תורת הקבוצות – תרגיל בית מס' 2 – פתרון חלקי

.1

$$P(A) = \{\emptyset, \{1\}, \{3\}, \{5\}, \{1,3\}, \{1,5\}, \{3,5\}, \{1,3,5\}\} \}$$

$$P(B) = \{\emptyset, \{1\}, \{2\}, \{5\}, \{1,2\}, \{1,5\}, \{2,5\}, \{1,2,5\}\} \}$$

$$P(A) \cap P(B) = P(A \cap B) = \{\emptyset, \{1\}, \{5\}, \{1,5\}\} \}$$

ב) הטענה נכונה:

$$X{\in}P(A{\cap}B) \Longleftrightarrow X{\subseteq}A{\cap}B \Longleftrightarrow \begin{cases} X\subseteq A \\ X\subseteq B \end{cases} \Longleftrightarrow \begin{cases} X{\in}P(A) \\ X{\in}P(B) \end{cases} \Longleftrightarrow X{\in}P(A){\cap}P(B)$$

- $.B=\{1,3\}$, $A=\{1,2\}$ שתי הטענות אינן נכונות. דוגמא נגדית: תהיינה $P(A\triangle B)=\{\varnothing, \{2\}, \{3\}, \{2,3\}\} \Leftarrow A\triangle B=\{2,3\}$ אז $.P(A)\triangle P(B)=\left\{\{2\},\{3\},\{1,2\},\{1,3\}\right\} \Leftarrow \begin{cases} P(A)=\{\varnothing,\{1\},\{2\},\{1,2\}\} \\ P(B)=\{\varnothing,\{1\},\{3\},\{1,3\}\} \end{cases}$ ואילו
 - $\{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}\}, \{\{\{\varnothing\}\}\}\}\}\}$ לדוגמא, $\{\emptyset, \{\varnothing\}\}\}$

.3

$$igcap_{n=1}^{\infty}A_{n}=arnothing$$
 : תשובה: (א $A_{n}=arnothing$, $\bigcap_{n=1}^{\infty}B_{n}=\{0\}$: ב) תשובה:

ג) $x\in A_m$ מתקיים $m\geqslant n$ כך שלכל $n\in N$ קיים $x\in \bigcup_{n=1}^\infty\bigcap_{m\geq n}A_m$ (כלומר החל ממקום מסויים, x שייך לכל איברי המשפחה).

ער, לכל איבר של איבר של איבר של איבר של איבר של הוא לכל איבר של איבר של הוא לכל איבר של המשפחה, יש אחריו איבר ש- א שייך לו).

מכאן ברור ש- $\prod_{n=1}^\infty \bigcap_{m\geq n} A_m \subseteq \bigcap_{n=1}^\infty \bigcap_{m\geq n} A_m \subseteq \bigcap_{n=1}^\infty \bigcup_{m\geq n} A_m$ אבל לא בהכרח יש שוויון. ניקח, לדוגמא, מכאן ברור ש- $A_n = \{0,1\}$: אי-זוגי, $A_n = \{0,1\}$ לכל $A_n = \{0,1\}$ לכל המשפחה הבאה . $\bigcap_{n=1}^\infty \bigcup_{m\geq n} A_m = \{0,1,2\}$ ו- $\bigcap_{n=1}^\infty \bigcap_{m\geq n} A_m = \{1\}$

$$\bigcap_{n=1}^{\infty}\bigcup_{m\geq n}A_m$$
 , $\bigcup_{n=1}^{\infty}\bigcap_{m\geq n}A_m$, $\bigcup_{n=1}^{\infty}A_n$, $\bigcap_{n=1}^{\infty}A_n$, $\bigcap_{n=1}^{\infty}A_$

 $A_n=[1/n,2]$ עבור $A_n=[-1/n,1]$ אי-זוגי, $A_n=[-1/n,1]$

 A_1 =[-1, 1] A_2 =[1/2, 2], A_3 =[-1/3, 1], A_4 =[1/4, 2], A_5 =[-1/5, 1], A_6 =[1/6, 2]... עבור המשפחה הזאת:

$$. \bigcap_{n=1}^{\infty} \bigcup_{m \geq n} A_m = [0,2] , \bigcup_{n=1}^{\infty} \bigcap_{m \geq n} A_m = (0,1] , \bigcup_{n=1}^{\infty} A_n = [1,2] , \bigcap_{n=1}^{\infty} A_n = [1/2,1]$$

.4 א) הטענה לא נכונה.

נראה אילו הכלות בין C ,B ,A ניתן להסיק מהנתון.

$$\Leftarrow (x,y) \in C \times C \Leftarrow (x,y) \in (A \times B) \cup (B \times C) \Leftarrow (x,y) \in A \times B$$
 , $y \in B$ לכל $x \in A$. A $\subseteq C$ ולכן $x \in C \Leftarrow$

$$\Leftarrow (x,y) \in C \times C \Leftarrow (x,y) \in (A \times B) \cup (B \times C) \Leftarrow (x,y) \in A \times B , x \in A$$
לכל $\Rightarrow y \in B$.B \subseteq C ולכן $y \in C \Leftarrow$

.z∈A אבל אין אפשרות להסיק, C⊆B ולכן z∈B ל
$$z \in B \ \begin{cases} z \in A \\ z \in B \\ z \in B \end{cases}$$
 כולכן z∈B ל

A=B, ולא בהכרח A=B, ולא בהכרח A=B=C, דוגמא נגדית אפשרית A={1}, B=C={1,2}

$$\Leftarrow (x,y) \in (A \times B) \cup (B \times A) \Leftarrow (x,y) \in C \times P(C)$$
 אז: $y \in P(C)$ אז: $y \in P(C)$

ייתכן כי אייתכן (C=P(C) ומכאן אייתכן ייעכן ייעכן ייעכן אייתכן אייתכן אפרי. אפשרי. אפשרי. אפשרי. אפשרי. אפשרי. אפשרי. אפשרי. אפשרי. אפשרי. אפשרי

יבור 2 או 3 קבוצות: Venn את המצב שמתואר בדיאגרמות המצב או 3 קבוצות: $\textbf{X}=(A\cap B)\cup (A\cap B^c)\cup (A^c\cap B)\cup (A^c\cap B^c)$ עבור 3 קבוצות $\textbf{X}=(A\cap B\cap C)\cup (A\cap B\cap C^c)\cup (A\cap B^c\cap C)\cup (A\cap B^c\cap C^c)\cup (A\cap B^c\cap C)\cup (A^c\cap B\cap C^c)\cup (A^c\cap B^c\cap C)\cup (A^c\cap B^c\cap C)\cup (A^c\cap B^c\cap C)$

- i_k אט מאחר שלכל (אינדקס של קבוצה) אינ (אינדקס של קבוצה) אינ אותר לבחור לבחור (אינדקס של קבוצה) אינ אפשרויות לכתוב ביטוי ביטוי $A_1^{i_1}\cap A_2^{i_2}\cap...\cap A_n^{i_n}$ לכן יש לכל היותר לדוגמא מהן שוות; לדוגמא אם $A=B=\{1\}$, $X=\{1,2\}$

. שלוש קבוצות יסודיות – $A\cap B^c=A^c\cap B=\varnothing$, $A^c\cap B^c=\{2\}$, $A\cap B=\{1\}$ אז

ב) בכל זוג של קבוצות יסודיות שונות, יש אינדקס k אחד לפחות כך שבאחת ב) בכל זוג של קבוצות יסודיות שונות, $A_k^{\rm o}=A_k^{\rm o}$ ובשניה $A_k^{\rm o}=A_k^{\rm o}$ (כי אחרת הן היו קבוצות יסודיות שוות). לכן החיתוך שלהן הוא

 $(...\cap A_k\cap...)\cap (...\cap A_k^c\cap...)=...\cap A_k\cap A_k^c=...\cap\varnothing=\varnothing$ כלומר כל שתי קבוצות כאלו – זרות.

- ג) אם x שייך לאחת מהקבוצות היסודיות אז הוא בוודאי שייך ל- X לפי המשמעות של ה"עולם".
- x אם x שייך ל- x, אז לכל k הוא שייך או ל- $A_k^0 = A_k^0$ או ל- $A_k^1 = A_k^0$, לכן x שייך לחיתוך של k קבוצות כאלה, שזה אחת מהקבוצות היסודיות, ולכן לאיחוד של כל הקבוצות היסודיות.
- $.A_j^0=A_j$ הוא j -הגורם שבהן היסודיות היסודיות כל הקבוצות אם x שייך איין אם שייך לאיחוד לכן אחת (אחת לפחות) הוא שייך לקבוצה יסודית (אחת לפחות) הוא שייך לקבוצה יסודית (אחת לפחות) ל-. A_i

, $A_k^1=A_k^c$ או ל- $A_k^0=A_k$ או ל- $k\neq j$ הוא שייך או ל- A_j^0 או ל- x אם x אם א לכל x אז לכל x אז לכל x שייך לחיתוך של x קבוצות כאלה עם x קבוצות היסודיות מהצורה x היסודיות, ולכן – לאיחוד של כל הקבוצות היסודיות מהצורה x