BELAJAR PHALCON

BELAJAR PHALCON Buku Phalcon Untuk Pemula

Rolly M. Awangga Politeknik Pos Indonesia

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright ©2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herin may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Survey Methodology / Robert M. Groves . . . [et al.].
p. cm.—(Wiley series in survey methodology)
"Wiley-Interscience."
Includes bibliographical references and index.
ISBN 0-471-48348-6 (pbk.)
1. Surveys—Methodology. 2. Social
sciences—Research—Statistical methods. I. Groves, Robert M. II. Series.

HA31.2.S873 2007 001.4'33—dc22 2004044064 Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

CONTRIBUTORS

MASAYKI ABE, Fujitsu Laboratories Ltd., Fujitsu Limited, Atsugi, Japan

- L. A. AKERS, Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona
- G. H. Bernstein, Department of Electrical and Computer Engineering, University of Notre Dame, Notre Dame, South Bend, Indiana; formerly of Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona

CONTENTS IN BRIEF

PART I SUBMICRON SEMICONDUCTOR MANUFACTURE

2	First Edited Book Sample Chapter Title G. Alvarez and R. K. Watts	5
3	Second Edited Book Sample Chapter Title	7
	George Smeal, Ph.D., Sally Smith, M.D. and Stanley Kubrick	

CONTENTS

List of Figures

List of Tables	xiii
Foreword	XV
Preface	xvii
Acknowledgments	xix
Acronyms	xxi
Glossary	xxiii
List of Symbols	XXV
Introduction Catherine Clark, PhD.	xxvii
References	xxvii
PART I SUBMICRON SEMICONDUCTOR MANUFACTURE	
1 The Submicrometer Silicon MOSFET	3
1.1 Here is a normal section	3
	ix

хi

X CONTENTS

		1.1.1 This is the subsection	3
	1.2	Tips On Special Section Heads	4
	1.3	This Version of Section Head will be sent Contents	4
	1.4	This show how to explicitly break lines	
		in Table of Contents	4
	1.5	How to get lower case in section head: pH	4
	1.6	How to use a macro that has both upper and lower case parts:	
		V_{Txyz}	4
	1.7	Equation	4
2		Edited Book Sample Chapter Title varez and R. K. Watts	5
	2.1	Here is a normal section	5
3		and Edited Book Sample Chapter Title ge Smeal, Ph.D., Sally Smith, M.D. and Stanley Kubrick	7
	3.1	Sample Section	7
	3.2	Example, Figure and Tables	8
		3.2.1 Side by Side Tables and Figures	8
	3.3	Algorithm	9
		Problems	10
		Exercises	10
	3.4	Summary	11
Refe	erences		11
App	endix:	Γhis is the Chapter Appendix Title	11
Cha	pter App	pendix	12
A	This i	s the Appendix Title	13
В	Appe	ndix	15
С	Alterr	nate Reference Styles	17
Refe	erences		19
Refe	erences		21
Inde	X		23

LIST OF FIGURES

	3.1	Short figure caption.	8
	3.2	Oscillograph for memory address access operations, showing 500 ps address access time and superimposed signals of address access in 1 kbit memory plane.	8
	3.3	This caption will go on the left side of the page. It is the initial caption of two side-by-side captions.	8
	3.4	This caption will go on the right side of the page. It is the second of two side-by-side captions.	8
3	-A.1	This is an appendix figure caption.	12
	A.1	This is an appendix figure caption.	13

LIST OF TABLES

3.1	Small Table	8
3.2	Effects of the two types of $\alpha\beta\sum_B^A$ scaling proposed by Dennard and co-workers a,b	8
3.3	Table Caption	9
3.4	Table Caption	9
3-A.1	This is an appendix table caption	12
A.1	Appendix table caption	13

FOREWORD

This is the foreword to the book.

PREFACE

This is an example preface. This is an example preface. This is an example preface. This is an example preface.

R. K. WATTS

Durham, North Carolina September, 2007

ACKNOWLEDGMENTS

From Dr. Jay Young, consultant from Silver Spring, Maryland, I received the initial push to even consider writing this book. Jay was a constant "peer reader" and very welcome advisor durying this year-long process.

To all these wonderful people I owe a deep sense of gratitude especially now that this project has been completed.

G. T. S.

ACRONYMS

ACGIH American Conference of Governmental Industrial Hygienists

AEC Atomic Energy Commission

OSHA Occupational Health and Safety Commission SAMA Scientific Apparatus Makers Association

GLOSSARY

NormGibbs Draw a sample from a posterior distribution of data with an un-

known mean and variance using Gibbs sampling.

pNull Test a one sided hypothesis from a numberically specified poste-

rior CDF or from a sample from the posterior

sintegral A numerical integration using Simpson's rule

SYMBOLS

- A Amplitude
- & Propositional logic symbol
- a Filter Coefficient
- B Number of Beats

INTRODUCTION

CATHERINE CLARK, PHD.

Harvard School of Public Health Boston, MA, USA

The era of modern began in 1958 with the invention of the integrated circuit by J. S. Kilby of Texas Instruments [1]. His first chip is shown in Fig. I. For comparison, Fig. I.2 shows a modern microprocessor chip, [4].

This is the introduction. This is the introduction. This is the introduction. This is the introduction. This is the introduction.

$$ABCD\mathcal{E}\mathcal{F}\alpha\beta\Gamma\Delta\sum_{def}^{abc}\tag{I.1}$$

REFERENCES

- 1. J. S. Kilby, "Invention of the Integrated Circuit," *IEEE Trans. Electron Devices*, **ED-23**, 648 (1976).
- 2. R. W. Hamming, *Numerical Methods for Scientists and Engineers*, Chapter N-1, McGraw-Hill, New York, 1962.
- 3. J. Lee, K. Mayaram, and C. Hu, "A Theoretical Study of Gate/Drain Offset in LDD MOSFETs" *IEEE Electron Device Lett.*, **EDL-7**(3). 152 (1986).

xxvii

SUBMICRON SEMICONDUCTOR MANUFACTURE

CHAPTER 1

THE SUBMICROMETER SILICON MOSFET

The sheer volumne of answers can often stifle insight...The purpose of computing is insight, not numbers.

—Hamming [2]

1.1 Here is a normal section

Here is some text.

1.1.1 This is the subsection

Here is some normal text. Here is some normal text.

4 THE SUBMICROMETER SILICON MOSFET

1.1.1.1 This is the subsubsection Here is some text after the subsubsection. Here is some text after the subsubsection. Here is some text after the subsubsection. Here is some text after the subsubsection.

This is the paragraph Here is some normal text. Here is some normal text. Here is some normal text. Here is some normal text.

1.2 Tips On Special Section Heads

Here are some things you can do for a special section head.

1.3 Break Long Section heads with double backslash

Here is some normal text. Here is some normal text. Here is some normal text.

1.4 Here is a Section Title

See this section head for information on how to explicitly break lines in table of contents.

1.5 How to get lower case in section head: pH

Here is some normal text. Here is some normal text. Here is some normal text.

1.6 How to use a macro that has both upper and lower case parts: V_{Txyz}

See the top of this file where the definition and box were set.

1.7 Equation

For optimal vertical spacing, no blank lines before or after equations

$$\alpha\beta\Gamma\Delta$$
 (1.1)

as you see here.

CHAPTER 2

FIRST EDITED BOOK SAMPLE CHAPTER TITLE

G. ALVAREZ AND R. K. WATTS

Carnegie Mellon University, Pittsburgh, Pennsylvania

2.1 Here is a normal section

Here is some text.

CHAPTER 3

SECOND EDITED BOOK SAMPLE CHAPTER TITLE

George Smeal, Ph.D. 1 , Sally Smith, M.D. 2 and Stanley Kubrick 1

3.1 Sample Section

Here is some sample text.

¹AT&T Bell Laboratories Murray Hill, New Jersey

²Harvard Medical School, Boston, Massachusetts

3.2 Example, Figure and Tables

EXAMPLE 3.1 Optional Example Name

Use Black's law [Equation (6.3)] to estimate the reduction in useful product life if a metal line is initially run at 55°C at a maximum line current density.

illustration here

Figure 3.1 Short figure caption.

Figure 3.2 Oscillograph for memory address access operations, showing 500 ps address access time and superimposed signals of address access in 1 kbit memory plane.

Table 3.1		Small '	Table
one	two	three	four
С	D	Е	F

Table 3.2 Effects of the two types of $\alpha\beta\sum_{B}^{A}$ scaling proposed by Dennard and co-workers a,b

Parameter	κ Scaling	κ, λ Scaling
Dimension	κ^{-1}	λ^{-1}
Voltage	κ^{-1}	κ^{-1}
Currant	κ^{-1}	λ/κ^2
Dopant Concentration	κ	λ^2/κ

^aRefs. 19 and 20.

3.2.1 Side by Side Tables and Figures

Space for figure...

Space for second figure...

side of the page. It is the initial caption of two side-by-side captions.

Figure 3.3 This caption will go on the left Figure 3.4 This caption will go on the right side of the page. It is the second of two sideby-side captions.

The command \sidebyside{} { } works similarly for tables:

 $^{{}^{}b}\kappa, \lambda > 1.$

```
Table 3.3
             Table Caption

  Table 3.4
  Table Caption

                                                                    C
       two
               three
                                                       В
                                                                             D
one
      little
              sample
                         table
                                                  second little
                                                                 sample
                                                                           table
```

When using \sidebyside, one must use the cross referencing command \label{} after and *outside* of \caption{}:

```
\begin{table}
 \sidebyside{\caption{Table Caption}\label{tab1}
 first table}
 {\caption{Table Caption}\label{tab2} second table}
 \end{table}
or,
 \begin{figure}
 \sidebyside{\vskip<dimen>\caption{fig caption}\label{fig1}}
 {\vskip<dimen>\caption{fig caption}\label{fig2}}
 \end{figure}
```

3.3 Algorithm

This is a sample algorithm.

Algorithm 3.1

```
state\_transition algorithm  {
          for each neuron j \in \{0, 1, \dots, M-1\}
               calculate the weighted sum S_i using Eq. (6);
               if (S_j > t_j)
                         \{\text{turn ON neuron; } Y_1 = +1\}
               else if (S_j < t_j)
                        {turn OFF neuron; Y_1 = -1}
               else
                         {no change in neuron state; y_i remains unchanged;}
          }
}
```

Here is some normal text. Here is some normal text.

This is a sample of extract or quotation. This is a sample of extract or quotation. This is a sample of extract or quotation.

- 1. This is the first item in the numbered list.
- 2. This is the second item in the numbered list. This is the second item in the numbered list. This is the second item in the numbered list.
- This is the first item in the itemized list.
- This is the first item in the itemized list. This is the first item in the itemized list. This is the first item in the itemized list.

This is the first item in the itemized list.

This is the first item in the itemized list. This is the first item in the itemized list. This is the first item in the itemized list.

PROBLEMS

- **3.1** For Hooker's data, Problem 1.2, use the Box and Cox and Atkinson procedures to determine a appropriate transformation of PRES in the regression of PRES on TEMP. find $\hat{\lambda}$, $\tilde{\lambda}$, the score test, and the added variable plot for the score. Summarize the results.
- **3.2** The following data were collected in a study of the effect of dissolved sulfur on the surface tension of liquid copper (Baes and Killogg, 1953).

		Y= Decre	ease in Surface Tension	
x	= Weight % sulfur	r (dynes/cm), two Replicates		
0.	034	301	316	
0.	093	430	422	
0.	30	593	586	

- a) Find the transformations of X and Y sot that in the transformed scale the regression is linear.
- b) Assuming that X is transformed to $\ln(X)$, which choice of Y gives better results, Y or $\ln(Y)$? (Sclove, 1972).
- c) In the case of α_1 ?

- d) In the case of α_2 ?
- **3.3** Examine the Longley data, Problem 3.3, for applicability of assumptions of the linear model.
- **3.4** In the case of Γ_1 ?
- **3.5** In the case of Γ_2 ?

EXERCISES

3.1 For Hooker's data, Exercise 1.2, use the Box and Cox and Atkinson procedures to determine a appropriate transformation of PRES in the regression of PRES on

TEMP. find $\hat{\lambda}$, $\tilde{\lambda}$, the score test, and the added variable plot for the score. Summarize the results.

3.2 The following data were collected in a study of the effect of dissolved sulfur on the surface tension of liquid copper (Baes and Killogg, 1953).

		Y= Decre	ease in Surface Tension	
x	= Weight % sulfur	ur (dynes/cm), two Replicates		
0.	034	301	316	
0.	093	430	422	
0.	30	593	586	

- a) Find the transformations of X and Y sot that in the transformed scale the regression is linear.
- b) Assuming that X is transformed to $\ln(X)$, which choice of Y gives better results, Y or $\ln(Y)$? (Sclove, 1972).
- c) In the case of Δ_1 ?
- d) In the case of Δ_2 ?
- **3.3** Examine the Longley data, Problem 3.3, for applicability of assumptions of the linear model.
- **3.4** In the case of Γ_1 ?
- **3.5** In the case of Γ_2 ?

3.4 Summary

This is a summary of this chapter. Here are some references: [1], [4].

REFERENCES

- J. S. Kilby, "Invention of the Integrated Circuit," *IEEE Trans. Electron Devices*, ED-23, 648 (1976).
- R. W. Hamming, Numerical Methods for Scientists and Engineers, Chapter N-1, McGraw-Hill, New York, 1962.
- 3. J. Lee, K. Mayaram, and C. Hu, "A Theoretical Study of Gate/Drain Offset in LDD MOSFETs" *IEEE Electron Device Lett.*, **EDL-7**(3). 152 (1986).
- 4. A. Berenbaum, B. W. Colbry, D.R. Ditzel, R. D Freeman, and K.J. O'Connor, "A Pipelined 32b Microprocessor with 13 kb of Cache Memory," it Int. Solid State Circuit Conf., Dig. Tech. Pap., p. 34 (1987).

Appendix: This is the Chapter Appendix Title

This is an appendix with a title.

$$\alpha\beta\Gamma\Delta$$
 (A.1)

Figure 3-A.1 This is an appendix figure caption.

Table 3-A.1 This is an appendix table caption

Date	Event
1867	Maxwell speculated the existence of electromagnetic waves.
1887	Hertz showed the existence of electromagnetic waves.
1890	Branly developed technique for detecting radio waves.
1896	Marconi demonstrated wireless telegraph.
1897	Marconi patented wireless telegraph.
1898	Marconi awarded patent for tuned communication.
1898	Wireless telegraphic connection between England and France established.

Appendix

This is a Chapter Appendix without a title.

Here is a math test to show the difference between using Computer Modern math fonts and MathTimes math fonts. When MathTimes math fonts are used the letters in an equation will match TimesRoman italic in the text. (g, i, y, x, P, F, n, f, etc.) Caligraphic fonts, used for \mathcal{ABC} below, will stay the same in either case.

$$g_i(y|f) = \sum_{x} P(x|F_n) f_i(y|x) \mathcal{ABC}$$
 (B.1)

where $g_i(y|F_n)$ is the function specifying the probability an object will display a value y on a dimension i given F_n the observed feature structure of all the objects.

APPENDIX A THIS IS THE APPENDIX TITLE

This is an appendix with a title.

$$\alpha\beta\Gamma\Delta$$
 (A.1)

Figure A.1 This is an appendix figure caption.

 Table A.1
 Appendix table caption

Alpha	Beta	Gamma	Delta
α	β	Γ	Δ

APPENDIX B

This is an appendix without a title.

Here is a math test to show the difference between using Computer Modern math fonts and MathTimes math fonts. When MathTimes math fonts are used the letters in an equation will match TimesRoman italic in the text. (g, i, y, x, P, F, n, f, etc.) Caligraphic fonts, used for \mathcal{ABC} below, will stay the same in either case.

$$g_i(y|f) = \sum_x P(x|F_n)f_i(y|x)\mathcal{ABC}$$
 (B.1)

where $g_i(y|F_n)$ is the function specifying the probability an object will display a value y on a dimension i given F_n the observed feature structure of all the objects.

APPENDIX C ALTERNATE REFERENCE STYLES

REFERENCES

- 1. J. S. Kilby, "Invention of the Integrated Circuit," *IEEE Trans. Electron Devices*, **ED-23**, 648 (1976).
- 2. R. W. Hamming, *Numerical Methods for Scientists and Engineers*, Chapter N-1, McGraw-Hill, New York, 1962.
- 3. J. Lee, K. Mayaram, and C. Hu, "A Theoretical Study of Gate/Drain Offset in LDD MOSFETs" *IEEE Electron Device Lett.*, **EDL-7**(3). 152 (1986).
- 4. A. Berenbaum, B. W. Colbry, D.R. Ditzel, R. D Freeman, and K.J. O'Connor, "A Pipelined 32b Microprocessor with 13 kb of Cache Memory," it Int. Solid State Circuit Conf., Dig. Tech. Pap., p. 34 (1987).

REFERENCES

- [Kil76] J. S. Kilby, "Invention of the Integrated Circuit," *IEEE Trans. Electron Devices*, **ED-23**, 648 (1976).
- [Ham62] R. W. Hamming, *Numerical Methods for Scientists and Engineers*, Chapter N-1, McGraw-Hill, New York, 1962.
- [Hu86] J. Lee, K. Mayaram, and C. Hu, "A Theoretical Study of Gate/Drain Offset in LDD MOSFETs" *IEEE Electron Device Lett.*, **EDL-7**(3). 152 (1986).
- [Ber87] A. Berenbaum, B. W. Colbry, D.R. Ditzel, R. D Freeman, and K.J. O'Connor, "A Pipelined 32b Microprocessor with 13 kb of Cache Memory," it Int. Solid State Circuit Conf., Dig. Tech. Pap., p. 34 (1987).

Index

computing the purpose, 3

microelectronics, xxvii modern, xxvii