1. Цель лабораторной работы:

изучение продвинутых способов предварительной обработки данных для дальнейшего формирования моделей.

2. Задание:

Выбрать один или несколько наборов данных (датасетов) для решения следующих задач. Каждая задача может быть решена на отдельном датасете, или несколько задач могут быть решены на одном датасете. Просьба не использовать датасет, на котором данная задача решалась в лекции. Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи: і. масштабирование признаков (не менее чем тремя способами); іі.обработку выбросов для числовых признаков (по одному способу для удаления выбросов и для замены выбросов); ііі.обработку по крайней мере одного нестандартного признака (который не является числовым или категориальным); іv. отбор признаков: один метод из группы методов фильтрации (filter methods); один метод из группы методов обертывания (wrapper methods); один метод из группы методов вложений (embedded methods).

3. Ход выполнения работы

Импорт библиотек

In [2]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
import scipy.stats as stats
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import LogisticRegression
from sklearn.svm import LinearSVC
```

In [3]:

```
data = pd.read_csv(r'C:\Users\asus\Desktop\iu5\MMO\1ab3\data.csv')
```

In [4]:

data. head()

Out[4]:

	Row	ld	Surname	Score	Nationality	Gender	Age	Tenure	Balance	Products	С
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	
4											•

In [5]:

```
data = data.drop('Id', 1)
data.head()
```

C:\Users\asus\AppData\Local\Temp/ipykernel_22008/222650945.py:1: FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'la bels' will be keyword-only

data = data.drop('Id', 1)

Out[5]:

	Row	Surname	Score	Nationality	Gender	Age	Tenure	Balance	Products	Card	Activ€
0	1	Hargrave	619	France	Female	42	2	0.00	1	1	1
1	2	Hill	608	Spain	Female	41	1	83807.86	1	0	1
2	3	Onio	502	France	Female	42	8	159660.80	3	1	C
3	4	Boni	699	France	Female	39	1	0.00	2	0	C
4	5	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1
4											•

In [6]:

Удаление колонок с высоким процентом пропусков (боле data. dropna (axis=1, thresh=1095)

Out[6]:

	Row	Surname	Score	Nationality	Gender	Age	Tenure	Balance	Products	Card	1
0	1	Hargrave	619	France	Female	42	2	0.00	1	1	_
1	2	Hill	608	Spain	Female	41	1	83807.86	1	0	
2	3	Onio	502	France	Female	42	8	159660.80	3	1	
3	4	Boni	699	France	Female	39	1	0.00	2	0	
4	5	Mitchell	850	Spain	Female	43	2	125510.82	1	1	
9995	9996	Obijiaku	771	France	Male	39	5	0.00	2	1	
9996	9997	Johnstone	516	France	Male	35	10	57369.61	1	1	
9997	9998	Liu	709	France	Female	36	7	0.00	1	0	
9998	9999	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	
9999	10000	Walker	792	France	Female	28	4	130142.79	1	1	
10000	10000 rows × 13 columns										

In [7]:

data.describe()

Out[7]:

	Row	Score	Age	Tenure	Balance	Products	
count	10000.00000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	1(
mean	5000.50000	650.528800	38.921800	5.012800	76485.889288	1.530200	
std	2886.89568	96.653299	10.487806	2.892174	62397.405202	0.581654	
min	1.00000	350.000000	18.000000	0.000000	0.000000	1.000000	
25%	2500.75000	584.000000	32.000000	3.000000	0.000000	1.000000	
50%	5000.50000	652.000000	37.000000	5.000000	97198.540000	1.000000	
75%	7500.25000	718.000000	44.000000	7.000000	127644.240000	2.000000	
max	10000.00000	850.000000	92.000000	10.000000	250898.090000	4.000000	
4							•

```
In [8]:
```

```
def obj_col(column):
    return column[1] == 'object'

col_names = []
for col in list(filter(obj_col, list(zip(list(data.columns), list(data.dtypes))))):
    col_names.append(col[0])
col_names.append('Salary')
```

In [9]:

```
X_ALL = data.drop(col_names, axis=1)
```

In [10]:

```
# Функция для восстановления датафрейма
# на основе масштабированных данных
def arr_to_df(arr_scaled):
  res = pd. DataFrame(arr_scaled, columns=X_ALL.columns)
  return res
```

In [11]:

Out[11]:

```
((8000, 9), (2000, 9))
```

StandardScaler

In [12]:

```
# Обучаем StandardScaler на всей выборке и масштабируем cs11 = StandardScaler() data_cs11_scaled_temp = cs11.fit_transform(X_ALL) # формируем DataFrame на основе массива data_cs11_scaled = arr_to_df(data_cs11_scaled_temp) data_cs11_scaled
```

Out[12]:

	Row	Score	Age	Tenure	Balance	Products	Card	Active	
0	-1.731878	-0.326221	0.293517	- 1.041760	-1.225848	- 0.911583	0.646092	0.970243	1.9
1	-1.731531	-0.440036	0.198164	-1.387538	0.117350	-0.911583	-1.547768	0.970243	-0.
2	-1.731185	-1.536794	0.293517	1.032908	1.333053	2.527057	0.646092	-1.030670	1.9
3	-1.730838	0.501521	0.007457	-1.387538	-1.225848	0.807737	-1.547768	-1.030670	-0.
4	-1.730492	2.063884	0.388871	-1.041760	0.785728	-0.911583	0.646092	0.970243	-0.
•••									
9995	1.730492	1.246488	0.007457	- 0.004426	- 1.225848	0.807737	0.646092	-1.030670	-0.
9996	1.730838	-1.391939	-0.373958	1.724464	-0.306379	- 0.911583	0.646092	0.970243	-0.
9997	1.731185	0.604988	-0.278604	0.687130	-1.225848	-0.911583	-1.547768	0.970243	1.9
9998	1.731531	1.256835	0.293517	-0.695982	-0.022608	0.807737	0.646092	-1.030670	1.9
9999	1.731878	1.463771	-1.041433	-0.350204	0.859965	-0.911583	0.646092	-1.030670	-0.

10000 rows × 9 columns

In [13]:

```
# Построение плотности распределения
def draw_kde(col_list, df1, df2, label1, label2):
    fig, (ax1, ax2) = plt.subplots(
        ncols=2, figsize=(12, 5))
    # первый график
    ax1.set_title(label1)
    sns.kdeplot(data=df1[col_list], ax=ax1)
    # второй график
    ax2.set_title(label2)
    sns.kdeplot(data=df2[col_list], ax=ax2)
    plt.show()
```

In [14]:

Масштабирование "Mean Normalisation"

```
In [15]:
```

Out[15]:

```
((8000, 9), (2000, 9))
```

In [16]:

```
class MeanNormalisation:

def fit(self, param_df):
    self.means = X_train.mean(axis=0)
    maxs = X_train.max(axis=0)
    mins = X_train.min(axis=0)
    self.ranges = maxs - mins

def transform(self, param_df):
    param_df_scaled = (param_df - self.means) / self.ranges
    return param_df_scaled

def fit_transform(self, param_df):
    self.fit(param_df)
    return self.transform(param_df)
```

In [17]:

```
sc21 = MeanNormalisation()
data_cs21_scaled = sc21.fit_transform(X_ALL)
data_cs21_scaled.describe()
```

Out[17]:

	Row	Score	Age	Tenure	Balance	Products	
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	1C
mean	-0.001795	0.000430	0.000467	-0.001220	0.000089	-0.000558	
std	0.288718	0.193307	0.141727	0.289217	0.248696	0.193885	
min	-0.501795	-0.600627	-0.282260	-0.502500	-0.304759	-0.177292	
25%	-0.251795	-0.132627	-0.093071	-0.202500	-0.304759	-0.177292	
50%	-0.001795	0.003373	-0.025503	-0.002500	0.082644	-0.177292	
75%	0.248205	0.135373	0.069091	0.197500	0.203990	0.156042	
max	0.498205	0.399373	0.717740	0.497500	0.695241	0.822708	
4							•

In [18]:

```
cs22 = MeanNormalisation()
cs22.fit(X_train)
data_cs22_scaled_train = cs22.transform(X_train)
data_cs22_scaled_test = cs22.transform(X_test)
```

In [19]:

data_cs22_scaled_train.describe()

Out[19]:

	Row	Score	Age	Tenure	Balance	Products	
count	8.000000e+03	8.000000e+03	8.000000e+03	8.000000e+03	8.000000e+03	8.000000e+03	8
mean	-2.884498e- 17	-1.356207e- 17	-2.579534e- 17	1.474341e-17	-1.079838e- 15	-7.000303e- 17	
std	2.885589e-01	1.933540e-01	1.414715e-01	2.885856e-01	2.485971e-01	1.945155e-01	2
min	-5.017945e- 01	-6.006273e- 01	-2.822601e- 01	-5.025000e- 01	-3.047590e- 01	-1.772917e- 01	
25%	-2.485942e- 01	-1.346273e- 01	-9.307095e- 02	-2.025000e- 01	-3.047590e- 01	-1.772917e- 01	
50%	8.057306e-04	1.372750e-03	-2.550338e- 02	-2.500000e- 03	8.207197e-02	-1.772917e- 01	2
75%	2.500307e-01	1.353727e-01	6.909122e-02	1.975000e-01	2.039710e-01	1.560417e-01	2
max	4.982055e - 01	3.993727e-01	7.177399e - 01	4.975000e - 01	6.952410e - 01	8.227083e-01	2

In [20]:

In [21]:

draw_kde(['Score', 'Age', 'Balance'], data_cs22_scaled_train, data_cs22_scaled_test, 'Обучающ

MinMax-масштабирование

In [22]:

```
# Обучаем StandardScaler на всей выборке и масштабируем cs31 = MinMaxScaler() data_cs31_scaled_temp = cs31.fit_transform(X_ALL) # формируем DataFrame на основе массива data_cs31_scaled = arr_to_df(data_cs31_scaled_temp) data_cs31_scaled.describe()
```

Out[22]:

	Row	Score	Age	Tenure	Balance	Products	
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	1C
mean	0.500000	0.601058	0.282727	0.501280	0.304848	0.176733	
std	0.288718	0.193307	0.141727	0.289217	0.248696	0.193885	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.250000	0.468000	0.189189	0.300000	0.000000	0.000000	
50%	0.500000	0.604000	0.256757	0.500000	0.387402	0.000000	
75%	0.750000	0.736000	0.351351	0.700000	0.508749	0.333333	
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	

→

In [23]:

```
cs32 = MinMaxScaler()
cs32.fit(X_train)
data_cs32_scaled_train_temp = cs32.transform(X_train)
data_cs32_scaled_test_temp = cs32.transform(X_test)
# формируем DataFrame на основе массива
data_cs32_scaled_train = arr_to_df(data_cs32_scaled_train_temp)
data_cs32_scaled_test = arr_to_df(data_cs32_scaled_test_temp)
```

In [24]:

Обработка выбросов для числовых признаков

In [26]:

data2 = pd. read_csv(r"C:\Users\asus\Desktop\iu5\MMO\lab3\Air_Traffic_Cargo_Statistics.csv")

In [27]:

data2.head()

Out[27]:

	Activity Period	Operating Airline	Operating Airline IATA Code	Published Airline	Published Airline IATA Code	GEO Summary	GEO Region	Activity Type Code	Cargo Type Code	
0	200507	ABX Air	GB	ABX Air	GB	Domestic	US	Deplaned	Cargo	
1	200507	ABX Air	GB	ABX Air	GB	Domestic	US	Enplaned	Cargo	
2	200507	ATA Air l ines	TZ	ATA Air l ines	TZ	Domestic	US	Deplaned	Cargo	Р
3	200507	ATA Air l ines	TZ	ATA Air l ines	TZ	Domestic	US	Deplaned	Mail	Ρ
4	200507	ATA Air l ines	TZ	ATA Air l ines	TZ	Domestic	US	Enplaned	Cargo	Р
4										•

In [28]:

data2.describe()

Out[28]:

	Activity Period	Cargo Weight LBS	Cargo Metric TONS
count	35599.000000	3.559900e+04	35599.000000
mean	201311.369449	4.799115e+05	217.687856
std	473.480500	9.509778e+05	431.363548
min	200507.000000	1.000000e+00	0.000000
25%	200905.000000	1.839650e+04	8.344500
50%	201307.000000	1.329570e+05	60.309000
75%	201709.000000	5.469705e+05	248.106000
max	202109.000000	2.381234e+07	10801.278000

In [29]:

```
def diagnostic_plots(df, variable, title):
   fig, ax = plt. subplots(figsize=(10,7))
   # гистограмма
   plt. subplot (2, 2, 1)
   df[variable].hist(bins=30)
   ## Q-Q plot
   plt. subplot (2, 2, 2)
   stats.probplot(df[variable], dist="norm", plot=plt)
   # ящик с усами
   plt. subplot (2, 2, 3)
   sns.violinplot(x=df[variable])
   # ящик с усами
   plt. subplot (2, 2, 4)
   sns. boxplot(x=df[variable])
   fig. suptitle(title)
   plt. show()
```

In [34]:

```
diagnostic_plots(data2, 'Activity Period', 'Activity Period - original')
```

Activity Period - original

In [36]:

```
diagnostic_plots(data2, 'Cargo Weight LBS', 'Cargo Weight LBS - original')
```

Cargo Weight LBS - original

In [37]:

```
from enum import Enum
class OutlierBoundaryType(Enum):
   SIGMA = 1
   QUANTILE = 2
   IRQ = 3
```

In [38]:

```
def get_outlier_boundaries(df, col):
   lower_boundary = df[col].quantile(0.05)
   upper_boundary = df[col].quantile(0.95)
   return lower_boundary, upper_boundary
```

Удаление выбросов (number_of_reviews)

In [39]:

Поле-Activity Period, метод-QUANTILE, строк-32154

Замена выбросов

In [41]:

Поле-Cargo Weight LBS, метод-QUANTILE

Обработка нестандартного признака

In [42]:

data2. dtypes

Out [42]:

Activity Period int64 Operating Airline object Operating Airline IATA Code object Published Airline object Published Airline IATA Code object GEO Summary object GEO Region object Activity Type Code object Cargo Type Code object Cargo Aircraft Type object Cargo Weight LBS float64 Cargo Metric TONS float64 dtype: object

Отбор признаков

Метод фильтрации (Корреляция признаков)

In [45]:

```
sns.heatmap(data.corr(), annot=True, fmt='.3f')
```

Out[45]:

<AxesSubplot:>

In [46]:

```
# Формирование DataFrame с сильными корреляциями def make_corr_df(df):
    cr = data.corr()
    cr = cr. abs().unstack()
    cr = cr. sort_values(ascending=False)
    cr = cr[cr >= 0.3]
    cr = cr[cr < 1]
    cr = pd. DataFrame(cr).reset_index()
    cr. columns = ['f1', 'f2', 'corr']
    return cr
```

In [47]:

```
# Обнаружение групп коррелирующих признаков

def corr_groups(cr):
    grouped_feature_list = []
    correlated_groups = []

for feature in cr['fl'].unique():
    if feature not in grouped_feature_list:
        # находим коррелирующие признаки
        correlated_block = cr[cr['fl'] == feature]
        cur_dups = list(correlated_block['f2'].unique()) + [feature]
        grouped_feature_list = grouped_feature_list + cur_dups
        correlated_groups.append(cur_dups)
    return correlated_groups
```

In [48]:

```
# Группы коррелирующих признаков corr_groups(make_corr_df(data))
```

Out[48]:

[['Products', 'Balance']]

Метод из группы методов вложений

```
In [49]:
```

```
data3 = pd. read csv(r"C:\Users\asus\Desktop\iu5\MMO\lab3\waste water treatment.csv", sep=",")
```

In [51]:

data3. head(5)

Out[51]:

	Variable	VariableDescription	Country	Year	PercentageValue
0	TOTPUBSEW	Total public sewerage (% of resident populatio	Australia	2010	92.79
1	TOTPUBSEW	Total public sewerage (% of resident populatio	Australia	2011	93.84
2	TOTPUBSEW	Total public sewerage (% of resident populatio	Australia	2012	94.10
3	TOTPUBSEW	Total public sewerage (% of resident populatio	Australia	2013	94.08
4	TOTPUBSEW	Total public sewerage (% of resident populatio	Australia	2014	92.57

In [52]:

```
X3_ALL = data3.drop(['Variable'], axis=1)
```

In [54]:

In []:

In []: