

ASR6601

OTA 升级说明

文档版本 1.2.0

发布日期 2021-06-23

版权所有 © 2021 翱捷科技

关于本文档

本文档主要对 IoT LPWAN SoC 芯片 ASR6601 SDK 中的 OTA 升级 Demo 程序进行说明。

读者对象

本文档主要适用于以下工程师:

- 单板硬件开发工程师
- 软件工程师
- 技术支持工程师

产品型号

与本文档相对应的产品型号如下:

型号	Flash	SRAM	内核	封装	频率
ASR6601SE	256 KB	64 KB	32-bit 48 MHz ARM STAR	QFN68, 8*8 mm	150 ~ 960 MHz
ASR6601CB	128 KB	16 KB	32-bit 48 MHz ARM STAR	QFN48, 6*6 mm	150 ~ 960 MHz

版权公告

版权归 © 2021 翱捷科技股份有限公司所有。保留一切权利。未经翱捷科技股份有限公司的书面许可,不得以任何形式或手段复制、传播、转录、存储或翻译本文档的部分或所有内容。

商标声明

△57 ASR、翱捷和其他翱捷商标均为翱捷科技股份有限公司的商标。

本文档提及的其他所有商标名称、商标和注册商标均属其各自所有人的财产,特此声明。

免责声明

翱捷科技股份有限公司对本文档内容不做任何形式的保证,并会对本文档内容或本文中介绍的产品进行不定期更新。

本文档仅作为使用指导,本文的所有内容不构成任何形式的担保。本文档中的信息如有变更,恕 不另行通知。

本文档不负任何责任,包括使用本文档中的信息所产生的侵犯任何专有权行为的责任。

翱捷科技股份有限公司

地址: 上海市浦东新区科苑路399号张江创新园10号楼9楼 邮编: 201203

官网: http://www.asrmicro.com/asrweb/

文档修订历史

日期	版本号	发布说明
2020.06	V0.1.0	首次发布。
2020.10	V0.2.0	更新 1.1 节的硬件连接示例图。
2021.01	V1.1.0	删除第1章的概述,将其内容合并到前言"关于本文档"部分。
2021.06	V1.2.0	在 1.1 节中增加已验证过的 Android 手机型号。

目录

1.	准备		1
	1.1	硬件准备	1
	1.2	软件准备	2
		1.2.1 OTA dongle 软件准备	2
		1.2.2 目标板软件准备	2
		1.2.3 手机端准备	3
2.	升级	过程	4
	2.1	使目标板进入 OTA bootloader	4
	2.2	打开 APP	
	2.3	选择升级文件	
	2.4	开始升级	8
3.	ОТА	dongle AT 命令说明	9
	3.1	- AT 命令一览	9
	3.2	AT 命令描述	
		3.2.1 AT+FREQ	9
		3.2.2 AT+CFG	
		3.2.3 AT+TX	11
		3.2.4 AT+RX	
		3.2.5 AT+DATA	
4.	ОТА	bootloader 命令说明	
	4.1	命令一览	12
	4.2	命令格式	12
		4.2.1 请求	12
		4.2.2 应答	12
	4.3	命今负载格式	13

表格

表	3-1	OTA dongle 主要的 AT 命令	9
表	4-1	OTA bootloader 相关命令	12
表	4-2	各类型命令的负载格式	13

插图

冬	1-1	手机端连接图	1
冬	1-2	目标板连接图	2
冬	1-3	链接描述文件	3
冬	2-1	进入 OTA bootloader 模式	4
冬	2-2	主界面图	5
冬	2-3	USB 访问提示	5
冬	2-4	文件浏览界面	6
		选择 bin 文件	
		主界面提示已选中的升级文件	
图	2-7	开始升级	8
图	2-8	升级成功	8
图	4-1	OTA bootloader 请求命令格式	12
		OTA bootloader 应答命令格式	

1. 准备 ASR6601 OTA 升级说明

1. 准备

1.1 硬件准备

必需硬件列表如下:

- (1) ASR6601 demo 板 2 个
- (2) 天线 2 根
- (3) USB 线 2 根
- (4) USB 转接头 1 个
- (5) Android 手机 1 台

已验证通过的 Android 手机型号如下:

- 华为 Mate 20 Pro, Android 版本 10, EMUI 版本 11.0.0
- 华为 nova, Android 版本 10, EMUI 版本 11.0.0
- 华为 麦芒 6, Android 版本 8, EMUI 版本 8.0.0
- 小米 MIX 2S, Android 版本 9, MIUI 版本 11.0.3
- (6) PC 机 1 台

图 1-1 手机端连接图

1. 准备 ASR6601 OTA 升级说明

图 1-2 目标板连接图

1.2 软件准备

1.2.1 OTA Dongle 软件准备

OTA dongle 代码在 *projects\\${DEMO_BOARD}\examples\ota\dongle* 目录下,其中 *\${DEMO_BOARD}* 为 OTA dongle 的板子名称,如 ASR6601SE-EVAL 对应为 ASR6601SE 开发板,ASR6601CB-EVAL 对应为 ASR6601CB 开发板。

将对应代码编译并烧录到 OTA dongle 板。

1.2.2 目标板软件准备

目标板软件分为两部分: OTA bootloader 和 app 代码。

(1) OTA bootloader

OTA bootloader 代码在 *projects\\${DEMO_BOARD}\examples\ota\bootloader* 目录下, 其中 *\${DEMO_BOARD}* 为目标板的板子名称,如 ASR6601SE-EVAL 对应为 ASR6601SE 开发板,ASR6601CB-EVAL 对应为 ASR6601CB 开发板。将对应代码编译并烧录到目标 板的 *0x08000000* 地址。

(2) **APP**

App 代码就是最终要升级的代码,使用任意代码均可,在本文档中,使用 uart_printf 工程作为示例。

修改 uart_printf 工程的 gcc.ld 文件,将 FLASH 起始地址修改为 0x0800D000,并编译修改后的工程,编译完成后,将生成的工程文件,复制到手机上。

1. 准备 ASR6601 OTA 升级说明

图 1-3 链接描述文件

1.2.3 手机端准备

LoRa OTA APP 对应代码在 *projects\ASR6601SE-EVAL\examples\ota\android_app* 目录下 (APP 没有板子区分, ASR6601SE-EVAL 和 ASR6601CB-EVAL 目录下的代码相同)。

把 apk 包 拷贝到手机上,然后进行安装。

 2. 升级过程
 ASR6601 OTA 升级说明

2. 升级过程

2.1 使目标板进入 OTA bootloader

按住目标板的 SW1 按钮,然后重启,使目标板进入 OTA bootloader。

图 2-1 进入 OTA bootloader 模式

2. 升级过程 ASR6601 OTA 升级说明

2.2 打开 APP

打开 APP, 界面显示如图 2-2:

使用 USB 转接头连接手机和 OTA dongle 后, 注:连接 OTA dongle 时,如果出现图 2-3 中 的提示框. 请点"确认"。

图 2-3 USB 访问提示

关于图 2-2 中的标注, 说明如下:

图 2-2 主界面图

- 标注 1: 该区域会显示 OTA 升级过程中的信息。

- 标注 2: 选择升级文件的按钮。

- 标注 3: 进度条,表示 OTA 的进度。

- 标注 4: 开始进行 OTA 升级的按钮。

2. 升级过程 ASR6601 OTA 升级说明

2.3 选择升级文件

(1) 点击图 2-2 中的"SELECT FILE"按钮, 出现如下界面:

图 2-4 文件浏览界面

2. 升级过程 ASR6601 OTA 升级说明

(2) 进入到 bin 所在的目录,选择 bin 文件。 如图 2-5 所示:

图 2-5 选择 bin 文件

(3) 选择 bin 文件之后, 返回主界面, 界面会有已选中升级文件的提示:

图 2-6 主界面提示已选中的升级文件

 2. 升级过程
 ASR6601 OTA 升级说明

2.4 开始升级

(1) 点击"START"按钮开始升级:

图 2-7 开始升级

同时,目标板端打印: hello world

(2) 升级成功后, APP 提示"OTA: done":

图 2-8 升级成功

3.

OTA dongle AT 命令说明

3.1 AT 命令一览

主要的 AT 命令有:

表 3-1 OTA dongle 主要的 AT 命令

命令	说明
AT+FREQ	设置频率
AT+CFG	配置参数
AT+TX	发送数据
AT+RX	进入接收模式
AT+DATA	收到数据后,上报数据

3.2 AT 命令描述

3.2.1 AT+FREQ

命令及响应	AT+FERQ= <freq></freq>	OK 或者 +CME ERROR: <err></err>	
参数及返回值 说明	该命令用于设置频率。 freq: 150000000-960000000		
示例	AT+FREQ=470000000		

3.2.2 AT+CFG

命令及响应	AT+CFG= <modem>,<p1>,<p2>,<p3>,<p4>,<p5>,<txp></txp></p5></p4></p3></p2></p1></modem>	OK 或者 +CME ERROR: <err></err>
参数及返回值说明	该命令用于配置参数。 modem: 调制类型(0: FSK; 1: LORA ● 如果 modem 为 0: P1: fsk bandwith P2: fsk datarate P3: fsk dev P4: fsk preamble length P5: fsk afc bandwith ● 如果 modem 为 1: P1: lora bandwith, - 0: 125K - 1: 250K - 2: 500K P2: lora sf (5-12) P3: lora cr - 1: 4/5 - 2: 4/6 - 3: 4/7 - 4: 4/8 P4: lora preamble length P5: lora iqi (0: false; 1: true) txp: tx power (0-22)	A)
示例	AT+CFG=1,0,7,1,8,0,22	

3.2.3 AT+TX

命令及响应	AT+TX= <len>,<data></data></len>	OK+SEND 或者 ERR+SEND:1	
参数及返回值 说明			
示例	AT+TX=3,123456		

3.2.4 AT+RX

命令及响应	AT+RX= <timeout></timeout>	OK 或者 +CME ERROR: <err></err>
参数及返回值 该命令用于接收数据。 说明 timeout: 超时时间 (ms) , 0 为一直接收		收
示例	AT+RX=0	

3.2.5 AT+DATA

命令及响应	AT+DATA= <status>,<snr>,<rssi>,<len>,<data></data></len></rssi></snr></status>	N/A
参数及返回值说明	该命令为数据上报,dongle 收到数据后会发送此命令status:数据上报状态 ● 0: 正常 ● 1: rx_timeout ● 2: rx_error snr: 数据包信噪比 rssi: 信号强度 len: 数据长度 data: 二进制数据的 hex 格式	•
示例	AT+DATA=0,9,-45,3,123456	

4.

OTA bootloader 命令说明

4.1 命令一览

表 4-1 OTA bootloader 相关命令

命令	命令编号	说明
SYNC	1	SYNC 命令,判断是否连接正常
JUMP	2	跳转命令
FLASH	3	烧录命令
ERASE	4	擦除命令
VERIFY	5	验证命令
REBOOT	12	重启命令
SN	13	读序列号命令

4.2 命令格式

4.2.1 请求

Start 0xFE	Command	Data length	Data	CheckSum	End 0xEF
1 Byte	1 Byte	2 Bytes	N Bytes	4 Bytes	1 Byte

图 4-1 OTA bootloader 请求命令格式

其中, Command 为命令编号, Checksum 算法为 CRC32。

4.2.2 应答

Start 0xFE	Status	Data length	Data	CheckSum	End 0xEF
1 Byte	1 Byte	2 Bytes	N Bytes	4 Bytes	1 Byte

图 4-2 OTA bootloader 应答命令格式

4.3 命令负载格式

表 4-2 各类型命令的负载格式

命令类型	负载格式
SYNC 命令	无
JUMP 命令	Addr: 4 Bytes, 跳转地址
	Addr: 4 Bytes, 烧录地址
FLASH 命令	Size: 4 Bytes,烧录数据长度
	Data: N Bytes,烧录数据
ERASE 命令	Addr: 擦除地址
LIVIOL m ₹	Size: 擦除区域大小
	Addr: 验证起始地址
VERIFY 命令	Size: 验证区域大小
	Checksum:验证校验值
REBOOT 命令	Mode: reboot 模式, 0: 重启进入 app; 1: 重启进入 ota bootloader
SN 命令	无