DES 算法的 C++实现

16340305 郑先淇

算法原理概述

DES 主要包含三部分:

- 1. IP 置换
- 2. 轮巡函数与16个字密钥加密的过程;
- 3. IP 逆置换:

算法详解

1. IP 置换

IP 置换矩阵如下:

IP 置换表									
58	50	42	34	26	18	10	2		
60	52	44	36	28	20	12	4		
62	54	46	38	30	22	14	6		
64	56	48	40	32	24	16	8		
57	49	41	33	25	17	9	1		
59	51	43	35	27	19	11	3		
61	53	45	37	29	21	13	5		
63	55	47	39	31	23	15	7		

64 位明文根据 IP 置换表进行置换,规则为:置换表中每个小方格的位置代表原先 64 位明文的对应的位,方格中的数字为产生的 64 位字符中该位所放置的原先的 64 位明文的位;举例:图中 58 表示新的字符串的第一位是原先字符串的第 58 位;

2. 轮巡函数与16个字密钥加密;

首先是轮巡的过程

迭代T

- ♦ 根据 L_0R_0 按下述规则进行16次迭代,即 $L_i = R_{i-1}$, $R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$, i = 1...16.
- ◆ 这里 ⊕ 是32位二进制串按位异或运算, f 是 Feistel 轮函数
- ◆ 16个长度为48bit的子密钥 K_i (i = 1.. 16) 由密钥 K 生成
- ◆ 16次迭代后得到 L₁₆R₁₆
- ◆ 左右交换输出 R₁₆L₁₆

轮巡函数的具体内容:

- (1) 将长度为32位的串 R_{i-1} 作 E-扩展,成为48位的串 $E(R_{i-1})$
- (2) 将 $E(R_{i-1})$ 和长度为48位的子密钥 K_i 作48位二进制串按位异或运算, K_i 由密钥 K 生成
- (3) 将 (2) 得到的结果平均分成8个分组 (每个分组长度6位),分别经过8个不同的 S-盒进行 6-4 转换,得到8个长度分别为4位的分组
- (4)将(3)得到的分组结果合并得到长度为32位的串
- (5) 将 (4) 的结果经过 P-置换,得到轮函数 $f(R_{i-1}, K_i)$ 的最终结果

E-扩展的规则:

E-扩展规则 (比特-选择表)								
32	1	2	3	4	5			
4	5	6	7	8	9			
8	9	10	11	12	13			
12	13	14	15	16	17			
16	17	18	19	20	21			
20	21	22	23	24	25			
24	25	26	27	28	29			
28	29	30	31	32	1			

S-box 盒:

	S ₁ -BOX															S,-E	зох														
14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
0	15	7	4	15	2	13	1	10	6	12	11	9	5	3	8	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
	S _a -BOX															c [ov														
							3 ₃ -1	OA	•							S ₄ -BOX															
10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1	12	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

字密钥生成:

P-置换表

P−置换表									
16	7	20	21						
29	12	28	17						
1	15	23	26						
5	18	31	10						
2	8	24	14						
32	27	3	9						
19	13	30	6						
22	11	4	25						

总体结构

数据结构

IP 置换矩阵、IP 逆置换矩阵、8 个 S_box 盒、P 置换矩阵 编译运行的结果

