MATH 4720 / MSSC 5720

**Instructor: Mehdi Maadooliat** 

**Chapter 6 (Part C)** 



**Department of Mathematical and Statistical Sciences** 



# CHAPTER 6 (PART C)

# Comparing Two Population Means

- Independent Samples
- Dependent Samples
- Two sample t-test (Independent Samples)
  - Pooled t-test
  - Unequal variance t-test
- Paired t-test (Dependent Samples)
- Power Analysis
  - Independent Samples
  - Dependent Samples
- Non-parametric Tests
  - Sign test (from Chapter 5, test for median M)
  - Wilcoxon Rank-Sum (or Mann–Whitney) Test (two independent samples)
  - Wilcoxon Signed-Rank Test (dependent samples)

## NONPARAMETRIC INFERENCE



• In both one-sample and two-sample t-tests, we assumed that either the sample size is  $\geq 30$  or the samples are drawn from normal populations.

• What if n < 30, and the distribution is non-normal?

• In such cases, we usually use non-parametric tests.

No assumptions on the distribution means no parameters.

#### **MOTIVATION**



- Example: Suppose the weights of cereal boxes is not normally distributed.
- Median weight of cereal boxes supposed to be 16.37 oz.
- Take a sample of 5 boxes: 16.01, 15.98, 16.23, 15.5, 16.2
- What is the probability that all of these boxes have weight less than 16.37 oz.?
  - Ans.  $\frac{1}{2^5} = 0.0315$ .
- This is the p-value.
- Note that to answer this, we did not need distributional assumption.

# **EXAMPLE (CONT'D)**



- Now if the sample is: 16.01, 15.98, 16.23, 15.5, 16.47
- Here one 4 out of five values are less than 16.37 oz.
- $H_0$ : median = 16.37
- $H_a$ : median < 16.37
- p-value
- = P (four or more values are less than 16.37) if  $H_0$  is true
- $= P(Y \ge 4), Y \sim Binomial(n = 5, \pi = 0.5)$ = 0.1875
- Binomial Calculator

# NON-PARAMETRIC ONE SAMPLE INFERENCE (SECTION 5.9)



## Sign Test

**Data:**  $y_1, y_2, ..., y_n$ 

- $H_0$ :  $median = m_0$
- $H_a$ :  $median > m_0$

or  $median < m_0$ 

or median  $\neq m_0$ 

• Test Statistics  $B = \# \ of \ data \ values > m_0$ 

#### Decision Rule:

- $H_a$ :  $median > m_0$ : Reject  $H_0$  in favor of  $H_a$  if  $B \ge n B_\alpha$
- $H_a$ :  $median < m_0$ : Reject  $H_0$  in favor of  $H_a$  if  $B \leq B_\alpha$
- $H_a$ :  $median \neq m_0$ : Reject  $H_0$  in favor of  $H_a$  if  $B \leq B_{\alpha/2}$  or

$$B \ge n - B_{\alpha/2}$$

#### BOOK EXAMPLE 5.22



• A landfill company wants to determine if the average weekly amount of household recyclable wastes material is more than 5 lbs. The data is collected from 25 households.





Here, the word "average" should not be interpreted literally.

#### EXAMPLE CONT'D



- n = 25 < 30, and the data is not normally distributed.
- $H_0$ : median = 5 vs.  $H_a$ : median > 5

In R: binom.test(sum(exmp5.20\$WeeklyWt > 5), length(exmp5.20\$WeeklyWt), p=0.5, alternative="greater")

Exact binomial test

data: sum(exmp5.20\$WeeklyWt > 5) and length(exmp5.20\$WeeklyWt) number of successes = 13, number of trials = 25, p-value = 0.5 alternative hypothesis: true probability of success is greater than 0.5

- T.S. B = # of data values greater 5 lbs = 13
- p-value is 0.5000, we fail to reject  $H_0$  in favor of  $H_a$ .
- Thus we cannot conclude that the median household recyclable waste is grater than 5 pounds per week.

# EXAMPLE CONT'D (IN R)



#### 95% Confidence Interval for the Median

library("BSDA")

Error in library("BSDA"): there is no package called 'BSDA'

- install.packages("BSDA")
- library("BSDA")
- SIGN.test(exmp5.20\$WeeklyWt)

One-sample Sign-Test

```
data: exmp5.20$WeeklyWt

s = 25, p-value = 5.96e-08

alternative hypothesis: true median is not equal to 0

95 percent confidence interval:

3.931247 6.700000

sample estimates:

median of x

5.3
```

Achieved and Interpolated Confidence Intervals:

|                   | Conf.Level | L.E.pt | U.E.pt |
|-------------------|------------|--------|--------|
| Lower Achieved CI | 0.8922     | 4.2000 | 6.7    |
| Interpolated CI   | 0.9500     | 3.9312 | 6.7    |
| Unner Achieved CI | 0 9567     | 3 9000 | 6.7    |

# NON-PARAMETRIC TWO SAMPLES TEST



Non-parametric Two Independent Samples Test

# Group 1 Group 2 $y_{11}, y_{12}, ..., y_{1n_1}$ $y_{21}, y_{22}, ..., y_{2n_2}$

- $n_1 < 30$  and/or  $n_2 < 30$
- Data is generated from non-normal distributions.



# WILCOXON RANK-SUM TEST (MANN-WHITNEY U TEST)



- $H_0$ : Two distributions are identical (i. e.  $med_1 = med_2$ )
- $H_a$ : dist. of 1 is shifted to the right of dist. 2  $(med_1 > med_2)$
- **or** dist. of 1 is shifted to the left of dist. 2  $(med_1 < med_2)$
- **or** Two distributions are not identical  $(med_1 \neq med_2)$
- T.S. Combine both the samples. Rank all values of the combined sample from lowest to the highest.

T = sum of the ranks in sample 1

- Decision Rule: (We will use computer output)
  - $H_a$ :  $med_1 > med_2$ : Reject  $H_0$  if  $T > T_U$
  - $H_a$ :  $med_1 < med_2$ : Reject  $H_0$  if  $T < T_L$
  - $H_a$ :  $med_1 \neq med_2$ : Reject  $H_0$  if  $T > T_{U^*}$  or  $T < T_{L^*}$

#### A SIMPLE EXAMPLE



• 
$$H_0$$
:  $med_1 = med_2$ 

$$H_a$$
:  $med_1 > med_2$ 

|                          | Group 1            | Group 2            |  |  |  |
|--------------------------|--------------------|--------------------|--|--|--|
|                          | 32, 33, 55, 60, 61 | 23, 25, 56, 33, 21 |  |  |  |
| <ul> <li>Rank</li> </ul> | 4 5.5 7 9 10       | 2 3 8 5.5 1        |  |  |  |

- **T.S.** T = sum of the ranks of sample 1 = 35.5
- If  $T > T_{II}$ , we would say that dist. of group 1 is to the right of dist. of group 2
- Note that  $T_{II}$  is determined in such a way that probability of false conclusion is  $\alpha = 0.05$ .

#### **BOOK EXAMPLE 6.5**



 An investigator is interested to study the effect of alcohol on reaction time. The following data is collected on the reaction time to an instruction.

Group 1: Placebo10 subjects

Group 2: Alcohol
10 subjects





From Minitab

# EXAMPLE 6.5: (CONT'D)



- $n_1 = 10$ ,  $n_2 = 10$ , and the distributions are non-normal
- $H_0$ :  $med_1 = med_2$  vs.  $H_a$ :  $med_1 < med_2$
- In R:
  - wilcox.test(exmp6.5\$Placebo, exmp6.5\$Alcohol, alternative = "less")
    Wilcoxon rank sum exact test

data: exmp6.5\$Placebo and exmp6.5\$Alcohol

W = 15, p-value = 0.003421

alternative hypothesis: true location shift is less than 0

• Conclusion: Since p-value of 0.0034 is small, we reject  $H_0$  in favor of  $H_a$ . Thus, we conclude that the reaction time for the Alcohol population is statistically significantly higher than that for the Placebo population.

# EXAMPLE 6.5: (CONT'D)



- Confidence Interval
- In R:
  - wilcox.test(exmp6.5\$Placebo, exmp6.5\$Alcohol, conf.int = T)

Wilcoxon rank sum exact test

```
data: exmp6.5$Placebo and exmp6.5$Alcohol

W = 15, p-value = 0.006841

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-1.08 -0.25

sample estimates:

difference in location

-0.61
```

# NON-PARAMETRIC TWO DEPENDENT SAMPLE TEST



| Subject | $y_1$    | $y_2$    | $d = y_1 - y_2$ |
|---------|----------|----------|-----------------|
| 1       | $y_{11}$ | $y_{21}$ | $d_1$           |
| 2       | $y_{12}$ | $y_{22}$ | $d_2$           |
|         |          |          |                 |
|         |          |          |                 |
| n       | $y_{1n}$ | $y_{2n}$ | $d_n$           |

- n < 30 and the differences are not normally distributed
- In such case, a nonparametric method must be used.





- $H_0$ :  $med_d = 0$  (median of the difference = 0)
- $H_a$ :  $med_d > 0$ or  $med_d < 0$ or  $med_d \neq 0$

#### T.S. Rank the absolute values of the differences.

- $T_{-}$  = sum of the ranks of negative differences
- $T_{+}$  = sum of the ranks of positive differences
- T = smaller of  $T_+$  and  $T_-$

#### Decision Rule: (We will use computer output)

- $H_a$ :  $med_d > 0$ : Reject  $H_0$  if  $T_- < T_U^-$
- $H_a$ :  $med_d < 0$ : Reject  $H_0$  if  $T_+ < T_L^+$
- $H_a$ :  $med_d \neq 0$ : Reject  $H_0$  if  $T < T^*$



#### A SIMPLE EXAMPLE

| Subject | <i>y</i> <sub>1</sub> | $y_2$ | $d=y_1-y_2$ | Rank of $ y_1 - y_2 $ |
|---------|-----------------------|-------|-------------|-----------------------|
| 1       | 30                    | 24    | 6           | 5                     |
| 2       | 20                    | 22    | -2          | 1.5                   |
| 3       | 32                    | 30    | 2           | 1.5                   |
| 4       | 41                    | 37    | 4           | 4                     |
| 5       | 27                    | 30    | -3          | 3                     |

#### • Test Statistics:

• 
$$T_{-} = 4.5$$

• 
$$T_{+} = 10.5$$

• 
$$T = \text{smaller}(10.5, 4.5) = 4.5$$

## **BOOK EXAMPLE 6.9**



# Does Brand A fertilizer produce more grass than Brand B?

| Field | Brand A | Brand B | Difference | Field | Brand A | Brand B | Difference |
|-------|---------|---------|------------|-------|---------|---------|------------|
| 1     | 211.4   | 186.3   | 25.1       | 11    | 208.9   | 183.6   | 25.3       |
| 2     | 204.4   | 205.7   | -1.3       | 12    | 208.7   | 188.7   | 20.0       |
| 3     | 202.0   | 184.4   | 17.6       | 13    | 213.8   | 188.6   | 25.2       |
| 4     | 201.9   | 203.6   | -1.7       | 14    | 201.6   | 204.2   | -2.6       |
| 5     | 202.4   | 180.4   | 22.0       | 15    | 201.8   | 181.6   | 20.1       |
| 6     | 202.0   | 202.0   | 0          | 16    | 200.3   | 208.7   | -8.4       |
| 7     | 202.4   | 181.5   | 20.9       | 17    | 201.8   | 181.5   | 20.3       |
| 8     | 207.1   | 186.7   | 20.4       | 18    | 201.5   | 208.7   | -7.2       |
| 9     | 203.6   | 205.7   | -2.1       | 19    | 212.1   | 186.8   | 25.3       |
| 10    | 216.0   | 189.1   | 26.9       | 20    | 203.4   | 182.9   | 20.5       |

# BOOK EXAMPLE 6.9 (CONT'D)







•  $H_0: med_d = 0 \text{ vs } H_a: med_d > 0$ 

## BOOK EXAMPLE 6.9 (CONT'D)



#### • In R:

- wilcox.test(exmp6.9\$BrandA, exmp6.9\$BrandB, paired = T, alternative = "greater") Of
- wilcox.test(exmp6.9\$diff, alternative = "greater")

Wilcoxon signed rank test with continuity correction

data: exmp6.9\$diff

V = 169, p-value = 0.001548

alternative hypothesis: true location is greater than 0

- Conclusion: Since the p-value=0.002 is small, we reject  $H_0$  in favor of  $H_a$ . Thus conclude that Brand A fertilizer produce more grass than Brand B.
- 95% Confidence interval
  - wilcox.test(exmp6.9\$diff, conf.int = T)

Wilcoxon signed rank test with continuity correction

alternative hypothesis: true location is not equal to 0 95 percent confidence interval:

8.70002 22.64996