Recurrent Neural Networks for Person Re-identification Revisited

Jean-Baptiste Boin
Stanford University
jbboin@stanford.edu

André Araujo
Google Al
andrearaujo@google.com

Bernd Girod
Stanford University
bgirod@stanford.edu

Person video re-identification

- Goal: associate person video tracks from different cameras
- Applications:
 - > Video surveillance
 - Home automation
 - Crowd dynamics understanding

Person video re-identification: challenges

Lighting variations

Viewpoint changes

Clothing similarity

Background clutter and occlusions

Framework: re-identification by retrieval

Related work

- Most common setup
 - Frame feature extraction: CNN
 - Sequence processing: RNN
 - Temporal pooling: mean pooling
 - [McLaughlin et al., 2016], [Yan et al., 2016], [Wu et al., 2016]

Stanford University

Related work

- Most common setup
 - Frame feature extraction: CNN
 - Sequence processing: RNN
 - Temporal pooling: mean pooling
 - [McLaughlin et al., 2016], [Yan et al., 2016],[Wu et al., 2016]
- Extensions
 - Bi-directional RNNs [Zhang et al., 2017]
 - Multi-scale + attention pooling [Xu et al., 2017]
 - > Fusion of CNN+RNN features [Chen et al., 2017]

See review paper [Zheng et al., 2016]

Outline

- Feed-forward RNN approximation with similar representational power
- New training protocol to leverage multiple video tracks within a mini-batch
- Experimental evaluation
- Conclusions

RNN setup

- $f^{(t)}$: inputs of sequence processing stage (frame descriptors)
- $o^{(t)}$: outputs of sequence processing stage

$$o^{(t)} = W_i f^{(t)} + W_s \tanh(o^{(t-1)})$$

• $v_s = \frac{1}{T} \sum_{t=1}^{T} o^{(t)}$: sequence feature (output of temporal pooling stage)

Proposed feed-forward approximation (1/2)

"Short-term dependency" approximation

Disregard terms from step (t-2) in output from step (t)

$$o^{(t)} = W_i f^{(t)} + W_s \tanh(o^{(t-1)})$$

$$\approx W_i f^{(t)} + W_s \tanh(W_i f^{(t-1)})$$

Proposed feed-forward approximation (2/2)

"Long sequence" approximation

$$v_s = \frac{1}{T} \sum_{t=1}^T o^{(t)}$$

Using approximation from previous slide

$$\approx \frac{1}{T} \sum_{t=1}^{T} \left(W_i f^{(t)} + W_s \tanh \left(W_i f^{(t-1)} \right) \right)$$

Disregard edge cases (first and last frame) since videos are long

$$= \frac{1}{T} \sum_{t=1}^{T} W_i f^{(t)} + \frac{1}{T} \sum_{t=0}^{T-1} W_s \tanh(W_i f^{(t)})$$

$$\approx \frac{1}{T} \sum_{t=1}^{T} \underbrace{\left(W_i f^{(t)} + W_s \tanh(W_i f^{(t)})\right)}_{\tilde{o}^{(t)}}$$

Stanford University

Proposed feed-forward approximation: new block

RNN Ours: FNN tanh tanh

- Same memory footprint
- Direct mapping between RNN and FNN parameters

Training pipeline

Training data

Training pipeline: RNN baseline

 SEQ: load sequences of consecutive frames in mini-batch

Proposed FNN training pipeline

- **FRM**: load independent frames
- Load images from many more identities in a mini-batch (same memory/computational cost)

Data and experimental protocol

- Dataset 1: PRID2011 [Hirzer et al., 2011]
 - > 200 identities, average length: 100 frames / track
- Dataset 2: iLIDS-VID [Wang et al., 2014]
 - → 300 identities, average length: 71 frames / track
- Data splits
 - Train/test set with half of the identities each
 - Performance averaged over 20 splits
- Evaluation metric: CMC (equivalent to mean accuracy at rank k)

Experiment: Influence of the recurrent connection

- Train weights on RNN-SEQ (RNN architecture, SEQ training protocol)
- Evaluate on RNN and FNN using the weights directly (<u>no re-training</u>)
- Same performance obtained

PRID2011 dataset

Experiment: Comparison with baseline

- FNN-FRM (ours) outperforms RNN-SEQ
- More diversity in mini-batches allows for a much better training

Comparison with baseline (comprehensive)

Our method outperforms the baseline for all ranks in both datasets

Dataset	PRID2011				iLIDS-VID			
Rank	1	5	10	20	1	5	10	20
RNN [12]	70	90	95	97	58	84	91	96
(reproduced)	71.6	92.8	96.6	98.5	57.1	83.4	91.8	97.1
FNN-SEQ (ours)	72.3	92.9	96.4	98.4	58.0	84.2	92.0	97.3
FNN-FRM (ours)	76.4	95.3	98.0	99.1	58.0	87.5	93.7	97.5

CMC values (in %)

Comparison with state-of-the-art RNN methods

 Our method is considerably simpler than the other state-of-the-art RNN methods compared but still achieves comparable performance results

Dataset	PRID2011				iLIDS-VID			
Rank	1	5	10	20	1	5	10	20
RNN [12]	70	90	95	97	58	84	91	96
(reproduced)	71.6	92.8	96.6	98.5	57.1	83.4	91.8	97.1
RFA-Net [18]	58.2	85.8	93.4	97.9	49.3	76.8	85.3	90.0
Deep RCN [15]	69.0	88.4	93.2	96.4	46.1	76.8	89.7	95.6
Zhou et al. [25]	79.4	94.4	1-	99.3	55.2	86.5	-	97.0
BRNN [20]	72.8	92.0	95.1	97.6	55.3	85.0	91.7	95.1
ASTPN [17]	77	95	99	99	62	86	94	98
Chen <i>et al</i> . [2]	77	93	95	98	61	85	94	97
FNN-FRM (ours)	76.4	95.3	98.0	99.1	58.0	87.5	93.7	97.5

Conclusions

- Simple feed-forward RNN approximation with similar representational power
- New training protocol to leverage multiple video sequences within a mini-batch
- Results significantly and consistently improved compared to baseline
- Results on par or better than other published work based on RNNs, with a much simpler technique
- Faster model training compared to RNN baseline

Questions?