Remember to adequately label all plots and include any MATLAB scripts and functions with your solutions. A clear and complete presentation of your solutions is required for full credit.

- 1. Write a MATLAB function with the declaration function cobweb(g,a,b,x0,kmax) that plots the function g on the interval [a,b] along with the cobweb diagram showing kmax fixed point iterations of g starting at x0. Examples of the function output are shown in Figures 2 and 3. Turn in the code for your function and perform or answer the following.
 - (a) Use your function to plot the cobweb diagrams for $g_1(x) = \cos(x)$ and $g_2(x) = \cos(x) + 2$ starting with any points of your choice.
 - (b) Explain why both iterations must converge if x_0 is sufficiently close to the fixed point.
 - (c) Do you observe a difference between the convergence rates for g_1 and g_2 ? Explain.
 - (d) Do you expect the iterations for g_1 and g_2 to be globally convergent? Explain.
- 2. Sauer, Section 1.4, Exercise 8.
- 3. Sauer, Section 1.4, Computer Problem 9.
- 4. Consider the four-bar planar linkage ABCD shown in the Figure 1, where the four rods have lengths $AB = a_1 = 10$, $BC = a_2 = 2$, $CD = a_3 = 7$, and $DA = a_4 = 6$. This is a planar linkage system, and it can exist in various shapes. Variation of the angle α results in variation of the angle β , with the two angles related by

$$\frac{a_1}{a_2}\cos\beta - \frac{a_1}{a_4}\cos\alpha - \cos(\beta - \alpha) = -\frac{a_1^2 + a_2^2 - a_3^2 + a_4^2}{2a_2a_4}.$$

Use the Newton iteration to solve this problem for $\alpha \in [0, 2\pi]$ to a tolerance of 10^{-6} . For this arrangement and for each value of α in the given range, there are two possible values of β . Use an initial value $\beta_0 = -\pi/2$ for β to ensure that you get β in the same contiguous range. Plot the position-dependent midpoint of rod a_3 as α takes values in the interval $[0, 2\pi]$.

Figure 1: A four-bar planar linkage. The bottom bar a_1 remains fixed, but all joints are flexible.

Figure 2: Example output of cobweb with $g(x) = 1 - \sin(x)$ and $x_0 = 0.25$.

Figure 3: Example output of cobweb with $g(x) = 1 - x^2$ and $x_0 = 0.5$.