

Année universitaire 2016-2017

Site: $\boxtimes Luminy \quad \boxtimes St$ -Charles $\quad \Box St$ -Jérôme $\quad \Box Cht$ -Gombert $\boxtimes Aix$ -Montperrin $\quad \Box Aubagne$ -Satis Sujet session: $\boxtimes 1$ er semestre - $\quad \Box 2$ ème semestre - $\quad \Box Session 2$ Durée de l'épreuve: 2h Examen de: $\boxtimes L1 / \quad \Box L2 / \quad \Box L3 - \quad \Box M1 / \quad \Box M2 - \quad \Box LP - \quad \Box DU$ Nom diplôme: Licence IM Code Apogée du module: SMI1U3T Libellé du module: Géométrie et arithmétique 1 Documents autorisés: $\quad \Box OUI - \quad \boxtimes NON$

Questions de cours. Dans cette partie $\mathbb{K} = \mathbb{R}$, \mathbb{C} ou \mathbb{Q} .

- 1. Soient $P, Q \in \mathbb{K}[X]$. Montrer que le degré de PQ est la somme des degrés de P et Q. On se limitera au cas $P, Q \neq 0$.
- 2. Donner la définition de polynôme irréductible de $\mathbb{K}[X]$. Dire quels sont les polynômes irréductibles de $\mathbb{C}[X]$ et de $\mathbb{R}[X]$.
- 3. Rappeler la définition de racine n-ième d'un nombre complexe w.

Exercice 1. Soit $P \in \mathbb{C}[X]$ le polynôme $P(X) = X^3 + (-1+6i)X^2 - (13+4i)X - 11 - 10i$.

- 1. Effectuer la division de P par (X + 1).
- 2. Trouver les racines carrées de 3+4i. En déduire les racines carrées de 12+16i.
- 3. Trouver les racines de P.

Exercice 2.

- 1. Déterminer l'écriture algébrique des racines sixièmes de l'unité.
- 2. Décomposer X^6-1 en produit de polynômes irréductibles dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.

Exercice 3. On considère la rotation $f: \mathbb{C} \longrightarrow \mathbb{C}$ définie par f(z) = iz + 2.

- 1. Déterminer son centre et son angle de rotation.
- 2. Soit E l'ensemble défini par la condition $\text{Im}((z-(1+i))^2)=0$. Décrire E et le représenter graphiquement dans le plan complexe.
- 3. Déterminer l'image f(E) de l'ensemble E par la rotation f.

Exercice 4. Dans \mathbb{R}^3 , considérons deux plans \mathcal{P}_1 et \mathcal{P}_2 d'équation cartésienne x-y=0 et x+y+z-1=0 respectivement.

- 1. Leur intersection est une droite \mathcal{D}_1 dont on donnera une équation paramétrique et un vecteur directeur.
- 2. Donner une équation cartésienne du plan \mathcal{P}_3 orthogonal à \mathcal{D}_1 et passant par $A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in \mathcal{D}_1$.
- 3. Déterminer un point B de $\mathcal{P}_1 \cap \mathcal{P}_3$ et un point C de $\mathcal{P}_2 \cap \mathcal{P}_3$ tels que $A \neq B, C$.
- 4. Calculer le cosinus de l'angle entre \overrightarrow{AB} et \overrightarrow{AC} (sa valeur absolue est le cosinus de l'angle θ entre les plans \mathcal{P}_1 et \mathcal{P}_2 , avec $0 < \theta \le \pi/2$).