Sistemas Complexos — Exercícios # 2

1. Este problema é a respeito do lema sobre grafos que usado na prova de unicidade do cluster infinito.

Seja G um grafo conexo com conjunto de sítios V e conjunto de elos E. Um sítio x em V será chamado um ponto triplo para G se

- i) existirem apenas três elos de V tocando x e
- ii) o grafo $G\setminus\{x\}$, em que x é removido de V e os três elos tocando em x são removidos de E, tem exatamente três componentes conexos. (Denotaremos os conjuntos de sítios destes três componentes $E_1(x), E_2(x), E_3(x)$ e os chamaremos de ramos.)
- a. Suponha que G seja um grafo conexo e que $x_1, x_2, ..., x_n$ sejam pontos triplos distintos para G. Mostre que para algum i dois dos três ramos em x_i , digamos $E_2(x_i)$ e $E_3(x_i)$ não contêm nenhum dos outros pontos triplos $(\{x_1, ..., x_n\} \setminus \{x_i\})$. [Sugestão: indução em n]
- b. Considere o grafo G' obtido de G e x_1, \ldots, x_n do item anterior removendo-se todos os sítios de $E_3(x_i)$ e todos os elos tocando estes sítios. Mostre que $\{x_1, \ldots, x_n\} \setminus \{x_i\}$ são pontos triplos para G'.
- c. Suponha que G seja um grafo conexo e que x_1, \ldots, x_n sejam pontos triplos distintos de G. Entre os 3n ramos,

$$E_1(x_1), E_2(x_1), E_3(x_1), E_1(x_2), \ldots, E_3(x_n),$$

mostre que se pode achar pelo menos n+2 ramos disjuntos.

- 2. Seja \mathbb{E} um subconjunto *finito* de \mathbb{E}^d . Seja $\Omega = \{0,1\}^{\mathbb{E}}$. o espaço amostral de configurações de elos (fechados e abertos) de \mathbb{E} e seja P_p a medida de probabilidade correspondente a percolação de elos independentes em \mathbb{E} com $p \in (0,1)$ a probabilidade de cada elo e estar aberto $(\omega(e) = 1)$.
 - (a) suponha que $g(\omega)$ seja uma função positiva em Ω e seja P_p' a medida de probabilidade em Ω definida por

$$P_p'(A) = \frac{\sum_{\omega \in A} g(\omega) P_p(\{\omega\})}{\sum_{\omega \in \Omega} g(\omega) P_p(\{\omega\})}.$$

Use a desigualdade de FKG para mostrar que se g for crescente, então para todo evento crescente $A, P'_n(A) \geq P_p(A)$.

(b) Seja $q \in (1, \infty)$ e suponha que $g(\omega) = q^{N(\omega)}$, onde $N(\omega)$ é o número de clusters abertos distintos (usando os elos abertos de \mathbb{E} e os sítios dos elos de \mathbb{E}) determinados por ω . [Note que $g(\omega)$ é função decrescente e não crescente de ω ; mesmo assim faz-se a seguinte questão.] Seja P'_p definida como na parte (a) usando esta g. Ache $\tilde{p} = \tilde{p}(p,q)$ satisfazendo $\tilde{p} \to 1$ quando $p \to 1$ e

$$P_p'(A) \ge P_{\tilde{p}}(A)$$

para todo evento crescente A.

[Sugestão: tente expressar

$$P_p'(A) = \sum_{\omega \in A} \tilde{g}(\omega) P_{\tilde{p}}(\{\omega\}) / \sum_{\omega \in \Omega} \tilde{g}(\omega) P_{\tilde{p}}(\{\omega\})$$

para algum \tilde{g} que ao contrário de g seja crescente.]

3. **Percolação por Invasão.** Considere uma família $\{Z_e, e \in \mathbb{E}^d\}$ de v.a.'s i.i.d. Uniformes em [0,1] e defina a seguinte sequência crescente de subconjuntos aleatórios de \mathbb{Z}^d . Antes, uma definição. Dado um subconjunto qualquer, U, de \mathbb{Z}^d , vamos definir o conjunto de elos da fronteira de U como

$$\partial \mathbb{E}_U = \{ e = (x, z) \in \mathbb{E}^d : x \in U, z \notin U \}.$$

Agora, seja $V_0=\{\mathbf{0}\}$ e, para $n\geq 0$, seja e_n o elo que minimiza Z_e em $\partial \mathbb{E}_{V_n}$. Então, $e_n=(\xi_n,\zeta_n)$, com $\xi_n\in V_n$ e $\zeta_n\notin V_n$. Façamos $V_{n+1}=V_n\cup\{\zeta_n\}$.

O modelo assim obtido é chamado de Percolação por Invasão, pois $\{V_n, n \geq 0\}$ pode ser vista como a sequência de sítios *invadidos* (p. ex., por um fluido), a partir da origem, por elos de *menor resistência* (menor Z_e).

Este modelo tem interesse próprio (e bibliografia, veja a seção 10.6 em Percolation, de G. Grimmett, 1a. ed.). Mas há uma questão em seu contexto que se relaciona ao problema da continuidade de $\theta(p)$ em p_c no modelo de percolação usual, formulada a seguir como um exercício.

Seja $V_{\infty} = \bigcup_{n \geq 0} V_n$ o conjunto de todos os sítios eventualmente invadidos. Mostre que

$$\lim_{|x|\to\infty} \inf P(x \in V_{\infty}) = 0 \Rightarrow \theta(p_c) = 0.$$

Sugestão: Observe que uma vez que a invasão atinge um aglomerado infinito de elos p-abertos (isto é, elos $e \in \mathbb{E}^d$ tais que $Z_e < p$), ela não o deixa mais.

4. Faça a verificação recomendada no ponto 4' do slide 13 do conjunto de slides sobre o modelo de Ising, isto é, mostre que o limite em (\star) não depende da particular sequência crescente (Λ_n) .