Parts 2 & 3 Fold classification & Function from structure

2

Overview

- Protein structure classification
 - Goals & Concepts
 - Methods & Databases
 - Minimum RMSD superposition
 - CATH, SCOP,...
- Function from structure
 - Function from fold
 - Active site based
 - Find a putative active site, and infer function
 - Intrinsic methods
 - Extrinsic methods

Protein fold classification

Why is this interesting?

- Understanding structure
- Evolutionary insights
- Creation of data sets
 - PDB is highly redundant!
- Function from structure
- ...

.

Most Proteins are Multidomain

- 40% of globular protein structures are MD
 - Most have 2 domains
- High proportion of proteins in genomes are MD
 - Ekman et al (2005), JMB, 348, 231-243
 - prokaryotes: 40%
 - eukaryotes: 65%
 - Often not easy to find domains based on sequence alone
- Fold classification is done at the domain level
 - Need a method to recognize domains

- (Potentially) Independent folding unit
 - Compact, globular structure
 - More intra- than inter domain contacts
 - No shared secondary structures
 - It is an 'evolutionary unit'
- These rules are often fuzzy
- Various methods identify domains

Folds and structure

- Some terminology...
 - Structure
 - A specific protein
 - Fold
 - Global properties of a structure
 - □ Secondary structure elements
 - Connections between elements
 - □ Orientations of elements
- Example
 - Triose Phosphate Isomerase
 - TIM barrel

Superfamilies

- Superfamily
 - Set of families
 - Not related judged by sequence
 - ...but adopt the same fold
 - ...and have a common evolutionary origin
 - Most families belong to a previously observed superfamily
 - ...and 25 % of superfamilies have a common function
 - ..so one can often go from a fold to a function for a newly solved protein structure

Haemoglobin & Leghaemoglobin (11.9% identity)

Superfolds

- Folds that occur in several superfamilies
- ...due to convergent evolution (?)

Examples

- TIM-barrel: 15 superfamilies
- αβ-plaits: 12 superfamilies
- Rossmann-fold: 35 superfamilies
- Sometimes Superfold→binding site
 - TIM barrel
 - Active site is always at the top

Superfolds II

- Jelly roll fold
 - Sugar binding proteins
 - Lectins
 - Loris (2002), BBA,1572

Legume lectins

Galectins

Four families with same fold

Similar variation in quaternary structure

М

Structural genomics

- Genomics of protein structures
 - These projects can have two different aims
 - Structures for all proteins of an organism
 - Yeast, tuberculose,...
 - Structural representatives for all folds
 - Database for homology modeling
 - Some projects
 - Paris Sud Yeast Structural Genomics, France
 - M. tuberculosis Structural Proteomics Project, Germany
 - Center for Eukaryotic Structural Genomics, USA
 - Covers fold space

Structural genomics pipeline

Fold to function: YML079w

- Solved by Yeast Structural Genomics Project
 - Proteins, (2005), 14, 209-215
- Sequence did not point to a known fold
 - But YML079w adopts Jelly-roll fold
 - Cupin-superfamily
 - This fold is associated with
 - Storage in plants
 - □ Nucleotides
 - Bacterial enzymes
 - I ots of leads to work with!
 - YML079 binds Guanine

Measuring protein similarity

RMSD I

- A protein structure is a set of 3D vectors
- How do we measure similarity between two sets?
 - Suppose we have 2 sets of n 3D vectors x and y
 - Assume their centers of mass are at the origin (otherwise translate)
 - Root Mean Square Deviation (RMSD)
 - x_i and y_i are {3,1} column vectors

RMSD
$$(x, y) = \sqrt{\frac{1}{n} \sum_{i=0}^{n-1} |x_i - y_i|^2}$$

RMSD II

- But this depends on the orientations of x and y!
 - What we really want is:

RMSD
$$(x, y) = \min_{U} \sqrt{\frac{1}{n} \sum_{i=0}^{n-1} |x_i - Uy_i|^2}$$

- U=Rotation matrix
- Equivalent to minimizing E(U):

$$E(U) = \sum_{i=0}^{n-1} |x_i - Uy_i|^2$$

Rotation matrix

- A square matrix U that, by multiplication, changes the direction but not the magnitude of a vector.
- 3D rotation matrices are orthogonal matrices with the following properties:
 - $U^T = U^{-1}$ and thus $UU^T = I_0$
 - det(U)=1
 - The columns AND rows form an orthonormal basis of R³
 - vectors of length 1, mutually perpendicular
- Roto-reflection
 - If U is orthogonal and det(U)=-1, U is a roto-reflection
 - Roto-reflections are excluded in the case of proteins

RMSD III

Let's expand E

$$E(U) = \sum_{i=0}^{n-1} |x_i - Uy_i|^2$$

$$E(U) = \sum_{i=0}^{n-1} (|x_i|^2 + |y_i|^2) - 2\sum_{i=0}^{n-1} x_i^t U y_i$$

$$E(U) = E_0 - 2L(U)$$

$$L(U) = \operatorname{Tr}(X^t U Y)$$

E₀ is independent of U We want to maximize L

Where X and Y are {3,N}
matrices containing the coordinates
(Tr=trace=sum of diagonal elements)

v

RMSD IV

- Let's juggle a bit with the matrices in L
 - Note: trace(AB)=trace(BA) for A={m,n} and B={n,m}

$$L(U) = {
m Tr}\,(X^t\,U\,Y)$$
 Trace of {n,n} matrix $L(U) = {
m Tr}\,(U\,Y\,X^t)$ Trace of {3,3} matrix $L(U) = {
m Tr}\,(UR)$ with $R = YX^t$

R is the {3,3} correlation matrix of X and Y

RMSD V

Now let's write R as a product of 3 matrices

$$R = YX^{t} = VSW^{t}$$
 Singular value decomposition

- S is a {3,3} diagonal matrix, all diagonal elements>0
- V and W are {3,3} orthogonal matrices
 - **VV**^t=**I**₀
 - V-1=V^t
 - Product of two orthogonal matrices is orthogonal
 - Rows (and columns) of V form an orthonormal basis
 - Unit length, mutually perpendicular

RMSD VI

Now let's take that result to L

$$L=\operatorname{Tr}(UR)=\operatorname{Tr}(UVSW^{t})=\operatorname{Tr}(SW^{t}UV)=\operatorname{Tr}(ST)$$
 where
$$T=W^{t}UV$$

Because S is diagonal:

$$L = \text{Tr}(ST) = \sigma_1 T_{11} + \sigma_2 T_{22} + \sigma_3 T_{33}$$

RMSD VII

Recall we want to maximize L, which minimizes E/RMSD

$$L = \text{Tr}(ST) = \sigma_1 T_{11} + \sigma_2 T_{22} + \sigma_3 T_{33}$$

- Now T is orthogonal
 - Because T is a product of W^t, U and V
 - Thus, rows and columns are unit vectors
- Hence T_{ii}≤1
- As the σ 's are positive, L reaches a maximum when $T_{ij}=1$
 - So T must be the identity matrix I₀

RMSD VIII

Because T=Identity

$$T_{\max} = I_0 = W^t U_{\min} V$$

$$U_{\min} = W V^{t}$$

$$L_{\text{max}} = \text{Tr}(ST_{\text{max}}) = \text{Tr}(S) = \sigma_1 + \sigma_2 + \sigma_3$$

Now plug this into the RMSD expression

$$RMSD = \sqrt{\frac{1}{n}(E_0 - 2L_{\text{max}})} = \sqrt{\frac{1}{n}(E_0 - 2(\sigma_1 + \sigma_2 + \sigma_3))}$$

×

RMSD: SVD Decomposition

A crucial step was:

$$R = YX^{t} = VSW^{t}$$

- Singular Value Decomposition theorem
 - Any real $\{n,m\}$ matrix A can be written as: $A = VSW^t$

- V=orthogonal {n,n}, W^t orthogonal {m,m}
- S=diagonal {n,m}
 - Diagonal elements are called the singular values

RMSD: Reflection catch

Recall:

$$U_{\min} = W V^{t}$$

- Sometimes U_{min} is a roto-inversion!
 - Hence you will superimpose a mirror image
 - Solution:

$$U_{\min} = WZV^{t}$$

RMSD
$$(x, y) = \sqrt{\frac{1}{n}} (E_0 - 2(\sigma_1 + \sigma_2 + s\sigma_3))$$

- If det(WV^t)=-1 then Z=diag(1,1,-1), s=-1
- If $det(WV^t)=1$ then $Z=I_0$, s=1

ĸ.

RMSD: Pseudocode

Put Y on top of X:

```
# X,Y are {3,N} matrices
Move X, Y to center of mass
R=YX<sup>T</sup>
# Singular Value Decomposition
V, S, W^{t}=SVD(R)
Z = diag(1,1,-1)
U=WV^T
# Check for reflection
if det(U) = -1:
     U=WZV^T
# Rotate Y by applying U
Y_rotated=UY
# Calculate RMSD (either in real space or by formula on slide 25)
```

Theseus

- Classic LS algorithm assumes that the atom positions
 - Are uncorrelated (despite chemical bonds, errors,...)
 - Have identical variance (homoscedastic) $\Sigma = \sigma I$
 - Gaussian error model $P(U|x, y) \propto \prod_{i} \exp(-|x_i Uy_i|^2)$
 - Equivalence with RMSD expression
- Maximum likelihood Procrustes formulation
 - Mean shape M (with K atoms)
 - Perturbation E: Matrix Gaussian
 - General covariance matrix ∑

$$X_i = R_i(M + E_i) + T_i$$

$$E_i \sim N_{K,3}(0, \Sigma, I_3)$$

Theobald & Wuttke, PNAS, 2006

Finding the equivalent positions I

RMSD algorithm

- Assumes we have two sets of paired vectors
 - Native/complexed structures
- Often this is not the case
 - Insertions, deletions, missing residues, variable loops, conformational changes
- A method is needed to find equivalent pairs!
 - Heuristic methods prevail

Rossmann fold

Finding the equivalent positions II

- Monte Carlo approach
 - Start with random alignment
 - Try random changes
 - Accept/reject based on the result
 - Dali, Holm & Sander (1996), Science, 273, 595-602
 - Used for fine-tuning by other methods
- Align secondary structure elements
 - Try all combinations
- Many other heuristic methods and variants exist

Global Distance Test - Total Score

- GDT_TS is more robust than RMSD
 - RMSD is very sensitive to small deviations, as for example in loops
- GDT=Percentage of Cα atoms that can be aligned to each other within a specified distance A.
 - Right: GDT plots for protein T0482 in CASP8. The aligned structures for the blue curve are shown (native in red) for 67 residues.
 - Ideal: area under curve is minimized
- GDT_TS=average of the GDT for 1,2, 4 and 8 Å

DOI: 10.1186/s13015-015-0058-0

v

SCOP

- A. Murzin, Cambridge, UK
 - JMB (1995), 247, 536-540
 - Last update 2009; SCOP2 (beta) launched in 2014
- Classification
 - Class $(\alpha, \beta, \alpha\beta, irregular)$
 - Fold (1195)
 - Superfamily (1962)
 - Family (3902)
- Manually constructed
 - Gold standard
 - Scalability problems, last update 2009

SCOP example

http://scop.mrc-lmb.cam.ac.uk/scop/

Protein: Glutamate receptor ligand binding core from Rat (*Rattus norvegicus*), GluR2

Lineage:

- 1. Root: scop
- Class: Alpha and beta proteins (a/b)
 Mainly parallel beta sheets (beta-alpha-beta units)
- 3. Fold: Periplasmic binding protein-like II
 - consists of two similar intertwined domain with 3 layers (a/b/a) each: duplication mixed beta-sheet of 5 strands, order 21354; strand 5 is antiparallel to the rest
- Superfamily: Periplasmic binding protein-like II
 Similar in architecture to the superfamily I but partly differs in topology
- 5. Family: Phosphate binding protein-like
- 6. Protein: Glutamate receptor ligand binding core
- 7. Species: Rat (Rattus norvegicus), GluR2

PDB Entry Domains:

- 1. 1ftk complexed with kai
 1. chain a complexed with amg, zn
 2. 1ftm complexed with amg, zn
 1. chain a complexed with amg complexed with a comp
 - 2. <u>chain b</u>

CATH

- Thornton/Orengo group, UCL, UK
 - Structure (1997), 5, 1093-1108
- Class Architecture Topology Homology
- Much more automated than SCOP
 - More objective, but some 'failures'
 - Pairwise superposition
 - Still scalability problems!
- http://www.cathdb.info/

CATH classification

- Class (α , β , $\alpha\beta$, no SS)
 - Secondary structure
 - Statistics of July 2017
- Architecture (41)
 - Packing of sec. structures
- Topology (1391)
 - Connection of sec. structure
 - 1391=total number of folds
- Homology
 - Superfamily (6119)
 - Family, with 35% cut off (31289)

Knot theory

- Røgen & Fain, DTU/Stanford
 - PNAS (2002), 100, 119-124
- Uses generalized Gauss integrals
 - Backbone=curve in space
 - Crossing number
 - Average over all observer positions...
 - □ ...of the number of crossings
 - Writhe number
 - Uses signed crossings
 - Characterized by a 30-Dimensional vector
- Classification by clustering of vectors
- Fully automated, fast, scales well & objective

Same writhe/crossing number Different higher order numbers

Example: writhe calculation

C is a smooth curve, r₁ and r₂ are points on C

$$Wr = rac{1}{4\pi} \int_C \int_C d\mathbf{r}_1 imes d\mathbf{r}_2 \cdot rac{\mathbf{r}_1 - \mathbf{r}_2}{\left|\mathbf{r}_1 - \mathbf{r}_2
ight|^3}$$

Approximating C as a finite chain of N line segments

$$Wr = \sum_{i=1}^{N} \sum_{j=1}^{N} rac{\Omega_{ij}}{4\pi} = 2 \sum_{i=2}^{N} \sum_{j < i} rac{\Omega_{ij}}{4\pi}$$

$$n_1 = rac{r_{13} imes r_{14}}{|r_{13} imes r_{14}|}, \; n_2 = rac{r_{14} imes r_{24}}{|r_{14} imes r_{24}|}, \; n_3 = rac{r_{24} imes r_{23}}{|r_{24} imes r_{23}|}, \; n_4 = rac{r_{23} imes r_{13}}{|r_{23} imes r_{13}|}$$

$$\Omega^* = rcsin(n_1 \cdot n_2) + rcsin(n_2 \cdot n_3) + rcsin(n_3 \cdot n_4) + rcsin(n_4 \cdot n_1)$$

Part 3. Function from Structure

Function from structure

- Infer function by locating active sites
- Structural genomics projects
 - Structures without a story
- Uncomplexed structures
- Moonlighting proteins
 - Phosphoglucose isomerase (PGI)
 - Glycolysis
 - Maturation of B-cells
 - Nerve growth factor
 - Stimulates cell migration

Strategies

Intrinsic

- Based on general properties of active/binding sites
 - Charge, shape, sequence....
- Does not identify function itself

Extrinsic

- By comparison with other structures
- Can identify function

Intrinsic methods

Using geometry

- Using surface cavities
 - Peters et al. (1996), JMB, 256, 201-213
- Very high efficiency
 - Calculate molecular surface
 - lacktriangle α -shapes
 - Identify 'cavities'
 - Select largest cavity
 - In 95 % of the cases correct

- Formalizes the "shape" of a point set
 - Generalization of the convex hull
 - Styrofoam-eraser analogy
 - Eraser radius α determines level of detail
- From a set of points to a volume
 - Related to the space filling model
 - CPK models and α -shapes are duals
- Finding cavities
 - Surface difference
 - \blacksquare $\alpha = \infty$ and $\alpha = 4.5 \text{ Å}$

α-shape example

$$\alpha = 0$$

Alpha Controls the desired level of detail.

$$\alpha = \infty$$

Varying α to find cavities

- Elcock (2001), JMB, 312, 885-896
- Identify unfavorable charge concentrations
 - Needed for catalysis
- Continuum electrostatics
 - Solvent!
- Example
 - MTH1184 from structural genomics

Molecular probes

- Mattos & Ringe, Nature Biot. (1996),14, 595-99
- Small molecular probes
 - Methanol, isopropanol, acetone, urea, acetonitrile, butanol, methylene chloride, DMSO...
 - These small probes often bind in similar sites
 - Determined using X-ray crystallography
 - Consensus binding sites are often active sites!
- Not very practical
 - Can this be simulated in silico?

Molecular probes in silico

- Dennis et al., PNAS, 99, 2002
- Simulate binding of molecular probes
 - In silico consensus binding sites
- Example
 - HEW Lysozyme

Evolutionary trace method

- Madabushi et al., JMB, 316, 2002
- Active site residues are conserved
- ET-method:
 - Determine conserved residues
 - Project on a structure
 - Identify clusters
 - ET server
 - mammoth.bcm.tmc.edu/ETserver.html
- Example:
 - 2,5-diketo-D-gluconic acid reductase A
 - ligand yellow, active site residues blue, conserved residues red

Extrinsic methods

- Similar active sites arise by convergent evolution
- Ser-His-Asp catalytic triad
 - Serine proteases
 - Trypsin
 - Hydrolyze proteins
 - Subtilisin
 - Hydrolyze proteins
 - α/β -hydrolases
 - Lipases

Searching for similar sites

- You can get a lot of info!
 - Position
 - Mechanism
 - Function
- This is not trivial!
 - Combinatorial explosion
 - 200 residues, 60.000+ structures
 - Catalytic site typically 2-5 residues

Graph theory

- Artymiuk et al., JMB (1994), 243, 327-344
- Present a protein as a graph
 - Nodes=residues
 - Edges=contacts

- Find similar subgraphs
 - Ullmann's subgraph isomorphism algorithm
 - Slow, pairwise comparison

Depth first search

- General idea: stop when you know the sites are different
 - Russell, JMB (1998), 279, 1211-1227
- Example: Ser-His-Asp triad

for Ser in Target:

for Ser in Model:

for Asp in Target:

for Asp in Model:

If the Ser-Asp pair in Model is different from the Ser-Asp pair in Target we can already stop here: we already know the triads are geometrically different.

if Asp, Ser similar in Model and Target:

for His in Target:

for His in Model:

if Ser, His, Asp similar in Model and Target:

report(Ser, His, Asp)

PINTS server

- A server that offers depth first pattern search
 - Compare a protein against a database of patterns
 - Find known sites
 - Compare a protein against a set of known structures
 - Set of representatives from SCOP
 - Find new similarities
 - Compare two proteins and find similar sites
- http://www.russelllab.org/cgi-bin/tools/pints.pl

Geometric hashing

- Wallace *et al.*, 1996
- A computer vision method
- Use sets of three atoms (triplets) to create coordinate systems
- Identify cases of....
 - Similar coordinate systems
 - Find a target triplet that matches a motif triplet
 - Done by hash table look up
 - Similar sets of coordinates
 - Example: (x2, y2)

Triad method

- Look at residue triads
 - Hamelryck, 2003, Proteins, 51, 96-108
 - Close together
 - "Interesting" residues
- Represent as vector
 - Atom distances

His

- Finding similar vectors = finding similar triads
 - How can this be done efficiently?

Cys

Multidimensional index trees

- High-Dim Neighbor Queries
 - Large multimedia databases
 - **20-60 Dim**
 - Given a picture/movie, find similar ones
- MIT's subdivide space using nested 'volumes'
- We used an R*-tree

Fast nearest neighbor query

- Given a point *p*, find its nearest neighbor
 - Brute force is slow if many many points
- Rough idea: prune search using the R*-tree.
 - Once you have found a point q at distance d from p, you can exclude all boxes at distance b>d...
 - ...because b is a lower bound of distances to points in the box

Example

- L-fuculose-1-phosphate aldolase (green, mirrored), myohemerythrine (yellow)
- Zn²⁺/Fe₂O binding sites