Data and Network Security

Contents

ourse Information	3
Assessment	2
ectures	5
Lecture One - Course Introduction	5

Course Information

Lecturers Details

• Lecturer: Dr. Clementine Gritti

- Office: Erskine 304

- Email: clementine.gritti@canterbury.ac.nz

• Tutor: Ryan Beaumont

- Email: rbe72@uclive.ac.nz

Other Information

• Labs and Quiz's will be available on learn

Textbooks

- Cryptography and network security: principles and practice, William Stallings, 5th edition
 - * This course is inspired from this book as the bulk of the course is founded in cryptography.
 - * The exam will only be on content in the slides not from the book
- Computer security: principles and practice, William Stallings and Lawrie Brown, 3rd edition

2.1 Term 1 Plan

Week	Course			
starting date	week	Monday lecture	Thursday lecture	Lab
19/07/2021	1	L1: Course introduction	L2: Course overview	no lab
26/07/2021	2	L3: Discrete mathematics	L4: CrypTool (at home)	Lab 1: Introduction
02/08/2021	3	L5: Classical encryption part 1	L6: Classical encryption part 2	Lab 2: Discrete maths exercises
09/08/2021	4	L7: Block ciphers	L8: Block cipher modes	Lab 3: CrypTool part 1
16/08/2021	5	L9: Stream ciphers	L10: Number theory	Lab 4: CrypTool part 2
23/08/2021	6	L11: Hash functions and MACs	no lecture	Lab 5: Number theory exercises

2.2 Term 2 Plan

Week	Course			
starting date	week	Monday lecture	Thursday lecture	Lab
13/09/2021	7	L12: Public key crypto part 1	L13: Public key crypto part 2	Lab 6: Hash functions
				and MACs exercises
20/09/2021	8	L14: Digital signatures	L15: PKI and certificates	Lab 7: CrypTool part 3
27/09/2021	9	L16: Key establishment	L17: TLS part 1	Lab 8: PKI and certificates
04/10/2021	10	L18: TLS part 2	L19: IPSec and VPN	Lab 9: Digital signatures and
				key establishment exercises
11/10/2021	11	L20: Email security	L21: Malware and attacks	Lab 10: TLS
18/10/2021	12	L22: Recap lecture	no lecture	Lab 11: IPSec and email
				security exercises

Figure 1: Timetable

Assessment

- 1. Labs (10%) attendance and participation:
- Labs are done individually but you are encouraged to discuss and share with your peers (you are allowed to see each other during labs).
- Attending one lab each week over the semester automatically gives you full mark: The tutor will assess your attendance.
- If you cannot attend one lab session, then a report (along with a justification of student absence) will be required and assessed:
 - The report needs to be submitted by one week after the missed session.
 - Example: if you miss Tuesday lab on Week X then you are asked to submit a report by Tuesday of Week X+1.
 - The report needs to be sent to both the lecturer and the tutor.
- 2. Weekly quizzes (20%):
- They can be found and done on LEARN.
- 9 quizzes in total.
- Each quiz contains 10 questions. Each question contains 4 choices such that only one choice is correct.
- 2 attempts per quiz, such that the highest grade is taken into account.
- A quiz is given on Friday of Week X, and should be done before Friday of Week X+1 (except for the one released just before the break):
- 3. Assignment (20%):
- Deadline: 17 September 2021.
- Small exercises on what has been covered so far.
- The assignment will be released on LEARN on 20 August 2021.
- Your report should be uploaded to LEARN.
- 4. Final exam (50%)
- 3-hours duration
- 25 multiple-choice questions
- 5 open questions, such that if additional information is needed to solve the problem then it will be provided.
- Covers all content from all lectures study definitions, mechanisms, processes
 - Not expected to remember the code of each standard (e.g. RFC1234)

Lectures

Lecture One - Course Introduction

- All materials will be found on learn, including lectures, labs, quizzes and assignments.
- Course outline available
- Labs must be done in person or a report will not get full marks if do not attend
- · Labs start next week
- Weekly quizzes go over two lectures each multi-choice
- · Midterm and final will all be entirely open questions

Why do we need cyber security

- Privacy
- Security
- Risk management

Famous recent attacks

- Dark hotel attack
 - Targeted phishing attacks using spy-ware
 - Infiltrating guests computers through WIFI networks at hotels
 - Loss of confidentiality
- POODLE attack
 - man in the middle exploit
 - Communications can be decryped and exploited
- EncroChat
 - A communications network and service provider
 - Infiltrated by police in 2020
- WannaCry
 - Loss of availability
 - stolen government hacking tools
 - Worm encrypting files on computers hard drive
 - * Was a form of ransom-ware
- Botnet
 - Botnet attacking IoT devices with default admin credentials

- DDos
- Loss of availability

Because of these attacks, some users have lost confidence in the service provided not storing/selling data.

Course Focus

- Cryptography as a foundation for information security
- Applications of cryptography
- History of cryptography
- Modern cryptography
 - Block ciphers, stream ciphers
 - public key crypto
 - Hashing and MAC
- Some mathematics
 - Modular arithmetic
 - Number theory
 - Elliptic curves
- Using all of the cryptography
 - Public key infrastructure
 - Secure email
 - TLS (HTTPS)