Automatic Feature Extraction using Unsupervised Learning

Reading: 19.1, 19.2, 19.3, 19.5, 19.6, 19.7, 19.9

Recollect: Feature extraction

- Recollect: Several steps for Feature extraction
- Operationally, Feature extraction = Dimensionality reduction (infinite dimensions)
- Example: $\frac{\text{(infinite dimensions)}}{\text{signal waveform}} \rightarrow 10\text{-dimensional } \boldsymbol{x}$
- Two ways of doing Feature extraction ...
- 1. Using Manual methods: Highly domain-specific ✓
- 2. Using <u>Automatic</u> dimensionality reduction methods
 - —Useful if no domain knowledge
 - —Need lots of Training data to overcome lack of domain knowledge
 - —Deep learning networks increasingly used to extract features now

Automatic feature extraction (Unsupervised Learning)

- Linear Discriminant Analysis (LDA) and Kernel LDA
- Principal Component Analysis (PCA) and Kernel PCA
- Latent Semantic Analysis (LSA)
- Independent Component Analysis (ICA)
- Multidimensional scaling (MDS), t-SNE
- Autoencoders
- **Embeddings**
- Clustering (k-Means)

Python sklearn

has most of these

- So, this is also a lecture on Unsupervised learning
- Except LDA methods, other methods use <u>Unsupervised learning</u>
- Discuss only at high level, for motivation/intuition

Linear

Recollect: Supervised versus Unsupervised learning

- <u>Unsupervised learning:</u> N Training points are (x_n) feature vector
- No concept of labels here
- Cannot do Classification or Regression here
- But can 'Explore data' and do <u>Automatic Feature extraction</u>
- Let's study Feature extraction application of Unsupervised learning

Feature extraction: Linear methods

$$\mathbf{z}_n = G^T \mathbf{x}_n$$

- First, look at <u>Linear</u> feature extraction
- Map inputs $x_1, x_2, ..., x_n$ to extracted features $z_1, z_2, ..., z_n$ linearly
- But linear methods require input to already be a vector
- \blacksquare \Rightarrow Methods often used to reduce dimension of feature <u>vector</u> x
- (Explains why we called input as x and extracted feature as z)

LDA, Kernel LDA

Recollect: Fisher Linear Discriminant classifier

- Suppose feature vector \mathbf{x} has high-dimension p ($\mathbf{x} \in \mathbb{R}^p$)
- Binary classification problem with Training data
- Earlier saw a simple binary classifier with linear $f(x) = \theta^T x c$
- Fisher Linear Discriminant classifier:
- $\hat{y} = \operatorname{sgn} f(\mathbf{x})$

• Projection direction θ ?

max FDR =
$$\frac{(\mu_1 - \mu_2)^2}{\sigma_1^2 + \sigma_2^2}$$

- 1) Means should be well separated
- 2) Point spreads should be small

Good projection direction

 $\theta^T x$

Motivation: LDA

- For the input vector \mathbf{x} of high-dimension p ($\mathbf{x} \in \mathbb{R}^p$) ...
- The projection of x onto a line is '<u>Dimensionality reduction</u>' method
 - Scalar (i.e., 1 D) easily visualized. Less memory to store
 - —Also, less parameters ⇒ Less computations and less over-fitting in inference
- But projection z can be thought of as an <u>extracted</u> feature vector
- So, any Dimensionality reduction \Rightarrow Automatic Feature extraction
- Vector $\mathbf{z} \in \mathbb{R}^k$ possible? Instead of vector $\boldsymbol{\theta}$, use $p \times k$ matrix G
- LDA can be defined now. (Must have #classes $M \ge k + 1$)

1) Fisher's Linear Discriminant Analysis (LDA)

• Fisher's LDA (<u>vector</u> **z** case): Optimal matrix **G**? Maximize FDR

Binary classes

$$M$$
 -classes $(M \ge 3)$

$$\frac{1}{2} \frac{(\mu_1 - \mu_2)^2}{\sigma_1^2 + \sigma_2^2} \xrightarrow{\text{1) Means should be well separated}} \leftarrow \frac{\sum_{i=1}^{M} ||m_i - \widehat{m}||^2}{\sum_{i=1}^{M} \sigma_i^2}$$

$$\frac{\sum_{i=1}^{M} ||m_i - \widehat{m}||^2}{\sum_{i=1}^{M} \sigma_i^2}$$

$$(\mu_1 - \hat{\mu})^2 + (\mu_2 - \hat{\mu})^2$$

$$= \frac{\frac{(\rho_1 + \rho_2) + (\rho_2 + \rho_3)}{\sigma_1^2 + \sigma_2^2}}{\sum_{i=1}^{2} (\mu_i - \hat{\mu})^2}$$

$$= \frac{\sum_{i=1}^{2} \sigma_i^2}{\sum_{i=1}^{2} \sigma_i^2}$$

$$\hat{\mu} \doteq \frac{1}{2}(\mu_1 + \mu_2)$$

Mean of mean vectors
$$\hat{m} = \frac{1}{M} \sum_{j=1}^{M} m_j$$
 $\sigma_i^2 = \text{Trace}[S_i]$

Projected <u>vector</u>

 m_i (mean vector)

 S_i (covariance matrix)

Fisher's LDA

sklearn.discriminant analysis.LinearDiscriminantAnalysis

- <u>Fisher's LDA</u>: To max FDR, using input features x, calculate
 - 1. Sample means and sample covariance matrices of each class

$$\widehat{\boldsymbol{\mu}}_i = \frac{1}{N_i} \sum_{n=1}^{N_i} \boldsymbol{x}_n$$

$$\widehat{\boldsymbol{\mu}}_i = \frac{1}{N_i} \sum_{n=1}^{N_i} \boldsymbol{x}_n \qquad \qquad \widehat{\boldsymbol{\Sigma}}_i = \frac{1}{N_i - 1} \sum_{n=1}^{N_i} (\boldsymbol{x}_n - \widehat{\boldsymbol{\mu}}_i) (\boldsymbol{x}_n - \widehat{\boldsymbol{\mu}}_i)^T$$

- 2. 'Within-class' covariance matrix $\widehat{\Sigma}_{w} \doteq \sum_{i=1}^{M} \widehat{\Sigma}_{i}$ 3. Average $\widehat{\mu}$ of class means $\widehat{\mu}_{i}$:

 4. 'Between-class' covariance matrix $\widehat{\Sigma}_{b} \doteq \frac{1}{M-1} \sum_{i=1}^{M} (\widehat{\mu}_{i} \widehat{\mu}) (\widehat{\mu}_{i} \widehat{\mu})^{T}$
- 5. Max FDR \rightarrow EVD of matrix $B \doteq (\hat{\Sigma}_w + \lambda I)^{-1} \hat{\Sigma}_b$ "top-k eigen-vectors"
- 6. <u>Largest</u> k eigen-values \rightarrow Eigen-vectors collected matrix $G = [v_1, v_2, ..., v_k]$
- 7. Then, Fisher's LDA $\mathbf{z}_n = \mathbf{G}^T \mathbf{x}_n$
- 8. Ridge-regularize if *G* is large matrix

$$\frac{\text{Reg_FDR}}{\text{Trace}[G^T(\widehat{\Sigma}_b)G]} = \frac{\text{Trace}[G^T(\widehat{\Sigma}_b)G]}{\text{Trace}[G^T(\widehat{\Sigma}_w)G] + \lambda ||G||_F^2}$$

Example: Fisher's LDA

- Crime level data: Communities and Crime Unnormalized Set *
 - —Crime levels in different communities
- Attributes: 145 attributes per community
 - 1. population
 - 2. household size
 - 3.% population below poverty
 - 4...
 - 145. Crime per 100K population

Crime < 25 *percentile* $25 \le Crime < 50$ ω_3 , $50 \le Crime < 75$ $Crime \ge 75 percentile$

- Convert Crime into four classes
- Attributes 1-127 are features x. Any 3 features not informative
- So, visualize using Fisher projected vectors $\mathbf{z}_n = G^T \mathbf{x}_n \in \mathbb{R}^3$

http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized

Example: Fisher's LDA

- Regularization used. So, normalize by center and scaling each feature
- Validation of penalty λ by plotting FDR (not Reg_FDR)
- Using optimal *G* ...
- LDA \mathbf{z}_n of Testing data shows separation of classes

- Projection using a randomly chosen $G \rightarrow No$ separation
- ⇒ LDA does class-aware Automatic feature extraction

2) Kernel LDA

$$\mathbf{z}_n = \mathbf{G}^T \phi(\mathbf{x}_n)$$

• New idea: First, map features x_n to high-dimensional vector $\phi(x_n)$ Then apply LDA to $\phi(x_n)$

- Why? High dimensional mapping $\phi(x_n)$ may fit data better
 - —Recollect: Common in GLMs

-e.g.,
$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix} \rightarrow \theta^T \phi(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$
 (Polynomial)

Kernel LDA

$$\mathbf{z}_n = \mathbf{G}^T \phi(\mathbf{x}_n) = \tilde{\mathbf{G}}^T \mathbf{\kappa}_n$$

- Problem: For very high-dimensional $\phi(x_n)$, computing G is hard
- Kernel idea: Not hard if mapping $\phi(\cdot)$ is based on a kernel
 - —Kernel? A measure of similarity. E.g., $\kappa(x_m, x_n) = e^{-\|x_m x_n\|^2/\sigma^2}$ (RBF kernel)
 - —(RKHS theory of Non-parametric inference later)
- So, Kernel LDA: LDA applied to high-dimensional $\phi(x_n)$

1. Each
$$x_n \to \text{Kernel vector}$$

$$\underbrace{\text{Not } \phi(x_n)}_{\text{dim}(\kappa_n) = N} \kappa_n = \begin{pmatrix} \kappa(x_1, x_n) \\ \kappa(x_2, x_n) \\ \vdots \\ \kappa(x_N, x_n) \end{pmatrix}}_{\text{k}(x_1, x_2, x_n)}$$

$$\widehat{\mu}_i = \frac{1}{N_i} \sum_{n=1}^{N_i} \kappa_n$$

$$\vdots$$

- 2. Do <u>LDA calculation</u> on κ_n (instead of on κ_n) to get \tilde{G} matrix
- 3. Projection uses \tilde{G} matrix operating on κ_n (instead of on $\phi(x_n)$)

Example: Kernel LDA

- Synthetic data with $x \in \mathbb{R}^2$ of 4 classes
- LDA \rightarrow Cannot <u>linearly</u> separate classes
 - ⇒ LDA features are uninteresting
- Kernel LDA projection into \mathbb{R}^2 linearly separates classes!
 - Since it is still <u>linear</u>, but in <u>high-dimensional</u> $\phi(x)$ space

—These are interesting features!

The 2 features of Training feature vector

 χ_2

1-D projection

PCA, Kernel PCA, LSA

3) Principal Component Analysis (PCA)

$$\mathbf{Z}_{n} = G^{T} \mathbf{x}_{n}$$
Class
$$\underset{\text{covariance}}{\text{sample}} \hat{\Sigma}_{i} = \frac{1}{N_{i} - 1} \sum_{n=1}^{N_{i}} (\mathbf{x}_{n} - \hat{\boldsymbol{\mu}}_{i})(\mathbf{x}_{n} - \hat{\boldsymbol{\mu}}_{i})^{T} = \mathbf{0}$$

- PCA is for unlabeled data. Suppose N points of unlabeled $x_n \in \mathbb{R}^p$
- No classes to separate here. "Best" matrix *G* for Fisher LDA?
- Note: "No classes" \leftrightarrow Every point x_n is "its own class"
- So LDA calculation reduces to ...
- PCA: Uses matrix $G = [v_1, v_2, ..., v_k] = \text{Top-}k$ eigenvectors of $\widehat{\Sigma}$

Sample mean
$$\widehat{\mu} \doteq \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\widehat{\Sigma} \doteq \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \widehat{\mu})(x_i - \widehat{\mu})^T$$

sample covariance matrix of all points

• (Alternative view: PCA maximizes randomness of projected \mathbf{z}_n)

Example: PCA

- Crime level data: Communities and Crime Unnormalized Set
 - 127-dimensional feature vectors x
 - —LDA gives some class separation here
 - —PCA? Ignore the classes (label)
- PCA spreads out z_n much more than LDA does
 - Because PCA maximizes sample variance of \mathbf{z}_n
- PCA does not separate classes, unlike LDA

Singular Value Decomposition (SVD)

$$\widehat{\Sigma} \doteq \frac{1}{N-1} \sum_{n=1}^{N} (\mathbf{x}_n - \widehat{\boldsymbol{\mu}}) (\mathbf{x}_n - \widehat{\boldsymbol{\mu}})^T = V L V^T$$
 EVD Columns v_i are eigen-vectors eigen-values

- PCA matrix *G* calculated using EVD of data covariance matrix
- Covariance matrix $\widehat{\Sigma} = \left(\frac{1}{\sqrt{N-1}} X_c\right)^T \left(\frac{1}{\sqrt{N-1}} X_c\right)^T = A^T A$
- Matrix of form such as $\widehat{\Sigma}$ is called a 'Gram matrix'

Matrix of centered feature vectors
$$X_{c} = \begin{bmatrix} \boldsymbol{x}_{1}^{T} - \widehat{\boldsymbol{\mu}}^{T} \\ \boldsymbol{x}_{2}^{T} - \widehat{\boldsymbol{\mu}}^{T} \\ \vdots \\ \boldsymbol{x}_{N}^{T} - \widehat{\boldsymbol{\mu}}^{T} \end{bmatrix}$$

Singular Value Decomposition (SVD)

$$A = UDV^{T}$$
 SVD Diagonal elements D_{ii} are 'singular-values' Columns v_i are 'right singular vectors'

For any Gram matrix $\hat{\Sigma} = A^T A$, EVD can also be calculated as ...

$$[U,D,V] = svd(A)$$
 $U,D,Vt = numpy.linalg.svd(A)$

- Singular Value Decomposition (SVD) of matrix $A = \frac{1}{\sqrt{N-1}}X_c$
 - —Right singular vectors of A are eigen-vectors of $\hat{\Sigma}$
 - Singular values D_{ii} of A relate to eigen-values L_{ii} of $\hat{\Sigma}$ as $D_{ii} = \sqrt{L_{ii}}$
 - So, for PCA, find largest k singular values D_{ii} eigen-values L_{ii}

eigen-vectors v_i PCA matrix \checkmark

- —And collect their right singular-vectors v_i into $G = [v_1, v_2, ..., v_k]$
- Advantage? Potentially large matrix $\hat{\Sigma}$ not computed anywhere

Example: PCA using SVD

- Example: Caltech vision images data set (use 435 face images)*
 - —Image dimensions = $227 \times 227 \times 3 = 154587$
 - $(\hat{\Sigma} \text{ is } 154587 \times 154587, \text{ while } A \text{ is } 435 \times 154587)$ (quite low dimensional)
- So for PCA G, use SVD instead of EVD $\rightarrow \mathbf{z}_n = G^T \mathbf{x}_n \in \mathbb{R}^{50}$
- To visualize \mathbf{z}_n , map it back to original space $\widehat{\mathbf{x}}_n = G\mathbf{z}_n$ "Eigen-faces"
- Even 50 dimensions in \mathbf{z}_n captures quite a bit of image structure

Example: PCA using SVD

- Eigen-faces \hat{x}_n : z_n mapped back to original space
- Essentially, applying a "Projection matrix" to original x_n

$$\widehat{x}_n = G \mathbf{z}_n$$

$$= G G^T \mathbf{x}_n$$

$$= P_G \mathbf{x}_n$$
Projection matrix of orthonormal matrix G

Plane spanned by columns of G
(vectors like $\alpha_1 \mathbf{g}_1 + \dots + \alpha_k \mathbf{g}_k$)
 \mathbf{x}_2

4) Kernel PCA

$$\mathbf{z}_n = G^T \phi(\mathbf{x}_n) = \tilde{G}^T \mathbf{\kappa}_n$$

- Same motivation as Kernel LDA \rightarrow PCA using transformed $\phi(x_n)$
- As earlier, computations difficult, unless $\phi(\cdot)$ is based on a kernel Example (RBF kernel

sklearn.decomposition.KernelPCA

Example (RBF kernel) $e^{-\|x_m - x_n\|^2/\sigma^2}$

- Kernel PCA: To maximize randomness in \mathbf{z}_n ,
- 1. Each $x_n \to \text{Kernel vector}$ $\kappa_n = \begin{pmatrix} \kappa(x_1, x_n) \\ \kappa(x_2, x_n) \\ \vdots \\ \kappa(x_N, x_n) \end{pmatrix}$
- 2. Do <u>PCA calculation</u> on κ_n (instead of on κ_n) to get \tilde{G} matrix
- 3. Projection \mathbf{z}_n uses \tilde{G} matrix operating on κ_n (instead of on $\phi(\mathbf{x}_n)$)

Example: Kernel PCA

- Crime level data: Communities and Crime Unnormalized Set
- Map Input vector $\mathbf{x}_n \in \mathbb{R}^{127}$ to feature vector $\mathbf{z}_n \in \mathbb{R}^3$
- PCA does spread out points (it is variance maximizing)
 - —But notice large cluster of points close together
- Kernel PCA spreads out points much more evenly

5) Latent Semantic Analysis (LSA)

- Example: Application of LSA to Text Analysis
 - Dataset of N text documents (e.g., newspaper articles)
 - —Each document \rightarrow 'Bag of words' x

$$x = \begin{bmatrix} 3 \\ \vdots \\ 0 \\ 2 \end{bmatrix} \leftarrow \text{`prize' occurs} \\ 3 \text{ times} \\ \leftarrow \text{`party' is} \\ \text{absent}$$

Latent factor Model: Assume each document combines k 'prototypes'

$$x_n = \hat{x}_n + Gaussian \ noise$$
 where $\hat{x}_n = \sum_{i=1}^k h_i c_{i,n}$ where i^{th} coefficient of n^{th} document x_n i^{th} latent factor vector ("prototype document")

nth document

Latent Semantic Analysis (LSA)

$$x_n = \hat{x}_n + Gaussian noise$$
 where $\hat{x}_n = \sum_{i=1}^k h_i c_{i,n}$ where i^{th} coefficient of n^{th} document x_n i^{th} latent factor vector

- Orthonormal Latent factors h_1 , h_2 , ..., h_k common to all documents
- But, coefficient vector c_n makes document x_n unique
- LSA problem: Using only Training data $x_1 \dots, x_N$ (documents) Find MLE of all factors (h_i) and coefficients (c_n)

$$\widehat{h_i}, \widehat{c_n} = \underset{h_i, c_n}{\text{arg min}} \sum_{n=1}^{N} \| x_n - \widehat{x}_n \|^2$$

Quadratic NLL (Gaussian noise)

Latent Semantic Analysis (LSA)

$$\sqrt{\widehat{h_i},\widehat{c_n}} = \underset{h_i, c_n}{\operatorname{arg min}} \sum_{n=1}^N ||x_n - \widehat{x}_n||^2$$

- Closed form solution is possible here. Called ...

Latent Semantic Analysis (LSA):

-"Document-Term" feature matrix
$$X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_N^T \end{bmatrix} = \begin{bmatrix} document 1 bag-of-words \\ document 2 bag-of-words \\ \vdots \\ document N bag-of-words \end{bmatrix}$$

$$= UDV^T \text{ (SVD)}$$

$$-PCA \text{ matrix using } \underline{SVD \text{ method}} \qquad G = [v_1, v_2, ..., v_k] \qquad \text{singular vectors)}$$

- —Projection of $x_n \rightarrow z_n = G^T x_n$ (feature vectors)
- —Then, a) MLE of coefficient vector $\widehat{c_n} = \mathbf{z}_n$
- Then, b) MLE of latent factor $\widehat{h}_i = v_i$ (right-singular vector)

Example: LSA for Text Documents

- Example: BBC news articles dataset*
 - 1490 BBC news articles in 5 categories
- Document-Term matrix using tf-idf
- Compute LSA G, then project $\mathbf{z}_n = G^T \mathbf{x}_n \in$
 - (For Text, generally choose large k, say 50)
 - —Here, choose k = 3 for easy visualization

Aı	rticleId	Text	Category
0	1833	worldcom ex-boss launches defence lawyers defe	business
1	154	german business confidence slides german busin	business
2	1101	bbc poll indicates economic gloom citizens in \dots	business
3	1976	lifestyle governs mobile choice faster bett	tech
4	917	enron bosses in \$168m payout eighteen former e	business
1485	857	double eviction from big brother model caprice	entertainment
1486	325	dj double act revamp chart show dj duo jk and	entertainment
1487	1590	weak dollar hits reuters revenues at media gro	business
\mathbb{R}^{k}	1587	apple ipod family expands market apple has exp	tech
489	538	santy worm makes unwelcome visit thousands of \dots	tech

3078 dictionary terms

	000	10	100	100m	11	12	120	13	14	15	 year	years	yen	yes	yet	york	young	younger	yukos	zealand
0	0.000000	0.000000	0.0	0.0	0.00000	0.000000	0.0	0.000000	0.000000	0.000000	 0.000000	0.033765	0.0	0.0	0.000000	0.057611	0.000000	0.000000	0.0	0.0
1	0.000000	0.041944	0.0	0.0	0.00000	0.000000	0.0	0.000000	0.000000	0.000000	 0.025758	0.000000	0.0	0.0	0.000000	0.000000	0.000000	0.000000	0.0	0.0
2	0.028581	0.000000	0.0	0.0	0.00000	0.000000	0.0	0.042893	0.044012	0.080704	 0.000000	0.025569	0.0	0.0	0.000000	0.000000	0.000000	0.000000	0.0	0.0
3	0.023337	0.000000	0.0	0.0	0.00000	0.000000	0.0	0.000000	0.071872	0.000000	 0.000000	0.020877	0.0	0.0	0.000000	0.000000	0.000000	0.094044	0.0	0.0
4	0.000000	0.038268	0.0	0.0	0.00000	0.000000	0.0	0.000000	0.000000	0.000000	 0.000000	0.032200	0.0	0.0	0.000000	0.000000	0.000000	0.000000	0.0	0.0
1485	0.056301	0.000000	0.0	0.0	0.00000	0.071659	0.0	0.000000	0.000000	0.000000	 0.036759	0.000000	0.0	0.0	0.000000	0.000000	0.000000	0.000000	0.0	0.0
1486	0.000000	0.000000	0.0	0.0	0.00000	0.000000	0.0	0.000000	0.000000	0.000000	 0.016108	0.022071	0.0	0.0	0.000000	0.000000	0.000000	0.000000	0.0	0.0
1487	0.000000	0.049054	0.0	0.0	0.12762	0.058725	0.0	0.000000	0.000000	0.000000	 0.210869	0.000000	0.0	0.0	0.000000	0.000000	0.000000	0.000000	0.0	0.0
1488	0.000000	0.053066	0.0	0.0	0.00000	0.031764	0.0	0.000000	0.000000	0.000000	 0.016294	0.000000	0.0	0.0	0.032494	0.000000	0.036562	0.000000	0.0	0.0
1489	0.035532	0.000000	0.0	0.0	0.00000	0.000000	0.0	0.000000	0.000000	0.000000	 0.000000	0.000000	0.0	0.0	0.000000	0.000000	0.000000	0.000000	0.0	0.0

1490 documents

Document-Term matrix *X*

https://www.kaggle.com/c/learn-ai-bbc

Example: LSA for Text Documents

- Note: LSA did not use labels. Yet, documents get clustered nicely!
- ⇒ LSA "discovered" underlying 'prototype documents'

• PCA or LSA $\rightarrow k$ selected using "elbow" of singular values plot

Carnegie Mellon University

Independent Component Analysis (ICA)

ICA motivation: Cocktail party problem

- Cocktail party problem: Illustrates ICA
- k independent audio signals $c_{i,n} \rightarrow A$ ssume at least k microphones
- Goal: From mixed samples vector x_n , estimate separate speeches c_n

ICA motivation: Cocktail party problem

$$x_{i,n} = h_i^T c_n + noise,$$
 $i = 1,2,...,p$

vectorize $H = \begin{bmatrix} h_1^T \\ \vdots \\ h_p^T \end{bmatrix}$ mixing matrix $p \ge k$ microphones

 $x_n = H c_n + Gaussian \ noise$

- This is usual Normal Discriminative model (with vector label *c*)
- \Rightarrow Solved by Linear Statistical Regression if mixing matrix H known
- But mixing matrix H is unknown, so use ICA

Practical application:

EEG signal separation

Each EEG signal $x_{i,n}$ is linear mixture of several signals $c_{m,n}$

brain waves, Isolate brain waves from other artifacts eye-blinking, (i.e., Pre-processing step in Feature extraction) heart contractions, **EEG** $x_{2,n}$ signals $\chi_{3.n}$ **Multichannel EEG EEG ICA** signals brain pre-processing

input

waves

6) Independent Component Analysis (ICA)

- ICA model: $x_n = Hc_n + Gaussian noise$ = $\hat{x}_n + Gaussian noise$
- But this is just LSA model!

No

- But LSA assumed factor matrix *H* is orthonormal. Instead ...
- Independent Component Analysis (ICA): Assume
 - —Elements $c_{i,n}$ of c_n are independent signals "components"
 - $-c_{i,n}$ are <u>non-Gaussian</u> variables
- Goal of ICA: Estimate H and c_n

H unknown $c_{i,n}$

• ICA is example of "Blind source separation"

prototypes

ICA algorithms

$$x_n = Hc_n + noise$$

- There are many <u>heuristic</u> ICA algorithms
- General idea: Estimate c_n from x_n linearly as $z_n = G^T x_n$
- Optimal "unmixing matrix" $G \approx H^{-1}$ ($\approx c_{i,n}$ wanted)
- But H unknown. So, find G that makes elements z_i of z_n "as independent and non-Gaussian" as possible, just like $c_{i,n}$
- Example (<u>FastICA algorithm</u>): Minimizes "Entropy"

```
sklearn.decomposition.FastICA()
```

Example: FastICA

Two Mixed images

$$\mathbf{x}_n = \left[x_{1,n}, x_{2,n}\right]^T$$
 is n^{th} pixel pair

Unmixed and then scaled

$$D \mathbf{z}_n = \begin{bmatrix} \lambda_1 z_{1,n}, & \lambda_2 z_{2,n} \end{bmatrix}^T$$

Optimally unmixed images (FastICA) $\mathbf{z}_n = \left[z_{1,n}, z_{2,n}\right]^T$

Underlying true images

$$\boldsymbol{c}_n = \left[c_{1,n}, c_{2,n}\right]^T$$

Non-linear methods

7) Auto-encoder

- We have explored Linear feature extraction $\mathbf{z}_n = \mathbf{z}_n g(\mathbf{x}_n)$
- Auto-encoder: Non-linear Feature extraction using self-prediction
 - Has an Encoder: $X \rightarrow Z \in \mathbb{R}^k$ (low dimensional)
 - —Has a Decoder: $\mathbf{z} \rightarrow \widehat{\mathbf{y}}$

Decoder (Decompressor)

— Train Encoder and Decoder to make $\hat{y} \approx x$

minimize
$$\sum_{n=1}^{N} \left| || \widehat{y}_n - x_n| \right|^2$$

- i.e., Self-prediction of input x
- Nowadays uses Deep neural network
- —(Why useful? Details later)

Encoder (Compressor)

Metric space

- Until now, "input" was vector x. Now, more general inputs ...
- Set $S = \{s_1, s_2, ..., s_N\}$ of N inputs (Abstract ideas, not vectors)
 - -Set of images, Set of documents, Set of signals, ...
- Suppose distance function $d(s_i, s_j)$ measures distance between s_i, s_j
- Metric space (S, d): Set S with $d(s_i, s_j)$ assigned to each pair s_i, s_j
 - —Example: Euclidean space \mathbb{R}^p is a Metric space with $d(s_1, s_2) \doteq ||s_1 s_2||$

Distance function $d(\cdot, \cdot)$

measures 'dissimilarity' of points

$$d(s_1, s_2) = 0 \Leftrightarrow s_1 = s_2$$

$$d(s_1, s_2) = d(s_2, s_1)$$

$$d(s_1, s_3) \le d(s_1, s_2) + d(s_2, s_3)$$
triangle-inequality

Embedding

$$x_n = g(s_n)$$

- Until now, Feature extraction assumed <u>vector</u> input x
- Now, from (possibly abstract) input s, get feature vector x
- Embedding of Metric space (S, d): For each abstract input s_n in it map it to feature vector $x_n \in \mathbb{R}^k$
 - —Why? For Automatic feature extraction of abstract ideas s_n , or
 - Visualization (if dimension k = 1,2,3)
 - —Extracted feature vector \mathbf{x}_n is called "Embedding" of \mathbf{s}_n

Euclidean vector space $\sum_{m \in \mathbb{R}} k$

(vectors, hence mathematical)

8(a) Multi-Dimensional Scaling (MDS)

- Multi-Dimensional Scaling (MDS): Embedding x found by retaining the distance geometry between pairs of points
- Heuristic algorithms to solve. e.g., Metric MDS (see handout)
 Python: sklearn.manifold.MDS

Metric MDS algorithm

- Metric MDS algorithm: Heuristic to embed (S, d) in \mathbb{R}^k ,

1. Matrix of squared-distances
2. 'Double-centered' matrix

$$B = -\frac{1}{2}C D_2 C$$

$$D_2 \doteq \begin{bmatrix} (d(s_1, s_1))^2 & \cdots & (d(s_1, s_N))^2 \\ \vdots & \ddots & \vdots \\ (d(s_N, s_1))^2 & \cdots & (d(s_N, s_N))^2 \end{bmatrix}$$
3. EVD of matrix $B = V \Lambda V^T$

$$C = I_N - \frac{1}{N} \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

$$C = I_N - \frac{1}{N} \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

- 4. Choose largest k eigen-values $\lambda_1, \lambda_2, \dots, \lambda_k$ and eigen-vectors v_1, v_2, \dots, v_k
- 5. Calculate feature vector matrix \rightarrow The N rows of X are the embeddings x_n

$$X = \begin{bmatrix} \lambda_1 \boldsymbol{v}_1 & \lambda_2 \boldsymbol{v}_2 & \dots & \lambda_k \boldsymbol{v}_k \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}_1^T \\ \boldsymbol{x}_2^T \\ \vdots \\ \boldsymbol{x}_N^T \end{bmatrix}$$

$$(k \text{ columns in } X)$$

Heuristic exactly solves MDS if (S, d) is already Euclidean space

8(b) t-SNE

- Another popular Embedding is ...
- t-distributed Stochastic Neighbor Embedding (t-SNE):

Similar to MDS, but uses probability models to define distances

- —Algorithm tries to make $q_{ij} \approx p_{ij} \implies ||x_i x_j|| \approx d(s_i, s_j)$
- See handout for some details

Python: sklearn.manifold.TSNE

• (Later: Embeddings using <u>Deep neural networks</u> becoming popular)

t-SNE

t-distributed Stochastic Neighbor Embedding (t-SNE):

—Define conditional probability
$$p_{j|i} \doteq \begin{cases} \frac{1}{Z_i} \exp\left(-\frac{1}{2\sigma^2} \left(d(s_i, s_j)\right)^2\right), & j \neq i \\ 0, & j = i \end{cases}$$

- $p_{j|i}$ is Gaussian-based probability of "point s_i picking point s_j "
- Define $p_{ij} = \frac{1}{2N} (p_{j|i} + p_{i|j})$ In Euclidean space \mathbb{R}^k , define $q_{ij} \doteq \begin{cases} \frac{1}{Z} (1 + ||\mathbf{x}_i \mathbf{x}_j||^2)^{-1}, & j \neq i \\ 0, & j = i \end{cases}$
- Like p_{ij} , but using a heavy-tailed "Student-t pdf"
- Find the embeddings x_i that minimize Kullback-Leibler distance

$$\min_{x_1, x_2, \dots, x_N} \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

Example: MDS

- Senators in 116th Senate*: Voting record of 102 Senators
- Task: Embed Senators into \mathbb{R}^2 based on voting record (ideology)
- Metric space (S, d): $S = \{s_1, s_2, ..., s_{102}\}$ is set of Senators
 - —Distance d? Define $d(s_i, s_j)$ as number of times Senators s_i, s_j voted differently
 - $-d(s_i, s_j)$ is called 'Hamming distance' \rightarrow So, (S, d) is indeed Metric space
- Metric MDS to embed this metric space into \mathbb{R}^2 (k=2)
- ⇒ Each Senator is now vector $x_n \in \mathbb{R}^2$. Plot them!

X 2	leftwing	rightwing	 Democratic Senator Republican Senator Ted Cruz (R) Mazie Hirono (D) Joe Manchin (D) 	
Mazie Manchin (D)		Ted	$\rightarrow x_1$	
Hirono (D) Opposite ideologie		Cruz (R)		

Roll call	Senator	Vote	
1	Collins	Nay	
1	Manchin	Yea	
÷	:	÷	
2	Collins	Yea	
2	Manchin	Yea	
÷	:	÷	
7101	7 aom/6	J - + - L	

https://voteview.com/data

Example: t-SNE for Visualization

- t-SNE popular alternative to PCA to visualize unlabeled <u>vectors</u> s_n ...
- Here, input Metric space is Euclidean space $\rightarrow d(s_i, s_i) = ||s_i s_i||$

60

- Recollect audio demo: Beethoven piece and Mozart piece
- 20-dim MFCC feature vectors \mathbf{s}_n

18-752, **Prof. Negi**

Ignore s_n labels now \rightarrow Get t-SNE embeddings $x_n \in \mathbb{R}^3$

Clustering

9) k-Means clustering

- Suppose unlabeled Training data $s_1, s_2, ..., s_N$
- <u>Clustering</u>: Group data into *k* clusters of nearby points
- Application?
 - —E.g., Pre-processing step in Feature extraction
 - —(Recollect Bag-of-<u>Visual</u>-Words: Dictionary creation using <u>clustering</u>)
- <u>k-Means clustering</u>: A low-complexity clustering algorithm
- Assumption: Data s_n lives in a Metric space (S, d)
 - —Example: Euclidean space \mathbb{R}^p with $d(s_i, s_j) = ||s_i s_j||$

k-Means clustering

- <u>k-Means clustering</u>: Choose number of clusters k (say 2)
- 1. Initialize: Randomly select k of the s_n as cluster-heads c (set C)
- 2. Iterate: Run these two steps
 - a) Cluster: Assign each data point s_n to closest cluster head c
 - b) New cluster-heads: Each cluster \rightarrow Choose point <u>closest</u> to its points as c_i
 - 3. Terminate: On convergence (cluster-heads don't change)

k-Means clustering

- <u>k-Means clustering</u>: Choose number of clusters k (say 2)
- 1. Initialize: Randomly select k of the s_n as cluster-heads c (set C)
- 2. Iterate: Run these two steps
 - a) Cluster: Assign each data point s_n to closest cluster head c

$$\widehat{c_n} = \underset{c}{\operatorname{argmin}} d(s_n, c)$$

b) New cluster-heads: Each cluster \rightarrow Choose point <u>closest</u> to its points as c_i

$$c_i = \underset{S \in S}{\operatorname{argmin}} \sum_{s_n:} d(s_n, s)$$

$$s \in S$$

$$s_n:$$

$$s_n \text{ is in Cluster } i$$

In Euclidean space

$$\mathbf{c_i} = \frac{1}{n_i} \left(\mathbf{s_{k_1}} + \dots + \mathbf{s_{k_{n_i}}} \right)$$

3. Terminate: On convergence (cluster-heads don't change)

Example: k-Means clustering

• Choose Euclidean distance $||s_1 - s_2||_2$ and cluster with k = 3

Example: k-Means clustering

- Metric space choice is important to get "good" clustering
- E.g., Clustering below is "bad" if Metric space is Euclidean space \mathbb{R}^2
 - (Need metric space that better captures idea of 'distance' here)
 - —(e.g., 'Graph metric space' perhaps)

Clustering for Feature extraction

- Clustering algorithm $\rightarrow k$ clusters and cluster heads c_i .
- <u>Dictionary creation</u>: Bag-of-Visual-Words for images (recollect)
- Segmentation: Partition image into 'objects' (Pre-processing)
 - —Each pixel is vector $\mathbf{x}_n = \begin{bmatrix} Green\ value \\ Blue\ value \end{bmatrix}$
 - Cluster the pixels (vectors $\mathbf{x}_n^{\mathsf{L}}$
 - —Each cluster gives 'mask' → Object to be investigated/classified

