## Lógica Digital Secuencial

Organización del Computador 1 1er Cuatrimestre 2018

## Agenda

#### ¿De dónde venimos?

- Introducción: esquema de una computadora
- Representación de la información
- Circuitos combinatorios



## Agenda

#### ¿A dónde vamos?

- Circuitos secuenciales
- Flip-Flops
- · Contadores, registros, memoria
- Unidad de Control



## Componentes de tres estados



| A | В | С    |
|---|---|------|
| 0 | 1 | 0    |
| 1 | 1 | 1    |
| ? | 0 | Hi-Z |

• **Hi-Z** significa "alta impedancia", es decir, que tiene una resistencia alta al pasaje de corriente.

#### Un Cable

- Un cable permite mandar una señal de un bit por él
- Un dispositivo/componente puede escribir un 0 ó un 1
- Un cable puede ser leído por más de un dispositivo a la vez
- Un cable no tiene memoria, no conserva ningún valor si nadie lo está escribiendo

#### Un Cable

- Si dos dispositivos intentan escribir al mismo tiempo un 0 y un 1, se asume que el valor es basura
- Si ningún dispositivo está escribiendo un cable, al leerlo se obtiene un valor basura
- Si ningún dispositivo está escribiendo un cable, entonces vale Hi-Z (alta impedancia) -no es ni 1 ni 0

| DispA | DispB | Valor |
|-------|-------|-------|
| 0     | 0     | ???   |
| 0     | 1     | ???   |
| 0     | Hi-Z  | 0     |
| 1     | 0     | ???   |
| 1     | 1     | ???   |
| 1     | Hi-Z  | 1     |
| Hi-Z  | 0     | 0     |
| Hi-Z  | 1     | 1     |
| Hi-Z  | Hi-Z  | Hi-Z  |

# Componentes de tres estados



| A | В | С    |
|---|---|------|
| 0 | 1 | 0    |
| 1 | 1 | 1    |
| ? | 0 | Hi-Z |

 Como consecuencia de esto, podemos considerar al pin C como "desconectado" del circuito

#### Componentes de Tres Estados

 IMPORTANTE: Sólo deben ser usados a la salida de componentes para controlar el acceso a un medio compartido



#### Circuitos Combinatorios

La salida está determinada únicamente por la entrada del circuito



#### Circuitos Secuenciales

La salida está determinada por la entrada y **el estado** del circuito



#### ¿Cómo almacenar un bit?

- Las circuitos secuenciales retroalimentan las señales
- Supongamos el siguiente circuito con valores iniciales S=0 y Q=0
- ¿Qué pasa si cambiamos el valor de S a 1?



#### ¿Cómo almacenar un bit?

- Si cambiamos el valor de S=1, luego que el circuito se estabiliza, la salida valdrá Q=1
- ¿Qué ocurrirá si ahora S vuelve a valer 0?



#### ¿Cómo almacenar un bit?

- Si ahora cambiamos S=0, obtendremos como resultado que el valor de salida Q continuará en 1.
- Por lo tanto, para una misma entrada (S=0), tenemos una salida distinta de acuerdo al estado previo del circuito (valor de la señal Q)



 Supongamos el siguiente circuito secuencial (retroalimentado) con los valores iniciales S=0,~R=1 y Q=0.



• ¿Qué pasará si ahora S=1 y ~R=1?

 Si S=1 y ~R=1 (y el estado de Q era 0), el nuevo estado estable del circuito será tal que Q=1.



¿Qué pasará si ahora S=0 y ~R=1?

 Si S ahora vale 0, y ~R=1 sigue valiendo 1, y en el anterior estado estable del circuito Q=1, entonces en el nuevo estado estable Q seguirá valiendo 1.



• ¿Qué pasará si ahora S=0 y ~R=0?

 Ahora, S=0, y ~R=0, entonces en el nuevo estado estable Q=0.



- S=señal de Set (asignar valor)
- **R**=señal de Reset (limpiar valor a 0)

## Flip-Flops (Bi-estables)

- Un Flip-Flop es un dispositivo capaz de almacenar un bit de información
- Utilizan el principio de la retroalimentación (son circuitos secuenciales)
- Esta característica es utilizada para memorizar resultados
- El paso de un estado a otro se realiza variando las entradas

## Flip-Flops (Bi-estables)

- Según el tipo de entradas se los Flip-Flops, se dividen en:
  - Asincrónicos: sólo tienen entradas de control y puede cambiar de estado en cualquier momento
  - **Sincrónicos**: además de las entradas de control posee entrada de sincronismo *o de reloj*.
    - El sistema sólo puede cambiar de estado en los instantes de sincronismo.

### Clocks (Relojes)

 Un reloj es un circuito que emite una serie de pulsaciones consecutivas con una frecuencia definida.



## Clocks (Relojes)

- Se denomina Flanco a la transición que va del nivel bajo al nivel alto, o del nivel alto al nivel bajo.
- El periodo entre dos flancos ascendentes o descendentes se denomina tiempo de ciclo de reloj.



### Clocks (Relojes)

- Si el ciclo de reloj es 2 nanosec. ¿Cuál es la frecuencia (en GHz) de mi Clock?
- **Rta**: Frecuencia = 1/T = 1/2 nanosec = 0.5\*10^9 = 500 MHz = 0.5 GHz



- Los circuitos combinatorios implementan funciones booleanas que se especifican utilizan tablas de verdad
- Los circuitos secuenciales (al depender del estado del circuitos además de sus entradas) no pueden ser especificados usando tablas de verdad que incluyan unícamente las entradas
  - Para especificar un circuito secuencial se utilizan
     Tablas Características y Ecuaciones Características.





| S | R | Qn | Qn+1 |
|---|---|----|------|
| 0 | 0 | 0  | 0    |
| 1 | 0 | 0  | 1    |
| 0 | 0 | 1  | 1    |
| 0 | 1 | 1  | 0    |
| 1 | 1 | 0  | ?    |
| 0 | 1 | 0  | ?    |
| 1 | 0 | 1  | ?    |
| 1 | 1 | 1  | ?    |



| S | R | Qn | Qn+1 |
|---|---|----|------|
| 0 | 0 | 0  | 0    |
| 1 | 0 | 0  | 1    |
| 0 | 0 | 1  | 1    |
| 0 | 1 | 1  | 0    |
| 1 | 1 | 0  | 1    |
| 0 | 1 | 0  | 0    |
| 1 | 0 | 1  | 1    |
| 1 | 1 | 1  | 1    |



| S | R | Qn+1 |
|---|---|------|
| 0 | 0 | Qn   |
| 1 | 0 | 1    |
| 0 | 1 | 0    |
| 1 | 1 | 1    |

Ecuación característica: Q<sub>n+1</sub>=S+(~R.Q<sub>n</sub>)

### Flip-Flops RS

- Sus entradas principales son S (Set) y R (Reset)
- S o Set: Cuando está en uno la salida está en 1.
- R o Reset: Cuando está en uno la salida es 0.
- Si no, mantiene el valor anterior de Qn.

| S | R | Qn+1  |
|---|---|-------|
| 0 | 0 | Qn    |
| 1 | 0 | 1     |
| 0 | 1 | 0     |
| 1 | 1 | Indef |

### Flip-Flops RS





- Existen varias implementaciones posibles de un Flip-Flop RS
- El uso del mismo tipo de compuertas reduce el costo del circuito y su complejidad

## Flip-Flops RS



| S | R | Qn+1  |
|---|---|-------|
| 0 | 0 | Qn    |
| 1 | 0 | 1     |
| 0 | 1 | 0     |
| 1 | 1 | Indef |

#### Flip-Flops RS con Clock

 Tiene una entrada adicional (Clock) que habilita/ deshabilita el comportamiento del Flip-Flop

| Clk | S | R | Qn+1  |
|-----|---|---|-------|
| 0   | X | Χ | Qn    |
| 1   | 0 | 0 | Qn    |
| 1   | 1 | 0 | 1     |
| 1   | 0 | 1 | 0     |
| 1   | 1 | 1 | Indef |

### Flip-Flops RS con Clock

 Tiene una entrada adicional (Clock) que habilita/ des-habilita el comportamiento del Flip-Flop



Flip-Flop RS sin Clk



Flip-Flop RS con Clk

#### Flip-Flops RS con Clock



| Clk | S | R | Qn+1  |
|-----|---|---|-------|
| 0   | X | X | Qn    |
| 1   | 0 | 0 | Qn    |
| 1   | 1 | 0 | 1     |
| 1   | 0 | 1 | 0     |
| 1   | 1 | 1 | Indef |

## Flip-Flop D (delay)

- Posee una única entrada D.
- La salida Q obtiene el valor de la entrada D cuando la señal de CLK (clock) está activada
- Se especifica con la siguiente tabla característica:

| Clk | D | Qn+1 |
|-----|---|------|
| 0   | X | Qn   |
| 1   | 0 | 0    |
| 1   | 1 | 1    |

## Flip-Flop D (delay)

 Un Flip-Flop D se puede implementar a partir de un Flip Flop RS.



| Clk | D | Qn+1 |
|-----|---|------|
| 0   | X | Qn   |
| 1   | 0 | 0    |
| 1   | 1 | 1    |

## Flip-Flop D



| Clk | D | Qn+1 |
|-----|---|------|
| 0   | X | Qn   |
| 1   | 0 | 0    |
| 1   | 1 | 1    |

- Sus entradas son J y K (en honor a Jack Kilby)
- Su comportamiento es similar al Flip-Flop RS, salvo por la entrada J=1, K=1.
- Se lo considera el Flip-Flop "universal" (los otros Flip-Flops se pueden implementar usando JKs)



Tabla Característica:

|               | Qn+1 | K | J | Clk |  |
|---------------|------|---|---|-----|--|
| Deshabilitado | Qn   | ? | ? | 0   |  |
|               | Qn   | 0 | 0 | 1   |  |
| Set           | 1    | 0 | 1 | 1   |  |
| Reset         | 0    | 1 | 0 | 1   |  |
| Complemento   | ~Qn  | 1 | 1 | 1   |  |



| • | Ecuación       | Característica  |
|---|----------------|-----------------|
| • | <b>上しはないけけ</b> | Valacibilionica |

• 
$$Q_{n+1}=(J. \sim Q_n) + (\sim K.Q_n)$$

| Clk | J | K | Qn+1 |
|-----|---|---|------|
| 0   | ? | ? | Qn   |
| 1   | 0 | 0 | Qn   |
| 1   | 1 | 0 | 1    |
| 1   | 0 | 1 | 0    |
| 1   | 1 | 1 | ~Qn  |

# Flip-Flop RS activado por flanco



$$Q_0=0$$
  $Q_0=1$   $Q_0=1$  ...  $Q_1=0$   $Q_1=0$   $Q_1=1$  ...

# Flip-Flop JK activado por flanco



$$J=0$$
  $J=1$   $J=0$  ...  $Q_0=0$   $Q_0=1$   $Q_0=1$  ...  $Q_1=0$   $Q_1=1$ 



| Clk | J | K | Qn+1 |
|-----|---|---|------|
| 0   | ? | ? | Qn   |
| 1   | 0 | 0 | Qn   |
| 1   | 1 | 0 | 1    |
| 1   | 0 | 1 | 0    |
| 1   | 1 | 1 | ~Qn  |

### Contadores

 Se desea realizar un circuito secuencial con tres salidas y una entrada de reloj que cuente la cantidad de ciclos de reloj.



Usando únicamente Flip-Flops JK

## Contadores



### Contadores



# Registros

- Un registro es un conjunto de n Flip-Flops asociados, que permiten almacenar temporariamente un grupo de n bits.
- Los tipos de registros dependen de la forma en que los datos son leídos o almacenados.

### Registro paralelo-paralelo



- Escritura: Paralela y Lectura: Paralela
- Almacenamiento (CPU)

# Registro serie-serie



- Escritura Serial y Lectura Serial
- Se utilizan para retardo/sincronización

# Registro serie-paralelo



- Escritura Serial y Lectura Paralela
- Transforma una señal serial en paralela

# Registro paralelo-serie



- Escritura Paralela y Lectura Serial
- Transforma una señal paralela en serial

### Registro de desplazamiento



 Es el Registro Serie-Paralelo usando Flip-Flops JK en lugar de Flip-Flops D.

# Registro de desplazamiento circular



 Posee una entrada de control adicional (EN) para activar tomar el primer bit de e<sub>0</sub> o de s<sub>2</sub>.

| E0 | Q0 <sub>n</sub> | Q1 <sub>n</sub> | S0 | Q0 <sub>n+1</sub> | Q1 <sub>n+1</sub> |
|----|-----------------|-----------------|----|-------------------|-------------------|
| Ο  | O               | 0               | 0  | 0                 | 1                 |
| 0  | 0               | 1               | 1  | 1                 | 0                 |
| Ο  | 1               | 0               | 1  | 1                 | 1                 |
| 0  | 1               | 1               | 1  | 0                 | 0                 |
| 1  | O               | 0               | 0  | 0                 | 0                 |
| 1  | 0               | 1               | 1  | 0                 | 0                 |
| 1  | 1               | 0               | 1  | 0                 | 0                 |
| 1  | 1               | 1               | 1  | 0                 | 0                 |

### Diseñando Circuitos Secuenciales

 Cualquier circuito secuencia se puede separar en 2 partes:

- Un bloque combinacional
- Un bloque con memoria
- La memoria almacena bits que determina el estado actual del circuito



### Diseñando Circuitos Secuenciales



 Las entradas del circuito combinaciones son las entradas (E) junto con las salidas de la memoria (Qn)

 El bloque combinacional genera la salida del circuito (S) y el nuevo estado (Q<sub>n+1</sub>)

## Diseñando Circuitos Secuenciales con Flip-Flops



C1: circuito combinacional que genera el nuevo estado del

C2: circuito combinaciones que genera la salida del circuito

 FF: conjunto de flip-flops que almacena el estado

| E0 | Q0 <sub>n</sub> | Q1 <sub>n</sub> | S0 |
|----|-----------------|-----------------|----|
| 0  | 0               | 0               | 0  |
| 0  | 0               | 1               | 1  |
| 0  | 1               | 0               | 1  |
| 0  | 1               | 1               | 1  |
| 1  | 0               | 0               | 0  |
| 1  | 0               | 1               | 1  |
| 1  | 1               | 0               | 1  |
| 1  | 1               | 1               | 1  |

$$s0 = (e0 + q0_n + q1_n) \cdot (\overline{e0} + q0_n + q1_n)$$

| E0 | Q0 <sub>n</sub> | Q1 <sub>n</sub> | Q0 <sub>n+1</sub> |
|----|-----------------|-----------------|-------------------|
| 0  | 0               | 0               | 0                 |
| 0  | 0               | 1               | 1                 |
| 0  | 1               | 0               | 1                 |
| 0  | 1               | 1               | 0                 |
| 1  | 0               | 0               | 0                 |
| 1  | 0               | 1               | 0                 |
| 1  | 1               | 0               | 0                 |
| 1  | 1               | 1               | 0                 |

$$q0_{n+1} = (\overline{e0} \cdot \overline{q0_n} \cdot q1_n) + (\overline{e0} \cdot q0_n \cdot \overline{q1_n})$$

| E0 | Q0 <sub>n</sub> | Q1 <sub>n</sub> | Q1 <sub>n+1</sub> |
|----|-----------------|-----------------|-------------------|
| 0  | 0               | 0               | 1                 |
| 0  | 0               | 1               | 0                 |
| 0  | 1               | 0               | 1                 |
| 0  | 1               | 1               | 0                 |
| 1  | 0               | 0               | 0                 |
| 1  | 0               | 1               | 0                 |
| 1  | 1               | 0               | 0                 |
| 1  | 1               | 1               | 0                 |

$$q1_{n+1} = (\overline{e0} \cdot \overline{q0_n} \cdot \overline{q1_n}) + (\overline{e0} \cdot q0_n \cdot \overline{q1_n})$$

#### Ecuaciones Características

Nuevos estados

$$q0_{n+1} = (\overline{e0} \cdot \overline{q0_n} \cdot q1_n) + (\overline{e0} \cdot q0_n \cdot \overline{q1_n})$$

$$q1_{n+1} = (\overline{e0} \cdot \overline{q0_n} \cdot \overline{q1_n}) + (\overline{e0} \cdot q0_n \cdot \overline{q1_n})$$

Salida del circuito

$$s0 = (e0 + q0_n + q1_n) \cdot (\overline{e0} + q0_n + q1_n)$$

#### Ecuaciones característicass

$$q0_{n+1} = (\overline{e0} \cdot \overline{q0_n} \cdot q1_n) + (\overline{e0} \cdot q0_n \cdot \overline{q1_n})$$

$$q1_{n+1} = (\overline{e0} \cdot \overline{q0_n} \cdot \overline{q1_n}) + (\overline{e0} \cdot q0_n \cdot \overline{q1_n})$$

$$= (\overline{e0} \cdot \overline{q1_n}) \cdot (\overline{q0_n} + q0_n)$$

$$= (\overline{e0} \cdot \overline{q1_n}) \cdot 1$$

$$= \overline{e0} \cdot \overline{q1_n}$$

#### Ecuaciones características

```
s0 = (e0 + q0_n + q1_n) \cdot (\overline{e0} + q0_n + q1_n)
= (e0 \cdot \overline{e0}) + (q0_n + q1_n)
= 0 + (q0_n + q1_n)
= q0_n + q1_n
```

$$q0_{n+1} = (\overline{e0} \cdot \overline{q0_n} \cdot q1_n) + (\overline{e0} \cdot q0_n \cdot \overline{q1_n})$$
  
 $q1_{n+1} = \overline{e0} \cdot \overline{q1_n}$   
 $s0 = q0_n + q1_n$ 



$$q0_{n+1} = (\overline{e0} \cdot \overline{q0_n} \cdot q1_n) + (\overline{e0} \cdot q0_n \cdot \overline{q1_n})$$

$$q1_{n+1} = \overline{e0} \cdot \overline{q1_n}$$

$$s0 = q0_n + q1_n$$

$$e0$$

$$Clk$$

$$Q_{0_{n+1}}$$

$$Q_{0_n}$$

$$Q_{0_n}$$

$$Q_{1_{n+1}}$$

$$Q_{0_n}$$

$$Q_{0_n}$$

$$Q_{1_{n+1}}$$

$$Q_{0_n}$$

$$Q_{0_n}$$

$$Q_{1_n}$$

## Resumen de hoy

- Circuitos con estado
- Cómo almacenar un bit: circuito secuencial biestable
- Flip-Flops: SR, D, JK, sin/con CLK
- Contadores
- Registros
- Circuitos Secuenciales Genéricos

# Bibliografía

 Linda Null, The Essentials of Computer Organization and Architecture, Capítulo 3.

