الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2019 - الموضوع -

A 300814 - 34806 V 400000 V 4000000 V 400000 V 4000000 V 400000 V 400000 V 400000 V 400000 V 400000 V 400000 V 4000000 V 400000 V 400000 V 400000 V 400000 V 400000 V 400000 V 4000000 V 400000 V 400000 V 400000 V 400000 V 400000 V 400000 V 4000000 V 400000 V 4000000 V 400000 V 400000 V 400000 V 400000 V 400000 V 400000 V 4000000 V 400000 V 400000 V 400000 V 400000 V 400000 V 400000 V 4000000 V 400000 V 4000000 V 400000 V 40000 V 400000 V 400000 V 400000 V 400000 V 400000 V 40000 V 400000 V 40000 V 400000 V 40000 V 40000 V 40000 V 40000 V 40000 V 40000 V 400000 V 40000 V 400000 V 40000 V 400

**

****** RS22

المركز الوطني للتقويم والامتحانات والتوجيه

3	مدة الانجاز	الرياضيات	اثمادة
7	المعامل	شعبة العلوم التجريبية بمسالكها	الشعبة أو المسلك

تعليمات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؛
- يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؛
 - ينبغي تفادي آستعمال اللون الأحمر عند تحرير الأجوبة.

مكونات الموضوع

يتكون الموضوع من ثلاثة تمارين و مسألة، مستقلة فيما بينها، و تتوزع حسب المجالات كما يلي:

3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	الأعداد العقدية	التمرين الثاثي
3 نقط	حساب الاحتمالات	التمرين الثالث
11 نقطة	دراسة دالة عددية و حساب التكامل و المتتاليات العددية	المسألة

الصفحة الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2019 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها 3	
التمرين الأول (3 نقط):	
C(1,1,3) في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر $B(3,-1,6)$ ، نعتبر النقط $A(1,2,2)$ و	
$\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} - 2\overrightarrow{j} - 2\overrightarrow{k}$ اُ تحقق أن (1)	0.75
ب) استنتج أن $x-2y-2z+7=0$ هي معادلة ديكارتية للمستوى (ABC)	0.5
$\overrightarrow{ME}.\overrightarrow{MF}=0$ و $F(-1,1,12)$ و $F(-1,1,12)$ و عتبر النقطتين $E(5,1,4)$ التي تحقق و 2	
بين أن المجموعة (S) فلكة مركزها هو النقطة $\Omega(2,1,8)$ و شعاعها $R=5$	0.75
(ABC) عن المستوى $(\Omega,(ABC))$ مسافة النقطة Ω عن المستوى (3	0.5
$r=4$ استنتج أن المستوى $\left(ABC ight)$ يقطع الفلكة $\left(S ight)$ وفق دائرة $\left(\Gamma ight)$ شعاعها	0.5
التمرين الثاني (3 نقط):	
رو على). $z^2-3z+3=0$ المعادلة : $z^2-3z+3=0$	0.75
ب) نضع $a=rac{3}{2}+rac{\sqrt{3}}{2}$ ، اکتب $a=1$ على الشکل المثلثي	0.5
$b^2=i$ نعتبر العدد العقدي $b=rac{\sqrt{2}}{2}(1+i)$ ، تحقق أن نعتبر العدد العقدي (2	0.5
$h^4 + 1 = a$ نضع $h = \cos \frac{\pi}{12} + i \sin \frac{\pi}{12}$ نضع (3)	0.5
لذي المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر $(O,ec u,ec v)$ ، نعتبر النقطة B التي لحقها B الدوران الذي B	
مرکزه O و زاویته $\frac{\pi}{2}$	
c=ib أيليكن c لحق النقطة c صورة النقطة d بالدوران d ، بين أن d	0.5
ب) استنتج طبيعة المثلث OBC	0.25
التمرين الثالث (3 نقط) :	
يحتوي صندوق على كرة واحدة حمراء و كرتين بيضاوين و ثلاث كرات سوداء لا يمكن التمييز بينها باللمس	
نسحب عشوائيا بالتتابع و بإحلال 3 كرات من الصندوق . اتك الأحداث التالية من 4 ما الكرات الثلاث المرات من أما النف الله من الما الما الله الله الله الما الما الما	

لتكن الأحداث التالية : A : "الكرات الثلاث المسحوبة لها نفس اللون "

و B: "لا توجد أي كرة بيضاء من بين الكرات المسحوبة "

و C: " توجد كرتان بيضاوان بالضبط من بين الكرات المسحوية " : C

$$p(B) = \frac{8}{27}$$
 و $p(A) = \frac{1}{6}$: 2

p(C) $(2 \mid 1)$

RS22

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2019 – الموضوع – مادة: الرياضيات – شعبة العلوم التجريبية بمسالكها

المسألة (11 نقطة) : الجزء الأول :

$$f(x)=2+8igg(rac{x-2}{x}igg)^2\,e^{x-4}$$
: كما يلي IR^* كما يلي الدالة العددية المعرفة على

(1cm المنحنى الممثل للدالة
$$f$$
 في معلم متعامد ممنظم (C) الوحدة (C) و

و أول النتيجة هندسيا
$$\lim_{x\to -\infty} f(x) = 2$$
 و أول النتيجة هندسيا 0.5

ب) تحقق أن
$$\infty + = \lim_{x \to 0} f(x) = +\infty$$
 و أول النتيجة هندسيا 0.5

$$\lim_{x \to +\infty} f(x) \xrightarrow{\text{lim}} (1/2) = 0.5$$

$$+\infty$$
 بين أن المنحنى (C) يقبل فرعا شلجميا اتجاهه المقارب محور الأراتيب بجوار (C)

$$f'(x) = \frac{8(x-2)(x^2-2x+4)e^{x-4}}{x^3}$$
 ، IR^* من IR^* من (1) این ان لکل IR^* بین ان لکل IR^* من (2)

$$x^2 - 2x + 4 > 0$$
 ، IR من $x = 0.25$

$$[2,+\infty[$$
و $]-\infty,0[$ و ين أن f تناقصية قطعا على المجال $[0,2]$ و و تزايدية قطعا على كل من المجالين f

$$IR^*$$
 على على الدالة f على 0.5

$$\left(O,\vec{i},\vec{j}\right)$$
 أنشئ المنحنى $\left(C\right)$ في المعلم (4

[2,4]
$$h: x \mapsto \frac{x-1}{x^2} e^{x-4}$$
 دالة أصلية للدالة $h: x \mapsto \frac{x-1}{x^2} e^{x-4}$ على المجال (5) 0.5

$$f(x) = 2 + 8e^{x-4} - 32\frac{(x-1)}{x^2}e^{x-4}$$
 0.25

$$\int_{2}^{4} e^{x-4} dx$$
 احسب التكامل (ح 0.5

د) احسب ب
$$m^2$$
 مساحة حيز المستوى المحصور بين المنحنى m^2 و محور الأفاصيل والمستقيمين الذين معادلتاهما $x=4$ و $x=2$ المجزء الثاني :

$$g(x) = 8(x-2)e^{x-4} - x^2$$
 : يما يلي إلى المعرفة على المجال إ $g(x) = 8(x-2)e^{x-4} - x^2$ المعرفة على المجال إ $g(x) = 8(x-2)e^{x-4} - x^2$

$$g(4)$$
 أحسب (أ 0.25

$$g(x) = -(x-4)^2 e^{x-4} + x^2 (e^{x-4}-1)$$
 ، [2,4] ب تحقق أن لكل x من المجال (0.5

$$g(x) \le 0$$
 : $[2,4]$ من المجال x من المجال $e^{x-4} - 1 \le 0$: $[2,4]$ من المجال x من المدال x من المحال x من المدال x من المدال

$$f(x)-x=\left(\frac{x-2}{x^2}\right)g(x)$$
 ، $[2,4]$ من المجال $[2,4]$ تحقق أن لكل x من المجال $[3,4]$

$$f(x) \le x$$
 ، [2,4] باستنتج أن لكل x من المجال (0.25

$$I\!\!N$$
 من $u_{n+1}=f(u_n)$ و $u_0=3$ و الكل $u_{n+1}=u_0$ من (3) اتكن u_n

$$2 \le u_n \le 4$$
 N من n بين بالترجع أن لكل n مين (أ

ب) حدد رتابة المتتالية
$$(u_n)$$
 ، ثم استنتج أنها متقاربة (u_n)

$$(u_n)$$
 ج) أحسب نهاية المتتالية $=$ 0.75

تصحيح وطني 2019 الدورة الاستدراكية - علوم تجريبية

التمرين الأول (3 نقاط):

و B(3,-1,6) و A(1,2,2) و A(1,2,2) و في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر C(1,1,3) و \overline{AR} م $\overline{$

 $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} - 2\overrightarrow{j} - 2\overrightarrow{k}$ اُ) تحقق أن (1 | 0.75

(ABC) ب) استنتج أن x-2y-2z+7=0 هي معادلة ديكارتية للمستوى (0.5

 $\overrightarrow{ME}.\overrightarrow{MF} = 0$ نعتبر النقطتين (S) و (S) و (S) و (S) مجموعة النقط (S) التي تحقق (S) فلكة مركزها هو النقطة (S) و شعاعها (S) و شعاعها (S)

(ABC) عن المستوى ((ABC) مسافة النقطة Ω عن المستوى ((ABC) أ) أحسب

r=4 استنتج أن المستوى ABC يقطع الفلكة (S) وفق دائرة (Γ) شعاعها r=4

التمرين الثاني (3 نقاط):

 $z^2 - 3z + 3 = 0$ أ) حل في مجموعة الأعداد العقدية $\mathbb C$ المعادلة : 0.75

ب نضع $a = \frac{3}{2} + \frac{\sqrt{3}}{2}i$ بنضع (ب ب نضع) نضع $a = \frac{3}{2} + \frac{\sqrt{3}}{2}i$

 $b^2 = i$ نعتبر العدد العقدي $b = \frac{\sqrt{2}}{2}(1+i)$ نعتبر العدد العقدي (2)

 $h^4 + 1 = a$ نضع $h = \cos \frac{\pi}{12} + i \sin \frac{\pi}{12}$ نضع (3)

(4) في المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر $(0,\vec{u},\vec{v})$ ، نعتبر النقطة (4) التي لحقها (4) الدوران الذي مركزه (4) و زاويته (4)

c=ib أ ليكن c لحق النقطة d صورة النقطة d بالدوران d

OBC ب) استنتج طبيعة المثلث 0.25

التمرين الثالث (3 نقاط):

0.5

يحتوي صندوق على كرة واحدة حمراء و كرتين بيضاوين و ثلاث كرات سوداء لا يمكن التمييز بينها باللمس نسحب عشوائيا بالتتابع و بإحلال 3 كرات من الصندوق .

لتكن الأحداث التالية: "A" الكرات الثلاث المسحوبة لها نفس اللون"

و B" لا توجد أي كرة بيضاء من بين الكرات المسحوبة "

و " C" توجد كرتان بيضاوان بالضبط من بين الكرات المسحوبة "

 $p(B) = \frac{8}{27}$ بين أن $p(A) = \frac{1}{6}$ و $p(A) = \frac{1}{6}$

p(C) أحسب (2

المسألة (11 نقطة):

الجزء الأول:

$$f(x)=2+8(rac{x-2}{x})^2e^{x-4}$$
 لتكن $f(x)=2+8(rac{x-2}{x})^2e^{x-4}$ كما يلي:

 $(1cm\ \, i)$ الوحدة $(0,\vec{i},\vec{j})$ المنحنى الممثل للدالة $(0,\vec{i},\vec{j})$ و المنحنى الممثل الدالة و المنحنى الممثل الممثل الدالة و المنحنى الممثل الممث

انتجة هندسيا انتجة النتيجة المناسيا النتيجة النتيجة المناسيا النتيجة المناسيا النتيجة المناسيا النتيجة المناسيا المناسيا النتيجة المناسيا المناسي

- 0.5 ب) تحقق أن $x=+\infty$ و أول النتيجة هندسيا 0.5
 - $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1/2)$ 0.5
- $+\infty$ بين أن المنحنى C يقبل فرعا شلجميا اتجاهه المقارب محور الأراتيب بجوار 0.5
 - $f'(x) = \frac{8(x-2)(x^2-2x+4)e^{x-4}}{x^3}$ ، \mathbb{R}^* من (3)0.75
 - $x^2-2x+4>0$ ، \mathbb{R} من x0.25
- $2,+\infty$ و تزایدیهٔ قطعا علی المجال 0,2 و تزایدیهٔ قطعا علی کل من المجالین f تناقصیهٔ قطعا علی المجال و تزایدیهٔ قطعا علی المجال و تزایدیهٔ قطعا علی المجال و ترایدیهٔ ترایدیهٔ قطعا علی المجال و ترایدیهٔ ترایدیهٔ قطعا علی المجال و ترایدیهٔ قطعا علی المجال و ترایدیهٔ ترایدیهٔ قطعا علی المجال و ترایدیهٔ ترایدی ترایدیهٔ ترایدیهٔ ترایدی تراید 0.75
 - \mathbb{R}^* على على (د) ضع جدول تغير ات الدالة 0.5
 - 1
 - 2,4 المجال $h: x \mapsto \frac{x-1}{x^2} e^{x-4}$ المجال $H: x \mapsto \frac{1}{x} e^{x-4}$ على المجال (5) 0.5
 - $f(x) = 2 + 8e^{x-4} 32 \frac{x-1}{r^2} e^{x-4}$ ب) تحقق من أن
 - $\int_{0}^{4} e^{x-4} dx$ أحسب التكامل (ج 0.5
 - د) أحسب cm^2 مساحة حيز المستوى المحصور بين المنحنى c و محور الأفاصيل و المستقيمين 0.75 اللذين معادلتاهما
 - x = 4 و x = 2

- $g \; x = 8 \; x 2 \; e^{x-4} x^2$ يعتبر الدالة العددية $g \; h$ المعرفة على المجال 2,4 بما يلي: (1
 - أ) أحسب 4 و 0.25
 - $g x = -x 4^2 e^{x-4} + x^2 e^{x-4} 1$ ، 2,4 من المجال $x = -x 4^2 e^{x-4} + x^2 e^{x-4} 1$ 0.5
- $g \ x \le 0$: 2,4 من المجال $x \le 0$ ثم استنتج أن لكل x من المجال $e^{x-4}-1 \le 0$ ، 2,4 من المجال $x \le 0$ 0.5
 - $f(x) x = \left(\frac{x-2}{x^2}\right)g(x)$ و أن لكل x من المجال x من المجال (2) 0.5
 - f x < x، 2,4 ستنتج أن لكل x من المجال 0.25

0.25

$$u_{n+1} = f \ u_n$$
 و $u_0 = 3$: $u_0 = 3$ المتتالية المعدية المعرفة بما يلي : $u_0 = 3$ الكل $u_0 = 3$ من $u_0 = 3$ الكل $u_0 = 3$ من $u_0 = 3$ المتتالية المتتالية $u_0 = 3$ من $u_0 =$

تصحيح التمرين الأول

$$\overrightarrow{AC}$$
 $0,-1,1$ و \overrightarrow{AB} $2,-3,4$ الدينا $\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{vmatrix} -3 & 4 \\ -1 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} 2 & 4 \\ 0 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} 2 & -3 \\ 0 & -1 \end{vmatrix} \vec{k}$ $=$ $1.\vec{i} - 2.\vec{j} - 2.\vec{k}$ و بالنالي :

ABC با لدينا : $\overrightarrow{AB} \land \overrightarrow{AC}$ 1,-2,-2 با لدينا : $\overrightarrow{AB} \land \overrightarrow{AC}$ 1,-2,-2 با إذن معادلة ديكارتية للمستوى ABC تكتب على شكل : A $1,2,2 \in ABC$ و لدينا : A $1,2,2 \in ABC$ باذن : A 1,2,

 $\overrightarrow{ME}.\overrightarrow{MF}=0$ الدينا S مجموعة النقط M التي تحقق S لدينا (2 الدينا S هي الفلكة التي أحد أقطار ها S

 $R = \frac{EF}{2}$: R مركز الفلكة هو منتصف القطعة EF و شعاعها Ω

$$\begin{cases} x_{\Omega} = \frac{x_E + x_F}{2} = \frac{5 + (-1)}{2} = 2\\ y_{\Omega} = \frac{y_E + y_F}{2} = \frac{1 + 1}{2} = 1\\ z_{\Omega} = \frac{z_E + z_F}{2} = \frac{4 + 12}{2} = 8 \end{cases}$$

$$R = \frac{EF}{2} = \frac{\sqrt{-1-5^2 + 1-1^2 + 12-4^2}}{2} = \frac{\sqrt{36+0+64}}{2} = \frac{10}{2} = 5$$

R=5 و منه : المجموعة S فلكة مركزها هو النقطة Ω 2,1,8 و شعاعها

$$d \Omega, ABC = \frac{\left| 2 - 21 - 28 + 7 \right|}{\sqrt{1^2 + -2^2 + -2^2}} = \frac{9}{\sqrt{9}} = 3 (\int \mathbf{3})$$

$$r = \sqrt{R^2 - d \Omega, ABC}^2 = \sqrt{5^2 - 3^2} = 4$$

تصحيح التمرين الثاني

$$z^2-3z+3=0$$
 : المعادلة (المعادلة الأعداد العقدية) أي النحل في مجموعة الأعداد العقدية

$$\Delta = -3$$
 2 - 4 1 3 = -3 : لدينا

إذن المعادلة تقبل حلين عقديين متر افقين

$$z = \frac{-3 + i\sqrt{3}}{2} = \frac{3}{2} + i\frac{\sqrt{3}}{2} \qquad \text{if} \qquad z = \frac{-3 - i\sqrt{3}}{2} = \frac{3}{2} - i\frac{\sqrt{3}}{2}$$

$$S = \left\{ \frac{3}{2} - i\frac{\sqrt{3}}{2}; \frac{3}{2} + i\frac{\sqrt{3}}{2} \right\}$$
 : و منه

$$a = \frac{3}{2} + \frac{\sqrt{3}}{2}i$$
 : نينا (ب

$$|a| = \left| \frac{3}{2} + \frac{\sqrt{3}}{2}i \right| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{9}{4} + \frac{3}{4}} = \sqrt{3}$$
 عبيار العدد a

لنكتب العدد a على الشكل المثلثي:

$$a = \frac{3}{2} + \frac{\sqrt{3}}{2}i = \sqrt{3}\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = \sqrt{3}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

$$b^{2} = \left(\frac{\sqrt{2}}{2} + i\right)^{2} = \left(\frac{\sqrt{2}}{2}\right)^{2} + i^{2} = \frac{2}{4} + 2i - 1 = \frac{4i}{4} = i$$
 (2)

3) حسب علاقة موافر:

$$h^4 = \left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)^4 = \cos\frac{4\pi}{12} + i\sin\frac{4\pi}{12} = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$h^4 + 1 = \frac{1}{2} + i\frac{\sqrt{3}}{2} + 1 = \frac{3}{2} + i\frac{\sqrt{3}}{2} = a$$
: الإذن

$$c-0 = e^{i\frac{\pi}{2}}b-0$$

$$c = \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)b$$

c = ib : و منه

$$R \; B = C \; \Leftrightarrow \; \left\{ egin{array}{l} OB = OC \ \hline \overrightarrow{OB}, \overrightarrow{OC} \end{array}
ight. \equiv rac{\pi}{2} \; 2\pi \end{array}
ight.$$
 (ب

O متساوي الساقين و قائم الزاوية في OBC

تصحيح التمرين الثالث

التجربة " نسحب عشوائيا بالتتابع و بإحلال 3 كرات من الصندوق ."

ليكن Ω كون إمكانيات التجربة

 $card\Omega = 6^3 = 216$: لدينا

" الكرات الثلاث المسحوبة لها نفس اللون A (1

RRR N NN \sqrt{BBB} $cardA = 1^{3} + 2^{3} + 3^{3} = 36$ $p A = \frac{cardA}{card\Omega} = \frac{36}{216} = \frac{1}{6}$

" لا توجد أي كرة بيضاء من بين الكرات المسحوبة \overline{BBB}

$$cardB = 4^{3} = 64$$

$$p B = \frac{cardB}{cardO} = \frac{64}{216} = \frac{8}{27}$$

" توجد كرتان بيضاوان بالضبط من بين الكرات المسحوبة" C (2

$$\begin{cases} BB\overline{B} \\ B\overline{B}B \\ \overline{B}BB \end{cases}$$

$$cardC = \frac{3!}{2! \times 1!} 2^2 \times 4^1 = 48$$

$$p \ C = \frac{cardC}{card\Omega} = \frac{48}{216} = \frac{2}{9}$$

تصحيح المسألة

لجزء الأول<u>:</u>

$$\lim_{x \to -\infty} f \quad x = \lim_{x \to -\infty} 2 + 8 \left(\frac{x - 2}{x}\right)^2 e^{x - 4} = 2$$

$$\lim_{x \to -\infty} \left(\frac{x - 2}{x}\right) = \lim_{x \to -\infty} \frac{x}{x} = 1$$

$$\lim_{x \to -\infty} e^{x - 4} = \lim_{x \to -\infty} \frac{e^x}{e^4} = 0 \qquad \lim_{x \to -\infty} e^x = 0$$

$$\vdots$$

$$\lim_{x \to -\infty} e^{x - 4} = \lim_{x \to -\infty} \frac{e^x}{e^4} = 0$$

 $-\infty$ التأويل الهندسي: المنحنى c يقبل مقاربا أفقيا معادلته y=2 بجوار

$$\lim_{x \to 0} f \quad x = \lim_{x \to -\infty} 2 + 8 \left(\frac{x - 2}{x} \right)^2 e^{x - 4} = +\infty$$

$$\left\{ \lim_{x \to 0} \left(\frac{x - 2}{x} \right)^2 = \lim_{x \to -\infty} \frac{x - 2^{-2}}{x^2} = +\infty \quad \begin{cases} \lim_{x \to 0} x - 2^{-2} = 4 \\ \lim_{x \to 0} x^2 = 0^+ \end{cases} \right.$$

$$\lim_{x \to 0} e^{x - 4} = \lim_{x \to 0} \frac{e^x}{e^4} = \frac{1}{e^4}$$

x=0 التأويل الهندسي: المنحنى C يقبل مقاربا عموديا معادلته

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2 + 8 \left(\frac{x-2}{x}\right)^2 e^{x-4} = +\infty$$

$$\lim_{x \to +\infty} \left(\frac{x-2}{x}\right) = \lim_{x \to +\infty} \frac{x}{x} = 1$$

$$\lim_{x \to +\infty} e^{x-4} = \lim_{x \to +\infty} \frac{e^x}{e^4} = 0 \qquad \lim_{x \to +\infty} e^x = +\infty$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{2}{x} + 8 \left(\frac{x-2}{x}\right)^2 \frac{e^{x-4}}{x} = +\infty$$

$$()$$

$$\begin{cases} \lim_{x \to +\infty} \frac{2}{x} = 0 \\ \lim_{x \to +\infty} \frac{x-2}{x} = 1 \\ \lim_{x \to +\infty} \frac{e^{x-4}}{x} = \lim_{x \to +\infty} \frac{1}{e^4} \frac{e^x}{x} = +\infty \end{cases}$$
 : $\dot{\psi}$

التأويل الهندسي:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$$
 و $\lim_{x \to +\infty} f(x) = +\infty$: بما أن

 $+\infty$ فإن : المنحنى C يقبل فرعا شلجميا اتجاهه المقارب محور الأراتيب بجوار

 $0,+\infty$ و $-\infty,0$ و $-\infty,0$ و $-\infty,0$ و $0,+\infty$ و

$$f' x = \left(2 + 8\left(\frac{x-2}{x}\right)^{2} e^{x-4}\right)'$$

$$= 0 + 8\left[\left(\frac{x-2}{x}\right)^{2} e^{x-4}\right]'$$

$$= 8\left[\left(\frac{x-2}{x}\right)^{2}\right]' e^{x-4} + \left(\frac{x-2}{x}\right)^{2} e^{x-4}\right]$$

$$= 8\left[2\left(\frac{x-2}{x}\right)'\left(\frac{x-2}{x}\right) e^{x-4} + \left(\frac{x-2}{x}\right)^{2} e^{x-4}\right]$$

$$= 8\left[2 \times \frac{2}{x^{2}}\left(\frac{x-2}{x}\right) e^{x-4} + \frac{2}{x^{2}} e^{x-4}\right]$$

$$= \frac{8(-2)}{x^{2}} e^{x-4} \left(\frac{4}{x} + x - 2\right)$$

$$= \frac{8(-2)}{x^{2}} e^{x-4} \left(\frac{4 + x^{2} - 2x}{x}\right)$$

$$f' x = \frac{8x-2}{x^{2}} e^{x-4} \left(\frac{4 + x^{2} - 2x}{x}\right)$$

$$f' x = \frac{8x-2}{x^{2}} e^{x-4} e^{x-4} e^{x-4} e^{x-4} e^{x-4}$$

$$f' x = \frac{8x-2}{x^{2}} e^{x-4} e^{x-4} e^{x-4} e^{x-4} e^{x-4}$$

$$f' x = \frac{8x-2}{x^{2}} e^{x-4} e^{$$

7/14 -08/2020

$$: x \in \mathbb{R}^*$$
 اليكن (ج

$$f'(x) = \frac{8(x^2 - 2x + 4)e^{x-4}}{x^3} = \frac{8(x^2 - 2x + 4)e^{x-4}}{x^2} \times \frac{x-2}{x}$$
 لدينا $\frac{x-2}{x}$ فإن إشارة $x'(x) = \frac{8(x^2 - 2x + 4)e^{x-4}}{x^2}$ فإن إشارة $x'(x) = \frac{8(x^2 - 2x + 4)e^{x-4}}{x^2}$

$$f'$$
 $x=0$ \Leftrightarrow $x=2$ و f' $x\leq 0$ لدينا f' $x=0$ الذن f تناقصية قطعا f' $x=0$ f' $x=0$ f' $x=0$ f' $x=0$ f' $x=0$ f' $x=0$ الدينا f' $x=0$ f' $x=0$ الذن f تزايدية قطعا

f'(x>0) لدينا : $-\infty,0$ المجال حلى المجال f

\mathbb{R}^* على f على د) جدول تغير ات الدالة

x	$-\infty$ ()	2	$+\infty$
f'(x)	+	_	þ	+
f(x)	$+\infty$	$+\infty$		$+\infty$

8/14 -08/2020

(4

((5

2,4 المجال $H: x \mapsto \frac{1}{x} e^{x-4}$ الدالة $x \mapsto \frac{1}{x} e^{x-4}$ الدالة $x \mapsto \frac{1}{x} e^{x-4}$ الدالة $x \in 2,4$ ليكن $x \in 2,4$ ليكن لاشتقاق على المجال الدينا

$$H' x = \left(\frac{1}{x}e^{x-4}\right)'$$

$$= \left(\frac{1}{x}\right)' e^{x-4} + \frac{1}{x} e^{x-4} '$$

$$= \frac{-1}{x^2}e^{x-4} + \frac{1}{x} x - 4' e^{x-4}$$

$$= \frac{-1}{x^2}e^{x-4} + \frac{1}{x}e^{x-4}$$

$$= \left(\frac{-1}{x^2} + \frac{1}{x}\right)e^{x-4}$$

$$= \left(\frac{x-1}{x^2}\right)e^{x-4}$$

$$\forall x \in 2, 4 \quad H' \quad x = h \quad x \quad \text{i.i.}$$

2,4 على المجال $h: x \mapsto \frac{x-1}{x^2} e^{x-4}$ على المجال $H: x \mapsto \frac{1}{x} e^{x-4}$ على المجال (وبالتالي : الدالة المجال ال

(ب

$$2 + 8e^{x-4} - 32 \frac{x-1}{x^2} e^{x-4} = 2 + 8e^{x-4} \left(1 - 4 \frac{x-1}{x^2} \right)$$

$$= 2 + 8e^{x-4} \left(\frac{x^2 - 4x + 4}{x^2} \right)$$

$$= 2 + 8e^{x-4} \left(\frac{x-2}{x^2} \right)$$

$$= 2 + 8e^{x-4} \left(\frac{x-2}{x} \right)^2$$

$$= f x$$

ج)

$$\int_{2}^{4} e^{x-4} dx = \int_{2}^{4} x - 4' e^{x-4} dx$$

$$= \left[e^{x-4} \right]_{2}^{4}$$

$$= e^{0} - e^{-2}$$

$$= 1 - \frac{1}{e^{2}}$$

$$= \frac{e^{2} - 1}{e^{2}}$$

$$A = \int_{2}^{4} |f \ x \ | dx \times \|\vec{i} \| \times \|\vec{j} \|$$

$$= \int_{2}^{4} f \ x \ dx \times 1 cm \times 1 cm \qquad \forall x \in 2; 4 \qquad f \ x \ge 0$$

$$= \int_{2}^{4} \left(2 + 8e^{x-4} - 32 \frac{x-1}{x^{2}} e^{x-4}\right) dx \cdot cm^{2}$$

$$= \left(\int_{2}^{4} 2 dx + 8 \int_{2}^{4} e^{x-4} dx - 32 \int_{2}^{4} \frac{x-1}{x^{2}} e^{x-4} dx\right) cm^{2}$$

$$= \left(2x_{2}^{4} + 8 \frac{e^{2} - 1}{e^{2}} - 32 \left[H \ x\right]_{2}^{4}\right) cm^{2}$$

$$= \left(8 - 4 + 8 \frac{e^{2} - 1}{e^{2}} - 32 \left(\frac{1}{4} - \frac{1}{2e^{2}}\right)\right) cm^{2}$$

$$= \left(4 + 8 \frac{e^{2} - 1}{e^{2}} - 8 + \frac{16}{e^{2}}\right) cm^{2}$$

$$= \left(-4 + 8 \frac{e^{2} - 1}{e^{2}} + \frac{16}{e^{2}}\right) cm^{2}$$

$$= \left(\frac{-4e^{2} + 8e^{2} - 8 + 16}{e^{2}}\right) cm^{2}$$

$$= \frac{4e^{2} + 8}{e^{2}} .cm^{2}$$

الجزء الثاني:

$$g \ 4 = 8 \times 2e^{0} - 4^{2}$$

$$= 16 - 16$$

$$= 0$$

 $x \in 2,4$ ليكن $x \in 2,4$ اليكن $-x-4^2 e^{x-4} + x^2 e^{x-4} - 1 = -x^2 + 8x - 16 e^{x-4} + x^2 e^{x-4} - x^2$ $= -x^2 + 8x - 16 + x^2 e^{x-4} - x^2$ $= 8x - 2e^{x-4} - x^2$ = ex

 $g \ x = - \ x - 4^2 e^{x-4} + x^2 e^{x-4} - 1$ ، 2,4 إذن : لكل x من المجال

$$x\in 2,4$$
 ليكن $x\in 2,4$ ليكن $x\in 2,4$ لدينا $x\in 2$ لدينا $x\in 2$ لدينا $x\in 2$ لدينا $x\in 2$ لدين $x\in 2$ لدن $x\in 2$ لائن $x\in 2$

$$g \; x = - \; x - 4 \; ^2 e^{x - 4} + x^2 \; e^{x - 4} - 1$$
 لدينا \checkmark $x^2 \; e^{x - 4} - 1 \leq 0$ و $- \; x - 4 \; ^2 e^{x - 4} \leq 0$ فإن $- \; x - 4 \; ^2 e^{x - 4} + x^2 \; e^{x - 4} - 1 \leq 0$ فإن $x \leq 0 : 2,4$ من المجال $x \leq 0 : 2,4$

$$x \in 2,4$$
 اليكن (2) اليكن (2) الدينا (2) الدينا (2) الدينا (3) (3) (3) (4) (4) (5) $(5$

$$x\in 2,4$$
 ب) ليكن f $x-x=\left(rac{x-2}{x^2}
ight)g$ x لدينا g $x\leq 0$ و $x\leq 0$ و $x\leq 0$ و $x\leq 0$ و $x\leq 0$ إذن $x\leq 0$ و $x\leq 0$ و $x\leq 0$ و $x\leq 0$ و $x\leq 0$

f x < x، 2,4 و منه لكل x من المجال

$$2 \le u_n \le 4 \ \mathbb{N}$$
 من n من n لنبين بالترجع أن لكل n من أجل $n=0$ لينا $n=0$ لدينا $n=0$ لدينا $n \in \mathbb{N}$ ليكن $n \in \mathbb{N}$ ليكن $n \in \mathbb{N}$ نفترض أن $n \in \mathbb{N}$ نفترض أن $n \in \mathbb{N}$ عند أن $n \in \mathbb{N}$ حسب الأفتراض لدينا $n \in \mathbb{N}$ حسب الأفتراض لدينا $n \in \mathbb{N}$ و بما أن $n \in \mathbb{N}$ متصلة و تزايدية على المجال $n \in \mathbb{N}$ و بما أن $n \in \mathbb{N}$ متصلة و تزايدية على المجال $n \in \mathbb{N}$ فإن $n \in \mathbb{N}$ متصلة و $n \in \mathbb{N}$

 $2 < u_{m+1} < 4$ إذن

 $2 \le u_n \le 4$ ان لكل n من n نستنتج أن لكل \checkmark

ب)

$$n \in \mathbb{N}$$
 ليكن \checkmark
 $f \ x \le x^{\circ} \ 2,4$ للمجال $f \ u_n \le u_n$ من المجال $f \ u_n \le u_n$ في المجال $f \ u_n \le u_n$ في المحال $f \ u_n \le u_n$ في المحالية و مصغورة بالعدد $f \ u_n = u_n$ تناقصية و مصغورة بالعدد $f \ u_n$ متقاربة $f \ u_n$ متصلة على المجال $f \ u_n$ من $f \ v$ و متصلة على المجال $f \ v$ و متصلة على المحال $f \ v$ و متصلة على المحال $f \ v$ و متصلة $f \ v$ و متقاربة $f \ v$ و متصلة $f \ v$ و متصلة $f \ v$ و متصلة $f \ v$ و متقاربة $f \ v$ و متصلة $f \ v$ و متصلة و $f \ v$ و متصلة

 $u_n \leq 3$: $\mathbb N$ من n كل إذن لكل $\lim_{n \to +\infty} u_n \leq 3$ إذن $\lim_{n \to +\infty} u_n = 2$ و منه $u_n = 2$

math.ma