

Hashgraph

Alberto Ballesteros Kybern

Contents

- Definition
- Concepts
- How it works?
- Use Cases
- Hashgraph vs Blockchain
- References

Definition

 Data structure that records who gossiped to whom, and in what order.

- Consensus algorithm:
 - Fast, Secure, Fair
 - Techniques:
 - Gossip about Gossip
 - Virtual Voting

Concepts

- Members: Full nodes (A, B, C, D)
- Events: Data structure (Circles)
- Gossip: Information
 - Gossip protocol (Communication)
- Consensus on the order of the events and transactions

Gossip protocol

Information exchanged via gossip between peers.

 Each member calls others randomly to sync with them.

How it works?

Each member create an event.

 Each event can contain zero or more transactions

- Gossip protocol:
 - B call D randomly
 - Sent just ONE event

How it works?

- Typically D call B (can all A or C)
- B randomly call A and send 4 events.
- How many events know A?
- A create sync event
- A call B?

How it works?

A called D (not B)

Graph connected by hashes → hashgraph

 All events are signed by its creator

Older parts inmutable

Virtual voting

 Place all the events in order (everybody same order)

First: Hashgraph divided in rounds

 Round calculated for each event inmediately

Witness

- Witness: first event in a round for a given member
- 40% are witnesses (4 nodes)
 - \uparrow nodes, \downarrow % witnesses
- Responsible of calculations
- *It is possible for a member to have no witnesses in a given round. (Round 4)

Famous witness

Famous witness: a
witness seen by many
witnesses in the next
round

 For each witness, we need to determine if it is a famous witness

Election: Witnesses vote

Famous witness

- X2 are famous?
 - Who vote?
 - X3 witnesses
 - Who count the votes?
 - X4 witnesses

- X2 = {A2, B2, C2, D2}
- X3 = {A3, B3, C3, D3}
- X4 = {B4, D4}

Election

 Vote YES if there is an entirely-downward path from X3 to X2

- A3 can see B2?
- B3 can see B2?
- C3 can see B2?
- D3 can see B2?

Is B2 famous?

Is B2 famous?

All X3 witnesses voted YES

- Votes will be counted by X4 witnesses: {B4,D4}
 - Only if X4 strongly see a witness
 - Strongly see: To strongly see a witness there must be enough different paths to it so that together, the paths go through a supermajority of the population

– Supermajority:
$$t > \frac{2n}{3}/t, n \in \mathbb{N}$$

Is able B4 to strongly see X3?

Decide - YES

Supermajority: YES

 Decide: declare the winner, end election

- B4 has received YES from a supermajority:
 - Election result: YES, B2 is famous!

Decide - NO

Supermajority: NO

- B4 has received NO from a supermajority:
 - Election result: NO, C2 is famous!

C2 is not famous

Decide - Other cases

If B4 wasn't able to decide → Consider D4

If D4 fails → Consider A4 or C4

- If none of the round-4 witnesses can decide:
 - Simply vote in accordance with the majority
 - If tie \rightarrow vote YES
 - Perhaps the round-5 witnesses will be able to decide, if not rount-6 witnesses and so on

Coin round (theory)

- Normal round:
 - Collect a supermajority → Decide
 - Collect fewer → Vote majority
- Coin round (every 10th round)
 - Collect a supermajority → Vote majority
 - Collect fewer → Vote randomly
 - "random": middle bit of own digital signature
 - Bit 1: vote YES
 - Bit 0: vote NO

Round 1 witnesses

- Is A1 famous? YES
 - Blue paths
- Is B1 famous? YES
 - Green paths
- Is C1 famous? YES
 - Orange paths
- Is D1 famous? YES
 - Red paths
- A3 decides

Recap

- As soon as you get an event you put into a round
- First event in each round is a witness
- Each witness have to decide if it's famous or not
- Hold an election, collect votes and decide
- Prob(decide) = 1, everybody decide the same

Next steps

Hard part: agree on who is famous

- Find round received for earlier events (Below X2 witnesses)
- Gray events
 - Consensus order
 - Consensus timestamp

Round received

- The round received of an event x is defined to be the first round where all unique famous witnesses are descendants of x.
- All round-2 famous witnesses see the black event
- Black event → Received in round 2

Consensus timestamp

- Median timestamp when A, B and D first saw it
- Earliest event is D2 for D
- Earliest event is B2 for B
- Earliest event is BLACK for A
- Middle one from the list (second middle for even number)

Consensus order

- 10 events:
 - Round received: 2
 - Ties are broken with:
 - Consensus timestamp
 - Further ties broken:
 - Extended median
- Extended median:
 - Signature XORer with pseudorandom number

Use cases

Hashgraph do everything blockchain does

- Because of the fairness properties
 - Build a fair distributed stock market
 - Build World of Warcraft, a distributed World of Warcraft
 - Could build an eBay, a distributed eBay
 - Identity management

Hashgraph vs Blockchain

Data structure

Block (Blockchain)

Event (Hashgraph)

Timestamp

Transactions

Block hash

Parent hash

Hashgraph vs Blockchain

- No PoW or PoS, all nodes contribute.
- No miners, timestamp consensus
- Over 250.000 tps (~10 tps Ethereum) only limited by bandwidth. Ethereum or Bitcoin limited by their consensus protocol.
- Permissioned network. Technical details for its deployment as a public ledger? Security?

References

- Web:
 - https://hashgraph.com/
- Whitepaper:
 - https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
- SDK:
 - https://www.swirlds.com/download/
- Gossip protocol:
 - https://en.wikipedia.org/wiki/Gossip protocol

Announcement

Thanks!