

Private_Minoraircr	Add project explanation t	10 hours ago
README.md	add tableau and preesen	3 hours ago
airplane.jpg	Add project explanation t	10 hours ago
aviation.ipynb	add tableau and preesen	3 hours ago
aviation.pdf	add tableau and preesen	3 hours ago
clean_aviationData	answer business problem	yesterday
example_dashboar	update data and add exa	last year
index.ipynb	Created index file for the	10 months ago
private_Minor.png	Add project explanation t	10 hours ago
student.ipynb	Add project explanation t	10 hours ago

Languages

Jupyter Notebook 100.0%

LOW RISK AIRCRAFT MAKES AND MODEL ANALYSIS

Overview

This project analyzes aircrafts accidents and incidents to determine the low risk aircraft that aircraft a company can purchase as it begins operations in the aviation industry

Business Problem

Our Company is expanding and wants to venture in purchasing and operating aircrafts for commercial and private enterprises, but do not know the potential risks of aircrafts. we are tasked to determine which aircraft are the lowest risk for the company to start this new business endeavor. We then translate finds into actionable insights that the head of the new aviation division can help decide which aiecraft to purchase

The data is an aviation dataset from the National Transportation safety board that includes aviation accidents from 1962 to 2023 about civil aviation accidents and selected incidents in the United states and international waters. Every accidents / incident has:

- i) The injury severity category it falls into i.e (Minor, Fatal, Non-fatal, serious or incidents)
- ii)The level of damage to the aircraft i.e (Destroyed, substantial or minor)
- iii)The total number of fatalities, of serious injuries and of uninjured
- iv)Purpose of flight whether its personal, business among others

Data Analysis

This project uses descriptive analysis, including description of makes/models by risk factor and with all risks combined as well. This provides a useful overview of on your best model to use depending on the risk you are willing to take and if none which model/make is best to use. The data was cleaned by filling most colums with NA with placeholder as i noticed most columns had placeholders. I only dropped rows where the data to be dropped was very small. I didnt want to lose data that would be meaningful. From our dataset these are real accidents and incidents, it doesnt seem sensible to fill with the most common therefor i avoided filling with mode values.

Results

I grouped the results based on whether it is private or public category

1. For personal/private enterprises with greater no of injured for minor injury severity

a)Private

Rockwell 700 and Robinson 411 had greater no of uninjured with minor injury severity

b)Commercial

2. For personal/private enterprises with greater no of injured for minor Aircraft Damage

a)private

Boeing 747-123 had greater no of total uninjured with minor damages to the aircraft Model/Make for uninjured with minor Aircraft Damage Model / Make 747-123 G-IV 350 337D HU-16 DHC-2 BE-400A FIREFLY 9 AX9 118 550 Bravo PC12 400 350 300 otal Uninjured of 200 ☐ README 100 50 Grumman De Havilland Boeing Beech Cessna Raytheon Cessna Pilatus Balloon Head Aerospace Aircraft .. Works Balloons Inc b)Commercial Cessna 421B followed by Boeing 727-22C

3. Overall low_risk Aircrafts with greater no of uninjured, has Incidents and minor Aircraft Damage

a)Private

Boeing 747-123 followed by Cessna 337D then Cessna 550 Bravo

b)Commercial

Cessna 421B followed by Boeing 727-22C

