Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Instytut Informatyki Technicznej

Bartosz Matyjasiak 185117

Projekt i implementacja aplikacji mobilnej wyświetlającej aktualne lokalizacje autobusów oraz tramwajów w Warszawie

Project and implementation of mobile application displaying present locations of busses and trams in Warsaw

Praca dyplomowa inżynierska na kierunku – Informatyka

> Praca wykonana pod kierunkiem dr. hab. inż. Leszek Chmielewski, prof. SGGW Instytut Informatyki Technicznej Katedra Sztucznej Inteligencji

Warszawa, 2020¹

 $^{^1}$ Dokument skompilowano z klasą SGGW-thesis w wersji 1.05. Aktualną wersję klasy można pobrać ze strony http://stud.lchmiel.pl \rightarrow Seminarium dyplomowe.

Oświadczenie promotora pracy

Oświadczam, że niniejsza praca została przygotowana pod moim kierunkiem i stwierdzam, że spełnia ona warunki do przedstawienia tej pracy w postępowaniu o nadanie tytułu zawodowego.				
Data	Podpis promotora pracy			
Oświadcz	enie autora pracy			
wego oświadczenia, oświadczam, że nin mnie samodzielnie i nie zawiera treści uz	tym odpowiedzialności karnej za złożenie fałszy- iejsza praca dyplomowa została napisana przeze yskanych w sposób niezgodny z obowiązującymi wą z dnia 4 lutego 1994 r. o prawie autorskim i pra- z późn. zm.)			
Oświadczam, że przedstawiona praca nie zanej z nadaniem dyplomu lub uzyskanie	była wcześniej podstawą żadnej procedury zwiąm tytułu zawodowego.			
	est identyczna z załączoną wersją elektroniczną mowa poddana zostanie procedurze antyplagiato-			
Data	Podpis autora pracy			

Spis treści

1	Wst	ęp	9
	1.1	Założenia	Ģ
	1.2	Grafiki koncepcyjne	10
2	Imp	lementacja	12
	2.1	Publiczne API Warszawy	12
	2.2	Komponent GlobalContextProvider	12
	2.3	Aktualizacja pozycji pojazdów	13
	2.4	Pinezki przystanków	13
	2.5	Radar	15
	2.6	Rozkłady jazdy	15
	2.7	Ukrycie kluczy API w kodzie	16
3	Pod	sumowanie i wnioski	18
4	Bibl	iografia	20

1 Wstęp

W dużych miastach komunikacja miejska jest kluczowym aspektem dla mieszkańców. Niestety duże miasta, w tym Warszawa, boryka się z korkami, wypadkami, robotami drogowymi i innymi problemami przez co autobusy czy tramwaje często nie jeżdżą dokładnie według rozkładu jazdy. Dlatego dobrą informacją dla podróżującego jest lokalizacja GPS autobusu lub tramwaju. Warszawa udostępnia takie dane w projekcie "Otwarte Dane" [5] jednak są one w postaci nieczytelniej dla przeciętnego człowieka. Rozwiązaniem może być aplikacja mobilna, dzięki której użytkownik będzie widział na mapie, kiedy dokładnie przyjedzie autobus lub tramwaj.

1.1 Założenia

Aplikacja powinna:

- pokazywać aktualne pozycje autobusów i tramwajów na mapie,
- pokazywać pozycje przystanków na mapie,
- udostępniać rozkłady jazdy na każdym z przystanków,
- umożliwiać na dodanie linii autobusówej lub tranwajowej do ulubionych,
- umożliwiać na dodanie przystanku do ulubionych,
- wspierać dwa motywy:
 - jasny,
 - ciemny.

1.2 Grafiki koncepcyjne

By przybliżyć wizje projektu wykonałem grafiki koncepcyjne w programie Figma. Są to rys. 1.1 i rys. 1.2.

Rysunek 1.1. Grafiki koncepcyjne ekranu głównego z wyświetlonym radarem, zaznaczonym przystankiem i przykładowymi autobusami. Od lewej: motyw jasny, motyw ciemny.

Rysunek 1.2. Grafiki koncepcyjne dolnego przybornika z ulubionymi przystankami. Od lewej: motyw jasny, motyw ciemny.

2 Implementacja

Do implementacji wybrałem *framework* React-Native stworzony przez firmę Facebook [4]. Pozwala on na zrobienie aplikacji na telefony z systemem Android oraz iOS przy pomocy jednego kodu źródłowego napisanego w języku JavaScript XML (w skrócie JSX). Skupie się jednak na wersji aplikacji na system Android. Wybrałem także moduł react-native-maps [3], który jest odpowiedzialny za wyświetlanie mapy Google oraz zarządzanie nią.

2.1 Publiczne API Warszawy

Miasto udostępnia dane w postaci publicznego API. Z pośród wielu punktów końcowych interfejsu API Warszawy są dostępne:

- pozycje pojazdów danej linii;
- zbiór linii, które odjeżdzają z danego przystanku;
- rozkład jazdy dla danej linii z danego przystanku;
- zbiór wszystkich przystanków.

Pozycje pojazdów są aktualizowane co 10 sekund i też z taką częstotliwością są aktualizowane w aplikacji. Wszystkie z wymienionych punktów końcowych interfejsu API zaimplementowałem w klasie WarsawAPI.

2.2 Komponent GlobalContextProvider

W React-Native wszystkie elementy, które wyświetlają się na ekranie są komponentami. Komponenty pomiędzy sobą są połączone relacją rodzic-dziecko. Niesie za sobą to pewne problemy. Jednym z nich jest tzw. *prop-drilling*. By tego uniknąć użyłem kontekstu dostępnego w React i stworzyłem komponent GlobalContextProvider odpowiedzialny za całą logike aplikacji. Komponent ten przechowuje zmienne:

- zbiór wszystkich przystanków,
- zbiór ulubionych linii,
- zbiór ulubionych przystanków,
- aktualny wyświetlany region mapy,

- pozycje radaru oraz jego promień,
- zaznaczony przystanek lub pojazd.

Oraz funkcje do modyfikacji tych zmiennych. Komponent też przechowuje referencje do komponentu mapy oraz udostępnia funkcje od sterowania nią.

- Dopasowanie regionu mapy do grupy przystanków.
- Wycentrowanie mapy na lokalizacji GPS użytkownika.
- Zaznaczenie pojazdu lub przystanku i wycentrowanie mapy na zaznaczoneniu.

Jednak nie umieściłem w nim logiki aktualizowania pozycji pojazdów gdyż każda zmiana stanu tego komponentu powoduje ponowne wyrenderowanie wszystkich komponentów GlobalContext.Consumer, a wraz nim wszystkich jego dzieci. Przez to, że ten komponent jest używany w wielu miejscach to każda aktualizacja pozycji pojazdów, a ta jest co 10 sekund, powodowałaby ponowne wyrenderowanie całej aplikacji. To wiązałoby się z utratą na szybkości działania.

2.3 Aktualizacja pozycji pojazdów

By aktualizacja przebiegała sprawnie wraz z wyświetlaniem logike aktualizacji umieściłem w komponencie GMap. Jest to komponent, który jako dziecko posiada tylko komponent mapy. Jest to ważne bo gdy tylko zmieni się stan komponentu GMap, a ten będzie się zmieniał co 10 sekund, to wywoła to ponowne wyrenderowanie tylko komponentu map. W tym komponencie zaimplementowałem funkcje, która:

- 1. dla każdej ulubionej lub wykrytej przez radar (opisany w 2.4) linii są pobierane pozycje pojazdów tych linii;
- 2. jako pojazdy do wyświetlenia są brane pod uwage tylko te pojazdy, które są z linii ulubionej lub w promieniu radaru oraz czas wysłania sygnału GPS nie jest starszy niż 6 minut:
- 3. aktualizuje stan komponentu GMap pobranymi pojazdami.

Funkcja ta jest uruchamiana co 10 sekund za pomocą funkcji setTimeout wbudowanej w język JavaScript.

2.4 Pinezki przystanków

Wiedza o tym gdzie znajduje się przystanek jest bardzo ważna dla użytkownika. Jednak nie można ich wszystkich wyrenderować na mapie gdyż jest ich 6449 w sieci ZTM (stan na

sierpień 2019 [1]). Taka ilość praktycznie spowodowała by, że aplikacja nie nadawałaby się do użytku. Dlatego zoptymalizowałem to w następujący sposób.

Stworzyłem skrypt, który grupuje otrzymane przystanki z API Warszawy po numerze zespołu przystanka oraz wylicza średnią pozycje przystanków grupy. Wynik zapisuje do pliku . json. Ze względów optymalizacyjnych i możliwej przyszłej rozbudowy aplikacji plik ten hostuje w serwisie Firebase. Na tym serwisie też stworzyłem punkt końcowy interfejsu API, który zwraca ten plik. Aplikacja przy uruchomieniu pobiera go.

Dzięki zmiennej mapRegion dostępnej w komponencie GMap mogę ograniczyć pinezki do wyświetlenia. Zmienna mapRegion przechowuje aktualnie wyświetlany region mapy i posiada cztery następujące wartości:

- latitude szerokość geograficzna w centrum wyświetlanego regionu mapy,
- longitude długość geograficzna w centrum wyświetlanego regionu mapy,
- latitudeDelta różnica szerokości geografinczych od lewej krawędzi mapy do prawej,
- longitudeDelta różnica długości geografinczych od górnej krawędzi mapy do dolnej.

Używając tych czterech wartości można przefiltrować pinezki i wyświetlić tylko te, które są w obrębie mapRegion. Ponieważ, że zmienna mapRegion aktualizowana jest tylko kiedy manipulacja mapą (przesuwanie, obracanie itp.) zostanie zakończone to użytkownik nie zobaczy pinezek, które w trakcie ruchu weszły w obręb wyświetlanego regionu mapy. By polepszyć doświadczenie użytkownika (ang. *user experience*) do filtracji pinezek używam czterokrotnie większego pola niż pole wyznaczone przez mapRegion

By jeszcze bardziej ograniczyć ilość pinezek stworzyłem trzy progi wyświetlania zależne od wartości latitudeDelta:

- 1. [0;0.02) wyświetla pinezki pojedyńczych przystanków,
- 2. [0.02; 0.035] wyświetla pinezki grup przystanków,
- 3. $[0.035; \infty)$ nie wyświetla żadnych pinezek przystanków.

Pinezki przystanków i grup przystanków różnią się tylko wielkością oraz wyglądają jak na rys. 2.1. Kliknięcie w pinezke grupy przystanków dopasuje wyświetlany region mapy do wszystkich przystanków w grupie, a w pinezke pojedyńczego przystanku zaznaczy go.

Rysunek 2.1. Pinezki przystanków lub grup przystanków. Od lewej: motyw jasny, motyw ciemny.

2.5 Radar

Autobusów i tramwajów w Warszawie jest zbyt duża ilość by efektywnie pokazać je wszystkie na raz na mapie, więc dodałem do aplikacji funkcje radaru. Głównym celem radaru jest pokazywanie pinezek pojazdów linii z poza ulubionych. Ogranicza on też ilość pinezek do narysowania.

Działanie radaru jest następujące:

- użytkownik za pomocą przycisku w prawym dolnym rogu ustawia pozycje radaru na środku regionu mapy, który jest aktualnie wyświetlany;
- dla każdego z grup przystanków jest sprawdzane, czy średnia pozycja grupy jest w promieniu radaru;
- 3. jeśli tak to wszystkie linie z każdego przystanka danej grupy są dodawane do zbioru unikalnych linii radaru.

Podczas implementacji zauważyłem problem. Jeśli w granicach radaru jest *n* przystanków to tyle samo będzie zapytań do API Warszawy o linie jakie odjeżdzają z danego przystanka. Czas wysłania i odbioru około średnio 40 zapytań był bardzo długi. Dlatego do skryptu i pliku opisanego w 2.4 dodałem pobieranie dla każdego przystanka wszystkich linii oraz zapis ich do pliku wynikowego.

2.6 Rozkłady jazdy

By stworzyć możliwość sprawdzenia rozkładu jazdy dla danego przystanka postanowiłem dodać przycisk w postaci ikony w kontenerze u góry ekranu po zaznaczeniu przystanka (patrz rys. 2.2). Po naciśnięciu aplikacja zmienia widok na liste odjazdów dla każdej z linii (patrz rys. 2.3). Na rysunkach można zauważyć, że dodałem informacje na temat ile czasu zostało do następnego odjazdu autobusu lub tramwaju. Jest to czas z zaokrągleniem do minut w dół obliczony na podstawie rozkładu jazdy.

Rysunek 2.2. Górny kontener prezentujący informacje o zaznaczonym przystanku. Od lewej: motyw jasny, motyw ciemny.

Rysunek 2.3. Zrzut ekranu rozkładu jazdy. Od lewej: motyw jasny, motyw ciemny.

2.7 Ukrycie kluczy API w kodzie

W aplikacji używam dwóch API: Warszawy oraz map Google. Każde z nich wymaga klucza API. Te klucze powinny pozostać prywatne i niewidoczne w kodzie aplikacji. Dlatego by ukryć klucze stworzyłem plik . env w lokalizacji domowej projektu, w którym zdefiniowałem dwie zmienne środowiskowe: WARSAW_API_KEY oraz GOOGLE_MAPS_API_KEY o odpowiednich wartościach.

Następnie w kodzie posługiwałem się zmienną BuildConfig z modułu react-native-config [2] by otrzymać klucz API Warszawy, a klucz map Google, należało umieścić w pliku AndroidManifest.xr przy pomocy odwołania do zmiennych środowiskowych po uprzedniej konfiguracji modułu react-native-config.

Po wykonaniu tych operacji można bezpiecznie użyć systemu kontroli wersji takiego jak "git" i serwisów jak Github do udostępniania kodu. Należy też dodać lokalizacje pliku .env do pliku .gitignore. Teraz by było możliwe zbudowanie aplikacji w trybie debug należy wypełnić plik .env .example własnymi kluczami i zmienić jego nazwę na .env.

3 Podsumowanie i wnioski

Stworzono aplikacje mobilną spełniającą założenia przedstawione w sekcji 1.1. Końcowo ekran główny aplikacji wygląda jak na rys. 3.1. Funkcje aplikacji pozwalają na szybkie korzystanie z aplikacji przez użytkownika po dodaniu linii i przystanków do ulubionych. Aplikacja posiada też spore możliwości rozwoju takie jak przewidywanie czasów przyjazdu, kupowanie biletów lub wyświetlanie tras przejazdu danych linii autobusowych lub tramwajowych. Dzięki zastosowanej technologii React-Native aplikacja ma możliwość rozbudowy na systemy iOS.

Rysunek 3.1. Zrzut ekranu głównego aplikacji. Od lewej: motyw jasny, motyw ciemny.

4 Bibliografia

- [1] Informator statystyczny. Technical report, Zarząd Transportu Miejskiego w Warszawie, https://www.ztm.waw.pl/statystyki/|sierpień 2019, Sierpień 2019. (dostęp: 21.01.2020).
- [2] Wiele autorów. *Moduł react-native-config*. https://github.com/luggit/react-native-config. (dostęp: 21.01.2020).
- [3] Wiele autorów. *Moduł react-native-maps*. https://github.com/react-native-community/react-nati (dostęp: 21.01.2020).
- [4] Facebook, https://facebook.github.io/react-native/docs. *Dokumentacja React-Native*. (dostęp: 21.01.2020).
- [5] m.st. Warszawa, https://api.um.warszawa.pl/. Otwarte dane. (dostęp: 21.01.2020).

Wyrażam zgodę na udostępnienie mojej pracy w czytelniach Biblioteki SGGW w tym w Archiwum Prac Dyplomowych SGGW.
(czytelny podpis autora pracy)