#### 실력완성 | 고1

#### 2-3-4.이차부등식과 연립이차부등식



수학 계산력 강화

#### (1)부호, 그래프를 이용한 이차부등식의 풀이





◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2018-02-15

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

# 01 기차식의 부호를 이용한 이차부등식의 풀이

이차식을 인수분해하고 인수의 부호를 조사하여 이차부등식의 해를 구할 수 있다.

 $\Rightarrow$  a < b인 두 실수 a,b에 대하여

이차식 (x-a)(x-b)의 부호는 아래의 표와 같다.

|            | x < a | x = a | a < x < b | x = b | x > b |
|------------|-------|-------|-----------|-------|-------|
| x-a        | _     | 0     | +         | +     | +     |
| x-b        | _     | _     | _         | 0     | +     |
| (x-a)(x-b) | +     | 0     | _         | 0     | +     |

## ☑ 다음 표를 완성하고 이차부등식을 풀어라.

## 1. $x^2 - x - 2 < 0$

| x의 값의<br>범위 | x+1 | x-2 | $\left  (x+1)(x-2) \right $ |
|-------------|-----|-----|-----------------------------|
| x < -1      | _   | _   | +                           |
| x = -1      | 0   | _   | 0                           |
| -1 < x < 2  | +   |     |                             |
| x = 2       |     | 0   | 0                           |
| x > 2       |     |     |                             |

# 2. $x^2 + 2x - 8 \ge 0$

| x의 값의     범위 |  |  |
|--------------|--|--|
| 범위           |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |

## ☑ 다음 주어진 이차식의 부호를 조사하여 표를 완성하 고, □ 안에 알맞은 것을 써넣어라.

3. 
$$x^2 - x - 6 = (x + \lceil 1)(x - \lceil 1)$$

| x의 값의   범위 | x+2 | x-3 | (x+2)(x-3) |
|------------|-----|-----|------------|
| x < -2     | _   | _   | +          |
| x = -2     |     |     |            |
| -2 < x < 3 |     |     |            |
| x = 3      |     |     |            |
| x > 3      |     |     |            |

| $x^2 - x - 6 = (x + \square)(x - \square) > 0$ 을 만족시키는 |
|--------------------------------------------------------|
| $x$ 의 값의 범위는 $oxed{oxed}$ 또는 $oxed{oxed}$ 이다.          |

**4.** 
$$x^2 + x - 2 = (x + [])(x - [])$$

| x의 값의   범위 | x+2 | x-1 | (x+2)(x-1) |
|------------|-----|-----|------------|
| x < -2     | _   | _   | +          |
| x = -2     |     |     |            |
| -2 < x < 1 |     |     |            |
| x = 1      |     |     |            |
| x > 1      |     |     |            |

| $x^2 + x - 2 = (x + \square)(x - \square) < 0$ 을 만족시키는 |
|--------------------------------------------------------|
| $x$ 의 값의 범위는 $\overline{} < x < \overline{}$ 이다.       |

- Arr 이차함수  $f(x) = x^2 4x + 3 = (x-1)(x-3)$ 에 대하 여 다음 물음에 답하여라.
- 5. x=1, x=2, x=3, x=4일 때, f(x)가 양의 값을 가지는 경우를 구하여라.
- 6. 다음은 f(x)의 값의 부호를 알아보기 위하여 만 든 표이다. 빈칸을 알맞게 채워라.

| x의 값의   범위 | x-1 | x-3 | (x-1)(x-3) |
|------------|-----|-----|------------|
| x < 1      | _   | _   | +          |
| x = 1      | 0   | _   |            |
| 1 < x < 3  | +   |     |            |
| x = 3      |     |     |            |
| x > 3      |     |     |            |

**7.** 위의 문제의 표를 이용하여 다음을 만족하는 x의 값 또는 그 범위를 구하여라.

(1) 
$$(x-1)(x-3) = 0$$

(2) 
$$(x-1)(x-3) < 0$$

(3) 
$$(x-1)(x-3) > 0$$

**(4)** 
$$(x-1)(x-3) \le 0$$

(5) 
$$(x-1)(x-3) \ge 0$$

☑ 다음 이차부등식을 풀어라.

8. 
$$x^2-4x-5>0$$

**9.** 
$$x(6-x) \ge 3x-4$$

**10.** 
$$-2x^2+3x-6 \ge 0$$

**11.** 
$$x^2 - 2\sqrt{3}x + 3 \le 0$$

**12.** 
$$x^2 - x - 20 < 0$$

**13.** 
$$x^2 + 3x - 10 \le 0$$

**14.** 
$$-2x^2+3x+2 \ge 0$$

**15.** 
$$x^2 + 2x - 8 \le 0$$

**16.** 
$$2x^2 + 3x - 2 \ge 0$$

**17.** 
$$2x^2 - 3x - 9 \le 0$$

**18.** 
$$2x^2 - 3x - 5 < 0$$

**19.** 
$$-2x^2+5x+3>0$$

**20.** 
$$x^2 + x - 6 \ge 0$$

**21.** 
$$x^2 - 7x + 10 < 0$$

**22.** 
$$x^2 - 5x + 4 \le 0$$

**23.** 
$$x^2 - 6x + 5 \le 0$$

**24.** 
$$-x^2+8x-16 \ge 0$$

**25.** 
$$x^2 - 2x - 8 \le 0$$

**26.** 
$$x^2 - x - 6 < 0$$

**27.** 
$$x^2 - 2x - 3 \le 0$$

**28.** 
$$x^2 - 2x + 7 \ge 0$$

**29.** 
$$2x^2 + 5x + 4 > 0$$

**30.** 
$$x^2 - 2x - 5 \le 0$$

**31.** 
$$x^2 + x - 2 < 0$$

## 02 / 그래프를 이용한 이차부등식의 풀이

이차함수  $y = ax^2 + bx + c(a > 0)$ 의 그래프를 이용하여 이차부등식의 해를 구하면 다음과 같다.

| 이차부등식                                 | 이차부등식                                   |
|---------------------------------------|-----------------------------------------|
| $ax^2+bx+c>0$ 의 해                     | $ax^2+bx+c<0$ 의 해                       |
| (y>0인 x의 범위)                          | (y<0인 x의 범위)                            |
| ⊕\ /⊕                                 | \ /                                     |
| $\alpha \beta \tilde{x}$              | $\alpha \bigcirc \beta \stackrel{*}{x}$ |
| $x < \alpha$ 또는 $x > \beta$           | $\alpha < x < \beta$                    |
| _ ,                                   | ,                                       |
| $\bigoplus_{\alpha}$                  |                                         |
|                                       |                                         |
| $x \neq \alpha$ 인 모든 실수               | 없다.                                     |
| $\bigoplus$ $\bigoplus$ $\widehat{x}$ | <u> </u>                                |
| 모든 실수                                 | 없다.                                     |

〈참고〉  $ax^2 + bx + c \ge 0$ ,  $ax^2 + bx + c \le 0$  꼴의 이차부등식의 해는 이차함수  $y = ax^2 + bx + c$ 의 그래프와 x축이 만나는 점의 x의 값을 포함하여 위와 같은 방법으로 해를 구한다.

ightharpoonup 이차함수 y=f(x)의 그래프가 아래 그림과 같을 때, 다음 이차부등식의 해를 구하여라.



**32.** f(x) > 0

**33.** 
$$f(x) \leq 0$$

ightharpoonup 이차함수  $y=x^2-x-2$ 의 그래프가 아래 그림과 같 을 때, 다음 이차부등식의 해를 구하여라.



**34.** 
$$x^2-x-2>0$$

**35.** 
$$x^2 - x - 2 \le 0$$

ightharpoonup 이차함수  $y = ax^2 + bx + c$ 의 그래프가 아래 그림과 같을 때, 다음 이차부등식의 해를 구하여라.



**36.** 
$$ax^2 + bx + c < 0$$

**37.** 
$$ax^2 + bx + c \ge 0$$

☑ 다음 이차부등식을 이차함수의 그래프를 이용하여 풀어라.

**38.** 
$$x^2-4x+5<0$$

**39.** 
$$x^2 + 3x - 4 < 0$$

**40.** 
$$x^2 + 2x + 1 \ge 0$$

**41.** 
$$x^2 - 2x - 3 > 0$$

**42.** 
$$x^2 + 8x + 16 < 0$$

**43.** 
$$x^2 + 8x + 16 \le 0$$

**44.** 
$$x^2 + 2x + 3 > 0$$

**45.** 
$$x^2 + 2x + 3 \ge 0$$

**46.** 
$$x^2-2x-3 \ge 0$$

**47.** 
$$x^2 + 2x + 3 < 0$$

**48.** 
$$x^2 + 2x + 3 \le 0$$

**49.** 
$$3x^2 - 6x + 3 > 0$$

**50.** 
$$2x^2 - 7x + 3 \ge 0$$

**51.** 
$$2x^2 - 5x + 2 > 0$$

**52.** 
$$2x^2 - 5x + 2 \ge 0$$

**53.** 
$$2x^2 - 2x + \frac{1}{2} \le 0$$

## 03 / 두 그래프를 이용한 이차부등식의 풀이

부등식 f(x) > g(x)의 해

- $\Rightarrow$  함수 y = f(x)의 그래프가 함수 y = g(x)의 그래프보다 위쪽에 있는 x의 값의 범위
- $\square$  이차함수  $y = ax^2 + bx + c$ 의 그래프와 직선 y = mx + n이 다음 그림과 같을 때, 다음 이차부등식 의 해를 구하여라.



**54.** 
$$ax^2 + bx + c < 0$$

**55.** 
$$ax^2 + bx + c \ge mx + n$$

- ightharpoonup 일차함수 y = f(x)와 이차함수 y = g(x)의 그래프가 다음 그림과 같을 때, 주어진 부등식의 해를 구하여 라.
- **56.**



(1) 
$$f(x)g(x) > 0$$

(2) 
$$f(x)g(x) < 0$$

**57.** 



- (1) f(x) > g(x)
- (2) f(x) < g(x)

58.



- (1)  $f(x) \ge g(x)$
- (2)  $f(x) \le g(x)$
- ightharpoons 두 이차함수 y = f(x), y = g(x)의 그래프가 다음 그 림과 같을 때, 주어진 부등식의 해를 구하여라.

**59.** 
$$f(x)g(x) > 0$$



**60.** f(x)g(x) < 0



61.



- (1) f(x) > g(x)
- (2)  $f(x) \le g(x)$

62.



- (1)  $f(x) \ge g(x)$
- (2) f(x) < g(x)

63.



- (1) g(x) < f(x)
- (2) f(x) < g(x)

64.



- (1) f(x)g(x) > 0
- (2) f(x)g(x) < 0

65.



- (1) 0 < g(x) < f(x)
- (2) 0 < f(x) < g(x)

☑ 다음 이차함수의 그래프가 주어진 직선보다 항상 위 쪽에 있도록 하는 상수 k의 값의 범위를 구하여라.

**66.** 
$$y = x^2 + (k+1)x + 4, y = x - 1$$

**67.** 
$$y = x^2 - 2x + 1, y = kx - 8$$

ightharpoonup 다음과 같은 이차함수 y = f(x)의 그래프가 이차함 수 y=g(x)의 그래프보다 항상 아래쪽에 있는 x의 값의 범위를 구하여라.

**68.** 
$$f(x) = x^2 - 2x - 8$$
,  $g(x) = -2x^2 + x - 2$ 

**69.** 
$$f(x) = 2x^2 - 2x - 3$$
,  $g(x) = x^2 + x + 7$ 

**70.** 
$$f(x) = x^2 - x - 1, q(x) = -x^2 + 2x + 1$$

**71.** 
$$f(x) = x^2 - 4$$
,  $g(x) = 2x^2 - 5x$ 

## 정답 및 해설

#### 1) -1 < x < 2

| x의 값의     범위 | x+1 | x-2 | (x+1)(x-2) |
|--------------|-----|-----|------------|
| x < -1       | _   | _   | +          |
| x = -1       | 0   | _   | 0          |
| -1 < x < 2   | +   | _   | _          |
| x=2          | +   | 0   | 0          |
| x > 2        | +   | +   | +          |

## $\Rightarrow x^2 - x - 2 = (x+1)(x-2)$

| x의 값의     범위 | x+1 | x-2 | (x+1)(x-2) |
|--------------|-----|-----|------------|
| x < -1       | _   | _   | +          |
| x = -1       | 0   | _   | 0          |
| -1 < x < 2   | +   | _   | _          |
| x = 2        | +   | 0   | 0          |
| x > 2        | +   | +   | +          |

이차부등식  $x^2 - x - 2 < 0$ 의 해는 (x+1)(x-2)의 부호가 음인 x의 값의 범위이므로 위의 표에서 -1 < x < 2

## 2) $x \le -4$ 또는 $x \ge 2$

| x의 값의     범위 | x+4 | x-2 | (x+4)(x-2) |
|--------------|-----|-----|------------|
| x < -4       | _   | _   | +          |
| x = -4       | 0   | _   | 0          |
| -4 < x < 2   | +   | _   | _          |
| x = 2        | +   | 0   | 0          |
| x > 2        | +   | +   | +          |

## $\Rightarrow x^2 + 2x - 8 = (x+4)(x-2)$

| x의 값의     범위 | x+4 | x-2 | (x+4)(x-2) |
|--------------|-----|-----|------------|
| x < -4       | _   | _   | +          |
| x = -4       | 0   | _   | 0          |
| -4 < x < 2   | +   | _   | _          |
| x = 2        | +   | 0   | 0          |
| x > 2        | +   | +   | +          |

이차부등식  $x^2 + 2x - 8 \ge 0$ 의 해는 (x+4)(x-2)의 부호가 0보다 크거나 같은 x의 값의 범위이므로  $x \leq -4$  또는  $x \geq 2$ 

## 3) 2, 3, 2, 3, x < -2, x > 3

| x의 값의     범위 | x+2 | x-3 | (x+2)(x-3) |
|--------------|-----|-----|------------|
| x < -2       | _   | _   | +          |
| x = -2       | 0   | _   | 0          |
| -2 < x < 3   | +   | _   | _          |
| x = 3        | +   | 0   | 0          |
| x > 3        | +   | +   | +          |

#### 4) 2, 1, 2, 1, -2, 1

| x의 값의   범위 | x+2 | x-1 | (x+2)(x-1) |
|------------|-----|-----|------------|
| x < -2     | _   | _   | +          |
| x = -2     | 0   | _   | 0          |
| -2 < x < 1 | +   | _   | _          |
| x = 1      | +   | 0   | 0          |
| x > 1      | +   | +   | +          |

### 5) x = 4

 $\Rightarrow f(1) = 0, f(2) = -1, f(3) = 0, f(4) = 3 > 0$ 이므로 x=4일 때 f(x)가 양의 값을 가진다.  $\therefore x = 4$ 

## 6)

| x의 값의   범위 | x-1 | x-3 | (x-1)(x-3) |
|------------|-----|-----|------------|
| x < 1      | _   | _   | +          |
| x = 1      | 0   | _   | 0          |
| 1 < x < 3  | +   | _   | _          |
| x = 3      | +   | 0   | 0          |
| x > 3      | +   | +   | +          |

- 7) (1)x = 1 또는 x = 3 (2)1 < x < 3 (3)x < 1 또는 x > 3 (4)1  $\le x \le 3$  (5) $x \le 1$  또는  $x \ge 3$
- 8) x < -1 또는 x > 5
- $\Rightarrow x^2 4x 5 > 0 \text{ on } \lambda$ (x+1)(x-5) > 0  $\therefore x < -1$  또는 x > 5
- 9)  $-1 \le x \le 4$
- $\Rightarrow x(6-x) \geq 3x-4$ 에서  $6x-x^2 \ge 3x-4, x^2-3x-4 \le 0$

 $(x+1)(x-4) \le 0$  :  $-1 \le x \le 4$ 

10) 해는 없다.

 $\Rightarrow -2x^2 + 3x - 6 \ge 0 \text{ odd}$ 

 $2x^2 - 3x + 6 \le 0, 2\left(x - \frac{3}{4}\right)^2 + \frac{39}{8} \le 0$ 

따라서 부등식의 해는 없다.

11) 
$$x = \sqrt{3}$$

$$\Rightarrow x^2 - 2\sqrt{3}x + 3 = (x - \sqrt{3})^2 \le 0 \quad \therefore x = \sqrt{3}$$

12) 
$$-4 < x < 5$$

$$\Rightarrow x^2 - x - 20 < 0 \text{ on } |x| \quad (x+4)(x-5) < 0$$
  
 
$$\therefore -4 < x < 5$$

13) 
$$-5 \le x \le 2$$

$$\Rightarrow x^2 + 3x - 10 \le 0, (x-2)(x+5) \le 0$$

$$\therefore -5 \le x \le 2$$

14) 
$$-\frac{1}{2} \le x \le 2$$

$$\Rightarrow -2x^2 + 3x + 2 \ge 0 \text{ odd } 2x^2 - 3x - 2 \le 0,$$

$$(2x+1)(x-2) \le 0$$
  $\therefore -\frac{1}{2} \le x \le 2$ 

15) 
$$-4 \le x \le 2$$

$$\Rightarrow x^2 + 2x - 8 \le 0 \text{ odd } (x+4)(x-2) \le 0$$

$$\therefore -4 \le x \le 2$$

16) 
$$x \le -2 \, \stackrel{\leftarrow}{=} \, x \ge \frac{1}{2}$$

$$\Rightarrow \ 2x^2 + 3x - 2 \ge 0 \text{ on } \ (x+2)(2x-1) \ge 0$$

$$\therefore x \leq -2 \quad \exists \frac{1}{2}$$

17) 
$$-\frac{3}{2} \le x \le 3$$

$$\Rightarrow (2x+3)(x-3) \le 0$$
$$\therefore -\frac{3}{2} \le x \le 3$$

18) 
$$-1 < x < \frac{5}{2}$$

$$\Rightarrow 2x^2 - 3x - 5 < 0 \text{ on } k \text{ } (x+1)(2x-5) < 0$$

$$\therefore -1 < x < \frac{5}{2}$$

19) 
$$-\frac{1}{2} < x < 3$$

$$\Rightarrow 2x^2 - 5x - 3 < 0 (2x+1)(x-3) < 0$$

$$\therefore -\frac{1}{2} < x < 3$$

20) 
$$x \le -3 + x \ge 2$$

$$\Rightarrow x^2 + x - 6 \ge 0$$

$$(x+3)(x-2) \ge 0$$

$$\therefore x \leq -3$$
 또는  $x \geq 2$ 

21) 
$$2 < x < 5$$

$$\Rightarrow x^2 - 7x + 10 < 0$$

$$(x-2)(x-5) < 0$$

$$\therefore 2 < x < 5$$

22) 
$$1 \le x \le 4$$

$$\Rightarrow x^2 - 5x + 4 \le 0$$

$$(x-1)(x-4) \le 0$$

$$\therefore 1 \le x \le 4$$

23) 
$$1 \le x \le 5$$

$$\Rightarrow x^2 - 6x + 5 \le 0 \text{ MeV}$$

$$(x-1)(x-5) \le 0$$

$$1 \le x \le 5$$
이다.

#### 24) x = 4

$$\Rightarrow -x^2 + 8x - 16 \ge 0$$
에서

$$x^2 - 8x + 16 \le 0$$

$$(x-4)^2 \le 0$$
이므로  $x = 4$ 이다.

25) 
$$-2 \le x \le 4$$

$$\Rightarrow x^2 - 2x - 8 = (x+2)(x-4) \le 0$$
에서 
$$-2 \le x \le 4$$
이다.

26) 
$$-2 < x < 3$$

$$\Rightarrow x^2 - x - 6 < 0 (x - 3)(x + 2) < 0 -2 < x < 3$$

27) 
$$-1 \le x \le 3$$

$$\Rightarrow$$
  $(x-3)(x+1) \le 0$ 을 만족하는  $x$ 의 범위는  $-1 \le x \le 3$ 이다.

### 28) 해는 모든 실수

$$\Rightarrow x^2 - 2x + 7 = (x - 1)^2 + 6 \ge 0$$
 주어진 부등식은 모든  $x$ 에 대하여 만족한다.

## 29) 해는 모든 실수

$$\Rightarrow 2x^2 + 5x + 4 = 2\left(x^2 + \frac{5}{2}x + \frac{25}{16}\right) - \frac{25}{8} + 4$$

$$=2\left(x+\frac{5}{4}\right)^2+\frac{7}{8}>0$$
이므로

모든 실수에서 성립한다.

30) 
$$1 - \sqrt{6} \le x \le 1 + \sqrt{6}$$

$$\Rightarrow x^2-2x-5=0$$
의 두 근이  $1+\sqrt{6}$  ,  $1-\sqrt{6}$ 이므로  $x^2-2x-5\leq 0$ 의 해는  $1-\sqrt{6}\leq x\leq 1+\sqrt{6}$ 이다.

31) 
$$-2 < x < 1$$

$$\Rightarrow x^2 + x - 2 < 0$$
를 정리하면  $(x-1)(x+2) < 0$ 에서  $-2 < x < 1$ 이다.

32) 
$$x < -1$$
 또는  $x > 3$ 

33) 
$$-1 \le x \le 3$$

34) 
$$x < -1$$
 또는  $x > 2$ 

$$\Rightarrow y = x^2 - x - 2$$
의 그래프가  $x$ 축보다 위쪽에 있는  $x$ 

값의 범위는 x < -1 또는 x > 2

- 35)  $-1 \le x \le 2$
- $\Rightarrow y = x^2 x 2$ 의 그래프가  $x \div x \div x + y = x^2 x 2$ 의 그래프가  $x \div x \div x + y = x \div x + y + y + z \div x + z \div x$ 나 x축과 만나는 x의 값의 범위는  $-1 \le x \le 2$
- 36) x < 1 또는 x > 4
- $\Rightarrow y = ax^2 + bx + c$ 의 그래프가 x축보다 아래쪽에 있 는 x의 값의 범위는

x < 1 또는 x > 4

 $1 \le x \le 4$ 

- 37)  $1 \le x \le 4$
- $\Rightarrow y = ax^2 + bx + c$ 의 그래프가 x축보다 위쪽에 있거 나 x축과 만나는 x의 값의 범위는

 $1 \le x \le 4$ 

- 38) 해는 없다.
- $\Rightarrow f(x) = x^2 4x + 5$ 라 하면

$$f(x) = (x-2)^2 + 1$$

따라서 y=f(x)의 그래프가 다음 그림과 같으므로



부등식 f(x) < 0의 해는 없다.

#### 39) -4 < x < 1

 $\Rightarrow f(x) = x^2 + 3x - 4$ 라 하면

$$f(x) = (x+4)(x-1)$$

따라서 y=f(x)의 그래프가 다음 그림과 같으므로



부등식 f(x) < 0의 해는 -4 < x < 1

#### 40) 모든 실수

 $\Rightarrow f(x) = x^2 + 2x + 1$ 이라 하면

$$f(x) = (x+1)^2$$

따라서 y=f(x)의 그래프가 다음 그림과 같으므로



부등식  $f(x) \ge 0$ 의 해는 모든 실수이다.

- 41)  $x < -1 + \pm x > 3$
- $\Rightarrow x^3 2x 3 = (x+1)(x-3)$

따라서 이차함수  $y = x^2 - 2x - 3$ 의 그래프는 다음 그 림과 같으므로 구하는 부등식의 해는



x < -1 또는 x > 3

- 42) 해는 없다.
- 43) x = -4
- 44) 모든 실수
- $\Rightarrow$  이차방정식  $x^2+2x+3=0$ 의 판별식을 D라고 하면

$$\frac{D}{4} = 1 - 3 = -2 < 0$$
이므로

이차함수  $y = x^2 + 2x + 3$ 의 그래프는 다음 그림과 같



따라서 구하는 부등식의 해는 모든 실수이다.

- 45) 모든 실수
- 46)  $x \le -1$  또는  $x \ge 3$
- 47) 해는 없다.
- 48) 해는 없다.
- 49)  $x \neq 1$ 인 모든 실수
- $\Rightarrow f(x) = 3x^2 6x + 3$ 이라 하면

$$f(x) = 3(x-1)^2$$

따라서 y=f(x)의 그래프가 다음 그림과 같으므로



부등식 f(x) > 0의 해는  $x \neq 1$ 인 모든 실수이다.

50) 
$$x \le \frac{1}{2}$$
 또는  $x \ge 3$ 

 $\Rightarrow f(x) = 2x^2 - 7x + 3$ 이라 하면

$$f(x) = (2x-1)(x-3)$$

따라서 y=f(x)의 그래프가 다음 그림과 같으므로



부등식  $f(x) \ge 0$ 의 해는  $x \leq \frac{1}{2} \quad \text{Fig. } x \geq 3$ 

51) 
$$x < \frac{1}{2}$$
 또는  $x > 2$ 

 $\Rightarrow 2x^2 - 5x + 2 = (x-2)(2x-1)$ 

따라서 이차함수  $y=2x^2-5x+2$ 의 그래프는 다음 그 림과 같으므로 구하는 부등식의 해는



 $x < \frac{1}{2}$  또는 x > 2

52) 
$$x \le \frac{1}{2}$$
 또는  $x \ge 2$ 

53) 
$$x = \frac{1}{2}$$

$$\Rightarrow f(x) = 2x^2 - 2x + \frac{1}{2}$$
이라 하면

$$f(x) = 2\left(x - \frac{1}{2}\right)^2$$

따라서 y = f(x)의 그래프가 다음 그림과 같으므로



부등식  $f(x) \le 0$ 의 해는  $x = \frac{1}{2}$ 이다.

- 54)  $\alpha < x < \gamma$
- 55)  $x \le \beta$  또는  $x \ge \delta$
- 56) (1) 2 < x < 6 또는 x > 8
  - (2) x < 2 또는 6 < x < 8
- $\Rightarrow$  (1) f(x)q(x) > 0에서

f(x) > 0, g(x) > 0 또는 f(x) < 0, g(x) < 0

(i) f(x) > 0, g(x) > 0을 만족시키는 x의 값의 범위

x > 8

(ii) f(x) < 0, g(x) < 0을 만족시키는 x의 값의 범위

2 < x < 6

- (i), (ii)에서 2<x<6 또는 x>8
- (2) f(x)g(x) < 0에서

f(x) > 0, g(x) < 0 또는 f(x) < 0, g(x) > 0

(i) f(x) > 0, g(x) < 0을 만족시키는 x의 값의 범위

6 < x < 8

(ii) f(x) < 0, g(x) > 0을 만족시키는 x의 값의 범위

x < 2

(i), (ii)에서 x < 2 또는 6 < x < 8

57) (1) 1 < x < 6 (2) x < 1 + x > 6 $\Rightarrow$  (1) y = f(x)의 그래프가 y = g(x)의 그래프보다 위쪽에 있는 x의 값의 범위는 1 < x < 6(2) y = f(x)의 그래프가 y = g(x)의 그래프보다

아래쪽에 있는 x의 값의 범위는 x < 1 또는 x > 6

58) (1)  $-1 \le x \le 3$  (2)  $x \le -1 + x \ge 3$ 

 $\Rightarrow$  (1) y = f(x)의 그래프가 y = g(x)의 그래프보다 위쪽에 있거나 y=g(x)의 그래프와 만나는 x의 값의 범위는  $-1 \le x \le 3$ 

(2) y = f(x)의 그래프가 y = g(x)의 그래프보다 아래쪽에 있거나 y = g(x)의 그래프와 만나는 x의 값의 범위는  $x \le -1$  또는  $x \ge 3$ 

59) a < x < b 또는 c < x < d

 $\Rightarrow f(x)g(x) > 0$ 에서

 $f(x) > 0, g(x) > 0 \subseteq f(x) < 0, g(x) < 0$ 

(i) f(x) > 0, g(x) > 0일 때,

x의 값의 범위는 a < x < b

(ii) f(x) < 0, g(x) < 0일 때,

x의 값의 범위는 c < x < d

(i), (ii)에서 구하는 부등식의 해는 a < x < b 또는 c < x < d

60) x < a 또는 b < x < 0 또는 x > c

 $\Rightarrow f(x)g(x) < 0$ 에서

 $f(x) > 0, g(x) < 0 \subseteq f(x) < 0, g(x) > 0$ 

(i) f(x) > 0, g(x) < 0일 때,

x의 값의 범위는 x < a 또는 x > c

(ii) f(x) < 0, g(x) > 0일 때,

x의 값의 범위는 b < x < 0

(i), (ii)에서 구하는 부등식의 해는 x < a 또는 b < x < 0 또는 x > c

61) (1) x < b 또는 x > d (2)  $b \le x \le d$ 

 $\Rightarrow$  (1) y = f(x)의 그래프가 y = g(x)의 그래프보다 위쪽에 있는 x의 값의 범위는 x < b 또는 x > d(2) y = f(x)의 그래프가 y = q(x)의 그래프보다 아래쪽에 있거나 y=g(x)의 그래프와 만나는 x의 값의 범위는  $b \le x \le d$ 

62) (1)  $x \le 0$  또는  $x \ge b$  (2) 0 < x < b

 $\Rightarrow$  (1) y = f(x)의 그래프가 y = g(x)의 그래프보다

위쪽에 있거나 y=g(x)의 그래프와 만나는 x의 값의 범위는  $x\leq 0$  또는  $x\geq b$ 

- (2) y = f(x)의 그래프가 y = g(x)의 그래프보다 아래쪽에 있는 x의 값의 범위는 0 < x < b
- 63) (1)x < b 또는 x > d (2)b < x < d
- $\Rightarrow$  (1)g(x) < f(x)를 만족하는 x의 값의 범위는 x < b 또는 x > d
- (2)f(x) < g(x)를 만족하는 x의 값의 범위는 b < x < d
- 64) (1) a < x < c
  - (2) x < a 또는 c < x < d 또는 x > d
- $\Rightarrow$  (1) f(x)g(x) > 0에서
- f(x) > 0, g(x) > 0 또는 f(x) < 0, g(x) < 0
- ( i ) f(x) > 0, g(x) > 0을 만족시키는 x의 값의 범위 는

a < x < c

- (ii) f(x) < 0, g(x) < 0을 만족시키는 x의 값은 없다.
- (i), (ii)에서 a < x < c
- (2) f(x)g(x) < 0에서

f(x) > 0, g(x) < 0 또는 f(x) < 0, g(x) > 0

( i ) f(x) > 0, g(x) < 0을 만족시키는 x의 값의 범위 는

x < a 또는 x > d

(ii) f(x) < 0, g(x) > 0을 만족시키는 x의 값의 범위는

c < x < d

- (i), (ii)에서 x < a 또는 c < x < d 또는 x > d
- 65) (1)a < x < b 또는 e < x < f (2)b < x < c 또는 d < x < e
- $\ \, \rightleftharpoons \, (1)0 < g(x) < f(x)$ 를 만족하는 x의 값의 범위는 a < x < b 또는 e < x < f
- (2)0 < f(x) < g(x)를 만족하는 x의 값의 범위는 b < x < c 또는 d < x < e
- 66)  $-2\sqrt{5} < k < 2\sqrt{5}$
- $\Rightarrow$  이차함수  $y=x^2+(k+1)x+4$ 의 그래프가

직선 y=x-1보다 항상 위쪽에 있으므로

 $x^2 + (k+1)x + 4 > x - 1$  에서  $x^2 + kx + 5 > 0$ 

이 부등식이 모든 실수 x에 대하여 성립해야 하므로

이차방정식  $x^2+kx+5=0$ 의 판별식을 D라고 하면

 $D = k^2 - 4.5 < 0$ 

 $k^2 - 20 < 0$ 

 $(k-2\sqrt{5})(k+2\sqrt{5})<0$ 

 $\therefore -2\sqrt{5} < k < 2\sqrt{5}$ 

- 67) -8 < k < 4
- □ 이차함수의 그래프가 직선보다 항상 위쪽에 있으므 □

 $x^2 - 2x + 1 > kx - 8$ 에서

 $x^2 - (2+k)x + 9 > 0$ 

이 부등식이 모든 실수 x에 대하여 성립해야 하므로 이차방정식  $x^2-(2+k)x+9=0$ 의 판별식을 D라 고 하면

$$D = \{-(2+k)\}^2 - 4.9 < 0$$

 $k^2 + 4k - 32 < 0$ 

(k+8)(k-4) < 0

 $\therefore -8 < k < 4$ 

- 68) -1 < x < 2
- $\Rightarrow$  이차함수  $y=x^2-2x-8$ 의 그래프가 이차함수  $y=-2x^2+x-2$ 의 그래프보다 아래쪽에 있으므로

$$x^2 - 2x - 8 < -2x^2 + x - 2$$

$$3x^2 - 3x - 6 < 0$$

$$3(x+1)(x-2) < 0$$

$$\therefore -1 < x < 2$$

- 69) -2 < x < 5
- $\Rightarrow 2x^2 2x 3 < x^2 + x + 7$

$$x^2 - 3x - 10 < 0$$

$$(x+2)(x-5) < 0$$

$$\therefore -2 < x < 5$$

70) 
$$-\frac{1}{2} < x < 2$$

 $\implies x^2 - x - 1 < -x^2 + 2x + 1 \text{ on } k$ 

$$2x^2 - 3x - 2 < 0 \implies (x-2)(2x+1) < 0$$

$$\therefore -\frac{1}{2} < x < 2$$

- 71) x < 1 또는 x > 4
- $\Rightarrow x^2 4 < 2x^2 5x \text{ MeV}$

$$-x^2 + 5x - 4 < 0 \implies x^2 - 5x + 4 > 0$$

$$(x-1)(x-4) > 0$$

∴x <1 또는 x > 4