CS150 Homework 4

due Wednesday, November 17th 5:00 PM

Problem 1.

- (a) Construct a CFG for the set of all binary strings of the form $0^{i}1^{j}0^{k}$, where i+k=j.
- 1. $S \rightarrow AB$
- 2. A \rightarrow 0A1 | ϵ
- 2. B \rightarrow 1B0 | ϵ
- (b) $0^{i}1^{j}0^{k}$, where i+k=2j.
- 1. $S \rightarrow AB \mid 0A1B0$

(first prod: i and k are even, second prod: i and k are odd; no other option otherwise i + k is odd)

- 2. A \rightarrow 00A1 | ϵ
- 2. B \rightarrow 1B00 | ϵ

Problem 2.

For the grammar:

 $S \to A1B$

 $A \rightarrow 0A \mid \epsilon$

 $B \rightarrow 0B \mid 1B \mid \epsilon$

and string 010101, give the a) leftmost derivation and b) parse tree.

a) S \Rightarrow A1B \Rightarrow 0A1B \Rightarrow 01B \Rightarrow 010B \Rightarrow 0101B \Rightarrow 01010B \Rightarrow 010101B

Problem 3.

For this grammar,

$$S \to A1B$$

$$A \rightarrow 0A \mid \epsilon$$

$$B \rightarrow 0B \mid 1B \mid \epsilon$$

a) Show that this grammar is unambiguous.

Algorithm for reading input string with production:

- 1) Scan the string from left-to-right
- 2) There is only 1 production for expanding S, don't read any input when expanding S.
- 3) If it's required to expand A, use A \rightarrow 0A if the next symbol is a 0, otherwise if it's 1 or at the end, use A $\rightarrow \epsilon$
- 4) If it's required to expand B, use $B \to 0B$ if the next symbol is a 0, use $B \to 1B$ if the next symbol is a 1, and use $B \to \epsilon$ if at the end of input string.

This will produce a unique leftmost derivation for any given input string.

Input string: 001010

Remaining input Steps of left most derivation

001010	S
001010	A1B
01010	0A1B
1010	00A1B
1010	001B
010	001B
10	0010B
0	00101B
	001010B
	001010

Therefore, this grammar is unambiguous.

b) Find a grammar for the same language that is ambiguous, and demonstrate its ambiguity.

$$S \to A1B$$

$$A \rightarrow 0A \mid \epsilon$$

$$B \rightarrow 0B \mid B0 \mid 1B \mid \epsilon$$

For string w = 10, there exist 2 left most derivations as follows:

1)
$$S \Rightarrow A1B \Rightarrow 1B \Rightarrow 10B \Rightarrow 10$$

2)
$$S \Rightarrow A1B \Rightarrow 1B \Rightarrow 1B0 \Rightarrow 10$$

Thus, this grammar is ambiguous.

Problem 4.

b) Show all reachable IDs with input w 0011

$$(q, 0011, Z0)$$

$$(q, 11, XXZ0) - (p, 11, XZ0) - (p, 1, XXZ0) - (p, \varepsilon, XXXZ0)$$

$$(p, 11, Z0) - (p, 1, \varepsilon) (p, 1, XZ0) - (p, \varepsilon, XXZ0)$$

$$(q, 1, XXZ0) - (p, 1, XZ0) - (p, 1, Z0)$$

$$(p, \varepsilon, XXZ0)$$

$$(p, \varepsilon, XXZ0)$$

$$(p, \varepsilon, XXZ0)$$

$$(p, \varepsilon, XZ0)$$

$$(p, \varepsilon, XZ0)$$

$$(p, \varepsilon, Z0)$$

$$(p, \varepsilon, Z0)$$

c) Show all reachable IDs with input w 010

Problem 5.

a) PDA for The set of all binary strings with more 1's than 0's. (Transition Diagram)

- 0, Z0 / 0 Z0
- 1, Z0 / 1 Z0
- 0,0/00
- 1, 1 / 11
- $0,1/\epsilon$
- 1, 0 / ε

b) $0^i 1^j 0^k$, where i+k = j.

