

Exercise 1: looking at model results Uncertainties from models, Climate Change Zambezi catchment

Peter Burek, Peter Greve, Taher Kahil International Institute for Applied Systems Analysis Research Scholars at Water Program

Study area: Zambezi Basin

- One of the largest river basins in Africa, covering an area of 1.4 million km² and home to around 40 million people.
- A transboundary basin spanning over eight countries and 21 subbasins.
- Existing governance structure: ZAMCOM
- Growing population and economy
- Considerable potential for agriculture and hydropower development

Using the calibrated hydrological model to calculate input data for the hydro-economic model

Node-Link Network for Optimization

Climate Modeling Chain

1. Representative Concentration Pathway

2. General circulation model (GCM)

3. Regional Climate Models, Downscaling, **Bias Correction**

4. Global Hydrological Models (GHMs)

Global-scale hydrology concentrates on the role of the terrestrial hydrological cycle in System Earth. They include the processes for vegetation, soil, groundwater, river routing etc.

Climate projection

RCPs and GCMs

IPCC AR5 Greenhouse Gas Concentration Pathways

Representative Concentration Pathways (RCPs) from the fifth Assessment Report by the International Panel on Climate Change

Uncertainties from RCPs

Climate & Hydrological uncertainty

Zambezi results from Community Water Model - Station: Katima Period 2006-2015 — Ensemble of 40 members Discharge [km³/month]

Scenario RCP 4.5 CMIP5 Ensemble

GFDL-ESM2mHadGEM2-ESIPSL-CM5A-LRMIROC5

Multi-model Assessment: Water Demand

Wada Y, Floerke M, Hanasaki N, Eisner S, Fischer G, Tramberend S, Satoh Y, van Vliet M, Yillia P, Ringler C, Burek P. and Wiberg D (2015), Geoscientific Model Development

Communicate Uncertainty

Ensemble hydrological impact simulations

3 Global Hydrological Models forced by 5 Global Climate Models under 3 Water scenarios provide an ensemble of 45 global water scarcity estimates (water demand to supply ratio) (from 2005 to 2055, 0.5deg)

Results explorer - Excel

- Based on existing knowledge
- Easy to understand and manipulate on different levels of experience
- Database and Excel spreadsheats available for stakeholders

Compare and explore scenarios:

- Time
- Sub-catchments or country
- Sectors
- Technologies
- Policies & scenarios

Results explorer - Excel Hands on

- Look at a different excel file
 - 1_temperature.xls, 2_precipitation.xls, 3_ runoff.xls, ...
- Use the options in the analyse sheet

• Questions:

- 1. Do you see a difference trend between the different RCPs and between the unrelence years? Are all sub-basins showing the same trend?
- 2. Tell about the change. Are some months more affected? Is the rainy season getting dryer/wetter/warmer What happen to the dry season
- 3. Are the different GCM telling the same story?
- 4. Can you tell something about uncertainty?
- 5. Can you tell something about climate change?

Results explorer - Excel

Use the options in the analyse sheet

Results explorer - Excel

- 1. Do you see a difference a trend between the different RCPs and between the different years? Are all subbasins showing the same trend?
- 2. Tell about the change. Are some months more affected? Is the rainy season getting dryer/wetter/warmer
 What happen to the dry season
- 3. Are the different GCM telling the same story?
- 4. Can you tell something about uncertainty?
- 5. Can you tell something about climate change?