# **Anomaly Detection**

SED690 Selected Topic in Software Engineering for Data Science (Data Mining)

Instructor: Niwan Wattanakitrungroj

## **Anomaly/Outlier Detection**

- What are anomalies/outliers?
  - The set of data points that are considerably different than the remainder of the data
- □ Natural implication is that anomalies are relatively rare
  - One in a thousand occurs often if you have lots of data
  - Context is important, e.g., freezing temps in July
- Can be important or a nuisance
  - Unusually high blood pressure
  - □ 200 pound, 2 year old



#### Model-based vs Model-free

- Model-based Approaches
  - Model can be parametric or non-parametric
  - ■Anomalies are those points that don't fit well
  - ■Anomalies are those points that distort the model
- Model-free Approaches
  - □Anomalies are identified directly from the data without building a model
  - □Often the underlying assumption is that the most of the points in the data are normal

#### **Anomaly Detection Techniques**

- Statistical Approaches
- Proximity-based
  - Anomalies are points far away from other points
- Clustering-based
  - Points far away from cluster centers are outliers
  - Small clusters are outliers
- One Class SVM

# Statistical Approaches

**Probabilistic definition of an outlier:** An outlier is an object that has a low probability with respect to a probability distribution model of the data.

- Apply a statistical test that depends on
  - Data distribution
  - Parameters of distribution (e.g., mean, variance)
  - Number of expected outliers (confidence limit)
- Issues
  - □ Identifying the distribution of a data set
    - ☐ Heavy tailed distribution
  - Number of attributes
  - □ Is the data a mixture of distributions?

#### **Normal Distributions**



# One-dimensional Gaussian



# Two-dimensional Gaussian

#### **Grubbs' Test**

- Detect outliers in univariate data
- Assume data comes from normal distribution
- □ Detects one outlier at a time, remove the outlier, and repeat
  - $\Box$  H<sub>0</sub>: There is no outlier in data
  - $\Box$  H<sub> $\Delta$ </sub>: There is at least one outlier
- Grubbs' test statistic:

$$G = \frac{\max |X - \overline{X}|}{S}$$

□ Reject H<sub>0</sub> if: 
$$G > \frac{(N-1)}{\sqrt{N}} \sqrt{\frac{t_{(\alpha/N,N-2)}^2}{N-2+t_{(\alpha/N,N-2)}^2}}$$

#### Distance-Based Approaches

☐ The outlier score of an object is the distance to its *k*-th nearest neighbor

#### One Nearest Neighbor - One Outlier



#### One Nearest Neighbor - Two Outliers



#### Five Nearest Neighbors - Small Cluster



### Five Nearest Neighbors - Differing Density



#### **Density-Based Approaches**

- Density-based Outlier: The outlier score of an object is the inverse of the density around the object.
  - □ Can be defined in terms of the k nearest neighbors
  - One definition: Inverse of distance to kth neighbor
  - □ Another definition: Inverse of the average distance to k neighbors
  - DBSCAN definition

□ If there are regions of different density, this approach can have problems

#### **Clustering-Based Approaches**

- □ An object is a cluster-based outlier if it does not strongly belong to any cluster
  - □ For prototype-based clusters, an object is an outlier if it is not close enough to a cluster center
    - Outliers can impact the clustering produced
  - □ For density-based clusters, an object is an outlier if its density is too low
  - Can't distinguish between noise and outliers



#### Distance of Points from Closest Centroids



#### One Class SVM

- Uses an SVM approach to classify normal objects
- Uses the given data to construct such a model
- This data may contain outliers
- But the data does not contain class labels
- How to build a classifier given one class?

#### **How Does One-Class SVM Work?**

- Uses the "origin" trick

Use a Gaussian kernel 
$$\kappa(\mathbf{x}, \mathbf{y}) = \exp(-\frac{||\mathbf{x} - \mathbf{y}||^2}{2\sigma^2})$$

Every point mapped to a unit hypersphere

$$\kappa(\mathbf{x}, \mathbf{x}) = \langle \phi(\mathbf{x}), \phi(\mathbf{x}) \rangle = ||\phi(\mathbf{x})||^2 = 1$$

Every point in the same orthant (quadrant)

$$\kappa(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle \ge 0$$

Aim to maximize the distance of the separating plane from the origin

#### Traditional SVM vs One Class SVM



#### **SKernel Functions in One-Class SVM**



$$\min_{\mathbf{w}, \ \rho, \ \xi} \ \frac{1}{2} ||\mathbf{w}||^2 - \rho + \frac{1}{n\nu} \sum_{i=1}^n \xi_i,$$
which to  $\langle \mathbf{w}, \rho, \xi \rangle > 0$ 

subject to:  $\langle \mathbf{w}, \phi(\mathbf{x_i}) \rangle \ge \rho - \xi_i, \ \xi_i \ge 0$ 

https://www.analyticsvidhya.com/blog/2024/03/one-class-svm-for-anomaly-detection/

# **Equations for One-Class SVM**

- lacksquare Equation of hyperplane  $\langle \mathbf{w}, \phi(\mathbf{x}) \rangle = \rho$
- lacktriangledown is the mapping to high dimensional space
- $\mathbf{w} = \sum_{i=1}^{n} \alpha_i \phi(\mathbf{x_i})$
- □ v is fraction of outliers
- Optimization condition is the following

$$\min_{\mathbf{w}, \ \rho, \ \xi} \ \frac{1}{2} ||\mathbf{w}||^2 - \rho + \frac{1}{n\nu} \sum_{i=1}^n \xi_i,$$

subject to: 
$$\langle \mathbf{w}, \phi(\mathbf{x_i}) \rangle \geq \rho - \xi_i, \ \xi_i \geq 0$$

# Finding Outliers with a One-Class SVM

 $\square$  Decision boundary with  $\nu = 0.1$ 



Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

# Finding Outliers with a One-Class SVM

Decision boundary with  $\nu = 0.05$  and  $\nu = 0.2$ 



# Comparing anomaly detection algorithms



https://scikit-learn.org/1.5/auto examples/miscellaneous/plot anomaly comparison.html