Часткова проблема власних значень. Сингулярне розкладення матриці

Часткова проблема власних значень

• В багатьох задачах потрібно знайти не всі власні значення, а лише деякі: наприклад, максимальне за модулем власне число та відповідний вектор, мінімальне за модулем власне число та відповідний вектор. Розглянемо алгоритми, які дозволяють розв'язати часткову проблему.

Степеневий метод

 Застосовується для знаходження максимального по модулю власного числа матриці А та відповідного власного вектора.

$$x_1, x_2, x_n$$
 — базис.

max IL I (для матриці A) = 1/min IL I (для матриці A^(-1))

Нехай максимальне за модулем значення дійсне, і немає кратних власних значень

$$|\lambda_{1}| > |\lambda_{2}| \ge |\lambda_{3}| \dots \ge |\lambda_{n}|$$

$$y_{1} = Ay_{0}, y_{2} = Ay_{1}, \dots, y_{i} = Ay_{i-1}$$

Довільний у₀:

Запишемо розкладення $y_0...y_i$ за базисом $x_1,...x_n$

При цьому координата $y_0 <> 0$, тож $y_1, y_2, ..., y_i$ теж. Нехай $a_1 <> 0$

$$\begin{cases} y_0 = ax_1 + a_1x_2 + \dots a_nx_n = \sum_{l=1}^n a_lx_l; \\ y_1 = Ay_0 = a_1\lambda_1x_1 + a_2\lambda_2x_2 + \dots a_n\lambda_nx_n = \sum_{l=1}^n a_l\lambda_lx_l; \\ \dots \\ y_i = A^iy_0 = a_1\lambda_1^ix_1 + a_2\lambda_2^ix_2 + \dots a_n\lambda_n^ix_n = \sum_{l=1}^n a_l\lambda_l^ix_l \end{cases}$$

Розкладемо y_k (k=0,1,...,i) за базисом $u_1,u_2,...,u_n$:

$$y_k = \sum_{j=1}^{n} b_{jk} u_j, k = 0, 1, ..., i$$

Знайдемо розкладення y_k (k=0,1,...,i) через базис $u_1,u_2,...,u_n$ підставляючи розкладення :

$$\underline{y_k} = \sum_{l=1}^{n} a_l \lambda_l^k x_l = \sum_{l=1}^{n} a_l \lambda_l^k \sum_{j=1}^{n} c_{jl} u_j = \sum_{j=1}^{n} \sum_{l=1}^{n} a_l \lambda_l^k c_{jl} u_j$$

Порівняємо розкладення та врахуємо лінійну незалежність {u_i}

$$b_{jk} = \sum_{l=1}^{n} a_l \lambda_l^k c_{jl} \qquad b_{jk+1} = \sum_{l=1}^{n} a_l \lambda_l^{k+1} c_{jl}$$

Розглянемо відношення компонент для двох сусідніх ітерацій:

$$\begin{split} \frac{b_{jk+1}}{b_{jk}} &= \frac{a_1 \lambda_1^{k+1} c_{j1} + a_2 \lambda_2^{k+1} c_{j2} + \ldots + a_n \lambda_n^{k+1} c_{jn}}{a_1 \lambda_1^k c_{j1} + a_2 \lambda_2^k c_{j2} + \ldots + a_n \lambda_n^k c_{jn}} = \\ &= \lambda_1 \frac{1 + \frac{a_2 c_{j2}}{a_1 c_{j1}} \left(\frac{\lambda_2}{\lambda_1}\right)^{k+1} + \ldots + \frac{a_n c_{jn}}{a_1 c_{j1}} \left(\frac{\lambda_n}{\lambda_1}\right)^{k+1}}{1 + \frac{a_2 c_{j2}}{a_1 c_{j1}} \left(\frac{\lambda_2}{\lambda_1}\right)^k + \ldots + \frac{a_n c_{jn}}{a_1 c_{j1}} \left(\frac{\lambda_n}{\lambda_1}\right)^k} \\ &= \lambda_1 \frac{b_{jk+1}}{b_{jk}} = \lambda_1 (1 + O[\left(\frac{\lambda_2}{\lambda_1}\right)^k + \left(\frac{\lambda_3}{\lambda_1}\right)^k + \ldots + \left(\frac{\lambda_n}{\lambda_1}\right)^k]) \longrightarrow \lim \frac{b_{jk+1}}{b_{jk}} = \lambda_1 \end{split}$$

Власний вектор при максимальному власному числі

$$y_k = A^k y_0$$

Наближено = власному вектору, який відповідає 1 власному числу

$$A^k y_0 = a_1 \lambda_1^k x_1 + \sum_{l=2}^n a_l \lambda_l^k x_l = a_1 \lambda_1^k (x_1 + \sum_{l=2}^n \frac{a_l}{a_l} \left(\frac{\lambda_l}{\lambda_1} \right)^k x_l) \approx a_1 \lambda_1^k x_1$$
 при великих к

Зворотний степеневий метод зі зсувом, пошук мінімального за модулем власного числа

Ітерації дають збіг до максимального за модулем власного числа матриці А, а отже, 1/min_за_ модулем для А⁻¹.

Збіжність методу повільна, тому для прискорення використовують зсув.

Нехай відоме наближене значення $\widetilde{\lambda}_k$ деякого власного числа, не обов'язково мінімального за модулем. Тоді зсунута матриця має власні значення $\lambda_k - \widetilde{\lambda}_k$. Для матриці $(A - \widetilde{\lambda}_k I)$ власне значення $\lambda_k - \widetilde{\lambda}_k$ є найменшим за модулем. Зворотні ітерації зі зсунутою матрицею набувають виду:

$$(A - \tilde{\lambda}_{k} I) x^{(n+1)} = x^{(n)}$$

$$\lambda_{k} - \tilde{\lambda}_{k}$$

Після кожної ітерації <u>слід нормувати</u> одержаний вектор, для запобігання появі надто великих значень.

Зворотний степеневий метод зі змінним зсувом

$$(A - \tilde{\lambda}_k^{(n)} I) x^{(n+1)} = x^{(n)} \qquad \qquad \tilde{\lambda}_k^{(n+1)} = \tilde{\lambda}_k^{(n)} + \langle \frac{x_i^{(n)}}{x_i^{(n+1)}} \rangle$$

<....> - усереднення за усіма компонентами.

3 урахуванням нормування:

$$(A - \tilde{\lambda}_{k}^{(n)}I)y^{(n+1)} = x^{(n)}$$

$$\tilde{\lambda}_{k}^{(n+1)} = \tilde{\lambda}_{k}^{(n)} + \langle \frac{x_{i}^{(n)}}{y_{i}^{(n+1)}} \rangle$$

$$x^{(n+1)} = \frac{y^{(n)}}{\parallel y^{(n)} \parallel}$$

Метод скалярних добутків

є модифікацією степеневого методу та використовується для знаходження максимального за модулем власного значення дійсної матриці. Особливо зручний для симетричних матриць.

$$\max_{i} |\lambda_{i}| \approx \frac{(y_{k}, y_{k}')}{(y_{k-1}, y_{k}')} = \frac{(A^{k} y_{0}, A^{k} y_{0})}{(A^{k-1} y_{0}, A^{k} y_{0})}$$

Сингулярне розкладення матриць

узагальнення власних чисел на випадок прямокутних матриць- називається сингулярними числами.

Тут https://www.alglib. net/matrixops/gen eral/svd.php наведено огляд існуючих методів сингулярного розкладення. Готова реалізація методу SVD (singular value decomposition) e не лише на мові Python, а й на мові C++.

Сингулярним розкладенням матриць називається її факторизація виду

A=UŞV`, де

U- ортогональна матриця mxm,

V- ортогональна матриця nxn,

S- діагональна матриця mxn, де по діагоналі розташовані сингулярні числа σ_{ii} = σ_{i} ≥0.

Абож,

U'AV=S.

Задача: підібрати U,V щоби перетворити вихідну матрицю на діагональну

Етапи алгоритму сингулярного розкладення матриці

- 1)Приведення до двухдіагональної форми (ненульовими є елементи діагоналі та першої наддіагоналі). Введення нулів може відбуватись із використанням так званих хаусхолдерових перетворень. Вводити нулі до матриці А за допомогою, наприклад, гаусівського виключення не можна, оскільки відповідне перетворення не буде ортогональним.
- 2)Ітераційний процес, де наддіагональні елементи зменшуються до нульових значень із заданою точністю. Використовується різновид QR-алгоритма, використовуються матриці обертання Т.

Приведення до двудіагональної форми

• За першим стовпцем-вектором a_1 матриці А будуємо вектор u_1 , який відрізняється від a_1 лише першою координатою: вона збільшена на $|a_1|$ (тут мається на увазі евклідова норма).

$$U_1 = I - \beta_1^{-1} u_1 u_1', \quad (1)$$

$$\beta_1 = \frac{||u_1||^2}{2}. \quad (2)$$

$$A_1 = A, /$$
 далі знаходимо $A_2 = U_1 A_1$ (використовуючи (1) та (2)):
$$U_1 a_1 = (I - \beta_1^{-1} u_1 u_1') a_1 = a_1 - \beta_1^{-1} u_1 u_1' a_1 = a_1 - u_1,$$
 оскільки

$$\beta_1^{-1}u_1'a_1 = \frac{2}{\left||u_1|\right|^2} \left(a_1 + \left||a_1|\right| l_1, a_1\right) = \frac{2(a_1 + \left||a_1|\right| l_1, a_1)}{(a_1 + \left||a_1|\right| l_1, a_1 + \left||a_1|\right| l_1)} = \frac{2||a_1||^2 + 2a_{11} \left||a_1|\right|}{2||a_1||^2 + 2a_{11} \left||a_1|\right|} = 1,$$
 де a_{11} – перша координата вектора a_1 .

Перший стовпець після перетворення и1

$$\mathbf{u}_1 a_1 = a_1 - \mathbf{u}_1 = (-||a_1||, 0, 0, \dots 0)'.$$

 $||\mathbf{u}_1 a_1|| = ||a_1||.$

Другий стовпець матриці А дорівнює: $u_1a_2=a_2$ - $\beta_1^{-1}u_1u_1'a_2=a_2-c_{12}u_1$, $c_{12}=\beta_1^{-1}(u_1',a_2)$. Третій стовпець матриці А дорівнює: $u_1a_3=a_2$ - $\beta_1^{-1}u_1u_1'a_3=a_3-c_{13}u_1$, $c_{13}=\beta_1^{-1}(u_1',a_3)$. І так далі.

Стовпці матриці A_2 отримуються відніманням векторів, колінеарних u_{1_j} зі стовпців A_1 .

Перетворення U_1 — хаусхолдерове віддзеркалення, і є ортогональним $(U_1'U_1$ =I). З ортогональності перетворення U_1 витікає, що довжина будь-якого стовпця в A_2 дорівнює довжині відповідного стовпця в A_1 .

- Перед тим, як вводити нулі в другому стовпці під діагоналлю, за допомогою V_1 одержимо нулі в першому рядку. При цьому нулі, отримані в 1 стовпці, повинні зберегтись, довжина першого рядка не повинна змінитись. Перетворення V_1 породжується матрицею A_2 .
- Для цього будуємо вектор v_1 , всі координати якого окрім першої та другої, дорівнюють A_2 . Перша координата дорівнює нулю, друга дорівнює елементу першого рядка мінус норма вектора розмірності (n-1), координати якого елементи першого рядка A_2 , починаючи з 2-го.

$$g_1 = \frac{||v_1||^2}{2}$$
, A₃=A₂V₁

$$a_i^{2'}V_1 = a_i^{2'}(I - g_1^{-1}v_1v_1') = a_i^{2'} - (g_1^{-1}a_i^{2'}, v_1)v_1';$$

з і-го рядка $a_i^{2\prime}$ матриці A_2 віднімаємо рядок, пропорційний v_1' .

Далі вводимо нулі в 2-й стовпець під діагоналлю, координати якого, починаючи з 3-ї, дорівнюють відповідним елементам 2-го стовпця. Всі побудови потрібно виконувати з матрицею розмірності (m-1)(n-1), яка одержується з A_3 відкиданням 1 стовпця та рядка. І так далі. Поки, в результаті не одержимо двухдіагональну матрицю. Для цього потрібно n перетворень U та n-2 перетворень V.

Приклад. 1 етап сингулярного розкладення

```
A=
                        1) Приведення до двухдіагонального виду
      6
             11
                        u_1 =
          12
                        8,416
      8 13
                        2,000
      9
          14
                        3,000
                                                           U_1a_1=a_1-u_1=
       10
             15
                        4,000
                                                           -7,416
                        5,000
                       \beta_1 = \frac{||u_1||^2}{2} = 62,415
                        U_1 = I - \beta_1^{-1} u_1 u_1'
                        A_1=A,
                        A_2=U_1A_1
```

$$c_{12} = \beta_1^{-1}(u_1', a_2) = 2,796, \, c_{13} = \beta_1^{-1}(u_1', a_3) = 4,592.$$

$$U_1a_2 = a_2 - 2,796u_1 =$$
-17,529
1,409
-0,387
-2,183

$$U_1 a_3 = a_3 - 4,592 u_1 =$$

-27,642

-3,949

2,817

-0,774

4,366

-7,957

Матриця A_2 =
-7,416 -17,529 -27,642
0 1,409 2,817
0 -0,387 -0,774
0 -2,183 4,366
0 -3,949 -7,957

Далі, одержимо нулі в 1 рядку: v_1 = 0 -50,261 -27,642

$$g_1 = 1645,124$$

$$V_1 = I - 0.000608 v_1 v_1$$

$$A_3 = A_2 V_1$$

Рядок A_3 з номером i одержимо так:

$$a'_{i}V_{1} = a'_{i} - (g_{1}^{-1}a_{i}', v_{1})v'_{1};$$

 $a'_{1}V_{1} = a'_{1} - 1 \cdot v_{1}' = (-7,416 \ 32,732 \ 0)$
 $a'_{2}V_{1} = a'_{2} + 0,090379v'_{1}' = (0 \ -3,133 \ 0,319)$
 $a'_{3}V_{1} = a'_{3} - 0,024828v'_{1}' = (0 \ 0,861 \ -0,088)$
 $a'_{4}V_{1} = a'_{4} + 0,006665v'_{1}' = (0 \ 4,856 \ -0.495)$
 $a'_{5}V_{1} = a'_{5} + 0,254344v'_{1}' = (0 \ 8.850 \ -0.901)$

. . .

Застосунки сингулярного розкладення

Для систем виду Ax=b, A:mxn, m≥n виникають питання:

- чи існує розв'язок,
- чи єдиний розв'язок,
- чи має система Ах=0 ненульові розв'язки.

Від системи <u>Ax=b</u> переходять до USV'x=b, V'x=z, U'b=d, і досліджують систему Sz=d.

При *т≥п* підсистеми, які виникають

- s_jz_j=d_j, якщо j≤n, s_{j≠0.}
- *0 ·zj=dj,* якщо j≤n, s_j=0
- *0=dj* j>n.

Обчислення визначників. det A=detU detS det V'.

• Оскільки <u>det U=±1</u>, <u>det V=±1</u>, тоді det A=±s1s2...sn.

Дослідження обумовленості матриць: число обумовленості cond A= max|s_i|/min|s_i| для матриць повного рангу. Кількість ненульових s_j відповідає рангу матриці.

Аналіз закономірностей, використання в алгоритмах машинного навчання для зниження розмірності простору. Зокрема, див. використання SVD в LSA (latent semantic analysis). https://www.youtube.com/watch?v=QUvQ7iv6c04

