

Programa de asignatura

Hidrometalurgia y Electrometalurgia

Carrera	Ingeniería Civil en Metalurgia								
Código de Asignatura	ME42515								
Nivel/ Semestre	402/2								
Créditos SCT - Chile	Docencia directa	5	5 Trabajo Autónomo		4	Total	9	9	
Ejes de Formación	General	Especialidad X		Práctio	ca	Optativa	Electivo		
Descripción breve de la asignatura	El propósito de esta asignatura es adquirir las habilidades y conocimientos necesarios referentes a los procesos hidrometalúrgicos y electrometalúrgicos, los que permitan elegir y diseñar una vía de tratamiento para diferentes tipos de minerales y menas, en base a la evaluación de los diferentes equilibrios químicos, los aspectos termodinámicos y cinéticos, que ocurren en ellos, haciendo énfasis en aquellos procesos que operan actualmente en nuestro país.								
Pre-requisitos / Aprendizajes Previos	Cinética de los procesos								

Aporte al perfil de egreso

Competencias genéricas:

- Aprende y se actualiza permanentemente en forma autónoma.
- Se comunica en español y en la simbólica en el ámbito de la ingeniería.
- Forma y lidera equipos de trabajo multidisciplinarios para la solución de problemas en el área

UNIVERSIDAD DE ATACAMA VICERRECTORÍA ACADÉMICA FACULTAD DE INGENIERÍA

DEPARTAMENTO DE INGENIERÍA EN METALURGIA

de la ingeniería.

- Competencias específicas:
- Aplica el conocimiento de las Ciencias Básicas y Ciencias de la Ingeniería en el ámbito de la Ingeniería en Metalurgia.
- Analiza y soluciona problemas con enfoque sistémico.
- Diseña, conduce y analiza experimentos en el ámbito de metalurgia.

Competencias que desarrolla la asignatura

- Analiza y selecciona los métodos apropiados de tratamiento de menas y soluciones acuosas.
- Identificar las reacciones químicas de los procesos hidrometalúrgicos y evaluar los parámetros cinéticos que las caracterizan.
- Identifica y reconoce características de los equipos utilizados de las diferentes operaciones y procesos relacionados con la hidrometalurgia.
- Dimensiona equipos y lechos porosos.
- Integra y lidera equipos de trabajo en laboratorio, según procedimientos y normas de seguridad.

Unidades de aprendizaje	Resultados de aprendizaje
Unidad 1: Lixiviación	Explica el fundamento de la lixiviación
	Diferencia las menas y materias primas según su proceso de tratamiento mediante lixiviación
	Aplica la termodinámica a ejercicios propuestos de lixiviación
	 Analiza la importancia de la cinética de lixiviación sobre los procesos industriales
	Diferencia las maneras de realizar la lixiviación, en función de sus parámetros de

	entrada
	 Determina tamaño de pilas, taza de riego y consumo de ácido a través de ejercicios propuestos Explica el fundamento de la biolixiviación y sus reacciones químicas
Unidad 2: Purificación y concentración de soluciones	 Explica la función y los principios detrás de la purificación de y concentraciones de soluciones Diferencia los tipos de extractantes y los mecanismos de extracción según su utilización con deferentes elementos
	Aplica el fundamento de carga y descarga orgánica mediante la resolución de ejercicios propuestos
	Diferencia los equipos utilizados en extracción por solventes y asocia los parámetros de operación con ellos
	Utiliza diagrama de Mc Cabe Thiele para diseño de etapas de extracción
	Explica los fundamentos del intercambio iónico y de las resinas utilizadas para tal proceso
	Analiza las propiedades de las resinas
	Explica el fundamento de la utilización del carbón activado como medio de purificación de soluciones
	 Analiza las propiedades y la forma de preparación de carbón activado
	Determina tasas de desorción y reactivación

	Volmer – Tafel
	Define que es la galvanoplastía y su campo de aplicación
	Define que es corrosión
	Clasifica y define los parámetros utilizados en los procesos de corrosión
	Identifica las reacción de corrosión
Unidad 4: Electroobtención de metales	Reconoce y describe los procesos de electroobtención de metales según los elementos a tratar
	Determina masas recuperadas, eficiencias de los diferentes procesos mediante ejercicios propuestos
	Detalla los equipos de electroobtención de metales
	Clasifica y define los parámetros utilizados en los procesos de electroobtención
	Identifica las reacción de electrodepositaión según el metal a obtener
LABORATORIO Columnas de lixiviación	Aplica los aspectos teóricos de la lixiviación en pruebas prácticas de columna de lixiviación
Extracción por solventes	Determina la cinética de lixiviación del mineral estudiado
	Realiza la experiencia de extracción por solventes de cobre, según lo estudiado teóricamente
	Prepara informes de sobre los resultados obtenidos en las experiencias de laboratorio, analizando la coherencia de los resultados

	obtenidos
•	Aplica los aspectos teóricos en las experiencias de laboratorio
•	Aplica medidas de seguridad en laboratorio

Estrategias de enseñanza y aprendizaje

Teoría

- Clases expositivas interactivas
- Estudio de casos o de artículos científicos-tecnológicos mediante trabajo individual y/o en equipo
- Estudio individual de trabajos de investigación en biblioteca o vía internet
- Aprendizaje basado en problemas
- Trabajos individuales y en equipo.
- Exposiciones orales

Laboratorio

- Experiencias realizadas personalmente por los alumnos
- Desarrollo de informes según las experiencias de laboratorio realizadas

Procedimientos de evaluación de aprendizajes

Los instrumentos de evaluación utilizados serán:

- Evaluación escrita y/u oral
- Informes de trabajos realizados individualmente o en grupos
- Exposiciones orales
- Exposición de trabajos realizados por los alumnos

UNIVERSIDAD DE ATACAMA

VICERRECTORÍA ACADÉMICA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA EN METALURGIA

Informes de resultados de laboratorio

Recursos de aprendizaje

Bibliográficos

- 1. Habashi, Fathi, Textbook of Hydrometallurgy, 2nd Edition, Quebec, Edit. Metallurgy Extractive 1999
- 2. Esteban Domic, Hidrometalurgia, fundamentos, procesos y aplicaciones, 2001.
- 3. Gilchrist, J. D., Extractive Metallurgy, 3th edition, Butterworth-Heinemann, 1989.
- 4. Raydberg, J. and Musikas, C., Principles and Practices of Solvent Extraction, Edit. Marcel Dekker Inc. 1992.
- 5. Gupta, C. K. and Mukherjee, T. K., Hydrometallurgy in Extration Processes, Vol. 1. Edit. Crc. Pr. 1990.
- 6. Fathi Habashi, Gordon and Breach. Principles of Extractive Metallurgy, vol.2 Hydrometallurgy Science Publishers, N.Y, N.Y. 1970.
- 7. Bockris and Reddy. "Electroquímica Moderna". Vol. I y II. Ed. Revervete. 1980
- 8. Mantell. Ingeniería Electroquímica. Mc Graw Hill. 1980
- 9. Frank Walsh, Un primer curso de ingeniería electroquímica

Adicionalmente se empleará material bibliográfico extraído de publicaciones periódicas a ser señaladas por el profesor