GLM Cheatsheet

- Random component: This specifies the response variable y and its probability distribution. The observations $y = (y_1, \dots, y_n)^T$ on that distribution are treated as independent.
- Linear predictor: For a parameter vector $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_p)^T$ and a $n \times p$ model matrix \boldsymbol{X} that contains values of p explanatory variables for the n observations, the linear predictor is $\boldsymbol{X}\boldsymbol{\beta}$.
- Link function: This is a function g applied to each component of E(y) that relates it to the linear predictor,

$$\mu_i = E(y_i)$$
 $g(\mu_i) = \eta_i = \sum_{j=1}^p \beta_j x_{ij}, \quad i = 1, ..., n.$

GLM Cheatsheet

Family	pdf or pmf	Mean	Variance	Observaciones
Normal	$\mathcal{P}(y; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\}$	μ	$\phi = \sigma^2$	Se puede usar para $Y \in \mathbb{R}$
Binomial	$\mathcal{P}(y;\mu,m) = \binom{m}{my} \mu^{my} (1-\mu)^{m(1-y)}$	μ	$\mu \left(1-\mu\right)/m$	Se puede usar para $Y \in \{0, 1\}$
Poisson	$\mathcal{P}(y;\mu) = \frac{\exp(-\mu)\mu^y}{y!}$	μ	μ	Se puede usar para $Y \in \mathbb{N}_0$
Negative binomial	$\mathcal{P}(y_i; \mu_i, k) = \frac{\Gamma(y_i + k)}{\Gamma(y_i + 1)\Gamma(k)} \left(\frac{\mu_i}{\mu_i + k}\right)^{y_i} \left(1 - \frac{\mu_i}{\mu_i + k}\right)^k$	μ	$\mu + \mu^2/k$	Se puede usar para $Y \in \mathbb{N}_0$ k es el parámetro de precisión. $\phi = 1/k$ es el parámetro de dispersión. El valor de k se acostumbra a llamar theta en R.
Gamma	$\mathcal{P}(y;\mu,\phi) = \left(\frac{y}{\phi\mu}\right)^{1/\phi} \frac{1}{y} \exp\left(-\frac{y}{\phi\mu}\right) \frac{1}{\Gamma(1/\phi)}$	μ	$\phi\mu^2$	Se puede usar para $Y \in \mathbb{R}^+$
Inverse Gaussian	$\mathcal{P}(y;\mu,\phi) = (2\pi y^3 \phi)^{-1/2} \exp\left\{-\frac{1}{2\phi} \frac{(y-\mu)^2}{y\mu^2}\right\}$	μ	$\phi \mu^3$	Se puede usar para $Y \in \mathbb{R}^+$

Table 15.2 Canonical Link, Response Range, and Conditional Variance Function for Exponential Families

Family	Canonical Link	Range of Y _i	$V(Y_i \eta_i)$
Gaussian	Identity	$(-\infty, +\infty)$	ϕ
Binomial	Logit	$\frac{0, 1,, n_i}{n_i}$	$\frac{\mu_i(1-\mu_i)}{n_i}$
Poisson	Log	0,1,2,	μ_i
Gamma	Inverse	$(0,\infty)$	$\phi\mu_i^2$
Inverse-Gaussian	Inverse-square	$(0,\infty)$	$\phi \mu_i^3$

NOTE: ϕ is the dispersion parameter, η_i is the linear predictor, and μ_i is the expectation of Y_i (the response). In the binomial family, n_i is the number of trials.

Table 5.1 Common EDMs, showing their variance function $V(\mu)$, cumulant function $\kappa(\theta)$, canonical parameter θ , dispersion parameter ϕ , unit deviance $d(y,\mu)$, support S (the permissible values of y), domain Ω for μ and domain Θ for θ . For the Tweedie distributions, the case $\xi=2$ is the gamma distribution, and $\xi=1$ with $\phi=1$ is the Poisson distribution. $\mathbb R$ refers to the real line; $\mathbb N$ refers to the natural numbers $1,2,\ldots$; superscript + means positive values only; superscript of means zero is included in the space (Sect. 5.3.5)

EDM	$V(\mu)$	$\kappa(heta)$	θ	ϕ	$d(y,\mu)$	S	Ω	Θ	Reference
Normal	1	$\theta^2/2$	μ	σ^2	$(y-\mu)^2$	\mathbb{R}	\mathbb{R}	\mathbb{R}	Chaps. 2 and 3
Binomial	$\mu(1-\mu)$	$\frac{\exp\theta}{1+\exp\theta}$	$\log\frac{\mu}{1-\mu}$	$\frac{1}{m}$	$2\left\{y\log\frac{y}{\mu} + (1-y)\log\frac{1-y}{1-\mu}\right\}$	$\frac{0,1,\dots m}{m}$	(0, 1)	\mathbb{R}	Chap. 9
Negative binomial	$\mu + \frac{\mu^2}{k}$	$-\log(1-\exp\theta)$	$\log \frac{\mu}{\mu + k}$	1	$2\left\{y\log\frac{y}{\mu} - (y+k)\log\frac{y+k}{\mu+k}\right\}$	\mathbb{N}_0	\mathbb{R}^{+}	\mathbb{R}^{-}	Chap. 10
Poisson	μ	$\exp heta$	$\log \mu$	1	$2\left\{y\log\frac{y}{\mu} - (y-\mu)\right\}$	\mathbb{N}_0	\mathbb{R}^{+}	\mathbb{R}	Chap. 10
Gamma	μ^2	$-\log(-\theta)$	$-\frac{1}{\mu}$	ϕ	$2\left\{-\log\frac{y}{\mu} + \frac{y-\mu}{\mu}\right\}$	\mathbb{R}^+	\mathbb{R}^{+}	\mathbb{R}	Chap. 11
Inverse Gaussian	μ^3	$-\sqrt{-2\theta}$	$-\frac{1}{2\mu^2}$	ϕ	$\frac{(y-\mu)^2}{\mu^2 y}$	\mathbb{R}^+	\mathbb{R}^{+}	\mathbb{R}_0^-	Chap. 11
Tweedie $(\xi \le 0 \text{ or } \xi \ge 1)$	1) μ^{ξ}	$\frac{\{(1-\xi)\theta\}^{(2-\xi)/(1-\xi)}}{2-\xi}$	$\frac{\mu^{1-\xi}}{1-\xi}$	ϕ	$2\left\{\frac{\max(y,0)^{2-\xi}}{(1-\xi)(2-\xi)}\right$	$\xi < 0$: \mathbb{R}	\mathbb{R}^{+}	\mathbb{R}_0^+	Chap. 12
		for $\xi \neq 2$	for $\xi \neq 1$		$\frac{y\mu^{1-\xi}}{1-\xi} + \frac{\mu^{2-\xi}}{2-\xi}$	$1 < \xi < 2$: \mathbb{R}_0^+	\mathbb{R}^{+}	\mathbb{R}^{-}	
					for $\xi \neq 1, 2$	$\xi > 2$: \mathbb{R}^+	\mathbb{R}^{+}	\mathbb{R}_0^-	

Los capítulos de la última columna corresponden a libro "Generalized linear models with examples in R" de Dunn & Smyth (2018).

Table 15.1 Some Common Link Functions and Their Inverses

Link	$\eta_i = g(\mu_i)$	$\mu_i = g^{-1}(\eta_i)$	
Identity	μ_i	η_i	
Log	$\log_{\mathrm{e}}\mu_{i}$	e^{η_i}	
Inverse	μ_i^{-1}	η_i^{-1}	
Inverse-square	μ_i^{-2}	$\eta_i^{-1} \\ \eta_i^{-1/2}$	
Square-root	$\sqrt{\mu_i}$	η_i^2	
Logit	$\log_e \frac{\mu_i}{1 - \mu_i}$	$\frac{e^{\eta_i}}{1+e^{\eta_i}}$	
Probit	$\Phi^{-1}(\mu_i)$	$\Phi(\eta_i)$	
Log-log	$-\log_{\mathrm{e}}[-\log_{\mathrm{e}}(\mu_i)]$	$\exp[-\exp(-\eta_i)]$	
Complementary log-log	$\log_{\rm e}[-\log_{\rm e}(1-\mu_i)]$	$1-\exp[-\exp(\eta_i)]$	

NOTE: μ_i is the expected value of the response, η_i is the linear predictor, and $\Phi(\cdot)$ is the cumulative distribution function of the standard-normal distribution.

Table 6.4 The link functions accepted by different glm() families in R are indicated using a tick \checkmark . The default (and canonical) links used by R are indicated with stars \bigstar (Sect. 6.9)

Link function	gaussian	binomial and quasibinomial	-	Gamma	inverse.gaussian	quasi
identity log inverse	* 		√ ★	√ √ ★	√ √ √	* \ \(\)
sqrt 1/mu^2			\checkmark		*	✓ ✓
logit probit cauchit cloglog		* ✓ ✓				√ √
power		•				√

Table 15.9 Functions $a(\cdot)$, $b(\cdot)$, and $c(\cdot)$ for Constructing the Exponential Families

Family	$a(\phi)$	$b(\theta)$	$c(y, \phi)$
Gaussian	ϕ	$\theta^2/2$	$-\frac{1}{2}[y^2/\phi + \log_e(2\pi\phi)]$
Binomial	1/ <i>n</i>	$\log_e(1+e^{\theta})$	$\log_e \left(\begin{array}{c} n \\ ny \end{array} \right)$
Poisson	1	e^{θ}	$-\log_e y!$
Gamma	ϕ	$-\log_{\mathrm{e}}(-\theta)$	$\phi^{-1}\log_{\mathrm{e}}(y/\phi) - \log_{\mathrm{e}}y - \log_{\mathrm{e}}\Gamma(\phi^{-1})$
Inverse-Gaussian	ϕ	$-\sqrt{-2\theta}$	$-\frac{1}{2}\left[\log_{\mathrm{e}}(\pi\phi y^3)+1/(\phi y)\right]$

NOTE: In this table, n is the number of binomial trials, and $\Gamma(\cdot)$ is the gamma function.