Counterexample to a variant of the Hanani–Tutte theorem on the surface of genus 4

Radoslav Fulek and Jan Kynčl

Charles University, Prague

Hanani-Tutte theorems

(Strong) Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an **independently even** drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

In a **drawing** the following situations are forbidden:

embedding = drawing with no crossings

Hanani-Tutte theorems

(Strong) Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an **independently even** drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Weak Hanani–Tutte theorem: (Cairns–Nikolayevsky, 2000; Pach–Tóth, 2000; Pelsmajer–Schaefer–Štefankovič, 2007) If a graph *G* has an **even** drawing *D* in the plane (every pair of edges crosses an even number of times), then *G* is planar. Moreover, *G* has a plane embedding with the same rotation system as *D*.

- recommended reading:
 - M. Schaefer, Hanani-Tutte and related results (2011)
 - Fulek et al., Hanani-Tutte, Monotone Drawings, and Level-Planarity (2012)
 - M. Schaefer, Toward a theory of planarity: Hanani-Tutte and planarity variants (2013)

Hanani-Tutte theorems

Unified Hanani-Tutte theorem:

(Pelsmajer-Schaefer-Štefankovič, 2006; Fulek-K.-Pálvölgyi, 2016)

Let G be a graph and let W be a subset of vertices of G. Let \mathcal{D} be an independently even drawing of G in the plane where, in addition, every pair of edges with a common endpoint in W crosses an even number of times.

Then G has a plane drawing where the rotations of vertices from W are the same as in \mathcal{D} .

- W = ∅: strong
- W = V(G): weak

Hanani-Tutte theorems on surfaces

Weak Hanani-Tutte theorem on surfaces:

(Cairns-Nikolayevsky, 2000; Pelsmajer-Schaefer-Štefankovič, 2009)

If a graph G has an even drawing $\mathcal D$ on a surface S, then G has an embedding on S that preserves the embedding scheme of $\mathcal D$.

(Strong) Hanani–Tutte theorem on the projective plane:

(Pelsmajer-Schaefer-Stasi, 2009;

Colin de Verdière-Kaluža-Paták-Patáková-Tancer, 2016)

If a graph G has an independently even drawing on the projective plane, then G has an embedding on the projective plane.

Problem: Can the strong Hanani–Tutte theorem be extended to other surfaces?

Main result

 The strong Hanani–Tutte theorem does not generalize to the orientable surface of genus 4:

Theorem 1: There is a graph of genus 5 that has an independently even drawing on the orientable surface of genus 4.

(disproves a conjecture of Schaefer and Štefankovič, 2013)

Unified Hanani–Tutte theorem does not generalize to the torus:

Theorem 2: There is a graph *G* with the following two properties.

- 1) The graph G has an independently even drawing $\mathcal D$ on the torus, with a set W of four vertices such that every pair of edges with a common endpoint in W crosses an even number of times.
- 2) There is no embedding of G on the torus with the same rotations of the vertices of W as in \mathcal{D} .

1)

- $-G = K_{3,4}$
- W = the part with 4 vertices (empty circles)
- each vertex of W has rotation (1,2,3)

Proof of Theorem 2

2) Let \mathcal{E} be an embedding of G on an orientable surface S of minimum genus such that the rotation of every vertex from W is (1,2,3).

forbidden:

- \Rightarrow every facial walk has length at least 6, so 2e > 6f
- \Rightarrow the Euler characteristic of S satisfies

$$\chi(S) = v - e + f \le \frac{1}{3}(3v - 2e) = \frac{1}{3}(21 - 24) = -1$$

 \Rightarrow the genus of S is at least $\lceil (2+1)/2 \rceil = 2$.

Proof of Theorem 1

independently even drawing of a graph ${\it K}$ on the orientable surface of genus 4:

- drill holes around the vertices of \boldsymbol{W} in the drawing from Theorem 2, split the vertices of \boldsymbol{W}
- glue the resulting drawing (left) with a sufficiently large grid (right)

idea: the grid will fix the cyclic orders on the boundaries of the holes

Proof of Theorem 1

lower bound on the genus of *K*:

Lemma: (Geelen–Richter–Salazar, 2004;

Thomassen, 1997; Mohar, 1992; Robertson–Seymour, 1990)

In every embedding of a large grid on a surface of fixed genus, a large portion of the grid is embedded in a planar way.

