Ch3 Reg to ML

Contents

4	Regression to Statistical Learning
	A.1 Statistical Learning
	A.2 How do we find 'overall pattern'? - Inference
	A.3 Prediction
	A.4 Polynomial Regression 1
	A.5 Prediction
	A.6 Polynomial Regression 2
3	Training Set and Testing Set
C	Training, Validation, and Testing Set
	C.1 How do we estimate <i>f</i> ?
	C.2 K-Nearest Neighbor
D	Assessing Model Prediction Accuracy
	D.1 Measure of Quality of Fit

E	Bias-Variance Trade-Off
	E.1 Prediction MSE
F	Regression vs Classification
	F.1 Plot
	F.2 Classification Setting
	<u> </u>

Textbook: James et al. 1ed.

A Regression to Statistical Learning

[ToC]

A.1 Statistical Learning

• General Model

$$Y = f(X) + \epsilon$$

- We don't want to assume that f(X) is linear function.
- Motivation:
 - Model Estimation
 - Prediction
- \bullet Pattern recognition

A.2 How do we find 'overall pattern'? - Inference

- ullet Want to understand the relationship between X and Y
- Which predictors are associated with the response?
- What is the relationship between the response and each predictor?
- Can the relationship between Y and each predictor be adequately summarized using a linear equation, or is the relationship more complicated?

A.3 Prediction

ullet Want to guess the next Y as accurate as possible

$$\hat{Y} = \hat{f}(X)$$

- \bullet f can be a black box
- reducible error and irreducible error in prediction
- Want to reduce prediction Mean Squared Error:

$$MSE = E(Y - \hat{Y})^2 = E(Y - \hat{f}(X))^2$$

A.4 Polynomial Regression 1

A.5 Prediction

A.6 Polynomial Regression 2

Larger dataset. n = 100 and m = 26.

[ToC]

C Training, Validation, and Testing Set

[ToC]

• k-fold Cross Validation

C.1 How do we estimate f?

• Hyperparameter

C.2 K-Nearest Neighbor

- Pick a point x_0
- Find K nearest observations
- $f(x_0)$ is estimated by the average of all K neighbors

$$\hat{f}(x_0) = \frac{1}{K} \sum y_i$$

 \bullet K=1 (left) and K=9 (right)

O Assessing Model Prediction Accuracy

[ToC]

D.1 Measure of Quality of Fit

• Training MSE (sample)

$$MSE_{tr} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

• But we want minimum Prediction MSE

$$MSE = E(Y - \hat{f}(X))^2$$

• Solution: look at Test MSE (sample) as estimator

$$MSE_{test} = \frac{1}{m} \sum_{j=1}^{m} (y_j - \hat{f}(x_j))^2$$

E Bias-Variance Trade-Off

[ToC]

E.1 Prediction MSE

$$E(Y - \hat{f}(X))^{2} = Var(\hat{f}(X)) + Bias(\hat{f}(X))^{2} + Var(\epsilon)$$

- can't have low variance and low bias
- has lower bound

Bias-Variance Trade-off

Prediction MSE can be decomposed as

$$E(Y - \hat{f}(X))^{2} = E(f(X) + \epsilon - \hat{f}(X))^{2}$$

$$= E(f(X) - E(\hat{f}(X)) + E(\hat{f}(X)) - \hat{f}(X) + \epsilon)^{2}$$

$$= E(f(X) - E(\hat{f}(X)))^{2} + E(E(\hat{f}(X)) - \hat{f}(X))^{2} + E(\epsilon^{2})$$

$$= Var(\hat{f}(X)) + Bias(\hat{f}(X))^{2} + Var(\epsilon)$$

F Regression vs Classification

[ToC]

F.1 Plot

F.2 Classification Setting

• Instead of MSE, work with Errror Rate:

$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

 X_1

KNN: K=1 KNN: K=100

