Lecture 17: Naive Bayes (Mitchell Chapter 6)

CS 167: Machine Learning

Some Probability Notation

P(x): the probability that x holds without knowing anything else

P(x|y): the probability of x given y

Applied to Machine Learning

P(h): Prior Probability of hypothesis h - may reflect background knowledge we have that h is a correct hypothesis

P(D): probability that training data D will be observed

P(D|h): probability of observing D given some world where hypothesis h holds

P(h|D): Posterior Probability that h holds given observed training data D (this is what we really want to know!)

Motivating Example

A lab test for a certain kind of cancer is known to have the following properties

- when the patient actually has this cancer, test correctly identifies it 98% of the time
- when the patient does **not** actually have this cancer, test correctly gives negative result 97% of the time
- 0.8% of population has this cancer

Let's say you take the test and it comes back positive. What is the probability that you actually have this cancer?

A: around 98%
B: around 20%
C: around 2%
PollEv.com/manley
or Text MANLEY
and response to 37607

CS 167: Machine Learning L17: Naive Bayes

2 / 19

Bayes Theorem

Bayes Theorem:

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Gives us a way to combine prior information with observations

Rev. Thomas Bayes

Image Licensed under Public Domain via Commons

 $https://commons.wikimedia.org/wiki/File: Thomas_Bayes.gif\#/media/File: Thomas_Bayes.gif#/media/File: Thomas_Bayes.gif#/media/File: Thomas_Bayes.gif#/media$

CS 167: Machine Learning L17: Naive Bayes 3 / 19 CS 167: Machine Learning L17: Naive Bayes 4 / 19

Back to our example

A lab test for a certain kind of cancer is known to have the following properties

- when the patient actually has this cancer, test correctly identifies it 98% of the time
- when the patient does not actually have this cancer, test correctly gives negative result 97% of the time
- 0.8% of population has this cancer

$$P(cancer) = P(\neg cancer) = P(+|cancer) = P(-|cancer) = P(-|\neg cancer) = P(-|\neg$$

Which hypothesis has the higher likelihood of being true?

$$h = cancer \text{ or } h = \neg cancer$$
?

CS 167: Machine Learning L17: Naive Bayes 5 / 19

Maximum a posterior hypothesis

From a set of possible hypotheses, the hypothesis with the greatest

$$P(h|D) = P(D|h)P(h)$$

is the maximum a posterior (MAP) hypothesis

sometimes denoted h_{MAP}

Brute Force MAP Learning algorithm is

- For each possible hypothesis h, compute P(h|D)
- 2 output h with greatest P(h|D)

Using Bayes Theorem

Bayes Theorem:

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Gives us a way to combine prior information with observations

We've been using it more like in this form:

$$P(h|D) = \frac{P(D|h)P(h)}{P(D|h)P(h) + P(D|\neg h)P(\neg h)}$$

But really, to find the most likely hypothesis, you don't need to worry about normalizing by P(D) or $P(D|h)P(h) + P(D|\neg h)P(\neg h)$

CS 167: Machine Learning L17: Naive Bayes 6 / 19

Problem: Authorship Detection

CS 167: Machine Learning L17: Naive Bayes 7 / 19 CS 167: Machine Learning L17: Naive Bayes 8 / 19

Problem: Authorship Detection

Relative frequency of using these three words by each author

	J. K. Rowling	Stephen King
began	0.2	0.7
suddenly	0.3	0.2
quite	0.5	0.1

Who is more likely to have written the text: began suddenly?

A: J. K. Rowling
 B: Stephen King
 PollEv.com/manley
 or Text MANLEY
 and response to 37607

Exercise: How about quite began?

L17: Naive Baves

Interesting Observation

if the following are true

- all priors are the same (i.e., $P(h_i) = P(h_j)$ for any pair of hypotheses)
- deterministic, noise-free data

then

CS 167: Machine Learning

every consistent learner outputs a MAP hypothesis

even if they don't explicitly compute probabilities

9 / 19

Bayes Theorem applied to classification

CS 167: Machine Learning

Classification problem: attribute values $\langle a_1, a_2 \dots a_n \rangle$, target function is some class among $\{v_1, v_2, \dots, v_c\}$

Most probable class value for new instance is the v_j resulting in the largest value of

$$P(v_j|a_1, a_2...a_n) = \frac{P(a_1, a_2...a_n|v_j)P(v_j)}{P(a_1, a_2...a_n)}$$

which is the same as the v_i with largest

$$P(a_1, a_2 \dots a_n | v_j) P(v_j)$$

Discussion Questions

Attribute values $a_1, a_2 \dots a_n$, looking for class v_i with largest

$$P(a_1, a_2 \dots a_n | v_j) P(v_j)$$

L17: Naive Baves

10 / 19

How can we estimate $P(v_j)$ for a given v_j ? (Hint: thinking of credit data, what is the probability of 1 (creditable) vs 2 (not creditable)?)

How can we estimate $P(a_1, a_2 ... a_n | v_j)$?

(Hint: When *1 (creditable)* is the class value, what is the probability of seeing Status of account=A11, Credit history = A34, Purpose = A43? When When *2 (not creditable)* is the class value, what is the probability of seeing Status of account=A11, Credit history = A34, Purpose = A43?)

CS 167: Machine Learning L17: Naive Bayes 11 / 19 CS 167: Machine Learning L17: Naive Bayes 12 / 19

More Discussion

Estimating $P(a_1, a_2 \dots a_n | v_j)$ is not feasible

 we'd need to see every possible combination of attributes, several times each for good estimates

A simpler task: How can we estimate $P(a_i|v_i)$ for some attribute i?

Simplifying assumption for the Naive Bayes algorithm: assume attribute values are *conditionally independent* given the target value. That is, assume

$$P(a_1, a_2 \dots a_n | v_j) = P(a_1 | v_j) \cdot P(a_2 | v_j) \cdot \dots \cdot P(a_n | v_j)$$

CS 167: Machine Learning L17: Naive Bayes 13 / 19 CS 167: Machine Learning L17: Naive Bayes 14 / 19

Naive Bayes Subtleties

Obviously, the independence assumption doesn't always hold:

$$P(a_1, a_2 \dots a_n | v_i) = P(a_1 | v_i) \cdot P(a_2 | v_i) \cdot \dots \cdot P(a_n | v_i)$$

But, it usually works ok anyway.

Group Discussion Question: What does this simplifying assumption mean for the authorship detection problem?

Naive Bayes Algorithm

Naive_Bayes_Learn(examples)

For each target value
$$v_j$$
 $\hat{P}(v_j) \leftarrow \text{estimate } P(v_j)$

For each attribute value a_i of each attribute a
 $\hat{P}(a_i|v_j) \leftarrow \text{estimate } P(a_i|v_j)$

estimate
$$P(v_j) = \#(\text{examples with } v_j) / \#(\text{examples})$$

estimate $P(a_i|v_j) = \#(\text{examples with } v_j \text{ and } a_i) / \#(\text{examples with } v_j)$

Classify
$$_{\text{New_Instance}}(x)$$

$$v_{NB} = \operatorname{argmax}_{v_j \in V} \hat{P}(v_j) \prod_{a_i \in X} \hat{P}(a_i | v_j)$$

Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

new instance:

$$x = \langle \textit{Outlk} = \textit{sun}, \textit{Temp} = \textit{cool}, \textit{Humid} = \textit{high}, \textit{Wind} = \textit{strong} \rangle$$

CS 167: Machine Learning L17: Naive Bayes 15 / 19 CS 167: Machine Learning L17: Naive Bayes 16 / 19

Example Continued...

new instance:

$$x = \langle \textit{Outlk} = \textit{sun}, \textit{Temp} = \textit{cool}, \textit{Humid} = \textit{high}, \textit{Wind} = \textit{strong} \rangle$$

P(y) = 9/14	P(n) = ?
P(sun y) = 2/9	P(sun n) = ?
P(cool y) = 3/9	P(cool n) = ?
P(high y) = 3/9	P(high n) = ?
P(strong y) = 3/9	P(strong n) = ?

$$P(y|x) = P(y)P(\sup|y)P(\cosh|y)P(high|y)P(strong|y) = \frac{9}{14} \cdot \frac{2}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \approx 0.005$$

$$P(n|x) = ?$$
 Exercise: complete the example

CS 167: Machine Learning L17: Naive Bayes 17 / 19

Lab Exercise

scikit-learn has implementations for 3 common variants of Naive Bayes

Using default parameters, which one does the best on the iris data set?

Look at the documentation (including http://scikit-learn.org/stable/modules/naive_bayes.html)

Discuss: Explain why the good algorithm(s) did well and why the bad one(s) didn't

Issues

what if none of the training instances with target value v_j have attribute value a_i ? Then

$$\hat{P}(a_i|v_j)=0$$
, and...

$$\hat{P}(v_j)\prod_i\hat{P}(a_i|v_j)=0$$

We usually estimate $\hat{P}(a_i|v_j)$ as $\frac{n_c}{n}$ where

- *n* is number of training examples for which $v = v_i$,
- n_c number of examples for which $v = v_i$ and $a = a_i$

Instead, use *m-estimate*: $\frac{n_c + mp}{n+m}$ where

- p is prior estimate for $\hat{P}(a_i|v_j)$ (e.g., $\frac{1}{2}$ for Y/N)
- m is weight given to prior (i.e., number of "virtual" examples)

CS 167: Machine Learning L17: Naive Bayes 18 / 19

CS 167: Machine Learning L17: Naive Bayes 19 / 19