Generalization of Tensor Factorization and Applications

Kohei Hayashi

Collaborators:

T. Takenouchi, T. Shibata, Y. Kamiya, D. Kato, K. Kunieda, K. Yamada, K. Ikeda, R. Tomioka, H. Kashima

May 14, 2012

Relational data

is a collection of relationships among multiple objects.

Relational data

is a collection of relationships among multiple objects.

Relational data

is a collection of relationships among multiple objects.

can represent as a tensor with missing values.

Issue of tensor representation

Tensor representation is generally high-dimensional and large-scale

• e.g. 1,000 users $\times 1,000$ items $\times 1,000$ times = total 1,000,000,000 relationships

Dimensional reduction techniques such as tensor factorization is used.

Tensor factorization

Tucker decomposition [Tucker 1966]: a tensor factorization method assuming

- observation noise is Gaussian
- underlying tensor is low-dimensional

These assumptions are general ... but are not always true.

Contributions

Generalize Tucker decomposition and propose two new models:

- Exponential family tensor factorization (ETF) [Joint work with Takenouchi, Shibata, Kamiya, Kunieda, Yamada, and Ikeda]
 - Generalize the noise distribution.
 - Can handle a tensor containing mixed discrete and continuous values
- Full-rank tensor completion (FTC)
 [Joint work with Tomioka and Kashima]
 - Kernelize Tucker decomposition
 - Complete missing values without reducing the dimensionality.

Outline

- Tucker decomposition
- Exponential family tensor factorization (ETF)
- § Full-rank tensor completion (FTC)
- Conclusion

Outline

- Tucker decomposition
- Exponential family tensor factorization (ETF)
- § Full-rank tensor completion (FTC)
- Conclusion

Tucker decomposition

$$x_{ijk} = \sum_{q=1}^{K_1} \sum_{r=1}^{K_2} \sum_{s=1}^{K_3} u_{iq}^{(1)} u_{jr}^{(2)} u_{ks}^{(3)} z_{qrs} + \varepsilon_{ijk}$$
 (1)

• ε : i.i.d Gaussian noise

Tucker decomposition

$$x_{ijk} = \sum_{q=1}^{K_1} \sum_{r=1}^{K_2} \sum_{s=1}^{K_3} u_{iq}^{(1)} u_{jr}^{(2)} u_{ks}^{(3)} z_{qrs} + \varepsilon_{ijk}$$
 (1)

• ε : i.i.d Gaussian noise

Tucker decomposition

$$x_{ijk} = \sum_{q=1}^{K_1} \sum_{r=1}^{K_2} \sum_{s=1}^{K_3} \underline{u_{iq}^{(1)} u_{jr}^{(2)} u_{ks}^{(3)}} \underline{z_{qrs}} + \varepsilon_{ijk}$$
 (1)

• ε : i.i.d Gaussian noise

Vectorized form

Let $\vec{\mathbf{x}} \in \mathbb{R}^D$ and $\vec{\mathbf{z}} \in \mathbb{R}^K$ denote vectorized $\underline{\mathbf{X}}$ and $\underline{\mathbf{Z}}$, resp., then

$$\vec{\mathbf{x}} = \mathbf{W}\vec{\mathbf{z}} + \vec{\boldsymbol{\varepsilon}}$$
 where $\mathbf{W} \equiv \mathbf{U}^{(3)} \otimes \mathbf{U}^{(2)} \otimes \mathbf{U}^{(1)}$.

- $D \equiv D_1 D_2 D_3$, $K \equiv K_1 K_2 K_3$
- ⊗: the Kronecker product

Tucker decomposition = A linear Gaussian model

$$\vec{\mathbf{x}} \sim N(\vec{\mathbf{x}} \mid \mathbf{W}\vec{\mathbf{z}}, \sigma^2 \mathbf{I})$$

Rank of tensor

Call dimensionalities of the core tensor rank of tensor.

• Rank of $\underline{\mathbf{X}}$ is (K_1, K_2, K_3) .

Rank of tensor represents its complexity

low-rank tensor has less information

Outline

- Tucker decomposition
- Exponential family tensor factorization (ETF)
- § Full-rank tensor completion (FTC)
- 4 Conclusion

Motivation: heterogeneous tensor

Tucker decomposition assumes Gaussian noise

not appropriate for such data

Motivation: heterogeneous tensor

Multisensor measurements

 different data types for each sensor

Tucker decomposition assumes Gaussian noise

not appropriate for such data

Approach

generalize Tucker decomposition, assuming a different distribution for each element

Exponential family tensor factorization

Likelihood

$$\vec{\mathbf{x}} \sim \prod_{d=1}^{D} \underbrace{\mathrm{Expon}_{d}(\vec{x}_{d} \mid \vec{\theta}_{d})}_{\text{exp. family}}, \quad \underbrace{\vec{\boldsymbol{\theta}} \equiv \mathbf{W}\vec{\mathbf{z}}}_{\text{Tucker decomp.}}$$
where
$$\mathrm{Expon}(x \mid \boldsymbol{\theta}) \equiv \exp\left[x\boldsymbol{\theta} - \psi(\boldsymbol{\theta}) + F(x)\right]$$

exponential family: a class of distributions

Priors

- for $\vec{\mathbf{z}}$: a Gaussian prior $N(\mathbf{0}, \mathbf{I})$
- for $\mathbf{U}^{(m)}$: a Gaussian prior $N(\mathbf{0}, \alpha_m^{-1}\mathbf{I})$

Joint log-likelihood

$$\mathcal{L} = \vec{\mathbf{x}}^{\top} \vec{\mathbf{W}} \vec{\mathbf{z}} - \sum_{d=1}^{D} \psi_{h_d} (\mathbf{w}_d^{\top} \vec{\mathbf{z}})$$
$$- \frac{1}{2} ||\vec{\mathbf{z}}||^2 - \sum_{m=1}^{M} \frac{\alpha_m}{2} ||\mathbf{U}^{(m)}||_{\text{Fro}}^2 + \text{const.}$$

Estimate parameters by Bayesian inference.

Bayesian inference

Marginal-MAP estimator:

$$\underset{\mathbf{U}^{(1)},...,\mathbf{U}^{(M)}}{\operatorname{argmax}} \int \exp[\mathcal{L}(\vec{\mathbf{z}},\mathbf{U}^{(1)},\ldots,\mathbf{U}^{(M)})] d\vec{\mathbf{z}}$$

• The integral is not analytical.

Develop efficient yet accurate approximation with Laplace approximation and Gaussian process.

- Computational cost is still higher than Tucker dcomp.
- For a long and thin tensor (e.g. time series), online algorithm is applicable (see thesis.)

Experiments

Anomaly detection by ETF

Purpose Find irregular parts of tensor data Method Apply distance-based outlier $DB(p,D) \ {\tiny [Knorr+\ VLDB'00]} \ \text{to the estimated}$ factor matrix $\mathbf{U}^{(m)}$

Definition of DB(p, D)

"An object O is a DB(p, D) outlier if at least fraction p of the objects lies at a distance greater than D from O."

Data set

A time series of multisensor measurements

- Each sensor recorded the human behavior (e.g. position) of researchers in NEC lab. for 8 month.
 - $6 \text{ (sensors)} \times 21 \text{ (persons)} \times 1927 \text{ (hours)}$

	Sensor	Туре	Min	Max
\mathbf{X}_1	# of sent emails	Count	0.00	14.00
\mathbf{X}_2	# of received emails	Count	0.00	15.00
\mathbf{X}_3	# of typed keys	Count	0.00	50422.00
\mathbf{X}_4	X coordinate	Real	-550.17	3444.15
\mathbf{X}_5	Y coordinate	Real	128.71	2353.55
\mathbf{X}_6	Movement distance	Non-negative	0.00	203136.96

Evaluation

List of irregular events are provided.

Examples of irregular events				
Date	Time	Description		
Dec 21	All day	Private incident		
Dec 22	15:00	Monthly seminar		
	16:00			
Jun 15	13:00	Visiting tour		
:	:	<u>:</u>		

- Evaluate as a binary classification
- 50% are missing, 10 trials
- Apply ETF with online algorithm

Result: classification performance

Result: classification performance

✓ ETF well detect anomaly events

Skip the rest