Traveling Sales Person

Brandon George *

November 2018

^{*}Dr. Nurk for the great starter code and moving the due date!

Abstract

Welcome to the Traveling Sales Person Problem! This was my fist attempt at making a GPU program and I think that it has been very beneficial to understanding what GPU programming might look like.

1 Report

1.1 Table

1.1.1 Three Cities

Number of Cities	p	$t_p(\mathbf{s})$	s	e
3	1	0.063		
3	2	0.050		
3	4	0.050		
3	6	0.050		

1.1.2 Four Cities

Number of Cities	p	$t_p(s)$	s	e
4	1	0.061		
4	2	0.050		
4	4	0.050		
4	8	0.049		
4	16	0.050		
4	24	0.052		

1.1.3 Five Cities

Number of Cities	p	$t_p(\mathbf{s})$	s	e
5	1	0.050		
5	2	0.051		
5	4	0.050		
5	8	0.065		
5	16	0.063		
5	32	0.050		
5	64	0.050		
5	120	0.050		

1.1.4 Six Cities

Number of Cities	p	$t_p(\mathbf{s})$	s	e
6	1	0.053		
6	2	0.051		
6	4	0.052		
6	8	0.051		
6	16	0.052		
6	32	0.051		
6	64	0.051		
6	128	0.051		
6	256	0.051		
6	512	0.052		
6	720	0.053		

1.1.5 Seven Cities

Number of Cities	p	$t_p(\mathbf{s})$	s	e
7	4	0.056		
7	8	0.053		
7	16	0.052		
7	32	0.052		
7	64	0.055		
7	128	0.055		
7	256	0.052		
7	512	0.052		
7	1024	0.067		

1.1.6 Eight Cities

Number of Cities	p	$t_p(s)$	s	e
8	8			
8	16			
8	32			
8	64			
8	128			
8	256			
8	512			
8	1024			

1.1.7 Nine Cities

Number of Cities	p	$t_p(s)$	s	e
9	8			
9	16			
9	32			
9	64			
9	128			
9	256			
9	512			
9	1024			

1.1.8 Ten Cities

Number of Cities	p	$t_p(s)$	s	e
10	8			
10	16			
10	32			
10	64			
10	128			
10	256			
10	512			
10	1024			

1.2 Graph

1.2.1 dogs.png

