

数值分析与计算软件

温丹苹

邮箱: dpwen@nju.edu.cn

办公室:工管院协鑫楼306

1.3 误差分析原则

例 计算 $y = \ln 2$.

Demo_1_1_ln.m

方法一: 利用 $f(x) = \ln(1+x)$ 的 Taylor 展开

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots + \frac{(-1)^{n+1}}{n}x^n + \dots$$

将 x=1 代入后计算结果为

	n	1	2	3	4	5	10	50	100
	S_n	1	0.5	0.833	0.583	0.783	0.646	0.683	0.688
误	差	3.1E-1	1.9E-1	1.4E-1	1.1E-1	9.0E-2	4.8E-2	9.9E-3	5.0E-3

计算到第 100 项, 误差仍有 0.05.

1.3 误差分析原则

例 计算 $y = \ln 2$.

方法二: 利用 $f(x) = \ln\left(\frac{1+x}{1-x}\right)$ 的 Taylor 展开

$$\ln\left(\frac{1+x}{1-x}\right) = 2\left(x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + \frac{1}{2n-1}x^{2n-1} + \dots\right).$$

将 x = 1/3 代入后计算结果为

n	1	2	3	4	5	10
S_n	0.667	0.691	0.693	0.693	0.693	0.693
$ S_n - \ln 2 $	2.6E-2	1.8E-3	1.4E-4	1.2E-5	1.1E-6	1.0E-11

计算到第 10 项, 误差已经小于 10^{-10} ! 实际值为 $\ln 2 = 0.693147180559945$.