

Central European Institute of Technology BRNO | CZECH REPUBLIC

Data Science Practicum

(Lecture 8, 6.11.)

Denisa Šrámková

Data Preparation

Exercise:

https://github.com/simecek/dspracticum2023/blob/main/lesson08/ds_practicum_ex_astronauts_pandas.ipynb

Data Preparation - lecture outline

- 0. Data exploration
- 1. Data cleaning
- 2. Feature manipulation
- 3. Feature selection
- 4. Dataset sampling
- 5. Dimensionality reduction
- 6. Dataset splitting

Exercise:

https://github.com/simecek/dspracticum2023/blob/main/lesson08/ds_practicum_ex_astronauts_pandas.ipynb

o. Data exploration

- get to know your data (statistical properties of the features)
- make visualization to get more insights

Туре	Description	Example
interval	Values are arranged in order, and differences between them are meaningful, but there is no inherent starting point, and ration are meaningless.	
ration	The values are an extension of interval values - an inherent zero starting point is included.	

Туре	Description	Example
interval	Values are arranged in order, and differences between them are meaningful, but there is no inherent starting point, and ration are meaningless.	temperature in Celsius, calendar dates
ration	The values are an extension of interval values - an inherent zero starting point is included.	

Туре	Description	Example
interval	Values are arranged in order, and differences between them are meaningful, but there is no inherent starting point, and ration are meaningless.	temperature in Celsius, calendar dates
ration	The values are an extension of interval values - an inherent zero starting point is included.	age, RGB

Туре	Description	Example
nominal	Values consist of explicit categories, but their ordering does not make sense.	
ordinal	Values are arranged in some order, but the difference between values can't be determined, or is meaningless.	

Туре	Description	Example
nominal	Values consist of explicit categories, but their ordering does not make sense.	blood types, colors
ordinal	Values are arranged in some order, but the difference between values can't be determined, or is meaningless.	

Туре	Description	Example
nominal	Values consist of explicit categories, but their ordering does not make sense.	blood types, colors
ordinal	Values are arranged in some order, but the difference between values can't be determined, or is meaningless.	clothes sizes, rating

Туре	Description	Example
nominal	Values consist of explicit categories, but their ordering does not make sense.	blood types, colors
ordinal	Values are arranged in some order, but the difference between values can't be determined, or is meaningless.	clothes sizes, rating

Feature types (switch to exercise)

Туре	Description	Example
nominal	Values consist of explicit categories, but their ordering does not make sense.	blood types, colors
ordinal	Values are arranged in some order, but the difference between values can't be determined, or is meaningless.	clothes sizes, rating

flower_name	petal_colour	max_stem_length_cm	num_petals	lifespan_years
iris	purple	60	3	15
rose	red	None	30	10
рорру	red	60	6	666
iris	purple	60	3	15

. . .

A) Missing values:

flower_name	petal_colour	max_stem_length_cm	num_petals	lifespan_years
iris	purple	60	3	15
rose	red	None	30	10
рорру	red	60	6	666
iris	purple	60	3	15

A) Missing values:

flower_name	petal_colour	max_stem_length_cm	num_petals	lifespan_years
iris	purple	60	3	15
rose	red	None	30	10
рорру	red	60	6	666
iris	purple	60	3	15

Solutions:

1. Leave as it is

A) Missing values:

flower_name	petal_colour	max_stem_length_cm	num_petals	lifespan_years
iris	purple	60	3	15
rose	red	None	30	10
рорру	red	60	6	666
iris	purple	60	3	15

Solutions:

1. Leave as it is, 2. Eliminate entire row

A) Missing values:

flower_name	petal_colour	max_stem_	ength_cm	num_petals	lifespan_years
iris	purple	60		3	15
rose	red	None		30	10
рорру	red	60		6	666
iris	purple	60		3	15

Solutions:

1. Leave as it is, 2. Eliminate entire row (column)

avg(60,60,60) = 60

A) Missing values:

flower_name	petal_colour	max_st	em_length_cm	num_petals	lifespan_years
iris	purple	60		3	15
rose	red	None		30	10
рорру	red	60		6	666
iris	purple	60		3	15

Solutions:

1. Leave as it is, 2. Eliminate entire row (column), 3. Fill it in (interpolation)

A) Missing values:

flower_name	petal_colour	max_stem_length_cm	num_petals	lifespan_years
iris	purple	60	3	15
rose	red	60	30	10
рорру	red	60	6	666
iris	purple	60	3	15

Solutions:

1. Leave as it is, 2. Eliminate entire row (column), 3. Fill it in (interpolation)

B) Inconsistent values:

flower_name	petal_colour	max_stem_length_cm	num_petals	lifespan_years
iris	purple	60	3	15
rose	red	60	30	10
рорру	red	60	6	666
iris	purple	60	3	15

B) Inconsistent values:

flower_name	petal_colour	max_stem_length_cm	num_petals	lifespan_years
iris	purple	60	3	15
rose	red	60	30	10
рорру	red	60	6	666
iris	purple	60	3	15

24.3.1997 age 26

B) Inconsistent values:

flower_name	petal_colour	max_stem_length_cm	num_petals	lifespan_years
iris	purple	60	3	15
rose	red	60	30	10
рорру	red	60	6	666
iris	purple	60	3	15

C) Duplicate values:

flower_name	petal_colour	max_stem_length_cm	num_petals	lifespan_years
iris	purple	60	3	15
rose	red	60	30	10
iris	purple	60	3	15

C) Duplicate values:

flower_name	petal_colour	max_stem_length_cm	num_petals	lifespan_years
iris	purple	60	3	15
rose	red	60	30	10
iris	purple	60	3	15

1. Data cleaning (switch to exercise)

C) Duplicate values:

flower_name	petal_colour	max_stem_length_cm	num_petals	lifespan_years
iris	purple	60	3	15
rose	red	60	30	10
iris	purple	60	3	15

Categorical features encoding: for <u>nominal</u> features

Categorical features encoding: for <u>nominal</u> features

One-Hot encoding

sample_id	hobby
111	hiking
112	knitting
113	hiking
114	reading books

Categorical features encoding: for <u>nominal</u> features

One-Hot encoding

sample_id	hobby
111	hiking
112	knitting
113	hiking
114	reading books

sample_id	hiking	knitting	book_reading
111	1	0	0
112	0	1	0
113	1	0	0
114	0	0	1

Categorical features encoding: for <u>nominal</u> features

Categorical features encoding: for <u>nominal</u> features

id	city_of_birth
21	New York
22	Prague
23	Brno
24	Funchal
25	Svit
66	Toronto

Categorical features encoding: for <u>nominal</u> features

		-		
id	city_of_birth		id	city_of_birth
21	New York		21	USA
22	Prague		22	Czech Republic
23	Brno	\rightarrow	23	Czech Republic
24	Funchal		24	Madeira
25	Svit		25	Slovakia
66	Toronto		66	Canada

Categorical features encoding: for <u>nominal</u> features

id	city_of_birth	
21	New York	
22	Prague	
23	Brno	or \longrightarrow
24	Funchal	
25	Svit	
66	Toronto	

id	city_of_birth
21	South America
22	Europe
23	Europe
24	Europe
25	Europe
66	South America

Categorical features encoding: for <u>nominal</u> features

Binning

id	city_of_birth	
21	New York	
22	Prague	
23	Brno	or
24	Funchal	
25	Svit	
66	Toronto	

id	city_of_birth
21	South America
22	Europe
23	Europe
24	Europe
25	Europe
66	South America

One-Hot Encoding

id	south_america	europe
21	1	0
22	0	1
23	0	1
24	0	1
25	0	1
66	1	0

Categorical features encoding: for <u>ordinal</u> features

Categorical features encoding: for <u>ordinal</u> features

Simply mapping to a set of integers

id	rating	
42	excellent	
43	good	
44	neutral	
45	not well	
46	terrible	

id	rating
42	5
43	4
44	3
45	2
46	1

2. Feature manipulation (scaling)

Numerical features encoding:

2. Feature manipulation (scaling)

Numerical features encoding:

Normalization (Min-Max scaling)

$$X' = rac{X - X_{min}}{X_{max} - X_{min}}$$
 => rescales to range (0, 1)

2. Feature manipulation (scaling)

Numerical features encoding:

Normalization (Min-Max scaling)

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$
 => rescales to range (0, 1)

Standardization

$$X' = \frac{X - \mu}{\sigma}$$
 mean of feature values standard deviation

2. Feature manipulation (scaling) (switch to exercise)

Numerical features encoding:

Normalization (Min-Max scaling)

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$
 => rescales to range (0, 1)

Standardization

$$X' = \frac{X - \mu}{\sigma}$$
 mean of feature values standard deviation

3. Feature selection

Multicollinearity = problem, when some features are strongly dependent on each other.

3. Feature selection

Multicollinearity = problem, when some features are strongly dependent on each other.

Identifying such features:

	0	1	2	3	4	5	6	7	8	9
0	1	0.347533	0.398948	0.455743	0.0729144	-0.233402	-0.731222	0.477978	-0.442621	0.0151847
1	0.347533	1	-0.284056	0.571003	-0.285483	0.38248	-0.362842	0.642578	0.252556	0.190047
2	0.398948	-0.284056	1	-0.523649	0.152937	-0.139176	-0.0928948	0.0162655	-0.434016	-0.383585
3	0.455743	0.571003	-0.523649		-0.225343	-0.227577	-0.481548	0.473286	0.279258	0.44665
4	0.0729144	-0.285483	0.152937	-0.225343	1	-0.104438	-0.147477	-0.523283	-0.614603	-0.189916
5	-0.233402	0.38248	-0.139176	-0.227577	-0.104438	1	-0.0302517	0.41764	0.205851	0.0950844
6	-0.731222	-0.362842	-0.0928948	-0.481548	-0.147477	-0.0302517	1	-0.49444	0.381407	-0.353652
7	0.477978	0.642578	0.0162655	0.473286	-0.523283	0.41764	-0.49444	1	0.375873	0.417863
8	-0.442621	0.252556	-0.434016	0.279258	-0.614603	0.205851	0.381407	0.375873	1	0.150421
9	0.0151847	0.190047	-0.383585	0.44665	-0.189916	0.0950844	-0.353652	0.417863	0.150421	1

3. Feature selection (switch to exercise)

Multicollinearity = problem, when some features are strongly dependent on each other.

Identifying such features:

	0	1	2	3	4	5	6	7	8	9
0	1	0.347533	0.398948	0.455743	0.0729144	-0.233402	-0.731222	0.477978	-0.442621	0.0151847
1	0.347533	1	-0.284056	0.571003	-0.285483	0.38248	-0.362842	0.642578	0.252556	0.190047
2	0.398948	-0.284056	1	-0.523649	0.152937	-0.139176	-0.0928948	0.0162655	-0.434016	-0.383585
3	0.455743	0.571003	-0.523649		-0.225343	-0.227577	-0.481548	0.473286	0.279258	0.44665
4	0.0729144	-0.285483	0.152937	-0.225343	1	-0.104438	-0.147477	-0.523283	-0.614603	-0.189916
5	-0.233402	0.38248	-0.139176	-0.227577	-0.104438	1	-0.0302517	0.41764	0.205851	0.0950844
6	-0.731222	-0.362842	-0.0928948	-0.481548	-0.147477	-0.0302517	1	-0.49444	0.381407	-0.353652
7	0.477978	0.642578	0.0162655	0.473286	-0.523283	0.41764	-0.49444	1	0.375873	0.417863
8	-0.442621	0.252556	-0.434016	0.279258	-0.614603	0.205851	0.381407	0.375873	1	0.150421
9	0.0151847	0.190047	-0.383585	0.44665	-0.189916	0.0950844	-0.353652	0.417863	0.150421	1

4. Dataset sampling

Unbalanced dataset:

4. Dataset sampling

Unbalanced dataset: Class Imbalance Over-sampling **Under-sampling** Data Augmentation

5. Dimensionality reduction

PCA:

https://www.youtube.com/watch?v=

HMOI lkzW08

Train:

Validation:

Test:

Train: used to build the model

Validation:

Test:

Train: used to build the model

Validation: to improve hyperparameters

Test:

Train: used to build the model

Validation: to improve hyperparameters

Test: to test the hypothesis of the model (not used until the model is trained and its hyperparameters are decided)

Train: used to build the model

Validation: to improve hyperparameters

Test: to test the hypothesis of the model (not used until the model is trained and its hyperparameters are decided)

Split ration 80% train: 20% test

- validation size depends on number of hyperparameters (taken from train)

Homework

1) Choose some dataset from Kaggle and try to explore it - get as much insights into the dataset as possible (write a report about it, visualize some statistical properties of its features, answer interesting questions, ...)