Understanding Your Data Through Plots

Ethan Burns eaburns at cs.unh.edu

University of New Hampshire

September 13, 2012

Introduction

- Outline
- Why Do We Care

About Plots?

- What are Plots For?
- Tables of Data
- Pictures of Data
- More Tables
- More Pictures

Distributions of Values

Trends in Data

Simple Plotting Tool

Other Tools

Introduction

Outline

Introduction

Outline

- Why Do We Care About Plots?
- What are Plots For?
- Tables of Data
- Pictures of Data
- More Tables
- More Pictures

Distributions of Values

Trends in Data

Simple Plotting Tool

- Why use plots?
- Different types of plots
- Tools that I use

Why Do We Care About Plots?

Introduction

- Outline
- Why Do We Care About Plots?
- What are Plots For?
- Tables of Data
- Pictures of Data
- More Tables
- More Pictures

Distributions of Values

Trends in Data

Simple Plotting Tool

Other Tools

Grad Students do Research:

- Theoretical analysis
- Experimental analysis—lots of data

What are Plots For?

Introduction

- Outline
- Why Do We Care About Plots?
- What are Plots For?
- Tables of Data
- Pictures of Data
- More Tables
- More Pictures

Distributions of Values

Trends in Data

Simple Plotting Tool

Other Tools

- Understand behavior of new techniques
 We need to see what the data is telling us
- 2. Demonstrate (to others) that new approaches work well We want to convince others using our data

Clear, and obvious display of data

Tables of Data

Introduction

- Outline
- Why Do We Care About Plots?
- What are Plots For?

■ Tables of Data

- Pictures of Data
- More Tables
- More Pictures

Distributions of Values

Trends in Data

Simple Plotting Tool

Other Tools

Experiments generate lots of data

My data:

				•				
	1	2	3	4	5	6	7	8
run 1:	-2.47	0.75	2.96	13.57	16.65	26.18	36.32	50.98
run 2:	-1.46	2.37	7.17	10.68	18.60	26.05	37.46	46.85
run 3:	1.40	1.86	6.00	5.95	15.37	28.78	38.20	47.01
run 4:	1.98	-0.23	1.13	4.70	16.27	25.89	34.31	48.83
run 5:	0.31	-1.90	4.56	5.52	17.41	25.69	33.86	47.33

Tables of Data

Introduction

- Outline
- Why Do We Care About Plots?
- What are Plots For?

■ Tables of Data

- Pictures of Data
- More Tables
- More Pictures

Distributions of Values

Trends in Data

Simple Plotting Tool

Other Tools

Experiments generate lots of data

My data:

				,					
	1	2	3	4	5	6	7	8	
run 1:	-2.47	0.75	2.96	13.57	16.65	26.18	36.32	50.98	•
run 2:	-1.46	2.37	7.17	10.68	18.60	26.05	37.46	46.85	
run 3:	1.40	1.86	6.00	5.95	15.37	28.78	38.20	47.01	
run 4:	1.98	-0.23	1.13	4.70	16.27	25.89	34.31	48.83	
run 5:	0.31	-1.90	4.56	5.52	17.41	25.69	33.86	47.33	

What is going on here?

Pictures of Data

Introduction Outline Why Do We Care About Plots? What are Plots For? Tables of Data Pictures of Data Pictures of Data More Tables More Pictures Distributions of Values Trends in Data Simple Plotting Tool

Now we can see what our data is telling us

More Tables

Introduction

- Outline
- Why Do We Care
- About Plots?
- What are Plots For?
- Tables of Data
- Pictures of Data
- More Tables
- More Pictures

Distributions of Values

Trends in Data

Simple Plotting Tool

		Mys	tery		Mprime				
	Unpop		FF		Unpop		FF		
task	time	$_{ m steps}$	$_{ m time}$	$_{ m steps}$	time	$_{ m steps}$	time	steps	
prob-01	0.3	5	0.04	5	0.4	5	0.04	5	
prob-02	3.3	8	0.25	10	13.5	8	0.27	10	
prob-03	2.1	4	0.08	4	5.9	4	0.09	4	
prob-04	-	-	-	-	3.9	9	0.04	10	
prob-05	-	-	-	-	19.2	17	-	-	
prob-06	-	-	-	-	-	-	-	-	
prob-07	-	-	-	-	-	-	_	-	
prob-08	-	-	-	-	52.5	10	0.40	10	
pro b-09	3.3	8	-	-	13.5	8	0.16	10	
prob-10	-	-	-	-	79.0	19	_	-	
prob-11	1.4	11	0.05	9	2.9	11	0.06	9	
prob-12	-	-	-	-	8.0	12	0.20	10	
prob-13	370.1	16	-	-	89.3	15	0.16	10	
prob-14	162.1	18	-	-	-	-	-	-	
pro b-15	17.3	6	0.98	8	14.6	6	3.39	8	
prob-16	-	-	-	-	25.2	13	0.28	7	
prob-17	13.1	5	0.70	4	4.0	5	0.92	4	
prob-18	-	-	-	-	-	-	_	-	
prob-19	11.8	6	-	-	24.7	6	0.99	9	
pro b-20	22.5	7	0.41	13	62.8	17	3.11	13	
prob-21	-	-	-	-	22.1	11	-	-	
prob-22	-	-	-	-	135.7	16	643.19	23	
prob-23	-	-	-	-	55.0	18	3.09	14	
prob-24	-	-	-	-	24.8	15	2.7	9	
prob-25	0.4	4	0.02	4	0.5	4	0.02	4	
prob-26	6.0	6	0.85	7	16.4	14	0.16	10	
prob-27	3.8	9	0.05	5	2.8	7	0.78	5	
prob-28	1.4	9	0.01	7	1.6	11	0.08	5	
prob-29	0.9	4	0.06	4	1.5	4	0.30	4	
pro b-30	20.8	14	0.23	11	17.7	12	1.86	11	

More Pictures

Introduction

- Outline
- Why Do We Care About Plots?
- What are Plots
- For?
- Tables of Data
- Pictures of Data
- More Tables
- More Pictures

Distributions of Values

Trends in Data

Simple Plotting Tool

Introduction

Distributions of Values

- Histograms
- **■** Heatmap
- Bin Width
- Comparing
- Box Plots
- \blacksquare Grouped Box

Plots

- Log Scales
- Paired Data
- Summary

Trends in Data

Simple Plotting Tool

Other Tools

Distributions of Values

Histograms

Introduction

Distributions of Values

- Histograms
- Heatmap
- Bin Width
- Comparing
- Box Plots
- Grouped Box Plots
- **■** Log Scales
- Paired Data
- Summary

Trends in Data

Simple Plotting Tool

Other Tools

Histograms show a distribution of values:

Histograms

Introduction
Distributions of Values
Histograms

■ Heatmap

■ Bin Width

■ Comparing

■ Box Plots

■ Grouped Box Plots

■ Log Scales

■ Paired Data

■ Summary

Trends in Data

Simple Plotting Tool

Other Tools

Histograms show a distribution of values:

Can quickly show modes—areas of high frequency

2D Histograms: Heatmaps

Bin Width

Introduction

Distributions of Values

Histograms
Heatmap
Bin Width
Comparing
Box Plots
Grouped Box

Plots
■ Log Scales

■ Paired Data

■ Summary

Trends in Data

Simple Plotting Tool

Other Tools

The width of bins can have a big impact on the histogram

If bins are too big, information can be hidden

Bin Width

Introduction Distributions of Values ■ Histograms ■ Heatmap ■ Bin Width ■ Comparing ■ Box Plots ■ Grouped Box **Plots ■** Log Scales ■ Paired Data ■ Summary Trends in Data Simple Plotting Tool Other Tools

The width of bins can have a big impact on the histogram

If bins are too big, information can be hidden

Bin Width

Introduction Distributions of Values ■ Histograms ■ Heatmap ■ Bin Width ■ Comparing ■ Box Plots ■ Grouped Box **Plots ■** Log Scales ■ Paired Data ■ Summary Trends in Data Simple Plotting Tool Other Tools

The width of bins can have a big impact on the histogram

If bins are too big, information can be hidden

Comparing distributions

Box Plots

Box Plots

Grouped Box Plots

Introduction

Distributions of Values

- Histograms
- **■** Heatmap
- Bin Width
- Comparing
- Box Plots
- Grouped Box

Plots

- **■** Log Scales
- Paired Data
- **■** Summary

Trends in Data

Simple Plotting Tool

Other Tools

h=8 h=8 react react 0.2 damage 0.4 damage 0.2 order

h=8react react h=8 0.2 damage 0.4 damage 0.4 order

Log Scales

 log_{10} values can spread out data for visualization

Paired data—show instance-by-instance differences

Summary

Introduction

Distributions of Values

- Histograms
- Heatmap
- Bin Width
- Comparing
- Box Plots
- Grouped Box Plots
- Log Scales
- Paired Data

Summary

Trends in Data

Simple Plotting Tool

- Histograms easily show data distributions
 - ◆ Careful when choosing bin widths
 - ◆ Histograms are difficult to compare
- Heatmaps are like histograms for 2D data
- Box plots make comparing distributions easy
 - ◆ Grouped box plots can help to show trends
- Log scales can help spread out data for visualization
- Paired data is more powerful

Introduction

Distributions of Values

Trends in Data

- Lines
- Lines and Error

Bars

- Scatter Plots
- Confidence

Intervals

■ More Scatter

Plots

- Scatters and Lines
- More Logs and Paired Data
- Summary

Simple Plotting Tool

Other Tools

Trends in Data

Lines

Lines and Error Bars

Scatter Plots

Introduction

Distributions of Values

Trends in Data

- **■** Lines
- Lines and Error Bars

Scatter Plots

- Confidence Intervals
- More Scatter Plots
- Scatters and Lines
- More Logs and Paired Data
- **■** Summary

Simple Plotting Tool

Confidence Intervals

More Scatter Plots

Introduction

Distributions of Values

Trends in Data

- **■** Lines
- Lines and Error Bars
- Scatter Plots
- Confidence Intervals
- More Scatter Plots
- Scatters and Lines
- More Logs and Paired Data
- Summary

Simple Plotting Tool

Scatters and Lines

- Scatter Plots
- **■** Confidence

Intervals

- More Scatter Plots
- Scatters and Lines
- More Logs and Paired Data
- Summary

Simple Plotting Tool

Introduction

Distributions of Values

Trends in Data

- **■** Lines
- Lines and Error

Bars

- Scatter Plots
- Confidence

Intervals

- More Scatter Plots
- Scatters and Lines
- More Logs and Paired Data
- Summary

Simple Plotting Tool

- Trends in Data
- **■** Lines
- Lines and Error Bars
- Scatter Plots
- Confidence

Intervals

- More Scatter Plots
- Scatters and Lines
- More Logs and Paired Data
- Summary

Simple Plotting Tool

Summary

Introduction

Distributions of Values

Trends in Data

- Lines
- Lines and Error Bars
- Scatter Plots
- Confidence

Intervals

- More Scatter Plots
- Scatters and Lines
- More Logs and Paired Data
- Summary

Simple Plotting Tool

- Lines easily show trends in data
- Scatter plots can show trends in points
- Use confidence intervals—or some measure of variance
- Logs can be helpful here too
- Paired data is always better

Introduction

Distributions of Values

Trends in Data

Simple Plotting Tool

- What is It?
- Why a New Tool?
- Spread Sheets
- Benefits of SPT

Other Tools

Simple Plotting Tool

What is It?

Introduction

Distributions of Values

Trends in Data

Simple Plotting Tool

■ What is It?

- Why a New Tool?
- **■** Spread Sheets
- Benefits of SPT

Other Tools

Simple Plotting Tool—SPT http://www.cs.unh.edu/~eaburns/spt

- An(other) open source plotting tool
- Created by the UNH artificial intelligence group
- Easy to create many useful types of plots
- An Objective Caml Mcaml API
- A simple lisp-like input language

Why Make a New Plotting Tool?

Introduction

Distributions of Values

Trends in Data

Simple Plotting Tool

- What is It?
- Why a New Tool?
- Spread Sheets
- Benefits of SPT

Other Tools

Spread sheets a lot of manual work

GNU plot is ugly (in my opinion, and Wheeler's too)

Matplotlib better—still draws ticks inside and data on the axes

R not too bad!

Spread Sheets

Introduction
Distributions of Values
Trends in Data

Simple Plotting Tool

■ What is It?

■ Why a New Tool?

■ Spread Sheets

■ Benefits of SPT

Benefits of SPT

Introduction

Distributions of Values

Trends in Data

Simple Plotting Tool

- What is It?
- Why a New Tool?
- **■** Spread Sheets
- Benefits of SPT

- Professional quality plots (not cartoony)
 - Greater data-ink ratio (Edward Tufte)
 Axes do not box in the data
 Not too many tick marks
 - Axes are not drawn over the data
- Very easy to make box plotsWith confidence intervalsGrouped box plots too
- Lines and scatters with 95% confidence intervals
- Histograms and heatmaps from x,y(z) tuples

Introduction

Distributions of Values

Trends in Data

Simple Plotting Tool

Other Tools

- Results Database
- Alternatives
- Plotinum

Results Database

Introduction

Distributions of Values

Trends in Data

Simple Plotting Tool

Other Tools

- Results Database
- Alternatives
- Plotinum

I store my results in a simple database called RDB—Results DataBase (or is it Ruml DataBase?)

- A simple file-system-based database
- Easy to find data files given a set of key=value pairs
- \blacksquare Has an OCaml API, a C++ API, and shell scripting support
- Simple data files: key=value, or key=multi-value pairs
- Framework connecting RDB \rightarrow OCaml \rightarrow SPT

Other More Standard Alternatives

Introduction

Distributions of Values

Trends in Data

Simple Plotting Tool

- Results Database
- Alternatives
- Plotinum

- MongoDB
- CouchDB
- SQLite

Plotinum: My Latest Plotting Tool

Introduction

Distributions of Values

Trends in Data

Simple Plotting Tool

Other Tools

- Results Database
- Alternatives
- Plotinum

■ Another-nother open source plotting tool

http://code.google.com/p/plotinum

- Written in Go
 - golang.org, check it out!
- Simpler, more flexible, and more extendable than SPT ...but, a little less complete at the moment