APPENDIX

A v rsion of the above amended paragraph marked to indicate the specific amendments is shown below, in accordance with 37 CFR 1.121(b)(1).

In one embodiment the difunctional epoxy resin (B-1) is a compound represented by the formula:

$$\begin{bmatrix} H_2C & CH-CH_2 & CH-C$$

wherein in Formula (II), R^1 and R^2 are independently hydrogen or hydrocarbon groups in the range of 1 to about 20 carbon atoms, and n is a number in the range of 1 to about 20, preferably 1 to about 6, and in one embodiment 1 to about 3, and in another embodiment 1 or 2. Examples include: bisphenol A wherein R^1 and R^2 are each CH_3 ; bisphenol F wherein R^1 and R^2 are each H; bisphenol AD wherein R^1 is H and R^2 is CH_3 . Others include resins wherein: R^1 is H and R^2 is C_6H_{13} ; R^1 is H and R^2 is $C_{12}H_{25}$; R^1 is CH_3 and $CH_$

The claims as shown above have been amended as follows. The chemical structure that is underlined replaces the chemical structure that is in brackets.

4. (Amended) The composition of claim 1 wherein said difunctional epoxy resin (B-1) is a compound represented by the formula

U.S. Patent No. 6,132,851

GOURP0364US

$$H_{2}C \longrightarrow CH - CH_{2} \longrightarrow CH - CH_{2} \longrightarrow CH_{2} - CH_{2} \longrightarrow CH_{2} \longrightarrow$$

wherein in Formula (II), R¹ and R² are independently hydrogen or hydrocarbon groups in the range of 1 to about 20 carbon atoms, and n is a number in the range of 1 to about 20.