

Республиканская олимпиада по химии Областной этап (2021-2022). Официальный комплект решений 11 класса

Инструкции и рекомендации для проверки работ:

Как вы можете заметить, перед каждой задачей есть таблица разбалловки, в которой указано общее количество баллов за задачу (столбец «Всего») и вес задачи (столбец «Все (%)»). Финальный балл за задачу расчитывается следующим образом:

балл за задачу =
$$\frac{\text{кол-во правильных очков ученика} \times \text{вес задачи}}{\text{общее кол-во баллов за задачу (Всего)}}$$

Обратите внимание, что общее количество баллов за каждую задачу не суммируется к 70 или 100 баллам. А вот «Вес» задач суммируется именно к 70. Система «внутренних баллов» и «весов» упрощает процесс проверки (т.к. предотвращает необходимость выдачи дробных баллов) и позволяет лучше корректировать сложность задач в контексте всей олимпиады.

Для вашего удобства мы создали шаблон таблицы оценивания в формате «Excel» с готовыми формулами – достаточно вбить внутренние баллы и файл сам посчитает итоговый результат каждого ученика. Будем сильно признательны, если вы отправите заполненный файл на почту results@qazcho.kz. Полученные результаты будут использованы исключительно для обезличенных статистических исследований.

Шаблон оценивания можно скачать по этому адресу: https://qazcho.kz/problems/

Решения этой олимпиады опубликованы на сайте www.qazcho.kz

Рекомендации по подготовке к олимпиадам по химии есть на сайте www.kazolymp.kz.

1																	18
1 H 1.008	2											13	14	15	16	17	2 He 4.003
3	4											5	6	7	8	9	10
Li 6.94	Be 9.01											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Αl	Si	Р	S	CI	Ar
22.99	24.31	04	00	00	0.4	05	00	07	00	00	00	26.98	28.09	30.97	32.06	35.45	39.95
19 K	Ca	Sc	Ti	23 V	Cr	Mn	Fe	27 Co	28 Ni	Cu	Zn	Ga	Ge	As	se	35 Br	36 Kr
39.10	Ua	44.96	II 47.87	V 50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.95	-	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	57-71	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.9 87	137.3 88		178.5 104	180.9 105	183.8 106	186.2 107	190.2 108	192.2 109	195.1 110	197.0 111	200.6 112	204.4 113	207.2 114	209.0 115	116	117	118
Fr	Ra	89- 103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
'.'	-	103	-	-	- J	-	-	-	-	-	-	-	'-'	-	-	-	<u>-</u>
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			138.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			-	232.0	231.0	238.0	-	-	-	-	-	-	-	-	-	-	-

Задача №1. Неизвестная двухосновная кислота (Загрибельный Б.)

1.1	1.2	Всего	Bec (%)
9	3	12	12

Массовая доля водорода в некоторой двухосновной кислоте равна 3.66%, а массовая доля кислорода -58.54%.

1. Определите формулу этой двухосновной кислоты, если известно, что она состоит из атомов трех элементов, а её молярная масса меньше 100. Определите формулу кислоты, укажите её название.

Общая формула кислоты примет следующий общий вид: H_xO_y Э $_z$

1 б за вывод общей формулы кислоты

Массовые доли элементов в кислоте вычисляются по следующим формулам:

$$w(H) = \frac{Ar(H) * x}{Ar(H) * x + Ar(O) * y + Ar(G) * z} = \frac{x}{x + 16y + Gz} = 0.0366$$

$$w(0) = \frac{Ar(0) * y}{Ar(H) * x + Ar(0) * y + Ar(3) * z} = \frac{16y}{x + 16y + 3z} = 0.5854$$

Таким образом получаем систему из двух уравнений и одного неравенства для четырех неизвестных:

$$\begin{cases} \frac{x}{x + 16y + 3z} = 0.0366 (1) \\ \frac{16y}{x + 16y + 3z} = 0.5854 (2) \\ x + 16y + 3z < 100 (3) \end{cases}$$

По 1 б за вывод каждого из элементов системы – всего 3 б

Преобразуем (1) в уравнение (4) относительно x:

$$x = 0.6078y + 0.0389z$$
 (4)

и подставляем результат в уравнение (2), получая путем преобразований уравнения относительно у и Э:

$$\vartheta = \frac{10.332y}{z} (5)$$

$$y = 0.09683z(6)$$

Подставляем результат (4) и (6) в неравенство (3) и получаем преобразованное неравенство (7):

$$3 < \frac{37.8}{Z}$$
 (7)

Комбинируя уравнение (5) и неравенство (7) получаем неравенство (8) относительно y:

Исходя из понимания химической природы y, все возможные значения (целые и положительные), которые может принимать y – это 1, 2 и 3.

Теперь проанализируем исходы уравнения (5), если принять возможные значения *у*:

$$y = 1, 3 = 10.332/z$$

$$y = 2, 3 = 20.664/z$$

$$y = 3, 3 = 31/z$$

Очевидно, что z тоже сильно ограничен в значениях сверху, поэтому имеет смысл проверить целые и положительные значения z начиная от 1.

y = 1, z = 1, 3 = 10.332 -элемента с таким атомным весом нет.

y = 2, z = 1, 3 = 20.664 -элемента с таким атомным весом нет.

$$y = 3$$
, $z = 1$, $3 = 31 -$ это фосфор, P .

Тогда значение x из (4): x = 3

Таким образом формула кислоты — $H_3O_3P = H_3PO_3$ — фосфористая кислота.

- 4 б за математически обоснованное установление формулы кислоты, 1 б за название кислоты всего 5 б (всего за пункт 9 баллов)
- 2. Напишите уравнение реакции кислоты с избытком раствора едкого натра и уравнение реакции с сернокислым раствором перманганата калия.

Уравнение реакции фосфористой кислоты с избытком раствора едкого натра:

$$2NaOH + H_3PO_3 = Na_2HPO_3 + 2H_2O$$

 $1\ 6\ за\ верное\ уравнение\ c\ коэффициентами.\ 0\ баллов\ если\ указано\ образование\ Na_3PO_3$

Уравнение реакции фосфористой кислоты с сернокислым раствором перманганата калия:

$$5H_3PO_3 + 2KMnO_4 + 3H_2SO_4 = 5H_3PO_4 + K_2SO_4 + 2MnSO_4 + 3H_2O_4$$

2 б за верное уравнение с коэффициентами

Задача №2. Кристаллические структуры (Курамшин Б.)

2.1	2.2	2.3	2.4	2.5	2.6	Всего	Bec (%)
4	3	6	4	4	6	27	13

Один из распространенных структурных типов бинарных веществ атомного состава 1:1 — структурный тип NaCl. На рисунке ниже представлена элементарная ячейка данного структурного типа. Элементарная ячейка — фрагмент пространства, параллельным переносом которого по трем направлениям получается кристаллическая решетка вещества. Помните, что традиционно атомы изображают на некотором расстоянии друг от друга, хотя в действительности кристалл упаковывается так, что каждый атом касается нескольких соседних (число шаров, которых касается данный шар, называется его координационным числом).

1. Ячейку обычно описывают параметром ячейки (в данном случае – ребро куба, a), и числом формульных единиц вещества в одной ячейке (Z).

Определите, сколько формульных единиц NaCl содержится в одной элементарной ячейке, каково координационное число ионов натрия и хлора, и покажите, как связан параметр ячейки a с радиусами катиона (r_+) и аниона (r_-) .

Атомов натрия -8 в вершинах (по 1/8, поскольку каждый атом делится восемью элементарными ячейками), 6 в гранях (по $\frac{1}{2}$, поскольку каждый атом делится гранью пополам), итого 4 атома.

Атомов хлора -12 в ребрах (по $\frac{1}{4}$, поскольку атом на ребре делится между 4 элементарными ячейками), 1 в центре, итого 4 атома (как и должно быть в соответствии с формулой NaCl).

Значит, в ячейке всего 4 формульных единицы NaCl, Z = 4.

верное Z - 2 балла

(неверное Z, но верный подсчет атомов Na или Cl-1 балл)

На ребре кубика укладывается полный диаметр атома хлора и, с концов ребра, два радиуса атома натрия. Значит, $a = 2r_- + 2r_+$.

верное выражение или эквивалентное ему

— 2 балла

2. Рассчитайте параметр ячейки NaCl, если плотность кристаллического NaCl равна 2.165 г/см^3 .

Если параметр ячейки равен a, то объём 1 кубика равен a^3 . Поскольку в каждом кубике всего Z формульных единиц NaCl, то объём a^3N_A соответствует Z моль NaCl, то есть ZM грамм NaCl. То есть:

$$\rho = \frac{ZM}{N_A a^3} \Rightarrow a = \sqrt[3]{\frac{ZM}{N_A \rho}} = \sqrt[3]{\frac{4 \cdot (35.45 + 22.99)}{6.02 \cdot 10^{23} \cdot 2.165}} = \mathbf{5.64 \cdot 10^{-8} cm} = \mathbf{5.64 \mathring{A}}$$
 3 балла

3. Радиус бромид-иона равен 1.82 Å. Рассчитайте радиус хлорид-иона и иона натрия, если плотность бромида натрия равна 3.226 г/см³.

Из плотности NaBr можно аналогично рассчитать параметр ячейки:

$$a = \sqrt[3]{\frac{ZM}{N_A \rho}} = \sqrt[3]{\frac{4 \cdot (79.9 + 22.99)}{6.02 \cdot 10^{23} \cdot 3.226}} = 5.96 \cdot 10^{-8} \text{cm} = 5.96 \text{Å}$$

балла

$$5.96 = 2r(Na^+) + 2 \cdot 1.82$$
, значит $r(Na^+) = 1.16 \text{ Å}$.

балла

Из параметра ячейки NaCl: $5.64 = 2 \cdot 1.16 + 2r(Cl^-)$, значит $r(Cl^-) = 1.66$ Å. **2** балла

Много совершенно непохожих друг на друга веществ часто имеют один тип кристаллической решетки. Так, например, вещества $\bf A$ и $\bf B$, не имеющие друг с другом общих элементов, кристаллизуются в структурном типе NaCl, но имеют другой параметр ячейки.

В таблице ниже представлены параметры ячейки и плотность вещества **A**. Его можно получить нагреванием простого вещества — металла в атмосфере метана. Вещество **A** можно получить также взаимодействием с углем бинарного вещества **B**, кристаллизующегося в структурном типе флюорита (фторида кальция). Побочным продуктом при этом является только газ легче воздуха.

	A
a, Å	4.960
ρ , Γ /cm ³	13.61

4. Рассчитайте молярную массу вещества А и определите его формулу.

Используем ту же формулу, но теперь – для вычисления молярной массы.

$$\rho = \frac{ZM}{N_{\scriptscriptstyle A} a^{\scriptscriptstyle 3}} \Rightarrow M_{\scriptscriptstyle A} = \frac{1}{Z} \, \rho_{\scriptscriptstyle A} N_{\scriptscriptstyle A} a_{\scriptscriptstyle A}^{\scriptscriptstyle \ 3} = \frac{1}{4} \cdot 13.61 \cdot 6.02 \cdot 10^{\scriptscriptstyle 23} \cdot \left(4.96 \cdot 10^{\scriptscriptstyle -8}\right)^{\scriptscriptstyle 3} = \textbf{249.9} \, \textbf{г/моль}$$

2 балла

Нагреванием в метане теоретически можно получить карбид либо гидрид. Для гидрида молярная масса слишком велика. Если это карбид с формулой ЭС, то на элемент приходится 249.9 - 12 = 237.9 г/моль – это уран, **A** = **U**C.

2 балла

A.

5. Определите формулу вещества В и запишите уравнения двух реакций синтеза

В структурном типе флюорита кристаллизуются вещества с соотношением атомов 1:2. То обстоятельство, что с углем это вещество дает газ легче воздуха говорит в пользу оксида, $\mathbf{B} = \mathbf{UO_2}$.

$$UO_2 + 3C \rightarrow UC + 2CO$$
.

$$U + CH_4 \rightarrow UC + 2H_2$$

Формула вещества – 2 балла

уравнения реакций – по 1 баллу

Вещество **Б** имеет красивый золотой блеск и используется как материал для покрытия режущих поверхностей. Один из вариантов получения пленки **Б** на поверхности — окисление поверхности металла, входящего в состав **Б**, газом, являющимся одним из основных компонентов воздуха. Известно, что при окислении поверхности металла толщиной 3.00 мкм образуется слой **Б** толщиной 3.24 мкм, причем площадь поверхности при окислении можно считать не изменяющейся.

Известно, что элементарная ячейка металла, входящий в состав \mathbf{F} , имеет объём 35.29 Å³ и Z=2, а сам \mathbf{F} имеет плотность 5.38 г/см³.

6. Определите параметр ячейки **Б**, молярную массу **Б** и его формулу.

Выразим отношение толщины слоя металла h_1 к толщине слоя оксида или нитрида h_2 , с учетом равенства площадей, которые они занимают:

$$\frac{h_1}{h_2} = \frac{V_1 / S}{V_2 / S} = \frac{V_1}{V_2} = \frac{m_1 \rho_2}{\rho_1 m_2} = \frac{n_1 M_1 \rho_2}{n_2 M_2 \rho_1}$$

Если вещество имеет структуру NaCl, то его формула – либо MO, либо MN, то есть $M_2 = M_1 + x$, где x – либо 14, либо 16. Количества оксида или нитрида при такой формуле будут равны количеству металла ($n_1 = n_2$), а плотность металла выразим через его молярную массу.

$$\frac{h_{\!\scriptscriptstyle 1}}{h_{\!\scriptscriptstyle 2}} = \frac{M_{\!\scriptscriptstyle 1} \rho_{\!\scriptscriptstyle 2} V_{\!\scriptscriptstyle \mathit{R}^{\!\scriptscriptstyle 4}} N_{\!\scriptscriptstyle A}}{(M_{\!\scriptscriptstyle 1} + x) Z M_{\!\scriptscriptstyle 1}}, \text{ то есть } \frac{3}{3.24} = \frac{5.38 \cdot 35.29 \cdot 10^{-24} \cdot 6.02 \cdot 10^{23}}{(M_{\!\scriptscriptstyle 1} + x) \cdot 2}$$
 или $M_{\!\scriptscriptstyle 1} + x = 61.7$

При x = 16 (оксид) разумных вариантов нет, при $x = 14 - M_1 = 47.7 -$ это титан.

Формула **Б** – **TiN**.

параметр ячейки Б:

$$\rho = \frac{ZM}{N_A a^3} \Rightarrow a = \sqrt[3]{\frac{ZM}{N_A \rho}} = \sqrt[3]{\frac{4 \cdot 61.8}{6.02 \cdot 10^{23} \cdot 5.38}} = 4.24 \cdot 10^{-8} \text{ cm} = 4.24 \text{ Å}$$

4 балла за определение нитрида титана

2 балла за определение параметра ячейки

Задача №3. Кинетика реакций разложения (Черданцев В.)

3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	Всего	Bec (%)
2	6	3	3	2	2	4	2	24	15

Для изучения кинетики разложения NOCl в газовой фазе в сосуд объемом 5 л при 200°C поместили 1 моль NOCl и измеряли среднюю молярную массу смеси в зависимости от времени. Через 31 секунду после начала реакции средняя молярная смеси составила 58.8 г/моль, а через 58 с – 55.6 г/моль.

1. Изобразите структурные формулы NOCl и NO.

$$0^{N}CI$$
 $N=0$ $N=0$

По 1 баллу за каждую структуру = 2 балла

2. Установите кинетический порядок и константу скорости данной реакции с указанием размерности (используйте М и с для выражения размерности при необходимости).

$$2NOCl = 2NO + Cl_2$$

	NOCl	NO	Cl_2
До начала реакции	1	0	0
Через время t	1 - 2x	2x	X

$$n_0 = 1 - 2x + 2x + x = 1 + x$$

$$\begin{aligned} M_{cp} &= x(NOCl) \cdot M(NOCl) + x(NO) \cdot M(NO) + x(Cl_2) \cdot M(Cl_2) = \\ &= \frac{1 - 2x}{1 + x} \cdot 65.5 + \frac{2x}{1 + x} \cdot 30 + \frac{x}{1 + x} \cdot 71 = \frac{65.5}{1 + x} \\ x &= \frac{65.5}{M_{cp}} - 1 \end{aligned}$$

$$n(NOCl) = 1 - 2x = 1 - \frac{131}{M_{cp}} + 2 = \frac{3 \cdot M_{cp} - 131}{M_{cp}}$$

Подставим значения средней молярной массы для двух времен:

Время	31 c	58 c
n(NOCl)	0.772	0.644

По 2 балла за каждое количество вещества = 4 балла

Подставим полученные значения в кинетические уравнения для 0, 1 и 2 порядков и найдем порядок, у которого обе полученные константы равны.

$$0$$
 порядок: $[A] = [A]_0 - kt$
$$1$$
 порядок: $\ln \frac{[A]}{[A]_0} = -kt$
$$2$$
 порядок: $\frac{1}{[A]} - \frac{1}{[A]_0} = 2kt$
$$[A]_0 = \frac{n}{V} = \frac{1}{5} = 0.2, [A]_1 = \frac{0.772}{5} = 0.1544, [A]_2 = 0.1288$$

$$k_1$$
 $1.47 \cdot 10^{-3}$ $8.35 \cdot 10^{-3}$ $\mathbf{2.38 \cdot 10^{-2}}$ k_2 $1.23 \cdot 10^{-3}$ $7.59 \cdot 10^{-3}$ $\mathbf{2.38 \cdot 10^{-2}}$

Таким образом, можно сделать вывод, что у реакции второй порядок.

$$k = 2.38 \cdot 10^{-2} M^{-1} c^{-1}$$

1 балл за установление порядка и 1 балл за установление константы (0.5 балла без указания размерности) = 2 балла

3. Через какое время после начала реакции плотность газовой смеси будет равна $1.952 \text{ г/л} (60^{\circ}\text{C}, 100 \text{ кПа})?$

$$pV = nRT = \frac{m}{M}RT$$

$$\rho = \frac{m}{v} = \frac{pM}{RT} \Rightarrow M = \frac{\rho RT}{p} = \frac{1.952 \cdot 8.314 \cdot 333}{100} = 54 \text{ г/моль (1 балл)}$$

$$n(NOCl) = \frac{3 \cdot M_{cp} - 131}{M_{cp}} = 0.574 \text{ моль}$$

$$[NOCl] = \frac{0.574}{5} = 0.1148 \text{ моль/л (1 балл)}$$

$$\frac{1}{[NOCl]} - \frac{1}{[NOCl]_0} = 2\text{kt} \Rightarrow t = \frac{\frac{1}{0.1148} - \frac{1}{0.2}}{2 \cdot 2.38 \cdot 10^{-2}} = 76 \text{ c (1 балл)}$$

При более низких температурах протекает обратная реакция, механизм которой представлен ниже:

$$NO_{(r)} + Cl_{2_{(r)}} \stackrel{k_1}{\underset{k_{-1}}{\rightleftharpoons}} NOCl_{2_{(r)}}$$

$$NOCl_{2_{(r)}} + NO_{(r)} \xrightarrow{k_2} 2NOCl_{(r)}$$

4. Используя квазистационарное приближение, выведите кинетическое уравнение для данного механизма. Ответ должен быть выражен через $k_1, k_{-1}, k_2, [NO]$ и $[Cl_2]$.

Нестабильной частицей, к которой можно применить квазистационарное приближение, является $\mathrm{NOCl}_{2_{\{\Gamma\}}}$:

$$\frac{d[NOCl_2]}{dt} = k_1[NO][Cl_2] - k_{-1}[NOCl_2] - k_2[NOCl_2][NO] = 0$$
 (1 балл)

Откуда выходит, что

$$\begin{split} [\text{NOCl}_2] &= \frac{k_1[\text{NO}][\text{Cl}_2]}{k_{-1} + k_2[\text{NO}]} \, \text{(1 балл)} \\ \\ r &= \frac{1}{2} \frac{d[\text{NOCl}]}{dt} = k_2[\text{NOCl}_2][\text{NO}] = \frac{k_1 k_2[\text{NO}]^2[\text{Cl}_2]}{k_{-1} + k_2[\text{NO}]} \, \text{(1 балл)} \end{split}$$

5. При каком условии у данной реакции будет первый порядок по обоим реагентам? Запишите кинетическое уравнение для этого случая.

Если $k_2[NO] \gg k_{-1}$ (большая концентрация NO, например в начале реакции, или $k_2 > k_{-1}$), то $k_{-1} + k_2[NO] \approx k_2[NO]$. Тогда кинетическое уравнение приобретает следующую форму:

$$r = \frac{k_1 k_2 [NO]^2 [Cl_2]}{k_2 [NO]} = k_1 [NO] [Cl_2]$$

Данное кинетическое уравнение отвечает условию наличия первого порядка у обоих реагентов.

2 балла за соотношение $k_2[NO] \gg k_{-1}$ и правильное кинетическое уравнение

Однако, хлор и его производные используются не только для получения важных промышленных реагентов, но и для обеззараживания воды. Основными веществами, использующимися в данных целях, являются гипохлорит натрия и кальция, а также хлорамин.

В биохимическую лабораторию привезли образец воды, содержащий колонию редких вымыниленных бактерий *E.ChemOlympia* для анализа скорости гибели этих бактерий при хлорировании воды. Для проведения анализа Юный Биохимик добавил большой избыток хлорирующего агента в образцы воды с разным количеством бактерий при разных температурах. Данные анализа приведены ниже:

	D ₅₀	D ₉₀
5°C	5.8 мин	_
25°C	_	3.1 мин

Примечание: для описания скорости гибели популяции используют D_n , показывающее время, за которое погибает n% колонии. Например, значение D_{50} является временем, за которое погибает половина колонии.

Оказалось, что D_{50} и D_{90} в случае E.ChemOlympia не зависят от изначального количества бактерий в колонии.

6. Какой кинетический порядок процесса гибели *E.ChemOlympia* согласуется с наблюдениями Юного Биохимика?

Поскольку D_{50} (условно "период полураспада") и D_{90} не зависят от изначального количества бактерий в колонии, то кинетический порядок процесса гибели E.ChemOlympia равен одному.

2 балла за правильный порядок

7. Заполните пропуски в таблице с данными анализа.

Используем кинетическое уравнение для первого порядка $\ln \frac{[A]}{[A]_0} = -kt$.

В случае D_{50} погибла половина колонии \Longrightarrow [A] = 0.5[A₀]

В случае D_{90} погибло 90% колонии \Longrightarrow [A] = 0.1[A₀]

Для 5°С:

$$k_5 = \frac{\ln 0.5}{-5.8} = 0.1195 \text{ мин}^{-1}$$

$$D_{90} = t = \frac{\ln 0.1}{-0.1195} = 19.3$$
 мин (2 балла)

Для 25°C:

$$k_{25} = \frac{\ln 0.1}{-3.1} = 0.7428 \text{ мин}^{-1}$$

$$D_{50} = t = \frac{\ln 0.5}{-0.7428} = \mathbf{0.93}$$
 мин (2 балла)

8. Рассчитайте энергию активации процесса гибели *E.ChemOlympia* при хлорировании воды.

Если записать уравнение Аррениуса $k = A \cdot e^{-\frac{E_a}{RT}}$ для двух температур и выразить E_a , то получится следующее выражение:

$$\mathrm{E_a} = rac{\mathrm{RT_1T_2}}{\mathrm{T_1-T_2}} \mathrm{ln} rac{\mathrm{k_1}}{\mathrm{k_2}} = rac{8.314 \cdot 278 \cdot 298}{278-298} \mathrm{ln} rac{0.1195}{0.7428} = 62.9 \; кДж/моль$$

2 балла за правильное значение энергии активации

Задача №4. Конформации органических соединений (Моргунов A.)

4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	Всего	Bec (%)
2	4	2	2	3	3	2	4	22	14

Одним из важнейших фундаментальных понятий органической химии является связь структур и свойств молекул. Однако, важно помнить, что в органической химии важны не только качественные характеристики связей (например, то, что в молекуле этана каждый атом углерода связан с другим атомом углерода и тремя атомами водорода), но и количественные. Сегодня мы рассмотрим конформации ацикличных углеводородов.

Конформация молекулы — пространственное расположение атомов, обусловленное поворотом вокруг одной или нескольких одинарных молекул. Например, в молекуле этана возможно *непрерывное* вращение вокруг связи углерод-углерод.

1. Сколько конформеров может быть у этана?

Поскольку вращение вокруг связи углерод-углерод непрерывное, мы имеем дело с непрерывным распределением двухгранных углов. Иными словами, этан имеет **бесконечное** число конформеров (2 балла).

Два особенных конформера этана: заторможенный (на англ. *staggered*) и заслоненный (на англ. *eclipsed*).

Рис 1. Проекция Ньюмана для связи С-С в этане

Экспериментально установлено, что заторможенная конформация стабильнее на 12 кДж моль^{-1} .

2. Определите какая доля (в %, с 4 значащими цифрами) этана будет находиться в заторможенной конформации при $25^{\circ}C$.

Заметим, что процесс перехода от заслоненной (СЛ) к заторможенной (ТР) конформации можно смоделировать обычной обратимой реакцией. Тогда:

$$K_{\text{равн}} = \frac{[\text{TP}]}{[\text{C}\Pi]} = \frac{\chi(\text{TP})}{\chi(\text{C}\Pi)}$$

 Γ де χ — мольная доля.

При этом, $K_{\mathrm{pabh}} = exp\left(-\frac{\Delta_r G}{RT}\right)$

Тогда:

$$\frac{\chi(\text{TP})}{\chi(\text{CЛ})} = exp\left(\frac{-12000\text{Дж/моль}}{8.314\text{ДжK/моль} \cdot 298.15\text{K}}\right) = 0.007899$$

Учитывая то, что

$$\chi(TP) + \chi(CJ) = 1$$

$$\chi(TP) = 0.9922$$

$$\chi(CJI) = 0.0078$$

Или 99.22% этана будет находиться в заторможенной конформации.

1 балл за использование идеи о равновесии / расчет через константу равновесия

1 балл за использование формулы $\Delta_r G = -RT \ln K$

2 балла за финальный ответ с 4 значащими цифрами. 0.5 балла если ответ 99%, 99.2% или 100%.

Всего 4 балла.

Для этой задачи будем считать, что заслоненный конформер дестабилизован по отношению к заторможенному конформеру за счет некого напряжения между двумя соседними атомами водорода. Таким образом, мы можем посчитать, что энергия дестабилизации двух атомов водорода (*примем*, что эта энергия не зависит от соединения) в заслоненной конформации равна 4 кДж/моль.

3. Нарисуйте заслоненный и заторможенный конформер пропана.

Известно, что заторможенный конформер пропана на 14 кДж/моль стабильнее заслоненного конформера.

4. Посчитайте энергию дестабилизации атома водорода и метильной группы в заслоненной конформации пропана.

В заслоненной конформации у нас три дестабилизирующих взаимодействия: Н-Н, Н-Н и Н-СН3. Учитывая то, что энергия дестабилизации Н-Н равна 4 кДж/моль, энергия дестабилизации Н-СН3 равна: 14-4-4=6 кДж/моль

1 балл за правильное рассуждение, 1 балл за верный ответ.

В более крупных молекулах, возможен второй вид напряжения, который проявляется в т.н. скошенных конформациях или конформациях «Гош» (с англ. *gauche*).

Если $R_1 = R_2 = CH_3$, стерическое напряжение равно 3.8 кДж/моль. Если две метильные группы находятся друг напротив друга в заслоненной конформации, энергия дестабилизации равна 11 кДж/моль.

5. Нарисуйте заслоненные, заторможенный и Гош конформеры бутана.

За каждую конформацию по 0.5 балла. Дополнительный балл если верно указаны все 4 разных конформера. Всего до 3 баллов.

6. Посчитайте относительные энергии конформеров бутана, нарисованных в п.4.

Энергия заторможенной конформации равна 0 по определению (в данной задаче) (0.5 балла)

Энергия конформации Гош равна энергии одного Гош взаимодействия, т.е. 3.8 кДж/моль (0.5 балла)

Энергия заслоненной конформации 1: (1 балл)

$$6 + 6 + 4 = 16 кДж/моль$$

Если ученик получил неправильное значение H-CH3 взаимодействия в п.4 и использовал неправильное значение в этом пункте, но при этом суть расчета верна (два взаимодействия H-CH3 и одно H-H) – полный 1 балл за ответ.

Энергия заслоненной конформации 2: (1 балл)

$$11 + 4 + 4 = 19$$
 кДж/моль

Всего 3 балла

7. Нарисуйте самый стабильный конформер 2,3-диметилбутана.

Самый стабильный конформер – заторможенный, в котором минимизированы Гош взаимодействия. В случае 2,3-диметилбутана минимальное количество Гош взаимодействий: 4. Тогда наиболее стабильный конформер:

2 балла за верный конформер

Изучение конформеров молекулы важно при предсказании продуктов той или иной реакции. Например, реакции Е2 протекают по анти-перипланарному механизму, иными словами, атом водорода и уходящая группа находятся в «анти» положении (угол между ними равен 180°).

8. Нарисуйте структуры А и В.

Суть задачи — перерисовать реагенты в проекции Ньюмана по связи C(Br)-C(H) в анти-конформации.

$$C_{2}H_{5}$$
 — $C_{2}H_{5}$ — $C_{$

За каждый продукт по 2 балла, всего 4 балла. 0 баллов если указаны транс-изомеры продуктов.

Примечание: анализ конформаций реагентов позволяет нам предсказать получение не интуитивного продукта, а именно цис-изомера, тогда как наша химическая интуиция может подсказывать образование транс-изомера, как термодинамически более стабильного (за счет меньшего стерического напряжения).

Историческая справка: Причина большей стабильности заторможенного конформера долгое время была поводом для дискуссий. Первое (и наиболее известное) объяснение – т.н. стерическое напряжение (с англ. steric hindrance) между двумя атомами водорода в заслоненной конформации. Предполагается, что природа стерического напряжения заключается в Кулоновском отталкивании электронных облаков двух атомов. Второе объяснение появилось с развитием квантовой химии: предполагалось, что гиперконьюгация в заторможенном конформере (между двумя коллинеарными связями С-Н) способствует его большей стабильности. Совместная работа китайских и американских ученых, опубликованная в 2004 году (DOI: 10.1002/ange.200352931), показала, что вклад гиперконьюгации равен примерно 4 кДж/моль, т.е. гиперконьюгация объясняет треть большей стабильности заторможенного конформера, а остальные 67% объясняются стерическим напряжением.

Задача №5. Органический синтез (Молдагулов Г.)

5.1	5.2	5.3	5.4	5.5	5.6	5.7	Всего	Bec (%)
5	3	4	2	1.5	7	7.5	30	16

Троповая кислота — это рацемическая смесь 3-гидрокси-2-фенилпропановой кислоты, которая служит прекурсором физиологически активных тропановых алкалоидов — атропина и гиосциамина. Эти лекарственные препараты применяются при лечении отравлений нервнопаралитическими веществами и пестицидами, а также при лечении замедлененного сердечного ритма и уменьшения слюноотделения во время хирургических операций.

Ниже представлен один из синтезов троповой кислоты

1. Приведите структуры зашифрованных веществ **A** – **E**. Известно, что содержание углерода в соединениях **C** и **D** составило 65.05 и 72.96% соответственно, а присоединение хлороводорода к **D** протекает против правила Марковникова.

Альтернативно троповую кислоту можно синтезировать из фенилуксусной кислоты путем последовательных реакций Геля-Фольгарда-Зелинского с образованием **F**, окислительного присоединения, таутомеризации **G** в енолят Реформатского [**G**'], реакции Реформатского и снятия защитной группы.

2. Приведите структуры зашифрованных веществ F, G и [G'].

У вещества **D** есть два известных изомера **J1** и **J2**, смесь которых называется коричной кислотой. Коричная кислота обширно применяется в медицинской, парфюмерной и красительной промышленностях.

3. Определите структуры **J1** и **J2**, соответствующие следующим ¹H-ЯМР спектрам, и сопоставьте сигналы **a** – **h** с соответствующими атомами водорода в органических структурах. Известно что константа спаривания **J** между протонами **c** и **d** составила 15.1 Гц, а между **g** и **h** 10.9 Гц.

0.5 балла за каждую правильную структуру.

- 1.5 балла за правильное сопоставление пиков вещества **J1**.
- 1.5 балла за правильное сопоставление пиков вещества Ј2.

Итого 4 балла за пункт.

Если хоть один из атомов водорода неверно соотнесен с пиком -0 баллов.

4. Кратко поясните как вы распознали какой изомер соответствует **J1**, а какой **J2**.

В транс-изомере эффект спаривания наблюдается в большей мере ($J=15.1~\Gamma$ ц) ввиду параллельного расположения магнитных моментов протонов ${\bf c}$ и ${\bf d}$ относительно друг друга, а в цис-изомере их расположение близко к перпендикулярному, что приводит к меньшему ($J=10.9~\Gamma$ ц) эффекту спаривания.

За полное правильное рассуждение присуждается 2 балла. Итого 2 балла за пункт. За иные выводы присуждается 0 баллов.

5. Определите какой из изомеров **J1** или **J2** будет преобладать в природной коричной кислоте. Ответ обоснуйте.

Два больших по размеру заместителя у двойной связи затрудняют образование цисизомера из-за стерического отталкивания, соответственно содержание транс-изомера, в котором заместители расположены на максимальном удалении друг от друга, будет больше.

За правильное рассуждение о стерическом отталкивании между большими заместителями испытываемом в цис-изомере присуждается полных 1.5 балла. Итого 1.5 балла за пункт. За иные выводы присуждается 0 баллов.

Ниже представлены две схемы синтеза коричной кислоты. Первый – по реакции Кнёвенагеля с использованием диэтилмалоната:

И второй – по реакции Перкина с использованием уксусного ангидрида:

$$H + \int_{0}^{0} \int_{t^{\circ}}^{0} \frac{CH_{3}COONa}{t^{\circ}} \left[K \right] \rightarrow \left[L \right] \rightarrow J1 + J2$$

Известно, что вещества **H** и **I** содержат 79.23 и 67.73% углерода по массе соответственно, а пиридин и ацетат натрия выступают в качестве основания.

При нуклеофильной атаке енолят-иона на карбонильный углерод вещества **H** вначале образуется отрицательно заряженный интермедиат [K]. Затем [K] претерпевает внутримолекулярный перенос ацетильной группы образуя интермедиат [L], который в дальнейшем преобразуется в **J1** и **J2**.

6. Приведите структуры зашифрованных веществ **H** и **I**, а также изомерных интермедиатов [**K**] и [**L**].

По 1.5 баллу за правильные структуры **H** и **I**.

По 2 балла за правильные структуры [K] и [L].

Итого 7 баллов за пункт.

Вещество **J1** используется в парфюмерной промышленности для получения веществ X, Y и Z в результате реакций этерификации. Известно, что содержание углерода в веществах X, Y и Z составило 75.76, 75.76 и 74.98% соответственно. В структуре Y нет насыщенных вторичных атомов углерода.

7. Определите какому веществу \mathbf{X} , \mathbf{Y} или \mathbf{Z} соответствует каждый из приведённых ниже 1 H-ЯМР спектров, нарисуйте структуру определённого вами вещества в отведённые для этого боксы, а также сопоставьте сигналы $\mathbf{a} - \mathbf{p}$ с соответствующими атомами водорода в органических структурах.

7-a.

0.5 балла за правильный ответ на ЯМР спектре.

1 балл за правильную структуру.

1.5 балла за правильное сопоставление пиков.

Итого 2.5 балла за пункт.

7-b.

0.5 балла за правильный ответ на ЯМР спектре.

1 балл за правильную структуру.

1.5 балла за правильное сопоставление пиков.

Итого 2.5 балла за пункт.

7-c.

0.5 балла за правильный ответ на ЯМР спектре.

1 балл за правильную структуру.

1.5 балла за правильное сопоставление пиков.

Итого 2.5 балла за пункт.