M1 - Chapitre 3

I. Dérivée en un point

$$f$$
 dérivable en $a \Leftrightarrow \exists f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

$$\frac{f(x) - f(a)}{x - a} = f'(a) + \mathcal{E}(x) \qquad \left(\lim_{x \to a} \mathcal{E}(x) = 0\right)$$

$$f(x) = \underbrace{f(a) + f'(a)(x - a)}_{\text{tangente en a}} + \mathcal{E}(x)(x - a)$$

f dérivable $\Rightarrow f$ continue

II. Dérivées successives

 $f \in \mathcal{C}^n \Leftrightarrow f$ dérivable n fois et $f^{(n)}$ continue

III. Formule de Leibnitz

$$(uv)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(k)} v^{(n-k)}$$

IV. Extremum local

 $f'(a) = 0 \Leftrightarrow f$ admet un extremum local en a

V. Théorème de Rolle

$$f$$
 continue sur $[a;b]$ f dérivable sur $]a;b[$ $f(a) = f(b) \Rightarrow \exists c \in]a;b[t,q,f'(c) = 0$

VI. Théorème des accroissements finis

$$f$$
 continue sur $[a;b]$ f dérivable sur $]a;b[$ $\exists c \in]a;b[t.q. f'(c) = \frac{f(b)-f(a)}{b-a}$

VII. Inégalité des accroissements finis

$$\begin{cases} f \in \mathcal{C}^1 \\ f' \text{born\'ee sur } [a;b] \\ M = \max |f'(x)| \end{cases} \Rightarrow |f(b) - f(a)| \le M|b - a|$$

VIII. Formules de dérivation

f(x)	f'(x)
$(g \circ f)(a)$	f'(a)g'(f(a))
f^{-1}	$\frac{1}{f' \circ f^{-1}}$
u^n	$u'nu^{n-1}$
uv	u'v + uv'
$\frac{u}{v}$	$\frac{u'v - uv'}{v^2}$
$\frac{1}{u}$	$-\frac{u'}{u^2}$ u'
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$
a^x	$ln(a) a^x$
e^u	u'e ^u
ln u	$\frac{u'}{u}$
$\cos u$	$-u'\sin u$
sin u	$u'\cos u$
an u	$\frac{u'}{\cos^2 u}$ u'
arccos u	$-\frac{u'}{\sqrt{1-u^2}}$ u'
arcsin u	$\frac{u'}{\sqrt{1-u^2}}$ u'
arctan u	$\frac{u'}{1+u^2}$