Package 'SyScSelection'

October 12, 2022

Type Package

Version 1.0.2

Title Systematic Scenario Selection for Stress Testing

Author Merlin Kopfmann
Maintainer Merlin Kopfmann <mghncd+cran@posteo.jp></mghncd+cran@posteo.jp>
Description Quasi-Monte-Carlo algorithm for systematic generation of shock scenarios from an arbitrary multivariate elliptical distribution. The algorithm selects a systematic mesh of arbitrary fineness that approximately evenly covers an isoprobability ellipsoid in d dimensions (Flood, Mark D. & Korenko, George G. (2013) <doi:10.1080 14697688.2014.926018="">). This package is the 'R' analogy to the 'Matlab' code published by Flood & Korenko in abovementioned paper.</doi:10.1080>
License CC0
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Imports pracma, stats
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2020-10-26 14:10:02 UTC
baseb_expansion 2 calc_mesh_size 3 center_at_origin 3 fill_adj_2Dface 4 fill_corners 5 get 5
get

2 baseb_expansion

	hyperellipsoid	7
	make_corners	
	make_edges	8
	make_ellipsoid_from_vertices	8
	make_faces	9
	new_baseb_expansion	10
	rotate_to_coordaxes	10
	sizeparam_normal_distn	11
	sizeparam_t_distn	11
	spheroid_mesh	12
	stretch_to_unitspheroid	12
	transform_ellipsoid	13
	univariate_shocks	13
	vertices	14
Index		16

baseb_expansion

Adds the next base-b element to an existing base-b sequence

Description

Adds the next base-b element to an existing base-b sequence

Usage

baseb_expansion(ain, b)

Arguments

ain Either a an array containing an existing base-b expansion, or a scalar integer

indicating the length for a new base-b expansion

b Base for integer expansions used in the sequence

Value

An expanded base-b expansion

calc_mesh_size 3

calc_mesh_size	Calculates the number of points in a mesh of fineness phi, covering a hypercube in d dimensions

Description

Calculates the number of points in a mesh of fineness phi, covering a hypercube in d dimensions

Usage

```
calc_mesh_size(phi, d)
```

Arguments

phi The scalar fineness of the mesh

d The number of dimensions for the unit spheroid

Value

A list of: corner_pts - Count of points extreme (+/- 1) in all dim, edge_pts - Count of points extreme in all but one dimen, face_pts - Count of points extreme in all but two dimen, total_pts - Sum of: corner_pts + edge_pts + face_pts

center_at_origin	Creates a new ellipsoid object equivalent to the given hyperellipsoid
	(hellipse), but centered at the origin.

Description

Creates a new ellipsoid object equivalent to the given hyperellipsoid (hellipse), but centered at the origin.

Usage

```
center_at_origin(hellip)
```

Arguments

hellip The original object, to be shifted

Value

list of two: hellip2 - the re-centered hyperellipsoid and mu - the amount of the translation

fill_adj_2Dface_beta

fill_adj_2Dface	Creates a phi x phi grid (i.e., the mesh on a single two-dimensional
•	face of a larger hypercube) of d-dimensional points, where the regu-
	larity of the grid has been adjusted to avoid clustering in the corners.

Description

4

Creates a phi x phi grid (i.e., the mesh on a single two-dimensional face of a larger hypercube) of d-dimensional points, where the regularity of the grid has been adjusted to avoid clustering in the corners.

Usage

```
fill_adj_2Dface(d, phi)
```

Arguments

d The number of dimensions for the unit spheroid

phi Fineness of the mesh along each dimension of the 2D face

Value

A phi x phi x d array of points. The points (each facemesh2D(i,j,:)) are identically equal to one in the first d-2 dimensions, so that the mesh varies only in the final two dimensions.

```
fill_adj_2Dface_beta Calculates the factor, beta in [0, 1], that interpolates the pth equidistant point between the two endpoints, z_one and z_phi, for and adjusted 2D mesh of fineness phi in d dimensions.
```

Description

Calculates the factor, beta in [0, 1], that interpolates the pth equidistant point between the two endpoints, z_one and z_phi, for and adjusted 2D mesh of fineness phi in d dimensions.

Usage

```
fill_adj_2Dface_beta(p, phi, z_one, z_phi)
```

Arguments

```
p ...

phi Fineness of the mesh along each dimension of the 2D face

z_one ...

z_phi ...
```

fill_corners 5

Value

beta

fill_corners Systematically fills a given mesh array (cmesh) with d-dimensional

points representing every corner of a d-dimensional hypercube. The function fills the successive dimensions of each point via depth-first

recursion across all d dimensions.

Description

Systematically fills a given mesh array (cmesh) with d-dimensional points representing every corner of a d-dimensional hypercube. The function fills the successive dimensions of each point via depth-first recursion across all d dimensions.

Usage

```
fill_corners(cmesh, shock, shk_curs, dim_curs)
```

Arguments

cmesh	The mesh to be filled with corner points
shock	The current shock vector being filled
shk_curs	Index in cmesh of the shock currently being filled

dim_curs Index in the current shock of the dimension being filled

Value

A list of: cmesh - d x 2^d array of corner points being filled, shk_curs - last point in cmesh that was filled

get	Get hyperellipsoid property from the specified object and return the
800	value. Property names are: center, shape, and size

Description

Get hyperellipsoid property from the specified object and return the value. Property names are: center, shape, and size

Usage

```
get(hellip, propName)
```

6 hypercube_mesh

Arguments

hellip A valid hyperellipsoid object
propName A string of the desired property

Value

The value of the indicated property

hypercube_mesh Generates a Cartesian mesh of d-dimensional scenarios based on the

given ellipsoid. This function does not assume that the ellipsoid is

centered at the origin.

Description

Generates a Cartesian mesh of d-dimensional scenarios based on the given ellipsoid. This function does not assume that the ellipsoid is centered at the origin.

Usage

```
hypercube_mesh(phi, hellip, normalize)
```

Arguments

phi The scalar fineness of the mesh

hellip The basis for the shocks; it must have measurable width in every dimension

normalize Whether to normalize points from the cube onto the sphere or not (TRUE/FALSE)

Value

A d x N array, with each column a scenario

Examples

```
hellip <- hyperellipsoid()
hypercube_mesh(3,hellip,TRUE)</pre>
```

hyperellipsoid 7

hyperellipsoid

Hyperellipsoid class constructor

Description

Hyperellipsoid class constructor

Usage

```
hyperellipsoid(...)
```

Arguments

. . .

 $\,$ mu - The vector for the center point, sig - The matrix determining the shape; for elliptical probability distributions, sig will be the inverse dispersion matrix, c - The scalar determining the size

Value

A new hyperellipsoid object

Examples

hyperellipsoid()

make_corners

Fills a mesh (corn_mesh) with d-dimensional points representing all corners of a d-dimensional cube encompassing a d-dimensional unit spheroid.

Description

Fills a mesh (corn_mesh) with d-dimensional points representing all corners of a d-dimensional cube encompassing a d-dimensional unit spheroid.

Usage

```
make_corners(d, normalize)
```

Arguments

۵.

The number of dimensions for the unit spheroid

normalize

Whether to scale the corner points onto the sphere or not

Value

A d x 2^d array of corner points

make_edges	Fills a mesh with d-dimensional points representing all non-corner edge points of a d-dimensional cube encompassing a d-dimensional unit spheroid.
	*

Description

Fills a mesh with d-dimensional points representing all non-corner edge points of a d-dimensional cube encompassing a d-dimensional unit spheroid.

Usage

```
make_edges(d, phi, normalize)
```

Arguments

d The number of dimensions for the unit spheroid

phi Fineness of the mesh along the edge (i.e., the total number of points, "including"

the corners)

normalize Whether to scale the corner points onto the sphere or not

Value

A d x d*2^(d-1)*(phi-2) array of edge points

make_ellipsoid_from_vertices

Constructs a new d-dimensional ellipsoid with the given "positive vertices", and size parameter, c. The constructed ellipsoid is centered at the origin. Note that the input vertices (i.e., the columns of V) must therefore be orthogonal vectors, themselves centered at the origin. The size parameter, c, may be needed because the points alone only determine the eigenvalues up to a positive constant. For vertices which fall on the constructed ellipsoid, choose as the size parameter = 1. The new ellipsoid is centered at the origin.

Description

Constructs a new d-dimensional ellipsoid with the given "positive vertices", and size parameter, c. The constructed ellipsoid is centered at the origin.Note that the input vertices (i.e., the columns of V) must therefore be orthogonal vectors, themselves centered at the origin. The size parameter, c, may be needed because the points alone only determine the eigenvalues up to a positive constant. For vertices which fall on the constructed ellipsoid, choose as the size parameter = 1. The new ellipsoid is centered at the origin.

make_faces 9

Usage

```
make_ellipsoid_from_vertices(V, c)
```

Arguments

V A d x d array of positive vertices (in columns)

c The size parameter of the new ellipsoid

Value

A new ellipsoid, centered at the origin, with the given vertices

Examples

```
hellip <- hyperellipsoid()
V <- vertices(hellip)
c <- 4
make_ellipsoid_from_vertices(V,c)</pre>
```

make_faces

Fills a mesh with d-dimensional points representing all non-edge face points of a d-dimensional cube encompassing a d-dimensional unit spheroid.

Description

Fills a mesh with d-dimensional points representing all non-edge face points of a d-dimensional cube encompassing a d-dimensional unit spheroid.

Usage

```
make_faces(d, phi, normalize)
```

Arguments

d The number of dimensions for the unit spheroid

phi Fineness of the mesh along each dimension of the 2D face normalize Whether to scale the corner points onto the sphere or not

Value

```
A d x d*(d-1)*2^(d-3)*(phi-2)^2 array of face points
```

10 rotate_to_coordaxes

new_baseb_expansion

Creates a new base-b sequence of a designated length

Description

Creates a new base-b sequence of a designated length

Usage

```
new_baseb_expansion(k, b)
```

Arguments

k The integer to expand

b Base for integer expansions used in the sequence

Value

The expansion of the integer k

rotate_to_coordaxes

Rotates the ellipsoid (hellip) so its principal axes align with the coordinate axes. Both ellipsoids are centered at the origin. Note that there are $(2^{\circ}d)^{*}d!$ valid ways to rotate the ellipsoid to the axes. This algorithm does not prescribe which solution will be provided.

Description

Rotates the ellipsoid (hellip) so its principal axes align with the coordinate axes. Both ellipsoids are centered at the origin. Note that there are $(2^d)^*d!$ valid ways to rotate the ellipsoid to the axes. This algorithm does not prescribe which solution will be provided.

Usage

```
rotate_to_coordaxes(hellip)
```

Arguments

hellip

The shape to be rotated, must be centered at the origin

Value

A list of: hellip2 - A new hyperellipsoid, rotated to the coordinate axes and tfm - the transformation matrix that creates the rotation

sizeparam_normal_distn

Calculates the size paramater for a d-dimensional hyperellipsoid conforming to a normal (i.e., Gaussian) distribution.

Description

Calculates the size paramater for a d-dimensional hyperellipsoid conforming to a normal (i.e., Gaussian) distribution.

Usage

```
sizeparam_normal_distn(prob, d)
```

Arguments

prob The target probability threshold

d Number of dimensions in the multivariate distribution

Value

The appropriate (scalar) size parameter

Examples

```
sizeparam_normal_distn(0.95, 6)
```

 $sizeparam_t_distn$

Calculates the size paramater for a d-dimensional hyperellipsoid conforming to a Student's t distribution.

Description

Calculates the size paramater for a d-dimensional hyperellipsoid conforming to a Student's t distribution.

Usage

```
sizeparam_t_distn(prob, d, nu)
```

Arguments

prob The target probability threshold

d Number of dimensions in the multivariate distributionnu Degrees of freedom parameter for the t distribution

Value

The appropriate (scalar) size parameter

Examples

```
sizeparam_t_distn(0.95, 6, 5)
```

spheroid_mesh

Generates a Cartesian mesh of d-dimensional scenarios based on the given ellipsoid. This function does not assume that the ellipsoid is centered at the origin.

Description

Generates a Cartesian mesh of d-dimensional scenarios based on the given ellipsoid. This function does not assume that the ellipsoid is centered at the origin.

Usage

```
spheroid_mesh(d, phi, normalize)
```

Arguments

d The number of dimensions for the unit spheroid

phi The scalar fineness of the mesh

normalize Whether to normalize points from the cube onto the sphere or not (TRUE/FALSE)

Value

A d x N array with each column a scenario

stretch_to_unitspheroid

Stretches the ellipsoid (hellip) to the unit spheroid of the same dimension. Both the input ellipsoid and unit spheroid are centered at the origin.

Description

Stretches the ellipsoid (hellip) to the unit spheroid of the same dimension. Both the input ellipsoid and unit spheroid are centered at the origin.

Usage

```
stretch_to_unitspheroid(hellip)
```

transform_ellipsoid 13

Arguments

hellip The original shape to be stretched

Value

A list of: hellip1 - a new unit spheroid, mapped from the ellipsoid and tfm - transformation matrix that creates the stretching

transform_ellipsoid

Applies the given linear transformation, tfm, to the given ellipsoid. The ellipsoid (hellip) must be centered at the origin.

Description

Applies the given linear transformation, tfm, to the given ellipsoid. The ellipsoid (hellip) must be centered at the origin.

Usage

transform_ellipsoid(hellip, tfm)

Arguments

hellip The original shape to be transformed tfm A d x d linear transformation matrix

Value

A transformed ellipsoid, centered at the origin

univariate_shocks

Calculates 2d d-dimensional univariate shocks (up and down in each of the d dimensions) based on the given ellipsoid. Univariate shocks are points on the surface of the ellipsoid that differ from the center of the ellipsoid in only one dimension. Thus, for an ellipsoid centered at the origin, only one element of a d-dimensional shock will be nonzero. This function does not assume that the ellipsoid is centered at the origin.

Description

Calculates 2d d-dimensional univariate shocks (up and down in each of the d dimensions) based on the given ellipsoid. Univariate shocks are points on the surface of the ellipsoid that differ from the center of the ellipsoid in only one dimension. Thus, for an ellipsoid centered at the origin, only one element of a d-dimensional shock will be non-zero. This function does not assume that the ellipsoid is centered at the origin.

14 vertices

Usage

```
univariate_shocks(hellip)
```

Arguments

hellip

the basis for the shocks; it must have measurable width in every dimension

Value

A d x 2d array, [dx2d], with each column a shock; the first d columns are positive univariate shocks, and final d columns are matching negative univariate shocks

Examples

```
hellip <- hyperellipsoid()
univariate_shocks(hellip)</pre>
```

vertices

Finds the d d-dimensional positive vertices for the given ellipsoid. A "positive" vertex is one where a principal axis for the ellipsoid intersects the surface of the ellipsoid in the direction of the corresponding eigenvector. (Recall that each of the eigenvectors of the ellipsoid's shape matrix is collinear with one of the principal axes.) This function does not assume that the ellipsoid is centered at the origin. Because the direction of each unit eigenvector is arbitrary (i.e., multiplication by -1 still yields a unit eigenvector), a simple algorithm is used to pick a consistent orientation for the vertex points.

Description

Finds the d d-dimensional positive vertices for the given ellipsoid. A "positive" vertex is one where a principal axis for the ellipsoid intersects the surface of the ellipsoid in the direction of the corresponding eigenvector. (Recall that each of the eigenvectors of the ellipsoid's shape matrix is collinear with one of the principal axes.) This function does not assume that the ellipsoid is centered at the origin. Because the direction of each unit eigenvector is arbitrary (i.e., multiplication by -1 still yields a unit eigenvector), a simple algorithm is used to pick a consistent orientation for the vertex points.

Usage

```
vertices(hellip)
```

Arguments

hellip

defines the polar vertices

vertices 15

Value

A d x d array with each column a positive vertex

Examples

hellip <- hyperellipsoid()
vertices(hellip)</pre>

Index

```
baseb\_expansion, 2
calc_mesh_size, 3
\texttt{center\_at\_origin}, 3
fill_adj_2Dface, 4
fill_adj_2Dface_beta, 4
fill_corners, 5
get, 5
hypercube_mesh, 6
hyperellipsoid, 7
make_corners, 7
make_edges, 8
{\tt make\_ellipsoid\_from\_vertices}, 8
make_faces, 9
new\_baseb\_expansion, 10
rotate_to_coordaxes, 10
sizeparam_normal_distn, 11
sizeparam_t_distn, 11
spheroid_mesh, 12
stretch_to_unitspheroid, 12
transform\_ellipsoid, 13
univariate_shocks, 13
vertices, 14
```