Imaging wavefields using interferometry

Diego Domenzain

Spring 2017

 $\operatorname{motivation} \rightarrow \operatorname{method} \rightarrow \operatorname{theory} \rightarrow \operatorname{sensitivity}$

How can we image time traces of wavefields from passive source observations?

motivation

Goal and challenges

We ultimately want to image material properties using wave energy.

Sometimes actively generating a wavefield is not an option.

Some others, there are already many wavefields propagating through our zone of interest.

How do we use these wavefields?

Listen

The idea is to,

- listen to echoes of wavefields generated by many sources,
- correct these records of echoes,
- image material properties using the corrected echoes.

... so, reorganize many energy responses into a coherent response.

Imaging a wavefield in real life

Lin et al.

method

Best case scenario

Pseudo-code

Example - setup

Example - stacking

Example - virtual shot gather

theory

Behind the stage

$$\int_{\Gamma} g(r_{\bullet}, s) \star g(r_{i}, s) d\Gamma \propto g(r_{i}, r_{\bullet}, -t) + g(r_{i}, r_{\bullet}, t)$$

Source-receiver duality

$$\int_{\Gamma} g(r_{\bullet}, s) * g(s, r_{i}) d\Gamma \propto g(r_{i}, r_{\bullet}, -t) + g(r_{i}, r_{\bullet}, t)$$

Full traceform inversion

Recall the FWI scheme,

$$\int_0^T u(T-t) q(t) dt = \nabla_{\sigma} \mathsf{E},$$

where q is the forward back-propagation of errors and u is our generated wavefield.

Now, think of s as the spatial boundary, r_{\bullet} as our source location, and the rest of receivers r_i as our receivers in our FWI scheme.

We have,

$$\int_{\Gamma} \underbrace{g(r_{\bullet}, s)}_{u(T-t)} * \underbrace{g(s, r_{i})}_{q(t)} d\Gamma \propto g(r_{i}, r_{\bullet}, -t) + g(r_{i}, r_{\bullet}, t).$$

Pseudo-code of implementation

sensitivity

Correlation gather

Fresnel zones and curvature of s

- Sources parallel to the line segment $X_A X_B$ give extrema in the correlation gather.
- The closer X_A and X_B are to s, the more they feel its curvature, the narrower the Fresnel zone.

Wapenaar et al.

Fresnel zones and ω

Known issues

 Heterogeneous media gives rise to spurious events in virtual shot gathers.

- Optimal (s, r) geometry is not always ensured.
- How to crop original (r, t) gather into (r, s, t) cube?

?