Cantilevered Beam Slopes and Deflections			
Beam	Slope	Deflection	Elastic Curve
v v v v v v v v v v	$\theta_{\text{max}} = \frac{-PL^2}{2EI}$	$v_{\text{max}} = \frac{-PL^3}{3EI}$	$v = \frac{-Px^2}{6EI} (3L - x)$
v v v v v v v v v v	$\theta_{\text{max}} = \frac{-PL^2}{8EI}$	$v_{\text{max}} = \frac{-5PL^3}{48EI}$	$v = \frac{-Px^2}{12EI} (3L - 2x) 0 \le x \le L/2$ $v = \frac{-PL^2}{48EI} (6x - L) L/2 \le x \le L$
v v v v v v v v v v	$\theta_{\text{max}} = \frac{-wL^3}{6EI}$	$v_{\text{max}} = \frac{-wL^4}{8EI}$	$v = \frac{-wx^2}{24EI} (x^2 - 4Lx + 6L^2)$
v θ_{\max} $M_0 v_{\max}$	$ heta_{ m max} = rac{M_0 L}{EI}$	$v_{\rm max} = \frac{M_0 L^2}{2EI}$	$v = \frac{M_0 x^2}{2EI}$
v v_{max} v t	$\theta_{\text{max}} = \frac{-wL^3}{48EI}$	$v_{\text{max}} = \frac{-7wL^4}{384EI}$	$v = \frac{-wx^2}{24EI} \left(x^2 - 2Lx + \frac{3}{2}L^2 \right)$ $0 \le x \le L/2$ $v = \frac{-wL^3}{384EI} \left(8x - L \right)$ $L/2 \le x \le L$
v v_{\max} x θ_{\max}	$\theta_{\text{max}} = \frac{-w_0 L^3}{24EI}$	$v_{\text{max}} = \frac{-w_0 L^4}{30EI}$	$v = \frac{-w_0 x^2}{120EIL} \left(10L^3 - 10L^2 x + 5Lx^2 - x^3 \right)$