Übung 14

Logik für Informatiker

Prädikatenlogik

Aufgabe 1

Sei $\Omega=\{a/0,b/0.f/1,g/1,h/2\}$ eine Menge von Funktionssymbolen, X eine Menge von Variablen und $v,x,y,z\in X$. Gegeben sind die folgenden 10 Unifikationsprobleme über Ω und X:

- a) $\{x \stackrel{?}{=} b\}$
- b) $\{a \stackrel{?}{=} x\}$
- c) $\{a \stackrel{?}{=} b\}$
- d) $\{y \stackrel{?}{=} f(x)\}$
- e) $\{x \stackrel{?}{=} f(x)\}$
- f) $\{f(x) \stackrel{?}{=} f(y)\}$
- g) $\{f(x) \stackrel{?}{=} g(y)\}$
- h) $\{h(x,y) \stackrel{?}{=} h(a,b)\}$
- i) $\{x \stackrel{?}{=} f(z), y \stackrel{?}{=} f(a), x \stackrel{?}{=} y\}$
- j) $\{h(x, f(y)) \stackrel{?}{=} z, z \stackrel{?}{=} h(f(y), v)\}$
- a) Wenden Sie den Martelli-Montanari Algorithmus auf die gegebenen Probleme an.
- b) Verwenden Sie die Ergebnisse aus dem vorherigen Aufgabenteil um eine begründete Aussage über das (Nicht-)Vorhandensein eines Unifikators zu machen. Gibt es einen Unifikator für ein Problem, so geben Sie ihn explizit an.

Aufgabe 2

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \{f/1, g/2\}$ und $\Pi = \{p/1\}$. Ferner sei X eine Menge von Variablen und $v, w, x, y, z \in X$. Gegeben sind die folgenden 3 Unifikationsprobleme über Σ und X:

- a) $\{g(v, f(v)) \stackrel{?}{=} w, p(w) \stackrel{?}{=} p(x), x \stackrel{?}{=} g(f(y), v)\}$
- b) $\{g(v,v) \stackrel{?}{=} w, p(w) \stackrel{?}{=} p(x), x \stackrel{?}{=} f(y)\}$
- c) $\{g(v, f(y)) \stackrel{?}{=} w, p(w) \stackrel{?}{=} p(x), x \stackrel{?}{=} g(f(y), z)\}$
- a) Wenden Sie den Martelli-Montanari Algorithmus auf die gegebenen Probleme an.
- b) Verwenden Sie die Ergebnisse aus dem vorherigen Aufgabenteil um eine begründete Aussage über das (Nicht-)Vorhandensein eines Unifikators zu machen. Gibt es einen Unifikator für ein Problem, so geben Sie ihn explizit an.

Aufgabe 3

Sei $\Sigma = (\Omega, \Pi)$ eine Signatur, wobei $\Omega = \{a/0, b/0, f/1, g/2\}$ und $\Pi = \{p/1\}$. Ferner sei X eine Menge von Variablen und $t, v, w, x, y, z \in X$. Gegeben sind die folgenden 3 Unifikationsprobleme über Σ und X:

- a) $\{p(g(f(x), f(a))) \stackrel{?}{=} p(g(f(b), f(x)))\}$
- b) $\{p(g(x, f(x))) \stackrel{?}{=} p(g(y, y))\}$
- c) $\{t \stackrel{?}{=} b, x \stackrel{?}{=} f(t), v \stackrel{?}{=} f(x), f(v) \stackrel{?}{=} y, w \stackrel{?}{=} f(x), f(w) \stackrel{?}{=} z\}$
- a) Wenden Sie den Martelli-Montanari Algorithmus auf die gegebenen Probleme an.
- b) Verwenden Sie die Ergebnisse aus dem vorherigen Aufgabenteil um eine begründete Aussage über das (Nicht-)Vorhandensein eines Unifikators zu machen. Gibt es einen Unifikator für ein Problem, so geben Sie ihn explizit an.