Linguagens Formais e Autómatos

Ano Lectivo de 2003/2004

Exame Teórico-Prático 1

17/03/2004

N°Mec: ______ Nome:

- 1. Seja $L_1 = \{xyz \in A^* \mid y \in A^* \land x, z \in A \land x \neq z\}$ uma linguagem regular definida sobre o alfabeto $A = \{a, b, c\}$.
 - (a) Sejam w_1 , w_2 , w_3 e w_4 4 palavras, pertencentes a A^* , satisfazendo as seguntes condições: $|w_1| = |w_3| = 4$; $|w_2| = |w_4| = 5$; $w_1, w_2 \in L_1$, com $w_1 \neq w_2$; e $w_3, w_4 \notin L_1$, com $w_3 \neq w_4$. Apresente uma solução para w_1, w_2, w_3 e w_4 .
 - (b) Construa um autómato finito determinista que reconheça L_1 .
 - (c) Para as palavras w_1 e w_2 que apresentou na alínea (a) apresente caminhos sobre o autómato que apresentou na alínea (b) que as aceite como pertencendo a L_1 . Note que um caminho é uma sequência do tipo $s_0 \xrightarrow{a_1} s_1 \cdots s_n$, em que os s_i são estados do autómatos e os a_j são símbolos do alfabeto de entrada.
- 2. Seja $e_2 = 1((00)*|(000)*)1$ uma expressão regular, definida sobre o alfabeto $A = \{0,1\}$, e L_2 a linguagem regular por ela descrita.
 - (a) Sejam w_1 , w_2 , w_3 e w_4 4 palavras, pertencentes a A^* , satisfazendo as seguntes condições: $|w_1| = |w_3| = 4$; $|w_2| = |w_4| = 5$; $w_1, w_2 \in L_2$, com $w_1 \neq w_2$; e $w_3, w_4 \notin L_2$, com $w_3 \neq w_4$. Apresente uma solução para w_1, w_2, w_3 e w_4 .
 - (b) Construa um autómato finito que reconheça L_2 .
 - (c) Para as palavras w_1 e w_2 que apresentou na alínea (a) apresente caminhos sobre o autómato que apresentou na alínea (b) que as aceite como pertencendo a L_2 .
- 3. Seja M_3 , dado por

um autómato finito, definido sobre o alfabeto $A = \{0, 1\}$, e L_3 a linguagem regular por ele reconhecida.

- (a) Sejam w_1 , w_2 , w_3 e w_4 4 palavras, pertencentes a A^* , satisfazendo as seguntes condições: $|w_1| = |w_2| = |w_3| = |w_4| = 5$; $w_1, w_2 \in L_3$, com $w_1 \neq w_2$; e $w_3, w_4 \notin L_3$, com $w_3 \neq w_4$. Apresente uma solução para w_1, w_2, w_3 e w_4 .
- (b) Para as palavras w_1 e w_2 que apresentou na alínea (a) apresente caminhos sobre M_3 que as aceite como pertencendo a L_3 .
- (e) Construa um autómato finito determinista equivalente a M_3 .
- (d) Determine uma expressão regular que descreva a linguagem L_3 .