IIT Jodhpur

Biological Vision and Applications Module 07-01: Knowledge Representation

Hiranmay Ghosh

Knowledge required for visual interpretation

- Types of knowledge required
 - Domain Knowledge (about anatomy / astronomy)
 - also called ontology
 - Knowledge about image formation / processing
 - Mapping of real objects to images ... and vice-versa
 - How to interpret an image
 - The relation between the two

Characterizing knowledge

- Domain knowledge:
 - Declarative: explicit and symbolic representation
 - exists independent of processing structure
 - can be shared
- Knowledge about image formation / processing:
 - Procedural: implicit
 - Encoded as algorithms, neural networks or classifiers
 - Strictly private to the processing scheme
- We shall focus on declarative knowledge in this module

Symbolic representation

The semiotic triangle

- Objects (things): That exist
- Concepts: Mental representations (models)
- Representation: Symbol to represent a concept (text, icon, audio)

Representational Theory of Mind (RTM)

- A concept is a mental model of "something" that exists (with attributes)
- Something can be
 - A real-world thing
 - An internal mental state of the agent
- A name is associated with a concept
 - For reference during manipulation (reasoning)
- Knowledge is
 - A collection of named concepts
 - ▶ A set of sentences (propositions) that relate the concepts
 - Named concepts: cat, tail, has
 - Proposition: A cat has a tail

Language of Thought Hypothesis (LoTH)

- Thoughts are mental processes
 - Leads to mental models
 - Result of manipulation of the knowledge
 - ► That brown cat has a tail
 - ► If I had wings!
- Represented in a language that is akin to symbolic logic
- Inferences can be drawn from knowledge through the process of thought (reasoning)

Semantic Network

- Knowledge is a set of statements
 - A mammal is an animal
 - A cat is a mammal
 - A cat has whiskers
 - A mammal lives on land
 - A fish is an animal
 - A catfish is a fish.
 - A catfish has whiskers
 - A fish lives in water
 - Mycat is a cat
 - Mycat has a name "Zora"

 Equivalently, knowledge is a graph (semantic network)

Semantics of "Semantic Network"

- Each edge of a semantic network represents a proposition (statement)
- Each proposition describes a property of a concept
- For example: cat has whiskers
 - Subject (Concept being described): Cat
 - Predicate (Property): Has
 - Object (Value): Whiskers
- A concept can be a class, or an instance
- A value can be a concept, or a literal
- The network of concepts represent knowledge about a domain

Reasoning with Semantic Network

- Requires underlying axioms, e.g.
 - Properety inheritance
 - ► If a "is-a" b, then a inherits properties of b
 - "is-a" is transitive
 - If a is-a b, and b is-a c, then a is a c too
 - These axioms make a semantic network efficient (compact)

Flexibility with "Semantic Network"

- No restrictions on properties / values to be associated to a concept
- There can be exceptions. e.g.
 - Whale is a mammal, but lives in water
- Axioms need to be redefined.
 - ▶ If a "is-a" b. then
 - a inherits properties of b
 - unless overruled

Multiple inheritance

Saber has a tail

What's about Saber's attitude?

Properties of Semantic Network

- A semantic network is extremely flexible
 - At the cost of formalism
 - An informal description of a domain (in it's basic form)
- Semantics is imposed with axioms / constraints
- Many variants have been proposed
 - Definitional network
 - Expresses class-subclass relations
 - ... and properties that distinguish sibling subclasses
 - Cat is-a mammal: cat has whiskers
 - Implication Network
 - Expresses causal relations
 - Banana causes yellow color
 - Hybrid networks combine more than one of paradigms

Sowa Semantic Networks

Resource Description Framework (RDF)

- A knowledge representation framework based on semantic network
- All entities are treated as "resources"
 - Each resource is identified with a IRI
 - Enables distributed knowledge description
- An RDF sentence is a triplet (subject, predicate, object)
- A predicate in one sentence can be a subject or an object in another
 - ► ⟨ hasWeightInKg, is-a, healthParameter ⟩. ⟨ Ramu, hasWeightInKg, 80 ⟩
- Reification: A statement is also a resource (and identified by an IRI)
 - I said that cat is an animal.
 - ► S1: ⟨ cat, is-a, animal ⟩. S2: ⟨ I, said, S1 ⟩
- Constraints and semantics defined with RDF and RDF Schema
- Notations: XML. N3. Turtle

SPARQL Query Language

- To make query on RDF Graphs
- Syntactically similar to SQL
- Implemented with "triple-store" databases
 - Apache Jena / TDB
 - Optimized for storing triplets
- Query on distributed knowledge
 - Distributed knowledge centrally indexed
 - Distributed query processing (distributed index)
- Resources:
 - W3School tutorials
 - ► W3C Documents

No quiz for module 07-01

End of Module 07-01