Problem 16: Describe the graph of the polar equation $r = \cos \theta + \sin \theta$.

(Source: AoPS Calculus)

First let's find the slope of the line tangent to $r = \cos \theta + \sin \theta$ at any given point θ .

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$$

To compute $dy/d\theta$ and $dx/d\theta$, we need equations for y and x.

$$y = r \sin \theta$$
$$= (\cos \theta + \sin \theta) \sin \theta$$
$$= \cos \theta \sin \theta + \sin^2 \theta$$

$$x = r \cos \theta$$
$$= (\cos \theta + \sin \theta) \cos \theta$$
$$= \cos^2 \theta + \cos \theta \sin \theta$$

Now we are ready to compute $dy/d\theta$ and $dx/d\theta$.

$$\frac{dy}{d\theta} = \frac{d}{d\theta} \left(\cos \theta \sin \theta + \sin^2 \theta \right)$$
$$= -\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta$$

by the product rule and the chain rule

$$\frac{dx}{d\theta} = \frac{d}{d\theta} \left(\cos^2 \theta + \cos \theta \sin \theta \right)$$
$$= -2\sin \theta \cos \theta + -\sin^2 \theta + \cos^2 \theta$$

by the product rule and the chain rule

Thus

$$\begin{split} \frac{dy}{dx} &= \frac{dy/d\theta}{dx/d\theta} \\ &= \frac{-\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta}{-2\sin\theta\cos\theta + -\sin^2\theta + \cos^2\theta} \end{split}$$

Setting $dy/d\theta = 0$, we get

$$-\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 0$$

$$\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 2\sin^2\theta$$

$$(\cos\theta + \sin\theta)^2 = 2\sin^2\theta$$

$$\cos\theta + \sin\theta = \pm\sqrt{2}\sin\theta$$

$$\cos\theta = \pm\sqrt{2}\sin\theta - \sin\theta$$

$$\cos\theta = \sin\theta \left(\pm\sqrt{2} - 1\right)$$

$$1 = \tan\theta \left(\pm\sqrt{2} - 1\right)$$

$$\tan\theta = \frac{1}{\pm\sqrt{2} - 1}$$

$$\tan\theta = \left\{\sqrt{2} + 1, 1 - \sqrt{2}\right\}$$

$$\theta = \left\{1.17809725, -0.392699082\right\}$$

The tangent line to the graph of $r = \cos \theta + \sin \theta$ has a slope of 0 at $\theta_1 = 1.17809725$ and $\theta_2 = -0.392699082$.

(The angles θ_1 and θ_2 are given in radians.)

The rectangular coordinates corresponding to these polar coordinates are

$$(x_1, y_1) \approx (0.5, 1.2071067811865475)$$

 $(x_2, y_2) \approx (0.5, -0.2071067811865475)$

The graph of $r = \cos \theta + \sin \theta$ appears to be a circle centered at (0.5, 0.5) with a radius of 0.7071067811865475.

I have not proven that the graph of $r = \cos \theta + \sin \theta$ is a circle, but it appears to be a circle.

What I have done is find the points on the graph of $r = \cos \theta + \sin \theta$ where the tangent line has a slope of 0. These points represent the coordinates on the graph where the y-values are smallest and largest. This allows us to find the radius of the circle (assuming that the graph is in fact a circle). It also allows us to find the center of the circle (since the diameter passes through the center).

Assuming that $r = \cos \theta + \sin \theta$ is the graph of a circle, we conclude that the circle has a center of (0.5, 0.5) in rectangular coordinates and a radius of approximately 0.7071067811865475.