Lecture9: MOSFET, transconductance

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Triode mode

- Equation
 - A differential equation for V(x)

$$I_D = WC_{ox}[V_G - V(x) - V_{TH}]\mu_n \frac{dV}{dx}$$

- Solution
 - Potential

$$V(x) = V_G - V_{TH} - \sqrt{(V_G - V_{TH})^2 - \frac{2I_D}{\mu_n C_{ox} W}} x$$

Current

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_G - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

Saturation mode

- Current usually increases as the voltage increases...
- Recall (6.3).

$$Q_{elec} = WC_{ox}[V_G - V(x) - V_{TH}]$$
 (6.3)

- What happens when $V(x) = V_G - V_{TH}$?

← Instead, the current is saturated. (Red lines)

Example 6.6 (Razavi)

- Assume the saturation region.
 - Then, the saturation current becomes 200 μ A.

MOS transconductance

- "conductance" of a simple resistor
 - It means $\frac{I}{V}$.
- "trans" + "conductance"
 - Between different terminals

$$g_m = \frac{\partial I_D}{\partial V_{GS}} \tag{6.44}$$

For the saturation region,

$$g_{m} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

$$g_{m} = \sqrt{2\mu_{n} C_{ox} \frac{W}{L} I_{D}}$$

$$g_{m} = \frac{2I_{D}}{V_{GS} - V_{TH}}$$

Channel length modulation

Channel length modulation

Output resistance?

$$r_O = \frac{\Delta V_{DS}}{\Delta I_D}$$

Large-signal model (1/2)

Saturation region

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

- Drain current is determined by gate voltage. (voltage-controlled current source)
- Channel-length modulation?

Large-signal model (2/2)

Triode region

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^2 \right]$$

Still, it can be described by a voltage-controlled current source.

Example 6.13 (Razavi)

- Always in the saturation region!
 - Any necessary condition?

Gate and drain are tied.

They are connected to V_{DD} .

Small-signal model

- The large-signal model is complete (within its accuracy limitation).
 - But, for small-signal analysis, it is convenient to have the small-signal model.

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

What is g_m and r_o ?

Time-dependent one?

- Everything was in the dc steady-state...
 - How about the frequency-dependent case?
 - Capacitive components can be seen.
 - Their physical origin?

High-frequency, equivalent-circuit model for the case in which the source is connected to the substrate

Homework#5 (1)

- Due: 09:00, April 9
- Write a program, which reads a netlist file.
 - Construct a square matrix, whose size is $N \times N$. The matrix is related with the vector in Homework#4.
 - Each row of the matrix represents an equation.
 - In this program, the matrix describes a system:
 - For every element terminal, the terminal current vanishes.
 - For every element tetminal, the terminal voltage is equal to the circuit node voltage.
 - For the GND node, the node voltage is zero.
 - For all other circuut nodes, the KCL is applied.

Homework#5 (2)

(Continued)

 For example, consider the example in Homework#4. A voltage source and a resistor are found.

 $\Gamma \tau V$ \neg

The matrix is explicitly shown below.

												I_1^{ν}			
Currents	г1	0	0	0	0	0	0	0	0	0	1	I_{2}^{V}	Г	07	
	0	1	0	0	0	0	0	0	0	0		$\begin{vmatrix} I_2 \\ V_1^V \\ V_2^V \end{vmatrix}$		0	
Voltages	0	0	1	0	0	0	0	0	0	-1				0	
	0	0	0	1	0	0	0	0	-1	0				0	
Currents	0	0	0	0	1	0	0	0	0	0		I_1^R		0	
	0	0	0	0	0	1	0	0	0	0	$ \times $	I_2^R		0	
Voltages	0	0	0	0	0	0	1	0	0	-1		V_1^R		0	
	0	0	0	0	0	0	0	1	-1	0		1 I		0	
GND	0	0	0	0	0	0	0	0	1	0		V_2^R		0	
KCL	L ₁	0	0	0	1	0	0	0	0	0 -		V_0	l L	0]	
												$\lfloor V_{in} \rfloor$			

Homework#5 (3)

- Solve the following problems of the mid-term exam in 2017.
 - P25
 - P26
 - P27
 - P28
 - P29
 - P30
 - P31
 - P32
 - P33