International Olympiad in Informatics 2015

26th July - 2nd August 2015 Almaty, Kazakhstan Day 2

horses

Language: cs-CZ

Koně

Mansúr stejně jako jeho předkové rád chová koně a má v současnosti největší stádo v Kazachstánu. Nicméně ne vždy tomu tak bylo. Před N lety byl Mansúr pouhý dzhigit, což v kazaštině znamená mladik, a měl pouze jediného koně. Snil o tom vydělat hodně peněz a stát se bai, což značí velmi bohatého člověka.

Označme roky v chronologickém pořadí od 0 do N-1, kde N-1 je rok současný. Růst stáda v každém roce závisí na počasí. Pro každý rok i si Mansúr pamatuje kladné celé číslo X[i], které představuje koeficient růstu stáda. Má-li stádo na začátku roku i počet koní i, bude mít Mansúr na konci tohoto roku i koní ve stádu.

Mansúr může prodávat koně pouze vždy na konci roku. Pro každý rok i si pamatuje kladné celé číslo Y[i] udávající cenu, za níž může na konci roku i prodat jednoho koně. Na konci roku může prodat libovolný počet koní, a to všechny za stejnou cenu, tj. každého za Y[i].

Mansúr by rád znal maximální částku peněz, které by mohl mít, kdyby koně během N let prodával v nejlepší chvíli. Máte to potěšení být Mansúrovým prázdninovým hostem a můžete mu pomoci tuto otázku zodpovědět.

Jelikož se Mansúrovi jeho paměť s průběhem večera zlepšuje, postupně provádí M aktualizací, kdy v každé z nich buď to změní jednu hodnotu X[i], nebo jednu hodnotu Y[i]. Po každé aktualizaci se Mansúr znovu ptá na maximální částku peněz, které mohl vydělat prodejem svých koní. Aktualizace jsou kumulativní, tzn. každá vaše odpověď musí vzít v úvahu všechny dosavadní změny. Jednotlivé hodnoty X[i] nebo Y[i] mohou být změněny i vícekrát.

Skutečné odpovědi na Mansúrovy otázky mohou být obrovské. Abyste se vyhnuli počítání s velkými čísly, částku v odpovědi uveďte modulo 10^9+7 .

Příklad

Předpokládejme, že máme N=3 roky s následujícími údaji:

	0	1	2
Χ	2	1	3
Y	3	4	1

Pro tyto počáteční hodnoty Mansúr nejvíc vydělá, prodá-li koně na konci prvého roku. Celý proces bude vypadat následovně:

- Mansúr má na začátku 1 koně.
- Po roce 0 bude mít $1 \cdot X[0] = 2$ koně.

- Po roce 1 bude mít $2 \cdot X[1] = 2$ koně.
- Nyní tyto dva koně může prodat. Celkový příjem z prodeje bude $2 \cdot Y[1] = 8$.

Nyní předpokládejme M=1 aktualizaci: změnu Y[1] na novou hodnotu 2.

Po aktualizaci máme:

	0	1	2
Х	2	1	3
Y	3	2	1

V tomto případě je jedním z optimálních řešení prodat jednoho koně po roce 0 a následně tři koně po roce 2.

Celý proces bude vypadat takto:

- Na začátku má Mansúr jednoho koně.
- Po roce 0 bude mít $1 \cdot X[0] = 2$ koně.
- Nyní může jednoho z nich prodat za Y[0] = 3 a jeden mu zůstane.
- Po roce 1 bude mít $1 \cdot X[1] = 1$ koně.
- Po roce 2 bude mít $1 \cdot X[2] = 3$ koně.
- lacksquare Nyní může tyto tři koně prodat za $3\cdot Y[2]=3$. Celkem takto získá 3+3=6 peněz.

Úloha

Máte dány hodnoty N, X, Y a posloupnost aktualizací. Před první aktualizací a po každé další spočtěte maximum získatelných peněz za koně modulo ${\bf 10^9}+{\bf 7}.$

Implementuite funkce init, updateX a updateY.

- init (N, X, Y) Vyhodnocovač ji zavolá jako první a to právě jednou.
 - N: počet let.
 - lacktriangledown X: pole délky N. Pro $0 \leq i \leq N-1$, X[i] udává koeficient růstu stáda v daném roce.
 - lacksquare Y: pole délky N. Pro $0 \leq i \leq N-1, Y[i]$ udává cenu koně po daném roce.
 - Uvědomte si, že X a Y představují počáteční hodnoty dané Mansúrem ještě před aktualizacemi.
 - Funkce vrátí maximální částku peněz, jež může Mansúr získat pro tyto inicální hodnoty X a Y, modulo 10^9+7 .
- updateX(pos, val)
 - lacksquare pos: celé číslo z rozsahu $0,\ldots,N-1$.
 - val: nová hodnota pro X[pos].
 - Funkce vrátí maximální částku peněz, jež může Mansúr získat po této aktualizaci, modulo

$$10^9 + 7$$
.

- updateY(pos, val)
 - pos: celé číslo z rozsahu $0, \ldots, N-1$.
 - val: nová hodnota pro Y[pos].
 - Funkce vrátí maximální částku peněz, jež může Mansúr získat po této aktualizaci, modulo $10^9 + 7$.

Můžete předpokládat, že jak počáteční, tak aktualizované hodnoty X[i] a Y[i] jsou mezi 1 a 10^9 včetně.

Po zavolání init vyhodnocovač několikrát zavolá update \mathbf{X} a update \mathbf{Y} . Celkový počet volání update \mathbf{X} a update \mathbf{Y} bude \mathbf{M} .

Podúlohy

podúloha	bodů	N	M	další omezení
1	17	$1 \le N \le 10$	M = 0	$X[i], Y[i] \le 10, \ X[0] \cdot X[1] \cdot \ldots \cdot X[N-1] \le 1000$
2	17	$1 \le N \le 1000$	$0 \le M \le 1000$	žádná
3	20	$1 \le N \le 500000$	$0 \le M \le 100000$	$X[i] \geq 2$, resp. $val \geq 2$ pro init, resp.
				updateX
4	23	$1 \le N \le 500000$	$0 \le M \le 10000$	žádná
5	23	$1 \le N \le 500000$	$0 \le M \le 100000$	žádná

Ukázkový vyhodnocovač

Ukázkový vyhodnocovač čte vstup ze souboru horses.in v následujícím tvaru:

- řádek 1: N
- řádek 2: X[0] ... X[N 1]
- řádek 3: Y[0] ... Y[N 1]
- řádek 4: M
- řádky 5, ..., M + 4: tři čísla type pos val (type=1 pro updateX a type=2 pro updateY).

Ukázkový vyhodnocovač vypíše návratovou hodnotu init následovanou návratovými hodnotami všech volání updateX a updateY.