МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа биологической и медицинской физики

Отчёт о выполнении лабораторной работы

Газо-адсорбционная хроматография

Авторы: Акимов Максим Кондратюк Наталья

Б06-206

Долгопрудный 14 октября 2024 года

1 Аннотация

Цель работы : Изучить метод газо-адсорбционной хроматографии и применить его к расчётам термодинамических характеристик исследуемых веществ, а также для проверки модели теоретической тарелки.

Задачи:

- ознакомиться с содержанием работы; разобраться с работой хроматографа и необходимым ПО;
- определить теплоту адсорбции изучаемых веществ (смеси воды, этилового и метилового спиртов) по полученным данным; отметить влияние $-CH_2$ группы на данную величину;
- провести расчёт разрешающей способности хроматографа; провести необходимые расчёты и построения согласно теории теоретической тарелки;
- обработать данные, сделать выводы о соответствии результатов теоретически ожидаемым, сделать выводы о работе в целом, сдать и оформить отчёт о выполнении лабораторной работы.

2 Введение

2.1 Изотерма сорбции

Метод газо-адсорбционной хроматографии основан на явлении адсорбции молекул из газовой фазы на поверхности твёрдого тела, то есть повышении концентрации на границе раздела фаз.

Рис. 1: Наблюдаемые изотермы сорбции: 1 - изотерма Генри, 2 - изотерма Ленгмюра, 3 - изотерма полислойной адсорбции.

Уравнение, связывающее (при постоянной температуре) поверхностную концентрацию адсорбированных молекул n_S с их объемной концентрацией п в подвижной фазе (ПФ), называется изотермой сорбции. Изотерма Генри выводится из предположения об установлении адсорбционно-десорбционного равновесия:

$$\frac{n_S}{n} = \frac{k_a}{k_d} = \frac{v_T}{4} * \tau_0 * \exp \frac{Q}{T} \Rightarrow n_S = \chi n, \tag{1}$$

где χ - константа Генри, $\tau_0 = 1/k_0$ - характерное время колебания адсорбированной молекулы, v_T - средняя скорость теплового движения молекул, а Q - теплота адсорбции.

Модель Ленгмюра учитывает конечность числа связывающих центров на твердой поверхности. Вводится понятие степени заполнения поверхности θ как отношения заполненных мест связывания n_S к полному числу центров адсорбции n_{lim} . Изотерма Ленгмюра выводится из условия равен-

ства скоростей сорбции и десорбции:

$$\theta = \frac{k_a n}{k_a n + k_d n_{\lim}} = \frac{1}{1 + \frac{B}{n}},\tag{2}$$

где $B = \frac{k_d}{k_a} * n_{\lim}$ - комбинация констант.

Адсорбционно-десорбционные процессы на поверхности твердого тела существенно зависят от величины энергии Q, называемой теплотой адсорбции. Теплота адсорбции определяется вкладом различных типов вза-имодействий, которые реализуются между молекулами адсорбата и адсорбента. Величина Q при хемосорбции достигает 100 кДж/моль, а для физической адсорбции не превышает нескольких десятков кДж/моль.

2.2 Время удерживания и высота эквивалентной теоретической тарелки

Время пребывания молекулы в хроматографической колонке t_1 (называемое временем удерживания) складывается из времени движения t_0 в $\Pi\Phi$ и времени неподвижного пребывания t_S в неподвижной фазе (Н Φ). Из равенства средних скоростей сорбции и десорбции можно получить, что:

$$t_1 = t_0 (1 + \frac{2n_S}{\rho n}),\tag{3}$$

где $\mu=\frac{t_S}{t_0}=\frac{2}{\rho}\chi$ Эффективное разделение веществ методом хроматографии достигается при условии достаточно сильной тинейную скорость газа-носителя v_0 , для времени пребывания молекул в ПФ получаем:

$$t_0 = \frac{L}{v_0}. (4)$$

Рис. 2: Иллюстрация понятия высоты эквивалентной теоретической тарелки (ВЭТТ)

Высота, эквивалентная теоретической тарелке (ВЭТТ) равна длине участка хроматографической колонки, на котором успевает установиться адсорбционно-десорбционное равновесие между молекулами в ПФ и НФ (Рис. 2). Полагая, что время установления равновесия au определяется временем диффузии молекул из объема к поверхности, получим оценку:

$$\tau \sim \frac{\rho^2}{D}.\tag{5}$$

Если ввести обозначение Н для ВЭТТ, то:

$$H = v_0 \tau, \tag{6}$$

а количество теоретических тарелок г в колонке длиной L, составит

$$r = \frac{L}{H}. (7)$$

Уравнение Ван-Деемтера

Уравнение Ван-Деемтра позволяет рассмотреть зависимость ВЭТТ от скорости потока газаносителя, что очень удобно на практике, так как регулировка потока производится очень просто. Так как ВЭТТ пропорциональна числу теоретических тарелок: $H \sim 1/r$, $R^2 \sim r$, следовательно, $H \sim 1/R^2$. Тогда получим:

$$H \sim (\sqrt{\frac{v_0 \rho^2}{LD}} + \sqrt{\frac{2S}{Lv_0}})^2 = Av_0 + \frac{B}{v_0} + C.$$
 (8)

Минимум этой функции означает, что существует оптимальная скорость потока при которой достигается максимальная разрешающая способность хроматографической колонки.

3 Описание установки

Работа производилась на хроматографе "ЦВЕТ - 800 на его примере и рассмотрим устройство прибора (Рис. 3). Разделение веществ происходит в стальной насадочной колонке длиной 2 м и диаметром 3 мм, заполненной порапаком. В неё подаётся газ-носитель (в нашем случае гелий), который служит подвижной фазой.

Гелий из балона поступает через редуктор в блок подготовки газов, который поддерживает стабильный объёмный расход в мл/мин. Затем с помощью дозирующего крана (Рис. 3) проба вводится в поток. В режиме "ОТБОР"петля крана продувается анализируемым веществом, а в положении "АНАЛИЗ"заполненная петля вводится в поток газа-носителя. Перед попаданием в колонку проба проходит через испаритель для полного перевода в газовую фазу, а только затем разделяется. На выходе из колонки стоит детектор, работающий на разности теплопроводностей чистого газа-носителя и анализируемого вещества. Управление режимом работы прибора и обработка пиков на хроматограмме производится в программе "Цвет-Аналитик".

Рис. 3: Блок-схема хроматографа

Рис. 4: Устройство крана-дозатора

4 Результаты и обсуждение

4.1 Определение теплоты адсорбции воды и спиртов на сорбенте

Проведя серии экспериментов, получим хроматограммы проб со смесью спиртов при нескольких значениях температуры колонки в диапазоне $130-180^{\circ}C$ и постоянной скорости газа носителя 30 мл/мин.

Определим времена удерживания t_1 для воды, метанола и этанола при различной температуре (Таблица 1). В качестве t_0 принять время удерживания N_2 и O_2 , которые можно считать несорбирующимися компонентами.

Используя теоретические соотношения, выведем уравнения для нахождения теплот адсорбции:

$$\chi = \frac{n_s}{n} = \frac{v_T}{4} \tau_0 \exp \frac{Q}{kT}$$

Таблица 1: Данные хроматограмм при разных температурах

T, K	$\frac{1}{T} \cdot 10^3, \ \frac{1}{K}$	$t_1(H_2O), \ c$	$\ln\left(H_2O\right)$	$t_1(CH_3OH)$, c	$\ln (CH_3OH)$	$t_1(C_2H_5OH), c$	$\ln\left(C_2H_5OH\right)$	t_0 , c
403	2,48	208,60	-0,80	290,72	-0,43	622,28	0,37	20,76
413	2,42	164,12	-1,07	218,44	-0,74	442,68	0,01	20,56
423	2,36	131,60	-1,28	168,16	-0,99	320,80	-0,29	19,60
433	2,30	107,04	-1,50	133,36	-1,24	240,88	-0,58	19,00
443	2,25	90,16	-1,70	108,12	-1,48	185,64	-0,85	18,64
453	2,20	77,36	-1,92	90,40	-1,72	146,05	-1,14	18,72

где χ - константа Генри, n_s - поверхностная концентрация молекул в неподвижной фазе, n - объемная концентрация молекул в подвижной фазе, v_T - средняя тепловая скорость молекул, τ_0 - характерное время колебания адсорбированной молекулы, Q - теплота адсорбции исследуемого вещества.

$$t_1 = t_0 \left(1 + \frac{2}{\rho} \frac{n_s}{n} \right)$$

где t_1 — время удержания, ho - радиус колонки, t_0 - мертвое время колонки.

С учетом $v_T \sim \sqrt{\frac{kT}{m}}$ получаем

$$\frac{t_1 - t_0}{t_0} = \operatorname{const} \cdot \sqrt{T} \exp \frac{Q}{kT} \Rightarrow \ln \left(\frac{t_1 - t_0}{t_0} \frac{1}{\sqrt{T}} \right) = \frac{Q}{k} \frac{1}{T} + \operatorname{const}$$

Согласно этой зависимости построим график $\ln\left(\frac{t_1-t_0}{t_0}\frac{1}{\sqrt{T}}\right)\left(\frac{1}{T}\right)$ который приведён на Рис. 5.

Рис. 5: Зависимость $\ln \left(\frac{t_1 - t_0}{t_0} \frac{1}{\sqrt{T}} \right) \left(\frac{1}{T} \right)$

По полученным коэффициентам наклона определим теплоты адсорбции соответствующих веществ (Таблица 2).

Проанализируем полученные данные. Из теплот адсорбции видно, что они растут вместе с увеличением углеродного скелета. Данный ряд теплот, таким образом, отражает влияние группы $-CH_2$ на адсорбцию

Таблица 2: Теплоты адсорбции анализируемых веществ

Вещество	H_2O	CH_3OH	C_2H_5OH
Q, кДж/моль	$33,5 \pm 0,4$	$38, 4 \pm 0, 5$	$45, 2 \pm 0, 5$

Рис. 6: Хроматограмма при 160 °C

молекулы на гидрофобном адсорбенте. Следовательно, для самой гидрофильной молекулы воды теплота адсорбции наименьшая. Далее она растёт с увеличением гидрофобной части.

Анализируя формы пиков (Рис. 6) можно сделать выводы о кривых сорбции соответствующих веществ. Соответственно, при одинаковой крутизне и симметричности пика относительно центральной оси, проходящей через его вершину, график сорбции представляет собой прямую. При более крутом подъёме график сорбции выгибается наверх, спуске — вниз. С точной уверенностью по данному изображению нельзя сказать, что подъём или спуск круче у какого-то пика.

4.2 Проверка уравнения Ван-Деемтера

Во второй части эксперимента при фиксированной температуре колонки $(T=180^{\circ}C)$ снимались хроматограммы для разного расхода газа-носителя в диапазоне 7-60 мл/мин. Экспериментальные данные представлены в таблице 3

V, мл/мин	t_0 , c	t_{H2O} , c	Δt_{H2O} , c	t_{Met} , c	Δt_{Met} , c	t_{Et} , c	Δt_{Et} , c
7	57,12	226,48	25,41	264,04	27,02	426,12	39,83
10	43,64	175,48	18,03	203,52	19,11	327,84	27,39
14	33,92	135,96	12,66	158,8	14,28	254,92	21,09
20	25,04	103,48	9,46	121,52	11,39	195,44	16,45
30	18,72	77,36	6,88	90,4	8,24	146,04	12,59
40	15,2	62,92	5,37	74	6,85	119,72	10,66
50	12,8	53,68	4,66	63,6	5,77	102,84	9,26
60	11,56	47,84	4,14	56,36	5,4	91,28	8,61

Таблица 3: Результаты измерений хроматограмм при изменяющемся потоке газа-носителя

По результатам эксперимента определим число теоретических тарелок г и разрешающую способность хроматографической R колонки согласно формулам:

$$r = 5,54 * \left(\frac{t_{max}}{\Delta t}\right)^2$$

$$R = \frac{\sqrt{r}}{2}$$

где t_{max} - максимум пика, Δt - его полуширина.

V, ml/min	R_{H_2O}	R_{Met}	R_{Et}
7	10,49	11,50	12,59
10	11,45	12,53	14,09
14	12,64	13,09	14,22
20	12,87	12,56	13,98
30	13,23	12,91	13,65
40	13,79	12,71	13,22
50	13,56	12,97	13,07
60	13,60	12,28	12,48

Таблица 4: Разрешающая способность хроматографической колонки

V, ml/min	r_{H_2O}	r_{Met}	r_{Et}
7	440,11	529,03	634,09
10	524,78	628,35	793,69
14	638,95	685,10	809,40
20	662,89	630,61	782,00
30	700,43	666,79	745,42
40	760,57	646,54	698,76
50	735,13	673,09	683,30
60	739,76	603,48	622,67

Таблица 5: Число теоретических тарелок

Рассчитаем высоту эквивалентной теоретической тарелки (ВЭТТ) для каждого пика согласно формуле:

$$H = \frac{L}{r},$$

где L=2м - длина колонки.

V, ml/min	H_{H_2O} , mm	H_{Met} , MM	H_{Et} , MM
7	4,54	3,78	3,15
10	3,81	3,18	2,52
14	3,13	2,92	2,47
20	3,02	3,17	2,56
30	2,86	3,00	2,68
40	2,63	3,09	2,86
50	2,72	2,97	2,93
60	2,70	3,31	3,21

Таблица 6: ВЭТТ

Рассмотрим зависимость ВЭТТ от скорости потока газа-носителя, её характеризует уравнение Ван-Дееметра:

$$H \sim Av + \frac{B}{v} + C$$

$$A = \frac{\rho^2}{LD}, B = \frac{2D}{L}, C = \frac{2\sqrt{2}\rho}{L}$$

Построим графики и найдём коэффициенты в уравнении для экспериментальной зависимости.

Рис. 7: Зависимость H(V) для воды

Оценим оптимальное значение для скорости потока (Таблица 7) исходя из минимума функции:

$$\frac{dH}{dv} = A - \frac{B}{v^2} = 0 \Rightarrow v_{opt} = \sqrt{\frac{B}{A}}$$

	Вода	Метанол	Этанол
v_{opt} , мл/мин	44,052	25,298	18,982

Таблица 7: Оптимальная скорость потока газа-носителя, мл/мин

Рис. 8: Зависимость H(V) для метанола

4.3 Оценка эффективного радиуса колонки

По свободному члену в полиномиальной аппроксимации оценим эффективный радиус колонки (Таблица 8):

Таблица 8: Эффективный радиус колонки

Вещество	H_2O	CH_3OH	C_2H_5OH
ρ , MM	1,32	1,54	1,05

Отметим, что реальный (заявленный в методичке) радиус трубки установки равен 1,5 мм.

Рис. 9: Зависимость H(V) для этанола

5 Выводы

• В первой части работы по полученным данным мы рассчитали теплоты адсорбции на порапаке анализируемых веществ:

Вещество	H_2O	CH_3OH	C_2H_5OH
Q, кДж/моль	$33,5 \pm 0,4$	$38,4 \pm 0,5$	$45, 2 \pm 0, 5$

- Также мы сделали вывод о влиянии гидрофобной $-CH_2$ группы на величину теплоты адсорбции и отметили корреляцию между двумя этими параметрами: величина теплоты адсорбции растёт при увеличении гидрофобной части молекулы.
- Кроме того, мы качественно провели анализ полученных хроматограмм и предположили внешний вид изотерм адсорбции изучаемых веществ.
- Для каждого из веществ (вода, метанол, этанол) была определена разрешающая способность, число теоретических тарелок и ВЭТТ для разных скоростей потока газа-носителя.
- Построена зависимость ВЭТТ от скорости потока и проверено выполнение уравнения Ван-Деемтра. По минимуму функции найдены оптимумы скорости потока для какждого из тhëx веществ:

	Вода	Метанол	Этанол
v_{opt} , мл/мин	44,052	25,298	18,982

• По свободному члену в аппроксимациях оценили эффективный радиус колонки. Среднее от полученных значений равно 1,30 мм.