SUBMISSION INFORMATION

Journal of Transportation Engineering

Types of Submissions

Technical Papers. Technical papers are full-length papers of value and interest to civil engineers. They must be original reviews of past practice, present information of current interest, or probe new fields of civil engineering activity. They should report results of thought-provoking studies that contribute to the planning, analysis, design, construction, management, or maintenance of civil engineering works. Technical papers should include a practical applications section whenever possible; theoretical manuscripts should indicate areas of additional research to implement technology transfer. Practical papers are strongly encour-

Technical Notes. Technical notes present (1) original, practical information; (2) preliminary or partial results of research; (3) concisely presented research results; and (4) innovative techniques to accomplish design objectives.

Discussions, Discussions are papers that present significant comments or questions about the technical content of a technical paper or note published in an ASCE journal, or a paper presented at a specialty conference or other meeting that has been published in an ASCE proceedings. They are limited to 2,000 words. They may he submitted during a 5-month period following the date of publication of the paper or note. Discussions should not contain matter readily found elsewhere, advocate special interests, contain obvious commercial intent, controvert established fact, or be purely speculative. Discussions follow the requirements for other manuscripts except that they do not have abstracts, introductions, or conclusions. Separate discussions must be submitted for companion papers (a study presented as Parts I and II).

Closures. Closures are responses written by the author(s) of the original paper or note. The author(s) addresses and clarifies issues raised in discussions and provides conclusions to the issues. Closures and discussions are published together.

Forums. Forums are essays of opinion and founded in fact, often on thought-provoking topics, which generate further discussion. They normally do not exceed 5,000 words. Not all ASCE journals publish forums.

Book Reviews, Book reviews assess new books whose content is judged important. They summarize the work, illuminate its strengths and weaknesses, and place it in context with existing literature. Reviews are limited to 1,200 words and are usually written upon request by a journal's book review editor or editor. Not all ASCE journals publish book reviews.

Errata, Errata are corrections of errors that appear in print. If errors are serious enough to impair understanding or mislead readers, authors should submit errata to the ASCE Journals Department. Errata are published in earliest available issue.

General Guidelines

Review and publication procedures will be faster if authors follow the basic requirements listed here and at http://www.pubs.asce.org/authors/guide.html:

- Include e-mail addresses, phone, and fax
- Restrict the length of titles to 100 characters
- Include each author's full name and Society applicable) immediately beneath the title title, affiliation, and complete mailing add footnote at the hottom of the first page of the
- · Provide an abstract of 150-175 words. As contain jargon, but should be written in pla clude a summary of the key conclusions, it a general engineering audience such as recent graduate students. To be most useful to the nity, the following should he clear: the purpo scope of the effort, the procedures used to exspecial interest), and the major findings. The clude this information to enhance the ease of k information retrieval systems. Revised abstract quested from authors, prior to the assignment of if the abstract is incomplete.
- · Provide written permission (to publish both of from original publisher if using previously and/or tables.
- All text, including abstract and references, or MS Word should be formatted as double-space Manuscripts originally created in LaTex should be so printouts will appear double-spaced.
- Suhmit line art, half tones, and color images el ps, or eps format at 300-600 dpi. For maxi present letters in upper and lower case in a sans Letters should be no smaller than 2 mm (6 pt) Background screening and grids should be elim
- work preferably at a size at which the figure will b All text, figures, and tables should be formatted 215×280 mm (8.5×11 in.) paper. Each figure an appear on a separate page.
- State the uncertainty of results if experimental detions fitted to measurements are presented. The u
- include hoth systematic (bias) errors and impreci Provide typewritten mathematics, and identify sp Define letter symbols in the text when they first range alphahetically in a section entitled "Notation"
- Use standard definitions and symbols. Authors sho ASCE Authors' Guide to Journals, Books, and Refe
- Use S1 (Système International) units and units acceptance Other units may be given in parentheses following of SI units or in an appendix.
- Include a practical applications section, if appropriate
 Cite all references in text and list in alphabetical order ences," double-spaced at the end of the paper.
- Restrict the maximum number of words or words 10,000 for papers, 3,500 for notes, and 2,000 for disc editor may waive these restrictions to encourage paper that cannot he treated within these limitations. However are advised that most topics can be covered within limits, and that the editors require clear justification
- · End the paper with a set of conclusions.

on Green and Pedestrian Level of Service: Statistical Assessment

n M. L. Hubbard¹; Darcy M. Bullock²; and Fred L. Mannering³

nan level of service measures at signalized intersections are based on pedestrian space and pedestrian delay. y not adequately reflect the negative impact of right-turning traffic on pedestrians. This paper presents a ary logit model that provides new insights into the factors that affect the likelihood that a pedestrian is and their travel path, or altered their travel speed) in response to traffic turning right (on green) during an signal timing. The statistical analysis indicates that a number of factors affect the likelihood of a pedestrian g pedestrian direction of travel, right-turn traffic volume, number of pedestrians crossing, whether the began crossing after the end of the walk interval, and the crosswalk characteristics including location) and one-way/two-way streets.

3-947X(2009)135:4(153)

sadings: Pedestrians; Traffic safety; Traffic signals; Intersections; Statistics.

on mixed-use and walkable urban areas, te pedestrian service has received inimber of policy and research reports [Fedration (FHwA) 1994; Baxter 2004; Board (TRB) 2008]. However, measures service have been limited. Currently, the ual (HCM) (TRB 2000) considers only pedestrian space in assessing pedestrian s) at signalized intersections. For HCM pethe duration of delay due to traffic signal -the negative impact of turning vehicles on oot. The HCM pedestrian space LOS methrosswalk size, signal timing, and pedestrian plumes. As a consequence, space per pedested LOS are reduced when more pedestrians sure also has a number of potential limitaalk with a low to moderate pedestrian volne of turning vehicles may have an adequate turning vehicles may cause delay and conflicts econd, space is calculated based on the entire not reflect whether the space available procaps, or whether there is space available in the walk traversed by turning vehicles. Third. pe-

destrian space LOS can be improved by increasing the width of the crosswalk even though increasing the crosswalk width is unlikely to reduce the negative impact of turning vehicles. Thus, neither of the existing HCM pedestrian LOS measures (delay or space) adequately captures the negative impact of turning vehicles on pedestrian service.

The operational framework for concurrent traffic/pedestrian service in the Manual on Uniform Traffic Control Devices (MUTCD) assumes that drivers yield to pedestrians, who legally have the right of way in the crosswalk during the pedestrian interval (FHwA 2003). However, field observations indicate that this assumption is not always valid (Hubbard et al. 2007; Van Houten et al. 2000; Zeeger and Stutts 2004; Zhang and Preve-

Driver failure to yield to pedestrians may present a safety douros 2003). problem as well as a mobility problem for pedestrians. Furthermore, the potential threat to pedestrians crossing at signalized intersections may be increasing over time due to increasingly aggressive urban drivers (Retting et al. 1999). In Washington, D.C.. the incidence of pedestrian crashes due to driver failure to yield at a signalized intersection increased from 9% of all pedestrian crashes in 1976 to 25% in 1998 (Preusser et al. 2002). In Washington, this reflects an overall trend of increased pedestrian vulnerability at signalized intersections in urhan areas, as the percentage of pedestrian crashes at signalized intersections increased from 26% of all pedestrian crashes in 1976 to 43% in 1998 (Preusser et al. 2002). Turning vehicle crashes included 45% of cases in which drivers were turning right, and 55% of cases in which drivers were turning left (Preusser et al. 2002). Due to limited information in crash reports, statistics are not available to indicate whether the drivers of right-turning vehicles were turning on red or green.

Pedestrians crossing with concurrent traffic/pedestrian service may have three potential conflicts with turning vehicles: right turns on a green (RTOG), permitted left turns on a green (LTOG), and right turns on red (RTOR). Permitted left turns and RTOR can be prohibited hut the potential conflicts hetween pedestrians and right turns on green are more difficult to address. Enforcement of

vil Engineering, Purdue Univ., 550 Stadium Mall Dr., N 47907-2051.

wil Engineering, Purdue Univ., 550 Stadium Mall Dr., IN 47907-2051 (corresponding author). E-mail:

1 Engineering, Purdue Univ., 550 Stadium Mall Dr., 47907-2051. E-mail: flm@purduc.edu

d for individual papers. The manuscript for this paper eview and possible publication on February 13, 2008; 5, 2008. This paper is part of the Journal of Trans-8, Vol. 135, No. 4, April 1, 2009. ©ASCE. ISSN 4-153-159/\$25.00.

pedestrian right-of-way laws has proven difficult in many eircumstances and, in some cases, enhanced enforcement may not be conducted without additional legislation providing stricter crosswalk codes (Harkey and Zegeer 2004).

To address the limitations of existing pedestrian LOS measures, Petritsch et al. (2005) developed a model of pedestrians' perceived LOS using ordinary least squares and ordered probit models with explanatory variables of pedestrian delay, vehicle volume and speed, and geometric characteristics of the crosswalk. The vehicle volumes included in the model are 15 min vehicle volumes for the RTOR and the permitted left-turn vehicle volume-both of which could potentially conflict with pedestrians. Vehicle volume for RTOG is included in the model only if there is an island separating the right-turn movement from the through movement. Furthermore, the pedestrians' perceived LOS is dominated by the number of lanes crossed. However, the pedestrians' perceived LOS is a noteworthy concept because it reeognizes that pedestrian service is impacted by factors other than signal delay, and it identifies and quantilies factors that affect pedestrians' perception of service.

Over the years, many other studies have addressed pedestrian LOS and have found, to varying degrees, that vehicle/pedestrian conflicts play an important role in the determination of LOS with regard to pedestrian safety (Sarkar 1993; Quaye et al. 1993; Khisty 1994; Dixon 1996; Milazzo et al. 1998; Zhang and Prevedouros 2003; Steinman and Hines 2004; Petritsch et al. 2006; Akin and Sisiopiku 2007). However, safety-hased service assessments often do not quantify the negative impact of turning vehicles on pedestrian delay. For example, conflict analysis may capture a vehicle swerving to avoid a pedestrian but it would not capture the delay and reduced service experienced by a pedestrian waiting on the enrb while vehicles turn into the crosswalk during the walk interval, which presumably would have a significant impact on overall pedestrian LOS.

The intent of the current paper is to add to the growing hody of literature on pedestrian level of service hy focusing on the pedestrian-vehicle interaction caused by concurrent right-turning vehicles (right turning on green) at signalized intersections. To do this, we define pedestrian crossings as compromised if pedestrians are delayed or change their travel path or speed in response to right-turning traffic. This measure accounts for the more subtle elements of pedestrian LOS, such as pedestrian delay on the curh, pedestrian delay during crossing, pedestrian travel path changes, and pedestrian walking speed deviations—factors not generally considered by traditional pedestrian-LOS analyses.

Methodological Approach

Our analysis considers individual pedestrian crossings, which are classified as compromised (pedestrians delayed or observed to change their travel path or speed in response to right-turning traffic) or uncompromised (no delay or change in travel path/speed). This gives a binary outcome that can be coded as one if compromised and zero otherwise. In developing a statistical model of such discrete outcome data, a variety of modeling methodologies are available including logit, probit, and mixed logit models (Washington et al. 2003). A variety of modeling options were empirically tested (this will be discussed later in this paper) and the logit model provided the hest overall results. For the structure of the standard multinomial logit formulation, McFadden (1981) has shown that if unobserved factors influencing the probability of alternate discrete outcomes (disturbances) are assumed to be

generalized extreme value distributed, the standalogit model results

$$P_{in} = \frac{\text{EXP}[\boldsymbol{\beta}_{i} \mathbf{X}_{in}]}{\sum_{\forall l} \text{EXP}(\boldsymbol{\beta}_{l} \mathbf{X}_{in})}$$

where $P_{\rm in}$ =probability that observation n results in come I; $X_{\rm in}$ =vector of characteristics that determine ity of discrete ontcome i for observation n; estimable parameters; and I=set of available discretion model can be readily estimated using stand-likelihood methods (Washington et al. 2003). In the $P_{\rm in}$ =probability of a compromised pedestrian crossivation n; $X_{\rm in}$ =vector of observable pedestrian, invehicle flow characteristics for observation n; β_i = α_i =

In the current study, there are only two possible (compromised and not compromised) so, without losity, $\beta_i X_m$ for the uncompromised ontcome can be (Winston et al. 2006). From Eq. (1), this then gives a study of pedestrian n being compromised (P_{cn}) as

$$P_{\rm cn} = \frac{1}{1 + \rm{EXP}(-\beta_{\rm c} X_{\rm cn})}$$

To assess the effect of the vector of estimated pelasticities are computed as

$$E_{\tau_{\text{ken}}}^{P_{\text{cn}}} = \frac{\partial P_{\text{cn}}}{\partial x_{\text{ken}}} \times \frac{x_{\text{ken}}}{P_{\text{cn}}}$$

that gives [using Eqs. (2) and (3)]

$$E_{r_{\rm ken}}^{P_{\rm cn}} = [1 - P_{\rm cn}] \beta_{\rm ken} r_{\rm ken}$$

where β_{ken} =estimated parameter associated with the α_{ken} . Elasticity values $E_{\lambda ken}^{Pen}$ can be roughly interpreted cent effect that a 1% change in x_{ki} has on the pedestrian n's crossing being compromised P_{en} . Although the computed probability of its crossing being confidence (P_{en}), it is customary to report the average elasticity sample population (we will report the average and the deviation of the elasticities over the pedestrian population.

As a final point, note that Eq. (4) is not applicable for variables (those variables taking on values of 0 or 1)-cases, pseudoelasticity can be calculated as (Washings 2003)

$$E_{x_{ki}}^{P_{cn}} = \left[\frac{\text{EXP}[\Delta(\beta_{c}X_{cn})][1 + \text{EXP}(\beta_{kcn}x_{kcn})]}{\text{EXP}[\Delta(\beta_{c}X_{cn})][\text{EXP}(\beta_{kcn}x_{kcn})] + 1} - 1 \right]$$

The pseudoelasticity of the variable with respect to concrossings is the percent change in the probability of a heing compromised when the variable is changed from one. When computing the average pseudoelasticity for trian population, a pseudoelasticity of 75% means that value of the variable in the subset of pedestrians when changed from 0 to 1, the probability of the crossing be promised increased, on average, by 75%.

s were observed at 13 crosswalks at 10 intertropolitan areas (six crosswalks in Indianapolk in Cincinnati, OH, five crosswalks in West one crosswalk in Portland, OR). The data set trian crossings at seven crosswalks in the cenci (CBD) and 455 pedestrian crossings at six urban crosswalks. Approximately 76 h of video provide the basis for determining compromised mple of the typical video field of view is shown deo field of view included the right-turn lane, the dication, and the entire crosswalk.

cs about pedestrians included the direction of pepedestrian compliance, the number of pedestrians
in a platoon, the number of pedestrians crossing
in a platoon, the number of pedestrians crossing
in a platoon, the number of pedestrians crossing
in interval (traveling in both directions), and
atrian's crossing was determined to be comproght-turning traffic. The direction of pedestrian
shed by near-side and far-side) was also detern in Fig. 2. As shown in this figure, near-side
j be interrupted by right-turning traffic as soon as
the curb whereas far-side pedestrians may not be
night-turning vehicles until they are near the end of
Although not addressed by this study or reflected
pedestrians may be at risk for potential conflicts in

c and far-side pedestrian definitions: (a) near-side conflict zone at beginning of walk phase); (b) fartenters conflict zone near end of walk phase)

Table 1. Sample Summary Statistics

Variable	Value
Percent of all pedestrian crossings compromised	13.8
Average right-turning vehicle flow during walk and clearance intervals in veh/h (standard deviation)	487 (283)
Percent near-side/far-side pedestrian crossings	42/58
Average number of pedestrians in signal cycle (standard deviation)	3.18 (2.45)
Percent pedestrian crossings late	22
Percent pedestrian crossings in central business district	65
Percent pedestrian crossings on crosswalk traversing one-way street	42
Percent pedestrian crossings at Edwards and Erie, Cincinnati, Ohio	5
Percent pedestrian crossings from Indianapolis, Ind.	59
Percent pedestrian crossings at Powell and 82nd, Portland, Ore.	10
Percent pedestrian crossings from West Lafayette, fnd.	26

^aSee Fig. 2.

a larger portion of the crosswalk at intersections where there are multiple exclusive right turning lanes.

Tahle I presents summary statistics for the data collected for this study. The table shows that 13.8% of all pedestrian crossings were considered compromised (pedestrian delayed, altered travel path, or altered travel speed in response to right-turning traffie). The table also shows that the average right-turn flow rate during the pedestrian interval was 487 vehicles per h, which corresponds to an average vehicle headway of 7.4 sec per vehicle and an average right-turn volume of 3.6 vehicles during the pedestrian interval. The pedestrian interval includes the walk interval (average duration 9 see) and the pedestrian elearance interval (average duration 18 sec).

There were more far-side pedestrian crossings (58% of the observations) than near side crossings (42% of the observations) in the data set. This may reflect directional imbalance associated with the times of day that the data were collected.

The average number of pedestrians crossing during a cycle was 3.18, and the data ranged from a single pedestrian to 17 pedestrians. Twenty-two percent of the pedestrian crossings were designated late, which indicated that the pedestrian arrived at the origin curb after the end of the walk interval, and entered the crosswalk during the pedestrian clearance phase. Three of the crosswalks had countdown pedestrian timers (all of these crosswalks were traversing one-way streets in downtown Indianapolis, tN); however, this factor was not statistically significant due to the high collinearity with the one-way street variable (discussed below)

Sixty-five percent of the crossings were observed at cross-walks in a CBD or shopping district, and 35% of the crossings were observed at non-CBD crosswalks. CBD crosswalks were located in Indianapolis, IN and in Cincinnati, OH, Non-CBD crosswalks were located in West Lalayette, IN and Portland, OR.

Forty-two percent of the pedestrian crossings were on cross-walks traversing a one-way street of four or five lanes; the remaining 58% of the pedestrian crossings were on crosswalks traversing two-way streets. All of the crosswalks traversing onc-way streets were in downtown Indianapolis, and the one-way streets had four or five lanes of traffic. The two-way streets in the data set ranged from two to six lanes, with a conflict zone of one

Table 2. Model Estimation Results for the Probability of a Pedestrian Being Compromised

Variable	Parameter estimate	t-statistic
Constant	-5.458	-4.537
Natural log of right-turning vehicle flow during walk and clearance intervals (in veh/h) if near-side pedestrian, ^a 0 otherwise	0.760	4.002
Natural log of right-turning vehicle flow during walk and clearance intervals (in veh/h) if far-side pedestrian, a 0 otherwise	2.072	6.729
Far-side indicator (1 if far-side pedestrian, a 0 otherwise)	-8.688	-3.771
total number of pedestrians in signal cycle	-0.228	-3.975
Late arrival indicator (1 if the pedestrian arrives at the intersection late and leaves the curb after the end of the walk interval, 0 otherwise)	0.497	2.537
Central business district indicator (1 if the intersection is in a central business district, 0 otherwise)	-1,068	-3.294
One-way street indicator (1 if pedestrian is crossing a one-way street, 0 otherwise)	0.631	1.930
Number of observations	1,304	
Log likelihood at zero	-903.86	
Log likelihood at convergence	- 437.99	

^aSee Fig. 2.

or two lanes of traffic (there were one or two receiving lanes for right-turn vehicles).

Estimation Results

Model estimation results are shown in Table 2 and corresponding variable elasticities are shown in Table 3. Graphs illustrating the probability of a compromised pedestrian under a variety of sample conditions are shown in Figs. 3 and 4. All estimated parameters are statistically significant and of plausible sign. The overall model fit is quite good with the log likelihood increasing from -903.86 when β_c = 0 to -437.99 when β_c is at its converged value. This results in a very reasonable p2 of 0.515 (computed as one minus the log likelihood at convergence minus the log likelihood at zero) (Washington et al. 2003).

Examining specific estimation results, we find that higher right-turn vehicle volumes (entered as the natural log of right-turn vehicle volume) increases the probability of a near-side pedestrian being compromised, as expected. The elasticity of this variable is 3.7 (as shown in Table 3). This means that a 1% increase in the right-turning vehicle flow will increase the probability of a pedestrian-crossing compromise by 3.7%. This and all elasticity values presented are valid for small changes in variable, in this case the right-turn flow rate.

Higher right-turn vehicle volumes for far-side pedestrians (as with the near-side case) increases the probability of being compromised. However, far-side pedestrians have an inherently lower probability of being compromised (relative to near-side pedestrians) as indicated by the negative value of the far-side indicator variable. The net effect of these far-side variables in terms of elasticities is illustrated in Fig. 5. The average elasticity for varying flow rates is shown, as is the standard deviation of the elas-

Table 3. Elasticity Estimates for the Probability of Compromised

Variable

Natural log of right-turning vehicle flow during walk and clearance intervals (in veh/h) if near-side pedestrian, a 0 otherwise

Natural log of right-turning vehicle flow during walk and clearance intervals (in veh/h) if far-side pedestrian, 0 otherwise Far-side indicator

(t if far-side pedestrian, 0 otherwise) Total number of pedestrians in signal cycle

Late arrival indicator

(1 if the pedestrian arrives at the intersection late and leaves the curb after the end of the walk interval, 0 otherwise)

Central business district indicator

(I if the intersection is in a central business district, 0 otherwise)

One-way street indicator

(1 if pedestrian is crossing a one-way street, 0

npact of CBD and number of pedestrians per compromise (half-near and half-far side, coming a two-way street)

Fig. 5 as an error bar. At low right-turn flow to four or fewer vehicles during the pedesthe data set with an adequate number of obserue is still significantly less than the 3.7 elasticity service for near-side and far-side pedestrians at vehicle may delay a near-side pedestrian.

ws that an increasing number of pedestrians the signal cycle was found to have a significant on the probability of a pedestrian being Ith a 1% increase in the number of pedestrians

dight Tum Vehicles during Pedestrian Interval

for combination of far-side variables (average and ard deviation)

arriving during the signal cycle decreasing the probability of a pedestrian-crossing compromise by 0.65% (see Tahle 3). This finding suggests that pedestrian LOS is improved when additional pedestrians are present (pedestrian volumes in our sample ranged from 1 to 17 pedestrians per cycle). This finding is also contrary to the traditional pedestrian space level of service measures in the Highway Capacity Manual, which indicate that additional pedestrians reduce the LOS.

Pedestrians that arrived late at the intersection and leave the curb after the end of the walk interval had a significantly higher probability of being compromised (see Table 2). Table 3 shows that pedestrians that arrived late were 52.8% more likely, on average, to be compromised than those that did not. Among other possibilities, it is speculated that late pedestrians may be more likely to be compromised because they do not have an opportunity to "stake their claim" to the crosswalk at the heginning of the walk interval.

As indicated in Table 3, pedestrians crossing intersections in a central business district (CBD) were 60% less likely to be compromised, on average, than those crossing non-CBD intersections. One possibility for this is that drivers in central business districts may be more likely to look for pedestrians and yield to pedestrians in the crosswalk.

Finally, crosswalks traversing one-way streets were found to increase the probability of being compromised by 69.6% on average (see Tables 2 and 3). When pedestrians cross a one-way street, the entire crosswalk is the conflict zone, because right turns can turn into any lane of the crosswalk. The conflict zone for the one-way streets in the database was four or five lanes of traffic, which translates into a much longer conflict zone than that for the two-way streets in the database—all of which had conflict zones spanning one or two lanes of tral'fic.

Model Estimation Tests

Because the central business district (CBD) was found to have a large effect on the probability of being compromised, statistical tests were conducted to determine if all of the model parameters varied between CBD and non-CBD locations (not just simply by a CBD indicator). To test for this, a likelihood ration test is applied and the appropriate statistic is

$$\chi^2 = -2[LL(\beta_T) - LL(\beta_{CBD}) - LL(\beta_{non-CBD})]$$
 (6)

where $LL(\beta_T)$ =log likelihood at convergence of the model estimated with the data from both CBD and non-CBD pedestrian crossings; $LL(\beta_{CBD}) = \log \text{ likelihood at convergence of the model}$ using only CBD pedestrian crossings; and LL($\beta_{non,CBD}$)=log likelihood at convergence of the model using non-CBD pedestrian crossings. This statistic is χ^2 distributed with degrees of freedom equal to the summation of the number of estimated parameters in the CBD and non-CBD models minus the number of estimated parameters in the "total" data model. The calculated χ^2 statistic of 2.52 is much less than the critical χ^2 value of 7.78 for the 90% confidence level. Therefore, the hypothesis that CBD and non-CBD parameters are the same cannot be rejected and estimating a single model for all data is appropriate.

Because we have multiple pedestrian observations from each intersection, there is the possibility that the unobserved factors (disturbances) may be correlated for each intersection would violate the independence of disturbances assumption used to arrive at Eq. (1). To test for this possibility, we estimated a logit model

See Fig. 2,

with random effects (Washington et al. 2003), but the random effects were statistically insignificant, thus, suggesting that the standard binary model was appropriate.

To test other discrete-outcome modeling approaches, a mixed (random parameters) logit model (Milton et al. 2008) and a binary probit model were also estimated using the data. When estimating the mixed logit model, no parameters were found to be random and, thus, a simple binary logit model with parameters fixed over the sample (as shown in Table 2) was appropriate. With regard to the binary probit model, the estimated signs and magnitudes of the variables were very similar to the logit-model results and we, thus, present only the binary logit model findings in this paper.

Summary and Conclusions

Our application of a binary logit model of pedestrian compromises shows that the probability of a pedestrian compromise increases with increasing right-turn vehicle flow rate, and is higher for crosswalks outside the CBD compared to crosswalks in the CBD for the same right-turn flow rate. The estimation results also show that: crossing from the far-side decreases the likelihood of a compromise at low right-turning vehicle volumes, additional pedestrians crossing during the cycle decreases the likelihood of a compromise, late pedestrian arrivals resulting in curb departures after the end of the walk interval increases the likelihood of a compromise, and crossing at a one-way street increases the likelihood of a compromise.

The findings show that pedestrian level of service is a complex concept that is determined by many factors. One important finding of this research is the implication that pedestrian service is enhanced by the presence of additional pedestrians rather than degraded by the presence of additional pedestrians. This finding contradicts currently used level of service methods that are based on pedestrian space.

This paper provides some initial insight into the rather complex effect that right turns on green have on pedestrian service. The findings underscore the importance of quantifying conflicting vehicle volumes during the pedestrian interval and considering this information when evaluating alternative signal timing strategies at signalized intersections. Current intersection level of service analysis quantifies the effect of pedestrians on right-turning vehicles, but does not consider the effect of right-turning vehicles on pedestrians, which is a potentially important oversight in determining overall intersection level of service.

The findings of this research regarding pedestrian direction of travel may also be relevant when considering the potential benefits of a leading pedestrian interval (LPI) to improve pedestrian service at a signalized intersection. An LPI provides a pedestrian head start at the beginning of the walk interval, and has been reported to improve pedestrian service (Van Houten et al. 2000). Critics of LPIs may contend that this strategy only helps near-side pedestrians. The findings of this research indicate that near-side pedestrians may be more likely to be compromised (especially at low right-turn flow rates) and, thus, a strategy that addresses the needs of near-side pedestrians may be a very effective one.

In terms of future work, it would be interesting to consider more expansive database with crosswalks reflecting a wide range of geographic locations, geometric conditions, pedestrian volumes, and vehicle volumes. It would also be interesting to expand the data and statistical evaluation to include other vehicle-turning possibilities such as permitted left turns and right turns on red, as well as right turns on green.

References

- Akin, D., and Sisiopiku, V. (2007). "Modeling interaction destrians and turning-vehicles at signalized crosswunder combined pedestrian-vehicle interval." Proc., Research Board Annual Meeting, National Research ington, D.C., Paper No. 07-2710.
- Baxter, J. (2004). "Building safe roads." *Public Roads*, 67 Dixon, L. (1996). "Bicycle and pedestrian level of service measures and standards for congestion management systems of the properties of the properti
- Federal Highway Administration (FHwA). (1994). "The cling and walking study." Final Rep., Transportation changing America, U.S. Dept. of Transportation, Washing
- Federal Highway Administration (FHwA). (2003). Manual traffic control devices, U.S. Dept. of Transportation, D.C.
- Harkey, D., and Zegeer, C. (2004). "PEDSAFE: Pedestrian and countermeasure selection system." Publication No. F. 003, Federal Highway Administration, Washington, D.C.
- Hubbard, S. M. L., Awwad, R., and Bullock, D. M. (2007) perspective on assessing impact of turning vehicles on level of service at signalized intersections." *Transportation Record.* 2027, Transportation Research Board, Washington, 36.
- Khisty, C. (1994). "Evaluation of pedestrian facilities: Beyond of-service concept." *Transportation Research Record*. 1438 tation Research Board, Washington, D.C., 45–50.
- McFadden, D. (1981). "Econometric models of probabilistic c structural analysis of discrete data with econometric appl F. Manski and D. L. McFadden, eds., MIT Press, Cambridge
- Milazzo, J., II, Rouphail, N., Hummer, J., and Allen, D. (1998 of pedestrians on capacity of signalized intersections." Transecret Research Record. 1646, Transportation Research Board, W D.C., 37-46.
- Milton, J., Shankar, V., and Mannering, F. (2008). "Highway severities and the mixed logit model: An exploratory empirical sis." Accid. Anal Prev., 40(1), 260-266.
- Petritsch, T., et al. (2006). "Level-of-service model for urban facilities with sidewalks." *Transportation Research Record*Transportation Research Board, Washington, D.C., 84–89.
- Petritsch, T., Landis, B., McLeod, P., Huang, H., Challa, S., and plan, M. (2005). "Level-of-service model for pedestrians at significance." *Transportation Research Record*. 1939, Transportation, D.C., 55–62.
- Preusser, D. F., Wells, J. K., Williams, A. F., and Weinstein, H. B. "Pedestrian crashes in Washington, D.C. and Baltimore." *Accidence* 14, 703–710.
- Quaye, K., Leden, L., and Hauer, E. (1993). "Pedestrian accident left turning traffic at signalized intersections." AAA Foundation Traffic Safety, Washington, D.C.
- Retting, R. A., Ulmer, R. G., and Williams, A. F. (1999). "Prevalence characteristics of red light running crashes in the United States Accid. Anal Prev., 31, 687-694.
- Sarkar, S. (1993). "Determination of service levels for pedestrials." European examples." *Transportation Research Record.* 1405. Toportation Research Board, Washington, D.C., 35–42.
- Steinman, N., and Hines, D. (2004). "Methodology to assess designatives for pedestrian and bieyelist crossings at signalized introns." Transportation Research Record. 1878, Transport
- Transportation Research Board (TRB). (2000). Highway capacity 2000, Transportation Research Board, Washington, D.C.
- Transportation Research Board (TRB). (2008). "NCHRP 03-70 m¹ dal level of service analysis for urban streets." (http://www.ll TRBNet/ProjectDisplay.asp?ProjectID = 824) (Feb. 12, 2008).

- R. Farmer, C., and Van Houten, J. (2000). auding pedestrian interval signal phase at three ansportation Research Record. 1734, Transfer, Washington, D.C., 86–92.
- Mannering, F. (2003). Statistical and Mannering, F. (2003). Statistical and for transportation data analysis, Chapman and
- n, Fla.

 And Mannering, F. (2006). "An exploration of
- the offset hypothesis using disaggregate data: The case of airbags and antilock brakes." J. Risk and Uncertainty, 32(2), 83–99.
- Zeeger, C., and Stutts, J. (2004). "A guide for reducing collisions involving pedestrians." *National Cooperative Highway Research Program Rep.* 500, Transportation Research Board, Washington, D.C.
- Zhang, L., and Prevedouros, P. (2003). "Signalized intersection level of service incorporating safety risk." Transportation Research Record. 1852, Transportation Research Board, Washington, D.C., 77–86.