14. Чернухин О.А. Организация исследовательской деятельности школьников естественнонаучной и экологической тематики. Образовательные программы. Новосибирск: Немо-Пресс, 2013. 80 с.

УДК 519.23

В.А. Токарева

магистрант

Научный руководитель: И.А. Лакман, канд. техн. наук, доцент г. Уфа, Уфимский государственный авиационный технический университет

АНАЛИЗ ВЫЖИВАЕМОСТИ ПАЦИЕНТОВ С СИНДРОМОМ СЛАБОСТИ СИНУСОВОГО УЗЛА ПОСЛЕ УСТАНОВКИ ЭЛЕКТРОКАРДИОСТИМУЛЯТОРА

В настоящее время здоровью человека угрожает множество заболеваний и одними из самых распространенных являются сердечно-сосудистые заболевания. Согласно данным МНИОИ им. П.А. Герцена около 50% смертей происходит из-за болезни системы кровообращения (а именно – 47,8%) [6].

Одним из современных и эффективных методов лечения сердечнососудистых заболеваний является установка кардиостимулятора. Однако для врачей-кардиологов возникает вопрос в оценке среднего уровня выживаемости пациентов после проведения соответствующей операции по установке стимулятора, в нашем случае при наличии синдрома слабости синусового узла (СССУ) у пациентов.

Для анализа и прогноза выживаемости таких больных используют один из распространенных математических методов для оценки функций выживаемости в группах – анализ выживаемости. Это класс статистических методов, которые позволяют оценить вероятность наступления критических событий (в рассматриваемом случае – смерти) в определенный период.

Для выявления предикторов риска смерти в определенный период на первом этапе необходимо построить графики функций выживаемости, оцененные методом Каплана-Майера [3]. Данный подход позволяет графически проанализировать, есть ли различие функций выживаемости для разных групп объектов, сгруппированных для значений определенного признака.

На втором этапе анализа проводится уточняющая оценка различий в функциях выживаемости при группировке по признакам при помощи критериев Гехана-Вилкоксона [2], Кокса-Мантеля [4] и логарифмического рангового теста Мантеля-Хензеля [5]. В каждом статистическом тесте в качестве нулевой гипотезы выступает предположение об отсутствии различий между функциями выживаемости для различных атрибутов какого-либо признака.

Последним этапом является построение непараметрической модели пропорциональных рисков Кокса [1], которая имеет вид:

$$\lambda(t \mid x_i) = \lambda_0(t)e^{\beta_1 z_1 + \dots + \beta_n z}.$$

Здесь $\lambda(t|x_i)$ — риск выживания в период t при условии различных значений факторов влияния x_i ; λ_0 — базовая (средняя) функция риска, которая измеряет риск смерти для индивидуума при $x_i = 0$.

Оценка коэффициентов β_i модели Кокса находится с помощью метода максимального правдоподобия. Считается, что допустимой ошибкой отклонения нулевой гипотезы является значение 0,05.

Исходными данными являются обследования 610 пациентов с установленным синдромом ССУ, пассивное наблюдение за которыми проводилось с 2009 по 2017 года.

Для анализа выживаемости рассматривались только те данные по тем пациентам, наблюдение за которыми составляло более 4 лет (48 месяцев). После обработки имеющихся данных осталось 226 пациента. Была получена переменная периода жизни, рассчитанная в месяцах, как разница между временем произошедшего события (смерти), и временем установки кардиостимулятора.

На рисунке 1 представлены графики функций выживаемости, полученные с помощью оценок Каплана-Майера. Анализируя их, можно сказать, что в таких предикторах как гипертоническая болезнь (ГБ) (бинарный признак – есть/нет), сахарный диабет (СД) (бинарный признак – есть/нет), тип синдрома слабости синусового узла (СССУ) (5 альтернатив), режим стимуляции кардиостимулятора

(6 альтернатив) и наличие инфаркта миокарда до установки ЭКС (бинарный признак – есть/нет), присутствует различие в функциях выживаемости (рис. 1).

а) график функции Каплана-Майера в группе по полу (м/ж)

б) график функции Каплана-Майера в группе по наличию гипертонической болезни (ГБ)

в) график функции Каплана-Майера в группе по наличию сахарного диабета (СД)

г) график функции Каплана-Майера в группе по типу синдрома слабости синусового узла (СССУ)

д) график функции Каплана-Майера в группе по режиму стимуляции электрокардиостимулятора (ЭКС)

е) график функции Каплана-Майера в группе по наличию инфаркта миокарда (ИМ) до установки ЭКС

Рис. 1. Графики функции Каплана-Майера

В таблице 1 представлены результаты проведения теста Гехана-Вилкоксона, теста Кокса-Мантеля и логранового критерия для групп из двух переменных.

Таблица 1

Результаты тестов					
Переменная	Статистика Гехана-	Статистика Кокса-Мантеля	Статистика Логрангового кри-		
	Вилкоксона		терия		
Пол	0,477**	0,497**	0,497**		
ГБ	0,09**	0,101**	0,093**		

СД	0,0002**	0,00002**	0,0003**
ИМ до ЭКС	0,0018***	0,00033***	0,00067***

Примечание ***, **, *, - 1%, 5% и 10% уровни значимости соответственно.

Результаты тестов показали, что различие в группах статистически значимо по всем переменным, кроме пола, т.е. пол пациента не играет роли в выживаемости.

На основе проведенного анализа для оценивания модели пропорциональностей Кокса были включены следующие предикторы: возраст; пол; наличие гипертонической болезни; наличие сахарного диабета; перенесенный инфаркт миокарда до установки ЭКС; тип СССУ; режим стимуляции ЭКС; фракции выброса при эхокардиограмме (Эхо КГ ФВ); состояние ЭКС.

После оценивания модели Кокса методом максимального правдоподобия статистически незначимыми переменными оказались: пол, наличие Γ Б, режим стимуляции и состояние ЭКС (вероятность отклонения нулевой гипотезы больше 5%, т.е. p>0.05).

В результате была получена следующая модель:

$$\lambda(t \mid x_i) = \lambda_0(t)e^{0.051 \cdot Bospacm + 1.43 \cdot CA + 0.8 \cdot UM + 0.23 \cdot TunCCCV} - 0.03 \cdot ЭхоКГ$$

Таким образом, на основании построенной модели получили следующие результаты: возраст увеличивает вероятность наступления смерти в среднем в 1,05 раз. Вероятность смерти у больных, имеющих сахарный диабет увеличивается в 4,18 раза, а с учётом доверительной вероятности в 95%, доверительный интервал в четырёхлетний период увеличит риск смерти от 2,13 до 8,21 раза. Перенесённый инфаркт миокарда увеличивает вероятность наступления смерти в среднем в 2,23 раза. Тип СССУ – в 1,26 раза, а Эхо КГ ФВ уменьшает вероятность наступления смерти в 0,97 раза.

Рис. 2. График функции выживаемости, определенной по расчетным значениям для средних значений факторов влияния

На рисунке 2 представлен график функции выживаемости в течении 4 лет для больных с СССУ после установки электрокардиостимулятора, определенной по расчетным значениям для средних значений факторов влияния. Видно, что значение функции падает постепенно. Следовательно, можно сделать вывод, что критического периода в четырёхлетней динамике при наличии вышеописанных факторов нет. Также из графика видно, что к концу периода наблюдения кумулятивная доля выживших составляет 75%.

Заключение

В результате проведенного исследования можно сделать следующие выводы:

- 1. Пол пациента, наличие гипертонической болезни, режим стимуляции и состояние электро-кардиостимулятора не имеют влияние на выживаемость после установки кардиостимулятора.
 - 2. Построенная модель пропорциональностей Кокса показывает, что:
 - возраст пациента увеличивает вероятность наступления смерти в среднем в 1,05 раз;
 - вероятность смерти у больных, имеющих сахарный диабет, увеличивается в 4,18 раза;
- перенесённый инфаркт миокарда увеличивает вероятность наступления смерти в среднем в 2,23 раза;
 - тип СССУ увеличивает вероятность наступления смерти в 1,26 раза;

- эхо КГ ФВ уменьшает вероятность наступления смерти в 0,97 раза.
- 3. В четырёхлетней динамике для больных с СССУ после установки электрокардиостимулятора при наличии факторов, описанных в пункте выше, не наблюдается критического периода.

Литература

- 1. Cox D.R. Regression models and life-tables // J.R. Statist. Soc. 1972. V. 34. № 2. P. 187–220.
- 2. Gehan E.A. A generalized Wilcoxon test for comparing arbitrarily single-censored samples // Biometrica. 1965. V. 52. P. 203–224.
- 3. Kaplan E.L., Meier P. Nonparametric estimation from incomplete observations // J. Am. Statist. Assoc. 1958. V. 53. № 282. P. 457–481.
- 4. Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration // Cancer Chemotherapy Reports. V. 50. P. 163–170.
- 5. Peto R., Peto J. Asymptotically Efficient Rank Invariant Test Procedures // J.R. Statis. Soc. 1972. V. 135. P. 185–207.
 - 6. Russia Today. URL: https://ru.rt.com/a86d (дата обращения: 24.03.2018).

УДК 612.17

Л.Ф. Файзуллина студент Д.А. Погонышев канд. биол. наук, доцент И.А. Погонышева

канд. биол. наук, доцент

г. Нижневартовск, Нижневартовский государственный университет

СТРУКТУРА ЗАБОЛЕВАЕМОСТИ ОРГАНОВ ДЫХАНИЯ НАСЕЛЕНИЯ ГОРОДА НИЖНЕВАРТОВСКА

Известно, что дыхательные пути и респираторные мембраны имеют наибольшую среди всех тканей организма человека поверхность контакта с окружающей средой. Оценка степени напряжения респираторной системы и диапазона ее возможностей является одной из сложных проблем физиологии и пульмонологии. Адаптация системы органов дыхания к климатогеофизическим факторам Севера сопровождается изменениями функции внешнего дыхания, которая стабильно регистрируется в условиях температурного комфорта [1; 12; 13; 15].

Заболевания органов дыхания имеют весомую долю в структуре заболеваемости, анализ которой и создание аналитической базы для формирования превентивных региональных программ, направленных на сокращение заболеваемости и смертности, имеет большое значение для общественного здравоохранения. К экологическим факторам риска, которые могут оказывать влияние на заболеваемость органов дыхания, отнесены загрязнение воздуха, суровые климатические условия и антропогенное изменение климата [2; 3; 8–11; 16]. Все из перечисленных факторов присутствуют в Ханты-Мансийском автономном округе.

Устойчивой тенденцией последнего десятилетия является ухудшение здоровья населения разных возрастных групп. Согласно результатам исследований, в последнее десятилетие наблюдается снижение уровня здоровья и функциональных резервов населения северных регионов [2; 3]. Медицинская статистика свидетельствует об увеличении доли заболеваний дыхательной системы.

Дыхательная система человека, открытая внешним воздействиям, испытывает на себе влияние сложного комплекса факторов окружающей среды. В условиях Среднего Приобья на функциональное состояние дыхательной системы людей неблагоприятное влияние оказывают и гипокомфортные условия окружающей среды, усложняющие процессы адаптации организма [4].

Реакция системы дыхания на действие отрицательных температур различается в разные сезоны года. При низкой отрицательной температуре наружного воздуха (ниже -25°C) во время выполнения физических нагрузок резко уменьшается эффективность функционирования дыхательной системы