• Instructor: **He Wang** Email: he.wang@northeastern.edu §11 Least Squares and Data Fitting Contents Least Squares Problem 1. Approximate Solutions to Inconsistent Systems 2. 3. **Data Fitting Best Approximation for Functions** 13 Review: 1. Inner Product Space (vector space with an inner product) 2. Use orthogonal basis (to find orthogonal projection) 3. Find orthogonal basis (Gram-Schmidt process)

Northeastern University, Department of Mathematics

MATH 5110: Applied Linear Algebra and Matrix Analysis. (Fall 2021)

2

3

8

Set up:			
Question:			
Answer:			
Calculation:			
Method (1)			
Method (2)			

1. Least Squares Problem

2. Approximate Solutions to Inconsistent Systems

Set up:

Let A be an $n \times m$ matrix.

Let $\vec{b} \in \mathbb{R}^n$.

Suppose $A\vec{x} = \vec{b}$ has no solution.

Consider \mathbb{R}^n with any inner product.

[Least-Squares Problem/Solution for $A\vec{x} = \vec{b}$]

Problem: Find the vector(s) $\vec{x}_* \in \mathbb{R}^m$ such that for all $x \in \mathbb{R}^m$,

$$||A\vec{x}_* - \vec{b}|| \le ||A\vec{x} - \vec{b}||$$

Solutions:

Example 1. Find the least-squares solutions for
$$A\vec{x} = \vec{b}$$
, where $A = \begin{bmatrix} -1 & 4 \\ 1 & 8 \\ -1 & 4 \end{bmatrix}$ and $\begin{bmatrix} 14 \\ -4 \\ 0 \end{bmatrix}$

In particular, if we consider **dot product** on \mathbb{R}^n , we have the following formula.

Theorem 2. (Normal Equation) The Least-Square solutions of $A\vec{x} = \vec{b}$ coincide with the solutions of of **normal equations**

$$(A^T A)\vec{x} = A^T \vec{b}.$$

More generally, we can also consider **weighted dot product** on \mathbb{R}^n ,

$$\langle \vec{u}, \vec{v} \rangle_W := \vec{u}^T W \vec{v}$$

where W is a positive-definite symmetric matrix.

Example 3. Find the least-squares solutions for $A\vec{x} = \vec{b}$, where $A = \begin{bmatrix} -1 & 4 \\ 1 & 8 \\ -1 & 4 \end{bmatrix}$

$$\vec{b} = \begin{bmatrix} 14 \\ -4 \\ 0 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} -1 & 1 & -1 \\ 4 & 8 & 4 \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 1 & 7 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 96 \end{bmatrix}$$

$$A^{T}B = \begin{bmatrix} -1 & 1 & -1 \\ 4 & 8 & 4 \end{bmatrix} \begin{bmatrix} 14 \\ -4 \\ 0 \end{bmatrix} = \begin{bmatrix} -18 \\ 24 \end{bmatrix}$$
Solve the normal equation $A^{T}A \vec{x} = A^{T}B$

$$\begin{bmatrix} 3 & 0 & | -18 \\ 0 & 96 & | 24 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & | -6 \\ 0 & 1 & | 4 \end{bmatrix}$$

$$\begin{cases} 3 & 0 & | -18 \\ 0 & 96 & | 24 \end{cases} \longrightarrow \begin{bmatrix} 1 & 0 & | -6 \\ 0 & 1 & | 4 \end{bmatrix}$$

$$\begin{cases} 3 & 0 & | -18 \\ 0 & 96 & | 24 \end{cases} \longrightarrow \begin{bmatrix} 1 & 0 & | -6 \\ 0 & 1 & | 4 \end{bmatrix}$$

$$\begin{cases} 3 & 0 & | -18 \\ 0 & 96 & | 24 \end{cases} \longrightarrow \begin{bmatrix} 1 & 0 & | -6 \\ 0 & 1 & | 4 \end{bmatrix}$$

(2) The image im(A) is a plane in \mathbb{R}^3 passing the origin. Find the distance from the vector \vec{b} (or the point (14, -4, 0)) to the plane im(A).

The distance is given be the norm of $\vec{b}^{\perp} = \vec{b} - \operatorname{proj}_{\operatorname{im}(A)} \vec{b}$.

We know that
$$\operatorname{proj}_{\operatorname{im}(A)} \vec{b} = Ax_* = \begin{bmatrix} -1 & 4 \\ 1 & 8 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} -6 \\ 1/4 \end{bmatrix} = \begin{bmatrix} 7 \\ -4 \\ 7 \end{bmatrix}.$$

So,
$$\vec{b}^{\perp} = \begin{bmatrix} 14 \\ -4 \\ 0 \end{bmatrix} - \begin{bmatrix} 7 \\ -4 \\ 7 \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \\ -7 \end{bmatrix}$$
. So the distance is $||\vec{b}^{\perp}|| = 7\sqrt{2}$.

Example 4. Find the least-squares solutions for the system $A\vec{x} = \vec{b}$, where $A = \vec{b}$

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 4 \end{bmatrix}$$

Sep. Construct the normal equation
$$A^TA\vec{x} = A^T\vec{b}$$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$

$$A^{\mathsf{T}} B^{\mathsf{T}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 10 \\ 4 \\ 6 \end{bmatrix}$$

She the normal equen

 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 - x_5 \\ 1 + x_5 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} 4 & 2 & 2 & | & 10 \\ 2 & 2 & 0 & | & 4 \\ 2 & 0 & 2 & | & 6 \end{bmatrix} \rightarrow \cdots \rightarrow \text{Tref} = \begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 0 & 1 & -1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\chi_1 = 3 - \chi_3$$

A technical property:

Proposition 5. Let A be an $n \times m$ matrix.

$$\ker(A) = \ker(A^T A)$$

Corollary 6. If rank A = m, the normal equation $(A^T A)\vec{x} = A^T \vec{b}$ has a unique solution: $\vec{x} = (A^T A)^{-1} A^T \vec{b}$

QR factorization method Suppose A is $n \times m$ matrix with full column rank. Solve the least squares solution using QR factorization A = QR where Q is an orthogonal matrix $n \times m$ and R is an $m \times m$ upper triangular matrix with rank m.

3. Data Fitting

Problem: Fitting a function of a certain type of data. We use the following three example to illustrate this application.

Example 7. Find a cubic polynomial $f(t) = c_0 + c_1t + c_2t^2 + c_3t^3$ whose graph passes through the points (0,5), (1,3), (-1,13), (2,1)

Solution:

We need to solve the linear system $\begin{cases} c_0 = 5 \\ c_0 + c_1 + c_2 + c_3 = 3 \\ c_0 - c_1 + c_2 - c_3 = 13 \\ c_0 + 2c_1 + 4c_2 + 8c_3 = 1 \end{cases}$

$$[A|\vec{b}] = \begin{bmatrix} 1 & 0 & 0 & 0 & 5 \\ 1 & 1 & 1 & 1 & 3 \\ 1 & -1 & 1 & -1 & 13 \\ 1 & 2 & 4 & 8 & 1 \end{bmatrix} \to \cdots \to \mathbf{rref}[A|\vec{b}] = \begin{bmatrix} 1 & 0 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 & -4 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$

So, the linear system has the unique solution $\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -4 \\ 3 \\ -1 \end{bmatrix}$ So, the cubic polynomial is

$$f(t) = 5 - 4t + 3t^2 - t^3.$$

Example 8. Fit a quadratic function $g(t) = c_0 + c_1 t + c_2 t^2$ to the four data points (0, 5), (1, 3), (-1, 13), (2, 1)

We need to solve the linear system

$$\begin{cases} c_0 = 5 \\ c_0 + c_1 + c_2 = 3 \\ c_0 - c_1 + c_2 = 13 \\ c_0 + 2c_1 + 4c_2 = 1 \end{cases}$$

As matrix equation $A\vec{x} = \vec{b}$, where $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & 4 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 5 \\ 3 \\ 13 \\ 1 \end{bmatrix}$

Solve the normal expection
$$A^TAx^2=A^TB$$
 $x=\begin{bmatrix} 5,9\\ -5,3\\ -5,3 \end{bmatrix}=2^*$

So, the sundretic function $g(t)=5$, $g=53+1$, $t=5$

Ac $^2=\begin{bmatrix} 3(a)\\ g(a)\\ g(a) \end{bmatrix}$

Big A $^2=\begin{bmatrix} 3(a)\\ b \end{bmatrix}$

The sum of the normal expectation $g(t)=5$, $g=53+1$, $g=5$

Example 9. Fit a linear function $h(t) = c_0 + c_1 t$ to the four data points (0,5), (1,3), (-1,13), (2,1)

We need to solve the linear system

$$\begin{cases} c_0 = 5 \\ c_0 + c_1 = 3 \\ c_0 - c_1 = 13 \\ c_0 + 2c_1 = 1 \end{cases}$$

As matrix equation $A\vec{x} = \vec{b}$, where $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & -1 \\ 1 & 2 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 5 \\ 3 \\ 13 \\ 1 \end{bmatrix}$

$$AA = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix}$$

$$AAB = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix}$$

$$\overrightarrow{A}\overrightarrow{b} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 2 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \\ 15 \end{bmatrix} = \begin{bmatrix} 22 \\ -8 \end{bmatrix}$$

Solve the normal equation ATA XZ-AID

So the linear function is h(t)=7.4 -3.8t

Remark: More generally, we can consider N-points (a_1,b_1) , (a_2,b_2) , ..., (a_n,b_n) .

• Find a linear function $h(t) = G_0 + G_1 t$ Sits the data by the least squares.

More generally, the following question is very standard in statistics.

Example 10. Consider the data with n points $(a_1, b_1), (a_2, b_2), \ldots, (a_n, b_n)$. Find a linear function $h(t) = c_0 + c_1 t$ fits the data by the least squares. (Suppose $a_1 \neq a_2$)

We need to solve the least-squares problem for
$$A\vec{x} = \vec{b}$$
, for $A = \begin{bmatrix} 1 & a_1 \\ 1 & a_2 \\ \vdots \\ 1 & a_n \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$

$$A^{T}A = \begin{bmatrix} 1 & a_{1} \\ 1 & a_{2} \\ \vdots \\ 1 & a_{n} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ a_{1} & a_{2} & \cdots & a_{n} \end{bmatrix} = \begin{bmatrix} n & \sum_{i=1}^{n} a_{i} \\ \sum_{i=1}^{n} a_{i} & \sum_{i=1}^{n} a_{i}^{2} \end{bmatrix}$$

$$A^{T}b = \begin{bmatrix} 1 & a_{1} \\ 1 & a_{2} \\ \vdots & & \\ 1 & a_{n} \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} b_{i} \\ \sum_{i=1}^{n} a_{i} a_{i} \end{bmatrix}$$

Since $a_1 \neq a_2$, we know that rank A = 2.

The normal equation $A^T A \vec{x} = A^T \vec{b}$ has a unique solution

$$\begin{split} \vec{x}_* &= (A^T A)^{-1} A^T \vec{b} = \frac{1}{n \sum_{i=1}^n a_i^2 - (\sum_{i=1}^n a_i)^2} \begin{bmatrix} \sum_{i=1}^n a_i^2 & -\sum_{i=1}^n a_i \\ -\sum_{i=1}^n a_i & n \end{bmatrix} \begin{bmatrix} \sum_{i=1}^n b_i \\ \sum_{i=1}^n a_i a_i \end{bmatrix} \\ &= \frac{1}{n \sum_{i=1}^n a_i^2 - (\sum_{i=1}^n a_i)^2} \begin{bmatrix} (\sum_{i=1}^n a_i^2)(\sum_{i=1}^n b_i) - (\sum_{i=1}^n a_i)(\sum_{i=1}^n a_i)(\sum_{i=1}^n a_i a_i) \\ -(\sum_{i=1}^n a_i)(\sum_{i=1}^n b_i) + n \sum_{i=1}^n a_i a_i \end{bmatrix} \end{split}$$

Example 11. Consider the data with m inputs and 1 output:

$$(a_{11}, a_{12}, ..., a_{1m}, b_1), (a_{21}, a_{22}, ..., a_{2m}, b_2), ..., (a_{n1}, a_{n2}, ..., a_{nm}, b_n).$$

Find a linear function $h(t_1, t_2, ..., t_n) = c_0 + c_1t_1 + c_2t_2 + \cdots + c_nt_n$ fits the data by the least squares.

For example, when m=2,

We need to solve the least-squares problem for
$$A\vec{x} = \vec{b}$$
, for $A = \begin{bmatrix} 1 & a_{11} & a_{12} & \dots & a_{1m} \\ 1 & a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$

and
$$\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Example 12. Consider the data with m inputs and s outputs:

$$(a_{11}, a_{12}, ..., a_{1m}, b_{11}, ..., b_{1s}), (a_{21}, a_{22}, ..., a_{2m}, b_{21}, ..., b_{2s}), ..., (a_{n1}, a_{n2}, ..., a_{nm}, b_{n1}, ..., b_{ns}).$$

Find a linear function $H(\vec{t}) = \vec{c}_0 + C\vec{t}$ fits the data by the least squares.

4. Best Approximation for Functions

Set up:

Let V be the vector space of continuous functions.

Consider the inner product on V:

Let W be the subspace of polynomials of degree $\leq n$.

Consider a function $f(x) \in V$. (e.g., $f(x) = e^x$)

Question:

Find the best degree n polynomial approximation of f(x).

Example: