Representative approach for big data dimension reduction with binary responses

Xuelong Wang, Jie Yang

Department of Mathematics, Computer Science and Statistics University of Illinois at Chicago

July 23, 2019

Background

- 2 Existing Solution
- Our approach
- 4 Simulation result
- 5 Future work

Let random variable $X \in \mathbb{R}^p$, $Y \in \mathbb{R}$ and $\eta \in \mathbb{R}^{p \times d}$, where d << p $Y|X \sim Y|\eta^T X$

Example

Background

- **1** Linear regression: $Y = a + \beta_1^T X + \beta_2^T X + \epsilon$
- NonLinear regression: $Y = a + \exp(\beta^T X) + \sin(\beta_2^T X)\epsilon$
- **3** Generalized linear regression: $probit(p) = a + \beta_1^T X + \beta_2^T X$

Where η is a set of basis of $span(\beta_1, \beta_2)$

Dimension-reduction subspace

Our approach

Where P_S is the projection matrix of subspace S \mathcal{S} is called the dimension-reduction subspace However, the S is not unique, i.e. if $S \subset S_1$, then S_1 is also a dimension-reduction space.

Central Subspace

$$S_{Y|X} = \cap S_{SDR}$$

The target of sufficient dimension reduction is to estimate the structure of $S_{Y|X}$

Estimating the central subspace

Sorted and sliced by y

Slice means of standardized data

$$\hat{V} = n^{-1} \sum_{k=1}^{H} n_h \bar{x}_h \bar{x}_h^T \qquad \qquad \text{Conduct PCA on } \hat{V} \\ \text{Find the first Kth eigenvectors } \hat{\eta} \qquad \qquad \hat{\beta}_k = \hat{\eta}_k \Sigma_{xx}^{-1/2}$$

Estimated Covariance matrix

Background

Problem with Binary response

- Limited the number of sliced
- For SIR, it can only find one basis at most
- For SAVE, it also suffers from the limit number of slices

Probability Enhanced method for binary response

Main idea

- $S_{Y|X} = S_{P(Y|X)|X}$
- Estimated the Probability related rank by weighted support vector machine(WSVM)

Our approach

• It enriches the information of response

- Kernel matrix
- tunning parameter

Representative

Background

A Representative is a summary statistic of data points within a cluster: For (X_i, Y_i) , $i \in I_k$

$$X_k^* = R(X_1, \dots, X_{nk}), \quad Y_k^* = R(Y_1, \dots, Y_{nk}),$$

where $R: \mathbb{R}^p \to \mathbb{R}^p$ is the summarizing function.

Main idea

After transformation Y^* will become continuous, but the relation (the $\beta's$) of Y^* and X^* will almost keep the same:

$$Y = f(X^T \beta_1, \dots, X^T \beta_k) \rightarrow Y^* \approx G(X^{*T} \beta_1, \dots, X^{*T} \beta_k)$$

Method

Background

Steps

- Split the (X, Y) into K clusters I_1, \ldots, I_K
- Summary the representative for each cluster k

$$Y_k^* = \bar{Y}_k = \frac{\sum_i Y_i}{nk}, \ X_k^* = \bar{X}_k = \frac{\sum_i X_i}{nk}, \ i \in I_k$$

Note that we choose the cluster average as the summary statistics R

Apply SDR methods on the representatives

Method

Background

The representatives keeps the relations $\beta's$

The representatives of Y actually is actually the conditional probability of P(Y|X),

$$ar{Y}_k
ightarrow P(Y=1|X=X_k)$$
 as $N,K,N/K
ightarrow \infty$

It's can be shown that

$$S_{Y|X} = S_{P(Y|X)|X}$$

Additional value: Big data solution (n is large)

Clustering step

Background

Clustering step reduced the sample size from N to K

- $(Y_1, X_1) \dots (Y_N, X_N) \to (Y_1^*, X_1^*) \dots (Y_K^*, X_K^*)$
- Note if the data set is too large, we could also use the online clustering method

Additional value: Big data solution (n is large)

Parallel Algorithm for SIR and SAVE

- Split the sliced data into b blocks, $X_1, \ldots X_h$
- 2 Load each block X_B and Calculate the statistics for each block such as $\bar{X}_b, \bar{X}_{bb}, n_{bb}, X_{bb}^T X_{bb}$
- Summary the statsitics across the blocks and slices to get the candidate matrix M_{SIR} , M_{SAVE} # Simulation result

Simulation setup

Data generation Model:laten model

$$Y = \left\{ egin{array}{ll} 0 & (Xeta_1)^2*e^{(Xeta_2)}*\sin(Xeta_3) + \epsilon < 0 \ 1 & ext{Otherwise} \end{array}
ight.$$

where

- $X \in \mathbb{R}^6 \sim N(0_6, I_6)$
- $\beta_i = e_i = (0, \dots, 1, 0, \dots, 0)^T$, so in our case the linear combination is X_1, X_2, X_3
- $\epsilon \sim N(0,1)$

Simulation result

Background

Performance Evaluation

- Hypothesis Test: Test how many bases of the Central space
- Distance: Measure the distance between the estimated $\hat{\beta}'s$ and true $\beta's$

Result summary

- The true basis is (e_1^T, e_2^T, e_3^T)
- For SAVE, it can only find 2 of the 3 basis
- For the representative SAVE, it can find all of them

Simulation result

Background

	sir_original				sir_rep				sir_p			
	Log_n											
Direction/Distance	3	4	5	6	3	4	5	6	3	4	5	6
0D vs >= 1D	1.0000000	1.0000000	1.0000000	1.0000000	0.7500000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000
1D vs >= 2D	0.7500000	0.7300000	0.6600000	0.6850000	0.1650000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000
2D vs >= 3D	NaN	NaN	NaN	NaN	0.0100000	0.0100000	0.0000000	0.0100000	0.0450000	0.0400000	0.0350000	0.0650000
3D vs >= 4D	NaN	NaN	NaN	NaN	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0050000	0.0050000	0.0050000
4D vs >= 5D	NaN	NaN	NaN	NaN	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
5D vs >= 6D	NaN	NaN	NaN	NaN	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
ave_frob	1.1256210	1.0494941	1.0566714	1.0944659	1.2669218	1.2743468	1.2507151	1.2509262	1.3655995	1.2860677	1.2446272	1.2866278
ave_Q	0.6846554	0.6934016	0.7257302	0.7498777	0.6523792	0.6635268	0.6479987	0.6336554	0.6547422	0.6545569	0.6319888	0.6936892
ave_R	0.1419350	0.1370806	0.1388120	0.1486747	0.1490037	0.1504459	0.1465382	0.1456828	0.1773883	0.1530598	0.1451360	0.1539329

Simulation result

Background

save_original	save_rep							
Dinaction Distance	3	4	5	6				
0D0.89. 50000000000000000	00000	0.0500000	1.0000000	1.0000000				
VS								
>=								
1D 1D0.07. 50.5000000000000000	00000	0.0000000	1.0000000	1.0000000				
VS								
>=								
2D 2D0.00.550000000000000000000000000000000	00000	0.0000000	0.0500000	1.0000000				
VS								

>=

Future work

Background

 A different choice of K will affect the performance of SDR methods