

N: I, = 1400 kJ/mol

O: I, = 1314 kJ/mol smaller IE? MHA ; e config N: 1s22s2p3
0: 1s22s2p4 orbibl N:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Tab	le 8.2	The Ionizat	tion Energi	es (kJ/mo) of the	First 20	Elements
Z	Element	First	Second	Third	Fourth	Fifth	Sixth
1	Н	1,312					
2	Не	2,373	5,251				
3	Li	520	7,300	11,815			
4	Be	899	1,757	14,850	21,005		
5	В	801	2,430	3,660	25,000	32,820	
6	C	1,086	2,350	4,620	6,220	38,000	47,261
7	N	1,400	2,860	4,580	7,500	9,400	53,000
8	O	1,314	3,390	5,300	7,470	11,000	13,000
9	F	1,680	3,370	6,050	8,400	11,000	15,200
10	Ne	2,080	3,950	6,120	9,370	12,200	15,000
11	Na	495.9	4,560	6,900	9,540	13,400	16,600
12	Mg	738.1	1,450	7,730	10,500	13,600	18,000
13	Al	577.9	1,820	2,750	11,600	14,800	18,400
14	Si	786.3	1,580	3,230	4,360	16,000	20,000
15	P	1,012	1,904	2,910	4,960	6,240	21,000
16	S	999.5	2,250	3,360	4,660	6,990	8,500
17	Cl	1,251	2,297	3,820	5,160	6,540	9,300
18	Ar	1,521	2,666	3,900	5,770	7,240	8,800
19	K	418.7	3,052	4,410	5,900	8,000	9,600
20	Ca	589.5	1,145	4,900	6,500	8,100	11,000

Electron Affinity

Xg + e - > Xg + Energy

Election

In general, more energy is released as we go across each period WHY? More pt in nucleus to attact the es

ex: aF: 152252ps +1e = 4F: 15252p6
What about Ne? Imm p+?!

10 Ne: 15232p6 +1e- 15252p6 35'

e is added to 3rd shall! - Realls for Awar for st

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table	8.3	Electron Affinities (kJ/mol) of Some Representative Elements and the Noble Gases*											
1A	2A	3A	4A	5A	6A	7A	8A						
Н							Не						
73							< 0						
Li	Ве	В	C	N	O	F	Ne						
60	≤0	27	122	0	141	328	< 0						
Na	Mg	Al	Si	P	S	Cl	Ar						
53	≤0	44	134	72	200	349	< 0						
K	Ca	Ga	Ge	As	Se	Br	Kr						
48	2.4	29	118	77	195	325	< 0						
Rb	Sr	In	Sn	Sb	Te	I	Xe						
47	4.7	29	121	101	190	295	< 0						
Cs	Ba	Tl	Pb	Bi	Po	At	Rn						
45	14	30	110	110	?	?	< 0						

^{*}The electron affinities of the noble gases, Be, and Mg have not been determined experimentally, but are believed to be close to zero or negative.

Group# (1-8A) = # valence e's.

except: He: 2 valence e's

e' config: 1s² []

IA ITA ITA ITA ITA ITA

H.

Li. Be. -- B. -c. N: :0: F:

No. Maj: Al. Si. p:

K. G.

The Ionic Bond +/- attraction (often Metals Non-Metals)

ex: lithium fluoride: LiF = Li+F-

1 1A																	18 8A
•н	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	Не:
·Li	·Be ·											· · · · ·	٠ċ٠	·Ņ·	·	: <u>F</u> ·	:Ne:
•Na	·Mg·	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	·Àl·	· śi ·	· P·	·š·	:ċi•	:Ar:
•к	·Ca·											·Ga•	·Ge ·	·As·	· Se ·	:Br·	:Kr:
•Rb	· Sr ·											· İn ·	·Sn·	· Sb·	·Ťe·	:ï·	:Xe:
• Cs	·Ba ·											·'n·	· Pb·	· Bi ·	·Po·	: At ·	:Rn:
• Fr	·Ra·																

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

-> L; " mn :F: 1522s1 = IONIC BOND ex: Calrium chloride: Ca Cl2 = G2+ a- a-[Ar]45 [Ne]3523p5 Ca: lost es: 0x [Ne]353p6 a : gainst es RED OIL RIG/LEO que GER