Preliminaries

Risk function: $R(\theta, \delta) = E_{\theta}(L(\theta, \delta(X)))$.

Admissiability: δ is inadmissible if there exists δ' such that $R(\theta, \delta') \leq R(\theta, \delta)$ for all θ and $R(\theta', \delta') < R(\theta', \delta)$ for some θ' .

Moment Generating Function: $m_X(t) = E(e^{tX}) = \int e^{tX} dF(x)$, $t \in \mathbb{R}$ and $E(X^k) = m_X^{(k)}(0)$ when derivative exists in some neighborhood of 0. Properties: 1. $m_{\mu+\sigma X}(t) = e^{\mu t} m_X(\sigma t)$; 2. $m_{X+Y}(t) = m_X(t) m_Y(t)$ if X and Y are independent. Characteristic functions: $\phi_X(t) = E(e^{itX}) = \int e^{itX} dF(x)$.

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi_X(t) dt$$

$$F_X(x) - F_X(y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-itx} - e^{-ity}}{-it} \phi_X(t) dt$$

for points of continuity of F, x and y.

[<u>Theorem</u>] Let X and Y be random k-vectors. (i) If $\phi_X(t) = \phi_Y(t)$ for all $t \in \mathbb{R}^k$, then $F_X = F_Y$. (ii) If $m_X(t) = m_Y(t) < \infty$ for all t in a neighbourhood of 0, then $F_X = F_Y$.

<u>Tail behavior</u>: For a scalar random variable $X \sim F$, we say X has an exponential tail of algebraic tail if

$$\lim_{a \to \infty} \frac{-\log(1 - F(a))}{Ca^r} = 1, \quad \text{for some } C > 0, r > 0$$

$$\lim_{a \to \infty} \frac{-\log(1 - F(a))}{m \log a} = 1, \quad \text{for some } m > 0$$

Exponential: $F(a) = 1 - e^{-\lambda a} \rightarrow c = \lambda, r = 1$; Gaussian: $F(a) = \ldots \rightarrow c = 2, r = 2$. Some integration properties 1. If f = 0 a.e., then $\int f d\mu = 0$; 2. If $f \ge 0$ and $\int f d\mu = 0$, then f = 0 a.e. 3. If f = g a.e., then $\int f d\mu = \int g d\mu$ whenever either one of the integrals exists; 4. If $\int 1_{(c,x)} f d\mu = 0$ for all x > c, then f(x) = 0 for a.e. x > c. The constant c here can be $-\infty$; 5. $f_+(x) = f_-(x)$ if and only if

Order statistics

 $f_{+}(x) = f_{-}(x) = 0$ a.e.

$$f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) \left[F_X(x) \right]^{j-1} \left[1 - F_X(x) \right]^{n-j},$$

$$F_{X_{(j)}}(x) = P(Y \ge j) = \sum_{k=j}^{n} \binom{n}{k} [F_X(x)]^k [1 - F_X(x)]^{n-k},$$

$$f_{X_{(i)},X_{(j)}}(u,v) = \frac{n!}{(i-1)!(j-1-i)!(n-j)!} f_X(u) f_X(v) [F_X(u)]^{i-1} \times [F_X(v) - F_X(u)]^{j-1-i} [1 - F_X(v)]^{n-j}$$

for $-\infty < u < v < \infty$.

$$f_{X_{\{1\}},...,X_{\{n\}}}(x_1,...,x_n)$$

$$= \begin{cases} n! f_X(x_1) \cdots f_X(x_n) & -\infty < x_1 < \cdots < x_n < \infty \\ 0 & \text{otherwise.} \end{cases}$$

Exponential Families

Let μ be a measure on \mathbb{R}^n , let $h: \mathbb{R}^n \to \mathbb{R}$ be a nonnegative function, and let T_1, \ldots, T_s be measurable functions from \mathbb{R}^n to \mathbb{R} . For $\eta \in \mathbb{R}^s$, define

$$A(\eta) = \log \int \exp \left[\sum_{i=1}^{s} \eta_i T_i(x) \right] h(x) d\mu(x)$$

$$p_{\eta}(x) = \exp \left[\sum_{i=1}^{s} \eta_i T_i(x) - A(\eta) \right] h(x), \quad x \in \mathbb{R}^n,$$

where $\int p_{\eta}d\mu = 1$. The set $\Xi = \{\eta : A(\eta) < \infty\}$ is called the natural parameter space, which is convex. The family of densities $\{p_{\eta} : \eta \in \Xi\}$ is called an s-parameter exponential family in canonical form. Let η be a function from some space Ω into Ξ and define

$$p_{\theta}(x) = \exp \left[\sum_{i=1}^{s} \eta_{i}(\theta) T_{i}(x) - B(\theta) \right] h(x)$$

for $\theta \in \Omega, x \in \mathbb{R}^n$, where $B(\theta) = A(\eta(\theta))$. Families $\{p_\theta : \theta \in \Omega\}$ of this form are called s-parameter exponential families.

- * An canonical exponential family is $\underline{\text{minimal}}$ if neither T's nor the η 's satisfy a linear constraint. If Ξ contains s-dimensional rectangle then it is $\underline{\text{full rank}}$, otherwise it is $\underline{\text{curved}}$ such that η 's are related non-linearly.
- * In an exponential family of full rank, T is complete and minimal. If η 's satisfy linear constraint T is sufficient but not minimal. If curved, T will be minimal but not complete.

[Theorem] Let Ξ_f be the set of values for $\eta \in \mathbb{R}^s$ where

$$\int |f(x)| \exp \left[\sum_{i=1}^{s} \eta_{i} T_{i}(x) \right] h(x) d\mu(x) < \infty.$$

Then the function

$$g(\eta) = \int f(x) \exp \left[\sum_{i=1}^{s} \eta_i T_i(x) \right] h(x) d\mu(x)$$

is continuous and has continuous partial derivatives of all orders for $\eta\in\Xi_f^\circ$ (the interior of Ξ_f). Furthermore, these derivatives can be computed by differentiation under the integral sign. So

 $\begin{array}{l} \frac{\partial A(\eta)}{\partial \eta_j} = \int T_j(x) p_\eta(x) d\mu(x) = E_\eta T_j(X) \ \frac{\partial^2 A(\eta)}{\partial \eta_i \partial \eta_j} = \operatorname{Cov}_\eta \left(T_i(x), T_j(x) \right). \\ \text{If X has density of canonical exponential form, then} \\ M_X(t) = \exp\{A(\eta+t) - A(\eta)\}. \end{array}$

$\frac{1}{\Gamma(a)b^a}x^{a-1}e^{-x/b}$	$\Gamma(a,b)$	$0 < x < \infty$
$\frac{1}{\Gamma(f/2)2^{f/2}}x^{f/2-1}e^{-x/2}$	χ_f^2	$0 < x < \infty$
$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}$	B(a,b)	0 < x < 1
$p^x(1-p)^{n-x}$	b(p)	x = 0, 1
$C_n^x p^x (1-p)^{n-x}$	b(p,n)	$x = 0, 1, \ldots, n$
$\frac{1}{x!}\lambda^x e^{-\lambda}$	$P(\lambda)$	$x = 0, 1, \dots$
$C_{m+x-1}^{m-1}p^mq^x$	Nb(p,m)	$x=0,1,\ldots$

Sufficient Statistics

Suppose X has distribution from a family $\mathcal{P}=\{P_{\theta}:\theta\in\Omega\}$. Then T=T(X) is a <u>sufficient statistic</u> for \mathcal{P} (or for X, or for θ) if for every t and θ , the conditional distribution of X under P_{θ} given T=t does not depend on θ .

[Theorem] (equal risk) If $X \sim P_{\theta} \in \mathcal{P}$ and T = T(X) is a sufficient

statistic for \mathcal{P} , then for any decision procedure δ , there exists a (possibly randomized) decision procedure of equal risk that depends on X only through T = T(X) only.

* A family of distributions $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$ is <u>dominated</u> if there exists a measure μ with P_{θ} absolutely continuous with respect to μ , for all $\theta \in \Omega$.

[Theorem] (Factorization Theorem). Let $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$ be a family of distributions dominated by μ . A necessary and sufficient condition for a statistic T to be sufficient is that there exist functions $g_{\theta} \geq 0$ and $h \geq 0$ such that the densities p_{θ} for the family satisfy $p_{\theta}(x) = g_{\theta}(T(x))h(x)$, for a.e. x under μ .

* If T is sufficient and T=H(U), then U is also sufficient. If H is 1:1 then T and U are equivalent, otherwise T provides greater data reduction. A statistic T is minimal sufficient if T is sufficient, and for every sufficient statistic \tilde{T} there exists a function f such that $T=f(\tilde{T})$ (a.e. \mathcal{P}).

[<u>Theorem</u>] Suppose $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$ is a dominated family with densities $p_{\theta}(x) = g_{\theta}(T(x))h(x)$. If $p_{\theta}(x) \propto_{\theta} p_{\theta}(y)$ implies T(x) = T(y), then T is minimal sufficient.

Remark: If $p(x;\theta) = C_{x,y}p(y;\theta)$, x and y must be supported by the same θ (support of $X : \{x \in \mathcal{X} : p(x;\theta) > 0\}$). Otherwise, the 'constant' $C_{x,y}$ will be θ -dependent.

* A statistic T is complete for a family $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$ if $E_{\theta}f(T) = c$, for all θ , implies f(T) = c (a.e. \mathcal{P}).

[Theorem] (TPE 1.6.12) Let \mathcal{P} be a finite family with densities $p_i, i = 0, 1, \dots, k$, all having the same support. Then, the statistic $T(X) = \left(\frac{p_1(X)}{p_0(X)}, \frac{p_2(X)}{p_0(X)}, \dots, \frac{p_k(X)}{p_0(X)}\right)$ is minimal sufficient.

[Lemma] (TPE 1.6.14) If \mathcal{P} is a family of distributions with common support and $\mathcal{P}_0 \subset \mathcal{P}$, and if T is minimal sufficient for \mathcal{P}_0 and sufficient for \mathcal{P} , it is minimal sufficient for \mathcal{P} .

[Theorem] (Bahadur) If T is complete and sufficient, then T is minimal sufficient.

* A statistic V is called <u>ancillary</u> if its distribution does not depend on θ . So, V by itself provides no information about θ .

[Theorem] (Basu) If T is complete and sufficient for $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$, and if V is ancillary, then T and V are independent under P_{θ} for any $\theta \in \Omega$.

[Theorem] (Jensen's Inequality). If C is an open interval, f is a convex function on C, $P(X \in C) = 1$, and EX is finite, then $f(EX) \leq Ef(X)$. If f is strictly convex, the inequality is strict unless X = E(X) (a.e. P_{θ}).

[<u>Theorem</u>] (Rao-Blackwell). Let T be a sufficient statistic for $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$, let δ be an estimator of $g(\theta)$, and define $\eta(T) = E[\delta(X) \mid T]$. If $\theta \in \Omega$, $R(\theta, \delta) < \infty$, and $L(\theta, \cdot)$ is convex, then $R(\theta, \eta) \leq R(\theta, \delta)$. Furthermore, if $L(\theta, \cdot)$ is strictly convex, the inequality will be strict unless $\delta(X) = \eta(T)$ (a.e. P_{θ}).

[Theorem] (TPE 1.7.10) If L is strictly convex and δ is an admissible estimator of $g(\theta)$, and if δ' is another estimator with the same risk function, that is, satisfying $R(\theta, \delta) = R(\theta, \delta')$ for all θ , then $\delta' = \delta$ with probability 1.

Unbiased Estimation

- * An estimator δ is called <u>unbiased</u> for $g(\theta)$ if $E_{\theta}\delta(X) = g(\theta)$, $\forall \theta \in \Omega$. If an unbiased estimator exists, θ is called U-estimable.
- * An unbiased estimator δ satisfying $R(\theta, \delta) \leq R(\theta, \delta')$ for all $\theta \in \Omega$ and any other unbiased estimator δ' is called a uniformly minimum risk unbiased estimator (UMRUE).
- * An unbiased estimator δ is uniformly minimum variance unbiased

 $(\underline{\mathrm{UMVU}})$ if $\mathrm{Var}_{\theta}(\delta) \leq \mathrm{Var}_{\theta}(\delta^*)$, $\forall \theta \in \Omega$, for any competing unbiased estimator δ^* .

[Theorem] (TPE 2.1.7) (Characterization of UMVUEs) Let $\Delta = \{\delta : E_{\theta} \ (\delta^2) < \infty \}$. Then $\delta_0 \in \Delta$ is UMVU for $g(\theta) = E \ (\delta_0)$ if and only if $E \ (\delta_0(\theta)u) = 0$ for every $u \in \mathcal{U} = \{E(u) = 0\}$. \star By above theorem, $\forall u \in \mathcal{U}, E \ ((\delta_1 + \delta_2)u) = E \ (\delta_1u) + E \ (\delta_2u) = 0$. Therefore, $\delta_1 + \delta_2$ is an UMVUE for $g_1(\theta) + g_1(\theta)$.

[Theorem] (Lehmann-Scheffé Theorem) If T is a complete and sufficient statistic, and $\mathbb{E}_{\theta}\{h(T(X))\} = g(\theta)$, i.e. h(T(X)) is unbiased for $g(\theta)$, then h(T(X)) is (a) the only function of T(X) that is unbiased for $g(\theta)$; (b) an UMRUE under any convex loss function; (c) the unique UMRUE (hence UMVUE), up to a \mathcal{P} -null set, under any strictly convex loss function.

[Lemma] (TPE 2.1.5) U is an unbiased estimator of zero if and only if U(k) = -kU(-1) for k = 0, 1, ...

* Let X_1, \ldots, X_n be i.i.d. from $N(\mu, \sigma^2)$, \bar{X} is the UMVU estimator of μ , $\bar{X}^2 - S^2/n$ is UMVU for μ^2 . $V = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$.

$$ES^{r} = E\left[\frac{\sigma^{r}}{(n-1)^{r/2}}V^{r/2}\right]$$

$$\stackrel{\cdot}{=} \frac{\sigma^{r}}{(n-1)^{r/2}} \int_{0}^{\infty} \frac{x^{(r+n-3)/2}e^{-x/2}}{2^{(n-1)/2}\Gamma[(n-1)/2]} dx$$

$$= \frac{\sigma^{r}2^{r/2}\Gamma[(r+n-1)/2]}{(n-1)^{r/2}\Gamma[(n-1)/2]}$$

From this,

$$\frac{(n-1)^{r/2}\Gamma[(n-1)/2]}{2^{r/2}\Gamma[(r+n-1)/2]}S^{r}$$

is an unbiased estimate of σ^r

$$\frac{\bar{X}\sqrt{2}\Gamma[(n-1)/2]}{S\sqrt{n-1}\Gamma[(n-2)/2]}$$

is UMVU for μ/σ .

[Lemma] (TPE 2.2.7) Let the risk be expected squared error. If δ is an unbiased estimator of $g(\theta)$ and if $\delta^* = \delta + b$, where the bias b is independent of θ , then δ^* has uniformly larger risk than δ , in fact,

$$R_{\delta^*}(\theta) = R_{\delta}(\theta) + b^2.$$

Variance bound and information

Covariance inequality: $\operatorname{Cov}(X,Y) \leq \sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}$. $\frac{1}{x}\operatorname{Let}\mathcal{P} = \{P_\theta:\theta\in\Omega\}$ be a dominated family with densities $p_\theta,\theta\in\Omega\subset\mathbb{R}$. As a starting point, $E_{\theta+\Delta}\delta-E_{\theta}\delta$ gives the same value $g(\theta+\Delta)-g(\theta)$ for any unbiased δ . Here Δ must be chosen so that $\theta+\Delta\in\Omega$. Next, we write $E_{\theta+\Delta}\delta-E_{\theta}\delta$ as a covariance under P_{θ} . Assume that $p_{\theta+\Delta}(x)=0$ whenever $p_{\theta}(x)=0$ and define $L(x)=p_{\theta+\Delta}(x)/p_{\theta}(x)$ when $p_{\theta}(x)>0$, and L(x)=1, otherwise. Then we define $\psi(X)=L(X)-1$, then $E_{\theta}\psi=0$ and $E_{\theta+\Delta}\delta-E_{\theta}\delta=E_{\theta}L\delta-E_{\theta}\delta=E_{\theta}\psi\delta=\operatorname{Cov}_{\theta}(\delta,\psi)$. Thus $\operatorname{Cov}_{\theta}(\delta,\psi)=g(\theta+\Delta)-g(\theta)$ for any unbiased estimator δ . With this choice for ψ , the covariance inequality gives

$$\operatorname{Var}_{\theta}(\delta) \geq \frac{[g(\theta + \Delta) - g(\theta)]^2}{\operatorname{Var}_{\theta}(\psi)} = \frac{[g(\theta + \Delta) - g(\theta)]^2}{E_{\theta}\left(\frac{p_{\theta + \Delta}(X)}{p_{\theta}(X)} - 1\right)^2},$$

called the Hammersley-Chapman-Robbins inequality.
Under suitable conditions to use DCT, we can show that

$$\lim_{\Delta \to 0} \frac{\left\{\frac{g(\theta + \Delta) - g(\theta)}{\Delta}\right\}^2}{E_{\theta} \left(\frac{\left\{p_{\theta + \Delta}(x) - p_{\theta}(x)\right\}/\Delta}{p_{\theta}(x)}\right)^2} = \frac{\left(g'(\theta)^2\right)}{E_{\theta} \left(\frac{\partial p_{\theta}(x)/\partial \theta}{p_{\theta}(x)}\right)^2}.$$

The denominator here is known as <u>Fisher Information</u>, denoted as $I(\theta)$ and is given by

$$I(\theta) = E_{\theta} \left(\frac{\partial \log p_{\theta}(x)}{\partial \theta} \right)^{2}$$

Under suitable conditions to interchange integration and differentiation.

$$0 = \frac{\partial}{\partial \theta} 1 = \frac{\partial}{\partial \theta} \int p_{\theta}(x) d\mu(x) = \int \frac{\partial}{\partial \theta} p_{\theta}(x) d\mu(x)$$
$$= \int \frac{\partial \log p_{\theta}(x)}{\partial \theta} p_{\theta}(x) d\mu(x) = E_{\theta} \frac{\partial \log p_{\theta}(X)}{\partial \theta},$$

and so

$$I(\theta) = \operatorname{Var}_{\theta} \left(\frac{\partial \log p_{\theta}(X)}{\partial \theta} \right).$$

If we can pass two partial derivatives with respect to θ , then

$$\int \frac{\partial^2 p_{\theta}(x)}{\partial \theta^2} d\mu(x) = E_{\theta} \left[\frac{\partial^2 p_{\theta}(X)/\partial \theta^2}{p_{\theta}(X)} \right] = 0.$$

$$\frac{\partial^2 \log p_{\theta}(X)}{\partial \theta^2} = \frac{\partial^2 p_{\theta}(X)/\partial \theta^2}{p_{\theta}(X)} - \left(\frac{\partial \log p_{\theta}(X)}{\partial \theta}\right)^2$$
$$I(\theta) = -E_{\theta} \frac{\partial^2 \log p_{\theta}(X)}{\partial \theta^2}.$$

[Theorem] (Cramér-Rao information, bound) Let $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$ be a dominated family with Ω an open set in \mathbb{R} and densities p_{θ} differentiable with respect to θ . If $E_{\theta}\psi = 0$, $E_{\theta}\delta^2 < \infty$, and $g'(\theta) = E_{\theta}\delta\psi$ for all $\theta \in \Omega$, then

$$\operatorname{Var}_{\theta}(\delta) \geq \frac{[g'(\theta)]^2}{I(\theta)}, \quad \theta \in \Omega.$$

* Suppose $\mathcal{P} = \{P_{\theta}: \theta \in \Omega\}$ is a dominated family with densities p_{θ} and Fisher information I. If h is a one-to-one function from Ξ to Ω , then the family \mathcal{P} can be reparameterized as $\tilde{\mathcal{P}} = \{Q_{\xi}: \xi \in \Xi\}$ with the identification $Q_{\xi} = P_{h(\xi)}$. Then Q_{ξ} has density $q_{\xi} = p_{h(\xi)}$. Letting $\theta = h(\xi)$, by the chain rule, Fisher information \tilde{I} for the reparameterized family $\tilde{\mathcal{P}}$ is given by

$$\tilde{I}(\xi) = \tilde{E}_{\xi} \left(\frac{\partial \log q_{\xi}(X)}{\partial \xi} \right)^{2} = \tilde{E}_{\xi} \left(\frac{\partial \log p_{h(\xi)}(X)}{\partial \xi} \right)^{2} \\
= \left[h'(\xi) \right]^{2} E_{\theta} \left(\frac{\partial \log p_{\theta}(X)}{\partial \theta} \right)^{2} = \left[h'(\xi) \right]^{2} I(\theta).$$

* Suppose we have $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} p_{\theta}, I_x = I_{X_1}(\theta) + \cdots + I_{X_n}(\theta) = nI_{X_1}(\theta)$. Then $\operatorname{Var}_{\theta}(\delta) \geq \frac{g'(\theta)}{nI(\theta)}$. * When the parameter θ

takes values in \mathbb{R}^s , Fisher information will be a matrix, defined in regular cases by

$$I(\theta)_{i,j} = E_{\theta} \left[\frac{\partial \log p_{\theta}(X)}{\partial \theta_{i}} \frac{\partial \log p_{\theta}(X)}{\partial \theta_{j}} \right]$$

$$= \operatorname{Cov}_{\theta} \left(\frac{\partial \log p_{\theta}(X)}{\partial \theta_{i}}, \frac{\partial \log p_{\theta}(X)}{\partial \theta_{j}} \right)$$

$$= -E_{\theta} \left[\frac{\partial^{2} \log p_{\theta}(X)}{\partial \theta_{i} \partial \theta_{j}} \right],$$

$$I(\theta) = E_{\theta} \left(\left\{ \nabla_{\theta} \log p_{\theta}(x) \right\} \left\{ \nabla_{\theta} \log p_{\theta}(x) \right\}^{\mathsf{T}} \right)$$

$$= \operatorname{Cov} \left(\nabla_{\theta} \log p_{\theta}(x) \right) = -E_{\theta} \nabla_{\theta}^{2} \log p_{\theta}(x).$$

The lower bound for the variance of an unbiased estimator δ of $g(\theta)$, where $g: \Omega \to \mathbb{R}$, is $\operatorname{Var}_{\theta}(\delta) \geq \nabla g(\theta)^{t} I^{-1}(\theta) \nabla g(\theta)$.

Bayes Estimator

[Theorem] (TPE 4.1.1) Let Θ have distribution Λ , and given $\Theta = \theta$, let X have distribution P_{θ} . Suppose, in addition, the following assumptions hold for the problem of estimating $g(\Theta)$ with non-negative loss function $L(\theta,d)$. (a) There exists an estimator δ_0 with finite risk. (b) For almost all x, there exists a value $\delta_{\Lambda}(x)$ minimizing $E\{L[\Theta,\delta(x)] \mid X=x\}$. Then, $\delta_{\Lambda}(X)$ is a Bayes estimator. [Corollary] (TPE 4.1.2) Suppose the assumptions of Theorem 4.1.1 hold. (a) If $L(\theta,d)=w(\theta)[d-g(\theta)]^2$ then

$$\delta_{\Lambda}(x) = \frac{\int w(\theta)g(\theta)d\Lambda(\theta \mid x)}{\int w(\theta)d\Lambda(\theta \mid x)} = \frac{E[w(\Theta)g(\Theta) \mid x]}{E[w(\Theta) \mid x]}$$

(b) If $L(\theta, d) = |d - g(\theta)|$, then $\delta_{\Lambda}(x)$ is anymedian of the conditional distribution of Θ given x. (c) If

$$L(\theta, d) = \begin{cases} 0 \text{ when } |d - \theta| \le c \\ 1 \text{ when } |d - \theta| > c, \end{cases}$$

then $\delta_{\Lambda}(x)$ is the midpoint of the interval I of length 2c which maximizes $P[\Theta \in I \mid x]$.

[Theorem] (TPE 5.2.4) Any unique Bayes estimator is admissible. [Corollary] (TPE 4.1.4) (Uniqueness) If the loss function $L(\theta, d)$ is squared error, or more generally, if it is strictly convex in d, a Bayes solution δ_{Λ} is unique (a.e. \mathcal{P}), where \mathcal{P} is the class of distributions P_{θ} , provided (a) the average risk of δ_{Λ} with respect to Λ is finite, and (b) if Q is the marginal distribution of X given by $Q(A) = \int P_{\theta}(X \in A)d\Lambda(\theta)$, then a.e. Q implies a.e. \mathcal{P} . [Theorem] (TPE 4.2.3) Let Θ have a distribution Λ , and let P_{θ} denote the conditional distribution of X given θ . Consider the estimation of $g(\theta)$ when the loss function is squared error. Then, no unbiased estimator $\delta(X)$ can be a Bayes solution unless $E[\delta(X) - g(\Theta)]^2 = 0$, where the expectation is taken with respect to variation in both X and Θ . [Theorem] (TPE 4.3.2) If X has density of canonical exponential

[Theorem] (TPE 4.3.2) If X has density of canonical exponential family, and η has prior density $\pi(\eta)$, then for $j=1,\ldots,n$,

$$E\left(\sum_{i=1}^{s} \eta_{i} \frac{\partial T_{i}(\mathbf{x})}{\partial x_{j}} \mid \mathbf{x}\right) = \frac{\partial}{\partial x_{j}} \log m(\mathbf{x}) - \frac{\partial}{\partial x_{j}} \log h(\mathbf{x})$$

where $m(\mathbf{x}) = \int p_{\eta}(\mathbf{x})\pi(\eta)d\eta$ is the marginal distribution of X. Alternatively, the posterior expectation can be expressed in matrix form as

$$E(T\eta) = \nabla \log m(\mathbf{x}) - \nabla \log h(\mathbf{x}),$$

where $\mathcal{T} = \{\partial T_i/\partial x_j\}$. [Corollary] (TPE 4.3.3) If $\mathbf{X} = (X_1, \dots, X_p)$ has the density

 $p_{\eta}(\mathbf{x}) = e^{\sum_{i=1}^{p} \eta_{i} x_{i} - A(\eta)} h(\mathbf{x})$

and η has prior density $\pi(\eta)$, the Bayes estimator of η under the loss $L(\eta, \delta) = \sum (\eta_i - \delta_i)^2$ is given by

$$E(\eta_i \mid \mathbf{x}) = \frac{\partial}{\partial x_i} \log m(\mathbf{x}) - \frac{\partial}{\partial x_i} \log h(\mathbf{x}).$$

[Theorem] (TPE 4.3.5) Under the assumptions of Corollary 3.3, the risk of the Bayes estimator in Corollary 4.3.3, under the sum of squared error loss, is

$$R[\eta, E(\eta \mid \mathbf{X})] = R[\eta, -\nabla \log h(\mathbf{X})]$$

$$+\sum_{i=1}^{p} E\left\{2\frac{\partial^{2}}{\partial X_{i}^{2}}\log m(X) + \left(\frac{\partial}{\partial X_{i}}\log m(X)\right)^{2}\right\}$$

In addition, $-\nabla \log h(X)$ is an unbiased estimator of η with risk

$$R[\eta, -\nabla \log h(\mathbf{X})] = E_{\eta} \sum_{i=1}^{p} \left[\eta_{i} + \frac{\partial}{\partial X_{i}} \log h(\mathbf{X}) \right]^{2}$$
$$= E_{\eta} |\eta + \nabla \log h(\mathbf{X})|^{2}$$

- * For the density $p_{\eta}(x) = e^{\eta x A(\eta)}h(x)$, $-\infty < x < \infty$, the conjugate prior family is $\pi(\eta \mid k, \mu) = c(k, \mu)e^{k\eta\mu kA(\eta)}$, where μ can be thought of as a prior mean and k is proportional to a prior variance.
- * (Binomial-Beta) Suppose $X \sim \text{Binomial}(n,\theta)$ given $\Theta = \theta$ and that Θ has a prior distribution Beta (α,β) , with hyperparameters α and β .

$$\pi(\theta \mid X) \sim \text{Beta}(x + \alpha, n - x + \beta),$$

meaning that the posterior mean of $\Theta \mid X$ is $(x + \alpha)/(n + \alpha + \beta)$.

* (Normal Mean Estimation) Let $X_1, \dots, X_n \stackrel{iid}{\sim} N (\Theta, \sigma^2)$, with σ^2 known. Let $\Theta \sim N (\mu, b^2)$ where μ and b^2 are two fixed prior hyperparameters. Then the posterior distribution of $\Theta \mid X$ is

$$\pi(\theta \mid X) \propto \exp\left\{-\frac{1}{2}\left(\frac{n}{\sigma^2} + \frac{1}{b^2}\right)\theta^2 + \left(\frac{n\bar{X}}{\sigma^2} + \frac{\mu}{b^2}\right)\theta\right\}.$$

The posterior distribution of Θ given X is $N(\tilde{\mu}, \tilde{\sigma}^2)$ where

$$\tilde{\mu} = \frac{n\bar{X}/\sigma^2 + \mu/b^2}{n/\sigma^2 + 1/b^2}$$
 and $\tilde{\sigma}^2 = \frac{1}{n/\sigma^2 + 1/b^2}$.

Minimax Estimator

 \star An estimator δ^M of $\theta,$ which minimizes the maximum risk, that is, which satisfies

$$\inf_{\delta} \sup_{\alpha} R(\theta, \delta) = \sup_{\alpha} R\left(\theta, \delta^{M}\right),\,$$

is called a minimax estimator.

* Denote the average risk (Bayes risk) of the Bayes solution δ_{Λ} by

$$r_{\Lambda} = r(\Lambda, \delta_{\Lambda}) = \int R(\theta, \delta_{\Lambda}) d\Lambda(\theta).$$

A prior distribution Λ is <u>least favorable</u> if $r_{\Lambda} \geq r_{\Lambda'}$ for all prior distributions Λ' .

[Theorem] (TPE 5.1.4) Suppose that Λ is a distribution on Θ such that

$$r(\Lambda, \delta_{\Lambda}) = \int R(\theta, \delta_{\Lambda}) d\Lambda(\theta) = \sup_{\theta} R(\theta, \delta_{\Lambda}).$$

Then: (i) δ_{Λ} is minimax. (should be Bayes estimator in advance) (ii) If δ_{Λ} is the unique Bayes solution with respect to Λ , it is the unique minimax procedure. (iii) Λ is least favorable.

[Corollary] (TPE 5.1.5) If a Bayes solution δ_{Λ} has constant risk, then it is minimax.

[Corollary] (TPE 5.1.6) Let ω_{Λ} be the set of parameter points at which the risk function of δ_{Λ} takes on its maximum, that is,

$$\omega_{\Lambda} = \left\{\theta : R\left(\theta, \delta_{\Lambda}\right) = \sup_{\theta'} R\left(\theta', \delta_{\Lambda}\right)\right\}.$$

Then, δ_{Λ} is minimax if and only if $\Lambda(\omega_{\Lambda}) = 1$.

[Lemma] (TPE 5.1.10) Let δ be a Bayes (respectively, UMVU, minimax, admissible) estimator of $g(\theta)$ for squared error loss. Then, $a\delta + b$ is Bayes (respectively, UMVU, minimax, admissible) for $ag(\theta) + b$

* A sequence of prior distributions $\{\Lambda_n\}$ is <u>least favorable</u> if for every prior distribution Λ we have

$$r_{\Lambda} \leq r = \lim_{n \to \infty} r_{\Lambda_n},$$

where

$$r_{\Lambda_n} = \int R(\theta, \delta_n) d\Lambda_n(\theta)$$

is the Bayes risk under Λ_n .

<u>[Theorem]</u> (TPE 5.1.12) Suppose that $\{\Lambda_n\}$ is a sequence of prior distributions with Bayes risks $\lim_{n\to\infty} r_{\Lambda_n} = r$ and that δ is an estimator for which

$$\sup_{\theta} R(\theta, \delta) = r.$$

Then (i) δ is minimax and (ii) the sequence $\{\Lambda_n\}$ is least favorable. [Lemma] (TPE 5.1.13) If δ_{Λ} is the Bayes estimator of $g(\theta)$ with respect to Λ and if

$$r_{\Lambda} = E \left[\delta_{\Lambda}(\mathbf{X}) - g(\Theta) \right]^2$$

is its Bayes risk, then

$$r_{\Lambda} = \int var[g(\Theta) \mid x]dP(x).$$

In particular, if the posterior variance of $g(\Theta)$ | x is independent of x, then

$$r_{\Lambda} = \text{var}[g(\Theta) \mid \mathbf{x}].$$

[Lemma] (TPE 5.1.15) Suppose that δ is minimax for a submodel $\theta \in \Omega_0 < \Omega$ and

$$\sup_{\theta \in \Omega_0} R(\theta, \delta) = \sup_{\theta \in \Omega} R(\theta, \delta)$$

Then δ is minimax for the full model $\theta \in \Omega$.

[Theorem] (TPE 5.2.6) Let X be a random variable with mean θ (unbiased) and variance σ^2 . Then, aX + b is an inadmissible estimator of θ under squared error loss whenever (i) a > 1, or (ii) a < 0, or (iii) a = 1 and $b \neq 0$.

* If δ is admissible with constant risk, then δ is also minimax. [Theorem] (TPE 5.5.1) Let $X_i, i=1,\ldots,r(r>2)$, be independent, with distributions $N\left(\theta_i,1\right)$ and let the estimator δ_c of θ be given by

$$\delta_{\mathbf{c}}(\mathbf{x}) = \left(1 - c \frac{r - 2}{|\mathbf{x}|^2}\right) \mathbf{x}, \quad |\mathbf{x}|^2 = \Sigma x_j^2.$$

Then, the risk function of δ_c , with average squared loss function, is

$$R(\theta, \delta_c) = 1 - \frac{(r-2)^2}{r} E_{\theta} \left[\frac{c(2-c)}{|\mathbf{X}|^2} \right].$$

Furthermore, the <u>James-Stein estimator</u> δ , which equals δ _c with c=1, dominates all estimators δ _c with $c\neq 1$.

Hypotheses Testing

* Test function/critical function: $\phi(x) \in [0, 1]$

$$\phi(x) = P\left(\delta_{\phi}(x, u) = \text{Reject } H_0 \mid x\right)$$

where u is a uniform random variable independent of X.

- * Power function of a test ϕ is $\beta(\theta) = \mathbb{E}_{\theta}(\phi(X)) = P_{\theta}(\text{Reject } H_0)$.
- * If $\theta_0 \in \Omega_0$, then $\beta(\theta_0) = R(\theta_0, \delta_{\phi}) = \text{Type I error.}$
- For $\theta_1 \in \Omega_1$, then $\beta(\theta_1) = 1 R(\theta_1, \delta_{\phi}) = 1$ Type II error.
- * (Neyman-Pearson Framework) Control the level of significance

$$\sup_{\theta_{0} \in \Omega_{0}} \mathbb{E}_{\theta_{0}} \phi(X) = \sup_{\theta_{0} \in \Omega_{0}} \beta(\theta_{0}) \leq \alpha$$

where $\sup_{\theta_0 \in \Omega_0} \beta(\theta_0)$ is called the size of the test. The optimality goal is to find a level α test that maximizes the power $\beta(\theta_1) = \mathbb{E}_{\theta_1}(\phi(X))$ for each $\theta_1 \in \Omega_1$. Such a test is called a <u>uniformly</u> powerful (UMP) test.

Theorem (Neyman-Pearson Lemma)

- (i) Existence. For testing $H_0: p_0$ vs $H_1: p_1$, there exists a test $\phi(X)$ and a constant k such that
- (a) $E_{p_0}(\phi(X)) = \alpha(\text{ size = level })$

(b)

$$\phi(x) = \begin{cases} 1, & \text{if } \frac{p_1(x)}{p_0(x)} > k[\text{Rejection}] \\ 0, & \text{otherwise [Acceptance]} \end{cases}$$

such a test is called a likelihood ratio test.

- (ii) Sufficiency: If a test satisfies (a) and (b) for some constant k, it is most powerful for testing $H_0: p_0$ vs $H_1: p_1$ at level α .
- (iii) Necessity : If a test ϕ is MP at level α , then it satisfies (b) for some k, and it also satisfies (a) unless there exists a test if size $< \alpha$ with power 1.
- [Corollary] (TSH 3.2.1) Let β denote the power of the most powerful level α test (0 < α < 1) for testing P_0 against P_1 . Then α < β unless $P_0 = P_1$.
- * The family of densities $\{p_{\theta}: \theta \in R\}$ has monotone likelihood ratio in T(x) if (1) $\theta \neq \theta'$ implies $p_{\theta} \neq p_{\theta'}$ (Identifiability); (2) $\theta < \theta'$ implies $p_{\theta'}(x)/p_{\theta}(x)$ is a non-decreasing function of T(x) (Monotonicity). [Theorem] (TSH 3.4.1) Let θ be a real parameter, and let the random variable X have probability density $p_{\theta}(x)$ with monotone likelihood ratio in T(x).
- (i) For testing $H: \theta \leq \theta_0$ against $K: \theta > \theta_0$, there exists a UMP test, which is given by

$$\phi(x) = \begin{cases} 1 \text{ when } T(x) > C, \\ \gamma \text{ when } T(x) = C, \\ 0 \text{ when } T(x) < C, \end{cases}$$

where C and γ are determined by $E_{\theta_0}\phi(X) = \alpha$.

- (ii) The power function $\beta(\theta) = E_{\theta}\phi(X)$ of this test is strictly increasing for all points θ for which $0 < \beta(\theta) < 1$.
- (iii) For all θ' , the test determined by (i) is UMP for testing $H': \theta \leq \theta'$ against $K': \theta > \theta'$ at level $\alpha' = \beta(\theta')$.
- (iv) For any $\theta < \theta_0$ the test minimizes $\beta(\theta)$ (the probability of an

error of the first kind) among all tests satisfying (i).

* Consider the case with a simple alternative:

$$H_0: X \sim f_0, \theta \in \Omega_0$$

 $H_1: X \sim g$ (unknown), [simple]

We impose a prior distribution Λ on Ω_0 . So we consider the new hypothesis:

$$H_{\Lambda}: X \sim h_{\Lambda}(x) = \int_{\Omega_0} f_0(x) d\Lambda(\theta),$$

where $h_{\Lambda}(x)$ is the marginal distribution of X induced by Λ . We shall test H_{Λ} vs H_{1} . Let β_{Λ} be the power of the MP level- α test Φ_{Λ} for testing H_{Λ} vs. $H_{1}(g)$. The prior Λ is a <u>least favourable distribution</u> if $\beta_{\Lambda} \leq \beta_{\Lambda'}$ for any prior Λ' .

[Theorem] (TSH 3.8.1) Suppose Φ_{Λ} is a MP level- α test for testing H_{Λ} against g. If ϕ_{Λ} is level- α for the original hypothesis H_0 (i.e $E_{\theta_0}\Phi_{\Lambda}(x) \leq \alpha, \forall \theta \in \Omega_0$), then

1. The test Φ_{Λ} is MP for the original : $H_0: \theta \in \Omega_0$ vs $H_1: g$;

2. The distribution A is least favourable.

[Corollary] (TSH 3.8.1) Suppose that Λ is a probability distribution over ω and that ω' is a subset of ω with $\Lambda(\omega') = 1$. Let ϕ_{Λ} be a test such that

$$\phi_{\Lambda}(x) = \begin{cases} 1 \text{ if } g(x) > k \int f_{\theta}(x) d\Lambda(\theta), \\ 0 \text{ if } g(x) < k \int f_{\theta}(x) d\Lambda(\theta). \end{cases}$$

Then ϕ_{Λ} is a most powerful level- α for testing H against g provided

$$E_{\theta'}\phi_{\Lambda}(X) = \sup_{\theta \in \omega} E_{\theta}\phi_{\Lambda}(X) = \alpha \quad \text{ for } \quad \theta' \in \omega'.$$

Proof of N-P Lemma

For $\alpha=0$ and $\alpha=1$ the theorem is easily seen to be true provided the value $k=+\infty$ is admitted in (3.8) and $0\cdot\infty$ is interpreted as 0. Throughout the proof we shall therefore assume $0<\alpha<1$. (i): Let $\alpha(c)=P_0\left\{p_1(X)>cp_0(X)\right\}$. Since the probability is computed under P_0 , the inequality needs to be considered only for the set where $p_0(x)>0$, so that $\alpha(c)$ is the probability that the random variable

 $p_1(X)/p_0(X)$ exceeds c. Thus $1-\alpha(c)$ is a cumulative distribution function, and $\alpha(c)$ is nonincreasing and continuous on the right, $\alpha(c^-)-\alpha(c)=P_0\left\{p_1(X)/p_0(X)=c\right\}, \alpha(-\infty)=1, \text{ and } \alpha(\infty)=0.$ Given any $0<\alpha<1$, let c_0 be such that $\alpha(c_0)\leq\alpha\leq\alpha(c_0^-)$, and consider the test ϕ defined by

$$\phi(x) = \begin{cases} 1 & \text{when } p_1(x) > c_0 p_0(x) \\ \frac{\alpha - \alpha(c_0)}{\alpha(c_0^-) - \alpha(c_0)} & \text{when } p_1(x) = c_0 p_0(x) \\ 0 & \text{when } p_1(x) < c_0 p_0(x) \end{cases}$$

Here the middle expression is meaningful unless $\alpha(c_0) = \alpha\left(c_0^-\right)$; since then $P_0\left\{p_1(X) = c_0p_0(X)\right\} = 0$, ϕ is defined a.e. The size of ϕ is

$$E_0\phi(X) = P_0\left\{\frac{p_1(X)}{p_0(X)} > c_0\right\} + \frac{\alpha - \alpha(c_0)}{\alpha(c_0^-) - \alpha(c_0)}P_0\left\{\frac{p_1(X)}{p_0(X)} = c_0\right\} = \alpha,$$

so that c_0 can be taken as the k of the theorem. (ii): Suppose that ϕ is a test satisfying (3.7) and (3.8) and that ϕ^* is any other test with $E_0\phi^*(X) \leq \alpha$. Denote by S^+ and S^- the sets in the sample space where $\phi(x) - \phi^*(x) > 0$ and < 0, respectively. If x is in S^+ , $\phi(x)$ must be > 0 and $p_1(x) \geq kp_0(x)$. In the same way $p_1(x) \leq kp_0(x)$ for all x in S^- , and hence

$$\int (\phi - \phi^*) (p_1 - kp_0) d\mu = \int_{S^+ \cup S^-} (\phi - \phi^*) (p_1 - kp_0) d\mu \ge 0.$$

The difference in power between ϕ and ϕ * therefore satisfies

$$\int (\phi - \phi^*) p_1 d\mu \ge k \int (\phi - \phi^*) p_0 d\mu \ge 0,$$

as was to be proved. (iii): Let ϕ^* be most powerful at level α for testing p_0 against p_1 , and let ϕ satisfy (3.7) and (3.8). Let S be the intersection of the set $S^+ \cup S^-$, on which ϕ and ϕ^* differ, with the set $\{x: p_1(x) \neq kp_0(x)\}$, and suppose that $\mu(S) > 0$. Since $(\phi - \phi^*)(p_1 - kp_0)$ is positive on S, it follows from Problem 2.4 that

$$\int_{S^+ \cup S^-} (\phi - \phi^*) (p_1 - kp_0) d\mu = \int_S (\phi - \phi^*) (p_1 - kp_0) d\mu > 0$$

and hence ϕ is more powerful against p_1 than ϕ^* . This is a contradiction, and therefore $\mu(S) = 0$, as was to be proved.

If ϕ^* were of size $< \alpha$ and power < 1, it would be possible to include in the rejection region additional points or portions of points and thereby to increase the power until either the power is I or the size is α . Thus either $E_0\phi^*(X) = \alpha$ or $E_1\phi^*(X) = 1$.

Asymptotic Theory

[Theorem] Let X_1, X_2, \ldots , be iid $f(x \mid \theta)$, and let $L(\theta \mid x)$ be the likelihood function. Let $\hat{\theta}$ denote the MLE of θ . Let $\tau(\theta)$ be a continuous function of θ . Under the regularity conditions (A1)-(A4), for every $\epsilon > 0$ and every $\theta \in \Theta$, $\lim_{n \to \infty} P_{\theta}(|\tau(\hat{\theta}) - \tau(\theta)| \ge \epsilon) = 0$. That is, $\tau(\hat{\theta})$ is a consistent estimator of $\tau(\theta)$.

[Theorem] Let X_1, X_2, \ldots , be iid $f(x \mid \theta)$, let $\hat{\theta}$ denote the MLE of θ , and let $\tau(\theta)$ be a continuous function of θ . Under the regularity conditions (A1)-(A6), $\sqrt{n}[\tau(\hat{\theta}) - \tau(\theta)] \to n[0, v(\theta)]$ where $v(\theta)$ is the Cramér-Rao Lower Bound. That is, $\tau(\hat{\theta})$ is a consistent and asymptotically efficient estimator of $\tau(\theta)$.

[Regularity Conditions]

(A1) We observe X_1, \ldots, X_n , where $X_i \sim f(x \mid \theta)$ are iid.

(A2) The parameter is identifiable; that is, if $\theta \neq \theta'$, then

 $f(x \mid \theta) \neq f(x \mid \theta')$.

(A3) The densities $f(x \mid \theta)$ have common support, and $f(x \mid \theta)$ is differentiable in θ .

(A4) The parameter space Ω contains an open set ω of which the true parameter value θ_0 is an interior point.

(A5) For every $x \in \mathcal{X}$, the density $f(x \mid \theta)$ is three times differentiable with respect to θ , the third derivative is continuous in θ , and

 $\int f(x \mid \theta) dx$ can be differentiated three times under the integral sign. (A6) For any $\theta_0 \in \Omega$, there exists a positive number c and a function M(x) (both of which may depend on θ_0) such that

 $\left| \frac{\partial^3}{\partial \theta^3} \log f(x \mid \theta) \right| \leq M(x) \text{ for all } x \in \mathcal{X}, \quad \theta_0 - c < \theta < \theta_0 + c, \text{ with } \\ \mathbf{E}_{\theta_0}[M(X)] < \infty.$

· 0 / 0 X1'