Temario Métodos Cuantitativos

Ismael Sallami Moreno

ism350zsallami@correo.ugr.es

https://ismael-sallami.github.io/

https://elblogdeismael.github.io/

Universidad de Granada

Índice general

1.	Algoritmo Simplex. Dualidad. Análisis de Sensibilidad. Programa-	
	ción Entera.	5
	1.1. Ejercicios	5

Capítulo 1

Algoritmo Simplex. Dualidad. Análisis de Sensibilidad. Programación Entera.

1.1. Ejercicios

Ejercicio 9

Resolver utilizando el método de las dos fases:

a) Min. $20x_1 + 25x_2$

s.a.
$$2x_1 + 3x_2 \ge 18$$

 $x_1 + 3x_2 \ge 12$
 $4x_1 + 3x_2 \ge 24$
 $x_1, x_2 \ge 0$

b) Max. $4x_1 + 3x_2$

s.a.
$$3x_1 + 4x_2 \le 12$$

 $x_1 + x_2 \ge 4$
 $4x_1 + 2x_2 \le 8$
 $x_1, x_2 \ge 0$

c) Max. $x_1 - 2x_2 + 3x_3$

s.a.
$$x_1 + x_2 + x_3 = 6$$

 $x_3 \le 2$
 $x_1, x_2, x_3 \ge 0$

Pasamos a forma estándar:

$$Max. \quad x_1 - 2x_2 + 3x_3 + 0s_1 - Mt_1$$
 s.a.
$$x_1 + x_2 + x_3 + t_1 = 6$$

$$x_3 + s_1 = 2$$

$$x_1, x_2, x_3, s_1, t_1 \ge 0$$

Fase 1

Paso 1. La función artificial es:

$$z^0 = 0x_1 + 0x_2 + 0x_3 + 0s_1 - t_1$$

Paso 2. Aplicar el método simplex al programa construido:

		0	0	0	0	-1	
	VB	x_1	x_2	x_3	s_1	t_1	XB
-1	t_1	1	1	1	0	1	6
0	s_1	0	0	1	1	0	2
	$z_j - c_j$	-1	-1	-1	0	0	-6

Ahora debemos de coger la más negativa, pero al ser todos con valor -1, da igual cual cojamos, cogemos la primera, es decir, la de x_1 .

$$F_p = F_1 \label{eq:F2N}$$
 $F2N = F2 (\text{Ya tiene un } 0)$

		0	0	0	0	-1	
	VB	x_1	x_2	x_3	s_1	t_1	XB
0	x_1	1	1	1	0	1	6
0	s_1	0	0	1	1	0	2
	$z_j - c_j$	0	0	0	0	1	0

En este punto no podemos continuar ya que todos los valores de la fila $z_j - c_j$ son positivos, por lo que debemos de pasar a la fase 2.

Fase 2

Ahora debemos de eliminar las variables artificiales y continuar con el problema original.

		1	-2	3	0	
	VB	x_1	x_2	x_3	s_1	XB
1	x_1	1	1	1	0	6
0	s_1	0	0	1	1	2
	$z_j - c_j$	0	3	-2	0	6

Cogemos la fila más negativa, en este caso la de x_3 , con valor -2.

$$F_p = F_2$$

$$F1N = F1 - F_p$$

		1	-2	3	0	
	VB	x_1	x_2	x_3	s_1	XB
1	x_1	1	1	0	-1	4
3	x_3	0	0	1	1	2
	$z_j - c_j$	0	3	0	2	10

Como todos los valores de la fila z_j-c_j son positivos, hemos llegado a la solución óptima.

d) Max. $x_1 + x_2 + 10x_3$

s.a.
$$x_2 + 4x_3 = 2$$

 $-2x_1 + x_2 - 6x_3 = 2$
 $x_1, x_2, x_3 \ge 0$

Pasamos a forma estándar:

Max.
$$x_1 + x_2 + 10x_3 - t_1 - t_2$$

s.a. $x_2 + 4x_3 + t_1 = 2$
 $-2x_1 + x_2 - 6x_3 + t_2 = 2$
 $x_1, x_2, x_3, s_1, t_1 \ge 0$

Fase 1

Paso 1. La función artificial es:

$$z^0 = 0x_1 + 0x_2 + 0x_3 - t_1 - t_2$$

Paso 2. Aplicar el método simplex al programa construido:

		0	0	0	-1	-1	
	VB	x_1	x_2	x_3	t_1	t_2	XB
-1	t_1	0	1	4	1	0	2
-1	t_2	-2	1	-6	0	1	2
	$z_j - c_j$	2	-2	2	0	0	-4

Cogemos la columna más negativa, en este caso la de x_2 .

$$F_p = F_1$$
$$F2N = F_2 - F_p$$

		0	0	0	-1	-1	
	VB	x_1	x_2	x_3	t_1	t_2	XB
0	x_2	0	1	4	1	0	2
-1	t_2	-2	0	-10	-1	1	0
	$z_j - c_j$	2	0	10	2	0	0

En este punto no podemos continuar ya que todos los valores de la fila $z_j - c_j$ son positivos, por lo que debemos de pasar a la fase 2, pero debemos de tener en cuenta que tenemos en la base la variable t_2 que es artificial, por lo que debemos de eliminarla. Vemos que en la 2 Fase, debemos de sacar x_2 , pero vamos a sacar t_2 para que no nos de problemas. Previamente asignamos el coeficiente 0 a la variable t_2 .

Fase 2

		1	1	10	
	VB	x_1	x_2	x_3	XB
1	x_2	0	1	4	2
10	t_2	-2	0	-10	0
	$z_j - c_j$	-1	0	-6	2

$$F2/10 = F_p$$
$$F1N = F1 - 4F_p$$

		1	1	10	
	VB	x_1	x_2	x_3	XB
1	x_2	-0.8	1	0	2
10	x_3	0.2	0	1	0
	$z_j - c_j$	0.2	0	0	2

Como todos los valores de la fila $z_j - c_j$ son positivos, hemos llegado a la solución óptima.

e) Max.
$$x_1 + 2x_2$$

s.a.
$$x_1 + x_2 = 4$$

 $2x_1 - 3x_2 = 3$
 $3x_1 - x_2 = 8$
 $x_1, x_2 \ge 0$

Ejercicio 10

Dado los siguientes problemas primales, encontrar sus problemas duales asociados:

a) Max.
$$6x_1 + 4x_2$$

s.a. $x_1 \le 700$
 $3x_1 + x_2 \le 2400$
 $x_1 + 2x_2 \le 1600$
 $x_1, x_2 \ge 0$

Debemos de calcular las siguientes matrices:

$$A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \\ 1 & 2 \end{pmatrix} \quad A' = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix} \quad b = \begin{pmatrix} 700 \\ 2400 \\ 1600 \end{pmatrix} \quad c = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

De manera que nos queda:

Min
$$w = 700y_1 + 2400y_2 + 1600y_3$$

s.a. $y_1 + 3y_2 + y_3 \ge 6$
 $y_2 + 2y_3 \ge 4$
 $y_1, y_2, y_3 > 0$

b) Max.
$$4.5x_1 + 3x_2 + 1.5x_3$$

s.a. $x_1 + 2x_2 - x_3 \le 4$
 $2x_1 - x_2 + x_3 = 8$
 $x_1 - x_2 \le 6$
 $x_1, x_2, x_3 \ge 0$

Debemos de calcular las siguientes matrices:

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \\ 1 & -1 & 0 \end{pmatrix} \quad A' = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -1 & -1 \\ -1 & 1 & 0 \end{pmatrix} \quad b = \begin{pmatrix} 4 \\ 8 \\ 6 \end{pmatrix} \quad c = \begin{pmatrix} 4,5 \\ 3 \\ 1,5 \end{pmatrix}$$

De manera que nos queda:

$$Min \quad w = 4y_1 + 8y_2 + 6y_3$$

$$s.a. \quad y_1 + 2y_2 + y_3 \ge 4,5$$

$$2y_1 - y_2 - y_3 \ge 3$$

$$-y_1 + y_2 \ge 1,5$$

$$y_1, y_3 \ge 0 \quad y_2 \to \text{libre}$$

c) Min.
$$6x_1 + 4x_2$$

s.a. $x_1 \le 700$
 $3x_1 + x_2 \ge 2400$
 $x_1 + 2x_2 = 1600$
 $x_1, x_2 \ge 0$

Debemos de calcular las siguientes matrices:

$$A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \\ 1 & 2 \end{pmatrix} \quad A' = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix} \quad b = \begin{pmatrix} 700 \\ 2400 \\ 1600 \end{pmatrix} \quad c = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

De manera que nos queda:

$$Max$$
 $w = 700y_1 + 2400y_2 + 1600y_3$
 $s.a.$ $y_1 + 3y_2 + y_3 \ge 6$
 $y_2 + 2y_3 \ge 4$
 $y_1, y_2 \ge 0$ $y_3 \rightarrow \text{libre}$

d) Max.
$$4.5x_1 + 3x_2 + 1.5x_3$$

s.a. $x_1 + 2x_2 - x_3 \le 4$
 $2x_1 - x_2 + x_3 \le 8$
 $x_1 - x_2 \le 6$
 $x_1, x_3 \ge 0$, x_2 sin restrictiones

Debemos de calcular las siguientes matrices:

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \\ 1 & -1 & 0 \end{pmatrix} \quad A' = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -1 & -1 \\ -1 & 1 & 0 \end{pmatrix} \quad b = \begin{pmatrix} 4 \\ 8 \\ 6 \end{pmatrix} \quad c = \begin{pmatrix} 4,5 \\ 3 \\ 1,5 \end{pmatrix}$$

De manera que nos queda:

$$\begin{aligned} Min \quad & w = 4y_1 + 8y_2 + 6y_3 \\ s.a. \quad & y_1 + 2y_2 + y_3 \ge 4 \\ & 2y_1 - y_2 - y_3 = 8 \\ & -y_1 + y_2 \ge 6 \\ & y_1, y_2, y_3 \ge 0 \end{aligned}$$

e) Min.
$$6x_1 + 4x_2$$

s.a. $x_1 \le 700$
 $3x_1 + x_2 \ge 2400$
 $x_1 + 2x_2 = 1600$
 $x_1 \ge 0$, x_2 sin restricciones

Debemos de calcular las siguientes matrices:

$$A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \\ 1 & 2 \end{pmatrix} \quad A' = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix} \quad b = \begin{pmatrix} 700 \\ 2400 \\ 1600 \end{pmatrix} \quad c = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

De manera que nos queda:

$$Max$$
 $w = 700y_1 + 2400y_2 + 1600y_3$
 $s.a.$ $y_1 + 3y_2 + y_3 \ge 6$
 $y_2 + 2y_3 = 4$
 $y_1, y_2 \ge 0$ $y_3 \to \text{libre}$

Bibliografía

[1] Ismael Sallami Moreno, Estudiante del Doble Grado en Ingeniería Informática + ADE, Universidad de Granada, 2025.