DBSCAN Clustering Algorithm

- Introduction
- Why do we need DBSCAN Clustering?
- What Exactly is DBSCAN Clustering?
- Reachability and Connectivity
- Parameter Selection in DBSCAN Clustering
- Algorithmic steps for DBSCAN clustering
- Example
- Advantages
- Disadvantages
- The complexity of DBSCAN Clustering Algorithm
- **■** DBSCAN Vs K-means Clustering
- References

Introduction

- Clustering is an unsupervised learning method that divides data points into specific groups, such that data points in a group have similar properties than those in other groups.
- There are different approaches and algorithms to perform clustering tasks which can be divided into three sub-categories:
- Partition-based clustering: E.g. k-means, k-median
- ► Hierarchical clustering: E.g. Agglomerative, Divisive
- Density-based clustering: E.g. DBSCAN

Why do we need DBSCAN Clustering?

- ► K-Means and Hierarchical Clustering both fail in creating clusters of arbitrary shapes. They are not able to form clusters based on varying densities. That's why we need DBSCAN clustering.
- Let's try to understand it with an example. Here we have data points densely present in the form of concentric circles:
- ► We can see three different dense clusters in the form of concentric circles with some noise here.

Why do we need DBSCAN Clustering?

Now, let's run K-Means and Hierarchical clustering algorithms and see how they cluster these data points.

- this data contains noise too, therefore, I have taken noise as a different cluster which is represented by the purple color.
- Sadly, both of them failed to cluster the data points. Also, they were not able to properly detect the noise present in the dataset.

Why do we need DBSCAN Clustering?

let's take a look at the results from DBSCAN clustering.

■ DBSCAN is not just able to cluster the data points correctly, but it also perfectly detects noise in the dataset.

What Exactly is DBSCAN Clustering?

- DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise.
- It groups 'densely grouped' data points into a single cluster.
- ► It can identify clusters in large spatial datasets by looking at the local density of the data points.
- **▶** The most exciting feature of DBSCAN clustering is that it is robust to outliers.
- It also does not require the number of clusters to be told beforehand, unlike K-Means, where we have to specify the number of centroids.
- **DBSCAN** requires only two parameters: *epsilon* and *minPoints*.
- **Epsilon** is the radius of the circle to be created around each data point to check the density
- **minPoints** is the minimum number of data points required inside that circle for that data point to be classified as a **Core** point.
- In higher dimensions the circle becomes hypersphere, *epsilon* becomes the radius of that hypersphere, and *minPoints* is the minimum number of data points required inside that hypersphere.

7

- Let's understand it with the help of an example.
- Here, we have some data points represented by grey color.

- Let's see how DBSCAN clusters these data points.
- DBSCAN creates a circle of *epsilon* radius around every data point and classifies them into Core point, Border point, and Noise.
- A data point is a **Core** point if the circle around it contains at least 'minPoints' number of points.
- If the number of points is less than *minPoints*, then it is classified as **Border** Point, and
- if there are no other data points around any data point within *epsilon* radius, then it treated as **Noise**.

The above figure shows us a cluster created by DBCAN with minPoints = 3.

- ► Here, we draw a circle of equal radius *epsilon* around every data point. These two parameters help in creating spatial clusters.
- ► All the data points with at least 3 points in the circle including itself are considered as **Core** points represented by red color.
- All the data points with less than 3 but greater than 1 point in the circle including itself are considered as **Border** points. They are represented by yellow color.
- Finally, data points with no point other than itself present inside the circle are considered as **Noise** represented by the purple color.

Reachability and Connectivity

- Reachability states if a data point can be accessed from another data point directly or indirectly
- Connectivity states whether two data points belong to the same cluster or not.
- In terms of reachability and connectivity, two points in DBSCAN can be referred to as:
 - **□ Directly Density-Reachable**
 - **□** Density-Reachable
 - **☐** Density-Connected
- Let's understand what they are.
- A point **X** is **directly density-reachable** from point **Y** w.r.t *epsilon*, *minPoints* if,
 - **1.** X belongs to the neighborhood of Y, i.e, $dist(X, Y) \le epsilon$
 - 2. Y is a core point
- Here, X is directly density-reachable from Y,
- but vice versa is not valid.

Reachability and Connectivity

- A point **X** is **density-reachable** from point **Y** w.r.t *epsilon*, *minPoints* if there is a chain of points p1, p2, p3, ..., pn and p1=**X** and pn=**Y** such that pi+1 is directly density-reachable from pi.
- Here, X is density-reachable from Y with X being directly density-reachable from P2, P2 from P3, and P3 from Y.
 But, the inverse of this is not valid.

- A point **X** is **density-connected** from point **Y** w.r.t *epsilon and minPoints* if there exists a point **O** such that both **X** and **Y** are density-reachable from **O** w.r.t to *epsilon and minPoints*.
- Here, both X and Y are density-reachable from O, therefore, we can say that X is density-connected from Y.

- DBSCAN is very sensitive to the values of *epsilon* and *minPoints*.
- ► Therefore, it is very important to understand how to select the values of *epsilon* and *minPoints*.
- A slight variation in these values can significantly change the results produced by the DBSCAN algorithm.
- The value of *minPoints* should be at least one greater than the number of dimensions of the dataset, i.e.,

minPoints>=Dimensions+1

- It does not make sense to take *minPoints* as 1 because it will result in each point being a separate cluster. Therefore, it must be at least 3. Generally, it is twice the dimensions. But domain knowledge also decides its value.
- The value of *epsilon* can be decided from the K-distance graph.
- The point of maximum curvature (elbow) in this graph tells us about the value of *epsilon*.
- If the value of *epsilon* chosen is too small then a higher number of clusters will be created, and more data points will be taken as noise.
- ► Whereas, if chosen too big then various small clusters will merge into a big cluster, and we will lose details.

Algorithmic steps for DBSCAN clustering

- Now, let's take a look at how DBSCAN algorithm actually works. Here is the pseudo code.
- Arbitrary select a point p
- Retrieve all points density-reachable from p based on Eps and MinPts
- If p is a core point, a cluster is formed
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed

Example

Consider the following 9 two-dimensional data points:

$$x1(0,0), x2(1,0), x3(1,1), x4(2,2), x5(3,1), x6(3,0), x7(0,1), x8(3,2), x9(6,3)$$

Use the Euclidean Distance with Eps = 1 and MinPts = 3. Find all core points, border points and noise points, and show the final clusters using DBCSAN algorithm.

Lets show the result step by step

14

$$N(x1) = \{x1, x2, x7\}$$

$$N(x2) = \{x2, x1, x3\}$$

$$N(x3) = \{x3, x2, x7\}$$

$$N(x4) = \{x4, x8\}$$

$$N(x5) = \{x5, x6, x8\}$$

$$N(x6) = \{x6, x5\}$$

$$N(x7) = \{x7, x1, x3\}$$

$$N(x8) = \{x8, x4, x5\}$$

$$N(x9) = \{x9\}$$

- If the size of N(p) is at least MinPts, then p is said to be a core point. Here the given MinPts is 3, thus the size of N(p) is at least 3. Thus core points are:{x1, x2, x3, x5, x7, x8}
- Then according to the definition of border points: given a point p, p is said to be a border point if it is not a core point but N(p) contains at least one core point. $N(x4) = \{x4, x8\}, N(x6) = \{x6, x5\}.$ here x8 and x5 are core points, So both x4 and x6 are border points.
- Deviously, the point left, **x9** is a noise point.

- Now, let's follow the pseudo code to produce the clusters.
- Arbitrary select a point p, now we choose x1
- Retrieve all points density-reachable from x1: {x2, x3, x7}
- Here x1 is a core point, a cluster is formed. So we have **Cluster_1**: {x1, x2, x3, x7}
- Next, we choose x5, Retrieve all points density-reachable from x5: {x4, x6, x8}
- ► Here x5 is a core point, a cluster is formed. So we have Cluster_2: {x4, x5, x6, x8}
- Next, we choose x9, x9 is a noise point, noise points do **NOT belong** to any clusters.
- Thus the algorithm stops here.

Advantages

- Does not require a-priori specification of number of clusters.
- Able to identify noise data while clustering.
- ▶ DBSCAN algorithm is able to find arbitrarily size and arbitrarily shaped clusters.
- DBSCAN is robust to outliers and able to detect the outliers.

Disadvantages

- DBSCAN algorithm fails in case of varying density clusters.
- Fails in case of neck type of dataset.

Does not work well in case of high dimensional data.

The complexity of DBSCAN Clustering Algorithm

- ***** Time Complexity:
 - ☐ Best Case: If an indexing system is used to store the dataset such that neighborhood queries are executed in logarithmic time, we get O(nlogn) average runtime complexity.
 - Worst Case: Without the use of index structure or on degenerated data (e.g. all points within a distance less than ε), the worst-case run time complexity remains $O(n^2)$.
 - ☐ Average Case: Same as best/worst case depending on data and implementation of the algorithm.
- **Space Complexity: O(n)**

DBSCAN Vs K-means Clustering

k-means

19	S. No.	K-means Clustering	DBSCAN
	1	Distance based clustering	Density based clustering
	2	Every observation becomes a part of some cluster eventually	Clearly separates outliers and clusters observations in high density areas
	3	Build clusters that have a shape of a hypersphere	Build clusters that have an arbitrary shape or clusters within clusters.
	4	Sensitive to outliers	Robust to outliers
/ /	5	Require no. of clusters as input	Doesn't require no. of clusters as input
	DBSCAN also produces more reasonable results than <i>k</i> -means across a variety of different distributions. Below figure illustrates the fact:		
	DBS	SCAN ()	
M			

References

- https://www.analyticsvidhya.com/blog/2020/09/how-dbscanclustering-works/
- https://towardsdatascience.com/dbscan-clustering-explained-97556a2ad556
- https://sites.google.com/site/dataclusteringalgorithms/density-basedclustering-algorithm
- https://www.mygreatlearning.com/blog/dbscan-algorithm/

Thank You Any Question?