1. Let V be a finite-dimensional real vector space with inner product $\langle \cdot, \cdot \rangle$ and let $T: V \to V$ be a self-adjoint linear operator with only (strictly) positive eigenvalues. Show that the formula $(x,y) = \langle x, Ty \rangle$ defines an inner product on V. Three things 1) Linewity in the first variable. 2) (almost) Symmetricity. 3) (Strict) Positivity.

e things 1) Cinewity in the trist variable. 2) (almost) symmetricity. 3) (SO(cf) fostering.

1)
$$(2+2', y) = \langle x+x', Ty \rangle = \langle x, Ty \rangle + \langle x', Ty \rangle = (x,y) + (x',y)$$
.

2)
$$(4, x) = \langle 4, \tau x \rangle = \overline{\langle \tau x, 4 \rangle} = \overline{\langle x, \tau y \rangle} = \overline{\langle x, 4 \rangle}.$$

$$(x,x) = \langle x, \forall x \rangle \quad \text{(let } x = \alpha_1 v_1 + \cdots + \alpha_n v_n \text{)}$$

$$= \langle x, \forall x \rangle \quad \text{(let } x = \alpha_1 v_1 + \cdots + \alpha_n v_n \text{)}$$

$$\langle 2, 72 \rangle$$
 (let $x = a_1 v_1 + \cdots + a_n v_n$)

$$\langle x, \tau x \rangle$$
 (let $x = \alpha_1 v_1 + \cdots + \alpha_n v_n$)

$$= \langle a_i v_i + \cdots + a_i v_n, T(a_i v_i + \cdots + a_i v_n) \rangle$$

$$=\sum_{\tau,j=1}^{\infty}\left\langle Q_{i}V_{\tau},\tau Q_{j}V_{j}\right\rangle$$

$$\sum_{\tau,j=i}^{\infty} \left\langle O_{i} V_{i}, \tau O_{j} V_{j} \right\rangle$$

$$\sum_{i=1}^{\infty} \langle a_i v_i, \lambda_i a_j v_j \rangle$$

$$= \sum_{i,j=1}^{n} \langle a_i v_i, \lambda_j a_j v_j \rangle$$

$$= \sum_{i,j=1}^{n} \lambda_{j} \partial_{i} \partial_{j} \partial_{ij} = \sum_{\tau=1}^{n} \lambda_{i} \partial_{i}^{2} \geq 0 \quad \text{as} \quad \lambda_{i} > 0 \text{ for all } i.$$
The second of the second of

It is zero if and only if all of
$$\lambda_i \Omega_i^2 = 0 \iff \Omega_i = 0$$
 as $\lambda_i > 0$. $\iff \Omega = \overline{0}$.

- 2. Let $A \in M_{n \times n}(\mathbb{R})$ be a symmetric matrix and let λ be its eigenvalue with largest absolute value. Show that $||Ax|| \leq |\lambda| \cdot ||x||$ for all $x \in \mathbb{R}^n$. Give a counterexample if A is not assumed to be symmetric.

 For a real matrix, symmetric = self-adjoint.
- For a real metrix, symmetric = self-adjoint. It is diagonalizable in an arthonormal basis $\{V_1, \dots, V_n\}$ (w) corresponding eigenvalues $\lambda_1, \dots, \lambda_n$).

For
$$\chi = a_1 v_1 + \cdots + a_n v_n$$
, $\|\chi\|^2 = \|a_1 v_1\|^2 + \cdots + \|a_n v_n\|^2$ (v_i 's one orthogonal to each other).

$$= a_1^2 + \cdots + a_n^2$$
 (v_i 's one of length 1 and $a_i \in \mathbb{R}$).

Now.
$$\Delta x = \Delta a_1 v_1 + \cdots + \Delta a_n v_n$$

 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$
 $= \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$

- $\leq \lambda^2 \alpha_1^2 + \cdots + \lambda^2 \alpha_n^2 \qquad \text{with the largest}$ $= \lambda^2 \cdot ||x||^2$ $= \lambda^2 \cdot ||x||^2$ $= \lambda^2 \cdot ||x||^2$
- -. ||ATI| = | M : ||M|.

 Counterexample: A with eigenvalues 0 will give a good source since then I would be zero.

Counterexample: A with eigenvalues 0 will give a good source since then λ would be zero. $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \text{ and } \lambda = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$

Plug in exteg, ex-ey \Rightarrow (Aei+Aej) \cdot (Aei-Aej) = 0 \Rightarrow Aei \cdot Aei = Aej \cdot Aej bloc Aei Aei Aej = Aei (i+j)

So, let $C = \int Aei \cdot Aei$ for any i (note that we just showed that C abes not depend on) the choice of i.

Then, by what we have proven so fair, $C^{-1}A = U$ for some orthogonal matrix U.

What happens for complex matrices? Instead of Ae: Ae; = Ae; · Ae; , we have Ae; · Ae; = O = Ae; · Ae;

Tree Poll

Plug in e_i, e_j combination \Rightarrow A's columns are orthogonal loc Aei is just the ith column of A. $(i \neq j)$

1. Let $A \in M_{n \times n}(\mathbb{R})$ be a matrix that preserves orthogonality in the sense that if $x \cdot y = 0$, then $Ax \cdot Ay = 0$. Show that A = cU for some real number c and some orthogonal matrix U. Hint:

Now, we need to show that the lengths of adams of A are the same.

use the orthogonality of the standard basis, and also of the pairs $\vec{e_i} + \vec{e_j}$ and $\vec{e_i} - \vec{e_j}$.

T F If
$$\vec{x}, \vec{y} \in \mathbb{R}^n$$
 are nonzero, then there exists an $n \times n$ orthogonal matrix A such that $A\vec{x} = \vec{y}$.

1) T F If
$$A \in M_{n \times n}(\mathbb{C})$$
 is symmetric, then all of its eigenvalues are real.

1. (True/False Jeopardy)

(c) True

AND orthonormal rows!
$$A = J \quad \text{than} \quad A^{t} = A^{-1}, \text{ so } AA^{t} = I$$

2)
$$AA=I$$
, then $A^{t}=A^{-1}$, so $AA^{t}=I$.

If T.T*=I=) T*: T=I. So, TT*=1=T*T.

$$A+A=I$$

Mank