Chowla-Selberg の公式

梅崎直也@unaoya

2018年9月26日

定理 1 (Chowla-Selberg の公式).

$$\prod_{a \in Cl(k)} \Delta(a) \Delta(a^{-1}) = \left(\frac{2\pi}{d}\right)^{12h} \prod_{a \in (\mathbb{Z}/d\mathbb{Z})^{\times}} \Gamma\left(\frac{a}{d}\right)^{6w\epsilon(a)}$$

- $k = \mathbb{Q}(\sqrt{-d})$ は虚二次体で o_k をその整数環
- Cl(k) はイデアル類群で $h = |Cl(k)|, w = |o_k^{\times}|$
- ϵ は二次体 k に対応する Dirichlet 指標(平方剰余記号)
- Δ 12 weight 12 \mathcal{O} cusp form

定理 2 (Gross).

$$\sqrt{\pi} \prod_{a \in (\mathbb{Z}/d\mathbb{Z})^{\times}} \Gamma\left(\frac{a}{d}\right)^{w\epsilon(a)/4h}$$

と k の order で虚数乗法を持つ楕円曲線 E の正則 1 形式の周期は \mod 代数的数倍で一致

定理 3. 微分形式を積分することでコホモロジーの同型が得られる。

$$H^i_{dR}(X/k) \otimes \mathbb{C} \to H^i(X(\mathbb{C}), \mathbb{C})$$

 $\omega \mapsto (\gamma \mapsto \int_{\mathbb{R}} \omega)$

相対的な比較定理

$$\mathcal{H}^n_{dR}(A/S) \to R^n \pi_* \mathbb{C} \otimes_{\mathbb{C}} O_S$$

定理 4. 以下は同値

- 1. ω_s は $\pi_1(S,s)$ 不変な $H^n(A_s,\mathbb{C})$ の元
- $2. \omega$ は $R^n\pi_*\mathbb{C}$ の大域切断
- 3. 正則ベクトル東 $\omega\in\mathcal{H}^n_{dR}(A(\mathbb{C})/S(\mathbb{C}))$ の $s\in S$ に対して ω_s の周期格子が一定
- 4. 代数的ベクトル束 $\omega \in \mathcal{H}^n_{dR}(A/S)$ の $s \in S$ に対して ω_s の周期格子が一定

モジュラー曲線の構成。 上半平面 h を考え、 $\pi: h \times \mathbb{C}/L \to h$ を $L = \{(\tau, x), x \in \mathbb{Z} \oplus \tau \mathbb{Z} \subset \mathbb{C}\}$ で定める。 さらに $SL_2(\mathbb{Z})$ (もしくはより一般のレベル) でわる。 これはファイバーにも作用 $r_{T^{-1}}: (Y/L)_{T(n)} \to (Y/L)_n$ をもつ

虚二次体に対応する点を h の部分集合と思い、 $SL_2(\mathbb{Z})$ が作用。これに楕円曲線を引き戻して割る。(離散集合になる)