Name:

MATH 108

Fall 2022

HW 19: Due 12/08

"Linear programming can be viewed as part of a great revolutionary development which has given mankind the ability to state general goals and to lay out a path of detailed decisions to take in order to 'best' achieve its goals when faced with practical situations of great

complexity."

- George Dantzig

Problem 1. (10pt) Write down the initial simplex tableau for the following optimization problem:

$$\begin{aligned} \max z &= 4.6x_1 + 3.1x_2 + 7.9x_3 \\ 5.5x_1 - 6x_2 + 1.1x_3 &\leq 110.3 \\ -6.7x_1 - 8.3x_3 &\leq 220.1 \\ x_1 - 7.7x_2 + 4.5x_3 &\leq 662.0 \\ x_1, x_2, x_3 &\geq 0 \end{aligned}$$

Problem 2. (10pt) Suppose that the initial simplex tableau below was associated to a standard maximization problem. Write down the function being maximized and the corresponding system of constraints.

2	-1	4	1	0	0	100
6	0	2	0	1	0	80
-4	8	4 2 3	0	0	1	220
$\overline{-3}$	-1	-5	0	0	0	0

Problem 3. (10pt) Suppose that the final simplex tableau associated to a maximization problem was the following:

- (a) How many inequalities were considered?
- (b) How many variables were there in the original inequalities?
- (c) How many slack/surplus variables were introduced?
- (d) What was the solution to this maximization problem?