Análisis Matemático Clase 2

Algunos comentarios sobre la clase pasada

Ángulo entre elementos de un e.v.

Def: A partir de un p.i. se puede se puede definir el ángulo ω entre dos vectores x, y como

$$\cos(\omega) = rac{\langle x,y
angle}{\|x\|\,\|y\|}$$

Obs: six, yson ortogonales, entonces

$$\cos(\omega) = 0$$
, y $\omega = \pm \pi$

Base ortonormal

Def: Una base ortonormal (BON) de un espacio vectorial V es una base $B = \{v_1, \ldots, v_n\}$ que satisface

$$egin{aligned} \langle v_i, v_j
angle &= 0 \quad i
eq j \ \langle v_i, v_i
angle &= 1 \end{aligned}$$

Obs: Si sólo se cumple que $\langle v_i, v_j \rangle = 0$ $i \neq j, B$ se dice una base ortogonal

Para transformar una base en una base ortonormal usamos el proceso de Gram-Schmidt

Complemento ortogonal

Def: Sea V un EV de dimensión n y $S \subseteq V$ un SEV de V de dimensión $m \le n$. El complemento ortogonal S^{\perp} es un SEV de V de dimensión (n-m) que satisface

$$S \cup S^\perp = V \ S \cap S = \{0\}$$

Matrices definidas positivas

Def: Una matriz $A \in \mathbb{R}^{n \times n}$ se dice definida positiva si es simétrica y vale que

$$x^TAx>0\ orall\ x\in\mathbb{R}^n$$

Si vale que $x^TAx \geq 0 \ \forall \ x \in \mathbb{R}^n$ se la llama semi definida positiva

Matrices def. positivas y p.i.

Teor: Sea V un EV de dimensión finita, y B una base de V, vale que $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ es un p.i. **sii** existe una matriz definida positiva $A \in \mathbb{R}^{n \times n}$ tal que

$$\langle x,y
angle = \hat{x}^T A \hat{y}$$

donde, \hat{x} , \hat{y} son las representaciones de x, y en la base B

Transformaciones

Transformaciones

Def: Sea una transformación $\Phi:V\to W$, donde V,W son dos conjuntos arbitrarios. Φ se dice:

- Inyectiva: Si $orall x,y\in V:\Phi(x)=\Phi(y)\Rightarrow x=y$
- Survectiva: $\operatorname{Si} \Phi(V) = W$
- Biyectiva: si es inyectiva y suryectiva

Transformaciones lineales

Def: Sean V y W dos espacios vectoriales.

 $\Phi:V \to W$ es una transformación lineal si:

$$orall \lambda, \psi \in K, x,y \in V: \Phi(\lambda x + \psi y) = \lambda \Phi(x) + \psi \Phi(y)$$

Corolario: toda transformación lineal se puede representar de forma matricial.

Transformaciones lineales especiales

- ullet Isomorfismo: $\Phi:V o W$ es lineal y biyectiva
- ullet Endomorfismo: $\Phi:V o V$ es lineal
- ullet Automorfismo: $\Phi: V o V$ es lineal y biyectiva
- $id_V: V o V, x \mapsto x$ (transformación identidad)

Representaciones

Teorema: V y W, dos espacios vectoriales de dim. finita son un isomorfismo sij dim(V) = dim(W)

Corolario: Todo e.v. V de dimensión finita (n) tiene un isomorfismo con \mathbb{R}^n . Si consideramos la base $B=(v_1,\ldots,v_n)$ todo $v\in V$ puede escribirse como $v=\alpha_1v_1+\ldots\alpha_nv_n$. Luego las coordenadas de v en la base B resulta

$$lpha = [lpha_1, \dots, lpha_n]^T \in \mathbb{R}^n$$

Espacio nulo e Imagen.

Def: Sea una transformación $\Phi:V\to W$. Se define Espacio nulo (kernel): $Nul(\Phi):=\{v\in V:\Phi(v)=0_W\}$ Imagen (rango): $rg(\Phi):=\Phi(V)=\{w\in W|\,\exists\,v\in V:w=\Phi(v)\}$

Si Φ es una transformación lineal, con matriz asociada A, el kernel y rango de la transformación se asocian con los espacios nulo y columna de A

Sea $A \in \mathbb{R}^{n \times m}$ se definen:

Espacio nulo: $x \in \mathbb{R}^m | Ax = 0$

Espacio columna: $gen(a_1,\ldots,a_m)$, con a_i la columna i de A

Proyección ortogonal

Proyección ortogonal: motivación

Las proyecciones ortogonales son un caso particular (importantísimo!) de las transformaciones lineales.

Algunos usos:

- Reducción de dimensiones (proyecto sobre un subconjunto más pequeño)
- Regresión/Clasificación
- Compresión

Proyección

Def: Sea V un EV y $U\subseteq V$ un SEV de V. Una transformación lineal $\pi:V\to U$ es la proyección si $\pi^2=\pi\circ\pi=\pi$

Esto significa que la matriz de transformación asociada a la proyección debe satisfacer:

$$P_\pi^2 = P_\pi$$
 (idempotencia)

Proyección ortogonal

Dado V un EV con **p.i.** y $S \subset V$ un SEV de V, el objetivo es dado $v \in V$ hallar $\hat{v} \in S$ que sea "lo más parecido posible" a v.

$$\hat{v} \in S: \hat{v} = rg\min_{s \in S} \lVert z - s
Vert.$$

Además vale que $\langle v - \hat{v}, s
angle = 0 \quad orall \, s \in S$

Obs: La ortogonalidad de la proyección tiene que ver con el p.i. que se esté usando

Teorema de proyección

Teorema: Sea V un EV de dimensión finita con p.i. $\langle \cdot, \cdot \rangle$, S un SEV de V. Dado $x \in V$ existe un **único** $\hat{x} \in S$ tal que

$$\|x - \hat{x}\| \leq \|x - z\| \, orall \, z \in V$$

Más aún:
$$\langle x - \hat{x}, s
angle = 0 \quad orall \, s \in S$$

Cómo hallar la proyección

Sea V in EV de dimensión n con p.i. $\langle \cdot, \cdot \rangle$, y $S \subset V$ un subespacio de V de dimensión $m \geq 1$, y sea $B = \{s_1, \ldots, s_m\}$ una BON de S. Buscamos encontrar la proyección $\hat{v} \in S$ de $v \in V$ ($\hat{v} = \pi_S(v)$)

Como $\hat{v} \in S$, $\hat{v} = \sum_{i=1}^{m} \alpha_i s_i \Rightarrow$ Busco los coeficientes que minimizan $\|v - \sum_{i=1}^{m} \alpha_i s_i\|$. El problema puede escribirse como:

$$\pi_S(v) = \sum_{i=1}^m lpha_i s_i = Blpha, \quad B = [s_1, \dots, s_m], \; lpha = [lpha_1, \dots, lpha_m]^T$$

Cómo hallar la proyección.

Como por definición $\langle v - \pi_S(v), s \rangle = 0 \ \forall s \in S$, debo resolver el siguiente sistema de ecuaciones:

$$egin{aligned} \langle v-\pi_S(v),s_1
angle & s_1^T(v-Blpha) = 0 \ dots & dots \ \langle v-\pi_S(v),s_m
angle = 0 \end{aligned} egin{aligned} s_1^T(v-Blpha) = 0 \ dots & dots \ s_m^T(v-Blpha) = 0 \end{aligned} egin{aligned} s_1^T \ dots \ s_m^T \end{aligned} egin{aligned} [v-Blpha] = B^T [v-Blpha] = 0 \end{aligned}$$

Ecuaciones normales
$$B^T[v-Blpha]=0\Leftrightarrow B^Tv=B^TBlpha\Rightarrow lpha=(B^TB)^{-1}B^Tv$$

Obs: Si
$$B$$
 es $^{\mathsf{BON}}$ $P_{\pi_s} = BB^T$

$$P_{\pi_S} = B(B^TB)^{-1}B^T$$

Una aplicación: Cuadrados mínimos

Supongamos que tenemos un sistema sobredeterminado de la forma

$$Xb=y,~X\in\mathbb{R}^{n imes m},~b\in\mathbb{R}^m,~y\in\mathbb{R}^m,~m>n$$

Como m>n, puede que no exista b que satisfaga todas las m ecuaciones, entonces busco la solución que más se acerque (busco la proyección de y sobre Col(X))

$$b = \left(X^TX
ight)^{-1}X^Ty \quad lood \qquad P = X\left(X^TX
ight)^{-1}X^T$$

Es la solución de cuadrados mínimos

Aplicación: predicción

Modelo

Problema general:

Tenemos un sistema que sigue el siguiente comportamiento:

$$egin{aligned} x_{k+1} &= A_k x_k + B_k w_k \ y_k &= C_k x_k + v_k \end{aligned}$$

donde y_k son las observaciones del sistema, w_k y v_k son el ruido de proceso y de medición respectivamente

El objetivo es obtener una estimación $\hat{x}_{k|k-1}$ a partir de las las mediciones de los instantes y_1, \dots, y_k

Suposiciones generales

1. $\{v_k\}, \{w_k\}$ son procesos gaussianos de media nula y varianza conocida, e independientes.

$$\mathbb{E}[v_k v_l^*] = R_k \delta_{kl}, \ \mathbb{E}[w_k w_l^*] = Q_k \delta_{kl}$$

- 2. Condiciones iniciales del problema:
 - a. Para k=0 partimos de un estado inicial x_0 descorrelacionado de los proceso de ruido.

Estimador óptimo

Dos problemas de interés:

- Hallar $\hat{x}_{k|k}$: la mejor estimación de x_k dada la información hasta el instante k $(Y_k = [y_0, \dots, y_k])$ [estim. a posteriori]
- Hallar $\hat{x}_{k|k-1}$: la mejor estimación de x_k dada la información hasta el instante k-1 $(Y_{k-1}=[y_0,\ldots,y_{k-1}])$ [estim. a priori]

Esto equivale a resolver el problema de proyectar x_k sobre Y_k y Y_{k-1} respectivamente.

Estimador óptimo

1.
$$\langle x_k - \hat{x}_{k|k}, y_n
angle, \quad n = 0, \dots, k$$

2.
$$\langle x_{k+1} - \hat{x}_{k+1|k}, y_n
angle, \quad n = 0, \ldots, k$$

La pregunta clave es: Si conozco $\hat{x}_{k|k} \in Y_k$, ; puedo hallar $\hat{x}_{k+1|k} \in Y_k$?

Conjetura a partir del modelo: $\hat{x}_{k+1|k} = A_k \hat{x}_{k|k}$

Estimador óptimo

Demostramos que

$$\hat{x}_{k+1|k} = A_k \hat{x}_{k|k}$$

y además tenemos una forma de hallar el error:

$$e_{k|k}^2 = \langle x_k - \hat{x}_{k|k}, x_k - \hat{x}_{k|k}
angle = Tr(P_{k,k})$$

$$e_{k+1|k}^2 = \langle x_{k+1} - \hat{x}_{k+1|k}, x_{k+1} - \hat{x}_{k+1|k}
angle = Tr(P_{k+1,k})$$

$$P_{k+1|k} = A_k P_{k|k} A_k^H + B_k Q_k B_k^H$$

Estamos en camino a encontrar una forma recursiva para estimar $oldsymbol{x_k}$

Filtro de Kalman

Sistema de ecuaciones recursivas:

$$egin{aligned} \hat{x}_{k|k-1} &= A_{k-1}\hat{x}_{k-1|k-1} \ P_{k|k-1} &= A_{k-1}P_{k-1|k-1}A_{k-1}^T + B_{k-1}Q_{k-1}B_{k-1}^T \ K_k &= P_{k|k-1}C_k^T(R_k + C_kP_{k|k-1}C_k^T)^{-1} \ \hat{x}_{k|k} &= \hat{x}_{k|k-1} + K_k(y_k - C_k\hat{x}_{k|k-1}) \ P_{k|k} &= (I - K_kC_k)P_{k|k-1} \end{aligned}$$

Condiciones iniciales: $\hat{x}_0 = \mathbb{E}[x_0], \quad P_{0|0} = \mathbb{E}[x_0 x_0^T]$ conocidas (si mi estimación inicial es muy mala, poner la cov. grande)

Filtro de Kalman

Notación:

- $Y_{k-1}=[y_0,\ldots,y_{n-1}]$
- Estimación a priori: $\hat{x}_{k|k-1} = \mathbb{E}[x_k|Y_{k-1}]$
- Estimación a posteriori: $\hat{x}_{k|k} = \mathbb{E}[x_k|Y_k]$
- Error de predicción: $x_k \hat{x}_{k|k-1}$. Cov. de error (pred): $\Sigma_{k|k-1} = \mathbb{E}[(x_k - \hat{x}_{k|k-1})(x_k - \hat{x}_{k|k-1})^T|Y_{k-1}]$
- Error de estimación: $x_k \hat{x}_{k|k}$ Cov. de error (estim): $\Sigma_{k|k-1} = \mathbb{E}[(x_k - \hat{x}_{k|k})(x_k - \hat{x}_{k|k})^T|Y_k]$