Table des transformées de Laplace

	$\Pi(\cdot)$	(()) (0-1(F()))
	F(p)	$f(t) = \mathcal{L}^{-1}\left\{F(p)\right\}$
1	1	$\delta(t)$
2	$e^{- au p}$	$\delta(t- au)$
3	$\frac{1}{p}$	1
4	$\frac{1}{p^2}$	t
5	$\frac{1}{p^3}$	$\frac{1}{2}t^2$
6	$\frac{1}{p^n}$	$\frac{\frac{1}{2}t^2}{\frac{1}{(n-1)!}t^{n-1}}$
7	$\frac{1}{p+a}$	e^{-at}
8	$\frac{1}{(p+a)^2}$	te^{-at}
9	$\frac{1}{(p+a)^3}$	$\frac{1}{2}t^2e^{-at}$
10	$\frac{1}{(p+a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{-at}$
11	$\frac{a}{p(p+a)}$	$1 - e^{-at}$
12	$\frac{a}{p^2(p+a)}$	$\frac{1}{a}\left[at - (1 - e^{-at})\right]$
13	$\frac{p}{(p+a)^2}$	$(1-at)e^{-at}$
14	$\frac{a^2}{p(p+a)^2}$	$1 - (1+at)e^{-at}$
15	$\frac{a^2(p+z)}{p(p+a)^2}$	$z - (z + a(z - a)t) e^{-at}$
16	$\frac{b-a}{(p+a)(p+b)}$	$e^{-at} - e^{-bt}$

17	$\frac{(b-a)p}{(p+a)(p+b)}$	$-ae^{-at} + be^{-bt}$
18	$\frac{(b-a)(p+z)}{(p+a)(p+b)}$	$(z-a)e^{-at} - (z-b)e^{-bt}$
19	$\frac{ab}{p(p+a)(p+b)}$	$1 + \frac{be^{-at} - ae^{-bt}}{a - b}$
20	$\frac{ab(p+z)}{p(p+a)(p+b)}$	$z + \frac{b(z-a)e^{-at} - a(z-b)e^{-bt}}{a-b}$
21	$\frac{1}{(p+a)(p+b)(p+c)}$	$\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(c-b)(a-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$
22	$\frac{p+z}{(p+a)(p+b)(p+c)}$	$\frac{(z-a)e^{-at}}{(b-a)(c-a)} + \frac{(z-b)e^{-bt}}{(c-b)(a-b)} + \frac{(z-c)e^{-ct}}{(a-c)(b-c)}$
23	$\frac{\omega}{p^2 + \omega^2}$	$\sin \omega t$
24	$\frac{p}{p^2 + \omega^2}$	$\cos \omega t$
25	$\frac{p+z}{p^2+\omega^2}$	$\sqrt{\frac{z^2 + \omega^2}{\omega^2}} \sin(\omega t + \phi) \text{ avec } \phi = \arctan\frac{\omega}{z}$
26	$\frac{\omega^2}{p(p^2+\omega)}$	$1-\cos\omega t$
27	$\frac{\omega^2(p+z)}{p(p^2+\omega)^2}$	$z - \sqrt{\frac{z^2 + \omega^2}{\omega^2}} \cos(\omega t + \phi) \text{ avec } \phi = \arctan\frac{\omega}{z}$
28	$\frac{\omega}{(p+a)^2 + \omega^2}$	$e^{-at}\sin\omega t$
29	$\frac{p+a}{(p+a)^2+\omega^2}$	$e^{-at}\cos\omega t$
30	$\frac{p+z}{(p+a)^2+\omega^2}$	$\sqrt{\frac{(z-a)^2 + \omega^2}{\omega^2}} e^{-at} \sin(\omega t + \phi) \text{ avec}$ $\phi = \arctan\frac{\omega}{z-a}$
31	$\frac{\omega^2}{p^2 + 2\xi\omega p + \omega^2}$	$\frac{\omega}{\sqrt{1-\xi^2}}e^{-\xi\omega t}\sin\omega\sqrt{1-\xi^2}t$
32	$\frac{p^2 + 2\xi\omega p + \omega^2}{\omega^2}$ $\frac{\omega^2}{p(p^2 + 2\xi\omega p + \omega^2)}$	$1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega t} \sin \omega \sqrt{1 - \xi^2} t + \phi \text{ avec}$ $\phi = \arccos \xi$