AMENDMENT UNDER 37 C.F.R. § 1.111 Attorney Docket No.: Q109419

Application No.: 10/578,744

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1 - 9. (canceled).

10. (currently amended): The process according to claim $\frac{14}{14}$, wherein the optically active

phenylpropionic acid of the formula (5) or a salt thereof obtained by the method according to

claim <u>1-14</u> is crystallized from a solvent.

11. (original): The process according to claim 10, wherein the solvent used for the

crystallization is a member selected from the group consisting of hydrocarbons, alcohols, ketones

and water, and a mixture thereof.

12. (currently amended): The process according to claim $\frac{1}{2}$, wherein the optically active

3-(4-hydroxyphenyl)propionic acid of the formula (6) or a salt thereof obtained by the method

according to claim ± 15 is crystallized from a solvent.

13. (original): The process according to claim 12, wherein the solvent used for the

crystallization is a member selected from the group consisting of hydrocarbons, alcohols, ketones

and water, and a mixture thereof.

3

14. (Currently amended) A process for producing an optically active phenylpropionic acid of the formula (5):

$$R^{5}$$
 R^{1}
 R^{8}
 R^{8}
 R^{2}
 R^{8}
 R^{2}
(5)

wherein R^1 is a protective group; R^2 is an alkyl group; R^5 to R^8 are each independently a hydrogen atom-or a substituent; and the symbol * is an chiral carbon atom, or a salt thereof.

which comprises subjecting a cinnamic acid of the formula (4):

$$R^{5}$$

$$R^{1}O$$

$$R^{7}$$

$$R^{8}$$

$$R^{2}$$

$$R^{2}$$

$$R^{4}$$

wherein R^1 , R^2 , and R^5 to R^8 are each the same as defined above,

or a salt thereof,

to asymmetric hydrogenation,

wherein the asymmetric hydrogenation is carried out in the presence of a chiral catalyst which is a transition metal complex which is a complex of Ruthenium.

15. (Currently amended) A process for producing an optically active 3-(4-hydroxyphenyl)propionic acid of the formula (6):

$$\begin{array}{c}
R^{5} \\
 + C00H \\
 + R^{8} \\
 + C00H
\end{array}$$
(6)

wherein R^2 is an alkyl group; R^5 to R^8 are each independently a hydrogen atom or a substituent; and the symbol * is a chiral carbon atom,

or a salt thereof, which comprises subjecting a cinnamic acid of the formula (4):

$$R^{5}$$

$$R^{1}0$$

$$R^{7}$$

$$R^{8}$$

$$R^{2}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

wherein R¹, is a protective group;

 R^{2}_{7} and R^{5} to R^{8} are each the same as defined above,

or a salt thereof, to asymmetric hydrogenation,

wherein the asymmetric hydrogenation is carried out in the presence of a chiral catalyst which is a transition metal complex which is a complex of Ruthenium.

16. (Currently amended) A process for producing an optically active 3-(4-hydroxyphenyl)propionic acid of the formula (6):

$$\begin{array}{c}
R^{5} \\
 + C00H \\
 + R^{8} \\
 + C00H
\end{array}$$
(6)

wherein R^2 is an alkyl group; R^5 to R^8 are each independently a hydrogen atom or a substituent; and the symbol * is a chiral carbon atom,

or a salt thereof,

which comprises subjecting a 4-hydroxycinnamic acid of the formula (9):

$$\begin{array}{c|c}
R^5 & COOH \\
HO & R^8 & OR^2
\end{array}$$

wherein R^2 , and R^5 to R^8 are each the same as defined above,

or a salt thereof to asymmetric hydrogenation,

wherein the asymmetric hydrogenation is carried out in the presence of a chiral catalyst which is a transition metal complex which is a complex of Ruthenium.

17. (Currently amended) A process for producing an optically active 3-(4-hydroxyphenyl)propionic acid of the formula (6):

Application No.: 10/578,744

$$\begin{array}{c}
R^{5} \\
 + C00H \\
 + R^{8} \\
 + C00H
\end{array}$$
(6)

wherein R² is an alkyl group; R⁵ to R⁸ are each independently a hydrogen atom or a substituent; and the symbol * is a chiral carbon atom,

or a salt thereof, and an optically active phenylpropionic acid of the formula (5):

$$R^{5}$$
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}

wherein R^1 is a protective group; and R^2 , R^5 to R^8 and the symbol * are each the same as defined above,

or a salt thereof, which comprises subjecting a <u>cinnamic</u>einnanie acid of the formula (4):

$$R^{5}$$

$$R^{1}O$$

$$R^{7}$$

$$R^{8}$$

$$R^{2}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

wherein R¹, R², and R⁵ to R⁸ are each the same as defined above,

or a salt thereof, to asymmetric hydrogenation,

wherein the asymmetric hydrogenation is carried out in the presence of a chiral catalyst which is a transition metal complex which is a complex of Ruthenium.

AMENDMENT UNDER 37 C.F.R. § 1.111 Attorney Docket No.: Q109419

Application No.: 10/578,744

18. (canceled).

19. (new): The process according to claim 16, wherein the optically active 3-(4-

hydroxyphenyl)propionic acid of the formula (6) or a salt thereof obtained by the method

according to claim 16 is crystallized from a solvent.

20. (new): The process according to claim 19, wherein the solvent used for the

crystallization is a member selected from the group consisting of hydrocarbons, alcohols, ketones

and water, and a mixture thereof.

21. (new): The process according to claim 17, wherein the optically active 3-(4-

hydroxyphenyl)propionic acid of the formula (6) or a salt thereof and the optically active

phenylpropionic acid of the formula (5) or a salt thereof obtained by the method according to

claim 17 is crystallized from a solvent.

22. (new): The process according to claim 21, wherein the solvent used for the

crystallization is a member selected from the group consisting of hydrocarbons, alcohols, ketones

and water, and a mixture thereof.

8