Class 17: Mini Project

Nicole Chang

5/26/23

Getting Started

Download csv file and import vaccination data

```
vax <- read.csv(file = "covid19vaccinesbyzipcode_test.csv")
head(vax)</pre>
```

	as_of_date zip_code_tabulation	n_area	local_hea	lth_jui	risdiction	1 ,	county
1	2021-01-05	94579			Alameda	. A.	lameda
2	2021-01-05	93726			Fresno)]	Fresno
3	2021-01-05	94305		Sa	anta Clara	Santa	Clara
4	2021-01-05	93704			Fresno)]	Fresno
5	2021-01-05	94403			San Mateo	San	Mateo
6	2021-01-05	93668			Fresno)]	Fresno
	vaccine_equity_metric_quartil	.e		vem_s	source		
1		3 Healt	thy Places	Index	Score		
2		1 Healt	thy Places	Index	Score		
3		4 Healt	thy Places	Index	Score		
4		1 Healt	thy Places	Index	Score		
5		4 Healt	thy Places	Index	Score		
6		1 CI	OPH-Derive	d ZCTA	Score		
	age12_plus_population age5_pl	.us_popı	ulation to	t_popul	lation		
1	19192.7		20872		21883		
2	33707.7		39067		42824		
3	15716.9		16015		16397		
4	24803.5		27701		29740		
5	37967.5		41530		44408		
6	1013.4		1199		1219		
					•		

```
1
                          NA
                                                          NA
2
                          NA
                                                          NA
3
                          NA
                                                          NA
4
                          NA
                                                          NA
5
                          NA
                                                          NA
6
                          NA
                                                          NA
  percent_of_population_fully_vaccinated
1
2
                                          NA
3
                                          NA
4
                                          NA
5
                                          NA
6
                                          NA
  percent_of_population_partially_vaccinated
1
                                              NA
2
                                              NA
3
                                              NA
4
                                              NA
5
                                              NA
                                              NA
  percent_of_population_with_1_plus_dose booster_recip_count
1
                                                                NA
2
                                          NA
                                                                NA
3
                                          NA
                                                                NA
4
                                          NA
                                                                NA
5
                                          NA
                                                                NA
6
                                          NA
                                                                NA
  bivalent_dose_recip_count eligible_recipient_count
                                                        4
1
                           NA
2
                                                        2
                           NA
3
                           NA
                                                        8
                                                        5
4
                           NA
                                                        7
5
                           NA
                                                        0
6
                           NA
  eligible_bivalent_recipient_count
1
                                     4
2
                                     2
3
                                     8
                                     5
4
5
                                     7
6
                                     0
```

redacted

1 Information redacted in accordance with CA state privacy requirements

- 2 Information redacted in accordance with CA state privacy requirements
- 3 Information redacted in accordance with CA state privacy requirements
- 4 Information redacted in accordance with CA state privacy requirements
- 5 Information redacted in accordance with CA state privacy requirements
- 6 Information redacted in accordance with CA state privacy requirements
 - Q1. What column details the total number of people fully vaccinated?

persons_fully_vaccinated

Q2. What column details the Zip code tabulation area?

zip_code_tabulation_area

Q3. What is the earliest date in this dataset?

2021-01-05

Q4. What is the latest date in this dataset?

2023-05-23

Getting a quick overview of the dataset using the skim() function:

skimr::skim_without_charts(vax)

Table 1: Data summary

Name	vax
Number of rows	220500
Number of columns	19
Column type frequency:	
character	5
numeric	14
Group variables	None

Variable type: character

skim_variable	n_missing	$complete_{-}$	_rate	min	max	empty	n_unique	whitespace
as_of_date	0		1	10	10	0	125	0
local_health_jurisdiction	0		1	0	15	625	62	0

skim_variable	n_missing o	complete_rate	e min	max	empty	n_unique	whitespace
county	0	1	0	15	625	59	0
vem_source	0	1	15	26	0	3	0
redacted	0	1	2	69	0	2	0

Variable type: numeric

skim_variable	n_miss	i ng mplete_	matæn	sd	p0	p25	p50	p75	p100
zip_code_tabulation_are	ea 0	1.00	93665	.11817.3	89000	192257.	79 3658	.5 9 5380	.5 97 635.0
vaccine_equity_metric_c	qu l:0:8775 e	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0
age12_plus_population	0	1.00	18895	.048993	.87 0	1346.9	513685	.101756	.1 8 8556.7
$age5_plus_population$	0	1.00	20875	.221105	.97 0	1460.5	015364	.0 0 4877	.0001902.
$tot_population$	10750	0.95	23372	.7 2 2628	.5012	2126.0	018714	.0 6 8168	.0011165.
persons_fully_vaccinated	l 17711	0.92	14272	.7 2 5264	.1711	954.00	8990.0	0023782	0 07 724.0
persons_partially_vaccin	a t# #11	0.92	1711.0	052071.5	66 11	164.00	1203.0	002550.0	042259.0
percent_of_population	fu 12 5 <u>7</u> 9a	ccina de9 D	0.58	0.25	0	0.44	0.62	0.75	1.0
percent_of_population	p 22579 y	_vac@i@Qte	ed0.08	0.09	0	0.05	0.06	0.08	1.0
percent_of_population_	w 26 7 <u>3</u> 2_	plus <u>0.89se</u>	0.64	0.24	0	0.50	0.68	0.82	1.0
booster_recip_count	74388	0.66	6373.4	437751.7	70 11	328.00	3097.0	0010274	.0 6 0022.0
bivalent_dose_recip_cou	ın t 59956	0.27	3407.9	914010.3	88 11	222.00	1832.0	005482.0	029484.0
eligible_recipient_count	0	1.00	13120	.405126	.17 0	534.00	6663.0	0022517	.2 8 7437.0
eligible_bivalent_recipier	nt_co û nt	1.00	13016	.515199	.08 0	266.00	6562.0	0022513	0 07 437.0

Q5. How many numeric columns are in this dataset?

14

Q6. Note that there are "missing values" in the dataset. How many NA values there in the persons_fully_vaccinated column?

```
sum( is.na(vax$persons_fully_vaccinated) )
```

[1] 17711

17711

Q7. What percent of persons_fully_vaccinated values are missing (to 2 significant figures)?

```
(17711/ nrow(vax) ) * 100
```

```
[1] 8.0322
```

8.03%

Q8. [Optional]: Why might this data be missing?

People can get vaccinated but then pass away.

Working with dates

We will be using the lubridate package

```
# BiocManager::install("lubridate")
  library(lubridate)
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
    date, intersect, setdiff, union
What is today's date:
```

```
today()
```

```
[1] "2023-05-31"
```

How many days have passed since data was first recorded:

```
# This will give an Error!
# today() - vax$as_of_date[1]
```

However if we convert our date data into a lubridate format things like this will be much easier as well as plotting time series data later on.

```
# Specify that we are using the year-month-day format
vax$as_of_date <- ymd(vax$as_of_date)</pre>
```

Now we can do the math with dates:

```
today() - vax$as_of_date[1]
```

Time difference of 876 days

Using the last and the first date value we can now determine how many days the dataset span?

```
vax$as_of_date[nrow(vax)] - vax$as_of_date[1]
```

Time difference of 868 days

Q9. How many days have passed since the last update of the dataset?

```
today() - ymd(vax$as_of_date[nrow(vax)])
```

Time difference of 8 days

8

Q10. How many unique dates are in the dataset (i.e. how many different dates are detailed)?

```
length(unique(vax$as_of_date))
```

[1] 125

Working with ZIP codes

Let's install and then load up this package and to find the centroid of the La Jolla 92037 (i.e. UC San Diego) ZIP code area.

```
library(zipcodeR)
```

The legacy packages maptools, rgdal, and rgeos, underpinning this package will retire shortly. Please refer to R-spatial evolution reports on https://r-spatial.org/r/2023/05/15/evolution4.html for details. This package is now running under evolution status 0

Calculate the distance between the centroids of any two ZIP codes in miles, e.g.

```
zip_distance('92037','92109')
zipcode_a zipcode_b distance
1 92037 92109 2.33
```

More usefully, we can pull census data about ZIP code areas (including median household income etc.).

```
reverse_zipcode(c('92037', "92109") )
# A tibble: 2 x 24
 zipcode zipcode_type major_city post_office_city common_city_list county state
 <chr>
          <chr>
                       <chr>
                                  <chr>
                                                             <blob> <chr> <chr>
1 92037
                                  La Jolla, CA
                                                         <raw 20 B> San D~ CA
          Standard
                       La Jolla
2 92109
                       San Diego San Diego, CA
                                                         <raw 21 B> San D~ CA
         Standard
# i 17 more variables: lat <dbl>, lng <dbl>, timezone <chr>,
   radius_in_miles <dbl>, area_code_list <blob>, population <int>,
   population_density <dbl>, land_area_in_sqmi <dbl>,
   water_area_in_sqmi <dbl>, housing_units <int>,
   occupied_housing_units <int>, median_home_value <int>,
   median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
   bounds_north <dbl>, bounds_south <dbl>
```

We can use this reverse_zipcode() to pull census data later on for any or all ZIP code areas we might be interested in.

```
# Pull data for all ZIP codes in the dataset
zipdata <- reverse_zipcode( vax$zip_code_tabulation_area )</pre>
```

Focus on the San Diego area

Let's now focus in on the San Diego County area by restricting ourselves first to vax\$county == "San Diego" entries.

```
# Subset to San Diego county only areas
sd <- vax[ vax$county == 'San Diego' , ]

Using dplyr

library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
    filter, lag

The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union

sd <- filter(vax, county == "San Diego")
    nrow(sd)

[1] 13375</pre>
```

Using **dplyr** is often more convenient when we are subsetting across multiple criteria - for example all San Diego county areas with a population of over 10,000.

Q11. How many distinct zip codes are listed for San Diego County?

```
length(unique(sd$zip_code_tabulation_area))
```

```
[1] 107
```

Q12. What San Diego County Zip code area has the largest population in this dataset?

```
the_largest_population = sd[sd$age5_plus_population == max (sd$age5_plus_population), ]
unique(the_largest_population$zip_code_tabulation_area)
```

[1] 92154

92154

Q13. What is the overall average (with 2 decimal numbers) "Percent of Population Fully Vaccinated" value for all San Diego "County" as of "2023-05-23"?

```
sd_may23 <- filter(sd, as_of_date == '2023-05-23')
mean(sd_may23$percent_of_population_fully_vaccinated, na.rm = TRUE)</pre>
```

[1] 0.7419654

74%

Q14. Using either ggplot or base R graphics make a summary figure that shows the distribution of Percent of Population Fully Vaccinated values as of "2023-05-23"?

Histogram of Vaccination Rates Across San Diego County – May 23, 2023

Percent of Population Fully Vaccinated in a Zip Code Area

ggplot2 option

```
library(ggplot2)
ggplot(sd_may23) +
   aes(percent_of_population_fully_vaccinated) +
   geom_histogram(bins = 12) +
   ggtitle('Histogram of Vaccination Rates Across \nSan Diego County - May 23, 2023') +
   labs(title = 'Histogram of Vaccination Rates Across San Diego County',
        subtitle = 'As of 2023-05-23',
        x = 'Percent of Population Fully Vaccinated in a Zip Code Area',
        y = 'Count(Zip code areas)')
```

Warning: Removed 8 rows containing non-finite values (`stat_bin()`).

Histogram of Vaccination Rates Across San Diego County As of 2023–05–23

Focus on UCSD/La Jolla

UC San Diego resides in the 92037 ZIP code area and is listed with an age 5+ population size of 36,144.

```
ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]$age5_plus_population</pre>
```

[1] 36144

Q15. Using ggplot make a graph of the vaccination rate time course for the 92037 ZIP code area:

Comparing to similar sized areas

Let's return to the full dataset and look across every zip code area with a population at least as large as that of 92037 on as_of_date "2023-05-23".

Q16. Calculate the mean "Percent of Population Fully Vaccinated" for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2023-05-23". Add this as a straight horizontal line to your plot from above with the geom_hline() function?

Q17. What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas

with a population as large as 92037 (La Jolla) as_of_date "2023-05-23"?

```
summary(vax.36$percent_of_population_fully_vaccinated)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.3816 0.6469 0.7207 0.7226 0.7924 1.0000
```

Q18. Using ggplot generate a histogram of this data.

```
ggplot(vax.36) +
  aes(percent_of_population_fully_vaccinated) +
  xlim(c(0,1)) +
  geom_histogram() +
  labs(x = 'Percent Vaccinated',
      y = 'Count')
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 2 rows containing missing values (`geom_bar()`).

Q19. Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above?

```
vax %>% filter(as_of_date == "2023-05-23") %>%
    filter(zip_code_tabulation_area=="92040") %>%
    select(percent_of_population_fully_vaccinated)

percent_of_population_fully_vaccinated

vax %>% filter(as_of_date == "2023-05-23") %>%
    filter(zip_code_tabulation_area=="92109") %>%
    select(percent_of_population_fully_vaccinated)

percent_of_population_fully_vaccinated

0.69487
```

It is above.

Q20. Finally make a time course plot of vaccination progress for all areas in the full dataset with a age5_plus_population > 36144.

```
vax.36.all <- filter(vax, age5_plus_population > 36144)

ggplot(vax.36.all) +
   aes(x = ymd(as_of_date),
        y = percent_of_population_fully_vaccinated,
        group=zip_code_tabulation_area) +
   geom_line(alpha=0.2, color='green') +
   ylim(c(0,1)) +
   labs(x='Date', y='Percent Vaccinated',
        title='Vaccination rate across California',
        subtitle='Only areas with a population above 36k are shown') +
   geom_hline(yintercept = mean_percent_pop_fully_vaccinated, linetype='dashed')
```

Warning: Removed 185 rows containing missing values (`geom_line()`).

Vaccination rate across California

Only areas with a population above 36k are shown

