Calibración de cámara Lección 07.1

Dr. Pablo Alvarado Moya

MP6127 Visión por Computadora Programa de Maestría en Electrónica Énfasis en Procesamiento Digital de Señales Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Cuatrimestre 2013

Contenido

Calibración de cámara

Calibración tiene dos componentes:

- Calibración extrínseca:
 - relación entre sistemas coordenados del entorno y de la cámara.
 - se mantienen unidades de longitud
 - Rotación y traslación
- Calibración intrínseca:
 - relación de sistema coordenado de la cámara y de la imagen.
 - conversión entre unidades de longitud y píxeles
 - centro de imagen, razón de aspecto de pixeles, sesgo, f
- Distorsión óptica:
 - Distorsión radial
 - Distorsión tangencial
- Necesarias para tareas metrológicas

Matrices de calibración

 Matrices relacionan puntos en el espacio X con puntos en la imagen x (ambos coordenadas homogéneas):

$$\begin{split} \underline{x} &= P\underline{X} \\ P &= K \left[R \mid \underline{t} \right] \end{split}$$

- P matriz 3 × 4 de proyección
- R matriz 3 × 3 de rotación
- t vector 3 × 1 de traslación
- K matriz 3 × 3 de calibración intrínseca

$$\mathbf{R} = \mathbf{R}_{x} \mathbf{R}_{y} \mathbf{R}_{z} \qquad \underline{\mathbf{t}} = \begin{bmatrix} t_{x} \\ t_{y} \\ t_{z} \end{bmatrix} \qquad \mathbf{K} = \begin{bmatrix} \alpha_{x} & s & x_{0} \\ & \alpha_{y} & y_{0} \\ & & 1 \end{bmatrix}$$

Si K conocido: se dice cámara calibrada

- Hay miles de artículos científicos al respecto
- Diversas estrategias disponibles
- Compromiso: precisión - simplicidad escénica - complejidad algorítmica
- Calibración con objetos 3D
- Calibración con patrón 2D
- Calibración con objetos 1D
- Auto-calibración
- Puntos de fuga

- Hay miles de artículos científicos al respecto
- Diversas estrategias disponibles
- Compromiso: precisión - simplicidad escénica - complejidad algorítmica
- Calibración con objetos 3D
- Calibración con patrón 2D
- Calibración con objetos 1D
- Auto-calibración
- Puntos de fuga

Jean-Yves Bouguet, 2010

- Hay miles de artículos científicos al respecto
- Diversas estrategias disponibles
- Compromiso: precisión - simplicidad escénica - complejidad algorítmica
- Calibración con objetos 3D
- Calibración con patrón 2D
- Calibración con objetos 1D
- Auto-calibración
- Puntos de fuga

Jean-Yves Bouguet, 2010

- Hay miles de artículos científicos al respecto
- Diversas estrategias disponibles
- Compromiso: precisión - simplicidad escénica - complejidad algorítmica
- Calibración con objetos 3D
- Calibración con patrón 2D
- Calibración con objetos 1D
- Auto-calibración
- Puntos de fuga

de França et al., 2012

- Hay miles de artículos científicos al respecto
- Diversas estrategias disponibles
- Compromiso: precisión - simplicidad escénica - complejidad algorítmica
- Calibración con objetos 3D
- Calibración con patrón 2D
- Calibración con objetos 1D
- Auto-calibración
- Puntos de fuga

- Hay miles de artículos científicos al respecto
- Diversas estrategias disponibles
- Compromiso: precisión - simplicidad escénica - complejidad algorítmica
- Calibración con objetos 3D
- Calibración con patrón 2D
- Calibración con objetos 1D
- Auto-calibración
- Puntos de fuga

Calibración con objeto 3D

- Análisis de imagen de objeto con geometría 3D precisa
- Objeto usualmente con dos o tres planos ortogonales
- También plano + aparato de traslación o rotación
- Hayor precisión, teoría sencilla
- → Escena más elaborada y costosa

Calibración con plano 2D

- Patrón planar capturado de diferentes ángulos
- No es necesario conocer movimiento
- Fácil construcción escénica, muy popular
 - Zhengzou Zhang. A Flexible New Technique for Camera Calibration. IEEE PAMI. 22(11) Noviembre 2000.

Calibración basada en líneas 1D

- Objeto consiste en puntos colineales a distancia conocida
- Varias técnicas: un punto pivote en la línea (cuerda colgante con puntos marcadores)

Auto-calibración

- Técnicas de auto-calibración no usan objeto de referencia
- Solo se requieren correspondencias
- Cámara se mueve en escena para obtener imágenes
- Tres imágenes suficientes para obtener parámetros intrínsecos y extrínsecos
- \ominus menor precisión que métodos con objetos
- \oplus única opción sin imágenes ya fueron capturadas

Calibración con un plano

Referencia

Zhengzou Zhang. *A Flexible New Technique for Camera Calibration*. IEEE PAMI. 22(11) Noviembre 2000.

Homografía entre un plano y su imagen

• Punto en espacio $\underline{\mathbf{X}}$ se proyecta en punto de imagen $\underline{\mathbf{x}}$

$$\underline{\mathbf{x}} = \mathbf{K}[\mathbf{R} \mid \underline{\mathbf{t}}]\underline{\mathbf{X}} \qquad \mathbf{K} = \begin{bmatrix} \alpha_x & s & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Sin pérdida de generalidad, asúmase plano en Z=0
- Asúmanse columnas de matriz de rotación $\mathbf{R} = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 \end{bmatrix}$
- Se cumple

$$\underline{\mathbf{x}} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \equiv \mathbf{K} \begin{bmatrix} \underline{\mathbf{r}}_1 & \underline{\mathbf{r}}_2 & \underline{\mathbf{r}}_3 & \underline{\mathbf{t}} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix} = \underbrace{\mathbf{K} \begin{bmatrix} \underline{\mathbf{r}}_1 & \underline{\mathbf{r}}_2 & \underline{\mathbf{t}} \end{bmatrix}}_{\text{homografía } \mathbf{H}} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \mathbf{H} \underline{\tilde{\mathbf{X}}}$$

P. Alvarado Calibración de cámara

Grados de libertad de H

Asúmase la homografía 3 × 3

$$\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

Puesto que en coordenadas homogéneas

$$\kappa \underline{\mathbf{x}} = \kappa \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix} = \begin{bmatrix} \kappa \mathbf{x} \\ \kappa \mathbf{y} \\ \kappa \end{bmatrix} \equiv \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

se elije $\kappa = 1/h_{33}$

• $\kappa \underline{\mathbf{x}} = \kappa \mathbf{H} \underline{\tilde{\mathbf{X}}} = \tilde{\mathbf{H}} \underline{\tilde{\mathbf{X}}}$, donde $\tilde{\mathbf{H}}$ solo tiene 8 grados de libertad.

Estimación de H

- Cualquiera de los métodos revisados (DVS, regresión no lineal) permiten estimar H a partir de al menos 4 correspondencias.
- Uso de rejillas rectangulares (tableros de ajedrez o marcadores regulares) facilitan cálculo de posiciones \mathbf{X}_i
- Procesos de segmentación (supervisada o no supervisada) permiten encontrar los correspondientes $\underline{\mathbf{x}}_i$
- Problema: ¿cómo separar H en K, R y t?

Problema con grados de libertad

- **H** solo tiene 8 grados de libertad
- Se tienen:
 - 3 parámetros de rotación
 - 3 parámetros de traslación
 - 5 parámetros intrínsecos
- En total hay ¡11 incógnitas!
- Con un plano, deben estimarse 6 parámetros extrínsecos
- Solo quedan 2 grados para estimar 5 parámetros intrínsecos

Problema con grados de libertad

- H solo tiene 8 grados de libertad
- Se tienen:
 - 3 parámetros de rotación
 - 3 parámetros de traslación
 - 5 parámetros intrínsecos
- En total hay ¡11 incógnitas!
- Con un plano, deben estimarse 6 parámetros extrínsecos
- Solo quedan 2 grados para estimar 5 parámetros intrínsecos
- Con solo un plano no es posible resolver problema

Problema con grados de libertad

- H solo tiene 8 grados de libertad
- Se tienen:
 - 3 parámetros de rotación
 - 3 parámetros de traslación
 - 5 parámetros intrínsecos
- En total hay ¡11 incógnitas!
- Con un plano, deben estimarse 6 parámetros extrínsecos
- Solo quedan 2 grados para estimar 5 parámetros intrínsecos
- Con solo un plano no es posible resolver problema
- Solución: Resolver problema para al menos 3 planos

• Sea $\mathbf{H} = \begin{bmatrix} \underline{\mathbf{h}}_1 & \underline{\mathbf{h}}_2 & \underline{\mathbf{h}}_3 \end{bmatrix}$. Como $\mathbf{H} = \mathbf{K}[\mathbf{R} \mid \underline{\mathbf{t}}]$ se cumple

$$\begin{bmatrix}\underline{\textbf{h}}_1 & \underline{\textbf{h}}_2 & \underline{\textbf{h}}_3\end{bmatrix} = \textbf{K} \begin{bmatrix}\underline{\textbf{r}}_1 & \underline{\textbf{r}}_2 & \underline{\textbf{t}}\end{bmatrix}$$

ullet Como las matrices de rotación son ortogonales y $\det({f R})=1$

$$\underline{\mathbf{r}}_1 \cdot \underline{\mathbf{r}}_2 = 0$$
 $\underline{\mathbf{r}}_1 \cdot \underline{\mathbf{r}}_1 = 1$ $\underline{\mathbf{r}}_2 \cdot \underline{\mathbf{r}}_2 = 1$

Se observa que

$$\underline{\mathbf{h}}_i = \mathbf{K}\underline{\mathbf{r}}_i \qquad \Rightarrow \qquad \underline{\mathbf{r}}_i = \mathbf{K}^{-1}\underline{\mathbf{h}}_i$$

con lo que

$$\underline{\boldsymbol{r}}_1\cdot\underline{\boldsymbol{r}}_2=\underline{\boldsymbol{r}}_1^T\underline{\boldsymbol{r}}_2=(\boldsymbol{\mathsf{K}}^{-1}\underline{\boldsymbol{\mathsf{h}}}_1)^T\boldsymbol{\mathsf{K}}^{-1}\underline{\boldsymbol{\mathsf{h}}}_2=0$$

• Finalmente con $\mathbf{K}^{-T} = (\mathbf{K}^{-1})^T$

$$\underline{\boldsymbol{h}}_{1}^{T}\boldsymbol{\mathsf{K}}^{-T}\boldsymbol{\mathsf{K}}^{-1}\underline{\boldsymbol{h}}_{2}=0$$

• De igual modo

$$\underline{\mathbf{h}}_{1}^{T}\mathbf{K}^{-T}\mathbf{K}^{-1}\underline{\mathbf{h}}_{1} = \underline{\mathbf{h}}_{2}^{T}\mathbf{K}^{-T}\mathbf{K}^{-1}\underline{\mathbf{h}}_{2}$$

- Las dos ecuaciones anteriores son las únicas dos restricciones posibles (por tener solo 2 grados de libertad disponibles para estimar K)
- El término $\mathbf{K}^{-T}\mathbf{K}^{-1}$ se asocia a la imagen de la cónica absoluta (no se lo pierdan . . .)

• Sea B la matriz simétrica:

$$\mathbf{B} = \mathbf{K}^{-T} \mathbf{K}^{-1} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{12} & b_{22} & b_{23} \\ b_{13} & b_{23} & b_{33} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\alpha_x^2} & -\frac{s}{\alpha_x^2 \alpha_y} & \frac{y_0 s - x_0 \alpha_y}{\alpha_x^2 \alpha_y} \\ -\frac{s}{\alpha_x^2 \alpha_y} & \frac{s^2}{\alpha_x^2 \alpha_y^2} + \frac{1}{\alpha_y^2} & -\frac{s(y_0 s - x_0 \alpha_y)}{\alpha_x^2 \alpha_y^2} - \frac{y_0}{\alpha_y^2} \\ \frac{y_0 s - x_0 \alpha_y}{\alpha_x^2 \alpha_y} & -\frac{s(y_0 s - x_0 \alpha_y)}{\alpha_x^2 \alpha_y^2} - \frac{y_0}{\alpha_y^2} & \frac{(y_0 s - x_0 \alpha_y)^2}{\alpha_x^2 \alpha_y^2} + \frac{y_0^2}{\alpha_y^2} + 1 \end{bmatrix}$$

que tiene solo 6 parámetros $\underline{\mathbf{b}} = [b_{11}, b_{12}, b_{22}, b_{13}, b_{23}, b_{33}]^T$

- 4 ロ > 4 团 > 4 분 > 4 분 > - 분 - 쒼 Q @

• Sea $\underline{\mathbf{h}}_i = [h_{1i}, h_{2i}, h_{3i}]^T$ la *i*-ésima columna de \mathbf{H} .

$$\underline{\mathbf{h}}_{i}^{\mathsf{T}} \mathbf{B} \underline{\mathbf{h}}_{j} = \begin{bmatrix} h_{1i} & h_{2i} & h_{3i} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{12} & b_{22} & b_{23} \\ b_{13} & b_{23} & b_{33} \end{bmatrix} \begin{bmatrix} h_{1j} \\ h_{2j} \\ h_{3j} \end{bmatrix} \\
= \begin{bmatrix} h_{1i} & h_{2i} & h_{3i} \end{bmatrix} \begin{bmatrix} h_{1j}b_{11} + h_{2j}b_{12} + h_{3j}b_{13} \\ h_{1j}b_{12} + h_{2j}b_{22} + h_{3j}b_{23} \\ h_{1j}b_{13} + h_{2j}b_{23} + h_{3j}b_{33} \end{bmatrix} \\
= h_{1i}h_{1j}b_{11} + h_{1i}h_{2j}b_{12} + h_{1i}h_{3j}b_{13} + \\
= h_{2i}h_{1j}b_{12} + h_{2i}h_{2j}b_{22} + h_{2i}h_{3j}b_{23} + \\
h_{3i}h_{1j}b_{13} + h_{3i}h_{2j}b_{23} + h_{3i}h_{3j}b_{33}
\end{bmatrix}$$

$$\underline{\mathbf{h}}_{i}^{T} \mathbf{B} \underline{\mathbf{h}}_{j} = \underbrace{\begin{bmatrix} h_{1i} h_{1j} \\ h_{1i} h_{2j} + h_{2i} h_{1j} \\ h_{2i} h_{2j} \\ h_{1i} h_{3j} + h_{3i} h_{1j} \\ h_{2i} h_{3j} + h_{3i} h_{2j} \\ h_{3i} h_{3j} \end{bmatrix}}_{\underline{\mathbf{v}}_{ij}} \cdot \underbrace{\begin{bmatrix} b_{11} \\ b_{12} \\ b_{22} \\ b_{13} \\ b_{23} \\ b_{33} \end{bmatrix}}_{\underline{\mathbf{b}}} = \underline{\mathbf{v}}_{ij} \cdot \underline{\mathbf{b}} = \underline{\mathbf{v}}_{ij}^{T} \underline{\mathbf{b}}$$

• Las restricciones $\underline{\mathbf{h}}_1^T \mathbf{B} \underline{\mathbf{h}}_2 = 0$ y $\underline{\mathbf{h}}_1^T \mathbf{B} \underline{\mathbf{h}}_1 = \underline{\mathbf{h}}_2^T \mathbf{B} \underline{\mathbf{h}}_2$ equivalen a

$$\underbrace{\begin{bmatrix}\underline{\boldsymbol{v}}_{12}^T\\(\underline{\boldsymbol{v}}_{11}-\underline{\boldsymbol{v}}_{22})^T\end{bmatrix}}_{\boldsymbol{V}}\underline{\boldsymbol{b}}=\underline{\boldsymbol{0}}$$

• **V** es matriz de 2×6

4□ > 4回 > 4 = > 4 = > = 9 < 0</p>

• Con *n* planos observados se concatenan

$$\underbrace{\begin{bmatrix} \mathbf{v}_{12}^{(1)\,T} \\ (\mathbf{v}_{11}^{(1)} - \mathbf{v}_{22}^{(1)})^T \\ \mathbf{v}_{12}^{(2)\,T} \\ (\mathbf{v}_{11}^{(2)} - \mathbf{v}_{22}^{(2)})^T \\ \vdots \\ \mathbf{v}_{12}^{(n)\,T} \\ (\mathbf{v}_{11}^{(n)} - \mathbf{v}_{22}^{(n)})^T \end{bmatrix}}_{\mathbf{V}} \underline{\mathbf{b}} = \underline{\mathbf{0}}$$

con la matriz \mathbf{V} de dimensiones $2n \times 6$

- Si $n \ge 3$ hay solución única de $\underline{\mathbf{b}}$
- Si n=2 se puede asumir s=0 y así agregar la ecuación $[0,1,0,0,0,0]\underline{\mathbf{b}}=0$
- Si n=1, además de s=0, si se puede asumir (x_0, y_0) es el centro de la imagen, se puede determinar α_x y α_v
- La solución $\mathbf{V}\underline{\mathbf{b}} = \underline{\mathbf{0}}$ es el eigenvector de $\mathbf{V}^T\mathbf{V}$ asociado al menor eigenvalor
- Equivalente: solución es el vector singular derecho de V asociado al valor singular más pequeño

• A partir de $\mathbf{B} = \mathbf{K}^{-T}\mathbf{K}^{-1}$ y

$$\mathbf{B} = \begin{bmatrix} \frac{1}{\alpha_x^2} & -\frac{s}{\alpha_x^2 \alpha_y} & \frac{y_0 s - x_0 \alpha_y}{\alpha_x^2 \alpha_y} \\ -\frac{s}{\alpha_x^2 \alpha_y} & \frac{s^2}{\alpha_x^2 \alpha_y^2} + \frac{1}{\alpha_y^2} & -\frac{s(y_0 s - x_0 \alpha_y)}{\alpha_x^2 \alpha_y^2} - \frac{y_0}{\alpha_y^2} \\ \frac{y_0 s - x_0 \alpha_y}{\alpha_x^2 \alpha_y} & -\frac{s(y_0 s - x_0 \alpha_y)}{\alpha_x^2 \alpha_y^2} - \frac{y_0}{\alpha_y^2} & \frac{(y_0 s - x_0 \alpha_y)^2}{\alpha_x^2 \alpha_y^2} + \frac{y_0^2}{\alpha_y^2} + 1 \end{bmatrix}$$

se obtienen los parámetros en K

$$y_0 = \frac{b_{12}b_{13} - b_{11}b_{23}}{b_{11}b_{22} - b_{12}^2} \qquad \lambda = b_{33} - \frac{b_{13}^2 + y_0(b_{12}b_{13} - b_{11}b_{23})}{b_{11}}$$

$$\alpha_x = \sqrt{\frac{\lambda}{b_{11}}} \qquad \alpha_y = \sqrt{\frac{\lambda b_{11}}{b_{11}b_{22} - b_{12}^2}}$$

$$s = -b_{12}\frac{\alpha_x^2 \alpha_y}{\lambda} \qquad x_0 = \frac{sy_0}{\alpha_x} - \frac{b_{13}\alpha_x^2}{\lambda}$$

Con K conocido los parámetros externos se obtienen con

$$\begin{aligned} \mathbf{r}_1 &= \frac{\mathbf{K}^{-1}\underline{\mathbf{h}}_1}{\|\mathbf{K}^{-1}\underline{\mathbf{h}}_1\|} & \mathbf{r}_2 &= \frac{\mathbf{K}^{-1}\underline{\mathbf{h}}_2}{\|\mathbf{K}^{-1}\underline{\mathbf{h}}_2\|} \\ \mathbf{r}_3 &= \underline{\mathbf{r}}_1 \times \underline{\mathbf{r}}_2 & \mathbf{t} &= \frac{\mathbf{K}^{-1}\underline{\mathbf{h}}_3}{\|\mathbf{K}^{-1}\underline{\mathbf{h}}_3\|} \end{aligned}$$

- Ruido en las mediciones puede producir R incorrecta
- Corrección: se usa DVS. Si $\mathbf{R} = \mathbf{U}\mathbf{D}\mathbf{V}^T$ entonces $\tilde{\mathbf{R}} = \mathbf{U}\mathbf{V}^T$ minimiza norma de Frobenius $\|\tilde{\mathbf{R}} - \mathbf{R}\|_F^2$

Refinamiento de solución

- El método anterior no encuentra soluciones con sentido físico
- Es muy eficiente como inicialización
- Sea n el número de imagenes del plano
- Sea m el número de correspondencias por plano
- Se minimiza el funcional

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \|\underline{\mathbf{x}}_{ij} - \hat{\underline{\mathbf{x}}}(\mathbf{K}, \mathbf{R}_{i}, \underline{\mathbf{t}}_{i}, \underline{\mathbf{X}}_{j})\|^{2}$$

- $\hat{\underline{\mathbf{x}}}(\mathbf{K}, \mathbf{R}_i, \underline{\mathbf{t}}_i, \underline{\mathbf{X}}_j)$ proyecta el punto $\underline{\mathbf{X}}_j$ en $\underline{\mathbf{x}}_{ij}$
- Cualquier método de minimización no lineal refina inicialización

- Proyección perspectiva es ideal matemático
- Lentes reales distorsionan modelo
- Objetivos gran angular y ojo de pez (wide angle, fisheye)

• Distorsiones en objetivos

Distorsión radial

- Las coordenadas se alejan o acercan del centro de la imagen en función de la distancia a dicho centro.
- Distorsión barril: alejamiento
- Distorsión cojín: acercamiento
- Modelo de dirtorsión:

$$\hat{x} = x(1 + \kappa_1 r^2 + \kappa_2 r^4)$$

$$\hat{y} = y(1 + \kappa_1 r^2 + \kappa_2 r^4)$$

$$r^2 = x^2 + y^2$$

• Parámetros de distorsión radial: κ_1 y κ_2

Resumen

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make, Subversion, Kazam y Xournal en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2013 Pablo Alvarado-Moya Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica