Abstract

We develop a perturbative framework for neutrino oscillations in uniform matter density so that the resulting oscillation probabilities are accurate for the complete matter potential versus baseline divided by neutrino energy plane. This extension also gives the exact oscillation probabilities in vacuum for all values of baseline divided by neutrino energy. The expansion parameter used is related to the ratio of the solar to the atmospheric Δm^2 scales but with a unique choice of the atmospheric Δm^2 such that certain first-order effects are taken into account in the zeroth-order Hamiltonian. Using a mixing matrix formulation, this framework has the exceptional feature that the neutrino oscillation probability in matter has the same structure as in vacuum, to all orders in the expansion parameter. It also contains all orders in the matter potential and $\sin \theta_{13}$. It facilitates immediate physical interpretation of the analytic results, and makes the expressions for the neutrino oscillation probabilities extremely compact and very accurate even at zeroth order in our perturbative expansion. The first and second order results are also given which improve the precision by approximately two or more orders of magnitude per perturbative order. We have also extended the framework by comparing the effect of additional rotations versus perturbations. Finally, we explore how Δm_{ee}^2 is modified in matter.

Analytic and Compact Expressions for Neutrino Oscillations in Matter

Peter B. Denton

 $POND^2$

December 4, 2018

with S. Parke and X. Zhang and H. Minakata. 1604.08167, 1806.01277, 1808.09453 github.com/PeterDenton/Nu-Pert

A Theorist's Long-Baseline Picture

The Several Billion Dollar Question

What is
$$P(\nu_{\mu} \to \nu_{e})$$
?

$$P(\vec{\nu}_{\mu} \to \vec{\nu}_{e}) = |\mathcal{A}_{\mu e}|^{2} \qquad \mathcal{A}_{\mu e} = \mathcal{A}_{31} + e^{\pm i\Delta_{32}} \mathcal{A}_{21}$$
$$\mathcal{A}_{31} = 2s_{13}c_{13}s_{23}\sin\Delta_{31}$$
$$\mathcal{A}_{21} = 2s_{12}c_{13}(c_{12}c_{23}e^{i\delta} - s_{12}s_{13}s_{23})\sin\Delta_{21}$$

The Several Billion Dollar Question

What is $P(\nu_{\mu} \to \nu_{e})$?

$$P(\vec{\nu}_{\mu} \to \vec{\nu}_{e}) = |\mathcal{A}_{\mu e}|^{2} \qquad \mathcal{A}_{\mu e} = \mathcal{A}_{31} + e^{\pm i\Delta_{32}} \mathcal{A}_{21}$$
$$\mathcal{A}_{31} = 2s_{13}c_{13}s_{23}\sin\Delta_{31}$$
$$\mathcal{A}_{21} = 2s_{12}c_{13}(c_{12}c_{23}e^{i\delta} - s_{12}s_{13}s_{23})\sin\Delta_{21}$$
$$\Delta_{ij} = \Delta m^{2}_{ij}L/4E$$

...in matter?

Now: NOvA, T2K, MINOS, ... Upcoming: DUNE, T2HK, ... Second maximum: T2HKK? ESSnuB? ...

$$\delta = 0.0\pi$$

$$\Delta_{32} = 0.5\pi$$
NO

$$A_{31}$$
 $P(\nu_{\mu} \to \nu_{e}) = A_{\mu e} A_{\mu e}^{*}$

Denton & Parke

$$\delta = 0.0\pi$$

$$\Delta_{32} = 0.5\pi$$
NO
$$-\frac{A_{31}}{A_{21}} P(\nu_{\mu} \to \nu_{e}) = A_{\mu e} A_{\mu e}^{*}$$

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = \bar{A}_{\mu e}^{*} \bar{A}_{\mu e}$$

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = \bar{A}_{\mu e}^{*} \bar{A}_{\mu e}$$

Denton & Parke

Denton & Parke

Matter Effects Matter

Call Schrödinger equation's eigenvalues m_i^2 and eigenvectors U_i .

$$\mathcal{A}(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i} U_{\alpha i}^{*} U_{\beta i} e^{-im_{i}^{2} L/2E} \qquad P = |\mathcal{A}|^{2}$$

In matter ν 's propagate in a new basis that depends on $a \propto \rho E$.

L. Wolfenstein, PRD 17 (1978)

Eigenvalues:
$$m_i^2 \to \widetilde{m_i^2}(a)$$

Eigenvectors are given by $\theta_{ij} \to \frac{\widetilde{\theta}_{ij}(a)}{\widetilde{\theta}_{ij}(a)} \quad \Leftarrow \quad \text{Unitarity}$

Hamiltonian Dynamics

$$H = \frac{1}{2E} \left[U \begin{pmatrix} 0 & \Delta m_{21}^2 & \\ & \Delta m_{31}^2 \end{pmatrix} U^\dagger + \begin{pmatrix} a & \\ & 0 & \\ & & 0 \end{pmatrix} \right]$$

$$a = 2\sqrt{2}G_F N_e E$$

Find eigenvalues and eigenvectors:

$$H = \frac{1}{2E}\widetilde{U}\begin{pmatrix} 0 & & \\ & \Delta\widetilde{m^2}_{21} & \\ & & \Delta\widetilde{m^2}_{31} \end{pmatrix}\widetilde{U}^\dagger$$

Computationally works, but we can do better than a black box ...

Analytic expression?

Eigenvalues Analytically: The Exact Solution

Solve the cubic characteristic equation.

$$\widetilde{m^{2}}_{1} = \frac{A}{3} - \frac{1}{3}\sqrt{A^{2} - 3B}S - \frac{\sqrt{3}}{3}\sqrt{A^{2} - 3B}\sqrt{1 - S^{2}}$$

$$\widetilde{m^{2}}_{2} = \frac{A}{3} - \frac{1}{3}\sqrt{A^{2} - 3B}S + \frac{\sqrt{3}}{3}\sqrt{A^{2} - 3B}\sqrt{1 - S^{2}}$$

$$\widetilde{m^{2}}_{3} = \frac{A}{3} + \frac{2}{3}\sqrt{A^{2} - 3B}S$$

$$A = \Delta m_{21}^{2} + \Delta m_{31}^{2} + a$$

$$B = \Delta m_{21}^{2}\Delta m_{31}^{2} + a \left[c_{13}^{2}\Delta m_{31}^{2} + (c_{12}^{2}c_{13}^{2} + s_{13}^{2})\Delta m_{21}^{2}\right]$$

$$C = a\Delta m_{21}^{2}\Delta m_{31}^{2}c_{12}^{2}c_{13}^{2}$$

$$S = \cos\left\{\frac{1}{3}\cos^{-1}\left[\frac{2A^{3} - 9AB + 27C}{2(A^{2} - 3B)^{3/2}}\right]\right\}$$

H. Zaglauer, K. Schwarzer, Z. Phys. C Particles and Fields, 40 (1988)

Traded one **black box** for another...

Alternative Solutions

Perturbative expansion:

▶ Small matter potential: $a/\Delta m^2$

 $ightharpoonup s_{13}, s_{13}^2$

A. Cervera, et al., hep-ph/0002108
 H. Minakata, 0910.5545

K. Asano, H. Minakata, 1103.4387

 $\Delta m_{21}^2/\Delta m_{31}^2 \sim 0.03$

J. Arafune, J. Sato, hep-ph/9607437

A. Cervera, et al., hep-ph/0002108

M. Freund, hep-ph/0103300

E. Akhmedov, et al., hep-ph/0402175M. Blennow, A. Smirnov, 1306.2903

H. Minakata, S. Parke, 1505.01826

PBD, H. Minakata, S. Parke, 1604.08167

Change of basis:

PBD, S. Parke, X. Zhang, 1806.01277

A Tale of Two Tools

Split the Hamiltonian into:

- ▶ Large, diagonal part (H_0)
- ▶ Small, off-diagonal part (H_1)
- Improves precision at zeroth order
- \blacktriangleright Naturally leads to using $\Delta m^2_{ee} \equiv c^2_{12} \Delta m^2_{31} + s^2_{12} \Delta m^2_{32}$

H. Nunokawa, S. Parke, R. Zukanovich, hep-ph/0503283

1. Rotations:

- ► A two-flavor rotation only requires solving a quadratic
- ▶ Diagonalize away the big off-diagonal terms
- ▶ Follows the order of the PMNS matrix

2. Perturbative expansion:

- ▶ Smallness parameter is $|\epsilon'| \le 0.015$
- ▶ Correct eigenvalues $(\widetilde{m^2}_i)$ and eigenvectors $(\widetilde{\theta_{ij}})$
- ► Eigenvalues already include 1st order corrections at 0th order
- ► Can improve the precision to arbitrary order

Atmospheric Resonance

- 1. $U_{23}(\theta_{23}, \delta)$ commutes with matter potential
- 2. Largest off-diagonal term: $s_{13}c_{13}\Delta m_{ee}^2$ in the 1-3 position

- ▶ Eigenvalues still cross at the solar resonance:
 - ▶ No perturbation theory there
- ► Smallness parameter:
 - After U_{23} : $s_{13}c_{13} = 0.15$
 - After U_{13} : $s_{12}c_{12}\frac{\Delta m_{21}^2}{\Delta m^2} = 0.015$

POND²: December 4, 2018 13/29

Solar Resonance

- 3. Largest off-diagonal term:
 - $s_{12}c_{12}c_{\widetilde{\theta}_{12}-\theta_{12}}\Delta m_{21}^2$ in the 1-2 position \triangleright Largest except for ν 's above the atmospheric resonance
- $|\epsilon'| < 0.015$, zero in vacuum
- ▶ Perturbation theory valid everywhere now
 - Rotation order matches PMNS
- ▶ Take vacuum expressions, replace θ_{13} , θ_{12} , and Δm_{ii}^2 • Extremely precise $|\Delta P/P| < 10^{-3}$

Rot

Solar Resonance

- 3. Largest off-diagonal term:
 - $s_{12}c_{12}c_{\tilde{\theta}_{13}-\theta_{13}}\Delta m_{21}^2$ in the 1-2 position
 Largest except for ν 's above the atmospheric resonance
- $|\epsilon'| < 0.015$, zero in vacuum
- ▶ Perturbation theory valid everywhere now
- ► Rotation order matches PMNS
- ▶ Take vacuum expressions, replace θ_{13} , θ_{12} , and Δm_{ij}^2
- Extremely precise $|\Delta P/P| < 10^{-3}$

MD15

Rot

011 15 16 DMP

Expansion Parameter

Peter B. Denton (BNL)

1604.08167

POND²: December 4, 2018 15/29

Probability in Matter: DMP 0th

$$Vacuum \Rightarrow$$

$$\widetilde{\text{Matter}}$$

$$P_{\alpha\beta}(\Delta m^2_{21},\Delta m^2_{31},\theta_{13},\theta_{12},\theta_{23},\delta) \Rightarrow P_{\alpha\beta}(\Delta \widetilde{m^2}_{21},\Delta \widetilde{m^2}_{31},\widetilde{\theta}_{13},\widetilde{\theta}_{12},\theta_{23},\delta)$$

Same expression, 4 new variables.

Probability in Matter: DMP 0th

Vacuum
$$\Rightarrow$$

 $\widetilde{\text{Matter}}$

$$P_{\alpha\beta}(\Delta m_{21}^2, \Delta m_{31}^2, \theta_{13}, \theta_{12}, \theta_{23}, \delta) \Rightarrow P_{\alpha\beta}(\Delta \widetilde{m^2}_{21}, \Delta \widetilde{m^2}_{31}, \widetilde{\theta}_{13}, \widetilde{\theta}_{12}, \theta_{23}, \delta)$$

Same expression, 4 new variables.

$$\cos 2\widetilde{\theta}_{13} = \frac{\Delta m_{ee}^2 \cos 2\theta_{13} - a}{\Delta \widetilde{m}_{ee}^2}$$
$$\Delta \widetilde{m}_{ee}^2 = \Delta m_{ee}^2 \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$$

Probability in Matter: DMP 0th

Vacuum
$$\Rightarrow$$

$$P_{\alpha\beta}(\Delta m_{21}^2, \Delta m_{31}^2, \theta_{13}, \theta_{12}, \theta_{23}, \delta) \Rightarrow P_{\alpha\beta}(\Delta \widetilde{m^2}_{21}, \Delta \widetilde{m^2}_{31}, \widetilde{\theta}_{13}, \widetilde{\theta}_{12}, \theta_{23}, \delta)$$
Same expression, 4 new variables.

$$\cos 2\widetilde{\theta}_{13} = \frac{\Delta m_{ee}^2 \cos 2\theta_{13} - a}{\Delta \widetilde{m}_{ee}^2}$$
$$\Delta \widetilde{m}_{ee}^2 = \Delta m_{ee}^2 \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$$

$$\cos 2\widetilde{\theta}_{12} = \frac{\Delta m_{21}^2 \cos 2\theta_{12} - a_{12}}{\Delta \widetilde{m}^2_{21}}, \qquad a_{12} = (a + \Delta m_{ee}^2 - \Delta \widetilde{m}^2_{ee})/2$$
$$\Delta \widetilde{m}^2_{21} = \Delta m_{21}^2 \sqrt{(\cos 2\theta_{12} - a_{12}/\Delta m_{21}^2)^2 + \cos^2(\widetilde{\theta}_{13} - \theta_{13})\sin^2 2\theta_{12}}$$

Probability in Matter: DMP 0th Vacuum

Matter

 $P_{\alpha\beta}(\Delta m_{21}^2, \Delta m_{31}^2, \theta_{13}, \theta_{12}, \theta_{23}, \delta) \Rightarrow P_{\alpha\beta}(\Delta m_{21}^2, \Delta m_{31}^2, \widetilde{\theta}_{13}, \widetilde{\theta}_{12}, \theta_{23}, \delta)$ Same expression, 4 new variables.

$$\cos 2\widetilde{\theta}_{13} = \frac{\Delta m_{ee}^2 \cos 2\theta_{13} - a}{\Delta \widetilde{m}_{ee}^2}$$

$$\Delta \widetilde{m^2}_{ee} = \Delta m_{ee}^2 \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$$

$$\cos 2\widetilde{\theta}_{12} = \frac{\Delta m_{21}^2 \cos 2\theta_{12} - a_{12}}{\Delta \widetilde{m}^2_{21}}, \qquad a_{12} = (a + \Delta m_{ee}^2 - \Delta \widetilde{m}^2_{ee})/2$$
$$\Delta \widetilde{m}^2_{21} = \Delta m_{21}^2 \sqrt{(\cos 2\theta_{12} - a_{12}/\Delta m_{21}^2)^2 + \cos^2(\widetilde{\theta}_{13} - \theta_{13})\sin^2 2\theta_{12}}$$

$$\Delta \widetilde{m^2}_{31} = \Delta m_{31}^2 + \frac{1}{4}a + \frac{1}{2}(\Delta \widetilde{m^2}_{21} - \Delta m_{21}^2) + \frac{3}{4}(\Delta \widetilde{m^2}_{ee} - \Delta m_{ee}^2)$$

Improve with Perturbation

Required to remove level crossing: $\tilde{\theta}_{12}$

order

4. $\gtrsim 2$ orders of magnitude of improvement in precision: $|\Delta P/P| < 10^{-6}$

- ► Eigenvalues need no correction
- Compact form utilizes a $\widetilde{m}^2_1 \leftrightarrow \widetilde{m}^2_2$, $\widetilde{\theta}_{12} \leftrightarrow \widetilde{\theta}_{12} \pm \pi/2$ symmetry

Vacuum

Rot

Peter B. Denton (BNL)

Higher Orders

 $\tilde{\theta}_{13}$ $\tilde{\theta}_{12}$ 5. $\gtrsim 2$ more orders of magnitude

order

order

 θ_{23}, δ

of improvement per order: $|\Delta P/P| < 10^{-9}, \dots$

Rot.

Precision

DUNE: NO, $\delta = 3\pi/2$		First min	First max
$P(\nu_{\mu} \rightarrow \nu_{e})$		0.0047	0.081
$E ext{ (GeV)}$		1.2	2.2
$\frac{ \Delta P }{P}$	Zeroth	5×10^{-4}	4×10^{-4}
	First	3×10^{-7}	2×10^{-7}
	Second	6×10^{-10}	5×10^{-10}

More Options 6. Perturbation theory after

 $\alpha_{13}|\bar{\alpha}_{23}|$

 $\alpha_{23}|\bar{\alpha}_{13}|$

 $\tilde{\theta}_{13}$ $\tilde{\theta}_{12}$

 θ_{23}, δ

 $\nu | \bar{\nu}$

Wacuum¹

Not. ✓

Matter Rot.

Peter B. Denton (BNL)

▶ 2 additional rotations + 1 order of pert. th. $\equiv 2$ orders of pert. th.

2 additional rotations

 $\alpha_{12}|\bar{\alpha}_{12}|$

1806.01277

 $^{\prime} {
m order}^{
m '}$

order

order

POND²: December 4, 2018 22/29

MP15

The Effective Δm_{ee}^2 in Matter

$$\Delta m_{ee}^2 = c_{12}^2 \Delta m_{31}^2 + s_{12}^2 \Delta m_{32}^2$$

 Δm_{ee}^2 is an important quantity for understanding oscillations:

▶ Optimal expression for reactor experiments

H. Nunokawa, S. Parke, R. Zukanovich, hep-ph/0503283

S. Parke, 1601.07464

▶ Shows up naturally in DMP on long-baseline matter effect

How does Δm_{ee}^2 evolve in matter?

Asymptotic Evolution of Δm^2_{ee}

$$\Delta \widehat{m^2}_{ee} = \begin{cases} \widehat{m^2}_3 - \widehat{m^2}_1 & \qquad E \to -\infty \\ \widehat{m^2}_3 - \widehat{m^2}_2 & \qquad E \to +\infty \end{cases}$$

Intermediate Evolution of Δm^2_{ee}

$$\Delta \widehat{m^2}_{ee} = \begin{cases} \widehat{m^2}_3 - \widehat{m^2}_1 & \qquad E \to -\infty \\ \widehat{m^2}_3 - \widehat{m^2}_2 & \qquad E \to +\infty \end{cases}$$

Since
$$\widehat{m^2}_2(E \to -\infty) = \widehat{m^2}_1(E \to +\infty) = \text{constant}$$
, call $m_0^2 \equiv \Delta m_{21}^2 c_{12}^2$

Now we can define

$$\begin{split} \Delta \widehat{m^2}_{ee} & \equiv \widehat{m^2}_3 - (\widehat{m^2}_1 + \widehat{m^2}_2 - m_0^2) \\ \Delta \widehat{m^2}_{ee} - \Delta m_{ee}^2 & = (\widehat{m^2}_3 - m_3^2) - (\widehat{m^2}_1 - m_1^2) - (\widehat{m^2}_2 - m_2^2) \\ & \quad \text{Easy to see that } \Delta \widehat{m^2}_{ee}(E=0) = \Delta m_{ee}^2 \end{split}$$

Relationship to vacuum expression?

Relationship to Vacuum Expression

In vacuum we can equivalently write:

$$\Delta m_{ee}^2 = \begin{cases} c_{12}^2 \Delta m_{31}^2 + s_{12}^2 \Delta m_{32}^2 \\ m_3^2 - (m_1^2 + m_2^2 - m_0^2) \end{cases}$$

Elevate everything to matter equivalent, except m_0^2 which we know we want to be a constant.

$$\begin{split} \Delta \widehat{m^2}_{ee} &= \widehat{m^2}_3 - (\widehat{m^2}_1 + \widehat{m^2}_2 - m_0^2) \\ \Delta \widehat{m^2}_{EE} &= c_{\widehat{12}}^2 \Delta \widehat{m^2}_{31} + s_{\widehat{12}}^2 \Delta \widehat{m^2}_{32} \end{split}$$

The difference between these similar formulas:

$$\Delta_{Ee} = \widehat{m^2}_1 + c_{\widehat{12}}^2 \Delta \widehat{m^2}_{21} - c_{12}^2 \Delta m_{21}^2$$

Use DMP!

At zeroth order: $\Delta_{E_e}^{(0)} = 0$

At first order, only correction is to θ_{12} ,

PBD, S. Parke, X. Zhang, 1806.01277

$$\Delta_{Ee}^{(1)} = t_{\widetilde{13}} s_{12}^2 c_{12}^2 \sin 2\theta_{13} a \frac{(\Delta m_{21}^2)^2}{\Delta \widetilde{m}_{32}^2 \Delta \widetilde{m}_{31}^2}$$

At second order eigenvalues are also corrected, $\Delta_{Ee}^{(2)} = \cdots$

$$\Delta \widetilde{m^2}_{ee, \text{DMP}} / \Delta m_{ee}^2 \equiv \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$$

Which is best?

POND²: December 4, 2018 27/29 1808.09453

Comparison of Two-Flavor Precision

The $\Delta \widehat{m^2}_{ee}$ expression also leads to a simple rewriting of the eigenvalues.

HM: H. Minakata, 1702.03332 21 term in probability not included

The winner is:
$$\Delta \widehat{m}_{ee}^2 \equiv \widehat{m}_3^2 - (\widehat{m}_1^2 + \widehat{m}_2^2 - m_0^2)$$
!

Precision is better than 0.06%

Key Points

- ▶ Include 1st order corrections in 0th order eigenvalues (Δm_{ee}^2)
- \blacktriangleright Rotate large terms first \Rightarrow PMNS order, removes level crossings
- ▶ All channels, energies, and baselines handled simultaneously
- ightharpoonup 0 th order probabilities: same structure as vacuum probabilities
- ightharpoonup 0th order: **accurate** enough for current & future experiments
- ▶ Further precision through perturbation and/or more rotations
- \blacktriangleright Elevate Δm_{ee}^2 to include the matter effect, DMP makes it simple
- ▶ New physics? Xining Zhang on steriles next!

Backups

Neutrino Oscillations in Vacuum: Disappearance

It is easy to calculate the *exact* disappearance expression in vacuum:

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4 \sum_{i < j} |U_{\alpha i}|^2 |U_{\alpha j}|^2 \sin^2 \Delta_{ji}$$

For the electron case this expression is simple:

$$\begin{split} P(\nu_e \to \nu_e) &= 1 \\ &- 4c_{12}^2 s_{12}^2 c_{13}^4 \sin^2 \Delta_{21} \\ &- 4c_{12}^2 c_{13}^2 s_{13}^2 \sin^2 \Delta_{31} \\ &- 4s_{12}^2 c_{13}^2 s_{13}^2 \sin^2 \Delta_{32} \end{split}$$

$$\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}$$
$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

A Simple Solution

For two-flavor oscillations:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

- Solar: θ_{21} , Δm_{21}^2
- ▶ Reactor: θ_{13} , Δm_{ee}^2

Neutrino Oscillation Parameters Status

Six parameters:

1.
$$\theta_{13} = 8.6^{\circ}$$

2.
$$\theta_{12} = 34^{\circ}$$

3.
$$\Delta m_{21}^2 = 7.4 \times 10^{-5} \text{ eV}^2$$

4.
$$\theta_{23} \sim 45^{\circ} \text{ (octant)}$$

5.
$$|\Delta m_{31}^2| =$$
6. $\delta = ???$

5.
$$|\Delta m_{31}^2| = 2.5 \times 10^{-3} \text{ eV}^2$$
 (mass ordering)
6. $\delta = 222$

NuFIT, 1811.05487

PMNS order allows for easy measurement of
$$\theta_{13}$$
 and θ_{12} .

$$\theta_{23}$$
 and δ_{CP} require full three-flavor description.

Alternative Solutions: Example

$$P_0 = \sin^2 \theta_{23} \frac{\sin^2 2\theta_{13}}{\hat{C}^2} \sin^2(\hat{\Delta}\hat{C}), \tag{36a}$$

$$P_{\sin\delta} = \frac{1}{2} \alpha \frac{\sin\delta\cos\theta_{13}\sin2\theta_{12}\sin2\theta_{13}\sin2\theta_{23}}{\hat{A}\hat{C}\cos\theta_{13}^2} \sin(\hat{C}\hat{\Delta})$$

$$\times \{\cos(\hat{C}\hat{\Delta}) - \cos((1+\hat{A})\hat{\Delta})\},$$
 (36b)

$$P_{\cos\delta} = \frac{1}{2} \alpha \frac{\cos\delta\cos\theta_{13}\sin2\theta_{12}\sin2\theta_{13}\sin2\theta_{23}}{\hat{A}\hat{C}\cos\theta_{13}^2}\sin(\hat{C}\hat{\Delta})$$

$$\times \{\sin((1+\hat{A})\hat{\Delta}) \mp \sin(\hat{C}\hat{\Delta})\},\$$

 $1 - \hat{A}\cos 2\theta_{12}$

$$\begin{split} P_1 &= -\alpha \frac{1 - \hat{A}\cos 2\,\theta_{13}}{\hat{C}^3} \sin^2\!\theta_{12} \sin^2\!2\,\theta_{13} \sin^2\!\theta_{23} \hat{\Delta} \\ &\times \sin(2\hat{\Delta}\hat{C}) + \alpha \frac{2\hat{A}(-\hat{A} + \cos 2\,\theta_{13})}{\hat{C}^4} \end{split}$$

$$\times \sin^2 \theta_{12} \sin^2 2 \theta_{13} \sin^2 \theta_{23} \sin^2 (\Delta \hat{C}),$$

$$P_2 = \alpha \frac{\mp 1 + \hat{C} \pm \hat{A} \cos 2 \theta_{13}}{2 \hat{C}^2 \hat{A} \cos^2 \theta_{13}} \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13}$$

$$\times \sin 2\theta_{23} \sin^2(\hat{\Delta}\hat{C}),$$
 (36e)

$$P_3 = \alpha^2 \frac{2\hat{C}\cos^2\theta_{23}\sin^22\theta_{12}}{\hat{A}^2\cos^2\theta_{13}(\mp \hat{A} + \hat{C} \pm \cos 2\theta_{13})}$$

M. Freund, hep-ph/0103300

 $\times \sin^2 \left(\frac{1}{2} (1 + \hat{A} \mp \hat{C}) \hat{\Delta} \right).$ (36f)

1604.08167

(36c)

(36d)

POND²: December 4, 2018 34/29

Our Methodology

- Start with $\epsilon = \frac{\Delta m_{21}^2}{\Delta m_{ee}^2} = 0.03$
- ▶ Perform one fixed and two variable rotations: (θ_{23}, δ) , $\widetilde{\theta}_{13}$, $\widetilde{\theta}_{12}$
- Write the probabilities with simple L/E dependence:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - \sum_{i < j} \Re \left[U_{\alpha i} U_{\beta i}^* U_{\alpha j}^* U_{\beta j} \right] \sin^2 \Delta_{ij}$$
$$+ 8\Im \left[U_{\alpha 1} U_{\beta 2}^* U_{\alpha 2}^* U_{\beta 1} \right] \sin \Delta_{32} \sin \Delta_{31} \sin \Delta_{21}$$

C. Jarlskog: PRL 55 (1985)

Nonvanishing Wronskian \Rightarrow fewest number of L/E functions Clear that the CPV term is $\mathcal{O}[(L/E)^3]$ not $\mathcal{O}[(L/E)^1]$

$$\widetilde{m^2}_a = a + (s_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_b = \epsilon c_{12}^2 \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 \;,\; \widetilde{m$$

$$\widetilde{m^2}_{\mp} = \frac{1}{2} \left[(\widetilde{m^2}_a + \widetilde{m^2}_c) \mp \operatorname{sgn}(\Delta m_{ee}^2) \sqrt{(\widetilde{m^2}_c - \widetilde{m^2}_a)^2 + (2s_{13}c_{13}\Delta m_{ee}^2)^2} \right]$$

 $m^2_0 = m^2_b$ Peter B. Denton (BNL)

$$\widetilde{m^2}_{\mp} = \frac{1}{2} \left[(\widetilde{m^2}_a + \widetilde{m^2}_c) \mp \operatorname{sgn}(\Delta m_{ee}^2) \sqrt{(\widetilde{m^2}_c - \widetilde{m^2}_a)^2 + (2s_{13}c_{13}\Delta m_{ee}^2)^2} \right]$$

 $m^2_0 = m^2_b$ Peter B. Denton (BNL)

$$\widetilde{m^2}_{1,2} = \frac{1}{2} \left[(\widetilde{m^2}_0 + \widetilde{m^2}_-) \mp \sqrt{(\widetilde{m^2}_0 - \widetilde{m^2}_-)^2 + (2\epsilon c_{(\widetilde{\theta}_{13} - \theta_{13})} c_{12} s_{12} \Delta m_{ee}^2)^2} \right]$$

Peter B. Denton (BNL)

Eigenvalues in Matter: Mass Ordering

$$\widetilde{m^2}_1 < \widetilde{m^2}_2 < \widetilde{m^2}_3$$

$$\widetilde{m^2}_3 < \widetilde{m^2}_1 < \widetilde{m^2}_2$$

1+2 Rotations

- 1. Perform a constant $U_{23}(\theta_{23}, \delta)$ rotation
 - ▶ U_{23} commutes with the matter potential
 - ► Resultant Hamiltonian is real
 - 'Expansion parameter' is $c_{13}s_{13} = 0.15$ at this point
- 2. Diagonalize the diagonal and $\mathcal{O}(\epsilon^0)$ off-diagonal terms with $U_{13}(\tilde{\theta}_{13})$
 - $\bullet \ \widetilde{\theta}_{13}(a=0) = \theta_{13}$
 - Expansion parameter is $c_{12}s_{12}\frac{\Delta m_{21}^2}{\Delta m_{ee}^2}=0.015$

H. Minakata, S. Parke, 1505.01826

- 3. Diagonalize the terms non-zero in vacuum with $U_{12}(\tilde{\theta}_{12})$
 - $\bullet \ \widetilde{\theta}_{12}(a=0) = \theta_{12}$
 - \blacktriangleright Expansion parameter is now $\epsilon'=c_{12}s_{12}s_{(\widetilde{\theta}_{13}-\theta_{13})}\frac{\Delta m_{21}^2}{\Delta m_{21}^2}<0.015$
 - $\epsilon'(a=0)=0$

$$\frac{a}{\Delta m_{\rm ee}^2\cos 2\theta_{13}}=0.0$$
 Vacuum
$$2(\frac{\pi}{2}-\phi)$$

CPV Term

The exact CPV term in matter is

$$P\supset \pm 8s_{\delta}c_{12}s_{12}c_{13}^2s_{13}c_{23}s_{23}\prod_{i>j}\frac{\Delta m_{ij}^2}{\Delta\widetilde{m^2}_{ij}}\sin\widetilde{\Delta_{32}}\sin\widetilde{\Delta_{31}}\sin\widetilde{\Delta_{21}}$$

V. Naumov, Int. J. Mod. Phys. 1992

P. Harrison, W. Scott, hep-ph/9912435

Our expression reproduces this order by order in ϵ' for all channels.

Exact Neutrino Oscillations in Matter: Mixing Angles

$$s_{\widehat{12}}^2 = \frac{-\left[(\widehat{m^2}_2)^2 - \alpha \widehat{m^2}_2 + \beta\right] \Delta \widetilde{m^2}_{31}}{\left[(\widehat{m^2}_1)^2 - \alpha \widehat{m^2}_1 + \beta\right] \Delta \widetilde{m^2}_{32} - \left[(\widehat{m^2}_2)^2 - \alpha \widehat{m^2}_2 + \beta\right] \Delta \widetilde{m^2}_{31}}$$

$$s_{\widehat{13}}^2 = \frac{(\widetilde{m^2}_3)^2 - \alpha \widetilde{m^2}_3 + \beta}{\Delta \widetilde{m^2}_{31} \Delta \widetilde{m^2}_{32}}$$

$$s_{22}^2 E^2 + c_{22}^2 E^2 + 2c_{23}^2$$

Peter B. Denton (BNL)

$$s_{\widehat{23}}^2 = \frac{s_{23}^2 E^2 + c_{23}^2 F^2 + 2c_{23}s_{23}c_{\delta}EF}{E^2 + F^2}$$

$$\alpha = c_{13}^{2} \Delta m_{31}^{2} + \left(c_{12}^{2} c_{13}^{2} + s_{13}^{2}\right) \Delta m_{21}^{2}, \ \beta = c_{12}^{2} c_{13}^{2} \Delta m_{21}^{2} \Delta m_{31}^{2}$$

$$E = c_{13} s_{13} \left[\left(\widehat{m^{2}}_{3} - \Delta m_{21}^{2} \right) \Delta m_{31}^{2} - s_{12}^{2} \left(\widehat{m^{2}}_{3} - \Delta m_{31}^{2} \right) \Delta m_{21}^{2} \right]$$

$$F = c_{12}s_{12}c_{13}\left(\widehat{m^2}_3 - \Delta m_{31}^2\right)\Delta m_{21}^2$$

1604.08167

H. Zaglauer, K. Schwarzer, Z. Phys. C Particles and Fields, 40 (1988)

POND²: December 4, 2018 42/29

 $=\frac{c_{23}^2s_{23}^2\left(e^{-i\delta}E^2-e^{i\delta}F^2\right)+\left(c_{23}^2-s_{23}^2\right)EF}{\sqrt{\left(s_{23}^2E^2+c_{23}^2F^2+2EFc_{23}s_{23}c_{\delta}\right)\left(c_{23}^2E^2+s_{23}^2F^2-2EFc_{23}s_{23}c_{\delta}\right)}}$

Eigenvalues: Precision

Peter B. Denton (BNL)

1604.08167

POND²: December 4, 2018 43/29

Hamiltonians

After a constant (θ_{23}, δ) rotation, $2E\tilde{H} =$

$$\int \widetilde{m^2}_a \qquad s_{13}c_{13}\Delta m_{ee}^2$$

$$\begin{pmatrix} \widetilde{m^2}_a & s_{13}c_{13}\Delta m_{ee}^2 \\ & \widetilde{m^2}_b & \\ s_{13}c_{13}\Delta m_{ee}^2 & \widetilde{m^2}_c \end{pmatrix} + \epsilon s_{12}c_{12}\Delta m_{ee}^2 \begin{pmatrix} c_{13} & \\ c_{13} & -s_{13} \\ & -s_{13} \end{pmatrix}$$

After a
$$U_{13}(\theta_{13})$$
 rotation, $2EH = \widetilde{m^2}$

After a
$$U_{12}(\tilde{\theta}_{12})$$
 rotation, $2E\check{H} =$

$$\left\langle s_{13}c_{13}\Delta m_{ee}^{2}\right\rangle$$
After a $U_{13}(\widetilde{\theta}_{13})$ rotation, $2E\hat{H}=$

After a
$$U_{13}(\widetilde{\theta}_{13})$$
 rotation, $2E\hat{H}=$

$$\begin{pmatrix} \widetilde{m^2}_{-} \\ \widetilde{m^2}_{0} \\ \widetilde{m^2}_{+} \end{pmatrix} + \epsilon c_{12} s_{12} \Delta m_{ee}^2 \begin{pmatrix} c_{(\widetilde{\theta}_{13}-\theta_{13})} \\ c_{(\widetilde{\theta}_{13}-\theta_{13})} \\ s_{(\widetilde{\theta}_{13}-\theta_{13})} \end{pmatrix}$$

 $\begin{pmatrix} m^2_1 & & & \\ & \widetilde{m^2}_2 & & \\ & & \widetilde{m^2}_3 \end{pmatrix} + \epsilon s_{(\widetilde{\theta}_{13} - \theta_{13})} s_{12} c_{12} \Delta m_{ee}^2 \begin{pmatrix} & -s_{\widetilde{12}} \\ & c_{\widetilde{12}} \\ -s_{\widetilde{12}} & c_{\widetilde{12}} \end{pmatrix}$ B. Denton (BNL) 1604.08167 POND²: December 4, 2018.

Perturbative Expansion

Hamiltonian: $\check{H} = \check{H}_0 + \check{H}_1$

$$\check{H}_0 = \frac{1}{2E} \begin{pmatrix} \widetilde{m^2}_1 & & \\ & \widetilde{m^2}_2 & \\ & & \widetilde{m^2}_3 \end{pmatrix} , \quad \check{H}_1 = \epsilon' \frac{\Delta m_{ee}^2}{2E} \begin{pmatrix} & -s_{\widetilde{12}} \\ & c_{\widetilde{12}} \end{pmatrix}$$

Eigenvalues:
$$\widetilde{m}_{i}^{\text{ex}} = \widetilde{m}_{i}^{2} + \widetilde{m}_{i}^{2}^{(1)} + \widetilde{m}_{i}^{2}^{(2)} + \dots$$

$$\widetilde{m_i^2}^{(1)}_i = 2E(\check{H}_1)_{ii} = 0$$

$$\widetilde{m^2}_i^{(2)} = \sum_{k \neq i} \frac{[2E(\check{H}_1)_{ik}]^2}{\Delta \widetilde{m^2}_{ik}}$$

Perturbative Expansion: Eigenvectors

Use vacuum expressions with $U \to V$ where

$$V = \widetilde{U}W$$

$$\widetilde{U}$$
 is U with $\theta_{13} \to \widetilde{\theta}_{13}$ and $\theta_{12} \to \widetilde{\theta}_{12}$,

$$W = W_0 + W_1 + W_2 + \dots$$

$$W_0 = 1$$

$$W_{1} = \epsilon' \Delta m_{ee}^{2} \begin{pmatrix} & -\frac{c_{12}}{\Delta m^{2}_{31}} \\ \frac{s_{12}}{\Delta m^{2}_{31}} & -\frac{c_{12}}{\Delta m^{2}_{32}} \end{pmatrix}$$

$$W_2 = -\epsilon'^2 \frac{(\Delta m_{ee}^2)^2}{2} \begin{pmatrix} \frac{s_{\widetilde{12}}^2}{(\Delta \widetilde{m}^2_{31})^2} & -\frac{s_{2\widetilde{12}}}{\Delta \widetilde{m}^2_{32}\Delta \widetilde{m}^2_{21}} \\ \frac{s_{2\widetilde{12}}}{\Delta \widetilde{m}^2_{31}\Delta \widetilde{m}^2_{21}} & \frac{c_{\widetilde{12}}^2}{(\Delta \widetilde{m}^2_{32})^2} \end{pmatrix}$$

 $\left[rac{c_{\widetilde{12}}^2}{(\widetilde{\Lambda m^2}_{22})^2}+rac{s_{\widetilde{12}}^2}{(\widetilde{\Delta m^2}_{21})^2}
ight]$

The Two Matter Angles

Peter B. Denton (BNL) 1604.08167 POND²: December 4, 2018 47/29

$$\widetilde{m^2}_{1,2} - \widetilde{\theta}_{12}$$
 Interchange

From the shape of $U_{12}(\tilde{\theta}_{12})$, it is clear that the probabilities are invariant under a simultaneous interchange of

$$\widetilde{m^2}_1 \leftrightarrow \widetilde{m^2}_2 \,, \qquad {\rm and} \qquad \widetilde{\theta}_{12} \to \widetilde{\theta}_{12} \pm \frac{\pi}{2} \,.$$

Since only even powers of $\widetilde{\theta}_{12}$ trig functions $c_{\widetilde{12}}^2, s_{\widetilde{12}}^2, c_{\widetilde{12}}s_{\widetilde{12}}, \cos(2\widetilde{\theta}_{12}), \sin(2\widetilde{\theta}_{12})$ appear in the probabilities, the sign degeneracy is irrelevant.

More usefully, we can write that the probabilities are invariant under the simultaneous interchange of

$$\widetilde{m^2}_1 \leftrightarrow \widetilde{m^2}_2 \,, \qquad c_{\widetilde{12}}^2 \leftrightarrow s_{\widetilde{12}}^2 \,, \qquad \text{and} \qquad c_{\widetilde{12}} s_{\widetilde{12}} \to -c_{\widetilde{12}} s_{\widetilde{12}} \,.$$

This interchange constrains the $\sin^2 \Delta_{21}$ term, and the $\sin^2 \Delta_{32}$ term easily follows from the $\sin^2 \Delta_{31}$ term.

Zeroth Order Coefficients

$$P_{\alpha\beta} = \delta_{\alpha\beta} + 4C_{21}^{\alpha\beta} \sin^2 \Delta_{21} + 4C_{31}^{\alpha\beta} \sin^2 \Delta_{31} + 4C_{32}^{\alpha\beta} \sin^2 \Delta_{32} + 8D^{\alpha\beta} \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$$

$\nu_{\alpha} \rightarrow \nu_{\beta}$	$(C_{21}^{\alpha\beta})^{(0)}$	
$\nu_e ightarrow \nu_e$	$-c_{\widetilde{13}}^{4}s_{\widetilde{12}}^{2}c_{\widetilde{12}}^{2}$	
$\nu_{\mu} \rightarrow \nu_{e}$	$c_{\widetilde{13}}^2 s_{\widetilde{12}}^2 c_{\widetilde{12}}^2 (c_{23}^2 - s_{\widetilde{13}}^2 s_{23}^2) +$	$c_{2\widetilde{12}}J_r^mc_\delta$
$ u_{\mu} \rightarrow \nu_{\mu} $	$\begin{array}{c} -(c_{23}^2c_{\widetilde{12}}^2+s_{23}^2s_{\widetilde{13}}^2s_{\widetilde{12}}^2)(c_{23}^2s_{\widetilde{12}}^2\\ -2(c_{23}^2-s_{\widetilde{13}}^2s_{23}^2)c_{2\widetilde{12}}J_{rr}^mc_{\delta} \end{array} -$	10 12
$\nu_{\alpha} \rightarrow \nu_{\beta}$	$(C_{31}^{\alpha\beta})^{(0)}$	$(D^{\alpha\beta})^{(0)}$
$\nu_e ightarrow \nu_e$	$-c_{\widetilde{13}}^{2}s_{\widetilde{13}}^{2}c_{\widetilde{12}}^{2}$	0
$\nu_{\mu} \rightarrow \nu_{e}$	$s_{\widetilde{13}}^2 c_{\widetilde{13}}^2 c_{\widetilde{12}}^2 s_{23}^2 + J_r^m c_{\delta}$	$-J_r^m s_\delta$
$ u_{\mu} \rightarrow \nu_{\mu} $	$\begin{array}{c} -c_{\widetilde{13}}^2 s_{23}^2 (c_{23}^2 s_{\widetilde{12}}^2 + s_{23}^2 s_{\widetilde{13}}^2 c_{\widetilde{12}}^2) \\ -2 s_{23}^2 J_r^m c_{\delta} \end{array}$	0

$$J_r^m \equiv s_{\widetilde{12}} c_{\widetilde{12}} s_{\widetilde{13}} c_{\widetilde{13}}^2 s_{23} c_{23}, \ J_{rr}^m \equiv J_r^m / c_{\widetilde{13}}^2$$

General Form of the First Order Coefficients

Can reduce 8 expressions down to 3:

$$(C_{21}^{\alpha\beta})^{(1)} = \epsilon' \Delta m_{ee}^2 \left(\frac{F_1^{\alpha\beta}}{\Delta \widetilde{m}^2_{31}} + \frac{F_2^{\alpha\beta}}{\Delta \widetilde{m}^2_{32}} \right)$$

$$(C_{31}^{\alpha\beta})^{(1)} = \epsilon' \Delta m_{ee}^2 \left(\frac{F_1^{\alpha\beta} + G_1^{\alpha\beta}}{\Delta \widetilde{m}^2_{31}} - \frac{F_2^{\alpha\beta}}{\Delta \widetilde{m}^2_{32}} \right)$$

$$(C_{32}^{\alpha\beta})^{(1)} = \epsilon' \Delta m_{ee}^2 \left(-\frac{F_1^{\alpha\beta}}{\Delta \widetilde{m}^2_{31}} + \frac{F_2^{\alpha\beta} + G_2^{\alpha\beta}}{\Delta \widetilde{m}^2_{32}} \right)$$

$$(D^{\alpha\beta})^{(1)} = \epsilon' \Delta m_{ee}^2 \left(\frac{K_1^{\alpha\beta}}{\Delta \widetilde{m}^2_{31}} - \frac{K_2^{\alpha\beta}}{\Delta \widetilde{m}^2_{32}} \right)$$

$$K_1^{\alpha\beta} = \begin{cases} 0 & \alpha = \beta \\ \mp s_{23}c_{23}c_{\widetilde{13}}s_{\widetilde{12}}^2(c_{\widetilde{13}}^2c_{\widetilde{12}}^2 - s_{\widetilde{13}}^2)s_{\delta} & \alpha \neq \beta \end{cases}$$

where the minus sign is for $\nu_{\mu} \rightarrow \nu_{e}$

First Order Coefficients

$\nu_{\alpha} \rightarrow \nu_{\beta}$	$F_1^{lphaeta}$	
$\nu_e o \nu_e$	$-2c_{\widetilde{13}}^3s_{\widetilde{13}}s_{\widetilde{12}}^3c_{\widetilde{12}}$	
$ u_{\mu} \rightarrow \nu_{e} $	$c_{\widetilde{13}}s_{\widetilde{12}}^{2}[s_{\widetilde{13}}s_{\widetilde{12}}c_{\widetilde{12}}(c_{23}^{2}+c_{2\widetilde{13}}s_{23}^{2})\\-s_{23}c_{23}(s_{\widetilde{13}}^{2}s_{\widetilde{12}}^{2}+c_{2\widetilde{13}}c_{\widetilde{12}}^{2})c_{\delta}]$	
$ u_{\mu} \rightarrow \nu_{\mu} $		

$\nu_{\alpha} \rightarrow \nu_{\beta}$	$G_1^{lphaeta}$
$\nu_e \rightarrow \nu_e$	$2s_{\widetilde{13}}c_{\widetilde{13}}s_{\widetilde{12}}c_{\widetilde{12}}c_{2\widetilde{13}}$
$\nu_{\mu} \rightarrow \nu_{e}$	$-2s_{\widetilde{13}}c_{\widetilde{13}}s_{\widetilde{12}}(s_{23}^2c_{2\widetilde{13}}c_{\widetilde{12}}-s_{23}c_{23}s_{\widetilde{13}}s_{\widetilde{12}}c_{\delta})$
$ u_{\mu} \rightarrow \nu_{\mu} $	$-2c_{\widetilde{13}}s_{\widetilde{12}}(s_{23}^2s_{\widetilde{13}}c_{\widetilde{12}} + s_{23}c_{23}s_{\widetilde{12}}c_{\delta}) \times (1 - 2c_{\widetilde{13}}^2s_{23}^2)$

Variable Matter Density

This work assumed ρ is constant

If ρ doesn't vary too much, we can set ρ to the average

$$\rho = \bar{\rho} = \frac{1}{L} \int_0^L \rho(x) dx$$

 ρ doesn't vary "too much" when

$$|\dot{\widehat{\theta}}| \ll \left| \frac{\Delta \widehat{m^2}}{2E} \right|$$