JOURNÉE DE LA ROBOTIQUE UL 2023

Rétrospectif #3

ROBOT PARALLÈLE À 6-DDL RÉTRO-COMMANDABLE POUR TÂCHES D'INTERACTION SANS CAPTEURS

Thierry Laliberté, Professionnel de recherche

Sous la supervision de : Clément Gosselin

CONCEPT

- Robot classique
 - Architecture sérielle
 - Transmissions à grand rapport de réduction
 - Interaction physique complexe
- Concept proposé
 - Architecture parallèle
 - Petit rapport de réduction
 - Rétro-commandable
 - Interaction physique simple

CONTRÔLE PAR IMPÉDANCE

La rétro-commandabilité permet de contrôler la rigidité sans capteur de force/couple

Exemples:

- Mécanisme plan virtuel
- RCC (Remote Centre Compliance) ajustable
- Murs virtuels

IMPACTS

Utiles pour tâches d'assemblage

- Amortisseurs
 - Inclus dans chaque patte
 - Protègent mécanismes si très grands impacts

DÉTECTION ET LOCALISATION DE BILLOTS DE BOIS POUR CHARGEUSE AUTONOME

Jean-Michel Fortin, Étudiant(e) à la maîtrise

Sous la supervision de : Philippe Giguère

OBJECTIFS DE RECHERCHE

Système de perception pour porteur forestier robotisé

Jeu de données composé d'images de piles de billots annotées

 Tests sur le terrain pour valider la fonctionnalité du système

TRAVAUX RÉALISÉS

A CABLE DRIVEN PARALLEL ROBOT FOR THE CALIBRATION OF RADIOTHERAPY MACHINES

Ramin Mersi, Étudiant à la maîtrise

Sous la supervision de : Philippe Cardou et Louis Archambault

CONTEXTE ET MOTIVATION

(3DoF Automated) Blue Phantom 2 from iba-Dosimetry

Measuring percentage depth dose of a ionizing radiation by a water phantom

The large-scale cable robots as manipulator for wind tunnels by University Duisburg-Essen

PROBLÉMATIQUE ET TRAVAUX DE RECHERCHE

(-10 degrees tilt angle)

Finding optimum geometric design:

- 3⁸=6561 possible architectures
- Design constraints:
 - cylindrical workspace (height=diameter=150 mm)
 - 90° range for tilt angle
- 44 architectures satisfy the design constraints
- 4 architectures remained after considering cable-cable collisions

(35 degrees tilt angle)

(80 degrees tilt angle)

Tracing WFW for 3 different angles of the EE for the selected architecture.

DISCUSSIONS ET RÉSULTATS

UN ROBOT PARALLÈLE À CÂBLES OFFRANT LA PRÉHENSION

Patrice Lambert, professeur adjoint

CONTEXTE ET MOTIVATION

- Les robots parallèles à câbles sont parfois utilisés pour l'haptique mais ne permettent généralement pas la préhension.
- Solution : Utiliser un réseau de 10 câbles passifs maintenues en tension et entrainés par 8 câbles actifs.
- Il en résulte un système haptique à câbles fournissant une manipulation à 6 ddls et 1 ddl de préhension.
- L'utilisateur interagit avec l'appareil en utilisant à la fois la paume de la main, le pouce et l'index.

PROBLÉMATIQUE ET TRAVAUX DE RECHERCHE

DISCUSSIONS ET RÉSULTATS

- Direct kinematics numerical procedure uses all the kinematic and static models developed
- •Use of an NDI Aurora electromagnetic tracker to validate the direct position kinematics
- Average position error: 1.73 mm standard deviation: 1.59 mm
- •Average angular error: 1.45° standard deviation: 0.95°

QUESTIONS POUR RÉTROSPECTIF #3