

L1 : Licence sciences et technologies, mention mathématiques, informatique et applications

Mathématiques et calculs : Contrôle continu n° 2 22 novembre 2010

Nombre de pages de l'énoncé : 2. Durée 1h30.

Documents et calculatrices sont interdits.

L'usage des téléphones portables est interdit dans les salles d'examen.

Exercice 1. Le but de l'exercice est d'étudier la bijection réciproque de la fonction tangente.

- 1. Montrer que la fonction :] $-\frac{\pi}{2}, \frac{\pi}{2}[\xrightarrow{\tan} \mathbb{R}$ est dérivable et strictement croissante. Déterminer ses limites en $-\frac{\pi}{2}$ et $\frac{\pi}{2}$
- 2. En déduire que la fonction tangente est une bijection de] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [dans \mathbb{R} . On note arctan sa bijection réciproque.
- 3. Calculer la dérivée de la fonction arctan
- 4. Montrer que, pour tout x non nul, $\arctan(x) + \arctan(\frac{1}{x}) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0 \\ -\frac{\pi}{2} & \text{si } x < 0 \end{cases}$

Exercice 2.

- 1. Montrer que pour tout x > 0, il existe $c \in]x, x+1[$ tel que $\ln\left(1+\frac{1}{x}\right)=\frac{1}{c}$ (Indication: utiliser le théorème des accroissements finis appliqué à $y \mapsto \ln(y)$ sur l'intervalle [x, x+1].)
- 2. En déduire que pour tout x > 0,

$$\frac{1}{x+1} < \ln\left(1 + \frac{1}{x}\right) < \frac{1}{x}$$

- 3. Montrer que les fonctions f et g définies sur \mathbb{R}_+^* par $f(x) = \left(1 + \frac{1}{x}\right)^x$ et $g(x) = \left(1 + \frac{1}{x}\right)^{1+x}$ sont monotones
- 4. Montrer que f est prolongeable par continuité en 0
- 5. Déterminer les limites en l'infini de ln(f) et ln(g), puis de f et g

Exercice 3.

Soit $f: [0, \frac{\pi}{2}] \longrightarrow \mathbb{R}$ la fonction définie par :

$$f(x) = e^{-x} - \sin(x)$$

1. Justifier, par des opérations élémentaires sur les fonctions, que f est dérivable sur $[0, \frac{\pi}{2}]$ puis calculer sa dérivée.

En déduire que f définit une bijection de $\left[0, \frac{\pi}{2}\right]$ sur $\left[e^{-\frac{\pi}{2}} - 1, 1\right]$

2. Justifier qu'il existe un et un seul α dans $]0,\frac{\pi}{2}[$ tel que $f(\alpha)=0$

On pose $g(x) = x + \frac{1}{2}f(x)$.

- 3. Justifier que g est deux fois dérivable sur $[0, \frac{\pi}{2}]$ et calculer g' et g''
- 4. Montrer que g' est croissante et positive puis en déduire que, pour tout $x \in [0, \frac{\pi}{2}]$,

$$|g'(x)| \le 1 - e^{-\frac{\pi}{2}} < 1$$

5. A l'aide du théorème des accroissements finis, déduire de la question 4. que pour tout x et y dans $[0, \frac{\pi}{2}]$, tels que $x \neq y$,

$$|g(x) - g(y)| < |x - y|$$

.../...

6. Vérifier que α est une solution de l'équation g(x)=x puis déduire de la question 5. que α est l'unique solution appartenant à $\left[0,\frac{\pi}{2}\right]$

 $(Indication: on \ pourra \ raisonner \ par \ l'absurde).$

- 7. Question facultative : On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = g(u_n) \ n \in \mathbb{N}^* \end{cases}$
 - (a) Calculer u_1 et montrer que la suite (u_n) est décroissante
 - (b) En déduire que (u_n) converge vers α