Lab #2 - Gapminder Dataset

Econ 224
August 30th, 2018

Introduction

Today we'll revisit the gapminder dataset and use it to introduce some more advanced features of dplyr and ggplot2, building on the material from our first lab. Before you begin, make sure that you have loaded the tidyverse and gapminder packages.

Faceting - Plotting multiple subsets at once

Let's pick up where we left off in lab #1, with a plot of GDP per capita and life expectancy in 2007:

```
gapminder_2007 <- gapminder %>%
  filter(year == 2007)
ggplot(gapminder_2007) +
  geom_point(aes(x = gdpPercap, y = lifeExp, color = continent, size = pop)) +
  scale_x_log10()
```


This is an easy way to make a plot for a single year. But what if you wanted to make the same plot for every year in the gapminder dataset? It would take a lot of copying-and-pasting of the preceding code chunk to accomplish this. Fortunately there's a much easier way: faceting. In ggplot2 a facet is a subplot that corresponds to a subset of your dataset, for example the year 2007. We'll now use faceting to reproduce the plot from above for all the years in gapminder simultaneously:

```
ggplot(gapminder) +
  geom_point(aes(x = gdpPercap, y = lifeExp, color = continent, size = pop)) +
  scale_x_log10() +
  facet_wrap(~ year)
```


Note the syntax here: in a similar way to how we added scale_x_log10() to plot on the log scale, we add facet_wrap(~ year) to facet by year. The tilde ~ is important: this has to precede the variable by which you want to facet.

Now that we understand how to produce it, let's take a closer look at this plot. Notice how this plot allows us to visualize five variables *simultaneously*. By looking at how the plots change over time, we see a pattern of increasing GDP per capita and life expectancy throughout the world between 1952 and 2007. Notice in particular the dramatic improvements in both variables in the Asian economies.

Exercise #1

1. What would happen if I were to run the following code? Explain briefly.

```
ggplot(gapminder_2007) +
  geom_point(aes(x = gdpPercap, y = lifeExp, color = continent, size = pop)) +
  scale_x_log10() +
  facet_wrap(~ year)
```

- 2. Make a scatterplot with data from gapminder for the year 1977. Your plot should be faceted by continent with GDP per capita on the log scale on the x-axis, life expectancy on the y-axis, and population indicated by the size of each point.
- 3. What would happen if you tried to facet by pop? Explain briefly.

Solution to Exercise #1

Write your code and solutions here

1. We'll only get one facet since the tibble gapminder_2007 only has data for 2007:

```
ggplot(gapminder_2007) +
  geom_point(aes(x = gdpPercap, y = lifeExp, color = continent, size = pop)) +
  scale_x_log10() +
  facet_wrap(~ year)
```


2. Use the following code:

```
gapminder_1977 <- gapminder %>%
  filter(year == 1977)
ggplot(gapminder_1977) +
  geom_point(aes(x = gdpPercap, y = lifeExp, size = pop)) +
  scale_x_log10() +
  facet_wrap(~ continent)
```


3. You'll get something crazy if you try this. Population is continuous rather than categorical so every country has a different value for this variable. You'll end up with one plot for every country, containing a single point:

```
gapminder_1977 <- gapminder %>%
  filter(year == 1977)
ggplot(gapminder_1977) +
  geom_point(aes(x = gdpPercap, y = lifeExp, color = continent)) +
  scale_x_log10() +
  facet_wrap(~ pop)
```

