ДНІПРОВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ОЛЕСЯ ГОНЧАРА ФАКУЛЬТЕТ ПРИКЛАДНОЇ МАТЕМАТИКИ КАФЕДРА КОМП'ЮТЕРНИХ ТЕХНОЛОГІЙ

Лабораторна робота №6

«Маршрутизація, доменна адресація»

з курсу «Обчислювальні системи, мережі та комп'ютерні комунікації»

Виконав:

студент групи ПА-19-2

Ільяшенко Єгор

Зміст

Теоретичні відомості	3
Постановка завдання	7
Індивідуальне завдання	8
Контрольні запитання	10
Висновки	13

Теоретичні відомості Система доменних імен DNS

Для ідентифікації вузлів в мережах TCP/IP апаратне і програмне забезпечення використовує IP-адреси. Користувачам незручно користуватись числовими IP-адресами, тому для них були введені так звані доменні імена. На раньому етапі розвитку Інтернету на кожному вузлі вручну створювався текстовий файл hosts, в кожному рядку якого записувалась відповідність IP-адреси і доменного імені, наприклад: 102.54.94.97 rhino.acme.com

В ході розвитку Інтернету файли **hosts** зростали і виникла необхідність іншого вирішення завдання розв'язку імен. Так було створено спеціальну службу - систему доменних імен DNS (Domain Name System -1983 р.). DNS це розподілена база даних відображень "доменне ім'я - ІР-адреса", яка має архітектуру "клієнт-сервер". DNS використовує три основних компоненти - розпізнавачі (DNS-клієнти), сервери імен (DNS-сервери) і простір доменних імен. DNS-сервери підтримують розподілену базу відображень, а DNS-клієнти звертаються до серверів із запитами про розв'язок доменного імені в ІР-адресу, тобто про визначення ІР-адреси вузла по його доменному імені. Простір доменних імен - це ієрархічне групування імен, яке має деревоподібну структуру.

Рис. Простір доменних імен

Дерево імен починається із кореневого домену, який позначається

крапкою. Потім ідуть домени першого рівня, другого рівня і т. д. Запис доменного імені починається із наймолодшої складової, а закінчується найстаршою, наприклад, partnering.microsoft.com

Сукупність імен, у яких декілька старших складових частин співпадають, складають домен імен. Наприклад, **gorod.dp.ua** і **google.com.ua** входять в домен **ua**.

Розподіл імені на частини дозволяє розділити адміністративну відповідальність за призначення унікальних імен в межах свого рівня ієрархії. Наприклад, на першому рівні ієрархії одна організація відповідає за призначення імен в домені сот, інша - в домені ца і т.д. Це дозволяє вирішити проблему утворення унікальних імен без взаємних консультацій між організаціями, які відповідають за імена одного рівня ієрархії.

За аналогією з файловою системою, в доменній системі імен розрізняють короткі імена, відносні імена і повні імена. Коротке ім'я це ім'я кінцевого вузла мережі. Відносне ім'я - це ім'я, яке починається з деякого рівня ієрархії, але не з верхнього. І повне доменне ім'я (Fully qualified domain name, FQDN) включає в себе всі рівні ієрархії, закінчуючи кореневою крапкою: milkyway.hmarka.net.

В інтернеті кореневий домен керується міжнародною некомерційною організацією ICANN (Internet Corporation for Assigned Names and Numbers).

На DNS-серверах зберігається база даних DNS-імен, причому дані про домени верхнього рівня містяться у кількох кореневих DNS-серверах, які позначаються латинськими літерами від A до M. Вони керуються різними організаціями, які діють за погодженням з ICANN. Інформація на DNS-сервері зберігається у текстових файлах із записами декількох типів. Найпоширеніший тип запису (тип ресурсного запису) - тип A, в якому зберігається відповідність "доменне ім'я - IP-адреса" для свого домену і піддоменів. Приклад запису типу A: www.microsoft.com. IN A 65.55.57.27

Крім типу A на DNS-сервері зберігаються записи таких типів:

SOA (Start of Authority) - перший запис у файлі бази даних, визначає основні параметри зони DNS.

NS - перечисляє додаткові DNS-сервери.

PTR - запис який використовується для оберненого запиту, тобто визначення доменного імені вузла по його ІР-адресі. Приклад: 51.200.55.157.in-addr.arpa. IN PTR mserver.microsoft.com.

CNAME (Canonical NAME) - дозволяє хосту присвоювати псевдонім (alias). Наприклад:

bar.example.com. CNAME foo.example.com.

bar.example.com. - канонічне (справжнє) ім'я, foo.example.com. - псевдонім.

MX (mail exchanger) - вказує на сервер для прийому електронної пошти, яка приходить на адреси вказаного домену і пріоритет поштового серверу. Формат запису:

owner-name ttl class rr pref name

example.com. 3w IN MX 10 mail.example.com.

де, owner-name - ім'я локального домену, ttl - час, протягом якого запис можна тримати у кеші, class - тип мережі, де діє служба, за замовчуванням приймають IN (Internet), rr (resource record) - тип ресурсного запису, pref - пріоритет (від 0 до 65535), менші значення мають вищий пріоритет.

Існують дві основні схеми розв'язку DNS-імен - ітеративна і рекурсивна. В разі ітеративної схеми роботу з пошуку IP-адреси координує сам DNS-клієнт:

- DNS-клієнт звертається до кореневого DNS-сервера із інформацією про повне доменне ім'я;
- DNS-сервер відповідає, вказуючи на адресу наступного DNS-сервера, який обслуговує домен верхнього рівня;
- DNS-клієнт робить запит до наступного DNS-сервера, який відсилає його до DNS-сервера потрібного піддомену і т.д., поки не буде знайдено DNS-сервер, який зберігає відповідність доменне ім'я IP-адреса.
- В разі рекурсивної схеми роботу з пошуку ІР-адреси координує DNS-сервер. Рекурсивна схема:
- DNS-клієнт робить запит до локального DNS-сервера, тобто сервера, який обслуговує піддомен, до якого належить DNS-ім'я клінта;
 - якщо локальний DNS-сервер знає відповідь, то повертає іі DNS-клієнту;
- в іншому випадку, локальний DNS-сервер виконує ітеративні запити до кореневого DNS-сервера і отримавши відповідь, повертає іі клієнту.

Найчастіше використовується рекурсивна схема, тому що DNS-клієнт, як правило, звертається із запитом, що має прапор "потрібна рекурсія" і більшість DNS-серверів її підтримують.

Утиліта nslookup

Для перевірки роботи серверів DNS часто використовується утиліта nslookup

Утиліта **nslookup** може працювати у двох режимах - інтерактивному і автономному.

При запуску **nslookup** відображає ім'я і адресу сервера DNS, до якого підключена утиліта, і переходить до інтерактивного режиму. У цьому режимі список доступних команд видається за командою ?, а вихід - командою exit.

Щоб отримати IP-адресу вузла треба набрати його ім'я натиснути Enter.

Щоб переключитися з основного сервера DNS на інший, треба виконати команду:

server ім'я

, де ім'я - це ім'я або IP-адреса сервера DNS, наприклад:

server 8.8.8.8

Для роботи у автономному режимі треба в командному рядку ввести команду :

nslookup [-параметр] комп'ютер [-сервер]

, якщо сервер не вказаний, буде використано поточний сервер, наприклад, знайти IP-адресу хосту:

nslookup ukr.net

Знайти DNS ім'я за ІР-адресою:

nslookup 8.8.8.8

знайти IP-адресу хосту, використовуючи конкретний DNS сервер:

nslookup ukr.net ns1.cloudns.net

Параметр складається із дефіса, команди, яка іде за ним без пробілів і можливо знака = **значення**.

Приклади параметрів:

-type=тип_запису - перегляд запису певного типу для домену

Де тип запису може бути: soa, ns, mx, any

Наприклад, знайти записи типу ns для домену:

nslookup -type=ns cloudns.net

Запросити запис типу soa для домену:

nslookup -type=soa cloudns.net

- -timeout=число, встановлення часу очікування відповіді в секундах:
- nslookup -timeout=20 ukr.net
- -retry=число, встановлення повторних спроб запиту до сервера DNS: nslookup -retry=20 ukr.net

Постановка завдання

Команди: ping, route, tracert, nslookup завдання:

- 1) Дослідити списки хостів файлу «hosts» і мереж файлу «networks» свого домашнього комп'ютера.
- 2) Визначити для домену свого домашнього ISP (інтернет-провайдера) DNS-адреси серверів доменних імен (DNS-серверів), серверів для прийому електронної пошти та перший запис у файлі бази даних DNS-сервера (SOA).
- 3) Визначити маршрут до сервера доменних імен ISP, а також, середній час проходження пакетів до нього.
- 4) Визначити середній час відповіді сервера імен по вирішенню локального до ISP і зовнішнього, щодо мережі ISP адреси.
- 5) Скласти звіт про виконану роботу, до якої додати лістинги результатів роботи використаних команд і отримані дані, вказати відмінності в використаних запитах до DNS-сервера, а також відповіді на питання.
- * При визначенні середнього часу проходження пакетів використовувати 4, 10 пакетів для розрахунку середнього значення.

Індивідуальне завдання

Файл Host's

```
# Copyright (c) 1993-2009 Microsoft Corp.
 # This is a sample HOSTS file used by Microsoft TCP/IP for
 Windows.
 # This file contains the mappings of IP addresses to host
 names. Each
 # entry should be kept on an individual line. The IP address
 should
 # be placed in the first column followed by the corresponding
 host name.
 # The IP address and the host name should be separated by at
 least one
 # space.
 # Additionally, comments (such as these) may be inserted on
 individual
 # lines or following the machine name denoted by a '#' symbol.
 # For example:
 #
       102.54.94.97 rhino.acme.com # source
 server
 #
       38.25.63.10 x.acme.com
                                      # x client
 host
 # localhost name resolution is handled within DNS itself.
   127.0.0.1 localhost
 #
      ::1
                    localhost
Файл Networks
 # Copyright (c) 1993-1999 Microsoft Corp.
 # This file contains network name/network number mappings for
 # local networks. Network numbers are recognized in dotted
 decimal form.
 # Format:
 # <network name> <network number> [aliases...]
 [#<comment>]
 #
 # For example:
```

loopback 127

284.122.107

284.122.108

loopback 127

campus

london

#

#

#

DNS-сервери мого інтернет провайдеру

```
lo0.cr-1.12.dne.volia.net [77.121.18.10]
v3333.cs-1.12.dne.volia.net [77.121.18.42]
```

Використання команди tracert. Шлях до серверів Google

```
PS C:\Users\Vintall> tracert 8.8.8.8
Трассировка маршрута к dns.google [8.8.8.8]
с максимальным числом прыжков 30:
  1
        <1 MC
                   <1 MC
                              <1 mc 192.168.0.1
         1 ms
                    1 ms
                             <1 MC
                                      lo0.cr-1.12.dne.volia.net [77.121.18.10]
                              1 ms v3333.cs-1.12.dne.volia.net [77.121.18.42]
  3
                    2 ms
         1 ms
                              16 ms be1.709.cr-1.g50.kiev.volia.net [77.120.0.192]
  4
        16 ms
                   16 ms
  5
        16 ms
                 16 ms
                           16 ms be3.180.cr-2.g50.kiev.volia.net [77.120.1.42]
       18 ms 18 ms google.cr-2.g50.kiev.volia.net [82.144.192.137]
16 ms 18 ms 12 ms 108.170.248.146
  6
                27 ms 27 ms 216.239.46.121

32 ms 31 ms 216.239.35.133

32 ms 30 ms 142.250.37.193

30 ms 30 ms 142.250.238.1

31 ms 31 ms dns.google [8.8.8.8]
  8
        27 ms
  9
        30 ms
 10
        30 ms
 11
        31 ms
        31 ms
 12
Трассировка завершена.
PS C:\Users\Vintall>
```

DNA-cepsep (SOA)

```
volya.ua. 3600 SOA dan.ns.cloudflare.com dns.cloudflare.com 2035382536 10000 2400 604800 laura.ns.cloudflare.com (4 msec)
```

Tracert до DNS-серверів мого провайдеру.

```
PS C:\Users\Vintall> tracert 77.121.18.42

Трассировка маршрута к v3333.cs-1.12.dne.volia.net [77.121.18.42]
с максимальным числом прыжков 30:

1 <1 мс <1 мс <1 мс 192.168.0.1
2 1 ms 1 ms <1 мс 100.cr-1.12.dne.volia.net [77.121.18.10]
3 1 ms 1 ms v3333.cs-1.12.dne.volia.net [77.121.18.42]

Трассировка завершена.
PS C:\Users\Vintall>
```

Команда ping до DNS-серверів мого провайдера. (відгук)

```
PS C:\Users\Vintall> ping 77.121.18.42 -n 10
Обмен пакетами с 77.121.18.42 по с 32 байтами данных:
Ответ от 77.121.18.42: число байт=32 время=1мс TTL=253
Ответ от 77.121.18.42: число байт=32 время=3мс TTL=253
Ответ от 77.121.18.42: число байт=32 время=2мс TTL=253
Ответ от 77.121.18.42: число байт=32 время=2мс TTL=253
Ответ от 77.121.18.42: число байт=32 время=1мс TTL=253
Статистика Ping для 77.121.18.42:
    Пакетов: отправлено = 10, получено = 10, потеряно = 0
    (0% потерь)
Приблизительное время приема-передачи в мс:
    Минимальное = 1мсек, Максимальное = 3 мсек, Среднее = 1 мсек
PS C:\Users\Vintall>
```

В результаті

контрольні запитання
1. Як вирішувалося завдання розв'язку імен до створення системи доменних імен DNS?
Додавали файл hosts, у якому писали відношення деяких ір-адрес до доменних імен
2. Із яких частин складається система DNS?
DNS-сервер, DNS-клієнт, простір доменних імен
3. Які існують схеми розв'язку доменних імен?
Ітеративний і рекурсивний
4. Яка утиліта використовується для перевірки роботи DNS-серверів?
nslookup
5. Записи яких типів зберігаються на DNS-сервері?
owner-name ttl class rr pref name
example.com. 3w IN MX 10 mail.example.com. де, owner-name - ім'я локального домену, ttl - час, протягом якого запис можна тримати у кеші, class - тип мережі, де діє служба, за замовчуванням приймають IN (Internet), rr (resource record) - тип ресурсного запису, pref - пріоритет (від 0 до 65535), менші значення мають вищий пріоритет.

6. Якою організацією керується кореневий домен?

ICANN (Internet Corporation for Assigned Names and Numbers)

7. Що таке FQDN?

8. До якого рівня моделі OSI відноситься протокол DNS?

7-й рівень

9. У яких режимах може працювати утиліта nslookup?

Інтерактивний та автономний.

10. Яку перевагу дає розподіл DNS-імені на частини

Розподіл імені на частини дозволяє розділити адміністративну відповідальність за призначення унікальних імен в межах свого рівня ієрархії. Наприклад, на першому рівні ієрархії одна організація відповідає за призначення імен в домені сот, інша - в домені ца і т.д. Це дозволяє вирішити проблему утворення унікальних імен без взаємних консультацій між організаціями, які відповідають за імена одного рівня ієрархії.

Швидше шукати відношення. З найвишчого рівня до найнижчого (кінець -> начало)

Висновки

Під час виконання лабораторної роботи №6 по темі «Маршрутизація, доменна адресація» було розглянуто тему DNS-серверів. Я ознайомився з тим, як Domain name system підбирає ІР-адреси відповідно до доменного імені. Було використано команди ріпд, tracert. Працюючи у консолі PowerShell, я знайшов DNS-сервери свого провайдера та дізнався час відгуку від нього. Також було визначено шлях від мого комп'ютера до серверів Google.

Було дано відповіді на контрольні питання та написано звіт.