Trabalho de Estrutura de Dados e Algoritmos

Alice Duarte Scarpa, Bruno Lucian Costa 2015-06-23

1 Exercício 6.30 (Papadimitriou)

1.1 Enunciado

Reconstruindo árvores filogenéticas pelo método da máxima parcimônia Uma árvore filogenética é uma árvore em que as folhas são espécies diferentes, cuja raiz é o ancestral comum de tais espécies e cujos galhos representam eventos de especiação.

Queremos achar:

- Uma árvore (binária) evolucionária com as espécies dadas
- Para cada nó interno uma string de comprimento k com a sequência genética daquele ancestral.

Dada uma árvore acompanhada de uma string $s(u) \in \{A, C, G, T\}^k$ para cada nó $u \in V(T)$, podemos atribuir uma nota usando o método da máxima parcimônia, que diz que menos mutações são mais prováveis:

$$\mathrm{nota}(T) = \sum_{(u,v) \in E(T)} (\mathrm{n\'umero} \ \mathrm{de} \ \mathrm{posi\~{c}\~{o}es} \ \mathrm{em} \ \mathrm{que} \ s(u) \ \mathrm{e} \ s(v) \ \mathrm{diferem}).$$

Achar a árvore com nota mais baixa é um problema difícil. Aqui vamos considerar um problema menor: Dada a estrutura da árvore, achar as sequências genéticas s(u) para os nós internos que dêem a nota mais baixa.

Um exemplo com k = 4 e n = 5:

- 1. Ache uma reconstrução para o exemplo seguindo o método da máxima parcimônia.
- 2. Dê um algoritmo eficiente para essa tarefa.

1.2 Dados reais

Usamos http://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi para gerar o banco de dados.

Rosalind MULT, GLOB, EDTA, PERM, EDIT, LCSQ, CSTR, CTBL, NWCK, SSET, MRNA, KMP, PROB SSEQ, SPLC, LCSM

2 Exercício 6.3 (Papadimitriou)

2.1 Enunciado

O Yuckdonald's está considerando abrir uma cadeia de restaurantes em Quaint Valley Highway (QVG). Os n locais possíveis estão em uma linha reta, e as distâncias desses locais até o começo da QVG são, em milhas e em ordem crescente, m_1, m_2, \ldots, m_n . As restrições são as seguintes:

• Em cada local, o Yuckdonald's pode abrir no máximo um restaurante. O lucro esperado ao abrir um restaurante no local $i \in p_i$, onde $p_i > 0$ e $i = 1, 2, \ldots, n$.

• Quaisquer dois restaurantes devem estar a pelo menos k milhas de distância, onde k é um inteiro positivo.

Dê um algoritmo eficiente para computar o maior lucro total esperado, sujeito às restrições acima.

3 Exercício 7.28 (Tardos)

3.1 Enunciado

Um grupo de estudantes está escrevendo um módulo para preparar cronogramas de monitoria. O protótipo inicial deles funciona do seguinte modo: O cronograma é semanal, de modo que podemos nos focar em uma única semana.

- O administrador do curso escolhe um conjunto de k intervalos disjuntos de uma hora de duração I_1, I_2, \ldots, I_k , nos quais seria possível que monitores dessem suas monitorias; o cronograma final consistirá de um subconjunto de alguns (mas geralmente não todos) esses intervalos.
- Cada monitor então entra com seu horário semanal, informando as horas em que ele está disponível para monitorias.
- O administrador então especifica, para parâmetros a, b e c, que cada monitor deve dar entre a e b horas de monitoria por semana, e que um total de c horas de monitoria deve ser dado semanalmente.

O problema é escolher um subconjunto dos horários (intervalos) e atribuir um monitor a cada um desses horários, respeitando a disponibilidade dos monitores e as restrições impostas pelo administrador.

- a) Dê um algoritmo polinomial que ou constrói um cronograma válido de horas de monitoria (especificando que monitor cobre quais horários) ou informa que não há cronograma válido.
- b) O algoritmo acima tornou-se popular, e surgiu a vontade de controlar também a densidade das monitorias: dado números d_i , com i entre 1 e 5, queremos um cronograma com pelo menos d_i horários de monitoria no dia da semana i. Dê um algoritmo polinomial para resolver o problema com essa restrição adicional.

- 3.2 Solução força-bruta
- 3.2.1 Algoritmo
- 3.2.2 Implementação
- 3.2.3 Complexidade
- 3.3 Solução usando fluxo

3.3.1 Introdução

Queremos modelar esse problema como um problema de fluxo. Para isso vamos começar com algumas definições de fluxo.

1. Definições

Uma rede de fluxo é um grafo direcionado G = (V, E) com as seguintes propriedades:

- Existe um único vértice fonte $s \in V$. Nenhuma aresta entra em s.
- A cada aresta e está associada uma capacidade inteira c_e e uma demanda d_e tal que $c_e \ge d_e \ge 0$.
- Existe um único vértice dreno $t \in V$. Nenhuma aresta sai de t.

Um fluxo f de s a t é uma função $f: E \to R^+$ que associa a cada aresta e um valor real não-negativo f(e) tal que:

- (a) $\forall e \in E, d_e \leq f(e) \leq c_e$
- (b) Para todo nó $v \notin \{s, t\}$:

$$\sum_{e \text{ chegando em } v} f(e) = \sum_{e \text{ saindo de } v} f(e)$$

f(e) representa o fluxo que vai passar pela aresta e. O valor de um fluxo é o total que parte da fonte s, isso é:

$$Valor(f) = \sum_{e \text{ saindo de } s} f(e)$$

2. Representação

Podemos usar programação orientada a objetos para nos ajudar na representação da rede de fluxo, simplificando o algoritmo. TODO: explicar a parte de já construir o grafo reverso.

Vamos usar uma classe para representar arestas. Uma aresta é inicializada com as propriedades: vértice de origem, vértice de destino, capacidade e demanda.

TODO: explicar reversa e original

```
class Aresta():
    def __init__(self, origem, destino, capacidade, demanda):
        self.origem = origem
        self.destino = destino
        self.capacidade = capacidade
        self.demanda = demanda
        self.reversa = None
        self.original = True
```

Agora que temos a classe Aresta, vamos usá-la para auxiliar na representação de uma rede de fluxo também como objeto.

Uma rede de fluxo tem duas propriedades: adjacências, um dicionário que mapeia cada vértice às arestas que saem dele e fluxo TODO: explicar isso

O construtor da classe inicializa as duas propriedades como dicionários vazios.

Vamos precisar dos seguintes métodos na nossa classe RedeDeFluxo:

- novo_vertice(v): Adiciona o vértice v à rede
- nova_aresta(origem, destino, capacidade): Adiciona uma nova aresta a rede. Também cria a aresta reversa.
- novo_fluxo(f, e): Adiciona um fluxo f à aresta e
- encontra_arestas(v): Retorna as arestas que partem do vértice v
- valor_do_fluxo(fonte): Encontra o valor do fluxo, como definido em (1).

```
class RedeDeFluxo():
    def __init__(self):
        self.adj = {}
        self.fluxo = {}

    def novo_vertice(self, v):
```

```
self.adj[v] = []
def nova_aresta(self, origem, destino, capacidade, demanda):
    aresta = Aresta(origem, destino, capacidade, demanda)
    self.adj[origem].append(aresta)
    # Criando a aresta reversa
    aresta_reversa = Aresta(destino, origem, 0, -demanda)
    self.adj[destino].append(aresta_reversa)
    aresta_reversa.original = False
    # Marcando aresta e aresta_reversa como reversas uma da outra
    aresta.reversa = aresta_reversa
    aresta_reversa.reversa = aresta
def novo_fluxo(self, e, f):
    self.fluxo[e] = f
def encontra_arestas(self, v):
    return self.adj[v]
def valor_do_fluxo(self, fonte):
   valor = 0
   for aresta in self.encontra_arestas(fonte):
        valor += self.fluxo[aresta]
   return valor
```

3.3.2 Modelando o problema com fluxos

Os dois itens do problema podem ser reduzidos a encontrar um fluxo válido em uma rede usando construções semelhantes.

Para o item a), construimos o grafo da seguinte forma:

- ullet Criamos um vértice s representando a fonte e um vértice t representando o dreno
- Para cada intervalo $I_i \in I_1, I_2, ..., I_k$ escolhido pelo administrador, criamos um vértice I_i e uma aresta (s, I_i) capacidade 1 e demanda 0
- Para cada monitor $T_i \in T_1, T_2, \dots, T_m$ criamos um vértice T_i . Se o monitor está disponível para dar monitoria no intervalo I_j criamos

uma aresta de (I_j, T_i) de demanda 0 e capacidade 1. Para cada monitor também criamos uma aresta (T_i, t) de demanda a e capacidade b.

• Para garantir que a solução final terá exatamente c horas de monitoria, criamos uma nova fonte s' e uma aresta (s',s) com demanda e capacidade c.

TODO: argumentar que soluções para esse problema são equivalentes a soluções do problema original

O caso com 3 intervalos e 2 monitores (A e B) em que o monitor A está disponível nos intervalos 1 e 2 e o monitor B está disponível nos horários 1 e 3 está representado abaixo. Os rótulos das arestas são da forma demanda/capacidade. As arestas sem rótulo tem demanda 0 e capacidade 1.

A única diferença na construção do item b é que, ao invés de ligarmos s diretamente aos intervalos de monitoria, ligamos s a cada dia da semana i com demanda d_i e capacidade c e depois criamos uma aresta com demanda c0 e capacidade c1 de cada dia da semana para os intervalos que são naquele dia.

TODO: argumento que isso dá a solução certa

Abaixo está o mesmo exemplo do item a) com dias da semana. Para deixar a visualização mais simples estamos colocando aqui apenas dois dias da semana.

3.3.3 Implementação

1. Fluxo máximo

Vamos começar estudando o problema de encontrar o fluxo máximo de uma rede G em que $d_e = 0 \ \forall e \in E \ f$. Vamos implementar aqui o algoritmo de Ford-Fulkerson para resolver esse problema.

O algoritmo tem 2 partes:

- (a) Dado um caminho P e partindo de um fluxo inicial f, obter um novo fluxo f' expandindo f em P
- (b) Partindo do fluxo f(e) = 0, expandir o fluxo enquanto for possível
 - Primeira parte:

O gargalo de um caminho é TODO: definir gargalo, explicar o código a seguir Definimos aqui uma função que encontra o gargalo do caminho

```
def encontra_gargalo(self, caminho):
    residuos = []
    for aresta in caminho:
        residuos.append(aresta.capacidade - self.fluxo[aresta])
    return min(residuos)

Expandir o caminho é TODO: explicar o que é expandir o caminho,
```

```
def expande_caminho(self, caminho):
    gargalo = self.encontra_gargalo(caminho)
    for aresta in caminho:
        self.fluxo[aresta] += gargalo
        self.fluxo[aresta.reversa] -= gargalo
```

Com isso temos a parte 1 do algoritmo.

Para a parte 2, vamos precisar criar um fluxo f com f(e) = 0 para toda aresta e. Podemos fazer isso utilizando o seguinte método na classe RedeDeFluxo():

```
def cria_fluxo_inicial(self):
    for vertice, arestas in self.adj.iteritems():
        for aresta in arestas:
        self.fluxo[aresta] = 0
```

None

TODO: explicar porque precisamos desse método e como ele funciona Retorna um caminho de fonte a dreno passando pelos vértices em caminho

Com todas as funções auxiliares prontas, podemos finalmente definir a função que encontra o fluxo máximo.

TODO: explicar o algoritmo de fluxo máximo

```
def fluxo_maximo(self, fonte, dreno):
    self.cria_fluxo_inicial()
    caminho = self.encontra_caminho(fonte, dreno, [])
    while caminho is not None:
        self.expande_caminho(caminho)
        caminho = self.encontra_caminho(fonte, dreno, [])
    return self.valor_do_fluxo(fonte)
```

2. Fluxo válido com demandas não-nulas

O nosso objetivo é encontrar um fluxo válido f para uma rede G = (V, E) no caso em que as demandas são positivas.

Vamos construir uma rede G' = (V', E') com um valor associado d tal que $d_e = 0 \ \forall e \in E'$ de tal forma que um fluxo válido para G existe se e somente se o valor do fluxo máximo em G' é d. Em caso afirmativo, podemos construir um fluxo válido f para G rapidamente a partir de qualquer fluxo máximo f' de G'.

Construimos G' da seguinte forma:

- ullet Criamos um vértice em G' para cada vértice G
- Adicionamos uma fonte adicional F e um dreno adicional D a G'
- Definimos o saldo de cada vértice $v \in V$ como:

$$saldo(v) = \sum_{e \text{ saindo de } v} d_e - \sum_{e \text{ chegando em } v} d_e$$

- Se saldo(v) > 0 adicionamos uma aresta (v, D, saldo(v), 0) a G'
- Se saldo(v) < 0 adicionamos uma aresta (F, v, -saldo(v), 0) a G'
- Para cada aresta $e = (\text{origem}, \text{destino}, \text{capacidade}, \text{demanda}) \in E$, crie uma aresta e' = (origem, destino, capacidade demanda, 0)em G'

Codificando a construção acima:

```
def cria_rede_com_demandas_nulas(G):
    G_ = RedeDeFluxo()
    G_.novo_vertice('F')
    G_.novo_vertice('D')
    d = 0

    for vertice, arestas in G.adj.iteritems():
        G_.novo_vertice(vertice)
        saldo = sum(e.demanda for e in arestas)
        if saldo > 0:
            G_.nova_aresta(vertice, 'D', saldo, 0)
            d += saldo
        elif saldo < 0:
            G_.nova_aresta('F', vertice, -saldo, 0)</pre>
```

TODO: provar que soluções de um são também soluções do outro

3.3.4 Complexidade

3.3.5 Rodando o algoritmo

A seguinte tabela mostra a disponibilidade dos monitores nos horários escolhidos pelo administrador:

Monitor	Seg 10h	Ter 10h	Ter 16h	Qua 17h	Qui 19h	Sex 7h	Sex 11h
Arthur		X	X				
Bianca		X	X			X	X
Caio				X	X		
Davi	X	X	X				

As outras regras para monitoria estão na tabela abaixo:

```
Min de horas por monitor 1
Max de horas por monitor 2
Horas de monitoria 7
```

Podemos carregar as informações das tabelas para criar uma rede como descrita em [].

```
# Lendo a tabela de disponibilidade
intervalos = {}
contador = {}
monitores = []

for j, intervalo in enumerate(horarios[0][1:]):
    intervalos[intervalo] = []
```

```
contador[j] = intervalo
for disponibilidade in horarios[1:]:
    monitores.append(disponibilidade[0])
    for i, slot in enumerate(disponibilidade[1:]):
        if slot != '':
            intervalos[contador[i]].append(disponibilidade[0])
   Lendo a tabela de regras
min_horas = regras[0][1]
max_horas = regras[1][1]
total_horas = regras[2][1]
   Criando uma rede para o problema com os dados fornecidos
def cria_rede(intervalos, monitores, min_horas, max_horas, total_horas):
    G = RedeDeFluxo()
    G.novo_vertice('Fonte')
    G.novo_vertice('Dreno')
    G.nova_aresta('Dreno', 'Fonte', total_horas, total_horas)
    # Criando um vertice para cada monitor e ligando esse vertice ao dreno
    for monitor in monitores:
        G.novo_vertice(monitor)
        G.nova_aresta(monitor, 'Dreno', max_horas, min_horas)
    for intervalo, monitores_disponiveis in intervalos.iteritems():
        # Criando um vertice para cada intervalo e conectando a fonte a
        # cada um dos intervalos
        G.novo_vertice(intervalo)
        G.nova_aresta('Fonte', intervalo, 1, 0)
        # Conectando o intervalo a cada monitor disponivel nele
        for monitor in monitores_disponiveis:
            G.nova_aresta(intervalo, monitor, 1, 0)
    return G
```

Agora é só rodar o algoritmo com o grafo obtido:

```
G = cria_rede(intervalos, monitores, min_horas, max_horas, total_horas)
G_, d = cria_rede_com_demandas_nulas(G)
fluxo = G_.fluxo_maximo('F', 'D')
if fluxo == d:
    tabela_de_monitores = []
    for horario in intervalos:
        for w in G_.adj[horario]:
            if G_.fluxo[w] == 1 and w.original:
                 tabela_de_monitores.append([w.origem, w.destino])
    return tabela_de_monitores
else:
    return 'Impossivel'
```

No final, obtemos ou 'Impossível' se não existir um horário compatível ou uma tabela com um horário que atende a todas as restrições.

Para a tabela acima:

Qua 17h Caio
Ter 10h Arthur
Qui 19h Caio
Sex 11h Bianca
Seg 10h Davi
Ter 16h Davi
Sex 7h Bianca

4 Exercício 4.5 (Tardos)

4.1 Enunciado

Vamos considerar uma rua campestre longa e quieta, com casas espalhadas bem esparsamente ao longo da mesma. (Podemos imaginar a rua como um grande segmento de reta, com um extremo leste e um extremo oeste.) Além disso, vamos assumir que, apesar do ambiente bucólico, os residentes de todas essas casas são ávidos usuários de telefonia celular.

Você quer colocar estações-base de celulares em certos pontos da rodovia, de modo que toda casa esteja a no máximo quatro milhas de uma das estações-base. Dê um algoritmo eficiente para alcançar esta meta, usando o menor número possível de bases.

5 Exercício 8.19 (Tardos)

5.1 Enunciado

Um comboio de navios chega ao porto com um total de n vasilhames contendo tipos diferentes de materiais perigosos. Na doca, estão m caminhões, cada um com capacidade para até k vasilhames. Para cada um dos dois problemas, dê um algoritmo polinomial ou prove NP-completude:

- Cada vasilhame só pode ser carregado com segurança em alguns dos caminhões. Existe como estocar os n vasilhames nos m caminhões de modo que nenhum caminhão esteja sobrecarregado, e todo vasilhame esteja num caminhão que o comporta com segurança?
- Qualquer vasilhame pode ser colocado em qualquer caminhão, mas alguns pares de vasilhames não podem ficar juntos num mesmo caminhão. Existe como estocar os n vasilhames nos m caminhões de modo que nenhum caminhão esteja sobrecarregado e que nenhum dos pares proibidos de vasilhames esteja no mesmo caminhão?