

Ayudantía 14 - Teoría de números

Héctor Núñez, Paula Grune, Manuel Irarrázaval

Resumen

Division y módulo

- Relación divide a: La relación divide a, denotada por | sobre $\mathbb{Z}\setminus 0$, es tal que $a\mid b$ si y solo si $\exists k\in\mathbb{Z}$ tal que $b=k\cdot a$.
- Relación módulo n: La relación módulo n, denotada por \equiv_n sobre \mathbb{Z} , es tal que $a \equiv_n b$ si y solo si $n \mid (b-a)$. Esta relación es de equivalencia.
- Operación módulo n: La operación módulo n entrega el resto de la división por n, se denota por $a \mod n$.
- Teoremas:

$$a \equiv_n b \iff a \bmod n = b \bmod n$$
$$(a+b) \bmod n = ((a \bmod n) + (b \bmod n)) \bmod n$$
$$(a \cdot b) \bmod n = ((a \bmod n)(b \bmod n)) \bmod n$$

Pequeño teorema de Fermat

 \blacksquare Si p es primo:

$$a^p \equiv_p a$$

• Si p es primo y no divide a a:

$$a^{p-1} \equiv_p 1$$

Máximo común divisor (GCD)

■ **Máximo común divisor:** Dados a y b diremos que su máximo común divisor denotado como gcd(a, b) es el máximo natural n tal que $n \mid a$ y $n \mid b$.

• Algoritmo de euclides: Si a > b entonces:

$$gcd(a, b) = gcd(r, b)$$
 con $a \mod b = r < b$

Si seguimos recursivamente, llegamos a

$$\gcd(a,b) = \gcd(r,b) = \gcd(r,b \bmod r) = \dots = \gcd(n,0) = n$$

■ Identidad de Bézout: Esta identidad enuncia que si $a, b \in \mathbb{Z}$ son distintos de 0 y gcd(a, b) = d, entonces existen $x, y \in \mathbb{Z}$ tales que:

$$a \cdot x + b \cdot y = d$$

Ejercicio 1: Aritmética Modular

Sean a, b, c y $m \in \mathbb{Z}$ tales que $m \geq 2$.

- 1. Demuestre que si $a \equiv b \pmod{m}$, entonces MCD(a, m) = MCD(b, m).
- 2. Demuestre que si $ac \equiv bc \pmod{m}$, entonces $a \equiv b \pmod{\frac{m}{MCD(c,m)}}$.

Ejercicio 2: Pequeño teorema de Fermat

- 1. Demuestre que $13|(7^{121}+6)$
- 2. Un googleplex es equivalente $10^{10^{100}}$. ¿Que dia de la semana va a ser en un googleplex dias? (Hoy dia es miércoles).

Ejercicio 3: Máximo común divisor y algoritmo euclidiano

Considere el sistema

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \end{cases}$$

Demuestre que el sistema tiene solución si y solo si $MCD(m_1, m_2) \mid (a_1 - a_2)$.