10.7. ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ПОСТАВКАМИ СЫРЬЯ

Для ритмичной работы предприятия необходимо систематическое пополнение запаса сырья C, расходуемого при производстве продукции. Потребность в сырье С по месядам рассматриваемого планового периода выражается числами 150, 50. 100 и 100 ед. Пополнение запаса производится партиями, кратными 50 ед. На начало планового периода на складах предприятия имеется запас сырья в 100 ед. Складские помешения не позволяют хранить одновременно более 300 ед. сырья. К концу планового периода весь запас должен быть израсходован, поскольку предприятие переходит на выпуск новой продукции, для которой сырье С не потребуется. Затраты на пополнение запаса зависят от объема х партии поставки и описываются функцией P(x), заданной табл. 10.21. Затраты на хранение сырья зависят от среднего уровня \overline{m} запаса сырья в данном месяце, определяемого по формуле $\overline{m} = D/2 + j$, где D — объем потребления сырья в данном месяце, j — остаток сырья к концу этого месяца. Затраты на хранение описываются функцией $\varphi(\overline{m})$, заданной табл. 10.22.

Таблица 10.21

x	0	25	50	75	100	125	150	175	200	225	250	275	300
P(x)	0	50	48	44	40	36	32	27	24	22	21	21	20

Таблица 10.22

\overline{m}	0	25	50	75	100	125	150	175	200	225	250	275	300	325
$\varphi(\overline{m})$	0	3	8	15	30	36	41	46	50	51	52	53	54	56

Требуется так организовать процесс пополнения и хранения сырья на предприятии в плановом периоде, чтобы суммарные затраты минимизировались при непременном условии бесперебойного функционирования производства.

Функциональные уравнения Беллмана для рассматриваемой задачи имеют следующий вид:

для n=1

$$f_1(i) = P_1(x) + \varphi_1(d_1/2),$$
 (10.23)

где $i=0,50,100,\ldots; \min(d_1;M); x=d_1-i;$ для n=2,3,4

$$f_n(i) = \min_{i,x} (P_n(x) + \varphi_n(d_n/2 + (i+x-d_n) + f_{n-1}(i+x-d_n)),$$
 (10.24) где $i = 0, 50, 100, \ldots;$ $\min(d_1 + \ldots + d_n; M);$ $d_n - i \leqslant x \leqslant 1$

 $\leq d_1 + d_2 + \ldots + d_n - i.$

Если в условии поставленной задачи нумерация месяцев планового периода осуществляется в прямом направлении: от начала периода к его концу, т. е. t=1,2,3,4, то в уравнениях (10.23), (10.24) используется, как это принято в динамическом программировании, встречная нумерация: от конца к началу, т. е. n=1,2,3,4. В уравнениях (10.23), (10.24) i — уровень запаса сырья на начало месяца; x — объем партии поставки сырья; d_n — объем потребления сырья в n-м месяце; M — вместимость складских помещений предприятия; $f_n(i)$ — минимальные суммарные затраты на пополнение и хранение сырья за последние n месяцев планового периода при уровне запаса на начало n-го месяца в i ед.; $i+x-d_n$ — уровень запаса сырья на конец n-го месяца (одновременно это и уровень запаса сырья на начало (n-1)-го месяца).

В уравнении (10.24) первое слагаемое в правой части характеризует затраты в n-м месяце на пополнение запаса сырья в объеме x ед., второе — затраты на хранение сырья в этом месяце, если средний уровень запаса составляет $(d_n/2+(i+x-d_n))$ ед., третье — минимальные суммарные затраты на пополнение и хранение сырья за n-1 последних месяцев планового периода.

Используем функциональные уравнения (10.23), (10.24) для решения поставленной задачи.

Пусть n=1. Функциональное уравнение (10.23) примет вид

$$f_1(i) = P_1(x) + \varphi(100/2),$$
 (10.25)

где *i* — уровень запаса сырья на начало последнего месяца (первого от конца) — может принимать значения 0, 50 или 100, а *x* будет равняться 100, 50 или 0 соответственно, что и записано в первых двух столбцах табл. 10.23. В последнем столбце в соответствии с уравнением (10.25) приведены суммарные минимальные затраты на пополнение запаса (см. табл. 10.21) и его хранение (см. табл. 10.22).

i x	$x_1^*(i)$	$f_1(i)$
0	100	40+8
50.	50	48+8
100	0	0+8

Переходим к анализу периода, состоящего из двух последних месяцев. Полагая в уравнении (10.24) n=2, получаем соответствующее этому периоду функциональное уравнение Беллмана

$$f_2(i) = \min_{i,x} (P_2(x) + \varphi_2(100/2 + (i+x-100)) + f_1(i+x-100)).$$
 (10.26)

Уровень i запаса сырья на начало второго (от конца) месяца может составлять 0, 50, 100, 150 или 200 ед., а объем x — поставки сырья соответственно 200, 150, 100, 50 или 0 ед. (табл. 10.24). В клетки основного поля таблицы будем вписы-

Таблица 10.24

i	0	50	100	150	200	$x_2^*(i)$	$f_2(i)$
0	-	- 3	40+8+48	32+30+56	24+41+8	200	73
50	1 1-1	48+8+48	40+30+56	32+41+8		150	81
100	0+8+48	48+30+56	40+41+8			0	56
150	0+30+56	48+41+8				0	86
200	0+41+8	-	-	-	-	0	49

вать значения суммы трех слагаемых: P_2 , φ_2 и f_1 (см. уравнение (10.26)). Первое слагаемое находим по табл. 10.21, второе — по табл. 10.22, а третье берем из последнего столбца табл. 10.23. Некоторые клетки таблицы останутся незаполненными, так как соответствуют недопустимым сочетаниям i и x. Рассмотрим, например, первую строку табл. 10.24. Она соответствует нулевому уровню запаса сырья на начало второго (от конца) месяца. Поскольку в этом месяце потребуется 100 ед. сырья, то первой заполняемой будет клетка, соответствующая поставке в 100 ед. При этом первое слагаемое $P_2(100) = 40$, второе $\varphi_2(50) = 8$, а третье $f_1(0) = 48$.

Аналогично заполняются и две следующие клетки. Сравнивая суммарные затраты по заполненным клеткам (96, 118 и 73), заключаем, что в рассматриваемой ситуации (i=0) одтимальной во втором месяце будет поставка в 200 ед., ибо ей соответствуют минимальные суммарные затраты в 73 ден. ед. Аналогичным образом заполняются и остальные строки таблицы.

 Φ ункциональное уравнение для n=3 имеет вил

$$f_3(i) = \min_{i,x} (P_3(x) + \varphi_3(i+x-25) + f_2(i+x-50)),$$

а результаты анализа приемлемых вариантов приведены в табл. 10.25.

						1 8	таблица 10.2			
i	0	50	100	150	200	250	$x_3^*(i)$	$f_3(i)$		
0	-	124	136	124	156	121	250	121		
50	76	144	132	164	124	_	0	76		
100	96	140	172	132		-	0	96		
150	92	180	140	-	-	-	0	92		
200	132	148		-	-	-	0	132		
250	100		-				0	100		

Последнему шагу оптимизационного анализа (n=4) соответствует функциональное уравнение

$$f_4(100) \min_{100,x} (P_4(x) + \varphi_4(25+x) + f_3(x-50)),$$

а результаты помещены в табл. 10.26.

Таблица 10.26

i	50	100	150	200	250	300	$x_4^*(i)$	$f_4(i)$
100	184	152	174	167	206	175	100	152

Теперь можно подвести окончательные итоги. Из табл. 10.26 видно, что в четвертом (от конца) месяце оптимальной будет поставка $x_4^*(100) = 100$ ед. С учетом начального запаса (см. условие задачи) в 100 ед. общий запас в четвертом месяце составит 200 ед. В этом месяце для нужд производства потребуется 150 ед. сырья, так что к началу третьего месяца уровень запаса будет равен 50 ед. Обращаясь к

табл. 10.25 (см. вторую строку, отвечающую i=50), замеча $e_{\rm M}$, что такому уровню соответствует поставка $x_3^*(50) = 0$ ед. Имеющийся запас в 50 ед. будет полностью израсходован в этом месяце, так что к началу второго месяца уровень запаca i = 0. Судя по первой строке (i = 0) табл. 10.24, во втором месяце необходимо поставить предприятию 200 ед. сырья $(x_2^* = 200)$. Из них 100 ед. будет израсходовано в этом месяце, а 100 ед. останется на первый месяц; их будет достаточно для удовлетворения потребности производства в этом месяце. Подтверждением тому служат данные, приведенные в табл. 10.23, из последней строки которой ясно, что в первом месяце сырья приобретать не придется $(x_1^*(100) = 0)$.

Итак, суммарные затраты предприятия на пополнение и хранение запаса сырья будут минимальными и составят 152 ден. ед., если в первом месяце будет приобретено 100 ед. сырья, а в третьем — 200 ед. Во втором и четвертом месяцах пополнять запас не придется.