BenchloT: A Security Benchmark for The Internet of Things

Naif Almakhdhub, Abraham Clements, Mathias Payer, and Saurabh Bagchi

Internet of Things

The number of IoT devices is expected to exceed 20 billion by 2020.

Many will be microcontroller based systems (IoT-μCs).

- Run single static binary image directly on the hardware.
- Can be with/without an OS (bare-metal).
- Direct access to peripherals and processor.
- Small memory.

Examples:

- WiFi System on Chip
- Cyber-physical systems
- UAVs

Internet of Things Security

 In 2016, one of the largest DDoS attack to date was caused by IoT devices[1].

 In 2017, Google's Project Zero used a vulnerable WiFi SoC to gain control of the application processor on smart phones[2].

^[1] https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/

^[2] https://googleprojectzero.blogspot.co.uk/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html

Evaluation in Current IoT Defenses

Multiple defenses have been proposed.

TyTan[DAC15], TrustLite[EurSys14],
C-FLAT [CCS16], nesCheck[AsiaCCS17],
SCFP[EuroS&P18], LiteHAX[ICCAD18]
CFI CaRE [RAID17], ACES[SEC18],
MINION [NDSS18], EPOXY [S&P17]

How are they evaluated?

Ad-hoc evaluation.

Defense	Evaluation Type		
Delense	Benchmark	Case Study	
yTan		✓	
FrustLite		✓	
C-FLAT		✓	
nesCheck		✓	
SCFP	Dhrystone[1]	✓	
iteHAX	CoreMark[2]	✓	
CFI CaRE	Dhrystone[1]	✓	
ACES		✓	
Minion		✓	
POXY	BEEBS[3]	✓	

^[1] R. P. Weicker, "Dhrystone: a synthetic systems programming benchmark," Communications of the ACM, vol. 27, no. 10, pp. 1013–1030, 1984 [2] EEMBC, "Coremark - industry-standard benchmarks for embedded systems," http://www.eembc.org/coremark.

^[3] J. Pallister, S. J. Hollis, and J. Bennett, "BEEBS: open benchmarks for energy measurements on embedded platforms," CoRR, vol. abs/1308.5174, 2013.[Online]. Available: http://arxiv.org/abs/1308.5174

IoT-μCs Evaluation (Ideally)

IoT-μCs Evaluation (Reality)

Why not use Existing Benchmark?

- Current benchmarks are rigid and simplistic.
 - Many are just one file with simple application.
 - Metrics are limited and cumbersome to collect.
 - Hardware dependent.
- Do not use peripherals.
- No network connectivity.

Proposed Solution: BenchloT

- BenchloT provides a suite of benchmark applications and an evaluation framework.
- A realistic set of *IoT* benchmarks.
 - Mimics common IoT characteristics, e.g., tight coupling with sensors and actuators.
 - Works for both with/without an OS.
- Our evaluation framework is versatile and portable.
 - A software based approach.
 - Can collect metrics related to security and resource usage.
- Targeted Architecture: ARMv7-M (Cortex-M3,4, and 7 processors).

Comparison Between BenchloT and Other Benchmarks

Benchmark		Task Type		Network	Peripherals	
Bellelillark	Sense	Compute	Actuate	Connectivity	rempherais	
BEEBS [2]		✓				
Dhrystone [1]		✓				
CoreMark [3]		\checkmark				
loTMark [4]	√	✓		Partially (Bluetooth only)	Only I ² C	
SecureMark [5]		✓				
BenchloT	✓	✓	√	✓	✓	

^[1] R. P. Weicker, "Dhrystone: a synthetic systems programming benchmark," Communications of the ACM, vol. 27, no. 10, pp. 1013–1030, 1984

^[2] J. Pallister, S. J. Hollis, and J. Bennett, "BEEBS: open benchmarks for energy measurements on embedded platforms," CoRR, vol. abs/1308.5174, 2013.[Online]. Available: http://arxiv.org/abs/1308.5174

^[3] EEMBC, "Coremark - industry-standard benchmarks for embedded systems," http://www.eembc.org/coremark

^[4] EEMBC, "Coremark - industry-standard benchmarks for embedded systems," http://www.eembc.org/iotmark

^[5] EEMBC, "Coremark - industry-standard benchmarks for embedded systems," http://www.eembc.org/ securemark

BenchloT: Overview

BenchloT Design Feature: (1) Hardware agnostic

- Applications often depend on the underlying vendor & board.
 - Memory is mapped differently on each board.
 - Peripherals are different across boards.

BenchloT Design Feature: (2) Reproducibility

- Applications are event driven.
 - Example: User enters a pin.
 - Problem: This is inconsistent (e.g., variable timing).
- Solution: Trigger interrupt from software.
 - Creates deterministic timing.
 - Allows controlling the benchmarking execution.

BenchloT Design Feature: (2) Reproducibility

BenchloT Design Feature: (3) Metrics

 Allows for measurement of 4 classes of metrics: Security, performance, energy, and memory.

BenchloT Design Feature: (3) Metrics

: Static metric

: Dynamic metric

Security

Total privileged cycles

Privileged Thread cycles

SVC cycles

Max Data region ratio

Max Code region ratio

DEP

ROP resiliency

of indirect calls

Performance & Energy

Total runtime

CPU sleep cycles

Initialization cycles

Initialization cycles

Memory

Stack+Heap usage

Total RAM usage

Total Flash usage

Set of Benchmark Applications

Benchmark		Task Type	Peripheral		
Denominark	Sense	Compute	Actuate	i elipliciai	
Smart Light	✓	✓	✓	Low-power Timer, GPIO, Real-time clock	
Smart Thermostat	✓	✓	✓	ADC, Display, GPIO, uSD card	
Smart Locker		✓	✓	Serial (UART),Display, uSD Card , Real-time clock	
Firmware Updater		✓	✓	Flash in-application programming	
Connected Display		✓	✓	Display, uSD Card	

• Boards without non-common peripherals can still run the benchmark.

BenchloT Evaluation: Defense Mechanisms

ARM's Mbed-µVisor

 A hypervisor that enforces the principle of least privilege. Remote Attestation (RA)

- Verifies the integrity of the code present on the device.
- Uses a real-time task that runs in a separate thread.
- Isolates its code in a secure privileged region.

Data Integrity (DI)

- Isolates sensitive data to a secure privileged region.
- Disables the secure region after the data is accessed.

BenchloT Evaluation: Defense Mechanisms

- The goal is to demonstrate BenchloT effectiveness in evaluation.
 - Non-goal: To propose a new defense mechanism.
- ARM's Mbed-µVisor and Remote Attestation (RA) require an OS.
- Data Integrity (DI) is applicable to Bare-Metal (BM) and OS benchmarks.

BenchloT Evaluation: Defense Mechanisms

Performance Results

Privileged Execution Minimization Results

Code Injection Evaluation

Defense	Data Execution Prevention (DEP)
Mbed-uVisor	× (Heap)
Remote Attestation (OS)	✓
Data Integrity (OS)	×
Data Integrity (Bare-metal)	×

Energy Consumption Results

Measurement Overhead

Percentage of total runtime cycles

BenchloT: Summary

Benchmark suite of five realistic IoT applications.

- Demonstrates network connectivity, sense, compute, and actuate characteristics.
- Applies to systems with/without an OS.

Evaluation framework:

- Covers security, performance, memory usage, and energy consumption.
- Automated and extensible.

Evaluation insights:

Defenses can have similar runtime overhead, but a large difference in energy consumption.

Open source:

https://github.com/embedded-sec/BenchloT