T_EX in a Nutshell

Petr Olšák

The pure T_EX features are described here, no features provided by macro extensions. Only the last section gives a summary of plain T_EX macros.

The main goal of this document is its brevity. So features are described only roughly and sometimes inaccurately here. If you need to know more then you can read free available books, for example TeX by topic or TeXbook naruby. Try to type texdoc texbytopic in your system.

The OpTeX manual supposes that the user already knows the basic principles of TeX itself. If you are converting from LaTeX to OpTeX for example then you may welcome a summary document that presents these basic principles because LaTeX manuals typically don't distinguish between TeX features and features specially implemented by LaTeX macros.

I would like to express my special thanks to Barbara Beeton who read my text very carefully and suggested hundreds of language corrections and improvements and also discovered many of my real mistakes. Thanks to her, my text is better. But if there are any other mistakes then they are only mine and I'll be pleased if you send me a bug report in such case.

Table of contents

	Terminology	
2	Formats, engines	2
	Searching data	
4	Processing the input	3
5	Vertical and horizontal modes	5
6	Groups in T _E X	ć
7	Box, kern, penalty, glue	7
8	Syntactic rules	3
9	Principles of macros	9
10	Math modes	1
11	Registers	1
12	Expandable primitive commands	5
13	Primitive commands at the main processor level	7
14	Summary of plain T _E X macros	ć
	Index	9

1 Terminology

The main principle of TEX is that its input files can be a mix of the material which could be printed and *control sequences* which give a setting for built-in algorithms of TEX or give a special message to TEX what to do with the inputted material.

Each control sequence (typically a word prefixed by a backslash) has its *meaning*. There are four types of meanings of control sequences:

• the control sequence can be a *register*; this means it represents a variable which is able to keep a value. There are *primitive registers*. Their values influence behavior of built-in algorithms (e.g., \hsize, \parindent, \hyphenpenalty). On the other hand *declared registers* are used by macros (e.g., \medskipamount used in plain TeX or \tindent used by OpTeX).

¹ Congratulations on your decision:-)

- the control sequence can be a *primitive command*, which runs a built-in algorithm (e.g., \def declares a macro, \halign runs the algorithm for tables, \hbox creates a box in typesetting output).
- the control sequence can be a *character constant* (declared by \chardef or \mathchardef primitive command) or a *character equivalent* (declared by \let\sequence=\character\) or a *font selector* (declared by \font primitive command).
- the control sequence can be a *macro*. When it is read, it is replaced by its *replacement text* in the input queue. If there are more macros in the replacement text, all macros are replaced. This is called the *expansion process* which ends when only printable text, primitive commands (listed in section 13), registers (section 11), character constants, or font selectors remain.

Example. When TEX reads:

\def\TeX{T\kern-.1667em\lower.5ex\hbox{E}\kern-.125emX}

in a macro file, then the \def primitive command saves the information that \TeX is a control sequence with meaning "macro", the replacement text is declared here, and it is a mix of a material to be typeset: T, E and X and primitive commands \kern, \lower, \hbox with their parameters in given syntax. Each primitive command has a declared syntax; for example, \kern must be followed by a dimension specification in the format "decimal number followed by a unit". More about this primitive syntax is in sections 11, 12 and 13.

When a control sequence \TeX with meaning "macro" occurs in the input stream, then it is *expanded* to its replacement text, i.e. the sequence of typesetting material and primitive commands. The \TeX macro expands to T\kern-.1667em\lower.5ex\hbox{E}\kern-.125emX and the logo TeX is printed as a result of this processing.

None of the control sequences have their definitive meaning. A control sequence could change its meaning by re-defining it as a new macro (using \def), redeclaring it as an arbitrary object in TeX (using \let), etc. When you re-define a primitive control sequence then the access to its value or built-in algorithm is lost. This is a reason why OpTeX macros duplicate all primitive sequences (\hbox and _hbox) with the same meaning and use only "private" control sequences (prefixed by _). So, a user can re-define \hbox without the loss of the primitive command _hbox.

2 Formats, engines

TEX is able to start without any macros preloaded in the so-called <code>ini-TEX</code> state (the <code>-ini</code> option on the command line must be used). It already knows only primitive registers and primitive commands at this state. When ini-TEX reads macro files then new control sequences are declared as macros, declared registers, character constants or font selectors. The primitive command <code>\dump</code> saves the binary image of the TEX memory (with newly declared control sequences) to the <code>format file</code> (.fmt extension).

The original intention of existing format files was to prepare a collection of macro declarations and register settings, to load default fonts, and to dump this information to a file for later use. Such a collection typically declares macros for the markup of documents and for typesetting design. This is the reason why we call these files *format files*: they give a format of documents on the output side and declare markup rules for document source files.

When TEX is started without the <code>-ini</code> option, it tries to load a prepared format file into its memory and to continue with reading more macros or a real document (or both). The starting point is at the place where <code>\dump</code> was processed during the ini-TEX state. If the format file is not specified explicitly (by <code>-fmt</code> option on the command line) then TEX tries to read the format file with the same name which is used for running TEX. For example <code>tex document</code> runs TEX, it

² Roughly speaking, if you know all these primitive objects (about 300 in classical TEX, 700 in LuaTEX) and the syntax of all these primitive commands and all the built-in algorithms, then you know all about TEX. But starting to produce ordinary documents from this primitive level without macro support is nearly impossible.

loads the format tex.fmt and reads the document.tex. Or latex document runs TEX, it loads the format latex.fmt and reads the document.tex.

The tex.fmt is the format file dumped when plain TEX macros³ were read, and latex.fmt is the format file dumped when LTEX macros were read. This is typically done when a TEX distribution is installed without any user intervention. So, the user can run tex document or latex document without worry that these typical format files exist.

From this point of view, LATEX is nothing more than a format of TEX, i.e. a collection of macro declarations and register settings.

A typical T_EX distribution has four common T_EX engines, i.e. programs. They implement classical T_EX algorithms with various extensions:

- TEX only classical TEX algorithms by Donald Knuth,
- pdfT_EX an extension supporting PDF output directly and micro-typographical features,
- X_TT_EX an extension supporting Unicode and PDF output,
- LuaT_EX an extension supporting Lua programming, Unicode, micro-typographical features and PDF output.

Each of them is able to run in ini-TeX state or with a format file. For example the command <code>luatex -ini macros.ini</code> starts <code>LuaTeX</code> at ini-TeX state, reads the <code>macros.ini</code> file and the final <code>\dump</code> command is supposed here to create a format <code>macros.fmt</code>. Then a user can use the command <code>luatex -fmt</code> macros document to load <code>macros.fmt</code> and process the document.tex. Or the command <code>luatex</code> document processes <code>LuaTeX</code> with document.tex and with <code>luatex.fmt</code> which is a little extension of plain <code>TeX</code> macros. Another example: <code>lualatex</code> document runs <code>LuaTeX</code> with <code>lualatex.fmt</code>. It is a format with <code>LateX</code> macros for <code>LuaTeX</code> engine. Final example: <code>optex document</code> runs <code>LuaTeX</code> with <code>optex.fmt</code> which is a format with <code>OpTeX</code> macros.

3 Searching data

If TeX needs to read something from the file system (for example the primitive command \input \langle file name \rangle or \font \langle font selector \rangle = \langle file name \rangle is used) then the rule "first wins" is applied. TeX looks at the current directory first or somewhere in the TeX installation second. The behavior in the second step depends on the used TeX distribution. For example TeXlive programs are linked with a kpathsea library and they do the following: Search for the given file in the current directory, then in the ~/texmf tree (data are saved by the user here), then in the texmf-local tree (data are saved by the system administrator here; they are not removed when the TeX distribution is upgraded), then in texmf-var tree (data are saved automatically by programs from the TeX distribution here), and then in the texmf-dist tree (data from the TeXlive distribution). Each directory tree can be divided into sub-trees: first level tex, fonts, doc, etc.; the second level is divided by TeX engines or font types, etc.; more levels are typically organized to keep clarity. New files in the current directory or in the ~/texmf tree are found without doing anything more, but new files in other places have to be registered by the texhash program (TeX distributions do this automatically during their installation).

4 Processing the input

The lines from input files are first transformed by the *tokenizer*. It reads input lines and generates a sequence of tokens. These are the main goals of the tokenizer:

- It converts each control sequence to a single token characterized by its name.
- Other input material is tokenized as "one token per character".
- A continuous sequence of multiple spaces is transformed into one space token.

³ Plain TEX macros were made by Donald Knuth, the author of TEX. It is a set of basic macros and settings which is used (more or less) as a subset of all other macro packages.

- The end of the line is transformed into a space token, so that paragraph text can continue on the next input line and one space token is added between the last word on the previous line and the first word on the next line.
- The comment character % is ignored and all the text after it to the end of line is ignored too. No space is generated at the end of this line.
- Spaces from the begining of each line are ignored. Thus, you can use arbitrary indentation in your source file without changing the result.
- Each empty line (or line with only spaces) is transformed to the token \par. This token has primitive meaning: "finalize the current paragraph". This implies the general rule in TeX source files: paragraphs are terminated by empty lines.

The behavior of the tokenizer is not definitive. The tokenizer works with a table of category codes. Any change of category codes of characters (done by the primitive command $\colon \colon \colon$

By default, there are the following characters with special meaning. The tokenizer converts them or sets them as special tokens used in syntactic rules in TEX later. The corresponding category codes are mentioned here as an index of the character.

- \setminus_0 starts completion of a control sequence by the tokenizer.
- {1 and }2 open and close group or have special syntactic meaning. The main syntactic rule is: each subsequence of tokens treated by macros or primitive commands must have these pairs of tokens balanced. There is no exception. The tokenizer treats them as special tokens with meaning "opening character1" and "closing character2".
- $%_{14}$ comment character, removed by the tokenizer, along with everything that follows it on the line.
- \$3, &4, #6, ^7, _8, ~13 tokenizer treats them as a special tokens with meaning: "mathmode selector3", "table separator4", "parameter prefix for macros6", "superscript prefix in math7", "subscript prefix in math8", "active character13" (the active character ~ is defined as no-breakable space in all typical formats).
- Letters and other characters are tokenized as "letter character₁₁" or "other character₁₂".

If you need to print these special characters you can use \%, \&, \\ or _. These five control sequences are declared as "print this character" in all typical TeX formats. Another possibility is to use a verbatim environment (it depends on the used format). Last alternative: you can use \csstring\\chickenacter\\ in LuaTeX, because it has the primitive command \csstring which converts \\chickenacter\\ to \(\character \rangle \) to \(\character \rangle \) 12.

The "active character₁₃" can be declared by \catcode`\\chiral character \rangle = 13. Such a \chiral character \rangle behaves like a control sequence. For example, you can define it by \def \chiral character \rangle \{\ldots\} and use this \chiral character \rangle as a macro. If the term \(\chiral control sequence \rangle\) is used in syntactical rules in this document then it means a real control sequence or an active character.

Each control sequence is built by the tokenizer starting from $_0$. Its name is a continuous sequence of letters₁₁ finalized by the first non-letter. Note that OpTEX sets $_$ as letter₁₁, thus control sequence names can include this character. LaTeX sets the $_$ 0 as letter₁₁ when reading styles and macro files. You can look to such files and you will see many such characters inside private control sequence names declared by LaTeX macros.

If the first character after \setminus_0 is non-letter (i.e. $\langle something \rangle_{\neq 11}$), then the control sequence is finalized with only this character in its name. So called *one-character control sequence* is created. Other control sequences are *multiletter control sequences*.

Spaces $_{10}$ after multi-letter control sequences are ignored, so the space can be used as a terminating character of the control sequence. Other characters used immediately after a control sequence are not ignored. So \TeX ! gives the same result: the control sequence \TeX followed immediately by $\!_{12}$.

The tokenizer's output (a sequence of tokens) goes to the *expand processor* and its output goes to the *main processor* of TeX. The expand processor performs expansions of macros or a

primitive command which is working at the expand processor level. See a summary of such commands in section 12.

The main processor performs assignment of registers, declares macros by the \def primitive command, and runs all primitive commands at the main processor level. Moreover, it creates the typesetting output as described in the next section.

The very important difference between TEX and other programs is that there are no strings, only sequences of tokens. We can return to the example \def\TeX{...} above in section 1. The token \def is a control sequence with meaning "declare a macro". It gets the following token \TeX and declares it as a macro with replacement text, which is the sequence of tokens:

If you are thinking like TEX then you must forget the term "string" because all texts in TEX are preprocessed by the tokenizer when input lines are read and only sequences of tokens are manipulated inside TEX.

The tokenizer converts two $^{}_7$ characters followed by an ASCII uppercase letter to the Ctrletter ASCII code. For example $^{}$ is Ctrl-M (carriage return). It converts two $^{}_7$ followed by two hexadecimal digits (0123456789abcdef) to a one-byte code, for example, $^{}$ 0d is Ctrl-M too because it has code 13. Moreover, the tokenizer of X₂TeX or LuaTeX converts $^{}_7$ 0 followed by four hexadecimal digits or $^{}_7$ 0 followed by six hexadecimal digits to one character with a given Unicode.

5 Vertical and horizontal modes

When the main processor creates the typesetting output, it alternates between vertical and horizontal mode. It starts in *vertical mode*: all materials are put vertically below in this mode. For example \hbox{a}\hbox{b}\hbox{c} creates a above b above c in vertical mode.

If something is incompatible with the vertical mode principle — a special command working only in horizontal mode or a character itself — then the main processor switches to *horizontal mode*: it opens an unlimited horizontal data row for typesetting material and puts material next to each other. For example a\hbox{b}\hbox{c} opens horizontal mode due to "a character itself" a and creates abc in horizontal mode.

When an empty line is scanned, the tokenizer creates a \par token here and if the main processor is in horizontal mode, the \par command finalizes the paragraph. More exactly it returns to vertical mode, it breaks the horizontal data row filled in previous horizontal mode to parts with the \hsize width. These parts are completed as boxes and they are put one below another in vertical mode. So, a paragraph of \hsize width is created.

Repeatedly: if there is something incompatible with the current vertical mode (typically a character), then the horizontal mode is opened and all characters (and spaces between them) are put to the horizontal data row. When an empty line is scanned, then the \par command is started and the horizontal data row is broken into lines of \hsize width and the next paragraph is completed.

In vertical mode, the material is accumulated in a vertical data column called the *main vertical list*. If the height of this material is greater than \vsize then its part with maximum \vsize height is completed as a *page box* and shipped to the *output routine*. A programmer or designer can declare a design of pages using macros in the output routine: header, footer, pagination, the position of the main page box, etc. The output routine completes the main page box with other material declared in the output routine and the result is shipped out as one page of the document. The main processor continues in vertical mode with the rest of the unused material in the main vertical list. Then it can switch to horizontal mode if a character occurs, etc...

The plain TEX macro \bye (or primitive command \end4) starts the last \par command, finalizes the last paragraph (if any), completes the last page box, sends it to the output routine, finalizes the last page in it, and TEX is terminated.

There are *internal vertical mode* and *internal horizontal mode*. They are activated when the main processor is typesetting material inside $\vbox{...}$ or $\hbox{...}$ primitive commands. More about boxes is in sections 7 and 13.

Understanding of switching between modes is very important for TEX users. There are primitive commands which are context dependent on the current mode. For example, the \par primitive command (generated by an empty line) does nothing in vertical mode but it finalizes paragraph in horizontal mode and it causes an error in math mode. Or the \kern primitive command creates a vertical space in vertical mode or horizontal space in horizontal mode.

The following primitive commands used in vertical mode start horizontal mode: the first character of a paragraph (most common situation) or \indent, \noindent, \hskip (and its alternatives), \vrule and the plain TeX macro \leavevmode⁵. When horizontal mode is opened, an indentation of \parindent width is included. The exception is only if horizontal mode is started by \noindent; then the paragraph has no indentation.

The following primitive commands used in horizontal mode finalize the paragraph and return to vertical mode: \par, \vskip (and its alternatives), \hrule, \end and the plain TEX macro \bye.

6 Groups in TEX

Each assignment to registers, declaration macros or font selecting is local in groups. When the current group ends then the assignments made inside the group are forgotten and the values in effect before this group was opened are restored. The groups can be delimited by $\{1 \text{ and }\}_2$ pair or by \begingroup and \endgroup primitive commands or by \begingroup and \egroup control sequences declared by plain TeX. For example, plain TeX declares the macros \rm (selects roman font), \bf (selects bold font) and \it (selects italics) and it initializes by \rm font. A user can write:

The roman font is here {\it here is italics} and the roman font continues.

Not only fonts but all registers are set locally inside a group. The macro designer can declare a special environment with font selection and with more special typographical parameters in groups.

The following example is a test of understanding vertical and horizontal modes switching.

```
{\hsize=5cm This is the first paragraph which should be formatted to 5\,cm width.}
```

```
But it is not true...
```

Why does the example above not create the paragraph with a 5 cm width? The empty line (\par command) is placed *after* the group is finished, so the \hsize parameter has its previous value at the time when the paragraph is completed, not the value 5 cm. The value of the \hsize register⁶ is used when the paragraph is completed, not at the beginning of the paragraph. This is the reason why macro programmers explicitly put a \par command into macros before the local environment is finished by the end of the group. Our example should look like this:

```
{\text{\normalfont This is the first ... to 5}, cm width.}
```

⁴ LATEX format re-defines this primitive control sequence \end to another meaning which follows the logic of LATEX's markup rules.

⁵ The list is not exhaustive, but most important commands are mentioned.

⁶ and about twenty other registers which declare the paragraph design

7 Box, kern, penalty, glue

You can look at one character, say the y. It is represented by three dimensions: height (above baseline), depth (below baseline) and width. Suppose that there are more characters printed in horizontal mode and completed as a line of a paragraph. This line has its height equal to the maximum height of characters inside it, it has the depth equal to maximum depth of all characters inside it and it has its width. Such a sequence of characters encapsulated as one typesetting element with its height, depth and width is called a *box*. Boxes are placed next to each other (from left to right⁷) in horizontal mode or one below another in vertical mode.

The boxes can include individual characters or spaces or boxes. The boxes can include more boxes. Paragraph lines are boxes. The page box includes paragraph lines (boxes). The finalized page with a header, page box, pagination, etc., is a box and it is shipped out to the PDF page. Understanding boxes is necessary for macro programmers and designers.

You can create an individual box by the primitive command \hbox{\(\lambda\) horizontal material\)} or \vbox{\(\lambda\) ertical material\)}. The \(\lambda\) horizontal material\) is completed in internal horizontal mode and \(\lambda\) ertical material\) in internal vertical mode. Both cases open a group, create the material in a specified mode and close the group, where all settings are local.

The *(horizontal material)* can include individual characters, boxes, horizontal *glues* or *kerns*. "Glue" is a special term for stretchable or shrinkable and possibly breakable spaces and "kern" is a term used for fixed nonbreakable spaces.

The ⟨vertical material⟩ can include boxes, vertical glues or kerns. No individual characters. If you put an individual character in vertical mode (for example in a \vbox) then horizontal mode is opened. At the end of a \vbox⁸ or when the \par command is invoked, the opened paragraph is finished (with current \hsize width) and the resulting lines are vertically placed inside the \vbox.

The completed boxes are unbreakable and they are treated as a single object in the surrounding printed material.

The line boxes of a paragraph have the fixed width \hsize, so there must be something stretchable or shrinkable in order to get the desired fixed width of lines. Typically the spaces between words have this feature. These spaces have declared their *default size*, their *stretchability* and their *shrinkability* in the font metric data of the currently used font.

You can place such glue explicitly by the primitive command \hskip:

```
\hskip \(default size\) plus \(stretchability\) minus \(shrinkability\) for example: \hskip 10pt plus5pt minus2.5pt
```

This example places the glue with 10 pt default size, stretchable to 15 pt ¹⁰ and shrinkable to 7.5 pt as its minimal size. All glues in one line are stretched or shrunk equally but with weights given from their stretchability/shrinkability values.

You can do experiments of this feature if you say \hbox to \(size\) \{...\}. Then the \hbox is created with a given width. Probably, the glues inside this \hbox must be stretched or shrunk. You can see in the log that the total *badness* is calculated, it represents the amount of a "force" used for all glue included in such an \hbox.

An infinitely stretchable (to an arbitrary positive value) or shrinkable (to an arbitrary negative value) glue can exist. This glue is stretched/shrunk and other glues with finite amounts of stretching or shrinking keep their default size in such case. You can put infinitely stretchable/shrinkable glue using the reserved unit fil in an \hskip command, for example the command \hskip Opt plus 1fil means zero default size but infinitely stretchable. There is a shortcut

⁷ There is an exception for special languages.

⁸ before the \vbox group is closed

⁹ When the microtypographical feature \pdfadjustspacing is activated, then not only spaces are stretchable and shrinkable but individual characters are slightly deformed (by an invisible amount) too.

 $^{^{10}}$ It can be stretchable ad absurdum (more than 15 pt) but with very considerable *badness* calculated by TEX whenever glues are stretched or shrunk.

for such glue: \hfil. When you type \hbox to\hsize{\hfil \lambda text} \hfil} then the \lambda text is centered. But if the \lambda text is wider than \hsize then TeX reports an overfull \hbox. If you want to center a wide \lambda text \rangle too, you can use \hss instead of \hfil. The \hss primitive command is equal to \hskip Opt plus1fil minus1fil. The \lambda text \rangle printed by \hbox to\hsize{\hss} is now centered in its arbitrary size.

A glue created with fill stretchability or shrinkability (double ell) is infinitely more stretchable or shrinkable than glues with only a fil unit. So, glues with fill are stretched or shrunk and glues with only fil in the same box keep their default size. For example, a macro declares centering a $\langle text \rangle$ by \hbox to\hsize{\hss} $\langle text \rangle$ \hss} and a user can create the $\langle text \rangle$ in the form \hfill $\langle real\ text \rangle$. Then $\langle real\ text \rangle$ is printed flushed right because \hfill is a shortcut to \hskipOpt plus1fill and has greater priority than glues with only a fil unit.

Common usage is $\hbox toOpt{\langle text \rangle \hss}$ or $\hbox toOpt{\hss}\langle text \rangle$ }. The box with zero width is created and the text overlaps the adjacent text to the right (first example) or to the left (second example). Plain TEX declares macros for these cases: $\rlap{\langle text \rangle}$ or \label{text}

The last line of each paragraph is finalized by a glue of type \hfil by default. When you write \hfill \langle object \rangle in vertical mode (\langle object \rangle is something like a table, image or whatever else in the box) then \langle object \rangle is flushed right, because the paragraph is started by the \hfill space but finalized only by \hfil space. If you type \noindent\hfil \langle object \rangle then the \langle object \rangle is centered. And putting only \langle object \rangle places it to the left side because the common left side is the default placement rule in vertical mode.

The same principles that apply to horizontal glues are also applicable to vertical modes where glues are created by $\$ commands instead of $\$ commands. You can write $\$ to $\$ in to $\$ and do experiments.

When the paragraph breaking algorithm decides about the suitable breakpoints for creating lines with the desired width \hsize, then each glue is a potentially breakable point. Each glue can be preceded by a *penalty* value (created by the \penalty primitive) in the typical range -10000 to 10000. The paragraph breaking algorithm gets a penalty if it decides to break line at the glue preceded by the given penalty value. If no penalty is declared for a given glue, then it is the same as a penalty equal to zero. ¹¹. The penalty value 10000 or more means "impossible to break". A negative penalty means a bonus for the paragraph breaking algorithm. The penalty -10000 or less means "you must break here".

The paragraph breaking algorithm tries to find an optimum of breakpoint positions concerning to all penalties, to all badnesses of all created lines and to many more values not mentioned here in this brief document. The analogous optimal breakpoint is found in vertical material when TFX breaks it into pages.

The concept "box, penalty, glue" with the optimum-fit breaking algorithms makes TeX unique among many other typesetting software.

8 Syntactic rules

A primitive command can get its parameters written after it. These parameters must suit syntactic rules given for each primitive command. Some parameters are optional. For example <code>\hskip\dimen> plus \stretchability> minus \shrinkability> means that the parameter \dimen> must follow (it must suit syntactic rules for dimensions, see section 11) then the optional parameter prefixed by keyword plus can follow and then the optional parameter prefixed by minus can follow. We denote the optional parameters by underline in this document.</code>

Keywords (typically prefixes to some parameters) may have optional spaces around them.

¹¹ More precisely: the paragraph breaking algorithm or page breaking algorithm can break horizontal list to lines (or vertical list to pages) at penalties (then it gets the given penalty) or at glues (then the penalty is zero). The second case is possible only if no penalty nor glue precedes. The item where the list is broken (penalty or glue), is discarded and all immediatelly followed glues, penalties and kerns are discarded too. They are called *discardable items*

The explicit expressions of numbers (i.e. 75, "4B, `K; see section 11) should be terminated by one optional space which is not printed. This space can serve as a termination character which says that "whole number is presented here; no more digits are expected".

If the syntactic rule mentions the pair $\{$, $\}$ then these characters are not definitive: other characters may be tokenized with this special meaning but it is not common. The text between this pair must be *balanced* with respect to this pair. For example the syntactic rule $\mbox{message}\{\langle text \rangle\}$ supposes that $\langle text \rangle$ must not be $\mbox{ab}\{\mbox{cd},\mbox{but ab}\{\mbox{cf}\}\}$ d is allowed for instance.

By default, all parameters read by primitive commands are got from the input stream, tokenized and fully expanded by the expand processor. But sometimes, when T_EX reads parameters for a primitive command, the expand processor is deactivated. We denote these parameters by red color. For example, $\ensuremath{\texttt{let}}\xspace \langle \textit{token} \rangle = \langle \textit{token} \rangle$ means that these parameters processed by the $\ensuremath{\texttt{let}}\xspace$ command are not expanded.

Whenever a syntactic rule mentions the = character (see the previous example with the \let command), then this is the equal sign tokenized as a normal character and it is optional. The syntactic rule allows to omit it. Optional spaces are allowed around this equal sign.

The concept of the optional parameters of primitive commands (terminated if something different from the keyword follows) may bring trouble if a macro programmer forgets to terminate an incomplete parameter text by the \relax command (\relax does nothing but it can terminate a list of optional parameters of the previous command). Suppose, for example, that \mycoolspace is defined by \def\mycoolspace{\penalty42\hskip2mm}. If a user writes first\mycoolspace plus second then TEX reports the error missing number, treated as zero in the position of s character and appends: <to be read again> s. A user who is unfamiliar with TEX primitive commands and their parameters is totally lost. The correct definition looks like: \def\mycoolspace{\penalty42\hskip2mm\relax}.

9 Principles of macros

Macros can be declared by the \def primitive command (or \edef, \gdef, \xdef commands; see below). The syntax is \def \(\control \) sequence \(\lambda \) parameters \{ \lambda replacement text \}.

The *\(\parameters\)* are a sequence of formal parameters of the declared macro written in the form #1, #2, etc. They must be numbered from one and incremented by one. The maximum number of declared parameters is nine. These parameters can be used in the *\(\text{replacement text}\)*. This specifies the place where the real parameter is positioned when the macro is expanded. For example:

Note that there are two possibilities of how to write real macro parameters when a macro is in use. The parameter is one token by default but if there is {\something\} then the parameter is \something\}. The braces here are delimiters for the real parameter (no TeX group is opened/closed here).

The example above shows a declaration of *unseparated parameters*. The parameters were declared by #1 or #1#2 with no text appended to such a declaration. But there is another possibility. Each formal parameter can have a text appended in its declaration, so the general syntax of the declaration of formal parameters is $\#1 \le \texttt{text} \ge \texttt{etc}$. If such $\texttt{text} \ge \texttt{is}$ appended then we say that the parameter is *separated* or *delimited* by text. The same delimiter must be used when the macro is in use. For example

```
\def\Test #1#2..#3 {first "#1", second "#2", third "#3".}
```

```
\Test ABC..DEF G % expands to: first "A", second "BC", third "DEF".
% the letter G follows after expansion.
```

In the example above the #1 parameter is unseparated (one token is read as a real parameter if the syntax { ⟨parameter⟩} is not used). The #2 parameter is delimited by two dots and the #3 parameter is delimited by space.

There may be a $\langle text0 \rangle$ immediately before #1 in the parameter declaration. This means that the declared macro must be used with the same $\langle text0 \rangle$ immediately appended. If not, TEX reports the error. The general rule for declaration of a macro with three parameters should be: $\langle text0 \rangle = 1 \langle text1 \rangle = 1 \langle text1 \rangle = 1 \langle text1 \rangle = 1 \langle text2 \rangle = 1 \langle text2 \rangle = 1 \langle text3 \rangle =$

The rule "everything must be balanced" is applied to separated parameters too. It means that Test AB{C..DEF G}.. H from the example above reads B{C..DEF G} to the #2 parameter and the #3 parameter is empty because the space (the delimiter of #3 parameter) immediately follows two dots. If the real parameter is in the form {...} then the outer braces are removed from the parameter. For example Test A{C..DEF G}.. H reads C..DEF G to the #2.

The separated parameter can bring a potential problem if the user forgets the delimiter or the delimiter is specified incorrectly. Then TeX reports an error. This error is reported when the first \par is scanned as part of the parameter (probably generated from an empty line). If you really want to scan as part of the parameter more paragraphs including \par between them, then you can use the \long prefix before \def. For example \long\def\scan#1\stop{...} reads the parameter of the \scan macro up to the \stop control sequence, and this parameter can include more paragraphs. If the delimiter is missing when a \long defined macro is processed, then TeX reports an error at the end of the file.

When a real parameter of a macro is scanned then the expand processor is deactivated. When the $\langle replacement\ text \rangle$ is processed then the expand processor works normally. This means that if parameters are used in the $\langle replacement\ text \rangle$, then they are expanded here.

If a macro declaration is used inside the $\langle replacement\ text \rangle$ of another macro then the number of # must be doubled for inner declaration. Example:

The exact implementation of the feature above: when T_EX reads macro body (during \def, \edef, \gdef, \xdef) then each double $\#_6$ is converted to single $\#_6$ and each (unconverted yet) single $\#_6$ followed by a digit is converted to an internal mark of future parameter. This mark is replaced by real prameter when the defined macro is used. This rule of conversion of macro body has one exception: \edef{...\the\toks...} keeps the toks content unexpanded and without conversion of hashes. And there exists a reverse conversion from internal marks to $\#_{12} \langle number \rangle$ and from $\#_6$ to $\#_{12} \#_{12}$ when T_EX writes macro body by \meaning primitive.

Note the % characters used in the \defmacro definition in the exmample above. They mask the end of lines. If you don't use them, then the space tokens are included here (generated by the tokenizer at the end of each line). The \(\text{replacement text} \) of \defmacro will be \(\space \) \defmacro generates two unwanted spaces. It is not a problem if \defmacro is used in the vertical mode because spaces are ignored in this mode. But if \defmacro is used in horizontal mode then these spaces are printed.\(\frac{12}{2} \)

¹² More precisely, they are transformed into horizontal glues used between words.

The macro declaration behaves as another assignment, so the information about such a declaration is lost if it is used in a group and the group is left. But you can use a \global prefix before \def or the primitive \gdef. Then the assignment is global regardless of groups.

When \def or \gdef is processed then \(\frac{replacement text}\) is read with the deactivated expand processor. We have alternatives \edef (expanded def) and \xdef (global expanded def) which read their \(\frac{replacement text}\) expanded by the expand processor. The summary of \def syntax is:

```
\def \(control sequence \) \( \text{parameters} \) \{ \( \text{replacement text} \) \} \) \( \text{local assignment} \) \( \text{gdef} \( \text{control sequence} \) \( \text{parameters} \) \{ \( \text{replacement text} \) \} \) \( \text{local assignment} \) \( \text{vdef} \( \text{control sequence} \) \( \text{parameters} \) \{ \( \text{replacement text} \) \} \) \( \text{global assignment} \) \( \text{vdef} \( \text{control sequence} \) \( \text{parameters} \) \{ \( \text{replacement text} \) \} \) \( \text{global assignment} \)
```

If you set \tracingmacros=2, you can see in the log file how the macros are expanded.

10 Math modes

The $\$_3 \langle math \ text \rangle \$_3$ specifies a math formula inside a line of the paragraph. It processes the $\langle math \ text \rangle$ in a group and in *internal math mode*. The $\$_3\$_3 \langle math \ text \rangle \$_3\$_3$ generates a separate line with math formula(s). It processes the $\langle math \ text \rangle$ in a group and in *display math mode*.

The fonts in math mode are selected in a very specific manner which is independent of the current text font. Six different math objects are automatically detected in math mode: \mathord (normal material), \mathop (big operators), \mathbin (binary operators), \mathrel (relations), \mathopen (open brackets), \mathclose (close brackets), \mathpunct (punctuation). They can be processed in four styles \displaystyle (default in the display mode), \textstyle (default in the internal math mode), \scriptstyle (used for indexes or exponents, smaller text) and \scriptscriptstyle (used in indexes of indexes, even smaller text).

The math typesetting algorithms were implemented in TEX by its author with great care. All typographical traditions of math typesetting were taken into account. There are three chapters about math typesetting in his TEXbook. Moreover, there is the detailed appendix G containing the exact specification of generating math formulae. This topic is unfortunately out of the scope of this short text. More about it can be found in Typesetting Math with OpTEX

There is a good a piece of news: all formats (including LaTeX) take the default TeX syntax for \(\lambda math \text \rangle \). So, LaTeX manuals or LaTeX documents serve a good source if you want to get to know the rules of math typesetting by TeX. There is only one significant difference. Fractions are constructed at the primitive level by the \(\text{over primitive: } \lambda \(\text{numerator} \) \(\text{over} \lambda \(\defa nominator \rangle \rangle \) But LaTeX uses a macro \(\frac{\fra

11 Registers

There are four types of registers used in T_EX:

- Counters; their values are integer numbers. Counters are declared by \newcount \(\frac{register}{13} \) or they are primitive registers (\linepenalty for example). TeX interprets primitive commands which represent an integer from an internal table as counter type register too (examples: \catcode A, \lccode A).
- *Dimen type*; their values are dimensions. They are declared by \newdimen \(\(\register\)\) or they are primitive registers (\hsize, for example). TeX interprets primitive commands which represent a dimension value as dimen type register too (example: \wd0).

¹³ The declarators \newcount, \newdimen, \newskip and \newtoks are plain TeX macros used in all known TeX formats. They provide $\langle address \rangle$ allocation and use the \count $\langle address \rangle$, \dimen $\langle address \rangle$, \skip $\langle address \rangle$ and \toks $\langle address \rangle$ TeX registers. The \countdef, \dimendef, \skipdef and \toksdef primitive commands are used internally.

- *Glue type*; their values are triples like in general \hskip parameters. They can be declared by \newskip \(\frac{register} \) or they are primitive registers (\abovedisplayskip for example). \(\frac{14}{2} \)
- *Token lists*; their values are sequences of tokens. They are declared by \newtoks \(\frac{register} \) or they are primitive registers (\everypar for example).

The following example shows how registers are declared, how a value is saved to the register, and how to print the value of the register.

```
\newcount \mynumber
\newdimen \mydimen
\newskip \myskip
\newtoks \mytoks
\mynumber = 42
\mydimen = -13cm
\myskip = 10mm plus 12mm minus1fil
\mytoks = {abCd ef}
To print these values use the primitive command "the":
\the\mynumber, \the\mydimen, \the\myskip, \the\mytoks.
\bye
```

This example prints: To print these values use the primitive command "the": 42, -369.88582pt, 28.45274pt plus 34.1433pt minus 1.0fil, abCd ef. Note that the human readable dimensions are converted to typographical points (pt).

The general syntactic rule for storing values to registers is $\langle register \rangle = \langle value \rangle$ where the equal sign is optional and it can be surrounded by optional spaces. Syntactic rules for each type of $\langle value \rangle$ depending on type of the register (i.e. $\langle number \rangle$, $\langle dimen \rangle$, $\langle skip \rangle$ and $\langle toks \rangle$) follows.

- The *(number)* could be
 - 1) a register of counter type;
 - 2) a character constant declared by \chardef or \mathchardef primitive command.
 - 3) an integer decimal number (with optional + or prefixed)
 - 4) " (hexa number) where (hexa number) can include digits 0123456789ABCDEF;
 - 5) ' (octal number) where (octal number) can include digits 01234567;
 - 6) `\(\character\)\\ (the prefix is the reverse single quote `\). It returns the code of the \(\character\)\. Examples: `\(\mathbb{A}\)\) or one-character control sequence `\(\mathbb{A}\)\). Both examples represent the number 65. The Unicode of the character is taken here if LuaTeX or XeTeX is used;
 - 7) \numexpr \(num. expression \) . \(15 \) The \(num. expression \) uses operators +, -, * and / and brackets (,) in normal sense. The operands are \(number \) s. It is terminated by something incompatible with the syntactic rule of \(num. expression \) or by \(relax. \) The \(relax \) (if it is used as a separator) is removed. If the result is non-integer, then it is rounded (not truncated). The rules 3)-6) can be terminated by one optional space.
- The *(dimen)* could be
 - 1) a register of dimen type or counter type;
 - 2) a decimal number with an optional decimal point (and optional + or prefixed) followed by \(\langle \dimen \unit \rangle \). The \(\langle \dimen \unit \rangle \text{ is pt (point)}^{16} \text{ or mm or cm or in or bp (big point) or dd} \)
 (Didot point) or pc (pica) or cc (cicero) or sp (scaled point) or em (quad of current font) or ex (ex height of current font) or a register of dimen type;
 - 3) \dimexpr \(\dimen \) expression \rangle . The \(\dimen \) expression \rangle uses operators +, -, * and \(\) and brackets (,) in their normal sense. The operands of + and are \(\dimen \) s, the operators of * or \(\) are the pair \(\dimen \) and \(\lambda \) (in this order). The \(\dimen \) expression \(\rangle \) is terminated by something incompatible with the syntactic rule of \(\dimen \) expression \(\rangle \) or by \(\rangle \) relax. The \(\rangle \) relax (if it is used as a separator) is removed.

¹⁴ Very similar muglue type for math glues exists too but it is not described in this text.

This is a feature of the ε TeX extension. It is implemented in pdfTeX, XeTeX and LuaTeX.

¹⁶ 1 pt = 1/72.27 in $\doteq 0.35$ mm; 1 pc = 12 pt; 1 bp = 1/72 in; 1 dd $\doteq 1.07$ pt; 1 cc = 12 dd; 1 sp = 2^{-16} pt = T_EX accuracy.

The rule 2) can be terminated by one optional space.

- The *(skip)* could be:
 - a register of glue type or dimen type or counter type;
 - \(\lambda \) in the \(\lambda \) generalized \(\dimen\rangle\) is the same as \(\lambda \) in the normal \(\lambda \) in pseudo-unit fil or fill or fill can be used.
- The \(\text{toks}\)\) could be
 - $\langle expandafters \rangle$ { $\langle text \rangle$ }. The $\langle expandafters \rangle$ is typically a sequence of $\langle expandafter \rangle$ primitive commands (zero or more). The $\langle text \rangle$ is scanned without expansion but the exception can be given by $\langle expandafters \rangle$.

The main processor reads input tokens (from the output of activated or deactivated expand processor) in two contexts: *do something* or *read parameters*. By default it is in the context *do something*. When a primitive which allows parameters is read, the main processor reads the parameters in the context *read parameters*.

Whenever the main processor reads a register in the context *do something* it assumes that an assignment of a value to the register is declared here. The following text (equal sign and *(value)*) is read in the context *read parameters*. If the following text isn't compliant to the appropriate syntactic rule, TEX reports an error.

Examples of register manipulations:

```
\newcount\mynumber \newdimen\mydimen \newdimen\myskip
\hsize = .7\hsize % see the rule for <dimen>, unit could be a register
\hoffset = \dimexpr 10mm - (\parindent + 1in) \relax % usage of \dimexpr
\myskip = 10pt plus15pt minus 3pt
\mydimen = \myskip  % the information "plus15pt minus 3pt" is lost
\mynumber = \mydimen  % \mynumber = 10*2^16 because \mydimen = 10*2^16 sp
```

Each dimension is saved internally as an integer multiple of the sp unit in T_EX . When we need a conversion $\langle dimen \rangle \rightarrow \langle number \rangle$, then simply the internal unit sp is omitted.

The summary of most commonly used primitive registers including their default value given by plain TeX follows.

- \hsize=6.5in, \vsize=8.9in are paragraph width and page height.
- \hoffset=0pt, \voffset=0pt give left margin and top margin of the page. They are calculated from the *page origin* which is defined by coordinates \pdfvorigin=1in and \pdfhorigin=1in measured from left upper corner of the page.
- \parindent=20pt is the indentation of the first line of each paragraph.
- \parfillskip=0pt plus 1fil is horizontal glue added to the last line of the paragraph.
- \leftskip=0pt, \rightskip=0pt. Glues added to each line in the paragraph from the left and the right side. If the stretchability is declared here, then the paragraph is ragged left/right.
- \parskip=0pt plus 1pt is the vertical space between paragraphs.
- \baselineskip=12pt, \lineskiplimit=0pt, \lineskip=1pt. The \baselineskip rule says: Two consecutive lines in the vertical list have the baseline distance given by \baselineskip by default. The appropriate real glue is inserted between the lines. But if this real glue (between boxes) is less than \lineskiplimit then \lineskip is inserted between the boxes instead.
- \topskip=10pt is the distance between the top of the page box and the baseline of the first line
- \linepenalty=10, \hyphenpenalty=50, \exhyphenpenalty=50, \binoppenalty=700, \relpenalty=500, \clubpenalty=150, \widowpenalty=150, \displaywidowpenalty=50, \brokenpenalty=100, \predisplaypenalty=10000, \postdisplaypenalty=0, \interlinepenalty=0, \floatingpenalty=0, \outputpenalty=0. These penalties apply to various places in the vertical or horizontal list. Most important are \clubpenalty (inserted)

- below the first line of a paragraph) and \widowpenalty (inserted before the last line of a paragraph). Typographical rules often demand us to set these registers to 10000 (no page break is allowed here).
- \looseness=0 allows us to create of a "suboptimal" paragraph. The paragraph building algorithm tries to build the paragraph with \looseness lines more than the optimal solution. If the \tolerance does not have a sufficiently large value then this setting is simply ignored. It is reset to zero after each paragraph is completed.
- \spaceskip=0pt, \xspaceskip=0pt. If non-negative they are used as glues between words. Default values are read from the font metric data of the current font.
- \pretolerance=100, \tolerance=200, \emergencystretch=0pt \doublehyphendemerits=10000, \finalhyphendemerits=5000, \adjdemerits=10000, \hfuzz=0.1pt, \vfuzz=0.1pt are parameters for the paragraph building algorithm (not described here in detail).
- \hbadness=1000, \vbadness=1000. TEX reports a warning about badness on the terminal and to the log file if it is greater than these values. The warning has the form underfull \hbox or underfull \vbox. The value 100 means that the plus limit for glues is reached.
- \tracingonline=0, \tracingmacros=0, \tracingstats=0, \tracingparagraphs=0, \tracingpages=0, \tracingoutput=0, \tracinglostchars=1, \tracingcommands=0, \tracingrestores=0, \tracingscantokens=0, \tracingifs=0, \tracinggroups=0, \tracingassigns=0. If these registers have positive values then TeX reports details about the processing of built-in algorithms to the log file. If \tracingonline>0 then the same output is shown on the terminal.
- \showboxbreadth=5, \showboxdepth=3, \errorcontextlines=5. The amount of information shown when boxes are traced to the log file or an error is reported.
- \language=0. TeX is able to load more hyphenation patterns for more languages. This register points to the index of currently used hyphenation patterns. Zero means English.
- \lefthyphenmin=2, \righthyphenmin=3. Maximum letters left or right in hyphenated words
- \defaulthyphenchar=`\-. This character is used when words are hyphenated.
- \globaldefs=0. If it is positive then all settings are global.
- \hangafter=1, \hangindent=0pt. If \hangindent is positive, then after \hangafter lines all following lines are indented. Negative/positive values of \hangindent or \hangafter applies indentation from left or right and from the top or bottom of the paragraph. The \hangindent is set to 0 after each paragraph.
- \mag=1000. Magnification factor of all used dimensions. The value 1000 means 1:1.
- \escapechar=`\\ use this character in the \string primitive.
- \newlinechar=-1. If positive, this character is interpreted as the end of the line when printing to the log or by the \write primitive command.
- \endlinechar=`^^M. This character is appended to the end of each input line. The tokenizer converts it (the Ctrl-M character) to the space token.
- \time=now, \day=now, \month=now, \year=now. The values about current time/date are set here when TEX starts to process the document. The \time counts minutes after midnight.
- \prevdepth=* includes the depth of the last box in vertical mode.
- \prevgraph=* includes the number of lines of the paragraph when \par finishes.
- \overfullrule=5pt. A rectangle to this width is appended after each overfull \hbox.
- \mathsurround=0pt is the space inserted around a formula in internal math mode.
- \displaywidth=* includes the width of the line with display formula.
- \abovedisplayskip=12pt plus3pt minus9pt, \abovedisplayshortskip=0pt plus3pt, \belowdisplayskip=12pt plus3pt minus9pt, \belowdisplayshortskip=7pt plus3pt minus 4pt. These spaces are inserted above and below a formula generated in math display mode.

- \thinmuskip=3mu, \medmuskip=4mu plus 2mu minus 4mu, \thickmuskip=5mu plus 5mu. These spaces are inserted after comma, around binary operators, and around relations in math mode. The special math unit 1mu is (1/18)em.
- \tabskip=0pt is used by the \halign primitive command for creating tables.
- \output={\plainoutput}, \everypar={}, \everymath={} \everydisplay={}, \everyhbox={} \everybox={} \everycr={}, *\everyeof={}, \everyjob={}. These token lists are processed when an algorithm of TEX reaches a corresponding situations respectively: opens output routine, paragraph, internal math mode, display math mode, \vbox, \hbox, is at the end of a line in a table, at the end of an input file, or starts the job.
- \pdfpagewidth=210mm, \pdfpageheight=297mm are PDF page dimensions (implemented in pdfTEX and its successors).

12 Expandable primitive commands

These commands are processed like macros, i.e. they expand to another sequence of tokens. Notes about notation are in this and the following sections. If the documented command is from the εΤΕΧ extension (i.e. implemented in pdfΤΕΧ, ΧΞΤΕΧ and LuaΤΕΧ) then one * is prefixed. If it is from the pdfΤΕΧ extension (implemented in XΞΤΕΧ and LuaΤΕΧ too) then two ** are prefixed. If it is a LuaΤΕΧ only command then three *** are prefixed.

- \string (control sequence) expands to "the \escapechar" followed by the name of the control sequence. "The \escapechar" means a character with code equal to \escapechar or nothing if its value is out of range of character codes. All characters of the output are "other characters₁₂", only spaces (if any exist) are kept as space tokens \$\mu_{10}\$.
- ***\csstring (control sequence) works like\string but without \escapechar.
- *\detokenize_\(\frac{\expandafters}{\expandafters}\) re-tokenizes all tokens in the text. Control sequences used in \(\lambda text\rangle\) are re-tokenized like the \string primitive, spaces are tokens \(\mu_{10}\), and all other tokens are set as "other characters\(\text{12}\)".
- \the \(\text{register}\)\ expands to the value of the register. Examples appear in the previous section. The output is tokenized like of \detokenize. The exception is \the \(\text{tokens register}\): the output is the value of the \(\text{tokens register}\)\ without re-tokenizing and the expand processor does not expand this output in \def, \write, \message, etc., arguments.
- \scantokens \(\left(\frac{\expandafters}{\expandafters}\) {\(\left(\text)\)}\) re-tokenizes \(\left(\text)\)\) using the actual tokenizer setting. The behavior is the same as when writing \(\left(\text)\)\ to a virtual file and reading this file immediately.
- ***\scantextokens <u>\(\left(\extrigon)\)</u> is the same as \scantokens but removes problems with end-of-virtual-file.
- \meaning \langle token \rangle expands to the meaning of the \langle token \rangle. The text is tokenized like the \detokenize output.
- \csname \(\text\)\\ endcsname\) creates a control sequence with name \(\text\)\). If it is not already defined, then it gets the \relax meaning. For example \csname\) TeX\endcsname is the same as \TeX\. The \(\text\)\ must be expandable to characters only. Non-expandable control sequences (a primitive command at the main processor level, a register, a character constant, a font selector) are disallowed here. TeX\) reports the error missing \(\text\)endcsname\) when this rule isn't compliant.

Example: \csname foo: \the \mynumber \endcsname expands to control sequence \foo: 42 if the \mynumber is a register with the value 42. Another example: a macro programmer should implement a key/value dictionary using this primitive:

• \expandafter \(\lambda token 1 \rangle \lambda token 2 \rangle \) does the transformation \(\lambda token 1 \rangle \lambda token 2 \rangle \). Then TEX processes \(\lambda token 1 \rangle \) followed by \(\lambda expanded token 2 \rangle \). If \(\lambda token 2 \rangle \) isn't expandable then \(\expandafter \) silently does nothing. The \(\lambda expanded token 2 \rangle \) is only the first level of expansion. For example, a macro is transformed to its \(\lambda replacement text \rangle \) but without expansion of \(\lambda replacement text \rangle \) at this time. Or the \(\cappa csname \) is only the first level of expansion of \(\lambda replacement text \rangle \) at this time.

A typical usage: the $\langle token 1 \rangle$ is a macro or a TEX primitive which needs $\langle expanded \ token 2 \rangle$ as its parameter. The example above (the \keyval macro) shows this case. We need not define \csname by \def; we want to define a \dict:key. The \expandafter helps here.

The $\langle token\ 2 \rangle$ can be another \expandafter. We can see \expandafter chains in many macro files. For example \expandafter\A\expandafter\B\expandafter\C\D is processed as \A \B \C $\langle expanded \rangle$ \D.

The $\underline{\langle expandafters \rangle}$ { $\langle text \rangle$ } syntax rule enables us to prepare $\langle text \rangle$ by $\underline{\langle text \rangle}$ Syntax rule enables us to prepare $\underline{\langle text \rangle}$ by $\underline{\langle text \rangle}$ For example $\underline{\langle text \rangle}$ expands to $\underline{\langle text \rangle}$ of the $\underline{\langle text \rangle}$ only $\underline{\langle text \rangle}$ expandafters should be here. The expand processor does full expansion here until an opening brace $\underline{\langle text \rangle}$ is found.

• The general rule for all \if* commands is \(\lambda f condition \rangle \lambda true text \) \(\left\) is skipped or processed depending on the result of \(\left\) \(\left\) (if condition \rangle . When the expand processor is skipping the text due to an \\ \if* command, it expands nothing in the skipped text. But it is noticing all control sequences with meaning \\ \if*, \else and \\ \fi \) during skipping in order to skip correctly all nested \\ \if* \ldots \\ \else \ldots \\ \left\). \\ \\ \else \ldots \\ \left\) fi constructions.

The following *(if condition)* s are possible:

- ∘ \if ⟨token 1⟩ ⟨token 2⟩ is true if
 - a) both tokens are the same characters or
 - b) both tokens are control sequences (with arbitrary meaning but not "the character") or
 - c) one token is a character, second is a control sequence equal to this character (by \let) or
 - d) both tokens are control sequences, their meaning (set by \let) is the same character.
 - In a), c) and d), only character codes are compared, no their category codes. Example: you can say test=a then if a returns true.
- $\circ \setminus ifx (token 1) (token 2)$ is true if the meanings of (token 1) and (token 2) are the same.
- *\ifcsname $\langle text \rangle$ \endcsname is true if the control sequence $\langle text \rangle$ is declared.
- \ifnum $\langle number 1 \rangle \langle relation \rangle \langle number 2 \rangle$. The $\langle relation \rangle$ could be < or = or >. It returns true if the comparison of the two numbers is true.
- \ifodd (*number*) returns true if the (*number*) is odd.
- $\circ \land ifdim \langle dimen \rangle \langle relation \rangle \langle dimen \rangle$ The $\langle relation \rangle$ could be $\langle or = or \rangle$. It returns true if the comparison of the two dimensions is true.
- \iftrue returns constantly true, \iffalse returns constantly false.
- \ifhmode, \ifvmode, \ifmmode true if the current mode is horizontal, vertical, math.
- \ifinner returns true if the current mode is internal vertical, internal horizontal or internal math mode.
- \ifhbox \langle box number \rangle, \ifvbox \langle box number \rangle, \ifvbox \langle box number \rangle represents \hbox, \vbox, void box respectively.
- $\circ \setminus \text{ifcat} \langle token 1 \rangle \langle token 2 \rangle$ is true if the category codes of $\langle token 1 \rangle$ and $\langle token 2 \rangle$ are equal.
- \ifeof \(\file number \) is true if the file attached to the \(\file number \) by the \openin primitive does not exist, or the end of file was reached by the \read primitive.
- *\unless \(\int if condition\)\ negates the result of \(\int if condition\)\ before skipping or processing the following text.
- \ifcase $\langle number \rangle \langle case 0 \rangle \setminus \langle case 1 \rangle \setminus \langle case 2 \rangle \dots \setminus \langle case n \rangle \setminus \langle else \langle else \ text \rangle \setminus \langle else \ text \rangle \setminus$

- *\pdfstrcmp{ $\langle string A \rangle$ }{ $\langle string B \rangle$ } returns -1 if $\langle string A \rangle < \langle string B \rangle$, 0 if they are equal or 1 in other cases. It is not implemented in LuaTeX.
- \noexpand \(\lambda token\rangle\). The expand processor does not expand the \(\lambda token\rangle\) if it is expanding the text in \(\lambda edef, \write, \message\) or similar lists.
- *\unexpanded_\(\left(\frac{\left(\text)}{\text}\right)\) returns \(\left(\text)\) and applies \noexpand to all tokens in the \(\left(\text)\).
- **\expanded{ \(\tau tokens\)\) } expands \(\tau tokens\)\) and reads these expanded \(\tau tokens\)\) again.
- *\numexpr \(num. expression \) , *\dimexpr \(dimen expression \) . Documented in the \(dimen \) and \(number \) syntax rules in section 11.
- \number \(number \), \romannumeral \(number \) prints \(number \) in decimal digits or as a roman numeral (with lowercase letters).
- \topmark (last from previous page), \firstmark (first on current page), \botmark (last on current page). They expand to the corresponding \mark included in the current or previous page-box. Usable for implementing running headers in the output routine.
- \fontname \(\font selector \) expands to the file name ***(or font name) of the font given by its \(\font selector \). The \fontname\font expands to the file name of the current font.
- \jobname expands to the name of the main file of this document (without extension .tex).
- \input \(\file name \) \(\space \) \(\classical TEX \) \(\operatorname \) \" \operatorname \(\file name \) \\ opens the given \(\file name \) \(\text{and} \) \(\text{and} \) \(\text{tries again to open } \(\frac{file name}{name} \) \(\text{tex.} \) If that doesn't exist, TEX reports an error. The alternative syntax with "\(. . . \) \(\text{allows having spaces in the file names. \)
- \endinput. The current line is the last line of the file being input. The file is closed and reading continues from the place where \input of this file was started. \endinput done in the main file causes future reading from the terminal and a headache for the user.
- ***\directlua $\{\langle text \rangle\}$ runs a Lua script given in $\langle text \rangle$.
- ***\luaescapestring { \langle text \rangle} \rangle prepares \langle text \rangle for usage as Lua string (escapes " and \).
- ***\immediateassignment, \immediateassigned $\{\langle code \rangle\}$ do following assignment (or assignments in $\langle code \rangle$) expandable.

13 Primitive commands at the main processor level

Commands used for declaration of control sequences

- \def, \edef, \gdef, \xdef were documented in section 9.
- \long is a prefix; it can be used before \def, \edef, \gdef, \xdef. The declared macro accepts the control sequence \par in its parameters.
- *\protected is a prefix; it can be used before \def, \edef, \gdef, \xdef. The declared macro is not expanded by the expand processor in \write, \message, \edef, etc., parameters.
- \outer is a prefix; it can be used before \def, \edef, \gdef, \xdef. The declared macro must be used only when the main processor is in the context *do something* or TEX reports an error.
- \global is a prefix; it can be used before any assignment (commands from this subsection and \(\frac{register} = \langle value \rangle \) settings). The assignment is global regardless of the current group.
- \chardef \(\lambda control \) sequence \(\rightarrol \) control sequence \(\rightarrol \) control sequence \(\rightarrol \) control sequence \(\rightarrol \) declares a constant \(\lambda number \rangle \). When the main processor is in the context \(do something \) and it gets a \(\chardef\)-ed control sequence, it prints the character with Unicode (ASCII code) \(\lambda number \rangle \) to the typesetting output. If it gets a \(\mathred mathred control \) sequence, it prints a math object (it works only in math mode).
- \countdef \(\lambde(\control\) sequence\) = \(\lambde(number)\) declares \(\lambde(\control\) sequence\) as an equivalent to the \(\control\) the \(\control\) which is a register of counter type. The \(\cap(number)\) here means an address in the array of registers of counter type. The \(\control\) is reserved for the page number. Macro programmers rarely use direct addresses (1 to 9), more common is using the allocation macro \(\control\) sequence\).
- \dimendef, \skipdef, \muskipdef, \toksdef followed by \(\lambda{control sequence} = \lambda{number}\) declare analogically equivalents to \dimen\(\lambda{number}\), \skip\(\lambda{number}\), \muskip\(\lambda{number}\) and

\toks \(\(\number\)\). Usage of allocation macros \(\newdimen\), \(\newmuskip\), \(\newmuskip\

• \font \(\font \) selector \(= \langle file \) name \(\langle \) \(\square \) \(\square \) \(\square \) declares \(\langle font \) selector \(\rangle \) of a font implemented in the \(\langle file \) name \(\langle \). tfm. The \(\square \) size specification \(\rangle \) can be at \(\langle \) dimen \(\rangle \) or scaled \(\langle factor \rangle \). The \(\langle factor \rangle \) equal to 1000 means 1:1. New syntax (supported by Unicode engines) is

```
\font \langle font \ selector \rangle = " \langle font \ name \rangle : \langle font \ features \rangle " \ \langle size \ specification \rangle  \ \font \langle font \ selector \rangle = " [ \langle font \ file \rangle ] : \langle font \ features \rangle " \ \langle size \ specification \rangle
```

The $\langle font \ file \rangle$ is a file name without an .otf or .ttf extension. The $\langle font \ features \rangle$ are font features prefixed by + or - and separated by a semicolon. The otfinfo -f $\langle file \ name \rangle$.otf command (on command line) can list them. LuaTeX supports alternative syntax: {...} instead of "...". Example: \font\test={[texgyretermes-regular]:+onum;-liga} at12pt.

- \let $\langle control \ sequence \rangle = \langle token \rangle$ sets to the $\langle control \ sequence \rangle$ the same meaning as $\langle token \rangle$ has. The $\langle token \rangle$ can be whatever, a character or a control sequence.
- \futurelet \(\langle control \) sequence \(\langle \) \(\text{token 1}\rangle \) \(\text{token 2}\rangle \) works in two steps. In the first step it does \\\langle \text{control sequence} = \(\text{token 2}\rangle \) and in the second step \(\text{token 1}\rangle \) \(\text{token 2}\rangle \) is processed with activated token processor. Typically \(\text{token 1}\rangle \) is a macro that needs to know the next token.

Commands for box manipulation

- \hbox{\langle cmds\} or \hbox to \langle dimen\ \langle \langle cmds\} or \hbox spread \langle dimen\ \langle \langle cmds\} creates a box. The material inside this box is a \langle horizontal list\ generated by \langle cmds\ in horizontal mode in a group. The width of the box is the natural width of the \langle horizontal list\ or \langle dimen\ given by the to \langle dimen\ parameter or it is spread by the \langle dimen\ given by the spread \langle dimen\ parameter. The height of the box is the maximum of heights of all elements in the \langle horizontal list\). The depth of the box is the maximum of depths of all such elements. These elements are set on the common baseline (exceptions can be given by \lower or \rangle raise commands).
- \vtop{\langle cmds \rangle} \text{ (with optional to or spread parameters) is the same as \vbox, but the base-line of the resulting box goes through the baseline of the first element in the \langle vertical list \text{ (note that \vbox has its baseline equal to the baseline of the last element inside).
- \vcenter{\langle cmds \rangle} \text{ (with optional to or spread parameters) is equal to \vbox, but its math axis 17 is exactly in the middle of the box. So its baseline is appropriately shifted. The \vcenter can be used only in math modes but given \langle cmds \rangle are processed in vertical mode.
- \lower \langle dimen \langle \loox \rangle, \rangle raise \langle dimen \rangle \loox \rangle move the \langle box \rangle up or down by the \langle dimen \rangle in horizontal mode. \moveleft \langle dimen \rangle \loox \rangle, \moveright \langle dimen \rangle \loox \rangle move the \langle box \rangle box \rang
- \setbox \langle box number \rangle = \langle box \rangle. TeX has a set of box registers addressed by \langle box number \rangle and accessed via \box \langle box number \rangle or alternatives described below. The \setbox command saves the given \langle box \rangle to the register addressed by \langle box number \rangle.

Macro programmers use only 0 to 9 $\langle box\ numbers \rangle$ directly. Other addresses to box registers should be allocated by the $\newbox\ \langle control\ sequence \rangle$ macro. The $\langle control\ sequence \rangle$ is equivalent to a $\langle box\ number \rangle$, not to the box register itself.

The \setbox command does an assignment, so the \global prefix is needed if you want to use the saved box outside the current group.

 $^{^{17}}$ The math axis is a horizontal line which goes through centers of + and - symbols. Its distance from the baseline is declared in the math font metrics.

- \box\langle box register. Example: you can do \setbox0=\hbox{abc}. This \hbox isn't printed but saved to the register 0. At a different place you use \box0, which prints \hbox{abc}, or you can do \setbox0=\hbox{cde\box0} which saves the \hbox{cde\hbox{abc}} to the register 0.
- \wd \(\lambda number \), \\ht \(\lambda box number \), \\dp \(\lambda box number \). You can measure or use the width, height and depth of a box saved in a register addressed by \(\lambda box number \). Examples \\mydimen=\\ht0, \\hbox to\\wd0\{\ldots.\right}\). You can re-set the dimensions of a box saved in a register addressed by \(\lambda box number \rangle\). For example \\setbox0=\\hbox\{abc}\) \\\wd0=0pt \\box0\) gives the same result as \\\hbox to\0pt\{abc}\) but without the warning about overfull \\\hbox.
- \unhbox \(\delta box number \), \unvbox \(\delta box number \), \unvcopy \(\delta box number \) do the same work as \\box or \\copy but they don't return the whole box but only its contents, i.e. the horizontal or vertical material. Example: try to do \\setbox0=\\hbox{abc} and later \\setbox0=\\hbox{cde\unhbox0} saves the \\hbox{cdeabc} to the box register 0.

The \unhbox and \unhcopy commands return the \hbox contents and \unvbox, \unvcopy commands return the \vbox contents. If incompatible contents are saved, then TEX reports an error. You can test the type of saved contents by \ifhbox or \ifvbox.

- \vsplit \(\langle box number \rangle \to \langle dimen \rangle \to \langle dimen \rangle \text{ to \(\langle dimen \rangle \text{ dimen} \rangle \text{ height and the rest remains in the box \(\langle box number \rangle \text{ is broken part is saved as a \vbox which is the result of this operation. For example, you can say \newbox\column \setbox\column=\vbox\{\langle \langle \langle \text{ setbox}\column \rangle \text{ setbox}\column \text{ first 5cm of saved material.}
- \lastbox returns the last box in the current vertical or horizontal material and removes it.

Commands for rules (lines in the typesetting output) and patterns

- \hrule creates a horizontal line in the current vertical list. If it is used in horizontal mode, it finishes the paragraph by \par first. \hrule width\(dimen\) height\(dimen\) depth\(dimen\) creates (in general, with given parameters) a full rectangle (something like a box, but it isn't treated as the box) with given dimensions. Default values are: "width" =width of outer \vbox, "height" =0.4 pt, "depth" =0 pt.
- \vrule creates a vertical line in the current horizontal list. If it is used in vertical mode, it opens the horizontal mode first. \vrule width\dimen\ height\dimen\ dimen\ depth\dimen\ creates (in general, with given parameters) a full rectangle with given dimensions. Default values are: "width" =0.4 pt, "height" =height of outer \hbox, "depth" =depth of outer \hbox.

The optional parameters of \hrule and \vrule can be specified in arbitrary order and they can be specified more than once. In such a case, the rule "last wins" is applied.

- \leaders \(rule \) \(\left(glue \) \) creates a glue (maybe shrinkable or stretchable) filled by a full rectangle. The \(\lambda rule \) is \(\text{vrule} \) is \(\text{vrule} \) or \(\text{hrule} \) (maybe with its optional parameters). If the \(\left(glue \) is specified by an \(\text{hskip} \) command (maybe with its optional parameters) or by its alternatives \(\text{hss}, \) \(\text{hfill}, \) \(\text{hfill}, \) then the resulting glue is horizontal (can be used only in horizontal mode) and its dimensions are: width derived from \(\lambda glue \rangle, \) height plus depth derived from \(\lambda rule \rangle, \) is specified by a \(\text{vskip} \) command (maybe with its optional parameters) or by its alternatives \(\text{vss}, \text{vfil}, \text{vfill}, \) then the resulting glue is vertical (can be used only in vertical mode) and its dimensions are: height derived from \(\lambda glue \rangle, \) width derived from \(\lambda rule \rangle, \) depth is zero.
- \leaders \langle box \langle \glue \rangle creates a vertical or horizontal glue filled by a pattern of repeated \langle box \rangle. The positions of boxes are calculated from the boundaries of the outer box. It is used for the dots patterns in the table of contents. \cleaders \langle box \rangle \glue \rangle does the same, but the pattern of boxes is centered in the space derived by the \langle glue \rangle. Spaces between boxes are

not inserted. $\xleaders \langle box \rangle \langle glue \rangle$ does the same, but the spaces between boxes are inserted equally.

More commands for creating something in typesetting output

- \par closes horizontal mode and finalizes a paragraph.
- \indent, \noindent. They leave vertical mode and open a paragraph with/without paragraph indentation. If horizontal mode is current then \indent inserts an empty box of \parindent width; \noindent does nothing.
- \hskip, \vskip. They insert a horizontal/vertical glue. Documented in section 7.
- \hfil, \hfill, \hss, \vfil, \vss are alternatives of \hskip, \vskip, see section 7.
- \hfilneg, \vfilneg are shortcuts for \hskip Opt plus-1fil and \vskip Opt plus-1fil.
- \kern \dimen \puts unbreakable horizontal/vertical space depending on the current mode.
- \penalty \(number \) puts the penalty \(number \) on the current horizontal/vertical list.
- \char \(number \) prints the character with code \(number \). The "character itself" does the same.
- \accent \(number \) \(\character \) places an accent with code \(number \) above the \(\character \).
- \u is the control space. In horizontal mode, it inserts the space glue (like normal space but without modification by the \spacefactor). In vertical mode, it opens horizontal mode and puts the space. Note that normal space does nothing in vertical mode.
- \discretionary{\(\lambda\)}{\(\lambda\)}{\(\lambda\)}\) works in horizontal mode. It prints \(\lambda\) break\\) in normal cases but if there is a line break then \(\lambda\) preak\\) is used before and \(\lambda\) post break\\) after the breaking point. German Zucker/Zuk-ker (sugar) can be implemented by \(Zu\\discretionary\{k-\}\{k\}\{ck\}\err.\)
- \- is equal to \discretionary{\char\hyphenchar\font\}{}{}. The \hyphenchar\font\ is used as a hyphenation character. It is set to \defaulthyphenchar value when the font is loaded, but it can be changed.
- \/ does an italic correction. It puts a little space if the last character is slanted.
- \unpenalty, \unskip removes the last penalty/last glue from the current horizontal/vertical list.
- \vadjust{\langle cmds \rangle}. This works in horizontal mode. The \langle cmds \rangle must create a \langle vertical list \rangle and \vadjust saves a pointer to this list into the current horizontal list. When \par creates lines of the paragraph and distributes them to a vertical list, each line with the pointer from \vadjust has the corresponding \langle vertical list \rangle immediately appended after this line.
- \insert \(\(\text{number} \) \{ \(\conds \) \}. The \(\conds \) \create a \(\conds \) and \insert saves a pointer to such a \(\conds \) into the current list. The output routine can work with such \(\conds \) vertical list \(\conds \) s. The footnotes or \(floating \) objects \(\text{tables}, \) figures \(\text{are implemented by the } \) \(\text{insert primitive.} \)
- \halign{\langle declaration \ \cr \langle row 1 \ \cr \langle row 2 \ \cr \ \. \cr \langle row n \ \cr} \ creates a table of boxes in vertical mode. The \langle declaration \rangle declares one or more column patterns separated by &4. The rows use the same character to separate the items of the table in each row. The \halign works in two passes. First it saves all items to boxes and the second pass performs \hbox to w for each saved item, where w is the maximum width of items in each actual column.

Detailed documentation of \halign is out of scope of this manual. Only one example follows: the macro \putabove puts #1 above #2 centered. The width of the resulting box is equal to the maximum of widths of these two parameters. The \delta declaration \hfil#\hfil means that the items will be centered:

\def\putabove#1#2{\vbox{\halign{\hfil##\hfil\cr#1\cr#2\cr}}}.

- \valign does the same as \halign but rows ↔ columns. It is not commonly used.
- \cr, \crcr, \span, \omit, \noalign{\langle} are primitives used by \halign and \valign.

Commands for register calculations

• \advance \(\langle register \rangle \text{by} \langle value \rangle \text{ does (formally) \(\langle register \rangle = \langle register \rangle + \langle value \rangle \). The \(\langle register \rangle \text{ is \(\langle number \rangle \text{ or \(\langle dimen \rangle \)}\) (depending on the type of \(\langle register \rangle \)).

- \multiply $\langle register \rangle$ by $\langle number \rangle$ does $\langle register \rangle = \langle register \rangle * \langle number \rangle$.
- \divide $\langle register \rangle$ by $\langle number \rangle$ does $\langle register \rangle$ = $\langle register \rangle$ / $\langle number \rangle$. If the $\langle register \rangle$ is number type then the result is truncated.
- See *\numexpr and *\dimexpr, expandable primitives documented in sections 11 and 12.
- **\pdfuniformdeviate \(number \)\ expands to a random number uniformly distributed in the range 0 (inclusive) to \(number \)\ (exclusive). Normal distribution between -65536 and 65536 can be reached by **\pdfnormaldeviate. The generator is initialized by time of the compilation, or you can use **\pdfsetrandomseed \(number \)\ to do fixed initialization, \(number \)\ is an integer less than 1,000,999,999. Luatex supports the same primitives but without \pdf prefix.

Internal codes

- \catcode \(number \) is category code of the character with \(number \) code. Used by tokenizer.
- \lccode \(number \) is the lowercase alternative to the \\char \(number \). If it is zero then a lowercase alternative doesn't exist (for example for punctuation). Used by the \\lowercase primitive and when breaking points are calculated from hyphenation patterns.
- \uccode \(number \) is the uppercase alternative to the \char \(number \). If it is zero, then the uppercase alternative doesn't exist. Used by the \uppercase primitive.
- \lowercase \(\left(\frac{\expandafters}{\text}\)\), \uppercase \(\left(\frac{\expandafters}{\text}\)\) transform \(\text)\) to lowercase/uppercase using the current \locode or \uccode values. Returns transformed \(\text\)\ where catcodes of tokens and tokens of type \(\left(\control\)\ sequence\) are unchanged.
- \sfcode \(number \) is the spacefactor code of the \\char\(number \). The \\spacefactor register keeps (roughly speking) the \\sfcode of the last printed character. The glue between words is modified (roughly speaking) by this \\spacefactor. The value 1000 means factor 1:1 (no modification is done). It is used for enlarging spaces after periods and other punctuation in English texts.\(\frac{18}{2} \)

Commands for reading or writing text files

- Note that the main input stream is controlled by \input and \endinput expandable primitive commands documented in section 12.
- \openin \(\file number \) = \(\file name \) \(\square \) \) openin \(\file number \) = \(\file name \) \(\fill name \
- \read \(\file \) number \\ to \(\control \) sequence \\ \def \(\control \) sequence \\ \{ \langle \) (replacement \text \) \\ where the \(\langle \) replacement \(\text{text} \) is the tokenized next line from the file declared by \(\control \) penin as \(\langle \) file \(number \rangle \).
- \openout \(\file number \) = \(\file name \) \(\square \) \(\openout \) \(\file number \) = "\(\file name \) ") \(\openout \) \(\file name \) \(\file name \) \(\file number \) . If the file already exists, then its contents are removed.

\write \langle file number \ \{\langle text\}\ \} saves \langle text\} into memory and puts a pointer to this memory into the typesetting output. When the page is shipped out (by output routine), then all such pointers from this page are processed: the $\langle text \rangle$ is expanded at this time and its expansion

¹⁸ This feature is not compliant with other typographical traditions, so the \frenchspacing macro which sets all \sfcodes to 1000 is used very often.

¹⁹ Note that \(\file number \) is an address to the file descriptor. Macro programmers don't use these addresses directly but by the \(\text{newread} \(\control \) sequence \(\) and \(\text{newrite} \(\control \) sequence \(\) allocation macros.

- is saved to the file. If (for example) the $\langle text \rangle$ includes $\t \page 100$ then it is expanded to the correct page number of this page.
- \closein \(file number \), \closeout \(file number \) closes the open file. It is done automatically when TEX terminates its job.
- \immediate is a prefix. It can be used before \openout, \write and \closeout in order to do the desired action immediately (without waiting for the output routine).

Others primitive commands

- \relax does nothing. Used for terminating incomplete optional parameters, for example.
- \begingroup opens group, \endgroup closes group. The \{\}_1 \and \\}_2 \do the same but moreover, they are syntactic constructors for primitive commands and math lists (in math mode). These two types of groups (declared by mentioned commands or by mentioned characters) cannot be mixed, i.e. \begingroup...\} gives an error. Plain TEX declares \bgroup and \egroup control sequences as equivalents to \{\}_1 \and \\}_2. They can be used instead of \{\}_1 \and \\}_2 when we need to open/close a group, to create a math list, or when a box is constructed. For example, \\\box\bgroup \(\lambda ext\rangle \)\egroup is syntactically correct.
- \aftergroup (token) saves the (token) and puts it back in the input queue immediately after the current group is closed. Then the expand processor expands it (if it is expandable). More \aftergroups in one group create a queue of (token) s used after the group is closed.
- \afterassignment $\langle token \rangle$ saves the $\langle token \rangle$ and puts it back immediately after a following assignment ($\langle register \rangle = \langle value \rangle$, \def, etc.) is done.
- \lastskip, \lastpenalty return the value of the last element in the current horizontal or vertical list if it is a glue/penalty. It returns zero if the element found is not the last.
- \ignorespaces ignores spaces in horizontal mode until the next primitive command occurs.
- \mark{\langle text\rangle} saves \langle text\rangle\$ to memory and puts a pointer to it in the typesetting output. The \langle text\rangle\$ is used as expansion output of \firstmark, \topmark and \botmark expansion primitives in the output routine.
- \parshape $\langle number \rangle \langle I1 \rangle \langle W1 \rangle \langle I2 \rangle \langle W2 \rangle \dots \langle In \rangle \langle Wn \rangle$ enables to set arbitrary shape of the paragraph. The $\langle number \rangle$ declares the amount of data: the $\langle number \rangle$ pairs of $\langle dimen \rangle$ s follow. The i-th line of the paragraph is shifted by $\langle Ii \rangle$ to the right and its width is $\langle Wi \rangle$. The \parshape data are re-set after each paragraph to zero values (normal paragraph).
- \special{\langle text\rangle} \} puts the message \langle text\rangle into the typesetting output. It behaves as a zero-dimension pointer to \langle text\rangle and it can be read by printer drivers. It is recommended to not use this old technology when PDF output is created directly.
- \shipout $\langle box \rangle$ outputs the $\langle box \rangle$ as one page. Used in the output routine.
- \end completes the last page and terminates the job.
- \dump dumps the memory image to a file named \jobname.fmt and terminates the job.
- \patterns{\language.
- \hyphenation{\language.
- $\mbox{message}\{\langle text \rangle\}$ prints $\langle text \rangle$ on the terminal and to the log file.
- \errmessage{ $\langle text \rangle$ } behaves like \message{ $\langle text \rangle$ } but TrX treats it as an error.
- Job processing modes can be set by \scrollmode (don't pause at errors), \nonstopmode (don't pause at errors or missing files), \batchmode (\nonstopmode plus no output to the terminal). Default is \errorstopmode (stop at errors).
- \inputlineno includes the number of the current line from current file being input.
- \show\(\langle control sequence \rangle \), \showbox\(\langle box number \rangle \), \showlists, and \showthe\(\langle register \rangle \) are tracing commands. TEX prints desired result on the terminal and to the log file and pauses.

Commands specific for PDF output (available in pdfT_EX, X_ET_EX and LuaT_EX)

- \pdfoutput is numeric register. If its value is 1 then PDF format is geneerated.
- \pdfliteral{\language} text\rangle \ puts the \language to the typesetting output. All PDF constructs defined in the PDF specification are allowed. The dimensions of the \pdfliteral object in the output are considered zero. So, if \language text\rangle moves the current

- typesetting point then the notion about its position from the TEX point of view differs from the real position. A good practice is to close \langle text \rangle to q...Q PDF commands. The command \pdfliteral is typically used for generating graphics and for linear transformation.
- \pdfcolorstack \(number \) \(op \) \{ \langle text \} \) (where \(op \) is push or pop or set) behaves like \pdfliteral \{ \langle text \} \} and it is used for color switchers. For example when \(\langle text \) is 1 0 0 rg then the red color is selected. TeX sets the color stack at the top of each page to the color stack opened at the bottom of the previous page.
- \pdfximage \(\frac{\text{height}}{\dimen}\) \(\frac{\text{depth}}{\dimen}\) \(\text{width}}{\dimen}\) \(\text{page}\) \(\left(\frac{\text{file name}}{\text{o}}\) \) \(\text{loads}\) the image from \(\frac{\text{file name}}{\text{o}}\) to the PDF output and returns the number of such a data object in the \pdflastximage register. Allowed formats are PDF, JPG, PNG. The image is not drawn at this moment. A macro programmer can save \mypic=\pdflastximage and draw the image by \pdfrefximage\mypic (maybe repeatedly). Data of the image are loaded to the PDF output only once. The \pdfximage allows more parameters; see pdfTeX documentation.
- \pdfsetmatrix $\{\langle a \rangle \langle b \rangle \langle c \rangle \langle d \rangle\}$ multiplies the current transformation matrix (used for linear transformations) by \matrix $\{\langle a \rangle \& \langle c \rangle \cr \langle b \rangle \& \langle d \rangle\}$.
- \pdfdest name{\langle label \rangle} \text{\text{type}} \relax declares a destination of a hyperlink. The \langle label \rangle must match with the \langle label \rangle used in \pdfoutline or \pdfstartlink. The \langle type \rangle declares the behavior of the pdf viewer when the hyperlink is used. For example, xyz means without changes of the current zoom (if not specified). Other types should be fit, fith, fitv, fitb.
- \pdfstartlink height \(\) depth \(\) depth \(\) dimen \(\) attributes \(\) goto \(\) name \(\) \(\) declares the beginning of a hyperlink. A text (will be sensitive on mouse click) immediately follows and it is terminated by \pdfendlink. The height and depth of the sensitive area and the \(\) label \(\) used in \pdfdest are declared here. More parameters are allowed; see the pdfTeX documentation.
- \pdfoutline goto name{ $\langle label \rangle$ } count $\langle number \rangle$ { $\langle text \rangle$ } creates one item with $\langle text \rangle$ in PDF outlines. $\langle label \rangle$ must be used somewhere by \pdfdest name{ $\langle label \rangle$ }. The $\langle number \rangle$ is the number of direct descentants in the outlines tree.
- \pdfinfo {\langle key \rangle (\langle text \rangle)} saves to PDF the information which can be listed by the command pdfinfo \langle file \rangle. pdf on the command line for example. More \langle key \rangle (\langle text \rangle) should be here. The \langle key \rangle can be /Author, /Title, /Subject, /Keywords, /Creator, /Producer, /CreationDate, /ModDate. The last two keywords need a special format of the \langle text \rangle value. All \langle text \rangle values (including \langle text \rangle used in the \pdfoutline) must be ASCII encoded or they can use a very special PDFunicode encoding.
- \pdfcatalog enables us to set of a default behavior of the PDF viewer when it starts.
- \pdfsavepos saves an internal invisible point to the typesetting output. These points are processed when the page is shipped out: the numeric registers \pdflastxpos and \pdflastypos get values for the absolute position of this invisible point (measured from the left upper corner of the page in sp units). The macro programmer can follow \pdfsavepos by the \write command and save these absolute positions to a text file which can be read in the next run of TeX in order to get these absolute positions by macros.
- \pdffeedback, \pdfextension, \pdfvariable declare pdfTeX "primitives" in LuaTeX.
- Moreover, LuaTEX uses different names for several primitives: \pagewidth is \pdfpagewidth, \pageheight is \pdfpageheight, \outputmode is \pdfoutput, \savepos is \pdfsavepos, \lastxpos is \pdflastxpos, \lastxpos is \pdflastxpos, \outputmode is \pdfoutput, \saveimageresource is \pdfximage, \lastsavedimageresourceindex is \pdflastximage, \useimageresource is \pdfrefximage, \protrudechars is \pdfprotrudechars, \normaldeviate is \pdfnormaldeviate, \uniformdeviate is \pdfuniformdeviate, \setrandomseed is \pdfsetrandomseed.

Microtypographical extensions (available in pdfTeX, LuaTeX and not all of them in XeTeX)

• \pdffontexpand \(\font \) selector\\ \(\stretching \) \(\stre

font size. (*stretching*) and (*shrinking*) are the maximum allowed values. The stretching or shrinking are not applied continuously but by the given (*step*). To activate this feature you must set the \pdfadjustspacing numeric register to a positive value.

- \efcode $\langle font\ selector \rangle \langle char.\ code \rangle = \langle number \rangle$ sets the degree of willigness of given character to be deformed when \pdffontexpand is used. Default value for all characters is 1000 and $\langle number \rangle / 1000$ gives the proportion coefficient for stretching or shrinking of the character with respect to the "normal" deformation of characters with default value 1000.
- \rpcode \(\frac{\text{font selector}}{\text{char. code}} = \langle number \rangle, \langle \(\text{font selector} \rangle \text{char. code} \) = \(\text{number} \rangle \) allows the declaration of hanging punctuation. Such punctuation is slightly moved to the right margin (if \rpcode is declared and the character is at the right margin) or to the left margin (for \lpcode by analogy). The \(\text{number} \rangle \) gives the amount of such movement in 1/1000 of the font size. To activate this feature you must set \rangle pdfprotrudechars to a positive value (2 or more means a better algorithm).
- \letterspacefont \(\)control sequence \(\) \
- The following commands have the same syntax as \rpcode: \knbscode (added space after the character), \stbscode (added stretchability of the glue after the character), \shbscode (added shrinkability after the character), \knbccode (added kern before the character), \knaccode (added kern after the character). To activate this feature you must to set \pdfadjustinterwordglue to a positive value. This feature is supported by pdfTEX only.

Commands used in math mode

- \displaystyle, \textstyle, \scriptstyle, \scriptscriptstyle are $\langle style\ primitive \rangle$ s. They switch to the specified style. \mathchoice{ $\langle D \rangle$ }{ $\langle T \rangle$ }{ $\langle S \rangle$ } prints only one its agrument dependent on the current math style.
- \mathord, \mathop, \mathbin, \mathrel, \mathopen, \mathclose, \mathpunct followed by {\langle math list\rangle} create a math object of the given class.
- \left \(\delimiter \) \(\formula \) \right \(\delimiter \) \creates a math \(\formula \) and gives \(\delimiter \) \s around it with an appropriate size (compatible with the size of the formula). The \(\delimiter \) \s are typically brackets.
- *\middle \(\delimiter \) can be used inside the \(\formula \) surronded by \left, \right. The given \(\delimiter \) gets the same size as delimiters declared by appropriate \left, \right.
- Exponents and scripts are typically at the right side of the preceding math object. But if this object is a "big operator" (summation, integral) then exponents and scripts are printed above and below this operator. The commands \limits, \nolimits, \displaylimits used before exponents and scripts constructors (^7 and _8) declare an exception from this rule.
- \$ $\langle formula \rangle \neq 0$ \eqno $\langle mark \rangle \$$ puts the $\langle mark \rangle$ to the right margin as $\ \ gously$, \$ $\langle formula \rangle \geq 0$ \leqno $\langle mark \rangle \$$ puts it to the left margin.
- \mkern, \mskip work like \kern, \hskip, but dimensions are set in mu=1/18em units.
- \nonscript ignores following skip command if it is used in $\langle S \rangle$ or $\langle SS \rangle$ style.

Commands for setting math codes and math-family fonts

Each character used in math mode must have its *math-code*. It includes *class* of the character and how the glyph of the character should be printed. The class is one of this: 0=Ord, 1=Op, 2=Bin, 3=Rel, 4=Open, 5=Close, 6=Punct, and it affects spacing between objects, super/sub/script behavior etc. The glyph for printing the character is saved in a *math-family font*

at its *slot*. Each math-family font has an assigned number using \textfont, \scriptfont and \scriptscriptfont primitives. When old 7bit TeX fonts are used, then the whole set of math characters is divided to more math-family fonts, each of them has its own number. When Unicode math is used then all math characters are stored in a single font and we (almost) never need to use more than single math-family font with a single number. The format must specify the math-code (i.e. class, math-family font number and slot) for all characters used in math mode by following primitives.

The $\langle math\text{-}code \rangle$ mentioned below is a single 15bit number mostly used in hexadecimal form with four digits: " $\langle d1 \rangle \langle d2 \rangle \langle d3 \rangle \langle d4 \rangle$, where $\langle d1 \rangle$ is the class, $\langle d2 \rangle$ is the math-family font number and $\langle d3 \rangle \langle d4 \rangle$ is the slot.

- \mathcode \(num \) = \(math-code \) sets the math-code for the character given by its \(num \) ASCII code. The \(num \) is 8bit number.
- \mathchardef \langle sequence \rangle = \langle math-code \rangle declares math-code for given \langle sequence \rangle. When the \langle sequence \rangle is used in math mode then it behaves as a single object equal to a real single character with its \langle math-code \rangle.
- \textfont $\langle num \rangle = \langle font \rangle$ declares math-family font $\langle num \rangle$ as $\langle font \rangle$ for normal size characters. The $\langle font \rangle$ is a font selector given previously by \font primitive.
- \scriptfont $\langle num \rangle = \langle font \rangle$ declares math-family font $\langle num \rangle$ as $\langle font \rangle$ for script size.
- \scriptscriptfont $\langle num \rangle = \langle font \rangle$ declares math-family font $\langle num \rangle$ as $\langle font \rangle$ for script-inscript size.

Unicode values can be set in X_TT_EX and LuaT_EX:

- ***\Umathcode \(num \) = \(class \) \(math-family \) \(slot \) sets the math-code for a character given by its Unicode \(num \). The math-code is presented by three independent numbers.
- ***\Umathchardef \(\sequence\) = \(\cline{class}\) \(\square{math-family}\) \(\slot\) \(\declares\) \(\sequence\) as a math object with the given math-code.

The scalable parentheses used after \left, \right, \middle must have its delimiter-code $\langle del\text{-}code \rangle$. It is a 24bit number. When the hexadecimal form " $\langle d1 \rangle \langle d2 \rangle \langle d3 \rangle \langle d4 \rangle \langle d5 \rangle \langle d6 \rangle$ of this number is used then it gives math-family font number $\langle d1 \rangle$ and slot $\langle d2 \rangle \langle d3 \rangle$ for basic size (typically a normal text font) and math-family font number $\langle d4 \rangle$ and slot $\langle d5 \rangle \langle d6 \rangle$ for the first successor of "parentheses chain" implemented in the font (typically a special font).

- $\langle num \rangle = \langle del\text{-}code \rangle$ sets the delimiter-code for the ASCII character $\langle num \rangle$.
- ***\Udelcode \(num \) = \(math-family \) \(slot \) sets the delimiter-code for the Unicode character \(num \) when a Unicode math font is loaded. The font must implement the "parentheses chain" at the \(slot \) directly, we needn't to distinguish the basic size and the first successor.

Commands for using math-codes directly in math mode

- \mathchar \(\partial math-code\)\) prints a math object given by math-code.
- ***\Umathchar \(\class\) \(\lambda amily\) \(\slot\) prints a math object given by math-code.
- \mathaccent \langle math-code \langle \langle object \rangle \text{ prints an accent above \langle object \rangle given by its math-code. The \langle object \rangle \text{ can be single math object or \{\langle math formula \rangle \}.
- ***\Umathaccent \langle keyword \rangle \class \rangle math-family \rangle slot \rangle \cdot object \rangle creates an accent over \rangle object \rangle given by its math-code. The accent is stretchable (relative to the width of the \rangle object \rangle) by default and if the font implements the "accents chain" at the \rangle slot \rangle. The optional \rangle keyword \rangle is fixed (do not stretch the accent) or bottom (place the accent to the bottom of the \rangle object \rangle).
- \delimiter \(\delimiter \langle del-code \rangle \) prints a given delimiter, can be used after \left, \right, \middle. The \(\del-code \rangle \) can have seven hexadecimal digits, first of them is class, others give normal \(\del-code \rangle \). The class is used if the \\delimiter doesn't follow \\left, \right, \middle.
- ***\Udelimiter \(\class\) \(\square\) behaves as a character with given delimiter-code (after \left, \right) or as a normal math character with its \(\class\) (in other cases).

- \radical \(\langle radical \cdot code \rangle \langle object \rangle \) creates radical symbol over \(\langle object \rangle \). The \(\langle radical code \rangle \) is interpreted as \(\langle del code \rangle \rangle \), i.e. the first font must include the basic size and the second font must implement the "radicals chain".
- ***\Uradical \(math-family \) \(slot \) \(object \) \(creates \) radical \(symbol \) over \((object \) \). The Unicode math font must implement the "radicals chain" at the \((slot \) \).

14 Summary of plain T_EX macros

Allocators

- \newcount, \newdimen, \newskip, \newmuskip, \newtoks followed by a \(\circ control sequence \) allocate a new register of the given type and set it as the \(\circ control sequence \). \newbox, \newread, \newrite followed by a \(\circ control sequence \) allocate a new address to given data (to a box register or to a file descriptor) and set it as the \(\circ control sequence \). All these allocation macros are declared as \(\circ outer in plain TeX\), unfortunately. This brings problems when you need to use them in skipped text or in macros (in \(\circ replacement text \)\) for example). Use \(\circ sname newdimen \endcsname \)\(\circ outer sequence in such cases.
- \newif \(\control \) sequence \) sets the \(\control \) sequence \) as a boolean variable. It must begin with if; for example \\newif \\ if something. Then you can set values by \\ somethingtrue or \\ somethingfalse and you can use this variable by \\ if soemthing \which behaves like other \\ if * primitive commands.

Vertical skips

- \bigskip does \vskip by one line, \medskip does \vskip by one half of a line and \smallskip does the vertical skip by one quarter of a line. The registers \bigskipamount, \medskipamount and \smallskipamount are allocated for this purpose.
- \nointerlineskip ignores the \baselineskip rule for the following box in the current vertical list. This box is appended immediately after the previous box. \offinterlineskip ignores the \baselineskip rule for all following boxes until the current group is closed.
- All vertical glues at the top of the page inserted by \vskip are ignored. Macro \vglue behaves like the \vskip primitive command but its glue is not ignored at the top of the page.
- Sometimes we must switch off the \baselineskip rule (by the \offinterlineskip macro for example). This is common in tables. But we need to keep the baseline distances equal. Then the \strut can be inserted on each line. It is an invisible box with zero width and with height+depth=\baselineskip.
- \normalbaselines sets the registers for vertical placement \baselineskip, \lineskip and \lineskiplimit to default values given by the format. The user can set other values for a while and then he/she can restore \normalbaselines.

Penalties

- \break puts penalty -10000, so a line/page break is forced here. \nobreak puts penalty 10000, so a line/page break is disabled here. It should be specified before a glue, which is "protected" by this penalty. \allowbreak puts penalty 0; it allows breaking similar to a normal space.
- \goodbreak puts penalty -500 in vertical mode, this is a "recommended" point for a page break.
- \filbreak breaks the page only if it is "almost full" or if a big object (that doesn't fit the current page) follows. The bottom of such a page is filled by a vertical glue, i.e. the default typographical rule about equal positions of all bottoms of common pages is broken here.
- $\ensuremath{\mbox{\mbox{\mbox{\sim}}}$ | eject puts penalty -10000 in the vertical list, i.e. it breaks the page.

Miscellaneous macros

• \magstep $\langle number \rangle$ expands to a magnification factor 1.2^x where x is the given $\langle number \rangle$. This follows old typographical traditions that all sizes (of fonts) are distinguished by factors

- 1, 1.2, 1.44, etc. For example, \magstep2 expands to 1440, because $1.2^2 = 1.44$ and 1000 is factor 1:1 in TeX. The \magstephalf macro expands to 1095 which corresponds to $1.2^{(1/2)}$.
- \nonfrenchspacing sets special space factor codes (bigger spaces after periods, commas, semicolons, etc.). This follows English typographical traditions. \frenchspacing sets all space factors as 1:1 (usable for non English texts).
- \endgraf is equivalent to \par; \bgroup and \egroup are equivalents to $\{1 \text{ and } \}_2$.
- \space expands to space, \empty is an empty macro and \null is an empty \hbox{}.
- \quad is horizontal space 1 em (size of the font), \quad is double \quad, \enspace is kern 0.5 em, \thinspace is kern 1/6 em, and \negthinspace makes kern -1/6 em.
- \loop $\langle body 1 \rangle \langle if condition \rangle \langle body 2 \rangle$ \repeat repeats $\langle body 1 \rangle$ and $\langle body 2 \rangle$ in a loop until the $\langle if condition \rangle$ returns false. Then $\langle body 2 \rangle$ is not processed and the loop is finished.
- \leavevmode opens a paragraph like \indent but it does nothing if the horizontal mode is already in effect.
- \line{\langle text\rangle} creates a box of line width (which is \hsize). \leftline, \rightline, \centerline do the same as \line but \langle text\rangle is shifted left / right / is centered.
- \rdet{text} makes a box of zero size, the $\langle text \rangle$ is stuck out to the right. \ldet{text} does the same and the $\langle text \rangle$ is pushed left.
- \ialign is equal to \halign but the values of the registers used by \halign are set to default.
- \hang starts the paragraph where all lines (except for the first) are indented by \parindent.
- \texindent{\langle mark \range } starts a paragraph with \langle \langle mark \range .
- \narrower sets wider margins for paragraphs (\parindent is appended to both sides); i.e. the paragraphs are narrower.
- \raggedright sets the paragraph shape with the ragged right margin. \raggedbottom sets the page-setting shape with the ragged bottoms.
- prints empty box with dimensions like \hbox{\langle text\rangle}. \vphantom{\langle text\rangle}, \hphantom{\langle text\rangle} does the same but the result of \vphantom sets its width to zero, the result of \hphantom sets its height plus depth to zero. \smash{\langle text\rangle} prints \hbox{\langle text\rangle} but height plus depth is set to zero. In math mode, these commands keep the current math style.

Floating objects

- \footnote{ $\langle mark \rangle$ }{ $\langle text \rangle$ } creates a footnote with given $\langle mark \rangle$ and $\langle text \rangle$.
- \topinsert \langle object \\ \text{endinsert} \text{ creates the \langle object} \text{ as a floating object. It is printed at the top of the current page or on the next page. \midinsert \langle object \\ \text{endinsert} \text{ does the same as \topinsert but it tries if the \langle object \rangle fits on the current page. If it is true then it is printed to its current position; no floating object is created.

Controlling of input, output

- \obeyspaces sets the space as normal, i.e. it deactivates special treatment of spaces by the tokenizer: more spaces will be more spaces and spaces at the beginning of the line are not ignored.
- \obeylines sets the end of each line as \par. Each line in the input is one paragraph in the output.
- \bye finalizes the last page (or last pages if more floating objects must be printed) and terminates the TEX job. The \end primitive command does the same but without worrying about floating objects.

Macros used in math modes

- Spaces in math mode are \, (thin space), \> (medium space) \; (thick space, but still small),
 ! (negative thin space).
- $\{\langle above \rangle \setminus choose \langle below \rangle\}$ creates a combination number with brackets around it.
- $\$ creates the square root symbol with the $\$ under it.

- \root $\langle n \rangle \setminus \{ \langle math \ list \rangle \}$ creates a general root symbol with the order of the root $\langle n \rangle$.
- \cases{ $\langle case 1 \rangle \& \langle condition 1 \rangle \backslash cr... \backslash cr \langle case n \rangle \& \langle condition n \rangle$ } creates a list of variants (preceded by a brace {) in math mode.
- \matrix{ $\langle a \rangle \& \langle b \rangle \dots \& \langle e \rangle \backslash \text{cr} \dots \backslash \text{cr} \langle u \rangle \& \langle v \rangle \dots \& \langle z \rangle$ } creates a matrix of given values in math mode (without brackets around it). \pmatrix{ $\langle data \rangle$ } does the same but with ().
- $\$ \equiv \equiv \(\form.1 \ left \) & \(\form.1 \ right \) \\ \cr... \\ \cr \(\form.n \ left \) & \(\form.n \ right \) \}\$\$ prints multiple formulae aligned by & character in display mode.
- \eqalignno behaves like \eqalign but a second & followed by a $\langle mark \rangle$ can be in some lines. These lines place the $\langle mark \rangle$ in the right margin. \leqalignno does the same as \eqaligno but $\langle mark \rangle$ is put to the left margin.
- \mathpalette\macro{\langle text\rangle} runs \macro \langle style primitive\rangle \langle text\rangle. Your \macro can re-set current math style using its #1 parameter. Example: \def\macro#1#2{\hbox{\$#1#2\$}}.

Index

\above 24	cm 12	⟨d5⟩ <mark>25</mark>
(above) <mark>27</mark>	⟨cmds⟩ 18, 20	⟨d6⟩ <mark>25</mark>
\abovedisplayshortskip 14	⟨code⟩ <mark>4, 17</mark>	\edef 11, 17
\abovedisplayskip 12, 14	\; 27	\efcode 24
\abovewithdelims 24	2 7	\egroup 6, 22, 27
\accent 20	context do something 13	\eject 26
active character 4	— read parameters 13	\else 16
⟨address⟩ 11	control space 20	⟨else text⟩ <mark>16</mark>
\adjdemerits 14	$\langle control\ sequence \rangle\ 4,9,11,15,17-18,$	em 12
\advance 20	21–22, 24, 26	\emergencystretch 14
\afterassignment 22	control sequence 1	\empty 27
\aftergroup 22	\copy 19	\end 6, 22, 27
\allowbreak 26	\countdef 11, 17	\endcsname 15
\& 4	counter type register 11	\endgraf 27
\atop 24	\cr 20	\endgroup 6, 22
\atopwithdelims 24	\crcr 20	\endinput 17
(attributes) 23	\csname 15	\endinsert 27
badness 7, 14	\csstring 4, 15	\endlinechar 14
balanced text 9	$\langle D \rangle$ 24	\enspace 27
\baselineskip 13, 26	(data) 22	\eqalign 28
\baselineskip rule 13	\day 14	\eqalignno 28
\batchmode 22	dd 12	\eqno 24
\begingroup 6, 22	(declaration) 20	equal sign 9
(below) 27	declared register 1	\errmessage 22
\belowdisplayshortskip 14	\def 2, 4–5, 9–11, 17	\errorcontextlines 14
\belowdisplayskip 14	default size of space 7	\errorstopmode 22
\bf 6	(default size) 7	\escapechar 14-15
\bgroup 6, 22, 27	\defaulthyphenchar 14, 20	\everycr 15
\bigskip 26	\delcode\ 25-26 \delcode 25	\everydisplay 15
\bigskipamount 26		\everyeof 15
\binoppenalty 13	delimited parameter 9 \delimiter 25	\everyhbox 15
\botmark 17, 22 \box 18-19	(delimiter) 24	\everyjob 15
$\langle box \rangle$ 18–20, 22	$\langle denominator \rangle$ 11, 24	\everymath 15 \everypar 12, 15
box 5, 7	depth 7	\everypar 12, 13
— register 18	\detokenize 15-16	ex 12
⟨box number⟩ 16, 18–19, 22	\dimen 17	\! 27
bp 12	(dimen) 8, 12–13, 16–20, 23–24	\exhyphenpenalty 13
\break 26	dimen type register 11	expand processor 4
\brokenpenalty 13	(dimen expression) 12, 17	\expandafter 16
\bye 6, 27	(dimen unit) 12–13	⟨ <i>expandafters</i> ⟩ 13, 15–17, 21
$\langle case \ n \rangle \ 16$	\dimendef 11, 17	\expanded 17
⟨case 0⟩ 16	\dimexpr 12, 17	⟨expanded token 2⟩ 16
⟨case 1⟩ 16	\directlua 17	expansion 2
⟨case 2⟩ 16	discardable item 8	— process 2
\cases 28	\discretionary 20	⟨factor⟩ 18
\catcode 4, 11, 21	display math mode 11	⟨false text⟩ 16
cc 12	\displaylimits 24	\fi 16
\centerline 27	\displaylines 28	fil <mark>7–8</mark>
\char 20	\displaystyle 11, 24	\filbreak 26
(char. code) <mark>24</mark>	\displaywidowpenalty 13	⟨file⟩ <mark>23</mark>
⟨ <i>character</i> ⟩ <mark>2, 4, 12, 20</mark>	\displaywidth 14	(file name) 3, 17–18, 21, 23
character constant 2	\divide 21	(file number) <mark>16, 21–22</mark>
— equivalent <mark>2</mark>	do something context 13	fill <mark>8</mark>
\chardef 2, 12, 17	\\$4	$\final hyphendemerits 14$
\choose 27	\dot{double}	\firstmark 17,22
⟨class⟩ <mark>25</mark>	\dump 2, 22	floating object 20, 27
\cleaders 19	⟨d1⟩ <mark>25</mark>	\floatingpenalty 13
\closein 22	$\langle d2 \rangle \frac{25}{}$	\font 2-3, 18
\closeout 22	$\langle d3 \rangle$ 25	⟨font⟩ 20, 25
\clubpenalty 13	$\langle d4 \rangle$ 25	(font features) 18

(6 + 61) 10) - O1
(font file) 18	\ifvmode 16	\lowercase 21
(font name) 18	\ifvoid 16	\lpcode 24
(font selector) 3, 17–18, 23–24	\ifx 16	\luaescapestring 17
\fontname 17 \footnote 27	\ignorespaces 22	LuaT _E X 3
format 2	\immediate 22	macro 2 \mag 14
— file 2	\immediateassigned 17	
— me 2 ⟨formula⟩ 24	\immediateassignment 17 in 12	\magstep 26
\frac 11	\indent 6, 20	\magstephalf 27 main processor 4
\frac 11 \frenchspacing 27	ini-TeX state 2	— vertical list 5
\futurelet 18	\input 3, 17	\mark 17, 22
\gdef 11, 17	\input1ineno 22	(mark) 24, 27
⟨generalized dimen⟩ 13	\interlinence 22	math axis 18
\global 11, 17–18	internal horizontal mode 6	— mode display 11
\globaldefs 14	— math mode 11	— — internal 11
(glue) 19–20	— vertical mode 6	— — selector 4
glue 7	\it 6	(math formula) 25
— type register 12	italic correction 20	$\langle math \ list \rangle \frac{24}{27}$
\goodbreak 26	\/ 20	$\langle math\ text \rangle \frac{11}{1}$
\> 27	\item 27	\mathaccent 25
\halign 2, 20	\itemitem 27	\mathbin 11, 24
\hang 27	\jobname 17	\mathchar 25
\hangafter 14	\kern 2, 6, 20	\mathchardef 2, 12, 17, 25
\hangindent 14	kern 7	\mathchoice 24
\# 4	⟨key⟩ <mark>23</mark>	\mathclose 11, 24
\hbadness 14	(keyword) <mark>25</mark>	(math-code) 25
\hbox 2, 5-8, 15-16, 18-19, 27	keyword 8	\mathcode 25
height 7	\knaccode 24	(math-family) <mark>25–26</mark>
(hexa number) <mark>12</mark>	\knbccode 24	\mathop 11, 24
\hfil 8, 19-20	\knbscode 24	\mathopen 11, 24
\hfill 8, 19-20	Knuth, Donald 3	\mathord 11, 24
\hfilneg 20	kpathsea 3	\mathpalette 28
\hfuzz 14	⟨label⟩ <mark>23</mark>	\mathpunct 11, 24
\hoffset 13	\language 14, 22	\mathrel 11, 24
horizontal mode 5	\lastbox 19	\mathsurround 14
(horizontal list) 18	\lastpenalty 22	\matrix 28
(horizontal material) <mark>7</mark>	\lastsavedimageresourceindex	\meaning 10, 15
\hphantom 27	23	meaning of control sequence 1
\hrule 6, 19	\lastskip 22	\medmuskip 15
\hsize 1, 5-8, 11, 13, 27	\lastxpos 23	\medskip 26
\hskip 6-8, 12, 19-20	\lastypos 23	\medskipamount 1, 26
\hss 8, 19-20	L ^A T _E X macros 3	\message 9, 17, 22
\- 20	\1ccode 11, 21	\middle 24
\hyphenation 22	\leaders 19	\midinsert 27
\hyphenchar 20	\leavevmode 6, 27	minus 8
\hyphenpenalty 1, 13	\left 24	\mkern 24
\ialign 27	\lefthyphenmin 14	mm 12
\if 16	\leftline 27	mode horizontal 5
(if condition) 16, 27	\leftskip 13	— vertical 5
\ifcase 16	\leqalignno 28	\month 14
\ifcat 16	\leqno 24	\moveleft 18
\ifcsname 16	\let 2, 9, 18	\moveright 18
\ifdim 16	\letterspacefont 24	\mskip 24
\ifeof 16	\limits 24	multiletter control sequence 4
\iffalse 16	\line 27	\multiply 21
\ifhbox 16, 19	\linepenalty 11, 13	\muskip 17
\ifhmode 16	\lineskip 13, 26	\muskipdef 17
\ifinner 16	\lineskiplimit 13, 26	⟨n⟩ 28
\ifmmode 16	\lap 8, 27	\narrower 27
\ifnum 16	\long 10, 17	\negthinspace 27
\ifodd 16	\loop 27 \looseness 14	\newbox 18, 26
\iftrue 16		\newcount 11, 26
\ifvbox 16, 19	\lower 2, 18	\newdimen 11, 18, 26

\newif 26	\patterns 22	register 1, 11
\newlinechar 14	pc 12	(relation) 16
\newmuskip 18,26	\pdfadjustinterwordglue 24	\relax 9, 22
\newread 21, 26	\pdfadjustspacing 7, 24	\relpenalty 13
\newskip 11-12, 18, 26	\pdfcatalog 23	\repeat 27
\newtoks 11-12, 18, 26	\pdfcolorstack 23	replacement text 2
\newwrite 21, 26	\pdfdest 23	$\langle replacement\ text \rangle$ 9–11, 16, 21, 26
(no break) 20	\pdfendlink 23	\right 24
\noalign 20	\pdfextension 23	\righthyphenmin 14
\nobreak 26	\pdffeedback 23	\rightline 27
\noexpand 17	\pdffontexpand 23	\rightskip 13
\noindent 6, 8, 20	\pdfhorigin 13	\rlap 8, 27
\nointerlineskip 26	\pdfinfo 23	\rm 6
\nolimits 24	\pdflastximage 23	\romannumeral 17
\nonfrenchspacing 27	\pdflastxpos 23	\root 28
\nonscript 24	\pdflastypos 23	\rpcode 24
\nonstopmode 22	\pdfliteral 22	⟨rule⟩ <mark>19</mark>
\normalbaselines 26	\pdfnormaldeviate 21	⟨ <i>S</i> ⟩ 24
\normaldeviate 23	\pdfoutline 23	\saveimageresource 23
\null 27	\pdfoutput 22	\savepos 23
⟨num⟩ <mark>25</mark>	\pdfpageheight 15	\scantextokens 15
(num. expression) 12, 17	\pdfpagewidth 15	\scantokens 15
\number 17	\pdfprotrudechars 24	\scriptfont 25
(number) 10, 12–13, 16–18, 20–24,	\pdfrefximage 23	\scriptscriptfont 25
26	\pdfsavepos 23	\scriptscriptstyle 11,24
(number 1) <mark>16</mark>	\pdfsetmatrix 23	\scriptstyle 11, 24
(number 2) <mark>16</mark>	\pdfsetrandomseed 21	\scrollmode 22
(numerator) 11, 24	\pdfstartlink 23	separated parameter 9
\numexpr 12, 17	\pdfstrcmp 17	(sequence) <mark>25</mark>
\obeylines 27	pdfT _E X 3	\setbox 18-19
\obeyspaces 27	\pdfuniformdeviate 21	\setrandomseed 23
⟨ <i>object</i> ⟩ 8, 25–27	\pdfvariable 23	\sfcode 21
(octal number) <mark>12</mark>	\pdfvorigin 13	\shbscode 24
\offinterlineskip 26	\pdfximage 23	\shipout 22
\omit 20	\penalty 8, 20	\show 22
one character control sequence 4	penalty 8	\showbox 22
⟨ <i>op</i> ⟩ <mark>23</mark>	\% <mark>4</mark>	\showboxbreadth 14
\openin 16, 21	\phantom 27	\showboxdepth 14
\openout 21	plain T _E X <mark>8</mark>	\showlists 22
OpT _E X 1–3	plain T _E X macros 3	\showthe 22
\outer 17	plus 8	⟨shrinkability⟩ <mark>7–8</mark>
\output 15	(post break) <mark>20</mark>	shrinkability <mark>7</mark>
output routine 5, 22	\postdisplaypenalty 13	(shrinking) <mark>23–24</mark>
\outputmode 23	(pre break) <mark>20</mark>	$\langle size \rangle$ 7–8
\outputpenalty 13	\predisplaypenalty 13	(size specification) 18
\over 11, 24	\pretolerance 14	\skip 17
overfull box 8, 14, 19	\prevdepth 14	⟨ <i>skip</i> ⟩ <mark>12–13</mark>
\overfullrule 14	\prevgraph 14	\skipdef 11, 17
\overwithdelims 24	primitive command 2	⟨slot⟩ <mark>25–26</mark>
page box 5	— register <mark>1</mark>	\smallskip 26
— origin 13	\protected 17	\smallskipamount 26
\pageheight 23	\protrudechars 23	\smash 27
\pagewidth 23	pt 12	$\langle something \rangle 4,9$
\par 4-7, 10, 19-20, 27	\qquad 27	sp 12
parameter delimited 9	27	\∟ 20
— prefix 4	\radical 26	\space 27
— separated 9	(radical-code) 26	⟨ <i>space</i> ⟩ 10, 17–18, 21
— unseparated 9	\raggedbottom 27	\spacefactor 20
(parameters) 9, 11	\raggedright 27	\spaceskip 14
\parfillskip 13	\raise 18	\span 20
\parindent 1, 6, 13	\read 16, 21	\special 22
\parshape 22	read parameters context 13	spread 18
\parskip 13	⟨register⟩ 11–12, 15, 17, 20–22	\sqrt <mark>27</mark>

⟨SS⟩ <mark>24</mark>	(toks) 12–13	\unvbox 19
\stbscode 24	\toksdef 11, 17	\unvcopy 19
⟨step⟩ <mark>23–24</mark>	\tolerance 14	\uppercase 21
〈stretchability〉 <mark>7–8</mark>	\topinsert 27	\Uradical <mark>26</mark>
stretchability 7	\topmark 17, 22	\useimageresource 23
(stretching) <mark>23–24</mark>	\topskip 13	\vadjust 20
\string 15	\tracingassigns 14	\valign 20
(stringA) 17	\tracingcommands 14	(value) 12–13, 17, 20, 22
⟨stringB⟩ 17	\tracinggroups 14	\vbadness 14
\strut 26	\tracingifs 14	\vbox 6-8, 15-16, 18-19
(style primitive) <mark>24, 28</mark>	\tracinglostchars 14	\vcenter 18
subscript prefix 4	\tracingmacros 11, 14	vertical mode 5
superscript prefix 4	\tracingonline 14	⟨vertical list⟩ 18, 20
$\langle T \rangle \frac{24}{24}$	\tracingoutput 14	(vertical material) <mark>7, 19</mark>
table separator 4	\tracingpages 14	\vfil 19-20
\tabskip 15	\tracingparagraphs 14	\vfill 19-20
\TeX 2, 5	\tracingrestores 14	\vfilneg 20
T _F X engines 3	\tracingscantokens 14	\vfuzz 14
T _E Xlive 3	\tracingstats 14	\vglue 26
texmf tree 3	(true text) <mark>16</mark>	\voffset 13
⟨text⟩ 16–17, 27–28	\ttindent 1	\vphantom 27
\textfont 25	(type) <mark>23</mark>	\vrule 6, 19
\textindent 27	\uccode 21	\vsize 5, 13
\textstyle 11, 24	\Udelcode 25	\vskip 6, 8, 19-20, 26
\the 15	\Udelimiter 25	\vsplit 19
\thickmuskip 15	\Umathaccent 25	\vss 19-20
\thinmuskip 15	\Umathchar 25	\vtop 18
\thinspace 27	\Umathchardef 25	\wd 11, 19
\time 14	\Umathcode 25	\widowpenalty 13-14
to 18	underfull box 14	width 7
(token) 9, 15, 17–18, 22	\unexpanded 17	\write $14, 17, 21$
token type register 12	\unhbox 19	\xdef 11, 17
⟨token 1⟩ <mark>16</mark>	\unhcopy 19	X _H T _E X 3
⟨token 2⟩ <mark>16</mark>	\uniformdeviate 23	\xleaders 20
tokenizer 3	\unless 16	\xspaceskip 14
⟨tokens⟩ <mark>17</mark>	\unpenalty 20	\year 14
(tokens register) 15	unseparated parameter 9	
\toks 18	\unskip 20	

Petr Olšák petr@olsak.net Czech Technical University in Prague Version of the text: 0.9 (2023-12-09)