PROBLEMAS BÁSICOS

10.21. Determine la transformada z de cada una de las siguientes secuencias. Trace el diagrama de polos y ceros e indique la región de convergencia. Indique si existe o no la transformada de Fourier de la secuencia.

(a)
$$\delta[n+5]$$

(c)
$$(-1)^n u[n]$$

(d) $(\frac{1}{2})^{n+1}u[n+3]$

(i) $x_1[n] = (\frac{1}{4})^n u[n+5]$ (j) $x_2[n] = \delta[n+3] + \delta[n] + 2^n u[-n]$ (k) $x_3[n] = (\frac{1}{2})^{|n|}$

(e)
$$(-\frac{1}{2})^n u[-n-2]$$

(f) $(\frac{1}{4})^n u[3-n]$

(h)
$$(\frac{1}{4})^n u[3-n]$$

(h) $(\frac{1}{2})^{n-2} u[n-2]$

10.22. Determine la transformada z de las siguientes secuencias. Exprese todas las sumas en forma cerrada. Trace el diagrama de polos y ceros e indique la región de convergencia. Indique si existe la transformada de Fourier de la secuencia.

(a)
$$(\frac{1}{2})^n \{u[n+4] - u[n-5]\}$$

(g) $2^n u[-n] + (\frac{1}{4})^n u[n-1]$

(b) $n(\frac{1}{2})^{|n|}$

(c)
$$|n|(\frac{1}{2})|n|$$

(d) $4^n \cos[\frac{2\pi}{6}n + \frac{\pi}{4}]u[-n-1]$

10.23. A continuación mostramos varias transformadas z. Para cada una de ellas determine la transformada z inversa usando tanto el método basado en la expansión en fracciones parciales como el método de la serie de Taylor que se basa en el uso de la división larga.

$$X(z) = \frac{1-z^{-1}}{1-\frac{1}{4}z^{-2}}, \quad |z| > \frac{1}{2}.$$

$$X(z) = \frac{1-z^{-1}}{1-\frac{1}{2}z^{-2}}, \quad |z| < \frac{1}{2}.$$

$$X(z) = \frac{z^{-1} - \frac{1}{2}}{1 - \frac{1}{2}z^{-1}}, \quad |z| > \frac{1}{2}.$$

$$X(z) = \frac{z^{-1} - \frac{1}{2}}{1 - \frac{1}{2}z^{-1}}, \quad |z| < \frac{1}{2}.$$

$$X(z) = \frac{z^{-1} - \frac{1}{2}}{(1 - \frac{1}{2}z^{-1})^2}, \quad |z| > \frac{1}{2}.$$

$$X(z) = \frac{z^{-1} - \frac{1}{2}}{(1 - \frac{1}{2}z^{-1})^2}, \ |z| < \frac{1}{2}.$$

10.20. Considere un sistema cuya entrada x[n] y salida y[n] están relacionadas mediante

$$y[n-1] + 2y[n] = x[n].$$

- (a) Determine la respuesta a entrada cero de este sistema si y[-1] = 2.
- **(b)** Determine la respuesta a entrada cero de este sistema a la entrada x[n] = $(1/4)^n u[n].$
- (c) Determine la salida del sistema para $n \ge 0$ cuando $x[n] = (1/4)^n u[n]$ y y[-1] = 2.