

INDEX TO VOLUME II

Authors

A		G	
Adams, E. B.	1026	Chueh, Chun F. 508	
Akita, Kiyomi	9	Chueh, P. L. 1097	
Alexander, R. E.	334	Churchill, Stuart W. 431, 790	
Amundson, Neal R.	339	Cohen, Leonard S. 138	
Ananthakrishnan, V.	1063	Cooney, David O. 1137	
Apuzzo, Gennaro	815	Correa, J. J. 370	
Aris, Rutherford	367	Coughanowr, D. R. 133, 151, 246	
Arnold, K. R.	746	Crandall, Edward D. 930	
Ashare, Edward	910	Crider, J. E. 1012	
Astarita, Gianui	815	Crosser, O. K. 513	
		Cunningham, R. A. 636	
B		D	
Baker, Bernard S.	825	Dabrowski, J. W. 951	
Baker, James L. L.	268	Davis, Parke 678	
Bankoff, S. G.	59, 65, 607, 624	Davison, R. R. 555, 743	
Barduhn, Allen J.	1063	Dealy, J. M. 745	
Barker, Dee H.	145	Dean, David E. 526	
Barsky, Zvi	539	Deans, H. A. 259	
Barltip, John R.	562	Denn, Morton M. 367	
Behrmann, William C.	656	Dimon, Carl A. 1000	
Berbotto, G.	753	Dolan, William J. 1000	
Bhattacharryya, Dibakar	274	Doraiswamy, L. K. 741	
Biesenberger, Joseph A.	369	Dranoff, Joshua S. 497, 1000	
Bird, R. Byron	588, 910	Drew, T. B. 800	
Bischoff, Kenneth B.	351	Dukler, A. E. 853	
Blake, W. K.	951	Dunn, I. 158	
Bliss, Harding	562	Durfee, Robert L. 716, 720	
Blum, Edward H.	532	E	
Bodman, S. W.	809	Eckert, C. A. 886	
Bogue, D. C.	1026	Edmister, Wayne G. 457, 492	
Bondi, Arnold	217	Edwards, D. K. 1073	
Braulick, W. J.	73	Edwards, John B. 331	
Brenner, Howard	965	Ekiner, Okan 897	
Brian, P. L. T.	809, 1088	Elgin, J. C. 158	
Brickwedde, F. G.	304	Epstein, Norman 369	
Bruley, Duane F.	945	Ernst, W. D. 940	
Bump, T. R.	174	Estrin, Joseph 800	
Bunch, David W.	1108	F	
Butt, John B.	106	Faeth, G. M. 1133	
C		Fair, J. R. 73	
Calvert, Seymour	356, 785	Famularo, Jack 981	
Carberry, J. J.	636	Fehsenfeld, Gary D. 389	
Carlton, Herbert E.	79	Felder, Richard M. 873	
Chan, B. K. C.	176	Fok, Siu Yuen 365	
Chao, Bei T.	268	Foraboschi, Franco P. 752	
Chapman, Robert E.	365	Foss, A. S. 1012	
Chen, John C.	1145	Fredrickson, A. G. 288	
Chilidakis, C. I.	773	Fulton, J. W. 513	
Christiansen, E. B.	145, 995	Fussell, D. D. 733	
Chu, S. C.	607	I	
		Ishii, Tadao 279	
J		J	
		Jeffreys, G. V. 413, 418	
		Johanson, Lennart N. 29	

Johnson, H. F.	319	Murray, D. C.	728	Smith, Vernon C.	487
Jones, M. C.	773	Myers, A. L.	121	Snyder, William T.	462
Jonsson, V. K.	1143	Myers, John E.	13	Somer, Tarik G.	840
Julian, F. M.	853			Sparrow, E. M.	1143
				Srygley, J. M.	695
				Stangeland, Bruce E.	130
				Stiel, Leonard I.	526
				Stokes, C. S.	370
K				Stevens, William F.	930
Kalb, J. W.	288	Narsimhan, G.	550	Street, James R.	601, 644
Katayama, Takashi	924	Neal, L. G.	624, 747	Streng, L. A.	370
Kearns, D. L.	723	Norman, R. L.	450	Strumillo, C.	1139
Keeler, R. Norris	221	Null, Harold R.	780	Strunk, Mailand R.	389, 1108
Kehat, Ephraim	804			Su, Gouq-Jen	202, 205
Kesten, A. S.	858	O		Sung, Edmond K.	924
King, C. J.	866	O'Brien, N. G.	546	Sweeney, Thomas L.	785
Kintner, R. C.	5	Osberg, G. L.	279	Sykes, Paul	174
Kittrell, J. R.	1051	Ostrach, Simon	294		
Knight, I. C.	370	Otani, Seiya	435, 439, 446	T	
Kobayashi, Riki	96, 259,	Oxley, Joseph H.	79	Tallmadge, John A.	403
Koestel, Alfred	702	Oya, Haruhiko	395	Tallmadge, John A.	1153
Koonce, K. Terry	294			Tang, Y. P.	54
Kosky, P. G.	259	P		Tate, R. W.	69
Krukonis, V. J.	1088	Pai, V. K.	65	Taylor, D. L.	678
Kuo, Chiang-Hai	901	Paris, Jean	1033	Taylor, Harry M.	686
		Peebles, Fred N.	481	Tek, M. Rasin	601, 644
L		Perlmutter, D. D.	474	Thodos, George	
Lapidus, Leon	85, 158, 891	Petersen, E. E.	221	155, 164, 613, 650, 845, 897	
Lapin, Abraham	197, 503	Peterson, T. I.	891	Thomas, David G.	520, 848
Larson, M. A.	728	Pike, R. W.	794	Thompson, Richard E.	457
Lavin, J. Gerard	1124	Porter, K. E.	1139	Tien, Chi	845
Lebeis, Jr., Edward H.	1135	Porter, Marcellus C.	617	Tien, L. C.	790
Leland, Jr., T. W.	228	Poston, Robert S.	917	Toor, H. L.	666, 746
Lemlich, Robert	18, 25	Prausnitz, J. M.	121, 221, 886, 1092, 1097	Totten, H. C.	197, 503
Lemmon, H. E.	995	Prince, R. G. H.	176	Trombetta, Michael L.	1041
Lennert, David A.	155			Troupe, Ralph A.	487
Leonard, Edward F.	686	Q		Turner, R. L.	546
Leonard, J. I.	965	Quandt, E. R.	311		
Leonard, Ralph A.	18, 25	Quinn, J. A.	391, 1005	U	
Lerner, B. J.	73	R		Ulrich, J. A.	951
Lescarboura, Jaime A.	910	Randolph, Alan D.	424	Unterberg, Walter	1073
Letan, Ruth	804	Rao, K. Babu	741		
Leutner, H. W.	370	Raso, Giulio	548	V	
Li, Pang-Sheng	581	Ratkowsky, D. A.	370	Vance, William H.	581, 1114
Lightfoot, E. N.	175, 924	Raymond, Lee R.	339	Vassilatos, George	666
Loftus, Jordan	1103	Reid, R. C.	228, 809	Vaughn, R. D.	1142
Longwell, P. A.	46	Resnick, William	740	Vela, Saul	288
Luecke, R. H.	749	Rhodes, John M.	481	Viswanath, D. S.	202, 205
Lyon, D. N.	773	Ritter, G. L.	773	Vivian, J. Edward	656, 1088
M		Rogers, John D.	304	Volpicelli, Gennaro	548
McGuire, M. L.	85, 749	Romero, Jacob B.	595		
Mach, T. F.	951			W	
McKetta, John J.	917	S		Waggoner, R. C.	112
Manning, F. S.	723	Sage, B. H.	46	Wakao, Noriaki	435, 439, 446
Markels, Jr., Michael	716, 720	Saidel, G. M.	1058	Ward, H. C.	794
Marsheck, R. M.	167	Saito, Shozaburo	96	Ward, W. J.	1005
Martin, Godfrey Q.	29	Sani, R. L.	971	Watson, C. C.	1051
Martin, Joseph J.	331	Satterfield, Charles N.	1103	Wayner, Jr., P. C.	59, 858
Masamune, Shinobu	34, 41	Savins, J. G.	673	Weekman, Jr., Vern W.	13
Massimilla, Leopoldo	548	Scattergood, E. M.	175	Weissman, Eugene Y.	356
Mathur, G. P.	164, 613	Schowalter, W. R.	99	Wellek, R. M.	557
Matsuhashi, Seiichi	588	Schroeder, R. R.	5	Wenzel, L. A.	197, 503
Mecham, William J.	130	Seagrave, Robert C.	748	West, Frank B.	581
Mendelson, Harvey	834	Secor, Robert M.	452	Wheeler, John A.	207, 212
Merson, R. L.	391	Seely, Gilbert R.	364	Whitaker, Stephen	1033
Mesler, Russell B.	662	Seshadri, C. V.	746	White, J. L.	324, 989
Metzner, A. B.	324, 989	Shih, Kenneth Y.	820	Whitehead, J. C.	1026
Michaels, Alan S.	617	Sideman, Samuel	539, 1019, 1081	Wilcox, R. L.	69
Middleman, Stanley	750	Skelland, A. H. P.	557, 951	Wilde, Douglass J.	237
Misic, Dragoslav	650	Slattery, John C.	831	Wilke, C. R.	866
Miyauchi, Terukatsu	395	Smith, Don W.	595	Wilkins, Jr., Bert	794
Mohr, C. Michael	253	Smith, J. M.	34, 41, 435, 439, 446, 636	Williams, Michael C.	467
Moulton, Ralph W.	581, 1114	Smith, J. W.	941	Wilson, Thomas E.	820
Muirbrook, N. K.	1092			Wissler, Eugene H.	207, 212
Munick, Herman	754				
Munson, M. S. B.	920				
Murkherjee, S. P.	741				

Wolf, David	723	Yen, Lewis C.	334	Z	
		Yerazunis, Stephen	834	Zenz, Frederick A.	560
Yarborough, Lyman	492	Yoshida, Fumitake	9	Ziegler, Waldemar T.	508
Young, Edwin H.	1124				

Titles

A

- Adsorption of Ethyl Alcohol on Silica Gel
 Adsorption Kinetics in Fixed Beds with Nonlinear Equilibrium Relationships
 Adsorption Rate Studies—Interaction of Diffusion and Surface Processes
 Analysis and Design of Gas Flow Reactors with Applications to Hydrocarbon Pyrolysis
 Analysis of Fully Developed Laminar Flow in an Eccentric Annulus, An
 Analysis of Heterogeneous Catalytic Reactions by Nonlinear Estimation
 Analysis of Phase-Boundary Motion in Diffusion-Controlled Processes: Part I. Solution of the Diffusion Equation with a Moving Boundary
 Analysis of Phase-Boundary Motion in Diffusion-Controlled Processes: Part II. Application to Evaporation from a Flat Surface
 Analysis of Phase-Boundary Motion in Diffusion-Controlled Processes: Part III. Penetration of Metal Ions into Cellulose Xanthate Fibers and Growth of Sulfuric Acid Droplets in Humid Air
 Analytical and Numerical Solutions for Laminar Flow of the Non-Newtonian Ellis Fluid
 Analytical Solution for the Nonlinear Frequency Response of Radiant Heat Transfer
 Application of Adaptive Control to a Continuous Stirred Tank Reactor
 Axial Dispersion During Pulsating Pipe Flow

B

- Bounded and Patched Solutions for Boundary Value Problems

C

- Calculation of Curves Relating Non-Newtonian Viscosity to Stress
 Calorimetric Determination of the Isothermal Pressure Effect on

the Enthalpy of the Propane-Benzene System

- Chemical Reaction in the Turbulent Wake of a Cylinder
 Chemical Reactor Stability by Liapunov's Direct Method
 Coalescence of Liquid Drops in Two-Component-Two-Phase Systems: Part I. Effect of Physical Properties on the Rate of Coalescence
 Coalescence of Liquid Drops in Two-Component-Two-Phase Systems: Part II. Theoretical Analysis of Coalescence Rate
 Composition Dependence of Effective Diffusivities for Electrolyte Penetration in Ion Exchange Resins, The
 Condensation of Mixed Vapors, The
 Confined Wakes: A Numerical Solution of the Navier-Stokes Equations
 Constitutive Equations for Viscoelastic Fluids with Application to Rapid External Flows
 Correlation of Latent Heats of Vaporization
 Correlations of Selectivity Parameters for Separations Extractions of Hydrocarbons with Fluorochemicals
 Criterion for Short and Long Wetted-Wall Columns, A
- D
- Deposits Formed Beneath Bubbles During Nucleate Boiling of Radioactive Calcium Sulfate Solutions
 Derivation of the Riccati Difference Equation for Ternary Extraction Systems, A
 Determination of the Activity Coefficient of a Volatile Component in a Binary System by Gas-Liquid Chromatography
 Determination of Eddy Mass Diffusivities for the Air-Water System in a Wetted-Wall Column, The
 Determination of Plate Efficiencies from Operational Data: Part II
 Diffusion with Consecutive Heterogeneous Reactions
 Diffusion or Ion Exchange with Variable Diffusion Coefficient.
- E
- Eddy Viscosity Model for Friction in Gas-Solids Flow
 Effect of Concentration on Diffusion Coefficient in Polymer Solutions, The
 Effect of Concentration Level on the Gas Phase Absorption Coefficient, The
 Effect of the Equilibrium Relationship on the Dynamic Characteristics of Distillation Column Sections
 Effect of Packing on the Catalytic Isomerization of Cyclopropane in Fixed and Fluidized Beds
 Effect of Shape and Density on the Free Settling of Particles at High Reynolds Numbers, The
 Effect of Vibration Upon Rate of Sublimation, The
 Effective Binary Diffusion Coefficients in Mixed Solvents
 Effective Wall Heat Transfer Coefficients and Thermal Resistances in Mathematical Models of Packed Beds

Effectiveness Factors for General Reaction Rate Forms	351	Laminar Boundary Layer on the Rate of Forced Convection from a Flat Plate	1135	Measur
Effectiveness Factors in a Nonisothermal Reaction System	636	Freezing Front Motion and Heat Transfer Outside an Infinite, Isothermal Cylinder	848	in A
Effects of Mixing on Chain Reactions in Isothermal Photoreactors	873	Friction Factor-Reynolds Number Relation for the Steady Flow of Pseudoplastic Fluids Through Rectangular Ducts: Part I. Theory, The	790	Metho
Effects of Solvent Purity on Non-Newtonian Viscosity	940	Friction Factor-Reynolds Number Relation for the Steady Flow of Pseudoplastic Fluids Through Rectangular Ducts: Part II. Experimental Results, The	207	fe U
Elementary Derivation of the Maximum Principle, An	367		1088	Mixed T
Entrance Region Flow	995		207	R co
Estimation of Vapor and Liquid Enthalpies	334		158	Mixing T
Evaporation of Carbon Tetrachloride in a Wetted-Wall Column, The	1139		897	Mixing H
Evaporation from Falling Saline Water Films in Laminar Transitional Flow	1073		212	Mixing F
Excess Transport Properties of Light Molecules	304	G	712	Model R
Experimental Investigation of Air Bubble Motion in a Turbulent Water Stream, An	268	Gas Absorption in a Fin-Wall Conduit	1151	Motion N
Experimental Studies of Three-Dimensional Filtration on a Circular Leaf	965	Gas-Liquid Mass Transfer in Concurrent Froth Flow	820	Multic E
Extraction with Single Turbulent Droplets	557	Generalization of Gas-Liquid Partition Chromatography to Study High Pressure Vapor-Liquid Equilibria of Multi-component Systems	924	P th
F		Generalized Thermodynamic Properties of Real Gases: Part I. Generalized PVT Behavior of Real Gases	562	Multic P
Falling Cylinder Viscometer for Non-Newtonian Fluids	910	Generalized Thermodynamic Properties of Real Gases: Part II. Generalized Benedict-Webb-Rubin Equation of State for Real Gases	202	Pyrolysis
Feedback Control of an Overdetermined Storage System	237	Generation of Waves in the Concurrent Flow of Air and a Liquid	79	Kinetics
Film Boiling of Nitrogen with Suction on an Electrically Heated Porous Plate	59	H	1063	New Neglect
Film Boiling of Nitrogen with Suction on an Electrically Heated Horizontal Porous Plate: Effect of Flow Control Element Porosity and Thickness	65	Heat and Mass Transfer to Spheres at Low Reynolds Numbers and High Mass Transfer Rates	138	A New
Film Instabilities in Two-Phase Flows	294	Heat Transfer Characteristics of Boiling Nitrogen and Neon in Narrow Annuli	205	Noneq te
Films of Non-Newtonian Fluids Adhering to Flat Plates	403	Heat Transfer Characteristics of Concurrent Gas-Liquid Flow in Packed Beds	138	M Nonlin
Fin Thermal Efficiency During Simultaneous Heat and Mass Transfer	546	Heat Transfer to Coils in Propeller-Agitated Vessels	205	of Nonmu
Fins in Series	174	Heat Transfer to Decomposing Nitrogen Dioxide in a Turbulent Boundary Layer	138	th at Norma
First-Order Reaction and Anisotropic Diffusion in Flowing Media	752	Heat Transfer Efficiency in Rough Pipes at High Prandtl Number	130	Note u
Flash X-Ray Analysis of Fluidized Beds	595	Heat Transfer to Evaporating Refrigerants in Two-Phase Flow	69	in in Note
Flow Behavior of Viscoelastic Fluids in the Inlet Region of a Channel	989	Heat Transfer in a Fuel Cell Battery	1133	Sy m
Flow Development in the Hydrodynamic Entrance Region of a Flat Duct	1149	Heat Transfer in a Round Tube with Sinusoidal Wall Heat Flux Distribution	503	Note T
Fluid Mechanical Analogies	1142	Heat Transfer in Vertical Annular Two-Phase Flow	13	Numbe
Foam Columns for Countercurrent Surface—Liquid Extraction of Surface-Active Solutes	319	Hydrates of High Pressures: Part III. Methane-Argone-Water and Argon-Nitrogen Water Systems	951	L
Foam Fractionation of Colloid-Surfactant Systems	274	I	809	On Fi
Forced Convection Mass Transfer: Part I. Effect of Turbulence Level on Mass Transfer Through Boundary Layers with a Small Favorable Pressure Gradient	520	Incipient Bubble Destruction and Particulate Fluidization	941	tu S
Forced Convection Mass Transfer: Part II. Effect of Wires Located Near the Edge of the			1124	T
			825	On a
			690	P
			937	iz
			96	On th
			96	of
			96	On th
			96	P
			96	On St
			96	Optim
			96	an
			96	un
			96	Oscilla
			96	Li

Measurement of the Void Fraction in Two-Phase Flow by X-Ray Attenuation	P	112	
Method of Solution for Mass Transfer with Chemical Reaction Under Conditions of Viscous Flow in a Tubular Reactor, A Mixed Suspension, Mixed Product Removal Crystallizer as a Concept in Crystallizer Design, The	794	Some Molecular Transport Characteristics in Binary Homogeneous Systems	46
Mixing and Chemical Reaction in Turbulent Flow Reactors	938	1103 Stability Criteria for Miscible Displacement of Fluids from a Porous Medium	99
Mixing Effects in a Spray-Column Heat Exchanger	424	167 Stability in Distributed Parameter Systems	339
Mixing of Viscous Non-Newtonian Fluids in Packed Beds	221	773 Stability of Nonlinear Systems in the Region of Linear Dominance: Parts I and II, The	474
Model Simulation of Stirred Tank Reactors	804	743 Stagewise Problems Solved by Haldane's Method	743
Motion of Gas Bubbles in Non-Newtonian Liquids	217	9 Stagnation in a Fluid Interface: Properties of the Stagnant Film	391
Multicomponent Vapor-Liquid Equilibria at High Pressures: Part I. Experimental Study of the Nitrogen-Oxygen-Carbon Dioxide System at 0° C.	815	840 Stresses in a Viscoelastic Fluid in Converging and Diverging Flow	1026
Multicomponent Vapor-Liquid Equilibria at High Pressures: Part II. Thermodynamic Analysis	1092	886 Studies of Boiling Heat Transfer with Electrical Fields: Part I. Effect of Applied A.C. Voltage on Boiling Heat Transfer to Water in Forced Circulation	718
N	1097	673 Studies of Boiling Heat Transfer with Electrical Fields: Part II. Mechanistic Interpretations of Voltage Effects on Boiling Heat Transfer	720
Neglected Effect in Entrance Flow Analyses, A	745	945 Study of Interstitial Liquid Flow in Foam: Part I. Theoretical Model and Application to Foam Fractionation, A	18
New Adiabatic MT Reactor System, A	741	389 Study of Interstitial Liquid Flow in Foam: Part II. Experimental Verification and Observations, A	25
Nonequilibrium, Inverse Temperature Profile in Boiling Liquid-Metal Two-Phase Flow	1145	740 Study of Multicomponent Gas-Solid Equilibrium at High Pressures by Gas Chromatography: Part II. Generalization of the Theory and Application to the Methane-Propane-Silica Gel System	702
Nonlinear Least Squares Analysis of Catalytic Rate Models	1051	740 Study of Nitrogen and Neon Pool Boiling on a Short Vertical Pipe	197
Nonuniform Residence Times and the Production of Intermediates in Tubular Reactors	753	1143 Study of Perfectly Mixed Photochemical Reactors, A	497
Normal Stress and Viscosity Measurements for Polymer Solutions in Steady Cone-and-Plate Shear	467	831 Study of Slip Ratios for the Flow of Steam-Water Mixtures at High Void Fractions, A	1114
Note on Dynamics of Liquid-Solid System Expansion and Sedimentation	548	666 Suction Nucleate Boiling of Water	858
Note on Mixing Rates in Stirred Tanks, A	174	981 Suitability of the Nernst-Planck Equations for Describing Electrokinetic Phenomena	175
Numerical Solution of Boundary-Layer Problems, The	733	613 Summary of Distributional Effects in Two-Phase Slip Models, A	747
O	971	T	
On Finite Amplitude Roll Cell Disturbances in a Fluid Layer Subjected to Heat and Mass Transfer	550	435 Thermal Conductivity and Diffusivity of Gases for Temperatures to 10,000°K., The	164
On a Generalized Expression for Prediction of Minimum Fluidization Velocity	754	439 Thermal Conductivity Measurements for Nitrogen in the Dense Gaseous State	650
On the Minimum Time Operation of a Batch Reactor	85	728 Thermal Conductivity of Porous Catalysts	106
On the Stability of a Detailed Packed-Bed Reactor	288	446 Thermal Pressure Applied to the Prediction of Viscosity of Simple Substances in the Dense Gaseous and Liquid Regions	155
On Stress-Relaxing Solids: Part III. Simple Harmonic Deformation	695	695 Thermodynamic Consistency Tests for Solid-Liquid Equilibria	780
Optimum Design of Conventional and Complex Distillation Columns	5		
Oscillations of Drops Falling in a Liquid Field			

Thermodynamics of Mixed-Gas Adsorption	Flow Through Vertical Pipe	601	Viscosity of Nonpolar Gas Mixtures at Moderate and High Pressures, The	526
Turbulence Characteristics of Liquids in Pipe Flow	Unsteady State Mass Transfer from Gas Bubbles-Liquid Phase Resistance	581		
Turbulence Effect on Direct-Contact Heat Transfer with Change of Phase: Effect of Mixing on Heat Transfer between an Evaporating Volatile Liquid in Direct Contact with an Immiscible Liquid Medium	Use of a Radio Frequency Plasma Jet in Chemical Synthesis	370	W	
V				
Unsteady Heat Transfer to Slug Flows: Effect of Axial Conduction	Vapor-Liquid Equilibria in Hydrogen-Benzene and Hydrogen-Cyclohexane Mixtures	539	Water-Oil Displacements from Porous Media Utilizing Transient Adhesion-Tension Alterations	617
Unsteady State Gas-Liquid Slug	Vapor-Liquid Equilibrium in the Methane- <i>n</i> -Hexane-Nitrogen System	457	Wave Inception in Falling Vertical Films	369
Y				
Unsteady Heat Transfer to Slug Flows: Effect of Axial Conduction	Virial Coefficients, Kihara and Lennard-Jones Parameters for Methyl Borate	607	Yield and Molecular Size Distributions in Batch and Continuous Linear Condensation Polymerizations	369

Subjects

The *A.I.Ch.E. Journal* is using the key words as part of the index to Volume 11. The boldface number indicates the role that the key word plays in the article; the lightface number is the page number. The roles of these key words have been made to conform with the modified definition of roles presented in *Chem. Eng. Progr.*, Vol. 60, No. 8, p. 88 (August, 1964).

A	866; 6 , 69; 9 , 268, 274, 311, 601, 1108; 10 , 356	Analog Computer— 10 , 133, 246, 686	ents— 6 , 85 Axis— 9 , 1063	—8 , 1073
Ablation— 8 , 133		Analysis— 7 , 1041; 8 , 595, 891, 989, 1041		Boiling Points— 7 , 112; 10 , 678
Absolute Rate Theory— 10 , 54	Air Velocity— 6 , 138	1051		Boundary-Layer Theory— 8 , 324, 733; 10 , 324
Absorption— 4 , 1097; 7 , 356, 866; 8 , 581, 656, 785, 845, 866	Alcohols— 1 , 424	716, 800; 5 , 508, 728	Annular Flow— 4 , 910; 8 , 1124	Boundary Layers— 9 , 520, 673, 706, 733, 848, 1033
Absorption Coefficients— 8 , 497	Aliphatic Compounds— 1 , 158, 508; 9 , 259, 492, 539	588	Annuli— 9 , 462, 503, 588	Bounding— 8 , 9 , 10 , 431
Acetic Acid— 1 , 158, 1005	Aliphatic Hydrocarbons— 9 , 897	539	Apparatus— 8 , 702	Breakthrough Curve— 8 , 845
Acetone— 1 , 158	Alkanes— 1 , 508, 1019; 9 , 259, 492, 539, 917, 924	917	Applied Mathematics— 10 , 733	Breaker— 10 , 319
Acid (Carboxylic)— 1 , 1005; 6 , 9 , 391	Alkyl Benzene Sulfonate— 1 , 2, 274	Argon— 9 , 304; 10 , 155	Bed Expansion— 6 , 127	Breakup— 2 , 5
Acrylic Resins— 9 , 452	Allyl Cyclic Compound— 5 , 457; 9 , 457, 924	Argon - Nitrogen - Water— 1 , 96	Bed Height— 6 , 167	Break-Up Length— 8 , 9 , 294
Activated Carbon— 9 , 121	Alternating Current— 6 , 716	Aroclor— 5 , 1026	Bed Length— 6 , 845	Brine— 1 , 2 , 712
Activation Energy— 9 , 79, 636	Alum— 1 , 424	Aromatic Compounds— 1 , 274, 508; 2 , 274; 9 , 457, 492	Beds— 5 , 9 , 279, 481	Bubble Contactor— 10 , 73
Activity Coefficients— 7 , 1097; 8 , 924, 1097; 9 , 508	Alumina— 9 , 439, 446; 10 , 279	Asymptotic Expressions— 8 , 690	Binary Systems— 5 , 46; 9 , 435, 439, 508, 1092, 1097	Bubble Flow— 8 , 10 , 866
Adaptive Control— 8 , 930	Alumina Catalysts— 7 , 106	Asymptotic Solution— 10 , 351	Binary Mixtures— 9 , 253, 457	Bubble Reactor— 10 , 1103
Adsorption— 1 , 121; 2 , 702; 8 , 34, 41, 73, 356; 9 , 79	Aluminum— 9 , 145	Atomization— 8 , 69	Binary Systems— 5 , 46; 9 , 435, 439, 508, 1092, 1097	Bubbles— 1 , 1103; 2 , 662; 6 , 716, 1081; 8 , 25, 866; 9 , 268, 581, 601, 662, 644, 866, 1019, 1081
Aeration— 8 , 274; 9 , 73, 274; 10 , 274, 820	Aluminum Soap— 5 , 288	Atomizer— 10 , 69	Birefringence— 8 , 1026	Bubbling— 9 , 73
Agglomeration— 6 , 981	Amides— 9 , 452	Atmospheric Pressure— 8 , 690	Boehmite— 9 , 439	Bubbling Gas - Liquid Contactor— 10 , 9
Agitated Columns— 9 , 712	Amines— 6 , 617	Atmospheric Solution— 10 , 351	Boiling— 7 , 716; 8 , 197, 503, 716, 773; 9 , 781	Bulk Diffusion— 9 , 446
Agitation— 6 , 712; 9 , 73	Ammonia— 1 , 356, 656, 866; 3 , 1051; 5 , 785	Atomization— 8 , 69	Cadmium— 10 , 197, 503	
Agitator— 9 , 712	Ammonium Alum— 2 , 728	Atomizer— 10 , 69	Calcium Sulfate— 1 , 662	
Air— 0 , 167; 1 , 73; 5 , 145, 520, 595, 785, 848	Amplitude— 2 , 5; 7 , 5, 532; 8 , 5	Autoradiographs— 10 , 662		
		Axial and Radial Gradi-	Boiling Point Elevation	

Calculations—**8**, 207, 212, 228, 253, 435, 439, 446, 526, 790, 853, 897, 981, 995, 1114; **9**, 212, 492; **10**, 207, 228, 695
 Calorimeter—**10**, 492
 Capillaries—**9**, 435, 1063; **10**, 18
 Capillary Number—**8**, 403
 Capillary Statics—**8**, 403
 Carbon Dioxide—**1**, 356, 581; **2**, 1088; **5**, 54; **9**, 121, 435, 1092, 1097
 Carbon Monoxide—**3**, 79; **9**, 121
 Carbon Tetrachloride—**1**, 834, **2**, 840; **5**, 54
 Carbon Tetrafluoride—**9**, 886
 Carbonyl Iron—**2**, 79
 Carbopol—**9**, 403
 Carboxylic Acids—**1**, 158; **9**, 481
 Carboxymethylcellulose—**9**, 910
 Catalyst Density—**6**, 636
 Catalysts—**8**, 339; **9**, 339, 351, 439; **10**, 279, 891, 1051, 1103
 Catalytic Pore Structure—**6**, 106
 Cavity—**10**, 69
 Cells—**10**, 1092
 Cellulose—**9**, 212
 Cellulose Xanthate—**1**, 246
 Centrifugal Force—**6**, 1088
 Centrifuge—**10**, 1088
 Cetyltrimethylammonium Bromide—**1**, **2**, 274
 Channel—**9**, 311, 391
 Charts—**10**, 334
 Chemical Kinetics—**7**, 873; **8**, 79, 666
 Chemical Reaction—**6**, 901; **7**, 1058; **8**, 221, 666, 901; **9**, 474, 666, 901, 1058
 Chemical Structure—**6**, 467
 Chemicals—**9**, 331
 Chester-Jensen Exchanger—**9**, 487
 Chlorinated Hydrocarbons—**5**, 508
 Chlorine—**1**, 581
 Cholesterol—**1**, 1005
 Chromatography—**10**, 259, 702
 Chromia—**10**, 1051
 Circular—**0**, 965, 995
 Clapeyron Equation—**10**, 331
 Classification—**6**, 424
 Clathrates—**1**, 96
 CMC—**9**, 403
 Coalescence—**6**, 1081; **7**, 158; **8**, 413
 Coalescence Time—**7**, 413
 Coalescence Time Distribution—**7**, 413
 Coating—**8**, 79
 Coaxial Cylindrical Cell—**10**, 650
 Cocurrent Contracting—**4**, **10**, 866
 Coke—**3**, 636; **5**, 840
 Colloids—**3**, **9**, 274
 Column Diameter—**6**, 9
 Columns—**9**, 18; 268, 395, 1108; **10**, 25, 319
 Columns (Process)—**9**, 158, 695
 Comparisons—**8**, 212, 228, 403, 439, 492, 526, 723
 Components—**6**, 389
 Compositions—**6**, 46, 389, 1092; **7**, 112; **10**, 678, 1097
 Compressibility—**6**, 965; **7**, **9**, 202
 Computations—**8**, 304; **10**, 112
 Computers—**10**, 112, 253, 334, 339, 450, 678, 695, 733, 790, 930, 981, 1041, 1051, 1114
 Concentration (Composition)—**6**, 274, 452
 Concentration Profiles—**2**, 446; **7**, 1108
 Concentrations—**2**, **9**, 18; **3**, 34; **6**, 391, 424, 467, 508, 656, 723, 820, 1041; **7**, 820, 845, 1063; **9**, 820
 Condensation—**4**, 319; **6**, 1092; **8**, 319, 800, 1019
 Condenser—**10**, 503
 Condenser - Heater—**10**, 197
 Conditions—**9**, 319
 Conduction—**6**, 339, 8, 106, 825; **9**, 431; **10**, 532, 866
 Cone-and-Plate Instruments—**10**, 467
 Consistency Tests—**8**, 457
 Constants—**2**, 205
 Constitutive Equations—**8**, **10**, 324
 Contact Time—**8**, 1005
 Contaminants—**6**, 391
 Continuity—**8**, 1073
 Control—**8**, 237, 930
 Convection—**7**, 520, 706, 848; **8**, 706, 825, 848; **9**, 431
 Converging—**0**, 1026
 Conversion—**7**, 279, 873
 Copper—**10**, 197, 503, 858, 1051
 Copper Ions—**1**, 246
 Copper-Magnesium Oxide—**4**, 636
 Copper Sulfate—**4**, 73
 Corrections—**8**, 910
 Correlation—**2**, 202; **8**, 331, 503, 539, 613, 920; **9**, 13; **10**, 413
 Counting—**10**, 662
 Creeping Motion Equations—**10**, 981
 Critical Composition—**8**, 1092
 Critical Compressibility Factor—**1**, 155
 Critical Constants—**10**, 164, 526
 Critical Point—**9**, 304; **10**, 331
 Critical Point Density—**8**, 304
 Critical Point Viscosity—**8**, 304
 Critical Pressure—**8**, 1092
 Critical Properties—**2**, 228; **8**, 228, 1092
 Critical Solution Temperatures—**9**, 886
 Critical Temperature—**8**, **9**, 897
 Critical Velocity—**7**, 138
 Crossover—**9**, 487
 Crude Oil—**9**, 99
 Cryogenic Fluids—**5**, 197, 503
 Cryogenics—**8**, 886
 Crystal Size Distribution—**7**, 424
 Crystallization—**8**, 424
 Crystallizers—**8**, **9**, 424, 728
 Cupric Ions—**4**, 9
 Curvature—**9**, 910
 Cycles—**9**, 450
 Cyclohexane—**5**, 457; **9**, 457, 924
 Cyclopropane—**1**, **2**, 279
 Cylinders—**6**, 848; **9**, 145, 790, 834, 848, 1058; **10**, 503, 809, 834
 Cylindrical Screens—**10**, 279

D

Darcy's Law—**10**, 99, 965
 Decomposition—**8**, 497, 1000
 Decontamination—**8**, **10**, 319
 Deformation—**7**, **9**, 324
 Dehydration—**8**, 891
 Dense Gaseous State—**9**, 155
 Density—**6**, 99, 145, 202, 205, 304, 413, 706; **8**, 624; **9**, 319, 595, 624
 Deposition Rate—**7**, 79
 Deposits—**2**, 662
 Descent Distance—**6**, 413
 Design—**2**, 18; **4**, 487, 995, 1051; **7**, 695, 1041; **8**, 319, 424, 487, 497, 695, 712, 873, 1000, 1041, 1051; **9**, 18, 695
 Desorption—**7**, 356, **8**, **9**, 356, 785
 Determination—**7**, 673; **8**, 145, 259, 294, 450, 678, 891, 971
 Deuterium—**9**, 304
 Development—**8**, 319
 Diameter—**6**, 601, 1019, 1081; **7**, 1019
 Dichromate—**9**, 820
 Dielectrophoresis—**8**, 716
 Diethylene Glycol—**5**, 508
 Difference Equations—**10**, 18
 Differential Analyzer—**10**, 133, 246
 Differential Equation—**10**, 1041
 Differential Reactor—**10**, 79
 Diffusion—**2**, 435, 429; **3**, 351

Eccentricity—**6**, 462
 Eddy Diffusion—**8**, 809
 Eddy Diffusivity—**7**, 29, 712; **8**, 712
 Eddy Mass Diffusivity—**7**, **8**, 1108
 Eddy Viscosity—**8**, **9**, 853
 Effective Thermal Conductivity—**7**, 130
 Effectiveness Factor—**7**, 446; **8**, 351, 636; **9**, 351

Efficiency—**7**, 840; **8**, 678, 840; **9**, 678
 Eigenfunctions—**8**, **9**, 690
 Eigenvalues—**7**, 1108; **8**, **9**, 690; **10**, 99
 Elastic Modulus—**7**, **8**, **9**, 467
 Elasticity—**8**, 324
 Electrical Conductivity Probe—**10**, 221
 Electricity—**10**, 840
 Ellis Fluid—**9**, 588, 910
 Ellis Model—**8**, 588
 Ellis Model Fluid—**9**, 403
 Ellis Number—**8**, 588
 Elution Process—**10**, 259
 Empirical Equations—**10**, 197
 End Effects—**7**, 785
 Enrichment Ratio—**7**, 820
 Enthalpy—**7**, 112, 334, 492; **8**, 334, 492; **9**, 334, 492; **10**, 678
 Entrance—**9**, 487, 995
 Entrance Lengths—**2**, 995
 Eötvös Numbers—**7**, **8**, 268
 Equations—**8**, 207, 324, 403, 435; **10**, 324, 334, 435, 439, 492, 613, 853, 1097
 Equations of Motion—**1**, 995
 Equations of State—**8**, 205; **10**, 492
 Equilibrium—**2**, 259; **6**, 253; **7**, 917; **8**, 253, 259, 457, 508, 702, 917, 924, 1005, 1092, 1097; **9**, 457, 508
 Equilibrium Curve—**6**, 253
 Equilibrium Properties—**2**, 228
 Equipment—**9**, 319
 Estimation—**8**, 334, 662
 Ethane—**2**, 513, 636; **9**, 121
 Ethanol—**1**, 424, 800, 891; **5**, 54, 728
 Ethers—**9**, 207, 212
 Ethyl Alcohol—**1**, 41
 Ethylene—**0**, 513; **1**, 636; **9**, 121
 Ethylhexadecyltrimethylammonium Bromide—**1**, 820
 Evaporation—**6**, 539; **7**, 834; **8**, 834, 1073, 1124; **9**, 539
 Evaporation Coefficient—**6**, 834
 Evaporation from a Flat Surface—**8**, 151
 Evaporation Rate—**7**, 834
 Evaporative Cooling—**8**, 858
 Exit—**9**, 487
 Experiments—**9**, 492; **10**, 25, 145, 158, 212, 259, 274, 403, 435, 439, 452, 457, 508, 526, 539, 601, 656, 686, 723, 728, 800, 995, 1051
 External Diffusion—**9**, 34

- Extraction-4, 158; 8, 395, 920
 Extrapolation-10, 1092
- F**
- Falling Cylinder Viscometer-8, 10, 910
 Fatty Acids-6, 9, 391
 Feed-9, 319, 723
 Feedback-10, 237, 930
 Ferry Reduced Variables -10, 467
 Field Force-6, 145
 Filament-10, 79
 Film Boiling with Vapor Suction-8, 59, 65
 Film Diffusion-0, 513
 Films-8, 391; 9, 294, 403, 588, 716, 1073
 Filter Cake-9, 965
 Filter Cloth-9, 965
 Filtration-8, 965
 Finite-Difference Approximation-10, 133
 Finite-Difference Equations-10, 1033
 Finite-Difference Methods-7, 10, 733
 Finite-Difference Scheme -10, 207
 Finite Stage Model-10, 1012
 Finned Tubes-9, 1124
 Fins-10, 785
 Fin-Wall Conduit-10, 785
 First Step Coalescence-8, 413
 Fixed Beds-6, 279; 9, 845; 10, 34, 41, 279
 Flash X-Ray Radiography-10, 595
 Flooding-7, 785
 Flotation-8, 274
 Flow Patterns-2, 167; 8, 167; 9, 785, 794
 Flow Rates-2, 18; 6, 79, 601, 617, 804, 866; 9, 18, 831; 10, 678
 Flow Regimes-8, 1124
 Flows-2, 435; 6, 13, 311, 381; 7, 435, 989; 8, 99, 311, 435, 439, 588, 601, 644, 815, 989, 995, 1033, 1114; 9, 13, 158, 294, 403, 439, 481, 520, 686, 831, 989, 1026, 1033
 Fluid Dynamics-8, 145, 995
 Fluid Flow-8, 207, 212, 217, 462, 853, 1114
 Fluid Mechanics-8, 99, 971; 9, 733
 Fluidization-8, 127; 9, 130
 Fluidized Beds-6, 279; 9, 167, 595; 10, 279
 Fluidized-Packed Bed-8, 127, 130
 Fluids-1, 831; 9, 145, 158, 212, 294, 403, 462, 481, 487, 644, 686, 815, 886, 971, 989, 995, 1026
 Fluorochemicals-5, 920
 Flux-8, 403
- Foam-2, 274, 820; 5, 356, 820; 7, 18; 8, 18, 25; 9, 274, 319, 356, 820; 10, 319, 356
 Foam Fractionation-8, 274; 9, 18
 Foam Separation-8, 820
 Foam Separation Process-9, 319
 Foaming-8, 274; 10, 274, 820
 Force Constants-1, 228; 10, 389
 Forced Convection-10, 716, 800
 Formation-8, 617, 965
 Fractionation-2, 8, 25
 Freezing-8, 790; 9, 431
 Freon-12-9, 1124
 Freon-22-9, 1124
 Frequency-2, 7, 8, 5
 Frequency Response-8, 532; 9, 288; 10, 686
 Friction Factor-7, 217, 462, 785; 8, 212, 462; 9, 207, 212; 10, 853
 Froth-9, 274
 Froth Flow-8, 10, 866
 Fuel Cell-9, 825
 Fugacity-7, 8, 1097
- G**
- Gallium Antimonide-9, 780
 Gap-6, 9, 503
 Gas Absorption-7, 8, 1088
 Gas Bubble Columns-10, 9
 Gas Bubbles-4, 820; 6, 127; 9, 815
 Gas Chromatography-10, 924
 Gas Holdup-7, 9, 73
 Gas Inlet Nozzle-6, 9
 Gas-Liquid Chromatography-8, 10, 508
 Gas-Liquid Partition Chromatography -10, 259
 Gas-Liquid Equilibria-8, 96
 Gas Phase-5, 13; 9, 311
 Gas Phase - Controlled System-9, 356
 Gas Rate-6, 73, 785
 Gas-Solid Flow-8, 9, 853
 Gas Velocity-6, 9
 Gases-1, 356, 702; 5, 809; 8, 202, 205, 389; 9, 202, 205, 304, 319, 395; 8, 158, 644; 9, 644
 General Modulus-10, 351
 Geometry-6, 356, 395, 439, 834, 873
 Glucose-5, 145
 Glycols-5, 508
 Goertler - Transformed Equations-10, 733
 Graphs-9, 450; 10, 304, 331
 Gravity-6, 773, 1088
 Green's Function-10, 133
- Group Contribution-9, 920
 Growth of Droplet-8, 246
 Growth Kinetics-6, 728
 Growth Rate-7, 9, 424
- H**
- Hadamard Regime-9, 815
 Halogenated Hydrocarbons-5, 508
 Heat-9, 339; 10, 809
 Heat of Adsorption-9, 79
 Heat Balances-8, 9, 10, 450
 Heat Conduction-9, 106
 Heat Exchangers-4, 858; 9, 487, 1081
 Heat Flux-6, 59, 65, 858; 7, 197, 503; 8, 690
 Heat Transfer-0, 513; 7, 13, 539, 607, 716, 773, 809, 858, 1019; 8, 13, 133, 197, 481, 503, 532, 539, 588, 607, 690, 716, 773, 790, 804, 809, 825, 858, 971, 1012, 1019, 1081, 1124; 9, 13, 130, 503, 532, 539, 733, 804
 Heat Transfer Coefficient -7, 59, 65, 858, 1081; 8, 800, 1012, 1019, 1081, 1124
 Heater-10, 503, 858
 Heating-6, 8, 840
 Heats of Vaporizations-9, 920
 Height Transfer Unit-7, 785; 9, 319
 Heights-6, 274, 279
 Helium-9, 304
 Heptane-9, 924
 Heterogeneous Decomposition-8, 79
 Heterogeneous Reaction -0, 513
 Hexachloroplatinic Acid -1, 497, 1000
 Hexylamine-6, 617
 Hexane-9, 917
 High-Pressure Apparatus -10, 96
 High-Speed Photography -10, 413, 662
 High Temperatures-6, 164
- J**
- Hit-Film Anemometer-10, 29
 Holdup-6, 804; 7, 158, 395; 8, 158, 644; 9, 644
 Hydrates-1, 96
 Hydrocarbons-1, 279, 503, 702, 1041; 2, 279, 920; 5, 46, 158, 457, 520, 848; 9, 259, 457, 492, 539, 886, 897, 924
 Hydrochloric Acid-2, 497
 Hydrodynamic Stability -8, 99
 Hydrogen-1, 513, 636, 1097; 9, 304, 457
- Group Contribution-9, 920
 Growth of Droplet-8, 246
 Growth Kinetics-6, 728
 Growth Rate-7, 9, 424
- I**
- Ideal Solution-10, 121
 Impact Probe-10, 624
 Impeller-9, 723
 Inclusion Compounds-2, 96
 Indium Antimonide-9, 780
 Initiation of Waves-7, 138
 Input-7, 9, 539
 Instability-7, 339; 8, 294, 339; 9, 339
 Integral Equations-10, 339
 Integral Scale-7, 29
 Integral Transforms-10, 607
 Intensity-8, 624
 Interaction Force Constants-1, 228
 Interaction Model-10, 897
 Interface-8, 138; 9, 391, 901, 1005
 Interfacial Tension-6, 413; 8, 858
 Interfering Anion-9, 820
 Intermediate Integral-10, 133
 Internal Particle Gradients-6, 85
 Interstage Mixing-7, 8, 712
 Interstitial Flow-7, 8, 18
 Intraparticle Diffusion-9, 34
 Inventory-2, 237
 Ion Exchange-8, 845
 Ion Flotation-8, 820
 Ionizing Radiation-10, 873
 Iron Pentacarbonyl-1, 79
 Isomerization-8, 279
 Iso-Octane-5, 413
 Isopentane-1, 1019
 Isopropanol-1, 716
 Isothermal-6, 334, 351, 492, 588, 666, 706, 790, 873, 924, 995
- K**
- J Factor-0, 513
 Jets-10, 1005
- K Constants-8, 9, 259
 K Factors-8, 1097
 Kay's Rule-10, 228
 Kerosene-5, 804
 Ketones-1, 158; 2, 395; 5, 158
 Kinematics-7, 324
 Kinetics-7, 424; 8, 79, 581, 845
 Knudsen Diffusion-9, 446
 Knudsen Flow-9, 435, 452
 Hydrogen Ion-9, 820
 Hydrolysis-6, 581
 Hydroxyethyl Cellulose-9, 467
- L**
- Lambert's Law-10, 497
 Laminar Flow-9, 462, 520, 673, 690, 706, 733, 848, 995, 1063, 1073
 Langmuir - Hinshelwood Models-10, 891
 Latent Heat of Vaporization-7, 8, 9, 331
 Law of Corresponding States-1, 228
 Layer-9, 971
 Least Squares-10, 205, 1051
 Leaves-10, 695
 Length-7, 601
 Levich Regime-9, 815
 Lift-6, 145
 Linear Controller-9, 237
 Liquid Depth-6, 9
 Liquid Jet-10, 54
 Liquid-Liquid Extraction -8, 920; 10, 712
 Liquid-Liquid Fluidized Systems-9, 158
 Liquid-Liquid Interface -9, 1005
 Liquid Paraffin-5, 413
 Liquid Phase-0, 294, 492; 5, 13; 9, 311, 334, 901
 Liquid Phase-Controlled System-9, 356
 Liquid Phase Mass Transfer (Coefficient)-7, 9
 Liquid Rate-6, 785
 Liquid State-9, 155
 Liquid Velocity-6, 138
 Liquid Viscosity-6, 138
 Liquids-1, 69, 834; 8, 54; 9, 304, 319, 467, 539, 581, 601, 613, 624, 678, 815, 1019, 1097
 Loading-6, 853; 7, 785
 Low Temperature-9, 886
 Lucite-9, 145
 Lydersen - Greenkorn - Hougen Charts-10, 334
- M**
- Magnesium-9, 145
 Mass-6, 820; 9, 617
 Mass Balances-8, 424, 601, 644; 10, 601
 Mass Flux-8, 690
 Mass Transfer-0, 513, 4, 866; 6, 158, 706; 7, 356, 581, 656, 809, 840, 848, 901, 1088; 8, 54, 73, 133, 274, 356, 452, 481, 520, 581, 590, 785, 800, 809, 820, 834, 845, 848, 866, 901, 971, 1005, 1108; 9, 356, 481, 520, 733, 800, 901
 Mass Transfer Coefficient -7, 73, 800; 8, 581, 800
 Mass Transport-8, 46
 Material Balances-8, 253, 450; 9, 10, 450
- N**
- Krypton-10, 155

- Mathematical Analysis—8, 497
 Mathematical Machines—10, 253
 Mathematical Model—8, 288, 339, 431, 644, 901, 1041; 10, 413, 644, 1012
 Mathematics—10, 5, 339, 1063, 1108
 Matrices—10, 450
 Mean Rate—8, 666
 Measurement—8, 212, 319, 395, 467, 508, 595, 650, 673, 794; 9, 212
 Measuring Instruments—10, 452
 Mechanical Properties—8, 324
 Melt Reactor—10, 1103
 Melts—10, 1103
 Mercury—9, 624
 Metal Carbonyl—1, 79
 Metal Coating—2, 79
 Metals—9, 145; 10, 503
 Methane—1, 702; 5, 46; 9, 121, 259, 917
 Methane - Argon - Water—1, 96
 Methyl Isobutyl Ketone—2, 395; 5, 158
 Microinterferometer—10, 452
 Minimum Fluidization Velocity—6, 127, 130
 Miscible Displacement—8, 99
 Mist Flow—8, 1124
 Mixing—6, 539, 716, 804, 873; 7, 686; 8, 217, 221, 539, 686, 723; 9, 539
 Mixing Cell—10, 539
 Mixing Length—8, 624
 Mixture Adsorption Equilibrium—2, 121
 Mixtures—9, 54, 228, 259, 334, 389, 452, 457, 492, 526, 666, 706, 886, 897
 Mode of Chain Termination—6, 873
 Model Simulation—10, 723
 Models—2, 18, 1051; 8, 18, 1051; 9, 25, 1051; 10, 891, 1097
 Molar Volume—7, 1092; 8, 1092, 1097
 Molecular Weights—6, 467, 800; 10, 526
 Moles—6, 446
 Moment of Inertia—6, 145
 Momentum Balances—8, 601, 644; 10, 18, 601
 Momentum Transfer—8, 311
 Monolayers—9, 391
 Motion—7, 268; 8, 268, 815
 Movies—10, 288, 1019
 Moving-Boundary Problem—8, 133, 151, 246
 Multicomponent Systems—8, 54; 9, 389, 897, 1097
 Multiphase Media—4, 431
 Mutual Diffusivity—8, 164
 N Naphthalene—5, 520, 848
 Navier-Stokes Equation—8, 9, 1033
 n-Butane—5, 46
 Neon—2, 197, 503; 9, 304
 Nests—9, 450
 n-Heptane—9, 259
 n-Hexane—1, 508
 Nickel—4, 513; 10, 197, 503
 Nitric Oxide—1, 1051
 Nitrogen—2, 197, 503, 1051; 5, 59, 65, 656, 809, 924, 1103; 6, 917; 9, 304, 435, 624, 650, 886, 917, 1092, 1097
 Nitrogen Dioxide—5, 809
 Noll's Theory—10, 831
 Nonlaminar Flow—9, 673
 Nonlinear Equilibrium Relationship—9, 845
 Nonlinear Estimation—10, 891
 Nonlinear Systems—9, 474
 Non-Newtonian—9, 207, 324, 403, 467, 588, 815, 831, 989, 1026; 9, 217
 Non-Newtonian Fluids—4, 9, 910
 Nonpolar—6, 331, 334, 389, 526
 Normal Heptane—4, 413
 Normal Stress—8, 1026
 Nozzle—10, 69
 Nucleate Boiling—8, 197, 503, 662, 773, 1124; 9, 773
 Nucleation—6, 728, 858; 7, 9, 424
 Number—7, 9, 695
 Numerical Analysis—10, 99, 773
 Numerical Solution—10, 18
 Nusselt Numbers—8, 588, 690
 O Oils—2, 617; 5, 145; 9, 617
 Oldshue-Rushton Column—9, 712
 Oleic—6, 9, 391
 Oleic Acid—1, 1005
 One-Dimensional Model—10, 1012
 Operating Conditions—6, 395, 728
 Operation—7, 158
 Operational Data—10, 678
 Optical Instruments—10, 452
 Optimization—8, 695
 Order of Reaction—9, 79
 Oscillation—2, 5; 6, 145; 7, 8, 5
 Oscillatory Frequency—6, 532
 Ostwald-deWaele Fluid—9, 910
 o-Tolualdehyde—2, 1103
 Outlet—9, 723
 Outside—9, 790
 Overall Coalescence—8, 413
 Overdetermined—0, 237
 Oxidation—8, 9, 1103
 Oxides (Inorganic)—1, 2, 274; 9, 1092, 1097
 Oxygen—1, 581, 866; 5, 785; 9, 121, 773, 1092, 1097
 Oxygen Desorption—8, 9
 o-Xylene—1, 1103
 P Packed-Bed Reactor—1, 85
 Packed Beds—5, 513; 9, 13, 1012; 10, 13, 217
 Packed Column—8, 9, 840; 10, 1088
 Packing—6, 127, 130, 279, 481; 9, 840
 Parameters—9, 891
 Partial Differential Equations—10, 1000
 Partial Pressure—6, 1051
 Particle Size—6, 41, 513
 Particles—6, 127; 8, 339; 9, 145, 339
 Patching—8, 9, 10, 431
 Peclét Number—6, 607, 1063; 7, 217
 Penetration of Fibers—8, 246
 Penetration Theory—8, 581; 9, 13
 Pentane—9, 539
 Perfect Mixing—10, 497
 Perforated Plates—10, 395
 Performance—7, 840, 873; 8, 497, 840, 930, 1000
 Permeability—7, 439; 8, 435, 439; 9, 439
 Perturbation Analysis—10, 532
 Perturbation Method—10, 971
 Power—9, 539
 Power Law—8, 624; 10, 815
 Power Law Fluid—9, 403, 910
 Power Law Model—10, 207, 212
 Predicting—8, 324, 331, 339, 356, 389, 439, 601, 644, 723, 853, 965; 10, 324
 Pressure—6, 79, 112, 202, 205, 334, 492, 526, 601, 613, 809, 917, 1102, 1097, 1114; 9, 588
 Phase Angle—7, 532
 Phase Behavior—8, 96
 Phase Equilibrium—7, 917; 8, 508, 780, 886, 917, 924; 9, 508, 780
 Photoelectric Cells—10, 145
 Photography—10, 5
 Photoreactors—9, 873
 Phthalide—2, 1103
 Physical Model—8, 804
 Physical Properties—6, 145, 304, 532, 607, 733; 7, 467; 526; 8, 304, 457, 467, 526, 650; 9, 106, 319, 467, 526, 650; 10, 526
 Pilot Plant—0, 539; 9, 319
 Pipe Flow—5, 29
 Pipelines—9, 995
 Pipes—9, 212, 311, 356, 601, 644, 686, 790, 831, 853; 10, 288
 Pilot Tube—10, 673
 Plane Interface—8, 413
 Plant—9, 930
 Plate Efficiency—8, 9, 678
 Plate Heat Exchangers—9, 487
 Plateau Border—10, 18
 Plates—9, 403, 588, 989
 Plot—8, 207
 Poiseuille Flow—9, 435, 439, 673, 1033
 Polarography—10, 866
 Pollution (Water)—9, 18
 Polyacrylonitrile—9, 452
 Polyethylene Oxide—9, 467
 Polymer Solution—9, 217
 Polymers—5, 288; 9, 452, 467, 588, 910
 Polystyrene—9, 1026
 Polytetrafluoroethylene—6, 10, 858
 Polyvinyl Alcohol—9, 467
 Pool—5, 197
 Population Balance—8, 424
 Pore Diffusion—9, 513
 Pore Size—6, 439
 Pores—6, 858
 Porous Heater—10, 59, 65
 Porous Media—9, 99, 617
 Porous Particles—1, 85
 Position—6, 1108
 Potassium Dichromate—1, 820
 Potassium Sulfate—10, 1103
 Power—9, 539
 Power Law—8, 624; 10, 815
 Power Law Fluid—9, 403, 910
 Power Law Model—10, 207, 212
 Predicting—8, 324, 331, 339, 356, 389, 439, 601, 644, 723, 853, 965; 10, 324
 Pressure—6, 79, 112, 202, 205, 334, 492, 526, 601, 613, 809, 917, 1102, 1097, 1114; 9, 588
 Pressure Drop—6, 858, 965; 7, 487, 601, 785, 853; 8, 356, 487, 785; 9, 601, 831, 853
 Pressure Gradient—2, 995; 6, 435, 439, 446, 1114
 Prisms—9, 145
 Probe—10, 187
 Process—9, 831
 Products—9, 18, 678
 Profile—8, 403
 Program—8, 450
 Promoters—6, 848
 Propane—1, 702; 9, 121, 259, 492
 Properties—6, 356; 8, 9, 202
 Pipelines—9, 995
 Pipes—9, 212, 311, 356, 601, 644, 686, 790, 831, 853; 10, 288
 Pilot Tube—10, 673
 Plane Interface—8, 413
 Plant—9, 930
 Plate Efficiency—8, 9, 678
 Plate Heat Exchangers—9, 487
 Plateau Border—10, 18
 Plates—9, 403, 588, 989
 Plot—8, 207
 Poiseuille Flow—9, 435, 439, 673, 1033
 Polarography—10, 866
 Pollution (Water)—9, 18
 Polyacrylonitrile—9, 452
 Polyethylene Oxide—9, 467
 Polymer Solution—9, 217
 Polymers—5, 288; 9, 452, 467, 588, 910
 Polystyrene—9, 1026
 Polytetrafluoroethylene—6, 10, 858
 Polyvinyl Alcohol—9, 467
 Pool—5, 197
 Population Balance—8, 424
 Pore Diffusion—9, 513
 Pore Size—6, 439
 Pores—6, 858
 Porous Heater—10, 59, 65
 Porous Media—9, 99, 617
 Porous Particles—1, 85
 Position—6, 1108
 Potassium Dichromate—1, 820
 Potassium Sulfate—10, 1103
 Power—9, 539
 Power Law—8, 624; 10, 815
 Power Law Fluid—9, 403, 910
 Power Law Model—10, 207, 212
 Predicting—8, 324, 331, 339, 356, 389, 439, 601, 644, 723, 853, 965; 10, 324
 Pressure—6, 79, 112, 202, 205, 334, 492, 526, 601, 613, 809, 917, 1102, 1097, 1114; 9, 588
 Pressure Drop—6, 858, 965; 7, 487, 601, 785, 853; 8, 356, 487, 785; 9, 601, 831, 853
 Pressure Gradient—2, 995; 6, 435, 439, 446, 1114
 Prisms—9, 145
 Probe—10, 187
 Process—9, 831
 Products—9, 18, 678
 Profile—8, 403
 Program—8, 450
 Promoters—6, 848
 Propane—1, 702; 9, 121, 259, 492
 Properties—6, 356; 8, 9, 202
 Pipelines—9, 995
 Pipes—9, 212, 311, 356, 601, 644, 686, 790, 831, 853; 10, 288
 Pilot Tube—10, 673
 Plane Interface—8, 413
 Plant—9, 930
 Plate Efficiency—8, 9, 678
 Plate Heat Exchangers—9, 487
 Plateau Border—10, 18
 Plates—9, 403, 588, 989
 Plot—8, 207
 Poiseuille Flow—9, 435, 439, 673, 1033
 Polarography—10, 866
 Pollution (Water)—9, 18
 Polyacrylonitrile—9, 452
 Polyethylene Oxide—9, 467
 Polymer Solution—9, 217
 Polymers—5, 288; 9, 452, 467, 588, 910
 Polystyrene—9, 1026
 Polytetrafluoroethylene—6, 10, 858
 Polyvinyl Alcohol—9, 467
 Pool—5, 197
 Population Balance—8, 424
 Pore Diffusion—9, 513
 Pore Size—6, 439
 Pores—6, 858
 Porous Heater—10, 59, 65
 Porous Media—9, 99, 617
 Porous Particles—1, 85
 Position—6, 1108
 Potassium Dichromate—1, 820
 Potassium Sulfate—10, 1103
 Power—9, 539
 Power Law—8, 624; 10, 815
 Power Law Fluid—9, 403, 910
 Power Law Model—10, 207, 212
 Predicting—8, 324, 331, 339, 356, 389, 439, 601, 644, 723, 853, 965; 10, 324
 Pressure—6, 79, 112, 202, 205, 334, 492, 526, 601, 613, 809, 917, 1102, 1097, 1114; 9, 588
 Pressure Drop—6, 858, 965; 7, 487, 601, 785, 853; 8, 356, 487, 785; 9, 601, 831, 853
 Pressure Gradient—2, 995; 6, 435, 439, 446, 1114
 Prisms—9, 145
 Probe—10, 187
 Process—9, 831
 Products—9, 18, 678
 Profile—8, 403
 Program—8, 450
 Promoters—6, 848
 Propane—1, 702; 9, 121, 259, 492
 Properties—6, 356; 8, 9, 202
 Pipelines—9, 995
 Pipes—9, 212, 311, 356, 601, 644, 686, 790, 831, 853; 10, 288
 Pilot Tube—10, 673
 Plane Interface—8, 413
 Plant—9, 930
 Plate Efficiency—8, 9, 678
 Plate Heat Exchangers—9, 487
 Plateau Border—10, 18
 Plates—9, 403, 588, 989
 Plot—8, 207
 Poiseuille Flow—9, 435, 439, 673, 1033
 Polarography—10, 866
 Pollution (Water)—9, 18
 Polyacrylonitrile—9, 452
 Polyethylene Oxide—9, 467
 Polymer Solution—9, 217
 Polymers—5, 288; 9, 452, 467, 588, 910
 Polystyrene—9, 1026
 Polytetrafluoroethylene—6, 10, 858
 Polyvinyl Alcohol—9, 467
 Pool—5, 197
 Population Balance—8, 424
 Pore Diffusion—9, 513
 Pore Size—6, 439
 Pores—6, 858
 Porous Heater—10, 59, 65
 Porous Media—9, 99, 617
 Porous Particles—1, 85
 Position—6, 1108
 Potassium Dichromate—1, 820
 Potassium Sulfate—10, 1103
 Power—9, 539
 Power Law—8, 624; 10, 815
 Power Law Fluid—9, 403, 910
 Power Law Model—10, 207, 212
 Predicting—8, 324, 331, 339, 356, 389, 439, 601, 644, 723, 853, 965; 10, 324
 Pressure—6, 79, 112, 202, 205, 334, 492, 526, 601, 613, 809, 917, 1102, 1097, 1114; 9, 588
 Pressure Drop—6, 858, 965; 7, 487, 601, 785, 853; 8, 356, 487, 785; 9, 601, 831, 853
 Pressure Gradient—2, 995; 6, 435, 439, 446, 1114
 Prisms—9, 145
 Probe—10, 187
 Process—9, 831
 Products—9, 18, 678
 Profile—8, 403
 Program—8, 450
 Promoters—6, 848
 Propane—1, 702; 9, 121, 259, 492
 Properties—6, 356; 8, 9, 202
 Pipelines—9, 995
 Pipes—9, 212, 311, 356, 601, 644, 686, 790, 831, 853; 10, 288
 Pilot Tube—10, 673
 Plane Interface—8, 413
 Plant—9, 930
 Plate Efficiency—8, 9, 678
 Plate Heat Exchangers—9, 487
 Plateau Border—10, 18
 Plates—9, 403, 588, 989
 Plot—8, 207
 Poiseuille Flow—9, 435, 439, 673, 1033
 Polarography—10, 866
 Pollution (Water)—9, 18
 Polyacrylonitrile—9, 452
 Polyethylene Oxide—9, 467
 Polymer Solution—9, 217
 Polymers—5, 288; 9, 452, 467, 588, 910
 Polystyrene—9, 1026
 Polytetrafluoroethylene—6, 10, 858
 Polyvinyl Alcohol—9, 467
 Pool—5, 197
 Population Balance—8, 424
 Pore Diffusion—9, 513
 Pore Size—6, 439
 Pores—6, 858
 Porous Heater—10, 59, 65
 Porous Media—9, 99, 617
 Porous Particles—1, 85
 Position—6, 1108
 Potassium Dichromate—1, 820
 Potassium Sulfate—10, 1103
 Power—9, 539
 Power Law—8, 624; 10, 815
 Power Law Fluid—9, 403, 910
 Power Law Model—10, 207, 212
 Predicting—8, 324, 331, 339, 356, 389, 439, 601, 644, 723, 853, 965; 10, 324
 Pressure—6, 79, 112, 202, 205, 334, 492, 526, 601, 613, 809, 917, 1102, 1097, 1114; 9, 588
 Pressure Drop—6, 858, 965; 7, 487, 601, 785, 853; 8, 356, 487, 785; 9, 601, 831, 853
 Pressure Gradient—2, 995; 6, 435, 439, 446, 1114
 Prisms—9, 145
 Probe—10, 187
 Process—9, 831
 Products—9, 18, 678
 Profile—8, 403
 Program—8, 450
 Promoters—6, 848
 Propane—1, 702; 9, 121, 259, 492
 Properties—6, 356; 8, 9, 202
 Pipelines—9, 995
 Pipes—9, 212, 311, 356, 601, 644, 686, 790, 831, 853; 10, 288
 Pilot Tube—10, 673
 Plane Interface—8, 413
 Plant—9, 930
 Plate Efficiency—8, 9, 678
 Plate Heat Exchangers—9, 487
 Plateau Border—10, 18
 Plates—9, 403, 588, 989
 Plot—8, 207
 Poiseuille Flow—9, 435, 439, 673, 1033
 Polarography—10, 866
 Pollution (Water)—9, 18
 Polyacrylonitrile—9, 452
 Polyethylene Oxide—9, 467
 Polymer Solution—9, 217
 Polymers—5, 288; 9, 452, 467, 588, 910
 Polystyrene—9, 1026
 Polytetrafluoroethylene—6, 10, 858
 Polyvinyl Alcohol—9, 467
 Pool—5, 197
 Population Balance—8, 424
 Pore Diffusion—9, 513
 Pore Size—6, 439
 Pores—6, 858
 Porous Heater—10, 59, 65
 Porous Media—9, 99, 617
 Porous Particles—1, 85
 Position—6, 1108
 Potassium Dichromate—1, 820
 Potassium Sulfate—10, 1103
 Power—9, 539
 Power Law—8, 624; 10, 815
 Power Law Fluid—9, 403, 910
 Power Law Model—10, 207, 212
 Predicting—8, 324, 331, 339, 356, 389, 439, 601, 644, 723, 853, 965; 10, 324
 Pressure—6, 79, 112, 202, 205, 334, 492, 526, 601, 613, 809, 917, 1102, 1097, 1114; 9, 588
 Pressure Drop—6, 858, 965; 7, 487, 601, 785, 853; 8, 356, 487, 785; 9, 601, 831, 853
 Pressure Gradient—2, 995; 6, 435, 439, 446, 1114
 Prisms—9, 145
 Probe—10, 187
 Process—9, 831
 Products—9, 18, 678
 Profile—8, 403
 Program—8, 450
 Promoters—6, 848
 Propane—1, 702; 9, 121, 259, 492
 Properties—6, 356; 8, 9, 202
 Pipelines—9, 995
 Pipes—9, 212, 311, 356, 601, 644, 686, 790, 831, 853; 10, 288
 Pilot Tube—10, 673
 Plane Interface—8, 413
 Plant—9, 930
 Plate Efficiency—8, 9, 678
 Plate Heat Exchangers—9, 487
 Plateau Border—10, 18
 Plates—9, 403, 588, 989
 Plot—8, 207
 Poiseuille Flow—9, 435, 439, 673, 1033
 Polarography—10, 866
 Pollution (Water)—9, 18
 Polyacrylonitrile—9, 452
 Polyethylene Oxide—9, 467
 Polymer Solution—9, 217
 Polymers—5, 288; 9, 452, 467, 588, 910
 Polystyrene—9, 1026
 Polytetrafluoroethylene—6, 10, 858
 Polyvinyl Alcohol—9, 467
 Pool—5, 197
 Population Balance—8, 424
 Pore Diffusion—9, 513
 Pore Size—6, 439
 Pores—6, 858
 Porous Heater—10, 59, 65
 Porous Media—9, 99, 617
 Porous Particles—1, 85
 Position—6, 1108
 Potassium Dichromate—1, 820
 Potassium Sulfate—10, 1103
 Power—9, 539
 Power Law—8, 624; 10, 815
 Power Law Fluid—9, 403, 910
 Power Law Model—10, 207, 212
 Predicting—8, 324, 331, 339, 356, 389, 439, 601, 644, 723, 853, 965; 10, 324
 Pressure—6, 79, 112, 202, 205, 334, 492, 526, 601, 613, 809, 917, 1102, 1097, 1114; 9, 588
 Pressure Drop—6, 858, 965; 7, 487, 601, 785, 853; 8, 356, 487, 785; 9, 601, 831, 853
 Pressure Gradient—2, 995; 6, 435, 439, 446, 1114
 Prisms—9, 145
 Probe—10, 187
 Process—9, 831
 Products—9, 18, 678
 Profile—8, 403
 Program—8, 450
 Promoters—6, 848
 Propane—1, 702; 9, 121, 259, 492
 Properties—6, 356; 8, 9, 202
 Pipelines—9, 995
 Pipes—9, 212, 311, 356, 601, 644, 686, 790, 831, 853; 10, 288
 Pilot Tube—10, 673
 Plane Interface—8, 413
 Plant—9, 930
 Plate Efficiency—8, 9, 678
 Plate Heat Exchangers—9, 487
 Plateau Border—10, 18
 Plates—9, 403, 588, 989
 Plot—8, 207
 Poiseuille Flow—9, 435, 439, 673, 1033
 Polarography—10, 866
 Pollution (Water)—9, 18
 Polyacrylonitrile—9, 452
 Polyethylene Oxide—9, 467
 Polymer Solution—9, 217
 Polymers—5, 288; 9, 452, 467, 588, 910
 Polystyrene—9, 1026
 Polytetrafluoroethylene—6, 10, 858
 Polyvinyl Alcohol—9, 467
 Pool—5, 197
 Population Balance—8, 424
 Pore Diffusion—9, 513
 Pore Size—6, 439
 Pores—6, 858
 Porous Heater—10, 59, 65
 Porous Media—9, 99, 617
 Porous Particles—1, 85
 Position—6, 1108
 Potassium Dichromate—1, 820
 Potassium Sulfate—10, 1103
 Power—9, 539
 Power Law—8, 624; 10, 815
 Power Law Fluid—9, 403, 910
 Power Law Model—10, 207, 212
 Predicting—8, 324, 331, 339, 356, 389, 439, 601, 644, 723, 853, 965; 10, 324
 Pressure—6, 79, 112, 202, 205, 334, 492, 526, 601, 613, 809, 917, 1102, 1097, 1114; 9, 588
 Pressure Drop—6, 858, 965; 7, 487, 601, 785, 853; 8, 356, 487, 785; 9, 601, 831, 853
 Pressure Gradient—2, 995; 6, 435, 439, 446, 1114
 Prisms—9, 145
 Probe—10, 187
 Process—9, 831
 Products—9, 18, 678
 Profile—8, 403
 Program—8, 450
 Promoters—6, 848
 Propane—1, 702; 9, 121, 259, 492
 Properties—6, 356; 8, 9, 202
 Pipelines—9, 995
 Pipes—9, 212, 311, 356, 601, 644, 686, 790, 831, 853; 10, 288
 Pilot Tube—10, 673
 Plane Interface—8, 413
 Plant—9, 930
 Plate Efficiency—8, 9, 678
 Plate Heat Exchangers—9, 487
 Plateau Border—10, 18
 Plates—9, 403, 588, 989
 Plot—8, 207
 Poiseuille Flow—9, 435, 439, 673, 1033
 Polarography—10, 866
 Pollution (Water)—9, 18
 Polyacrylonitrile—9, 452
 Polyethylene Oxide—9, 467
 Polymer Solution—9, 217
 Polymers—5, 288; 9, 452, 467, 588, 910
 Polystyrene—9, 1026
 Polytetrafluoroethylene—6, 10, 858
 Polyvinyl Alcohol—9, 467
 Pool—5, 197
 Population Balance—8, 424
 Pore Diffusion—9, 513
 Pore Size—6, 439
 Pores—6, 858
 Porous Heater—10, 59, 65
 Porous Media—9, 99, 617
 Porous Particles—1, 85
 Position—6, 1108
 Potassium Dichromate—1, 820
 Potassium Sulfate—10, 1103
 Power—9, 539
 Power Law—8, 624; 10, 815
 Power Law Fluid—9, 403, 910
 Power Law Model—10, 207, 212
 Predicting—8, 324, 331, 339, 356, 389, 439, 601, 644, 723, 853, 965; 10, 324
 Pressure—6, 79, 112, 202, 205, 334, 492, 526, 601, 613, 809, 917, 1102, 1097, 1114; 9, 588
 Pressure Drop—6, 858, 965; 7, 487, 601, 785, 853; 8, 356, 487, 785; 9, 601, 831, 853
 Pressure Gradient—2, 995; 6, 435, 439, 446, 1114
 Prisms—9, 145
 Probe—10, 187
 Process—9, 831
 Products—9, 18, 678
 Profile—8, 403
 Program—8, 450
 Promoters—6, 848
 Propane—1, 702; 9, 121, 259, 492
 Properties—6, 356; 8, 9, 202
 Pipelines—9, 995
 Pipes—9, 212, 311, 356, 601, 644, 686, 790, 831, 853; 10, 288
 Pilot Tube—10, 673
 Plane Interface—8, 413
 Plant—9, 930
 Plate Efficiency—8, 9, 678
 Plate Heat Exchangers—9, 487
 Plateau Border—10, 18
 Plates—9, 403, 588, 989
 Plot—8, 207
 Poiseuille Flow—9, 435, 439, 673, 1033
 Polarography—10, 866
 Pollution (Water)—9, 18
 Polyacrylonitrile—9, 452
 Polyethylene Oxide—9, 467
 Polymer Solution—9, 217
 Polymers—5, 288; 9, 452, 467, 588, 910
 Polystyrene—9, 1026
 Polytetrafluoroethylene—6, 10, 858
 Polyvinyl Alcohol—9, 467
 Pool—5, 197
 Population Balance—8, 424
 Pore Diffusion—9, 513
 Pore Size—6, 439
 Pores—6, 858
 Porous Heater

- Resistivity—6, 718
 Resistivity Probe—10, 624
 Response—7, 8, 9, 253
 Retention Time—10, 259
 Retention Volume—7, 8, 508; 10, 259
 Reverse-Wetting Agent—6, 617
 Reynolds Number—6, 145, 217, 268, 324, 481, 834, 1108; 8, 207; 9, 207, 212
 Rheological Properties—8, 324
 Rheology—8, 207, 212, 324, 403, 467, 588, 910
 Ribs—9, 487
 Riccati Differential Equation—10, 532
 Riemann-Volterra Integration—10, 133
 Rise—9, 601
 Rivlin-Ericksen Approximation—10, 989
 Rotation—6, 145, 294; 9, 809
 Roughness—6, 503
 Round Tube—9, 690
 Rules—9, 228
- S**
 Saline Water—9, 1073
 Salting Out Crystallizer—9, 728
 Sand—5, 595
 Saponin—4, 356
 Scale-Up—8, 497, 831, 1000
 Schmidt Number—6, 706, 834
 Scrubber—10, 785
 Secondary Recovery—8, 99
 Sedimentation—7, 981; 8, 145, 981; 9, 981
 Selectivity Parameters—8, 9, 920
 Self-Diffusivity—7, 613; 8, 164, 613; 9, 613
 Separation Factors—8, 920
 Separations—4, 158, 1097; 6, 112, 695; 7, 253; 8, 253, 319; 9, 18, 253
 Settling—8, 145
 Shear Strain—7, 8, 9, 467
 Shear Stress—7, 462; 8, 207, 462, 644, 1026; 9, 207, 588, 644
 Sherwood Number—7, 8, 481
 Silica—10, 279
 Silica-Alumina—10, 167
 Silica Gel—4, 41; 5, 702; 9, 121
 Silver Catalysts—7, 106
 Single Drops—8, 413
 Sinusoidal—0, 690
 Sinusoidal Pressure Gradient—1, 288
 Size—6, 253, 279, 723; 7, 395, 424, 866
 Size Distribution—7, 8, 728
- Slip Ratios—7, 8, 1114
 Slug Flow—8, 601, 644; 9, 607, 624, 690
 Slugs—9, 601
 Slurries—9, 989
 Sodium Carbonate—9, 780
 Sodium Carboxymethyl-cellulose—9, 207, 212
 Sodium Dodecyl Benzene Sulfonate—5, 319
 Sodium Sulfate—9, 9, 780
 Sodium Sulfite—1, 9
 Soil—9, 790
 Solids—5, 702
 Solid-Liquid Equilibrium—8, 9, 780
 Solids—9, 424, 853
 Solids Mixing—6, 130; 7, 127
 Solubility—8, 457, 1005
 Solute—6, 158; 9, 158, 656
 Solutions—5, 288; 8, 431, 733, 1033; 9, 452, 467, 588
 Sonic Generator—10, 69
 Sonic Whistle—10, 69
 Sound—6, 69
 Spacing—6, 848
 Sparged Contactor—10, 63, 73
 Spargers—9, 319
 Spheres—9, 145, 481; 10, 13
 Spray—2, 69
 Spray Column—9, 804
 SR-89—1, 319
 Stability—2, 85; 7, 294, 339; 8, 237, 294, 339, 474, 971; 9, 138, 339, 971
 Staged Vessels—6, 424
 Stagnation—7, 8, 391
 Stagnation Point—6, 834
 Stannic Oxide—1, 2, 274
 Steady State Response—2, 85
 Steam—2, 858; 5, 794, 1114
 Stearic Acid—6, 391
 Stirred Tank Reactors—9, 723
 Stokes' Regime—9, 815
 Stokes' Settling Velocity—8, 981
 Storage—10, 790
 Streams—10, 69
 Stress—6, 324, 673; 7, 467; 8, 467, 1026; 9, 467, 673
 Stripping—8, 319
 Structure—9, 595
 Structure (Foam)—10, 18
 Submergence—6, 73, 197, 503
 Subunits—10, 678
 Suction Nucleate Boiling—8, 858
 Sulfite Oxidation—8, 9
 Sulfur—35—1, 662
 Sulfuric Acid—9, 246
 Superposition—10, 981
 Supersaturation—6, 424
 Surface—6, 503; 9, 503, 858, 1073
 Surface Active Agents—6, 158, 391; 9, 391
 Surface Activity—9, 319
 Surface Equation of State—8, 391
 Surface-Liquid Extraction—8, 319
 Surface Migration—9, 41
 Surface Reaction—9, 34
 Surface Roughness—6, 197
 Surface Viscosity—1, 6, 18
 Surface Wetting—6, 7, 716
 Surfactant Mixtures—2, 820
 Surfactants—3, 274; 4, 346; 9, 274, 820
 Suspensions—9, 981
 Swelling of Polymer Fiber—8, 246
 Synthesis—8, 279
- T**
 Tanks—9, 237, 790, 930
 Taylor-Aris Theory—8, 1063
 Taylor Regime—9, 815
 Temperature—6, 41, 79, 106, 112, 202, 205, 304, 389, 413, 467, 503, 508, 613, 636, 695, 809, 834, 866, 917, 1041, 1051, 1097; 7, 723, 804, 858; 8, 532, 825; 9, 503, 539, 790; 10, 678
 Temperature Difference—6, 197
 Temperature Driving Force—6, 59, 65
 Temperature Profiles—7, 607; 8, 588, 804
 Ternary Systems—9, 259, 1092
 Testing—8, 780
 Theories—2, 18; 8, 18, 145, 207, 259, 403, 439, 452, 539, 656, 723, 995, 1114; 9, 25
 Theory of Toor—10, 221
 Thermal Buckling—8, 825
 Thermal Conductivity—6, 607; 8, 164, 304, 650; 9, 650
 Thermal Decomposition—8, 79
 Thermal Diffusivity—7, 130
 Thermal Pressure—1, 155
 Thermal Properties—8, 304, 650; 9, 650
 Thermal Regime—7, 513
 Thermal Resistance—8, 1012
 Thermodynamic Consistency Tests—10, 780
 Thermodynamic Properties—6, 607; 7, 8, 9, 334
 Thermodynamics—7, 702; 8, 205, 1097; 9, 205; 10, 121
 Theta Method of Convergence—10, 695
 Thickness—8, 403, 662, 673; 9, 662
 Time—6, 34, 41, 274, 601, 845, 1063
 Time Constants—7, 253
 Toluene—5, 158; 9, 924
 Tracer Sreak Motion—2, 288
 Transfer Units—7, 840
 Transient—1, 112
 Transient Response—2, 85
 Transient State—7, 9, 339
 Transitional Flow—9, 1073
 Transport—8, 54
 Transport Phenomena—9, 733
 Transport Properties—2, 228; 8, 304, 613, 650; 9, 304, 650
 Transport Rate—2, 7, 8, 9, 439
 Tubes—9, 588, 690, 995, 1124, 1063; 10, 1000, 1114
 Turbulence—6, 520, 712, 1058, 1081; 7, 29; 9, 848
 Turbulent Flow—8, 809, 853; 9, 656; 10, 666
 Turbulent Flow Reactor—10, 221
 Two-Phase Flow—8, 138, 866; 9, 617, 624, 794, 1124; 10, 866
 Two-Phase Flow Theory—8, 595
- U**
 Ultraviolet Light—10, 497, 873, 1000
- V**
 Van Laar Model—10, 1097
 Vanadium Pentoxide—10, 1103
 Vane Pumps—10, 1092
 Vapor Deposition—8, 79
 Vapor Flow Rate—6, 59, 65
 Vapor-Liquid Equilibrium—8, 886
 Vapor Plating—8, 79
 Vapor Pressure—10, 331
 Vapor—2, 834; 9, 678, 1097
 Variables—1, 6, 25
 Velocity—1, 5; 6, 5, 13, 29, 127, 130, 167, 268, 279, 487, 520, 581, 712, 723, 848, 1019, 1114; 7, 601; 8, 624, 815; 9, 403, 588, 595
 Velocity Distribution—7, 853; 8, 462, 853; 9, 853
 Velocity Profiles—2, 18, 995; 8, 207, 644; 9, 995
- X**
 X-Ray Attenuation—10, 794
- Y**
 Yield Prediction—8, 221
 Yields—7, 8, 9, 723
- Z**
 Zenon—10, 155
 Zinc—10, 1051

