



**DATE: 09 March 2010** 

# I.T.L. (PRODUCT TESTING) LTD. FCC Radio Test Report for Runcom Technologies Ltd.

**Equipment under test:** 

# WiMAX Base Station Outdoor Pico Base Station 3.5 GHz

Written by:

D. Shidlowsky, Documentation

Approved by: 

(3)

A. Sharabi, Test Engineer

Approved by:

I. Raz, EMC Laboratory Manager

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.





# Measurement/Technical Report for Runcom Technologies Ltd.

#### WiMAX Base Station

### Outdoor Pico Base Station 3.5 GHz

FCC ID: XYMPICO351WDC

This report concerns: Original Grant: X

Class II change: Class I change:

Equipment type: Licensed Non-Broadcast Transmitter

Limits used:

47CFR Part 90 Subpart Z

Measurement procedure used is ANSI C63.4-2003.

Substitution Method used as in ANSI/TIA-603-B: 2002

Application for Certification Applicant for this device:

prepared by: (different from "prepared by")

Ishaishou Raz Ronen Greenberg

ITL (Product Testing) Ltd. Runcom Technologies Ltd.

Kfar Bin Nun 11 Moshe Levi St.
D.N. Shimshon 99780 Rishon Le Zion 75658

Israel Israel

e-mail sraz@itl.co.il Tel: +972-3-952-8440

Fax: +972-3-952-8805 e-mail: roneng@runcom.co.il



#### **TABLE OF CONTENTS**

| GENERAL | L INFORMATION                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                      |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1     | Administrative Information                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                      |
| 1.2     | List of Accreditations                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         | ·                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         | M PEAK OUTPUT POWER 5 MHZ BANDWIDTH                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                     |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         | • •                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
| _       |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         | Test procedure                                                                                                                                                                                                                             | 20<br>29                                                                                                                                                                                                                                                                                                                               |
| _       |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         | • •                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                        |
|         | Test Specification                                                                                                                                                                                                                         | 36<br>36                                                                                                                                                                                                                                                                                                                               |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
| 7.3     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                        |
| 7.4     | Test Equipment Used                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                        |
| OCCUPIE | D BANDWIDTH 5 MHZ BANDWIDTH                                                                                                                                                                                                                | 44                                                                                                                                                                                                                                                                                                                                     |
| 8.1     | Test Specification                                                                                                                                                                                                                         | 44                                                                                                                                                                                                                                                                                                                                     |
| 8.2     | Test Procedure                                                                                                                                                                                                                             | 44                                                                                                                                                                                                                                                                                                                                     |
| 8.3     | Results Table                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        |
| 8.4     | • •                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                        |
| OCCUPIE | D BANDWIDTH 10 MHZ BANDWIDTH                                                                                                                                                                                                               | 51                                                                                                                                                                                                                                                                                                                                     |
| 9.1     |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
| _       |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
| _       |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |
|         | 1.1 1.2 1.3 1.4 1.5 1.6  SYSTEM 2.1 2.2 2.3 2.4 2.5  TEST SET  MAXIMUN 4.1 4.2 4.3 4.4  MAXIMUN 5.1 5.2 5.3 5.4  SPECTRA 6.1 6.2 6.3 6.4  SPECTRA 7.1 7.2 7.3 7.4  OCCUPIE 8.1 8.2 8.3 8.4  OCCUPIE 8.1 8.2 8.3 8.4  CONDUC 10.1 10.2 10.3 | 1.1 Administrative Information 1.2 List of Accreditations 1.3 Product Description 1.4 Test Methodology 1.5 Test Facility 1.6 Measurement Uncertainty  SYSTEM TEST CONFIGURATION 2.1 Justification 2.2 EUT Exercise Software 2.3 Special Accessories 2.4 Equipment Modifications 2.5 Configuration of Tested System  TEST SET-UP PHOTOS |



| 11. | CONDUC  | TED SPURIOUS EMISSIONS 10 MHZ BANDWIDTH          | 101 |
|-----|---------|--------------------------------------------------|-----|
|     | 11.1    | Test Specification                               |     |
|     | 11.2    | Test procedure                                   | 101 |
|     | 11.3    | Results table                                    | 142 |
|     | 11.4    | Test Equipment Used                              | 143 |
| 12. | BAND ED | GE SPECTRUM 5 MHZ BANDWIDTH                      | 144 |
|     | 12.1    | Test Specification                               | 144 |
|     | 12.2    | Test procedure                                   | 144 |
|     | 12.3    | Results table                                    | 154 |
|     | 12.4    | Test Equipment Used                              | 155 |
| 13. | BAND ED | GE SPECTRUM 10 MHZ BANDWIDTH                     | 156 |
|     | 13.1    | Test Specification                               | 156 |
|     | 13.2    | Test procedure                                   | 156 |
|     | 13.3    | Results table                                    | 166 |
|     | 13.4    | Test Equipment Used                              | 167 |
| 14. | SPURIOU | S RADIATED EMISSION 5 AND 10 MHZ BANDWIDTH       | 168 |
|     | 14.1    | Test Specification                               | 168 |
|     | 14.2    | Test Procedure                                   | 168 |
|     | 14.3    | Test Results                                     |     |
|     | 14.4    | Test Instrumentation Used, Radiated Measurements | 170 |
| 15. | FREQUE  | NCY STABILITY 5 AND 10 MHZ BANDWIDTH             | 171 |
|     | 15.1    | Test Specification                               | 171 |
|     | 15.2    |                                                  |     |
|     | 15.3    |                                                  |     |
|     | 15.4    | Test Instrumentation Used, Radiated Measurements | 174 |
| 16. | APPENDI | X A - CORRECTION FACTORS                         | 175 |
|     | 16.1    | Correction factors for CABLE                     | 175 |
|     | 16.2    | Correction factors for CABLE                     | 176 |
|     | 16.3    | Correction factors for CABLE                     |     |
|     | 16.4    | Correction factors for LOG PERIODIC ANTENNA      |     |
|     | 16.5    |                                                  |     |
|     | 16.6    |                                                  |     |
|     | 16.7    | Correction factors for Horn Antenna              | 181 |



#### 1. General Information

#### 1.1 Administrative Information

Manufacturer: Runcom Technologies Ltd.

Manufacturer's Address: 11 Moshe Levi St.

Reshon Le Zion 75658

Israel

Tel: +972-3-952-8440 Fax: +972-3-952-8805

Manufacturer's Representative: Ronen Greenberg

Moshe Efraim

Equipment Under Test (E.U.T): WiMAX Base Station

Equipment Model No.: Outdoor Pico Base Station 3.5 GHz

Part Number No.: PICO-O-3.5-C-1W-DC

Date of Receipt of E.U.T: 03.12.09

Start of Test: 03.12.09

End of Test: 11.02.10\*

Test Laboratory Location: I.T.L (Product Testing) Ltd.

Kfar Bin Nun, ISRAEL 99780

Test Specifications: FCC Part 90 Subpart Z

<sup>\*</sup> All tests except frequency stability were performed between 03-15.12.09. Frequency stability testing was performed on 11.02.10.



#### 1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), Registration No. 90715.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- 4. The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) (Japan), Registration Numbers: C-1350, R-1285.
- 5. Industry Canada (Canada), IC File No.: 46405-4025; Site No. IC 4025B-1.
- 6. TUV Product Services, England, ASLLAS No. 97201.
- 7. Nemko (Norway), Authorization No. ELA 207.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.



#### 1.3 Product Description

Runcom's family of full outdoor Pico BSs consists of highly integrated WiMAX Base Stations that provide fast, flexible, cost-effective WiMAX network deployment solutions where increased capacity and coverage is required.

This uni-sector base station operates with omni or sectorized antennas, and provides 99.995% availability and carrier grade service.

Runcom Pico BS performs all the required capabilities of the Mobile BS next generation such as: WiMAX Modem PHY and MAC functions, SNMP based management protocol and fully supports the latest R6 interface over GRE tunneling towards the ASN-GW.

'All-in-one' architecture combined with simple, single-handed installation and fast rollout make these BSs an ideal solution for operators that want to get in on the ground floor of WiMAX deployment at significant CAPEX reductions and maximum return on their network deployment.

Based on Runcom's chip set architecture, Pico BSs provide adaptable solutions, allowing interoperability with other MSS devices as well as ASN-GW vendors.

The E.U.T. has two identical antenna ports. During the tests the secondary antenna port was terminated by 50 Ohm termination. According to the customer, only the primary RF antenna port is used in this configuration.

#### 1.4 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4: 2003. Radiated testing was performed at an antenna to EUT distance of 3 meters.

#### 1.5 Test Facility

The radiated emissions tests were performed at I.T.L.'s testing facility at Kfar Bin-Nun, Israel. This site is a FCC listed test laboratory (FCC Registration No. 90715, date of listing 03 September 2009).

I.T.L.'s EMC Laboratory is also accredited by A2LA, certificate No. 1152.01.



#### 1.6 Measurement Uncertainty

Conducted Emission The uncertainty for this test is  $\Box 2 dB$ .

#### **Radiated Emission**

The Open Site complies with the  $\pm 4$  dB Normalized Site Attenuation requirements of ANSI C63.4-2003. In accordance with Paragraph 5.4.6.1 of this standard, this tolerance includes instrumentation calibration errors, measurement technique errors, and errors due to site anomalies.



#### 2. System Test Configuration

#### 2.1 Justification

The test setup was configured to closely resemble the standard installation.

#### 2.2 EUT Exercise Software

The software is Embedded real time communication software using ThreadX Real Time Operating system. The SW application implements the 802.16e specification handling air communication, IP stack and management.

#### 2.3 Special Accessories

No special accessories were needed in order to achieve compliance.

#### 2.4 Equipment Modifications

No modifications were necessary in order to achieve compliance.



#### 2.5 Configuration of Tested System



Figure 1. Radiated Emission Test Set-up



Figure 2. Conducted Emission From Antenna Ports Test Set-up



#### 3. Test Set-up Photos



Figure 3. Conducted Emission From Antenna Port Tests



Figure 4. Radiated Emission Test



## 4. Maximum Peak Output Power 5 MHz Bandwidth

#### 4.1 Test Specification

FCC Part 90, Subpart Z, Section 90.1321

#### 4.2 Test procedure

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator (20 dB) and an appropriate coaxial cable (1 dB). The E.U.T. RF output was OFDMA modulated with QPSK, 16QAM and 64QAM, at 5MHz BW.

Special attention was taken to prevent Spectrum Analyzer RF input overload. Tested frequencies: 3652.5 MHz, 3662.5 MHz and 3672.5 MHz.

According to 47 CFR Part 2 section § 2.1046 and Part 90 section § 90.1321, the maximum power of a base station shall not exceed 25 watts/25 MHz.

For 5MHz bandwidth the limit is 37dBm on single port.

Unit transmits at SISO mode and both of the RF heads are identical, so only one port was tested.

ANTENNA TYPE Dipole antenna with N type connector (Antenna Gain : 17dBi)





Figure 5.— 3652.50 MHz QPSK



Figure 6.— 3652.50 MHz 16QAM





Figure 7.— 3652.50 MHz 64QAM



Figure 8.— 3662.50 MHz QPSK





Figure 9.— 3662.50 MHz 16QAM



Figure 10.— 3662.50 MHz 64QAM





Figure 11.— 3672.50 MHz QPSK



Figure 12.— 3672.50 MHz 16QAM





Figure 13.— 3672.50 MHz 64QAM



#### 4.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 3.5 GHz

Part Number: PICO-O-3.5-C-1W-DC

Specification: FCC Part 90, Subpart Z, Section 90.1321

| Operation | Modulation | Reading | Antenna | Maximum     | Specification | Margin |
|-----------|------------|---------|---------|-------------|---------------|--------|
| Frequency |            |         | Gain    | Peak Output | -             |        |
|           |            |         |         | Power       |               |        |
| (MHz)     |            | (dBm)   | (dBi)   | (dBm)       | (dBm)         | (dB)   |
|           | QPSK       | 19.7    | 17      | 36.7        | 37.0          | -0.3   |
| 3652.50   | 16QAM      | 19.9    | 17      | 36.9        | 37.0          | -0.1   |
|           | 64QAM      | 19.7    | 17      | 36.7        | 37.0          | -0.3   |
|           | QPSK       | 18.5    | 17      | 35.5        | 37.0          | -1.5   |
| 3662.50   | 16QAM      | 18.8    | 17      | 35.8        | 37.0          | -1.2   |
|           | 64QAM      | 18.8    | 17      | 35.8        | 37.0          | -1.2   |
|           | QPSK       | 19.5    | 17      | 36.5        | 37.0          | -0.5   |
| 3672.50   | 16QAM      | 19.9    | 17      | 36.9        | 37.0          | -0.1   |
|           | 64QAM      | 19.8    | 17      | 36.8        | 37.0          | -0.2   |

Figure 14 Maximum Peak Power Output

JUDGEMENT: Passed by 0.1 dB

TEST PERSONNEL:

Tester Signature: Date: 10.05.10

Typed/Printed Name: A. Sharabi



#### 4.4 Test Equipment Used.

#### Maximum Peak Output Power

| Instrument           | Manufacturer | Model        | Serial<br>Number          | Calibration       | l      |
|----------------------|--------------|--------------|---------------------------|-------------------|--------|
|                      |              |              |                           | Last<br>Calibr.   | Period |
| Spectrum<br>Analyzer | НР           | 8546E        | 3442A00275                | December 15, 2008 | 1 year |
| Attenuator           | Jyebao       | -            | FAT-<br>AM5AF5G6G<br>2W20 | October 19, 2009  | 1 year |
| Cable                | Rhophase     | KPS-5000-KPS | A1674                     | October 19, 2009  | 1 year |

Figure 15 Test Equipment Used



### 5. Maximum Peak Output Power 10 MHz Bandwidth

#### 5.1 Test Specification

FCC Part 90, Subpart Z, Section 90.1321

#### 5.2 Test procedure

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator (20 dB) and an appropriate coaxial cable (1 dB). The E.U.T. RF output was OFDMA modulated with QPSK, 16QAM and 64QAM, at 10MHz BW.

Special attention was taken to prevent Spectrum Analyzer RF input overload. Tested frequencies: 3655.0 MHz, 3665.0 MHz, 3670.0MHz

According to 47 CFR Part 2 section § 2.1046 and Part 90 section § 90.1321, the maximum power of a base station shall not exceed 25 watts/25 MHz.

For 10MHz bandwidth the limit is 40dBm on single port.

Unit transmits at SISO mode and both of the RF heads are identical, so only one port were tested.

ANTENNA TYPE Dipole antenna with N type connector (Setting Tx power:12dBm Antenna Gain:17dBi)

Results:





Figure 16.— 3655.00 MHz QPSK



Figure 17.— 3655.00 MHz 16QAM





Figure 18.— 3655.00 MHz 64QAM



Figure 19.— 3665.00 MHz QPSK





Figure 20.— 3665.00 MHz 16QAM



Figure 21.— 3665.00 MHz 64QAM





Figure 22.— 3670.00 MHz QPSK



Figure 23.— 3670.00 MHz 16QAM





Figure 24.— 3670.00 MHz 64QAM



#### 5.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 3.5 GHz

Part Number: PICO-O-3.5-C-1W-DC

Specification: FCC Part 90, Subpart Z, Section 90.1321

| Operation | Modulation | Reading | Antenna | Maximum    | Specification* | Margin |
|-----------|------------|---------|---------|------------|----------------|--------|
| Frequency |            |         | Gain    | Peak Power |                |        |
|           |            |         |         | Output     |                |        |
| (MHz)     |            | (dBm)   |         |            | (dBm)          | (dB)   |
|           | QPSK       | 20.3    | 17.0    | 37.3       | 40.0           | -2.7   |
| 3655.00   | 16QAM      | 20.4    | 17.0    | 37.4       | 40.0           | -2.6   |
|           | 64QAM      | 20.4    | 17.0    | 37.4       | 40.0           | -2.6   |
|           | QPSK       | 20.9    | 17.0    | 37.9       | 40.0           | -2.1   |
| 3665.00   | 16QAM      | 21.1    | 17.0    | 38.1       | 40.0           | -1.9   |
|           | 64QAM      | 20.8    | 17.0    | 37.8       | 40.0           | -2.2   |
| 3670.00   | QPSK       | 21.3    | 17.0    | 38.3       | 40.0           | -1.7   |
|           | 16QAM      | 21.2    | 17.0    | 38.2       | 40.0           | -1.8   |
|           | 64QAM      | 21.2    | 17.0    | 38.2       | 40.0           | -1.8   |

Figure 25 Maximum Peak Power Output

JUDGEMENT: Passed by 1.8 dB

TEST PERSONNEL:

Tester Signature: Date: 10.05.10

Typed/Printed Name: A. Sharabi



#### 5.4 Test Equipment Used.

#### Maximum Peak Output Power

| Instrument           | Manufacturer | Model        | Serial<br>Number          | Calibration       | l      |
|----------------------|--------------|--------------|---------------------------|-------------------|--------|
|                      |              |              |                           | Last<br>Calibr.   | Period |
| Spectrum<br>Analyzer | НР           | 8546E        | 3442A00275                | December 15, 2008 | 1 year |
| Attenuator           | Jyebao       | -            | FAT-<br>AM5AF5G6G<br>2W20 | October 19, 2009  | 1 year |
| Cable                | Rhophase     | KPS-5000-KPS | A1674                     | October 19, 2009  | 1 year |

Figure 26 Test Equipment Used



#### 6. Spectral Power Density 5 MHz Bandwidth

#### 6.1 Test Specification

FCC Part 90, Subpart Z, Section 90.1321

#### 6.2 Test procedure

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator (20 dB) and an appropriate coaxial cable (1 dB). The E.U.T. RF output was OFDMA modulated with QPSK, 16QAM and 64QAM, at 5 MHz BW.

Special attention was taken to prevent Spectrum Analyzer RF input overload. Tested frequencies: 3652.5MHz, 3672.5MHz and 3697.5MHz.

According to 47 CFR Part 2 section § 2.1046 and Part 90 section § 90.1321, the maximum power of a base station shall not exceed 25 watts/25 MHz band.

The Spectral density limit is 30dBm EIRP for any 1 MHz slice of spectrum.

Unit transmits at SISO mode and both of the RF heads are identical, so only one port was tested.

ANTENNA TYPE Dipole antenna with N type connector (Antenna Gain : 17dBi)





Figure 27.— 3652.50 MHz QPSK



Figure 28.— 3652.50 MHz 16QAM





Figure 29.— 3652.50 MHz 64QAM



Figure 30.— 3662.50 MHz QPSK





Figure 31.— 3662.50 MHz 16QAM



Figure 32.— 3662.50 MHz 64QAM





Figure 33.— 3672.50 MHz QPSK



Figure 34.— 3672.50 MHz 16QAM





Figure 35.— 3672.50 MHz 64QAM



#### 6.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 3.5 GHz

Part Number: PICO-O-3.5-C-1W-DC

Specification: FCC Part 90, Subpart Z, Section 90.1321

| Operation | Modulation | Reading* | Antenna | Spectral | Specification | Margin |
|-----------|------------|----------|---------|----------|---------------|--------|
| Frequency |            | _        | Gain    | Power    | _             | _      |
|           |            |          |         | Density  |               |        |
| (MHz)     |            | (dBm)    | (dBi)   | (dBm)    | (dBm)         | (dB)   |
|           | QPSK       | 12.7     | 17.0    | 29.7     | 30.0          | -0.3   |
| 3625.50   | 16QAM      | 12.9     | 17.0    | 29.9     | 30.0          | -0.1   |
|           | 64QAM      | 12.7     | 17.0    | 29.7     | 30.0          | -0.3   |
|           | QPSK       | 11.5     | 17.0    | 28.5     | 30.0          | -1.5   |
| 3662.50   | 16QAM      | 11.8     | 17.0    | 28.8     | 30.0          | -1.2   |
|           | 64QAM      | 11.8     | 17.0    | 28.8     | 30.0          | -1.2   |
|           | QPSK       | 12.5     | 17.0    | 29.5     | 30.0          | -0.5   |
| 3672.50   | 16QAM      | 12.9     | 17.0    | 29.9     | 30.0          | -0.1   |
|           | 64QAM      | 12.8     | 17.0    | 29.8     | 30.0          | -0.2   |

<sup>\*-</sup> Spectral power density, dBm/1MHz = Spectrum analyzer reading, dBm/Hz + 60 dB

Figure 36 Spectral Power Density

JUDGEMENT: Passed by 0.1 dB

TEST PERSONNEL:

Tester Signature: Date: 10.05.10

Typed/Printed Name: A. Sharabi



#### 6.4 Test Equipment Used.

#### Spectral Power Density

| Instrument           | Manufacturer | Model        | Serial<br>Number          | Calibration       | l      |
|----------------------|--------------|--------------|---------------------------|-------------------|--------|
|                      |              |              |                           | Last<br>Calibr.   | Period |
| Spectrum<br>Analyzer | НР           | 8546E        | 3442A00275                | December 15, 2008 | 1 year |
| Attenuator           | Jyebao       | -            | FAT-<br>AM5AF5G6G<br>2W20 | October 19, 2009  | 1 year |
| Cable                | Rhophase     | KPS-5000-KPS | A1674                     | October 19, 2009  | 1 year |

Figure 37 Test Equipment Used



#### 7. Spectral Power Density 10 MHz Bandwidth

#### 7.1 Test Specification

FCC Part 90, Subpart Z, Section 90.1321

#### 7.2 Test procedure

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator (20 dB) and an appropriate coaxial cable (1 dB). The E.U.T. RF output was OFDMA modulated with QPSK, 16QAM and 64QAM, at 10MHz BW.

Special attention was taken to prevent Spectrum Analyzer RF input overload. Tested frequencies: 3655.0MHz,3665, 3670.0MHz

According to 47 CFR Part 2 section § 2.1046 and Part 90 section § 90.1321, the maximum power of a base station shall not exceed 25 watts/25 MHz.

For 10MHz bandwidth the limit is 40dBm on single port.

Unit transmits at SISO mode and both of the RF heads are identical, so only one port were tested.

ANTENNA TYPE Dipole antenna with N type connector (Setting Tx power:12dBm Antenna Gain:17dBi)

Results:





Figure 38.— 3655.00 MHz QPSK



Figure 39.— 3655.00 MHz 16QAM





Figure 40.— 3655.00 MHz 64QAM



Figure 41.— 3665.00 MHz QPSK





Figure 42.— 3665.00 MHz 16QAM



Figure 43.— 3665.00 MHz 64QAM





Figure 44.— 3670.00 MHz QPSK



Figure 45.— 3670.00 MHz 16QAM





Figure 46.— 3670.00 MHz 64QAM



#### 7.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 3.5 GHz

Part Number: PICO-O-3.5-C-1W-DC

Specification: FCC Part 90, Subpart Z, Section 90.1321

| Operation | Modulation | Reading* | Antenna | Spectral | Specification | Margin |
|-----------|------------|----------|---------|----------|---------------|--------|
| Frequency |            |          | Gain    | Power    |               |        |
|           |            |          |         | Density  |               |        |
| (MHz)     |            | (dBm)    |         |          | (dBm)         | (dB)   |
|           | QPSK       | 10.3     | 17.0    | 27.3     | 30.0          | -2.7   |
| 3655.00   | 16QAM      | 10.4     | 17.0    | 27.4     | 30.0          | -2.6   |
|           | 64QAM      | 10.4     | 17.0    | 27.4     | 30.0          | -2.6   |
|           | QPSK       | 10.9     | 17.0    | 27.9     | 30.0          | -2.1   |
| 3665.00   | 16QAM      | 11.1     | 17.0    | 28.1     | 30.0          | -1.9   |
|           | 64QAM      | 10.7     | 17.0    | 27.7     | 30.0          | -2.3   |
| 3670.00   | QPSK       | 11.3     | 17.0    | 28.3     | 30.0          | -1.7   |
|           | 16QAM      | 11.2     | 17.0    | 28.2     | 30.0          | -1.8   |
|           | 64QAM      | 11.2     | 17.0    | 28.2     | 30.0          | -1.8   |

<sup>\*-</sup> Spectral power density, dBm/1 MHz = Spectrum analyzer reading, dBm/Hz + 60 dB

Figure 47 Spectral Power Density

JUDGEMENT: Passed by 1.7 dB

TEST PERSONNEL:

Tester Signature: Date: 10.05.10

Typed/Printed Name: A. Sharabi



# 7.4 Test Equipment Used.

## Spectral Power Density

| Instrument           | Manufacturer | Model        | Serial<br>Number          | Calibration       |        |
|----------------------|--------------|--------------|---------------------------|-------------------|--------|
|                      |              |              |                           | Last<br>Calibr.   | Period |
| Spectrum<br>Analyzer | НР           | 8546E        | 3442A00275                | December 15, 2008 | 1 year |
| Attenuator           | Jyebao       | -            | FAT-<br>AM5AF5G6G<br>2W20 | October 19, 2009  | 1 year |
| Cable                | Rhophase     | KPS-5000-KPS | A1674                     | October 19, 2009  | 1 year |

Figure 48 Test Equipment Used



# 8. Occupied Bandwidth 5 MHz Bandwidth

## 8.1 Test Specification

FCC, Part 90, Section 90.209, Part 2, 2.1049

#### 8.2 Test Procedure

The E.U.T. was set to the applicable test frequency with OFDMA modulations and 5MHZ bandwidth in the 3650-3675MHz band

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (at the output test) and an appropriate coaxial cable. The spectrum analyzer was set to proper resolution B.W.

The occupied bandwidth was determent as the 26dBc points of the transmitted signal.



Figure 49.— 3652.50 MHz QPSK





Figure 50.— 3652.50 MHz 16QAM



Figure 51.— 3652.50 MHz 64 QAM





Figure 52.— 3662.50 MHz QPSK



Figure 53.— 3662.50 MHz 16QAM





Figure 54.— 3662.50 MHz 64 QAM



Figure 55.— 3672.50 MHz QPSK





Figure 56.— 3672.50 MHz 16 QAM



Figure 57.— 3672.50 MHz 64 QAM



#### 8.3 Results Table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 3.5 GHz

Part Number: PICO-O-3.5-C-1W-DC Specification: FCC Part 2, Section 1049

| Operating | Modulation  | Reading |
|-----------|-------------|---------|
| 1         | Wiodulation | _       |
| Frequency |             | (26dBc) |
| (MHz)     |             | (MHz)   |
|           | QPSK        | 5.15    |
| 3652.50   | 16QAM       | 5.30    |
|           | 64QAM       | 5.35    |
|           | QPSK        | 5.28    |
| 3662.50   | 16QAM       | 5.58    |
|           | 64QAM       | 5.33    |
|           | QPSK        | 5.33    |
| 3672.50   | 16QAM       | 5.33    |
|           | 64QAM       | 5.25    |

Figure 58 Occupied Bandwidth

| HIDCEMENT. | Daggad |
|------------|--------|
| JUDGEMENT: | Passed |

TEST PERSONNEL:

Tester Signature: Date: 10.05.10

Typed/Printed Name: A. Sharabi



# 8.4 Test Equipment Used.

## Occupied Bandwidth

| Instrument           | Manufacturer | Model        | Serial<br>Number          | Calibration      |        |
|----------------------|--------------|--------------|---------------------------|------------------|--------|
|                      |              |              |                           | Last<br>Calibr.  | Period |
| Spectrum<br>Analyzer | НР           | 8592L        | 3826A01204                | March 17, 2009   | 1 year |
| Attenuator           | Jyebao       | -            | FAT-<br>AM5AF5G6G<br>2W20 | October 19, 2009 | 1 year |
| Cable                | Rhophase     | KPS-5000-KPS | A1674                     | October 19, 2009 | 1 year |

Figure 59 Test Equipment Used



# 9. Occupied Bandwidth 10 MHz Bandwidth

### 9.1 Test Specification

FCC Part 90, Section 90.209, Part 2, Section 2.1049

#### 9.2 Test Procedure

The E.U.T. was set to the applicable test frequency with OFDMA modulations and 10MHZ bandwidth in the 3650-3675MHz band

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (at the output test) and an appropriate coaxial cable. The spectrum analyzer was set to proper resolution B.W.

The occupied bandwidth was determent as the 26dBc points of the transmitted signal.



Figure 60.— 3655.00 MHz QPSK





Figure 61.— 3655.00 MHz 16QAM



Figure 62.— 3655.00 MHz 64 QAM





Figure 63.— 3665.00 MHz QPSK



Figure 64.— 3665.00 MHz 16QAM





Figure 65.— 3665.00 MHz 64 QAM



Figure 66.— 3670.00 MHz QPSK





Figure 67.— 3670.00 MHz 16 QAM



Figure 68.— 3670.00 MHz 64 QAM



#### 9.3 Results Table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 3.5 GHz

Part Number: PICO-O-3.5-C-1W-DC

Specification: FCC Part 90, Section 90.209, Part 2, Section 2.1049

| Operating | Modulation | Reading |  |
|-----------|------------|---------|--|
| Frequency |            | (26dBc) |  |
| (MHz)     |            | (MHz)   |  |
|           | QPSK       | 10.25   |  |
| 3655.00   | 16QAM      | 10.10   |  |
|           | 64QAM      | 10.05   |  |
|           | QPSK       | 10.05   |  |
| 3665.00   | 16QAM      | 10.15   |  |
|           | 64QAM      | 10.15   |  |
|           | QPSK       | 10.00   |  |
| 3670.00   | 16QAM      | 9.85    |  |
|           | 64QAM      | 10.20   |  |

Figure 69 Occupied Bandwidth

TEST PERSONNEL:

Tester Signature: Date: 10.05.10

Typed/Printed Name: A. Sharabi



# 9.4 Test Equipment Used.

## Occupied Bandwidth

| Instrument           | Manufacturer | Model        | Serial<br>Number          | Calibration      |        |
|----------------------|--------------|--------------|---------------------------|------------------|--------|
|                      |              |              |                           | Last<br>Calibr.  | Period |
| Spectrum<br>Analyzer | НР           | 8592L        | 3826A01204                | March 17, 2009   | 1 year |
| Attenuator           | Jyebao       | -            | FAT-<br>AM5AF5G6G<br>2W20 | October 19, 2009 | 1 year |
| Cable                | Rhophase     | KPS-5000-KPS | A1674                     | October 19, 2009 | 1 year |

Figure 70 Test Equipment Used



# 10. Conducted Spurious Emissions 5 MHz Bandwidth

## 10.1 Test Specification

FCC Part 90 Section 90.1323

## 10.2 Test procedure

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at 43 + 10 log (P) dB The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (21.0 dB).



Figure 71.— 3652.50 MHz QPSK





Figure 72.— 3652.50 MHz QPSK



Figure 73.— 3652.50 MHz QPSK





Figure 74.— 3652.50 MHz QPSK



Figure 75.— 3652.50 MHz QPSK





Figure 76.— 3652.50 MHz QPSK



Figure 77.— 3652.50 MHz QPSK





Figure 78.— 3652.50 MHz QPSK



Figure 79.— 3652.50 MHz QPSK





Figure 80.— 3652.50 MHz 16QAM



Figure 81.— 3652.50 MHz 16QAM





Figure 82.— 3652.50 MHz 16QAM



Figure 83.— 3652.50 MHz 16QAM





Figure 84.— 3652.50 MHz 16QAM



Figure 85.— 3652.50 MHz 16QAM





Figure 86.— 3652.50 MHz 16QAM



Figure 87.— 3652.50 MHz 16QAM





Figure 88.— 3652.50 MHz 16QAM



Figure 89.— 3652.50 MHz 64QAM





Figure 90.— 3652.50 MHz 64QAM



Figure 91.— 3652.50 MHz 64QAM





Figure 92.— 3652.50 MHz 64QAM



Figure 93.— 3652.50 MHz 64QAM





Figure 94.— 3652.50 MHz 64QAM



Figure 95.— 3652.50 MHz 64QAM





Figure 96.— 3652.50 MHz 64QAM



Figure 97.— 3652.50 MHz 64QAM





Figure 98.— 3662.50 MHz QPSK



Figure 99.— 3662.50 MHz QPSK





Figure 100.— 3662.50 MHz QPSK



Figure 101.— 3662.50 MHz QPSK





Figure 102.— 3662.50 MHz QPSK



Figure 103.— 3662.50 MHz QPSK





Figure 104.— 3662.50 MHz QPSK



Figure 105.— 3662.50 MHz QPSK





Figure 106.— 3662.50 MHz QPSK



Figure 107.— 3662.50 MHz 16QAM





Figure 108.— 3662.50 MHz 16QAM



Figure 109.— 3662.50 MHz 16QAM





Figure 110.— 3662.50 MHz 16QAM



Figure 111.— 3662.50 MHz 16QAM





Figure 112.— 3662.50 MHz 16QAM



Figure 113.— 3662.50 MHz 16QAM





Figure 114.— 3662.50 MHz 16QAM



Figure 115.— 3662.50 MHz 16QAM





Figure 116.— 3662.50 MHz 64QAM



Figure 117.— 3662.50 MHz 64QAM





Figure 118.— 3662.50 MHz 64QAM



Figure 119.— 3662.50 MHz 64QAM





Figure 120.— 3662.50 MHz 64QAM



Figure 121.— 3662.50 MHz 64QAM





Figure 122.— 3662.50 MHz 64QAM



Figure 123.— 3662.50 MHz 64QAM





Figure 124.— 3662.50 MHz 64QAM



Figure 125.— 3672.50 MHz QPSK





Figure 126.— 3672.50 MHz QPSK



Figure 127.— 3672.50 MHz QPSK





Figure 128.— 3672.50 MHz QPSK



Figure 129.— 3672.50 MHz QPSK





Figure 130.— 3672.50 MHz QPSK



Figure 131.— 3672.50 MHz QPSK





Figure 132.— 3672.50 MHz QPSK



Figure 133.— 3672.50 MHz QPSK





Figure 134.— 3672.50 MHz 16QAM



Figure 135.— 3672.50 MHz 16QAM





Figure 136.— 3672.50 MHz 16QAM



Figure 137.— 3672.50 MHz 16QAM





Figure 138.— 3672.50 MHz 16QAM



Figure 139.— 3672.50 MHz 16QAM





Figure 140.— 3672.50 MHz 16QAM



Figure 141.— 3672.50 MHz 16QAM





Figure 142.— 3672.50 MHz 16QAM



Figure 143.— 3672.50 MHz 64QAM





Figure 144.— 3672.50 MHz 64QAM



Figure 145.— 3672.50 MHz 64QAM





Figure 146.— 3672.50 MHz 64QAM



Figure 147.— 3672.50 MHz 64QAM





Figure 148.— 3672.50 MHz 64QAM



Figure 149.— 3672.50 MHz 64QAM





Figure 150.— 3672.50 MHz 64QAM



Figure 151.— 3672.50 MHz 64QAM



#### 10.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 3.5 GHz

Part Number: PICO-O-3.5-C-1W-DC

Specification: FCC Part 90 Section 90.1323

| Operation |       | Reading | Specification | Margin |
|-----------|-------|---------|---------------|--------|
| Frequency |       |         |               |        |
| (MHz)     |       | (dBm)   | (dBm)         | (dB)   |
| 3652.50   | QPSK  | -28.8   | -13.0         | -15.8  |
|           | 16QAM | -28.5   | -13.0         | -15.5  |
|           | 64QAM | -27.3   | -13.0         | -14.3  |
| 3662.50   | QPSK  | -29.0   | -13.0         | -16.0  |
|           | 16QAM | -29.5   | -13.0         | -16.5  |
|           | 64QAM | -29.2   | -13.0         | -16.2  |
| 3672.50   | QPSK  | -28.5   | -13.0         | -15.5  |
|           | 16QAM | -28.6   | -13.0         | -15.6  |
|           | 64QAM | -28.0   | -13.0         | -15.0  |

Figure 152 Spurious Emissions at Antenna Terminals Results

JUDGEMENT: Passed by 14.3 dB

TEST PERSONNEL:

Tester Signature: Date: 10.05.10

Typed/Printed Name: A. Sharabi



## 10.4 Test Equipment Used.

### Spurious Emissions at Antenna Terminals

| Instrument           | Manufacturer | Model        | Serial<br>Number          | Calibration       |        |
|----------------------|--------------|--------------|---------------------------|-------------------|--------|
|                      |              |              |                           | Last<br>Calibr.   | Period |
| Spectrum<br>Analyzer | HP           | 8592L        | 3826A01204                | March 17, 2009    | 1 year |
| Spectrum<br>Analyzer | HP           | 8546E        | 3442A00275                | December 15, 2008 | 1 year |
| Attenuator           | Jyebao       | -            | FAT-<br>AM5AF5G6G<br>2W20 | October 19, 2009  | 1 year |
| Cable                | Rhophase     | KPS-5000-KPS | A1674                     | October 19, 2009  | 1 year |

Figure 153 Test Equipment Used



# 11. Conducted Spurious Emissions 10 MHz Bandwidth

### 11.1 Test Specification

FCC Part 90 Section 90.1323

### 11.2 Test procedure

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at 43 + 10 log (P) dB The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (21.0 dB).



Figure 154.— 3655.00 MHz QPSK





Figure 155.— 3655.00 MHz QPSK



Figure 156.— 3655.00 MHz QPSK





Figure 157.— 3655.00 MHz QPSK



Figure 158.— 3655.00 MHz QPSK





Figure 159.— 3655.00 MHz QPSK



Figure 160.— 3655.00 MHz QPSK





Figure 161.— 3655.00 MHz QPSK



Figure 162.— 3655.00 MHz QPSK





Figure 163.— 3655.00 MHz 16QAM



Figure 164.— 3655.00 MHz 16QAM





Figure 165.— 3655.00 MHz 16QAM



Figure 166.— 3655.00 MHz 16QAM





Figure 167.— 3655.00 MHz 16QAM



Figure 168.— 3655.00 MHz 16QAM





Figure 169.— 3655.00 MHz 16QAM



Figure 170.— 3655.00 MHz 16QAM





Figure 171.— 3655.00 MHz 16QAM



Figure 172.— 3655.00 MHz 64QAM





Figure 173.— 3655.00 MHz 64QAM



Figure 174.— 3655.00 MHz 64QAM





Figure 175.— 3655.00 MHz 64QAM



Figure 176.— 3655.00 MHz 64QAM





Figure 177.— 3655.00 MHz 64QAM



Figure 178.— 3655.00 MHz 64QAM





Figure 179.— 3655.00 MHz 64QAM



Figure 180.— 3655.00 MHz 64QAM





Figure 181.— 3665.00 MHz QPSK



Figure 182.— 3665.00 MHz QPSK





Figure 183.— 3665.00 MHz QPSK



Figure 184.— 3665.00 MHz QPSK





Figure 185.— 3665.00 MHz QPSK



Figure 186.— 3665.00 MHz QPSK





Figure 187.— 3665.00 MHz QPSK



Figure 188.— 3665.00 MHz QPSK





Figure 189.— 3665.00 MHz QPSK



Figure 190.— 3665.00 MHz 16QAM





Figure 191.— 3665.00 MHz 16QAM



Figure 192.— 3665.00 MHz 16QAM





Figure 193.— 3665.00 MHz 16QAM



Figure 194.— 3665.00 MHz 16QAM





Figure 195.— 3665.00 MHz 16QAM



Figure 196.— 3665.00 MHz 16QAM





Figure 197.— 3665.00 MHz 16QAM



Figure 198.— 3665.00 MHz 16QAM





Figure 199.— 3665.00 MHz 64QAM



Figure 200.— 3665.00 MHz 64QAM





Figure 201.— 3665.00 MHz 64QAM



Figure 202.— 3665.00 MHz 64QAM





Figure 203.— 3665.00 MHz 64QAM



Figure 204.— 3665.00 MHz 64QAM





Figure 205.— 3665.00 MHz 64QAM



Figure 206.— 3665.00 MHz 64QAM





Figure 207.— 3665.00 MHz 64QAM



Figure 208.— 3670.00 MHz QPSK





Figure 209.— 3670.00 MHz QPSK



Figure 210.— 3670.00 MHz QPSK





Figure 211.— 3670.00 MHz QPSK



Figure 212.— 3670.00 MHz QPSK





Figure 213.— 3670.00 MHz QPSK



Figure 214.— 3670.00 MHz QPSK





Figure 215.— 3670.00 MHz QPSK



Figure 216.— 3670.00 MHz QPSK





Figure 217.— 3670.00 MHz 16QAM



Figure 218.— 3670.00 MHz 16QAM





Figure 219.— 3670.00 MHz 16QAM



Figure 220.— 3670.00 MHz 16QAM





Figure 221.— 3670.00 MHz 16QAM



Figure 222.— 3670.00 MHz 16QAM





Figure 223.— 3670.00 MHz 16QAM



Figure 224.— 3670.00 MHz 16QAM





Figure 225.— 3670.00 MHz 16QAM



Figure 226.— 3670.00 MHz 64QAM





Figure 227.— 3670.00 MHz 64QAM



Figure 228.— 3670.00 MHz 64QAM





Figure 229.— 3670.00 MHz 64QAM



Figure 230.— 3670.00 MHz 64QAM





Figure 231.— 3670.00 MHz 64QAM



Figure 232.— 3670.00 MHz 64QAM





Figure 233.— 3670.00 MHz 64QAM



Figure 234.— 3670.00 MHz 64QAM



#### 11.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 3.5 GHz

Serial Number: PICO-O-3.5-C-1W-DC Specification: FCC Part 90 Section 90.1323

| Operation |       | Reading | Specification | Margin |
|-----------|-------|---------|---------------|--------|
| Frequency |       |         |               |        |
| (MHz)     |       | (dBm)   | (dBm)         | (dB)   |
|           | QPSK  | -29.0   | -13.0         | -16.0  |
| 3655.00   | 16QAM | -28.5   | -13.0         | -15.5  |
|           | 64QAM | -28.7   | -13.0         | -15.7  |
| 3665.00   | QPSK  | -27.7   | -13.0         | -14.7  |
|           | 16QAM | -22.0   | -13.0         | -9.0   |
|           | 64QAM | -21.6   | -13.0         | -8.6   |
|           | QPSK  | -29.2   | -13.0         | -16.2  |
| 3670.00   | 16QAM | -28.4   | -13.0         | -15.4  |
|           | 64QAM | -29.0   | -13.0         | -16.0  |

Figure 235 Spurious Emissions at Antenna Terminals Results

JUDGEMENT: Passed by 8.6 dB

TEST PERSONNEL:

Tester Signature: Date: 10.05.10

Typed/Printed Name: A. Sharabi



## 11.4 Test Equipment Used.

### Spurious Emissions at Antenna Terminals

| Instrument           | Manufacturer | Model        | Serial<br>Number          | Calibration       |        |
|----------------------|--------------|--------------|---------------------------|-------------------|--------|
|                      |              |              |                           | Last<br>Calibr.   | Period |
| Spectrum<br>Analyzer | HP           | 8592L        | 3826A01204                | March 17, 2009    | 1 year |
| Spectrum<br>Analyzer | HP           | 8546E        | 3442A00275                | December 15, 2008 | 1 year |
| Attenuator           | Jyebao       | -            | FAT-<br>AM5AF5G6G<br>2W20 | October 19, 2009  | 1 year |
| Cable                | Rhophase     | KPS-5000-KPS | A1675                     | October 19, 2009  | 1 year |

Figure 236 Test Equipment Used



# 12. Band Edge Spectrum 5 MHz Bandwidth

### 12.1 Test Specification

FCC Part 90, Subpart Z, Section 90.1323

### 12.2 Test procedure

Enclosed are spectrum analyzer plots for the lowest operation frequency and the highest operation frequency in which the E.U.T. is planned to be used.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + log (P) dB, yielding –13dBm.

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (21.0 dB).

The spectrum analyzer was set to 100kHz R.B.W (1% from 5MHz)



Figure 237.— 3652.50 MHz QPSK





Figure 238.— 3652.50 MHz QPSK



Figure 239.— 3652.50 16QAM





Figure 240.— 3652.50 MHz 16QAM



Figure 241.— 3652.50 MHz 64QAM





Figure 242.— 3652.50 MHz 64QAM



Figure 243.— 3662.50 MHz QPSK





Figure 244.— 3662.50 MHz QPSK



Figure 245.— 3662.50 MHz 16QAM





Figure 246.— 3662.50 MHz 16QAM



Figure 247.— 3662.50 MHz 64QAM





Figure 248.— 3662.50 MHz 64QAM



Figure 249.— 3672.50 MHz QPSK





Figure 250.— 3672.50 MHz QPSK



Figure 251.— 3672.50 MHz 16QAM





Figure 252.— 3672.50 MHz 16QAM



Figure 253.— 3672.50 MHz 64QAM





Figure 254.— 3672.50 MHz 64QAM



## 12.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 3.5 GHz

Part Number: PICO-O-3.5-C-1W-DC

Specification: FCC Part 90, Subpart Z, Section 90.1323

| Operation | Modulation | Band Edge | Reading | Specification |
|-----------|------------|-----------|---------|---------------|
| Frequency |            | Frequency |         |               |
| (MHz)     |            | (MHz)     | (dBm)   | (dBm)         |
|           | QPSK       | 3649.993  | -13.03  | -13.0         |
|           | QPSK       | 3655.003  | -15.13  | -13.0         |
| 3652.50   | 16QAM      | 3649.998  | -13.11  | -13.0         |
| 3032.30   | 16QAM      | 3655.020  | -13.31  | -13.0         |
|           | 64QAM      | 3649.980  | -13.71  | -13.0         |
|           | 64QAM      | 3655.023  | -13.96  | -13.0         |
|           | QPSK       | 3659.948  | -13.57  | -13.0         |
|           | QPSK       | 3665.003  | -14.38  | -13.0         |
| 3662.50   | 16QAM      | 3659.980  | -14.12  | -13.0         |
| 3002.30   | 16QAM      | 3665.020  | -13.13  | -13.0         |
|           | 64QAM      | 3659.958  | -13.12  | -13.0         |
|           | 64QAM      | 3665.000  | -14.22  | -13.0         |
|           | QPSK       | 3669.940  | -14.04  | -13.0         |
|           | QPSK       | 3675.005  | -14.13  | -13.0         |
| 3672.50   | 16QAM      | 3669.963  | -13.18  | -13.0         |
|           | 16QAM      | 3675.000  | -13.97  | -13.0         |
|           | 64QAM      | 3669.970  | -13.12  | -13.0         |
|           | 64QAM      | 3675.010  | -14.36  | -13.0         |

Figure 255 Band Edge Spectrum Results

| JUDGEMENT: | Passed  |
|------------|---------|
| JUDUNINI.  | r asseu |

TEST PERSONNEL:

Tester Signature: Date: 10.05.10

Typed/Printed Name: A. Sharabi



## 12.4 Test Equipment Used.

## Band Edge Spectrum

| Instrument           | Manufacturer | Model            | Serial<br>Number          | Calibration      |        |
|----------------------|--------------|------------------|---------------------------|------------------|--------|
|                      |              |                  |                           | Last<br>Calibr.  | Period |
| Spectrum<br>Analyzer | НР           | 8592L            | 3826A01204                | March 17, 2009   | 1 year |
| Attenuator           | Jyebao       | -                | FAT-<br>AM5AF5G6G<br>2W20 | October 19, 2009 | 1 year |
| Cable                | Rhophase     | KPS-5000-<br>KPS | A1674                     | October 19, 2009 | 1 year |

Figure 256 Test Equipment Used



# 13. Band Edge Spectrum 10 MHz Bandwidth

## 13.1 Test Specification

FCC Part 90, Subpart Z, Section 90.1323

## 13.2 Test procedure

Enclosed are spectrum analyzer plots for the lowest operation frequency and the highest operation frequency in which the E.U.T. is planned to be used.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + log (P) dB, yielding -13dBm.

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (21.0 dB).

The spectrum analyzer was set to 100kHz R.B.W (1% from 10MHz).



Figure 257.— 3655.00 MHz QPSK





Figure 258.— 3655.00 MHz QPSK



Figure 259.— 3655.00 16QAM





Figure 260.— 3655.00 MHz 16QAm



Figure 261.— 3655.00 MHz 64QAm





Figure 262.— 3655.00 MHz 64QAM



Figure 263.— 3665.00 MHz QPSK





Figure 264.— 3665.00 MHz QPSK



Figure 265.— 3665.00 MHz 16QAM





Figure 266.— 3665.00 MHz 16QAM



Figure 267.— 3665.00 MHz 64QAM





Figure 268.— 3665.00 MHz 64QAM



Figure 269.— 3670.00 MHz QPSK





Figure 270.— 3670.00 MHz QPSK



Figure 271.— 3670.00 MHz 16QAM





Figure 272.— 3670.00 MHz 16QAM



Figure 273.— 3670.00 MHz 64QAM





Figure 274.— 3670.00 MHz 64QAM



## 13.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 3.5 GHz

Part Number: PICO-O-3.5-C-1W-DC

Specification: FCC Part 90, Subpart Z, Section 90.1323

| Operation | Modulation | Band Edge | Reading | Specification |
|-----------|------------|-----------|---------|---------------|
| Frequency |            | Frequency |         |               |
| (MHz)     |            | (MHz)     | (dBm)   | (dBm)         |
|           | QPSK       | 3649.985  | -19.86  | -13.0         |
|           | QPSK       | 3660.020  | -18.92  | -13.0         |
| 3655.0    | 16QAM      | 3649.998  | -20.45  | -13.0         |
| 3033.0    | 16QAM      | 3660.0.15 | -20.38  | -13.0         |
|           | 64QAM      | 3649.998  | -20.33  | -13.0         |
|           | 64QAM      | 3660.008  | -19.04  | -13.0         |
|           | QPSK       | 3660.000  | -18.62  | -13.0         |
|           | QPSK       | 3670.010  | -19.54  | -13.0         |
| 2665.00   | 16QAM      | 3659.990  | -20.02  | -13.0         |
| 3665.00   | 16QAM      | 3670.015  | -19.49  | -13.0         |
|           | 64QAM      | 3659.978  | -19.83  | -13.0         |
|           | 64QAM      | 3670.028  | -19.87  | -13.0         |
|           | QPSK       | 3664.993  | -19.07  | -13.0         |
|           | QPSK       | 3675.035  | -19.23  | -13.0         |
| 2670.00   | 16QAM      | 3664.998  | -18.43  | -13.0         |
| 3670.00   | 16QAM      | 3675.005  | -19.27  | -13.0         |
|           | 64QAM      | 3664.985  | -19.91  | -13.0         |
|           | 64QAM      | 3675.040  | -17.92  | -13.0         |

Figure 275 Band Edge Spectrum Results

Passed

| TEST PERSONNEL:   |                |
|-------------------|----------------|
| 20                |                |
| Tester Signature: | Date: 10.05.10 |

Typed/Printed Name: A. Sharabi

JUDGEMENT:



## 13.4 Test Equipment Used.

## Band Edge Spectrum

| Instrument           | Manufacturer | Model        | Serial<br>Number          | Calibratio       | on     |
|----------------------|--------------|--------------|---------------------------|------------------|--------|
|                      |              |              |                           | Last<br>Calibr.  | Period |
| Spectrum<br>Analyzer | НР           | 8592L        | 3826A01204                | March 17, 2009   | 1 year |
| Attenuator           | Jyebao       | -            | FAT-<br>AM5AF5G6G<br>2W20 | October 19, 2009 | 1 year |
| Cable                | Rhophase     | KPS-5000-KPS | A1674                     | October 19, 209  | 1 year |

Figure 276 Test Equipment Used



## 14. Spurious Radiated Emission 5 and 10 MHz Bandwidth

## 14.1 Test Specification

FCC, Part 90, Subpart Z, Section 90.1323

#### 14.2 Test Procedure

The test method was based on ANSI/TIA-603-B: 2002, Section 2.2.12 Unwanted Emissions: Radiated Spurious.

The power of any emission outside of the authorized operating frequency ranges (3650 - 3670 MHz) must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB, yielding -13dBm.

(a) The E.U.T. operation mode and test set-up are as described in Section 3. A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 1.

The frequency range 9 kHz-27 GHz was scanned, and the list of the highest emissions was verified and updated accordingly.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

(b) The E.U.T. was replaced by a substitution antenna (dipole 30MHz-1GHz, Horn Antenna above 1GHz) driven by a signal generator. The height was readjusted for maximum reading. The signal generator level was adjusted to obtain the same reading on the EMI receiver as in step (a).

The signals observed in step (a) were converted to radiated power using:  $P_d(dBm) = P_g(dBm) - Cable Loss (dB) + Substitution Antenna Gain (dB)$ 

 $P_d$  = Dipole equivalent power (result).

 $P_g$  = Signal generator output level.

The E.U.T. was operated at the frequencies of 3652.50, 3662.50, and 3672.50 MHz with QPSK, 16QAM, and 64QAM modulations with 5 MHz bandwidth and at the frequencies of 3655.00, 3665.00, and 3670.00 MHz with QPSK, 16QAM, and 64QAM modulations with 10 MHz bandwidth.

The worst case results using 64QAM modulation and both 5 and 10 MHz bandwidth were recorded.



## 5 MHz Bandwidth

| Carrier<br>Channel | Freq.   | Antenna<br>Pol. | Maximum<br>Peak Level | Signal<br>Generator RF<br>Output | Cable<br>Loss | Antenna<br>Gain | Effective<br>Radiated<br>Power Level | Spec. | Margin |
|--------------------|---------|-----------------|-----------------------|----------------------------------|---------------|-----------------|--------------------------------------|-------|--------|
| (MHz)              | (MHz)   |                 | $(dB\mu V/m)$         | (dBm)                            | (dB)          | (dBi)           | (dBm)                                | (dBm) | (dB)   |
| 3652.50            | 7307.00 | V               | 63.9                  | -31.5                            | 17.2          | 10.7            | -38.0                                | -13.0 | -25.0  |
| 3652.50            | 7307.00 | Н               | 63.1                  | -31.3                            | 17.2          | 10.7            | -37.8                                | -13.0 | -24.8  |
| 3662.50            | 7325.00 | V               | 54.1                  | -39.1                            | 17.2          | 10.7            | -45.6                                | -13.0 | -32.6  |
| 3662.50            | 7325.00 | Н               | 53.9                  | -41.2                            | 17.2          | 10.7            | -47.7                                | -13.0 | -34.7  |
| 3672.50            | 7346.00 | V               | 54.0                  | -39.2                            | 17.2          | 10.7            | -45.7                                | -13.0 | -32.7  |
| 3672.50            | 7346.00 | Н               | 54.5                  | -39.1                            | 17.2          | 10.7            | -45.6                                | -13.0 | -32.6  |

## 10 MHz Bandwidth

| Carrier<br>Channel | Freq.   | Antenna<br>Pol. | Maximum<br>Peak Level | Signal<br>Generator RF<br>Output | Cable<br>Loss | Antenna<br>Gain | Effective<br>Radiated<br>Power Level | Spec. | Margin |
|--------------------|---------|-----------------|-----------------------|----------------------------------|---------------|-----------------|--------------------------------------|-------|--------|
| (MHz)              | (MHz)   |                 | $(dB\mu V/m)$         | (dBm)                            | (dB)          | (dBi)           | (dBm)                                | (dBm) | (dB)   |
| 3655.00            | 7310.00 | V               | 58.9                  | -36.3                            | 17.2          | 10.7            | -42.8                                | -13.0 | -29.8  |
| 3655.00            | 7310.00 | Н               | 60.6                  | -34.5                            | 17.2          | 10.7            | -41.0                                | -13.0 | -28.0  |
| 3665.00            | 7330.00 | V               | 54.3                  | -39.0                            | 17.2          | 10.7            | -45.5                                | -13.0 | -32.5  |
| 3665.00            | 7330.00 | Н               | 54.8                  | -38.8                            | 17.2          | 10.7            | -45.3                                | -13.0 | -32.3  |
| 3670.00            | 7340.00 | V               | 53.8                  | -39.3                            | 17.2          | 10.7            | -45.8                                | -13.0 | -32.8  |
| 3670.00            | 7340.00 | Н               | 53.8                  | -39.3                            | 17.2          | 10.7            | -45.8                                | -13.0 | -32.8  |

## 14.3 Test Results

JUDGEMENT: Passed by 24.8 dB (5 MHz Bandwidth)

JUDGEMENT: Passed by 28.0 dB (10 MHz Bandwidth)

The E.U.T met the requirements of the FCC, Part 90, Subpart Z, Section 90.1323 specifications.

TEST PERSONNEL:

Tester Signature: \_\_\_\_\_ Date: 10.05.10

Typed/Printed Name: A. Sharabi



## 14.4 Test Instrumentation Used, Radiated Measurements

| Instrument                                 | Manufacturer     | Model                | Serial Number | Calibration       | Period  |
|--------------------------------------------|------------------|----------------------|---------------|-------------------|---------|
| EMI Receiver                               | НР               | 85422E               | 3411A00102    | November 17, 2008 | 1 year  |
| RF Section                                 | НР               | 85420E               | 3427A00103    | November 16, 2008 | 1 year  |
| Antenna<br>Log Periodic                    | A.H. Systems     | SAS-200/511          | 253           | January 29, 2009  | 2 year  |
| Antenna Mast                               | ARA              | AAM-4A               | 1001          | N/A               | N/A     |
| Turntable                                  | ARA              | ART-1001/4           | 1001          | N/A               | N/A     |
| Mast & Table<br>Controller                 | ARA              | ACU-2/5              | 1001          | N/A               | N/A     |
| Printer                                    | НР               | ThinkJet 2225        | 2738508357.0  | N/A               | N/A     |
| Spectrum<br>Analyzer                       | НР               | 8592L                | 3826A01204    | March 17, 2009    | 1 year  |
| Low Noise<br>Amplifier                     | DBS<br>MICROWAVE | LNA-DBS-<br>0411N313 | 013           | November 3, 2008  | 1 year  |
| Low Noise<br>Amplifier                     | Sophia Wireless  | LNA 28-B             | 232           | January 8, 2009   | 1 year  |
| Signal<br>Generator                        | НР               | 8648C                | 3623A04126    | January 11, 2008  | 2 years |
| Double Ridged<br>Waveguide<br>Horn Antenna | EMCO             | 3115                 | 29845         | March 16, 2008    | 2 years |
| Horn Antenna                               | ARA              | SWH-28               | 1008          | December 23, 2008 | 2 years |
| Horn Antenna                               | Narda            | V637                 | 0410          | December 23, 2008 | 2 years |



# 15. Frequency Stability 5 and 10 MHz Bandwidth

## 15.1 Test Specification

Part 90 Subpart Z Section 90.

### 15.2 Test Procedure

The E.U.T operation mode and test setup are as described in Section 2. The E.U.T. was operated with a CW signal in the downlink path.

The E.U.T. was placed inside a temperature chamber. The E.U.T. was operated from 36 VDC at normal temperature and the chamber temperature was set to +30°C

The spectrum analyzer was set to 10.0 kHz span and 1.0 kHz RBW, and 1.0 kHz VBW.

The carrier frequency was measured and recorded (reference frequency reading).

The carrier frequency measurement was repeated for:

- (a).  $+30^{\circ}$ C and 48 VDC
- (b).  $+30^{\circ}$ C and 70 VDC
- (c). -30°C and 48 VDC
- (d). -20°C and 48 VDC
- (e). -10°C and 48 VDC
- (f).  $0^{\circ}$ C and 48 VDC
- (g).  $+10^{\circ}$ C and 48 VDC
- (h). +20°C and 48 VDC
- (i). +40°C and 48 VDC
- (j).  $+50^{\circ}$ C and 48 VDC

The carrier frequency was measured and recorded after at least 20 minutes of exposing the E.U.T. to the temperature.

The E.U.T. was operated at 3652.50 and 3672.50 MHz for 5 MHz bandwidth, and 3655.00 and 3670.00 MHz for 10 MHz bandwidth.



## 15.3 Test Results

The E.U.T met the requirements of Part 90 Subpart Z, Section 90. specification.

The details of the results are given in Figure 277.

JUDGEMENT: Passed

TEST PERSONNEL:

Tester Signature: \_\_\_\_\_ Date: 10.05.10

Typed/Printed Name: A. Sharabi



## **Frequency Stability**

E.U.T Description WiMAX Base Station

Type Outdoor Pico Base Station 3.5 GHz

Part Number: PICO-O-3.5-C-1W-DC

Specification: FCC Part 90 Subpart Z Section 90.

|             |         | 5 MHz Bandwidth |            | 10 MHz E   | Bandwidth  |
|-------------|---------|-----------------|------------|------------|------------|
| Temperature | Voltage | Frequency       | Frequency  | Frequency  | Frequency  |
| (°C)        | (VDC)   | (MHz)           | (MHz)      | (MHz)      | (MHz)      |
|             | 36      | 3652.50298      | 3672.49628 | 3655.00305 | 3669.99630 |
| 30          | 48      | 3652.50308      | 3672.49620 | 3655.00310 | 3669.99625 |
|             | 70      | 3652.50315      | 3672.49618 | 3655.00308 | 3669.99620 |
| -30         | 48      | 3652.50397      | 3672.49449 | 3655.00480 | 3669.99590 |
| -20         | 48      | 3652.50258      | 3672.49590 | 3655.00250 | 3669.99595 |
| -10         | 48      | 3652.50475      | 6672.49585 | 3655.00478 | 3669.99563 |
| 0           | 48      | 3652.50413      | 3672.49503 | 3655.00443 | 3669.99545 |
| +10         | 48      | 3652.50355      | 3672.49543 | 3655.00340 | 3669.99535 |
| +20         | 48      | 3652.50283      | 3672.49628 | 3655.00290 | 3669.99530 |
| +40         | 48      | 3652.50300      | 3672.49588 | 3655.00298 | 3669.99518 |
| +50         | 48      | 3652.50270      | 3672.49588 | 3655.00268 | 3669.99523 |

Figure 277. Frequency Stability



## 15.4 Test Instrumentation Used, Radiated Measurements

| Instrument                      | Manufacturer          | Model           | Serial Number | Calibration       | Period  |
|---------------------------------|-----------------------|-----------------|---------------|-------------------|---------|
| Environmental<br>Chamber        | THERMOTRON<br>CORP    | SM 32C Mini Max | 25-1030       | March 04, 2009    | 1 Year  |
| Digital Voltage<br>Meter        | Escort                | EDM1111A        | 10313121      | November 3, 2008  | 2 Years |
| Variable Voltage<br>Transformer | Variac Voltage<br>Co. | -               | -             | N/A               | N/A     |
| Spectrum<br>Analyzer            | HP                    | 8594E           | 3809U03785    | February 26, 2009 | 1 Year  |



# 16. APPENDIX A - CORRECTION FACTORS

## 16.1 Correction factors for CABLE

from EMI receiver to test antenna at 3 meter range.

| FREQUENCY | CORRECTION FACTOR |
|-----------|-------------------|
| (MHz)     | (dB)              |
| 10.0      | 0.3               |
| 20.0      | 0.6               |
| 30.0      | 0.8               |
| 40.0      | 0.9               |
| 50.0      | 1.1               |
| 60.0      | 1.2               |
| 70.0      | 1.3               |
| 80.0      | 1.4               |
| 90.0      | 1.6               |
| 100.0     | 1.7               |
| 150.0     | 2.0               |
| 200.0     | 2.3               |
| 250.0     | 2.7               |
| 300.0     | 3.1               |
| 350.0     | 3.4               |
| 400.0     | 3.7               |
| 450.0     | 4.0               |
| 500.0     | 4.3               |
| 600.0     | 4.7               |
| 700.0     | 5.3               |
| 800.0     | 5.9               |
| 900.0     | 6.3               |
| 1000.0    | 6.7               |

| FREQUENCY | CORRECTION FACTOR |
|-----------|-------------------|
| (MHz)     | (dB)              |
| 1200.0    | 7.3               |
| 1400.0    | 7.8               |
| 1600.0    | 8.4               |
| 1800.0    | 9.1               |
| 2000.0    | 9.9               |
| 2300.0    | 11.2              |
| 2600.0    | 12.2              |
| 2900.0    | 13.0              |
|           |                   |

- 1. The cable type is RG-214.
- 2. The overall length of the cable is 27 meters.
- 3. The above data is located in file 27MO3MO.CBL on the disk marked "Radiated Emission Tests EMI Receiver".



# 16.2 Correction factors for CABLE from EMI receiver

to test antenna at 3 meter range.

| FREQUENCY | CORRECTION FACTOR |
|-----------|-------------------|
| (GHz)     | (dB)              |
| 1.0       | 1.2               |
| 2.0       | 1.6               |
| 3.0       | 2.0               |
| 4.0       | 2.4               |
| 5.0       | 3.0               |
| 6.0       | 3.4               |
| 7.0       | 3.8               |
| 8.0       | 4.2               |
| 9.0       | 4.6               |
| 10.0      | 5.0               |
| 12.0      | 5.8               |

- 1. The cable type is RG-8.
- 2. The overall length of the cable is 10 meters.



## 16.3 Correction factors for CABLE from spectrum analyzer

## from spectrum analyzer to test antenna above 2.9 GHz

| FREQUENCY | CORRECTION<br>FACTOR | FREQUENCY | CORRECTION<br>FACTOR |
|-----------|----------------------|-----------|----------------------|
| (GHz)     | (dB)                 | (GHz)     | (dB)                 |
| 1.0       | 1.9                  | 14.0      | 9.1                  |
| 2.0       | 2.7                  | 15.0      | 9.5                  |
| 3.0       | 3.5                  | 16.0      | 9.9                  |
| 4.0       | 4.2                  | 17.0      | 10.2                 |
| 5.0       | 4.9                  | 18.0      | 10.4                 |
| 6.0       | 5.5                  | 19.0      | 10.7                 |
| 7.0       | 6.0                  | 20.0      | 10.9                 |
| 8.0       | 6.5                  | 21.0      | 11.2                 |
| 9.0       | 7.0                  | 22.0      | 11.6                 |
| 10.0      | 7.5                  | 23.0      | 11.9                 |
| 11.0      | 7.9                  | 24.0      | 12.3                 |
| 12.0      | 8.3                  | 25.0      | 12.6                 |
| 13.0      | 8.7                  | 26.0      | 13.0                 |

- 1. The cable type is SUCOFLEX 104 E manufactured by SUHNER.
- 2. The cable is used for measurements above 2.9 GHz.
- 3. The overall length of the cable is 10 meters.



## 16.4 Correction factors for

# LOG PERIODIC ANTENNA Type SAS-200/511 at 3 meter range.

| EDEOLIENCY       | A NICEDINA A  |
|------------------|---------------|
| <b>FREQUENCY</b> | ANIENNA       |
|                  | <b>FACTOR</b> |
| (GHz)            | (dB)          |
| 1.0              | 24.9          |
| 1.5              | 27.8          |
| 2.0              | 29.9          |
| 2.5              | 31.2          |
| 3.0              | 32.8          |
| 3.5              | 33.6          |
| 4.0              | 34.3          |
| 4.5              | 35.2          |
| 5.0              | 36.2          |
| 5.5              | 36.7          |
| 6.0              | 37.2          |
| 6.5              | 38.1          |

| ANTENNA       |
|---------------|
| <b>FACTOR</b> |
| (dB)          |
| 38.6          |
| 39.2          |
| 39.9          |
| 40.4          |
| 40.8          |
| 41.1          |
| 41.7          |
| 42.4          |
| 42.5          |
| 43.1          |
| 43.4          |
| 44.4          |
| 44.6          |
|               |

- 1. Antenna serial number is 253.
- 2. The above lists are located in file number SAS3M0.ANT for a 3 meter range.
- 3. The files mentioned above are located on the disk marked "Antenna Factors".



# 16.5 Correction factors for Double-Ridged Waveguide Horn Model: 3115, S/N 29845 at 3 meter range.

| FREQUENCY | <b>ANTENNA</b> | ANTENN | <b>FREQUENCY</b> | <b>ANTENNA</b> | ANTENNA |
|-----------|----------------|--------|------------------|----------------|---------|
|           | <b>FACTOR</b>  | A Gain |                  | <b>FACTOR</b>  | Gain    |
| (GHz)     | (dB 1/m)       | (dBi)  | (GHz)            | (dB 1/m)       | (dBi)   |
| 1.0       | 24.8           | 5.4    | 10.0             | 38.8           | 11.4    |
| 1.5       | 26.1           | 7.6    | 10.5             | 38.9           | 11.8    |
| 2.0       | 28.6           | 7.7    | 11.0             | 39.0           | 12.1    |
| 2.5       | 29.8           | 8.4    | 11.5             | 39.6           | 11.8    |
| 3.0       | 31.4           | 8.4    | 12.0             | 39.8           | 12.0    |
| 3.5       | 32.4           | 8.7    | 12.5             | 39.6           | 12.5    |
| 4.0       | 33.7           | 8.6    | 13.0             | 40.0           | 12.5    |
| 4.5       | 33.4           | 9.9    | 13.5             | 39.8           | 13.0    |
| 5.0       | 34.5           | 9.7    | 14.0             | 40.2           | 13.0    |
| 5.5       | 35.1           | 9.9    | 14.5             | 40.6           | 12.9    |
| 6.0       | 35.4           | 10.4   | 15.0             | 41.3           | 12.4    |
| 6.5       | 35.6           | 10.8   | 15.5             | 39.5           | 14.6    |
| 7.0       | 36.2           | 10.9   | 16.0             | 38.8           | 15.5    |
| 7.5       | 37.3           | 10.4   | 16.5             | 40.0           | 14.6    |
| 8.0       | 37.7           | 10.6   | 17.0             | 41.4           | 13.4    |
| 8.5       | 38.3           | 10.5   | 17.5             | 44.8           | 10.3    |
| 9.0       | 38.5           | 10.8   | 18.0             | 47.2           | 8.1     |
| 9.5       | 38.7           | 11.1   |                  |                |         |



## 16.6 Correction factors for

# Horn Antenna Model: SWH-28 at 1 meter range.

| FREQUENCY | AFE    | Gain  |
|-----------|--------|-------|
| (GHz)     | (dB/m) | (dB1) |
| 18.0      | 40.3   | 16.1  |
| 19.0      | 40.3   | 16.3  |
| 20.0      | 40.3   | 16.1  |
| 21.0      | 40.3   | 16.3  |
| 22.0      | 40.4   | 16.8  |
| 23.0      | 40.5   | 16.4  |
| 24.0      | 40.5   | 16.6  |
| 25.0      | 40.5   | 16.7  |
| 26.0      | 40.6   | 16.4  |



## 16.7 Correction factors for

## Horn Antenna

Model: V637

| FREQUENCY | AFE    | Gain  |
|-----------|--------|-------|
| (GHz)     | (dB/m) | (dB1) |
| 26.0      | 43.6   | 14.9  |
| 27.0      | 43.7   | 15.1  |
| 28.0      | 43.8   | 15.3  |
| 29.0      | 43.9   | 15.5  |
| 30.0      | 43.9   | 15.8  |
| 31.0      | 44.0   | 16.0  |
| 32.0      | 44.1   | 16.2  |
| 33.0      | 44.1   | 16.4  |
| 34.0      | 44.1   | 16.7  |
| 35.0      | 44.2   | 16.9  |
| 36.0      | 44.2   | 17.1  |
| 37.0      | 44.2   | 17.4  |
| 38.0      | 44.2   | 17.6  |
| 39.0      | 44.2   | 17.8  |
| 40.0      | 44.2   | 18.0  |