Advanced Machine Learning

Multi-Target Prediction: Methods Part 1

Learning goals

- Independent models for targets
- Mean regularization
- Stacking
- Weight sharing in DL

INDEPENDENT MODELS

 The most naive way to make multi-target predictions: learning a model for each target independently.

- In multi-label classification this approach is also known as *binary* relevance learning.
- Advantage: easy to realize, as for single-target prediction we have a wealth of methods available.

INDEPENDENT MODELS

• Assume a linear basis function model for the *m*-th target:

$$f_k(\mathbf{x}) = \boldsymbol{\theta}_k^{\mathsf{T}} \phi(\mathbf{x}),$$

 θ_k is target-specific parameter and ϕ some feature mapping.

- Use this with with large nr of targets.
- We optimize jointly:

$$\min_{\Theta} \|Y - \Phi\Theta\|_F^2 + \sum_{m=1}^{l} \lambda_m \|\boldsymbol{\theta}_m\|^2,$$

 $\|B\|_F^2 = \sqrt{\sum_{i=1}^n \sum_{m=1}^l B_{i,m}^2}$ is Frobenius norm for $B \in \mathbb{R}^{n imes l}$ and

$$\Phi = \begin{bmatrix} \phi(\mathbf{x}^{(1)})^{\top} \\ \vdots \\ \phi(\mathbf{x}^{(n)})^{\top} \end{bmatrix} \qquad \Theta = \begin{bmatrix} \theta_1 & \cdots & \theta_l \end{bmatrix}.$$

Frobenius norm = sum of SSE-s of all targets

INDEPENDENT MODELS

The experimental results section of a typical MTP paper:

 \leadsto Independent models don't exploit target deps, compared to more sophisticated methods, seems to be key for better performance.

ENFORCING SIMILARITY IN DEEP LEARNING

Commonly-used architecture: weight sharing in the final layer with *m* nodes, i.e., weight sharing among the targets

Caruana, 1997

MEAN-REGULARIZED MULTI-TASK LEARNING

- Models for similar targets should behave similarly
- So params should be similar

• Approach: Bias parameter vectors towards mean vector:

$$\min_{\Theta} \| Y - \Phi \Theta \|_F^2 + \lambda \sum_{m=1}^{I} \| \theta_m - \frac{1}{I} \sum_{m'=1}^{I} \theta_{m'} \|^2$$

Fygeniou and Pontil 2004

STACKING

- Originally, general ensemble learning technique.
- Level 1: apply series of ML methods on the same dataset
- Level 2: apply ML method to a new dataset consisting of the predictions obtained at level 1

STACKING APPLIED TO MTP

- Level 1: learn all $f_k(\mathbf{x})$ independently
- Level 2: learn model for each target independently, using predictions of level 1 → f(x) = g(f₁(x),...,f_l(x))
 Or:

 $f(\mathbf{x}) = g(f_1(\mathbf{x}), \dots, f_l(\mathbf{x}), \mathbf{x})$

- Advantages: easy to implement and general
- Has been shown to avoid overfitting in multivariate regression
- If level 2 learner uses regularization → models are forced to learn similar parameters for different targets.

Cheng and Hüllermeier 2009

STACKING VS BINARY RELEVANCE: EXAMPLE

 Compare F1-Score of random forest with stacking vs random forest with binary relevance on different multilabel datasets:

	birds	emotions	enron	genbase	image	langLog	reuters	scene	slashdot	yeast
BR(rf) F1-Score STA(rf) F1-Score			0.578 0.583		0.431 0.446	0.319 0.317	0.671 0.685	0.616 0.633	0.441 0.453	0.615 0.624

- F1-Score is decomposed over targets.
- NB: Stacking slightly outperforms binary relevance on average.
- For more details, please refer to Probst et al., 2017.

