Semiconductor Manufacturing Technology

Michael Quirk & Julian Serda
© October 2001 by Prentice Hall

Chapter 4

Silicon and Wafer Preparation

Objectives

After studying the material in this chapter, you will be able to:

- 1. Describe how raw silicon is refined into semiconductor grade silicon.
- 2. Explain the crystal structure and growth method for producing monocrystal silicon.
- 3. Discuss the major defects in silicon crystal.
- 4. Outline and describe the basic process steps for wafer preparation, starting from a silicon ingot and finishing with a wafer.
- 5. State and discuss seven quality measures for wafer suppliers.
- 6. Explain what is epitaxy and why it is important for wafers.

Semiconductor-Grade Silicon

Steps to Obtaining Semiconductor Grade Silicon (SGS)					
Step	tep Description of Process Reaction				
1	Produce metallurgical grade silicon (MGS) by heating silica with carbon	$SiC (s) + SiO2(s) \rightarrow Si (l) + SiO(g) + CO (g)$ (98%)			
2	Purify MG silicon through a chemical reaction to produce a silicon-bearing gas of trichlorosilane (SiHCl ₃)	Si (s) + 3HCl (g) \rightarrow SiHCl ₃ (g) + H ₂ (g) + heat (99.999999%)			
3	SiHCl ₃ and hydrogen react in a process called Siemens to obtain pure semiconductor- grade silicon (SGS)	$2SiHCl3(g) + 2H2(g) \rightarrow 2Si(s) + 6HCl(g)$			

Table 4.1 3/46

Crystal Structure

- Amorphous Materials
- Unit Cells
- Polycrystal and Monocrystal Structures
- Crystal Orientation

Siemens Reactor for SG Silicon

Figure 4.1 5/46

Atomic Order of a Crystal Structure

Figure 4.2 6/46

Amorphous Atomic Structure

Figure 4.3 7/46

HRTEM of Metal/HK/Silicon Interface

Unit Cell in 3-D Structure

Figure 4.4 9/46

Faced-centered Cubic (FCC) Unit Cell

Figure 4.5 10/46

Silicon Unit Cell: FCC Diamond Structure

There are four complete atoms with four shared and four unshared. (Total: 8-atom)

Figure 4.6 11/46

Polycrystalline and Monocrystalline Structures

Monocrystalline provides the desirable electrical and mechanical properties necessary for silicon wafer processing and performance

Poly-Si

Figure 4.7 12/46

Axes of Orientation for Unit Cells

Figure 4.8 13/46

Miller Indices of Crystal Planes

In the Miller system of notation, () are used to denote a specific plane, Whereas <> denote groups of equivalent direction.

- The surface state condition for (100) silicon is more conductive toward controlling the threshold voltage for MOSFETs.
- The (111) has a tighter packing density, making it easier to grow.

Figure 4.9 14/46

Monocrystal Silicon Growth (from SGS to crystal)

- CZ Method (Czochralski)
 - CZ Crystal Puller
 - Doping
 - Impurity Control
- Float-Zone Method
- Reasons for Larger Ingot Diameters

CZ Crystal Puller

Figure 4.10 16/46

CZ Crystal Pulling

Source: http://www.fullman.com/semiconductors/_crystalgrowing.html

Silicon Ingot Grown by CZ Method

Photograph courtesy of Kayex Corp., 300 mm Si ingot Photo 4.1

Next Wafer Size?

Every 10-11 years wafer size increases. Will history repeat itself?

CZ Crystal Puller

Photograph courtesy of Kayex Corp., 300 mm Si crystal puller Photo 4.2

Dopant Concentration Nomenclature

		Concentration (Atoms/cm ³)			
Dopant	Material Type	< 10 ¹⁴ (Very Lightly Doped)	10 ¹⁴ to 10 ¹⁶ (Lightly Doped)	10 ¹⁶ to 10 ¹⁹ (Doped)	>10 ¹⁹ (Heavily Doped)
Pentavalent	n	n	n ⁻	n	n^+
Trivalent	p	p	p	p	p ⁺

Oxygen from crucible (20-30 ppm) can be useful as the **getter site** for impurities in the center region of wafer

Table 4.2 21/46

Float Zone (FZ) Crystal Growth

- Smaller diameter (4-6 in).
- By not using a crucible,
 FZ results in a high-purity silicon with low oxygen and carbon.
- Heating of the polysilicon bar is the most important aspect of the FZ process, as each section of the bar is molten only for about 30-min.

Figure 4.11 22/46

Wafer Diameter Trends

Figure 4.12 23/46

Wafer Dimensions & Attributes

Cost!

Diameter (mm)	Thickness (µm)	Area (cm²)	Weight (grams/lbs)	Weight/25 Wafers (lbs)
150 (6")	675 ± 20	176.71	28 / 0.06	1.5
200 (8")	725 ± 20	314.16	53.08 / 0.12	3
300 (12")	775 ± 20	706.86	127.64 / 0.28	7
450 (18")	825 ± 20	1256.64	241.56 / 0.53	13

Table 4.3 24/46

Increase in Number of Chips on Larger Wafer Diameter

Figure 4.13 25/46

Developmental Specifications for 300-mm Wafer Dimensions and Orientation

Parameter	Units	Nominal	Some Typical Tolerances
Diameter	mm	300.00	± 0.20
Thickness (center point)	μm	775	± 25
Warp (max)	μm	100	
Nine-Point Thickness Variation (max)	μm	10	
Notch Depth	mm	1.00	+ 0.25, -0.00
Notch Angle	Degree	90	+5, -1
Back Surface Finish		Bright Etched/Polished	
Edge Profile Surface Finish		Polished	
FQA (Fixed Quality Area – radius permitted on the wafer surface)	mm	147	

From H. Huff, R. Foodall, R. Nilson, and S. Griffiths, "Thermal Processing Issues for 300-mm Silicon Wafers: Challenges and Opportunities," ULSI Science and Technology (New Jersey: The Electrochemical Society, 1997), p. 139.

Table 4.4 26/46

Crystal Defects in Silicon

A crystal defect (*microdefect*) is any interruption in the repetitive nature of the unit cell crystal structure.

Three general types of crystal defects in silicon:

- 1. Point defects Localized crystal defect at the atomic level
- 2. Dislocations Displaced unit cells
- 3. Gross defects Defects in crystal structure

Yield of a Wafer

$$Yield = \frac{66 \text{ good die}}{88 \text{ total die}} = 75\%$$

Reduction in defect density is a critical aspect for increasing wafer yield.

Figure 4.14 28/46

Point Defects

Redrawn from Sorab K. Ghandi, *VLSI Fabrication Principles: Silicon and Gallium Arsenide*, 2nd edition, New York, Wiley, 1994, page 23

Figure 4.15 29/46

Dislocations in Unit Cells

- A neat stack of bricks that has a group of bricks displaced along a row.
- A form of dislocation is stacking faults which is due to layer stacking errors.
- Caused by process: uneven heating & cooling or excessive force applied to the wafer
- Necking down in the beginning of the pull at high speed so that high vacancy densities remove the edge dislocation

Figure 4.16 30/46

▼ 1.2 FZ 結晶の種しばり部のX線トポプラフ (試料の厚き約 1 mm)

Crystal Slip (Gross Defects)

Redrawn from Sorab K. Ghandi, *VLSI Fabrication Principles: Silicon and Gallium Arsenide*, 2nd edition, New York, Wiley, 1994, page 49

Figure 4.17 32/46

Crystal Twin Planes (Gross Defects)

Reason: thermal or mechanical shock during the growth process

Redrawn from Sorab K. Ghandi, *VLSI Fabrication Principles: Silicon and Gallium Arsenide*, 2nd edition, New York, Wiley, 1994, page 55

Figure 4.18 33/46

Basic Process Steps for Wafer Preparation

Figure 4.19 34/46

Ingot Diameter Grind

Figure 4.20 35/46

Wafer Identifying Flats

Figure 4.21 36/46

Wafer Notch and Laser Scribe

Figure 4.22 37/46

Internal Diameter Saw

• Wafer slicing for 300-mm ingots is currently bring done with wire saws, yield more wafer slices per inch

Figure 4.23 38/46

Polished Wafer Edge

- Cracks and small crevices at the edge of the wafer create mechanical stress in wafer that activates crystal dislocations, especially during thermal process
- Chipped edges are a source of edge dislocation growth during thermal cycles.

Figure 4.24 39/46

Chemical Etch of Wafer Surface to Remove Damage

- Shaping the wafer leaves the surface and edges damaged and contaminated
- 20 μm is removed

Figure 4.25 40/46

Double-Sided Wafer Polish

- packaging: Cassette is made by conducting Teflon not to generate an electrostatic discharge
- Cassette is filled with nitrogen to prevent oxidation and contamination

Figure 4.26 41/46

Quality Measures

- Physical dimensions
- Flatness
- Microroughness
- Oxygen content
- Crystal defects
- Particles
- Bulk resistivity

Improving Silicon Wafer Requirements

	Year (Critical Dimension)			
	1995 (0.35 μm)	1998 (0.25 μm)	2000 (0.18 μm)	2004 (0.13 μm)
Wafer diameter (mm)	200	200	300	300
Site flatness ^A (µm) Site size (mm x mm)	0.23 (22 x 22)	0.17 (26 x 32)	0.12 26 x 32	0.08 26 x 36
Microroughness ^B of front surface (RMS) ^C (nm)	0.2	0.15	0.1	0.1
Oxygen content (ppm) ^D	≤ 24 ± 2	≤ 23 ± 2	\leq 23 \pm 1.5	\leq 22 ± 1.5
Bulk microdefects ^E (defects/cm ²)	≤ 5000	≤ 1000	≤ 500	≤ 100
Particles per unit area (#/cm²)	0.17	0.13	0.075	0.055
Epilayer ^F thickness (± % uniformity) (μm)	3.0 (± 5%)	2.0 (± 3%)	1.4 (± 2%)	1.0 (± 2%)

Adapted from K. M. Kim, "Bigger and Better CZ Silicon Crystals," Solid State Technology (November 1996), p. 71.

Improving Silicon Wafer Requirements

Notes:

- A. Flatness is the linear thickness variation across the wafer or a site on a wafer (see below).
- B. See below for a description of microroughness.
- C. RMS is a method for determining the best estimate of group of measurements in this case, the surface finish measurements (see below). It is calculated by taking the root-mean-square (square root of the average of all measurements squared). Surface finish measurements are obtained by measuring the highest point relative to the lowest point on a surface.
- D. ppm is part per million.
- E. Bulk microdefects represents all defects within a square centimeter.
- F. See below to define epilayer.

Wafer Deformation

Figure 4.27 45/46

Flatness of Wafer Front Surface

Figure 4.28 46/46

Formation of Epitaxial Silicon Layers

- Taxis: means ordered
- In epitaxial silicon, the base wafer is used as a seed crystal to grow a thin layer of silicon on wafer
- The epi-layer can be n- or p-type and is **independent** of the initial wafer type

Figure 4.29 47/46