Evolutionary selective constraints acting on the stop codon across land plants

Presented by: Vishvesh Karthik

Motivation

- Common substitution models exclude stop codons.
- Stop codons suppression is more common*
- Read-through mechanisms and ribosomal stalling act as protein regulatory mechanisms⁺
- Egs: AMD1, selenoproteins etc^[1]
- Stop codons involvement in protein synthesis is understated

COA: Course of action

- Plant orthologs were obtained^[1]
- An extended model of substitution was applied^[2]
- A mixture model using the estimated model parameters was implemented on the stop codons
- The final estimates are bootstrapped for certainty

- Flat files are downloaded from OrthoDB^[1]
- Convert "gene-based" clusters to "organism-based" clusters
 - "CLUSTER_ID:ORG_ID_ID:GENE_ID" ->"CLUSTER_ID:ORG_ID"
- Get counts^[2]
 - "CLUSTER:NO_ORGS"
 - "ORG:NO_CLUSTERS"

- Select clusters which fall under "Viridiplantae" taxonomic division
- Rank organisms and choose top 40
- Rechoose the clusters based on selected organisms^[1]

```
\mathbf{q}_{ij} = \begin{cases} \pi_{jk} \text{ , synonymous transversion } (i,j \in S) \\ \kappa \pi_{jk} \text{ , synonymous transition } (i,j \in S) \\ \omega \pi_{jk} \text{ , non-synonymous transversion } (i,j \in S) \\ \kappa \omega \pi_{jk} \text{ , non-synonymous transition } (i,j \in S) \\ 0 \text{ , } > 1 \text{ nucleotide difference} \\ \phi \kappa \pi_{jk} \text{ , synonymous transition } (i,j \in N) \\ 0 \text{ , } i \in \mathbb{N} \oplus j \in \mathbb{N} \end{cases}
```


- For each cluster:
 - Lookup each gene ID on OrthoDB using API and fetch NCBI gene
 ID (if available)
 - Download the NT CDS from NCBI
 - Perform a check to see if the sequence is in-frame and has a stop codon

- For each cluster:
 - Perform an initial alignment to estimate the general relativity of the sequences
 - Divide(sub-cluster) the sequences based on the aligned stop codon positions
 - Discard the sub-clusters which do not have more than 3 sequences

Methods - Caveats - Why was the above done?

- The extMG, extended from Muse & Gaut model, assumes
 - The last codon in an alignment is either a stop codon or gaps.
 - Sequences have no in-frame nonsense mutations
 - Di-nucleotide substitutions are not possible
- Plant sequences utilize the degeneracy of codons to the full extent (how? contd.)

NT Alignments

Protein Alignments

- Protein alignments express inter-cluster relativity well
- Except for the conserved regions, nucleotide sequences of plants, are hard to align
- Thus to gain common ground, sequences are aligned based on AAs and the alignments are mapped back to nucleotide sequences.

- For each cluster:
 - Apply the extMG to the aligned NT sequences and save the parameters
 - Infer phylogenetic trees using codonPhyML
- For all clusters:
 - Apply the mixture model
 - Perform bootstrapping

Results

• UGA is the most abundant stop codon

Results

- UGA is the most abundant stop codon
- The selected organisms can be divided into two groups based on codon preference^[1]

Results

- The mixture model estimates a φ of 0.3
- ~60% of the genes are under purifying selection^[1]
 - 50% of UGA is preserved
 - 70% UAG -> UAA
 - 60% UAA -> UGA/UAG

Rodrigue N, Lartillot N, Philippe H. Bayesian comparisons of codon substitution models. *Genetics*. 2008;180(3):1579–1591.

Discussion

 MG by itself is not the best performing model, thus it can be improved by adding codon-preference statistics to improve estimation results

Discussion

• The markov chain for stop codons can be made irreducible and the TPM can be shrinked to 4 dimensions by including a 4th state "NNN" which warrants transition from any state to any other state

Conclusion

- The extMG model provides a chance to predict additive effects of stop codons.
- This information can be used to isolate genes which might be under readthrough contexts.
- Would unlock more information as to the existence of those genes and such mechanisms.
- Can also be used to predict whether a gene is being lost or gained based on stop codon preference.

Thank You!

Questions?