WEBINAR 5

ARTIFICIAL INTELLIGENCE IN AUTOMOTIVE & MOBILITY

AN OVERVIEW

IN COLLABORATION WITH

AGENDA

- Introduction to AI, ML & DL
- AI in AutoMotive & Mobility
- Possible Use Cases of AI in NXP AIM Challenge

Introduction to Artificial Intelligence and Machine Learning

What is AI?

Artificial Intelligence:
Transforming the Nature of Work,
Learning and Learning to Work

- Artificial Intelligence (AI) is popular branch of computer science that concerns the building intelligent smart machines capable of performing intelligent tasks.
- With rapid developments in deep learning and machine learning, the tech industry is transforming radically.

What is Machine Learning?

- Machine Learning(ML) is a type of AI that enables machines to learn from data and deliver predictive models.
- Machine Learning is not dependent on any explicit programming but the data fed into it.
- Based on the data you feed into machine learning algorithm and the training given to it, the output is delivered.
- A predictive algorithm will create a predictive model.

What is Deep Learning?

- **Deep Learning(DL)** is a subfield of Machine Learning that is concerned with algorithms inspired by the brain's structure.
- A computer model can be taught using Deep Learning to run classification actions using pictures, texts or sounds as input.

Artificial Intelligence Vs Machine Learning Vs Deep Learning

en D Intelli Artificial

- Al originated around 1950s
- Al represents simulate intelligence in machines
- Al is a subset of data science
- Aim is to build machines which are capable of thinking like humans

Machine Learnin

- •ML originated around 1960s
- Machine Learning is the practice of getting machines to make decisions without being programmed
- Machine Learning is a subset of AI & Data Science
- Aim is to make machines learn through data so that they can solve problems

ep Learning

- •DL originated around 1950s
- Deep Learning is the process of using artificial neural networks to solve complex problems
- Deep Learning is a subset of Machine Learning, AI & Data Science
- Aim is to build neural networks that authentically discover patterns for feature detection

Machine Learning Vs Traditional programming

AI & ML in Automotive & Mobility

Industries based on their maturity level for Artificial Intelligence Adoption

Source: FutureBridge Analysis and Insights

Al in Automotive value chain

Use Cases of Al in Automotive

- Autonomous driving
- Connected vehicles
- Mobility as a Service
- Smart manufacturing
- Services

Autonomous Driving

STAGES OF AUTOMATION IN AUTOMOTIVE

Level 0

Level 1

Level2

Level3

Level4

Level5

No Automation Fully operated by humans

Assistance Vehicle is controlled by human with driving assistance feature to help in steering and acceleration/dec

Driver

eleration

Partial Automation

Human control is reduced with automated system controls steering and acceleration at the same time

Conditional Automation

Human will respond and intervene when needed all other time vehicle is controlled by automated system

High Automation In

defined environment performance of vehicle is fully controlled by autonomous driving system

Full Automation In all environment performance of vehicle is fully controlled by autonomous driving system

An Example from ADAS: System Design in Automotive

Connected Vehicles

Mobility

The machine learning in mobility-as-a-service models are significantly different than those in autonomous driving:

- Predict customer demand
- Optimize fleet efficiency and minimize customer wait times
- Dynamically set prices in response to demand
- Ensure passenger physical security
- Protect customer data, prevent fraud, and balance privacy versus convenience

Manufacturing

- Increased use of computer vision for anomaly detection
- Process control for improved quality/reduced waste
- Predictive maintenance to maximize productivity of manufacturing equipment

Services

- Predictive Maintenance
- Insurance

Possible Use Cases of AI & ML in NXP AIM Challenge

- V2V (Vehicle to Vehicle)
- V2I (Vehicle to Infrastructure)
- V2P (Vehicle to Person)

Object / Image Recognition

SECURE CONNECTIONS FOR A SMARTER WORLD

Thank you