Machine Learning for Political Science: Day 1

Kenneth Benoit

ANU Masterclass 2020

29 October 2020

Outline

Overview

Supervised v. unsupervised learning

Model evaluation in machine learning Fitting v. overfitting Precision, recall, and accuracy

Naive Bayes

Prediction versus explanation

- Social science: The goal is typically explanation
- ▶ Data science: The goal is frequently *prediction*, or data exploration
- Many of the same methods are used for both objectives

From fitting predictive models to "machine learning"

- classical statistical analysis: estimate marginal effects
- predictive models: forecast the (unknown) value of a (new or future) observation
- machine learning: make predictions on data using a more broadly defined combination of statistical models and computational algorithms

Supervised v. unsupervised learning

- Supervised methods require a training set that exmplify constrasting classes, identified by the researcher
 - regression models belong to this category
- Unsupervised methods identify patterns without requiring an explicit training step
 - often involves calibrating some critical input parameter, such as the number of categories into which items will be clustered
 - more post-hoc interpretation is required

Supervised v. unsupervised methods: examples

- Supervised: Naive Bayes, k-Nearest Neighbor, Support Vector Machines (SVM)
- Unsupervised: correspondence analysis, IRT models, factor analytic approaches

Assessing Model Accuracy

- Suppose we fit a model $\hat{f}(x)$ to some training data $Tr = \{x_i, y_i\}_{1}^{N}$, and we wish to see how well it performs.
- We could compute the average squared prediction error over Tr:

$$MSE_{Tr} = Ave_{i \in Tr}[y_i - \hat{f}(x_i)]^2$$

This may be biased toward more overfit models.

Instead we should, if possible, compute it using fresh test data $Te = \{x_i, y_i\}_1^M$:

$$MSE_{Te} = Ave_{i \in Te}[y_i - \hat{f}(x_i)]^2$$

Data simulated from f, shown in black. Three estimates of f are shown: the linear regression line (orange curve), and two smoothing splines.

- Black curve is truth.
- ▶ Red curve on right is MSE_{Te} , grey curve is MSE_{Tr} .
- Orange, blue and green curves/squares correspond to fits of different flexibility.

- ► The setup as before, using a different true *f* that is much closer to linear. In this setting, linear regression provides a very good fit to the data.
- Here the truth is smoother, so the smoother fit and linear model do really well.

- ▶ Setup as above, using a different *f* that is far from linear.
- ▶ In this setting, linear regression provides a very poor fit to the data.
- ► Here the truth is wiggly and the noise is low, so the more flexible fits do the best.

Generalization and overfitting

- Generalization: A classifier or a regression algorithm learns to correctly predict output from given inputs not only in previously seen samples but also in previously unseen samples
- Overfitting: A classifier or a regression algorithm learns to correctly predict output from given inputs in previously seen samples but fails to do so in previously unseen samples. This causes poor prediction/generalization

How model fit is evaluated

- ► For discretely-valued outcomes (class prediction): Goal is to maximize the frontier of precise identification of true condition with accurate recall, defined in terms of false positives and false negatives
 - ▶ will define formally later
- For continuously-valued outcomes: minimize Root Mean Squared Error (RMSE)

Precision and recall

► Illustration framework

		True condition	
		Positive	Negative
Prediction	Positive	True Positive	False Positive (Type I error)
	Negative	False Negative (Type II error)	True Negative

Precision and recall and related statistics

- \triangleright Precision: $\frac{\text{true positives}}{\text{true positives} + \text{false positives}}$
- ► Recall: true positives / true positives + false negatives
- Accuracy: Correctly classified Total number of cases
- ► F1 = 2 Precision × Recall Precision + Recall (the harmonic mean of precision and recall)

Example: Computing precision/recall

Assume:

- We have a sample in which 80 outcomes are really positive (as opposed to negative, as in sentiment)
- Our method declares that 60 are positive
- Of the 60 declared positive, 45 are actually positive

Solution:

Precision =
$$(45/(45+15)) = 45/60 = 0.75$$

Recall = $(45/(45+35)) = 45/80 = 0.56$

Accuracy?

		True condition]
		Positive	Negative	
Prediction	Positive	45		60
	Negative			
80				

δl

add in the cells we can compute

		True condition]
		Positive	Negative	
Prediction	Positive	45	15	60
	Negative	35		
80				

How do we get "true" condition?

- ▶ In some domains: through more expensive or extensive tests
- In social sciences: typically by expert annotation or coding
- ► A scheme should be tested and reported for its reliability

Naive Bayes classification

- ► The following examples refer to "words" and "documents" but can be thought of as generic "features" and "cases"
- We will being with a discrete case, and then cover continuous feature values
- Objective is typically MAP: identification of the maximum a posteriori class probability

Multinomial Bayes model of Class given a Word

Consider J word types distributed across I documents, each assigned one of K classes.

At the word level, Bayes Theorem tells us that:

$$P(c_k|w_j) = \frac{P(w_j|c_k)P(c_k)}{P(w_j)}$$

For two classes, this can be expressed as

$$= \frac{P(w_j|c_k)P(c_k)}{P(w_j|c_k)P(c_k) + P(w_j|c_{\neg k})P(c_{\neg k})}$$
(1)

Multinomial Bayes model of Class given a Word Class-conditional word likelihoods

$$P(c_k|w_j) = \frac{P(w_j|c_k)P(c_k)}{P(w_j|c_k)P(c_k) + P(w_j|c_{\neg k})P(c_{\neg k})}$$

- The word likelihood within class
- ► The maximum likelihood estimate is simply the proportion of times that word j occurs in class k, but it is more common to use Laplace smoothing by adding 1 to each observed count within class

Multinomial Bayes model of Class given a Word Word probabilities

$$P(c_k|w_j) = \frac{P(w_j|c_k)P(c_k)}{P(w_j)}$$

- ► This represents the word probability from the training corpus
- Usually uninteresting, since it is constant for the training data, but needed to compute posteriors on a probability scale

Multinomial Bayes model of Class given a Word Class prior probabilities

$$P(c_k|w_j) = \frac{P(w_j|c_k)P(c_k)}{P(w_j|c_k)P(c_k) + P(w_j|c_{\neg k})P(c_{\neg k})}$$

- ► This represents the class prior probability
- Machine learning typically takes this as the document frequency in the training set
- ➤ This approach is flawed for scaling, however, since we are scaling the latent class-ness of an unknown document, not predicting class uniform priors are more appropriate

Multinomial Bayes model of Class given a Word Class posterior probabilities

$$P(c_k|w_j) = \frac{P(w_j|c_k)P(c_k)}{P(w_j|c_k)P(c_k) + P(w_j|c_{\neg k})P(c_{\neg k})}$$

► This represents the posterior probability of membership in class *k* for word *j*

Moving to the document level

► The "Naive" Bayes model of a joint document-level class posterior assumes conditional independence, to multiply the word likelihoods from a "test" document, to produce:

$$P(c|d) = P(c) \prod_{j} \frac{P(w_j|c)}{P(w_j)}$$

- ▶ This is why we call it "naive": because it (wrongly) assumes:
 - conditional independence of word counts
 - positional independence of word counts

Naive Bayes Classification Example

(From Manning, Raghavan and Schütze, *Introduction to Information Retrieval*)

► Table 13.1 Data for parameter estimation examples.

	docID	words in document	in $c = China$?
training set	1	Chinese Beijing Chinese	yes
	2	Chinese Chinese Shanghai	yes
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
test set	5	Chinese Chinese Tokyo Japan	?

Naive Bayes Classification Example

Example 13.1: For the example in Table 13.1, the multinomial parameters we need to classify the test document are the priors $\hat{P}(c) = 3/4$ and $\hat{P}(\overline{c}) = 1/4$ and the following conditional probabilities:

$$\begin{array}{rcl} \hat{P}(\mathsf{Chinese}|c) & = & (5+1)/(8+6) = 6/14 = 3/7 \\ \hat{P}(\mathsf{Tokyo}|c) = \hat{P}(\mathsf{Japan}|c) & = & (0+1)/(8+6) = 1/14 \\ & \hat{P}(\mathsf{Chinese}|\overline{c}) & = & (1+1)/(3+6) = 2/9 \\ \hat{P}(\mathsf{Tokyo}|\overline{c}) = \hat{P}(\mathsf{Japan}|\overline{c}) & = & (1+1)/(3+6) = 2/9 \end{array}$$

The denominators are (8+6) and (3+6) because the lengths of $text_c$ and $text_{\overline{c}}$ are 8 and 3, respectively, and because the constant B in Equation (13.7) is 6 as the vocabulary consists of six terms.

We then get:

$$\hat{P}(c|d_5) \propto 3/4 \cdot (3/7)^3 \cdot 1/14 \cdot 1/14 \approx 0.0003.$$

 $\hat{P}(\overline{c}|d_5) \propto 1/4 \cdot (2/9)^3 \cdot 2/9 \cdot 2/9 \approx 0.0001.$

Thus, the classifier assigns the test document to c = China. The reason for this classification decision is that the three occurrences of the positive indicator Chinese in d_5 outweigh the occurrences of the two negative indicators Japan and Tokyo.

Naive Bayes with continuous covariates

```
library(e1071) # has a normal distribution Naive Bayes
# Congressional Voting Records of 1984 (abstentions treated as missing)
data(HouseVotes84, package = "mlbench")
model <- naiveBayes(Class ~ ., data = HouseVotes84)</pre>
# predict the first 10 Congresspeople
data.frame(Predicted = predict(model, HouseVotes84[1:10,-1]),
          Actual = HouseVotes84[1:10,1],
          postPr = predict(model, HouseVotes84[1:10, -1], type = "raw"))
##
      Predicted
                   Actual postPr.democrat postPr.republican
## 1
     republican republican
                             1.029209e-07
                                             9.999999e-01
## 2
     republican republican 5.820415e-08
                                             9.999999e-01
## 3
     republican
                 democrat 5.684937e-03
                                             9.943151e-01
## 4
       democrat democrat 9.985798e-01
                                             1.420152e-03
## 5 democrat democrat
                           9.666720e-01
                                             3.332802e-02
## 6
       democrat democrat 8.121430e-01
                                             1.878570e-01
## 7
     republican democrat 1.751512e-04
                                             9.998248e-01
     republican republican
                             8.300100e-06
                                             9.999917e-01
## 8
## 9
     republican republican
                             8.277705e-08
                                             9.999999e-01
## 10
       democrat
                 democrat
                             1.000000e+00
                                             5.029425e-11
```

Overall prediction performance

```
# now all of them: this is the resubstitution error
(mytable <- table(predict(model, HouseVotes84[, -1]), HouseVotes84$Class))</pre>
##
##
                democrat republican
##
    democrat
                     238
                                 1.3
##
    republican
                   29
                                155
prop.table(mytable, margin=1)
##
##
                  democrat republican
     democrat 0.94820717 0.05179283
##
##
     republican 0.15760870 0.84239130
```

With Laplace smoothing

```
model <- naiveBayes(Class ~ ., data = HouseVotes84, laplace = 3)</pre>
(mytable <- table(predict(model, HouseVotes84[, -1]), HouseVotes84$Class))</pre>
##
##
                democrat republican
##
    democrat
                     237
                                 12
##
    republican
                30
                                156
prop.table(mytable, margin=1)
##
##
                  democrat republican
##
     democrat 0.95180723 0.04819277
     republican 0.16129032 0.83870968
##
```