

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Industrial

- 00008

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA			
Mecánica Clásica			

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Primero	114012	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al alumno el conocimiento para comprender y resolver problemas relacionados con la mecánica clásica, el trabajo, la energía y el movimiento con aplicaciones a la ingeniería y a la física.

TEMAS Y SUBTEMAS

1. Dinámica.

- 1.1. Primera Ley de Newton.
- 1.2. Segunda Ley de Newton.
- 1.3. Tercera Ley de Newton.
- 1.4. Aplicaciones a la Segunda Ley de Newton.
- 1.5. Fricción.

2. Trabajo y energía.

- 2.1. Definición de trabajo y energía.
- 2.2. Potencia.
- 2.3. Energía cinética.
- 2.4. Fuerzas conservativas y energía potencial.
- 2.5. Curvas de energía potencial.
- 2.6. Teorema de la conservación de la energía.

3. Sistemas de partículas.

- 3.1. Sistemas de muchas partículas.
- 3.2. Centro de masa.

4. Colisiones.

- 4.1. Impulso.
- 4.2. Conservación de ímpetu en una colisión.
- 4.3. Colisiones en una y dos dimensiones.

5. Cinemática de la rotación.

- 5.1. Movimientos de rotación.
- 5.2. Aceleración angular constante.
- 5.3. Cantidades de rotación como constantes.

6. Dinámica de la rotación.

- 6.1. Energía cinética de rotación.
- 6.2. Inercia de rotación.
- 6.3. Inercia de rotación de cuerpos sólidos.
- 6.4. Torca sobre una partícula.
- 6.5. Sistemas de partículas.
- 6.6. Ímpetu angular y velocidad angular.
- 6.7. Conservación del ímpetu.

7. Oscilaciones.

- 7.1. Sistemas oscilatorios.
- 7.2. Oscilador armónico simple.
- 7.3. Movimiento armónico simple.
- 7.4. Aplicaciones del movimiento armónico simple.

Universidad Tecnológica de la Mixteca Clave DGP: 200089

Ingeniería Industrial

PROGRAMA DE ESTUDIOS

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor, en donde presente conceptos y resuelva ejercicios. Revisión bibliográfica del tema en libros y artículos científicos por los alumnos. Discusión de los diferentes temas en seminarios. Práctica de laboratorio.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender los aspectos de teoría y práctica. La evaluación comprenderá de tres evaluaciones parciales que tendrán una equivalencia del 50% y una evaluación final que corresponderá al 50% restante.

BIBLIOGRAFÍA

Libros Básicos:

- 1. Ingeniería Mecánica: Dinámica, Hibbeler R. C. Prentice Hall.
- 2. Mecánica vectorial para ingenieros: Dinámica. Beer F., Johnston E. R., Mazureck, D. F. Mc Graw Hill.
- 3. Física para Ciencias e Ingenieria , Mckelvey John P. , Grotch H. , Ed. HARLA.
- 4. Física I: Resnick, R. Halliday, D., Ed. CECSA. 4a edición, México. 1990.

Libros de Consulta:

- 1. Física: Cutnell, John D. Jonson, Kennet H.W. Limusa, México. 2001.
- 2. Física 2: Blasco Vilatela Alberto, Jaraiz Cendan José, Blanco Laffon Begoyam QC23F5 1988.
- 3. Física: Principios con Aplicaciones. Giancoli, Douglas, C. Prentice-Hall Hispanoamericana. México. 1998.
- 4. Física: Alonso, M. y Fin, E. Fondo Educativo Interamericano. México. 1990.
- 5. Física: Serway, Raymond A./Faughn, Jenny S. Pearson Education. México. 2001.

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en Física.

DR. IGNACIO HERNANDEZ CASTILLO JEFE DE CARRERA

Vo. Bo

JEPKTYRA DE CARRERA

DR. AGUSTIN SANTIAGO ALVARADO

VICE-RECTOR ACADÉMICO RECTORIA
ACADÉMICA