

Árbol Xor

Problema

Te es dado un entero N y N-1 aristas con pesos. Estas aristas conectan N vértices de tal forma que exista un camino entre cualesquiera dos vértices (es decir, forman un árbol). Para cada camino, definimos su peso como el **xor** de cada uno de los pesos en el camino. Determina la suma de los pesos de todos los caminos simples (no repiten aristas) del árbol.

Detalles de Implementación

Debes implementar la función $Encuentra_xor()$. Esta función recibe un entero N, 3 vectores u, v y w, cada uno con N-1 elementos. para cada $0 \le i \le N-2$, u[i] y v[i] son los vértices que se conectan con la arista i, y w[i] es su peso. Esta función debe regresar un entero, la suma de los pesos de todos los caminos. La función se vería así:

```
#include <bits/stdc++.h>
using namespace std;
long long Encuentra_xor(int N, vector<int> u, vector<int> v, vector<int> w) {
      // Implementa esta función.
}
```

Límites

- $1 \le N \le 2 \times 10^5$.
- Los vectores u, v y w tendrán exactamente N-1 elementos.
- Para cada $0 \le i \le N-2$, se cumple que $1 \le u[i] \ne v[i] \le N$.
- Para cada $0 \le i \le N-2$, se cumple que $0 \le w[i] \le 10^9$.
- Se garantiza que el grafo formado por las aristas es un árbol.

Subtareas

- (10 puntos) $N \leq 2000$.
- (20 puntos) Para todo $0 \le i \le N-2$, se cumple que $w[i] \le 1$.
- (25 puntos) Para todo $0 \le i \le N-2$, se cumple que u[i] = i+1, v[i] = i+2.
- (45 puntos) Sin restricciones adicionales.