Status of the NMRlipids databank

NMRlipids20 workshop

September 6th to 9th 2021 Prague, Czech Republic

Aims of the NMRlipids project

Open Collaboration to understand lipid systems in atomistic resolution

- 1) Make atomistic details great again
- 2) Big Data, Big Success
- 3) Open collaboration is new black

Aims of the NMRlipids project

Open Collaboration to understand lipid systems in atomistic resolution

- 1) MD simulations that correctly capture not only general membrane features but also atomistic character of individual lipids (correct area per lipid does not guarantee correct conformational ensemble)
- 2) Foster novel applications by bringing quality evaluated MD simulations easily accessible for wide user base (automatic analysis of hundreds MD simulation trajectories)
- 3) Develop our open collaboration approach and explore its possibilities

Quality evaluated atomistic resolution MD simulations of biologically relevant lipid mixtures in NMRlipids databank

	PC	PE	PG	PS	chol	CL	GM1	PIP	PA	DAG
РС	X	X	X	X	X					
PE		X								
PG			X							
PS				X						
chol										
CL										
GM1										
PIP										
PA										
DAG										

NMRlipids databank general properties

 Overlay databank: NMRlipids databank contains indexed links to the data. The actual MD simulation data is currently in Zenodo, but could be in any stable location.

 Analysis of the data: NMRlipids databank enables flexible analysis of the content.

 Quality evaluation: NMRlipids databank contains a quality evaluation protocol that is applied to all contributed datasets. Also the quality evaluation results are also stored in the databank.

NMRlipids databank expected applications

- Force field evaluation: What is the best force field for my application?
- Reference simulations: For example, reference pure bilayer simulations for membrane-protein interaction studies.
- Analysis of bilayer properties from large datasets: For example, calculate P-N vector angle from all available PC and PG simulations.
- Exercise and example for sharing simulation data: "PDB" for simulations?

NMRlipids databank structure

https://github.com/NMRLipids/Databank

Raw simulation data

Publicly available, e.g., in Zenodo

Databank builder (Python code: **AddData.py**)

Indexes publicly available **simulation data** based on information given by contributor

(git repository with yaml and data files)

Indexed experimental data (Data/experiments)

Quality evaluator

(Python code: searchDATABANK.py, QualityEvaluation.py)

Connects experimental and simulation Datasets and calculates quality measures

NMRlipids Databank

(git repository with yaml files)

Indexed information on simulation data (**Data/Simulations**) and quality evaluation (**Data/QualityEvaluation**)

Databank analyzers

(Jupyter notebooks, Python codes)

Pulls the data from databank to perform analyses

Results

(git repository with yaml and data files)

Results from the databank can Be indexed as the databank (for example *Data/DENSITIES*)

Databank builder: AddData.py

https://github.com/NMRLipids/Databank/blob/main/Scripts/BuildDatabank/AddData.py

Instructions to add data: https://github.com/NMRLipids/Databank

Instructions to make info file:

https://github.com/NMRLipids/Databank/blob/main/Scripts/BuildDatabank/info_files/README.md

Usage of AddData.py

- python3 AddData.py InfoFile.yaml
- Info files currently available at: https://github.com/NMRLipids/Databank/tree/main/Scripts/BuildDatabank/info_files

Output of AddData.py

- Information from info files + automatically extracted information: Number of molecules, temperature, length of trajectory, size of trajectory, number of atoms, date of running the AddData.py
- These are stored in README.yaml files located in folders based hash IDs:

https://github.com/NMRLipids/Databank/tree/main/Data/Simulations

Simulations in NMRlipids Databank

- https://github.com/NMRLipids/Databank/tree/main/Data/Simulations
- Each folder corresponds one simulation
- Folders are named according to the hash of trajectory and tpr file
- Folders contain README.yaml which should contain all the relevant information on the simulation!
- Statistics:

https://github.com/NMRLipids/Databank/blob/main/Scripts/AnalyzeDatabank/stats.ipynb

NMRlipids databank structure

Raw simulation data

Publicly available, e.g., in Zenodo

Databank builder (Pvthon code: AddData.py)

Indexes publicly available **simulation data** based on information given by contributor

(git repository with yaml and data files)

Indexed experimental data (Data/experiments)

Quality evaluator

(Python code: searchDATABANK.py, QualityEvaluation.py)

Connects experimental and simulation Datasets and calculates quality measures

NMRlipids Databank

(git repository with yaml files)

Indexed information on simulation data (**Data/Simulations**) and quality evaluation (**Data/QualityEvaluation**)

Databank analyzers

(Jupyter notebooks, Python codes)

Pulls the data from databank to perform analyses

Results

(git repository with yaml and data files)

Results from the databank can Be indexed as the databank (Data/DENSITIES)

Experimental data

- https://github.com/NMRLipids/Databank/tree/main/Data/experiments
- Each folder corresponds one experimental dataset
- Folders are named according to DOI of experimental data
- Folders contain README.yaml which should contain all the relevant information to connect experimental and simulation datasets! Should we add something?
- Currently: DOI of the publication, temperature, molar fractions of lipids, ion concentration, total lipid concentration (or full hydration), information of counterions

Connecting experimental and simulation data

- https://github.com/NMRLipids/Databank/blob/main/Scripts/BuildDatabank/searchDATABANK.py
- Searches simulation-experimental data pairs where
 - temperature is the same within ± 2 degrees
 - molar concentrations are within ± 5 percentage units
 - counterions are the same
- When pair is found, the path to experimental dataset is written in simulation README file, for example, see

https://github.com/NMRLipids/Databank/tree/main/Data/Simulations/0c2/1a9/0c21a9be136ea0eb9df9e5c6cdc19f723a0af245/9ac73b6a98acb54a7a67a5d690794ad7f1e4a1d1

Quality evaluation

- https://github.com/NMRLipids/Databank/blob/main/Scripts/BuildDatabank/QualityEvaluation.py
- Calculates the order parameters for all simulations
- Evaluates the quality of simulations for which experimental data is available
- Quality for each order parameter is calculated as a distance from experimental value and stored to *OrderParameters.json files in https://github.com/NMRLipids/Databank/tree/main/Data/QualityEvaluation
- Also quality for headgroup+glycerol backbone, sn-1, and sn-2 acyl chains are evaluated and stored to *FragmentQuality.json files in same folders

NMRlipids databank structure

Raw simulation data

Publicly available, e.g., in Zenodo

Databank builder (Pvthon code: AddData.py)

Indexes publicly available **simulation data** based on information given by contributor

(git repository with yaml and data files)

Indexed experimental data (Data/experiments)

Quality evaluator

(Python code: searchDATABANK.py, QualityEvaluation.py)

Connects experimental and simulation Datasets and calculates quality measures

NMRlipids Databank

(git repository with yaml files)

Indexed information on simulation data (**Data/Simulations**) and quality evaluation (**Data/QualityEvaluation**)

Databank analyzers

(Jupyter notebooks, Python codes)

Pulls the data from databank to perform analyses

Results

(git repository with yaml and data files)

Results from the databank can Be indexed as the databank (Data/DENSITIES)

Databank analyzer

- Goes through the README.yaml files in the databank
- Performs wanted analysis for selected simulations
- Results can be saved in separate results databank with the same indexing
- Result databanks can be browsed in similar manner for plotting
- Template at https://github.com/NMRLipids/Databank/blob/main/Scripts/AnalyzeDatabank/template.ipynb

Databank Analyzer Examples

1) Calculate the P-N vector angles of POPS, POPE, POPG and POPC lipids from each simulation

Code: https://github.com/NMRLipids/NMRlipidsIVPEandPG/blob/master/scripts/calcPNvectors.py

Results: https://github.com/NMRLipids/NMRlipidsIVPEandPG/tree/master/Data/HGorientation

Databank Analyzer Examples

2) Find data for order parameter changes upon addition of CaCl_2 from all available POPC:POPG mixtures

Code: https://github.com/NMRLipids/NMRlipidsIVPEandPG/blob/master/scripts/plotOPsWITHsalt.ipynb

Results:

Databank Analyzer Examples

3) How area per lipid changes in PC:PG lipid mixtures as a function of PG concentration

Code: https://github.com/NMRLipids/NMRlipidsIVPEandPG/blob/master/scripts/calcAPL.py https://github.com/NMRLipids/NMRlipidsIVPEandPG/blob/master/scripts/plotAPLs.ipynb

Results:

NMRlipids databank structure

Raw simulation data

Publicly available, e.g., in Zenodo

Databank builder (Pvthon code: AddData.py)

Indexes publicly available **simulation data** based on information given by contributor

(git repository with yaml and data files)

Indexed experimental data (Data/experiments)

Quality evaluator

(Python code: searchDATABANK.py, QualityEvaluation.py)

Connects experimental and simulation Datasets and calculates quality measures

NMRlipids Databank

(git repository with yaml files)

Indexed information on simulation data (**Data/Simulations**) and quality evaluation (**Data/QualityEvaluation**)

Databank analyzers

(Jupyter notebooks, Python codes)

Pulls the data from databank to perform analyses

Results

(git repository with yaml and data files)

Results from the databank can Be indexed as the databank (Data/DENSITIES)

NMRlipids databank publication plan

- Article describing the databank and highlight applications will be prepared.
- At least all trajectories contributed to the NMRlipids will be included (approximately 300-400 trajectories currently).
- Possible highlight applications:
 - Quality ranking of all simulation
 - Analysis of rare phenomena using large datasets, such as water permeation through bilayers or lipid flip-flops
 - Example of analysis useful for community who are typically not using MD simulations, such as T₁ spin relaxation times of water near membranes that are used in MRI imaging
- NMRlipids authorship rules will be applied in the first publication of the databank
 (authorship will be offered to all contributors and order is alphabetical) with two exceptions:
 Samuli Ollila will the last author and Anne Kiirikki will be the first.

Work in progress

- Quality evaluation and ranking in progress by Anne Kiirikki and Samuli Ollila
- Addition of available data in Zenodo into the databank by Lara Bort
- Codes to analyze lipid flip-flops, water diffusion, and water spin relaxation times in progress by Anne Kiirikki and Samuli Ollila https://github.com/NMRLipids/Databank/blob/main/Scripts/AnalyzeDatabank/calcWATERdiffusion.py https://github.com/NMRLipids/Databank/blob/main/Scripts/AnalyzeDatabank/plotWATERdiffusion.ipynb

Open issues

- United atom simulations: Should be maybe translated to all atom before addition?
- Should we include stereospecific information on isomers?
- Extending to other than Gromacs simulations: OpenMM and possibly Amber. Others?
- Calculation of form factors
- "Sanity checks" for the data: Equlibration etc.
- NMRlipids III (systems with cholesterol): Should we publish the reported data within the databank publication?

Topics tacked in this workhop

- 1) Quality evaluation: Define the quality measures for order parameters, find robust code for form factor and include this into the quality measure
- 2) Extension to other programs: OpenMM and Amber
- **3) Analysis of the data:** How to present the available simulations, interesting analyses, etc
- 4) Addition of simulation and experimental data
- 5) NMRlipids VI: Can we do something to advance the project?