Thermodynamique (GTE 2S) – Évaluation 2021

1 Cycle de Stirling (10 points)

Le moteur de Stirling est un moteur à combustion externe, comportant deux pistons. Son rendement élevé permet de l'utiliser dans les installations de cogénération.

Dans le cycle considéré ci-après, n moles d'un gaz parfait de $\gamma = C_p/C_V$ subissent une transformation cyclique ABCD constituée de deux isothermes AB et CD séparées par deux isochores BC et DA.

Le taux de compression est $\alpha = V_A/V_C$, et le rapport des températures des thermostats est $\beta = T_C/T_A$.

- 1. Représenter le cycle dans le diagramme de Clapeyron.
- 2. Exprimer les pressions, volumes et températures à chaque état en fonction de (p_A, V_A, T_A) et des paramètres α et β . On pourra reproduire et compléter le tableau suivant.

	A	B	C	D
$ \begin{array}{c} p_i \\ V_i \\ T_i \end{array} $	p_A V_A T_A			

3. Exprimer les quantités de travail et de chaleur reçus par le gaz à chaque transformation en fonction de n, R, T_A, α, β et γ . On pourra reproduire et compléter le tableau suivant.

	AB	BC	CD	\overline{DA}
$\overline{W_i}$				
Q_i				

- 4. Déduire enfin -W (le travail fourni par le gaz) et Q_C (la chaleur reçue de la source chaude) en fonction des expressions littérales W_i et Q_i établies à la question précédente.
- 5. Rappeler la définition de l'efficacité d'un moteur, et à partir des expressions -W et Q_C montrer que pour le moteur Stirling elle ne dépend que de β . Commenter l'expression obtenue.

2 Cycle de Lenoir (10 points)

Le cycle de Lenoir décrit le fonctionnement d'un moteur à deux temps, très semblable à celui des premières machines à vapeur.

Ce cycle se décompose comme suit :

- Combustion isochore AB,
- Détente adiabatique BC,
- Échappement isobare CA.

On supposera que le fluide est constitué de n moles d'un gaz parfait de $\gamma = C_p/C_V$, et que ce cycle est décrit de manière réversible. Enfin, on introduit le paramètre $\alpha = V_C/V_A$.

- 1. Représenter le cycle dans le diagramme de Clapeyron.
- 2. Exprimer les pressions, volumes et températures à chaque état en fonction de (p_A, V_A, T_A) et des paramètres α et γ . On pourra reproduire et compléter le tableau suivant.

	A	B	C
$ \begin{array}{c} p_i \\ V_i \\ T_i \end{array} $	$p_A V_A T_A$		

3. Exprimer les quantités de travail et de chaleur reçus par le gaz à chaque transformation en fonction de n, R, T_A, α et γ . On pourra reproduire et compléter le tableau suivant.

AB	BC	CA
	AB	AB BC

- 4. Déduire enfin -W (le travail fourni par le gaz) et Q_C (la chaleur reçue de la source chaude) en fonction des expressions littérales W_i et Q_i établies à la question précédente.
- 5. Rappeler la définition de l'efficacité d'un moteur, et à partir des expressions -W et Q_C montrer que pour le moteur Lenoir elle ne dépend que de α et γ .