2019 年 - 2020 学年度第 二 学期 华中科技大学本科生课程考试试卷(A 卷)

课程名称:	自动控制原理(二)	课程类别	<u>□公共课</u> ■专业课	考试形式	■ 开卷□ 闭卷
所在院系:	专业及	班级:	考	试日期:	
学 号:_		名:	任	课教师:	

题号	_	<u> </u>	Ξ.	四	五.	六	七	总分
分数								

Table of Z-transform

E(s)	1	$\frac{1}{s}$	$\frac{1}{s^2}$	$\frac{1}{s+a}$	$\frac{1}{(s+a)^2}$
e(t)	$\delta(t)$	1(t)	t	e^{-at}	te^{-at}
E(z)	1	$\frac{z}{z-1}$	$\frac{Tz}{(z-1)^2}$	$\frac{z}{z - e^{-aT}}$	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$

得分 评卷人

1. (20 分) The discrete-time system is shown in the following

figure,
$$G(s) = \frac{k}{s(0.1s+1)}$$
, **T=0.1.**

- (1) Obtain the closed-loop impulsive transfer function.
- (2) Determine the stable range of k.
- (3) If k=1, Obtain $e(\infty)$ for r(t)=1(t)+t. (Note: $e^{-1}=0.368$)

得分	评卷人

2. (10分) The structure of a nonlinear system is shown in

the following figure, where
$$G(z) = \frac{0.5z^{-1}(1+0.15z^{-1})(1+1.03z^{-1})}{(1-z^{-1})(1-0.25z^{-1})(1-0.0133z^{-1})}$$
.

Design a deadbeat controller D(z) **for input** r(t) = 1(t).

得分 评卷人

3. (10分) The nonlinear system is shown in following figure,

with r(t) = 0, k > 0, T > 0 and M=2. Please design parameters

k and T, such that it occurs the self-oscillation(自激振荡) with amplitude A=2 and $\omega = 2$. $(N(A) = \frac{4M}{\pi A})$

得分	评卷人

4. (15分) Consider the nonlinear system as shown in Figure

M=0.5 . The initial (初始) conditions are c(0)=0、 $\dot{c}(0)=0$

and $r(t) = 2 \times 1(t)$, Draw the phase trajectory (相轨迹) in the plane $c - \dot{c}$.

得分	评卷人

5. (15 分) If the state transition matrix (状态转移矩阵) Φ(t) of a state-space system ss(A,B,C) is:

$$\Phi(t) = \begin{bmatrix} 2e^{-t} - 4e^{-2t} & 4e^{-t} - e^{-2t} \\ -2e^{-t} + e^{-2t} & -3e^{-t} + 2e^{-2t} \end{bmatrix}$$

The input vector (输入向量) $B=[0,1]^T$. System's initial states (初始状态) are $x_1(0)=1, x_2(0)=0$. The input u(t)=1(t).

- (1) Obtain the state equation (状态方程) of the system.
- (2) Solve this state equation (求解状态方程).

得分	评卷人

6. (10 分) Consider the following state-space presentation

$$\begin{cases} \dot{x} = \begin{bmatrix} 1 & 1 \\ -6 & -4 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \\ y = \begin{bmatrix} a & 1 \end{bmatrix} x \end{cases}$$

- (1) Find the state transition matrix (状态转移矩阵).
- (2) Determine the range of a, which ensures the system observability.

得分	评卷人

7.(20 分)Assume the transfer function(传递函数) of system

$$G(s) = \frac{(s-1)(s+2)}{(s+1)(s-2)(s+3)}$$

- (1) Establish its corresponding (对应的) state-space representation of controllable canonical form (能控标准型).
- (2) Design a state feedback (状态反馈) structure to make the transfer function of the closed loop system satisfying (满足): $\Phi(s) = \frac{s-1}{(s+2)(s+3)}$.
- (3) Draw the state va riable diagram (状态变量图) of the closed loop system with state feedback.
- (P.S.: The state feedback structure won't change the zeros of the original system——状态反馈不改变原系统的零点)