Modelaje de Sólidos

MSc. Juan Carlos Gutiérrez Cáceres

Email: jcgutierrezc@hotmail.com

Índice

- Introducción
- Técnica de modelaje de sólidos
 - wireframe
 - Instanciamiento positivo
 - CSG (Constructive Solid Geometry)
 - Descomposición Celular
 - Barredura
 - Octrees
 - Boundary Representation
 - Ejemplo
- Conclusiones

Modelos

- Representación construida artificialmente para tornar mas fácil la observación de un objeto
 - Nivel de detalle definido por las aplicaciones que utilizan
 - Problemas prácticos: modelos geométricos

Modelaje

- Modelaje Geométrica (M. G.): Sistema computacional que permite la creación, modificación y acceso a la representación de objetos a través de modelos geométricos
- Modelaje de Sólidos: Rama del M. G. que trata de crear y conectar información sobre la forma de los objetos sólidos

- Las superficies describen la frontera de los objetos 3D separan el interior de los objetos del medio externo
- Las represtaciones volumétricas describen la región espacial que contiene el objeto en un conjunto de pequeños sólidos adyacentes no sobrepuestos

Propiedades de un sólido (1)

- Rigidez: Forma invariante ante transformaciones
- Finitud: porción finita del espacio
- Homogeneidad: No tiene partes aisladas interior bien definido
- Determinismo de frontera: interior y exterior
- Finitud de descripción: descrito por un número finito de puntos
- Cerrado sobre operaciones: Continua siendo un objeto valido después de sufrir transformaciones geométricas.

Propiedades de un sólido(2)

- Validad: Representación de objetos sólidos validos
- Unicidad: un único modelo por sólido
- No ambiguo: una única representación por solidó
- Completitud: que permita operaciones sobre ella
- Conciso: usar poca memoria
- Simplicidad: ninguna característica en especial
- Eficiencia: Permite operar eficientemente y obtener respuestas rápidas
- Abertura: Debe ser posible expandir y mantener sus informaciones

Índice

- Introducción
- Técnica de modelaje de sólidos
 - wireframe
 - Instanciamiento positivo
 - CSG (Constructive Solid Geometry)
 - Descomposición Celular
 - Barredura
 - Octrees
 - Representación por frontera
 - Ejemplo
- Conclusiones

Representación a través de aristas

Problema: representa objetos ambiguos

 Representación de una variedad de objetos 3D

 Problema: Permite la representación de objetos inválidos

Instanciamiento de primitivas

- Parametrización de instancias
- Familias de obietos: esferas, engranes, etc.

Geometría sólida constructiva

- Definidos a través de componentes boléanos sobre objetos.
- Usuario puede tener un menú de primitivas
- El árbol binario define el objeto: las hojas representan las primitivas y los nodos internos la relación entre las primitivas

Geometría sólida constructiva

Geometría sólida constructiva

Descomposición celular

 Derivación o instanciamiento de primitivas

- Desplazamiento de un objeto a través de una travectoria
 - Traslación
 - Rotación

Barredura rotacional Translacional Barredura

- Barredura genéricas
 - Traslación o rotación a través de un camino cualquiera
- Problema: Permite modelaje de objetos inválidos
 - Cuando la generatriz se interseca consigo mismo
 - Desplazar la generatriz sobre su propio plano

Octrees

- Dividir para conquistar
 - Quadtree 4 cuadrantes
 - Vacío
 - Lleno
 - Parcialmente lleno
 - Indexación de la región de 0 a 3 regiones
 - Cada nodo tiene 4 campos asociados a cada uno de los cuadrantes
 - Cuadrante homogéneo
 - Cuadrante heterogéneo

Octrees

- Los espacios 3D son divididos en cubos
- Estructura volumétrica con información sobre el interior
- Indexación de la región es de 0 a 7
- Octante heterogéneo
- Octante homogéneo
- Voxel elemento individual del espacio
 3D

Representación por frontera (1)

 Superficies limitantes: Vértices + Aristas + Caras

- Sólidos de variedad simple:
 - Aristas son compartidas por dos caras
 - Las fronteras son superficies que pueden ser representadas matemáticamente

Representación por frontera (2)

- La representación de variedades simples es esencialmente bidimensional
- Operadores de Euler
 - Vértices V
 - Aristas E
 - Caras $\mathbf{V} + \mathbf{E} + \mathbf{F} = \mathbf{2}$

Representación por frontera (3)

- Geometría (ecuaciones de aristas planos) + topología (Conexión entre planos)
- Los operadores de Euler trabajan sobre la topología
- Toda representación por frontera valida para sólidos de variedad simple pueden ser construidos por una secuencia de operadores de Euler

Representación por frontera (4)

- Geometría exacta:
 - Las curvas los caras son representados por sus ecuaciones que las describen
- Geometría aproximada
 - Objetos curvos son representados por un conjunto de caras planares en ese caso la geometría es especificada por los vértices que definen la frontera

Representación por frontera (5)

- Problemas
 - No basta almacenar solo la estructura es necesaria una estructura eficiente para poder ser manipulada por algoritmos de rendering
 - Los modelos necesitan ser manipulados y alterados

Representación por frontera

Estructura común Half Edge

Operador	Significado	V	E	F	Н	R	S
MVFS	Make vertex, Face, Solid	+1	0	+1	0	0	+1
KVFS	Kill Vertex, Face, Solid	-1	0	-1	0	0	-1
MEV	Make Edge, Vertex	+1	+1	0	0	0	0
KEV	Kill Edge, Vertex	-1	-1	0	0	0	0
MEF	Make Edge, Face	0	+1	+1	0	0	0
KEF	Kill Edge, Face	0	-1	-1	0	0	0
MEKR	Make Edge, Kill Ring	0	+1	0	0	-1	0
KEMR	Kill Edge, Make Ring	0	-1	0	0	+1	0
MFKRH	Make Face, Kill Ring, Hole	0	0	+1	-1	-1	0
KFMRH	Kill Face, Make Ring, Hole	0	0	-1	+1	+1	0

MVSF
MEV
MEV
MEF
MEV
MEV
MEV
MEV
MEV
MEV
MEV
MEF
MEF

Representación por fronte (7) (1)

Representación por frontera (8)

- Propiedades
 - No ambigua
 - La utilización directa por el usuario es difícil
 - Tienes restricciones topológicas
 - La complejidad de los algoritmos es alta
 - Poco concisa

Índice

- Introducción
- Técnica de modelaje de sólidos
 - wireframe
 - Instanciamiento positivo
 - CSG (Constructive Solid Geometry)
 - Descomposición Celular
 - Barredura
 - Octrees
 - Representación por frontera
 - Ejemplo
- Conclusiones

Conclusiones

- No todas las técnicas mencionadas anteriormente garantizan un modelaje ideal
- Las técnicas anteriores poseen diferentes factores como
 - Consumo de memoria
 - Simplicidad de implementación
- La elección de un método ideal depende de factores como:
 - Naturaleza de la aplicación
 - Hardware disponible

Bibliografía

- Foley, James D. Computer Graphics,
 Principles and Practice. Addison-Wesley, 1990
- Hearn, D. e Baker, M. P. Computer Graphics.
 Prentice Hall, 1997
- Filho, Antonio Castelo Modelagem Geométrica: Representação e Manipulação de Objetos Geométricos Utilizando o Computador. ICMC-USP