Probabilités III

MINES ParisTech

12 décembre 2024 (#a4e78ae)

\$ \$

Question 1 Soient $X \sim \mathcal{E}(\lambda)$, $\lambda > 0$, et $Y \sim \mathcal{B}(1/2)$ deux variables aléatoires réelles indépendantes, et $Z = XY + (1 - Y)\lambda$.

- \square A : La fonction de répartition conditionnelle $F_{Z|Y=1}$ vaut $F_{Z|Y=1}(z)=$ $\mathbb{P}(Z \leq z | Y = 1) = (1 - e^{-\lambda z}) \mathbb{M}_{\mathbb{R}_+^*}(z)$
- \square B : La fonction de répartition conditionnelle $F_{Z|Y=0}$ vaut $F_{Z|Y=0}(z)=$ $\mathbb{P}(Z \le z | Y = 0) = \mathbb{1}_{[\lambda, +\infty[}(z))$
- \square C : Z admet une densité
- \square D : $Z = \lambda$ p.s.

Question 2 (réponses multiples) Soient $X \sim \mathcal{E}(\lambda)$, $\lambda > 0$, et $Y \sim \mathcal{B}(1/2)$ deux variables aléatoires réelles indépendantes, et $Z = XY + (1 - Y)\lambda$. Alors:

Question 3 Soient X et Y deux variables aléatoires de densité jointe $f_{X,Y}(x,y) = \frac{1}{x} \mathbb{1}_{[0,x]}(y) \lambda \exp(-\lambda x), \ \lambda > 0.$ Quelle est la densité de Y|X=x?

- \square A: $\exp(-y)$
- $\Box \ \mathrm{B} : 1_{[0,x]}(y)$
- $\square \ \mathrm{C} : \tfrac{1}{x} 1_{[0,x]}(y)$
- $\Box \ \mathrm{D} : \tilde{\lambda} \exp(-\lambda x)$

Question 4 En déduire la valeur de $\mathbb{E}(Y)$:

- \square A: 1/2
- \square B: x/2
- $\Box \ C : \frac{1}{2\lambda}$ $\Box \ D : \lambda^2$

Question 5 Soit (X,Y) un vecteur gaussien d'espérance (μ_X,μ_Y) et de matrice de covariance $\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, où $\rho > 0$. L'espérance conditionnelle de X|Y vaut :

- \Box A: μ_Y
- $\Box \text{ B: } \mu_X$ $\Box \text{ C: } \mu_Y + \rho(Y \mu_X)$ $\Box \text{ D: } \mu_X + \rho(Y \mu_Y)$