DEEP LEARNING FOR ARTIFICIAL INTELLIGENCE

Master Course UPC ETSETB TelecomBCN Barcelona, Autumn 2017.

Instructors

+ info: http://dlai.deeplearning.barcelona

[course site]

Day 6 Lecture 2

Methodology

Javier Ruiz Hidalgo javier.ruiz@upc.edu

Associate Professor Universitat Politecnica de Catalunya Technical University of Catalonia

Outline

Data

- training, validation, test partitions
- Augmentation

Capacity of the network

- Underfitting
- Overfitting

Prevent overfitting

- Dropout, regularization
- Strategy

Outline

It's all about the data...

well, not only data...

Computing power: GPUs

Source: NVIDIA 2017

well, not only data...

Computing power: GPUs

- New learning architectures
 - CNN, RNN, LSTM, DBN, GNN, GAN, etc.

http://www.asimovinstitute.org/neural-network-zoo/

End-to-end learning: speech recognition

Traditional model

End-to-end learning

This works well given enough labeled (audio, transcript) data.

End-to-end learning: autonomous driving

End-to-end learning

Given the safety-critical requirement of autonomous driving and thus the need for extremely high levels of accuracy, a pure end-to-end approach is still challenging to get to work. End-to-end works only when you have enough (x,y) data to learn function of needed level of complexity.

Network capacity

- Space of representable functions that a network can potencially learn:
 - Number of layers / parameters

Generalization

The network needs to **generalize** beyond the training data to work on new data that it has not seen yet

Underfitting vs Overfitting

- Overfitting: network fits training data too well
 - Excessively complicated model
- Underfitting: network does not fit training data well enough
 - Excessively simple model

 Both underfitting and overfitting lead to poor predictions on new data and they do not generalize well

Underfitting vs Overfitting

Data partition

How do we measure the generalization instead of how well the network does with the memorized data?

Split your data into two sets: training and test

TRAINING 60%	TEST 20%
-----------------	----------

Underfitting vs Overfitting

Data partition revisited

- Test set should not be used to tune your network
 - Network architecture
 - Number of layers
 - Hyper-parameters

- Failing to do so will overfit the network to your test set!
 - https://www.kaggle.com/c/higgs-boson/leaderboard

Data partition revisited (2)

Add a validation set!

 Lock away your test set and use it only as a last validation step

Data sets distribution

 Take into account the distribution of training and test sets

TRAINING
60%

VAL. TRAIN
20%

VAL.	TEAT
TEOT	TEST
TEST	10%
10%	10 /0

The bigger the better?

- Large networks
 - More capacity / More data
 - Prone to overfit

- Smaller networks
 - Lower capacity / Less data
 - Prone to underfit

The bigger the better?

- In large networks, most local minima are equivalent and yield similar performance.
- The probability of finding a "bad" (high value) local minimum is non-zero for small networks and decreases quickly with network size.
- Struggling to find the global minimum on the training set (as opposed to one of the many good local ones) is not useful in practice and may lead to overfitting.

Better large capacity networks and prevent overfitting

Prevent overfitting

- Early stopping
- Loss regularization
- Data augmentation
- Dropout
- Parameter sharing
- Adversarial training

Early stopping

Loss regularization

- Limit the values of parameters in the network
 - L2 or L1 regularization

$$\mathcal{L}_{new} = \mathcal{L} + \frac{\lambda}{2} W^2$$

$$\mathcal{L}_{new} = \mathcal{L} + \frac{\lambda}{2}|W|$$

22

Data augmentation (1)

Alterate input samples artificially to increase the data size

- On-the-fly while training
 - Inject Noise
 - Transformations
 - O ...

Data augmentation (2)

Image

- Random crops
- Translations
- Flips
- Color changes

Audio

- Tempo perturbation, speed
- Video
 - Temporal displacement

b. Flip augmentation (= 2 images)

c. Crop+Flip augmentation (= 10 images)

Data augmentation (3)

Synthetic data: Generate new input samples

Data augmentation (4)

GANs (Generative Adversarial Networks)

P. Ferreira, et.al., <u>Towards data set augmentation with GANs</u>, 2017. L. Sixt, et.al., <u>RenderGAN</u>: Generating Realistic labeled data, ICLR 2017.

Dropout (1)

 At each training iteration, randomly remove some nodes in the network along with all of their incoming and outgoing connections (N. Srivastava, 2014)

Dropout (2)

- Why dropout works?
 - Nodes become more insensitive to the weights of the other nodes → more robust.
 - Averaging multiple models
 → ensemble.
 - Training a collection of 2ⁿ thinned networks with parameters sharing

Ensemble of subnetworks

Dropout (3)

- Dense-sparse-dense training (<u>S. Han 2016</u>)
 - a. Initial regular training
 - Drop connections where weights are under a particular threshold.
 - c. Retrain sparse network to learn weights of important connections.
 - Make network dense again and retrain using small learning rate, a step which adds back capacity.

Parameter sharing

Multi-task Learning

Figure extracted from Sebastian Ruder, An Overview of Multi-Task Learning in Deep Neural Networks, 2017

FULLY CONNECTED NEURAL NET

Example: 1000x1000 image 1M hidden units 10^12 parameter: - Spatial correlation is local - Better to put resources elsewhere!

LOCALLY CONNECTED NEURAL NET

CNNs

Adversarial training

- Search for adversarial examples that network misclassifies
 - Human observer cannot tell the difference
 - However, the network can make highly different predictions.

Strategy for machine learning (1)

Human-level performance can serve as a very reliable proxy which can be leveraged to determine your next move when training your model.

Strategy for machine learning (2)

TRAINING 60%	VALIDATION 20%	TEST 20%	
Human level error	. 1%	Avoidak	olo bioc
Training error	9%	Avoidab	ne bias

Strategy for machine learning (3)

TRAINING 60%	VALIDATION 20%	TEST 20%
-----------------	----------------	-------------

```
Human level error . . 1%
Training error . . . 1.1%
Validation error . . . 10%
```

Strategy for machine learning (4)

TRAINING	VALIDATION	TEST
60%	20%	20%

Strategy for machine learning (5)

TRAINING	VALIDATION	TEST
60%	20%	20%

Strategy for machine learning (5)

References

Nuts and Bolts of Applying Deep Learning by Andrew Ng https://www.youtube.com/watch?v=F1ka6a13S9l

Thanks! Questions?

