Lecture 23, Oct. 24

Woman in Pure Math/Math Finance Lunch

Tuesday 12:30-1:20 MC5417

23.1 Theorem.

- 1. if $b \neq 0$ and $a \mid b$ then $|a| \leq |b|$
- 2. a | a
- 3. if $a \mid b$ and $b \mid a$ then a = b
- 4. if a | b and b | c then a | c
- 5. if a | b and a | c then

$$\forall x, y \in \mathbb{Z} \ a \mid (bx + cy)$$

Proof.

1. Let $a, b \in \mathbb{Z}$. Suppose $b \neq 0$ and $a \mid b$. Since $a \mid b$ we can choose $k \in \mathbb{Z}$ so that b = ak. Note that $k \neq 0$ because if k = 0 then b = 0 but $b \neq 0$. Since $k \neq 0$ we have $|k| \geq 1$. So we have

$$b = ak$$

$$|b| = |ak|$$

$$= |a| |k|$$

$$\geq |a| \cdot 1$$

$$= |a|$$

2. Let $a \in \mathbb{Z}$. Since $a = a \cdot 1$, it follows that $a \mid a$.

$$\{ \forall x \ x \cdot 1 = x \} \models \forall x \ x \cdot 1 = x$$

$$\models a \cdot 1 = a$$

$$\models \exists x \ a \cdot x = a$$

3. Let $a, b \in \mathbb{Z}$. Suppose $a \mid b$ and $b \mid a$. Choose $k \in \mathbb{Z}$ so that b = ak. Choose $l \in \mathbb{Z}$ sp that a = bl. Then b = ak = (nl)k = b(lk)

$$b - b(Ik) = 0$$
$$b \cdot 1 - b(Ik) = 0$$
$$b(1 - Ik) = 0$$

So b = 0 or (1 - lk) = 0 (Since \mathbb{Z} has no zero divisors.)

Case 1: Suppose b=0, then $a=bl=0 \cdot l=0$, so we have b=a=0, hence $b=\pm a$.

Case 2: Suppose 1-lk=0, then lk=1 and so either l=k=1 or l=k=-1. When l=k=1, we have $b=ak=a\cdot 1=a$, then $b=\pm a$. When l=k=-1, we have b=ak=a(-1)=(-1)a=-a, then $b=\pm a$.

In all cases we have $b = \pm a$ as required.

- 4. cdots
- 5. Let $a, b, c \in \mathbb{Z}$. Suppose $a \mid b$ and $a \mid c$. Say b = ak and c = al with $k, l \in \mathbb{Z}$. Let $x, y \in \mathbb{Z}$.

$$bx + cy = (ak)x + (al)y$$
$$= a(kx) + a(ly)$$
$$= a(kx + ly)$$

 $\therefore a \mid bx + cy$ as required.

Remark. $a \mid b$ means $\exists x \ b = ax$. $a \mid c$ means $\exists x \ c = ax$.

$$[\exists x \ b = ax]_{b \mapsto bx + cy}$$

$$\equiv [\exists u \ b = au]_{b \mapsto bx + cy}$$

$$\equiv \exists u \ (bx + cy) = au$$

 $a \mid (bx + cy)$ means $\exists u (bx + cy) = au$

Remark. Recall that when $b \neq 0$, if $a \mid b$ then $|a| \leq |b|$. So b has finitely many divisors (and the greatest divisor is |b|).

23.2 Definition. For $a, b, d \in \mathbb{Z}$, we say that d is a **common divisor** of a and b when $d \mid a$ and $d \mid b$. When a and b are not both zero, there are only finitely many common divisor of a and b, and b are common divisors, so a and b do have a greatest common divisor and we denote it by gcd(a, b).

For convenience, we also write gcd(0,0) = 0

- **23.3** Theorem. (Properties of the GCD) Let $a, b, c \in \mathbb{Z}$.
 - 1. gcd(a, b) = gcd(b, a)
 - 2. gcd(a, b) = gcd(|a|, |b|)
 - 3. if $a \mid b$ then gcd(a, b) = |a|, in particular, gcd(a, 0) = |a|
 - 4. gcd(a, b) = gcd(a + tb, b) for all $t \in \mathbb{Z}$.
 - 5. if a = qb + r where $q, r \in \mathbb{Z}$, then gcd(a, b) = gcd(b, r)

Proof. 4 To show that gcd(a, b) = gcd(a + tb, b) we shall show that the common divisor of a and b is exactly the same as the common divisor of a + tb and b.

Let $a, b, t \in \mathbb{Z}$. Let $d \in \mathbb{Z}$. Suppose $d \mid a$ and $d \mid b$ then $d \mid ax + by$ for all $x, y \in \mathbb{Z}$. In particular, $d \mid (a \cdot 1 + bt)$, so $d \mid (a + td)$. Thus $d \mid (a + tb)$ and $d \mid b$.

Conversely, suppose $d \mid (a+tb)$ and $d \mid b$. Then $d \mid (a+tb)x + by$ for all $x, y \in \mathbb{Z}$. In particular, $d \mid (a+tb) \cdot 1 + b \cdot (-1)$, so $d \mid a$. Thus $d \mid a$ and $d \mid a$.