# 9. ČÍSLICOVÝ MĚŘIČ IMPEDANCÍ A ADMITANCÍ

## 9.1. Úvod

Impedance je elektrická veličina vyjádřená komplexním číslem, která charakterizuje vlastnosti součástky při napájení střídavým proudem. Pro určení jejích parametrů musíme tedy měřit její reálnou a imaginární složku. Typickými zástupci impedancí jsou např. kondenzátor nebo cívka, ale je to i rezistor napájený střídavým proudem. Přístroje pro měření parametrů cívek a kondenzátorů patří k běžné výbavě laboratoří. Pracují obvykle na principu převodníku  $\mathbf{Z} \to \mathbf{U}$  popř.  $\mathbf{Y} \to \mathbf{U}$ , přičemž pro měření fázoru výstupního napětí se používá řízený usměrňovač. Principiální zapojení těchto převodníků je na obr 9.1. a 9.2.





Obr. 9.1. Zapojení převodníku pro měření impedance

Obr. 9.2. Zapojení převodníku pro měření admitance

Vzhledem k tomu, že jako referenční napětí pro řízený usměrňovač je použito napětí  $U_1$ , je pak reálná a imaginární složka napětí  $U_2$ , přímo úměrná reálné a imaginární složce měřené impedance, popř. admitance. Pro převodník na obr. 9.1 platí

$$\mathbf{I}_{RN} = -\mathbf{I}_{ZX} \tag{1}$$

Po dosazení za  $I_{RN}$  a  $I_{ZX}$  dle Ohmova zákona, oddělení reálné a imaginární složky a vyjádření měřených parametrů jako funkce reálné popř. imaginární části výstupního napětí  $U_2$  se získají vztahy pro výpočet parametrů měřené cívky, tedy hodnoty  $L_X$  a  $R_X$ . Podobně pro zapojení dle obr. 9.2 platí

$$\mathbf{I}_{\text{RN}} = -\mathbf{I}_{\text{YX}} \tag{2}$$

a vztahy pro výpočet parametrů měřeného kondenzátoru, tedy hodnoty  $C_X$  a  $G_X$ , se odvodí obdobně jako v předchozím případě.

Přesnost měření závisí vedle parametrů použitých přístrojů a toleranci rezistoru R<sub>N</sub> zejména na fázových posuvech použitých zesilovačů a nedokonalé funkci řízeného usměrňovače.

*Poznámka 1:* Volbou  $ω = 10^3$  s<sup>-1</sup> popř.  $10^4$  s<sup>-1</sup> a  $U_1 = 1$  V se dosáhne toho, že hodnoty prvků náhradního schématu ( $L_X$ ,  $R_X$  popř.  $C_X$ ,  $G_X$ ) se vypočtou z příslušných složek výstupního napětí pouhým vynásobením mocninami 10.

#### Měření reálné a imaginární složky výstupního napětí

Pro měření reálné a imaginární složky výstupního napětí  $U_2$  využíváme řízený usměrňovač. Jako referenční napětí pro řízení přepínače použijeme při měření reálné složky napájecí napětí  $U_1$  tvarované komparátorem, při měření imaginární složky použijeme pro řízení usměrňovače napětí z TTL výstupu napájecího generátoru, které je o T/4 posunuto proti napětí  $U_1$  odebíranému z výstupu harmonického signálu.

Pro odvození střední hodnoty napětí na výstupu řízeného usměrňovače lze použít výpočet integrálu přes půl periody sinusového napětí posunutého o  $\varphi$ . Řízený usměrňovač se chová při měření reálné složky napětí jako násobička posunutého průběhu  $u_2(t) = U_{2m} \sin(\omega t - \varphi)$  obdélníkem se střídou 1:1 a s amplitudou +1 a -1, který je ve fázi s napájecím napětím  $u_1(t)$ ; střední hodnota napětí  $U_{2s}^{\prime}$  je v tomto případě úměrná reálné složce výstupního napětí. Pak platí

$$U_{2s}^{\prime} = \frac{1}{T/2} \int_{0}^{T/2} U_{2m} \sin(\omega t - \varphi) dt = \frac{U_{2m}}{\pi} \left[ -\cos(x - \varphi) \right]_{0}^{\pi} = \frac{2\sqrt{2}}{\pi} U_{2ef} \cos \varphi = \text{Re}\{\mathbf{U}_{2}\}$$
 (3)

*Poznámka 2:* Při odvození výsledného výrazu použijte substituci ωt = x, dále dosaďte ω = 2π/T,  $U_{2m} = U_{2ef} \sqrt{2}$  a použijte vzorec cos(α-β) = cosα cosβ + sinα sinβ.

Pro měření imaginární složky je třeba násobit výstupní napětí  $u_2(t)$  obdélníkem s amplitudou +1 a -1 posunutým oproti napájecímu napětí o T/4 (při výpočtu střední hodnoty integrujeme přes půl periody v mezích T/4 až 3T/4). Obdobně jako v předchozím případě pak platí

$$U_{2s}^{\prime\prime} = \frac{1}{T/2} \int_{T/4}^{3T/4} U_{2m} \sin(\omega t - \varphi) dt = \frac{U_{2m}}{\pi} \left[ -\cos(x - \varphi) \right]_{\pi/2}^{3\pi/2} = \frac{2\sqrt{2}}{\pi} U_{2ef} \sin \varphi = \text{Im}\{\mathbf{U}_2\}$$
 (4)

*Poznámka 3:* Vzhledem k tomu, že stejnosměrná složka napětí na výstupu řízeného usměrňovače je úměrná střední hodnotě měřeného napětí  $(U_{2S} = U_2 \cos \varphi)$ , je nutné na vstupu převodníku  $\mathbb{Z} \to \mathbb{U}$  popř.  $\mathbb{Y} \to \mathbb{U}$  nastavovat též střední hodnotu napětí. Protože však u vstupního napětí nastavujeme jeho efektivní hodnotu (údaj číslicového voltmetru odpovídá efektivní hodnotě měřeného napětí) a platí  $U_{ef} \cong 1,11$   $U_{stř}$ , je nutné nastavit hodnotu efektivní na vstupu převodníku 1,11-krát větší, než je požadovaná hodnota střední. Aby bylo možné na vstupu přípravku nastavovat napětí bez vynásobení koeficientem 1,11, je v přípravku vstupní napětí zesilováno invertujícím zesilovačem s přenosem -1,11; záporná hodnota přenosu odpovídá znaménku – ve vztazích (1) a (2).

Poznámka 4: Vzhledem k tomu, že napětí na výstupu řízeného usměrňovače odpovídající reálné a imaginární složce výstupního napětí převodníku  $\mathbf{Z}_x \to \mathbf{U}_2$  resp.  $\mathbf{Y}_x \to \mathbf{U}_2$  má nejen stejnosměrnou, ale i střídavou složku o frekvenci základní harmonické složky rovné dvojnásobku frekvence měřeného napětí, je nutné zapojit před vstup číslicového voltmetru ve funkci "měření stejnosměrného napětí" filtr typu "dolní propust", který střídavou složku potlačí.

#### Vliv parazitních kapacit vůči stínění

U použitého převodníku je možné použít třísvorkové připojení měřené admitance. V případě, že stínění měřeného kondenzátoru spojíme se zemní svorkou, parazitní kapacity vůči stínění neovlivní výsledek měření tzv. průchozí admitance  $\mathbf{Y}_{12}$ . To vyplývá z náhradního schématu na obr. 9.3. Rozprostřené kapacity (obecně admitance) mezi měřeným objektem a stíněním (a v případě použití koaxiálních kabelů pro připojení měřeného objektu i jejich kapacitu) lze nahradit parazitními kapacitami  $C_{10}$  a  $C_{20}$ . Kapacita  $C_{20}$  je připojena mezi invertující a neinvertující vstup operačního zesilovače, napětí mezi těmito body je v případě ideálního operačního zesilovače nulové (virtuální nula) a tato parazitní kapacita tedy neovlivní výsledek měření. Kapacita  $C_{10}$  je připojena paralelně k referenčnímu zdroji a pokud platí  $1/\omega C_{10} >> R_0$  ( $R_0$  je výstupní odpor referenčního zdroje), neovlivní velikost referenčního napětí a tudíž ani výsledek měření.

Pro určení velikosti parazitních kapacity  $C_{10}$  popř.  $C_{20}$  je třeba spojit stínění se svorkou 2 popř. 1. V tom případě se měří paralelní kombinace měřené admitance a příslušné parazitní kapacity. Změřená hodnota kapacity je pak rovna  $C_{12} + C_{10}$ , popř.  $C_{12} + C_{20}$ , z čehož lze obě parazitní kapacity snadno určit.



Obr. 9.3. Náhradní schéma stínění měřené admitance

## 9.2. Domácí příprava

- 9.2.1. Prostudujte si teoretický úvod.
- 9.2.2. **Odvoďte** vztahy pro výpočet parametrů měřené cívky, popř. kondenzátoru z reálné a imaginární složky výstupního napětí v zapojení dle obr. 9.1., popř. 9.2 (vycházejte z rovnosti  $\mathbf{I}_{RN} = -\mathbf{I}_{ZX}$  popř.  $\mathbf{I}_{RN} = -\mathbf{I}_{YX}$  a oddělte reálnou a imaginární složku měřeného výstupního napětí). Při výpočtu lze napětí  $\mathbf{U}_1$  považovat za reálné, protože slouží jako reference.

### 9.3. Úkol měření

9.3.1. Zapojeným LRC měřičem (viz obr 9.4) změřte indukčnost a ztrátový odpor předložené cívky. Použijte sériové náhradní schéma  $L_S$ ,  $R_S$ , měřte při doporučených hodnotách kmitočtů a odporů  $R_N$  uvedených v tabulce. Vypočtěte činitel jakosti Q alespoň pro jeden kmitočet.

| Doporučený kmitočet<br>f (Hz) | ω        | Velikost $R_{\rm N}(\Omega)$ |
|-------------------------------|----------|------------------------------|
| 159,2                         | $10^{3}$ | 100                          |
| 1592                          | $10^{4}$ | 1000                         |

- 9.3.2. Pro jedno měření zakreslete do sešitu přibližné průběhy napětí za řízeným usměrňovačem (v poloze *Re* i *Im*).
- 9.3.3. Výše uvedeným RLC měřičem změřte průchozí admitanci předloženého kondenzátoru a obě parazitní kapacity vůči stínění. Použijte paralelní náhradní schéma  $C_P$ ,  $G_P$ , měřte při kmitočtu 1592 Hz,  $R_N = 100 \text{ k}\Omega$ . Určete ztrátový úhel tg  $\delta$  měřeného kondenzátoru.
- 9.3.4. Tytéž parametry změřte profesionálním RLC měřičem (pro cívku pro kmitočty 150 a 1500 Hz, pro kondenzátor pro 1500 Hz.

# 9.4. Schéma zapojení



Obr. 9.4. Schéma zapojení přípravku pro měření impedancí a admitancí (není zakresleno napájení).