Chapitre 2 : Généralités sur les suites

 $Cours\ 1: Suites\ num\'eriques$

R. KHODJAOUI

Lycée J.J. HENNER - Première

samedi 21 septembre 2019

samedi 21 septembre 2019

Sommaire

Définition 1

Définition 2

3 Définition 3

Vocabulaire et notation

Une suite numérique u est une fonction définie sur l'ensemble $\mathbb N$ des entiers naturels à valeurs dans $\mathbb R.$

L'image de l'entier naturel n par u notée u(n) ou u_n est appelé terme d'indice n ou de rang n de la suite.

Vocabulaire et notation

Une suite numérique u est une fonction définie sur l'ensemble $\mathbb N$ des entiers naturels à valeurs dans $\mathbb R.$

L'image de l'entier naturel n par u notée u(n) ou u_n est appelé terme d'indice n ou de rang n de la suite.

Remarques

- → Une suite est une liste ordonnée de nombres réels.
- $\rightarrow u_0$ est le premier terme.
- $\rightarrow u_n$ est appelé terme général de la suite u.
- $\rightarrow u_{n+1}$ est le terme qui suit u_n .
- $\rightarrow u_{n-1}$ est le terme qui précède u_n .
- \rightarrow On peut définir une suite numérique en commençant par un terme de rang n_0 différent de 0.

Vocabulaire et notation

Une suite numérique u est une fonction définie sur l'ensemble $\mathbb N$ des entiers naturels à valeurs dans $\mathbb R.$

L'image de l'entier naturel n par u notée u(n) ou u_n est appelé terme d'indice n ou de rang n de la suite.

Exemple

Si on considère la suite u des nombres impairs alors :

- $u_0 = 1$
- $u_1 = 3$
- $u_5 = 11$

Vocabulaire et notation

Une suite numérique u est une fonction définie sur l'ensemble $\mathbb N$ des entiers naturels à valeurs dans $\mathbb R.$

L'image de l'entier naturel n par u notée u(n) ou u_n est appelé terme d'indice n ou de rang n de la suite.

Exercice

On considère la suite v des multiples de 3.

Déterminer v_0 , v_1 et v_9 .

Génération d'une suite à l'aide d'une formule explicite

Formule explicite

Définir une suite u par une **formule explicite**, c'est, pour tout entier naturel n, donner une relation de la forme $u_n = f(n)$ où f est une fonction définie sur l'intervalle $[0; +\infty[$.

Ainsi le terme générale peut se calculer à partir de son rang.

Exemple

La suite u définie sur \mathbb{N} par $u_n = 2n + 1$.

u est définie par une formule explicite car d'après la définition de u, on peut dire que pour tout entier naturel n, $u_n = f(n)$ où f est la fonction définie sur $[0; +\infty[$ par f(x) = 2x + 1.

On peut remarquer que u est la suite des entier impairs

$$u_0 = 2 \times 0 + 1 = 1$$

$$u_1 = 2 \times 1 + 1 = 3$$

$$u_5 = 2 \times 5 + 1 = 11$$

Génération d'une suite à l'aide d'une formule explicite

Formule explicite

Définir une suite u par une **formule explicite**, c'est, pour tout entier naturel n, donner une relation de la forme $u_n = f(n)$ où f est une fonction définie sur l'intervalle $[0; +\infty[$.

Ainsi le terme générale peut se calculer à partir de son rang.

Exemple

La suite u définie sur \mathbb{N} par $u_n = 2n + 1$.

u est définie par une formule explicite car d'après la définition de u, on peut dire que pour tout entier naturel n, $u_n = f(n)$ où f est la fonction définie sur $[0; +\infty[$ par f(x) = 2x + 1.

On peut remarquer que u est la suite des entier impairs :

- $u_0 = 2 \times 0 + 1 = 1$
- $u_1 = 2 \times 1 + 1 = 3$
- $u_5 = 2 \times 5 + 1 = 11$

Génération d'une suite à l'aide d'une relation de récurrence

Relation de récurrence

Définir une suite u par une **relation de récurrence**, c'est donner le premier terme de la suite et une méthode de calcul de u_{n+1} en fonction du terme précédent u_n .

Génération d'une suite à l'aide d'une relation de récurrence

Relation de récurrence

Définir une suite u par une **relation de récurrence**, c'est donner le premier terme de la suite et une méthode de calcul de u_{n+1} en fonction du terme précédent u_n .

Exemple

La suite u définie sur \mathbb{N} par :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = u_n + 2 \end{cases}$$

u est définie par une relation de récurrence car d'après la définition de u, on peut dire que pour tout entier naturel n, $u_{n+1} = f(u_n)$ où f est la fonction définie sur $[0; +\infty[$ par f(x) = x + 2.

On peut remarquer que u est la suite des entier impairs :

- $u_0 = 1$
- $u_1 = u_0 + 2 = 1 + 2 = 3$
- $u_2 = u_1 + 2 = 3 + 2 = 5$

Génération d'une suite à l'aide d'une relation de récurrence

Relation de récurrence

Définir une suite u par une **relation de récurrence**, c'est donner le premier terme de la suite et une méthode de calcul de u_{n+1} en fonction du terme précédent u_n .

Exercice

Soit v la suite définie sur $\mathbb N$ par :

$$\begin{cases} v_0 = 1\\ v_{n+1} = 2v_n + 1 \end{cases}$$

Calculer les 3 premiers termes de la suite v.

FIN

Revenir au début

