

National University of Sciences and Technology (NUST)

SEECS

Digital Image Processing

Pixel Connectivity

Pixel Neighborhood

 Neighbors of pixel are the pixels that are adjacent to the identified pixel.

(8 Connectivity)

We can divide distance between pixels in following categories

City Block Distance - D₄

Chess Board Distance - D₈

Euclidean Distance - DF

City block distance (D₄ distance)

calculate neighboring pixel distance if

1 small square = 1unit

City block distance (D₄ distance)

calculate neighboring pixel distance if

1 small square = 1unit

City block distance (D₄ distance)

calculate diagonal pixel distance if

1 small square = 1unit

City block distance (D₄ distance)

Can you write the equation to calculate the city block distance?

City block distance (D₄ distance)

$$D_4(p,q) = |x-s| + |y-t|$$

City block distance (D₄ distance)

Can you write the equation to calculate the Euclidean distance?

Euclidean Distance

$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

5	8	7	4	6
9	15	10	q(s,t)	2
17	14	1	5	18
27	2	9	19	22
p(x,y)	4	1	10	12

$$D = \{(1-4)^2 + (1-4)^2\}^0.5$$

$$D = 4.24$$

Chessboard distance (D₈ distance)

$$D_8 = D_4 \cup D_d$$

$$D_8(p,q) = \max(|x-s|,|y-t|)$$

Find minimum number of pixels between highlighted pixels using

4 Connectivity?

8 Connectivity?

Euclidean Distance?

							1	
						1	1	
		1	1	1	1	1	1	
		1	1	1				
1	1	1	1	1				
1	1							
1	1							

4 connectivity = 13

Find minimum number of pixels between highlighted pixels using

4 Connectivity?

8 Connectivity?

Euclidean Distance?

							1	
						1	1	
		1	1	1	1	1	1	
		1	1	1				
1	1	1	1	1				
1	1							
1	1							

4 connectivity = 13

Find minimum number of pixels between highlighted pixels using

4 Connectivity?

8 Connectivity?

Euclidean Distance?

							1	
						1	1	
		1	1	1	1	1	1	
		1	1	1				
1	1	1	1	1				
1	1							
1	1							

4 connectivity = 13

8 connectivity = 7

Euclidean Distance = 9.48

Which color object is meeting the requirements for the 4 connectivity, 8 connectivity or both?

Black = 4 & 8 Connectivity

Red = 8 Connectivity

Yellow = 4 & 8 Connectivity

Green = 8 Connectivity

Blue = 4 & 8 Connectivity

Connectivity

- Establishing boundaries of objects and components of regions in an image.
- Group the same region by assumption that the pixels are of same color or equal intensity
- · Two pixels p & q are connected if
 - They are adjacent in some sense
 - If their gray levels satisfy a specified criterion of similarity

4-Connectivity

V: Set of gray levels used to define the criterion of similarity

p,q: Pixels being observed

Set of gray levels $V = \{1\}$

$$(p,q) \in V$$
, and $q \in N_4(p)$

8-Connectivity

V: Set of gray levels used to define the criterion of similarity

P,q: Pixels being observed

Set of gray levels $V = \{1\}$

$$(p,q) \in V$$
, and $q \in N_8(p)$

 Process the image from left to right, top to bottom:

1.) If the next pixel to process is 1

ii.) If both are 1 and have the same label, copy it.

iii.) If they have different labels

- Copy the label from the left.
- Update the equivalence table.

iv.) Otherwise, assign a new label.

Pass 2

										1		
				2	2	2	2	2		1		
	3	3	3			2		2		1		
	3	3				2		2	2	2		
	3					2				2	2	
						2						
						2	2	2				
	4	4	4				2					

Table: 1,2

2

3

4

What will be values of table in second scan?

Background pixel

Unlabeled Pixel

Background pixel

Unlabeled Pixel

Label 1

Label 2

Labeling - Example

Original Image

Labeled Objects

Labeling - Example

Original Image

Labeled Objects

