Question 1

1 pts

I promise that I will not cheat.

Note: You will receive a zero on this exam if you do not agree to this question.

- True
- False

\supset	Question 2	1 pts
	I agree that if the instructors have evidence that I cheated, I will fail course and be reported to the university. Note: You will receive a zero on this exam if you do not agree to this question.	
	○ True	
	○ False	

Enter your name to certify that you agree to both of the previous statements.

Edit View Insert Format Tools Table

p

Question 4	3 pts
As the sum of the squared residuals (SSE) increase increase.	s, our t statistics also
increase.	
○ True	

n.

\supset	Question 6	3 pts
	In practice (in the "real world"), you should generally avoid heteroskedasticity-robust standard errors.	
	○ True	,
	○ False	

If you use homoskedasticity-based standard errors when the disturbances are actually heteroskedastic, then your coefficients are biased. (Assume all other requirements/assumptions for OLS are met.)

- True
- False

\supset	Question 8	3 pts

When you square a variable, it is equivalent to interacting the variable with itself.

- True
- False

The White test for heteroskedasticity and the Breusch-Pagan test for heteroskedasticity detect similar types of heteroskedasticity.

- True
- False

In the model above: The effect of "Income" on "Health" depends upon the

3 pts

individual's age.

True

 $\log(\mathrm{Income}_i) = \beta_0 + \beta_1 \mathrm{Education}_i + u_i$

Based upon the model above, if $\hat{\beta}_1=0.23$, then we interpret the effect of Education on Earnings as "an additional year of education will (on average) increase income by approximately 0.23% (holding everything else constant)."

- True
- False

Question 12	2	3 pts
Y also increases		
This observation	on implies that either (1) X causes Y o	r(2) Y causes X.
○ True	on implies that either (1) A causes Y o	r (2) Y causes X.

 $\log(\text{Income}_i) = \beta_0 + \beta_1 \log(\text{Education}_i) + u_i$

Based upon the model above, if $\hat{\beta}_1=-0.12$, then we interpret the effect of Education on Earnings as "a one percent increase in education will (on average) decrease income by approximately 12% (holding everything else constant)."

○ True

 $Income_i = \beta_0 + \beta_1 Education_i + \beta_2 (Is Female)_i + \beta_3 Education_i$

Let the variable "Is Female" be an indicator variable for whether the individual is identified as female in the dataset.

In the model above, an additional year of education will (on average) increase income for a female by $\beta_2+\beta_3$.

○ True

 $Income_i = \beta_0 + \beta_1 (Is Female)_i + u_i$

Let the variable "Is Female" be an indicator variable for whether the individual is identified as female in the dataset.

In the model above, β_1 gives the average level of income for females.

○ True

Question 17	3 pts
If the distribution of an estimator is centered on the target paramet even as the sample size (n) goes to infinity—then the estimator is unbiased.	er—
○ True	
○ False	

Question 18 3 pts

A static time-series model includes only lags of the explanatory variables not of the outcome.

- True
- False

\supset	Question 19	3 pts
	Measurement error (as defined in class) creates a negative bias for coefficients.	OLS
	○ True	

Question 20	3 pts
Measurement error occurs when the outcome variable is measured noise/error.	with
○ True	
○ False	

Question 21 3 pts

A dataset that observes the several individuals during a single time period is an example of time-series data.

True

Question 22

3 pts

Weighted least squares (WLS) "up-weights" observations with highvariance disturbances and "down-weights" observations with lowvariance disturbances.

- True
- False

 $Income_i = \beta_0 + \beta_1 Education_i + u_i$

Suppose you are interested in the model above and that you actually observe the disturbance.

You plot the disturbance against the explanatory variable and find that there is no relationship between Education and u_i .

You should not conclude that exogeneity is satisfied.

○ True

Question 24

A log-linear model implicitly assumes an exponential relationship between the outcome and the explanatory variable. A fully linear model does not assume this exponential relationship.

3 pts

- True
- False

\rightarrow	Question	25
_	Question	23

3 pts

Exogeneity requires that the disturbances do not correlate with the outcome variable.

- True
- False

Ш			
П	L		

Question 26

3 pts

A standard error tells us about the variation in an estimator's distribution.

- True
- False

\supset	Question 27	3 pts
	Omitted-variable bias tends to bias OLS coefficients toward zero.	
	○ True	<u> </u>
	○ False	

>	Question 29	3 pts
	Our standard OLS assumptions require that $Var(u) = 0$.	
	○ True	
	○ False	

>	Question 32	3 pts
	An estimator can be consistent without being unbiased.	
	○ True	-
	○ False	

\supset	Question 34	3 pts		
	We typically cannot observe the residuals, but we often can use the disturbances to "learn about" the residuals.			
	○ True			
	○ False			

Question 35	3 pts
Omitted-variable bias is a violation of homoske	edasticity.
○ True	
○ False	

Question 36	3 pts
Suppose you use OLS regression to obtain a coefficient estinand a standard error of 0.1.	nate of 2.01
If you conduct a hypothesis test or calculate a confidence into conclude that the estimate significantly rejects the null hypo- the coefficient equals 1.	00 mm m m m m m m m m m m m m m m m m m
○ True	
○ False	