lots of data, lots of "avolysis" oue condo. Suderstand causality how smoking and lung disease. I population vide studies.

Kon to conduct useful population-wide of studies / "data analysis" who it out of compromising judividual privacy

Means users are incentilized to join the study L'Collecturely we can beaut something, but judicidently don't love anyting)

{ different from "CRYPTOGRAPHY" }
Which is like a vault + Key. Here we want to contribut dater (
but the analyst learns) Sort the anarysi marines of wathing "private"

INITIAL ATTEMPT AT MODELING PRIVACY

Attempt (1)

(Want the anolyst to not learn

anything new about any

which which will be any

Natural 155 ve You will learn something new from the answer of the query.

Example

. \

Example
Imagine each vi= (#left feet, # right feet) - Analyst Asks My (# left ft - # ng/4 ft) - Reply (likely) = 0 => Analyst "learns" Hat u, has equal to 1 alt & most at Hoffen nocht ft.

(Maybe need few nove grenes to

get min (# left ft)

Min (# nope ft), etc. - With us the definition vacuous? A what we learnt is something "global".

- Why is this definition vacuous?

A: what we learnt is something "global".

Nothing specific about the particular individual particular individual particular individual Privacy"

[The earlier definition of privacy is broken]

DMNS - Dwork, McSherry, Nissim, Smith

[Differential Privary]

[What if the Algorithm guarantees that
the answer to the guery is "almost"
the same regardless of whether
un (or any fixed individual) is
present in the imput or not?]

The analyst cent even distinguish if
un was part of the shidy

learn anything about us data?

The Differential Privacy Model

Input Database X of 'n' rows,

each corr to a user, fuf.

Ago takes X and outputs f(X)

[I can be scalar output, better

output, etc)

f is the statisfical query

To so the output.

or not, so how can be/ste

Es the ostput. T(x) con be some "noisy/appoximete"
response to f(x). If X and x' are two daterbases which differ in a single row, then want $\int_{-\infty}^{\infty} f(x) x' f(x') dx'$ and grankes privacy. (2) $|f(x) - \hat{g}(x)|$ is "small" for all xI granutees whity of study. Need to formalize "n" meaning and "small" Just 1 is easy to satisfy:

Output f(x) = 0 always

Full privacy, No untilty > How to get both together? } ci. unlo alleviel for

There are many simple queries for which we need to whodice noise, else un break privacy. D ALGO
Avalyst Me Microsoft Employees SALARY deforts Analyst asks " court # people with Salary > 2M \$" SPS Algo replies (1). Then analyst can learn that CEO'S (Salary 7, 2MS) Output will be O it CEO doesn't take part in survey.

take part in survey. => CEO'S privacy is compromised acc our definition 1 y 0 issue ? ls this just a Yerhops not-Sps Answer - 1000. and tomorrow, the answer is 1001. Maybe Microsoft hired a new employel,

=> {likely that this person has 5alary}

7.2m\$. we may learn something about the new individual So our Model / defruition captured
there insured well =) we must add some noise to f(x)So that T(x) ~ T(x) for all lariup

reg boring Model Formally is roudourized, odds roll acc distribution Distribution of F(x). Error of Algo Fardon (B(x) - f(x)) Privacy Requirement; differing in one Wand dutributions to be rearly identiced.

f(x) ~ f(x) for an

rearly identiced J J E(x) & E(x) dohubuhan + x, x', and for all subsets R
of possible of objects of b, Pr[B(x) ER] < er pr[B(x) ER E-Differentiel Privay, queried with MIN ERROR? Tomorrow Such a scheme for "counting" quenty

Database X Users Salary
W 5 5
u &n
S M GO
Query = "Court Husers with
output $f(x) + R$
R's some suitable

utere R's soure suitable eg { R ~ N(0, 5²) for suntable of } will give privacy with bow error for suitable parameters Our Algo [Technical Difference] Add noise 2 W.P & P (in contrast gaussian voise has prob & e LAPLACIAN DISTRIBUTION $f_{R}(z) = \frac{1}{20} e^{-\frac{|z|}{6}}$ $\int_{-\infty}^{\infty} f_{\mu}(z) dz$ Check $\int_{0}^{\infty} Z \int_{\mathbb{R}^{2}} (z) dz = E[R] = 0$ $\int_{0}^{\infty} z^{2} f_{R}(z) dz = E[R^{2}] = 26^{2}$

eg, Integration by parts

voise acc Laplacian (T), if we add the squared error like ? Whot s (K) = f(K) + R error = $E\left[\left(\frac{1}{2}(x) - \frac{1}{2}(x)\right)^{2}\right]$ = $E[R^2]$ where $R \sim Lap(\sigma)$ = 26 Want to set & sufficiently large to get desired privacy. t x, x' differing m a row, and any subsel 5 of other which Swant Pr [B(x) ES] < e fr [B(x') ES] hivacy Requiement.

1.12'11 interet set rock such that

we'll infered set noise such that

me pof of Algo offict for

x and x one very similar. Fix an output value t'. let try (x,t) = PDF of Mg Outputing toos $= \frac{1}{26} \exp\left(-\frac{|f(x)-t|}{6}\right)$ Similarly, $\frac{1}{26} \exp\left(-\frac{|f(x)-t|}{6}\right)$ \$ Mg (x', t) = $\frac{f(x,t)}{f(x,t)} \leq e^{-\frac{1}{2}f(x)} - \frac{f(x)}{f(x,t)}$ So we can set $\sigma = \frac{1}{\epsilon}$

Hritit & (x, t)

peghong

f(x, t)

Addanger e e Privay $E\left[\left(\overline{B}(x)-\overline{A}^{2}\right)\right]^{2}=\frac{2}{\epsilon^{2}}$ A whity Only thing we used in proof is how much from X ~>> X.

SENSITIVITY of Fr. $\Delta_{f} = \max_{X, X'} |f(X) - f(X)|$ different Moise will simply depend on It by setting or appropriately to ensure E-Privacy'SUMMARY Surple scheme which works, not just for counting quentes, but for any low-sensitility furction

Algo s called Laplace Mechanism Gaussian Mechanism also exists (U/ gaussian voire)

lu above example, query answer was a numerical value what if "to ust?

We want to select "Most popular day" in a differentially private manuel.

Q1:- Court simply add voise, (Meaningless)

Q1:- Cent simply add voise, (Meaningless)
02:- How to measure utility of a scheme Privary is easy to extend hr [the selects Monday for X] < e²

Hr (" " X') Similarly for each other day. How to get utility? Wout output to be a popular day.

Popular day. For code possible output (days on our example) Day 1 2 nz nz n5 compute n, nz # people who prefer day is as arswer E.n: Output

The work bely to be output Privacy + Error Analysis upits X and X For any day is and Po (Alg relects i for X) Ar (Alg selects i for X) ็รท:(x) 2(ni(x) - No(X)) [x x and X differ in $\operatorname{coch}_{1} \leq \operatorname{ri}(x) - \operatorname{vi}(x') \leq 1$

for all i. for (ste output i onx) i e Pr[He output i on X] = 22 Satisfiel 22- Différential Privacy. what about evror ? let detabare has in people. and suppose $n_1 = 017$ s the largest count Ideally. Want the to output a lay with count close ton, let's calculate

for (Alg Outputs a day with

count < n, - t) let's fix a day i with count < n, -t for [Alg outputs this day] = $\frac{c}{7e^{\epsilon n_j}}$

 $\leq \frac{\epsilon(n_1-t)}{\epsilon^{n_1}}$ So fr t = log(7/8) This probability is $\leq \frac{8}{n}$ This probability is $\leq \frac{8}{n}$ Pr (outputting a book day) & 8 good probability, typ chooses
a day with score 7, 011
[05(1/8) [very unefalt of OPT 577 logn] AND D Preserves 22- Privacy of Users. MECHANISM. EXPONENTAL