Not bad. Need practice on time le domain analysis (LCCDEs). Saad Hasan						
(a)	Linear	Time-invariant	static	I cansal		3038382
Y = X = X = - M]	Yes	NO	No	No	yes yes	
2n2xEn]+nxEn+1]	~0	Yes 🔿	Yes	yes o	No	
ens(2TXEnJ)	No	Yes	Yes	yes	705	
(b) $\chi(t/T_5) = cos(0.5\pi(loot)) = cos(50\pi t)$. $\Lambda = 50 Hz$ Mrssrm π -2						
(d) $F_5 = 0$ H^2 (d) $H(2) = \frac{y(2)}{x(2)} = \frac{3}{62}$	3+2-1 6-2-1+22 2+1 3-22+22+	2-2+2-3 623	22,12271	pri	<u>-3</u>	
(e) y(z)= H(z) X(z) =			(0.2m)) 2m))z-1+z-	bad		X(x) and 31(x)

i KI (0.7) " cas (0.7 mx + 0) n [n]

both poles of X(x) and N(x)
mould be protected.
Then, its a Isrear combination
of exponentials.

- 5

2. (d)

$$y(x) - \frac{2}{15} y(x) - \frac{1}{1} - \frac{1}{15} y(x) = 0$$

$$y(x) = \frac{2}{15} y(x) + \frac{1}{15} (-1) = \frac{1}{15} y(x)$$

$$y(x) = \frac{2}{15} y(x) - \frac{1}{15} y(x) - \frac{1}{15} y(x)$$

$$y(x) = \frac{2}{15} y(x) - \frac{1}{15} y(x)$$

$$y(x) = \frac{2}{15} y(x) - \frac{1}{15} y(x)$$

$$y(x) = \frac{2}{15} y(x)$$

$$y(x) = \frac{$$

- (d) ROC: 121>1/5 X 121>2 (L)
- (e) The system is stuble because its poles are inside the

$$(+)_{\chi(z)=H(z)\chi(z)} = \frac{2}{2-\frac{1}{5}} = \frac{2(2-\frac{1}{5}) - (2-\frac{2}{5})}{(2-\frac{2}{5})(2-\frac{1}{5})}$$

$$= \frac{2}{(2-\frac{2}{5})(2-\frac{1}{5})} \Rightarrow \chi(z) = \frac{2+1}{(12+\frac{2}{5})(2-\frac{1}{5})}$$

$$= \frac{2}{(2-\frac{2}{5})(2-\frac{1}{5})} \Rightarrow \chi(z) = \frac{2+1}{(12+\frac{2}{5})(2-\frac{1}{5})}$$