}^* \\ \mathsf{Rezult} \ \mathsf{alt}, \quad c^{\scriptscriptstyle \top} \cdot \overline{x} = \inf \left\{ c^{\scriptscriptstyle \top} \cdot x \, \middle| \, x \in \mathcal{P}^* \right\}. \end{aligned} \quad (\mathsf{q.e.d.})$$

$$\begin{array}{c} \mathbf{\mathsf{Algoritm:}} \ \mathsf{metoda} \ \mathsf{planelor} \ \mathsf{de} \ \mathsf{sections} \ \mathsf{sections} \ \mathsf{nu} \\ \hline \\ \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \\ \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \\ \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \\ \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \\ \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \\ \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \\ \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \\ \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \\ \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot \overline{x} = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i} c^{\scriptscriptstyle \top} \cdot x \\ \hline \boldsymbol{c}^{\scriptscriptstyle \top} \cdot x = \inf_{x \in \mathcal{P}_i$$

Determinarea planelor de secțiune (Gomory).

Considerăm problema (P*) în care $\mathcal{K} = \{1, 2, ..., n\}$.

Fie B o bază optimă pentru (P_i) şi presupunem că $\exists s_k \in \mathcal{B}, x_{s_k} \notin \mathbb{Z}$.

Avem:
$$x_{s_k} = \overline{x}_k - \sum_{j \in \mathcal{R}} y_{kj} x_j$$

Introducem notaţiile: $\overline{x}_k = \left[\overline{x}_k\right] + f_{k0}$ unde $0 < f_{k0} < 1$, $y_{kj} = \left[y_{kj}\right] + f_{kj}$ unde $0 \le f_{kj} < 1$.

Rezultă,
$$x_{s_k} - \left[\overline{x}_k \right] + \sum_{j \in \mathbb{R}} \left[y_{kj} \right] x_j = f_{k0} - \sum_{j \in \mathbb{R}} f_{kj} x_j \leq 0 < 1.$$
 Dar, $\forall x \in \mathbb{P}^* \Longrightarrow \in \mathbb{Z}$ $\rightleftharpoons \mathbb{Z}$ $\rightleftharpoons \mathbb{Z}$ $\ifloor \end{array}$ în plus, avem:
$$\sum_{j \in \mathbb{R}} f_{kj} x_j \geq 0 \quad \& \quad f_{k0} \in (0,1)$$

Se adaugă restricția:
$$\sum_{j\in\mathcal{R}}\!\left(-f_{kj}\right)\!x_j \leq -f_{k0}\;.$$

Cursul 7

3

Observaţie. Soluţia de bază corespunzătoare lui $\bar{\chi}$ nu verifică restricţia adăugată. Într-adevăr,

$$x = \begin{pmatrix} x_{\mathcal{B}} \\ x_{\mathcal{R}} \end{pmatrix} = \begin{pmatrix} \overline{x} \\ \mathbf{0} \end{pmatrix} \implies 0 = \sum_{j \in \mathcal{R}} \left(-f_{kj} \right) x_j \le -f_{k0} < 0. \quad \text{Contradicţie!}$$

Prin urmare, putem defini:

$$\mathcal{P}_{i+1} = \mathcal{P}_{i} \cap (\alpha_{i}) = \left\{ x \in \mathcal{P}_{i} \middle| \sum_{j \in \mathcal{R}} (-f_{kj}) x_{j} + y_{(i+1)} = -f_{k0}, \ y_{(i+1)} \ge 0 \right\}$$

Algoritmul se termină într-un număr finit de paşi:

Există o soluție optimă $\in \mathbb{Z}$

Nu există soluții în $\in \mathbb{Z}$

Implementare.

Fie $B_{(i)}$ o bază optimă pentru (P_i) . Pentru (P_{i+1}) considerăm matricea:

$$B_{(i+1)} = \begin{pmatrix} B_{(i)} & \mathbf{0} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{pmatrix} \qquad \Longrightarrow \qquad B_{(i+1)}^{-1} = \begin{pmatrix} B_{(i)}^{-1} & \mathbf{0} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{pmatrix}$$

Matricea $B_{(i+1)}$ este dual admisibilă pentru (P_{i+1}):

$$\overline{x}_{(i+1)} = B_{(i+1)}^{-1} \cdot b_{(i+1)} = \begin{pmatrix} B_{(i)}^{-1} & \mathbf{0} \\ \mathbf{0}^{\top} & 1 \end{pmatrix} \cdot \begin{pmatrix} b_{(i)} \\ -f_{k0} \end{pmatrix} = \begin{pmatrix} B_{(i)}^{-1} \cdot b_{(i)} \\ -f_{k0} \end{pmatrix} = \begin{pmatrix} \overline{x}_{(i)} \\ -f_{k0} \end{pmatrix} \not \geq \mathbf{0}$$

$$Y_{(i+1)}^{j} = B_{(i+1)}^{-1} A_{(i+1)}^{j} = \begin{pmatrix} B_{(i)}^{-1} & \mathbf{0} \\ \mathbf{0}^{\top} & 1 \end{pmatrix} \begin{pmatrix} A_{(i)}^{j} \\ -f_{kj} \end{pmatrix} = \begin{pmatrix} Y_{(i)}^{j} \\ -f_{kj} \end{pmatrix}$$

$$z_{j}^{(i+1)} - c_{j} = c_{\mathcal{B}_{(i+1)}}^{\top} Y_{(i+1)}^{j} - c_{j} = \left(c_{\mathcal{B}_{(i)}}^{\top}, \mathbf{0} \right) \begin{pmatrix} Y_{(i)}^{j} \\ -f_{k0} \end{pmatrix} - c_{j} = z_{j}^{(i)} - c_{j} \leq \mathbf{0}$$

$$\overline{z}^{(i+1)} = c_{\mathcal{B}_{(i+1)}}^{\top} \overline{x}^{(i+1)} = \left(c_{\mathcal{B}_{(i)}}^{\top}, \mathbf{0} \right) \begin{pmatrix} \overline{x}^{(i)} \\ -f_{k0} \end{pmatrix} = \overline{z}^{(i)}$$

Tabloul simplex:

	\bar{x}		x_{j}		x_p		$y_{(i+1)}$
	:		:		:		:
\mathcal{X}_{s_i}	\bar{x}_i	• • •	${\cal Y}$ ij	• • •	y_{ip}	•••	0
			:		:		÷
X_{S_k}	$\left \left[\bar{x}_k \right] + f_{k0} \right $	•••	$[y_{kj}] + f_{kj}$	•••	$[y_{kp}] + f_{kp}$	•••	0
	:		÷		÷		÷
У(<i>i</i> +1)	$-f_{k0}$	• • •	$-f_{kj}$	•••	$\boxed{-f_{kp}}$	•••	1
	\overline{z}	• • •	$z_j - c_j$	• • •	$z_p - c_p$	•••	0

$$\min \left\{ -2x_1 - x_2 \right\}$$

$$\mathbf{u} \quad \begin{cases} -x_1 + x_2 \leq 1 \\ x_1 + x_2 \leq 3 \\ 2x_1 \leq 5 \end{cases} \quad x_1, x_2 \in \mathbb{Z}_+$$

în raport cu

$$2x_1 \leq 5$$

Rezolvare grafică:

Rezolvarea cu algoritmul ciclic al lui Gomory:

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅
x_3	1	-1	1	1	0	0
x_4	3	1	1	0	1	0
x_5	5	$\left(2\right)$	0	0	0	1
	0	2	1	0	0	0

	\bar{x}	x_1	x_2	x_3	x_4	x_5
x_3	$\frac{7}{2}$	0	1	1	0	1/2
<i>x</i> ₄	1/2	0 (1	0	1	$\frac{-1}{2}$
x_1	5/2	1	0	0	0	1/2
	-5	0	1	0	0	-1

 x_1 x_2 x_3 x_4 x_5 y

	\bar{x}	x_1	x_2	x_3	x_4	x_5
x_3	3	0	0	1	-1	1
x_2	$\frac{1}{2}$	0	1	0	1	$\frac{-1}{2}$
x_1	<u>5</u> 2	1	0	0	0	$\frac{1}{2}$
	<u>-11</u> 2	0	0	0	-1	<u>-1</u> 2

W	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	y
x_3	3	0	0	1	-1	1	0
x_2	1/2	0	1	0	1	<u>-1</u> 2	0
x_1	<u>5</u> 2	1	0	0	0	1/2	0
у	<u>-1</u> 2	0	0	0	0	$\frac{-1}{2}$	1
	<u>-11</u> 2	0	0	0	-1	<u>-1</u> 2	0

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	y
x_3	2	0	0	1	-1	0	1/2
x_2	1	0	1	0	1	0	-1
x_1	2	1	0	0	0	0	1
x_5	1	0	0	0	0	1	-2
	-5	0	0	0	-1	0	-1