ADBMS Assignment No. 3

Q.1.) Write SQL statements for the following

STUDENT

Name	Ssn	Home_phone	ome_phone Address Office_phon		Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
Barbara Benson	533-69-1238	(817)839-8461	839-8461 7384 Fontana Lane NULL		19	3.25
Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	(817)373-1616	2918 Bluebonnet Lane	NULL	19	3.21

Write an DDL statement to create the above table and then insert into it the above given values.

Ans:-

```
-- Create the STUDENT table
CREATE TABLE STUDENT (
   Name VARCHAR(50),
    Ssn CHAR(11) PRIMARY KEY,
   Home_phone VARCHAR(15),
   Address VARCHAR(100),
   Office_phone VARCHAR(15),
   Age INT,
   Gpa DECIMAL(3,2)
);
-- Insert the given values into the STUDENT table
INSERT INTO STUDENT (Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa) VALUES
('Dick Davidson', '422-11-2320', NULL, '3452 Elgin Road', '(817)749-1253', 25, 3.53),
('Barbara Benson', '533-69-1238', '(817)839-8461', '7384 Fontana Lane', NULL, 19, 3.25),
('Rohan Panchal', '489-22-1100', '(817)376-9821', '265 Lark Lane', '(817)749-6492', 28, 3.93),
('Chung-cha Kim', '381-62-1245', '(817)375-4409', '125 Kirby Road', NULL, 18, 2.89),
('Benjamin Bayer', '305-61-2435', '(817)373-1616', '2918 Bluebonnet Lane', NULL, 19, 3.21);
```

- Q.2.) Consider the following relations for a database that keeps track of student enrollment in courses and the books adopted for each course: STUDENT(Ssn, Name, Major, Bdate) COURSE(Course#, Cname, Dept) ENROLL(Ssn, Course#, Quarter, Grade) BOOK_ADOPTION(Course#, Quarter, Book_isbn) TEXT(Book_isbn, Book_title, Publisher, Author)
- i) Use DDL statements to create the schema and
- ii) Specify the foreign keys for this schema, stating any assumptions you make.

```
CREATE TABLE EMPLOYEE
                                VARCHAR(15)
                                                          NOT NULL,
         Minit
                                CHAR,
                                VARCHAR(15)
                                                          NOT NULL.
         Lname
                                CHAR(9)
                                                          NOT NULL,
         Ssn
         Bdate
                                DATE,
                                VARCHAR(30),
         Address
         Sex
                                CHAR.
                                DECIMAL(10,2),
         Salary
         Super_ssn
                                CHAR(9),
         Dno
                                INT
                                                          NOT NULL.
        PRIMARY KEY (Ssn),
        FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn),
        FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber) );
CREATE TABLE DEPARTMENT
                                VARCHAR(15)
        ( Dname
         Dnumber
                                CHAR(9)
                                                          NOT NULL.
         Mgr_ssn
        Mgr_start_date
PRIMARY KEY (Dnumber),
                                DATE.
        UNIQUE (Dname),
FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn) );
CREATE TABLE DEPT_LOCATIONS
                                                          NOT NULL,
        ( Dnumber
         Diocation
                                VARCHAR(15)
                                                          NOT NULL,
       PRIMARY KEY (Dnumber, Dlocation),
FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) );
CREATE TABLE PROJECT
        ( Pname
                                VARCHAR(15)
                                                          NOT NULL,
```

Ans:-

```
-- Create the STUDENT table

CREATE TABLE STUDENT (
    Ssn CHAR(11) PRIMARY KEY,
    Name VARCHAR(50) NOT NULL,
    Major VARCHAR(50),
    Bdate DATE
);

-- Create the COURSE table

CREATE TABLE COURSE (
    Course# INT PRIMARY KEY,
    Cname VARCHAR(100) NOT NULL,
    Dept VARCHAR(50) NOT NULL
);
```

```
-- Create the ENROLL table (Tracks which students enroll in which courses)
CREATE TABLE ENROLL (
    Ssn CHAR(11),
    Course# INT,
    Quarter VARCHAR(10) NOT NULL,
    Grade CHAR(2),
    PRIMARY KEY (Ssn, Course#, Quarter),
    FOREIGN KEY (Ssn) REFERENCES STUDENT(Ssn) ON DELETE CASCADE,
    FOREIGN KEY (Course#) REFERENCES COURSE(Course#) ON DELETE CASCADE
);
-- Create the BOOK ADOPTION table (Tracks books adopted for courses in a specific quarter)
CREATE TABLE BOOK ADOPTION (
    Course# INT,
    Quarter VARCHAR(10) NOT NULL,
    Book_isbn CHAR(13),
    PRIMARY KEY (Course#, Quarter, Book isbn),
    FOREIGN KEY (Course#) REFERENCES COURSE(Course#) ON DELETE CASCADE,
    FOREIGN KEY (Book_isbn) REFERENCES TEXT(Book_isbn) ON DELETE CASCADE
);
-- Create the TEXT table (Stores details of books)
CREATE TABLE TEXT (
    Book isbn CHAR(13) PRIMARY KEY,
    Book_title VARCHAR(200) NOT NULL,
    Publisher VARCHAR(100),
    Author VARCHAR(100)
);
```

Q.3.) Draw the database schema created by your RDBMS for the above DDL statements.

Ans:- // Use DBML to define your database structure

// Docs: https://dbml.dbdiagram.io/docs

```
Table follows {
following_user_id integer
followed_user_id integer
created_at timestamp
}
Table users {
id integer [primary key]
 username varchar
 role varchar
created_at timestamp
}
Table posts {
id integer [primary key]
title varchar
body text [note: 'Content of the post']
user_id integer
 status varchar
created_at timestamp
}
Ref: posts.user_id > users.id // many-to-one
Ref: users.id < follows.following_user_id
Ref: users.id < follows.followed_user_id
```


Q.4.) Write appropriate SQL DDL statements for declaring the LIBRARY relational database schema of Figure 4.6. Specify the keys and referential triggered actions.

Ans:-

```
-- Create the BOOK table
CREATE TABLE BOOK (
    Book_id INT PRIMARY KEY,
    Title VARCHAR(255) NOT NULL,
    Publisher name VARCHAR(100) NOT NULL
);
-- Create the BOOK_AUTHORS table (Many-to-Many relationship)
CREATE TABLE BOOK_AUTHORS (
    Book_id INT,
    Author_name VARCHAR(100) NOT NULL,
    PRIMARY KEY (Book_id, Author_name),
    FOREIGN KEY (Book_id) REFERENCES BOOK(Book_id) ON DELETE CASCADE
);
-- Create the PUBLISHER table
CREATE TABLE PUBLISHER (
    Name VARCHAR(100) PRIMARY KEY,
    Address VARCHAR(255),
    Phone VARCHAR(20)
);
-- Create the BOOK_COPIES table (Tracks copies of books at branches)
CREATE TABLE BOOK_COPIES (
   Book id INT,
   Branch id INT,
   No_of_copies INT DEFAULT 0,
   PRIMARY KEY (Book id, Branch id),
   FOREIGN KEY (Book_id) REFERENCES BOOK(Book_id) ON DELETE CASCADE,
   FOREIGN KEY (Branch id) REFERENCES LIBRARY BRANCH(Branch id) ON DELETE CASCADE
);
-- Create the BOOK_LOANS table (Tracks borrowed books)
CREATE TABLE BOOK_LOANS (
   Book id INT,
   Branch id INT,
   Card no INT,
   Date_out DATE NOT NULL,
   Due date DATE NOT NULL,
   PRIMARY KEY (Book id, Branch id, Card no),
   FOREIGN KEY (Book_id, Branch_id) REFERENCES BOOK_COPIES(Book_id, Branch_id) ON DELETE CASCADE,
   FOREIGN KEY (Card no) REFERENCES BORROWER(Card no) ON DELETE CASCADE
);
-- Create the LIBRARY BRANCH table
CREATE TABLE LIBRARY_BRANCH (
    Branch_id INT PRIMARY KEY,
    Branch_name VARCHAR(100) NOT NULL,
    Address VARCHAR(255) NOT NULL
);
-- Create the BORROWER table
CREATE TABLE BORROWER (
    Card no INT PRIMARY KEY,
    Name VARCHAR(100) NOT NULL,
    Address VARCHAR(255),
    Phone VARCHAR(20)
);
```

Q.5.) Write DDL to create a table that has the employee last name, project name, and hours per week(let it a decimal number accepting no's up to 3digit with 2 decimal places) for each employee working on a project.

Ans:-

Here is the SQL DDL (Data Definition Language) statement to create a table that stores the employee last name, project name, and hours per week for each employee working on a project. The Hours_per_week column is defined as a DECIMAL(5,2) to allow values up to 999.99 (3 digits before the decimal, 2 after).

Key Considerations:

- 1. Lname and Project_name as Primary Key:
 - Ensures that an employee cannot be assigned to the same project multiple times.
- 2. Hours_per_week as DECIMAL(5,2):
 - Allows values like 123.45 but prevents invalid inputs like 1000.00 (exceeding 3 digits before decimal).
- 3. No Foreign Keys Assumed:
 - If Lname references an Employee table and Project_name references a Project table, we could add FOREIGN KEY constraints accordingly.

Q.6.) Write a DDL statement to create a table containing following columns of following datatypes

Numeric, Character-string, Bit-string, Boolean data type, DATE data type, timestamp data type (TIMESTAMP) includes the DATE and TIME fields, INTERVAL data type, Also introduce constraints default, NOT NULL, CHECK Clause (eg. CHECK (Dnumber > 0 AND Dnumber < 21))

```
CREATE TABLE dbo.Patients
( Name varchar(10),
   Gender varchar(2),
   Height decimal (3,2),
   Weight decimal (5,2)
)
INSERT INTO PATIENTS VALUES('John', 'M', 6.1,80.4)
INSERT INTO PATIENTS VALUES('Bred', 'M', 5.8,73.7)
INSERT INTO PATIENTS VALUES('Leslie', 'F', 5.3,66.9)
INSERT INTO PATIENTS VALUES('Rebecca', 'F', 5.7,50.2)
INSERT INTO PATIENTS VALUES('Shermas', 'M', 6.5,190.6)
```

Show how the above table looks like

Ans:-

DDL Statement to Create a Table with Various Data Types and Constraints

The following SQL **DDL** (**Data Definition Language**) statement defines a table that includes:

- Numeric (INT, DECIMAL)
- Character-string (VARCHAR, CHAR)
- Bit-string (BIT)
- Boolean (BOOLEAN)
- Date and Timestamp (DATE, TIMESTAMP)
- Interval (INTERVAL)
- Constraints (NOT NULL, DEFAULT, CHECK)

```
CREATE TABLE Employee_Details (
    Emp_ID INT PRIMARY KEY, -- Numeric (Integer) as Primary Key
    Name VARCHAR(50) NOT NULL, -- Character String with NOT NULL
    Gender CHAR(1) CHECK (Gender IN ('M', 'F')), -- Gender can only be 'M' or 'F'
    Salary DECIMAL(10,2) DEFAULT 50000.00, -- Numeric with Default Value
    Is_Active BIT DEFAULT 1, -- Bit-String with Default Value 1 (Active)
    Is_FullTime BOOLEAN DEFAULT TRUE, -- Boolean Data Type with Default TRUE
    Birth_Date DATE NOT NULL, -- Date Type (Cannot be NULL)
    Joining_Timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP, -- Timestamp with Default Current Time
    Work_Experience INTERVAL YEAR TO MONTH, -- Interval Data Type (Years & Months)
    Department_Number INT CHECK (Department_Number > 0 AND Department_Number < 21) -- CHECK Constraint
);
```

Table Representation Example

Emp_ID	Name	Gender	Salary	Is_Active	Is_FullTime	Birth_Date	Joining_Timestamp	Work_Experience	Department_Number
101	John	М	60000.00	1	TRUE	1990-05- 15	2024-03-01 12:34:56	5-3	5
102	Alice	F	55000.00	1	TRUE	1995-07- 20	2024-02-28 10:15:30	3-6	8
103	Mark	М	70000.00	1	FALSE	1988-12- 10	2024-03-01 09:00:00	10-2	2