矩阵分析及其应用

孔贺

南科大,自动化与智能制造学院

kongh@sustech.edu.cn

课程结构

- 一. 线性代数基本知识回顾(3个学时)
- 二. 线性空间与线性映射(12个学时)
- 三. λ-矩阵与 Jordan 标准型(8 个学时)
- 四. 内积空间与矩阵分解(12 个学时)
- 五. 范数及其他(8个学时)

- 第一章:线性代数知识回顾
- 第二章:线性空间与线性映射
- ③ 第三章: λ-矩阵与 Jordan 标准型
- 4 第四章: 内积空间
- 5 第五章: 范数及其他
 - 5.1 向量范数
 - 5.2 矩阵范数

 - 5.3 范数应用举例
 - 5.4 矩阵函数与微积分

5.1 向量范数

定义: 假设 V 是数域 F (本章讨论实数域 R 或虚数域 C) 上的线性空间。对 $x \in V$,我们用 $\|x\|$ 表示按照某种法则确定的与向量 x 对应的实值函数,即

$$\|\cdot\|: \mathbf{V} \to \mathbf{R}^+$$

我们称上述实值函数为范数,如果其满足

● 1. 非负性

$$\begin{cases} ||x|| > 0, \ x \neq 0 \\ ||x|| = 0, \ x = 0 \end{cases}$$

• 2. 正齐性

$$||xk|| = ||x|| \, |k|$$

其中,k 为数域 F 中的任意数

• 3. 三角不等式

$$||x + y|| \le ||x|| + ||y||$$

其中, $x, y \in \mathbf{V}$

• 向量范数的性质

$$||0|| = 0$$

$$||-x|| = ||x||$$

$$||x - y|| \ge |||x|| - ||y|||$$

$$||x + y|| \ge |||x|| - ||y|||$$

常用的向量范数

• 给定 $x = [x_1, x_2, \cdots, x_n]^T \in \mathbb{C}^n$,以及 $1 \le p < \infty$,我们称

$$\|x\|_{p} = \begin{cases} (|x_{1}|^{p} + |x_{2}|^{p} + \dots + |x_{n}|^{p})^{\frac{1}{p}}, & 1 \leq p < \infty \\ \max\{|x_{1}|, |x_{2}|, \dots, |x_{n}|\}, & p = \infty \end{cases}$$

为向量的 *p*-范数。可以证明 *p*-范数满足范数的定义。

- *p*-范数的例子
 - 1−范数 (Manhattan distance)

$$||x||_1 = \sum_{i=1}^n |x_i|$$

2-范数(亦称为欧式范数)

$$\|x\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2} = \sqrt{x^{H}x}$$

∞-范数

$$||x||_{\infty} = \max\{|x_1|, |x_2|, \cdots, |x_n|\}$$

范数与长度?

回忆内积空间,向量长度的定义

3.2 向量的长度和夹角

- 定义: 假设 V 为酉空间,给定向量 $\alpha, \beta \in V$,称 $\|\alpha\| := \sqrt{\langle \alpha, \alpha \rangle}$ 为向量的长度(模); 称 $d(\alpha, \beta) := \|\alpha \beta\|$ 为向量 α 与 β 之间的 距离。
- 定理: 假设 V 为酉空间,给定向量 $\alpha \in V$,则其长度 $\|\alpha\|$ 具有以下性质
 - (1) 非负性: $\|\alpha\| \ge 0$, 当且仅当 $\alpha = 0$ 时 $\|\alpha\| = 0$
 - (2) 齐次性: $\|\alpha k\| = |k| \|\alpha\|$, 其中 k 为任意数
 - (3) 满足三角不等式: $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$
 - (4) 满足 Cauchy-Schwartz 不等式: $|\langle \alpha, \beta \rangle| \leq ||\alpha|| \, ||\beta||$
 - (5) 满足平行四边形公式: $\|\alpha + \beta\|^2 + \|\alpha \beta\|^2 = 2(\|\alpha\|^2 + \|\beta\|^2)$

图: 第三章 内积空间与矩阵分解

范数是否一定为长度,何时为长度?

- 范数是否一定为长度?
 - 例子: 取

$$x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

试验证, p-范数是否为长度?

- 需要验证什么?
- 范数何时为长度?

有了长度,为什么还要引进范数

- 引入范数,使得我们可以对两个向量之间的距离做定义
 - 假设 $\|\cdot\|: \mathbf{V} \to \mathbf{R}^+$ 是向量空间上的范数,那么对任意的 $x,y \in \mathbf{V}$,记

$$d(x,y) = ||x - y||$$

为 x, y 之间的距离, 也即

$$d(\cdot,\cdot)=\mathbf{V}\times\mathbf{V}\to\mathbf{R}^+$$

决定了 V 上的二元函数。

- 定义距离的好处
 - 定性
 - 定量

2D 中 p-范数的模样

Figure 2.2. Contour curves ($||x||_p = 1$) of ℓ^1 , ℓ^2 , ℓ^∞ norms.

图: Masaaki Nagahara, Sparsity Methods for Systems and Control, 2020

向量范数的等价性

虽然一个向量的不同范数有不同的值,但是它们之间有重要的关系。例 如在考虑向量序列收敛性的时候,它们表现出一致性,即范数的等价性。

• 定理:假设 V 是数域 F 上的 n 维线性空间。对任意的 $x \in V$, $\|x\|_{\alpha}$ 和 $\|x\|_{\beta}$ 为任意两种向量范数(不限于 p-范数),则总存在两个正实数 c_1, c_2 使得

$$c_1 \|x\|_{\beta} \leq \|x\|_{\alpha} \leq c_2 \|x\|_{\beta}$$

5.2 矩阵范数

对于任意一个维数为 $m \times n$ 的矩阵 A ,用 $\|A\| \to \mathbb{R}^+$ 来表示按照某种法则确定与其对应的实值函数。我们称上述实值函数为 A 的矩阵范数,如果其满足

• 1. 非负性

$$\begin{cases} ||A|| > 0, \ A \neq 0 \\ ||A|| = 0, \ A = 0 \end{cases}$$

• 2. 正齐性

$$||Ak|| = ||A|| |k|$$

其中, k 为数域 F 中的任意数

● 3. 三角不等式,即对任意同维数的矩阵 A, B, 则有

$$||A + B|| \le ||A|| + ||B||$$

● 4. 矩阵乘法的相容性,即若矩阵 A, B 可乘,则有

$$||AB|| \le ||A|| \, ||B||$$

矩阵范数举例

• 1. 向量 1-范数向矩阵的推广

$$||A|| = \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|$$

2. 向量 2-范数向矩阵的推广(又称 Frobenius 范数)

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

- 3. Frobenius 范数的性质
 - (a) 假设 $A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$,则有 $\|A\|_F^2 = \sum_{i=1}^n \|a_i\|_2^2$
 - (b) $||A||_F^2 = tr(A^H A) = \sum_{i=1}^n \lambda_i(A^H A)$
 - (c) 对任何 m 阶酉矩阵 U 和 n 阶酉矩阵 V, 都有

$$||A||_F = ||UA||_F = ||A^{H}||_F = ||AV||_F = ||UAV||_F$$

范数的相容性与诱导范数

给定 $x \in \mathbb{C}^n$, $A \in \mathbb{C}^{m \times n}$ 及其范数 $\|A\|$ 。若将 Ax 与 x 作为矩阵,则有 $\|Ax\| \le \|A\| \|x\|$ 。更一般性的,若取向量范数 $\|x\|_\alpha$ 与 $\|Ax\|_\alpha$,则不等式

$$\left\| Ax \right\|_{\alpha} \le \left\| A \right\| \left\| x \right\|_{\alpha}$$

是否依然成立?

• 定义:设 $\|x\|_{\alpha}$ 、 $\|A\|_{\beta}$ 分别是向量、矩阵范数。若对于任何的矩阵 A 与向量 x 都有

$$\|Ax\|_{\alpha} \le \|A\|_{\beta} \|x\|_{\alpha}$$

则称 $||A||_{\beta}$ 为与向量范数 $||x||_{\alpha}$ 相容的矩阵范数。

• 定理:设 ||x||_α 为向量范数,定义

$$\|A\|_{\gamma} = \max_{\mathbf{x} \in \mathbf{C}^{n}, \ \mathbf{x} \neq 0} \frac{\|A\mathbf{x}\|_{\alpha}}{\|\mathbf{x}\|_{\alpha}} \tag{1}$$

则 $\|A\|_{\gamma}$ 满足矩阵范数定义,且其与向量范数 $\|x\|_{lpha}$ 相容。

• 定义:由式(1)所定义的矩阵范数称为由向量范数 $\|x\|_{\alpha}$ 所诱导的范数,简称诱导范数或者算子范数。

矩阵的 产范数

● 定义:由向量 p-范数所诱导的矩阵范数称为矩阵的 p-范数,即

$$||A||_{p} = \max_{x \in \mathbf{C}^{n}, \ x \neq 0} \frac{||Ax||_{p}}{||x||_{p}}$$
 (2)

- 定理: 给定 $A = (a_{ij})_{m \times n} \in \mathbb{C}^{m \times n}$,则
 - (a) $||A||_1 = \max_j \left(\sum_{i=1}^m |a_{ij}| \right), \ j = 1, \dots, n \ \ (A \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0}$
 - (b) $\|A\|_2 = \max_j \left(\lambda_j(A^{\mathrm{H}}A)\right)^{\frac{1}{2}}, \ j=1,\cdots,n$,其中, $\lambda_j(A^{\mathrm{H}}A)$ 表示矩阵 $A^{\mathrm{H}}A$ 的第j 个特征值。 $\|A\|_2$ 经常被称为谱范数,其是矩阵 A 的最大正奇异值
 - (c) $\|A\|_{\infty} = \max_{i} \left(\sum_{j=1}^{n} |a_{ij}| \right), i = 1, \dots, m$ (A 的行和范数)

矩阵的谱半径

• 定义: 给定 $A \in \mathbb{C}^{n \times n}$, 且 A 的 n 个特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则我 们称

$$\rho(A) = \max \{ |\lambda_1|, |\lambda_2|, \cdots, |\lambda_n| \}$$

为 *A* 的谱半径。

• 定理: 给定 $A \in \mathbb{C}^{n \times n}$

$$\rho(A) \le \|A\|$$

其中,||A|| 是 A 的任何一种范数。

5.3 范数应用举例

矩阵序列与极限

• 定义: 给定矩阵序列 $\{A_k\}$, 其中 $A_k = (a_{ij}^k)_{m \times n} \in \mathbb{C}^{m \times n}$ 。若 $m \times n$ 个数列 $\{a_{ij}^k\}$,其中 $i = 1, \dots, m; j = 1, \dots, m$,都收敛,则称矩阵 序列 $\{A_k\}$ 收敛。若

$$\lim_{k\to\infty}a_{ij}^k=a_{ij}$$

则有

$$\lim_{k\to\infty}A_k=A=(a_{ij})_{m\times n}$$

进而称 A 是矩阵序列 $\{A_k\}$ 的极限。

• 定理: 矩阵序列 {Ak} 收敛于 A 的充要条件是

$$\lim_{k\to\infty} \|A_k - A\| = 0$$

其中 $||A_k - A||$ 为任何一种矩阵范数。

说明:一个收敛的矩阵序列的极限唯一。

n 阶方阵的幂组成的矩阵序列的收敛性

给定 $A \in \mathbb{C}^{n \times n}$, 研究 $A, A^2, \dots, A^k, \dots$ 的收敛性

• 引理: 给定 $A \in \mathbb{C}^{n \times n}$,若对于某一种矩阵范数满足

则有

$$\lim_{k\to\infty} A^k = 0$$

● 定理: 给定矩阵序列 A, A², · · · , A^k, · · · , 则

$$\lim_{k\to\infty} A^k = 0$$

的充要条件是

$$\rho(A) < 1$$

矩阵级数

• 定义: 给定 $A_k = (a_{ii}^k)_{m \times n} \in \mathbb{C}^{m \times n}$,若 $m \times n$ 个常数项级数

$$\sum_{k=0}^{\infty} a_{ij}^{k} = a_{ij}^{0} + a_{ij}^{1} + \dots + a_{ij}^{k} + \dots$$

收敛,其中 $i=1,\cdots,m; j=1,\cdots,m$,那么称矩阵级数

$$\sum_{k=0}^{\infty} A_k = A_1 + A_1 + \dots + A_k + \dots$$

收敛。若上面的 $m \times n$ 个常数项级数都绝对收敛,则称矩阵级数绝对收敛。

• 定理: 给定 $A_k = (a_{ij}^k)_{m \times n} \in \mathbf{C}^{m \times n}$,则矩阵级数 $\sum_{k=0}^{\infty} A_k$ 绝对收敛的充要条件是正项数项级数 $\sum_{k=0}^{\infty} \|A_k\|$ 收敛,其中 $\|A_k\|$ 为任何一种矩阵范数。

矩阵的幂级数

• 定义: 给定 $A = (a_{ij})_{m \times n} \in \mathbb{C}^{n \times n}$, 称形如

$$\sum_{k=0}^{\infty} c_k A^k = c_0 I_n + c_1 A + c_2 A^2 + \dots + c_k A^k + \dots$$

的矩阵级数为矩阵幂级数。

• 定理: 若矩阵 A 的某一种范数在幂级数

$$c_0 + c_1 x + c_2 x^2 + \dots + c_k x^k + \dots$$

的收敛域内,则矩阵幂级数

$$c_0I_n+c_1A+c_2A^2+\cdots+c_kA^k+\cdots$$

绝对收敛。

5.4 矩阵函数与微积分

矩阵指数函数

定理: 给定 A ∈ C^{n×n} 矩阵级数

$$\sum_{k=0}^{\infty} \frac{A^k}{k!}$$

收敛, 也即矩阵序列

$$S_n = \sum_{k=0}^n \frac{A^k}{k!}$$

是收敛的,其中 $n=1,\dots,\infty$ 。

• 定义:

$$e^{A} = \sum_{k=0}^{\infty} \frac{A^{k}}{k!}, \ e^{At} = \sum_{k=0}^{\infty} \frac{(At)^{k}}{k!}$$

• 定理: 若 AB = BA,则 $e^{A+B} = e^A e^B$

向量与矩阵值函数

给定
$$A(t):[a,b] \to \mathbb{C}^{m \times n}$$
, 也记为 $A(t)=[a_{ij}(t)]_{m \times n}$ 。

- 定义
 - 极限: $\lim_{t \to t_0} A(t) = A$; $\lim_{t \to t_0} ||A(t) A|| = 0$
 - 导数: $A'(t_0) = \frac{dA(t)}{dt}|_{t=t_0}$; $\lim_{\Delta t \to 0} \frac{A(t_0 + \Delta t) A(t_0)}{\Delta t} = A'(t_0)$
 - 积分: $\int_a^b A(t)dt = W$
- 定理:
 - 极限

$$\lim_{t\to t_0} A(t) = \left[\lim_{t\to t_0} a_{ij}(t) \right]_{m\times t}$$

• 微分

$$A'(t) = [a'_{ij}(t)]_{m \times n}$$

• 积分

$$\int_{a}^{b} A(t)dt = \left[\int_{a}^{b} a_{ij}(t)dt \right]_{m \times r}$$

几点性质

$$(A(t)B(t))' = A'(t)B(t) + A(t)B'(t)$$

$$(A^{-1}(t))' = -A^{-1}(t)(A(t))'A^{-1}(t)$$

$$(e^{At})' = Ae^{At} = e^{At}A$$

矩阵微分方程

• 给定 $A \in \mathbb{R}^{n \times n}$,以及

$$\begin{cases} \dot{x}(t) = Ax(t) \\ x(0) = x_0, \ t \ge 0 \end{cases}$$

求其解?

- 定义: 矩阵 $A \in \mathbf{R}^{n \times n}$ 被称为 Hurwitz 渐进稳定,如果 $Re\lambda(A) < 0$
- 问题: 给定 A ∈ R^{n×n},如何判断其稳定性?