NMB -Oefenzitting 8

Hendrik Speleers

Begrippen

Veeltermer

Bézier

Splines

Rationaa

Toepassinger

NMB - Oefenzitting 8: Geometrische Modellering

Hendrik Speleers

Overzicht

NMB -Oefenzitting 8

Hendrik Speleers

Begripper

Veelterme

Rézie

2 .

Kationaai

Toepassinge

- Begrippen
- 2 Interpolerende veeltermcurven
 - 3 Bézier curven
 - 4 Splinecurven
- 5 Rationale curven
- **6** Toepassingen

Begrippen

NMB -Oefenzitting 8

> Hendrik Speleers

Begrippen

Veelterme

. . .

Dezle

Parametervoorstelling van een curve

- Segmentatie : curve/oppervlak opdelen in meerdere stukken door het parameterdomein op te splitsen
 - knooppunten $a = u_0 < u_1 < \ldots < u_n = b$ \Rightarrow segment $\overrightarrow{x}(u)$ met $u \in [u_{i-1}, u_i]$
 - ullet lokale parameter $t \in [0,1]$
- Affiene combinatie :
 - $\overrightarrow{x} = \sum_{i=1}^{m} \alpha_i \overrightarrow{p}_i \text{ met } \sum_{i=1}^{m} \alpha_i = 1$
 - invariant onder affiene transformatie
- Convexe combinatie :
 - affien met positieve gewichten
 - convex omhullende

Interpolerende veeltermcurven

NMB -Oefenzitting 8

> Hendril Speleer

Degrippen

Veeltermen

Bézie

Splines

Rationaal

Toepassinger

$$\vec{x}(u) = \sum_{i=0}^{n} \vec{p}_i L_i^n(u)$$

- Affiene combinatie van punten \vec{p}_i
- Gewichten zijn Lagrange-veeltermen
- Eigenschappen:
 - interpolatie in \vec{p}_i
 - doorgaans sterk oscillerende curven (zeker bij toenemende graad)
 - ullet kleine wijziging van $ec{p}_i$ leidt vaak tot grote veranderingen
- Beperk gebruik tot veeltermen van lage graad

Bézier curven

NMB -Oefenzitting 8

Speleers

Begrippe

Veeltermer

Bézier

Splines

Rationaal

Toepassinge

$$ec{x}(t) = \sum_{i=0}^n ec{b}_i B_i^n(t)$$
 met $t \in [0,1]$

- Controlepunten $\vec{b}_i \Rightarrow$ controleveelhoek
- Bernstein-veeltermen $B_i^n(t) = \binom{n}{i}(1-t)^{n-i}t^i$
- Eigenschappen Bernstein-veeltermen :
 - sommatie-tot-1 : $\sum_{i=0}^{n} B_i^n(t) = 1$ \Rightarrow affiene combinatie
 - positiviteit : $B_i^n(t) \ge 0$ \Rightarrow convexe combinatie
 - symmetrie-eigenschap
 - recursiebetrekking

Bézier curven

NMB -Oefenzitting 8

> Hendrik Speleers

Begrippen

Veeltermer

Bézier

Opinies

Rationaa

Toepassinge

Eigenschappen Béziercurven :

- Bézier curve = veeltermcurve van graad n
- zachtverlopend karakter
- interpoleert in eindpunten $\vec{x}(0) = \vec{b}_0$ en $\vec{x}(n) = \vec{b}_n$
- evaluatie met het de Casteljau-algoritme
- graadverhoging : controleveelhoek convergeert naar curve $\vec{x}(t)$
- subdivisie : samengestelde controleveelhoeken convergeren naar $\vec{x}(t)$

Splinecurven

NMR -Oefenzitting 8

Splines

$$ec{s}(u) = \sum_{i=-k}^{n-1} ec{d}_i N_{i,k+1}(u)$$
 met $u \in [u_0, u_n]$

$$\mathsf{met} \quad u \in [u_0, u_n]$$

- Knooppunten $u_0 \leq \ldots \leq u_n$
- de Boor-punten (controlepunten) \vec{d}_i
- Genormaliseerde B-spline van graad k $N_{i,k+1}(u)$
- Enkele eigenschappen genormaliseerde B-splines :
 - lokaliteit : $N_{i,k+1} = 0$ als $u \notin (u_i, u_{i+k+1})$
 - \Rightarrow lokale afhankelijkheid splinecurven \bullet sommatie-tot-1 : $\sum_{i=-k}^{n-1} N_{i,k+1}(u) = 1$
 - ⇒ affiene combinatie
 - positiviteit : $N_{i,k+1} \geq 0$
 - ⇒ elk splinepunt binnen convex omhullende van k+1 de Boor-punten

Splinecurven

NMB -Oefenzitting 8

> Hendrik Speleers

Begrippen

Veelterme

Bézie

Splines

Rationaa

 $\mathsf{Toepassinger}$

• Eigenschappen spline-curven :

- splinecurve van lage graad dicht bij controleveelhoek
- evaluatie met het de Boor-algoritme
- als k de Boor-punten $\vec{d}_{j-k+1}, \ldots, \vec{d}_j$ samenvallen, dan interpolatie in dat punt $\vec{s}(u_{j+1}) = \vec{d}_j$
- interpolatie in begin- en eindpunt : samenvallende knooppunten $u_{-k}=\ldots=u_0$
- verminderde continuïteit bij samenvallende knooppunten
- toevoegen van knooppunten : controleveelhoek convergeert naar curve $\vec{s}(u)$

Rationale curven

NMB -Oefenzitting 8

> Hendrik Speleer

Begrippe

Veelterme

Bézie

Rationaal

Toepassinge

Exacte voorstelling van kegelsneden

- Rationale Béziercurven
- Rationale splinecurven
 - NURBS = Niet-Uniforme Rationale B-Splines

•
$$\vec{x}(u) = \frac{\sum_{i=-k}^{n-1} \vec{d}_i w_i N_{i,k+1}(u)}{\sum_{i=-k}^{n-1} w_i N_{i,k+1}(u)}$$

• $\vec{x}(u)$ convexe en lokale combinatie van controlepunten \vec{d}_i

Toepassingen

NMB -Oefenzitting 8

> Hendrik Speleers

. Begrippe

Veelterme

Rázia

Rationa

Toepassingen

