VLSI Design Homework 1 SOLUTIONS

Description: This assignment will survey what you have learned thus far using problems from R. Baker's "CMOS Circuit Design, Layout, and Simulation"

Associated Reading Material:

Chapters 5 (Sections 5.1-5.3), 6 (Entire Chapter), 7 (Entire Chapter), 11 (Sections 11.1-11.3), and 12 (Sections 12.1-12.3)

5.7 (Layout-to-Schematic Analysis)

TBA

6.4 (MOS capacitance): If the oxide thickness of a MOSFET is 40 A $^{\circ}$. What is C $^{'}_{ox}$?

Solution:

$$C_{ox}' = \epsilon_{ox}/T_{ox} = (8.85 \text{ x } 3.97 \text{ aF/}\mu\text{m})/(40 \text{ x } 10^{-10} \text{ m}) = \textbf{8.784 fF/}\mu\text{m}^2$$

6.12 (Channel resistance): Using Eq. (6.35) estimate the small-signal channel resistance (the change in the drain current with changes in the drain-source voltage) of a MOSFET operating in the triode region (the resistance between the drain and source.

Solution:

Eq 6.35:
$$I_D = \beta^* [(V_{gs} - V_{thn}) V_{ds} - V_{ds}^2 / 2]$$

 $r = \Delta V_{ds} / \Delta ID$
= $(V_{ds1} - V_{ds2}) / [(\beta^* [(V_{gs} - V_{thn})^* (V_{ds1}) - (V_{ds1})^2 / 2] - \beta^* [(V_{gs} - V_{thn})^* (V_{ds2}) - (V_{ds2})^2 / 2]]$
= $(V_{ds1} - V_{ds2}) / [(\beta^* [(V_{gs} - V_{thn})^* (V_{ds1} - V_{ds2}) - (V_{ds1})^2 / 2 + (V_{ds2})^2 / 2]]$
= $1 / [(\beta^* [(V_{gs} - V_{thn}) - (V_{ds1} + V_{ds2}) / 2]]$
 $r = 1 / [\beta^* (V_{gs} - V_{thn} - V_{ds})]$

6.13 (Parallel MOSFET Connections): Show, using Eqs. 6.33 and 6.37, that the parallel connection of MOSFETs shown in Fig. 5.18 behaves as a single MOSFET with a width equal to the sum of the individual MOSFET's widths.

Equivalent of Fig. 5.18

Solution: From Kirchoff's Current Law, we know that Id = Id1 + Id2 + Id3 + Id4. So if each MOSFET has the same KP, L, V_{GS} , V_{DS} and V_{THN} , equations 6.33 and 6.37 become:

$$Id = KP_n \cdot \frac{W1 + W2 + W3 + W4}{L} \cdot \left[(V_{GS} - V_{THN}) V_{DS} - \frac{V_{DS}^2}{2} \right]$$
 for Eq. 6.33

$$Id = KP_n \cdot \frac{W1 + W2 + W3 + W4}{L} \cdot \left[(V_{GS} - V_{THN})^2 \right]$$
 for Eq. 6.37

This shows that the total drain current, Id, is equal to a single MOSFET with a width equal to W1 + W2 + W3 + W4.

6.15 (Series MOSFET Connections): Show that the series connection of MOSFETs shown in fig. 6.21 behaves as a single MOSFET with Twice the length of the individual MOSFETs. Again neglect the body effect.

Solution:

Assuming both MOSFETs are in triode region

For
$$M_1 I_{D1} = I_D$$

$$I_{D1} = I_D = KP_n (W/L_1) [(V_G - V_{THN})V_1 - V_1^2/2]$$

$$(I_D L_1)/(KP_n W) = [(V_G - V_{THN})V_1 - V_1^2/2]$$

As Both MOSFETs are in series i.e., $I_{D1} = I_{D2} = I_{D}$

For
$$M_2 I_{D2} = I_D$$

$$I_{D2} = I_D = KP_n (W/L_2) [(V_G - V_1 - V_{THN})(V_{D2} - V_1) - (V_{D2} - V_1)^2/2]$$

$$(I_D L_2)/(KP_n W) = [(V_G - V_1 - V_{THN})(V_{D2} - V_1) - (V_{D2} - V_1)^2/2]$$

$$\left[\left(I_D \, L_1 \right) / \left(K P_n \, W \right) \right] + \left[\left(I_D \, L_2 \right) / \left(K P_n \, W \right) \right] = \left[\left(V_G - V_{THIN} \right) V_1 - \, V_1^2 / 2 \right] + \left[\left(V_G - V_1 \, - \, V_{THIN} \right) \left(V_{D2} - V_1 \right) - \left(V_{D2} - V_1 \right)^2 / 2 \right]$$

$$[(I_D (L_1+L_2)/(KP_n W)] = [(V_G - V_{THN}) V_{D2} - (V_{D2})^2/2]$$

This is the current from drain to source for a single MOSFET with length (L₁+L₂)

If
$$L1 = L_2 = L$$

$$[(2I_D L)/(KP_n W)] = [(V_G - V_{THN}) V_{D2} - (V_{D2})^2/2]$$

$$I_D = [(KP_n W)/2L] [(V_G - V_{THN}) V_{D2} - (V_{D2})^2/2]$$

7.4 (Ion Implantation)

TBA

7.10 (Metal Deposition)

TBA

11.1 (Inverter DC Characteristics)

Solution:

From the graphs in Fig. 11.4 and the text in p11.3, we have V_{OH} =

For the short channel process, similarly from the graph and text in the book, V_{OH} =

$$1V \\ V_{OL} = 0V \\ V_{IL} = 400 mV \\ V_{IH} = 500 mV$$

So, noise margins,

$$NM_H = V_{OH} - V_{IH} = 1 - 0.5 = 0.5V = 500mV$$

 $NM_L = V_{IL} - V_{OL} = 0.4 - 0 = 0.4V = 400mV$

11.3 (Inverter Switching Point): Show that the switching point of three inverters in series is dominated by the Vsp id the first inverter.

Solution: Three inverters with different switching points are simulated as below:

```
*Stage1 Inverter
 .control
destroy all
let Icross=-i(vdd)
 *plot Icross
plot vout Vin
 .endc
 .option scale=50n
 .dc vin 0 1 1m
vdd
         vdd
                0
                      DC
                              1
                0
                      DC
                              0
Vin
         vin
                                        NMOS L=1 W=10
M1
         vout
                vin
                     0
                              0
         vout
                vin
                      vdd
                              vdd
                                        PMOS L=1 W=20
* 50nm BSIM4 models
```


Stage2 and 3 Inverters with different Switching points:

```
*Stage2 Inverter
.control destroy all run
let Icross=-i(vdd)
*plot Icross plot vout Vin
.endc
.option scale=50n
.dc vin 0 1 1m
vdd
         vdd
                        DC
                                1
                 0
                        DC
Vin
                                0
         vin
M1
                 vin
                                0
                                        NMOS L=1 W=10 M2
                                                                     vin
                                                                             vdd
                                                                                     vdd
                                                                                             PMOS L=1
         vout
W=200
* 50nm BSIM4 models
```


*Stage3 Inverter .control destroy all run let Icross=-i(vdd) *plot Icross plot vout Vin .endc .option scale=50n .dc vin 0 1 1m 0 vdd vdd DC 1 Vin vin 0 DC 0 M1 vin 0 vout W = 400

* 50nm BSIM4 models

n 0 0 NMOS L=1 W=10 M2 vout vin vdd vdd PMOS L=1


```
*Three inverters in series
.control destroy all run
plot vout vin
.endc
.option scale=50n
.dc vin 0 1 1m
 vdd
       vdd
                 0
                        DC
                               1
 Vin
       vin
                 0
                        DC
                               0
                        0
                                       NMOS L=1 W=10
 M1
       vout1
                 vin
                               0
 M2
                 vin
                                       PMOS L=1 W=20
       vout1
                        vdd
                               vdd
 МЗ
       vout2
                 vout1 0
                               0
                                       NMOS L=1 W=10
                                       PMOS L=1 W=200
 M4
       vout2
                 vout1 vdd
                               vdd
       vout
                  vout2 0
                               0
                                       NMOS L=1 W=10
                                       PMOS L=1 W=400
       vout
                 vout2 vdd
                               vdd
```

- * 50nm BSIM4 models
- * Don't forget the .options scale=50nm if using an Lmin of 1
- * 1<Ldrawn<200 10<Wdrawn<10000 Vdd=1V
- * Change to level=54 when using HSPICE

Notice the switching point of the 3stage inverters is around 500mv though the second and third stage switching points are at 640mv.

12.2 (Logic Gate Design and Simulation)

Solution: A half adder circuit calculates a half sum (HS) and a carry out (CO). It takes two input bits, A and B. The logic equations for HS and CO are

$$HS = A \oplus B$$

 $CO = A \cdot B = \overline{(\overline{A} + \overline{B})}$

Figure 1 shows a circuit schematic of a half adder's components. For clarity, the components are not wired together in the figure. The SPICE simulation and code appear on the next page.

Figure 1: Half adder components

*** Problem 12.2 ***

.control destroy all run plot VA VB CO HS .endc

.option scale=50n .tran 10p 2.2n

	_						
	Vdd VA VB	Vdd VA VB	0 0 0	DC DC DC	1 0 0	pulse 0 1 250p 50p 50p 0.5n 1n pulse 0 1 1.5n 50p 50p 0.5n 1n	
*XOR gate A XOR B = HS							
	M12 M11	N3 HS	VB B_	Vdd N3	Vdd Vdd	PMOS L=1 W=20 PMOS L=1 W=20	
	M10 M9	N3 HS	VA A_	Vdd N3	Vdd Vdd	PMOS L=1 W=20 PMOS L=1 W=20	
	M8 M7	HS N2	A_ B_	N2 0	0	NMOS L=1 W=10 NMOS L=1 W=10	
	M6 M5	HS N1	VA VB	N1 0	0	NMOS L=1 W=10 NMOS L=1 W=10	
*A inverter							
	M2 M1	A_ A_	VA VA	Vdd 0	Vdd 0	PMOS L=1 W=20 NMOS L=1 W=10	
	*B inverter						
	M4 M3	B_ B_	VB VB	Vdd 0	Vdd 0	PMOS L=1 W=20 NMOS L=1 W=10	
*NOR gate A_NOR B_ = AB = CO							
	M16 M15 M14	N4 CO CO	A_ B_ B	Vdd N4 0	Vdd Vdd 0	PMOS L=1 W=20 PMOS L=1 W=20 NMOS L=1 W=10	
	M13	CO	A_	0	0	NMOS L=1 W=10	

MODEL NMOS NMOS LEVEL = 14 MODEL PMOS PMOS LEVEL = 14

.end