## T.D. IX - Intégrales généralisées

## I - Fonctions continues

**Exercice 1.** Pour chacune des intégrales suivantes, montrer qu'elle converge et déterminer sa valeur.

1. 
$$\int_{1}^{+\infty} \frac{1}{t^4} dt$$
.

**2.** 
$$\int_{2}^{+\infty} \frac{1}{t^3} dt$$
.

3. 
$$\int_{2}^{+\infty} \frac{5}{t^3} dt$$
.

**4.** 
$$\int_{1}^{+\infty} \frac{2}{t^4} dt$$
.

**5.** 
$$\int_0^{+\infty} e^{-5t} dt$$
.

**6.** 
$$\int_{1}^{+\infty} e^{-3t} dt$$
.

7. 
$$\int_{2}^{+\infty} 3 e^{-5t} dt$$
.

**8.** 
$$\int_3^{+\infty} 2 e^{-t} dt$$
.

Exercice 2. Pour chacune des intégrales suivantes, montrer qu'elle converge et déterminer sa valeur.

$$1. \int_{-\infty}^{2} e^{3t} dt.$$

**2.** 
$$\int_{-\infty}^{-5} 2 e^t dt$$
.

3. 
$$\int_{-\infty}^{-1} \frac{1}{t^2} dt$$

3. 
$$\int_{-\infty}^{-1} \frac{1}{t^2} dt.$$
4. 
$$\int_{-\infty}^{0} \frac{1}{(1-t)^2} dt.$$

**Exercice 3.** Pour tout x réel, on pose  $h(x) = \ln(1 + e^x)$  et  $f(x) = \frac{e^x}{1 + e^x}$ .

- **1.** Déterminer la dérivée de h.
- 2. Montrer que  $\int_0^0 f(x) dx$  converge et déterminer sa valeur.

## II - Fonctions discontinues

**Exercice 4.** Soit f la fonction définie par  $f(t) = \begin{cases} \frac{1}{5} & \text{si } t \in [5, 10] \\ 0 & \text{sinon} \end{cases}$ .

- **1.** Pour tout x réel, on pose  $F(x) = \int_{-x}^{x} f(t) dt$ .
  - a) Pour tout x < 5, déterminer la valeur de F(x).
  - **b)** Pour tout  $x \in ]5, 10[$ , déterminer la valeur de F(x).
  - c) Pour tout x > 10, déterminer la valeur de F(x).
  - **d)** Montrer que  $\int_{-\infty}^{+\infty} f(t) dt$  est convergente et déterminer sa valeur.
- **2.** Pour tout x réel, on pose  $G(x) = \int_{-\infty}^{x} t f(t) dt$ .
  - a) Pour tout x < 5, déterminer la valeur de G(x).
  - **b)** Pour tout  $x \in ]5, 10[$ , déterminer la valeur de G(x).
  - c) Pour tout x > 10, déterminer la valeur de G(x).
  - **d)** Montrer que  $\int_{-\infty}^{+\infty} t f(t) dt$  est convergente et déterminer sa valeur.

**Exercice 5.** Soit f la fonction définie par  $f(t) = \begin{cases} \frac{1}{2} & \text{si } t \in [2, 4] \\ 0 & \text{sinon} \end{cases}$ .

- 1. Pour tout x réel, on pose  $F(x) = \int_{-\infty}^{\infty} f(t) dt$ .
  - a) Pour tout x < 2, déterminer la valeur de F(x).
  - **b)** Pour tout  $x \in ]2,4[$ , déterminer la valeur de F(x).
  - c) Pour tout x > 4, déterminer la valeur de F(x).
  - **d)** Montrer que  $\int_{-\infty}^{+\infty} f(t) dt$  est convergente et déterminer sa valeur.

- **2.** Pour tout x réel, on pose  $G(x) = \int_{-\infty}^{x} t f(t) dt$ .
  - a) Pour tout x < 2, déterminer la valeur de G(x).
  - **b)** Pour tout  $x \in ]2,4[$ , déterminer la valeur de G(x).
  - c) Pour tout x > 4, déterminer la valeur de G(x).
  - **d)** Montrer que  $\int_{-\infty}^{+\infty} t f(t) dt$  est convergente et déterminer sa valeur.

**Exercice 6.** Soit f la fonction définie par  $f(t) = \begin{cases} 0 & \text{si } t < 0 \\ 2e^{-2t} & \text{sinon} \end{cases}$ .

- **1.** Pour tout x réel, on pose  $F(x) = \int_{-\infty}^{x} f(t) dt$ .
  - a) Pour tout x < 0, déterminer la valeur de F(x).
  - **b)** Pour tout x > 0, déterminer la valeur de F(x).
  - c) Montrer que  $\int_{-\infty}^{+\infty} f(t) dt$  est convergente et déterminer sa valeur.
- **2.** Pour tout x réel, on pose  $G(x) = \int_{-\infty}^{x} t f(t) dt$ .
  - a) Pour tout x < 0, déterminer la valeur de G(x).
- **b)** Pour tout x > 0, déterminer la valeur de G(x). On pourra utiliser une intégration par parties.
  - c) Montrer que  $\int_{-\infty}^{+\infty} t f(t) dt$  est convergente et déterminer sa valeur.

**Exercice 7.** Soit f la fonction définie par  $f(t) = \begin{cases} 0 & \text{si } t < 0 \\ e^{-t} & \text{sinon} \end{cases}$ .

- **1.** Pour tout x réel, on pose  $F(x) = \int_{-\infty}^{x} f(t) dt$ .
  - a) Pour tout x < 0, déterminer la valeur de F(x).
  - **b)** Pour tout x > 0, déterminer la valeur de F(x).
  - c) Montrer que  $\int_{-\infty}^{+\infty} f(t) dt$  est convergente et déterminer sa valeur.

- **2.** Pour tout x réel, on pose  $G(x) = \int_{-\infty}^{x} t f(t) dt$ .
  - a) Pour tout x < 0, déterminer la valeur de G(x).
- **b)** Pour tout x > 0, déterminer la valeur de G(x). On pourra utiliser une intégration par parties.
  - c) Montrer que  $\int_{-\infty}^{+\infty} t f(t) dt$  est convergente et déterminer sa valeur.

**Exercice 8.** Soit f la fonction définie par  $f(t) = \begin{cases} \frac{2t}{(1+t^2)^2} & \text{si } t \geqslant 0 \\ 0 & \text{sinon} \end{cases}$  et g la fonction définie pour tout  $t \geqslant 0$  par  $g(t) = -\frac{1}{1+t^2}$ .

- **1.** Pour tout réel  $t \ge 0$ , déterminer g'(t).
- **2.** Pour tout  $x \ge 0$ , déterminer la valeur de  $\int_{-\infty}^{x} f(t) dt$ .
- 3. En déduire que  $\int_{-\infty}^{+\infty} f(t) dt$  converge et calculer sa valeur.

**Exercice 9.** Soit f la fonction définie par  $f(t) = \begin{cases} \ln(t) & \text{si } t \geqslant 1 \\ 0 & \text{sinon} \end{cases}$ . Pour tout réel A supérieur ou égal à 1, on pose  $I(A) = \int_{-\infty}^A \frac{f(x)}{x} \, \mathrm{d}x$  et  $J(A) = \int_{-\infty}^A \frac{f(x)}{x^2} \, \mathrm{d}x$ .

- **1.** Pour tout  $A \ge 1$ , déterminer la valeur de I(A).
- **2.** Montrer que  $\int_{-\infty}^{+\infty} \frac{\ln(x)}{x} dx$  diverge.
- **3.** À l'aide d'une intégration par parties, montrer que pour tout réel  $A\geqslant 1,$

$$J(A) = -\frac{\ln(A)}{A} - \frac{1}{A} + 1.$$

**4.** En déduire que  $\int_{-\infty}^{+\infty} \frac{\ln(x)}{x^2} dx$  converge et déterminer sa valeur.