Statistics for Medicine

Massimo Borelli

Master of Advanced Studies in Medical Physics

Recap

111	Inferential Statistics						
4	T-Test: the history of biostatistics		53				
4.1	Detecting a signal from noise		53				
4.1.1	Classical One-sample t test		54				
4.1.2	Classical Two-sample paired t test						
	(E)	N					
4.3	Out of the frying pan into the fire: statistical or clinical sign						
4.4	Absence of evidence, or evidence of absence?		60				
4.4.1	Bayesian One-sample t test	*********	61				
4.4.2	Bayesian Paired Samples T-Test						
4.5	In conclusion		62				
4.6	Exercises		63				
5	Differences between groups		65				
5.1	Two groups		65				
5.1.1	The Student T-Test		65				
5.1.2	The Welch test						
5.1.3	The Mann - Whitney test		69				
5.1.4	In conclusion		70				
5.2	Three or more groups		71				
5.2.1	The one-way Anova		72				
5.2.2	The multiple comparison issue						
5.2.3	How to mend heteroskedasticity						

the fresher dataset

Does gym activity predict weight? /1

Does gym activity predict weight? /2

Raincloud plots

Independent Samples T-Test

1 The following problem(s) occurred while running the analysis:

Number of factor levels is ≠ 2 in gym

Note Student's t-test

$$t = rac{m_1 - m_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$$

key idea

	weight
Mean	63.523
Variance	92.128

	weight
Mean	63.523
Variance	92.128

	weight			
gender	f	m		
Mean	56.625	70.212		
Variance	41.081	50.735		

	weight			
smoke	no	yes		
Mean	63.098	65.071		
Variance	89.410	106.379		

the one-way Anova

- consider as a Fixed Factor the gym physical activity
 - ordered: not < occasional < sporty
- as Dependent Variable the weight

the one-way Anova

Cases	Sum of Squares	df	Mean Square	F	р
gym	1020.400	2	510.200	6.488	0.003
Residuals	4875.816	62	78.642		

Models	P(M)	P(M data)	BF_{M}	BF ₁₀	error %
gym	0.500	0.933	14.018	1.000	
Null model	0.500	0.067	0.071	0.071	0.015

Normality assumptions

Table: Equality of Variances (Levene's)

F	df1	df2	р
0.470	2.000	62.000	0.627

Model Averaged Q-Q Plot

Nonparametric one-way Anova

the multiple comparison issue /1

Consider the following simulations:

$$a = rnorm(n = 30, mean = 0, sd = 1)$$

$$b = rnorm(n = 30, mean = 0, sd = 1)$$

$$c = rnorm(n = 30, mean = 6, sd = 1)$$

the multiple comparison issue /2

the multiple comparison issue /3

bad idea: to make multiple t-tests on all possible pairs of means

$$\alpha = 0.05$$

$$1 - \left(1 - \frac{5}{100}\right) \cdot \left(1 - \frac{5}{100}\right) \cdot \left(1 - \frac{5}{100}\right) =$$
$$= 1 - \left(1 - \frac{5}{100}\right)^3 = 0.143$$

multiple tests increases the probability of a type-I error.

Carlo Bonferroni 'radical' solution (Bernoulli $1 + nh < (1 + h)^n$) n = 3 groups, $n \cdot (n - 1)/2 = 3$ comparisons, then $h = \alpha/3 = 0.05/3 = 0.017$.

Table: Post Hoc Comparisons - gym

		Mean Difference	SE	t	p _{tukey}
not	occasional	9.665	2.711	3.565	0.002
	sporty	6.373	2.740	2.326	0.060
occasional	sporty	-3.292	2.645	-1.245	0.432

Table: Post Hoc Comparisons - gym

		Prior Odds	Postrr Odds	BF _{10,<i>U</i>}	error %
not	occsnl	0.587	21.169	36.039	4.422×10^{-7}
	sporty	0.587	1.313	2.236	0.008
occsnl	sporty	0.587	0.328	0.558	0.006

ALERT: very difficult with JASP

the tooth.ods dataset

? heteroskedasticity ?

Can you detect wether illb is a predictor of areainfl?

explore one-way anova and look to raincloud plot

Statistics for Medicine

Massimo Borelli

Master of Advanced Studies in Medical Physics

In vivo dosimetry and shielding disk alignment verification by EBT3 GAFCHROMIC film in breast IOERT treatment

Mara Severgnini, ¹⁹ Mario de Denaro, ¹ Marina Bortul, ² Cristiana Vidali, ³ Auto Beorchia² Department of Medical Physics: ³ Department of Surgery: ³ Department of Radiation Oscology, ³ 4,0 U. Ospedalt Rumiti. Triesse, fasts

a calibration procedure

246

Anthropological Miscellanea.

ANTHROPOLOGICAL MISCELLANEA.

REGRESSION towards MEDIOCRITY in HEREDITARY STATURE. By Francis Galton, F.R.S., &c.

[WITH PLATES IX AND X.]

This memoir contains the data upon which the remarks on the Law of Regression were founded, that I made in my Presidential Address to Section H, at Aberdeen. That address, which will appear in due course in the Journal of the British Association, has already been published in "Nature," September 24th. I reproduce here

Massimo Borelli

Statistics for Medicine

the fresher.ods dataset

Table: Pearson's Correlations

Variable		height	
weight	Pearson's r	0.744	
	p-value	< .001	

classical linear regression

Table: classical linear regression - Fixed effects

Model		Unstndr	Std Err	Stndrd	t	р
H ₀	(Intercept)	63.523	1.191		53.357	< .001
H_1	(Intercept)	-83.891	16.677		-5.030	< .001
	height	0.854	0.096	0.744	8.850	< .001

Table: Random component

Model	R	R^2	Adjusted R ²	RMSE
H ₀	0.000	0.000	0.000	9.598
H_1	0.744	0.554	0.547	6.459

diagnostic tools: why we need them

the Anscombe's Quartet

$$y = 0.5x + 3$$
; $R^2 = \frac{2}{3}$

diagnostic tools

United States Environmental Protection Agency Office of Environmental Information Washington, DC 20460

EPA/240/B-06/003 February 2006

SEPA Data Quality Assessment: Statistical Methods for Practitioners

EPA QA/G-9S