

Impression de réseaux de piliers déformables pour pendéo-épitaxie de GaN

C. Gourgon, Mrad Mrad, S. Labau, M. Panabière, C. Petit-Etienne

Laboratoire des Technologies de la Microélectronique Grenoble

Projet ANR PEGADIS

(Pendeo-Epitaxy of GAN for DISplays) 2021-2023

Objectif : optimisation de µleds à base de GaN sur substrat SOI par pendeo epitaxy

- CEA-LETI-DPFT
- CHREA

LTM

CEMEF

2 mis-oriented crystallites on <u>deformable pedestals</u> (tilt + twist) (SiO₂ easily deformable at GaN growth temperature)

→ No grain boundary defects are generated

Patent CEA/CNRS patent WO2019122461

Process technologique

- □ NIL : Equipement Eitre 6 Obducat
- UV-NIL thermique
- Résolution 100 nm
- Objectif : aucun pilier manquant pour optimiser la recroissance
- ☐ Master : lithographie E-beam / Plasma etching / FDTS

(LAAS – réseau Renatech)

Réseaux de 200x200 μm² à 3x3 μm² pour μleds

Nanolmprint

PDMS
Hard PDMS

Master Si

Moule

NIL

Plots Ni

☐ Plasma etching pour graver la tri-couche avec profil rentrant

Dépôt 75 nm masque Ni

☐ Lift off

Plasma etching empilement GaN/AIN/SOI

- ICP DPS chamber Applied Materials
- Contôle interférométrique
- Possibilité de contrôler la profondeur gravée dans SiO2

Optimisation du contrôle de la pente pour réduire D_{bottom}

Réseaux pour µleds

Conclusion

- □ Réseaux de piliers 100 nm par nanoimpression UV/Thermique
- Limitation des défauts tels que piliers manquants par combinaison hard-

PDMS / tricouche

□ Process mature pour la réalisation de µLeds