UPPSALA UNIVERSITET

FÖRELÄSNINGSANTECKNINGAR

Reell Analys

Rami Abou Zahra

Contents

1.	TODO	2
2.	Introduction	3
3.	Sammanfattning Kap2	3
3.1.	Notation	3
3.2.	Relationer	3
3.3.	Funktioner	4
3.4.	Pullback & Pushforward	5
3.5.	Abstrakt algebra	5
3.6.	Kardinalitet	6
4.	Definition och egenskaper av tal	8
4.1.	Definition av \mathbb{Z}	8
4.2.	Definition av \mathbb{Q}	8
4.3.	Definition av \mathbb{R}	9

1. TODO

- Abelian group (and non-abelian)
 Non-commutative ring
 Commutative ring which is not a field
 Få en intuitiv bild på cut/snitt

2. Introduction

Before proving injectivity & surjectivity, first show it is a function

3. Sammanfattning Kap2

3.1. Notation.

Vi använder ett "+" för att beteckna om mängden innehåller positiva element. Om det är känt att mängden innehåller negativa element behöver vi tydliggöra om 0 finns i mängden, det finns olika notation.

Vi skriver "upphöjt i +" för att visa att mängden är helt positivt (innehåller ingen 0), och "nedsänkt i +" för att visa att mängden är positiv men innehåller 0.

Exempel:

De positiva reella talen: \mathbb{R}^+ Icke-negativa rella talen: \mathbb{R}_+

3.2. Relationer.

En relation R på en mängd M är:

$$R \subseteq M \times M$$

Vi har 5 "adjektiv" att beskriva våra relationer med:

- Reflexiv $(xRx \quad \forall x \in M)$
- Symmetrisk $(xRy \Rightarrow yRx \quad \forall x, y \in M)$
- Antisymetrisk $(xRy \& yRx \Rightarrow x = y)$
- Transitiv $(xRy \& yRz \Rightarrow xRz \quad \forall x, y, z \in M)$
- Connex $(xRy \text{ eller } yRx \quad \forall x, y \in M)$

Som exempel på dessa kan man betrakta relationen = eller relationen < över R

Exempel:

Låt $A = \{a, b\}$ och potensmängden till A vara $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ Vilka av de 5 kraven uppfylls om relationen är \subseteq ?

För att lösa detta så kommer vi ihåg att relationer är definierade på mängdens kartesiska produkt, så vi har i själva verket en relation \subseteq över $\mathcal{P}(A) \times \mathcal{P}(A)$

Vi kollar reflexivitet. Om vi tar ett element från $\mathcal{P}(A)$, är det då en delmängd till sig själv? **Ja, en mängd är alltid delmängd till sig själv**. Viktigt att notera att den inte är en äkta delmängd!

Är relationen symmetrisk? Tag $\{a\} \in \mathcal{P}(A)$ och $\{a,b\} \in \mathcal{P}(A)$. Då gäller att $\{a\} \subseteq \{a,b\}$ men $\{a,b\} \not\subseteq \{a\}$. Eftersom relationen skulle gälla \forall element i relationsmängden, så gäller *inte* symmetri!

Är relationen antisymetrisk? Antisymetri gäller om $xRy \& yRx \Rightarrow x = y$, vi undersöker negationen, vilket är $xRy \& x \neq y \Rightarrow \neg yRx$. Detta säger i princip "om x är delmängd till y och x inte är lika med y så är y inte en delmängd till x", vilket vi vet gäller.

Är relationen transitiv? Ja, om x är en delmängd till y och y är en delmängd till z så gäller att x är en delmäng till z

Connex? Nej, tag $x = \{a\}$ och $y = \{b\}$, då är $x \not\subseteq y$ och $y \not\subseteq x$

3.2.1. Klassifikationer av relationer.

Vi har 3st Klassifikationer för relationer:

- Ekvivalensrelation (reflexiv, symmetrisk, transitiv)
- Partiell ordning (reflexiv, antisymetrisk, transitiv)
- Total ordning (connex, reflexiv, antisymetrisk, transitiv)

Anmärkning:

En total ordning är en connex partiell ordning.

Exempel: (Ekvivalensrelation) = (likhet) är en ekvivalensrelation

Exempel: (Partiell ordning)

≤ är en partiell ordning (men inte en ekvivalensrelation)

Exempel: (Total ordning) ≤ är en total ordning

3.3. Funktioner.

3.3.1. Domän, kodomän.

En funktion (eller även kallad en avbildning) definierad från en domän A till en kodomän B, kan ses som en delmängd till $A \times B$.

Denna brukar även kallas för grafen till funktionen.

Om $f: A \to B$ så är alltså grafen $(f) \subseteq A \times B$

Anmärkning:

För varje $x \in A$ så finns det ett unikt $y \in B$ så att f(x) = y (alternativ beteckning: $(x, y) \in \operatorname{graf}(f)$)

3.3.2. Bilden.

Något som verkar lite förvirrande först är att kodomänen inte är bilden av funktionen. Om vi exempelvis betraktar $f: \mathbb{R} \to \mathbb{C}$ $x \mapsto x$ så ser vi att de värden som faktiskt "träffas" är hela \mathbb{R} , vilket är en delmängd till \mathbb{C} men inte hela \mathbb{C} !

Definition/Sats 3.1: Bilden till en avbildning

$$f:A\to B$$

$$f(A)=\{y\in B\mid \exists x\in A \text{ s.t } y=f(x)\}$$

Anmärkning:

- \bullet Omf,gär injektiva, så är $g\circ f$ injektiv
- \bullet Om f,g är surjektiva, så är $g\circ f$ surjektiv
- \bullet Omf,gär bijektiv, så är $g\circ f$ bijektiv

3.4. Pullback & Pushforward.

Antag att vi har en avbildning $f: X \to Y$, då gäller följande:

Definition/Sats 3.2: Pullback

Inte hela kodomänen träffas av en avbildning/funktion. Det beror på vad domänen är (och hur funktionen ser ut).

Vi kan däremot korta ner domänen och undersöka hur det påverkar bilden av avbildningen, detta är pullback:

$$f_*(A) = \{ f(x) \in Y \mid x \in A \} = f(A) \qquad A \subseteq \mathcal{P}(X)$$

Anmärkning:

$$A \subseteq X \Rightarrow X \subseteq \mathcal{P}(X)$$
, samt att $f_* \subseteq Y \Leftrightarrow f_* \subseteq \mathcal{P}(Y)$
Vi har då $f_* : \mathcal{P}(X) \to \mathcal{P}(Y)$

Definition/Sats 3.3: Pushforward

Liknande/Motsatsen gäller för pushforward. Här vill vi undersöka vad som händer med domänen om vi betraktar en delmängd till kodomänen:

$$f^*(B) = \{x \in X \mid f(x) \in B\}$$
 $B \subseteq \mathcal{P}(Y)$

Anmärkning:

Pushforward är invariant under union och snitt

Pullback är **enbart** invariant under union (annars, låt $f(x) = x^2$ och visa vad som händer med $f_*(\{-1\})$ resp. $f_*(\{1\})$)

Detta följer från definitionen och påminner lite om lagen om total sannolikhet från kursen Sannolikhetsteori 1.

3.5. Abstrakt algebra.

Definition/Sats 3.4: Ordnad kropp

Låt $\mathbb{F} = (F, +, *, <)$ vara en kropp med en strikt ordning < så att:

- $x, y, z \in \mathbb{F}$ och y < z så är även x + y < x + z
- $x, y \in \mathbb{F}$ och x, y > 0 så är även xy > 0

Definition/Sats 3.5: Vektorrum över kropp

En mängd V är ett vektorrum över en kropp $\mathbb F$ om vi har följande 2 avbildningar:

$$\begin{array}{ccc} V\times V \xrightarrow{+} V & & \mathbb{F}\times V \xrightarrow{\cdot} V \\ (v,w)\mapsto v+w & & (\alpha,v)\mapsto \alpha v \end{array}$$

Anmärkning:

(V,+)är en abelsk grupp

Definition/Sats 3.6: Stödet till en avbildning

Låt $f: M \to \mathbb{F}$ där \mathbb{F} är en kropp. Vi definierar

$$\operatorname{supp}(f) = \{ m \in M \mid f(m) \neq 0 \}$$

Vi kan generalisera detta till avbildningar över vektorrum V och definiera:

$$V_{\text{fin}} = \{ f \in V \mid \text{supp}(f) \text{ ändlig} \}$$

Vi har i andra kurser kikat på hur vi kan kvota mängder med ideal. Vi kan även kvota med ekvivalensrelationer enligt följande:

$$M/_{\sim} = \{ [x] \in \mathcal{P}(M) \mid x \in M \}$$

Givet en binär komposition * över M och en ekvivalensrelation \sim säger vi att \sim respekterar * om:

$$x \sim x'$$
 & $y \sim y' \Rightarrow x * y \sim x' * y'$ $\forall x, y \in M$

Vi kan då defniera den inducerade binära kompositionen $\bar{*}$ på $M/_{\sim}$ genom:

$$M/_{\sim} \times M/_{\sim} \stackrel{\overline{*}}{\to} M/_{\sim}$$

 $([x], [y]) \mapsto [x * y]$

3.6. Kardinalitet.

Två mängder har samma kardinalitet om det finns en bijektion mellan de.

Om $\operatorname{card}(X) \leq \operatorname{card}(Y)$ så finns det injektiva avbildningar från X till Y

Om $\operatorname{card}(X) \geq \operatorname{card}(Y)$ så finns det surjektiva avbildningar från X till Y

Vi säger att en mängd A är uppräknelig om det finns en bijektion mellan A och \mathbb{N} . Om det inte finns en bijektion säger vi att A är överuppräknelig.

Anmärkning:

Om A_1, A_2, \cdots , är uppräkneliga så är deras union uppräkneliga.

Definition/Sats 3.7: Cantors sats

Låt X vara en mängd. Det finns **ingen** surjektion från X till $\mathcal{P}(X)$

Definition/Sats 3.8: Schröder-Bernsteins sats

Betrakta följande:

$$X \xrightarrow{f} Y \quad Y \xrightarrow{g} X$$

Om f,gär injektiva så finns en bijektion $X\stackrel{h}{\rightarrow} Y$

För att visa detta krävs följande sats:

Definition/Sats 3.9: Tarskis fixpunktssats

Antag att $F: \mathcal{P}(X) \to \mathcal{P}(X)$ är monotont växande, dvs

$$A \subseteq B \Rightarrow F(A) \subseteq F(B)$$

Då finns det $M \subseteq X$ så att F(M) = M

Definition/Sats 3.10: Index-mängd

Låt I,X vara mängder och det finns en avbildning mellan de så att $I \xrightarrow{f} \mathcal{P}(x)$ så att $i \mapsto f(i) = A_i$ Denna mängd kallas för $index m \ddot{a} n g den$

4. Definition och egenskaper av tal

4.1. Definition av \mathbb{Z} .

Här ska $(x,y)\in\mathbb{N}\times\mathbb{N}$ vara $x-y\in\mathbb{Z}$ Då är $(x,x)\Leftrightarrow 0$ och om x>y så $(x,y)\Leftrightarrow x-y>0$ och y>x så $(x,y)\Leftrightarrow x-y<0$

Vi vill däremot vara mer träffsäkra i våra definitioner. Därför definierar vi följande binära kompositioner:

$$(\mathbb{N}\times\mathbb{N})\times(\mathbb{N}\times\mathbb{N})\to\mathbb{N}\times\mathbb{N}$$

$$((a,b),(c,d)) \stackrel{+}{\mapsto} (a+c,b+d) \in \mathbb{N} \times \mathbb{N} \Leftrightarrow (a+c-(b+d)) \in \mathbb{Z}$$
$$((a,b),(c,d)) \stackrel{+}{\mapsto} (ac+bd-(ad+bc)) \in \mathbb{N} \times \mathbb{N} \quad (ac+bd,ad+bc) \in \mathbb{Z}$$

Vi definierar en ekvivalens
relation på $\mathbb{N} \times \mathbb{N}$ genom:

$$(x,y) \sim (x',y') \Leftrightarrow x+y'=x'+y$$

Detta ger oss ett hum om hur vi kan definiera Z, på något följande vis:

$$\mathbb{Z} = \mathbb{N} \times \mathbb{N}/_{\sim}$$

Vi kollar om ekvivalensrelationen respekterar våra binära operationer:

$$\begin{aligned} &(a,b) \sim (a',b') \\ &(c,d) \sim (c',d') \end{aligned} \stackrel{+}{\Rightarrow} (a+c,b+d) \sim (a'+c',b'+d') \\ &\Leftrightarrow (ac+bd,ad+bc) \sim (a'c'+b'd',a'd'+b'c')$$

Alternativ definition:

Ett annat sätt vi kan definiera \mathbb{Z} på är:

$$x \in \mathbb{N} \mapsto [(x,0) \in \mathbb{Z}]$$
$$x - y := [(x,y)] \in \mathbb{Z} \quad \forall x, y \in \mathbb{N}$$
$$\Leftrightarrow \mathbb{N} \hookrightarrow \mathbb{Z}$$

Definition/Sats 4.1: Total order on $\mathbb Z$

A total order on \mathbb{Z} is given by:

$$[(x,y)] < [(x',y')] \Leftrightarrow x + y' < x' + y$$

4.2. Definition av \mathbb{Q} .

Vi använder en liknande teknik:

$$(p/q) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$$

Bör korrespondera till $\frac{p}{2} \in \mathbb{Q}$.

Anmärkning:

$$\frac{p}{q} = \frac{p'}{q'} \Leftrightarrow pq' = p'q$$

Vi vill nu "härma" det vi gjorde när vi definierade \mathbb{Z} :

$$(\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})) \times (\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})) \to \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$$
$$((a,b),(c,d)) \stackrel{+}{\mapsto} (ad+cb,bd)$$
$$((a,b),(c,d)) \stackrel{*}{\mapsto} (ac,bd)$$

Vi definierar en ekvivalens
relation \sim på $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$:

$$(p,q) \sim (p',q') \Leftrightarrow pq' = qp'$$

Då får vi $\mathbb{Q}:$

$$\mathbb{Q} := (\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}))/_{\sim}$$

Vi har en inducerad binär komposition (+,*) som respekterar +.*

Just nu har vi:

$$\mathbb{N} \hookrightarrow \mathbb{Z} \hookrightarrow \mathbb{Q}$$

4.3. Definition av \mathbb{R} .

Vi kommer börja med att definiera de positiva reella talen, och sedan överföra konstruktionen till de negativa.

Vi kommer använda Dedekinds konstruktion.

Låt
$$\mathbb{Q}_+ = \left\{ \frac{p}{q} \in \mathbb{Q} \mid p, q \in \mathbb{N}, \quad q \neq 0 \right\}$$

Givet \mathbb{Q}_+ med den naturliga totala ordningen (går att använda < istället för \leq) från:

$$\frac{p}{q} \le \frac{p'}{q'} \Leftrightarrow pq' \le p'q$$

Definition/Sats 4.2: Cut

En äkta delmängd $S \subsetneq \mathbb{Q}_+$ kallas för en cut om:

$$\forall x \in S \ \forall y \in \mathbb{Q}_+ \quad (y \le x \Rightarrow y \in S)$$

$$\forall x \in S \ \exists y \in S \quad x < y$$

Exempela

$$\forall r \in \mathbb{Q}_+$$
 kan vi definiera $r' = \{x \in \mathbb{Q}_+ \mid x < r\}$
Notera, om $r = 0$ så är $r' = \emptyset$

Definition/Sats 4.3

ängden av alla icke-negativa reella tal definieras som följande:

$$\mathbb{R}_+ = \{ S \in \mathcal{P}(\mathbb{Q}_+) \mid S \text{ är en cut} \}$$