Universidad Nacional del Altiplano Facultad de Ingeniería Estadística e Informática

Docente: Fred Torres Cruz

Autor: Russbel Rimualdy Mamani Fernandez.

Trabajo Encargado - Nº

 $\label{eq:https://colab.research.google.com/drive/16XLhA_HWYrI5Sx1JGgLTetw4xBIkwxg_?usp = sharing} \\ https://colab.research.google.com/drive/16XLhA_HWYrI5Sx1JGgLTetw4xBIkwxg_?usp = sharing \\ https://colab.research.google.com/drive/16XLhA_HWYrI5$

Modelo de Abejas Recolectoras: Exploración y Explotación de Recursos

1. Introducción al Comportamiento de las Abejas

Las abejas melíferas tienen un sistema sofisticado para recolectar néctar que combina exploración (búsqueda de nuevas flores) y explotación (aprovechamiento de fuentes conocidas). Este modelo computacional simula cómo las abejas toman decisiones individuales que resultan en un comportamiento colectivo eficiente.

2. Cómo Funciona el Modelo

2.1 El Territorio Virtual

Imaginamos un mapa cuadriculado como un jardín donde:

- Cada casilla puede estar vacía, contener una flor o una abeja
- Las flores tienen néctar que se agota cuando las visitan y se regenera lentamente
- La colmena está en el centro, donde las abejas regresan a descansar

2.2 Los Dos Estados de las Abejas

Cada abeja puede estar en uno de dos modos:

Modo Explorador:

- Vuelan al azar por el territorio
- Cuando encuentran una flor, la memorizan
- No recolectan néctar, solo descubren nuevas fuentes

Modo Recolector:

- Vuelan directamente a las flores más ricas que conocen
- Recolectan néctar para llevar a la colmena
- Priorizan las flores con más néctar

3. Reglas de Comportamiento

3.1 Cuándo Cambian de Modo

Las abejas pasan de exploradoras a recolectoras cuando:

- Han descubierto suficiente cantidad de flores (por ejemplo, el 60% de las flores existentes)
- Las flores conocidas tienen néctar suficiente para valer la pena

Regresan a ser exploradoras si:

- Las flores conocidas se agotan
- Pasan muchas iteraciones sin encontrar buenas fuentes
- Su energía baja demasiado y deben volver a la colmena

3.2 Toma de Decisiones

Cada abeja decide autónomamente basándose en:

- Su experiencia personal (qué flores conoce)
- La calidad de las flores que ha visitado
- Su nivel de energía actual

No hay un control central, todas siguen las mismas reglas simples pero el grupo se autoorganiza.

4. Aplicación Práctica

4.1 Simulación por Computadora

El modelo permite:

- Probar cómo diferentes estrategias afectan la recolección total
- Encontrar el balance óptimo entre exploración y explotación
- Estudiar qué pasa cuando cambiamos parámetros como:
 - Cantidad de abejas
 - Distribución de flores
 - Tasa de regeneración de néctar

4.2 Aprendizajes Clave

De las simulaciones podemos aprender:

- Demasiada exploración hace que no se aprovechen buenas fuentes
- Demasiada explotación agota rápidamente los recursos
- El sistema se autorregula mejor cuando cada abeja puede cambiar de modo según condiciones locales

5. Usos en la Vida Real

Este tipo de modelos ayuda a:

En logística:

- Optimizar rutas de reparto
- Gestionar flotas de vehículos

En ecología:

- Entender relaciones polinizador-flor
- Predecir efectos de cambios ambientales

En tecnología:

- Diseñar redes de sensores inalámbricos
- Mejorar algoritmos de búsqueda en internet

6. Conclusiones

El modelo de abejas nos muestra que:

- Sistemas complejos pueden emerger de reglas simples
- El balance dinámico es clave para la eficiencia
- La diversidad de comportamientos (explorar/explotar) hace al sistema más robusto
- Podemos aplicar estas lecciones a muchos problemas humanos

La belleza del modelo está en que, aunque cada abeja solo sigue reglas básicas, el grupo como un todo exhibe un comportamiento inteligente y adaptativo. Esto es lo que llamamos inteligencia de enjambre τ tiene aplicaciones sorprendentes en nuestra vida cotidiana.