

Introduction au Machine Learning

Apprentissage statistique

Ludovic Darmet

18 Janvier 2023

Interface Cerveau Machine - ISAE-SUPAERO

Table des matières

- 1. Introduction
- 2. L'apprentissage supervisé
- 3. Réduction de dimensions
- 4. Apprentissage non-supervisé
- 5. Les outils pour le machine learning
- 6. Pour aller plus loin

Introduction

Exemples d'utilisation

Médical

- Prédire si un patient va avoir un second AVC
- Estimer l'état mental d'un sujet à partir de ses données physiologiques

Exemples d'utilisation

Médical

- Prédire si un patient va avoir un second AVC
- Estimer l'état mental d'un sujet à partir de ses données physiologiques

Industrie

- Identifier des spams dans une boite mail
- Lire le code postale sur une enveloppe
- Maintenance préventive en usine

Exemples d'utilisation

Médical

- Prédire si un patient va avoir un second AVC
- Estimer l'état mental d'un sujet à partir de ses données physiologiques

Industrie

- Identifier des spams dans une boite mail
- Lire le code postale sur une enveloppe
- Maintenance préventive en usine

Finance

- Prédire la faillite d'une entreprise
- Estimer les variations futures du CAC-40

→ Semi-supervisé, auto-supervisé, apprentissage par renforcement

Les différents types de données

Les étapes classiques

- 1. Exploration et visualisation
 - Regarder et **s'approprier** les données
 - Quels sont les biais? Intuition sur des mécanismes?

Les étapes classiques

1. Exploration et visualisation

- Regarder et **s'approprier** les données
- Quels sont les biais? Intuition sur des mécanismes?

2. Data cleaning and pre-processing

- Nettoyage, imputation de données manquantes
- Transformation de variables : catégorielles en numériques, ou rendre plus descriptives
- Sélection de variables

Les étapes classiques

1. Exploration et visualisation

- Regarder et **s'approprier** les données
- Quels sont les biais? Intuition sur des mécanismes?

2. Data cleaning and pre-processing

- Nettoyage, imputation de données manquantes
- Transformation de variables : catégorielles en numériques, ou rendre plus descriptives
- Sélection de variables

3. Apprentissage du modèle

- Choix du modèle et de ses hyper-paramètres
- Estimation de la performance, l'erreur empirique

Apprentissage

- ullet On a X les **données** et y la **cible** que l'on veut prédire
- On cherche une fonction f telle que y = f(X)

Apprentissage

- ullet On a X les **données** et y la **cible** que l'on veut prédire
- On cherche une fonction f telle que y = f(X)
- X et y sont des variables aléatoires dont on possède des échantillons
- Il existe une loi de probabilité jointe : $\mathbb{P}(y|X)
 eq \mathbb{P}(y)$

Apprentissage

- On a X les **données** et y la **cible** que l'on veut prédire
- On cherche une fonction f telle que y = f(X)
- X et y sont des variables aléatoires dont on possède des échantillons
- Il existe une loi de probabilité jointe : $\mathbb{P}(y|X) \neq \mathbb{P}(y)$

Statisical decision theory

Descripteurs/features

- Les lignes de *X* sont les différents **échantillons**
- Les colonnes sont les différents descripteurs/features

Statisical decision theory

Descripteurs/features

- Les lignes de X sont les différents **échantillons**
- Les colonnes sont les différents descripteurs/features

La fonction d'erreur

- Pour entraîner le modèle : optimisation d'une fonction d'erreur
- Erreur quadratique par exemple : $L(y, f(X)) = (y f(X))^2$

Statistical decision theory

Descripteurs/features

- Les lignes de *X* sont les différents **échantillons**
- Les colonnes sont les différents descripteurs/features

La fonction d'erreur

- Pour entraîner le modèle : optimisation d'une fonction d'erreur
- ullet Erreur quadratique par exemple : $L\left(y,f(X)
 ight)=\left(y-f(X)
 ight)^2$

Erreur empirique de généralisation

- On a seulement des échantillons donc on va calculer une espérance empirique de l'erreur
- $f^* = \underset{f}{argmin} \mathbb{E}\left[L\left(y, f(X)\right)\right]$

Explorer les données

De nombreux biais dans les données!

- Corrélation ne veut pas dire causalité : dans le Maine R=0.99 entre le taux de divorce et la consommation de margarine (Spurious correlations)
- Biais d'échantillonage :
 - * Analyse automatique de CVs chez Amazon
 - * Near-duplicates dans la base CIFAR (jusqu'à -14% d'accuracy)
 - * Image de "mug" sur Google Image majoritairement avec l'anse à droite
 - * Base de données CelebA : toutes les femmes brunes sont souriantes → biais pour un détecteur de sourire

De nombreux biais dans les données!

- Biais de sélection/du survivant :
- Plus d'exemples de trajets aériens sans problème que d'accidents
- Identification d'un chanteur dans un stade de baseball (confusion avec playing baseball)

Évaluer la qualité des données

Exploration Data Analysis (EDA)

- Ordre de grandeur et variance de chaque feature
- Données manquantes, dupliquées : la quantité, est-ce qu'il y a un pattern?
- Données erronées : en particulier si saisie de données manuelles
- Données bruitées et outliers : regarder les distributions des données
- Interaction et corrélation entre les variables
- Erreurs de labélisation

Évaluer la qualité des données

Exploration Data Analysis (EDA)

- Ordre de grandeur et variance de chaque feature
- Données manquantes, dupliquées : la quantité, est-ce qu'il y a un pattern?
- Données **erronées** : en particulier si saisie de données manuelles
- Données bruitées et outliers : regarder les distributions des données
- Interaction et corrélation entre les variables
- Erreurs de labélisation

Préparation des données

Sélection et transformation de features

Transformation de features

- Transformer des variables catégorielles en variables numériques : binarization, one hot encoding
- Encoder des variables de texte : Bag of Word, TF-IDF, tokenisation
- Normalisation et scaling des données

Sélection et transformation de features

Transformation de features

- Transformer des variables catégorielles en variables numériques : binarization, one hot encoding
- Encoder des variables de texte : Bag of Word, TF-IDF, tokenisation
- Normalisation et scaling des données

Sélection de features

- Rejeter les features inutiles ou trop bruitées
- Sélection séquentielle, i.e. par ajout (forward) ou suppression (backward)
- Sélection aléatoire de combinaisons de features

Malédiction de la dimension

3D : 11 points

Malédiction de la dimension

Problème de la dimensionnalité

- La dimensionnalité c'est le nombre de features/caractéristiques
- Plus la dimension est grande plus on va avoir besoin d'échantillons
- Plus le nombre de classe est grand plus on va avoir besoin d'échantillons

Choisir un modèle

En fonction du type de problème

Définir une métrique en lien avec notre problème

- Classification :
 - Accuracy : comment chaque classe est bien prédite
 - F1-score : prend en compte les erreurs de classification
 - AUC (ROC curve) : prend en compte la sûreté de la décision, adapté à des classes non-équilibrées
 - ...

Définir une métrique en lien avec notre problème

- Classification :
 - Accuracy : comment chaque classe est bien prédite
 - F1-score : prend en compte les erreurs de classification
 - AUC (ROC curve) : prend en compte la sûreté de la décision, adapté à des classes non-équilibrées
 - ...

Régression :

- ullet R^2 : la corrélation entre les prédictions et les labels
- Erreur moyenne absolue
- ...

Sélectionner un modèle et régler ses paramètres

- Comparer les modèles entre eux : trade-off biais/variance
- Sélectionner les hyper-paramètres
- Généralisation de la décision

Train/validation/test split

- Risque d'overfitting : sur-spécialisation à l'échantillon de train
- Simuler l'arrivée de données nouvelles : jeu de test
- Échantillon de validation pour sélectionner les hyper-paramètres optimaux du modèle

Séparation train/test et cross-validation

K-folds cross-validation

- Simuler un jeu de validation plus large
- Séparer le jeux de données en K parties, utiliser K-1 parties pour le train et 1 pour le test, faire tourner et obtenir une performance moyenne et sa variance.

Séparation train/test et cross-validation

Sélectionner des hyper-paramètres : Grid Search

- Quadriller l'espace des paramètres du modèle : grid
- Recherche exhaustive ou aléatoire dans cet espace pour comparer les performances de cross-validation et trouver les valeurs optimales

L'apprentissage supervisé

Description de modèles

Régression linéaire

$$y_i = w_0 + w_1 x_{i1} + \dots + w_p x_{ip} + \epsilon_i$$

Avec i le numéro de l'échantillon, p le nombre de features, w_p les coefficients du modèle et ϵ le terme d'erreur.

- Solution exacte dans le cas moindre carré avec des données gaussiennes
- Descente de gradient pour d'autres fonctions d'erreur.

Les modèles linéaires pour la régression

Régularisation : réduire la complexité

- Contraindre le vecteur de poids w et imposer une parcimonie (sparse) : mettre des poids à 0
- ullet Ridge : régularisation de la norme L^1 (valeur absolue) du vecteur de poids
- \bullet Lasso : régularisation de la norme L^2 (norme euclidienne) du vecteur de poids
- **Elastic-net** : Ridge et Lasso simultanément

Les modèles linéaires pour la classification

Linear Discriminant Analysis

- Apprends une distribution gaussienne pour chaque classe et génère une frontière de décision linéaire suivant la règle de Bayes
- Une seule matrice de covariance pour toutes les classes
- Peut s'utiliser pour réduire la dimension (alors équivalent à faire une PCA par classe)

Les modèles linéaires pour la classification

Linear Discriminant Analysis

- Apprends une distribution gaussienne pour chaque classe et génère une frontière de décision linéaire suivant la règle de Bayes
- Une seule matrice de covariance pour toutes les classes
- Peut s'utiliser pour réduire la dimension (alors équivalent à faire une PCA par classe)

Régression logistique

- Combinaison linéaire de features (régression linéaire)
- Ajout d'une fonction logit en sortie : $p(X) = \frac{1}{1 + e^{-(\mathbf{w}_0 + \mathbf{w}_1 X)}}$
- Résolution par descente de gradients pour minimiser la fonction d'erreur

Les modèles géométriques pour la classification

K-means

- Recherche de la position de K barycentres pour partitionner l'espace
- Initialisation aléatoire puis itérations avec déplacement du centre de gravité
- S'utilise aussi de manière non-supervisée

Les modèles géométriques pour la classification

K-means

- Recherche de la position de K barycentres pour partitionner l'espace
- Initialisation aléatoire puis itérations avec déplacement du centre de gravité
- S'utilise aussi de manière non-supervisée

k-NN

- Recherche des **k plus proches voisins** de chaque exemple
- Le voisinage doit partager le même label

Les arbres de décision pour la classification

Arbre de décision simple

- Apprentissage automatique de règles "if-then-else"
- Méthode non-paramétrique, facile à interpréter et visualisation simple
- Utilisable aussi en régression
- Différentes fonctions possibles pour mesurer la qualité d'un split et donc l'optimiser : coefficient de Gini, entropy, logarithmic loss
- Rapidement overfiting, beaucoup de paramètres à régler

Les arbres de décision pour la classification

Figure 1. Random Forest

Gradient Boosting: ensemble learning

- Apprentissage **itératif** :
 - * Un ensemble de **modèle** "faibles" (arbres de décision) pour faire un **modèle** "fort"
 - * On cherche à chaque itération à re-classer les données mal classées : $F_{m+1}(x_i) = F_m(x_i) + h_m(x_i) = y_i$ avec h_m le nouvel estimateur "faible".
 - * Dans les **résidus** : $h_m(x_i) = y_i F_m(x_i)$, les données mal classées ont plus de poids \hookrightarrow **boosting**
 - * Souvent combiné avec du **bootstrap aggregating** (bagging) : XGBoost

Machine à support de vecteur pour la classification (SVM)

Hinge Loss : $\lambda ||\mathbf{w}||^2 + \left[\frac{1}{n} \sum max(0, 1 - y_i \left(\mathbf{w}^T \mathbf{x}_i - b\right)\right)\right]$

Machine à support de vecteur pour la classification (SVM)

Kernel trick : projeter les données dans un autre espace dont on connaît le produit scalaire

Réseaux de neurones : multi-layers perceptron

- Perceptron : équivalent d'une régression logisitque
- Optimisation couche par couche en partant de la fin : backpropagation des erreurs
- Descente de gradient **stochastique**
- Problème de l'évanouissement du gradient

Hypothèse de **d'invariance par translation** : convolution par un même noyau de toute l'image

Réseau convolutif et deep learning

Révolution depuis 2012 :

- Volumes de données bien plus larges
- **GPU** plus performants
- Backpropagation: 1960s, CNNs: 1995

47X Higher Throughput Than CPU Server on Deep Learning Inference

Workload: ResNet-50 | CPU: 1X Xeon E5-2690v4 @ 2.6 GHz | GPU: Add 1X Tesla P100 or V100

Réseau convolutif et deep learning

Beaucoup d'ingénierie pour avoir un réseau performant : évanouissement du gradient, choix de l'optimizer, pooling, dropout, residual and inception layers,...

Réduction de dimensions

Les différents types de problèmes

Analyse en Composantes Principales (ACP)

Principal Components Analysis (PCA)

- Hypothèse de séparation linéaire des données
- Cherche des axes de projections orthogonaux qui maximise la variance des données
- ullet En pratique on cherche donc une **matrice de rotation** U

Independent Component Analysis (ICA)

- Hypothèse de *n* composantes indépendantes dans les données
- X = AS avec S un set de n sources indépendantes
- Changement de base → composantes indépendantes
- Proche du sparse dictionnary learning où la contrainte est alors la parcimonie des sources (en avoir le moins possible)

t-distributed Stochastic Neighbor Embedding (t-SNE)

- Transformation non-linéaire
- Visualisation de données en 2D : des points avec des features similaires doivent être proches
- Beaucoup de paramètres à régler, distances entre groupes non-interprétables

Apprentissage non-supervisé

Les différents types de problèmes

Apprentissage par association

→ Associer des exemples proches dans l'espace

Affinity propagation

- Matrice de similarité : par exemple distance euclidienne entre 2 points
- Un "échantillon" sert de point de départ puis un "message" est transmis entre noeuds du graph en fonction de la similarité

Apprentissage par association

Affinity propagation

- Matrice de similarité : par exemple distance euclidienne entre 2 points
- Un "échantillon" sert de point de départ puis un "message" est transmis entre noeuds du graph en fonction de la similarité

Density-based spatial clustering (DBSCAN)

- Cherche quels points sont "accessibles" entre eux : rayon autour de chaque point
- Permet d'exclure des outliers : points seuls et non-accessibles

 \hookrightarrow K-means, k-NN, ICA déjà présentés

Gaussian Mixture Model (GMM)

- Similarité avec k-means mais covariances non sphériques
- Expectation-Maximization (EM) pour l'apprentissage

Auto-encoders, Variational Auto-Encoders (VAE), GAN

Les outils pour le machine learning

L'environnement

La domination de Python

Alternatives

 Mais aussi historiquement R : communauté des statisticiens mais possibilité hors machine learning plus limitées (hormis R Shiny)

La domination de Python

Alternatives

- Mais aussi historiquement R : communauté des statisticiens mais possibilité hors machine learning plus limitées (hormis R Shiny)
- Python reste un langage avec des performances moyennes (pas d'allocation, dynamic typing, for loop, etc)

La domination de Python

Alternatives

- Mais aussi historiquement R : communauté des statisticiens mais possibilité hors machine learning plus limitées (hormis R Shiny)
- Python reste un langage avec des performances moyennes (pas d'allocation, dynamic typing, for loop, etc)
- Julia tente de faire mieux en gardant les avantages

Outils de programmation

 Visual Studio Code, PyCharm, Spyder, Jupyter Notebook : environnements de développement

Outils de programmation

- Visual Studio Code, PyCharm, Spyder, Jupyter Notebook : environnements de développement
- Git, GitHub, GitLab : contrôle de version, partager du code

Outils de programmation

- Visual Studio Code, PyCharm, Spyder, Jupyter Notebook : environnements de développement
- Git, GitHub, GitLab : contrôle de version, partager du code
- Anaconda : gestion de packages et environnement virtuels

Jupyter Notebook

Exécuter le code **par blocs**, mêler des figures au milieu, **éditer des rapports**, construire une présentation

Google Collab, MyBinder: notebook en ligne (avec GPU)

- Google Collab, MyBinder: notebook en ligne (avec GPU)
- AWS EC2, Microsoft Azure, Google Cloud: cloud computing, particulièrement intéressant pour accéder à des gros GPU

32/34

- Google Collab, MyBinder: notebook en ligne (avec GPU)
- AWS EC2, Microsoft Azure, Google Cloud: cloud computing, particulièrement intéressant pour accéder à des gros GPU
- AutoML, Cloud Vision API, Amazon Sage Maker: API de ML automatiques, souvent sans code (mais cher)

- Google Collab, MyBinder: notebook en ligne (avec GPU)
- AWS EC2, Microsoft Azure, Google Cloud: cloud computing, particulièrement intéressant pour accéder à des gros GPU
- AutoML, Cloud Vision API, Amazon Sage Maker: API de ML automatiques, souvent sans code (mais cher)
- Labelisation manuelle de données : Amazon Mechanical Turk, ClickWorker, Appen, Tellus international

Pour aller plus loin

Livre et cours en ligne pour approfondir la théorie

- The Element of Statistical Learning, Hastie et al. et son MOOC associé:
 - https://www.edx.org/course/statistical-learning
- Pattern Recognition and Machine Learning, Chirstopher M.
 Bishop
- Cours en ligne Coursera de Andrew Ng

Mettre en pratique sur des données

- Participer à des compétitions sur Kaggle
- Explorer des notebooks et datasets publiques de Kaggle

kaggle

Des questions?