Area, perimeter, volume

- 1. Prior knowledge
 - (a) Area: rectangle, square, triangle, parallelogram; area and perimeter (formula sheet)
 - (b) Solve for parameter versus calculate result
- 2. Distance on the coordinate plane
 - (a) Plotting, labeling points, etc.
 - (b) Horizontal & vertical distances
 - (c) Perimeter calculation
 - (d) Pythagorean formula
 - (e) Applications: Rhombus, isosceles \triangle ,
 - (f) Radicals, π and rounding
- 3. Volume: prism, cylinder, cone
 - (a) Compound shapes (including margins)
 - (b) Surface area
- 4. Circle area and circumference
 - (a) Sector areas, arc length
 - (b) Radian / degree conversion
- 5. Scaling shapes (eg. rectangle, triangles including midline)
- 6. Regents problems, January 2017, #26, 34, 29? (basic shapes)

Horizontal and vertical measure

- 1. Given the quadrilateral ABCD with A(1,2), B(6,2), C(6,5), and D(1,5).
 - (a) Plot and label *ABCD* on the grid.
 - (b) Find the lengths of the sides by counting on the graph or subtracting coordinates. Complete the table.
 - (c) Definition: Perimeter is the total distance around a shape.

Add up the perimeter of ABCD, entering it to the bottom of the table of lengths.

Side	Length
AB	
BC	
CD	
AD	
Total	

(d) Definition: Area is the number of unit squares in a shape.

Find its area by counting the number of squares in ABCD or use multiplication as a short cut.

- 2. The rectangle ABCD is shown below with length l=12 and width w=5. Label the sides of the rectangle with their lengths.
 - (a) Calculate the perimeter and enter it in the table.
 - (b) Find the area of the rectangle. (show the work as an algebra equation)

Side	Length
AB	12
BC	5
CD	12
AD	5
Perimeter	

- 3. Given the quadrilateral BECA with B(-3, -2), E(5, -2), C(5, 5), and A(-3, 5).
 - (a) Plot and label BECA on the grid.
 - (b) Find the lengths of the sides and complete the table.
 - (c) Calculate the perimeter and enter it in the table.

Side	Length
BE	
EC	
CA	
AB	
Total	

(d) Find the area of BECA.

Diagonal distance on the coordinate plane

4. Given P(-2,9) and Q(3,-3), find the length of \overline{PQ} .

Distance on the coordinate plane: proofs

5. Triangle ABC has vertices with coordinates A(,), B(,), and C(,). Prove that $\triangle ABC$ is an isoscelese triangle but not an equilateral triangle. (The use of the set of axes below is optional.)

Note: state both conclusions for full credit.

6. Triangle $\triangle TEN$ is graphed on the set of axes below. The vertices of $\triangle TEN$ have the coordinates T(-1,-2), E(8,1), and N(3,6).

- (a) Draw an altitude through point N perpendicular to \overline{TE} .
- (b) What is the length of the altitude drawn through N?
- (c) What is the length of the base, TE?
- (d) Find the area of $\triangle TEN$.
- 7. Given the quadrilateral RSTU with R(1,3), S(4,7), T(4,2), and U(1,-2).
 - (a) Plot and label RSTU on the grid.
 - (b) Using the distance formula or otherwise, calculate RS, ST, TU, and RU.
 - (c) Definition: If a quadrilateral has four congruent sides, then it is a rhombus.

Prove that RSTU is a rhombus.

- 8. Given the quadrilateral RECT with R(-4,1), E(8,1), C(8,6), and T(-4,6).
 - (a) Plot and label RECT on the grid.
 - (b) Using the distance formula, calculate the length of the two diagonals RC and ET.
 - (c) Theorem: If the diagonals of a quadrilateral are congruent, then it is a rectangle.

Prove that RECT is a rectangle.

Circle area and circumference

9. The diagram below shows the circle O with radii \overline{OA} and \overline{OB} . The measure of angle AOB is 120° , and the length of a radius is 6 inches.

Which expression represents the length of arc AB, in inches?

(a)
$$\frac{120}{360}(6\pi)$$

(c)
$$\frac{1}{3}(36\pi)$$

(d)
$$\frac{1}{3}(12\pi)$$

10. Circle O with a radius of 9 is drawn below. The measure of central angle AOC is 120°.

What is the area of the shaded sector of circle O?

(a) 6π

(c) 27π

(b) 12π

- (d) 54π
- 11. In the diagram below, circle O has a radius of 10.

If $\widehat{mAC} = 72^{\circ}$, find the area of shaded sector AOB, in terms of π .

12. In the diagram below, the circle has a radius of 25 inches. The area of the unshaded sector is 500π in².

Determine and state the degree measure of angle Q, the central angle of the shaded sector.

13. The area of a sector of a circle with a radius measuring 15 cm is 75π cm². What is the measure of the central angle that forms the sector?

(a) 72°

(c) 144°

(b) 120°

(d) 180°

14. A circle with a diameter of 10 cm and a central angle of 30° is drawn below.

What is the area, to the nearest tenth of a square centimeter, of the sector formed by the 30° angle?

(a) 5.2

(c) 6.5

(b) 13.1

(d) 26.2