Assignment #2

Name:		_ ID:	
Th	is assignment has 5 questions,	, for a total of 25 marks.	
_	conyms: SOS (structural oper , BG (big step), CBV (call by	, .	_
Write out a term that is	le terms safe (i.e., it does not reduce to would reduce if it were a ULC	to fail) but that cannot be typ	ped. Show where the
Write the operational se	antics for pairs and sums emantics rules for a big-step, cones only, but write them all	call-by-value reduction for pa	

Question 3: Context typing for pairs and sums
• E.1
$ullet$ $\langle v, E angle$
• case E of inl $x_1 \mapsto t_1 \mid inr \ x_2 \mapsto t_2$
$ullet \ inl \ E$
Question 4: Typing derivation
• $t_1 = f (3+5) : \mathbb{N}$
• $t_2 = f\left((\lambda x : \mathbb{N}. x + 2)5\right) : \mathbb{N}$

Ougstion 5. Engading
Question 5: Encoding
$ullet$ sequencing: $t::=\cdots\mid t;t'$ such that t is evaluated first, then t' is evaluated.
• let-in: $t := \cdots \mid let \ x = t \ in \ t'$ such that t is evaluated into a value v and then t' is evaluated for v in place of x .
\bullet arrays of length 4: $t ::= \cdots \mid [t,t,t,t].$ Values thus include value arrays $v ::= \cdots \mid [v,v,v,v].$
• array field access: $t ::= \cdots \mid t.i \ (i \in 03)$ such that for $i \in 03$ we have that $[v_0, v_1, v_2, v_3].i$ returns v_i . Show the encodings for at least two cases of i .
• array update: $t ::= \cdots \mid t.i = t (i \in 03)$ such that for $i \in 03$ we have that $[v_0, v_1, v_2, v_3].2 = v_0$ returns $[v_0, v_1, v, v_3]$. Show the encodings for at least two cases of i .