Example: What is the input resistance of the inverting amplifier

- 1) looking into the negative terminal (R_{in})
- 2) looking from the source, v_g

Solution: The equivalent circuit for the amplifier is shown below.

1) Now
$$R'_i = \frac{v_i}{i_i} = -\frac{v_d}{i_i}$$
 also, $i_i = i_{rd} + i_{R2}$

That is,
$$i_i = \frac{v_i}{r_d} + \frac{v_i - (-A_{ol}v_i)}{R_2 + r_o}$$
 and $i_i = \frac{v_i}{r_d} + \frac{v_i(1 + A_{ol})}{R_2 + r_o}$

Which we can write as: $\frac{i_i}{v_i} = \frac{1}{r_d} + \frac{1 + A_{ol}}{R_2 + r_o}$ which can be expressed as: $R_i' \equiv \frac{v_i}{i_i} = r_d // \frac{R_2 + r_o}{1 + A_{ol}}$

Take representative values: R_2 = 10k, R_1 = 1k (gain of 10); $r_o \sim 50R$, A_{ol} = 10⁵, r_d = 1M Ω

Then
$$R_i' \sim \frac{R_2}{A_{ol}} = \frac{10k}{10^5}$$
 $R_i = 0.1\Omega$ which is small - as expected!

2) looking from the source, we see $R_1 + R_i$ $\sim R_1 = 1k$ that is, the input resistance of this **trans-resistance** amplifier is set by R_1 !