10-701: Introduction to Machine Learning Lecture 10 — Backpropagation

Nari Johnson, narij@andrew.cmu.edu Slides adapted from Henry Chai 9/29/25

Recall: Stochastic Gradient Descent for Learning

- Input: $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}, \eta^{(0)}$
- Initialize all weights $W_{(0)}^{(1)}$, ..., $W_{(0)}^{(L)}$ to small, random numbers and set t=0
- While TERMINATION CRITERION is not satisfied
 - For $i \in \text{shuffle}(\{1, ..., N\})$
 - For l = 1, ..., L
 - Compute $G^{(l)} = \nabla_{W^{(l)}} \ell^{(i)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$
 - Update $W^{(l)}$: $W^{(l)}_{(t+1)} = W^{(l)}_{(t)} \eta_0 G^{(l)}$
 - Increment t: t = t + 1
- Output: $W_{(t)}^{(1)}, ..., W_{(t)}^{(L)}$

Matrix Calculus

	Types of Derivatives	scalar	vector	matrix
Denominator	scalar	$\frac{\partial y}{\partial x}$	$\frac{\partial \mathbf{y}}{\partial x}$	$\frac{\partial \mathbf{Y}}{\partial x}$
	vector	$\frac{\partial y}{\partial \mathbf{x}}$	$rac{\partial \mathbf{y}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$
	matrix	$rac{\partial y}{\partial \mathbf{X}}$	$rac{\partial \mathbf{y}}{\partial \mathbf{X}}$	$rac{\partial \mathbf{Y}}{\partial \mathbf{X}}$

Matrix Calculus: Denominator Layout

 Derivatives of a scalar always have the same shape as the entity that the derivative is being taken with respect to.

Types of Derivatives	scalar		
scalar	$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x}\right]$		
vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$		
matrix	$\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{12}} & \cdots & \frac{\partial y}{\partial X_{1Q}} \\ \frac{\partial y}{\partial X_{21}} & \frac{\partial y}{\partial X_{22}} & \cdots & \frac{\partial y}{\partial X_{2Q}} \\ \vdots & & \vdots \\ \frac{\partial y}{\partial X_{P1}} & \frac{\partial y}{\partial X_{P2}} & \cdots & \frac{\partial y}{\partial X_{PQ}} \end{bmatrix}$		

	Types of Derivatives	scalar	vector
Matrix Calculus:	scalar	$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x}\right]$	$\frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} & \frac{\partial y_2}{\partial x} & \cdots & \frac{\partial y_N}{\partial x} \end{bmatrix}$
Denominator Layout	vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_N}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_N}{\partial x_2} \end{bmatrix}$ \vdots $\frac{\partial y_1}{\partial x_P} & \frac{\partial y_2}{\partial x_P} & \cdots & \frac{\partial y_N}{\partial x_P} \end{bmatrix}$

Henry Chai - 2/19/24 Table courtesy of Matt Gormley

Write equations for the signal $s_1^{(1)}$ and output $o_1^{(1)}$ for the highlighted node:

Layer 2

Layer 3 (Output)

Layer 1

Write equations for the signal $s_1^{(1)}$ and output $o_1^{(1)}$ for the highlighted node:

$$s_1^{(1)} = w_{1,0}^{(1)} + w_{1,1}^{(1)} x_1 + w_{1,2}^{(1)} x_2 \qquad o_1^{(1)} = \theta(s_1^{(1)})$$

Henry Chai - 2/19/24

Input layer 0

Layer 2

Layer 3 (Output)

We can also write our weights, signals, and outputs using matrices:

Layer 1

Henry Chai - 2/19/24

Input layer 0

Can you write $s^{(2)}$ as a matrix product of $W^{(2)}$ and $o^{(1)}$? What shape is each matrix?

Layer 2

Layer 3 (Output)

Layer 1

Can you write $s^{(2)}$ as a matrix product of $W^{(2)}$ and $o^{(1)}$? What shape is each matrix?

Input layer 0

$$s^{(2)} = W^{(2)} o^{(1)}$$

$$s^{(2)}: [2, 1], W^{(2)}: [2, 3], o^{(1)}: [3, 1]$$

Recall: the chain rule

The chain rule tells us how to differentiate composite functions.

It is important for neural networks because the output of our neural network is a composite function of the network weights.

A simple example:

$$a = 2x^3 - 4x$$
$$b = \sin(a)$$

$$\frac{\partial b}{\partial x} =$$

Recall: the chain rule

The chain rule tells us how to differentiate composite functions.

It is important for neural networks because the output of our neural network is a composite function of the network weights.

A simple example:

$$a = 2x^3 - 4x$$
$$b = \sin(a)$$

$$\frac{\partial b}{\partial x} = \frac{\partial b}{\partial a} \frac{\partial a}{\partial x}$$
$$= \cos(a) (6x^2 - 4)$$

Applying the chain rule to our neural network example

Recall from our toy neural network that:

$$s_1^{(1)} = w_{1,0}^{(1)} + w_{1,1}^{(1)} x_1 + w_{1,2}^{(1)} x_2$$
 $o_1^{(1)} = \theta(s_1^{(1)})$

Use the chain rule to calculate the following partial derivative. Assume that the activation function $\theta(-) = \tanh(-)$

$$\frac{\partial o_1^{(1)}}{\partial w_{1,1}^{(1)}} = \text{Hint: } \frac{\partial}{\partial z} \tanh(z) = 1 - (\tanh(z))^2$$

A:
$$= (1 - (o_1^{(1)})^2)(x_1)$$
 B: $= (1 - o_1^{(1)})(w_{1,1}^{(1)})$

C:
$$= (1 + o_1^{(1)})(w_{1,1}^{(1)}x_1)$$
 D: $= o_1^{(1)}w_{1,1}^{(1)}$

Applying the chain rule to our neural network example

Recall from our toy neural network that:

$$s_1^{(1)} = w_{1,0}^{(1)} + w_{1,1}^{(1)} x_1 + w_{1,2}^{(1)} x_2$$
 $o_1^{(1)} = \theta(s_1^{(1)})$

Use the chain rule to calculate the following partial derivative. Assume that the activation function $\theta(-) = \tanh(-)$

$$\frac{\partial o_1^{(1)}}{\partial w_{1,1}^{(1)}} = \text{Hint: } \frac{\partial}{\partial z} \tanh(z) = 1 - (\tanh(z))^2$$

$$= \frac{\partial o_1^{(1)}}{\partial s_1^{(1)}} \frac{\partial s_1^{(1)}}{\partial w_{1,1}^{(1)}}$$

$$= \left(1 - (\tanh(s_1^{(1)}))^2\right) (x_1)$$

$$= \left(1 - (o_1^{(1)})^2\right) (x_1)$$

Zooming out...

Layer L (Output)

Layer *l*

A neural network has *L* layers.

Input layer 0

Each layer has $d^{(l)}$ nodes, and its own weight matrix $W^{(l)}$

The matrix $W^{(l)}$ connects layer (l-1) to layer l

Building intuition for backprop

Layer L (Output)

Layer *l*

The final loss is a function of the *output of the entire network:*

$$\ell^{(i)} = \left(o_1^{(L)} - y^{(i)}\right)^2$$

But the final output is a composite function of all of the weights that came before...

$$o^{(L)} = \theta (s^{(L)})$$
$$= \theta (W^{(L)}(\theta (s^{(L-1)})))$$

= •••

Input layer 0

Building intuition for backprop

Idea: We can apply the chain rule to calculate the gradients at each layer.

$$\frac{\partial \ell^{(i)}}{\partial W^{(L)}} = \frac{\partial \ell^{(i)}}{\partial o^{(L)}} \left(\frac{\partial o^{(L)}}{\partial s^{(L)}} \right) \left(\frac{\partial s^{(L)}}{\partial W^{(L)}} \right)
\frac{\partial \ell^{(i)}}{\partial W^{(L-1)}} = \frac{\partial \ell^{(i)}}{\partial o^{(L)}} \left(\frac{\partial o^{(L)}}{\partial s^{(L)}} \right) \left(\frac{\partial s^{(L)}}{\partial o^{(L-1)}} \right) \left(\frac{\partial o^{(L-1)}}{\partial s^{(L-1)}} \right) \left(\frac{\partial s^{(L-1)}}{\partial w^{(L-1)}} \right)$$

$$\nabla_{W^{(l)}} \ell^{(i)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right) =$$

Computing Gradients

Computing Gradients

Recall:
$$W^{(l)}$$
: $[d^{(l)}, d^{(l-1)} + 1]$

$$\nabla_{W^{(l)}} \ell^{(i)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right) = \begin{bmatrix}
\frac{\partial \ell^{(i)}}{\partial w_{1,0}^{(l)}} & \frac{\partial \ell^{(i)}}{\partial w_{1,1}^{(l)}} & \dots & \frac{\partial \ell^{(i)}}{\partial w_{1,d}^{(l-1)}} \\
\frac{\partial \ell^{(i)}}{\partial w_{2,0}^{(l)}} & \frac{\partial \ell^{(i)}}{\partial w_{2,1}^{(l)}} & \dots & \frac{\partial \ell^{(i)}}{\partial w_{2,d^{(l-1)}}^{(l)}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \ell^{(i)}}{\partial w_{1(l)}^{(l)}} & \frac{\partial \ell^{(i)}}{\partial w_{1(l)}^{(l)}} & \dots & \frac{\partial \ell^{(i)}}{\partial w_{2,d^{(l-1)}}^{(l)}}
\end{bmatrix}$$

Computing
$$\nabla_{W^{(l)}} \ell^{(i)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$$
 reduces to computing
$$\frac{\partial \ell^{(i)}}{\partial w_i^{(l)}}$$

Computing $\nabla_{W^{(l)}} \ell^{(i)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$ reduces to computing

$$\frac{\partial \ell^{(i)}}{\partial w_{b,a}^{(l)}}$$

Insight: $w_{b,a}^{(l)}$ only affects $\ell^{(i)}$ via $s_b^{(l)}$

Computing
$$\nabla_{W^{(l)}} \ell^{(i)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$$
 reduces to computing

$$\frac{\partial \ell^{(i)}}{\partial w_{b,a}^{(l)}}$$

Insight: $w_{b,a}^{(l)}$ only affects $\ell^{(i)}$ via $s_b^{(l)}$

Chain rule:
$$\frac{\partial \ell^{(i)}}{\partial w_{b,a}^{(l)}} = \frac{\partial \ell^{(i)}}{\partial s_b^{(l)}} \left(\frac{\partial s_b^{(l)}}{\partial w_{b,a}^{(l)}} \right)$$

Computing $\nabla_{W^{(l)}} \ell^{(i)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$ reduces to computing

$$\frac{\partial \ell^{(i)}}{\partial w_{b,a}^{(l)}}$$

Insight: $w_{b,a}^{(l)}$ only affects $\ell^{(i)}$ via $s_b^{(l)}$

Chain rule:
$$\frac{\partial \ell^{(i)}}{\partial w_{b,a}^{(l)}} = \frac{\partial \ell^{(i)}}{\partial s_b^{(l)}} \left(\frac{\partial s_b^{(l)}}{\partial w_{b,a}^{(l)}} \right)$$
$$s_b^{(l)} = \sum_{a=0}^{d^{(l-1)}} w_{b,a}^{(l)} o_a^{(l-1)} \rightarrow \frac{\partial s_b^{(l)}}{\partial w_{b,a}^{(l)}} = o_a^{(l-1)}$$

Compute outputs $o^{(l)} \forall l \in \{0, ..., L\}$ by forward propagation

Computing
$$\nabla_{W^{(l)}} \ell^{(i)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$$
 reduces to computing

$$\frac{\partial \ell^{(i)}}{\partial w_{b,a}^{(l)}}$$

Insight: $w_{b,a}^{(l)}$ only affects $\ell^{(i)}$ via $s_b^{(l)}$

Chain rule:
$$\frac{\partial \ell^{(i)}}{\partial w_{b,a}^{(l)}} = \frac{\partial \ell^{(i)}}{\partial s_b^{(l)}} \left(\frac{\partial s_b^{(l)}}{\partial w_{b,a}^{(l)}} \right)$$
$$\delta_b^{(l)} \coloneqq \frac{\partial \ell^{(i)}}{\partial s_b^{(l)}}$$

Insight: $s_b^{(l)}$ only affects $\ell^{(i)}$ via $o_b^{(l)}$

S

Layer *l*

Node **b**

Computing Partial Derivatives

Insight: $s_b^{(l)}$ only affects $\ell^{(i)}$ via $o_b^{(l)}$

Chain rule:
$$\delta_b^{(l)} = \frac{\partial \ell^{(l)}}{\partial o_b^{(l)}} \left(\frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} \right)$$

Insight: $s_b^{(l)}$ only affects $\ell^{(i)}$ via $o_b^{(l)}$

Chain rule:
$$\delta_b^{(l)} = \frac{\partial \ell^{(l)}}{\partial o_b^{(l)}} \left(\frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} \right)$$

$$o_b^{(l)} = \theta \left(s_b^{(l)} \right) \rightarrow \frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} = \frac{\partial \theta \left(s_b^{(l)} \right)}{\partial s_b^{(l)}}$$

$$= 1 - \left(\tanh \left(s_b^{(l)} \right) \right)^2$$
when $\theta(\cdot) = \tanh(\cdot)$

Recap:

$$\frac{\partial \ell^{(i)}}{\partial w_{b,a}^{(l)}} = \frac{\partial \ell^{(i)}}{\partial s_b^{(l)}} \left(\frac{\partial s_b^{(l)}}{\partial w_{b,a}^{(l)}} \right) \\
= \left(\frac{\partial \ell^{(i)}}{\partial o_b^{(l)}} \right) \left(\frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} \right) \left(\frac{\partial s_b^{(l)}}{\partial w_{b,a}^{(l)}} \right) \\
= \left(\frac{\partial \ell^{(i)}}{\partial o_b^{(l)}} \right) \left(\frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} \right) \left(\frac{\partial s_b^{(l)}}{\partial w_{b,a}^{(l)}} \right)$$

Insight: $o_b^{(l)}$ affects $\ell^{(i)}$ via $s_1^{(l+1)}, \dots, s_{d^{(l+1)}}^{(l+1)}$

Insight:
$$o_b^{(l)}$$
 affects $\ell^{(l)}$ via $s_1^{(l+1)}, \dots, s_{d^{(l+1)}}^{(l+1)}$

Chain rule:
$$\frac{\partial \ell^{(i)}}{\partial o_b^{(l)}} = \sum_{c=1}^{d^{(l+1)}} \frac{\partial \ell^{(i)}}{\partial s_c^{(l+1)}} \left(\frac{\partial s_c^{(l+1)}}{\partial o_b^{(l)}} \right)$$

Insight:
$$o_b^{(l)}$$
 affects $\ell^{(i)}$ via $s_1^{(l+1)}, \dots, s_{d^{(l+1)}}^{(l+1)}$

Chain rule:
$$\frac{\partial \ell^{(i)}}{\partial o_b^{(l)}} = \sum_{c=1}^{d^{(l+1)}} \frac{\partial \ell^{(i)}}{\partial s_c^{(l+1)}} \left(\frac{\partial s_c^{(l+1)}}{\partial o_b^{(l)}} \right)$$
$$s_c^{(l+1)} = \sum_{b=0}^{d^{(l)}} w_{c,b}^{(l+1)} o_b^{(l)}$$

Insight:
$$o_b^{(l)}$$
 affects $\ell^{(i)}$ via $s_1^{(l+1)}, \dots, s_{d^{(l+1)}}^{(l+1)}$

Chain rule:
$$\frac{\partial \ell^{(i)}}{\partial o_b^{(l)}} = \sum_{c=1}^{d^{(l+1)}} \frac{\partial \ell^{(i)}}{\partial s_c^{(l+1)}} \left(\frac{\partial s_c^{(l+1)}}{\partial o_b^{(l)}} \right)$$

$$s_c^{(l+1)} = \sum_{b=0}^{d^{(l)}} w_{c,b}^{(l+1)} o_b^{(l)} \to \frac{\partial s_c^{(l+1)}}{\partial o_b^{(l)}} = w_{c,b}^{(l+1)}$$

$$\delta_b^{(l)} \coloneqq \frac{\partial \ell^{(l)}}{\partial s_b^{(l)}}$$

Insight:
$$o_b^{(l)}$$
 affects $\ell^{(i)}$ via $s_1^{(l+1)}, \dots, s_{d^{(l+1)}}^{(l+1)}$

$$\begin{aligned} \text{Chain rule: } & \frac{\partial \ell^{(l)}}{\partial o_b^{(l)}} = \sum_{c=1}^{d^{(l+1)}} \frac{\partial \ell^{(l)}}{\partial s_c^{(l+1)}} \bigg(\frac{\partial s_c^{(l+1)}}{\partial o_b^{(l)}} \bigg) \\ & s_c^{(l+1)} = \sum_{b=0}^{d^{(l)}} w_{c,b}^{(l+1)} o_b^{(l)} \rightarrow \frac{\partial s_c^{(l+1)}}{\partial o_b^{(l)}} = w_{c,b}^{(l+1)} \\ & = \sum_{c=1}^{d^{(l+1)}} \delta_c^{(l+1)} \left(w_{c,b}^{(l+1)} \right) \\ & \delta_b^{(l)} \coloneqq \frac{\partial \ell^{(l)}}{\partial s_c^{(l)}} \end{aligned}$$

Recap:

$$\frac{\partial \ell^{(i)}}{\partial w_{b,a}^{(l)}} = \frac{\partial \ell^{(i)}}{\partial s_b^{(l)}} \left(\frac{\partial s_b^{(l)}}{\partial w_{b,a}^{(l)}} \right)$$
$$= \frac{\delta_b^{(l)}}{\delta_b^{(l)}}$$

We just learned that we can write $\delta_b^{(l)}$ as a function of the terms $\delta_c^{(l+1)}$ at the next layer!

Pasting over what we calculated previously:

$$\delta_b^{(l)} = \frac{\partial \ell^{(l)}}{\partial o_b^{(l)}} \left(\frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} \right)$$

$$= \left(\sum_{c=1}^{d^{(l+1)}} \delta_c^{(l+1)} \left(w_{c,b}^{(l+1)} \right) \right) \left(1 - \left(o_b^{(l)} \right)^2 \right)$$

$$\begin{split} \delta_b^{(l)} &= \frac{\partial \ell^{(i)}}{\partial o_b^{(l)}} \bigg(\frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} \bigg) \\ &= \Bigg(\sum_{c=1}^{d^{(l+1)}} \delta_c^{(l+1)} \left(w_{c,b}^{(l+1)} \right) \Bigg) \bigg(1 - \left(o_b^{(l)} \right)^2 \bigg) \\ \boldsymbol{\delta}^{(l)} &\coloneqq \nabla_{\boldsymbol{s}^{(l)}} \ell^{(i)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right) \end{split}$$

How would you write the vector $\boldsymbol{\delta}^{(l)}$ as a function of the matrices $\boldsymbol{\delta}^{(l+1)}$, $\boldsymbol{W}^{(l+1)}$ and $\boldsymbol{o}^{(l)}$?

Hint: $s^{(l)}$: $[d^{(l)}, 1]$, $o^{(l)}$: $[d^{(l)}+1, 1]$, $W^{(l)}$: $[d^{(l)}, d^{(l-1)}+1]$

Henry Chai - 2/19/24

$$\begin{split} \boldsymbol{\delta}_b^{(l)} &= \frac{\partial \ell^{(l)}}{\partial o_b^{(l)}} \left(\frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} \right) \\ &= \left(\sum_{c=1}^{d^{(l+1)}} \delta_c^{(l+1)} \left(w_{c,b}^{(l+1)} \right) \right) \left(1 - \left(o_b^{(l)} \right)^2 \right) \\ \boldsymbol{\delta}^{(l)} &= W^{(l+1)} \boldsymbol{\delta}^{(l+1)} \odot \left(1 - \boldsymbol{o}^{(l)} \odot \boldsymbol{o}^{(l)} \right) \end{split}$$

where is the element-wise product operation

Sanity check:

$$\boldsymbol{\delta}^{(l+1)} \in \mathbb{R}^{d^{(l+1)} \times 1}$$
 so $W^{(l+1)^T} \boldsymbol{\delta}^{(l+1)} \in \mathbb{R}^{(d^{(l)}+1) \times 1}$, the same size as $\boldsymbol{o}^{(l)}$!

Henry Chai - 2/19/24

Putting it all together:

$$\frac{\partial \ell^{(i)}}{\partial w_{b,a}^{(l)}} = \delta_b^{(l)} \left(\frac{\partial s_b^{(l)}}{\partial w_{b,a}^{(l)}} \right) = \delta_b^{(l)} \left(o_a^{(l-1)} \right)$$

$$\frac{\partial \ell^{(i)}}{\partial w_{b,a}^{(l)}} =$$

Putting it all together:

$$\frac{\partial \ell^{(i)}}{\partial w_{b,a}^{(l)}} = \delta_b^{(l)} \left(\frac{\partial s_b^{(l)}}{\partial w_{b,a}^{(l)}} \right) = \delta_b^{(l)} \left(o_a^{(l-1)} \right)$$
$$\frac{\partial \ell^{(i)}}{\partial \boldsymbol{W}^{(l)}} = \boldsymbol{\delta}^{(l)} \boldsymbol{o}^{(l-1)^T}$$

Sanity check:

$$\boldsymbol{\delta}^{(l)} \in \mathbb{R}^{d^{(l)} \times 1}$$
 so $\boldsymbol{\delta}^{(l)} \boldsymbol{o}^{(l-1)^T} \in \mathbb{R}^{d^{(l)} \times (d^{(l-1)}+1)}$, the same size as $W^{(l)}!$

• Can recursively compute $\boldsymbol{\delta}^{(l)}$ using $\boldsymbol{\delta}^{(l+1)}$; need to compute the base case: $\boldsymbol{\delta}^{(L)}$

$$\boldsymbol{\delta}^{(l)} = W^{(l+1)^T} \boldsymbol{\delta}^{(l+1)} \odot \left(1 - \boldsymbol{o}^{(l)} \odot \boldsymbol{o}^{(l)}\right)$$

• Assume the output layer is a single node and the error function is the squared error: $\pmb{\delta}^{(L)} = \delta_1^{(L)}$, $\pmb{o}^{(L)} = o_1^{(L)}$

$$\ell^{(i)}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right) = \left(o_1^{(L)} - y^{(i)}\right)^2$$
, and $\theta(z) = z$

41

• Assume the output layer is a single node and the error function is the squared error: $\boldsymbol{\delta}^{(L)} = \delta_1^{(L)}$, $\boldsymbol{o}^{(L)} = o_1^{(L)}$ and $\theta(z) = z$, calculate $\delta_1^{(L)} = \frac{\partial \ell^{(i)}}{\partial s_1^{(L)}}$: $\ell^{(i)}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right) = \left(o_1^{(L)} - y^{(i)}\right)^2$

• Assume the output layer is a single node and the error function is the squared error: $\pmb{\delta}^{(L)} = \delta_1^{(L)}$, $\pmb{o}^{(L)} = o_1^{(L)}$

$$\ell^{(i)}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right) = \left(o_1^{(L)} - y^{(i)}\right)^2$$

$$\delta_1^{(L)} = \frac{\partial \ell^{(i)}}{\partial s_1^{(L)}} = \frac{\partial}{\partial s_1^{(L)}} \left(o_1^{(L)} - y^{(i)} \right)^2$$

$$= 2\left(o_1^{(L)} - y^{(i)}\right) \frac{\partial o_1^{(L)}}{\partial s_1^{(L)}} = 2\left(o_1^{(L)} - y^{(i)}\right)$$

when
$$\theta(z) = z$$

We can compute $\delta^{(L)}$!!!

We can use these to compute $\delta^{(L-1)}$, $\delta^{(L-2)}$, all the way back to $\delta^{(1)}$, using our equation from before....

$$\boldsymbol{\delta}^{(l)} = W^{(l+1)^T} \boldsymbol{\delta}^{(l+1)} \odot \left(1 - \boldsymbol{o}^{(l)} \odot \boldsymbol{o}^{(l)}\right)$$

And we know how to use the $\delta^{(l)}$ to compute the gradient:

$$\frac{\partial \ell^{(i)}}{\partial \boldsymbol{W}^{(l)}} = \boldsymbol{\delta}^{(l)} \boldsymbol{o}^{(l-1)^T}$$

Henry Chai - 2/19/24

Backpropagation

- Input: $W^{(1)}$, ..., $W^{(L)}$ and $(x^{(i)}, y^{(i)})$
- Run forward propagation with $\boldsymbol{x}^{(i)}$ to get $\boldsymbol{o}^{(1)}$, ..., $\boldsymbol{o}^{(L)}$
- (Optional) Compute $\ell^{(i)} = (o^{(L)} y^{(i)})^2$
- Initialize: $\delta^{(L)} = 2(o_1^{(L)} y^{(i)})$
- For l = L 1, ..., 1
 - Compute $\boldsymbol{\delta}^{(l)} = W^{(l+1)^T} \boldsymbol{\delta}^{(l+1)} \odot (1 \boldsymbol{o}^{(l)} \odot \boldsymbol{o}^{(l)})$
 - Compute $G^{(l)} = \boldsymbol{\delta}^{(l)} \boldsymbol{o}^{(l-1)^T}$
- Output: $G^{(1)}$, ..., $G^{(L)}$, the gradients of $\ell^{(i)}$ w.r.t $W^{(1)}$, ..., $W^{(L)}$

Key take-aways

- A weight affects the prediction of the network (and therefore the error) through downstream signals/outputs
 - Use the chain rule!
- Any weight going into the same node will affect the prediction through the same downstream path
 - Compute derivatives starting from the last layer and move "backwards"
 - Derive a recursive definition for the relevant partial derivatives
 - Automatic differentiation: store intermediate values and reuse for efficiency (dynamic programming)

Henry Chai - 2/19/24 40

Insight: $s_b^{(l)}$ only affects $\ell^{(i)}$ via $o_b^{(l)}$

Aside: Vanishing Gradients

Chain rule:
$$\delta_b^{(l)} = \frac{\partial \ell^{(l)}}{\partial o_b^{(l)}} \left(\frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} \right)$$

$$o_b^{(l)} = \theta\left(s_b^{(l)}\right) \rightarrow \frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} = \frac{\partial \theta\left(s_b^{(l)}\right)}{\partial s_b^{(l)}}$$

$$= 1 - \left(\tanh\left(s_b^{(l)}\right)\right)^2 \le 1$$

when
$$\theta(\cdot) = \tanh(\cdot)$$

Recall: Other Activation Functions

Logistic, sigmoid, or soft step	$\sigma(x) = rac{1}{1+e^{-x}}$
Hyperbolic tangent (tanh)	$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
Rectified linear unit (ReLU) ^[7]	$egin{cases} 0 & ext{if } x \leq 0 \ x & ext{if } x > 0 \ = & ext{max}\{0,x\} = x 1_{x>0} \end{cases}$
Gaussian Error Linear Unit (GELU) ^[4]	$rac{1}{2}x\left(1+ ext{erf}\left(rac{x}{\sqrt{2}} ight) ight) \ =x\Phi(x)$
Softplus ^[8]	$\ln(1+e^x)$
Exponential linear unit (ELU) ^[9]	$\begin{cases} \alpha \left(e^x - 1 \right) & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$ with parameter α
Leaky rectified linear unit (Leaky ReLU) ^[11]	$\left\{egin{array}{ll} 0.01x & ext{if } x < 0 \ x & ext{if } x \geq 0 \end{array} ight.$
Parametric rectified linear unit (PReLU) ^[12]	$\left\{egin{array}{ll} lpha x & ext{if } x < 0 \ x & ext{if } x \geq 0 \ \end{array} ight.$ with parameter $lpha$

Recall: Gradient Descent

- Iterative method for minimizing functions
- Requires the gradient to exist everywhere

Henry Chai - 2/19/24 49

Non-convexity

 Gradient descent is not guaranteed to find a global minimum on non-convex surfaces

Henry Chai - 2/19/24 50

Stochastic Gradient Descent for Learning

- Input: $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N, \eta^{(0)}$
- Initialize all weights $W_{(0)}^{(1)}$, ..., $W_{(0)}^{(L)}$ to small, random numbers and set t=0
- While TERMINATION CRITERION is not satisfied
 - For $i \in \text{shuffle}(\{1, ..., N\})$
 - For l = 1, ..., L
 - Compute $G^{(l)} = \nabla_{W^{(l)}} \ell^{(i)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$
 - Update $W^{(l)}$: $W^{(l)}_{(t+1)} = W^{(l)}_{(t)} \eta_0 G^{(l)}$
 - Increment t: t = t + 1
- Output: $W_{(t)}^{(1)}, ..., W_{(t)}^{(L)}$

Mini-batch Stochastic Gradient Descent for Learning

- Input: $\mathcal{D} = \{ (\mathbf{x}^{(n)}, y^{(n)}) \}_{n=1}^{N}, \eta_{MB}^{(0)}, B$
- 1. Initialize all weights $W_{(0)}^{(1)}, \dots, W_{(0)}^{(L)}$ to small, random numbers and set t=0
- While TERMINATION CRITERION is not satisfied
 - a. Randomly sample B data points from \mathcal{D} , $\{(x^{(b)}, y^{(b)})\}_{b=1}^{B}$
 - b. Compute the gradient w.r.t. the sampled batch,

$$G^{(l)} = \frac{1}{B} \sum_{b=1}^{B} \nabla_{W^{(l)}} \ell^{(b)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right) \, \forall \, l$$

- c. Update $W^{(l)}: W_{t+1}^{(l)} \leftarrow W_t^{(l)} \eta_{MB}^{(0)} G^{(l)} \ \forall \ l$
- d. Increment $t: t \leftarrow t + 1$
- Output: $W_t^{(1)}, ..., W_t^{(L)}$