预习 操作记录	实验报告 总评成绩

《大学物理实验》课程实验报告

学院: 专业: 年级:

实验人姓名(学号): 参加人姓名:

日期: 年 月 日 室温: 相对湿度:

实验 单缝衍射的相对光强分布

[实验前思考题]

1. 当缝宽增加一倍时, 衍射花样的光强和条纹的宽度将会怎样改变? 如缝宽减半。又怎样改变?

2. 检查光功率计探头是否工作在线性区时,能否用激光光源?

of

[实验目的]

- 1. 了解和掌握多种基本光学元器件的功能和使用方法;
- 2. 掌握用光功率计定量测量光强的方法;
- 3. 观察单缝的夫琅和费衍射现象及用光电元件测量其相对光强分布;
- 4. 由单缝衍射相对光强分布曲线计算狭缝宽度。

[仪器用具]

编号	仪器名称	数量	主要参数(型号,测量范围,精度)
1	光学平台		
2	He-Ne 激光器		
3	半导体激光器		
4	可调狭缝		
5	光功率计及探头		
6	白屏		
7	磁性底座		
8	白光光源		
9	磁性底座		

[原理概述]

光的衍射是光的波动性的基本特征之一,在光谱分析、晶体分析、全息技术、光信息处理等精密测量和近代光学技术中,衍射已成为一种有力的研究手段和方法。

光在传播过程中遇到尺寸接近于光波长的障碍物时(如狭缝、小孔、细丝等),发生偏离直线路径的现象,称为光的衍射。光的衍射现象通常分为两类,一类是菲涅尔衍射,一类是夫琅和费衍射。菲涅尔衍射指障碍物与光源和衍射图样的距离分别为有限远的情况。夫琅和费衍射指障碍物与光源和衍射图样的距离均为无限远的情况,亦即入射光和衍射光都是平行光束,也称平行光束的衍射。

1. 单缝夫琅和费衍射

单缝夫琅和费衍射如图 1 所示。光源 S 置于透镜 L₁ 的焦面上, 出射后变成平行光

束垂直射到宽度为a的狭缝 D 上。根据惠更斯一菲涅尔原理,狭缝上各点可以看成是新的波源,由这些点向各方发出球面次波,这些次波在透镜 L_2 的后焦面上叠加形成一组明暗相间的条纹。按惠更斯一菲涅尔原理,可以导出屏上任一点 P_a 处的光强为:

$$I_{\theta} = I_0 \sin^2(\frac{\pi a \sin \theta}{\lambda}) / (\frac{\pi a \sin \theta}{\lambda})^2 \tag{1}$$

其中 λ 为入射光波长, θ 为衍射角, I_0 为 P_0 处的光强,称为主极大。

图 1 单缝夫琅和费衍射光路图

根据上式可画出单缝衍射的光强分布曲线如图 2 所示。从曲线上可以看出:

- (1) 当 θ =0时,光强有最大值 I_0 ,称为主极大,大部分能量落在主极大上。
- (2)当 $\sin\theta = k\lambda/a$ ($k = \pm 1, \pm 2, \pm 3, K$ K)时, $I_{\theta} = 0$, 出现暗条纹。因 θ 角很小,有 $\theta \approx \sin\theta$,可近似认为暗 条纹在 $\theta = k\lambda/a$ 的位置上。可见,主极大两侧暗纹之间 的角距离 $\Delta\theta = 2\lambda/a$,其他相邻暗纹之间的角距离均 为($\Delta\theta = \lambda/a$)。

图 2 单缝衍射光强分布图

(3)两相邻暗纹之间都有一个次极大,这些极大的位置和相对强度列表如下,可以 看到相邻两个次极大之间的距离并不完全相等。

极大的级数	$\sin\theta/(\lambda a^{-1})$	I_{θ} / I_{0}
0 (主极大)	0	1
第一次极大	1.430	0.0469
第二次极大	2.459	0.0166
第三次极大	3.471	0.0083
第四次极大	4.477	0.0050

2. 满足夫琅和费衍射条件的讨论

在实验中,如果我们采用激光作为光源,则不用图 1 中的透镜 L_1 和 L_2 也可获得夫琅和费衍射图样。(1)因激光束的发射角很小($d \approx 1 \,\mathrm{m} \cdot \mathrm{rad}$),单缝的宽度 a 也很小,所以用激光束直接照射狭缝,可认为是平行光入射,可撤去透镜 L_1 。(2)只要接收屏(白屏)与狭缝的距离满足 $a^2/8Z\lambda << 1$,即可撤去透镜 L_2 ,直接在屏上观察到夫琅和费衍射条纹。下面导出这一条件:

如图 2 图 3, P_0 为衍射角 $\theta=0$ 对应的点。对于夫琅和费衍射,要求狭缝上各点发出

的次波到 P_0 时均有相同的光程,这一条件 只有把屏移到无穷远才能真正满足。但实 验过程中,只要 AP_0 与 OP_0 的差远远小于一 个波长 λ ,就可认近似认为该条件满足, 即

图 3 激光光源单缝衍射

$$(AP_0 - OP_0) = \left(\sqrt{Z^2 + (\frac{a}{2})^2} - Z\right) = \lambda \quad (2)$$

因Z? a,有

$$\sqrt{Z^2 + \frac{a^2}{4}} - Z \approx Z(1 + \frac{a^2}{8Z^2}) - Z = \frac{a^2}{8Z} = \lambda$$
 (3)

即:

$$a^2/(8Z\lambda) = 1 \tag{4}$$

在本实验中, $\lambda = 632.8 \,\mathrm{nm}$ 或 $635 \,\mathrm{nm}$,缝宽 $a \approx 0.05 \,\mathrm{mm}$, $Z \approx 1 \,\mathrm{m}$,可满足式 (4)。

[安全注意事项]

- (1) **警告:** 本实验中光源采用 He-Ne 激光器或半导体激光器,实验过程中严禁激光束 直射眼睛,有**导致失明**的可能。
- (2) 实验过程中观察屏始终摆放在光路的末端,将激光束限制在自己的实验桌范围内,以免误射其他学生的眼睛。
- (3) He-Ne 激光器工作过程中导线之间的电压超过 1000V,通电后严禁接触激光器电源的输出端。
- (4) **可调狭缝极易损坏**,必须在观察屏上观察到光斑或条纹后才能调节狭缝的宽度, 否则极易导致狭缝的刀口相碰而损坏。并禁止用手直接接触狭缝的刀口。

(5) 本实验在光学平台上完成,对防震要求较高,实验过程中动作需轻柔,避免碰撞 光学平台。

[实验内容及步骤]

1. 测定单缝衍射的相对光强分布

图 4 激光单缝衍射实验光路俯视图

(1)激光器、可调狭缝、光探头、观察屏等统称为光学元器件。激光器、观察屏 安装在一维磁性底座上,狭缝、光探头安装在二维磁性底座上。

(2) 粗调

- ①光路如图 4,先只摆放激光器和观察屏,调节激光器底座,让激光束打在观察屏上。屏上光点高度与激光器出光口高度一致,在水平面上确定一基准光路。将底座的开关拨至"on"。
- ②摆上可调狭缝,狭缝沿竖直方向放置,与激光器出光口的距离不大于 10cm。沿 X 方向移动狭缝底座,使光束从狭缝穿过,观察屏上出现光斑或条纹,且条纹落在与光探头进光狭缝垂直的水平线上。
 - ③调节狭缝底座上的螺杆, 使光斑或条纹最亮。将底座的开关拨至"on"。
 - ④调节狭缝宽度, 使条纹中心亮纹的宽度约为 5mm。
- ⑤将光探头底座平移螺杆的初始位置调至 1mm,将光探头放入光路,并尽可能靠近观察屏,使图 4中的 Z 值尽可能大。沿 X 方向移动光探头,使光探头读数最大。将底座的开关拨至"on"。

至此,所有光学元器件底座的开关都拨至"on"的位置,粗调结束。

(3) 细调

分别调节狭缝底座的平移螺杆、光探头底座的平移螺杆和垂直调节旋钮,使得光功率读数最大,上述任何一个旋钮改变,读数都变小。该最大值为衍射条纹主极大的光强。

要求最大值读数在 100-160µW 之间,如若不符合要求,则可以调节狭缝的宽度,再按上述方法进行一次细调。

(4) 测量衍射条纹的光强

- ①测量前先用黑纸遮挡光探头,对光功率读数进行调零。
- ②调节光探头底座平移螺杆,观察光功率读数的变化,保证在螺杆移动至 10mm 时能观察到第三暗纹。之后调节螺杆将光探头移动回主极大处。
- ③调节光探头底座平移螺杆,在 X 方向上每隔 0.1-0.3mm 测一次光强(具体间隔由学生根据光强读数变化的快慢自行调整)。从主极大一直测到第三条暗纹。

(5) 记录光学元器件的位置

2. 检测光功率计的读数与入射光强的线性关系

- (1) 光源采用白炽灯,光探头初始位置离白炽灯出光口的距离不小于 20cm,初始光强读数不小于实验内容 1 主极大的读数。
- (2)逐渐增大光探头与光源的距离 Z,直至探头尽可能靠近观察屏。每隔 5cm 测一次光强 P。每个位置读数前都必需在 X 和 Y 方向上微移光探头,使光强读数最大。

[数据记录]

1. 测定单缝衍射的相对光强分布

激光出光口位置:	,狭缝位置:	,光探头位置:	
19574H 74F E-E-	, <u> </u>	, 101/k A 12-E.	C

жуцшуц	」口 []	-	, v	(廷世且:				⊒.•	
位置 X/mm	光功率 <i>P</i> /μW								

2. 检测光功率计的读数与入射光强的线性关系

白光点光源位置:	, 光探头初始位置:	

位置 Z/ mm				
光功率 P/μW				
位置 Z/ mm				
光功率 P/μW				
位置 Z/ mm				
光功率 P/μW				
位置 Z/ mm				
光功率 P/μW				

[数据处理与分析]

- 1. 画出激光单缝衍射相对光强分布曲线。
- 2. 计算各次极大光强与主极大光强的比值,与理论值比较,并讨论有差异的原因。
- 3. 画出白光光强P与距离平方的倒数($1/Z^2$)的关系曲线,讨论光探头是否工作在 线性区。

[实验后思考题]

- 1. 使用光功率计应注意那些问题? 光功率计进光狭缝的宽度对实验结果有何影响?
 - 2. 证明本实验能满足夫琅和费衍射条件。

of