LIMITES D'UNE FONCTION

1. DÉFINITIONS

DÉFINITION

Limite infinie quand x tend vers l'infini.

Soit f une fonction définie sur un intervalle $[a; +\infty[$.

On dit que que f(x) tend vers $+\infty$ quand x tend vers $+\infty$ lorsque pour x suffisamment grand, f(x) est aussi grand que l'on veut. On écrit alors que $\lim_{x\to+\infty}f(x)=+\infty$.

$$\lim_{x \to +\infty} f(x) = +\infty$$

REMARQUE

On définit de façon similaire les limites :

$$\lim_{x \to +\infty} f(x) = -\infty; \lim_{x \to -\infty} f(x) = +\infty; \lim_{x \to -\infty} f(x) = -\infty.$$

DÉFINITION

Limite finie quand x tend vers l'infini.

Soit f une fonction définie sur un intervalle $[a; +\infty[$.

On dit que que f(x) tend vers l quand x tend vers $+\infty$ lorsque pour x suffisamment grand, f(x) est aussi proche de l que l'on veut. On écrit alors que $\lim_{x\to +\infty} f(x) = l$.

$$\lim_{x \to +\infty} f(x) = 0$$

REMARQUE

On définit de façon similaire la limite $\lim_{x \to -\infty} f(x) = l$.

DÉFINITION

Si $\lim_{x \to -\infty} f(x) = l$ ou $\lim_{x \to +\infty} f(x) = l$, on dit que la droite d'équation y = l est **asymptote horizontale** à la courbe représentative de la fonction f.

EXEMPLE

Sur la courbe ci-dessus, la droite d'équation y = 0 est **asymptote horizontale** à la courbe représentative de f.

DÉFINITION

Limite infinie quand x tend vers un réel.

Soit f une fonction définie sur un intervalle] a; b[(avec a < b).

On dit que que f(x) tend vers $+\infty$ quand x tend vers a par valeurs supérieures lorsque f(x) est aussi grand que l'on veut quand x se rapproche de a en restant supérieur à a. On écrit alors $\lim_{x \to a^+} f(x) = +\infty$ ou $\lim_{\substack{x \to a \\ x > a}} f(x) = +\infty$.

De même, on dit que que f(x) tend vers $+\infty$ quand x tend vers b par valeurs inférieures lorsque f(x) est aussi grand que l'on veut quand x se rapproche de b en restant inférieur à b. On écrit alors $\lim_{\substack{x \to b^- \\ x < b}} f(x) = +\infty$ ou $\lim_{\substack{x \to b \\ x < b}} f(x) = +\infty$.

Enfin, si $c \in]a; b[$, on dit que que f(x) tend vers $+\infty$ quand x tend vers c si f(x) tend vers $+\infty$ quand x tend vers c par valeurs supérieures et par valeurs inférieures. On écrit alors $\lim_{x \to c} f(x) = +\infty$.

REMARQUE

On définit de façon symétrique $\lim_{x\to a^-}f(x)=-\infty$, $\lim_{x\to a^+}f(x)=-\infty$ et $\lim_{x\to a}f(x)=-\infty$ en remplaçant « f(x) est aussi grand que l'on veut » par « f(x) est aussi petit que l'on veut » dans la définition.

DÉFINITION

Si $\lim_{x \to c^-} f(x) = \pm \infty$ ou $\lim_{x \to c^+} f(x) = \pm \infty$ ou $\lim_{x \to c} f(x) = \pm \infty$, on dit que la droite d'équation x = c est **asymptote verticale** à la courbe représentative de la fonction f.

EXEMPLE

Sur les trois courbes de la figure ci-dessous, la droite d'équation x = 0 est **asymptote verticale** à la courbe représentative de f.

DÉFINITION

Limite finie quand x tend vers un réel.

Soit f une fonction définie sur un intervalle] a; b[(avec a < b).

On dit que que f(x) tend vers l quand x tend vers a par valeurs supérieures lorsque f(x) se rapproche de l quand x se rapproche de a en restant supérieur à a.

On écrit alors
$$\lim_{x \to a^+} f(x) = l$$
 ou $\lim_{x \to a} f(x) = l$.

De même, on dit que que f(x) tend vers l quand x tend vers b par valeurs inférieures lorsque f(x) se rapproche de l quand x se rapproche de b en restant inférieur à b.

On écrit alors
$$\lim_{x \to b^{-}} f(x) = l$$
 ou $\lim_{x \to b} f(x) = l$.

Enfin, si $c \in]a;b[$, on dit que que f(x) tend vers l quand x tend vers c si f(x) tend vers l quand x tend vers c par valeurs supérieures et par valeurs inférieures.

On écrit alors $\lim_{x \to c} f(x) = l$.

2. LIMITES USUELLES

PROPRIÉTÉS

Pour tout entier n > 1:

•
$$\lim_{x \to -\infty} x^n = \begin{cases} -\infty \text{ si n est impair} \\ +\infty \text{ si n est pair} \end{cases}$$

$$\lim_{x \to +\infty} x^n = +\infty$$

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$

$$\lim_{x \to +\infty} \sqrt{x} = +\infty.$$

3. OPÉRATIONS SUR LES LIMITES

PROPRIÉTÉS

Limite d'une somme.

a désigne un réel ou $+\infty$ ou $-\infty$.

$\lim_{x \to a} f(x)$	$\lim_{x \to a} g(x)$	$\lim_{x \to a} f(x) + g(x)$
l	l'	l + l'
l	+∞	+∞
l	-∞	-∞
+∞	+∞	+∞
-∞	-∞	-∞
+∞	-∞	F.I.

F.I. signifie forme indéterminée.

REMARQUE

« Forme indéterminée » ne signifie **pas** que la limite n'existe pas mais que les formules d'opérations sur les limites ne permettent pas de trouver directement limite. Pour la calculer, il faut alors « lever l'indétermination » par exemple en simplifiant une fraction (cf. fiches méthodes).

PROPRIÉTÉS

Limite d'un produit.

a désigne un réel ou $+\infty$ ou $-\infty$.

$\lim_{x \to a} f(x)$	$\lim_{x \to a} g(x)$	$\lim_{x \to a} f(x) \times g(x)$
l	l'	$l \times l'$
$l \neq 0$	±∞	$(signe)\infty$
±∞	±∞	$(signe)\infty$
0	±∞	F.I.

- F.I. signifie forme indéterminée.
- $\pm \infty$ signifie que la formule s'applique pour $+\infty$ et pour $-\infty$.
- $(signe)\infty$ signifie que l'on utilise la règle des signes usuelle :
 - $+ \times + = +$
 - $+ \times = -$
 - $\times = +$

pour déterminer si la limite vaut $+\infty$ ou $-\infty$.

PROPRIÉTÉS

Limite d'un quotient.

a désigne un réel ou $+\infty$ ou $-\infty$.

$\lim_{x \to a} f(x)$	$\lim_{x \to a} g(x)$	$\lim_{x \to a} \frac{f(x)}{g(x)}$
l	$l' \neq 0$	<u>l</u> <u>l'</u>
$l \neq 0$	0	$(signe)\infty$
0	0	F.I.
l	±∞	0
±∞	l	(signe)∞
±∞	±∞	F.I.

PROPRIÉTÉ

Limite d'une fonction composée.

a, b et c désignent des réels ou $+\infty$ ou $-\infty$.

Si
$$\lim_{x \to a} f(x) = \frac{b}{b}$$
 et $\lim_{x \to b} g(x) = c$ alors:

$$\lim_{x \to a} g\left(f\left(x\right)\right) = c.$$

REMARQUE

On pose souvent X = f(x) («changement de variable») et on écrit alors :

$$\lim_{x \to a} X = \lim_{x \to a} f(x) = b$$

$$\lim_{x\to a}g\left(f\left(x\right)\right)=\lim_{X\to b}g\left(X\right)=c.$$

EXEMPLE

On cherche à calculer:

$$\lim_{x \to -\infty} \sqrt{1 + x^2}.$$

On pose $X = 1 + x^2$. Alors:

$$\lim_{x \to -\infty} X = \lim_{x \to -\infty} 1 + x^2 = +\infty$$

et

$$\lim_{x \to -\infty} \sqrt{1 + x^2} = \lim_{X \to +\infty} \sqrt{X} = +\infty.$$

4. THÉORÈMES DE COMPARAISON

THÉORÈMES

- Si $f(x) \ge g(x)$ sur un intervalle de la forme $[a; +\infty[$ et si $\lim_{x \to +\infty} g(x) = +\infty$ alors : $\lim_{x \to +\infty} f(x) = +\infty$.
- Si $f(x) \le g(x)$ sur un intervalle de la forme $[a; +\infty[$ et si $\lim_{x \to +\infty} g(x) = -\infty$ alors : $\lim_{x \to +\infty} f(x) = -\infty$.

THÉORÈME

Théorème des "gendarmes".

Si $g(x) \le f(x) \le h(x)$ sur un intervalle de la forme $[a; +\infty[$ et si $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} h(x) = l$ alors :

$$\lim_{x\to +\infty}f(x)=l.$$

Théorème des gendarmes

REMARQUE

On a des théorèmes similaires lorsque $x \to -\infty$.