PROBLEM SHEET - FT Tables Refresher

EE3-27: Principles of Classical and Modern Radar

Contents

1	Evaluating Functions of δ -lines	1
2	Auto-Correlation Function and PSD(f)	1
3	Transfer Function and PSD(f)	1
4	Differential Circuit	2
5	Impulse Response and $PSD(f)$	2
6	PSD(f) at Bandpass Filter's Output	2

1 Evaluating Functions of δ -lines

Evaluate:

(a)
$$_{-\infty} \int_{-\infty}^{\infty} (t^4 - 3t + 1).\delta(t - 2) . dt$$
 (10%)

(b)
$$_{-\infty} \int_{-\infty}^{\infty} \left\{ \left(\cos(4\pi t) * \delta(t + \frac{1}{4})\right) . \delta(t - \frac{1}{8}) . dt \right\}$$
 (10%)

(c)
$$\int_{-\infty}^{\infty} (t^3 - 3t^2 - 11) \cdot \delta(t - 1) \cdot dt$$
 (5%)

(d)
$$\int_{-\infty}^{\infty} \left\{ \left(\sin(4\pi t) * \delta(t + \frac{1}{4})\right) \cdot \delta(t - \frac{1}{4}) \cdot dt \right\}$$
 (5%)

(e)
$$\int_{-\infty}^{\infty} (t^3 - 2t^2 + 1) \cdot \delta(t - 2) \cdot dt$$
 (5%)

(f)
$$\int_{-\infty}^{\infty} \left\{ \left(\cos(2\pi t) * \delta(t - \frac{1}{4})\right) . \delta(t - \frac{1}{12}) . dt \right\}$$
 (5%)

(g)
$$h(3)$$
 where $h(t) = \left(t.\operatorname{rect}\left\{\frac{t}{8}\right\}\right) * \delta(t+3)$ (5%)

(h)
$$h(3)$$
 where $h(t) = \left(t.\operatorname{rect}\left\{\frac{t}{8T}\right\}\right) * \delta(t-2)$ (10%)

(i)
$$h(3.5)$$
 where $h(t) = (t.\text{rect}\{\frac{t}{8T}\}) * \delta(t-3)$ (10%)

2 Auto-Correlation Function and PSD(f)

The waveform below shows the autocorrelation function $R_{bb}(\tau)$ of what is called in communications a pseudo-random (PN) signal b(t).

- (a) Write a mathematical expression, using Woodward's notation, to describe the above autocorrelation function. (15%)
- (b) Find the power spectral density $PSD_b(f)$ of b(t). (20%)

3 Transfer Function and PSD(f)

At the input of a filter there is white Gaussian noise of power spectral density $PSD_{n_i}(f) = \frac{3}{2}10^{-6}$. If the transfer function of the filter is

$$H(f) = \Lambda \left\{ \frac{f}{10^6} \right\} \exp\left(-j\phi(f)\right)$$

calculate the power of the signal at the output of the filter. (10%)

Principles of Radar 1/2

4 Differential Circuit

For the following differential circuit

find:

5 Impulse Response and PSD(f)

Consider the filter with impulse response

$$h(t) = \operatorname{sinc}^2 \left\{ 10^6 (t - 3) \right\}$$

and assume that the input signal $n_i(t)$ is white Gaussian noise with double-sided power spectral density $PSD_{n_i}(f) = 1.5 \times 10^{-6} \text{ W/Hz}.$

For the signal n(t) at the output of the filter

(a) find and plot its power spectral density
$$PSD_n(f)$$
; (10%)

(b) calculate its power
$$P_n$$
 (5%)

6 PSD(f) at Bandpass Filter's Output

Consider a bandpass filter with impulse response

$$h(t) = 8 \times 10^3 \text{sinc} \left\{ 4 \times 10^3 t \right\} \cdot \cos(2\pi 10^4 t)$$

and assume that at the input of this filter there is white Gaussian noise $n_i(t)$ of power spectral density $PSD_{n_i}(f) = 10^{-6}$.

For the signal n(t) at the output of the filter

(a) find and plot its power spectral density
$$PSD_n(f)$$
; (10%)

(b) calculate its power
$$P_n$$
 (5%)

END

Principles of Radar 2/2