线性代数知识点总结

1 行列式

(一) 行列式概念和性质

- 1、逆序数: 所有的逆序的总数
- 2、行列式定义:不同行不同列元素乘积代数和
- 3、行列式性质:(用于化简行列式)
- (1) 行列互换(转置),行列式的值不变
- (2) 两行(列)互换,行列式变号
- (3) 提公因式: 行列式的某一行(列)的所有元素都乘以同一数 k,等于用数 k乘此行列式
- (4) 拆列分配: 行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
- (5)一行(列)乘k加到另一行(列),行列式的值不变。
- (6) 两行成比例,行列式的值为0。

(二) 重要行列式

- 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积
- 5、副对角线行列式的值等于副对角线元素的乘积乘 $(-1)^{\frac{n(n-1)}{2}}$
- 6、Laplace 展开式: (A 是 m 阶矩阵, B 是 n 阶矩阵),则

$$\begin{vmatrix} A & 0 \\ * & B \end{vmatrix} = \begin{vmatrix} A & * \\ 0 & B \end{vmatrix} = |A| \cdot |B|$$

$$\begin{vmatrix} 0 & A \\ B & * \end{vmatrix} = \begin{vmatrix} * & A \\ B & 0 \end{vmatrix} = (-1)^{mn} |A| \cdot |B|$$

7、n 阶(n≥2) 范德蒙德行列式

$$D_{n} = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\ \vdots & \vdots & & \vdots \\ x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} \end{vmatrix} = \prod_{n \ge i > j \ge 1} (x_{i} - x_{j})$$

数学归纳法证明

★8、对角线的元素为 a, 其余元素为 b 的行列式的值:

$$\begin{vmatrix} a & b & b & \cdots & b \\ b & a & b & \cdots & b \\ b & b & a & \cdots & b \\ \vdots & \vdots & \vdots & & \vdots \\ b & b & b & \cdots & a \end{vmatrix} = [a + (n-1)b](a-b)^{n-1}$$

(三) 按行(列)展开

9、按行展开定理:

- (1) 任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值
- (2) 行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于 0

(四) 行列式公式

10、行列式七大公式:

- (1) $|kA|=k^n|A|$
- $(2) |AB| = |A| \cdot |B|$
- $(3) |A^{T}| = |A|$
- $(4) |A^{-1}| = |A|^{-1}$
- (5) $|A^*| = |A|^{n-1}$

$$|A| = \prod_{i=1}^{n} \lambda_{i}$$

- (6) 若 A 的特征值 λ1、λ2、·····λn,则
- (7) 若 A 与 B 相似,则|A|=|B|

(五) 克莱姆法则

11、克莱姆法则:

(1) 非齐次线性方程组的系数行列式不为 0, 那么方程为唯一解

$$x_j = \frac{D_j}{D}, \quad j = 1, 2, \dots, n$$

- (2) 如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0
- (3) 若齐次线性方程组的系数行列式不为 0,则齐次线性方程组只有 0 解;如果方程组有非零解,那么必有 D=0。

2 矩阵

(一)矩阵的运算

1、矩阵乘法注意事项:

- (1) 矩阵乘法要求前列后行一致;
- (2) 矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若 $B=E,O,A^{-1}$, A*,f(A)时,可以用交换律)
 - (3) AB=O 不能推出 A=O 或 B=O。

2、转置的性质(5条)

- $(1) (A+B) ^{T}=A^{T}+B^{T}$
- $(2) (kA) ^T = kA^T$
- $(3) (AB) ^T = B^T A^T$
- $(4) |A|^{T} = |A|$
- $(5) (A^{T}) ^{T} = A$
- (二)矩阵的逆

3、逆的定义:

AB=E 或 BA=E 成立,称 A 可逆,B 是 A 的逆矩阵,记为 $B=A^{-1}$

注: A 可逆的充要条件是|A|≠0

4、逆的性质: (5条)

- (1) $(kA)^{-1}=1/k \cdot A^{-1} (k \neq 0)$
- (2) (AB) $^{-1}=B^{-1} \cdot A^{-1}$
- (3) $|A^{-1}| = |A|^{-1}$
- $(4) (A^{T})^{-1} = (A^{-1})^{T}$
- $(5) (A^{-1})^{-1} = A$

5、逆的求法:

- (1) A 为抽象矩阵:由定义或性质求解
- (2) A 为数字矩阵: (A|E) →初等行变换→ (E|A-1)
- (三)矩阵的初等变换
- 6、初等行(列)变换定义:
- (1) 两行(列)互换;
- (2)一行(列)乘非零常数 c
- (3)一行(列)乘k加到另一行(列)
- 7、初等矩阵:单位矩阵 E 经过一次初等变换得到的矩阵。
- 8、初等变换与初等矩阵的性质:
- (1) 初等行(列)变换相当于左(右)乘相应的初等矩阵
- (2) 初等矩阵均为可逆矩阵,且 E_{ij}-1=E_{ij} (i, j 两行互换); E_i-1 (c) =E_i (1/c) (第 i 行 (列) 乘 c) E_{ij}-1 (k) =E_{ij} (-k) (第 i 行乘 k 加到 j)

★ (四) 矩阵的秩

- 9、秩的定义: 非零子式的最高阶数
- 注: (1) r(A) =0 意味着所有元素为 0, 即 A=O
- (2) $r(A_{n\times n}) = n(满秩) \leftarrow \rightarrow |A| \neq 0 \leftarrow \rightarrow A$ 可逆;
 - r (A) <n←→|A|=0←→A 不可逆;
- (3) r (A) =r (r=1、2、···、n-1) ←→r 阶子式非零且所有 r+1 子式均为 0。
- 10、秩的性质: (7条)
- (1) A 为 m×n 阶矩阵,则 r(A)≤min(m,n)
- (2) $r(A \pm B) \leq r(A) \pm (B)$
- (3) $r(AB) \leq min\{r(A), r(B)\}$
- (4) r (kA) = r (A) $(k \neq 0)$
- (5) r(A) = r(AC)(C是一个可逆矩阵)
- (6) r (A) =r (A^T) =r (A^TA) =r (AA^T)
- (7) 设 A 是 m×n 阶矩阵, B 是 n×s 矩阵, AB=O,则 r(A)+r(B)≤n

11、秩的求法:

- (1) A 为抽象矩阵:由定义或性质求解;
- (2)A 为数字矩阵:A→初等行变换→阶梯型(每行第一个非零元素下面的元素 均为 0),则 \mathbf{r} (A) =非零行的行数

(五) 伴随矩阵

12、伴随矩阵的性质:(8条)

- (1) $AA^*=A^*A=|A|E \rightarrow \bigstar A^*=|A|A^{-1}$
- (2) $(kA) *=k^{n-1}A*$
- (3) (AB) *= B*A*
- (4) $|A^*| = |A|^{n-1}$
- $(5) (A^{T}) *= (A*)^{T}$
- (6) $(A^{-1}) *= (A*) ^{-1}=A|A|^{-1}$
- $(7) (A*) *=|A| ^{n-2} A$

(六) 分块矩阵

- 13、分块矩阵的乘法:要求前列后行分法相同。
- 14、分块矩阵求逆:

$$\begin{bmatrix} B & O \\ O & C \end{bmatrix}^{-1} = \begin{bmatrix} B^{-1} & O \\ O & C^{-1} \end{bmatrix}, \begin{bmatrix} O & B \\ C & O \end{bmatrix}^{-1} = \begin{bmatrix} O & C^{-1} \\ B^{-1} & O \end{bmatrix}$$

3 向量

(一) 向量的概念及运算

1、向量的内积: $(\alpha, \beta) = \alpha^{\mathsf{T}}\beta = \beta^{\mathsf{T}}\alpha$

2、长度定义:
$$||\alpha|| = \sqrt{(\alpha,\alpha)} = \sqrt{\alpha^T \alpha} = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

- 3、正交定义: $(\alpha, \beta) = \alpha^T \beta = \beta^T \alpha = a_1b_1 + a_2b_2 + \cdots + a_nb_n = 0$
- 4、正交矩阵的定义: A 为 n 阶矩阵, $AA^T=E \leftarrow \rightarrow A^{-1}=A^T \leftarrow \rightarrow A^TA=E \rightarrow |A|=\pm 1$

(二)线性组合和线性表示

5、线性表示的充要条件:

非零列向量β可由α1,α2,…,ας线性表示

(1)←→非齐次线性方程组(α_1 , α_2 , ···, α_s)(x_1 , x_2 , ···, x_s) $^{\mathsf{T}}=\beta$ 有解。

★(2)←→ \mathbf{r} (α_1 , α_2 , …, α_s) = \mathbf{r} (α_1 , α_2 , …, α_s , β) (系数矩阵的秩等于 增广矩阵的秩, 用于大题第一步的检验)

6、线性表示的充分条件:(了解即可)

若 α_1 , α_2 , ···, α_s 线性无关, α_1 , α_2 , ···, α_s , β 线性相关,则β可由 α_1 , α_2 , ···, α_s 线性表示。

7、线性表示的求法: (大题第二步)

设α1, α2, …, ας线性无关, β可由其线性表示。

(α₁, α₂, ···, α_s|β) →初等行变换→(行最简形|系数)

行最简形:每行第一个非0的数为1,其余元素均为0

(三) 线性相关和线性无关

8、线性相关注意事项:

- (1) α线性相关←→α=0
- (2) a₁, a₂线性相关←→a₁, a₂成比例

9、线性相关的充要条件:

向量组α1, α2, …, ας线性相关

- (1) ←→有个向量可由其余向量线性表示;
- (2) ←→齐次方程(α_1 , α_2 , ···, α_s)(x_1 , x_2 , ···, x_s) $^{\mathsf{T}}$ =0 有非零解;

★ (3)
$$\leftarrow$$
 → r (α_1 , α_2 , …, α_s) < s 即秩小于个数

特别地, $n \wedge n$ 维列向量 α_1 , α_2 , …, α_n 线性相关

(1)
$$\leftarrow \rightarrow r$$
 (α_1 , α_2 , ..., α_n) $< n$

(2)
$$\leftarrow \rightarrow \mid \alpha_1, \alpha_2, \cdots, \alpha_n \mid = 0$$

$$(3) \leftarrow \rightarrow (\alpha_1, \alpha_2, \dots, \alpha_n)$$
 不可逆

10、线性相关的充分条件:

- (1) 向量组含有零向量或成比例的向量必相关
- (2) 部分相关,则整体相关
- (3) 高维相关,则低维相关
- (4) 以少表多,多必相关
- ★推论: n+1 个 n 维向量一定线性相关

11、线性无关的充要条件

向量组α1,α2,…,α 线性无关

- (1) ←→任意向量均不能由其余向量线性表示:
- (2) ←→齐次方程 (α_1 , α_2 , ···, α_s) (x_1 , x_2 , ···, x_s) $^{\mathsf{T}}=0$ 只有零解
- $(3) \leftarrow \rightarrow r (\alpha_1, \alpha_2, \dots, \alpha_s) = s$

特别地, $n \wedge n$ 维向量 α_1 , α_2 ,…, α_n 线性无关

$$\leftarrow \rightarrow r (\alpha_1, \alpha_2, \dots, \alpha_n) = n \leftarrow \rightarrow |\alpha_1, \alpha_2, \dots, \alpha_n| \neq 0 \leftarrow \rightarrow$$
矩阵可逆

12、线性无关的充分条件:

- (1) 整体无关, 部分无关
- (2) 低维无关, 高维无关
- (3) 正交的非零向量组线性无关
- (4) 不同特征值的特征向量无关

13、线性相关、线性无关判定

- (1) 定义法
- ★ (2) 秩: 若小于阶数,线性相关;若等于阶数,线性无关

【专业知识补充】

- (1) 在矩阵左边乘列满秩矩阵(秩=列数),矩阵的秩不变;在矩阵右边乘行满 秩矩阵,矩阵的秩不变。
- (2) 若 n 维列向量 α_1 , α_2 , α_3 线性无关, β_1 , β_2 , β_3 可以由其线性表示,即 (β_1 , β_2 , β_3) = (α_1 , α_2 , α_3) C, 则 r (β_1 , β_2 , β_3) =r (C), 从而线性无关。

$$\leftarrow \rightarrow r (\beta_1, \beta_2, \beta_3) = 3 \leftarrow \rightarrow r (C) = 3 \leftarrow \rightarrow |C| \neq 0$$

(四)极大线性无关组与向量组的秩

14、极大线性无关组不唯一

15、向量组的秩:极大无关组中向量的个数成为向量组的秩

对比:矩阵的秩:非零子式的最高阶数

★注:向量组 α_1 , α_2 , …, α_s 的秩与矩阵 $A=(\alpha_1, \alpha_2, \dots, \alpha_s)$ 的秩相等

★16、极大线性无关组的求法

- (1) a₁, a₂, …, a_s 为抽象的: 定义法
- (2) a₁, a₂, …, a_s 为数字的:

(a 1, a 2, ···, a s) →初等行变换→阶梯型矩阵

则每行第一个非零的数对应的列向量构成极大无关组

(五)向量空间

17、基(就是极大线性无关组)变换公式:

若 α_1 , α_2 , …, α_n 与 β_1 , β_2 , …, β_n 是 n 维向量空间 V 的两组基,则基变换公式为 $(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)$ $C_{n \times n}$

其中, C是从基 α_1 , α_2 , …, α_n 到 β_1 , β_2 , …, β_n 的过渡矩阵。

C=
$$(\alpha_1, \alpha_2, \dots, \alpha_n)^{-1} (\beta_1, \beta_2, \dots, \beta_n)$$

18、坐标变换公式:

向量 γ 在基 α_1 , α_2 , …, α_n 与基 β_1 , β_2 , …, β_n 的坐标分别为 $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)^\mathsf{T}$, $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)^\mathsf{T}$, 即 $\gamma = \mathbf{x}_1 \alpha_1 + \mathbf{x}_2 \alpha_2 + \dots + \mathbf{x}_n \alpha_n = \mathbf{y}_1 \beta_1 + \mathbf{y}_2 \beta_2 + \dots + \mathbf{y}_n \beta_n$,则坐标变换公式为 $\mathbf{x} = \mathbf{C} \mathbf{y}$ 或 $\mathbf{y} = \mathbf{C}^{-1} \mathbf{x}$ 。其中, \mathbf{C} 是从基 α_1 , α_2 , …, α_n 到 β_1 , β_2 , …, β_n 的过渡矩阵。 $\mathbf{C} = (\alpha_1, \alpha_2, \dots, \alpha_n)^{-1} (\beta_1, \beta_2, \dots, \beta_n)$

(六) Schmidt 正交化

19、Schmidt 正交化

设α1,α2,α3线性无关

(1) 正交化

 $\Leftrightarrow \beta_1 = \alpha_1$

$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1$$

$$\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2$$

(2) 单位化

$$\gamma_i = \frac{\beta_i}{\|\beta_i\|}$$

4 线性方程组

(一) 方程组的表达形与解向量

- 1、解的形式:
- (1)一般形式
- (2)矩阵形式: Ax=b;
- (3)向量形式: A= (α₁, α₂, ···, α_n)
- 2、解的定义:

若 η = (c_1, c_2, \dots, c_n) 「满足方程组 Ax=b,即 A η =b,称 η 是 Ax=b 的一个解 (向量)

(二)解的判定与性质

3、齐次方程组:

- (1) 只有零解 \leftarrow →r (A) =n (n 为 A 的列数或是未知数 x 的个数)
- (2) 有非零解←→r (A) <n

4、非齐次方程组:

- (1) Ξ 解←→r (A) <r (A|b) ←→r (A) =r (A) -1
- (2) 唯一解←→r (A) =r (A|b) =n
- (3) 无穷多解←→r(A) =r(A|b) <n

5、解的性质:

- (1) 若 ξ_1 , ξ_2 是 Ax=0 的解,则 $k_1 \xi_1 + k_2 \xi_2$ 是 Ax=0 的解
- (2) 若 ξ 是 Ax=0 的解, η 是 Ax=b 的解,则 ξ + η 是 Ax=b 的解
- (3) 若 η₁, η₂是 Ax=b 的解,则 η₁-η₂是 Ax=0 的解

【推广】

(1) 设η₁, η₂, ···, η_s是 Ax=b 的解,则 k₁η₁+k₂η₂+···+k_sη_s为

 $\begin{cases} Ax=b \text{ 的解 } (\exists \Sigma k_{i}=1) \\ Ax=0 \text{ 的解 } (\exists \Sigma k_{i}=0) \end{cases}$

(**2**) 设 η ₁, η ₂, …, η _s 是 Ax=b 的 s 个线性无关的解,则 η ₂- η ₁, η ₃- η ₁, …, η _s- η ₁ 为 Ax=0 的 s-1 个线性无关的解。

变式: ① П 1- П 2, П 3- П 2, …, П 5- П 2

② η_{2} - η_{1} , η_{3} - η_{2} , ..., η_{s} - η_{s-1}

(三)基础解系

6、基础解系定义:

- (1) ξ_1 , ξ_2 , …, ξ_s 是 Ax=0 的解
- (2) ξ₁, ξ₂, …, ξ_s 线性相关
- (3) Ax=0 的所有解均可由其线性表示
- →基础解系即所有解的极大无关组

注:基础解系不唯一。

任意 n-r (A) 个线性无关的解均可作为基础解系。

★7、重要结论: (证明也很重要)

设 A 施 m×n 阶矩阵, B 是 n×s 阶矩阵, AB=O

- (1) B 的列向量均为方程 Ax=0 的解
- (2) r (A) +r (B) ≤n (第2章, 秩)

8、总结:基础解系的求法

(四)解的结构(通解)

- (1) A 为抽象的:由定义或性质凑 n-r(A) 个线性无关的解
- (2) A 为数字的: A→初等行变换→阶梯型

自由未知量分别取 1,0,0; 0,1,0; 0,0,1; 代入解得非自由未知量得到基础解系

9、齐次线性方程组的通解(所有解)

设 $\mathbf{r}(\mathbf{A}) = \mathbf{r}, \xi_1, \xi_2, \dots, \xi_{n-r}$ 为 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的基础解系,

则 Ax=0 的通解为 $k_1 \sqcap_1 + k_2 \sqcap_2 + \dots + k_{n-r} \sqcap_{n-r}$ (其中 k_1 , k_2 , …, k_{n-r} 为任意常数)

10、非齐次线性方程组的通解

设 r(A)=r, ξ₁, ξ₂, ···, ξ_{n-r} 为 Ax=0 的基础解系, η为 Ax=b 的特解,则 Ax=b 的通解为 η + k₁ η₁+k₂ η₂+···+k_{n-r} η_{n-r}(其中 k₁, k₂, ···, k_{n-r} 为任意常数) (五)公共解与同解

11、公共解定义:

如果α既是方程组 Ax=0 的解,又是方程组 Bx=0 的解,则称α为其公共解

12、非零公共解的充要条件:

方程组 Ax=0 与 Bx=0 有非零公共解

13、重要结论(需要掌握证明)

- (1) 设 A 是 m×n 阶矩阵,则齐次方程 ATAx=0 与 Ax=0 同解,r(ATA)=r(A)
- (2) 设 A 是 m×n 阶矩阵, r(A) =n, B 是 n×s 阶矩阵,则齐次方程 ABx=0 与 Bx=0 同解, r(AB) =r(B)

5 特征值与特征向量

(一) 矩阵的特征值与特征向量

1、特征值、特征向量的定义:

设 A 为 n 阶矩阵,如果存在数 λ 及非零列向量 α ,使得 A α = λ α ,称 α 是矩阵 A 属于特征值 λ 的特征向量。

2、特征多项式、特征方程的定义:

 $|\lambda E-A|$ 称为矩阵 A 的特征多项式 (λ 的 n 次多项式)。

 $|\lambda E-A|=0$ 称为矩阵 A 的特征方程 (λ 的 n 次方程)。

注:特征方程可以写为 $|A-\lambda E|=0$

3、重要结论:

- (1) 若 α 为齐次方程 Ax=0 的非零解,则 A α =0 α ,即 α 为矩阵 A 特征值 λ =0 的特征向量
- (2) A 的各行元素和为 k,则 $(1, 1, ..., 1)^{T}$ 为特征值为 k 的特征向量。
- (3) 上(下) 三角或主对角的矩阵的特征值为主对角线各元素。

△4、总结:特征值与特征向量的求法

- (1) A 为抽象的:由定义或性质凑
- (2) A 为数字的: 由特征方程法求解

5、特征方程法:

(1) 解特征方程 | λ E-A|=0, 得矩阵 A的 n 个特征值 λ_1 , λ_2 , …, λ_n

注: n 次方程必须有 n 个根(可有多重根,写作 $\lambda_1 = \lambda_2 = \cdots = \lambda_s = x$ 实数,不能省略)

(2)解齐次方程(λ_i E-A)=0,得属于特征值 λ_i 的线性无关的特征向量,即其基础解系(共 n-r(λ_i E-A)个解)

6、性质:

- (1) 不同特征值的特征向量线性无关
- (2) k 重特征值最多 k 个线性无关的特征向量 $1 \le n-r$ ($\lambda_i E-A$) $\le k_i$
- (3) 设 A 的特征值为 λ_1 , λ_2 , …, λ_n , 则 $|A| = \prod \lambda_i$, $\sum \lambda_i = \sum a_{ii}$
- (4) 当 r (A) =1,即 A= α β T,其中 α,β 均为 n 维非零列向量,则 A 的特征值为 $\lambda_1 = \Sigma_{a_{ii}} = \alpha^T \beta = \beta^T \alpha$, $\lambda_2 = \cdots = \lambda_n = 0$
- (5) 设 α 是矩阵 A 属于特征值 λ 的特征向量,则

А	f	A^{T}	A ⁻	A*	P ⁻¹ AP(相
	(A)	A	1	A	似)
λ	f (λ)	λ	λ-	A λ ⁻¹	λ
α	α	/	α	α	P ⁻¹ α

(二) 相似矩阵

7、相似矩阵的定义:

设 $A \times B$ 均为 n 阶矩阵,如果存在可逆矩阵 P 使得 $B=P^{-1}AP$,称 A 与 B 相似,记作 $A\sim B$

8、相似矩阵的性质

- (1) 若 A 与 B 相似,则 f (A) 与 f (B) 相似
- (2) 若 A 与 B 相似, B 与 C 相似, 则 A 与 C 相似

(3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和)

【推广】

- (4) 若 A 与 B 相似,则 AB 与 BA 相似,A^T与 B^T相似,A⁻¹与 B⁻¹相似,A*与 B* 也相似
- (三)矩阵的相似对角化
- 9、相似对角化定义:

如果 A 与对角矩阵相似,即存在可逆矩阵 P,使得 $P^{-1}AP = \Lambda =$ 称 A 可相似对角化。

注: $\mathbf{A}\alpha_{i}=\lambda_{i}\alpha_{i}(\alpha_{i}\neq\mathbf{0},$ 由于 P 可逆),故 P 的每一列均为矩阵 A 的特征值 λ_{i} 的特征向量

10、相似对角化的充要条件

- (1) A有n个线性无关的特征向量
- (2) A的 k 重特征值有 k 个线性无关的特征向量

11、相似对角化的充分条件:

- (1) A 有 n 个不同的特征值(不同特征值的特征向量线性无关)
- (2) A 为实对称矩阵

12、重要结论:

- (1) 若 A 可相似对角化,则 r (A) 为非零特征值的个数, n-r (A) 为零特征值的个数
- (2) 若 A 不可相似对角化, r (A) 不一定为非零特征值的个数

(四) 实对称矩阵

13、性质

- (1) 特征值全为实数
- (2) 不同特征值的特征向量正交
- (3) A 可相似对角化,即存在可逆矩阵 P 使得 P-1AP= Λ
- (4) A 可正交相似对角化,即存在正交矩阵 Q,使得 Q-1AQ=QTAQ= Λ

6 二次型

(一) 二次型及其标准形

1、二次型:

- (1) 一般形式
- (2) 矩阵形式(常用)

2、标准形:

如果二次型只含平方项,即 $f(x_1, x_2, \dots, x_n) = d_1x_1^2 + d_2x_2^2 + \dots + d_nx_n^2$ 这样的二次型称为标准形(对角线)

3、二次型化为标准形的方法:

(1) 配方法:

通过可逆线性变换 x=Cy (C 可逆),将二次型化为标准形。其中,可逆线性变换及标准形通过先配方再换元得到。

★(2)正交变换法:

通过正交变换 x=Qy,将二次型化为标准形 $\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2$ 其中, λ_1 , λ_2 , ····, λ_n 是 A 的 n 个特征值,Q 为 A 的正交矩阵 注:正交矩阵 Q 不唯一, γ_1 与 λ_1 对应即可。

(二) 惯性定理及规范形

4、定义:

正惯性指数:标准形中正平方项的个数称为正惯性指数,记为 p; 负惯性指数:标准形中负平方项的个数称为负惯性指数,记为 q; 规范形: $f=z_1^2+\cdots z_p^2-z_{p+1}^2-\cdots -z_{p+q}^2$ 称为二次型的规范形。

5、惯性定理:

- 二次型无论选取怎样的可逆线性变换为标准形,其正负惯性指数不变。
- 注:(1)由于正负惯性指数不变,所以规范形唯一。
- (2) p=正特征值的个数, q=负特征值的个数, p+q=非零特征值的个数=r(A)

(三) 合同矩阵

6、定义:

 $A \times B$ 均为 n 阶实对称矩阵,若存在可逆矩阵 C,使得 $B=C^TAC$,称 A 与 B 合同

Δ 7、总结: n 阶实对称矩阵 A、B 的关系

- (1) A、B 相似(B=P-1AP) ←→相同的特征值
- (2) A、B 合同 (B=C^TAC) ←→相同的正负惯性指数←→相同的正负特征值的个数
- (3) A、B 等价(B=PAQ)←→r(A)=r(B)
- 注: 实对称矩阵相似必合同, 合同必等价
- (四) 正定二次型与正定矩阵

8、正定的定义

二次型 x^TAx ,如果任意 $x\neq 0$,恒有 $x^TAx>0$,则称二次型正定,并称实对称矩阵 A 是正定矩阵。

9、n 元二次型 x^TAx 正定充要条件:

- (1) A 的正惯性指数为 n
- (2) A 与 E 合同,即存在可逆矩阵 C,使得 A=C^TC 或 C^TAC=E
- (3) A 的特征值均大于 0
- (4) A 的顺序主子式均大于 0 (k 阶顺序主子式为前 k 行前 k 列的行列式)
- 10、n 元二次型 x^TAx 正定必要条件:
- (1) $a_{ii} > 0$
- (2) |A| > 0
- 11、总结: 二次型 xTAx 正定判定(大题)
- (1) A 为数字: 顺序主子式均大于 0
- (2) A 为抽象: ①证 A 为实对称矩阵: A^T=A; ②再由定义或特征值判定

12、重要结论:

- (1) 若 A 是正定矩阵,则 kA (k>0),A^k,A^T,A⁻¹,A*正定
- (2) 若 A、B 均为正定矩阵,则 A+B 正定