Kleene's Theorem & Properties of Regular Languages

Prof. Shrisha Rao IIIT Bangalore

srao@iiitb.ac.in

2025-08-14

KLEENE'S THEOREM

The following are equivalent for a language L:

- There is an NFA for L.
- There is a DFA for L.
- There is an RE for L.

Conversion from NFA (without ϵ -transitions) to DFA

This is known as subset construction.

- Each DFA state is given by a set of states from the original NFA.
- The start state of the DFA is labeled $\{q_0\}$ where q_0 was the original start state of the NFA.
- Compute the transitions for the DFA states by combining the possibilities for each state in the NFA.
- Any DFA state that contains at least one NFA accept state is itself an accept state.

Converting from an NFA (without ϵ -transitions) to a DFA

DFA: Step 1

DFA: Step 2

DFA: STEP 3

DFA: Step 4

DFA: STEP 5

DFA: STEP 6

DFA: COMPLETION

Conversion from NFA (with ϵ -transitions) to DFA

This is the same as before, but also:

- The start state of the DFA is the old start state of the NFA, and every state reachable from it by ϵ -transitions.
- When calculating the states reachable from a state, one includes all states reachable by ϵ -transitions *after* the destination state.

An Exercise

Use subset construction to get a DFA for this NFA.

THE STATE SET OF THE DFA

- The state set of the corresponding DFA is:
- $\bullet \ \{\emptyset, \{A\}, \{B\}, \{C\}, \{A,B\}, \{A,C\}, \{B,C\}, \{A,B,C\}\}.$
- Consider the possible transitions in the NFA, and get those for the DFA.

δ	0	1
Α	-	-
В	-	-
C	-	-
A,B	-	-
:	:	:

Converting from an NFA to a DFA

Convert this NFA into a DFA using subset construction.

Conversion from RE to NFA

- If the RE is the empty string, then output trivial NFA.
- If the RE is a single symbol, output a simple NFA.
- If the RE has form X + Y, combine NFAs for X and Y in parallel.
- If the RE has form XY, then combine the NFAs for X and Y in series.
- If the RE has form X*, extend the NFA for X.

RE TO NFA: SINGLE SYMBOL

RE TO NFA: COMBINING IN PARALLEL FOR X + Y

RE TO NFA: COMBINING IN PARALLEL FOR X + Y—CONT'D

RE to NFA: combining in series for XY

RE TO NFA: CONCATENATING NFA FOR X TO GET ONE FOR X^*

