PMA 9: Functions of Several Variables

September 3, 2022

Contents

9 Linear Transformations		ear Transformations	2
	9.1	Definition	2
	9.2	Theorem	2
	0.3	Theorem	9

9 Linear Transformations

9.1 Definition

- (d) dim X = r if V contains an independent set of r vectors but contains no independent set of r + 1 vectors.
- (e) An independent subset of a vector space X which spans X is called a *basis* of X.

9.2 Theorem

Let r be a positive integer. If a vector space X is spanned by a set of r vectors, then dim $X \leq r$.

Proof. If this is false, there is a vector space X which cotains an independent set $Q = \{ \boldsymbol{y}_1, \cdots, \boldsymbol{y}_{r+1} \}$ and which is spanned by a set $S_0 = \{ \boldsymbol{x}_1, \cdots, \boldsymbol{x}_r \}$. [i=0]: Since S_0 spans X, \boldsymbol{y}_1 is in the span of S_0 . Hence,

$$\boldsymbol{y}_1 + b_1 \boldsymbol{x}_1 + \dots + b_r \boldsymbol{x}_r = \boldsymbol{0}$$

Since $y_1 \neq \mathbf{0}$, there exists k_0 such that $b_{k_0} \neq 0$ and x_{k_0} can be expressed as a linear combination of $\{x_1, \dots, x_r, y_1\} \setminus \{x_{k_0}\}$. It follows that X is spanned by $\{x_1, \dots, x_r, y_1\} \setminus \{x_{k_0}\}$, which now we call S_1 and rename the elements by writting $S_1 = \{y_1, x_2, \dots, x_r\}$.

[i=1]: Since S_1 spans X, \boldsymbol{y}_2 is in the span of S_1 . Hence,

$$a_1 \mathbf{y}_1 + \mathbf{y}_2 + b_2 \mathbf{x}_2 + \dots + b_r \mathbf{x}_r = \mathbf{0}$$

Since $\{y_1, y_2\}$ is independent, there exists k_1 such that $x_{k_1} \neq 0$ and x_{k_1} can be expressed as a linear combination of $\{x_2, \dots, x_r, y_1, y_2\} \setminus \{x_{k_1}\}$. It follows that X is spanned by $\{x_2, \dots, x_r, y_1, y_2\} \setminus \{x_{k_1}\}$, which now we call S_2 and rename the elements by writing $S_2 = \{y_1, y_2, x_3, \dots, x_r\}$.

[i=r-1]: After the step [i=r-2], we have $S_{r-1}=\{\boldsymbol{y}_1,\cdots,\boldsymbol{y}_{r-1},\boldsymbol{x}_r\}$ which spans X. Since S_{r-1} spans X, \boldsymbol{y}_r is in the span of S_{r-1} . Hence,

$$a_1 y_1 + \dots + a_{r-1} y_{r-1} + y_r + b_r x_r = 0.$$

Since $\{y_1, \dots, y_r\}$ is independent, $b_r \neq 0$ and x_r can be expressed as a linear combination of $\{y_1, \dots, y_r\}$. It follows that X is spanned by $\{y_1, \dots, y_r\}$, which we call S_r .

Since the set $Q = \{y_1, \dots, y_{r+1}\}$ was independent, y_{r+1} is outside of the span of S_r or the set X. This contradiction proves the theorem.

Corollary : dim $R^n = n$.

Proof. R^n is spanned by the set $E = \{e_1, \dots, e_r\}$. The previous theorem says that dim $R^n \leq n$. Moreover, E is independent set of n vectors, for which dim $R^n \geq n$.

9.3 Theorem

Suppose X is a vectors space, and dim X = n.

- (a) A set E of n vectors in X spans X if and only if E is independent.
- (b) X has a basis, and every basis consists of n vectors.
- (c) If $\{\boldsymbol{y}_1, \dots, \boldsymbol{y}_r\}$ is an independent set in X such that $1 \leq r \leq n$, then X has a basis containing $\{\boldsymbol{y}_1, \dots, \boldsymbol{y}_r\}$.

Proof. (a) Suppose that $E = \{x_1, \dots, x_n\}$ is independent and that $y \in X$. The set $E \cup \{y\}$ is dependent since dim X = n. That is, $a_1x_1 + \dots + a_nx_n + by = 0$ for a set of coefficients a_i 's and b, all of which is not zero. Then, $b \neq 0$ owing to the independence of E. Thus, y is in the span of E. Conversely, suppose that E is dependent. Then, one of its members can be removed (to constitute a set E_0 of n-1 vectors) without changing the span of E. If E spans X, then E_0 spans X too. Then dim $X \leq n-1$ by the previous theorem, which is a contradiction. Thus E spans X.

- (b) Since dim X = n, X contains an independent set of n vectors. By (a), this set spans X and is a basis of X.
- (c) Note first that any subset A of X, consting of more than n elements, is dependent. For, if A were independent, then dim X > n by 9.1.(d).

Now, let $\{\boldsymbol{x}_1,\cdots,\boldsymbol{x}_n\}$ be a basis for X. The set $\{\boldsymbol{y}_1,\cdots,\boldsymbol{y}_r,\boldsymbol{x}_1,\cdots,\boldsymbol{x}_n\}$ is a dependent set which spans X. We can remove an element \boldsymbol{x}_{k_i} for $1 \leq i \leq n-r$ from the set, without changing the span of X, to construct $\{\boldsymbol{y}_1,\cdots,\boldsymbol{y}_r\}\setminus\{x_{k_1},\cdots,x_{k_{n-r}}\}$.