CLAIMS

What is claimed is:

1	1.	A method of producing an electrode capable of binding an analyte thereto
2		comprising:
3		providing a substrate capable of binding a dithiol molecule thereto;
4		electrochemically treating said substrate using cyclic voltammetry
5		to provide a treated substrate having a fractal dimension of greater than
6		about 2; and
7		contacting said treated substrate with dithiol molecules to produce
8		an electrode having dithiol groups attached thereto and capable of binding
9		an analyte to be detected thereto.
1	2.	The method of claim 1 wherein said provided substrate comprises a metal
2		capable of bonding to the sulfur atom of a thiol compound.
1	3.	The method of claim 2 wherein said metal is selected from the group
2		consisting of gold, platinum, silver, nickel, copper, stainless steel, and
3		alloys of two or more thereof.
1	4.	The method of claim 2 wherein said metal comprises a metal selected from
2		the group consisting of gold and platinum.
1	5.	The method of claim 2 wherein said provided substrate is selected from the
2		group consisting of metal wire and metal powder.
1	6.	The method of claim 2 wherein said provided substrate is a coiled metal
2		wire substrate.
1	7.	The method of claim 2 wherein said provided substrate is a wire mesh
2		substrate.

1	8.	The method of claim 2 wherein said provided substrate comprises a non-
2		metal powder.
1	9.	The method of claim 1 further comprising the step of contacting the
2		substrate, prior to the electrochemical treament step, with one or more
3		fluids to prepare the surfaces thereof for electrochemical treatment.
1	10.	The method of claim 9 wherein said contacting step comprises contacting
2		the substrate with a fluid selected from the group consisting of potassium
3		hydroxide, ammonium hydroxide, water, perchloric acid, and combinations
4		of two or more thereof.
1	11.	The method of claim 9 wherein said contacting step comprises contacting
2		the substrate with ammonium hydroxide, then water, and then perchloric
3		acid.
1	12.	The method of claim 1 wherein said treated substrate has a fractal
2		dimension of greater than about 2.1.
1	13.	The method of claim 1 wherein said treated substrate has a fractal
2		dimension of greater than about 2.2.
1	14.	The method of claim 1 further comprising the step of polarizing the treated
2		substrate before such substrate is removed from any solution in which
3		cyclic voltammetry is conducted.
1	15.	The method of claim 14 wherein said treated substrate is polarized at a
2		voltage of about 2.0 volts for about 30 seconds.

Attorney Docket No. 1845-SPL

1	16.	The method of claim 1 further comprising the step of washing the treated
2		substrate with one or more fluids prior to contacting the treated substrate
3		with dithiol molecules.
1	17.	The method of claim 16 wherein said washing step comprises rinsing the
2		treated substrate in a fluid, sonicating the treated substrate while immersed
3		in a fluid, or combinations of two or more thereof.
1	18.	The method of claim 1 wherein said dithiol molecules are described by the
2		formula I:
3		
4		$HS-[CH_2]_n-SH$ (I)
5		wherein n is from about 2 to about 10.
1	19.	The method of claim 18 wherein n is from about 2 to about 8.
1	20.	The method of claim 1 wherein said analyte to be detected is heme.
1	21.	The method of claim 1 wherein said analyte to be detected is hemoglobin.
1	22.	The method of claim 1 wherein said analyte to be detected is cytochrome c.
1	23.	A method of accumulating an analyte from a target sample onto an
2		electrode comprising:
3		providing an electrode produced according to claim 1; and
4		contacting said electrode with a target sample comprising an analyte
5		capable of bonding to a dithiol moiety to bond at least a portion of said
6		analyte to said electrode.

1	24.	The method of claim 23 wherein said contacting step comprises positioning
2		the provided electrode in a capillary tube and passing the target sample
3		through the capillary tube to contact the electrode.
1	25.	The method of claim 23 wherein said contacting step comprises positioning
2		the electrode in a glass tube and under a glass filter within the tube and
3		passing the target sample through the glass filter and into contact with the
4		electrode.
1	26.	The method of claim 25 wherein said provided electrode comprises wire
2		mesh.
1	27.	The method of claim 23 wherein said contacting step comprises bubbling
2		nitrogen through the target sample for at least a portion of the contacting
3		step.
1	28.	The method of claim 23 wherein said analyte is heme.
1	29.	A method of detecting an analyte comprising:
2		providing an electrode produced according to claim 1;
3		contacting said electrode with a target sample comprising an analyte
4		capable of binding to a dithiol moiety to bind at least a portion of said
5		analyte to said electrode; and
6		detecting the analyte bonded to the electrode.
1	30.	The method of claim 29 wherein said analyte is detected using cyclic
2		voltammetry or differential pulse voltammetry.
1	31.	The method of claim 30 wherein said analyte is detected using mass
2		spectroscopy.

- 1 32. The method of claim 30 wherein said analyte is heme.
- 1 33. The method of claim 32 wherein said target sample has a concentration of less than about 2 nanmolar to greater than about 10 micromolar.