INFO 1998: Introduction to Machine Learning

Lecture 3: Data Visualization

INFO 1998: Introduction to Machine Learning

Agenda

- 1. Why Data Visualization is Important
- 2. Data Visualization Libraries
- 3. Basic Visualizations
- 4. Advanced Visualizations
- 5. Challenges of Visualization

The Data Pipeline

Why is Data Visualization Important?

Why is Data Visualization Important?

Informative

Appealing

Universal

Predictive

Why is Data Visualization Important?

Same summary stats (mean, median, mode) but different distributions!

We need to see how the **actual** data looks!

df.describe() is not enough

Data Visualization Simple Example: Ratings on Yelp

Question: What do you notice? What trends do you see?

Data Visualization Libraries

matplotlib

- Python data visualization package
- Capable of handling most data visualization needs
- Simple object-oriented library inspired from MATLAB
- Cheatsheet

seaborn

Another visualization package built on matplotlib

Basic Data Visualizations

Bar Graph

- Represent magnitude or frequency of discrete variables
- Allows us to compare features

Source

Histograms

Source

- Used to observe frequency distribution of continuous variables
- Data split into bins

Histograms: Different Bin Sizes

Density Plot

Like a histogram, but **smooths** the shape of the distribution

Histogram vs Density Plot

Boxplot (a.k.a box and whisker plot)

- Summary of data
- Shows spread of data
- Gives range, interquartile range, median, and outlier information

<u>Source</u>

Violin Plot

- Combination of boxplot and density plot to show the spread and shape of the data
- Can show whether the data is normal (i.e. is distributed normally)

Scatterplot

- See relationship between two features
- Can be useful for extrapolating information

Heatmap

- Varying degrees of one metric are represented using color
- Especially useful in the context of maps to show geographical variation

Heatmap: Click Density / Website Heatmaps

Correlation Plots

- 2D matrix with all variables on each axis
- Entries represent the correlation coefficients between each pair of variables

Why are all entries on the diagonal '1'?

Using Maps

- ➤ Map visualization → contextual information
 - Trends are not always apparent in the data itself
 - Ex) Longitudes + Latitudes → Geographical Map

Example: Pittsburgh Data

Demo

Challenges of Visualization

Higher Dimension

Non-Trivial

Time Consuming

Hard to Show Uncertainty

High Dimensional Data

4D Plot For Earthquake Data

- Color, time animations, or point shape can be used for higher dimensions
- There is a limit to the number of features that can be displayed

Error Bars

- Used to show uncertainty
- Usually display 95 percent confidence interval

"Did you really have to show the error bars?"

Coming Up

- Assignment 3: Due at 4:30pm (ET) on Mar 24, 2021
- Next Lecture: Fundamentals of Machine Learning

