Multi-Protocol Label Switching (MPLS)

Index

- Multiprotocol Label Switching (MPLS)
- VPNs

Virtualization of networks

- Virtualization of resources is a powerful abstraction in systems engineering
- Computing examples: virtual memory, virtual devices
- Layering of abstractions
 - o Don't sweat the details of the lower layer, only deal with lower layers abstractly
- The Internet: virtualizing networks

1974: Multiple Unconnected Nets

...differing in

- ARPAnet
- Data-over-cable networks
- Packet satellite network (Aloha)
- Packet radio network

- Addressing conventions
- Packet formats
- Error recovery mechanisms
- Routing

Cerf & Kahn's Internetwork Architecture

- Two layers of addressing: local network and internetwork
- New layer (IP) makes everything homogeneous at internetwork layer
- Underlying local network technology (Ethernet, satellite, ATM, MPLS) becomes "invisible" at internetwork layer. Looks like a link layer technology to IP!

Virtual Circuit vs. Datagram Networks

Virtual Circuit Networks

Datagram Networks

- VC establishment prior to data transmission, first packets delayed
- All packets follow the same path
- In-order delivery
- Failures must be explicitly handled
- Exact matching of VC identifier
- Packets contain VC identifier
- Routers maintain per-VC info
- Easy to combine with resource reservation
- Traffic engineering easy

- No VC establishment, data may be sent immediately
- Packets forwarded independently
- Packets may be reordered in transit
- Robust to link or node failures
- Longest prefix matching of addresses
- Packets contain source & destination addresses
- Routers maintain only aggregate destination info
- Resource reservation hard, requires additional protocols
- Traffic engineering harder

Multiprotocol Label Switching (MPLS)

- Initial goal: speed up IP forwarding by forwarding based on a fixed length label (instead of IP address)
 - o Borrowing ideas from Virtual Circuit (VC) approach
 - o IP datagram still keeps IP address!

Objectives and Advantages

- 1. Flow detection and routing based on labels (simpler and faster decision process)
 - Greater scalability
 - Better performance (main reason at the beginning, not significant nowadays...)
 - Separation of Routing and Forwarding
 - Routing: how to send packets from source to destination global action
 - Forwarding: transfer a packet from an entry port to an exit port local action
- 2. Enable establishing VPNs across telecom operator's network
 - Interconnection simplicity for clients that want to use different sites as if they were a single network
- 3. Enable traffic engineering
 - Allows going beyond the routing protocols when deciding the path for a packet

MPLS supports

 Integration with routing protocols (BGP, OSPF, etc.), unicast, multicast, source routing, route pinning, QoS

MPLS - Global View

MPLS - Architecture

- Switching based on labels (labels change at every node label-swapping)
- Labels transported in frames or shim header
- MPLS node
 - Supports MPLS, forwards based on labels, and supports one or more L3 routing protocols
- Label Switching Routers (LSR)
 - MPLS Nodes capable of forwarding native L3 packets
- Edge routers
 - o MPLS nodes at the border of MPLS domains
 - Ingress
 - Decides Forwarding Equivalence Class (FEC)
 - Transmits packet with label corresponding to FEC
 - Egress
 - Removes label*
- MPLS Routers
 - Search the label on the Label Information Base (LIB)
 - New label Next-Hop Label Forwarding Entry (NHLFE)
 - o Transmit packet in out interface with new label
- Requires a mechanism for label distribution

ltf In	Label In	Itf Out	Label Out	
1	43	(2)	53	LIB
4	4	1	16	

MPLS Forwarding Tables

MPLS - Labels

	Shim Header	Label	Layer 2 Header (Ethernet, PPP, etc.) MPLS Head		
 Generic 		 Small 	Label		
	• "Layer 2.5"	 Fixed size 	Label: 20 bits TC: 3 bits (traffic class informat		
	 Stackable 	 Local meaning 			

No need for shim header when the layer 2 technology supports labels (e.g., with ATM maps to VPI/VCI)

MPLS - Need for a TTL field

- Nodes after the MPLS domain must see the same TTL as if MPLS were not used
- TTL in shim header is set from the IP header
- TTL in the shim header is decremented in each MPLS node the packet goes through
- When removing the label, TTL in the IP header should be set to the value in the shim header

Label stacking

- Non-hierarchical
 - o Different labels added at the ingress LSR
 - Each router removes a label from the stack
 - More overhead, but even faster forwarding performance
- Hierarchical (tunneling)
 - o Intra-domain and inter-domain

 (#13,#21)

 (#13,#21)

 (#19,#12)

 (#19,#12)

Forwarding Equivalence Class (FEC)

- Subset of packets handled similarly by the router (same Next Hop, interface, treatment)
- The FEC is determined only at the ingress LSR and determines the output label at that router
- · Criteria for setting the FEC
 - o IP prefix, aggregating

- Egress edge router of domain
- o By flow, end-to-end
- QoS / Traffic Engineering
- Other criteria

Label distribution

- Routing information used to distribute labels
 - Piggyback on routing protocols
- MPLS nodes
 - Receive mapping from nodes "down" the path
 - Allocate and distribute labels for nodes "up" the path

Label Distribution Protocol (LDP)

- Assign labels to routing table entries and define LDP adjacencies (Hello, etc.)
- Distribute info whether node
 - Is an egress LSR
 - Has an exit label for the FEC
- Two modes for label distribution:

Downstream On-Demand

Downstream Unsolicited

- Two modes for label control
 - Ordered Control
 - LSR advertises FEC if it is the egress LSR for the FEC or has received an advertisement from the donwstream peer
 - Non-egress LSRs must wait for their downstream peers before advertising the FEC
 - Independent Control
 - LSRs advertise independently
 - May lead to (temporary) blackholing of some traffic
- Applicable when FECs are associated with destination address
- Alternatives to LDP
 - CR-LDP (Constraint-based Routing LDP)
 - RSVP-TE (Extensions to RSVP for LSP Tunnels)

Explicit Routing in MPLS

- Two options for route selection: Hop by hop routing or Explicit routing
- Explicit Routing (Source Routing) is a very powerful technique
 - With pure datagram routing, overhead of carrying complete explicit route is prohibitive
 - MPLS allows explicit route to be carried only at the time the LSP is setup, not with each packet
 - MPLS makes explicit routing practical ©
- In an explicitly routed LSP
 - LSP next hop is not chosen by the local node
 - o It is selected by a single node, usually the ingress
- The sequence of LSRs may be chosen by
 - Configuration (administrator or centralized server)
 - An algorithm (e.g., the ingress node may use topological information learned from a link state routing protocol)

VPNs

Motivation

Layer2 Example

Overlay Model

- Service Provider provides PtP links to customer routers on other sites
- Connectivity
 - Fully connected
 - Hub-and-spoke

Limitations of Overlay

- Customers need to manage the backbones
- Mapping between Layer 2 QoS and IP QoS
- Scaling problems

The Peer Model

- Service provider and customer exchange Layer 3 routing information
 - Provider relays data between customer sites using best path

- Goal: provide a large-scale VPN service
- Key technologies
 - Constrained distribution of routing info (do not mix routes from different customers)
 - Multiple forwarding tables (one per VPN)
 - VPN-IP addresses (combine VPN info and IP prefix)
 - MPLS switching

Layer 2 vs Layer 3 VPNs

Layer 2 VPNs

Layer 3 VPNs

- Provider devices forward customer packets based on Layer 2 information
- Tunnels, circuits, LSPs, MAC address
- "Pseudo-wire" concept
- VPLS Virtual Private LAN Service Using (LDP) Signaling
- Provider devices forward customer packets based on Layer 3 information (e.g., IP)
- Service Provider involvement in routing
- MPLS/BGP VPNs, GRE, virtual router approaches

The following discussion will concern Layer 3 VPNs

Terminology

Network Example

Forwarding Example

Connection Model

- The VPN backbone is composed by MPLS LSRs
 - PE routers (edge LSRs)
 - P routers (core LSRs)
- PE routers are faced to CE routers and distribute VPN information through MBGP to other PE routers
- P routers do not run MBGP and do not have any knowledge of VPNs
 - Complexity kept at the edges
- P and PE routers share a common IGP
 - Routing for destinations in the provider network
- PE and CE routers exchange routing information through some means
 - o eBGP, OSPF, RIP, static routing
 - Protocol may be different in different sites of the same customer
- CE routers run standard routing software

Routing

- Routes PE receives from CE are installed in the appropriate VRF
 - o Assigned according to the incoming interface

- VRF necessary to segregate customers
- By using separate VRFs, addresses need NOT be unique among VPNs
 - Useful with private addressing
- Routes PE receives through the backbone IGP are installed in the global routing table
 - Routes in the provider network

Forwarding

- PE routers use MBGP to exchange reachability information and learn the BGP Next-Hop
- PE and P routers use IGP to establish the IGP NextHop towards the BGP Next-Hop
 - The BGP Next-Hop is the egress PE router
- Labels corresponding to BGP Next-Hops are distributed through LDP (hop-by-hop)
- Label Stack is used for packet forwarding
 - Top (outer) label indicates IGP Next-Hop
 - Bottom (inner) label indicates outgoing interface or VRF
- The upstream LDP peer of the BGP next-hop (PE router) will pop the first level label
 - Penultimate Hop Popping
 - Avoid double processing at the egress PE Router
- The egress PE router will forward the packet based on the bottom label
 - The only one it receives
 - Determines the outgoing VPN and interface

Scalability

- Existing BGP techniques can be used to scale the route distribution (e.g, use of route reflectors)
- Each edge router needs only the information for the VPNs it supports
 - o Directly connected VPNs
- Easy to add new sites
 - Configure the site on the PE connected to it, the network automatically does the rest

Demo

- In this demo, OSPF is used in provider network and customer networks
- In general, different protocols can be used

- In the provider and customer networks
- In the networks of different customers
- In different sites of the same customer

Routes on PE1

• Global routing table

10.0.0.0/8 is variably subnetted, 7 subnets, 2 masks
O 10.0.9.0/30 [110/2] via 10.0.9.5, 00:23:17, FastEthernet1/0
C 10.0.9.4/30 is directly connected, FastEthernet1/0
O 10.0.0.2/32 [110/3] via 10.0.9.5, 00:23:17, FastEthernet1/0
C 10.0.0.3/32 is directly connected, Loopback0
O 10.0.9.8/30 [110/3] via 10.0.9.5, 00:23:17, FastEthernet1/0
O 10.0.0.1/32 [110/2] via 10.0.9.5, 00:23:17, FastEthernet1/0
O 10.0.0.4/32 [110/4] via 10.0.9.5, 00:23:17, FastEthernet1/0

• Routing table for vrf Customer_A

172.16.0.0/16 is variably subnetted, 4 subnets, 2 masks
O 172.16.1.0/24 [110/2] via 10.0.1.2, 00:23:35, FastEthernet2/0
O 172.16.0.1/32 [110/2] via 10.0.1.2, 00:23:35, FastEthernet2/0
B 172.16.2.0/24 [200/2] via 10.0.0.4, 00:22:48
B 172.16.0.2/32 [200/2] via 10.0.0.4, 00:22:48
10.0.0.0/30 is subnetted, 2 subnets
B 10.0.2.0 [200/0] via 10.0.0.4, 00:22:48
C 10.0.1.0 is directly connected, FastEthernet2/0

• Global routing table

172.16.0.0/16 is variably subnetted, 4 subnets, 2 masks C 172.16.1.0/24 is directly connected, FastEthernet1/1 C 172.16.0.1/32 is directly connected, Loopback0 O IA 172.16.2.0/24 [110/3] via 10.0.1.1, 00:23:39, FastEthernet1/0 O IA 172.16.0.2/32 [110/3] via 10.0.1.1, 00:23:39, FastEthernet1/0 10.0.0.0/30 is subnetted, 2 subnets O IA 10.0.2.0 [110/2] via 10.0.1.1, 00:23:39, FastEthernet1/0 C 10.0.1.0 is directly connected, FastEthernet1/0

MPLS Labels

NOTE: P1 and P2 assigned the same label to 10.0.0.3/32 (19) and to 10.0.0.4/32 (18) due to the symmetry of the topology / by coincidence; usually, they will all be different.

BGP VPNV4 Labels

PE1

Network	Next Hop	In label/Out label
Route Distinguish	er: 65000:1	(Customer_A)
10.0.1.0/30	0.0.0.0	21/aggregate(Customer_A)
10.0.2.0/30	10.0.0.4	nolabel/21
172.16.0.1/32	10.0.1.2	22/nolabel
172.16.0.2/32	10.0.0.4	nolabel/22
172.16.1.0/24	10.0.1.2	23/nolabel
172.16.2.0/24	10.0.0.4	nolabel/23
Route Distinguish	er: 65000:2	(Customer_B)
10.0.1.4/30	0.0.0.0	24/aggregate(Customer_B)
10.0.2.4/30	10.0.0.4	nolabel/24
172.17.0.1/32	10.0.1.6	25/nolabel
172.17.0.2/32	10.0.0.4	nolabel/25
172.17.1.0/24	10.0.1.6	26/nolabel
172.17.2.0/24	10.0.0.4	nolabel/26

MPLS Fwd Table

PE1 P1

Local tag	Outgoing tag or VC	Prefix or Tunnel Id	Bytes tag	Outgoing interface	Next Hop						
16	Pop tag	10.0.9.0/30	0	Fa1/0	10.0.9.5						
17	16	10.0.9.8/30	0	Fa1/0	10.0.9.5	Local	Outgoing	Prefix	Bytes tag	Outgoing	Next Hop
18	Pop tag	10.0.0.1/32	0	Fa1/0	10.0.9.5	tag	tag or VC	or Tunnel Id	switched	interface	Next Hop
19	17	10.0.0.2/32	0	Fa1/0	10.0.9.5	16	Pop tag	10.0.9.8/30	0	Fa2/1	10.0.9.2
20	19	10.0.0.4/32	0	Fa1/0	10.0.9.5	17	Pop tag	10.0.0.2/32	ø	Fa2/1	10.0.9.2
21	Aggregate	10.0.1.0/30[V]	0			18	Pop tag	10.0.0.3/32	29201	Fa1/0	10.0.9.6
22	Untagged	172.16.0.1/32[V]	1140	Fa2/0	10.0.1.2	19	19	10.0.0.4/32	20005	Fa2/1	10.0.9.2
23	Untagged	172.16.1.0/24[V]	0	Fa2/0	10.0.1.2	10	10	10.0.0.4/ 32	20003	102/1	10.0.5.2
24	Aggregate	10.0.1.4/30[V]	0								
25	Untagged	172.17.0.1/32[V]	570	Fa2/1	10.0.1.6						
26	Untagged	172.17.1.0/24[V]	0	Fa2/1	10.0.1.6						

Other uses of MPLS

• Traffic engineering, IPv6 over MPLS, QoS, Pseudowire - IETF WG, Virtual Private LAN Service (VPLS) IETF WG