Goals

Architecture analysis

Control framework

Architectura proposal

Nuggets

Control and Metacognition: Insights from EPIC, Soar, and ACT-R

Richard L. Lewis

Department of Psychology University of Michigan

May 25, 2006

Overview

Goals

Architecture analysis

Control framework

Architectura proposal

- Goals
- 2 Analysis and critique of current architectures
- 3 A Three Component Framework for Control
- 4 Specific proposal for architectural changes
- 5 Various kinds of nuggets

Main Goal

Goals

Architecture analysis

Control framework

Architectura proposal

Nuggets

Develop a **framework for control** that will lead to promising new points in the space of architectures, and a better understanding of existing architectures.

And along the way, lead to better understanding of architectural requirements for metacognition.

What makes EPIC control distinctive

Goals

Architecture analysis

Control framework

Architectura proposal

- Unlimited cognitive parallelism (directly supports multiple parallel threads of control)
 - \bullet Performance is limited by P/M subsystems, learning, and similarity-based interference
- 2 And therefore maximum strategic flexibility in control
 - All control functionality (with exception of synchronous clocking) off-loaded to knowledge
 - Via task-specific productions
 - Via general productions

What makes ACT-R control distinctive

Goals

Architecture analysis

Control frameworl

Architectura proposal

- Serial production rule firing
- 2 Conflict resolution (choice mechanism) determined by learned utility estimates
 - Choice is function of the rule itself, *not* the rule + context
 - See, for example, Marsha Lovett's stick-building task model—she was forced to split up two simple strategies ("under-shoot" and "over-shoot") into multiple productions in order to learn the appropriate contextual utilities

Some key differences

- Differences in architectural choice mechanism
 - EPIC: none
 - ACT-R: context-independent utility
 - Soar: decision procedure; integrates over arbitrary context-dependent knowledge (elementary deliberation)
- Differences in default speed-accuracy tradeoff
 - Soar impasses (takes no action) at first sign of trouble
 - If ACT-R can do something, it will
- Differences in automatic detection and representation of meta-information about the choice
 - Soar can detect and represent (architecturally) lack of knowledge, including response and cognitive conflict
 - ACT-R and EPIC are blissfully oblivious
 - Functional implication of this is a difference in the support for deliberation in *novel* contexts

Architecture analysis

framework

proposal

A Three Component Framework for Control

Goals

chitecture alysis

Control framework

Architectural proposal

Nuggets

Productions

Choice mechanisms Monitors

(Controlled subsystems)

Productions provide:

- Computational completeness
- Arbitrary, fine-grained contingencies for behavior

Choice mechanisms provide:

 Support for choice, possibly deliberation; locus of learning of control

Monitors provide

- Immediate representation of information about internal processing state in a form that control can be made contingent upon
- Integration over different time scales, modules

Controlled subsystems provide

- Internal agent resources (LTM, WM, perception, motor, etc.)
- "Control knobs" (commands, inhibition, etc.)

Examples of existing monitors

Goals

rchitectur Ialysis

Control framework

Architectura proposal

proposai

ACT-R

- Motor module state flags
- Retrieval module state flags (failure)
- Temporal module (?)

EPIC

P/M module state flags (e.g., "busy")

Soar

- Impasse detection (state no-change, tie)
- Parts of the emotion system

The Old New Soar

Goals

chitecture

Control framework

Architectural

Nicomoto

The New New Soar

Goals

chitecture

Control framework

Architectural

proposal

The New New Soar

Goals

chitecture

Control framework

Architectura proposal

Specific proposal: Part 1

Goals

chitecture alysis

Control frameworł

Architectural proposal

Nugget

Monitors Should Be First-class Architectural Objects

- Should be implemented as separate modules, with well-defined interfaces
- Should not be restricted to monitoring a single other module; could in principle monitor multiple modules
- Should not be restricted to a particular time course

Specific proposal: Part 2

Goals

rchitecture nalysis

Control framework

Architectural proposal

Nuggets

Choice Mechanisms Should Be First-class Architectural Objects

- Decision procedure should be independent of quiescence detection and impasse detection
- Should be possible to create multiple (asynchronous) decision/control streams with multiple instantiations of choice mechanisms

Specific proposal: Part 3

Goals

Control

Architectural proposal

Nuggets

Implement and explore the following monitors

- Procedural Slack Monitor (aka "Quiescence Detector")
 - Input from procedural and temporal modules
 - Output to buffer a representation of time passed since last production fire; analogous to failure in retrieval buffer
- Cognitive Operator Slack Monitor (aka "State No Change Impasse Detector")
 - Input from WM for operator and temporal modules
 - Output to buffer a representation of time passed since last change in operator representation

Specific proposal: Part 3, continued

Goals

analysis

framework

Architectural proposal

- Oecision Uncertainty Monitor (aka "Tie Impasse Detector")
 - Input from decision mechanism (e.g. confict resolution in ACT-R)
 - Output representation of how "close" the decision was
 - Perhaps the decision mechanism could be modulated in continuous way to achieve various SAT's (purely under knowledge-driven control)
- Retrieval Uncertainty Monitor (aka "Andrew's Match Meta-data")
 - For both Episodic and Semantic memories
- Perception-of-Feeling Monitor
 - Transforms information about emotional state into form accessible to cognition

A decomposition of Soar decisions

Goals

Architecture analysis

Control framework

Architectural proposal

Nuggets

DECISION CYCLE =

Cognitive-Operator-Slack-Monitor +
Decision-Uncertainty-Monitor +
Procedural-Slack-Monitor + Decision-Mechanism

Possible Golden Nuggets

Goals

chitecture alysis

Control framework

Architectural proposal

- Provide new class of key functional modules to guide mapping from functional architecture to brain
- New Soar or ACT-R could detect (the degree to which) its current knowledge is insufficient, even more flexibly than Soar can now
 - But could choose to use (or ignore) that information
- The resulting architecture should be more flexible and "temporally situated" than either current Soar or ACT-R, and better able to deal with novel contexts than EPIC
 - Good evaluation domains: Tasks involving speed-accurcay tradeoffs at multiple time scales

Possible Coal

Goals

chitectur alysis

Control frameworl

Architectura proposal

- Soar and ACT-R lose their distinctiveness and relative competitive theoretical advantages
- ???
- (It's easy to have a tiny haul of coal when no systems have been built...)