

Engenharias: Comp, Mecan. E Mecatr.

Diodos

Prof. Msc. Alexsandro M. Carneiro

www.ucdb.br/docentes/alexsandro Eng. De Computação

2012

Revisão

Modelo Atômico = Matéria (ocupa espaço e massa)

- Núcleo:
 - N Nêutron com massa, sem carga
 - P Próton com massa, carga +
- Orbitando:
 - E Elétron sem massa, carga -

- Um átomo é naturalmente neutro Ne=Np
- Carga total nula: Estabilizado

Átomo

Partículas atômicas:

- Elétrons, prótons e nêutrons;
- Combinados de várias formas;
- Características:
 - Ne:
 - Carga negativa
 - Giram em torno do núcleo (camadas)
 - Np:
 - Carga positiva
 - Ficam no núcleo
 - O nº de átomos especifica o Nº Atômico
 - Nêutron:
 - Carga neutra e também m fica no núcleo

Camadas

Camadas do Átomo

Órbita	Número	
K	2	← + INTERNA, < ENERGIA
L	8	
M	18	
N	32	
0	32	
Р	18	
Q	8	← + <u>EXTERNA</u> , > ENERGIA

Elétrons de Valência: Elétrons situados na camada mais externa do átomo

Átomo

Ionização

- Processo pelo qual um Átimo CEDE ou GANHA elétrons.
- Quando a camada mais externa de um átomo tem um déficit na sua cota, ela pode ganhar ou perder elétrons;

– Perda:

Nº de P supera o de E = Átomo POSITIVO

– Ganho:

Nº E supera do P = Átimo NEGATIVO

Ligação Covalente

- Ocorre quando:
 - 02 átomos compartilham elétrons de suas últimas camadas, com eles (e) girando em torno dos 02 núcleos

Ligação Covalente

Introdução

Semicondutores

- No campo da eletrônica existem os semicondutores;
- Estes possuiem 04 elementos químicos na última camada;
- O que são os semicondutores?
 - 1. Nem um isolante nem um condutor, um meio termo.
 - 2. Possui nível de condutividade intermediária

Introdução

Semicondutores

Semicondutores

- Opções:
 - Germânio (Ge)
 - Silício (Si)
- Comportamento:
 - Ligação Covalente
 - Estrutura Cristalina co 04 elétrons (tetravalente)

Semicondutor

Silício:

- A -273 °C:
 - Eletros fortemente acoplados
 - Isolante perfeito;

- Elevando T^o:
 - Agitação Térmica
 - Quebra estabilidade;
 - Rompe Ligações: Lacunas e Buracos

Resumo 01

- Semicondutor
 - Nem isolante nem condutor;
 - Lig. Covalente:
 - Compartilham E⁻ entre os átomos vizinhos com dopagem
 - Quanto MAIOR Tº, aumento SIGNIFICATIVO
 Nº E¹ livres em semicondutores
 - Material Intrínseco:
 - Semicondutor com um nível bastante baixo de impuresas

Condução de elétrons

- Dopagem
 - Processo onde inserimos impurezas;
 - Com isso o mesmo deixa de ser intrínseco (puro) e começa a conduzir;
 - Com a dopagem criamos materiais:
 - Tipo P

• Tipo N

Tipo P

 Adicionamos ao Silício impurezas Trivalentes como o Alumínio (Al)

Tipo N

 Adicionamos ao Silício impurezas Trivalentes como o Alumínio (Al)

Resumo 02

- Semicondutor
 - Excitou Átomo existe condução
 - Para isso usa-se dopagem
 - Tipo P
 - Recebe átomos
 - 03 elétrons de Valencia
 - Tipo N
 - Doa Átomos
 - 05 elétrons de Valencia

JUNÇÃO

- Definição:
 - Constrói um semicondutor
 - Unindo os materiais P e N

Polarização

Opções:

Polarização

Opções:

- Direta

DIODO

SIMBOLOGIA

Polarização

REVERSA

Resumo final

- Diodo funciona como uma chave simples;
- Diodo ideal:
 - Condução: Curto
 - Não condução: circ. Aberto
- Ausência de polarização: Id = 0;
- Pol. Direta:
 - ID aumenta exponencialmente
 - Aumenta a VD também
- Pol. Reversa:
 - ID é pequena: Saturação
 - Mais ocorre ruptura (Efeito Zener)
- I_{saturação} reversa dobra a cada aumento de10º C
- $V_{Si} = {}_{0.6v}$ e no $V_{ge} = 0.3v$

Curva do Diodo

Curva
 Característica

Características

- Especificações Comerciais:
 - Corrente Direta Máxima(Idm)
 - Tensão Reversa Máxima (Vrm)
 - Encapsulamentos (terminais Anodo e Catodo)