

On U -Dominant Dimension^{*†}

Zhaoyong Huang[‡]

*Department of Mathematics, Nanjing University,
Nanjing 210093, The People's Republic of China*

Abstract

Let Λ and Γ be artin algebras and ${}_{\Lambda}U_{\Gamma}$ a faithfully balanced selforthogonal bimodule. We show that the U -dominant dimensions of ${}_{\Lambda}U$ and U_{Γ} are identical. As applications to the results obtained, we give some characterizations of double dual functors (with respect to ${}_{\Lambda}U_{\Gamma}$) preserving monomorphisms and being left exact respectively.

1. Introduction

For a ring Λ , we use $\text{mod } \Lambda$ (resp. $\text{mod } \Lambda^{op}$) to denote the category of finitely generated left Λ -modules (resp. right Λ -modules).

Definition 1.1 Let Λ and Γ be rings. A bimodule ${}_{\Lambda}T_{\Gamma}$ is called a faithfully balanced selforthogonal bimodule if it satisfies the following conditions:

- (1) ${}_{\Lambda}T \in \text{mod } \Lambda$ and $T_{\Gamma} \in \text{mod } \Gamma^{op}$.
- (2) The natural maps $\Lambda \rightarrow \text{End}(T_{\Gamma})$ and $\Gamma \rightarrow \text{End}({}_{\Lambda}T)^{op}$ are isomorphisms.
- (3) $\text{Ext}_{\Lambda}^i({}_{\Lambda}T, {}_{\Lambda}T) = 0$ and $\text{Ext}_{\Gamma}^i(T_{\Gamma}, T_{\Gamma}) = 0$ for any $i \geq 1$.

Definition 1.2 Let U be in $\text{mod } \Lambda$ (resp. $\text{mod } \Gamma^{op}$) and n a non-negative integer. For a module M in $\text{mod } \Lambda$ (resp. $\text{mod } \Gamma^{op}$),

(1)^[8] M is said to have U -dominant dimension greater than or equal to n , written $U\text{-dom.dim}({}_{\Lambda}M)$ (resp. $U\text{-dom.dim}(M_{\Gamma}) \geq n$), if each of the first n terms in a minimal injective resolution of M is cogenerated by ${}_{\Lambda}U$ (resp. U_{Γ}), that is, each of these terms can be embedded into a direct product of copies of ${}_{\Lambda}U$ (resp. U_{Γ}).

(2)^[10] M is said to have dominant dimension greater than or equal to n , written $\text{dom.dim}({}_{\Lambda}M)$ (resp. $\text{dom.dim}(M_{\Gamma}) \geq n$), if each of the first n terms in a minimal injective resolution of M is Λ -projective (resp. Γ^{op} -projective).

^{*}2000 *Mathematics Subject Classification.* 16E10, 16E30, 16D90.

[†]*Key words and phrases.* U -dominant dimension, flat dimension, faithfully balanced selforthogonal bimodules, double dual functors.

[‡]*E-mail address:* huangzy@nju.edu.cn

Assume that Λ is an artin algebra. By [4] Theorem 3.3, Λ^I and each of its direct summands are projective for any index set I . So, when ${}_U\Lambda = {}_{\Lambda}\Lambda$ (resp. $U_{\Gamma} = \Lambda_{\Lambda}$), the notion of U -dominant dimension coincides with that of (classical) dominant dimension. Tachikawa in [10] showed that if Λ is a left and right artinian ring then the dominant dimensions of ${}_U\Lambda$ and Λ_{Λ} are identical. Kato in [8] characterized the modules with U -dominant dimension greater than or equal to one. Colby and Fuller in [5] gave some equivalent conditions of $\text{dom.dim}({}_{\Lambda}\Lambda) \geq 1$ (or 2) in terms of the properties of double dual functors (with respect to ${}_U\Lambda$).

The results mentioned above motivate our interests in establishing the identity of U -dominant dimensions of ${}_U\Lambda$ and U_{Γ} and characterizing the properties of modules with a given U -dominant dimension. Our characterizations will lead a better comprehension about U -dominant dimension and the theory of selforthogonal bimodules.

Throughout this paper, Λ and Γ are artin algebras and ${}_U\Lambda$ is a faithfully balanced selforthogonal bimodule. The main result in this paper is the following

Theorem 1.3 $U\text{-dom.dim}({}_{\Lambda}\Lambda) = U\text{-dom.dim}(U_{\Gamma})$.

Put ${}_U\Lambda = {}_{\Lambda}\Lambda$, we immediately get the following result, which is due to Tachikawa (see [10]).

Corollary 1.4 $\text{dom.dim}({}_{\Lambda}\Lambda) = \text{dom.dim}(\Lambda_{\Lambda})$.

Let M be in $\text{mod } \Lambda$ (resp. $\text{mod } \Gamma^{op}$) and $G(M)$ the subcategory of $\text{mod } \Lambda$ (resp. $\text{mod } \Gamma^{op}$) consisting of all submodules of the modules generated by M . M is called a QF-3 module if $G(M)$ has a cogenerator which is a direct summand of every other cogenerator^[11]. By [11] Proposition 2.2 we have that a finitely cogenerated Λ -module (resp. Γ^{op} -module) M is a QF-3 module if and only if M cogenerates its injective envelope. So by Theorem 1.3 we have

Corollary 1.5 ${}_U\Lambda$ is QF-3 if and only if U_{Γ} is QF-3.

We shall prove our main result in Section 2. As applications to the results obtained in Section 2, we give in Section 3 some characterizations of double dual functors (with respect to ${}_U\Lambda$) preserving monomorphisms and being left exact respectively.

2. The proof of main result

Let E_0 be the injective envelope of ${}_U\Lambda$. Then E_0 defines a torsion theory in $\text{mod } \Lambda$. The torsion class \mathcal{T} is the subcategory of $\text{mod } \Lambda$ consisting of the modules X satisfying $\text{Hom}_{\Lambda}(X, E_0) = 0$, and the torsionfree class \mathcal{F} is the subcategory of $\text{mod } \Lambda$ consisting of the

modules Y cogenerated by E_0 (equivalently, Y can be embedded in E_0^I for some index set I). A module in $\text{mod } \Lambda$ is called torsion (resp. torsionfree) if it is in \mathcal{T} (resp. \mathcal{F}). The injective envelope E'_0 of U_Γ also defines a torsion theory in $\text{mod } \Gamma^{op}$ and we may give in $\text{mod } \Gamma^{op}$ the corresponding notions as above. Let X be in $\text{mod } \Lambda$ (resp. $\text{mod } \Gamma^{op}$) and $t(X)$ the torsion submodule, that is, $t(X)$ is the submodule X such that $\text{Hom}_\Lambda(t(X), E_0) = 0$ (resp. $\text{Hom}_\Gamma(t(X), E'_0) = 0$) and E_0 (resp. E'_0) cogenerated $X/t(X)$ (c.f. [7]).

Let A be in $\text{mod } \Lambda$ (resp. $\text{mod } \Gamma^{op}$). We call $\text{Hom}_\Lambda(\Lambda A, \Lambda U_\Gamma)$ (resp. $\text{Hom}_\Gamma(A_\Gamma, \Lambda U_\Gamma)$) the dual module of A with respect to ΛU_Γ , and denote either of these modules by A^* . For a homomorphism f between Λ -modules (resp. Γ^{op} -modules), we put $f^* = \text{Hom}(f, \Lambda U_\Gamma)$. Let $\sigma_A : A \rightarrow A^{**}$ via $\sigma_A(x)(f) = f(x)$ for any $x \in A$ and $f \in A^*$ be the canonical evaluation homomorphism. A is called U -torsionless (resp. U -reflexive) if σ_A is a monomorphism (resp. an isomorphism).

Lemma 2.1 *For a module X in $\text{mod } \Lambda$ (resp. $\text{mod } \Gamma^{op}$), $t(X) = \text{Ker} \sigma_X$ if and only if $\text{Hom}_\Lambda(\text{Ker} \sigma_X, E_0) = 0$ (resp. $\text{Hom}_\Gamma(\text{Ker} \sigma_X, E'_0) = 0$).*

Proof. The necessity is trivial. Now we prove the sufficiency.

We have the following commutative diagram with the upper row exact:

$$\begin{array}{ccccccc} 0 & \longrightarrow & t(X) & \longrightarrow & X & \xrightarrow{\pi} & X/t(X) \longrightarrow 0 \\ & & \downarrow \sigma_X & & \downarrow \sigma_{X/t(X)} & & \\ & & X^{**} & \xrightarrow{\pi^{**}} & [X/t(X)]^{**} & & \end{array}$$

Since $\text{Hom}_\Lambda(t(X), E_0) = 0$, $[t(X)]^* = 0$ and π^* is an isomorphism. So π^{**} is also an isomorphism and hence $t(X) \subset \text{Ker} \sigma_X$. On the other hand, $\text{Hom}_\Lambda(\text{Ker} \sigma_X, E_0) = 0$ by assumption, which implies that $\text{Ker} \sigma_X$ is a torsion module and contained in X . So we conclude that $\text{Ker} \sigma_X \subset t(X)$ and $\text{Ker} \sigma_X = t(X)$. ■

Remark. From the above proof we always have $t(X) \subset \text{Ker} \sigma_X$.

Suppose that $A \in \text{mod } \Lambda$ (resp. $\text{mod } \Gamma^{op}$) and $P_1 \xrightarrow{f} P_0 \rightarrow A \rightarrow 0$ is a (minimal) projective resolution of A . Then we have an exact sequence $0 \rightarrow A^* \rightarrow P_0^* \xrightarrow{f^*} P_1^* \rightarrow \text{Coker } f^* \rightarrow 0$. We call $\text{Coker } f^*$ the transpose (with respect to ΛU_Γ) of A , and denote it by $\text{Tr}_U A$.

Proposition 2.2 *The following statements are equivalent.*

- (1) $t(X) = \text{Ker} \sigma_X$ for every $X \in \text{mod } \Lambda$.
- (2) f^{**} is monic for every monomorphism $f : A \rightarrow B$ in $\text{mod } \Lambda$.

(1)^{op} $t(Y) = \text{Ker}\sigma_Y$ for every $Y \in \text{mod } \Gamma^{op}$.

(2)^{op} g^{**} is monic for every monomorphism $g : C \rightarrow D$ in $\text{mod } \Gamma^{op}$.

Proof. By symmetry, it suffices to prove the implications of (1) \Rightarrow (2)^{op} \Rightarrow (1)^{op}.

(1) \Rightarrow (2)^{op} Let $g : C \rightarrow D$ be monic in $\text{mod } \Gamma^{op}$. Set $X = \text{Cokerg}$. We have that $\text{Ker}\sigma_{\text{Tr}_U X} \cong \text{Ext}_\Lambda^1(X, U)$ and $\text{Tr}_U X \in \text{mod } \Lambda$ by [6] Lemma 2.1. By (1) and Lemma 2.1, $\text{Hom}_\Gamma(\text{Ext}_\Lambda^1(X, U), E_0) = 0$. Since Cokerg^* can be imbedded in $\text{Ext}_\Lambda^1(X, U)$, $\text{Hom}_\Gamma(\text{Cokerg}^*, E_0) = 0$. But $(\text{Cokerg}^*)^* \subset \text{Hom}_\Gamma(\text{Cokerg}^*, E_0)$, so $(\text{Cokerg}^*)^* = 0$ and hence $\text{Kerg}^{**} \cong (\text{Cokerg}^*)^* = 0$, which implies that g^{**} is monic.

(2)^{op} \Rightarrow (1)^{op} Let Y be in $\text{mod } \Gamma^{op}$ and X any submodule of $\text{Ker}\sigma_Y$ and $f_1 : X \rightarrow \text{Ker}\sigma_Y$ the inclusion. Assume that f is the composition: $X \xrightarrow{f_1} \text{Ker}\sigma_Y \rightarrow Y$. Then $\sigma_Y f = 0$ and $f^* \sigma_Y^* = (\sigma_Y f)^* = 0$. But σ_Y^* is epic by [1] Proposition 20.14, so $f^* = 0$ and $f^{**} = 0$. By (2)^{op}, f^{**} is monic, so $X^{**} = 0$ and $X^{***} = 0$. Since X^* is isomorphic to a submodule of X^{***} by [1] Proposition 20.14, $X^* = 0$.

We claim that $\text{Hom}_\Gamma(\text{Ker}\sigma_Y, E'_0) = 0$. Otherwise, there exists $0 \neq \alpha \in \text{Hom}_\Gamma(\text{Ker}\sigma_Y, E'_0)$. Then $\text{Im}\alpha \cap U_\Gamma \neq 0$ since U_Γ is an essential submodule of E'_0 . So $\alpha^{-1}(\text{Im}\alpha \cap U_\Gamma)$ is a non-zero submodule of $\text{Ker}\sigma_Y$ and there exists a non-zero map $\alpha^{-1}(\text{Im}\alpha \cap U_\Gamma) \rightarrow U_\Gamma$, which implies that $(\alpha^{-1}(\text{Im}\alpha \cap U_\Gamma))^* \neq 0$, a contradiction with the former argument. Hence we conclude that $t(Y) = \text{Ker}\sigma_Y$ by Lemma 2.1. ■

Let A be a Λ -module (resp. a Γ^{op} -module). We denote either of $\text{Hom}_\Lambda(\Lambda U_\Gamma, \Lambda A)$ and $\text{Hom}_\Gamma(\Lambda U_\Gamma, A_\Gamma)$ by $*A$, and the left (resp. right) flat dimension of A by $l.\text{fd}_\Lambda(A)$ (resp. $r.\text{fd}_\Gamma(A)$). We give a remark as follows. For an artin algebra R and a left (resp. right) R -module A , we have that the left (resp. right) flat dimension of A and its left (resp. right) projective dimension are identical; especially, A is left (resp. right) flat if and only if it is left (resp. right) projective.

Lemma 2.3 *Let ${}_\Lambda E$ (resp. E_Γ) be injective and n a non-negative integer. Then $l.\text{fd}_\Gamma({}^*E)$ (resp. $r.\text{fd}_\Lambda({}^*E)$) $\leq n$ if and only if $\text{Hom}_\Lambda(\text{Ext}_\Gamma^{n+1}(A, U), E)$ (resp. $\text{Hom}_\Gamma(\text{Ext}_\Lambda^{n+1}(A, U), E)$) $= 0$ for any $A \in \text{mod } \Gamma^{op}$ (resp. mod Λ).*

Proof. It is trivial by [3] Chapter VI, Proposition 5.3. ■

Proposition 2.4 *The following statements are equivalent.*

(1) *E_0 is flat.

(2) There is an injective Λ -module E such that $*E$ is flat and E cogenerates E_0 .

(3) $t(X) = \text{Ker}\sigma_X$ for any $X \in \text{mod } \Lambda$.

Proof. (1) \Rightarrow (2) It is trivial.

(2) \Rightarrow (3) Let $X \in \text{mod } \Lambda$. Since $\text{Ker} \sigma_X \cong \text{Ext}_\Gamma^1(\text{Tr}_U X, U)$ with $\text{Tr}_U X \in \text{mod } \Gamma^{op}$ by [6] Lemma 2.1. By (2) and Lemma 2.3, $\text{Hom}_\Lambda(\text{Ext}_\Gamma^1(\text{Tr}_U X, U), E) = 0$.

Since E cogenerates E_0 , there is an exact sequence $0 \rightarrow E_0 \rightarrow E^I$ for some index set I . So $\text{Hom}_\Lambda(\text{Ext}_\Gamma^1(\text{Tr}_U X, U), E_0) \subset \text{Hom}_\Lambda(\text{Ext}_\Gamma^1(\text{Tr}_U X, U), E^I) \cong [\text{Hom}_\Lambda(\text{Ext}_\Gamma^1(\text{Tr}_U X, U), E)]^I = 0$ and $\text{Hom}_\Lambda(\text{Ext}_\Gamma^1(\text{Tr}_U X, U), E_0) = 0$. By Lemma 2.1, $t(X) = \text{Ker} \sigma_X$.

(3) \Rightarrow (1) Let $N \in \text{mod } \Gamma^{op}$. Since $\text{Ker} \sigma_{\text{Tr}_U N} \cong \text{Ext}_\Gamma^1(N, U)$ with $\text{Tr}_U N \in \text{mod } \Lambda$ by [6] Lemma 2.1, By (3) and Lemma 2.1 we have $\text{Hom}_\Lambda(\text{Ext}_\Gamma^1(N, U), E_0) \cong \text{Hom}_\Lambda(\text{Ker} \sigma_{\text{Tr}_U N}, E_0) = 0$, and so $*E_0$ is flat by Lemma 2.3. ■

Dually, we have the following

Proposition 2.4' *The following statements are equivalent.*

- (1) $*E'_0$ is flat.
- (2) There is an injective Γ^{op} -module E' such that $*E'$ is flat and E' cogenerates E'_0 .
- (3) $t(Y) = \text{Ker} \sigma_Y$ for any $Y \in \text{mod } \Gamma^{op}$.

Corollary 2.5 $*E_0$ is flat if and only if $*E'_0$ is flat.

Proof. By Propositions 2.2, 2.4 and 2.4'. ■

Let $A \in \text{mod } \Lambda$ (resp. $\text{mod } \Gamma^{op}$) and i a non-negative integer. We say that the grade of A with respect to ${}_\Lambda U_\Gamma$, written $\text{grade}_U A$, is greater than or equal to i if $\text{Ext}_\Lambda^j(A, U) = 0$ (resp. $\text{Ext}_\Gamma^j(A, U) = 0$) for any $0 \leq j < i$.

Lemma 2.6 *Let X be in $\text{mod } \Gamma^{op}$ and n a non-negative integer. If $\text{grade}_U X \geq n$ and $\text{grade}_U \text{Ext}_\Gamma^n(X, U) \geq n + 1$, then $\text{Ext}_\Gamma^n(X, U) = 0$.*

Proof. Since X^* is U -torsionless, $X^{**} = 0$ if and only if $X^* = 0$. Then the case $n = 0$ follows.

Now let $n \geq 1$ and

$$\cdots \rightarrow P_n \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow X \rightarrow 0$$

be a projective resolution of X in $\text{mod } \Gamma^{op}$. Put $X_n = \text{Coker}(P_{n+1} \rightarrow P_n)$. Then we have an exact sequence

$$0 \rightarrow P_0^* \rightarrow \cdots \rightarrow P_{n-1}^* \xrightarrow{f} X_n^* \rightarrow \text{Ext}_\Gamma^n(X, U) \rightarrow 0$$

in $\text{mod } \Lambda$ with each $P_i^* \in \text{add}_\Lambda U$. Since $\text{grade}_U \text{Ext}_\Gamma^n(X, U) \geq n + 1$, $\text{Ext}_\Lambda^i(\text{Ext}_\Gamma^n(X, U), U) = 0$ for any $0 \leq i \leq n$. So $\text{Ext}_\Lambda^i(\text{Ext}_\Gamma^n(X, U), P_j^*) = 0$ for any $0 \leq i \leq n$ and $0 \leq j \leq n - 1$, and hence $\text{Ext}_\Lambda^1(\text{Ext}_\Gamma^n(X, U), \text{Im } f) \cong \text{Ext}_\Lambda^n(\text{Ext}_\Gamma^n(X, U), P_0^*) = 0$, which implies that we have an exact sequence $\text{Hom}_\Lambda(\text{Ext}_\Gamma^n(X, U), X_n^*) \rightarrow \text{Hom}_\Lambda(\text{Ext}_\Gamma^n(X, U), \text{Ext}_\Gamma^n(X, U)) \rightarrow 0$. Notice

that X_n^* is U -torsionless and $\text{Hom}_\Lambda(\text{Ext}_\Gamma^n(X, U), U) = 0$. So $\text{Hom}_\Lambda(\text{Ext}_\Gamma^n(X, U), X_n^*) = 0$ and $\text{Hom}_\Lambda(\text{Ext}_\Gamma^n(X, U), \text{Ext}_\Gamma^n(X, U)) = 0$, which implies that $\text{Ext}_\Gamma^n(X, U) = 0$. ■

Remark. We point out that all of the above results (from 2.1 to 2.6) in this section also hold in the case Λ and Γ are left and right noetherian rings.

For a module T in $\text{mod } \Lambda$ (resp. $\text{mod } \Gamma^{op}$), we use $\text{add}_\Lambda T$ (resp. $\text{add}_\Gamma T$) to denote the subcategory of $\text{mod } \Lambda$ (resp. $\text{mod } \Gamma^{op}$) consisting of all modules isomorphic to direct summands of finite direct sums of copies of ${}_A T$ (resp. T_Γ). Let A be in $\text{mod } \Lambda$. If there is an exact sequence $\cdots \rightarrow U_n \rightarrow \cdots \rightarrow U_1 \rightarrow U_0 \rightarrow A \rightarrow 0$ in $\text{mod } \Lambda$ with each $U_i \in \text{add}_\Lambda U$ for any $i \geq 0$, then we define $U\text{-resol.dim}_\Lambda(A) = \inf\{n \mid \text{there is an exact sequence } 0 \rightarrow U_n \rightarrow \cdots \rightarrow U_1 \rightarrow U_0 \rightarrow A \rightarrow 0 \text{ in } \text{mod } \Lambda \text{ with each } U_i \in \text{add}_\Lambda U \text{ for any } 0 \leq i \leq n\}$. We set $U\text{-resol.dim}_\Lambda(A)$ infinity if no such an integer exists. Dually, for a module B in $\text{mod } \Gamma^{op}$, we may define $U\text{-resol.dim}_\Gamma(B)$ (see [2]).

Lemma 2.7 *Let E be injective in $\text{mod } \Lambda$ (resp. $\text{mod } \Gamma^{op}$). Then $l.\text{fd}_\Gamma({}^*E)$ (resp. $r.\text{fd}_\Lambda({}^*E)$) $\leq n$ if and only if $U\text{-resol.dim}_\Lambda(E)$ (resp. $U\text{-resol.dim}_\Gamma(E)$) $\leq n$.*

Proof. Assume that E is injective in $\text{mod } \Lambda$ and $l.\text{fd}_\Gamma({}^*E) \leq n$. Then there is an exact sequence $0 \rightarrow Q_n \rightarrow \cdots \rightarrow Q_1 \rightarrow Q_0 \rightarrow {}^*E \rightarrow 0$ with each Q_i flat (and hence projective) in $\text{mod } \Gamma$ for any $0 \leq i \leq n$. By [3] Chapter VI, Proposition 5.3, $\text{Tor}_j^\Gamma(U, {}^*E) \cong \text{Hom}_\Lambda(\text{Ext}_\Gamma^j(U, U), E) = 0$ for any $j \geq 1$. Then we easily have an exact sequence:

$$0 \rightarrow U \otimes_\Gamma Q_n \rightarrow \cdots \rightarrow U \otimes_\Gamma Q_1 \rightarrow U \otimes_\Gamma Q_0 \rightarrow U \otimes_\Gamma {}^*E \rightarrow 0.$$

It is clear that $U \otimes_\Gamma Q_i \in \text{add}_\Lambda U$ for any $0 \leq i \leq n$. By [9] p.47, $U \otimes_\Gamma {}^*E \cong \text{Hom}_\Lambda(\text{Hom}_\Gamma(U, U), E) \cong E$. Hence we conclude that $U\text{-resol.dim}_\Lambda(E) \leq n$.

Conversely, if $U\text{-resol.dim}_\Lambda(E) \leq n$ then there is an exact sequence $0 \rightarrow X_n \rightarrow \cdots \rightarrow X_1 \rightarrow X_0 \rightarrow E \rightarrow 0$ with each X_i in $\text{add}_\Lambda U$ for any $0 \leq i \leq n$. Since $\text{Ext}_\Lambda^j(U, X_i) = 0$ for any $j \geq 1$ and $0 \leq i \leq n$, $0 \rightarrow {}^*X_n \rightarrow \cdots \rightarrow {}^*X_1 \rightarrow {}^*X_0 \rightarrow {}^*E \rightarrow 0$ is exact with each *X_i ($0 \leq i \leq n$) Γ -projective. Hence we are done. ■

Corollary 2.8 *Let E be injective in $\text{mod } \Lambda$ (resp. $\text{mod } \Gamma^{op}$). Then *E is flat in $\text{mod } \Gamma$ (resp. $\text{mod } \Lambda^{op}$) if and only if ${}_A E \in \text{add}_\Lambda U$ (resp. $E_\Gamma \in \text{add}_U \Gamma$).*

From now on, assume that

$$0 \rightarrow {}_A U \xrightarrow{f_0} E_0 \xrightarrow{f_1} E_1 \xrightarrow{f_2} \cdots \xrightarrow{f_i} E_i \xrightarrow{f_{i+1}} \cdots$$

is a minimal injective resolution of ${}_A U$.

Lemma 2.9 Suppose $U\text{-dom.dim}({}_\Lambda U) \geq 1$. Then, for any $n \geq 2$, $U\text{-dom.dim}({}_\Lambda U) \geq n$ if and only if $\text{grade}_U M \geq n$ for any $M \in \text{mod } \Lambda$ with $M^* = 0$.

Proof. For any $M \in \text{mod } \Lambda$ and $i \geq 1$, we have an exact sequence

$$\text{Hom}_\Lambda(M, E_{i-1}) \rightarrow \text{Hom}_\Lambda(M, \text{Im} f_i) \rightarrow \text{Ext}_\Lambda^i(M, U) \rightarrow 0 \quad (\dagger)$$

Suppose $U\text{-dom.dim}({}_\Lambda U) \geq n$. Then E_i is cogenerated by ${}_\Lambda U$ for any $0 \leq i \leq n-1$. So, for a given $M \in \text{mod } \Lambda$ with $M^* = 0$ we have that $\text{Hom}_\Lambda(M, E_i) = 0$ and $\text{Hom}_\Lambda(M, \text{Im} f_i) = 0$ for any $0 \leq i \leq n-1$. Then by the exactness of (\dagger) , $\text{Ext}_\Lambda^i(M, U) = 0$ for any $1 \leq i \leq n-1$, and so $\text{grade}_U M \geq n$.

Now we prove the converse, that is, we will prove that $E_i \in \text{add}_\Lambda U$ for any $0 \leq i \leq n-1$.

First, $E_0 \in \text{add}_\Lambda U$ by assumption. We next prove $E_1 \in \text{add}_\Lambda U$. For any $0 \neq x \in \text{Im} f_1$, we claim that $M^* = \text{Hom}_\Lambda(M, U) \neq 0$, where $M = \Lambda x$. Otherwise, we have $\text{Ext}_\Lambda^i(M, U) = 0$ for any $0 \leq i \leq n-1$ by assumption. Since $E_0 \in \text{add}_\Lambda U$, $\text{Hom}_\Lambda(M, E_0) = 0$. So from the exactness of (\dagger) we know that $\text{Hom}_\Lambda(M, \text{Im} f_1) = 0$, which is a contradiction. Then we conclude that $\text{Im} f_1$, and hence E_1 , is cogenerated by ${}_\Lambda U$. Notice that E_1 is finitely cogenerated, so $E_1 \in \text{add}_\Lambda U$. Finally, suppose that $n \geq 3$ and $E_i \in \text{add}_\Lambda U$ for any $0 \leq i \leq n-2$. Then by using a similar argument to that above we have $E_{n-1} \in \text{add}_\Lambda U$. The proof is finished. ■

Dually, we have the following

Lemma 2.9' Suppose $U\text{-dom.dim}(U_\Gamma) \geq 1$. Then, for any $n \geq 2$, $U\text{-dom.dim}(U_\Gamma) \geq n$ if and only if $\text{grade}_U N \geq n$ for any $N \in \text{mod } \Gamma^{op}$ with $N^* = 0$.

We now are in a position to prove the main result in this paper.

Proof of Theorem 1.3. We only need to prove $U\text{-dom.dim}({}_\Lambda U) \leq U\text{-dom.dim}(U_\Gamma)$. Without loss of generality, suppose $U\text{-dom.dim}({}_\Lambda U) = n$.

The case $n = 1$ follows from Corollaries 2.5 and 2.8. Let $n \geq 2$. Notice that $U\text{-dom.dim}({}_\Lambda U) \geq 1$ and $U\text{-dom.dim}(U_\Gamma) \geq 1$. By Lemma 2.9' it suffices to show that $\text{grade}_U N \geq n$ for any $N \in \text{mod } \Gamma^{op}$ with $N^* = 0$. By Lemmas 2.3 and 2.7, for any $i \geq 1$, $\text{Hom}_\Lambda(\text{Ext}_\Gamma^i(N, U), E_0) \cong \text{Tor}_i^\Gamma(N, {}^*E_0) = 0$, so $[\text{Ext}_\Gamma^i(N, U)]^* = 0$. Then by assumption and Lemma 2.9, $\text{grade}_U \text{Ext}_\Gamma^i(N, U) \geq n$ for any $i \geq 1$. It follows from Lemma 2.6 that $\text{grade}_U N \geq n$. ■

3. Some applications

As applications to the results in above section, we give in this section some characterizations of $(-)^{**}$ preserving monomorphisms and being left exact respectively.

Assume that

$$0 \rightarrow U_\Gamma \xrightarrow{f'_0} E'_0 \xrightarrow{f'_1} E'_1 \xrightarrow{f'_2} \cdots \xrightarrow{f'_i} E'_i \xrightarrow{f'_{i+1}} \cdots$$

is a minimal injective resolution of U_Γ . We first have the following

Proposition 3.1 *The following statements are equivalent for any positive integer k .*

(1) $U\text{-dom.dim}(\Lambda U) \geq k$.

(2) $0 \rightarrow (\Lambda U)^{**} \xrightarrow{f_0^{**}} E_0^{**} \xrightarrow{f_1^{**}} E_1^{**} \cdots \xrightarrow{f_{k-1}^{**}} E_{k-1}^{**}$ is exact.

(1)^{op} $U\text{-dom.dim}(U_\Gamma) \geq k$.

(2)^{op} $0 \rightarrow (U_\Gamma)^{**} \xrightarrow{(f'_0)^{**}} (E'_0)^{**} \xrightarrow{(f'_1)^{**}} (E'_1)^{**} \cdots \xrightarrow{(f'_{k-1})^{**}} (E'_{k-1})^{**}$ is exact.

Proof. By Theorem 1.3 we have (1) \Leftrightarrow (1)^{op}. By symmetry, we only need to prove (1) \Leftrightarrow (2).

If $U\text{-dom.dim}(\Lambda U) \geq k$, then E_i is in $\text{add}_\Lambda U$ for any $1 \leq i \leq k-1$. Notice that ΛU and each E_i ($0 \leq i \leq k-1$) are U -reflexive and hence we have that $0 \rightarrow (\Lambda U)^{**} \xrightarrow{f_0^{**}} E_0^{**} \xrightarrow{f_1^{**}} E_1^{**} \cdots \xrightarrow{f_{k-1}^{**}} E_{k-1}^{**}$ is exact. Assume that (2) holds. We proceed by induction on k . By assumption we have the following commutative diagram with exact rows:

$$\begin{array}{ccccccccc} 0 & \longrightarrow & \Lambda U & \xrightarrow{f_0} & E_0 & \xrightarrow{f_1} & E_1 & \xrightarrow{f_2} & \cdots \xrightarrow{f_{k-1}} E_{k-1} \\ & & \downarrow \sigma_U & & \downarrow \sigma_{E_0} & & \downarrow \sigma_{E_1} & & \downarrow \sigma_{E_{k-1}} \\ 0 & \longrightarrow & (\Lambda U)^{**} & \xrightarrow{f_0^{**}} & E_0^{**} & \xrightarrow{f_1^{**}} & E_1^{**} & \xrightarrow{f_2^{**}} & \cdots \xrightarrow{f_{k-1}^{**}} E_{k-1}^{**} \end{array}$$

Since σ_U is an isomorphism, $\sigma_{E_0} f_0 = f_0^{**} \sigma_U$ is a monomorphism. But f_0 is essential, so σ_{E_0} is monic, that is, E_0 is U -torsionless and E_0 is cogenerated by ΛU . Moreover, E_0 is finitely cogenerated, so we have that $E_0 \in \text{add}_\Lambda U$ (and hence σ_{E_0} is an isomorphism). The case $k=1$ is proved. Now suppose that $k \geq 2$ and $E_i \in \text{add}_\Lambda U$ (and then σ_{E_i} is an isomorphism) for any $0 \leq i \leq k-2$. Put $A_0 = \Lambda U$, $B_0 = (\Lambda U)^{**}$, $g_0 = f_0$, $g'_0 = f_0^{**}$ and $h_0 = \sigma_U$. Then, for any $0 \leq i \leq k-2$, we get the following commutative diagrams with exact rows:

$$\begin{array}{ccccccc} 0 & \longrightarrow & A_i & \xrightarrow{g_i} & E_i & \longrightarrow & A_{i+1} \longrightarrow 0 \\ & & \downarrow h_i & & \downarrow \sigma_{E_i} & & \downarrow h_{i+1} \\ 0 & \longrightarrow & B_i & \xrightarrow{g'_i} & E_i^{**} & \longrightarrow & B_{i+1} \longrightarrow 0 \end{array}$$

and

$$\begin{array}{ccc} 0 & \longrightarrow & A_{i+1} \xrightarrow{g_{i+1}} E_{i+1} \\ & & \downarrow h_{i+1} & & \downarrow \sigma_{E_{i+1}} \\ 0 & \longrightarrow & B_{i+1} \xrightarrow{g'_{i+1}} E_{i+1}^{**} \end{array}$$

where $A_i = \text{Im}f_i$ and $A_{i+1} = \text{Im}f_{i+1}$, $B_i = \text{Im}f_i^{**}$ and $B_{i+1} = \text{Im}f_{i+1}^{**}$, g_i and g_{i+1} are essential monomorphisms, h_i and h_{i+1} are induced homomorphisms. We may get inductively that each h_j is an isomorphism for any $0 \leq j \leq k - 1$. Because $\sigma_{E_{k-1}}g_{k-1} = g'_{k-1}h_{k-1}$ is a monomorphism, by using a similar argument to that above we have $E_{k-1} \in \text{add}_\Lambda U$. Hence we conclude that $U\text{-dom.dim}(\Lambda U) \geq k$. ■

Proposition 3.2 *The following statements are equivalent.*

- (1) $U\text{-dom.dim}(\Lambda U) \geq 1$.
- (2) $(-)^{**} : \text{mod } \Lambda \rightarrow \text{mod } \Lambda$ preserves monomorphisms.
- (3) $0 \rightarrow (\Lambda U)^{**} \xrightarrow{f_0^{**}} E_0^{**}$ is exact.
- (1)^{op} $U\text{-dom.dim}(U_\Gamma) \geq 1$.
- (2)^{op} $(-)^{**} : \text{mod } \Gamma^{op} \rightarrow \text{mod } \Gamma^{op}$ preserves monomorphisms.
- (3)^{op} $0 \rightarrow (U_\Gamma)^{**} \xrightarrow{(f'_0)^{**}} (E'_0)^{**}$ is exact.

Proof. By Theorem 1.3 we have $(1) \Leftrightarrow (1)^{op}$. By symmetry, we only need to prove that the conditions of (1), (2) and (3) are equivalent.

(1) \Rightarrow (2) If $U\text{-dom.dim}(\Lambda U) \geq 1$ then $t(X) = \text{Ker}\sigma_X$ for any $X \in \text{mod } \Lambda$ by Corollary 2.8 and Proposition 2.4. So $(-)^{**}$ preserves monomorphisms by Proposition 2.2.

(2) \Rightarrow (3) is trivial and (3) \Rightarrow (1) follows from Proposition 3.1. ■

Remark. Proposition 3.2 develops [5] Theorem 1.

Proposition 3.3 *The following statements are equivalent.*

- (1) $U\text{-dom.dim}(\Lambda U) \geq 2$.
- (2) $(-)^{**} : \text{mod } \Lambda \rightarrow \text{mod } \Lambda$ is left exact.
- (3) $0 \rightarrow (\Lambda U)^{**} \xrightarrow{f_0^{**}} E_0^{**} \xrightarrow{f_1^{**}} E_1^{**}$ is exact.
- (4) $(-)^{**} : \text{mod } \Lambda \rightarrow \text{mod } \Lambda$ preserves monomorphisms and $\text{Ext}_\Gamma^1(\text{Ext}_\Lambda^1(X, U), U) = 0$ for any $X \in \text{mod } \Lambda$.
- (1)^{op} $U\text{-dom.dim}(U_\Gamma) \geq 2$.
- (2)^{op} $(-)^{**} : \text{mod } \Gamma^{op} \rightarrow \text{mod } \Gamma^{op}$ is left exact.
- (3)^{op} $0 \rightarrow (U_\Gamma)^{**} \xrightarrow{(f'_0)^{**}} (E'_0)^{**} \xrightarrow{(f'_1)^{**}} (E'_1)^{**}$ is exact.
- (4)^{op} $(-)^{**} : \text{mod } \Gamma^{op} \rightarrow \text{mod } \Gamma^{op}$ preserves monomorphisms and $\text{Ext}_\Lambda^1(\text{Ext}_\Gamma^1(Y, U), U) = 0$ for any $Y \in \text{mod } \Gamma^{op}$.

Proof. By Theorem 1.3 we have $(1) \Leftrightarrow (1)^{op}$ and by Proposition 3.1 we have $(1) \Leftrightarrow (3)$. So, by symmetry we only need to prove that $(1) \Leftrightarrow (2)$ and $(1) \Rightarrow (4) \Rightarrow (1)^{op}$.

(1) \Leftrightarrow (2) Assume that $(-)^{**} : \text{mod } \Lambda \rightarrow \text{mod } \Lambda$ is left exact. Then, by Proposition 3.2, we have that $U\text{-dom.dim}(\Lambda U) \geq 1$ and $E_0 \in \text{add}_\Lambda U$.

Let $K = \text{Im}(E_0 \rightarrow E_1)$ and $v : K \rightarrow E_1$ be the essential monomorphism. By assumption and the exactness of the sequences $0 \rightarrow U \rightarrow E_0 \rightarrow K \rightarrow 0$ and $0 \rightarrow K \xrightarrow{v} E_1$, we have the following exact commutative diagrams:

$$\begin{array}{ccccccc} 0 & \longrightarrow & U & \longrightarrow & E_0 & \longrightarrow & K & \longrightarrow 0 \\ & & \downarrow \sigma_U & & \downarrow \sigma_{E_0} & & \downarrow \sigma_K \\ 0 & \longrightarrow & U^{**} & \longrightarrow & E_0^{**} & \longrightarrow & K^{**} \end{array}$$

and

$$\begin{array}{ccccc} 0 & \longrightarrow & K & \xrightarrow{v} & E_1 \\ & & \downarrow \sigma_K & & \downarrow \sigma_{E_1} \\ 0 & \longrightarrow & K^{**} & \xrightarrow{v^{**}} & E_1^{**} \end{array}$$

where σ_U and σ_{E_0} are isomorphisms. By applying the snake lemma to the first diagram we have that σ_K is monic. Then we know from the second diagram that $\sigma_{E_1}v = v^{**}\sigma_K$ is a monomorphism. However, v is essential, so σ_{E_1} is monic, that is, E_1 is U -torsionless and E_1 is cogenerated by ${}_U$. Moreover, E_1 is finitely cogenerated, so we conclude that $E_1 \in \text{add}_\Lambda U$.

Conversely, assume that $U\text{-dom.dim}({}_\Lambda U) \geq 2$ and $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ is an exact sequence in $\text{mod } \Lambda$. By Proposition 3.2, α^{**} is monic. By assumption, Corollary 2.8 and Lemma 2.3 we have $\text{Hom}_\Gamma(\text{Ext}_\Lambda^1(C, U), E_0) = 0$. Since $\text{Coker } \alpha^*$ is isomorphic to a submodule of $\text{Ext}_\Lambda^1(C, U)$, $\text{Hom}_\Gamma(\text{Coker } \alpha^*, E_0) = 0$ and $\text{Hom}_\Gamma(\text{Coker } \alpha^*, U) = 0$. Then, by Theorem 1.3 and Lemma 2.9', $\text{grade}_U \text{Coker } \alpha^* \geq 2$. It follows easily that $0 \rightarrow A^{**} \xrightarrow{\alpha^{**}} B^{**} \xrightarrow{\beta^{**}} C^{**}$ is exact.

(1) \Rightarrow (4) Suppose $U\text{-dom.dim}({}_\Lambda U) \geq 2$. By Proposition 3.2, $(-)^{**} : \text{mod } \Lambda \rightarrow \text{mod } \Lambda$ preserves monomorphisms. On the other hand, we have that $U\text{-dom.dim}(U_\Gamma) \geq 2$ by Theorem 1.3. It follows from Corollary 2.8 and Lemma 2.3 that $\text{Hom}_\Gamma(\text{Ext}_\Lambda^1(X, U), E_0') = 0$ for any $X \in \text{mod } \Lambda$. So $[\text{Ext}_\Lambda^1(X, U)]^* = 0$ and hence $\text{Ext}_\Gamma^1(\text{Ext}_\Lambda^1(X, U), U) = 0$ by Lemma 2.9'.

(4) \Rightarrow (1)^{op} Suppose that (4) holds. Then $U\text{-dom.dim}(U_\Gamma) \geq 1$ by Proposition 3.2.

Let A be in $\text{mod } \Lambda$ and B any submodule of $\text{Ext}_\Lambda^1(A, U)$ in $\text{mod } \Gamma^{op}$. Since $U\text{-dom.dim}(U_\Gamma) \geq 1$, $\text{Hom}_\Gamma(\text{Ext}_\Lambda^1(A, U), E_0') = 0$ by Corollary 2.8 and Lemma 2.3. So $\text{Hom}_\Gamma(B, E_0') = 0$ and hence $\text{Hom}_\Gamma(B, E_0'/U_\Gamma) \cong \text{Ext}_\Gamma^1(B, U_\Gamma)$. On the other hand, $\text{Hom}_\Gamma(B, E_0') = 0$ implies $B^* = 0$. Then by [6] Lemma 2.1 we have that $B \cong \text{Ext}_\Lambda^1(\text{Tr}_U B, U)$ with $\text{Tr}_U B$ in $\text{mod } \Lambda$. By (4), $\text{Hom}_\Gamma(B, E_0'/U) \cong \text{Ext}_\Gamma^1(B, U) \cong \text{Ext}_\Gamma^1(\text{Ext}_\Lambda^1(\text{Tr}_U B, U), U) = 0$. Then by using a similar argument to that in the proof (2)^{op} \Rightarrow (1)^{op} in Proposition 2.2, we have that

$\text{Hom}_\Gamma(\text{Ext}_\Lambda^1(A, U), E'_1) = 0$ (note: E'_1 is the injective envelope of E'_0/U). Thus $E'_1 \in \text{add } U_\Gamma$ by Lemma 2.3 and Corollary 2.8, and therefore $U\text{-dom.dim}(U_\Gamma) \geq 2$. ■

Remark. Proposition 3.3 develops [5] Theorem 2.

Finally we give some equivalent characterizations of $U\text{-resol.dim}_\Lambda(E_0) \leq 1$ as follows.

Proposition 3.4 *The following statements are equivalent.*

- (1) $U\text{-resol.dim}_\Lambda(E_0) \leq 1$.
- (2) σ_X is an essential monomorphism for any U -torsionless module X in $\text{mod } \Lambda$.
- (3) f^{**} is a monomorphism for any monomorphism $f : X \rightarrow Y$ in $\text{mod } \Lambda$ with Y U -torsionless.
- (4) $\text{grade}_U \text{Ext}_\Lambda^1(X, U) \geq 1$ (that is, $[\text{Ext}_\Lambda^1(X, U)]^* = 0$) for any X in $\text{mod } \Lambda$.

Proof. (1) \Rightarrow (2) Assume that X is U -torsionless in $\text{mod } \Lambda$. Then $\text{Coker} \sigma_X \cong \text{Ext}_\Gamma^2(\text{Tr}_U X, U)$ by [6] Lemma 2.1. By Lemmas 2.7 and 2.3 we have $\text{Hom}_\Lambda(\text{Coker} \sigma_X, E_0) = \text{Hom}_\Lambda(\text{Ext}_\Gamma^2(\text{Tr}_U X, U), E_0) = 0$. Then $\text{Hom}_\Lambda(A, {}_\Lambda U) = 0$ for any submodule A of $\text{Coker} \sigma_X$, which implies that any non-zero submodule of $\text{Coker} \sigma_X$ is not U -torsionless.

Let B be a submodule of X^{**} with $X \cap B = 0$. Then $B \cong B/X \cap B \cong (X + B)/X$ is isomorphic to a submodule of $\text{Coker} \sigma_X$. On the other hand, B is clearly U -torsionless. So $B = 0$ and hence σ_X is essential.

(2) \Rightarrow (3) Let $f : X \rightarrow Y$ be monic in $\text{mod } \Lambda$ with Y U -torsionless. Then $f^{**} \sigma_X = \sigma_Y f$ is monic. By (2), σ_X is an essential monomorphism, so f^{**} is monic.

(3) \Rightarrow (4) Let X be in $\text{mod } \Lambda$ and $0 \rightarrow Y \xrightarrow{g} P \rightarrow X \rightarrow 0$ an exact sequence in $\text{mod } \Lambda$ with P projective. It is easy to see that $[\text{Ext}_\Lambda^1(X, U)]^* \cong \text{Ker} g^{**}$. On the other hand, g^{**} is monic by (3). So $\text{Ker} g^{**} = 0$ and $[\text{Ext}_\Lambda^1(X, U)]^* = 0$.

(4) \Rightarrow (1) Let M be in $\text{mod } \Gamma^{op}$ and $\cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$ a projective resolution of M in $\text{mod } \Gamma^{op}$. Put $N = \text{Coker}(P_2 \rightarrow P_1)$. By [6] Lemma 2.1, $\text{Ext}_\Gamma^2(M, U) \cong \text{Ext}_\Gamma^1(N, U) \cong \text{Ker} \sigma_{\text{Tr}_U N}$. On the other hand, since N is U -torsionless, $\text{Ext}_\Lambda^1(\text{Tr}_U N, U) \cong \text{Ker} \sigma_N = 0$.

Let X be any finitely generated submodule of $\text{Ext}_\Gamma^2(M, U)$ and $f_1 : X \rightarrow \text{Ext}_\Gamma^2(M, U)$ ($\cong \text{Ker} \sigma_{\text{Tr}_U N}$) the inclusion, and let f be the composition: $X \xrightarrow{f_1} \text{Ext}_\Gamma^2(M, U) \xrightarrow{g} \text{Tr}_U N$, where g is a monomorphism. By using the same argument as that in the proof of (2) $^{op} \Rightarrow$ (1) op in Proposition 2.2, we get that $f^* = 0$. Hence, by applying $\text{Hom}_\Lambda(-, U)$ to the exact sequence $0 \rightarrow X \xrightarrow{f} \text{Tr}_U N \rightarrow \text{Coker} f \rightarrow 0$, we have $X^* \cong \text{Ext}_\Lambda^1(\text{Coker} f, U)$. Then $X^{**} \cong [\text{Ext}_\Lambda^1(\text{Coker} f, U)]^* = 0$ by (4), which implies that $X^* = 0$ since X^* is a direct summand of $X^{***} (= 0)$ by [1] Proposition 20.24. Also by using the same argument as that in the proof of (2) $^{op} \Rightarrow$ (1) op in Proposition 2.2, we get that $\text{Hom}_\Lambda(\text{Ext}_\Gamma^2(M, U), E_0) = 0$. It follows from

Lemma 2.3 that $l.\text{fd}_\Gamma(*E_0) \leq 1$. Therefore $U\text{-resol.dim}_\Lambda(E_0) \leq 1$ by Lemma 2.7. ■

Remark. By Theorem 1.3, we have that $E_0 \in \text{add}_\Lambda U$ if and only if $E'_0 \in \text{add}U_\Gamma$, that is, $U\text{-resol.dim}_\Lambda(E_0) = 0$ if and only if $U\text{-resol.dim}_\Gamma(E'_0) = 0$. However, in general, we don't have the fact that $U\text{-resol.dim}_\Lambda(E_0) \leq 1$ if and only if $U\text{-resol.dim}_\Gamma(E'_0) \leq 1$ even when $\Lambda U_\Gamma = \Lambda\Lambda_\Lambda$. We use I_0 and I'_0 to denote the injective envelope of ${}_\Lambda\Lambda$ and Λ_Λ , respectively. Consider the following example. Let K be a field and Δ the quiver:

$$1 \xrightleftharpoons[\beta]{\alpha} 2 \xrightarrow{\gamma} 3$$

- (1) If $\Lambda = K\Delta/(\alpha\beta\alpha)$. Then $l.\text{fd}_\Lambda(I_0) = 1$ and $r.\text{fd}_\Lambda(I'_0) \geq 2$. (2) If $\Lambda = K\Delta/(\gamma\alpha, \beta\alpha)$. Then $l.\text{fd}_\Lambda(I_0) = 2$ and $r.\text{fd}_\Lambda(I'_0) = 1$.

Acknowledgements The author thanks Prof. Kent. R. Fuller and the referee for their helpful comments. This work was partially supported by National Natural Science Foundation of China (Grant No. 10001017).

References

- [1] F. W. Anderson and K. R. Fuller, Rings and Categories of modules, 2nd ed, Graduate Texts in Mathematics **13**, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
- [2] M. Auslander and R. O. Buchweitz, *The homological theory of maximal Cohen-Macaulay approximations*, Soc. Math. France **38**(1989), 5–37.
- [3] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, 1956.
- [4] S. U. Chase, *Direct products of modules*, Trans. Amer. Math. Soc. **97**(1960), 457–473.
- [5] R. R. Colby and K. R. Fuller, *Exactness of the double dual*, Proc. Amer. Math. Soc. **82**(1981), 521–526.
- [6] Z. Y. Huang and G. H. Tang, *Self-orthogonal modules over coherent rings*, J. Pure and Appl. Algebra **161**(2001), 167–176.
- [7] J. Lambek, Torsion Theories, Additive Semantics, and Rings of Quotients (with an appendix by H.H. Storrer on Torsion Theories and Dominant Dimension), Lecture Notes in Mathematics **177**, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

- [8] T. Kato, *Rings of U -dominant dimension ≥ 1* , Tôhoku Math. J. **21**(1969), 321–327.
- [9] B. Stenström, Rings of Quotients, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen **217**, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
- [10] H. Tachikawa, Quasi-Frobenius Rings and Generalizations (QF-3 and QF-1 Rings), Lecture Notes in Mathematics **351**, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [11] R. Wisbauer, *Decomposition properties in module categories*, Acta Univ. Carolinae—Mathematica et Physica **26**(1985), 57–68.