ДЗ 2. Гусев Егор Дмитриевич

Задача 1. Перевод десятичных чисел в 6-битные дво-ичные числа

- (а) Беззнаковые числа: 0, 13, 24, 63
 - $0: 0_{10} = 000000_2.$
 - 13: Делим 13 на 2: 13 = 8 + 4 + 1, то есть $13_{10} = 001101_2$.
 - **24**: 24 = 16 + 8, T.e. $24_{10} = 011000_2$.
 - 63: Максимальное число для 6 бит $(2^6 1 = 63)$, $63_{10} = 111111_2$.

(b) Знаковые числа (представление в дополнительном коде): 16, -2, 31, -32

- 16: В 6-битном диапазоне (от -32 до 31) положительное число. $16_{10} = 010000_2$.
- -2: Для отрицательного числа находим двоичное представление для 2: 000010_2 , затем инвертируем и прибавляем 1: инверсия 111101_2 , $+1 \rightarrow 111110_2$.
- 31: Максимальное положительное число: $31_{10} = 011111_2$.
- -32: Минимальное число в 6-битном диапазоне: $-32_{10} = 100000_2$.

Замечание: Для знаковых чисел используется метод дополнительного кода, где для отрицательного числа значение получается как $2^n - |x|$, n = 6.

Задача 2. Перевод 6-битных значений в десятичные числа

Даны значения: 000101, 101011, 111111, 100000.

Формулы

• Беззнаковое представление:

$$D = \sum_{i=0}^{5} b_i \cdot 2^i.$$

• Представление в дополнительном коде: Если MSB (b_5) равен 1, то

$$D = \left(\sum_{i=0}^{4} b_i \cdot 2^i\right) - 2^5,$$

иначе D определяется как беззнаковое число.

Решения

- 1. 000101:
 - Беззнаковое: $0 \cdot 32 + 0 \cdot 16 + 0 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1 = 4 + 1 = 5$.
 - Дополнительный код: $MSB = 0 \rightarrow 5$.
- 2. 101011:
 - Беззнаковое: $1 \cdot 32 + 0 \cdot 16 + 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1 = 32 + 8 + 2 + 1 = 43$.
 - Дополнительный код: MSB = 1, значит: 43 64 = -21.
- 3. 111111:
 - Беззнаковое: 32 + 16 + 8 + 4 + 2 + 1 = 63.
 - Дополнительный код: 63 64 = -1.
- 4. 100000:
 - Беззнаковое: $1 \cdot 32 = 32$.
 - Дополнительный код: 32-64=-32.

Задача 3. Перевод десятичных значений в 8-битные шестнадцатеричные числа

Даны значения: 7, 240, 171, 126.

Вычисления:

• 7₁₀: Делим 7 на 16:

$$7 \div 16 = 0$$
 (частное), остаток = 7.

Остаток 7 соответствует 7_{16} . Так как для 8-битного представления требуется 2 шестнадцатеричных знака, добавляем ведущий 0: $\mathbf{07_{16}}$ (0x07).

• 240₁₀:

Делим 240 на 16:

$$240 \div 16 = 15$$
 (частное), остаток = 0.

Число 15 в шестнадцатеричной системе обозначается как F_{16} , а остаток 0 соответствует 0_{16} . Получаем $\mathbf{F0_{16}}$ (0xF0).

• 171₁₀:

Делим 171 на 16:

$$171 \div 16 = 10$$
 (частное), остаток = 11.

Число 10 обозначается как A_{16} , а 11 — как B_{16} . Получаем $\mathbf{AB_{16}}$ (0хAB).

• 126₁₀:

Делим 126 на 16:

$$126 \div 16 = 7$$
 (частное), остаток = 14.

Число 7 остаётся 7_{16} , а 14 обозначается как E_{16} . Таким образом, $126_{10} = \mathbf{7E_{16}}$ (0x7E).

Задача 4. Перевод шестнадцатеричных чисел в 8-битные двоичные значения

Даны значения: 0x3C, 0x7E, 0xFF, 0xA5.

Вычисления:

• 0x3C:

Запишем каждую цифру в двоичном представлении по 4 бита: $3_{16}=0011_2,\quad C_{16}=12_{10}=1100_2.$ Таким образом, $\mathbf{0x3C}=\mathbf{0011}\,\mathbf{1100_2}.$

• 0x7E:

$$7_{16} = 0111_2, \quad E_{16} = 14_{10} = 1110_2.$$
 Получаем **0х7Е** = **01111110**₂.

• 0xFF:

$$F_{16}=15_{10}=1111_2$$
. Так как обе цифры равны F , то ${f 0xFF}={f 1111}\,{f 1111_2}.$

• 0xA5:

$$A_{16} = 10_{10} = 1010_2, \quad 5_{16} = 0101_2.$$

Следовательно, **0хA5** = **1010 0101_2**.

Задача 5. Сменить знак полученных выше чисел

Используем уже знакомый метод (то есть, для числа x находим -x как инверсию битов и прибавление 1). Пусть исходные значения рассматриваются в знаковом представлении.

1. Для 00111100 (0х3С, что есть +60):

$$-60 \Rightarrow 256 - 60 = 196 \Rightarrow 196_{10} = 11000100_2.$$

2. Для 01111110 (0х7Е, +126):

$$-126 \Rightarrow 256 - 126 = 130 \Rightarrow 130_{10} = 10000010_2.$$

3. Для 11111111 (0xFF, представляется как -1):

$$-(-1) = 1 \Rightarrow 0000\,0001_2.$$

4. Для 10100101 (0хA5, представляется как -91, т.к. 256 - 165 = 91):

$$-(-91) = 91 \Rightarrow 91_{10} = 01011011_2.$$

Задача 6. Расположение байтов 0xDEADBEEF в памяти

Запишем значение в виде байтов:

- **Big-endian:** байты хранятся в порядке: DE AD BE EF (от младшего к старшему адресам в том же порядке, что и запись числа).
- Little-endian: байты располагаются в обратном порядке: EF BE AD DE.

Задача 7. Перевод десятичных значений в 5-битные двоичные числа и расширение до 8 бит

Даны значения: 7, 15, -16, -5.

Шаг 1. Представление в 5 битах

- 7_{10} : в 5 битах $7 = 00111_2$.
- 15_{10} : $15 = 01111_2$.
- -16_{10} : В 5-битном дополнительном коде минимальное значение: $-16 = 10000_2$.
- -5_{10} : Для 5 бит: сначала 5 = 00101_2 . Инвертируем: 11010_2 , прибавляем 1: 11011_2 .

Шаг 2. Расширение до 8 бит

- Знаковое расширение (копируем старший бит):
 - -7 (00111): MSB = 0, расширение: 0000 0111₂.
 - -15 (01111): MSB = 0, расширение: 0000 1111₂.
 - -16 (10000): MSB = 1, расширение: 1111 0000₂.
 - -5 (11011): MSB = 1, расширение: 1110 1011₂.
- Нулевое расширение (просто добавляем нули слева):
 - $-7(00111): \rightarrow 00000111_2.$
 - $-15 (01111): \rightarrow 00001111_2.$
 - -16 (10000): $\rightarrow 0001 0000_2$ (но это будет не совсем корректно для представления отрицательных чисел, ведь нулевое расширение не сохранит знак).
 - -5 (11011): \rightarrow 0001 1011₂ (аналогично вышенаписанному).

Задача 8. Представление пар десятичных чисел в 4-битных двоичных и их сложение

Даны две пары.

(а) Беззнаковая: (7, 9)

- 7₁₀ = 0111₂ (в 4 битах).
- $9_{10} = 1001_2$.
- Сумма: $7+9=16_{10}$. Но в 4 битах максимальное число 15, поэтому происходит переполнение.

При сложении в 4 битах:

$$0111 + 1001 = 0000$$
 (с переносом 1)

Итоговое значение по модулю 16: 0_{10} .

(b) Знаковая (в дополнительном коде): (4, -5)

- $4_{10} = 0100_2$ (4 бита).
- -5_{10} : Для 4 бит диапазон: -8...7. Сначала $5=0101_2$; инвертируем: 1010_2 ; прибавляем 1: 1011_2 .
- Сложение:

$$0100 + 1011 = 1111_2$$
.

Интерпретация: 1111_2 в 4-битном дополнительном коде равно -1_{10} (так как 16-1=15).

Задача 12*. Объяснение трюка обмена значениями без временной переменной

Дан следующий алгоритм для обмена значениями переменных **х** и **у** без использования временной переменной:

$$x = x ^ y;$$

 $y = x ^ y;$
 $x = x ^ y;$

Объяснение: Пусть, для примера, исходные значения:

$$x = 0011_2, \quad y = 1100_2.$$

1. Первый шаг:

$$x = x \oplus y = 0011_2 \oplus 1100_2 = 1111_2.$$

Теперь х содержит значение 1111₂.

2. Второй шаг:

$$y = x \oplus y = 1111_2 \oplus 1100_2$$
.

Побитово:

$$1 \oplus 1 = 0$$
, $1 \oplus 1 = 0$, $1 \oplus 0 = 1$, $1 \oplus 0 = 1$,

таким образом, $y = 0011_2$ (исходное значение x).

3. Третий шаг:

$$x = x \oplus y = 1111_2 \oplus 0011_2$$
.

Побитово:

$$1 \oplus 0 = 1$$
, $1 \oplus 0 = 1$, $1 \oplus 1 = 0$, $1 \oplus 1 = 0$,

таким образом, $x = 1100_2$ (исходное значение y).

В результате обмена получаем:

Начальные:
$$x = 0011_2$$
, $y = 1100_2$ \Longrightarrow После: $x = 1100_2$, $y = 0011_2$.

Как я понимаю, основная идея трюка заключается в том, что операция XOR обладает обратимым свойством, позволяющим «смешать» оба значения, а затем восстановить каждое из них без использования дополнительной памяти.

Задача 16*. Объяснение битовых трюков

Рассмотрим следующие битовые операции и объясним их действие.

1. Выключение самой младшей единицы: x & (x-1)

Эта операция обнуляет самый младший бит, равный 1, оставляя все остальные биты без изменений.

Пример: Пусть

$$x = 0101\,1000_2$$
.

Тогда:

$$x - 1 = 01010111_2$$
.

Для наглядности приведём побитовое представление в виде таблицы:

$$x\colon \ 0 \ \ 1 \ \ 0 \ \ 1 \ \ 1 \ \ 0 \ \ 0$$

Таким образом, $0101\,1000_2$ превращается в $0101\,0000_2$ — то есть самая младшая единица обнулена.

2. Включение самой младшей нулевой позиции: $x \mid (x+1)$

Эта операция устанавливает в 1 самый правый нулевой бит, который непосредственно следует за группой единиц.

Пример: Пусть

$$x = 10100111_2$$
.

Тогда:

$$x + 1 = 10101000_2$$
.

Покажем побитово:

В результате получается $1010\,1111_2$ — то есть включён самый правый нулевой бит.

3. Включение всех младших битов: $x \mid (x-1)$

Эта операция приводит к тому, что все биты, находящиеся правее самой младшей единицы, принимабт новое значение - 1.

Пример: Пусть

$$x = 1010 \, 1000_2$$
.

Тогда:

$$x - 1 = 10100111_2$$
.

Покажем вычисление:

Таким образом, $x \mid (x-1)$ превращает $1010 \ 1000_2$ в $1010 \ 1111_2$, то есть все биты правее первой единицы становятся единицами.