

UE21CS343BB2 Topics in Deep Learning

Dr. Shylaja S S

Director of Cloud Computing & Big Data (CCBD), Centre for Data Sciences & Applied Machine Learning (CDSAML) Department of Computer Science and Engineering shylaja.sharath@pes.edu

Ack: Anirudh Chandrasekar, Teaching Assistant

Topics in Deep Learning

RNN Architecture

Data for RNN

The data fed to RNN is of the form:

(timesteps, input_features)

Let's look at an example: Movie Reviews

Review	Sentiment
movie was good	1
movie was bad	0
movie was not good	0

Vocabulary is made up of 5 words.

Data for RNN

Input needs to be in vector format.

One Hot Encoding

Review	Sentiment
movie was good	1
movie was bad	0
movie was not good	0

[1,0,0,0,0]
[0,1,0,0,0]
[0,0,1,0,0]
[0,0,0,1,0]
[0,0,0,0,1]

So review 1 "movie was good" becomes:

[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]

Review 1 has the shape of (3,5), where

3 is the number of timesteps 5 is the number of features

How RNN works?

Much like ANNs, RNNs also has an input, hidden and output layer.
But there are 2 major differences:

- 1. Input is fed to the network on a timestep basis i.e. at t=1 we send X_{11} to the network, at t=2 we send X_{22} and so on.
- 2. ANN is feed-forward whereas RNNs have a concept of state.

Review (X)	Sentiment
X ₁ movie was good	1
X ₂ movie was bad	0
X ₃ movie was not good	0

movie	[1,0,0,0,0]
was	[0,1,0,0,0]
good	[0,0,1,0,0]
bad	[0,0,0,1,0]
not	[0,0,0,0,1]

RNN Architecture

 The RNN takes an input vector X and the network generates an output vector y by scanning the data sequentially from left to right, with each time step updating the hidden state and producing an output.

RNN Architecture

- U represents the weight parameter between input layer(X) and hidden layer(h).
- W represents the weight associated with the connection between the hidden layers.
- V represents the weight parameter between the hidden layer(h) and the output layer(y).

RNN Architecture

 The dimensions of the RNN components are as follows:

 $x_i \in R^n$ (n-dimensional input)

 $h_i \in R^d$ (d-dimensional state)

 $y_i \in R^k$ (say k classes)

 $U \in R^{nxd}$

 $V \in R^{dxk}$

 $W \in R^{dxd}$

Forward Propagation Example

We pass X₁ as input:

At $t=1 X_{11}$ is the input to the network.

The hidden state h₁ is computed as

$$h_1 = f(U * X_{11} + W* h_0 + b)$$

 h_0 can be initialized to 0 or a predefined value.

The output \hat{y}_1 is computed as

$$\hat{y}_1 = g(V * h_1 + c)$$

Review (X)	Sentiment
$X_{11} X_{12} X_{13}$	1
$X_{21} X_{22} X_{23}$	0
X ₃₁ X ₃₂ X ₃₃ X ₃₄	0

Forward Propagation

We pass X₁ as input:

At $t=2 X_{12}$ is the input to the network.

The hidden state h₁ is computed as

$$h_2 = f(U * X_{12} + W* h_1 + b)$$

The output \hat{y}_2 is computed as

$$\hat{y}_2 = g(V * h_2 + c)$$

Review (X)	Sentiment
$X_{11} X_{12} X_{13}$	1
$X_{21} X_{22} X_{23}$	0
X ₃₁ X ₃₂ X ₃₃ X ₃₄	0

Forward Propagation

We pass X₁ as input:

At $t=3 X_{13}$ is the input to the network.

The hidden state h₁ is computed as

$$h_3 = f(U * X_{13} + W* h_2 + b)$$

The output \hat{y}_3 is computed as

$$\hat{y}_3 = g(V * h_3 + c)$$

Review (X)	Sentiment
$X_{11} X_{12} X_{13}$	1
$X_{21} X_{22} X_{23}$	0
X ₃₁ X ₃₂ X ₃₃ X ₃₄	0

RNN Architecture

At each time step t, the hidden state h_t is given by:

$$h_t = f(U * X_t + W* h_{t-1} + b)$$

where

X_t is the input at time step t.

 h_{t-1} is the output from hidden layer at time t-1.

b is the bias vector for the hidden layer.

f is the activation function.

U is the weight matrix between input and hidden layer.

W is the weight matrix between hidden layers.

• h_0 can be set to 0 or some predefined value.

RNN Architecture

 The output at each time step t, denoted as y_t is computed based on the hidden state output h_t using the following formula:

$$\hat{y}_t = g(V * h_t + c)$$

where

 \hat{y}_t is the output predicted at time step t.

V is the weight matrix governing the connections from the hidden layer to the output layer.

b is the bias vector for the output layer.

g is the activation function.

RNN Architecture Code

RNN Architecture Code

```
PES
UNIVERSITY
```

```
print(model.get_weights()[0].shape) #Matrix U
    model.get weights()[0]
→ (5, 3)
    array([[ 0.24314839, 0.65584403, 0.12467551],
           [ 0.07774234, -0.6701355 , -0.5714668 ],
           [-0.15539342, -0.37312293, -0.5985743],
           [ 0.7748706 , 0.15962046, -0.01933241],
           [-0.4337626 , -0.1516878 , 0.6292947 ]], dtype=float32)
[4] print(model.get_weights()[1].shape) #Matrix W
    model.get weights()[1]
    (3, 3)
    array([[-0.95396507, 0.01400834, 0.29959065],
            0.23049797, 0.67335117, 0.70247334],
           [-0.19188926, 0.73919 , -0.6455824 ]], dtype=float32)
[5] print(model.get_weights()[2].shape) #Bias b
    model.get weights()[2]
    (3,)
    array([0., 0., 0.], dtype=float32)
```

RNN Architecture Code

RNN Architecture Code

Link to notebook:

https://colab.research.google.com/drive/
1Eq42O0PiQWZsJDdSwLIR0iZqTzQ9oW3u?usp=sharing

Acknowledgements & References

- https://deeplearning.ai
- https://www.youtube.com/watch?v=BjWqCcbusMM

UE21CS343BB2 Topics in Deep Learning

Dr. Shylaja S S

Director of Cloud Computing & Big Data (CCBD), Centre for Data Sciences & Applied Machine Learning (CDSAML) Department of Computer Science and Engineering shylaja.sharath@pes.edu

Ack: Anirudh Chandrasekar, Teaching Assistant