

DSBA Open QA Study

Open-Domain Question Answering Paper Review #1

고려대학교 산업경영공학과

Data Science & Business Analytics Lab

발표자 : 고유경

1. Reading Wikipedia to Answer Open-Domain Questions (Chen et al., ACL 2017, 1154회 인용)

2. R^3: Reinforced Ranker-Reader for Open-Domain Question Answering (Wang et al., AAAI 2018, 261회인용)

Reading Wikipedia to Answer Open-Domain Questions (ACL 2017)

Reading Wikipedia to Answer Open-Domain Questions

Danqi Chen*

Computer Science
Stanford University
Stanford, CA 94305, USA
dangi@cs.stanford.edu

Adam Fisch, Jason Weston & Antoine Bordes

Facebook AI Research
770 Broadway
New York, NY 10003, USA
{afisch, jase, abordes}@fb.com

- 1. Reading Wikipedia to Answer Open-Domain Questions (Chen et al., ACL 2017, 1154회 인용)
 - Retriever (질문과 관련 있는 문서 검색) + Reader (정답 추출)

Reading Wikipedia to Answer Open-Domain Questions (ACL 2017)

Task Description: Open Domain QA

기존 Open Domain QA 연구

- unstructured documents 집합에서 질문의 정답 추출 (TREC,1999)
- 질문 분석, 문서 검색(Retriever), 정답 추출(Reader) 순으로 진행
- Unconstrained QA: using multi/redundant resources
 - 컴퓨터가 처리하기 용이한 KB와 같은 structured data도 활용
 - (-) but too sparsely populated -> single resource!
 - DeepQA(2010): unstructured(text), structured(KB)
 - YodaQA(2015): web, database, wikipedia
- DL 기반의 MRC 방법론들의 비약적 발전 -> **ODQA에 적용해보자!**

O1 Paper 1

Reading Wikipedia to Answer Open-Domain Questions (ACL 2017)

Task Description: Open Domain QA

Retriever (Information Retrieval)

Reader (Reading Comprehension)

논문이 제안하는 방법 DrQA: 2-Stage Retriever-Reader

- 규모가 큰 single resource(**only Wikipedia**)만을 가지고 더 정교하고 완전한 ODQA 시스템을 구축해보자!
- (+) generic: 위키피디아 내부 그래프 구조에 의존하지 않아(only text) 다른 문서 집합에도 적용 가능
- more challenging MRC(reader) 중요
 - distant supervision (MRC용 데이터 생성)
 - multitask learning (여러 데이터셋으로 학습)
- **1.** Document Retriever: 통계 기반 전통 IR 모델 (학습 x)
 - 입력: 질문 + Wikipedia articles 500만개
 - 출력: 질문과 관련 있는 문서(들)
- 2. Document Reader: RNN 기반 DL 모델 (학습 o)
 - 입력: 질문 + retrieved된 문서(들)
 - 출력: 문서/문단 내 정답 위치 (start, end)

01

Paper 1

Reading Wikipedia to Answer Open-Domain Questions (ACL 2017)

Method: DrQA

• 데이터로부터 바로 구하는 sparse

embedding -> **학습 x**

Reading Wikipedia to Answer Open-Domain Questions (ACL 2017)

Dataset Description

✓ Wikipedia: 정답을 찾는데 활용하는 Knowledge source, 500만개 Articles

✓ **SQuAD**: (문단, 질문, 정답) 쌍으로 구성, Reader를 학습시키는데 활용하는 main resource

✓ CuratedTREC, WebQuestions, WikiMovies

- 질문-정답 쌍으로만 구성되어 있음 -> Reader 모델 학습에 활용하기 위해 passage 데이터 추가
- **Distant Supervision**: Retriever를 통해 top5 Wikipedia article 추출하고 이 중 정답과 가장 많이 겹치는 top5 passage 추출

Evaluation

평가지표: EM(Exact Match) / F1

1. Document Retriever

- 평가지표: 데이터 중 retrieved 문서가 정답을 포함하는 비율
- bigram: 위키피디아 검색엔진(62.7)보다 좋은 결과(77.8)

2. Document Reader

- baseline: R-net, BiDAF 등
- SQuAD로 학습한 모델 SOTA 기록 (EM: 69.5, F1: 78.8)

3. Full Wikipedia ODQA setting (EM)

Dataset _{\(\righta\)}	YodaQA	DrQA							
C		SQuAD	+Fine-tune (DS)	+Multitask (DS)					
SQuAD (All Wikipedia)	n/a	27.1	28.4	29.8					
CuratedTREC	31.3	19.7	25.7	25.4					
WebQuestions	39.8	11.8	19.5	20.7					
WikiMovies	n/a	24.5	34.3	36.5					

- SQuAD: SQuAD로 reader 학습
- Fine-tune(DS): SQuAD로 reader 학습 + DS 데이터셋으로 fine-tuning
- Multitask(DS) 모든 데이터셋으로 jointly training

Best "complete" single model

O2 Paper 2

R^3: Reinforced Ranker-Reader for Open-Domain Question Answering (AAAI 2018)

The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18)

R³: Reinforced Ranker-Reader for Open-Domain Question Answering

Shuohang Wang,^{1*} Mo Yu,² Xiaoxiao Guo,² Zhiguo Wang,² Tim Klinger,² Wei Zhang,² Shiyu Chang,² Gerald Tesauro,² Bowen Zhou,³ Jing Jiang¹

¹School of Information System, Singapore Management University

²AI Foundations - Learning, IBM Research AI. Yorktown Heights NY, USA

³JD.COM. Beijing, China

shwang.2014@smu.edu.sg, yum@us.ibm.com, xiaoxiao.guo@ibm.com

2. R^3: Reinforced Ranker-Reader for Open-Domain Question Answering (Wang et al., AAAI 2018, 261회 인용)

Retriever(문서 검색) + Ranker(문서 선택) + Reader(정답 추출)

O2 Paper 2

R^3: Reinforced Ranker-Reader for Open-Domain Question Answering (AAAI 2018)

Task Description: Open Domain QA with Ranker

기존 연구의 한계: 부실한 Retriever

- tf-idf를 활용한 sparse embedding은 n-gram matching에 의존함 (P1)
- semantic한 정보를 파악하기 어려움 (P3)
- Retriever이 부실하면 뒷단 Reader의 학습이 어려워짐

- Q: What is the largest island in the Philippines?
- A: Luzon
- P1 Mindanao is the second largest and easternmost island in the Philippines.
- P2 As an island, **Luzon** is the Philippine's largest at 104,688 square kilometers, and is also the world's 17th largest island.
- P3 Manila, located on east central **Luzon** Island, is the national capital and largest city.

논문이 제안하는 개선 방법: Ranker

- retrieved된 문서들 중에 중요한(정답을 포함할 것 같은) passage를 뽑아내는 ranker를 추가하자
- 어떻게? 강화학습(Policy Gradient)을 활용!

Policy Gradient: state(질문)를 입력으로 받아 딥러닝 모형으로 action을 취할(passage를 선택할) 확률인 Policy $\pi_{\theta}(a|s)$ 를 추정

softmax를 거친 다항분포

보상(reward)을 통해 해당 질문에서는 어떤 passage를 선택하는 것이 최적의 policy인지 스스로 배워나감(try and error)

ranker와 reader를 jointly하게 학습시킴 (end-to-end)

R^3: Reinforced Ranker-Reader for Open-Domain Question Answering (AAAI 2018)

Method: Reinforced Ranker-Reader(R3)

✓ Match-LSTM

- Ranker와 Reader를 거치기 전 단계
- 주어진 question과 각 passage 간의 관계를 바탕으로 passage의 representation을 도출하는 attention mechanism $\mathbf{G} = \operatorname{SoftMax} \left((\mathbf{W}^g \mathbf{H}^q + \mathbf{b}^g \otimes \mathbf{e}_{\mathcal{Q}})^T \mathbf{H}^p \right)$

Algorithm (batch_size = 1)

- 1. question q에 대해 Retriever 모델로 추출된 top N개의 passages 중 10개 샘플링 (최소 2개는 negative sample)
- 2. Ranker policy $\pi(au|\mathbf{q})$ 에 따라 passage 1개 선택(action)
- 3. Reader 모델을 통해 정답 \mathbf{a}^{rc} 추출, reward(r) 획득
- 4. policy gradient로 Ranker 모델 업데이트 $r\frac{\partial}{\partial\Theta}\log(\pi(\tau|\mathbf{q}))$
- 5. Reader 파라미터 업데이트(SGD)

$$L(\mathbf{a}^g | \tau, \mathbf{q}) = -\log(\beta_{a_{\tau}^s}^s) - \log(\beta_{a_{\tau}^e}^e)$$

$$\frac{\partial}{\partial \Theta} \bar{L}(\mathbf{a}^g | \tau, \mathbf{q})$$

✓ Reward

• reader가 추출한 정답이 실제 정답과 얼마나 잘 매칭되는가

$$R(\mathbf{a}^g, \mathbf{a}^{rc} | \tau) = \begin{cases} 2, & \text{if } \mathbf{a}^g == \mathbf{a}^{rc} \\ f1(\mathbf{a}^g, \mathbf{a}^{rc}), & \text{else if } \mathbf{a}^g \cap \mathbf{a}^{rc}! = \emptyset \\ -1, & \text{else} \end{cases}$$

R^3: Reinforced Ranker-Reader for Open-Domain Question Answering (AAAI 2018)

Dataset Description

• Quasar-T: 43000개의 퀴즈 (질문-답) 쌍

• SQuAD(OPEN): (질문-답-문단) 쌍, passage 제거

• **WikiMovies**: 영화 관련 (질문-답) 쌍, 질문(from OMDb/MovieLens), 정답(from 위키피디아)

• CuratedTREC: based on TREC, for ODQA를 위한 TREC 기반 데이터셋, (질문-답) 쌍

• WebQuestions: Knowledge-base QA 데이터셋, (질문-답) 쌍

Distant Supervision: 아래 4개 데이터셋에 대해 sentence-level로 적용, top 200 문서 추출 및 tf-idf 점수 기반 top 200 문장 추출

Evaluation 평가지표: EM(Exact Match) / F1

	Quasar-T		SQuAD _{OPEN}		WikiMovies		CuratedTREC		WebQuestions	
	F1	\mathbf{EM}	F1	EM	F1	\mathbf{EM}	F1	\mathbf{EM}	F1	\mathbf{EM}
GA (Dhingra et al. 2017)	26.4	26.4	-	-	-	-	-	-	-	-
BiDAF (Seo et al. 2017)	28.5	25.9	-	-	-	-	-	-	-	-
DrQA (Chen et al. 2017a)	-	-	-	28.4	-	34.3	-	25.7	-	19.5
Single Reader (SR)	38.5.2	31.5.2	35.4 ^{.2}	26.9.2	38.8.1	37.7 ^{.1}	33.6.6	27.4.4	22.0.2	15.2.3
Simple Ranker-Reader (SR ²)	38.8^{-2}	31.9^{-2}	35.8 ^{.2}	$27.2^{.2}$	39.3^{1}	38.1 ^{.1}	$33.4^{.6}$	27.7^{-5}	$22.5^{.3}$	15.6^{-4}
Reinforced Ranker-Reader (R ³)	$40.9^{.3}$	$34.2^{.3}$	$37.5^{.2}$	$29.1^{.2}$	$39.9^{.1}$	$38.8^{.1}$	$34.3^{.6}$	28.4^{-6}	$24.6^{.3}$	17.1 ^{.3}
DrQA-MTL (Chen et al. 2017a)	-	-	-	29.8	-	36.5	-	25.4	-	20.7
YodaQA (Baudiš and Šedivỳ 2015)	-	-	-	-	-	-	-	31.3	-	39.8

Baseline

- SR(Single Reader): passage 랜덤 선택
- SR^2(Single Ranker-Reader): Ranker, Reader 각각 학습

Result

- 모든 데이터셋 baseline에 비해 성능 향상
- WebQuestion 데이터셋 제외 DrQA 성능 능가

03 Conclusion

1. Reading Wikipedia to Answer Open-Domain Questions (Chen et al., ACL 2017, 1154회 인용)

- 규모가 큰 single resource(only Wikipedia)만을 가지고 complete ODQA 시스템 구축
- Retriever (질문과 관련 있는 문서 검색) + Reader (정답 추출)
- 발전가능성 1) sparse embedding retriever -> dense embedding retriever
- 발전가능성 2) single passage reader -> multi-passage reader

2. R^3: Reinforced Ranker-Reader for Open-Domain Question Answering (Wang et al., AAAI 2018, 261회 인용)

- Retriever (질문과 관련 있는 문서 검색) + Ranker(문서 재평가 후 선택) + Reader (정답 추출)
- ranker와 reader jointly training (end-to-end)
- 발전가능성 1) QA에 다양한 강화학습 방법론 적용