

Friction and Friction Compensation

Robert Grepl

Mechatronics Laboratory
Institute of Solid Mechanics, Mechatronics and Biomechanics
Faculty of Mechanical Engineering, Brno University of Technology
2009

Dissipative forces

- viscous friction
- drag force
- dry friction

General Coulomb friction:: Intro

equation of motion

$$m\ddot{x} = F_e - T$$

T?

$$T = Nf$$

- ... but only for v>0
- generally:

$$m\ddot{x} = F_e - T$$

$$0 = F_e - T$$

mechatronics laboratory :: ismmb :: fme :: brno university of technology

General Coulomb friction :: Definition of T

 Coulomb friction for general velocity and with stiction included:

$$T = \begin{cases} \operatorname{sgn}(v)F_C & \operatorname{pokud} v \neq 0 \\ F_e & \operatorname{pokud} v = 0 \land |F_e| < F_C \\ \operatorname{sgn}(F_e)F_S & \operatorname{pokud} v = 0 \land |F_e| > F_C \end{cases}$$

$$F_C = N f_{kin}$$
$$F_S = N f_{stiction}$$

General Coulomb friction :: Example

equations

$$m\ddot{x}_1 = -2kx_1 + kx_2$$

$$m\ddot{x}_2 = kx_1 - kx_2 - T$$

we need Fe, …?

$$F_e = kx_1 - kx_2$$

$$T = \begin{cases} \operatorname{sgn}(v)F_C & \operatorname{pokud} v \neq 0 \\ F_e & \operatorname{pokud} v = 0 \land |F_e| < F_C \\ \operatorname{sgn}(F_e)F_S & \operatorname{pokud} v = 0 \land |F_e| > F_C \end{cases}$$

mechatronics laboratory :: ismmb :: fme :: brno university of technology

Example 2

dynamic eq.:

$$m\ddot{r} - m\dot{\varphi}^2 r = -T_2$$
$$(mr^2 + J)\ddot{\varphi} + 2mr\dot{r}\dot{\varphi} = -T_1 h$$

• constraints: $T_2 - N_1 = 0$ $-T_1 - N_2 = 0$

Pozor, tady je chyba.

-> we have 6 unknowns and 4 equations -> friction eq.

$$T = \left\{egin{array}{ll} & \mathop{\mathrm{sgn}}(v)F_C & \mathop{\mathrm{pokud}} v
eq 0 \ F_e & \mathop{\mathrm{pokud}} v = 0 \land |F_e| < F_C \ & \mathop{\mathrm{sgn}}(F_e)F_S & \mathop{\mathrm{pokud}} v = 0 \land |F_e| > F_C \end{array}
ight. \ T_1 = f(\dot{arphi}, N_1) \ T_2 = f(\dot{r}, N_2) \qquad T_2 = f(\dot{r}, T_1)$$

General Coulomb friction:: Discussion

- what if we have 2 frictional joints? ... 4 combinations...
- requires computation of Fe
- similar approach
 is used in SimMechanics _{Ftest} < F_S^f < 0

mechatronics laboratory :: ismmb :: fme :: brno university of technology

Static friction models

Coulomb computationally efficient

$$T = \left\{ \begin{array}{ll} \min(kv, Nf), & \operatorname{pro} v > 0 \\ \max(kv, -Nf), & \operatorname{pro} v \leq 0 \end{array} \right.$$

Coulomb + stiction

Nf

Dynamic friction models

Reset Integrator

$$\dot{p} = \begin{cases} 0 & \text{if } (v > 0 \land p \ge p_0) \lor (v < 0 \land p \le -p_0) \\ v & \text{otherwise} \end{cases}$$

$$F_{\text{fric}} = \frac{(1+a(p))F_{\text{kin}}p}{p_0} + \beta \dot{p}$$
$$a(p) = \begin{cases} a & \text{if } |p| < p_0\\ 0 & \text{otherwise} \end{cases}$$

- p... state bending of virtual bristle
- parameters:
 - Fkin kinetic friction
 - a stiction (increase relatively to Fkin)
 - beta damping
 - p0 range of stiction

mechatronics laboratory :: ismmb :: fme :: brno university of technology

Dynamic friction models

 $\dot{z} = v - \sigma_0 \frac{|v|}{g(v)} z$

 $g(v) = \alpha_0 + \alpha_1 e^{-\left(\frac{v}{v_0}\right)^2}$

 $F_{\rm fric} = \sigma_0 z + \sigma_1 \dot{z} + (\alpha_2 v)$

- LuGre
- z state
- parameters:
 - alpha0 kinetic friction
 - alpha1 stiction
 - v0 stribeck velocity
 - sigma0 stiffness of bristles
 - sigma1 damping of bristles
 - (alpha2 viscous friction)

Friction in DC motor :: Experiment

- praktická ukázka nelinearity soustavy
- motor + řídicí elektronika
- vstup: napětí u (norm.)
- výstup: úhlová rychl.

$$\omega = k_N u$$

- reálně: nelinearita
- experimentálně ověřeno, že je způsobena částečně elektronikou, ale převážně motorem (suché tření)

mechatronics laboratory :: isr

Friction compensation:: Why PID fails?

equation of motion:

$$m\ddot{x} = F_e - T$$

PD regulator

$$u = K_p e + K_d \frac{\mathrm{d}e}{\mathrm{d}t} \qquad e_{ust} = \frac{F_T}{K_p}$$

PID

$$u = K_p e + K_d \frac{\mathrm{d}e}{\mathrm{d}t} + K_i \int e \mathrm{d}t$$

Friction compensation I.

- based on velocity measurement
- principle of feedback linearization
- problem: velocity measurement (noise)

	$e_{rms} \cdot 10^3$	$e_{max} \cdot 10^3$
No friction	3.12	9.06
With friction	13.0	63.7
Friction compensation (Coulomb)	7.85	32.7
Friction compensation (LuGre)	2.65	8.57
Overcompensation	6.72	28.5
Undercompensation	6.22	25.8

mechatronics laboratory :: ismmb :: fme :: brno university of technology

Friction compensation II.

use position error instead of velocity

Issues

- overcompensation oscilations
- undercompensation steady state error
- -> online friction coeff. estimation

mechatronics laboratory :: ismmb :: fme :: brno university of technology

References

 Olsson, H.; Astrom, K. J.; de Wit, C. C.; Gafvert, M. & Lischinsky, P.

Friction models and friction compensation *Eur. J. Control*, 1998, 4, 176-195

