In [1]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")

In [2]: data=pd.read_csv("/home/placement/Downloads/fiat500.csv")

In [3]: data.describe()

Out[3]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [4]: data.head()

Out[4]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
(1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	. 2	рор	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700

Out[5]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	рор	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	рор	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	рор	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [6]: data2=pd.get_dummies(data1)
 data2

_				_	-
71	11	+	ш	h	
u	u	L		u	

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

```
In [7]: data2.shape
Out[7]: (1538, 8)
In [8]: y=data2['price']
x=data2.drop('price',axis=1)
```

```
In [9]: y
 Out[9]: 0
                  8900
                  8800
          2
                  4200
          3
                  6000
                  5700
          4
          1533
                  5200
          1534
                  4600
          1535
                  7500
          1536
                  5990
          1537
                  7900
          Name: price, Length: 1538, dtype: int64
In [10]: from sklearn.model_selection import train_test_split
          x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [11]: x_test.head(5)
Out[11]:
                engine_power age_in_days
                                         km previous_owners model_lounge model_pop model_sport
                                 3197 120000
                                                         2
                                                                     0
                                                                                          0
            481
                        51
                                                                               1
            76
                        62
                                 2101 103000
                                                         1
                                                                     0
                                                                               1
                                                                                          0
           1502
                        51
                                  670
                                       32473
                                                         1
                                                                     1
                                                                                          0
                                                                               0
                                  913
           669
                        51
                                       29000
                                                         1
                                                                     1
                                                                               0
                                                                                          0
           1409
                        51
                                  762
                                       18800
                                                         1
                                                                     1
                                                                               0
                                                                                          0
In [12]: y_test.head(5)
Out[12]: 481
                  7900
                  7900
          76
          1502
                  9400
          669
                  8500
          1409
                  9700
          Name: price, dtype: int64
```

```
In [13]: from sklearn.linear model import LinearRegression
         reg=LinearRegression() #creating object of LinearRegression
         reg.fit(x train.v train)#training and fitting LR object using training data
```

Out[13]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
ypred=reg.predict(x test)
In [14]:
         ypred
Out[14]: array([ 5867.6503378 ,
                                  7133.70142341,
                                                                  9723.28874535,
                                                  9866.35776216,
                10039.59101162,
                                  9654.07582608,
                                                  9673.14563045, 10118.70728123,
                 9903.85952664,
                                  9351.55828437, 10434.34963575, 7732.26255693,
                                 6565.95240435,
                                                  9662.90103518, 10373.20344286,
                 7698.67240131,
                 9599.94844451,
                                 7699.34400418,
                                                  4941.33017994, 10455.2719478,
                10370.51555682, 10391.60424404,
                                                  7529.06622456,
                                                                  9952.37340054,
                 7006.13845729,
                                 9000.1780961 ,
                                                  4798.36770637,
                                                                  6953.10376491,
                                                  7333.52158317,
                                                                  5229.18705519,
                 7810.39767825,
                                 9623.80497535,
                 5398.21541073,
                                  5157.65652129,
                                                  8948.63632836,
                                                                  5666.62365159,
                 9822.1231461 ,
                                 8258.46551788,
                                                                  8457.38443276,
                                                  6279.2040404 ,
                                                  9182.99904787, 10210.05195479,
                 9773.86444066,
                                 6767.04074749,
                 8694.90545226, 10328.43369248,
                                                  9069.05761443,
                                                                  8866.7826029 ,
                                 9073.33877162,
                 7058.39787506,
                                                  9412.68162121, 10293.69451263,
                 10072.49011135,
                                 6748.5794244 ,
                                                  9785.95841801,
                                                                  9354.09969973,
                 9507.9444386 , 10443.01608254,
                                                  9795.31884316,
                                                                  7197.84932877,
                                 7009.6597206 ,
                10108.31707235,
                                                  9853.90699412,
                                                                  7146.87414965,
                                                                  8515.83255277,
                 6417.69133992,
                                 9996.97382441,
                                                  9781.18795953,
                                                                  6832.86406122,
                 8456.30006203,
                                  6499.76668237,
                                                  7768.57829985,
                 8347.96113362, 10439.02404036,
                                                  7356.43463051,
                                                                  8562.56562053,
                                                  7270 77100022
                                                                  0411 45004006
In [15]: from sklearn.metrics import r2 score
         r2 score(v test, vpred)
```

Out[15]: 0.8415526986865394

```
In [16]: from sklearn.metrics import mean_squared_error #calculating MSE
         mean squared error(ypred,y test)
Out[16]: 581887.727391353
In [17]: Results=pd.DataFrame(columns=['Price', 'Predicted'])
         Results['Price']=y_test
         Results['Predicted']=ypred
         Results=Results.reset index()
         Results['ID']=Results.index
         Results.head(10)
```

Out[17]:

	index	Price	Predicted	ID
0	481	7900	5867.650338	0
1	76	7900	7133.701423	1
2	1502	9400	9866.357762	2
3	669	8500	9723.288745	3
4	1409	9700	10039.591012	4
5	1414	9900	9654.075826	5
6	1089	9900	9673.145630	6
7	1507	9950	10118.707281	7
8	970	10700	9903.859527	8
9	1198	8999	9351.558284	9

```
In [20]: import matplotlib.pyplot as plt
    sns.lineplot(x='ID',y='Price',data=Results.head(50))
    sns.lineplot(x='ID',y='Predicted',data=Results.head(50))
    plt.plot()
```

Out[20]: []


```
from sklearn.linear model import Ridge
         alpha=[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20,30]
         ridge=Ridge()
         parameters={'alpha':alpha}
          ridge regressor=GridSearchCV(ridge,parameters)
          ridge regressor.fit(x train,y train)
Out[21]: GridSearchCV(estimator=Ridge(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                              5, 10, 20, 30]})
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [22]: ridge regressor.best params
Out[22]: {'alpha': 30}
In [23]: ridge=Ridge(alpha=30)
         ridge.fit(x train,y train)
         ypred ridge=ridge.predict(x test)
In [24]: from sklearn.metrics import mean squared error
         Ridge Error=mean squared error(ypred ridge, v test)
         Ridge Error
Out[24]: 579521.7970897449
In [25]: from sklearn.metrics import r2 score
          r2 score(y test,ypred ridge)
Out[25]: 0.8421969385523054
```

In [21]: from sklearn.model selection import GridSearchCV

In [26]: Results=pd.DataFrame(columns=['Actual','Predicted'])
 Results['Actual']=y_test
 Results['Predicted']=ypred_ridge
 Results=Results.reset_index()
 Results['ID']=Results.index
 Results.head(10)

Out[26]:

	index	Actual	Predicted	ID
0	481	7900	5869.741155	0
1	76	7900	7149.563327	1
2	1502	9400	9862.785355	2
3	669	8500	9719.283532	3
4	1409	9700	10035.895686	4
5	1414	9900	9650.311090	5
6	1089	9900	9669.183317	6
7	1507	9950	10115.128380	7
8	970	10700	9900.241944	8
9	1198	8999	9347.080772	9

```
In [27]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))
sns.lineplot(x='ID',y='Predicted',data=Results.head(50))
plt.plot()
```

Out[27]: []


```
In [28]: from sklearn.linear model import ElasticNet
         from sklearn.model selection import GridSearchCV
         elastic=ElasticNet()
         parameters={'alpha':[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20]}
         elastic regressor=GridSearchCV(elastic,parameters)
         elastic regressor.fit(x train,y train)
Out[28]: GridSearchCV(estimator=ElasticNet(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                              5, 10, 201})
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [29]: elastic regressor.best params
Out[29]: {'alpha': 0.01}
In [30]: elastic=ElasticNet(alpha=.01)
         elastic.fit(x train,y train)
         y pred elastic=elastic.predict(x test)
In [33]: elastic=ElasticNet(alpha=.01)
         elastic.fit(x train,y train)
         y pred elastic=elastic.predict(x test)
Out[33]: 581390.7642825295
In [34]: from sklearn.metrics import r2 score
         r2 score(y test,y pred elastic)
Out[34]: 0.841688021120299
```

```
In [35]: Results=pd.DataFrame(columns=['Actual','Predicted'])
    Results['Actual']=y_test
    Results['Predicted']=ypred_ridge
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(10)
```

Out[35]:

	index	Actual	Predicted	ID
0	481	7900	5869.741155	0
1	76	7900	7149.563327	1
2	1502	9400	9862.785355	2
3	669	8500	9719.283532	3
4	1409	9700	10035.895686	4
5	1414	9900	9650.311090	5
6	1089	9900	9669.183317	6
7	1507	9950	10115.128380	7
8	970	10700	9900.241944	8
9	1198	8999	9347.080772	9

```
In [36]: import matplotlib.pyplot as plt
    sns.lineplot(x='ID',y='Actual',data=Results.head(50))
    sns.lineplot(x='ID',y='Predicted',data=Results.head(50))
    plt.plot()
```

Out[36]: []

In I		
	4.5	