

SAKARYA ÜNİVERSİTESİ 2020-2021 BAHAR DÖNEMİ FİZİK-II LABORATUARI DENEY RAPORU

Ad-Soyad : Numara :

NUMARASI: 7

ADI : RC ZAMAN SABİTİNİN TAYİNİ

AMACI:

1. Şekildeki devrede B anahtarı kapatılıp kondansatörün tam olarak dolması beklenmiş ve B anahtarı açılıp A anahtarı kapatılmıştır. Buna göre;

a. A anahtarı kapatıldıktan sonra devreden geçen ilk akım kaç Amper'dir?

b. A anahtarı kapatıldıktan sonra devreden geçen akımın 0,01 Amper değerine düşmesi için geçecek süre ne kadardır?

Şekil -1 Boşalan Sığaç devresi düzeneği

- 1. Şekil 1'de görülen düzenek güç kaynağında bağlanır ve 10 V'lık bir gerilim devreye uygulanır.
- 2. Bir müddet beklendikten sonra anahtarın konumu değiştirilerek güç kaynağı devre dışı bırakılırken aynı anda kronometre başlatılır.
- 3. Kronometre saymaya devam ederken Ampermetreye dikket edilir. Ampermetrede okunan her değer Tablo 1'de istenilen değerle eşleştiğinde kronometreye tur attırılır.
- 4. Okunan değerler Tablo 1'de ayrılmış yerlere yazılır.
- 5. Logaritmik değerler hesaplandıktan sonra istenlen grafik çizilip sonuçlar elde edilir.

1) Deneyden elde ettiğiniz verileri kullanarak Tablo 1'i doldurunuz.

1) Deneyden eide ettig		
V= Volt, $C = \cdots \mu F$, $R = \cdots M\Omega$		
I (A)	t(s)	$-\ln(I)$
10.0×10^{-6}		
$9,5 \times 10^{-6}$		
9.0×10^{-6}		
$8,5 \times 10^{-6}$		
8.0×10^{-6}		
$7,5 \times 10^{-6}$		
7.0×10^{-6}		
$6,5 \times 10^{-6}$		
6.0×10^{-6}		
$5,5 \times 10^{-6}$		
5.0×10^{-6}		
4.5×10^{-6}		
4.0×10^{-6}		
3.5×10^{-6}		
3.0×10^{-6}		
2.5×10^{-6}		
2.0×10^{-6}		
1.5×10^{-6}		
1.0×10^{-6}		
0.5×10^{-6}		

- 2) Tablodaki verileri kullanarak -ln(I)-t grafiğini milimetrik kağıda çiziniz.
- 3) Çizmiş olduğunuz grafiğin eğiminden RC zaman sabitini bulunuz.

R.C(deneysel)=

- 4) R.C zaman sabitinin teorik değerini hesaplayınız.
- 5) Teorik ve deneysel RC değerlerini kullanarak hata oranını % olarak hesaplayınız.