Branden Fitelson Philosophy 12A Notes

Announcements & Such

- Administrative Stuff
 - HW #4 resubs should be done now. See bspace...
 - HW #6 is due today. Final HW assignment! LMPL Proofs.
 - Next week, I will be giving lectures. I will use them for review, and for some "logic beyond LMPL" topics (not on the final).
 - I'll have office hours today from 2-4, and next Thurs. from 2-4.
 - There's a review session on Monday, May 10 @ 4pm. (room TBA)
 - Stay tuned for further announcements *via* email (+ lecture).
 - I've posted a handout with *all* natural deduction rules (for final).
- Today: Chapter 6 Natural Deductions in LMPL
- Next week: L2PL (beyond LMPL) and review for final exam(s).

CHAPTER 6 UCB Philosophy 04/29/10 Branden Fitelson Philosophy 12A Notes 2

The Rule of ∃-Elimination: Official Definition

 \exists -Elimination: If $(\exists v)\phi v$ occurs at i depending on a_1, \ldots, a_n , an instance $\phi \tau$ of $(\exists v)\phi v$ is assumed at j, and \mathscr{P} is inferred at k depending on b_1, \ldots, b_u , then at line m we may infer \mathscr{P} , with label 'i, j, k $\exists E$ ' and dependencies $\{a_1, \ldots, a_n\} \cup \{b_1, \ldots, b_u\}/j$:

Provided that *all four* of the following conditions are met:

- τ (in $\phi \tau$) replaces *every* occurrence of ν in $\phi \nu$. [avoids fallacies]
- τ does not occur in $(\exists v) \phi v$. [generalizability]
- τ *does not occur in* \mathscr{P} . [generalizability]
- τ does not occur in any of b_1, \ldots, b_u , except (possibly) $\phi \tau$ itself. [generalizability]

UCB Philosophy CHAPTER 6 04/29/10

Branden Fitelson

Philosophy 12A Notes

3

The Rule of ∃-Elimination: Nine Examples

• Here are 9 examples of proofs involving all four quantifier rules.

1. $(\exists x) \sim Fx \vdash \sim (\forall x) Fx$

 $[\nu, 200, example 5]$

2. $(\exists x)(Fx \rightarrow A) \vdash (\forall x)Fx \rightarrow A$

[p. 201, example 6]

3. $(\forall x)(\forall y)(Gy \rightarrow Fx) \vdash (\forall x)[(\exists y)Gy \rightarrow Fx]$ [p. 203, I. # 19 \Rightarrow]

4. $(\exists x)[Fx \rightarrow (\forall y)Gy] \vdash (\exists x)(\forall y)(Fx \rightarrow Gy)$

[p. 203. I. # 20 \Leftarrow]

5. $A \vee (\exists x)Fx \vdash (\exists x)(A \vee Fx)$

[p. 203, II. # 2 \Leftarrow]

6. $(\exists x)(Fx \& \sim Fx) \vdash (\forall x)(Gx \& \sim Gx)$

 $[p. 203, I. # 12 \Rightarrow]$

7. $(\forall x)[Fx \rightarrow (\forall y) \sim Fy] \vdash \sim (\exists x)Fx$

[p. 203, I. # 5]

8. $(\forall x)(\exists y)(Fx \& Gy) \vdash (\exists y)(\forall x)(Fx \& Gy)$

[p. 201, example 7]

9. $(\exists y)(\forall x)(Fx \& Gy) \vdash (\forall x)(\exists y)(Fx \& Gy)$

[other direction]

UCB Philosophy CHAPTER 6 04/29/10 Branden Fitelson Philosophy 12A Notes

Proof of (1)

Problem is: $(\exists x) \sim Fx + \sim (\forall x)Fx$

 $(1) (\exists x) \sim Fx$ Premise (2) (∀x)Fx Assumption 3 (3) ~Fa Assumption 2 (4) Fa 2 AE 3.4 ~E (5) A 1.3.5 JE ~(∀x)Fx 2,6 ~1

UCB Philosophy CHAPTER 6 04/29/10

13

15

Two LMPL Extensions of Sequent Introduction

- Here are two additions to our list of SI sequents:
- (QS) One can infer $(\forall x) \sim \phi x$ from (the *logically equivalent* sentence) $\lceil \sim (\exists x) \phi x \rceil$, and *vice versa*; and, that one can infer $\lceil (\exists x) \sim \phi x \rceil$ from (the *logically equivalent*) $\lceil \sim (\forall x) \phi x \rceil$, and *vice versa*.

$$(\forall x) \sim \phi x \dashv \vdash \sim (\exists x) \phi x; \text{ and, } (\exists x) \sim \phi x \dashv \vdash \sim (\forall x) \phi x$$
 (QS)

(AV) One can infer a *closed* LMPL sentence ψ from (the *logically equivalent* sentence) ψ' , and vice versa, where ψ and ψ' are alphabetic variants. Two formulas are alphabetic variants if and only if they differ only in a (conventional) choice of individual variable letters (not kosher for constants!). E.g., ' $(\forall x)Fx$ ' and ' $(\forall y)Fy$ ' are (closed) alphabetic variants, because they differ *only* in which individual variable ('x' or 'y') is used, but they have the same *logical* (i.e., syntactical) structure.

$$\psi \dashv \vdash \psi'$$
 (AV)

CHAPTER 6 04/29/10 UCB Philosophy

Our (New) Official List of Sequents and Theorems (see pp. 123, 204, and 206)

(DS) $A \vee B$, $\sim A \vdash B$; or; $A \vee B$, $\sim B \vdash A$ (Imp) $A \rightarrow B \dashv \vdash \sim A \lor B$

 $A \rightarrow B$, $\sim B \vdash \sim A$ $\sim (A \rightarrow B) \rightarrow \vdash A \& \sim B$ (Neg-Imp)

(PMI) $A \vdash B \rightarrow A$ (Dist) $A \& (B \lor C) \dashv \vdash (A \& B) \lor (A \& C)$

(PMI) $\sim A \vdash A \rightarrow B$ (Dist) $A \vee (B \& C) \dashv \vdash (A \vee B) \& (A \vee C)$

(DN+) $A \vdash \sim \sim A$ (EFO. or $\wedge E$) $\land \vdash A$

 $A * B \vdash B * A$ (DEM) $\sim (A \& B) \dashv \vdash \sim A \lor \sim B$ (Com)

 $\sim (A \vee B) \dashv \vdash \sim A \& \sim B$ $\sim \sim A * \sim \sim B \dashv \vdash A * B$ (DEM) (SDN)

 $\sim (\sim A \vee \sim B) \dashv \vdash A \& B$ (DEM) (SDN) $A * B \dashv \vdash \sim \sim A * B \dashv \vdash A * \sim \sim B$

(DEM) $\sim (\sim A \& \sim B) \dashv \vdash A \lor B$ (LEM) $\vdash A \lor \sim A$

(OS) $(\forall x) \sim \phi x \dashv \vdash \sim (\exists x) \phi x$ (OS) $(\exists x) \sim \phi x \dashv \vdash \sim (\forall x) \phi x$

> (AV) $\psi \dashv \vdash \psi'$

In (Com), '*' can be any binary connective *except* '→'. In (SDN), '*' can be *any* binary connective. In (AV), ψ must be *closed*, and ψ' must be an *alphabetic variant* of ψ .

UCB Philosophy CHAPTER 6 04/29/10

Branden Fitelson

Philosophy 12A Notes

The Value of (QS) — Its Four Simplest Instances

(∀x)~Fx ⊦ ~(∃x)Fx			~(3x)Fx + (∀x)~Fx				
1	(1)	(∀x)~Fx	Premise	1	(1)	~(∃x)Fx	Premise
2	(2)	(∃x)Fx	Ass	2	(2)	Fa	Ass
3	(3)	Fa	Ass	2	(3)	x3(xE)	2 3I
1	(4)	~Fa	1 ∀E	1,2	(4)	Λ	1,3 ~E
1,3	(5)	Λ	4,3 ~E	1	(5)	~Fa	2,4 ~I
1,2	(6)	Λ	2,3,5 JE	1	(6)	(∀x)~Fx	5 V I
1	(7)	~(∃x)Fx	2,6 ~1				

(∃x)~Fx + ~(∀x)Fx				~(∀x)Fx + (∃x)~Fx		
1 2 3 2 2,3 1,2	(3) (4) (5) (6)	` '	Premise Ass Ass 2 VE 3,4 ~E 1,3,5 JE 2,6 ~I	1 2 3 3 2,3 2 2 2 2 1,2 1	(1) -(∀x)Fx (2) -(3x)-Fx (3) -Fa (4) (3x)-Fx (5) Λ (6)Fa (7) Fa (8) (∀x)Fx (9) Λ (10)(3x)-Fx (11) (3x)-Fx	Premise Ass Ass 3 3 2,4 ~E 3,5 ~I 6 DN 7 VI 1,8 ~E 2,9 ~I 10 DN

UCB Philosophy CHAPTER 6 04/29/10 Branden Fitelson Philosophy 12A Notes 16

Three Examples Involving the LMPL SI Extension (QS)

• Here are three examples of proofs involving SI (QS):

1. $\sim (\forall x) \sim Fx \vdash (\exists x) Fx$ $[p. 207, #7 \Leftarrow]$

2. $\sim (\exists x)(Fx \& Gx) \lor (\exists x) \sim Gx, (\forall y)Gy \vdash (\forall z)(Fz \rightarrow \sim Gz) [p. 205, ex. 1]$

3. $(\forall x)Fx \rightarrow A \vdash (\exists x)(Fx \rightarrow A)$ [p. 205, ex. 2]

UCB Philosophy CHAPTER 6 04/29/10

The Value of (AV)

• Here are the two simplest instances of (AV):

	(∀x)Fx ⊦ (∀y)Fy				(∃x)Fx ⊦ (∃y)Fy			
1	(1)	(∀x)Fx	Premise	1	(1)	(∃x)Fx	Premise	
1	(2)	Fa	1 ∀E	2	(2)	Fa	Ass	
1	(3)	(∀y)Fy	2 ¥I	2	(3)	(∃y)Fy	2 3I	
				1	(4)	(∃y)Fy	1,2,3 ∃E	

• Here's an (AV)-aided proof of the following sequent

$$(\forall x)Fx, (\forall y)Fy \rightarrow (\forall y)Gy \vdash (\forall z)Gz$$

 1
 (1)
 $(\forall x)Fx$ Premise

 2
 (2)
 $(\forall y)Fy \rightarrow (\forall y)Gy$ Premise

 1
 (3)
 $(\forall y)Fy$ 1 SI (AV)

 1,2
 (4)
 $(\forall y)Gy$ 2,3 -E

 1,2
 (5)
 $(\forall z)Gz$ 4 SI (AV)

This is the end of material to be covered on the final(s).

UCB Philosophy Chapter 6 04/29/10

Branden Fitelson Philosophy 12A Notes 22

Beyond LMPL: 2-Place Predicates (a.k.a., Relations) II

- From the point of view of logic (as opposed to mathematics) what matters is *capturing validities*. And, LMPL captures more than LSL.
- But, LMPL also has its own *logical* limitations. The problem: we can't capture some of the intuitively valid arguments involving *relations*.
- Consider the following argument, which involves a 2-place predicate:
- (1) Brutus killed Caesar.
- (2) : Brutus killed someone and someone killed Caesar.
- If we were to symbolize this argument using monadic predicates, we would end-up with something like the following LMPL reconstruction:

(1') Kb.

(2') : $(\exists x)Bx \& (\exists y)Ky$.

Where Kx: x killed Caesar, Bx: Brutus killed x, and b: Brutus.

• This argument is *not* valid in LMPL. But, the English argument *is* valid!

UCB Philosophy Chapter 6 04/29/10

Branden Fitelson Philosophy 12A Notes 23

- The problem here is that "x killed y" is a 2-place predicate (or relation).
- If we expand our language to include predicates that can take 2 arguments, then we can capture statements and arguments like these.
- In chapter 7, a more general language is introduced that allows *n*-place predicates, for any finite *n*. We will only discuss 2-place predicates.
- For instance, we can introduce the 2-place predicate Kxy: x killed y. With this relation in hand, we can express the above argument as:

 (1^*) Kbc.

 (2^*) :: $(\exists x)Kbx \& (\exists y)Kyc$.

- In 2-place predicate logic ("L2PL"), this argument *is* valid. So, this is a more accurate and faithful formalization of the English argument.
- We will (in chapter 8) discuss the semantics for 2-place predicate logic (L2PL). The natural deduction system for L2PL is *the same as* LMPL's!
- Before that, we will look at various complexities of L2PL symbolization.

Branden Fitelson Philosophy 12A Notes 24

Some Sample L2PL Symbolization Problems

- 1. Someone loves someone. [Lxy: x loves y]
 - First, work on the the quantifier with widest scope, then work in.
 - There exists an *x* such that *x* loves someone.
 - (i) $(\exists x)$ *x* loves someone.
 - Now, work on expression within the scope of the quantifier in (i).
 - (ii) x loves someone
 - there exists a y such that Lxy
 - $-(\exists y)Lxy$
 - Plugging the symbolization of (ii) into (i) yields the **final product**: $(\exists x)(\exists y)Lxy$

04/29/10 UCB Philosophy CHAPTER 6 04/29/10

UCB Philosophy CHAPTER 6 04/29/10

Branden Fitelson Philosophy 12A Notes 25

- 2. Everyone loves everyone.
 - For all *x*, *x* loves everyone.
 - $(\forall x)$ *x* loves everyone.
 - x loves everyone $\rightarrow (\forall y)Lxy$
 - $(\forall x)(\forall y)Lxy$
- 3. Everyone loves someone.
 - For all x, x loves someone.
 - $(\forall x)$ *x* loves someone.
 - x loves someone $\mapsto (\exists y) Lxy$
 - $(\forall x)(\exists y)Lxy$
- 4. Someone loves everyone.
 - There exists an *x* such that *x* loves everyone.
 - $(\exists x)$ x loves everyone.
 - x loves everyone $\rightarrow (\forall y)Lxy$
 - $(\exists x)(\forall y)Lxy$

UCB Philosophy Chapter 6 04/29/10

27

Branden Fitelson Philosophy 12A Notes

L2PL Interpretations I

- Here's an example L2PL interpretation. Oxy: x was older than y, \mathcal{D} : The Three Stooges, Ref(a) = Curly, Ref(b) = Larry, and Ref(c) = Moe.
- The matrix representation of Ext(O) for this interpretation is:

0	α	β	γ
α	_	+	+
β	-	_	+
γ	_	_	_

• The pictorial or diagrammatic representation of Ext(O) is:

UCB Philosophy Chapter 6 04/29/10

Branden Fitelson Philosophy 12A Notes 26

Four Important Properties of Binary Relations

- **Reflexivity**. A binary relation *R* is said to be *reflexive* iff $(\forall x)Rxx$.
- **Symmetry**. *R* is *symmetric* iff $(\forall x)(\forall y)(Rxy \rightarrow Ryx)$.
- **Transitivity**. *R* is transitive iff $(\forall x)(\forall y)(\forall z)[(Rxy \& Ryz) \rightarrow Rxz]$.
- If R has all three of these properties, then R is an equivalence relation.
- **Fact**. If *R* is Euclidean and reflexive, then *R* is an equivalence relation.

Relation	Reflexive?	Symmetric?	Transitive?	Euclidean?
x > y	No	No	Yes	No
$x \models y$	Yes	No	Yes	No
x is a sibling of y	No	Yes	No	No
$x \approx y$	Yes	Yes	No	No
x respects y	No	No	No	No
x = y	Yes	Yes	Yes	Yes

UCB Philosophy Chapter 6 04/29/10

28

Branden Fitelson Philosophy 12A Notes

L2PL Interpretations III

- (\mathcal{I}_1) Let \mathcal{D} be the set consisting of George W. Bush (α) and Jeb Bush (β). And, let Bxy: x is a brother of y. Determine \mathcal{I}_1 -truth-values for:
 - 1. $(\forall x)(\exists y)Bxy$

2. $(\exists y)(\forall x)Bxy$

α

- (1) is \top on \mathcal{I}_1 , since *both* of its \mathcal{D} -instances are \top on \mathcal{I}_1 .
- * ' $(\exists y)Bay$ ' is \top on \mathcal{I}_1 because its instance 'Bab' is \top on \mathcal{I}_1 .
 - That is, $\langle \alpha, \beta \rangle \in \text{Ext}(B)$. Note: $\text{Ext}(B) = \{\langle \alpha, \beta \rangle, \langle \beta, \alpha \rangle\}$.
- * ' $(\exists y)Bby$ ' is \top on \mathcal{I}_1 because its instance 'Bba' is \top on \mathcal{I}_1 .
- (2) is \perp on \mathcal{I}_1 , since *both* of its \mathcal{D} -instances are \perp on \mathcal{I}_1 .
- * ' $(\forall x)Bxa$ ' is \perp on \mathcal{I}_1 because its instance 'Baa' is \perp on \mathcal{I}_1 .
 - · That is, $\langle \alpha, \alpha \rangle \notin \operatorname{Ext}(B)$.
- * ' $(\forall x)Bxb$ ' is \perp on \mathcal{I}_1 because its instance 'Bbb' is \perp on \mathcal{I}_1 .

UCB Philosophy Chapter 6 04/29/10

Branden Fitelson

Branden Fitelson

Philosophy 12A Notes

29

Branden Fitelson Philosophy 12A Notes

L2PL Interpretations IV

- Just as with LMPL, L2PL interpretations can be used as counterexamples to validity claims. Establishing ⊭ claims works just as you'd expect.
- We have just seen an L2PL interpretation that shows the following:

$$(\forall x)(\exists y)Rxy \not\models (\exists x)(\forall y)Rxy$$

- Interpretation I_1 on the previous slide is a counterexample. Why?
 - $(\forall x)(\exists y)Bxy$ is \top on \mathcal{I}_1 , since both of its instances are \top on \mathcal{I}_1 .
 - $(\exists x)(\forall y)Rxy$ is \bot on \mathcal{I}_1 , since both of its instances are \bot on \mathcal{I}_1 .
- Here is a *very important* L2PL invalidity:
- $(\dagger) (\forall x)(\exists y)Rxy, (\forall x)(\forall y)(\forall z)[(Rxy \& Ryz) \to Rxz] \neq (\exists x)Rxx$
- (†) reveals a surprising difference between LMPL (and LSL) and L2PL sometimes *infinite* interpretations are needed to prove ⊭ in L2PL!

UCB Philosophy Chapter 6 04/29/10

Philosophy 12A Notes 31

object can be related to itself: $(\forall x) \sim Rxx$. Thus, we must have $\sim Raa$:

α

• But, to make the first premise \top , we need there to be *some* y such that Ray is \top . That means we need *another object* β to allow Rab. Thus:

• Now, because we need the conclusion to remain \bot , we must have $\sim Rbb$. And, because we need the first premise to remain \top , we need there to be *some* y such that Rby is \top . We could try to make Rba \top , as follows:

Why (†) is So Important — L2PL vs LMPL: Infinite Domains

30

- In LMPL, if p is true on any interpretation T, then it is true on a *finite* interpretation. Indeed, p will be true on an interpretation of size no greater than 2^k , where k is the # of monadic predicate letters in p.
- In L2PL, some statements are true *only* on *infinite* interpretations. It is for this reason that there is no general decision procedure for validity (or logical truth) in L2PL. (†) on the last slide is a good example of this.
- (†) $(\forall x)(\exists y)Rxy, (\forall x)(\forall y)(\forall z)[(Rxy \& Ryz) \rightarrow Rxz] \neq (\exists x)Rxx$
- Fact. *Only infinite interpretations 1 can be counterexamples to the validity in* (†). To see why, try to *construct* such an interpretation.
- We start by showing that no interpretation \mathcal{I}_1 with a 1-element domain can be an interpretation on which the premises of (†) are \top and its conclusion is \bot . Then, we will repeat this argument for I_2 and I_3 .
- This reasoning can, in fact, be shown correct for *all* (finite) n. So, only T's with infinite domains will work [e.g., $D = \mathbb{N}$, Rxy: x < y].
- Begin with a 1-element domain $\{\alpha\}$. For the conclusion of (4) to be \bot , no

UCB Philosophy Chapter 6 04/29/10

Branden Fitelson Philosophy 12A Notes 32

• But, this picture is not consistent with the second premise being \top and (at the same time) the conclusion being \bot . If R is transitive, then Rab & Rba (as pictured) entails Raa, which makes the conclusion \top .

Transitivity of and α entails: α β β

• Thus, the only way to consistently ensure that there is some y such that Rby is to introduce yet *another object* y (such that Rbc), which yields:

- Again, in order to make the conclusion \bot , we must have $\sim Rcc$, and in order to make the first premise \top , there must be some y such that Rcy.
- We could *try* to make either Rca or Rcb true. But, both of these choices will end-up with the same sort of inconsistency we just saw with β .

UCB Philosophy Chapter 6 04/29/10

UCB Philosophy Chapter 6 04/29/10

33

- In other words, *no finite interpretation* will give us what we want here.
- However, if we let $\mathcal{D} = \mathbb{N}$ and Rxy: x < y, then we get what we want.

- That is, the relation Rxy: x < y on the natural numbers \mathbb{N} is such that:
 - For all x, there exists a y such that x < y. [seriality]
 - For all x, y, z, if x < y and y < z, then x < z. [transitivity]
 - For all x, $x \not< x$. [irreflexivity]
- It is crucial that the set \mathbb{N} of *all* natural numbers is *infinite*. The relation < cannot satisfy all three of these properties on *any finite* domain.
- *I.e.*, no finite subset of \mathbb{N} will suffice to show that the invalidity in (4) holds. Equivalently, the following sentence of L2PL is \perp on all finite T's: $p \stackrel{\text{def}}{=} (\forall x)(\exists y)Rxy \& (\forall x)(\forall y)(\forall z)[(Rxy \& Ryz) \rightarrow Rxz] \& (\forall x) \sim Rxx$
- This sort of thing *cannot happen* in LMPL. In this sense, the introduction of a single 2-place predicate involves a *quantum leap* in complexity.

UCB Philosophy CHAPTER 6 04/29/10

Branden Fitelson Philosophy 12A Notes 35

- First, consider what $(\exists y)(\forall x)Rxy$ says on a domain of size n: $(\exists y)(\forall x)Rxy \approx_n (\forall x)Rxa \vee (\forall x)Rxb \vee \cdots \vee (\forall x)Rxn$ $\approx_n (Raa \& \cdots \& Rna) \lor (Rab \& \cdots \& Rnb) \lor \cdots \lor (Ran \& \cdots \& Rnn)$
- Next, consider what $(\forall x)(\exists y)Rxy$ says on a domain of size n: $(\forall x)(\exists y)Rxy \approx_n (\exists y)Ray \& (\exists y)Rby \& \cdots \& (\exists y)Rny$ $\approx_n (Raa \lor \cdots \lor Ran) \& (Rba \lor \cdots \lor Rbn) \& \cdots \& (Rna \lor \cdots \lor Rnn)$
- Then, we notice that these two sentential forms are intimately related. Specifically, we note that $(\exists y)(\forall x)Rxy$ has the following *n*-form: $X_n = (p_1 \& p_2 \& \cdots \& p_n) \lor (q_1 \& q_2 \& \cdots \& q_n) \lor \cdots \lor (r_1 \& r_2 \& \cdots \& r_n)$
- And, we notice that $(\forall x)(\exists y)Rxy$ has the following *n*-form: $\mathcal{Y}_n = (p_1 \vee q_1 \vee \cdots \vee r_1) \& (p_2 \vee q_2 \vee \cdots \vee r_2) \& \cdots \& (p_n \vee q_n \vee \cdots \vee r_n)$
- Fact. $X_n = Y_n$, for any n. Each disjunct of X_n entails every conjunct of \mathcal{Y}_n . Caution! This doesn't show that $(\exists y)(\forall x)Rxy \models (\forall x)(\exists y)Rxy!$
- Fact. $\mathcal{Y}_n \neq \mathcal{X}_n$, for all n > 1. This can be shown (next slide) using only LSL reasoning. This *does* show that $(\forall x)(\exists y)Rxy \neq (\exists y)(\forall x)Rxy$.
- The moral is that our "informal" semantical approach to the quantifiers works for LMPL, since no infinite domains are required for \neq in LMPL.

Some Further Remarks on Validity in L2PL

- As I just explained, there is no general decision procedure for \models claims in L2PL. This is because we can't always establish \neq claims in finite time.
- However, there is a method for proving \models claims *natural deduction*. And, L2PL's natural deduction system is exactly the same as LMPL's!
- Before we get to proofs, however, I want to look at the alternating quantifier example that I said separates LMPL and L2PL.
- As we have seen, $(\forall x)(\exists y)Rxy \neq (\exists y)(\forall x)Rxy$. But, the converse entailment *does* hold. That is, $(\exists y)(\forall x)Rxy \models (\forall x)(\exists y)Rxy$.
- We will *prove i.e.*, *deduce* $(\exists y)(\forall x)Rxy \vdash (\forall x)(\exists y)Rxy$ shortly.
- Before we do that, let's think about $(\exists y)(\forall x)Rxy \models (\forall x)(\exists y)Rxy$ using our definitions, and our informal method of thinking of \forall as & and \exists as \lor . This is interesting for both directions of the entailment.
- But, we need to be much more careful here than with LMPL!

UCB Philosophy CHAPTER 6 04/29/10

Branden Fitelson

Philosophy 12A Notes

36

- However, our "informal" semantical approach breaks down for L2PL, since we sometimes need an infinite domain to establish \neq in L2PL.
- In L2PL, if the "informal" method above reveals $p_n \neq q_n$ for *some* finite n, then it *does* follow that $p \not\models q$. For instance, $V_2 \not\models X_2$ on the last slide:
 - $-(Raa \lor Rab) \& (Rba \lor Rbb) \not\models (Raa \& Rba) \lor (Rab \& Rbb)$
 - This is just an LSL problem with 4-atoms [A = Raa, B = Rab]C = Rba, D = Rbb]. Truth-tables will generate a counterexample.
- On the other hand, if (in L2PL) our "informal" method indicates (as above) that $p_n \models q_n$ for all finite n, this does not guarantee $p \models q$. E.g.:
 - $p = (\forall x)(\exists y)Rxy \& (\forall x)(\forall y)(\forall z)[(Rxy \& Ryz) \to Rxz].$
 - $q = (\exists x) Rxx.$
- We showed above (informally) that $p_n = q_n$ for all finite n. But, we also saw that there are infinite interpretations on which p is \top but q is \bot .

UCB Philosophy CHAPTER 6 04/29/10 UCB Philosophy CHAPTER 6 04/29/10