Hand in 1

Christophe Marciot

15 septembre 2020

Exercise 6

Suppose we have a natural transformation $\tau: F \to G$. We want to associate to τ a functor $H_{\tau}: \mathcal{C} \times [1] \to \mathcal{D}$ in a meaningful way. In fact we want that this association to remind us of the notion of homotopy in regular homotopy theory.

We propose the following definition. For an object $(c, x) \in \text{Ob } \mathcal{C} \times [1]$ and an arrow $(f, p) \in \text{Ob } \mathcal{C} \times [1]((c, x), (c', x'))$ we set their image by H_{τ} :

$$H_{\tau}(c, x) = \begin{cases} F(c) & \text{if } x = 0, \\ G(c) & \text{if } x = 1 \end{cases}$$

and

$$H_{\tau}(f,p) = \begin{cases} F(f) & \text{if } p = 0 \le 0, \\ \tau_{c'} F(f) = G(f) \tau_c & \text{if } p = 0 \le 1, \\ G(f) & \text{if } p = 1 \le 1. \end{cases}$$

Note that the equality in the second line is due to the fact that τ is a natural transformation. First, we need to prove that H_{τ} is a functor.

Let us consider the identity $\mathrm{Id}_{(c,x)}$. We want to prove that $H_{\tau}(\mathrm{Id}_{(c,x)}) = \mathrm{Id}_{H_{\tau}(c,x)}$. We distinguish two cases :