Thesis Simulation Results Analysis for Chapter 4

Dasha Asienga

2024-04-01

Contents

Reading in the Result Data Sets Logistic Regression	
Combine the Data Sets from Both Simulations	2
Probability of a Solution	3
Accuracy	3
Discrimination	3
NSF	3

This file is intended to synthesize and analyze the results from the simulation.

Reading in the Result Data Sets

Logistic Regression

The results data set has 200 observations for each of the simulation trials, 50 from each sample size: n = 500, 1000, 2500, 5000.

lr_500 <- read.csv("/home/dasienga24/Statistics-Senior-Honors-Thesis/R/Simulation/LogisticRegression/Re</pre>

```
lr_1000 <- read.csv("/home/dasienga24/Statistics-Senior-Honors-Thesis/R/Simulation/LogisticRegression/R
lr_2500 <- read.csv("/home/dasienga24/Statistics-Senior-Honors-Thesis/R/Simulation/LogisticRegression/R
lr_5000 <- read.csv("/home/dasienga24/Statistics-Senior-Honors-Thesis/R/Simulation/LogisticRegression/R
lr_500 <- lr_500 |>
    mutate(sample_size = 500) |>
    dplyr::select(-X)

lr_1000 <- lr_1000 |>
    mutate(sample_size = 1000) |>
    dplyr::select(-X)

lr_2500 <- lr_2500 |>
    mutate(sample_size = 2500) |>
    dplyr::select(-X)
```

```
lr_5000 <- lr_5000 |>
 mutate(sample_size = 5000) |>
 dplyr::select(-X)
logistic_results <- rbind(lr_500, lr_1000, lr_2500, lr_5000)
glimpse(logistic results)
## Rows: 200
## Columns: 5
## $ dataset_id
                  <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1~
## $ lr_convergence
                  ## $ lr_accuracy
                  <dbl> 0.790, 0.738, 0.778, 0.758, 0.788, 0.822, 0.776, 0.7~
## $ lr_discrimination <dbl> 0.2020, 0.2402, 0.2730, 0.3123, 0.2663, 0.2171, 0.31~
## $ sample_size
```

Seldonian Solutions

The results data set has 200 observations for each of the simulation trials, 50 from each sample size: n = 500, 1000, 2500, 5000.

```
seldonian_results <- read.csv("/home/dasienga24/Statistics-Senior-Honors-Thesis/Python/COMPAS Simulation
seldonian_results <- distinct(seldonian_results) #remove duplicate rows
glimpse(seldonian_results)</pre>
```

```
## Rows: 200
## Columns: 14
                                                                                                                                             <int> 1000, 1000, 1000, 2500, 1000, 1000, 1000, 2500, 500,~
## $ sample size
## $ dataset_id
                                                                                                                                             <int> 25, 10, 22, 17, 34, 38, 36, 2, 49, 17, 7, 41, 8, 33,~
## $ passed_safety_02 <chr> "True", "T
## $ passed_safety_01 <chr> "True", "True
## $ passed_safety_005 <chr> "True", "
## $ passed_safety_001 <chr> "True", "True", "True", "False", "True", "True", "Tr~
## $ sa_02_accuracy
                                                                                                                                             <dbl> 0.6420, 0.6410, 0.6370, 0.7832, 0.5520, 0.6180, 0.73~
## $ sa_01_accuracy
                                                                                                                                             <dbl> 0.5560, 0.5030, 0.5200, 0.4844, 0.4930, 0.5190, 0.49~
## $ sa_005_accuracy
                                                                                                                                             <dbl> 0.5330, 0.5030, 0.5460, 0.4844, 0.4930, 0.5200, 0.49~
## $ sa_001_accuracy
                                                                                                                                             <dbl> 0.5430, 0.5030, 0.5830, 0.4844, 0.4930, 0.5190, 0.49~
                                                                                                                                             <dbl> 0.1791, 0.0995, 0.0948, 0.1428, 0.0787, 0.1081, 0.22~
## $ sa_02_disc_stat
## $ sa 01 disc stat
                                                                                                                                             <dbl> 0.0345, 0.0000, 0.0355, 0.0000, 0.0000, 0.0000, NA, ~
                                                                                                                                            <dbl> 0.0184, 0.0000, 0.0496, 0.0000, 0.0000, NA, 0.0000, ~
## $ sa_005_disc_stat
## $ sa_001_disc_stat
                                                                                                                                            <dbl> 0.0252, 0.0000, 0.0347, 0.0000, 0.0000, 0.0000, 0.00~
```

Combine the Data Sets from Both Simulations

```
## $ dataset id
                                                                                                                          <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1~
                                                                                                                           <chr> "True", 
## $ lr_convergence
## $ lr accuracy
                                                                                                                           <dbl> 0.790, 0.738, 0.778, 0.758, 0.788, 0.822, 0.776, 0.7~
## $ lr_discrimination <dbl> 0.2020, 0.2402, 0.2730, 0.3123, 0.2663, 0.2171, 0.31~
## $ sample size
                                                                                                                           ## $ passed_safety_02 <chr> "True", "T
## $ passed safety 01
                                                                                                                          <chr> "True", "True", "False", "True", "True", "False", "T~
## $ passed_safety_005 <chr> "True", "True", "False", "True", "True", "False",
## $ passed_safety_001 <chr> "True", "True", "False", "True", "True", "False", "True", "True", "False", "True", "True"
## $ sa_02_accuracy
                                                                                                                           <dbl> 0.526, 0.510, 0.528, 0.520, 0.512, 0.508, 0.608, 0.5~
## $ sa_01_accuracy
                                                                                                                           <dbl> 0.522, 0.510, 0.528, 0.520, 0.496, 0.508, 0.482, 0.5~
## $ sa_005_accuracy
                                                                                                                           <dbl> 0.522, 0.510, 0.528, 0.520, 0.496, 0.508, 0.756, 0.5~
## $ sa_001_accuracy
                                                                                                                           <dbl> 0.522, 0.510, 0.528, 0.520, 0.496, 0.508, 0.482, 0.5~
## $ sa_02_disc_stat
                                                                                                                          <dbl> NA, 0.0000, 0.0000, 0.0000, 0.0429, 0.0000, 0.0106, ~
## $ sa_01_disc_stat
                                                                                                                           <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00~
## $ sa_005_disc_stat
                                                                                                                          <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.13~
## $ sa_001_disc_stat
                                                                                                                         <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00~
```

Probability of a Solution

how many returned a safe solution, particularly for seldonian

Accuracy

only seldonian solutions avg, se, table, visuals

Discrimination

only seldonian solutions avg, se, table, visuals number of times constraint was satisfied by both (table)

NSF

compare these solutions with logistic regression