# Modeling and Analysis of Time Series Data

Chapter 10: Introduction to partially observed Markov process models

Edward L. Ionides

#### Outline

- Stochastic dynamic systems observed with noise
  - Latent process models
  - The Markov property
  - The measurement model
- Prediction, filtering, smoothing and likelihood
  - Prediction and filtering recursions
  - Calculating the likelihood
  - Smoothing
- Sinear Gaussian POMP models
  - ARMA models as LG-POMP models
  - The basic structural model
  - Spline smoothing represented as an LG-POMP
  - The Kalman filter

## Latent process models

- Uncertainty and variability are common features biological and social systems. Complex physical systems can also be unpredictable: we can only forecast weather reliably in the near future.
- Time series models of deterministic trend plus colored noise imply perfect predictability if the trend function enables extrapolation.
- To model variability and unpredictability in a dynamic system, we can specify a stochastic (i.e., random) model for the system.
- Often times, the full dynamic system is unobserved. We have only noisy or incomplete measurements.
- We model measurements as random variables conditional on the trajectory of the latent process. The latent process is also called a state process or hidden process.

## The Markov property

- A model for a stochastic dynamic system has the Markov property if the future evolution of the system depends only on the current state, plus randomness introduced in future.
- A models with the Markov property may be called a Markov chain or a Markov process.
- We use the term Markov process since the term chain is often reserved for situations where either time or the latent state (or both) take discrete values.
- The Markov property is often used to model the latent process in a time series model.

## Notation for discrete time Markov processes

• A time series model  $X_{0:N}$  is a **Markov process** model if the

conditional densities satisfy the **Markov property** [P1] that densities 
$$f_{X_n|X_{1:n-1}}(x_n\,|\,x_{1:n-1})=f_{X_n|X_{n-1}}(x_n\,|\,x_{n-1}).$$
 for all  $n\in 1:N$ 

- ullet We may suppose there is an underlying continuous time, t, such that  $X_n$  occurs at time  $t_n$ .
- We write X(t) for the continuous time model, setting  $X_n = X(t_n)$ .
- $t_{1:N}$  are measurement times.
- t<sub>0</sub> is the initialization time.

#### Initial conditions

- We **initialize** the Markov process model at a time  $t_0$ , although data are collected only at times  $t_{1:N}$ .
- The initialization model could be deterministic (a fixed value) or a random variable.
- ullet We model  $X_0=X(t_0)$  as a draw from a probability density function

$$f_{X_0}(x_0). (1)$$

- A fixed initial value is a special case of a density corresponding to a point mass with probability one at the fixed value.
- A discrete probability mass function is a special case of a density corresponding to a collection of point masses.

# The process model

- The probability density function  $f_{X_n|X_{n-1}}(x_n \mid x_{n-1})$  is called the one-step transition density of the Markov process.
- The Markov property asserts that the next step taken by a Markov process follows the one-step transition density based on the current state, whatever the previous history of the process.
- For a Markov model, the full joint distribution of the latent process is entirely specified by the one-step transition densities, given the initial
- Therefore, we also call  $f_{X_n|X_{n-1}}(x_n|x_{n-1})$  the **process model**.  $\begin{cases} x_{n-1}(x_n|x_{n-1}) & \text{the process model}. \\ x_{n-1}(x_n|x_{n-1}) & \text{the process model}. \end{cases}$

# The joint distribution in terms of one-step transition densities

**Exercise 10.1**. Use [P1] to derive an expression for the joint distribution of a Markov process as a product of the one-step transition densities. In other words, derive

[P2] 
$$f_{X_{0:N}}(x_{0:N}) = f_{X_0}(x_0) \prod_{n=1}^{N} f_{X_n|X_{n-1}}(x_n \mid x_{n-1}).$$

**Hint**: This involves elementary rules for manipulation of joint and conditional densities, together with application of the Markov property. It is a good exercise to work through by hand to build familiarity with the model class.

**Question 10.1**. Explain why a causal Gaussian AR(1) process is a Markov process. Gansson AR(i): Xn= ØXn+En, Enviid N(0,00) Here, En is independent of Xin by construction, since X1:1-1 is a Wilin of Einer (using the causally proporty) So, X, guer X,,, X,, depends only on X,-, by anstruction, i.e. {X, 3 has the Markov property. Pehort for {Xn, n=0,1,..., N} Note: If {En} is general white nise, we have lock of correlation but not necessary independence. The Mahon proposly orsserts independence, so general white nise does not grant as the Makon proposty.

## Time-homogeneous transitions and stationarity

- $\bullet$  The one step transition density  $f_{X_n|X_{n-1}}$  for a Markov process  $X_{0:N}$  can depend on n.
- $X_{0:N}$  is **time-homogeneous** if  $f_{X_n|X_{n-1}}$  does not depend on n, so there is a conditional density  $f(\cdot|\cdot)$  such that, for all  $n\in 1:N$ ,

$$f_{X_n|X_{n-1}}(x_n \mid x_{n-1}) = f(x_n \mid x_{n-1}).$$
 (2)

Question 10.2. If  $X_{0:N}$  is strict stationary, it is time-homogeneous. Why? Strict stationary, assets that all just & anothered distributions are shift-invariant, so  $f_{X_0|X_{n-1}}(x_n|x_{n-1})=f_{X_1|X_0}(x_n|x_{n-1})$  so in (2), set  $f=f_{X_1|X_0}$ 

Question 10.3. Time-homogeneity does not necessarily imply stationarity. Find a counter-example. Any condom walk is a Counter-example, to example, a Gaussian rand an walk:  $X_n = X_{n-1} + E_n$ ,  $X_0 = 0$ ,  $E_n \times E_n \times E_$ 

# Partially observed Markov process (POMP) models

- Partial observation may mean either or both of (i) measurement noise; (ii) entirely unmeasured latent variables.
- These features are present in many systems.
- A partially observed Markov process (POMP) model is defined by putting together a Markov latent process model and a measurement model.
- POMP models are a general class, covering many models designed for specific applications.
- Statistical methods for to this general class give us flexibility to develop specific POMP models appropriate to a range of applications.

#### The measurement model

- The **measurement process** is a collection of random variables  $Y_{1:N}$  which models the data  $y_{1:N}^*$ .
- $Y_n$  is assumed to depend on the latent process only through its value  $X_n$  at the time of the measurement. Formally, this assumption is:

$$\text{[P3]} \quad f_{Y_n \mid X_{0:N}, Y_{1:n-1}, Y_{n+1:N}}(y_n \mid x_{0:N}, y_{1:n-1}, y_{n+1:N}) = f_{Y_n \mid X_n}(y_n \mid x_n).$$

• We call  $f_{Y_n|X_n}(y_n | x_n)$  the measurement model.

## Time-homogeneous measurement models

- In general, the measurement model can depend on n or on any covariate time series.
- The measurement model is **time-homogeneous** if there is a conditional probability density function  $g(\cdot | \cdot)$  such that, for all  $n \in 1:N$ ,

$$f_{Y_n|X_n}(y_n \mid x_n) = g(y_n \mid x_n).$$
 (3)

• Time-inhomogeneous process and measurement models are sufficiently common that we benefit from the extra generality of writing  $f_{X_n|X_{n-1}}(x_n|x_{n-1})$  and  $f_{Y_n|X_n}(y_n|x_n)$  versus  $f(x_n|x_{n-1})$  and  $g(y_n|x_n)$ .

## Four basic calculations for working with POMP models

Many time series models in science, engineering and industry can be written as POMP models. A reason that POMP models form a useful tool for statistical work is that there are convenient recursive formulas to carry out four basic calculations:

- Prediction
- Filtering
- Smoothing
- Likelihood calculation

#### Prediction

• One-step prediction (also called forecasting) of the latent process at time  $t_{n+1}$  given data up to time  $t_n$  involves finding

$$f_{X_{n+1}|Y_{1:n}}(x_{n+1}|y_{1:n}^*). (4)$$

- We may want to predict more than one time step ahead. However, one-step prediction turns out to be closely related to computing the likelihood function, and therefore central to statistical inference.
- Our prediction is a conditional probability density, not a point estimate. In the context of forecasting, this is called a **probabilistic** forecast. What are the advantages of a probabilistic forecast over a point forecast? Are there any disadvantages?

  Advantages: We want to know the cargo of predictions & their relative plausitity.

Disadvantages: harder to compute; harder to interpret.

## **Filtering**

- The **filtering** calculation at time  $t_n$  is to find the conditional distribution of the latent process  $X_n$  given data  $y_{1:n}^*$  available at time  $t_n$ .
- Filtering involves calculating

$$f_{X_n|Y_{1:n}}(x_n | y_{1:n}^*).$$
 (5)

- This can be evaluated numerically or algebraically. We will see that Monte Carlo methods can be a good tool.
- The name "filtering" comes from the history of signal processing. A
  noisy received signal was passed through capacitors and resistors to
  construct a band pass filter estimating the source signal, just like an
  optical filter removes unwanted frequencies of light.

# **Smoothing**

- In the context of a POMP model, smoothing involves finding the conditional distribution of  $X_n$  given all the data,  $y_{1:N}^*$ .
- So, the smoothing calculation is to find

"hind cash ng" 
$$f_{X_n|Y_{1:N}}(x_n \mid y_{1:N}^*). \tag{6}$$

(not a trend according to our definition of trend as an expected value) then extra ation of Xn is exceetly the classic statistical smoothing problem.

measurement goise.

#### The likelihood

ullet The likelihood is the joint density of  $Y_{1:N}$  evaluated at the data,

$$f_{Y_{1:N}}(y_{1:N}^*).$$
 (7)

• The model may depend on a parameter vector  $\theta$ . We can include  $\theta$  in all the joint and conditional densities above. Then, the **likelihood** function is the likelihood viewed as a function of  $\theta$ . We write

$$\mathcal{L}(\theta) = f_{Y_{1:N}}(y_{1:N}^*; \theta) \tag{8}$$

- If we can compute  $\mathcal{L}(\theta)$  then we can perform numerical optimization to get a maximum likelihood estimate
- Likelihood evaluation and maximization lets us compute profile likelihood confidence intervals, carry out likelihood ratio tests, and make AIC model comparisons.

## The prediction formula

• One-step prediction of the latent process at time  $t_n$  given data up to time  $t_{n-1}$  can be computed recursively in terms of the filtering problem at time  $t_{n-1}$ , via the **prediction formula** for  $n \in 1:N$ ,

$$\begin{aligned} \text{[P4]} \quad f_{X_n \mid Y_{1:n-1}}(x_n \mid y_{1:n-1}^*) &= \\ \int f_{X_{n-1} \mid Y_{1:n-1}}(x_{n-1} \mid y_{1:n-1}^*) \, f_{X_n \mid X_{n-1}}(x_n \mid x_{n-1}) \, dx_{n-1}. \end{aligned}$$

• For the case n=1, we let 1:k is the empty set when k=0, so that  $f_{X_0|Y_{1:0}}(x_0\,|\,y_{1:0}^*)$  means  $f_{X_0}(x_0)$ . In other words, the filter distribution at time  $t_0$  is the initial density for the latent process, since at time  $t_0$  we have no data to condition on.

**Exercise 10.2**. Derive [P4] using the definition of a POMP model with elementary properties of joint and conditional densities.

#### Hints for deriving the recursion formulas

Any general identity holding for densities must also hold when we condition everything on a new variable.

Example 1. From

$$f_{XY}(x,y) = f_X(x) f_{Y|X}(y \mid x)$$
 (9)

we can condition on Z to obtain

$$f_{XY|Z}(x,y\,|\,z) = f_{X|Z}(x\,|\,z)\,f_{Y|XZ}(y\,|\,x,z). \tag{10}$$

**Example 2**. The prediction formula is a special case of the identity

$$f_{X|Y}(x \mid y) = \int f_{XZ|Y}(x, z \mid y) \, dz. \tag{11}$$

**Example 3**. A conditional form of Bayes' identity is

$$f_{X|YZ}(x \mid y, z) = \frac{f_{Y|XZ}(y \mid x, z) f_{X|Z}(x \mid z)}{f_{Y|Z}(y \mid z)}.$$
 (12)

## The filtering formula

- Filtering at time  $t_n$  can be computed by combining the new information in the datapoint  $y_n^*$  with the calculation of the one-step prediction of the latent process at time  $t_n$  given data up to time  $t_{n-1}$ .
- This is carried out via the **filtering formula** for  $n \in 1 : N$ ,

$$[\mathsf{P5}] \quad f_{X_n \mid Y_{1:n}}(x_n \mid y_{1:n}^*) = \frac{f_{X_n \mid Y_{1:n-1}}(x_n \mid y_{1:n-1}^*) \, f_{Y_n \mid X_n}(y_n^* \mid x_n)}{f_{Y_n \mid Y_{1:n-1}}(y_n^* \mid y_{1:n-1}^*)}.$$

**Exercise 10.3**. Derive [P5] using the definition of a POMP model with elementary properties of joint and conditional densities.

• The prediction and filtering formulas are **recursive**. If they can be computed for time  $t_n$  then they enable the computation at time  $t_{n+1}$ .

#### The conditional likelihood formula

- The denominator in the filtering formula [P5] is the conditional **likelihood** of  $y_n^*$  given  $y_{1:n-1}^*$ .
- It can be computed in terms of the one-step prediction density, via the conditional likelihood formula.

[P6] 
$$f_{Y_n|Y_{1:n-1}}(y_n^* \mid y_{1:n-1}^*) = \int f_{X_n|Y_{1:n-1}}(x_n \mid y_{1:n-1}^*) f_{Y_n|X_n}(y_n^* \mid x_n) dx_n.$$

## Computation of the likelihood and log likelihood

 $\bullet$  The likelihood of the entire dataset,  $y_{1:N}^{*}$  can be found from [P6], using the identity

$$f_{Y_{1:N}}(y_{1:N}^*) = \prod_{n=1}^{N} f_{Y_n|Y_{1:n-1}}(y_n^* \mid y_{1:n-1}^*).$$
 (13)

• Equation (13) uses the convention that 1:k is the empty set when k=0, so the first term in the product is

$$f_{Y_1|Y_{1:0}}(y_1^* \mid y_{1:0}^*) = f_{Y_1}(y_1^*)$$
(14)

• If our model has an unknown parameter  $\theta$  then (13) gives the  $\log$  likelihood function as a sum of conditional  $\log$  likelihoods,

$$\ell(\theta) = \log \mathcal{L}(\theta) = \log f_{Y_{1:N}}(y_{1:N}^*; \theta) = \sum_{n=1}^{N} \log f_{Y_n|Y_{1:n-1}}(y_n^* \mid y_{1:n-1}^*; \theta).$$

## The smoothing recursions

- Smoothing is less fundamental for likelihood-based inference than filtering and one-step prediction.
- Nevertheless, sometimes we want to compute the smoothing density, so we develop some necessary formulas.
- The filtering and prediction formulas are recursions forward in time: a solution at time  $t_{n-1}$  is used for the computation at  $t_n$ .
- For smoothing, we have backwards smoothing recursion formulas,

$$\text{[P7]} \quad f_{Y_{n:N}\mid X_n}(y_{n:N}^*\mid x_n) = f_{Y_n\mid X_n}(y_n^*\mid x_n) f_{Y_{n+1:N}\mid X_n}(y_{n+1:N}^*\mid x_n).$$

$$\begin{split} \text{[P8]} \quad & f_{Y_{n+1:N}|X_n}(y_{n+1:N}^* \,|\, x_n) \\ & = \int f_{Y_{n+1:N}|X_{n+1}}(y_{n+1:N}^* \,|\, x_{n+1}) \, f_{X_{n+1}|X_n}(x_{n+1} \,|\, x_n) \, dx_{n+1}. \end{split}$$

# Combining recursions to find the smoothing distribution

The forwards and backwards recursion formulas together allow us to compute the **smoothing formula**,

[P9] 
$$f_{X_n|Y_{1:N}}(x_n \mid y_{1:N}^*) = \frac{f_{X_n|Y_{1:n-1}}(x_n \mid y_{1:n-1}^*) f_{Y_{n:N}|X_n}(y_{n:N}^* \mid x_n)}{f_{Y_{n:N}|Y_{1:n-1}}(y_{n:N}^* \mid y_{1:n-1}^*)}.$$

**Exercise 10.4**. Show how [P7], [P8] and [P9] follow from the basic properties of conditional densities combined with the Markov property.

**Hint**: you can write the left hand side of [P9] as  $f_{X|YZ}$  with  $X=X_n$ ,  $Y=Y_{1:n-1}$ ,  $Z=Y_{n:N}$ .

# Linear Gaussian POMP (LG-POMP) models

- Linear Gaussian partially observed Markov process (LG-POMP) models have many applications across science and engineering.
- Gaussian ARMA models are LG-POMP models. The POMP recursion formulas give a computationally efficient way to obtain the likelihood of a Gaussian ARMA model.
- Smoothing splines (including the Hodrick-Prescott filter, which is a smoothing spline) can be written as an LG-POMP model.
- The Basic Structural Model is an LG-POMP used for econometric forecasting. It models a stochastic trend, seasonality, and measurement error, in a framework with econometrically interpretable parameters. This is more interpretable than fitting SARIMA.
- If an LG-POMP model is appropriate, you avoid Monte Carlo computations used for inference in general nonlinear POMP models.

## The general LG-POMP model

Suppose the latent process,  $X_{0:N}$ , and the observation process  $\{Y_n\}$ , takes vector values with dimension  $d_X$  and  $d_Y$ . A general mean zero LG-POMP model is specified by

- A sequence of  $d_X \times d_X$  matrices,  $\mathbb{A}_{1:N}$ ,
- A sequence of  $d_X \times d_X$  covariance matrices,  $\mathbb{U}_{0:N}$ ,
- ullet A sequence of  $d_Y imes d_X$  matrices,  $\mathbb{B}_{1:N}$
- A sequence of  $d_Y \times d_Y$  covariance matrices,  $V_{1:N}$ .

We initialize with  $X_0 \sim N[0, \mathbb{U}_0]$  and then define the entire LG-POMP model by a recursion for  $n \in 1:N$ ,

$$[\mathsf{LG1}] \hspace{1cm} X_n \ = \ \mathbb{A}_n X_{n-1} + \epsilon_n, \hspace{1cm} \epsilon_n \sim N[0, \mathbb{U}_n],$$
 
$$[\mathsf{LG2}] \hspace{1cm} Y_n \ = \ \mathbb{B}_n X_n + \eta_n, \hspace{1cm} \eta_n \sim N[0, \mathbb{V}_n].$$

Often, but not always, we will have a **time-homogeneous** LG-POMP model, with  $\mathbb{A}_n = \mathbb{A}$ ,  $\mathbb{B}_n = \mathbb{B}$ ,  $\mathbb{U}_n = \mathbb{U}$  and  $\mathbb{V}_n = \mathbb{V}$  for  $n \in 1:N$ .

## The LG-POMP representation of a Gaussian ARMA

• Let  $\{Y_n\}$  be a Gaussian ARMA(p,q) model with noise process  $\omega_n \sim \mathrm{normal}[0,\sigma^2]$ , defined by

$$Y_n = \sum_{j=1}^{p} \phi_j Y_{n-j} + \omega_n + \sum_{k=1}^{q} \psi_q \omega_{n-k}.$$
 (15)

- We look for a time-homogeneous LG-POMP defined by [LG1] and [LG2] where  $Y_n$  is the first component of  $X_n$  with no measurement error.
- To do this, we define  $d_X = r = \max(p, q + 1)$  and

$$\mathbb{B} = (1, 0, 0, \dots, 0), \tag{16}$$

$$V = 0. (17)$$

• We require  $\mathbb{A}$  and  $\mathbb{U}$  such that  $Y_n$  satisfies equation (15).

We state a solution and see if it works out. Consider

$$X_{n} = \begin{pmatrix} Y_{n} \\ \phi_{2}Y_{n-1} + \dots + \phi_{r}Y_{n-r+1} + \psi_{1}\omega_{n} + \dots + \psi_{r-1}\omega_{n-r+2} \\ \phi_{3}Y_{n-1} + \dots + \phi_{r}Y_{n-r+1} + \psi_{2}\omega_{n} + \dots + \psi_{r-1}\omega_{n-r+3} \\ \vdots \\ \phi_{r}Y_{n-1} + \psi_{r-1}\omega_{t} \end{pmatrix}$$

We can check that the ARMA equation (15) matches the matrix equation

$$X_n = \mathbb{A} X_{n-1} + \begin{pmatrix} 1 \\ \psi_1 \\ \psi_2 \\ \vdots \\ \psi_{r-1} \end{pmatrix} \omega_n. \text{ where } \mathbb{A} = \begin{pmatrix} \phi_1 & 1 & 0 & \dots & 0 \\ \phi_2 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \phi_{r-1} & 0 & \dots & 0 & 1 \\ \phi_r & 0 & \dots & 0 & 0 \end{pmatrix}$$

This is a time-homogenous LG-POMP, with  $\mathbb A$ ,  $\mathbb B$  and  $\mathbb V$  as above and

$$\mathbb{U} = \sigma^{2}(1, \psi_{1}, \psi_{2}, \dots, \psi_{r-1})^{\mathrm{T}}(1, \psi_{1}, \psi_{2}, \dots, \psi_{r-1}).$$

# Different POMPs can give the same model for $Y_{1:N}$

- There are other LG-POMP representations giving rise to the same ARMA model.
- When only one component of a latent process is observed, any model giving rise to the same observed component is indistinguishable from the data.
- Here, the LG-POMP model has order  $d_X^2=r^2=\max(p,q+1)^2$  parameters. The ARMA model has order r parameters, so we expect many ways to parameterize the ARMA model as a special case of the much larger LG-POMP model.
- This unidentifiability can also arise for non-Gaussian POMPs, but it is easier to see in the Gaussian case.

#### The basic structural model

- The basic structural model was developed for econometric analysis.
- It decomposes an observable process  $Y_{1:N}$  as the sum of a **level**  $(L_n)$ , a **trend**  $(T_n)$  describing the rate of change of the level, and a monthly **seasonal component**  $(S_n)$ .
- The model supposes that the level, trend and seasonality are perturbed with Gaussian white noise at each time point,

$$\begin{array}{lll} [{\rm BSM1}] & Y_n & = & L_n + S_n + \epsilon_n \\ [{\rm BSM2}] & L_n & = & L_{n-1} + T_{n-1} + \xi_n \\ [{\rm BSM3}] & T_n & = & T_{n-1} + \zeta_n \\ [{\rm BSM4}] & S_n & = & -\sum_{k=1}^{11} S_{n-k} + \eta_n \end{array}$$

where  $\epsilon_n \sim \text{normal}[0, \sigma_{\epsilon}^2]$ ,  $\xi_n \sim \text{normal}[0, \sigma_{\xi}^2]$ ,  $\zeta_n \sim \text{normal}[0, \sigma_{\zeta}^2]$ , and  $\eta_n \sim \text{normal}[0, \sigma_n^2]$ .

## Two common special cases of the basic structural model

- The **local linear trend** model is the basic structural model without the seasonal component,  $\{S_n\}$
- The **local level model** is the basic structural model without either the seasonal component,  $\{S_n\}$ , or the trend component,  $\{T_n\}$ . The local level model is therefore a random walk observed with measurement error.

#### Initial values for the basic structural model

- To complete the model, we need to specify initial values.
- We have an example of the common problem of failing to specify initial values: these are not explained in the documentation of the R implementation of the basic structural model, StructTS. We could go through the source code to find out what it does.
- Incidentally, ?StructTS does give some advice which resonates with our experience earlier in the course that optimization for ARMA models is often imperfect.

"Optimization of structural models is a lot harder than many of the references admit. For example, the 'AirPassengers' data are considered in Brockwell & Davis (1996): their solution appears to be a local maximum, but nowhere near as good a fit as that produced by 'StructTS'. It is quite common to find fits with one or more variances zero, and this can include  $sigma_{ens}^2$ ."

#### The basic structural model is an LG-POMP model

[BSM1-4] can be put in matrix form,

$$\begin{pmatrix} L_n \\ T_n \\ S_n \\ S_{n-1} \\ S_{n-2} \\ \vdots \\ S_{n-10} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & -1 & -1 & -1 & \dots & -1 \\ 0 & 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} L_{n-1} \\ T_{n-1} \\ S_{n-1} \\ S_{n-2} \\ S_{n-3} \\ \vdots \\ S_{n-11} \end{pmatrix} + \begin{pmatrix} \xi_n \\ \zeta_n \\ \eta_n \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Now, set

$$X_n = (L_n, T_n, S_n, S_{n-1}, S_{n-2}, \dots, S_{n-10})^{\mathrm{T}},$$
 (18)

$$Y_n = (1, 0, 1, 0, 0, \dots, 0)X_n + \epsilon_n. \tag{19}$$

We can identify matrices  $\mathbb{A}$ ,  $\mathbb{B}$ ,  $\mathbb{U}$  and  $\mathbb{V}$  giving a time-homogeneous LG-POMP representation [LG1, LG2] for the basic structural model.

# Spline smoothing and its LG-POMP representation

- Spline smoothing is a standard method to smooth scatter plots and time plots. For example, smooth.spline and hpfilter in R.
- A smoothing spline for an equally spaced time series  $y_{1:N}^*$  collected at times  $t_{1:N}$  is the sequence  $x_{1:N}$  minimizing the **penalized sum of squares (PSS)**, which is defined as

[SS1] 
$$PSS(x_{1:N}; \lambda) = \sum_{n=1}^{N} (y_n^* - x_n)^2 + \lambda \sum_{n=3}^{N} (\Delta^2 x_n)^2.$$

- The spline is defined for all times, but here we are only concerned with its value at the times  $t_{1:N}$ .
- Here,  $\Delta x_n = (1 B)x_n = x_n x_{n-1}$ .

- The **smoothing parameter**,  $\lambda$ , penalizes  $x_{1:N}$  to prevent the spline from interpolating the data.
- If  $\lambda=0$ , the spline will go through each data point, i.e,  $x_{1:N}$  will interpolate  $y_{1:N}^*$ .
- If  $\lambda = \infty$ , the spline will be the ordinary least squares regression fit,

$$x_n = \alpha + \beta n, \tag{20}$$

since 
$$\Delta^2(\alpha + \beta n) = 0$$
.

Now consider the linear Gaussian model,

[SS2] 
$$X_n = 2X_{n-1} - X_{n-2} + \epsilon_n, \quad \epsilon_n \sim \text{iid } N[0, \sigma^2/\lambda]$$
  
[SS3]  $Y_n = X_n + \eta_n, \quad \eta_n \sim \text{iid } N[0, \sigma^2]$ 

- Note that  $\Delta^2 X_n = \epsilon_n$ .
- We will show that [SS1] is equivalent to [SS2,SS3].

# Constructing a linear Gaussian POMP (LG-POMP) model matching [SS2] and [SS3]

**Question 10.4**.  $\{X_n,Y_n\}$  defined in [SS2] and [SS3] is not quite an LG-POMP model. However, we can use  $\{X_n\}$  and  $\{Y_n\}$  to build an LG-POMP model. How?

# Deriving the penalized spline from the LG-POMP

ullet The joint density of  $X_{1:N}$  and  $Y_{1:N}$  in [SS2,SS3] is

$$f_{X_{1:N}Y_{1:N}}(x_{1:N}, y_{1:N}) = f_{X_{1:N}}(x_{1:N}) f_{Y_{1:N}|X_{1:N}}(y_{1:N} \mid x_{1:N}).$$
 (21)

Taking logs of (21) we get

$$\log f_{X_{1:N}Y_{1:N}}(x_{1:N},y_{1:N}) = \log f_{X_{1:N}}(x_{1:N}) + \log f_{Y_{1:N}\mid X_{1:N}}(y_{1:N}\mid x_{1:N}).$$

• [SS2,SS3] tell us that  $\{\Delta^2 X_n, n \in 1 : N\}$  and  $\{Y_n - X_n, n \in 1 : N\}$  are independent  $\operatorname{normal}[0, \sigma^2/\lambda]$  and  $\operatorname{normal}[0, \sigma^2]$ . Thus,

$$\log f_{X_{1:N}Y_{1:N}}(x_{1:N}, y_{1:N}; \sigma, \lambda) = \frac{-1}{2\sigma^2} \sum_{n=1}^{N} (y_n - x_n)^2 + \frac{-\lambda}{2\sigma^2} \sum_{n=3}^{N} (\Delta^2 x_n)^2 + C.$$
 (22)

• Here, C depends on  $\sigma$  and  $\lambda$  but not on  $y_{1:N}$ . C depends on the initial terms  $x_0$  and  $x_{-1}$ , but we suppose these can be ignored, for example by modeling them with an improper uniform density.

- Comparing (22) with [SS1], we see that maximizing the density  $f_{X_{1:N}Y_{1:N}}(x_{1:N},y_{1:N}^*;\sigma,\lambda)$  as a function of  $x_{1:N}$  is the same problem as finding the smoothing spline by minimizing the penalized sum of squares.
- For a Gaussian density, the mode (i.e., the maximum of the density) is equal to the expected value. Therefore, we have

$$\begin{split} \arg\min_{x_{1:N}} \mathrm{PSS}(x_{1:N}\,;\lambda), &= \arg\max_{x_{1:N}} f_{X_{1:N}Y_{1:N}}(x_{1:N},y_{1:N}^*\,;\sigma,\lambda), \\ &= \arg\max_{x_{1:N}} \frac{f_{X_{1:N}Y_{1:N}}(x_{1:N},y_{1:N}^*\,;\sigma,\lambda)}{f_{Y_{1:N}}(y_{1:N}^*\,;\sigma,\lambda)}, \\ &= \arg\max_{x_{1:N}} f_{X_{1:N}|Y_{1:N}}(x_{1:N}\,|\,y_{1:N}^*\,;\sigma,\lambda), \\ &= \mathbb{E}\big[X_{1:N}\,|\,Y_{1:N} = y_{1:N}^*\,;\sigma,\lambda\big]. \end{split}$$

- Because a (conditional) normal distribution is characterized by its (conditional) mean and variance, the smoothing calculation for an LG-POMP model involves finding the conditional mean and variance of  $X_n$  given  $Y_{1:N} = y_{1:N}^*$ .
- We conclude that the smoothing problem for this LG-POMP model is the same as the spline smoothing problem defined by [SS1].
- If you have experience using smoothing splines, this connection may help you transfer that experience to POMP models.
- Once you have experience with POMP models, this connection helps you understand spline smoothers that are commonly used in many applications.
- ullet For example, the smoothing parameter  $\lambda$  could be selected by maximum likelihood for the POMP model.

# Why do we penalize by $\sum_{n} (\Delta^{2} X_{n})^{2}$ when smoothing?

**Question 10.5**. We found that the smoothing spline corresponds to a particular choice of LG-POMP model given by [SS2, SS3], Why do we choose that penalty, rather that the equivalent penalty from some other LG-POMP model?

**Note**: This LG-POMP model is sometimes reasonable, but presumably there are other occasions when a different LG-POMP model would lead to superior performance.

### The Kalman filter

- The Kalman filter is the name given to the prediction, filtering and smoothing formulas [P4–P9] for the linear Gaussian partially observed Markov process (LG-POMP) model.
- Linear Gaussian models have Gaussian conditional distributions.
- The integrals in the general POMP formulas can be found exactly for the Gaussian distribution, leading to linear algebra calculations of conditional means and variances.
- The R function arima() uses a Kalman filter to evaluate the likelihood of an ARMA model (or ARIMA, SARMA, SARIMA).

#### Review of the multivariate normal distribution

• A random variable X taking values in  $\mathbb{R}^{d_X}$  is **multivariate normal** with mean  $\mu_X$  and variance  $\Sigma_X$  if we can write

$$X = \mathbb{H}Z + \mu_X$$

where Z is a vector of  $d_X$  independent identically distributed  $\operatorname{normal}[0,1]$  random variables and  $\mathbb H$  is a  $d_X \times d_X$  matrix square root of  $\Sigma_X$ , i.e.,

$$\mathbb{HH}^{\mathrm{T}} = \Sigma_X.$$

- A matrix square root of this type exists for any covariance matrix, though the choice of  $\mathbb{H}$  is not unique.
- We write  $X \sim \text{normal}[\mu_X, \Sigma_X]$ . If  $\Sigma_X$  is invertible, X has a probability density function,

$$f_X(x) = \frac{1}{(2\pi)^{d_X/2}|\Sigma_X|} \exp\left\{-\frac{(x-\mu_X)\left[\Sigma_X\right]^{-1}(x-\mu_X)^{\mathrm{T}}}{2}\right\}.$$

#### Joint multivariate normal vectors

X and Y are **joint multivariate normal** if the combined vector

$$Z = \left(\begin{array}{c} X \\ Y \end{array}\right)$$

is multivariate normal. In this case, we write

$$\mu_Z = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \quad \Sigma_Z = \begin{pmatrix} \Sigma_X & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_Y \end{pmatrix},$$

where

$$\Sigma_{XY} = \operatorname{Cov}(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)^{\mathrm{T}}].$$

ullet For joint multivariate normal random variables X and Y, we have the useful property that the conditional distribution of X given Y=y is multivariate normal, with conditional mean and variance

$$\begin{aligned} \text{[KF1]} \qquad \qquad & \mu_{X|Y}(y) &= & \mu_X + \Sigma_{XY} \, \Sigma_Y^{-1} \big( y - \mu_Y \big), \\ \text{[KF2]} \qquad & \Sigma_{X|Y} &= & \Sigma_X - \Sigma_{XY} \, \Sigma_Y^{-1} \, \Sigma_{YX}. \end{aligned}$$

We write this as

$$X \mid Y = y \sim \text{normal} \left[ \mu_{X|Y}(y), \Sigma_{X|Y} \right].$$

- ullet The joint multivariate normal has a special property that the conditional variance of X given Y=y does not depend on the value of y. In non-Gaussian situations, it will usually depend on y.
- If  $\Sigma_Y$  is not invertible, we can interpret  $\Sigma_Y^{-1}$  as a generalized inverse.

## Notation for the Kalman filter recursions

We define the conditional means and variances for the filtering, prediction and smoothing distributions:

[KF3] 
$$X_n \mid Y_{1:n-1} = y_{1:n-1} \sim \operatorname{normal} \left[ \mu_n^P(y_{1:n-1}), \Sigma_n^P \right],$$
  
[KF4]  $X_n \mid Y_{1:n} = y_{1:n} \sim \operatorname{normal} \left[ \mu_n^F(y_{1:n}), \Sigma_n^F \right],$   
[KF5]  $X_n \mid Y_{1:N} = y_{1:N} \sim \operatorname{normal} \left[ \mu_n^S(y_{1:N}), \Sigma_n^S \right].$ 

- For data  $y_{1:N}^*$ , we call  $\mu_n^P = \mu_n^P \left( y_{1:n-1}^* \right) = \mathbb{E} \left[ X_n \, | \, Y_{1:n-1} = y_{1:n-1}^* \right]$  the **prediction mean**, and  $\Sigma_n^P$  the **prediction variance**.
- $\mu_n^F = \mu_n^F \left( y_{1:n-1}^* \right) = \mathbb{E} \left[ X_n \, | \, Y_{1:n} = y_{1:n}^* \right]$  is the filter mean and  $\Sigma_n^F$  the filter variance.
- $\mu_n^S = \mu_n^S (y_{1:N}^*) = \mathbb{E} \big[ X_n \, | \, Y_{1:N} = y_{1:N}^* \big]$  is the smoothed mean and  $\Sigma_n^S$  the smoothed variance.

#### The Kalman matrix recursions

 Applying the properties of linear combinations of Normal random variables, we get the Kalman filter and prediction recursions:

$$\begin{array}{lll} [\mathsf{KF6}] & \mu_{n+1}^P(y_{1:n}) &=& \mathbb{A}_{n+1}\mu_n^F(y_{1:n}) \\ \\ [\mathsf{KF7}] & \Sigma_{n+1}^P &=& \mathbb{A}_{n+1}\Sigma_n^F\mathbb{A}_{n+1}^{\mathsf{T}} + \mathbb{U}_{n+1}, \\ \\ [\mathsf{KF8}] & \Sigma_n^F &=& \left([\Sigma_n^P]^{-1} + \mathbb{B}_n^{\mathsf{T}}\mathbb{V}_n^{-1}\mathbb{B}_n\right)^{-1}, \\ \\ [\mathsf{KF9}] & \mu_n^F(y_{1:n}) &=& \mu_n^P(y_{1:n-1}) + \Sigma_n^F\mathbb{B}_n^{\mathsf{T}}\mathbb{V}_n^{-1}\{y_n - \mathbb{B}_n\mu_n^P(y_{1:n-1})\}. \end{array}$$

### Outline of a derivation of the Kalman matrix recursions

- The prediction recursions [KF6] and [KF7] follow from the property that if X is a d-dimensional multivariate normal,  $X \sim \operatorname{normal}(\mu, \Sigma)$ , then  $\mathbb{A}X + b \sim \operatorname{normal}(\mathbb{A}\mu + b, \mathbb{A}\Sigma\mathbb{A}^{\mathrm{T}})$ .
- Note that the multivariate normal identities [KF1,KF2] also hold when all variables are conditioned on some additional joint Gaussian variable, in this case  $Y_{1:n-1}$ .
- [KF8] and [KF9] can be deduced by writing out the joint density,

$$f_{X_n Y_n | Y_{1:n-1}}(x_n, y_n | y_{1:n-1})$$
 (23)

and completing the square in the exponent. The conditional density of  $X_n$  given  $Y_{1:n}$  is proportional to this joint density, with proportionality constant allowing integration to one.

**Exercise 10.5**. The derivation of the Kalman filter is not central to this course. However, working through the algebra to your own satisfaction is a good exercise.

- The Kalman filter matrix equations are easy to code, and quick to compute unless the dimension of the latent space is very large.
- In numerical weather forecasting, with careful programming, they are solved with latent variables having dimension  $d_X \approx 10^7$ .
- A similar computation gives backward Kalman recursions. Putting the forward and backward Kalman recursions together, as in [P9], is called Kalman smoothing.

# Further reading

- The approach in this chapter is aligned with King et al. (2016)
- Chapter 6 of Shumway and Stoffer (2017) gives an approach emphasizing linear Gaussian state space models.

# References and Acknowledgements

King AA, Nguyen D, Ionides EL (2016). "Statistical Inference for Partially Observed Markov Processes via the R Package pomp." *Journal of Statistical Software*, **69**(12), 1–43. doi: 10.18637/jss.v069.i12.

Shumway RH, Stoffer DS (2017). *Time Series Analysis and its Applications: With R Examples.* Springer.

- Compiled on February 17, 2022 using R version 4.1.2.
- Licensed under the Creative Commons Attribution-NonCommercial license. Please share and remix noncommercially, mentioning its origin.
- We acknowledge previous versions of this course.