15 Languages of research articles in SciELO Brazil

```
In [1]: import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
%matplotlib inline
```

15.1 Loading the data

In the column names simplification notebook we can find this function:

Loading the documents_languages.csv regarding the SciELO Brazil collection, and applying the column names simplification function:

Out [4]:

	0	1	2
extraction_date	2018-09-13	2018-09-13	2018-09-13
study_unit	document	document	document
collection	scl	scl	scl
issn_scielo	0100-879X	0100-879X	0100-879X
issns	0100-879X;1414-431X	0100-879X;1414-431X	0100-879X;1414-431X
title_scielo	Brazilian Journal of Medical and Biological Re	Brazilian Journal of Medical and Biological Re	Brazilian Journal of Medical and Biological Re
title_thematic_areas	Biological Sciences; Health Sciences	Biological Sciences; Health Sciences	Biological Sciences; Health Sciences
is_agricultural_sciences	0	0	0
is_applied_social_sciences	0	0	0
is_biological_sciences	1	1	1
is_engineering	0	0	0
is_exact_earth_sciences	0	0	0
is_health_sciences	1	1	1
is_human_sciences	0	0	0
is_linguistics_letters_arts	0	0	0
is_multidisciplinary	0	0	0
title_current_status	current	current	current
pid_scielo	S0100-	S0100-	S0100-
doc_publishing_year	879X1998000800006 1998	879X1998000800011 1998	879X1998000800005 1998
doc_is_citable	1	1	1
doc_type	research-article	rapid-communication	research-article
doc_languages	en	en	en
doc_pt	0	0	0
doc_es	0	0	0
doc_en	1	1	1
doc_other_languages	0	0	0

15.2 Types of documents

Most documents are research articles, we'll continue by just looking to this subset of the data:

Out [5]:

308006
13114
7505
6940
6738
6627
4908
3906
3435
2930
2613

Continued on next page

	doc_type
correction	785
press-release	727
addendum	164
news	93
Tie VV S	76


```
In [6]: dataset_ra = dataset[dataset["doc_type"] == "research-article"]
```

15.3 Set of languages

Each article is written in some set of languages, written as ;-separated entries:

The distribution of [disjoint] sets of research articles divided by the set of languages they're written in is:

Out [8]:

	doc_languages
{pt}	163858
{en}	103199
{en, pt}	31065
{es}	5841
{es, en, pt}	2913
{es, en}	484
{fr}	346
{fr, pt}	106
{de}	64
{it}	61
{es, pt}	39
{it, pt}	11
{fr, en, pt}	6
{de, pt}	6
{la, pt}	3
{es, de}	1
{it, en, pt}	1
{de, al}	1
{fr, en}	1

We can say an article is multi-language if it's available in at least 3 languages.

16 Multiple languages in time

The quantity of articles with multiple languages seem to be getting higher when we see them by the publication year.

Can we split by both the publishing and indexing years?

16.0.1 Getting the indexing year

The indexing year can only be found in the journal spreadsheet, in the inclusion_year_scielo.

```
In [11]: | journals = pd.read_csv("tabs_bra/journals.csv") \
                      .rename(columns=normalize_column_title)
         print(journals.shape)
         journals.columns
        (366, 98)
Out [11]: Index(['extraction_date', 'study_unit', 'collection', 'issn_scielo', 'issns',
                'title_scielo', 'title_thematic_areas', 'is_agricultural_sciences',
                'is_applied_social_sciences', 'is_biological_sciences',
                'is_engineering', 'is_exact_earth_sciences', 'is_health_sciences',
                'is_human_sciences', 'is_linguistics_letters_arts',
                'is_multidisciplinary', 'title_current_status', 'title_subtitle_scielo',
                'short_title_scielo', 'short_iso', 'title_pubmed', 'publisher_name',
                'use_license', 'alpha_freq', 'numeric_freq_in_months',
                'inclusion_year_scielo', 'stopping_year_scielo', 'stopping_reason',
                'date_first_doc', 'volume_first_doc', 'issue_first_doc',
                'date_last_doc', 'volume_last_doc', 'issue_last_doc', 'total_issues',
                'issues_2018', 'issues_2017', 'issues_2016', 'issues_2015',
                'issues 2014', 'issues 2013', 'total regular issues',
                'regular_issues_2018', 'regular_issues_2017', 'regular_issues_2016',
                'regular_issues_2015', 'regular_issues_2014', 'regular_issues_2013',
                'total_docs', 'docs_2018', 'docs_2017', 'docs_2016', 'docs_2015',
                'docs_2014', 'docs_2013', 'citable_docs', 'citable_docs_2018',
                'citable_docs_2017', 'citable_docs_2016', 'citable_docs_2015',
                'citable_docs_2014', 'citable_docs_2013', 'portuguese_docs_2018',
                'portuguese_docs_2017', 'portuguese_docs_2016', 'portuguese_docs_2015',
                'portuguese_docs_2014', 'portuguese_docs_2013', 'spanish_docs_2018',
                'spanish_docs_2017', 'spanish_docs_2016', 'spanish_docs_2015',
                'spanish_docs_2014', 'spanish_docs_2013', 'english_docs_2018',
                'english_docs_2017', 'english_docs_2016', 'english_docs_2015',
                'english_docs_2014', 'english_docs_2013', 'other_lang_docs_2018',
                'other_lang_docs_2017', 'other_lang_docs_2016', 'other_lang_docs_2015',
                'other_lang_docs_2014', 'other_lang_docs_2013', 'h5_2018', 'h5_2017',
                'h5_2016', 'h5_2015', 'h5_2014', 'h5_2013', 'm5_2018', 'm5_2017',
                'm5_2016', 'm5_2015', 'm5_2014', 'm5_2013'],
               dtype='object')
        This is the joined dataset:
```

```
In [12]: mdataset = pd.merge(dataset, journals, on="issn_scielo", how="left")
mdataset.shape
```

Out [12]: (368491, 123)

Fields with an _x suffix regards to the document, whereas fields with _y regards to the journal. Fields that aren't in both dataframes appear without any extra suffix.

```
In [13]: mdataset.columns
```

Out [13]:

```
Index(['extraction_date_x', 'study_unit_x', 'collection_x', 'issn_scielo',
    'issns_x', 'title_scielo_x', 'title_thematic_areas_x',
    'is_agricultural_sciences_x', 'is_applied_social_sciences_x',
    'is_biological_sciences_x',
    ...
    'h5_2016', 'h5_2015', 'h5_2014', 'h5_2013', 'm5_2018', 'm5_2017',
    'm5_2016', 'm5_2015', 'm5_2014', 'm5_2013'],
    dtype='object', length=123)
```

16.0.2 Document count by indexing year and publication year

We can see the quantity of documents by the year of journal indexing and the year of document publication

The same map, but only for 2007 onwards:

Filtering by research articles, we get almost the same:

16.0.3 Multiple languages by indexing year and publication year

Zooming out:

The raw count is probably not enough for understanding what's going on. Let's see the proportion.

Zooming out:

The same as above, but as line plots:

```
In [21]: def add_markers(ax):
    for line, marker in zip(ax.get_lines(), "v^<>spP*hHoxXDd8234+1.,"):
        line.set_marker(marker)
        ax.legend()
In [22]: fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(12, 16))
```

```
In [22]: fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(12, 16))

years_mdataset_ramf_sum.loc[2007:, 2007:].T.plot(ax=ax1)
ax1.set(title="Count of multi language research articles")
add_markers(ax1)

years_mdataset_ramf_mean.loc[2007:, 2007:].T.plot(ax=ax2)
ax2.set(title="Proportion of multi language research articles")
add_markers(ax2)
```


16.1 Thematic area

These are the fields for each area, besides the _x or _y suffix:

```
"is_health_sciences",
    "is_human_sciences",
    "is_linguistics_letters_arts"]
areaswm = areas + ["is_multidisciplinary"]
```

This new trm dataset:

- Has an entry copy for each thematic area of a document;
- Is filtered by research articles, having no other document type;
- Includes a multi_language field, besides specific flag fields for the pt, es and en languages.

(372208, 7)

Out [24]:

The table is in the next page ...

	inclusion_year_scielo	nclusion_year_scielo doc_publishing_year multi_language doc_pt doc_es doc_en area	multi_language	doc_pt	doc_es	doc_en	area
0	1998	1998	False	1	0	0	agricultural_sciences
50000		2011	False	0	0		agricultural_sciences
100000	2006	2007	False	1	0	0	biological_sciences
150000		2016	False	1	0	0	engineering
200000		2006	True	1	0		health_sciences
250000		2012	False	0	0	П	health_sciences
300000		2017	True	1	0		health_sciences
350000		2016	True	, ,	0	\leftarrow	human_sciences

With that data, we can see some language statistics for each area. But, first, what's the number of research articles on each thematic area?

Note: The proportion based on the total count is beyond 100%, since there are articles in more than one thematic area.

```
In [25]: trm_area_counts = trm["area"].value_counts().rename("count")
trm_area_counts.plot.barh(
    figsize=(12, 5),
    title="Count of research articles by thematic area",
)
pd.DataFrame(trm_area_counts).assign(
    proportion=trm_area_counts / mdataset_ramf.shape[0],
)
```

Out [25]:

	count	proportion
health_sciences	129204	0.419485
agricultural_sciences	69143	0.224486
human_sciences	54581	0.177208
biological_sciences	47412	0.153932
engineering	21148	0.068661
exact_earth_sciences	20288	0.065869
applied_social_sciences	17736	0.057583
multidisciplinary	8355	0.027126
linguistics_letters_arts	4341	0.014094

Now let's see, for each thematic area, the multi-language document count by both the journal indexing year and the document publishing year, besides a proportion based on the total document count for the specific thematic area.

That's the full matrix of counts and proportions by area. Let's see it with some heatmaps.

In [27]:

2016

2017

2018

0

2010

2011 2012 2013 2014 2015 2016 2017

```
for field in areaswm:
    fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(13, 4))
    area = field[3:]
    sns.heatmap(years_trm.xs(area, 1).xs("sum").loc[2007:, 2007:],
                  cmap="magma", annot=True, fmt="g", ax=ax1) \
        .set(title=f"Multilanguage research articles count in {area}")
    sns.heatmap(years_trm.xs(area, 1).xs("mean").loc[2007:, 2007:],
                   cmap="magma", annot=True, fmt=".02f", ax=ax2) \
        .set(title=f"Multilanguage research articles proportion "
                     f"in {area}")
    fig.tight_layout()
      Multilanguage research articles count in agricultural sciences
                                                   Multilanguage research articles proportion in agricultural sciences
                                                    2007
                                                        2008
                                                     2008
                                                         0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
     을 2010
2011
                                                   을 2010
2011
                                                        0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
                                                                                           -0.012
                                                        0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
     2012
                                                        0.009
                                                        2013
          0
             0
                          0
                                                    2013
               0
      2014
                                                    2014
                                                                                           0.006
                                                        0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
     를 2015
```

2015

2017

2018

2018

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00

2011 - 2012 - 2013 - 2014 - 2014

doc_publishing_year

0.003

0.000

Zooming out to see the big picture:

16.2 Number of published articles by thematic area in en, es and pt

Using the same technique from when we created the trm dataframe, we can see the number of published articles by the 3 languages that have its own column:

- en: English;
- es: Spanish;
- pt: Portuguese.

(1274, 4)

Out [29]:

	area	lang	doc_publishing_year	count
0	agricultural_sciences	en	1942	1
200	applied_social_sciences	es	2011	44
400	biological_sciences	pt	1911	16
600	exact_earth_sciences	en	1971	6
800	health_sciences	en	1983	46
1000	health_sciences	pt	2010	5409
1200	multidisciplinary	en	2012	297

This data is what we wish to plot.

```
In [30]: sns.FacetGrid(trlangsum, hue="lang", row="area", aspect=6, height=1.8) \
    .map(sns.lineplot, "doc_publishing_year", "count") \
    .add_legend()
    for legend_line in plt.gcf().legends[0].legendHandles:
        legend_line.set_linewidth(10)
```


The same, from 1990 and without a shared y axis:

Instead, we might want to see the proportion of thematic areas in some specific language. We can plot a heat map to see this.

The same, from 1990:

