

Fibofrac - Descrierea soluției

Autor: Prof. Cheșcă Ciprian Liceul Tehnologic "Grigore C. Moisil" Buzău

Solutia 1

Generăm termenii șirului Fibonacci și formăm toate perechile posibile F_a/F_b cu F_a < F_b . Pentru fiecare pereche calculăm (F_a , F_b) și contorizăm pentru acele perechi care au (F_a , F_b) = 1. Deoarece termenii șirului Fibonacci cresc repede se obțin erori pentru N > 80. Soluția are ordin de complexitate O(n^2) și obține aproximativ 24 puncte. Pentru obținerea unor puncte suplimentare s-ar putea lucra cu numere mari.

Solutia 2

Dacă o fracție F_a/F_b este ireductibilă atunci (F_a,F_b) este 1. Se cunoaște însă că $(F_a,F_b)=F_{(a,b)}$. Cum (F_a,F_b) trebuie să fie 1, rezultă că $F_{(a,b)}$ poate fi F_1 sau F_2 , pentru că $F_1=1$ și $F_2=1$. Așadar contorizăm toate perechile i,j cu i < j pentru care (i,j) este 1 sau 2. Soluția obține aproximativ 40 puncte.

Solutia 3

În plus față de considerațiile de la varianta anterioară, se știe că numărul de perechi ordonate (x \leq y) care au (x,y) = d și x \leq y \leq M este $\varphi(1)+\varphi(2)+\varphi(3)+...+\varphi(M/d)$, unde M este un număr natural iar $\varphi(t)$ reprezintă numărul de

numere mai mici decât t și prime cu t (indicatorul lui Euler).

În cazul nostru d poate fi 1 sau 2, de unde se obține expresia:

2
$$(\varphi(1) + \varphi(2) + \varphi(3) + ... + \varphi(N/2)) + \varphi(N/2+1) + \varphi(N/2+2) + ... + \varphi(N)$$

Din acest număr trebuie scăzut numărul fracțiile identice cu cele numărate anterior, deoarece au fost numărate de două ori fracțiile de tipul $1/F_a$, având în vedere că primii 2 termeni ai șirului Fibonacci sunt 1. Mai trebuie deasemenea scăzute și fracțiile 1/1 și 2/2 care nu sunt subunitare.

Soluția obține 100 puncte și are complexitate O(Nlog(N)).