Model(Aiyagari, 1994)

- Preference: $\mathbb{E}_0 \sum_{i=0}^{\infty} \beta^t u(C_t)$
- Budget constraint: $c_t + a_{t+1} = (1+r)a_t + w_t l_t$ where l_t follows the AR(1) process: $l_t = \rho l_{t-1} + \sigma \epsilon_t$ and $\epsilon_t \sim N(0,1)$.
- $a_t \ge -B$ and $c_t \ge 0$
- Bellman equation is $v(a, s) = \max_{a_t \ge -B, c_t \ge 0} u((1 + r_t)a_t + w_t l_t a_{t+1}) + \beta \mathbb{E}[v(a', s') \mid s].$
- C-D production function: $Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$ which could drive the prices from FOCs $r = \alpha A_t \left(\frac{K}{L}\right)^{\alpha-1}$ and $w = (1-\alpha)A_t \left(\frac{L}{K}\right)^{\alpha}$.
- Market clearing conditions: $Y = \int c d\mu + K' (1 \delta)K$ and $L = \int l d\mu$ and capital $K = \int k d\mu$.
- Calibration: set $\beta = 0.96$, $\gamma = 2$, $\beta = 0$, $\delta = 0.1$, $\alpha = 0.33$.

Tauchen method Here we use the Tauchen method to discretize the AR(1) process

$$\log l_t = \rho \log l_{t-1} + \sigma_t \varepsilon_t$$

here $\sigma_z = \frac{1}{\sqrt{1-\rho^2}}$. First, we set n, the number of realizations (usually 5 or 6). Second, we pick m and set $z_{\max} = \sigma_z m$ and $z_{\min} = -\sigma_z m$ where usual values of m 2 or 3. Hence, we could write down the discretization $z_i = z_{\min} + \frac{z_{\max} - z_{\min}}{n-1}(i-1)$ for $i = 1, \ldots, n$ for equal distance and construct the midpoint $\{\tilde{z}\}_{i=1}^{n-1}$, which are given by $\tilde{z}_i = \frac{z_{i+1} + z_i}{2}$. Lastly, we calculate the transition probabilities $\pi_{z,z'}$ by the following formula:

$$\pi_{ij} = \Phi\left(\frac{\tilde{z}_{j} - \rho z_{i}}{\sigma}\right) - \Phi\left(\frac{\tilde{z}_{j-1} - \rho z_{i}}{\sigma}\right) \quad j = 2, 3, \cdots, n-1$$

$$\pi_{i1} = \Phi\left(\frac{\tilde{z}_{1} - \rho z_{i}}{\sigma}\right)$$

$$\pi_{in} = 1 - \Phi\left(\frac{\tilde{z}_{n-1} - \rho z_{i}}{\sigma}\right)$$
(1)

where $\Phi(\cdot)$ denotes a CDF of a $\mathcal{N}(0,1)$.

Endogenous Grid Method(Carroll, 2006) Start from at the end of period level of capital, using the Euler equation, one may recover the beginning-of-period consumption and level of capital without using a root-finding algorithm.

Cash-on-hand is $m_t = (1 + r_t)a_t + w_t l_t$ and the Euler equation is $u'(c_t) = \beta(1 + r_{t+1})u'(c_{t+1})$.

Consider the Euler equation

$$u'(c(M)) = \beta R \mathbb{E}_y u'(c(RA + \tilde{y}))$$

if policy function c(M) is optimal, then it satisfies the above equation with A = M - c(M). given any policy function c(M) an updated policy function c'(M') with parametrized curve

$$\begin{cases} c' = (u')^{-1} \left(\beta R \mathbb{E}_y u' (c(RA + \tilde{y})) \right) \\ M' = A + c' \end{cases}$$

where A is the parameter ranges from 0 to M.

Recall Coleman-Reffet operator $K(c)(M): \mathcal{P} \to \mathcal{P}$ is defined as

- takes as input policy function $c(M) \in \mathcal{P}$
- returns the updated policy function $c'(M) \in \mathcal{P}$ that for every M satisfies the Euler equation. $u'(c'(M)) = \beta R \mathbb{E}_{v} u'(c[R(M c'(M)) + \tilde{y}])$

Standard implementation: fix grid over M; with given c(M) solve the equation for c in each point M on the grid. EGM implementation of Coleman-Reffet operator:

- 1. Fix grid over *A*;
- 2. With given c(M) for each point on the grid compute

$$c' = (u')^{-1} \left(\beta R \mathbb{E}_y u' (c(RA + \tilde{y})) \right) \quad M' = A + c'$$

3. Build the return policy function as interpolation over (M',c)

$$M \rightarrow c(M) \rightarrow A = M - c(M) \rightarrow M' = R(M - c(M)) + \tilde{y} = RA + \tilde{y}$$

A contains all the information about calculation of M' and c', and M' contains all the information about the calculation of c'.

BKM(Boppart et al., 2018)

SSJ(Auclert et al., 2021)

References

Aiyagari, S. Rao, "Uninsured Idiosyncratic Risk and Aggregate Saving*," *The Quarterly Journal of Economics*, 08 1994, 109 (3), 659–684.

Auclert, Adrien, Bence Bardóczy, Matthew Rognlie, and Ludwig Straub, "Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models," *Econometrica*, 2021, 89 (5), 2375–2408.

Boppart, Timo, Per Krusell, and Kurt Mitman, "Exploiting MIT Shocks in Heterogeneous-Agent Economies: The Impulse Response as a Numerical Derivative," *Journal of Economic Dynamics and Control*, April 2018, 89, 68–92.

Carroll, Christopher D., "The Method of Endogenous Gridpoints for Solving Dynamic Stochastic Optimization Problems," *Economics Letters*, June 2006, 91 (3), 312–320.