

Data Intelligence

Recommendation-2 Latent Factor Model

U Kang Seoul National University

In This Lecture

- Learn the weight learning approach for collaborative filtering
- Understand the main idea of latent factor model
- Learn the advanced techniques for latent factor model, including regularization and bias extension

U Kang

2

Outline

- → □ Netflix Prize; Weight Learning in CF
 - □ Latent Factor Model
 - ☐ Regularization for LF
 - Bias Extension for LF
 - ☐ Netflix Challenge

The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005

Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: Root Mean Square Error (RMSE) =

$$\sqrt{\frac{\sum_{(i,x)\in R}(\hat{r}_{xi}-r_{xi})^2}{|R|}}$$

■ Netflix's system RMSE: 0.9514

Competition

- □ 2,700+ teams
- \$1 million prize for 10% improvement on Netflix

The Netflix Utility Matrix R

480,000 users

Matrix R

17,700 movies

—					→
1	3	4			
	3	5			5
		4	5		5
		3			
		3			
2			2		2
				5	
	2	1			1
	3			3	
1					

Utility Matrix R: Evaluation

BellKor Recommender System

- The winner of the Netflix Challenge!
- Multi-scale modeling of the data: Combine global modeling of the data, with a refined, local view:
 - Global:
 - Overall deviations of users/movies
 - Local:
 - CF

Modeling Local & Global Effects

Global:

- Mean movie rating: 3.7 stars
- The Sixth Sense is 0.5 stars above avg.
- □ Joe rates **0.2** stars below avg.
 - ⇒ Baseline estimation:

 Joe will rate The Sixth Sense 4 stars
- Local neighborhood (CF/NN):
 - Joe didn't like related movie Signs
 - □ ⇒ Final estimate:
 Joe will rate The Sixth Sense 3.8 stars

8

Recap: Collaborative Filtering (CF)

- Earliest and most popular collaborative filtering method
 - Infer unknown ratings from those of "similar" movies (item-item variant)
 - \Box Define **similarity measure** s_{ii} of items **i** and **j**
 - □ Select *k*-nearest neighbors, compute the rating
 - N(i; x): items most similar to i that were rated by x

$$\hat{r}_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

s_{ij}... similarity of items *i* and *j*r_{xj}...rating of user *x* on item *j*N(i;x)... set of items similar to item *i* that were rated by *x*

Modeling Local & Global Effects

In practice we get better estimates if we model deviations:

$$\hat{r}_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for r_{xi}

$$b_{xi} = \mu + b_x + b_i$$

 μ = overall mean rating

 b_x = rating deviation of user x

= $(avg. rating of user x) - \mu$

 $\mathbf{b}_i = (avg. \ rating \ of \ movie \ \mathbf{i}) - \boldsymbol{\mu}$

Problems/Issues:

1) Similarity measures are "arbitrary"

2) Taking a weighted average can be restricting

Solution: Instead of s_{ij} use w_{ij} that we learn from data

Idea: Interpolation Weights w_{ij}

Use a weighted sum rather than weighted avg.:

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

A few notes:

- $lacksquare{N}(i;x)$... set of movies rated by user x that are similar to movie i
- \mathbf{w}_{ij} is the interpolation weight (some real number)
 - We allow: $\sum_{j \in N(i,x)} w_{ij} \neq 1$
- \mathbf{w}_{ij} models interaction between pairs of movies (it does not depend on user \mathbf{x})

Idea: Interpolation Weights w_{ij}

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i,x)} w_{ij} (r_{xj} - b_{xj})$$

- How to set w_{ij} ?
 - □ Remember, error metric is: $\sqrt{\frac{\sum_{(i,x)\in R}(\hat{r}_{xi}-r_{xi})^2}{|R|}}$ or equivalently SSE: $\sum_{(i,x)\in R}(\hat{r}_{xi}-r_{xi})^2$
 - \Box Find \mathbf{w}_{ii} that minimize **SSE** on **training data!**
 - Models relationships between item i and its neighbors j
 - \mathbf{w}_{ij} can be **learned/estimated** based on \mathbf{x} and all other users that rated \mathbf{i}

Why is this a good idea?

Recommendations via Optimization

- Goal: Make good recommendations
 - Quantify goodness using RMSE:
 Lower RMSE ⇒ better recommendations

- Want to make good recommendations on items that user has not yet seen. Very difficult task!
- Let's build a system such that it works well on known (user, item) ratings
 And hope the system will also predict well the unknown ratings

Recommendations via Optimization

- Idea: Let's set values w such that they work well on known (user, item) ratings
- How to find such values w?
- Idea: define an objective function and solve the optimization problem
- Find w_{ii} that minimize SSE on training data!

$$J(w) = \sum_{x,i} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^{2}$$
Predicted rating

Predicted rating

■ Think of **w** as a vector of numbers

Detour: Minimizing a function

■ A simple way to minimize a function f():

- \Box Take a gradient ∇f
- $lue{}$ Start at some point x and evaluate $\nabla f(x)$
- Make a step in the reverse direction of the gradient: $x = x \eta \nabla f(x)$. This is called *gradient descent*.
- Repeat until converged

Interpolation Weights

We have the optimization problem, now what?

$$J(w) = \sum_{x,i} \left(\left[b_{xi} + \sum_{k \in N(i;x)} w_{ik} (r_{xk} - b_{xk}) \right] - r_{xi} \right)^2$$

- Gradient descent:
 - □ Iterate until convergence: $w \leftarrow w \eta \nabla_w J$

 η ... learning rate

 \square where $\nabla_w J$ is the gradient:

$$\nabla_{w}J = \left[\frac{\partial J(w)}{\partial w_{ij}}\right] = 2\sum_{x,i} \left(\left[b_{xi} + \sum_{k \in N(i;x)} w_{ik}(r_{xk} - b_{xk})\right] - r_{xi}\right) \left(r_{xj} - b_{xj}\right)$$

$$\text{for } j \in \{N(i;x), \forall i, \forall x\}$$

$$\text{else } \frac{\partial J(w)}{\partial w_{ij}} = \mathbf{0}$$

Note: We fix movie i, go over all r_{xi} , for every movie $j \in N(i; x)$, we compute $\frac{\partial J(w)}{\partial w_{ij}}$ while $|w_{new} - w_{old}| > \varepsilon$: $w_{old} = w_{new}$

U Kang
$$w_{new} = w_{old} - \eta \cdot \nabla w_{old}$$

Interpolation Weights

- So far: $\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} b_{xj})$
 - Weights w_{ij} learned based on their role; no use of an arbitrary similarity measure $(w_{ii} \neq s_{ii})$
 - Explicitly account for interrelationships among the neighboring movies
- Next: Latent factor model

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

CF+Biases+learned weights: 0.91

(Collaborative filtering ++)

Grand Prize: 0.8563

Outline

- Metflix Prize; Weight Learning in CF
- Latent Factor Model
 - ☐ Regularization for LF
 - ☐ Bias Extension for LF
 - ☐ Netflix Challenge

Latent Factor Models (e.g., SVD)

Latent Factor Models

SVD: $A = U \Sigma V^T$

■ "SVD" on Netflix data: $\mathbf{R} \approx \mathbf{Q} \cdot \mathbf{P}^T$

- For now let's assume we can approximate the rating matrix R as a product of "thin" $Q \cdot P^T$
 - R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

Ratings as Products of Factors

How to estimate the missing rating of

user x for item i?

$\hat{r}_{xi} =$	$q_i \cdot p_x$
	$q_{if} \cdot p_{xf}$
	row <i>i</i> of Q column x of P ^T

	.1	4	.2						
(0	5	.6	.5						
items	2	.3	.5						
ite	1.1	2.1	.3						
	7	2.1	-2						
	-1	.3							
factors									

_						400						
IS	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
fa	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

LISARS

Q

Ratings as Products of Factors

How to estimate the missing rating of

user x for item i?

	uscis											
	1		3			5			5		4	
,			5	4	?		4			2	1	3
	2	4		1	2		3		4	3	5	
-		2	4		5			4			2	
			4	3	4	2					2	5
	1		3		3			2			4	

$\hat{r}_{xi} = q$	$i \cdot p_x$
$=\sum q$	$_{if}\cdot p_{xf}$
	v i of Q umn x of P [⊤]

	.1	4	.2						
(0	5	.6	.5						
items	2	.3	.5						
ite	1.1	2.1	.3						
	7	2.1	-2						
	-1	.7	.3						
factors									

_	users											
S	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
<u>a</u>	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

P

Q

Ratings as Products of Factors

How to estimate the missing rating of

user x for item i?

	40010												
	1		3			5			5		4		
,			5	4	2.4	4	4			2	1	3	
	2	4		1	2		3		4	3	5		
-		2	4		5			4			2		
			4	3	4	2					2	5	
	1		3		3			2			4		

$\hat{r}_{xi} =$	q_i	$\cdot p_x$
$=\sum$	q_{if}	p_{xf}
	row <i>i</i> c colum	of Q on x of P ^T

	.1	4	.2					
(0	5	.6	.5					
items	2	.3	.5					
ite	1.1	2.1	.3					
	7	2.1	-2					
	-1	.7	.3					
f factors								

_			_		_	use	rs					
ors	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
• act	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
ff	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1
•		-	-		_				-			

2

Latent Factor Models

25

Latent Factor Models

Singular Value Decomposition(SVD)

SVD:

■ **A**: Input data matrix

□ **U**: Left singular vecs

■ **V**: Right singular vecs

 \Box Σ : Singular values

So in our case:

"SVD" on Netflix data: $R \approx Q \cdot P^T$

$$A = R$$
, $Q = U$, $P^{T} = \sum V^{T}$

$$\hat{\boldsymbol{r}}_{xi} = \boldsymbol{q}_i \cdot \boldsymbol{p}_x$$

SVD: More Good Stuff

SVD gives minimum reconstruction error (Sum of Squared Errors):

$$\min_{U,V,\Sigma} \sum_{ij\in A} \left(A_{ij} - [U\Sigma V^{\mathrm{T}}]_{ij} \right)^{2}$$

- Note two things:
 - □ **SSE** and **RMSE** are monotonically related:
 - $RMSE = \frac{1}{c}\sqrt{SSE}$ Great news: SVD is minimizing RMSE
 - Complication: The sum in SVD error term is over all entries (no-rating is interpreted as zero-rating).
 But our *R* has missing entries!

U Kang

28

Latent Factor Models

- SVD isn't defined when entries are missing!
- Use specialized methods to find P, Q

Note:

- We don't require cols of P, Q to be orthogonal/unit length
- P, Q map users/movies to a latent space
- The most popular model among Netflix contestants
 U Kang

29

Outline

- Netflix Prize; Weight Learning in CF
- Latent Factor Model
- → □ Regularization for LF
 - Bias Extension for LF
 - ☐ Netflix Challenge

Latent Factor Models

Our goal is to find P and Q such tat:

$$\min_{P,Q} \sum_{(i,x)\in R} (r_{xi} - q_i \cdot p_x)^2$$

_	iaciois								
	.1	4	.2						
	5	.6	.5						
	2	.3	.5						
	1.1	2.1	.3						
	7	2.1	-2						
	-1	.7	.3						

factors

users

1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9	۵
1.1 8 2.1	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3	
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1	S

PT

G

Back to Our Problem

- Want to minimize SSE for unseen test data
- Idea: Minimize SSE on training data
 - Want large k (# of factors) to capture all the signals
 - □ But, **SSE** on test data begins to rise for k > 2
- This is a classical example of overfitting:
 - With too much freedom (too many free parameters) the model starts fitting noise
 - That is it fits too well the training data and thus not generalizing well to unseen test data

Dealing with Missing Entries

- Allow rich model where there are sufficient data
- Shrink aggressively where data are scarce

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$
"error"
"length"

 $\lambda_1, \lambda_2 \dots$ user set regularization parameters (≥ 0)

Note: We do not care about the "raw" value of the objective function, but we care in P,Q that achieve the minimum of the objective

The Effect of Regularization

The Effect of Regularization

The Effect of Regularization

The Effect of Regularization

Outline

- Metflix Prize; Weight Learning in CF
- Latent Factor Model
- Regularization for LF
- → □ Bias Extension for LF
 - ☐ Netflix Challenge

Modeling Biases and Interactions

user bias

movie bias

user-movie interaction

Baseline predictor

- Separates users and movies
- Benefits from insights into user's behavior
- Among the main practical contributions of the competition

User-Movie interaction

Characterizes the matching between users and movies

40

- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations
- μ = overall mean rating
- $\mathbf{b}_{\mathbf{x}}$ = bias of user \mathbf{x}
- \mathbf{b}_{i}^{n} = bias of movie i

Baseline Predictor

We have expectations on the rating by user x of movie i, even without estimating x's attitude towards movies like i

- Rating scale of user x
- Values of other ratings user gave recently

(Recent) popularity of movie i

Putting It All Together

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Mean rating user x movie i

Moverall Bias for movie i

User-Movie interaction

Example:

- Mean rating: μ = 3.7
- □ You are a critical reviewer: your ratings are 1 star lower than the mean: $b_x = -1$
- □ Star Wars gets a mean rating of 0.5 higher than average movie: $b_i = +0.5$
- Predicted rating for you on Star Wars (w/o interaction):

$$= 3.7 - 1 + 0.5 = 3.2$$

U Kang

42

Fitting the New Model

Solve:

goodness of fit

$$\min_{Q,P,b} \sum_{(x,i)\in R} (r_{xi} - (\mu + b_x + b_i + q_i p_x))^2$$

regularization

$$+ \left(\lambda_{1} \sum_{j} \| q_{j} \|^{2} + \lambda_{2} \sum_{x} \| p_{x} \|^{2} + \lambda_{3} \sum_{x} \| b_{x} \|^{2} + \lambda_{4} \sum_{j} \| b_{j} \|^{2} \right)$$

λ is selected via crossvalidation

- Stochastic gradient descent to find parameters
 - **Note:** Both biases b_x , b_i as well as interactions q_i , p_x are treated as parameters (we estimate them)

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Grand Prize: 0.8563

Temporal Biases Of Users

- Sudden rise in the average movie rating (early 2004)
 - Improvements in Netflix
 - GUI improvements
 - Meaning of rating changed
- Movie age
 - Older movies receive higher ratings than newer ones

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09

Temporal Biases & Factors

Original model:

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Add time dependence to biases:

$$r_{xi} = \mu + b_x(t) + b_i(t) + q_i \cdot p_x$$

- \Box Make parameters \boldsymbol{b}_{x} and \boldsymbol{b}_{i} to depend on time
- □ (1) Parameterize time-dependence by linear trends
 - (2) Each bin corresponds to 10 consecutive weeks

$$b_i(t) = b_i + b_{i, \text{Bin}(t)}$$

- Add temporal dependence to factors
 - $p_x(t)$... user preference vector on day t

Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

Still no prize!
Getting desperate.

Grand Prize: 0.8563

Outline

- Metflix Prize; Weight Learning in CF
- Latent Factor Model
- Regularization for LF
- Bias Extension for LF
- → □ Netflix Challenge

Final Solution

- Many solutions proposed
 - Baseline
 - Basic collaborative filtering
 - Basic collaborative filtering w/ weight learning
 - Latent factor model
 - Latent factor w/ time bias
 - **...**
- 'Blending' the solutions leads to the best performance
 - Linear combination of N (≥ 500) predictors

U Kang

49

The big picture Solution of BellKor's Pragmatic Chaos

Standing on June 26th 2009

June 26th submission triggers 30-day "last call"

Netflix Prize

Home

Rules

Leaderboard

Update

Progress Prize 2007 - RMSE = 0.8723 - Winning Team: KorBell

Download

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 ‡ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos				
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team).8002	J.9 _U	_000 0. 10 4:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11
Progress Prize 2008 - RMSE = 0.8627 - Winning Team: BellKor in BigChaos				
13	xiangliang	0.8642	9.27	2009-07-15 14:53:22
14	Gravity	0.8643	9.26	2009-04-22 18:31:32
15	Ces	0.8651	9.18	2009-06-21 19:24:53
16	Invisible Ideas	0.8653	9.15	2009-07-15 15:53:04
17	Just a guy in a garage	0.8662	9.06	2009-05-24 10:02:54
18	J Dennis Su	0.8666	9.02	2009-03-07 17:16:17
19	Craig Carmichael	0.8666	9.02	2009-07-25 16:00:54
20	<u>acmehill</u>	0.8668	9.00	2009-03-21 16:20:50

Million \$ Awarded Sept 21st 2009

What You Need to Know

- Weight learning approach for collaborative filtering
 - Learns optimal weights from data
- Latent factor model
 - Low dimensional embedding of users and items
 - Regularization: make the model generalize well
 - Bias extension

Questions?