Why convex optimization? One of the simplest convex optimization problem is to find the optimum coefficients of a regression function $\hat{y}(x,b) = Ab$, where the functional basis is the column vector of A that spans the space of the functional $\hat{y}(x)$ in it's x domain. When the optimum coefficients vector b is found, it approximates the true $y(x) = \hat{y}(x,b) + e(x)$ with minimum error. The minimum error is a convex function defined as

$$\epsilon(b) = ||y(x) - \hat{y}(x, b)||_2 = ||y - Ab||_2, \tag{1}$$

the 2-norm is taken over either discrete sum or continuous integral of x. The p-norm is a convex function, hence composing over a affine set gives convexity to $\epsilon(b)$. Now the optimization problem is to find the $b = [b_1, \dots, b_n]$ that minimizes $\epsilon(b) \in \mathcal{R}_+$.

0.1 Perspective function preserves convex sets

 $f(x,t) = \frac{x}{t}$, where $x \in \mathbb{R}^n$ and $t \in \mathbb{R}_{++}$, and (x,t) is convex. Given any two sets (x_1,t_1) and (x_2,t_2) , the function $f(\lambda x_1 + (1-\lambda)x_2, \lambda t_1 + (1-\lambda)t_2) = \frac{\lambda x_1 + (1-\lambda)x_2}{\lambda t_1 + (1-\lambda)t_2} = \frac{\lambda t_1}{\lambda t_1 + (1-\lambda)t_2} \frac{x_1}{t_1} + \frac{(1-\lambda)t_2}{\lambda t_1 + (1-\lambda)t_2} \frac{x_2}{t_2} = \nu P(x_1,t_1) + (1-\nu)P(x_2,t_2)$.

The "Perspective of a Function", f(x,t) = tg(x/t), preserving convexity of the convex function g, is proven by using the "Perspective function P" on the epigraph of f and g as: $\operatorname{epi} f = \{(x,t,v) \mid v \geq f = tg(x/t)\}$ and $\operatorname{epi} g = \{(x/t,v/t) \mid v/t \geq g(x/t)\}$, therefore under the same condition $v \geq tg(x/t)$, the perspective function maps $\operatorname{epi} f$ to $\operatorname{epi} g$, $P(x,t,v) = \frac{(x,v)}{t}$. Since the perspective function preserves convex sets and $\operatorname{epi} g$ is convex by g being convex, hence, $\operatorname{epi} f$ must be convex, which indicates a convex f.

0.2 Operations that preserve convexity

- Nonnegative Weighted Sum of convex functions (viewed as conic set of convex functions (vectors))
- Composition with an affine mapping
- Pointwise Maximimum and supremum
- Composition (with differentiability conditions or without (extended-value extension))
- Perspective Function

0.2.1 Nonneg Weighted Sum

 $f = w_1 f_1 + w_2 f_2 + \cdots$, where $w_i \ge 0$ and f_i 's are convex functions. Suppose $f(x_2, x_2) = w_1 f_1(x_1) + w_2 f_2(x_2)$ is a nonnegative weighted sum of two convex functions, then the domain of f_1 and f_2 doesn't have to be the same.

0.3 Conjugate function

0.3.1 Definition

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$. The conjugate function $f^*: \mathbb{R}^n \longrightarrow \mathbb{R}$ of f is

$$f^*(y) = \sup_{x \in \text{dom} f} \left(y^T x - f(x) \right). \tag{2}$$

0.3.2 Examples (convex functions)

1. Affine function f(x) = ax + b. yx - ax - b is bounded iff y = a (i.e., there exists a supremum over the domain for any given y), since the domain is $[-\infty\infty]$, which gives $f^*(y) = -b$.

Graph for 2*x+2, x, -(2*x)

2. Negative logarithm $f(x) = -\log x$ (log is the natural ln). $yx + \log x$ is unbounded if $y \ge 0$, otherwise (y < 0) $f^*(y)$ reaches maximum at x = -1/y (set $\frac{\partial f^*(y)}{\partial x} = 0$), which is $f^*(y) = -\log(-y) - 1$. In the figure, f(y = 1) = x (red) and f(y = -1) = -x (orange)

Graph for -In(x), x, -x

- 3. Exponential $f(x) = e^x$. $yx e^x$ is unbounded if y < 0, hence when y > 0 the maximum is reached at $x = \log y$ with $f^*(y) = y \log y y$. For y = 0, $f^*(y) = 0$.
- 4. Negative entropy $f(x) = x \log x$ with $dom f = R_+$.

Graph for x*ln(x), x

- 5. Inverse f(x) = 1/x on R_{++} . $f^*(y \le 0) = -2(-y)^{1/2}$, notice at y = 0, the maximum $f^* = 0$ is attained as $x \longrightarrow \infty$,
- 6. Strictly convex quadratic function $f(x) = \frac{1}{2}x^TQx$ with $Q \in S_{++}^n$, has the conjugate $f^* = y^Tx \frac{1}{2}x^TQx$ which has a maximum at $x = Q^{-1}y$ for all $y \longrightarrow f^*(y) = \frac{1}{2}y^TQ^{-1}y$, where Q^{-1} is also S_{++}^n .

 Remarks: The conjugate of a convex quadratic function is also a convex quadratic function.
- 7. Indicator function $I_S(y) = 0$, $\text{dom}I_S = S$. The conjugate $I_S^*(x) = \sup(y^T x)$, $y \in C$, is the support function (convex), which gives the pointwise maximum over linear functions of x at any given x (i.e., different y gives different linear functions $y^T x$ of x, so at a point x_i , $\sup(y^T x_i)$ finds the maximum linear function). The figure shows three linear functions of x at three different y = 1, 2, -3, so the pointwise maximum function for x > 0 is at y = 2.

Graph for x, 2*x, -(3*x)

0.3.3 Basic Properties

Fenchel's inequality

Conjugate of the conjugate

Differentiable functions

Find the slope of f(x) at x, which gives the maximum x^Ty (i.e., $x^T\nabla f(x)$) to pointwise maximize $f^*(y)$!! Conjugate of a differentiable function $f \Rightarrow Legendre\ transform$ of f. Suppose $dom f = \mathcal{R}^n$, any maximizer x^* of $y^Tx - f(x)$ satisfies $y = \nabla f(x^*)$ (set $\nabla_x f^*(y) = 0$). Therefore, given an arbitrary x satisfying $y = \nabla f(x)$, we can find

$$f^*(y) = x^T \nabla f(x) - f(x).$$

Therefore, the maximized y at x is the slope of both f(x) and the affine function x^Ty (passing through the origin).

Scaling and composition with affine transformation

Given g(x) = af(x) + b, the conjugate

$$g^*(y) = x^T y - g(x) = x^T y - af(x) - b = a(x^T(y/a) - f(x)) - b = af^*(y/a) - b.$$

Given g(x) = f(Ax + b), where $A \in \mathcal{R}^{n \times n}$ and $b \in \mathcal{R}^n$, and set $z = Ax + b => x = A^{-1}(z - b)$

$$g^*(y) = x^T y - g(x) = x^T y - f(Ax + b) = (A^{-1}(z - b))^T y - f(z) = z^T A^{-T} y - b^T A^{-T} y - f(z) = f^*(A^{-T}y) - b^T A^{-T}y,$$

$$\operatorname{dom} g^* = y = A^T A^{-T} y = A^T \operatorname{dom} f^*.$$

0.4 Quasiconvex Functions

0.4.1 Definition

f is quasiconvex if its domain and all its sublevel sets $S_{\alpha} = \{x \in \text{dom} f | f(x) \leq \alpha\}$ for $\alpha \in \mathcal{R}$ are convex.

f is quasiconcave if -f is quasiconvex.

f is quasilinear if its both quasiconvex and quasiconcave, and all its level sets $S_{\alpha} = \{x | f(x) = \alpha\}$ are convex.

Remarks: Quasiconvex functions can be non-convex, with convex domain and sublevel sets.

0.4.2 Examples

- 1. $\log x$ (Concave function) Both quasiconvex and quasiconcave \Rightarrow quasilinear.
- 2. Ceiling function (Discontinuous function) $f(x) := \{z \in \mathcal{Z} | z \geq x, x \in \mathcal{R}\}$ is quasilinear.
- 3. $f(x_1, x_2) = x_1 x_2$ (Neither convex nor concave function, Hessian is indefinite; one positive and one negative eigenvalue) dom $f = \mathcal{R}^2_+$, is a quisiconcave function, its superlevel sets $\{x | x_1 x_2 \ge \alpha\}$ are convex.

0.4.3 Basic Properties

Jensen's inequality for quasiconvex function:

A function f is quasiconvex \Leftrightarrow dom f is convex and for any $x, y \in$ dom f and $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}. \tag{3}$$

The value of the function on a segment doesn't exceed the maximum of its value at the two endpoints, which could be a non-convex function. (see figure 3.10)

Quasiconvexity by a line intersection:

f is quasiconvex \Leftrightarrow f restricted to a line intersection on its domain is quasiconvex.

Remarks:

A continuous quasiconvex function on \mathcal{R} has a point c in the domain that is a **global minimizer**, and f is nonincreasing and nondecreasing at the left and right of c, respectively.

0.5 Differntiable Quasiconvex Functions

0.5.1 1-order conditions

Suppose f is differentiable. f is quasiconvex \Leftrightarrow dom f is convex and for all $x, y \in$ dom f

$$f(y) \le f(x) \Rightarrow \nabla f(x)^T (y - x) \le 0.$$
 (4)

The definition of quasiconvex function shows that, if y > x (y < x) and $f(y) \le f(x)$, f is nonincreasing (nondecreasing) which will always give negative (positive) $\nabla f(x)$. An analogy to convex function which satisfies $f(y) \ge f(x) + \nabla f(x)^T (y-x)$. $\nabla f(x)$ defines a supporting hyperplane to the sublevel set $\{y | f(y) \le f(x)\}$

0.5.2 2-order conditions

Suppose f is twice differentiable. If f is quasiconvex for all $x \in \text{dom} f$ and all $y \in \mathbb{R}^n$, then if

$$y^{T}\nabla f(x) = 0 \Rightarrow y^{T}\nabla^{2}f(x)y \ge 0.$$
 (5)

For a quasifunction on \mathcal{R} , this reduces to

$$f'(x) = 0 \Rightarrow f''(x) \ge 0.$$

i.e, whenever the slope is zero, a quasiconvex function has a positive curvature. For the \mathcal{R}^n case, when $\nabla f(x) \neq 0$ (y is in the (n-1)-dim subspace $\nabla f(x)^{\perp}$ orthogonal (thus independent) to $\nabla f(x)$), $\nabla^2 f(x)$ is positive semidefinite on $\nabla f(x)^{\perp}$, and have at most one negative eigenvalue in the 1-dim subspace of $\nabla f(x)$. (proof ommitted)

0.6 Operations that Preserve Quasiconvexity

- Nonneg weighted maximum
- Composition
- Minimization

0.6.1 Nonneg weighted maximum

A nonneg weighted, $w_i \geq 0$ maximum of quasiconvex functions f_i ,

$$f(x) = \max\{w_1 f_1(x), \dots, w_m f_m(x)\}\tag{6}$$

is quasiconvex. This can be extended to the pointwise supremum of quasiconvex functions g(x, y) for all y (y is like the integer index $i = 1, \ldots, m$, but just in real number space),

$$f(x) = \sup_{y \in C} \left(w(y)g(x, y) \right). \tag{7}$$

0.6.2 Composition

- If $h \in \mathcal{R}$ nondecreasing, and $g \in \mathcal{R}^n \to \mathcal{R}$ quasiconvex, then $f = h \circ g$ quasiconvex.
- If f quasiconvex, then operating on dom f with affine or linear-fractional transformation on x preserves quasiconvexity. e.g, f(Ax + b) or f((Ax + b)/(cx + d)).

0.6.3 Minimization

Suppose f(x,y) is quasiconvex jointly in x and y, and C is convex, then prove that

$$g(x) = \inf_{y \in C} f(x, y) \tag{8}$$

is quasiconvex. This boils down to proving that the sublevel set $K = \{x | g(x) \leq \alpha\}$ is convex for an arbitrary α . We know that $g(x) \leq \alpha \Leftrightarrow f(x,y) \leq \alpha + \epsilon$, where $\epsilon > 0$. Given two points (x_1, y_1) and (x_2, y_2) in the convex sublevel set $\{(x,y) | f(x,y) \leq \alpha + \epsilon\}$, with quasiconvexity of f,

$$f(\theta x_1 + (1 - \theta)x_2, \theta y_1 + (1 - \theta)y_2) \le \alpha + \epsilon. \tag{9}$$

By the iff condition,

$$g(\theta x_1 + (1 - \theta)x_2) \le \alpha,\tag{10}$$

which implies that $\theta x_1 + (1 - \theta)x_2 \in K$, hence g(x) is quasiconvex.

0.7 Representation via family of convex functions

The sublevel sets of a quasiconvex function f can be represented by a family of sublevel sets of convex functions,

$$f(x) \le t \Leftrightarrow \phi_t(x) \le 0. \tag{11}$$

i.e., the t-sublevel set of f equals the 0-sublevel set of convex function ϕ labeled by t. The figure shows that the blue f given two sublevel s and t, where $s \geq t$, then the orange $\phi_s(x)$ is below the red $\phi_t(x)$, $\phi_s(x) \leq \phi_t(x)$. i.e., due to the s-sublevel set of f contains the t-sublevel set of f, with both sets being convex.

0.7.1 Example: Convex over Concave function

Purpose: A convex over concave function f is quasiconvex, and the t-sublevel sets could be represented by the 0-sublevel sets of a family of convex functions (indexed by t).

Suppose p(x) is convex and q(x) is concave, and p > 0 and q > 0 on a convex set C, then f(x) = p(x)/q(x) is quasiconvex with the relationship

$$f(x) \le t \Leftrightarrow p(x) - tq(x) \le 0 \tag{12}$$

which shows that $\phi_t = p(x) - tq(x)$ is convex for $t \leq 0$ (i.e., -q(x) is convex).

1 Log-concave and Log-convex functions

1.1 Definition

- If f > 0 for all $x \in \text{dom } f$, and $\log f(x)$ is concave, then f is a log-concave function.
- f is log-convex if $\log f$ is convex and f > 0.
- Therefore, f is log-convex iff 1/f is log-concave $(-\log f = \log(1/f))$ is concave and 1/f > 0.
- Without logarithms, f is log-concave iff f > 0, dom f is convex, and for all $x, y \in \text{dom } f$ and $0 \le \theta \le 1$ we have

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1 - \theta}. \tag{13}$$

If we take $\theta = 1/2$, then f at the mean of x and y is at least the geometric mean ¹ of f at the two points.

¹geometric mean of two values is $\sqrt{x_1x_2}$, of three values is $(x_1x_2x_3)^{1/3}$. Measures the central tendency of a set of numbers. The geometric mean of x_1 and x_2 gives the edge of a square, which has the same area as a rectangle with the edge of x_1 and x_2 .

1.2 Properties

1.2.1 Convexity (concavity) by twice differentiable condition

Suppose dom f is convex, f is log-convex iff

$$\nabla^2 \log f \succeq 0, \tag{14}$$

which gives

$$\frac{1}{f}\nabla^2 f - \frac{1}{f^2}\nabla f \nabla f^T \succeq 0 \Rightarrow f\nabla^2 f \succeq \nabla f \nabla f^T$$
(15)

2 Function Convexity wrt Generalized Inequality

2.1 Monotonicity wrt generalized inequality

2.1.1 K-non-decreasing

f is called K-non-decreasing if $K \subset \mathbb{R}^n$ is a proper cone (convex, solid, pointed, closed), and

$$x \succeq_K y \Rightarrow f(x) \le f(y).$$
 (16)