In Linux, everything is a file

Learning about Linux through SYSFS

Thanks to Bill Gatliff

What is SYSFS?

- Virtual file system that exposes drivers to userspace
- /sys/devices ← driver hierarchy
- /sys/bus ← links to bus owners
- /sys/class ← common interfaces
- /sys/block ← block interface
- Let's go thru some examples...

What is SYSFS?

- Virtual file system that exposes drivers to userspace
- bone\$ cd /sys/class
- bone\$ ls

backlight	firmware	lcd	net	scsi_device	tty
bdi	gpio	leds	power_supply	scsi_disk	udc
block	graphics	mbox	pwm	scsi_generic	usb_device
bluetooth	hwmon	mdio_bus	regulator	scsi_host	vc
bsg	i2c-adapter	mem	rfkill	sound	video4linux
devfreq	i2c-dev	misc	rtc	spi_master	vtconsole
display	input	mmc host	scsi changer	spidev	

Let's go through some examples...

Blinking an LED

- Everything is a file in Linux
- \$ cd /sys/class/leds
- \$ **ls** -**F**

beaglebone:green:usr0/
beaglebone:green:usr1/
beaglebone:green:usr2/
beaglebone:green:usr3/

\$ cd beaglebone\:green\:usr0

\$ **ls**

brightness device max_brightness power
subsystem trigger uevent

Blinking an LED

\$ cat trigger

none nand-disk mmc0 timer oneshot [heartbeat]
 backlight gpio cpu0 default-on transient

- \$ echo none > trigger
- \$ echo 1 > brightness
- \$ echo 0 > brightness

Blinking an External LED

- The gpio pins are accessed through /sys/class/gpio
- Earlier we used gpio P9_14
- The table shows which gpio pin it's assigned to

Blinking an External LED

- Here's how you turn it on
- \$ cd /sys/class/gpio
- \$ ls

export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

- No gpio pins are visible
- \$ echo 50 > export
- \$ 15

export gpio50 gpiochip0 gpiochip32 gpiochip64 ...

Notice gpio50 has appeared

Blinking an External LED

Go in a take control

bone\$ cd gpio50

bone\$ ls

active_low direction edge power subsystem uevent

value

bone\$ echo out > direction

bone\$ echo 1 > value

Your LED should be on

Reading a switch

- Once you know how to control an LED, reading a switch is easy
- A switch is wired to P9_42. Which gpio is this?
- \$ cd /sys/class/gpio
- \$ echo 7 > export
- \$ cd gpio7
- \$ echo in > direction

Reading a Switch

- Button not pushed
- \$ cat value

0

- Button pushed
- \$ cat value

1

Read in a Loop

• You ca. Space are important over and over

#!/bin/1/

cd /s class/gpio

while [1]

do

cat gpio7/value

sleep 0.25

done

 $tr '\n' '\r' < gpio7/value$

Analog In

		P8					
DGND	1	2	DGND	DGND	- 1	2	DGND
VDD_3V3	3	4	VDD 3V3	GP10_38		4	GPIO_39
VDD 5V	5	6	VDD SV	GPI0_34	5	6	GPIO_35
SYS_5V	7	8	SYS_SV	GPI0_66		8	GPIO_67
PWR_BUT	9	10	SYS RESETN	GPI0_69	9	10	GPIO_68
GPI0_30	11	12	GPIO_60	GPI0_45	1.1	12	GPIO_44
GPIO_31	13	14	GPIO_50	GPI0_23	13	14	GPIO_26
GPIO_48	15	16	GPIO_51	GPI0_47	15	16	GPIO_46
GPIO_5	17	18	GPIO_4	GPI0_27	17	18	GPIO_65
IESIL PEL	19	20	DEED HOW	GPI0_22	19	20	GPIO_63
GPIO_3	21	22	GPIO_2	GPI0_62	21	22	GPIO_37
GPIO_49	23	24	GPIO_15	GPI0_36	23	24	GPIO_33
GPIO_117	25	26	GPIO_14	GPI0_32	25	26	GPIO_61
GPIO_115	27	28	GPIO_123	GPI0_86	27	28	GPIO_88
GP10_121	29	30	GP10_122	GPI0_87	29	30	GPIO_89
GPIO_120	31	32	VDD_ADC	GPI0_10	31	32	GPIO_11
AIN4	33	34	GNDA_ADC	GPIO_9	33	34	GPIO_81
AIN6	35	36	AIN5	GPIO_8	35	36	GPIO_80
AIN2	37	38	AIN3	GPI0_78	37	38	GPIO_79
AINO	39	40	AIN1	GPI0_76	39	40	GPIO_77
CDIO 20	4.4	40	CDIO 7	GPI0_74	41	42	GPIO_75
DGND	43	44	DGND	GPI0_72	43	44	GPIO_73
	45	46	DGND	GPI0_70	45	46	GPIO_71

Analog In

- Input voltage range is 0 to 1.8V.
- These are accessed much link the gpio
- \$ SLOTS=/sys/devices/bone_capemgr.*/slots
- \$ echo cape-bone-iio > \$SLOTS
- \$ cd /sys/devices/ocp.2/helper.14
- ls ls

AINO AIN2 AIN4 AIN6 driver power uevent AIN1 AIN3 AIN5 AIN7 modalias subsystem

\$ cat AIN6

1185

Analog In

You can keep reading the input using while [1]do

tr '\n' '\r' < AIN6
done</pre>