Finite Structures

with

Few Types

December 8, 2023

Weak EI

Definition M has weak elimination of imaginaries if for all a & Meg, a & del (Mn aul(a)).

Non-example

T = theory of an equivalence relation with infinitely many classes, all of which are infinite.

M. · b

a = b/E Then $ael(a) \cap M = \emptyset$ and $del(\emptyset) = \emptyset$. lemma

If D is O-definable in a structure M, and Dla):= ael (a) ND for some a & M°7.
Then TFAE:

(1) D is Stably embedded in M and has weak EI.

(2) For all ac Meg, $tp(^{\alpha}/Dar)+tp(^{\alpha}/D).$

Proof (11)(2)

Take Y(x;y) arbitray w/x in the sort of a and assume $Y(x;y) + Y \in D$. So Y(a;y) is a relation on D. So it has a canonical parameter $d_0 \in D^{-1}$. Notice that $d_0 \in del(a)$.

By weak EI, we know that do « del(aul(do) 1) = del(DG). So there's some (finite) B = D(do) < D(a) st. do e del(B). So Y(ain) is B-definable: So them's some 4 st. Y(a;y) 67 (6;y) holds for beB. So 4(x/4) => 4*(6,4) = tp (a/B) = tp (9/061) so tp (1/Da) + tp (1/D). (2) => (1) Assure (2).

Weak EI: Take Some a EDET, Want that a Edc((D)) a Edel (D(a)). Know that a Edc((D)) and $tp(^{a}/_{D(a)}) \leftarrow tp(^{a}/_{D})$ so a Edel (D(a)).

Stably embedded; Suppose $Y(x_{ja})$ defines a subset of D. [a need not be in D^{eq}]. A = D(a). We know by (2) that

if a = b then a = b, in which case if a = b then a = b, in which case $Y(x_{ja})$ and $Y(x_{jb})$ define the same subset of D.

So since the set defined by $Y(x_{ja})$ is invariant and automorphisms $P(x_{ja})$ is invariant and $P(x_{ja})$ in $P(x_{ja})$ is invariant and $P(x_{ja})$ in $P(x_{ja})$ is invariant and $P(x_{ja})$ in $P(x_{ja})$ is invariant and $P(x_{ja})$ and $P(x_{ja})$ in $P(x_{ja})$ is invariant and $P(x_{ja})$ and $P(x_{ja})$ in $P(x_{ja})$ in $P(x_{ja})$ is invariant and $P(x_{ja})$ and $P(x_{ja})$ in $P(x_{ja})$ is $P(x_{ja})$ in $P(x_{ja})$ in $P(x_{ja})$ in $P(x_{ja})$ in $P(x_{ja})$ is $P(x_{ja})$ in $P(x_{ja})$ in $P(x_{ja})$ in $P(x_{ja})$ in $P(x_{ja})$ is $P(x_{ja})$ in $P(x_{ja})$ in

Lemma

Let J be a linear, projective, or affine geomety. Let $a \in J^{eq}$, and let $A = aul(a) \cap J$. Then acl(a) = aul(A).

Proof We may assure J is basic.

Write a = f(b) for bed and f O-defilin

 J^{91} . By extension, take $b' \equiv aul(a)$ by the b' b.

Now we recall Corollary 2.7.12: If Jisa linear, projudire, or alline geometry, and a,b are finite sequences with acl(a) \(\Lambda\) aud (b) = (,

Hence we get a L b, in our case.

Unravelly, we have
$$rk(\frac{b'}{Aab}) = rk(\frac{b'}{Aa})$$

$$rk(\frac{b'}{Ab}) = rk(\frac{b'}{A})$$

$$rk(\frac{b'}{Ab}) = rk(\frac{b'}{A})$$

$$rk(\frac{a}{A}) = rk(\frac{a}{A})$$

$$rk(\frac{a}{A}) = rk(\frac{a}{A})$$

$$= rk(\frac{a}{A}) = rk(\frac{a}{A})$$

$$= rk(\frac{a}{A}) = 0 \implies a \in ael(A).$$

Man result (lemme 2.3.5) let J be a basic linear geometry. Then J has weak EI. Take a & Jeg, want to show that a & del (aul(a) ()). Sulfius to show, by the precedy lemma, that it A E J is aly closed, a = Jeg, and a coull(A), tun ac del (A). E We will prove this. a=Jer, allann J= A, a earl (A) =) a Edel(A) := a Edel(aulain J)

We will write a=f(b) with f A-def'l and b= (b,,-, bn) & Jn. We mil take n prinimal. Assume af dul(A) so n=1. By working over Aben, we can assume n=1 and $b=b_n$. Let DEJ be the locus of bone A

(i.e. the realizations in J of tp(b/A)). We know bof A.

Let $I = \{(x,y) \in D^2 \mid (xA) \cap (yA) = A\}.$

QE implies that, For (x,y)+I, tp(x,y/A) is determined by

- · B(x,y) [non-deg or trival,
 possibly country from a good-ahr from].
- · [xiy] := x(Jx+y) [in quadratic case when X,yeQ

So we will call these functions $X \cdot y$ to give it variform notation. Note that in the first case, it takes values in K, in the second ease, it takes values T(K) where $\chi^2 + \chi = T(\chi)$.

Let $X \subseteq K$ be a subset such that, for all $(x,y) \in I$,

 $f(x) = f(y) \iff x \cdot y \in X.$ now dy. $let X_0 = K \text{ in the bilinear form case and}$ $let X_0 = T(K) \text{ when } D \subseteq Q.$

Goal now is to prove that $X = X_0$. If we know that then f would be constant on D, so instead of unity a = f(b), can unte a is the every $x \le f(b)$, and $f(y) = x'' = a \in dul(A)$

Suffices to check that, for d_{12} , d_{13} , $d_{23} \in X_0$, there are $X_1, X_2, X_3 \in D$ indep our $A \in Y_1 \circ X_2 = d_{12}$.

This follows from the proof of QE.

Bilinear Farm Cass.

Fix X, c t) ashing. Consider a type ply/ consisting it

- · y+D =
- . y & < Ax,>
- · B(x,,y)=d12 L

$$=$$
) $\chi_0 = \chi$.

(\$)

me include some détants about to choose X1, X2, X3 in the case that D = Q, di; ET(K) are arbitrary. Pick q E Darbitray and Set X2 = 9. By the proof of QE in the orthogenal case, we can $v \notin aul(A \times 2)$ St. $g(v) = d_{12}$, Choose hence $[q+\chi_{V},q]=q(v)=d_{12}.$

Next, again by the proof of BE

in the orthogonal case, we can choose we Y St.

• $w \notin \langle A, q, v \rangle$

· B(v,w) = 8 for some

 $T(8) = d_{13} - d_{12} - d_{23}$

· q(w) = 23.

Note that there is such a X since

T(K) is a subgroup of (K,+) so

d₁₃ - d₁₂ - d₂₃ \in T(K).

Now we consider

 $X_1 = q + \lambda_0^2$, $X_2 = q_1$, $X_3 = q + \lambda_w^2$.

By construction, they are independent over A. Also, we have

 $\begin{bmatrix} X_{1}, X_{2} \end{bmatrix} = \begin{bmatrix} q + \lambda^{2}, q \end{bmatrix} = q(u) = d_{12}$ $\begin{bmatrix} X_{2}, X_{3} \end{bmatrix} = \begin{bmatrix} q, q + \lambda^{2}w \end{bmatrix} = q(w) = d_{23}.$ So we are left with checking that $\begin{bmatrix} X_{1}, X_{3} \end{bmatrix} = \begin{bmatrix} q + \lambda^{2}, q + \lambda^{2} \end{bmatrix} = d_{13}.$

Chan 2! $\left[q+\lambda_{J}^{2},q+\lambda_{W}^{2}\right]=\left[q+\lambda_{J}^{2},q+\lambda_{J}^{2}+\lambda_{J}^{2}+\lambda_{W}^{2}\right]$ $= \left(Q + \lambda_{V}\right) \left(V + \omega\right)$ $= G(v+w) + (B(v,v+w))^{2}$ = q(v)+q(w)+ B(v,w) + B(v,w)² = q(v) + q(w) + T(B(v, w)) $= d_{12} + d_{23} + T(Y)$ $= d_{12} + d_{23} + (d_{13} - d_{12} - d_{23}) = d_{13}.$