1.	What are the categories of the problems based upon the time complexity?					
	Polynomial	Non Polynomial	Both of the above	None of the above		
2.	If any algorithm is having the time complexity of 2 ⁿ , then it comes under which category?					
	Polynomial	Non Polynomial	Dis Polynomial	None of the above		
3.	Find the odd one out based upon the time complexity.					
	Linear search	Binary search	Matrix chain multiplication	0/1 Knapsack		
4.	Find the odd one out based upon the time complexity.					
	Graph coloring	Hamiltonian cycle	Travelling salesman problem	Matrix chain multiplication		
5.	Which one is more preferred for algorithms?					
	Polynomial	Non Polynomial	Dis Polynomial	None of the above		
6.	Which of these represents the	classes of problems?				
	P class	NP class	NP hard class	All of the above		
7.	If any algorithm is non-deterministic and the time complexity is polynomial, then the class of problem is					
	P problem	NP problem	NP hard problem	None of the above		
8.	The non deterministic algorithm uses the concept of					
	Choice	Success	Failure	All of the above		
9.	The scheduling problem is a sub problem of					
	Function	Decision	Optimization	None of the above		
10	0. What is the approximation factor of greedy makespan algorithm					
	1/2	1/3	3/2	None of the above		
11	1. The sequencing of jobs on a single processor with deadline constraints is known as					
	Job sequencing with	Job sequencing without deadlines	Job sequencing with	None of the above		
	deadlines	willout deadillies	processor			
12	. In bin packing problem, we	need to the number of b	ins used.			

Minimize	Maximize	Make it 0	None of the above			
13. The bin packing problem falls under category.						
Р	NP	NP Hard	None of the above			
14. What is the formula for calculation of lower bound of bins?						
Ceil (Total weight/ Bin capacity)	Floor (Total weight/ Bin capacity)	Sqrt (Total weight/ Bin capacity)	None of the above			
15. The bin packing problem takes time.						
Polynomial	Exponential	Linear	None of the above			
16. Based upon the execution, the problem can take						
Polynomial time	Non-polynomial time	Either of the above	None of the above			
17. Find the odd one out.						
Binary search	Merge sort	Graph coloring	Matrix chain multiplication			
18. Find the odd one out.						
Sum of subset	Binary search	Graph coloring	0/1 Knapsack			
19. Which of these belong to P class?						
Single source shortest path	Optimal merge pattern	Huffman encoding	All of the above			
20. Which of these belong to NP class?						
Sum of subset	Hamiltonian cycle	0/1 Knapsack	All of these			
21. Cook's theorem states that Boolean Satisfiability problem is						
P problem	NP problem	NP Hard problem	NP Complete problem			
22. A Boolean variable has						
0	1	Either 0 or 1	None of the above			

23. A literal holds the value						
Χ	X'	Either of the above	None of the above			
24. In a CNF expression, the set of clauses can be separated by operator.						
OR	AND	NOT	None of the above			
25. Which of these represents the variant of SAT?						
Circuit - SAT	CNF - SAT	3CNF-SAT	All of the above			
26. Which of these are polynomial time taking problems?						
Insertion sort	Linear and binary search	Matrix multiplication	All of the above			
27. Which of these is not a non-polynomial time taking algorithm?						
Sum of subset	Graph coloring	Merge sort	TSP			
28. Which of these problem falls under P class category?						
Huffman encoding	Optimal merge pattern	Single source shortest path	All of the above			
29. Which of these represents the base problem?						
TSP	Graph coloring	SAT	None of the above			
30. Satisfiability problem comes under						
NP-Hard	NP-Complete	Both of the above	None of the above			