# PROJECT REPORT PREDICTING LIFE EXPECTANCY USING MACHINE LEARNING

A

**Project** 

Report

On

### Predicting Life Expectancy using Machine Learning

### Internship

under:

### **TheSMARTBRIDGE**

**NAME:** ASHUTOSH SHARMA

EMAIL: ashutosh284200@gmail.com

**PROJECT ID: SPS PRO 215** 

INTERNSHIP TITLE: Predicting Life Expectancy using Machine

Learning - SB39716

Category: Machine Learning

### TABLE OF CONTENT

| CHAPTER:1 INTRODUCTION                | 1-1   |
|---------------------------------------|-------|
| 1.1 OVERVIEW                          | 1     |
| 1.2 PURPOSE                           | 1     |
| CHAPTER:2 LITERATURE SURVEY           | 2-2   |
| 2.1 EXISTING PROBLEM                  | 2     |
| 2.2 PROPOSED SOLUTION                 | 2     |
| CHAPTER:3 THEORITICAL ANALYSIS        | 3-3   |
| 3.1 BLOCK DIAGRAM                     | 3     |
| 3.2 HARDWARE/SOFTWARE DESIGNING       | 3     |
| CHAPTER:4 EXPERIMENTAL INVESTIGATIONS | 4-7   |
| CHAPTER:5 FLOWCHART                   | 8-8   |
| CHAPTER:6 RESULT                      | 9-9   |
| CHAPTER:7 ADVANTAGES & DISADVANTAGES  | 10-10 |
| 7.1 ADVANTAGES                        | 10    |
| 7.2 DISADVANTAGES                     | 10    |
| CHAPTER:8 APPLICATIONS                | 11-11 |
| CHAPTER:9 CONCLUSION                  | 12-12 |
| CHAPTER:10 FUTURE SCOPE               | 13-13 |
| CHAPTER:11 BIBILOGRAPHY               | 14-14 |
| APPENDIX                              | 15-26 |
| A. SOURCE CODE                        |       |

Life expectancy is one of the most important factors in end-of-life decision making. Good prognostication for example helps to determine the course of treatment and helps to anticipate the procurement of health care services and facilities, or more broadly: facilitates Advance Care Planning. Advance Care Planning improves the quality of the final phase of life by stimulating doctors to explore the preferences for end-of-life care with their patients, and people close to the patients. Physicians, however, tend to overestimate life expectancy, and miss the window of opportunity to initiate Advance Care Planning. This research tests the potential of using machine learning techniques for predicting life expectancy medical records.

### 1.1Overview

This project "Predicting Life Expectancy using Machine Learning" is a web application that predict the expected average life span of human based on diverse datasets, in a demographic region. The life of a human depends on various factors such as Regional variations, Economic Circumstances, Sex Differences, Mental Illnesses, Physical illnesses, Education, Year of their birth and other demographic factors. The project aims to predict an average life expectancy based on these and several other factors. This project is built using IBM services (Watson studio, Node Red, Watson machine learning, Python Flask).

This project finds the expected solution using various machine learning algorithms such as:

- a) Linear Regression
- b) Decision Tree
- c) Random Forest

And many more, the aim of the project is to find the relationship of the various factors with the lifespan of an individual using the ML Algorithms mentioned above. A typical Regression Machine Learning project leverages historical data to predict insights into the future. This problem statement is aimed at predicting Life Expectancy rate of a country given various features. The dataset used for the prediction contains data from year 2000 to 2015. It contains more than 2500 entries and around 22 columns with various features such as Population, Alcohol Consumption, Infant Mortality Rate etc., which aids the prediction of the model.

### 1.2Purpose

If life expectancy is longer in a certain country, it speaks about the conditions of the place. It tells information on the health factors as well as the quality of life. If the conditions in a country and in its economy are good, obviously the life expectancy would be more and greater number of people would like to live in the same country. Life expectancy is the most important factor for decision making. By predicting life expectancy and having good prognostication can help in making valuable decision like the course of treatment and helps to anticipate the procurement of health care services and facilities. Accurate prognosis of life expectancy is essential for general practitioners (GPs) to decide when to introduce the topic of ACP (Advance Care Planning) to the patient, and it is a key determinant in end-of-life decisions. Increasing the accuracy of prognoses has the potential to benefit patients in various ways by enabling more consistent ACP, earlier and better anticipation on palliative needs, and preventing excessive treatment.

### 2.1 EXISTING PROBLEM

As we already know few works have been done to provide an individually customized life expectancy prediction. We already have reviewed existing works and techniques in the prediction of human Life Expectancy and reached a conclusion that it is feasible to predict Life Expectancy for individuals using evolving technologies and devices such as big data, AI, machine learning techniques, and PHDs, wearable devices and mobile health monitoring devices. We also know that the collection of data for research/making a model will be a huge challenge due to the privacy and government policy considerations, which will require collaboration of various bodies in the health industry. Despite these challenges, accurate prognosis is notoriously difficult, a possibility of a PLE prediction by proposing an approach of data collection and application by smart phone, with which users can enter their information to access the cloud server to obtain their own PLE, was shown.

Although there have been lot of studies undertaken in the past on factors affecting life expectancy considering demographic variables, income composition and mortality rates. It was found that effect of immunization and human development index was not taken into account in the past. Also, some of the past research was done considering multiple linear regression based on data set of one year for all the countries.

### 2.2 PROPOSED SOLUTION

Although there have been lot of studies undertaken in the past on factors affecting life expectancy considering demographic variables, income composition and mortality rates. It was found that effect of immunization and human development index was not taken into account in the past. Also, some of the past research was done considering multiple linear regression based on data set of one year for all the countries. So, this gives motivation to resolve both the factors stated previously by formulating a regression model based on mixed effects model and multiple linear regression while considering data from a period of 2000 to 2015 for all the countries. The data will contain important factors which are crucial for our model like Hepatitis B, Polio and Diphtheria. In a study will focus on immunization factors, mortality factors, economic factors, social factors and other health related factors as well. Since the observations this dataset are based on different countries, it will be easier for a country to determine the predicting factor which is contributing to lower value of life expectancy.

The model of" Predicting Life Expectancy using Machine Learning" uses IBM Cloud services, which helps to avoid any storage issues. The UI Presented to the users is a website URL and hence they need not download any application to predict the results, which saves the storage space as that is the need of the hour.

### 3.1 BLOCK/FLOW DIAGRAM



The above diagram shows the flow of the model, the user will give input to the model through "Form" element in Node-Red which is use to create UI for user so that they can easily interact with model. After input receive an HTTP request is made to the IBM cloud that further makes an HTTP request to the deployed model using model's instance id. After verification of id, the model sends an HTTP response which is finally parsed by the Node-Red application and the result is displayed on the user screen.

### 3.2 <u>HARDWARE/SOFTWARE DESIGNING</u>

The steps follow for hardware/software designing are as follows:

- 1. Create an IBM Cloud account
- 2. Create necessary IBM Cloud services
- 3. Create Watson studio project
- 4. Configure Watson Studio
- 5. Create IBM Machine Learning instance
- 6. Import data for training as well as testing for model from Kaggle
- 7. Create machine learning model (either use Jupiter notebook or AutoAI)
- **8.** Deploy the machine learning model
- 9. Create flow and configure node
- 10. Integrate node red with machine learning model
- 11. Deploy and run Node Red app.

NOTE: You can also make an UI using Python Flask and deploy it on IBM Cloud.

### **EXPERIMENTAL INVESTIGATIONS**

This project is fundamentally designed to predicting the life expectancy of a human in any country. The primary requirement of the project is the suitable dataset which will aid the prediction. Thus, the data set has been taken from the WHO, who has provided the data itself, publicly. The machine learning model is trained on the basis of the data provided, such that it can predict the average lifespan of an individual in the coming years in any demographic location on Earth.

There are 21 factors which are taken into account for predicting the life expectancy of a country are as follows:

- 1. Country
- 2. Status: Developed or Developing status of the country.
- 3. Year
- **4. Adult mortality:** Adult Mortality Rates of both sexes (probability of dying between 15 and 60 years per 1000 population).
- 5. Infant deaths: Number of Infant Deaths per 1000 population.
- **6.** Alcohol: Alcohol, recorded per capita (15+) consumption.
- 7. **Percentage Expenditure**: Expenditure on health as a percentage of Gross Domestic Product per capita (%).
- **8.** Hepatitis B: Immunization coverage among 1-year-olds (%).
- **9. Measles:** Number of reported cases per 1000 population.
- 10. BMI: Average Body Mass Index of entire population.
- 11. Under-five deaths: Number of under-five deaths per 1000 population.
- 12. Polio: Immunization coverage among 1-year-olds (%).
- **13. Total expenditure:** General government expenditure on health as a percentage of total government expenditure (%).
- **14. Diphtheria:** Diphtheria tetanus toxoid and pertussis (DTP3) immunization coverage among 1-year olds (%).
- 15. HIV/AIDS: Deaths per 1 000 live births HIV/AIDS (0-4 years).
- 16. GDP: Gross Domestic Product per capita (in USD).
- 17. Population: Population of the country.
- **18. Thinness 10-19 years:** Prevalence of thinness among children and adolescents for Age 10 to 19(%).
- 19. Thinness 5-9 years: Prevalence of thinness among children for Age 5 to 9(%).
- **20. Income composition of resources:** Human Development Index in terms of income composition of resources (index ranging from 0 to 1).
- 21. Schooling: Number of years of schooling

Finding the most suitable algorithm: Random forest gives highest accuracy

## Random Forest Regression In [28]: rfr = RandomForestRegressor(n\_estimators=1000,random\_state=0) In [29]: rfr\_model = rfr.fit(xtrain,ytrain) In [30]: random\_forest\_score = cross\_val\_score(rfr\_model,xtrain,ytrain, cv = 5) In [31]: rfr\_pred = rfr.predict(xtest) In [32]: print("mean cross validation score: %.2f" % np.mean(random\_forest\_score)) print("score without cv: %.2f" % rfr\_model.score(xtrain, ytrain)) print("R^2 score on the test data %.2f" %r2\_score(ytest, rfr\_pred)) mean cross validation score: 0.96 score without cv: 0.99 R^2 score on the test data 0.96

### **Steps**

- 1. Create IBM Cloud services
  - Watson Studio
  - Watson Machine Learning
  - Node Red
- 2. Create Watson Studio service instance.
  - Select Catalog found at the top right of the page.
  - Click on Watson from the menu on the left, which you can find under Platform services.
  - Select Watson Studio.
  - Enter the Service name or keep the default value and make sure to select the US South as the region/location and your desired organization, and space.
  - Select Lite for the Plan, which you can find under Pricing Plans and is already selected. Please note you are only allowed one instance of a Lite plan per service.
  - Click on Create.
  - You will be taken to the main page of the service. Click on Get Started.
  - Create a New Project
- 3. Add WML service
  - Click on the Settings in the project view, locate Associated services => Add Service
     => Watson
  - You should also create an Access Token in the project setting. Click on New token, give it a name, then click Create.
  - Create Notebook
  - Click Add to project => Notebook
  - And create your Model here.
  - Deploy Model as Web Service
- **4.** Build Node-RED Flow to Integrate ML Services

### **SCREENSHOTS**

### IBM CLOUD DASHBOARD:



### **RESOURCE LIST:**



### WATSON STUDIO:



### WATSON MACHINE LEARNING SERVICE:



### **NODE RED FLOW:**



CHAPTER 5 FLOWCHART

A flowchart is a diagram which depicts a process, system or computer algorithm. They are widely used in multiple fields to document, study, improve and communicate often complex processes in clear, easy-to-understand diagrams. Flowcharts, sometimes spelled as flow charts, use rectangles, ovals, diamonds and potentially numerous other shapes to define the type of step, along with connecting arrows to define flow and sequence. A flow chart helps improve understanding of what exactly is being implemented and how it takes different routes for different inputs and targets.



CHAPTER 6 RESULT

The model appears to the user in the form of an interface as shown below. The user has to fill the inputs and click on "Predict" button at the end of the form. On clicking the "Predict" button, the user will be displayed the predicted life expectancy, based on the inputs provided, at the top of the page as shown below. Once all the data is input by a user, the data is analysed by the Machine Learning model prepared using the service end point that which is given as a node in the Node-RED Flow. Data is run through the ML model and finally the predicted Life Expectancy is shown to the user, as shown below.



### **ADVANTAGES & DISADVANTAGES**

### 7.1 ADVANTAGES

### 1. Advantages of using IBM Watson:

- Processes unstructured data
- Fills human limitations
- Acts as a decision support system, doesn't replace humans
- Improves performance + abilities by giving best available data
- Improve and transform customer service
- Handle enormous quantities of data
- Sustainable Competitive Advantage
- 2. Easy for user to interact with the model via the UI.
- 3. User-friendly.
- **4.** Easy to build and deploy.
- 5. Doesn't require much storage space.

### 7.2 DISADVANTAGES

### 1. Disadvantages of using IBM Watson:

- Only available in English language (Limits areas of use)
- Maintenance
- Provides paid services
- Doesn't process structured data directly
- Increasing rate of data, with limited resources
- 2. Requires high speed internet connection.

The application of predicting life expectancy are as following:

- This will help in suggesting a country which area should be given importance in order to efficiently improve the life expectancy of its population.
- It will be easier for a country to determine the predicting factor which is contributing to lower
  value of life expectancy and can be used in various organization to improve the quality of
  service.
- The project can be used as a basis to develop personalized health applications.
- The governments can plan and develop their health infrastructures by keeping the most correlated factors in mind.
- The project can help governments to keep track of their country's health status so they can plan for the future accordingly.
- It can be used by researchers to make meaningful researches out of it and thus, bring about something that will help increase the expectancy consider the impact of a specific factor on the average lifespan of people in a specific country.
- Insurance companies consider age, lifestyle choices, family medical history, and several other factors when determining premium rates for individual life insurance policies. The principle of life expectancy suggests that you should purchase a life insurance policy for yourself and your spouse sooner rather than later.

CHAPTER 9 CONCLUSION

Thus, the developed model which is created by using IBM cloud services like IBM Watson studio, Watson machine learning and Node-Red services will predict the life expectancy of a specific demographic region based on the inputs provided. Various factors have a significant impact on the life span such as Adult Mortality, Population, Under 5 Deaths, Thinness 1-5 Years, Alcohol consumption, HIV, Hepatitis B, GDP, Percentage Expenditure and many more.

User can interact with the system via a simple user interface which is created by Node-red and the UI is simple just like a Google form which required an input to give you an output.

- Look at class within a particular country and see if these same factors are same in determining life expectancy for an individual.
- Use the Twitter API to incorporate NLP analysis for a country to see how it relates to Life Expectancy.
- Increase the dataset size with continuing UN and Global Data to incorporate new added features like population, GDP, environmental, and etc in order to test and clarify country groupings.
- Mental Health versus Life Expectancy
- As more data comes, that can be fed to the model for more accurate predictions.
- Currently, the project is just a web application. It can be developed to support other platforms like Android, IOS and Windows Mobile.
- Other regression models can also be used for prediction and later the best among them should be chosen.

- A Systematic Literature Review of Studies Analysing Inequalities in Health Expectancy among the Older Population (Benedetta Pongiglione, Bianca L. De Stavola, George B. Ploubidis)
- https://cloud.ibm.com/
- IBM Developer, "IBM Watson Studio: Create a project", 2019. [Online]. Available: <a href="https://www.youtube.com/watch?v=CUi8GezG1I&list=PLzpeuWUENMK2PYtasCaKK4bZj">https://www.youtube.com/watch?v=CUi8GezG1I&list=PLzpeuWUENMK2PYtasCaKK4bZj</a> aYzhW23L&index=2
- IBM Developer, "IBM Watson Studio: Jupyter notebook basics", 2019 [Online]. Available: <a href="https://www.youtube.com/watch?v=Jtej3Y6uUng">https://www.youtube.com/watch?v=Jtej3Y6uUng</a>
- IBM Cloud setup [Online]. Available: https://www.ibm.com/cloud/get-started.
- IBM Developer, "Node-RED starter tutorial" [Online]. Available: https://developer.ibm.com/tutorials/how-to-create-a-node-red-starter-application/.
- "Node-RED labs on the use of the Watson Developer Cloud services Watson developer-cloud/node-red-labs." [Online]. Available: <a href="https://github.com/watsondeveloper-cloud/node-red-labs">https://github.com/watsondeveloper-cloud/node-red-labs</a>
- Infuse AI into your applications with Watson AI to make more accurate predictions". [Online]. Available: <a href="https://www.ibm.com/watson/products-services">https://www.ibm.com/watson/products-services</a>.
- IBM Watson, "Intro to IBM Watson", 2018 [Online]. Available: https://www.youtube.com/watch?v=W3iPbFTAAds&feature=youtu.be
- "Get an understanding of the principles of machine learning." [Online]. Available: <a href="https://developer.ibm.com/technologies/machine-learning/series/learning-pathmachine-learning-for-developers/">https://developer.ibm.com/technologies/machine-learning/series/learning-pathmachine-learning-for-developers/</a>.
- IBM Developer, "IBM Watson Machine Learning: Get Started in IBM Cloud", 2020[Online]. Available: <a href="https://www.youtube.com/watch?v=NmdjtezQMSM">https://www.youtube.com/watch?v=NmdjtezQMSM</a>.
- Watson Studio Workshop, "Chapter 4 Build and Deploy models in Jupyter Notebooks" [Online]. Available: <a href="https://bookdown.org/caoying4work/watsonstudioworkshop/jn.html">https://bookdown.org/caoying4work/watsonstudioworkshop/jn.html</a>
- Kumar Rajarshi, "Life Expectancy (WHO) Statistical Analysis on factors influencing Life Expectancy", 2018. [Online]. Available: https://www.kaggle.com/kumarajarshi/lifeexpectancy-who
- IBM Developer, "IBM Watson: Sign up for Watson Studio and Watson Knowledge Catalog", 2019. [Online]. Available:
  - $\frac{https://www.youtube.com/watch?v=DBRGlAHdj48\&list=PLzpeuWUENMK2PYtasCaKK4b}{ZjaYzhW23L}$

### A. SOURCE CODE

### 1. Data Set

### First 20 rows

| 1  | Year | Status     | Adult Mortality | infant death: A | Icohol | percentage e | Hepatitis I | Measles | BMI  | under-fiv | Polio | Total exp | Diphther | HIV/AIDS | GDP     | Population | thinness | thinness | Income c | Schooling | Life expectancy |
|----|------|------------|-----------------|-----------------|--------|--------------|-------------|---------|------|-----------|-------|-----------|----------|----------|---------|------------|----------|----------|----------|-----------|-----------------|
| 2  | 2015 | Developing | 263             | 62              | 0.01   | 71.27962362  | 6.          | 5 1154  | 19.1 | 83        | 6     | 8.16      | 65       | 0.1      | 584.259 | 3.4E+07    | 17.2     | 17.3     | 0.479    | 10.1      | 65              |
| 3  | 2014 | Developing | 271             | 64              | 0.01   | 73.52358168  | 6           | 2 492   | 18.6 | 86        | 58    | 8.18      | 62       | 0.1      | 612.697 | 327582     | 17.5     | 17.5     | 0.476    | 10        | 59.9            |
| 4  | 2013 | Developing | 268             | 66              | 0.01   | 73.21924272  | 6           | 4 430   | 18.1 | 89        | 62    | 8.13      | 64       | 0.1      | 631.745 | 3.2E+07    | 17.7     | 17.7     | 0.47     | 9.9       | 59.9            |
| 5  | 2012 | Developing | 272             | 69              | 0.01   | 78.1842153   | 6           | 7 2787  | 17.6 | 93        | 67    | 8.52      | 67       | 0.1      | 669.959 | 3696958    | 17.9     | 18       | 0.463    | 9.8       | 59.5            |
| 6  | 2011 | Developing | 275             | 71              | 0.01   | 7.097108703  | 6           | 8 3013  | 17.2 | 97        | 68    | 7.87      | 68       | 0.1      | 63.5372 | 2978599    | 18.2     | 18.2     | 0.454    | 9.5       | 59.2            |
| 7  | 2010 | Developing | 279             | 74              | 0.01   | 79.67936736  | 6           | 6 1989  | 16.7 | 102       | 66    | 9.2       | 66       | 0.1      | 553.329 | 2883167    | 18.4     | 18.4     | 0.448    | 9.2       | 58.8            |
| 8  | 2009 | Developing | 281             | 77              | 0.01   | 56.76221682  | 6           | 3 2861  | 16.2 | 106       | 63    | 9.42      | 63       | 0.1      | 445.893 | 284331     | 18.6     | 18.7     | 0.434    | 8.9       | 58.6            |
| 9  | 2008 | Developing | 287             | 80              | 0.03   | 25.87392536  | 6           | 4 1599  | 15.7 | 110       | 64    | 8.33      | 64       | 0.1      | 373.361 | 2729431    | 18.8     | 18.9     | 0.433    | 8.7       | 58.1            |
| 10 | 2007 | Developing | 295             | 82              | 0.02   | 10.91015598  | 6           | 3 1141  | 15.2 | 113       | 63    | 6.73      | 63       | 0.1      | 369.836 | 2.7E+07    | 19       | 19.1     | 0.415    | 8.4       | 57.5            |
| 11 | 2006 | Developing | 295             | 84              | 0.03   | 17.17151751  | 6           | 4 1990  | 14.7 | 116       | 58    | 7.43      | 58       | 0.1      | 272.564 | 2589345    | 19.2     | 19.3     | 0.405    | 8.1       | 57.3            |
| 12 | 2005 | Developing | 291             | 85              | 0.02   | 1.388647732  | 6           | 6 1296  | 14.2 | 118       | 58    | 8.7       | 58       | 0.1      | 25.2941 | 257798     | 19.3     | 19.5     | 0.396    | 7.9       | 57.3            |
| 13 | 2004 | Developing | 293             | 87              | 0.02   | 15.29606643  | 6           | 7 466   | 13.8 | 120       | 5     | 8.79      | 5        | 0.1      | 219.141 | 2.4E+07    | 19.5     | 19.7     | 0.381    | 6.8       | 57              |
| 14 | 2003 | Developing | 295             | 87              | 0.01   | 11.08905273  | 6           | 5 798   | 13.4 | 122       | 41    | 8.82      | 41       | 0.1      | 198.729 | 2364851    | 19.7     | 19.9     | 0.373    | 6.5       | 56.7            |
| 15 | 2002 | Developing | 3               | 88              | 0.01   | 16.88735091  | 6           | 4 2486  | 13   | 122       | 36    | 7.76      | 36       | 0.1      | 187.846 | 2.2E+07    | 19.9     | 2.2      | 0.341    | 6.2       | 56.2            |
| 16 | 2001 | Developing | 316             | 88              | 0.01   | 10.5747282   | 6           | 8762    | 12.6 | 122       | 35    | 7.8       | 33       | 0.1      | 117.497 | 2966463    | 2.1      | 2.4      | 0.34     | 5.9       | 55.3            |
| 17 | 2000 | Developing | 321             | 88              | 0.01   | 10.42496     | 6.          | 2 6532  | 12.2 | 122       | 24    | 8.2       | 24       | 0.1      | 114.56  | 293756     | 2.3      | 2.5      | 0.338    | 5.5       | 54.8            |
| 18 | 2015 | Developing | 74              | 0               | 4.6    | 364.9752287  | 9           | 9 0     | 58   | 0         | 99    | 6         | 99       | 0.1      | 3954.23 | 28873      | 1.2      | 1.3      | 0.762    | 14.2      | 77.8            |
| 19 | 2014 | Developing | 8               | 0               | 4.51   | 428.7490668  | 9.          | 8 0     | 57.2 | 1         | 98    | 5.88      | 98       | 0.1      | 4575.76 | 288914     | 1.2      | 1.3      | 0.761    | 14.2      | 77.5            |
| 20 | 2013 | Developing | 84              | 0               | 4.76   | 430.8769785  | 9           | 9 0     | 56.5 | 1         | 99    | 5.66      | 99       | 0.1      | 4414.72 | 289592     | 1.3      | 1.4      | 0.759    | 14.2      | 77.2            |

Link: <a href="https://www.kaggle.com/kumarajarshi/life-expectancy-who?rvi=1">https://www.kaggle.com/kumarajarshi/life-expectancy-who?rvi=1</a>

### 2. Watson Studio

Life Expectancy Code: -

### Loading packages¶

In [1]:

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model\_selection import train\_test\_split,cross\_val\_score
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear\_model import LinearRegression
from sklearn.metrics import mean\_absolute\_error,mean\_squared\_error,r2\_score
from sklearn.preprocessing import LabelEncoder

### Importing data

In [2]:

import types
import pandas as pd
from botocore.client import Config
import ibm\_boto3

def \_\_iter\_\_(self): return 0

```
# @hidden_cell
```

client b0ddd268e7ab4b6f853921db0bb6d9c8 = ibm boto3.client(service name='s3',

ibm api key id='sdPkjBgs0xTat05fo5BEdMQPp eWT9 RgP bEwyji33K',

ibm auth endpoint="https://iam.cloud.ibm.com/oidc/token",

<sup>#</sup> The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials.

<sup>#</sup> You might want to remove those credentials before you share the notebook.

```
config=Config(signature_version='oauth'),
endpoint_url='https://s3.eu-geo.objectstorage.service.networklayer.com')
```

 $body = client\_b0ddd268e7ab4b6f853921db0bb6d9c8.get\_object (Bucket='predicting life expectancy-do not delete-pr-c2fohwcni1ybca', Key='Life Expectancy Data.csv') ['Body']$ 

# add missing \_\_iter\_\_ method, so pandas accepts body as file-like object

if not hasattr(body, "\_\_iter\_\_"): body.\_\_iter\_\_ = types.MethodType( \_\_iter\_\_, body )

 $df = pd.read\_csv(body)$ 

df.head()

Out[2]:

|   | Country     | Year | Status     | Life<br>expectancy |       | infant<br>deaths | Alcohol | percentage<br>expenditure |      | Measles |     | Polio | Total<br>expenditure | Diphtheria | HIV/AII |
|---|-------------|------|------------|--------------------|-------|------------------|---------|---------------------------|------|---------|-----|-------|----------------------|------------|---------|
| 0 | Afghanistan | 2015 | Developing | 65.0               | 263.0 | 62               | 0.01    | 71.279624                 | 65.0 | 1154    |     | 6.0   | 8.16                 | 65.0       | 0.1     |
| 1 | Afghanistan | 2014 | Developing | 59.9               | 271.0 | 64               | 0.01    | 73.523582                 | 62.0 | 492     | 4.0 | 58.0  | 8.18                 | 62.0       | 0.1     |
| 2 | Afghanistan | 2013 | Developing | 59.9               | 268.0 | 66               | 0.01    | 73.219243                 | 64.0 | 430     |     | 62.0  | 8.13                 | 64.0       | 0.1     |
| 3 | Afghanistan | 2012 | Developing | 59.5               | 272.0 | 69               | 0.01    | 78.184215                 | 67.0 | 2787    |     | 67.0  | 8.52                 | 67.0       | 0.1     |
| 4 | Afghanistan | 2011 | Developing | 59.2               | 275.0 | 71               | 0.01    | 7.097109                  | 68.0 | 3013    |     | 68.0  | 7.87                 | 68.0       | 0.1     |

5 rows × 22 columns

In [3]:

df.shape

Out[3]:

(2938, 22)

In [4]:

df.describe()

Out[4]:

|       | Year        | Life<br>expectancy | Adult<br>Mortality | infant<br>deaths | Alcohol     | percentage<br>expenditure | Hepatitis B | Measles       | ВМІ         | under-five<br>deaths |   |
|-------|-------------|--------------------|--------------------|------------------|-------------|---------------------------|-------------|---------------|-------------|----------------------|---|
| count | 2938.000000 | 2928.000000        | 2928.000000        | 2938.000000      | 2744.000000 | 2938.000000               | 2385.000000 | 2938.000000   | 2904.000000 | 2938.000000          | 4 |
| mean  | 2007.518720 | 69.224932          | 164.796448         | 30.303948        | 4.602861    | 738.251295                | 80.940461   | 2419.592240   | 38.321247   | 42.035739            | 1 |
| std   | 4.613841    | 9.523867           | 124.292079         | 117.926501       | 4.052413    | 1987.914858               | 25.070016   | 11467.272489  | 20.044034   | 160.445548           | 1 |
| min   | 2000.000000 | 36.300000          | 1.000000           | 0.000000         | 0.010000    | 0.000000                  | 1.000000    | 0.000000      | 1.000000    | 0.000000             |   |
| 25%   | 2004.000000 | 63.100000          | 74.000000          | 0.000000         | 0.877500    | 4.685343                  | 77.000000   | 0.000000      | 19.300000   | 0.000000             | ī |
| 50%   | 2008.000000 | 72.100000          | 144.000000         | 3.000000         | 3.755000    | 64.912906                 | 92.000000   | 17.000000     | 43.500000   | 4.000000             | ( |
| 75%   | 2012.000000 | 75.700000          | 228.000000         | 22.000000        | 7.702500    | 441.534144                | 97.000000   | 360.250000    | 56.200000   | 28.000000            | ( |
| max   | 2015.000000 | 89.000000          | 723.000000         | 1800.000000      | 17.870000   | 19479.911610              | 99.000000   | 212183.000000 | 87.300000   | 2500.000000          | ( |

In [5]:

df.describe(include='all')

Out[5]:

|        | Country                        | Year        | Status     | Life<br>expectancy | Adult<br>Mortality | infant<br>deaths | Alcohol     | percentage<br>expenditure | Hepatitis B | Measles       |         |
|--------|--------------------------------|-------------|------------|--------------------|--------------------|------------------|-------------|---------------------------|-------------|---------------|---------|
| count  | 2938                           | 2938.000000 | 2938       | 2928.000000        | 2928.000000        | 2938.000000      | 2744.000000 | 2938.000000               | 2385.000000 | 2938.000000   | <br>29  |
| unique | 193                            | NaN         | 2          | NaN                | NaN                | NaN              | NaN         | NaN                       | NaN         | NaN           | <br>Na  |
| top    | Central<br>African<br>Republic | NaN         | Developing | NaN                | NaN                | NaN              | NaN         | NaN                       | NaN         | NaN           | <br>Na  |
| freq   | 16                             | NaN         | 2426       | NaN                | NaN                | NaN              | NaN         | NaN                       | NaN         | NaN           | <br>Na  |
| mean   | NaN                            | 2007.518720 | NaN        | 69.224932          | 164.796448         | 30.303948        | 4.602861    | 738.251295                | 80.940461   | 2419.592240   | <br>82  |
| std    | NaN                            | 4.613841    | NaN        | 9.523867           | 124.292079         | 117.926501       | 4.052413    | 1987.914858               | 25.070016   | 11467.272489  | <br>23  |
| min    | NaN                            | 2000.000000 | NaN        | 36.300000          | 1.000000           | 0.000000         | 0.010000    | 0.000000                  | 1.000000    | 0.000000      | <br>3.0 |
| 25%    | NaN                            | 2004.000000 | NaN        | 63.100000          | 74.000000          | 0.000000         | 0.877500    | 4.685343                  | 77.000000   | 0.000000      | <br>78  |
| 50%    | NaN                            | 2008.000000 | NaN        | 72.100000          | 144.000000         | 3.000000         | 3.755000    | 64.912906                 | 92.000000   | 17.000000     | <br>93  |
| 75%    | NaN                            | 2012.000000 | NaN        | 75.700000          | 228.000000         | 22.000000        | 7.702500    | 441.534144                | 97.000000   | 360.250000    | <br>97  |
| max    | NaN                            | 2015.000000 | NaN        | 89.000000          | 723.000000         | 1800.000000      | 17.870000   | 19479.911610              | 99.000000   | 212183.000000 | <br>99  |

11 rows × 22 columns

pd.isnull(df).sum()

Out[6]:

In [6]:

Country Year Status 0 Life expectancy 10 Adult Mortality 10 infant deaths 0 Alcohol 194 percentage expenditure 0 Hepatitis B 553 Measles 0 BMI 34 under-five deaths 0 Polio 19 Total expenditure 226 Diphtheria 19 HIV/AIDS 0 GDP 448 Population 652 thinness 1-19 years 34 thinness 5-9 years 34 Income composition of resources 167 Schooling 163 dtype: int64

In [7]:

temp=pd.DataFrame(index=df.columns)
temp['data\_types']=df.dtypes
temp['null\_count']=df.isnull().sum()
temp['unique\_count']=df.nunique()

In [8]:

temp

Out[8]:

| 80 h                            | data_types | null_count | unique_count |
|---------------------------------|------------|------------|--------------|
| Country                         | object     | 0          | 193          |
| Year                            | int64      | 0          | 16           |
| Status                          | object     | 0          | 2            |
| Life expectancy                 | float64    | 10         | 362          |
| Adult Mortality                 | float64    | 10         | 425          |
| infant deaths                   | int64      | 0          | 209          |
| Alcohol                         | float64    | 194        | 1076         |
| percentage expenditure          | float64    | 0          | 2328         |
| Hepatitis B                     | float64    | 553        | 87           |
| Measles                         | int64      | 0          | 958          |
| ВМІ                             | float64    | 34         | 608          |
| under-five deaths               | int64      | 0          | 252          |
| Polio                           | float64    | 19         | 73           |
| Total expenditure               | float64    | 226        | 818          |
| Diphtheria                      | float64    | 19         | 81           |
| HIV/AIDS                        | float64    | 0          | 200          |
| GDP                             | float64    | 448        | 2490         |
| Population                      | float64    | 652        | 2278         |
| thinness 1-19 years             | float64    | 34         | 200          |
| thinness 5-9 years              | float64    | 34         | 207          |
| Income composition of resources | float64    | 167        | 625          |
| Schooling                       | float64    | 163        | 173          |

In [9]:

# Developing: 1

# Developed:0

le = LabelEncoder()

df['Status'] = le.fit\_transform(df['Status'])

### **EDA**

In [10]:

sns.pairplot(df)

 $/opt/conda/envs/Python 36/lib/python 3.6/site-packages/numpy/lib/histograms.py: 754: Runtime Warning: invalid value encountered in greater\_equal$ 

 $/opt/conda/envs/Python 36/lib/python 3.6/site-packages/numpy/lib/histograms.py: 755: Runtime Warning: invalid value encountered in less\_equal$ 

Out[10]:

<seaborn.axisgrid.PairGrid at 0x7f7ec00ca2b0>



In [11]:

plt.figure(figsize = (14, 10)) sns.heatmap(df.corr(),annot=**True**)

Out[11]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f7eb2359400>



### Preprocessing the data

```
In [12]:
country list = df.Country.unique()
fill list = ['Country', 'Year', 'Status', 'Life expectancy', 'Adult Mortality',
    'infant deaths', 'Alcohol', 'percentage expenditure', 'Hepatitis B',
    'Measles', 'BMI', 'under-five deaths', 'Polio', 'Total expenditure',
    'Diphtheria', 'HIV/AIDS', 'GDP', 'Population',
    'thinness 1-19 years', 'thinness 5-9 years',
    'Income composition of resources', 'Schooling']
                                                                                                             In [13]:
for country in country list:
  df.loc[df]'Country'] == country,fill list] = df.loc[df]'Country'] == country,fill list].interpolate()
df=df.dropna()
                                                                                                             In [14]:
df=df.drop(['Country'],axis=1)
df.head()
                                                                                                            Out[14]:
```

|   | Year | Status | Life<br>expectancy | Adult<br>Mortality |    | Alcohol | percentage<br>expenditure | -    | Measles | ВМІ  | <br>Polio | Total<br>expenditure | Diphtheria | HIV/AIDS |        |
|---|------|--------|--------------------|--------------------|----|---------|---------------------------|------|---------|------|-----------|----------------------|------------|----------|--------|
| 0 | 2015 | 1      | 65.0               | 263.0              | 62 | 0.01    | 71.279624                 | 65.0 | 1154    | 19.1 | <br>6.0   | 8.16                 | 65.0       | 0.1      | 584.25 |
| 1 | 2014 | 1      | 59.9               | 271.0              | 64 | 0.01    | 73.523582                 | 62.0 | 492     | 18.6 | <br>58.0  | 8.18                 | 62.0       | 0.1      | 612.69 |
| 2 | 2013 | 1      | 59.9               | 268.0              | 66 | 0.01    | 73.219243                 | 64.0 | 430     | 18.1 | <br>62.0  | 8.13                 | 64.0       | 0.1      | 631.74 |
| 3 | 2012 | 1      | 59.5               | 272.0              | 69 | 0.01    | 78.184215                 | 67.0 | 2787    | 17.6 | <br>67.0  | 8.52                 | 67.0       | 0.1      | 669.95 |
| 4 | 2011 | 1      | 59.2               | 275.0              | 71 | 0.01    | 7.097109                  | 68.0 | 3013    | 17.2 | <br>68.0  | 7.87                 | 68.0       | 0.1      | 63.537 |

5 rows × 21 columns

In [15]:

# Divide the dataset into dependent and independent variables

#x:features and y:labels

x = df.drop(['Life expectancy '],axis = 1)

y = df['Life expectancy ']

In [16]:

x.shape,y.shape

Out[16]:

((1987, 20), (1987,))

In [17]:

# Splitting the data into Train and Validation set

xtrain, xtest, ytrain, ytest = train\_test\_split(x,y,test\_size=0.2, random\_state=0)

In [18]:

xtrain.shape,ytrain.shape

Out[18]:

((1589, 20), (1589,))

In [19]:

xtest.shape,ytest.shape

Out[19]:

((398, 20), (398,))

### Linear Regression

In [20]:

lr = LinearRegression()

lr.fit(xtrain,ytrain)

Out[20]:

 $\label{linearRegression} LinearRegression(copy\_X=True, fit\_intercept=True, n\_jobs=None, \\ normalize=False)$ 

In [21]:

print('R\_square score on the training: %.2f % lr.score(xtrain,ytrain))

R\_square score on the training: 0.84

In [22]:

```
lr pred = lr.predict(xtest)
                                                                                                    In [23]:
print("Mean squared error: %.2f" % mean squared error(ytest,lr pred))
print("Mean absolute error: %.2f" % mean_absolute_error(ytest, lr_pred))
print('R square score: %.2f' % r2 score(ytest, lr pred))
Mean squared error: 16.04
Mean absolute error: 3.04
R square score: 0.82
Decision Tree Regression
                                                                                                    In [24]:
dtr = DecisionTreeRegressor()
dtr_model = dtr.fit(xtrain,ytrain)
                                                                                                    In [25]:
decision_tree_score = cross_val_score(dtr_model,xtrain,ytrain,cv=5)
                                                                                                    In [26]:
dtr pred = dtr.predict(xtest)
                                                                                                    In [27]:
print("mean cross validation score: %.2f" % np.mean(decision tree score))
print("score without cv: %.2f" % dtr model.score(xtrain,ytrain))
print("R^2 score on the test data %.2f"% r2_score(ytest,dtr_pred))
mean cross validation score: 0.91
score without cv: 1.00
R^2 score on the test data 0.91
Random Forest Regression
                                                                                                    In [28]:
rfr = RandomForestRegressor(n estimators=1000,random state=0)
                                                                                                    In [29]:
rfr_model = rfr.fit(xtrain,ytrain)
                                                                                                    In [30]:
random forest score = cross val score(rfr model,xtrain,ytrain, cv = 5)
                                                                                                    In [31]:
rfr_pred = rfr.predict(xtest)
                                                                                                    In [32]:
print("mean cross validation score: %.2f" % np.mean(random forest score))
print("score without cv: %.2f" % rfr model.score(xtrain, ytrain))
print("R^2 score on the test data %.2f" %r2_score(ytest, rfr_pred))
mean cross validation score: 0.96
score without cv: 0.99
R^2 score on the test data 0.96
                                                                                                    In [33]:
```

### > JSON data for testing after deployment:

scoring endpoint

{"fields":["Country", "Year", "Status", "BMI", "Adult\_Mortality", "Infant\_Deaths", "Alcohol", "Percentage\_Expenditure", "Hepatitis\_B", "Under\_Five\_Deaths", "Polio", "Total\_Expenditure", "Diphtheria", "HIV/AIDS", "GDP","Population", "Thinness\_10\_19\_years", "Thinness\_5\_9\_years", "Income\_Composition\_of\_Resources", "Schooling", "Measles"], "values":[["Zimbabwe",2000, "Developing", 25.5,491.0,24,1.68,0.0,79.0,39,78.0, 7.10,78.0,3.2,547.358879,122222251.0, 11.0,11.2,0.434,9.8,1154]]

In [42]:

### 3. Node Red

### > Flows.json

[{"id":"3c7c8f37.9002d","type":"tab","label":"UI Life for Expectancy Prediction", "disabled": false, "info": ""}, {"id": "c33ae67b.11da38", "type": "function", "z ":"3c7c8f37.9002d","name":"PreToken","func":"// global.set(\"c name\",msg.payload.c name)\nglobal.set(\"ye\",msg.payload.ye)\nglob al.set(\"status\",msg.payload.stat)\nglobal.set(\"adult mort\",msg.payload.adult mort) \nglobal.set(\"in death\\",msg.payload.in death\\nglobal.set(\"alcohol\\",msg.payload.a lcohol)\nglobal.set(\"per expen\\",msg.payload.per expen)\nglobal.set(\"hepa b\",ms g.payload.hepa b)\nglobal.set(\"measles\",msg.payload.measles)\nglobal.set(\"bmi\", msg.payload.bmi)\nglobal.set(\"un five death\",msg.payload.un five death)\nglobal. set(\"polio\",msg.payload.polio)\nglobal.set(\"total expen\",msg.payload.total expen) \nglobal.set(\"diphth\",msg.payload.diphth)\nglobal.set(\"hiv\",msg.payload.hiv)\nglo bal.set(\"gdp\",msg.payload.gdp)\nglobal.set(\"population\",msg.payload.population)\ nglobal.set(\"thin 19\\",msg.payload.thin 19)\nglobal.set(\"thin 9\\",msg.payload.thin 9)\nglobal.set(\"income comp\\",msg.payload.income comp)\nglobal.set(\"schooling \",msg.payload.schooling)\n\nvar apikey=\"Q5OTnXXpHC NAFPq0PQFGrg1AV4VeS7hUHr80lsPgTo1\";\nmsg.hea ders={\"content-type\":\"application/x-www-formurlencoded\"}\nmsg.payload={\"grant\_type\":\"urn:ibm:params:oauth:granttype:apikey\",\"apikey\":apikey}\nreturn msg;","outputs":1,"noerr":0,"x":260,"y":260,"wires":[["9d3b48c5.5d80e8"]]},{"id":" 9d3b48c5.5d80e8","type":"http request","z":"3c7c8f37.9002d","name":"","method":"POST","ret":"obj","paytoqs":fal se,"url":"https://iam.cloud.ibm.com/identity/token","tls":"","persist":false,"proxy":"", "authType":"","x":430,"y":260,"wires":[["9111ba94.358e98"]]},{"id":"6dcc1a68.2d6 bd4","type":"inject","z":"3c7c8f37.9002d","name":"","topic":"","payload":"","payloa dType":"date","repeat":"","crontab":"","once":false,"onceDelay":0.1,"x":100,"y":180, "wires":[["c33ae67b.11da38"]]},{"id":"b53e9c8b.de2df","type":"debug","z":"3c7c8f 37.9002d", "name": "", "active": true, "tosidebar": true, "console": false, "tostatus": false, "c omplete":"payload","targetType":"msg","x":710,"y":40,"wires":[]},{"id":"9111ba94. 358e98", "type": "function", "z": "3c7c8f37.9002d", "name": "Send EndPoint", "func": "var token=msg.payload.access token\nvar instance id=\"28607ee8-f59c-42a8-87e7-5941b3198461\"\nmsg.headers={'Content-\"+token,\"ML-Instance-Type': 'application/json',\"Authorization\":\"Bearer ID\":instance id $\n\n$ / var c name global.get('c name')\nvar global.get('ye')\nvar status global.get('status')\nvar adult mort global.get('adult mort')\nvar in death = global.get('in death')\nvar global.get('alcohol')\nvar per expen = global.get('per expen')\nvar hepa b bmi global.get('hepa b')\nvar measles = global.get('measles')\nvar global.get('bmi')\nvar un five death = global.get('un five death')\nvar polio global.get('polio')\nvar total\_expen = global.get('total expen')\nvar diphth global.get('diphth')\nvar hiv = global.get('hiv')\nvar gdp = global.get('gdp')\nvar population = global.get('population')\nvar thin  $19 = \text{global.get('thin } 19')\nvar thin <math>9 = \text{global.get('thin } 19')$ global.get('thin 9')\nvar income comp = global.get('income comp')\nvar schooling = global.get('schooling')\n\nmsg.payload={\"fields\": \n[ 'Year', 'Status', Mortality', 'infant deaths', \n'Alcohol', 'percentage expenditure', 'Hepatitis B', 'Measles ', \n' BMI', 'under-five deaths', 'Polio', 'Total expenditure', \n'Diphtheria', 'HIV/AIDS', 'GDP', 'Population', 'thinness 1-19 years', \n' thinness 5-9 years', 'Income composition of resources', 'Schooling'],\n\"values\":\n[[ye, status, adult mort, in death, alcohol, \nper expen,hepa b, measles, bmi, un five death, polio,

```
\ntotal expen,diphth,hiv,gdp,population,thin 19,
\nthin 9,income comp,schooling]]\n}\nreturn
msg;","outputs":1,"noerr":0,"x":650,"y":280,"wires":[["d8502ff9.25e77"]]},{"id":"d8
502ff9.25e77","type":"http
request","z":"3c7c8f37.9002d","name":"","method":"POST","ret":"obj","paytoqs":fal
se,"url":"https://eu-gb.ml.cloud.ibm.com/v3/wml instances/28607ee8-f59c-42a8-
87e7-5941b3198461/deployments/d4c61f56-0f6e-4f02-b21c-
53f34fb3e563/online","tls":"","persist":false,"proxy":"","authType":"","x":570,"y":18
0,"wires":[["7706e593.4602cc"]]},{"id":"7706e593.4602cc","type":"function","z":"3
c7c8f37.9002d","name":"Get
                                                                                  From
EndPoint", "func": "msg.payload=msg.payload.values[0][0]; \nreturn
msg;\n","outputs":1,"noerr":0,"x":490,"y":80,"wires":[["b53e9c8b.de2df","b4a0fecc.
5c50c"]]},{"id":"af8c088.67ea2f8","type":"ui form","z":"3c7c8f37.9002d","name":"
","label":"","group":"2ab45756.fcf838","order":0,"width":0,"height":0,"options":[{"la
bel":"Country", "value": "name", "type": "text", "required": false, "rows": null \, \{ "label": "
Year", "value": "ye", "type": "number", "required": false, "rows": null \ . \ [ label": "Status", "
value":"stat","type":"text","required":false,"rows":null},{"label":"Adult
Mortality", "value": "adult mort", "type": "number", "required": false, "rows": null \}, \{ "lab
el":"infant
deaths","value":"in death","type":"number","required":false,"rows":null},{"label":"A
lcohol","value":"alcohol","type":"number","required":false,"rows":null},{"label":"per
centage
expenditure", "value": "per expen", "type": "number", "required": false, "rows": null \ { "la
bel":"Hepatitis
B","value": "hepa b","type": "number", "required": false, "rows": null}, { "label": "Measle
s ","value":"measles","type":"number","required":false,"rows":null},{"label":" BMI
","value":"bmi","type":"number","required":false,"rows":null},{"label":"under-five
deaths
","value":"un five death","type":"number","required":false,"rows":null},{"label":"P
olio", "value": "polio", "type": "number", "required": false, "rows": null \}, \{ "label": "Total
expenditure", "value": "total expen", "type": "number", "required": false, "rows": null \ { "l
abel":"Diphtheria
","value":"diphth","type":"number","required":false,"rows":null},{"label":"
HIV/AIDS","value":"hiv","type":"number","required":false,"rows":null},{"label":"G
DP","value":"gdp","type":"number","required":false,"rows":null},{"label":"Populatio
n", "value": "population", "type": "number", "required": false, "rows": null \}, \{ "label": "
                                                                                  1-19
thinness
years","value":"thin 19","type":"number","required":false,"rows":null},{"label":"
years", "value": "thin 9", "type": "number", "required": false, "rows": null \}, \{ "label": "Inco
                                      composition
resources", "value": "income comp", "type": "number", "required": false, "rows": null \ , \{"l
abel": "Schooling", "value": "schooling", "type": "number", "required": false, "rows": null}
],"formValue":{"name":"","ye":"","stat":"","adult mort":"","in death":"","alcohol":""
"per expen":"","hepa b":"","measles":"","bmi":"","un five death":"","polio":"","tot
al expen":"","diphth":"","hiv":"","gdp":"","population":"","thin 19":"","thin 9":"","i
ncome comp":"","schooling":""},"payload":"","submit":"submit","cancel":"cancel","
topic":"","x":70,"y":320,"wires":[["c33ae67b.11da38"]]},{"id":"b4a0fecc.5c50c","typ
e":"ui text","z":"3c7c8f37.9002d","group":"2ab45756.fcf838","order":1,"width":0,"h
eight":0,"name":"","label":"Life
                                                                           Expectancy
Prediction", "format": "{{msg.payload}}", "layout": "row-
```

spread","x":780,"y":120,"wires":[]},{"id":"2ab45756.fcf838","type":"ui\_group","z":" ","name":"Life Expectancy Prediction","tab":"c777de86.27fd3","order":1,"disp":true,"width":"6","collapse":false },{"id":"c777de86.27fd3","type":"ui\_tab","z":"","name":"Home","icon":"dashboard", "disabled":false,"hidden":false}]

### **Node-Red App Link:**

 $\underline{https://noderedlifeexpectancy.eugb.mybluemix.net/ui/\#!/0?socketid=1M7RNpEfdRZx8JywAAAB}$ 

**GitHub Link:** <a href="https://github.com/SmartPracticeschool/lISPS-INT-2835-Predicting-Life-Expectancy-using-Machine-Learning">https://github.com/SmartPracticeschool/lISPS-INT-2835-Predicting-Life-Expectancy-using-Machine-Learning</a>