Course No.	Course Name	L-T-P -Credits	Year of Introduction
CS369	Digital System Testing & Testable Design	3-0-0-3	2015

Pre-requisites

- 1. **CS203** Switching Theory and Logic Design
- 2. **CS234** Digital Systems Lab

Course Objectives

- 1. To expose the students to the basics of digital testing techniques applied to VLSI circuits.
- 2. To introduce the concepts of algorithm development for automatic test pattern generation for digital circuits.
- 3. To discuss fundamentals of design for testability.

Syllabus

Basic terminology used in testing - functional and structural models of digital systems -logic simulation for design verification and testing-fault modeling - fault simulation - testing for faults - design for testability.

Expected Outcome

Student is able to

- 1. Appreciate the basics of VLSI testing and functions modeling of circuits.
- 2. Apply fault modeling using single stuck & multiple stuck modeling for combinational circuits.
- 3. Evaluate different methods for logic and fault simulations.
- 4. Generate test patterns using automatic test pattern generation methods like D, PODEM & FAN algorithms for combinational circuits.
- 5. Explain automatic test pattern generation using time frame expansion and simulation based method for sequential circuits.
- 6. Design digital circuits using scan path and self tests.

Text Books

- 1. MironAbramovici, Melvin A. Breuer, Arthur D. Friedman, Digital Systems Testing and Testable Design, Jaico Publishers.
- Michael L. Bushnell and Vishwani D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, Springer.
- 3. Alexander Miczo, Digital Logic Testing and Simulation, Wiley.

Reference

1. ZainalabedinNavabi, Digital System test and testable design, Springer.

	Course Plan				
Module	Contents	Hours	Sem. Exam Marks %		
I	Fundamentals of Testing: Testing & Diagnosis, testing at different levels of abstraction, errors & faults, modeling & evaluation, types of testing, test generation Modeling: Functional modeling at logic level, functional modeling at register level & structural models.	06	15%		
Ш	Fault Modeling : Logic fault models, Fault detection and redundancy, Fault equivalence & fault location, fault dominance, single stuck faults, multiple stuck fault models.	06	15%		
FIRST INTERNAL EXAM					
III	Logic & fault Simulation: Simulationfor verification& test evaluation, types of simulation – compiled code & Event driven, serial fault simulation, statistical method for fault simulation.	07	15%		
IV	Combinational circuit test generation: ATG for SSFs in combinational circuits – fault oriented ATG- fault independent ATG- random test generation, Sensitized path, D-algorithm, PODEM and FAN.	07	15%		
	SECOND INTERNAL EXAM	-			
V	Sequential circuit test generation: ATPG for single clock synchronous circuits, time frame expansion method, simulation based sequential circuit ATPG – genetic algorithm.	07	20%		
VI	Design for Testability: introduction to testability, design for testability techniques, controllability and	09	20%		

observability by means of scan registers, generic scan				
based designs - scan path, boundary scan, Introduction	-			
to BIST.				
END SEMESTER EXAM				

Question Paper Pattern:

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks: 12
 - b. <u>Four</u>questions each having <u>3</u> marks, uniformly covering modules I and II;All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks: 18
 - b. <u>Three</u> questions each having <u>9</u> marks, uniformly covering modules I and II; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts
- 4. Part C
 - a. Total marks: 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks: 18
 - b. <u>Three</u> questionseach having <u>9</u> marks, uniformly covering modules III and IV; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical/design questions.