

Projet n°6 Classez des images à l'aide d'algorithmes de Deep Learning

Fayz El Razaz

Parcours Ingénieur machine learning

Tuteur : Amine Hadj-Youcef

Examinateur: Mohamed Laaraiedh

Sommaire de présentation

- I. Introduction
- II. Méthodologie
- III. Conception d'un réseau de neuronal convolutif & Transfer learning
- IV. Modèle de classification final
- V. Conclusion

I. Introduction

Contexte

- Bénévole pour la société de protection des animaux
- Besoin de référencement des animaux

Mission

- Conception d'un algorithme de classification de la race du chien sur une photo
- Objectif: Reconnaitre la race du chien à partir d'une photo

Données

Stanford dog dataset

- 120 races
- 20 580 images de tailles différentes

18/09/2022 4

DPENCLASSROOMS

I. Introduction

Préparation des données

- Découpage des données en trois catégories :
 - Jeu d'entrainement 15 480 images 75% des images
 - Jeu de validation 3 091 images 15% des images
 - Jeu de test 2009 images 10 % des images
 - Utilisation de la librairie Os & shutil de python pour faire le split

I. Introduction

Travail effectué en local

Configuration:

- Installation des pilotes & bibliothèques pour l'utilisation du GPU
 - CUDA
 - CUDnn
 - Cupti
- Carte graphique RTX 3050
 - 8Go 128-bit
 - 3^e génération Tensor Cores

• Performances x10

II. Méthodologie

II. Méthodologie générale

- Pré-processing et data augmentation
- Création d'un Réseau neuronal convolutif
- Transfer learning
- Comparaison des métriques d'apprentissage (accuracy & loss)
- Modèle de classification final

II.1 Pré-processing & data augmentation

Pré-processing

- Redimensionnement des images
- Tentative de whitening

Data augmentation

- Création d'un générateur d'images augmentées pour augmenter le potentiel d'apprentissage
- Rotation des images 40° de rotation possible
- Translation de 20% (horizontal et vertical)
- Zoom de 20%
- Symétrie horizontal possible

III. Création d'un réseau neuronal convolutif Transfer learning

A Neural Network

III.1.1 - Conception d'un réseau de neuronal convolutif

Deux types principales de couches :

Couches de convolution

Couches de pooling

Source : Wikipédia

Link:

https://fr.wikipedia.org/wiki/R%C3 %A9seau_neuronal_convolutif

III.1.2 - Conception d'un réseau de neuronal convolutif

Premier modèle

Résultats faibles

Le modèle n'est pas monté en généralité et n'a pas réussi à apprendre

Temps d'apprentissage assez long

DPENCLASSROOMS

III.1.3 - Reproduction d'un modèle Vgg16

Résultats faibles

De même que précédemment, le modèle n'est pas monté en généralité et n'a pas réussi à apprendre.

Temps d'apprentissage assez long (près de 2h pour les 30 épochs)

III.2 - Transfer learning avec Keras

III.2 - Transfer learning avec Keras

Nom du modèle	Nombre d'epochs	Temps d'apprentissage	Accuracy	Loss
VGG16	18	32mn	0,59	1,9
ResNet50	12	22mn	0,70	1,39
Xception	10	26mn	0,71	1,49
EfficientNetV2L	12	93mn	0,93	0,31
InceptionResNet	11	75mn	0,84	1,07
NasNetLarge	11	72mn	0,89	0,63

IV. Modèle final

*

IV. Modèle final

EfficientNetV2L

- Meilleures caractéristiques
- Algorithme développé par Google en 2021
- Pré-entrainé sur le dataset ImageNet
- Nombre de paramètres : 120 Millions
- Entrainé sur 32 TPU cores pendant 24h.

<u>Source</u>: EfficientNetV2: Smaller Models and Faster Training by Mingxing Tan, Quoc V. Le

https://doi.org/10.48550/arXiv.210 4.00298

DPENCLASSROOMS

IV. Modèle final - Démonstration

Démonstration effectuée en utilisant :

- Des images du dossier de test
- Des images provenant du net

Fayz El Razaz

Fayz.el.razaz@gmail.com

https://github.com/FayzElRazaz

