Optimization as a model for few-shot learning

Sachin Ravi¹ Hugo Larochelle¹

¹Twitter

ICLR, 2017 Presenter: Beilun Wang

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- 2 Proposed Methods
 - gradient descent and LSTM
 - The Proposed Method
- Summary

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- - gradient descent and LSTM
 - The Proposed Method

Motivation

Motivation:

- Deep Learning has shown great success in a variety of tasks with large amounts of labeled data.
- Perform poorly on few-shot learning tasks
- This paper uses an LSTM based *meta-learner* model to learn the exact optimization algorithm.

Problem Setting:

Problem Setting:

- Input: meta-sets \mathscr{D} . For each $D \in \mathscr{D}$ has a split of D_{train} and D_{test} .
- Target: an LSTM-based meta-learner.
- Output: a neural network

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- 2 Proposed Methods
 - gradient descent and LSTM
 - The Proposed Method
- Summary

Previous Solutions

- gradient-based optimization
 - momentum
 - adagrad
 - Adadelta
 - ADAM
- no strong guarantees of speed of convergence
- meta-learning
 - quick acquisition of knowledge within each separate task presented
 - slower extraction of information learned across all the tasks.

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- Proposed Methods
 - gradient descent and LSTM
 - The Proposed Method
- Summary

Contributions

- An LSTM based meta-learner model
- Achieve better performance in few-shot learning task

- Introduction
 - Motivation
 - Previous Solutions
 - Contributions
- 2 Proposed Methods
 - gradient descent and LSTM
 - The Proposed Method
- Summary

Gradient-based method

$$\bullet \ \theta_t = \theta_{t-1} - \alpha_t \nabla_{\theta_{t-1}} \mathcal{L}_t$$

the Update for the cell state in an LSTM

• $c_t = f_t \odot c_{t-1} + i_t \cdot \tilde{c}_t$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- if $f_t=1$, $c_{t-1}= heta_{t-1}, i_t=lpha_t$, and $ilde{c}_t=abla_{ heta_{t-1}}\mathcal{L}_t$
- Then it equals to gradient-based approach.

- - Motivation
 - Previous Solutions
 - Contributions
- Proposed Methods
 - gradient descent and LSTM
 - The Proposed Method

The formulation of the meta-learner

- learning rate i_t:
- $i_t = \sigma(\mathbf{W}_I \cdot [\nabla_{\theta_{t-1}} \mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, i_{t-1}] + \mathbf{b}_I)$
- f_t:
- $f_t = \sigma(\mathbf{W}_F \cdot [\nabla_{\theta_{t-1}} \mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, f_{t-1}] + \mathbf{b}_F)$

Parameter sharing and Normalization

- Share parameters across the coordinates of the learner gradient
- Each dimension has its own hidden and cell state values but the LSTM parameters are the same across all coordinates.
- Normalization the gradients and the losses across different dimensions

$$x \to \begin{cases} & \left(\frac{\log(|x|)}{p}, \operatorname{sign}(x)\right) \text{ if } |x| \ge e^{-p} \\ & \left(-1, e^{p}x\right) \text{ otherwise} \end{cases}$$
 (1)

Summary Figure

Experiment Results—average classification accuracy

Model	5-class	
	1-shot	5-shot
Baseline-finetune	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$
Baseline-nearest-neighbor	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$
Matching Network	${\bf 43.40 \pm 0.78\%}$	$51.09 \pm 0.71\%$
Matching Network FCE	${\bf 43.56 \pm 0.84\%}$	$55.31 \pm 0.73\%$
Meta-Learner LSTM (OURS)	$m{43.44 \pm 0.77\%}$	$\bf 60.60 \pm 0.71\%$

Average classification accuracies on Mini-ImageNet with 95% confidence intervals. Marked in bold are the best results for each scenario, as well as other results with an overlapping confidence interval.

Summary

- This paper proposes an LSTM based meta-learner model.
- It improves the performance of deep Neural networks in few-shot learning tasks.