STN-10/582,459

•

Saturation

Uploading C:\Program Files\STNEXP\Queries\10582459#1.str

```
G<sub>2</sub>—Hy——G<sub>2</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   42-39--40
 chain nodes :
 31 32 33 34 39 40
                                                                                                                                                                                                       42
 ring nodes :
 1 2 3 4 5 6 7 8
                                                                                                                                                                                                     9 10 11 12 13 14 15 16 17 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           19 20 21 22 23
 24 25 26 27 28 29
                                                                                                                                                                                                        30
chain bonds :
 2-34 5-31 9-31 12-32 15-32 18-33 22-31 28-32 39-40 39-42
 ring bonds :
 1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 14-19 
 15-16 16-17 17-18 19-20 19-24 20-21 21-22 22-23 23-24 25-26 25-30 26-27
 27-28 28-29
 29-30
 exact/norm bonds :
 2-34 5-31 9-31 12-32 15-32 18-33 22-31 28-32 39-40 39-42
 normalized bonds :
 1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 14-19 
 15 - 16 \quad 16 - 17 \quad 17 - 18 \quad 19 - 20 \quad 19 - 24 \quad 20 - 21 \quad 21 - 22 \quad 22 - 23 \quad 23 - 24 \quad 25 - 26 \quad 25 - 30 \quad 26 - 27 \quad 20 -
 27-28 28-29
 29-30
 isolated ring systems :
 containing 1 : 7 : 13 : 19 : 25 :
 G1:Ak,H
 G2:N,P
 G3:B, X
 Match level:
 1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom
 11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 17:Atom 18:Atom 19:Atom
 20:Atom 21:Atom
 22:Atom 23:Atom 24:Atom 25:Atom 26:Atom 27:Atom 28:Atom 29:Atom 30:Atom
 31:CLASS 32:CLASS
 Generic attributes :
 39:
```

: Unsaturated

L1 STRUCTURE UPLOADED

=> d 11

L1 HAS NO ANSWERS

L1 STR

Structure attributes must be viewed using STN Express query preparation.

=> s 11

SAMPLE SEARCH INITIATED 14:28:49 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 497 TO ITERATE

100.0% PROCESSED 497 ITERATIONS 50 ANSWERS

INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**

PROJECTED ITERATIONS: 8603 TO 11277
PROJECTED ANSWERS: 1114 TO 2206

L2 50 SEA SSS SAM L1

=> s 11 full

FULL SEARCH INITIATED 14:28:57 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 9757 TO ITERATE

100.0% PROCESSED 9757 ITERATIONS 1783 ANSWERS

SEARCH TIME: 00.00.01

L3 1783 SEA SSS FUL L1

.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 13

L4 1050 L3

=> s 13 and electrolumin?

1050 L3

100932 ELECTROLUMIN?

L5 440 L3 AND ELECTROLUMIN?

=> s 15 and suz?

11754 SUZ?

L6 6 L5 AND SUZ?

=> d ibib abs hitstr 1-6

L6 ANSWER 1 OF 6 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2007:1300534 CAPLUS Full-text

DOCUMENT NUMBER: 147:542520

TITLE: Polymers containing 9,9-dimethylfluorene for use in

optoelectronic devices

INVENTOR(S): Conway, Natasha; Grizzi, Ilaria; Towns, Carl

PATENT ASSIGNEE(S): CDT Oxford Limited, UK SOURCE: PCT Int. Appl., 36 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.					KIND DATE					LICAT							
WO	WO 2007129015 W: AE, AG, A															0070	 419
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	ΑZ,	BA,	BB	, BG,	BH,	BR,	BW,	BY,	BZ,	CA,
		CH,	CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	, DZ,	EC,	EE,	EG,	ES,	FΙ,	GB,
		GD,	GE,	GH,	GM,	GΤ,	HN,	HR,	HU,	ID,	, IL,	IN,	IS,	JP,	ΚE,	KG,	KM,
		KN,	KP,	KR,	KΖ,	LA,	LC,	LK,	LR,	LS	, LT,	LU,	LY,	MA,	MD,	MG,	MK,
		MN,	MW,	MX,	MY,	MΖ,	NA,	NG,	ΝI,	NO	, NZ,	OM,	PG,	PH,	PL,	PT,	RO,
		RS,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SM	, SV,	SY,	ТJ,	TM,	TN,	TR,	TT,
		TZ,	UA,	UG,	US,	UZ,	VC,	VN,	ZA,	ZM	, ZW						
	RW:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	, ES,	FΙ,	FR,	GB,	GR,	HU,	ΙE,
		IS,	IT,	LT,	LU,	LV,	MC,	MT,	NL,	PL,	, PT,	RO,	SE,	SI,	SK,	TR,	BF,
		ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	, ML,	MR,	NE,	SN,	TD,	ΤG,	BW,
		GH,	GM,	ΚE,	LS,	MW,	MZ,	NA,	SD,	SL	, SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,
		BY,	KG,	KΖ,	MD,	RU,	ТJ,	TM									
GB	2440	934			Α		2008	0220		GB 2	2006-	8499			2	0060	428
GB	2440	934			В		2009	1216									
EP	2016	112			A1		2009	0121		EP 2	2007-	7324	62		2	0070	419
	R:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	, ES,	FΙ,	FR,	GB,	GR,	HU,	IE,
		IS,	ΙT,	LI,	LT,	LU,	LV,	MC,	MT,	NL	, PL,	PT,	RO,	SE,	SI,	SK,	TR,
		AL,	BA,	HR,	MK,	RS											
JP	2009	5357	95		Τ		2009	1001		JP 2	2009-	5071	40		2	0070	419
CN	1014	4886	9		Α		2009	0603		CN 2	2007-	8001	8370		2	0081	119
KR	2009	0052	24		А		2009	0112		KR 2	2008-	7289	93		2	0081	127
US 20090322213 A							2009	1231		US 2	2009-	2982	39		2	0090	224
ORIT:	ORITY APPLN. INFO.:									GB 2	2006-	8499			A 2	0060	428
										WO 2	2007-	GB14.	20	1	W 2	0070	419
T C N T N / T	דו ידותי	TOTO	DV D	OD II	י עם ט	דואקיד	מ ד ד ת	TT AD:	יד קון	NT T	CIIC D	TCDT '	ייד עית	י עזענבר	T		

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB A polymer for use in an optoelectronic device comprises aromatically conjugated repeating units of optionally substituted 9,9-dimethylfluorene. The polymer has improved thermal stability and longer life time compared to prior

art polymers containing 9,9-dioctylfluorene, 9,9-diphenylfluorene and N,N'bis(4-butylphenyl)-N, N'-diphenyl-1, 4-benzenediamine units, and can be used in blue-emitting electroluminescent devices.

ΙT 423774-96-3D, Suzuki-coupled diphenylfluorene- and dioctylfluorene- and dimethylfluorene-containing polymers

RL: PRP (Properties); TEM (Technical or engineered material use); USES

(polymers containing 9,9-dimethylfluorene for use in optoelectronic devices)

423774-96-3 CAPLUS RN

1,4-Benzenediamine, N1,N4-bis(4-butylphenyl)-N1,N4-diphenyl- (CA INDEX CN NAME)

THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD OS.CITING REF COUNT: 1

(1 CITINGS)

REFERENCE COUNT: 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 2 OF 6 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2006:656052 CAPLUS Full-text

DOCUMENT NUMBER: 145:125250

TITLE: Blue-shifted triarylamine polymer for

electroluminescent devices

Mckiernan, Mary; Patel, Nalinkumar; Foden, Clare; INVENTOR(S): Leadbeater, Mark; Tierney, Brian; Conway, Natasha

Cambridge Display Technology Limited, UK; CDT Oxford PATENT ASSIGNEE(S):

Limited

SOURCE: PCT Int. Appl., 61 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.					KIN	KIND DATE 				APPLICATION NO.					DATE 			
WO	2006	0701	84		A1		 2006	0706	1	WO 2	005-	GB50	 56		2	0051	223	
	W:	ΑE,	AG,	AL,	AM,	AT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,	
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,	
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KM,	KN,	KP,	KR,	
		KΖ,	LC,	LK,	LR,	LS,	LT,	LU,	LV,	LY,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	
		MZ,	NA,	NG,	NI,	NO,	NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	
		SG,	SK,	SL,	SM,	SY,	ΤJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	
		VN,	YU,	ZA,	ZM,	ZW												
	RW:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FI,	FR,	GB,	GR,	HU,	ΙE,	
		IS,	ΙT,	LT,	LU,	LV,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	BF,	ВJ,	
		CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG,	BW,	GH,	
		GM,	KE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,	BY,	
		KG,	KΖ,	MD,	RU,	ТJ,	TM											
US	US 20090146164				A1		2009	0611	1 US 2008-813180					20081009				
RIT	Y APP	LN.	INFO	. :					(GB 2	004-	2844	5		A 2	0041	229	

PRIORITY APPLN. INFO.:

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB A semiconductive conjugated polymer comprises the repeating unit Ar1N(Ar2)Ar3N(Ar4)Ar5: where Ar1, Ar3, and Ar5 are the same or different and each represent an optionally substituted aryl or heteroaryl group; Ar2 and Ar4 are the same or different and each represent a substituted aryl or heteroaryl group; and characterized in that Ar2 and Ar4 sterically interact with one another so as to cause an increase in the bandgap of the polymer. The triarylamine polymers are useful in LEDs.

IT 1057075-34-9

RL: PRPH (Prophetic)

(Blue-shifted triarylamine polymer for electroluminescent devices)

RN 1057075-34-9 CAPLUS

CN INDEX NAME NOT YET ASSIGNED

PAGE 1-B

___Bu-t

IT 897365-67-2P

RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(blue-shifted triarylamine polymer for electroluminescent devices)

RN 897365-67-2 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis[4,4''-bis(1,1-dimethylethyl)[1,1':3',1''-terphenyl]-5'-diyl]-N,N'-bis(4-bromophenyl)-, polymer with 2,7-dibromo-9,9-dioctyl-9H-fluorene and

2,7-dibromo-9,9-diphenyl-9H-fluorene (9CI) (CA INDEX NAME)

CM 1

CRN 897365-66-1 CMF C70 H70 Br2 N2

CM 2

CRN 198964-46-4 CMF C29 H40 Br2

CM 3

CRN 186259-63-2 CMF C25 H16 Br2

IT 897365-66-1P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(monomer; blue-shifted triarylamine polymer for electroluminescent devices)

RN 897365-66-1 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis[4,4''-bis(1,1-dimethylethyl)[1,1':3',1''-terphenyl]-5'-yl]-N,N'-bis(4-bromophenyl)- (9CI) (CA INDEX NAME)

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 3 OF 6 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2006:151223 CAPLUS Full-text

DOCUMENT NUMBER: 144:233620

TITLE: Polymers for use in organic electroluminescent

devices

INVENTOR(S): McKiernan, Mary; Towns, Carl

PATENT ASSIGNEE(S): Covion Organic Semiconductors GmbH, Germany

SOURCE: PCT Int. Appl., 33 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PRIORITY APPLN. INFO.:

									APPLICATION NO.					ATE	≟ 			
	2006015862 W: AE, AG, CN, CO,															 0050	811	
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,	
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,	
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KM,	KP,	KR,	KΖ,	
		LC,	LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,	
		NG,	NI,	NO,	NΖ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	
		SL,	SM,	SY,	ТJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	
		ZA,	ZM,	ZW														
	RW:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FI,	FR,	GB,	GR,	HU,	IE,	
		IS,	ΙΤ,	LT,	LU,	LV,	MC,	NL,	PL,	PT,	RO,	SE,	SI,	SK,	TR,	BF,	ΒJ,	
		CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	$ ext{ML}$,	MR,	NE,	SN,	TD,	TG,	BW,	GH,	
		GM,	KE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	${\sf TZ}$,	UG,	ZM,	ZW,	ΑM,	ΑZ,	BY,	
		,	,		RU,	,												
ΕP	1627	891			A1		2006	0222		EP 2	004-	1903	0		2	0040	811	
	R:	•	,	•	•		ES,	•	,	•	•	•	•		•		,	
			,			,	RO,		•				•		•		,	
	1776									EP 2	005-	7879	39		2	0050	811	
EΡ	1776																	
	R:	•	,	•	•		CZ,	•	,	•	•	•	•		•	•	IE,	
		•	,	•	•		LV,	•	,	•	•	•	•		•			
															20050811			
	3826														2005081 2005081			
	2007																	
	2007									us 2	007-	6598	99		2	0070	209	
	7592						2009				0.00	4040	0.0		^	0000	c 0 0	
US	2009	0253	883		A1		2009	T008		us 2	009-	4812	20		2	0090	609	

EP 2004-19030 A 20040811

US 2007-659899 A3 2

ΙI

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT OTHER SOURCE(S): MARPAT 144:233620
GI

AB A polymer comprises an optionally substituted first repeat unit, I, where G = divalent residue; $r \ge 1$; p, q = 0 or 1; and G comprises a heteroatom in the case where n (sic) = 1. Monomer II (preparation given) could be polymerized forming blue light-emitting copolymer.

IT 876107-80-1P 876107-81-2P

RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(polymers based on diindenofluorene monomers for electroluminescent devices)

RN 876107-80-1 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-butylphenyl)-, polymer with 2,10-dibromo-12,12,15,15-tetrakis[4-(1,1-dimethylethyl)phenyl]-12,15-dihydro-6,6-dioctyl-6H-diindeno[1,2-b:2',1'-h]fluorene and 2,2'-[2',3',6',7'-tetrakis(3-methylbutoxy)-9,9'-spirobi[9H-fluorene]-2,7-diyl]bis[1,3,2-dioxaborolane] (9CI) (CA INDEX NAME)

CM 1

CRN 876107-73-2 CMF C83 H96 Br2

PAGE 2-A

CM 2

CRN 807374-60-3 CMF C49 H62 B2 O8

CM 3

CRN 372200-89-0 CMF C38 H38 Br2 N2

$$n-Bu$$
 Br
 $Bu-n$

RN 876107-81-2 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-butylphenyl)-, polymer with 2,10-dibromo-12,12,15,15-tetrakis[4-(1,1-dimethylethyl)phenyl]-12,15-dihydro-6,6-dioctyl-6H-diindeno[1,2-b:2',1'-h]fluorene and 2,2'-(6,12-dihydro-6,6,12,12-tetraoctylindeno[1,2-b]fluorene-2,8-diyl)bis[4,4,5,5-tetramethyl-1,3,2-dioxaborolane] (9CI) (CA INDEX NAME)

CM 1

CRN 876107-73-2 CMF C83 H96 Br2

PAGE 1-A

$$R_{n-1}$$

PAGE 2-A

CM 2

CRN 628303-20-8

CM 3

CRN 372200-89-0 CMF C38 H38 Br2 N2

OS.CITING REF COUNT: 5 THERE ARE 5 CAPLUS RECORDS THAT CITE THIS RECORD

(16 CITINGS)

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 4 OF 6 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2005:1050577 CAPLUS Full-text

DOCUMENT NUMBER: 143:348231

TITLE: White electroluminescent polymeric material

& preparation thereof

INVENTOR(S): Wang, Lixiang; Tu, Guoli; Cao, Jianxin; Liu, Jun; Ma,

Dongge; Jing, Xia Bin; Wang, Fosong

PATENT ASSIGNEE(S): Changehun Institute of Applied Chemistry Chinese

Academy of Science, Peop. Rep. China

SOURCE: U.S. Pat. Appl. Publ., 55 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20050214568	A1	20050929	US 2005-42193	20050126
US 7579091	В2	20090825		
CN 1580179	A	20050216	CN 2004-10010770	20040329
CN 100363458	С	20080123		
CN 101113326	A	20080130	CN 2007-10128962	20040329

CN 101113327	A	20080130	CN 2007-1	0128969		20040329
CN 100543059	С	20090923				
US 20070270570	A1	20071122	US 2007-7	79101		20070717
PRIORITY APPLN. INFO.:			CN 2004-1	0010770	Α	20040329
			US 2005-4	2193	А3	20050126

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT GI

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

AB A white electroluminescent polymeric material is also described comprising a single white electroluminescent polymeric material consisting of type(I) main chain type single white electroluminescent polymeric material by the general formula I, type(II) pendant chain type single white electroluminescent polymeric material by the general formula II, and type(III) terminal group type single white electroluminescent polymeric material by the general formula III (R1 = alkyl, aryl; Ar1 = naphthalimide derivative with basic unit described in the text; R2 = alkyl, alkoxy, Ph and Ph substituted by alkyl or alkoxy; Ar2 = heterocyclic unit described in the text). A process for preparing the white electroluminescent polymeric material is also described entailing (1)providing a monomer selected from a group consisting of monomers with a general formulas IV, V (m = 0-20), VI, and VII; (2) providing a monomer by the general formula VIII and (3) polymerizing the monomers using the Yamamoto polymerization method or the Suzuki polymerization method.

IT 865779-67-5P 865779-70-0P

RL: IMF (Industrial manufacture); PREP (Preparation)
(white electroluminescent polymeric material and preparation)

RN 865779-67-5 CAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione,
6-[bis[4-[(4-bromophenyl)(4-methylphenyl)amino]phenyl]amino]-2-[4-(1,1-dimethylethyl)phenyl]-, polymer with
N,N'-bis(4-bromophenyl)-N,N'-bis(4-methylphenyl)-1,4-benzenediamine and
2,7-dibromo-9,9-dioctyl-9H-fluorene (9CI) (CA INDEX NAME)

CM 1

CRN 865779-66-4 CMF C32 H26 Br2 N2

CM 2

CRN 865779-32-4 CMF C60 H48 Br2 N4 O2

CM 3

CRN 198964-46-4 CMF C29 H40 Br2

RN 865779-70-0 CAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-[bis[4-[(4-bromophenyl)(4-methylphenyl)amino]phenyl]amino]-2-[4-(1,1-dimethylethyl)phenyl]-, polymer with 2,7-dibromo-9,9-dioctyl-9H-fluorene and 2,2'-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis[1,3,2-dioxaborinane] (9CI) (CA INDEX NAME)

CM 1

CRN 865779-32-4

CMF C60 H48 Br2 N4 O2

CM 2

CRN 317802-08-7 CMF C35 H52 B2 O4

CM 3

CRN 198964-46-4 CMF C29 H40 Br2

RN 865779-32-4 CAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-[bis[4-[(4-bromophenyl)(4-methylphenyl)amino]phenyl]amino]-2-[4-(1,1-dimethylethyl)phenyl]- (CA INDEX NAME)

RN 865779-58-4 CAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[4-(1,1-dimethylethyl)phenyl]-6-[(4-methylphenyl)[4-[(4-methylphenyl)phenylamino]phenyl]amino]- (CA INDEX NAME)

RN 865779-59-5 CAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-[4-[[4-[(4-bromophenyl)(4-methylphenyl)amino]phenyl](4-methylphenyl)amino]phenyl]-2-[4-(1,1-dimethylethyl)phenyl]- (CA INDEX NAME)

L6 ANSWER 5 OF 6 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2004:1059414 CAPLUS Full-text

DOCUMENT NUMBER: 142:39562

TITLE: Manufacture of solution-processable semiconductive

polymers with improved hole transporting properties

and their use

INVENTOR(S):
Wallace, Paul

PATENT ASSIGNEE(S): Covion Organic Semiconductors G.m.b.H., Germany

SOURCE: PCT Int. Appl., 25 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.				KIND DATE			APPLICATION NO.						DATE			
					_									_		
WO 2004						2004	1209	,	WO 2	004-	EP58	18		2	0040	528
W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,
	CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,
	GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KΖ,	LC,
	LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,	NI,
	NO,	NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,
	ТJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW

```
RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,
             AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,
             EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE,
             SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,
             SN, TD, TG
     EP 1633801
                          Α1
                                20060315
                                            EP 2004-739446
                                                                    20040528
     EP 1633801
                          В1
                                20080409
         R: DE, FR, GB, NL
     CN 1768093
                                20060503
                                            CN 2004-80008649
                                                                    20040528
     JP 2007504342
                          Τ
                                20070301
                                            JP 2006-529951
                                                                    20040528
     US 20060241202
                                20061026
                                            US 2006-558578
                                                                    20060201
                          Α1
PRIORITY APPLN. INFO.:
                                            EP 2003-12409
                                                                    20030530
                                            WO 2004-EP5818
                                                                 W 20040528
```

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

The semiconductive polymers are useful for thin film electronic and optical devices, such as organic light emitting diodes (OLED) and photovoltaic devices, e.g. solar cells and photo detectors. The semiconductive polymers can be obtained by the Yamamoto or <code>%uzuki</code> polymerization method where increase of the number of nitrogen atoms in the backbone of repeat unit of a semiconducting polymer improves its hole transporting capability. Appropriate selection of the polymerizable group of a monomer of a repeat unit enables the monomer to be polymerized by the Yamamoto or <code>%uzuki</code> polymerization which afford greater control over regioregularity of polymers as compared to prior art polymers.

IT 807374-47-6P 807374-61-4P 807374-75-0P

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(manufacture of solution-processable semiconductive polymers with improved

hole

transporting properties and their use)

RN 807374-47-6 CAPLUS

CN 1,4-Benzenediamine, N-(4-bromophenyl)-N'-[4-[(4-bromophenyl)(4-butylphenyl)amino]phenyl]-N-(4-butylphenyl)-N'-[4-(1-methylpropyl)phenyl]-, polymer with 2,2'-(6,12-dihydro-6,6,12,12-tetraoctylindeno[1,2-b]fluorene-2,8-diyl)bis[4,4,5,5-tetramethyl-1,3,2-dioxaborolane] (9CI) (CA INDEX NAME)

CM 1

CRN 807374-46-5 CMF C54 H55 Br2 N3

CM 2

CRN 628303-20-8 CMF C64 H100 B2 O4

RN 807374-61-4 CAPLUS

CN 1,4-Benzenediamine, N-(4-bromophenyl)-N-(4-butylphenyl)-N'-[4-[(4-bromophenyl)(4-butylphenyl)amino]phenyl]-N'-[4-(1-methylpropyl)phenyl]-, polymer with 2,2'-[2',3',6',7'-tetrakis(3-methylbutoxy)-9,9'-spirobi[9H-fluorene]-2,7-diyl]bis[1,3,2-dioxaborolane] (9CI) (CA INDEX NAME)

CM 1

CRN 807374-60-3 CMF C49 H62 B2 O8

CM 2

CRN 807374-46-5 CMF C54 H55 Br2 N3

RN 807374-75-0 CAPLUS

CN [1,1'-Biphenyl]-4,4'-diamine, N,N'-bis[4-[(4-bromophenyl)(4-butylphenyl)amino]phenyl]-N,N'-bis(4-butylphenyl)-, polymer with 2,2'-[2',3',6',7'-tetrakis(3-methylbutoxy)-9,9'-spirobi[9H-fluorene]-2,7-diyl]bis[1,3,2-dioxaborolane] (9CI) (CA INDEX NAME)

CM :

CRN 807374-74-9 CMF C76 H76 Br2 N4

PAGE 1-B

__Bu−n

CM 2

CRN 807374-60-3 CMF C49 H62 B2 O8

$$\begin{array}{c} \text{Me}_2\text{CH}-\text{CH}_2-\text{$$

IT 807374-46-5P 807374-74-9P 807374-98-7P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(monomer; manufacture of solution-processable semiconductive polymers with improved hole transporting properties and their use)

RN 807374-46-5 CAPLUS

CN 1,4-Benzenediamine, N1-(4-bromophenyl)-N4-[4-[(4-bromophenyl)(4-butylphenyl)amino]phenyl]-N1-(4-butylphenyl)-N4-[4-(1-methylpropyl)phenyl]-(CA INDEX NAME)

RN 807374-74-9 CAPLUS

CN [1,1'-Biphenyl]-4,4'-diamine, N4,N4'-bis[4-[(4-bromophenyl)(4-butylphenyl)amino]phenyl]-N4,N4'-bis(4-butylphenyl)- (CA INDEX NAME)

PAGE 1-B

__Bu−n

CN

RN 807374-98-7 CAPLUS

1,4-Benzenediamine, N1,N4-bis[4-[(4-bromophenyl)(4-butylphenyl)amino]phenyl]-N1,N4-bis(4-butylphenyl)- (CA INDEX NAME)

OS.CITING REF COUNT: 6 THERE ARE 6 CAPLUS RECORDS THAT CITE THIS RECORD (6 CITINGS)

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 6 OF 6 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2003:6031 CAPLUS $\underline{\text{Full-text}}$

DOCUMENT NUMBER: 138:56847

TITLE: Preparation of polymer containing substituted

triphenylamine units for optical devices

INVENTOR(S): Towns, Carl; O'dell, Richard

PATENT ASSIGNEE(S): Cambridge Display Technology Limited, UK

SOURCE: PCT Int. Appl., 35 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA	PATENT NO.					D	DATE			APP:	LICAT	ION :	NO.		DATE		
WO	2003	0007	73		A1	_	2003	0103		 WО::	2002-	 GB28	03		2	20020	620
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB	, BG,	BR,	BY,	ΒZ,	CA,	CH,	CN,
		CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC	, EE,	ES,	FI,	GB,	GD,	GE,	GH,
		GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE	, KG,	KP,	KR,	KΖ,	LC,	LK,	LR,
		LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN	, MW,	MX,	MZ,	NO,	NZ,	OM,	PH,
		PL,	PT,	RO,	RU,	SD,	SE,	SG,	SI,	SK	, SL,	ТJ,	TM,	TN,	TR,	TT,	TZ,
		UA,	UG,	US,	UZ,	VN,	YU,	ZA,	ZM,	ZW							
	RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ	, TZ,	UG,	ZM,	ZW,	AT,	BE,	CH,
		CY,	DE,	DK,	ES,	FI,	FR,	GB,	GR,	IE,	, IT,	LU,	MC,	NL,	PT,	SE,	TR,
		BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ	, GW,	ML,	MR,	ΝE,	SN,	TD,	ΤG
AU	2002										2002-						
EP	1397	416			A1		2004	0317		EP :	2002-	7408	86		2	20020	620
EP	1397	416			В1		2009	1014									
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR	, IT,	LI,	LU,	NL,	SE,	MC,	PT,
		ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL	, TR						
JP	2004	5323	48								2003-					20020	620
	4456						2009	1015		AT :	2002-	7408	86		2	20020	620
US	2004	0254	324		A1		2004	1216		US :	2004-	4814	39		2	20040	517
US	7351	788			В2		2008										
JP	2009	0192	07		Α		2009	0129		JP :	2008-	1792	60		2	20080	709
RIORIT	Y APP	LN.	INFO	.:						GB :	2001-	1534	8		A 2	20010	622
										US :	2001-	3105	80P		P 2	20010	807
										JP :	2003-	5071	73		A3 2	20020	620
										WO :	2002-	GB28	03		W 2	20020	620

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT GI

AΒ The polymer containing a first repeat unit -ArN(R)Ar - [N(R')Ar]x - (x = 0, 1; Ar)= (un)substituted aryl or heteroaryl; R, R' = H, a substituent) and a second repeat unit that is the same or different from the first repeat unit and comprises a substituted or unsubstituted, aryl or heteroaryl group is made by Suzuki polymerization of (a) a first monomer having the first repeat unit and two reactive boron derivative groups with a second monomer having the second repeat unit and ≥2 reactive halide functional groups; or (b) a first monomer having the first repeat unit and one reactive halide functional group and one reactive boron derivative group with a second monomer having the second repeat unit and one reactive halide functional group and one reactive boron derivative group in the presence of a base and a catalyst. The polymers are useful for optical devices such as electroluminescent devices. Thus, 4.79 g dibromo-PFB I was mixed with 5 g pinacol diester of PFB boronic acid and 25 mg dichlorobis(triphenylphosphine) palladium in 100 mL toluene and end-capped with bromobenzene and glycol ester of benzeneboronic acid to give 6.3 g polymer with number average mol. weight 23,000.

IT 479517-33-4DF, reaction products with bromobenzene and glycol benzeneboronate 479517-43-6DF, reaction products with bromobenzene and glycol benzeneboronate 479517-48-1DF, reaction products with bromobenzene and glycol benzeneboronate RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(preparation of polymer containing substituted triphenylamine units for optical

devices)

RN 479517-33-4 CAPLUS

CN Poly[[(4-butylphenyl)imino]-1,4-phenylene[(4-butylphenyl)imino][1,1'-biphenyl]-4,4'-diyl[[4-(1-methylpropyl)phenyl]imino][1,1'-biphenyl]-4,4'-diyl] (9CI) (CA INDEX NAME)

RN 479517-43-6 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-butylphenyl)-, polymer with N,N'-bis(4-butylphenyl)-N,N'-bis[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1,4-benzenediamine (9CI) (CA INDEX NAME)

CM 1

CRN 479517-42-5 CMF C50 H62 B2 N2 O4

CM 2

CRN 372200-89-0 CMF C38 H38 Br2 N2

RN 479517-48-1 CAPLUS

CN Poly[[(4-butylphenyl)imino]-1,4-phenylene[(4-butylphenyl)imino][1,1'-biphenyl]-4,4'-diyl] (CA INDEX NAME)

IT 479517-28-7DP, reaction products with bromobenzene and glycol benzeneboronate

RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(starting materials; preparation of polymer containing substituted triphenylamine units for optical devices)

RN 479517-28-7 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-butylphenyl)-, polymer with N,N-bis[4-(4,5-dimethyl-1,3,2-dioxaborolan-2-yl)phenyl]-4-(1-methylpropyl)benzenamine (9CI) (CA INDEX NAME)

CM 1

CRN 479517-27-6 CMF C30 H37 B2 N O4

CM 2

CRN 372200-89-0 CMF C38 H38 Br2 N2

OS.CITING REF COUNT: 3 THERE ARE 3 CAPLUS RECORDS THAT CITE THIS RECORD

(3 CITINGS)

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> d hist

(FILE 'HOME' ENTERED AT 14:27:19 ON 22 JAN 2010)

FILE 'REGISTRY' ENTERED AT 14:28:13 ON 22 JAN 2010

STRUCTURE UPLOADED

L2 50 S L1

L3 1783 S L1 FULL

FILE 'CAPLUS' ENTERED AT 14:29:07 ON 22 JAN 2010

L4 1050 S L3

L5 440 S L3 AND ELECTROLUMIN?

L6 6 S L5 AND SUZ?

٠

L1

This file contains CAS Registry Numbers for easy and accurate

substance identification.

=> d ibib L5 abs hitstr 430-440

L5 ANSWER 430 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1996:733519 CAPLUS Full-text

DOCUMENT NUMBER: 125:343202

ORIGINAL REFERENCE NO.: 125:63865a,63868a

TITLE: Organic electric-field electroluminescent

device with hydrazone compound

INVENTOR(S): Kawarasaki, Morihiro; Fujii, Ichiro; Enomoto, Kazuhiro

PATENT ASSIGNEE(S): Sharp Kk, Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 08231950	A	19960910	JP 1995-40905	19950228
PRIORITY APPLN. INFO.:			JP 1995-40905	19950228
OTHER SOURCE(S):	MARPAT	125:343202		

GT

$$\begin{array}{c|c} \mathbf{A}^{\mathbf{r}^2} & \mathbf{A}^{\mathbf{r}^2} & \mathbf{A}^{\mathbf{r}^2} \\ \mathbf{R}^1 \mathbf{R}^2 \mathbf{N} \mathbf{N} & \mathbf{C} \mathbf{H} & \mathbf{N} \mathbf{N} \mathbf{R}^1 \mathbf{R}^2 \end{array}$$

The device contains (A) an anode successively coated with (B) a phosphor-containing electroluminescent layer, (C) a hole-transfer layer with a hydrazone compound I [Ar1 = C6-12 arylene; Ar2 = C6-12 (substituted) aryl, (substituted) aralkyl, C1-4 alkyl, allyl;R1-2 = C6-12 (substituted) aryl, C1-4 alkyl, (substituted) aralkyl, heterocyclic], and (D) a cathode. The device with the hydrazone compound shows no crystallinity change by heating and long service life.

IT 183944-55-0 183944-57-2 183944-61-8

183944-63-0 183944-64-1 183944-65-2

183944-67-4 183944-69-6

RL: TEM (Technical or engineered material use); USES (Uses) (organic elec.-field electroluminescent device containing hole-transfer layer with hydrazone)

RN 183944-55-0 CAPLUS

CN Benzaldehyde, 4,4'-[1,4-phenylenebis[(4-methylphenyl)imino]]bis-, bis(ethylphenylhydrazone) (9CI) (CA INDEX NAME)

RN 183944-57-2 CAPLUS

CN Benzaldehyde, 4,4'-[1,4-phenylenebis[(4-methoxyphenyl)imino]]bis-, bis(diphenylhydrazone) (9CI) (CA INDEX NAME)

RN 183944-61-8 CAPLUS

CN Benzaldehyde, 4,4'-[1,4-phenylenebis(phenylimino)]bis-, bis(methylphenylhydrazone) (9CI) (CA INDEX NAME)

RN 183944-63-0 CAPLUS

CN Benzaldehyde, 4,4'-[1,4-phenylenebis(2-naphthalenylimino)]bis-, bis(phenylpropylhydrazone) (9CI) (CA INDEX NAME)

RN 183944-64-1 CAPLUS

CN Benzaldehyde, 4,4'-[1,4-phenylenebis(1-naphthalenylimino)]bis-, bis(phenyl-2-propenylhydrazone) (9CI) (CA INDEX NAME)

PAGE 1-B

— CH2 — CH== CH2

RN 183944-65-2 CAPLUS

CN Benzaldehyde, 4,4'-[(2,5-dimethyl-1,4-phenylene)bis(2-naphthalenylimino)]bis-, bis[ethyl(4-methylphenyl)hydrazone] (9CI) (CA INDEX NAME)

RN 183944-67-4 CAPLUS

CN Benzaldehyde, 4,4'-[(phenylimino)bis[4,1-phenylene(phenylimino)]]bis-, bis(diphenylhydrazone) (9CI) (CA INDEX NAME)

RN 183944-69-6 CAPLUS

CN Benzaldehyde, 4,4'-[1,4-phenylenebis[(4-methylphenyl)imino]]bis-, bis[ethyl(9-ethyl-9H-carbazol-3-yl)hydrazone] (9CI) (CA INDEX NAME)

PAGE 1-B

L5 ANSWER 431 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1996:612438 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 125:234385

ORIGINAL REFERENCE NO.: 125:43563a,43566a

TITLE: Positive hole-transporting material and usage thereof INVENTOR(S): Enokida, Toshio; Tamano, Michiko; Onikubo, Shunichi

PATENT ASSIGNEE(S): Toyo Ink Mfg Co, Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 16 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 08179526	A	19960712	JP 1994-319695	19941222
JP 3269300	В2	20020325		

For diagram(s), see printed CA Issue.

AΒ The material has the general formula ABA [A = diamine derivative residue I ; R1-9= H, halo, (substituted) alkyl, (substituted) alkoxy, (substituted) thioalkoxy, cyano, (mono- or di-substituted) amino, OH, SH, (substituted) aryloxy, (substituted) arylthio, (substituted) aromatic ring, (substituted) heterocycle; ≥ 1 of each of R1-3, R4-6, and R7-9 is not H and the adjacent groups may form alicyclic, carbocyclic aromatic, or heterocyclic aromatic rings which may be substituted; X = divalent aromatic ring residue; B = alicyclic residue II; Y = (substituted) alkyl; n = 2-7; m = 0-2n]. Organic electroluminescent devices comprising ≥1 organic compound thin film luminescent layers ≥ 1 of which contains the material, and electrophotog. photoreceptors containing a charge-generating agent and the material are also claimed. The material shows good pos. hole-transporting properties and high quality electroluminescent devices and photoreceptors are obtained by using it. Thus, III was used typically for the material, which was prepared by reacting cyclohexanone with 9,10-bis(4-butylphenylphenylamino)phenanthrene. ΤТ

181796-78-1 181796-81-6

RL: DEV (Device component use); USES (Uses)

(pos. hole transporting agent for electrophotog. photoreceptor and electroluminescent device)

181796-78-1 CAPLUS RN

1,4-Benzenediamine, N,N''-(cyclobutylidenedi-4,1-phenylene)bis[N,N',N'-CN tris(4-methylphenyl) - (9CI) (CA INDEX NAME)

PAGE 1-A

RN 181796-81-6 CAPLUS

CN 1,4-Benzenediamine, N,N''-(cycloheptylidenedi-4,1-phenylene)bis[N,N',N'-tris(4-methylphenyl)- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 2-A

L5 ANSWER 432 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1996:580231 CAPLUS Full-text

DOCUMENT NUMBER: 125:234547 ORIGINAL REFERENCE NO.: 125:43591a

TITLE: Organic electroluminescent element, organic

thin film, and triamine compounds

INVENTOR(S): Kawamura, Hisayuki; Nakamura, Hiroaki; Hosokawa,

Chishio

PATENT ASSIGNEE(S): Idemitsu Kosan Co., Ltd., Japan

SOURCE: PCT Int. Appl., 94 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PAI	PATENT NO.					KIND DATE			APPLICATION NO.					DATE			
WO	9622	 273			A1	_	19960	19960725 V		wo	1996	 -JP82			-	 19960	119
	W:	CN,	US														
	RW:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GF	R, IE	, IT,	LU,	MC,	NL,	PT,	SE
JP	08193	3191			Α		19960	730	1	JΡ	1995	-6254			-	19950	119
JP	3306	735			В2		20020	724									
JP	0909	5470			A		19970	0408	1	JΡ	1995	-2529	79		-	19950	929
JP	3139	528			В2		20010	305									
EP	8051	43			A1		1997	1105		EΡ	1996	-9007	15		-	19960	119
EP	8051	43			В1		20013	1205									
	R:	BE,	CH,	DE,	FR,	GB,	IT,	LI,	NL,	SE]						
CN	1168	132			Α		1997	1217	1	CN	1996	-1915	27		-	19960	119
CN	1152	607			С		20040	0602									
US	6074	734			Α		20000	0613		US	1997	-8609	27		-	19970	721
PRIORITY	APP:	LN.	INFO	. :						JΡ	1995	-6254		i	Α :	19950	119
										JΡ	1995	-2529	79	i	Α :	19950	929
									,	WO	1996	-JP82		Ţ	W :	19960	119

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB Triamine compds. are represented by general formula I (Ar1-5 = C6-18 aryl). An organic electroluminescent element comprises a pair of electrodes and, sandwiched therebetween, an organic compound layer containing at least a luminescent band layer and a hole transport band layer comprising a hole injection layer containing the triamine compound and a hole transport layer; and a two-layered organic thin film comprising a layer that contains I and has a thickness of 5 nm to 5 μm and another layer that contains a compound II (X = methylene, phenylene, biphenylene, O, S; Ar6-10 = C6-18 aryl) and has a thickness of 5 nm to 5 μm. The invention provides an organic electroluminescent element reduced in the risk of causing dielec. breakdown even when stored for long and remarkably enhanced in electroluminescence efficiency, a long-lived organic electroluminescent element excellent in the stability of electroluminescence even when continuously driven for long, and

an organic thin film excellent in hole injection and transport characteristics.

IT 141546-10-3 181367-10-2 181367-42-0

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(triamine compound thin film for electroluminescent element)

RN 141546-10-3 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis[4-(diphenylamino)phenyl]-N1,N4-diphenyl-(CA INDEX NAME)

RN 181367-10-2 CAPLUS

CN 1,4-Benzenediamine, N1-[4-[bis(4-methoxyphenyl)amino]phenyl]-N4,N4-bis(4-methoxyphenyl)-N1-phenyl- (CA INDEX NAME)

RN 181367-42-0 CAPLUS

CN 1,4-Benzenediamine, N1-[1,1'-biphenyl]-4-yl-N1-[4-[bis(4-methoxyphenyl)amino]phenyl]-N4,N4-bis(4-methoxyphenyl)- (CA INDEX NAME)

OS.CITING REF COUNT: 13 THERE ARE 13 CAPLUS RECORDS THAT CITE THIS

RECORD (15 CITINGS)

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 433 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1996:560311 CAPLUS $\underline{\text{Full-text}}$

DOCUMENT NUMBER: 125:196755

ORIGINAL REFERENCE NO.: 125:36861a,36864a

TITLE: Polymeric carrier-transporting materials for

electroluminescent devices,

electrophotographic photoreceptors, etc. Ito, Juichi; Sato, Hisaya; Hayashi, Takako

INVENTOR(S): Ito, Juichi; Sato, Hisaya; Hayashi, Toppan Printing Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 20 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 08157575	A	19960618	JP 1994-330622	19941207
JP 3482719	B2	20040106		
PRIORITY APPLN. INFO.:			JP 1994-330622	19941207
GI				

The title materials capable of forming carrier-transporting layers by spin coating or casting with Tg \geq 120° and good mech. strength have the general formula I [m = d.p.; G1 = direct bond, arylene, alkylene, alkylenedioxy, other linking group; G2 = (halo)alkyl; G3 = H, alkyl; G4 = phenylene, biphenylene, other linking group]. N,N'-bis(4-formylphenyl)-N,N'-di-p-tolyl-p-phenylenediamine was prepared and polymerized with m-xylylbis(triphenylphosphonium chloride).

IT 181064-89-1P 181064-90-4P

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(polymeric carrier-transporting materials for

electroluminescent devices and electrophotog. photoreceptors)

RN 181064-89-1 CAPLUS

CN Phosphonium, [1,3-phenylenebis(methylene)]bis[triphenyl-, dichloride, polymer with 4,4'-[1,4-phenylenebis[(4-methylphenyl)imino]]bis[benzaldehyde] (9CI) (CA INDEX NAME)

Т

CM 1

CRN 131660-39-4 CMF C34 H28 N2 O2

CM 2

CRN 66726-75-8

CMF C44 H38 P2 . 2 C1

RN 181064-90-4 CAPLUS

CN Poly[[(4-methylphenyl)imino]-1,4-phenylene[(4-methylphenyl)imino]-1,4-phenylene-1,2-ethenediyl-1,3-phenylene-1,2-ethenediyl-1,4-phenylene] (9CI) (CA INDEX NAME)

PAGE 1-A

IT 131660-39-4P 138171-14-9P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(polymeric carrier-transporting materials for

electroluminescent devices and electrophotog. photoreceptors)

RN 131660-39-4 CAPLUS

CN Benzaldehyde, 4,4'-[1,4-phenylenebis[(4-methylphenyl)imino]]bis- (CA INDEX NAME)

RN 138171-14-9 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-methylphenyl)-N1,N4-diphenyl- (CA INDEX NAME)

OS.CITING REF COUNT: 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (2 CITINGS)

L5 ANSWER 434 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1996:462259 CAPLUS Full-text DOCUMENT NUMBER: 125:127324

ORIGINAL REFERENCE NO.: 125:23605a,23608a

TITLE: Organic thin-film electroluminescent device

INVENTOR(S): Utsuki, Koji; Hirano, Akira; Tsuruoka, Eriko; Ikeda,

Naoyasu

PATENT ASSIGNEE(S): Nippon Electric Co, Japan; Samsung Sdi Co., Ltd.

SOURCE: Jpn. Kokai Tokkyo Koho, 25 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
JP 08109373	 А	19960430	JP 1994-247930		19941013
JP 3758694	В2	20060322			
US 5858562	A	19990112	US 1995-542624		19951013
PRIORITY APPLN. INFO.:			JP 1994-247930	Α	19941013

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT OTHER SOURCE(S): MARPAT 125:127324

AB An organic thin-film **lectroluminescent* device comprising a hole transporting region sandwiched between a pair of electrodes, the hole transporting region consisting of a hole injecting layer and/or a hole transporting layer in contact with the anode, and a current blocking layer in contact with the light emitting layer, wherein the hole transporting layer comprises bistriphenylaminestyryl derivs. represented by (XAr1) (Ar2)NAr3AAr4N(Ar5Y) (Ar6) [A = C1-10 alkylidene, cycloalkylidene, O, S, or amino; Ar1, Ar3, Ar4, Ar5 = arylene; Ar2, Ar6 = aryl; X, Y = R1C:C(Ar7) (Ar8) (Ar7, Ar8 = aryl; R1 = H, halo, OH, amino, C1-6 alkyl)].

IT 152268-53-6 152268-54-7 152268-56-9 152268-57-0 152268-58-1 152268-59-2 152268-60-5 152268-61-6 152268-62-7 152268-63-8 152268-64-9 152268-65-0 179167-65-8 179167-66-9

RL: DEV (Device component use); USES (Uses)

(hole transporting layer for organic thin layer electroluminescent device)

RN 152268-53-6 CAPLUS

CN 1,4-Benzenediamine, N1-[4-(2,2-diphenylethenyl)phenyl]-N4-[4-[[4-(2,2-diphenylethenyl)phenyl](4-methylphenyl)amino]phenyl]-N4-(4-methoxyphenyl)-N1-(4-methylphenyl)- (CA INDEX NAME)

CN 1,4-Benzenediamine, N1-[4-[2,2-bis(3,5-dimethylphenyl)ethenyl]phenyl]-N4[4-[[4-[2,2-bis(3,5-dimethylphenyl)ethenyl]](4methylphenyl)amino]phenyl]-N4-(4-methoxyphenyl)-N1-(4-methylphenyl)- (CA
INDEX NAME)

PAGE 1-B

RN 152268-56-9 CAPLUS

CN 1,4-Benzenediamine, N1-[4-[2,2-bis[4-(diethylamino)phenyl]ethenyl]phenyl]-N4-[4-[[4-[2,2-bis[4-(diethylamino)phenyl]ethenyl]](4-methylphenyl)amino]phenyl]-N4-(4-methoxyphenyl)-N1-(4-methylphenyl)- (CA INDEX NAME)

PAGE 1-B

RN 152268-57-0 CAPLUS

CN 1,4-Benzenediamine, N1-[4-[2,2-bis(3-methylphenyl)ethenyl]phenyl]-N4-[4-[4-[2,2-bis(3-methylphenyl)ethenyl]phenyl][4-(diethylamino)phenyl]amino]phenyl]-N1-[4-(diethylamino)phenyl]-N4-(4-methoxyphenyl)- (CA INDEX NAME)

RN 152268-58-1 CAPLUS

CN 1,4-Benzenediamine, N1-[4-[2,2-bis(4-methylphenyl)ethenyl]phenyl]-N4-[4-[4-[2,2-bis(4-methylphenyl)ethenyl]phenyl](4-methylphenyl)amino]phenyl]-N1,N4-bis(4-methylphenyl)- (CA INDEX NAME)

PAGE 1-B

RN 152268-59-2 CAPLUS

CN 1,4-Benzenediamine, N1-[4-[2,2-bis(3,5-dimethylphenyl)ethenyl]phenyl]-N4- [4-[4-2,2-bis(3,5-dimethylphenyl)ethenyl][4-

(diethylamino)phenyl]amino]phenyl]-N1-[4-(diethylamino)phenyl]-N4-(4methylphenyl)- (CA INDEX NAME)

PAGE 1-B

RN 152268-60-5 CAPLUS

1,4-Benzenediamine, N1-[4-[2,2-bis(3,5-dimethylphenyl)ethenyl]phenyl]-N4[4-[[4-[2,2-bis(3,5-dimethylphenyl)ethenyl]](4methylphenyl)amino]phenyl]-N4-[4-(diethylamino)phenyl]-N1-(4-methylphenyl)(CA INDEX NAME)

RN 152268-61-6 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis[4-(diethylamino)phenyl]-N1-[4-[[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-(diethylamino)phenyl]-N1-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-(diethylamino)phenyl]]-N1-[4-[4-(diethylamino)phenyl]]-N1-[4-(diethylamino)phenyl]]-N1-[4-(diethylamino)phenyl]-N1-[4-(diethylamino)phenyl]-N1-[4-(diethylamino)phenyl]-N1-[4-(diethylamino)phenyl]-N1-[4-(diethylamino)phenyl]-N1-[4-(diethylamino)phenyl]-N1-[4-(diethylamino)phenyl]-N1-[4-(diethylamino)phenyl]-N1-[4-(diethylamino)phenyl]-N1-[4-(diethylamino)phenyl]-N1-[4-(diethylamino)pheny

PAGE 1-B

RN 152268-62-7 CAPLUS

CN 1,4-Benzenediamine, N1-[4-[2,2-bis(3-methylphenyl)ethenyl]phenyl]-N4-[4-[4-[2,2-bis(3-methylphenyl)ethenyl]phenyl](4-methylphenyl)amino]phenyl]-N4-[4-(diethylamino)phenyl]-N1-(4-methylphenyl)- (CA INDEX NAME)

PAGE 1-B

RN 152268-63-8 CAPLUS

CN 1,4-Benzenediamine, N1-[4-[2,2-bis(4-methylphenyl)ethenyl]phenyl]-N4-[4- [[4-[2,2-bis(4-methylphenyl)ethenyl]phenyl](4-methylphenyl)amino]phenyl]- N4-(3-methylphenyl)-N1-(4-methylphenyl)- (CA INDEX NAME)

RN 152268-64-9 CAPLUS

CN 1,4-Benzenediamine, N1-[4-(diethylamino)phenyl]-N4-[4-[[4-(diethylamino)phenyl]]-N4-[4-[4-[4-(diethylamino)phenyl]]-N1-[4-(2-(4-methoxyphenyl)-2-phenylethenyl]phenyl]-N4-(3-methylphenyl)- (CA INDEX NAME)

PAGE 1-B

RN 152268-65-0 CAPLUS

CN 1,4-Benzenediamine, N1-[4-[2,2-bis(3-methylphenyl)ethenyl]phenyl]-N4-[4- [[4-[2,2-bis(3-methylphenyl)ethenyl]phenyl](4-methylphenyl)amino]phenyl]- N4-(3-methylphenyl)-N1-(4-methylphenyl)- (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

RN 179167-65-8 CAPLUS

PAGE 1-B

$$= \stackrel{\text{Ph}}{ }$$

RN 179167-66-9 CAPLUS

CN 1,4-Benzenediamine, N1-[4-(diethylamino)phenyl]-N4-[4-[[4-(diethylamino)phenyl]]-N4-[4-[[4-(diethylamino)phenyl]]-N2-phenylethenyl]phenyl]amino]phenyl]-N1-[4-[2-(3-methoxyphenyl)-2-phenylethenyl]phenyl]-N4-(3-methylphenyl)- (CA INDEX NAME)

PAGE 1-B

OS.CITING REF COUNT: 3 THERE ARE 3 CAPLUS RECORDS THAT CITE THIS RECORD (3 CITINGS)

L5 ANSWER 435 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1996:294601 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 124:328419

ORIGINAL REFERENCE NO.: 124:60655a,60658a

TITLE: Hole-transporting material for organic

electroluminescence device or
electrophotographic photoreceptor

INVENTOR(S): Tamano, Michiko; Onikubo, Toshikazu; Uemura,

Toshikyuki; Ogawa, Tadashi; Enokida, Toshio

PATENT ASSIGNEE(S): Toyo Ink Manufacturing Co., Ltd., Japan

SOURCE: Eur. Pat. Appl., 34 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 699654	A1	19960306	EP 1995-305450	19950804
EP 699654	В1	19990331		
R: DE, FR, GB				
JP 08227165	A	19960903	JP 1995-164912	19950630
JP 3261930	B2	20020304		
JP 08100038	A	19960416	JP 1995-171739	19950707

JP 3296147 B2 20020624

US 5681664 A 19971028 US 1995-510535 19950802
PRIORITY APPLN. INFO.: JP 1994-183198 A 19940804
JP 1994-319694 A 19941222

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB A hole-transporting material of formula H-A-[-B-A-]n-B-A-H has excellent hole-transporting capability and excellent durability, wherein A is a specified aromatic amine derivative residue, B is a residue, and n is an integer of 1-5000. The materials may be included in an organic EL device of an electrophotog. photoreceptor which are excellent in stability in continuous long-term use.

IT 176443-47-3 176443-48-4 176443-77-9

176443-81-5

RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)

(hole-transporting material for EL device or electrophotog. photoreceptor)

RN 176443-47-3 CAPLUS

CN Cyclopentanone, polymer with N,N'-bis(4-aminophenyl)-N,N'-bis(4-methylphenyl)-1,4-benzenediamine (9CI) (CA INDEX NAME)

CM 1

CRN 176443-17-7 CMF C32 H30 N4

CM 2

CRN 120-92-3 CMF C5 H8 O

RN 176443-48-4 CAPLUS

CN Cyclooctanone, polymer with N, N'-bis(4-aminophenyl)-N, N'-bis(4-methylphenyl)-1, 4-benzenediamine (9CI) (CA INDEX NAME)

CM 1

CRN 176443-17-7 CMF C32 H30 N4

CM 2

CRN 502-49-8 CMF C8 H14 O

CN

RN 176443-77-9 CAPLUS

Cyclohexanone, 3,3,5-trimethyl-, polymer with N,N-bis(4-aminophenyl)-N',N'-bis(4-ethylphenyl)-1,4-benzenediamine (9CI) (CA INDEX NAME)

CM 1

CRN 176443-76-8 CMF C34 H34 N4

CM 2

CRN 873-94-9 CMF C9 H16 O

RN 176443-81-5 CAPLUS

CN Cycloheptanone, polymer with N,N-bis(4-aminophenyl)-N',N'-bis(4-methylphenyl)-1,4-benzenediamine (9CI) (CA INDEX NAME)

CM 1

CRN 176443-80-4 CMF C32 H30 N4

CM 2

CRN 502-42-1 CMF C7 H12 O

IT 176443-18-8P 176443-19-9P

RL: DEV (Device component use); PNU (Preparation, unclassified); PREP (Preparation); USES (Uses)

(prepared as hole-transporting material for EL device or electrophotog. photoreceptor)

RN 176443-18-8 CAPLUS

CN Cyclohexanone, polymer with N, N'-bis(4-aminophenyl)-N, N'-bis(4-methylphenyl)-1, 4-benzenediamine (9CI) (CA INDEX NAME)

CM 1

CRN 176443-17-7 CMF C32 H30 N4

CM 2

CRN 108-94-1 CMF C6 H10 O

RN 176443-19-9 CAPLUS

CN Cyclohexanone, 4-methyl-, polymer with N,N'-bis(4-aminophenyl)-N,N'-bis(4-methylphenyl)-1,4-benzenediamine (9CI) (CA INDEX NAME)

CM 1

CRN 176443-17-7 CMF C32 H30 N4

CM 2

CRN 589-92-4 CMF C7 H12 O

OS.CITING REF COUNT: 11 THERE ARE 11 CAPLUS RECORDS THAT CITE THIS RECORD (17 CITINGS)

L5 ANSWER 436 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1995:562195 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 123:20922

ORIGINAL REFERENCE NO.: 123:3811a,3814a

TITLE: Molecular design of hole transport materials for

obtaining high durability in organic

electroluminescent diodes

AUTHOR(S): Adachi, Chihaya; Nagai, Kazukiyo; Tamoto, Nozomu CORPORATE SOURCE: Chemical Products R and D Center, Ricoh Co., Ltd.,

Shizuoka, 410, Japan

SOURCE: Applied Physics Letters (1995), 66(20), 2679-81

CODEN: APPLAB; ISSN: 0003-6951

PUBLISHER: American Institute of Physics

DOCUMENT TYPE: Journal LANGUAGE: English

AB The mol. design of hole transport materials (HTMs) for producing high durability in organic layered electroluminescent (EL) diodes was elucidated. The durability tests were examined using 14 hole transport materials in the cell structure of an anode/hole transport layer (HTL)/emitter layer (EML)/cathode. The ionization potential (Ip) of HTLs is the dominant factor for obtaining high durability in organic EL devices. The formation of the small energy barrier at the interface of a HTL/anode was required for high durability. Also, no straightforward relations between m.p., glass transition temperature of the HTMs, and durability of the EL devices were observed The EL device using the HTM having a low Ip (5.08 eV) showed an especially remarkable stability. In this case, the half-life period of the initial luminance was beyond 500 h.

IT 124526-50-7 138171-14-9

RL: DEV (Device component use); USES (Uses)

(hole transport material for obtaining high durability in organic electroluminescent diodes)

RN 124526-50-7 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-methoxyphenyl)-N1,N4-diphenyl- (CA INDEX NAME)

RN 138171-14-9 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-methylphenyl)-N1,N4-diphenyl- (CA INDEX NAME)

OS.CITING REF COUNT: 258 THERE ARE 258 CAPLUS RECORDS THAT CITE THIS

RECORD (261 CITINGS)

L5 ANSWER 437 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1995:561327 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 122:302641

ORIGINAL REFERENCE NO.: 122:54869a,54872a

TITLE: Organic thin-film electroluminescence device

INVENTOR(S): Ito, Juichi

PATENT ASSIGNEE(S): Toppan Printing Co Ltd, Japan SOURCE: Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE		
JP 06338392	A	19941206	JP 1993-126717	19930528		
JP 2848189	B2	19990120				
PRIORITY APPLN. INFO.:			JP 1993-126717	19930528		

AB The title device, wherein the hole injection/transport layer comprises a aliphatic tetracarboxylic anhydride-based polyimide.

IT 163185-95-3

RL: DEV (Device component use); USES (Uses)
(aliphatic tetracarboxylic anhydride hole injection/transport layer in electroluminescent devices)

RN 163185-95-3 CAPLUS

CN 1,2,4-Cyclopentanetricarboxylic acid, 3-(carboxymethyl)-, polymer with N,N'-bis(4-aminophenyl)-N,N'-diphenyl-1,4-benzenediamine (9CI) (CA INDEX NAME)

CM 1

CRN 111341-76-5 CMF C30 H26 N4

CRN 24434-90-0 CMF C10 H12 O8

OS.CITING REF COUNT: 4 THERE ARE 4 CAPLUS RECORDS THAT CITE THIS RECORD

(4 CITINGS)

L5 ANSWER 438 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1994:545550 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 121:145550

ORIGINAL REFERENCE NO.: 121:26101a,26104a

TITLE: Organic thin-film electroluminescent element INVENTOR(S): Adachi, Chihaya; Oota, Masabumi; Sakon, Hirota;

Takahashi, Toshihiko

PATENT ASSIGNEE(S): Ricoh Kk, Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 05299174	A	19931112	JP 1992-126815	19920420
PRIORITY APPLN. INFO.:			JP 1992-126815	19920420

AB In the title element comprising an anode, a cathode, and 1 or a plurality of organic compound layers sandwiched by the anode and cathode, the relative difference of the ionization potentials of the anode (preferably an ITO electrode) and an organic compound layer (may be organic hole transport layer, organic hole transport light-emitting layer, or a single light-emitting organic compound layer) in contact with the anode is <0.85 eV. The electroluminescent element shows high initial luminance-maintaining ratio and superior durability.

IT 124526-50-7 138171-14-9

RL: USES (Uses)

(organic thin-film electroluminescent element with hole transport layer of, ionization potential of)

RN 124526-50-7 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-methoxyphenyl)-N1,N4-diphenyl- (CA INDEX NAME)

RN 138171-14-9 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-methylphenyl)-N1,N4-diphenyl- (CA INDEX NAME)

L5 ANSWER 439 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1994:496254 CAPLUS Full-text

DOCUMENT NUMBER: 121:96254

ORIGINAL REFERENCE NO.: 121:17071a,17074a

TITLE: Organic electroluminescence device

INVENTOR(S): Suzuki, Shinichi; Shibata, Toyoko; Takeuchi, Shigeki

PATENT ASSIGNEE(S): Konishiroku Photo Ind, Japan SOURCE: Jpn. Kokai Tokkyo Koho, 28 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 06017046	A	19940125	JP 1992-173177	19920630
PRIORITY APPLN. INFO.:			JP 1992-173177	19920630
OTHER SOURCE(S):	MARPAT	121:96254		
GI				

$$R^3$$
 R^4
 R^5
 R^4
 R^5
 R^5
 R^4
 R^5
 R^5
 R^6
 R^6
 R^7
 R^7

AB The title device, suited for use as a flat-panel display or a plane light source, comprises ≥1 layer containing I or II [R1, R3 = H, (substituted) alkyl, aryl, aralkyl, heterocyclyl, provided that R1 and R2 may not both be H, and R1 and R2 may together form a ring; R3, R4, R5 = H, halo, alkyl, alkoxy; Ar1, Ar2 = (substituted) alkyl, aryl, aralkyl; n = 0, 1].

IT 131312-31-7 131660-34-9 131660-38-3 156204-52-3 156204-58-9 156204-59-0 156204-60-3 156204-61-4 156204-62-5 156204-63-6

RL: DEV (Device component use); USES (Uses) (electroluminescent device from)

RN 131312-31-7 CAPLUS

CN 1,4-Benzenediamine, N1-[4-[2-[4-(diethylamino)phenyl]ethenyl]phenyl]-N1,N4-bis(4-methylphenyl)-N4-phenyl- (CA INDEX NAME)

$$\begin{array}{c} \text{The change of the change} \\ \text{Et}_2 \text{N} \end{array}$$

RN 131660-34-9 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis[4-[2-(4-chlorophenyl)-2-phenylethenyl]phenyl]-N1,N4-di-1-naphthalenyl- (CA INDEX NAME)

PAGE 1-B

RN 131660-38-3 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis[4-[2,2-bis(4-methylphenyl)ethenyl]phenyl]- N1,N4-di-1-naphthalenyl- (CA INDEX NAME)

PAGE 1-B

∽Me

RN 156204-52-3 CAPLUS

CN 1,4-Benzenediamine, N1-[4-[2-(3,5-dimethylphenyl)ethenyl]-N1,N4-bis(4-methylphenyl)-N4-phenyl- (CA INDEX NAME)

RN 156204-58-9 CAPLUS

CN 1,4-Benzenediamine, N1-[4-(2,2-diphenylethenyl)phenyl]-N1,N4-bis(4-methylphenyl)-N4-phenyl- (CA INDEX NAME)

RN 156204-59-0 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis[4-(2,2-diphenylethenyl)phenyl]-N1,N4-diphenyl- (CA INDEX NAME)

RN 156204-60-3 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis[4-[2-(4-methylphenyl)-2-phenylethenyl]phenyl]-N1,N4-diphenyl- (CA INDEX NAME)

PAGE 1-B

-Me

RN 156204-61-4 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-methylphenyl)-N1,N4-bis[4-[2-(4-methylphenyl)-2-phenylethenyl]phenyl]- (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

∽Me

RN 156204-62-5 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis[4-(5H-dibenzo[a,d]cyclohepten-5-ylidenemethyl)phenyl]-N1,N4-bis(3-methylphenyl)- (CA INDEX NAME)

RN 156204-63-6 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis[4-(2,2-diphenylethenyl)phenyl]-N1,N4-bis(3-methylphenyl)- (CA INDEX NAME)

L5 ANSWER 440 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1994:231406 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 120:231406

ORIGINAL REFERENCE NO.: 120:40761a,40764a

TITLE: Organic thin film electroluminescent device

including polyamide hole-transporting layer

INVENTOR(S): Ito, Juichi

PATENT ASSIGNEE(S): Toppan Printing Co Ltd, Japan SOURCE: Jpn. Kokai Tokkyo Koho, 11 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 05311163	A	19931122	JP 1992-114692	19920507
PRIORITY APPLN. INFO.:			JP 1992-114692	19920507

AB The title device involves at least an anode, a hole-implanting and transporting layer containing a polyamide of [p-CORC(0)NHC6H4-p-N(A1)A2N(A1)C6H4NH]n (R = dicarboxylic acid residue; A1= aryl; A2 = aromatic diamine residue), a light-emitting layer, and a cathode. The device including the polyamide (e.g., isophthaloyl chloride-N,N'-diphenyl-N,N'-bis(4-aminophenyl)-p-phenylenediamine copolymer) may be manufactured by a high-temperature process, such as spin coating at ≥100°.

IT 152197-05-2P 152220-19-4P

RL: PREP (Preparation)

(preparation of, for hole-implanting and transporting layer for electroluminescent device)

RN 152197-05-2 CAPLUS

CN Poly[imino-1, 4-phenylene(phenylimino)-1, 4-phenylene(phenylimino)-1, 4-phenyleneiminocarbonyl-1, 3-phenylenecarbonyl] (CA INDEX NAME)

PAGE 1-B

RN 152220-19-4 CAPLUS

CN 1,3-Benzenedicarbonyl dichloride, polymer with N,N'-bis(4-aminophenyl)-N,N'-diphenyl-1,4-benzenediamine (9CI) (CA INDEX NAME)

CM 1

CRN 111341-76-5 CMF C30 H26 N4

CM 2

CRN 99-63-8 CMF C8 H4 C12 O2

=>

Uploading C:\Program Files\STNEXP\Queries\10582459#1.str

G₃:-Hy----_{G₃} 42:-39----₄₀

```
chain nodes :
31 32 33 34 39 40 42
ring nodes :
1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18 \quad 19 \quad 20 \quad 21 \quad 22 \quad 23
24 25 26 27 28 29 30
chain bonds :
2-34 5-31 9-31 12-32 15-32 18-33 22-31 28-32 39-40 39-42
ring bonds :
1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 14-19 
15
15 - 16 \quad 16 - 17 \quad 17 - 18 \quad 19 - 20 \quad 19 - 24 \quad 20 - 21 \quad 21 - 22 \quad 22 - 23 \quad 23 - 24 \quad 25 - 26 \quad 25 - 30 \quad 26 - 27 \quad 20 -
27-28 28-29
29-30
exact/norm bonds :
2 - 34 \quad 5 - 31 \quad 9 - 31 \quad 12 - 32 \quad 15 - 32 \quad 18 - 33 \quad 22 - 31 \quad 28 - 32 \quad 39 - 40 \quad 39 - 42
normalized bonds :
1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 14-19 
15
15-16 16-17 17-18 19-20 19-24 20-21 21-22 22-23 23-24 25-26 25-30 26-27
27-28 28-29
29-30
isolated ring systems :
containing 1 : 7 : 13 : 19 : 25 :
```

G1:Ak,H

G2:N,P

G3:B,X

Match level:

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom 11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 17:Atom 18:Atom 19:Atom 20:Atom 21:Atom 23:Atom 24:Atom 25:Atom 26:Atom 27:Atom 28:Atom 29:Atom 30:Atom 31:CLASS 32:CLASS 33:CLASS 39:Atom 40:CLASS 42:CLASS Generic attributes: 39:

Saturation : Unsaturated

=> s 11 full

FULL SEARCH INITIATED 15:11:06 FILE 'REGISTRY'

FULL SCREEN SEARCH COMPLETED - 9757 TO ITERATE

100.0% PROCESSED 9757 ITERATIONS 1783 ANSWERS

SEARCH TIME: 00.00.01

L2 1783 SEA SSS FUL L1

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 12

L3 1050 L2

=> s 12 and electrolumin?

1050 L2

100932 ELECTROLUMIN?

L4 440 L2 AND ELECTROLUMIN?

=> d ibib abs hitstr 419-429

L4 ANSWER 419 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1998:204546 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 128:263735

ORIGINAL REFERENCE NO.: 128:52077a,52080a

TITLE: Organic electroluminescent element with

exciplex-forming materials

INVENTOR(S): Boerner, Herbert; Busselt, Wolfgang; Justel, Thomas;

Nikol, Hans

PATENT ASSIGNEE(S): Philips Patentverwaltung G.m.b.H., Germany; Philips

Electronics N.V.; Koninklijke Philips Electronics NV

SOURCE: Eur. Pat. Appl., 11 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATEN	IT NO.			KIND)	DATE		AF	PLI	ICAT	ION	NO.			DATE		
					-												_
EP 83	31676			A2		1998	0325	EF	19	997-	2028	320			19970	915	5
EP 83	31676			А3		1998	0715										
EP 83	31676			В1		2004	0107										
F	R: AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB, G	BR,	ΙΤ,	LI,	LU,	NL,	SE	MC,	P.	Γ,
	IE,	FI															
DE 19	638770			A1		1998	0326	DE	19	996-	1963	8770			19960	923	1
US 59	55836			Α		1999	0921	US	19	997-	9332	92			19970	918	3
JP 10	106748			A		1998	0424	JF	19	997-	2568	65			19970	922	2
IORITY A	APPLN.	INFO.	:					DE	19	996-	1963	8770		A	19960	923	1

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB <u>Electroluminescent</u> devices are described which have an organic active layer comprising a mixture of a hole-transporting material and an electron-transporting material which form an exciplex.

IT 138171-14-9

RL: DEV (Device component use); USES (Uses) (organic electroluminescent elements with exciplex-forming

materials)

RN 138171-14-9 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-methylphenyl)-N1,N4-diphenyl- (CA INDEX NAME)

OS.CITING REF COUNT: 9 THERE ARE 9 CAPLUS RECORDS THAT CITE THIS RECORD (9 CITINGS)

(5 CITING)

L4 ANSWER 420 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1998:175869 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 128:223710

ORIGINAL REFERENCE NO.: 128:44195a,44198a

TITLE: Heat-resistant organic electroluminescent

device

INVENTOR(S): Antoniadis, Homer; Roitman, Daniel B.; Shiang, William

R.; Woo, Edmund P.; Wu, Weishi

PATENT ASSIGNEE(S): Hewlett-Packard Co., USA; Dow Chemical Co.

SOURCE: Eur. Pat. Appl., 19 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA'	TENT :	NO.			KINI)	DATE			APP	LICA	MOIT	NO.			DATE	
EP	8273	 66			A2	_	1998	0304		EP	1997	 	 346			 19970	 827
EP	8273	66			А3		1998	0819									
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR	, II	LI,	LU	, NL,	SE	, MC,	PT,
		IE,	FΙ														
US	5948	552			Α		1999	0907		US	1996	-7044	176			19960	827
JP	1009	2582			Α		1998	0410		JΡ	1997	-2448	368			19970	827
PRIORIT	Y APP	LN.	INFO	. :						US	1996	-7044	176	Ā	\mathcal{F}	19960	827
ASSIGNM	ENT H	ISTO	RY F	OR US	S PAT	CENT	: AVA	ILABI	LE I	N L	SUS	DISPI	LAY	FORMA:	Γ		
OTHER S	OURCE	(S):			MARI	PAT	128:	22371	10								
GI																	

AB Organic **Lectroluminescent* devices comprising a substrate, a transparent first conductive layer next to the substrate, an electron-transporting and light-emitting layer, a hole-transporting layer sandwiched between the first conductive layer and the electron-transporting and light-emitting layer, and a second conductive layer next to the electron-transporting and light-emitting layer and remote from the hole-transporting layer are described in which the hole-transporting layer comprises a poly(arylamine) described by the general formula I (R = independently selected C1-24 hydrocarbyl, hydrocarboxyl, hydrothiocarboxy, hydroarylcarboxy, or hydrothioarylcarboxy groups; Ar1 and Ar2 = independently selected C6-18 aryl groups optionally substituted with ≥1 C1-24 hydrocarbyl, hydrocarboxyl, hydrothiocarboxy, hydroarylcarboxy, or hydrothioarylcarboxy groups; A = independently selected groups selected from H and halogens; p = 0-1; n = 0-4; and m = 5-1000).

IT 113703-67-6P 202873-05-0P

RL: DEV (Device component use); PRP (Properties); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

(heat-resistant organic electroluminescent devices with polyarylamine hole-transporting layers)

RN 113703-67-6 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-chlorophenyl)-N,N'-diphenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 113703-66-5 CMF C30 H22 C12 N2

RN 202873-05-0 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-methoxyphenyl)-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 202873-04-9 CMF C32 H26 Br2 N2 O2

IT 113703-66-5P 124526-50-7P 202873-04-9P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(heat-resistant organic electroluminescent devices with polyarylamine hole-transporting layers)

RN 113703-66-5 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-chlorophenyl)-N1,N4-diphenyl- (CA INDEX NAME)

RN 124526-50-7 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-methoxyphenyl)-N1,N4-diphenyl- (CA INDEX NAME)

RN 202873-04-9 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis(4-methoxyphenyl)-(CA INDEX NAME)

OS.CITING REF COUNT: 19 THERE ARE 19 CAPLUS RECORDS THAT CITE THIS RECORD (19 CITINGS)

L4 ANSWER 421 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1998:126295 CAPLUS $\underline{\text{Full-text}}$

DOCUMENT NUMBER: 128:180801

ORIGINAL REFERENCE NO.: 128:35685a,35688a

TITLE: Polyarylamines, their preparation, and films thereof

INVENTOR(S): Wu, Weishi; Shiang, William R.; Woo, Edmund P.

PATENT ASSIGNEE(S): Dow Chemical Company, USA SOURCE: PCT Int. Appl., 25 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA:	FENT	NO.			KINI)	DATE			APPI	LICAT	ION	NO.	DATE				
WO	9806				A1	_	1998	980219 WO 1997-US12478			19970714							
		JP, AT,		СН,	DE,	DK,	ES,	FI,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	PT,	SE
US	5728	801	·	·	A	·	1998	0317	·	US 1	1996-	6962	81	·	1	9960	813	
EP	9188	11			A1		1999	0602		EP 1	1997-	9393	38		1	9970	714	
EP	9188	11			В1		2000	1227										
	R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,	
		IE,	FI															
AT	1983	38			Τ		2001	0115		AT 1	1997-	9393	38		1	9970	714	
JP	2001	5030	74		Τ		2001	0306		JP 1	1998-	5097	17		1	9970	714	
JP	4172	821			В2		2008	1029										
KR	2000	0299	16		A		2000	0525		KR 1	1999-	7011	13		1	9990	210	
JP	2008	0693	67		Α		2008	0327		JP 2	2007-	2790	72		2	0071	026	
PRIORITY	Y APP	LN.	INFO	.:						US 1	1996-	6962	81		A 1	9960	813	
										JP 1	1998-	5097	17		A3 1	9970	714	
										WO 1	1997-	US12	478	,	W 1	9970	714	

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB A poly(arylamine) composition comprises one or more compds. of structure I (R = C1-24 hydrocarbyl, C1-24 hydrocarboxy, C1-24 hydrocarbylthiooxy, C1-24 hydrocarbylcarboxyl; Ar1, Ar2 = C6-18 aryl, C1-12 hydrocarbyl-, C1-12 hydrocarbyloxy-, C1-12 hydrocarbylthiooxy-, C1-12 hydrocarbylcarboxyl- substituted C6-18 aryl, A = H, halogen; x = 0, 1; n = 0-4; m = 5-1000). The monomers useful in the preparation of polyarylamines comprise two amino moieties wherein each amino moiety is bound to three aryl moieties wherein two halo moieties are optionally bound to the monomer. The invention further relates to films prepared from such polyarylamines, as well as electrophotog. devices and **Lectroluminescent* devices containing such films, such as

polymeric light-emitting diodes. The invention also relates to processes for the preparation of polyarylamines.

IT 113703-67-6P 202873-05-0P

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (polyarylamines, their preparation, and films thereof)

RN 113703-67-6 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-chlorophenyl)-N,N'-diphenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 113703-66-5 CMF C30 H22 C12 N2

RN 202873-05-0 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-methoxyphenyl)-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 202873-04-9

CMF C32 H26 Br2 N2 O2

IT 113703-66-5P 124526-50-7P 202873-04-9P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(polyarylamines, their preparation, and films thereof)

RN 113703-66-5 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-chlorophenyl)-N1,N4-diphenyl- (CA INDEX NAME)

RN 124526-50-7 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-methoxyphenyl)-N1,N4-diphenyl- (CA INDEX NAME)

RN 202873-04-9 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis(4-methoxyphenyl)-(CA INDEX NAME)

OS.CITING REF COUNT: 28 THERE ARE 28 CAPLUS RECORDS THAT CITE THIS

RECORD (33 CITINGS)

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 422 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1998:116628 CAPLUS Full-text

DOCUMENT NUMBER: 128:173587

ORIGINAL REFERENCE NO.: 128:34101a,34104a

TITLE: A novel class of π -electron dendrimers for

thermally and morphologically stable amorphous

molecular materials

AUTHOR(S): Katsuma, Katsuhiko; Shirota, Yasuhiko

CORPORATE SOURCE: Department Applied Chemistry, Faculty Engineering,

Osaka University, Suita, 565, Japan

SOURCE: Advanced Materials (Weinheim, Germany) (1998), 10(3),

223-226

CODEN: ADVMEW; ISSN: 0935-9648

PUBLISHER: Wiley-VCH Verlag GmbH

DOCUMENT TYPE: Journal

LANGUAGE: English

The novel organic hyperbranched π -electron systems, 1,3,5-tris[N-(4'-AB methylbiphenyl-4-yl)-N-(4- diphenylaminophenyl)amino]benzene (TDAB-G1(a)) and 1,3,5-tris{N-[4-bis(4-methylphenyl)aminophenyl]-N-(4diphenylaminophenyl)amino}benzene (TDAB-G1(b)), were synthesized via the Ullmann reaction and characterized by 1H-, 13C-NMR, electron absorption spectroscopy, and elemental anal. TDAB-G1(a) was obtained as a polycryst. material, whereas TDAB-G1(b) was an amorphous glass. DSC anal. of TDAB-G1(a) gave a m.p. of 187° . When the melted sample was cooled in air, a glass was formed spontaneously. Reheating of the glass sample resulted in a glass transition at Tg = 128° giving a supercooled liquid Likewise, the amorphous repptd. sample of TDAB-G1(b) exhibited a glass transition at $Tg = 134^{\circ}$ when heated. Unique multiredox processes involving as many as 6- and 9-electron reversible oxidns. were observed in the cyclic voltammograms of TDAB-G1(a) and TDAB-G1(b), resp. TDAB-G1(b) was used as a hole-transport material in a multilayer organic LED consisting of the double-hole transport layer and an emitting layer which contained N,N'-diphenyl-N,N'-bis(3-methylphenyl)-[1,1'biphenyl]-4,4'- diamine (TPD) doped with rubrene as the emitting material and with tris(8-quinolinolato) Al as the electron transport material. This device emitted yellow light and the electroluminescence showed a peak at 560 nm in agreement with the luminescence peak of rubrene.

IT 874946-05-1P

RL: SPN (Synthetic preparation); PRP (Properties); PREP (Preparation)

(A novel class of π -electron dendrimers for thermally and morphologically stable amorphous molecular materials)

RN 874946-05-1 CAPLUS

CN 1,3,5-Benzenetriamine, N1,N3,N5-tris[4-[bis(4-methylphenyl)amino]phenyl]- N1,N3,N5-tris[4-(diphenylamino)phenyl]- (CA INDEX NAME)

IT 202868-45-9P

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); SPN (Synthetic preparation); PREP (Preparation); PROC (Process); USES (Uses)

(preparation, glass transition, redox potential, and application in LED as hole transport material of)

RN 202868-45-9 CAPLUS

CN 1,3,5-Benzenetriamine, N1,N1,N3,N3,N5,N5-hexakis[4-[bis(4-methylphenyl)amino]phenyl]- (CA INDEX NAME)

PAGE 1-A

PAGE 2-A

OS.CITING REF COUNT: 111 THERE ARE 111 CAPLUS RECORDS THAT CITE THIS RECORD (111 CITINGS)

L4 ANSWER 423 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1997:743868 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 128:68313

ORIGINAL REFERENCE NO.: 128:13227a,13230a

TITLE: Hole transport material and organic

electroluminescent device

INVENTOR(S): Uekawa, Masahiro; Nakaya, Tadao

PATENT ASSIGNEE(S): Oki Electric Industry Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 11 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE		
JP 09298089	A	19971118	JP 1996-111352	19960502		
PRIORITY APPLN. INFO.:			JP 1996-111352	19960502		
CT						

$$\begin{array}{c|c}
 & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow \\$$

AB A hole transport material used in organic electroluminescent device is a polyimide represented by I [X = benzene ring-containing group; R1-2 = aromatic group]. The claimed hole transport material has excellent heat-resistant properties, thereby enhancing the device lifetime.

IT 200192-09-2P

RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

(hole transport material and organic electroluminescent device)

RN 200192-09-2 CAPLUS

CN [5,5'-Biisobenzofuran]-1,1',3,3'-tetrone, polymer with N,N'-bis(4-aminophenyl)-N,N'-di-2-naphthalenyl-1,4-benzenediamine (9CI) (CA INDEX NAME)

CM 1

CRN 200192-07-0 CMF C38 H30 N4

CM 2

CRN 2420-87-3 CMF C16 H6 O6

IT 200192-05-8P 200192-07-0P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(hole transport material and organic electroluminescent device)

RN 200192-05-8 CAPLUS

CN 1,4-Benzenediamine, N1,N4-di-2-naphthalenyl-N1,N4-bis(4-nitrophenyl)- (CA INDEX NAME)

RN 200192-07-0 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-aminophenyl)-N1,N4-di-2-naphthalenyl- (CA INDEX NAME)

OS.CITING REF COUNT: 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (2 CITINGS)

L4 ANSWER 424 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1997:678708 CAPLUS Full-text

DOCUMENT NUMBER: 128:17237

ORIGINAL REFERENCE NO.: 128:3255a,3258a

TITLE: Organic electroluminescent device elements

INVENTOR(S): Enokida, Toshio; Tamano, Michiko PATENT ASSIGNEE(S): Toyo Ink Mfg. Co., Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 33 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 09268284	 A	19971014	JP 1996-78501	19960401
JP 3564859	B2	20040915		
PRIORITY APPLN. INFO.:			JP 1996-78501	19960401
OTHER SOURCE(S):	MARPAT	128:17237		
GT				

GΙ

$$(Y^4)_{m^4} - X^4$$
 $X^1 - (Y^1)_{m^1}$
 $(Y^3)_{m^3} - X^3$
 $X^2 - (Y^2)_{m^2}$
 $X^3 - Y^3$

$$\begin{array}{c|c}
 & R^1 & R^2 \\
 & C & C \\
\end{array}$$

$$\begin{array}{c|c}
 & R^3 & R^4 \\
 & C & C \\
\end{array}$$

$$\begin{array}{c|c}
 & R^3 & R^4 \\
\end{array}$$

$$\begin{array}{c|c}
 & C & C \\
\end{array}$$

$$\begin{array}{c|c}
 & R^3 & R^4 \\
\end{array}$$

The elements comprise the phosphors I containing II; I [A, X1-4 = C2-20 arylene; m1, m2, m3, m4 = 0-2; Y1-4 = II] II [R1-4 = H, (un)substituted alkyl, (un)substituted aryl, CN; Z = (un)substituted aryl; n = 0, 1]; a tertiary amine derivative (B1, 2N)G(NB3, 4) formed between the phosphor and the anode [B1-4 = (un)substituted C6-20 aryl; G = (un)substituted arylene]; and a metal complex Q1, 2GaL formed between the phosphor and the cathode [Q1, 2 = (un)substituted hydrobenzoquinoline derivative; L = halo, (un)substituted (cyclo)alkyl, aryl cong. optional (un)substituted N, OR (R \equiv L)].

IT 198903-36-5 198903-38-7 198903-54-7
RL: DEV (Device component use); USES (Uses)
(organic electroluminescent device elements)

RN 198903-36-5 CAPLUS

CN 1,4-Benzenediamine, N1,N1,N4,N4-tetrakis[4-(2-phenylethenyl)phenyl]- (CA INDEX NAME)

RN 198903-38-7 CAPLUS

1,4-Naphthalenediamine, N1,N1,N4,N4-tetrakis[4-[2-(4-methylphenyl)ethenyl]phenyl]- (CA INDEX NAME)

PAGE 1-A

RN 198903-54-7 CAPLUS

CN 1,4-Benzenediamine, N1-[4-[bis[4-(2-phenylethenyl)phenyl]amino]phenyl]-N1-phenyl-N4,N4-bis[4-(2-phenylethenyl)phenyl]- (CA INDEX NAME)

(5 CITINGS)

L4 ANSWER 425 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1997:618270 CAPLUS Full-text

DOCUMENT NUMBER: 127:263592

ORIGINAL REFERENCE NO.: 127:51481a,51484a

TITLE: Crosslinkable or chain extendable polyarylpolyamines

and films for electroluminescent devices

INVENTOR(S): Woo, Edmund P.; Inbasekaran, Michael; Shiang, William

R.; Roof, Gordon R.; Wu, Weishi

PATENT ASSIGNEE(S): Dow Chemical Co., USA SOURCE: PCT Int. Appl., 57 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PATENT NO.			KIND DATE			APPLICATION NO.						DATE					
		9733				A2		1997			 WO 1	 997-	 US26	43		1	9970	220
	WO	9733				А3		2002										
		W:	AL,	ΑM,	ΑT,	ΑU,	ΑZ,	ΒA,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CU,	CZ,	DE,
			DK,	EE,	ES,	FΙ,	GB,	GE,	HU,	IL,	IS,	JP,	ΚE,	KG,	KR,	KΖ,	LC,	LK,
			LR,	LS,	LT,	LU,	LV,	MD,	MG,	MK,	MN,	MW,	MX,	NO,	NZ,	PL,	PT,	RO,
			RU,	SD,	SE,	SG,	SI,	SK,	ТJ,	TM,	TR,	TT,	UA,	UG,	UΖ,	VN,	YU	
		RW:	KE,	LS,	MW,	SD,	SZ,	UG,	AT,	BE,	CH,	DE,	DK,	ES,	FΙ,	FR,	GB,	GR,
			IE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	ML,
			MR,	ΝE,	SN,	TD,	ΤG											
	AU	9722	776			Α		1997	0922		AU 1	997-	2277	6		1	9970.	220
	US	5929	194			Α		1999	0727		US 1	997-	9673	48		1	9971	027
PRIO	RIT	Y APP	LN.	INFO	. :						US 1	996-	6061	80		A 1	9960.	223
											US 1	996-	6962	80		A 1	9960	813
											WO 1	997-	US26	43	1	W 1	9970.	220

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT OTHER SOURCE(S): MARPAT 127:263592

AB The polyarylpolyamines are prepared by the reaction of ≥1 tertiary di- or polyarylamine having 2 halogen substituents with a haloarom. compound having a crosslinkable reactive group or trialkylsiloxy moiety. Films of the title compds., as well as films of polymers of their crosslinkable species, are efficient in the transport of pos. charges when exposed to relatively low voltage levels, and demonstrate solvent and heat resistance.

IT 113703-67-6P

RL: IMF (Industrial manufacture); PREP (Preparation) (crosslinkable or chain extendable polyarylpolyamines for solvent-resistant films for electroluminescent devices)

RN 113703-67-6 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-chlorophenyl)-N,N'-diphenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 113703-66-5 CMF C30 H22 C12 N2

CMF C58 H56 N2 O6

ΙT 195730-45-1P 195730-55-3P RL: IMF (Industrial manufacture); PREP (Preparation) (film; crosslinkable or chain extendable polyarylpolyamines for solvent-resistant films for electroluminescent devices) 195730-45-1 CAPLUS RN CN 2-Propenoic acid, 2-ethyl-2-[[(1-oxo-2-propenyl)oxy]methyl]-1,3propanediyl ester, polymer with 1,4-phenylenebis[[[4-(pentyloxy)phenyl]imino][1,1'-biphenyl]-4',4-diyl] di-2-propenoate (9CI) (CA INDEX NAME) CM 1 CRN 195730-44-0

— СН**—** СН 2

CM 2

CRN 15625-89-5 CMF C15 H20 O6

RN 195730-55-3 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bicyclo[4.2.0]octa-1,3,5-trien-3-ylphenyl)-N,N'-bis[4-(pentyloxy)phenyl]-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 195730-53-1 CMF C56 H56 N2 O2

IT 195730-42-8P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(intermediate; crosslinkable or chain extendable polyarylpolyamines for solvent-resistant films for electroluminescent devices)

RN 195730-42-8 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis[4-(pentyloxy)phenyl]- (CA INDEX NAME)

IT 195730-44-0P 195730-53-1P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(preparation and polymerization; crosslinkable or chain extendable polyarylpolyamines for solvent-resistant films for electroluminescent devices)

RN 195730-44-0 CAPLUS

CN 2-Propenoic acid, 1,4-phenylenebis[[[(4-pentyloxy)phenyl]imino][1,1'-biphenyl]-4',4-diyl] ester (9CI) (CA INDEX NAME)

PAGE 1-B

— СН**—** СН 2

RN 195730-53-1 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bicyclo[4.2.0]octa-1,3,5-trien-3-ylphenyl)-N1,N4-bis[4-(pentyloxy)phenyl]- (CA INDEX NAME)

IT 195730-43-9P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(reaction with acryloyl chloride; crosslinkable or chain extendable polyarylpolyamines for solvent-resistant films for electroluminescent devices)

RN 195730-43-9 CAPLUS

CN [1,1'-Biphenyl]-4-ol, 4',4'''-[1,4-phenylenebis[[4-(pentyloxy)phenyl]imino]]bis-(9CI) (CA INDEX NAME)

IT 195730-40-6P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(reaction with bromosuccinimide; crosslinkable or chain extendable polyarylpolyamines for solvent-resistant films for electroluminescent devices)

RN 195730-40-6 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis[4-(pentyloxy)phenyl]-N1,N4-diphenyl- (CA INDEX NAME)

OS.CITING REF COUNT: 27 THERE ARE 27 CAPLUS RECORDS THAT CITE THIS

RECORD (31 CITINGS)

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 426 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1997:563439 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 127:191351

ORIGINAL REFERENCE NO.: 127:37119a,37122a

TITLE: Synthesis of polymers for hole and electron transport

materials in organic electroluminescent

devices

AUTHOR(S): Son, Jhun Mo; Sakaki, Yuichi; Ogino, Kenji; Sato,

Hisaya

CORPORATE SOURCE: Faculty of Technology, Tokyo University of Agriculture

and Technology, Tokyo, 184, Japan

SOURCE: IEEE Transactions on Electron Devices (1997), 44(8),

1307-1314

CODEN: IETDAI; ISSN: 0018-9383

PUBLISHER: Institute of Electrical and Electronics Engineers

DOCUMENT TYPE: Journal LANGUAGE: English

AB Styrene-type polymers having tetraphenylbenzidine (TPD) or tetraphenylphenyldiaminobenzene unit (PDA) and a oxadiazole unit on the side chain were prepared as hole and electron transport materials, resp., of an electroluminescent device. The device structures employed were [ITO/hole transport layer/Al] (type I), or [ITO/hole transport layer/electron transport layer/Al] (type II). Type I devices provided c.d. higher than 100 mA/cm2 but no luminescence was observed Type II devices emitted luminescence of about 10

cd/m2 at the c.d. of about 170 mA/cm2. The emission maximum of these devices were 460 and 530 nm for the device using TPD and PDA, resp.

IT 194354-35-3P

RL: DEV (Device component use); PRP (Properties); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

(preparation of styrene derivative polymers for hole and electron transport materials in organic electroluminescent devices)

RN 194354-35-3 CAPLUS

CN 1,4-Benzenediamine, N-[4-[[(4-ethenylphenyl)methoxy]methyl]phenyl]-N,N',N'-tris(4-methylphenyl)-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 194354-34-2 CMF C43 H40 N2 O

OS.CITING REF COUNT: 20 THERE ARE 20 CAPLUS RECORDS THAT CITE THIS

RECORD (20 CITINGS)

REFERENCE COUNT: 17 THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 427 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1997:480901 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 127:115061

ORIGINAL REFERENCE NO.: 127:22069a,22072a

TITLE: Hole-transporting material and use thereof

INVENTOR(S): Tamano, Michiko; Okutsu, Satoshi; Enokida, Toshio

PATENT ASSIGNEE(S): Toyo Ink Manufacturing Co., Ltd., Japan

SOURCE: Eur. Pat. Appl., 32 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 779765	A2	19970618	EP 1996-309019	19961211
EP 779765	A3	19970730		
EP 779765	B1	20010801		
R: DE, FR, GB				
JP 09222741	A	19970826	JP 1996-306049	19961118
PRIORITY APPLN. INFO.:			JP 1995-321345 A	19951211
			JP 1996-306049 A	19961118
OTHER SOURCE(S): GI	MARPAT	127:115061		

 $\begin{array}{c}
R^{2} & N \\
 & Ar^{1} \\
 & Ar^{2} \\
 & Ar^{3} \\
 & R^{3} \\
 & R^{4}
\end{array}$ $\begin{array}{c}
R^{2} & N \\
 & Ar^{3} \\
 & R^{5}
\end{array}$

AB Hole-transporting materials comprise triaryl amines described by the general formula I (R1-6 = (un)substituted aryl groups; and Ar1-3 = (un)substituted arylene groups, with the restriction that ≥1 of R1-6 = comprises fused aromatic rings or is an aryl group having a cycloalkyl ring). Organic electroluminescent devices and electrophotog. photoreceptors employing the materials are also described.

IT 192180-91-9 192180-92-0 192180-93-1 192180-96-4 192180-97-5 192181-00-3 192181-04-7 192181-17-2 192181-18-3

RL: DEV (Device component use); PRP (Properties); USES (Uses) (aryl amine hole-transporting materials and apparatus using them)

RN 192180-91-9 CAPLUS

CN 1,4-Benzenediamine, N1-(4-methylphenyl)-N4,N4-bis[4-[(4-methylphenyl)-1-naphthalenylamino]phenyl]-N1-1-naphthalenyl- (CA INDEX NAME)

RN 192180-92-0 CAPLUS

CN 1,4-Benzenediamine, N1-(4-methoxy-2-methylphenyl)-N4,N4-bis[4-[(4-methoxy-2-methylphenyl)-2-naphthalenylamino]phenyl]-N1-2-naphthalenyl- (CA INDEX

RN 192180-93-1 CAPLUS

CN 1,4-Benzenediamine, N1-(4-methylphenyl)-N4,N4-bis[4-[(4-methylphenyl)-1-pyrenylamino]phenyl]-N1-1-pyrenyl- (CA INDEX NAME)

RN 192180-96-4 CAPLUS

CN 1,4-Benzenediamine, N1-9-anthracenyl-N4,N4-bis[4-[9-anthracenyl(4-methylphenyl)amino]phenyl]-N1-(4-methylphenyl)- (CA INDEX NAME)

RN 192180-97-5 CAPLUS

CN 1,4-Benzenediamine, N1-(4-methoxy-2-methylphenyl)-N4,N4-bis[4-[(4-methoxy-2-methylphenyl)-1-naphthalenylamino]phenyl]-N1-1-naphthalenyl- (CA INDEX NAME)

RN 192181-00-3 CAPLUS

CN

1,4-Benzenediamine, N1-[4-(diethylamino)phenyl]-N4-[4-(diphenylamino)phenyl]-N4-[4-(1-naphthalenylphenylamino)phenyl]-N1-phenyl-(CA INDEX NAME)

PAGE 2-A

RN 192181-04-7 CAPLUS

CN 1,4-Benzenediamine, N1,N1-bis[4-[(4-methylphenyl)phenylamino]phenyl]-N4-phenyl-N4-(5,6,7,8-tetrahydro-1-naphthalenyl)- (CA INDEX NAME)

PAGE 1-A

RN 192181-17-2 CAPLUS

CN 1,4-Benzenediamine, N1-(4-chlorophenyl)-N4,N4-bis[4-[(4-chlorophenyl)(5,6,7,8-tetrahydro-6-methyl-1-naphthalenyl)amino]phenyl]-N1-(5,6,7,8-tetrahydro-6-methyl-1-naphthalenyl)- (CA INDEX NAME)

RN 192181-18-3 CAPLUS

CN 1,4-Benzenediamine, N1,N1-bis[4-[(4-methoxyphenyl)phenylamino]phenyl]-N4-phenyl-N4-(5,6,7,8-tetrahydro-1-naphthalenyl)- (CA INDEX NAME)

PAGE 1-A

L4 ANSWER 428 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1997:469997 CAPLUS Full-text

DOCUMENT NUMBER: 127:101553

ORIGINAL REFERENCE NO.: 127:19443a,19446a

TITLE: Organic thin film electroluminescent device

elements

INVENTOR(S): Ito, Yuichi; Ogino, Kenji; Sato, Hisaya

PATENT ASSIGNEE(S): Toppan Printing Co., Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 12 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 09151371	A	19970610	JP 1995-312576	19951130
PRIORITY APPLN. INFO.:			JP 1995-312576	19951130
GI				

$$\mathbb{R}^1$$
 \mathbb{R}^2
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^4

AB The elements comprise a transparent substrate; an ITO electrode; a hole-injection layer containing I (R1-5 = H, Me, methoxy, Ph, trifluoromethyl, OH, hydroxymethyl, formyl, NH2, double bonded group, epoxy ring; n = 1, 2); an Alq3 phosphor; a MgAg electrode; a GeO sealant; and a glass/resin encapsulation.

IT 191795-04-7 191795-08-1

RL: DEV (Device component use); USES (Uses)

(organic thin film electroluminescent device elements)

RN 191795-04-7 CAPLUS

CN 1,4-Benzenediamine, N1-[4-[bis(4-methylphenyl)amino]phenyl]-N4,N4-bis(4methylphenyl)-N1-phenyl- (CA INDEX NAME)

RN 191795-08-1 CAPLUS

1,4-Benzenediamine, N1,N4-bis[4-[bis(4-methylphenyl)amino]phenyl]-N1,N4-CN diphenyl- (CA INDEX NAME)

OS.CITING REF COUNT: THERE ARE 4 CAPLUS RECORDS THAT CITE THIS RECORD (4 CITINGS)

ANSWER 429 OF 440 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1996:746286 CAPLUS Full-text

DOCUMENT NUMBER: 126:39392

126:7705a,7708a ORIGINAL REFERENCE NO.:

Organic thin-film electroluminescent device TITLE: INVENTOR(S): Ito, Juichi; Sato, Hisaya; Hayashi, Takako

PATENT ASSIGNEE(S): Toppan Printing Co Ltd, Japan SOURCE: Jpn. Kokai Tokkyo Koho, 10 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent Japanese LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 08259935	A	19961008	JP 1995-65611	19950324
JP 3646339	B2	20050511		
PRIORITY APPLN. INFO.:			JP 1995-65611	19950324
GT				

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

AB An organic thin-film electroluminescent device, suited for use in optical displays, comprises a multilayer structure including an organic light-emitting layer and a hole injection/transport layer containing a compound represented by I (G1 = CH or N; G2, G3 = H, C1-4 alkyl, alkoxy, dialkylamino, Q1, Q2, Q3, Q4, a group containing ≥1 benzene, naphthalene, anthracene, and perylene rings, benzene or naphthalene rings condensed with the Ph group in I; R = H, C1-4 alkyl, alkoxy, and dialkylamino).

IT 184159-36-2

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(organic thin-film electroluminescent device)

RN 184159-36-2 CAPLUS

CN 1,4-Benzenediamine, N-[4-[2-(4-ethenylphenyl)ethenyl]phenyl]-N,N'-bis(4-methylphenyl)-N'-phenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 184159-35-1 CMF C42 H36 N2

$$H_2C = CH = CH = CH = Me$$

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD (1 CITINGS)

=>

Uploading C:\Program Files\STNEXP\Queries\10582459#2.str

chain nodes :
31 32 33 34 35
ring nodes :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30

chain bonds :
1-34 4-31 8-32 11-31 13-33 16-32 22-31 28-32
ring bonds :
1-2 1-6 2-3 3-4 4-5 5-6 7-8 7-12 8-9 9-10 10-11 11-12 13-14 13-18 14-15
15-16 16-17 17-18 19-20 19-24 20-21 21-22 22-23 23-24 25-26 25-30 26-27
27-28 28-29
29-30
exact/norm bonds :
1-34 4-31 8-32 11-31 13-33 16-32 22-31 28-32
normalized bonds :
1-2 1-6 2-3 3-4 4-5 5-6 7-8 7-12 8-9 9-10 10-11 11-12 13-14 13-18 14-15
15-16 16-17 17-18 19-20 19-24 20-21 21-22 22-23 23-24 25-26 25-30 26-27
27-28 28-29
29-30

Match level:

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom 11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 17:Atom 18:Atom 19:Atom 20:Atom 21:Atom 23:Atom 24:Atom 25:Atom 26:Atom 27:Atom 28:Atom 29:Atom 30:Atom 31:CLASS 32:CLASS 35:CLASS 36:Atom

L1 STRUCTURE UPLOADED

=> d l1 L1 HAS NO ANSWERS L1 STR

Structure attributes must be viewed using STN Express query preparation.

=> s 11 SAMPLE SEARCH INITIATED 19:12:52 FILE 'REGISTRY' SAMPLE SCREEN SEARCH COMPLETED - 80 TO ITERATE 100.0% PROCESSED 80 ITERATIONS 0 ANSWERS

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**

PROJECTED ITERATIONS: 1064 TO 2136 PROJECTED ANSWERS: 0 TO 0

L2 0 SEA SSS SAM L1

=> s 11 full

FULL SEARCH INITIATED 19:13:02 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 1629 TO ITERATE

100.0% PROCESSED 1629 ITERATIONS 5 ANSWERS

SEARCH TIME: 00.00.01

L3 5 SEA SSS FUL L1

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 13

L4 3 L3

=> d ibib abs hitstr 1-3

L4 ANSWER 1 OF 3 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2005:540610 CAPLUS Full-text

DOCUMENT NUMBER: 143:78969

TITLE: Nitrogen-containing oligomers and polymers for optical

applications

PATENT ASSIGNEE(S): Covion Organic Semiconductors G.m.b.H., Germany

SOURCE: PCT Int. Appl., 33 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PAT	CENT	NO.			KIN)	DATE			APPL:	ICAT	ION I	NO.		DATE 			
WO	2005	0566	38		A1		2005	0623	,	WO 2	004-	EP14:	152		2	0041	213	
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,	
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FΙ,	GB,	GD,	
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KP,	KR,	KΖ,	LC,	
		LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,	NI,	
		NO,	NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	
		ТJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW	
	RW:	BW,	GH,	GM,	KE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	
		ΑZ,	BY,	KG,	KΖ,	MD,	RU,	ТJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	
		EE,	ES,	FI,	FR,	GB,	GR,	HU,	ΙE,	IS,	ΙΤ,	LT,	LU,	MC,	NL,	PL,	PT,	
		RO,	SE,	SI,	SK,	TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	
		MR,	NE,	SN,	TD,	ΤG												
ΕP	1694	744			A1		2006	0830		EP 2	004-	8037	89		2	0041	213	
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙΤ,	LI,	LU,	NL,	SE,	MC,	PT,	
		IE,	SI,	LT,	FI,	RO,	CY,	TR,	BG,	CZ,	EE,	HU,	PL,	SK,	IS			
CN	1906	229			Α		2007	0131	1	CN 2	004-	8004	0408		2	0041	213	
CN	1005	5879	1		С		2009	1111	.1									
JP	2007	5188	42		T		2007	0712	2 JP 2006-543506				20041213					

KR 2007012324	A	20070125	KR	2006-711672		20060613
US 20080217605	A1	20080911	US	2007-582459		20070516
PRIORITY APPLN. INFO.:			EP	2003-28789	Α	20031213
			WO	2004-EP14152	W	20041213

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT OTHER SOURCE(S): MARPAT 143:78969

AB An optionally substituted oligomer or polymer comprises Ar1A(Ar3)[Ar2A(Ar3)]nAr1; wherein each A is a nitrogen atom or optionally substituted phosphorus atom; each Ar1 and Ar3 is the same or different and independently represents an optionally substituted aryl or heteroaryl; n is at least 1; Ar2 represents an optionally substituted aryl or heteroaryl comprising a linking ring to which the two nitrogen atoms are both directly linked; and at least one of Ar2 and either or both of Ar1 is substituted with at least one substituent. The polymers are useful in optical applications.

IT 854922-37-5P 854922-39-7P 854922-41-1P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(nitrogen-containing oligomers and polymers for optical applications) $854922 \hbox{--} 37 \hbox{--} 5$ CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-butylphenyl)-N1,N4-diphenyl-2-(trifluoromethyl)- (CA INDEX NAME)

RN 854922-39-7 CAPLUS

RN

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis(4-butylphenyl)-2-(trifluoromethyl)- (CA INDEX NAME)

$$n-Bu$$
 Br
 $CF3$
 $Bu-n$

RN 854922-41-1 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-butylphenyl)-N1,N4-bis[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-2-(trifluoromethyl)- (CA INDEX NAME)

OS.CITING REF COUNT: 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD

(2 CITINGS)

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 2 OF 3 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2005:35085 CAPLUS Full-text

DOCUMENT NUMBER: 142:102910

TITLE: Organic electroluminescent device, illuminating

device, and display

INVENTOR(S): Oshiyama, Tomohiro; Kita, Hiroshi; Katoh, Eisaku

PATENT ASSIGNEE(S): Konica Minolta Holding, Inc., Japan

SOURCE: PCT Int. Appl., 80 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

					DATE		APPLICATION NO.											
	2005															0040	625	
	W:	ΑE,	AG,	AL,	AM,	AT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,	
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FΙ,	GB,	GD,	
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KΕ,	KG,	KΡ,	KR,	KΖ,	LC,	
		LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,	ΝI,	
		NO,	NΖ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	
		ТJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW	
	RW:						MW,											
		ΑZ,	BY,	KG,	KΖ,	MD,	RU,	ТJ,	TM,	ΑT,	BE,	ВG,	CH,	CY,	CZ,	DE,	DK,	
		EE,	ES,	FΙ,	FR,	GB,	GR,	HU,	ΙE,	ΙΤ,	LU,	MC,	NL,	PL,	PT,	RO,	SE,	
		SI,	SK,	TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML ,	MR,	NE,	
		SN,	TD,	ΤG														
EP	1651														_			
	R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙΤ,	LI,	LU,	ΝL,	SE,	MC,	PT,	
		•	•				RO,			•		•						
	1817						2006			CN 2	004-	8001	9019		2	0040	625	
	1005																	
	2007									US 2	005-	5626	52		2	0051	227	
	7371														_			
	2008				A1		2008	0925										
DRIT:	Y APP	LN.	INFO	.:									19			0030		
													91					
													52			0051	227	
IGNMENT HISTORY FOR HS PATENT AVAIL.							TI.AR	LE T	N LS	IIS D	TSPI.	AY F	ORMA	Т				

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB An organic electroluminescent device comprising at least a light-emitting layer containing a phosphorescent compound between an anode and a cathode is

characterized by comprising an adjoining layer so arranged between the light-emitting layer and the cathode as to be adjacent to the light-emitting layer and containing a compound with an electron-withdrawing group having an HOMO at -5.7 eV to -7.0 eV and an LUMO at -1.3 eV to -2.3 eV.

IT 817638-42-9

RL: DEV (Device component use); USES (Uses)

(organic electroluminescent device, illumination apparatus and display)

RN 817638-42-9 CAPLUS

CN 1,4-Benzenediamine, N1,N1-bis[4-[bis(2,3,4,5,6-pentafluorophenyl)amino]-2,5-bis(trifluoromethyl)phenyl]-N4,N4-bis(2,3,4,5,6-pentafluorophenyl)-2,5-bis(trifluoromethyl)- (CA INDEX NAME)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD

(1 CITINGS)

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 3 OF 3 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2004:118662 CAPLUS Full-text

DOCUMENT NUMBER: 140:172301

TITLE: Organic electroluminescent elements with improved

brightness and durability and color displays using

them

INVENTOR(S): Ueda, Noriko; Yamada, Taketoshi; Kita, Hiroshi

PATENT ASSIGNEE(S): Konica Minolta Holdings Inc., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 57 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE		
JP 2004047443	A	20040212	JP 2003-134267	20030513		
PRIORITY APPLN. INFO.:			JP 2002-140103 A	20020515		
OTHER SOURCE(S):	MARPAT	140:172301				

AB The elements contain , R1R2R3N [R1-3 = substituted p-A-Ph; A = (un)substituted aromatic hydrocarbyl], preferably in hole-transport layers. The elements may have light-emitting layers containing phosphorescent complexes of Group VIII

metals (Os, Ir, or Pt, preferably) and ≥ 1 fluorescent compds. having maximum fluorescence wavelength longer than maximum emission wavelength of the complexes.

IT 655240-61-2

RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)

(light-emitting layer; organic EL elements containing triphenylamine-based compds. with improved brightness and durability for displays)

RN 655240-61-2 CAPLUS

CN 1,4-Benzenediamine, N1,N1-bis[4-[bis(4-methylphenyl)amino]-2-(trifluoromethyl)phenyl]-N4,N4-bis(4-methylphenyl)-2-(trifluoromethyl)-(CA INDEX NAME)

$$\begin{array}{c} \text{Me} \\ \text{F}_{3}\text{C} \\ \text{N} \\ \text{Me} \end{array}$$

Uploading C:\Program Files\STNEXP\Queries\10582459#2.str

chain nodes :
31 32 33 34 35
ring nodes :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30
chain bonds :
1-34 4-31 8-32 11-31 13-33 16-32 22-31 28-32
ring bonds :

 $1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 14-19 \quad 14-19$ 15 15-16 16-17 17-18 19-20 19-24 20-21 21-22 22-23 23-24 25-26 25-30 26-27 27-28 28-29 29-30 exact/norm bonds :

1-34 4-31 8-32 11-31 13-33 16-32 22-31 28-32

normalized bonds :

 $1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 14-19 \quad 14-19$

 $15 - 16 \quad 16 - 17 \quad 17 - 18 \quad 19 - 20 \quad 19 - 24 \quad 20 - 21 \quad 21 - 22 \quad 22 - 23 \quad 23 - 24 \quad 25 - 26 \quad 25 - 30 \quad 26 - 27$ 27-28 28-29

29-30

Match level:

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom 11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 17:Atom 18:Atom 19:Atom 20:Atom 21:Atom

22:Atom 23:Atom 24:Atom 25:Atom 26:Atom 27:Atom 28:Atom 29:Atom 30:Atom

31:CLASS 32:CLASS

L5 STRUCTURE UPLOADED

=> s 15

SAMPLE SEARCH INITIATED 19:16:16 FILE 'REGISTRY' SAMPLE SCREEN SEARCH COMPLETED - 27 TO ITERATE

100.0% PROCESSED 27 ITERATIONS 0 ANSWERS

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE** BATCH **COMPLETE** PROJECTED ITERATIONS: 229 TO 851 PROJECTED ANSWERS: 0 TO 0

0 SEA SSS SAM L5 L6

=> s 15 full

FULL SEARCH INITIATED 19:16:24 FILE 'REGISTRY' FULL SCREEN SEARCH COMPLETED - 497 TO ITERATE

100.0% PROCESSED 497 ITERATIONS 0 ANSWERS

SEARCH TIME: 00.00.01

L7 0 SEA SSS FUL L5

=>

Uploading C:\Program Files\STNEXP\Queries\10582459#2.str

chain nodes : 31 32 33 34 35 ring nodes : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 chain bonds : 1-34 4-31 8-32 11-31 13-33 16-32 22-31 28-32 ring bonds : $1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 13-19$ $15-16 \quad 16-17 \quad 17-18 \quad 19-20 \quad 19-24 \quad 20-21 \quad 21-22 \quad 22-23 \quad 23-24 \quad 25-26 \quad 25-30 \quad 26-27$ 27-28 28-29 29-30 exact/norm bonds : 1-34 4-31 8-32 11-31 13-33 16-32 22-31 28-32 normalized bonds : $1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 14-19 \quad 14-19$ 15 15-16 16-17 17-18 19-20 19-24 20-21 21-22 22-23 23-24 25-26 25-30 26-27 27-28 28-29 29-30

Match level:

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom 11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 17:Atom 18:Atom 19:Atom 20:Atom 21:Atom 21:Atom 23:Atom 23:Atom 25:Atom 26:Atom 27:Atom 28:Atom 29:Atom 30:Atom 31:CLASS 32:CLASS 35:CLASS 36:Atom

L8 STRUCTURE UPLOADED

=> d 18 L8 HAS NO ANSWERS L8 STR

Structure attributes must be viewed using STN Express query preparation.

=> s 18

SAMPLE SEARCH INITIATED 19:18:22 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 80 TO ITERATE

100.0% PROCESSED 80 ITERATIONS 0 ANSWERS

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**

PROJECTED ITERATIONS: 1064 TO 2136
PROJECTED ANSWERS: 0 TO 0

L9 0 SEA SSS SAM L8

=> s 18 full

FULL SEARCH INITIATED 19:18:28 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 1629 TO ITERATE

100.0% PROCESSED 1629 ITERATIONS 2 ANSWERS

SEARCH TIME: 00.00.01

L10 2 SEA SSS FUL L8

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 110

L11 2 L10

=> d ibib abs hitstr 1-2

L11 ANSWER 1 OF 2 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2005:35085 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 142:102910

TITLE: Organic electroluminescent device, illuminating

device, and display

INVENTOR(S): Oshiyama, Tomohiro; Kita, Hiroshi; Katoh, Eisaku

PATENT ASSIGNEE(S): Konica Minolta Holding, Inc., Japan

SOURCE: PCT Int. Appl., 80 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PATENT NO.			KIN	KIND DATE		APPLICATION NO.												
	WO	2005	0045	49		A1	_									2	0040	625	
		W:	ΑE,	AG,	AL,	AM,	AT,	ΑU,	AZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,	
			CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,	
			GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KΕ,	KG,	KP,	KR,	KΖ,	LC,	
			LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,	NΙ,	
			NO,	NΖ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	
			ΤJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW	
		RW:	BW,	GH,	GM,	KE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	
			ΑZ,	BY,	KG,	KΖ,	MD,	RU,	ΤJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	
			EE,	ES,	FΙ,	FR,	GB,	GR,	HU,	ΙE,	ΙΤ,	LU,	MC,	NL,	PL,	PT,	RO,	SE,	
			SI,	SK,	TR,	BF,	ΒJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML_{\prime}	MR,	ΝE,	
			•	TD,															
	ΕP	1651																	
		R:									GR,								
			IE,	SI,	LT,	LV,	FΙ,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	PL,	SK,	HR
	CN	1817	066			Α		2006	0809		CN 2	004-	8001	9019		2	0040	625	
		1005				С		2009	1028										
	US	2007	0099	025		A1		2007	0503		US 2	005-	5626	52		2	0051	227	
	US	7371	469			В2		2008	0513										
	US	2008	0233	431		A1		2008	0925		US 2	008-	8225	1		2	0800	410	
PRIOF	(TI	APP:	LN.	INFO	.:						JP 2	003-	1935	19	-	A 2	0030	708	
										WO 2004-JP9391 W 2004062			625						
							US 2005-562652 A3 20051227												

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

- AB An organic electroluminescent device comprising at least a light-emitting layer containing a phosphorescent compound between an anode and a cathode is characterized by comprising an adjoining layer so arranged between the light-emitting layer and the cathode as to be adjacent to the light-emitting layer and containing a compound with an electron-withdrawing group having an HOMO at -5.7 eV to -7.0 eV and an LUMO at -1.3 eV to -2.3 eV.
- IT 817638-42-9
 - RL: DEV (Device component use); USES (Uses)
 - (organic electroluminescent device, illumination apparatus and display)
- RN 817638-42-9 CAPLUS
- CN 1,4-Benzenediamine, N1,N1-bis[4-[bis(2,3,4,5,6-pentafluorophenyl)amino]-2,5-bis(trifluoromethyl)phenyl]-N4,N4-bis(2,3,4,5,6-pentafluorophenyl)-2,5-bis(trifluoromethyl)- (CA INDEX NAME)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD

(1 CITINGS)

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 2 OF 2 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2004:118662 CAPLUS Full-text

DOCUMENT NUMBER: 140:172301

TITLE: Organic electroluminescent elements with improved

brightness and durability and color displays using

them

INVENTOR(S): Ueda, Noriko; Yamada, Taketoshi; Kita, Hiroshi

PATENT ASSIGNEE(S): Konica Minolta Holdings Inc., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 57 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2004047443	A	20040212	JP 2003-134267	20030513
PRIORITY APPLN. INFO.:			JP 2002-140103 A	20020515
OTHER SOURCE(S):	MARPAT	140:172301		

AB The elements contain , R1R2R3N [R1-3 = substituted p-A-Ph; A = (un)substituted aromatic hydrocarbyl], preferably in hole-transport layers. The elements may have light-emitting layers containing phosphorescent complexes of Group VIII metals (Os, Ir, or Pt, preferably) and ≥1 fluorescent compds. having maximum fluorescence wavelength longer than maximum emission wavelength of the complexes.

IT 655240-61-2

RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)

(light-emitting layer; organic EL elements containing triphenylamine-based compds. with improved brightness and durability for displays)

RN 655240-61-2 CAPLUS

CN 1,4-Benzenediamine, N1,N1-bis[4-[bis(4-methylphenyl)amino]-2-(trifluoromethyl)phenyl]-N4,N4-bis(4-methylphenyl)-2-(trifluoromethyl)-(CA INDEX NAME)

=>

Uploading C:\Program Files\STNEXP\Queries\10582459#2.str

```
chain nodes :
31 32 33 34 35
ring nodes :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30
chain bonds :
1-34 4-31 8-32 11-31 13-33 16-32 22-31 28-32
ring bonds :
1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 14-19 
15
15 - 16 \quad 16 - 17 \quad 17 - 18 \quad 19 - 20 \quad 19 - 24 \quad 20 - 21 \quad 21 - 22 \quad 22 - 23 \quad 23 - 24 \quad 25 - 26 \quad 25 - 30 \quad 26 - 27 \quad 20 -
27-28 28-29
29-30
exact/norm bonds :
1-34 4-31 8-32 11-31 13-33 16-32 22-31 28-32
normalized bonds :
1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 14-19 
15
15 - 16 \quad 16 - 17 \quad 17 - 18 \quad 19 - 20 \quad 19 - 24 \quad 20 - 21 \quad 21 - 22 \quad 22 - 23 \quad 23 - 24 \quad 25 - 26 \quad 25 - 30 \quad 26 - 27
27-28 28-29
29-30
```

Match level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom 11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 17:Atom 18:Atom 19:Atom

20:Atom 21:Atom

22:Atom 23:Atom 24:Atom 25:Atom 26:Atom 27:Atom 28:Atom 29:Atom

31:CLASS 32:CLASS

L12 STRUCTURE UPLOADED

=> d 112 L12 HAS NO ANSWERS L12 STR

Structure attributes must be viewed using STN Express query preparation.

=> s 112

SAMPLE SEARCH INITIATED 19:25:16 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 510 TO ITERATE

100.0% PROCESSED 510 ITERATIONS 0 ANSWERS

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**

PROJECTED ITERATIONS: 8846 TO 11554
PROJECTED ANSWERS: 0 TO 0

L13 0 SEA SSS SAM L12

=> s 112 full

FULL SEARCH INITIATED 19:25:22 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 9982 TO ITERATE

100.0% PROCESSED 9982 ITERATIONS 23 ANSWERS SEARCH TIME: 00.00.01

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 114

L15 9 L14

=> d ibib abs hitstr 1-9

L15 ANSWER 1 OF 9 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2005:540610 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 143:78969

TITLE: Nitrogen-containing oligomers and polymers for optical

applications

PATENT ASSIGNEE(S): Covion Organic Semiconductors G.m.b.H., Germany

PCT Int. Appl., 33 pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE: Patent English LANGUAGE:

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PF	PATENT NO.			KIND DATE		APPLICATION NO.					DATE						
WC	2005	0566.	38		A1	_	2005	0623		WO 2	004-	 EP14	 152		2	0041	213
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FΙ,	GB,	GD,
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KΖ,	LC,
		LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,	NΙ,
		NO,	NΖ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,
		ΤJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW
	RW:	BW,	GH,	GM,	KE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,
		ΑZ,	BY,	KG,	KΖ,	MD,	RU,	ΤJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,
		EE,	ES,	FI,	FR,	GB,	GR,	HU,	IE,	IS,	ΙΤ,	LT,	LU,	MC,	NL,	PL,	PT,
		RO,	SE,	SI,	SK,	TR,	BF,	ΒJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,
		MR,	ΝE,	SN,	TD,	ΤG											
EF	1694	744			A1		2006	0830		EP 2	004-	8037	89		2	0041	213
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙΤ,	LI,	LU,	NL,	SE,	MC,	PT,
		ΙE,	SI,	LT,	FΙ,	RO,	CY,	TR,	BG,	CZ,	EE,	HU,	PL,	SK,	IS		
CI	1 1906	229			Α		2007	0131		CN 2	004-	8004	0408		2	0041	213
	1 1005		_		-		2009	1111									
JE	2007	5188	42		Τ		2007	0712		JP 2	006-	5435	06		2	0041	213
KF	R 2007	0123	24		Α		2007	0125		KR 2	006-	7116	72		2	0060	613
US	2008	0217	605		A1		2008	0911		US 2	007-	5824	59		2	0070	516
(IORI	TY APP	LN.	INFO	.:						EP 2	003-	2878	9	Ž	A 2	0031	213
										WO 2	004-	EP14	152	Ī	W 2	0041	213

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT OTHER SOURCE(S): MARPAT 143:78969

An optionally substituted oligomer or polymer comprises Ar1A(Ar3)[Ar2A(Ar3)]nAr1; wherein each A is a nitrogen atom or optionally substituted phosphorus atom; each Ar1 and Ar3 is the same or different and independently represents an optionally substituted aryl or heteroaryl; n is at least 1; Ar2 represents an optionally substituted aryl or heteroaryl comprising a linking ring to which the two nitrogen atoms are both directly linked; and at least one of Ar2 and either or both of Ar1 is substituted with at least one substituent. The polymers are useful in optical applications.

854922-33-1P 854922-35-3p 854922-42-2p 854922-44-4P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(nitrogen-containing oligomers and polymers for optical applications)

RN 854922-33-1 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-butylphenyl)-2-fluoro-N1,N4-diphenyl- (CA INDEX NAME)

RN 854922-35-3 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis(4-butylphenyl)-2-fluoro- (CA INDEX NAME)

$$n-Bu$$
 Br
 $Bu-r$

RN 854922-42-2 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-butylphenyl)-2,5-difluoro-N1,N4-diphenyl-(CA INDEX NAME)

RN 854922-44-4 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis(4-butylphenyl)-2,5-difluoro- (CA INDEX NAME)

$$n-Bu$$
 Br
 F
 $Bu-n$

IT 854922-59-1P 854922-61-5P

RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(nitrogen-containing oligomers and polymers for optical applications) $854922-59-1\ {\rm CAPLUS}$

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-butylphenyl)-2-fluoro-, polymer with N,N-bis(4-bromophenyl)-4-(1-methylpropyl)benzenamine, 2',7'-dibromo-2,3,6,7-tetrakis(pentyloxy)-9,9'-spirobi[9H-fluorene] and 2,2'-[2',3',6',7'-tetrakis(pentyloxy)-9,9'-spirobi[9H-fluorene]-2,7-diyl]bis[1,3,2-dioxaborolane] (9CI) (CA INDEX

CM 1

NAME)

RN

CRN 854922-57-9 CMF C45 H54 Br2 O4

CM 2

CRN 854922-56-8 CMF C49 H62 B2 O8

CM 3

CRN 854922-35-3 CMF C38 H37 Br2 F N2

CM 4

CRN 287976-94-7 CMF C22 H21 Br2 N

RN 854922-61-5 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-butylphenyl)-2-fluoro-, polymer with 2',7'-dibromo-2,3,6,7-tetrakis(pentyloxy)-9,9'-spirobi[9H-fluorene] and 2,2'-[2',3',6',7'-tetrakis(pentyloxy)-9,9'-spirobi[9H-fluorene]-2,7-diyl]bis[1,3,2-dioxaborolane] (9CI) (CA INDEX NAME)

CM 1

CRN 854922-57-9 CMF C45 H54 Br2 O4

CRN 854922-56-8 CMF C49 H62 B2 O8

CM 3

CRN 854922-35-3 CMF C38 H37 Br2 F N2

OS.CITING REF COUNT: THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD

(2 CITINGS)

7 REFERENCE COUNT: THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 2 OF 9 CAPLUS COPYRIGHT 2010 ACS on STN 2003:868360 CAPLUS Full-text ACCESSION NUMBER:

139:371610 DOCUMENT NUMBER:

TITLE: Organic electroluminescent materials and devices

having high luminescent efficiency and color purity

INVENTOR(S): Funabashi, Masakazu; Iwakuma, Toshihiro; Hosokawa,

Chishio

PATENT ASSIGNEE(S): Idemitsu Kosan Co., Ltd., Japan SOURCE:

Jpn. Kokai Tokkyo Koho, 13 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent Japanese LANGUAGE:

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2003313547	А	20031106	JP 2002-116935	20020419
PRIORITY APPLN. INFO.:			JP 2002-116935	20020419

OTHER SOURCE(S): MARPAT 139:371610

The materials are Ar1(NAr4Ar6)n(NAr5Ar7)mNAr2Ar3 [n= 1-3; m = 0-2; Ar1-Ar3, Ar6, Ar7 = 1,2-, 1,3-, or 1,4-(perfluoro)phenyl (structures given); ≥ 1 of Ar1Ar3, Ar6, Ar7 = perfluorophenyl; Ar4, Ar5 = 1,2-, 1,3-, or 1,4- (perfluoro)phenylene (structures given); Ar4 and/or Ar5 = perfluorophenylene]. The devices, preferably blue-emitting, contain the materials as host materials in emitter layers and are useful as light sources for elec. apparatus 620607-86-59

RL: DEV (Device component use); IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (fluorophenylamines as host materials in emitter layers in organic electroluminescent devices)

RN 620607-86-5 CAPLUS

ΙT

CN 1,4-Benzenediamine, N1-[4-[bis(2,3,4,5,6-pentafluorophenyl)amino]-2,3,5,6-tetrafluorophenyl]-2,3,5,6-tetrafluoro-N1,N4,N4-tris(2,3,4,5,6-pentafluorophenyl)- (CA INDEX NAME)

OS.CITING REF COUNT: 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (2 CITINGS)

L15 ANSWER 3 OF 9 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2001:482850 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 135:256871

TITLE: Nucleophilic reactivity. Kinetics of reactions between

diarylamine N-anions and hexafluorobenzene or pentafluoropyridine in dimethyl sulfoxide

AUTHOR(S): Os'kina, I. A.; Vlasov, V. M.

CORPORATE SOURCE: Vorozhtsov Novosibirsk Institute of Organic Chemistry,

Siberian Division, Russian Academy of Sciences,

Novosibirsk, 630090, Russia

SOURCE: Russian Journal of Organic Chemistry (Translation of

Zhurnal Organicheskoi Khimii) (2001), 37(2), 260-269

CODEN: RJOCEQ; ISSN: 1070-4280

PUBLISHER: MAIK Nauka/Interperiodica Publishing

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 135:256871

AB Rate consts. of reactions between sodium salts of diarylamines and hexafluorobenzene and pentafluoropyridine in DMSO at 25°C were determined. The Bronsted factors for substrates under consideration are 0.14 and 0.34 resp. These data evidence a considerable effect of substrate electrophilicity on the reactivity of diarylamine N-anions in the SNAr reactions. Deviations of the Bronsted plot from linearity for the reactions of hexafluorobenzene with aryland diarylamine N-anions may be due to the difference in internal barriers of these reactions.

IT 361433-15-0P

RL: SPN (Synthetic preparation); PREP (Preparation)

(kinetics of reactions between diarylamine N-anions and hexafluorobenzene or pentafluoropyridine in DMSO)

RN 361433-15-0 CAPLUS

CN 1,4-Benzenediamine, 2,3,5,6-tetrafluoro-N1,N4-bis(4-nitrophenyl)-N1,N4-diphenyl- (CA INDEX NAME)

OS.CITING REF COUNT: 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD

(2 CITINGS)

REFERENCE COUNT: 49 THERE ARE 49 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 4 OF 9 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1998:651124 CAPLUS Full-text

DOCUMENT NUMBER: 129:308409

ORIGINAL REFERENCE NO.: 129:62808a,62809a

TITLE: Positive-hole injection material for organic

electroluminescent device

INVENTOR(S): Enokida, Toshio; Onikubo, Shunichi; Tamano, Michiko;

Okutsu, Satoshi

PATENT ASSIGNEE(S): Toyo Ink Mfg. Co., Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 43 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 10265773	A	19981006	JP 1997-69911	19970324
PRIORITY APPLN. INFO.:			JP 1997-69911	19970324
OTHER SOURCE(S):	MARPAT	129:308409		

GΙ

R25

R24

The material has a formula I [R1-20 = H, halo, alkyl, alkoxy, thioalkoxy, amino, monocyclic group, polycyclic group, Q; R21-25 = H, halo, alkyl, alkoxy, thioalkoxy, amino, monocyclic group, polycyclic group; R21-25 may form a cycloalkyl ring, aryl ring; X1 = direct bond, alkylene, (CR26R27)xO(CR28R29)y, (CR30R31)xS(CR32R33)y, O, S, CO, SO2, SiR34(R35), NR36, PR37, PO(R38); x, y = 0-8 integer; x = y ≠ 0; Z1 = Ar1, Ar2NR39Ar3, Ar4NR40Ar5NR41Ar6; Ar1-6 = arylene; R26-41 = alkyl, monocyclic group, polycyclic group]. The device shows high luminance, efficiency, long life, and storage stability.

II 214338-54-2

RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses)

(organic electroluminescent device containing aromatic pos.-hole injection material)

RN 214338-54-2 CAPLUS

CN 1,4-Benzenediamine, N4-[4-[bis[4-(1-methyl-1-phenylethyl)phenyl]amino]-3-chlorophenyl]-2-chloro-N1,N1-bis[4-(1-methyl-1-phenylethyl)phenyl]-N4-phenyl- (CA INDEX NAME)

OS.CITING REF COUNT: 8 THERE ARE 8 CAPLUS RECORDS THAT CITE THIS RECORD (8 CITINGS)

L15 ANSWER 5 OF 9 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1989:644275 CAPLUS Full-text DOCUMENT NUMBER: 111:244275

ORIGINAL REFERENCE NO.: 111:40359a,40362a

TITLE: Electrophotographic photoconductor containing

pyrrolopyrrole

INVENTOR(S): Hanatani, Yasuyuki; Nakatani, Kaname PATENT ASSIGNEE(S): Mita Industrial Co., Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 23 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 01142657	A	19890605	JP 1987-301856	19871130
PRIORITY APPLN. INFO.:			JP 1987-301856	19871130
GI				

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

AB The title photoconductor, on an elec. conductive substrate, contains a a pyrrolopyrrole I $[R1-2=(substituted) \ aryl, \ aralkyl, \ heterocycle; \ R3-4=H, \ alkyl, (substituted) \ aryl]$ and a diamine II $[R5-9=H, lower \ alkyl, lower \ alkoxy, \ halo; \ l=1, 2; \ m, \ n, \ o, \ p=1, 2, 3; \ q=1, 2].$ The photoconductor shows reduced residual elec. potential. Thus, on an Al sheet, a composition comprising 1,4-dithioketo-3,6-diphenylpyrrolo[3,4-c]pyrrole, S-Lec C, and THF was applied, dried, and coated with a PhH solution containing diamine III, and PCZ (bisphenol polycarbonates) to give the title photoconductor.

IT 123847-84-7 123865-10-1

RL: USES (Uses)

(charge-transporting layer containing, for electrophotog. photoconductor, pyrrolopyrrole in)

RN 123847-84-7 CAPLUS

CN 1,4-Benzenediamine, 2,5-dichloro-N1,N4-bis(6-chloro-1-naphthalenyl)-N1,N4-bis(4-chlorophenyl)- (CA INDEX NAME)

RN 123865-10-1 CAPLUS

CN 1,4-Benzenediamine, 2-chloro-N1,N4-di-1-naphthalenyl-N1,N4-bis(3,4,5-trichlorophenyl)- (CA INDEX NAME)

L15 ANSWER 6 OF 9 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1987:205158 CAPLUS Full-text

DOCUMENT NUMBER: 106:205158

ORIGINAL REFERENCE NO.: 106:33113a,33116a

TITLE: Electrophotographic photoreceptor containing

charge-generating tetrakisazo compounds

INVENTOR(S): Umehara, Masashige; Matsumoto, Masakazu; Takiguchi,

Takao; Yamashita, Masataka; Ishikawa, Shozo

PATENT ASSIGNEE(S): Canon K. K., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 41 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 6

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
				-	
JP 61240246	A	19861025	JP 1985-80248		19850417
JP 04002948	В	19920121			
US 4666810	A	19870519	US 1986-852243		19860415
PRIORITY APPLN. INFO.:			JP 1985-80248	Α	19850417
			JP 1985-157699	Α	19850717
			JP 1985-157700	Α	19850717
			JP 1985-159401	Α	19850718
			JP 1985-159402	Α	19850718
			JP 1985-159403	Α	19850718

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB The tetrakisazo compound has the formula

(AN:NZ2) (AN:NZ3) NZ1N(Z4N:NA) (Z5N:NA) (I; A = coupler residue with a phenolic OH group; Z1-Z5 = arylene). An electrophotog. composite photoconductor may be prepared by dispersing a tetrakisazo compound of the formula I (A = naphthol AS coupler residue; Z1-Z5 = 1, 4-phenylene) in a poly(vinyl butyral) binder to form a charge-generating layer and dispersing a hydrazone compound in a PMMA binder to give a charge-transport layer. The photoreceptor shows improved sensitivity and durability.

IT 108305-34-6

RL: USES (Uses)

(electrophotog. photoreceptor containing charge-generating agent from, with improved sensitivity)

RN 108305-34-6 CAPLUS

CN 2-Naphthalenecarboxamide, 4,4',4'',4'''-[(2-chloro-1,4-phenylene)bis[nitrilobis[(3-chloro-4,1-phenylene)azo]]]tetrakis[N-(2-chlorophenyl)-3-hydroxy-(9CI) (CA INDEX NAME)

OS.CITING REF COUNT: 5 THERE ARE 5 CAPLUS RECORDS THAT CITE THIS RECORD (5 CITINGS)

L15 ANSWER 7 OF 9 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1986:234361 CAPLUS Full-text DOCUMENT NUMBER: 104:234361

ORIGINAL REFERENCE NO.: 104:37011a,37014a

TITLE: Optical information recording medium

INVENTOR(S): Sato, Tsutomu; Umehara, Masaakira; Abe, Michiharu;

Oba, Hideaki; Ueda, Yutaka

PATENT ASSIGNEE(S): Ricoh Co., Ltd., Japan

SOURCE: Brit. UK Pat. Appl., 18 pp.

CODEN: BAXXDU

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
GB 2155811	A	19851002	GB 1985-3022		19850206
GB 2155811	В	19870121			
JP 06026028	В	19940406	JP 1984-18222		19840206
JP 60236131	A	19851122	JP 1984-91922		19840510
US 4656121	A	19870407	US 1985-698701		19850206
PRIORITY APPLN. INFO.:			JP 1984-18222	Α	19840206
			JP 1984-91922	Α	19840510

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT GI

$$\begin{bmatrix} \begin{bmatrix} R_2N & & & \\ & &$$

AB A laser optical recording material is comprised of a plastic substrate and an organic recording layer and, optionally, an underlayer and/or a protective layer in which ≥ 1 of the layers contains a compound of the formula I (R = H, lower alkyl; Z = II where n = 1, 2, III; X = acid anion; m = 0, 1, 2 being 2 when Z = II; each of the aromatic rings in the compound may be substituted with ≥ 1 halogen, lower alkyl, lower alkoxy, or OH). A polymethine compound may also be contained in the recording layer as a coloring material. Thus, a 1,2-dichloroethane solution of a 1:1 mixture of I (R = Et; Z = phen-1,4-ylene; X-m = BF4-) and IV was spin-coated on a 1.2 mm poly(Me methacrylate) support to give a recording layer (700 Å thick). The resultant laser recording material required a writing power of 3.3 mW, had a reflectivity of 25.5%, and exhibited a C/N ratio of 52 dB vs. 3.5 mW, 20.9%, and 46 dB, resp., after light irradiation for 50 h.

IT 102278-77-3 102278-79-5 102278-95-5

102279-03-8

RL: USES (Uses)

(laser optical recording layer containing polymethine coloring agent and)

RN 102278-77-3 CAPLUS CN Arsenate(1-), hexafi

Arsenate(1-), hexafluoro-, hydrogen, compd. with 2-chloro-N,N,N',N'-tetrakis[4-(dipropylamino)phenyl]-1,4-benzenediamine (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 102278-76-2 CMF C54 H75 C1 N6

CM 2

CRN 17068-85-8 CMF As F6 . H CCI CCS

● H+

RN 102278-79-5 CAPLUS

CN Antimonate(1-), hexafluoro-, (OC-6-11)-, hydrogen, compd. with 2-bromo-N,N,N',N'-tetrakis[4-(dipropylamino)phenyl]-1,4-benzenediamine (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 102278-78-4 CMF C54 H75 Br N6

CM 2

CRN 16950-06-4 CMF F6 Sb . H CCI CCS

● H+

RN 102278-95-5 CAPLUS

CN 1,4-Benzenediamine, 2-chloro-N,N,N',N'-tetrakis[4-(diethylamino)phenyl]-, mono[tetrafluoroborate(1-)] (9CI) (CA INDEX NAME)

CM 1

CRN 102278-94-4 CMF C46 H59 C1 N6

CM 2

CRN 16872-11-0 CMF B F4 . H CCI CCS

-F_B_3+ F-

● H+

RN 102279-03-8 CAPLUS

CN Antimonate(1-), hexafluoro-, (OC-6-11)-, hydrogen, compd. with 2-chloro-N,N,N',N'-tetrakis[4-(dibutylamino)phenyl]-1,4-benzenediamine (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 102279-02-7 CMF C62 H91 C1 N6

CM 2

CRN 16950-06-4 CMF F6 Sb . H CCI CCS

● H+

OS.CITING REF COUNT: 14 THERE ARE 14 CAPLUS RECORDS THAT CITE THIS RECORD (18 CITINGS)

L15 ANSWER 8 OF 9 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1977:73159 CAPLUS Full-text

DOCUMENT NUMBER: 86:73159

ORIGINAL REFERENCE NO.: 86:11613a,11616a

TITLE: Preparation of poly (N-phenyliminoperfluorophenylene).

Solvent effects on reactions between anilides and

hexafluorobenzene

AUTHOR(S): Koppang, Rolf

CORPORATE SOURCE: Dep. Dent. Technol., Univ. Oslo, Oslo, Norway

SOURCE: Journal of Fluorine Chemistry (1976), 8(5), 389-400

CODEN: JFLCAR; ISSN: 0022-1139

DOCUMENT TYPE: Journal LANGUAGE: English

AB The reactions between anilides and hexafluorobenzene [392-56-3] were accelerated in the presence of dipolar aprotic solvents, and the yield of poly(N-phenyliminoperfluorophenylene) [61552-67-8], prepared from 2,3,4,5,6-pentafluoro-N-lithiophenylanilide [61553-15-9] and hexafluorobenzene, reflects this solvent effect. The structure and some thermal properties of the insol. polymer are discussed.

IT 3947-54-4P 4630-23-3P 61555-69-9P

RL: SPN (Synthetic preparation); PREP (Preparation)

(preparation of)

RN 3947-54-4 CAPLUS

CN 1,4-Benzenediamine, 2,3,5,6-tetrafluoro-N1,N4-bis(2,3,4,5,6-pentafluorophenyl)-N1,N4-diphenyl- (CA INDEX NAME)

$$F \longrightarrow F \longrightarrow F \longrightarrow F$$

RN 4630-23-3 CAPLUS

CN 1,4-Benzenediamine, 2,3,5,6-tetrafluoro-N1-(2,3,4,5,6-pentafluorophenyl)-N1,N4-diphenyl-N4-[2,3,5,6-tetrafluoro-4-[(2,3,4,5,6-pentafluorophenyl)phenylamino]phenyl]- (CA INDEX NAME)

RN 61555-69-9 CAPLUS

CN 1,4-Benzenediamine, 2,3,5,6-tetrafluoro-N1,N4-diphenyl-N1,N4-bis[2,3,5,6-tetrafluoro-4-[(2,3,4,5,6-pentafluorophenyl)phenylamino]phenyl]- (CA INDEX NAME)

OS.CITING REF COUNT: 3 THERE ARE 3 CAPLUS RECORDS THAT CITE THIS RECORD (3 CITINGS)

L15 ANSWER 9 OF 9 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1965:29481 CAPLUS Full-text

DOCUMENT NUMBER: 62:29481
ORIGINAL REFERENCE NO.: 62:5211f-h

TITLE: Synthetical applications of activated metal catalysts.

XX. Action of degassed Raney Ni on

N-alkyl-o-alkylanilines

AUTHOR(S): Jackson, G. D. F.; Sasse, W. H. F.

CORPORATE SOURCE: Univ. Adelaide

SOURCE: Australian Journal of Chemistry (1964), 17(3), 337-46

CODEN: AJCHAS; ISSN: 0004-9425

DOCUMENT TYPE: Journal LANGUAGE: English

alkylanilines were dehydrogenated with degassed Raney Ni at temps. not exceeding 230°. o-Propylaniline (I), N-methyl-o-ethylaniline (II), N-ethyl-o-toluidine (III), N-allylaniline (IV), o-ethylaniline (V), and indoline (VI) yielded complex mixts. which gave pos. Ehrlich tests. I yielded o-ethylaniline, o-toluidine, and aniline, which suggested that a stepwise degradation of the o-alkyl groups takes place. IV yielded aniline and some N-propylaniline, which indicated that N-alkyl groups are removed in one step. All the anilines gave indoles, but yields varied widely. II gave the best yield (13%), whereas III and IV yielded amts. detected only by paper chromatography. II was the only aniline to give both indole and 3-methylindole. II also was found to give all compds. (including carbazole) which so far have been identified among the products of the action of degassed Raney Ni on quinoline. It is concluded that the mechanism of the conversion of quinoline to indole and 3-methylindole proceeds by way of II.

IT 3947-54-4P, p-Phenylenediamine,
 2,3,5,6-tetrafluoro-N,N'-bis(pentafluorophenyl)-N,N'-diphenyl 4630-23-3P, Triphenylamine,
 2,2',3,3',5,5',6,6'-octafluoro-4,4'-bis(2,3,4,5,6-pentafluoro-N-phenylanilino) RL: PREP (Preparation)
 (preparation of)
RN 3947-54-4 CAPLUS
CN 1,4-Benzenediamine, 2,3,5,6-tetrafluoro-N1,N4-bis(2,3,4,5,6-pentafluorophenyl)-N1,N4-diphenyl- (CA INDEX NAME)

$$F \longrightarrow F \longrightarrow F \longrightarrow F$$

RN 4630-23-3 CAPLUS

CN 1,4-Benzenediamine, 2,3,5,6-tetrafluoro-N1-(2,3,4,5,6-pentafluorophenyl)-N1,N4-diphenyl-N4-[2,3,5,6-tetrafluoro-4-[(2,3,4,5,6-pentafluorophenyl)phenylamino]phenyl]- (CA INDEX NAME)

=> Uploading C:\Program Files\STNEXP\Queries\10582459#1.str

G₂-Ну---_{G2} 42-39---40

chain nodes : 31 32 33 34 39 40 42 ring nodes : 5 6 1 2 3 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 chain bonds : 2-34 5-31 9-31 12-32 15-32 18-33 22-31 28-32 39-40 39-42

```
ring bonds :
1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 14-19 \quad 14-19 \quad 13-19 \quad 14-19 
15-16 16-17 17-18 19-20 19-24 20-21 21-22 22-23 23-24 25-26 25-30 26-27
27-28 28-29
29-30
exact/norm bonds :
2-34 5-31 9-31 12-32 15-32 18-33 22-31 28-32 39-40 39-42
normalized bonds :
1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 14-19 
15
15 - 16 \quad 16 - 17 \quad 17 - 18 \quad 19 - 20 \quad 19 - 24 \quad 20 - 21 \quad 21 - 22 \quad 22 - 23 \quad 23 - 24 \quad 25 - 26 \quad 25 - 30 \quad 26 - 27
27-28 28-29
29 - 30
isolated ring systems :
containing 1 : 7 : 13 : 19 : 25 :
G1:Ak,H
G2:N,P
G3:B,X
Match level:
1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom
11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 17:Atom 18:Atom 19:Atom
20:Atom 21:Atom
22:Atom 23:Atom 24:Atom 25:Atom 26:Atom 27:Atom 28:Atom 29:Atom 30:Atom
31:CLASS 32:CLASS
33:CLASS 34:CLASS 39:Atom 40:CLASS 42:CLASS
Generic attributes :
39:
```

L1 STRUCTURE UPLOADED

: Unsaturated

=> d l1 L1 HAS NO ANSWERS L1 STR

Saturation

G1 Ak,H G2 N,P Structure attributes must be viewed using STN Express query preparation.

=> s spirobifluorene/cn

L2 1 SPIROBIFLUORENE/CN

=> d rsd

L2 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2010 ACS on STN

Ring System Data

Elemental	Elemental	Size of	Ring System	Ring	RID
Analysis	Sequence	the Rings	Formula	Identifier	Occurrence
EA	ES	SZ	RF	RID	Count
========	+=======-	+=======-	+=======	+=======	+=======
C5-C5-C6-C6-	C5-C5-C6-C6-	5-5-6-6-6-6	C25	9841.9.1	1
C6-C6	C6-C6				

=> s 9841.9/rid and L1

COMBINATION OF STRUCTURE AND TEXT TERMS NOT VALID
The query entered contains both search terms created by
structure-building or screen commands and text search terms. L#s
created via the STRUCTURE or SCREEN commands must be searched in the
structures files separately from text terms or profiles. The L#
answer sets from structure searches can be used in crossover searches
and can be combined with text terms.

=> s 11

SAMPLE SEARCH INITIATED 16:52:05 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 13445 TO ITERATE

100.0% PROCESSED 13445 ITERATIONS INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED) SEARCH TIME: 00.00.01

50 ANSWERS

FULL FILE PROJECTIONS: ONLINE **COMPLETE**

BATCH **COMPLETE**

PROJECTED ITERATIONS: 261951 TO 275849 PROJECTED ANSWERS: 1198 TO 2322

L3 50 SEA SSS SAM L1

=> s 11 full

FULL SEARCH INITIATED 16:52:13 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 269408 TO ITERATE

100.0% PROCESSED 269408 ITERATIONS SEARCH TIME: 00.00.02

1906 ANSWERS

L4 1906 SEA SSS FUL L1

=> s 14 and 9841.1/rid

107 9841.1/RID

L5 0 L4 AND 9841.1/RID

=> s 14 and 9841.1/rid

107 9841.1/RID

0 L4 AND 9841.1/RID

=> s indenofluorene/cn

0 INDENOFLUORENE/CN

=> s benzene/cn

L8 1 BENZENE/CN

=> d rsd

ANSWER 1 OF 1 REGISTRY COPYRIGHT 2010 ACS on STN

Ring System Data

Elemental|Elemental| Size of |Ring System| Ring | RID Analysis |Sequence | the Rings | Formula | Identifier | Occurrence EA | ES | SZ | RF | RID | Count _____+__+__+___+ C6 | C6 | C6 | C6 | 46.150.18 | 1

=> s 14 and 46.150/rid

37714236 46.150/RID

T.9 1906 L4 AND 46.150/RID

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 19

L10 1131 L9

=> s 110 and polymer?

2430238 POLYMER?

101933 POLYMD

101933 POLYMD

40369 POLYMG 414644 POLYMN

11220 POLYMNS

416171 POLYMN

(POLYMN OR POLYMNS)

2514766 POLYMER?

(POLYMER? OR POLYMD OR POLYMG OR POLYMN)

L11 495 L10 AND POLYMER?

=> s 111 and electrolumin?

112644 ELECTROLUMIN?

L12 257 L11 AND ELECTROLUMIN?

=> d ibib abs hitstr 255-257

L12 ANSWER 255 OF 257 CAPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 1997:618270 CAPLUS Full-text DOCUMENT NUMBER: 127:263592

ORIGINAL REFERENCE NO.: 127:51481a,51484a

TITLE: Crosslinkable or chain extendable polyarylpolyamines

and films for electroluminescent devices

INVENTOR(S): Woo, Edmund P.; Inbasekaran, Michael; Shiang, William

R.; Roof, Gordon R.; Wu, Weishi

PATENT ASSIGNEE(S): Dow Chemical Co., USA SOURCE: PCT Int. Appl., 57 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA'	PATENT NO.			KIND DATE			APPLICATION NO.					DATE					
			A2 19970912		WO 1997-US2643				19970220								
WO			AM,	AT,	A3 AU,		2002 BA,		BG,	BR,	BY,	CA,	CH,	CN,	CU,	CZ,	DE,
		DK,	EE,	ES,	FI,	GB,	GE,	HU,	IL,	IS,	JP,	KE,	KG,	KR,	KΖ,	LC,	LK,
		LR,	LS,	LT,	LU,	LV,	MD,	MG,	MK,	MN,	MW,	MX,	NO,	NΖ,	PL,	PT,	RO,
		RU,	SD,	SE,	SG,	SI,	SK,	ΤJ,	TM,	TR,	TT,	UA,	UG,	UZ,	VN,	YU	
	RW:	ΚE,	LS,	MW,	SD,	SZ,	UG,	ΑT,	BE,	CH,	DE,	DK,	ES,	FΙ,	FR,	GB,	GR,
		ΙE,	ΙΤ,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	ML,
		MR,	ΝE,	SN,	TD,	ΤG											
AU	9722	776			Α		1997	0922		AU 1	997-	2277	6		1	9970.	220
US	5929	194			Α		1999	0727		US 1	997-	9673	48		1	9971	027
PRIORIT	Y APP	LN.	INFO	.:						US 1	996-	6061	80		A 1	9960.	223
										US 1	996-	6962	80		A 1	9960	813
									,	WO 1	997-1	US26	43	1	W 1	9970.	220

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT OTHER SOURCE(S): MARPAT 127:263592

AB The polyarylpolyamines are prepared by the reaction of ≥1 tertiary di- or polyarylamine having 2 halogen substituents with a haloarom. compound having a crosslinkable reactive group or trialkylsiloxy moiety. Films of the title compds., as well as films of polymers of their crosslinkable species, are efficient in the transport of pos. charges when exposed to relatively low voltage levels, and demonstrate solvent and heat resistance.

IT 113703-67-6P

RL: IMF (Industrial manufacture); PREP (Preparation) (crosslinkable or chain extendable polyarylpolyamines for solvent-resistant films for electroluminescent devices)

RN 113703-67-6 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-chlorophenyl)-N,N'-diphenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 113703-66-5 CMF C30 H22 C12 N2

IT 195730-42-8DP, reaction products with silyl-containing
 benzeneboronic acid
 RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT
 (Reactant or reagent)
 (crosslinkable or chain extendable polyarylpolyamines for
 solvent-resistant films for electroluminescent devices)
RN 195730-42-8 CAPLUS
CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis[4-

Me_ (CH2) 4-0

(pentyloxy)phenyl]- (CA INDEX NAME)

IT 195730-45-1P 195730-55-3P
 RL: IMF (Industrial manufacture); PREP (Preparation)
 (film; crosslinkable or chain extendable polyarylpolyamines for solvent-resistant films for electroluminescent devices)

RN 195730-45-1 CAPLUS

CN 2-Propenoic acid, 2-ethyl-2-[[(1-oxo-2-propenyl)oxy]methyl]-1,3propanediyl ester, polymer with 1,4-phenylenebis[[[4(pentyloxy)phenyl]imino][1,1'-biphenyl]-4',4-diyl] di-2-propenoate (9CI)
(CA INDEX NAME)

CM 1

CRN 195730-44-0 CMF C58 H56 N2 O6

Me— (CH₂) 4—0

Me— (CH₂) 4—0

Me— (CH₂) 4—0

Me— (CH₂) 4—0

CM 2

CRN 15625-89-5 CMF C15 H20 O6

RN 195730-55-3 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bicyclo[4.2.0]octa-1,3,5-trien-3-ylphenyl)-N,N'-bis[4-(pentyloxy)phenyl]-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 195730-53-1 CMF C56 H56 N2 O2

IT 195730-42-8P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(intermediate; crosslinkable or chain extendable polyarylpolyamines for solvent-resistant films for electroluminescent devices)

RN 195730-42-8 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis[4-(pentyloxy)phenyl]- (CA INDEX NAME)

Me- (CH2)
$$4-0$$

IT 195730-44-0P 195730-53-1P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(preparation and polymerization; crosslinkable or chain extendable polyarylpolyamines for solvent-resistant films for electroluminescent devices)

RN 195730-44-0 CAPLUS

CN 2-Propenoic acid, 1,4-phenylenebis[[[(4-pentyloxy)phenyl]imino][1,1'-biphenyl]-4',4-diyl] ester (9CI) (CA INDEX NAME)

PAGE 1-B

— CH == CH2

RN 195730-53-1 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bicyclo[4.2.0]octa-1,3,5-trien-3-ylphenyl)-N1,N4-bis[4-(pentyloxy)phenyl]- (CA INDEX NAME)

IT 195730-43-9P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(reaction with acryloyl chloride; crosslinkable or chain extendable polyarylpolyamines for solvent-resistant films for electroluminescent devices)

RN 195730-43-9 CAPLUS

CN [1,1'-Biphenyl]-4-ol, 4',4'''-[1,4-phenylenebis[[4-(pentyloxy)phenyl]imino]]bis-(9CI) (CA INDEX NAME)

IT 195730-40-6P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(reaction with bromosuccinimide; crosslinkable or chain extendable polyarylpolyamines for solvent-resistant films for electroluminescent devices)

RN 195730-40-6 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis[4-(pentyloxy)phenyl]-N1,N4-diphenyl- (CA INDEX NAME)

OS.CITING REF COUNT: 29 THERE ARE 29 CAPLUS RECORDS THAT CITE THIS

RECORD (33 CITINGS)

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 256 OF 257 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1997:563439 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 127:191351

ORIGINAL REFERENCE NO.: 127:37119a,37122a

TITLE: Synthesis of polymers for hole and electron

transport materials in organic electroluminescent devices

AUTHOR(S): Son, Jhun Mo; Sakaki, Yuichi; Ogino, Kenji; Sato,

Hisaya

CORPORATE SOURCE: Faculty of Technology, Tokyo University of Agriculture

and Technology, Tokyo, 184, Japan

SOURCE: IEEE Transactions on Electron Devices (1997), 44(8),

1307-1314

CODEN: IETDAI; ISSN: 0018-9383

PUBLISHER: Institute of Electrical and Electronics Engineers

DOCUMENT TYPE: Journal LANGUAGE: English

AB Styrene-type polymers having tetraphenylbenzidine (TPD) or tetraphenylphenyldiaminobenzene unit (PDA) and a oxadiazole unit on the side chain were prepared as hole and electron transport materials, resp., of an electroluminescent device. The device structures employed were [ITO/hole transport layer/Al] (type I), or [ITO/hole transport layer/electron transport layer/Al] (type II). Type I devices provided c.d. higher than 100 mA/cm2 but no luminescence was observed Type II devices emitted luminescence of about 10

cd/m2 at the c.d. of about 170 mA/cm2. The emission maximum of these devices were 460 and 530 nm for the device using TPD and PDA, resp.

IT 194354-35-3P

RL: DEV (Device component use); PRP (Properties); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

(preparation of styrene derivative polymers for hole and electron transport materials in organic electroluminescent devices)

RN 194354-35-3 CAPLUS

CN 1,4-Benzenediamine, N-[4-[[(4-ethenylphenyl)methoxy]methyl]phenyl]-N,N',N'-tris(4-methylphenyl)-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 194354-34-2 CMF C43 H40 N2 O

OS.CITING REF COUNT: 21 THERE ARE 21 CAPLUS RECORDS THAT CITE THIS

RECORD (21 CITINGS)

REFERENCE COUNT: 17 THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 257 OF 257 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1996:560311 CAPLUS Full-text

DOCUMENT NUMBER: 125:196755

ORIGINAL REFERENCE NO.: 125:36861a,36864a

TITLE: Polymeric carrier-transporting materials for

electroluminescent devices,

electrophotographic photoreceptors, etc.

INVENTOR(S): Ito, Juichi; Sato, Hisaya; Hayashi, Takako PATENT ASSIGNEE(S): Toppan Printing Co., Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 20 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 08157575	A	19960618	JP 1994-330622	19941207
JP 3482719	B2	20040106		
PRIORITY APPLN. INFO.:			JP 1994-330622	19941207
GT				

$$\begin{array}{c|c} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

AB The title materials capable of forming carrier-transporting layers by spin coating or casting with Tg ≥120° and good mech. strength have the general formula I [m = d.p.; G1 = direct bond, arylene, alkylene, alkylenedioxy, other linking group; G2 = (halo)alkyl; G3 = H, alkyl; G4 = phenylene, biphenylene, other linking group]. N,N'-bis(4-formylphenyl)-N,N'-di-p-tolyl-p-phenylenediamine was prepared and polymerized with m-xylylbis(triphenylphosphonium chloride).

IT 181064-89-1P 181064-90-4P

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(polymeric carrier-transporting materials for

electroluminescent devices and electrophotog. photoreceptors)

RN 181064-89-1 CAPLUS

CN Phosphonium, [1,3-phenylenebis(methylene)]bis[triphenyl-, dichloride, polymer with 4,4'-[1,4-phenylenebis[(4-methylphenyl)imino]]bis[benzaldehyde] (9CI) (CA INDEX NAME)

CM 1

CRN 131660-39-4 CMF C34 H28 N2 O2

CRN 66726-75-8 CMF C44 H38 P2 . 2 C1

RN 181064-90-4 CAPLUS

CN Poly[[(4-methylphenyl)imino]-1,4-phenylene[(4-methylphenyl)imino]-1,4-phenylene-1,2-ethenediyl-1,3-phenylene-1,2-ethenediyl-1,4-phenylene] (9CI) (CA INDEX NAME)

PAGE 1-B

IT 131660-39-4P 138171-14-9P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(polymeric carrier-transporting materials for

electroluminescent devices and electrophotog. photoreceptors)

RN 131660-39-4 CAPLUS

CN Benzaldehyde, 4,4'-[1,4-phenylenebis[(4-methylphenyl)imino]]bis- (CA INDEX NAME)

RN 138171-14-9 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-methylphenyl)-N1,N4-diphenyl- (CA INDEX NAME)

OS.CITING REF COUNT: 3 THERE ARE 3 CAPLUS RECORDS THAT CITE THIS RECORD (3 CITINGS)

=> d ibib abs hitstr 250-254

L12 ANSWER 250 OF 257 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1999:456106 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 131:206309

TITLE: Dependence of the hole-injection barrier on the hole

conductor in organic light emitting diodes based on

composites

AUTHOR(S): Gross, Markus; Muller, David; Brauchle, Christoph;

Meerholz, Klaus

CORPORATE SOURCE: Institut fur Physikalische Chemie, Munich, 80333,

Germany

SOURCE: Synthetic Metals (1999), 102(1-3), 1147-1148

CODEN: SYMEDZ; ISSN: 0379-6779

PUBLISHER: Elsevier Science S.A.

DOCUMENT TYPE: Journal LANGUAGE: English

AB Organic LEDs based on composites using different hole conductors were fabricated and characterized. In these devices the current flux is limited by the injection of holes into the semi-conducting polymer layer through tunneling. The data were evaluated using the common Fowler-Nordheim formalism. The barrier height depends linearly on the oxidation potential of the hole conductor, but unexpectedly the slope is only 0.55 ± 0.1. This result is explained by the nonpolar nature of the internal interface between ITO and the conductive layer.

IT 138171-14-9

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PROC (Process); USES (Uses)

(hole-injection barrier dependence on hole conductor in organic LEDs based on)

RN 138171-14-9 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-methylphenyl)-N1,N4-diphenyl- (CA INDEX NAME)

OS.CITING REF COUNT: 5 THERE ARE 5 CAPLUS RECORDS THAT CITE THIS RECORD

(5 CITINGS)

REFERENCE COUNT: 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 251 OF 257 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1998:758655 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 130:59045

TITLE: Styryl-containing polymer, its manufacture,

and organic electroluminescent device, electrophotographic photoreceptor, and hole-transporting material using it

INVENTOR(S): Ueda, Hideaki; Kitahora, Takeshi; Nozaki, Takeshi PATENT ASSIGNEE(S): Minolta Camera Co., Ltd., Japan; Konica Minolta

Holdings, Inc.

SOURCE: Jpn. Kokai Tokkyo Koho, 17 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PA	TENT NO.	KIND	DATE	API	PLICATION NO.	DATE		
 TD	10310606	7	19981124		 1997–119194	_	19970509	
	3800720	A B2	20060726	JP	1997-119194		19970309	
	6066712	A	20000523	US	1998-74914		19980508	
PRIORIT	Y APPLN. INFO.:			JP	1997-119192	Α	19970509	
				JΡ	1997-119194	Α	19970509	

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

The styryl-containing polymer is represented by [CH2CH(Ar1CH:CHAr2)]n (Ar1 = arylene; Ar2 = aryl, condensed polycyclic group, heterocyclic group; Ar1 and Ar2 may be substituted; n = natural number). The above polymer is manufactured by (1) the reaction between a P compound [CH2CH(Ar1CH2X)]n and an aldehyde compound Ar2CHO or (2) the reaction between an aldehyde compound [CH2CH(Ar1CHO)]n and a P compound Ar2CH2X [X = PO(OR1)2 or PR23.Y; R1 = lower alky1; R2 = cycloalky1, aryl; Y = halo]. The electroluminescent device contains the polymer in ≥1 organic compound thin layer including a lightemitting layer and the photoreceptor contains the polymer as a chargetransporting material. The hole-transporting material composed of the polymer

is also claimed. The styryl-containing polymer shows good performance in charge-transporting and optical conductivity even after repeated use.

IT 217449-78-0

RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)

(styryl-containing polymer as charge-transporting material for organic electroluminescent device and electrophotog.

photoreceptor)

RN 217449-78-0 CAPLUS

CN 1,4-Benzenediamine, N-[4-[2-(4-ethenylphenyl)ethenyl]phenyl]-N,N'-bis(4-methylphenyl)-N'-[4-[(4-methylphenyl)phenylamino]phenyl]-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 217449-77-9 CMF C55 H47 N3

PAGE 1-B

__Me

OS.CITING REF COUNT: 6 THERE ARE 6 CAPLUS RECORDS THAT CITE THIS RECORD (7 CITINGS)

L12 ANSWER 252 OF 257 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1998:649994 CAPLUS Full-text

DOCUMENT NUMBER: 129:295943

ORIGINAL REFERENCE NO.: 129:60235a,60238a

TITLE: Electroluminescent polymer

compositions and processes

INVENTOR(S): Hsieh, Bing R.

PATENT ASSIGNEE(S): Xerox Corporation, USA

SOURCE: U.S., 13 pp. CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

US 5817430	А	19981006	US 1996-751532	19961113
US 5876865	A	19990302	US 1998-106554	19980629
PRIORITY APPLN. I	NFO.:		US 1996-751532	A3 19961113

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB Methods for preparing polymers are described which entail: polymerizing at least one monomer of the formula X-CH2-Ar-CH2-X' in the presence of a base and at least one chain end controlling additive of the formula R-H to form a soluble conjugated poly(arylene vinylene) of the formula R-CH2-[Ar-CHCH-]n-Ar-CH2-R (X and X' = electron withdrawing groups; R-H = compound containing at least 1 acidic proton; R = nucleophile; Ar = aryl or aromatic group with from 5-30 C atoms; and n = the number of repeating segments).

IT 214281-24-0DP, polymers, reaction products with chain

end controlling additives

RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(electroluminescent polyarylene vinylene polymer preparation)

RN 214281-24-0 CAPLUS

CN 1,4-Benzenediamine, 2,5-bis(chloromethyl)-N,N,N',N'-tetrakis(4-methylphenyl)- (9CI) (CA INDEX NAME)

OS.CITING REF COUNT: 16 THERE ARE 16 CAPLUS RECORDS THAT CITE THIS

RECORD (16 CITINGS)

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 253 OF 257 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1998:175869 CAPLUS Full-text

DOCUMENT NUMBER: 128:223710

ORIGINAL REFERENCE NO.: 128:44195a,44198a

TITLE: Heat-resistant organic electroluminescent

device

INVENTOR(S): Antoniadis, Homer; Roitman, Daniel B.; Shiang, William

R.; Woo, Edmund P.; Wu, Weishi

PATENT ASSIGNEE(S): Hewlett-Packard Co., USA; Dow Chemical Co.

SOURCE: Eur. Pat. Appl., 19 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

EP	8273	66			A2		1998	0304	E	ΞP	1997	-1148	46			19970	827
EP	8273	66			А3		1998	0819									
	R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR	, IT	, LI,	LU,	NL,	SE,	, MC,	PT,
		IE,	FΙ														
US	5948	552			Α		1999	0907	J	JS	1996	-7044	76			19960	827
JP	1009	2582			Α		1998	0410		JΡ	1997	-2448	68			19970	827
JP	4478	221			В2		2010	0609									
JP	2010	1577.	50		Α		2010	0715		JΡ	2010	-2185	5		,	20100	203
PRIORITY	APP:	LN.	INFO	.:					J	JS	1996	-7044	76		A .	19960	827
										JΡ	1997	-2448	68		A3 :	19970	827

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

OTHER SOURCE(S): MARPAT 128:223710

GΙ

Organic electroluminescent devices comprising a substrate, a transparent first conductive layer next to the substrate, an electron-transporting and light-emitting layer, a hole-transporting layer sandwiched between the first conductive layer and the electron-transporting and light-emitting layer, and a second conductive layer next to the electron-transporting and light-emitting layer and remote from the hole-transporting layer are described in which the hole-transporting layer comprises a poly(arylamine) described by the general formula I (R = independently selected C1-24 hydrocarbyl, hydrocarboxyl, hydrothiocarboxy, hydroarylcarboxy, or hydrothioarylcarboxy groups; Ar1 and Ar2 = independently selected C6-18 aryl groups optionally substituted with ≥1 C1-24 hydrocarbyl, hydrocarboxyl, hydrothiocarboxy, hydroarylcarboxy, or hydrothioarylcarboxy groups; A = independently selected groups selected from H and halogens; p = 0-1; n = 0-4; and m = 5-1000).

IT 113703-67-6P 202873-05-0P

RL: DEV (Device component use); PRP (Properties); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

(heat-resistant organic electroluminescent devices with polyarylamine hole-transporting layers)

RN 113703-67-6 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-chlorophenyl)-N,N'-diphenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 113703-66-5 CMF C30 H22 C12 N2

RN 202873-05-0 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-methoxyphenyl)-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 202873-04-9

CMF C32 H26 Br2 N2 O2

IT 113703-66-5P 124526-50-7P 202873-04-9P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(heat-resistant organic electroluminescent devices with polyarylamine hole-transporting layers)

RN 113703-66-5 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-chlorophenyl)-N1,N4-diphenyl- (CA INDEX NAME)

RN 124526-50-7 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-methoxyphenyl)-N1,N4-diphenyl- (CA INDEX NAME)

RN 202873-04-9 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis(4-methoxyphenyl)-(CA INDEX NAME)

OS.CITING REF COUNT: 20 THERE ARE 20 CAPLUS RECORDS THAT CITE THIS RECORD (20 CITINGS)

L12 ANSWER 254 OF 257 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1998:126295 CAPLUS $\underline{\text{Full-text}}$

DOCUMENT NUMBER: 128:180801

ORIGINAL REFERENCE NO.: 128:35685a,35688a

TITLE: Polyarylamines, their preparation, and films thereof

INVENTOR(S): Wu, Weishi; Shiang, William R.; Woo, Edmund P.

PATENT ASSIGNEE(S): Dow Chemical Company, USA SOURCE: PCT Int. Appl., 25 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9806773 W: JP, KR	A1	19980219	WO 1997-US12478	19970714
RW: AT, BE, CH,	DE, DK	, ES, FI, FR	R, GB, GR, IE, IT,	LU, MC, NL, PT, SE
US 5728801	A	19980317	US 1996-696281	19960813
EP 918811	A1	19990602	EP 1997-939338	19970714
EP 918811	B1	20001227		
R: AT, BE, CH,	DE, DK	, ES, FR, GB	B, GR, IT, LI, LU,	NL, SE, MC, PT,
IE, FI				
AT 198338	T	20010115	AT 1997-939338	19970714
JP 2001503074	T	20010306	JP 1998-509717	19970714
JP 4172821	B2	20081029		
KR 2000029916	A	20000525	KR 1999-7001113	19990210
JP 2008069367	A	20080327	JP 2007-279072	20071026
JP 4439554	B2	20100324		
PRIORITY APPLN. INFO.:			US 1996-696281	A 19960813

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT GI

AB A poly(arylamine) composition comprises one or more compds. of structure I (R = C1-24 hydrocarbyl, C1-24 hydrocarboxy, C1-24 hydrocarbylthiooxy, C1-24 hydrocarbylcarboxyl; Ar1, Ar2 = C6-18 aryl, C1-12 hydrocarbyl-, C1-12 hydrocarbyloxy-, C1-12 hydrocarbylthiooxy-, C1-12 hydrocarbylcarboxyl- substituted C6-18 aryl, A = H, halogen; x = 0, 1; n = 0-4; m = 5-1000). The monomers useful in the preparation of polyarylamines comprise two amino moieties wherein each amino moiety is bound to three aryl moieties wherein two halo moieties are optionally bound to the monomer. The invention further relates to films prepared from such polyarylamines, as well as electrophotog. devices and electroluminescent devices containing such films, such as polymeric light-emitting diodes. The invention also relates to processes for the preparation of polyarylamines.

IT 113703-67-6P 202873-05-0P

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (polyarylamines, their preparation, and films thereof)

RN 113703-67-6 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-chlorophenyl)-N,N'-diphenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

RN

CRN 113703-66-5 CMF C30 H22 C12 N2

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-methoxyphenyl)-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 202873-04-9

CMF C32 H26 Br2 N2 O2

IT 113703-66-5P 124526-50-7P 202873-04-9P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(polyarylamines, their preparation, and films thereof)

RN 113703-66-5 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-chlorophenyl)-N1,N4-diphenyl- (CA INDEX NAME)

RN 124526-50-7 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-methoxyphenyl)-N1,N4-diphenyl- (CA INDEX NAME)

RN 202873-04-9 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis(4-methoxyphenyl)- (CA INDEX NAME)

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 112 and spirobiflu?

536 SPIROBIFLU?

L13 4 L12 AND SPIROBIFLU?

=> d ibib abs hitstr 4

L13 ANSWER 4 OF 4 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2003:661197 CAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 139:387882

TITLE: Enhanced luminance of blue light-emitting

polymers by blending with hole-transporting

materials

AUTHOR(S): Suh, Min Chul; Chin, Byung Doo; Kim, Mu-Hyun; Kang,

Tae Min; Lee, Seong Taek

CORPORATE SOURCE: Corporate R&D Center, Samsung SDI Co., Ltd,

Gyeonggi-Do, 449-902, Taiwan

SOURCE: Advanced Materials (Weinheim, Germany) (2003), 15(15),

1254-1258

CODEN: ADVMEW; ISSN: 0935-9648

PUBLISHER: Wiley-VCH Verlag GmbH & Co. KGaA

DOCUMENT TYPE: Journal LANGUAGE: English

The laser-induced thermal imaging (LITI) process is well suited for patterning AB any type of electroluminescent spin-coatable materials. The relation and balance of LEP [light emitting polymer compns., e.g., Covion blue polymer (CB)] cohesion and interlayer adhesion between the LEP and HTL [hole transport layer] and between the LEP layer and the donor film are key issues in determining the quality of the patterning process. Optically and electronically inert polymers such as polystyrene (PS), poly(Me methacrylate) (PMMA), poly(acenaphthylene) (PANa), were evaluated in as hosts in LEP mixts. to improve LITI pattern quality. Amorphous HTMs [hole transporting material]s were also evaluated to attain a decrease in operating voltage of devices; the HTMs include 1,3,5-tris[N,N-bis(4- methoxyphenyl)aminophenyl]benzene (TDAPB), 4,4',4''-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (MTDATA), N,N'di[4-(N,N'-diphenylamino)phenyl]-N,N'-diphenylbenzidine (DNTPD), and 1,1bis[4-bis(4-methylphenyl)aminophenyl]cyclohexane (TAPC). The process and materials were used to fabricate improved bright blue light-emitting patterned PLEDs.

IT 220865-73-6

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)

(TDAPB, hole-transporting layer; enhanced luminance of blue PLEDs by blending blue emitter with hole-transport compds. and by fabrication using laser-induced thermal imaging patterning technique)

RN 220865-73-6 CAPLUS

CN 1,4-Benzenediamine, N1,N1-bis[4-[bis(4-methoxyphenyl)amino]phenyl]-N4,N4-

OS.CITING REF COUNT: 37 THERE ARE 37 CAPLUS RECORDS THAT CITE THIS

RECORD (37 CITINGS)

REFERENCE COUNT: 21 THERE ARE 21 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> d ibib abs hitstr 1-3

L13 ANSWER 1 OF 4 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2010:505608 CAPLUS Full-text

DOCUMENT NUMBER: 152:477664

TITLE: Conjugated polymers with low polydispersity

for electronic and optoelectronic applications

INVENTOR(S): Meyer, Frank; Schulte, Niels; Kreuder, Willi

PATENT ASSIGNEE(S): Merck Patent GmbH, Germany

SOURCE: Ger. Offen., 20pp.; Chemical Indexing Equivalent to

152:406318 (WO)

CODEN: GWXXBX

DOCUMENT TYPE: Patent LANGUAGE: German

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND DATE	E APPL	ICATION NO.	DATE		
DE 102008049037 WO 2010034393			008-102008049037	20080925 20090902		
W: AE, AG, AL,	AM, AO, AT,	, AU, AZ, BA,	BB, BG, BH, BR,	BW, BY, BZ,		
CA, CH, CL,	CN, CO, CR,	, CU, CZ, DE,	DK, DM, DO, DZ,	EC, EE, EG,		
ES, FI, GB,	GD, GE, GH,	, GM, GT, HN,	HR, HU, ID, IL,	IN, IS, JP,		
KE, KG, KM,	KN, KP, KR,	, KZ, LA, LC,	LK, LR, LS, LT,	LU, LY, MA,		
MD, ME, MG,	MK, MN, MW,	, MX, MY, MZ,	NA, NG, NI, NO,	NZ, OM, PE,		
PG, PH, PL,	PT, RO, RS,	, RU, SC, SD,	SE, SG, SK, SL,	SM, ST, SV,		
SY, TJ, TM,	TN, TR, TT,	, TZ, UA, UG,	US, UZ, VC, VN,	ZA, ZM, ZW		
RW: AT, BE, BG,	CH, CY, CZ,	, DE, DK, EE,	ES, FI, FR, GB,	GR, HR, HU,		
IE, IS, IT,	LT, LU, LV,	, MC, MK, MT,	NL, NO, PL, PT,	RO, SE, SI,		
SK, SM, TR,	BF, BJ, CF,	, CG, CI, CM,	GA, GN, GQ, GW,	ML, MR, NE,		
SN, TD, TG,	BW, GH, GM,	, KE, LS, MW,	MZ, NA, SD, SL,	SZ, TZ, UG,		
ZM, ZW, AM,	AZ, BY, KG,	, KZ, MD, RU,	TJ, TM			

The invention relates to novel polymers comprising one or more recurrent units selected from spirobifluorene, indenofluorene, phenanthrene, dihydrophenanthrene, dihydropyrene, tetrahydropyrene and dihydrobenzooxepine derivs. and having low polydispersity and high mol. weight The invention further relates to a method for production of conjugated or partially conjugated polymers, to blends and formulations comprising the polymers, and to the use of the polymers in electronic and optoelectronic devices, particularly in organic light emitting diodes.

IT 1005004-67-0P 1219172-37-8P

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(conjugated polymers with low polydispersity for electronic and optoelectronic applications)

RN 1005004-67-0 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis(4-butylphenyl)-, polymer with 2,2'-[2',7'-bis(1-ethyl-1-methylheptyl)-9,9'-spirobi[9H-fluorene]-2,7-diyl]bis[1,3,2-dioxaborolane], 2,8-dibromo-6,6-bis[4-(1,1-dimethylethyl)phenyl]-6,12-dihydro-12,12-dioctylindeno[1,2-b]fluorene and 2,2'-[(2,5-di-1-naphthalenyl-1,4-phenylene)di-2,1-ethenediyl]bis[5-bromothiophene] (CA INDEX NAME)

CM 1

CRN 1005004-64-7 CMF C38 H24 Br2 S2

CM 2

CRN 1004757-02-1 CMF C56 H68 Br2

CM 3

CRN 1001635-13-7 CMF C49 H62 B2 O4

CM 4

CRN 372200-89-0 CMF C38 H38 Br2 N2

RN 1219172-37-8 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis(4-butylphenyl)-, polymer with 2,2'-[2',7'-bis(1-ethyl-1-methylheptyl)-9,9'-spirobi[9H-fluorene]-2,7-diyl]bis[1,3,2-dioxaborolane], 4-bromo-N-[4-[2-(4-bromophenyl)ethenyl]phenyl]-N-[4-(1,1-dimethylethyl)phenyl]benzenamine and

2,8-dibromo-6,6-bis[4-(1,1-dimethylethyl)phenyl]-6,12-dihydro-12,12-dioctylindeno[1,2-b]fluorene (CA INDEX NAME)

CM 1

CRN 1004757-02-1 CMF C56 H68 Br2

CM 2

CRN 1001635-13-7 CMF C49 H62 B2 O4

CM 3

CRN 942216-48-0 CMF C30 H27 Br2 N

CM 4

CRN 372200-89-0 CMF C38 H38 Br2 N2

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 2 OF 4 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2010:405905 CAPLUS Full-text

DOCUMENT NUMBER: 152:406318

DOCOMENT NOMBER. 152.400510

TITLE: Conjugated polymers with low polydispersity for electronic and optoelectronic applications

INVENTOR(S): Meyer, Frank Egon; Schulte, Niels; Kreuder, Willi

PATENT ASSIGNEE(S): Merck Patent GmbH, Germany

SOURCE: PCT Int. Appl., 43pp.; Chemical Indexing Equivalent to

152:477664 (DE) CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: German

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PA	PATENT NO.					KIND DATE				ICAT		DATE					
WO	2010	0343	 93		A1 20100401			0401	1	WO 2	 009-:		20090902				
	W:	ΑE,	AG,	AL,	AM,	AO,	ΑT,	ΑU,	AZ,	BA,	BB,	BG,	BH,	BR,	BW,	BY,	BZ,
		CA,	CH,	CL,	CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DO,	DZ,	EC,	EE,	EG,
		ES,	FI,	GB,	GD,	GE,	GH,	GM,	GT,	HN,	HR,	HU,	ID,	IL,	IN,	IS,	JP,
		ΚE,	KG,	ΚM,	KN,	KP,	KR,	KΖ,	LA,	LC,	LK,	LR,	LS,	LT,	LU,	LY,	MA,
		MD,	ME,	MG,	MK,	MN,	MW,	MX,	MY,	MZ,	NA,	NG,	NΙ,	NO,	NZ,	OM,	PE,
		PG,	PH,	PL,	PT,	RO,	RS,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SM,	ST,	SV,
		SY,	ΤJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	ZA,	ZM,	ZW
	RW:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FΙ,	FR,	GB,	GR,	HR,	HU,
		ΙE,	IS,	IT,	LT,	LU,	LV,	MC,	MK,	MT,	NL,	NO,	PL,	PT,	RO,	SE,	SI,
		SK,	SM,	TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,
		SN,	TD,	ΤG,	BW,	GH,	GM,	ΚE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,
		ZM,	ZW,	AM,	AZ,	BY,	KG,	KΖ,	MD,	RU,	ΤJ,	TM					
DE	1020	0804	9037		A1		2010	0422		DE 2	-800	1020	08049	9037	2	0800	925
PRIORIT	Y APP	LN.	INFO	.:						DE 2	-800	1020	08049	9037	A 2	0080	925

The invention relates to novel polymers comprising one or more recurrent units selected from spirobifluorene, indenofluorene, phenanthrene, dihydropyrene, dihydropyrene and dihydrobenzooxepine derivs. and having low polydispersity and high mol. weight The invention

further relates to a method for production of conjugated or partially conjugated polymers, to blends and formulations comprising the polymers, and to the use of the polymers in electronic and optoelectronic devices, particularly in organic light emitting diodes.

IT 1005004-67-0P 1219172-37-8P

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(conjugated polymers with low polydispersity for electronic and optoelectronic applications)

RN 1005004-67-0 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis(4-butylphenyl)-, polymer with 2,2'-[2',7'-bis(1-ethyl-1-methylheptyl)-9,9'-spirobi[9H-fluorene]-2,7-diyl]bis[1,3,2-dioxaborolane], 2,8-dibromo-6,6-bis[4-(1,1-dimethylethyl)phenyl]-6,12-dihydro-12,12-dioctylindeno[1,2-b]fluorene and 2,2'-[(2,5-di-1-naphthalenyl-1,4-

phenylene)di-2,1-ethenediyl]bis[5-bromothiophene] (CA INDEX NAME)

CM 1

CRN 1005004-64-7 CMF C38 H24 Br2 S2

CM 2

CRN 1004757-02-1 CMF C56 H68 Br2

$$Br$$
 $Me-(CH2)$ 7
 $(CH2)$ $7-Me$

CM 3

CRN 1001635-13-7 CMF C49 H62 B2 O4

CM 4

CRN 372200-89-0 CMF C38 H38 Br2 N2

RN 1219172-37-8 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis(4-butylphenyl)-, polymer with 2,2'-[2',7'-bis(1-ethyl-1-methylheptyl)-9,9'-spirobi[9H-fluorene]-2,7-diyl]bis[1,3,2-dioxaborolane], 4-bromo-N-[4-[2-(4-bromophenyl)ethenyl]phenyl]-N-[4-(1,1-dimethylethyl)phenyl]benzenamine and 2,8-dibromo-6,6-bis[4-(1,1-dimethylethyl)phenyl]-6,12-dihydro-12,12-dioctylindeno[1,2-b]fluorene (CA INDEX NAME)

CM 1

CRN 1004757-02-1 CMF C56 H68 Br2

CM 2

CRN 1001635-13-7 CMF C49 H62 B2 O4

CM 3

CRN 942216-48-0 CMF C30 H27 Br2 N

$$t-Bu$$
 CH
 CH
 CH

CM 4

CRN 372200-89-0 CMF C38 H38 Br2 N2

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 3 OF 4 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2008:219480 CAPLUS Full-text

DOCUMENT NUMBER: 148:263088

TITLE: Conjugated polymers and dendrimers, process

for their preparation and their use

INVENTOR(S): Schulte, Niels; Scheurich, Rene Peter; Pan, Junyou

PATENT ASSIGNEE(S): Merck Patent GmbH, Germany

SOURCE: PCT Int. Appl., 47 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

•	PATENT NO.						KIND DATE											
,	 WO	2008	 0197	44		A1	_					 2007–:				2	0070	 718
		W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	ΑZ,	BA,	BB	, BG,	BH,	BR,	BW,	BY,	BZ,	CA,
			CH,	CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM	, DO,	DZ,	EC,	EE,	EG,	ES,	FΙ,
			GB,	GD,	GE,	GH,	GM,	GT,	HN,	HR,	HU	, ID,	IL,	IN,	IS,	JP,	ΚE,	KG,
			ΚM,	KN,	ΚP,	KR,	KΖ,	LA,	LC,	LK,	LR	, LS,	LT,	LU,	LY,	MA,	MD,	ME,
			MG,	MK,	MN,	MW,	MX,	MY,	MZ,	NA,	NG	, NI,	NO,	NΖ,	OM,	PG,	PH,	PL,
			PT,	RO,	RS,	RU,	SC,	SD,	SE,	SG,	SK	, SL,	SM,	SV,	SY,	ТJ,	TM,	TN,
			TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN	, ZA,	ZM,	ZW				
		RW:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE	, ES,	FI,	FR,	GB,	GR,	HU,	IE,
			IS,	IT,	LT,	LU,	LV,	MC,	MT,	NL,	PL	, PT,	RO,	SE,	SI,	SK,	TR,	BF,
			ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW	, ML,	MR,	ΝE,	SN,	TD,	ΤG,	BW,
			GH,	GM,	ΚE,	LS,	MW,	MΖ,	NA,	SD,	SL	, SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,
			BY,	KG,	KΖ,	MD,	RU,	ТJ,	TM									
	DΕ	1020	0603	8683		A1		2008	0221		DE :	2006-	1020	0603	8683	2	0060	817
	ΕP	2052	006			A1		2009	0429		EP :	2007-	7861	57		2	0070	718
		R:	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	, ES,	FI,	FR,	GB,	GR,	HU,	ΙE,
			IS,	IT,	LI,	LT,	LU,	LV,	MC,	MT,	NL	, PL,	PT,	RO,	SE,	SI,	SK,	TR,
			AL,	BA,	HR,	MK,	RS											
į	JΡ	2010	5010.	30		T		2010	0114		JP :	2009-	5240	88		2	0070	718
	CN	1015	1190	2		Α		2009	0819			2007-					0090	216
	US	2010	0227	974		A1		2010	0909		US :	2009-	3776	28		2	0090	216
	KR	2009	0403	90		Α		2009	0423		KR :	2009-	7005	422		2	0090	316
PRIOR	CIORITY APPLN. INFO.:										DE :	2006-	1020	0603	8683	A 2	0060	817
											WO :	2007-	EP63	83	1	W 2	0070	718

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT OTHER SOURCE(S): CASREACT 148:263088

AB The invention relates to conjugated polymers and to dendrimers comprising 9,10-dihydrophenanthrene structural units, to processes for their preparation and to their use in electronic components, especially in polymeric organic

light-emitting diodes, to monomers for their preparation, and to components and light-emitting diodes comprising such polymers and dendrimers. These polymers and dendrimers exhibit improved color stability and lower operating voltage increase so that the life span of the polymer light-emitting diodes are longer.

IT 1006868-15-0P 1006868-16-1P

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(conjugated polymers and dendrimers containing

dihydrophenanthrene units with good color stability for light-emitting diodes)

RN 1006868-15-0 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis(4-butylphenyl)-, polymer with 2,2'-[2',7'-bis(1-ethyl-1-methylheptyl)-9,9'-spirobi[9H-fluorene]-2,7-diyl]bis[1,3,2-dioxaborolane],

 $\hbox{$4$-bromo-N-[$4$-[$2$-($4$-bromopheny1)]etheny1]$pheny1]-N-[4-($1,1$-infty] and i-infty are sufficiently as i-infty and i-infty are sufficiently as i-infty are sufficiently are sufficiently as i-infty are sufficiently are sufficin$

dimethylethyl)phenyl]benzenamine and

2,7-dibromo-9,10-dihydro-9,9-dimethyl-10,10-dioctylphenanthrene (CA INDEX NAME)

CM 1

CRN 1006868-12-7 CMF C32 H46 Br2

CM 2

CRN 1001635-13-7 CMF C49 H62 B2 O4

CM 3

CRN 942216-48-0 CMF C30 H27 Br2 N

CM 4

CRN 372200-89-0 CMF C38 H38 Br2 N2

RN 1006868-16-1 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis(4-butylphenyl)-, polymer with 2,2'-[2',7'-bis(1-ethyl-1-methylheptyl)-9,9'-spirobi[9H-fluorene]-2,7-diyl]bis[1,3,2-dioxaborolane], 2,7-dibromo-9,10-dihydro-9,9-dimethyl-10,10-dioctylphenanthrene and 2,2'-[(2',5'-dimethyl[1,1'-biphenyl]-2,5-diyl)di-2,1-ethenediyl]bis[5-bromothiophene] (CA INDEX NAME)

CM 1

CRN 1006868-12-7 CMF C32 H46 Br2

CM 2

CRN 1004757-06-5

CMF C26 H20 Br2 S2

CM 3

CRN 1001635-13-7 CMF C49 H62 B2 O4

CM 4

CRN 372200-89-0 CMF C38 H38 Br2 N2

REFERENCE COUNT: 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> d hist

(FILE 'HOME' ENTERED AT 16:47:50 ON 21 DEC 2010)

FILE 'REGISTRY' ENTERED AT 16:48:19 ON 21 DEC 2010

L1 STRUCTURE UPLOADED
L2 1 S SPIROBIFLUORENE/CN

```
L3
             50 S L1
L4
          1906 S L1 FULL
L5
             0 S L4 AND 9841.1/RID
L6
              0 S L4 AND 9841.1/RID
L7
              0 S INDENOFLUORENE/CN
L8
              1 S BENZENE/CN
L9
           1906 S L4 AND 46.150/RID
     FILE 'CAPLUS' ENTERED AT 16:55:40 ON 21 DEC 2010
L10
          1131 S L9
L11
           495 S L10 AND POLYMER?
            257 S L11 AND ELECTROLUMIN?
L12
     FILE 'STNGUIDE' ENTERED AT 17:00:14 ON 21 DEC 2010
     FILE 'CAPLUS' ENTERED AT 17:01:26 ON 21 DEC 2010
L13
             4 S L12 AND SPIROBIFLU?
http://www.cas.org/legal/infopolicy.html
This file contains CAS Registry Numbers for easy and accurate
substance identification.
=> s 112 and ?phenanthran?
            51 ?PHENANTHRAN?
             0 L12 AND ?PHENANTHRAN?
L14
=> s 112 and copolymer?
        828009 COPOLYMER?
         55550 COPOLYMN
          2749 COPOLYMNS
         56585 COPOLYMN
                 (COPOLYMN OR COPOLYMNS)
         18203 COPOLYMD
             1 COPOLYMDS
         18204 COPOLYMD
                 (COPOLYMD OR COPOLYMDS)
          6144 COPOLYMG
        844468 COPOLYMER?
                 (COPOLYMER? OR COPOLYMN OR COPOLYMD OR COPOLYMG)
            74 L12 AND COPOLYMER?
T.15
=> s 112 and copolymer and heterocycl?
        760102 COPOLYMER
        222344 COPOLYMERS
        815392 COPOLYMER
                 (COPOLYMER OR COPOLYMERS)
        194596 HETEROCYCL?
L16
            20 L12 AND COPOLYMER AND HETEROCYCL?
=> d ibib abs hitstr 19-20
L16 ANSWER 19 OF 20 CAPLUS COPYRIGHT 2010 ACS on STN
ACCESSION NUMBER:
                     2003:559879 CAPLUS Full-text
DOCUMENT NUMBER:
                         139:124780
TITLE:
                         Copolymers having aromatic amine repeating
                        units, their compositions, and light-emitting diodes
                         and devices
                         Suzuki, Tomoyuki; Doi, Shuji; Noguchi, Kiminobu
INVENTOR(S):
```

PATENT ASSIGNEE(S): Sumitomo Chemical Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 16 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2003206335	A	20030722	JP 2002-7167	20020116
JP 4035995	B2	20080123		
PRIORITY APPLN. INFO.:			JP 2002-7167	20020116

The copolymers have (A) ≥1 stilbenzyl units Ar1CR1:CR2Ar2 (Ar1, Ar2 = arylene, divalent heterocyclic group; R1, R2 = H, alkyl, alkoxy, alkylthio, alkylsilyl, alkylamino, aryl, aryloxy, arylsilyl, arylamino, arylalkyl, arylalkoxy, arylalkylsilyl, arylalkylamino, arylalkenyl, arylalkynyl, monovalent heterocyclic group, cyano) and (B) ≥1 aromatic amine units Ar3Ar4NAr5(NAr6Ar7)n (Ar3, Ar5, Ar7 = arylene, divalent heterocyclic group; Ar4, Ar6 = aryl, monovalent heterocyclic group; n = 0-3). The compns. comprise the copolymers and polymers, giving fluorescence at solid states, with polystyrene-based number-average mol. weight 103-108. Light-emitting diodes, surface light sources, displays, and liquid-crystal displays using the copolymers are also claimed. The copolymers show high fluorescent intensity.

IT 565227-14-79

RL: DEV (Device component use); IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (copolymers having aromatic amine units with high fluorescent intensity for LED)

RN 565227-14-7 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-butylphenyl)-, polymer with N,N-bis(4-bromophenyl)-4-[2-[4-(1,1-dimethylethyl)phenyl]ethenyl]benzenamine and 1,1'-(1,2-ethenediyl)bis[4-bromo-3-(3-methylbutoxy)benzene] (9CI) (CA INDEX NAME)

CM 1

CRN 565227-11-4 CMF C24 H30 Br2 O2

CM 2

CRN 474787-40-1 CMF C30 H27 Br2 N

$$Br$$
 CH
 CH
 $Bu-t$

CM 3

CRN 372200-89-0 CMF C38 H38 Br2 N2

OS.CITING REF COUNT: 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (2 CITINGS)

L16 ANSWER 20 OF 20 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2003:373850 CAPLUS $\underline{\text{Full-text}}$

DOCUMENT NUMBER: 138:392820

TITLE: Polymer compound and polymer

light-emitting device using the same

INVENTOR(S): Oguma, Jun; Tsubata, Yoshiaki; Doi, Shuji PATENT ASSIGNEE(S): Sumitomo Chemical Company, Limited, Japan

SOURCE: Eur. Pat. Appl., 36 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND DATE	APPLICATION NO.	DATE
EP 1310539 EP 1310539	A1 2003053 B1 2005033		20021107
R: AT, BE, CH,	DE, DK, ES, FI	R, GB, GR, IT, LI, LU, NL,	SE, MC, PT,
IE, SI, LT,	LV, FI, RO, M	K, CY, AL, TR, BG, CZ, EE,	SK
TW 249542	В 2006022	TW 2002-132237	20021031
SG 112858	A1 2005072	28 SG 2002-6657	20021101
US 20030165713	A1 2003090	04 US 2002-287655	20021105
US 6830832	B2 2004121	. 4	
JP 2003226744	A 2003083	.2 JP 2002-322413	20021106
JP 4182245	B2 200811	.9	
KR 917770	B1 2009092	21 KR 2002-68357	20021106
JP 2008133298	A 2008063	.2 JP 2008-28695	20080208

JP 2001-344482 A 20011109 JP 2002-322413 A3 20021106

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

$$\begin{array}{c|c}
-Ar^1 & N - Ar^2 \\
\hline
Ar^3 & x \\
Ar^4 & Ar^5
\end{array}$$

AΒ A polymer compound having polystyrene reduced number average mol. weight of 103-108, and comprising one or more kinds of repeating units according to -Ar1N[(Ar3)xNAr3Ar4]Ar2- (Ar1, Ar2 = arylene group, or divalent heterocyclic compound group; Ar3 = arylene group, arylene vinylene group, or divalent heterocyclic compound group; x = 1-10; wherein when x is ≥ 2 , a plurality of Ar3 may be the same or different; Ar4, Ar5 = aryl group, monovalent heterocyclic compound group, or compound with repeating units of -Ar6- wherein Ar6 = phenylene, stilbene-diyl, distilbene-diyl, fluorene-diyl, divalent condensed polycyclic aromatic, divalent monocyclic hetero-ring, divalent condensed polycyclic hetero ring, or divalent amine compound group). A polymer light-emitting device using the polymer is also described. A display apparatus comprising the polymer light-emitting device is also described. A dot-matrix display apparatus comprising the polymer light-emitting device is also described. A liquid crystal display apparatus comprising the polymer light-emitting device is also described.

IT 525602-22-6P 525602-25-9P

RL: DEV (Device component use); IMF (Industrial manufacture); PRP (Properties); PREP (Preparation); USES (Uses)

(copolymer compound and polymer light-emitting device using the same)

RN 525602-22-6 CAPLUS

CN 1,4-Benzenediamine, N,N-bis(4-bromophenyl)-N',N'-bis(4-butylphenyl)-, polymer with 2,7-dibromo-9,9-dioctyl-9H-fluorene (9CI) (CA INDEX NAME)

CM 1

CRN 525602-21-5 CMF C38 H38 Br2 N2

$$\begin{array}{c} Br \\ Bu-n \\ \end{array}$$

CRN 198964-46-4 CMF C29 H40 Br2

RN 525602-25-9 CAPLUS

CN 1,4-Benzenediamine, N,N-bis(4-bromophenyl)-N',N'-bis(4-methylphenyl)-, polymer with 2,7-dibromo-9,9-dioctyl-9H-fluorene (9CI) (CA INDEX NAME)

CM 1

CRN 525602-24-8 CMF C32 H26 Br2 N2

CM 2

CRN 198964-46-4 CMF C29 H40 Br2

IT 525602-17-9P 525602-20-4P 525602-23-7P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(copolymer compound and polymer light-emitting device using the same) $\label{eq:copolymer}$

RN 525602-17-9 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-diphenyl- (CA INDEX NAME)

RN 525602-20-4 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4'-bromo[1,1'-biphenyl]-4-yl)-N1,N4-bis[4-(1,1-dimethylethyl)phenyl]- (CA INDEX NAME)

RN 525602-23-7 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4'-bromo[1,1'-biphenyl]-4-yl)-N1,N4-bis(4-methylphenyl)- (CA INDEX NAME)

OS.CITING REF COUNT: 19 THERE ARE 19 CAPLUS RECORDS THAT CITE THIS

RECORD (33 CITINGS)

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> s 112 and copolymer and (heterocycl? monomer?)

760102 COPOLYMER

222344 COPOLYMERS

815392 COPOLYMER

(COPOLYMER OR COPOLYMERS)

194596 HETEROCYCL?

430059 MONOMER?

313 HETEROCYCL? MONOMER?

(HETEROCYCL?(W)MONOMER?)

L17 0 L12 AND COPOLYMER AND (HETEROCYCL? MONOMER?)

430059 MONOMER?

313 HETEROCYCL? MONOMER?

(HETEROCYCL?(W)MONOMER?)

L18 0 L12 AND (HETEROCYCL? MONOMER?)

=> s 112 and (aromatic monomer?)

270469 AROMATIC

10451 AROMATICS

275303 AROMATIC

(AROMATIC OR AROMATICS)

402399 AROM

19287 AROMS

412618 AROM

(AROM OR AROMS)

546778 AROMATIC

(AROMATIC OR AROM)

430059 MONOMER?

2144 AROMATIC MONOMER?

(AROMATIC (W) MONOMER?)

L19 2 L12 AND (AROMATIC MONOMER?)

=> d ibib abs hitstr 1-2

L19 ANSWER 1 OF 2 CAPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 2005:122651 CAPLUS Full-text

DOCUMENT NUMBER: 142:228438

TITLE: Aromatic monomer-metal complexes

and electroluminescent conjugated

polymers formed from them and electronic

devices using the polymers

INVENTOR(S): Yu, Wanglin; O'Brien, James J.

PATENT ASSIGNEE(S): Sumitomo Chemical Company, Limited, Japan

SOURCE: U.S. Pat. Appl. Publ., 8 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.					KIN	D	DATE		-	APPL	ICAT		DATE				
US 20050031900 US 7705528					A1 20050210 B2 20100427				 US 2	004-	20040716						
				A1 20050224			WO 2004-US23123							20040716			
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	AZ,	BA,	BB,	ВG,	BR,	BW,	BY,	BZ,	CA,	CH,
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KΖ,	LC,
		LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NΑ,	NΙ,
		NO,	NΖ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,
		ΤJ,	TM,	TN,	TR,	ΤT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW
	RW:	BW,	GH,	GM,	KE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	ΑM,
		ΑZ,	BY,	KG,	KΖ,	MD,	RU,	ΤJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,
		EE,	ES,	FI,	FR,	GB,	GR,	HU,	IE,	ΙT,	LU,	MC,	NL,	PL,	PT,	RO,	SE,
		SI,	SK,	TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML ,	MR,	ΝE,
		SN,	TD,	ΤG													
GB	2421	242			А		2006	0621	1	GB 2	006-	2029			2	0040	716
GB	2421	242			В		2008	0102									
CN	1829	725			А		2006	0906	1	CN 2	004-	8002	1671		2	0040	716
DE	1120	0400	1446		Т5		2006	1102		DE 2	004-	1120	0400	1446	2	0040	716
JΡ	2007	5012	30		Τ		2007	0125	1	JP 2	006-	5225	81		2	0040	716

US 20100160631 A1 20100624 US 2010-718238 20100305
PRIORITY APPLN. INFO.: US 2003-492434P P 20030804
US 2004-893182 A3 20040716
WO 2004-US23123 W 20040716

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT OTHER SOURCE(S): MARPAT 142:228438

AB Halogenated ***comatic monomer*-metal complexes are described which comprise a metal selected from Ir, Rh, and Os bound to a ligand and to 2 linked aromatic moieties, ≥1 of which is heteroarom., which are bound in turn to substituents that include ≥1 halogenated **aromatic monomer* fragment and a linking group that disrupts conjugation between the **aromatic monomer* fragment and the metal complex fragment. **Electroluminescent polymers having conjugated backbones that include structural units of the **aromatic monomer* metal complexes and of ≥1 aromatic comonomer are also described. Disruption of conjugation is done to preserve the phosphorescent emission properties of the metal complex in the polymers formed from the **aromatic monomer* -metal complexes. Electronic devices incorporating the polymers are also described.

IT 842121-95-3DP, polymers with metal complexes and aromatic compds.

RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

(aromatic monomer-metal complexes with

conjugation-disrupting linking groups and electroluminescent polymers incorporating them and electronic devices using the polymers)

RN 842121-95-3 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(4-bromophenyl)-N1,N4-bis(9,9-dibutyl-9H-fluoren-3-yl)- (CA INDEX NAME)

OS.CITING REF COUNT: 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (4 CITINGS)

L19 ANSWER 2 OF 2 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2003:450802 CAPLUS Full-text

DOCUMENT NUMBER: 139:36984

TITLE: Fluorescent polymer, their preparation and

polymer light-emitting device

INVENTOR(S): Kobayashi, Satoshi; Noquchi, Takanobu; Tsubata,

Yoshiaki; Kitano, Makoto; Doi, Shuji; Ueoka, Takahiro;

Nakazono, Akiko

PATENT ASSIGNEE(S): Sumitomo Chemical Company, Limited, Japan

SOURCE: Eur. Pat. Appl., 58 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA'	TENT	NO.			KIN)	DATE			API	PLI	CAT	ION 1	NO.			DAT	ſΕ	
EP	1318	163			A1	_	2003	0611		EP	20	002-	 2583:	- - 95			200)212	205
EP	1318	163			В1		2010	0127											
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GF	З,	ΙT,	LI,	LU,	NL,	SE	Ξ, Ν	4C,	PT,
		ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AI	J,	TR,	BG,	CZ,	EE,	Sk	ζ.		
SG	1242	49			A1		2006	0830		SG	20	002-	7169				200	212	127
JP	2003	2317	41		Α		2003	0819		JΡ	20	02-	3475	73			200	212	129
JP	4192	578			В2		2008 2006	1210											
TW	2689	41			В		2006	1221		TW	20	002-	1347	21			200	21:	129
US	2003	0168	656		A1		2003	0911		US	20	02-	3091	01			200	212	204
							2009												
	R:	DE,	FR,	GB,	NL														
EP	2067	808			A1		2009	0610		ΕP	20	009-	4355				200	212	205
							CZ,												
		LI,	LU,	MC,	NL,	PT,	SE,	SI,	SK,	TF	R,	AL,	LT,	LV,	MK,	RC)		
US	2005	0042	195		A1		2005	0224		US	20	004-	9542	23			200)41(001
US	7662	478			В2		2010	0216											
US	2008	0103	278		A1		2008 2008	0501		US	20	07-	9557	88			200	712	213
JP	2008	1798	21		Α		2008	0807		JΡ	20	-80	1765	3			200	080	129
JP	2009	0018	04		Α		2009	0108		JΡ	20	008-	1743	40			200	080	703
KR	2010	0652	49		Α		2010	0616		KR	20	10-	3672	1			201	1004	121
PRIORIT	Y APP	LN.	INFO	.:						JΡ	20	01-	3739	24		Α	200	112	207
										JΡ	20	02-	3475	73		АЗ	200	21:	129
										KR	20	002-	7654	7		АЗ	200	212	204
										US	20	02-	3091	01		В1	200	212	204
										ΕP	20	002-	2583	95		АЗ	200	212	205
										US	20	004-	9542	23		A1	200)410	001
A C C T C NIMI	ם ידואיב	TOTO	DV E	OD II	C DA'	רואיםיו	ת דדת י	TT 7 D1	ים:	гът т	CT.	וכ ח	TCDT:	7 V E	$\Delta DM\Delta$	т			

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT GI

AB A polymer of Mn 103-108 comprises a repeating unit I, where A1 = divalent group in which the bond distance ratio (bond distance of $C(\alpha)$ -A1 / bond distance of $C(\alpha)$ -C(β)) is \geq 1.10; R1-6 = H, alkyl, alkyloxy, aryloxy, arylalkyloxy; R2 and R3 or R4 and R5 may be connected to form a ring. The polymer is useful as a light-emitting material, a charge transporting material, etc.

IT 540536-18-3P 540536-20-7P 540536-22-9P 540536-23-0P 540536-24-1P

RL: IMF (Industrial manufacture); PREP (Preparation)
 (preparation and fluorescence)

RN 540536-18-3 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-butylphenyl)-, polymer with 3,7-dibromo-2,8-bis(octyloxy)-5-phenyl-5H-benzo[b]phosphindole (9CI) (CA INDEX NAME)

CM 1

CRN 540536-07-0 CMF C34 H43 Br2 O2 P

CM 2

CRN 372200-89-0 CMF C38 H38 Br2 N2

RN 540536-20-7 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-butylphenyl)-, polymer with 3,8-dibromo-2,9-bis(octyloxy)dibenzo[c,e][1,2]dithiin (9CI) (CA INDEX NAME)

CM 1

CRN 540536-09-2

CMF C28 H38 Br2 O2 S2

CM 2

CRN 372200-89-0 CMF C38 H38 Br2 N2

RN 540536-22-9 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-butylphenyl)-, polymer with 2,7-dibromo-9,10-dihydro-9,9,10,10-tetramethyl-3,6-bis(octyloxy)-9,10-disilaphenanthrene (9CI) (CA INDEX NAME)

CM 1

CRN 540536-10-5

CMF C32 H50 Br2 O2 Si2

CM 2

CRN 372200-89-0 CMF C38 H38 Br2 N2

$$n-Bu$$
 Br
 $Bu-n$

RN 540536-23-0 CAPLUS

CN

1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-butylphenyl)-,

polymer with 2,7-dibromo-3,6-bis[(3,7-dimethyloctyl)oxy]-9,9-diphenyl-9H-9-silafluorene (9CI) (CA INDEX NAME)

CM 1

CRN 540536-14-9

CMF C44 H56 Br2 O2 Si

PAGE 1-A

Ph Ph

Br

Br

O-CH2-CH2

O-CH2-CH2

PAGE 1-B

$$\begin{array}{c} \text{Me} \\ ---\text{CH-} (\text{CH}_2)_3 --- \text{CHMe}_2 \end{array}$$

CM 2

CRN 372200-89-0 CMF C38 H38 Br2 N2

RN 540536-24-1 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis(4-bromophenyl)-N,N'-bis(4-butylphenyl)-, polymer with 2,7-dichloro-3,6-bis[(3,7-dimethyloctyl)oxy]-9,9-diphenyl-9H-9-silafluorene (9CI) (CA INDEX NAME)

CM 1

CRN 540536-16-1

CMF C44 H56 C12 O2 Si

PAGE 1-B

CM 2

CRN 372200-89-0 CMF C38 H38 Br2 N2

OS.CITING REF COUNT: 11 THERE ARE 11 CAPLUS RECORDS THAT CITE THIS

RECORD (15 CITINGS)

REFERENCE COUNT: 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> Uploading C:\Program Files\STNEXP\Queries\10582459#1.str

G₂-Hy----G₂ 42-39---40

```
chain nodes :
 31 32 33 34 39 40 42
 ring nodes :
 24 25 26 27 28 29 30
 chain bonds :
 2-34 5-31 9-31 12-32 15-32 18-33 22-31 28-32 39-40 39-42
 ring bonds :
 1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 14-19 \quad 14-19 \quad 13-19 \quad 14-19 
 15
 15 - 16 \quad 16 - 17 \quad 17 - 18 \quad 19 - 20 \quad 19 - 24 \quad 20 - 21 \quad 21 - 22 \quad 22 - 23 \quad 23 - 24 \quad 25 - 26 \quad 25 - 30 \quad 26 - 27
 27-28 28-29
 29 - 30
 exact/norm bonds :
 2-34 5-31 9-31 12-32 15-32 18-33 22-31 28-32 39-40 39-42
 normalized bonds :
 1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 
 15
 15 - 16 \quad 16 - 17 \quad 17 - 18 \quad 19 - 20 \quad 19 - 24 \quad 20 - 21 \quad 21 - 22 \quad 22 - 23 \quad 23 - 24 \quad 25 - 26 \quad 25 - 30 \quad 26 - 27 \quad 20 -
 27-28 28-29
 29-30
isolated ring systems :
 containing 1 : 7 : 13 : 19 : 25 :
 G1:Ak,H
 G2:N,P
 G3:B,X
 Match level :
 1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom
 11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 17:Atom 18:Atom 19:Atom
 20:Atom 21:Atom
 22:Atom 23:Atom 24:Atom 25:Atom 26:Atom 27:Atom 28:Atom 29:Atom 30:Atom
 31:CLASS 32:CLASS
 33:CLASS 34:CLASS 39:Atom 40:CLASS 42:CLASS
 Generic attributes :
 39:
 Saturation
                                                                                                                                                                            : Unsaturated
 L1
                                       STRUCTURE UPLOADED
 => d 11
 L1 HAS NO ANSWERS
 L1
                                                                                                                               STR
```

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT * Structure attributes must be viewed using STN Express query preparation.

=> s 11 SAMPLE SEARCH INITIATED 18:40:43 FILE 'REGISTRY' SAMPLE SCREEN SEARCH COMPLETED - 11282 TO ITERATE

100.0% PROCESSED 11282 ITERATIONS 0 ANSWERS

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**

BATCH **COMPLETE**

PROJECTED ITERATIONS: 219273 TO 232007 PROJECTED ANSWERS: 0 TO 0

L2 0 SEA SSS SAM L1

=> s 11 full

FULL SEARCH INITIATED 18:40:50 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 227628 TO ITERATE

100.0% PROCESSED 227628 ITERATIONS 15 ANSWERS

SEARCH TIME: 00.00.01

L3 15 SEA SSS FUL L1

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 13

L4 11 L3

=> d ibib abs hitstr 6-11

L4 ANSWER 6 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2003:338216 CAPLUS Full-text

DOCUMENT NUMBER: 139:180435

TITLE: A novel class of organosoluble and strictly

alternating poly(amine-amide-imide)s containing

triphenylamine units in the main chain

AUTHOR(S): Liou, Guey-Sheng; Hsiao, Sheng-Huei

CORPORATE SOURCE: Department of Applied Chemistry, National Chi Nan

University, Nantou Hsien, 545, Taiwan

SOURCE: Polymer Journal (Tokyo, Japan) (2003), 35(4), 402-406

CODEN: POLJB8; ISSN: 0032-3896

PUBLISHER: Society of Polymer Science, Japan

DOCUMENT TYPE: Journal LANGUAGE: English

AB A series of triphenylamine-containing aromatic polyamine-polyamide-polyimides are synthesized by the direct phosphorylation polycondensation of N,N'-bis(4-aminophenyl)-N,N'-diphenyl-1,4-phenylenediamine and various imide ring-containing dicarboxylic acids. The polymers are amorphous and exhibit good solubility in polar aprotic solvents, thin-film forming ability, thermal

stability, and mech. properties.

IT 577746-63-5P

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (soluble and strictly alternating polyamine-polyamide-polyimides containing triphenylamine units in main chain)

RN 577746-63-5 CAPLUS

CN Poly[(1,3-dihydro-1,3-dioxo-2H-isoindole-5,2-diyl)(2,5-dichloro-1,4-phenylene)(1,3-dihydro-1,3-dioxo-2H-isoindole-2,5-diyl)carbonylimino-1,4-phenylene(phenylimino)-1,4-phenylene(phenylimino)-1,4-phenyleneiminocarbonyl](9CI) (CA INDEX NAME)

PAGE 1-B

OS.CITING REF COUNT: 4 THERE ARE 4 CAPLUS RECORDS THAT CITE THIS RECORD

(4 CITINGS)

REFERENCE COUNT: 27 THERE ARE 27 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 7 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1995:494414 CAPLUS Full-text

DOCUMENT NUMBER: 122:252219

ORIGINAL REFERENCE NO.: 122:45797a,45800a

TITLE: IR-absorbing compounds and optical recording medium

using same

INVENTOR(S): Mihara, Cheko; Santo, Takeshi; Sugata, Hiroyuki

PATENT ASSIGNEE(S): Canon Kk, Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 36 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 06220420	A	19940809	JP 1993-24969	19930121
JP 3199139	В2	20010813		

AB The title compds. are I or II [A = (p-phenylene)n, 1,4-naphthylene, 1,5-naphthylene, m-phenylene; B = (p-cyclohexadienylidene)n, 1,4-naphthalenediylidene, 1,5-naphthalenediylidene; X- = metal complex anion; RF = F-containing monovalent organic residual group; R1-7 = RF, H, monovalent organic residual group]. The title medium comprises an organic dye thin film containing the above compds. The medium showed light-resistant characteristics.

IT 162315-56-2

RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses)

(IR-absorbing compds. and optical recording medium using same)

RN 162315-56-2 CAPLUS

CN Cuprate(1-), bis[3,4,6-trichloro-1,2-benzenedithiolato(2-)-S,S']-, salt with N,N,N',N'-tetrakis[4-[bis[(pentafluorophenyl)methyl]amino]phenyl]-1,4-benzenediamine (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 159252-86-5

CMF C86 H36 F40 N6

CCI RIS

PAGE 2-A

CM 2

CRN 143227-43-4

CMF C12 H2 C16 Cu S4

CCI CCS

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD (1 CITINGS)

L4 ANSWER 8 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1994:712146 CAPLUS Full-text

DOCUMENT NUMBER: 121:312146

ORIGINAL REFERENCE NO.: 121:56937a,56940a

TITLE: IR-absorbing compound and optical recording medium

using same

INVENTOR(S): Mihara, Cheko; Tamura, Miki; Santo, Takeshi; Sugata,

Hiroyuki

PATENT ASSIGNEE(S): Canon Kk, Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 109 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 06024146	A	19940201	JP 1993-110576	19930512
PRIORITY APPLN. INFO.:			JP 1992-145046	19920512
GI				

The title compound has a formula I or II (R0-7=H, monovalent organic residue while at least 1 of them contains F; or at least 1 group of R0 and R1, R2 and R3, R4 and R5 and R6 and R7 being atoms required to form a F-containing 5-7-membered ring with N while others being H, monovalent organic residue; A, B = specified aromatic group; X = anion). The recording medium contains the above compound in its recording layer. The compound shows good solubility and heat resistance to give recording medium with superior light and heat-resistance. IT <math>1.59252-87-6

RL: USES (Uses)

(IR-absorbent, optical recording medium using)

RN 159252-87-6 CAPLUS

CN Arsenate(1-), hexafluoro-, salt with

N,N,N',N'-tetrakis[4-[bis[(pentafluorophenyl)methyl]amino]phenyl]-1,4-benzenediamine (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 159252-86-5

CMF C86 H36 F40 N6

CCI RIS

CM 2

CRN 16973-45-8

CMF As F6

CCI CCS

PAGE 2-A

OS.CITING REF COUNT: 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (2 CITINGS)

L4 ANSWER 9 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1987:205158 CAPLUS Full-text

DOCUMENT NUMBER: 106:205158

ORIGINAL REFERENCE NO.: 106:33113a,33116a

TITLE: Electrophotographic photoreceptor containing

charge-generating tetrakisazo compounds

INVENTOR(S): Umehara, Masashige; Matsumoto, Masakazu; Takiguchi,

Takao; Yamashita, Masataka; Ishikawa, Shozo

PATENT ASSIGNEE(S): Canon K. K., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 41 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 6

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
JP 61240246	A	19861025	JP 1985-80248		19850417
JP 04002948	В	19920121			
US 4666810	A	19870519	US 1986-852243		19860415
PRIORITY APPLN. INFO.:			JP 1985-80248	Α	19850417
			JP 1985-157699	Α	19850717
			JP 1985-157700	Α	19850717
			JP 1985-159401	Α	19850718
			JP 1985-159402	А	19850718
			JP 1985-159403	А	19850718

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB The tetrakisazo compound has the formula

(AN:NZ2)(AN:NZ3)NZ1N(Z4N:NA)(Z5N:NA)(I; A = coupler residue with a phenolic OH group; Z1-Z5 = arylene). An electrophotog. composite photoconductor may be prepared by dispersing a tetrakisazo compound of the formula I (A = naphthol AS coupler residue; Z1-Z5 = 1, 4-phenylene) in a poly(vinyl butyral) binder to form a charge-generating layer and dispersing a hydrazone compound in a PMMA binder to give a charge-transport layer. The photoreceptor shows improved sensitivity and durability.

IT 108305-12-0 108305-17-5

RL: USES (Uses)

(electrophotog. photoreceptor containing charge-generating agent from, with improved sensitivity)

RN 108305-12-0 CAPLUS

CN 2-Naphthalenecarboxamide, 4,4',4'',4'''-[1,4-phenylenebis[nitrilobis(4,1-phenyleneazo)]]tetrakis[N-(2,5-dichlorophenyl)-3-hydroxy- (9CI) (CA INDEX NAME)

RN 108305-17-5 CAPLUS

CN 2-Naphthalenecarboxamide, 4,4',4'',4'''-[1,4-phenylenebis[nitrilobis(4,1-phenyleneazo)]]tetrakis[N-(2,3-dichlorophenyl)-3-hydroxy- (9CI) (CA INDEX NAME)

PAGE 2-B

OS.CITING REF COUNT: 5 THERE ARE 5 CAPLUS RECORDS THAT CITE THIS RECORD (5 CITINGS)

L4 ANSWER 10 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1977:73159 CAPLUS Full-text DOCUMENT NUMBER: 86:73159

ORIGINAL REFERENCE NO.: 86:11613a,11616a

TITLE: Preparation of poly (N-phenyliminoperfluorophenylene).

Solvent effects on reactions between anilides and

hexafluorobenzene

AUTHOR(S): Koppang, Rolf

CORPORATE SOURCE: Dep. Dent. Technol., Univ. Oslo, Oslo, Norway

SOURCE: Journal of Fluorine Chemistry (1976), 8(5), 389-400

CODEN: JFLCAR; ISSN: 0022-1139

DOCUMENT TYPE: Journal LANGUAGE: English

AB The reactions between anilides and hexafluorobenzene [392-56-3] were accelerated in the presence of dipolar aprotic solvents, and the yield of poly(N-phenyliminoperfluorophenylene) [61552-67-8], prepared from 2,3,4,5,6-pentafluoro-N-lithiophenylanilide [61553-15-9] and hexafluorobenzene, reflects this solvent effect. The structure and some thermal properties of the insol. polymer are discussed.

IT 4630-23-3P 61555-69-9P

 ${\tt RL:}$ SPN (Synthetic preparation); ${\tt PREP}$ (Preparation)

(preparation of)

RN 4630-23-3 CAPLUS

CN 1,4-Benzenediamine, 2,3,5,6-tetrafluoro-N1-(2,3,4,5,6-pentafluorophenyl)-N1,N4-diphenyl-N4-[2,3,5,6-tetrafluoro-4-[(2,3,4,5,6-pentafluorophenyl)phenylamino]phenyl]- (CA INDEX NAME)

RN 61555-69-9 CAPLUS

CN 1,4-Benzenediamine, 2,3,5,6-tetrafluoro-N1,N4-diphenyl-N1,N4-bis[2,3,5,6-tetrafluoro-4-[(2,3,4,5,6-pentafluorophenyl)phenylamino]phenyl]- (CA INDEX NAME)

OS.CITING REF COUNT: 3 THERE ARE 3 CAPLUS RECORDS THAT CITE THIS RECORD (3 CITINGS)

L4 ANSWER 11 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 1965:29481 CAPLUS Full-text

DOCUMENT NUMBER: 62:29481
ORIGINAL REFERENCE NO.: 62:5211f-h

TITLE: Synthetical applications of activated metal catalysts.

XX. Action of degassed Raney Ni on

N-alkyl-o-alkylanilines

AUTHOR(S): Jackson, G. D. F.; Sasse, W. H. F.

CORPORATE SOURCE: Univ. Adelaide

SOURCE: Australian Journal of Chemistry (1964), 17(3), 337-46

CODEN: AJCHAS; ISSN: 0004-9425

DOCUMENT TYPE: Journal LANGUAGE: English

AΒ cf. CA 60, 6252b; Yeh and Kalechito, CA 55, 3588a. Several N-alkyl-oalkylanilines were dehydrogenated with degassed Raney Ni at temps. not exceeding 230°. o-Propylaniline (I), N-methyl-o-ethylaniline (II), N-ethyl-otoluidine (III), N-allylaniline (IV), o-ethylaniline (V), and indoline (VI) yielded complex mixts. which gave pos. Ehrlich tests. I yielded oethylaniline, o-toluidine, and aniline, which suggested that a stepwise degradation of the o-alkyl groups takes place. IV yielded aniline and some Npropylaniline, which indicated that N-alkyl groups are removed in one step. All the anilines gave indoles, but yields varied widely. II gave the best yield (13%), whereas III and IV yielded amts. detected only by paper chromatography. II was the only aniline to give both indole and 3methylindole. II also was found to give all compds. (including carbazole) which so far have been identified among the products of the action of degassed Raney Ni on quinoline. It is concluded that the mechanism of the conversion of quinoline to indole and 3-methylindole proceeds by way of II.

IT 4630-23-39, Triphenylamine,

2,2',3,3',5,5',6,6'-octafluoro-4,4'-bis(2,3,4,5,6-pentafluoro-N-phenylanilino)-

RL: PREP (Preparation) (preparation of)

RN 4630-23-3 CAPLUS

CN 1,4-Benzenediamine, 2,3,5,6-tetrafluoro-N1-(2,3,4,5,6-pentafluorophenyl)-N1,N4-diphenyl-N4-[2,3,5,6-tetrafluoro-4-[(2,3,4,5,6-pentafluorophenyl)phenylamino]phenyl]- (CA INDEX NAME)

=> d ibib abs hitstr 1-5

L4 ANSWER 1 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2010:1413816 CAPLUS Full-text

DOCUMENT NUMBER: 154:11383

TITLE: Red, green, and blue electrochromism in ambipolar

poly(amine-amide-imide)s based on electroactive

tetraphenyl-p-phenylenediamine units

AUTHOR(S): Huang, Li-Ting; Yen, Hung-Ju; Chang, Cha-Wen; Liou,

Guey-Sheng

CORPORATE SOURCE: Functional Polymeric Materials Laboratory, Institute

of Polymer Science and Engineering, National Taiwan

University, Taipei, 10617, Taiwan

SOURCE: Journal of Polymer Science, Part A: Polymer Chemistry

(2010), 48(21), 4747-4757 CODEN: JPACEC; ISSN: 0887-624X

PUBLISHER: John Wiley & Sons, Inc.

DOCUMENT TYPE: Journal LANGUAGE: English

As series of novel poly(amine-amide-imide)s (PAAIs) based on tetraphenyl-p-phenylenediamine (TPPA) units showing anodically/cathodically electrochromic characteristic with three primary colors [red, green, and blue (RGB)] were prepared from the direct polycondensation of the TPPA-based diamine monomer with various aromatic bis(trimellitimide)s. These multi-colored electrochromic polymers were readily soluble in polar organic solvents and showed excellent thermal stability associated with high glass-transition temps. (288-314°) and high-char yield (higher than 60% at 800° in nitrogen). The PAAI films revealed electrochem. oxidation and reduction accompanied with high contrast of optical transmittance color changes from the pale yellow neutral state to the green/blue oxidized state and red reduced state, resp. The electrochromic films had high-coloration efficiency (CE = 178 and 242 Cm2/C at the first and the second stages, resp.), low-switching time, and good redox stability, which still retained a high electroactivity after long-term redox cycles.

IT 1256599-75-3P

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (red, green, and blue electrochromism in ambipolar poly(amine-amide-imide)s based on electroactive tetraphenyl-p-phenylenediamine units)

RN 1256599-75-3 CAPLUS

CN INDEX NAME NOT YET ASSIGNED

PAGE 1-A

REFERENCE COUNT: 61 THERE ARE 61 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 2 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2006:598624 CAPLUS Full-text

DOCUMENT NUMBER: 145:211587

TITLE: Electrochromic properties of novel strictly

alternating poly(amine-amide-imide)s with

electroactive triphenylamine moieties

AUTHOR(S): Liou, Guey-Sheng; Hsiao, Sheng-Huei; Fang, Yi-Kai CORPORATE SOURCE: Department of Applied Chemistry, National Chi Nan

University, Nantou Hsien, 545, Taiwan

SOURCE: European Polymer Journal (2006), 42(7), 1533-1540

CODEN: EUPJAG; ISSN: 0014-3057

PUBLISHER: Elsevier Ltd.

DOCUMENT TYPE: Journal LANGUAGE: English

AΒ A series of novel triphenylamine-containing aromatic poly(amine-amide-imide)s (PAAIs) were prepared by the phosphorylation polyamidation reactions from the diamine, N,N'-bis(4-aminophenyl)-N,N'-diphenyl-1,4-phenylenediamine, and various imide ring-preformed dicarboxylic acids. All the PAAIs were amorphous, had good solubility in many polar aprotic solvents, and exhibited excellent thin film forming capability with good mech. properties. They displayed relatively high glass-transition temps. (220-306 °C) and good thermal stability, with 10% weight-loss temps. in excess of 522 °C in air or nitrogen and char yields at 800 °C in nitrogen higher than 66%. The solns. of polymers in NMP exhibited strong UV-vis absorption bands with a maximum around 315 nm. The hole-transporting and electrochromic properties were examined by electrochem. and spectroelectrochem. methods. Cyclic voltammograms of the PAAIs prepared by casting polymer solution onto an indium-tin oxide (ITO)coated glass substrate exhibited two reversible oxidation redox couples at 0.63 and 1.01 V vs. Ag/AgCl in acetonitrile solution All the PAAIs revealed very stable electrochromic characteristics, changing color from original pale brownish to green, and then to blue at 0.67 and 1.08 V, resp. ΤТ 577746-63-5

RL: PRP (Properties)

(electrochromic properties of poly(amine-amide-imide)s with electroactive triphenylamine moieties)

RN 577746-63-5 CAPLUS

CN Poly[(1,3-dihydro-1,3-dioxo-2H-isoindole-5,2-diyl)(2,5-dichloro-1,4-phenylene)(1,3-dihydro-1,3-dioxo-2H-isoindole-2,5-diyl)carbonylimino-1,4-

phenylene(phenylimino)-1,4-phenylene(phenylimino)-1,4phenyleneiminocarbonyl] (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

OS.CITING REF COUNT: 5 THERE ARE 5 CAPLUS RECORDS THAT CITE THIS RECORD

(5 CITINGS)

REFERENCE COUNT: 40 THERE ARE 40 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 3 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2005:35085 CAPLUS Full-text

DOCUMENT NUMBER: 142:102910

TITLE: Organic electroluminescent device, illuminating

device, and display

INVENTOR(S): Oshiyama, Tomohiro; Kita, Hiroshi; Katoh, Eisaku

PATENT ASSIGNEE(S): Konica Minolta Holding, Inc., Japan

SOURCE: PCT Int. Appl., 80 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

```
WO 2005004549
                                20050113
                                           WO 2004-JP9391
                                                                    20040625
                          Α1
         W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
             CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
             GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
             LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI,
             NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY,
             TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
         RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM,
             AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK,
             EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE,
             SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE,
             SN, TD, TG
     EP 1651013
                                20060426
                                            EP 2004-746860
                                                                    20040625
                          Α1
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK, HR
     CN 1817066
                                20060809
                                            CN 2004-80019019
                          Α
     CN 100556224
                          С
                                20091028
     US 20070099025
                                20070503
                                            US 2005-562652
                          Α1
                                                                    20051227
     US 7371469
                          В2
                                20080513
     US 20080233431
                          Α1
                                20080925
                                            US 2008-82251
                                                                    20080410
PRIORITY APPLN. INFO.:
                                            JP 2003-193519
                                                                 A 20030708
                                            WO 2004-JP9391
                                                                 W 20040625
                                            US 2005-562652
                                                                 A3 20051227
```

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB An organic electroluminescent device comprising at least a light-emitting layer containing a phosphorescent compound between an anode and a cathode is characterized by comprising an adjoining layer so arranged between the light-emitting layer and the cathode as to be adjacent to the light-emitting layer and containing a compound with an electron-withdrawing group having an HOMO at -5.7 eV to -7.0 eV and an LUMO at -1.3 eV to -2.3 eV.

IT 817638-42-9

RL: DEV (Device component use); USES (Uses)

(organic electroluminescent device, illumination apparatus and display)

RN 817638-42-9 CAPLUS

CN 1,4-Benzenediamine, N1,N1-bis[4-[bis(2,3,4,5,6-pentafluorophenyl)amino]-2,5-bis(trifluoromethyl)phenyl]-N4,N4-bis(2,3,4,5,6-pentafluorophenyl)-2,5-bis(trifluoromethyl)- (CA INDEX NAME)

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 4 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2004:609956 CAPLUS $\underline{\text{Full-text}}$

DOCUMENT NUMBER: 141:164924

TITLE: Molecular chemical compounds for emitting

photoluminescent radiation, and photoluminescence

quenching device employing the same

INVENTOR(S):
Redecker, Michael

PATENT ASSIGNEE(S): Samsung SDI Co., Ltd., S. Korea SOURCE: U.S. Pat. Appl. Publ., 15 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT	NO.	KIND	DATE	APPLICATION NO.	DATE			
US 200	40147701	A1	20040729	US 2003-727642	20031205			
US 740	2343	B2	20080722					
EP 144	3093	A1	20040804	EP 2003-90022	20030129			
R:	AT, BE, CH,	DE, DK	ES, FR,	GB, GR, IT, LI, LU,	NL,	SE, MC, PT,		
	IE, SI, LT,	LV, FI	, RO, MK,	CY, AL, TR, BG, CZ,	EE,	HU, SK		
KR 200	4069942	A	20040806	KR 2003-59486	20030827			
CN 151	9235	A	20040811	CN 2003-10114718		20031231		
JP 200	4339190	A	20041202	JP 2004-7343		20040114		
PRIORITY AP	PLN. INFO.:			EP 2003-90022	Ž	A 20030129		
				KR 2003-59486	Ī	A 20030827		

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB A chemical compound has an electron donor group, an electron acceptor group, and a conjugated bridging element bridging between the electron donor group and the electron acceptor group. The chemical compound has a readily displaceable electron, is capable of emitting photoluminescent radiation. A dipole character is present therein only in the excited state of the compound The compds. are suitable for use in optical devices and, particularly, can be used for photoluminescence quenching devices.

IT 728915-87-5 728915-91-1

RL: TEM (Technical or engineered material use); USES (Uses) (mol. chemical compds. for emitting photoluminescent radiation for photoluminescence quenching device)

RN 728915-87-5 CAPLUS

CN 1,4-Benzenediamine, N1,N4-diphenyl-N1,N4-bis[4-[4-(2,4,5-trifluorophenyl)-1,3-butadien-1-yl]phenyl]- (CA INDEX NAME)

PAGE 1-A

RN 728915-91-1 CAPLUS

CN 1,4-Benzenediamine, N,N'-bis[4-(2-methylhexyl)phenyl]-N-[4-[3-methyl-2-[2-(2,4,5-trifluorophenyl)ethenyl]-1-octenyl]phenyl]-N'-phenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 728915-90-0 CMF C61 H71 F3 N2

PAGE 1-B

_Bu−n

OS.CITING REF COUNT: 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD

(4 CITINGS)

REFERENCE COUNT: 24 THERE ARE 24 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 5 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN ACCESSION NUMBER: 2003:868360 CAPLUS Full-text

DOCUMENT NUMBER: 139:371610

TITLE: Organic electroluminescent materials and devices

having high luminescent efficiency and color purity

INVENTOR(S): Funabashi, Masakazu; Iwakuma, Toshihiro; Hosokawa,

Chishio

PATENT ASSIGNEE(S): Idemitsu Kosan Co., Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 13 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2003313547	A	20031106	JP 2002-116935	20020419
PRIORITY APPLN. INFO.:			JP 2002-116935	20020419
OTHER SOURCE(S):	MARPAT	139:371610		

The materials are Ar1(NAr4Ar6)n(NAr5Ar7)mNAr2Ar3 [n= 1-3; m = 0-2; Ar1-Ar3, Ar6, Ar7 = 1,2-, 1,3-, or 1,4-(perfluoro)phenyl (structures given); ≥1 of Ar1-Ar3, Ar6, Ar7 = perfluorophenyl; Ar4, Ar5 = 1,2-, 1,3-, or 1,4-(perfluoro)phenylene (structures given); Ar4 and/or Ar5 = perfluorophenylene]. The devices, preferably blue-emitting, contain the materials as host materials in emitter layers and are useful as light sources for elec. apparatus

IT 620607-81-0p 620607-86-5p

RL: DEV (Device component use); IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (fluorophenylamines as host materials in emitter layers in organic electroluminescent devices)

RN 620607-81-0 CAPLUS

CN 1,4-Benzenediamine, N1,N4-bis(2,2',3,3',4',5,5',6,6'-nonafluoro[1,1'-biphenyl]-4-yl)-N1,N4-bis(2,3,4,5,6-pentafluorophenyl)- (CA INDEX NAME)

RN 620607-86-5 CAPLUS

CN 1,4-Benzenediamine, N1-[4-[bis(2,3,4,5,6-pentafluorophenyl)amino]-2,3,5,6-tetrafluorophenyl]-2,3,5,6-tetrafluoro-N1,N4,N4-tris(2,3,4,5,6-pentafluorophenyl)- (CA INDEX NAME)

```
chain nodes :
31 32 33 34 39 40 42
ring nodes :
1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18 \quad 19 \quad 20 \quad 21 \quad 22 \quad 23
24 25 26 27 28 29 30
chain bonds :
2-34 5-31 9-31 12-32 15-32 18-33 22-31 28-32 39-40 39-42
ring bonds :
1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 14-19 
15
15 - 16 \quad 16 - 17 \quad 17 - 18 \quad 19 - 20 \quad 19 - 24 \quad 20 - 21 \quad 21 - 22 \quad 22 - 23 \quad 23 - 24 \quad 25 - 26 \quad 25 - 30 \quad 26 - 27 \quad 20 -
27-28 28-29
29-30
exact/norm bonds :
2 - 34 \quad 5 - 31 \quad 9 - 31 \quad 12 - 32 \quad 15 - 32 \quad 18 - 33 \quad 22 - 31 \quad 28 - 32 \quad 39 - 40 \quad 39 - 42
normalized bonds :
1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 
15
15-16 16-17 17-18 19-20 19-24 20-21 21-22 22-23 23-24 25-26 25-30 26-27
27-28 28-29
29-30
isolated ring systems :
containing 1 : 7 : 13 : 19 : 25 :
G1:Ak,H
G2:N,P
G3:B,X
```

Match level:
1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom 11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 17:Atom 18:Atom 19:Atom 20:Atom 21:Atom 23:Atom 24:Atom 25:Atom 26:Atom 27:Atom 28:Atom 29:Atom 30:Atom 31:CLASS 32:CLASS 33:CLASS 34:CLASS 39:Atom 40:CLASS 42:CLASS Generic attributes:
39:
Saturation : Unsaturated

=> d 11L1 HAS NO ANSWERS L1 STR

G3-Hy-G3

G2 N,P

G3 B, X

Structure attributes must be viewed using STN Express query preparation.

=>

Uploading C:\Program Files\STNEXP\Queries\10582459#1.str

```
chain nodes :
 31 32 33 34 39 40
                                                                                                                                                                                                                                                                                                                                                        42
 ring nodes :
 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18 \quad 19 \quad 20 \quad 21 \quad 22 \quad 23
 24 25 26 27 28 29 30
 chain bonds :
 2-34 \quad 5-31 \quad 9-31 \quad 12-32 \quad 15-32 \quad 18-33 \quad 22-31 \quad 28-32 \quad 39-40 \quad 39-42
ring bonds :
 1-2 \quad 1-6 \quad 2-3 \quad 3-4 \quad 4-5 \quad 5-6 \quad 7-8 \quad 7-12 \quad 8-9 \quad 9-10 \quad 10-11 \quad 11-12 \quad 13-14 \quad 13-18 \quad 14-19 \quad 13-19 \quad 14-19 
 15 - 16 \quad 16 - 17 \quad 17 - 18 \quad 19 - 20 \quad 19 - 24 \quad 20 - 21 \quad 21 - 22 \quad 22 - 23 \quad 23 - 24 \quad 25 - 26 \quad 25 - 30 \quad 26 - 27 \quad 20 -
 27-28 28-29
 29-30
```

```
exact/norm bonds:
2-34 5-31 9-31 12-32 15-32 18-33 22-31 28-32 39-40 39-42
normalized bonds:
1-2 1-6 2-3 3-4 4-5 5-6 7-8 7-12 8-9 9-10 10-11 11-12 13-14 13-18 14-15
15-16 16-17 17-18 19-20 19-24 20-21 21-22 22-23 23-24 25-26 25-30 26-27 27-28 28-29
29-30 isolated ring systems:
containing 1: 7: 13: 19: 25:

G1:Ak,H
G2:N,P
G3:B,X
```

Match level:
1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom 11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 17:Atom 18:Atom 19:Atom 20:Atom 21:Atom 23:Atom 24:Atom 25:Atom 26:Atom 27:Atom 28:Atom 29:Atom 30:Atom 31:CLASS 32:CLASS 33:CLASS 34:CLASS 39:Atom 40:CLASS 42:CLASS Generic attributes:
39:

Saturation : Unsaturated

L2 STRUCTURE UPLOADED

=> d 12 L2 HAS NO ANSWERS L2 STR

G3-Hy-G3

G1 Ak,H G2 N,P G3 B,X

Structure attributes must be viewed using STN Express query preparation.

=> s 12

SAMPLE SEARCH INITIATED 12:52:09 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 11338 TO ITERATE

100.0% PROCESSED 11338 ITERATIONS 0 ANSWERS

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**

BATCH **COMPLETE**

PROJECTED ITERATIONS: 220378 TO 233142 PROJECTED ANSWERS: 0 TO 0

L3 0 SEA SSS SAM L2

=> s 12 full

FULL SEARCH INITIATED 12:52:20 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 228780 TO ITERATE

100.0% PROCESSED 228780 ITERATIONS

3 ANSWERS

SEARCH TIME: 00.00.01

L4 3 SEA SSS FUL L2

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 14

L5 2 L4

=> d ibib abs hitstr 1-2

L5 ANSWER 1 OF 2 CAPLUS COPYRIGHT 2011 ACS on STN

ACCESSION NUMBER: 2010:1527402 CAPLUS Full-text

DOCUMENT NUMBER: 154:114338

TITLE: Accumulative charge separation inspired by

photosynthesis

AUTHOR(S): Karlsson, Susanne; Boixel, Julien; Pellegrin, Yann;

Blart, Errol; Becker, Hans-Christian; Odobel, Fabrice;

Hammarstroem, Leif

CORPORATE SOURCE: Department of Photochemistry and Molecular Science,

Uppsala University, Uppsala, SE-751 20, Swed.

SOURCE: Journal of the American Chemical Society (2010),

132(51), 17977-17979

CODEN: JACSAT; ISSN: 0002-7863

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal; (online computer file)

LANGUAGE: English

AB Mol. systems that follow the functional principles of photosynthesis have attracted increasing attention as a method for the direct production of solar fuels. This could give a major carbon-neutral energy contribution to our future society. An outstanding challenge in this research is to couple the light-induced charge separation (which generates a single electron-hole pair) to the multielectron processes of water oxidation and fuel generation. New design considerations are needed to allow for several cycles of photon absorption and charge separation of a single artificial photosystem. Here we demonstrate a mol. system with a regenerative photosensitizer that shows two successive events of light-induced charge separation, leading to high-yield

accumulation of redox equivalent on single components without sacrificial agents.

IT 1260429-14-8P

RL: PRP (Properties); RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(synthesis and reaction of, with potassium cyanide; accumulative charge separation inspired by photosynthesis)

RN 1260429-14-8 CAPLUS

CN INDEX NAME NOT YET ASSIGNED

PAGE 1-B

PAGE 2-A

ĺ

REFERENCE COUNT: 35 THERE ARE 35 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 2 OF 2 CAPLUS COPYRIGHT 2011 ACS on STN ACCESSION NUMBER: 2006:1354282 CAPLUS Full-text

DOCUMENT NUMBER: 146:101958

TITLE: Polymer materials with good charge injection and

transporting properties and luminescent efficiency for

light emitting devices

INVENTOR(S): Nakatani, Tomoya; Yamada, Takeshi

PATENT ASSIGNEE(S): Sumitomo Chemical Company, Limited, Japan

SOURCE: PCT Int. Appl., 151pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

E	PATENT NO.				KIND DATE			APPLICATION NO.							DATE			
V	νO	2006	1374.	36		A1		2006	1228	WO 2006-JP312406				20060621				
		W:	ΑE,	AG,	AL,	AM,	ΑT,	AU,	AZ,	BA,	BE	B, BG,	BR,	BW,	BY,	BZ,	CA,	CH,
			CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	D2	Z, EC,	EE,	EG,	ES,	FI,	GB,	GD,
			GE,	GH,	GM,	HN,	HR,	HU,	ID,	IL,	11	1, IS,	KE,	KG,	KM,	KN,	KΡ,	KR,
			KΖ,	LA,	LC,	LK,	LR,	LS,	LT,	LU,	ΓI	7, LY,	MA,	MD,	MG,	MK,	MN,	MW,
			MX,	MZ,	NA,	NG,	NΙ,	NO,	NΖ,	OM,	PC	3, PH,	PL,	PT,	RO,	RS,	RU,	SC,
			SD,	SE,	SG,	SK,	SL,	SM,	SY,	ТJ,	ΤN	4, TN,	TR,	TT,	TZ,	UA,	UG,	US,
			UΖ,	VC,	VN,	ZA,	ZM,	ZW										
		RW:	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE	E, ES,	FI,	FR,	GB,	GR,	HU,	ΙE,
			IS,	ΙΤ,	LT,	LU,	LV,	MC,	NL,	PL,	P]	r, RO,	SE,	SI,	SK,	TR,	BF,	ВJ,
			CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	MI	L, MR,	NE,	SN,	TD,	ΤG,	BW,	GH,
			GM,	KΕ,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ	Z, TZ,	UG,	ZM,	ZW,	ΑM,	ΑZ,	BY,
			KG,	KΖ,	MD,	RU,	ТJ,	TM										
	JP 2007031705				А		2007	20070208 JP 2006-170885						20060621				
(GB 2442656			А		2008	20080409 GB 2008-1069							20060621				
(GB 2442656				В													
Ι	DE 112006001679			Т5		2008	0515	DE 2006-112006001679					2	20060621				
	CN 101198633			Α		2008	0611	CN 2006-80021855					2	20071218				
F	KR 2008020635			Α		2008	0305	KR 2007-7029883						20071221				
J	US 20100084965			A1		20100408			US 2007-993660					20071221				
PRIOR	RIORITY APPLN. INFO.:								JΡ	2005-	1822	76		A 2	0050	622		
											WO	2006-	JP31	2406	,	W 2	0060	621

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT GI

Title luminescent or charge-transporting polymer compds. have a main chain AΒ containing a divalent heterocyclic group, a divalent condensed polycyclic hydrocarbon group including no five-membered ring, a group I or a divalent aromatic amine group as a repeating unit, and a functional side chain containing ≥1 functional group selected from hole injecting/transporting groups, electron injecting/transporting groups, and light-emitting groups, wherein ring A, ring B = independently (un)substituted aromatic hydrocarbon ring $(A \neq B)$ and Rw, Rx = independently H or substituent (Rw and Rx may combine together to form a ring). The functional group is directly bonded to a saturated carbon atom in the repeating unit or bonded to the repeating unit via X in an RJX group (RJ = (un)substituted alkylene group and X = directbond, O, S, C:O, C(:O)O, S:O, SiR8R9, NR10, BR11, PR12 or P(:O)R13). Thus, 30 mmol N-phenyl-1,4-phenylenediamine and 120 mmol 4-bromo-butylbenzene were reacted, and treated with N-bromosuccinimide to give N1-(4-bromophenyl)-N1,N4,N4-tris(4-butylphenyl)-1,4-benzenediamine, 4.0 mmol of which was reacted

^{*} STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

with 10 mmol 8-bromooctene in the presence of 9-borabicyclo[3.3.1]nonane and palladium complex catalyst, 2.1 equiv the resulting N1-[4-(8-bromooctyl)phenyl]-N1,N4,N4-tris(4-butylphenyl)-1,4- benzenediamine was reacted with 1 equiv 3,7-dibromo-2,8-dibenzofurandiol to give a monomer II, which was polymerized in the presence of 2,2'-bipyridyl and bis(1,5-cyclooctadiene)nickel at 60° for 3 h to give a homopolymer, showing electroluminescence at 440 nm when fabricated into an electroluminescent element.

IT 917376-15-9P

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(monomer; preparation of polymer materials with good charge injection and transporting properties and luminescent efficiency for light emitting devices)

RN 917376-15-9 CAPLUS

CN 1,4-Benzenediamine, N1,N1'-[(3,7-dibromo-2,8-dibenzofurandiyl)bis(oxy-8,1-octanediyl-4,1-phenylene)]bis[N1,N4,N4-tris(4-butylphenyl)- (CA INDEX NAME)

IT 917376-18-2P

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(preparation of polymer materials with good charge injection and transporting properties and luminescent efficiency for light emitting devices)

RN 917376-18-2 CAPLUS

CN 1,4-Benzenediamine, N1,N1'-[(3,7-dibromo-2,8-dibenzofurandiyl)bis(oxy-8,1-octanediyl-4,1-phenylene)]bis[N1,N4,N4-tris(4-butylphenyl)-, homopolymer (CA INDEX NAME)

CM 1

CRN 917376-15-9 CMF C112 H130 Br2 N4 O3

PAGE 1-B

REFERENCE COUNT:

20 THERE ARE 20 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT