Álgebra de Operadores, Simetrias e Grupos (SU(2), SU(3))

Samuel Keullen Sales

October 12, 2025

Contents

1	História e Contexto 1.1 Grupos SU(n)	2
2	Álgebra de Operadores 2.1 Propriedades dos Operadores	2
3	Grupos SU(n) 3.1 Definição Formal	2 2 2
4	Álgebra de Lie 4.1 SU(2)	3
5	Exemplos e Cálculos Destrinchados $5.1 SU(2) - Spin \frac{1}{2} \dots \dots$	3 3 4
6	Exercício Resolvido Passo a Passo	4
7	Aplicações Físicas	4

1 História e Contexto

A teoria de grupos foi formalizada por **Évariste Galois** (1811–1832) no contexto de equações algébricas. Sua aplicação à física começou com **Hermann Weyl** e **Eugene Wigner** no início do século XX, na descrição de simetrias em sistemas quânticos.

As simetrias estão diretamente relacionadas a leis de conservação, segundo o **Teorema** de **Noether** (1915–1918).

1.1 Grupos SU(n)

- SU(2): surge no estudo do spin de partículas e átomos de hidrogênio.
- SU(3): essencial na *cromodinâmica quântica* (QCD), descrevendo a "carga de cor" das quarks.

2 Álgebra de Operadores

Em mecânica quântica, a física é descrita por operadores \hat{A} que atuam sobre funções de onda ψ :

$$\hat{A}\psi = \lambda\psi$$

onde λ é o autovalor correspondente.

2.1 Propriedades dos Operadores

• Comutador:

$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$

- Compatibilidade: $[\hat{A}, \hat{B}] = 0 \Rightarrow$ operadores compatíveis
- Identidade: $[\hat{A}, \hat{I}] = 0$

3 Grupos SU(n)

3.1 Definição Formal

$$SU(n) = \{ U \in \mathbb{C}^{n \times n} \mid U^{\dagger}U = I, \, \det(U) = 1 \}$$

2

3.2 Propriedades

- 1. Grupo **unitário**: preserva normas $||\psi||^2$
- 2. Grupo **especial**: det(U) = 1
- 3. Não comutativo (grupos de Lie não abelianos)

4 Álgebra de Lie

Cada grupo contínuo possui uma álgebra de Lie associada:

$$[T_a, T_b] = i f_{abc} T_c$$

onde T_a são os geradores e f_{abc} são as constantes de estrutura do grupo.

4.1 SU(2)

Geradores: Pauli Matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Comutadores:

$$[\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma_k$$

Aplicações:

- Spin $\frac{1}{2}$: $\vec{S} = \frac{\hbar}{2}\vec{\sigma}$
- Operadores de rotação: $U(\theta,\hat{n}) = \exp\left(-i\frac{\theta}{2}\hat{n}\cdot\vec{\sigma}\right)$

4.2 SU(3)

Geradores: Matrizes de Gell-Mann $(\lambda_1, ..., \lambda_8)$

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \dots$$

Comutadores:

$$[\lambda_a, \lambda_b] = 2i f_{abc} \lambda_c$$

Aplicações:

- Cromodinâmica Quântica (QCD)
- Simetrias de sabor quark (u, d, s)

5 Exemplos e Cálculos Destrinchados

5.1 SU(2) - Spin $\frac{1}{2}$

$$\hat{S}_z = \frac{\hbar}{2}\sigma_z$$

$$\hat{S}_z \begin{pmatrix} 1\\0 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 1\\0 \end{pmatrix} = +\frac{\hbar}{2}\chi_+$$

Operador Raising S_+ :

$$S_{+} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad S_{+}\chi_{-} = \hbar \chi_{+}$$

3

5.2 SU(3) - Comutador de Gell-Mann

$$[\lambda_1, \lambda_2] = \lambda_1 \lambda_2 - \lambda_2 \lambda_1$$

Passo 1: multiplicação

$$\lambda_1 \lambda_2 = \begin{pmatrix} i & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Passo 2: multiplicação inversa

$$\lambda_2 \lambda_1 = \begin{pmatrix} -i & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Passo 3: subtração

$$[\lambda_1, \lambda_2] = 2i\lambda_3$$

6 Exercício Resolvido Passo a Passo

Exercício: Calcule $[S_x, S_y]$ para spin $\frac{1}{2}$.

1. Definição dos operadores:

$$S_x = \frac{\hbar}{2}\sigma_x, \quad S_y = \frac{\hbar}{2}\sigma_y$$

2. Comutador:

$$[S_x, S_y] = S_x S_y - S_y S_x = \frac{\hbar^2}{4} (\sigma_x \sigma_y - \sigma_y \sigma_x)$$

3. Produto de Pauli:

$$\sigma_x \sigma_y = i \sigma_z, \quad \sigma_y \sigma_x = -i \sigma_z$$

4. Substituindo:

$$[S_x, S_y] = \frac{\hbar^2}{4} (2i\sigma_z) = i\hbar S_z$$

7 Aplicações Físicas

 \bullet Átomos e spin: $\mathrm{SU}(2) \to \mathrm{Spin},$ acoplamento de spin, espectro de Zeeman

• Partículas elementares: $SU(2) \rightarrow interações fracas (W\pm, Z0)$

• QCD: $SU(3) \rightarrow cores de quarks$, confinamento, vetores de gauge gluônicos

4