Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica e Eletrônica

Eletrônica Básica – EEL 5346 Recuperação – 2014/2 (09/12/2014)

<u>Questão 1:</u> [3,5 pontos] Dado o circuito a seguir, determine: (a) corrente no resistor R_L ; (b) faixa de valores de v_i para a qual não há saturação na saída do amplificador operacional. Assuma: que o amplificador operacional é ideal a menos da limitação de saída em função da tensão de alimentação; V_{CC} e V_{EE} são valores positivos; v_i pode possuir valores positivos e negativos.

<u>Questão 2:</u> [3,0 pontos] Trace a curva $v_i \times v_o$ para o circuito a seguir. Indique no gráfico todos os pontos de quebra e apresente os cálculos e explicações associados. Assuma que v_i pode variar entre 0 e 12V e que o diodo pode ser representado por uma chave em série com uma fonte de tensão. Dados: $R_1=R_2=R_3=100\Omega$; $V_{z1}=V_{z2}=V_{z3}=3V$; $V_D=0,6V$

<u>Questão 3:</u> [3,5 pontos] Dado o circuito a seguir, determine o ganho de tensão $A_v=v_o/v_i$ em função dos componentes do circuito. Assuma que os parâmetros de pequenos sinais dos dois transistores são conhecidos.

FORMULÁRIO

• MOSFET reforço (enriquecimento, acumulação, intensificação):

NMOS	Equações	PMOS
$V_{T} > 0 V_{DS} > 0$	$K = k_n \left(\frac{W}{L}\right)$ $k_n = \mu_n C_{ox} , \lambda = 1/V_A$	$V_{T} < 0 V_{DS} \leq 0$
$V_{GS} < V_{T}$	(a) Região de Corte I _D =0	$V_{GS} \ge V_T$
$\begin{cases} V_{GS} \ge V_T \\ V_{DS} < V_{GS} - V_T \\ V_{GD} \ge V_T \end{cases}$	(b) Região de Triodo $I_D = K \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$	$\begin{cases} V_{GS} \leq V_T \\ V_{DS} > V_{GS} - V_T \\ V_{GD} \leq V_T \end{cases}$
$\begin{cases} V_{GS} \ge V_T \\ V_{DS} \ge V_{GS} - V_T \\ V_{GD} \le V_T \end{cases}$	(c) Região de Saturação $I_D = \frac{K}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$	$\begin{cases} V_{GS} \leq V_T \\ V_{DS} \leq V_{GS} - V_T \\ V_{GD} \geq V_T \end{cases}$
(c) V ₀₅₀ V ₀₅₁ (a) V _{D51}		Vos. (a)

• Modelo de pequenos sinais do MOSFET reforço: r_d=|V_a|/I_D; g_m=K·(V_{GS}-V_T)

• Modelo de pequenos sinais para o transistor NPN: $g_m=I_{CQ}/v_T;$ $r_\pi=\beta/g_m;$ $r_o=V_A/I_C;$ $v_T=25mV$

• Modelo de Ebers-Moll para o transistor NPN: v_T=25mV

$$i_{DE} = I_{SE} \left(e^{\frac{v_{BE}}{v_T}} - 1 \right); i_{DC} = I_{SC} \left(e^{\frac{v_{BC}}{v_T}} - 1 \right);$$
$$I_{SE} = \frac{I_S}{\alpha_F}; I_{SC} = \frac{I_S}{\alpha_R}$$

