

BATCH

LESSON

DATE

SUBJECT:

B 84 Data Science

Machine Learning

07.10.2022

Supervised Learning

AdaBoost-Gradient Boost - XGBoost

techproeducation

techproeducation

techproeducation

techproeducation

techproedu

MACHINE LEARNING - 5

Makine Öğrenmesi – 5

Overall Table of Contents

General Content

- Supervised Learnig
 Algorithm Bagging –
 Boosting Methods
- Supervised Algorithm practices Python application
- Projects Solutions

ENSEMBLE LEARNING

Where are we?

DATA SCIENCE

More Focus...

More..

Supervised Learning

ENSEMBLE LEARNING METHODS (Kolektif Öğrenme Metotları)

Farklı makine öğrenmesi algoritmalarını daha iyi bir tahmin için birlikte kullanmak mümkün mü?

Ensemble methods combine several machine learning models to improve results

Supervised Learning

Özetle...

- **Bagging (Bootstrap Aggregating)**
- **Boosting**

Test Sample Input

Tree 600

Prediction 600

Tree 2

Prediction 2

Average All Predictions

Random Forest Prediction

Prediction 1

Parallel

Boosting

Sequential

√ Bagging (Random Forest-RF)

- Bagging
- ✓ Boosting (Ada Boost-Gradient Boost-XGBoost)

Bagging

Building multiple models (typically of the same type) from different subsamples of the training dataset.

	Bagging	Boosting	
Similarities	 Uses voting Combines models of the same type		
Differences	Individual models are built separately	Each new model is influenced by the performance of those built previously	BOOSTING>AdaBoost
	Equal weight is given to all models	Weights a model's contribution by its performance	BAGGING> R F

Boosting

Building multiple models (typically of the same type) each of which learns to fix the prediction errors of a prior model in the chain.

Model 1,2,..., N are individual models (e.g. decision tree)

Bagging (Bootstrap Aggregating)

BAGGING Algorithm

Bootstrap Aggrigating

√ Random Forest (RF)

Hyperparameters:

"n_estimators" parameter: (default=100)

The number of trees in the forest.

The more # of trees, the better accuracy. But CPU intensive.

"max_depth" parameter: (default=None)

The maximum depth of the tree.

If None, then nodes are expanded until all leaves are pure.

"max_features" parameter:

Number of features to consider when looking for the best split.

Increase will improve the performance but results in a correlation between the trees.

Avantaj -Dezavantajlari

✓ Boosting

✓ Boosting (Yükseltme)

√ Ada Boosting (Adaptive Boosting)

✓ Ada Boosting (Adaptive Boosting)


```
188 # Varyans sorunu var mı?
189 from sklearn import metrics
190 # Modelin eğtim seti için doğruluk oranı:
191 print('Accuracy:%0.3f'%metrics.accuracy_score(y_train, y_pred_train))
192 # Modelin test seti için doğruluk oranı:
193 print('Accuracy:%0.3f'%metrics.accuracy_score(y_test, y_pred_test))
194
```

Accuracy:0.863 Accuracy:0.827

Gradient Boosting

Gradient Boosting

- Learn a regression predictor
- · Compute the error residual
- · Learn to predict the residual

✓ Gradient Boosting

Fig 7. Visualization of gradient boosting prediction (iteration 50th)

Fig 6. Visualization of gradient boosting predictions (18th to 20th iterations)

XG Boost (EXtreme Gradient Boosting)

Bootstrap aggregating or Bagging is a ensemble meta-algorithm combining predictions from multipledecision trees through a majority voting mechanism

Models are built sequentially by minimizing the errors from previous models while increasing (or boosting) influence of high-performing models

Optimized Gradient Boosting algorithm through parallel processing, tree-pruning, handling missing values and regularization to avoid overfitting/bias

or collection of decision

(5 Fold Cross Validation, 1MM randomly generated data sample, 20 features)

"n_estimators" parameter: (default=100)

The number of boosting stages to perform.

certain conditions

"max_depth" parameter: (default=6)

Max, depth of the individual estimators. This parameter limits the number of

minimize errors in

sequential models

"subsample" parameter: (default=1.0)

The fraction of samples to be used for fitting the individual base learners. Choosing subsample < 1.0 leads to a reduction of variance and an increase in "learning_rate" parameter: (default=0.3)

Learning rate shrinks the contribution of each tree by learning_rate. There is a trade-off between learning_rate and n_estimator

- ✓ XG Boost (EXtreme Gradient Boosting)
- ✓ XGB neden diğerlerinden daha iyi?
- ✓ Regularization
- ✓ Parallel Processing
- ✓ High Flexibility
- ✓ Handling Missing Values
- ✓ Tree Pruning
- ✓ Built-in Cross-Validation

- ✓ ENSEMBLE KOLEKTİF ÖGRENME YÖNTEMLERİ ARASINDAN MODEL SEÇİMİ
 - ✓ Zaman-performans ikilemi
- ✓ i) ortaya çıkacak performans bir tek algoritmanın ürettiği modelinkinden daha yüksek olmalı;
- ✓ ii) işlem süresi algoritmaların tek tek uygulanmasından daha kısa sürmeli.

XG BOOST (eXtram Gradient Boosting)

Do you have any questions?

Send it to us! We hope you learned something new.

