Introduction to Machine Learning

Tuning: In a Nutshell

Learning goals

- Understand the main idea behind tuning,
- why tuning matters,
- and why tuning is difficult

WHAT IS TUNING?

- Tuning is the process of selecting the best hyperparameters, denoted as λ , for a machine learning model
- Hyperparameters are the parameters of the learner (versus model parameters θ)
- Consider a guitar analogy: Hyperparameters are akin to the tuning pegs. Learning the best parameters $\hat{\theta}$ playing the guitar is a separate process that depends on tuning!

WHY TUNING MATTERS

- Just like a guitar won't perform well when out-of-tune, properly tuning a learner can drastically improve the resulting model performance
- Tuning helps find a balance between underfitting and overfitting

HOW HARD COULD IT BE?

- ullet Very difficult: There are lots of different configurations to choose from, known as the hyperparameter space, denoted by Λ (analogous to Θ)
- Black box: If one opts for a configuration $\lambda \in \Lambda$, how can its performance be measured (and compared)?
- Well-thought-out approaches black box optimization techniques are needed!

NAÏVE APPROACHES

Let's start with two naïve approaches - **Grid Search** and **Random Search**:

Beyond these basic methods, there are more sophisticated techniques which operate on certain assumptions about the objective function. These assumptions enable them to search for optimal solutions more efficiently.

PIPELINES IN MACHINE LEARNING

Pipelines are like the assembly lines in machine learning. They automate the sequence of data processing and model building tasks, ensuring efficiency and consistency.

Why Pipelines Matter:

- Streamlined Workflow: Automates the flow from data preprocessing to model training.
- Reproducibility: Ensures that results can be reproduced consistently.
- Error Reduction: Minimizes the chance of human errors in the model building process.

Simple Pipeline Example:

 A basic pipeline might include data normalization, feature selection, and a learning algorithm.

PIPELINES AND AUTOML

AutoML leverages pipelines to automate the process of applying machine learning to real-world problems. It simplifies tasks like model selection, hyperparameter tuning, and cross-validation.

Key Components of AutoML Pipelines:

- Data Preprocessing: Automatic handling of missing values, encoding categorical variables, etc.
- Feature Engineering: Automated feature selection and transformation.
- Model Selection: Evaluating and choosing the best model automatically.
- Hyperparameter Optimization: Finding the best model settings without manual intervention.

