

Transformer Decoders

Docentes:

Esp. Ing Abraham Rodriguez - FIUBA

Esp. Ing Ezequiel Guinsburg - FIUBA

Programa de la materia

- 1. Repaso de Transformers, Arquitectura y Tokenizers.
- 2. Arquitecturas de LLMs, Transformer Decoder.
- 3. Ecosistema actual, APIs, costos, HuggingFace y OpenAI.
- 4. MoEs, técnicas de prompts, evaluación de LLMs.
- 5. Modelos locales y uso de APIs.
- 6. RAG, vector DBs, chatbots y práctica.
- 7. Agentes, fine-tuning y práctica.
- 8. Generación multimodal.

Transformers Decoders

Las LLMs y modelos generativos basados en Transformers son normalmente Transformer Decoders. Las LLMs son realmente una arquitectura de Decoder llamada **Generative Pretrained Transfomer (GPT).**

El Decoder se encarga de decodificar un espacio latente, en el caso de la arquitectura completa, es el espacio generado por el encoder.

El espacio latente es un espacio de información que consta de las características de los datos como la relación entre palabras.

El espacio latente es utilizado por el decoder para "generar" información a vectores de entrada, por ejemplo completar secuencias de texto.

Generative Pretrained Transformer (GPT)

GPT es la arquitectura que trajo como consecuencia modelos del estado del arte como chatGPT (closed-source), Llama, Mistral, Gemma (open-source). Así como modelos multimodales como CLIP.

En 2018 OpenAl presentó el paper <u>Improving Language Understanding by Generative Pre-training</u>. Donde se introdujo el concepto de Generative Pretraining, utilizando la arquitectura del **Transformer Decoder ligeramente modificado**.

El paper demuestra distintos objetivos de entrenamiento de GPT.

GPT Unsupervised Pre-training

Dado un corpus de tokens $U = \{u_1, \ldots, u_n\}$, se utiliza un objetivo de modelado estándar de lenguaje para maximizar la verosimilitud:

$$L_1(\mathcal{U}) = \sum_{i} \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta)$$

donde k es el tamaño de la ventana de contexto, la probabilidad condicional P es modelada usando una red neuronal con parámetros Θ entrenables mediante SGD.

La red neuronal referida es el **Transformer Decoder**, el cual da como resultado una distribución de probabilidad de tokens de salida.

$$egin{aligned} h_0 &= UW_e + W_p \ h_l &= exttt{transformer_block}(h_{l-1}) orall i \in [1,n] \ P(u) &= exttt{softmax}(h_n W_e^T) \end{aligned}$$

 $U = (u_{-k},...,u_{-1})$ vector de contexto de tokens

 W_e matriz de token embeddings W_p position embeddings

n# de capas

GPT Unsupervised Pre-training

PRE E	NTRENAMIENTO
Característica	Detalles
Arquitectura	12 capas de transformer decoder.
Dimensiones	768 embeddings 12 attention heads 3072 MLP.
Entrenamiento	Optimizador Adam LR Max: 2.5e-4 100 epochs
BatchSize	64 minibatch de 512 tokens.
Dropout	0.1 (embeddings)
Regularización	L2 (weight 0.01) Dropout (p = 0.1)
Funcion de Activacion	GELU
Tokenizer	BPE con 40k tokens (merges).
Corpus	BooksCorpus

El objetivo del preentrenamiento es simplemente predecir la siguiente palabra de una secuencia, con la meta de aprender y estructurar patrones de lenguaje natural.

Next Token Prediction

$$L_1(\mathcal{U}) = \sum_i \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta)$$

GPT Supervised Fine-Tuning (SFT)

Luego de entrenar al modelo con el objetivo de maximizar la verosimilitud, se asume que se cuenta con un dataset de secuencias de tokens $X = \{x_1, \ldots, x_m\}$ etiquetado con y. Las entradas son pasadas por un modelo preentrenado para obtener la última activación h_i^m del transformer block. Se agrega una capa lineal con parámetros W_v para predecir a y.

$$P(y|x^1,\ldots,x^m) = \mathtt{softmax}(h_l^m W_y)$$

Esto genera un nuevo objetivo, siendo maximizar la verosimilitud:

$$L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1,\dots,x^m)$$

En otras palabras consta de maximizar la probabilidad de la etiqueta con respecto a las secuencias.

Adicionalmente para acelerar y mejorar la generalización y convergencia, se define el lagrangiano que es maximizar la verosimilitud sobre el dataset dado un peso λ .

$$L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$$

GPT Supervised Fine-Tuning (SFT)

<u>Understanding and Using Supervised Fine-Tuning (SFT) for Language Models</u>

FINE TUNING							
Característica	Detalles						
Entrenamiento	Optimizador Adam LR Max: 6.25e-5 3 epochs						
BatchSize	32 minibatch de 512 tokens.						
Dropout	0.1 (embeddings)						
Regularización	Dropout (p = 0.1)						

Generative Pretrained Transformer (GPT-2)

GPT-2 es la arquitectura que definió a **Chat LLMs** y a los modelos generativos actuales.

En 2019 OpenAl presento el paper <u>Language Models are Unsupervised Multitask Learners</u>. Donde se reutilizo la arquitectura de GPT muy ligeramente modificada. Básicamente es mas grande y robusta, el cambio más significativo es un nuevo dataset diverso en contenido.

Gracias a su capacidad aumentada es capaz de hacer Zero-shot lo que significa que es capaz de hacer tareas las cuales no fue entrenado, dando la cualidad de generalizar tareas.

Característica	GPT-1	GPT-2			
Parámetros	110 milliones	hasta 1.5 billones			
Hidden Dimensions	768	1024 (modelos grandes)			
Attention Heads	12	16			
Training Dataset	BooksCorpus (5GB)	WebText (45GB)			
Text Length	Max 512 tokens	Max 1024 tokens			
Zero-shot Learning	No	Si			
Text Generation	Decente y simple	Coherente y largo			

GPT-2 Marcó la necesidad de datasets de alta calidad, más grandes, así como modelos más robustos +7B, 21B, 90B...

The Ilustrated GPT-2

Guia explicativa

Recomendable leer!

Generative Pretrained Transformer (GPT-3)

En 2020 OpenAl presentó el paper <u>Language Models are Few-Shot Learners</u>. Donde se reutilizo la arquitectura de GPT-2 modificada. Utiliza un nuevo mecanismo de atención optimizado similar a <u>Sparse Transformer</u>. Entrenaron 8 versiones del modelo.

GPT-3 "davinci" trato de comprobar la hipótesis de que escalar un modelo mejora el rendimiento de múltiples tareas sin necesidad de realizar fine-tuning, buscando que el modelo sea capaz de generalizar solamente entrenando con un dataset diverso

El entrenamiento de GPT-3 fue computacional y energéticamente costoso, consumió miles de petaflops/día durante preentrenamiento.

GPT-3 no utilizo fine-tuning, en su lugar utilizó Few-shot, One-shot, Zero-shot.

Resumen del paper

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate	,	Quantity	Weight in
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}	Dataset	(tokens)	training mix
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}			
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}	Common Crawl (filtered)	410 billion	60%
GPT-3 XL	1.3B	24	2048	24	128	1 M		WebText2	19 billion	22%
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}	Books1	12 billion	8%
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}	Books2	55 billion	8%
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}	Wikipedia	3 billion	3%
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}	Wikipedia	3 01111011	370

Generative Pretrained Transformer (GPT-3)

Segun LambdaLabs GPT-3 tuvo un costo aproximado de \$4.6M.

Recomendable leer!

GPT-3 Zero-shot y One-shot

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
1 Translate English to French: ← task description
2 sea otter => loutre de mer ← example
3 cheese => ← prompt
```

Zero-shot implica que el modelo es capaz de realizar tareas sin demostraciones previas, gracias a las grandes cantidades de datos.

Prompt Engineering Guide: Zero-shot Prompting

One-shot, implica que el modelo realiza una tarea con **un solo** ejemplo demostrativo, esto es útil cuando Zero-shot no es suficiente.

Prompt Engineering Guide: One-shot Prompting

GPT-3 Few-shot

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Few-shot, es dar múltiples ejemplos demostrativos, en otras palabras es una generalización de one-shot.

GPT-3 ¿Sin Fine-tuning?

prompt

Fine-tuning

cheese =>

The model is trained via repeated gradient updates using a large corpus of example tasks.

Fine-tuning, implica actualizar gradientes del modelo, la idea de GPT-3 es evitar manipular los gradientes para lograr generalizar en lugar de realizar tareas específicas.

Para GPT-3, lo mas importante es la flexibilidad y eficiencia al tener un modelo capaz de hacer distintas tareas "on the fly" solamente utilizando **prompts**.

La razón por la cual GPT-3 es capaz de interpretar distintas tareas sin fine-tuning es debido a la diversidad de los datos. Por ejemplo, preguntas y respuestas en reddit, texto informativo de Wikipedia.

Los datasets utilizados cuentan con datos variados distintas tareas, idiomas, etc.

GPT-3 Explanation (Video)

La manera de aprender de manera generalizada es llamado "in-context learning"

GPT-3 ¿Sin Fine-tuning?

Los modelos más grandes utilizan de manera más eficiente informacion "in-context"

GPT-3 ¿Sin Fine-tuning?

InstructGPT

GPT-3 demuestra que simplemente escalar una LLM permite realizar múltiples tareas, sin embargo esto no lo hace **explícitamente bueno dado instrucciones de usuarios.** Las LLMs pueden generar contenido tóxico, falso y no util para el usuario.

<u>InstructGPT</u> surge para corregir las debilidades de GPT-3 mediante **fine-tuning y reinforcement-learning,** la versión 1.3B InstructGPT contiene respuestas superiores a 175B GPT-3.

OpenAl InstructGPT InstructGPT Review

InstructGPT

Explain the moon

landing to a 6 year old

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

D > C > A = B

Step 3

Optimize a policy against the reward model using reinforcement learning.

InstructGPT utiliza un reward model con los outputs preferidos por humanos, luego se optimiza el reward model mediante Proximal Policy Optimization (PPO).

<u>HuggingFace Reinforcement Learning</u> <u>Course</u>

Transformer Reinforcement Learning (TRL)

InstructGPT Dataset

El dataset consiste en prompts ingresados al API de OpenAl mediante OpenAl <u>Playground</u>.

Un grupo de personas llamados "labelers" escribían prompts en texto crudo, Few-shot y basados en usuarios.

crudo, Few-snot y basados en usuarios.

	SFT Data	1		RM Data			PPO Data			
split	source	size	split	source	size	split	source	size		
train	labeler	11,295	train	labeler	6,623	train	customer	31,144		
train	customer	1,430	train	customer	26,584	valid	customer	16,185		
valid	labeler	1,550	valid	labeler	3,488					
valid	customer	103	valid	customer	14,399			20		

Table 6: Dataset sizes, in terms of number of prompts.

InstructGPT Resultados

Transformers Decoders

Decoder-Only Transformers: The Workhorse of Generative LLMs.

LLM Visualization

Transformer Explainer

<u>Transformer Explainer</u> es un UI con un GPT-2 ejecutado en el browser en tiempo real.

<u>Paper</u>

Repo

Apple Intelligence

Apple Intelligence: how to build an on-device LLM

Arquitecturas de LLMs

Algunas Arquitecturas del Estado del Arte

- Llama Family (Meta)
- Mistral (Mistral Al)
- Gemma (Google)
- Claude (Anthropic)
- Grok (xAI)
- DeepSeek (DeepSeek)

Chatbot Arena

<u>Chatbot Arena</u> es un Leaderboard con un sistema de ranking para evaluar LLMs.

The Rise and Rise of A.I.

Large Language Models (LLMs)

<u>LLama</u>, enfatiza el uso de datasets públicos, LLama 13B supera a GPT-3 en la mayoría de benchmarks a pesar de ser x10 más pequeño (similar a InstructGPT)

El dataset contiene 1.4T de tokens.

El context length es de 2048 tokens.

Dataset	Sampling prop.	Epochs	Disk size
CommonCrawl	67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	2.0%	1.03	78 GB ²⁸

La arquitectura es el Transformer Decoder, el cual fue adaptado con mejoras de arquitectras previas como:

- Capa de Pre-normalizacion (GPT-3) RMSNorm
- Función de activación SwiGLU (<u>PaLM</u>)
- Rotary Positional Embeddings RoPE (GPTNeo)
- Efficient Self-Attention

Fue entrenado con batches de 4M de tokens.

params	dimension	n heads	n layers	learning rate	batch size	n tokens
6.7B	4096	32	32	$3.0e^{-4}$	4M	1.0T
13.0B	5120	40	40	$3.0e^{-4}$	4M	1.0T
32.5B	6656	52	60	$1.5e^{-4}$	4M	1.4T
65.2B	8192	64	80	$1.5e^{-4}$	4 M	1.4T

2048 GPUs NVIDIA A100-80GB por un periodo de aproximadamente 5 meses en desarrollar

2,638 MWh y un total de emisiones of 1,015 tCO2eq

	100 at 11 (100 at 1	12012021121	1 minutes and			Treatment .	10 to	Antenna i pri	-		0-shot	1-shot	5-shot	64-shot
	BoolQ	PIQA	SIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	CDT 2	175D	116	22.0		29.9
175R	60.5	81.0		78.0	70.2	68.8	51.4	57.6				23.0		
	NAME OF THE OWNER, OWNER, OWNER, OWNER,	N=0.00.00.00				00.0	51.4	37.0	Gopher	280B	10.1	-	24.5	28.2
280B	79.3	81.8	50.6	79.2	70.1	-	-	-	Chinchill	a 70B	16.6	_	31.5	35.5
70B	83.7	81.8	51.3	80.8	74.9	-	1-	-		.a 70D	10.0		31.3	
62B	84.8	80.5	_	79.7	77.0	75.2	52.5	50.4		8B	8.4	10.6	-	14.6
62B	83.9	81.4	-	80.6	77.0	-	-	-	PaLM	62B	18.1	26.5	-	27.6
540B	88.0	82.3	-	83.4	81.1	76.6	53.0	53.4		540B	21.2	29.3	-	39.6
7B	76.5	79.8	48.9	76.1	70.1	72.8	47.6	57.2		7B	16.8	18.7	22.0	26.1
13B	78.1	80.1	50.4	79.2	73.0	74.8	52.7	56.4		13B	20.1	23.4	28.1	31.9
33B	83.1	82.3	50.4	82.8	76.0	80.0	57.8	58.6	LLaMA	33B	24.9	28.3	32.9	36.0
65B	85.3	82.8	52.3	84.2	77.0	78.9	56.0	60.2	_	65B	23.8	31.0	35.0	39.9
	62B 62B 540B 7B 13B 33B	280B 79.3 70B 83.7 62B 84.8 62B 83.9 540B 88.0 7B 76.5 13B 78.1 33B 83.1	175B 60.5 81.0 280B 79.3 81.8 70B 83.7 81.8 62B 84.8 80.5 62B 83.9 81.4 540B 88.0 82.3 7B 76.5 79.8 13B 78.1 80.1 33B 83.1 82.3	175B 60.5 81.0 - 280B 79.3 81.8 50.6 70B 83.7 81.8 51.3 62B 84.8 80.5 - 62B 83.9 81.4 - 540B 88.0 82.3 - 7B 76.5 79.8 48.9 13B 78.1 80.1 50.4 33B 83.1 82.3 50.4	175B 60.5 81.0 - 78.9 280B 79.3 81.8 50.6 79.2 70B 83.7 81.8 51.3 80.8 62B 84.8 80.5 - 79.7 62B 83.9 81.4 - 80.6 540B 88.0 82.3 - 83.4 7B 76.5 79.8 48.9 76.1 13B 78.1 80.1 50.4 79.2 33B 83.1 82.3 50.4 82.8	175B 60.5 81.0 - 78.9 70.2 280B 79.3 81.8 50.6 79.2 70.1 70B 83.7 81.8 51.3 80.8 74.9 62B 84.8 80.5 - 79.7 77.0 62B 83.9 81.4 - 80.6 77.0 540B 88.0 82.3 - 83.4 81.1 7B 76.5 79.8 48.9 76.1 70.1 13B 78.1 80.1 50.4 79.2 73.0 33B 83.1 82.3 50.4 82.8 76.0	175B 60.5 81.0 - 78.9 70.2 68.8 280B 79.3 81.8 50.6 79.2 70.1 - 70B 83.7 81.8 51.3 80.8 74.9 - 62B 84.8 80.5 - 79.7 77.0 75.2 62B 83.9 81.4 - 80.6 77.0 - 540B 88.0 82.3 - 83.4 81.1 76.6 7B 76.5 79.8 48.9 76.1 70.1 72.8 13B 78.1 80.1 50.4 79.2 73.0 74.8 33B 83.1 82.3 50.4 82.8 76.0 80.0	175B 60.5 81.0 - 78.9 70.2 68.8 51.4 280B 79.3 81.8 50.6 79.2 70.1 - - 70B 83.7 81.8 51.3 80.8 74.9 - - 62B 84.8 80.5 - 79.7 77.0 75.2 52.5 62B 83.9 81.4 - 80.6 77.0 - - 540B 88.0 82.3 - 83.4 81.1 76.6 53.0 7B 76.5 79.8 48.9 76.1 70.1 72.8 47.6 13B 78.1 80.1 50.4 79.2 73.0 74.8 52.7 33B 83.1 82.3 50.4 82.8 76.0 80.0 57.8	175B 60.5 81.0 - 78.9 70.2 68.8 51.4 57.6 280B 79.3 81.8 50.6 79.2 70.1 - - - 70B 83.7 81.8 51.3 80.8 74.9 - - - 62B 84.8 80.5 - 79.7 77.0 75.2 52.5 50.4 62B 83.9 81.4 - 80.6 77.0 - - - - 540B 88.0 82.3 - 83.4 81.1 76.6 53.0 53.4 7B 76.5 79.8 48.9 76.1 70.1 72.8 47.6 57.2 13B 78.1 80.1 50.4 79.2 73.0 74.8 52.7 56.4 33B 83.1 82.3 50.4 82.8 76.0 80.0 57.8 58.6	175B 60.5 81.0 - 78.9 70.2 68.8 51.4 57.6 Gopher Gopher Chinchill 280B 79.3 81.8 50.6 79.2 70.1 - - - Chinchill 70B 83.7 81.8 51.3 80.8 74.9 - - - Chinchill 62B 84.8 80.5 - 79.7 77.0 75.2 52.5 50.4 62B 83.9 81.4 - 80.6 77.0 - - - - PaLM 540B 88.0 82.3 - 83.4 81.1 76.6 53.0 53.4 7B 76.5 79.8 48.9 76.1 70.1 72.8 47.6 57.2 13B 78.1 80.1 50.4 79.2 73.0 74.8 52.7 56.4 33B 83.1 82.3 50.4 82.8 76.0 80.0 57.8 58.6	175B 60.5 81.0 - 78.9 70.2 68.8 51.4 57.6 Gopher 280B 280B 79.3 81.8 50.6 79.2 70.1 - - - Chinchilla 70B 70B 83.7 81.8 51.3 80.8 74.9 - - - Chinchilla 70B 62B 84.8 80.5 - 79.7 77.0 75.2 52.5 50.4 8B 62B 83.9 81.4 - 80.6 77.0 - - - PaLM 62B 540B 88.0 82.3 - 83.4 81.1 76.6 53.0 53.4 540B 7B 76.5 79.8 48.9 76.1 70.1 72.8 47.6 57.2 7B 13B 78.1 80.1 50.4 79.2 73.0 74.8 52.7 56.4 LLaMA 33B 33B 83.1 82.3 50.4 82.8 76.0 80.0 57.8 58.6 LLaMA 33B	BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA GPT-3 175B 14.6	BoolQ	175B 60.5 81.0 - 78.9 70.2 68.8 51.4 57.6 GPT-3 175B 14.6 23.0 - 280B 79.3 81.8 50.6 79.2 70.1 - - - Chinchilla 70B 16.6 - 31.5 70B 83.7 81.8 51.3 80.8 74.9 - - - Chinchilla 70B 16.6 - 31.5 62B 84.8 80.5 - 79.7 77.0 75.2 52.5 50.4 8B 8.4 10.6 - 62B 83.9 81.4 - 80.6 77.0 - - - PaLM 62B 18.1 26.5 - 540B 88.0 82.3 - 83.4 81.1 76.6 53.0 53.4 540B 21.2 29.3 - 7B 76.5 79.8 48.9 76.1 70.1 72.8 47.6 </td

Table 3: Zero-shot performance on Common Sense Reasoning tasks.

LLAMA Resultados

 (tCO_2eq)

137

183

14

23

90

173

LLAMA

OPT-175B

LLaMA-7B

LLaMA-13B

LLaMA-33B

LLaMA-65B

BLOOM-175B

Implementación Github

A100-80GB

A100-80GB

A100-80GB

A100-80GB

A100-80GB

A100-80GB

GPU Type	GPU Power	GPU-hours	Total power	Carbon emitted

consumption

400W

400W

400W

400W

400W

400W

809,472

1,082,880

82,432

135,168

530,432

1.022,362

consumption

356 MWh

475 MWh

36 MWh

59 MWh

233 MWh

449 MWh

<u>LLAMA-2</u> Es exactamente la misma arquitectura que LLAMA I, las diferencias radican:

- Mas parametros.
- Dataset incrementado en un 40%.
- Se duplica el context length a 4096 tokens.
- Implementación de Grouped-query attention (GQA).

También se liberó una versión fine-tuned llamada LLAMA 2-Chat, optimizada para casos de chat.

	Training Data	Params	Context Length	GQA	Tokens	LR
		7B	2k	Х	1.0T	3.0×10^{-4}
Llama 1	See Touvron et al.	13B	2k	X	1.0T	3.0×10^{-4}
	(2023)	33B	2k	X	1.4T	1.5×10^{-4}
		65B	2k	X	1.4T	1.5×10^{-4}
		7B	4k	X	2.0T	3.0×10^{-4}
I	A new mix of publicly	13B	4k	X	2.0T	3.0×10^{-4}
Llama 2	available online data	34B	4k	✓	2.0T	1.5×10^{-4}
		70B	4k	✓	2.0T	1.5×10^{-4}

LLAMA Tokenizer

Mismo tokenizer que Llama I (BPE) usando bytes para descomponer caracteres UTF-8 desconocidos. El vocabulary size is **32k tokens.**

LLAMA 2-Chat

Similar a InstructGPT, se realiza SFT y RL con feedback humano.

LLAMA 2 Carbon Footprint

		Time (GPU hours)	Power Consumption (W)	Carbon Emitted (tCO ₂ eq)
	7B	184320	400	31.22
T-000000000000000000000000000000000000	13B	368640	400	62.44
LLAMA 2	34B	1038336	350	153.90
	70B	1720320	400	291.42
Total		3311616		539.00

Size Code

7B

7B

7B

13B

33B 65B

7B

13B

34B

70B

40B

30B

20.5

28.9

5.6

15.2

14.1

18.9

26.0

30.7

16.8

24.5

27.8

37.5

Model

MPT

Falcon

LLAMA 1

LLAMA 2

7	IAZ		•					
		Benchmark	(shots)	GPT-3.5	GPT-4	PaLM	PaLM-2-L	LLAMA 2
		MMLU (5-s	hot)	70.0	86.4	69.3	78.3	68.9
		TriviaQA (-	_	81.4	86.1	85.0
		Natural Qu	estions (1-shot)	_	_	29.3	37.5	33.0
		GSM8K (8-	shot)	57.1	92.0	56.5	80.7	56.8
		HumanEva	,	48.1	67.0	26.2	12 <u>-</u> 2	29.9
		BIG-Bench	Hard (3-shot)	_	_	52.3	65.7	51.2
	Commonsense Reasoning	World Knowledge	Keading Comprehension	Math	MMLU	BBH	AGI Eve	
	57.4	41.0	57.5	4.9	26.8	31.0	23.5	
	64.9	50.0	64.7	9.1	46.9	38.0	33.8	
	56.1	42.8	36.0	4.6	26.2	28.0	21.2	
	69.2	56.7	65.7	12.6	55.4	37.1	37.0	
	60.8	46.2	58.5	6.95	35.1	30.3	23.9	
	66.1	52.6	62.3	10.9	46.9	37.0	33.9	
	70.0	58.4	67.6	21.4	57.8	39.8	41.7	
	70.7	60.5	68.6	30.8	63.4	43.5	47.6	
	63.9	48.9	61.3	14.6	45.3	32.6	29.3	
	66.9	55.4	65.8	28.7	54.8	39.4	39.1	
	69.9	58.7	68.0	24.2	62.6	44.1	43.4	
	71.9	63.6	69.4	35.2	68.9	51.2	54.2	

Mistral

En 2023, MistralAl lanzo Mistral 7B, el cual supera a LLAMA 2 13B en todos los benchmarks.

La arquitectura es un Decoder similar a LLAMA y GPT.

Su dataset es closed source.

Implementa:

- Sliding Window Attention
- Grouped Query Attention (inference)
- Rolling Buffer Cache

Parameter	Value
dim	4096
n_layers	32
head_dim	128
hidden_dim	14336
n_heads	32
n_kv_heads	8
window_size	4096
context_len	8192
vocab_size	32000

Table 1: Model architecture.

39

Code

Mistral

40

30

MMLU

Knowledge

Model

	Pretrained Pretrained					68.7% 75.2%		24.7% 29.0%	63.8% 69.6%	11.6% 18.9%	26.1% 35.4%	3.9% 6.0%	16.0% 34.3%
Code-Llama 7B	Finetuned	36.9%	62.9%	62.3%	72.8%	59.4%	34.5%	11.0%	34.9%	31.1%	52.5%	5.2%	20.8%
Mistral 7B	Pretrained	60.1%	81.3%	75.3%	83.0%	80.0%	55.5%	28.8%	69.9%	30.5%	47.5%	13.1%	52.2%
_			Mistral 7B LLaMA 2 7B	LLaMA 2 13 LLaMA 1 34			50	M			LLaMA 2 13B LLaMA 1 34B		
Accuracy (%)	60	\ <u>\</u>		ı	ı	ĺ	40- W Accuracy (%)	`***	∀ 7	d	1	b	

Reasoning Comprehension

Modality MMLU HellaSwag WinoG PIQA Arc-e Arc-c NQ TriviaQA HumanEval MBPP MATH GSM8K

10

AGI Eval

Math

BBH

Sliding-Window Attention

Variante de Attention presentada en 2020 bajo el paper de Longformer con O(N) en lugar de $O(N^2)$.

Consiste en focalizar en una ventana de tamaño fijo dentro de la matriz de atención.

Sliding Window Attention Explained

SWA Pytorch Implementation

Vanilla Attention

Sliding Window Attention

Effective Context Length

KV-Cache

KV caching a deeper look What is KV-cache?

K_prev (cached) [1++]

Q_new [+]

KV-cache[O:K]

KV-cache[K+1]

* When processing token[K], we only need the K'th row of Q

Notes:

** When processing token LKJ, we require the full K & V tensors, but we can mostly reuse the cached values (This enables skipping the computation of K & V

Una LLM genera un token durante cada forward pass, esto implica calcular attention en cada forward, haciendo que la inferencia sea lenta.

Al hacer caching de las matrices de keys y values, esto solamente implicaría agregar el nuevo vector calculado, haciendo que la inferencia incremente considerablemente.

Rolling Buffer Cache

Mistral propone un caché dinámico de dimensiones fijas, lo cual reduce considerablemente el uso de memoria

Grouped-Query Attention

Guia Explicativa

Demystifying GQA

¿En qué difieren las arquitecturas?

El mayor **cuello de botella** en Transformers es el mecanismo de atención!

La mayoría de diferencias se encuentran en:

- Cambios de Attention.
- Context Length.
- # de parámetros.
- Datasets
- Positional Embeddings.

Preguntas?