

A method and a case study for the selection of the best available tool for mobile device forensics using decision analysis

Dr. Shahzad Saleem (SEECS-NUST
Pakistan)
Professor Oliver Popov (DSV-SU
Sweden)
Dr. Ibrahim Baggili (TCE-UNH USA)

Agenda

- Introduction
- Related Work
- Theoretical Background
- Multi-Criteria Decision Analysis
- Conclusion

KTH Applied Information Security Lab

Introduction

- Wide acceptance and deep penetration
- 7 Billion subscriptions around the globe

Introduction

 Mobile Phones → Personal Digital Behavioural Archives.

Introduction

• 80% of the cases have a digital side associated with them.

Introduction

Numerous mobile device forensics tools.

Introduction

• A method and a case study for the selection of the best available tool for mobile device forensics using decision and a case study for the selection

Related Work

- Preparation and planning phase of 2PasU.
- Vendor and TTP Evaluation (NIST)

Related Work

- Evaluation of some tools for extracting eevidence from mobile devices
- Evaluating and Comparing Tools for Mobile Device Forensics using Quantitative **Analysis**
- Quantifying relevance of mobile digital evidence as they relate to case types: A survey and a guide for best practices

Information Security Lab

Theoretical Background

- Decision Analysis
 - Subjective probability
 - Appropriate measure of preference under uncertainty
- Probability
 - Ps = x/n
 - Used these proportions to connect different alternatives with each criteria in the MCD Model.

Theoretical Background

KTH
Applied
Information
Security
Lab

• We had 19 such nodes $u(x) = \sum_{i=1}^{n} w_i u_i(x)$

MCD Analysis

- MCD Analysis was based on performance and relevance.
- Performance

ID	Criteria	Relational Connection (Equation 7)	ID	Criteria	Relational Connection (Equation 7)
2	Phonebook/Contacts Calendar Entries	Alt1 = Alt2 Alt1 > Alt2 + 0.12472	1	Phonebook/Contacts	Alt1 > Alt2 + 0.00648
3	Memo/Notes Tasks/To-Do-Lists	Alt2 > Alt1 + 0.01156 Alt1 > Alt2 + 0.11483	2	Calendar Entries Memo/Notes	Alt1 > Alt2 + 0.07240 Alt1 > Alt2 + 0.05686
5	SMS	Alt1 > Alt2 + 0.02105	4	Tasks/To-Do-Lists	Alt1 > Alt2 + 0.06519
7	EMS MMS	Alt1 > Alt2 + 0.03867 Alt1 > Alt2 + 0.04998	5 6	SMS EMS	Alt1 = Alt2 Alt1 = Alt2
8	Audio Calls	Alt1 > Alt2 + 0.04996 Alt1 > Alt2 + 0.09732	7	MMS	Alt1 > Alt2 + 0.08072
9	Video Calls	Alt1 = Alt2	8	Audio Calls Video Calls	Alt1 > Alt2 + 0.10663 Alt1 > Alt2 + 0.04106
10	Emails	Alt1 > Alt2 + 0.23780	10	Emails	Alt1 > Alt2 + 0.13805
11	URLs Visited Bookmarks/Favourites	Alt1 = Alt2 Alt1 > Alt2 + 0.12480	11 12	URLs Visited Bookmarks/Favourites	Alt1 = Alt2 Alt1 = Alt2
13	Audio	Alt1 = Alt2	12	DOORITIAI KS/F AVOUITIES	Ait1 - Ait2
14	Video	Alt2 > Alt1 + 0.09048	13	Audio	Alt1 > Alt2 + 0.14452
15	Graphics/Pictures	Alt2 > Alt1 + 0.08895	14 15	Video Graphics/Pictures	Alt1 = Alt2 Alt1 = Alt2
16	Word	Alt1 = Alt2	16	Word	Alt1 > Alt2 + 0.08313
17 18	Excel PowerPoint	Alt1 = Alt2 Alt1 = Alt2	17 18	Excel PowerPoint	Alt1 > Alt2 + 0.04004 Alt1 > Alt2 + 0.07919
19	PDF	Alt1 = Alt2	19	PDF	Alt1 > Alt2 + 0.07513

MCD Analysis

Relevance

Criteria	DT	RP	MD	СС	нмт	EE	СР
(ID)							
1	9.56	9.08	9.64	8.55	9.51	9.32	8.82
2	6.30	6.13	8.48	6.88	7.11	7.51	6.08
3	6.31	4.93	7.92	7.23	6.85	7.79	5.98
4	5.83	4.44	7.03	6.85	6.41	7.49	5.31
5	9.68	9.33	9.68	8.84	9.84	9.16	9.05
6	8.83	9.03	9.17	8.21	9.59	8.58	9.03
7	7.62	7.51	8.20	7.26	8.59	7.80	8.16
8	9.09	8.77	9.23	8.03	9.50	9.37	7.95
9	6.36	6.84	6.82	5.92	7.97	7.47	7.38
10	8.65	7.46	8.87	8.82	9.38	9.13	9.08
11	6.20	5.47	7.36	8.44	6.84	8.39	9.28
12	5.30	4.38	6.18	8.03	6.11	7.55	9.18
13	5.42	5.87	6.00	5.69	7.41	8.67	6.08
14	7.04	7.65	7.13	5.92	8.00	8.50	9.61
15	8.77	9.11	8.56	7.36	9.00	8.79	9.83
16	4.35	3.58	5.38	7.29	5.11	7.92	5.95
17	4.98	2.90	4.93	7.64	3.00	7.63	5.03
18	3.11	2.27	4.35	5.05	3.45	7.11	5.64
19	3.57	2.66	5.00	6.00	3.21	7.58	4.97

KTH Applied

Information

Security Lab

MCD Analysis

Relevance (Intra-Class Normalized)

ID	DT	RP	MD	CC	НМТ	EE	СР
1	0.34	0.37	0.29	0.29	0.32	0.29	0.34
2	0.23	0.25	0.26	0.23	0.24	0.23	0.23
3	0.23	0.20	0.24	0.25	0.23	0.24	0.23
4	0.21	0.18	0.21	0.23	0.21	0.23	0.20
5	0.37	0.36	0.36	0.36	0.35	0.36	0.35
6	0.34	0.35	0.34	0.34	0.34	0.34	0.34
7	0.29	0.29	0.30	0.30	0.31	0.31	0.31
8	0.59	0.56	0.57	0.58	0.54	0.56	0.52
9	0.41	0.44	0.43	0.42	0.46	0.44	0.48
10	1.00	1.00	1.00	1.00	1.00	1.00	1.00
11	0.54	0.56	0.54	0.51	0.53	0.53	0.50
12	0.46	0.44	0.46	0.49	0.47	0.47	0.50
13	0.26	0.26	0.28	0.30	0.30	0.33	0.24
14	0.33	0.34	0.33	0.31	0.33	0.33	0.38
15	0.41	0.40	0.39	0.39	0.37	0.34	0.39
16	0.27	0.31	0.27	0.28	0.35	0.26	0.28
17	0.31	0.25	0.25	0.29	0.20	0.25	0.23
18	0.19	0.20	0.22	0.19	0.23	0.24	0.26
19	0.22	0.23	0.25	0.23	0.22	0.25	0.23

MCD Analysis

Relevance (Inter-Class Normalized)

Class	DT	RP	MD	CC	НМТ	EE	СР
PIM Entries	0.22	0.21	0.24	0.21	0.22	0.21	0.18
Messages	0.21	0.22	0.19	0.18	0.20	0.16	0.18
Call Logs	0.12	0.13	0.11	0.10	0.13	0.11	0.11
Emails	0.07	0.06	0.06	0.06	0.07	0.06	0.06
Internet History	0.09	0.08	0.10	0.12	0.09	0.10	0.13
Standalone Files	0.17	0.19	0.16	0.14	0.18	0.17	0.18
Application Files	0.13	0.10	0.14	0.19	0.11	0.19	0.15

$$w_d = \frac{w_i}{\sum_{1}^k w_i}$$

$$w_i = \frac{\sum_{1}^k w_i}{\sum_{1}^k w_i}$$

MCD Analysis

Evaluation

$$\left[p-\frac{p}{20},p+\frac{p}{20}\right]$$

DecideIT converts a point estimate into a range.

MCD Analysis

Total and Cardinal Ranking

Indifference interval: 10.0%

Conclusion

- We have a method which has been tested on a case study.
- We can extend it to include other emerging types of digital evidence and investigations involving digital forensics.
- One limitation of this method is that it requires continuous update to remain current while covering the maximum possible spectrum of digital forensics.

KTH

KTH Applied Information Security Lab

Conclusion (Current Work)

- Collaboration and Suggestions are welcomed.
 - shahzad.saleem@seecs.edu.pk
 - http://www.unhcfreg.com/#!datasetsandtools/c18k6

