import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import norm
from scipy.stats import binom, geom
import math
from scipy.stats import ttest_lsamp, ttest_ind, ttest_rel
from scipy.stats import chisquare, chi, chi2, chi2_contingency
from scipy.stats import f_oneway, kruskal, shapiro
from statsmodels.graphics.gofplots import qqplot

yulu = pd.read_csv("https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/428/original/bike_sharing.csv?1642089089")

yulu.head()

\Rightarrow	datetime		season	holiday workingday		weather	temp	atemp	humidity windspeed		casual registered		count	
	0	2011-01-01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3	13	16	11.
	1	2011-01-01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	8	32	40	
	2	2011-01-01 02:00:00	1	0	0	1	9.02	13.635	80	0.0	5	27	32	
	3	2011-01-01 03:00:00	1	0	0	1	9.84	14.395	75	0.0	3	10	13	
	4	2011-01-01 04:00:00	1	0	0	1	9.84	14.395	75	0.0	0	1	1	

Exploratory data analysis steps

yulu.describe()

	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count	
count	10886.000000	10886.000000	10886.000000	10886.000000	10886.00000	10886.000000	10886.000000	10886.000000	10886.000000	10886.000000	10886.000000	ıl.
mean	2.506614	0.028569	0.680875	1.418427	20.23086	23.655084	61.886460	12.799395	36.021955	155.552177	191.574132	
std	1.116174	0.166599	0.466159	0.633839	7.79159	8.474601	19.245033	8.164537	49.960477	151.039033	181.144454	
min	1.000000	0.000000	0.000000	1.000000	0.82000	0.760000	0.000000	0.000000	0.000000	0.000000	1.000000	
25%	2.000000	0.000000	0.000000	1.000000	13.94000	16.665000	47.000000	7.001500	4.000000	36.000000	42.000000	
50%	3.000000	0.000000	1.000000	1.000000	20.50000	24.240000	62.000000	12.998000	17.000000	118.000000	145.000000	
75%	4.000000	0.000000	1.000000	2.000000	26.24000	31.060000	77.000000	16.997900	49.000000	222.000000	284.000000	
max	4.000000	1.000000	1.000000	4.000000	41.00000	45.455000	100.000000	56.996900	367.000000	886.000000	977.000000	

yulu.info()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 10886 entries, 0 to 10885
    Data columns (total 12 columns):
                    Non-Null Count Dtype
         Column
     0
         datetime
                  10886 non-null object
                    10886 non-null int64
         season
         holiday
                   10886 non-null int64
         workingday 10886 non-null int64
     4
         weather
                   10886 non-null int64
     5
         temp
                    10886 non-null float64
                    10886 non-null float64
     6
         atemp
     7 humidity 10886 non-null int64
     8 windspeed 10886 non-null float64
     9 casual
                    10886 non-null int64
     10 registered 10886 non-null int64
     11 count
                    10886 non-null int64
    dtypes: float64(3), int64(8), object(1)
    memory usage: 1020.7+ KB
yulu["season"].nunique()
yulu["holiday"].nunique()
yulu["workingday"].nunique()
    2
yulu["weather"].nunique()
    4
yulu["temp"].nunique()
    49
yulu["atemp"].nunique()
    60
yulu["humidity"].nunique()
    89
yulu["windspeed"].nunique()
    28
```

```
10/1/23, 10:01 PM
```

```
yulu["casual"].nunique()
    309
yulu["registered"].nunique()
    731
yulu["count"].nunique()
    822
yulu.groupby(["season"])["count"].agg(["min","max"])
            min max
     season
              1 801
       1
              1 873
              1 977
              1 948
yulu.groupby(["holiday"])["count"].agg(["min","max"])
             min max 🚃
     holiday
       0
              1 977
       1
              1 712
yulu.groupby(["workingday"])["count"].agg(["min","max"])
               min max
     workingday
                 1 783
         1
                 1 977
yulu.groupby(["weather"])["count"].agg(["min","max"])
```

Yulu Project.ipynb - Colaboratory

```
min max
     weather
yulu['datetime'] = pd.to datetime(yulu['datetime'])
yulu.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 10886 entries, 0 to 10885
    Data columns (total 12 columns):
     # Column
                    Non-Null Count Dtype
         datetime 10886 non-null datetime64[ns]
     1
         season
                    10886 non-null int64
         holiday
                   10886 non-null int64
     3
         workingday 10886 non-null int64
     4
         weather
                   10886 non-null int64
     5
         temp
                    10886 non-null float64
     6
                    10886 non-null float64
         atemp
         humidity 10886 non-null int64
     8
         windspeed 10886 non-null float64
     9 casual
                    10886 non-null int64
     10 registered 10886 non-null int64
     11 count
                    10886 non-null int64
    dtypes: datetime64[ns](1), float64(3), int64(8)
    memory usage: 1020.7 KB
yulu['date'] = pd.to_datetime(yulu['datetime']).dt.date
yulu['time'] = pd.to_datetime(yulu['datetime']).dt.time
yulu['year'] = pd.to datetime(yulu['datetime']).dt.year
yulu.drop('datetime',axis=1,inplace= True)
yulu['date'].nunique()
    456
yulu['time'].nunique()
    24
yulu['year'].nunique()
    2
yulu.groupby(['year'])['count'].agg(["min","max"])
```


	date	time	
count	10886	10886	11
unique	456	24	
top	2011-01-01	12:00:00	
freq	24	456	

Data Visualization

sns.kdeplot(data=yulu, x="count")

yulu.head()

	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count	date	time	year	
0	1	0	0	1	9.84	14.395	81	0.0	3	13	16	2011- 01- 01	00:00:00	2011	
1	1	0	0	1	9.02	13.635	80	0.0	8	32	40	2011- 01- 01	01:00:00	2011	
2	1	Ω	0	1	9 02	13 635	80	0.0	5	27	32	2011- 01-	02.00.00	2011	

<Axes: xlabel='count', ylabel='Density'>

sns.boxplot(data=yulu, x='workingday', y='count')

<Axes: xlabel='workingday', ylabel='count'>

sns.boxplot(data=yulu, x='season', y='count')

<Axes: xlabel='weather', ylabel='count'>

Observations on above plot

- 1. The Box plot which workingday(if day is neither weekend nor holiday is 1, otherwise is 0) is relations between weather and count(no of total rental bikes including both casual and registered)* pepole use bikes on weekdays also more offten.
- 2. The Box plot is relations between season(1: spring, 2: summer, 3: fall, 4: winter) and count(no of total rental bikes including both casual and registered)* people use less bikes in spring where people use more bike in fall and summer and again we can see pepole using less bikes in winter.
- 3. The Box plot is relations between weather and count(no of total rental bikes including both casual and registered)* we can see that for Clear, Few clouds, partly cloudy & partly cloudy weather more rental bikes is used. and too low bikes is used on Heavy Rain + Ice Pallets + Thunderstorm + Mist & Snow + Fog weather.

* *Hypothesis Testing *

```
workingdays = yulu.loc[(yulu["workingday"]==1)&(yulu["count"])]
not workingdays = yulu.loc[(yulu["workingday"]==0)&(yulu["count"])]
holidays = yulu.loc[(yulu['holiday']==1)&(yulu['count'])]
not holidays = yulu.loc[(yulu['holiday']==0)&(yulu['count'])]
workingdays.shape , not workingdays.shape
    ((3676, 14), (1708, 14))
holidays.shape , not holidays.shape
    ((152, 14), (5232, 14))
mean workingdays = np.mean(workingdays["count"])
mean_not_workingdays = np.mean(not_workingdays["count"])
print("mean workingdays=", mean workingdays)
print("mean_not_workingdays=", mean_not_workingdays)
    mean workingdays= 190.5963003264418
    mean_not_workingdays= 188.9695550351288
sd_workingdays = np.std(workingdays["count"])
sd_not_workingdays = np.std(not_workingdays["count"])
print("sd workingdays=", sd workingdays)
print("sd_not_workingdays=", sd_not_workingdays)
    sd workingdays= 184.35309424998593
    sd_not_workingdays= 173.95227752934838
mean_holidays = np.mean(holidays["count"])
mean not_holodays = np.mean(not_holidays["count"])
sd holidays = np.std(holidays["count"])
sd not holidays = np.std(not holidays["count"])
print("mean holidays=", mean holidays)
print("mean_not_holodays=", mean_not_holodays)
print("sd_holidays=", sd_holidays)
print("sd_not_holidays=", sd_not_holidays)
    mean_holidays= 181.8815789473684
    mean_not_holodays= 190.3184250764526
    sd holidays= 160.51885174622942
    sd_not_holidays= 181.6779112530606
ttest_ind(workingdays["count"], not_workingdays["count"]) ## TTest to check if Working Day has an effect on the number of electric cycles rented ##
    TtestResult(statistic=0.3066590378257357, pvalue=0.7591147744716455, df=5382.0)
ttest ind(holidays["count"], not holidays["count"]) ## Ttest to check if holi Day has an effect on the number of electric cycles rented ##
    TtestResult(statistic=-0.5660430322527081, pvalue=0.5713881275169148, df=5382.0)
```

ANNOVA

yulu.groupby("weather")["count"].mean()

weather

1 205.236791

2 178.955540

3 118.846333

4 164.000000

Name: count, dtype: float64

yulu["random_group"] = np.random.choice(["g1","g2","g3","g4"],size=len(yulu))

yulu.head()

	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count	date	time	year	rando
0	1	0	0	1	9.84	14.395	81	0.0	3	13	16	2011- 01- 01	00:00:00	2011	
1	1	0	0	1	9.02	13.635	80	0.0	8	32	40	2011- 01- 01	01:00:00	2011	
4												0044			•

sns.boxplot(x="random_group",y='count',data=yulu)

<Axes: xlabel='random_group', ylabel='count'>


```
g1 = yulu[yulu["random_group"]=="g1"]["count"]
g2 = yulu[yulu["random_group"]=="g2"]["count"]
g3 = yulu[yulu["random_group"]=="g3"]["count"]
g4 = yulu[yulu["random_group"]=="g4"]["count"]
print(g1.mean())
print(g2.mean())
print(g3.mean())
print(g4.mean())
    190.1445960900037
    196.1858108108108
    190.96884057971013
    189.12431842966194
f_oneway(g1, g2, g3, g4)
    F_onewayResult(statistic=0.809776511373607, pvalue=0.48822773376715767)
# H0: All groups have same mean
# Ha: One or more groups have different mean
f_stats, p_value = f_oneway(g1, g2, g3, g4)
if p_value < 0.05:
    print("Reject H0")
else:
    print("Fail to reject H0")
    print("All groups have same mean")
    Fail to reject H0
    All groups have same mean
yulu.head()
```

	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count	date	time	year	random_group	
0	1	0	0	1	9.84	14.395	81	0.0	3	13	16	2011-01-01	00:00:00	2011	g4	11.
1	1	0	0	1	9.02	13.635	80	0.0	8	32	40	2011-01-01	01:00:00	2011	g3	
2	1	0	0	1	9.02	13.635	80	0.0	5	27	32	2011-01-01	02:00:00	2011	g3	
3	1	0	0	1	9.84	14.395	75	0.0	3	10	13	2011-01-01	03:00:00	2011	g3	
4	1	0	0	1	9.84	14.395	75	0.0	0	1	1	2011-01-01	04:00:00	2011	g3	

```
w1 = yulu[yulu["weather"]== 1]["count"]
w2 = yulu[yulu["weather"]== 2]["count"]
w3 = yulu[yulu["weather"]== 3]["count"]
w4 = yulu[yulu["weather"]== 4]["count"]
```

```
print(w1.mean())
print(w2.mean())
print(w3.mean())
print(w4.mean())
    205.23679087875416
    178.95553987297106
    118.84633294528521
    164.0
# H0: All groups have same mean
# Ha: One or more groups have different mean
f_{oneway(w1,w2,w3,w4)}
    F_onewayResult(statistic=65.53024112793271, pvalue=5.482069475935669e-42)
kruskal(w1,w2,w3,w4)
    KruskalResult(statistic=205.00216514479087, pvalue=3.501611300708679e-44)
kruskal(g1,g2,g3,g4)
    KruskalResult(statistic=2.9299750979948245, pvalue=0.4025481236776548)
Chi-square test
```

yulu.head()

	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count	date	time	year	rando
0	1	0	0	1	9.84	14.395	81	0.0	3	13	16	2011- 01- 01	00:00:00	2011	
1	1	0	0	1	9.02	13.635	80	0.0	8	32	40	2011- 01- 01	01:00:00	2011	
4												0044			•

season_weather = pd.crosstab(index = yulu['season'],columns = yulu['weather']) season_weather

```
1 2 3 4 ....
     weather
# HO: season does not impact of weather during rented the bikes
# Ha: season impact of weather during rented the bikes
chi_stat, p_value, df, exp_value = chi2_contingency(season_weather)
print(chi_stat)
print(p_value)
print(df)
print(exp_value)
if p_value < 0.05:
    print("Reject H0")
    print("Gender impacts product")
    49.158655596893624
    1.549925073686492e-07
    [[1.77454639e+03 6.99258130e+02 2.11948742e+02 2.46738931e-01]
     [1.80559765e+03 7.11493845e+02 2.15657450e+02 2.51056403e-01]
     [1.80559765e+03 7.11493845e+02 2.15657450e+02 2.51056403e-01]
     [1.80625831e+03 7.11754180e+02 2.15736359e+02 2.51148264e-01]]
    Reject H0
    Gender impacts product
```