CS3231

Tutorial 4

- 1. Which of the following languages are regular? Prove your answer. Below w^R denotes the reverse of w.
 - (a) $\{wcw^R \mid w \in \{a, b\}^*\}.$
 - (b) $\{ww \mid w \in \{a, b\}^*\}.$
 - (c) $\{wxw^R \mid w, x \in \{a, b\}^+\}$.
 - (d) $L = \{a^m b^r \mid m \le r \text{ or } m \ge 3r/2\}.$
- 2. Prove or Disprove:

Suppose L_1 , L_2 are regular and $L_1 = (L_2 - L_3) \cup (L_3 - L_2)$. Then L_3 is regular.

- 3. Use results done in class to show that $\{w \mid \text{number of } a\text{'s in } w \text{ is same as number of } b\text{'s in } w\}$ is not regular.
 - Here try to do it without using pumping lemma, but obtaining the above result as a corollary to the results done in class.
- 4. Consider $L = \{b^m \mid m \geq 0\} \cup \{a^m b^p \mid m \geq 1, p \text{ is prime number}\}$. Show that L satisfies the pumping lemma. (However, L is not a regular language).
- 5. (Hard) For any language L, let $HALF(L) = \{w \mid (\exists u)[wu \in L \text{ and } |w| = |u|]\}$. Show that if L is regular, then HALF(L) is regular.