Web Image Context Extraction with Graph Neural Networks and Sentence Embeddings on the DOM tree

Chen Dang, Hicham Randrianarivo, Raphaël Fournier-S'niehotta, Nicolas Audebert

This paper introduces a novel approach for Web Image Context Extraction (WICE) that combines Graph Neural Networks (GNNs) and Natural Language Processing models.

Introduction

- ❖ Identifying the text in a webpage that best describes an image is a key step for efficiently indexing images in a search engine
- Visually rendering the webpage facilitates the extraction of an image's context, but isn't tractable on a large scale

Our Contribution

Use state-of-the-art language models to generate sentence embeddings for each text node in the DOM tree

Fig 1: An example of the WICE setting

- Use sentence embeddings as node features to train a GNN, which can combine both structural and semantic information
- Use graphe models for large-scale processing of highly diverse news websites

Use HTML document to predict reference text embedding (at training time) Reference Text Embedding

Fig 2: Our pipeline

- Proxy task: train a GNN model to predict the input document's reference text (red dot)
- Main task: interpret the trained model to choose the most predominant textual node (green dot) is then used as the context of the image

Fig 3: weight-GCN model architecture

Experiments

Method	train	validation	test
random	0.78	0.779	0.779
title	0.834	0.835	0.833
text after image	0.671	0.672	0.67
wGCN	0.381	0.386	0.381
oracle	0.293	0.297	0.293

Table1: average cosine similarity loss between the context and the reference text [split dataset by webpages]

Method	train	validation	test
random	0.792	0.736	0.800
title	0.834	0.861	0.814
text after image	0.701	0.571	0.705
wGCN	0.415	0.404	0.441
oracle	0.334	0.264	0.259

Table2: average cosine similarity loss between the context and the reference text [split dataset by websites]

Our model significantly outperforms WICE based on heuristics, and can work directly with HTML, making large-scale WICE tractable.