

Course > Week 9: Reinforcement Learning > Week 9 Quiz: Reinforcement Learning > Week 9 Quiz

## Week 9 Quiz

☐ Bookmark this page

## Q1

10.0/10.0 points (graded)

What are the five essential parameters that define an MDP? Check all that apply:

- ✓ state space ✓ state model action space transition model ✓ starting state ✓ action state ✓ reward distribution ✓ Submit You have used 1 of 2 attempts **1** Answers are displayed within the problem
- Q2

| 10.0/10.0 points (graded) n an MDP with finite state space consisting of n states and finite action space consisting o n actions, what is the dimension of the transition probability matrix? |                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| ○ n^3 m                                                                                                                                                                                       |                                                                                                                                                    |
| ● n^2 m                                                                                                                                                                                       | <b>✓</b>                                                                                                                                           |
| ○ m^2 n                                                                                                                                                                                       |                                                                                                                                                    |
| ○ m*2 n                                                                                                                                                                                       |                                                                                                                                                    |
| Submit                                                                                                                                                                                        | You have used 1 of 1 attempt                                                                                                                       |
| an vary dep                                                                                                                                                                                   | nts (graded) he transition probability distribution of next state for a given state and action bending on the past history of actions and rewards. |
| O True                                                                                                                                                                                        |                                                                                                                                                    |
| ·                                                                                                                                                                                             |                                                                                                                                                    |
| ● False <b>&gt;</b>                                                                                                                                                                           |                                                                                                                                                    |
| ● False ◆ Submit                                                                                                                                                                              | You have used 1 of 1 attempt                                                                                                                       |
|                                                                                                                                                                                               |                                                                                                                                                    |
| Submit  Q4  0.0/10.0 poir                                                                                                                                                                     | You have used 1 of 1 attempt                                                                                                                       |



| Answers are displayed within the problem                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q7                                                                                                                                                                                   |
| 10.0/10.0 points (graded) For every MDP, there exists a stationary policy whose expected discounted reward for every starting state is at least as good as that of any other policy. |
| ● True ✔                                                                                                                                                                             |
| O False                                                                                                                                                                              |
| Submit You have used 1 of 1 attempt                                                                                                                                                  |
| Q8                                                                                                                                                                                   |
| 10.0/10.0 points (graded) Bellman optimality equations suggest that in every state, the optimal action to take is the one that maximizes immediate expected reward.                  |
| O True                                                                                                                                                                               |
| ● False ✔                                                                                                                                                                            |
| Submit You have used 1 of 1 attempt                                                                                                                                                  |
| Q9 10.0/10.0 points (graded)                                                                                                                                                         |
|                                                                                                                                                                                      |

| <ul><li>● True ✓</li><li>● False</li></ul> |                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |                                                                                                                                                                                                                                                                                                                   |
| he three sta<br>as Fallen, n               | ts (graded) three state MDP discussed in the lecture, modeling a robot learning to walk ates were 'Fallen', 'Standing' and 'Moving'). Suppose now that once the robot o action (fast or slow) can take the robot out of the Fallen state. What will be n probability vector for state "Fallen" and action "slow"? |
| 0 [1 1 0]                                  |                                                                                                                                                                                                                                                                                                                   |
| [1 0 0]                                    | <b>✓</b>                                                                                                                                                                                                                                                                                                          |
| O [1 0 1]                                  |                                                                                                                                                                                                                                                                                                                   |
| O [0 0 1]                                  |                                                                                                                                                                                                                                                                                                                   |
| 0 [0 1 0]                                  |                                                                                                                                                                                                                                                                                                                   |
| Submit                                     | You have used 1 of 1 attempt                                                                                                                                                                                                                                                                                      |
|                                            |                                                                                                                                                                                                                                                                                                                   |

If the discount factor is 0, then Bellman optimality equations suggest that in every state, the





© 2012–2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open edX logos are registered trademarks or trademarks of edX Inc. | 粤ICP备17044299号-2

















