TCS NextStep TCS Careers www.tcs.com Logout

# **TATA CONSULTANCY SERVICES**

Welcome BASANT BHALA

Home **Coding Arena**  My Submissions Feedback

sec

# **Coding Arena**

В C D Е G

# **Time Left**

05

hr

**Rules & Regulations** 

<C\*deVita/>

# **Problem: Matrix Rotations**

You are given a square matrix of dimension N. Let this matrix be called A. Your task is to rotate A in clockwise direction by S degrees, where S is angle of rotation. On the matrix, there will be 3 types of operations viz.

1. Rotation

Rotate the matrix A by angle S, presented as input in form of  ${\bf A}\ {\bf S}$ 

2. Querying

Query the element at row K and column L, presented as input in form of  ${\bf Q}$  K  ${\bf L}$ 

3. Updation

Update the element at row X and column Y with value Z,  $\,$  presented as input in form of U X Y Z

Print the output of individual operations as depicted in Output Specification

#### Input Format:

Input will consist of three parts, viz.

- 1. Size of the matrix (N)
- 2. The matrix itself (A = N \* N)
- 3. Various operations on the matrix, one operation on each line. (Beginning either with A, Q or U)
- -1 will represent end of input.

### Note:

- Angle of rotation will always be multiples of 90 degrees only.
- · All Update operations happen only on the initial matrix. After update all the previous rotations have to be applied on the updated matrix

# Output Format:

For each Query operation print the element present at K-L location of the matrix in its current state.

### **Constraints:**

1<=N<=1000

1<=Aij<=1000

0<=S<=160000

1<=K, L<=N

1<=Q<=100000

# Sample Input and Output

| SNo. | Input                                                                                  | Output           |
|------|----------------------------------------------------------------------------------------|------------------|
| 1    | 2<br>1 2<br>3 4<br>A 90<br>Q 1 1<br>Q 1 2<br>A 90<br>Q 1 1<br>U 1 1 1 6<br>Q 2 2<br>-1 | 3<br>1<br>4<br>6 |

| Evn | lans | ation |
|-----|------|-------|
|     |      |       |

#### **Initial Matrix**

- 1 2
- 3 4

After 90 degree rotation, the matrix will become

- 4 2

Now the element at  $\mathsf{A}_{11}$  is 3 and  $\mathsf{A}_{12}$  is 1.

Again the angle of rotation is 90 degree, now after the rotation the matrix will become

- 4 3

Now the element at  $A_{11}$  is 4.

As the next operation is **Update**, update initial matrix i.e.

- 6 2
- 3 4

After updating, apply all the previous rotations (i.e. 180 = two 90 degree rotations).

The matrix will now become

- 4 3
- 26

Now A<sub>22</sub> is 6.

### Note:

Please do not use package and namespace in your code. For object oriented languages your code should be written in one

# Note:

exist in gcc

# **Submit Answer**







© 2014 Tata Consultancy Services Limited. All Rights Reserved. In Association with Campus Commune | Privacy Policy in f











