TD n° 0 — Prise en main PARI/GP

Nomenclature officielle:

PARI/GP le système complet, PARI ou libpari la bibliothèque,

gp le calculateur, *i.e.* ce que vous utilisez,

GP le langage utilisé pour programmer le calculateur.

Exercice 1

Consulter l'aide de la fonction isprime. Le nombre $2^{2^{11}} + 1$ est-il premier?

Exercice 2

Consulter l'aide de la fonction sigma. Calculer la somme des carrés des diviseurs de $2^{128} + 1$.

Exercice 3

Le groupe $(\mathbb{Z}/42\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z})$ est-il cyclique?

Exercice 4

Consulter l'aide de la fonction **znstar**. Quelle est la structure de $(\mathbb{Z}/130\mathbb{Z})^{\times}$ en tant que groupe abélien? Donner un système de générateurs pour ce groupe.

Exercice 5

- 1. Quel est le degré de l'extension $\mathbb{F}_8/\mathbb{F}_2$?
- 2. Quelle est la structure de \mathbb{F}_8 en tant que groupe abélien?

Exercice 6

L'objectif de cet exercice est de rappeler la méthode d'exponentiation binaire.

1. Étant donné un entier naturel n, rappelons que son écriture en base 2 est de la forme

$$n = \sum_{i=0}^{k} \varepsilon_i 2^i$$

où $\varepsilon_i \in \{0,1\}$ pour tout *i*. Écrire une procédure base2(n) qui renvoie la liste $(\varepsilon_0, \varepsilon_1, \dots, \varepsilon_k)$ des chiffres de n dans son écriture en base 2.

- 2. En déduire un algorithme d'exponentiation efficace dans un ensemble E muni d'une loi de multiplication *.
- 3. Le programmer pour $E = \mathbb{R}$. On appellera $\operatorname{puissance}(x, n)$ la procédure obtenue, qui, étant donné un réel x et un entier n, renvoie x^n .
- 4. Expliquer comment, grâce à Pari/gp, le même programme peut être utilisé dans $E = \mathbb{Z}/m\mathbb{Z}$ muni de la multiplication modulo m. Tester quelques exemples.