Exercice 3: polarization mode dispersion and chromatique dispersion in a single mode fiber

Part 1: birefringence and polarization mode dispersion

One can show that the normalized phase birefringence B_{ϕ} of an optical fiber having an optical core and working in the single mode regime depends on the wavelength following the relation : $B_{\phi} = \sigma.\lambda^2$ where σ is a constant.

- 1) What is the relation existing between B_{ϕ} and the effective indices n_{ex} and n_{ey} of the two polarization modes (HE_{11x} and HE_{11y}, x and y being the directions of the two neutral axes (or eigen axes) of the fiber)?
- 2) show that the beat length L_B between these two modes can be written : $L_B = \frac{\lambda}{B_{\omega}}$.
- 3) We work at λ = 1.55 μ m. The effective index of the mode polarized along one of the eigen axis is 1.4455 and L_B= 3mm. Calculate the constant σ (USI) and deduce the possible values of the effective index of the mode polarized in the orthogonal direction, rounded to the nearest 10⁻⁵.
- 4) show that, for this fiber, the group birefringence B_G can be expressed very simply versus B_{ϕ} . Give its value at $\lambda = 1,55 \mu m$.
- 5) The group index of the mode polarized in the direction 1 is $N_{g_{\textcircled{0}}}=1.4722$ (1=x or y). Calculate $N_{g_{\textcircled{0}}}$ (2=y or x, respectively) to the nearest 10^{-5} , $N_{g_{\textcircled{0}}}$ being the group index of the mode polarized in the orthogonal direction, knowing that $N_{g_{\textcircled{0}}}>N_{g_{\textcircled{0}}}$.
- 6) A short light pulse with a triangular P(t) shape, P(t) being the power, is emitted by a laser. The full width at half maximum (FWHM) of this pulse is 1 ps. The pulse is launched into the studied fiber after crossing a polarizer oriented at 45° to the neutral axes of the fiber. What proportion of the energy propagating in the fiber is carried by the HE_{11x} mode and by the HE_{11y} mode?

We neglect the effects of the chromatic dispersion and we consider that the fiber behaves as a polarization maintaining fiber: represent the temporal shape of the signal detected at the output, after a 10 m long propagation in the fiber.

Part 2: chromatique dispersion

A silica step index fiber is used for a high bit rate transmission @ $\lambda_T = 1.55 \mu m$. This fiber is single mode at the working wavelength λ_T . The effective index of the fundamental mode can take the following form around λ_T : $n_e(\lambda) = A_2 \lambda^2 + A_1 \lambda + A_0$ where A_2 , A_1 and A_0 are constant values.

1/A short pulse centered at λ_T takes exactly 0,491317 ms for travelling over a distance of 100 km in the fiber.

- a- What is the value of the group velocity in the fiber @ λ_T ?
- b- Calculate the group index at λ_T , with a precision of 10^{-5} .

.../...

1/2

2/ a- Show that the expression of the group index as a function of the effective index n_e and the wavelength is $n_g = n_e - \lambda \frac{dn_e}{d\lambda}$

- b- express the group index versus A_2 , A_1 , A_0 and λ .
- c- the parameter A_0 is equal to 1,47. Show that $A2=-16,45 \cdot 10^{-4} \mu m^{-2}$
- 3/ The chromatic dispersion D of the fundamental mode can be expressed under the form $D_c = \frac{1}{c} \frac{dn_g}{d\lambda}$
 - a- Show that $D_c = -\frac{\lambda}{c} \frac{d^2 n_e}{d\lambda^2}$
- b- Calculate the chromatic dispersion of the fiber at λ_T , expressed in the usual unit system: ps/(km.nm).
- 4/ At λ_T , the dispersion of silica is $D_m = 22 \text{ ps/(km.nm)}$.
 - a- Why is the chromatic dispersion of the fiber different from the dispersion of silica ($D_c \neq D_m$)?
 - b- With what means can the manufacturers adjust the chromatic dispersion of the guided mode, at a given wavelength?
- 5/ Calculate the propagation length L at the end of which a pulse having an initial duration $\Delta t = 150$ ps and a spectral width equal to $\sigma_{\lambda} = 0.3$ nm will have its duration increased by 50%.

Some formulas which can be useful in part 1 or in part 2

Phase velocity:
$$v_{\varphi} = \frac{\omega}{\beta}$$
 Group velocity: $v_{g} = \frac{d\omega}{d\beta}$

Group index : $N_g = n_e - \lambda \frac{dn_e}{d\lambda}$ (n_e = effective index for the considered mode)

Phase birefringence : $b_{\varphi} = |\beta_x - \beta_y|$ where β_x and β_y are the propagation constants of the HE_{11x} and HE_{11y} modes, respectively.

Normalized phase birefringence : $B_{\varphi} = \frac{b_{\varphi}}{k_0}$, k_0 being the modulus of the wave vector in the vaccum

2/2

