# Study of the Application of Genetic Algorithm and Artificial Neural Network in Laminated Composite Material

Huiyao Zhang

06-24-2021

Kyoto Institue of Technology

#### Problem I: constrained optimization of discrete variables

- 1. formulate the objective function, assume it is f(x).
- 2. to satisfy the constraints, adding punishment items  $\phi_1(x), \phi_2(x), \cdots, \phi_n(x)$
- 3. reformulate the objective functions as  $f(x) + c_1\phi_1(x) + c_2\phi_2(x) + \cdots + c_n\phi_n(x)$



Figure 1: GA process

#### Problem I: basic idea

- 1. formulate the objective function, assume it is f(x).
- 2. to satisfy the constraints, maintaining different groups in the population
- 3. do not change the objective function f(x).



**Figure 2:** General flowchart $_{3/25}$  of proposed GA model.

#### **Problem I: definition**

#### Definition

- An individual is active if it is far smaller than the numerical value of these constraints. A group is consist of active individuals are called as active group.
- An individual is potential if it is close but smaller than the numerical value of these constraints. The corresponding group is referred as potential group.
- An individual is proper if it satisfy all the constraints. Its counterpart group is written as proper group.

## Problem I: Example

 Table 1: Group Classification, and strength ratio constraint is 2.

| Layup             | Strength Ratio | Group                |
|-------------------|----------------|----------------------|
| $[0_3/90_2]_s$    | 0.72           | Active Individual    |
| $[0_2/90_2]_s$    | 0.49           | Active Individual    |
| $[0_1/90_5]_s$    | 0.29           | Active Individual    |
| $[0_6/90_4]_s$    | 1.45           | Potential Individual |
| $[0_5/90_3]_s$    | 1.20           | Potential Individual |
| $[0_9/90_8/90]_s$ | 2.10           | Proper Individual    |

#### Problem I: material

**Table 2:** Comparison of the carbon/epoxy, graphite/epoxy, and glass/epoxy properties

| Property                                   |                        | Unit     | Carbon/Epoxy | ${\sf Graphite}/{\sf Epoxy}$ | Glass/Epoxy |
|--------------------------------------------|------------------------|----------|--------------|------------------------------|-------------|
| Longitudinal elastic modulus               |                        | GPa      | 116.6        | 181                          | 38.6        |
| Traverse elastic modulus                   | $E_2$                  | GPa      | 7.67         | 10.3                         | 8.27        |
| Major Poisson's ratio                      | <i>v</i> <sub>12</sub> |          | 0.27         | 0.28                         | 0.26        |
| Shear modulus                              | $G_{12}$               | GPa      | 4.17         | 7.17                         | 4.14        |
| Ultimate longitudinal tensile strength     | $(\sigma_1^T)_{ult}$   | MP       | 2062         | 1500                         | 1062        |
| Ultimate longitudinal compressive strength | $(\sigma_1^C)_{ult}$   | MP       | 1701         | 1500                         | 610         |
| Ultimate transverse tensile strength       | $(\sigma_2^T)_{ult}$   | MPa      | 70           | 40                           | 31          |
| Ultimate transverse compressive strength   | $(\sigma_2^C)_{ult}$   | MPa      | 240          | 246                          | 118         |
| Ultimate in-plane shear strength           | $(\tau_{12})_{ult}$    | MPa      | 105          | 68                           | 72          |
| Density                                    | ρ                      | $g/cm^3$ | 1.605        | 1.590                        | 1.903       |
| Cost                                       |                        |          | 8            | 2.5                          | 1           |

#### Problem I: mating pool

- acitve group: individual is used to increase the diversity of the population
- potential group: individual doesn't fulfill constraint
- proper group: individual meet constraint

Figure 3: Parents



## Example I: design of cross ply laminate with one constraint

Figure 4: Model for cross ply laminate

| 0  |
|----|
| 90 |
| 90 |
| 0  |
| 90 |
|    |

#### Example I: result



Figure 5: Parents

Figure 6: Parents

#### **Example I: universalness**

**Table 3:** The optimum layup for the loading  $N_x = 1e^6$  N when changing the length mutation coefficient, the performance of the GA can be improved when the length mutation coefficient is smaller.

| Length mutation coefficient | Material       | case    | Stacking sequence             | Strength ratio | Mass | Cost | Layer |     |
|-----------------------------|----------------|---------|-------------------------------|----------------|------|------|-------|-----|
|                             |                | worst   | $[0_{40}/90_{26}]_s$          | 2.010          | 8.58 | 132  | 132   |     |
|                             | glass-epoxy    | best    | $[90_{24}/0_{38}/\bar{90}]_s$ | 2.078          | 8.12 | 125  | 125   |     |
| 1                           |                | average |                               | 2.012          | 7.83 | 123  | 123   |     |
| 1                           |                | worst   | $[0_9/90_4/\bar{0}]_s$        | 2.17           | 1.41 | 68   | 27    |     |
|                             | graphite-epoxy | best    | $[0_9/90_1/\bar{0}]_s$        | 2.15           | 1.10 | 53   | 21    |     |
|                             |                | average |                               | 2.018          | 1.47 | 70   | 28    |     |
|                             |                | worst   | $[0_{36}/90_{32}]_s$          | 2.009          | 8.84 | 136  | 136   |     |
|                             | glass-epoxy    | best    | $[0_{36}/90_{26}/\bar{90}]_s$ | 2.003          | 8.12 | 125  | 125   |     |
| 5                           |                | average |                               | 2.008          | 8.55 | 131  | 131   |     |
|                             |                | worst   | $[0_9/90_{12}]_s$             | 2.006          | 2.20 | 105  | 42    |     |
|                             | graphite-epoxy | best    | $[0_8/90_3/\bar{0}]_s$        | 2.001          | 1.20 | 57   | 23    | 10, |
|                             |                | average |                               | 2.022          | 1.54 | 73   | 29    | 10, |

## Example I: comparison with works in other literature

**Table 4:** The optimum lay-ups for the loading  $N_x=1e6\ N$ 

| Cross Ply $[0_M/90_N]$ | Choudhury   | and Mondal's   | Current Research |                |  |
|------------------------|-------------|----------------|------------------|----------------|--|
| Material               | Glass-Epoxy | Graphite-Epoxy | Glass-Epoxy      | Graphite-Epoxy |  |
| M                      | 68          | 17             | 78               | 18             |  |
| N                      | 72          | 18             | 28               | 8              |  |
| no. of lamina(n)       | 140         | 35             | 106              | 26             |  |
| SR                     | 2.01        | 2.10           | 2.03             | 2.16           |  |
| weight                 | 9.10        | 1.84           | 6.89             | 102.5          |  |

## Example II: design of angle ply laminate with two constraints

- Modifying selection strategy: in order to handle the constraint search
- Self-adaptative mutation direction of fiber orientation and laminate thickness: random change the length, and the angle in the laminate.
- The self-adaptative parameters don't refer to parent's proportion, mutation probability.

#### **Example II: mutation operator**

$$md = [CT_1, \cdots, CT_{n-1}, CT_n] - [ICV_0, \cdots, ICV_{n-1}, ICV_n]$$

- md means mutation direction.
- CT<sub>i</sub> denotes the i-th constraint, such as weight, safety factor.
- ICV<sub>i</sub> denotes individual's i-th constraint value, such as, weight, safety factor of current individual.

## **Example II: mutation operator**

• length mutation =

$$\begin{cases} LMC * [0, \sum_{i=1}^{N} md_i] & \text{if } \sum_{i=1}^{N} md_i > 0 \\ LMC * [\sum_{i=1}^{N} md_i, 0] & \text{if } \sum_{i=1}^{N} md_i < 0 \end{cases}$$

LMC stands for length mutation coefficient, it's a positive integer.

• angle mutation =

$$\begin{cases} AMC*[0,\sum_{i=1}^{N}md_i] & \text{if } \sum_{i=1}^{N}md_i>0\\ AMC*[\sum_{i=1}^{N}md_i,0] & \text{if } \sum_{i=1}^{N}md_i<0 \end{cases}$$

AMC stands for angle mutation coefficient, it's sign is unclear.

# **Example II: Experiment:** $N_x = 10, N_y = 5$ MPa m





**Figure 7:** Two distinct angles in the laminate

## Example II: comparison with works in other literature

Table 5: Comparison with the results of DSA

| Loading                  | Akbulut and Sonmez's Study                          |                       |        |        | Present Study                                           |                       |        |        |
|--------------------------|-----------------------------------------------------|-----------------------|--------|--------|---------------------------------------------------------|-----------------------|--------|--------|
| $N_x/N_y/N_{xy}$ (MPa m) | Optimum lay-up sequences                            | laminate<br>thickness | TW     | MS     | Optimum lay-up sequences                                | laminate<br>thickness | TW     | MS     |
| 10/5/0                   | [37 <sub>27</sub> /-37 <sub>27</sub> ] <sub>s</sub> | 108                   | 1.0068 | 1.0277 | [33 <sub>29</sub> /-39 <sub>25</sub> /-39] <sub>s</sub> | 109                   | 1.0074 | 1.0246 |
| 20/5/0                   | [31 <sub>23</sub> /-31 <sub>23</sub> ] <sub>s</sub> | 92                    | 1.0208 | 1.1985 | [33 <sub>22</sub> /-31 <sub>24</sub> ] <sub>s</sub>     | 92                    | 1.0055 | 1.2065 |
| 40/5/0                   | [26 <sub>20</sub> /-26 <sub>20</sub> ] <sub>s</sub> | 80                    | 1.0190 | 1.5381 | $[29_{18}/-21_{23}/-\bar{2}1]_s$                        | 83                    | 1.0034 | 1.7350 |
| 80/5/0                   | [21 <sub>25</sub> /-19 <sub>28</sub> ] <sub>s</sub> | 106                   | 1.0113 | 1.2213 | [-20 <sub>27</sub> /21 <sub>25</sub> /25] <sub>s</sub>  | 105                   | 1.0029 | 1.2063 |
| 120/5/0                  | [17 <sub>35</sub> /-17 <sub>35</sub> ] <sub>s</sub> | 140                   | 1.0030 | 1.0950 | [-18 <sub>34</sub> /17 <sub>36</sub> ] <sub>s</sub>     | 140                   | 1.0000 | 1.0898 |

#### reviewer's comment

- "no one uses unsymmetric laminate stacking sequences" argued by reviewer.
- "Furthermore, the authors have not included the ply properties used in the study and have not stated whether they used first ply failure or last ply failure" argued by reviewer.
- "In Table 3 the strength ratio differences are not statistically significant given the variation in strength properties of the input layers."

## Problem II: calculation of strength ratio

It follows a two-step procedure:

- 1. calculate relationship between stress and strain according to classical lamination theory.
- 2. obtained strength ratio based on related failure criterion.

## Problem II: two-step procedure

$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \gamma_{xy}^{0} \end{bmatrix}$$

$$+ \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{11} & B_{12} & B_{16} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} k_{x} \\ k_{y} \\ k_{xy} \end{bmatrix}$$

$$= \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \kappa_{xy} \end{bmatrix}$$

$$+ \begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{11} & D_{12} & D_{16} \\ D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} k_{x} \\ k_{y} \\ k_{xy} \end{bmatrix}$$

## Problem II: two-step procedure



**Figure 9:** Schematic failure surfaces for maximum stress and quadratic failure criteria

Maximum stress failure

$$SF_{MS}^{k} = \min \text{ of } \begin{cases} SF_{X}^{k} = \begin{cases} \frac{X_{t}}{\sigma_{11}}, \text{ if } \sigma_{11} > 0\\ \frac{X_{c}}{\sigma_{11}}, \text{ if } \sigma_{11} < 0 \end{cases} \\ SF_{Y}^{k} = \begin{cases} \frac{Y_{t}}{\sigma_{22}}, \text{ if } \sigma_{22} > 0\\ \frac{Y_{c}}{\sigma_{22}}, \text{ if } \sigma_{22} < 0 \end{cases} \\ SF_{S}^{k} = \begin{cases} \frac{S}{|\tau_{12}|} \end{cases}$$

• Tsai-wu failure theory

$$\begin{aligned} H_1\sigma_1 + H_2\sigma_2 + H_6\tau_{12} + H_{11}\sigma_1^2 + H_{22}\sigma_2^2 \\ + H_{66}\tau_{12}^2 + 2H_{12}\sigma_1\sigma_2 < 1 \end{aligned}$$

#### Problem II: neural network

Table 6: Part of train dataset

|              | Output                |                        |                           |         |         |
|--------------|-----------------------|------------------------|---------------------------|---------|---------|
| Load         | Laminate<br>Structure | Material<br>Property   | Failure<br>Property       | MS      | Tsai-Wu |
| -70,-10,-40, | 90,-90,4,1.27,        | 38.6,8.27,0.26,4.14,   | 1062.0,610.0,31,118,72,   | 0.0102, | 0.0086  |
| -10,10,0,    | -86,86,80,1.27,       | 181.0,10.3,0.28,7.17,  | 1500.0,1500.0,40,246,68,  | 0.4026, | 2.5120  |
| -70,-50,80,  | -38,38,4,1.27,        | 116.6,7.67,0.27,4.173, | 2062.0,1701.0,70,240,105, | 0.0080, | 0.0325  |
| -70,80,-40,  | 90,-90,48,1.27,       | 38.6,8.27,0.26,4.14,   | 1062.0,610.0,31,118,72,   | 0.0218, | 0.1028  |
| -20,-30,0,   | -86,86,60,1.27,       | 181.0,10.3,0.28,7.17,  | 1500.0,1500.0,40,246,68,  | 0.6481, | 0.9512  |
| 0,-40,0,     | 74,-74,168,1.27,      | 181.0,10.3,0.28,7.17,  | 1500.0,1500.0,40,246,68,  | 1.3110, | 3.9619  |

## Example: angle ply laminate

| $+\theta$ |
|-----------|
| $-\theta$ |
| • • •     |
| $-\theta$ |
| $+\theta$ |

 $\textbf{Figure 10:} \ \ \mathsf{Model} \ \ \mathsf{for} \ \ \mathsf{Angle} \ \ \mathsf{ply} \ \ \mathsf{laminate}$ 

#### **Example:** neural network structure



Figure 11: Neural Network Model

#### Example: preparation of trainging data



Figure 12: General Neural Network for CLT

#### **Example: prediction**

Table 7: Comparsion between practical and simulation

| Input      |                       |                      |                          |       | Out   | put         |              |
|------------|-----------------------|----------------------|--------------------------|-------|-------|-------------|--------------|
| Load       | Laminate<br>Structure | Material<br>Property | Failure<br>Property      | MS Ts |       | AN<br>MS Ts | NN<br>sai-Wu |
| -10,40,20  | 26,-26,168,1.27       | 116.6,7.67,0.27,4.17 | 2062.0,1701.0,70,240,105 | 0.342 | 0.476 | 0.351       | 0.492        |
| 20,-70,-30 | 10,-10,196,1.27       | 181.0,10.3,0.28,7.17 | 1500.0,1500.0,40,246,68  | 0.653 | 0.489 | 0.612       | 0.445        |
| 60,-20,0   | 82 -82,128,1.27       | 181.0,10.3,0.28,7.17 | 1500.0,1500.0,40,246,68  | 1.663 | 0.112 | 1.673       | 0.189        |