Etude du Monopoly via les chaînes de Markov

Rémy Detobel Mickael Randour

Université Libre de Bruxelles, Bruxelles, Belgique rdetobel@ulb.ac.be

Abstract

Modélisation et étude du Monopoly à travers les chaînes de Markov. Les concepts principaux de ce modèle qu'est une chaîne de Markov, seront présentés et expliqués. Les différents choix permettant d'adapter le Monopoly afin qu'il puisse être modélisé comme une chaîne de Markov seront également expliqués. Enfin, une description de l'application et des résultats récupérés par l'implémentation de cette modélisation sera également faite et permettra de déterminer les cases les plus fréquentés ainsi que les cases les plus rentables.

1 Introduction

Contrairement aux idées reçues, chaque case du Monopoly n'a pas la même probabilité d'être visitée. Il est donc intéressant d'étudier quels sont les cases les plus fréquentés mais également quels seraient les cases les plus rentables. Dans cette idée, il est possible de modéliser le Monopoly à travers les chaînes de Markov. Mais avant cela, il est important de bien définir les chaînes de Markov ainsi que leurs propriétés. Les explications concernant ce modèle sont en grande partie basées sur le cours de Randour (2016). Pour pouvoir modéliser le Monopoly comme étant une chaîne de Markov, les règles du jeu doivent être clairement définies et des choix doivent être faits. Ceux-ci seront donc expliqués et justifiés dans cet article. Les résultats trouvés suite à cette modélisation seront présentés afin de trouver, au final, les cases les plus visitées mais également les cases les plus rentables.

2 Approche théorique

2.1 Les chaînes de Markov

Une chaîne de Markov est une structure de données qui permet de modéliser l'évolution de l'état d'un système aléatoire. Les chaînes de Markov sont basées sur le fait que l'état actuel du système dépend uniquement de l'état précédent. Cette propriété peut être appelé "propriété de Markov". Une chaîne de Markov est donc composée d'états et de liens entre ses différents états caractérisés par une certaine probabilité de passer d'un état A à un état B. Cette probabilité sera décrite plus en détail dans le point 2.3. Il est

possible de représenter une chaîne de Markov de plusieurs manières différentes. Dans la litérature (comme par exemple dans le cours Randour (2016)), on utilisera plus souvant la notation matricel, qui définit la chaîne de Markov ${\cal M}$ tel que :

$$\mathcal{M} = (S, \mathbf{P}, \iota_{init})$$

Où S représente l'ensemble de tous les états possibles, P une matrice $S \times S$ où chaque élément est compris entre 0 et 1 et où cette valeur représente la probabilité de passer d'un état à un autre (respectivement, l'état correspondant à la ligne et à la colonne). On appelera cette matrice ${f P}$ la matrice de transition. ι_{init} est une matrice colonne où chaque ligne représente un état et la valeur associée représente la probabilité de commencer par cet état. On peut retrouver d'autres variables dans la litérature (comme AP et L par exemple pour associer des propositions atomiques aux états) mais celles-ci ne seront pas utiles dans cet article. Il est également possible de représenter une chaîne de Markov sous forme d'un graphe dirigé où chaque noeud représente un état et chaque arrête est pondéré en fonction de la probabilité de passer d'un état à un autre. Nottons également que les chaînes de Markov peuvent être utilisée dans un temps discret ou dans un temps continu. Cependant, la modélisation du Monopoly n'inclura pas de temps continu et cet article traitera donc uniquement du temps discret.

2.2 Exemple de chaîne de Markov

Afin d'illustrer les notions liées aux chaînes de Markov, cet article se basera sur un exemple représentant les différents état que peut avoir un avion. On va donc ici considérer qu'un avion pourra avoir 6 états différents : en vol (noté vol), attérissage (noté att.), décollage (noté dec.), au sol, contrôle (noté ctr.) et hors service (noté h.s.). On va considérer que lors de l'attérissage, il y a une chance sur 3 pour qu'un voyant indique au pilote qu'un contrôle est nécessaire. On remarque également qu'il y a une chance sur 10 que l'avion ne passe pas le contrôle et soit considéré comme hors service. On considèrera également que tous les avions commencent avec l'état au sol.

2.2.1 Représentation matriciel

Comme vu au point 2.1, il est possible de représenter une chaine de Markov comme étant :

$$\mathcal{M} = (S, \mathbf{P}, \iota_{init})$$

Pour notre exemple on aura donc :

$$S = \{vol, dec., att., sol, ctr., h.s.\}$$

$$\mathbf{P} = \begin{array}{c} vol & dec. & att. & sol & ctr. & h.s. \\ vol & 0 & 0 & 1 & 0 & 0 & 0 \\ dec. & 1 & 0 & 0 & 0 & 0 & 0 \\ att. & 0 & 0 & 0 & 2/3 & 1/3 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ ctr. & 0 & 0 & 0 & 9/10 & 0 & 1/10 \\ h.s. & 0 & 0 & 0 & 0 & 0 & 1 \end{array}$$

$$\iota_{init} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ att. \\ sol \\ ctr. \\ 0 \end{pmatrix}$$

2.2.2 Représentation graphique

Il est également possible de représenter cette chaîne de Markov comme état un graphe dirigé (cfr point 2.1) :

2.3 Probabilité

La notion de probabilité peut se définir de plusieurs manières différentes et de nombreux ouvrages (comme par exemple celui de Charles M. Grinstead (2006)) décrivent de manière très détaillé la notion de probabilité. Dans ces ouvrages, on traite souvant des espaces de probabilité, qui demandent une approche très abstraite et rigoureuses. Cependant dans cet article, l'approche fréquentielle inspirée des statitistiques est suffisante. On définit donc la probabilité d'un événement aléatoire par la limite de la fréquence d'occurence d'un événement pour un nombre d'expériences tendant vers l'infini. De manière plus formel, on peut décrire ce comportement comme X étant une expérience aléatoire ayant

$$X_i \mid i \in I$$

pour résultats possibles, avec I un ensemble d'indices (qui peuvent être fini, infini dénombrable ou infini non-dénombrable). On définit la probabilité du résultat X_i pour $i \in I$ par :

$$\lim_{n\to\infty}\frac{X_i(n)}{n},$$

avec $X_i(n)$, le nombre d'occurences du résultat X_i lors de n itérations de l'expérience X. On note cette valeur $\mathbb{P}[X=X_i]$, si cette limite existe.

2.4 Simuler les changements d'état

Une chaîne de Markov permet donc d'estimer la probabilité de l'état futur d'un système uniquement en se basant sur l'état actuel du système. Dans cette idée, la matrice de transition P représente tous les déplacements d'une unité possibles. Si maintenant on veut connaître les états accèssibles depuis notre état actuel après deux unités de temps, il suffit d'élevé la matrice de transition au carré. Si l'on reprend notre exemple, on aura donc :

$$\mathbf{P}^{2} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2/3 & 1/3 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 9/10 & 0 & 1/10 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}^{2}$$
$$= \begin{pmatrix} 0 & 0 & 0 & 2/3 & 1/3 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 2/3 & 0 & 3/10 & 0 & 1/30 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 9/10 & 0 & 0 & 0 & 1/10 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

On remarque donc qu'après 2 déplacements depuis le première état (première ligne), il sera possible d'atteindre le 4 et 5ème état (avec respectivement une probabilité de 2/3 et 1/3). Ce comportement est très simple à voir dans cette exemple, car l'état succédant l'état 1 est obligatoirement le

3ème état. Il est donc normal qu'après 2 tours, on retrouve les probabilités de déplacement du troisième état.

2.5 Propriété d'une chaîne de Markov

On peut remarquer que la somme de tous les éléments de chaque ligne de la matrice de transition font 1. Ce phénomène peut également être vu sur la représentation graphique de la chaîne de Markov où la somme de chaque arrête quittant un noeud (un état donc) vaut 1. Par exemple, si l'on se concentre sur l'état att. (sur la représentation matriciel il s'agit donc de la $3^{\rm ème}$ ligne), on a bien : 2/3+1/3+0 qui vaut bien 1. De manière plus formel, cette caractéristique peut être notée tel que pour une matrice $\mathcal M$ (définie au point 2.1) et pour tout état $s \in S$:

$$\sum_{s' \in S} \mathbf{P}(s, s') = 1$$

Où $\mathbf{P}(s,s')$ représente la probabilité (présente dans la matrice de transition) de passer de l'état s à l'état s'. Cette caractéristique est toujours vrai par définition d'une chaîne de Markov mais également par définition d'une probabilité. En effet, la matrice \mathbf{P} contient toutes les rélations possibles entre tous les états du système $(S \times S)$. Une ligne représente donc toutes les relations possibles entre un état (définit par la ligne actuelle) et tous les autres état du système (les S colonnes). La probabilité de passer de l'état actuel à n'importe quel autre état du système est donc égal à 1 (par définition d'une probabilité). Avec ce même raisonnement, il est logique de se rendre compte que la matrice de distribution initiale possède les mêmes caractéristiques :

$$\sum_{s \in S} \iota_{init}(s) = 1$$

2.6 Notation des chaînes des Markov

Certaines chaînes de Markov ont différentes structures et certains sous-ensembles d'états possèdent des caractéristiques particulières. Ces ensembles sont donc notés via différentes abréviations. Ces différentes abréviations et concepts sont utilisés dans plusieurs articles scientifiques comme par exemple dans le livre de Baier and Katoen (2008) ou dans le cours Randour (2016). Pour formaliser ces différents concepts, on définit une chaîne de Markov $\mathcal{M}(S,\mathbf{P},\iota_{init})$ (comme vu au point 2.1) ainsi qu'un sous-ensemble T de S.

2.6.1 Fortement connexe

Ce sous-ensemble T sera définit comme fortement connexe si pour chaque pair d'état (s,t) tel que $s,t\in T$, il existe un chemin $s_0,s_1,...,s_n$ tel que $s_i\in T$ pour $0\le i\le n,s_0=s$ et $s_n=t$.

Dans l'exemple présenté au point 2.2, une composante fortement connexe pourrait être : $\{vol, att., dec., sol\}$

2.6.2 Composante fortement connexe

Une composante fortemment connexe est abrégé SCC ("Strongly Conntected Component" en anglais) et est définit tel que pour un état $s \in S$, sa compostante fortement connexe est le plus grand ensemble U au sens de l'inclusion tel que $s \in U$ et U est fortement connexe.

Notions au passage, que S est partitionnable en $\{U_1,\ldots,U_n\}$ tel que :

- $\forall i \in \{1, \dots, n\} : U_i \text{ est connexe};$
- $(i,j) \in \{1,\ldots,n\}^2 : i \neq j \Rightarrow U_i \cap U_j = \emptyset.$

2.6.3 BSCC

 BSCC signifie "Bottom Strongly Connected Component" en anglais. Une BSCC de \mathcal{M} est une composante fortement connexe (SCC) T tel que aucun état en dehors de T n'est pas accèssible. De manière plus formel, cela signifie que $\forall i \in T$:

$$\sum_{t \in T} \mathbf{P}(i, t) = 1$$

Il est important de noter qu'une fois que l'état actuel se retrouve dans une BSCC, il est impossible d'en sortir. Cela signifie qu'après un nombre fini ou infini dénombrable d'étape, on sera toujours dans un état présent dans le BSCC pour autant que l'on ai commencé dans ce BSCC.

L'exemple du point 2.2 a pour seul BSCC : $\{h.s.\}$ (qui est donc uniquement composé d'un seul état).

2.7 Distribution stationnaire

Comme vu au point 2.6.3, la probabilité de se retrouver dans un état présent dans un BSCC après un nombre fini ou infini dénombrable d'étape est toujours de 1 (pour autant que l'on ai commencé dans un état lui même présent dans ce BSCC). Remarquons cependant que chaque état présent dans ce BSCC n'a pas la même probabilité d'être visité. En effet, certains états seront visités plus souvent que d'autres. On définit la distribution stationnaire comme étant un vecteur de probabilité v tel que :

$$\mathbf{vP} = \mathbf{v}$$

Et où pour chaque élément $\mathbf{v}_i \in \mathbf{v}, \mathbf{v}_i \in [0,1]$. Par définition d'un BSCC, la somme des probabilités de chaque état doit valoir 1 (car après un nombre fini ou infini dénombrable d'étape, on sera toujours dans état présent dans ce même BSCC), on peut donc écrire :

$$\sum_{\mathbf{v}_i \in \mathbf{v}} \mathbf{v}_i = 1$$

2.7.1 Caclul de la distribution stationnaire

Nous allons définir le calcul de la distribution stationnaire à travers un exemple. Malheureusement, il n'est pas possible de reprendre l'exemple présenté en point 2.2 car le calcul de la distribution stationnaire de son BSCC est trivial (vu qu'il n'en exsite qu'un seul) et vaut 1. Nous allons donc légèrement modifier cet exemple en considèrant maintenant que tous les avions *hors service* seront tous réparés (avec une probabilité de 1 donc) et à nouveau mis dans l'état au sol. Ce nouvel exemple sera noté \mathcal{M}' . La matrice de transition de \mathcal{M}' sera donc :

$$\mathbf{P} = \begin{array}{c} vol & dec. & att. & sol & ctr. & h.s. \\ vol & 0 & 0 & 1 & 0 & 0 & 0 \\ dec. & 1 & 0 & 0 & 0 & 0 & 0 \\ att. & 0 & 0 & 0 & 2/3 & 1/3 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ ctr. & 0 & 0 & 0 & 9/10 & 0 & 1/10 \\ h.s. & 0 & 0 & 0 & 1 & 0 & 0 \end{array}$$

Et sa représentation graphique :

Le BSCC de la matrice \mathcal{M}' contiendra donc tous les états de cette chaîne de Markov. Le calcul de la distribution stationnaire nous permet de savoir la probabilité qu'a chaque état (présent dans ce BSCC) d'être visité. La distribution stationnaire de la matrice \mathcal{M}' , sera donc définit par le vecteur \mathbf{v} tel

que:

$$\begin{aligned} \mathbf{v}.\mathbf{P} &= \mathbf{v} \\ \begin{pmatrix} \mathbf{v}_{vol} \\ \mathbf{v}_{dec.} \\ \mathbf{v}_{att.} \\ \mathbf{v}_{sol} \\ \mathbf{v}_{ctr.} \\ \mathbf{v}_{b.c.} \end{pmatrix}^{T} \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2/3 & 1/3 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 9/10 & 0 & 1/10 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \mathbf{v}_{vol} \\ \mathbf{v}_{dec.} \\ \mathbf{v}_{att.} \\ \mathbf{v}_{sol} \\ \mathbf{v}_{ctr.} \\ \mathbf{v}_{b.c.} \end{pmatrix}^{T}$$

et où:

$$\mathbf{v}_{vol} + \mathbf{v}_{dec.} + \mathbf{v}_{att.} + \mathbf{v}_{sol} + \mathbf{v}_{ctr.} + \mathbf{v}_{h.s.} = 1$$

Calculer une équation où les inconnues se trouve de part et d'autre de l'égalité n'est pas une chose aisée, notons également que peu de solveur acceptent les problèmes écrit de cette façon. Il est donc possible de réécrire cette égalité de plusieurs manières différentes. Le livre "Introduction to Probability" de Charles M. Grinstead (2006) nous en présentes quelques une dans le chapitre 11. Dans cet article nous utiliserons une matrice identité I tel que :

$$\mathbf{v.P} = \mathbf{v}$$

$$\mathbf{v.P} = \mathbf{v.I}$$

$$\mathbf{v.P} - \mathbf{v.I} = 0$$

$$\mathbf{v.(P - I)} = 0$$

On se retrouve donc avec un système d'équation plus "classique" (où chaque équation correspond à une constante) :

$$\begin{pmatrix} \mathbf{v}_{vol} \\ \mathbf{v}_{dec.} \\ \mathbf{v}_{att.} \\ \mathbf{v}_{sol} \\ \mathbf{v}_{ctr.} \end{pmatrix}^{T} \begin{pmatrix} -1 & 0 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2/3 & 1/3 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 9/10 & -1 & 1/10 \\ 0 & 0 & 0 & 1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}^{T}$$

Qui peut être décomposé en sous-équation :

$$\begin{aligned} \mathbf{v}_{vol}. - 1 + \mathbf{v}_{dec}. 1 & + \mathbf{v}_{att}. 0 & + \dots + \mathbf{v}_{h.s}. 0 & = 0 \\ \mathbf{v}_{vol}. 0 + \mathbf{v}_{dec}. - 1 & + \mathbf{v}_{att}. 0 & + \dots + \mathbf{v}_{h.s}. 0 & = 0 \\ & \dots & = 0 \\ \mathbf{v}_{vol}. 0 + \mathbf{v}_{dec}. 0 & + \mathbf{v}_{att}. 0 & + \dots + \mathbf{v}_{h.s}. - 1 & = 0 \end{aligned}$$

Toutes les equations définissant la distribution stationnaire ont donc la même forme :

$$\mathbf{v}_{vol} + \mathbf{v}_{dec.} + \mathbf{v}_{att.} + \mathbf{v}_{sol} + \mathbf{v}_{ctr.} + \mathbf{v}_{h.s.} = 1$$

La résolution de ce système d'équation nous permet donc de trouver la distribution stationnaire de notre chaîne de Markov \mathcal{M}' qui vaut donc :

$$\mathbf{v} = (\mathbf{v}_{vol}; \mathbf{v}_{dec.}; \mathbf{v}_{att.}; \mathbf{v}_{sol}; \mathbf{v}_{ctr.}; \mathbf{v}_{h.s.})$$

$$\mathbf{v} = (0, 229; 0, 229; 0, 229; 0, 229; 0, 0763; 0, 0076)$$

3 Modélisation

3.1 Plateau de jeux

Plusieurs jeux de plateau peuvent être modélisés à travers une chaîne de Markov, comme par exemple avec le jeu de l'oie ou le Monopoly. Dans ces jeux, la position du pion dépend uniquement de la case où il se trouvait précédemment. Comme vu dans le point 2.1, les chaînes de Markov permettent de modéliser l'évolution de l'état d'un système. La plus part du temps, dans la modélisation des jeux de plateau, on utilise la position du pion (sur le plateau) comme représentant l'état du système. Cet état évolue donc avec le déplacement du pion. La chaîne de Markov permet de prédir la probabilité que ce pion se retrouve sur une case donnée. Les chaînes de Markov sont également basés sur le fait que l'évolution du système est dû à des événements aléatoires. Il faut donc que le déplacement du pion soit lié à ces événements (aléatoires) comme par exemple le résultat d'un lancé de dé.

3.2 Modélisation

Comme dit dans le point précédent, le Monopoly peut être modélisé par une chaîne de Markov. Plus concrètement, chaque case sera numérotée et représentera un état de la chaîne de Markov. L'état 2 de la chaîne de Markov représente le fait que le pion se trouve sur la case *caisse de communauté*.

FIGURE 1 – Numéroation du Monopoly (basé sur une image venant du site Monopolypedia.fr (2015))

Chaque déplacement du pion (c'est-à-dire à chaque fois que l'on lance le dé) sera traduit par un changement d'état. Dans un premier temps, on modélise donc le Monopoly par 40 cases où chaque case est reliée aux 6*n-(n-1) cases suivante à partir de la case n-1, où n est le nombre de dé. Dans le cas précis des règles du Monopoly (donc lorsque n=2), chaque case pourra donc accéder à 11 autres cases. En effet, le résultat le plus petit pouvant être produit par n

dés est de n (tous les dé à 1). On devra donc éliminer toutes les n-1 cases juste après la case actuelle et le résultat le plus grand pouvant être produit par n dés est de 6*n (pour un dé à 6 faces).

Cependant, certaines cases ont un comportement particulier comme par exemple la case *aller en prison*, la case *chance* ou encore la case *caisse de communauté*. Les déplacements possibles à partir de ces cases ne sont pas les mêmes que pour les autres cases et seront donc étudier dans les points suivant.

3.3 Répartition des dés

Lorsque l'on lance n dés, la somme des valeurs de chaque dés n'a pas la même probabilité d'apparaitre. En effet, lorsque l'on lance 2 dés, il y a 3 manière différentes de formé un 4 (à savoir : 3+1, 2+2 et 1+3) alors qu'il n'y a qu'une seule manière de formé un 2 (à savoir : 1+1), comme illustré par la figure 2. Cette répartition peut être généralisé de la

FIGURE 2 – Répartition des nombres formés avec 2 dés (villemin.gerard.free.fr, 2016)

manière suivante :

$$\sum_{k=0}^{(s-n)/6} (-1)^k \binom{n}{k} \binom{s-6k-1}{n-1}$$

Source : Où n est le nombre de dés et s le nombre que l'on désire former. Cette equation a été construite suite à la décomposition en polynome permettant de calculer des réparition.

En effet, en prennant par exemple le polynome $3x+5x^2+x^3$ et en le mettant au carré, on va récupérer toutes les combi-

naissons possibles:

$$(3x \times 3x) + (3x \times 5x^{2}) + (3x \times x^{3}) + (5x^{2} \times 5x^{2}) + (5x^{2} \times x^{3}) + (x^{3} \times x^{3})$$

$$= (9x^{2}) + (15x^{3}) + (3x^{4}) + (25x^{4}) + (5x^{5}) + (x^{6})$$

$$= x^{6} + 5x^{5} + 28x^{4} + 15x^{3} + 9x^{2}$$

Ce calcul montre la répartition de dés truqués ayant 3 faces 1, 5 faces 2 et une face 3. Le résultat final nous montre que lorsque l'on lance 2 de ces dés de 9 faces. En faisant la somme des coefficients, on obtient le nombre d'arrangement possible. Dans le cas présent, on a donc 1+5+28+15+9 c'est à dire 59. Cela nous permet de dire qu'il y a une chance sur 59 que la somme de ses 2 dés forme un 6 et 28 chance sur 59 de former un 4.

L'équation exprimé au début de ce point représente simplement le développement de ce polynome.

3.4 Faire un double

Les règles du Monopoly stipulent que lorsque l'on fait 3 doubles à la suite, on est envoyé en prison. Pour modéliser ce comportement via une chaîne de Markov, il va falloir triplé le nombre d'état. En effet, une case i peut être visité après avoir fait 0 double, 1 double ou 2 double. Si de cette case i on refaire encore un double, on se retrouve en case prison. Si par contre on fait un simple nombre, on se retrouve de nouveau sur la case i "zero double". Il est assez simple de se rendre compte de ça via la figure 3. Sur cette image, on peut donc voir en rouge les déplacements fait grace à des doubles. Ces 3 lignes rouges montre donc le déplacement d'un joueur qui aurait lancé les dés et fait consécutivement 3 doubles, à savoir ici : 1 + 1, 2 + 2 et 6 + 6. Ce dernière double le conduit directement en prison. Les flèches bleus montrent ce qu'il se passe lorsque l'on fait un simple déplacement (pas un double). Elles vont toutes vers la même plateau (celui où on a encore fait zero double). Pour savoir si un nombre est un double, il suffit de vérifier que le nombre est divisible par le nombre de dés. Il faut cependant bien tenir compte du fait qu'il y a plusieurs moyen de former un nombre. Par exemple, avec deux dés, il y a trois manières différentes de former un 4:1+3,2+2 et 3+1. Il y a donc 3 chance sur 36 de faire un 4 mais seulement une sur 36 de faire un double et 2 sur 36 de faire un simple 4 avec deux dés différents. Dans le point

3.5 Case prison

Les règles du Monopoly stipulent que l'on peut sortir de prison de plusieurs manières différentes : soit via une carte chance, soit en payant, soit en faisant un double. Seule les deux dernières solutions seront utilisé dans cette modélisation. En effet, avoir une carte chance ne dépend pas uniquement de l'état précédent et ne peut donc pas être représenté facilement avec les chaînes de Markov. Les règles indiquent également que l'on ne peut rester que 3 tours

FIGURE 3 – Déplacement en cas de double

maximum avant d'être obligé de payer. Afin de représenter ces différentes cas, la case prison sera "triplée". On aura donc trois représentations de la case prison : au premier, second et troisième tour. La case "aller en prison" sera donc considérée comme une case prison de niveau 0 et n'aura qu'une seule arrête visant la case "prison premier tour". Afin d'être le plus précis possible, on va calculer la probabilité de faire un double. Comme vu dans la sous-section 3.3 Répartition des dés, il y a 36 cas possible lorsque l'on lance 2 dés à 6 faces. On sait qu'il y a 6 doubles. On a donc 6 chance sur 36 de faire un double et chaque double : 2, 4, 6, 8, 10 et 12 ont chacun une chance sur 36 d'apparaitre. Si on ne fait pas de double (dans 5 cas sur 6), on doit relancer les dés (et donc avant ça, passer à la case prison "suivante"). Chaque case "prison" (les 3 cases cités ci-dessus) auront donc 8 arrêtes différentes :

- Payer et sortir de prison;
- Faire un double (et avancer du résultat de ce double),
 il y a donc 6 choix possibles;
- Ne pas réussir à faire un double (et continuer attendre).

3.6 Case "Chance"

Les cases chances peuvent faire gagner de l'argent mais également déplacé les pions présent sur le plateau de jeu. C'est évidemment ce second comportement qui sera étudier ici. Le Monopoly comporte 16 cartes chances ayant la répartition suivante :

- 8 cartes faisant référence à des payements ;
- une carte "sortir de prison";

— 7 cartes faisant référence à un déplacement.

On peut donc en déduire que lorsqu'un joueur pioche une carte chance, il aura une 7 chance sur 16 de devoir déplacer son pion. Ces déplacements sont les suivants :

- Reculer de 3 cases;
- Se rendre à la case départ;
- Aller en prison;
- Se rendre à la 11ème case (où 0 est le départ);
- Se rendre à la 15ème case :
- Se rendre à la 24ème case;
- Se rendre à la 36ème case (dernière case avant l'arrivée).

Dans les 9 autres cas on lancera simplement les dés. Les cases chances ont donc beaucoup d'arrêtes.

3.7 Case "Caisse de communauté"

Les cartes "Caisse de communauté" sont plus axé sur l'aspect financier du jeu. Cependant 3 cartes provoques également des déplacements des pions.

- Se rendre à la case départ;
- Aller en prison;
- Se rendre sur le première case.

La modélisation des cartes "caisse de communauté" se fait de la même manière que les cartes "Chance".

3.8 Calcul de l'état stationnaire

Comme vu dans le point ??, il est possible de calculer la distribution stationnaire de chaque case du Monopoly. Pour se faire, on va se basé sur une des méthodes décrite dans ce même point, à savoir simplifier la fonction de base :

$$wP = w$$
$$wP = wI$$
$$w(P - I) = 0$$

Où w est le vecteur stationnaire que l'on cherche, P est la matrice de déplacement et I est la matrice identité. On peut également noté cette equation de la façon suivante :

$$(P-I)^T w^T = 0$$

Qui sera plus simple à implémenté dans un langage informatique.

On peut également rajouter une colonne de 1 permettant d'intégrer directement la contrainte suivante dans l'équation :

$$\sum_{i \in w} i = 1$$

Cette équation part du simple principe que le vecteur résultat sera la distribution de probabilité de chaque état. Il faut donc que leur somme corresponde à 1 vu que l'on exprime la probabilité de se trouver sur tous les états accèssibles, il y a donc une probabilié 1 de se trouver sur les états présent dans le vecteur résultat (plus d'informations dans le point ??).

Avec un exemple concret Prenons la matrice de déplacement suivante :

$$wP = w$$

$$\begin{pmatrix} w_1 & w_2 & w_3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & w_3 \end{pmatrix}$$

$$\begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}^T \begin{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 1 & 3 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{pmatrix} = 0$$

$$\begin{pmatrix} w_1 & w_2 & w_3 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 2 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 1 \\ 2 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix}^T \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

On ajoute donc la colonne de 1 :

$$\left(\begin{array}{ccc} 0 & 0 & 1 & 1 \\ 2 & -1 & 0 & 1 \\ 0 & 1 & 2 & 1 \end{array}\right)^T \left(\begin{array}{c} w_1 \\ w_2 \\ w_3 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array}\right)$$

3.9 Choix du langage

Pour modéliser le Monopoly, le langage Python a été choisi. Il permet en effet d'avoir accès facilement à plusieurs librairies permettant de manipuler facilement des données.

3.9.1 Libraires utilisées

Pour manipuler plus facilement des matrices et résoudre les équations linéaire, la librairie "numpy" a été utilisé. Concernant l'interface graphique, c'est la librairie "Tkinter" qui a été sélectionnée.

4 Résultat

5 Conclusion

References

Baier, C. and Katoen, J.-P. (2008). *Principles of Model Checking*. The MIT Press.

Charles M. Grinstead, J. L. S. (2006). *Introduction to Probability*. the American Mathematical Society.

Haddad, S. (2014). Probabilistic aspects of computer science: Markovian models. Professor at ENS Cachan, haddad@lsv.enscachan.fr.

Monopolypedia.fr (2015). Le monopoly en 2015.

Randour, M. (2016). Info-f-412: Chapter 6: Model checking probabilistic systems. INFO-F-412 · Formal verification of computer systems.

villemin.gerard.free.fr (2016). jeu de dés, probabilité de gain.