GROUPS OF HOMOTOPY SPHERES

VENKATA SAI NARAYANA BAVISETTY

ABSTRACT. The aim of this article is to prove that exotic spheres in dimension 4k for k > 1 are finite. Historically exotic spheres appeared before the h-cobordism theorem so Milnor proves theorems without using this. But I have made use of h-cobordism theorem wherever it applies to shorten arguments.

1. Existence of Exotic Spheres

 D^4 bundles¹ on S^4 are classified by $[S^3, SO(4)] \simeq \pi_3(SO(4)) \simeq \mathbb{Z} \oplus \mathbb{Z}$. Identifying S^3 with unit quaternions, a homotopy class corresponding to (i,j), can be represented by a map $f \in [S^3, SO(4)]$ given by $f(x)y = x^iyx^j$. Denote the corresponding disc bundle by ν_{ij} and the sphere bundle by $\xi_{ij} := \partial \nu_{ij}$. If $E(\xi_{ij})$ is diffeomorphic to S^7 then we can attach e^8 to ν_{ij} and make it an 8-manifold. Using the Gysin sequence we get

$$0 \to H^3(E(\xi_{ij})) \to \mathbb{Z} \xrightarrow{e \land} \mathbb{Z} \to H^4(E(\xi_{ij})) \to 0$$

and all other cohomology groups except H^0 and H^7 are zero. So, if the Euler class is ± 1 then $E(\xi_{ij})$ has the homotopy type of a sphere. Since the Poincare conjecture² is true we know that it is homeomorphic to the sphere.

Lemma 1. $e(\nu_{ij}) = i + j$

Proof. The proof will be given later.

Using lemma 1, we know that $E(\partial \nu_{ij})$ is homeomorphic to S^7 whenever i+j=1. Now suppose that we get the standard sphere whenever i+j=1. Then we can attach a e^8 to $E(\nu_{i,1-i})$ along the boundary and get an 8-manifold $M_{i,1-i}$.

Lemma 2. $p_1(M_{i,1-i}) = 2(2i-1)$

Proof. The proof will be given later.

We can choose an orientation on $M_{i,1-i}$ such that the sign of the intersection form is +1. Now we can calculate $p_2(M_{i,1-i})$ using the Hirzebruch Signature formula

$$p_2(M_{i,1-i}) = \frac{p_1^2(M_{i,1-i}) + 45}{7}$$

When i = 2 we get $p_2(M_{i,1-i}) = \frac{81}{7}$, which is impossible! Since it has to be an integer. This means the manifold $M_{i,1-i}$ does not exist. So the boundary is not the standard sphere and is therefore exotic!

Proof of Lemma 1. We know that the Euler class is the obstruction cocycle to finding a non zero section. To find a section we just need to find sections

$$s_1: D_+^4 \to D_+^4 \times S^3$$

$$s_2: D^4_- \to D^4_- \times S^3$$

such that on the identification they are the same. Since both the bundles are trivial we can construct a section on the three skeleton $S^3 = D_+^4 \cap D_-^4$ by taking $s_1(x) = (x, 1)$ and $s_2(x) = (x, x^{i+j})$. Therefore the obstruction cocycle to extending it to $D_+^4 \cup D_-^4$ is exactly i + j.

¹Milnor was led to consider these while he was trying to classify n-1 connected 2n manifolds

²Milnor was not aware of this, so he initially believed that he disproved the Poincare conjecture

Proof of Lemma 2. Before we calculate the Pontryagin class of M we will first calculate the Pontryagin class of $\nu_{i,j}$. First notice that Pontryagin class is linear in i and j since it is just the pull back of a class in BSO(4) and a class is just represented by a map $\phi: BSO(4) \to K(Z,4)$. So the map corresponding to f+g is

$$S^4 \to S^4 \vee S^4 \xrightarrow{f \vee g} BSO(4) \xrightarrow{\phi} K(Z,4)$$

Clearly this is the same as

$$S^4 \to S^4 \vee S^4 \xrightarrow{f \circ \phi \vee g \circ \phi} K(Z,4)$$

This shows that it is linear in i and j. Furthermore we know that it is independent of the orientation of the fibre. But if the orientation is reversed then $\nu_{i,j}$ gets replaced by $\nu_{-j,-i}$. So the Pontryagin class is given by an expression c(i-j). Now by actually calculating the Pontryagin class in a special case we get c=2. So we get that the Pontryagin class of $v_{i,j}=2(i-j)$.

Now we calculate the Pontryagin class of $\tau(v_{i,j})$. We know that $\tau(v_{i,j}) = \tau(S^4) \oplus v_{ij}$. By the Whitney sum formula we get that the Pontryagin class is 2(i-j). Now $H^4(M_{i,1-i}) \to H^4(\nu_{i,1-i})$ is surjective and we know that pullback of the Pontryagin class of $\tau(M_{i,1-i})$ is 2(2i-1). So the Pontryagin class of $M_{i,1-i}$ is precisely 2(2i-1).

2. Exotic spheres as h-cobordism classes

Definition 3. A manifold M is said to be a homotopy n-sphere if M is closed and has the homotopy type of the sphere S^n .

Definition 4. Two closed manifolds M_1 and M_2 are h-cobordant if the disjoint sum $M_1 + (-M_2)$ is the boundary of some manifold W, where both M_1 and $-M_2$ are deformation retracts of W.

Remark 5. h-cobordism is an equivalence relation.

Theorem 6. The h-cobordism classes of homotopy n-spheres form an abelian group under the connected sum operation. We denote this group as $\Theta(n)$

Now we will relate this to the exotic spheres using the h-cobordism theorem

Theorem 7. (Smale) If M_1, M_2 and W are simply connected and the dimension of M_1 and M_2 is at least 5. Then W is diffeomorphic to $M_1 \times I$. In particular M_1 and M_2 are diffeomorphic.

Remark 8. Theorem 7 implies that diffeomorphism classes of spheres are in 1-1 correspondence with h-cobordism classes of homotopy spheres.

We will now identify the h-cobordism class of the standard n-sphere.

Lemma 9. A simply connected manifold M is h-cobordant to the sphere S^n if and only if M bounds a contractible manifold.

Proof. If M is h-cobordant to S^n , then by h-cobordism theorem we know that M is diffeomorphic to S^n and therefore clearly bounds a contractible manifold.

Conversely if $M = \partial W$ with W contractible, then removing the interior of an imbedded disk we obtain a simply connected manifold W' with $\partial W' = M + (-S^n)$. By excision we know that the map $(D^{n+1}, S^n) \hookrightarrow (W, W')$ is an isomorphism. Now using the long exact sequence in homology we get that $S^n \hookrightarrow W'$ is an isomorphism on homology; hence S^n is a deformation retract. Therefore M is h-cobordant to S^n .

3. Outline of the proof

Lemma 10. A homotopy n-sphere is S-parallelisable.

Proof. The proof uses Adam's theorem on J-homomorphism and is given in the later section. \Box

Lemma 11. Let M be an n-dimensional submanifold of \mathbb{R}^{n+k} , n < k. Then M is s-parallelisable if and only if it's normal bundle is trivial.

Proof. The proof is based on the following lemma

Lemma 12. If ξ is a rank k vector bundle over an n dimensional CW complex X such that k > n. Then ξ is trivial iff $\xi \oplus \varepsilon^1$ is trivial

Proof. Using the long exact sequence associated to the fiber sequence

$$S^k = O(k+1)/O(k) \xrightarrow{j} BO(k) \xrightarrow{i} BO(k+1)$$

We have an exact sequence of sets

$$[X, S^k]_* \stackrel{j_*}{\to} [X, BO(k)]_* \stackrel{i_*}{\to} [X, BO(k+1)]_*$$

If f is the classifying map for ξ we have that $i \circ f$ is nullhomotopic.

This shows that $i_*[f] = [0]$, so there exists $g: X \to S^k$ pointed such that $[f] = j_*[g] = [jg]$. Since the dimension of X is smaller than k, the map g is nullhomotopic by cellular approximation. Hence f is nullhomotopic and so ξ is trivial.

Proof of Lemma 11. Let τ and ν be the tangent and normal bundles. Then $\tau \oplus \nu$ is trivial. Hence $(\tau \oplus \varepsilon^1) \oplus \nu$ is trivial. Therefore by Lemma 12, ν is trivial.

Combining Lemma 10 and Lemma 11, we have that the normal bundle of a homotopy n-sphere is trivial. Hence the normal bundle can be framed say ϕ . Allowing the normal frame field ϕ to vary we get

$$p(M) = \{p(M, \phi)\} \subset \pi_n^s$$

Lemma 13. The set $p(S^n) \subset \pi_n$ is a subgroup and for any homotopy n-sphere Σ , $p(\Sigma)$ is a coset. Thus the map $\Sigma \to p(\Sigma)$ defines a homomorphism from $p': \Theta(n) \to \pi_n/p(S^n)$.

Proof. We will use the fact that $p(M) + p(M') \subset p(M \# M')$. The proof of this is rather technical. Combining this with the identities

- $(1) S^n \# S^n = S^n$
- (2) $S^n \# \Sigma = \Sigma$
- (3) $\Sigma \# \Sigma = S^n$

we get

$$p(S^n) + p(S^n) \subset p(S^n)$$

this implies $p(S^n)$ is indeed a subgroup

$$p(S^n) + p(\Sigma) \subset p(\Sigma)$$

this implies that $p(\Sigma)$ is a union of cosets

$$p(\Sigma) + p(-\Sigma) \subset p(S^n)$$

this implies that $p(\Sigma)$ is a single coset.

To prove that $\Theta(n)$ is finite we now just need to show that kernel of p' is finite. The following lemma gives a characterisation of the kernel which we will use to prove the theorem.

Lemma 14. $p'(\Sigma) = 0$ iff Σ bounds a parallelisable manifold.

Proof. If $\Sigma = \partial W$ then using Whitneys's theorem on embeddings, we can extend the embedding of $\Sigma \subset \mathbb{R}^{n+k}$ to an embedding of $W \subset D^{n+k+1}$. Let ψ be a framing of W, then $\psi|_M$ is a framing of Σ . This framing clearly gives a map $S^{n+k} \to S^n$ which is null homotopic.

Conversely if $p(\Sigma, \phi) = 0$, then by the Pontryagin Thom theorem Σ bounds a manifold $W \subset D^{n+k+1}$, where ϕ extends to a framing ψ of W. Lemma 11 implies that W is s-parallelisable. It is a manifold with boundary so it is actually parallelisable.

Theorem 15. If a homotopy sphere of dimension 4k bounds a parallelisable manifold then it bounds a contractible manifold.

Proof. This is the main theorem and the last section is just dedicated to proving this statement. \Box

4. Homotopy spheres are S-parallelisable

For the proof we need Adam's theorem about the J-homomorphism.

Theorem 16.

- (1) If $n \equiv 0 \pmod{8}$, the image of J is $\mathbb{Z}/2$.
- (2) If $n \equiv 1 \pmod{8}$, the image of J is $\mathbb{Z}/2$.
- (3) If $n \equiv 3 \pmod{4}$, the image of J is $\mathbb{Z}/m(2s)$. (Where n = 4s 1 and the function m is related to the denominators of Bernoulli numbers)

Let Σ be a homotopy sphere. We know that the obstruction to triviality of $\tau \oplus \varepsilon^1$ is a well defined cohomology class

$$\mathfrak{v}_n(\Sigma) \in H^n(\Sigma; \pi_{n-1}SO_{n+1}) = \pi_{n-1}(SO(n+1))$$

This coupled with lemma 12 gives us that this determines an element \mathfrak{v}_n^s of $\pi_{n-1}(SO)$ and $\mathfrak{v}_n^s = 0$ iff $\mathfrak{v}_n = 0$.

- (1) If $n \equiv 3, 5, 6, 7 \pmod{8}$ then $\pi_{n-1}SO = 0$.
- (2) If $n \equiv 0, 4 \pmod{8}$ then Kervaire[1] proved that $\mathfrak{v}_n = c_1 p_k(\tau \oplus \varepsilon^1) = c_1 p_k(\tau)$. But by Hirzebruch signature formula we have $p_k = c_2 \sigma = 0$, where σ is the signature of Σ .
- (3) If $n \equiv 1, 2 \pmod{8}$, it follows from an argument of Rohlin that $J(\mathfrak{v}_n) = 0$. But Adam's theorem implies J is injective so $\mathfrak{v}_n = 0$.

5. Proof of Theorem

Let $\phi: S^p \times D^{q+1} \to M$ be an embedding. Let M' be obtained by doing surgery using ϕ . The following lemma tells the effect of surgery on homotopy groups

Lemma 17. The homotopy groups of M' are given by

$$\pi_i M' \simeq \pi_i(M)$$
 for $i < min(p, q)$
 $\pi_p(M') \simeq \pi_p(M)/\Lambda$ if $p < q$

where Λ denotes a subgroup generated by $\lambda = \phi(S^p \times 0)$

Lemma 18. If M^n is parallelisable and if $p < \frac{n}{2}$, then any class λ is represented by some embedding $\phi: S^p \times D^{n-p} \to M$.

Proof. Whitney's theorem implies that λ can be represented by an embedding. Now M^n is parallelisable so the normal bundle is trivial. Hence there is an embedding $\phi: S^p \times D^{n-p} \to M$.

We now specialise to the case of n=4k+1 since we want to show that $\Theta(4k)$ is finite. By doing surgery as above we can kill homotopy groups up to dimension 2k-1. In dimension 2k if we try to do surgery we have to replace $S^{2k} \times D^{2k+1}$ replaced by $D^{2k+1} \times S^{2k}$. So we might introduce a homotopy group in the same dimension. The rest of the proof is to understand the effect of surgery in middle dimension.

Lemma 19. Let M' be obtained from M by surgering $\phi: S^{2k} \times D^{2k+1}$. Then

$$\frac{H_k(M)}{\langle \lambda \rangle} \simeq \frac{H_k(M')}{\langle \lambda' \rangle}$$

where λ corresponds to $\phi(S^{2k} \times 0)$ and λ' corresponds to $\phi(s_0 \times S^{2k})$.

Suppose we choose an element $\lambda \in H_k(M)$ such that $\mu.\lambda = 1$ for some $\mu \in H_{k+1}(M)$ then using the long exact sequence in homology

$$H_{2k+1}M \xrightarrow{\lambda} H_{2k+1}(M, M - \operatorname{Im} \phi) \to H_{2k}(M - \operatorname{Im} \phi) \to H_{2k}(M) \to 0$$

Since the left most map is surjective we get that

$$H_{2k}(M - \operatorname{Im} \phi) \simeq H_{2k}(M)$$

This implies that $\lambda' = 0$. Thus we have

$$\frac{H_k(M)}{\langle \lambda \rangle} \simeq H_k(M')$$

Therefore by Poincare duality we can kill all the non torsion part using surgery. Now we claim that if we do a surgery on M whose homology has just torsion, then the betti number changes and the torsion subgroup becomes smaller. Then we can do surgery using the primitive class and get a manifold with strictly smaller H_k .

Lemma 20. Let M be a 4k + 1 manifold with non zero homology only in middle dimensions and such that H_{2k} is only torsion. Then a surgery changes the 2k betti number.

Proof. Let W be a cobordism between M and M'. Define the semi-characteristic class

$$e^*(\partial W) = \sum_{i=0}^{2k} H_i(\partial W) \pmod{2}$$

Note that the summation is only on half the homology groups. So if e^* changes then we know that the rank of H_{2k} changed. Also we know that e(W) = e(M) - 1 = -1, since it is just $M \times I$ with a cell attached and e(M) = 0. It can be shown that the rank of intersection pairing

$$H_{2k+1}W \times H_{2k+1}W \to \mathbb{R}$$

is $e^*(\partial W) + e(W) \pmod{2}$. But we know this pairing is skewsymmetric and therefore has even rank. So we have

$$e^*(M + M') + 1 \equiv 0 \pmod{2}$$

This proves that the rank of H_{2k} changes.

From lemma 19 we know that

$$\frac{H_k(M)}{\langle \lambda \rangle} \simeq \frac{H_k(M')}{\langle \lambda' \rangle}$$

Since the rank changes and $\langle \lambda \rangle$ is finite it follows that $\langle \lambda' \rangle$ is non torsion. Hence $H_k(M')$ has strictly smaller torsion. Now killing the new primitive element we get a manifold with strictly smaller H_{2k} .

REFERENCES

- [1] Michel A. Kervaire. A note on obstructions and characteristic classes. *American Journal of Mathematics*, 81(3):773, 1959.
- [2] John Milnor. Classification of (n 1)-connected 2n-dimensional manifolds and the discovery of exotic spheres. Princeton University Press eBook Package 2014.
- [3] John Milnor. On manifolds homeomorphic to the 7-sphere. The Annals of Mathematics, 64(2):399, 1956.
- [4] Michel A. Kervaire and John W. Milnor. Groups of homotopy spheres: I. The Annals of Mathematics, 77(3):504, 1963.
- [5] John Milnor. Lectures on the h-cobordism theorem. Princeton University Pres, 2016.