Übung 3

Rybien Sinjari Dominic Gibietz Christopher Diekkamp

Übung 3 Aufgabe 1: Verteilung

Buchstaben und ihre Häufigkeit:

A: 13

K: 3

U: 15

B: 8

L: 10

V: 3

C: 5

M: 3

W: 2

D: 10

N: <u>24</u>

X: 1

E: 37

O: 4

Y: 0

F: 5

P: 1

Z: 2

G: 9

Q: 0

ß: 1

H: 10

R: 17

Ä: 1

I: <u>20</u>

S: 12

Ö: 0

J: 0

T: 8

Ü: 0

- In dem Text treten die Buchstaben **E**, **N** und **I** am häufigsten auf. Diese drei Buchstaben sind die, die am häufigsten in deutschen Texten / Sätzen auftreten.
- Am seltensten treten in deutschen Sätzen Die Buchstaben X, Y und Q auf.

Übung 3 Aufgabe 2 Naive Bayes Classifier

Naive Bayes Classifier nimmt an, dass alle Merkmale (statistisch) unabhängig sind.

Bei Wörtern trifft das nicht zu.

- Bestimmte Buchstaben kommen häufiger vor
- Bestimmte Wortfolgen sind wahrscheinlicher

Computer Vision:

- "maschinelles Sehen" Robotern/Computern sehen ermöglichen
- z.B. Vermessung von geometrischer Strukturen, Bewegungserkennung

Erkennen der Autos

Computergrafik:

- Erzeugen von Bildern und Animationen (z.B. Zeichentrickfilme)
- Bearbeiten von Bildern

Erzeugen von Autos auf zuvor erkannte Autos

Verhältnis von Computergrafik und Computer Vision

 Computer Vision erkennt aus einem Raster von Zahlen um was für einen Gegenstand es sich handelt (oder Gesichter / Formen etc.).

 Computergrafik erzeugt aus einer Szene (z.B. einer Schale Obst und deren Beleuchtung) ein Raster an Zahlen, welches wie die jeweilige Szene aussieht.

Computer Vision "schwieriger" als Computergrafik

 Erzeugung von Bildern, Animationen und Tiefenwahrnehmung bereits sehr gut möglich (zum Beispiel in Videospielen, Zeichentrickfilmen)

www.ea.com

www.derwesten.de

Computer Vision "schwieriger" als Computergrafik

Computer muss Merkmale (Teile) und deren Anordnung (Aufbau und deren relative Größe) kennen

Gesicht: Augen, Nase, Mund ...

- Computer Vision teilweise noch mit Schwierigkeiten:
 - z.B. werden Konstellationen als Auto erkannt, wo keins ist

Übung 3 Aufgabe 4 Sliding Window-Verfahren

Verfahren zur Mustererkennung in Grafiken

- Untersucht ein Bild in allen Skalierungen über den Raum
- Ein festes Window wird über das Bild gelegt und untersucht
- Es wird jeweils über das Bild bewegt bis es jede Position in jeder Skalierung überprüft hat
- Bricht ab, wenn das skalierte Bild die Größe des Window erreicht hat

Übung 3 Aufgabe 4 Sliding Window-Verfahren

Stoppwörter

- Wörter oder Merkmale mit geringen Klassifikationswert
- Kommen in allen zu untersuchenden Objekten der Klasse vor
- Sind sehr häufig

Stoppwörter spielen beim Sliding Window-Verfahren keine Rolle.

Sie werden in erster Linie bei Texten eingesetzt. Wie etwa:

- Suchmaschinen
- Information mining
- ...

Übung 3 Aufgabe 5: Buchstabenerkennung

• a priori Wahrscheinlichkeit von :

• C1 = a;
$$P(C2) = 14/22 = 0.7$$

• C2 = b;
$$P(C2) = 6/22 = 0.3$$

→ Es kommen 14 a's, 6 b's und es sind insgesamt 22 Buchstaben

Übung 3 Aufgabe 5: Buchstabenerkennung

Entscheidung anhand des Likelihoods

- Enscheide dich für C1 wenn P(C1|x) > P(C2|x)
 P(Ci|x)= P(x|Ci)*P(Ci)
- \rightarrow P(x|C1)*P(C1) > P(x|C2)*P(C2)
- \rightarrow Für x=5: Es wird **C1**, also a, genommen da $P(C1|x)=P(x|C1)^*P(C1)=0,3^*0,7$ größer ist als $P(C2|x)=P(x|C2)^*P(C2)=0,0^*0,3$

Übung 3 Aufgabe 5: Buchstabenerkennung

- → Für x=10: Es wird **C1** genommen da P(C1|x) = P(x|C1)*P(C1) = 0,5*0,7 > 0,1*0,3 = <math>P(x|C2)*P(C2) = P(C2|x)
- → Für x=15: Es wird **C1** genommen da P(C1|x) = P(x|C1)*P(C1) = 0,4*0,7 > 0,4*0,3 = <math>P(x|C2)*P(C2) = P(C2|x)
- → Für x=20: Es wird **C2**, also b, genommen da P(C2|x) = P(x|C2)*P(C2)= 0,7*0,7 > 0,1*0,3 = <math>P(x|C1)*P(C1) = P(C1|x)