Algoritmos de Ordenamiento

Algoritmos de Ordenamiento

Están diseñados para colocar elementos de una lista en un orden específico.

¿Qué podemos ordenar?

Cualquier estructura de datos con elementos que sean ordenables

- Podemos ordenar números, porque unos son mayores que otros.
- Podemos ordenar meses, porque unos vienen antes que otros
- Podemos ordenar palabras, por el orden en el alfabeto.

Algoritmos de ordenación

Algunos ejemplos:

- Ordenamiento de burbuja (Bubble sort)
- Ordenamiento por selección (Selection sort)
- Ordenamiento por inserción (insertion sort)
- Ordenamiento por unión (Merge sort)
- Ordenamiento rápido (Quick sort)
- Ordenamiento por montones (Heap Sort)

La eficiencia del ordenamiento es importante ya que **impacta en la eficiencia de otros algoritmos**, como los algoritmos de búsqueda

Algorithm	Best Time Complexity	Average Time Complexity	Worst Time Complexity	Worst Space Complexity
Linear Search	O(1)	O(n)	O(n)	O(1)
Binary Search	O(1)	O(log n)	O(log n)	O(1)
Bubble Sort	O(n)	O(n^2)	O(n^2)	O(1)
Selection Sort	O(n^2)	O(n^2)	O(n^2)	O(1)
Insertion Sort	O(n)	O(n^2)	O(n^2)	O(1)
Merge Sort	O(nlogn)	O(nlogn)	O(nlogn)	O(n)
Quick Sort	O(nlogn)	O(nlogn)	O(n^2)	O(log n)
Heap Sort	O(nlogn)	O(nlogn)	O(nlogn)	O(n)

Elements

Bubble Sort

Bubble Sort

6 5 3 1 8 7 2 4

Selection Sort

Selection Sort

INSERTION SORT

Insertion Sort

Merge Sort

Merge Sort

 $6 \ \ \, 5 \ \ \, 3 \ \ \, 1 \ \ \, 8 \ \ \, 7 \ \ \, 2 \ \ \, 4$

Recursión

Es la forma en la cual se especifica un proceso basado en su propia definición

Quick Sort

38215467

