The Cavendish Experiment

Adnan Basar (Partner: Kadir Simsek)*
2010205108
(Dated: April 5, 2013)

The object of this experiment is to measure the Gravitational Constant G.

1. INTRODUCTION

Gravitation is one of few classes of interaction found in nature. Newton discovered in the 17^{th} century that the same interaction that makes an apple fall from a tree is the same one that keeps the planets in orbit around the sun. Newton published the law of gravitation in 1687, which states that:

Every particle of matter in the universe attracts every other particle with a force that is directly proportional to the product of the masses and inversely proportional to the square of the distance between them.

This is represented mathematically by:

$$F = \frac{Gm_1m_2}{r^2}$$

In the above equation G refers to the universal gravitation constant which has units of $kg^{-1}s^{-2}$. However, more than a century elapsed before the magnitude of this constant was measured because the force is very small between any masses which could fit in a laboratory. It can be measured using a *Torsion Balance*, which was used in 1798 by Cavendish to measure vale of G.

FIG. 1: Experimental Setup

Due to gravitational force between the one pair of small and large masses, there exists a net torque:

$$\tau = 2Fd$$

At the end this net torque and naturally opposing torque produced by the will result in a damped oscillation of the dumbbell. The equation of this oscillation is

$$I\frac{d^2\theta}{dt^2} + k\theta = 0$$

where I is the moment of inertia of the dumbbell system and k is the torsion constant of the wire used. Observing the oscillations through the displacement of a laser beam which is reflected off the small mirror spotted in the middle of the dumbbell and falls on a scale at a distance L, the universal gravitation constant can be determined as

$$G = \frac{\pi^2 b^2 dS}{MT^2 L}$$

where b is the distance between the adjacent small and large masses M is the large mass, 2d is the length of the dumbbell, and S is the difference between the initial and the final equilibrium positions of the laser beam on the scale. T is the period of the oscillation determined by requiring time for one successive wavelength.

2. EXPERIMENTAL SETUP

Initial setted data for $M=1.498\ kg,\ d=0.050\ m$ and $b=0.0465\ m$

- Low Power Laser
- Scale
- Cavendish Torsion Balance With Large Masses
- Ruler

3. DATA ANALYSIS

Initially, we are some experiental data as in document $caven dish\ RP2111.doc$

- L=2 m
- $\Delta x = 0.03 \ m$
- $M = 1.038 \ kg$
- $m = 0.014 \ kg$

^{*}Electronic address: adnanbasarr@icloud.com

FIG. 2: Output of graph from Computer Cavendish Simulation Program

- $d = 0.05 \ m$
- $R = 0.05 \ m$
- $r = 0.0071 \ kg$
- $l_{boom} = 0,145 \ m$
- $m_{boom} = 0.0071 \ kg$
- $w_b = 0,0127 \ m$

We are going to find T, the period of oscillation of the boom about the wire from Figure 2 as $381 \ sec$.

In calculation parts, from the behaviours of the oscillation, we can calculate \boldsymbol{k} from

$$k = \left(\frac{4\pi^2}{T^2} + b^2\right)I$$

where I is the sum of the moments of inertia of the two small spheres $I_s = 2\left(md^2 + \frac{2}{5}mr^2\right)$ and the boom $I_b = \frac{m(l_{boom}^2 + w_{boom}^2)}{12}$ where w_{boom} is the width of the boom.

The displacement angle of a damped oscillator as a function of time is given by:

$$\theta_t(t) = \theta_e + Ae^{-bt}cos(\omega t + \phi)$$

By using derivations in References 3. we are going to have going to have corrected value G.

4. CONCLUSIONS

5. REFERENCES

- E. Gulmez, Advanced Physics Experiment, Istanbul, Bogazici University Publication, 1999
- http://web.mit.edu/8.13/www/experiments.shtml
- http://www.physics.uoguelph.ca/orbax/phys2440/GravitationalConstant.pdf

Acknowledgments

I would like to thank my partner Kadir Simsek for his help to the experiment, and also to the teaching assistant Serhat Istin for his guidance during the experiment.