H2: Finite groups, basic definitions and properties 2.1 basic definitions, examples, Cayley table		
	> must have: - identity element 1, such that: $g \cdot 1 = 1 \cdot g = g$ - every g has a unique inverse: $g^{-1} \colon g \cdot g^{-1} = 1 = g^{-1} \cdot g$.	
order/cardinality of a group	= number of group elements > #G or G	
order n of a group element g	= smallest power n>=1 one has to take such that it's equal to the identity element: g ⁿ = 1	
Abelian group	= group for which the mult. is commutative	
representation of a group	defining a group through a generating set of group elementsie a minimal set of group elements whose multiplication with each other, whose products generate the whole group	
2.1.1 first examples		
cyclic group Z _n	= group of integers {0,1,,n-1} with multiplication addition modulo n > we can think of it as the cyclic permutation of n letters	
permutation group S _n	= group of n elements with multipl. the composition of permutations > write the permutations $\sigma \in S_n$ as: $\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$ For example: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 1 & 3 & 6 \end{pmatrix} \in S_6$	
	> its possible to write permutations as a collection of disjoint cycles > ie: sets of elements that are cyclically permutated >> in our example: (124)(35)(6) > cycle notation is unique up to cyclic permutations within each cycle: (124)(35) = (53)(241)	
	>> S _n = n!	
dihedral group D _n	= group of symmetries of a regular n-gon > n cyclic rotations and n reflections through n axes > D _n = Z _n ⋈ Z ₂	
	>> D _n = 2n	
group representation of Z _n	$\mathbb{Z}_n = \langle a a^n = 1 angle$ according to the specific mult. rule	
2.1.2 Cayley table		
Cayley table	= shows how the group multipl. behaves > ie the entry (g,h) denotes the element g.h: For the cyclic group Z_2 we have $C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	
2.1.3 direct products		
def: direct product \times or \oplus	For two groups G and H > the direct product $G \times H$ is a group with elements that can be labelled by the set of tuples (g_i, h_i) for which (g_i, h_j) . $(g_k, h_l) := (g_i.g_k, h_j.h_l)$	
	now also: G×H = G H	

	2.2 homomorphisms, isomorphisms and automorphisms
def: map	for two groups G_1 and G_2 > we can devise maps between these groups by mapping the elements of G_1 to G_2 > there is no guarantee that such a map will preserve the multipl. law
def: homomorphism	= map φ : $G_1 \rightarrow G_2$ for which $\varphi(xy) = \varphi x \varphi(y)$, ie preserves multipl. law
	> we thus have: $\phi(g^{-1}) = \phi(g)^{-1}$ and $\phi(1_{G1}) = 1_{G2}$
prop: image of a hom. is a group	The image of a homomorphism $\varphi: G_1 \rightarrow G_2$ is a subgroup of its codomain $G_2: \varphi(G_1) \leq G_2$
def: isomorphic groups	= there exists a bijective homomorphism $\phi\colon G_1\to G_2$ between G_1 and G_2 > ϕ is an isomorphism of groups > $G_1\cong G_2$
def: automorphism	= an isomorphism from G to itself
def: automorphism group Aut(G)	= group of all automorphisms of G with group mult. the composition of maps
def: inner automorphisms Inn(G)	= automorphisms of G obtained by relabelling using conjugation with respect to a fixed group element : g_i : $g_j \rightarrow g_i g_j g_i^{-1}$
def: U(1)	$U(1) = \{z \in \mathbb{C} \mid z ^2 = 1\}$ with group mult. the mult. of complex numbers
	> is an Abelian group with trivial inner automorphisms > automorphisms can be labelled by functions $f(x)$ that have to satisfy: $\forall x,y: f(x+y) = f(x) + f(y) \mod 2\pi$ and in particular:
	$f(x) + f(2\pi - x) = 2\pi n$ with n an integer.
	> these conditions imply f(x) = nx > can only be an isomorphism for n=+-1
	> the automorphism group of U(1) is Z ₂ , the reflection group
	2.3 subgroups, cosets, normal subgroups, quotient groups
def: subgroup S of a group G	= a subset of elements of G such that they form a group themselves with the group mult. that of G restricted to S
	> S≤G or S <g if="" s!="G</td"></g>
trivial vs proper subgroups	A group always has two <i>trivial</i> subgroups: the trivial group and itself > all other subgroups are <i>proper</i> subgroups
finding subgroups via Cayley	To find a subgroup is to find a submatrix in the Cayley table of G which is a Cayley table itself
def: left coset	For a subgroup H≤G > the left coset of H in G are the sets gH:={gh h∈H}
	Note that $g_1^{\sim}g_2 <=> g_1H = g_2H$ or thus $g_1g_2^{-1} \in H$ defines an equivalence relation > the cosets are exactly the equivalence classes
G/H	= collection of all (left) cosets of H in G > isn't necessarily a group
index of H in G	= G/H
th: Lagrange's theorem	For H a subgroup of G, H≤G
	> then the elements of G/H are disjoint subsets of G whose union is G and each coset has the same number of elements #H, hence #H divides #G
prop: subgroups of Z _p	Z _p with p a prime number has only trivial subgroups
prop: order of finite group	The order of every group element of a finite group divides the order of the group
centre Z(G) of a group G	= subgroup whose elements commute with all elements of G > can be found by searching for zero rows in the matrix C-C ^t
def: conjugacy class	= for a group element $g \in G$ this is $C_g := \{hgh^{-1} h \in G\}$
	> we can partition the group in different classes, where every element is contained in exactly one class > - order of alle elements in a class is constant - the representative g is not unique, thus belonging to the same class is a equiv. relation
	,

def: normal subgroup	For a subgroup N≤G
del. Hormai subgroup	> N is normal if its invariant under conjugation with all group elements of the group G
	> then Ng = gN for all g∈G
	ie: if you conjugate any element of N with any of G, you again get an element of N
	notation: N ⊴ G
simple group	= group for which its only normal subgroup is the trivial group
def: quotient group	For a group G with normal subgroup N⊴G
	> define G/N as the group with elements the cosets gN and group mult.: $g_1N\cdot g_2N:=(g_1g_2)N$ > we then have $ \text{G/N} = \text{G} / \text{N} $
maximal normal subgroup	= normal subgroup for which there exists no other nontrivial subgroup containing it > the factor group of a maximal subgroup is simple
commutator group [G,G]	= group generated form all group elements xyx ⁻¹ y ⁻¹
Abelianization of G	= quotient G/[G,G]
def: [G,G]	$[G,G] := \langle [g_1,g_2] g_1,g_2 \in G \rangle$ and where $[g_1,g_2] := g_1g_2g_1^{-1}g_2^{-1}$.
	2.4 extending groups
2.4.1 (semi)direct products	
def: (outer) semidirect product	For groups N and H For homomorphism β : H \rightarrow aut(N)
	> define the (outer) semidirect product of N and H with respect to β as:
	$N \rtimes_{\beta} H = \{(n,h) n,h \in N,H\} \colon (n_1,h_1) \cdot (n_2,h_2) := (n_1 \cdot \beta_{h_1}(n_2),h_1 \cdot h_2)$
	where we have $(n,h)^{-1}=(\beta_{h^{-1}}(n^{-1}),h^{-1})$
def: inner semidirect product	For group G with normal subgroup N and subgroup H
	> G is the inner semidirect product of N and H if G is the outer semidirect product of N and H where the action of H on N is given by conjugation in G
2.4.2 sequences & extensions	
exact sequence	for group homomorphisms φ _i , define:
	$G_1 \stackrel{\phi_1}{\longrightarrow} G_2 \stackrel{\phi_2}{\longrightarrow} G_3 \longrightarrow \dots$
	where we have the property that the image of the homomorphism φ_{k-1} : $G_{k-1} \rightarrow G_k$ must be the complete kernel of the homomorphism φ_k : $G_k \rightarrow G_{k+1}$
	or thus: $\phi_k(\phi_{k-1}(x)) = 1, \forall x \qquad \qquad \text{(with 1 = identity element!!)}$
short exact sequence	these are exact sequences of the form:
	$1 \longrightarrow N \xrightarrow{\phi_1} G \xrightarrow{\phi_2} G/N \longrightarrow 1$
extra property	if there exists a homomorphism φ between G and H in an exact sequence > then there also exists a homomorphism ϕ between H and G which return the element ie: $\phi(\varphi(g))$ = g \in G
	for the inner semidirect product G=N⋊H

equivalent exact short sequences	two short sequences: $1 \longrightarrow N \stackrel{i}{\longrightarrow} G_1 \stackrel{\pi}{\longrightarrow} H \longrightarrow 1$
	$1 \longrightarrow N \xrightarrow{i'} G_2 \xrightarrow{\pi'} H \longrightarrow 1$
	are equivalent iff there exists a group isomorphism T: $G_1 \rightarrow G_2$ that makes the diagram:
	G_1 commute
	$1 \longrightarrow N \xrightarrow{i} \qquad \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	meaning that every path with the same start and end point defines the same map
cohomology group	For A an Abelian group and two groups G and H look at the extension:
	$1 \longrightarrow A \xrightarrow{i} G \xrightarrow{\pi} H \longrightarrow 1$
	we can define a multiplication rule:
	$(a_1, h_1) \cdot (a_2, h_2) := (a_1 + a_2 + \omega(h_1, h_2), h_1 h_2)$
	this again defines a group if we also require associativity:
	$\omega(h_1, h_2) + \omega(h_1 h_2, h_3) = \omega(h_1, h_2 h_3) + \omega(h_2, h_3)$