Tutorial problem

Prob 1. Consider the quadruple tank system where levels of tank1 and tank2 are manipulated by voltages supplied to the pumps.

- 1. Derive Dynamic model
- 2. Derive Nonlinear state space model in vector-matrix form
- 3. Derive Linear state space model in vector-matrix form
- 4. Compute state transition matrix using the following data

Data:
$$A_1$$
, $A_3 = 28$ cm², A_2 , $A_4 = 32$ cm², a_1 , $a_3 = 0.071$ cm², a_2 , $a_4 = 0.057$ cm², k_1 , $k_2 = 3.33$, 3.35 , v_1 , $v_2 = 3.0$, 3.0 , v_1 , $v_2 = 0.7$, 0.6

Prob 2. Consider the following dynamic model of a reactor

$$\frac{dC_A}{dt} = 10 - C_A - 3.5 \times 10^7 \exp\left(-\frac{6000}{T}\right) C_A$$
$$\frac{dT}{dt} = 298 - 1.3T + 4.2 \times 10^8 \exp\left(-\frac{6000}{T}\right) C_A + 0.3T_c$$

The control objective is to control T by manipulating T_c.

- 1. Plot steady state input(T_c)-output(T) curve for T ranging 300 to 400 K.
- 2. Derive linear state space model for steady state T = 320 K
- 3. Compute state transition matrix
- 4. Derive the expression for dynamic response of T for unit step change in T_c.

Prob 3. Consider the following dynamic model of a bioreactor

$$\frac{dc_1}{dt} = \frac{0.5c_1c_2}{0.1 + c_2} - uc_1$$

$$\frac{dc_2}{dt} = 4u - uc_2 - \frac{1.25c_1c_2}{0.1 + c_2}$$

- 1. Find the optimum value of u to maximize rate of cell production per unit reactor volume, uc₁.
- 2. Derive linear state space model using the optimum operating condition obtained in (1).
- 3. Compute state transition matrix using results of (2).

Prob 4. Consider the following dynamic model of van-de-vusse reactor

$$\frac{dC_A}{dt} = 10u - \left(u + \frac{5}{6}\right)C_A - \frac{1}{6}C_A^2$$
$$\frac{dC_B}{dt} = \frac{5}{6}C_A - \left(\frac{5}{3} + u\right)C_B$$

- 1. Find the optimum value of u to maximize production of B (i.e, C_B).
- 2. Derive linear state space model using steady state value of u=2.
- 3. Compute state transition matrix using results of (2).

Prob 5. The model of a chemical process gives the following Process Transfer function.

$$G(s) = \frac{180}{(s+2)(s+3)(s+4)(s+5)}$$

- a) Find an equivalent first order with dead time (FODT) model using moment method.
- b) Find an equivalent second order with dead time model having equal time constants $\frac{K e^{-\theta s}}{(\tau s+1)^2}$ using moment method.

Prob 6. The following data is generated from a process unit by giving unit step change in the input at time t=0. The first row is time (t) in min and the second row is change in output.

0	0.	1.	1.	2.	2.	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0
	5	0	5	0	5											
0	0.	1.	4.	7.	9.	11.	12.	13.	14.	14.	14.	14.	14.	14.	15.	15.
	1	5	2	2	8	6	9	7	2	5	7	8	9	9	0	0

- 1. Find first order with dead time (FODT) model using a) Ziegler-Nichols b) Smith's method c) Sundaresan method d) Nishikawa method
- 2. Compare the Mean Absolute Prediction Error(MAPE)

Prob 7. Consider the transfer function $G(s) = \frac{120(s+6)(s+7)}{(s+2)(s+3)(s+4)(s+5)}$

Derive state space model in

- a) Controllable canonical form
- b) Jordon canonical form
- c) Observable canonical form