

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ ПО ПРЕДДИПЛОМНОЙ ПРАКТИКЕ

Студент	Киселев Сергеи Андреевич		
Группа	PK6-85		
Тип практики	Преддипломная		
Название предприятия		Корпорация «Иркут»	
~		IC C A	
Студент		Киселев С. А.	
	подпись, дата	фамилия, и.о.	
Руководитель практики		Витюков Ф.А.	
1	подпись, дата	фамилия, и.о.	
Оценка			

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ЗАДАНИЕ

на прохождение преддипломной практики

В период с <u>«15» мая 2023 г. По «28» мая 2023 г.</u>
Предприятие Корпорация «Иркут»
Подразделение Отдел систем автоматического управления
Руководитель практики от предприятия Чернышев Александр Александрови

Руководитель практики от кафедры Витюков Федор Андреевич

Задание:

Дата выдачи задания « <u>15</u> » <u>мая</u> 20	023 г.	
Студент	подпись, дата	Киселев С.А. фамилия, и.о.
Руководитель практики от предприят	ия подпись, дата	Чернышев А.А. фамилия, и.о.
Руководитель практики от кафедры	подпись, дата	Витюков Ф.А. фамилия, и.о.

1. Оценка влияния температуры от колес шасси на ЭБМК в отсеке шасси.

Содержание

1.	Введение	.4
	Цель анализа	
	Методика анализа полетной информации	
	Объект анализа	
	Результаты анализа	
	Заключение	
	Приложение	

1. Введение

Объектом испытаний является Комплексная система управления самолета MC-21-300 (КСУ-MC-21-300).

Выполнение полетов выполняется в соответствии с программами летных испытаний, по завершению полета по записям СБИ анализируется информация датчиков температуры по КСУ.

2. Цель анализа

Целью является оценка влияния температуры от колес шасси на ЭБМК в отсеке шасси при проведении летных испытаний для оценки корректной работы системы перемещения механизации крыла.

3. Методика анализа полетной информации

Анализ полетной информации выполняется с помощью программы Microsoft Excel по записям СБИ.

4. Объект анализа

Анализ информации выполняется по записям СБИ КСУ с установленными версиями ПО Р024-27. Подробное описание конфигурации КСУ представлено в:

1ДКХ №21-27-00-0001-DDP/006, 1F-1211-2700-0000-014-D750 (P024); 2ДКХ №21-27-00-0004-DDP/008, 1F-1211-2700-0000-016-D750 (P026); 3 ДКХ №21-27-00-0004-DDP/009, 1F-1211-2700-0000-017-D750 (P027)

5. Результаты анализа

По результатам анализа полетной информации по полетам №285, 286, 287, 289, 291, 293, 295, 347, 350, 352, 355 и 358 была проанализирована работа датчиков температуры в отсеке шасси с PDU. По результатам анализа через программу Microsoft Excel были получены данные, которые представлены в таблицах на графиках.

Ниже представлены результаты определения температуры в зоне установки PDU предкрылков, закрылков и температуры наружного воздуха, а также барометрической высоты.

5.1. Определение температуры в зоне установки PDU предкрылков на самолете MC.0001 по полетам №285, 286, 287, 289, 291, 293, 295, 347, 350, 352, 355 и 358.

Рисунок 1 температуры в зоне установки PDU предкрылков

5.2. Определение температуры в зоне установки PDU закрылков на самолете MC.0001 по полетам №285, 286, 287, 289, 291, 293, 295, 347, 350, 352, 355 и 358.

Рисунок 2 температуры в зоне установки PDU закрылков

5.3. Определение температуры наружного воздуха на самолете MC.0001 по полетам №285, 286, 287, 289, 291, 293, 295, 347, 350, 352, 355 и 358.

Рисунок 3 температуры наружного воздуха

5.4. Определение барометрической высоты на самолете MC.0001 по полетам №285, 286, 287, 289, 291, 293, 295, 347, 350, 352, 355 и 358.

Рисунок 4 барометрической высоты

6. Заключение

Анализ по модели и контролю ИВК-КСУ показал, что температура в отсеке шасси с PDU остается в пределах допустимых значений.

7. Приложение

- MC21_0001_03.05.2023_полет358
- MC21_0001_10.01.2023_полет347
- МС21_0001_13.03.2023_полет355
- **МС21_0001_16.01.2023_полет350**
- MC21_0001_27.01.2023_полет352
- Щ Полет №285 23 08 2021 Ж-К Тп Н Таѕ tаf
- Полет №287 28 08 2021 П-МВ Тп Н Таѕ tаf
- Полет №289-290 29 08 2021 MB-Ш-НН Tn H Tas taf
- Полет №291 30 08 2021 HH-M Tn H Tas taf
- Полет №293 31 08 2021 M-MB Tn H Tas taf
- Полет №295 01 09 2021 MB-Ж Tn H Tas taf
- 🕮 Температура в отсеке с PDU полет 286 за 24.08.2021

ыгрузка и анализ данных по полетам самолета МС.0001

рограмма для анализа

Температура в отсеке ниши шасси

нализ температуры в отсеке ниши шасси по всем полетам

Лист согласования от ПАО «Корпорация «Иркут»

Начальника отдела	А.А. Чернышев
Инженер-конструктор 2-ой категории	Ю.О. Наливайко