

# Lambda Y calculus







x a variable





A context



Application of a context to a tree



Application of a context with two holes



Application of a context with two distinct holes

### How to compose contexts?



How to compose contexts?

$$Comp \equiv \lambda p.\lambda q.\lambda z. \ p(q(z))$$

$$Comp \begin{pmatrix} \lambda x. & a \\ b \\ x & d \end{pmatrix} \begin{pmatrix} \lambda y. & a' \\ y \end{pmatrix} \mapsto \lambda z. \begin{pmatrix} \lambda x. & a \\ b \\ x & d \end{pmatrix} \begin{pmatrix} \lambda y. & a' \\ y \end{pmatrix} z \end{pmatrix}$$

$$\mapsto \lambda z. \begin{pmatrix} \lambda x. & a \\ b \\ x & d \end{pmatrix} \begin{pmatrix} a' \\ z \end{pmatrix} \mapsto \lambda z. \begin{pmatrix} a \\ b \\ z \end{pmatrix}$$

# Can we apply anything to anything? Or, shall we distinguish between trees and contexts?



### Types (simple types)



The problematic application is not well-typed:



Typing the composition of contexts:

$$Comp \equiv \lambda p^{o \to o}.\lambda q^{o \to o}.\lambda z^o. \ p(q(z)): (o \to o) \to (o \to o) \to o \to o$$

### λ-calculus (simply typed)

**Types:**  $O, A \rightarrow B$ 

**Terms:**  $c, x, MN, \lambda x.M$ 

**Typed terms:**  $c^A$ ,  $x^A$ ,  $(M^{(A \to B)}N^A)^B$ ,  $(\lambda x^A.M^B)^{A \to B}$ 

 $\beta$ -reduction:  $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$ 

$$\begin{array}{c|c} \lambda x. & \\ M & N \end{array}$$

$$\beta$$
-reduction:  $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$ 

Example:

$$(\lambda f^{o \to o} \lambda x^o. f(fx))ad \to_{\beta} (\lambda x^o. a(ax))d \to_{\beta} a(a(d))$$

$$\beta$$
-reduction:  $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$ 

Example:

$$(\lambda f^{o \to o} \lambda x^o. f(fx))ad \to_{\beta} (\lambda x^o. a(ax))d \to_{\beta} a(a(d))$$

Substitution should avoid variable capture (as in logic):

$$(\lambda x.\lambda y. x)y \rightarrow_{\beta} \lambda z.y$$

and not  $\lambda y.y$ 

#### Example (QBF)

- tt =  $\lambda xy$ . x, ff =  $\lambda xy$ . y, They are of type  $0 \to 0 \to 0$ .
- $and = \lambda b_1 b_2 xy$ .  $b_1(b_2 xy)y$ ,  $or = \lambda b_1 b_2 xy$ .  $b_1 x(b_2 xy)$ ,
- $neg = \lambda bxy. \ byx$
- All =  $\lambda f$ . and(f tt)(f ff), Exists =  $\lambda f$ . or(f tt)(f ff).

**QBF to terms** Every QBF formula  $\alpha$  can be translated to a term  $M_{\alpha}$ :

$$\forall x. \exists y. \ x \land \neg y \quad \mapsto \quad \mathsf{All}(\lambda x. \ \mathsf{Exists}(\lambda y. \ and \ x \ (\mathsf{neg} \ y)))$$

**Fact** For every QBF sentence  $\alpha$ :

 $\alpha$  is true iff  $M_{\alpha}$  evaluates to tt.

- Early beginning with Frege (1893) and Schönfinkel (1924).
- Conceived by Church (1932-1933) as part of a general theory of functions and logic.
- General theory shown inconsistent by Kleene & Rosner (1936), but the functional part has become successful.
- All computable functions are representable in lambda-calculus Kleene & Rosner (1936), Turing (1937).
   Equivalence of two lambda-terms is the first known undecidable problem.
- Typed version has been introduced by Curry (1936), and Church (1940).
- In the 60-ties Scott gives mathematical semantics to the calculus.
- Applications to functional languages, and to linguistics start.

- Early beginning with Frege (1893) and Schönfinkel (1924).
- Conceived by Church (1932-1933) as part of a general theory of functions and logic.
- General theory shown inconsistent by Kleene & Rosner (1936), but the functional part has become successful.
- All computable functions are representable in lambda-calculus Kleene & Rosner (1936), Turing (1937).
   Equivalence of two lambda-terms is the first known undecidable problem.
- Typed version has been introduced by Curry (1936), and Church (1940).
- In the 60-ties Scott gives mathematical semantics to the calculus.
- Applications to functional languages, and to linguistics start.

« The past is never dead. It's not even past »

- Early beginning with Frege (1893) and Schönfinkel (1924).
- Conceived by Church (1932-1933) as part of a general theory of functions and logic.
- General theory shown inconsistent by Kleene & Rosner (1936), but the functional part has become successful.
- All computable functions are representable in lambda-calculus Kleene & Rosner (1936), Turing (1937).
   Equivalence of two lambda-terms is the first known undecidable problem.
- Typed version has been introduced by Curry (1936), and Church (1940).
- In the 60-ties Scott gives mathematical semantics to the calculus.
- Applications to functional languages, and to linguistics start.

« The past is never dead. It's not even past »

« The past is a foreign country: they do things differently there »

## Every term computes to a unique result

 $\beta$ -reduction:  $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$ 

**Df:** A term is in  $\beta$ -normal form if it does not have  $\beta$ -redexes.

 $\lambda f.\lambda x. \ f(fx)$  is in the normal from.

 $\lambda f. (\lambda x. f(fx))y$  is not.

Reduction preserves typing

## Every term computes to a unique result

 $\beta$ -reduction:  $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$ 

**Df:** A term is in  $\beta$ -normal form if it does not have  $\beta$ -redexes.

**Thm** [Curry'36, Church'40, Turing, Tait'67]: Suppose  $M \to_{\beta}^{*} N$  then:

- N has the same type as M (type preservation),
- if N is in the normal form then N uniquely determined (confluence),
- for every M there is N in the normal form with  $M \to_{\beta}^* N$  (strong normalisation).

#### A reduction sequence can be long

$$D \equiv \lambda f^{o \to o} \lambda x^o . f(fx) : (o \to o) \to o \to o$$

$$D(D(Da))d \to_{\beta} D(Da^2)d \to_{\beta} D(a^4)d \to_{\beta} a^8d$$

#### Or even very long

Let 
$$\tau_1 \equiv o \rightarrow o$$
.

$$D_2 \equiv \lambda f^{\tau_1 \to \tau_1} \lambda x^{\tau_1} \cdot f(fx) : (\tau_1 \to \tau_1) \to \tau_1 \to \tau_1$$

Let 
$$\tau_k \equiv \tau_{k-1} \to \tau_{k-1}$$
.

$$D_{k+1} \equiv \lambda f^{\tau_k \to \tau_k} \lambda x^{\tau_k} \cdot f(fx) : (\tau_k \to \tau_k) \to \tau_k \to \tau_k$$

$$(((\dots((D_{k+1}D_k)D_{k-1})\dots)D_1)a)d \to^* a^{Tower(k+1)}c$$

### How difficult it is to get the normal form?

Consider  $bool \equiv o \rightarrow o \rightarrow o$ .

We have  $true \equiv \lambda x.\lambda y.x:bool$ , and  $false \equiv \lambda x.\lambda y.y:bool$ 

#### Order of a type:

$$Ord(o) = 0$$
  $Ord(A \rightarrow B) = \max(Ord(A) + 1, Ord(B)).$ 

Order of a term: maximal order of a type of a sub-term.

**Bool-red**(r): Given M:bool of order r decide if  $M \to_{\beta}^* true$ .

#### Thm [Terui]:

Problem Bool-red(2r+2) is r-Exptime-complete.

Problem Bool-red(2r+3) is r-Expspace-complete.

### Böhm tree of a term

(evaluation of a term to a normal form)



### The unique result is (in some cases) a ranked tree

#### Tree signature:

All constants of have type of the form  $o \to \cdots \to o \to o$ , or just o.





### The unique result is (in some cases) a ranked tree

#### Tree signature:

All constants of have type of the form  $o \to \cdots \to o \to o$ , or just o.





Cor: A normal form of a term M:0 over a tree signature is a finite ranked tree.

# A simply-typed $\lambda$ -term evaluates to a finite ranked tree

$$M \to_{\beta}^* BT(M)$$

Infinite computations are obtained by adding a fix-point operator

# λY-calculus (simply typed)

**Types:**  $0, \alpha \rightarrow \beta$ 

**Typed tems:**  $c^A$ ,  $x^A$ ,  $(M^{(A\to B)}N^A)^B$ ,  $(\lambda x^A.M^B)^{A\to B}$ ,  $(Yx^A.M^A)^A$ 

 $\delta$ -reduction:  $(Yx.M) \rightarrow_{\delta} M[Yx.M/x]$ 

For example:

$$Yx.a(x) \rightarrow_{\delta} a(Yx.a(x)) \rightarrow_{\delta} aa(Yx.a(x)) \rightarrow_{\delta} \cdots$$

The Böhm tree of Yx.ax is the infinite sequence aa...

The Böhm tree of Yx.ax is the infinite sequence aa...

$$Yx.a(x) \rightarrow_{\delta} a(Yx.a(x)) \rightarrow_{\delta} aa(Yx.a(x)) \rightarrow_{\delta} \cdots$$

What is the Böhm tree of Yx.x?

$$Yx.x \rightarrow_{\delta} Yx.x \rightarrow_{\delta} \cdots$$

By convention we say that it is  $\Omega$ .

## Evaluation tree of a term (Böhm tree)

• If 
$$M \to_{\beta\delta}^* aN_1 \dots N_k$$
 then  $\operatorname{BT}(M) = \underbrace{ N_1 } a \underbrace{ N_k }$ 

• otherwise  $eval(M) = \Omega$ .

$$Fct(x) \equiv \mathbf{if} \ x = 0 \mathbf{then} \ 1 \mathbf{else} \ Fct(x-1) \cdot x$$
.

$$Fct \equiv YF$$
.  $\lambda x$ . if  $-$  then  $-$  else $(z(x), o, m(F(x-1), x)$ 



#### Recursive schemes

$$X_n =_{\nu} \alpha_n(\vec{X})$$

Hierarchical equations

$$X_1 =_{\mu} \alpha_1(\vec{X})$$

$$F_n = \lambda \vec{x}_n . M_n$$

Recursive schemes

$$F_1 = \lambda \vec{x}_1.M_1$$

 $M_i$  has no  $\lambda$ , is of type o, and contains only variables  $\vec{x}_i \cup \{F_1, \ldots, F_n\}$ .

Computation rule

$$F_i \vec{N} \to M_i [\vec{N}/x_i]$$