ENV Set

In [373... import numpy as np from scipy.io import loadmat data = loadmat('astro data.mat') xx, vv = data['xx'], data['vv'] def norm(x, mean, std): **return** np.exp(-0.5 * ((x - mean) ** 2) / (std** 2)) / stddef log pstar(state): log_omega, mm, pie, mu1, mu2, log_sigma1, log_sigma2 = state N = xx.shape[0]# exp process sigma1 = np.exp(log sigma1) sigma2 = np.exp(log_sigma2) omega = np.exp(log_omega) $x_mu = xx.mean()$ $x_std = xx.std()$ ext = xx.max() - xx.min()log_ext = np.log(ext) forbidden conditions = [pie < 0, pie > 1, $np.abs(mm - x_mu) > 10 * x_std,$ $np.abs(mu1 - log_ext) > 20$, np.abs(mu2 - log ext) > 20,np.abs(log sigma1) > np.log(20), np.abs(log sigma2) > np.log(20), np.abs(log omega) > 20,if any(forbidden conditions): return -np.inf log A = 0.5 * np.log((xx - mm) ** 2 + (vv / omega) ** 2)log_prior = np.sum(np.log(pie * norm(log_A, mul, sigmal) + (1 - pie) * norm(log A, mu2, sigma2))) $log_like = -2 * log_A.sum() - N * np.log(omega)$ logp = log_like + log_prior return logp def dumb metropolis(init, log ptilde, iters, sigma, xx=xx, vv=vv): D = init.shape[0]accept = 0 # init state state = init Logp state = log ptilde(state)

```
# init all the samples
samples = np.zeros((D, iters))

for iter in range(0, iters):
    propose = state + sigma * np.random.randn(len(state))
    Logp_prop = log_ptilde(propose)
    if (np.log(np.random.rand()) < (Logp_prop - Logp_state)).all():
        accept += 1
        state = propose  # accept propose param
        Logp_state = Logp_prop # update state
        samples[:, iter] = state.squeeze()
    accept_rate = accept / iters
    return (samples, accept_rate)</pre>
```

```
from scipy.io import loadmat
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

```
In [58]:
    log_omega = 1
    mm = 1
    pie = 1
    mu1 = 1
    mu2 = 1
    log_sigma1 = 1
    log_sigma2 = 1
    # logp = log_pstar(log_omega, mm, pie, mu1, mu2, log_sigma1, log_sigma2, xx, vv)
    params = np.array([log_omega, mm, pie ,mu1, mu2, log_sigma1, log_sigma2,])
```

4.1

What is the effect of Metropolis's step-size parameter?

step_size = 1

$step_size = 0.01$

```
In [53]:
           samples, acceptance_rate = dumb_metropolis(params, log_pstar, 1000, sigma=0.01)
In [54]:
           acceptance_rate
          0.777
Out[54]:
In [55]:
           plot history(samples, acceptance rate)
                   log_omega
          2.0
                   log_sigma1
                   log_sigma2
          1.5
          1.0
                       200
                                400
                                         600
                                                  800
                                                          1000
```

step_size = 10

```
In [46]: samples, acceptance_rate = dumb_metropolis(params, log_pstar, 1000, sigma=10)
In [47]: acceptance_rate
Out[47]: 0.0
```

In [48]: plot_history(samples, acceptance_rate)

- Little step size will lead to small exploration range
- Too Large step size will crash the sampling, no sample accepted
- We need a suitable step size and burn-in time

4.2

Is the way you initialize the chain critical for Metropolis and/or slice sampling?

We just change our init

```
In [63]:
          log_omega = 1
          mm = 1
          pie = 0.1
          mu1 = 1
          mu2 = 10
          log sigma1 = 1
          log sigma2 = 1
          # logp = log pstar(log omega, mm, pie, mu1, mu2, log sigma1, log sigma2, xx, vv)
          params = np.array([log omega, mm, pie ,mu1, mu2, log sigma1, log sigma2,])
In [64]:
          samples, acceptance_rate = dumb_metropolis(params, log_pstar, 1000, sigma=1)
          acceptance rate
         0.011
Out[64]:
In [65]:
          plot history(samples, acceptance rate)
```



```
In [66]: samples, acceptance_rate = dumb_metropolis(params, log_pstar, 10000, sigma=1)
    acceptance_rate
```

Out[66]: 0.0012

In [67]: plot_history(samples, acceptance_rate)

We may need more burn-in time to make the sampling consistent.

4.3

What are the relative advantages of slice-sampling and Metropolis? Can you say good and bad things about both of them?

slice-sampling

pros: slice-sampling can be more efficient for not rejecting the samples, which is suitable for the case that we do not have much information about the distribution.

cons: slice-sampling may suffer from locality for those complicated distribuion. It is hard for slice-sampling to explore those far away high probability area across some low probability area.

Metropolis

pros: Metropolis is quite simple and can generally working in most cases.

cons: As we showed above, Metropolis may rely on its hyperparameters(step-size) and have burn-in period.

4.4

Why have I taken logs of quantities like ω and A? Need I have bothered? Does taking logs affect the model and/or the sampler?

Log can convert the multiply to addition, which in some sense can prevent the precision problem. The final result is not affected. (just like log likelihood)

4.5

The true values are $\omega = 875.2$ and m= 31.79. Are your posterior beliefs consistent with this? If not, what do you think went wrong with the sampling, modelling or both?

```
In [316...
          log omega = 10
          mm = 1
          pie = 1
          mu1 = 1
          mu2 = 1
          log sigma1 = 0.1
          log sigma2 = 0.1
          # logp = log pstar(log omega, mm, pie, mu1, mu2, log sigma1, log sigma2, xx, vv)
          params = np.array([log omega, mm, pie ,mu1, mu2, log sigma1, log sigma2,])
In [324...
          samples, acceptance rate = dumb metropolis(params, log pstar, 100000, sigma=0.08
          acceptance rate
         0.12078
Out[324...
In [319...
          ori samples = samples
In [320...
          samples = ori samples
In [366...
          # ori samples = samples
          print(samples.shape)
          samples = samples.T
          print(samples.shape)
          # samples = samples.T
          samples = samples[5000:]
```

```
samples = samples.T
          print(samples.shape)
          (7, 55000)
          (55000, 7)
          (7, 50000)
In [367...
          params_name = ['log_omega', 'mm', 'pie', 'mu1', 'mu2', 'log_sigma1', 'log_sigma2
          df = pd.DataFrame(samples.T, columns=params_name)
In [368...
          df['mm'].mean()
         31.874691194919823
Out [368...
In [369...
          np.exp(df['log_omega'].mean())
         873.151930476839
Out[369...
```

We have a burn-in = 50000, and total iter = 100000, we get similar posterior