Strongly Connected Components (SCC) in a Directed Graph

Strongly Connected Components

*SCC is meaningful to directed graphs
only.

G = (V, E) : digraph

is Strongly connected iff $\forall (x,y), x \in V$, \exists a path from u to v.

if Gris SC and those is a path from n to y in Gr, then it follows that there is also a path from y to x, Since SC means there exists a path the every pair of ventices in the graph Gr.

Strongly Connected (=) path exists b/w every pair of vertices

Relation: 7			
a f	<pre></pre>	(a,b)	
			ene G.=(V, E
uRv	iff v-	→ v	oaths exist
This is	an Equ	ivalence	Relation.
	Indu	ces a	partition or V, +
	Set		es in the
		1. 1. 2. 1. 3. 1. 4. 1. 5. 1. 6. 1. 7. 1. 8. 1. 9. 1. 10. 1. 11. 1. 12. 1. 13. 1. 14. 1. 15. 1. 16. 1. 17. 1. 18. 1. 19. 1. 19. 1. 10. 1. <td></td>	

G -> 4 Components

Connected of not, perform dfs from u to v and also from v to u if vis reachable from u, V u, v E V, where G:= (v, E).

⇒y |v| =n , then 2(n) = n(n-1) times DFS is incurred to check of Gris
Strongly Connected or not? $= O(n^2m) \quad \text{Very} \\ \frac{1}{|E|} = m$ Total Cost Do we need to perform n(n-1) DFS calls? Can we modify the original graph of and solve the problem with that? tortunately, the answer is yes to both. How about a graph hevered? GR = (V, E) where (v, u) EE

Tust revoncing all if (u, v) EE Just revensing all the original graph

DFS (G, s) SEV Covering all the ventices in G if one still vertices left, than the Gr might be howing SCCs of not strongly Connected at all. \star Assume $S \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow u$ as the path resulted from DFS (G, S) and also assume Gris Strongly Connect ed. * Now, from DFS (G, S) we learn that there exists a path from S to all other vertices in G. Does this mean I a path from u tos How do we find that? performing $O(n^2)$ DFS is naive and is Computationally expensive if Gris

established a path from Now, we're covering all the vertices in s to u We can leverage on this fact and perform a DFS on the reversed graph Gir from the vortex u. If there exists a path from u to s in Go, then we can establish that own original graph Gi is Strongly Connected. we're done. Instead of That's it. DFS traversals, we have n(n-1)boiled the problem down to 2 DFS traversals by Simply cloing a transform on the input graph Gr. GR

