FORM FOUR END OF TERM TWO 2018 EXAMINITION

121 /1 MATHEMATICS MARKING SCHEME PAPER 1

1.	(9,3,2),17		numerator
	$\left[\left(\frac{9}{4} + \frac{3}{5} \div 2 \right) \div \frac{17}{10} \right]$	M_1	
	(9 3) 17		
	$= \left(\frac{9}{4} + \frac{3}{10}\right) \div \frac{17}{10}$	M_1	denominator
	$=\frac{51}{20}\times\frac{10}{17}$	A_1	C .A.O
	= 1 ½		
		3	
2.	Grad AB = $M_1 = \frac{2+2}{6+4}$		
	6+4	B1√	Both M1,&& M2
	$=\frac{2}{5}$	DIV	Both W11,&& W12
	$\therefore M_2 = -\frac{2}{5}$		
	Mid point M $\left(\frac{-4+6}{2}, \frac{-2+2}{2}\right)$	B1✓	Mid point
	= (1 0)		
	y - 0 - 5		
	$\frac{y-0}{x-1} = \frac{-5}{2}$		
	-5x + 5 = 2y	B1	
	2y + 5x - 5 = 0		
		3	
3.	1 3	M1✓	Use square root tables
	$\frac{1}{\sqrt{31.47}} + \frac{3}{(8.54)^2}$		
		M1✓	Use square tables
	$= \frac{1}{5.6098} + \frac{3}{72.93}$		
	$= 0.1783 + 3 (0.1373 \times 10^{-1})$	M1✓	Use rec. tables

Get more resources from: Enovate KCSE Revision App

=0.1783+3(0.01373)		
=0.1783+0.04119		
=0.21949	A 1	
= 0.2195		
	4	

1	(/2)		
4.	$-6 \le 3x + 3$		
	$=-9 \le 3x$		
	$=$ -3 $\leq x$	B1	
	14-3x>2		
	-3x>-12		
	x<4	B1	
	$\therefore -3 \le x < 4$		
	∴ -3,-2,-1,0,1,2,3	B1	
		3	
5.	Fraction of water emptied per hour.		
	For $A = \frac{1}{8}$		
	$B = \frac{1}{6}$ $C = \frac{1}{3}$		
	6		
	$C=\frac{1}{2}$		
	All working for 1 hour		
	$\frac{1}{8} + \frac{1}{6} + \frac{1}{3} = \frac{3+4+8}{24}$		
	8 6 3 24		
	$=\frac{15}{24}$		
	24		
	All working for 30 minutes		
	15 30 5		
	$\frac{15}{24} \times \frac{30}{60} = \frac{5}{16}$	B1	
	Remaining fraction		
	$\frac{16}{10} - \frac{5}{10} = \frac{11}{10}$		
	$\frac{1}{16} - \frac{1}{16} = \frac{1}{16}$		

B & C working for one hour $\frac{1}{6} + \frac{1}{3} = \frac{1+2}{6} = \frac{3}{6}$		
$\begin{vmatrix} \frac{1}{6} & \frac{1}{3} & \frac{1}{6} & \frac{1}{6} \\ & = \frac{1}{2} \end{vmatrix}$		
2		
$1h \equiv \frac{1}{2}$	M1	
$? \equiv \frac{11}{16}$		
$\frac{11}{16} \times 1 \times 2 = \frac{11}{8}$	A1	
$\frac{11}{8} + \frac{1}{2} = \frac{15}{8} = 1\frac{7}{8}hrs$		

6.	$ \frac{\left(8^{\frac{1}{3}}\right)^{2} + \left(4^{\frac{1}{2}}\right)^{3}}{\left(16^{\frac{1}{4}}\right)^{-3}} = \frac{\left(2^{3 \times \frac{1}{3}}\right)^{2} + \left(2^{2 \times \frac{1}{2}}\right)^{3}}{\left(2^{4 \times \frac{1}{4}}\right)^{-3}} $ $ = \frac{2^{2} + 2^{3}}{2^{-3}} $ $ = 4 + 8 \times 2^{3} $ $ = 12 \times 8 $ $ = 96 $	M1 M1	Numerator Denominator
		3	
7.	Tan $48 = \frac{300}{AP}$ $AP = 300 \div \tan 48$ $AP = 270.12$	M1	

	$Tan 28 = \frac{300}{AQ} AQ = 300 \div \tan 28$ $= 564.22$ $PQ = 564.22 - 270.12$ $= 294.10 \text{m}$	M1 A1 3	For $\tan 48^\circ = \frac{300}{AP}$ For $\tan 28 = \frac{300}{AQ}$ Correct distance PQ
		3	
8.	Distance =72+78 =150M Relative speed =72+108 =180km/h $t = \frac{150}{1000} \times \frac{1}{180}$ =8.333×10 ⁻⁴ =2.999 \approx 3 seconds	B1 B1 M1 A1	
0	ZDDC 510 Alternate anales		
9.	$<$ DBC= 51^{0} Alternate angles $<$ EAD= 51^{0} Alternate segment ∴ $x = 180 - (51 + 51)$ $= 78^{0}$	B1 M1 A1	
		3	

10.	A.S.F. = $\frac{25}{324}$ L.S.F. = $\sqrt{\frac{25}{324}}$	B1	
	$=\frac{5}{18}$		

	V.S.F = $\left(\frac{15}{18}\right)^3$ = $\frac{125}{5832}$ $8\text{cm}^3 = 125$? = 5832 = $\frac{5832 \times 8}{125}$ = 373.248	B1	
	=373.2 cm ³	3	
11.	$3^{2\chi} \times 3^{y} = 3^{3}$ $2^{\chi - y} \times 2^{\chi} = 3^{5}$ $2\chi + y = 3$ $+ \frac{2\chi - y = 5}{4\chi} = 8$	M1 M1 B1	For correct eqn's Both. For adding correct for correct answer. For correct answer.
	$\chi = 2$ 2(2) + y = 3 y = -1	B1	
		4	
12.	$1.05 = 1\frac{a}{b}$ Let x = 1.05050505 $\frac{100x = 105.05050505}{-99x = -104}$ $x = \frac{-104}{-99}$ $= 1\frac{5}{99}$	M1 A1 B1✓	a and b
	a= 5, b= 99		a and o
		3	

13.	$5000 \times 86.25 = \text{ksh} \times 431250$ Spend = $\frac{289850}{1000}$	B1
	Remaining =	
	100 Japanese yen=67.26 ?=141400	M1
	$\frac{141400 \times 100}{67.26} = 210228.96 $ Japanese yens	A1
		3
14.	(a) 11, 13, 17 and 19	B1
	Number = 19,1 71, 311	
	(b) hundreds total value= 3×100	B1
	= 300	
		2
15.	$\log 36 = \log (4x9) = \log 4 + \log 9$	M1
	$= \log 2^2 + \log 3^2$	
	= 2log2 + 2log3	M1
	= 2(0.30103 + 0.47712)	
	= 1.556	A1
		3

16.	B2	

	$3 \mathrm{cm}$ $3 \mathrm{cm}$	B1	
	c) Height = 3.7 cm ± 0.1 cm		
		3	
17.	(a) $\angle PAQ = 2PAM/2QAM$ $Sin \ \theta = \frac{4.5}{10.5} = 0.4286$ $\theta = 25.38$ x 2	M1	Each A plotted NB: there are four triangles drawn
	$\angle PAQ = 50.76^{\circ}$	A1	A ¹ B ¹ C ¹ coordinates
	(b) $PBQ = 2PBM/2QBM$		TI D C COOTAINATES
	$Sin \ \chi = \frac{4.5}{8.4} = 0.5357$ $\chi = 32.39$	M1	
	$PBQ = 64.78^{\circ}$	A1	

(c)	Segment 1		
	$A = A \sec_1 - AD_1$		
	$= \left(\frac{50.76}{360} \times \frac{22}{7} \times 10.5^{2}\right) - \left(\frac{1}{2} \times 10.5^{2} \times Sin\ 50.76\right)$	M1	
	6.162	A1	
	Segment 2		
	$= \left(\frac{64.78}{360} \times \frac{22}{7} \times 8.4^{2}\right) - \left(\frac{1}{2} \times 8.4^{2} \times Sin \ 64.78\right)$	M1	
	39.9045 – 31.9171	A1	
		M1	

7.9874	A1	
Total shaded = $6.162 + 7.9874$		
= 14.1494cm ²		
	10	

	10	

19.	(a)	let group members no.=x		
			D1	
		Each original = $\frac{2000000}{}$	B1	Btw
		$\boldsymbol{\mathcal{X}}$		Btw
		Contribution		
		After 40 withdrawn	M1	
		Each contribution= $\frac{2000000}{x-40}$		
		$\frac{2000000}{x} = \frac{2000000}{x - 40} - 2500$		
	(
	x(x -	$-40)\frac{2000000}{x} = \left(\frac{2000000}{x-40}\right)x(x-40) - x(x-40)2500$		
	2000	$000x - 80000000 = 2000000x - 2500x^2 + 100000x$		
	$25x^2$	-1000x -800000 = 0		
	x^2 -4	0x-32000=0		
	.	$-b \pm \sqrt{b^2 - 4ac}$		
	x = -	$\frac{c = \sqrt{c}}{2a}$	M1✓	
	4	$40 \pm \sqrt{1600 + 4 \times 32000}$		
	=-	2	A1	C:1
	4	$0 \pm \sqrt{129600}$	B1	Simpl.
	=-	2	B1	
	4	-		
	=-	$\frac{40 \pm 360}{2}$		
	= 4	$\frac{400}{2}$ or $\frac{-320}{2}$	B1	
		00 or -160		
	€	Original number.of members=x=200		

(b) Fund from CDF = $\frac{45}{100} \times 2000000$ = 900000	B1 M1	
Remaining to be contributed.= 2000000- 900000 = 1,100000	A1	
Each remaining		
members contribution = $\frac{1100000}{200-40}$		
$=\frac{1100000}{160}$		
= 6875		

	Γ			1	1	
	(c) total amount					
	contribution by	members= $\frac{19}{25} \times 1100000$				
		=836,000				
				10		
20				10		
20.						
	1					
		360 KM	 1			
	K	300 1211	N			
	9.30		10.10	M1		
	81 Km/h		72 Km/h	M1		
	(a) (i) relative speed = 8	31+72		A1		
	_	53km/h		M1		
				A1		
	After 40 minutes dis	tance covered = $81 \times \frac{40}{60}$				
		=54km				
	Distance left	= 360-54				
		= 306 km				
	306					
	$t = \frac{306}{153}$					
	=2 hrs					
	(ii) after meeting rela	tive speed=153km/h				
		= 102km				
	ALTERNATIVE					

	1	
$\left(\frac{40}{60} \times 72\right) + \left(\frac{40}{60} \times 81\right)$	B1	
=48+54		
=102	M1	
-102	A1	
(b) (i) Relative speed =90-81		
=9km/h		
20 min, distance covered= $\frac{20}{60} \times 90$		
$t = \frac{30}{9}$		
$=3\frac{1}{3}hrs$		
=3 hrs 20min		
9.50	M1	
3.20		
13.10	A1	
1.10 p.m.		
(ii) 13.10		
9.30		
4. 40		
2		
$-\frac{1}{3}$		
$-\frac{1}{3}nrs$		

=36	$0 - \left(81 \times \frac{14}{3}\right)$ $0 - 108$ 52km	M1 A1	
		10	

21		1
21.	B1 B1 B1 B1 BI	Constructing ∠75° Complete triangle Dropping the perpendicular Complete parallelogram Centre of the circle - Dropping ⊥ from centre of circle to BC. - For described circle.

highschool.co.ke

	(b) Area =		
	$\frac{1}{2} \times 10 \times 50 + \frac{1}{2} \times 50 \times 250 + \frac{1}{2} \times 20 \times 50$		
	$\frac{1}{1}(10.20)20.\frac{1}{1}(10.10)60.(\frac{1}{1}.10.120)$		
	$+\frac{1}{2}(10+20)20+\frac{1}{2}(40+10)60+\left(\frac{1}{2}\times40\times130\right)$		
	$\frac{1}{2} \left[500 + 1250 + 1000 + 600 + 3000 + 5200 \right]$		
	2 [300+1230+1000+600+3000+3200]		
	$\frac{1}{2} \times 11550$		
	2		
	2		
	$=\frac{5775m^2}{}$		
	10000		
	=0.5775 ha		
		10	
22	() (') 000(4000	10	
23.	(a) (i) $88\% \equiv 4800$	M1	
	$100\% \equiv ?$	M1	
	$\frac{100}{88} \times 4800$	A1	
	=5454.55	711	
	-3434.33 (ii) $145\% \equiv 4800$		
	$100\% \equiv ?$	M1	
		A1	
	$\frac{100}{145} \times 4800$		
	=3310.35	M1	
		M1	
	(b)%profit= $\frac{5454.55-3310.35}{23.100}\times100$	A 1	
	3310.35	3.61	
	=64.77%	M1	
	(c) $100\% \equiv 3310.35$	A1	
	87.5% ≡ ?		
	$\frac{87.5}{100} \times 3310.35$		
	=2896.55		
<u> </u>	- <u>L</u> U)U.JJ		

	10	

24. (a)	$s=t^3-6t^2+9t+5$		
	$\frac{ds}{dt} = 3t^2 - 12t + 9$ at t=0.5, $\frac{ds}{dt} = 3(0.5)^2 - 12(0.5) + 9$	M1 M1	
	$= 0.75-6+9$ $= 3.75 \text{ m/s}$ (b) $3t^2-12t+9=0$	A1 M1	
	$t^{2}-4t+3=0$ $t^{2}-t-3t+3=0$ t(t-1)-3(t-1)=0 (t-3)(t-1)=0 t-3=0 or $t-1=0t=3$ or $t=1$	A1	
	when t=3	B1	
	$s = t^{3}-6t^{2}+9t+5$ $= (3)^{3}-6(3)^{2}+9(3)+5$ $= 27-54+27+5$ $= 59-54$ $= 5m$	B1	
	When $t = 1$		
	$S = 1^{3}-6(1)2+9(1)+5$ $= 1-6+9+5$		

=9 (c) s=t ³ - turni	B1					
X	2	3	4			
$\frac{ds}{dt}$	-3	0	9			
X	0	1	2			
$\frac{ds}{dt}$	9	0	-3			
	Sketo	ch				

