

Evaluacion final - Escenario 8 Primer Bloque- Teorico - Virtual Elementos EN Teoría DE Computación-[Grupo B02]

Elementos de Teoría de la Computación (Politécnico Grancolombiano)

Evaluacion final - Escenario 8

Fecha de entrega 10 de mayo en 23:55

Puntos 125

Preguntas 20

Disponible 7 de mayo en 0:00 - 10 de mayo en 23:55 4 días

Límite de tiempo 90 minutos

Intentos permitidos 2

Instrucciones

Apreciado estudiante, presenta tus exámenes como SERGIO EL ELEFANTE,

quien con honestidad, usa su sabiduría para mejorar cada día.

Lee detenidamente las siguientes indicaciones y minimiza inconvenientes:

- Tienes dos intentos para desarrollar tu evaluación.
- 2. Si respondiste uno de los intentos sin ningún inconveniente y tuviste problemas con el otro, el examen no será habilitado nuevamente.
- 3. Cuando estés respondiendo la evaluación, evita abrir páginas diferentes a tu examen. Esto puede ocasionar el cierre del mismo y la pérdida de un intento.
- **4.** Asegúrate de tener buena conexión a internet, cierra cualquier programa que pueda consumir el ancho de banda y no utilices internet móvil.
- 5. Debes empezar a responder el examen por lo menos dos horas antes del cierre, es decir, máximo a las 9:55 p. m. Si llegada las 11:55 p. m. no lo has enviado, el mismo se cerrará y no podrá ser calificado.
- El tiempo máximo que tienes para resolver cada evaluación es de 90 minutos.

- Solo puedes recurrir al segundo intento en caso de un problema tecnológico.
- 8. Si tu examen incluye preguntas con respuestas abiertas, estas no serán calificadas automáticamente, ya que requieren la revisión del tutor.
- 9. Si presentas inconvenientes con la presentación del examen, puedes crear un caso explicando la situación y adjuntando siempre imágenes de evidencia, con fecha y hora, para que Soporte Tecnológico pueda brindarte una respuesta lo antes posible.
- Podrás verificar la solución de tu examen únicamente durante las 24 horas siguientes al cierre.
- Te recomendamos evitar el uso de teléfonos inteligentes o tabletas para la presentación de tus actividades evaluativas.
- **12.** Al terminar de responder el examen debes dar clic en el botón "Enviar todo y terminar" de otra forma el examen permanecerá abierto.

Confiamos en que sigas, paso a paso, en el camino hacia la excelencia académica!

;Das tu palabra de que realizarás esta actividad asumiendo de corazón nuestro

Volver a realizar el examen

Historial de intentos

	Intento	Hora	Puntaje
MÁS RECIENTE	Intento 1	42 minutos	122.92 de 125

Las respuestas correctas ya no están disponibles.

Puntaje para este intento: 122.92 de 125

Entregado el 7 de mayo en 18:22

Este intento tuvo una duración de 42 minutos.

Pregunta 1	6.25 / 6.25 pts
Si	
$5\mid 11x$	
, entonces es correcto afirmar:	
◎ 5 <i>x</i>	
$\bigcirc \ 11x=5$	
\bigcirc 5 $(11x-11)$	
$5 \div 11 x$ es un número entero.	

6.25 / 6.25 pts Pregunta 2

Solucionar el módulo usando el Teorema de Fermat.

https://poli.instructure.com/courses/4-.

¿Cuál es resultado de	
31	$15^{61} \mod 13$
?	
3	
O 1	
O 315	
O 0	

Pregunta 3		6.25 / 6.25 pts
Si se sabe que		
	mcm(a,b)=12	
con		
	a>0	
, entonces es c	correcto afirmar:	
left $mcd(a, b)$	$b)\mid 12$	
○ 12 mcc	d(a,b)	
a=12i	$oldsymbol{k}$	
para algú	ún	
$igcap k \in \mathbb{Z}$		

$$|ab|=12$$

Pregunta 4

6.25 / 6.25 pts

Si se sabe que

$$mcd(a,b)=7$$

con

, entonces es correcto afirmar:

 \bigcirc 7 | mcm(a, b)

a < 7

0 7 | (3a+b+9)

Si

 $d \mid a$

 $d \div b$

, entonces

d > 7

Pregunta 5

6.25 / 6.25 pts

		$m{n}$	
primo se debe:			
Comprobar que p	ara todo		
$m{m}$			
entero, con			
1 < m <	$oldsymbol{n}$		
, se tiene que			
mmidn			
Comprobar que p	ara todo		
m			
entero, con			
0 < m <	\boldsymbol{n}		
, se tiene que			
mmidn			
O .			
Comprobar que			
nmidm			
para todo entero			
1 < m < n			
O .			
Comprobar que			
n			
ono es un número	par.		

Pregunta 6

6.25 / 6.25 pts

Si

$$a=2^35^27^3$$

У

$$b = 2^4 7^2 11^3$$

, entonces es correcto afirmar:

$$mcd(a,b) = 2^37^2$$

У

 $mcm(a,b) = 2^45^27^311^3$

$$mcd(a,b) = 2^37^2$$

 $mcm(a,b) = 2^47^3$

$$mcd(a,b)=2^35^27^2$$

 $mcm(a,b) = 2^45^27^311^3$

$$mcd(a,b) = 2^35^27^2$$

 $mcm(a,b) = 2^47^311^3$

Si se sabe que

$$mcd(a,b)=12$$

У

$$mcm(a,b)=36$$

, entonces es correcto afirmar:

- |ab|=432
- a > b
- $\bigcirc 12mid(a+b)$
- o amid72

Pregunta 8	6.25 / 6.25 pts
mcd(4,8) es:	
4	
O 8	
O 2	
O 6	
This document is available free of charge on Shaperon	com

Pregunta 9	6.25 / 6.25 pts
Sobre el conjunto	
$\mathbb{Z}/11\mathbb{Z}$	
es correcto afirmar:	
$a^{10}\equiv 1 \mod 11$	
para todo	
$aot \equiv 0 \mod 11$	
Existe un elemento no nulo de	
$\mathbb{Z}/11\mathbb{Z}$	
que no tiene inverso.	
La ecuación	
$ax \equiv 1 \mod 11$	
no tiene solución para	
$a\in \mathbb{Z}/11\mathbb{Z}$	
ono nulo.	
Existen infinitos elementos en	
$\mathbb{Z}/11\mathbb{Z}$	

Pregunta 10 6.25 / 6.25 pts

Estimación de números primos.

¿Cuál es la cantidad apróximada de números primos menores o iguales a 324423?	
© 25565	
O 213312	
7880	
O 26055	

P	a	rc	ia	n I

Pregunta 11		4.17 / 6.25 pt
Si		
	2midx	
j	3midx	
1	5midx	
1	C	
	$2 \leq \sqrt{x}$	
,	$3 \leq \sqrt{x}$	
,	$5 \leq \sqrt{x}$	
у	•	
	$7>\sqrt{x}$	

, entonces es correcto afirmar:
x es un número primo
x es un número compuesto mayor a 49.
x
☑ 26
■ x

Pregunta 12	6.25 / 6.25 pts
Sobre la solución de la congruencia lineal	
$3x \equiv 5 \mod 14$	
es correcto afirmar:	
$\bigcirc x \equiv 11 \mod 14$	
$\bigcirc x \equiv 2 \mod 14$	
$\bigcirc x \equiv 12 \mod 14$	
$\bigcirc x \equiv 10 \mod 14$	

Pregunta 13	6.25 / 6.25 pts
El inverso de	
$12 \mod 25$	
es:	
23 mod 25	
O 2 mod 25	
\bigcirc -12 mod 25	
○ 8 mod 25	

6.25 / 6.25 pts

Si

$$7a \equiv 3 \mod 12$$

es correcto afirmar:

$$\bigcirc 7a + 12 \equiv 15 \mod 12$$

$$\bigcirc 9a \equiv 15 \mod 60$$

$$\bigcirc a^2 + 1 \equiv 9 \mod 12$$

Pregunta 15

6.25 / 6.25 pts

Si

$$7x \equiv 4 \mod 13$$

, entonces es correcto afirmar:

- \bigcirc $2x \equiv 6 \mod 13$
- $-x \equiv 8 \mod 13$
- $\bigcirc \ 2x+1 \equiv 7x-1 \mod 13$

Pregunta 16

6.25 / 6.25 pts

Estimación de números primos.

¿Cuál es la cantidad apróximada de números primos menores o iguales a 342243?

- **26856**
- 231132

O 7880			
25565			

Pregunta 17	6.25 / 6.25 pts
Sobre el número 16 mod 18	
es correcto afirmar:	
No tiene inverso, módulo 18.	
Su cuadrado es congruente con 3.	
Su opuesto es congruente con 3.	
Si	
$c\equiv 16 \mod 18$	
, entonces el residuo de dividir	
c	
entre	
18	
O es 2.	

Pregunta 18 6.25 / 6.25 pts Sobre la congruencia lineal $12x\equiv 16 \mod 18$ This document is available free of charge on https://poli.instructure.com/courses/4.

es correcto afirmar:

No tiene solución.

Su solución existe dado que

$$d = mcd(12, 18)$$

divide a

16

.

La solución es

$$x \equiv 2 \mod 18$$

.

Su solución es

$$x=rac{4}{3}$$

.

Pregunta 19

6.25 / 6.25 pts

Si

$$a \equiv 5 \mod 7$$

У

$$b \equiv 2 \mod 7$$

es correcto afirmar:

 \bigcirc $ab + a + b \equiv 3 \mod 7$

$$\bigcirc \ a^2 + b^2 \equiv 0 \mod 7$$

$$a(b+3) \equiv 3 \mod 7$$

$$2b \equiv a-2 \mod 7$$

Pregunta 20	6.25 / 6.25 pts
Si	
5 3	r
у	
12	$oldsymbol{x}$
, entonces es correcto afirmar:	
60 x	
\bigcirc 17 x	
\bigcirc 7 x	
5 12	
O .	

Puntaje del examen: 122.92 de 125