Analiza składowych głównych (Principal Component Analysis)

Zadania:

- 1. Własna implementacja metody PCA w R.
 - Wczytaj dane USArrest.
 - Dokonaj standaryzacji i centrowania danych (funkcja scale).
 - Wyznacz macierz kowariancji (funkcja cov).
 - Wyznacz rozkład spektralny macierzy kowariancji (funkcja eigen).
 - Wyznacz wektory i wartości własne macierzy kowariancji.
 - Oblicz składowe główne.
 - Porównaj wyznaczone wektory ładunków i składowe główne z otrzymanymi przy użyciu funkcji princomp, na danych USArrest.
- 2. Analiza danych USArrest.
 - Wykonaj analizę składowych głównych na danych USArrest.
 - Sprawdź jaki procent zmienności danych tłumaczą poszczególne składowe; wykonaj wykres pokazujący skumulowane proporcje wariancji dla poszczególnych składowych głównych, Rysunek 1 (a).
 - Dokonaj interpretacji dwóch pierwszych składowych głównych, wykonaj wykres rozproszenia dla dwóch pierwszych składowych (funkcja biplot), Rysunek 1 (b).

Rysunek 1: (a) Wykres skumulowanych proporcji wariancji. (b) Wykres rozproszenia dla dwóch pierwszych składowych, dla danych USArrests.

- 3. Analiza danych Hitters (z pakietu ISLR). Dane dotyczą problemu regresji w którym zmienna Salary jest zmienną odpowiedzi, a pozostałe zmienne traktujemy jako objaśniające.
 - Usuń wiersze w których znajdują się braki danych (funkcja na.omit).
 - Wykonaj analizę składowych głównych na danych Hitters.
 - Dopasuj model liniowy w którym *Salary* jest zmienną odpowiedzi, a składowe główne są zmiennymi objaśniającymi. Dokonaj oceny istotności zmiennych objaśniających.
 - Dopasuj zagnieżdżoną rodzinę modeli liniowych, zbudowanych na pierwszych $k=1,2,\ldots$ składowych głównych. Wykonaj wykres który pokazuje jak R^2 (współczynnik determinacji) zależy od liczby składowych głównych.
 - Dopasuj zagnieżdżoną rodzinę modeli liniowych, zbudowanych na $k=1,2,\ldots$ najbardziej istotnych zmiennych. Istotność zmiennej oceń na podstawie p-wartości statystyki t obliczonej dla modelu dopasowanego na wszystkich zmiennych. Wykonaj wykres który pokazuje jak R^2 zależy od liczby najbardziej istotnych zmiennych.
 - Porównaj wykresy otrzymane w powyższych punktach (celem eksperymentu jest pokazanie że model zbudowany na niewielkiej liczbie składowych głównych jest lepiej dopasowany niż model zbudowany na takiej samej liczbie oryginalnych zmiennych).