1

Análisis y Algoritmos

Accel Israel Magaña Rodríguez Universidad de Artes Digitales

Guadalajara, Jalisco

Email: idv17a.amagana@uartesdigitales.edu.mx

Profesor: Efraín Padilla

Mayo 09, 2019

1) Sucesión de Fibonacci

La sucesión de Fibonacci es un objeto matemático de sorprendente ubicuidad. Aparece de forma recurrente en los patrones geométricos de multitud de procesos y estructuras naturales.

Es en sí una sucesión matemática infinita. Consta de una serie de números naturales que se suman de a 2, a partir de 0 y 1.

Problema: Resolver la secuencia matemática en el menor tiempo posible dada una entrada N de argumentos.

• 1.1 Función recursiva

Tiempo de complejidad T(n) = T(n-1) + T(n-2) que es exponencial

$$F_n \begin{cases} 0 & if n = 0 \\ 1 & if n = 1 \\ F_{n-1} + F_{n-2} & if n \ge 2 \end{cases}$$

Dada la previa función: C++

```
if (n <= 1)
{
    return n;
}
else
{
    return FibonacciRecursiva(n - 1) + FibonacciRecursiva(n - 2);
}</pre>
```

• 1.2 Función NO recursiva

Tiempo de complejidad O(1)

$$f(n) = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$$

Dada la previa función: C++

```
double phi = (1 + sqrt(5)) / 2;

return round(pow(phi, n) / sqrt(5));
```

Comparativa:

Si bien a en pocas iteraciones la diferencia es inperseptible, la solución NO recusiva se estana en 0.00002 segundos, mientras que la recursiva crece exponencialmente.

No Recursivo frente a Iteraciones

REFERENCIAS

[1] Alonso, A., & Bermúdez, T. (2002). De conejos y números. La sorprendente sucesión de Fibonacci. La gaceta de la RSME, 175196.