

13.10.2021

Exercise Sheet 1

Mathematics of Data Science

Presented in Tutorial: 20.10.2021

Topics: Eigenvectors, norms, inner products, orthogonal projections

On each sheet you can find theoretical exercises concerning the course material.

• All exercises are presented in the tutorial each Wednesday at 10:30.

Further information you can find in the course-room

https://moodle.rwth-aachen.de/course/view.php?id=17730§ion=0

Exercise 1

Given a \mathbb{R} -vector space V, a mapping $(\cdot,\cdot):V\times V\to\mathbb{R}$ is called a symmetric inner product if the following properties hold:

- a) For all $v \in V$ we have $(v, v) \ge 0$.
- b) The property (v, v) = 0 implies that v = 0.
- c) For all $\lambda \in \mathbb{R}$ and all $u, v, w \in V$ we have $(v + \lambda u, w) = (v, w) + \lambda(u, w)$.
- d) For all $u, v \in V$ we have (u, v) = (v, u).

Prove the following statements:

a) The mapping $\|\cdot\|: V \to \mathbb{R}$ with

$$||v|| := \sqrt{(v,v)}$$

is a norm on V if (\cdot, \cdot) is an symmetric inner product on V.

b) The Frobenius scalar product defined by

$$\langle A, B \rangle_F := \operatorname{tr} \left(A B^T \right)$$

is a symmetric inner product on $\mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n}$ and the associated norm is the Frobenius norm

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{\frac{1}{2}}.$$

Given $A \in \mathbb{R}^{m \times n}$, $X = (\mathbb{R}^n, \|\cdot\|_X)$ and $Y = (\mathbb{R}^m, \|\cdot\|_Y)$

a) prove that

$$||A||_{X \to Y} := \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{||Ax||_Y}{||x||_X}$$

is a norm on $\mathbb{R}^{m \times n}$,

b) prove that

$$||A||_{l^2 \to l^2} = \max_{j=1,\dots,n} \sqrt{\lambda_j (A^* A)}$$

where $\lambda_{j}(A^{*}A)$ is the *j*-th eigenvalue of $A^{*}A$.

Exercise 3

Given the matrix $A \in \mathbb{R}^{3 \times 3}$ where

$$A = \begin{pmatrix} 7 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 7 \end{pmatrix}$$

calculate a diagonal matrix $D \in \mathbb{R}^{3 \times 3}$ and an orthogonal matrix $V \in \mathbb{R}^{3 \times 3}$ such that $A = VDV^{\top}$.

Exercise 4

Let $W \subset \mathbb{R}^m$ be a linear subspace of dimension k with orthonormal basis $w_1, \dots, w_k \in \mathbb{R}^m$ and let $u \in \mathbb{R}^m$. Prove the following statements:

- a) The minimizer \hat{w} of $\min_{w \in W} \|u w\|_2$ exists, is unique and is given by $\hat{w} = \sum_{j=1}^k \langle u, w_j \rangle w_j$.
- b) The difference vector $u \hat{w}$ is orthogonal to every vector $w \in W$.
- c) It holds $\|\hat{w}\|_2^2 = \sum_{j=1}^k \langle u, w_j \rangle^2$.
- d) It holds $||u \hat{w}||_2^2 = ||u||_2^2 \sum_{j=1}^k \langle u, w_j \rangle^2$.