Tópicos de Matemática Discreta

folha 6 -

2. Teoria elementar de conjuntos

2.1. Considere o conjunto $A = \{1, -1, \frac{1}{4}, 2, 0, -\frac{1}{2}\}$. Indique todos os elementos de cada um dos conjuntos seguintes.

(a)
$$\{a \in A \mid a^2 \in \mathbb{Z}\}$$

(d)
$$\{a \in A \mid a \ge 0 \land \sqrt{a} \in A\}$$

(b)
$$\{a^2 \in \mathbb{R} \mid a \in A \land a^2 \in A\}$$

(b)
$$\{a^2 \in \mathbb{R} \mid a \in A \land a^2 \in A\}$$
 (e) $\{x \in \mathbb{R} \mid \exists_{a \in A} \quad (a^2 \in A \land a \ge 0 \land x = \sqrt{a})\}$

(c)
$$\{b \in \mathbb{Z} \mid \exists_{a \in A} \ b = a^2\}$$

(f)
$$\{b \in \mathbb{R} \mid \exists_{a \in A} \ b^2 = a\}$$

2.2. Descreva, por compreensão, cada um dos conjuntos que se seguem:

(a)
$$A = \{-1, 1\}$$

(c)
$$B = \{3, 6, 9, 12, 15, \ldots\}$$

(b)
$$C = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$$
 (d) $D = \{4, 9, 16, 25\}$

(d)
$$D = \{4, 9, 16, 25\}$$

2.3. De entre os conjuntos que se seguem, indique aqueles que são iguais.

(a)
$$\{x \in \mathbb{R} \mid x^2 - 3x + 2 = 0\}$$
, $\{1, 2\} \in \{n \in \mathbb{N} \mid 0 < n^2 \le 4\}$ (c) \emptyset , $\{0\}$, $\{\emptyset\} \in \{\}$

(c)
$$\emptyset$$
, $\{0\}$, $\{\emptyset\}$ e $\{\emptyset\}$

(b)
$$\{r, t, s\}$$
, $\{s, t, r, s\}$, $\{t, s, t, s\}$ e $\{s, t, r, t\}$

(d)
$$\{1, \{-1\}\}, \{1, -1\} \in \{x \in \mathbb{R} \mid x^2 = 1\}$$

2.4. Seja $A = \{5, 11, \{5, 11\}, \{0\}, \emptyset\}$. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira.

(a)
$$5 \in A$$

(b)
$$\{5\} \in A$$

(b)
$$\{5\} \in A$$
 (c) $\{5,11\} \in A$ (d) $A \subseteq \mathbb{R}$

(d)
$$A \subseteq \mathbb{R}$$

(e)
$$\{5, 11\} \subseteq A$$

(f)
$$0 \in A$$

(g)
$$\emptyset \in A$$

(h)
$$\{0, 5, 11\} \subseteq A$$

2.5. Diga se é verdadeira ou falsa cada uma das afirmações seguintes:

(a)
$$1 \in \{1\}$$

(c)
$$\{1\} \in \{1\}$$

(a)
$$1 \in \{1\}$$
 (c) $\{1\} \in \{1\}$ (e) $\{1\} \in \{1, \{1\}\}$ (g) $\{1\} \subseteq \{\{1\}\}$

$$(g) \{1\} \subset \{\{1\}\}$$

(b)
$$1 \in \{\{1\}\}$$

$$(d) \{1\} \in \{\{1\}\}$$

$$(f) \{1\} \subseteq \{1\}$$

(b)
$$1 \in \{\{1\}\}\$$
 (d) $\{1\} \in \{\{1\}\}\$ (f) $\{1\} \subseteq \{1\}\$ (h) $\{1,\{1\}\} \subseteq \{\{1\}\}\$

2.6. Investigue a veracidade de cada uma das seguintes proposições.

(a)
$$\emptyset \in \{\emptyset\}$$

(b)
$$\emptyset \subseteq \{\emptyset\}$$

(c)
$$\emptyset \notin \emptyset$$

(d)
$$\emptyset \in \{\{\emptyset\}\}$$

2.7. Considere que A é um subconjunto de B e que B é um subconjunto de C. Considere ainda que $a \in A, b \in B, c \in C$ e que $d \notin A, e \notin B$ e $f \notin C$. Quais das afirmações seguintes são necessariamente verdadeiras?

(a)
$$a \in C$$

(b)
$$b \in A$$

(c)
$$d \in E$$

(b)
$$b \in A$$
 (c) $d \in B$ (d) $c \notin A$ (e) $e \notin A$ (f) $f \notin A$

(e)
$$e \notin A$$

(f)
$$f \notin A$$

2.8. Dê exemplos de conjuntos A e B tais que se tenha simultaneamente:

(a)
$$A \subseteq B$$
 e $A \notin B$

(b)
$$A \nsubseteq B \in A \in B$$

(c)
$$A \nsubseteq B \in A \notin B$$
 (d) $A \subseteq B \in A \in B$

(d)
$$A \subseteq B \in A \in E$$

Tópicos de Matemática Discreta

— folha 7 —

- **2.9.** Sejam $A = \{2, 4, 6, 8\}, B = \{x \in \mathbb{N} \mid \exists_{y \in \mathbb{N}} x = 2y\} \in C = \{x^2 \mid x \in A\}.$ Determine $A \cup C$, $A \cup B$, $C \cup B$, $A \cup A$, $A \cap B$, $B \cap B$, $B \cup C \cup A$, $C \setminus A$, $A \setminus B$ e $B \setminus A$.
- **2.10.** Sejam $A, B \in C$ subconjuntos de um conjunto X. Prove que
- (a) $A \cup A = A$
- (c) $A = (A \cap B) \cup (A \setminus B)$ (e) se $A \cup B = \emptyset$ então $A = \emptyset$ e $B = \emptyset$

- (b) $A \setminus B \subseteq A$ (d) $A \cap (B \setminus C) = (A \cap B) \setminus C$ (f) $(A \cup B) \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C) \cup (B \setminus C)$
- **2.11.** Sejam $A, B \in C$ conjuntos. Mostre que se $A \cup B = A \cup C$ e $A \cap B = A \cap C$ então B = C.
- **2.12.** Dê exemplos de conjuntos $A, B \in C$ para os quais se tenha, respetivamente:
- (a) $A \cup (B \setminus C) \neq (A \cup B) \setminus (A \cup C)$ (b) $A \setminus (B \cap C) \neq (A \setminus B) \cap (A \setminus C)$
- 2.13. Sejam A, B e C conjuntos. Diga, justificando, se é verdadeira ou falsa cada uma das afirmações seguintes.
 - (a) Se $C \subseteq A \cup B$ então $C \subseteq A$ e $C \subseteq B$. (c) Se $C \subseteq A$ ou $C \subseteq B$ então $C \subseteq A \cap B$.
 - (b) Se $C \subseteq A$ ou $C \subseteq B$ então $C \subseteq A \cup B$. (d) Se $C \subseteq (A \cap B)$ então $C \subseteq A$ e $C \subseteq B$.
- **2.14.** Sejam $A = \{1, 5, 7\}$ e $B = \{\emptyset, 7, \{1, 5, 7\}\}$. Indique $\mathcal{P}(A)$ e $\mathcal{P}(B)$ e diga, justificando, se $A \in \mathcal{P}(B), A \in \mathcal{P}(\mathbb{N}) \in \mathcal{P}(A) \subseteq \mathcal{P}(\mathbb{N}).$
- **2.15.** Determine $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.
- 2.16. Sejam A, B e C conjuntos. Diga, justificando, se é verdadeira ou falsa cada uma das afirmações seguintes: (a) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$; (b) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.
- **2.17.** Considere os conjuntos $A = \{1, 2, 3\}, B = \{a, b\}$ e $C = \{5\}$. Determine $A \times C, C \times A$ $(A \times C) \setminus (C \times A), A \times B \times C, A \times \emptyset \times C, C^3 \in C^3 \times B.$
- **2.18.** Sejam A, B e C conjuntos. Prove que $C \times (A \cup B) = (C \times A) \cup (C \times B)$.
- **2.19.** Sejam A, B e C conjuntos tais que $A \neq B$ e $A \times C = B \times C$. Mostre que $C = \emptyset$.
- **2.20.** Dê exemplo, ou justifique que não existe um exemplo, de conjuntos $A, B \in C$ tais que:
- (a) $\{1\} \in A \in \{1\} \subseteq A$ (d) $B = C \in A \cap B \neq A \cap C$ (g) $A \times (B \setminus C) = A \times C \text{ com } B, C \neq \emptyset$
- (b) $A \cap \emptyset = A$
- (e) $A \times B \subseteq B \times C$ e $A \nsubseteq B$ (h) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$ com $A, B \neq \emptyset$
- (c) $A \cap B = A \cap C$ e $B \neq C$ (f) $A \cup B = A \cup C$ e $B \neq C$ (i) $\mathcal{P}(A) \cap A \neq \emptyset$
- **2.21.** Seja A um conjunto finito. Qual dos conjuntos $\mathcal{P}(A \times A) \in \mathcal{P}(A) \times \mathcal{P}(A)$ tem mais elementos?