

Please write clearly in block capitals.				
Centre number	Candidate number			
Surname				
Forename(s)				
Candidate signature	I declare this is my own work.	/		

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM05) Unit FM2 Mechanics

Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphic calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The **final** answer to questions requiring the use of calculators should be given to two significant figures, unless stated otherwise.
- Unless stated otherwise, the acceleration due to gravity, g, should be taken as 9.8 m s⁻²

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

FM05

		Answer all questions in the spaces provided.	out
1		Two particles, <i>A</i> and <i>B</i> , are moving on a smooth horizontal surface when they collide and coalesce to form a single particle.	
		The mass of A is 2 kg and before the collision it has velocity ${\bf v}$ m ${\bf s}^{-1}$	
		The mass of ${\it B}$ is 3 kg and before the collision it has velocity ${\bf w}$ m s ⁻¹	
		During the collision the impulse on B is $(-5\mathbf{i} - 4\mathbf{j})$ N s	
		After the collision the single particle moves with velocity $(2\mathbf{i} - 3\mathbf{j}) \text{ m s}^{-1}$	
1	(a)	Find w [3 marks]	
		Answer	
1	(b)	Find v [3 marks]	
		Answer	

2		A force, ${\cal F}$ newtons, is the only force that acts on a body of mass 6 kg moving on a straight line.
		The points O , P and Q lie on this line, as shown below. Not to scale
		<i>Q</i>
		The force acts in the direction OQ
		When the displacement of the body is x metres from O , F is given by $F=5\sqrt{x}$
		At P , $x=4$ and the body is moving towards Q with speed 4 m s ⁻¹
		At Q , $x=9$
2	(a)	Find the work done by the force on the body as it moves from P to Q [3 marks]
		Answer
2	(b)	Find the speed of the body at Q giving your answer to three significant figures. [3 marks]
		Answer

6

3		A particle moves with simple harmonic motion on a straight line.
		When the particle is 0.2 metres from the equilibrium position, it has a speed of $\sqrt{21}$ m $\text{s}^{\text{-1}}$
		When the particle is 0.4 metres from the equilibrium position, it has a speed of 3 m s ⁻¹
3	(a)	Find the amplitude of the motion. [4 marks]
		Answer

8

3	(b)	Find the period of the motion.	[3 marks]
		Answer	
3	(c)	Calculate the maximum speed of the particle.	[1 mark]
		Answer	

4		A bead, of mass m kg moves on a smooth horizontal wire.	
		At time t seconds the bead has velocity v m s ⁻¹	
		When $t = 0$, $v = U$	
		The velocity of the bead is always positive.	
		A resistance force of magnitude kv^2 newtons acts on the bead as it moves.	
		The second of th	
4	(a)	Show that	
		$v = \frac{mU}{m + ktU}$	
			[5 marks]
			·

4	(b)	Find, in terms of m , k and U the time that it takes for the velocity of the bead to reduce to 90% of its initial value.	Do noi outsia bo
		[3 marks]	
			8
		Answer	

Turn over for the next question

5 A simple pendulum consists of a light inextensible string and a small sphere.

The length of the string is 2.45 metres.

The mass of the sphere is 40 grams.

One end of the string is attached to a fixed point ${\it O}$ and the other end of the string is attached to the sphere.

The sphere is released from rest with the string taut and at an angle of $\frac{\pi}{12}$ radians to the vertical.

At time t seconds, the string makes an angle θ radians with the vertical through O as shown in the diagram.

5	(a)	Show that, for small values of θ , the motion of the simple pendulum can be mod	lelled as
		simple harmonic motion.	
			[4 marks]

5 (b))	Find the period of the motion. [2 marks]	
		Answer	
_ , ,		π π	
5 (c))	Find the time that it takes for θ to decrease from $\frac{\pi}{24}$ to $\frac{\pi}{36}$ [4 marks]	
		[4 marks]	
			 -
		Answer	

6	A plane is inclined at an angle of 20° to the horizontal
---	--

A ball is projected from a point ${\cal O}$ on the plane and hits the plane again at a point ${\cal A}$ which is further up the plane.

The line OA is a line of greatest slope of the plane.

The initial velocity of the ball is 25 m s^{-1} at an angle of 40° to the plane, as shown below.

6	(a)	Find the maximum distance of the ball from the plane. [4	marks]
		Answer	

6 (b)	Find the acute angle between the velocity of the ball and the plane when the slope at A giving your answer to the nearest degree.	ball hits the	
	slope at 11 giving your answer to the hearest abgree.	[7 marks]	
	Answer		

11

7	A particle P is initially at the highest point Q of a smooth upturned hemisphere
	of radius r metres and centre O

The plane face of the hemisphere is fixed to a horizontal table.

The particle is set into motion with an initial horizontal velocity of magnitude $U\,\mathrm{m\ s^{-1}}$

As the particle moves on the hemisphere, the angle between OQ and OP is θ as shown in the diagram.

7	(a)	Given that the particle leaves the hemisphere when $\theta = 30^{\circ}$, find U in exact form terms of g and r				
			[8 marks]			

-	
_	
_	
	Answer
St th	tate, with a reason, whether or not your answer to part (a) would change if the mass of e particle was decreased.
	[2 marks]
St	tate, with a reason, whether or not your answer to part (a) would change if the radius of
St	rate, with a reason, whether or not your answer to part (a) would change if the radius of e hemisphere was decreased. [2 marks]
St th	e hemisphere was decreased.
St	e hemisphere was decreased.
Stt	e hemisphere was decreased.
St th	e hemisphere was decreased.

8 Two smooth spheres P and Q have the same radius and move on a horizontal surface and collide.

The mass of P is 3 kg and the mass of Q is 2 kg

Before the collision the speed of P is 5 m s⁻¹ and the speed of Q is 4 m s⁻¹

The diagram shows the directions of the velocities of the spheres before the collision.

The coefficient of restitution between the spheres is $\frac{2}{5}$

Find the speeds of the spheres after the collision, giving your answer to three figures.	e significant	
	[10 marks]	
	_	

Speed of (<u> </u>

10

	The points Q A and B are on a he					
	The points O , A and B are on a no	prizontal line with $\it O$ at t	ne mid-point of AB			
	The length of AB is 4 metres.					
The point C is vertically above O						
	The diagram shows the positions of	of the points.				
		• C	Not to scale			
			rest to obtain			
	A	0	B			
	•======================================					
	Three identical light elastic strings	have natural length 3 m	netres.			
	One end of each string is attached	•				
The other end of each string is attached to a particle.						
The particle is released from rest at the point ${\it O}$ and moves downwards.						
	The particle reaches its maximum sattached to A and B both make an the three strings have the same m	angle of 30° to the vert				
Verify that subsequently the maximum distance between the point $\it O$ and the particle i						
	5.9 metres, correct to two significant	correct to two significant figures.				
			[9 ma			

	EN	END OF Q	END OF QUESTIONS	END OF QUESTIONS	END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

