RELATÓRIO DE ANÁLISE - MINERAÇÃO DE DADOS

Seleção de Atributos para Classificação e Regressão

RESUMO EXECUTIVO

Este relatório apresenta a aplicação de técnicas de seleção de atributos no Wine Quality Dataset para tarefas de classificação e regressão. Foram implementados e comparados quatro métodos de seleção: ANOVA, Mutual Information, RFE e Feature Importance, utilizando Random Forest como algoritmo base. Os resultados demonstram que a seleção adequada de atributos mantém ou melhora a performance dos modelos enquanto proporciona ganhos significativos em interpretabilidade e eficiência computacional.

INTRODUÇÃO

Contexto do Problema

A seleção de atributos é uma etapa crucial no processo de mineração de dados, permitindo identificar as variáveis mais relevantes para a construção de modelos preditivos. Este trabalho aborda duas tarefas distintas:

Classificação: Prever se um vinho é de alta qualidade (≥7) ou não

Regressão: Prever o valor de pH do vinho

Objetivos

Aplicar e comparar métodos de seleção de atributos

Avaliar impacto na performance preditiva

Analisar ganhos em interpretabilidade

Verificar eficiência computacional

METODOLOGIA

Dataset e Pré-processamento

Características do Dataset:

Fonte: UCI Machine Learning Repository

Amostras: 1.599 instâncias iniciais

Atributos: 11 features físico-químicas

Duplicatas removidas: 240 instâncias

Dataset final: 1.359 instâncias

Pré-processamento aplicado:

Remoção de duplicatas

Normalização com StandardScaler

Balanceamento com SMOTE (apenas classificação)

Criação de variável target binária para classificação

Métodos de Seleção Implementados

Método	Descrição	Parâmetros
ANOVA F-value	Seleção baseada em teste estatístico	k=5 features
Mutual Information	Seleção baseada em teoria da informação	k=5 features
RFE	Eliminação recursiva de features	n_features=5
Feature Importance	Baseado na importância do Random Forest	threshold=percentil 70

Configuração Experimental

Divisão treino/teste: 70%/30%

Validação cruzada: 5-fold

Algoritmo base: Random Forest (100 árvores)

Métricas:

Classificação: Acurácia, Precision, Recall, F1-Score

Regressão: MSE, R²

ANÁLISE DE CLASSIFICAÇÃO

Distribuição das Classes

Classe	Descrição	Quantidade	Proporção
0	Vinho ruim (qualidade < 7)	1.175	86.46%
1	Vinho bom (qualidade ≥ 7)	184	13.54%

Observação: Dataset significativamente desbalanceado, necessitando aplicação de SMOTE.

Resultados dos Métodos de Seleção

Método	Acurácia	N° Fea	ntures	Precision (Classe 1)	Recall (Classe 1)
Baseline	87.75%	11		0.58		0.35
Mutual Information	88.97%	5		0.62		0.42
Feature Importance	87.25%	5	0.54		0.38	
ANOVA	87.25%	5	0.54		0.38	
RFE	87.25%	5		0.54		0.38

Análise Detalhada do Melhor Modelo

Método vencedor: Mutual Information

Relatório de Classificação Detalhado:

PRECISION RECALL F1-SCORE SUPPORT

0 0.91 0.96 0.93 353

1 0.62 0.42 0.50 55

ACCURACY 0.89 408

MACRO AVG 0.76 0.69 0.72 408

WEIGHTED AVG 0.87 0.89 0.88 408

Features Selecionadas:

- 1. Álcool
- 2. Sulfatos
- 3. Acidez Volátil
- 4. Densidade
- 5. Ácido Cítrico

Matriz de Confusão - Modelo Final

	PREDITO 0	PREDITO 1
REAL 0	338	15
REAL 1	32	23

Interpretação:

95.8% dos vinhos ruins corretamente classificados

41.8% dos vinhos bons corretamente identificados

Melhoria significativa na classe minoritária comparado ao baseline

ANÁLISE DE REGRESSÃO

Estatísticas da Variável Target (pH)

Estatística	Valor
Média	3.311
Desvio Padrão	0.154
Mínimo	2.740
Máximo	4.010
Mediana	3.310

Resultados dos Métodos de Seleção

Método	R ²	MSE	N° Features
Baseline	98.81%	0.0003	10
Feature Importance	99.46%	0.0001	4
Mutual Information	98.92%	0.0002	5
RFE	98.85%	0.0002	5
F-Regression	62.57%	0.0089	5

Análise do Melhor Modelo

Método vencedor: Feature Importance

Features Selecionadas:

Acidez Fixa (99.87% de importância)

Densidade

Álcool

Acidez Volátil

Performance Detalhada:

 R^2 : 99.46% (melhoria de 0.65% sobre baseline)

MSE: 0.0001 (redução de 66.7% no erro)

Validação Cruzada: 99.32% ± 0.08%

Análise de Resíduos

Distribuição normal dos resíduos

Homocedasticidade mantida

Sem padrões aparentes nos resíduos vs preditos

Modelo demonstra excelente ajuste aos dados

ANÁLISE COMPARATIVA

Performance Geral

Métrica	Baseline	Com Seleção	Variação
Acurácia (Classificação)	87.75%	88.97%	+1.22%
R² (Regressão)	98.81%	99.46%	+0.65%
N° Features Médio	10.5	4.8	-54.3%

Eficiência Computacional

Tarefa	Tempo Baseline	Tempo com Seleção	Redução
Classificação	2.34s	1.41s	39.7%
Regressão	2.18s	1.25s	42.7%

Features Mais Relevantes por Tarefa

Classificação (Qualidade):

Álcool (17.6%) - Correlação positiva com qualidade

Sulfatos (13.0%) - Relacionado a preservação

Acidez Volátil (10.9%) - Correlação negativa com qualidade

Regressão (pH):

Acidez Fixa (99.9%) - Determinante principal do pH

Densidade - Relacionada à composição

Álcool - Influencia propriedades químicas

DISCUSSÃO E INSIGHTS

Impacto da Seleção de Atributos

Vantagens Identificadas:

Manutenção da Performance: Redução de ~55% nas features com manutenção ou melhoria das métricas

Interpretabilidade: Identificação clara dos fatores mais relevantes

Eficiência: Redução de ~40% no tempo de treinamento

Robustez: Menor propensão a overfitting

Limitações:

Performance na classe minoritária ainda desafiadora

Métodos diferentes selecionam features diferentes

Dependência do algoritmo base para alguns métodos

Insights do Domínio

Para Produção de Vinhos de Alta Qualidade:

Focar em teor alcoólico adequado

Controlar níveis de sulfatos

Monitorar acidez volátil (impacto negativo)

Para Controle de pH:

Acidez fixa como principal controlador

Densidade como indicador secundário

Teor alcoólico com influência moderada

CONCLUSÕES

Principais Conclusões

Seleção Efetiva: Técnicas de seleção permitiram reduzir significativamente o número de features mantendo a performance

Métodos Específicos por Tarefa:

Classificação: Mutual Information mais eficaz

Regressão: Feature Importance superior

Ganhos Tangíveis: 40% de redução no tempo de treinamento com manutenção da acurácia

Interpretabilidade: Identificação clara das features mais impactantes

REFERÊNCIAS

UCI Machine Learning Repository - Wine Quality Dataset

Scikit-learn Documentation

IMBLearn Documentation - SMOTE

Hastie, T., et al. - "The Elements of Statistical Learning"

RELATÓRIO GERADO POR: Samir Lopes Rosa

DISCIPLINA: Mineração de Dados