

Please write clearly in block ca	oitals.	
Centre number	Candidate number	r
Surname		
Forename(s)		
Candidate signature		

INTERNATIONAL A-LEVEL **MATHEMATICS**

(9660/MA03) Unit P2 - Pure Mathematics

Wednesday 29 May 2019 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA booklet of formulae and statistical tables (enclosed).
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks for method may be lost.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
TOTAL	

		Answer all questions in the spaces provided.	
1	(a)	Use Simpson's rule with 7 ordinates (6 strips), to find an estimate for $\int_0^3 3^x dx$, giving your answer to 3 decimal places.	[4 marks]
		Answer	
1	(b)	A curve is defined by the equation $y = 3^x$	
		The curve intersects the line $y = 12 - 4x$ at a single point where $x = \alpha$	
1	(b) (i)	Show that α lies between 1.5 and 1.6	[2 marks]

1 (b) (ii) The equation $3^x = 12 - 4x$ can be rearranged into the form $x = \frac{\ln(12 - 4x)}{\ln 3}$

Use the iterative formula

$$x_{n+1} = \frac{\ln(12 - 4x_n)}{\ln 3}$$

with $x_1 =$ 1.5 to find the values of x_2 and x_3 , giving your answers to 3 decimal places.

[2 marks]

R

Turn over for the next question

Do not write outside the box

2	(a)	The number of fish in Lake <i>P</i> decreases by 3% each year.	
		On 1 January 2019 there are 50 000 fish in this lake.	
		Calculate, to the nearest 100, the number of fish in this lake on	
2	(a) (i)	1 January 2020,	[1 mark]
			[i iiiai k]
		Answer	
2	(a) (ii)	1 January 2029,	
_	(α) (11)		2 marks]
		Answer	
2	(a) (iii)) 1 January 2009. [2	2 marks]
		Answer	

2 (b)	The number of fish in Lake Q increases by 1.5% each year.
	On 1 January 2019 there are 25 000 fish in this lake.
	Find the first year in which there are more fish in Lake Q than in Lake P on 1 January. [4 marks]
	Answer

Turn over ▶

3 (a)	The polynomial $f(x)$ is defined by		
	$f(x) = 4x^3 + bx$	$x^2 + cx + 6$	
	where b and c are constants.		
	When $f(x)$ is divided by $(2x-3)$ the remarkable	ainder is –6	
	When $f(x)$ is divided by $(2x + 1)$ the remarkable	ainder is 10	
	Find the value of b and the value of c .		[4 marks]
	7		0 -
		b =	c –

3 (b)	Simplify $\frac{4x^2-1}{4x^2+4x-3}$, giving your answer in the form $1+g(x)$.	
	44	[4 marks]
	Answer	

Turn over ▶

4	(a) (i)	Express 3 $\cos\theta$ - 4 $\sin\theta$ in the form $R\cos\left(\theta+\alpha\right)$, where $R>0$ and 0 < α <	$\frac{\pi}{2}$,
		giving the value of α , in radians, to 3 significant figures.	[3 marks]
		Answer	
4	(a) (ii)	Hence solve the equation	
		$3\cos(y-0.1)-4\sin(y-0.1)=2.5$	
		giving all values of y , to 2 decimal places, in the interval – $\pi < y < \pi$	[3 marks]
		Answer	

4 (b)	Solve the equation	
	$7 \tan^2 x = 13 - 4 \sec x$	
	giving all solutions, to the nearest degree, in the interval $-90^{\circ} < x < 270^{\circ}$	[5 marks]
	Answer	

5 (a)	Find $\frac{dy}{dx}$ given that $y = \ln (3x + 2)$	2)	
			[2 marks]
		Answer	
5 (b)	Find $\frac{dy}{dx}$ given that $y = \frac{e^{3x}}{x^2}$		
	Express your answer in the form	$\frac{\mathrm{d}y}{\mathrm{d}x} = y \mathrm{f}(x)$	
	•	dx	[3 marks]
		•	
		Answer	

5 (c)	A curve has equation $2xy + y^2 = \frac{1}{x}$	
	where $x \neq 0$	
	Find the coordinates of the stationary point of the curve. [6]	marks]

Answer _____

	$\sin 3x = 3 \sin x - 4 \sin^3 x$	
		[3 mark
Hence find ∫s	$\sin^3 x dx$	
Hence find ∫s	$\sin^3 x dx$	[3 marks
Hence find ∫s	$\sin^3 x dx$	[3 marks
Hence find ∫s	$\sin^3 x dx$	[3 marks
Hence find ∫s	$\sin^3 x dx$	[3 marks
Hence find ∫s	$\sin^3 x dx$	[3 marks
Hence find ∫s	$\sin^3 x dx$	[3 marks
Hence find ∫s	$\sin^3 x dx$	[3 marks
Hence find ∫s	$\sin^3 x dx$	[3 marks
Hence find \int s	$\sin^3 x dx$	[3 marks
Hence find \int s	$\sin^3 x dx$	[3 marks
Hence find ∫s	$\sin^3 x dx$	[3 marks
Hence find \int s	$\sin^3 x dx$	[3 marks
Hence find \int s	$\sin^3 x dx$	[3 marks
Hence find \int s	$\sin^3 x dx$	[3 marks
Hence find \int s	$\sin^3 x dx$	[3 marks
Hence find \int s	$\sin^3 x dx$	[3 marks

7 (a)	Given that $x = \frac{1}{\cos \theta}$, use the quotient rule to show that $\frac{dx}{d\theta} = \sec \theta \tan \theta$	
	a a	[2 marks]
7 (b)	Use the substitution $x = 2 \sec \theta$, to find the exact value of $\int_{\frac{4\sqrt{3}}{3}}^{4} \frac{1}{x^2 \sqrt{(x^2 - 4)}} dx$	
	3	[7 marks]
	Answer	

Tur

Turn over ▶

0	A curve is defined i	by the parametr	ic equation	ns	
		$x = \frac{1}{t+1}$	and	$y = 3t - t^2$	
8 (a)	Find the values of	$\frac{\mathrm{d}y}{\mathrm{d}x}$ when $y = 0$			[5 marks]
		ļ	Answer _		

f(x) is expressed as a produc	or intear factors.	[4

Turn over ▶

9 The function f is defined by

$$f(x) = |x^2 - 5| -3$$
 for $-5 \le x \le 5$

9 (a) (i) Write down the range of f.

[1 mark]

Answer

9 (a) (ii) Sketch the graph of y = f(x), indicating the value where the curve crosses the y-axis.

[3 marks]

Answer	9 (a) (iii)	Solve $f(x) = 1$			[3 marks]
Answer					
Answer					
Answer					
The function g is defined by $g(x) = \frac{1}{x} \qquad \text{where } x \neq 0$ (b) (i) Find an expression for $fg(x)$. [1 main and the function g is defined by $g(x) = \frac{1}{x} \qquad \text{where } x \neq 0$ Answer					
The function g is defined by $g(x) = \frac{1}{x} \qquad \text{where } x \neq 0$ (b) (i) Find an expression for $fg(x)$. [1 main and the function g is defined by $g(x) = \frac{1}{x} \qquad \text{where } x \neq 0$ Answer					
$g(x) = \frac{1}{x} \qquad \text{where } x \neq 0$ $g(x) = \frac{1}{x} \qquad \text{where } x \neq 0$ $[1 \text{ max}]$ $g(x) = \frac{1}{x} \qquad \text{where } x \neq 0$ $[1 \text{ max}]$ $g(x) = \frac{1}{x} \qquad \text{where } x \neq 0$ $g(x) = \frac{1}{x} \qquad \text{where } x \neq 0$			Answer		
(b) (i) Find an expression for $fg(x)$. [1 main states of the content of the con) (b)	The function g is defined by			
Answer			$g(x) = \frac{1}{x}$	where $x \neq 0$	
Answer	(b) (i)	Find an expression for $fg(x)$.			[4 moult]
9 (b) (ii) Solve $fg(x) < 0$					[1 mark]
9 (b) (ii) Solve $fg(x) < 0$					
			Answer		
) (L) (!!)	Oak			
	9 (D) (II)	Solve $fg(x) < 0$			[3 marks]
Answer			Answer		

Do not write outside the box

10	It is given	that

	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{\sqrt{2x-1}} \text{where } x > 0.5$	
10 (a)	Solve the differential equation such that $y = 1$ when $x = 5$	[4 marks]
	Answer	
10 (b)	Hence find the value of x when $y = e^4$	[2 marks]

Answer _____

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

Do not write outside the box

Do not write outside the box

11 (a)	Express $\frac{6}{(1-x)^2(1+2x)}$ in the form $\frac{A}{1-x} + \frac{B}{(1-x)^2} + \frac{C}{1+2x}$	[5 marks]
	Answer	
11 (b)	Find the binomial expansion of $(1-x)^{-1}$ up to and including the term in x^3	[1 mark]
	Answer	

11 (c)	Use your answers to parts (a) and (b) to show that	
	6	

for small value	es of x , stating the values of D , E and F .	
	,	[6 ma

Answer

The region bounded by the curve $y = xe^{-1.5x}$, the line $x = 1$ and the x -axis from $x = 0$ to $x = 1$, is rotated through 2π radians about the x -axis to form a solid.
Use integration by parts twice to find the exact value of the volume of the solid
generated, giving your answer in the form π ($p+q$ e $^{-3}$), where p and q are rational. [7 mark

Do not write outside the box

		-4		-3
13	The line l_1 has equation $\mathbf{r} =$	1	+ λ	-4
		- 5		-5

and the line
$$l_2$$
 has equation $\mathbf{r} = \begin{bmatrix} 6 \\ 10 \\ c \end{bmatrix} + \mu \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$

13 (a) Given that the two lines intersect, find the value of c and the coordinates of the point of intersection. [4 marks]

$$c =$$
 and (______ , _____)

13 (b) Find the cosine of the acute angle between the two lines.

[4 marks]

Answer _____

Find the coordinates of <i>B</i> .	
Tilld the coordinates of <i>B</i> .	[5 ma
	-
Answer	

2 5

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	······································

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright information

For confidentiality purposes, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.oxfordaqaexams.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 Oxford International AQA Examinations and its licensors. All rights reserved.

Do not write outside the