Korrespondenzen der Laplace-Transformation:

Nr.	Originalfunktion	Bildfunktion
1	f(t)	$F(s) = \int_{0}^{\infty} f(t)e^{-st}dt$
2	t^n	$\frac{n!}{s^{n+1}}$
3	1	$\frac{1}{s}$
4	t	$\frac{1}{s^2}$
5	t^2	$\frac{2}{s^3}$
6	t^3	$\frac{6}{s^4}$
7	e^{at}	$\frac{1}{s-a}$
8	$\sin t$	$\frac{1}{s^2+1}$
9	$\cos t$	$\frac{s}{s^2+1}$
10	$af_1(t) + bf_2(t)$	$aF_1(s) + bF_2(s)$
11	$f^{(n)}(t)$	$s^{n}F(s) - \sum_{i=1}^{n} s^{i-1}f^{(n-i)}(0)$
12	f'(t)	sF(s) - f(0)
13	f''(t)	$s^2 F(s) - s f(0) - f'(0)$
14	f'''(t)	$s^{3}F(s) - s^{2}f(0) - sf'(0) - f''(0)$

Nr.	Originalfunktion	Bildfunktion
15	$t^n f(t)$	$(-1)^n F^{(n)}(s)$
16	tf(t)	-F'(s)
17	$t^2 f(t)$	F''(s)
18	$t^3 f(t)$	-F'''(s)
19	f(at) mit $a > 0$	$\frac{1}{a}F\left(\frac{s}{a}\right)$
20	f(t-a) mit $a>0$	$e^{-sa}F(s)$
21	f(t+a) mit $a>0$	$e^{sa}\left(F(s) - \int_{0}^{a} f(t)e^{-st}dt\right)$
22	$e^{-at}f(t)$	F(s+a)
23	$(f_1 * f_2)(t) = \int_0^t f_1(x) f_2(t - x) dx$	$F_1(s)F_2(s)$
24	$\int_{0}^{t} f(x)dx$	$\frac{1}{s}F(s)$
25	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) du$

1	Integralformel	10	Linearität
11 bis 14	Ableitungssatz Originalfkt.	15 bis 18	Ableitungssatz Bildfkt.
19	Ähnlichkeitssatz	20 und 21	Verschiebungssätze
22	Dämpfungssatz	23	Faltungssatz
24	Integralsatz Originalfkt.	25	Integralsatz Bildfkt.

Nr.	Originalfunktion	Bildfunktion
26	$\frac{e^{at}-1}{a}$	$\frac{1}{s(s-a)}$
27	te^{at}	$\frac{1}{(s-a)^2}$
28	$\frac{e^{at} - e^{bt}}{a - b}$	$\frac{1}{(s-a)(s-b)}$
29	$(1+at)e^{at}$	$\frac{s}{(s-a)^2}$
30	$\frac{a \cdot e^{at} - b \cdot e^{bt}}{a - b}$	$\frac{s}{(s-a)(s-b)}$
31	$\frac{e^{at} - at - 1}{a^2}$	$\frac{1}{s^2(s-a)}$
32	$\frac{(at-1)e^{at}+1}{a^2}$	$\frac{1}{s(s-a)^2}$
33	$\frac{t^2 \cdot e^{at}}{2}$	$\frac{1}{(s-a)^3}$
34	$\left(\frac{at^2}{2} + t\right)e^{at}$	$\frac{s}{(s-a)^3}$
35	$\left(\frac{a^2t^2}{2} + 2at + 1\right)e^{at}$	$\frac{s^2}{(s-a)^3}$
36	$\frac{t^{n-1} \cdot e^{at}}{(n-1)!}$	$\frac{1}{(s-a)^n}$
37	$\sin(at)$	$\frac{a}{s^2 + a^2}$
38	$\cos(at)$	$\frac{s}{s^2 + a^2}$
39	$\sin(at+b)$	$\frac{s \cdot \sin b + a \cdot \cos b}{s^2 + a^2}$
40	$\cos(at+b)$	$\frac{s \cdot \cos b - a \cdot \sin b}{s^2 + a^2}$

Nr.	Originalfunktion	Bildfunktion
41	$e^{bt} \cdot \sin(at)$	$\frac{a}{(s-b)^2 + a^2}$
42	$e^{bt} \cdot \cos(at)$	$\frac{s-b}{(s-b)^2 + a^2}$
43	$\sinh(at)$	$\frac{a}{s^2 - a^2}$
44	$\cosh(at)$	$\frac{s}{s^2 - a^2}$
45	$e^b \cdot \sinh(at)$	$\frac{a}{(s-b)^2 - a^2}$
46	$e^{bt} \cdot \cosh(at)$	$\frac{s-b}{(s-b)^2 - a^2}$
47	$\sin^2(at)$	$\frac{2a^2}{s(s^2+4a^2)}$
48	$\cos^2(at)$	$\frac{s^2 + 2a^2}{s(s^2 + 4a^2)}$
49	$t \cdot \sin(at)$	$\frac{2as}{(s^2+a^2)^2}$
50	$t \cdot \cos(at)$	$\frac{s^2 - a^2}{(s^2 + a^2)^2}$
51	$t \cdot \sinh(at)$	$\frac{2as}{(s^2 - a^2)^2}$
52	$t \cdot \cosh(at)$	$\frac{s^2 + a^2}{(s^2 - a^2)^2}$
53	$\frac{\sin(at)}{t}$	$\arctan\left(\frac{a}{s}\right)$