Numbers

Every number system is associated with a base or radix

A positional notation is commonly used to express numbers

$$(a_5 a_4 a_3 a_2 a_1 a_0)_r = a_5 r^5 + a_4 r^4 + a_3 r^3 + a_2 r^2 + a_1 r^1 + a_0 r^0$$

The decimal system has a base of 10 and uses symbols (0,1,2,3,4,5,6,7,8,9) to represent numbers

$$(2009)_{10} = 2 \times 10^3 + 0 \times 10^2 + 0 \times 10^1 + 9 \times 10^0$$

$$(123.24)_{10} = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + 2 \times 10^{-1} + 4 \times 10^{-2}$$

An octal number system has a base 8 and uses symbols (0,1,2,3,4,5,6,7)

$$(2007)_8 = 2 \times 8^3 + 0 \times 8^2 + 0 \times 8^1 + 7 \times 8^0$$

What decimal number does it represent?

$$(2007)_8 = 2 \times 512 + 0 \times 64 + 0 \times 8^1 + 7 \times 8^0 = 1033$$

A hexadecimal system has a base of 16

Number	Symbol
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	А
11	В
12	С
13	D
14	E
15	F

$$(2BC9)_{10} = 2 \times 16^3 + B \times 16^2 + C \times 16^1 + 9 \times 16^0$$

How do we convert it into decimal number?

$$(2BC9)_{10} = 2 \times 4096 + 11 \times 256 + 12 \times 16^{1} + 9 \times 16^{0} = 11209$$

A Binary system has a base 2 and uses only two symbols 0, 1 to represent all the

numbers

$$(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

Which decimal number does this correspond to?

$$(1101)_2 = 1 \times 8 + 1 \times 4 + 0 \times 2^1 + 1 \times 2^0 = 13$$

2 ⁰	1
2 ¹	2
2 ²	4
2 ³	8
24	16
2 ⁵	32
2 ⁶	64
2 ⁷	128
28	256
2 ⁹	512
2 ¹⁰	1024(K)
2 ²⁰	1048576(M)

2-1	2-2	2-3	2-4	2 ⁻⁵	2 ⁻⁶
0.5	0.25	0.125	0.0625	0.03125	0.015625

Developing Fluency with Binary Numbers

$$1 \ 1 \ 0 \ 0 \ 1 = ?$$
 25

$$1100001 = ?$$
 $64+32+1=97$

$$0.101 = ?$$
 $0.5+0.125=0.625$

$$11.001 = ?$$
 $3+0.125=3.125$

Converting decimal to binary number

Convert 45 to binary number

$$(45)_{10} = b_n b_{n-1} \dots b_0$$

$$45 = b_n 2^n + b_{n-1} 2^{n-1} \dots b_1 2^1 + b_0$$

Divide both sides by 2

$$\frac{45}{2} = 22.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots b_1 2^0 + b_0 \times 0.5$$

$$22 + 0.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} + b_1 2^0 + b_0 \times 0.5$$

$$\Rightarrow b_0 = 1$$

$$22 + 0.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} + \cdots + b_1 2^0 + b_0 \times 0.5$$
 $\Rightarrow b_0 = 1$

$$22 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots b_2 2^1 + b_1 2^0$$

Divide both sides by 2

$$\frac{22}{2} = 11 = b_n 2^{n-2} + b_{n-1} 2^{n-3} \dots b_2 2^0 + b_1 \times 0.5 \implies b_1 = 0$$

$$11 = b_n 2^{n-2} + b_{n-1} 2^{n-3} \dots + b_3 2^1 + b_2 2^0$$

$$5.5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} + b_3 2^0 + 0.5b_2$$
 $\Rightarrow b_2 = 1$

$$5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} \dots b_4 2^1 + b_3 2^0$$

$$5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} \dots b_4 2^1 + b_3 2^0$$

$$2.5 = b_n 2^{n-4} + b_{n-1} 2^{n-5} \dots b_4 2^0 + 0.5b_3$$
 $\Rightarrow b_3 = 1$

$$2 = b_n 2^{n-4} + b_{n-1} 2^{n-5} \dots b_5 2^1 + b_4 2^0$$

$$1 = b_n 2^{n-5} + b_{n-1} 2^{n-6} \dots b_5 2^0 + 0.5b_4 \implies b_4 = 0$$

$$\Rightarrow b_5 = 1$$

$$(45)_{10} = b_5 b_4 b_3 b_2 b_1 b_0 = 101101$$

Converting decimal to binary number

Method of successive division by 2

45	remainder	_
22	1	_
11	0	
5	1	
2	1 4	15 = 101101
1	0	
0	1	

Convert (153)₁₀ to octal number system

$$(153)_{10} = (b_n b_{n-1} \dots b_0)_8$$

$$(153)_{10} = b_n 8^n + b_{n-1} 8^{n-1} \dots b_1 8^1 + b_0$$

Divide both sides by 8

$$\frac{153}{8} = 19.125 = b_n 8^{n-1} + b_{n-1} 8^{n-2} \dots b_1 8^0 + \frac{b_0}{8} \implies \frac{b_0}{8} = 0.125 \implies b_0 = 1$$

153	remainder			
19	1			
2	3	450		(004)
0	2	153	=	(231) ₈

Converting decimal to binary number

Convert $(0.35)_{10}$ to binary number

$$(0.35)_{10} = 0.b_{-1}b_{-2}b_{-3}.....b_{-n}$$

$$0.35 = 0 + b_{-1}2^{-1} + b_{-2}2^{-2} + \dots b_{-n}2^{-n}$$

How do we find the b₋₁ b₋₂ ...coefficients?

Multiply both sides by 2

$$0.7 = b_{-1} + b_{-2} 2^{-1} + \dots b_{-n} 2^{-n+1}$$
 $\Rightarrow b_{-1} = 0$

$$0.7 = b_{-2}2^{-1} + b_{-3}2^{-2} + \dots b_{-n}2^{-n+1}$$

$$0.7 = b_{-2}2^{-1} + b_{-3}2^{-2} + \dots b_{-n}2^{-n+1}$$

Multiply both sides by 2

$$1.4 = b_{-2} + b_{-3}2^{-1} + \dots b_{-n}2^{-n+2}$$

Note that \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \dots \dots \)

$$\Rightarrow b_{-2} = 1$$

$$0.4 = b_{-3}2^{-1} + b_{-4}2^{-2} \dots b_{-n}2^{-n+2}$$

$$0.8 = b_{-3} + b_{-4} 2^{-1} \dots b_{-n} 2^{-n+3}$$
 $\Rightarrow b_{-3} = 0$

$$\Rightarrow b_{-3} = 0$$

Converting decimal to binary number

$$0.125 = ?$$

		_		0.	125	
				. 0	25	x2
				/ 0 .	20	x2
				0.	5	v0
0.125	=	(.001)	2	1.	0	x2

0.8125 = ?	0 .	8125
0.0120 — .		x2
	1.	625
	1.	x2 25
		x2
$0.8125 = (.1101)_2$	0.	5
	1	x2
	\ 1.	U

Binary numbers

Most significant bit or MSB

1011000111

decimal	2bit	3bit	4bit	5bit
0	00	000	0000	00000
1	01	001	0001	00001
2	10	010	0010	00010
3	11	011	0011	00011
4		100	0100	00100
5		101	0101	00101
6		110	0110	00110
7		111	0111	00111
8			1000	01000
9			1001	01001
10			1010	01010
11			1011	01011
12			1100	01100
13			1101	01101
14			1110	01110
15			1111	01111

Least significant bit or LSB

This is a 10 bit number

Binary digit = bit

N-bit binary number can represent numbers from 0 to 2^N -1

Converting Binary to Hex and Hex to Binary

$$(b_7b_6b_5b_4b_3b_2b_1b_0)_b = (h_1, h_0)_{Hex}$$

$$b_7 2^7 + b_6 2^6 + b_5 2^5 + b_4 2^4 + b_3 2^3 + b_2 2^2 b_1 2^1 + b_0 = h_1 16^1 + h_0$$

$$(b_{7}2^{3} + b_{6}2^{2} + b_{5}2^{1} + b_{4})2^{4} + (b_{3}2^{3} + b_{2}2^{2}b_{1}2^{1} + b_{0}) = h_{1}16^{1} + h_{0}$$

$$h_{1}$$

$$h_{0}$$

$$(10110011)_b = (1011)(0011) = (B3)_{Hex}$$

$$(110011)_b = (11)(0011) = (33)_{Hex}$$

$$(EC)_{Hex} = (1110)(1100) = (11101100)_b$$

Number	Symbol
0(0000)	0
1(0001)	1
2(0010)	2
3(0011)	3
4(0100)	4
5(0101)	5
6(0110)	6
7(0111)	7
8(1000)	8
9(1001)	9
10(1010)	А
11(1011)	В
12(1100)	С
13(1101)	D
14(1110)	E
15(1111)	F
	0(0000) 1(0001) 2(0010) 3(0011) 4(0100) 5(0101) 6(0110) 7(0111) 8(1000) 9(1001) 10(1010) 11(1011) 12(1100) 13(1101) 14(1110)

Binary Addition/Subtraction

Complement of a number

9's complement of n-digit number x is 10ⁿ -1 -x

10's complement of n-digit number x is 10ⁿ -x

9's complement of 85?

$$10^2 - 1 - 85$$

$$99 - 85 = 14$$

9's complement of 123 = 999 - 123 = 876

10's complement of 123 = 9's complement of 123+1=877

Complement of a binary number

1's complement of n-bit number x is $2^n - 1 - x$

2's complement of n-bit number x is 2^n -x

1's complement of 1011?

$$2^4 - 1 - 1011$$

$$1111 - 1011 = 0100$$

1's complement is simply obtained by flipping a bit (changing 1 to 0 and 0 to 1)

1's complement of
$$1001101 = ?$$

0110010

2's complement of 1010 = 1's complement of 1010+1=0110

Leave all least significant 0's as they are, leave first 1 unchanged and then flip all subsequent bits

001110

 $1011 \to 0101$

 $101101100 \rightarrow 010010100$

Representing positive and negative binary numbers

One extra bit is required to carry sign information. Sign bit = 0 represents positive number and Sign bit = 1 represents negative number

decimal	Signed Magnitude
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-0	1000
-1	1001
-2	1010
-3	1011
-4	1100
-5	1101
-6	1110
-7	1111

decimal	Signed 1's complement
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-0	1111
-1	1110
-2	1101
-3	1100
-4	1011
-5	1010
-6	1001
-7	1000

decimal	Signed 2's complement
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001

Boolean Algebra

Algebra on Binary numbers

A variable x can take two values {0,1}

Basic operations:

AND:
$$y = x_1 \cdot x_2$$

True

Yes

High voltage

Y is 1 if and only if both x_1 and x_2 are 1, otherwise zero

$$\begin{array}{c|cccc} x_1 & x_2 & y \\ \hline 0 & 0 & 0 \\ \text{Truth Table} & 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$$

Basic operations:

OR:
$$y = x_1 + x_2$$

Y is 1 if either x_1 and x_2 is 1. Or y=0 if and only if both variables are zero

NOT:
$$y = x$$

Boolean Algebra

Basic Postulates

P1:
$$x + 0 = x$$

P2:
$$x + y = y + x$$

P3:
$$x.(y+z) = x.y+x.z$$

P4:
$$x + \bar{x} = 1$$

P1:
$$x \cdot 1 = x$$

P2:
$$x \cdot y = y \cdot x$$

P3:
$$x+y.z = (x+y).(x+z)$$

P4:
$$x \cdot \bar{x} = 0$$

Basic Theorems

T1:
$$x + x = x$$

T2:
$$x + 1 = 1$$

T3:
$$(\overline{x}) = x$$

T4:
$$x + (y+z) = (x+y)+z$$

T5
$$\overline{(x+y)} = \overline{x} \cdot \overline{y}$$
 (DeMorgan's theorem)

T6:
$$x + x \cdot y = x$$

T1:
$$x \cdot x = x$$

T2:
$$x \cdot 0 = 0$$

T4:
$$x \cdot (y.z) = (x.y).z$$

T5
$$(x.y) = x + y$$
 (DeMorgan's theorem)

T6:
$$x.(x+y) = x$$

Proving theorems

P1:
$$x + 0 = x$$

P1:
$$x \cdot 1 = x$$

$$P2: \quad x + y = y + x$$

$$P2: \quad x \cdot y = y \cdot x$$

P3:
$$x.(y+z) = x.y+x.z$$

P3:
$$x+y.z = (x+y).(x+z)$$

P4:
$$x + \bar{x} = 1$$

P4:
$$x \cdot \bar{x} = 0$$

Prove T1:
$$x + x = x$$

 $x + x = (x+x). 1 (P1)$

Prove T1:
$$x \cdot x = x$$

$$x \cdot x = x \cdot x + 0 \text{ (P1)}$$

$$= (x+x). (x+x) (P4)$$

$$= x.x + x.\overline{x} \quad (P4)$$

$$= x + x.\overline{x} \quad (P3)$$

$$= x \cdot (x + x^{-})$$
 (P3)

$$= x + 0 \quad (P4)$$

$$= x . 1 (P4)$$

$$= x (P1)$$

$$= x (P1)$$

Proving theorems

P1:
$$x + 0 = x$$

$$P2: \quad x + y = y + x$$

P3:
$$x.(y+z) = x.y+x.z$$

P4:
$$x + \bar{x} = 1$$

P1:
$$x \cdot 1 = x$$

P2:
$$x \cdot y = y \cdot x$$

P3:
$$x+y.z = (x+y).(x+z)$$

P4:
$$x \cdot \bar{x} = 0$$

Prove : x + 1 = 1

$$x + 1 = x + (x + \overline{x})$$

$$=(x+x)+\overline{x}$$

$$= x + \overline{x}$$

$$x + x . y = x$$

= $x . 1 + x . y$
= $x . (1 + y)$
= $x . 1$

=X

$$x + x \cdot y = x+y$$

= $(x + x \cdot) \cdot (x + y)$
= 1. $(x + y)$
= $x + y$

DeMorgan's theorem

$$\overline{(x_1 + x_2 + x_3 +)} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}$$
.

$$\overline{(x_1, x_2, x_3, ...)} = (\overline{x_1} + \overline{x_2} + \overline{x_3} +)$$

Simplification of Boolean expressions

$$\overline{(x_1 + x_2 + x_3 +)} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} \cdot \overline{(x_1 \cdot x_2 + \overline{x_2} \cdot x_3)} = ?$$

$$\overline{(x_1 + x_2 + x_3 +)} = (\overline{x_1} + \overline{x_2} + \overline{x_3} +)$$

$$=(x_1 + \overline{x_2}) \cdot (x_2 + \overline{x_3})$$

$$= x_1. x_2 + x_1 . \overline{x_3} + \overline{x_2}. \overline{x_3}$$

Function of Boolean variables

Y = 1 when x_1 is 0 and x_2 is 1

$$y = \overline{x_1} \cdot x_2$$

Boolean expression

X_1 X_2	у	
0 0 0 1 1 0 1 1	0 0 1 0	$y = x_1 \cdot \overline{x_2}$

\/		
<u>y</u>		$X_1 \cdot X_2$
1		
0		
0		
1		$x_1 \cdot x_2$
	y 1 0 0	<u>y</u> 1 0 0 1

$$y = \overline{x_1} \cdot \overline{x_2} + x_1 \cdot x_2$$

Instead of writing expressions as sum of terms that make y equal to 1, we can also write expressions using terms that make y equal to 0

$$y = x_1 + x_2$$

$$\mathbf{x}_1 + \mathbf{x}_2$$

$$y = (x_1 + x_2) \cdot (\overline{x_1} + \overline{x_2})$$

$$\overline{x_1} + \overline{x_2}$$

Product of Sum (POS) form

Product of Sum (POS) form

Implementing Boolean expressions

Elementary Gates

AND:
$$y = x_1. x_2$$

Why call it a gate?

$$x_1$$
AND
 $y = x_1$
Gate is open

OR:
$$y = x_1 + x_2$$

$$x_1$$
 OR x_2

NOT:
$$y = x$$

NAND:
$$y = \overline{x_1 \cdot x_2}$$

NOR:
$$y = \overline{x_1 + x_2}$$
 $x_1 \longrightarrow x_2$

$$X_1$$
 X_2
 X_1+X_2
 X_1+X_2

$$x_1 \longrightarrow NOR$$

XOR:
$$y = x_1 \oplus x_2 = x_1 \cdot x_2 + x_1 \cdot x_2$$

Y is 1 if only one variable is 1 and the other is zero

$$x_1 \longrightarrow x_2 \longrightarrow y$$

XNOR:
$$y = x_1 \Box x_2 = x_1 \cdot x_2 + \overline{x_1} \cdot \overline{x_2}$$

$$x_1 - y$$
 $x_2 - y$

Y is 1 if only both variables are either 0 or 1

$$y = x_1 \square x_2 = \overline{x_1 \oplus x_2}$$

Gates with more than 2 inputs

AND:
$$y = x_1. x_2. x_3...$$

$$x_1$$
 x_2
 x_3
 y

OR:
$$y = x_1 + x_2 + x_3 + \dots$$

$$x_1$$
 x_2
 x_3
 y

XOR:
$$y = x_1 \oplus x_2 \oplus x_3 = x_1 \cdot \overline{x_2} \cdot \overline{x_3} + \overline{x_1} \cdot x_2 \cdot \overline{x_3} + \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} + \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} + x_1 \cdot x_2 \cdot x_3$$

Y = 1 only if odd number of inputs is 1

Implementing Boolean expressions using gates

$$S = x.y.z + x.y.z + x.y.z + x.y.z$$

$$C = x.y + x.z + y.z$$

Design Overview

$$S = x.y.z + x.y.z + x.y.z + x.y.z$$

$$C = x.y + x.z + y.z$$

Representation of Boolean Expressions

X	у	f ₁
0	0	0
0	1	1
1	0	1
1	1	0

$$f_1 = \bar{x} \cdot y + x \cdot \bar{y}$$

$$\mathbf{f}_1 = m_1 + m_2$$

$$f_1 = m_1 + m_2$$
 $f_1 = \sum (1, 2)$

$$f_2 = \sum (0, 2, 3) = ?$$

$$f_2 = \bar{x} \cdot \bar{y} + x \cdot \bar{y} + x \cdot y$$

A minterm is a product that contains all the variables used in a function

Three variable functions

$$f_2 = \sum (1, 4, 7) = ?$$

$$f_2 = x \cdot y \cdot z + x \cdot y \cdot z + x \cdot y \cdot z$$

Product of Sum Terms Representation

X	у	f ₁
0	0	1
0	1	0
1	0	0
1	1	1

$$f_1 = (x + \overline{y}).(x + y)$$

$$f_1 = M_1.M_2$$

$$f_1 = \Pi(1,2)$$

$$f_2 = \Pi(0,3) = ?$$

$$f_2 = (x+y).(\overline{x}+\overline{y})$$

x y z Max. terms

0 0 0
$$x + y + z$$
 M0
0 0 1 $x + y + \overline{z}$ M1
0 1 0 $x + \overline{y} + \overline{z}$ M2
0 1 1 $x + \overline{y} + \overline{z}$ M3
1 0 0 $x + y + \overline{z}$ M4
1 0 1 $x + y + \overline{z}$ M5
1 1 0 $x + y + \overline{z}$ M6
1 1 1 $x + y + \overline{z}$ M7

$$f_1 = \Pi(1,5,7) = ?$$

$$f_2 = (x + y + \overline{z}).(x + y + \overline{z}).(x + \overline{y} + \overline{z})$$

Simplification

X ₁	X_2	X ₃	у
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$y = \sum (1, 3, 5, 7)$$

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

Simplification of Boolean expression yields : $y = x_3$!! which does not require any gates at all!

Goal of Simplification

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

Goal of simplification is to reduce the complexity of gate circuit. This requires that we minimize the number of gates. Since number of gates depends on number of minterms, one of the goals of simplification is to minimize the number of minterms in SOP expression

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

$$\Rightarrow$$
 y = $\overline{x_1} \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$

This circuit is simpler not just because it uses 4 gates instead of 5 but also because circuit-2 uses one 2-input and three 3-input gates as compared to five 3-input gates

used in circuit-1

Goal of Simplification

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$
 $\implies y = \overline{x_1} \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1$

In the SOP expression:

- 1. Minimize number of product terms
- 2. Minimize number of literals in each term

Simplification \Rightarrow Minimization

Minimization

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

$$y = \overline{x_1} \cdot x_3 \cdot (\overline{x_2} + x_2) + x_1 \cdot x_3 \cdot (\overline{x_2} + x_2)$$

$$y = \overline{x_1} \cdot x_3 + x_1 \cdot x_3$$

$$y = (\overline{x_1} + x_1).x_3$$

$$y = x_3$$

Principle used: x + x = 1

$$f = \overline{x} \cdot \overline{y} + \overline{x} \cdot y + x \cdot \overline{y}$$

Apply the Principle: x + x = 1 to simplify

$$f = \overline{x} \cdot (\overline{y} + y) + x \cdot \overline{y}$$

$$f = x + x \cdot y$$

How do we simplify further?

$$f = x. y + x. y + x. y = x. y + x. y + x. y + x. y$$

Principle used: x + x = x

$$f = \bar{x}. \bar{y} + \bar{x}. y + \bar{x}. \bar{y} + \bar{x}. \bar{y}$$

$$= \bar{x}. (\bar{y} + y) + (\bar{x} + x). \bar{y} = \bar{x} + \bar{y}$$

Simplify

$$f = \overline{x_1} \cdot x_2 \cdot \overline{x_3} \cdot x_4 + \overline{x_1} \cdot x_2 \cdot x_3 \cdot x_4 + x_1 \cdot x_2 \cdot \overline{x_3} \cdot x_4 + x_1 \cdot x_2 \cdot x_3 \cdot x_4 + x_1 \cdot x_3 \cdot x_4 + x_1 \cdot x_4 \cdot$$

Principle:
$$x + \overline{x} = 1$$
 and $x + x = x$

Need a systematic and simpler method for applying these two principles

Karnaugh Map (K map) is a popular technique for carrying out simplification

It represents the information in problem in such a way that the two principles become easy to apply

K-map representation of truth table

X	у	min term
0	0	x.y m0 x.y m1 x.y m2 x.y m3
0	1	x . <u>y</u> m1
1	0	$x.\overline{y}$ m2
1	1	$I_{X.y}$ m3

X	у	f ₁
0	0	0
0	1	1
1	0	1
1	1	0

3-variable K-map representation

X	у	Z	min terms	
0 0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1	x.y.z x.y.z x.y.z x.y.z x.y.z x.y.z x.y.z x.y.z	m0 m1 m2 m3 m4 m5 m6

XXX	x ^{VZ} 00 01 11 10							
0	m_0	m_1	m_3	m_2				
1	m ₄	m ₅	m ₇	m ₆				

X	у	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

XXX	00	01	11	10	
0	0	1	1	0	
1	0	1	1	0	

χVZ	00	01	11	10_	
0	1	0	1	0	
1	0	1	1	0	

$$f = x.y.z + x.y.z + x.y.z + x.y.z$$

4-variable K-map representation

W	1	X	У	Z	min terms		VZ WV	00	01	11	10_
0		0	0	0	m_0		00	0	1	3	2
0		0	0	1	$m_{\scriptscriptstyle{1}}$						
0		0	1	0	m_2		01	4	5	7	6
Q		0	1	1	m ₃	ŕ	11	12	13	15	14
1		1	1	0	m ₁₄		10	8	9	11	10
1		1	1	1	l m ₁₅						

WX VZ	00	01	11	10_
00	1	0	1	0
01	0	1	1	0
11	1	0	0	1
10	1	0	0	0

$$f = \overline{w.x.y.z} + \overline{w.x.y.z}$$

Minimization using Kmap

$$f_2 = \sum (2,3)$$

$$f = x.\overline{y} + x.y$$

$$f = x.(\overline{y} + y)$$

Combine terms which differ in only one bit position. As a result, whatever is common remains.

$$f = \bar{x}. y + x. y$$

$$f = (\bar{x} + x).y$$

$$\Rightarrow$$
 f = y

$$\Rightarrow$$
 f = \overline{y}

$$\Rightarrow$$
 f = \bar{x}

Principle:
$$x + x = 1$$
 and $x + x = x$

$$f_2 = \sum (0, 2, 3)$$

$$f = x. y + x. y + x. y$$

$$f = x.(\overline{y} + y) + \overline{x}.y$$
$$= x + \overline{x}.y$$

$$f = x + \overline{x} \cdot y + x \cdot y$$
$$= x + (\overline{x} + x) \cdot y$$
$$= x + y$$

The idea is to cover all the 1's with as few and as simple terms as possible

$$f = \overline{x}.\overline{y}.\overline{z} + y.\overline{z} + x.\overline{z}$$

$$f = x \cdot z + x \cdot z$$

$$f = (x.y.z + x.y.z + x.y.z + x.y.z)$$

$$f = x.\overline{y} + x.y$$

$$f = x.(\overline{y} + y) = x$$

$$f = x + \overline{z}$$

Can we do this?

Note that each encirclement should represent a single product term. In this case it does not.

$$f = x.y.z + x.y.z + x.y.z$$

= $x.y + x.z$

We do not get a single product term. In general we cannot make groups of 3 terms.

Can we use kmap with the following ordering of variables?

Can we combine these two terms into a single term?

$$f = x.y.z + x.y.z$$

$$= x.(y.z + y.z)$$

Note that no simplification is possible. Kmap requires information to be represented

These two terms can be combined into a single term but it is not easy to show that on the diagram.

$$f = x.y.z + x.y.z$$

= $x.(y + y).z = x.z$

Kmap requires information to be represented in such a way that it is easy to apply the principle x + x = 1

$$f = \overline{w}. y. z + \overline{w}. x. z + w. \overline{y}. \overline{z} + \overline{w}. \overline{x}. \overline{y}. \overline{z} + \overline{w}. x. y. \overline{z}$$

But is this the simplest expression?

WX VZ	00	01	11_	10_	
00	1	0	1	0	
01	0	1	1	0	
11	1	0	0	1	
10	1	0	0	0	

$$w. x. y. z + w. x. y. z = w. x. z$$

VZ	00	01_	11	10_
wx 00	1	0	1	0
01	0	1	1	0
11	1	0	0	1
10	1	0	0	0

$$w. \ \overline{x}. \ \overline{y}. \ \overline{z} + \overline{w}. \ \overline{x}. \ \overline{y}. \ \overline{z} = \overline{x}. \ \overline{y}. \ \overline{z}$$

$$f = w. y. z + w. x. z + w. y. z + w. x. z + x. y. z$$

Is this the best that we can do?

Cover the 1's with minimum number of terms

$$f = w. y. z + w. x. z + w. y. z + w. x. z + w. y. z + w. x. z + x. y. z$$

$$f = \overline{w}. y. z + \overline{w}. x. z + w. x. z + w. x. z + x. y. z$$

WXZ	00	01_	11_	10_
wx 00	1	0	0	0
01	1	(1)	0	0
11	0	0	0	0
10	[-]	0	0	1

WX T	00	01	11	_10_
00	1	0	0	0
01	(T)	1	0	0
11	0	0	0	0
10	1	0	0	1

$$f = w.x.y + w.x.z + w.y.z$$

$$f = \overline{w}.x.\overline{y} + w.\overline{x}.\overline{z} + \overline{x}.\overline{y}.\overline{z}$$

Groups of 4

W.Z

X.Z

WX VZ	00	01	11	10
00	1	0	0	1
01	0	0	0	0
11	0	0	0	0
10	1	0	0	1

00	1	0	1	0
01	0	0	0	0
11	0	0	0	0
10	1	0	1	0

??

Groups of 8

WX VZ	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

WX VZ	00	01	11	10	
00	0	0	0	0	
01	1	1	1	1	
11	1	1	1	1	
10	0	0	0	0	

WX VZ	00	01_	11	_10_	
00	1	1	1	1	
01	0	0	0	0	
11	0	0	0	0	
10	1	1	1	1	

 VZ
wx
00
 01
 11
 10

 00
 1
 0
 0
 1

 01
 1
 0
 0
 1

 11
 1
 0
 0
 1

 10
 1
 0
 0
 1

 χ

 \mathcal{X}

Examples

Don't care terms

Y_3	√ CC	l			
	ab	00	01	11	10
	ab 00	0	0	1	0
	01	0	0	0	0
	11	X	X	Х	х
	10	0	0	Х	Х

$$y_3 = \overline{a}.\overline{b}.c.d$$

	а	b	С	d	<i></i>
	0	0	0	0	1000000000
	0	0	0	1	0100000000
	0	0	1	0	0010000000
(9	0	1	1	0001000000
	0	1	0	0	0000100000
	0	1	0	1	0000010000
	0	1	1	0	0000001000
	0	1	1	1	0000000100
	1	0	0	0	0000000010
	1	0	0	1	0000000001
	1	0	1	0	xxxxxxxxx
	1	0	1	1	xxxxxxxxx
	1	1	0	0	XXXXXXXXX
	1	1	0	1	XXXXXXXXX
	1	1	1	0	XXXXXXXXX
	1	1	1	1	xxxxxxxxx

Don't care terms can be chosen as 0 or 1. Depending on the problem, we can choose the don't care term as 1 and use it to obtain a simpler Boolean expression

Y ₃ •¢0	I				
ab 00	00	01	11	10	
00	0	0	1	0	
01	0	0	0	0	
11	x	X	x	х	
10	0	0	Х	Х	

$$y_3 = \overline{b}.c.d$$

Don't care terms should only be included in encirclements if it helps in obtaining a larger grouping or smaller number of groups.

Minimization of Product of Sum Terms using Kmap

$$f = x + \overline{x} \cdot y + x \cdot y$$
$$= x + (\overline{x} + x) \cdot y$$
$$= x + y$$

$$\Rightarrow$$
 f = \bar{x}

$$\Rightarrow$$
 f = \overline{y}

$$f = (\overline{x} + z) \cdot (x + \overline{z})$$

$$\Rightarrow$$
 f = x . z + x . z

$$f = (x + y + z).(x + y + z).(w + y + z).(w + x)$$

Example

Obtain the minimized PoS by suitably using don't care terms

$$f = (x+w+z).(x+w+y).(y+z)$$

Adder/Subtractor

<u>a</u>	b	s	<u>C</u>
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = \bar{a}.b + a.\bar{b}$$
; $C = a.b$

$$S = \bar{a}.\bar{b}.c_{in} + \bar{a}.b.\bar{c}_{in} + a.\bar{b}.\bar{c}_{in} + a.b.c_{in}; C_{out} = a.b + a.c_{in} + b.c_{in}$$

$$S = \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + a.\overline{b.c_{in}} + a.b.c_{in}$$

$$S = C_{in} \oplus (a \oplus b)$$

$$C_{out} = a.b + a.C_{in} + b.C_{in}$$

$$C_{out} = C_{in}(a.\overline{b} + \overline{a}.b) + a.b = C_{in}.(a \oplus b) + a.b$$

4-bit Adder

$A_3A_2A_1A_0$	$B_3B_2B_1B_0$	$S_3S_2S_1S_0$	C _{out}
0000	0000	0000	1
0000	0001	0001	0
0001	0000	0001	0

Ripple Carry Adder (20 gate circuit)

Subtraction

$$A - B = A + 2$$
's complement of B

$$A - B = A + 1$$
's complement of $B+1$

$$A - B = A + \overline{B+1}$$

One needs add a circuit for predicting errors resulting from overflow

Adder/Subtractor

Digital Circuits

Combinational Circuits

Sequential Circuits

Output is determined by current values of inputs only.

Output is determined in general by current values of inputs and past values of inputs/outputs as well.

NOR SR Latch

$$Q=1; \overline{Q}=0$$
 Set State

$$Q = 0; \overline{Q} = 1 \text{ Re set State}$$

S	R	Q	Q	State
1	0	1	0	SET

NOR SR Latch

$$Q=1; \overline{Q}=0$$
 Set State

$$Q = 0; \overline{Q} = 1$$
 Re set State

S	R	Q	Q	State
1	0	1	0	SET
0	1	0	1	RESET

HOLD State

S	R	Q	Q	State
1	0	1	0	SET
0	1	0	1	RESET
0	0	Q	Q	HOLD
1	1	0	0	INVALID

Both the outputs are well defined and 0. the first problem is that we do not get complementary output.

A more serious problem occurs when we switch the latch to the hold state by changing RS from 11 \rightarrow 00 . Suppose the inputs do not change simultaneously and we get the situation 11 \rightarrow 01^{*} \rightarrow 00

Suppose the inputs change as RS = $11 \rightarrow 10^* \rightarrow 00$

So although output is well defined when we apply RS = 11, it becomes unpredictable once we switch the latch to hold state by applying RS = 00. That is why RS = 11 is not used as an input combination.

The error can occur also due to unequal gate delays.

On the other hand suppose that gate-2 is faster.

NAND Latch

S	R	Q	Q	State
0	1	1	0	SET
1	0	0	1	RESET
1	1	Q	Q	HOLD
0	0	1	1	INVALID

D latch

Enable	S	R	Q	Q	State
0	Х	Χ	Ø	Ы	Hold
1	1	0	1	0	Set
1	0	1	0	1	Reset
1	0	0	Ø	Ø	Hold
1	1	1	0	0	Invalid

If EN = 1 then Q = D otherwise the latch is in Hold state

Synchronous Sequential Circuits

Example

Example

Problem with Latch

Circuits are designed with the idea there would be single change in output or memory state in single clock cycle.

Edge Triggered Latch or Flip-flop

Positive edge triggered flipflop

Negative Edge Triggered Latch or Flip-flop

Master-Slave D Flip-flop

Characteristic table

Given a input and the present state of the flip-flop, what is the next state of the flip-flop

Inputs	(D)	Q(t+1)
	0	0
	1	1

$$Q(t+1) = D$$

JK Flip-flop

Inputs J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

$$Q(t+1) = \overline{Q(t)}.J + Q(t).\overline{K}$$

→Characteristic equation

Toggle or T Flip-flop

Inputs (T)	Q(t+1)
0	Q(t)
1	Q(t)

$$Q(t+1) = \overline{Q(t)}.T + Q(t).\overline{T}$$

Excitation Table What inputs are required to effect a particular state change

	Inputs		
Q(t)	Q(t+1)	Т	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Excitation Table

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

Inputs		
Q(t)	Q(t+1)	J K
0	0	0 X
0	1	1 X
1	0	X 1
1	1	X 0

D	Q(t+1)
0	0
1	1

Inputs		
Q(t)	Q(t+1) D	
0	0	0
0	1	1
1	0	0
1	1	1

Convert a D FF to JK FF

J	K	Q(t+1)	D
0	0	Q(t)	Q(t)
0	1	0	0
1	0	1	1
1	1	Q(t)	Q(t)

$$D = \overline{Q}.J + Q.\overline{K}$$

