ЛЕКЦИЯ 6 "НИСХОДЯЩИЙ РАЗБОР. ПРИНЦИПЫ ПОСТРОЕНИЯ И АЛГОРИТМЫ"

ПЛАН

- 1. Задачи, стоящие на этапе синтаксическом анализа. Методы и способы синтаксического анализа.
- 2. Простой нисходящий разбор. Принцип построения и алгоритм. Пример разбора.
- 3. Прогнозирующий разбор: LL(k)-грамматики и рекурсивный спуск.
- 4. МП-распознаватель для языка, порождаемого LL(k)-грамматикой

Учебная грамматика G[S]

Аксиома грамматики — S, B - выражение, ΠB - простое выражение, J B - логическое выражение, J O T - знак отношения.

Синтаксический граф G[S]

Анализируемая строка

if K > L then M else if K < L then N else P.

Синтаксическое дерево разбираемой сентенциальной формы

Терминология:

- 1. Целью разбора на каждом этапе является опознание некоторого нетерминального символа.
- 2. Иерархия целей
 - Достигнутая цель или подцель.
 - Поставленная цель или подцель, она называется тако же текущей.
 - Глобальная (по отношению к поставленной) цель или подцель.

Табличное представление синтаксического графа

- Указатель на предшественника (отца) строку таблицы, из которой была достигнута текущая.
- Наименование узла дерева имя терминала или нетерминала, начало или конец правила.
- Наличие альтернативы у узла и ссылка на эту альтернативу.
- Тип узла терминальный или нетерминальный.
- Ссылка на начало правила, определяющего нетерминальный узел.

№ элемента структуры	Предшественник	Имя узла дерева	Наличие альтернативы	Тип узла дерева	Начало правила
1	НΠ	S	_	Н	_
2	1	В	_	Н	4
3	_	КΠ	_	_	_
4	НΠ	В	_	Н	-
5	4	ПВ	7	Н	14
6	_	КΠ	_	_	_
7	4	IF	_	T	_
8	7	ЛВ	_	Н	25
9	8	THEN	_	T	_
10	9	ПВ	_	Н	14
11	10	ELSE	_	T	_
12	11	В	_	Н	4
13	_	КΠ	<u> </u>	_	_
14	НΠ	ПВ		Н	_
15	14	К	17	T	_
16	_	КΠ	<u> </u>	_	_
17	14	L	19	T	_
18	_	КП		_	_
19	14	M	21	T	_
20	_	КП		_	_
21	14	N	23	T	_
22	-	КП	<u> </u>	_	_
23	14	P	_	T	_
24	_	КΠ	_	_	_
25	НΠ	ЛВ	_	Н	_
26	25	ПВ	<u> </u>	Н	14
27	26	3OT	<u> </u>	Н	30
28	27	ПВ	<u> </u>	Н	14
29	_	КΠ	<u> </u>	_	_
30	НΠ	3OT		Н	_
31	30	<	33	T	_
32	_	КП	<u> </u>	_	_
33	30	>		T	_
34	_	КП	_	_	_

Алгоритм простого нисходящего разбора

ПОЯСНЕНИЯ К АЛГОРИТМУ

Левая часть схемы алгоритма.

1 — чтение символа из правил грамматики S ← G(Z). 2 — проверка условия, что символ S — нетерминал? 3 — запись S в МПЦ. 4 — проверка, есть ли продукция с S в левой части? 5 — переход на начало соответствующего правила. 6, 10 — проверка на условие окончания — конец правила? 7 — чтение текущего символа из программы Т ← $L\{G[z]\}$. 8 — осуществление попытки идентификации терминала S из грамматики и терминала T из кодов программы (блоки №№ 15 — 23). 9 — продолжение просмотра текущей поставленной цели. 11 — перепись последнего символа (на вершине) из МПЦ в МДЦ. 12 — возврат к глобальной подцели. 13 — конец анализируемой программы? 14 — перепись содержимого МПЦ в МДЦ.

Правая часть схемы алгоритма.

15 — терминалы из грамматики и программы совпали? 16 — есть ли альтернатива терминалу грамматики? 17 — вытолкнуть верхний элемент МПЦ. 18 — вернуться на глобальную подцель. 19 - Есть ль альтернатива глобальной подцели? 20 — генерация сообщения об ошибке. 21 — уход на альтернативу терминала. 22 — уход на альтернативу глобальной подцели. 23 — альтернатива — нетерминальный символ?

СОСТОЯНИЕ МАГАЗИНОВ

Такт	Анализируемый символ	Состояние МПЦ	Поступления в МДЦ
1		S B	
2	IF	S В ПВ	
3		S B	
3 4 5		S В ЛВ	
5	K	S В ЛВ ПВ	ПВ
6	>	S В ЛВ ЗОТ	3OT
7	L	S В ЛВ ПВ	ПВ ЛВ
8	THEN	S B	
9	M	S В ПВ	ПВ
10	ELSE	S B B	
11	IF	S В В ПВ	
12		S B B	
13		S В В ЛВ	
14	K	S В В ЛВ ПВ	ПВ
15	<	S В В ЛВ ЗОТ	3OT
16	L	S В В ЛВ ПВ	ПВ ЛВ
17	THEN	S B B	
18	N	S В В ПВ	ПВ
19	ELSE	SBBB	
20	P	S В В В ПВ	ПВ В
21	KT	S B B	B B S

ПРОГНОЗИРУЮЩИЙ НИСХОДЯЩИЙ РАЗБОР

LL(k) — грамматикой называют такую грамматику, что для любой её сентенциальной формы $\omega A \gamma$, $\omega \in V_T^*$, $A \in V_N$, $\gamma \in V^*$, полученной в результате некоторого левостороннего вывода, для выбора продукции, имеющей в левой части нетерминал A, достаточно знать k очередных вводимых символов (символов входной, разбираемой строки).

Алгоритм определения LL(k)-грамматики

- 1. Для каждой i-ой продукции грамматики необходимо найти головы цепочек из k символов, которые могут быть получены в процессе применения данного правила. Они являются одновременно и головами анализируемых цепочек. Множество цепочек, соответствующих i-ой продукции, обозначим C_i .
- 2. Если первый символ правой части продукции нетерминальный, то ей ставится в соответствие объединённое множество, сконструированное объединением множеств C_i , построенных для продукций, имеющих в левых частях означенный нетерминал.
- 3. Если множества, соответствующие продукциям с одинаковыми левыми частями не пересекаются, то это LL(k)-грамматика.

Проверку начинают с индекса k = 1. Увеличивают индекс k, если проверка окончилась неудачно. Увеличение индекса больше двух нецелесообразно

Пример. Исследование учебной грамматики на принадлежность к LL(k)-грамматикам

	I	Іродукция грамматики	Множество цепочек
< S >	::=	< <i>B</i> >	$\{if, K, L, M, N, P\}$
< B >	::=	<ΠB>	$\{K, L, M, N, P\}$
< B >	::=	if<\IB>then<\IB> else 	if
<\(\Pi\)B>	::=	K	{K}
<\(\Pi\)B>	::=	L	$\{L\}$
<\(\Pi\)B>	::=	M	$\{M\}$
<\(\Pi\)B>	::=	N	$\{N\}$
<\(\Pi\)B>	::=	P	$\{P\}$
	::=	<\PiB> <3OT> <\PiB>	$\{K, L, M, N, P\}$
<3 <i>0T</i> >	::=	>	<i>{>}</i>
<3 <i>0T</i> >	:=	<	<i>{<}</i>

СХЕМАТИЧНАЯ ПРОГРАММА РАСПОЗНАВАТЕЛЯ:

```
int S S(void), S B(void), S PB(void), S LV(void),
S ZOT(void), S k(void), S l(void), S m(void), S n(void), S p
(void), S if (void), S then (void), S else (void), S gt (void),
S lt(void);
int code;
                       /*текущий дескриптор лексемы*/
void main(void)
FILE *Prog code;
if ((Prog code=fopen("...","r")) = =NULL) printf("\n Ошибка
открытия")
                    else { fscanf(Prog code, "%d", &code);
if (S S() = 0) printf ("\n Синтаксическая ошибка");
           else printf ("\n OK");
```

```
int S S (void)
  switch (code) {
  case "K": return S B(); break;
  case "L": return S B(); break;
  case "M": return S B(); break;
  case "N": return S B(); break;
  case "P": return S B(); break;
  case "if": return S B(); break;
  default: printf ("\n неверное начало оператора или конец
модуля");
        return 0;}
```

```
int S B (void)
  switch (code) {
  case "K": return S PB(); break;
  case "L": return S PB(); break;
  case "M": return S PB(); break;
  case "N": return S PB(); break;
  case "P": return S PB(); break;
  case "if": return
S if()*S LV()*S then()*S PB()*S else()*S B(); break;
  default: printf ("\n неверное начало оператора или конец
модуля");
         return 0;}
int S lt (void)
  switch (code) {
  case "<": return 1; break;</pre>
  default: printf ("\n ожидался знак «меньше»");
         return 0;}
```

МП-распознаватель для LL(1)-грамматики

Алгоритм построения

Оформлен в виде конструктивной теоремы.

Распознаватель с одним состоянием строится следующим образом

- 1. Входной алфавит $\Sigma = V_T \cup \{\blacktriangleleft\}$, \blacktriangleleft конец входной строки.
- 2. Алфавит магазинных символов составляют

$$\Theta = V_N \cup \{t | t \in V_T$$
и $(\mathbf{A} \rightarrow t\alpha) \notin R$, $\mathbf{A} \in V_N$, $\alpha \in V^*\} \cup \{\#\}$.

C терминала t не начинается ни одна из правых частей правил, # - выталкиватель магазина.

- 3. Имеется одно состояние $Q = \{q\}$.
- 4. Начальное состояние магазина $Z_0 = \{ \# \mathbf{S} \}$, где \mathbf{S} аксиома грамматики.
- 5. Начальное состояние автомата $q_0 = q$.
- 6. Устройство управления Table (Q, Σ) конструируется следующим образом.
- 6.1. Для продукции грамматики вида $\mathbf{A} \rightarrow t \alpha, t \in V_T$, $\alpha \in V^*$

Table (**A**,
$$t$$
) \Rightarrow ЗАМЕНИТЬ (α^{V}), СДВИГ, где

 α^{∇} - есть цепочка α , записанная в обратном порядке (задом на перёд).

6.2. Для правила $\mathbf{A} \rightarrow t\alpha$, где $\alpha = \mathbf{X}\beta$, $\mathbf{X} \in V_N$, $\beta \in V^*$ Table (\mathbf{A} , {ВЫБОР($\mathbf{A} \rightarrow \alpha$)}) \Rightarrow ЗАМЕНИТЬ (α^V), ДЕРЖАТЬ

Если $\alpha = \varepsilon$ - аннулирующая (пустая) цепочка, вместо ЗАМЕНИТЬ употребляется операция ВЫТОЛКНУТЬ.

Множество {ВЫБОР($\mathbf{A} \rightarrow \alpha$)} = ПЕРВИЧНЫЙ(α), а если существует аннулирующая цепочка, то

 $\{ {\rm BЫБОР}({\bf A} {
ightarrow} lpha) \} = \Pi {\rm EPBИЧНЫЙ}(lpha) \cup {\rm СЛЕДУЮЩИЙ}(lpha),$ где $\Pi {\rm EPBИЧНЫЙ}(lpha)$ — цепочки единичной длинны, полученные при исследовании грамматики на свойство LL(1), ${\rm СЛЕДУЮЩИЙ}(lpha)$ — если голова правой части правила — нетерминальный символ, являющийся ε -порождающим, определяется по

- 6.3. Для правила $\mathbf{A} \rightarrow t$, $\mathbf{A} \in V_N$, $t \in V_T$ Table $(\mathbf{A}, t) \Rightarrow \mathrm{ВЫТОЛКНУТЬ}$, СДВИГ
- 6.4. Для ситуации $b \in V_T \cap b \in \Theta$ (когда терминал является одновременно и магазинным символом)

Table
$$(b, b) \Rightarrow$$
 ВЫТОЛКНУТЬ, СДВИГ

6.5. Table (#, **◄**) ⇒ ДОПУСТИТЬ

2-м символом при исследовании на LL(2).

6.6. Остальные элементы таблицы заполнить ОТВЕРГНУТЬ.

Формальная грамматика G[S]:

$$\langle S \rangle$$
 ::= $\langle B \rangle$ (1)
 $\langle B \rangle$::= $\langle \Pi B \rangle | if \langle J B \rangle then \langle \Pi B \rangle else \langle B \rangle$ (2), (3)
 $\langle \Pi B \rangle$::= $K|L|M|N|P$ (4) - (8)
 $\langle J B \rangle$::= $\langle \Pi B \rangle \langle 3OT \rangle \langle \Pi B \rangle$ (9)
 $\langle 3OT \rangle$::= $\rangle |\langle$ (10), (11)

- 1. Алфавит входных символов $\Sigma = \{if, then, else, K, L, M, N, P, <, >, ◀ \}.$
- 2. Алфавит магазинных символов

$$\Theta = \{S, B, \Pi B, J B, 3OT, then, else, \#\}.$$

П.6.1. Для правила № 3 формальной грамматики имеем:

$$t = if$$
, $\alpha = \langle IIB \rangle$ then $\langle IIB \rangle$ else $\langle B \rangle$,

поэтому Table (B, if) \Rightarrow ЗАМЕНИТЬ ($< B > else < \Pi B > then < \Pi B >$), СДВИГ.

П.6.2. Под него подпадают правила формальной грамматики (1), (2) и (9).

Для правила № 1: множество ВЫБОР($S \rightarrow B$) = {*if*, *K*, *L*, *M*, *N*, *P*}, поэтому Table (S, { *if*, *K*, *L*, *M*, *N*, *P*}) \Rightarrow ЗАМЕНИТЬ (B), ДЕРЖАТЬ.

Для правила № 2: множество ВЫБОР($\textbf{\textit{B}} \rightarrow \textbf{\textit{\Pi}}\textbf{\textit{B}}$) = {K, L, M, N, P}, поэтому Table ($\textbf{\textit{B}}$, { if, K, L, M, N, P}) \Rightarrow ЗАМЕНИТЬ ($\textbf{\textit{\Pi}}\textbf{\textit{B}}$), ДЕРЖАТЬ.

Для правила № 9: множество ВЫБОР($\Pi B \rightarrow <\Pi B > <3OT > <\Pi B >) = {K, L, M, N, P}, поэтому получаем Table (<math>\Pi B$, {K, L, M, N, P}) \Rightarrow ЗАМЕНИТЬ ($<\Pi B > <3OT > <\Pi B >$), ДЕРЖАТЬ.

 Π .6.3. Ему соответствуют продукции грамматики (4) – (8), (10) и (11).

Для правил №№ (4) - (8):

Table (**ПВ**, $\{K, L, M, N, P\}$) \Rightarrow ВЫТОЛКНУТЬ, СДВИГ.

Для правил №№ (10) и (11):

Table (**3ОТ**, $\{<, >\}$) \Rightarrow ВЫТОЛКНУТЬ, СДВИГ.

 Π .6.4. Под его действие подпадают пары (then, then) и (else, else):

Table (then, then) \Rightarrow ВЫТОЛКНУТЬ, СДВИГ,

Table (*else*, *else*) \Rightarrow ВЫТОЛКНУТЬ, СДВИГ.

Представим устройство управления в табличном виде.

	if	then	else	K	L	M	N	P	>	<	◀
S	6.2.1			6.2.1	6.2.1	6.2.1	6.2.1	6.2.1			
В	6.1.3			6.2.3	6.2.3	6.2.3	6.2.3	6.2.3			
ПВ				6.3.4	6.3.5	6.3.6	6.3.7	6.3.8			
ЛВ				6.2.9	6.2.9	6.2.9	6.2.9	6.2.9			
<i>30T</i>									6.3.10	6.3.11	
then		6.4.3									
else			6.4.3								
#											Доп

В ячейках таблицы укажем код вида X.Y.Z, где X.Y – ссылка на номер пункта алгоритма построения МП-распознавателя, Z – номер продукции формальной грамматики, в соответствие которой поставлена команда, Доп – означает ДОПУСТИТЬ, пустые клеточки соответствуют ОТВЕРГНУТЬ.

No	Состояние стека	Вход	Правило
0	#< S >	if	6.2.1
1	#< B >	if	6.1.3
2	#< B> else < ПВ> then< ЛВ>	K	6.2.9
3	#< B > else < ПВ > then< ПВ > < 3ОТ > < ПВ >	K	6.3.4
4	#< B > else < ПВ > then< ПВ > < 3ОТ >	>	6.3.10
5	# else <ПВ> then<ПВ>	L	6.3.5
6	#< B> else < ΠB> then	then	6.4
7	#< B > else < ПВ >	M	6.3.6
8	#< B > else	else	6.4.3
9	#< B >	if	6.1.3
10	#< B> else < ПВ> then< ЛВ>	K	6.2.9
11	#< B > else < ПВ > then< ПВ > < 3ОТ > < ПВ >	K	6.3.4
12	#< B > else < ΠB > then< ΠB > < 30T >	<	6.3.11
13	#< B> else < ΠB> then< ΠB>	L	6.3.5
14	#< B> else < ΠB> then	then	6.4.3
15	#< B > else < ПВ >	N	6.3.7
16	#< B > else	else	6.4.3
17	#< B >	P	6.2.3
18	#< ПВ >	P	6.3.8
19	#	■	Допущено