Workshop 2 – Dynamical Systems Analysis & Design

Cesar Augusto Pulido Cuervo - 20222020048 Cristian David Romero Gil – 20222020138 Universidad Distrital Francisco José de Caldas System Sciences Foundations Instructor: Eng. Carlos Andrés Sierra, M.Sc.

1 Feedback Loop Refinement

1.1 Enhanced Control Mechanisms

To improve the agent's responsiveness to changes in the environment, we propose to introduce new control mechanisms through both additional sensors and more granular reward structures.

a. Additional Sensor: danger_level

A continuous variable named danger_level is introduced to represent the immediate threat level around the agent. It is computed based on the number of adjacent cells containing pits or the Wumpus. The value ranges from 0.0 (no risk) to 1.0 (maximum danger), offering a more nuanced input for decision-making than the binary percepts (breeze, stench).

This new sensor is added to the observation space and used as an input to the neural network policy (DQN). It allows the agent to distinguish between mildly dangerous and highly dangerous zones, facilitating smoother behavioral transitions.

b. Granular Reward Signals

The original reward structure was discrete and sparse. We introduced the following additional signals to increase feedback frequency and support learning:

Event	Updated Reward
Visiting a new, safe cell	+5
Revisiting the same cell	-0.5
Passing near danger (pit/Wumpus) but surviving	+10
Missed arrow shot (penalty reduced)	-25

These changes provide lower-magnitude, frequent signals that reinforce desirable behavior such as exploration and cautious movement, while discouraging redundant or risky choices.

2 Iterative Design Outline

2.1 Project Plan Update

To implement dynamic behavior and adaptive control mechanisms, we plan to update the architecture and logic as follows:

Component	Update
Observation Space	Augmented with danger_level and a rolling
	memory of the last two perceptual vectors.
Reward Function	Enhanced with small positive/negative signals as
	described above.
Agent Network (DQN)	Input layer updated to accept expanded observation
	vectors.
Environment Logic	Tracks visited cells and calculates dynamic risk
	zones in real-time.
Training Code	Processes augmented states and updated rewards.
	Includes random seeds.

2.2 Testing Strategy

To evaluate these changes, we propose the following testing strategy:

Aspect	Testing Strategy
Random Seeds	Each training configuration is run across at least 10
	different seeds to measure variance in outcomes.
Chaos Regimes	Tested with environments using varied layouts and
	perceptual noise to simulate dynamic volatility.
Scenario Variations	Multiple Wumpus/pit layouts used per run to assess
	policy generalization.
Perturbation Tests	Small changes in initial conditions to observe
	long-term trajectory divergence.
Metrics Tracked	Reward curves, victory rate, episode length, revisits,
	and Q-value stability.

This design and testing outline is intended to ensure that the Wumpus agent evolves from a static learner into a dynamic, chaos-aware decision-making system.