	Linear Dependence & Independence
_	a set of vectors $\vec{\chi}_1, \vec{\chi}_2, \vec{\chi}_3,, \vec{\chi}_n$
	is linearly dependent
(0)	when there exists a set of scalar Cica Cn
5=0	(which are not all equal to 0)
(0)	(which are not all equal to 0) such that $C_1\vec{x}_1 + C_2\vec{x}_2 + \cdots + C_n\vec{x}_n = \vec{0}$.
-	-> that same set of vectors is linearly independent
	if there is no such set of scalars.
	that is, $C_1\vec{x}_1 + C_2\vec{x}_2 + m + C_n\vec{x}_n = \vec{O}$
	only when ci = 0 for all i=1,, n.
	/ / / / / / / / / / / / / / / / / / / /
	Ex) Are $\begin{pmatrix} 1\\2\\3 \end{pmatrix} \begin{pmatrix} 4\\6\\7 \end{pmatrix} \begin{pmatrix} -2\\-4\\-6 \end{pmatrix}$ lin. dep, or lin, indep.?
	(3), (7), (-6)
	(1 - 6/1) - 6/4) - (-2) - (0)
	Solve $C_1\begin{pmatrix} 1\\2\\3\end{pmatrix} + C_2\begin{pmatrix} 4\\0\\7\end{pmatrix} + C_3\begin{pmatrix} -2\\-4\\-6\end{pmatrix} = \begin{pmatrix} 0\\0\\0\end{pmatrix}$
	1 2 3
	this system: $3c_1 + 7c_2 - 6c_2 = 0$ homogeneous
	Same as $A\vec{c} = \vec{0}$ with $\vec{c} = (\vec{c})$
	Same as $A\vec{c} = \vec{0}$ with $\vec{c} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$ solving;
	1 4 -2 0 2 0 -4 0 3 7 -6 0
	37-60
	Same as finding intersection of 3 homogeneous
	planes. Note == o is definitely a solution!
	plantely a solution.

Check that:
$$O(\frac{1}{2}) + O(\frac{4}{9}) + O(\frac{-2}{4}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \sqrt{\frac{1}{16}} =$$