

Analyse Semestre 3

HTTPS://www.math.u-BORDEAUX.FR/~LAMICHEL/CPBX.HTML

Table des matières

Ι	Séries numériques	2
II	Espaces vectoriels normés	12
III	Suites et séries de fonction	25
IV	Séries entières	31

Première partie

Séries numériques

1 Généralités

1.1 Rappels sur les suites numériques

Une suite numérique est une fonction $u: \mathbb{N} \to \mathbb{K}$. On la note $u = (u_n)_{n \in \mathbb{N}}$. On note $\mathbb{K}^{\mathbb{N}}$ l'ensemble des suites à valeurs dans \mathbb{K} .

Définition. Soit $u=(u_n)\in\mathbb{K}^n$ et $l\in\mathbb{K}$. On dit que (u_n) converge vers l quand n tend vers $+\infty$ si et seulement si $\forall \epsilon>0, \exists N\in\mathbb{N}, \forall n\geq N, |u_n-l|<\epsilon$.

Exemple. Soit $u_n = \frac{1}{2n+1}$. Alors $\lim_{n \to +\infty} u_n = 0$.

Soit $\epsilon > 0$, soit $N \in \mathbb{N}$ tel que $N > \frac{1}{2}(\frac{1}{\epsilon} - 1)$. Soit $n \ge N$, alors $|u_n| = \frac{1}{2n+1} < \epsilon$. Le choix de N se fait grâce à $|u_n| < \epsilon \Leftrightarrow \frac{1}{2n+1} < \epsilon \Leftrightarrow N < \frac{1}{2}(\frac{1}{\epsilon} - 1)$.

Définition. Soit (u_n) une suite numérique. On dit que (u_n) vérifie le critère de Cauchy si $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n, m \geq N, |u_n - u_m| < \epsilon$.

Exemple. Montrer que toute suite convergente vérifie le critère de Cauchy.

Théorème I.1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique vérifiant le critère de Cauchy. Alors $(u_n)_{n\in\mathbb{N}}$ admet une limite finie.

Preuve. Admise.

Théorème I.2. (Conséquence de la propriété de la borne supérieure dans \mathbb{R}) Soit (u_n) une suite à valeurs réelles. On suppose que (u_n) est croissante et majorée (respectivement décroissante et minorée) alors (u_n) admet une limite finie.

1.2 Définitions et premières propriétés des séries.

Définition. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. On définit la suite des sommes ponctuelles des u_n par :

$$S_n = \sum_{k=0}^n u_k$$

On appelle série numérique de terme général (u_n) la suite des sommes partielles $(S_n)_{n\in\mathbb{N}}$. On notera $\sum_{n\in\mathbb{N}}u_n$ cette série numérique.

Définition. On dit que la série numérique $\sum_{n\in\mathbb{N}}u_n$ converge si et seulement si la suite des sommes partielles (S_n) converge. Dans ce cas on note $\sum_{n=0}^{+\infty}u_n$ sa limite.

Exemple. Soit $z \in \mathbb{R}$. Soit $u_n = z^n$. Alors la série $\sum_{n \in \mathbb{N}} u_n$ converge si et seulement si |z| < 1.

Démonstration. On a $S_n = \sum_{k=0}^n z^k$.

— Si $z \neq 1$, alors $S_n = \frac{1-z^{n+1}}{1-z} = \underbrace{\frac{1}{1-z}}_{\in \mathbb{K}} - \underbrace{\frac{1}{1-z}}_{\in \mathbb{K}} \times z^{n+1}$. Or la suite $(z^{n+1})_{n \in \mathbb{N}}$ converge si et seulement si $z \in]-1,1]$.

— Si z = 1, $S_n = n+1 \to +\infty$.

Définition. Soit $\sum_{k\in\mathbb{N}}u_k$ une série convergente : Alors pour tout $n\in\mathbb{N}$ la série $\sum_{k\to n+1}u_k$ est convergente. On note $R_n=\sum_{k=n+1}^\infty u_k$. $(R_n)_{n\in\mathbb{N}}$ s'appelle la suite des restes et on a $S_n+R_n=\sum_{k=0}^{+\infty}u_k$.

Proposition. Soit $\sum_{n\in\mathbb{N}} u_n$ une série convergente. Alors $\lim_{n\to+\infty} R_n = 0$.

Preuve. On a $S_n + R_n = \sum_{k=0}^{\infty} u_k$. Or $\lim_{n \to \infty} S_n = \sum_{k=0}^{+\infty} u_k$. Par suite $\lim_{n \to +\infty} R_n = \sum_{k=0}^{+\infty} u_k - \lim_{n \to +\infty} S_n = 0$.

Propriété. Soient $\sum_{n\in\mathbb{N}}u_n$ et $\sum_{n\in\mathbb{N}}v_n$ deux séries numériques et soient $\lambda,\mu\in\mathbb{K}$. Alors la série $\sum_{n\in\mathbb{N}}(\lambda u_n+\mu v_n)$ converge et $\sum_{n=0}^{+\infty}(\lambda u_n+\mu v_n)=\lambda\sum_{n=0}^{+\infty}u_n+\mu\sum_{n=0}^{+\infty}v_n$.

Démonstration. $\sum_{k=0}^{n} (\lambda u_k + \mu v_k) = \lambda \sum_{k=0}^{n} u_k + \mu \sum_{k=0}^{n} v_k$ et faire $n \to \infty$.

Proposition. Soit (u_n) une suite numérique. On suppose que la série $\sum_{n\in\mathbb{N}} u_n$ converge. Alors $\lim_{n\to+\infty} = 0$.

Démonstration. On a $S_n - S_{n-1} = \sum_{k=0}^n u_k - \sum_{k=0}^{n-1} u_k = u_n$. Comme la série est convergente alors S_n a une limite finie l. Donc $u_n = S_n - S_{n-1} \to l - l = 0$.

Remarque. La réciproque est fausse, il existe des suites (u_n) qui convergent vers 0 tel que $\sum u_n$ ne converge pas comme $u_n = \frac{1}{n}$.

Exercice. Soit (u_n) une suite d'éléments de \mathbb{K} , montrer que (u_n) converge est équivalent à la série $\sum_{n\in\mathbb{N}}(u_{n+1}-u_n)$ converge.

 $\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n (u_{k+1} - u_k) = -u_0 + u_1 - u_1 + u_2 + \dots + u_n - u_n + u_{n+1} = u_n n + 1 - u_0 \text{ Or } S_n = u_{n+1} - u_0$ $\text{donc } (S_n) \text{ converge si et seulement si } (u_{n+1}) \text{ converge et on a } \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} u_{n+1} - u_0 = l - u_0 = l' \in \mathbb{K}.$ $\text{Or } u_n \text{ converge donc } \lim_{n \to +\infty} u_n = l \in \mathbb{K}.$

Définition. Soit $(u_n) \in \mathbb{K}^{\mathbb{N}}$. On dit que la série $\sum_{n \in \mathbb{N}} u_n$ converge absolument si la série $\sum_{n \in \mathbb{N}} |u_n|$ converge.

Théorème I.3. Toute série absolument convergente est convergente.

Démonstration. Soit (u_n) une suite. On suppose la série $\sum |u_n|$ converge. Soit $S_n^+ = \sum_{k=0}^n |u_k|$. La suite (S_n^+) est convergente. Par conséquent elle vérifie le critère de Cauchy : $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > m \geq N, |S_n^+ - S_m^+| < \epsilon$. Par suite

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > m > N \sum_{k=m+1}^{n} |u_k| < \epsilon \tag{1}$$

Montrer que la série $\sum u_n$ converge, c'est à dire que la suite $S_n = \sum_{k=0}^n u_k$ converge. Montrons que (S_n) est de Cauchy, c'est à dire $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > m \geq N, |S_n - S_m| < \epsilon \Leftrightarrow \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > m \geq N, |\sum_{k=m+1}^n u_k| < \epsilon.$

Soit
$$\epsilon > 0$$
. Soit N donné par (1), soient $n > m \ge N$ alors $\left|\sum_{k=m+1}^{n} u_k\right| \le \sum_{k=m+1}^{n} \left|u_k\right| < \epsilon$.

Remarque. La réciproque du théorème est fausse, il existe des suites convergentes qui ne sont pas absolument convergentes. Par exemple $\sum_{n\in\mathbb{N}} \frac{(-1)^n}{n}$ converge mais ne converge pas en valeur absolu.

2 Séries à termes positifs.

Théorème I.4. Soit $(u_n) \in \mathbb{K}^{\mathbb{N}}$ tel que $u_n \geq 0 \forall n$. Alors la série $\sum_{n \in \mathbb{N}} u_n$ converge si et seulement si la suite des sommes partielles (S_n) est majorée.

Démonstration. On remarque $S_{n+1} - S_n = u_{n+1} \ge 0$. Donc la suite (S_n) est croissante. Par conséquent elle converge si et seulement si elle est majorée.

2.1 Théorèmes de comparaisons généraux.

Théorème I.5. Soient (u_n) et (v_n) deux suites de scalaires telles que $\forall n \in \mathbb{N}, 0 \leq u_n \leq v_n$. Alors

- 1. Si la série $\sum_{n\in\mathbb{N}}v_n$ converge alors la série $\sum_{n\in\mathbb{N}}u_n$ converge et $\sum_{n=0}^{+\infty}u_n\leq\sum_{n=0}^{+\infty}v_n$.
- 2. Si la série $\sum_{n} u_n$ diverge alors la série $\sum v_n$ diverge.

Démonstration. Soit $S_n = \sum_{k=0}^n u_k$ et $\tilde{S}_n = \sum_{k=0}^n v_k$. Alors $S_n \leq \tilde{S}_n, \forall n \in \mathbb{N}$

- 1. Supposons $\sum v_n$ converge. Alors \tilde{S}_n est majorée. Donc (S_n) est majorée. Donc (S_n) converge d'après le théorème précédent. Donc la série $\sum u_n$ converge. (Supposons $u_n \geq 0$ et $\sum u_n$ ne converge pas). Alors la suite des sommes partielles (S_n) tend vers $+\infty$.
- 2. $\sum u_n$ diverge $\Rightarrow S_n \to +\infty$. Comme $\tilde{S}_n \geq S_n$ alors $\tilde{S}_n \to +\infty \Rightarrow \sum v$ diverge.

Corollaire 1. Soient (u_n) et (v_n) deux suite numériques. On suppose qu'il existe $n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0, 0 \leq u_n \leq v_n$. Alors :

- 1. $\sum_{n\in\mathbb{N}} v_n$ converge $\Rightarrow \sum_{n\in\mathbb{N}} u_n$ converge.
- 2. $\sum_{n \in \mathbb{N}} u_n$ diverge $\Rightarrow \sum_{n \in \mathbb{N}}$ diverge.

Rappel. Soient (u_n) et (v_n) deux suites strictement positives à partir d'un certain rang. On dit que (u_n) et (v_n) sont équivalentes si et seulement si $\lim_{n\to+\infty}\frac{u_n}{v_n}=1$. On note $u_n\sim v_n$. De plus.

— si $\sum u_n$ converge alors les restes des séries sont équivalentes

$$(\sum_{k=n}^{\infty} u_k)_n \sim_{n \to \infty} (\sum_{k=n}^{+\infty} v_k)$$

— si $\sum u_n$ diverge alors

$$(\sum_{k=0}^{n} u_k) \sim_{n \to \infty} (\sum_{k=0}^{n} v_k)$$

Démonstration. Supposons qu'on est dans le cas convergeant $u_n \sim v_n \Rightarrow \lim_{n \to \infty} \frac{u_n}{v_n} = 1$. Soit $\epsilon > 0$ il existe $n_0 \in \mathbb{N}, \forall n \geq n_0 (1 - \epsilon) v_n \leq u_n \leq (1 + \epsilon) v_n$. Soit $n \geq n_0$ alors:

$$(1 - \epsilon) \sum_{k=n}^{N} v_k \ge \sum_{k=n}^{N} u_k \ge (1 + \epsilon) \sum_{k=n}^{N} v_k$$

Comme les séries $\sum u_n$ et $\sum v_n$ converge, on peut faire $N \to +\infty$. Il vient donc :

$$(1 - \epsilon) \sum_{k=0}^{\infty} v_k \ge \sum_{k=0}^{\infty} u_k \ge (1 + \epsilon) \sum_{k=0}^{\infty} v_k$$

Cas divergeant : On a n_0 tel que $\forall n \geq n_0, (1-\epsilon)u_n < u_n \geq u_n \geq v_n(1+\epsilon)$

$$\sum_{k=0}^{n} u_k = \sum_{k=0}^{n_0} u_k + \sum_{k=n_0+1}^{n} u_k$$

$$\begin{split} &\sum_{k=0}^{n_0} u_k + (1-\epsilon) \sum_{k=n_0+1}^n v_k \geq \sum_{k=0}^n u_k \geq \sum_{k=0}^{n_0} u_k + (1+\epsilon) \sum_{k=n_0+1}^n v_k \\ &\sum_{k=0}^{n_0} (u_k - v_k) + (1-\epsilon) \sum_{k=0}^n v_k \leq \sum_{k=0}^n u_k \leq \sum_{k=0}^{n_0} (u_k - v_k) + (1+\epsilon) \sum_{k=0}^n v_k. \end{split}$$
 On conclut par :

$$(1 - \epsilon) \frac{\sum_{k=0}^{n_0} u_k - v_k}{\sum_{k=0}^n v_k} \le \frac{\sum_{k=0}^n u_k}{\sum_{k=0}^n v_k} \le (1 + \epsilon) + \frac{\sum_{k=0}^{n_0} (u_k - v_k)}{\sum_{k=0}^n v_k}$$

Donc $\sum v_n$ diverge puis le terme de droite et de gauche tendent vers 0.

Corollaire 2. Soient (u_n) et (v_n) deux suites strictement positives à partir d'un certain rang et tel que $u_n \sim v_n$ quand $n \to +\infty$. alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature. (ie $\sum u_n$ converge $\Leftrightarrow \sum v_n$ converge).

Démonstration. Comme $u_n \sim v_n$ alors il existe $N \in \mathbb{N}$ tel que $\forall n \geq N, \frac{v_n}{2} \leq u_n \leq 2v_n \Leftrightarrow \frac{1}{2} \leq \frac{u_n}{v_n} \leq 2v_n \Leftrightarrow \frac{1}{2} \leq 2v$

2.2 Séries vs intégrales.

Dans cette section on utilise des résultats sur les intégrales impropres pour étudier la convergence des séries positives. Pour toute fonction continue sur \mathbb{R}_+ et pour tout réel $a \in \mathbb{R}$, on note :

$$\mathcal{I}(f;a) = \int_{a}^{N} f(x)dx$$

Définition. Soit $f:[a,+\infty[\to\mathbb{R}]]$ une fonction continue. Supposons que la suite $(\mathcal{I}_N(f,a))_{N\in\mathbb{N}}$ admet une limite quand $N\to+\infty$. Alors on note $\int_a^{+\infty}f(x)dx$ cette limite et on dit que l'intégrale impropre $\int_a^{\infty}f(x)dx$ est convergente.

Exemple. L'intégrale impropre $\int_1^\infty \frac{1}{r^\alpha} dx$ converge si et seulement si $\alpha > 1$.

Théorème I.6. Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction continue positive décroissante et soit (u_n) l'suite définie par $u_n = f(n)$. Alors la série $\sum_{n \in \mathbb{N}} u_n$ et l'intégrale impropre $\int_0^{+\infty} f(t)dt$ sont de même nature.

Démonstration. Comme f est décroissante, on a pour tout $n \in \mathbb{N}$ et pour tout $t \in [n, n+1], f(n) \geq f(t) \geq f(n+1)$. Par suite,

$$\int_{n}^{n+1} f(n)dx \ge \int_{n}^{n+1} f(t)dt \ge \int_{n}^{n+1} f(n+1)dx$$

D'où

$$f(n) \ge \int_{n}^{n+1} f(x)dx \ge f(n+1)$$

En sommant entre 0 et N, il vient :

$$\sum_{n=0}^{N} f(n) \ge \sum_{n=0}^{N} \int_{0}^{N+1} f(x) dx \ge \sum_{n=0}^{N} f(n) + 1$$

On note $S_N = \sum_{n=0}^N f(n)$. Il vient

$$S_N \ge \int_0^{N+1} f(x)dx \ge S_{N+1} - f(0)$$

c'est à dire

$$S_N \ge \mathcal{I}_N(f;0) \ge S_{N+1} - f(0)$$

Rappelons que comme f est positive alors $(S_N)_{N\in\mathbb{N}}$ est croissante. De plus $\mathcal{I}_{N+1}(f) - \mathcal{I}_N(f) = \int_N^{N+1} f(x) dx \ge 0$ car $f \ge 0$. Donc $(\mathcal{I}_N)_{N\in\mathcal{N}}$ est croissante.

Supposons d'abord que $(\mathcal{I}_N(f))$ converge. Alors cette suite est majorée par M > 0. Donc (S_{N+1}) est majorée par M + f(0) comme elle est croissante elle est convergente.

Supposons que (S_N) converge. Alors elle est majorée par M>0. Donc $\mathcal{I}_N(f)\leq M$ Comme est croissante alors elle converge.

Remarque. Supposons que la série et l'intégrale converge. Faisons $N \to +\infty$ dans

$$S_N \ge \int_{0}^{N+1} f(x)dx \ge S_{N+1} - f(0)$$

il vient

$$\sum_{n=0}^{+\infty} f(n) \ge \int_{0}^{+\infty} f(x)dx \ge \sum_{n=1}^{+\infty} f(n)$$

Théorème I.7. (Série de rieman) Soit $\alpha \in \mathbb{R}$. La série $\sum_{n \in \mathbb{N}} \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$

Démonstration. Considérons la suite $(\mathcal{I}_N(\alpha))_N$ définie par

$$\mathcal{I}_N(\alpha) = \int_1^N x^{-\alpha} dx$$

Un calcule immédiat montre que

$$\mathcal{I}_{N}(\alpha) = \begin{cases} ln(N) \text{ si } \alpha = 1\\ \frac{1}{1-\alpha}(N^{1-\alpha} - 1) \text{ sinon} \end{cases}$$

On en déduit que la suite $(\mathcal{I}_N(\alpha))_N$ converge si et seulement a > 1. En appliquant le théorème précédent on obtient le résultat annoncé.

Exemple : Série de Bertrand. Soit $\beta \in \mathbb{R}$. La série $\sum_{n>2} \frac{1}{n \ln(n)^{\beta}}$ converge si et seulement si $\beta > 1$.

Proposition. Soit $u \in \mathbb{K}^{\mathbb{N}}$ une série numérique. On suppose qu'il existe $\alpha > 1$ tel que la suite $(n^{\alpha}u_n)$ est bornée. Alors la série $\sum_{n \in \mathbb{N}} u_n$ converge absolument.

Démonstration. Puisque $(n^{\alpha}u_n)$ est bornée, il existe C>0 tel que :

$$\forall n \in \text{ est } \mathbb{N}^*, |u_n| \le \frac{C}{n^{\alpha}}$$

Or, la série $\sum \frac{C}{n^{\alpha}}$ converge d'après le théorème précédent et en appliquant le théorème I-4, on en déduit que la série $\sum |u_n|$ converge.

Corollaire. Supposons que $n^{\alpha}u_n$ admet une limite quand $n \to +\infty$ et $\alpha > 1$. Alors $\sum_{n \in \mathbb{N}} |u_n|$ converge.

2.3 Critères de Cauchy et d'Alembert.

Rappelons tout d'abord que les que la série géométrique $\sum\limits_{n\in\mathbb{N}}r^n$ converge si |r|<1 et diverge sinon. Les critères de Cauchy et de d'Alembert permettent de comparer une série à termes positifs avec les séries géométriques. Pour comparer u_n avec r^n le critère de Cauchy porte sur $\sqrt[n]{u_n}$, le critère d'Alembert sur $\frac{u_{n+1}}{u_n}$.

Théorème I.8. (Critère de Cauchy.) Soit (u_n) une suite de réels strictement positifs. On suppose

$$\lim_{n \to +\infty} (u_n)^{\frac{1}{n}} = l \in \mathbb{R}^+$$

Alors

- Si l < 1 la série $\sum_{n \in \mathbb{N}} u_n$ converge. Si l > 1 la série $\sum_{n \in \mathbb{N}} u_n$ diverge.

Démonstration. Supposons que l < 1. Il existe $\epsilon > 0$ tel que $l + \epsilon < 1$. Comme $\lim_{n \to +\infty} (u_n)^{\frac{1}{n}} = l$, il existe $N \in \mathbb{N}$ tel que

$$\forall n \ge N, (u_n)^{\frac{1}{n}} \le l + \epsilon$$

qui devient en devient en élevant à la puissance n:

$$\forall n \ge N, u_n \le (l + \epsilon)^n$$

Or $0 < l + \epsilon < 1$, donc la série $\sum_{n \in \mathbb{N}} (l + \epsilon)^n$ converge. En appliquant le corollaire I-1, on obtient la convergence de la série $\sum_{n\in\mathbb{N}} u_n$.

Supposons maintenant que l > 1. Il existe $\epsilon > 0$ tel que $l - \epsilon > 1$. Comme $\lim_{n \to +\infty} (u_n)^{\frac{1}{n}} = l$, il existe $N \in \mathbb{N}$ tel que

$$\forall n \ge N, (u_n)^{\frac{1}{n}} \ge l - \epsilon$$

qui devient en élevant à la puissance n:

$$\forall n > N, u_n > (l - \epsilon)^n$$

Remarque. Dans le cas, l=1, on ne peut pas conclure, il faut étudier la suite plus attentivement.

Théorème I.9. (Critère de d'Alembert.) Soit (u_n) une suite de réels strictement positifs. On suppose

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l \in \mathbb{R}^+$$

- Si l < 1 la série $\sum_{n \in \mathbb{N}} u_n$ converge. Si l > 1 la série $\sum_{n \in \mathbb{N}} u_n$ diverge.

Remarque. Dans le cas, l=1, on ne peut pas conclure, il faut étudier la suite plus attentivement.

Démonstration. Supposons que l < 1. Il existe $\epsilon > 0$ tel que $0 < l + \epsilon < 1$ Comme $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l$, il existe $n_0 \in \mathbb{N}$ tel que

$$\forall n \ge n_0, \frac{u_{n+1}}{u_n} \le l + \epsilon$$

Par récurrence immédiate, on en déduit que

$$\forall n \ge n_0, 0 < u_n \le (l + \epsilon)^{n - n_0} u_{n_0}$$

Or $0 < l + \epsilon < 1$, donc la série $\sum_{n \in \mathbb{N}} (l + \epsilon)^{n - n_0}$ converge. En appliquant le corollaire II-3, on obtient la convergence de la série $\sum_{n \in \mathbb{N}} u_n$.

Supposons maintenant que l > 1. Il existe $\epsilon > 0$ tel que $l - \epsilon > 1$. Comme $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = l$, il existe $n_0 \in \mathbb{N}$ tel que

$$\forall n \geq n_0, \frac{u_{n+1}}{u_n} \geq l - \epsilon$$

Par une récurrence immédiate, on en déduit que

$$\forall n \ge n_0, u_n \ge (l - \epsilon)^{n - n_0} u_{n_0}$$

Or
$$l-\epsilon>1$$
 donc la série $\sum\limits_{n\in\mathbb{N}}(l-e)^n$ diverge .

3 Séries quelconques

3.1 Séries alternées.

On appelle série alternée toute série dont le terme général (u_n) est de la forme $u_n = (-1)^n v_n$ avec $v_n \ge 0$.

Théorème I.10. Soit $\sum_{n\in\mathbb{N}} (-1)^n v_n$ une série alternée. On suppose que la suite (v_n) est décroissante et positive de plus elle tend vers 0 quand $n\to\infty$. Alors la série $\sum_{n\in\mathbb{N}} (-1)^n v_n$ est convergente.

Démonstration. Soit (S_n) la suite des sommes partielles. On considère les deux suites extraites (S_{2n}) et (S_{2n+1}) . On va montrer que ces deux suites sont adjacentes.

Comme $v_n \geq 0$ pour tout n, alors :

$$S_{2n+1} - S_{2n} = -v_n \le 0$$

et par conséquent $S_{2n} \geq S_{2n+1}$ pour tout n. De plus comme $v_n \to 0$, alors $S_{2n+1} - S_{2n} \to 0$ quand $n \to \infty$. Par ailleurs, pour tout $n \in \mathbb{N}$, on a

$$S_{2(n+1)} - S_{2n} = -v_n \le 0$$

et par conséquent $S_{2n} \geq S_{2n+1}$ pour tout n. De plus comme $v_n \to 0$, alors $S_{2n+1} - S_{2n} \to 0$ quand $n \to \infty$. Par ailleurs, pour tout $n \in \mathbb{N}$, on a

$$S_{2(n+1)} - S_{2n} = v_{2n+2} - v_{2n+1} \le 0$$

car (v_n) est décroissante. Ceci prouve que (S_{2n}) est décroissante. De même, on montre que (S_{2n+1}) est croissante. On déduit de ce qui précède que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes. Par suite, elles convergent vers une limite l. On en déduit que la suite (S_n) converge vers l, ce qui prouve le résultat.

Remarque. $S_n = v_0 - v_1 + v_2 - v_3 + ... + v_{2n-2} - v_{2n-1} + v_{2n}$. Donc $S_n \ge 0$ et S_{2n+1} . Par conséquent $l \ge 0$, c'est à dire que la somme d'une série alternée est positive.

Exemple. Soit $\alpha \in]0,1]$, alors la série $\sum_{n>0} \frac{(-1)^n}{(n+1)^{\alpha}}$ converge. En effet on peut appliquer le théorème avec $v_n = \frac{1}{(n+1)^{\alpha}}$ qui est bien positive, décroissante et $\lim_{n \to +\infty} \frac{1}{(n+1)^{\alpha}} = 0$ donc $\sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^{\alpha}} \ge 0$. Que peut on dire sur $\sum_{n=1}^{+\infty} \frac{(-1)^n}{(n+1)^{\alpha}}$. Elle est convergente et donc négative.

Remarque. $\sum_{n\geq n_0} (-1)^n v_n$ avec (v_n) qui vérifie le critère des séries alternées a le signe de $(-1)^{n_0}$.

Exercice. (Théorème d'Abel.) Soient (a_n) , (b_n) deux suites. On suppose que

- $-a_n \to 0$ quand $n \to \infty$
- la suite $(\sum_{k=0}^{n} b_n)_n$ est bornée. la série $\sum_{n\in\mathbb{N}} (a_{n+1}-a_n)$ est absolument convergente. Montrer que la série $\sum_{n\in\mathbb{N}} a_n b_n$ converge.

3.2Produit de Cauchy des séries.

Dans cette section on considère des séries à valeur dans K.

Définition. Soient $\sum_{n\in\mathbb{N}} a_n$ et $\sum_{n\in\mathbb{N}} b_n$ deux séries. On appelle produit de Cauchy de ces deux séries, la série $\sum_{n\in\mathbb{N}} c_n \text{ avec terme général}$

$$c_n = \sum_{k=0}^{n} a_k b_{n-k} = \sum_{k=0}^{n} b_k a_{n-k}$$

Lemme. Soient $\sum_{n\in\mathbb{N}} a_n$ et $\sum_{n\in\mathbb{N}} b_n$ deux séries positives convergentes. Alors leur produit de Cauchy $\sum_{n\in\mathbb{N}} c_n$ est une série positive convergente et on a :

$$\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n)$$

Démonstration. Soient

$$A_n = \sum_{k=0}^{n} a_K, B_n = \sum_{k=0}^{n} B_K, C_n = \sum_{k=0}^{n} C_K$$

D'après la définition des c_k , on a :

$$C_n = \sum_{k=0}^n \sum_{l=0}^k a_l b_{k-l} \le \sum_{k=0}^n \sum_{p+q=k} a_p b_q = \sum_{(p,q), p+q \le n} a_p b_q$$

$$\leq (\sum_{p=0}^{n} a_p)(\sum_{q=0}^{n} b_q) = A_n B_n$$

Par ailleurs, comme on a l'inclusion

$$\left\{(p,q)\in\mathbb{N}^2, 0\leq p, q\leq n\right\}\subset \left\{(p,q)\in\mathbb{N}^2, p+q\leq 2n\right\}$$

on a aussi

$$A_n^+ B_n^+ = (\sum_{p=0}^n a_p)(\sum_{q=0}^n b_q) = \sum_{0 \le p, q \le n} a_p b_q \le \sum_{0 \le p+q \le 2n} a_p b_q = C_{2n}$$

On a montré que :

$$C_n \leq A_n B_n \leq C_{2n}$$

Par définition, les suites (A_n) et (B_n) convergent respectivement vers $A = \sum_{n=0}^{\infty} a_n$ et $N = \sum_{n=0}^{\infty} b_n$. Comme la suite C_n est croissante, on déduit de l'inégalité de gauche qu'elle converge vers une limite $C \leq AB$. Par suite (C_{2n}) converge aussi et l'inégalité de droite montre que $AB \leq C$. On en déduit C = AB.

Théorème I.11. Soient $\sum_{n\in\mathbb{N}} a_n$ et $\sum_{n\in\mathbb{N}} b_n$ deux séries absolument convergentes. Alors leur produit de Cauchy $\sum_{n\in\mathbb{N}} c_n$ est une série absolument convergente et on a

$$\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n)$$

Démonstration. Soient

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$
 et $c'_n = \sum_{k=0}^n |a_k b_{n-k}|$

Par définition, c_n est le produit de Cauchy des séries $\sum a_n$ et $\sum b_n$ et c'_n est le produit de Cauchy des séries $\sum |a_n|$ et $\sum |b_n|$.

D'après le lemme précédent, la série $\sum_{n\in\mathbb{N}}c'_n$ converge. Comme on a par ailleurs $|c_n|\leq c'_n$ pour tout $n\in\mathbb{N}$, on en déduit que la série converge absolument.

Il reste à montrer que la suite $A_nB_n-C_n$ converge vers 0. En reprenant les calculs précédents, on voit que

$$|A_n B_n - C_n| = |\sum_{n < p+q \le 2n} a_p b_q| \le \sum_{n < p+q \le 2n} |a_p b_q|$$

$$\leq \sum_{k=n+1}^{2n} \sum_{l=0}^{k} |a_l b_{k-l}| \leq \sum_{k=n+1}^{2n} c_k' \leq \sum_{k=n+1}^{\infty} c_k'$$

Or $\sum c'_k$ converge, donc le membre de droite tend vers 0.

Théorème I.12. Soient $\sum a_n$ et $\sum b_n$ deux séries absolument convergentes. Alors leurs produit de Cauchy est absolument convergente et on a :

$$\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n)$$

Application. Soit $z \in \mathbb{C}$, la série $\sum_{n \in \mathbb{N}} \frac{z^n}{n!}$ est absolument convergente. On note $e^z = exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$. On a $\forall x, y \in \mathbb{C}, e^x e^y = e^{x+y}$.

Démonstration. $\sum \frac{|z|^n}{n!}$ converge par critère de d'Alembert $e^{x+y} = \sum_{n=0}^{\infty} \frac{1}{n!} (x+y)^n = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{n=0}^{\infty} (n!)^n x^k y^{n-k} = \sum_{n=0}^{\infty} (n!)^n \sum_{n=0}^{\infty} (n!)^n x^k y^{n-k} = \sum_{n=0}^{\infty} (n!)^n x^k y^n x^k y^{n-k} = \sum_{n=$

$$e^{x+y} = \sum_{n=0}^{\infty} \frac{1}{n!} (x+y)^n = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} {n \choose k} x^k y^{n-k} = \sum_{n=0}^{\infty} (\sum_{k=0}^{n} \frac{1}{n!} \frac{n!}{k!(n_k)!} x^k y^{n-k}) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{x^k}{k!} \frac{y^{n-k}}{(n-k)!} = (\sum_{k=0}^{\infty} \frac{x^k}{k!}) (\sum_{k=0}^{\infty} \frac{y^k}{k!}).$$

Deuxième partie

Espaces vectoriels normés

1 Normes

1.1 Généralités

Définition. Soit $N: E \to \mathbb{R}$ une application. On dit que N est une norme si :

- 1. $N(x) \ge 0, \forall x \in E \text{ et } (N(x) = 0 \Rightarrow x = 0)$
- 2. $\forall x \in E, \forall \lambda \in \mathbb{K}, N(\lambda x) = |\lambda|N(x)$
- 3. $\forall x, y \in E, N(x+y) \leq N(x) + N(y)$ c'est l'inégalité triangulaire.

Exemples.

- 1. La fonction $x \mapsto |x|$ est une norme sur \mathbb{K} .
- 2. Sur \mathbb{K}^d , $||x||_1 := \sum_{j=1}^d |x_j|$ est une norme.
- 3. Sur \mathbb{K}^d , $||x||_2 := \sqrt{\sum_{j=1}^d |x_j|^2}$ est une norme. On l'appelle norme Euclidienne.
- 4. Sur \mathbb{K}^d , $||x||_{\infty} = \max_{j=1,\dots,d} |x_j|$ est une norme.

Exercice. Soient [a, b] un intervalle fermé borné de \mathbb{R} et soit $E = \mathcal{C}([a, b], \mathbb{K})$.

Montrer que les applications ci-dessous définissent bien une norme sur E.

$$||f||_1 = \int_a^b |f(x)| dx, ||f||_{\infty} = \sup_{[a,b]} |f|$$

Définition. Soit E un espace vectoriel et soient N_1, N_2 deux normes sur E. On dit que N_1 et N_2 sont équivalentes s'il existe des constantes C, C' > 0 telles que

$$CN_2(x) < N_1(x) < C'N_2(x)$$

pour tout $x \in E$.

Remarque. La relation d'équivalence entre norme est une relation d'équivalence.

Démonstration. On a bien N équivalente à N (prendre C = C' = 1). Supposons N_1 équivalence à N_2 , alors

$$CN_2 < N_1 < C'N_2$$

Par suite

$$\frac{1}{C'}N_1 \le N_2 \le \frac{1}{C}N_1$$

ce qui prouve la symétrie de la relation. Enfin si N_1 est équivalente à N_2 et N_2 équivalente à N_2 alors

$$CN_2 < N_1 < C'N_2$$

et

$$DN_3 \leq N_2 \leq D'N_3$$

Par suite

$$CDN_3 \leq N_1 \leq C'D'N_3$$

donc N_1 et N_3 sont équivalentes.

Proposition. Les normes $||.||_1$, $||.||_2$ et $||.||_{\infty}$ sont équivalentes sur \mathbb{K}^d .

Démonstration. On a clairement

$$||x||_{\infty} \le ||x||_2 \le \sqrt{d}||x||_{\infty}$$

donc les normes $||.||_{\infty}$ et $||.||_{1}$ sont équivalentes. De même, on a

$$||x||_{\infty} \le ||x||_2 \le \sqrt{d}||x||_{\infty}$$

ce qui montre que $||.||_{\infty}$ et $||.||_2$ sont équivalentes. L'équivalence entre $||.||_1$ et $||.||_2$ est alors une conséquence de la remarque précédente.

Définition. Soit E un ensemble et $d: E \times E \to \mathbb{R}_+$ une application. On dit que d est une distance sur E sil es propriétés suivantes sont vérifiées :

- 1. pour tout $x, y \in E, d(x, y) = d(y, x)$ (symétrie)
- 2. pour tout $x, y \in E, d(x, y) = 0 \rightarrow x = y$
- 3. pour tout $x, y, z \in E, d(x, y) \leq d(x, z) + d(y, z)$ (inégalité triangulaire)

Proposition. Soit (E, N) un espace vectoriel normé. L'application $d : E \times E \to \mathbb{R}_+$ donnée par d(x, y) = N(x - y) est une distance.

 $D\'{e}monstration.$

- 1. d(x,x) = ||0|| = 0, $d(x,y) = 0 \Rightarrow ||x-y|| = 0 \Rightarrow x-y = 0 \Rightarrow x = y$
- 2. d(y,x) = ||y-x|| = ||(-1)(x-y)|| = ||x-y||
- 3. $d(x,y) = ||x-y|| = ||x-z+z-y|| \le ||x-z|| + ||z-y|| = d(x,z) + d(z,y)$

1.2 Espace préhilbertien

Définition. Soit E un \mathbb{K} - espace vectoriel. Un produit scalaire sur E est une application $\phi: E \times E \to \mathbb{R}$ vérifiant les propriétés suivantes

- 1. Pour tout $y \in E$, l'application $x \mapsto \phi(x, y)$ est linéaire.
- 2. Pour tout $x, y \in E$, on a $\phi(x, y) = \overline{\phi(y, x)}$
- 3. Pour tout $x \in E$, $\phi(x, x) \ge 0$ et

$$\phi(x,x) = 0 \Rightarrow x = 0$$

Un espace E muni d'un produit scalaire est dit préhilbertien.

Exemple.

- 1. Sur \mathbb{R}^d : $\phi(x,y) = \langle x,y \rangle = \sum_{j=1}^d x_j y_j$
- 2. Sur $E = \mathcal{C}([0,1], \mathbb{R}) : \langle f, g \rangle = \int_0^1 f(x)g(x)dx$

 $D\'{e}monstration.$

- 1. Soit g fixée montrons que $u: f \mapsto \int fg$ est linéaire. On a $u(\lambda f + \mu \tilde{f}) = \lambda \int fg + \mu \int \tilde{f}g$.
- 2. Immédiat.
- 3. $d(f, f, f) = \int f^2 \ge 0$. Supposons que $\int f^2 = 0 \Rightarrow f = 0$.

Théorème II.1. (Inégalité de Cauchy-Schwarz.) Soit (E, <...>) un espace préhilbertien. On a l'inégalité suivante

$$|\langle x,y\rangle| \le \sqrt{\langle x,x\rangle}\sqrt{\langle y,y\rangle}$$

Démonstration. Pour simplifier, on suppose que $\mathbb{K} = \mathbb{R}$. Soit $x, y \in E$. Considérons l'application $f : \mathbb{R} \to \mathbb{R}$ définie par f(t) = (x + ty, x + ty). On a

$$f(t) = t^2 < y, y > +2t < x, y > + < x, x >$$

et $f(t) \ge 0$ pour tout t. Comme f est un polynôme du second degré, on en déduit que sont discriminant est négatif :

$$< x, y >^2 - < x, x > < y, y > \le 0$$

Par suite $\langle x, y \rangle^2 - \langle x, x \rangle \leq 0$ et le résultat est obtenu en prenant la racine carrée.

Corollaire. Soit (E, <.>) un espace prehilbertien. Alors l'application $x \mapsto ||x|| = < x, x > \frac{1}{2}$ est une norme.

Démonstration. Le seul point compliqué est l'inégalité triangulaire. Montrons que $||x+y|| \le ||x|| + ||y||$ et $||x+y||^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle y, y \rangle + 2 \langle x, y \rangle \le ||x||^2 + ||y||^2 + 2||x||||y|| \le (||x|| + ||y||)^2$

Application. Sur \mathbb{R}^d on a $||x||_2 = (\sum_{j=1}^d x_j^2)^{\frac{1}{2}}$ est une norme.

2 Rudiments de topologies des espaces vectoriels normés

Dans cette section (E, ||.||) désigne un espace vectoriel normé (evn).

Définition. Soit $a \in E$ et r > 0. On appelle boule ouverte de centre a et de rayon r l'ensemble

$$B(a,r) = \{x \in E, ||x - a|| < r\}$$

On appelle boule ferme de centre a et de rayon r l'ensemble

$$\tilde{B}(a,r) = \{x \in E, ||x - a|| \le r\}$$

Définition. Soit A un sous ensemble de E. On dit que A est borné s'il existe M>0 tel que $A\subset \tilde{B}(0,M)$, c'est à dire

$$\forall x \in A, ||x|| \le M$$

Définition. Soit U un sous ensemble de E. On dit que U est ouvert si

$$\forall x \in E, \exists r > 0, B(x, r) \subset U$$

On dit qu'un sous ensemble F de E est fermé si son complémentaire $E \setminus F$ est ouvert.

Exemple. Dans $(\mathbb{R}, |.|)$. Soit I = (a, b) un intervalle. Alors I est ouvert si et seulement si I =]a, b[et il est fermé si et seulement si I = [a, b].

Démonstration. Supposons que I=]a,b[. Montrons que I est ouvert. Soit $x\in I$, soit $r=\frac{1}{2}min(|x-a|,|x-b|)$ On vérifie facilement que $B(x,r)\subset I$. Réciproquement montrons que I=]a,b[n'est pas ouvert. On a $b\in I$ et $\forall r>0,\ B(b,r)\cap I^c\neq\emptyset$

Exemple. Les boules ouvertes sont ouvertes et les boules fermées sont fermées.

Remarque. E et \emptyset sont toujours ouverts et fermés. Ce sont les seuls sous ensemble de E à posséder cette propriété.

Proposition. Soit (E, ||.||) un espace vectoriel normé et soient \mathcal{F} l'ensemble des fermés de E et \mathcal{O} l'esemble des ouverts de E. Alors

- 1. \mathcal{O} est stable par union quelconque et intersection finie.
- 2. \mathcal{F} est stable par union finie et intersection quelconque.

Démonstration. On remarque d'abord que 1 et 2 sont équivalents par passage au complémentaire. On va donc montrer 1. Soit $(\Omega_i)_{i\in I}$ une collection d'ouverts et soit $\Omega = \bigcup_{i\in I} \Omega_i$. Soit $a\in \Omega$, alors il existe $i_0\in I$ tel que $a\in \Omega_{i_0}$. Comme Ω_{i_0} est ouvert, alors il existe r>0 tel que $B(a,r)\subset \Omega_{i_0}$. Comme Ω_{i_0} est ouvert, alors il existe r>0 tel que $B(a,r)\subset \Omega_{i_0}$. Comme $\Omega_{i_0}\subset \Omega_{i_0}$. Comme $\Omega_{i_0}\subset \Omega_{i_0}$.

Supposons maintenant que l'ensemble I est fini et soit $\Omega' = \bigcap_{i \in I} \Omega_i$. Soit $a \in \Omega'$. Pour tout $i \in I, a \in \Omega_i$ donc il existe $r_i > 0$ tel que $B(a, r_i) \subset \Omega_i$. On pose $r = \min_{i \in I} r_i$. Comme I est fini alors r > 0. De plus par définition pour tout $i \in I$, on a $B(a, r) \subset B(a, r_i) \subset \Omega_i$

On en déduit
$$B(a,r) \subset \Omega$$
.

Remarque. Une intersection quelconque d'ouvert n'est pas nécessairement ouverte. Par exemple

$$\Omega_n = B(0, \frac{1}{n}), n \in \mathbb{N}^*$$

Les Ω_n sont ouverts mais $\bigcap\limits_{n\in\mathbb{N}}^*\Omega_n=\{0\}$ qui n'est pas ouvert.

Théorème II.2. Soit A un sous ensemble de E

- Il existe un unique ouvert \dot{A} contenu dans A et maximal pour l'inclusion (ie tout ouvert de E contenu dans A est nécessairement contenu dans \dot{A}). On appelle \dot{A} l'intérieur de A.
- Il existe un unique fermé \overline{A} contenant A est minimal pour l'inclusion (ie tout fermé de E contenant A contient nécessairement \overline{A}). On appelle \overline{A} l'adhérence de A.

Démonstration. Soit Ω_A l'ensemble des ouverts de E contenus dans A. On définit $\dot{A} = \bigcup_{\omega \in \Omega_A} \omega$. Par définition, $\dot{A} \subset A$ et d'après la proposition précédente, \dot{A} est ouvert. Supposons maintenant que U est un ouvert de E contenu dans A. Alors $U \in \Omega_A$ donc $U \subset \dot{A}$.

Le deuxième point peut se montrer aisément par passage au complémentaire. On peut aussi refaire la démonstration. Soit F_A l'ensemble des fermés de E contenant A. On définit $\overline{A} = \bigcap_{G \in F_A} G$. Par définition, $A \subset \overline{A}$ et d'après la proposition précédente, \overline{A} est fermé. Supposons maintenant que H est un fermé de E contenant A. Alors $H \in F_A$ donc $\overline{A} \subset H$.

Exemple. Soient $a \in E$ et r > 0 alors, $\overline{B}(a,r)$ est l'adhérence de B(a,r) et B(a,r) est l'intérieur de $\overline{B}(a,r)$.

Définition. On appelle frontière de A, l'ensemble

$$\delta A = \overline{A} \setminus \dot{A}$$

Exercice. Montrer que δA est un fermé.

3 Suites dans les espaces vectoriel normé

Définition. Soit (E, ||.||) un espace vectoriel normé et soit $u = (u_n)_{n \in \mathbb{N}}$ une suite d'élements de E. On dit que la suite u converge vers une limite $l \in E$ si

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, ||u_n - l|| < \epsilon$$

Remarque. Comme dans le cas des suites numériques, on a unicité de la limite. La notion de convergence dépend a priori de la norme qu'on utilie. Cependant lorsque deux normes sont équivalentes les suites convergentes sont les mêmes.

Proposition. Soit E un espace vectoriel et N_1 , N_2 deux normes sur E. On suppose que N_1 et N_2 sont équivalentes. Alors toute suite convergente pour N_1 est convergente pour N_2 et la limite est identique.

Démonstration. N_1 est équivalente à N_2 si $\exists c > 0$ tel que $\frac{1}{c}N_2 \le N_1 \le cN_2$. Donc $N_1 \le \epsilon \Rightarrow N_2 < c\epsilon$ et $N_2 < \epsilon \Rightarrow N_1 < c\epsilon$.

Définition. Soit $u = (u_n)_n \in E^{\mathbb{N}}$. On dit que la suite (u_n) est de Cauchy si

$$\forall \epsilon, \exists N \in \mathbb{N}, \forall n, m > N, ||u_n - u_m|| < \epsilon$$

Définition. Soit (E, ||.||) un espace vectoriel normé. On dit que E est complet si toute suite de Cauchy de E converge dans E.

Théorème II.3. L'espace $(\mathbb{R}, |.|)$ est complet.

Théorème II.4. Soit (E, ||.||) un espace vectoriel normé. On suppose que $dim(E) < +\infty$. Alors E est complet

Remarque. Ceci est faux en dimension infinie.

Définition. Soit $u_n = (u_n)_n \in E^{\mathbb{N}}$. On dit que la suite (u_n) est bornée si l'ensemble $\{u_n, n \in \mathbb{N}\}$ est borné dans E. Autrement dit s'il existe M > 0 tel que

$$\forall n \in \mathbb{N}, ||u_n|| \leq M$$

Remarque. Toute suite convergente est bornée.

Définition. Soit $u = (u_n)$ une suite de E. On dit que $v = (v_n)$ est une suite extraite de u si elle est de la forme $v_n = u_{\phi(n)}$ avec $\phi : \mathbb{N} \to \mathbb{N}$ strictement croissante.

Proposition. Toute suite extraite d'une suite convergeant vers une limite l, converge vers l.

Théorème II.5. Soit (E, ||.||) un espace vectoriel normé et soit F une partie de E. Alors F est fermée si et seulement si pour toute suite (u_n) d'éléments de F convergeant vers l, on a $l \in F$.

Démonstration. Supposons que F est fermé et soit (u_n) une suite d'éléments de F qui converge vers $l \in \mathbb{E}$. Supposons par l'absurde que $l \notin F$, c'est à dire $l \in E \setminus F$. Comme F est fermé alors $E \setminus F$ est ouvert. Par suite il existe r > 0 tel que $B(l,r) \subset E \setminus F$. On applique alors la définition de la convergence avec $\epsilon = r$. Il existe n_0 tel que $u_{n_0} \in B(l,r) \subset E \setminus F$. D'où une contradiction.

Supposons maintenant que F n'est pas fermé. Alors $E \setminus F$ n'est pas ouvert donc il existe $l \in E \setminus F$ tel que

$$\forall r > 0, B(l,r) \cap F \neq \emptyset$$

En prenant $\epsilon = \epsilon_n = 2^{-n}$, on en déduit l'existence d'une suite $u_n \in B(l, 2^{-n}) \cap F$. Par définition, c'est une suite d'éléments de F et comme $2^{-n} \to 0$ quand $n \to \infty$ la suite (u_n) converge vers $l \notin F$. Ceci prouve le résultat (par contraposée).

Corollaire. Soit (E, ||.||) un espace vectoriel normé et soit A une partie de E et soit $a \in E$. Alors $a \in \overline{A}$ si et seulement si il existe une suite d'éléments de A qui converge vers a. Autrement dit \overline{A} est exactement l'ensemble des limites de suite d'éléments de A.

Démonstration. Soit $a \in E$ et supposons que a est limite d'une suite u d'éléments de A. Comme $A \subset \overline{A}$, u est une suite d'éléments de \overline{A} et comme \overline{A} est fermé alors $a \in \overline{A}$ d'après le théorème précédent.

Supposons maintenant que $a \in \overline{A}$. Si $a \in A$ il n'y a rie à faire (prendre la suite constant a). Si $a \in \overline{A} \setminus A$ alors pour tout $\epsilon > 0$, $B(a, \epsilon) \cap A \neq \emptyset$. Dans le cas contraire on aurait $B(a, \epsilon) \cap A = \emptyset$ pour un certain $\epsilon > 0$ et par suite $F := \overline{A} \cap (E \setminus B(a, \epsilon))$ contiendrait A. Or F est fermé par définition, donc on aurait $\overline{A} \subset \overline{A} \cap (E \setminus B(a, \epsilon))$ ce qui contredit $a \in \overline{A}$.

On en déduit que pour tout $n \in \mathbb{N}$, $B(a, 2^{-n}) \cap A \neq \setminus$. En choisissant $a_n \in B(a, 2^{-n}) \cap A$ pour tout n, on construit ainsi une suite d'éléments de A qui converge vers a.

4 Espace vectoriels normés de dimension finie

On commence par énoncer un résultat fondamental que nous admettons

Théorème II.6. Soit E un espace vectoriel de dimension finie. Alors toutes les normes sont équivalentes sur E.

Remarque. Si on ne suppose plus que E est de dimension finie, le résultat ci dessus devient faux. Pour s'en convaincre, on peut prendre E = C([0,1]) et considérer les normes $||.||_1$ et $||.||_{\infty}$.

Théorème II.7. Soit (E, ||.||) un espace vectoriel normée de dimension finie. Alors E est complet.

Démonstration. Soit (x^n) une suite de Cauchy dans E. Comme E est de dimension finie, il existe une base $(e_1,...,e_N)$ de E. Tout élément x de E s'écrit de manière unique $x=\sum\limits_{j=1}^N x_j e_j$ et on définit sur E la norme

$$||x||_{\infty} = \sup_{j=1,\dots,N} |x_j|$$

D'après le théorème précédent, les normes ||.|| et $||.||_{\infty}$ sont équivalentes. Par conséquent la suite (x^n) est de Cauchy pour $||.||_{\infty}$. On en déduit que pour tout j=1,...,N la suite $(x_j^n)_n$ est de Cauchy dans \mathbb{R} . Comme \mathbb{R} est complet elle admet donc une limite x_j . On pose $x=\sum\limits_{j=1}^N x_j e_j$. D'après ce qui précède, la suite (x^n) converge vers x pour $||.||_{\infty}$ et donc pour $||.||_{\infty}$

En reprenant la preuve précédente, on obtient facilement le théorème suivant.

Théorème II.8. Soit (E, ||.||) un espace vectoriel normé de dimension finie et soit $(e_1, ..., e_N)$ une base de E. Pour tout $x \in E$, on note x_i la ième coordonnée de x dans cette base. Alors toute suite $(x^n)_n$ de E converge vers $x \in E$ si et seulement si pour tout i = 1, ..., N la suite $(x_i^n)_n$ converge vers x_i dans \mathbb{R}

5 Limites et continuité de fonctions définies sur un espace vectoriel normé

Dans cette section on considère des evn $(E, ||.||_E)$, $(F, ||.||_F)$ et $(G, ||.||_G)$. Afin d'alléger les notations, on note indifféremment ||.|| l'une ou l'autre des normes précédentes.

Définition. Soit $f: A \to F$ une application définie sur une partie A de E et soit $a \in \overline{A}$. On dit que la fonction f converge vers $g \in F$ lorsque g tend vers g si

$$\forall \epsilon 0, \exists \delta > 0, \forall x \in A, (||x - a|| < \delta \Rightarrow ||f(x) - y|| < \epsilon)$$

On notera $\lim_{x \to a} f(x) = y$.

Remarque. Lorsqu'elle existe la limite d'une fonction en un point est unique.

Proposition. Soient $f: A \to F$ et $g: A \to F$ deux applications et soit $a \in \overline{A}$. On suppose que $\lim_{x \to a} f(x) = y$ et $\lim_{x \to a} g(x) = z$. Alors pour tout $\lambda, \mu \in \mathbb{K}$ on a:

$$\lim_{x \to a} (\lambda f + \mu g) = \lambda y + \mu z$$

Théorème II.9. Soit $f: A \to F$, $a \in \overline{A}$ et $y \in F$. Les deux assertions suivantes sont équivalentes :

- 1. la fonction f converge vers $y \in F$ lorsque x tend vers a.
- 2. pour toute suite (x_n) d'éléments de A convergent vers a, la suite $y_n := f(x_n)$ converge vers y.

Démonstration. 1 implique 2 est trivial. On s'intéresse au 2 implique 1. On démontre la contraposée. non 1 : $\exists \epsilon > 0, \forall r > 0, \exists x \in A, ||x - a|| < r \text{ et } ||f(x) - y|| \ge \epsilon.$ Soit $\epsilon > 0$ donné par non 1. On prend $r = 2^{-n}$ dans non 1, il vient

$$\forall n \in \mathbb{N}, \exists x_n \in A \text{ tel que } ||x_n - a|| < 2^{-n} \text{ et } ||f(x_n) - y|| \ge \epsilon$$

On a $x_n \to a$ mais $f(x_n)$ ne converge pas vers y

Théorème II.10. Soient $A \subset E$ et $B \subset F$ et soit $f: A \to F$ et $g: B \to G$ deux applications telles que $f(A) \subset B$. On suppose qu'il existe $a \in \overline{A}, b \in \overline{B}$ et $z \in G$ tels que

$$\lim_{x \to a} f(x) = b \text{ et } \lim_{y \to b} g(y) = z$$

Alors

$$\lim_{x \to a} gof(x) = z$$

Définition. Soit $A \subset E$ et $f: A \to F$ une application. Soit $a \in A$. On dit que f est continue au point a si elle admet une limite en a. Dans ce cas on a nécessairement $\lim_{x\to a} f(x) = f(a)$.

Démonstration. Supposons que f est continue en a. D'après la définition, il existe $y \in F$ tel que

$$\forall \epsilon > 0, \exists \delta > 0, \forall x \in A, (||x - a|| < \delta \Rightarrow ||f(x) - y|| < \epsilon)$$

Comme $a \in A$, on peut prendre x = a dans la définition précédente. On en déduit que pour tout $\epsilon > 0$, $||y - f(a)|| < \epsilon$. Ceci n'est possible que si y = f(a).

Définition. Soit $f: A \to F$ une application. On dit que f est continue sur A si elle est continue en tout point a de A. On note $\mathcal{C}(A, F)$ l'ensemble des fonctions de $A \to F$.

Proposition. Soit $f: A \to F$ et $g: A \to F$ deux applications continues en un point $a \in A$. Pour tout $\lambda, \mu \in \mathbb{K}$ la fonction $\lambda f + \mu g$ est continue en a.

Démonstration. Soit $\epsilon > 0$ alors

$$\exists \delta_1 > 0 \text{ tel que } ||x - a|| < \delta_1 \Rightarrow ||f(x) - f(a)|| < \frac{\epsilon}{2|\lambda|}$$

$$\exists \delta_2 > 0 \text{ tel que } ||x - a|| < \delta_2 \Rightarrow ||g(x) - g(a)|| < \frac{\epsilon}{2|\mu|}$$

Soit $\delta = min(\delta_1, \delta_2) > 0$. Soit x tel que $||x - a|| < \delta$ alors

$$||(\lambda f + \mu g)(x) - (\lambda f + \mu g)(x)|| \le |\lambda|||f(n) - f(a)|| + |\mu|||g(x) - g(a)|| < \frac{|\lambda|\epsilon}{2|\lambda|} + |\mu|\frac{\epsilon}{2|\mu|} = \epsilon$$

Corollaire. Soient $f: A \to F$ et $g: A \to F$ deux applications continues sur A et soient $\lambda, \mu \in \mathbb{K}$. Alors, la fonction $\lambda f + \mu g$ est continue sur A. Autrement dit $\mathcal{C}(A, F)$ est un espace vectoriel.

Théorème II.11. Soient $A \subset E$ et $B \subset F$ et soit $f: A \to F$ et $g: B \to G$ deux applications telles que $f(A) \subset B$. On suppose en outre que f et g sont continues. Alors gof est continue.

 $D\'{e}monstration$. C'est une conséquence immédiate du théorème identique sur les limites.

Théorème II.12. Soit $f: E \to F$ une application. Les assertions suivantes sont équivalentes :

- 1. f est continue.
- 2. pour tout $K \subset F$ fermé, $f^{-1}(K)$ est fermé.
- 3. pour tout $\Omega \subset F$ ouvert, $f^{-1}(\Omega)$ est ouvert.

Démonstration. Montrons que 1 implique 2. Soit K un fermé de F et soit (x_n) une suite d'éléments de $f^{-1}(K)$ convergeant vers $x \in E$. Par définition $(f(x_n))$ est une suite d'éléments de K et comme f est continue, alors $f(x_n)$ converge vers f(x). Comme K est fermé, on en déduit que $f(x) \in K$, c'est à dire $x \in f^{-1}(K)$. Montrons maintenant que 2 implique 3. C'est une simple conséquence de l'identité.

$$f^{-1}(F \setminus K) = E \setminus f^{-1}(K)$$

et du fait qu'un ensemble est ouvert si et seulement si son complémentaire est fermé.

Montrons enfin que 3 implique 1. On doit montrer que

$$\forall \epsilon > 0, \exists \delta > 0, \forall x \in E, (||x - a|| < \delta \Rightarrow ||f(x) - f(a)|| < \epsilon)$$

Soit $\epsilon > 0$. L'ensemble $B(f(a), \epsilon)$ est un ouvert de F, donc d'après le 2, son image réciproque par f est un ouvert de E. Or on a $a \in f^{-1}(B(f(a), \epsilon))$ donc il existe $\delta > 0$ tel que $B(a, \delta) \subset f^{-1}(B(f(a), \epsilon))$. En appliquant f, il vient

$$f(B(a,\delta)) \subset B(f(a),\epsilon)$$

qui peut exactement se réécrire sous la forme

$$\forall x \in E, (||x - a|| < \delta \Rightarrow ||f(x) - f(a)|| < \epsilon)$$

Proposition. f et g sont deux applications continues alors $g \circ f$ est continue.

Démonstration. Soit Ω ouvert alors $(gof)^{-1}(\Omega) = f^{-1}og^{-1}(\Omega)$, cela démontre la proposition puisque $g^{-1}(\Omega)$ est ouvert car g est continue et $f^{-1}og^{-1}$ est aussi un ouvert car f est continue.

Exercice. Montrons que l'ensemble $\left\{(x,y)\in\mathbb{R}^2 \text{ tel que } 0\leq y\leq \frac{1}{1+x^2}\right\}$ est fermé.

Soit
$$f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto y(1+x^2) \end{cases}$$
. Alors $f^{-1}([0,1]) = \{(x,y) \in \mathbb{R}^2 | f(x,y) \in [0,1] \} = \{(x,y) \in \mathbb{R}^2 | 0 \le y(1+x^2) \le 1 \}$
$$= \{(x,y) \in \mathbb{R}^2 | 0 \le y \le \frac{1}{1+x^2} \} = K.$$

Or f est continue et [0,1] est un fermé de \mathbb{R} . Donc $K=f^{-1}([0,1])$ est fermé.

5.1 Continuité des applications linéaires

Théorème II.13. Soient E et F deux espaces vectoriels normées et $u: E \to F$ une application linéaire. Les assertions suivantes sont équivalentes :

- 1. u est continue
- 2. u est continue en 0
- 3. u est bornée sur $\overline{B}(0,1)$
- 4. u est Lipschitzienne

Démonstration. 1 implique 2 est évident.

2 implique 3. Comme u est linéaire, alors u(0) = 0 et comme u est continue en 0, il vient

$$\forall \epsilon > 0, \exists \delta > 0, \forall x \in E(||x|| < \delta \Rightarrow ||u(x)|| < \epsilon)$$

On prend $\epsilon = 1$, il existe donc $\delta > 0$ tel que

$$\forall ||x|| < \delta, ||u(x)|| \le 1$$

Soit $x \in \overline{B}(0,1)$, alors $y := \frac{\delta x}{2}$ vérifie, $||y|| \le \frac{\delta}{2} < \delta$. Par suite

$$1 \geq ||u(y)|| = \frac{\delta}{2}||u(x)||$$

On en déduit $||u(x)|| \leq \frac{2}{\delta}$.

Montrons que 3 implique 4. Par hypothèse, il existe M>0 tel que

$$\forall ||x|| \le 1, ||u(x)|| \le M$$

Soient $x, y \in E$ tels que $x \neq y$. Alors $\zeta := \frac{x-y}{||x-y||}$ appartient à $\overline{B}(0,1)$. Comme u est linéaire, on en déduit

$$M \ge ||u(\zeta)|| = \frac{1}{||x-y||}||u(x-y)|| = \frac{1}{||x-y||}||u(x) - u(y)||$$

Autrement dit

$$||u(x) - u(y)|| \le M||x - y||$$

ce qui prouve 4.

Remarque. Soit $u: E \to F$ une application linéaire. Alors u est continue si et seulement si

$$\exists k \in \mathbb{R}_+, \forall x \in E, ||u(x)|| \le k||x||$$

Théorème II.14. Soit $u \in \mathcal{L}_C(E, F)$ une application liéaire continue. Alors

$$\underbrace{\sup_{x \in \overline{B}(0,1)} ||u(x)||}_{A} = \underbrace{\sup_{||x||=1} ||u(x)||}_{B} = \underbrace{\sup_{x \neq 0} \frac{||u(x)||}{||x||}}_{C}$$

On note $||u||_{E\to F}$ cette quantité.

Démonstration. Comme $\{||x||=1\}\subset \overline{B}(0,1)$ alors $A\geq B$.

Montrons que $B \ge C$. Soit $x \ne 0$ alors $\frac{||u(x)||}{||x||} = ||\frac{u(x)}{||x||}|| = ||u(y)||$ avec $y = \frac{x}{||x||}$ car u est linéaire. Donc $||u(y)|| \le B \operatorname{car} ||y|| = 1.$

On a donc $\forall x \neq 0, \frac{||u(x)||}{||x||} \leq B$. En prenant le sup sur x il vient, $C \leq B$.

Montrons que $C \geq B$. Soit $x \in \overline{B}(0,1)$, alors

- Si x = 0 on a clairement $||u(x)|| \le C$.
- Si $x \neq 0$ alors $||u(x)| \leq \frac{||u(x)||}{||x||} \leq C$.

En prenant le sup sur $x \in \overline{B}(0,1)$, on obtient $A \leq C$.

Théorème II.15. L'application $u \mapsto ||u||_{E \to F}$ est une norme sur $\mathcal{L}_C(E, F)$

Démonstration. Pour tout $u \in \mathcal{L}_C(E, F)$ on a bien $||u||_{E \to F} = \sup_{||x||=1} ||u(x)|| \ge 0$. De plus soit $\lambda \in \mathbb{K}$ alors $||\lambda u||_{E \to F} = \sup_{||x||=1} ||(\lambda u)(x)|| = \sum_{||x||=1} |\lambda|||u(x)|| = |\lambda|||u||_{E \to F}$. Supposons $||u||_{E \to F} = 0$ alors $\sup_{x \ne 0} \frac{||u(x)||}{||x||} = 0$ donc $\frac{||u(x)||}{||x||} = 0 \forall x \ne 0$.

Donc $||u(x)|| = 0 \forall x \neq 0$ donc $u \equiv 0$

Soient u et $v \in \mathcal{L}_C(E, F)$ alors pour tout x tel que ||x|| = 1, on a

$$||(u+v)(x)|| = ||u(x)+v(x)|| \le ||u(x)|| + ||v(x)|| \le ||u||_{E\to F} + ||v||_{E\to F}$$

On prend le $\sup \sup ||x|| = 1$, il vient

$$||u+v||_{E\to F} \le ||u||_{E\to F} + ||v||_{E\to F}$$

Exercice. Soit $u: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto ax + by \end{cases}$. Montrer que $u \in \mathcal{L}_C(\mathbb{R}^2, \mathbb{R})$ et calculer $||u||_{E \to F}$

Remarque. Pour montrer que $\sup_{x \in A} \alpha(x) \ge k$. Il suffit de montrer qu'il existe une suite x_n d'éléments de A tel que $\alpha(x_n) \to k$ quand n tend vers l'infini. En particulier il existe $x \in A$ tel que $\alpha(x) = k$ alors c'est fini.

Théorème II.16. Soit $u \in \mathcal{L}_C(E, F)$. Alors

$$\forall x \in E, ||u(x)||_F \le ||u||_{E \to F} ||x||_E$$

 ${\it D\'{e}monstration}.$ Immédiat

Théorème II.17. Soient E, F et G trois espaces vectoriels normés et soient $u \in \mathcal{L}_C(F, G)$. Alors $vou \in \mathcal{L}_C(E, G)$ et

$$||vOu||_{E\to G} \le ||v||_{F\to G}||u||_{E\to F}$$

Démonstration. Soit $x \in E$, alors $||vou(x)||_G = ||v(u(x))||_G \le ||v||_{F \to G} ||u(x)||_F$ par le théorème précédent appliqué à v. De manière analogue $||vou(x)||_G \le ||v||_{F \to F} ||u_{E \to F}||x||_E$ En divisant par $||x||_E$ et en prenant le sup on retrouve le résultat.

Troisième partie

Suites et séries de fonction

1 Suites de fonctions

Notations. Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et I un intervalle de \mathbb{R} . On note $\mathcal{F}(I,\mathbb{K})$ l'espace vectoriel des fonctions de I dans \mathbb{K} .

Définition. On appelle suite de fonction $(f_n)_{n\in\mathbb{N}}$ toute application de \mathbb{N} dans $\mathcal{F}(I,\mathbb{K})$. Pour tout $n\in\mathbb{N}$, f_n est donc une fonction de I dans \mathbb{K} .

Définition. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de I dans \mathbb{K} et soit $f\in\mathcal{F}(I,\mathbb{K})$. On dit que $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f si pour tout $x\in I$ la suite de scalaires $(f_n(x))_{n\in\mathbb{N}}$ converge vers f(x).

Remarque. En utilisant des quantificateurs, la définition précédente s'écrit

$$\forall x \in I, \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |f_n(x) - f(x)| < \epsilon$$

Exemple. La suite $f_n(x) = \sqrt{x + \frac{1}{n}}$ converge simplement vers la fonction $f(x) = \sqrt{x}$ sur l'intervalle I = [0, 1].

Définition Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonction de I dans \mathbb{K} et soit $f\in\mathcal{F}(I,\mathbb{K})$. On dit que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f si

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \forall x \in I, |f_n(x) - f(x)| < \epsilon$$

Exemple Sur $I = [0, 2\pi]$, $f_n(x) = cos(x + \frac{1}{n})$ montrons que f_n converge uniformément vers f avec f(x) = cos(x). cos est continue donc $cos(x + \frac{1}{n}) \to cos(x)$, on cherche à majorer $cos(x + \frac{1}{n}) - cos(x) = \int_0^1 \frac{d}{dt}(cos(x + \frac{t}{n}))dt = \frac{1}{n}\int_0^1 -sin(x - \frac{t}{n})dt$ On a donc

$$|\cos(x+\frac{1}{n})-\cos(x)| \le \frac{1}{n} \int_0^1 |\sin(x+\frac{t}{n})| dt \le \frac{1}{n}$$

Soit $\epsilon > 0$. Prenons $N \ge \frac{1}{\epsilon} + 1$ alors $\forall x \in I, \forall n \ge N$

$$|\cos(x+\frac{1}{n})-\cos(x)|<\epsilon$$

Exercice. Montrer que $f_n(x) = \sqrt{x + \frac{1}{n}}$ converge uniformément vers $f(x) = \sqrt{x}$ sur [0, 1].

Théorème III.1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de I dans \mathbb{K} . Les assertions suivantes sont équivalentes

- la suite $(f_n)_{n\in\mathbb{N}}$ vérifie le critère de Cauchy uniforme
- il existe $f \in \mathcal{F}(I,\mathbb{K})$ tel que (f_n) converge uniformément vers f

 $D\'{e}monstration.$

Proposition. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions convergeant uniformément vers une limite f. Alors la suite converge simplement vers f.

$$D\acute{e}monstration$$
. Immédiat.

Remarque. La réciproque est fausse.

Exemple. Soit $\begin{cases} f_n(x) = x^n \\ x \in [0,1[\end{cases}$, alors (f_n) converge simplement vers la fonction f = 0

$$[x^n < \epsilon, |nln(x) < ln(\epsilon), n > \frac{ln(\epsilon)}{ln(x)} = N_{\epsilon,x} \text{ on a } N_{\epsilon,x} \to +\infty]$$

On n'a pas convergence uniforme montrons que $\exists \epsilon > 0, \forall N \in \mathbb{N}, \exists n \geq N, \exists x \in]0,1], |f_n(x)| \geq \epsilon.$ $\epsilon = \frac{1}{2e}, N$ quelconque, $n \geq N$ et $x = 1 - \frac{1}{n}$, ainsi $f_n(x) = (1 - \frac{1}{n})^n \to e^{-1}$.

Remarque. (f_n) converge uniformément vers f si et seulement si $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \sup_{x \in I} |f_n(x) - f(x)|$ c'est à dire $\lim_{n \to +\infty} \sup_{x \in I} |(f_n - f)(x)| = 0$

Définition. Soit (f_n) une suite de $\mathcal{F}(I,\mathbb{K})$. On dit que (f_n) vérifie le critère de Cauchy uniforme si

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall p, q \geq N, \forall x \in I, |f_p(x) - f_q(x)| < \epsilon$$

c'est à dire

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall p, q \ge N, \sup_{x \in I} |f_p(x) - f_q(x)| < \epsilon$$

Théorème III.2. Soit (f_n) une suite de $\mathcal{F}(I,\mathbb{K})$. Alors (f_n) converge uniformément vers une fonction f si et seulement si (f_n) vérifie le critère de Cauchy uniforme.

 $D\'{e}monstration$. Supposons f_n converge uniformément vers f. Alors

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall x \in X, \forall n \ge N, |f_n(x) - f(x)| < \epsilon \tag{1}$$

Soit $\epsilon > 0$ et soit N donné par (1). Soient $p, q \ge N$ et $x \in I$. Alors $|f_p(x) - f_q(x)| \le |f_p(x) - f(x)| + |f(x) - f_q(x)| < \epsilon + \epsilon = 2\epsilon$ par (1).

Supposons que

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall p, q \ge N, \forall x \in X, |f_p(x) - f_q(x)| < \epsilon \tag{2}$$

En particulier pour tout $x \in X$, on a

$$\forall x > 0, \exists N \in \mathbb{N}, \forall p, q \ge N, |f_p(x) - f_q(x)| < \epsilon$$

Donc la suite $(f_n(x))_{n\in\mathbb{N}}$ est de Cauchy dans \mathbb{K} . Comme \mathbb{K} est complet, elle admet une limite f(x). Ainsi f_n converge simplement vers f quand n tend vers l'infini.

Montrons que la convergence est uniforme c'est à dire

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \forall x \in X, |f_n(x) - f(x)| < \epsilon$$

Soit $\epsilon > 0$ et soit N comme dans (2). Soit $n \geq N$ et soit $x \in X$. Alors pour tout $m \geq N$, on a d'après (2) on a $|f_n(x) - f_m(x)| < \epsilon$, on fait tendre m vers l'infini il vient $|f_n(x) - f(x)| \leq \epsilon$

Notation. On notera $\mathcal{B}(I,\mathbb{K})$ l'espace vectoriel des applications bornées sur I.

Proposition. Pour tout $u \in \mathcal{B}(I, \mathbb{K})$ la quantité

$$||f||_{\mathcal{B}(I,\mathbb{K})} := \sup_{x \in I} |f(x)|$$

est bien définie. De plus, l'application

$$f \mapsto ||f||_{\mathcal{B}(I,\mathbb{K})} \in \mathcal{B}(I,\mathbb{K})$$

définit une norme sur $\mathcal{B}(I, \mathbb{K})$.

Théorème III.3. (Théorème de la double limite) Soit $(f_n) \in \mathcal{F}(I, \mathbb{K})^{\mathbb{N}}$ une suite de fonction et soit $a \in \overline{I}$. On suppose que

- 1. la suite (f_n) converge uniformément vers une fonction f
- 2. pour tout $n \in \mathbb{N}$, f_n admet une limite finie l_n lorsque x tend vers a.

Alors, la suite (l_n) converge vers une limite finie l et $\lim_{x\to a} f(x) = l$

Démonstration. On commence par montrer que la suite (l_n) converge. Pour cela, il suffit de montrer qu'elle est de Cauchy. On se donne $\epsilon > 0$ arbitraire. Comme la suite (f_n) est uniformément convergente, elle vérifie le critère de Cauchy uniforme. Par conséquent, il existe $N \in \mathbb{N}$ tel que

$$\forall p, q \ge N, \forall x \in I, |f_p(x) - f_q(x)| < \epsilon \tag{1}$$

Soit N comme dans (1) et soient $p, q \geq N$.

On a $\forall x \in I | f_p(x) - f_q(x) | < \epsilon$, on fait la limite lorsque $x \to a$, il vient $|l_p - l_q| < \epsilon$ Ceci montre que (l_n) est de Cauchy. Donc elle admet une limite $l \in \mathbb{K}$. Il reste à montrer que $\lim_{x \to a} f(x) = l$.

Soit $\epsilon > 0$. On cherche $\delta > 0$ tel que $|x - a| < \delta \Rightarrow |f(x) - l| < \epsilon$. Comme (f_n) converge uniformément vers f, il existe $N \in \mathbb{N}$.

$$\forall x \in X, |f_N(x) - f(x)| < \epsilon \tag{2}$$

On a $l_n \to l$ quand $n \to \infty$. Donc il existe

$$N_1 \ge N \text{ tel que } |l_N - l| < \epsilon$$
 (3)

. $\lim_{x\to a} f_N(x) = l_{N_1}$ donc il existe $\delta_1 > 0$ tel que

$$\forall x \in B(a, \delta_1), |f_{N_1}(x) - l_{N_1}| < \epsilon \tag{4}$$

Soit x tel que $|x-a| < \delta_1$ alors

$$|f(x) - l| \le \underbrace{|f(x) - f_{N_1}(x)|}_{<\epsilon(1)} + \underbrace{|f_{N_1}(x) - l_{N_1}|}_{<\epsilon(3)} + \underbrace{|l_{N_1} - l|}_{<\epsilon(2)}$$

Remarque. La conclusion peut s'écrire

$$\lim_{x \to a} \lim_{n \to \infty} f_n(x) = \lim_{n \to +\infty} \lim_{x \to a} f_n(x)$$

Exemple. Soit $f_n: \begin{cases} [0,1[\to \mathbb{R} \\ x \mapsto x^n \end{cases}$, alors f_n converge simplement vers 0 mais il n'y a pas convergence uniforme.

Prenons a = 1, $\lim_{x \to 1} f_n(x) = 1$, donc $\lim_{n \to \infty} \lim_{x \to 1} f_n(x) = 1$.

Mais $\lim_{x \to 1^-} \lim_{n \to \infty} f_n(x) = \lim_{x \to 1^-} 0 = 0.$

 $\textbf{Autre exemple.} \quad f_n: \begin{cases} [0,\frac{1}{2}] \to \mathbb{R} \\ x \to x^n \end{cases} \quad \text{A lors } f_n \text{ converge uniformément vers 0.} \\ \lim_{n \to +\infty} \lim_{x \to \frac{1}{2}} f_n(x) = \lim_{n \to \infty} \frac{1}{2^n} = 0 \\ 0 \text{ donc } \lim_{x \to \frac{1}{2}} \lim_{n \to \infty} f_n(x) = 0$

Théorème III.4. Soit (f_n) une suite de fonctions continues sur I convergeant uniformément vers f. Alors f est continue sur I.

Théorème III.5. Soit I = [a, b] un intervalle fermé borné de \mathbb{R} et soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions continues de I dans \mathbb{K} . On suppose que la suite (f_n) converge uniformément vers une limite f. Alors

$$\lim_{n \to +\infty} \int_{a}^{b} f_n(t)dt = \int_{a}^{b} f(t)dt$$

Démonstration. Soit $\epsilon > 0$. Comme (f_n) converge uniformément vers f, il existe $N \in \mathbb{N}$ tel que

$$\forall n \ge N, \forall x \in I, |f_n(x) - f(x)| < \frac{\epsilon}{|b - a|}$$

On en déduit que pour $n \geq N$, on a

$$\left| \int_{a}^{b} f_n(x) dx - \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} \left| f_n(x) - f(x) \right| dx < \int_{a}^{b} \frac{\epsilon}{|b - a|} dx = \epsilon$$

ce qui prouve le résultat.

Théorème III.6. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de classe C^1 sur I à valeurs dans \mathbb{K} . On suppose que — la suite (f_n) converge simplement vers une limite f

— la suite (f'_n) converge uniformément vers une limite gAlors f est de classe C^1 et f'=g

Démonstration. Soit $x_0 \in [a, b]$. Pour tout $x \in [a, b]$, on a

$$f_n(x) = f_n(x_0) + \int_{x_0}^x f'_n(t)dt$$

Soit $h(x) = \int_a^x g(t)dt$, alors pour tout $x > X_0$

$$|f_n(x) - f_n(x_0) - h(x)| \le \int_{x_0}^x |f'_n(t) - g(t)| dt < |b - a| \sup_{[a,b]} |f'_n - g|$$

Comme (f'_n) converge vers g uniformément, cela montre que $f_n - f_n(x_0)$ converge uniformément vers h sur [a, b]. Or $f_n(x_0)$ converge vers $f(x_0)$, donc (f_n) converge vers $f(x_0) + h$. On en déduit

$$f(x) = f(x_0) + h(x) = f(x_0) + \int_{x_0}^{x} g(t)dt$$

Cette formule montre que f est dérivable de dérivée g.

2 Séries de fonctions

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et I un intervalle de \mathbb{R} .

Définition. Soit (f_n) une suite de fonctions de I dans \mathbb{K} . La série de fonctions $\sum_{n\in\mathbb{N}} f_n$ est la suite de fonctions $S_N(x) = \sum_{n=0}^N f_n(x)$.

Définition. Soit $\sum_{n\in\mathbb{N}} f_n$ une série de fonction. On dit que cette série converge simplement si pour tout $x\in I$, la série $\sum_{n\in\mathbb{N}} f_n(x)$ converge.

Définition. Soit $\sum_{n\in\mathbb{N}} f_n$ une série de fonction. On dit que cette série converge uniformément si la suite de fonctions (S_N) converge uniformément sur I.

Définition. Soit $\sum_{n\in\mathbb{N}} f_n$ une série de fonction. On dit que cette série converge normalement si la série numérique $\sum_{n\in\mathbb{N}} \sup_I |f_n|$ converge.

Théorème III.7. La convergence uniforme implique la convergence simple d'une série de fonctions. La convergence normale d'une série de fonctions implique la convergence uniforme de la série.

Démonstration. La première partie est évidente. Supposons que $\sum f_n$ est une série de fonctions normalement convergente. Soit $S_n = \sum_{k=0}^n f_k$. On va montrer que la suite de fonctions (S_n) vérifie le critère de Cauchy uniforme. On se donne $\epsilon > 0$. Comme la série converge absolument, il existe $N \in \mathbb{N}$ tel que

$$\sum_{n>N} \sup_{x\in I} |f_n(x)| < \epsilon$$

Supposons que $m \ge n \ge N$ et soit $x \in I$, alors

$$|S_m(x) - S_n(x)| = |\sum_{k=n+1}^m f_k(x)| \le \sum_{k=n+1}^m |f_k(x)| \le$$

ce qui prouve le critère de Cauchy uniforme et donc la convergence uniforme de la série.

Théorème III.8. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues de I dans \mathbb{K} . On suppose que la série $\sum_{n\in\mathbb{N}} f_n$ converge uniformément. Alors la fonction $f=\sum_{n=0}^{\infty} f_n$ est continue sur I.

Démonstration. Il suffit d'appliquer le théorème correspondant à la suite de fonctions $S_n(x) = \sum_{k=0}^n f_k(x)$. \square

Théorème III.9. Soit I=[a,b] un intervalle fermé borné de $\mathbb R$ et soit $(f_n)_{n\in\mathbb N}$ une suite de fonctions continues de I dans $\mathbb K$. On suppose que la série $\sum f_n$ converge uniformément et on note $f=\sum_{n=0}^\infty f_n$. Alors la série numérique $\sum_{n\in\mathbb N} (\int_a^b f_n(t)dt)$ converge et on a

$$\sum_{n=0}^{\infty} \int_{a}^{b} f_n(t)dt = \int_{a}^{b} \sum_{n=0}^{\infty} f(t)dt$$

Démonstration. Il suffit d'appliquer le théorème correspondant à la suite de fonctions $S_n(x) = \sum_{k=0}^n f_k(x)$. \square

Théorème III.10. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de classe C^1 sur I à valeurs dans \mathbb{K} . On suppose que

- la série $\sum f_n$ converge simplement vers une somme f
- la série $\sum f_n'$ converge uniformément vers une somme g

Alors f est de classe C^1 et f' = g.

Démonstration. Il suffit d'appliquer le théorème correspondant à la suite de fonctions $S_n(x) = \sum_{k=0}^n f_k(x)$. \square

Quatrième partie

Séries entières

1 Rayon de convergence

Définition. On appelle série entière toute série de la forme $\sum_{n\in\mathbb{N}} a_n z^n$, avec (a_n) suite de nombres complexes et $z\in\mathbb{C}$.

Lemme d'Abel. Soit (a_n) suite de nombres complexes, et soit $z_0 \in \mathbb{C}$. On suppose que la suite $(a_n z_0^n)_{n \in \mathbb{N}}$ est bornée. Alors, pour tout $z \in \mathbb{C}$ tel que $|z| < |z_0|$, la série $\sum_{n \in \mathbb{N}} a_n z^n$ converge absolument.

Démonstration. On peut supposer que $z_0 \neq 0$. On a

$$|a_n z^n| = |a_n z_0^n| |\frac{z}{z_0}|^n \le M |\frac{z}{z_0}|^n$$

avec $M = \sup_{n \in \mathbb{N}} |a_n z_0^n| < \infty$. Comme $|z/z_0| < 1$, alors la série $\sum M |z/z_0|^n$ converge et on peut conclure par théorème de comparaison.

Définition. On appelle rayon de convergence d'une série entière $\sum_{n\in\mathbb{N}}a_nz^n$ la quantité

$$R = \sup\{r \ge 0, (a_n r^n) \text{ est born\'ee}\} \in [0, +\infty[$$

Il est clair que la suite (a_n0^n) est bornée. Donc le rayon de convergence est bien défini.

Proposition Soit $\sum_{n\in\mathbb{N}} a_n z^n$ une série entière de rayon de convergence $R\in[0,\infty[$. Alors, pour tout $r\in[0,R[$ la série

$$\sum_{n \in \mathbb{N}} \sup_{|z| < r} |a_n z^n|$$

converge.

Démonstration. C'est immédiat.

Théorème IV.1. (Théorème de Cauchy-Hadamard.) Soit $\sum_{n\in\mathbb{N}}a_nz^n$ une série entière de rayon de convergence R. Alors

1. si
$$\lim_{n\to\infty}|\frac{a_{n+1}}{a_n}|=l\in[0,+\infty],$$
 alors $R=\frac{1}{l}$

2. si
$$\lim_{n \to \infty} |a_n|^{\frac{1}{n}} = l \in [0, +\infty]$$
, alors $R = \frac{1}{l}$

Démonstration. Preuve de 1. On suppose d'abord que $l \in]0, \infty[$. Considérons la suite (b_n) définie par $b_n = a_n r^n$. Alors $\frac{b_{n+1}}{b_n} = r \frac{a_{n+1}}{a_n}$ tend vers $\frac{r}{l}$ quand $n \to \infty$. Supposons d'abord que r < l, alors $\frac{r}{l} < 1$ et on en déduit que $\lim_{n \to \infty} b_n = 0$. En particulier, (b_n) est bornée et donc le rayon de convergence R de la série est donc supérieur à r. Comme ceci est vrai pour tout r < l, on en déduit que $R \ge l$.

Réciproquement, supposons que r > l, alors la suite (b_n) tend vers $+\infty$ et on en déduit que R < r pour tout $r > \frac{1}{l}$. Par suite $R = \frac{1}{l}$.

Preuve de 2. Elle est identique.

2 Opérations sur les séries entières

Proposition. Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayon de convergence respectifs R_a et R_b et soit R le rayon de convergence de la série entière $\sum (a_n + b_n)z^n$. Alors

- si $R_a \neq R_b$, alors $R = min(R_a, R_b)$
- si $R_a = R_b$, alors $R \ge R_a$

Démonstration. Par définition, on a bien $R \geq min(R_a, R_b)$. Supposons maintenant que $R_a < R_b$ et soit $r \in]R_a, R_b[$. Alors $(b_n r^n)$ est bornée alors que $(a_n r^n)$ ne l'est pas. Par conséquent $((a_n + b_n)r^n)$ n'est pas bornée et donc r > R. Ceci prouve que $R \leq R_a$.

Théorème IV.2. Soit $\sum_{n} a_n z^n$ une série entière de rayon de convergence R > 0. Alors la fonction f:

$$\begin{cases}]-R,R[\to +\infty \\ z\mapsto \sum_{n=0}^{\infty}a_nz^n \end{cases}$$
 est C^{∞} et pour tout $k\in\mathbb{N}$, on a

$$f^{(k)}(z) = \sum_{n=0}^{\infty} (n+k)(n+k-1)...(n+1)a_{n+k}z^n$$

où cette dernière série entière a pour rayon de convergence R.

Démonstration. On prouve que f est C^k pour tout $k \in \mathbb{N}^*$. On procède par récurrence sur k. On commence par traiter le cas k = 1. On considère la série entière

$$g_1(z) = \sum_{n=0}^{\infty} (n+1)a_{n+1}z^n$$

Il est clair que g_1 a même rayon de convergence que f. De plus pour tout $r \in]0, R[$ les séries f(z) et $g_1(z)$ convergent uniformément sur [-r, r]. On peut donc appliquer le théorème de dérivation des séries. On en déduit que f est dérivable sur]-r, r[et que $f'=g_1$. Ceci prouve le résultat au rang k=1.

Supposons maintenant le résultat vrai au rang $k \ge 1$ et montrons que f est C^{k+1} . Par hypothèse de récurence f est C^k et

$$f^{(k)}(z) = \sum_{n=0}^{\infty} (n+k)(n+k-1)...(n+1)a_{n+k}z^n$$

a pour rayon de convergence R. On peut donc appliquer le cas k=1. On en déduit que $f^{(k)}$ est dérivable et que

$$(f^{(k)})'(z) = \sum_{n=0}^{\infty} (n+k+1)(n+k)...(n+1)a_{n+k+1}z^n$$

ce qui achève la démonstration.

Proposition. Soit $f(z) = \sum_{n} a_n z^n$ une série entière de rayon de convergence R > 0. Alors,

$$\forall n \in \mathbb{N}, a_n = \frac{f^{(n)}(0)}{n!}$$

Démonstration. D'après le théorème précédent, la fonction f est C^{∞} et

$$f^{(k)}(z) = \sum_{n=0}^{\infty} (n+k)(n+k-1)...(n+1)a_{n+k}z^n$$

Or, pour tout $n \ge 1$, $0^n = 0$. Par suite

$$f^{(k)}(0) = \sum_{n=0}^{\infty} (n+k)(n+k-1)...(n+1)a_{n+k}0^n = k(k-1)...1a_k = k!a_k$$

et on conclue en divisant par k!.

3 Fonctions développables en séries entières

Définition. Soit I un intervalle ouvert de \mathbb{R} , $f:I\to\mathbb{R}$ une application et $a\in I$. On dit que f est développable en série entière en a s'il existe $\delta>0$ et une série entière $\sum_{n\in\mathbb{N}}a_nz^n$ de rayon de convergence supérieur à δ tels que $]a-\delta,a+\delta[\subset I]$ et

$$\forall z \in]a - \delta, a + \delta[, f(z)] = \sum_{n=0}^{\infty} a_n (z - a)^n$$

On notera $f \in DSE(a)$.

On dit que f est développable en série entière sur I si elle est développable en tout point a de I.

Proposition. Soit $f: I \to \mathbb{R}$ une fonction développable en série entière en $a \in I$ et soit $\delta > 0$ tel que

$$\forall z \in]a - \delta, a + \delta[, f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n$$

Alors f est développable en série entière en tout point c de $]a - \delta, a + \delta[$.

 ${\it D\'{e}monstration}.$ On peut supposer sans perte de généralité que a=0. Soit $\delta>0$ tel que

$$\forall z \in]-\delta, \delta[, f(z) = \sum_{n=0}^{\infty} a_n z^n$$

On se donne $c \in]-\delta, \delta[$ et $\epsilon>0$ tel que $]c-\epsilon, c+\epsilon[\subset]-\delta, \delta[$. On peut supposer que $0 \le c < c+\epsilon < \delta.$ Pour $|z|<\epsilon,$ on a

$$f(c+z) = \sum_{n=0}^{\infty} a_n (c+z)^n = \sum_{n=0}^{\infty} a_n \sum_{k=0}^{n} {n \choose k} c^{n-k} z^k$$
$$= \sum_{k=0}^{\infty} (\sum_{k=0}^{\infty} a_n {k \choose k} c^{n-k}) z^k$$

On doit donc montrer que la suite $b_k \epsilon^k$ est bornée, où $b_k = \sum_{n=k}^{\infty} a_n \binom{n}{k} c^{n-k}$. Or pour tout $k \leq n$, on a

$$\epsilon^k \binom{n}{k} c^{n-k} \le \sum_{l=0}^n \epsilon^l \binom{n}{l} c^{n-l} = (c+\epsilon)^n$$

Par suitz $\epsilon^k b_k \leq \sum_{n=k}^{\infty} a_n (c+\epsilon)^n$ qui est le reste d'une série convergente car f est DSE(0).

Théorème IV.3. Soit $f: I \to \mathbb{R}$ une fonction développable en série entière en 0 et soit r > 0 tel que

$$\forall z \in]-r, r[, f(z) = \sum_{n=0}^{\infty} a_n z^n$$

Alors f est C^{∞} sur]-r,r[et

$$\forall n \in \mathbb{N}, a_n = \frac{f^{(n)}(0)}{n!}$$

En particulier, les coefficients a_n sont uniques.

Démonstration. C'est une conséquence immédiate de Théorème 4.7 et de la Proposition.

Remarque. Attention, il existe des fonctions C^{∞} qui ne sont pas développables en série entière. Par exemple, la fonction

$$f(x) = \begin{cases} 0 \text{ si } x \le 0\\ e^{-1/x} \text{ si } x > 0 \end{cases}$$

appartient à $C^{\infty}(\mathbb{R})$ et vérifie $f^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$. Mais cette fonction ne peut pas être DSE en 0, sinon o aurait

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = 0$$

pour tout x proche de 0, ce qui est impossible puisque f n'est pas identiquement nulle au voisinage de 0.

Théorème IV.4. (Formule de Taylor avec reste intégral.) Soit I un intervalle ouvert \mathbb{R} et soit $x_0 \in I$. Supposons que $f \in C^{n+1}(I)$, alors pour tout $x \in I$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x)$$

avec

$$R_n(x) = \int_{x_0}^x \frac{f^{(n+1)}(t)}{n!} (x-t)^n dt$$

Théorème IV.5. Soit $f: I \to \mathbb{R}$ une fonction C^{∞} et soit $x_0 \in I$. Alors f est DSE en x_0 si et seulement si il existe r > 0 tel que

$$\forall x \in]x_0 - r, x_0 + r[, \lim_{n \to +\infty} \int_{x_0}^x \frac{f^{(n+1)}(t)}{n!} (x - t)^n dt = 0$$

Corollaire. Soit $f: I \to \mathbb{R}$ une fonction C^{∞} . On suppose qu'il existe M > 0 tel que

$$\forall n \in \mathbb{N}, \forall x \in I, |f^{(n)}(x)| \leq M^n$$

Alors f est DSE sur I.

Exemple. Les fonctions sin et cos sont DSE sur \mathbb{R} .

FIN.