

Palestra

A Tutorial on Trusted and Untrusted non-3GPP Accesses in 5G Systems – Firsts Steps Towards a Unified Communications Infrastructure

Mario Lemes

22/10/2021

Agenda

- Parte I Redes 5G:
 - Definição.
 - Órgãos padronizadores.
 - Características.
 - Tecnologias habilitadoras.
 - A importância da integração entre 5G e redes não-3GPP.
 - Redes não-3GPP e principais procedimentos.
- Parte II Demonstração:
 - Apresentar o cenário de simulação: untrusted non-3GPP access Wi-Fi use case
 - Simular o acesso ao núcleo 5G usando ferramentas open-source e uma rede não-3GPP não confiável.
 - Discussão sobre os procedimentos de registro, autenticação, autorização e estabelecimento de sessão de dados.

Mario Teixeira Lemes

5G: o que é?

Importante: o **aumento de velocidade** é apenas **uma** das melhorias relacionadas ao 5G

5G: 3GPP e Casos de Uso

5G: Aplicações com diferentes requisitos

5G: Sistema

Integração entre diferentes Redes de Acesso (Redes 3GPP e não-3GPP)

Funções de Redes (NFs)

Separação entre Plano de Controle e Plano de Usuário (CUPS)

Arquitetura Baseada em Serviços (SBA)

5G: Arquitetura Baseada em Serviços

- Modelo de comunicação:
 - Produtor-consumidor.
 - Paradigma HTTP REST.

5G: Suporte para redes não-3GPP

5G: redes não-3GPP não confiáveis

• Redes não confiáveis — Release 15 do 3GPP

Mario Lemes

Q

5G: Registro, autenticação e autorização via redes não-3GPP não confiáveis

1. Associação do UE a rede WLAN.

. Início do procedimento com IKE_SA_INIT.

. IKE_Auth Request sem payload e início do envio de mensagens NAS.

. UE envia uma mensagem de autenticação para N3IWF.

- . AUSF envia uma chave de segurança para AMF encapsulada em EAP-Success.
- **6**. AMF e UE derivam a chave N3IWF a partir da chave de segurança oriunda da AUSF.
- . Estabelecimento do IPSec.
- . Associação segura IPSec estabelecida.

5G: Protocolos usados no plano de controle de redes não-3GPP não confiáveis

5G: Estabelecimento de sessão de dados para redes não-3GPP não confiáveis

Untrusted

WLAN Access

Network

-PDU Session Establishment

IKE Create Child

Request

IKE Create Child

Response

PDU Session Establishment

Accept

the IPSec Child SA

Mario Lemes

QoS flows inside

IPSec SA

First

IPSec

Child

N3IWF

IPsec child SAs

(7)

AMF

PDU

Session

Request

PDU Session

Response

- 1. PDU Session Establishment é enviado do UE para AMF UE WLAN
 - 2. AMF seleciona SMF signaling (depende do contexto do UE) para criar uma sessão PDU. Se autorizado, AMF encaminha requisicão de criação para N3IWF.
- 3. N3IWF calcula a quantidade de IPSec Child para associação com cada profile de QoS enviada pelo UE.

4. N3IWF envia requisição IKE.

- UE responde com a criação das IPSec(s) Child(s)
- 6. PDU Session accept é enviado para UE após a criação de toda(s) IPSec(s) Child(s).
- 7. N3IWF notifica AMF
- 8. Fluxos de QoS são transportados dentro dos túneis

5G: Protocolos no Plano de Usuário para transferência de sessão PDU usando Redes não-3GPP não confiáveis

5G: redes não-3GPP confiáveis

Redes confiáveis ———— Release 16 do 3GPP

Confiáveis

Trusted Non-3GPP
Access Point
(TNAP)

Trusted WLAN
Access Point
(TWAP)

Non-5G Capable over WLAN (N5CW)

Trusted Non-3GPP Gateway Function (TNGF)

Trusted WLAN
Interworking Function
(TWIF)

Redes não-3GPP confiáveis

Parte II - Demonstração

• Untrusted non-3GPP access Wi-Fi use case.

• https://github.com/LABORA-INF-UFG/paper-MCAK-2021

Análise de Performance - Latência

TABLE V
TIME STATISTICS ABOUT SOME PROCEDURES.

Confidence interval of 95%

Procedure	Average (s)	Standard deviation (s)	Lower limit (s)	Upper limit (s)
IPSec SA Signaling	0.93	0.41	0.78	1.07
PDU Session Establishment	0.22	0.04	0.21	0.23

Análise de Performance – Quantidade de mensagens

TABLE VI IPSEC SA SIGNALING MESSAGES.

ID	Message	Involved Components	Size (Bytes)
1	IKE_SA Init Request (0)	$UE \rightarrow N3IWF$	644
2	IKE_SA Init Response (0)	N3IWF → UE	644
3	IKE_Auth Request (1)	UE → N3IWF	216
4	IKE_Auth Response (1)	N3IWF → UE	1448
5	IKE_Auth Request (2)	UE → N3IWF	200
6	InitialUEMessage	$N3IWF \rightarrow AMF$	128
7	Authentication Request (1)	AMF → N3IWF	148
8	IKE_Auth Response (2)	$N3IWF \rightarrow UE$	168
9	IKE_Auth Request (3)	UE → N3IWF	152
10	Authentication Response (1)	N3IWF → AMF	140
11	Security Mode Command	$AMF \rightarrow N3IWF$	124
12	IKE_Auth Response (3)	N3IWF → UE	152
13	IKE_Auth Request (4)	UE → N3IWF	184
14	UplinkNASTransport	$N3IWF \rightarrow AMF$	168
15	InitialContextSetupRequest	AMF → N3IWF	188
16	IKE_Auth Response (4)	$N3IWF \rightarrow UE$	120
17	IKE_Auth Request (5)	UE → N3IWF	136
18	IKE_Auth Response (5)	N3IWF → UE	296
19	InitialContextSetupResponse	N3IWF → AMF	100
20	DownlinkNASTransport	$AMF \rightarrow N3IWF$	160
	4360		
Internal exchanged messages between NFs			1156
		Total	5516

TABLE VII
PDU SESSION ESTABLISHMENT MESSAGES.

ID	Message	Involved Components	Size (Bytes)
1	PFCPSessionEstablishmentReq	$SMF \rightarrow UPF$	271
2	PFCPSessionEstablishmentResp	$UPF \rightarrow SMF$	107
3	PDUSessionResourceSetupReq	$AMF \rightarrow N3IWF$	271
4	Echo Request	$N3IWF \rightarrow UPF$	58
5	Echo Response	$UPF \rightarrow N3IWF$	58
6	Create_Child_SA Req	N3IWF → UE	488
7	Create_Child_SA Res	UE → N3IWF	456
8	PDUSessionResourceSetupRes	$N3IWF \rightarrow AMF$	120
Exchanged messages between UE and N3IWF			
Internal exchanged messages between NFs			885
		Total	1829

Análise de Performance – Quantidade de mensagens

Data (MTU limited)

IPv4 (20 Bytes)

GRE (4 Bytes)

Inner IPSec (20 Bytes)

IPv4 (20 Bytes)

192.168.1.1/24

or

Overhead of extra headers: 44 Bytes

192.168.127.1

Considerações finais

- O artigo* abordado nesta palestra apresenta um tutorial detalhado sobre acesso ao núcleo do 5G via redes não-3GPP (confiáveis e não-confiáveis), de acordo com o especificado na Release 15 e 16 da 3GPP.
- Nós comparamos aspectos de segurança relacionados as redes não-3GPP, e.g. autenticação e procedimentos de encriptação, e discutimos principais procedimentos de sinalização IPSec e estabelecimento de sessão PDU para cada uma dessas redes.
- A convergência sem fio com fio é apresentada, mostrando também a possibilidade de acesso ao núcleo do 5G usando redes com fio legadas e gateways residenciais.

^{*}Preprint submetido a Computer Networks – Elsevier (em revisão).

Considerações finais

 Para ilustrar o acesso de um UE por meio de uma rede de acesso não-3GPP não confiável, apresentamos um caso de uso no qual um UE usando uma rede Wi-Fi é autenticado/autorizado acessar o núcleo 5G e estabelecer uma sessão de dados.

• Por fim, nós avaliamos algumas métricas como: latência dos principais procedimentos, número de mensagens e overhead no plano de usuário de sessões de dados estabelecidas.

Agradecimentos

 Agradecimento ao Prof. Dr. Cristiano Bonato Both pelo convite e possibilidade de divulgação deste trabalho.

Agradecimento a audiência.

Dúvidas?

• contato: mario.lemes@ifg.edu.br

