作業系統 HW2 文件

資訊四甲 10827111 袁本誠

一、開發環境

作業系統: windows

程式語言: C++

開發軟體: dev C++

二、實作方法與流程

主程式流程:

- 1. 使用者輸入檔名,並將資料放入 vector
- 2. 根據方法及時間片段,進入相應的排程函式
- 3. 執行排程函式
- 4. 寫檔
- 5. 回到步驟 1

FCFS:

- 1. 依照抵達時間、 ID 排好最初的資料
- 2. 依照排程時間(count)·將資料依序取出並執行(由於第一步已經排好抵達時間·只要排程的時間大於等於抵達時間·就可以直接按照順序執行)
- 3. 計算 waiting time 和 turnaround time
- 4. 回到步驟 2. 直到全部資料處理完畢。

RR:

- 1. 依照抵達時間、 ID 排好最初的資料
- 2. 依照排成時間(count),當時間一到就把符合的時間丟進佇列(queue)
- 3. 如果佇列沒東西,代表沒有處理程序要執行,記錄甘特圖並回到步驟 2
- 4. 處理 queue 的第0個,並同時執行步驟2,如果執行時間超過時間片段,重新回 queue 排隊
 - 5. 如過 queue 的第 0 個執行完畢,計算 waiting time 和 turnaround time ,並將結果紀錄下來後,從 queue 中移除該 process
- 6. 重複步驟 2、3、4、5 , 直到處理程序全部完成

SJF:

- 1. 依照抵達時間、 ID 排好最初的資料
- 2. 排成時間(count)當作搜尋範圍,執行符合範圍內的資料中 burst 最小的 process 。
- 3. 計算 waiting time 和 turnaround time 並將結果紀錄下來後移除該筆資料

4. 重複步驟 2、3,直到處理程序全部完成

SRTF:

- 1. 依照抵達時間、 ID 排好最初的資料
- 2. 排成時間(count)當作搜尋範圍·執行符合範圍內的資料中剩餘 burst 最小的 process 一次(count+1)
- 3. 如果剩餘 burst 是 0 · 代表執行完畢 · 計算 waiting time 和 turnaround time · 並將結果紀錄下來後移除該筆資 \mathbb{A}
- 4. 重複步驟 2、3 直到處理程序全部完成

HRRN:

- 1. 依照抵達時間、 ID 排好最初的資料
- 2. 排成時間(count)當作搜尋範圍,執行符合範圍內的資料中 ratio 最大的 process 。
- 3. 計算 waiting time 和 turnaround time 並將結果紀錄下來後移除該筆資料
- 4. 依照排成時間更新符合範圍內的資料的 ratio
- 5. 重複步驟 2、3、4,直到處理程序全部完成

PPRR:

- 1. 依照抵達時間、 ID 排好最初的資料
- 2. 依照排成時間(count),當時間一到就把符合的時間丟進佇列(queue)
- 3. 判斷佇列(queue)有沒有東西,如果沒有,代表沒有處理程序要執行,記錄甘特圖、更新 count 並回到步驟 2
- 4. 選取 process 丟到另一個準備執行的 queue 中(sameP),方式分為以下兩種:

判斷是否有 process 曾經被奪取

- (1) 如果沒有 process 曾經被奪取,或者有被奪取但還未開始執行奪取的 process,從佇列中(queue)選取高優先度的 process,丟到另一個準備執 行的 queue 中(sameP)。
- (2) 如果有 process 曾經被奪取,且已執行完奪取的 process,從 preempQueue 中取出第一個佇列(即那些被奪取且相同優先度的 process) 丟到另一個準備執行的 queue 中(sameP),並確保皆比 queue 中的優先度高,以及將 queue 中相同優先度的 process 加入 sameP
- 5. 處理 sameP 的第 0 個 · 同時執行步驟 2 · 在此期間能將相同優先度的 process 加入到 sameP · 如果出現更高優先度 process · 立即中斷執行
 - ·如果執行時間超過時間片段,重新回 queue 排隊。
- 6. 如過 sameP 的第 0 個執行完畢·計算 waiting time 和 turnaround time · 並將結果紀錄下來後·從 queue 中移除該 process
- 7. 如果第 5 步有出現更高優先的 process·將 sameP 的資訊保留到 preempQueue 中

8. 重複步驟 2、3、4、5、6、7,直到處理程序全部完成

三、不同排成法比較

1. input1

	FCFS	RR	SJF	SRTF	HRRN	PPRR
Avrange_waitTime	14.3333	18.4	8.86667	8.06667	11.6	14.6667

Turnaround Time:

Turnaro ID	und Time FCFS	RR	SJF	SRTF	HRRN	PPRR
0 1 2 3 4 5 6 7 8 9 10 13 20 27 29	23 15 25 22 16 26 5 16 23 9 16 19 16 22	22 10 22 29 22 33 20 3 16 17 45 4 20 34 37	9 7 5 10 10 25 10 3 2 4 57 5 8 15 21	4 2 5 10 3 25 11 1 2 5 57 1 3 25 25	23 7 19 18 16 29 5 4 13 10 26 5 16 15	4 2 17 4 14 27 16 56 11 4 53 1 43 16

Input2

	FCFS	RR	SJF	SRTF	HRRN	PPRR
Avrange_waitTime	8.4	6.4	3	3	8.2	9.4

Turna ID	around Tim FCFS	ne RR 	SJF	SRTF	HRRN	PPRR	
1	11	24	11	24	11	11	
2	12	4	12	2	12	23	
3	13	5	15	3	15	11	
4	13	8	10	3	10	11	
5	17	15	17	7	17	15	

Input3

	FCFS	RR	SJF	SRTF	HRRN	PPRR
Avrange_waitTime	6.66667	11.6667	6.66667	6.66667	6.66667	12.5

Turnaro ID	ound Time FCFS	e RR 	SJF	SRTF	HRRN	PPRR
1	20	20	20	20	20	20
2	25	45	25	25	25	55
3	45	55	45	45	45	60
4	30	30	30	30	30	15
5	10	10	10	10	10	20
6	15	15	15	15	15	10

Input4

	FCFS	RR	SJF	SRTF	HRRN	PPRR
Avrange_waitTime	3.75	5.5	3.25	3.25	3.75	4.5

Turnar ID	ound Tim	ie RR	SJF	SRTF	HRRN	PPRR	
1	6	11	6	9	6	15	
2	7	5	7	3	7	3	
3	10	14	15	15	10	15	
4	12	12	6	6	12	5	

四、結果與討論

1.FCFS:屬於不可奪取算法。以數據上來看,可能會導致稍後到達的任務等待時間過長,並且可能 導致執行時間較長的任務性能不佳。

2.RR:屬於可奪取算法,可以讓資源的公平分配並防止飢餓。

3.SJF:屬於不可奪取算法,可以有最佳平均等待時間。但是,它可能導致長時間任務餓死。

4.SRTF:屬於可奪取算法·可以有最佳的平均等待時間·但是·由於頻繁的輪替與輪尋是否有剩餘 最小·可能會導致程式負擔。

5.HRRN:屬於不可奪取算法·可以有較佳的平均等待時間·並且反應時間比率會隨等待時間增加而提升·因此不會餓死。

6.PPRR:屬於可奪取算法,與RR數據性質大致相同

由以上數據,可發現 SRTF 在每個 input 的 Waiting Time 最小; FCFS 排程法依照 Arrive Time 由小到大進行排程,效率取決 job 來的時間以及 CPU Burs,如果今天先來的 job 的 CPU Burs 很大,那後續 job 的等待時間也會變非常大; RR 排程法及 PPRR 排程法則取決於所切的 Time Slice; HRRN 排程法在以上三種基礎測資的情況,表現看來最平均,有時能像 SRTF、SJF 一樣小的 Waiting Time。

HRRN 排程法能讓各 Job 等待時間差不多即被執行(避免飢餓); 而 SRTF 、SJF 排程法容易使自己的各 Job 等待時間差距較大(容易造成某行程飢餓)。