Curs 9:

Rezolvarea numerică a ecuațiilor neliniare.

Metoda bisecției. Metoda aproximațiilor succesive.

Metoda secantei

Octavia-Maria BOLOJAN

octavia.nica@math.ubbcluj.ro

29 Noiembrie 2017

Ecuații neliniare

 Cel mai simplu tip de ecuații neliniare sunt ecuațiile polinomiale cu o singură variabilă de forma:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0,$$
 (1.1)

unde $a_n \neq 0$.

- Această ecuație este neliniară dacă $n \ge 2$
- Pentru n=2, formula de rezolvare a ecuației (1.1) este dată de

$$x = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_0a_1}}{2a_2}$$

• dacă $n \ge 5$, nu există nicio formulă de rezolvare exactă a ecuației (1.1)

Exemple de ecuații neliniare:

- i) $x^3 2016x + 2016 = 0$ ii) $3x^8 - 9x^4 + 27x^2 - 81 = 0$ iii) $4\cos x - 2\cos 3x + 8\cos 5x$
- *iii*) $4\cos x 2\cos 3x + 8\cos 5x = 0$
- *iv*) $2x = e^{-x}$
- $v)x \lg x + 3x^2 = \sin x$
- pt i), ii), iii) există modele directe de rezolvare
- iii) poate fi transformat intr-un polinom de grad 5, notând $t = \cos x$ ($\cos x$, $\cos 3x$, $\cos 5x$ pot fi exprimate ca polinoame sub forma de $\cos x$)
- iv), v) nu pot fi transformate sub forma de polinoame -> se numesc ecuații transcendente

Metode iterative de rezolvare a ecuațiilor neliniare

• O metoda iterativă pentru rezolvarea unei ecuații cu o singură necunoscuta x, este o metodă a cărei secvență de aproximare $\{x_n\}$ a soluției este calculată folosind o formulă de tipul

$$x_n = F_n(x_0, x_1, ..., x_{n-1})$$
 (2.1)

 Procesul este terminat atunci când unele condiții sunt satisfăcute, cum ar fi condiția

$$|x_n - x_{n-1}| < \varepsilon$$

pentru unele valori predefinite ale lui ϵ (de exemplu $\frac{1}{5} \cdot 10^{-10}$)

• În practică, funcția $F_n(x_0, x_1, ..., x_{n-1})$ din ecuația (2.1) poate să aibă cel mult doi dintre membrii ecuației anterioare și aceștia probabil vor fi x_{n-1} și x_{n-2} , astfel încât formula folosită să fie de forma

$$x_n = F_n(x_{n-1})$$

sau

$$x_n = F_n(x_{n-1}, x_{n-2})$$

Exemplu

Folosind procedura iterativă $x_{n+1} = x_n^2 - 1$

- i) începând cu $x_0 = 1$
- ii) începând cu $x_0 = 2$,

să se continue determinarea iterațiilor pentru 4 pași.

Soluție.

i)
$$x_0 = 1$$
, $x_1 = 0$, $x_2 = -1$, $x_3 = 0$, $x_4 = -1$

ii)
$$x_0 = 2$$
, $x_1 = 1 = 3$, $x_2 = 8$, $x_3 = 63$, $x_4 = 3968$

- \rightarrow Este evident că nu avem convergență în niciunul dintre cele două cazuri, deși există o soluție a ecuației atașate, $x=x^2-1$, care se găsește între 1 și 2 ($x\simeq 1.61803$)
- ightarrow Chiar dacă pornim cu o valoare inițială care să fie apropiată de soluție, cum ar fi $x_0=1.618$, aceasta procedură nu este convergentă.

Metoda bisecției

Theorem

Fie a < b, $a, b \in \mathbb{R}$ și $f: [a, b] \to \mathbb{R}$ o funcție continuă cu f(a)f(b) < 0. Atunci există $z \in [a, b]$ astfel încât f(z) = 0.

Definim şirurile $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$ astfel:

- \bullet $a_0 := a, b_0 := b, c_0 := (a+b)/2$
 - Pentru $n \ge 1$:
- ightarrow dacă $f(c_{n-1})=0$, atunci

$$\begin{cases} a_n := a_{n-1} \\ b_n := b_{n-1} \\ c_n := c_{n-1} \end{cases}$$

ightarrow dacă $f(a_{n-1}) \cdot f(c_{n-1}) < 0$, atunci

$$\begin{cases} a_n := a_{n-1} \\ b_n := c_{n-1} \\ c_n := (a_n + b_n) / 2 \end{cases}$$

 \rightarrow dacă $f(a_{n-1}) \cdot f(c_{n-1}) > 0$, atunci

$$\begin{cases} a_n := c_{n-1} \\ b_n := b_{n-1} \\ c_n := (a_n + b_n)/2 \end{cases}$$

- Presupunem că funcția f are o singură rădăcină în intervalul [a, b].
- Atunci șirul $(c_n)_{n\geq 0}$ construit mai sus converge la unica soluție $z\in [a,b]$ a ecuației f(x)=0 și

$$|c_n-z|\leq \frac{b-a}{2^n}$$

Exemple numerice

- Să se aproximeze numărul $\sqrt{2}$ folosind Metoda bisecției cu patru pași pentru funcția $f:[1,2]\to\mathbb{R}, f(x)=x^2-2$. Să se evalueze eroarea de aproximare.
- ② Să se aproximeze, folosind metoda bisecției, soluția ecuației $x^3 + 4x^2 10 = 0$ (conținută în intervalul [-1, 2]).

Soluții.

1.

$$\rightarrow a_0 = a = 1, b_0 = b = 2, f(a) = -1, f(b) = 2$$

$$\rightarrow c_0 = (a_0 + b_0)/2 = 3/2$$

$$ightarrow$$
 Cum $f(c_0)=1/4>0$ și astfel $f(a_0)f(c_0)=-4<0$, rezultă că:

$$a_1 = a_0 = 1$$

 $b_1 = c_0 = 3/2$
 $c_1 = (a_1 + b_1)/2 = 5/4$

ightarrow Cum $f(c_1) = f(5/4) = -7/16 < 0$ și $f(a_1) = f(1) = -1 < 0 \Rightarrow f(a_1)f(c_1) > 0$ și astfel:

$$a_2 = c_1 = 5/4$$

 $b_2 = b_1 = 3/2$
 $c_2 = (a_2 + b_2)/2 = 11/8$

ightarrow Cum $f(c_2)=f(11/8)=-7/64<0$ și $f(a_2)=f(5/4)=-7/16<0 \Rightarrow f(a_2)f(c_2)>0$ și astfel:

$$a_3 = c_2 = 11/8$$

 $b_3 = b_2 = 3/2$
 $c_3 = (a_3 + b_3)/2 = 23/16$

 \rightarrow Cum $f(c_3)=f(23/16)=17/256>0$ și $f(a_3)=f(11/8)=-7/64<0 \Rightarrow f(a_1)f(c_1)<0$ și astfel:

$$a_4 = a_3 = 11/8$$

 $b_4 = c_3 = 23/16$
 $c_4 = (a_4 + b_4)/2 = 45/32$.

⇒Eroarea de aproximare este:

$$\left|c_4 - \sqrt{2}\right| \le \frac{b-a}{2^4} = \frac{1}{16}$$

Metoda contracției sau Metoda aproximațiilor succesive

Definition

Fie $I\subset\mathbb{R}$ un interval și $f:I\to\mathbb{R}$ o funcție. Funcția f se numește **contracție** dacă și numai dacă

(a) există $q \in (0,1)$ astfel încât

$$|f(x) - f(y)| \le q |x - y|,$$

pentru orice $x, y \in I$;

(b) $f(I) \subset I$.

Theorem

Fie $f:[a,b] \to \mathbb{R}$ o funcție derivabilă.

(a) Dacă există $q \in (0,1)$ astfel încât $|f'(x)| \leq q$, pentru orice $x \in [a,b]$, atunci

$$|f(x)-f(y)| \le q|x-y|$$
, $(\forall) x, y \in [a, b]$.

(b) Dacă

$$|f(x) - f(y)| \le q |x - y|$$

și

$$\left|f(\frac{a+b}{2}) - \frac{a+b}{2}\right| \le (1-q)\frac{b-a}{2},$$

atunci

$$f([a,b]) \subset [a,b].$$

- Fie $f: I \to \mathbb{R}$ o contracție și $x_0 \in I$.
- Definim șirul $(x_n)_{n>0}$ prin relația de recurență

$$x_{n+1} = f(x_n), \quad (\forall) \ n \in \mathbb{N}.$$

• Atunci ecuația f(x) = x are o soluție unică $x \in [a, b]$, iar șirul $(x_n)_{n \ge 0}$ converge la x, cu următoarea formulă de evaluare a erorii:

$$|x_n - x| \le \frac{q}{1 - q} |x_n - x_{n-1}| \le \frac{q^n}{1 - q} |x_1 - x_0|, \quad (\forall) \ n \in \mathbb{N}.$$

Exemple

Fie funcția

$$f: \left[-\frac{3}{4}, -\frac{1}{2} \right] \to \mathbb{R}, \ f(x) = x^2 + x - \frac{7}{16}.$$

Să se arate că f este o contracție. Luând $x_0=-\frac{5}{8}$, să se determine numărul de iterații necesare pentru a aproxima soluția ecuației f(x)=x cu o eroare ε .

9 Să se calculeze primele trei iterate ale Metodei contracției pentru rezolvarea ecuației $x=\sqrt{2x}$, luând $x_0=1/10$.

Soluții.

1.

- ullet Funcția f este derivabilă și f'(x)=2x+1
- Avem:

$$\max_{x \in \left[-\frac{3}{4}, -\frac{1}{2}\right]} |f'(x)| = \max_{x \in \left[-\frac{3}{4}, -\frac{1}{2}\right]} |2x + 1| = -2\left(-\frac{3}{4}\right) - 1 = \frac{1}{2}$$

Astfel,

$$|f'(x)| \le q = \frac{1}{2} \in (0,1).$$

- Considerăm a = -3/4, b = -1/2
- Atunci:

$$\left| f(\frac{a+b}{2}) - \frac{a+b}{2} \right| \leq (1-q) \frac{b-a}{2} \Leftrightarrow$$

$$\left| f(-\frac{5}{8}) + \frac{5}{8} \right| \leq \left(1 - \frac{1}{2} \right) \frac{1}{8} \Leftrightarrow$$

$$\left| \frac{25}{64} - \frac{5}{8} - \frac{7}{16} + \frac{5}{8} \right| \leq \frac{1}{16} \Leftrightarrow$$

$$\frac{3}{64} \leq \frac{4}{64}, \text{ relație adevărată.}$$

 $\Rightarrow f$ este o contracție

O. Bolojan - Curs 9 Metode Numerice

- Fie z solutia ecuației f(x) = x pe intervalul [a, b]
- Din formula de evaluare a erorii, avem:

$$|x_n-z| \leq \frac{q^n}{1-q} |x_1-x_0|.$$

Dacă

$$\frac{q^n}{1-q} |x_1 - x_0| \le \varepsilon, \text{ atunci } |x_n - z| \le \varepsilon,$$

aşadar x_n aproximează pe z cu eroarea ε .

Avem:

$$x_1 = f(x_0) = f\left(-\frac{5}{8}\right) = \frac{25}{64} - \frac{5}{8} - \frac{7}{16} = -\frac{43}{64}$$

și

$$|x_1-x_0|=\left|-\frac{43}{64}+\frac{5}{8}\right|=\frac{3}{64}.$$

Atunci

$$\frac{q^n}{1-q} |x_1 - x_0| \leq \varepsilon \Leftrightarrow \frac{\left(\frac{1}{2}\right)^n}{1-\frac{1}{2}} \cdot \frac{3}{64} \leq \varepsilon \Leftrightarrow$$

$$\frac{3}{2^{n+5}} \leq \varepsilon \Leftrightarrow 2^{n+5} \geq \frac{3}{\varepsilon} \Leftrightarrow n \geq \log_2\left(\frac{3}{\varepsilon}\right) - 5.$$

Astfel, putem considera

$$n = \left\lceil \log_2\left(\frac{3}{\varepsilon}\right) \right\rceil - 4.$$

2

• Fie
$$f(x) = \sqrt{2x}$$

Avem:

$$x_1 = f(x_0) = \sqrt{\frac{1}{5}} = 0.44721$$

 $x_2 = f(x_1) = \sqrt[4]{\frac{4}{5}} = 0.94574$
 $x_3 = f(x_2) = \sqrt[8]{\frac{64}{5}} = 1.375312.$

Metoda secantei

• Dacă x_{n-1} , x_n sunt două aproximări succesive ale soluției ecuației f(x)=0, atunci alegem:

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n), \tag{5.1}$$

ca fiind următoarea aproximare.

- Dacă $|x_{n+1}-x_n|$ este suficient de mic, ne oprim și îl luăm pe x_{n+1} ca fiind soluția
- În caz contrar, se repetă procedeul folosit în relația (5.1) înlocuind pe x_n cu x_{n+1} și pe x_{n-1} cu x_n pentru a găsi o nouă aproximare x_{n+2} .
- Procedeul se repetă până când se obține aproximarea dorită

Theorem

Fie $[a,b]\subset\mathbb{R}$ și $f:[a,b]\to\mathbb{R}$ o funcție. Definim recurent șirul $(x_n)_{n\geq 0}$ astfel:

$$x_0, x_1 \in [a, b], \quad x_{n+1} := \frac{x_{n-1}f(x_n) - x_nf(x_{n-1})}{f(x_n) - f(x_{n-1})}, \quad (\forall) \ n \in \mathbb{N}^*.$$

Theorem

Presupunem că f este derivabilă pe [a, b] și

- a) $f'(x) \neq 0$, $(\forall) x \in [a, b]$;
- b) șirul $(x_n)_{n>0}$ are toate valorile în intervalul [a,b];
- c) $f(a) \cdot f(b) < 0$.

Atunci ecuația f(x) = 0 are o soluție unică $z \in [a, b]$, iar șirul $(x_n)_{n \ge 0}$ converge la z.

Figure: Ilustrarea metodei secantei

Exemplu

Să se aplice metoda secantei pe intervalul [0,1/2] pentru rezolvarea ecuației $4x^3-6x+1=0$ pentru $x_0=1/2$ si $x_1=1/4$. Să se determine primele trei iterații din metodă.

Soluţie.

- Fie $f(x) = 4x^3 6x + 1$.
- Funcția f este derivabilă pe [0,1/2] si $f'(x)=12x^2-6$, funcție care nu se anulează pe [0,1/2] ($f'(x)\neq 0$, $(\forall)\,x\in[0,1/2]$)
- Deoarece $f(0) \cdot f(1/2) = -3/2 < 0 \Rightarrow$ ecuația are o rădăcină în intervalul [0,1/2].
- Avem

$$x_{2} = \frac{x_{0}f(x_{1}) - x_{1}f(x_{0})}{f(x_{1}) - f(x_{0})} = \frac{1}{5}$$

$$x_{3} = \frac{x_{1}f(x_{2}) - x_{2}f(x_{1})}{f(x_{2}) - f(x_{1})} = \frac{6}{37}$$

$$x_{4} = \frac{x_{2}f(x_{3}) - x_{3}f(x_{2})}{f(x_{3}) - f(x_{2})} = \frac{312}{1835}.$$