

NLP in Crypto Trading

ACTU PS5842 Advanced Data Science in FI

Presented By: Emily Xiao, Yuyang Zhao

Supervised By: Yubo Wang

Cryptocurrencies

- 2.5% market cap equivalent to U.S. equity market cap
- Highly volatile
- Influencers
 - supply and demand
 - investor sentiments
 - government regulation
 - public attention

Goal

- To build a deep learning model to predict crypto returns
 - pricing data
 - alternative data
 - news and social feeds.
- To construct a profitable long-short equity strategy
 - based on the predicted returns
 - backtest on historical data.

Data Exploration

- Retrieve daily BTC OHLC+volume data from YahooFinance
- Technical Indicators w/ various windows
 - Moving Averages
 - Bollinger Bands
 - Relative Strength Index
 - Force Index
- Economic indicators: AlphaVintage API
 - US 5, 10, 30-year treasury yield
 - S&P500, Gold
 - Consumer Price Index
 - Federal Funds Rate

- Alternative Data: tweets related to BTC
 - Web-scraping Twitter feeds
 - Exclude trash tweets
- Transformer
 - Subjectivity
 - Polarity
 - Sentiment Label

Text Sentiment

- Use transformer to processing a given word in relation to all other words in a sentence, rather than processing them one at a time
- Simple framework of transformer
 - trained on about 1.6 million tweets
 - return three sentiment status: positive, neutral and negative with their corresponding predicted possibilities
 - Example:
 - Text data: "Covid cases are increasing fast!"
- 1) Negative 0.7236
- 2) Neutral 0.2287
- 3) Positive 0.0477

Transformer

- Model Training
 - Training data: Sentiment140 dataset with 1.6 million tweets
 - Variable used: "text" & "target"
 - TextVectorization
 - build_transformer_model()
- Input
 - 150 thousands bitcoin tweets
- Output
 - Subjectivity: subjective/objective
 - Polarity: positive/neutral/negative

Transformer Structure

Transformer with TensorFlow

- build_transformer_model function
 - Input layer
 - Embedding layer
 - TransformerBlock layer (loop)
 - GlobalAveragePooling1D layer
 - Dense layer
 - returns a Keras model

Transformer with TensorFlow

- TransformerBlock class:
 - Inherits from tf.keras.layers.Layer
 - ___init__ method
 - tf.keras.layers.MultiHeadAttention
 - tf.keras.layers.Add
 - tf.keras.layers.LayerNormalization
 - tf.keras.Sequential
 - call method
 - define how to apply these layers and operations to the input tensor

Transformer Runtime

- Training
 enizer.texts to sequences(df['Twee]
 6h 34m 19s completed at 5:44 AM
 LSTM version →
 Transformer simple version →
 in [18] # Build the model model = build_transformer_model(
 - Transformer updated version (final version) \rightarrow 20 hrs

- Input to output
 - Transformer package →
 9h 26m 37s completed at 10:03 AM

Logistic Regression

- Serves as a baseline model
- Classification problem: positive or negative price changes
- Use all indicators and text data
- Resulting accuracy ~50% random guessing

$$L(m{eta}|m{y}) = \prod_{i=1}^N rac{n_i!}{y_i!(n_i-y_i)!} \pi_i^{y_i} (1-\pi_i)^{n_i-y_i}$$

$$p(x)=rac{1}{1+e^{-(eta_0+eta_1x)}}$$

	precision	recall	f1-score	support
-1	0.53	0.55	0.54	42
1	0.51	0.50	0.51	40
accuracy			0.52	82
macro avg	0.52	0.52	0.52	82
weighted avg	0.52	0.52	0.52	82

Multilayer Perceptron NN

Many layers with many neurons stacked together

IN THE CITY OF NEW YORK

• Pick out features at different scales or resolutions, combine them into higher-order features, eg. from lines to collections of lines to shapes.

Model Performance

- Poor performance
- Uneven split between buy and sell predictions.
- Fails to learn in the presence of time lags between relevant input events and target signals.

	precision	recall	f1-score	support
0	0.48	0.12	0.20	294
1	0.49	0.86	0.62	285
accuracy			0.49	579
macro avg	0.48	0.49	0.41	579
weighted avg	0.48	0.49	0.41	579

Long Short-Term Memory NN

- LSTM model learn to bridge time lags
 - More suitable to classify, process and predict time series given time lags.
- Build 3-D dataframe
 - Adding a window dimension
 - 21*30 matrix for each sample

Long Short-Term Memory NN

- GeLu vs. ReLu
 - \circ ReLu(x) = max(0, x)
 - \circ GeLu(x) = x ϕ (x)
 - nonlinear weights inputs by their percentile
- Dropout layer
 - Prevent overfitting with a given rate

Model Performance

- Sensitive to seed and parameter changes
 - Seeds
 - Learning rate
 - Batches size
 - Hidden units
- Outperforms the baseline model

	precision	recall	f1-score	support
0	0.56	0.57	0.57	280
1	0.56	0.55	0.56	278
accuracy			0.56	558
macro avg	0.56	0.56	0.56	558
weighted avg	0.56	0.56	0.56	558

Trading Rules

- Break down the strategy value into 3 parts: cash, coin, and margin account
- Initial cash: \$300,000
- Cash base level: \$5000
- Commission Fee: 0.2%
- Allow short selling
 - Initial Margin = 50%
 - Maintenance Margin = 30%
 - Interest = 0.02% per day
 - Collateral = half of the amount traded

Buy and Hold Strategy

Benchmark

Max10 Strategy

Max10 Strategy

Strategy Performance

Momentum Strategy

- Same settings of cash, coin, margin account, collateral, interest, cash base level
- Exists momentum: coin value has increased/decreased 4 days in a row

Momentum Strategy

Strategy Performance

Performance Metrics

Max 10 Strategy vs Momentum Strategy vs Buy and Hold

Initial cash \$300,000	Max 10	Momentum	Buy and Hold
Total Return	112.60%	19.95%	-64.72%
PnL	337795.88	59848.21	-194158.93
Sharpe Ratio	1.91	1.06	-0.63
Maximum Drawdown	-11.51%	-5.58%	-72.55%

Summary

- Increasing market capitalization, high volatile
- Data ETL
 - Include alternative data
 - NLP: Transformer -> text sentiment
- Modeling
 - MLP: fully connected, efficiency, uneven split between labels
 - LSTM: 3 dimensional dataframe, GeLu, high accuracy
- Strategy
 - Max10: possibility to exploit huge profit
 - Momentum: stable return

Futures Work

- Better quality of alternative data
 - Filter spam and advertisements
- Other cryptocurrencies, lack of alternative data
 - August 2015 October 2022 (2884 days)
 - 952 Ethereum related Tweets
 - Major discussion in Bitcoins
 - Look into other social media platforms
- Discover more stable model
 - initial random weight matrix highly dependent on seeds

Questions?

