Does $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ diverge, converge absolutely, or converge conditionally?

• Solution. The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ is alternating.

Let $a_n=\frac{(-1)^n}{n^2}.$ Then $b_n=|a_n|=\frac{1}{n^2}.$ The sequence b_n is decreasing and $\lim_{n\to\infty}b_n=0.$

By the Alternating Series Test, the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges.

Does $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converge absolutely or conditionally? We study $\sum |a_n|$, namely $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^2} \right|$, which is the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$, which converges by the p-seriee test, so $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges absolutely.

• Solution. We study $\sum |a_n|$, namely $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^2} \right|$, which is the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$, which converges by the *p*-series test, so by the Absolute Convergence Test, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges.

Since $\sum |a_n|$ converges, $\sum a_n$ converges absolutely.