$[\alpha_0]$ to 310

With are only 3 equations ...

Outline

- 1. The math behind Go
- 2. From Crazy Stone -> AlphaGO
- 3. AlphaGo vs AlphaZero
- 4. Policy Iteration
- 5. Policy Improvement (Math alert!)
- 6. Policy Evaluation
- 7. Code and demo

- 10¹⁷⁰ possible states
- 10³⁶⁰ possible games for each starting state
- 250 legal moves from each state
- 150 moves for each match

Al in Go

"The mystery of Go, the ancient game that computers still can't win" - Wired 2014

- Go is constructive
- Difficult to build an evaluation functional
- Humans describe more as intuitive game

- Adversarial
- Deterministic
- Fully observable

CrazyStone

AlphaGo Zero vs AlphaZero

- No data augmentation
- No threshold update
- Diff. exploration noise for each game

Reinforcement Learning

$$v_{\pi}(s) = E_{\pi} \left[\sum_{t} \gamma^{t} R_{t} \mid S_{t} \right]$$
 where:

$$\pi(a \mid s) = P(a \mid s) \ \forall s \in S$$

Policy Iteration

- Add sudo code policy iterat

Policy Improvement

Monte-Carlo Tree Search

MCTS is an algorithm to perform sampling based lookahead search.

- Add sudo code MCTS

With the backup operation we keep track of:

- N(s,a) visit count
- W(s,a) total action value
- Q(s,a) mean action value
- P(s,a) prior probability

Exploration

- ϵ greedy
- Bandits

$$cP(s,a)\frac{\sqrt{\sum_b N(s,b)}}{1+N(s,a)}$$

Policy Evaluation

Training

Architecture

Demo

Thank you!

github/mosc