Encrypted Traffic Classification with Recurrent Neural Networks

GitHub: https://github.com/imaginebreake/RNNTraffic

Group 8:

Tianyi Gao (Gavin)

Yuwei Zhu (Tony)

scytg1@nottingham.ac.uk

yuweizhu_tony@163.com

Overview

- 1. Introduction
- 2. Related Work
- 3. Background
- 4. Methodology
- 5. Conclusion
- 6. Future work

1 Introduction

- The need for network traffic classification
 - Malware traffic detection
 - Quality of service (QoS)
- New change and challenge
 - Application layer encryption: High percentage of encrypted traffic
 - Transport layer encryption: Big market size of VPN service
- Current best approach End-to-end 1D CNN model
- Our contributions
 - 1D CNN model reproduction
 - RNN model on VPN / Non-VPN binary classification
 - RNN model on detailed type classification (Email, Chat, P2P and Streaming)

Encrypted traffic (HTTPS) across Google

2 Related Work

- Previous generation methods
 - Port-based methods
 - Deep packets inspection
 - Statistics methods
- Neural network methods
 - End-to-end 1D CNN model

3 Background

Recurrent Neural Network (RNN)

Convolutional Neural Network (CNN)

4.1 Method - Data Processing

Network Traffic Captured .pcap Files

Here, large pcap files are splitted by SplitCap tool to each session.

Separate Sessions

small .pcap files

Each session is read byte by byte as **raw 8-bit unsigned integers**. In this case, sessions larger than 1,500 bytes are **trimmed** to 1,500 bytes, and sessions smaller than 300 bytes are discarded, and the other sessions are **self-repeated** up to 1,500 bytes.

Normalised Sessions

.csv files

4.2 Method - 1D CNN Model Reproduction

We reproduced the end-to-end 1D CNN model for binary non-VPN/VPN traffic classification.

All the network traffic data were split into 3 sets for training (80%, 5930 records), validation (10%, 741 records) and testing (10%, 742 records).

After 20 epochs of optimization, the model ended up with the validation result of: 97.30% Accuracy, 97.46% Precision, 97.22% Recall.

Reproduced model architecture

Evaluation data on validation set during training

4.3 Method – RNN Model

We proposed three brand new RNN models on different tasks. The train/validate/test dataset settings is same as the 1D CNN one. In practice, bidirectional LSTM neuron units are applied instead of simple RNN neuron units.

4.3.1 non-VPN/VPN Binary Classification

The RNN architecture is listed and the model ended up with the validation result of: 98.25% Accuracy, 98.38% Precision, 98.16% Recall.

Layer number	Layer type	Input size	Output size	Comment
0	LSTM	1500	512 * 2	1 inner layer, bidirectional
1	Dense	1024	128	ReLU applied
2	Dense	128	2	
3	Log Softmax	2	2	

RNN Model for non-VPN/VPN Binary Classification

Evaluation data on validation set during training

4.3.2 Detailed Type of Traffic Classification on RNN Model

For this task, same RNN model for VPN traffic and non-VPN traffic were designed. And separate model is trained. The RNN architecture is listed.

The result of traffic type under VPN on validation set is: 95.21% Accuracy, 87.69% Precision, 92.88% Recall.

The result of traffic type under non-VPN on validation set is: 83.38% Accuracy, 84.91% Precision, 85.08% Recall.

Layer number	Layer type	Input size	Output size	Comment
0	LSTM	1500	512 * 2	1 inner layer, bidirectional
1	Dense	1024	128	ReLU applied
2	Dense	128	4	
3	Log Softmax	4	4	

RNN Model for Detailed Traffic Type Classification

5 Conclusion

- This paper has implemented the binary classification of VPN and non-VPN traffic based on CNN model and RNN model. And the results of both models were considerably well while the RNN model has performed slightly better than the CNN model.
- Then, in order to categorize the network traffic into four detailed types (i.e. Email, Chat, P2P and Streaming), RNN model has been applied on VPN traffic and non-VPN traffic respectively. The results of this classification were not as good as those of the binary classification between VPN and non-VPN traffic, but they were also acceptable.

Model	Accuracy	Precision	Recall
4.2	98.11%	98.24%	98.02%
4.3.1	98.25%	98.39%	98.15%
4.3.2 A	95.49%	89.11%	92.02%
4.3.2 B	86.88%	86.96%	87.83%

Results on evaluation of test set

6 Future work

Potential further advancement of this paper might be:

- More effective methods of data representation,
- Further tuning of hyperparameters of the models,
- Trying out other advanced machine learning methods,
- etc.

References

- [1] url: https://transparencyreport.google.com/https/overview.
- [2] Herve Abdi. "A neural network primer". In: Journal of Biological Systems 2.03 (1994), pp. 247-281.
- [3] Yves Chauvin and David E Rumelhart. Backpropagation: theory, architectures, and applications. Psychology press, 1995.
- [4] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan Shelhamer. "cudnn: Efficient primitives for deep learning". In: arXiv preprint arXiv:1410.0759 (2014).
- [5] Alberto Dainotti, Antonio Pescape, and Kimberly C Claffy. "Issues and future directions in traffic classification". In: IEEE network 26.1 (2012), pp. 35-40.
- [6] Jason A Donenfeld. "WireGuard: Next Generation Kernel Network Tunnel." In: NDSS. 2017.
- [7] GerardDraper-Gil,ArashHabibiLashkari,Mohammad Saiful Islam Mamun, and Ali A Ghorbani. "Characterization of encrypted and vpn traffic using time-related". In: Proceedings of the 2nd international conference on information systems security and privacy (ICISSP). 2016, pp. 407–414.
- [8] Jawad Khalife, Amjad Hajjar, and Jesus Diaz-Verdejo. "A multilevel taxonomy and requirements for an optimal traffic-classification model". In: International Journal of Network Management 24.2 (2014), pp. 101–120.
- [9] Yann LeCun, Yoshua Bengio, et al. "Convolutional networks for images, speech, and time series". In: The handbook of brain theory and neural networks 3361.10 (1995), p. 1995.
- [10] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černock, and Sanjeev Khudanpur. "Extensions of recurrent neural network language model". In: 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE. 2011, pp. 5528–5531.
- [11] Sebastian Ruder. "An overview of gradient descent optimizationalgorithms". In:arXivpreprintarXiv:1609.04747 (2016).
- [12] Petr Velan, Milan Čermák, Pavel Čeleda, and Martin Drašar. "Asurvey ofmethods forencryptedtraffic classification and analysis". In: International Journal of Network Management 25.5 (2015), pp. 355–374. doi: 10.1002/nem.1901.
- [13] VPN Market Size and Share 2020-2026: Global Research Report. url: https://www.gminsights.com/industryanalysis/virtual-private-network-vpn-market.
- [14] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang. "End-to-end encrypted traffic classification with one-dimensional convolution neural networks". In: 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). IEEE. 2017, pp. 43–48.
- [15] Baris Yamansavascilar, M Amac Guvensan, A Gokhan Yavuz, and M Elif Karsligil. "Application identification via network traffic classification". In: 2017 International Conference on Computing, Networking and Communications (ICNC). IEEE. 2017, pp. 843–848.

Q & A

Thanks For Watching