

动量与学习率

主讲: 龙良曲

Outline

momentum

learning rate decay

Momentum

$$w^{k+1} = w^k - \alpha \nabla f(w^k).$$

$$z^{k+1} = eta z^k +
abla f(w^k)$$
 $w^{k+1} = w^k - lpha z^{k+1}$

更新方向不仅与当前梯度有关,还与前一次更新方向有关 (不容易陷入局部最优)

No momentum

We often think of Momentum as a means of dampening oscillations and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

With appr. momentum

0.500

speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be

used, and creates its own oscillations. What is going on?

Momentum

```
optimizer = SGD(learning_rate=0.02, momentum=0.9)
optimizer = RMSprop(learning_rate=0.02, momentum=0.9)
optimizer = SGD(learning_rate=0.02,
   beta_1=0.9, 内含momentum优化策略
   beta_2=0.999)
```

Learning rate tunning

Learning rate decay

Adaptive learning rate

```
optimizer = SGD(learning_rate=0.2)
for epoch in range(100):
   # get loss
   # change learning rate
    optimizer.learning_rate = 0.2 * (100-epoch)/100
   # update weights
```

下一课时

Early Stopping, Dropout

Thank You.