# Scientific Programming Practical 1 (QCB)

## Introduction

## Outline

- Personal introduction
- Introduction to the practical
- Hands-on practical

## About me

#### **Computer Science**

Ph.D. at the University of Verona, Italy, with thesis on Simulation of Biological Systems

#### Research Fellow at Cranfield University - UK

Three years at Cranfield University working at proteomics projects (GAPP, MRMaid, X-Tracker...)

Module manager and lecturer in several courses of the MSc in Bioinformatics

#### Bioinformatician at IASMA - FEM

Currently bioinformatician in the Computational Biology Group at Istituto Agrario di San Michele all'Adige – Fondazione Edmund Mach, Trento, Italy

#### Collaborator uniTN - CiBio

I ran the Scientific Programming Lab for QCB for the last four years

## Fondazione Edmund Mach

FEM – San Michele, Trento - Italy



Agricultural Institute

Research and Innovation Centre

Genomics, metabolomics wet labs on fruits (apple, grape, small fruits,...)

Bioinformatics and computational biology

# Bioinformatics @FEM (UBC)

- Genomics
  - Assembly and annotation of complex genomes (plants, insects, etc.)
  - Development of SNP Chips for genetic screening
  - Resequencing of genomes / Variant discovery
- Metagenomics
  - > Targeted metagenomic data
  - > Feature selection algorithms
  - Algorithms for strain-level identification from un-targeted metagenomics
- Transcriptomics
  - > RNA-seq data analysis, gene and pathway enrichment
  - > Data integration and compilation of expression atlases
- Metabolomics
  - Data analysis pipelines for targeted and untargeted data
  - Methods for MS imaging
- Statistical data analysis
  - Integration of –omic data and analysis of correlation networks



#### **Genome assembly**



In a nutshell... (Tunis' version...)

Reads





[from M. Baker, Nature Methods, 2014]



#### Genome assembly of DH of Pear and Apple

#### Input data:

**Illumina:**  $^{\circ}60x - 100x$  PE information + (mate pairs for Apple)

**Pacific Biosciences** ~ 30x + 30x (35x only for Apple)

**Bionano optical maps**: ~ 600x (for both)

**Hi-C**: pear only

Genetic maps: integrated genetic map from 21 mapping populations (Apple only)

#### Output result (example for Apple):

Chromosome scale assembly

# Contigs: 2150 for a total of 625Mb

**N50 Contigs** (hybrid dbg2olc): ~ **620Kbps** 

280 **Scaffolds**, for an N50 **5,6Mb** 

17 chromosomes + IgO unanchored sequences

[Daccord et al, Nature Genetics, 49, 2017; Linsmith et al., GigaScience, 2020]





#### **SNP-Chips development for GWAS**

20K SNP Illumina Infinium II Array (reseq of 16 Apple cultivars, Illumina 30x) 487K SNP Affymetrix Axiom Array (reseq of 63 Apple cultivars, Illumina 20-30x) 600K SNP Affymetrix Axiom Array Walnut (reseq. 18 cultivars, Illumina 80x)

- 1. Reads alignment and filtering
- 2. SNP calling
- 3. Identification of most reliable SNPs
- 4. Selection of (20K) 487K target SNPs

Several Terabytes of data produced!!!!
Peach, pear and walnut done too!





#### **SNP-Chips development for GWAS**

20K SNP Illumina Infinium II Array (reseq of 16 Apple cultivars, Illumina 30x) 487K SNP Affymetrix Axiom Array (reseq of 63 Apple cultivars, Illumina 20-30x) 600K SNP Affymetrix Axiom Array Walnut (reseq. 18 cultivars, Illumina 80x)











#### RNAseq data analysis with Pathway Inspector



#### RNAseq data analysis with Pathway Inspector



Intersection pbs2salt-WTsalt WTtunimycin-WTyepd pbs2gal-WTgal WTgal-WTyepd

| Gene    | Comparison         | P-value              | Fold Change        | FDR                  |
|---------|--------------------|----------------------|--------------------|----------------------|
| YGR046W | pbs2satt-W7satt    | 0.0264803829029846   | 0.242031317732354  | 0.0481391746189205   |
|         | WTtunimysin-WTyepd | 2.38460949315057e-07 | 0.524172136340164  | 4.4746733128663e-07  |
|         | pbs2gal-WTgal      | 0.000867890485304009 | -0.301105531814201 | 0.00297830816509087  |
|         | WTgal-WTyepd       | 2.86768386434163e-15 | 0.832189633220768  | 7.19124882256014e-15 |
| Y1L140W | pbs2selt-W7selt    | 3.66247940741723e-08 | 0.633599190606476  | 1.68546937903529e-07 |
|         | WTtunimytin-WTyapd | 1.56617879717633e-24 | 1.0016409152993    | 5.92391639177541e-24 |
|         | pbs2gal-WTgal      | 1,67826251752703e-09 | 0.397640451182865  | 1.4996262012492±-08  |
|         | WTgal-WTyepd       | 0.00349129423675144  | 0.276549277440217  | 0.00482106276605931  |
| YLR130C | pbs2salt-WTsalt    | 0.0014810016155513   | 0.315821501380858  | 0.00356287774872549  |
|         | WTtunimysin-WTyepd | 3.0140342977802e-86  | -1.96795769614264  | 3.8332156378879e-85  |
|         | pbs2gal-WTgal      | 2.76753316898143e-09 | 0.468214139134541  | 2.39953774291843e-08 |
|         | WTgsi-WTyepd       | 5.89372053985592e-18 | -0.831121987730747 | 1.62245497938386e-17 |
| YOR011W | phs2self-WTself    | 1.00574726111917e-16 | 0.721830531608741  | 8.28174673473501e-16 |
|         | WTturimytin-WTyepd | 0.0109923879385166   | 0.218418100231531  | 0.0147157873258527   |

https://pathwayinspector.fmach.it



















## Pedigree-based haplotype visualization



Sample Mother Father Both No data















## Pedigree-based haplotype visualization



Temporary access: http://77.72.197.129:8081



Sequencing and assemblying of Sars-Cov-2 samples from the Province of Trento (sponsored by Fondazione VRT)





Sequencing and assemblying of Sars-Cov-2 samples from the Province of Trento (sponsored by Fondazione VRT)



# Opportunities @FEM

#### **MSc External thesis**

Are you interested in a bioinformatics project in NGS data analysis, RNA Seq, data integration?

Talk to me or email me at:

luca.bianco@fmach.it



# Scientific Programming Practical

Back to business now!



# Scientific Programming Practical

## In this practical you will

- 1. Install Python 3.x (and pip)
- 2. Install Visual Studio Code
- 3. Get familiar with the Python console
- 4. Start using Visual Studio Code and advanced features (like debugging)
- 5. End the session with some exercises



## Linux or Windows?

Up to you, as far as this course is concerned...

if you are looking for a career in bioinformatics I think it would be a good idea to get familiar with Linux



# Scientific Programming Practical

Console VS. Integrated Development Environment (IDE)

```
biancol@bluhp:~$ python3
Python 3.5.2 (default, Aug 18 2017, 17:48:00)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
```

```
>>> print("Hi there")
Hi there
>>> print("{} + {} = {}".format(10,20, 10+20))
10 + 20 = 30
>>>
```



# Scientific Programming Practical

## Console VS. Integrated Development Environment (IDE)

```
biancol@bluhp:~$ python3

Python 3.5.2 (default, Aug 18 2017, 17:48:00)

[GCC 5.4.0 20160609] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>
```

```
>>> print("Hi there")
Hi there
>>> print("{} + {} = {}".format(10,20, 10+20))
10 + 20 = 30
>>>
```

The debugger

```
DEBUG Python
                    ▼ ☆ ∑
                                integer_sum.py x
                                      """ integer sum.py is a script to
■ VARIABLES
                                       compute the sum of the first 1200 integers. """
name : ' main '
                                      S = 0
   doc : ' integer sum.py is ...
                                      for i in range (0, 1201):
   package : None
   loader : None
                                      print ("The sum of the first 1200 integers is: ", S)
   spec : None
   file : '/home/biancol/Goog.
  cached : None
 builtins : {'ArithmeticErr...

■ WATCH

 S: 0
 i: 0
```

## Notebooks and Jupyter

"Jupyter is a web-based interactive development environment for python/R.. notebooks, code, and data."

Notebooks contain both the **code**, some **text describing the code** and the **output of the code execution**,

Jupyter is becoming the de-facto standard for writing technical documentation.



## Notebooks and Jupyter

Notebooks contain both the code, some text describing the code and the output of the code execution,

Jupyter is becoming the de-facto standard for writing technical documentation.

A cell can be executed by clicking on **Run** 



## Resources

All material regarding practicals will be found here:

http://qcbsciprolab2020.readthedocs.io



#### **Scientific Programming for QCB**

Download: PDF EPUB HTML

#### General Info

The contacts to reach me can be found at this page.

#### Timetable and lecture rooms

Due to the current situation regarding the Covid-19 pandemic, Practicals will take place ONLINE this year. They will be held on Mondays from 14:30 to 16:30 and on Wednesdays from 11:30 to 12:30.

Practicals will use the Zoom platform (https://zoom.us/) and the link for the connection will be published on the practical page available in this site a few minutes before the start of the session.

This first part of the course will tentatively run from Wednesday, September 23rd, 2020 to Monday, November 2nd, 2020.

#### Moodle

In the moodle page of the course you can find announcements and videos of the lectures. It can be found here.

#### Zoom links

The zoom links for the practicals can be found in the Announcements section of the moodle web page. To get you started quickly, I report them here:

Join Zoom Meeting https://unitn.zoom.us/j/97253388646

Meeting ID: 972 5338 8646 Passcode: 794500

#### Slides

Slides of the practicals will be available on the top part of each practical page.

## **Timetable**

Mondays:

ONLINE: 15,30 - 17,30

Wednesdays:

ONLINE: 11,30 - 13,30

#### Timetable and lecture rooms

Due to the current situation regarding the Covid-19 pandemic, Practicals will take place ONLINE this year. They will be held on Mondays from 14:30 to 16:30 and on Wednesdays from 11:30 to 12:30.

Practicals will use the Zoom platform (https://zoom.us/) and the link for the connection will be published on the practical page available in this site a few minutes before the start of the session.

This first part of the course will tentatively run from Wednesday, September 23rd, 2020 to Monday, November 2nd, 2020.

#### Zoom links

The zoom links for the practicals can be found in the Announcements section of the moodle web page. To get you started quickly, I report them here:

Join Zoom Meeting https://unitn.zoom.us/j/97253388646

Meeting ID: 972 5338 8646 Passcode: 794500

http://qcbsciprolab2020.readthedocs.io



# Any questions?

If not, please go to:

## https://qcbsciprolab2020.readthedocs.io/latest/introduction.html



