МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет»

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Отчет по лабораторной работе №3 по дисциплине «Высокопроизводительные вычислительные комплексы» Вариант 6

Выполнил студент группы ИВТ-41	/Кудяшев Я.Ю./			
Проверил доцент кафедры ЭВМ	/Мельцов В. Ю./			

1 Выполнение лабораторной работы

Задание №1

Экранная форма первого задания представлена на рисунке 1

Рисунок 1 – Задание №1

Задание:

Выберите блок-схему ВС соответствующую заданию.

Количество: ПР=2; СК=1; МК=2;

Количество ВЗУ, УВВ: СК1=3; СК2=0; МК1=2; МК2=2;

Решение:

Блок-схема, соответствующая заданию представлена на схеме 3.

Экранная форма второго задания представлена на рисунке 2.

Рисунок 2 – Задание №2

Задание:

Выберите стохастическую сетевую модель BC, соответствующую заданию. Обозначение систем в сети: ПР= S1; CK1= S2; MK1=S3; MK2= S4;

Решение:

Правильная сетевая модель представлена в первом варианте ответа.

Экранная форма задания 3 представлена на рисунке 3.

Рисунок 3 – Задание №3

Задание

Укажите граф передачи стохастической сети

Решение

Правильный граф передачи стохастической сети представлен во втором варианте ответа

Задание №4

Рассчитать интенсивности входных потоков заявок для S1.

Интенсивность источника заявок [Лямда] 0 = 0.1 (1/c).

Вероятности передач:

P[1,0]=0,27

P[1,2]=0.23

P[1,3]=0.27

P[1,4]=0.23

Среднее время обслуживания одной заявки единицей оборудования:

$$V[\Pi P] = 0.43$$

V[ВЗУ] для СК1=0,2

V[УВВ] для МК1=0,67

V[УВВ] для МК2=0,55

Все значения округлять до 4х значащих разрядов

Решение

$$\begin{cases} \lambda_0 = P_{00} * \lambda_0 + P_{10} * \lambda_1 + P_{20} * \lambda_2 + P_{30} * \lambda_3 + P_{40} * \lambda_4 + P_{50} * \lambda_5; \\ \lambda_1 = P_{01} * \lambda_0 + P_{11} * \lambda_1 + P_{21} * \lambda_2 + P_{31} * \lambda_3 + P_{41} * \lambda_4 + P_{51} * \lambda_5 \\ \lambda_2 = P_{02} * \lambda_0 + P_{12} * \lambda_1 + P_{22} * \lambda_2 + P_{32} * \lambda_3 + P_{42} * \lambda_4 + P_{52} * \lambda_5 \\ \lambda_3 = P_{03} * \lambda_0 + P_{13} * \lambda_1 + P_{23} * \lambda_2 + P_{33} * \lambda_3 + P_{43} * \lambda_4 + P_{53} * \lambda_5 \\ \lambda_4 = P_{04} * \lambda_0 + P_{14} * \lambda_1 + P_{24} * \lambda_2 + P_{34} * \lambda_3 + P_{44} * \lambda_4 + P_{54} * \lambda_5 \end{cases}$$

$$\lambda_0 = P_{10} * \lambda_1$$

$$\lambda_1 = \lambda_0 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5$$

$$\lambda_2 = P_{12} * \lambda_1$$

$$\lambda_3 = P_{13} * \lambda_1$$

$$\lambda_4 = P_{14} * \lambda_1$$

$$\lambda_1 = \frac{\lambda_0}{P_{10}} = \frac{0.1}{0.27} = 0,3704$$

Задание №5

Рассчитать интенсивности входных потоков заявок для S2.

Решение

$$\lambda_2 = \lambda_1 * P_{12} = 0.37037 * 0.23 = 0.0852$$

Залание №6

Рассчитать интенсивности входных потоков заявок для S3.

$$\lambda_3 = \lambda_1 * P_{13} = 0.37037 * 0.27 = 0.1$$

Рассчитать интенсивности входных потоков заявок для S4.

Решение

$$\lambda_4 = \lambda_1 * P_{14} = 0.37037 * 0.23 = 0.085185$$

Задание №8

Рассчитать коэффициент передачи [Альфа] для S1.

Решение

$$\alpha_i = \frac{\lambda_i}{\lambda_0}$$

$$\alpha_1 = \frac{\lambda_1}{\lambda_0} = \frac{0.37037}{0.1} = 3.7037$$

Задание №9

Рассчитать коэффициент передачи [Альфа] для S2.

Решение

$$\alpha_2 = \frac{\lambda_2}{\lambda_0} = \frac{0.085185}{0.1} = 0.85185$$

Задание №10

Рассчитать коэффициент передачи [Альфа] для S3.

Решение

$$\alpha_3 = \frac{\lambda_3}{\lambda_0} = \frac{0,1}{0,1} = 1$$

Задание №11

Рассчитать коэффициент передачи [Альфа] для S4.

$$\alpha_4 = \frac{\lambda_4}{\lambda_0} = \frac{0.085185}{0.1} = 0.85185$$

Проверить условия существования стационарного режима в стохастической сети.

Решение

$$\begin{split} &\lambda_0 < \min\{\frac{K_i}{\alpha_i * V_i}\} \\ &\lambda_0 < \min\{\frac{2}{3.7037*0,43}; \frac{1}{0.85185*0,2}; \frac{2}{1*0,67}; \frac{2}{0.85185*0,55}\} \\ &\lambda_0 < \min\{1.2558152093; 5.86957797734; 2.98507462687; 4.26878398352\} \end{split}$$

Стационарный режим существует.

Задание №13

Рассчитать загрузки одноканальных CMO/средние числа занятых каналов многоканальных CMO

Рассчитать коэффициент [Бэта] для S1.

Решение

$$\begin{split} \beta_j &= \lambda_j * V_j \\ \beta_1 &= 0.37037 * 0.43 = 0.1592591 \end{split}$$

Задание №14

Рассчитать загрузки одноканальных СМО/средние числа занятых каналов многоканальных СМО

Рассчитать коэффициент [Бэта] для S2.

Решение

$$\beta_2 = 0.1 * 0.2 = 0.017037$$

Задание №15

Рассчитать загрузки одноканальных CMO/средние числа занятых каналов многоканальных CMO

Рассчитать коэффициент [Бэта] для S3.

$$\beta_3 = 0.1 * 0.67 = 0.067$$

Задание №16

Рассчитать загрузки одноканальных СМО/средние числа занятых каналов многоканальных СМО

Рассчитать коэффициент [Бэта] для S3.

Решение

$$\beta_4 = 0.085185 * 0.55 = 0.04685175$$

Задание №17

Рассчитать вероятность простоя [Пи] для S1.

Решение

Для одноканальной СМО:
$$\Pi_{0j}=1$$
- ρ_j Для многоканальной СМО:
$$\Pi_{0j}=\left[\begin{array}{c} K_{j-1} \\ \beta_{j}^{K_{j}} \end{array}\right] \left(\begin{array}{c} K_{j-1} \\ K_{j-1} \end{array}\right) + \sum_{M_{j}=0} \left(\begin{array}{c} K_{j} \\ M_{j} \end{array}\right) \left(\begin{array}{c} K_{j} \\ M_{j} \end{array}\right) = \left[\begin{array}{c} \beta_{j}^{K_{j}} \end{array}\right] \left(\begin{array}{c} K_{j} \\ K_{j} \end{array}\right) + \sum_{M_{j}=0} \left(\begin{array}{c} K_{j} \\ M_{j} \end{array}\right) \left(\begin{array}{c} K_{j} \\ M_{j} \end{array}\right) = 0.852487272139$$

Задание №18

Рассчитать вероятность простоя [Пи] для S2.

Решение

$$\Pi_{02} = 1 - 0.017037 = 0.982963$$

Задание №19

Рассчитать вероятность простоя [Пи] для S3.

Решение

$$\Pi_{03} = [0.067^2 / (2*(1-0.067/2)) +1.067]^{-1} = 0.935171746493$$

Задание №20

Рассчитать вероятность простоя [Пи] для S4.

$$\Pi_{03} = [0.04685175^2 / (2*(1-0.04685175/2)) + 1.04685175]^{-1} = 0.954220670842$$

Задание №21

Рассчитать вероятность простоя [Пи] для сети в целом

Решение

$$\begin{split} &\Pi_{o \delta u u} \!=\! \Pi_{01} * \Pi_{02} * \Pi_{03} * \Pi_{04} * \Pi_{05} \\ &\Pi_{o \delta u u} \!=\! 0.852487 * 0.98296 * 0.9351717 * 0.95422 = 0.747765 \end{split}$$

Задание №22

Рассчитать среднее число заявок, ожидающих обслуживания [L] для S1

Решение

$$\begin{split} L_j &= (\beta_j^{Kj+1} \, / \, (K_j! * K_j * (1 - \beta_j \, / \, K_j)^2 \,)) * \, \Pi_{0j} \\ \\ L1 &= (0.1592591^3 / (4 * (1 - 0.1592591/2)^2) * 0.852487 = 0.001016 \end{split}$$

Задание №23

Рассчитать среднее число заявок, ожидающих обслуживания [L] для S2

Решение

$$L2 = (0.017037^2/(1-0.017037)^2)*0.982963 = 0.000295$$

Задание №24

Рассчитать среднее число заявок, ожидающих обслуживания [L] для S3

Решение

$$L3 = (0.067^3 \, / \, (4 \, * \, (1 \, - \, 0.067/2)^2) \, * \, 0.93517 = 0,00007528$$

Задание №25

Рассчитать среднее число заявок, ожидающих обслуживания [L] для S4

$$L4 = (0.04685^3 / (4 * (1 - 0.04685/2)^2) * 0.9542 = 0.0000257$$

Рассчитать среднее число заявок, пребывающих [m] в S1.

Решение

$$m_j = L_j + \beta_j$$

$$m_1 = 0.001016 + 0.1593 = 0.1602791$$

Задание №27

Рассчитать среднее число заявок, пребывающих [m] в S2.

Решение

$$m_2 = 0.000295 + 0.017037 = 0.017337$$

Задание №28

Рассчитать среднее число заявок, пребывающих [m] в S3.

Решение

$$m_3 = 0.00008 + 0.067 = 0.06708$$

Задание №29

Рассчитать среднее число заявок, пребывающих [m] в S4.

Решение

$$m_4 = 0.000026 + 0.04685 = 0.04688175$$

Задание №30

Рассчитать среднее время ожидания заявки в очереди [W] S1.

Решение

$$W_i = L_i / \lambda_i$$

$$W_1 = 0.001016 \, / \, 0.37037 = 0.002754$$

Задание №31

Рассчитать среднее время ожидания заявки в очереди [W] S2.

 $W_2 = 0.000295 / 0.085185 = 0.0035217$

Задание №32

Рассчитать среднее время ожидания заявки в очереди [W] S3.

Решение

 $W_3 = 0.00008 \ / \ 0.1 = 0.0008$

Задание №33

Рассчитать среднее время ожидания заявки в очереди [W] S4.

Решение

 $W_4 = 0.00003 \: / \: 0.085185 = 0.000352$

Задание №34

Рассчитать время пребывания заявки в [U] S1.

Решение

$$U_j = m_j / \lambda_j$$

 $U_1 = 0.1602791 / 0.37037 = 0.432756$

Задание №35

Рассчитать время пребывания заявки в [U] S2.

Решение

 $U_1 = 0.017337 / 0.085185 = 0.20355696$

Задание №36

Рассчитать время пребывания заявки в [U] S3.

Решение

 $U_1 = 0.06708 \: / \: 0,1 = 0.6708$

Задание №37

Рассчитать время пребывания заявки в [U] S4.

$$U_1 = 0.04688 \, / \, 0.085185 = 0.55033$$

Задание №38

Рассчитать среднее число заявок, ожидающих обслуживания в сети.

Решение

$$L = \sum_{j=1}^{n} L_{j}$$

L = 0.001016 + 0.000295 + 0.00008 + 0.00003 = 0.00143

Задание №39

Рассчитать среднее число заявок, пребывающих в сети.

Решение

$$m \!\!=\!\! \sum m_j$$

$$_{j=1}$$

$$m = 0.1602791 + 0.017337 + 0.06708 + 0.04688175 = 0.29158$$

Задание №40

Рассчитать среднее время ожидания заявки в сети.

Решение

$$W = 3.7037 * 0.002754 + 1* 0.0008 + 0.85185 * 0.0089 + 0.85185 * 0.00035 = 0.0143$$

Задание №41

Рассчитать среднее время пребывания заявки в сети.

Таблица 1 – Проектирование сети с изменением параметров

2

Вывод

No॒		Структура сети			П	L	m	W	U	ΔU,
п/п	ПР	СК1	MK1	МК2] 11	11		VV		%
1	2	3	2	2	0.747748	0.00141	0.29158	0.0141	2.9158	0
2	3	3	2	2	0.747995	0.00043	0.29060	0.0043	2.9060	0.34
3	1	3	2	2	0.737444	0.03057	0.32074	0.3057	3.2074	-1.10
4	2	3	2	3	0.747755	0.00139	0.29156	0.0139	2.9156	~0
5	2	3	3	2	0.747767	0.00134	0.29151	0.0134	2.9151	~0
6	2	3	3	3	0.747773	0.00131	0.29148	0.0131	2.9148	~0
7	2	3	1	3	0.746018	0.00612	0.29629	0.0612	2.9629	-1.6
8	2	3	3	1	0.746926	0.00362	0.29378	0.0362	2.9378	-0.75
9	2	3	1	2	0.746012	0.00615	0.29632	0.0615	2.9632	-1.6
10	2	3	2	1	0.746908	0.00369	0.29386	0.0369	2.9386	-0.78
11	2	3	1	1	0.745173	0.00843	0.29860	0.0843	2.9859	-2.4

В таблице 1 приведены численные значения характеристик сети при изменении параметров ВС.

Так как селекторный канал позволяет в один момент времени обратиться к одному ВЗУ, то он рассматривается как одноканальное СМО. Добавление новых устройств никак не повлияет на производительность.

Добавление 3-го процессора в ВС принесло несущественный прирост по сравнению с затратами, время пребывания заявки уменьшилось на 0.3%, но если оставить в системе только один процессор, то время ожидания обслуживания заявки возрастет в 21 раз, а среднее время пребывания заявки на 1.1%, поэтому оптимальным вариантом будет являться 2 процессора в системе.

Добавление нового ВЗУ в мультиплексные каналы 1 и 2 приносит незначительное изменение производительности, соответственно затраты на добавление нового ВЗУ не обоснованы. В тоже время если сократить количество ВЗУ в мультиплексных каналах (до 3 ВЗУ суммарно), то производительность незначительно упадет (не более, чем на 1.6%), что позволит уменьшит стоимость ВС.

Таким образом наиболее оптимальной является система с двумя процессорами, трех ВЗУ в селекторном канале, два ВЗУ в первом мультиплексном канале и одним ВЗУ во втором мультиплексном канале.