Single Pushout Approach

Patrick Steffens & Daniel Tigges

Running example: Pacman

B 2		
	(PO1)	(PO2)

 p_{move} : $L^r \rightarrow R$

 p_{move} : $L^r \rightarrow R$

- 1. Use **partial** graph morphisms instead of total graph morphisms
- 2. Introduce category Graph_p
 - a. with partial graph morphism instead of total graph morphism
- 3. Define production p_{name} : L \rightarrow R
- 4. Construct specific co-equalizer in <code>Graph_p</code>
- 5. Construct pushout of two partial graph morphisms

Implemented

- 1. Use **partial** graph morphisms instead of total graph morphisms
- Introduce category Graph_p
 - a. with partial graph morphism instead of total graph morphism
- 3. Define productions $p_{\langle name \rangle}$: L $r \rightarrow R$
- 4. Construct specific co-equalizer in Graph_p
- 5. Construct pushout of two partial graph morphisms

Implemented

- 1. Use **partial** graph morphisms instead of total graph morphisms
- Introduce category Graph_p
 - a. with partial graph morphism instead of total graph morphism
- 3. Define productions $p_{\langle name \rangle}$: L $^r \rightarrow R$ ————Partially implemented
- Construct specific co-equalizer in Graph_p
- 5. Construct pushout of two partial graph morphisms

Implementation

- PartialFunction
 - o inherited by TotalFunction
- PFinSets
 - o id and composition of PartialFunctions
- PGraphMorphism
 - o inherited by GraphMorphism
 - PartialFunctions instead of TotalFunctions
 - o reimplemented validity check
- TGraphMorphism
 - modified validity check
 - **distinction between** PGraphMorpism **and** GraphMorphism

Retrospective

- Implemented the basic constructs
- TODO:
 - implement co-equalizer
 - implement single pushout construction
- Rule application somewhat more intuitive than for Double Pushout
 - however: SPO construction more complex
 - construction of co-equalizer is **not trivial**

Thank you for your attention

References:

Ehrig, Hartmut, et al. "Algebraic approaches to graph transformation: part ii: single pushout approach and comparison with double pushout approach." *Handbook of Graph Grammars*. 1997.

Ehrig, Ehrig, and Prange, Taentzer. "Fundamentals of algebraic graph transformation. With 41 Figures (Monographs in Theoretical Computer Science. An EATCS Series)." 2006.

