Ejercicio 31

Ricardo Ruiz

October 8, 2017

Enunciado

Sea $A = \left\{1 + \frac{1}{n} : n \in \mathbb{N}\right\}.$

Prueba que $\inf A = 1$

Por la observación 1.13.2, si $\alpha = infA = 1$, entonces

$$\forall \varepsilon > 0 \quad \exists x_{\varepsilon} \in A : \quad x_{\varepsilon} < \alpha + \varepsilon$$

Por tanto, $x_{\varepsilon} < 1 + \varepsilon$, y como $x_{\varepsilon} \in A$ entonces $x_{\varepsilon} = 1 + \frac{1}{n_{\varepsilon}}$ Así, se tiene que:

$$1 + \frac{1}{n_{\varepsilon}} < 1 + \varepsilon; \quad \frac{1}{n_{\varepsilon}} < \varepsilon$$

Despejando n_{ε} :

$$\frac{1}{\varepsilon} < n_{\varepsilon}$$

Y esto es cierto $\forall \varepsilon \in \mathbb{R}_0^+ \quad \forall n_\varepsilon \in \mathbb{N}$, ya que según la propiedad arquimediana, dado cualquier número real, se verifica que hay números naturales mayores que él.

¿Tiene A mínimo?

Si inf $A \in A \Rightarrow \min A = \inf A$ Suponiendo que inf $A \in A$, se tiene que

$$1 + \frac{1}{n_i} = 1$$

Pero entonces, $\frac{1}{n_i} = 0$ lo cual es absurdo $\forall n_i \in \mathbb{N}$, y por tanto A no tiene mínimo.

¿Y máximo?

Suponiendo que $k = \max A$, entonces por definición:

$$\exists ! k : k \geq a \quad \forall a \in A \quad y \quad k \in A$$

Es decir,

$$k \ge 1 + \frac{1}{n} \quad \forall n \in \mathbb{N}$$

Y como $k \in A$, tiene la forma $1 + \frac{1}{n_k}$, para un único $n_k \in \mathbb{N}$. Entonces, se tiene que

$$1 + \frac{1}{n_k} \ge 1 + \frac{1}{n}$$

, de donde se deduce que $n_k \leq n \quad \forall n \in \mathbb{N}$

Como el único número natural menor o igual que todos es el 1.

$$n_k = 1 \Rightarrow k = 1 + \frac{1}{1} = 2$$

Por tanto, A tiene máximo que es igual a 2.