A relation between Asymptotic Cones and Painlevé-Kuratowski Convergence

Ryota Iwamoto

Niigata Univ

June 28, 2023

ightarrow To look at something from a distance, that is, to zoom out.

ightarrow To look at something from a distance, that is, to zoom out.

ightarrow To look at something from a distance, that is, to zoom out.

Contents

- 1 Preliminary
- 2 Asymptotic Cones
- 3 Painlevé-Kuratowski Convergence
- 4 Conclusions

Contents

- 1 Preliminary
- 2 Asymptotic Cones
- 3 Painlevé-Kuratowski Convergence
- 4 Conclusions

Preliminary

 \mathbb{R}^n : *n*-dimensional real Euclidean space.

The inner product of $\mathbb{R}^n \langle \cdot, \cdot \rangle$ is defined by

$$\langle x,y \rangle \coloneqq \sum_{i=1}^n x_i y_i, \text{ for } x = (x_1,\ldots,x_n)^T \in \mathbb{R}^n \text{ and } y = (y_1,\ldots,y_n)^T \in \mathbb{R}^n.$$

The norm is defined by $||x|| := \langle x, x \rangle^{1/2}$.

Contents

- Preliminary
- 2 Asymptotic Cones
- 3 Painlevé-Kuratowski Convergence
- 4 Conclusions

Motivation for Asymptotic Cones

Regarding asymptotic cones, we recall the concept of cluster points for bounded sets.

Definition 1 (cluster point)

x is a cluster point of $\{x_k\}$ if some subsequence converges to x.

Proposition 1

The following statements are equivalent:

- \bullet a sequence in \mathbb{R}^n converges to x,
- $\mathbf{0}$ a sequence is bounded and has x as its unique cluster point.

Generally, we need to consider the uniqueness of cluster point and the boundedness of the given sequence to determine the convergent point in \mathbb{R}^n .

Motivation for Asymptotic Cones

Remark

If the given sequence is bounded, Bolzano-Weierstrass theorem implies that there exists a subsequence which converges to a point.

Motivation for Asymptotic Cones

Remark

If the given sequence is bounded, Bolzano-Weierstrass theorem implies that there exists a subsequence which converges to a point.

How do we consider the convergence of a sequence, which is not bounded?

Example:
$$C = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$$

Definition 2 (Asymptotic Cones)

 $C \subset \mathbb{R}^n$, $C \neq \emptyset$. Then, the asymptotic cone of the set C, denoted by C_{∞} , is the set below with $\{x_k\} \subset C$;

$$C_{\infty} = \left\{ d \in \mathbb{R}^n \ \middle| \ \exists t_k \to +\infty, \exists x_k \in C \text{ with } \lim_{k \to \infty} \frac{x_k}{t_k} = d \right\}.$$

Example: $C = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$. We let $x_k = (k, k^2)$ and $t_k = ||x_k||$.

Definition 2 (Asymptotic Cones)

 $C \subset \mathbb{R}^n$, $C \neq \emptyset$. Then, the asymptotic cone of the set C, denoted by C_{∞} , is the set below with $\{x_k\} \subset C$;

$$C_{\infty} = \left\{ d \in \mathbb{R}^n \, \middle| \, \exists t_k \to +\infty, \exists x_k \in C \text{ with } \lim_{k \to \infty} \frac{x_k}{t_k} = d \right\}.$$

Example: $C = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$. We let $x_k = (k, k^2)$ and $t_k = ||x_k||$.

Definition 2 (Asymptotic Cones)

 $C \subset \mathbb{R}^n$, $C \neq \emptyset$. Then, the asymptotic cone of the set C, denoted by C_{∞} , is the set below with $\{x_k\} \subset C$;

$$C_{\infty} = \left\{ d \in \mathbb{R}^n \ \middle| \ \exists t_k \to +\infty, \exists x_k \in C \text{ with } \lim_{k \to \infty} \frac{x_k}{t_k} = d \right\}.$$

Example: $C = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$. We let $x_k = (k, k^2)$ and $t_k = ||x_k||$.

Properties around Asymptotic Cones

Proposition 2

A set $C \subset \mathbb{R}^n$ is bounded if and only if $C_{\infty} = \{0\}$.

Definition 3

Let $C \subset \mathbb{R}^n$ be nonempty and define

$$C^1_{\infty} = \left\{ d \in \mathbb{R}^n \,\middle|\, \forall t_k \to +\infty, \exists x_k \in C \;\; \text{with} \;\; \lim_{k \to \infty} \frac{x_k}{t_k} = d \right\}.$$

We say that C is asymptotically regular if $C_{\infty} = C_{\infty}^1$.

Proposition 3

Let C be a nonempty convex set in \mathbb{R}^n . Then C is asymptotically regular.

Definition 3

Let $C \subset \mathbb{R}^n$ be nonempty and define

$$C^1_\infty = \left\{ d \in \mathbb{R}^n \, \middle| \, \forall t_k \to +\infty, \exists x_k \in C \; \text{ with } \; \lim_{k \to \infty} \frac{x_k}{t_k} = d \right\}.$$

We say that C is asymptotically regular if $C_{\infty} = C_{\infty}^1$.

Example: D is NOT asymptotically regular.

Definition 3

Let $C \subset \mathbb{R}^n$ be nonempty and define

$$C^1_\infty = \left\{ d \in \mathbb{R}^n \, \middle| \, \forall t_k \to +\infty, \exists x_k \in C \; \text{ with } \; \lim_{k \to \infty} \frac{x_k}{t_k} = d \right\}.$$

We say that C is asymptotically regular if $C_{\infty} = C_{\infty}^1$.

Example: D is NOT asymptotically regular.

Proposition 3

Let C be a nonempty convex set in \mathbb{R}^n . Then C is asymptotically regular.

Example: E is not convex but E is asymptotically regular.

Proposition 3

Let C be a nonempty convex set in \mathbb{R}^n . Then C is asymptotically regular.

Example: E is not convex but E is asymptotically regular.

Contents

- Preliminary
- 2 Asymptotic Cones
- 3 Painlevé-Kuratowski Convergence
- 4 Conclusions

Definition of the Painlevé-Kuratowski Convergence

Definition 4

Y: a topological vector space.

 $\mathcal{P}(Y)$: a family of subset in Y.

Let $(A_n)_{n\in\mathbb{N}}\subset\mathcal{P}(Y)$. We define the inner limit and the outer limit as

$$\begin{split} & \liminf_{n \to \infty} A_n \coloneqq \{ y \in Y \mid \exists (y_n) \to y \text{ s.t. } y_n \in A_n \text{ for } n \ge n_0 \}, \\ & \limsup_{n \to \infty} A_n \coloneqq \{ y \in Y \mid \exists (y_{n(k)}) \to y \text{ s.t. } y_{n(k)} \in A_{n(k)} \text{ for } k \in \mathbb{N} \}. \end{split}$$

If it holds that $\liminf_{n\to\infty} A_n \supset \limsup_{n\to\infty} A_n$, we say that (A_n) converges in the sense of Painlevé-Kuratowski.

Painlevé-Kuratowski Convergence Examples

Example:

$$A_n = \begin{cases} [0,1], & \text{if } n \text{ is odd} \\ [0,\frac{1}{n}], & \text{if } n \text{ is even} \end{cases}$$

Painlevé-Kuratowski Convergence Examples

Example:

$$A_n = \begin{cases} [0,1], & \text{if } n \text{ is odd} \\ [0,\frac{1}{n}], & \text{if } n \text{ is even} \end{cases}$$

Relations between Asymptotic cones and Painlevé-Kuratowski Convergence

Remark

Providing that the given A_n converges in the sense of Painlevé-Kuratowski, we can let $\Gamma(n)=A_n$ and $\Gamma(\infty)=A$ where $A,A_n\subset Y.$ Soon we can find that Γ implies a set-valued mapping.

C: a nonempty set

 $\Gamma \colon \mathbb{N} \to \mathbb{R}^n$

We let $\Gamma(n) = \frac{C}{n}$.

Relations between Asymptotic cones and Painlevé-Kuratowski Convergence

Remark

Providing that the given A_n converges in the sense of Painlevé-Kuratowski, we can let $\Gamma(n) = A_n$ and $\Gamma(\infty) = A$ where $A, A_n \subset Y$. Soon we can find that Γ implies a set-valued mapping.

C: a nonempty set

$$\Gamma: \mathbb{N} \to \mathbb{R}^n$$

We let
$$\Gamma(n) = \frac{C}{n}$$
.

$$\liminf_{n\to\infty}\frac{C}{n}=C_{\infty}^{1}$$

$$\limsup_{n\to\infty}\frac{C}{n}=C_{\infty}$$

$$\limsup_{n \to \infty} \frac{C}{n} = C_{\infty}$$

$$\Gamma(\infty) = C_{\infty}^1 = C_{\infty}$$
 (if $\{C_n\}_{n \in \mathbb{N}} \coloneqq \frac{C}{n}$ converges in the sense of Painlevé-Kuratowski)

Relations between Asymptotic cones and Painlevé-Kuratowski Convergence

Remark

Providing that the given A_n converges in the sense of Painlevé-Kuratowski, we can let $\Gamma(n)=A_n$ and $\Gamma(\infty)=A$ where $A,A_n\subset Y.$ Soon we can find that Γ implies a set-valued mapping.

C: a nonempty set

$$\Gamma: \mathbb{N} \to \mathbb{R}^n$$

We let
$$\Gamma(n) = \frac{C}{n}$$
.

$$\liminf_{n \to \infty} \frac{C}{n} = C_{\infty}^{1}$$
$$\limsup_{n \to \infty} \frac{C}{n} = C_{\infty}$$

$$\sup_{\to \infty} \frac{1}{n} = C_{\infty}$$

$$\Gamma(\infty) = C_{\infty}^{1} = C_{\infty} \text{ (if } \{C_{n}\}_{n \in \mathbb{N}} \coloneqq \frac{C}{n} \text{ converges in the sense of Painlev\'e-Kuratowski)}$$

Contents

- Preliminary
- 2 Asymptotic Cones
- 3 Painlevé-Kuratowski Convergence
- **4** Conclusions

Conclusions

- Considering a set-valued mappings, we can replace the definition of asymptotic cones as the inner limit.
- The relation allows us to connect the notion of asymptotic cones with some results of continuities in t.v.s.

References

- A. Göpfert, H. Riahi, C. Tammer, and C. Zălinescu, Variational methods in partially ordered spaces, vol. 17 of CMS Books in Mathematics, Springer-Verlag, New York, 2003.
- A. Alfred and M. Teboulle, asymptotic cones and functions in optimization and variational inequalities, Springer monographs in Mathematics, Springer-Verlag, New York, 2003.