© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°15

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 - D'après E3A Maths A MP 2006

Soit I un intervalle de \mathbb{R} contenant 0.

On désigne par $\mathcal{C}^0(I)$ l'espace vectoriel réel des fonctions continues de I dans \mathbb{R} et on note :

$$\forall f \in \mathcal{C}^0(I), \ \|f\|_{\infty} = \sup_{x \in I} |f(x)|$$

On désigne par $\mathcal{C}^1(I)$ l'espace vectoriel réel des fonctions de classe \mathcal{C}^1 de I dans \mathbb{R} . On note également $L^2(I)$ l'ensemble des fonctions $f \in \mathcal{C}^0(I)$ intégrables sur I et on pose

$$\forall f \in \mathcal{L}^1(\mathcal{I}), \ \|f\|_1 = \int_{\mathcal{I}} |f|$$

On note enfin $L^2(I)$ l'ensemble des fonctions $f \in \mathcal{C}^0(I)$ telles que f^2 est intégrable sur I et on pose

$$\forall f \in \mathbf{L}^2(\mathbf{I}), \ \|f\|_2 = \sqrt{\int_{\mathbf{I}} f^2}$$

Partie I

Soient $f \in \mathcal{C}^0(I)$ et c un réel strictement positif. Démontrer que l'équation différentielle y' + cy = f admet une unique solution, notée $\varphi(f)$, de classe \mathcal{C}^1 sur I et vérifiant $\varphi(f)(0) = 0$. Démontrer que

$$\forall x \in I, \ \varphi(f)(x) = e^{-cx} \int_0^x e^{ct} f(t) \ dt$$

2 Prouver que l'application φ est linéaire sur $\mathcal{C}^0(I)$.

Partie II

On suppose dans cette partie que l'intervalle I est un segment [a, b] avec $a \le 0 < b$.

 $\fbox{3}$ Démontrer qu'il existe des réels positifs M_1 et M_2 tels que :

$$\forall f \in \mathcal{C}^0(I), \|f\|_1 \le M_1 \|f\|_2 \le M_2 \|f\|_{\infty}$$

 $\boxed{\mathbf{4}}$ Démontrer qu'il existe un réel positif M_0 tel que :

$$\forall f \in \mathcal{C}^0(\mathbf{I}), \ \|\varphi(f)\|_{\infty} \le \mathbf{M}_0 \|f\|_{\infty}$$

© Laurent Garcin MP Dumont d'Urville

5 Démontrer qu'il existe un réel A positif tel que

$$\forall f \in \mathcal{C}^0(I), \ \forall x \in I, \ |\varphi(f)(x)| \le A \|f\|_1$$

En déduire que :

$$\exists C \in \mathbb{R}_+, \ \forall f \in \mathcal{C}^0(I), \ \|\varphi(f)\|_1 \le C\|f\|_1$$

6 Démontrer qu'il existe un réel B positif tel que

$$\forall f \in \mathcal{C}^0(I), \ \forall x \in I, \ |\varphi(f)(x)| \leq B||f||_2$$

En déduire que :

$$\exists K \in \mathbb{R}_+, \ \forall f \in \mathcal{C}^0(I), \ \|\varphi(f)\|_2 \leq K \|f\|_2$$

- **7** L'application φ de $\mathcal{C}^0([a,b])$ dans lui-même est-elle continue
 - **7.a** lorsque $\mathcal{C}^0([a,b])$ est muni de la norme $\|\cdot\|_{\infty}$?
 - **7.b** lorsque $C^0([a,b])$ est muni de la norme $\|\cdot\|_1$?
 - **7.c** lorsque $\mathcal{C}^0([a,b])$ est muni de la norme $\|\cdot\|_2$?

Partie III

Dans cette partie, I désigne l'intervalle $[0, +\infty[$ et, pour tout réel $\lambda > 0$, f_{λ} est la fonction définie sur I par :

$$\forall x \in I, f_{\lambda}(x) = e^{-\lambda x}$$

- **8** Déterminer $\varphi(f_{\lambda})$.
- **9** Démontrer que f_{λ} et $\varphi(f_{\lambda})$ sont intégrables sur I. Calculer $||f_{\lambda}||_1$ et $||\varphi(f_{\lambda})||_1$.
- 10 Démontrer que f_{λ}^2 et $\varphi(f_{\lambda})^2$ sont intégrables sur I. Calculer $||f_{\lambda}||_2$ et $||\varphi(f_{\lambda})||_2$.
- 11 Démontrer que ϕ est un endomorphisme continu de $L^1(I)$ muni de la norme $\|\cdot\|_1$ et calculer sa norme subordonnée à la norme $\|\cdot\|_1$.
- **12** Soit $f \in L^2(I)$. On pose $g = \varphi(f)$. Démontrer que

$$\forall X > 0, \ \frac{g(X)^2}{2} + c \int_0^X g(t)^2 dt = \int_0^X f(t)g(t) dt$$

En déduire que φ est un endomorphisme continu de $L^2(I)$ muni de la norme $\|\cdot\|_2$ et calculer sa norme subordonnée à la norme $\|\cdot\|_2$.

Partie IV

I désigne maintenant un intervalle quelconque de \mathbb{R} contenant 0 et H(I) est l'espace vectoriel des fonctions de classe \mathcal{C}^1 sur I telles que f^2 et $(f')^2$ soient intégrables sur I.

- 13 13.a Démontrer que si f et g sont dans H(I), alors les fonctions fg et f'g' sont intégrables sur I.
 - 13.b Démontrer que l'application

$$\varphi \colon \left\{ \begin{array}{ll} \mathrm{H}(\mathrm{I})^2 & \longrightarrow & \mathbb{R} \\ (f,g) & \longmapsto & \int_{\mathrm{I}} fg + \int_{\mathrm{I}} f'g' \end{array} \right.$$

définit un produit scalaire.

© Laurent Garcin MP Dumont d'Urville

 $\textbf{13.c} \;\; \text{En d\'eduire que l'application} \; \| \cdot \|_{H} \; \text{d\'efinit par}$

$$\forall f \in \mathbf{H}(\mathbf{I}), \ \|f\|_{\mathbf{H}} = \sqrt{\int_{\mathbf{I}} f^2 + \int_{\mathbf{I}} (f')^2}$$

est une norme sur H(I).

14 On suppose, dans cette question, que ϕ est un endomorphisme continu de $L^2(I)$ muni de la norme $\|\cdot\|_2$. On pose

$$K = \{ f \in H(I), \ f(0) = 0 \}$$

14.a Démontrer que, pour tout $f \in L^2(I)$, $\varphi(f)'$ est dans $L^2(I)$ et $\varphi(f)$ est dans K. Démontrer que

$$\exists A > 0, \ \forall f \in L^2(I), \ \|\varphi(f)\|_H \le A\|f\|_2$$

- **14.b** Démontrer que φ est un isomorphisme de L²(I) dans K.
- **14.c** Démontrer que φ est continue de $(L^2(I), \|\cdot\|_2)$ dans $(K, \|\cdot\|_H)$.
- **14.d** Démontrer que ϕ^{-1} est continue de $(K, \|\cdot\|_H)$ dans $(L^2(I), \|\cdot\|_2)$.