UNIVERSIDAD NACIONAL

Facultad de Ciencias

Departamento de Matemáticas

TALLER

Profesores: H. Fabián Ramírez y S. Carolina García SISTEMAS DE ECUACIONES LINEALES Y VECTORES EN \mathbb{R}^n

OBSERVACIONES: "N.A" significa "Ninguna de las Anteriores". "F.I" significa "Falta Información". -La expresión (A|b) se refiere a una nueva matriz que tiene una columna más que A, es decir, ya no es la matriz ampliada, sino una nueva matriz de coeficientes (donde la columna b ya no representan los términos independientes, sino una columna de coeficientes de una nueva variable)

1. Encuentre todos los valores de a para los cuales cada una de las siguientes ecuaciones

$$(a-5)x = 5$$

$$(ii) - 2x = a$$

$$(iii) (a^2 - 9)x = 0$$

(ii)
$$-2x = a$$
 (iii) $(a^2 - 9)x = 0$ (iv) $(a^2 - 2)x = a + 2$

- tiene exactamente una solución.
- tiene infinitas soluciones.
- no tiene solución (es inconsistente).

2. Los siguientes sistemas de ecuaciones son no lineales. Encuentre sustituciones de las variables que conviertan cada uno de ellos en un sistema de ecuaciones lineales y utilice este último para resolver el sistema inicialmente

$$\frac{3}{x} + \frac{2}{y} = 0$$
$$\frac{4}{x} + \frac{3}{y} = 1$$

$$-2^{a} + 2(3^{b}) = 1$$

$$3(2^{a}) - 4(3^{b}) = 1$$

$$x^{2} - y^{2} = 3$$

$$x^{2} + 2y^{2} = 6$$

$$x^2 - y^2 = 3$$
$$x^2 + 2y^2 = 6$$

3. Dar condiciones sobre a tales que el sistema de ecuaciones lineales

$$\begin{cases} x + 2y - z = 1\\ 2x + 5y - z = 3\\ x + (a+2)y + (a^2 - 1)z = 2a \end{cases}$$

- No tenga solución
- Tenga infinitas soluciones (dar la solución general y geométricamente que es?)
- Tenga solución única (dar la solución)
- 4. Considere los sistemas de ecuaciones lineale

$$(1.) \left\{ \begin{array}{l} x + 2y - 5z = a \\ 2x - 3y + 4z = b \\ 3x - y - z = c \end{array} \right.$$

$$(2.) \left\{ \begin{array}{l} ax + y + z = a \\ x + by + z = b \\ x + y + cz = c \end{array} \right.$$

De las condiciones sobre los parámetros a, b, c para que los sistemas dados tengan

- Solución única
- Infinitas soluciones
- Ninguna solución
- 5. Dar condiciones sobre el parámetro a, para que el sistema:

$$\begin{cases} x + y - z = 2 \\ x + 2y + z = 3 \\ x + y + (a^2 - 5)z = a \end{cases}$$

1

- (a) No tenga solución.
- (b) Tenga infinitas soluciones (dar la solución general).
- (c) Tenga solución única (dar la solución).

6. Si al escalonar la matriz aumentada de un sistema de ecuaciones lineales, se obtiene

$$\left(\begin{array}{ccccc|cccc}
\sqrt{2} & 0 & 3 & -1 & 4 & 0 \\
0 & 2 & 2 & \pi & -1 & 1 \\
0 & 0 & 0 & a & 1 & 5 \\
0 & 0 & 0 & 0 & b^2 - b & b
\end{array}\right)$$

- Es el sistema consistente cuando a = b = 0? En caso de serlo, es la solución única?
- Es el sistema consistente cuando a = 1 y b = 0? En caso de serlo, es la solución única?
- Es el sistema consistente cuando a = 0 y b = 1? En caso de serlo, es la solución única?
- Si b=2 y $a\neq 0$, qué puede decirse del conjunto solución?
- Si b = 1 y $a \neq 0$, qué puede decirse del conjunto solución?
- Si $a \neq 0$, dé un valor de b (diferente de 0), en caso de que exista, para que el sistema sea consistente.
- Si $a \neq 0$, para que valores de b el sistema tiene infinitas soluciones?
- Si $a \neq 0$, para que valores de b el sistema tiene solución única?
- Si $a \neq 0$, para que valores de b el sistema es inconsistente?
- 7. Al resolver el sistema homogéneo de ecuaciones lineales $A\mathbf{x}=\mathbf{0}$ se obtuvo la siguiente forma escalonada reducida de A

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Diga cuáles de los siguientes vectores de \mathbb{R}^5 son soluciones del sistema original

$$\mathbf{v}_1 = \begin{pmatrix} -3 \\ -3 \\ 3 \\ 0 \\ 0 \end{pmatrix} \qquad \mathbf{v}_2 = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \qquad \mathbf{v}_3 = \begin{pmatrix} -a \\ -a - 1 \\ -a \\ 1 \\ 1 \end{pmatrix} \qquad \mathbf{v}_4 = t\mathbf{v}_3 \quad t \in \mathbb{R}$$

- 8. Justifique POR QUÉ cada una de las siguientes afirmaciones son VERDADERAS
 - (a) Si un sistema de ecuaciones lineales tiene solución única, su sistema de ecuaciones lineales homogéneo asociado también tiene solución única.
 - (b) Un sistema de ecuaciones lineales con 14 variables y 10 ecuaciones no tiene solución única.
 - (c) Un sistema de ecuaciones lineales con 27 variables y 13 ecuaciones puede no tener solución.
 - (d) Un sistema de ecuaciones lineales con 100 variables y 300 ecuaciones puede tener solución única.
 - (e) Un sistema de ecuaciones lineales homogéneo con 10 variables y 7 ecuaciones tiene infinitas soluciones.
 - (f) Un sistema de ecuaciones lineales homogéneo con 14 variables y 10 ecuaciones no tiene solución única.

2

- (g) Un sistema de ecuaciones lineales homogéneo con 100 variables y 300 ecuaciones puede tener solución única.
- (h) Un sistema de ecuaciones lineales consistente con 10 variables y 7 ecuaciones tiene infinitas soluciones.
- (i) Un sistema de ecuaciones lineales consistente con 14 variables y 10 ecuaciones no tiene solución única.
- (j) Un sistema de ecuaciones lineales consistente con 100 variables y 300 ecuaciones puede tener solución única.

9. Justifique POR QUÉ cada una de las siguientes afirmaciones son FALSAS

- (a) Si un sistema de ecuaciones lineales tiene solución, cualquier otro sistema de ecuaciones lineales con la misma matriz de coeficientes también tiene solución
- (b) Un sistema de ecuaciones lineales tiene solución siempre que su sistema de ecuaciones lineales homogéneo asociado tenga solución.
- (c) El tipo de conjunto solución de un sistema de ecuaciones lineales y el del sistema de ecuaciones lineales homogéneo asociado siempre es el mismo
- (d) Un sistema de ecuaciones lineales homogéneo con 27 variables y 13 ecuaciones puede no tener solución.
- (e) Un sistema de ecuaciones lineales con 10 variables y 7 ecuaciones tiene infinitas soluciones
- (f) Un sistema de ecuaciones lineales con 20 variables y 20 ecuaciones tiene solución única.
- (g) Un sistema de ecuaciones lineales homogéneo con 20 variables y 20 ecuaciones tiene solución única
- (h) Un sistema de ecuaciones lineales consistente con 20 variables y 20 ecuaciones tiene solución única.

10. APLICACIONES

Transportes

La compañía de transportes Rodríguez se especializa en carga pesada, para lo cual dispone únicamente de tractomulas T, camiones grandes C de motor 900c.c. y los llamados dobletroques D. Los talleres Reina de Bogotá se disponen abrir una sucursal en la zona franca de Cali con una base de 32 tornos industriales y 10 fresadoras manuales. Para el transporte de dicha maquinaria contratan a los Rodríguez quienes les informan que cada T puede transportar solo 2 tornos, cada C un torno y una fresadora, mientras que cada D un torno y 2 fresadoras. Determine el número de T, C y D que han de utilizar los Rodríguez para cumplirle a los talleres Reina.

• Hacer insecticidas

Para fabricar insecticidas se utilizan tres clases de compuestos. Una unidad del insecticida Magnon requiere 10mls de Nuvan, 30mls de Citronela B y 60mls de petróleo. Una unidad del Baygon requiere 20mls de Nuvan, 30mls de Citronela y 50mls de petróleo. Una unidad del insecticida Nocaut, requiere 50mls de Nuvan y 50mls de petróleo. Si se disponen de 1600mls de Nuvan, 1200mls de Citronela y 3200mls de petróleo. Determine cuántas unidades de los tres insecticidas pueden producirse usando todos los componentes disponibles.

• Edición de libros

Un editor publica un posible éxito de librería en tres presentaciones distintas: libro de bolsillo, club de lectores y edición de lujo. Cada libro de bolsillo necesita un minuto para el cosido y 2 para el pegado. Cada libro para el club de lectores necesita 2 minutos para el cosido y 4 para el pegado. Cada libro en edición de lujo necesita 3 minutos para el cosido y 5 para el pegado. Si la planta de cosido está disponible 6 horas diarias y la planta de pegado 11 horas, ¿cuántos libros de cada presentación se pueden producir

por día de modo que las plantas se aprovechen toda su capacidad?

• Fabricación de muebles

Un mueblero fabrica sillas, mesas para café y mesas para comedor. Se necesitan 10 minutos para lijar una silla, 6 para pintarla y 12 para barnizarla. Se necesitan 12 minutos para lijar una mesa para café, ocho para pintarla y 12 para barnizarla. Se necesitan 15 minutos para lijar una mesa para comedor, 12 para pintarla y 18 para barnizarla. La mesa de lijado está disponible 16 horas a la semana, la mesa de pintura 11 horas a la semana y la mesa de barnizado 18 horas. ¿Cuántas unidades de cada mueble deben fabricarse por semana de modo que las mesas de trabajo se ocupen todo el tiempo disponible?

• Cambio de divisas

Una empresaria necesita en promedio cantidades de yenes japoneses, libras inglesas y marcos alemanes durante cada viaje de negocios. Este año viajo tres veces. La primera vez cambio 2550 dolares con las siguientes tasas 100 yenes por dólar, 0.6 libras por dólar y 1.6 marcos por dólar. La segunda vez cambio 2840 dolares en total con las tasas de 125 yenes, 0.5 libras y 1.2 marcos por dólar. La tercera vez cambió un total de 2800 a 100 yenes, 0.6 libras y 1.2 marcos por dólar. Cuántos yenes, libras y marcos compró cada vez?

• Una aplicación a la trigonometría

Demuestre la ley de los cosenos.

Es decir, que para el triángulo ABC se cumple

$$\cos(\alpha) = \frac{b^2 + c^2 - a^2}{2bc}, \cos(\beta) = \frac{a^2 + c^2 - b^2}{2ac}, \cos(\gamma) = \frac{a^2 + b^2 - c^2}{2ab}$$

• Parábola Determine la ecuación de la parábola, con eje vertical y en el plano xy que pasa por los puntos (1,4), (-1,6) y (2,9).

• Balanceo de Reacciones Químicas

El balanceo de reacciones químicas consiste en introducir coeficientes enteros frente a cada uno de los reactivos, para que la cantidad de átomos de cada elemento sea igual en ambos lados de la ecuación. Balancee la reacción

$$a CH_4 + b O_2 \rightarrow c CO_2 + d H_2O$$
.

Es decir, calcule los coeficientes a,b,c,d que balance en la ecuación

Ayuda: Note que la cantidad de átomos de C, H y O deben ser iguales en ambos lados.

• Un problema de palancas en estática

Calcule los pesos w_1, w_2, w_3 y w_4 para balancear las siguientes palancas

Ayuda: Ley de la palanca Arquímedes: Dos masas en una palanca se equilibran cuando sus pesos son inversamente proporcionales a sus distancias al punto de apoyo

11. Determine si el primer vector es combinación lineal de los otros.

$$a) \begin{pmatrix} -9 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix} \qquad b) \begin{pmatrix} -2a - 2b \\ -a + 6b \\ 5a - b \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}, \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

- 12. Verifique que cualquier vector de \mathbb{R}^3 es combinación lineal de $\begin{pmatrix} 3 \\ 3 \\ -3 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -2 \\ 2 \\ 2 \end{pmatrix}$. Podemos afirmar que \mathbb{R}^3 es generado por estos vectores?
- 13. Determine para que valores de α , $gen \left\{ \begin{pmatrix} 0 \\ 1 \\ \alpha \end{pmatrix}, \begin{pmatrix} \alpha \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \alpha \\ 1 \end{pmatrix} \right\} = \mathbb{R}^3$
- 14. Dados $\mathbf{u} = \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix}$ $\mathbf{v} = \begin{pmatrix} 0 \\ 2 \\ -5 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix}$ y $H = \{\mathbf{u}, \mathbf{v}\}$, determine cuales de las siguientes proposiciones
 - (a) El vector \mathbf{v} está en H.
 - (b) El vector \mathbf{w} está en H.
 - (c) El vector \mathbf{v} está en $Gen\{H\}$.
 - (d) El vector \mathbf{w} está en $Gen\{H\}$.
 - (e) El vector $2\mathbf{u} \mathbf{v}$ está en $Gen\{H\}$.
 - (f) El vector $\mathbf{u} + 3\mathbf{w}$ está en Gen $\{H\}$.
- 15. Explique por qué, si el conjunto M contiene un vector no nulo, Gen(M) tiene infinitos vectores.
- 16. Dado un vector \mathbf{u} de \mathbb{R}^2 , geométricamente, qué es $\operatorname{Gen}\{\mathbf{u}\}$? $\operatorname{Gen}\{\mathbf{u}, 2\mathbf{u}\}$?
- 17. Dados los vectores \mathbf{u} , \mathbf{v} de \mathbb{R}^2 , geométricamente, qué es $\operatorname{Gen}\{\mathbf{u},\mathbf{v}\}$? qué es $\operatorname{Gen}\{\mathbf{u},\mathbf{v},\mathbf{u}+\mathbf{v}\}$?
- 18. Dados los vectores \mathbf{u} , \mathbf{v} de \mathbb{R}^3 , geométricamente, qué es $\operatorname{Gen}\{\mathbf{u},\mathbf{v}\}$? qué es $\operatorname{Gen}\{\mathbf{u},\mathbf{v},\mathbf{u}+\mathbf{v}\}$?
- 19. Escriba un conjunto generador de Gen{u, 2u}. Existe otro conjunto generador con menos elementos?
- 20. Escriba un conjunto generador de Gen{u, v}. Existe otro conjunto generador con menos elementos?
- 21. Escriba un conjunto generador de $Gen\{u, v, u + v\}$. Existe otro conjunto generador con menos elementos?
- 22. Verifique que $Gen\{\mathbf{u}, \mathbf{v}\} = Gen\{\mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v}\}.$
- 23. Si $H = \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ es l.i., determine cuál de la siguientes afirmaciones es falsa.
 - (a) $Gen \{ \mathbf{u} + \mathbf{v}, \mathbf{v} \mathbf{w} \} \subseteq Gen(H)$ (b) $H \subseteq Gen(H)$ (c) $\mathbf{0} \in Gen(H)$

- (d) $\{\mathbf{u}, \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} + \mathbf{w}\}$ es l.d
- 24. Considere los vectores en \mathbb{R}^3 dados por $\mathbf{u}=(2,-1,1), \mathbf{v}=(0,1,1), \mathbf{v}=(2,1,3)$. Muestre que $\operatorname{Gen}\{\mathbf{u}+\mathbf{v}\}$ $\mathbf{v}, \mathbf{v} - \mathbf{w} \subseteq \text{Gen}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}, \text{ y determine si estos conjuntos son iguales.}$
- 25. Cuáles de los siguientes conjuntos de vectores son l.i.? $\mathbf{u} \neq \mathbf{0} \ \mathbf{v} \neq \mathbf{0}$

- a) $\{\mathbf{u}, \mathbf{v}, \mathbf{0}\}$ b) $\{\mathbf{u}, \mathbf{v}, 2\mathbf{u}\}$. c) $\{\mathbf{u}, \mathbf{v}, \mathbf{u} \mathbf{v}\}$. d) $\{\mathbf{u}, \mathbf{v}, \text{tales que } \mathbf{u} \cdot \mathbf{v} = 0\}$
- 26. Dados los vectores no nulos \mathbf{u} y \mathbf{v} de \mathbb{R}^3 y $H = \{\mathbf{u}, \mathbf{v}\}$, seleccione entre las siguientes afirmaciones una VERDADERA.
 - $\square Gen\{\mathbf{u}\} \subseteq Gen(H)$.
- $\Box \mathbf{u} + \mathbf{v} \in H$.
- $\Box Gen(H) = Gen\{\mathbf{u}\} \cup Gen\{\mathbf{v}\}.$
- $\Box \ Gen\{\mathbf{u}\} = Gen\{\mathbf{v}\}$
- 27. Dados los vectores no nulos **u** y **v**, seleccione entre las siguientes afirmaciones, una VERDADERA
 - $\square \{\mathbf{u}, \mathbf{v}, \mathbf{0}\} \text{ es } l.i. \quad \square \{\mathbf{u}, \mathbf{v}, \lambda \mathbf{u}\} \text{ es } l.i.$
- $\square \{\mathbf{u}, \mathbf{v} \text{ tales que } \mathbf{u} \cdot \mathbf{v} = 0\} \text{ es } l.i. \quad \square \{\mathbf{u}, \mathbf{v}, \mathbf{u} \mathbf{v}\} \text{ es } l.i.$
 - \square N.A
- 28. Sean A una matriz de m filas y n columnas y U una matriz escalonada equivalente a A. Si para cualquier vector \mathbf{b} de \mathbb{R}^m , el sistema de ecuaciones lineales, cuya matriz aumentada es $[A|\mathbf{b}]$, tiene solución única, determine cuales de las siguientes afirmaciones son verdaderas. Justifique su respuesta.
 - (a) El vector b es combinación lineal de las columnas de A.
 - (b) El vector b es combinación lineal de las columnas de U.
 - (c) Cada fila de *U* tiene un pivote.
 - (d) Cada columna de *U* tiene un pivote.

- (e) La matriz U tiene n pivotes.
- (f) La matriz U tiene m pivotes.
- (g) m=n.
- (h) Las columnas de A generan a \mathbb{R}^m
- 29. Sean A una matriz de m filas y n columnas y U una matriz escalonada equivalente a A. Si para cualquier vector \mathbf{b} de \mathbb{R}^m , el sistema de ecuaciones lineales, cuya matriz aumentada es [A|b], tiene infinitas soluciones, determine cuales de las siguientes afirmaciones son verdaderas. Justifique su respuesta.
 - (a) El vector b es combinación lineal de las columnas de A.
 - (b) El vector \mathbf{b} es combinación lineal de las columnas de U.
 - (c) Cada fila de U tiene un pivote.
 - (d) Cada columna de U tiene un pivote.
 - (e) La matriz U tiene n pivotes.
 - (f) La matriz U tiene m pivotes.
 - (g) m < n.
 - (h) Las columnas de A generan a \mathbb{R}^m
- 30. Sean A una matriz de m filas y n columnas y U una matriz escalonada equivalente a A. Si **para un vector** \mathbf{b} de \mathbb{R}^m , el sistema de ecuaciones lineales, cuya matriz aumentada es [A|b], **es inconsistente**, determine cuales de las siguientes afirmaciones son verdaderas y responda a las preguntas formuladas. Justifique su respuesta.
 - (a) El vector \mathbf{b} es combinación lineal de las columnas de A.
 - (b) El vector \mathbf{b} puede ser combinación lineal de las columnas de U.
 - (c) Cada fila de U tiene un pivote.
 - (d) El vector **b** puede ser 0.
 - (e) El vector \mathbf{b} puede ser un múltiplo de alguna de las columnas de A?
 - (f) El vector \mathbf{b} puede ser la suma de las columnas de A?
 - (g) Las columnas de A generan a \mathbb{R}^m .
 - (h) Qué puede decirse del número de pivotes de U?
- 31. Dados los vectores $\mathbf{a} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ $\mathbf{b} = \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}$ $\mathbf{c} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ y la matriz $A = \begin{pmatrix} -1 & 3 & -5 \\ 2 & 5 & -1 \\ 0 & -1 & 1 \\ -2 & 0 & -4 \end{pmatrix}$
 - (a) Para que valor de n, el vector $\mathbf{z} = A\mathbf{b}$ pertenece a \mathbb{R}^n ?
 - (b) El vector **a** pertenece al espacio nulo de A? Al espacio columna de A?
 - (c) El vector cero pertenece al espacio nulo de A? Al espacio columna de A?
 - (d) El vector $\mathbf{v} = A\mathbf{b}$ pertenece al espacio nulo de A? Al espacio columna de A?
 - (e) El vector \mathbf{c} pertenece al espacio columna de A? Al espacio nulo de A?
 - (f) $\downarrow \operatorname{Gen} \left\{ \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}, \begin{pmatrix} 4 \\ -10 \\ 2 \end{pmatrix} \right\} = \operatorname{Gen} \left\{ \begin{pmatrix} 0 \\ -5 \\ 8 \end{pmatrix}, \begin{pmatrix} -1 \\ 5 \\ -5 \end{pmatrix} \right\}?$
- 32. Determine cuales de las siguientes afirmaciones son verdaderas.
 - (a) Si $\mathbf{u} \cdot \mathbf{v} = 0$, entonces $\mathbf{u} = \mathbf{0}$ ó $\mathbf{v} = \mathbf{0}$.
 - (b) Si $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$, entonces $\mathbf{v} = \mathbf{w}$.
 - (c) Cualquier vector de \mathbb{R}^n es l.i.
 - (d) Cualquier par de vectores diferentes de \mathbb{R}^n son l.i.
 - (e) Cualquier tres vectores diferentes de \mathbb{R}^3 son l.i.
 - (f) Cualquier tres vectores diferentes de \mathbb{R}^2 generan a \mathbb{R}^2 .
 - (g) Cualquier par de vectores l.i. de \mathbb{R}^2 generan a \mathbb{R}^2 .
 - (h) Si el conjunto de vectores $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ es l.i., entonces el conjunto de vectores $\{\mathbf{u}, \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} + \mathbf{w}\}$ es l.i.

- (i) Si A es una matriz $m \times n$, cuyas columnas son vectores l.i., entonces el sistema, cuya matriz aumentada asociada es $[A|\mathbf{b}]$, tiene solución para cualquier vector \mathbf{b} de \mathbb{R}^m .
- (j) Si A es una matriz $n \times n$, cuyas columnas son vectores l.i., entonces el sistema, cuya matriz aumentada asociada es $[A|\mathbf{b}]$, tiene solución única para cualquier vector \mathbf{b} de \mathbb{R}^n .
- (k) Si el vector u es ortogonal a los vectores v y w, entonces u es ortogonal a cualquier combinación lineal no nula de \mathbf{v} y \mathbf{w} .
- 33. Si $A\mathbf{x} = \mathbf{0}$ es el sistema homogéneo asociado al sistema $A\mathbf{x} = \mathbf{b}$, $(\mathbf{b} \neq \mathbf{0})$
 - Toda solución del homogéneo es solución de $A\mathbf{x} = \mathbf{b}$.?
 - Si el homogéneo tiene infinitas soluciones, $A\mathbf{x} = \mathbf{b}$ también tiene infinitas soluciones? En caso afirmativo

34. Si
$$\begin{pmatrix} 3 \\ 1 \\ -4 \end{pmatrix} = x \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

- ¿Cuál es el sistema de ecuaciones que le corresponde?
- ¿Tiene solución única?
- 35. Sea $S = \{(x, y, z, w) : x + y = 0, z = 2w\}$ ¿Cuántas variables libres hay en S?
- 36. Sea $S = \{(x, y, z) : x = 1, y = 2z\}$. Escriba un sistema $A\mathbf{x} = \mathbf{b}$, $A_{3\times 3}$ tal que S sea su solución
- 37. Sean $A = [\mathbf{a_1} \quad \mathbf{a_2} \quad \mathbf{a_3} \quad \mathbf{a_4}]$ y b tales que una forma escalonada de la matriz aumentada del sistema $A\mathbf{x} = \mathbf{b}$ es

$$(U|\mathbf{c}) = \begin{pmatrix} 1 & -5 & 2 & 1 & 2 \\ 0 & -3 & 0 & 0 & 7 \\ 0 & 0 & \lambda & 0 & 1 - \lambda \\ 0 & 0 & 0 & \lambda^2 - \lambda & \lambda \end{pmatrix}$$

- Si $\lambda = 0$, el sistema $A\mathbf{x} = \mathbf{b}$ tiene:
 - (a) única solución
- (b) infinitas soluciones
- (c) ninguna solución

- Si $\lambda = 1$, el sistema $A\mathbf{x} = \mathbf{b}$ tiene:
 - (a) única solución
- (b) infinitas soluciones
- (c) ninguna solución

- Si $\lambda = -1$, el sistema $A\mathbf{x} = \mathbf{b}$ tiene:
 - (a) única solución
- (b) infinitas soluciones
- (c) ninguna solución
- Para $\lambda = 0$, es correcto decir que las columnas de A son linealmente independientes?
 - (a) Sí
- (b) No
- (c) Depende de **b**
- Para $\lambda = 2$, es correcto afirmar que las columnas de A generan a \mathbb{R}^4 ?
 - (a) Sí
- (b) No
- (c) Depende de **b**
- * Para $\lambda = 0$, es correcto afirmar que las columnas de (A|b) genera
 - (a) un hiperplano de \mathbb{R}^4
- (b) un plano de \mathbb{R}^4 (c) todo \mathbb{R}^4
- (d) una recta de \mathbb{R}^4

• Si $\lambda = 0$, el espacio nulo de A es:

$$(a) \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

 $(b) \mathbb{R}^4 \qquad (c) \emptyset \qquad (d) \operatorname{Gen} \left\{ \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 2 \\ 0 \end{pmatrix} \right\}$

(e) N.A

- Para $\lambda = 1$, es correcto afirmar que las columnas de (A|b) generan a \mathbb{R}^4 ?
 - (a) Sí
- (b) No
- (c) Depende de **b**

38. Sean $A = [\mathbf{a_1} \ \mathbf{a_2} \ \mathbf{a_3}]$	$\mathbf{a_4}$] y \mathbf{b} tales que	una forma escalona	da de la matriz aum	entada del sistema		
$A\mathbf{x} = \mathbf{b}$ es	$[\mathbf{U} \mathbf{c}] = \left(egin{array}{ccc} 1 & - \ 0 & - \ 0 & 0 \ 0 & 0 \end{array} ight)$	$\begin{bmatrix} 1 & 0 & 0 \\ 2 & -1 & 2 \\ 0 & \beta - 1 & 0 \\ 0 & 0 & \alpha^2 - \alpha \end{bmatrix}$	$\begin{pmatrix} 4 \\ 3 \\ \beta^2 - 1 \\ 3\alpha \end{pmatrix}$			
• Si $\beta = 1$ y $\alpha = -1$, el s	Si $\beta = 1$ y $\alpha = -1$, el sistema $A\mathbf{x} = \mathbf{b}$ tiene:					
(a) única so	olución (b) infin	nitas soluciones	(c) ninguna solució	'n		
• Si $\beta = -1$ y $\alpha = 2$, el s	sistema $A\mathbf{x} = \mathbf{b}$ tiene:					
(a) única so	olución (b) infir	nitas soluciones	(c) ninguna solució	ón		
• Si $\beta = 3$ y $\alpha = 1$, es co	orrecto afirmar que el c	conjunto de vectores	$\{a_1, a_2, a_3, a_4\}$ gen	era a \mathbb{R}^4 ?		
(a) Sí	(b) No	(c) Depend	le mucho de ${f b}$			
• Si $\beta = 1$ y $\alpha = 1$, un ve	ector del espacio colun	nna de U es:				
$(a)\begin{pmatrix}4\\3\\0\\3\end{pmatrix}$	$(b)\begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}$	$(c) \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}$	$(d)\begin{pmatrix}1\\1\\0\\0\end{pmatrix}$	(e) N.A		
• Si $\beta = 2$ y $\alpha = 0$, un ve	ector del espacio nulo	de A es:				
$(a)\begin{pmatrix} -1\\1\\0\\1 \end{pmatrix}$	$(b)\begin{pmatrix}1\\-1\\0\\1\end{pmatrix}$	$(c) \begin{pmatrix} 1\\1\\0\\-1 \end{pmatrix}$	$(d)\begin{pmatrix}1\\1\\0\\1\end{pmatrix}$	(e) N.A		
• Si $\beta = 1$ y $\alpha = 0$, el co	njunto de vectores $\{a_1$	$, a_2, a_3, a_4 \}$				
$(a)\ es\ l.i$	(b) son las columnas	de U (c) es $l.a$	d (d) es el espac	io C_A		
• Si $\beta = -1$ y $\alpha = 1$, el s	sistema $A\mathbf{x} = \mathbf{b}$ tiene:					
□ única so	lución □ infini	itas soluciones	□ ninguna solución	L		
• Si $\beta = 1$ y $\alpha = 2$, el sis	stema $A\mathbf{x} = \mathbf{b}$ tiene:					
□ única so	lución 🗆 infini	itas soluciones	□ ninguna solución	I.		
• Si $\beta = 3$ y $\alpha = -1$, es	correcto afirmar que el	l conjunto de vectore	$\{a_1, a_2, a_3, a_4\} ge$	enera a \mathbb{R}^4 ?		
□ Sí	\square No	\Box Depende	e del valor b			
• Si $\beta = 1$ y $\alpha = -1$, un	vector del espacio colu	ımna de U es:				
$ \Box \begin{pmatrix} 4 \\ 3 \\ 0 \\ 3 \end{pmatrix} $	$ \Box \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix} $	$ \Box \begin{pmatrix} -1 \\ 0 \\ 1 \\ -1 \end{pmatrix} $	$ \Box \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} $	□ N.A		
• Si $\beta = 1$ y $\alpha = 0$, un ve	ector del espacio nulo	de A es:				
$ \Box \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix} $	$ \Box \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} $	$ \Box \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix} $	$ \Box \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} $	□ N.A		
• Si $\beta = -1$ y $\alpha \neq 0$, poo	demos afirmar que el c	conjunto de vectores	$\{\mathbf{a_1}, \ \mathbf{a_2}, \ \mathbf{a_3}, \ \mathbf{a_4}\} $ es l	,i?		
$\square Si$ $\square Si, p$	ues aquí $\mathbf{b} = 0$ \square N	No, pues aquí $\mathbf{b} \neq 0$	$\square No \square F.I. pa$	ra concluir		

	• Para $\beta = 1$ y $\alpha = 0$, ur $\Box \{\mathbf{a}_1, \mathbf{a}_2\}$	conjunto de col $\Box \{ \mathbf{a}_1, \dots, \mathbf{a}_n \}$		es $\square \{\mathbf{a}_1, \mathbf{a}_3\}$	$\square \; \{a_1,a_4\}$				
	• Para $\beta=-1$ y $\alpha=1$, el sistema homogéneo asociado a $Ax=b$ \Box es inconsistente \Box tiene solución única \Box tiene infinitas soluciones								
	• * Para $\beta = 1$ y $\alpha = 1$, \Box Un plano en \mathbb{R}^4		s columnas de A perplano en \mathbb{R}^4	, genera □ Una recta	en \mathbb{R}^4				
	• * Para $\beta = 1$ y $\alpha = -1$ \square Un plano en \mathbb{R}^4		de A , N_A generate perplano en \mathbb{R}^4	□ Una recta	en \mathbb{R}^4 \square Un punto				
39.	Sean $A = [\mathbf{a_1} \ \mathbf{a_2} \ \mathbf{a_3}]$ $A\mathbf{x} = \mathbf{b}$ es		1 1 0	escalonada de la n $ \begin{array}{c cc} 0 & 4 \\ 2 & 3 \\ \alpha & \beta^2 - 1 \\ \alpha^2 - \alpha & 3\alpha \end{array} $	natriz aumentada del sistema				
	 Si β = 1 y α = 0, de un conjunto generador de Gen{a₁, a₂, a₃, a₄} con menos elementos. Si β = 2 y α = 3, dar el espacio columna de la matriz A. Si β = -1 y α = 1, dar el espacio nulo de la matriz (A b). * Si β = 1 y α = 1, las columnas de (A b) genera 								
	\square Un plano en \mathbb{R}^4 .	$\square \mathbb{R}^3$		$\square \mathbb{R}^4$	\square Un hiperplano en \mathbb{R}^4 .				
40.	Sean u , v vectores unitar • La proyección del ve			es:					
	\Box v	\Box u	$\square \ 2\mathbf{u}$	□ 0	\square N.A				
	• La norma del vector	$3\mathbf{u} + 4\mathbf{v}$ es:							
	□ 15	□ 7	□ 1	\Box 5	□ N.A				
41.	El triángulo con vértices	en $P = (2, 2, 0),$	Q = (1, 0, 1) y R	= (4,1,1) es:					
	\square Escaleno \square	Equilátero	□ Isósceles	□ Rectáng	ılo □ N.A				
42.	2. Considere los vectores $\mathbf{e_1} = (1,0,0), \mathbf{e_2} = (0,1,0), \ y \ \mathbf{u_a} = (1,a,2) \ \text{en} \ \mathbb{R}^3$. Encuentre los valores de $a \in \mathbb{R}$ para los cuales las proyecciones de $\mathbf{e_1}$ y $\mathbf{e_2}$ sobre $\mathbf{u_a}$ coinciden.								
43.	 3. Considere los vectores en R³ dados por u = (1,0,3) y v = (2,1,0). (a) Encuentre la proyección de u sobre v: (b) Determine si existe un vector w ∈ R³ tal que proy_vu = proy_wv; (c) Determine si el vector u - v es ortogonal al vector (1,1,-3); 								
44.	Sean $A = \begin{bmatrix} \mathbf{a_1} & \mathbf{a_2} & \mathbf{a_3} \end{bmatrix}$	y b tales que un	na forma escalona	da de la matriz aum	nentada del sistema $A\mathbf{x} = \mathbf{b}$ es				
		$[\mathbf{U} \mathbf{c}]$	$= \begin{pmatrix} 4 & -2 & - \\ 0 & 5 & - \\ 0 & 0 & a + \\ 0 & 0 & 0 \end{pmatrix}$	$ \begin{array}{c c} 1 & 2 \\ 5 & 5 \\ -1 & a+a^2 \\ a^2-1 \end{array} $					
	• Para $a \neq -1$, el siste \square es inconsistente		= b nfinitas solucione	s □ tiene s	olución única				
	• Para $a = 0$, el sisten \Box es inconsistente	na original, $Ax =$			olución única				

	• Para $a = -1$, el sis \Box es inconsistente	stema original, $Ax = b$ \Box tiene infinitas	s soluciones	□ tiene sol	ución única		
	• Para $a = -1$, un v	rector del espacio nulo de	A es				
	$\square \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$ \Box \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} $		$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$	□ N.A	L	
	• Un vector del espa	icio columna de A es		<i>(</i>)			
	$\square \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$ \Box \begin{pmatrix} 2 \\ 5 \\ 0 \\ 0 \end{pmatrix} $		$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$	□ N.A		
	• Para $a = -1$, un of $\Box \{\mathbf{a}_1, \mathbf{a}_3\}$	conjunto de columnas $l.d.$ $\square \ \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$		$\square \ \{\mathbf{a}_1,\mathbf{a}_2\}$		□ N.A	
	• Para $a \neq -1$, el sis \Box es inconsistente	stema homogéneo asociac tiene solución		\Box tiene infinitas	soluciones	□ N.A	
	• * Para $a = 1$, el co \square Un plano en \mathbb{R}^4	onjunto de las columnas o □ Un hiperplar		□ Una recta e	n \mathbb{R}^4	□ N.A	
45.	Sean u , v vectores no r	nulos y paralelos tales que	$= 2(2\mathbf{v} - \mathbf{u}) \cdot \mathbf{v}$	r=0.			
	a) El vector \mathbf{u} en térmi $\Box \mathbf{u} = \frac{1}{2}\mathbf{v}$	nos del vector \mathbf{v} es: $\square \ \mathbf{u} = \mathbf{v}$	$\square \ \mathbf{u} = 2\mathbf{v}$	\square u =	$4\mathbf{v}$	□ N.A	
		la norma del vector $3\mathbf{u}$ - \square	– 2 v es: □ 8	□ 16		□ N.A	
46.	Si \mathbf{u} y \mathbf{v} son vectores n $\square \mathbf{w} = \lambda \mathbf{u}, \ \lambda \neq 0$	o nulos tales que $\mathbf{u} \cdot \mathbf{v} = \Box \mathbf{v} = \lambda \mathbf{u}, \ \lambda \neq 0$		\mathbf{v} , entonces $\mathbf{w} = 0$,	□ N.A		
47.	Si $\mathbf{u} \ \mathbf{y} \ \mathbf{v}$ son vectores n $\square \ \mathbf{w} = \mathbf{u}$	o nulos paralelos y $\mathbf{w} = \mathbf{F}$ $\square \ \mathbf{w} = \mathbf{v}$	$\operatorname{Proy}_{\mathbf{u}}\mathbf{v}$, entono		$\square \ \mathbf{u} \cdot \mathbf{w} =$	= 0	
48.	Seleccione, entre las sig	uientes afirmaciones, DO	S VERDADE	RAS.			
	a) Cualquier tres vectores diferentes de \mathbb{R}^3 son $l.i$:						
	b) $H = \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ es un conjunto $l.i.$ si ninguno de los vectores es paralelo con alguno de los otros.						
	c) Cualquier par de vectores de \mathbb{R}^2 generan a \mathbb{R}^2 .						
	d) Si A es una matriz columnas de A son	z 4×5 y el sistema $Ax = 1$ d. $l.d.$	b tiene soluci	ón para cualquier	vector b de \mathbb{R}^4	, entonces las	
	e) Dada la matriz A	$= [\mathbf{a}_1 \ 2\mathbf{a}_1 \ 3\mathbf{a}_1]; \ \mathrm{con} \ \mathbf{a}_1 \in$	\mathbb{R}^5 , entonces of	el espacio nulo de	A está conteni	do en \mathbb{R}^3 .	
	f) Si el vector \mathbf{u} es proposition no nula de \mathbf{v} y \mathbf{w} .	oaralelo a los vectores \mathbf{v} y	y w, entonces	${f u}$ es ortogonal a c	cualquier comb	oinación lineal	
	g) Dada la matriz A en \mathbb{R}^3 .	$= [\mathbf{a}_1 \ 2\mathbf{a}_1 \ 3\mathbf{a}_1]; \ \mathrm{con} \ \mathbf{a}_1 \in \mathbb{R}$	\mathbb{R}^5 , entonces e	el espacio columna	de A es una re	ecta contenido	
49.	Si $H = \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ es $l.i.$, determine cuáles de las	siguientes afir	rmaciones son verd	aderas.		
	 (a) Gen {u + v, v - (e) w es combinación 	$\{\mathbf{w}\} = Gen(H)$ (b) on lineal de $\mathbf{u} \ \mathbf{v}$	$Gen\{\mathbf{u},\mathbf{v}\}\subseteq Gen\{\mathbf{u},\mathbf{v}\}$	$Gen(H)$ (c) $0 \in$	H (d) Gen	n(H) es $l.i$	
50.	En \mathbb{R}^3 , si u y v son vec	etores ortogonales, determ	nine cuál de la	s siguientes afirma	iciones es falsa	ι.	
	$\label{eq:continuous} \square \ \{\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v}\} \ \mathrm{es} \ \mathrm{l.d.}$	$\square \{\mathbf{u}, \mathbf{v}, (\mathbf{u} \cdot \mathbf{v})\mathbf{v}\} \text{ es l.d}$	d. \square { $\mathbf{u}, \mathbf{v}, 2$ \mathbf{u}	$(\mathbf{u} - 3\mathbf{v})$ es l.d. \square	$\{\mathbf{u}, \mathbf{v}, \mathbf{Proy_u}\}$	$2v$ } es l.d.	

- 51. Seleccione, entre las siguientes afirmaciones, DOS VERDADERAS.
 - a) Cualquier tres vectores diferentes de \mathbb{R}^3 son l.i:
 - b) Si A es una matriz 4×5 y el sistema Ax = b tiene solución para cualquier vector b de \mathbb{R}^4 , entonces las columnas de A son l.i.
 - c) $H = \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ es un conjunto l.i. si ninguno de los vectores es paralelo con alguno de los otros.
 - d) Si el vector \mathbf{u} es paralelo a los vectores \mathbf{v} y \mathbf{w} , entonces \mathbf{u} es ortogonal a cualquier combinación lineal no nula de \mathbf{v} y \mathbf{w} .
 - e) Si A es una matriz 4×4 y el sistema Ax = b no tiene solución para un vector b, entonces el vector b si puede ser combinación lineal de las columnas de U.
 - f) Cualquier par de vectores de \mathbb{R}^2 generan a \mathbb{R}^2 .
 - g) Dada la matriz $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3];$ con $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \in \mathbb{R}^5$, entonces el espacio nulo de A está contenido en \mathbb{R}^3 .
 - h) Dada la matriz $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$; con $\mathbf{a}_1, \mathbf{a}_2; \mathbf{a}_3 \in \mathbb{R}^5$, entonces el espacio columna de A está contenido en \mathbb{R}^3 .
- 52. Sean \mathbf{u}, \mathbf{v} vectores en \mathbb{R}^n tales que $\|\mathbf{u}\| = 3$, $\|\mathbf{v}\| = 2$ y el ángulo entre ellos es π , entonces $(3\mathbf{u} + \mathbf{v}).(\mathbf{u} 2\mathbf{v})$ es igual a:
- 53. Sean $\mathbf{u} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ y $\mathbf{v} = \begin{pmatrix} 2 \\ -4 \\ -2 \end{pmatrix}$ vectores en \mathbb{R}^3 . La proyección ortogonal de \mathbf{u} sobre \mathbf{v} es $\mathbf{Proy_v}\mathbf{u} = \begin{pmatrix} \\ \\ \end{pmatrix}$ y la componente ortogonal es $\mathbf{u}_c = \begin{pmatrix} \\ \\ \end{pmatrix}$.
- 54. Sean u, v, w vectores no nulos de \mathbb{R}^n . Indique si son falsas o verdaderas las siguientes afirmaciones. Argumentando su respuesta
 - (a) Si $_{v+w}(u) =_v u +_w u$
 - (b) Si $||u+v|| = ||u-v|| \Rightarrow u \perp v$
 - (c) Si ||u + v|| = 1 y $||u v|| = 5 \Rightarrow u \cdot v = 5$
- 55. Sean O = (0,0,0), P = (2,1,0), Q = (1,1,-1) y R = (0,1,-3) vectores en \mathbb{R}^3 .
 - Un vector unitario con la misma dirección y sentido contrario de \overline{QR} es:

(a)
$$\left(\frac{-1}{\sqrt{5}}, 0, \frac{2}{\sqrt{5}}\right)$$
 (b) $\left(\frac{1}{\sqrt{5}}, 0, \frac{-2}{\sqrt{5}}\right)$ (c) $\left(\frac{1}{\sqrt{5}}, 0, \frac{2}{\sqrt{5}}\right)$ (d) $\left(\frac{-1}{\sqrt{5}}, 0, \frac{-2}{\sqrt{5}}\right)$ (e) N.A

- El ángulo entre \overline{PQ} y \overline{QR} es:
 - \Box Agudo \Box Obtuso \Box Recto \Box F.I \Box N.A
- Si $\mathbf{u} = \overline{QR}$ y $\mathbf{v} = \overline{QP}$, entonces $Proy_{\mathbf{u}}\mathbf{v}$ es:

(a)
$$\frac{1}{\sqrt{5}} \begin{pmatrix} 3\\0\\6 \end{pmatrix}$$
 (b) $\frac{1}{\sqrt{5}} \begin{pmatrix} -3\\0\\-6 \end{pmatrix}$ (c) $\frac{1}{5} \begin{pmatrix} -3\\0\\-6 \end{pmatrix}$ (d) $\frac{1}{5} \begin{pmatrix} 3\\0\\-6 \end{pmatrix}$ (e) $\frac{1}{5} \begin{pmatrix} 3\\0\\6 \end{pmatrix}$

56. Sean \mathbf{u}, \mathbf{v} y $\mathbf{w} \in \mathbb{R}^3$. Muestre que si $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ es un conjunto linealmente independiente entonces $\{\mathbf{u}, \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} + \mathbf{w}\}$ es un conjunto linealmente independiente.