Issues in Training Data

Grade received 100% To pass 80% or higher

Total points 4

1.	What formula represents a <i>dataset shift?</i>	1/1 point
	$igcap P_{train}(y x) = P_{serve}(y x) ext{ and } P_{train}(x) eq P_{serve}(x)$ $igcap P_{train}(y,x) eq P_{serve}(y,x)$	
	$\bigcirc \ P_{train}(y x) \neq P_{serve}(y x) \ \text{and} \ P_{train}(x) = P_{serve}(x)$	
	 Correct Well done! The most generic case of distribution skews is when the joint distribution of inputs and outputs differs between training and serving. 	
2.	What measure is typically used to determine the degree of data drift?	1 / 1 point
	Chebyshev distance (L-infinity) Fuelidany distance (L-infinity)	
	Euclidean distance (L2) Manhattan distance (L1)	
	Hamming distance	
	⊘ Correct	
	That's it! Chebyshev distance is defined as $\max_i (x_i - y_i)$	
3.	Distribution skew occurs when the distribution of the training dataset is significantly different from the distribution of the serving dataset, and is typically caused by: (check all that apply).	1/1 point
	Different data sources for training and serving data.	
	 Correct Way to go! Data sources between training and serving often change and so this is another case of distribution skew. 	
	Faulty sampling method that selects a sample for training which is not representative of serving data distribution.	
	 Correct Spot on! A faulty sampling mechanism that chooses a non-representative subsample is an example of distribution skew. 	
	Trend, seasonality, changes in data over time.	
	 Correct Keep it up! Data distributions between training and serving often change and so this is another case of distribution skew. 	
	There is different logic for generating features between training and serving. For example, if you apply some transformation only in one of the two code paths.	
	Occurs when serving and training data don't conform to the same schema. For example, int32 != float.	
	A data source that provides some feature values is modified between training and serving time.	
4.	TensorFlow Data Validation (TFDV) helps TFX users maintain the health of their ML pipelines. TFDV can analyze training and serves data to:	1/1 point
	Perform feature selection.	
	Detect data anomalies.	
	 Correct That's the way! TFDV can check your data for error in the aggregate across an entire dataset or by checking for errors on a per-example basis. 	
	☑ Infer a schema.	
	○ Correct Nice going! In short, schemas describe the expectations for "correct" data and can thus be used to detect errors in the data.	
	Perform feature engineering.	
	Deploy pipeline to a mobile application.	

compute descriptive statistics.

© Correct
Perfect! TFDV goes beyond computing relevant statistics, it also has nice browser-based visualization tools.