Distribution

1.1 Γ distribution

A random variable X is said to have a Γ distribution with parameters α , β if its probability density function is given by

$$f(x;\alpha,\beta) = \frac{x^{\alpha-1}e^{-\frac{x}{\beta}}}{\beta^{\alpha}\Gamma(\alpha)}, \quad \alpha,\beta \ge 0, \quad x \ge 0.$$
 (1.1)

The quantity $\Gamma(\alpha)$ is known as the Γ function and it is equal to:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx \tag{1.2}$$

 α is *shape*, β is called *scale*, and $\theta = \frac{1}{\beta}$ is called *rate*.

Some useful results:

$$\mathbb{E}[X] = \alpha \beta, \quad \mathbb{V}[X] = \alpha \beta^2, \quad \Gamma(\frac{1}{2}) = \sqrt{\pi}, \quad \Gamma(n) = (n-1)!.$$

If we set $\alpha = 1$ and $\beta = \frac{1}{\lambda}$, we get $f(x) = \lambda e^{-\lambda x}$. We see that the exponential distribution is a special case of the Γ distribution.

1.1.1 Moment Generating function

Moment generating function of $X \sim \Gamma(\alpha, \beta)$ is

$$M_X(t) = (1 - \beta t)^{-\alpha}$$
 (1.3)

Proof:

$$M_X(t) = \mathbb{E}[e^{tX}] = \int_0^\infty e^{tx} \frac{x^{\alpha - 1} e^{-\frac{x}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)} dx = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_0^\infty x^{\alpha - 1} e^{-x(\frac{1 - \beta t}{\beta})} dx \tag{1.4}$$

Let $y = x(\frac{1-\beta t}{\beta})$, then $x = (\frac{\beta}{1-\beta t})y$, and $dx = (\frac{\beta}{1-\beta t})dy$. Substitute these in the expression above

$$M_X(t) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_0^{\infty} \left(\frac{\beta}{1 - \beta t}\right)^{\alpha - 1} y^{\alpha - 1} e^{-y} \frac{\beta}{1 - \beta t} dy \tag{1.5}$$

$$\beta^{\alpha}\Gamma(\alpha) J_0 \qquad (1 - \beta t) \qquad 1 - \beta t$$

$$= \frac{1}{\beta^{\alpha}\Gamma(\alpha)} \left(\frac{\beta}{1 - \beta t}\right)^{\alpha} \int_0^{\infty} y^{\alpha - 1} e^{-y} dy \qquad (1.6)$$

$$= (1 - \beta t)^{-\alpha} \qquad (1.7)$$

$$= (1 - \beta t)^{-\alpha} \tag{1.7}$$

χ^2 distribution

Let Z_1, Z_2, \dots, Z_k be independent random variables with $Z_i \sim \mathcal{N}(0, 1)$ (iid), then

$$Z = Z_1^2 + Z_2^2 + \dots + Z_k^2 = \sum_{i=1}^k Z_i^2 \sim \chi_k^2$$
 (1.8)

 χ^2 is a class of distribution indeXed by its degree of freedom, like the t-distribution. In fact, χ^2 has a

If X_1, X_2, \ldots, X_n are independent random variables with $X_i \sim \mathcal{N}(\mu, \sigma)$, then

$$X = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi_n^2 \tag{1.9}$$

Let $X_1 \sim \chi_n^2$ and $X_2 \sim \chi_m^2$. If X_1 and X_2 are independent, then

$$X_1 + X_2 \sim \chi_{n+m}^2. \tag{1.10}$$

Let X_1, X_2, \ldots, X_n be independent random variables with $X_i \sim \mathcal{N}(\mu, \sigma)$. Define the sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$
(1.11)

Then

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2. \tag{1.12}$$

shape of χ^2 distribution

Figure 1.1: χ^2 with different df