第三次作业

3.写出图3.34所示电路对应的逻辑表达式。

```
1 E1 = A · B
2 E2 = ¬A · C
3 E3 = ¬A · B · D
4 E4 = ¬B · C · D
5 E5 = A · ¬B · C · ¬D
6
7 F1 = E1 + E2 + E3
8 F2 = E3 + E2 + E4 + E5
```

4. 假定输出F的逻辑表达式为 $A\cdot B\cdot C\oplus D+\overline{A}+D$ 画出对应的逻辑电路图,并将该逻辑表达式转换成与-或表达式,画出对应的两级组合逻辑电路图。

11. 根据图3.37中给出的逻辑门的传输延迟 $T_(pd)$ 和最小延迟 $T_(cd)$

计算2.4.3节中的图2.30a、2.30b和2.30c中的所示组合逻辑电路的传输延迟和最小延迟,并比较哪个电路的传输延迟最长,哪个电路的传输延迟最短。

逻辑门	(ps)(传输延迟)	(ps)(最小延迟)
NOT	15	10
2输入OR	40	30
3输入OR	55	45
2输入AND	30	25
3输入AND	40	30
2输入NOR	30	25
3输入NOR	45	35

逻辑门	$T_(pd)$ (ps)(传输延迟)	$T_(cd)$ (ps)(最小延迟)	
2输入NAND	20	15	
3输入NAND	30	25	
2输入XOR	60	40	

1. 初始电路

a: 2输入AND

b: 3输入OR

c: 3输入AND

d: 2输入AND

通路	传输延迟	最小延迟
1	30+55	25 + 45
2	40+55	30 + 45
3	40+30	30 + 25
传输延迟: 95		
最小延迟: 55		

2. 加入反相器对的电路

a: 2输入与门

b: 3输入与门

c: 3输入或门

d: NOT

通路	传输延迟	最小延迟
1	15+15+55	10+10+45
2	30+15+15+55	25+10+10+45
3	40+15+15+30	30+10+10+25
4	40+15+15+55	30+10+10+45
5	15+15+30	10+10+25
传输延迟: 125		
最小延迟: 45		

3. 使用反相器和反向输入端的电路

a: NOT

b: 2输入NAND

c: 3输入NAND

d: 3输入NOR

e: 2输入NAND

通路	传输延迟	最小延迟
1	15+45	10+35
2	20+45	15+35
3	30+45	25+35
4	30+20	25+15
5	15+20	10+15
传输延迟: 75		
最小延迟: 25		

6.假定一个优先权编码器的输入端为I0, I1 ... I7, 输出端为O0, O1, O2和Z.

8各输入端构成一个8为二进制数I0I1I2I3I4I5I6I7, 3个输出端O0, O1, O2构成一个3位二进制数O0O1O2。 若输入二进制数I0I1I2I3I4I5I6I7为0,则输出端O0O1O2为0, Z为1;

否则,若输入二进制数I0I1I2I3I4I5I6I7中最左边的1所在位为li,则输出二进制数为i, Z为0。请用与非门设计该优先权编码器电路,并说明优先级顺序是什么。

7. 已知一个组合逻辑电路的功能可用图3.35所示的真值表来描述,分别用下列器件实现该电路

А	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- (1)一个8路选择器。
- (2)一个4路选择器和一个非门。
- (3)一个2路选择器和两个逻辑门。

9. 已知一个组合逻辑电路的功能可用图3.36所示的真值表来描述。要求完成以下任务。

А	В	С	D	F
0	0	0	0	Х
0	0	0	1	Х
0	0	1	0	х
0	0	1	1	0
0	1	0	0	0
0	1	0	1	Х
0	1	1	0	0
0	1	1	1	Х
1	0	0	0	1
1	0	0	1	0
1	0	1	0	Х
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	х
1	1	1	1	1

(1)利用无关向项进行化简,并写出函数F的最简表达式。

Α	В	С	D	F
1	0	0	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	1	1

 $F = (A \cdot \neg B \cdot \neg C \cdot \neg D) + (A \cdot \neg B \cdot C \cdot D) + (A \cdot B \cdot \neg C \cdot D) + (A \cdot B \cdot C \cdot D)$

(2)根据最简逻辑表达式,画出函数F对应的逻辑电路图。

(3)对于(2)中的逻辑电路,请判断是否存在竞争冒险? 若存在竞争冒险,则解释在什么情况下会出现毛刺,并画出发生毛刺时的时序图; 若不存在冒险,则分析说明其不存在竞争冒险的理由。

```
1 存在竞争冒险,当A = 0, D = 0, C = 0 时
2 该逻辑表达式可化简为 ¬B + B
3 ```
```