Онтологии и Представление Знаний

Борис Конев

Department of Computer Science

Liverpool University

Дескрипционные логики

Комбинирование определений

Коллекция медицинских терминов SNOMED допускала порождение новых терминов путем комбинирования известных

```
T-1X500 = bone
```

T-1X501 = long bone (kind-of)

T-1X505 = shaft of bone (part-of)

T-1X520 = cortex of bone (constituent-of)

Комбинирование определений

Коллекция медицинских терминов SNOMED допускала порождение новых терминов путем комбинирования известных

T-1X500 = bone

T-1X501 = long bone (kind-of)

T-1X505 = shaft of bone (part-of)

T-1X520 = cortex of bone (constituent-of)

T-67000 + M-12000 + E-4986 + F-90000 = fracture in colon caused by donkey together with emotional state

Что такое дескрипционные логики?

- семейство логических формализмов для представления знаний
 - происходят от of **семантических сетей** и системы **KL-ONE**
 - описывают домен в терминах

концептов (классов, понятий), ролей (отношений) и индивидов

- определение сложных понятий как комбинации простых

Отличаются

- наличием формальной семантики (обычно, стандартная семантика Тарского)
 - более выразительны, чем пропозициональная логика
 - обычно разрешимы
 - родственны модальными и динамическим логикам
- наличие средств логического анализа
 - полные и корректные процедуры
 - (оптимизированные) реализации

Архитектура ДЛ

База знаний (КВ)

ТВох (терминология, схема)

 $Man \equiv Human \sqcap Male$ $HappyFather \equiv Man \sqcap \exists hasChild$

...

ABox (assertion box, данные)

john: Man (john, mary): hasChild

• •

Система анализа

Интерфейс

Краткая история

- 1-й этап (1975-1990):
 - Системы логического анализа не соответствовали формальной семантике (т.е., системы были не полные и/или не корректные) (Back, Classic, Loom, ...)
 - основаны на структурном анализе
- 2-й этап (1990-1995):
 - развитие полных и корректных **табличных алгоритмов** Kris, Crack)
 - анализ вычислительной сложности задач логического анализа
 - первые реализации табличных систем систем
 - развитие методов оптимизации
- 3-й этап (from 1995):
 - табличные алгоритмы для ДЛ большой выразительной силы
 - оптимизированные реализации, "успешно" решающие (N)EXPTIME-полные задачи
 (FaCT, DLP, Racer)
 - понимание связей с модальными логиками и разрешимыми фрагментами логики первого порядка

Последние результаты

- Зрелые реализации (например, FaCT++, RacerPro, Pellet, KAON2, CEL)
- Новые задачи логического анализа (ответ на запросы, поиск объяснений, поддержка версий)
- Полиномиальная разрешимость некоторых ДЛ (EL, DL-Lite)
- Базы данных
 - доступ к данным с использование онтологий
 - непротиворечивость модели данных (ER, UML, и т.п.)
 - интеграция схем
- Онтологии и Семантическая Паутина
 - методологии дизайна, поддержки, интеграции онтологий
 - логический анализ и разметка на основе онтологий (метаданные)
 - поиск и описание сервисов

Дескрипционная логика \mathcal{EL} : терминологическая часть

База знаний (КВ)

ТВох (терминология, схема)

 $Man \equiv Human \sqcap Male$ $HappyFather \equiv Man \sqcap \exists hasChild$

• • •

ABox (assertion box, данные)

john: Man (john, mary): hasChild

• • •

Система анализа

Интерфейс

C интаксис $\mathcal{E}\mathcal{L}$

• Язык \mathcal{EL} концептов (классов):

```
— имена концептов A_0, A_1, \dots (e.g., Person, Female, ...)

— имена ролей r_0, r_1, \dots (е.g., hasChild, loves, ...)

— концепт \top (иногда называют 'thing" или "вещь")

— операция \square (пересечение, конъюнкция, или просто "и").
```

- квантор ∃ (отверждение о существовании).

Простейшая дескрипционная логика

C интаксис $\mathcal{E}\mathcal{L}$

• Язык \mathcal{EL} концептов (классов):

```
— имена концептов A_0, A_1, \dots (e.g., Person, Female, ...)

— имена ролей r_0, r_1, \dots (e.g., hasChild, loves, ...)

— концепт \top (иногда называют 'thing" или "вещь")

— операция \square (пересечение, конъюнкция, или просто "и").
```

квантор ∃ (отверждение о существовании).

Простейшая дескрипционная логика

• Множество *Е с* **концептов определяется индуктивно**:

- все имена концептов $-\mathcal{EL}$ концепты
- \top является \mathcal{EL} -концептом
- Если C и D являются \mathcal{EL} -концептами, а r имя роли, то

$$(C \sqcap D), \exists r.C$$

являются \mathcal{EL} -концептами

Примеры

- Person □ Female (женщина),
- Person □ ∃hasChild.Person (человек, у которого есть ребенок),
- Person □∃hasChild.Person □∃hasParent.Person (человек, у которого есть ребенок и родитель),
- Person $\sqcap \exists$ has Child. (Person \sqcap Female),
- Person $\sqcap \exists$ has Child. Person \sqcap Female,
- Person $\sqcap \exists$ hasChild. \top ,
- Person □ ∃hasChild.∃hasChild. □.

Определения в \mathcal{EL}

Если A имя концепта, а $C-\mathcal{EL}$ -концепт, то

- $A \equiv C$ определение \mathcal{EL} -концепта. C описывает необходимое и достаточное условие, чтобы объект принадлежал классу A. "А эквивалентен C".
- $A \sqsubseteq C$ примитивное определение \mathcal{EL} -концепта. C описывает необходимое условие, чтобы объект принадлежал классу A. "А поглощен C".

Примеры:

- Father = Person \sqcap Male \sqcap \exists has Child. \top .
- Student = Person $\square \exists is_registered_at.University$.
- Father

 Person.
- Father \square \exists hasChild. \top .

\mathcal{EL} -терминология (ТВох)

 ${\cal EL}$ терминология T это конечное множество определения вида

$$A \equiv C$$
, $A \sqsubseteq C$

таких что никакое имя концепта не определяется более одного раза.

Таким образом, в терминологиях не бывает одновременно, например,

- University \equiv Institution $\sqcap \exists$ grants.academicdegree
- University \equiv Institution $\sqcap \exists$ supplies.higher_education

\mathcal{EL} -терминология (ТВох)

 ${\cal EL}$ терминология T это конечное множество определения вида

$$A \equiv C$$
, $A \sqsubseteq C$

таких что никакое имя концепта не определяется более одного раза.

Таким образом, в терминологиях не бывает одновременно, например,

- University \equiv Institution $\sqcap \exists$ grants.academicdegree
- University \equiv Institution $\sqcap \exists$ supplies.higher_education

Циклические определения допускаются

 $Human_being \equiv \exists has_parent.Human_being$

Ациклические терминологии

Ациклическая \mathcal{EL} -**терминология** T это \mathcal{EL} -терминология в которой нет (явных или неявных) циклических определений.

Ациклические терминологии

Ациклическая \mathcal{EL} -терминология T это \mathcal{EL} -терминология в которой нет (явных или неявных) циклических определений.

T — терминология

ullet Определим отношение \prec_T на парах имен концептов: $A \prec_T B$ т. и т.т., когда в T найдется

$$A \equiv C$$
 или $A \sqsubseteq C$ т.ч. B входит в C

• Терминология Т $\frac{1}{2}$ ациклична если транзитивное замыкание \prec_T иррефлексивно.

Пример: SNOMED CT

- Терминология медицинских терминов насчитывающая около 400 000 определений (400 000 имен концептов в 60 имен ролей)
- Ацикличная \mathcal{EL} -терминология (почти)
- Принадлежит (и поддерживается) некоммерческой организации IHSTDO (International Health terminology Standards Development Organisation).
- IHSTDO имеет 9 членов (бесплатное членство для 49 развивающихся стран).
- Цель: обеспечение обмена информацией между медиками, исследователями и пациентами по всему миру.

Фрагмент SNOMED CT

EntireFemur	StructureOfFemur
FemurPart	StructureOfFemur \sqcap
	∃part_of.EntireFemur
BoneStructureOfDistalFemur	FemurPart
EntireDistalFemur	BoneStructureOfDistalFemur
DistalFemurPart	BoneStructureOfDistalFemur \sqcap
	∃part_of.EntireDistalFemur
StructureofDistalEpiphysisOfFemur	DistalFemurPart
EntireDistalEpiphysisOfFemur	StructureOfDistalEpiphysisOfFemur

Импликация \mathcal{EL} -концептов (concept inclusion, CI)

C и D — произвольные \mathcal{EL} концепты.

- $C \sqsubseteq D$ называется **импликацией** \mathcal{EL} концептов. Означает, что каждый C является D. Также говорят, что C поглощен D или что D поглощает C. Иногда говорят, что C включается в D.
- ullet $C \equiv D$ является формой записи двух импликаций, $C \sqsubseteq D$ и $D \sqsubseteq C$. "C и D эквивалентны.

Например:

- Disease $\sqcap \exists$ has_location.Heart \sqsubseteq NeedsTreatment
- \exists student_of.ComputerScience \sqsubseteq Human_being $\sqcap \exists$ knows.Programming_Language

$\mathcal{EL} ext{-TBox}$

\mathcal{E} \mathcal{L} - тВох это конечное множество имплика сокращение $C \equiv D$).	аций	\mathcal{EL} -концептов вида $C \sqsubseteq D$ (также используем
Пример:		
Pericardium		Tissue □ ∃cont_in.Heart
Pericarditis		Inflammation \sqcap \exists has_loc.Pericardium
Inflammation		Disease $\sqcap \exists acts_on.Tissue$
Disease □ ∃has_loc.∃cont_in.Heart		Heartdisease □ NeedsTreatment

\mathcal{EL} -TBox

${\cal E}{\cal L}$ - ТВох это конечносокращение $C\equiv D$		ций	${\mathcal E}{\mathcal L}$ -концептов вида $C \sqsubseteq D$ (также используем
Пример:			
	Pericardium		Tissue $\sqcap \exists cont_in.Heart$
	Pericarditis		Inflammation \sqcap \exists has_loc.Pericardium
	Inflammation		Disease $\sqcap \exists acts_on.Tissue$
Disease □ ∃has_	loc.∃cont_in.Heart		Heartdisease ☐ NeedsTreatment
T.o.,			
ацикли	ческие терминологии	\Rightarrow	> терминологии ⇒ TBox

Как используют ТВох?

Иерархия концептов задаваемая T определяется как

 $\{A \sqsubseteq B \mid A, B$ имена концептов в T и T влечет $A \sqsubseteq B\}$

например, рассмотренный фрагмент SNOMED CT влечет

EntireDistalEpiphysisOfFemur

 ${\bf Structure Of Distal Epiphysis Of Femur}$

DistalFemurPart

BoneStructureOfDistalFemur

FemurPart

Стандартное использование SNOMED CT на основе иерархии

- SNOMED CT используется, чтобы породить иерархию медицинских терминов. Каждый термин ассоциирован с числовым кодом и определением.
- Врачи используют иерархию чтобы
 - порождать,
 - обрабатывать, и
 - хранить

электронные медицинские карточки пациента, содержащие диагноз, рекомендованное лечение, назначенные лекарства, результаты исследований и т.п.

Семантика $\mathcal{E}\mathcal{L}$

- ullet интерпретация это структура $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ в которой
 - $\Delta^{\mathcal{I}}$ это **носитель, домен** (непустое множество)
 - **– интерпретация** $\cdot^{\mathcal{I}}$ отображает:
 - * имя концепта A в $A^{\mathcal{I}}$, подмножество $\Delta^{\mathcal{I}}$

$$(A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}})$$

 * имя роли r в бинарное отношение $r^{\mathcal{I}}$ на $\Delta^{\mathcal{I}}$

$$(r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}})$$

ullet Интерпретация $C^{\mathcal{I}}$ произвольного концепта C і определяется индуктивно:

-
$$(\top)^{\mathcal{I}} = \Delta^{\mathcal{I}}$$

-
$$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$$

-
$$(\exists r.C)^{\mathcal{I}}=\{x\in\Delta^{\mathcal{I}}\mid ext{ существует }y\in\Delta^{\mathcal{I}}$$
 т.ч. $(x,y)\in r^{\mathcal{I}}$ and $y\in C^{\mathcal{I}}\}$

Пример

Пусть
$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$$
, where

- $\Delta^{\mathcal{I}} = \{a,b,c,d,e,f\}$;
- ullet Person $^{\mathcal{I}}=\{a,b,c,d,f\}$; Female $^{\mathcal{I}}=\{a,b,c,e\}$;
- hasChild $^{\mathcal{I}}=\{(a,b),(b,c),(d,e),(f,f)\}.$

Вычислить

- (Person \sqcap Female) $^{\mathcal{I}}$,
- (Person $\sqcap \exists$ hasChild.Person) $^{\mathcal{I}}$,
- (Person $\sqcap \exists$ hasChild.(Person \sqcap Female) $^{\mathcal{I}}$,
- (Person $\sqcap \exists$ hasChild.Person $\sqcap \mathsf{Female})^{\mathcal{I}}$,
- (Person $\sqcap \exists$ hasChild. \top) $^{\mathcal{I}}$,
- (Person $\sqcap \exists$ hasChild. \exists hasChild. \top) $^{\mathcal{I}}$.

Интерпретация импликаций концептов

 ${\mathcal I}$ интерпретация, $C \sqsubseteq D$ импликация концептов, и $T-{\sf TBox}.$

- $\mathcal{I} \models C \sqsubseteq D$ т. и т.т, когда $C^{\mathcal{I}} \sqsubseteq D^{\mathcal{I}}$. Говорят, что
 - ${\mathcal I}$ выполняет $C \sqsubseteq D$ или
 - $C \sqsubseteq D$ истинна в ${\mathcal I}$ или
 - $\mathcal I$ является моделью для $C \sqsubseteq D$.
- ullet $\mathcal{I} \models C \equiv D$ т. и т.т., когда $C^{\mathcal{I}} = D^{\mathcal{I}}$
- ullet $\mathcal{I} \models T$ т. и т.т., когда $\mathcal{I} \models E \sqsubseteq F$ для всех $E \sqsubseteq F$ в T.
 - ${\mathcal I}$ выполняет T или
 - ${\mathcal I}$ является моделью для T.

ТВох и импликации концептов

T — ТВох и $C \sqsubseteq D$ — импликация концептов. T влечет $C \sqsubseteq D$ т. и т.т., когда каждая модель T является моделью $C \sqsubseteq D$.

- $T \models C \sqsubseteq D$ или
- $C \sqsubseteq_T D$.

Пример: пусть MED является следующим \mathcal{EL} -ТВох'ом

Pericarditis \sqsubseteq Inflammation \sqcap \exists has_loc.Pericardium

Inflammation \Box Disease \Box \exists acts_on. Tissue

Pericardium \Box **Tissue** \Box **∃cont** in.**Heart**

Disease $\sqcap \exists$ has_loc. \exists cont_in.Heart \sqsubseteq Heartdisease \sqcap NeedsTreatment

Можно убедится что **Percarditis** $\sqsubseteq_{\mathsf{MED}}$ **NeedsTreatment**.