

Cours

ELECTRONIQUE

Circuits électroniques à base de l'amplificateur opérationnel

email: nasser_baghdad @ yahoo.fr

ELECTRONIQUE

Contenu du programme

Chapitre I : Généralités sur l'amplificateur opérationnel

Chapitre II : Montages à régime linéaire indépendants de la fréquences

Chapitre III : Montages à régime linéaire dépendants de la fréquences

Chapitre IV : Montages à régime non linéaires

Chapitre V : Oscillateurs sinusoïdaux

Chapitre VI: Multivibrateurs

Chapitre VII: Convertisseurs A/N et NA

ELECTRONIQUE

Chapitre IV

Montages à régime non linéaire

Fonction comparaison

Introduction à l'aide d'un exemple : régulation de niveau d'eau

- 1°) Comparateurs simples de valeur relative
- 2°) Comparateurs simples de valeur absolue
- 3°) Comparateurs à seuils ou à hystérésis (ou triggers de Scmitt)

Comparateurs simples de valeur relative

1°) Comparateurs simples de valeur relative

► On distingue deux types de montages comparateurs selon les positions respectives de V_e et $V_{REF} = E_0$ sur les entrées du comparateur.

Montages comparateurs simples de valeur relative

$$E_0 = 0$$

$$E_0 > 0$$

$$E_0 < 0$$

Montage comparateur simple non inverseur de valeur relative :

Comparateurs simples de valeur absolue

2°) Comparateurs simples de valeur absolue

► On distingue deux types de montages comparateurs selon les positions respectives de V_e et V_{REF} = E₀ sur les entrées du comparateur.

$$0 = V_e \left(\frac{R_2}{R_1 + R_2} \right) \quad \Rightarrow \quad V_e = 0 \quad \Rightarrow \quad Seuil: V_{seuil} = 0$$

$$V_{seuil} = 0$$
 Basculement si $V_e = 0$

$$\begin{aligned} V_{S} &= +V_{sat} & si & e^{+} > e^{-} & \Rightarrow & V_{e} \left(\frac{R_{2}}{R_{1} + R_{2}} \right) > 0 & \Rightarrow & V_{e} > 0 \\ V_{S} &= -V_{sat} & si & e^{+} < e^{-} & \Rightarrow & V_{e} \left(\frac{R_{2}}{R_{1} + R_{2}} \right) < 0 & \Rightarrow & V_{e} < 0 \end{aligned}$$

$$0 = E_0 \left(\frac{R_1}{R_1 + R_2} \right) + V_e \left(\frac{R_2}{R_1 + R_2} \right) \implies V_e = -\left(\frac{R_1}{R_2} \right) E_0 \implies Seuil: V_{seuil} = -\left(\frac{R_1}{R_2} \right) E_0$$

$$\boxed{V_{seuil} = \left(\frac{R_1}{R_2}\right) \cdot E_0 < 0 \qquad car \qquad E_0 > 0} \qquad \boxed{Basculement \ si \quad V_e = -\left(\frac{R_1}{R_2}\right) E_0}$$

$$\begin{split} V_{S} &= +V_{sat} & si & e^{+} > e^{-} & \Rightarrow & E_{0} \bigg(\frac{R_{1}}{R_{1} + R_{2}} \bigg) + V_{e} \bigg(\frac{R_{2}}{R_{1} + R_{2}} \bigg) > 0 & \Rightarrow & V_{e} > -\frac{R_{1}}{R_{2}} E_{0} = V_{seuil} \\ V_{S} &= -V_{sat} & si & e^{+} < e^{-} & \Rightarrow & E_{0} \bigg(\frac{R_{1}}{R_{1} + R_{2}} \bigg) + V_{e} \bigg(\frac{R_{2}}{R_{1} + R_{2}} \bigg) < 0 & \Rightarrow & V_{e} < -\frac{R_{1}}{R_{2}} E_{0} = V_{seuil} \end{split}$$

UIC : Cycle Ingénieur - TC - S5

Électronique

Pr . A. BAGHDAD

$$\begin{vmatrix} V_S = +V_{sat} & si & V_e > -\frac{R_1}{R_2} E_0 = V_{seuil} \\ V_S = -V_{sat} & si & V_e < -\frac{R_1}{R_2} E_0 = V_{seuil} \end{vmatrix} Basculement \ si & V_e = V_{seuil} = -\left(\frac{R_1}{R_2}\right) E_0$$

Basculement si
$$V_e = V_{seuil} = -\left(\frac{R_1}{R_2}\right)E_0$$

Si V_e = V_{seuil} → basculement

Fonction de transfert

$$egin{aligned} V_S &= +V_{sat} & si & V_e > -rac{R_1}{R_2} \cdot E_0 = V_{seuil} \ V_S &= -V_{sat} & si & V_e < -rac{R_1}{R_2} \cdot E_0 = V_{seuil} \end{aligned}$$

Basculement si
$$V_e = V_{seuil} = -\left(\frac{R_1}{R_2}\right) \cdot E_0$$

Comparateurs à hystérésis « Triggers de Scmitt »

3°) Comparateurs à seuils ou à hystérésis (ou triggers de Scmitt)

Dans le cas général, les entrées e⁺ et e⁻ du montage reçoivent d'une part le signal à comparer V_e et d'autre part une tension de référence $V_{REF} = E_0$; et inversement.

Trigger non inverseur

Trigger inverseur

Montage comparateur à hystérésis non inverseur (Trigger non inverseur) :

$$\begin{split} e^{+} &= V_{s} \left(\frac{R_{1}}{R_{1} + R_{2}} \right) + V_{e} \left(\frac{R_{2}}{R_{1} + R_{2}} \right) & et & e^{-} &= E_{0} = 0 \quad \textit{Basculement} \qquad \textit{si} \qquad e^{+} &= e^{-} \\ 0 &= V_{s} \left(\frac{R_{1}}{R_{1} + R_{2}} \right) + V_{e} \left(\frac{R_{2}}{R_{1} + R_{2}} \right) & \Rightarrow \qquad V_{e} &= - \left(\frac{R_{1}}{R_{2}} \right) V_{s} \\ \textit{Les seuils} : V_{1/2} &= V_{H/B} = \pm \left(\frac{R_{1}}{R_{2}} \right) V_{Sat} \qquad \textit{car} \qquad V_{s} &= \pm V_{Sat} \end{split}$$

 V_H et V_B (seuils de commutation de la sortie) sont les valeurs de la tension V_e qui font changer la valeur de la sortie V_s

Les 2 seuils:
$$V_H = +\left(\frac{R_1}{R_2}\right)V_{Sat}$$
 et $V_B = -\left(\frac{R_1}{R_2}\right)V_{Sat}$

$$Si \ V_e < V_B \qquad \Rightarrow \qquad V_S = -V_{sat}$$

$$Si \ V_e > V_H \qquad \Rightarrow \qquad V_S = +V_{sat}$$

$$\begin{aligned} V_S &= +V_{sat} & si & V_e > V_B & et & V_e > V_H \\ V_S &= -V_{sat} & si & V_e < V_B & et & V_e < V_H \end{aligned}$$

Il apparait deux cycles:

- un cycle par rapport au seuil $V_{\rm H}$
- un cycle par rapport au seuil V_B

$$1^{\grave{e}r}$$
 cycle: V_s passe de $-V_{sat}$ $\grave{a}+V_{sat}$ (seuil: V_H) $2^{\grave{e}me}$ cycle: V_s passe de $+V_{sat}$ $\grave{a}-V_{sat}$ (seuil: V_B)

Longueur du cycle:

$$L = V_H - V_B$$

Cycle d'hystérésis : $V_s = f(V_e)$

Valeur moyenne:

$$V_{moy} = \frac{V_B + V_H}{2}$$