Rugóállandó mérése

Mig András 2019 Március 08.

A méréseket végezte: Karsai Alexandra és Mig András

A mérések dátuma: 2019.03.08.

A mérés

1. A mérés célja

A mérés két részből áll. Az első részében bizonyítani kívánjuk a lineáris erőtörvényt, miszerint

$$F = -Dx$$

azaz, hogy a megnyúlás hossza egyenesen arányos a rugóra ható nyújtó erővel. A mérés második részében megmérjük a rugóra akasztott különböző teste rezgésidejét, és ebből megállapítjuk a rugóállandó nagyságát.

A méréseket megismételjük egy különböző rugóállandójú rugóval is.

2. Eszközök és összeállítás

A mérés elvégzéséhez szükségünk van egy egy állványra, amelyre a rugókat akasztjuk. Emellett szükségünk van még különböző súlyokra, egy mérőrúdra és egy stopperórára. A rugókat ráakasztjuk az állványra, majd megmérjük a rugó terheletlen hosszát.

3. Első mérés

A mérések első részében különböző súlyokkal mért megnyúlást vizsgáljuk. A mérés elrendezéséből adódóan a távolságok az álvány a aljától vett távolság, azaz nagyobb megnyúláshoz kisebb távolság tartozik.

	x [cm]		
m [g]	1. rugó	2. rugó	
0	43	43,6	
50	41,3	39,2	
100	39,5	34,8	
150	37,8	30,5	
200	36	25,8	
250	34,3	21,7	
300	32,5	17,2	

Ezekből a megnyúlás:

	Δx [cm]		
m [g]	1. rugó	2. rugó	
50	1,7	4,4	
100	3,5	8,8	
150	5,2	13,1	
200	7	17.8	
250	8,7	21.9	
300	10,5	26,4	

4. Második mérés

A következő mérésben különböző tömegeket rezgetünk a rugóra akasztva és azok rezgésa idejét számoljuk. Egy mérésben 10 rezgést mérünk, hogy az eredmények pontosabbak lehessenek. mindegyik súllyal három mérést végzünk.

	10T [s]							
m[g]	1. rugó		2. rugó					
m[g]	1. mérés	2. mérés	3. mérés	átlag	1. mérés	2. mérés	3. mérés	átlag
50	2,97	3,00	3,00	2,99	4,21	4,22	4,04	4,16
100	3,62	3,72	3,75	3,70	6,00	5,97	6,12	6,03
150	4,69	4,72	4,59	4,67	7,38	7,25	7,40	7,34
200	5,44	5,43	5,29	5,39	8,44	8,47	8,50	8,47
250	6,06	5,97	5,97	6,00	9,47	9,41	9,22	9,37
300	6,63	6,56	6,59	6,59	10,37	10,40	10,28	10,35

Kiértékelés

1. Elméleti háttér

Az első mérésnél be kívánjuk bizonyítani, hogy

$$F = Dx \tag{1}$$

aholFa rugóra akasztott súlyok tömegéből származó nehézségi erő, xa megnyúlás hossza, Dpedig a rugóra jellemzó rugóállandó

A második mérésnél tudjuk, hogy kis kitérésekre harmónikus rezgő mozgást végeznek a testek, melynek rezgés ideje:

$$T = 2\pi \sqrt{\frac{\mu}{D}} \tag{2}$$

ahol $\mu=m_{sulyok}+m_{eff}$ A rugó tömegéből: $m_{eff}=\frac{m_{rugo}}{3}$ Ebből a tömeget kifejezve:

$$m = \frac{DT^2}{4\pi} - m_{eff} \tag{3}$$

2. Első mérés

A súlyok tömegéből származó nehézségi erő, ha $g=9,81\frac{m}{s^2}$:

F[N]
0,4905
0,981
1,4715
1,962
2,4525
2,943

Az első mérés adatait ábrázolva, arra egyenest tudunk illeszteni:

1. ábra. Egyenes illesztése a mért adatokra

Ezzel bizonyíthatjuk az (1) egyenletben fennálló lineáris összefüggést a megnyúlás és a rugót megnyújtó erő között. Ezen felül az egyenes meredekségéből megkapjuk a D rugóállandót is. $D_1=0,281\frac{N}{cm}=28,1\frac{N}{m},$ $D_2=0,111\frac{N}{m}=11,1\frac{N}{m}$

3. Második mérés

A (3) egyenletet felhasználva, $\eta = \frac{T^2}{4\pi^2}$ helyetesítéssel:

$$m = D\eta - m_{eff} \tag{4}$$

A második mérés során kapott rezgési időből az η :

1.	rugó	2.	rugó
T[s]	$\eta \left[\mathrm{s}^2 \right]$	T [s]	$\eta \left[\mathrm{s}^2 \right]$
0,299	0.00226	0,416	0,00438
0,37	0.00347	0,603	0,00921
0,467	0.00552	0,734	0,0137
0,539	0.00736	0,847	0,0182
0,600	0.00912	0,937	0,0222
0,659	0.011	1,035	0,0271

Ezeket az $\eta\text{-at}$ a tömeg függvényében ábrázolva az adatokra egyenes illeszthetünk. A következők képpen:

2. ábra. η a tömeg függvényében

Az egyenes meredekségét leolvasva láthatjuk, hogy $D_1=27,9\frac{N}{m}$ és $D_2=11,1\frac{N}{m}$

Ellenőrzés

A mérés mellé adott egy ugyanolyan anyagból készül 4 méteres húr, aminek tömege 0,8 gramm. $\mu=0,8g/4m=0,2\frac{\rm g}{\rm m}$ Relatív hiba: $\frac{\Delta\mu}{\mu_{ref}}=\frac{0,0102}{0,2}=0,051$

Hibaszámítás

A mérés bizonytalanságát a szimmetrikus téglalap módszerével számoljuk ki a következő képpen:

$$\Delta D = \frac{2|y - y_{ill}|_{max}}{x_{max} - x_{min}} \tag{5}$$

avagy grafikusan értelmezve, ábrázolva az egyes mérések abszolút hiábit, köréjük rajzolva egy téglalapot, úgy hogy az egyik oldalának hossza megegyezzen a legnagyobb hiba abszolútértékének kétszeresével, másik oldala pedig a mérési tartományhosszával, a két oldal hányadosa megadja az illesztés bizonytalanságát.

3. ábra. A lineáris megnyúlás mérésének hibája az 1. rugónál

4. ábra. A lineáris megnyúlás mérésének hibája az 2. rugónál

5. ábra. A rezgetéssel mért η hibája az 1. rugónál

6. ábra. A rezgetéssel mért η hibája a 2. rugónál

Ahogy az ábrákról leolvashatjuk, a lineáris megnyúlás mérési bizonytalansága $\pm 0,02563\frac{N}{cm}=\pm 0,0002563\frac{N}{m}$ az elsőrugónál, $\pm 0,16310\frac{N}{cm}=\pm 0,0016310\frac{N}{m}$ a második rugónál.

Az η bizonytalansága pedig $\pm 0.0001168 \frac{kg}{s^2}$ az első rugónál, és $\pm 0.0003622 \frac{kg}{s^2}$. Így tehát az ábrázolt adatok bizonytalanságai:

	1. rugó	2. rugó
$\frac{F}{\Delta x}$	$\pm 0,02563 \frac{N}{cm}$	$\pm 0,16310 \frac{N}{cm}$
$\frac{m}{n}$	$\pm 0.0001168 \frac{kg}{s^2}$	$\pm 0.0003622 \frac{kg}{s^2}$

Diszkusszió

Az első mérés során beláttuk, hogy a rugó megnyúlása egyenesen arányos a megnyújtó erővel, és az arányossági tényezőjük egy, a rugóra jellemző adat. A második mérésnél kihasználtuk, hogy a rugóra akasztott test, ha kis amplitúdóval kitérítik, harmonikus rezőmozgást végez, melynek rezgési ideje négyzetesen függ a ráakasztott test tömegétől. Az itt megjelenő arányossági együttható szintén a rugóállandó.

A mérési hibák többek között abból származnak, hogy a mérő nem képes századmásodperc pontossággal elindítani és leállítani a stoppert, hogyha nem teljesen függőleges mozgást végez a test, kicsit megváltozik a rezgési ideje, illetve a mérő rúdról miliméter pontossággal lehet csak leolvasni a megnyúlást.