

Electrophysiology and Neurotransmission

Intro animation

Outline of the lecture

- 1 Action potentials
 - Resting potential
 - Disturbing the resting state potential
- 2 Neurotransmission
 - Synapse
 - Steps in neurotransmission
 - Neurotransmitters
 - Role of 'drugs'

But first: Anatomy neuron

Anatomy neuron cntd.

Dendrites = Input zone

Lipid bi-layer membrane

Why lipid bi-layer? And is that all?

- To take care that the intracellular and extracellular space remain separated
- To move molecules inside/outside
 - They communicate with outside world by transferring information
 - Every neuron has its own proteins
- Protein channels and pumps
 - Passive
 - Active

Proteins on membrane

Action potential introduction

- Resting potential
 - Diffusion
 - Equal distribution
 - Sodium / Potassium pump (Na+/ K+-pump)
- Disturbing resting potential / Action potential
 - Phases of action potential
 - Propagation
 - Excitatory / Inhibitory postsynaptic potentials

Resting potential

- Electrical gradient
 - $-\pm$ -70 to -80 mV
- Motion / Diffusion
 - Na+ (sodium) / K+ (potassium) / Cl-(chloride) / A- (anions, various negatively charged ions)
 - Ion channels (gated, non-gated)
 - Selective permeability
 - Active / Passive motion

Resting potential continued

- Concentration gradient
 - Concentration inside vs. outside
 - Causes e.g., diffusion
- Electrical gradient
 - Opposites attract (+ likes and likes +)

Concentration gradient

Electrical gradient

Concentration gradient again

Q1: How are potassium ions typically moved out of a neuron when the membrane is at rest?

- a) Electrical gradients move potassium out
- b) The sodium-potassium pump moves them out
- c) Concentration gradients move potassium out

Animation 1: Resting potential

Resting potential measured

Action potential generation

- Stimulus
- Negative or positive charge?
- Hyperpolarization / Depolarization

Action potential measured

Action potential (AP)

Action potential (AP)

Q2: The action potential is a transient change in the resting membrane potential from -70 mV to +30 mV, then back to -70 mV. This change is caused by the opening of first ..., then ... voltage-gated channels.

- a) K+, then Na+
- b) Na+, then K+

Na⁺ flow to evoke AP

Na⁺ and K⁺ flow during AP

- Thus, Na+ channels open and Na+ flows into neuron
- After slight delay K+ channels open and K+ flows out of neuron
- Repolarization / Undershoot
- Refractory period
 - Absolute
 - Relative

Schematic Na⁺ and K⁺ flow

Animation 2: Action potential

Q3: As the axon hillock depolarizes, voltage-gated Na⁺ channels open and Na⁺ moves ... the cell causing further ...

- a) Out of; repolarization
- b) Into; repolarization
- c) Out of; depolarization
- d) Into; depolarization

Propagation action potential

Animation 3: Propagation

Propagation continued

EPSP or IPSP? Graded potentials!

- Partial de- or hyperpolarization
- Graded
- Fast
- Decremental
- Temporal / Spatial summation

Excitatory PostSynaptic Potential

Inhibitory PostSynaptic Potential

Temporal summation

Spatial summation

Summation continued

http://learntech.uwe.ac.uk/synapsesNeuro/Default.aspx?pageid=1916

Q4: Which of the following is false?

- a) Refractory periods are not associated with graded potentials, but are associated with action potentials
- b) Graded potentials are always hyperpolarizing, but action potentials are always depolarizing
- c) Graded potentials are always decremental, whereas action potentials are always non-decremental
- d) Graded potentials are proportional to the magnitude of the stimulus, whereas action potentials are 'all-or-none'

Summary action potentials

- Resting potential
- Action potential
- Na⁺ / K⁺ / Cl⁻ / A⁻ molecules
- Propagation
- Temporal and spatial summation

After break animation

Neurotransmission

- Steps in neurotransmission
- Synapse
- Neurotransmitters
- Drugs and their effects on neurotransmission

Animation 4: Neurotransmission

Chemically addressed nervous

system

Steps in neurotransmission

Action potential causes nt. release

Release: vesicle function

▶ Release of Neurotransmitter

Life cycle of a vesicle

Postsynaptic neuron

Animation 5: Neurotransmission

Types of neurotransmitters

Acetylcholine

(nicotinic, $m_1 - m_5$)

- Indolamines
 - Serotonin

 $(5-HT_1 - 5-HT_7)$

- Catecholamines
 - Dopamine
 - Noradrenaline
- (D1 D5)
- $(a \beta)$

- Amino Acids
 - Glutamate
 - GABA

- NMDA, AMPA
- GABA_A, GABA_B

Animation 6: How neurons use neurotransmitters

Speed of neurotransmission

Two types of receptors

- Ionotropic: transmitter gated ion-channels
 - Direct gating
 - Fast, chemical synaptic transmission
 - Short-lasting effects
 - o EPSP (excitatory postsynaptic potential): e.g. AMPA-gated ion channels cause influx of Na+ resulting in depolarization
 - o IPSP (inhibitory postsynaptic potential): e.g. $GABA_A$ -gated ion channels cause influx of Cl^- resulting in hyperpolarization
- Metabotropic: G-protein coupled receptors
 - Indirect gating
 - Slow transmission
 - Long-lasting effects

Ionotropic receptors

► Ionic Movements During Postsynaptic Potentials

Metabotropic receptors

Ionotropic vs. metabotropic

Glutamate and GABAOur main nt. in the brain!

- Glutamate produces EPSPs
 - Thus excitatory
 - Mainly interacts with ionotropic NMDA or AMPA receptors
- GABA produces IPSPs
 - Thus inhibitory
 - Partly ionotropic (GABAa), partly metabotropic (GABAb)

Neuromodulators

- Alter the action of systems of neurons that transmit information using either glutamate or GABA
- The other neurotransmitters
 - ACh
 - 5-HT
 - DA
 - NE
- Mainly metabotropic processes

Q5: Which ONE of the following neurotransmitters would you expect to find in the synapse during fast inhibitory synaptic transmission?

- a) GABA
- b) Acetylcholine
- c) Noradrenaline
- d) Glutamate

Animation 7: Memorize the neurotransmitters!

Q6: If a neurotransmitter binds to a receptor on the target cell and produces depolarizations, the neurotransmitter...

- a) Was probably stimulating the flow of K⁺ ions out of the cell
- b) Produced an excitatory postsynaptic potential
- c) Produced an inhibitory postsynaptic potential
- d) Was probably stimulating the flow of Cl⁻ ions into the cell

'Drugs' and their interaction with receptor

- Drug mimics actions of neurotransmitter at same site
- It binds to nearby site and facilitates neurotransmitter binding

Drug-receptor interaction continued

SUPERFAMILY 2; Channel in resting state

Drugs agonist spectrum

Agonist

Inverse agonist

Antagonist

At left, the INVERSE AGONIST causes the channel to close.

At right, the ANTAGONIST returns the channel to the resting state.

Q7: Which of the following actions is NOT used to inhibit the stimulatory effects of monoamines released from presynaptic vesicles?

- a) Re-uptake into the presynaptic neuron ending
- b) Enzyme degradation(breakdown) by monoamine oxidase enzymes
- c) Blockade of the receptor and inhibition by specific receptor antagonists

Drugs affect various stages nt.

General summary

- Action potentials
 - Resting potentials and action potentials
 - Propagation and summation
- Neurotransmission
 - Steps in neurotransmission
 - Synapses and receptors
 - Drugs affect neurotransmission

Questions?

anke.sambeth@maastrichtuniversity.nl