ED62A-COM2A ESTRUTURAS DE DADOS

Aula 02 - Noções Básicas de Complexidade de Algoritmos

Prof. Rafael G. Mantovani 20/08/2019

Roteiro

- 1 Introdução / Motivação
- 2 Análise de Complexidade / Assintótica
- 3 Notações Assintóticas
- 4 Classes de Complexidade
- 5 Síntese / Revisão
- 6 Referências

Roteiro

- 1 Introdução / Motivação
- 2 Análise de Complexidade / Assintótica
- **3** Notações Assintóticas
- 4 Classes de Complexidade
- 5 Síntese / Revisão
- 6 Referências

Problema (tarefa)

Comparação de Funções de Complexidade

Função	Tamanho n					
de custo	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	s	s	s	s	s	s
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036
	s	s	s	s	s	s
n^3	0,001	0,008	0,027	0,64	0,125	0.316
	s	s	s	s	s	s
n^5	0,1	3,2	24,3	1,7	5,2	13
	s	s	s	min	min	min
2^n	0,001	1	17,9	12,7	35,7	366
	s	s	min	dias	anos	séc.
3^n	0,059	58	6,5	3855	10 ⁸	10 ¹³
	s	min	anos	séc.	séc.	séc.

Vetores Estáticos

VS

Estruturas Dinâmicas

```
int *lerSeq (int *n) {
                                                                 LinkedNode *lerSeq (int mode) {
  *n = 2;
 int *seq = malloc((*n)* sizeof (int));
                                                                   LinkedNode* first = NULL;
                                                                   LinkedNode* last = NULL;
  if(!seq) {
   *n = 0;
                                                                   int item1, item2;
    return NULL;
                                                                   scanf("%d", &item1);
                                                                   scanf("%d", &item2);
 scanf("%d", &seq[0]);
                                                                   int num;
 scanf("%d", &seq[1]);
                                                                   for(; ;) {
                                                                     scanf("%d", &num);
  int i=1, num;
  for(; ;i++) {
                                                                     if (num==0 && (item1==0) && (item2==0)) {
   scanf("%d", &num);
                                                                       return first;
    if (num==0 && (seq[i]==0) && (seq[i-1]==0)) {
      *n=i-1;
                                                                     if (mode==1) {
      return seq;
                                                                       last = appendNode(last, item1);
                                                                       if (first == NULL) {
                                                                         first = last;
    if (i==(*n)-1) {
                                                                       }
      seq = dobrarSeq(seq, n);
                                                                     } else {
      if (seq==NULL) return NULL;
                                                                       first = insertFirst(first, item1);
                                                                     }
    seq[i+1]=num;
                                                                     item1 = item2:
                                                                     item2 = num;
```


Roteiro

- 1 Introdução / Motivação
- 2 Análise de Complexidade / Assintótica
- **3** Notações Assintóticas
- 4 Classes de Complexidade
- 5 Síntese / Revisão
- 6 Referências

Análise de Complexidade de Algoritmos

Objetivo:

- ajudar a determinar qual algoritmo é mais eficiente para resolver um problema
- Medir como o tempo ou espaço aumenta com relação ao tamanho da entrada (N)

Análise de Complexidade de Algoritmos

- Tamanho da entrada (N):
 - número de elementos de dados que são relevantes na entrada do algoritmo. Varia dependendo do problema.

N = elementos/sequencia

N = Vértices/Arestas

N = Dimensões da matriz

N = Quantidade de bits

Exemplo

```
Programa: fatorial de um número N
Tamanho da entrada: N;
```

```
void fatorial(int n) {
   int i;
   int fat = 1;
   for(i = 1; i <= n; i++) {
      fat = fat * i;
   }
   return(fat);
}</pre>
```

Exemplo

```
Programa: fatorial de um número N
Tamanho da entrada: N;
```

Exemplo

```
Programa: fatorial de um número N
Tamanho da entrada: N;
```

Análise de Complexidade de Algoritmos

Análise de Complexidade de Algoritmos

- O custo exato do algoritmo é irrelevante. O importante é obter uma boa aproximação ou limite (tight bound)
- Entradas pequenas são irrelevantes. O importante é o comportamento do algoritmo quando o tamanho da entrada é grande (complexidade assintótica).

Análise Assintótica

- Assume um modelo abstrato de computador com um conjunto básico de operações e seus custos
- O custo de tempo é uma função T(N)
 - N representa o tamanho da entrada
- Exemplo: busca sequencial em um array de números inteiros

$$A = \begin{bmatrix} 17 & 23 & 24 & 31 & 44 & 52 & 70 & 90 \end{bmatrix}$$

Exemplo 01: melhor caso

Melhor caso:

$$A = \begin{bmatrix} 17 & 23 & 24 & 31 & 44 & 52 & 70 & 90 \end{bmatrix}$$

Exemplo 01: melhor caso

Melhor caso: elemento a ser encontrado está na primeira posição de A

Ex: valor de consulta = 17

Array: **N** posições

Total de operações: 1

T(N) = 1

Exemplo 02: pior caso

Pior caso:

$$A = \begin{bmatrix} 17 & 23 & 24 & 31 & 44 & 52 & 70 & 90 \end{bmatrix}$$

Exemplo 02: pior caso

Pior caso: elemento a ser encontrado não está em A

Ex: valor de consulta = 12

Array: **N** posições

Total de operações: N

T(N) = N

Exercício 1: caso médio?

Qual a complexidade do caso médio da busca linear?

$$A = \begin{bmatrix} 17 & 23 & 24 & 31 & 44 & 52 & 70 & 90 \end{bmatrix}$$

Exercício 1: caso médio?

Qual a complexidade do caso médio da busca linear ?

$$A = \begin{bmatrix} 17 & 23 & 24 & 31 & 44 & 52 & 70 & 90 \end{bmatrix}$$

Dica: média de todos os casos

Roteiro

- 1 Introdução / Motivação
- 2 Análise de Complexidade / Assintótica
- 3 Notações Assintóticas
- 4 Classes de Complexidade
- 5 Síntese / Revisão
- 6 Referências

Notações Assintóticas

- Permitem descrever o comportamento assintótico de uma função, quando o argumento N (entrada, quantidade de dados):
 - \square $N \rightarrow \infty$
- Notação O: limite superior
- Notação Ω : limite inferior
- Notação Θ: limite firme ou restrito

Notação O: limite superior

 Expressa um limite superior para o comportamento assintótico de uma função:

$$O(g(n)) = \{ f(n) \mid \exists c > 0, n_0, \forall n > n_0, f(n) \le c * g(x) \}$$

Informalmente, $f(n) \in O(g(n))$ não cresce mais rapidamente que g(n), para valores de n suficientemente grandes (como se $(f(n) \le g(x))$).

Problema: estabelece que precisam existir c e n₀, mas não se diz como calculá-los.

- Geralmente existem vários pares (c, n₀)

Exemplos: $5n = O(n^2)$, $10n^2 + 5n = O(n^2)$, $n^3 \neq O(n^2)$, $\log_5 n = O(\log n)$.

Notações Ω e Θ

Notação Ω : expressa um limite inferior:

$$\Omega(g(n)) = \{ f(n) \mid \exists c > 0, n_0, \forall n > n_0, f(n) \ge c^* g(x) \}$$

Exemplos:
$$300n + 100 = \Omega(n)$$
, $10n^2 + 5n = \Omega(n^2)$

Notação Θ: expressa um limite firme ou restrito

$$\Theta(g(n)) = \{ f(n) \mid \exists c_1 > 0, c_2 > 0, n0, \forall n > n0, c_1 * g(n) \le f(n) \le c_2 * g(x) \}$$

Exemplos:
$$10n^2 + 5n = \Theta(n^2)$$
, $n \neq \Theta(n^2)$, $n^3 \neq \Theta(10n^2)$

Notações Assintóticas

- 1. Todas são reflexivas e transitivas; Θ é simétrica.
- 2. f(x) = O(g(x)) sse $g(x) = \Omega(f(x))$
- 3. $f(x) = \Theta(g(x))$ sse f(x) = O(g(x)) e $f(x) = \Omega(g(x))$
- $4. O(k^*f(x)) = O(f(x), \forall k \neq 0.$
- $5. O(f(x)) + O(g(x)) = O(\max(f(x), g(x)))$

Complexidade Assintótica

 Se f é uma função de complexidade para o algoritmo A, então O(f) é considerada a complexidade assintótica do algoritmo A.

Exemplo 03: influência das constantes

• Exemplo: f(n) = 100n, $g(n) = 2n^2$

Notações Assintóticas

- Propriedades permitem desprezar constantes e termos de menor grau.
- Possível definir algumas regras p análise de limites superiores.
- 1. Todas são reflexivas e transitivas; Θ é simétrica.
- 2. f(x) = O(g(x)) sse $g(x) = \Omega(f(x))$
- 3. $f(x) = \Theta(g(x))$ sse f(x) = O(g(x)) e $f(x) = \Omega(g(x))$
- $4. O(k^*f(x)) = O(f(x), \forall k \neq 0.$
- $5. O(f(x)) + O(g(x)) = O(\max(f(x), g(x)))$

Princípios sobre a notação O

Regra	Tipo de comando	Tempo
1	Atribuição/leitura/escrita	constante = O(1)
2	Sequência de comandos	maior tempo entre os comandos
3	Comando condicional	tempo dos comandos dentro da condição + O(1). Se houver se-senão, é max(teste + se, teste + senão).
4	Laço	soma do tempo do corpo do laço, mais o tempo de avaliar a condição de parada, multiplicado pelo número de iterações.
5	Procedimentos	tempo de cada procedimento computado separadamente. Iniciando dos que não tem outras chamadas de funções, depois os que tem chamada, até chegar ao programa principal.

Exemplo 04 - Loop simples

```
1  for (i = sum = 0; i < n; i++) {
2   sum = sum + a[i]
3  }
4</pre>
```

- Considerando apenas atribuições (DROZDEK, 2016):
 - □ 2 atribuições antes do comando iniciar (i = 0, sum = 0) → 2
 - dentro do comando, repete-se n vezes, e cada laço executa também duas atribuições → 2n
 - total = 2n + 2 operações
 - complexidade assintótica = O(n)

Exemplo 05 - Loop aninhado

```
1 for(i = 0; i < n; i++) {
2  for(j = 1, soma = a[0]; j <= i; j++){
3   soma = soma + a[j];
4 }</pre>
```

- variável i iniciada → 1
- laço externo executa n vezes, e em cada iteração é realizada a atribuição de três variáveis → 3n
- □ laço interno é efetuado j vezes, com j \in {1, 2, 3, ..., n-1}, com duas atribuições $\rightarrow \sum_{n-1} 2i = n(n-1)$
- total = 1 + 3n + n² n
- complexidade assintótica = $O(n^2)$

Roteiro

- 1 Introdução / Motivação
- 2 Análise de Complexidade / Assintótica
- 3 Notações Assintóticas
- 4 Classes de Complexidade
- 5 Síntese / Revisão
- 6 Referências

Classes de Complexidades

Complexidade	Nome	Exemplo			
O(1)	Constante	Expressões e atribuições inteiras e reais			
O(log n)	Logarítmica	Busca binária			
O(n)	Linear	Busca Sequencial			
$O(n \log n) = O(\log n!)$	Quase Linear	Métodos de Ordenação eficientes			
O(n ^c)	Polinomial	Métodos de Ordenação Simples			
$O(c^n)$, $c > 1$	Exponencial	Todas as combinações de elementos			
O(n!)	Fatorial	Todas as permutações de elementos			

Classes de Complexidades

Hierarquia na complexidade dos algoritmos

Elementos (n)

Fonte: http://bigocheatsheet.com

Deficiências da Análise Assintótica

- Complexidade de Código
 - Algoritmos melhores são frequentemente mais complexos.
 - Exige mais tempo no desenvolvimento.

- Tamanhos de entrada pequenos
 - Análise assintótica ignora tamanhos pequenos.
 - Pode ocorrer de constantes ou termos de menor ordem dominarem o tempo total, fazendo B ser melhor que A.

Roteiro

- 1 Introdução / Motivação
- 2 Análise de Complexidade / Assintótica
- 3 Notações Assintóticas
- 4 Classes de Complexidade
- 5 Síntese / Revisão
- 6 Referências

Síntese/Revisão da Aula

- Noções Básicas de Complexidade de Algoritmos
- Medidas genéricas para avaliar o custo de algoritmos
- □ Análise de complexidade → análise assintótica
- □ Notações assintóticas \rightarrow 0, Ω e Θ
- Limites superiores (O)
- □ Propriedades → simplificar a análise (regras)
- Classes de complexidade

Próximas Aulas

- Implementação de Listas Elementares
 - Filas
 - Pilhas
 - Listas
- Árvores de Busca (Árvores)

Próximas Aulas

Common Data Structure Operations

Data Structure	Time Complexity								Space Complexity
	Average				Worst				Worst
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
Array	Θ(1)	θ(n)	θ(n)	θ(n)	0(1)	0(n)	0(n)	0(n)	0(n)
Stack	θ(n)	θ(n)	θ(1)	θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Queue	θ(n)	θ(n)	θ(1)	θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Singly-Linked List	θ(n)	θ(n)	θ(1)	θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	θ(n)	θ(n)	θ(1)	θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Skip List	θ(log(n))	θ(log(n))	θ(log(n))	θ(log(n))	0(n)	0(n)	0(n)	0(n)	0(n log(n))
Hash Table	N/A	θ(1)	θ(1)	θ(1)	N/A	0(n)	0(n)	0(n)	0(n)
Binary Search Tree	θ(log(n))	θ(log(n))	θ(log(n))	θ(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)
Cartesian Tree	N/A	θ(log(n))	θ(log(n))	θ(log(n))	N/A	0(n)	0(n)	0(n)	0(n)
B-Tree	θ(log(n))	θ(log(n))	θ(log(n))	θ(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	0(n)
Red-Black Tree	θ(log(n))	θ(log(n))	θ(log(n))	θ(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	0(n)
Splay Tree	N/A	θ(log(n))	θ(log(n))	θ(log(n))	N/A	O(log(n))	O(log(n))	O(log(n))	0(n)
AVL Tree	θ(log(n))	θ(log(n))	θ(log(n))	θ(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	0(n)
KD Tree	θ(log(n))	θ(log(n))	θ(log(n))	θ(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)

Roteiro

- 1 Introdução / Motivação
- 2 Análise de Complexidade / Assintótica
- 3 Notações Assintóticas
- 4 Classes de Complexidade
- 5 Síntese / Revisão
- 6 Referências

Referências

[Cormen et al, 2018] 3 edição

[Cormen, 2012] 2 edição

Referências

[Ziviani, 2010]

[Drozdek, 2017]

Perguntas?

Prof. Rafael G. Mantovani

rafaelmantovani@utfpr.edu.br

Exercício 01: O?

Qual a classe de complexidade do algoritmo?

```
1  int fun(int n) {
2   int count = 0;
3   for (int i = n; i > 0; i /= 2)
4   for (int j = 0; j < i; j++)
5      count += 1;
6   return count;
7  }</pre>
```