Claims

What is claimed is:

1	1.	An integrated circuit package, comprising
2		a die;
3		a heat sink; and
4		a thermal intermediate structure comprising a plurality of carbon
5	nanot	tubes, some of which are tethered to at least one of the die and the heat
6	sink.	
1	2.	The package of claim 1, wherein the surface of the at least one of the
2	die ar	nd the heat sink has a metal coating.
1	3.	The package of claim 2, wherein the metal coating is gold.
1	4.	The package of claim 3, wherein at least one end of the some of the
2	carbo	n nanotubes have organic moieties attached.
1	5.	The package of claim 4, wherein the organic moieties include an
2	amid	e linker chemically bonded to the end of the some carbon nanotubes of
3	the pl	urality of carbon nanotubes.
1	6.	The package of claim 4, wherein the organic moieties include an
2	amide	e linker chemically bonded to the end of some of the plurality of carbon
3	nanot	subes and a thiol based linker to link to the surface of at least one of the
4	die ar	nd the heat sink.

1	7. An integrated circuit package, comprising	
2	a die;	
3	a heat sink; and	
4	a first thermal intermediate portion comprising a plurality of carbon	
5	nanotubes, some nanotubes of which have organic moieties attached to one	
6	end thereof, the one end of some nanotubes chemically bonded to the heat	
7	sink; and	
8	a second thermal intermediate portion comprising a plurality of	
9	carbon nanotubes, some nanotubes of which have organic moieties attached	
10	to one end thereof, the one end of some nanotubes chemically bonded to the	
11	die.	
1	8. The package of claim 7, wherein the organic moieties of the first	
2	thermal intermediate portion and the organic moieties of the second thermal	
3	intermediate layer include amide linkers.	
1	9. The package of claim 7, wherein the organic moieties of the first	
2	intermediate potion and the organic moieties of the second intermediate	
3	layer include thiol linkers.	
1	The package of claim 7, wherein the organic moieties of the first	
2	intermediate portion and the organic moieties of the second intermediate	
3	portion include thiol linkers and amide linkers.	
J	portion menude unoi mikers and amide mikers.	
1	11. The package of claim 10, wherein the carbon nanotubes of the	
2	thermal intermediate portions are generally perpendicular to a surface of the	
3	die or the surface of the heat sink.	

1	12. A thermal interface structure, comprising		
2	a plurality of carbon nanotubes, some of which have organic moieties		
3	attached to one end thereof to tether the interface structure to a surface of at		
4	least one of a heat sink and an electronic circuit die.		
1	13. The thermal interface structure of claim 12, wherein the surface		
2	comprises a gold coating.		
1	14. The thermal interface structure of claim 13, wherein the organic		
2	moieties comprise thiol linkers.		
1	15. The thermal interface structure of claim 13, wherein the organic		
2	moieties comprise amide linkers.		
_			
1	16. The thermal interface structure of claim 13, wherein the organic		
2	moieties comprise thiol and amide linkers.		
1	17. A computing system, comprising:		
2	at least one dynamic random access memory device;		
3	a die having a circuit thereon to couple to the memory device;		
	a heat sink; and		
4			
5	a thermal intermediate structure comprising a plurality of carbon		
6	nanotubes, some of which are tethered to at least one of the die and the heat		
7	sink.		
1	18. The system of claim 17, wherein the circuit comprises a processor		
	, , ,		
2	that acts upon data signals, and may include, for example, a microprocessor.		

amide linkers.

19.

1

2

The system of claim 17, wherein the organic moieties comprise

1	20. The system of claim 17 wherein the organic moieties comprise thiol	
2	linkers.	
1	21. The system of claim 17, wherein the organic moieties comprise	
2	amide linkers and thiol linkers.	
1	22. A process:	
2	coating at least one surface of least one of a heat sink and of a die with a	
3	metal;	
4	treating at least one end of at least some of a plurality of carbon	
5	nanotubes by applying organic moieties thereto; and	
6	tethering one end of the at least some of the carbon nanotubes of the	
7	plurality of carbon nanotubes to the metal.	
1	23. The process of claim 22 wherein the metal is selected from the group	
2	consisting of gold and gold alloys.	
3		
1	24. The process of claim 23, wherein the treating the at least one end of	
2	some of the plurality of nanotubes comprises forming an amide based	
3	linkage thereon.	
1	25. The process of claim 23, wherein the treating the at least one end of	
2	some of the plurality of nanotubes comprises forming an amide based	
3	linkage and a thiol based linkage thereon.	
1	26. A method, comprising:	
2	oxidizing at least one nanotube rope in acid to cut it into short	
3	nanotubes with open ends having carboxyl linkages attached thereto;	
4	forming organic moieties at the open ends;	

5	tethering an end of the short nanotubes to a surface of a first object;	
6	and	
7	placing a surface of a second object in contact with another end of	
8	the short nanotubes to form a thermal path between the surface of the	
9	first object and the surface of the second object.	
1	27. The method of claim 26 wherein the first object is an electronic	
2	circuit die and the second object is a heat sink.	
1	28. The method of claim 26 wherein the first object is a heat sink and	
2	the second object is an electronic circuit die.	
1	29. The method of claim 26 wherein the organic moieties comprise an	
2	amide linker.	
1	30. The method of claim 29 wherein the organic moieties also comprise	
2	a thiol linker.	