Übungen zur Linearen Algebra l Lösungen zum 9. Übungsblatt

Aufgabe 1 (3+3) Punkte). Es sei K ein Körper.

- (a) Wir betrachten lineare Abbildungen $f: V \to W$ und $g: W \to V$ zwischen K-Vektorräumen V und W. Zeigen Sie: Es gibt genau dann ein $v \in V \setminus \{0\}$ mit $(g \circ f)(v) = v$, wenn es ein $w \in W \setminus \{0\}$ gibt mit $(f \circ g)(w) = w$.
- (b) Es sei $A \in M_{n,m}(K)$ und $B \in M_{m,n}(K)$. Zeigen Sie: Die Matrix $E_n AB$ ist genau dann invertierbar, wenn die Matrix $E_m BA$ invertierbar ist.

${f L\ddot{o}sung}$

- (a) Sei $v \neq 0$ mit $(g \circ f)(v) = v$. Insbesondere ist dann $w = f(v) \neq 0$. Dann gilt $(f \circ g)(w) = (f \circ g \circ f)(v) = f(v) = w$ wie gefordert. Aus Symmetriegründen gilt auch die andere Implikation.
- (b) E_n-AB ist genau dann nicht invertierbar, wenn es ein $v\in K^n$ gibt mit $(E_n-AB)\cdot v=0$ und $v\neq 0$, also genau dann, wenn es ein $v\neq 0$ mit ABv=v gibt. Nach (a) ist das genau dann der Fall, wenn es ein $w\in K^m$ gibt, welches ungleich null ist und für welches BAw=w gilt, also genau dann, wenn es ein nicht-triviales Element im Kern von E_m-BA gibt. Dies ist genau dann der Fall, wenn E_m-BA nicht invertierbar ist.

Aufgabe 2 (2+4 Punkte). Sei K ein Körper. Seien ferner $A \in M_{n,m}(K)$ und $B \in M_{m,n}(K)$ zwei Matrizen, für die ABA = A gilt. Zeigen Sie:

- (a) $\ker A = \{x BAx \mid x \in K^m\}.$
- (b) Das inhomogene Gleichungssystem Ax = b hat für $b \in K^n$ genau dann eine Lösung, wenn ABb = b gilt. In diesem Fall gilt:

$${x \in K^m \mid Ax = b} = {Bb + x' - BAx' \mid x' \in K^m}.$$

Lösung.

- (a) Ist $x \in \ker A$, so ist x = x 0 = x BAx. Umgekehrt gilt für $x \in K^m$: A(x BAx) = Ax ABAx = Ax Ax = 0.
- (b) Gilt Ax = b, so gilt ABb = AB(Ax) = Ax = b. Ist umgekehrt ABb = b, so löst x = Bb offenbar Ax = b.

Gegeben x mit Ax = b setze x' = x. Dann ist Bb + x' - BAx' = Bb + x - BAx = Bb + x - Bb = x. Ist umgekehrt $x' \in K^m$ und das inhomogene Gleichungssystem lösbar, so gilt nach eben gezeigtem: A(Bb + x' - BAx') = ABb + Ax' - ABAx' = ABb = b.

Aufgabe 3 $(4 \cdot 1 + 2 \text{ Punkte})$. Sei $a \in \mathbb{Q}$. Bringen Sie die folgenden Matrizen über \mathbb{Q} mit dem Verfahren der Vorlesung in strenge Zeilenstufenform und bestimmen Sie die jeweiligen Ränge.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \end{pmatrix}, \begin{pmatrix} a & 1 & a \\ 1 & a & 1 \\ a & 1 & a \end{pmatrix}.$$

Lösung. Die Ränge der ersten vier Matrizen sind jeweils 2, 3, 2 und 1. Wir führen den Algorithmus

exemplarisch an der letzten Matrix vor:

$$\begin{pmatrix} a & 1 & a \\ 1 & a & 1 \\ a & 1 & a \end{pmatrix} \xrightarrow{|\cdot|(-1)}_{+} \longrightarrow \begin{pmatrix} a & 1 & a \\ 1 & a & 1 \\ 0 & 0 & 0 \end{pmatrix} \xleftarrow{-} \longrightarrow \begin{pmatrix} 1 & a & 1 \\ a & 1 & a \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{|\cdot|(-a)}_{+} \longrightarrow \begin{pmatrix} 1 & a & 1 \\ 0 & 1 & a \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{a \neq \pm 1} \begin{pmatrix} 1 & a & 0 \\ 0 & 1 - a^{2} & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{|\cdot|(1 - a^{2})^{-1}} \longrightarrow \begin{pmatrix} 1 & a & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{|\cdot|(-a)}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Ist $a \in \{\pm 1\}$, so ist bereits vor dem gestrichelten Pfeil die strenge Zeilenstufenform erreicht und der Rang eins, sonst ist der Rang zwei.

Aufgabe 4 (1+2+2+1) Punkte). Sei $\underline{e}=(e_1,e_2)$ die Standardbasis von $V=\mathbb{Q}^2, \underline{v}=((1,2)^t,(0,-1)^t)$ und $\underline{w}=((1,1)^t,(3,2)^t)$.

- (a) Zeigen Sie, dass auch \underline{v} und \underline{w} Basen von V sind. Bestimmen Sie $T = M_{\underline{e}}^{\underline{v}}(\mathrm{id}_V)$ und $S = M_{\underline{e}}^{\underline{w}}(\mathrm{id}_V)$.
- (b) Invertieren Sie T und S mit dem Verfahren der Vorlesung.
- (c) Bestimmen Sie die Darstellungsmatrizen $M_{\underline{e}}^{\underline{e}}(f)$, $A = M_{\underline{v}}^{\underline{v}}(f)$, $B = M_{\underline{w}}^{\underline{w}}(f)$ und $C = M_{\underline{v}}^{\underline{w}}(\mathrm{id}_V)$ zum Endomorphismus $f \colon V \to V$, welcher durch $x \mapsto \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix} \cdot x$ definiert ist.
- (d) Bestimmen Sie AC CB.

Lösung.

und

(a) Es ist sofort erkennbar, dass $(1,2)^t \notin \text{Lin}((0,-1)^t)$ und $(3,2)^t \notin \text{Lin}((1,1)^t)$. Damit sind \underline{v} und \underline{w} linear unabhängig und aus Dimensionsgründen auch Basen. Wir lesen sofort ab:

$$T = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}, \qquad S = \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix}.$$

(b) Wir bestimmen $T^{-1} = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$ durch:

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{|\cdot(-2)|_+} \longrightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & -1 & -2 & 1 \end{pmatrix} \xrightarrow{|\cdot(-1)|} \longrightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & -1 \end{pmatrix}$$

Wir bestimmen $S^{-1} = \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix}$ durch:

$$\begin{pmatrix} 1 & 3 & \begin{vmatrix} 1 & 0 \\ 1 & 2 & \begin{vmatrix} 0 & 1 \end{vmatrix} \end{pmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 3 & \begin{vmatrix} 1 & 0 \\ 0 & -1 & \begin{vmatrix} -1 & 1 \end{pmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \begin{vmatrix} -1 & 1 \end{pmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \begin{vmatrix} -1 & 1 \end{pmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \begin{vmatrix} -1 & 1 \end{pmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & \begin{vmatrix} -2 & 3 \\ 0 & -1 & \end{vmatrix} \xrightarrow{|\cdot|(-1)|}_{+} \longrightarrow \begin{pmatrix} 1 & 0 & |\cdot|(-1)|\\ 0 & -1 &$$

(c) $M_{\underline{e}}^{\underline{e}}(f) = \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}$ per Definition. Es ist

$$A = M_{\underline{\underline{v}}}^{\underline{e}}(\mathrm{id}_{V}) M_{\underline{\underline{e}}}^{\underline{e}}(f) M_{\underline{\underline{e}}}^{\underline{v}}(\mathrm{id}_{V}) = T^{-1} M_{\underline{\underline{e}}}^{\underline{e}}(f) T = \begin{pmatrix} 5 & -2 \\ 13 & -5 \end{pmatrix},$$

$$B = M_{\underline{\underline{w}}}^{\underline{e}}(\mathrm{id}_{V}) M_{\underline{\underline{e}}}^{\underline{e}}(f) M_{\underline{\underline{e}}}^{\underline{w}}(\mathrm{id}_{V}) = S^{-1} M_{\underline{\underline{e}}}^{\underline{e}}(f) S = \begin{pmatrix} -12 & -29 \\ 5 & 12 \end{pmatrix},$$

 $= \frac{1}{\underline{w}}(1-v) - \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(1-v) = \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(3) = \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(3) = \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(3) = \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(3) = \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(3) = \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(3) = \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(3) = \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(3) = \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}(3)} - \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}}(3) - \frac{\underline{e}}{\underline{e}(3)} - \frac{\underline{e}}{\underline{e}(3)} - \frac{\underline{e}}{$

$$C = M_{\underline{\underline{v}}}^{\underline{e}}(\mathrm{id}_{\mathbf{V}}) M_{\underline{\underline{e}}}^{\underline{w}}(\mathrm{id}_{\mathbf{V}}) = T^{-1}S = \begin{pmatrix} 1 & 3 \\ 1 & 4 \end{pmatrix}.$$

 $(\mathrm{d}) \ AC - CB = M_{\underline{v}}^{\underline{v}}(f) M_{\underline{v}}^{\underline{w}}(\mathrm{id}_V) - M_{\underline{v}}^{\underline{w}}(\mathrm{id}_V) M_{\underline{w}}^{\underline{w}}(f) = M_{\underline{v}}^{\underline{w}}(f) - M_{\underline{v}}^{\underline{w}}(f) = 0.$