Übung 1: endlicher deterministischer Automat

1. Gegeben δ mit dem Startzustand s_0 und den Endzustände s_0 und s_1 . Welche Sprache akzeptiert der Automat? δ 0 1

δ	0	1
\rightarrow *s ₀	S ₁	S 0
*s ₁	S ₂	S ₀
S ₂	S ₂	S ₂

2. Konstruieren Sie einen deterministischen endlichen Automat der folgende Sprachen über dem Alphabet $\Sigma = \{a,b\}$ bzw. $\Sigma = \{0,1,2\}$ akzeptiert:

a.
$$L = (ab)^*$$

b.
$$L = (0+1+2)(22)^*$$

c.
$$L = (2+1)*1(0+2)$$

3. Minimieren Sie den Automaten $A = (\{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7\}, \{0, 1\}, \delta, s_0, \{s_3\})$ mit δ

δ	0	1
→ s₀	S 1	S ₀
S1	S ₀	S2
S2	S 3	S ₁
*S3	S 3	S ₀
S4	S 3	S5
S 5	S ₆	S4
S 6	S ₅	S 6
S 7	S ₆	S 3

4. Minimieren Sie den Automaten A = $(\{s_0, s_1, s_2, s_3, s_4\}, \{0,1\}, \delta, s_0, \{s_4\})$ mit δ

δ	0	1
\rightarrow s ₀	S 1	S ₂
S1	S4	S2
S2	S 3	S ₂
S3	S4	S ₀
*S4	S4	S4

5. Konstruieren Sie einen endlichen Automaten über dem Alphabet $\Sigma = \{0,1,2\}$, der alle Worte akzeptiert,

- a. die an der letzten Stelle eine 0 oder 1 haben.
- b. die an der zweitletzten Stelle eine 2 haben.

Übung 2: Umwandeln NEA in DEA und ε-NEA in NEA

1. Wandeln Sie den NEA = ($\{s_0,s_1,s_2\}$, $\{0,1\}$, δ , s_0 , $\{s_2\}$) in einen äquivalenten DEA um:

δ	0	1
\rightarrow s ₀	$\{s_0,s_1\}$	$\{s_0\}$
S1	$\{s_2\}$	$\{s_1\}$
*S2	Ø	Ø

2. Wandeln Sie den NEA = $(\{s_0, s_1, s_2, s_3\}, \{0, 1\}, \delta, s_0, \{s_3\})$ in einen äquivalenten DEA um:

δ	0	1
\rightarrow s ₀	$\{s_1\}$	$\{s_2\}$
S 1	$\{s_1\}$	$\{s_1,s_3\}$
S2	{s ₂ }	$\{s_2,s_3\}$
*S3	Ø	Ø

3. Wandeln Sie den ε -NEA = ($\{s_0,s_1,s_2,s_3\},\{0,1\},\delta,s_0,\{s_3\}$) in einen äquivalenten NEA um:

δ	0	1	3
\rightarrow s ₀	$\{s_3\}$	$\{s_1\}$	$\{s_1\}$
S 1	{s ₂ }	Ø	$\{s_0,s_2\}$
S2	{s ₃ }	$\{s_0,s_3\}$	Ø
*S3	Ø	Ø	Ø

4. Wandeln Sie den ε -NEA = ($\{s_0,s_1,s_2,s_3,s_4\},\{0,1\},\delta,s_0,\{s_4\}$) in einen äquivalenten NEA um:

δ	0	1	3
\rightarrow s ₀	Ø	Ø	$\{s_1,s_2\}$
S1	$\{s_1\}$	Ø	$\{s_3\}$
S2	{s ₁ }	$\{s_0,s_4\}$	Ø
S3	{s ₃ }	{s ₄ }	Ø
*S4	$\{s_2,s_3\}$	Ø	Ø

Übung 3: reguläre Ausdrücke

- 1. Schreiben Sie für folgende Sprachen reguläre Ausdrücke:
 - a. Menge der Strings w über dem Alphabet $\Sigma = \{0,1\}$, welche mindestens ein Paar 11 enthalten.
 - b. Alle Strings w über dem Alphabet $\Sigma = \{0,1\}$, deren Anzahl von 0-Ziffern vielfache von 5 sind.
 - c. Menge der Strings w über dem Alphabet $\Sigma = \{0, 1, 2\}$, welche mindestens eine 0 und mindestens eine 1 enthalten.
- 2. Geben Sie die Sprache, die von den DEA mit $A = (\{s_0, s_1, s_2, s_3\}, \{0, 1\}, \delta, s_0, \{s_0\})$ akzeptiert wird, als ein regulären Ausdruck an:

δ	0	1
→*s ₀	S 3	S 1
S ₁	S ₀	S 3
S2	S ₂	S ₁
S 3	S 1	S 2

- 3. Erstellen Sie zu folgenden regulären Ausdrücke jeweils ein NEA, welcher genau diese Sprache akzeptiert:
 - a. 01*
 - b. (0+1)01
 - c. 00(0+1)*
 - d. (0+1)*01(0+1)*