

UNIVERSIDADE FEDERAL DO AMAZONAS PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA ELÉTRICA

LISTA 4 DE SISTEMAS LINEARES

Andevaldo da Encarnação Vitório

MANAUS-AM

Andevaldo da Encarnação Vitório

LISTA 4 DE SISTEMAS LINEARES

Este trabalho foi preparado como parte dos requisitos da disciplina *Sistemas Lineares* oferecida pelo Programa de Pós-graduação em Engenharia Elétrica da Universidade Federal do Amazonas.

Prof. Dr. João Edgar Chaves Filho

MANAUS-AM

Capítulo 1

Resolução da Lista de Exercícios

Questão 1

Encontre os autovalores e os autovetores das seguintes matrizes:

a)
$$\begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$$

f)
$$\begin{bmatrix} -1 & -1 & 4 \\ 1 & 3 & -2 \\ 1 & 1 & -1 \end{bmatrix}$$
 i) $\begin{bmatrix} -4 & 4 & 2 \\ 3 & 4 & -1 \\ -3 & -2 & 3 \end{bmatrix}$

i)
$$\begin{vmatrix} -4 & 4 & 2 \\ 3 & 4 & -1 \\ -3 & -2 & 3 \end{vmatrix}$$

b)
$$\begin{bmatrix} 1 & -\frac{2}{3} \\ \frac{1}{2} & \frac{1}{6} \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix} \qquad g) \begin{bmatrix} 1 & -3 & 11 \\ 2 & -6 & 16 \\ 1 & 3 & 7 \end{bmatrix}$$

g)
$$\begin{bmatrix} 1 & -3 & 11 \\ 2 & -6 & 16 \\ 1 & -3 & 7 \end{bmatrix}$$
 j)
$$\begin{bmatrix} 3 & 4 & 0 & 0 \\ 4 & 3 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 4 & 5 \end{bmatrix}$$

$$d) \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$$

e)
$$\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$
 h)
$$\begin{bmatrix} 2 & -1 & -1 \\ -2 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
 k)
$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ -1 & 1 & 2 & 0 \\ 1 & -1 & 1 & 1 \end{bmatrix}$$

k)
$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ -1 & 1 & 2 & 0 \\ 1 & -1 & 1 & 1 \end{bmatrix}$$

Resolução:

(a) Os autovalores λ são encontrados resolvendo o determinante da matriz característica A –

 $\lambda I=0$, onde I é a matriz identidade.

$$A - \lambda I = \begin{bmatrix} 1 - \lambda & -2 \\ -2 & 1 - \lambda \end{bmatrix}.$$

O determinante é dado por:

$$\det(A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & -2 \\ -2 & 1 - \lambda \end{bmatrix}.$$

Calculando o determinante:

$$\det(A - \lambda I) = (1 - \lambda)(1 - \lambda) - (-2)(-2),$$

$$\det(A - \lambda I) = (1 - \lambda)^2 - 4,$$

$$\det(A - \lambda I) = 1 - 2\lambda + \lambda^2 - 4,$$

$$\det(A - \lambda I) = \lambda^2 - 2\lambda - 3.$$

Agora resolve-se a equação característica:

$$\lambda^2 - 2\lambda - 3 = 0.$$

Fatorando:

$$\lambda^2 - 2\lambda - 3 = (\lambda - 3)(\lambda + 1) = 0.$$

Portanto, os autovalores são:

$$\lambda_1 = 3, \quad \lambda_2 = -1.$$

Os autovetores são encontrados resolvendo $(A - \lambda I)v = 0$ para cada λ . Para $\lambda_1 = 3$:

$$A - 3I = \begin{bmatrix} 1 - 3 & -2 \\ -2 & 1 - 3 \end{bmatrix} = \begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix}.$$

Resolvendo (A - 3I)v = 0:

$$\begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

A equação reduzida é:

$$-2v_1 - 2v_2 = 0 \implies v_1 + v_2 = 0.$$

Escolhendo $v_1=1$, então $v_2=-1$. O autovetor associado a $\lambda_1=3$ é:

$$v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Para $\lambda_2 = -1$:

$$A - (-1)I = \begin{bmatrix} 1+1 & -2 \\ -2 & 1+1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}.$$

Resolvendo (A + I)v = 0:

$$\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

A equação reduzida é:

$$2v_1 - 2v_2 = 0 \quad \Rightarrow \quad v_1 = v_2.$$

Escolhendo $v_1=1$, então $v_2=1$. O autovetor associado a $\lambda_2=-1$ é:

$$v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

(b) Resolve-se a equação característica $\det(A - \lambda I) = 0$, que resulta em:

$$6\lambda^2 - 7\lambda + 3 = 0.$$

Como o discriminante é negativo ($\Delta = -23$), os autovalores são complexos:

$$\lambda_1 = \frac{7}{12} + i \frac{\sqrt{23}}{12}, \quad \lambda_2 = \frac{7}{12} - i \frac{\sqrt{23}}{12}.$$

Para cada λ , resolve-se o sistema $(A - \lambda I)v = 0$. Os autovetores associados são:

$$v_1 = \begin{bmatrix} \frac{5}{6} + i \frac{\sqrt{23}}{6} \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} \frac{5}{6} - i \frac{\sqrt{23}}{6} \\ 1 \end{bmatrix}.$$

(c) Resolve-se a equação característica $\det(A-\lambda I)=0$, que resulta em:

$$\lambda^2 - 4\lambda + 4 = 0.$$

Logo, os autovalores são:

$$\lambda_{1,2} = 2.$$

Para cada λ , resolve-se o sistema $(A - \lambda I)v = 0$, ou seja,

$$\begin{bmatrix} 3 - \lambda & 1 \\ -1 & 1 - \lambda \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} (3 - \lambda)v_1 + v_2 = 0 \\ -v_1 + (1 - \lambda)v_2 = 0 \end{cases} = \begin{cases} v_1 + v_2 = 0 \\ -v_1 - v_2 = 0 \end{cases}$$

Assim, os autovetores associados são:

$$v_{1,2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

(d) Resolve-se a equação característica $\det(A - \lambda I) = 0$, que resulta em:

$$\lambda^2 - 2\lambda + 3 = 0.$$

Como o discriminante é negativo ($\Delta = -8$), os autovalores são complexos:

$$\lambda_1 = 1 + i \frac{\sqrt{2}}{2}, \quad \lambda_2 = \frac{7}{12} - i \frac{\sqrt{2}}{2}.$$

Para cada λ , resolve-se o sistema $(A - \lambda I)v = 0$, ou seja,

$$\begin{bmatrix} 1 - \lambda & 2 \\ -1 & 1 - \lambda \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} (1 - \lambda)v_1 + v_2 = 0 \\ -v_1 + (1 - \lambda)v_2 = 0 \end{cases}.$$

Assim, os autovetores associados são:

$$v_1 = \begin{bmatrix} -i\sqrt{2} \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} i\sqrt{2} \\ 1 \end{bmatrix}.$$

(e) Resolve-se a equação característica $\det(A - \lambda I) = 0$, que resulta em:

$$-\lambda^3 + 8\lambda^2 - 19\lambda + 12 = 0$$

Logo, os autovalores são:

$$\lambda_1 = 1, \quad \lambda_2 = 3, \quad \lambda_3 = 4.$$

Para cada λ , resolve-se o sistema $(A - \lambda I)v = 0$, ou seja,

$$\begin{bmatrix} 3 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 3 - \lambda \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} (3 - \lambda)v_1 - v_2 = 0 \\ -v_1 + (2 - \lambda)v_2 - v_3 = 0 \\ -v_2 + (3 - \lambda)v_3 = 0 \end{cases}$$

Assim, os autovetores associados são:

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}.$$

(f) Resolve-se a equação característica $det(A - \lambda I) = 0$, que resulta em:

$$-\lambda^3 + \lambda^2 + 6\lambda - 6 = 0$$

Logo, os autovalores são:

$$\lambda_1 = 1, \ \lambda_2 = -\sqrt{6}, \ \lambda_3 = \sqrt{6}$$

Para cada λ , resolve-se o sistema $(A - \lambda I)v = 0$, ou seja,

$$\begin{bmatrix} -1 - \lambda & -1 & 4 \\ 1 & 3 - \lambda & -2 \\ 1 & 1 & -1 - \lambda \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} (-1 - \lambda)v_1 - v_2 + 4v_3 = 0 \\ -v_1 + (3 - \lambda)v_2 - 2v_3 = 0 \\ v_1 + v_2 + (-1 - \lambda)v_3 = 0 \end{cases}$$

Assim, os autovetores associados são:

$$v_1 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \ v_2 = \begin{bmatrix} -2 - \sqrt{6} \\ 4 - \sqrt{6} \\ 2 \end{bmatrix}, \ v_3 = \begin{bmatrix} -2 + \sqrt{6} \\ 4 + \sqrt{6} \\ 2 \end{bmatrix}.$$

(g) Resolve-se a equação característica $det(A - \lambda I) = 0$, que resulta em:

$$-\lambda^3 + 12\lambda = 0$$

Logo, os autovalores são:

$$\lambda_1 = 0, \ \lambda_2 = -2\sqrt{3}, \ \lambda_3 = 2\sqrt{3}.$$

Para cada λ , resolve-se o sistema $(A - \lambda I)v = 0$, ou seja,

$$\begin{bmatrix} -1 - \lambda & 3 & 11 \\ 2 & -6 - \lambda & 16 \\ 1 & -3 & 7 - \lambda \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} (-1 - \lambda)v_1 + 3v_2 + 11v_3 = 0 \\ 2v_1 + (-6 - \lambda)v_2 + 16v_3 = 0 \\ v_1 - 3v_2 + (7 - \lambda)v_3 = 0 \end{cases}$$

Assim, os autovetores associados são:

$$v_1 = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}, \ v_2 = \begin{bmatrix} -3 - 9\sqrt{3} \\ 6 - \sqrt{3} \\ 3 \end{bmatrix}, \ v_3 = \begin{bmatrix} -3 + 9\sqrt{3} \\ 6 + \sqrt{3} \\ 3 \end{bmatrix}.$$

(h) Resolve-se a equação característica $det(A - \lambda I) = 0$, que resulta em:

$$-\lambda^3 + 4\lambda^2 - 4\lambda = 0$$

Logo, os autovalores são:

$$\lambda_1 = 0, \ \lambda_{2,3} = 2.$$

Para cada λ , resolve-se o sistema $(A-\lambda I)v=0$. Os autovetores associados são:

$$v_1 = \begin{bmatrix} -1 \\ -3 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}.$$

(i) Resolve-se a equação característica $det(A - \lambda I) = 0$, que resulta em:

$$-\lambda^3 + 3\lambda^2 + 24\lambda - 52 = 0$$

Logo, os autovalores são:

$$\lambda_1 = 2, \ \lambda_2 = \frac{1 + \sqrt{105}}{2}, \ \lambda_3 = \frac{1 - \sqrt{105}}{2}$$

Para cada λ , resolve-se o sistema $(A - \lambda I)v = 0$. Os autovetores associados são:

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \ v_2 = \begin{bmatrix} 9 - \sqrt{105} \\ -6 \\ 6 \end{bmatrix}, \ v_3 = \begin{bmatrix} 9 + \sqrt{105} \\ -6 \\ 6 \end{bmatrix}.$$

(j) Resolve-se a equação característica $\det(A - \lambda I) = 0$, que resulta em:

$$\lambda^4 - 12\lambda^3 + 22\lambda^2 + 84\lambda + 49 = 0$$

Logo, os autovalores são:

$$\lambda_{1,2} = -1, \ \lambda_{3,4} = 7.$$

Para cada λ , resolve-se o sistema $(A - \lambda I)v = 0$. Os autovetores associados são:

$$v_1 = \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, v_2 = \begin{pmatrix} 0\\0\\-\frac{3}{2}\\1 \end{pmatrix}, v_3 = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, v_4 = \begin{pmatrix} 0\\0\\\frac{1}{2}\\1 \end{pmatrix}.$$

(k) Resolve-se a equação característica $\det(A - \lambda I) = 0$, que resulta em:

$$(-\lambda + 4)(-\lambda + 3)(-\lambda + 2)(-\lambda + 1) = 0$$

Logo, os autovalores são:

$$\lambda_1 = 4, \ \lambda_2 = 3, \ \lambda_3 = 2, \ \lambda_4 = 1.$$

Para cada λ , resolve-se o sistema $(A - \lambda I)v = 0$. Os autovetores associados são:

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Questão 2

a) Calcule os autovalores e os autovetores correspondentes de $A=\begin{bmatrix} 1 & 4 & 4 \\ 3 & -1 & 0 \\ 0 & 2 & 3 \end{bmatrix}$

- b) Calcule o traço de ${\cal A}$ e verifique que é igual a soma dos autovalores.
- c) Encontre o determinante de A e verifique que é igual ao produto dos autovalores.

Resolução:

Primeiramente, inicia-se pelo cálculo dos autovalores e autovetores da matriz $A = \begin{bmatrix} 1 & 4 & 4 \\ 3 & -1 & 0 \\ 0 & 2 & 3 \end{bmatrix}$.

Os autovalores são encontrados resolvendo o determinante da matriz característica $A-\lambda I$, ou seja, $\det(A-\lambda I)=0$. A matriz característica é dada por

$$A - \lambda I = \begin{bmatrix} 1 - \lambda & 4 & 4 \\ 3 & -1 - \lambda & 0 \\ 0 & 2 & 3 - \lambda \end{bmatrix}.$$

O determinante dessa matriz é

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 4 & 4 \\ 3 & -1 - \lambda & 0 \\ 0 & 2 & 3 - \lambda \end{vmatrix} = -\lambda^3 + 3\lambda^2 + 13\lambda - 15.$$

Os autovalores de A são as raízes da equação cúbica $-\lambda^3+3\lambda^2+13\lambda-15=0$. Aplicando métodos de fatoração, obtém-se que os autovalores são $\lambda_1=1, \lambda_2=-3, \lambda_3=5$.

Para os autovetores, resolve-se $(A-\lambda I)v=0$ para cada autovalor. Para $\lambda_1=1$, tem-se a matriz

$$A - I = \begin{bmatrix} 0 & 4 & 4 \\ 3 & -2 & 0 \\ 0 & 2 & 2 \end{bmatrix},$$

e a solução do sistema linear correspondente fornece o autovetor $v_1=\begin{bmatrix} -2\\ -3\\ 3 \end{bmatrix}$. Analogamente, para

 $\lambda_2 = -3$, a matriz

$$A + 3I = \begin{bmatrix} 4 & 4 & 4 \\ 3 & 2 & 0 \\ 0 & 2 & 6 \end{bmatrix}$$

leva ao autovetor $v_2=\begin{bmatrix}2\\-3\\1\end{bmatrix}$. Por fim, para $\lambda_3=5$, resolve-se

$$A - 5I = \begin{bmatrix} -4 & 4 & 4 \\ 3 & -6 & 0 \\ 0 & 2 & -2 \end{bmatrix},$$

resultando no autovetor $v_3 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$.

O traço de A é a soma dos elementos da diagonal principal, ou seja, 1 + (-1) + 3 = 3. Nota-se que isso é igual à soma dos autovalores 1 + (-3) + 5 = 3, confirmando a relação. O determinante de

A, calculado diretamente, é -15, o que corresponde ao produto dos autovalores $1 \cdot (-3) \cdot (5) = -15$, confirmando a propriedade.

Questão 3

Encontre os autovalores e a base de cada autoespaço das seguinte matrizes:

a)
$$\begin{bmatrix} 4 & -4 \\ 1 & 0 \end{bmatrix}$$
 e) $\begin{bmatrix} 4 & -1 & -1 \\ 0 & 3 & 0 \\ 1 & -1 & 2 \end{bmatrix}$ h) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 1 & -1 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix}$ e) $\begin{bmatrix} 6 & -8 \\ 4 & -6 \end{bmatrix}$ f) $\begin{bmatrix} -6 & 0 & -8 \\ -4 & 2 & -4 \\ 4 & 0 & 6 \end{bmatrix}$ e) $\begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix}$ g) $\begin{bmatrix} -2 & 1 & -1 \\ 5 & -3 & 6 \\ 5 & -1 & 4 \end{bmatrix}$ i) $\begin{bmatrix} -1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ -1 & -4 & 1 & -2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$

Resolução:

(a) Para a matriz $A = \begin{bmatrix} 4 & -4 \\ 1 & 0 \end{bmatrix}$, inicia-se determinando os autovalores resolvendo o determinante da matriz característica $A - \lambda I$. Tem-se:

$$A - \lambda I = \begin{bmatrix} 4 - \lambda & -4 \\ 1 & -\lambda \end{bmatrix}.$$

O determinante dessa matriz é dado por:

$$\det(A - \lambda I) = (4 - \lambda)(-\lambda) - (-4)(1).$$

Expandindo os termos:

$$\det(A - \lambda I) = -4\lambda + \lambda^2 + 4.$$

Fatorando a equação quadrática:

$$\lambda^2 - 4\lambda + 4 = (\lambda - 2)^2.$$

Logo, o autovalor de A é $\lambda=2$, com multiplicidade algébrica 2. Para determinar a base do autoespaço associado, resolve-se o sistema $(A-\lambda I)v=0$. Substituindo $\lambda=2$, obtém-se:

$$A - 2I = \begin{bmatrix} 2 & -4 \\ 1 & -2 \end{bmatrix}.$$

A forma escalonada da matriz é:

$$\begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}.$$

O sistema correspondente é:

$$x_1 - 2x_2 = 0.$$

Logo, $x_1 = 2x_2$, e a solução geral é:

$$v = x_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad x_2 \in \mathbb{R}.$$

Portanto, a base do autoespaço associado a $\lambda=2$ é:

$$\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}.$$

Segue a solução resumida para as matrizes fornecidas, com cálculo dos autovalores e as bases dos autoespaços associados:

(b) Para a matriz $A = \begin{bmatrix} 6 & -8 \\ 4 & -6 \end{bmatrix}$, temos que o determinante de $A - \lambda I$:

$$\det(A - \lambda I) = \begin{vmatrix} 6 - \lambda & -8 \\ 4 & -6 - \lambda \end{vmatrix} = \lambda^2 - 0\lambda - 4 = (\lambda - 2)(\lambda + 2).$$

Logo, os autovalores são $\lambda_1=2, \lambda_2=-2$, os autoespaços: Para $\lambda_1=2$:

$$A - 2I = \begin{bmatrix} 4 & -8 \\ 4 & -8 \end{bmatrix},$$

base
$$\mathcal{B}_1 = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$$
. Para $\lambda_2 = -2$:

$$A + 2I = \begin{bmatrix} 8 & -8 \\ 4 & -4 \end{bmatrix},$$

base
$$\mathcal{B}_2 = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$
.

(c) Para a matriz
$$A = \begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix}$$
, temos:

$$\det(A - \lambda I) = (3 - \lambda)(-1 - \lambda) + 8 = 0.$$

Logo, os autovalores são $\lambda_1 = 1 + 2i$, $\lambda_2 = 1 - 2i$. Assim, para $\lambda_1 = 1 + 2i$, a base é $\mathcal{B}_1 = \left\{ \begin{bmatrix} 1+i \\ 2 \end{bmatrix} \right\}$; e para $\lambda_2 = 1 - 2i$, a base $\mathcal{B}_2 = \left\{ \begin{bmatrix} 1-i \\ 2 \end{bmatrix} \right\}$.

(d) Para a matriz
$$A = \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix}$$
, temos:

$$\det(A - \lambda I) = (\lambda - i)^2 + 1 = 0.$$

Os autovalores são $\lambda_1 = 0, \lambda_2 = 2i$. Logo, para $\lambda_1 = 0$, a base é $\mathcal{B}_1 = \left\{ \begin{bmatrix} 1 \\ i \end{bmatrix} \right\}$; e para $\lambda_2 = i - 1$,

a base é
$$\mathcal{B}_2 = \left\{ \begin{bmatrix} 1 \\ -i \end{bmatrix} \right\}$$
.

- (e) Para a matriz $A=\begin{bmatrix} 4 & -1 & -1 \\ 0 & 3 & 0 \\ 1 & -1 & 2 \end{bmatrix}$, os autovalores são $\lambda_{1,2,3}=3$ (multiplicidade algébrica 3).
- Dessa forma, os autovetores, para $\lambda_{1,2,3} = 3$. são obtidos pela base $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$.
- (f) Para a matriz $A = \begin{bmatrix} -6 & 0 & -8 \\ -4 & 2 & -4 \\ 4 & 0 & 6 \end{bmatrix}$, os autovalores são $\lambda_{1,2} = 2, \lambda_3 = -2$. Logo, para $\lambda_{1,2} = 2$, a base é $\mathcal{B}_1 = \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$. Para $\lambda_3 = -2$, a base é $\mathcal{B}_2 = \left\{ \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix} \right\}$.
 - (g) Para a matriz $A=\begin{bmatrix} -2 & 1 & -1 \\ 5 & -3 & 6 \\ 5 & -1 & 4 \end{bmatrix}$, os autovalores são $\lambda_{1,2}=-2,\lambda_3=3$. Para cada $\begin{bmatrix} \begin{bmatrix} -1 \end{bmatrix} \end{bmatrix}$

autovalor, as bases são $\mathcal{B}_1 = \left\{ \begin{bmatrix} -1\\1\\1 \end{bmatrix} \right\}$ e $\mathcal{B}_2 = \left\{ \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$.

(h) Para a matriz $A=\begin{bmatrix}1&0&0&0\\0&1&0&0\\-1&1&-1&0\\1&0&-1&0\end{bmatrix}$, os autovalores são $\lambda_1=0,\lambda_{2,3}=1,\lambda_4=-1$. Para

cada autovalor, as bases são $\mathcal{B}_1 = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}, \mathcal{B}_2 = \left\{ \begin{bmatrix} 1 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right\} e \,\mathcal{B}_3 = \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \right\}.$

(i) Para a matriz $A=\begin{bmatrix} -1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ -1 & -4 & 1 & -2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$, os autovalores são $\lambda_{1,2,3}=0, \lambda_4=2$. Para cada

autovalor, as bases são
$$\mathcal{B}_1 = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$
 e $\mathcal{B}_2 = \left\{ \begin{bmatrix} 0 \\ 1 \\ -2 \\ 1 \end{bmatrix} \right\}$.

Questão 4

Diagonalize as seguintes matrizes:

a)
$$\begin{bmatrix} 3 & -9 \\ 2 & -6 \end{bmatrix}$$

e)
$$\begin{vmatrix} 8 & 0 & -3 \\ -3 & 0 & -1 \\ 3 & 0 & -2 \end{vmatrix}$$

e)
$$\begin{bmatrix} 8 & 0 & -3 \\ -3 & 0 & -1 \\ 3 & 0 & -2 \end{bmatrix}$$
 h)
$$\begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 2 & -1 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

b)
$$\begin{bmatrix} 5 & -4 \\ 2 & -1 \end{bmatrix}$$

c)
$$\begin{bmatrix} -4 & -2 \\ 5 & 2 \end{bmatrix}$$

f)
$$\begin{bmatrix} 3 & 3 & 5 \\ 5 & 6 & 5 \\ -5 & -8 & -7 \end{bmatrix}$$

f)
$$\begin{bmatrix} 3 & 3 & 5 \\ 5 & 6 & 5 \\ -5 & -8 & -7 \end{bmatrix}$$
 i)
$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

d)
$$\begin{bmatrix} -2 & 3 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 3 \end{bmatrix}$$
 g)
$$\begin{bmatrix} 2 & 5 & 5 \\ 0 & 2 & 0 \\ 0 & -5 & -3 \end{bmatrix}$$

g)
$$\begin{bmatrix} 2 & 5 & 5 \\ 0 & 2 & 0 \\ 0 & -5 & -3 \end{bmatrix}$$

Resolução:

Questão 5

Escreva abaixo um matriz real que tenha:

- a) autovalores -1, 3 e autovalores correspondentes $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$;
- b) autovalores 0, 2, -2 e autovalores correspondentes $\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix};$
- c) um autovalor de 3 e um autovalor correspondente $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$;
- d) autovalores -1 + 2i e autovalor correspondente $\begin{bmatrix} 1+i\\3i \end{bmatrix}$;
- e) autovalores -2 e autovalor correspondente $\begin{bmatrix} -2\\0\\-1 \end{bmatrix}$;

Resolução:

Questão 6

Encontre uma base para o complemento ortogonal de cada um dos conjuntos a seguir no espaço de produto interno indicado.

- (a) $\{(0,0,0)\}\subset \mathbb{R}^3$;
- (b) $\{(1,1,1),(2,1,0)\}\subset \mathbb{R}^3$.

Resolução:

Questão 7

Calcule uma base de cada um dos quatro subespaços fundamentais das seguintes matrizes e verifique que elas satisfazem as relações de ortogonalidade:

(a)
$$\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$
;

(b)
$$\begin{bmatrix} 2 & 1 & 3 & 1 \\ 4 & -1 & 2 & 3 \end{bmatrix}$$
.

Resolução:

Questão 8

Calcule a decomposição QR da matriz:

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 2 & 2 & -2 \\ -2 & 2 & 1 \end{bmatrix}.$$

Resolução:

Questão 9

Calcule a decomposição em valores singulares (SVD) da matriz A:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix}.$$

Resolução:

Questão 10

Considere o seguinte conjunto de vetores em \mathbb{R}^2 (com o produto interno convencional):

$$S = \left\{ \mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\}.$$

Agora, realize o processo de Gram-Schmidt para obter um conjunto ortogonal de vetores.

Resolução:

Questão 11

Seja

$$A = \begin{bmatrix} -1 & 2 & -1 \\ 0 & 1 & 3 \\ -1 & 2 & 5 \end{bmatrix}.$$

- a. Encontre $P(\lambda)$, o polinômio característico de A.
- b. Encontre os autovalores de A.
- c. Mostre que P(A) = 0.

Resolução:

Questão 12

Seja a matriz 3×3 *A* definida como:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Calcule A^{2004} e e^{At} .

Resolução:

Questão 13

Encontre a representação no espaço de estados para os seguintes sistemas dinâmicos na forma canônica controlável:

$$\text{a. } \frac{d^3y(t)}{dt^3} + 3\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 2y(t) = 7u(t).$$

Resolução:

Questão 14

Determine se as seguintes matrizes são definidas positivas / semi-definidas ou definidas negativas / semi-definidas:

a.
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$$
;

b.
$$B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
;

$$c. C = \begin{bmatrix} 1 & -2 \\ -2 & -6 \end{bmatrix}.$$

Resolução:

Questão 15

Considere o sistema no tempo discreto:

$$x(k+1) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} u(k), \quad y(k) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} x(k).$$

- a. Encontre a matriz de transição de estados A^k .
- b. Encontre y(k) se $x(0) = [1 \ 1 \ 1 \ 1]^T$ e u(k) = 0.
- c. Encontre y(k) se $x(0) = [1 \ 1 \ 1 \ 1]^T$ e u(k) = 1 para $k \ge 0$.

Resolução:

Questão 16

O seguinte sistema é controlável? Ele é observável?

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \\ x_3(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} u_1(k) \\ u_2(k) \end{bmatrix}.$$

$$\begin{bmatrix} y_1(k) \\ y_2(k) \end{bmatrix} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix}.$$

Resolução: