WHAT IS CLAIMED IS:

1	1. A microencapsulation system, comprising:
2	a microcapsule production unit;
3	a fluidized passage for washing and harvesting microcapsules dispensed from the
4	microcapsule production unit;
5	a flow sensor for sizing and counting the microcapsules; and
6	a controller configured to simultaneously operate the microcapsule production
7	unit, fluidized passage and flow sensor to process the microcapsules in a
8	continuous manner.
1	2. The microencapsulation system of claim 1, wherein the controller is further
2	configured to provide feedback control for the microcapsule production unit, fluidized
3	passage and flow sensor.
1	3. The microencapsulation system of claim 1, wherein the microcapsule production unit
2	comprises:
3	a dual-dispenser system configured to form co-axial multi-lamellar microspheres;
4	and
5	a bath of solution configured to receive and form a membrane about the co-axial
6	multi-lamellar microspheres to form microcapsules.

MSC-23659-1

- 4. The microencapsulation system of claim 3, wherein dual-dispenser system is
- 2 configured to form substantially uniform co-axial multi-lamellar microspheres having
- 3 substantially different viscosities.
- 5. The microencapsulation system of claim 3, further comprising a separation baffle
- 2 system arranged down stream from the microcapsule production unit, wherein the
- 3 separation baffle system is configured to separate residual amounts of one or more fluids
- 4 used to form the co-axial multi-lamellar microspheres from the solution used to form the
- 5 membrane about the co-axial multi-lamellar microspheres.
- 6. The microencapsulation system of claim 5, further comprising a recirculation conduit
- 2 configured to recycle the one or more fluids back to the dual-dispenser system.
- 7. The microencapsulation apparatus of claim 5, further comprising a recirculation
- 2 conduit configured to recycle the solution back to the bath.
- 8. The microencapsulation system of claim 1, wherein the flow sensor comprises:
- an imaging system configured to acquire images of the microcapsules; and
- a photometer configured to measure intensity of light transmitted through the
 microcapsules.
- 1 9. A microencapsulation apparatus, comprising:
- a first microsphere dispenser; and

MSC-23659-1

3	a second microsphere dispenser arranged in alignment with the first microsphere
4	dispenser, wherein the apparatus is configured to form co-axial multi-
5	lamellar microcapsules from materials discharged from the first and
6	second microsphere dispensers.

- 1 10. The microencapsulation apparatus of claim 9, wherein flow rates of the materials
- 2 discharged through the first and second microsphere dispensers are respectively
- 3 configured to form the co-axial multi-lamellar microcapsules.
- 1 11. The microencapsulation apparatus of claim 9, further comprising first and second
- 2 pulsatile flow generators coupled respectively to the first and second microsphere
- 3 dispensers to synchronize the frequencies at which the materials are discharged from the
- 4 first and second microsphere dispensers to form the co-axial multi-lamellar
- 5 microcapsules.
- 1 12. The microencapsulation apparatus of claim 9, wherein the first and second
- 2 microsphere dispensers are spaced apart by a distance configured to form the co-axial
- 3 multi-lamellar microcapsules.
- 1 13. The microencapsulation apparatus of claim 9, wherein at least one of the first and
- 2 second microsphere dispensers comprises a plurality of nozzles configured to dispense
- 3 substantially uniform droplets of materials having substantially different viscosities.
- 1 14. The microencapsulation apparatus of claim 9, wherein at least one of the first and
- 2 second microsphere dispensers comprises an ultrasonic nozzle.
- 1 15. The microencapsulation apparatus of claim 9, wherein at least one of the first and
- 2 second microsphere dispensers is configured to move.
- 1 16. The microencapsulation apparatus of claim 9, further comprising a module
- 2 configured to direct spherical droplets formed from the materials discharged from the

MSC-23659-1

- 3 first and second microsphere dispensers to a chamber within the microencapsulation
- 4 system, wherein the chamber is adapted to suspend the spherical droplets within a fluid
- 5 and form a membrane around the spherical droplets to form the co-axial multi-lamellar
- 6 microcapsules.
- 17. The microencapsulation apparatus of claim 16, wherein at least one of the first and
- 2 second microsphere dispensers is arranged within in the vicinity of an opening of the
- 3 module leading into the chamber.
- 1 18. The microencapsulation apparatus of claim 16, wherein the second microsphere
- 2 dispenser is arranged upstream from the first microsphere dispenser.
- 1 19. A method of fabricating and processing microcapsules, comprising:
- forming distinct droplets comprising one or more materials; and
- introducing the droplets directly into a solution bath to form a membrane around
 the droplets such that a plurality of microcapsules are formed.
- 1 20. The method of claim 19, wherein the steps of forming the distinct droplets and
- 2 introducing the droplets directly into a solution bath produce a continuous flow of the
- 3 microcapsules within the solution bath.
- 1 21. The method of claim 20, further comprising:
- 2 passing the continuous flow of microcapsules from the solution bath directly into
- a washing solution;
- analyzing the microcapsules as the microcapsules flow through the washing
- 5 solution.

1	22. The method of claim 19, wherein the step of forming comprises:
2	dispensing substantially uniform droplets of a first fluid; and
3	coating the substantially uniform droplets with an immiscible solution.
1	23. The method of claim 22, wherein the at least one of the steps of dispensing the
2	substantially uniform droplets and coating the substantially uniform droplets comprises
3	discharging multiple fluids having substantially different viscosities.
1	24. A microencapsulation system, comprising:
2	a microcapsule production unit comprising:
3	a dual-dispenser system configured to form co-axial multi-lamellar
4	microspheres; and
5	a bath of solution configured to receive and form a membrane about the
6	co-axial multi-lamellar microspheres to form microcapsules;
7	a separation baffle system arranged down stream from the microcapsule
8	production unit, wherein the separation baffle system is configured to
9	separate residual amounts of one or more fluids used to form the co-axial
10	multi-lamellar microspheres from the solution used to form the membrane
11	about the co-axial multi-lamellar microspheres;
12	a fluidized passage for washing and harvesting microcapsules dispensed from the
13	microcapsule production unit;
14	a flow sensor for sizing and counting the microcapsules comprising:

15	an imaging system configured to acquire images of the microcapsules; and
16	a photometer configured to measure intensity of light transmitted through
17	the microcapsules; and
18	a controller configured to simultaneously operate the microcapsule production
19	unit, fluidized passage and flow sensor to process the microcapsules in a
20	continuous manner.
1	25. The microencapsulation system of claim 24, wherein the controller is further
2	configured to provide feedback control for the microcapsule production unit, fluidized
3	passage and flow sensor.
1	26. The microencapsulation system of claim 24, wherein dual-dispenser system is
2	configured to form substantially uniform co-axial multi-lamellar microspheres having
3	substantially different viscosities.
	•