104 Groupes finis. Exemples et applications.

I - Outils d'étude de groupes finis

Soit *G* un groupe.

1. Ordre d'un groupe, ordre d'un élément

Définition 1. L'ordre du groupe G, noté |G| est le cardinal de l'ensemble sous-jacent G. Si G est fini de cardinal n, on dit que G est **d'ordre** n. Sinon, on dit que G est **d'ordre infini**.

[**ULM21**] p. 1

Exemple 2. Les multiplicatifs des corps \mathbb{Q} , \mathbb{R} et \mathbb{C} sont d'ordre infini.

Définition 3. On appelle **ordre** d'un élément $g \in G$, l'ordre du sous-groupe $\langle g \rangle$ qu'il engendre.

p. 6

Exemple 4. L'élément i est d'ordre 4 dans \mathbb{C}^* .

Proposition 5. Soit $g \in G$ d'ordre n. Alors,

- (i) n est le plus petit entier strictement positif ayant la propriété $g^n = e_G$.
- (ii) $\langle g \rangle = \{e_G, g, ..., g^{n-1}\}.$
- (iii) Pour $k \in \mathbb{Z}$, $g^k = e_G$ si et seulement si $n \mid k$.

Exemple 6. Pour $n \in \mathbb{Z}$, on a $\langle n \rangle = \{ nk \mid k \in \mathbb{Z} \}$ et on note ce groupe $n\mathbb{Z}$.

Théorème 7. Soit $g \in G$. Alors,

p. 18

- (i) g est d'ordre infini si et seulement si $\langle g \rangle$ est isomorphe à $(\mathbb{Z}, +)$. Dans ce cas $g^i \neq g^j$ dès que $i \neq j$ et $\langle g \rangle = \{..., g^{-1}, e_G, g, ...\}$.
- (ii) g est d'ordre fini si et seulement si g, \dots, g^{n-1} sont tous distincts et si $g^n = e_G$.

Théorème 8 (Lagrange). On suppose G fini. Soit H < G. Alors,

p. 25

En particulier, l'ordre d'un élément de *G* divise toujours l'ordre de *G*.

2. Groupes cycliques

Définition 9. On dit que *G* est **cyclique** s'il est engendré par un seul élément.

p. 6

Proposition 10. Un groupe fini d'ordre premier est cyclique.

p. 26

Théorème 11. On suppose G fini d'ordre n. Alors,

- (i) Si *G* est abélien et s'il existe au plus un sous-groupe d'ordre *d* pour tout diviseur *d* de *n*, alors *G* est cyclique.
- (ii) Si *G* est cyclique, tous ses sous-groupes le sont aussi.
- (iii) G est cyclique si et seulement si pour tout diviseur d de n, G admet exactement un sous-groupe d'ordre d.

Théorème 12. Tout sous-groupe fini du groupe multiplicatif d'un corps commutatif est cyclique.

[ROM21] p. 25

Corollaire 13. L'ensemble des racines n-ièmes de l'unité d'un corps est un sous-groupe cyclique de son groupe multiplicatif.

3. Actions de groupes

Soit *X* un ensemble.

[**ULM21**] p. 29

Définition 14. On appelle **action** (à gauche) de G sur X toute application

$$G \times X \rightarrow X$$

$$(g,x) \mapsto g \cdot x$$

satisfaisant les conditions suivantes :

- (i) $\forall g, h \in G, \forall x \in X, g \cdot (h \cdot x) = (gh) \cdot x$.
- (ii) $\forall x \in X, e_G \cdot x = x$.

Remarque 15. On peut de même définir une action à droite de *G* sur *X*.

Définition 16. On définit pour tout $x \in X$:

- $G \cdot x = \{g \cdot x \mid g \in G\} \subseteq X \text{ l'orbite de } x.$
- Stab_G $(x) = \{g \in G \mid g \cdot x = x\} < G \text{ le stabilisateur de } x.$

3

On suppose ici que G et X sont finis.

Proposition 17. Soit $x \in X$. Alors :

- $|G \cdot x| = (G : \operatorname{Stab}_G(x)).$
- $-- |G| = |\operatorname{Stab}_{G}(x)||G \cdot x|.$
- $-- |G \cdot x| = \frac{|G|}{|\operatorname{Stab}_G(x)|}$

Théorème 18 (Formule des classes). Soit Ω un système de représentants des orbites de l'action de G sur X. Alors,

$$|X| = \sum_{\omega \in \Omega} |G \cdot \omega| = \sum_{\omega \in \Omega} (G : \operatorname{Stab}_{G}(\omega)) = \sum_{\omega \in \Omega} \frac{|G|}{|\operatorname{Stab}_{G}(\omega)|}$$

Définition 19. On définit :

- $X^G = \{x \in X \mid \forall g \in G, g \cdot x = x\}$ l'ensemble des points de X laissés fixes par tous les éléments de G.
- $X^g = \{x \in X \mid g \cdot x = x\}$ l'ensemble des points de X laissés fixes par $g \in G$.

Corollaire 20 (Formule de Burnside). Le nombre r d'orbites de X sous l'action de G est donné par

$$r = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

Corollaire 21. Soit p un nombre premier. Si G est un p-groupe (ie. l'ordre de G est une puissance de p), alors,

$$|X^G| \equiv |X| \mod p$$

où X^G désigne l'ensemble des points fixes de X sous l'action de G.

Corollaire 22. Soit p un nombre premier. Le centre d'un p-groupe non trivial est non trivial.

Corollaire 23. Soit p un nombre premier. Un groupe d'ordre p^2 est toujours abélien.

Application 24 (Théorème de Cauchy). On suppose G non trivial et fini. Soit p un premier divisant l'ordre de G. Alors il existe un élément d'ordre p dans G.

[DEV]

Application 25 (Premier théorème de Sylow). On suppose G fini d'ordre np^{α} avec $n, \alpha \in \mathbb{N}$ et p premier tel que $p \nmid n$. Alors, il existe un sous-groupe de G d'ordre p^{α} .

[**GOU21**] p. 44

p. 71

II - Groupes abéliens finis

1. Un exemple fondamental : $\mathbb{Z}/n\mathbb{Z}$

Proposition 26. $n\mathbb{Z}$ est un sous-groupe distingué de $(\mathbb{Z}, +)$, si bien que l'on peut définir le quotient $\mathbb{Z}/n\mathbb{Z}$.

[**ULM21**] p. 45

Proposition 27. $\mathbb{Z}/n\mathbb{Z}$ est cyclique d'ordre n.

Proposition 28. On peut définir une structure d'anneau sur $\mathbb{Z}/n\mathbb{Z}$. Le groupe multiplicatif de cet anneau est alors d'ordre $\varphi(n)$.

Corollaire 29. $\mathbb{Z}/p\mathbb{Z}$ est un corps si et seulement si p est premier.

Proposition 30. Dans le cas du Théorème 7 Point (ii), $\langle g \rangle$ est alors isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

[ROM21] p. 14

Exemple 31.

$$\mu_n \cong \mathbb{Z}/n\mathbb{Z}$$

où μ_n désigne le groupe cyclique des racines de l'unité de \mathbb{C}^* .

2. Décomposition cyclique

Théorème 32 (Chinois). Soient n et m deux entiers premiers entre eux. Alors,

[ULM21] p. 81

p. 112

$$\mathbb{Z}/nm\mathbb{Z} \equiv \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$

Théorème 33 (Kronecker). Soit G un groupe abélien d'ordre $n \ge 2$. Il existe une suite d'entiers $n_1 \ge 2$, n_2 multiple de $n_1, ..., n_k$ multiple de n_{k-1} telle que G est isomorphe au groupe produit

 n_{k-1} telle que G est isomorphe au groupe pro

$$\prod_{i=1}^{\kappa} \mathbb{Z}/n_i \mathbb{Z}$$

Exemple 34. Soit $G = \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/90\mathbb{Z}$. Alors,

$$G \cong \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3^2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z})$$
$$\cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3^2\mathbb{Z} \times (\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z})$$

III - Groupes non abéliens finis

Les groupes qui suivent sont, sauf cas particuliers, des groupes non abéliens.

1. Groupes symétrique et alterné

Définition 35. L'ensemble des permutations de [1, n] est un groupe pour la composition des applications : c'est le **groupe symétrique**, noté S_n .

p. 55

Remarque 36. S_n est fini, d'ordre n!.

Théorème 37 (Cayley). Tout groupe fini d'ordre n est isomorphe à un sous-groupe de S_n .

Définition 38. Soient $l \in \mathbb{N}^*$ et $i_1, \dots, i_l \in [1, n]$ des éléments distincts. La permutation $\gamma \in S_n$ définie par

$$\gamma(j) = \begin{cases} j & \text{si } j \notin \{i_1, \dots, i_l\} \\ i_{k+1} & \text{si } j = i_k \text{ avec } k < l \\ i_1 & \text{si } j = i_l \end{cases}$$

et notée $(i_1 \dots i_l)$ est appelée **cycle** de longueur l et de **support** $\{i_1, \dots, i_l\}$. Un cycle de longueur 2 est une **transposition**.

Exemple 39. $\gamma = \begin{pmatrix} 1 & 4 & 2 & 5 \end{pmatrix} = \begin{pmatrix} 4 & 2 & 5 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 5 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 1 & 4 & 2 \end{pmatrix}$ est un cycle de S_5 de longueur 4.

Théorème 40. Toute permutation de S_n s'écrit de manière unique (à l'ordre près) comme produit de cycles dont les supports sont deux à deux disjoints.

Exemple 41.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 1 & 3 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix}$$

Définition 42. On appelle **type** d'une permutation $\sigma \in S_n$ et on note $[l_1, ..., l_m]$ la liste des cardinaux l_i des orbites dans [1, n] de l'action du groupe $\langle \sigma \rangle$ sur [1, n], rangée dans l'ordre croissant.

Proposition 43. Une permutation de type $[l_1, ..., l_m]$ a pour ordre ppcm $(l_1, ..., l_m)$.

Exemple 44. La permutation de l'Exemple 41 est d'ordre 6.

Définition 45. — Soit $\sigma \in S_n$. On appelle **signature** de σ , notée $\epsilon(\sigma)$ l'entier $\epsilon(\sigma) = \prod_{i \neq j} \frac{\sigma(i) - \sigma(j)}{i - j}$.

— $\sigma \mapsto \epsilon(\sigma)$ est un morphisme de S_n dans $\{\pm 1\}$, on note A_n son noyau.

Lemme 46. Les 3-cycles sont conjugués dans A_n pour $n \ge 5$.

[PER] p. 15

Lemme 47. Le produit de deux transpositions est un produit de 3-cycles.

[**ROM21]** p. 49

Proposition 48. A_n est engendré par les 3-cycles pour $n \ge 3$.

[DEV]

Théorème 49. A_n est simple pour $n \ge 5$.

[**PER**] p. 28

2. Groupe linéaire sur un corps fini

Soit V un espace vectoriel de dimension finie n sur un corps \mathbb{K} .

[**ULM21**] p. 119

- **Définition 50.** Le **groupe linéaire** de V, GL(V) est le groupe des applications linéaires de V dans lui-même qui sont inversibles.
 - Le **groupe spécial linéaire** de V, SL(V) est le sous-groupe de GL(V) constitué des applications de déterminant 1.
 - Les quotients de ces groupes par leur centre sont respectivement notés PGL(V) et PSL(V).

p. 124

Proposition 51. On se place dans le cas où $\mathbb{K} = \mathbb{F}_q$. Alors, les groupes précédents sont finis, et :

(i)
$$|GL(V)| = q^{\frac{n(n-1)}{2}}((q^n - 1)...(q - 1)).$$

(ii)
$$|PGL(V)| = |SL(V)| = \frac{|GL(V)|}{q-1}$$
.

(iii)
$$|PSL(V)| = |SL(V)| = \frac{|GL(V)|}{(q-1)pgcd(n,q-1)}$$
.

3. Groupe diédral

Définition 52. Pour un entier $n \ge 1$, le **groupe diédral** D_n est le sous-groupe, de $\mathrm{GL}_2(\mathbb{R})$ engendré par la symétrie axiale s et la rotation d'angle $\theta = \frac{2\pi}{n}$ définies respectivement par les matrices

 $S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ et } R = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$

Exemple 53. $D_1 = \{id, s\}.$

Proposition 54. (i) D_n est un groupe d'ordre 2n.

(ii) $r^n = s^2 = id \text{ et } sr = r^{-1}s$.

Proposition 55. Un groupe non cyclique d'ordre 4 est isomorphe à D_2 .

Exemple 56. S_2 est isomorphe à D_2 .

Proposition 57. Un groupe fini d'ordre 2p avec p premier est soit cyclique, soit isomorphe à D_p .

Exemple 58. S_3 est isomorphe à D_3 .

Proposition 59. Les sous-groupes de D_n sont soit cyclique, soit isomorphes à un D_m où $m \mid n$.

IV - Représentations linéaires de groupes finis

Dans cette partie, G désigne un groupe d'ordre fini.

Définition 60. — Une **représentation linéaire** ρ est un morphisme de G dans GL(V) où V désigne un espace-vectoriel de dimension finie n sur \mathbb{C} .

- On dit que n est le **degré** de ρ .
- On dit que ρ est **irréductible** si $V \neq \{0\}$ et si aucun sous-espace vectoriel de V n'est stable par $\rho(g)$ pour tout $g \in G$, hormis $\{0\}$ et V.

p. 8

p. 28

p. 65

p. 28

p. 47

p. 144

Exemple 61. Soit $\varphi : G \to S_n$ le morphisme structurel d'une action de G sur un ensemble de cardinal n. On obtient une représentation de G sur $\mathbb{C}^n = \{e_1, \dots, e_n\}$ en posant

$$\rho(g)(e_i) = e_{\varphi(g)(i)}$$

c'est la représentation par permutations de *G* associé à l'action. Elle est de degré *n*.

Définition 62. La représentation par permutations de G associée à l'action par translation à gauche de G sur lui-même est la **représentation régulière** de G, on la note ρ_G .

Définition 63. On peut associer à toute représentation linéaire ρ , son **caractère** $\chi = \operatorname{trace} \circ \rho$. On dit que χ est **irréductible** si ρ est irréductible.

p. 150

- **Proposition 64.** (i) Les caractères sont des fonctions constantes sur les classes de conjugaison.
 - (ii) Il y a autant de caractères irréductibles que de classes de conjugaisons.

Définition 65. Soit $\rho: G \to \operatorname{GL}(V)$ une représentation linéaire de G. On suppose $V = W \oplus W_0$ avec W et W_0 stables par $\rho(g)$ pour tout $g \in G$. On dit alors que ρ est **somme directe** de ρ_W et de ρ_{W_0} .

Théorème 66 (Maschke). Toute représentation linéaire de *G* est somme directe de représentations irréductibles.

Théorème 67. Les sous-groupes distingués de *G* sont exactement les

[**PEY**] p. 231

$$\bigcap_{i \in I} \operatorname{Ker}(\rho_i) \text{ où } I \in \mathscr{P}(\llbracket 1, r \rrbracket)$$

Corollaire 68. *G* est simple si et seulement si $\forall i \neq 1$, $\forall g \neq e_G$, $\chi_i(g) \neq \chi_i(e_G)$.

Bibliographie

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.

Cours d'algèbre [PER]

Daniel Perrin. Cours d'algèbre. pour l'agrégation. Ellipses, 15 fév. 1996.

 $\verb|https://www.editions-ellipses.fr/accueil/7778-18110-cours-d-algebre-agregation-9782729855529. \\ \verb|html.||$

L'algèbre discrète de la transformée de Fourier

[PEY]

Gabriel Peyré. *L'algèbre discrète de la transformée de Fourier. Niveau M1*. Ellipses, 15 jan. 2004. https://adtf-livre.github.io.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie*. 2^e éd. De Boeck Supérieur, 20 avr. 2021.

 $\verb|https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.|$

Théorie des groupes

[ULM21]

Felix Ulmer. *Théorie des groupes. Cours et exercices.* 2e éd. Ellipses, 3 août 2021.

https://www.editions-ellipses.fr/accueil/13760-25304-theorie-des-groupes-2e-edition-9782340057241.html.