Formule di Fisica

Lorenzo Pappalardo

${\bf September}\ 2021$

Contents

1	Legge di Coulomb (Forza Elettrica)	3
2	Campo Elettrico 2.1 Dipolo	3
3	Flusso del Campo Elettrico 3.1 Legge di Gauss	3
4	Potenziale 4.1 Energia Potenziale Elettrica	3
5	Capacità 5.1 Condensatori 5.1.1 In Parallelo 5.1.2 In Serie 5.1.2	4 4 4
6	Corrente Elettrica	4
7	Legge di Ohm	4
8	Potenza Dissipata (Effetto Joule)	4
9	Forza Elettromotrice 9.1 Potenza Erogata	4
10	Leggi di Kirchhoff 10.1 Prima Legge (Nodo)	5
	10.2 Seconda Legge (Maglia)	5 5
	10.3.2 In Parallelo	5
	Cirtuiti RC 11.1 Equazione per la Carica sul Condensatore	5

12	Campo Magnetico	5
	12.1 Filo di Lunghezza Indefinita Rettilineo (Legge di Biot-Savart)	5
	12.2 Filo di Lunghezza Indefinita Generico	5
13	Forza Magnetica	6
	13.1 Filo di Lunghezza Finita	6
	13.2 Tra Due Fili Paralleli	6
14	Forza di Lorentz(o)	6
	14.1 Selettore di Velocità	6
	14.2 Spettrometro di Massa	6
15	Legge di Ampère	6
	15.1 Più Correnti	6
	15.2 Solenoide	7
16	Flusso del Campo Magnetico	7
17	Legge di Faraday	7
18	Forza Elettromotrice Indotta	7
19	Forza Elettromotrice Autoindotta	7
	19.1 Induttanza	8
20	Circuiti RL	8
	20.1 Corrente di Regime	8
	20.2 Corrente al variare del tempo	8
21	Potenza nel Circuito RL	8
22	Energia Immagazzinata nel Campo Magnetico	8
	Energia immagazzmava ner Campo magnetico	0
23	Circuiti LC	8
24	Legge di Ampère-Maxwell	9

1 Legge di Coulomb (Forza Elettrica)

$$\vec{F_E} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \tag{1}$$

Direzione: retta che passa per le due particelle

Unità di Misura: Newton

2 Campo Elettrico

$$\vec{E} = \frac{\vec{F_E}}{q_0} \tag{2}$$

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \tag{3}$$

Unità di Misura: Volt\Metro

$$\vec{F_E} = \vec{E}q_0 \tag{4}$$

2.1 Dipolo

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{2aq}{(a^2 + r^2)^{\frac{3}{2}}} \tag{5}$$

3 Flusso del Campo Elettrico

$$\Phi(\vec{E}) = \vec{E} \times S = \vec{E}S\cos(\theta) \tag{6}$$

Unità di Misura: Volt \cdot Metro

3.1 Legge di Gauss

$$\Phi(\vec{E}) = \frac{q}{\epsilon_0} \tag{7}$$

4 Potenziale

4.1 Energia Potenziale Elettrica

$$\Delta U = -W_{AB} = -\int_{A}^{B} F dr \tag{8}$$

Unità di Misura: Joule

4.2 Differenza di Potenziale

$$\Delta V = \frac{W_{AB}}{q_0} = \frac{\int_A^B F dr}{q_0} = \frac{\int_A^B -q_0 E dr}{q_0} = -\int_A^B E dr$$
 (9)

Unità di Misura: Volt

$$\Delta U = q\Delta V \tag{10}$$

5 Capacità

$$C = \frac{q}{\Delta V} \tag{11}$$

Unità di Misura: Farad

5.1 Condensatori

5.1.1 In Parallelo

$$C_{eq} = C_1 + C_2 (12)$$

5.1.2 In Serie

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} \tag{13}$$

6 Corrente Elettrica

$$i = \frac{dq}{dt} \tag{14}$$

Unità di Misura: Ampère

$$i = \int_{S} \vec{J}dS \tag{15}$$

con:

- $\bullet\,$ Densità di Corrente J $=\frac{q}{Vol}\vec{v_{d}}$
- $\bullet\,$ Velocità di Deriva $\vec{v_d}$

7 Legge di Ohm

$$\Delta V = iR \tag{16}$$

Unità di Misura: Ohm (Ω)

8 Potenza Dissipata (Effetto Joule)

$$Pd = \frac{dU}{dt} = \frac{dq\Delta V}{dt} = i\Delta V = \frac{\Delta V^2}{r} = i^2 R \tag{17}$$

9 Forza Elettromotrice

$$\epsilon = \frac{W}{q_0} = \frac{\oint F dr}{q_0} = \frac{\oint q_0 E dr}{q_0} = \oint E dr \tag{18}$$

Unità di Misura: Volt

9.1 Potenza Erogata

$$Pe = i\epsilon$$
 (19)

10 Leggi di Kirchhoff

10.1 Prima Legge (Nodo)

$$\sum_{k} i_k = 0 \tag{20}$$

La somma algebrica delle correnti che confluiscono in un nodo deve essere nulla

10.2 Seconda Legge (Maglia)

$$\sum_{k} \Delta V_k = 0 \tag{21}$$

La somma algebrica delle differenze di potenziale per un completo attraversamento di **una** maglia deve essere nulla

10.3 Resistenze

10.3.1 In Serie

$$R_{eq} = R_1 + R_2 (22)$$

10.3.2 In Parallelo

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \tag{23}$$

11 Cirtuiti RC

$$\epsilon = iR + \frac{q}{C} \tag{24}$$

con Forza Elettromotrice ϵ

11.1 Equazione per la Carica sul Condensatore

$$q(t) = q_{max}(1 - e^{-\frac{t}{\tau}}) \tag{25}$$

con Costante di Tempo $\tau=RC$

12 Campo Magnetico

12.1 Filo di Lunghezza Indefinita Rettilineo (Legge di Biot-Savart)

$$\vec{B} = \frac{\mu_0}{2\pi} \frac{i}{r} (\vec{l} \times \vec{r}) \tag{26}$$

12.2 Filo di Lunghezza Indefinita Generico

$$\vec{B} = \frac{\mu_0}{4\pi} \int_{Curva} \frac{i}{r^3} (\vec{dl} \times \vec{r})$$
 (27)

13 Forza Magnetica

$$\vec{F_M} = q\vec{v} \times \vec{B} \tag{28}$$

13.1 Filo di Lunghezza Finita

$$\vec{F_M} = \int i\vec{dl} \times \vec{B} \tag{29}$$

13.2 Tra Due Fili Paralleli

$$\vec{F_M} = \frac{\mu_0}{2\pi} i_1 i_2 \frac{l}{d} \tag{30}$$

Forza di Lorentz(o) 14

$$\vec{F} = \vec{F_E} + \vec{F_M} = q\vec{E} + q\vec{v} \times \vec{B} \tag{31}$$

Unità di Misura: Tesla

Selettore di Velocità

$$\vec{F_M} = q\vec{v} \times \vec{E}$$

 $\begin{array}{l} \vec{F_M}=q\vec{v}\times\vec{B}\\ \vec{F_E}=-q\vec{E}\\ \text{Si impone } F_M=F_E\Rightarrow vB=E \text{ da cui:} \end{array}$

- $v = \frac{E}{B} \Rightarrow \vec{F_{TOT}} = 0 \Rightarrow$ Prosegue in linea retta
- $v > \frac{E}{B} \Rightarrow \vec{F_M} > \vec{F_E} \Rightarrow$ Viene deflessa verso l'alto
- $v < \frac{E}{B} \Rightarrow \vec{F_M} < \vec{F_E} \Rightarrow$ Viene deflessa verso il basso

Spettrometro di Massa

 $\vec{F_M} = q \vec{v} \times \vec{B}$ è una forza centripeta $\Rightarrow q v B = \frac{m v^2}{r}$

Legge di Ampère 15

$$\oint_{\gamma} \vec{B} \vec{ds} = \frac{\mu_0}{2\pi} \frac{i}{r} \oint_{\gamma} ds = \frac{\mu_0}{2\pi} \frac{i}{r} 2\pi r = \mu_0 i$$
(32)

con linea chiusa orientata γ

15.1Più Correnti

$$\oint_{\gamma} \vec{B} \vec{ds} = \mu_0 \sum_{j} i_j \tag{33}$$

15.2 Solenoide

$$\vec{B} = \mu_0 ni \tag{34}$$

con Numero di Spire per unità di lunghezza $n=\frac{N}{I}$

$$B = \frac{\mu_0}{2} \frac{R^2}{r^3} i \tag{35}$$

con:

- Raggio della spira R
- Distanza dall'anello al punto (diagonale) r

16 Flusso del Campo Magnetico

$$\Phi(\vec{B}) = \oint \vec{B} ds \tag{36}$$

Unità di Misura: Weber

Se la superficie è chiusa allora è nullo

17 Legge di Faraday

$$\epsilon_i = -\frac{d\Phi(\vec{B})}{dt} = -\frac{d(\int \vec{B} \times d\vec{s})}{dt} = -\frac{d(BS\cos(\theta))}{dt}$$
(37)

con Forza Elettromotrice Indotta ϵ_i

Essa può essere generata variando nel tempo:

- B
- A
- \bullet θ
- B, A e θ

18 Forza Elettromotrice Indotta

$$\epsilon_i = \frac{W}{q_0} = \frac{\oint_{\gamma} F ds}{q_0} = \frac{\oint_{\gamma} q_0 E_i ds}{q_0} = \oint_{\gamma} E_i ds \tag{38}$$

con Campo Elettrico Indotto E_i

Unità di Misura: Volt

Segue dalla Legge di Faraday:

$$\oint_{\gamma} E_i ds = -\frac{d\Phi(\vec{B})}{dt} \tag{39}$$

19 Forza Elettromotrice Autoindotta

$$\epsilon_L = -L \frac{di}{dt} \tag{40}$$

19.1 Induttanza

$$L = -\epsilon_L \frac{dt}{di} = \mu_0 n^2 Sl \tag{41}$$

con lunghezza l

20 Circuiti RL

Per la Seconda Legge di Kirchhoff:

$$\epsilon = iR + L\frac{di}{dt} \tag{42}$$

20.1 Corrente di Regime

Non c'è variazione di corrente nel tempo $\Rightarrow \frac{di}{dt} = 0$

$$i_{\infty} = \frac{\epsilon}{R} \tag{43}$$

20.2 Corrente al variare del tempo

$$i(t) = i_{\infty} (1 - e^{-\frac{t}{\tau}})$$
 (44)

con Costante di Tempo $\tau = \frac{L}{R}$

21 Potenza nel Circuito RL

$$\epsilon i = i^2 R + Li \frac{di}{dt} \Rightarrow P_G = P_R + P_L$$
 (45)

con:

- \bullet Potenza Erogata dal Generatore $P_G=\epsilon i$
- $\bullet\,$ Potenza Dissipata dalla Resistenza $P_R=i^2R$
- Potenza Immagazzinata dall'Induttore $P_L = Li \frac{di}{dt}$

22 Energia Immagazzinata nel Campo Magnetico

$$U_B = \int_0^{U_B} P_L dt = \int_0^{i(t)} Lidi = \frac{1}{2} L[i(t)]^2$$
 (46)

23 Circuiti LC

Caso Ideale (vale il Principio di Conservazione dell'Energia):

$$\frac{d^2q}{dt^2} + \omega_0^2 q = 0 (47)$$

Caso Reale $(R \neq 0)$:

$$\frac{d^2q}{dt^2} + \omega_0^2 q + \frac{R}{L} \frac{dq}{dt} = 0 \tag{48}$$

con:

- Pulsazione $\omega_0 = \frac{1}{\sqrt{LC}}$
- Periodo $T = \frac{2\pi}{\omega_0}$

Legge di Ampère-Maxwell **24**

$$\oint \vec{B} \vec{ds} = \mu_0 i + \mu i_S \tag{49}$$

con Corrente di Spostamento $i_S = \mu_0 \epsilon_0 \frac{d\Phi(\vec{E})}{dt}$ Se i varia nel tempo \Rightarrow varia q \Rightarrow varia \vec{E} :

I campi magnetici possono essere generati anche da campi elettrici variabili nel tempo.