Numărul legitimației de bancă ______ Numele _____

CHESTIONAR DE CONCURS

Prenumele tatălui ______

DISCIPLINA: Algebră și Elemente de Analiză Matematică M1A

VARIANTA A

- 1. Să se calculeze $L = \lim_{n \to \infty} (\sqrt{n+2} \sqrt{n+1})$. (4 pct.)
 - a) L = -1; b) L = 1; c) $L = \infty$; d) L = 2; e) L = 0; f) nu există.
- 2. Să se determine suma S a coeficienților polinomului $f = (8X^3 7)^4$. (4 pct.)
 - a) S = 0; b) S = 3; c) S = 1; d) S = 2; e) $S = 2^{10}$; f) S = -2.
- 3. Să se calculeze $\sqrt{0.09} \sqrt[3]{0.008}$. (4 pct.)
 - a) 0,3; b) 0,5; c) 0,1; d) $\frac{1}{3}$; e) -0,1; f) 0.
- **4.** Funcția $f: \mathfrak{D} \to \mathfrak{D}$, $f(x) = \begin{cases} x^2 + x + 1, & x > 0 \\ 2x + a, & x \le 0 \end{cases}$ este continuă dacă (4 pct.)
 - a) a = 1; b) a = 2; c) $a \in \mathfrak{D}$; d) a = 0; e) a = -1; f) $a = \frac{3}{2}$.
- 5. Să se determine $m \in \mathfrak{D}$ dacă ecuația $|\ln x| = mx$ are trei soluții reale și distincte. (4 pct.)
 - a) $m \in \left(0, \frac{1}{e}\right)$; b) $m > \frac{1}{e}$; c) $m = \frac{1}{e}$; d) $m < \frac{1}{e}$; e) m = e; f) m > 0.
- **6.** Să se scrie în ordine crescătoare numerele: $a = \sqrt{3} 1$, $b = \sqrt{5} 2$, c = 1. (4 pct.)
 - a) a,b,c; b) c,a,b; c) c,b,a; d) b,c,a; e) b,a,c; f) a,c,b.
- 7. Fie funcția $f: \mathfrak{D} \to \mathfrak{D}$, $f(x) = \sqrt[3]{x^2 + x + 1}$. Atunci f'(1) este (4 pct.)
 - a) 0; b) $\frac{1}{2}$; c) -1; d) $\frac{1}{3}$; e) $\frac{1}{\sqrt[3]{6}}$; f) $\frac{1}{\sqrt[3]{9}}$.
- 8. Să se determine $m \in \mathfrak{D}$ astfel încât sistemul $\begin{cases} mx + y + z = 0 \\ x + my + 2z = 0 \end{cases}$ să admită numai soluția nulă (banală). x y z = 0

(4 pct.)

a) $m \neq -1$ şi $m \neq 2$; b) m = 0; c) m = 2; d) $m \in \mathfrak{D}$; e) nu există; f) m = -1.

9. Să se calculeze limita $L = \lim_{x\to 0} \frac{\sin^2 2x}{\sin^2 3x}$. (4 pct.)

a)
$$L = \frac{2}{3}$$
; b) $L = \frac{4}{9}$; c) $L = \infty$; d) nu există; e) $L = -1$; f) $L = 0$.

- 10. Mulțimea soluțiilor ecuației $\sqrt[3]{x-1} x = -1$ este (4 pct.)
 - a) $\{0\}$; b) $\{1, 2, 3\}$; c) \emptyset ; d) $\{0, 1, 2\}$; e) \measuredangle ; f) $\{1\}$
- 11. Să se determine $a \in \mathfrak{P}$ astfel încât polinomul $f = 6X^4 7X^3 + aX^2 + 3X + 2$ să se dividă prin polinomul $g = X^2 X 1$. (4 pct.)
 - a) a = -2; b) a = 2; c) a = -1; d) a = -7; e) a = 0; f) a = 1.
- **12.** Funcția $f:(0,2) \to \mathfrak{D}$, $f(x) = \frac{2}{x^2 + 2x}$. Să se calculeze $S_n = \sum_{k=1}^n (f^{(k)}(1) f^{(k+1)}(1))$. (4 pct.)

a)
$$S_n = (-1)^n \left(1 - \frac{1}{3^{n+2}}\right)$$
; b) $S_n = -\frac{8}{9} + 2(-1)^n \left(1 - \frac{1}{3^{n+2}}\right)$; c) $S_n = 1 - \frac{1}{3^{n+2}}$; d) $S_n = -\frac{8}{9} + (-1)^n \left(1 - \frac{3}{3^{n+2}}\right)$;

e)
$$S_n = (-1)^n \left(1 - \frac{1}{3^{n+1}}\right)$$
; f) $S_n = -\frac{8}{9} + (-1)^n (n+1)! \left(1 - \frac{1}{3^{n+2}}\right)$.

- **13.** Fie $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ și $B = \begin{pmatrix} a & b \\ 0 & 2 \end{pmatrix}$. Determinați $a, b \in \mathfrak{D}$ astfel încât AB = BA. (6 pct.)
 - a) a = b = 1; b) $a \in \mathfrak{D}$, b = 2; c) a = -1, b = 3; d) a = -2, b = 0; e) nu există; f) a = 2, $b \in \mathfrak{D}$.
- **14.** Să se calculeze $i + i^3 + i^5$, $(i^2 = -1)$. (6 pct.)
 - a) 0; b) 3i; c) -1; d) i; e) -i; f) 2i.
- 15. Să se determine mulțimea $A = \{x \in \mathfrak{P} \mid (2x-3)(3x-2) \ge 0\}$. (6 pct.)

a)
$$A = \left(\frac{2}{3}, \frac{3}{2}\right)$$
; b) $A = \circlearrowleft$; c) $A = \varnothing$; d) $A = \left(-1, 1\right)$; e) $A = \left[\frac{3}{2}, \infty\right)$; f) $A = \left(-\infty, \frac{2}{3}\right] \cup \left[\frac{3}{2}, \infty\right)$.

16. Numărul $x = C_6^4 + A_5^2 - P_4$ este **(8 pct.)**

a)
$$x = 0$$
; b) $x = \frac{11}{2}$; c) $x = 11$; d) $x = 10$; e) $x = 15$; f) $x = 25$.

- 17. Să se rezolve ecuația $\log_2 x + \log_2 2x = 3$. (8 pct.)
 - a) x = 0; b) x = -2; c) nu are soluții; d) $x = \pm 2$; e) x = 1; f) x = 2.
- **18.** Să se calculeze $I = \int_{0}^{1} xe^{x} dx$. **(8 pct.)**

a)
$$I = e$$
; b) $I = -1$; c) $I = 1$; d) $I = 0$; e) $I = 2e$; f) $I = -e$.