Chapter # 8 (Exercise 8.1-8.3)

Sara Aziz

November 27, 2024

Affine Combination

Definition: An **affine combination** of points $\{x_1, x_2, \dots, x_k\}$ in \mathbb{R}^n is:

$$x = \sum_{i=1}^k c_i x_i$$
, where $\sum_{i=1}^k c_i = 1$.

Properties:

- The coefficients c_i must sum to 1, ensuring "balance."
- Represents points that preserve the relative positioning of x_1, \ldots, x_k .

Affine Combination Examples

Case 1: One Vector

• If $x_1 \in \mathbb{R}^n$, the affine combination is simply x_1 , since $c_1 = 1$.

Case 2: Two Vectors

• For $x_1, x_2 \in \mathbb{R}^n$:

$$x = c_1x_1 + c_2x_2, \quad c_1 + c_2 = 1.$$

• Example: $x_1 = (1,0), x_2 = (0,1), c_1 = 0.7, c_2 = 0.3$:

$$x = 0.7(1,0) + 0.3(0,1) = (0.7,0.3).$$

Case 3: n Vectors

• For $\{x_1, x_2, \dots, x_n\} \in \mathbb{R}^n$:

$$x = \sum_{i=1}^{n} c_i x_i, \quad \sum_{i=1}^{n} c_i = 1.$$

• Example:

$$x_1 = (1,0), x_2 = (0,1), x_3 = (1,1), c_1 = 0.2, c_2 = 0.3, c_3 = 0.5$$
:
 $x = 0.2(1,0) + 0.3(0,1) + 0.5(1,1) = (0.7,0.8).$

Convex Combination

Definition: A **convex combination** of points $\{x_1, x_2, \dots, x_k\}$ is an affine combination where $c_i \ge 0$:

$$x = \sum_{i=1}^{k} c_i x_i, \quad \sum_{i=1}^{k} c_i = 1, \quad c_i \ge 0 \,\forall i.$$

Properties:

• Convex combinations lie inside or on the boundary of the convex region formed by $\{x_i\}$.

Convex Combination Examples

Case 1: One Vector

• If $x_1 \in \mathbb{R}^n$, the convex combination is simply x_1 , since $c_1 = 1$ and $c_1 > 0$.

Case 2: Two Vectors

• For $x_1, x_2 \in \mathbb{R}^n$:

$$x = c_1x_1 + c_2x_2, \quad c_1 + c_2 = 1, c_1, c_2 \ge 0.$$

• Example: $x_1 = (1,0), x_2 = (0,1), c_1 = 0.4, c_2 = 0.6$:

$$x = 0.4(1,0) + 0.6(0,1) = (0.4,0.6).$$

Case 3: n Vectors

• For $\{x_1, x_2, \dots, x_n\} \in \mathbb{R}^n$:

$$x = \sum_{i=1}^{n} c_i x_i, \quad \sum_{i=1}^{n} c_i = 1, c_i \ge 0.$$

• Example:

$$x_1 = (1,0), x_2 = (0,1), x_3 = (1,1), c_1 = 0.1, c_2 = 0.2, c_3 = 0.7$$
:
 $x = 0.1(1,0) + 0.2(0,1) + 0.7(1,1) = (0.8,0.9).$

Independence and Combinations

Affine Combination:

- If the vectors x_1, x_2, \dots, x_k are **affinely independent**, no vector in the set can be written as an affine combination of the others.
- Example: The points (1,0),(0,1),(1,1) are affinely independent because their affine hull forms a plane in \mathbb{R}^2 .

Convex Combination:

- Convex independence implies that no point in the set lies in the convex hull of the others.
- Example: The points (1,0), (0,1), (0.5,0.5) are not convexly independent because (0.5,0.5) lies in the convex hull of (1,0) and (0,1).

Summary

Affine Combinations:

- General form: $x = \sum c_i x_i$, $\sum c_i = 1$.
- Includes points "balanced" relative to the given set.

Convex Combinations:

- General form: $x = \sum c_i x_i$, $\sum c_i = 1$, $c_i \ge 0$.
- Includes points within the convex hull of the set.