Black-Scholes Formula, a physicist's perspective

1 (a)

Rewritten Using Brownian Motion:

 $ds(t) = \phi s(t)dt + \sigma s(t)dW(t)$, where W(t) is a standard brownian motion.

To illustrate the relation between **Gaussian Noise** and **Brownian Motion**, consider when using R(t), we're actually suggesting $s(t+\epsilon) = s(t) + \phi s(t)\epsilon + \sigma R\epsilon$. In this case, $R \sim \mathcal{N}(0,\frac{1}{\epsilon})$, therefore $R\epsilon \sim \mathcal{N}(0,\epsilon)$, which can be characterized as $W(t+\epsilon) - W(t)$. As $\epsilon \to 0$, $W(t+\epsilon) - W(t) \to dW(t)$. (It's really clearer to use *brownian motion* notation.) Brownian motion has the property that dW(t)dW(t) = dt, dW(t)dt = 0.

The original statement can be rewritten as:

$$df(t,s(t)) = f_t dt + \frac{1}{2}\sigma^2 s^2 f_{ss} dt + \phi s f_s dt + \sigma s dW(t)$$

According to $Taylor\ expansion\ formula$, we can write

$$df = f_t dt + f_s ds + \frac{1}{2} \{ f_{tt} dt^2 + (f_{ts} + f_{st}) dt ds(t) + f_{ss} ds(t) ds(t) \} + o(dt^2)$$
 (1)

$$\Longrightarrow df = f_t dt + f_s ds + \frac{1}{2} f_{ss} ds(t) ds(t) \tag{2}$$

Considering $ds(t) = \phi s(t)dt + \sigma s(t)dW(t), dW(t)dW(t) = dt, dW(t)dt = 0$, we have

$$df = f_t dt + \frac{1}{2}\sigma^2 s^2 f_{ss} dt + \phi s f_s dt + \sigma s dW(t)$$
(3)

2 (b)

$$c = c(t, s(t)), d\Pi = c_t dt + c_s ds + \frac{1}{2}c_{ss} ds ds - c_s ds.$$

 $d\Pi = c_t dt + \frac{1}{2}c_{ss}\sigma^2 s^2 dt$

3 (c)

3 (c)

$$d\Pi = r(c - c_s s)dt = c_t dt + \frac{1}{2}c_{ss}\sigma^2 s^2 dt$$

$$c_t + \frac{1}{2}\sigma^2 s^2 c_{ss} + rsc_s - rc = 0$$

4 Another Way of writing

According to non-arbitrage postulate, if at time 0, $c(0, S(0)) = c_0$, then we should should be able to construct a portfolio X(t) (with $X(0) = c_0$) to replicate exactly this option. We should use the underlying stock S(t) and the money market with interest rate r. Suppose we hold $\Delta(t)$ share of stock at time t, then it follows:

$$dX(t) = \Delta(t)dS(t) + r(X(t) - \Delta(t)S(t))dt = D_t dt + D_w dW(t)$$
(4)

where $D_t = \Delta(t)S(t)(\phi - r) + rX(t)$, $D_w = \Delta(t)S(t)\sigma$.

At the same time,

$$dc(t, S(t)) = c_t dt + c_s dS(t) + \frac{1}{2} c_{ss} dS(t) dS(t) = D'_t dt + D'_w dW(t)$$
 (5)

where $D'_t = c_t + c_s \phi S(t) + \frac{1}{2} \sigma^2 S(t)^2 c_{ss}, D'_w = c_s \sigma S(t)$.

Therefore, it should follows that $D_t = D'_t$, $D_w = D'_w$. The second relation yields instantly that $\Delta(t) = c_s$, while the first would amount to the Black-Scholes formula:

$$c_t + \frac{1}{2}\sigma^2 s^2 c_{ss} + rsc_s - rc = 0$$
(6)

5 (d)

Change variable
$$s=e^x$$
, we have $c_x=e^{-x}c_s$. $c_t=rc-rsc_s-\frac{1}{2}\sigma^2s^2c_{ss}=(r-(r-\frac{1}{2}\sigma^2)\frac{\partial}{\partial x}-\frac{1}{2}\sigma^2\frac{\partial^2}{\partial x^2})c$. Therefore $H_{BS}=(1-\frac{\partial}{\partial x})(r+\frac{1}{2}\sigma^2\frac{\partial}{\partial x})$.

6 (e)

$$p_{BS}(x,\tau;x') = \langle x|e^{-\tau H}|x'\rangle = \int_{\infty}^{\infty} \frac{dp}{2\pi} \langle x|e^{-\tau H}|p\rangle \langle p|x'\rangle \tag{7}$$

Taking $p = i \frac{\partial}{\partial x}$, using $\langle x|p \rangle = e^{ipx}$:

$$p_{BS}(x,\tau;x') = e^{-r\tau} \int_{-\infty}^{\infty} \frac{dp}{2\pi} exp\{-\frac{1}{2}\sigma^2 p^2 \tau + ip(x-x') + ip\tau(r-\frac{\sigma^2}{2})\}$$
 (8)

7 Notes 3

Finally, perform the Gaussian integration:

$$p_{BS}(x,\tau;x') = e^{-r\tau} \frac{1}{\sqrt{2\pi\tau\sigma^2}} exp\{-\frac{1}{2\sigma^2\tau} (x - x' + \tau(r - \frac{\sigma^2}{2}))^2\}$$
 (9)

7 Notes

Consider an electron which can only stays on a lattice if discrete points: x=na. The eigenvects should be:

$$|n
angle = egin{bmatrix} ... \ 0 \ 1 \ 0 \ ... \end{bmatrix}$$
 Then $\langle m|n
angle = \delta_{n,m}$