Complex Analysis Exam 1

	Question 1
	Perform the operations and express result in rectangular coordinates
	11-27
(0)	$\left(\frac{1-i}{1+i}\right)^{7}$
	First, note that $1-i = (1-i)(1-i) = 1-i-i+i^2 = -2i = -i$ $1+i = (1+i)(1-i) = 1-i+i-i^2 = 2$
	$1+i^{-}(1+i)(1-i)^{-}(1-i+i-i^{2})$
	Thus, $\left(\frac{1-i}{1+i}\right) = \left(-i\right)^{7} = \left(-1\right)^{7} \left(i\right)^{7} = -1i^{4} \cdot i^{3} = -i^{3} = -i \cdot i^{2} = i$
	$\Rightarrow \left(\frac{1-i}{1+i}\right)^{\frac{7}{2}} = i$
	$\neg (1+i)$
	1.
(b)	$(-i)^{1/3}$
	First note that -i = e +2 or K & #
	$\Rightarrow \left(-i\right)^{1/3} = \left(\frac{-\frac{\pi}{2}i + 2\pi i K}{e}\right)^{1/3} = \frac{-\frac{\pi}{6}i + \frac{2\pi}{3}i K}{e}$
	7(-i) - (e') - e
	This only has 3 distinct valves, so for simplicity, choose K=0,1,2
	K=0
	$(-i)^{1/3} = e^{-\frac{\pi}{6}i} = \cos(-\frac{\pi}{6}) + i \sin(-\frac{\pi}{6}) = (\frac{\sqrt{3}}{2} - i)$
	V = 1
	$(-i)^{3} - \frac{7}{6}i + \frac{2\pi}{3}i = \frac{3\pi}{6}i - \frac{\pi}{2}i = \cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2}) - (i)$
	(=)
	$(-i)^{1/3} = e^{-\frac{2\pi}{6} + \frac{4\pi}{3}i} = e^{-\frac{7\pi}{6}i} = cos(\frac{7\pi}{6}) + ism(\frac{7\pi}{6}) + \frac{1}{2} = \frac{i}{2}$