Análisis2

Jesús Rodríguez Heras 14 de noviembre de 2018

Resumen

Comparativa del SpeedUp del producto de una matriz por un vector.

Elementos	matVector	matVectorConcurrente	matVectorDenso
1000	0.008	0.075	0.045
2000	0.01	0.119	0.055
3000	0.013	0.118	0.034
4000	0.018	0.183	0.046
5000	0.026	0.24	0.046
6000	0.036	0.275	0.048
7000	0.046	0.302	0.049
8000	0.058	0.408	0.059
9000	0.071	0.434	0.073
10000	0.087	0.489	0.084

Tabla 1: Valores en segundos del tiempo usado por cada algoritmo.

Figura 1: Valores del SpeedUp.

Para la realización de la gráfica inicial, hemos tenido en cuenta dichos datos tomados en tiempo con los que calculamos el Speed-Up de los algoritmos de grano fino (matVectorConcurrente.java) y de grano grueso (matVectorDenso.java) respecto del algoritmo secuencial (matVector.java).

Como podemos apreciar en la imagen, el Speed-Up no empieza a ser notable hasta los 7000 elementos y, donde verdaderamente se le saca partido es a partir de los 10000 elementos donde alcanza un Speed-Up de 1,43 y, como puede observarse, su tendencia nos indica que seguirá subiendo conforme aumentemos el número de elementos de las matrices. Esta prueba no la hemos podido realizar debido a que con más de 10000 elementos, se sobrepasa la memoria del heap de Java en el algoritmo de grano grueso matVectorDenso.java.