FIZIKAS FORMULAS

					4: :
Mehānika	$v_{vid} = \frac{l}{\Delta t}$	$a_{x} = \frac{v_{x} - v_{0x}}{\Delta t}$	$x = x_0 + v_{0x}t + \frac{a_x t^2}{2}$		Apzīmējumi Absolūtā temperatūra - T Apgaismojums - E
$v^2 - v_0^2 = 2as$	$\omega = \frac{\varphi}{\Delta t}$	$v = \frac{1}{T}$	$\upsilon = \frac{2\pi R}{T}$	$v = \omega R$	Ātrums - υ Berzes koeficients - μ Ceļš - l Blīvums - ρ
$a = \frac{v^2}{R} = \omega^2 R$	$a = \frac{F}{m}$	$F = G \frac{m_1 m_2}{R^2}$	F = mg	$F_e = -kx$	Darbs - <i>A</i> Dielektriskā caurlaidība - ε Difrakcijas režģa periods - <i>d</i>
$F_b = \mu F_R$	$F_{A} = \rho_{\check{s}k} g V_{k}$	$p = \rho g h$	M = Fl	p = mv	Elastības modulis - E Elektriskā kapacitāte - C Elektriskā lauka intensitāte - E
$A = Fs\cos\alpha$	$P = \frac{A}{\Delta t}$	$\eta = rac{A_l}{A_p}$	$W_k = \frac{mv^2}{2}$	$W_p = mgh$	Elektriskais lādiņš - q Elektriskās pretestības termiskais koeficients - α Elektrodzinējspēks - ε
$W_p = \frac{kx^2}{2}$	$x = x_m \cos \omega t$	$T = 2\pi \sqrt{\frac{l}{g}}$	$T = 2\pi \sqrt{\frac{m}{k}}$	$\lambda = vT$	Elektroķīmiskais ekvivalents - k Elementa kārtas skaitlis - Z Enerģija - W, E Fokusa attālums - F
Molekulārfizika Termodinamika	$M = m_0 N_A$	$n = \frac{N}{N_A} = \frac{m}{M}$	$ \rho = \frac{m}{V} $	$p = \frac{1}{3} \frac{N}{V} m_0 \overline{v^2}$	Fokusa attatums - <i>r</i> Frekvence - <i>v</i> Gaisa relatīvais mitrums - <i>r</i> Gaismas plūsma - Φ
$p = \frac{N}{V}kT$	$\overline{W}_k = \frac{3}{2}kT$	$\frac{pV}{T} = const$	$pV = \frac{m}{M}RT$	$R = kN_A$	Gaismas stiprums - <i>I</i> Iekšējā enerģija - <i>U</i> Iekšējā pretestība - <i>r</i>
$U = \frac{3}{2} \frac{m}{M} RT$	T = t + 273	$A = p\Delta V$	$Q = \Delta U + A_g$	$\eta_{\text{max}} = \frac{T_1 - T_2}{T_1}$	Impulss - p Induktīvā pretestība - X_L Induktivitāte - L Īpatnējā pretestība - ρ
$\eta = \frac{A}{Q}$	$Q = cm\Delta t$	$Q = \lambda m$	Q = Lm	Q = qm	Īpatnējā siltumietilpība - c Īpatnējais iztvaikošanas siltums - L
$\sigma = \frac{F}{l}$	$l = l_0 (1 + \alpha t)$	$\varepsilon = \frac{\Delta l}{l_0}$	$\sigma = \frac{F}{S}$	$r = \frac{p}{p_0} = \frac{\rho}{\rho_0}$	Īpatnējais kušanas siltums - λ Īpatnējais sadegšanas siltums - q Jauda - P
Elektromagnētisms	$F = k \frac{q_1 q_2}{\varepsilon R^2}$	$E = \frac{F}{q}$	A = qEd	$\varphi = \frac{W_p}{q}$	Jaudas koeficients - cos φ Kapacitīvā pretestība - X_C Kinētiskā enerģija - W_k Koordināta - x
$U = \frac{A}{q}$	$E = \frac{U}{\Delta d}$	$C = \frac{q}{U}$	$C = \frac{\mathcal{E}_0 S}{d}$	$W = \frac{CU^2}{2}$	Leņķiskā frekvence - ω Leņķiskais ātrums - ω Lietderības koeficients - η Lineārais palielinājums - Γ
$R = \rho \frac{l}{S}$	$R = R_0 (1 + \alpha t)$	$I = \frac{q}{\Delta t}$	$I = \frac{U}{R}$	$R = R_1 + R_2$	Lineārās izplešanās termiskais koeficients - α Magnētiskā indukcija - B
$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	$\mathcal{E} = \frac{A_{\bar{a}r}}{q}$	$I = \frac{\mathcal{E}}{R+r}$	$A = IU\Delta t$	P = IU	Magnētiskā plūsma - Φ Masas skaitlis - A Mehāniskais spriegums - σ Masa - m
$Q = I^2 R \Delta t$	$m = kI\Delta t$	$B = \frac{M_m}{IS}$	$F_A = BIl \sin \alpha$	$F_L = Bqv\sin\alpha$	Molmasa - <i>M</i> Neitronu skaits - <i>N</i> Optiskais stiprums - <i>D</i>
$\Phi = BS \cos \alpha$	$\mathcal{E} = Bl \upsilon \sin \alpha$	$\mathcal{E} = -\frac{\Delta \Phi}{\Delta t}$	$L = \frac{\Phi}{I}$	$\mathcal{E}_p = -L \frac{\Delta I}{\Delta t}$	Paātrinājums - <i>a</i> Pagrieziena leņķis - <i>φ</i> Pārvietojums - <i>s</i> Periods - <i>T</i>
$W = \frac{LI^2}{2}$	$T = 2\pi\sqrt{LC}$	$i = I_m \sin \omega t$	$I = \frac{I_m}{\sqrt{2}}$	$U = \frac{U_m}{\sqrt{2}}$	Potenciālā enerģija — W_p Potenciāls - φ Pretestība - R
$X_L = \omega L$	$X_C = \frac{1}{\omega C}$	$\cos \varphi = \frac{R}{Z}$	$P = IU\cos\varphi$	$k = \frac{N_1}{N_2} = \frac{U_1}{U_2}$	Relatīvais pagarinājums - ε Siltuma daudzums - Q Spēka moments - M Spēka plecs - l
Optika Atomfizika	$\frac{\sin\alpha}{\sin\gamma} = \frac{v_1}{v_2} = \frac{n_2}{n_1} = n$	$D = \frac{1}{F} = \frac{1}{d} + \frac{1}{f}$	$\Gamma = \frac{f}{d} = \frac{H}{h}$	$\Phi = \frac{W}{\Delta t}$	Spēks - F Spiediens - p Spriegums - U Stinguma koeficients - k
$I = \frac{\Phi}{\Omega}$	$E = \frac{\Phi}{S}$	$E = \frac{I}{R^2} \cos \alpha$	$d\sin\varphi = k\lambda$	E = hv	Strāvas stiprums - I Telpas leņķis - Ω Tilpums - V Transformācijas koeficients - k
$h\nu = A_i + E_k$	$hv = E_m - E_n$	$E = mc^2$	A = Z + N	$N = N_0 2^{-\frac{t}{T}}$	Vielas daudzums - n Viļņa garums - λ Virsmas spraiguma koeficients - σ

FIZIKĀLĀS KONSTANTES APRĒĶINIEM

ASTRONOMISKĀS KONSTANTES APRĒĶINIEM

Atommasas vienība	$1 \text{ u} = 1,7 \cdot 10^{-27} \text{ kg}$
Avogadro skaitlis	$N_A = 6.0 \cdot 10^{23} \text{ mol}^{-1}$
Bolcmaņa konstante	$k = 1.4 \cdot 10^{-23} \text{ J/K}$
Elektriskā konstante	$\varepsilon_{\rm o} = 8.9 \cdot 10^{-12} \text{F/m}$
Elektrona lādiņš	$e = 1.6 \cdot 10^{-19} \mathrm{C}$
Elektrona miera masa	$m_e = 9.1 \cdot 10^{-31} \text{ kg}$
Elektronvolts	$1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}$
Gaismas ātrums vakuumā	$c = 3.0 \cdot 10^8 \text{ m/s}$
Gravitācijas konstante	$G = 6.7 \cdot 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2)$
Kulona likuma konstante (k)	$1/4\pi\varepsilon_0 = 9.0 \cdot 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
Magnētiskā konstante	$\mu_{\rm o} = 1.3 \cdot 10^{-6} \text{H/m}$
Molārā gāzu konstante	$R = 8.3 \cdot J/(\text{mol} \cdot \text{K})$
Neitrona miera masa	$m_n = 1.7 \cdot 10^{-27} \text{ kg}$
Normāls atmosfēras spiediens	$p = 1.0 \cdot 10^5 \text{Pa}$
Planka konstante	$h = 6.6 \cdot 10^{-34} \text{ J} \cdot \text{s}$
Protona miera masa	$m_p = 1.7 \cdot 10^{-27} \text{ kg}$

Vidējais brīvās krišanas paātrinājums Zemes virsmas tuvumā	9,8 m/s ²
Zemes rādiuss	$6,4\cdot10^6 \text{ m}$
Zemes masa	$6.0 \cdot 10^{24} \text{ kg}$
Zemes orbītas rādiuss	1,5·10 ¹¹ m
Pirmais kosmiskais ātrums	7,9 km/s
Otrais kosmiskais ātrums	11,2 km/s
Trešais kosmiskais ātrums	16,7 km/s
Saules rādiuss	$7.0 \cdot 10^8 \mathrm{m}$
Saules masa	$2.0 \cdot 10^{30} \text{ kg}$
Saules konstante	1,4 kW/m ²
Mēness rādiuss	1,7·10 ⁶ m
Mēness masa	$7,4\cdot10^{22} \text{ kg}$
Mēness orbītas rādiuss	3,8·10 ⁸ m
Parseks (pc)	$3,1\cdot10^{16}\mathrm{m}$
Gaismas gads (ly)	9,5·10 ¹⁵ m

PRIEDĒKĻI MĒRVIENĪBU DAUDZKĀRTŅU UN DAĻVIENĪBU NOSAUKUMU VEIDOŠANAI

Pakāpes rādītājs	Priedēklis	Simbols	Pakāpes rādītājs	Priedēklis	Simbols
10^{12}	tera	T	10 ⁻¹	deci	d
10 ⁹	giga	G	10-2	centi	c
10^{6}	mega	M	10 ⁻³	mili	m
10^{3}	kilo	k	10 ⁻⁶	mikro	μ
10^{2}	hekto	h	10 ⁻⁹	nano	n
10 ¹	deka	da	10 ⁻¹²	piko	p

ELEKTROMAGNĒTISKO VIĻŅU SKALA

 $Avoti: \underline{http://www.astro.princeton.edu/; \underline{http://physics.nist.gov/cuu/Units/rules.html; \underline{http://www.bipm.org/en/si/si_brochure/.} }$