

Summary

# **Summary**



State-value function for golf-playing agent (Sutton and Barto, 2017)

### **Policies**

- A **deterministic policy** is a mapping  $\pi: \mathcal{S} \to \mathcal{A}$ . For each state  $s \in \mathcal{S}$ , it yields the action  $a \in \mathcal{A}$  that the agent will choose while in state s.
- A **stochastic policy** is a mapping  $\pi: \mathcal{S} \times \mathcal{A} \to [0,1]$ . For each state  $s \in \mathcal{S}$  and action  $a \in \mathcal{A}$ , it yields the probability  $\pi(a|s)$  that the agent chooses action a while in state s.

#### State-Value Functions

- The **state-value function** for a policy  $\pi$  is denoted  $v_\pi$ . For each state  $s \in \mathcal{S}$ , it yields the expected return if the agent starts in state s and then uses the policy to choose its actions for all time steps. That is,  $v_\pi(s) \doteq \mathbb{E}_\pi[G_t|S_t = s]$ . We refer to  $v_\pi(s)$  as the **value of state** s **under policy**  $\pi$ .
- The notation  $\mathbb{E}_{\pi}[\cdot]$  is borrowed from the suggested textbook, where  $\mathbb{E}_{\pi}[\cdot]$  is defined as the expected value of a random variable, given that the agent follows policy  $\pi$ .

## **Bellman Equations**

• The Bellman expectation equation for  $v_\pi$  is:  $v_\pi(s) = \mathbb{E}_\pi[R_{t+1} + \gamma v_\pi(S_{t+1}) | S_t = s].$ 



### Summary

- $v_{\pi'}(s) \geq v_{\pi}(s)$  for all  $s \in \mathcal{S}$ .
- An **optimal policy**  $\pi_*$  satisfies  $\pi_* \geq \pi$  for all policies  $\pi$ . An optimal policy is guaranteed to exist but may not be unique.
- All optimal policies have the same state-value function  $v_{st}$ , called the **optimal** state-value function.

### **Action-Value Functions**

- The **action-value function** for a policy  $\pi$  is denoted  $q_{\pi}$ . For each state  $s \in \mathcal{S}$  and action  $a \in \mathcal{A}$ , it yields the expected return if the agent starts in state s, takes action a, and then follows the policy for all future time steps. That is,  $q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t|S_t=s,A_t=a]$ . We refer to  $q_{\pi}(s,a)$  as the **value of taking action** a **in state** s **under a policy**  $\pi$  (or alternatively as the **value of the state-action pair** s, s).
- All optimal policies have the same action-value function  $q_{st}$ , called the **optimal** action-value function.

### **Optimal Policies**

• Once the agent determines the optimal action-value function  $q_*$ , it can quickly obtain an optimal policy  $\pi_*$  by setting  $\pi_*(s) = \arg\max_{a \in \mathcal{A}(s)} q_*(s,a)$ .

**NEXT**