ALGEBRA & CROSS-TABULATION

Where is she going with this?

- Solving for an unknown quantity
- Variables
- Weighted averages
- Cross-tabulation

Problem: x + 4 = 7

Problem: x + 4 = 7

Goal: Isolate the unknown variable

Problem: x + 4 = 7

Goal: Isolate the unknown variable

Process: Do the same operation to both sides

Problem: x + 4 = 7

Goal: Isolate the unknown variable

Process: Do the same operation to both sides

$$x + 4 = 7$$

$$x + 4 - 4 = 7 - 4$$

$$x = 3$$

Problem: 3x = 12

Problem: 3x = 12

Goal: Isolate the unknown variable

Process: Do the same operation to both sides

$$3x = 12$$

Problem: 3x = 12

Goal: Isolate the unknown variable

Process: Do the same operation to both sides

$$3x = 12$$

$$\frac{3x}{3} = \frac{12}{3}$$

Problem: 3x = 12

Goal: Isolate the unknown variable

Process: Do the same operation to both sides

$$3x = 12$$

$$\frac{3x}{3} = \frac{12}{3}$$

$$x = 4$$

1.
$$x + 5 = 12.7$$

$$2. \quad \frac{38}{216} = \frac{x}{1,000}$$

3.
$$5(3x - 2) = 35$$

4.
$$\frac{3}{x} = 6$$

5.
$$4x^2 = 100$$

1.
$$x + 5 = 12.7$$
$$x + 5 - 5 = 12.7 - 5$$
$$x = 7.7$$

1.
$$x + 5 = 12.7$$
$$x + 5 - 5 = 12.7 - 5$$
$$x = 7.7$$

2.
$$\frac{38}{216} = \frac{x}{1,000}$$
$$\frac{38}{216} \times 1,000 = \frac{x}{1,000} \times 1,000$$
$$\frac{38,000}{216} = x$$
$$x = 176$$

3.

$$5(3x-2)=35$$

$$\frac{5(3x-2)}{5} = \frac{35}{5}$$

$$3x - 2 = 7$$

$$3x - 2 + 2 = 7 + 2$$

$$3x = 9$$

$$\frac{3x}{3} = \frac{9}{3}$$

$$x = 3$$

3.

$$5(3x - 2) = 35$$

$$\frac{5(3x-2)}{5} = \frac{35}{5}$$

$$3x - 2 = 7$$

$$3x - 2 + 2 = 7 + 2$$

$$3x = 9$$

$$\frac{3x}{3} = \frac{9}{3}$$

$$x = 3$$

4.

$$\frac{3}{x} = 6$$

$$\frac{3}{x} * x = 6 * x$$

$$3 = 6x$$

$$\frac{3}{6} = x$$

$$0.5 = x$$

5. $4x^{2} = 100$ $\sqrt{4x^{2}} = \sqrt{100}$ 2x = 10 $\frac{2x}{2} = \frac{10}{2}$ x = 5

5.

$$4x^2 = 100$$

$$\sqrt{4x^2} = \sqrt{100}$$

$$2x = 10$$

$$\frac{2x}{2} = \frac{10}{2}$$

$$x = 5$$

6.

$$4x^2 = 100$$

$$\frac{4x^2}{4} = \frac{100}{4}$$

$$x^2 = 25$$

$$\sqrt{x^2} = \sqrt{25}$$

$$x = 5$$

Variables

- Variable: a quantity that during a calculation is assumed to vary or be capable of varying in value
 - Often represented as a letter or a symbol
 - For example $x, y, z, a, b, \beta, \alpha, \theta, ...$

Function Notation

$$y = 4x - 3$$
$$f(x) = 4x - 3$$

Function Notation

$$y = 4x - 3$$
$$f(x) = 4x - 3$$
$$g(x) = 2x - 1$$

Function Notation

$$y = 4x - 3$$

$$f(x) = 4x - 3$$

$$g(x) = 2x - 1$$

$$h(x) = 5x - 6$$

Evaluating Algebraic Equations

$$y = 5 + 2x$$

When given values for x, obtain y

x:
$$\{2, 4, 7, 12\}$$

 $y = 5 + 2(2) = 5 + 4 = 9$
 $y = 5 + 2(4) = 5 + 8 = 13$
 $y = 5 + 2(7) = 5 + 14 = 19$
 $y = 5 + 2(12) = 5 + 24 = 29$

$$f(x) = 5 + 2x$$

When given values for *x*, evaluate the function

x:
$$\{2, 4, 7, 12\}$$

 $f(2) = 5 + 2(2) = 5 + 4 = 9$
 $f(4) = 5 + 2(4) = 5 + 8 = 13$
 $f(7) = 5 + 2(7) = 5 + 14 = 19$
 $f(12) = 5 + 2(12) = 5 + 24 = 29$

- 1. Evaluate $y = \frac{2}{3}\alpha + 4\beta$ for $\alpha = 5$ and $\beta = 2$.
- 2. If $f(x) = x^2 x + 2$, then f(5) = ?
- 3. Given $f(x) = x^2 x + 2$, evaluate f(2a).

1. Evaluate $y = \frac{2}{3}\alpha + 4\beta$ for $\alpha = 5$ and $\beta = 2$.

$$y = \frac{2}{3}(5) + 4(2)$$

$$y = \frac{10}{3} + 8 = \frac{10}{3} + \frac{24}{3} = \frac{34}{3}$$

$$y = 11\frac{1}{3} = 11.333$$

2. If
$$f(x) = x^2 - x + 2$$
, then $f(5) = ...$

$$f(5) = 5^2 - 5 + 2$$

$$f(5) = 25 - 5 + 2$$

$$f(5) = 22$$

3. Given $f(x) = x^2 - x + 2$, evaluate f(2a).

$$f(2a) = (2a)^2 - 2a + 2$$

$$f(2a) = 4a^2 - 2a + 2$$

You're taking a class for which you have received three grades: an 85% on your midterm, a 91% on your project, and a 93% on your final. All count equally toward your final grade. What is your final percentage grade?

$$\frac{85 + 91 + 93}{3} = 89.7$$

You're taking a class for which you have received three grades: an 85% on your midterm, a 91% on your project, and a 93% on your final. All count equally toward your final grade. What is your final percentage grade?

$$\frac{85 + 91 + 93}{3} = 89.7$$

If instead the midterm and project were worth 30% of your grade and the final was worth 40% of your grade, what would be your final percentage?

Average

$$\frac{85 + 91 + 93}{3} = 89.7$$

Average

$$\frac{85 + 91 + 93}{3} = 89.7$$

$$\left(\frac{1}{3}\right)85 + \left(\frac{1}{3}\right)91 + \left(\frac{1}{3}\right)93 = 89.7$$

Average

$$\frac{85 + 91 + 93}{3} = 89.7$$

$$\left(\frac{1}{3}\right)85 + \left(\frac{1}{3}\right)91 + \left(\frac{1}{3}\right)93 = 89.7$$

Weighted Average

$$\left(\frac{3}{10}\right)85 + \left(\frac{3}{10}\right)91 + \left(\frac{4}{10}\right)93 = 90$$

Average

$$\frac{85 + 91 + 93}{3} = 89.7$$

$$\left(\frac{1}{3}\right)85 + \left(\frac{1}{3}\right)91 + \left(\frac{1}{3}\right)93 = 89.7$$

(0.33)85 + (0.33)91 + (0.33)93 = 88.8

Weighted Average

$$\left(\frac{3}{10}\right)85 + \left(\frac{3}{10}\right)91 + \left(\frac{4}{10}\right)93 = 90$$

$$(0.3)85 + (0.3)91 + (0.4)93 = 90$$

Average

$$\frac{85 + 91 + 93}{3} = 89.7$$

$$\left(\frac{1}{3}\right)85 + \left(\frac{1}{3}\right)91 + \left(\frac{1}{3}\right)93 = 89.7$$

Weighted Average

$$\left(\frac{3}{10}\right)85 + \left(\frac{3}{10}\right)91 + \left(\frac{4}{10}\right)93 = 90$$

$$(0.3)85 + (0.3)91 + (0.4)93 = 90$$

For a particular disease, 80% of cases are among children <10-years-old. Among these children, the risk of experiencing serious sequelae is 15%. In older children and adults, the risk of serious sequelae is only 5%. What is the risk of serious sequelae overall for all ages?

For a particular disease, 80% of cases are among children <10-years-old. Among these children, the risk of experiencing serious sequelae is 15%. In older children and adults, the risk of serious sequelae is only 5%. What is the risk of serious sequelae overall for all ages?

$$(0.8 * 0.15) + (0.2 * 0.05) = 0.13 = 13\%$$

Where is she going with this?

- Solving for an unknown quantity ✓
- Variables ✓
- Weighted averages ✓
- Cross-tabulation

a tool that allows you analyze the relationship between two or more categorical variables

Other names: frequency table, contingency table

a tool that allows you analyze the relationship between two or more categorical variables

 2×2 table

a tool that allows you analyze the relationship between two or more categorical variables

 2×2 table

Gene variant A	
Gene variant B	

2 × 2 table	Breast cancer	No breast cancer
Gene variant A		
Gene variant B		

2 × 2 table		Breast cancer	No breast cancer
	Gene variant A	5	
	Gene variant B		

2 × 2 table		Breast cancer	No breast cancer
	Gene variant A	5	
	Gene variant B	7	

2 × 2 table		Breast cancer	No breast cancer
	Gene variant A	5	10
	Gene variant B	7	

2 × 2 table		Breast cancer	No breast cancer
	Gene variant A	5	10
	Gene variant B	7	30

2 × 2 table		Breast cancer	No breast cancer	
	Gene variant A	5	10	15
	Gene variant B	7	30	37
		12	40	

2 × 2 table		Breast cancer	No breast cancer	
	Gene variant A	5	10	15
	Gene variant B	7	30	37
		12	40	52

2 × 2 table		Breast cancer	No breast cancer	
	Gene variant A	5 (5/52)	10	15
	Gene variant B	7	30	37
		12	40	52

2 × 2 table		Breast cancer	No breast cancer	
	Gene variant A	5 (0.096)	10	15
	Gene variant B	7	30	37
		12	40	52

2 × 2 table		Breast cancer	No breast cancer	
	Gene variant A	5 (9.6%)	10	15
	Gene variant B	7	30	37
		12	40	52

2 × 2 table		Breast cancer	No breast cancer	
	Gene variant A	5 (9.6%)	10 (19.2%)	15
	Gene variant B	7 (13.5%)	30 (57.7%)	37
		12	40	52

2 × 2 table		Breast cancer	No breast cancer	
	Gene	5	10	15
	variant A	(9.6%)	(19.2%)	(28.8%)
	Gene	7	30	37
	variant B	(13.5%)	(57.7%)	(71.2%)
		12 (23.1%)	40 (76.9%)	52 (100%)

In a particular class, 12 of 27 people with a height greater than 66 inches prefer pizza. Of the 49 students in the class, 10 have a height less than or equal 66 inches and prefer soup.

Construct a frequency table describing the relationship between food preference and height. Use the table to answer these questions. Given that a person prefers soup, is the person more likely to be taller or shorter than 66 inches? Does it seem like pizza/soup preference is related to height?

	Prefers pizza	Prefers soup	
> 66 in			27
≤ 66 in			

	Prefers pizza	Prefers soup	
> 66 in	12		27
≤ 66 in			

In a particular class, 12 of 27 people with a height greater than 66 inches prefer pizza. Of the 49 students in the class, 10 have a height less than or equal 66 inches and prefer soup.

	Prefers pizza	Prefers soup	
> 66 in	12		27
≤ 66 in			

49

In a particular class, 12 of 27 people with a height greater than 66 inches prefer pizza. Of the 49 students in the class, 10 have a height less than or equal 66 inches and prefer soup.

	Prefers pizza	Prefers soup	
> 66 in	12		27
≤ 66 in		10	

49

In a particular class, 12 of 27 people with a height greater than 66 inches prefer pizza. Of the 49 students in the class, 10 have a height less than or equal 66 inches and prefer soup.

	Prefers pizza	Prefers soup	
> 66 in	12	15	27
≤ 66 in		10	

49

	Prefers pizza	Prefers soup	_
> 66 in	12	15	27
≤ 66 in		10	
		25	49

	Prefers pizza	Prefers soup	
> 66 in	12	15	27
≤ 66 in	12	10	
		25	49

	Prefers pizza	Prefers soup	
> 66 in	12	15	27
≤ 66 in	12	10	22
,	24	25	49

Given that a person prefers soup, is the person more likely to be taller or shorter than 66 inches?

	Prefers pizza	Prefers soup	
> 66 in	12	15	27
≤ 66 in	12	10	22
,	24	25	49

Given that a person prefers soup, is the person more likely to be taller or shorter than 66 inches?

	Prefers pizza	Prefers soup	
> 66 in	12	15 (15/25)	27
≤ 66 in	12	10 (10/25)	22
,	24	25	49

Given that a person prefers soup, is the person more likely to be taller or shorter than 66 inches?

	Prefers pizza	Prefers soup	
> 66 in	12	15 (0.6)	27
≤ 66 in	12	10 (0.4)	22
	24	25	49

Given that a person prefers soup, is the person more likely to be taller or shorter than 66 inches? Taller

	Prefers pizza	Prefers soup	_
> 66 in	12	15 (0.6)	27
≤ 66 in	12	10 (0.4)	22
,	24	25	49

	Prefers pizza	Prefers soup	
> 66 in	12	15	27
≤ 66 in	12	10	22
·	24	25	49

	Prefers	Prefers	
	pizza	soup	
> 66 in	12 (12/49)	15 (15/49)	27 (27/49)
≤ 66 in	12 (12/49)	10 (10/49)	22 (22/49)
	24 (24/49)	25 (25/49)	49

	Prefers pizza	Prefers soup	
> 66 in	12	15	27
	(0.245)	(0.306)	(0.551)
≤ 66 in	12	10	22
	(0.245)	(0.204)	(0.449)
	24 (0.490)	25 (0.510)	49

	Prefers	Prefers	
	pizza	soup	
> 66 in	12 (24.5%)	15 (30.6%)	27 (55.1%)
≤ 66 in	12 (24.5%)	10 (20.4%)	22 (44.9%)
	24 (49.0%)	25 (51.0%)	49

	Prefers	Prefers	
	pizza	soup	
> 66 in	12 (25%)	15 (31%)	27 (55%)
≤ 66 in	12 (25%)	10 (20%)	22 (45%)
	24 (49%)	25 (51%)	49

Does it seem like pizza/soup preference is related to height? Maybe! Particularly for those who prefer soup.

	Prefers pizza	Prefers soup	
> 66 in	12	15	27
	(24.5%)	(30.6%)	(55.1%)
≤ 66 in	12	10	22
	(24.5%)	(20.4%)	(44.9%)
	24 (49.0%)	25 (51.0%)	49

- Helps us understand the relationship between categorical variables (or those that can be made categorical)
- Good way to summarize data
- Can be useful in organizing diverse pieces of data about the same population