```
Writing Assertions for Arbiter
```

request [7:0] \$ sampled => display |=> overlapping

grant [7:0] \$ past |=> non-overlapping

\$ rose

\$ fell
\$ countones =>

assert property (@ (posedge clk) & countones (grant) ==1);
generate
for(i=0;i<8;i=i+1): LABEL 1

reservoir assert property (@ (posedge clt) reg[i] => ##[1:4] grant[i]);

always @ (pasedge clk)

if (x) begin

y < 2 ...

→ assert property (x&y)

end

Week 4

SV basics

interfaces

clking

Assertions

Random	constraints <			
Function	al coverage			
		Midter m	Week 6	
1 250V	Mothaldous (hasis)		- Table	
10111.	Methodology (basic) .advanced)			
UVM C	advanced)			