WhileCC-approximability and Acceptability of Elementary Functions

Fateme Ghasemi Dr. Jeffery Zucker ghases5@mcmaster.ca zucker@mcmaster.ca

September 2025

Computability of Functions on \mathbb{R}

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability,
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about partial functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

Show that the elementary functions satisfy the acceptability conditions.

Background – Acceptability

Definition (Acceptability)

A function $f: \mathbb{R} \to \mathbb{R}$ is acceptable if there exists a sequence X where:

- lacksquare X is an effective open exhaustion for $\mathbf{dom}(f)$, and
- ② f is effectively locally uniformly continuous w.r.t. X.

Background - Effective Open Exhaustions

Definition ([Fu and Zucker, 2014])

A sequence $(U_1, U_2, ...)$ of open sets is called an effective open exhaustion for an open $U \subseteq \mathbb{R}$ if

- $0 U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i=1,...,k_l-1$, and
- **1** the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1),(-2,2),\ldots,(-k,k),\ldots$ is the standard effective open exhaustion for \mathbb{R} .

Background - Effective Local Uniform Continuity

Definition ([Fu and Zucker, 2014])

A function f on U is effectively locally uniformly continuous w.r.t. an effective open exhaustion $(U_n)_{n\in\mathbb{N}}$ of U, if there is a recursive function $M:\mathbb{N}^2 \twoheadrightarrow \mathbb{N}$ such that for all $k,l\in\mathbb{N}$ and all $x,y\in U_l$:

$$|x-y| < 2^{-M(k,l)} \implies |f(x) - f(y)| < 2^{-k}$$

Background - Elementary Functions

Definition ([Tenenbaum and Pollard, 1985])

The elementary functions on $\ensuremath{\mathbb{R}}$ are partial functions defined by expressions built up from

- computable reals, and
- the variable x,

by applying (repeatedly) the basic operations below on elementary functions f,g:

- (f+g)(x) = f(x) + g(x)
- $(f \cdot g)(x) = f(x)g(x)$
- $\operatorname{div}_f(x) = \frac{1}{f(x)}$ where $\frac{1}{0} = \uparrow$
- $\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$ where $0 < n \in \mathbb{N}$
- $\bullet \ \ln_f(x) = \ln(f(x))$
- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

Solution: Modifications

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Contributions

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is **WhileCC**-approximable.
- \bullet f is GL-computable w.r.t. X.
- \bullet f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem 1 (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem 2 (Acceptability Theorem)

All elementary functions are acceptable.

Contributions

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is WhileCC-approximable.
- f is GL-computable w.r.t. X.
- ullet f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem 1 (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem 2.1 (Acceptability Theorem: Part 1)

The domain of any elementary function has an effective open exhaustion.

Theorem 2.2 (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

Result 1

Theorem 1 (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

This is the easiest part, yet occupies about 30 pages of my master's thesis ... ©

Result 1 - Background - WhileCC Programming Language

Syntax

Algebra ${\mathcal R}$

 0_R , 1_R , -1_R : $\rightarrow \mathbb{R}$

 $+_{\mathsf{R}}.\times_{\mathsf{R}}:\mathbb{R}\times\mathbb{R}\twoheadrightarrow\mathbb{R}$

 $+_{N}$, \times_{N} : $\mathbb{N} \times \mathbb{N} \twoheadrightarrow \mathbb{N}$

and, or : $\mathbb{B} \times \mathbb{B} \twoheadrightarrow \mathbb{B}$

 $=_{N}$, $<_{N}$: $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{B}$

 $=_{\mathsf{real}}$, $<_{\mathsf{R}}$: $\mathbb{R} \times \mathbb{R} \to \mathbb{B}$

 $inv_R: \mathbb{R} \to \mathbb{R}$

 $\begin{array}{ccc} 0_N : & \twoheadrightarrow \mathbb{N} \\ \text{suc}_N : \mathbb{N} \twoheadrightarrow \mathbb{N} \end{array}$

tt. ff : \rightarrow \mathbb{B}

 $not : \mathbb{B} \to \mathbb{B}$

Terms

$$t^s ::= x^s \mid F(t_1^{s_1}, \dots, t_m^{s_m})$$
 • Statements

$$S ::=$$

$$\begin{array}{l} \mathsf{skip} \ | \ \mathsf{div} \ | \ \bar{x} := \bar{t} \ | \ S_1 \ S_2 \\ | \ \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \ \mathsf{fi} \\ | \ \mathsf{while} \ b \ \mathsf{do} \ S_0 \ \mathsf{od} \\ | \ n := \mathsf{choose} \ (z : \mathsf{nat}) : P(z, \bar{t}) \end{array}$$

Procedures

$$P ::= \operatorname{proc} D \operatorname{begin} S \operatorname{end}$$

Statement	Possible Values for n
$n := {\sf choose} \ \ (k : {\sf nat}) : k < 0$	{↑}
$n := {\sf choose} \ \ (k : {\sf nat}) : {\sf toReal}(k) = 0$	{↑}
$n := {\sf choose} \ (k : {\sf nat}) : k < k+1$	$\{0,1,2,\cdots\}$
$n := {\sf choose}\;(k:{\sf nat}): k>2\;{\sf and}\;k<4$	{3}

Semantics

$$\begin{aligned} & \mathsf{inv}_{\mathsf{R}}(x) = \begin{cases} 1/x & \mathsf{if} \ x \neq 0 \\ \uparrow & \mathsf{otherwise} \end{cases} \\ =_{\mathsf{real}}(x,y) = \begin{cases} \mathsf{ff} & \mathsf{if} \ x \neq y \\ \uparrow & \mathsf{otherwise} \end{cases} \\ <_{\mathsf{R}}(x,y) = \begin{cases} \mathsf{tt} & \mathsf{if} \ x < y \\ \mathsf{ff} & \mathsf{if} \ x > y \\ \uparrow & \mathsf{if} \ x = y \end{cases} \end{aligned}$$

The Semantics of a program P is denoted by a many-valued function $P^{\mathcal{R}}$.

Result 1 - Background

Definition (WhileCC-approximability, [Fu and Zucker, 2014])

A WhileCC-procedure P of type real \times nat \to real on $\mathcal R$ is said to approximate a function $f:\mathbb R\to\mathbb R$ iff for all $n\in\mathbb N$ and all $x\in\mathbb R$:

- $x \in \mathbf{dom}(f) \implies \uparrow \notin P^{\mathcal{R}}(x,n) \subseteq \mathbf{Nbd}(f(x),2^{-n})$, and
- $x \notin \mathbf{dom}(f) \implies P^{\mathcal{R}}(x) = \{\uparrow\}$

where $\mathbf{Nbd}(y,r)$ has the standard definition of neighborhood on $\mathbb R$ i.e.,

$$Nbd(y, r) = \{ z \in \mathbb{R} \mid |y - z| < r \}.$$

Goal

Construct WhileCC-procedures approximating elementary functions by induction

Challenge: Using comparison operators introduces undefinedness.

How do we WhileCC-approximate "piecewise" functions?

Result 1 - Challenges

Problem

When defining piecewise functions, comparison makes a hole!

Example: Even Root - First Attempt

```
proc
  in x : real c : nat
begin
  if x <_{\mathsf{R}} 0 then
     return 0
  else
     return Root(x, c)
  fi
end
```

Result 1 - Challenges

Problem

When defining piecewise functions, comparison makes a hole!

Solution

- Find an overlapping interval where both pieces are defined
- Use the nondeterminism of "choose"

```
proc
  in x \cdot \text{real } c \cdot \text{nat}
  aux \ chosen Val : nat \ l : real
begin
  l := \text{choose } (q : \text{real}) : \text{isCloseEnough}(q, c, n)
   chosenVal := choose(k : nat) : proc
                                            in k · nat x · real
                                          begin
                                            if k =_{\mathbb{N}} 1 then
                                                return 0 < x
                                            else if k = N 2 then
                                                return x < l
                                            else
                                               return ff
                                          end
                                                        f(x)
  if chosen Val = 1 then
     return Root(x, c)
  else if chosenVal = N 2 then
     return 0
end
```

Result 2 - Challenges

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)= \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\operatorname{dom}(f)$ has an effective open exhaustion \checkmark $\operatorname{dom}(g)$ has an effective open exhaustion \checkmark $\operatorname{dom}(f \circ q) = [-1, 1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition ✓
- Addition and multiplication X

Adding decomposition of + and \cdot (f+g)(x)=f(x)+g(x) is composed of

- $\bullet \ Add(x,y) = x + y,$
- $\bullet (f \times g)(x,y) = (f(x),g(y)),$
- Diag(x) = (x, x)

Interesting results - Acceptability Theorem

Theorem (Reducing Exhaustion-reflection to to a Decision Procedure)

A function $f:\mathbb{R}^n\to\mathbb{R}^m$ is exhaustion-reflecting, if we can decide for any m-cube Q_m whether an arbitrary rational closed n-cube is completely contained in $f^{-1}(Q_m)$.

 This is very useful for proving the exhaustion-reflection property for the addition and multiplication case.

Challenges

Theorem 2.2 (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

(We prove that this is) equivalent to proving:

Any elementary function has a local continuity witness.

Definition (Local continuity witness)

Let $f: \mathbb{R} \to \mathbb{R}$. A recursive function $N: \mathbb{Q} \times \mathbb{Q} \times \mathbb{N} \to \mathbb{N}$ is called a **local continuity witness** for f iff for any $a,b \in \mathbb{Q}$ with $[a,b] \subseteq \mathbf{dom}(f)$ and $k \in \mathbb{N}$, we have

$$\forall x, y \in (a, b) \quad |x - y| < 2^{-N(a, b, k)} \implies |f(x) - f(y)| < 2^{-k}.$$

Proof by induction

- Base cases: Using WhileCC-approximability theorem √
- Addition, Multiplication, and Composition: Using WhileCC-approximability theorem ✓

Summary

We proved that:

- all elementary functions are WhileCC-approximable.
- all elementary functions are acceptable and hence computable in the other three models as well.

We also

- presented an alternative characterization of acceptable functions using the local continuity witness concept, and
- found a few useful tricks along the way for implementing approximations of piecewise functions.

Future Work

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are WhileCC-approximable but not While*-approximable [Tucker and Zucker, 1999]?

Conjecture:

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - **If not**, what is a model of computation that characterizes exactly the class of acceptable functions?

Currently working on:

• Formalizing the concept of WhileCC-approximability and the aforementioned proofs in Lean.

References

- Ming Quan Fu and Jeffery Zucker. Models of computation for partial functions on the reals. *Journal of Logical and Algebraic Methods in Programming*, 84(2):218–237, 11 2014. ISSN 2352-2208. doi:10.1016/j.jlamp.2014.11.001.
- M. Tenenbaum and H. Pollard. Ordinary Differential Equations: An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences. Dover Books on Mathematics. Dover Publications, 1985. ISBN 9780486649405. URL https://books.google.ca/books?id=iU4zDAAAQBAJ.
- John V. Tucker and Jeffery I. Zucker. Abstract versus concrete computation on metric partial algebras. *ACM Trans. Comput. Log.*, 5(4):611–668, 2004. doi:10.1145/1024922.1024924.
- J.V. Tucker and J.I. Zucker. Computation by 'While' programs on topological partial algebras. *Theoretical Computer Science*, 219(1):379–420, 1999. ISSN 0304-3975. doi:10.1016/S0304-3975(98)00297-7.
- J.V. Tucker and J.I. Zucker. Computable total functions on metric algebras, universal algebraic specifications and dynamical systems. *The Journal of Logic and Algebraic Programming*, 62(1): 71–108, 2005. ISSN 1567-8326. doi:10.1016/j.jlap.2003.10.001.

A HUGE Thank you!