Exercício: Lei da Inércia (Primeira Lei de Newton)

Problema

Considere um bloco de massa $m=5\,\mathrm{kg}$ descansando sobre uma superfície lisa. O bloco está inicialmente em repouso.

- (a) Se nenhum força externa atuar sobre o bloco, qual será o seu movimento segundo a Lei da Inércia?
- (b) Suponha agora que um impulso constante horizontal $F=10\,\mathrm{N}$ seja aplicado ao bloco durante $t=2\,\mathrm{s}$. Qual será a velocidade do bloco ao final deste intervalo de tempo?
- (c) Após o impulso ter sido removido e nenhum outro force externa estiver atuando sobre o bloco, qual será seu movimento segundo a Lei da Inércia?

Solução

- (a) Segundo a **Lei da Inércia**, um objeto permanecerá em repouso ou se mover com velocidade constante na mesma direção à medida que foi movido, se não for atacado por uma força externa. Portanto, se nenhum força externa atuar sobre o bloco, ele permanecerá no mesmo estado de movimento, isto é, em repouso.
- (b) Para calcular a velocidade após aplicar um impulso constante F durante $t=2\,\mathrm{s}$:
- 1. Calcule a aceleração usando a Leis Segunda de Newton (F=ma): $a=\frac{F}{m}$ Substituindo os valores: $a=\frac{10\,\mathrm{N}}{5\,\mathrm{kg}}=2\,\mathrm{m/s}^2$ 2. Use a equação de movimento para calcular a velocidade final v: v=u+at
- 2. Use a equação de movimento para calcular a velocidade final v: v = u + at Onde u = 0 (velocidade inicial), $a = 2 \,\mathrm{m/s^2}$ e $t = 2 \,\mathrm{s}$: $v = 0 + (2 \,\mathrm{m/s^2})(2 \,\mathrm{s}) = 4 \,\mathrm{m/s}$
- (c) Segundo a Lei da Inércia, uma vez que o impulso for removido e nenhum outro force externa estiver atuando sobre o bloco, ele continuará se movendo com a velocidade $v=4\,\mathrm{m/s}$.