03-01 Systèmes de recommandation I

NOUS ÉCLAIRONS. VOUS BRILLEZ.

FORMATION CONTINUE ET SERVICES AUX ENTREPRISES

Sommaire

- 1. Introduction
- 2. Représentation du modèle
- 3. Lectures et références

Sommaire

- 1. Introduction
- 2. Représentation du modèle
- 3. Lectures et références

Introduction

Utilisateur "Bob"

- Aime les films avec Steven Seagal
- Adore les films avec Jean-Claude Van
 Damme

Utilisateur "Mike"

- Recherche les films avec Steven Seagal
- Se fait recommander les films avec JCVD

Introduction

Produits, blogs, nouvelles, films, ...

NETFLIX

Quelques exemples

De la rareté ...

- Dans la distribution traditionnelle, l'espace est limité
 - Surface du magasin, nombre de rayons, hauteur des étagères, etc...
- Cette limite est également valable pour les cinémas, les chaînes de télévision, les pharmacies, etc...

Un magasin "brick-and-mortar" fermé ...

... à l'abondance

- Le Web a permit une diffusion à coût quasi-nul d'information sur les tous les produits
 - Nous sommes passés de la rareté à l'abondance
 - Phénomène de longue traîne / long tail (Chris Anderson, 2004) [3]

Tout est à portée de la main d'un clic!

La longue traîne

Articles classés par popularité rang

La longue traîne - Anecdote

Paru en 1997

Paru en 2003

Devenu un bestseller après 2003!

La longue traîne - Applications

Examples

- Livres, films, musique
- Articles de nouvelles
- Achats
- Contacts (recommandation d'amis sur Facebook, LinkedIn et Twitter)
- o Etc...

Loi de puissance

$$y = ax^k$$

Les différents types de recommandation (1/3)

- Éditoriale et préparée manuellement
 - Le choix de la rédaction
 - Les 16 livres à lire absolument en 2019 selon Bill Gates
 - o Etc...

Les différents types de recommandation (2/3)

■ Listes agrégées

- Top 10 des séries télévisées
- Articles les plus populaires
- Jeux les plus téléchargés
- Etc ...

Les différents types de recommandation (3/3)

- Recommandation personnalisée à chaque utilisateur
 - Contenu
 - Achat
 - Connections sur les réseaux sociaux
 - o Etc...

- Système de recommandation / Recommender Systems
 - → Sujet de ce cours!

Les différents types de recommandation (3/3)

Recommandation personn chaque utilisateur

- Contenu
- Achat
- Connections sur les sociaux
- Etc ...

- Système de recommandation / Recommender Systems
 - ightarrow Sujet de ce cours !

Les différents types de recommandation (3/3)

- Recommandation personnalisée à chaque utilisateur
 - Les systèmes de recommandation sont basés
 - sur des données: les "notes" attribuées aux
 - Connection produits par les utilisateurs
 - Etc ...
- Sujet de ce cours !

Notation

Explicite

 Demander aux utilisateurs de noter / Liker les produits

Implicite

- Apprendre à partir des actions des utilisateurs (achat, ...)
- Quelle signification pour les faibles notes ?

Les différentes approches

- Il existe différentes approches adressant la problématique de recommandation
 - Systèmes de recommandation basés sur le contenu
 - Filtrage collaboratif
 - Systèmes hybrides
 - Systèmes de recommandation basés sur les facteurs latents

Sommaire

- 1. Introduction
- 2. Représentation du modèle
- 3. Lectures et références

Représentation du modèle

- **J** est l'ensemble des **utilisateurs** / consommateurs / etc...
- *I* est l'ensemble des **produits** / items / séries / articles / etc...

- Fonction d'utilité y: $J \times I \rightarrow Y$
 - Y est l'ensemble des notes (ensemble totalement ordonné)
 - Par exemple: de 0 à 5 étoiles ou de 0 à 100%

Fonction d'utilité y: $J \times I \rightarrow Y$

	$oldsymbol{j}^{(1)}$	$oldsymbol{j}^{(2)}$	$j^{(3)}$	$j^{(4)}$	
$i^{(1)}$	y ^(1,1)	$\mathcal{Y}^{(1,2)}$	y ^(1,3)	$\mathcal{Y}^{(1,4)}$	
<i>i</i> ⁽²⁾	y ^(2,1)	$\mathcal{Y}^{(2,2)}$	y ^(2,3)	$\mathcal{Y}^{(2,4)}$	
<i>i</i> ⁽³⁾	y ^(3,1)	$\mathcal{Y}^{(3,2)}$	$\mathcal{Y}^{(3,3)}$	$\mathcal{Y}^{(3,4)}$	
$i^{(4)}$	y ^(4,1)	$y^{(4,2)}$	$y^{(4,3)}$	$\mathcal{Y}^{(4,4)}$	

Matrice d'utilité
$$Y = \begin{bmatrix} y^{(1,1)} & y^{(1,2)} & y^{(1,3)} & y^{(1,4)} \\ y^{(2,1)} & y^{(2,2)} & y^{(2,2)} & y^{(2,3)} & y^{(2,4)} \\ y^{(3,1)} & y^{(3,2)} & y^{(3,3)} & y^{(3,4)} \\ y^{(4,1)} & y^{(4,2)} & y^{(4,3)} & y^{(4,4)} \end{bmatrix}$$

■ Fonction d'utilité $u: J \times I \to Y$

$$Y = egin{array}{ccccc} y^{(1,1)} & y^{(1,2)} & y^{(1,3)} & y^{(1,4)} \ y^{(2,1)} & y^{(2,2)} & y^{(2,3)} & y^{(2,4)} \ y^{(3,1)} & y^{(3,2)} & y^{(3,3)} & y^{(3,4)} \ y^{(4,1)} & y^{(4,2)} & y^{(4,3)} & y^{(4,4)} \end{array}$$

■ Fonction d'utilité y: $J \times I \rightarrow Y$

	$j^{(1)}$	$j^{(2)}$	$j^{(3)}$	$j^{(4)}$
$i^{(1)}$	y ^(1,1)	y ^(1,2)	y ^(1,3)	y ^(1,4)
$i^{(2)}$	y ^(2,1)	y ^(2,2)	$\mathcal{Y}^{(2,3)}$	y ^(2,4)
$i^{(3)}$	y ^(3,1)	y ^(3,2)	$\mathcal{Y}^{(3,3)}$	$y^{(3,4)}$
$i^{(4)}$	y ^(4,1)	y ^(4,2)	y ^(4,3)	$y^{(4,4)}$

Matrice d'utilité
$$Y = \begin{bmatrix} y^{(1,1)} & y^{(1,2)} & y^{(1,3)} & y^{(1,4)} \\ y^{(2,1)} & y^{(2,2)} & y^{(2,2)} & y^{(2,3)} & y^{(2,4)} \\ y^{(3,1)} & y^{(3,2)} & y^{(3,3)} & y^{(3,4)} \\ y^{(4,1)} & y^{(4,2)} & y^{(4,3)} & y^{(4,4)} \end{bmatrix}$$

Fonction d'utilité y: $J \times I \rightarrow Y$

	$j^{(1)}$	$j^{(2)}$	$j^{(3)}$	$j^{(4)}$
$i^{(1)}$?	?	?	y ^(1,4)
$i^{(2)}$?	$\mathcal{Y}^{(2,2)}$?	?
$i^{(3)}$	y ^(3,1)	?	?	y ^(3,4)
$i^{(4)}$?	?	y ^(4,3)	y ^(4,4)

- La plupart des utilisateurs n'ont pas noté d'items
- **Démarrage à froid** (cold start): nouveaux utilisateurs sans historique et nouveaux items sans notes

Matrice d'utilité
$$Y = \begin{bmatrix} ? & ? & ? & y^{(1,4)} \\ ? & y^{(2,2)} & ? & ? \\ y^{(3,1)} & ? & ? & y^{(3,4)} \\ ? & ? & y^{(4,3)} & y^{(4,4)} \end{bmatrix}$$

■ On suppose une notation de 0 à 5 (étoiles)

	Alice (1)	Bob (2)	Mike (3)	Alex (4)
Money Heist				
Mindhunter				
The Walking Dead				
The Haunting of Hill House				
Ash vs Evil Dead				

 $lacktriangleq n_s$ est le nombre de séries

- $\rightarrow n_s = 5$
- n_u est le **nombre d'utilisateurs** $\rightarrow n_u$ = 4

	Alice (1)	Bob (2)	Mike (3)	Alex (4)
Money Heist	5			
Mindhunter	4			
The Walking Dead	1			
The Haunting of Hill House	?			
Ash vs Evil Dead	?			

	Alice (1)	Bob (2)	Mike (3)	Alex (4)
Money Heist	5	5		
Mindhunter	4	5		
The Walking Dead	1	?		
The Haunting of Hill House	?	2		
Ash vs Evil Dead	?	0		

	Alice (1)	Bob (2)	Mike (3)	Alex (4)
Money Heist	5	5	1	
Mindhunter	4	5	?	
The Walking Dead	1	?	5	
The Haunting of Hill House	?	2	4	
Ash vs Evil Dead	?	0	5	

	Alice (1)	Bob (2)	Mike (3)	Alex (4)
Money Heist	5	5	1	?
Mindhunter	4	5	?	0
The Walking Dead	1	?	5	4
The Haunting of Hill House	?	2	4	5
Ash vs Evil Dead	?	0	5	?

On suppose une notation de 0 à 5 (étoiles)

	Alice (1)	Bob (2)	Mike (3)	Alex (4)
Money Heist	5	5	1	? → 0
Mindhunter	4	5	? → 1	0
The Walking Dead	1	? → 1.5	5	4
The Haunting of Hill House	? → 1	2	4	5
Ash vs Evil Dead	? → 0.5	0	5	? → 4.5

Recommander "Ash vs Evil Dead" à Alex.

	Alice (1)	Bob (2)	Mike (3)	Alex (4)
Money Heist	5	5	1	? → 0
Mindhunter	4	5	? → 1	0
The Walking Dead	1	? → 1.5	5	4
The Haunting of Hill House	? → 1	2	4	5
Ash vs Evil Dead	? → 0.5	0	5	? → 4.5

- $r^{(ij)} = 1$ si l'utilisateur j a noté la série i
- $y^{(ij)}$ = note donnée par l'utilisateur j sur la série i (si et seulement si $r^{(ij)}$ = 1)

Exercice

En considérant la notation utilisée dans ce cours, quelles valeurs prennent les variables n_s et n_u ? Que valent $r^{(2,3)}$ et $y^{(2,3)}$?

	Utilisateur 1	Utilisateur 2	Utilisateur 3	Utilisateur 4
Série 1	?	?	5	2
Série 2	3	0	?	1

■ Réponses:

$$n_s = 2 \text{ et } n_u = 4$$

o
$$r^{(2,3)} = 0$$
 et indéfini = $y^{(2,3)}$

Sommaire

- 1. Introduction
- 2. Représentation du modèle
- 3. Lectures et références

Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman, Mining of Massive Datasets, 3rd edition

Références

- [1] CS229: Machine Learning Stanford University
- [2] Mining of Massive Datasets, 3rd edition
- [3] The Long Tail, Chris Anderson, 2004