DTG noter

Group 9

 $28.\ {\rm september}\ 2023$

Kapitel 1

Workshop 1

1.1 Delopgave 1

1.1.1 Relationen R

Den følgende graf

kan også beskrives som relationen R:

$$R = \{ (\text{Mia}, \text{Mia}), (\text{Mia}, \text{Bob}), (\text{Mia}, \text{Liv}), (\text{Tom}, \text{Tom}), \\ (\text{Bob}, \text{Bob}), (\text{Kim}, \text{Kim}), (\text{Kim}, \text{Gry}), (\text{Gry}, \text{Gry}), \\ (\text{Gry}, \text{Tom}), (\text{Gry}, \text{Liv}), (\text{Noa}, \text{Noa}), (\text{Noa}, \text{Tom}), \\ (\text{Liv}, \text{Liv}), (\text{Liv}, \text{Tom}), (\text{Liv}, \text{Noa}) \}$$

$$(1.1)$$

1.1.2 Kardinaliteten af relationen R

Kardinaliteten af relationen R er:

$$|R| = 15 \tag{1.2}$$

1.1.3 R er en delmængde af et kartesisk product

Lad R være en relation og $A = \{\text{Mia, Liv, Noa, Gry, Kim, Bob, Tom}\}$. Relationen R består af ordnede par (a, b) hvor $a \in A$ og $b \in A$.

R kan derfor også defineres som en delmængde af et kartesisk produkt:

$$R \subseteq A \times A \tag{1.3}$$

Kardinaliteten af det nævnte kartesiske produkt kan beregnes på følgende måde:

$$|A \times A| = 49 \tag{1.4}$$

1.1.4 Relationens egenskaber

Relationen R har følgende egenskaber:

- **Refleksiv**: Fordi $\{(a, a) \in R \mid \forall a \in A\}$ gælder, dvs. for alle elementer i A er der et tilsvarende element (a, a) i R.
- Antisymmetrisk: Fordi $\forall a, b \in A$ og hvis $(a, b) \in R \land (b, a) \in R \implies a = b$. I andre ord: Hvis der er et par som fx (Gry, Tom) i R, må der ikke være et tilsvarende par (Tom, Gry) i R. Den eneste undtagelse er hvis a = b.

men mangler disse egenskaber:

• Symmetrisk: Per definitionen $(a,b) \in R \iff (b,a) \in R \quad \forall a,b \in A$ burde der for hvert unikt par a,b være et tilsvarende par (b,a), fx er der (Liv, Tom) i R, men ikke (Tom, Liv).

• **Transitiv**: Man kan se at R ikke er transitiv, bare ved at se at fx (Kim, Gry) og (Gry, Liv) findes i R, men ikke (Kim, Liv).

Hvilken betydning har de forskellige egenskaber for et socialt medie?

- Refleksiv: Man skal følge sig selv.
- Antisymmetrisk: Forbindelser er udelukkende ensrettet. Dvs. man kan ikke følge dem som følger en og omvendt.
- Symmetrisk: Man skal være venner, ligesom på Facebook, hvor en forbindelse er gensidig.
- Transitiv: Ved at følge en person A, følger man også automatisk alle personer, som A også følger.

1.2 Delopgave 2

1.2.1 Hvad svarer de to muligheder til?

Mulighed 1

Mulighed 1 er en sammensætning af potensrelationer.

$$R^{2} = R \cup \{ (Gry, Noa), (Mia, Noa), (Kim, Liv), (Kim, Tom), (Mia, Tom) \}$$

$$(1.5)$$

Fordi R er refleksiv, kan vi danne en sammensætning af R

Mulighed 2

Transitiv aflukning, fordi vi laver sammensætninger af alle potenser af relationen.

1.2.2 Hvilken aflukning er der tale om?

Der er tale om en transitiv aflukning, som kan beskrives på følgende måde:

$$S = \bigcup_{i=1}^{7} R^{i} = R \cup R^{2} \cup R^{3} \cup \ldots \cup R^{7}$$
 (1.6)

Men reelt set kan man også beskrive aflukningen som $S=R^3$ fordi R^4 ikke tilføjer nye par til relationen, osv.

1.3 Delopgave 3

1.3.1 Hvilke elementer indholder mængderne?

Mængden F_{Tom} er en mængde bestående af elementer a, som er alle elementer i par i S, som Tom har en forbindelse til:

$$F_{\text{Tom}} = \{ \text{Tom}, \text{Kim}, \text{Gry}, \\ \text{Noa}, \text{Liv}, \text{Mia} \}$$
 (1.7)

På samme måde kan vi også beskrive F_{Noa} :

$$F_{\text{Noa}} = \{ \text{Noa}, \text{Mia}, \text{Gry}, \text{Liv}, \text{Kim} \}$$
 (1.8)

 $F_{\mathrm{Tom}} \cap F_{\mathrm{Noa}}$ er fællesmængden (intersection) af F_{Tom} og F_{Noa} og indholder alle elementer som F_{Tom} og F_{Noa} har tilfælles:

$$F_{\text{Tom}} \cap F_{\text{Noa}} = \{ \text{Noa, Liv, Mia, Gry, Kim} \}$$
 (1.9)

1.3.2 Vis, at $G_{\text{Tom}} \subseteq G_{\text{Tom}}$

Lad $B \subseteq A, G_{\text{Tom}} = \{ b \in B \mid (b, \text{Tom}) \in S \}$. Lad $p \in G_{\text{Tom}} \implies p \in B \implies p \in A$. Lad $p \in G_{\text{Tom}} \implies (p, \text{Tom}) \in S$.

Derfor følger:

$$F_{\text{Tom}} = \{ a \in A \mid (a, \text{Tom}) \in S \} \implies G_{\text{Tom}} \subseteq F_{\text{Tom}}$$
 (1.10)