

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局

(43)国際公開日
2002年5月10日 (10.05.2002)

PCT

(10)国際公開番号
WO 02/36583 A1

(51) 国際特許分類⁷: C07D 333/38, 333/54, 333/68, 333/62, 333/64, 333/76, 337/14, 307/68, 307/84, 307/85, 307/86, 307/91, 207/34, 209/42, 495/04, 209/42, 333/74, A61K 31/381, 31/38, 31/341

(21) 国際出願番号: PCT/JP01/09435

(22) 国際出願日: 2001年10月26日 (26.10.2001)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:
特願2000-334383 2000年11月1日 (01.11.2000) JP

(71) 出願人(米国を除く全ての指定国について): 塩野義製薬株式会社 (SHIONOGI & CO., LTD.) [JP/JP]; 〒541-0045 大阪府大阪市中央区道修町3丁目1番8号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 谷本憲彦 (TANIMOTO, Norihiko) [JP/JP]; 平松義春 (HIRAMATSU, Yoshiharu) [JP/JP]; 本摩恒利 (HONMA, Tsunetoshi) [JP/JP]; 稲垣雅尚 (INAGAKI, Masanao) [JP/JP]; 〒553-0002 大阪府大阪市福島区鶯洲5丁目12番4号 塩野義製薬株式会社内 Osaka (JP).

(74) 代理人: 山内秀晃, 外 (YAMAUCHI, Hideaki et al.); 〒553-0002 大阪府大阪市福島区鶯洲5丁目12番4号 塩野義製薬株式会社 知的財産部 Osaka (JP).

(81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, [競業有]

(54) Title: PGD₂ RECEPTOR ANTAGONISTIC PHARMACEUTICAL COMPOSITIONS

(54) 発明の名称: PGD₂受容体拮抗性医薬組成物

(57) Abstract: Compounds of the general formula (I) which are metabolically stable and exhibit PGD₂ receptor antagonism, wherein Y is a bicyclic ring; R¹ is optionally substituted heteroaryl; R² is hydrogen or the like; R³ is -CH₂-CH₂-CH₂-CH=CH-COOR⁴, -CH₂-CH₂-CH₂-CH₂-X¹-CH₂-COOR⁴, -CH₂-CH=CH-CH₂-X¹-CH₂-COOR⁴, or -CH₂-CH₂-CH₂-CH₂-COOR⁴; R⁴ is hydrogen or the like; and X¹ is -O- or the like.

(57) 要約:

代謝的に安定な PGD₂受容体拮抗活性を有する化合物として、式(I):

WO 02/36583 A1

(式中、Yはビシクロ環; R¹は置換されていてもよいヘテロアリール; R²は水素など; R³は-CH₂-CH₂-CH₂-CH₂-CH=CH-COO-R⁴、-CH₂-CH₂-CH₂-CH₂-X¹-CH₂-COO-R⁴、-CH₂-CH₂-CH₂-COO-R⁴または-CH₂-CH₂-CH₂-CH₂-COO-R⁴; R⁴は水素など; X¹は-O-など。)で示される化合物を見出した。

DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 國際調査報告書

(84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,

2 文字コード及び他の略語については、定期発行される各 PCT ガゼットの巻頭に掲載されている「コードと略語のガイドノート」を参照。

明細書

PGD₂受容体拮抗性医薬組成物

5 技術分野

本発明は、新規なビシクロ環系アミド誘導体、PGD₂受容体拮抗剤およびそれらを含有する医薬組成物に関する。

背景技術

10 PGD₂受容体拮抗剤としては、WO97/00853（1997年1月9日国際公開）に記載の式：

(式中、Yはビシクロ環；Rはフェニルなど)で示される化合物が挙げられる。

一方、Bioorganic & Medicinal Chemistry Letters, Vol.2, No.9, pp.1069-1072, 15 1992には、代謝的に安定な TXA₂/PGH₂受容体拮抗剤として、3-オキサ誘導体を合成した旨が記載されているが、該文献には化合物の活性値が記載されているにすぎず、代謝的に安定か否かは記載されていない。

(式中、Zはp-フルオロフェニル；Romegaはベンゼンスルホニルアミノなど)

20 また、PROSTAGLANDINS, 1986, 31, 95には、PGI₂ミメティックスである ILOPROSTを3-オキサ誘導体とすることで代謝的に安定となる旨記載されてい

る。しかし、ラットの代謝酵素存在下での各化合物の残存活性を比較しているに過ぎず、代謝的に安定か否かは記載されていない。

発明の開示

5 従来の PGD₂受容体拮抗剤 (WO97/00853) の α 鎖の構造修飾を行い、代謝的に安定な PGD2 受容体拮抗剤を見出し、本発明を完成した。

すなわち、本発明は、

(1) 式 (I) :

10 (式中、

は、

R¹は置換されていてもよいヘテロアリール；

15 R²は水素またはアルキル；

R³は $-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}=\text{CH}-\text{COOR}^4$ 、 $-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{X}^1-\text{CH}_2-\text{COOR}^4$ 、 $-\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2-\text{X}^1-\text{CH}_2-\text{COOR}^4$ または $-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{COOR}^4$ ；

R⁴は水素またはアルキル；

20 X¹は $-\text{O}-$ または $-\text{S}-$ である。) で示される化合物、そのプロドラッグもしく

はその製薬上許容される塩またはそれらの溶媒和物、

(2)

が、

5 または

である上記(1)記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物、

(3) R¹が置換されていてもよいチエニル、置換されていてもよいベンゾチエニル、置換されていてもよいフリル、置換されていてもよいベンゾフリル、置換されていてもよいピロリル、置換されていてもよいチエノピロリルまたは置換されていてもよいインドリルである上記(1)または(2)記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物、

(4) R¹が式: -Z¹-Z² (式中、Z¹は単結合、-O-、-S-、-NH-、-NH-C(=O)-、-NH-C(=O)-O-、-NH-SO₂-、-C(=O)-、-O-C(=O)-、-C(=O)-O-、-SO₂-、-CH₂-O-、-CH₂-NH-C(=O)-、-CH₂-NH-C(=O)-O-、-CH₂-NH-SO₂-または-CH₂-C(=O)-であり、Z²はアルキルまたは置換されていてもよいアミノである)で示される基、カルボキシ、ハロゲン、ヒドロキシまたはニトロで置換されていてもよいヘテロアリールである上記(1)または(2)記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物、

(5) R³が-CH₂-CH₂-CH₂-CH₂-CH=CH-COO R⁴、-CH₂-CH₂-CH₂-CH₂-X¹-CH₂-COOR⁴、-CH₂-CH=CH-

- C H₂ - X¹ - C H₂ - C O O R⁴ または - C H₂ - C H₂ - C H₂ - C H₂ - C O O R⁴ であり、R⁴ が水素であり、X¹ が - O - または - S - である上記 (1) ~ (4) のいずれかに記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物、

5 (6) R³ が - C H₂ - C H₂ - C H₂ - C H₂ - C H = C H - C O O R⁴ または - C H₂ - C H₂ - C H₂ - C H₂ - X¹ - C H₂ - C O O R⁴ であり、R⁴ が水素であり、X¹ が - O - または - S - である上記 (5) 記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物、

(7) 上記 (1) ~ (6) のいずれかに記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物を含有することを特徴とする医薬組成物、

(8) PGD₂受容体拮抗性である上記 (7) 記載の医薬組成物、

(9) 鼻閉治療用である上記 (7) 記載の医薬組成物、

(10) アレルギー性結膜炎治療用である上記 (7) 記載の医薬組成物、

15 (11) アレルギー性鼻炎治療用である上記 (7) 記載の医薬組成物、

(12) 上記 (7) 記載の医薬組成物を投与する鼻閉、アレルギー性結膜炎またはアレルギー性鼻炎の治療方法、

(13) 鼻閉、アレルギー性結膜炎またはアレルギー性鼻炎治療用薬剤を製造するための上記 (1) ~ (6) のいずれかに記載の化合物の使用、

20 に関する。

以下に本明細書で使用する用語を説明する。なお、本明細書中、各用語は、単独または他の用語と一緒にになって、統一した意味を有する。

「ヘテロアリール」とは、酸素原子、硫黄原子および/または窒素原子を環内25 に 1 個以上含む 5 ~ 7 員の芳香族ヘテロ環、またはそれらが 1 個以上の芳香族炭素環もしくは他の芳香族ヘテロ環と縮合している芳香環であって、置換可能な任意の位置に結合手を有する基を意味する。芳香族ヘテロ環または芳香族炭素環の

いずれに結合手を有していてもよい。

例えば、ピロリル（例えば、2-ピロリル、3-ピロリル）、ピリジル（例えば、2-ピリジル、3-ピリジル、4-ピリジル）、ピラゾリル（例えば、3-ピラゾリル、4-ピラゾリル）、イミダゾリル（例えば、2-イミダゾリル、4-イミダゾリル）、ピリミジニル（例えば、2-ピリミジニル、4-ピリミジニル、5-ピリミジニル）、ピラジニル（例えば、2-ピラジニル）、インドリル（例えば、2-インドリル、3-インドリル、4-インドリル、5-インドリル、6-インドリル、7-インドリル）、カルバゾリル（例えば、1-カルバゾリル、2-カルバゾリル、3-カルバゾリル、4-カルバゾリル）、ベンゾイミダゾリル（例えば、2-ベンゾイミダゾリル、4-ベンゾイミダゾリル、5-ベンゾイミダゾリル）、インダゾリル（例えば、3-インダゾリル、4-インダゾリル、5-インダゾリル、6-インダゾリル、7-インダゾリル）、キノリル（例えば、2-キノリル、3-キノリル、4-キノリル、5-キノリル、6-キノリル、7-キノリル、8-キノリル）、イソキノリル（例えば、1-イソキノリル、3-イソキノリル、4-イソキノリル、5-イソキノリル、6-イソキノリル、7-イソキノリル、8-イソキノリル）、フリル（例えば、2-フリル、3-フリル）、ベンゾフリル（例えば、2-ベンゾフリル、3-ベンゾフリル、4-ベンゾフリル、5-ベンゾフリル、6-ベンゾフリル、7-ベンゾフリル）、チエニル（例えば、2-チエニル、3-チエニル）、ベンゾチエニル（例えば、ベンゾ [b] チオフェン-2-イル、ベンゾ [b] チオフェン-3-イル、ベンゾ [b] チオフェン-4-イル、ベンゾ [b] チオフェン-5-イル、ベンゾ [b] チオフェン-6-イル、ベンゾ [b] チオフェン-7-イル）、ジベンゾチエニル（例えば、2-ジベンゾチエニル、3-ジベンゾチエニル）、ジベンゾフリル（例えば、2-ジベンゾフリル、3-ジベンゾフリル）、ナフトチエニル（例えば、ナフト [2, 3-b] チオフェン-2-イル、ナフト [2, 3-b] チオフェン-3-イル、ナフト [1, 2-b] チオフェン-2-イル、ナフト [1, 2-b] チオフェン-3-イル）、オキサゾリル（例えば、2-オキサゾリル、4-オキサゾリル、5-オキサゾリ

ル)、イソキサゾリル(例えば、3-イソキサゾリル、4-イソキサゾリル、5-イソキサゾリル)、チアゾリル(例えば、2-チアゾリル、4-チアゾリル、5-チアゾリル)、イソチアゾリル(例えば、3-イソチアゾリル、4-イソチアゾリル、5-イソチアゾリル)、イミダゾチアゾリル(例えば、イミダゾ[2,5-1-b]チアゾール-2-イル、イミダゾ[2,1-b]チアゾール-3-イル)、ベンゾイソキサゾリル(例えば、ベンゾ[d]イソキサゾール-3-イル)、ベンゾチアゾリル(例えば、ベンゾ[d]チアゾール-2-イル)、チエノピロリル(例えば、チエノ[2,3-b]ピロール-2-イル、チエノ[2,3-b]ピロール-3-イル、チエノ[2,3-b]ピロール-5-イル、チエノ[2,3-b]ピロール-2-イル、チエノ[2,3-b]ピロール-2-イル、チエノ[3,2-b]ピロール-3-イル、チエノ[3,2-b]ピロール-5-イル)等が挙げられる。

特に、チエニル、ベンゾチエニル、フリル、ベンゾフリル、ピロリル、インドリルが好ましい。

15

上記「ヘテロアリール」に縮合していてもよい「芳香族炭素環もしくは他の芳香族ヘテロ環」とは、酸素原子、硫黄原子および/または窒素原子を環内に1個以上含んでいてもよい5~7員の芳香環、またはそれらが2以上縮合している芳香環を意味する。

20

上記「ヘテロアリール」は、4員~7員のシクロアルカン、または4員~7員の非芳香族ヘテロ環が縮合していてもよい。シクロアルカンとしては、シクロブタン、シクロベンタン、シクロヘキサン、シクロヘプタンが挙げられる。非芳香族ヘテロ環としては、ピロリジン、ピペラジン、オキソラン、1,3-ジオキソラン、1,4-ジオキサン、チオラン等が挙げられる。これらシクロアルカンおよび非芳香族ヘテロ環には、さらに芳香族炭素環(例えば、ベンゼン)または芳香族ヘテロ環(例えば、チオフェン、フラン)が縮合していてもよい。4員~7

員のシクロアルカンまたは4員～7員の非芳香族ヘテロ環が縮合しているヘテロアリールとしては、例えば、以下の基が挙げられる。

5

「置換されていてもよいヘテロアリール」における置換基としては、式： $-Z^1 - Z^2$ （式中、 Z^1 は単結合、 $-O-$ 、 $-S-$ 、 $-NH-$ 、 $-NH-C(=O)-$ 、 $-NH-C(=O)-O-$ 、 $-NH-SO_2-$ 、 $-C(=O)-$ 、 $-O-C(=O)-$ 、 $-C(=O)-O-$ 、 $-SO_2-$ 、 $-CH_2-O-$ 、 $-CH_2-NH-C(=O)-O-$ 、 $-CH_2-NH-SO_2-$ または $-CH_2-C(=O)-$ であり、 Z^2 はアルキル、ハロアルキル、アルケニル、アルキニルまたは置換されていてもよいアミノである）で示される基、カルボキシ、ハロゲン（F、Cl、Br、I）、ヒドロキシアルキル、ヒドロキシ、ニトロ、シアノ、メルカブト、チオホルミル、チオアセチル、チオカルボキシ、ジチオカルボキシ、チオカルバモイル、スルフィノ、スルフオ、スルホアミノから選ばれる基などが挙げられる。特に、式： $-Z^1 - Z^2$ （式中、 Z^1 は単結合、 $-O-$ 、 $-S-$ 、 $-NH-$ 、 $-NH-C(=O)-$ 、 $-NH-C(=O)-O-$ 、 $-NH-SO_2-$ 、 $-C(=O)-$ 、 $-O-C(=O)-$ 、 $-C(=O)-O-$ 、 $-SO$

$_2^-$ 、 $-CH_2-O-$ 、 $-CH_2-NH-C(=O)-$ 、 $-CH_2-NH-C(=O)$
 $-O-$ 、 $-CH_2-NH-SO_2-$ または $-CH_2-C(=O)-$ であり、 Z^2 はアルキルまたは置換されていてもよいアミノである)で示される基、カルボキシ、
5 ハロゲン、ヒドロキシまたはニトロが好ましく、さらには、式： $-Z^1-Z^2$ (式中、 Z^1 は単結合、 $-O-$ 、 $-NH-C(=O)-$ または $-C(=O)-$ であり、 Z^2 はアルキルまたは置換されていてもよいアミノである)で示される基、ハロゲンまたはヒドロキシが好ましい。それらの置換基は、上記ヘテロアリール上の置換可能な任意の1～3個の位置にて置換することができる。

10 「アルキル」とは、直鎖状もしくは分枝鎖状のC1～C8のアルキルまたはC3～C8の環状アルキルを意味する。例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、n-ペンチル、イソペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル等が挙げられる。好ましくは、
15 直鎖状もしくは分枝鎖状のC1～C3のアルキルである。

「ハロアルキル」とは、1～3個のハロゲンが置換した上記アルキルを意味する。好ましくは、直鎖状もしくは分枝鎖状のC1～C3のハロアルキルであり、例えば、トリフルオロメチル、2,2,2-トリフルオロエチル等が挙げられる。

「アルケニル」とは、1～3個の二重結合を有する上記アルキルを意味する。
20 好ましくは、直鎖状もしくは分枝鎖状のC2～C3のアルケニルであり、例えば、ビニル、アリル、1-プロペニル、イソプロペニル等が挙げられる。

「アルキニル」とは、1～3個の三重結合を有する上記アルキルを意味する。好ましくは、直鎖状のC2～C3のアルケニルであり、例えば、エチニル等が挙げられる。

25 「置換されていてもよいアミノ」の置換基としては、アルキル、アルキルオキシ、アルキルスルホニル、ヒドロキシ等が挙げられる。これらの置換基でモノまたはジ置換されていてもよい。

「ヒドロキシアルキル」とは、1～3個のヒドロキシが置換した上記アルキルを意味する。好ましくは、直鎖状もしくは分枝鎖状のC1～C3のヒドロキシアルキルであり、例えば、ヒドロキシメチル、2-ヒドロキシエチル、1-ヒドロキシアチル等が挙げられる。

5 「ハロゲン」とは、フッ素、塩素、臭素、ヨウ素を意味する。

本発明化合物は、下記に示される[2.2.1]および[3.1.1]ビシクロ骨格を有する。

10 なお、[2.2.1]および[3.1.1]ビシクロ骨格に関して以下の立体異性体が存在し得る。

5 これらの化合物の中で、式：

で示される骨格を有する化合物が好ましい。

本発明はこれら個々の立体異性体を包含し、またそれらの任意の混合物をも包

含する。即ち、本発明ではビシクロ環に結合する結合手は R 配置または S 配置のいずれでもよく、その全ての立体異性体（ジアステレオマー、エピマー、エナンチオマー等）、ラセミ体またはそれらの個々の化合物の任意の混合物を包含する。

さらに、本発明化合物には α 鎖に関して Z 配置および E 配置が存在し得るが、

5 本発明はいずれかの配置を有する化合物、あるいはその両者の混合物を包含する。

また、本発明化合物の α 鎖 (R^3) としては、 $-CH_2-CH_2-CH_2-CH_2$ 、 $-CH=CH-COOR^4$ 、 $-CH_2-CH_2-CH_2-CH_2-X^1-CH_2-CO$ OR^4 、 $-CH_2-CH=CH-CH_2-X^1-CH_2-COOR^4$ または $-CH_2$ $10 -CH_2-CH_2-CH_2-COOR^4$ (R^4 は水素またはアルキル; X^1 は $-O-$ または $-S-$ である。) が挙げられる。特に、 $-CH_2-CH_2-CH_2-CH_2$ 、 $-CH=CH-COOR^4$ 、 $-CH_2-CH_2-CH_2-CH_2-X^1-CH_2-CO$ OR^4 、 $-CH_2-CH=CH-CH_2-X^1-CH_2-COOR^4$ または $-CH_2$ $15 -CH_2-CH_2-CH_2-COOR^4$ (R^4 が水素; X^1 が $-O-$ または $-S-$ である。) が好ましい。さらには、 $-CH_2-CH_2-CH_2-CH_2-CH=CH-COOR^4$ または $-CH_2-CH_2-CH_2-CH_2-X^1-CH_2-COOR^4$ (R^4 が水素; X^1 が $-O-$ または $-S-$ である。) が好ましい。

20 本発明には、式 (I) で示される化合物のみならず、そのプロドラッグ、その製薬上許容される塩、それらの溶媒和物も包含される。

式 (I) で示される化合物のプロドラッグとしては、化学的または代謝的に分解できる基を有する本発明に関する化合物の誘導体を意味し、加溶媒分解によりまたは生理学的条件下でインビボにおいて薬学的に活性な本発明に関する化合物となる化合物である。適当なプロドラッグ誘導体を選択する方法および製造する方法は、例えば Design of Prodrugs, Elsevier, Amsterdam 1985 に記載されている。

式（I）で示される化合物がカルボキシル基を有する場合は、もとになる酸性化合物と適当なアルコールを反応させることによって製造されるエステル誘導体、またはもとになる酸性化合物と適当なアミンを反応させることによって製造されるアミド誘導体のようなプロドラッグが例示される。プロドラッグとして特に好みしいエステル誘導体としては、置換されていてもよいアルキルエステル誘導体（例えば、メチルエステル、エチルエステル、n-プロピルエステル、イソプロピルエステル、n-ブチルエステル、イソブチルエステル、tert-ブチルエステル、モルホリノエチルエステル等）、アリールアルキルエステル誘導体（例えば、ベンジルエステル、フェネチルエステル、ベンズヒドリルエステル等）等が挙げられる。アミド誘導体としては、アルキルアミド誘導体（N-メチルアミド、N-エチルアミド、N-(n-プロピル)アミド、N-イソプロピルアミド、N-(n-ブチル)アミド、N-イソブチルアミド、N-(tert-ブチル)アミド等）、アリールアルキルアミド誘導体（例えば、N-ベンジルアミド、N-フェネチルアミド、ベンズヒドリルアミド等）等が挙げられる。

式（I）で示される化合物がヒドロキシル基を有する場合は、例えばヒドロキシル基を有する化合物と適当なアシルハライドまたは適当な酸無水物とを反応させることに製造されるアシルオキシ誘導体のようなプロドラッグが例示される。プロドラッグとして特に好みしいアシルオキシ誘導体としては、置換されていてもよいアルキルカルボニルオキシ（例えば、 $-OOCOC_2H_5$ 、 $-OCO(tert-Bu)$ 、 $-OCOC_{15}H_{31}$ 、 $-OCOCH_2CH_2COONa$ 、 $-OCOCH(NH_2)CH_3$ 、 $-OCOCH_2N(CH_3)_2$ ）、置換されていてもよいアリールカルボニルオキシ（例えば、 $-OCO(m-COOONa-Ph)$ 等）等で置換されている誘導体等が挙げられる。

式（I）で示される化合物がアミノ基を有する場合は、アミノ基を有する化合物と適当な酸ハロゲン化物または適当な混合酸無水物とを反応させることにより製造されるアミド誘導体のようなプロドラッグが例示される。プロドラッグとして特に好みしいアミド誘導体としては、置換されていてもよいアルキルカルボニ

ル（例えば、 $-NHCO(CH_2)_{20}CH_3$ 、 $-NHCOCH(NH_2)CH_3$ 等）等で置換されている誘導体等が挙げられる。

式（I）で示される化合物またはそのプロドラッグの塩としては、アルカリ金属塩（例えば、リチウム塩、ナトリウム塩もしくはカリウム塩等）、アルカリ土類金属塩（例えば、カルシウム塩等）、有機塩基（例えば、トロメタミン、トリメチルアミン、トリエチルアミン、2-アミノブタン、tert-ブチルアミン、ジイソプロピルエチルアミン、n-ブチルメチルアミン、シクロヘキシリルアミン、ジシクロヘキシリルアミン、N-イソプロピルシクロヘキシリルアミン、フルフリルアミン、ベンジルアミン、メチルベンジルアミン、ジベンジルアミン、N, N-ジメチルベンジルアミン、2-クロロベンジルアミン、4-メトキシベンジルアミン、1-ナフチレンメチルアミン、ジフェニルベンジルアミン、トリフェニルアミン、1-ナフチルアミン、1-アミノアントラセン、2-アミノアントラセン、デヒドロアビエチルアミン、N-メチルモリホリンもしくはビリジン）との塩、またはアミノ酸塩（例えば、リジン塩もしくはアルギニン塩等）を挙げることができる。

溶媒和物とは、式（I）で示される化合物、そのプロドラッグ、その製薬上許容される塩の有機溶媒との溶媒和物および水和物などを意味し、例えば、1水和物、2水和物等を挙げることができる。

「PGD₂受容体拮抗性である医薬組成物」とは、PGD₂受容体拮抗作用を有する式（I）で示される化合物を少なくとも1つ含有する医薬組成物を意味する。式（I）で示される化合物以外に、他の活性成分（例えば、他の抗炎症剤、他の抗アレルギー剤など）、医薬品添加物（例えば、結合剤、賦形剤など）を含有していてもよい。

PGD₂受容体拮抗剤は、WO97/00853およびWO98/25919に記載されているように、PGD₂の生産過多に起因する症状の改善、詳しくは、肥満細胞機能不全が関与する疾患、例えば全身性肥満細胞症及び全身性肥満細胞活性化障害の治療剤、

具体的には、鼻閉治療剤、アレルギー性結膜炎治療剤、アレルギー性鼻炎治療剤、抗気管収縮剤、抗喘息剤、抗蕁麻疹剤、虚血再灌流傷害治療薬、抗炎症剤、アトピー性皮膚炎として有用である。

5 なお、本発明には、式(I)で示される化合物を投与する PGD₂ の生産過多に起因する症状（例えば、鼻閉、アレルギー性結膜炎、アレルギー性鼻炎など）の治療方法が包含される。また、本発明には、PGD₂ の生産過多に起因する症状（例えば、鼻閉、アレルギー性結膜炎、アレルギー性鼻炎など）の治療用薬剤を製造するための式(I)で示される化合物の使用も包含される。

10

発明を実施するための最良の形態

本発明化合物である式(I)で示される化合物は以下のように製造することができる。

15 (式中、

は、

R¹は置換されていてもよいヘテロアリール；

R²は水素またはアルキル；

20 R³は-CH₂-CH₂-CH₂-CH₂-CH=CH-COO R⁴、-CH₂-CH₂-CH₂-CH₂-X¹-CH₂-COOR⁴、-CH₂-CH=CH-CH₂-X

$^1 - \text{C H}_2 - \text{C O O R}^4$ または $- \text{C H}_2 - \text{C H}_2 - \text{C H}_2 - \text{C H}_2 - \text{C O O R}^4$;

R^4 は水素またはアルキル；

X^1 は $- \text{O} -$ または $- \text{S} -$ である。)

5 式(I)で示される化合物は上記の反応式に示されるように、式(M-1)で示されるアミノ化合物に式(M-2)で示されるカルボン酸またはその反応性誘導体を反応させることにより製造することができる。

式(M-2)で示されるカルボン酸の反応性誘導体とは、対応する酸ハロゲン化物（例えば、塩化物、臭化物、沃化物）、酸無水物（例えば、堿酸、酢酸もしくはトリフルオロ酢酸との混合酸無水物）、活性エステル（例えば、*N*-ヒドロキシスクシンイミドエステル）などを意味し、通常アミノ基のアシル化に使用するアシル化剤を包含する。

10 例え、酸ハロゲン化物とするときは、ハロゲン化チオニル（例えば、塩化チオニル）、ハロゲン化リン（例えば、三塩化リン、五塩化リン、塩化ホスホリル）、ハロゲン化オギザリル（例えば、塩化オギザリル）等と公知の方法にしたがって反応されればよい。

反応は通常のアミノ基のアシル化反応の条件にしたがって行えばよく、例え、酸ハロゲン化物による縮合反応の場合、溶媒としてエーテル系溶媒（例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン）、ベンゼン系溶媒（例えば、ベンゼン、トルエン、キシレン）、ハロゲン化炭化水素系溶媒（例えば、ジクロロメタン、ジクロロエタン、クロロホルム）、その他、酢酸エチル、*N*、*N*-ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどを使用し、必要であれば塩基（例え、トリエチルアミン、ビリジン、4-ジメチルアミノビリジン、*N*-メチルモルホリンなどの有機塩基、あるいは水酸化ナトリウム、水酸化カリウム、炭酸カリウムなどの無機塩基）の存在下、冷却下ないし室温あるいは加熱下、好ましくは-20°Cないし氷冷下あるいは室温ないし反応系の加熱還流温度で、数分ないし数10時間、好ましくは0.5時間ないし24時間、よ

り好ましくは1時間ないし12時間実施すればよい。

また、R⁴がアルキルの場合にはカルボン酸(M-2)を反応性誘導体とはせずに、遊離のまま使用する事も可能であり、アミンとカルボン酸の縮合反応に使用する縮合剤(例えば、ジシクロヘキシリカルボジイミド(DCC)、1-エチル-3-5(3-ジメチルアミノプロビル)カルボジイミド、N,N'-カルボニルジイミダゾール等)の存在下に反応させててもよい。

式(M-2)で示される化合物の「置換されていてもよいアリール」または「置換されていてもよいヘテロアリール」の置換基として、例えばヒドロキシ基、アミノ基が置換している場合は、常法にしたがってアセチル基等で保護して反応させればよい。

他の反応性誘導体あるいは遊離の酸(M-2)とアミン(M-1)との反応においても、各反応性誘導体あるいは遊離酸の性質に応じて、公知の方法に従い、反応条件を定めればよい。反応生成物は通常の精製法、例えば、溶媒抽出、クロマトグラフィー、再結晶法などにより、精製することができる。

(式中、Qはアミノ基の保護基； R^2 、 X^1 および R^4 は前記と同意義。)

上記の式(M-1)で示される化合物は、式(M-3a)あるいは式(M-3b)で表わされるアルデヒド誘導体(Qは、ベンジルオキシカルボニルあるいは α -ブトキシカルボニル等の一般的に用いられるアミノ基の保護基)に、適宜他の化学反応を組み合わせながら、各種イリド化合物をウィッティッヒ(Wittig)反応(オーガニック・リアクション、1965、14、270)の条件にしたがって一回ないし数回反応させることにより製造することができる。

例えばアルデヒド(M-3a)に、WO 97 40 104に記載された公知化合物である6-ブロモ-3-オキサヘキサン酸から得られるホスホニウム塩を、公知のウィッティッヒ反応条件にしたがって反応させると化合物(M-4)が得られ、さらにパラジウム、白金等の触媒存在下、水素添加を行なうと、 R^3 が $-\text{CH}_2\text{CH}_2\text{CH}_2\text{OCH}_2\text{COOR}^4$ である原料化合物(M-1a、 $\text{X}^1=\text{O}$)が得られる。また、メトキシメチルトリフェニルホスホニウム塩を用いたウィッ

ティッヒ反応後、塩酸、堿あるいは酢酸等による加水分解を行つて合成することも可能なアルデヒド（M-3 b）に対し、（トリフェニルホスホラニリデン）酢酸メチル等の安定イリドとのウイッティッヒ反応を行なうか、あるいはジメチルホスホノ酢酸メチル等を用いたホーナー・エモンズ（Horn er - Emmons）反応を行なつて一般式（M-5）で表わされる $\alpha\beta$ -不飽和カルボン酸誘導体へ誘導し、アルコール誘導体（M-6 a、X¹=O）に還元後、塩基存在下、ハロゲン化酢酸もしくはそのエステル誘導体を公知の方法にしたがつて反応させればR³が-CH₂CH=CHCH₂OCH₂COOR⁴である原料化合物（M-1 b、X¹=O）が得られる。さらにアルコール誘導体（M-6 a、X¹=O）を公知の方法によってチオール誘導体（X¹=S）に変換後、上記と同様にハロゲン化酢酸誘導体と反応させればR³が-CH₂CH=CHCH₂SCH₂COOR⁴である原料化合物（M-1 b、X¹=S）が得られる。また、アルコール誘導体（M-6 a、X¹=O）を公知の方法にしたがつて対応するハロゲン化物に変換し、塩基存在下、グリコール酸もしくはチオグリコール酸誘導体と反応させてもよい。

R³中の二重結合はいずれかの適当な段階においてパラジウム、白金等の触媒存在下、水素添加による還元が可能であり、対応する飽和体（M-1 a、X¹=OもしくはS）を容易に得ることができる。

アルデヒド（M-3 b）から、2-(1,3-ジオキソラン-2-イル)エチルトリフェニルホスホニウム塩を用いたウイッティッヒ反応で一般式（M-7）で表わされる化合物へ誘導し、上記と同様に水素添加、アセタールの酸加水分解でアルデヒド（M-3 c）とした後、（トリフェニルホスホラニリデン）酢酸メチル等の安定イリドとのウイッティッヒ反応を行なうか、あるいはジメチルホスホノ酢酸メチル等を用いたホーナー・エモンズ（Horn er - Emmons）反応を行なつてR³が-CH₂CH₂CH₂CH₂CH=CHCOOR⁴に相当する原料化合物（M-1 c）に変換する事が可能である。

原料カルボン酸（M-2）とのアミド化は、必要に応じて目的とする α 鎖への変換途中の段階でアミノ基の保護基Qを脱保護し、行なうことも可能である。

「置換されていてもよいアリール」または「置換されていてもよいヘテロアリール」上に置換基を導入する場合は、カルボン酸またはその反応性誘導体（M-2）とアミン（M-1）との反応前または反応後に、官能基変換を行えばよい。

5 例えば、混酸等を用いてニトロ化を行い、ニトロ基で置換された芳香族ヘテロ環化合物を得ることができる。さらに、塩酸中、すず等を用いて還元することによって、アミノ基で置換された芳香族ヘテロ環化合物を得ることができる。さらに、ジアゾ化を行い、アルカリ加水分解を行うことにより、ヒドロキシ基で置換された芳香族ヘテロ環化合物を得ることができる。また、ジアゾ体にアルコールを反応させることにより、アルコキシ基で置換された芳香族ヘテロ環化合物を得ることができる。また、サンドマイヤー反応、すなわち、ジアゾ体に第一銅塩（CuCl₂、CuBr₂等）を反応させることにより、ハロゲンに置換された芳香族ヘテロ環化合物を得ることができる。また、ハロゲンに置換された芳香族ヘテロ環化合物は、芳香族ヘテロ環化合物に直接塩素等を反応することによっても得ることができる。これら的方法を使い分けることにより、ハロゲンを所望の位置に導入することができる。アルキル、アルケニル、アシルは、無水塩化アルミニウム等とアルキル化剤、アルケニル化剤、アシル化剤を用いて、フリーデルクラフツ反応により、直接芳香族ヘテロ環に導入することができる。

20 式（I）で示される化合物を治療に用いるには、通常の経口または非経口投与用の製剤として製剤化する。本発明に関する化合物を含有する医薬組成物は、経口および非経口投与のための剤形をとることができる。即ち、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤などの経口投与製剤、あるいは、静脈注射、筋肉注射、皮下注射などの注射用溶液または懸濁液、吸入薬、点鼻薬、坐剤、点眼剤もしくは軟膏剤などの経皮投与用製剤などの非経口製剤とすることもできる。

これらの製剤は当業者既知の適当な担体、賦形剤、溶媒、基剤等を用いて製造することができる。例えば、錠剤の場合、活性成分と補助成分と一緒に圧縮また

は成型する。補助成分としては、製剤的に許容される賦形剤、例えば結合剤（例、トウモロコシでん粉）、充填剤（例、ラクトース、微結晶性セルロース）、崩壊剤（例、でん粉グリコール酸ナトリウム）または滑沢剤（例、ステアリン酸マグネシウム）などが用いられる。錠剤は、適宜、コーティングしてもよい。シロップ剤、液剤、懸濁剤などの液体製剤の場合、例えば、懸濁化剤（例、メチルセルロース）、乳化剤（例、レシチン）、保存剤などを用いる。注射用製剤の場合、溶液、懸濁液または油性もしくは水性乳濁液の形態のいずれでもよく、これらは懸濁安定剤または分散剤などを含有していてもよい。吸入剤として使用する場合は吸入器に適応可能な液剤として用いる。

10

特に鼻閉症治療のための点鼻薬として用いる場合、通常の製剤化の方法にしたがって、液剤、懸濁化剤として用いるか、あるいは粉末化剤（例、ヒドロキシプロピルセルロース、カーボボール）等を加え、粉末剤として鼻孔に加える。あるいは、低沸点の溶媒とともに特殊な容器に充填し、噴射剤として用いることができる。

また、アレルギー性結膜炎治療のための点眼薬として用いる場合、本発明化合物を溶液または懸濁液として使用してもいいし、用時溶解または用時懸濁して使用してもよい。また、安定剤、溶解補助剤、懸濁化剤、乳化剤、緩衝液、保存剤等を含有していてもよい。また、点眼薬として使用する場合、特に無菌処理しておくことが好ましい。

本発明に関する化合物の投与量は、投与形態、患者の症状、年令、体重、性別、あるいは併用される薬物（あるとすれば）などにより異なり、最終的には医師の判断に委ねられるが、経口投与の場合、体重1kgあたり、1日0.01～100mg、好ましくは0.01～10mg、より好ましくは0.01～1mg、非経口投与の場合、体重1kgあたり、1日0.001～100mg、好ましくは0.001～1mg、より好ましくは0.001～0.1mgを投与する。これを1～4回に分割して投与すればよい。

実施例

以下に実施例を挙げて本発明を詳しく説明するが、これらは単なる例示であり、本発明はこれらに限定されるものではない。

5

実施例 1 化合物 (Ic-4) の合成

第 1 工程

化合物 (1) (10. 11 g, 39. 9 mmol) のトルエン (100 ml) 溶液に、(トリフェニルホスホラニリデン) 酢酸メチル (14. 68 g, 43. 9 mmol) を加え、室温で 17 時間攪拌した。ヘキサン (100 ml) を加え、生成する不溶物をろ過した後、濾液を濃縮して 16. 56 g の残渣を得た。このうち 16. 12 g を THF (160 ml) に溶解し、2 N 水酸化リチウム溶液 (4 0 ml) を加え、60 °C で 5 時間加熱した。THF を減圧留去後、水 (100 ml) で希釈し、トルエンで 2 回洗浄、水層を塩酸で酸性 (pH = 1) とし、酢酸エチルで抽出した。抽出液を水、飽和食塩水で洗浄、乾燥、濃縮し、得られた残渣のメタノール (100 ml) 溶液に、10% パラジウム-炭素 (360 mg) を加え、水素雰囲気下、3 時間攪拌した。反応液をろ過、濃縮し、THF (120 ml) に溶解した。氷冷下トリエチルアミン (6. 2 ml, 44. 5 mmol)、クロロキ酸エチル (4. 3 ml, 44. 5 mmol) を加え、氷冷下、30 分間攪拌した。不溶の塩をろ過し、濾液に水素化ホウ素ナトリウム (3. 06 g, 8

0. 9 mmol) を加えた後、メタノール (40 ml) を 30 分間かけて滴下した。滴下後さらに 30 分間攪拌した後、反応液を水で希釈、酢酸エチルで抽出した。抽出液を水、飽和食塩水で順次洗浄、乾燥し、残渣をヘキサン-酢酸エチル (90 : 10) から結晶化して化合物 (2) (8.77 g; 収率 80%) を得た。

5 融点 90 - 92 °C。

第 2 工程

化合物 (2) (1.68 g, 5.94 mmol) のトルエン (17 ml) 溶液に、プロモ酢酸 *t*-ブチル (1.32 ml, 68.91 mmol)、硫酸水素テトラブチルアンモニウム (201 mg, 0.6 mmol)、50% 水酸化ナトリウム (1.7 ml) を加え、室温で 22 時間激しく攪拌した。トルエン層を分離し水、飽和食塩水で順次洗浄後、乾燥、濃縮し、残渣をシリカゲルクロマトグラフィー (ヘキサン-酢酸エチル、7 : 1) で精製し、化合物 (3) (1.60 g; 収率 68%) を得た。

15

第 3 工程

化合物 (3) (10.42 g, 26.2 mmol) のメタノール (50 ml) 溶液に、4 N 塩酸-ジオキサン溶液 (65.5 ml, 262 mmol) を加え、室温で 5 時間攪拌した。反応液を減圧濃縮して得られる結晶性残渣をヘキサン-エーテルで洗浄し、化合物 (4) (6.88 g; 収率 90%) を得た。

第 4 工程

化合物 (4) (642 mg, 2.20 mmol) の THF (8 ml) 溶液に、チオフェン-3-カルボン酸 (256 mg, 2.00 mmol)、1-ヒドロキシベンゾトリアゾール (27 mg, 0.20 mmol)、トリエチルアミン (0.34 ml, 2.40 mmol) を加え、さらに氷冷下 3-エチル-3-(3-ジメチルアミノプロピル) カルボジイミド (370 mg, 2.40 mmol) を加

えた。反応混合物を室温で 16 時間攪拌した後、酢酸エチルで希釈し、希塩酸、炭酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー（トルエン-酢酸エチル、3 : 1）で精製し、化合物（5）（6 27 mg；収率 86%）を得た。融点 68-70°C。

5

第 5 工程

化合物（5）（620 mg、1.70 mmol）のメタノール（2 ml）-THF（1 ml）溶液に、4 N 水酸化ナトリウム水溶液（1.0 ml、4.0 mmol）を加え、室温で 16 時間攪拌した。反応液に 2 N 塩酸を加え酸性とした後、10 酢酸エチルで抽出し、抽出液を水、飽和食塩水で順次洗浄した。乾燥、濃縮後、残渣をメタノール-水（5 : 7）から結晶化し、化合物（Ic-4）（461 mg；収率 77%）を得た。融点 104-105°C。

実施例 2 化合物（Ie-34）の合成

15

第 1 工程

化合物（2）（2.28 g、8.05 mmol）のジクロロメタン（20 ml）溶液に、氷冷下トリフェニルホスфин（2.32 g、8.85 mmol）と N-ブロモスクシンイミド（1.58 g、8.85 mmol）を加え、同温度でさらに 1 時間攪拌した。反応混合物をトルエンで希釈し、水、飽和食塩水で順次洗浄、乾燥した。濃縮後、残渣をシリカゲルクロマトグラフィー（ヘキサン-酢酸

エチル、9 : 1) で精製し、化合物(6) (2.70 g; 収率97%)を得た。

第2工程

ナトリウムメトキシド(842 mg, 15.6 mmol)のメタノール(20 ml)溶液に、チオグリコール酸メチル(1.40 ml, 15.6 mmol)を加え、室温で15分間攪拌した。化合物(6)(2.70 g, 7.80 mmol)のTHF(20 ml)溶液を加え、15時間攪拌した後、反応液を酢酸エチルで希釈し、水、飽和食塩水で順次洗浄、乾燥した。濃縮後、残渣をシリカゲルクロマトグラフィー(ヘキサン-酢酸エチル、78:22)で精製し、化合物(7)(2.84 g; 収率98%)を得た。

第3工程

化合物(7)(2.84 g, 7.64 mmol)に4N塩酸-酢酸エチル溶液(15 ml)を加え、室温で2時間攪拌した。反応液を減圧濃縮して得られる残渣をヘキサン-エーテルから結晶化し、化合物(8)(2.16 g; 収率92%)を得た。

第4工程

化合物(8)(246 mg, 0.80 mmol)のTHF(6 ml)溶液に、ベンゾチオフェン-7-カルボン酸(150 mg, 0.80 mmol)、1-ヒドロキシベンゾトリアゾール(11 mg, 0.08 mmol), トリエチルアミン(0.12 ml, 0.96 mmol)を加え、さらに氷冷下1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(149 mg, 0.96 mmol)を加えた。反応混合物を室温で16時間攪拌した後、酢酸エチルで希釈し、希塩酸、炭酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン-酢酸エチル、3:1)で精製し、化合物(9)(324 mg; 収率94%)を得た。

第5工程

化合物(9) (315 mg、0.73 mmol)のTHF (3.6 ml)-メタノール(7.3 ml)溶液に、1N水酸化ナトリウム水溶液(1.82 ml、5.1.82 mmol)を加え、室温で48時間攪拌した。反応液に2N塩酸を加え酸性とした後、酢酸エチルで抽出し、抽出液を水、飽和食塩水で順次洗浄し、化合物(Ie-34) (301 mg; 収率99%)を得た。

実施例3 化合物(IId-28)の合成

10

第1工程

ビス(2,2,2-トリフルオロエチル)ホスホノ酢酸メチル(3.0 ml、14.3 mmol)と18-クラウン-6(5.64 g、21.3 mmol)のTHF(100 ml)溶液を-55°Cに冷却し、ビス(トリメチルシリル)アミドカリウム(0.5 Mトルエン溶液、28.5 ml、14.3 mmol)を滴下し、さらに15分攪拌した。化合物(10)(2.0 g、7.11 mmol)のTHF(20 ml)溶液を15分かけて滴下し、同温度でさらに1時間攪拌した。0°Cまで昇温した後、反応混合物を水で希釈し、酢酸エチルで抽出した。抽出液

を水、飽和食塩水で順次洗浄、乾燥、濃縮後、残渣をシリカゲルクロマトグラフィー（ヘキサン-酢酸エチル、4:1）で精製し、化合物（11）（2.16 g；収率90%）を得た。

5 第2工程

化合物（11）（1.37 g、4.05 mmol）のジクロロメタン（10 ml）-ヘキサン（10 ml）溶液を-60°Cに冷却し、水素化ジイソプロピルアルミニウム（0.95 Mヘキサン溶液、10.7 ml、10.2 mmol）を滴下した。同温度で30分間攪拌した後、メタノール（0.6 ml）を加え、室温まで昇温した。反応液に2N塩酸を加え、酢酸エチルで抽出した。抽出液を炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄、乾燥、濃縮後、残渣をシリカゲルクロマトグラフィー（ヘキサン-酢酸エチル、2:1）で精製し、化合物（12）（1.14 g；収率91%）を得た。融点67-69°C。

15 第3工程

化合物（12）（1.03 g、3.31 mmol）のトルエン（10 ml）溶液に、プロモ酢酸*t*-ブチル（0.70 ml、4.30 mmol）、硫酸水素テトラブチルアンモニウム（170 mg、0.5 mmol）、50%水酸化ナトリウム（1.5 ml）を加え、室温で18時間激しく攪拌した。反応混合物をトルエンで抽出し、水、飽和食塩水で順次洗浄後、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー（ヘキサン-酢酸エチル、4:1）で精製し、化合物（13）（1.32 g；収率94%）を得た。

第4工程

25 化合物（13）（1.3 g、3.07 mmol）のトルエン（3 ml）溶液に、トリフルオロ酢酸（3.5 ml、4.6 mmol）を加え、65°Cで3.5時間加熱攪拌した。反応液を減圧下濃縮し、残渣にメタノール（30 ml）と濃硫酸（0.

3.3 ml) を加え、1時間加熱還流した。反応混合物を濃縮後、トルエンに溶解し、トリエチルアミン(4.3 ml, 30 mmol)ついで炭酸水素ナトリウム水溶液を加えた。トルエン層を分離し、水、飽和食塩水で順次洗浄、乾燥、濃縮し、化合物(14)(697 mg; 収率81%)を得た。

5

第5工程

化合物(14)(141 mg, 0.50 mmol)のTHF(4 ml)溶液に、5-フルオロベンゾチオフェン-3-カルボン酸(98 mg, 0.50 mmol)、1-ヒドロキシベンゾトリアゾール(7 mg, 0.05 mmol)を加え、さら10に氷冷下1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(93 mg, 0.6 mmol)を加えた。反応混合物を室温で16時間攪拌した後、酢酸エチルで希釈し、希塩酸、炭酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン-酢酸エチル、83:17)で精製し、化合物(15)(93 mg; 収率40%)を得た。

15

第6工程

化合物(15)(93 mg, 0.20 mmol)のTHF(1 ml)-メタノール(2 ml)溶液に、1N水酸化ナトリウム水溶液(0.5 ml, 0.5 mmol)を加え、室温で18時間攪拌した。反応液に2N塩酸を加え酸性とした後、酢酸エチルで抽出し、抽出液を水、飽和食塩水で順次洗浄し、化合物(IId-28)(82 mg; 収率91%)を得た。

実施例4 化合物(IId-52)の合成

第1工程

2-(1,3-ジオキソラン-2-イル)エチルトリフェニルホスホニウムブロミド(13.28g、30.0mmol)のTHF(60ml)懸濁液を-30℃に冷却し、カリウム*t*-ブトキシド(6.73g、60.0mmol)を加え、-30℃から0℃で1時間攪拌した。反応混合物を再び-25℃に冷却し、化合物(10)(5.62g、20.0mmol)のTHF(40ml)溶液を15分かけて滴下した。0℃まで昇温し、さらに1.5時間攪拌した後、反応液を水で希釈し、酢酸エチルで抽出、抽出液を水、飽和食塩水で洗浄、乾燥、濃縮した。得られた残渣をシリカゲルクロマトグラフィー(ヘキサン-酢酸エチル、85:15)で精製し、化合物(16)(6.27g；収率86%)を得た。

第2工程

化合物(16)(4.10g、11.2mmol)のメタノール(41ml)溶液に、10%パラジウム-炭素(0.21g)を加え、水素雰囲気下、2時間攪拌した。反応液をろ過、濃縮し、残渣(4.12g；収率100%)を得た。この粗生成物(3.68g、10.0mmol)のアセトン-水(4:1、50ml)溶液に、p-トルエンスルホン酸ヒリジニウム(503mg、2.0mmol)を加え、16時間加熱還流した。反応液を水で希釈し、酢酸エチルで抽出、

抽出液を水、飽和食塩水で洗浄、乾燥、濃縮した。得られた残渣のトルエン（3
5 ml）溶液に、（トリフェニルホスホラニリデン）酢酸メチル（2.93 g、
8.76 mmol）を加え、室温で18時間攪拌した。酢酸エチルで希釈後、水、
飽和食塩水で洗浄、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー（ヘ
キサン-酢酸エチル、85:15）で精製し、化合物（17）（2.71 g；收
率71%）を得た。

第3工程

化合物（17）（2.35 g、6.19 mmol）のジクロロメタン（38 m
l）溶液に、トリフルオロ酢酸（3.82 ml、49.5 mmol）を加え、室
温で3時間攪拌した。反応混合物を減圧下濃縮後、トルエン（50 ml）と水（1
0 ml）に溶解し、水層がアルカリ性（pH=10）になるまで2N水酸化ナト
リウムを加えた。トルエン層を分離後、水、飽和食塩水で洗浄、乾燥、濃縮し、
化合物（18）（1.70 g、收率98%）を得た。

15

第4工程

化合物（18）（280 mg、1.0 mmol）のTHF（5 ml）溶液に、
5-アセトキシベンゾフラン-3-カルボン酸（220 mg、1.0 mmol）、
1-ヒドロキシベンゾトリアゾール（13 mg、0.1 mmol）を加え、さら
に氷冷下1-エチル-3-（3-ジメチルアミノプロピル）カルボジイミド（2
00 mg、1.3 mmol）を加えた。反応混合物を室温で16時間攪拌した後、
トルエンで希釈し、希塩酸、炭酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮
した。残渣をシリカゲルクロマトグラフィー（ヘキサン-酢酸エチル、3:1）
で精製し、化合物（19）（422 mg；收率88%）を得た。融点119-1
20 °C。

第5工程

化合物(19)(422mg、0.88mmol)のTHF(5.6ml)溶液に、1N水酸化リチウム水溶液(3.0ml、3.0mmol)を加え、室温で20時間攪拌した。反応液に2N塩酸を加え酸性とした後、酢酸エチルで抽出し、抽出液を水、飽和食塩水で順次洗浄した。乾燥、濃縮後、残渣をヘキサン-5酢酸エチルから結晶化し、化合物(IIf-52)(327mg；収率87%)を得た。融点159-160°C。

上記実施例と同様にして製造した化合物および物性値を以下に示す。また、以下に表1以降で用いるIa、Ib、・・・、IIe、IIfの各記号の表わす部
10 分構造を示す。

表 1

	Ia	Ib	Ic	Id	Ie	If
	Ia-1	Ib-1	Ic-1	Id-1	Ie-1	If-1
	Ia-2	Ib-2	Ic-2	Id-2	Ie-2	If-2
	Ia-3	Ib-3	Ic-3	Id-3	Ie-3	If-3
	Ia-4	Ib-4	Ic-4	Id-4	Ie-4	If-4
	Ia-5	Ia-5	Ic-5	Id-5	Ie-5	If-5
	Ia-6	Ib-6	Ic-6	Id-6	Ie-6	If-6
	Ia-7	Ib-7	Ic-7	Id-7	Ie-7	If-7
	Ia-8	Ib-8	Ic-8	Id-8	Ie-8	If-8
	Ia-9	Ib-9	Ic-9	Id-9	Ie-9	If-9
	Ia-10	Ib-10	Ic-10	Id-10	Ie-10	If-10

表 2

		Ia	Ib	Ic	Id	Ie	If
		Ia-11	Ib-11	Ic-11	Id-11	Ie-11	If-11
		Ia-12	Ib-12	Ic-12	Id-12	Ie-12	If-12
		Ia-13	Ib-13	Ic-13	Id-13	Ie-13	If-13
		Ia-14	Ib-14	Ic-14	Id-14	Ie-14	If-14
		Ia-15	Ia-15	Ic-15	Id-15	Ie-15	If-15
		Ia-16	Ib-16	Ic-16	Id-16	Ie-16	If-16
		Ia-17	Ib-17	Ic-17	Id-17	Ie-17	If-17
		Ia-18	Ib-18	Ic-18	Id-18	Ie-18	If-18
		Ia-19	Ib-19	Ic-19	Id-19	Ie-19	If-19
		Ia-20	Ib-20	Ic-20	Id-20	Ie-20	If-20

表 3

	Ia	Ib	Ic	Id	Ie	If
	Ia-21	Ib-21	Ic-21	Id-21	Ie-21	If-21
	Ia-22	Ib-22	Ic-22	Id-22	Ie-22	If-22
	Ia-23	Ib-23	Ic-23	Id-23	Ie-23	If-23
	Ia-24	Ib-24	Ic-24	Id-24	Ie-24	If-24
	Ia-25	Ia-25	Ic-25	Id-25	Ie-25	If-25
	Ia-26	Ib-26	Ic-26	Id-26	Ie-26	If-26
	Ia-27	Ib-27	Ic-27	Id-27	Ie-27	If-27
	Ia-28	Ib-28	Ic-28	Id-28	Ie-28	If-28
	Ia-29	Ib-29	Ic-29	Id-29	Ie-29	If-29
	Ia-30	Ib-30	Ic-30	Id-30	Ie-30	If-30

表 4

		Ia	Ib	Ic	Id	Ie	If
		Ia-31	Ib-31	Ic-31	Id-31	Ie-31	If-31
		Ia-32	Ib-32	Ic-32	Id-32	Ie-32	If-32
		Ia-33	Ib-33	Ic-33	Id-33	Ie-33	If-33
		Ia-34	Ib-34	Ic-34	Id-34	Ie-34	If-34
		Ia-35	Ia-35	Ic-35	Id-35	Ie-35	If-35
		Ia-36	Ib-36	Ic-36	Id-36	Ie-36	If-36
		Ia-37	Ib-37	Ic-37	Id-37	Ie-37	If-37
		Ia-38	Ib-38	Ic-38	Id-38	Ie-38	If-38
		Ia-39	Ib-39	Ic-39	Id-39	Ie-39	If-39
		Ia-40	Ib-40	Ic-40	Id-40	Ie-40	If-40

表 5

	Ia	Ib	Ic	Id	Ie	If
	Ia-41	Ib-41	Ic-41	Id-41	Ie-41	If-41
	Ia-42	Ib-42	Ic-42	Id-42	Ie-42	If-42
	Ia-43	Ib-43	Ic-43	Id-43	Ie-43	If-43
	Ia-44	Ib-44	Ic-44	Id-44	Ie-44	If-44
	Ia-45	Ia-45	Ic-45	Id-45	Ie-45	If-45
	Ia-46	Ib-46	Ic-46	Id-46	Ie-46	If-46
	Ia-47	Ib-47	Ic-47	Id-47	Ie-47	If-47
	Ia-48	Ib-48	Ic-48	Id-48	Ie-48	If-48
	Ia-49	Ib-49	Ic-49	Id-49	Ie-49	If-49
	Ia-50	Ib-50	Ic-50	Id-50	Ie-50	If-50

表 6

	Ia	Ib	Ic	Id	Ie	If
	Ia-51	Ib-51	Ic-51	Id-51	Ie-51	If-51
	Ia-52	Ib-52	Ic-52	Id-52	Ie-52	If-52
	Ia-53	Ib-53	Ic-53	Id-53	Ie-53	If-53
	Ia-54	Ib-54	Ic-54	Id-54	Ie-54	If-54
	Ia-55	Ia-55	Ic-55	Id-55	Ie-55	If-55
	Ia-56	Ib-56	Ic-56	Id-56	Ie-56	If-56
	Ia-57	Ib-57	Ic-57	Id-57	Ie-57	If-57
	Ia-58	Ib-58	Ic-58	Id-58	Ie-58	If-58
	Ia-59	Ib-59	Ic-59	Id-59	Ie-59	If-59
	Ia-60	Ib-60	Ic-60	Id-60	Ie-60	If-60

表 7

	Ia	Ib	Ic	Id	Ie	If
	Ia-61	Ib-61	Ic-61	Id-61	Ie-61	If-61
	Ia-62	Ib-62	Ic-62	Id-62	Ie-62	If-62
	Ia-63	Ib-63	Ic-63	Id-63	Ie-63	If-63
	Ia-64	Ib-64	Ic-64	Id-64	Ie-64	If-64
	Ia-65	Ia-65	Ic-65	Id-65	Ie-65	If-65
	Ia-66	Ib-66	Ic-66	Id-66	Ie-66	If-66
	Ia-67	Ib-67	Ic-67	Id-67	Ie-67	If-67
	Ia-68	Ib-68	Ic-68	Id-68	Ie-68	If-68
	Ia-69	Ib-69	Ic-69	Id-69	Ie-69	If-69
	Ia-70	Ib-70	Ic-70	Id-70	Ie-70	If-70

表 8

	Ia	Ib	Ic	Id	Ie	If
	Ia-71	Ib-71	Ic-71	Id-71	Ie-71	If-71
	Ia-72	Ib-72	Ic-72	Id-72	Ie-72	If-72
	Ia-73	Ib-73	Ic-73	Id-73	Ie-73	If-73
	Ia-74	Ib-74	Ic-74	Id-74	Ie-74	If-74
	Ia-75	Ia-75	Ic-75	Id-75	Ie-75	If-75
	Ia-76	Ib-76	Ic-76	Id-76	Ie-76	If-76
	Ia-77	Ib-77	Ic-77	Id-77	Ie-77	If-77
	Ia-78	Ib-78	Ic-78	Id-78	Ie-78	If-78
	Ia-79	Ib-79	Ic-79	Id-79	Ie-79	If-79
	Ia-80	Ib-80	Ic-80	Id-80	Ie-80	If-80

表 9

	Ia	Ib	Ic	Id	Ie	If
	Ia-81	Ib-81	Ic-81	Id-81	Ie-81	If-81
	Ia-82	Ib-82	Ic-82	Id-82	Ie-82	If-82
	Ia-83	Ib-83	Ic-83	Id-83	Ie-83	If-83
	Ia-84	Ib-84	Ic-84	Id-84	Ie-84	If-84
	Ia-85	Ib-85	Ic-85	Id-85	Ie-85	If-85
	Ia-86	Ib-86	Ic-86	Id-86	Ie-86	If-86
	Ia-87	Ib-87	Ic-87	Id-87	Ie-87	If-87
	Ia-88	Ib-88	Ic-88	Id-88	Ie-88	If-88
	Ia-89	Ib-89	Ic-89	Id-89	Ie-89	If-89
	Ia-90	Ib-90	Ic-90	Id-90	Ie-90	If-90

表 1 0

	Ia	Ib	Ic	Id	Ie	If
	Ia-91	Ib-91	Ic-91	Id-91	Ie-91	If-91
	Ia-92	Ib-92	Ic-92	Id-92	Ie-92	If-92
	Ia-93	Ib-93	Ic-93	Id-93	Ie-93	If-93
	Ia-94	Ib-94	Ic-94	Id-94	Ie-94	If-94
	Ia-95	Ib-95	Ic-95	Id-95	Ie-95	If-95
	Ia-96	Ib-96	Ic-96	Id-96	Ie-96	If-96
	Ia-97	Ib-97	Ic-97	Id-97	Ie-97	If-97
	Ia-98	Ib-98	Ic-98	Id-98	Ie-98	If-98
	Ia-99	Ib-99	Ic-99	Id-99	Ie-99	If-99
	Ia-100	Ib-100	Ic-100	Id-100	Ie-100	If-100

表 1 1

		Ia	Ib	Ic	Id	Ie	If
	Ia-101	Ib-101	Ic-101	Id-101	Ie-101	If-101	
	Ia-102	Ib-102	Ic-102	Id-102	Ie-102	If-102	
	Ia-103	Ib-103	Ic-103	Id-103	Ie-103	If-103	
	Ia-104	Ib-104	Ic-104	Id-104	Ie-104	If-104	
	Ia-105	Ib-105	Ic-105	Id-105	Ie-105	If-105	
	Ia-106	Ib-106	Ic-106	Id-106	Ie-106	If-106	
	Ia-107	Ib-107	Ic-107	Id-107	Ie-107	If-107	
	Ia-108	Ib-108	Ic-108	Id-108	Ie-108	If-108	
	Ia-109	Ib-109	Ic-109	Id-109	Ie-109	If-109	
	Ia-110	Ib-110	Ic-110	Id-110	Ie-110	If-110	

表 1 2

	Ia	Ib	Ic	Id	Ie	If
	Ia-111	Ib-111	Ic-111	Id-111	Ie-111	If-111
	Ia-112	Ib-112	Ic-112	Id-112	Ie-112	If-112
	Ia-113	Ib-113	Ic-113	Id-113	Ie-113	If-113
	Ia-114	Ib-114	Ic-114	Id-114	Ie-114	If-114
	Ia-115	Ib-115	Ic-115	Id-115	Ie-115	If-115
	Ia-116	Ib-116	Ic-116	Id-116	Ie-116	If-116
	Ia-117	Ib-117	Ic-117	Id-117	Ie-117	If-117
	Ia-118	Ib-118	Ic-118	Id-118	Ie-118	If-118
	Ia-119	Ib-119	Ic-119	Id-119	Ie-119	If-119
	Ia-120	Ib-120	Ic-120	Id-120	Ie-120	If-120

表 1 3

	Ia	Ib	Ic	Id	Ie	If
	Ia-121	Ib-121	Ic-121	Id-121	Ie-121	If-121
	Ia-122	Ib-122	Ic-122	Id-122	Ie-122	If-122
	Ia-123	Ib-123	Ic-123	Id-123	Ie-123	If-123
	Ia-124	Ib-124	Ic-124	Id-124	Ie-124	If-124
	Ia-125	Ib-125	Ic-125	Id-125	Ie-125	If-125
	Ia-126	Ib-126	Ic-126	Id-126	Ie-126	If-126
	Ia-127	Ib-127	Ic-127	Id-127	Ie-127	If-127
	Ia-128	Ib-128	Ic-128	Id-128	Ie-128	If-128
	Ia-129	Ib-129	Ic-129	Id-129	Ie-129	If-129
	Ia-130	Ib-130	Ic-130	Id-130	Ie-130	If-130

表 1 4

	Ia	Ib	Ic	Id	Ie	If
	Ia-131	Ib-131	Ic-131	Id-131	Ie-131	If-131
	Ia-132	Ib-132	Ic-132	Id-132	Ie-132	If-132
	Ia-133	Ib-133	Ic-133	Id-133	Ie-133	If-133
	Ia-134	Ib-134	Ic-134	Id-134	Ie-134	If-134
	Ia-135	Ib-135	Ic-135	Id-135	Ie-135	If-135
	Ia-136	Ib-136	Ic-136	Id-136	Ie-136	If-136
	Ia-137	Ib-137	Ic-137	Id-137	Ie-137	If-137
	Ia-138	Ib-138	Ic-138	Id-138	Ie-138	If-138
	Ia-139	Ib-139	Ic-139	Id-139	Ie-139	If-139
	Ia-140	Ib-140	Ic-140	Id-140	Ie-140	If-140

表 1 5

	Ia	Ib	Ic	Id	Ie	If
	Ia-141	Ib-141	Ic-141	Id-141	Ie-141	If-141
	Ia-142	Ib-142	Ic-142	Id-142	Ie-142	If-142
	Ia-143	Ib-143	Ic-143	Id-143	Ie-143	If-143
	Ia-144	Ib-144	Ic-144	Id-144	Ie-144	If-144
	Ia-145	Ib-145	Ic-145	Id-145	Ie-145	If-145
	Ia-146	Ib-146	Ic-146	Id-146	Ie-146	If-146
	Ia-147	Ib-147	Ic-147	Id-147	Ie-147	If-147
	Ia-148	Ib-148	Ic-148	Id-148	Ie-148	If-148
	Ia-149	Ib-149	Ic-149	Id-149	Ie-149	If-149
	Ia-150	Ib-150	Ic-150	Id-150	Ie-150	If-150

表 1 6

		Ia	Ib	Ic	Id	Ie	If
	Ia-151	Ib-151	Ic-151	Id-151	Ie-151	If-151	
	Ia-152	Ib-152	Ic-152	Id-152	Ie-152	If-152	
	Ia-153	Ib-153	Ic-153	Id-153	Ie-153	If-153	
	Ia-154	Ib-154	Ic-154	Id-154	Ie-154	If-154	
	Ia-155	Ib-155	Ic-155	Id-155	Ie-155	If-155	
	Ia-156	Ib-156	Ic-156	Id-156	Ie-156	If-156	
	Ia-157	Ib-157	Ic-157	Id-157	Ie-157	If-157	
	Ia-158	Ib-158	Ic-158	Id-158	Ie-158	If-158	
	Ia-159	Ib-159	Ic-159	Id-159	Ie-159	If-159	
	Ia-160	Ib-160	Ic-160	Id-160	Ie-160	If-160	

表 1 7

	Ia	Ib	Ic	Id	Ie	If
	Ia-161	Ib-161	Ic-161	Id-161	Ie-161	If-161
	Ia-162	Ib-162	Ic-162	Id-162	Ie-162	If-162
	Ia-163	Ib-163	Ic-163	Id-163	Ie-163	If-163
	Ia-164	Ib-164	Ic-164	Id-164	Ie-164	If-164
	Ia-165	Ib-165	Ic-165	Id-165	Ie-165	If-165
	Ia-166	Ib-166	Ic-166	Id-166	Ie-166	If-166

表 1 8

	IIa	IIb	IIc	IId	IIe	IIf
	IIa-1	IIb-1	IIc-1	IId-1	IIe-1	IIf-1
	IIa-2	IIb-2	IIc-2	IId-2	IIe-2	IIf-2
	IIa-3	IIb-3	IIc-3	IId-3	IIe-3	IIf-3
	IIa-4	IIb-4	IIc-4	IId-4	IIe-4	IIf-4
	IIa-5	IIb-5	IIc-5	IId-5	IIe-5	IIf-5
	IIa-6	IIb-6	IIc-6	IId-6	IIe-6	IIf-6
	IIa-7	IIb-7	IIc-7	IId-7	IIe-7	IIf-7
	IIa-8	IIb-8	IIc-8	IId-8	IIe-8	IIf-8
	IIa-9	IIb-9	IIc-9	IId-9	IIe-9	IIf-9
	IIa-10	IIb-10	IIc-10	IId-10	IIe-10	IIf-10

表 1 9

	IIa	IIb	IIc	IId	IIe	IIf
	IIa-11	IIb-11	IIc-11	IId-11	IIe-11	IIf-11
	IIa-12	IIb-12	IIc-12	IId-12	IIe-12	IIf-12
	IIa-13	IIb-13	IIc-13	IId-13	IIe-13	IIf-13
	IIa-14	IIb-14	IIc-14	IId-14	IIe-14	IIf-14
	IIa-15	IIb-15	IIc-15	IId-15	IIe-15	IIf-15
	IIa-16	IIb-16	IIc-16	IId-16	IIe-16	IIf-16
	IIa-17	IIb-17	IIc-17	IId-17	IIe-17	IIf-17
	IIa-18	IIb-18	IIc-18	IId-18	IIe-18	IIf-18
	IIa-19	IIb-19	IIc-19	IId-19	IIe-19	IIf-19
	IIa-20	IIb-20	IIc-20	IId-20	IIe-20	IIf-20

表 2 0

	IIa	IIb	IIc	IId	IIe	IIf
	IIa-21	IIb-21	IIc-21	IId-21	IIe-21	IIf-21
	IIa-22	IIb-22	IIc-22	IId-22	IIe-22	IIf-22
	IIa-23	IIb-23	IIc-23	IId-23	IIe-23	IIf-23
	IIa-24	IIb-24	IIc-24	IId-24	IIe-24	IIf-24
	IIa-25	IIb-25	IIc-25	IId-25	IIe-25	IIf-25
	IIa-26	IIb-26	IIc-26	IId-26	IIe-26	IIf-26
	IIa-27	IIb-27	IIc-27	IId-27	IIe-27	IIf-27
	IIa-28	IIb-28	IIc-28	IId-28	IIe-28	IIf-28
	IIa-29	IIb-29	IIc-29	IId-29	IIe-29	IIf-29
	IIa-30	IIb-30	IIc-30	IId-30	IIe-30	IIf-30

表 2 1

	IIa	IIb	IIc	IId	IIe	IIIf
	IIa-31	IIb-31	IIc-31	IId-31	IIe-31	IIIf-31
	IIa-32	IIb-32	IIc-32	IId-32	IIe-32	IIIf-32
	IIa-33	IIb-33	IIc-33	IId-33	IIe-33	IIIf-33
	IIa-34	IIb-34	IIc-34	IId-34	IIe-34	IIIf-34
	IIa-35	IIb-35	IIc-35	IId-35	IIe-35	IIIf-35
	IIa-36	IIb-36	IIc-36	IId-36	IIe-36	IIIf-36
	IIa-37	IIb-37	IIc-37	IId-37	IIe-37	IIIf-37
	IIa-38	IIb-38	IIc-38	IId-38	IIe-38	IIIf-38
	IIa-39	IIb-39	IIc-39	IId-39	IIe-39	IIIf-39
	IIa-40	IIb-40	IIc-40	IId-40	IIe-40	IIIf-40

表 2 2

	IIa	IIb	IIc	IId	IIe	IIIf
	IIa-41	IIb-41	IIc-41	IId-41	IIe-41	IIIf-41
	IIa-42	IIb-42	IIc-42	IId-42	IIe-42	IIIf-42
	IIa-43	IIb-43	IIc-43	IId-43	IIe-43	IIIf-43
	IIa-44	IIb-44	IIc-44	IId-44	IIe-44	IIIf-44
	IIa-45	IIb-45	IIc-45	IId-45	IIe-45	IIIf-45
	IIa-46	IIb-46	IIc-46	IId-46	IIe-46	IIIf-46
	IIa-47	IIb-47	IIc-47	IId-47	IIe-47	IIIf-47
	IIa-48	IIb-48	IIc-48	IId-48	IIe-48	IIIf-48
	IIa-49	IIb-49	IIc-49	IId-49	IIe-49	IIIf-49
	IIa-50	IIb-50	IIc-50	IId-50	IIe-50	IIIf-50

表 2 3

	IIa	IIb	IIc	IId	IIe	IIf
	IIa-51	IIb-51	IIc-51	IId-51	IIe-51	IIf-51
	IIa-52	IIb-52	IIc-52	IId-52	IIe-52	IIf-52
	IIa-53	IIb-53	IIc-53	IId-53	IIe-53	IIf-53
	IIa-54	IIb-54	IIc-54	IId-54	IIe-54	IIf-54
	IIa-55	IIb-55	IIc-55	IId-55	IIe-55	IIf-55
	IIa-56	IIb-56	IIc-56	IId-56	IIe-56	IIf-56
	IIa-57	IIb-57	IIc-57	IId-57	IIe-57	IIf-57
	IIa-58	IIb-58	IIc-58	IId-58	IIe-58	IIf-58
	IIa-59	IIb-59	IIc-59	IId-59	IIe-59	IIf-59
	IIa-60	IIb-60	IIc-60	IId-60	IIe-60	IIf-60

表 2 4

	IIa	IIb	IIc	IId	IIe	IIIf
	IIa-61	IIb-61	IIc-61	IId-61	IIe-61	IIIf-61
	IIa-62	IIb-62	IIc-62	IId-62	IIe-62	IIIf-62
	IIa-63	IIb-63	IIc-63	IId-63	IIe-63	IIIf-63
	IIa-64	IIb-64	IIc-64	IId-64	IIe-64	IIIf-64
	IIa-65	IIb-65	IIc-65	IId-65	IIe-65	IIIf-65
	IIa-66	IIb-66	IIc-66	IId-66	IIe-66	IIIf-66
	IIa-67	IIb-67	IIc-67	IId-67	IIe-67	IIIf-67
	IIa-68	IIb-68	IIc-68	IId-68	IIe-68	IIIf-68
	IIa-69	IIb-69	IIc-69	IId-69	IIe-69	IIIf-69
	IIa-70	IIb-70	IIc-70	IId-70	IIe-70	IIIf-70

表 2 5

	IIa	IIb	IIc	IId	IIe	IIIf
	IIa-71	IIb-71	IIc-71	IId-71	IIe-71	IIIf-71
	IIa-72	IIb-72	IIc-72	IId-72	IIe-72	IIIf-72
	IIa-73	IIb-73	IIc-73	IId-73	IIe-73	IIIf-73
	IIa-74	IIb-74	IIc-74	IId-74	IIe-74	IIIf-74
	IIa-75	IIb-75	IIc-75	IId-75	IIe-75	IIIf-75
	IIa-76	IIb-76	IIc-76	IId-76	IIe-76	IIIf-76
	IIa-77	IIb-77	IIc-77	IId-77	IIe-77	IIIf-77
	IIa-78	IIb-78	IIc-78	IId-78	IIe-78	IIIf-78
	IIa-79	IIb-79	IIc-79	IId-79	IIe-79	IIIf-79
	IIa-80	IIb-80	IIc-80	IId-80	IIe-80	IIIf-80

表 2 6

	IIa	IIb	IIc	IId	IIe	IIIf
	IIa-81	IIb-81	IIc-81	IId-81	IIe-81	IIIf-81
	IIa-82	IIb-82	IIc-82	IId-82	IIe-82	IIIf-82
	IIa-83	IIb-83	IIc-83	IId-83	IIe-83	IIIf-83
	IIa-84	IIb-84	IIc-84	IId-84	IIe-84	IIIf-84
	IIa-85	IIb-85	IIc-85	IId-85	IIe-85	IIIf-85
	IIa-86	IIb-86	IIc-86	IId-86	IIe-86	IIIf-86
	IIa-87	IIb-87	IIc-87	IId-87	IIe-87	IIIf-87
	IIa-88	IIb-88	IIc-88	IId-88	IIe-88	IIIf-88
	IIa-89	IIb-89	IIc-89	IId-89	IIe-89	IIIf-89
	IIa-90	IIb-90	IIc-90	IId-90	IIe-90	IIIf-90

表 2 7

	IIa	IIb	IIc	IId	IIe	IIIf
	IIa-91	IIb-91	IIc-91	IId-91	IIe-91	IIIf-91
	IIa-92	IIb-92	IIc-92	IId-92	IIe-92	IIIf-92
	IIa-93	IIb-93	IIc-93	IId-93	IIe-93	IIIf-93
	IIa-94	IIb-94	IIc-94	IId-94	IIe-94	IIIf-94
	IIa-95	IIb-95	IIc-95	IId-95	IIe-95	IIIf-95
	IIa-96	IIb-96	IIc-96	IId-96	IIe-96	IIIf-96
	IIa-97	IIb-97	IIc-97	IId-97	IIe-97	IIIf-97
	IIa-98	IIb-98	IIc-98	IId-98	IIe-98	IIIf-98
	IIa-99	IIb-99	IIc-99	IId-99	IIe-99	IIIf-99
	IIa-100	IIb-100	IIc-100	IId-100	IIe-100	IIIf-100

表 2 8

 R ¹	IIa	IIb	IIc	IId	IIe	IIIf
	IIa-101	IIb-101	IIc-101	IId-101	IIe-101	IIIf-101
	IIa-102	IIb-102	IIc-102	IId-102	IIe-102	IIIf-102
	IIa-103	IIb-103	IIc-103	IId-103	IIe-103	IIIf-103
	IIa-104	IIb-104	IIc-104	IId-104	IIe-104	IIIf-104
	IIa-105	IIb-105	IIc-105	IId-105	IIe-105	IIIf-105
	IIa-106	IIb-106	IIc-106	IId-106	IIe-106	IIIf-106
	IIa-107	IIb-107	IIc-107	IId-107	IIe-107	IIIf-107
	IIa-108	IIb-108	IIc-108	IId-108	IIe-108	IIIf-108
	IIa-109	IIb-109	IIc-109	IId-109	IIe-109	IIIf-109
	IIa-110	IIb-110	IIc-110	IId-110	IIe-110	IIIf-110

表 2 9

	IIa	IIb	IIc	IId	IIe	IIIf
	IIa-111	IIb-111	IIc-111	IId-111	IIe-111	IIIf-111
	IIa-112	IIb-112	IIc-112	IId-112	IIe-112	IIIf-112
	IIa-113	IIb-113	IIc-113	IId-113	IIe-113	IIIf-113
	IIa-114	IIb-114	IIc-114	IId-114	IIe-114	IIIf-114
	IIa-115	IIb-115	IIc-115	IId-115	IIe-115	IIIf-115
	IIa-116	IIb-116	IIc-116	IId-116	IIe-116	IIIf-116
	IIa-117	IIb-117	IIc-117	IId-117	IIe-117	IIIf-117
	IIa-118	IIb-118	IIc-118	IId-118	IIe-118	IIIf-118
	IIa-119	IIb-119	IIc-119	IId-119	IIe-119	IIIf-119
	IIa-120	IIb-120	IIc-120	IId-120	IIe-120	IIIf-120

表 3 0

	IIa	IIb	IIc	IId	IIe	IIIf
	IIa-121	IIb-121	IIc-121	IId-121	IIe-121	IIIf-121
	IIa-122	IIb-122	IIc-122	IId-122	IIe-122	IIIf-122
	IIa-123	IIb-123	IIc-123	IId-123	IIe-123	IIIf-123
	IIa-124	IIb-124	IIc-124	IId-124	IIe-124	IIIf-124
	IIa-125	IIb-125	IIc-125	IId-125	IIe-125	IIIf-125
	IIa-126	IIb-126	IIc-126	IId-126	IIe-126	IIIf-126
	IIa-127	IIb-127	IIc-127	IId-127	IIe-127	IIIf-127
	IIa-128	IIb-128	IIc-128	IId-128	IIe-128	IIIf-128
	IIa-129	IIb-129	IIc-129	IId-129	IIe-129	IIIf-129
	IIa-130	IIb-130	IIc-130	IId-130	IIe-130	IIIf-130

表 3 1

	IIa	IIb	IIc	IId	IIe	IIf
	IIa-131	IIb-131	IIc-131	IId-131	IIe-131	IIf-131
	IIa-132	IIb-132	IIc-132	IId-132	IIe-132	IIf-132
	IIa-133	IIb-133	IIc-133	IId-133	IIe-133	IIf-133
	IIa-134	IIb-134	IIc-134	IId-134	IIe-134	IIf-134
	IIa-135	IIb-135	IIc-135	IId-135	IIe-135	IIf-135
	IIa-136	IIb-136	IIc-136	IId-136	IIe-136	IIf-136
	IIa-137	IIb-137	IIc-137	IId-137	IIe-137	IIf-137
	IIa-138	IIb-138	IIc-138	IId-138	IIe-138	IIf-138
	IIa-139	IIb-139	IIc-139	IId-139	IIe-139	IIf-139
	IIa-140	IIb-140	IIc-140	IId-140	IIe-140	IIf-140

表 3 2

	IIa	IIb	IIc	IId	IIe	IIf
	IIa-141	IIb-141	IIc-141	IId-141	IIe-141	IIf-141
	IIa-142	IIb-142	IIc-142	IId-142	IIe-142	IIf-142
	IIa-143	IIb-143	IIc-143	IId-143	IIe-143	IIf-143
	IIa-144	IIb-144	IIc-144	IId-144	IIe-144	IIf-144
	IIa-145	IIb-145	IIc-145	IId-145	IIe-145	IIf-145
	IIa-146	IIb-146	IIc-146	IId-146	IIe-146	IIf-146
	IIa-147	IIb-147	IIc-147	IId-147	IIe-147	IIf-147
	IIa-148	IIb-148	IIc-148	IId-148	IIe-148	IIf-148
	IIa-149	IIb-149	IIc-149	IId-149	IIe-149	IIf-149
	IIa-150	IIb-150	IIc-150	IId-150	IIe-150	IIf-150

表 3 3

	IIa	IIb	IIc	IId	IIe	IIIf
	IIa-151	IIb-151	IIc-151	IId-151	IIe-151	IIIf-151
	IIa-152	IIb-152	IIc-152	IId-152	IIe-152	IIIf-152
	IIa-153	IIb-153	IIc-153	IId-153	IIe-153	IIIf-153
	IIa-154	IIb-154	IIc-154	IId-154	IIe-154	IIIf-154
	IIa-155	IIb-155	IIc-155	IId-155	IIe-155	IIIf-155
	IIa-156	IIb-156	IIc-156	IId-156	IIe-156	IIIf-156
	IIa-157	IIb-157	IIc-157	IId-157	IIe-157	IIIf-157
	IIa-158	IIb-158	IIc-158	IId-158	IIe-158	IIIf-158
	IIa-159	IIb-159	IIc-159	IId-159	IIe-159	IIIf-159
	IIa-160	IIb-160	IIc-160	IId-160	IIe-160	IIIf-160

表 3 4

	IIa	IIb	IIc	IId	IIe	IIf
	IIa-161	IIb-161	IIc-161	IId-161	IIe-161	IIIf-161
	IIa-162	IIb-162	IIc-162	IId-162	IIe-162	IIIf-162
	IIa-163	IIb-163	IIc-163	IId-163	IIe-163	IIIf-163
	IIa-164	IIb-164	IIc-164	IId-164	IIe-164	IIIf-164
	IIa-165	IIb-165	IIc-165	IId-165	IIe-165	IIIf-165
	IIa-166	IIb-166	IIc-166	IId-166	IIe-166	IIIf-166

表 3 5

化合物番号	物性値
I a - 0 4	mp 175-178 °C; $^1\text{H-NMR}$ ($\text{CDCl}_3\text{-CD}_3\text{OD}$) δ 1.04 (1H, m), 1.25-1.49 (10H, m), 1.57-1.66 (2H, m), 2.00 (1H, m), 2.15-2.22 (2H, m), 2.51 (1H, m), 3.82 (1H, m), 5.77 (1H, dt, $J = 15.9, 1.5$ Hz), 6.41 (1H, d, $J = 7.8$ Hz), 6.95 (1H, dt, $J = 15.9, 7.1$ Hz), 7.34 (1H, dd, $J = 3.0, 4.8$ Hz), 7.41 (1H, dd, $J = 1.5, 4.8$ Hz), 7.90 (1H, dd, $J = 1.5, 3.0$ Hz); IR (Nujol) 3363, 3105, 2627, 1697, 1618, 1554, 1248 cm^{-1} ; $[\alpha]_D^{25} +44.3 \pm 0.8^\circ$ ($c=1.011$, MeOH); 元素分析 ($\text{C}_{19}\text{H}_{25}\text{NO}_3\text{S}$) 計算値 (%): C, 65.68; H, 7.25; N, 4.03; S, 9.23 実測値 (%): C, 65.58; H, 7.18; N, 4.03; S, 9.18
I a - 1 7	mp 155-157 °C; $^1\text{H-NMR}$ ($\text{CDCl}_3\text{-CD}_3\text{OD}$) δ 1.04 (1H, m), 1.22-1.53 (10H, m), 1.60-1.71 (2H, m), 2.02 (1H, m), 2.17-2.23 (2H, m), 2.58 (1H, m), 3.92 (1H, m), 5.78 (1H, dt, $J = 15.6, 1.5$ Hz), 6.33 (1H, d, $J = 7.5$ Hz), 6.97 (1H, dt, $J = 15.6, 6.9$ Hz), 7.38-7.49 (2H, m), 7.86-7.89 (3H, m), 8.30 (1H, dd, $J = 0.9, 6.9$ Hz); IR (Nujol) 3276, 2671, 1693, 1622, 1529, 1421, 1377, 1298, 1277, 1254 cm^{-1} ; $[\alpha]_D^{25} +38.5 \pm 0.8^\circ$ ($c=1.018$, MeOH); 元素分析 ($\text{C}_{23}\text{H}_{27}\text{NO}_3\text{S}\cdot0.2\text{H}_2\text{O}$) 計算値 (%): C, 68.87; H, 6.88; N, 3.49; S, 7.99 実測値 (%): C, 68.93; H, 7.01; N, 3.55; S, 7.87
I a - 2 0	mp 129-131 °C; $^1\text{H-NMR}$ (CDCl_3) δ 1.01 (1H, m), 1.26-1.52 (10H, m), 1.60-1.66 (2H, m), 2.02 (1H, m), 2.18-2.25 (2H, m), 2.49 (3H, s), 2.58 (1H, m), 3.95 (1H, m), 5.80 (1H, d, $J = 15.6$ Hz), 6.06 (1H, d, $J = 7.8$ Hz), 7.04 (1H, dt, $J = 15.6, 7.1$ Hz), 7.23 (1H, dd, $J = 1.2, 8.4$ Hz), 7.74 (1H, d, $J = 8.4$ Hz), 7.80 (1H, s), 8.14 (1H, s); IR (Nujol) 3269, 3078, 2677, 1697, 1649, 1624, 1539, 1437, 1377, 1298, 1281 cm^{-1} ; $[\alpha]_D^{25} +32.0 \pm 0.7^\circ$ ($c=1.005$, MeOH); 元素分析 ($\text{C}_{24}\text{H}_{29}\text{NO}_3\text{S}$) 計算値 (%): C, 70.04; H, 7.10; N, 3.40; S, 7.79 実測値 (%): C, 69.83; H, 7.10; N, 3.43; S, 7.64
I a - 2 8	mp 138-140 °C; $^1\text{H-NMR}$ (CDCl_3) δ 1.02 (1H, m), 1.21-1.52 (10H, m), 1.59-1.70 (2H, m), 2.01 (1H, m), 2.17-2.24 (2H, m), 2.56 (1H, m), 3.92 (1H, m), 5.79 (1H, dt, $J = 15.6, 1.5$ Hz), 6.14 (1H, d, $J = 8.1$ Hz), 7.03 (1H, dt, $J = 15.6, 7.1$ Hz), 7.16 (1H, td, $J = 8.6, 2.7$ Hz), 7.77 (1H, dd, $J = 4.8, 8.6$ Hz), 7.91 (1H, s), 8.07 (1H, dd, $J = 2.7, 10.2$ Hz); IR (Nujol) 3276, 2671, 1695, 1624, 1533, 1442, 1433, 1296, 1277, 1246, 1200 cm^{-1} ; $[\alpha]_D^{25} +35.6 \pm 0.8^\circ$ ($c=1.014$, MeOH); 元素分析 ($\text{C}_{23}\text{H}_{26}\text{FNO}_3\text{S}\cdot0.2\text{H}_2\text{O}$) 計算値 (%): C, 65.91; H, 6.35; F, 4.53; N, 3.34; S, 7.65 実測値 (%): C, 65.99; H, 6.38; F, 4.42; N, 3.39; S, 7.57
I a - 3 4	mp 172-173 °C; $^1\text{H-NMR}$ ($\text{CDCl}_3\text{-CD}_3\text{OD}$) δ 1.08 (1H, m), 1.29-1.55 (10H, m), 1.60-1.69 (2H, m), 2.03 (1H, m), 2.14-2.21 (2H, m), 2.60 (1H, m), 3.96 (1H, m), 5.76 (1H, dt, $J = 15.6, 1.5$ Hz), 6.57 (1H, d, $J = 7.5$ Hz), 6.97 (1H, dt, $J = 15.6, 7.1$ Hz), 7.38 (1H, d, $J = 5.7$ Hz), 7.42 (1H, t, $J = 7.8$ Hz), 7.59 (1H, d, $J = 5.7$ Hz), 7.65 (1H, d, $J = 6.9$ Hz), 7.95 (1H, d, $J = 7.8$ Hz); IR (Nujol) 3302, 2698, 1739, 1693, 1657, 1622, 1581, 1568, 1547, 1205 cm^{-1} ; $[\alpha]_D^{25} +35.0 \pm 0.7^\circ$ ($c=1.013$, MeOH); 元素分析 ($\text{C}_{23}\text{H}_{27}\text{NO}_3\text{S}\cdot0.2\text{H}_2\text{O}$) 計算値 (%): C, 68.87; H, 6.88; N, 3.49; S, 7.99 実測値 (%): C, 68.92; H, 7.05; N, 3.44; S, 7.67

表 3 6

化合物番号	物性値
I a - 4 9	¹ H-NMR (CDCl ₃) δ 1.02 (1H, m), 1.29-1.74 (12H, m), 2.02 (1H, m), 2.17-2.24 (2H, m), 2.56 (1H, m), 3.44 (3H, s), 3.96 (1H, m), 4.79 (2H, s), 5.79 (1H, dt, J = 15.6, 1.2 Hz), 5.98 (1H, d, J = 7.8 Hz), 7.01 (1H, dt, J = 15.6, 7.2 Hz), 7.33-7.40 (2H, m), 7.77 (1H, dd, J = 7.2, 2.4 Hz), 8.14 (1H, s); IR (CHCl ₃) 3442, 2682, 1695, 1652, 1573, 1508, 1425, 1284, 1205, 1120 cm ⁻¹ ; [α] _D ^{25.0} +31.0 ± 0.7° (c=1.009, MeOH); 元素分析 (C ₂₅ H ₃₁ NO ₅ ·0.5H ₂ O) 計算値 (%): C, 69.10; H, 7.42; N, 3.22 実測値 (%): C, 68.83; H, 7.48; N, 3.30
I a - 5 1	¹ H-NMR (CDCl ₃ -CD ₃ OD) δ 1.03 (1H, m), 1.20-1.51 (9H, m), 1.59-1.71 (3H, m), 2.01 (1H, d, J = 3.6 Hz), 2.15-2.22 (2H, m), 2.56 (1H, s), 3.90 (1H, m), 5.77 (1H, d, J = 15.6 Hz), 6.90 (1H, dd, J = 2.1, 8.4 Hz), 6.96 (1H, dt, J = 15.6, 6.9 Hz), 6.99 (1H, d, J = 2.1 Hz), 7.58 (1H, d, J = 8.4 Hz), 8.01 (1H, s); IR (KBr) 3350, 3141, 1695, 1628, 1560, 1523, 1493, 1441, 1367, 1279, 1225, 1136, 1124 cm ⁻¹ ; [α] _D ²⁷ +26.6 ± 0.7° (c=1.008, MeOH); 元素分析 (C ₂₃ H ₂₇ NO ₅ ·0.3H ₂ O) 計算値 (%): C, 68.57; H, 6.91; N, 3.48 実測値 (%): C, 68.47; H, 6.91; N, 3.66
I a - 5 2	¹ H-NMR (CDCl ₃ -CD ₃ OD) δ 1.02 (1H, m), 1.22-1.48 (9H, m), 1.57-1.60 (3H, m), 1.98 (1H, d, J = 3.3 Hz), 2.11-2.18 (2H, m), 2.53 (1H, s), 3.89 (1H, m), 5.75 (1H, dd, J = 1.5, 15.3 Hz), 6.31 (1H, d, J = 7.8 Hz), 6.90 (1H, dd, J = 2.4, 8.7 Hz), 6.96 (1H, dt, J = 15.3, 6.9 Hz), 7.33 (1H, d, J = 8.7 Hz), 7.43 (1H, d, J = 2.4 Hz), 8.07 (1H, s); IR (KBr) 3347, 1695, 1635, 1558, 1524, 1462, 1309, 1271, 1192, 1173, 1134 cm ⁻¹ ; [α] _D ²⁶ +20.1 ± 0.6° (c=1.013, MeOH); 元素分析 (C ₂₃ H ₂₇ NO ₅ ·0.4H ₂ O) 計算値 (%): C, 68.27; H, 6.92; N, 3.46 実測値 (%): C, 68.12; H, 7.00; N, 3.59
I a - 5 4	¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.23-1.72 (10H, m), 2.02 (1H, m), 2.18-2.25 (2H, m), 2.55 (1H, m), 3.94 (1H, m), 5.79 (1H, dt, J = 15.6, 1.5 Hz), 5.91 (1H, d, J = 8.1 Hz), 7.03 (1H, dt, J = 15.6, 6.9 Hz), 7.09-7.16 (1H, m), 7.25 (1H, dd, J = 9.0, 1.8 Hz), 7.84 (1H, dd, J = 9.0, 5.4 Hz), 8.06 (1H, s); IR (CHCl ₃) 3442, 2680, 1695, 1652, 1563, 1506, 1257, 1224, 1218, 1133, cm ⁻¹ ; [α] _D ^{25.0} +25.4 ± 0.7° (c=1.005, MeOH); 元素分析 (C ₂₃ H ₂₈ FNO ₄ ·0.1H ₂ O) 計算値 (%): C, 68.85; H, 6.58; F, 4.73; N, 3.49 実測値 (%): C, 68.65; H, 6.43; F, 4.59; N, 3.60
I a - 5 6	¹ H-NMR (CDCl ₃) δ 1.12 (1H, m), 1.29-1.53 (9H, m), 1.60-1.74 (3H, m), 2.04 (1H, d, J = 3.6 Hz), 2.16-2.22 (2H, m), 2.57 (1H, s), 4.03 (1H, m), 5.77 (1H, d, J = 15.6 Hz), 6.89 (1H, d, J = 2.1 Hz), 7.02 (1H, dt, J = 15.3, 7.2 Hz), 7.36 (1H, t, J = 7.5 Hz), 7.57 (1H, d, J = 7.8 Hz), 7.74 (1H, dd, J = 1.2, 7.5 Hz), 7.74 (1H, d, J = 2.1 Hz), 8.11 (1H, dd, J = 1.2, 7.5 Hz); IR (CHCl ₃) 3435, 2679, 1695, 1653, 1595, 1547, 1533, 1475, 1458, 1421, 1306, 1286, 1167, 1120 cm ⁻¹ ; [α] _D ^{25.5} +47.7 ± 0.9° (c=1.003, MeOH); 元素分析 (C ₂₃ H ₂₇ NO ₄ ·0.1H ₂ O) 計算値 (%): C, 72.08; H, 7.15; N, 3.65 実測値 (%): C, 72.01; H, 7.11; N, 3.72

表 3 7

化合物番号	物性値
I a - 6 5	¹ H-NMR (CDCl ₃) δ 1.02 (1H, m), 1.27-1.71 (12H, m), 2.01 (1H, d, J = 3.9 Hz), 2.16-2.23 (2H, m), 2.48 (1H, br s), 3.92 (1H, m), 5.81 (1H, d, J = 15.6 Hz), 6.08 (1H, d, J = 8.4 Hz), 6.80 (1H, d, J = 1.5 Hz), 6.98 (1H, dt, J = 5.4 and 0.6 Hz), 7.03 (1H, dt, J = 15.6 and 6.9 Hz), 10.49 (1H, s); IR (CHCl ₃) 3446, 3215, 1726, 1693, 1643, 1541, 1504, 1477, 1462, 1402, 1373, 1303, 1248 cm ⁻¹ ; [α] _D ²⁶ +67.8 ±1.1° (c=1.002, MeOH) 元素分析 (C ₂₁ H ₂₆ N ₂ O ₃ S·0.25 CH ₃ COOEt) 計算値 (%): C, 63.43; H, 6.77; N, 6.72; S, 7.69 実測値 (%): C, 63.66; H, 6.60; N, 6.93; S, 7.60
I a - 6 6	¹ H-NMR (CDCl ₃) δ 1.02 (1H, m), 1.27-1.70 (12H, m), 2.01 (1H, d, J = 3.6 Hz), 2.15-2.22 (2H, m), 2.51 (1H, br s), 3.92 (1H, m), 5.80 (1H, d, J = 15.6 Hz), 6.08 (1H, d, J = 7.8 Hz), 6.77 (1H, d, J = 2.1 Hz), 6.88 (1H, d, J = 5.4 Hz), 6.95 (1H, d, J = 5.4 Hz), 7.03 (1H, dt, J = 15.6 and 6.9 Hz), 11.07 (1H, s); IR (CHCl ₃) 3444, 3191, 2677, 1693, 1639, 1543, 1518, 1475, 1458, 1421, 1396, 1378, 1296, 1279, 1255 cm ⁻¹ ; [α] _D ²⁶ +55.3±1.0° (c=1.001, MeOH) 元素分析 (C ₂₁ H ₂₆ N ₂ O ₃ S·0.3H ₂ O) 計算値 (%): C, 64.36; H, 6.84; N, 7.15; S, 8.18 実測値 (%): C, 64.22; H, 6.48; N, 7.13; S, 8.22
I a - 9 5	mp 113-114 °C; ¹ H-NMR (CDCl ₃ -DMSO-d ₆) δ 1.12 (1H, m), 1.26 (3H, t, J = 6.9 Hz), 1.27-1.64 (12H, m), 2.01 (1H, m), 2.15-2.22 (2H, m), 2.57 (1H, br s), 3.90 (1H, m), 4.14 (2H, q, J = 6.9 Hz), 4.48 (2H, br s), 5.57 (1H, br s), 5.77 (1H, d, J = 15.6 Hz), 6.68 (1H, br s), 6.92 (1H, dd, J = 15.6, 7.2 Hz), 7.38 (1H, br d, J = 8.1 Hz), 7.81 (1H, d, J = 8.1 Hz), 7.95 (1H, s), 8.33 (1H, br s); IR (CHCl ₃) 3446, 1703, 1653, 1514, 1435, 1300, 1223, 1134 cm ⁻¹ ; [α] _D ²³ +5.5±0.5° (c=1.008, MeOH) 元素分析 (C ₂₇ H ₃₄ N ₂ O ₅ S·0.3H ₂ O) 計算値 (%): C, 64.34; H, 6.92; N, 5.56; S, 6.36 実測値 (%): C, 64.27; H, 6.69; N, 5.54; S, 6.37
I c - 0 4	mp 105-107 °C; ¹ H-NMR (CDCl ₃) δ 1.02 (1H, m), 1.20-1.70 (12H, m), 2.00 (1H, m), 2.49 (1H, br s), 3.47-3.58 (2H, m), 3.91 (1H, m), 4.04 (2H, s), 6.07 (1H, d, J = 7.2 Hz), 7.34 (1H, dd, J = 3.0, 5.1 Hz), 7.37 (1H, dd, J = 1.5, 5.1 Hz), 7.88 (1H, dd, J = 1.5, 3.0 Hz); IR (Nujol) 3354, 3093, 2553, 1730, 1612, 1556, 1240, 1138 cm ⁻¹ ; [α] _D ²⁵ +46.6±0.9° (c=1.009, MeOH); 元素分析 (C ₁₈ H ₂₅ NO ₄ S) 計算値 (%): C, 61.51; H, 7.17; N, 3.99; S, 9.12 実測値 (%): C, 61.45; H, 7.32; N, 4.06; S, 9.10
I c - 1 7	mp 149-151 °C; ¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.21-1.72 (12H, m), 2.02 (1H, m), 2.57 (1H, br s), 3.47-3.58 (2H, m), 3.98 (1H, m), 4.03 (2H, s), 6.14 (1H, d, J = 7.8 Hz), 7.40 (1H, d, J = 7.8 Hz), 7.44 (1H, dt, J = 1.2, 7.5 Hz), 7.46 (1H, dt, J = 1.2, 7.5 Hz), 7.87 (1H, dd, J = 1.2, 7.5 Hz), 7.88 (1H, s), 8.29 (1H, dd, J = 1.2, 7.5 Hz); IR (Nujol) 3296, 2528, 1726, 1604, 1558, 1240, 1228, 1140 cm ⁻¹ ; [α] _D ²⁵ +38.1±0.8° (c=1.013, MeOH); 元素分析 (C ₂₂ H ₂₇ NO ₄ S) 計算値 (%): C, 65.18; H, 6.78; N, 3.49; S, 7.99 実測値 (%): C, 65.62; H, 7.06; N, 3.51; S, 7.78

表 3 8

化合物番号	物性値
I c - 1 9	mp 145-147 °C; ¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.21-1.33 (2H, m), 1.40-1.71 (10H, m), 2.01 (1H, m), 2.48 (3H, s), 2.56 (1H, br s), 3.47-3.58 (2H, m), 3.97 (1H, m), 4.03 (2H, s), 6.12 (1H, d, J = 7.8 Hz), 7.28 (1H, m), 7.65 (1H, m), 7.78 (1H, s), 8.15 (1H, d, J = 8.4 Hz); IR (Nujol) 3288, 2521, 1724, 1601, 1560, 1225, 1138 cm ⁻¹ ; [α] _D ²⁵ +36.8±0.8° (c=1.008, MeOH) 元素分析 (C ₂₃ H ₂₉ NO ₄ S) 計算値 (%): C, 66.48; H, 7.03; N, 3.37; S, 7.72 実測値 (%): C, 66.33; H, 7.03; N, 3.30; S, 7.43
I c - 2 0	mp 135-136 °C; ¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.21-1.72 (12H, m), 2.02 (1H, m), 2.49 (3H, s), 2.57 (1H, br s), 3.48-3.59 (2H, m), 3.97 (1H, m), 4.03 (2H, s), 6.12 (1H, d, J = 7.5 Hz), 7.23 (1H, dd, J = 1.5, 8.4 Hz), 7.74 (1H, d, J = 8.4 Hz), 7.83 (1H, s), 8.12 (1H, d, J = 1.5 Hz); IR (Nujol) 3384, 3361, 2546, 1736, 1718, 1616, 1533, 1225, 1140 cm ⁻¹ ; [α] _D ²⁵ +32.4±0.7° (c=1.003, MeOH); 元素分析 (C ₂₃ H ₂₉ NO ₄ S) 計算値 (%): C, 66.48; H, 7.03; N, 3.37; S, 7.72 実測値 (%): C, 66.31; H, 7.32; N, 3.34; S, 7.60
I c - 2 2	mp 76-79 °C; ¹ H-NMR (CDCl ₃ -CD ₃ OD) δ 1.07 (1H, m), 1.20-1.32 (2H, m), 1.34-1.70 (10H, m), 2.00 (1H, m), 2.57 (1H, br s), 3.44-3.55 (2H, m), 3.88 (1H, m), 4.00 (2H, s), 6.43 (1H, d, J = 7.8 Hz), 6.97 (1H, dd, J = 2.4 and 8.7 Hz), 7.25 (1H, d, J = 2.4 Hz), 7.65 (1H, s), 8.06 (1H, d, J = 8.7 Hz); IR (CHCl ₃) 3599, 3437, 1780, 1649, 1603, 1516, 1124 cm ⁻¹ ; [α] _D ²⁵ +36.4±0.8° (c=1.013, MeOH) 元素分析 (C ₂₂ H ₂₇ NO ₅ S·0.6H ₂ O) 計算値 (%): C, 61.69; H, 6.64; N, 3.27; S, 7.49 実測値 (%): C, 61.58; H, 6.37; N, 3.54; S, 7.48
I c - 2 3	mp 149-151 °C; ¹ H-NMR (CDCl ₃) δ 1.08 (1H, m), 1.21-1.86 (12H, m), 1.99 (1H, m), 2.22 (2H, br s), 2.56 (1H, m), 3.53 (2H, t, J = 6.0 Hz), 3.92 (1H, m), 4.03 (2H, s), 6.31 (1H, d, J = 7.2 Hz), 7.00 (1H, dd, J = 2.1, 8.7 Hz), 7.67 (1H, d, J = 8.7 Hz), 7.72 (1H, d, J = 2.4 Hz), 7.83 (1H, s); IR (Nujol) 3313, 3104, 2636, 1743, 1626, 1599, 1552, 1439, 1248, 1190, 1153, 1124 cm ⁻¹ ; [α] _D ²⁶ +33.6±0.7° (c=1.002%, MeOH); 元素分析 (C ₂₂ H ₂₇ NO ₅ S) 計算値 (%): C, 63.29; H, 6.52; N, 3.35; S, 7.68 実測値 (%): C, 62.99; H, 6.66; N, 3.39; S, 7.57
I c - 2 8	mp 149-151 °C; ¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.21-1.72 (12H, m), 2.03 (1H, m), 2.56 (1H, br s), 3.48-3.60 (2H, m), 3.95 (1H, m), 4.04 (2H, s), 6.11 (1H, d, J = 8.1 Hz), 7.16 (1H, dt, J = 2.4, 8.7 Hz), 7.78 (1H, dd, J = 4.8, 8.7 Hz), 7.92 (1H, s), 8.05 (1H, dd, J = 2.4, 9.9 Hz); IR (Nujol) 3384, 3361, 2546, 1736, 1718, 1616, 1533, 1225, 1140 cm ⁻¹ ; [α] _D ²⁵ +35.6±0.8° (c=1.014, MeOH); 元素分析 (C ₂₂ H ₂₆ FNO ₄ S) 計算値 (%): C, 62.99; H, 6.25; F, 4.53; N, 3.34; S, 7.64 実測値 (%): C, 62.84; H, 6.51; F, 4.44; N, 3.41; S, 7.40
I c - 3 4	mp 154-157 °C; ¹ H-NMR (CDCl ₃) δ 1.09 (1H, m), 1.24-1.72 (12H, m), 2.04 (1H, m), 2.59 (1H, br s), 3.47-3.58 (2H, m), 4.02 (1H, m), 4.02 (2H, s), 6.42 (1H, d, J = 7.5 Hz), 7.38 (1H, d, J = 5.4 Hz), 7.43 (1H, d, J = 7.5 Hz), 7.59 (1H, d, J = 5.4 Hz), 7.61 (1H, d, J = 7.5 Hz), 7.96 (1H, dd, J = 0.9, 7.5 Hz); IR (Nujol) 3288, 2540, 1726, 1614, 1577, 1554, 1319, 1244, 1225, 1138 cm ⁻¹ ; [α] _D ²⁵ +39.8±0.8° (c=1.017, MeOH); 元素分析 (C ₂₂ H ₂₇ NO ₄ S) 計算値 (%): C, 65.81; H, 6.78; N, 3.49; S, 7.99 実測値 (%): C, 65.53; H, 6.94; N, 3.52; S, 7.76

表 3 9

化合物番号	物性値
I c - 3 9	¹ H-NMR (CDCl ₃) δ 1.10 (1H, m), 1.25-1.71 (12H, m), 2.03 (1H, m), 2.58 (1H, br s), 3.49-3.56 (2H, m), 3.98 (3H, s), 4.02 (2H, s), 4.03 (1H, m), 6.40 (1H, d, J = 8.4 Hz), 6.42 (2H, s), 7.42 (1H, t, J = 7.5 Hz), 7.66 (1H, d, J = 7.5 Hz), 7.93 (1H, d, J = 7.5 Hz); IR (CHCl ₃) 3451, 1780, 1732, 1649, 1508, 1373, 1220, 1151 cm ⁻¹ ; [α] _D ²⁴ +37.0±0.8° (c=1.008, MeOH); 元素分析 (C ₂₃ H ₂₉ NO ₅ S·0.3H ₂ O) 計算値 (%): C, 63.22; H, 6.83; N, 3.21; S, 7.34 実測値 (%): C, 63.26; H, 6.78; N, 3.23; S, 7.17
I c - 4 9	¹ H-NMR (CDCl ₃) δ 1.06 (1H, m), 1.29-1.36 (2H, m), 1.36-1.74 (10H, m), 2.03 (1H, m), 2.53 (1H, m), 3.45 (3H, s), 3.52 (2H, dt, J = 6.3, 1.5 Hz), 4.00 (1H, m), 4.02 (2H, s), 4.79 (2H, s), 6.07 (1H, d, J = 7.8 Hz), 7.33-7.40 (2H, m), 7.77 (1H, dd, J = 6.9, 2.1 Hz), 8.16 (1H, s); IR (CHCl ₃) 3440, 2829, 1652, 1573, 1509, 1226, 1205, 1124 cm ⁻¹ ; [α] _D ^{25.0} +33.3±0.7° (c=1.016, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₆) 計算値 (%): C, 67.11; H, 7.27; N, 3.26 実測値 (%): C, 66.82; H, 7.39; N, 3.32
I c - 5 1	¹ H-NMR (CDCl ₃ -CD ₃ OD) δ 1.08 (1H, m), 1.25-1.28 (2H, m), 1.37-1.62 (10H, m), 1.99 (1H, d, J = 3.3 Hz), 2.54 (1H, s), 3.45-3.49 (2H, m), 3.87 (1H, m), 4.00 (2H, s), 6.44 (1H, d, J = 7.8 Hz), 6.88 (1H, dd, J = 2.1, 8.7 Hz), 6.97 (1H, d, J = 2.1 Hz), 7.60 (1H, d, J = 8.7 Hz), 8.02 (1H, s); IR (KBr) 3365, 3140, 1734, 1628, 1560, 1527, 1493, 1440, 1363, 1279, 1220, 1136, 1124 cm ⁻¹ ; [α] _D ²⁷ +29.1±0.7° (c=1.016, MeOH); 元素分析 (C ₂₂ H ₂₇ NO ₆ ·0.5H ₂ O) 計算値 (%): C, 64.38; H, 6.88; N, 3.41 実測値 (%): C, 64.39; H, 6.95; N, 3.66
I c - 5 2	¹ H-NMR (CDCl ₃ -CD ₃ OD) δ 1.07 (1H, m), 1.24-1.30 (3H, m), 1.45-1.49 (5H, m), 1.59-1.65 (4H, m), 2.00 (1H, d, J = 3.3 Hz), 2.59 (1H, s), 3.52 (2H, t, J = 6.0 Hz), 3.89 (1H, m), 4.00 (1H, d, J = 16.5 Hz), 4.06 (1H, d, J = 16.5 Hz), 6.14 (1H, d, J = 8.1 Hz), 6.90 (1H, dd, J = 2.1, 9.0 Hz), 7.34 (1H, d, J = 2.1 Hz), 7.36 (1H, d, J = 9.0 Hz), 8.06 (1H, s); IR (CHCl ₃) 3488, 3267, 1730, 1647, 1620, 1558, 1514, 1468, 1169, 1134 cm ⁻¹ ; [α] _D ²⁷ +25.0±0.7° (c=1.003, MeOH); 元素分析 (C ₂₂ H ₂₇ NO ₆ ·0.3H ₂ O) 計算値 (%): C, 64.95; H, 6.84; N, 3.44 実測値 (%): C, 64.84; H, 6.96; N, 3.62
I c - 5 4	¹ H-NMR (CDCl ₃) δ 1.04 (1H, m), 1.25-1.32 (2H, m), 1.43-1.68 (10H, m), 2.03 (1H, m), 2.53 (1H, m), 3.53 (2H, t, J = 6.6 Hz), 3.96 (1H, m), 4.04 (2H, s), 6.04 (1H, d, J = 8.1 Hz), 7.09-7.16 (1H, m), 7.25 (1H, dd, J = 8.4, 2.4 Hz), 7.84 (1H, dd, J = 8.4, 5.7 Hz), 8.10 (1H, s); IR (CHCl ₃) 3440, 2875, 1656, 1563, 1506, 1224, 1216, 1205 cm ⁻¹ ; [α] _D ^{26.0} +27.6±0.7° (c=1.018, MeOH); 元素分析 (C ₂₂ H ₂₆ FNO ₅ ·0.6H ₂ O) 計算値 (%): C, 63.79; H, 6.62; F, 4.59; N, 3.38 実測値 (%): C, 63.48; H, 6.49; F, 4.47; N, 3.59
I c - 6 5	mp 148-149 °C; ¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.27-1.30 (2H, m), 1.41-1.52 (6H, m), 1.59-1.71 (4H, m), 2.01 (1H, d, J = 3.3 Hz), 2.45 (1H, s), 3.53 (2H, dt, J = 1.5, 6.3 Hz), 3.94 (1H, m), 4.07 (2H, s), 6.13 (1H, d, J = 8.1 Hz), 6.78 (1H, d, J = 1.5 Hz), 6.98 (1H, d, J = 5.1 Hz), 7.23 (1H, d, J = 5.1 Hz), 10.27 (1H, s); IR (KBr) 3367, 3292, 3111, 2758, 2636, 2544, 1712, 1601, 1574, 1510, 1458, 1325, 1250, 1225, 1138 cm ⁻¹ ; [α] _D ²⁵ +66.6±1.1° (c=1.008, MeOH); 元素分析 (C ₂₀ H ₂₆ N ₂ O ₄ S·0.1H ₂ O) 計算値 (%): C, 61.23; H, 6.68; N, 7.14; S, 8.17 実測値 (%): C, 61.20; H, 6.79; N, 7.25; S, 8.25

表 4 0

化合物番号	物性値
I c - 6 6	mp 143-144 °C; $^1\text{H-NMR}$ (CDCl_3) δ 1.05 (1H, m), 1.24-1.30 (2H, m), 1.38-1.52 (6H, m), 1.59-1.67 (4H, m), 2.01 (1H, d, J = 3.0 Hz), 2.48 (1H, s), 3.52 (2H, t, J = 6.3 Hz), 3.94 (1H, m), 4.07 (2H, s), 6.12 (1H, d, J = 8.4 Hz), 6.73 (1H, d, J = 1.8 Hz), 6.88 (1H, d, J = 5.4 Hz), 6.93 (1H, d, J = 5.4 Hz), 10.80 (1H, s); IR (KBr) 3348, 3105, 2754, 2648, 2551, 1738, 1587, 1556, 1520, 1437, 1425, 1223, 1146 cm^{-1} ; $[\alpha]_D^{25} +50.5 \pm 0.9^\circ$ ($c=1.014$, MeOH); 元素分析 ($\text{C}_{20}\text{H}_{26}\text{N}_2\text{O}_4\text{S} \cdot 0.1\text{H}_2\text{O}$) 計算値 (%): C, 61.23; H, 6.68; N, 7.14; S, 8.17 実測値 (%): C, 61.13; H, 6.79; N, 7.17; S, 8.07
I c - 8 1	$^1\text{H-NMR}$ ($\text{CDCl}_3\text{-CD}_3\text{OD}$) δ 1.06 (1H, m), 1.20-1.28 (2H, m), 1.34-1.49 (6H, m), 1.55-1.63 (4H, m), 1.95 (1H, d, J = 3.6 Hz), 2.42 (3H, s), 2.56 (1H, brs), 3.48 (2H, t, J = 6.5 Hz), 3.84 (1H, br s), 4.01 (2H, s), 6.37 (1H, d, J = 7.5 Hz), 6.71 (1H, d, J = 2.1 Hz), 7.16 (1H, d, J = 2.1 Hz), 8.10 (1H, s); IR (KBr) 3361, 3134, 1734, 1635, 1560, 1529, 1458, 1415, 1362, 1288, 1198, 1165, 1136 cm^{-1} ; $[\alpha]_D^{24} +28.1 \pm 0.7^\circ$ ($c=1.012$, MeOH) 元素分析 ($\text{C}_{23}\text{H}_{29}\text{NO}_6 \cdot 0.5\text{H}_2\text{O}$) 計算値 (%): C, 65.08; H, 7.12; N, 3.30 実測値 (%): C, 65.14; H, 7.06; N, 3.43
I c - 8 4	mp 133-135 °C; $^1\text{H-NMR}$ (CDCl_3) δ 1.09 (1H, m), 1.22-1.70 (12H, m), 2.01 (1H, d, J = 3.3 Hz), 2.55 (1H, br s), 3.50-3.68 (2H, m), 3.96-4.09 (3H, m), 4.21-4.35 (2H, m), 6.11 (1H, m), 7.64 (1H, dd, J = 1.8, 8.7 Hz), 7.77 (1H, d, J = 8.7 Hz), 7.85 (1H, br s), 8.18 (1H, br s); IR (Nujol) 3323, 2924, 1736, 1599, 1562, 1514, 1448, 1281, 1217, 1142 cm^{-1} ; $[\alpha]_D^{24} +21.7 \pm 0.6^\circ$ ($c=1.017\%$, MeOH); 元素分析 ($\text{C}_{25}\text{H}_{32}\text{N}_2\text{O}_6\text{S}$) 計算値 (%): C, 61.45; H, 6.60; N, 5.73; S, 6.56 実測値 (%): C, 61.26; H, 6.41; N, 5.70; S, 6.48
I c - 8 6	$^1\text{H-NMR}$ (CDCl_3) δ 1.16-1.69 (13H, m), 1.92 (1H, br s), 2.39 (1H, br s), 3.41 (2H, t, J = 5.4 Hz), 3.68 (1H, m), 3.92 (2H, s), 5.83 (2H, s), 7.65 (1H, dd, J = 2.1; 8.7 Hz), 7.83 (1H, d, J = 8.7 Hz), 8.23 (1H, d, J = 8.4 Hz), 8.25 (1H, s), 8.27 (1H, d, J = 2.1 Hz), 8.77 (1H, s), 12.53 (1H, br s); IR (Nujol) 3332, 2924, 1724, 1680, 1631, 1572, 1529, 1444, 1375, 1350, 1244, 1128 cm^{-1} ; $[\alpha]_D^{24} +23.6 \pm 0.6^\circ$ ($c=1.014\%$, MeOH); 元素分析 ($\text{C}_{23}\text{H}_{29}\text{N}_3\text{O}_5\text{S} \cdot 0.4\text{H}_2\text{O}$) 計算値 (%): C, 59.18; H, 6.43; N, 9.00; S, 6.87 実測値 (%): C, 59.38; H, 6.48; N, 8.87; S, 6.48
I c - 9 5	mp 118-120 °C; $^1\text{H-NMR}$ ($\text{CDCl}_3\text{-DMSO-d}_6$) δ 1.16 (1H, m), 1.26 (3H, t, J = 7.2 Hz), 1.27-1.66 (12H, m), 2.01 (1H, m), 2.59 (1H, m), 3.52 (2H, m), 3.90 (1H, m), 4.00 (2H, s), 4.14 (2H, q, J = 7.2 Hz), 4.48 (2H, br s), 5.62 (1H, br s), 6.68 (1H, br s), 7.38 (1H, br d, J = 8.7 Hz), 7.81 (1H, d, J = 8.7 Hz), 7.96 (1H, s), 8.31 (1H, br s); IR (CHCl_3) 3442, 1724, 1655, 1516, 1477, 1435, 1225, 1217, 1132, 1059 cm^{-1} ; $[\alpha]_D^{23} +25.9 \pm 0.7^\circ$ ($c=1.012$, MeOH) 元素分析 ($\text{C}_{26}\text{H}_{34}\text{N}_2\text{O}_6\text{S} \cdot 0.2\text{H}_2\text{O}$) 計算値 (%): C, 61.69; H, 6.85; N, 5.53; S, 6.33 実測値 (%): C, 61.71; H, 6.73; N, 5.48; S, 6.32

表 4 1

化合物番号	物性値
I c - 9 9	¹ H-NMR (d_6 -DMSO) δ 1.19-1.68 (13H, m), 1.93 (1H, br s), 2.43 (1H, br s), 3.41 (2H, t, J = 6.6 Hz), 3.49 (2H, s), 3.71 (1H, m), 3.92 (2H, s), 7.38 (1H, br s), 7.87 (1H, dd, J = 1.8, 8.7 Hz), 8.07 (1H, br s), 8.09 (1H, d, J = 8.4 Hz), 8.35 (1H, d, J = 6.6 Hz), 8.39 (1H, s), 8.85 (1H, d, J = 1.2 Hz); IR (Nujol) 3340, 3251, 2927, 1741, 1655, 1624, 1539, 1458, 1377, 1244, 1134 cm ⁻¹ ; $[\alpha]_D^{25}$ +24.2±0.6° (c=1.009%, MeOH); 元素分析 ($C_{23}H_{28}N_2O_6S \cdot 0.5H_2O$) 計算値 (%): C, 60.91; H, 6.44; N, 6.18; S, 7.07 実測値 (%): C, 60.89; H, 6.57; N, 5.80; S, 6.91
I c - 1 1 5	mp 133-135 °C; ¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.21-1.34 (2H, m), 1.40-1.72 (10H, m), 2.02 (1H, m), 2.47 (3H, s), 2.53 (3H, s), 2.57 (1H, br s), 3.48-3.59 (2H, m), 3.97 (1H, m), 4.03 (2H, s), 6.12 (1H, d, J = 7.5 Hz), 7.05 (1H, s), 7.84 (1H, s), 7.94 (1H, s); IR (Nujol) 3344, 2540, 1730, 1614, 1539, 1219, 1142 cm ⁻¹ ; $[\alpha]_D^{26}$ +34.7±0.7° (c=1.012, MeOH) 元素分析 ($C_{23}H_{29}NO_4S$) 計算値 (%): C, 67.10; H, 7.27; N, 3.26; S, 7.64 実測値 (%): C, 66.81; H, 7.50; N, 3.18; S, 7.32
I c - 1 2 8	¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.19-1.68 (12H, m), 1.99 (1H, br s), 2.57 (1H, br s), 3.48 (2H, t, J = 6.3 Hz), 3.49 (2H, s), 3.95 (1H, m), 3.99 (2H, s), 4.85 (2H, br s), 6.27 (1H, d, J = 8.1 Hz), 7.47 (1H, d, J = 9.9 Hz), 7.76 (1H, s), 8.07 (1H, d, J = 8.4 Hz); IR (CHCl ₃) 3435, 3192, 2954, 1730, 1637, 1520, 1435, 1275 cm ⁻¹ ; $[\alpha]_D^{26}$ +29.9±0.7° (c=1.011%, MeOH); 元素分析 ($C_{22}H_{26}NO_5SF \cdot 0.4H_2O$) 計算値 (%): C, 59.20; H, 6.14; N, 3.14; S, 7.18; F, 4.26 実測値 (%): C, 59.16; H, 5.90; N, 3.05; S, 7.09; F, 4.14
I c - 1 2 9	mp 135-137 °C; ¹ H-NMR (CDCl ₃) δ 1.05 (1H, m), 1.22-1.69 (12H, m), 2.04 (1H, br s), 2.56 (1H, br s), 3.54 (2H, dt, J = 1.5, 6.6 Hz), 3.96 (1H, m), 3.98 (3H, s), 4.03 (2H, s), 6.12 (1H, d, J = 6.9 Hz), 7.52 (1H, d, J = 10.5 Hz), 7.77 (1H, s), 8.04 (1H, d, J = 8.4 Hz); IR (Nujol) 3334, 2924, 1745, 1618, 1535, 1498, 1462, 1415, 1281, 1259 cm ⁻¹ ; $[\alpha]_D^{24}$ +23.6±0.6° (c=1.014%, MeOH); 元素分析 ($C_{23}H_{28}NO_5SF$) 計算値 (%): C, 61.45; H, 6.28; N, 3.12; S, 7.13; F, 4.23 実測値 (%): C, 61.17; H, 6.33; N, 3.03; S, 7.04; F, 4.03
I c - 1 3 5	¹ H-NMR (CDCl ₃ -DMSO-d ₆) δ 1.17 (1H, m), 1.26-1.66 (12H, m), 2.00 (1H, m), 2.56 (1H, m), 3.53 (2H, t, J = 6.3 Hz), 3.86 (1H, m), 4.01 (2H, s), 6.62 (1H, br d, J = 8.1 Hz), 7.40 (2H, br s), 7.96 (1H, s), 8.17 (1H, s); IR (nujol) 1726, 1633, 1556, 1303, 1252, 1176, 1130 cm ⁻¹ ; $[\alpha]_D^{24}$ +19.5±0.6° (c=1.009, MeOH)
I c - 1 4 0	mp 96-98 °C; ¹ H-NMR (DMSO-d ₆) δ 1.18-1.31 (8H, m), 1.49-1.56 (5H, m), 1.94 (1H, m), 2.38 (1H, br s), 3.40 (2H, t, J = 6.5 Hz), 3.47 (2H, s), 3.68 (1H, m), 3.93 (2H, s), 6.88 (1H, br s), 7.26 (1H, dd, J = 1.5 and 8.7 Hz), 7.50 (1H, br s), 7.54 (1H, d, J = 8.7 Hz), 7.94 (1H, d, J = 1.5 Hz), 8.12 (1H, d, J = 6.6 Hz), 8.59 (1H, s); IR (Nujol) 3386, 3276, 3195, 3064, 2549, 1747, 1697, 1666, 1624, 1560, 1128 cm ⁻¹ ; $[\alpha]_D^{26}$ +22.0±0.6° (c=1.006, MeOH) 元素分析 ($C_{24}H_{30}N_2O_6 \cdot 0.8H_2O$) 計算値 (%): C, 63.09; H, 6.97; N, 6.13 実測値 (%): C, 63.18; H, 6.98; N, 5.94

表 4 2

化合物番号	物性値
I c - 1 4 2	¹ H-NMR (CDCl ₃ -CD ₃ OD) δ 1.19 (1H, m), 1.26-1.31 (2H, m), 1.39-1.64 (10H, m), 1.98 (1H, m), 2.55 (1H, br s), 3.50 (2H, t, J = 6.3 Hz), 3.86 (1H, m), 4.01 (2H, s), 6.44 (1H, br s), 6.88 (1H, d, J = 7.2 Hz), 7.29 (1H, br s), 7.50 (1H, d, J = 8.4 Hz), 7.89 (1H, dd, J = 1.8 and 8.4 Hz), 8.22 (1H, s), 8.45 (1H, d, J = 1.8 Hz); IR (CHCl ₃) 3026, 3014, 2875, 1728, 1662, 1587, 1562, 1510, 1126 cm ⁻¹ ; [α] _D ²⁵ +19.6±0.6° (c=1.008, MeOH) 元素分析 (C ₂₃ H ₂₈ N ₂ O ₆ ·0.5H ₂ O) 計算値 (%): C, 63.14; H, 6.68; N, 6.40 實測値 (%): C, 63.02; H, 6.49; N, 6.35
I e - 3 4	¹ H-NMR (CDCl ₃) δ 1.08 (1H, m), 1.23-1.71 (12H, m), 2.03 (1H, d, J = 3.3 Hz), 2.60 (1H, br s), 2.63 (2H, t, J = 6.9 Hz), 3.18 (2H, br s), 4.03 (1H, m), 6.45 (1H, d, J = 7.5 Hz), 7.38 (1H, d, J = 5.7 Hz), 7.42 (1H, t, J = 7.5 Hz), 7.58 (1H, d, J = 5.4 Hz), 7.63 (1H, d, J = 6.9 Hz), 7.96 (1H, d, J = 7.8 Hz); IR (CHCl ₃) 3452, 2954, 1711, 1649, 1520, 1495, 1458, 1300, 1284 cm ⁻¹ ; [α] _D ²⁶ +38.1±1.6° (c=0.502%, MeOH); 元素分析 (C ₂₂ H ₂₇ NO ₃ S ₂ ·0.3H ₂ O) 計算値 (%): C, 62.47; H, 6.58; N, 3.31; S, 15.16 實測値 (%): C, 62.53; H, 6.63; N, 3.38; S, 15.16
I e - 4 9	¹ H-NMR (CDCl ₃) δ 1.07 (1H, m), 1.29-1.68 (12H, m), 2.01 (1H, m), 2.55 (1H, m), 2.64 (2H, t, J = 7.5 Hz), 3.18 (2H, s), 3.44 (3H, s), 3.99 (1H, m), 4.78 (2H, s), 6.12 (1H, d, J = 7.2 Hz), 7.33-7.40 (2H, m), 7.79 (1H, dd, J = 6.9, 1.8 Hz), 8.17 (1H, s); IR (CHCl ₃) 3440, 2670, 1710, 1650, 1573, 1562, 1509, 1425, 1297, 1238, 1224 cm ⁻¹ ; [α] _D ^{24.0} +33.2±0.7° (c=1.019, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₅ S·0.2H ₂ O) 計算値 (%): C, 64.18; H, 7.05; N, 3.12 實測値 (%): C, 64.11; H, 7.11; N, 3.24
I I a - 2 2	¹ H-NMR (CDCl ₃) δ 0.94 (1H, d, J = 10.2 Hz), 1.11 (3H, s), 1.23 (3H, s), 1.34-1.54 (6H, m), 1.65-1.89 (2H, m), 2.00 (1H, m), 2.13-2.39 (5H, m), 4.32 (1H, m), 5.75 (1H, dt, J = 15.9, 1.2 Hz), 6.22 (1H, d, J = 8.7 Hz), 6.98 (1H, dd, J = 2.1, 9.0 Hz), 6.99 (1H, td, J = 7.2, 15.9 Hz), 7.26 (1H, d, J = 2.1 Hz), 7.58 (1H, s), 8.08 (1H, d, J = 9.0 Hz); IR (KBr) 3300, 1695, 1603, 1522, 1468, 1417, 1236 cm ⁻¹ ; [α] _D ²⁶ +31.3±0.7° (c=1.000, MeOH); 元素分析 (C ₂₅ H ₃₁ NO ₄ S·0.4H ₂ O) 計算値 (%): C, 66.91; H, 7.14; N, 3.12; S, 7.14 實測値 (%): C, 66.81; H, 7.05; N, 3.13; S, 7.07
I I a - 2 3	mp 189-192 °C; ¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.2 Hz), 1.13 (3H, s), 1.25 (3H, s), 1.28-2.39 (14H, m), 4.31 (1H, m), 5.78 (1H, d, J = 15.6 Hz), 6.19 (1H, d, J = 9.6 Hz), 6.99 (1H, m), 7.01 (1H, dd, J = 8.7, 2.7 Hz), 7.66 (1H, d, J = 8.7 Hz), 7.67 (1H, s), 7.89 (1H, d, J = 2.7 Hz); IR (Nujol) 3199, 2683, 1684, 1635, 1599, 1525, 1437, 1304, 1286, 1225 cm ⁻¹ ; [α] _D ^{26.0} +26.8±0.7° (c=1.011, MeOH); 元素分析 (C ₂₅ H ₃₁ NO ₄ S·0.3H ₂ O) 計算値 (%): C, 68.00; H, 7.08; N, 3.17; S, 7.26 實測値 (%): C, 68.09; H, 6.94; N, 3.16; S, 7.18

表 4 3

化合物番号	物性値
I I a - 2 4	¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 9.9 Hz), 1.15 (3H, s), 1.27 (3H, s), 1.32-1.60 (6H, m), 1.66-1.90 (2H, m), 2.04 (1H, m), 2.17-2.43 (5H, m), 4.29 (1H, m), 5.79 (1H, d, J = 15.6 Hz), 6.49 (1H, d, J = 9.0 Hz), 6.93 (1H, dd, J = 2.7, 5.7 Hz), 7.02 (1H, td, J = 6.9, 15.6 Hz), 7.31 (1H, d, J = 2.7 Hz), 7.32 (1H, t, J = 5.7 Hz), 7.65 (1H, s), 12.09 (1H, s); IR (CHCl ₃) 3521, 3454, 2686, 1695, 1651, 1624, 1585, 1562, 1522, 1456, 1271 cm ⁻¹ ; [α] _D ²⁷ +29.4±0.7° (c=1.004, MeOH); 元素分析 (C ₂₅ H ₃₁ NO ₄ S·0.4H ₂ O) 計算値 (%): C, 66.91; H, 7.14; N, 3.12; S, 7.14 実測値 (%): C, 66.97; H, 7.01; N, 3.23; S, 7.17
I I a - 2 8	mp 172-174°C; ¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 9.9 Hz), 1.13 (3H, s), 1.25 (3H, s), 1.30-2.42 (14H, m), 4.31 (1H, m), 5.79 (1H, dt, J = 15.6, 1.5 Hz), 6.08 (1H, d, J = 9.3 Hz), 7.03 (1H, dt, J = 15.6, 7.2 Hz), 7.17 (1H, dt, J = 8.7, 2.7 Hz), 7.80 (1H, dd, J = 8.7, 5.1 Hz), 7.83 (1H, s), 8.07 (1H, dd, J = 10.2, 2.7 Hz); IR (Nujol) 3374, 2719, 1698, 1650, 1627, 1525, 1442, 1431 cm ⁻¹ ; [α] _D ^{24.0} +28.2±0.7° (c=1.012, MeOH); 元素分析 (C ₃₀ H ₃₇ NO ₄ S·1.1H ₂ O) 計算値 (%): 実測値 (%): C, 67.57; H, 6.50; N, 3.15; S, 7.22 実測値 (%): C, 67.35; H, 6.76; N, 3.26; S, 7.12
I I a - 3 4	mp 141-142°C; ¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 9.9 Hz), 1.16 (3H, s), 1.24 (3H, s), 1.29-2.42 (14H, m), 4.39 (1H, m), 5.77 (1H, d, J = 15.6 Hz), 6.43 (1H, d, J = 8.7 Hz), 7.01 (1H, dt, J = 15.6, 3.6 Hz), 7.38 (1H, d, J = 5.4 Hz), 7.43 (1H, t, J = 7.5 Hz), 7.54 (1H, d, J = 7.5 Hz), 7.59 (1H, d, J = 5.4 Hz), 7.96 (1H, d, J = 7.5 Hz); IR (Nujol) 3380, 2686, 1699, 1619, 1581, 1461, 1234, 1200 cm ⁻¹ ; [α] _D ^{25.0} +48.8±0.9° (c=1.009, MeOH); 元素分析 (C ₂₅ H ₃₁ NO ₃ S) 計算値 (%): C, 70.55; H, 7.34; N, 3.29; S, 7.53 実測値 (%): C, 70.35; H, 7.33; N, 3.31; S, 7.44
I I a - 5 1	mp 211-213 °C; ¹ H-NMR (CDCl ₃ -CD ₃ OD) δ 0.94 (1H, d, J = 9.9 Hz), 1.15 (3H, s), 1.24 (3H, s), 1.36-1.55 (6H, m), 1.70 (1H, m), 1.83 (1H, m), 2.02 (1H, m), 2.15-2.38 (5H, m), 4.29 (1H, m), 5.74 (1H, d, J = 15.6 Hz), 6.90 (1H, dd, J = 2.1, 8.7 Hz), 6.90 (1H, dt, J = 15.6, 6.9 Hz), 7.00 (1H, d, J = 2.1 Hz), 7.56 (1H, d, J = 8.7 Hz), 7.99 (1H, s); IR (KBr) 3425, 3255, 2600, 1938, 1685, 1626, 1605, 1579, 1522, 1442, 1265, 1146, 1128, 1107 cm ⁻¹ ; [α] _D ²⁷ +23.9±0.6° (c=1.004, MeOH); 元素分析 (C ₂₅ H ₃₁ NO ₅ ·0.1H ₂ O) 計算値 (%): C, 70.27; H, 7.36; N, 3.28 実測値 (%): C, 70.13; H, 7.34; N, 3.47
I I a - 5 2	mp 159-160 °C; ¹ H-NMR (CDCl ₃) δ 0.92 (1H, d, J = 9.9 Hz), 1.11 (3H, s), 1.21 (3H, s), 1.36-1.50 (6H, m), 1.63 (1H, m), 1.79 (1H, m), 1.98 (1H, s), 2.10-2.20 (4H, m), 2.30 (1H, s), 4.30 (1H, s), 5.69 (1H, d, J = 15.6 Hz), 6.20 (1H, d, J = 9.0 Hz), 6.91 (1H, dd, J = 2.4, 9.0 Hz), 6.94 (1H, dt, J = 15.6, 6.9 Hz), 7.33 (1H, d, J = 9.0 Hz), 7.56 (1H, d, J = 2.4 Hz), 7.98 (1H, s); IR (KBr) 3255, 2688, 1684, 1643, 1560, 1522, 1306, 1288, 1269, 1219, 1192, 1167, 1134 cm ⁻¹ ; [α] _D ²⁸ +21.8±0.6° (c=1.020, MeOH); 元素分析 (C ₂₅ H ₃₁ NO ₅) 計算値 (%): C, 70.57; H, 7.34; N, 3.29 実測値 (%): C, 70.41; H, 7.16; N, 3.34

表 4 4

化合物番号	物性値
III a - 54	¹ H-NMR (CDCl ₃) δ 0.95 (1H, d, J = 10.2 Hz), 1.14 (3H, s), 1.24 (3H, s), 1.32-1.57 (6H, m), 1.69-1.88 (2H, m), 2.02 (1H, m), 2.16-2.24 (4H, m), 2.35 (1H, m), 4.32 (1H, m), 5.78 (1H, dt, J = 15.3, 1.5 Hz), 6.02 (1H, d, J = 9.0 Hz), 7.02 (1H, dt, J = 15.3, 6.9 Hz), 7.09-7.15 (1H, m), 7.26 (1H, dd, J = 8.7, 2.1 Hz), 7.82 (1H, dd, J = 8.7, 5.4 Hz), 8.05 (1H, s); IR (CHCl ₃) 3446, 2680, 1695, 1652, 1257, 1220, 1214 cm ⁻¹ ; [α] _D ^{25.0} +23.3±0.6° (c=1.008, MeOH); 元素分析 (C ₂₅ H ₃₀ FNO ₄ ·0.4H ₂ O) 計算値 (%): C, 69.07; H, 7.14; F, 4.37; N, 3.22 實測値 (%): C, 68.82; H, 6.89; F, 4.49; N, 3.34
III a - 66	¹ H-NMR (CDCl ₃) δ 0.95 (1H, d, J = 10.2 Hz), 1.14 (3H, s), 1.24 (3H, s), 1.40-1.55 (6H, m), 1.70-1.85 (2H, m), 2.00 (1H, br s), 2.12-2.37 (5H, m), 4.30 (1H, m), 5.80 (1H, d, J = 15.6 Hz), 6.17 (1H, d, J = 9.0 Hz), 6.68 (1H, d, J = 2.1 Hz), 6.88 (1H, d, J = 5.4 Hz), 6.94 (1H, d, J = 5.4 Hz), 7.03 (1H, dt, J = 15.6 and 6.9 Hz), 11.22 (1H, s); IR (CHCl ₃) 3448, 3188, 1693, 1637, 1543, 1518, 1471, 1421, 1396, 1385, 1257, 1232 cm ⁻¹ ; [α] _D ²⁶ +18.2±0.6° (c=1.005, MeOH) 元素分析 (C ₂₃ H ₃₀ N ₂ O ₃ S·0.2H ₂ O) 計算値 (%): C, 66.06; H, 7.33; N, 6.70; S, 7.66 實測値 (%): C, 66.19; H, 7.06; N, 6.83; S, 7.35
III a - 81	mp 167-168 °C; ¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.2 Hz), 1.13 (3H, s), 1.23 (3H, s), 1.33-1.54 (6H, m), 1.64 (1H, m), 1.80 (1H, m), 1.99 (1H, br s), 2.12-2.38 (5H, m), 2.44 (3H, s), 4.31 (1H, m), 5.71 (1H, d, J = 15.6 Hz), 6.08 (1H, d, J = 9.6 Hz), 6.72 (1H, d, J = 2.1 Hz), 6.97 (1H, dt, J = 15.6 and 6.9 Hz), 7.30 (1H, d, J = 2.1 Hz), 7.97 (1H, s); IR (KBr) 3276, 2686, 1693, 1643, 1610, 1562, 1518, 1460, 1417, 1385, 1367, 1284, 1200, 1136 cm ⁻¹ ; [α] _D ²⁴ +23.0±0.6° (c=1.020, MeOH) 元素分析 (C ₂₆ H ₃₃ NO ₅ ·0.2H ₂ O) 計算値 (%): C, 70.47; H, 7.60; N, 3.16 實測値 (%): C, 70.50; H, 7.47; N, 3.35
III a - 94	¹ H-NMR (CDCl ₃) δ 0.97 (1H, d, J = 10.2 Hz), 1.14 (3H, s), 1.25 (3H, s), 1.42-1.56 (6H, m), 1.70-1.88 (2H, m), 2.00 (1H, m), 2.03 (3H, s), 2.18-2.38 (5H, m), 4.31 (1H, m), 4.55 (2H, m), 5.78 (1H, d, J = 15.6 Hz), 6.18-6.23 (2H, m), 6.98 (1H, dt, J = 15.6, 6.9 Hz), 7.34 (1H, dd, J = 1.8, 8.4 Hz), 7.77 (1H, s), 7.79 (1H, d, J = 8.4 Hz), 8.31 (1H, br s); IR (CHCl ₃) 3446, 1695, 1655, 1514, 1471, 1435, 1369, 1222, 1215 cm ⁻¹ ; [α] _D ²⁴ +23.4±0.6° (c=1.006, MeOH) 元素分析 (C ₂₈ H ₃₆ N ₂ O ₄ S·0.4H ₂ O) 計算値 (%): C, 66.74; H, 7.36; N, 5.56; S, 6.36 實測値 (%): C, 66.79; H, 7.23; N, 5.51; S, 6.39
III a - 99	mp 130-133 °C; 0.85 (1H, d, J = 9.6 Hz), 1.12 and 1.19 (3H, s), 1.25-2.38 (12H, m), 3.99 (1H, m), 5.72 (1H, d, J = 15.6 Hz), 6.79 (1H, dt, J = 6.6, 15.6 Hz), 7.38 (1H, s), 7.87 (1H, dd, J = 1.8, 8.7 Hz), 8.05-8.13 (3H, m), 8.31 (1H, s), 8.82 (1H, d, J = 1.2 Hz); IR (Nujol) 3375, 3178, 2918, 1703, 1653, 1626, 1527, 1460, 1398, 1255 cm ⁻¹ ; [α] _D ²⁵ +27.9±0.7° (c=1.011%, MeOH); 元素分析 (C ₂₆ H ₃₂ N ₂ O ₄ S·0.7AcOEt) 計算値 (%): C, 65.23; H, 7.15; N, 5.28; S, 6.05 實測値 (%): C, 64.99; H, 6.91; N, 5.52; S, 6.18

表 4 5

化合物番号	物性値
I I b - 2 8	¹ H-NMR (CDCl ₃) δ 0.97 (1H, d, J = 10.2 Hz), 1.13 (3H, s), 1.26 (3H, s), 1.59 (1H, ddd, J = 2.7, 5.7, 13.5 Hz), 1.95-2.57 (7H, m), 4.06-4.27 (4H, m), 4.33 (1H, m), 5.60-5.80 (2H, m), 6.18 (1H, d, J = 9.0 Hz), 7.17 (1H, dt, J = 3.0, 9.0 Hz), 7.79 (1H, dd, J = 4.8, 8.7 Hz), 7.89 (1H, s), 8.04 (1H, dd, J = 2.7, 9.9 Hz); IR (CHCl ₃) 3442, 3022, 1734, 1651, 1603, 1564, 1516, 1496, 1471, 1433, 1244, 1119 cm ⁻¹ ; [α] _D ²⁵ +43.8±1.4° (c=1.003%, MeOH); 元素分析 (C ₂₄ H ₂₈ NO ₄ S·0.4H ₂ O) 計算値 (%): C, 63.67; H, 6.41; F, 4.20; N, 3.09; S, 7.08 実測値 (%): C, 63.73; H, 6.35; F, 4.11; N, 3.20; S, 7.07
I I c - 0 4	mp 132-134 °C; ¹ H-NMR (CDCl ₃) δ 0.94 (1H, d, J = 9.9 Hz), 1.13 (3H, s), 1.23 (3H, s), 1.40-1.86 (8H, m), 2.00 (1H, m), 2.13 (1H, m), 2.18-2.37 (2H, m), 3.53 (2H, t, J = 6.0 Hz), 4.04 (2H, s), 4.28 (1H, m), 6.14 (1H, d, J = 9.0 Hz), 7.31-7.36 (2H, m), 7.85 (1H, m); IR (Nujol) 3373, 3105, 2528, 1736, 1601, 1556, 1215, 1138 cm ⁻¹ ; [α] _D ²⁵ +22.7±0.6° (c=1.004, MeOH); 元素分析 (C ₂₀ H ₂₈ NO ₄ S) 計算値 (%): C, 63.30; H, 7.70; N, 3.69; S, 8.45 実測値 (%): C, 63.10; H, 7.73; N, 3.74; S, 8.34
I I c - 1 7	mp 125-126 °C; ¹ H-NMR (CDCl ₃) δ 0.97 (1H, d, J = 10.2 Hz), 1.13 (3H, s), 1.25 (3H, s), 1.40-1.93 (8H, m), 2.02 (1H, m), 2.17-2.41 (3H, m), 3.53 (2H, t, J = 6.3 Hz), 4.02 (2H, s), 4.36 (1H, m), 6.21 (1H, d, J = 9.0 Hz), 7.37-7.49 (2H, m), 7.84 (1H, s), 7.87 (1H, m), 8.30 (1H, m); IR (Nujol) 3282, 2540, 1724, 1604, 1554, 1246, 1228, 1130, 1109 cm ⁻¹ ; [α] _D ²⁵ +29.6±0.7° (c=1.013, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₄ S) 計算値 (%): C, 67.10; H, 7.27; N, 3.26; S, 7.46 実測値 (%): C, 66.88; H, 7.10; N, 3.30; S, 7.25
I I c - 1 9	¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.2 Hz), 1.13 (3H, s), 1.24 (3H, s), 1.40-1.92 (8H, m), 2.01 (1H, m), 2.17-2.40 (3H, m), 2.48 (3H, s), 3.47-3.58 (2H, m), 3.97 (1H, m), 4.02 (2H, s), 4.34 (1H, m), 6.21 (1H, d, J = 9.3 Hz), 7.28 (1H, m), 7.65 (1H, m), 7.75 (1H, s), 8.16 (1H, d, J = 8.4 Hz); IR (CHCl ₃) 3442, 2567, 1780, 1732, 1649, 1514, 1242, 1134 cm ⁻¹ ; [α] _D ²⁵ +28.7±0.8° (c=1.003, MeOH) 元素分析 (C ₂₅ H ₃₃ NO ₄ S·0.4H ₂ O) 計算値 (%): C, 66.61; H, 7.56; N, 3.11; S, 7.11 実測値 (%): C, 66.67; H, 7.37; N, 3.03; S, 6.88
I I c - 2 0	mp 87-90 °C; ¹ H-NMR (CDCl ₃) δ 0.97 (1H, d, J = 10.5 Hz), 1.14 (3H, s), 1.26 (3H, s), 1.40-1.92 (8H, m), 2.02 (1H, m), 2.18-2.41 (3H, m), 2.49 (3H, s), 3.54 (2H, t, J = 6.0 Hz), 4.02 (2H, s), 4.35 (1H, m), 6.20 (1H, d, J = 8.4 Hz), 7.23 (1H, dd, J = 0.6, 8.4 Hz), 7.74 (1H, d, J = 8.4 Hz), 7.80 (1H, s), 8.11 (1H, d, J = 0.6 Hz); IR (Nujol) 3411, 3357, 1736, 1604, 1531, 1219, 1134 cm ⁻¹ ; [α] _D ²⁵ +27.4±0.7° (c=1.013, MeOH); 元素分析 (C ₂₅ H ₃₃ NO ₄ S·0.3H ₂ O) 計算値 (%): C, 66.87; H, 7.54; N, 3.12; S, 7.14 実測値 (%): C, 66.90; H, 7.50; N, 3.23; S, 7.05

表 4 6

化合物番号	物性値
I I c - 2 1	mp 183-185 °C; $^1\text{H-NMR}$ ($\text{d}_6\text{-DMSO}$) δ 0.84 (1H, d, $J = 9.6$ Hz), 1.11 (3H, s), 1.18 (3H, s), 1.22-1.60 (7H, m), 1.93 (1H, m), 2.10-2.34 (6H, m), 3.41 (2H, t, $J = 6.3$ Hz), 3.92 (2H, s), 3.97 (1H, m), 6.79 (1H, d, $J = 7.8$ Hz), 7.24 (1H, t, $J = 7.8$ Hz), 7.77 (1H, d, $J = 7.8$ Hz), 7.97 (1H, d, $J = 6.9$ Hz), 8.18 (1H, s), 10.39 (1H, br), 12.53 (1H, br); IR (Nujol) 3425, 3303, 3093, 2598, 1729, 1604, 1574, 1522, 1469, 1282, 1230, 1122 cm^{-1} ; $[\alpha]_D^{27} +32.1 \pm 0.7^\circ$ ($c=1.000$, MeOH); 元素分析 ($\text{C}_{24}\text{H}_{31}\text{NO}_5\text{S} \cdot 0.4\text{H}_2\text{O}$) 計算値 (%): C, 63.66; H, 7.08; N, 3.09; S, 7.08 實測値 (%): C, 63.79; H, 7.14; N, 3.15; S, 7.06
I I c - 2 2	$^1\text{H-NMR}$ (CDCl_3) δ 0.93 (1H, d, $J = 10.2$ Hz), 1.10 (3H, s), 1.23 (3H, s), 1.38-1.92 (8H, m), 1.99 (1H, m), 2.16-2.38 (3H, m), 3.46 (2H, t, $J = 6.3$ Hz), 3.95 (2H, s), 4.32 (1H, m), 6.32 (1H, d, $J = 9.0$ Hz), 6.96 (1H, dd, $J = 2.1, 9.0$ Hz), 7.24 (1H, t, $J = 2.1$ Hz), 7.51 (1H, s), 8.04 (1H, d, $J = 9.0$ Hz); IR (KBr) 3359, 1734, 1603, 1523, 1469, 1236, 1128 cm^{-1} ; $[\alpha]_D^{26} +26.8 \pm 0.7^\circ$ ($c=1.015$, MeOH); 元素分析 ($\text{C}_{24}\text{H}_{31}\text{NO}_5\text{S} \cdot 0.4\text{H}_2\text{O}$) 計算値 (%): C, 63.66; H, 7.08; N, 3.09; S, 7.08 實測値 (%): C, 63.64; H, 7.13; N, 3.07; S, 6.99
I I c - 2 3	$^1\text{H-NMR}$ (CDCl_3) δ 0.98 (1H, d, $J = 10.5$ Hz), 1.12 (3H, s), 1.24 (3H, s), 1.38-2.40 (12H, m), 3.47 (2H, t, $J = 6.6$ Hz), 3.97 (2H, s), 4.33 (1H, m), 5.36 (2H, br s), 6.28 (1H, d, $J = 9.0$ Hz), 7.00 (1H, dd, $J = 2.1, 8.7$ Hz), 7.65 (1H, d, $J = 8.7$ Hz), 7.71 (1H, s), 7.98 (1H, d, $J = 2.1$ Hz); IR (CHCl_3) 3438, 3238, 1730, 1637, 1601, 1518, 1436, 1124 cm^{-1} ; $[\alpha]_D^{24} +23.7 \pm 0.6^\circ$ ($c=1.004$, MeOH); 元素分析 ($\text{C}_{24}\text{H}_{31}\text{NO}_5\text{S} \cdot 0.5\text{H}_2\text{O}$) 計算値 (%): C, 63.41; H, 7.10; N, 3.08; S, 7.05 實測値 (%): C, 63.40; H, 6.98; N, 3.25; S, 7.09
I I c - 2 4	$^1\text{H-NMR}$ (CDCl_3) δ 0.96 (1H, d, $J = 10.5$ Hz), 1.16 (3H, s), 1.20 (3H, s), 1.40-1.92 (8H, m), 2.04 (1H, m), 2.18-2.42 (3H, m), 3.55 (2H, t, $J = 6.3$ Hz), 4.04 (2H, s), 4.30 (1H, m), 6.55 (1H, d, $J = 8.7$ Hz), 6.93 (1H, dd, $J = 2.4, 6.6$ Hz), 7.32 (1H, d, $J = 2.4$ Hz), 7.33 (1H, d, $J = 6.6$ Hz), 7.67 (1H, s), 12.10 (1H, s); IR (CHCl_3) 3508, 3450, 2684, 1780, 1732, 1624, 1585, 1562, 1523, 1456, 1269 cm^{-1} ; $[\alpha]_D^{27} +28.4 \pm 0.7^\circ$ ($c=1.000$, MeOH); 元素分析 ($\text{C}_{24}\text{H}_{31}\text{NO}_5\text{S} \cdot 0.5\text{H}_2\text{O}$) 計算値 (%): C, 63.41; H, 7.10; N, 3.08; S, 7.05 實測値 (%): C, 63.48; H, 6.98; N, 3.16; S, 6.98
I I c - 2 7	$^1\text{H-NMR}$ (CDCl_3) δ 0.96 (1H, d, $J = 10.2$ Hz), 1.13 (3H, s), 1.25 (3H, s), 1.40-1.92 (8H, m), 2.02 (1H, m), 2.17-2.41 (3H, m), 3.53 (2H, t, $J = 6.6$ Hz), 4.03 (2H, s), 4.32 (1H, m), 6.18 (1H, d, $J = 8.7$ Hz), 7.21 (1H, dt, $J = 2.4, 9.0$ Hz), 7.53 (1H, dd, $J = 2.4, 8.4$ Hz), 8.33 (1H, dd, $J = 5.1, 9.0$ Hz); IR (CHCl_3) 3508, 3442, 1780, 1732, 1651, 1603, 1516, 1468, 1244, 1122 cm^{-1} ; $[\alpha]_D^{25} +29.2 \pm 0.7^\circ$ ($c=1.006$, MeOH); 元素分析 ($\text{C}_{24}\text{H}_{30}\text{FNO}_4\text{S} \cdot 0.3\text{H}_2\text{O}$) 計算値 (%): C, 63.64; H, 6.81; F, 4.19; N, 3.09; S, 7.08 實測値 (%): C, 63.65; H, 6.76; F, 4.10; N, 3.14; S, 7.16

表 4 7

化合物番号	物性値
I I c - 2 8	mp 144-146 °C; $^1\text{H-NMR}$ (CDCl_3) δ 0.97 (1H, d, $J = 10.5$ Hz), 1.13 (3H, s), 1.25 (3H, s), 1.40-1.92 (8H, m), 2.02 (1H, m), 2.17-2.41 (3H, m), 3.52-3.57 (2H, m), 4.03 (2H, s), 4.33 (1H, m), 6.16 (1H, d, $J = 8.4$ Hz), 7.17 (1H, dt, $J = 2.7, 8.7$ Hz), 7.78 (1H, dd, $J = 5.1, 8.7$ Hz), 8.06 (1H, dd, $J = 2.7, 9.9$ Hz); IR (Nujol) 3286, 2538, 1722, 1608, 1552, 1244, 1136 cm^{-1} ; $[\alpha]_D^{25} +27.3 \pm 0.7^\circ$ ($c=1.009$, MeOH); 元素分析 ($\text{C}_{24}\text{H}_{30}\text{FNO}_4\text{S}$) 計算値 (%): C, 64.41; H, 6.76; F, 4.24; N, 3.13; S, 7.16 実測値 (%): C, 64.23; H, 6.84; F, 4.16; N, 3.19; S, 7.12
I I c - 3 4	mp 95-96 °C; $^1\text{H-NMR}$ (CDCl_3) δ 0.97 (1H, d, $J = 10.5$ Hz), 1.17 (3H, s), 1.24 (3H, s), 1.40-1.96 (8H, m), 2.02 (1H, m), 2.18-2.41 (3H, m), 3.47-3.58 (2H, m), 4.01 (2H, s), 4.40 (1H, m), 6.50 (1H, d, $J = 8.7$ Hz), 7.38 (1H, d, $J = 5.7$ Hz), 7.43 (1H, d, $J = 7.8$ Hz), 7.55 (1H, d, $J = 7.8$ Hz), 7.59 (1H, d, $J = 5.7$ Hz), 7.96 (1H, dd, $J = 1.2, 7.8$ Hz); IR (Nujol) 3265, 2544, 1728, 1608, 1577, 1550, 1319, 1240, 1225, 1128, 1111 cm^{-1} ; $[\alpha]_D^{25} +45.6 \pm 0.9^\circ$ ($c=1.006$, MeOH); 元素分析 ($\text{C}_{24}\text{H}_{31}\text{NO}_4\text{S}$) 計算値 (%): C, 67.10; H, 7.27; N, 3.26; S, 7.46 実測値 (%): C, 66.88; H, 7.14; N, 3.34; S, 7.43
I I c - 3 9	$^1\text{H-NMR}$ (CDCl_3) δ 0.99 (1H, d, $J = 10.2$ Hz), 1.17 (3H, s), 1.24 (3H, s), 1.44-1.94 (8H, m), 2.02 (1H, m), 2.18-2.40 (3H, m), 3.53 (2H, t, $J = 6.3$ Hz), 3.98 (3H, s), 4.01 (2H, s), 4.40 (1H, m), 6.43 (1H, s), 6.49 (1H, d, $J = 8.7$ Hz), 7.42 (1H, t, $J = 7.5$ Hz), 7.58 (1H, dd, $J = 0.9, 7.5$ Hz), 7.93 (1H, dd, $J = 0.9, 7.5$ Hz); IR (CHCl_3) 3455, 1780, 1732, 1649, 1508, 1373, 1205, 1151 cm^{-1} ; $[\alpha]_D^{24} +41.7 \pm 0.8^\circ$ ($c=1.007$, MeOH); 元素分析 ($\text{C}_{25}\text{H}_{33}\text{NO}_5\text{S} \cdot 0.2\text{H}_2\text{O}$) 計算値 (%): C, 64.82; H, 7.27; N, 3.02; S, 6.92 実測値 (%): C, 64.85; H, 7.30; N, 3.10; S, 6.64
I I c - 4 1	$^1\text{H-NMR}$ (CDCl_3) δ 0.98 (1H, d, $J = 9.9$ Hz), 1.19 (3H, s), 1.25 (3H, s), 1.46-1.96 (8H, m), 2.03 (1H, m), 2.22-2.41 (3H, m), 3.53 (2H, t, $J = 6.3$ Hz), 4.00 (2H, s), 4.43 (1H, m), 6.53 (1H, d, $J = 9.3$ Hz), 7.44-7.56 (3H, m), 7.66 (1H, d, $J = 6.3$ Hz), 7.91 (1H, m), 8.18 (1H, m), 8.30 (1H, d, $J = 7.5$ Hz); IR (CHCl_3) 3454, 1780, 1731, 1649, 1512, 1444, 1217, 1122 cm^{-1} ; $[\alpha]_D^{25} +45.4 \pm 0.8^\circ$ ($c=1.013$, MeOH); 元素分析 ($\text{C}_{28}\text{H}_{33}\text{NO}_4\text{S} \cdot 0.3\text{H}_2\text{O}$) 計算値 (%): C, 69.34; H, 6.98; N, 2.89; S, 6.61 実測値 (%): C, 69.21; H, 7.01; N, 3.04; S, 6.59
I I c - 4 9	$^1\text{H-NMR}$ (CDCl_3) δ 0.97 (1H, d, $J = 9.9$ Hz), 1.17 (3H, s), 1.25 (3H, s), 1.49-2.39 (12H, m), 3.45 (2H, s), 3.51 (2H, t, $J = 6.3$ Hz), 4.00 (3H, s), 4.37 (1H, m), 4.79 (2H, s), 6.20 (1H, d, $J = 9.3$ Hz), 7.32-7.40 (2H, m), 7.74 (1H, dd, $J = 7.2, 1.5$ Hz), 8.16 (1H, s); IR (CHCl_3) 3444, 2829, 1733, 1650, 1573, 1508, 1471, 1425, 1384, 1367, 1214 cm^{-1} ; $[\alpha]_D^{24.0} +24.8 \pm 0.6^\circ$ ($c=1.020$, MeOH); 元素分析 ($\text{C}_{26}\text{H}_{35}\text{NO}_6 \cdot 0.5\text{H}_2\text{O}$) 計算値 (%): C, 66.93; H, 7.78; N, 3.00 実測値 (%): C, 66.85; H, 7.78; N, 3.10

表 4 8

化合物番号	物性値
I I c - 5 1	¹ H-NMR (CDCl ₃) δ 0.93 (1H, d, J = 9.9 Hz), 1.14 (3H, s), 1.23 (3H, s), 1.41-1.90 (8H, m), 2.00 (1H, m), 2.17-2.38 (3H, m), 3.49 (2H, t, J = 6.3 Hz), 3.99 (2H, s), 4.29 (1H, m), 6.27 (1H, d, J = 9.0 Hz), 6.89 (1H, dd, J = 2.1, 8.7 Hz), 6.99 (1H, d, J = 2.1 Hz), 7.56 (1H, d, J = 8.7 Hz), 8.00 (1H, s); IR (KBr) 3475, 1734, 1626, 1560, 1518, 1493, 1471, 1441, 1385, 1367, 1265, 1221, 1122 cm ⁻¹ ; [α] _D ²⁷ +22.8±0.6° (c=1.000, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₆ ·0.5H ₂ O) 計算値 (%): C, 65.74; H, 7.35; N, 3.19 実測値 (%): C, 65.79; H, 7.43; N, 3.36
I I c - 5 2	¹ H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.5 Hz), 1.13 (3H, s), 1.24 (3H, s), 1.48-1.90 (8H, m), 2.01 (1H, m), 2.18-2.40 (3H, m), 3.49 (2H, t, J = 6.5 Hz), 3.95 (1H, d, J = 16.5 Hz), 4.02 (1H, d, J = 16.5 Hz), 4.32 (1H, m), 6.12 (1H, d, J = 9.0 Hz), 6.91 (1H, dd, J = 2.7, 9.0 Hz), 7.36 (1H, d, J = 9.0 Hz), 7.52 (1H, d, J = 9.0 Hz), 7.98 (1H, s); IR (CHCl ₃) 3442, 3265, 1730, 1643, 1620, 1558, 1514, 1468, 1385, 1367, 1190, 1167, 1136 cm ⁻¹ ; [α] _D ²⁷ +21.6±0.6° (c=1.006, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₆ ·0.5H ₂ O) 計算値 (%): C, 65.74; H, 7.35; N, 3.19 実測値 (%): C, 65.80; H, 7.46; N, 3.34
I I c - 5 6	¹ H-NMR (CDCl ₃) δ 0.99 (1H, d, J = 10.2 Hz), 1.25 (6H, s), 1.47-1.79 (7H, m), 1.92-2.05 (2H, m), 2.19 (1H, m), 2.25-2.39 (2H, m), 3.51 (2H, t, J = 6.3 Hz), 3.96 (1H, d, J = 16.2 Hz), 4.00 (1H, d, J = 16.2 Hz), 4.46 (1H, m), 6.89 (1H, d, J = 2.1 Hz), 7.37 (1H, t, J = 7.8 Hz), 7.69 (1H, d, J = 2.1 Hz), 7.74 (1H, dd, J = 1.2, 7.8 Hz), 7.88 (1H, d, J = 9.3 Hz), 8.13 (1H, dd, J = 1.2, 7.8 Hz); IR (CHCl ₃) 3435, 2665, 2573, 2474, 1780, 1732, 1651, 1606, 1595, 1547, 1535, 1473, 1421, 1367, 1352, 1325, 1296, 1167, 1120 cm ⁻¹ ; [α] _D ^{25.5} +14.7±0.5° (c=1.007, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₆ ·0.3H ₂ O) 計算値 (%): C, 68.81; H, 7.60; N, 3.34 実測値 (%): C, 68.71; H, 7.60; N, 3.44
I I c - 6 5	mp 191-192 °C; ¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.5 Hz), 1.15 (3H, s), 1.25 (3H, s), 1.46-1.88 (8H, m), 2.01 (1H, m), 2.11 (1H, m), 2.21-2.37 (2H, m), 3.51-3.58 (2H, m), 4.07 (2H, s), 4.30 (1H, m), 6.21 (1H, d, J = 9.3 Hz), 6.68 (1H, d, J = 1.2 Hz), 6.99 (1H, d, J = 5.4 Hz), 7.23 (1H, dd, J = 0.6, 5.4 Hz), 11.27 (1H, s); IR (KBr) 3433, 3276, 2663, 2534, 1736, 1591, 1541, 1508, 1473, 1458, 1244, 1228, 1211, 1151 cm ⁻¹ ; [α] _D ²⁵ +18.0±06° (c=1.008, MeOH); 元素分析 (C ₂₂ H ₃₀ N ₂ O ₄ S·0.1H ₂ O) 計算値 (%): C, 62.86; H, 7.24; N, 6.66; S, 7.63 実測値 (%): C, 62.81; H, 7.30; N, 6.80; S, 7.47
I I c - 6 6	¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.2 Hz), 1.14 (3H, s), 1.24 (3H, s), 1.46-1.88 (8H, m), 2.01 (1H, m), 2.14 (1H, m), 2.21-2.37 (2H, m), 3.53 (2H, t, J = 6.6 Hz), 4.07 (2H, s), 4.29 (1H, m), 6.20 (1H, d, J = 9.3 Hz), 6.64 (1H, d, J = 2.1 Hz), 6.86 (1H, d, J = 5.4 Hz), 6.92 (1H, d, J = 5.4 Hz), 11.06 (1H, s); IR (CHCl ₃) 3448, 3209, 1726, 1631, 1543, 1518, 1126 cm ⁻¹ ; [α] _D ²⁵ +14.4±0.5° (c=1.007, MeOH); 元素分析 (C ₂₂ H ₃₀ N ₂ O ₄ S·0.4H ₂ O) 計算値 (%): C, 62.06; H, 7.29; N, 6.58; S, 7.53 実測値 (%): C, 62.02; H, 7.31; N, 6.67; S, 7.56

表 4 9

化合物番号	物性値
I I c - 8 1	¹ H-NMR (CDCl ₃) δ 0.92 (1H, d, J = 10.2 Hz), 1.09 (3H, s), 1.20 (3H, s), 1.41-1.73 (7H, m), 1.82 (1H, m), 1.96 (1H, br s), 2.14-2.35 (3H, m), 2.41 (3H, s), 3.46 (2H, t, J = 6.3 Hz), 3.98 (2H, s), 4.27 (1H, m), 6.22 (1H, d, J = 9.0 Hz), 6.72 (1H, d, J = 2.1 Hz), 7.24 (1H, d, J = 2.1 Hz), 8.03 (1H, s); IR (CHCl ₃) 3599, 3442, 3265, 2565, 1730, 1645, 1608, 1570, 1514, 1460, 1417, 1385, 1367, 1329, 1286, 1240, 1137 cm ⁻¹ ; [α] _D ²⁴ +24.2±0.6° (c=1.014, MeOH) 元素分析 (C ₂₅ H ₃₃ NO ₆ ·0.4H ₂ O) 計算値 (%): C, 66.62; H, 7.55; N, 3.10 実測値 (%): C, 66.66; H, 7.47; N, 3.29
I I c - 8 4	¹ H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.2 Hz), 1.12 (3H, s), 1.25 (3H, s), 1.34 (2H, t, J = 7.5 Hz), 1.44-2.41 (10H, m), 3.56 (2H, br t, J = 5.4 Hz), 4.04 (2H, br s), 4.22-4.40 (3H, m), 6.22 (1H, d, J = 9.0 Hz), 7.65 (1H, dd, J = 1.5, 8.7 Hz), 7.77 (1H, d, J = 8.7 Hz), 7.78 (1H, br s), 8.22 (1H, br s); IR (CHCl ₃) 3437, 2924, 1730, 1651, 1514, 1441, 1319 cm ⁻¹ ; [α] _D ²⁴ +20.9±0.6° (c=1.010%, MeOH); 元素分析 (C ₂₇ H ₃₆ N ₂ O ₆ S·0.4H ₂ O) 計算値 (%): C, 61.90; H, 7.08; N, 5.35; S, 6.12 実測値 (%): C, 61.82; H, 6.85; N, 5.30; S, 6.09
I I c - 8 6	¹ H-NMR (d ₆ -DMSO) δ 0.85 (1H, d, J = 8.7 Hz), 1.11 (3H, s), 1.18 (3H, s), 1.27-2.38 (12H, m), 3.41 (2H, t, J = 6.3 Hz), 3.73 (2H, s), 3.97 (1H, m), 5.83 (2H, br s), 7.61 (1H, dd, J = 2.1, 8.7 Hz), 7.83 (1H, d, J = 8.7 Hz), 7.98 (1H, d, J = 6.6 Hz), 8.18 (1H, br s), 8.28 (1H, d, J = 2.1 Hz), 8.73 (1H, s), 12.54 (1H, br s); IR (Nujol) 3334, 2923, 1676, 1633, 1571, 1523, 1442, 1377, 1244, 1126 cm ⁻¹ ; [α] _D ²⁴ +19.1±0.6° (c=1.018%, MeOH); 元素分析 (C ₂₅ H ₃₃ N ₃ O ₅ S·0.4H ₂ O) 計算値 (%): C, 60.68; H, 6.88; N, 8.49; S, 6.48 実測値 (%): C, 60.73; H, 6.86; N, 8.67; S, 6.41
I I c - 9 4	¹ H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.2 Hz), 1.15 (3H, s), 1.26 (3H, s), 1.48-1.91 (8H, m), 2.02 (1H, m), 2.06 (3H, s), 2.18-2.40 (3H, m), 3.51 (2H, t, J = 6.3 Hz), 3.90 and 3.97 (each 1H, ABq, J = 16.2 Hz), 4.36 (1H, m), 4.49 (1H, dd, J = 6.3, 15.0 Hz), 4.61 (1H, dd, J = 6.3, 15.0 Hz), 6.27 (1H, br d, J = 9.0 Hz), 6.41 (1H, br s), 7.33 (1H, br d, J = 8.7 Hz), 7.76 (1H, s), 7.79 (1H, d, J = 8.7 Hz), 8.29 (1H, br s); IR (CHCl ₃) 3444, 1733, 1653, 1516, 1471, 1435, 1367, 1240, 1130 cm ⁻¹ ; [α] _D ²⁴ +23.2±0.6° (c=1.015, MeOH) 元素分析 (C ₂₇ H ₃₆ N ₂ O ₅ S·0.3H ₂ O) 計算値 (%): C, 64.08; H, 7.29; N, 5.54; S, 6.34 実測値 (%): C, 63.99; H, 7.24; N, 5.46; S, 6.35
I I c - 9 5	mp 133-134 °C; ¹ H-NMR (CDCl ₃ -DMSO-d ₆) δ 0.96 (1H, d, J = 9.9 Hz), 1.13 (3H, s), 1.25 (3H, s), 1.26 (3H, t, J = 7.5 Hz), 1.42-2.03 (9H, m), 2.22-2.39 (3H, m), 3.52 (2H, t, J = 6.6 Hz), 3.99 (2H, s), 4.14 (2H, q, J = 7.5 Hz), 4.29 (1H, m), 4.49 (2H, br s), 5.50 (1H, br s), 6.34 (1H, br d, J = 8.7 Hz), 7.38 (1H, d, J = 8.1 Hz), 7.82 (1H, d, J = 8.1 Hz), 7.84 (1H, br s), 8.30 (1H, s); IR (CHCl ₃) 3446, 1722, 1653, 1514, 1471, 1435, 1385, 1238, 1132, 1061 cm ⁻¹ ; [α] _D ²⁸ +22.9±0.6° (c=1.013, MeOH) 元素分析 (C ₂₈ H ₃₃ N ₂ O ₆ S) 計算値 (%): C, 63.37; H, 7.22; N, 5.28; S, 6.04 実測値 (%): C, 63.18; H, 7.14; N, 5.23; S, 5.95

表 5 0

化合物番号	物性値
I I c - 9 6	¹ H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.5 Hz), 1.16 (3H, s), 1.26 (3H, s), 1.47-1.72 (7H, m), 1.86 (1H, m), 2.02 (1H, m), 2.18-2.39 (3H, m), 2.92 (3H, s), 3.51 (2H, m), 3.96 and 4.03 (each 1H, ABq, J = 16.5 Hz), 4.36 (1H, m), 4.44 (2H, br s), 5.75 (1H, br s), 6.24 (1H, br d, J = 8.7 Hz), 7.41 (1H, br d, J = 8.1 Hz), 7.76 (1H, s), 7.83 (1H, d, J = 8.1 Hz), 8.42 (1H, br s); IR (CHCl ₃) 3442, 1734, 1649, 1516, 1496, 1471, 1437, 1327, 1223, 1149, 1074 cm ⁻¹ ; [α] _D ²⁶ +19.2±0.6° (c=1.010, MeOH) 元素分析 (C ₂₆ H ₃₆ N ₂ O ₆ S ₂ ·0.4H ₂ O) 計算値 (%): C, 57.41; H, 6.82; N, 5.15; S, 11.79 実測値 (%): C, 57.36; H, 6.65; N, 5.02; S, 11.65
I I c - 9 7	¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.2 Hz), 1.13 (3H, s), 1.24 (3H, s), 1.48-1.72 (7H, m), 1.89 (1H, m), 2.00 (1H, m), 2.16-2.38 (3H, m), 3.49 (2H, t, J = 6.6 Hz), 3.89 and 3.96 (each 1H, ABq, J = 16.5 Hz), 4.25 (1H, br d, J = 15.0 Hz), 4.32 (1H, m), 4.46 (1H, br d, J = 15.0 Hz), 6.37 (1H, d, J = 8.4 Hz), 7.21 (1H, dd, J = 1.2, 8.7 Hz), 7.71 (1H, d, J = 8.7 Hz), 7.74 (1H, s), 8.21 (1H, br s); IR (CHCl ₃) 3440, 1720, 1645, 1601, 1518, 1471, 1437, 1240, 1215, 1132 cm ⁻¹ ; [α] _D ²⁵ +23.7±0.6° (c=1.009, MeOH) 元素分析 (C ₂₆ H ₃₅ N ₂ O ₅ S·0.5H ₂ O) 計算値 (%): C, 61.15; H, 7.11; N, 8.23; S, 6.28 実測値 (%): C, 61.02; H, 6.81; N, 8.14; S, 6.30
I I c - 9 9	mp 164-166 °C; ¹ H-NMR (d ₆ -DMSO) δ 0.85 (1H, d, J = 9.6 Hz), 1.12 (3H, s), 1.19 (3H, s), 1.24-2.37 (12H, m), 3.41 (2H, t, J = 6.3 Hz), 3.92 (2H, s), 3.99 (1H, m), 7.38 (1H, br s), 7.87 (1H, dd, J = 2.1, 8.7 Hz), 8.05-8.13 (3H, m), 8.32 (1H, s), 8.82 (1H, d, J = 1.2 Hz); IR (Nujol) 3448, 3356, 3211, 2925, 1718, 1691, 1639, 1520, 1462, 1402, 1254, 1144 cm ⁻¹ ; [α] _D ²⁵ +28.4±0.7° (c=1.008%, MeOH); 元素分析 (C ₂₅ H ₃₂ N ₂ O ₅ S·0.2H ₂ O) 計算値 (%): C, 63.05; H, 6.86; N, 5.88; S, 6.73 実測値 (%): C, 63.01; H, 6.78; N, 5.84; S, 6.70
I I c - 1 1 5	¹ H-NMR (CDCl ₃) δ 0.97 (1H, d, J = 10.2 Hz), 1.14 (3H, s), 1.25 (3H, s), 1.40-1.92 (8H, m), 2.02 (1H, m), 2.18-2.41 (3H, m), 2.46 (3H, s), 2.53 (3H, s), 3.47-3.58 (2H, m), 4.02 (2H, s), 4.35 (1H, m), 6.22 (1H, d, J = 8.4 Hz), 7.05 (1H, s), 7.83 (1H, s), 7.93 (1H, s); IR (CHCl ₃) 3508, 3440, 1780, 1732, 1649, 1514, 1242, 1126 cm ⁻¹ ; [α] _D ²⁵ +30.4±0.7° (c=1.017, MeOH) 元素分析 (C ₂₆ H ₃₅ NO ₄ S·0.2H ₂ O) 計算値 (%): C, 67.71; H, 7.74; N, 3.01; S, 6.95 実測値 (%): C, 67.37; H, 7.91; N, 2.95; S, 6.79
I I c - 1 2 8	¹ H-NMR (CDCl ₃) δ 0.99 (1H, d, J = 10.5 Hz), 1.12 (3H, s), 1.25 (each 3H, s), 1.41-2.41 (12H, m), 3.49 (2H, t, J = 7.5 Hz), 3.99 (2H, s), 4.32 (2H, s), 5.05 (2H, br s), 6.29 (1H, d, J = 9.0 Hz), 7.48 (1H, d, J = 10.2 Hz), 7.67 (1H, s), 8.09 (1H, d, J = 8.7 Hz); IR (CHCl ₃) 3579, 3438, 3192, 2924, 1730, 1635, 1518, 1433, 1277 cm ⁻¹ ; [α] _D ²⁶ +22.4±0.6° (c=1.014%, MeOH); 元素分析 (C ₂₄ H ₃₀ NO ₅ S ²⁻ F ⁻ ·0.6H ₂ O) 計算値 (%): C, 60.77; H, 6.63; N, 2.95; S, 6.76; F, 4.00 実測値 (%): C, 60.72; H, 6.35; N, 2.85; S, 6.58; F, 4.01

表 5 1

化合物番号	物性値
I I c - 1 2 9	¹ H-NMR (CDCl ₃) δ 0.97 (1H, d, J = 10.5 Hz), 1.15 (3H, s), 1.25 (3H, s), 1.44-2.40 (12H, m), 3.55 (2H, t, J = 6.3 Hz), 3.98 (3H, s), 4.02 (2H, s), 4.32 (1H, m), 6.19 (1H, d, J = 6.6 Hz), 7.62 (1H, d, J = 10.5 Hz), 7.69 (1H, s), 8.07 (1H, d, J = 8.1 Hz); IR (CHCl ₃) 3444, 2924, 1780, 1732, 1649, 1512, 1466, 1415, 1263, 1225 cm ⁻¹ ; [α] _D ²⁵ +22.5±0.6° (c=1.006%, MeOH); 元素分析 (C ₂₅ H ₃₂ NO ₅ SF·0.2H ₂ O) 計算値 (%): C, 62.40; H, 6.79; N, 2.91; S, 6.66; F, 3.95 実測値 (%): C, 62.32; H, 6.74; N, 2.86; S, 6.72; F, 3.88
I I c - 1 3 5	¹ H-NMR (CDCl ₃ -DMSO-d ₆) δ 0.98 (1H, d, J = 10.2 Hz), 1.16 (3H, s), 1.23 (3H, s), 1.42-1.74 (7H, m), 1.91-2.02 (2H, m), 2.20-2.36 (3H, m), 3.52 (2H, t, J = 6.9 Hz), 4.00 (2H, s), 4.27 (1H, m), 6.34 (1H, br d, J = 8.4 Hz), 7.35 (1H, dd, J = 2.1, 8.7 Hz), 7.42 (1H, d, J = 8.7 Hz), 7.96 (1H, d, J = 2.1 Hz), 8.11 (1H, s); IR (nujol) 3440, 1724, 1635, 1556, 1298, 1252, 1173, 1128 cm ⁻¹ ; [α] _D ²⁴ +17.1 ±0.6° (c=1.004, MeOH)
I I e - 0 4	mp 79-81 °C; ¹ H-NMR (CDCl ₃) δ 0.95 (1H, d, J = 9.9 Hz), 1.21 (3H, s), 1.23 (3H, s), 1.36-1.88 (8H, m), 2.00 (1H, m), 2.10-2.38 (3H, m), 2.65 (2H, t, J = 6.9 Hz), 3.17 (1H, d, J = 14.7 Hz), 3.22 (1H, d, J = 14.7 Hz), 4.27 (1H, m), 6.18 (1H, d, J = 9.0 Hz), 7.32-7.36 (2H, m), 7.86 (1H, dd, J = 1.5, 2.4 Hz); IR (Nujol) 3396, 3361, 3109, 3076, 2617, 1720, 1631, 1593, 1543, 1508, 1234, 1221, 1124 cm ⁻¹ ; [α] _D ²⁶ +29.4±0.7° (c=1.005, MeOH); 元素分析 (C ₂₀ H ₂₉ NO ₃ S ₂) 計算値 (%): C, 60.72; H, 7.39; N, 3.54; S, 16.21 実測値 (%): C, 60.73; H, 7.45; N, 3.61; S, 16.17
I I e - 1 7	mp 176-178 °C; ¹ H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 9.9 Hz), 1.13 (3H, s), 1.25 (3H, s), 1.40-1.92 (8H, m), 2.02 (1H, m), 2.18-2.41 (3H, m), 2.66 (2H, t, J = 6.9 Hz), 3.15 (1H, d, J = 14.7 Hz), 3.21 (1H, d, J = 14.7 Hz), 4.36 (1H, m), 6.24 (1H, d, J = 8.7 Hz), 7.40 (1H, dt, J = 1.2, 7.5 Hz), 7.45 (1H, dt, J = 1.2, 7.5 Hz), 7.85 (1H, s), 7.87 (1H, dd, J = 1.2, 7.5 Hz), 8.30 (1H, dd, 1.2, 7.5 Hz); IR (Nujol) 3425, 3091, 3059, 2632, 1726, 1608, 1522, 1261, 1250, 1215, 1126 cm ⁻¹ ; [α] _D ²⁶ +34.0±0.7° (c=1.002, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₃ S ₂) 計算値 (%): C, 64.68; H, 7.01; N, 3.14; S, 14.39 実測値 (%): C, 64.48; H, 7.01; N, 3.15; S, 14.25
I I e - 2 0	mp 117-118 °C; ¹ H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.5 Hz), 1.14 (3H, s), 1.26 (3H, s), 1.40-1.92 (8H, m), 2.02 (1H, m), 2.18-2.42 (3H, m), 2.49 (3H, s), 2.66 (2H, t, J = 6.9 Hz), 3.16 (1H, d, J = 14.7 Hz), 3.21 (1H, d, J = 14.7 Hz), 4.35 (1H, m), 6.23 (1H, d, J = 8.7 Hz), 7.23 (1H, dd, J = 1.2, 8.4 Hz), 7.74 (1H, d, J = 8.4 Hz), 7.82 (1H, s), 8.11 (1H, d, J = 1.2 Hz); IR (Nujol) 3348, 1726, 1597, 1537, 1255, 1219 cm ⁻¹ ; [α] _D ²⁶ +31.9±0.7° (c=1.002, MeOH); 元素分析 (C ₂₅ H ₃₃ NO ₃ S ₂) 計算値 (%): C, 65.32; H, 7.24; N, 3.05; S, 13.95 実測値 (%): C, 65.15; H, 7.05; N, 3.10; S, 13.93
I I e - 2 1	mp 170-172 °C; ¹ H-NMR (d ₆ -DMSO) δ 0.84 (1H, d, J = 9.9 Hz), 1.11 (3H, s), 1.18 (3H, s), 1.28-1.60 (7H, m), 1.94 (1H, m), 2.12-2.34 (6H, m), 2.55 (2H, t, J = 7.2 Hz), 3.17 (2H, s), 3.97 (1H, m), 6.79 (1H, d, J = 7.8 Hz), 7.24 (1H, t, J = 7.8 Hz), 7.78 (1H, d, J = 7.8 Hz), 7.98 (1H, d, J = 6.6 Hz), 8.18 (1H, s), 10.39 (1H, br), 12.46 (1H, br); IR (Nujol) 3357, 3246, 32613, 1693, 1595, 1574, 1541, 1469, 1296, 1228 cm ⁻¹ ; [α] _D ²⁷ +38.7±0.8° (c=1.004, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₄ S ₂) 計算値 (%): C, 62.44; H, 6.77; N, 3.03; S, 13.89 実測値 (%): C, 62.25; H, 6.86; N, 3.08; S, 13.60

表 5 2

化合物番号	物性値
I I e - 2 2	¹ H-NMR (CDCl ₃) δ 0.93 (1H, d, J = 10.2 Hz), 1.10 (3H, s), 1.23 (3H, s), 1.36-1.92 (8H, m), 1.99 (1H, m), 2.16-2.39 (3H, m), 2.56 (2H, t, J = 7.2 Hz), 3.13 (2H, s), 4.32 (1H, m), 6.35 (1H, d, J = 9.0 Hz), 6.95 (1H, dd, J = 2.1, 9.0 Hz), 7.24 (1H, t, J = 2.1 Hz), 7.51 (1H, s), 8.03 (1H, d, J = 9.0 Hz); IR (KBr) 3361, 2661, 1707, 1603, 1523, 1468, 1236 cm ⁻¹ ; [α] _D ²⁶ +23.2±0.6° (c=1.015, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₄ S ₂ ·0.4H ₂ O) 計算値 (%): C, 61.48; H, 6.84; N, 2.99; S, 13.68 実測値 (%): C, 61.51; H, 6.74; N, 3.01; S, 13.67
I I e - 2 4	¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.5 Hz), 1.15 (3H, s), 1.26 (3H, s), 1.40-1.92 (8H, m), 2.03 (1H, m), 2.18-2.42 (3H, m), 2.64 (2H, t, J = 7.2 Hz), 3.19 (2H, s), 4.29 (1H, m), 6.59 (1H, d, J = 8.4 Hz), 6.92 (1H, dd, J = 2.1, 6.6 Hz), 7.31 (1H, t, J = 2.1 Hz), 7.32 (1H, t, J = 6.6 Hz), 7.69 (1H, s), 12.22 (1H, s); IR (CHCl ₃) 3508, 3452, 2683, 1711, 1624, 1585, 1562, 1523, 1456, 1271, 1227, 1217, 1205 cm ⁻¹ ; [α] _D ²⁶ +34.1±0.7° (c=1.005, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₄ S) 計算値 (%): C, 62.44; H, 6.77; N, 3.03; S, 13.89 実測値 (%): C, 62.48; H, 6.86; N, 3.03; S, 13.63
I I e - 2 8	mp 197-199 °C; ¹ H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.5 Hz), 1.14 (3H, s), 1.25 (3H, s), 1.40-1.92 (8H, m), 2.02 (1H, m), 2.18-2.41 (3H, m), 2.66 (2H, t, J = 6.9 Hz), 3.16 (1H, d, J = 15.0 Hz), 3.21 (1H, d, J = 15.0 Hz), 4.33 (1H, m), 6.19 (1H, d, J = 9.3 Hz), 7.16 (1H, td, J = 2.4, 8.7 Hz), 7.78 (1H, dd, J = 4.8, 8.7 Hz), 7.88 (1H, s), 8.07 (1H, dd, J = 2.4, 10.2 Hz); IR (Nujol) 3423, 3087, 2636, 1728, 1606, 1523, 1444, 1433, 1248, 1203, 1128 cm ⁻¹ ; [α] _D ²⁶ +31.0±0.7° (c=1.013, MeOH); 元素分析 (C ₂₄ H ₃₀ FNO ₃ S ₂ ·0.1AcOEt) 計算値 (%): C, 62.03; H, 6.57; F, 4.02; N, 2.96; S, 13.57 実測値 (%): C, 61.84; H, 6.48; F, 3.96; N, 2.98; S, 13.56
I I e - 3 4	mp 143-144 °C; ¹ H-NMR (CDCl ₃) δ 0.98 (1H, d, J = 10.2 Hz), 1.17 (3H, s), 1.24 (3H, s), 1.40-1.96 (8H, m), 2.02 (1H, m), 2.19-2.41 (3H, m), 2.64 (2H, t, J = 7.2 Hz), 3.15 (1H, d, J = 15.0 Hz), 3.20 (1H, d, J = 15.0 Hz), 4.41 (1H, m), 6.53 (1H, d, J = 8.7 Hz), 7.38 (1H, d, J = 5.4 Hz), 7.43 (1H, t, J = 7.8, Hz), 7.43 (1H, t, J = 7.8 Hz), 7.55 (1H, dd, J = 1.2, 7.8 Hz), 7.59 (1H, d, 5.4 Hz), 7.96 (1H, dd, J = 1.2, 7.8 Hz); IR (Nujol) 3421, 3402, 2625, 1712, 1618, 1579, 1529, 1250, 1215, 1120 cm ⁻¹ ; [α] _D ²⁶ +48.2±0.9° (c=1.016, MeOH); 元素分析 (C ₂₄ H ₃₁ NO ₃ S ₂) 計算値 (%): C, 64.68; H, 7.01; N, 3.14; S, 14.39 実測値 (%): C, 64.49; H, 6.85; N, 3.16; S, 14.12
I I e - 5 4	¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 10.2 Hz), 1.14 (3H, s), 1.24 (3H, s), 1.41-2.40 (12H, m), 2.64 (1H, t, J = 7.2 Hz), 3.19 (2H, s), 4.33 (1H, m), 6.14 (1H, d, J = 8.7 Hz), 7.12 (1H, dt, J = 6.0, 2.4 Hz), 7.25 (1H, dd, J = 8.4, 2.4 Hz), 7.81 (1H, dd, J = 8.4, 6.0 Hz), 8.09 (1H, s); IR (CHCl ₃) 3446, 2674, 1710, 1654, 1563, 1506, 1490, 1257, 1220, 1205 cm ⁻¹ ; [α] _D ^{26.0} +22.8±1.2° (c=0.510, MeOH); 元素分析 (C ₂₄ H ₃₀ FNO ₄ S·0.2H ₂ O) 計算値 (%): C, 63.89; H, 6.79; F, 4.21; N, 3.10; S, 7.11 実測値 (%): C, 63.83; H, 6.93; F, 4.02; N, 3.18; S, 7.15

表 5 3

化合物番号	物性値
I I f - 2 8	¹ H-NMR (CDCl ₃) δ 0.96 (1H, d, J = 9.9 Hz), 1.13 (3H, s), 1.25 (3H, s), 1.42-1.86 (9H, m), 2.02 (1H, m), 2.20-2.39 (4H, m), 4.31 (1H, m), 6.01 (1H, d, J = 8.7 Hz), 7.16 (1H, dt, J = 2.4, 9.0 Hz), 7.77 (1H, dd, J = 4.5, 9.0 Hz), 7.84 (1H, s), 8.08 (1H, dd, J = 2.4, 10.2 Hz); IR (CHCl ₃) 3516, 3444, 1709, 1653, 1603, 1564, 1514, 1471, 1433, 1250, 1142 cm ⁻¹ ; [α] _D ²⁵ +33.6±0.7° (c=1.007, MeOH) 元素分析 (C ₂₃ H ₂₂ FNO ₃ S·0.2H ₂ O) 計算値 (%): C, 65.60; H, 6.80; N, 3.33; F, 4.51; S, 7.61 実測値 (%): C, 65.70; H, 6.70; N, 3.28; F, 4.32; S, 7.56
I I f - 8 4	¹ H-NMR (CDCl ₃) δ 0.95 (1H, d, J = 9.9 Hz), 1.10 (3H, s), 1.25 (3H, s), 1.32 (3H, t, J = 7.2 Hz), 1.44-1.86 (9H, m), 2.00 (1H, m), 2.21-2.39 (4H, m), 2.24 (2H, q, J = 7.2 Hz), 4.30 (1H, m), 6.15 (1H, m), 7.65 (1H, br d, J = 8.4 Hz), 7.76 (1H, d, J = 8.4 Hz), 7.78 (1H, s), 8.18 (1H, br s); IR (CHCl ₃) 3510, 3437, 1713, 1651, 1606, 1570, 1514, 1441, 1319, 1225, 1207, 1169, 1155, 1080, 1066 cm ⁻¹ ; [α] _D ²⁴ +26.8±0.7° (c=1.009, MeOH) 元素分析 (C ₂₆ H ₃₄ N ₂ O ₆ S·0.4H ₂ O) 計算値 (%): C, 63.24; H, 7.10; N, 5.67; S, 6.49 実測値 (%): C, 63.35; H, 6.88; N, 5.55; S, 6.34

上記実施例で得た化合物につき、以下の試験例に示す方法で、インビボおよびインビトロ活性を試験した。

5 試験例 1 PGD₂受容体の結合実験

(1) ヒト血小板膜画分の調製

健常人（成人男性および女性）の静脈よりEDTA（終濃度10mM）の入ったプラスチック製シリンジにて採血した血液をプラスチック製試験管に入れ、軽く転倒混和した後、室温で、1200 rpm、10分間遠心分離し、上清の多血小板血漿[P R P (Platelet rich plasma)]を採取した。このP R Pをさらに室温、2300 rpm、22分間の遠心分離に付し、血小板を得た。得られた血小板はhomogenizer (Ultra-Turrax) を用いてホモジナイズした後、4°C、20000 rpm、10分間遠心分離を3回行い、血小板膜画分を得た。膜画分は蛋白定量後、2mg/mlとし、結合実験に供するまで-80°Cで冷凍保存した。

15 (2) PGD₂受容体の結合実験

結合反応液(50mMTris/HCl, pH 7.4, 10mMMgCl₂)にヒト血小板膜画分(0.08mg)および5nM [³H]PGD₂(115Ci/mmol)

を加えて 0.2 ml とし、4 °C で 90 分間反応させた。反応後ガラス繊維濾紙を用いて濾過し、冷生理食塩水で数回洗浄し、濾紙に残った放射活性を測定した。全結合量から非特異的結合量 (10 μM PGD₂ 存在下で、同様にして求めた放射活性量) を差し引くことで、特異的結合量を算出した。各化合物の結合阻害活性は、化合物非存在下での特異的結合量を 100% とし、各化合物存在下での特異的結合量 (%) を求めて置換曲線を作成することにより、50% 抑制濃度 (IC₅₀ 値) を算出した。

試験例 2 ヒト血小板を使った PGD₂受容体の拮抗活性

10 あらかじめ 1/9 量のクエン酸-デキストロース液を添加したシリンジで健常人から末梢血を採取し、室温で 1200 rpm、10 分間遠心した後、上清 (PRP : platelet rich plasma) を採取した。得られた PRP を洗浄バッファーで 3 回遠心洗浄した後、血小板数をミクロセルカウンターでカウントした。最終濃度 5×10^8 個 / ml となるように PBS で調製した血小板浮遊液を 37 °C に加温後、3-イソブチル-1-メチルキサンチン (0.5 mM) で 5 分間前処置し、種々の濃度に希釈した化合物を添加し、その 10 分後に終濃度 0.1 μM の PGD₂ を添加して反応を惹起した。2 分後に塩酸を加えて反応を停止し、超音波ホモナイザーにて血小板を破壊し、遠心後その上清中の cAMP 量を放射性免疫測定法にて定量した。薬物の PGD₂ 受容体拮抗活性は PGD₂ 添加によって増加した 20 cAMP 量に対する抑制率を各濃度で求め、50% の抑制を示す薬物濃度を算出して評価した。

試験例 1 および試験例 2 の結果を以下の表に示す。

表 5 4

化合物番号	試験例 1 : ヒト血小板膜画分 結合阻害活性 $IC_{50} (\mu\text{mol/L})$	試験例 2 : ヒト血小板 cAMP 上昇 阻害活性 $IC_{50} (\mu\text{mol/L})$
I a - 1 7		0.011
I a - 2 0		0.017
I a - 6 5		0.018
I c - 2 2		0.010
I c - 2 3		0.01
I c - 5 2	0.074	0.01
I I a - 4		0.019
I I a - 1 7		0.015
I I a - 2 2		0.0037
I I a - 2 3	0.033	0.0025
I I a - 2 8		0.016
I I a - 3 4		0.014
I I a - 5 2		0.0037
I I a - 5 4		0.015
I I a - 6 6		0.017
I I c - 4		0.018
I I c - 1 7		0.0054
I I c - 2 0		0.015
I I c - 2 2		0.0046
I I c - 2 3	0.0095	0.0049
I I c - 2 4		0.013
I I c - 2 8		0.013
I I c - 3 4		0.011
I I c - 5 2	0.0035	0.0082
I I c - 8 1		0.008
I I c - 8 6		0.008
I I c - 9 6		0.017
I I c - 9 7		0.011
I I c - 9 9		0.006
I I c - 1 2 8		0.005
I I c - 1 2 9		0.018
I I c - 1 3 5		0.003
I I e - 2 2		0.0048
I I e - 2 4		0.0057
I I e - 2 8		0.017
I I e - 3 4		0.019
I I f - 8 4		0.020

試験例 3 ラットにおける血漿中濃度推移

Jcl-SD 系雄性ラットに化合物 (0.5–10 mg/kg) を静脈内投与した。投与 2、5、15、30、60、120、180、240 分後の未変化体濃度を、HPLC (定量限界; 0.05 µg/ml) あるいは LC/MS/MS (定量限界; 0.001 µg/ml) を用いて測定し、消失半減期を算出した。

表 5 5

化合物番号	消失半減期 (分)
参考化合物 1	8.0
I I a - 4	21.6
I I c - 4	44.3
I I e - 4	40.0
参考化合物 2	17.0
I I a - 3 4	34.6
I I c - 3 4	66.7
参考化合物 3	8.7
I I a - 5 2	16.7
I I c - 5 2	23.4

10

産業上の利用可能性

式 (I) で示される本発明化合物は、PGD₂受容体拮抗活性を有し、代謝的にも安定であり、PGD₂の生産過多に起因する症状の改善に有用である。

請求の範囲

1. 式 (I) :

(式中、

5

は、

R¹は置換されていてもよいヘテロアリール；R²は水素またはアルキル；

10 R³は $-CH_2-CH_2-CH_2-CH_2-CH=CH-COO R^4$ 、 $-CH_2-CH_2-$
 $-CH_2-CH_2-X^1-CH_2-COO R^4$ 、 $-CH_2-CH=CH-CH_2-X$
 $^1-CH_2-COO R^4$ または $-CH_2-CH_2-CH_2-CH_2-COO R^4$ ；

R⁴は水素またはアルキル；X¹は-O-または-S-である。)で示される化合物、そのプロドラッグもしく

15 はその製薬上許容される塩またはそれらの溶媒和物。

2.

が、

である請求の範囲第1項記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物。

3. R^1 が置換されていてもよいチエニル、置換されていてもよいベンゾチエニル、置換されていてもよいフリル、置換されていてもよいベンゾフリル、置換されていてもよいピロリル、置換されていてもよいチエノピロリルまたは置換されていてもよいインドリルである請求の範囲第1項または第2項記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物。

4. R^1 が式： $-Z^1-Z^2$ （式中、 Z^1 は単結合、 $-O-$ 、 $-S-$ 、 $-NH-$ 、 $-NH-C(=O)-$ 、 $-NH-C(=O)-O-$ 、 $-NH-SO_2-$ 、 $-C(=O)-$ 、 $-O-C(=O)-$ 、 $-C(=O)-O-$ 、 $-SO_2-$ 、 $-CH_2-O-$ 、 $-CH_2-NH-C(=O)-$ 、 $-CH_2-NH-C(=O)-O-$ 、 $-CH_2-NH-SO_2-$ または $-CH_2-C(=O)-$ であり、 Z^2 はアルキルまたは置換されていてもよいアミノである）で示される基、カルボキシ、ハロゲン、ヒドロキシまたはニトロで置換されていてもよいヘテロアリールである請求の範囲第1項または第2項記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物。

5. R^3 が $-CH_2-CH_2-CH_2-CH_2-CH=CH-COO R^4$ 、 $-CH_2-CH_2-CH_2-X^1-CH_2-COO R^4$ 、 $-CH_2-CH=CH-CH_2-X^1-CH_2-COO R^4$ または $-CH_2-CH_2-CH_2-CH_2-COO R^4$ であり、 R^4 が水素であり、 X^1 が $-O-$ または $-S-$ である請求の範囲第1項～第4項のいずれかに記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物。

6. R^3 が $-CH_2-CH_2-CH_2-CH_2-CH=CH-COO R^4$ または $-CH_2-CH_2-CH_2-X^1-CH_2-COO R^4$ であり、 R^4 が水素であ

り、 X^1 がーOーまたはーSーである請求の範囲第5項記載の化合物、そのプロドラッグもしくはその製薬上許容される塩またはそれらの溶媒和物。

7. 請求の範囲第1項～第6項のいずれかに記載の化合物、そのプロドラッグ

もしくはその製薬上許容される塩またはそれらの溶媒和物を含有することを特徴

5 とする医薬組成物。

8. PGD₂受容体拮抗性である請求の範囲第7項記載の医薬組成物。

9. 鼻閉治療用である請求の範囲第7項記載の医薬組成物。

10. アレルギー性結膜炎治療用である請求の範囲第7項記載の医薬組成物。

11. アレルギー性鼻炎治療用である請求の範囲第7項記載の医薬組成物。

10 12. 請求の範囲第7項記載の医薬組成物を投与する鼻閉、アレルギー性結膜炎またはアレルギー性鼻炎の治療方法。

13. 鼻閉、アレルギー性結膜炎またはアレルギー性鼻炎治療用薬剤を製造するための請求の範囲第1項～第6項のいずれかに記載の化合物の使用。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/09435

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ C07D333/38, 333/54, 333/68, 333/62, 333/64, 333/76, 337/14, 307/68, 307/84, 307/85, 307/86, 307/91, 207/34, 209/42, 495/04, 209/42, 333/74, A61K31/381, 31/38, 31/341,

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C07D333/38, 333/54, 333/68, 333/62, 333/64, 333/76, 337/14, 307/68, 307/84, 307/85, 307/86, 307/91, 207/34, 209/42, 495/04, 209/42, 333/74, A61K31/381, 31/38, 31/341,

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CA (STN), REGISTRY (STN), WPIDS (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 97/00853 A (Shionogi & Co., Ltd.), 09 January, 1997 (09.01.1997), the whole document & EP 837052 A	1-11, 13

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
04 January, 2002 (04.01.02)

Date of mailing of the international search report
29 January, 2002 (29.01.02)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Faxsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/09435

Continuation of A.

31/343, 31/40, 31/404, 31/407, A61P43/00, 37/08, 27/16, 27/14, C07D333/40

Continuation of B.

31/343, 31/40, 31/404, 31/407, C07D333/40

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/09435

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 12
because they relate to subject matter not required to be searched by this Authority, namely:
Claim 12 relates to a method for treatment of the human body by therapy.
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

国際調査報告

国際出願番号 PCT/JP01/09435

A. 発明の属する分野の分類(国際特許分類(IPC))

Int cl' C07D333/38, 333/54, 333/68, 333/62, 333/64, 333/7
 6, 337/14, 307/68, 307/84, 307/85, 307/86, 307/91, 207/34, 20
 9/42, 495/04, 209/42, 333/74, A61K31/381, 31/38, 31/341,

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int cl' C07D333/38, 333/54, 333/68, 333/62, 333/64, 333/7
 6, 337/14, 307/68, 307/84, 307/85, 307/86, 307/91, 207/34, 20
 9/42, 495/04, 209/42, 333/74, A61K31/381, 31/38, 31/341,

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CA(STN), REGISTRY(STN), WPIDS(STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO 97/00853 A (塩野義製薬株式会社) 9. 1月. 1 99.7 (09. 01. 97) 文献全体 & EP 837052 A	1-11, 13

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「I」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

04. 01. 02

国際調査報告の発送日

29.01.02

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

内藤 伸一

4P 8615

電話番号 03-3581-1101 内線 3492

A. の続き

31/343, 31/40, 31/404, 31/407, A61P43/00, 37/
08, 27/16, 27/14, C07D333/40

B. の続き

31/343, 31/40, 31/404, 31/407, C07D333/40

第I欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT第17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. 請求の範囲 12 は、この国際調査機関が調査をすることを要しない対象に係るものである。
つまり、

請求の範囲12の発明は、治療による人体の処置方法に関するものである。

2. 請求の範囲 _____ は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、

3. 請求の範囲 _____ は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第II欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。

2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。

3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。

4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

追加調査手数料の納付と共に出願人から異議申立てがあった。
 追加調査手数料の納付と共に出願人から異議申立てがなかった。