Entropie

Carsten Gips (FH Bielefeld)

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.

Wie Attribute wählen?

Relevanz => Informationsgehalt

- Shannon/Weaver (1949): Entropie
 - Maß für die Unsicherheit einer Zufallsvariablen
 - Anzahl der Bits zur Darstellung der Ergebnisse eines Zufallsexperiments

Beispiele

- Münze, die immer auf dem Rand landet: keine Unsicherheit, 0 Bit
- Faire Münze: Kopf oder Zahl: Entropie 1 Bit
- Fairer 4-seitiger Würfel: 4 mögliche Ausgänge: Entropie 2 Bit
- Münze, die zu 99% auf einer Seite landet: Entropie nahe Null
- => Anzahl der Ja/Nein-Fragen, um zur gleichen Information zu kommen

Definition der Entropie H(V) für Zufallsvariable V

- Zufallsvariable V => mögliche Werte v_k
- Wahrscheinlichkeit für v_k sei $p_k = P(v_k)$

$$H(V) = -\sum_{k} p_k \log_2 p_k$$

Hinweis:
$$\log_2 x = \frac{\log_{10} x}{\log_{10} 2} = \frac{\log x}{\log 2}$$

Beispiele Entropie: faire Münze

Entropie:
$$H(V) = -\sum_k p_k \log_2 p_k$$

•
$$v_1 = \mathsf{Kopf}, v_2 = \mathsf{Zahl}$$

$$\log_2 0.5 = -1$$

•
$$p_1 = 0.5, p_2 = 0.5$$

•
$$H(Fair) = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = 1$$
 Bit

Beispiele Entropie: unfaire Münze

Entropie:
$$H(V) = -\sum_{k} p_k \log_2 p_k$$

Beispiele Entropie: unfaire Münze

Entropie:
$$H(V) = -\sum_k p_k \log_2 p_k$$

•
$$v_1 = \mathsf{Kopf}, v_2 = \mathsf{Zahl}$$

$$p_1 = 0.99, p_2 = 0.01$$

■
$$H(UnFair) = -(0.99 \log_2 0.99 + 0.01 \log_2 0.01)$$

 $H(UnFair) \approx 0.08$ Bit

 $\log_2 0.01 \approx -6.64$

 $\log_2 0.99 \approx -0,014$

Beispiele Entropie: 4-seitiger Würfel

Entropie:
$$H(V) = -\sum_k p_k \log_2 p_k$$

Beispiele Entropie: 4-seitiger Würfel

Entropie:
$$H(V) = -\sum_k p_k \log_2 p_k$$

•
$$v_1 = 1, v_2 = 2, v_3 = 3, v_4 = 4$$

$$\log_2 0.25 = -2$$

$$p_1 = p_2 = p_3 = p_4 = 0.25$$

•
$$H(Wuerfel) = -4 \cdot (0.25 \log_2 0.25) = 2 Bit$$

Entropie der Trainingsmenge: Häufigkeit der Klassen zählen

Nr.	x_1	<i>x</i> ₂	<i>X</i> ₃	k
1	0	0	0	Α
2	1	0	2	Α
3	0	1	1	Α
4	1	1	0	В
5	0	1	1	В
6	0	1	0	Α

- Anzahl Klasse A: 4
- Anzahl Klasse B: 2
- Gesamtzahl Beispiele: 6

Wahrscheinlichkeit für A: $p_A = 4/6 = 0.667$

Wahrscheinlichkeit für $B: p_B = 2/6 = 0.333$

Entropie der Trainingsmenge: Häufigkeit der Klassen zählen

Nr.	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	k
1	0	0	0	Α
2	1	0	2	Α
3	0	1	1	Α
4	1	1	0	В
5	0	1	1	В
6	0	1	0	Α

- Anzahl Klasse A: 4
- Anzahl Klasse B: 2
- Gesamtzahl Beispiele: 6

Wahrscheinlichkeit für *A*: $p_A = 4/6 = 0.667$ Wahrscheinlichkeit für *B*: $p_B = 2/6 = 0.333$

$$H(S) = -\sum_{k} p_{k} \log_{2} p_{k}$$

$$= -(4/6 \cdot \log_{2} 4/6 + 2/6 \cdot \log_{2} 2/6)$$

$$= -(-0.39 - 0.53) = 0.92 \,\text{Bit}$$

Mittlere Entropie nach Betrachtung von Attribut A

$$R(S,A) = \sum_{v \in \mathsf{Values}(A)} \frac{|S_v|}{|S|} H(S_v)$$

Entropie der Trainingsmenge nach Attributwahl

Nr.	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	k
1	0	0	0	Α
2	1	0	2	Α
3	0	1	1	Α
4	1	1	0	В
5	0	1	1	В
6	0	1	0	Α

- Sei Attribut x_1 ausgewählt
- x_1 partitioniert die Trainingsmenge
 - $x_1 = 0$ liefert $S_0 = \{1, 3, 5, 6\}$
 - $x_1 = 1$ liefert $S_1 = \{2, 4\}$
 - Häufigkeit für $x_1 = 0$: 4/6
 - Häufigkeit für $x_1 = 1$: 2/6
 - Gesamtzahl Beispiele: 6

Entropie der Trainingsmenge nach Attributwahl

Nr.	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	k
1	0	0	0	Α
2	1	0	2	Α
3	0	1	1	Α
4	1	1	0	В
5	0	1	1	В
6	0	1	0	Α

- Sei Attribut x₁ ausgewählt
- x₁ partitioniert die Trainingsmenge

•
$$x_1 = 0$$
 liefert $S_0 = \{1, 3, 5, 6\}$

•
$$x_1 = 1$$
 liefert $S_1 = \{2, 4\}$

• Häufigkeit für
$$x_1 = 0$$
: 4/6

- Häufigkeit für $x_1 = 1$: 2/6
- Gesamtzahl Beispiele: 6

$$R(S,A) = \sum_{v \in Values(A)} \frac{|S_v|}{|S|} H(S_v)$$

$$= 4/6 \cdot H(\{1,3,5,6\}) + 2/6 \cdot H(\{2,4\})$$

$$= 4/6 \cdot (-3/4 \cdot \log_2 3/4 - 1/4 \cdot \log_2 1/4) + 2/6 \cdot (-1/2 \cdot \log_2 1/2 - 1/2 \cdot \log_2 1/2)$$

$$= 0.54 + 0.33 = 0.87 \text{ Bit}$$

Wrap-Up

- Begriff und Berechnung der Entropie: Maß für die Unsicherheit
- Begriff und Berechnung des Informationsgewinns
 - Entropie für eine Trainingsmenge
 - Mittlere Entropie nach Wahl eines Attributs

LICENSE

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.