								Note Title	
$\alpha''' \in \langle \alpha \rangle \cap \langle b \rangle$ and $b \in \langle \alpha \rangle \cap \langle b \rangle \Rightarrow \alpha''' = c = b$	(1) Let $O(ab) = m$. Then, $(ab)^m = e \Rightarrow a^m = 1$	Sdn:	(ii) if $\langle a \rangle \cap \langle b \rangle = \{e\}$, then $o(ab) = 1cm$	(i) $O(\alpha b)$ l , where $l = lcm(o(\alpha), o(b))$.	Ex1: let G be a group, and a, b & G. Suppose	milotha Masi	Theorem 1: Let & E Sn. Then, either & in a cycle OR		Lecture 21
0 11 5.	o . h		= 1cm (o(a), o (b)),		Suppose that o(a) and o(b)		a product of	9/19/2022	16th Sep 2022

Proof: Since I and I are disjoint, so Ig=gf. and (I)(1) merem 2: Let f, g & Sn. If I and g are disjoint, then $o(fg) = \lambda cm(o(f), o(g))$ o(fg) = Icm(o(f), o(g))) l o (ab) \Rightarrow l = lcm(o(a), o(b)) m0(a) | m and 0(b) | m 0(06)=1 #

corollowy: let & ESn and & = a, a, ... am so a product of dispoint cycles. Then, $O(f) = lcm(\delta(\alpha_1), \dots, o(\alpha_m))$

7 1 7 . We have B = (23847) (56) Id, 82 $co(\beta) = lcm(O(a_1), O(a_2)) = lcm(5, 2) = 10.$ Let. BES8, and B= 6 7 **M**

disjoint of cles. We have \$ = (12389567) ... O(5) = 8. 5×3 : Let $f=(12567)(2389) \in 5/0$. To find o(f), we first need to express of as a product of

Sag : Theorem 3: Sn is not abelian if n > 3. Let f= (12) and g= (123)

I hen, t, g & In i

Now fq = (12)(123) = (23)

gf = (123)(12) = (13)

tof + of => Sn in not abolian if n>3.

Ext: Let 3=(123) (145), write 3 as a product of Lingoint oyclus. De have B = (123)(145) = (14523)

#	
which is already a cycle.	
- (S Z S H 1))	
$\beta^{100} = (1) \Rightarrow \beta^{99} = \beta^{-1} = (14523)^{-1}$	