Assignment (15%)

Instructions:

- 1. This is an assignment done in groups of 3 or 4. Submit your group members' name (3 or 4 members in a group) to your respective tutor.
- 2. The date for the submission and demo is on <u>Monday of Week 13</u>. Please hand in the FreeMat code in CD together with the hardcopy of the report. Label your CD with the names of your group members and provide an e-mail address for contact purposes. All the group members' MUST attend the demo.
- 3. For the report, write down the detail of your simulation, construct the diagram such as flow-chart for each simulation and provide all outputs, table(service time, inter-arrival time and simulation) and results (evaluation results).
- 4. Creativity and extra effort will grant higher marks.
- 5. Plagiarism is not accepted under any circumstances. Zero marks will be given for any form of plagiarism such as copying from senior's work.

Queue simulator for service counters

Create a simulator for customer arrivals at any service provider. Choose a service provider such as bank, post office, telecommucation, etc. The simulation system should be able to simulate a queuing system **at most for three different types** of services. Different types of services will be served by different counters. Each service type should have **at least two serving counters**. For example services provided by a bank:

Service Type	Details	Counter
1	Deposit services,	1,2,3
	wire transfer	
	services and etc	
2	New Account	4,5
	opening, ATM	
	card replacement	
	and etc	
3	Investment and	6,7
	loan consultancy	

Firstly display the above table at the beginning of the simulation. Secondly, generate and display the table of the service type, service time and inter-arrival time.

Service type	1	2	3
Probability			
CDF			
Range			

Service Time				
for service type				•••
1				
Probability				
CDF				
Range				
Service Time				•••
for service type				
2				
Probability				
CDF				
Range				
Service Time				
for service type				
3				
Probability				
CDF				
Range				
Inter-arrival Time				
Probability				
CDF				
Range	-			

Before the simulation starts, user should be able to prefix/select the counters that are in operation and counters that are not in operation. During the simulation more counters should be opened if there is a need (Set the conditions for this). For example, when there are too many customers in queue, there is a need for specific type of services and so on.

For generation of random numbers for the types of services, service time and interarrival time, you can consider *rand* function from FreeMat, linear congruential generators or other generators. User should be able to choose the type of random number generator to be used before the simulation. Use *rand* function to generate the seed number for the different generators. Adjust the range of random numbers so that they are within the appropriate range. For further details please refer to **Chapter 4**. On top of these,

- a) user should be able to select the number of customers,
- b) exhibit the message for the counter operating status, arrival, departure of the customers and so on from time to time. For example:

Counter 1 and Counter 3 are in operation.

Arrival of first customer at minute 0 and the queue number is 1001

Arrival of second customer at minute 2 and queue at the counter 2001

Departure of first customer at minute 4.

Service for second customer started at minute 2.

Counter 2 started operation at minute 3.

After the simulation, display the table of the simulation as the following example:

n	RN for	Inter-	Arrival	RNs for the	Type of	Queue
	Inter-	arrival	time	service type	services	number
	arrival	time				
	time					
1	-					1001
2						2001
3						1002
4						1003
5						2002
6						3001

Service type 1:

Queue	Counter	RN for	Service	Time	Time	Waiting	Time
number	number	service	time	service	service	time	spends
		time		begins	ends		in the
							system
1001	1						
1003	2						
1002	1						

Service type 2:

Queue number	Counter number	RN for service time	Service time	Time service begins	Time service ends	Waiting time	Time spends in the system
2001	3						•
2002	4						

Service type 3:

Queue	Counter	RN for	Service	Time	Time	Waiting	Time
number	number	service	time	service	service	time	spends
		time		begins	ends		in the
							system
3001	5						

Then evaluate the results of the simulation, for example average inter-arrival time, average waiting time for each service type, average time spent for each service type, probability that a customer has to wait in the queue for each service type, and average service time each for each service type (refer to the example in the notes).