

Algorithmes d'optimisation

Pr. Faouzia Benabbou (faouzia.benabbou@univh2c.ma)

Département de mathématiques et Informatique

Master Data Science & Big Data

2024-2025

Plan du Module: Algorithmes d'optimisation

Les algorithmes d'optimisation

Pr. F. BENABBOU - DSBD -2025

Méthode des multiplicateurs de Lagrange

- La méthode des multiplicateurs de Lagrange est une technique d'optimisation utilisée pour trouver les extrema locaux (maxima ou minima) d'une fonction sous contraintes d'égalité (étendue à inégalité).
- Elle est particulièrement utile lorsque les contraintes rendent difficile l'expression d'une variable en fonction des autres.
- L'idée centrale de la méthode est de transformer un problème d'optimisation **contraint** en un problème **non contraint** en introduisant une nouvelle fonction, appelée **fonction de Lagrange**, qui combine la fonction objective et les contraintes.

- Méthode des multiplicateurs de Lagrange
 - Soit le problème PCE suivant : $\begin{cases} \min_{x \in \mathbb{R}^n} f(x), f \text{ une fonction objective de .} \\ h(x) = 0. \end{cases}$

Définition. La **fonction de Lagrange** associée à un problème d'optimisation sous contrainte d'égalité est définie par :

$$L(x,\lambda) = f(x) + \lambda^{T}h(x)$$

= $f(x) + \sum_{i=1}^{i=p} \lambda_i h_i(x)$ où $(\lambda_1,...,\lambda_p)$ sont les multiplicateurs de Lagrange associés aux contraintes d'égalité.

- Méthode des multiplicateurs de Lagrange
 - Soient $h = h_1 h_2 \dots h_p : \mathbb{R}^n \to \mathbb{R}$ des fonctions de classe C 1, avec $p \in \mathbb{N}^*$.
 - L'ensemble $S = \{x \in \mathbb{R}^n , h_i(x) = 0, \forall i = 1, 2, \dots, p\}$ est variété de \mathbb{R}^n .

Définition.

Si $x \in S$ est tel que la famille des vecteurs $\{\nabla h_i(x) i=1, \dots p\}$ forme un système libre en \mathbb{R}^n alors on dit que x est un **point régulier** de S.

La variété S est dite **régulière** si tous les points de S sont réguliers.

• Une condition équivalente de la régularité de S en x est que : rang(J_h)=p, où J_h est la matrice Jacobienne de h.

Méthode des multiplicateurs de Lagrange

Théorème de Lagrange. Condition nécessaire d'optimalité du premier ordre.

Soit f et h différentiable en x^* . Si x^* est une solution **optimale locale** et si les gradients des contraintes $\nabla h_i(x^*)$ sont linéairement indépendants, alors il existe un unique vecteur $\lambda^* \in \mathbb{R}^p$ tel que :

 $\nabla L(\mathbf{x} *, \lambda) = \nabla f(\mathbf{x} *) + \nabla h(\mathbf{x} *)^{\mathrm{T}} \lambda = 0$, Condition de **stationnarit**é. $h(\mathbf{x} *) = 0$, Condition de **faisabilit**é.

- On appellera x* vérifiant ces deux conditions un point stationnaire.
- Le vecteur $\lambda * = \{\lambda_1^*, \dots, \lambda_p^*\}$ est appelé multiplicateur de Lagrange.
- $\nabla f(x^*)$ est le gradient de la fonction objectif évaluée en x^* .
- $\nabla h(x^*)$ est la matrice **jacobienne** des contraintes évaluées en x^* .

- Méthode des multiplicateurs de Lagrange
 - La première condition signifie que le gradient de f(x) est **combiné linéairement** avec les gradients des contraintes.
 - Les conditions de **premier ordre** sont **nécessaires mais pas suffisantes** pour garantir un minimum local.
 - Il faut analyser la courbure de f(x) via la Hessienne de la fonction Lagrange.

$$H_L(\mathbf{x}*,\lambda*) = \nabla^2 f(\mathbf{x}*) + \nabla^2 \mathbf{h}(\mathbf{x}*) \lambda*$$

• Pour cela on définit l'espace tangent des contraintes :

$$T = \{d \in \mathbb{R}^n, \nabla h_i(x*)^T d = 0, \forall i\}.$$

Méthode des multiplicateurs de Lagrange

Théorème. La **condition suffisante du second ordre** est réalisé si x* satisfait:

- Les conditions de premier ordre.
- $H_L(\mathbf{x}^*, \lambda^*)$ est **définie positive** sur $\mathbf{T} : d^T H_L(\mathbf{x}^*, \lambda^*) d > 0$, $\forall d \in \mathbf{T} \setminus \{0\}$.
- alors x* est un minimum local strict

- Méthode des multiplicateurs de Lagrange
 - Cas de contraintes d'égalité linéaires est définie par:

$$L(x,\lambda)=f(x) + \lambda^{T}(Ax - b).$$

Les conditions de **premier ordre** donnent :

$$\nabla_{x} L(x,\lambda) = \nabla f(x) + \nabla(\lambda^{T}(Ax - b)) = 0.$$

Sachant que L'expression $\nabla (\lambda^T (\mathbf{A}\mathbf{x} - \mathbf{b})) = \mathbf{A}^T \lambda$, on obtient :

$$\nabla_x L(x,\lambda) = 0 \rightarrow \nabla f(x) + \mathbf{A}^T \lambda = 0$$

Méthode des multiplicateurs de Lagrange

Théorème. Si x* est une solution optimale (minimum) du problème d'optimisation sous contrainte **d'égalité linéaire**, alors il existe nécessairement un vecteur $\lambda \in \mathbb{R}^p$ vérifiant :

$$\nabla f(\mathbf{x}^*) + \mathbf{A}^T \lambda = 0.$$

Si de plus A est de rang p (c'est-à-dire que les contraintes sont linéairement indépendantes) alors λ est **unique**.

Méthode des multiplicateurs de Lagrange

Algorithme 8 : Méthode des multiplicateurs de Lagrange

- 1) Initialisation : f(x): fonction objective; g(x): Contraintes.
- 2) Construire la fonction de Lagrange : $L(x,\lambda) = f(x) + \lambda^{T}h(x)$
- 3) Calculer le gradient de la Lagrangienne :

$$L(x, \lambda) = \nabla f(x) + \nabla h(x)^{T} \lambda$$

4) Résoudre le système d'équations non linéaires en x et λ :

$$\begin{cases} \nabla L(x,\lambda) = 0, \text{ Condition de stationnarit\'e.} \\ h(x) = 0, & \text{Condition de faisabilit\'e.} \end{cases}$$

- 5) **Vérifier la nature du point** en examinant la matrice Hessienne: $H_L(x,\lambda)$
 - a)si $H_L(x,\lambda)$ est **définie positive sur T**, on a un **minimum local**
 - b)Si elle est définie négative, on a un maximum local.
 - c) Sinon, on ne peut pas conclure

Méthode des multiplicateurs de Lagrange

Exemple 1. On cherche à minimiser la fonction :

 $minf(x,y)=x^2+3y^2$ sous la contrainte :x+2y=4.

Calcule de la fonction de Lagrange : $L(x,y,\lambda) = x^2 + 3y^2 + \lambda(x+2y-4)$.

condition Premier ordre : $\frac{\partial L(x,y,\lambda)}{\partial x} = 0$ et $\frac{\partial L(x,y,\lambda)}{\partial y} = 0$; $2x + \lambda = 0$ et $6y + 2\lambda = 0$

Donc on a le système suivant : $\begin{cases} 2x + \lambda = 0 \text{ et } 6y + 2\lambda = 0. \\ x + 2y - 4 = 0. \\ x = 12/7 \end{cases}$ Après substitution on trouve : $\begin{cases} x + 2y - 4 = 0. \\ x = 12/7 \\ y = 8/7 \\ \lambda = -24/7 \end{cases}$

$$x + 2y - 4 = 0$$

$$\lambda = -24/7$$

(12/7, 8/7) est un point critique.

Méthode des multiplicateurs de Lagrange

Exemple 1. On cherche à minimiser la fonction : $f(x,y)=x^2+3y^2$ sous la contrainte x+2y=4.

Gradient
$$\frac{\partial L(x,y,\lambda)}{\partial x} = 2x + \lambda \text{ et } \frac{\partial L(x,y,\lambda)}{\partial y} = 6y + 2\lambda$$

$$H_L(x,y,\lambda) = \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix}$$
, calculons sa quadratique : $(x,y)\begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = (x,y)\begin{pmatrix} 2x1 \\ 6x2 \end{pmatrix} = 2x^2 + 6y^2$.

Trouvons l'espace tangent $T = \{d \in \mathbb{R}^n, \nabla h_i(x^*)^T d = 0, \forall i\},$

$$\nabla h(x,y) = \binom{1}{2}, \ \nabla h_i(x,y)^T d = (1\ 2) \ \binom{d1}{d2} = d1 + 2d2 = 0, \ donc \ \frac{d1 = -2d2}{d1} d = \binom{-2d2}{d2} = d2 \ \binom{-2}{1} = d2 \ \binom$$

Montrons que $d^T H_L(x, \lambda *) d > 0$,

$$(d1,d2)$$
 $\begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix}$ $\begin{pmatrix} d1 \\ d2 \end{pmatrix}$ =2d1² + 6d2² =14d2² >0 car d≠0 donc $H_L(x,y, λ)$ est Définie positive.

La solution (12/7,8/7) est un minimum locale et $f(x^*,y^*)=48/7$.

L'unique multiplicateur de Lagrange est $\lambda = -\frac{24}{7}$.

- Méthode des multiplicateurs de Lagrange
- **Exemple 1.** On cherche à minimiser la fonction : $f(x,y)=x^2+3y^2$ sous la contrainte x+2y=4.

- Méthode des multiplicateurs de Lagrange
- **Exemple 2.** Trouver x minimisant $f(x) = x_1x_2$ sous $h(x) = x_1 2x_2 + 4$
- Le PS devient :

$$\begin{cases} f(x) = x_1 x_2 \\ x_1 - 2x_2 + 4 = 0. \end{cases}$$

Calcule de la fonction de Lagrange : $L(x,y,\lambda) = x_1x_2 + \lambda(x_1 - 2x_2 + 4)$.

Les conditions nécessaires d'optimalité du premier ordre sont :

$$\begin{cases}
\frac{\partial L(x_1, x_2, \lambda)}{\partial x_1} = 0 \\
\frac{\partial L(x_1, x_2, \lambda)}{\partial x_2} = 0
\end{cases}$$

$$\begin{cases}
x_1 - 2\lambda = 0 \\
x_2 + \lambda = 0
\end{cases}$$

$$\begin{cases}
x_1 = 2\lambda \\
x_2 = -\lambda
\end{cases}$$

$$\begin{cases}
x_1 = -2 \\
x_2 = 1
\end{cases}$$

$$\begin{cases}
x_1 - 2x_2 + 4 = 0
\end{cases}$$

(-2, 1) est un point critique.

- Méthode des multiplicateurs de Lagrange
- Exemple 2. Trouver x minimisant $f(x) = x_1x_2$ sous $h(x) = x_1 2x_2 + 4$ Le PS devient :

$$\begin{cases} f(x) = x_1 x_2 \\ x_1 - 2x_2 + 4 = 0. \end{cases}$$

Calcule de la fonction de Lagrange : $L(x,y,\lambda) = x_1x_2 + \lambda(x_1 - 2x_2 + 4)$.

Condition suffisante du second degré:

 $H_L(x_1, x_2, \lambda)$ est **définie positive ?**

$$H_L(x_1, x_2, \lambda) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, calculons sa quadratique : $(x_1, x_2) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (x_1, x_2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 2x_1x_2 \ge 0$?

Trouvons l'espace tangent $T = \{d \in \mathbb{R}^n, \nabla h_i(x^*)^T d = 0, \forall i\}, d = (d1, d2)$

$$\nabla h$$
 $(x,y) = \binom{1}{-2}$, $(1-2)\binom{d1}{d2} = d1-2d2 = 0$, donc $d1 = 2d2 = d2\binom{2d2}{d2} = d2\binom{2}{1}$

On remplace dans la forme quadratique on obtient : $4d2^2$ donc $H_L(x_1, x_2, \lambda)$ est Définie Positive. Le minimum local est (-2, 1) et f(-2, 1)=-2.

- Méthode des multiplicateurs de Lagrange
- **Exemple 2.** Trouver x minimisant $f(x) = x_1x_2$ sous $h(x) = x_1 2x_2 + 4$


```
#Méthode des multiplicateurs de Lagrange ex 1
# Variables
x1, x2, lam = sp.symbols('x1 x2 lambda')
d2 = sp.symbols('d2') # direction d2 (d1 = 2 * d2)
# Fonction objectif et contrainte
f = x1 * x2
h = x1 - 2 * x2 + 4
# Lagrangienne (convention f + Lambda * h)
L = f + 1am * h
# Gradient de L
grad_L = [sp.diff(L, var) for var in (x1, x2, lam)]
# Résolution du système stationnaire
solution = sp.solve(grad_L, (x1, x2, lam), dict=True)[0]
x1_sol, x2_sol, lam_sol = solution[x1], solution[x2], solution[lam]
print("Point critique trouvé :")
print(f"x1 = {x1_so1}, x2 = {x2_so1}, lambda = {lam_so1}")
# Hessienne de L par rapport à x uniquement
H_L = sp.hessian(L, (x1, x2))
# Affichage de La Hessienne
print("\nHessienne du Lagrangien L :")
sp.pprint(H L)
# Substitution des valeurs du point critique dans la Hessienne
H_L_at_sol = H_L.subs({x1: x1_sol, x2: x2_sol, lam: lam_sol})
# Affichage de La Hessienne au point critique
print("\nHessienne au point critique :")
sp.pprint(H_L_at_sol)
# Direction tangentielle : grad_h^T * d = 0
# Donc : (1, -2) \cdot (d1, d2) = 0 \rightarrow d1 - 2 d2 = 0 \rightarrow d1 = 2 d2
# On pose d = (2*d2, d2)
d_{vec} = sp.Matrix([2 * d2, d2])
# Forme quadratique q(d) = d^T H_L d
q d = (d \text{ vec.} T * H L at sol * d \text{ vec})[0]
q_d_simplified = sp.simplify(q_d)
print("\nForme quadratique sur l'espace tangent en fonction de d2 :")
sp.pprint(q_d_simplified)
```

import sympy as sp

tion Sous contraintes licateurs de Lagrange er x minimisant $f(x) = x_1x_2$ sous

```
Point critique trouvé : x1 = -2, \ x2 = 1, \ lambda = -1 Hessienne du Lagrangien L : \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} Hessienne au point critique : \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} Forme quadratique sur l'espace tangent en fonction de d2 : \begin{bmatrix} 2 & 1 \\ 4 & 4 \end{bmatrix}
```

EBENABBOU - DSBD -2025

- Méthode des multiplicateurs de Lagrange
- **Exemple 2.** Trouver x minimisant $f(x) = x_1x_2$ sous $h(x) = x_1 2x_2 + 4$

Point critique trouvé : x1 = -2, x2 = 1, lambda = -1

```
Hessienne du Lagrangien L :
# Remplacer d2 par 1
q d numeric = q d simplified.subs(d2, 1)
                                                                             Hessienne au point critique :
print("\nForme quadratique après substitution de d2 = 1 :")
sp.pprint(q d numeric)
                                                                             Forme quadratique sur l'espace tangent en fonction de d2 :
# Vérification du signe de q(d) numériquement
                                                                             4-d<sub>2</sub>
if q d numeric > 0:
   print(f"\n • Point minimum : ({x1 sol}, {x2 sol})")
                                                                             Forme quadratique après substitution de d2 = 1 :
elif q d numeric < 0:
   print(f"\n • Point rmaximum : x1 = \{x1\_sol\}, x2 = \{x2\_sol\}")

    Point minimum : (-2, 1)

else:
    print("\n • Point selle")
```

- Méthode des multiplicateurs de Lagrange
- **Exemple 3.** Trouver x minimisant:

$$f(x) = 3x_1 + 5x_2$$
 sous $h(x) = x_1 + x_2 - 10$

$$L(x_1,x_2,\lambda) = 3x_1 + 5x_2 + \lambda(x_1 + x_2 - 10)$$

Les conditions nécessaires d'optimalité du premier ordre sont :
$$\begin{cases}
\frac{\partial L(x_1, x_2, \lambda)}{\partial x_1} = 3 \\
\frac{\partial L(x_1, x_2, \lambda)}{\partial x_2} = 5
\end{cases}
\begin{cases}
3 + \lambda = 0 \\
5 + \lambda = 0 \\
x_1 + x_2 - 10 = 0
\end{cases}$$

$$\begin{cases}
x_1 + x_2 - 10 = 0 \\
\lambda = -3 \\
\lambda = -5 \\
2\lambda + 2\lambda + 4 = 0
\end{cases}$$

pas de solution, car ces deux droites sont parallèles, elles ne se rencontrent pas, donc il n'y a pas de point qui satisfait simultanémel la contrainte et le maximum ou minimum de la fonction objective.

Méthode des multiplicateurs de Lagrange

- La méthode des multiplicateurs de Lagrange identifie les points stationnaires du Lagrangien, qui sont des candidats pour les extrema locaux (minima, maxima ou points de selle).
- Elle ne garantit pas que la solution trouvée soit un extremum global
- La méthode fonctionne si les gradients de contraintes sont linéairement indépendants au point optimal (on parle de régularité, qualifications de contraintes).
- La méthode repose sur le calcul des dérivées partielles des fonctions objective et de contrainte.
- Elle ne gère pas directement les inégalités $g(x) \le 0$, pour cela, il faut utiliser la méthode KKT (Karush-Kuhn-Tucker).
- Pour les problèmes avec un grand nombre de variables et de contraintes, la mise en place et la résolution du système d'équations peuvent devenir très coûteuses en termes de calcul.

Méthodes du gradient projeté

- Les méthodes du gradient projeté sont des algorithmes d'optimisation utilisés pour résoudre des problèmes où l'on cherche à minimiser une fonction sous certaines contraintes.
- Elles combinent une descente de gradient classique avec une projection sur l'ensemble **admissible** pour garantir que les itérés restent dans le domaine de contraintes.
- Dans les méthodes de descente de gradient la solution est améliorée à chaque itération par : $x_{k+1} = x_k + \alpha_k d_k$ où d_k est la direction choisie de sorte que : $f(x_k + \alpha_k d_k) < f(x_k)$, dans un problème de minimisation.
- Le problème est que si $x_k \in S$, ensemble des point admissibles, rien ne garantit que $x_{k+1} \in S$.

Méthodes du gradient projeté

- L'idée centrale des méthodes du gradient projeté est d'adapter la méthode de descente de gradient standard pour tenir compte des contraintes.
- Au lieu de simplement suivre la direction du gradient négatif, l'algorithme projette cette direction sur l'ensemble des contraintes pour s'assurer que les itérations restent réalisables.
- La projection de x_{k+1} , assure qu'à chaque itération la solution est admissible
- La projection peut se faire de plusieurs manières.

Méthodes du gradient projeté

Algorithme 9 : Méthode du gradient projeté.

- 1. Initialisation : $x_0 \in \mathbb{R}^n$, f une fonction objective de classe 1, $\alpha_0 \mathbb{R}^{+*}$.
- ε : tolérence, max_iter k=0
- 2. Répéter
 - a) Calculer la direction de la descente $d_k = -\nabla f(x_k)$
 - b) Pour le choix de la longueur du pas α_k , on peut utiliser un pas fixe ou utiliser la **Recherche linéaire.**
 - c) Projeter le point $x_k + \alpha_k$ d_k sur l'ensemble admissible S, où α_k est la longueur du pas. La projection est notée $P(x_k + \alpha_k d_k)$.
 - d) Mettre à jour la solution : $x_{k+1} = P(x_k + \alpha_k d_k)$
 - e) k++
- 3. Jusqu'à Vérifier la condition d'arrêt : $\|\nabla f(x_k)\| > \varepsilon$ et k<max_iter

- Méthodes du gradient projeté
 - la projection d'un point $y \in \mathbb{R}^n$ sur un ensemble S est définie par :
 - ProjC(y)= argmin $||x y||^2$, où $||y|| = \sqrt{y_1^2 + y_2^2}$
 - La manière dont la projection est effectuée dépend de la nature des contraintes.
 - **✓** Contraintes linéaires
 - **✓** Contraintes simples (boîtes, boules)
 - **✓** Contraintes non linéaires

Méthodes du gradient projeté

Ensemble S	Projection de y
\mathbb{R}^{+n}	max(0,y) (coordonnée par coordonnée)
[ai, bi] ⁿ	ai si yi <ai, bi="" si="" yi="">bi, yi si ai≤yi≤bi pour chaque i</ai,>
Boule de rayon r et centre c x−c ≤r	y si $\ y-c\ \le r$, sinon $c+r \frac{y-c}{\ y-c\ }$
Hyperplan affine $a^Tx=b$, $a, b \in \mathbb{R}^n$	$y - \frac{a^{T}y - b}{\ a\ ^{2}} a$
Demi-espace a ^T x≤b	$y-\frac{a^Ty-b}{\ a\ ^2}a$
Contrainte linéaire $Ax=b, A \in \mathbb{R}^{mx,n} b \in \mathbb{R}^m$, A Méthode des moindre carrées :	
de rang m	$y-A^{T}(AA^{T})^{-1}(Ay-b)$, sous la condition AA^{T} est inversible(si A est de
	rang m).

Ensemble S	Projection de y
Droite: ax+by+c=0	$(y_1y_2)-\lambda(a\ b)\ \ avec\ \lambda = \frac{ay_1+by_2+c}{a^2+b^2}$
Contrainte quadratique : A Définie Positive	
Si x ^T Ax ≤1	У
Si x ^T Ax >1 où	$\frac{y}{\ y\ _A} \text{ où } \ y\ _A = \sqrt{x^T A x}$
Contrainte quelconque	utiliser les méthodes itératives

Méthodes du gradient projeté

Exemple. Trouver x minimisant $f(x) = x_1x_2$ sous $h(x) = x_1 - 2x_2 + 4$

Méthodes du gradient projeté

Exemple. Trouver x minimisant $f(x) = x_1x_2$ sous $h(x) = x_1 - 2x_2 + 4$

Calcul de la projection sur une droite: ax+by+c=0Pour la projection sur une droite ax+by+c=0d'un point (y_1y_2) :

$$\begin{cases} Py_1 = y_1 - \lambda a \\ Py_2 = y_2 - \lambda b \end{cases}$$

avec
$$\lambda = \frac{ay_1 + by_2 + C}{a^2 + b^2}$$

Méthodes du gradient projeté

Exemple. Trouver x minimisant $f(x) = x_1x_2$ sous $h(x) = x_1 - 2x_2 + 4$

Calcul de la projection sur une droite: ax+by+c=0Pour la projection sur une droite ax+by+c=0d'un point (y_1y_2) :

$$\begin{cases} Py_1 = y_1 - \lambda a \\ Py_2 = y_2 - \lambda b \end{cases}$$

avec
$$\lambda = \frac{ay_1 + by_2 + c}{a^2 + b^2}$$

Méthodes du gradient projeté

Exemple. Trouver x minimisant $f(x) = x_1x_2$ sous $h(x) = x_1 - 2x_2 + 4$

Calcul de la projection sur une droite: ax+by+c=0

```
# Projection orthogonale sur la droite x - 2y + 4 = 0
def projection(point, a, ):
    x0, y0 = point
    a, b, c = 1, -2, 4  # x - 2y + 4 = 0
    denom = a**2 + b**2
    lambda_ = (a * x0 + b * y0 + c) / denom
    x_proj = x0 - lambda_ * a
    y_proj = y0 - lambda_ * b
    return np.array([x_proj, y_proj])
```

Méthodes du gradient projeté

Exemple. Trouver x minimisant $f(x) = x_1x_2$ sous $h(x) = x_1 - x_1$

```
2x_2 + 4
```

```
def gradient_projete_auto(f_func, grad_func, projection, x0, alpha=0.1, max_iter=50, tol=1e-6, verbose=True):
    xk = np.array(x0, dtype=float)
    traj = [xk.copy()]

for k in range(max_iter):
    grad = np.array(grad_func(*xk))
    yk = xk - alpha * grad
    x_next = projection(yk)
    traj.append(x_next.copy())

if verbose:
    print(f"Iteration {k+1}: x = {x_next}, f = {f_func(*x_next)}")

if np.linalg.norm(x_next - xk) < tol:
    break

    xk = x_next

return xk, np.array(traj)</pre>
```

Méthodes du gradient projeté

Exemple. Trouver x minimisant $f(x) = x_1x_2$ sous $h(x) = x_1 - x_1$

 $2x_2 + 4$

Iteration 2: $x = [-0.896 \ 1.552]$, f = -1.390592Iteration 3: $x = [-0.98432 \ 1.50784], f = -1.4841970688$ Iteration 4: x = [-1.0655744 1.4672128], f = -1.5634243990323207 Iteration 5: x = [-1.14032845 1.42983578], f = -1.630482411340956 Iteration 6: x = [-1.20910217 1.39544891], f = -1.6872403129589852 Iteration 7: x = [-1.272374 1.363813], f = -1.7352802008884851 Iteration 8: x = [-1,33058408 1,33470796], f = -1,7759411620320136 Iteration 9: x = [-1.38413735 1.30793132], f = -1.8103565995438966 Iteration 10: x = [-1.43340636 1.28329682], f = -1.839485825853954 Iteration 12: x = [-1.52043515 1.23978243], f = -1.8850087756615588 Iteration 13: x = [-1.55880033 1.22059983], f = -1.9026714277199435 Iteration 14: x = [-1.59409631 1.20295185], f = -1.9176210964221603 Iteration 15: x = [-1.6265686 1.1867157], f = -1.9302744960117157 Iteration 16: x = [-1.65644312 1.17177844], f = -1.9409843334243162 Iteration 17: x = [-1.68392767 1.15803617], f = -1.9500491398103421 Iteration 18: x = [-1.70921345 1.14539327], f = -1.957721591935473 Iteration 19: x = [-1.73247638 1.13376181], f = -1.964215555414184 Iteration 20: x = [-1.75387827 1.12306087], f = -1.969712046102566 Iteration 21: x = [-1.77356801 1.113216], f = -1.9743642758212117 Iteration 22: x = [-1.79168256 1.10415872], f = -1.9783019230550736 Iteration 23: x = [-1.80834796 1.09582602], f = -1.9816347476738145 Iteration 24: x = [-1.82368012 1.08815994], f = -1.9844556504311164 Iteration 26: x = [-1.85076286 1.07461857], f = -1.9888641374010723 Iteration 27: x = [-1.86270183 1.06864909], f = -1.9905746058962677 Iteration 28: x = [-1.87368568 1.06315716], f = -1.9920223464306008 Iteration 29: x = [-1.88379083 1.05810459], f = -1.9932477140188605 Iteration 30: x = [-1.89308756 1.05345622], f = -1.9942848651455642 Iteration 31: x = [-1.90164056 1.04917972], f = -1.995162709859205 Iteration 32: x = [-1.90950931 1.04524534], f = -1.995905717624831 Iteration 33: x = [-1.91674857 1.04162572], f = -1.9965345993976569 Iteration 34: x = [-1.92340868 1.03829566], f = -1.9970668849301774 Iteration 35: x = [-1.92953599 1.03523201], f = -1.9975174114049021 Iteration 36: x = [-1.93517311 1.03241345], f = -1.9978987370131087 Iteration 37: x = [-1.94035926 1.02982037], f = -1.998221491007895 Iteration 38: x = [-1.94513052 1.02743474], f = -1.998494669989082 Iteration 39: x = [-1.94952008 1.02523996], f = -1.9987258886787596 Iteration 40: x = [-1.95355847 1.02322076], f = -1.9989215921777026 Iteration 41: x = [-1.95727379 1.0213631], f = -1.9990872356192075 Iteration 43: x = [-1.96383654 1.01808173], f = -1.9993461020234609 Iteration 44: x = [-1.96672962 1.01663519], f = -1.999446540752658 Iteration 45: x = [-1.96939125 1.01530438], f = -1.9995315520930497 Iteration 46: x = [-1.97183995 1.01408003], f = -1.9996035056915575 Iteration 48: x = [-1.97616533 1.01191733], f = -1.9997159542687515 Iteration 49: x = [-1.9780721 1.01096395], f = -1.9997595836930706 Iteration 50: x = [-1.97982634 1.01008683], f = -1.9997965116378158

Méthodes du gradient projeté

Exemple. Trouver x minimisant $f(x) = x_1x_2$ sous $h(x) = x_1 - 2x_2 + 4$

Méthodes du gradient projeté

Exemple. Trouver x minimisant $f(x)=f(x,y)=x^2-10x-y^2sur$ l'ellipse d'équation $h(x,y)=x^2+4y^2=16$

```
def projection_ellipse(point, tol=1e-8, max_iter=100):
    x0, y0 = point
    # Vérification : point déjà est assez proche de la surface de l'ellipse
    # les nombres réels sont représentés approximativement en virgule flottante.
    # Cela signifie que même si mathématiquement deux expressions devraient être égales,
    #leur représentation binaire peut les rendre légèrement différentes, on ne teste pas sur l'égalité
    if abs(x0**2 + 4*y0**2 - 16) < 1e-8:
        return np.array([x0, y0])
    # On doit trouver lambda tel que f(lambda) = (x\theta/(1+lambda))^2 + 4*(y\theta/(1+4*lambda))^2 - 16 = 0.
    lambda val = 0.0 # initialisation
    for i in range(max iter):
        # Calcul de f(lambda)
        f val = (x0/(1+lambda val))**2 + 4*(y0/(1+4*lambda val))**2 - 16
        #gradient en lamda calculé analytiquement
        df dlambda = -2*x0**2/(1+lambda val)**3 - 32*y0**2/(1+4*lambda val)**3
        # Mise à jour par Newton
        lambda new = lambda val - f val/df dlambda
        #test sur la qualité de la solution
        if abs(lambda new - lambda val) < tol:</pre>
           lambda val = lambda new
           break
        lambda val = lambda new
    x proj = x0/(1+lambda val)
   y proj = y0/(1+4*lambda val)
    return np.array([x_proj, y_proj])
```

trouver le point (x*,y*) qui minimise min $\|(x,y)-(x_0,y_0)\|^2$ sous contrainte $x^2+4y^2=16$

on utilise la méthode des multiplicateurs de Lagrange, on forme la fonction de Lagrange

$$L(x,y,\lambda)=(x-x_0)^2+(y-y_0)^2+\lambda(x^2+4y^2-16).$$

Calcul du gradient:

$$\begin{cases} 2(x-x_0) + 2\lambda x = 0 \\ 2(y-y_0) + 8\lambda y = 0 \end{cases} \rightarrow \begin{cases} x(1+\lambda) = x_0 \\ y(1+4\lambda) = y_0 \end{cases} \rightarrow \begin{cases} x = x_0/(1+\lambda) \\ y = y_0/(1+4\lambda) \end{cases}$$

on va résoudre l'équation en λ par newton Raphson : $(\frac{x_0}{1+\lambda})^2$ +

$$4(\frac{y_0}{1+4\lambda})^2=16$$

Méthodes du gradien projeté

Exemple. Trouver x minimisant f(x)=f(x, y) $10x-y^2sur$ l'ellipse d'équ $h(x, y)=x^2+4y^2=16$

- Méthodes du gradient projeté
 - Simplicité conceptuelle et d'implémentation
 - Si la projection sur l'ensemble contraint est peu coûteuse (par exemple, pour des contraintes de bornes ou des contraintes linéaires simples), la méthode peut être efficace pour des problèmes de grande dimension.
 - Inefficace pour les contraintes complexes
 - La complexité de la projection peut être élevée.
 - La performance dépend aussi du choix de la longueur du pas