Olasılık ve İstatistik

Fırat İsmailoğlu, PhD

Hipotez Testi - II

Geçen hafta gördükki

$$\frac{\sqrt{n}}{\sigma}|\bar{X} - \mu_0| \ge 1.96$$
 ise $H_0: \mu = \mu_0$ reddedilir. $\frac{\sqrt{n}}{\sigma}|\bar{X} - \mu_0| < 1.96$ $H_0: \mu = \mu_0$ reddedilmez.

Bu kararımız $\alpha=0.05$ anlamlılık düzeyine göredir. Buna göre populasyon ortalaması μ_0 iken, bizim yukarıdaki kritere göre onu reddetme olasılığımız 0.05'tir. Başka bir deyişle, her 100 örneğin (sample'ın) yalnızca 5'inde populasyon ortalaması μ_0 iken, bizim kararımız populasyon ortalamsının μ_0 olmadığı yönündedir.

$$|\bar{X} - \mu_0| \ge \frac{\sigma}{\sqrt{n}} \times 1.96 \quad |\bar{X} - \mu_0| \ge$$

Burada anlamlılık düzeyi α (level of significance) 0.05'tır.

Reddetme kararımızın yanlış olma olasılığı 0.05'tir.

Burada anlamlılık düzeyi α (level of significance) 0.01'tır.

Reddetme kararımızın yanlış olma olasılığı 0.01'tir.

Eldeki Sample'a Dayanarak Populasyon Ortalaması Hakkında Karar Verme

Populasyonun standart sapması bilindiği varsayılırken populasyonun ortalamasının bir μ_0 değeri olup olmadığına karar verirken

1) önce anlamlılık düzeyi α seçilir:

Genel olarak 0.05 veya 0.01 olarak seçilir.

 α 'yı daha küçük (örneğin 0.01) seçtiğimizde kritik bölge daha geniştir, H_0 hipotezini kabul etme konusunda daha temkinliyizdir, öyle her hipotezi kabul etmeyiz.

 α 'yı daha büyük (örneğin 0.05) seçtiğimizde kritik bölge daha dardır, H_0 hipotezini kabul konusunda daha toleranslıyızdır.

- 2) Seçilen α 'ya göre kritik bölgeler oluşturulur.
- 3) Örnek (sample) ortalaması \overline{X} kritik bölge içinde kalırsa H_0 reddedilir.

ör. Türkiye'deki insanların ortalama ömrünün 70 olduğu düşünülüyor. Bunu test etmek için rastgele 100 tane ölüm raporu seçiliyor ve görülüyorki bu 100 kişinin ömürlerinin ortalaması 71.6. Türkiyedeki insanların ömürlerinin standart sapması 8.9 olduğu biliniyorsa, elimizdeki veriye dayanarak insanların ortalama ömrünün hala 70 olduğunu düşünmeli miyiz; yoksa bu fikirden vaz mı geçmeliyiz? $\alpha = 0.05$ anlamlılık düzeyinde karar veriniz.

Çözüm.

Fikrimizden vaz geçmek için $H_0: \mu=70$ hipotezini reddetmeli $H_1: \mu\neq70$ hipotezini kabul etmeliyiz.

Üst kritik değer:
$$70 + 1.96 \times \frac{8.9}{\sqrt{100}} = 71.75$$

Alt kritik değer:
$$70 - 1.96 \times \frac{8.9}{\sqrt{100}} = 68.25$$

 $\overline{X}=71.6$, üst kritik değerden küçük, alt kritik değerden büyük olduğu için kritik bölgeye düşmez. Bu durumda $H_0: \mu=70$ hipotezi red olmaz. Böylece elimizdeki veri sayesinde Türkiye'deki kişilerin ortalama ömürlerinin 70 olduğu düşüncesinden vaz geçmemize neden olmaz.

Hipotez Testi ile Güven Aralığı Arasındaki İlişki

Daha önce populasyon ortalaması μ için %95 güven aralığı vermiştik:

$$\left[\overline{X} - 1.96 \times \frac{\sigma}{\sqrt{n}} \right]$$
 %95 eminizki μ bu aralığın içinde

Burada elimzdeki veriyi (\bar{X}) kullanarak populasyon hakkında bir çıkarım yapıyoruz. Hipotez testinde de gördükki tahminimiz μ_0 , populasyon ortalaması olarak varsayıldığında \bar{X} 'in

$$\left[\mu_0 - 1.96 \times \frac{\sigma}{\sqrt{n}}, \quad \mu_0 + 1.96 \times \frac{\sigma}{\sqrt{n}}\right]$$

bu aralıkta olma olasılığı %95'tir. Bu durumda bu aralık örnek ortalaması \bar{X} için bir güven aralığıdır. O halde H_0 'ı reddetmediğimiz bölge, güven aralığıdır. (\bar{X} 'in güven aralğında hipotez reddedilmez)

lpha'ya Ya Karar Verdikten Sonra Binomial Rastgele Değişken İçin Kritik Bölge Oluşturmak

n tane birbirinden bağımsız Bernoulli deneyinin herbirinin başarı oranı p olsun. X bu n deneydeki toplam başarı sayısı; dolayısıyla bir Binomial değişken olsun.

Daha önce gördükki X'i standart normal dağılıma getirmek için:

$$Z = \frac{X - np}{\sqrt{np(1-p)}}$$

Ayrıca biliyoruzki $P(-1.96 \le Z \le 1.96) = 0.95$ 'tir. O halde

$$P\left(-1.96 \le \frac{X - np}{\sqrt{np(1-p)}} \le 1.96\right) = 0.95$$

$$P(np - 1.96 \times \sqrt{np(1-p)} \le X \le np + 1.96 \times \sqrt{np(1-p)}) = 0.95$$

Bu durumda X'in bu aralıkta olmama olasılığı 0.05'tir. X, bu aralığın dışında olduğunda populasyon oranının p'olduğuna pek inanamayız. O halde X bu aralığın dışındaysa p'yi reddedelim.

lpha'ya Ya Karar Verdikten Sonra Binomial Rastgele Değişken İçin Kritik Bölge Oluşturmak

Kritik Bölge Kritik Bölge H_0 'ı reddet H_0 'ı reddet H_0 'ı reddet $np_0-1.96 imes \sqrt{np_0(1-p_0)} \qquad np_0+1.96 imes \sqrt{np_0(1-p_0)}$

$$X \ge np_0 + 1.96 \times \sqrt{np_0(1-p_0)}$$
 olduğunda $H_0: p = p_0$ reddedilir. $X \le -np_0 + 1.96 \times \sqrt{np_0(1-p_0)}$ olduğunda $H_0: p = p_0$ reddedilir.

ör. Önceki hafta, başarı oranı 0.25 olan eski aşıdan daha iyi olduğu iddia edilen aşının 20 kişiye yapıldığını 8'inin fayda gördüğü örneğine bakmıştırk. Bu veri H_0 : p=0.25 hipotezini 0.05 anlamlılık düzeyinde çürütebilir mi?

 $20 \times 0.25 + 1.96 \times \sqrt{20 \times 0.25 \times 0.75} = 8.79$ olup, X = 8 olduğundan H_0 : p = 0.25 reddemeyiz. Bu yüzden yeni ilaç öncekeinden daha iyidir sonucuna varamayız (bunu diyebilmemiz için 20 kişiden en az 9'unda faydalı olması gerekiyordu).

Hipotez Testi Türleri

Tip-1 hatasını kontrol edebilmek için sıfır (null) hipotez her zaman eşitlik (=) ile kurulur: $H_0: p=p_0$ yada $H_0: \mu=\mu_0$ gibi. Fakat alternatif hipotez amacımıza uygun olarak büyüktür, küçüktür, yada eşit değildir gibi ifadelerle kurulur. Alternatif hipotezin tipine göre hipotez testinin türü belirlenir.

1) Bir Taraflı Test/Bir Kuyruklu Test) (One Sided/Tailed Test)

Bir hipotez testinde alternatif hipotezin tek bir tarafı varsa (büyüktür yada küçüktür gibi), bu teste tek taraflı (tek kuruklu) hipotez testi denir. Örneğin sıfır hipotezi H_0 : $\mu = 68$ ise bir taraflı testte alternatif hipotez H_1 : $\mu > 68$ yada H_1 : $\mu < 68$ olabilir.

Yada aşı örneğinde $H_0: p=0.25$ (iki aşı aynıdır) $H_1: p>0.25$ (yeni aşı daha iyidir)

bir kuyruklu hipotez testine örnektir.

Bir taraflı testte kritik bölge de bir taraflıdır. Örneğin H_0 : $\mu = \mu_0$ ve H_1 : $\mu > \mu_0$ iken $\alpha = 0.05$ anlamlılık düzeyinde kritik bölge:

Örneğin ortalaması olan \bar{X} , $\mu_0+\frac{\sigma}{\sqrt{n}}\times 1.645$ değerinden büyükse μ 'nün, μ_0 'dan yeterince büyük olduğunu düşünür, H_0 : $\mu=\mu_0$ hipotezini reddeder; H_1 : $\mu>\mu_0$ hipotezini kabul ederiz.

ör. Türkiye'deki insanların ortalama ömrünün 70'ten fazla olduğu düşünülüyor. Bunu test etmek için rastgele 100 tane ölüm raporu seçiliyor ve görülüyorki bu 100 kişinin ömürlerinin ortalaması 71.6. Türkiyedeki insanların ömürlerinin standart sapması 8.9 olduğu biliniyorsa, elimizdeki veriye dayanarak insanların ortalama ömrünün düşündüğümüz gibi 70'ten *fazla* olduğunu kanıtlayabilir miyiz?

 $\alpha = 0.05$ anlamlılık düzeyinde karar veriniz.

Çözüm.

$$H_0$$
: $\mu = 70$ ve H_1 : $\mu > 70$

Örneğin ortalaması olan $\bar{X}=71.6$; değeri $70+\frac{8.9}{\sqrt{100}}\times 1.645=71.5$ değerinden büyük olduğundan, H_0 : $\mu=70$ 'ı reddedip; H_1 : $\mu>70$ alternatif hipotezini kabul ederiz. Bu veri sayaesinde Türkiye'deki insanların ortalama ömrünün 70'ten fazla olduğunu düşünebiliriz.

(Dikkat edilirse, önceki örnekte (5. slaytta) aynı veri, sıfır hipotezini reddetmemeye neden oluyordu, inanların ortalama ömrünün 70 olduğunu çürütememiştik)

Benzer şekilde, H_0 : $\mu=\mu_0$ ve H_1 : $\mu<\mu_0$ iken $\alpha=0.05$ anlamlılık düzeyinde kritik

bölge:

Örneğin ortalaması olan \bar{X} , $\mu_0-\frac{\sigma}{\sqrt{n}}\times 1.645$ değerinden küçükse μ 'nün, μ_0 'dan yeterince küçük olduğunu düşünür, H_0 : $\mu=\mu_0$ hipotezini reddeder; H_1 : $\mu<\mu_0$ hipotezini kabul ederiz.

Eğer H_0 : $p = p_0$ ve H_1 : $p > p_0$ ise kritik bölge:

Kritik Bölge

 H_0 'ı reddetme

 H_0 'ı reddet

$$np_0 + 1.645 \times \sqrt{np_0(1-p_0)}$$

Binomial rastgele değişken $np_0+1.96\times\sqrt{np_0(1-p_0)}$ değerini aşarsa H_0 : $p=p_0$ hipotezini redderiz. H_1 : $p>p_0$ hipotezini kabul ederiz.

Eğer H_0 : $p = p_0$ ve H_1 : $p < p_0$ ise kritik bölge:

Kritik Bölge

 H_0 'ı reddet

 H_0 'ı reddetme

$$np_0 - 1.645 \times \sqrt{np_0(1-p_0)}$$

Binomial rastgele değişken $np_0-1.96 \times \sqrt{np_0(1-p_0)}$ değerinden küçükse H_0 : $p=p_0$ hipotezini redderiz. H_1 : $p< p_0$ hipotezini kabul ederiz.

ör. İstatistik dersini alanların başarı oranının 0.4'ten daha az olduğu düşünülüyor. Bu dersi alan toplam 96 öğrenciden 28'i başarılı olmuş ise, bu düşüncemiz doğru mudur?

Çözüm:

$$H_0$$
: $p = 0.4$ ve H_1 : $p < 0.4$

28, $96 \times 0.4 - 1.645 \times \sqrt{96 \times 0.4 \times 0.6} = 30.5$ 'ten küçük olduğundan H_0 : p = 0.4 reddedilir; H_1 : p < 0.4 kabul edilir. Bu dersi alanların başarı oranları 0.4'ten azdır diyebiliriz.

2) İki Taraflı Test (Two Sided Test)

Bir hipotez testinde alternatif hipotez bir değerden büyüktür yada küçüktür şeklinde değil, bir değerden farklıdır şeklinde oluştrulmuşssa yani yönü yoksa bu iki kuyruklu test denir. Örneğin sıfır hipotezi H_0 : $\mu=68$ ise , alternatif hipotez H_1 : $\mu\neq 68$ ise bu test iki kuyrukludur. Aşı örneğinde H_0 : p=0.25 (iki aşı aynıdır), H_0 : $p\neq 0.25$ (iki aşı aynıdır).

Soru:Hipotezimiz bir firmanın ürettiği malların %60'ının bozuk olduğu olsun. Bu mallardan 10 tane rastgele seçiliyor. Eğer bu mallardan 3 yada daha azı bozuk çıkarsa hipotezimizi reddedelim.

- i) Bu durumda test istatistigi, kritik bölge ve kiritik değer ne olur?
- ii) Tip-1 hatası yapma olasılığımız ne olur?

Soru:Bir temizlik ürününün uygulandığı leklerinin %70'inden fazlasını çıkartacağı iddia ediliyor. 12 rastgele leke seçiliyor. Eğer 10 lekeden daha azında bu temizlik ürünü başarılı olursa H_0 : p=0.7 hipotezini reddetmiyoruz, aski halde H_1 : p>0.7 hipotezini kabul ediyoruz. Bu durumda tip-1 hatası yapma olasılığı α ne olur?

Soru:Bir şehirden rastgele seçilmiş 400 kişiye yeni yapılan parkı sevip sevmedikleri soruluyor. Diyelimki eğer 220 ile 260 arası kişi sevdiğini söylerse; halkın %60'ının bu parkı sevdiğine karar verelim. Eğer halkın %60 'ı bu parkı sevmişse tip-1 hatası yapma olasılığı ne olur?

