SYNTÉZA SEKVENČNÝCH LOGICKÝCH OBVODOV

Navrhnite synchrónny sekvenčný obvod so vstupom x a výstupom y s nasledujúcim správaním: na výstupe Y bude 1 vždy vtedy, ak sa (zo začiatočného stavu) vo vstupnej postupnosti vyskytne postupnosť **1101110** Vlastné riešenie overte progr. prostriedkami ESPRESSO a LogiSim (príp. LOG alebo FitBoard).

Tomáš Meravý Murárik, ID: 127232

Riešenie

Zadaná postupnosť: 1101110

Prechodová tabuľka pre automat typu Moore

	sta	Nový stav		Y	Čo je splnené?
	V	X=0	X=1		
	S0	S0	S1	0	Nič
	S1	S0	S2	0	"1"
Γ	S2	S 3	S2	0	"11"
Γ	S3	S0	S4	0	"110"
Γ	S4	S0	S5	0	"1101"
Γ	S5	S3	S6	0	"11011"
	S6	S7	S2	0	"110111"
	S7	S0	S4	1	"1101110"

Zostrojíme prechodový graf stavového automat typu Moore:

Kódovanie stavov

				z3	
			z2		_
	_	S0	S2	S3	S1
z1		S4	S6	S7	S5

Stav	$\mathbf{Z}_1\mathbf{Z}_2\mathbf{Z}_3$
S0	000
S1	001
S2	010
S3	011
S4	100
S5	101
S6	110
S7	111

Prechodová tabuľka pre automat Moore po dosadení zakódovaných stavov

Stav	Nový	Y	
Slav	X=0	X=1	1
000	000	001	0
001	000	010	0
010	011	010	0
011	000	100	0
100	000	101	0
101	010	110	0
110	111	010	0
111	000	100	1

Budiace funkcie pre D preklápacie obvody (D-PO) a výstupná funkcia

			z3	
		z2		
	000	011	000	000
z 1	000	111	000	011
	101	010	100	110
X	001	010	100	010
		D1,D2,D3		
			_	
			z3	
		z2		
_	0	0	0	0
z1	0	1	0	0
	1	0	1	1
X	0	0	1	0
		D1		
			_	
			z3	
		z2		
_	0	1	0	0
z1	0	1	0	1
	0	1	0	1
X	0	1	0	1
		D2		

				z3	
			z2		
		0	1	0	0
	z1	0	1	0	1
		1	0	0	0
X		1	0	0	0
			D3		

Budiace funkcie pre JK preklápacie obvody (JK-PO)

$z \rightarrow Z$	J	K
0->0	0	X
0->1	1	X
1-> <u>0</u>	X	1
1-> <u>1</u>	Χ	<u>0</u>

		<u>z3</u>		
		z2		
	0	0	n	0
z1	0	0	1	0
Y = z 1. z 2. z 3				

			z 3	
		z2		
	X	0	1	X
z 1	X	0	1	X
	X	0	1	X
X	X	0	1	X
		K 2=Z3		

Espresso

#110001 skupinova minimalizacia

.i 4

.o 6

.ilb x z1 z2 z3

.ob j1 k1 j2 k2 j3 k3

.type fr

```
.p 16
0000 0-0-0-
0010 0--01-
0011 0--1-1
0001 0-0--1
0100 -10-0-
0110 -0-01-
0111 -1-1-1
0101 -11--0
1100 -00-1-
1110 -1-00-
1111 -0-1-1
1101 -01--1
1000 0-0-1-
1010 0--00-
1011 1--1-1
1001 0-1--1
.e
#110001 skupinova minimalizacia
j1 = (x\&z2\&z3);
k1 = (!x\&!z2) | (x\&z2\&!z3) | (!x\&z1\&z3);
j2 = (!x&z1&z3) | (x&z3);
k2 = (!x&z1&z3) | (!z1&z3) | (x&z3);
j3 = (x\&!z2) | (!x\&z2);
k3 = (!z1\&z3) | (!x\&z2) | (x\&z3);
Espresso riešenie je lepšie.
```

Prepis na NAND s využitím Shefferovej operácie:

 $j1 = (x\&z2\&z3); =(X \uparrow Z2 \uparrow Z3)\uparrow(X \uparrow Z2 \uparrow Z3)$

 $k1 = (!x\&!z2) \mid (x\&z2\&!z3) \mid (!x\&z1\&z3); = ((X\uparrow)\uparrow(Z2\uparrow))\uparrow(X\uparrow Z2\uparrow(Z3\uparrow))\uparrow((X\uparrow)\uparrow Z1\uparrow Z3)$

 $j2 = (!x\&z1\&z3) | (x\&z3);=((X\uparrow)\uparrow Z1\uparrow Z3)\uparrow (X\uparrow Z3)$

 $k2 = (!x\&z1\&z3) | (!z1\&z3) | (x\&z3); = ((X\uparrow)\uparrow Z1\uparrow Z3)\uparrow ((Z1\uparrow)\uparrow Z3)\uparrow (X\uparrow Z3)$

 $j3 = (x\&!z2) \mid (!x\&z2); = (X\uparrow(Z2\uparrow))\uparrow((X\uparrow)\uparrow Z2)$

 $k3 = (1z1\&z3) | (1x\&z2) | (x\&z3); = ((Z1\uparrow)\uparrow Z3)\uparrow ((X\uparrow)\uparrow Z2)\uparrow (X\uparrow Z3)$

Vyjadrenie k počtu logických členov obvodu: 17 členov NAND

Vyjadrenie k počtu vstupov do logických členov obvodu: 53 (41 v kombinačnej časti a 12 v pamäťovej časti)

Tomáš Meravý Murárik, ID: 127232

Zhodnotenie

Cieľom tejto úlohy bolo navrhnúť synchrónny sekvenčný obvod typu Moore, ktorý pri rozpoznaní vstupnej postupnosti "1101110" zmení výstup Y na hodnotu 1. Na dosiahnutie tohto správania som zostavil prechodovú tabuľku a prechodový graf, kde som jednotlivé stavy zakódoval binárne. Na základe týchto hodnôt som vypracoval Karnaughove mapy pre budiace funkcie JK-preklápacích obvodov a následne som to porovnal s výstupom z espressa.

Výstup z espressa mal menší počet brán a z toho dôvodu som ďalej postupoval s verziou z espressa. Schéma obvodu bola následne overená simuláciou v programe LogiSim, kde som sledoval správne prepínanie stavov na výstupe pri detekcii sekvencie "1101110".

Celkový počet logických členov bol 17 NAND brán a celkový počet vstupov do logických členov bolo 53 (z toho 41 v kombinačnej časti a 12 v pamäťovej časti). Tento postup a simulácia potvrdili, že navrhnutý obvod správne reaguje na zadanú postupnosť.