System Modeling Finite State Machine

Indranil Saha

Department of Computer Science and Engineering Indian Institute of Technology Kanpur

State Machine Models

- Summarize the behavior of an object or a subsystem in response to messages and events
- Shows how the object instance changes state depending on the messages that it receives
- Usually need a state diagram for the complex objects in the system

Finite State Machine

State Machine: Model of a system with discrete dynamics

Finite-State Machine (FSM): A state machine where the set *States* of possible states is finite

Example: FSM for Thermostat

input: $temperature: \mathbb{R}$

outputs: heatOn, heatOff: pure

Chattering: the heater would turn on and off rapidly when the temperature is close to the set-point temperature Solution: hysteresis strategy, dwell time

Event-triggered vs. time-triggered transitions

Mathematical Notation of a State Machine

A finite state machine is represented as a five-tuple

(States, Inputs, Outputs, update, initialState)

where,

- States is a finite set of states
- Inputs is a set of input valuations
- Outputs is a set of output valuations
- update : States × Inputs → States × Outputs is an update function, mapping a state and an input valuation to a next state and an output valuation
- initialState is the initial state

Example: Garage Counter

inputs: up, down: pure **output:** $count: \{0, \dots, M\}$

$$States = \{0, 1, \dots, M\}$$

$$Inputs = (\{up, down\} \rightarrow \{present, absent\})$$

$$Outputs = (\{count\} \rightarrow \{0, 1, \dots, M, absent\})$$

$$initialState = 0$$
Update function:

$$\textit{update}(s,i) = \left\{ \begin{array}{ll} (s+1,s+1) & \text{if } s < M \land \textit{up} \land \neg \textit{down} \\ (s-1,s-1) & \text{if } s > 0 \land \neg \textit{up} \land \textit{down} \\ (s,\textit{absent}) & \text{otherwise} \end{array} \right.$$

Mealy Machines and Moore Machines

Mealy Machine: Produces outputs when a transition is taken

Moore Machine: Produces outputs when the machine is in a state

Extended State Machine

Augments the FSM Model with variables

Variables may be read and written while taking a transition

variable declaration(s)
input declaration(s)
output declaration(s)

guard / output action
set action

State 1

intial set action guard / output action set action

The number of states. can be quite large, or even infinite *n* discrete states, *m* variables each of which can have one of *p* possible values

| States |= np^m

State 2

Example: ESM for Traffic Light

Reachable States

All states that can be reached from the initial state on some input sequence

May be smaller than the set of states

Traffic Light:

Total number of states = 244

Total number of reachable states = 189

System Modeling Finite State Machine

Indranil Saha

Department of Computer Science and Engineering Indian Institute of Technology Kanpur

