Quantitative Microbial Physiology

Jacopo Grilli Lecture 6, Feb 24, 2025

Model effect of antibiotics

Model predicts the effect of antibiotics on growth rate

Fit two parameters for all the curves in each panel

Glu_{CAA}

 $\mathsf{Gly}_\mathsf{CAA}$

 $\mathsf{Gly}_\mathsf{RDM}$

(/h) 0.40 0.64 0.85 1.0

Glu

Gly

Model predicts the effect of antibiotics on growth rate

Fit two parameters for all the curves in each panel

IC50 collapse on a single curve

Testing model with a mutant with lower translational capacity

Greulich et. al (2015)

Testing model with a mutant with lower translational capacity

Greulich et. al (2015)

Resistance can evolve (also in the lab)

Mutant pay a cost to evolve resistance: they grow worse where drug is absent

Mutant pay a cost to evolve resistance: they grow worse where drug is absent

Mechanism(s) of resistance is complex, but is typically membrane/transport related

Tradeoff between cost and advantage is consistent with change of uptake rate of both antibiotics and nutrient

Optimal uptake rate depends on amount of drug during evolution

what else?

Predict lag time when changing conditions

Including explicitly transcription

Overflow metabolism

Effect of temperature on growth

Growth on multiple resources

Applications to ecology

. . .

what I wanted to convince you of

Microbes (biological systems) do interesting and extremely complex things

There exist quantitative biological laws

It is possible to build quantitative, predictive theory in biology