Planeación General del Curso

Inteligencia de Datos	
Profesor: Luis Norberto Zuñiga Morales	Grupo: A

Fines de aprendizaje:

- 1. Estudiar y analizar el planteamiento de modelos de Aprendizaje Automático más complejos ampliamente utilizados en la literatura y la industria.
- 2. Implementar los modelos estudiados utilizando diversos conjuntos de datos de repositorios, interpretar los resultados obtenidos y mejorar su desempeño mediante su análisis.
- 3. Aprender a usar diversas herramientas de Python para la implementación de los modelos de Aprendizaje Automático vistos en clase.
- 4. Aprender a usar diversas herramientas para la recolección y construcción de un conjunto de datos.
- 5. Analizar y comprender la razón por la que ciertos modelos de Aprendizaje Automático se utilizan en ciertas aplicaciones.
- 6. Comprender el ciclo de vida de un proyecto de datos para aplicarlo con un conjunto de datos.

Objetivo: Analizar las tendencias y paradigmas de la Ciencia de Datos, contemplando el fundamento matemático y desarrollo de distintos modelos para su implementación en diversos proyectos para comprender el ciclo de vida de un proyecto de Ciencia de Datos.

Semanas: 17	Horas: 4	Total de horas: 68
Semanas: 17	noras: 4	lotal de noras: 68

Temario

- 1. Máquinas de Vectores de Soporte
 - a. Problema de Clasificación Lineal
 - i. Problema linealmente separable
 - ii. Margen Suave
 - b. Problema de Clasificación no Lineal
 - i. Truco del Kernel
 - c. Clasificación Multiclase
 - d. Ejemplos de aplicación
- 2. Bias-Variance Tradeoff
- 3. Ensemble Learning
 - a. Voting Classifiers
 - b. Bagging
 - c. Pasting
 - d. Random Forests

- e. Boosting
 - i. AdaBoosting
 - ii. Gradient Boosting
- f. Ejemplos de aplicación
- 4. Visualización de Datos
- 5. Detección de Anomalías
- 6. Ciclo de vida de un proyecto de ciencia de datos
 - a. Análisis del campo de estudio
 - b. Recolección de datos
 - c. Preparación de los datos
 - d. Análisis exploratorio
 - e. Selección y entrenamiento del modelo
 - f. Evaluación del modelo
 - g. Ajuste del modelo
 - h. Despliegue del modelo
 - i. Ejemplos de aplicación
- 7. Simulacro de un proyecto de ciencia de datos
- 8. Entrenamiento de redes neuronales
 - a. Introducción a redes neuronales en Keras
 - b. Problemas con redes neuronales
 - i. Desvanecimiento del gradiente
 - ii. Transfer Learning
 - iii. Entrenamiento de una red
 - iv. Sobreajuste y regularización

Actividades Propuestas

- 1. **Presentación de los temas** contemplados en el curso por parte del profesor.
- 2. **Prácticas de laboratorio de cómputo** mediante <u>Google Colab</u> para implementar distintos algoritmos de Ciencia de Datos. Los conjuntos de datos propuestos para cada práctica se pueden obtener de los repositorios discutidos en clase o se pueden construir por medio de APIs (<u>Twitter API</u>, <u>NYT API</u>, etc.) o *web scraping*.
- 3. Lecturas de artículos científicos relativos a aplicaciones, paradigmas y filosofía de la Ciencia de Datos. Dichas lecturas pueden ser útiles como una introducción o punto de partida para ejemplificar el objetivo de las prácticas de laboratorio, y para entender el panorama actual de la Ciencia de Datos como una disciplina en la academia y/o la industria.
- 4. **Proyecto final** para simular todo el proceso que se lleva a cabo en un proyecto de ciencia de datos en la vida real.
- Creación de una página de Wikipedia en español sobre un tema relativo a la Ciencia de Datos. El tema se deja a elección del estudiante. Proyecto para el final del semestre.

Fechas Importantes

• Fin de clases: 10 de diciembre 2022 (7 de diciembre)

- Registro de notas: hasta el 10 de diciembre 2022
- Trabajo final: Semana del 28 de noviembre al 2 de diciembre 2022
- Entrega de tareas: Revisión siguiente clase; entrega del documento final semana del 28 de noviembre al 2 de diciembre 2022.

Bibliografía

- 1. Abu-Mostafa, Y. S., Magdon-Ismail, M., & Lin, H.-T. (2012). *Learning from Data: A Short Course*. AMLBook.com.
- 2. Calin, O. (2020). *Deep Learning Architectures: A Mathematical Approach*. Springer International Publishing.
- 3. Courville, A., Bengio, Y., & Goodfellow, I. (2016). *Deep Learning*. MIT Press.
- 4. Dixon, M. F., Halperin, I., & Bilokon, P. (2020). *Machine Learning in Finance: From Theory to Practice*. Springer International Publishing.
- 5. Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd ed.). O'Reilly Media, Inc.
- 6. Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Springer.
- 7. Lopez de Prado, M. (2018). Advances in Financial Machine Learning. Wiley.
- 8. Müller, A. C., & Guido, S. (2016). *Introduction to Machine Learning with Python: A Guide for Data Scientists*. O'Reilly Media, Inc.

Instrumentos de Evaluación

Instrumento	Porcentaje
Tareas y Prácticas de Cómputo	35%
Proyecto Wikipedia	25%
Proyecto final	40%
Evaluaciones Adicionales	10%

Total	110%