Automatic Labeling of Word Clusters

Group 11
Rajeshreddy Datla(CS17RESCH11007)
Dewalkar Swapnil Ashok(CS17MTECH11004)
21 November 2017

Information Retrieval project.

Problem statement

- Given a Document collection, Partition words into clusters such that words that belong to the same cluster are semantically similar and related.
- Assign labels automatically to the clusters.

Introduction

• Word clustering is a technique for partitioning sets of words into subsets of semantically similar words.

Data processing

L. Jing, L. Zhou, M. K. Ng, and J. Z. Huang. Ontology-based distance measure for text clustering. In Workshop on Text Mining, SIAM International Conference on Data Mining, Bethesda, MD, 2006. SIAM

Data processing Contd..

L. Jing, L. Zhou, M. K. Ng, and J. Z. Huang. Ontology-based distance measure for text clustering. In Workshop on Text Mining, SIAM International Conference on Data Mining, Bethesda, MD, 2006. SIAM

Clustering methods

- Agglomerative Clustering
- Markov Clustering
- Affinity Propagation Clustering

Agglomerative Clustering

Basic algorithm:

- Compute the distance matrix between the input data points
- Let each data point be a cluster
- Repeat
 - Merge the two closest clusters
 - Update the distance matrix
- Until only a single cluster remains
- Key operation is the computation of the distance between two clusters
- Different definitions of the distance between clusters lead to different algorithms
- R. Sibson (1973). "SLINK: an optimally efficient algorithm for the single-link cluster method" (PDF). The Computer Journal. British Computer Society. 16 (1): 3034. doi:10.1093/comjnl/16.1.30.
- D. Defays (1977). "An efficient algorithm for a complete-link method". The Computer Journal. British Computer Society. 20 (4): 364366. doi:10.1093/comjnl/20.4.364.

Markov Clustering

Basic Algorithm

Expand: $M_{exp} = Expand(M) \stackrel{def}{=} M * M$

Inflate: $M_{inf}(i,j) \stackrel{def}{=} \frac{M(i,j)^r}{\sum_{k=1}^n M(k,j)^r}$

Prune: zero out the least elements in each column

Repeat until M converges

Stijn van Dongen, Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht, May 2000.

Affinity propagation clustering

- It is a clustering algorithm based on the concept of "message passing" between data points.
- Discover exemplars based on similarity.

Frey, B. J. and Dueck, D. Clustering by passing messages between data points. 315, 972-976, Science 2007.

Labeling

Labeling using Heuristics based on keywords

- Input: List of keywords from Document collection.
- Select top scored words from each cluster.
- Similarity measure between these top scored words in a clusetr and keyword.
- Select the keyword with best similarity score.
- Obtain hypernym of the selected keyword and consider that as label for that cluster

'river': [0.0, 0.0, 0.6020599913279623, 0.0],
'road': [0.0, 0.6020599913279623, 0.0, 0.0],
'sail': [0.0, 0.0, 0.6020599913279623, 0.0],
'signal': [0.0, 0.6020599913279623, 0.0, 0.0],
'table': [0.6020599913279623, 0.0, 0.0, 0.0],
'traffic': [0.0, 0.6020599913279623, 0.0, 0.0])

Experiments

```
book pencil bus table signal road pen traffic fish boat river pencil pen pencil pencil pen pencil pencil pen pencil pencil pen pencil penc
```

Mutual Information Matrix

```
Term Vector sumation similarity
                                 'river': [0.5784650075975524,
{'boat': [1.1112525656287864.
                                           0.508821649661671.
          0.884634851079533,
                                            1.1587934843502528.
          1.5828765270991407.
                                           0.16434201515327341.
          0.3193957941889021.
 'book': [1.485099946706822.
                                   'road': [1.3233760846877052.
          0.9432892166068212.
                                            1.6647841410015376.
          0.9579543409135542.
                                            1.2885165246100705.
          0.2779067795962521.
                                            0.3776819424848444],
 'bus': [1.3100530842949614.
                                  'sail': [0.9243640973883366,
         0.6889230593113135.
                                            0.8182092146327838.
         0.7941371420429792.
                                            1.4241451787158224,
         0.238212473885794971.
                                            0.271313948250228861.
 'fish': [1.0186640938630045,
                                  'signal': [0.6026212484120077,
          0.9141781022987787.
                                             1.0465438108657963.
          1.5503528954771872,
                                             0.49864169749448256,
          0.312673234113887371.
                                             0.14410030595305581.
 'pen': [1.0016360468805563,
                                  'table': [1.6627181723593676,
         1.0429865569803831.
                                            1.0082197775065538.
         1.0000780483295366.
                                            1.1194677265234365,
         0.55059516377843961.
                                            0.337672672617910451.
 'pencil': [1.0222922769536482,
                                  'traffic': [0.8508282194061488,
            0.6521269407047414.
                                              1.2937616236073204.
            0.7348828151778977,
                                              0.7535970500460133,
            0.489856598524841.
                                              0.20875707809489921}
```

Similarity Matrix

```
0.99021032
                                      0.99545268
                          0.9978946
                                       0.99735772
                                       0.99137611
                                                   0.99923549
                                       0.99951821
                                       0.99923549
                                      0.9987316
                                       0.9999344
                                       0.99951821
[ 0.9914264
                                       0.99919123
             0.99993912
                         0.9999882
                                       0.99995432
```

Agglomerative Clustering

• Single link

0: 'pencil', 1: 'bus', 2: 'signal', 3: 'sail', 4: 'pen', 5: 'book', 6: 'traffic', 7: 'boat', 8: 'table', 9: 'river', 10: 'fish', 11: 'road'

Agglomerative Clustering

• complete link

Affinity propagation Clustering Number of clusters: 5

```
pencil
bus
signal
sail
boat, book, fish, pen, river, road, table, traffic
```

Markov Clustering

Cluster validity

Silhoutte score: The Silhouette Coefficient is calculated using the mean intra-cluster distance (a) and the mean nearest-cluster distance (b) for each sample.

The Silhouette Coefficient for a sample is (b - a)/max(a, b). Silhoutte score: 0.59327577 (Affinity propagation)

Labeling

Based on markov clustering

```
[0.32308612440191387. 0.230632112985054151
['pencil', 'bus', 'pen', 'book', 'table', 'road'] Education
[0.13700159489633174, 0.11463046757164404]
['pencil', 'bus', 'pen', 'book', 'table'] Education
[0.246978021978022, 0.18983957219251338]
['signal', 'pen', 'traffic', 'road'] Education
[0.08401116427432216, 0.143068783068783071
['sail', 'boat', 'river', 'fish'] Travel
[0.4302914191072086. 0.312450294803236]
['pencil', 'signal', 'pen', 'book', 'traffic', 'table', 'fish', 'road'] Education
[0.13700159489633174, 0.11463046757164404]
['pencil', 'bus', 'pen', 'book', 'table'] Education
[0.246978021978022, 0.18983957219251338]
['signal', 'pen', 'traffic', 'road'] Travel
[0.08401116427432216, 0.143068783068783071
['sail', 'boat', 'river', 'fish'] Travel
[0.13700159489633174, 0.114630467571644041
['pencil', 'bus', 'pen', 'book', 'table'] Education
[0.08401116427432216, 0.14306878306878307]
['sail', 'boat', 'river', 'fish'] Travel
[0.09512227538543327, 0.1652910052910053]
['sail', 'pen', 'boat', 'river', 'fish'] Travel
[0.246978021978022, 0.18983957219251338]
['signal', 'pen', 'traffic', 'road'] Education
```

Labeling

Based on markov clustering

References

- Lichi Yuan, Word Clustering Algorithms Based on Word Similarity, 7th IEEE International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2015.
- L. Jing, L. Zhou, M. K. Ng, and J. Z. Huang. Ontology-based distance measure for text clustering. In Workshop on Text Mining, SIAM International Conference on Data Mining, Bethesda, MD, 2006. SIAM
- R. Sibson (1973). "SLINK: an optimally efficient algorithm for the single-link cluster method" (PDF). The Computer Journal. British Computer Society. 16 (1): 3034. doi:10.1093/comjnl/16.1.30.
- D. Defays (1977). "An efficient algorithm for a complete-link method". The Computer Journal. British Computer Society. 20 (4): 364366. doi:10.1093/comjnl/20.4.364.

THANK YOU

