Einführung in die Algebra — Blatt 1

Jendrik Stelzner

23. Oktober 2013

Aufgabe 1.1.

Bemerkung. Sei G eine Gruppe und $H \subset G$ ein Untergruppe mit (G:H)=2. Dann ist H ein Normalteiler in G.

Beweis der Bemerkung. Da (G:H)=2 zerfällt in G in zwei Links- bzw. Rechtsnebenklassen, nämlich je H und H^c . Für alle $g\in H$ ist damit gH=H=Hg und für alle $g\in H^c$ ist $gH=H^c=Hg$.

Es ist $S_3 = \{id, \sigma, \sigma^2, \tau_{12}, \tau_{13}, \tau_{23}\}$, wobei $\sigma = (1, 2, 3), \sigma^2 = (3, 2, 1), \tau_{12} = (1, 2), \tau_{13} = (1, 3) \text{ und } \tau_{23} = (2, 3).$

Da ord $S_3=3!=6$ folgt aus dem Satz von Lagrange, dass ord $H\in\{1,2,3,6\}$ für jede Untergruppe $H\subseteq G$ von G. Neben den beiden trivialen Untergruppen $\{\mathrm{id}\}$ und S_3 kann S_3 also nur zwei- oder dreielementige Untegruppen enthalten.

Offenbar sind $\langle \tau_{12} \rangle = \{ \mathrm{id}, \tau_{12} \}$, $\langle \tau_{13} \rangle = \{ \mathrm{id}, \tau_{13} \}$ und $\langle \tau_{23} \rangle = \{ \mathrm{id}, \tau_{23} \}$ Untergruppen der Ordnung 2. Dies sind auch die einzigen Untergruppen dieser Ordnung: Ist $H = \{ \mathrm{id}, a \}$ eine Untergruppe mit ord H = 2, so muss $a^2 = \mathrm{id}$, also a selbstinvers sein. Die einzigen selbstinversen Elemente in S_3 sind aber τ_{12} , τ_{13} und τ_{23} .

Offenbar ist $\langle \sigma \rangle = \{ \mathrm{id}, \sigma, \sigma^2 \}$ eine Untergruppe der Ordnung 3. Es ist auch die einzige Untergruppe dieser Ordnung: Ist $H = \{ \mathrm{id}, a, b \}$ eine Untergruppe mit ord H = 3, so ist, wie aus der Vorlesung bekannt, H zyklisch und von a und b erzeugt. Insbesondere muss daher ord $a = \mathrm{ord}\,b = \mathrm{ord}\,H = 3$. Die einzigen beiden Elemente in S_3 mit Ordnung 3 sind jedoch σ und σ^2 .

Die Untergruppen von S_3 sind also {id}, $\langle \tau_{12} \rangle$, $\langle \tau_{13} \rangle$, $\langle \tau_{23} \rangle$, $\langle \sigma \rangle$ und S_3 .

 $\{id\}$ und S_3 sind trivialerweise Nullteiler in S_3 . Aus der Bemerkung folgt, dass auch $\langle \sigma \rangle$ ein Normalteiler in S_3 ist, da $(S_3:\langle \sigma \rangle)=2$. $\langle \tau_{12} \rangle$, $\langle \tau_{13} \rangle$ und $\langle \tau 23 \rangle$ sind keine Normalteiler in S_3 , denn

$$\tau_{23}\{\mathrm{id},\tau_{12}\} = \{\tau_{23},\sigma^2\} \neq \{\tau_{23},\sigma\} = \{\mathrm{id},\tau_{12}\}\tau_{23},$$

$$\tau_{12}\{\mathrm{id},\tau_{13}\} = \{\tau_{12},\sigma^2\} \neq \{\tau_{12},\sigma\} = \{\mathrm{id},\tau_{13}\}\tau_{12} \text{ und }$$

$$\tau_{12}\{\mathrm{id},\tau_{23}\} = \{\tau_{12},\sigma\} \neq \{\tau_{12},\sigma^2\} = \{\mathrm{id},\tau_{23}\}\tau_{12}.$$

Aufgabe 1.2.

Aufgabe 1.3.

(i)

Wie aus der Vorlesung bekannt reicht es zu zeigen, dass $gHg^{-1}=H$ für alle $g\in G$. Sei hierzu $g\in G$ beliebig aber fest. Es sei inn $_g:G\to G, h\mapsto ghg^{-1}$; wie aus Lineare Algebra I bekannt ist inn $_g$ ein Gruppenautomorphismus von G. Daher ist insbesondere ord $H=\operatorname{ord\,inn}_g(H)$. Da aber H nach Annahme die einzige Untergruppe von G mit Ordung ord H ist, muss $gHg^{-1}=\operatorname{inn}_g(H)=H$. Aus der Beliebigkeit von g folgt damit die zu zeigende Aussage.

(ii)

Bemerkung. Seien G und G' Gruppen, G endlich, und $\varphi:G\to G'$ ein Gruppenhomomorphismus. Dann ist ord $G=\operatorname{ord}\operatorname{Ker}\varphi\cdot\operatorname{ord}\operatorname{Im}\varphi.$

Beweis der Bemerkung. Wie aus der Vorlesung bekannt, ist $G/\operatorname{Ker} \varphi \cong \operatorname{Im} \varphi$, also insbesondere $(G:\operatorname{Ker} \varphi)=\operatorname{ord} G/\operatorname{Ker} \varphi=\operatorname{ord} \operatorname{Im} \varphi$. Da nach dem Satz von Lagrange ord $G=\operatorname{ord} \operatorname{Ker} \varphi \cdot (G:\operatorname{Ker} \varphi)$ ist $(G:\operatorname{Ker} \varphi)=\frac{\operatorname{ord} G}{\operatorname{ord} \operatorname{Ker} \varphi}$. Gleichsetzen ergibt nun, dass $\frac{\operatorname{ord} G}{\operatorname{ord} \operatorname{Ker} \varphi}=\operatorname{ord} \operatorname{Im} \varphi$, also ord $G=\operatorname{ord} \operatorname{Ker} \varphi \cdot \operatorname{ord} \operatorname{Im} \varphi$.

Sei F eine Untergruppe von G mit ord F= ord H. Es gilt zu zeigen, dass F=H. Hierzu betrachte man die kanonische Abbildung $\pi:G\to G/H.$ Da F eine Untergruppe von G ist, ist $\pi(F)$ eine Untergruppe von $\pi(G)=G/H,$ insbesondere ist nach dem Satz von Lagrange daher ord $\pi(F)$ ein Teiler von ord G/H=(G:H). Betrachtet man die Komposition

$$\varphi: F \hookrightarrow G \xrightarrow{\pi} G/H$$

so ist Ker $\varphi = F \cap H$ und Im $\varphi = \pi(F)$, nach der Bemerkung also

$$\operatorname{ord} H = \operatorname{ord} F = \operatorname{ord} \pi(F) \cdot \operatorname{ord} F \cap H.$$

Es ist also ord $\pi(F)$ auch ein Teiler von ord H. Da ord H und (G:H) teilerfremd sind, muss ord $\pi(F)=1$, also $\pi(F)=\{1\}$ und daher $F\subseteq \operatorname{Ker} \pi=H$. Da ord $F=\operatorname{Ord} H$ gilt daher F=H.

Aufgabe 1.4.

(i)

Da, wie aus der Vorlesung bekannt, $\langle g \rangle$ für alle $g \in G$ eine Untergruppe von G ist, ist nach dem Satz von Lagrange ord $g = \operatorname{ord} \langle g \rangle$ für alle $g \in G$ ein Teiler von ord G, und somit ebenfalls ungerade.

Da $aba = b \Leftrightarrow b = a^{-1}ba^{-1}$ ist für alle $n \in \mathbb{N}$

$$b^{2n+1} = a(baa^{-1}ba^{-1}a)^n ba = ab^{2n+1}a.$$

Da ord b ungerade ist, ist damit insbesondere

$$e = b^{\operatorname{ord} b} = ab^{\operatorname{ord} b}a = aea = a^2,$$

also a selbstinvers. Da damit $\langle a \rangle = \{e, a\}$, aber ord a ungerade ist, muss a = e.

(ii)

Da c=abcba ist $cb=abcbab=ab\cdot cb\cdot ab$, nach Aufgabenteil (i) ist daher ab=e.

Aufgabe 1.5.

Es ist

$$U \cong U/\{1\} = U/(U \cap N) \cong UN/N,$$

wobei die letzte Isomorphie aus dem ersten Isomorphiesatz folgt. Analog ergibt sich, dass $V\cong VN/N$. Für $U\cong V$ ist es daher hinreichend, dass UN=VN=G. Dies ergibt sich durch Fallunterscheidung:

Ist $N=\{1\}$, so ist $N\subset U$ und $N\subset V$, also U=V=G und damit insbesondere UN=VN=G.

Ist $N \neq \{1\}$, so ist gibt es wegen $U \cap N = \{1\}$ ein $u \in U$ mit $u \notin N$. Es ist dann $uN \subseteq UN$ aber $uN \cap N = \emptyset$, da $aN = N \Leftrightarrow a \in N$ für alle $a \in G$. Daher ist $UN \neq N$, also $N \subset UN$ und damit UN = G. Analog ergibt sich, dass auch VN = G.