Note: for final, once redor whik known, other known

=
$$ke [|v \frac{M!}{M!} - N! |v \frac{N!}{N!} + N |v \frac{N!}{M!} - N| |v \frac{N!}{N!} + N |v \frac{N!}{M!} - N| |v \frac{N!}{N!} + N |v \frac{N!}{M!} - N| |v \frac{N!}{N!} - N| |v \frac{N$$

if
$$N_f >> N$$
 and $N_i >> N$

$$\approx k_B \left[0 - 0 + N \ln \frac{N_f}{N_i} \right]$$
on $V_f = N_f \cdot n$

$$V_i = N_i \cdot n$$

= NKB
$$V\left(\frac{N!}{N!}, \frac{N}{N}\right) = NEP\left(\frac{N!}{N!}\right)$$

2) ai.
$$L = (N_d - N_u) \cdot l$$

 $N_d + N_u = N$
=) $L = (N - 2N_u) \cdot l$
 $L = (2N_d - N) \cdot l$

$$N_{d} = \frac{1}{2} \left[N - \frac{\varepsilon}{mgr} \right]$$

[ii]
$$S = (N_0) = \frac{1}{N_0!} [\frac{1}{N_0!} (n - \frac{N_0!}{N_0!})] [\frac{1}{N_0!} (n - \frac{N_0!}{N_0!})]$$

$$\frac{1}{k_{BT}} = \left(\frac{\partial \xi_{k_{B}}}{\partial \varepsilon}\right) = -\frac{1}{2}\left(\frac{\varepsilon}{\partial \xi_{k_{B}}}\right) - \frac{1}{2}\left(\frac{\varepsilon}{\partial \xi_{k_{B}}}\right) - \frac{1}{2}\left(\frac{\varepsilon}{\partial \xi_{k_{B}}}\right) - \frac{1}{2}\left(\frac{\varepsilon}{\partial \xi_{k_{B}}}\right) - \frac{1}{2}\left(\frac{1}{2}\left(\frac{\varepsilon}{\partial \xi_{k_{B}}}\right)\right)$$

Vi)
$$\frac{1}{k_BT} = \frac{1}{2mpk} \ln \left[\frac{Nmpk-E}{Nmpk+E} \right]$$
 $\frac{2mpk}{k_BT} = \frac{Nmpk-E}{Nmpk+E}$
 $\frac{2mpk}{k_BT} = \frac{Nmpk-E}{Nmpk+E}$
 $\frac{2mpk}{k_BT} = \frac{2mpk}{k_BT} = \frac{2mpk}{k_BT}$
 $\frac{2mpk}{k_BT} = \frac{2mpk}{k_BT} = \frac{2mpk}{k_BT}$
 $\frac{2mpk}{k_BT} = \frac{2mpk}{k_BT}$

b)i)
$$7 = \sum_{\varepsilon} \mathcal{R}(\varepsilon) e^{-\beta \varepsilon i}$$

But E can be written to depend only on No so that uniquely determines the state

Also note Vare has with of E^2 And σ_{E^2} mye \overline{w} 5, $|\sigma_{E^1}| = \frac{M_2 L T M_2}{N_{mye}} \approx \frac{1}{N_m L} \cos \omega e$ 10 Severe (