

FIG. 3

4/23

FIG. 4

FIG. 5

FIG. 6

7/23

FIG. 7

FIG. 9

11/23

HR-N (916-950)

(native)

Ac-IQESLTTTSTALGKLQDVVNQNAQALNTLVKQLSS-amide

(Ala, Lys and Arg substituted)

Ac-IQAALTKTSAALGKLQAAVNRNAAALNKLVKALSS-amide

(Aib=B substituted)

 $\verb|Ac-IQESLTBTSTALGKLQDVVNBNAQALNBLVKQLSS-amide| \\$

(Dxg=Z substituted)

Ac-IQESLTZTSTALGKLQDVVNZNAQALNZLVKQLSS-amide

HR-C (1151-1185)

(native)

Ac-ISGINASVVNIQKEIDRLNEVAKNLNESLIDLQEL-amide

(Ala, Lys and Arg substituted)

 $\verb|Ac-\underline{I}AA\underline{I}NKS\underline{V}AA\underline{I}QKE\underline{I}AR\underline{L}NEV\underline{A}KA\underline{L}NAS\underline{L}IR\underline{L}QAL-amide|$

(Aib=B substituted)

Ac-ISGINBSVVNIQKEIDRLNBVAKNLNBSLIDLQEL-amide

(Dxg=Z substituted)

 $\verb|Ac-\underline{I}SG\underline{I}NZS\underline{V}VN\underline{I}QKE\underline{I}DR\underline{L}NZV\underline{A}KN\underline{L}NZS\underline{L}ID\underline{L}QEL-amide|$

12/23

FIG. 12

13/23

HR-N (916-950)

 $\verb|Ac-IQESLTTTSTALGKLQDVVNQNAQALNTLVKQLSS-amide||$

(Ile and Leu substituted into the hydrophobic core)

Ac-IIESLTTTITALGKLIDVLNQNIQALNTLIKQLSS-amide

HR-C (1151-1185)

Ac-ISGINASVVNIQKEIDRLNEVAKNLNESLIDLQEL-amide

(Ile substituted into the hydrophobic core)

Ac-ISGINASIVNIQKEIDRLNEVIKNLNESLIDLQEL-amide

FIG. 14

FIG. 15

FIG. 16A

FIG. 16B

Coiled-coil template

BB-nT-GCAAT***T**T**T**

BB-nLGCAAL***I**L***I**L***I**L***IRRRRNH2
AC-CAAL***I**L***I**L***I**L***IRRRRNH2

HR-N and HR-C sequences incorporated into the template

HR-N(920-945) HR-C(1161-1186) CAALTTTITALGKLIDVLNQNIQALNTLIRRRR-amide CAALQKEIDRLNEVIKNLNESIIDLQELIRRRR-amide

 $B \qquad \begin{array}{ll} \text{General outline of the experimental procedures used to prepare} \\ \text{the template-carrier protein conjugates for immunization} \end{array}$

KLH for immunization BSA for antibody capture

FIG. 17

HR-N peptides, HR-N1 to HR-N17.

Nucleotide sequences for SARS peptides. The amino acid region is shown in brackets.

HR-N1 (882-973)

ATGCAAATGGCATATAGGTTCAATGGCATTGGAGTTACCCAAAATGTTCTCTATGAGAACCA AAAACAAATCGCCAACCAATTTAACAAGGCGATTAGTCAAATTCAAGAATCACTTACAACAA CATCAACTGCATTGGGCAAGCTGCAAGACGTTGTTAACCAGAATGCTCAAGCATTAAACACA CTTGTTAAACAACTTAGCTCTAATTTTGGTGCAATTTCAAGTGTGCTAAATGATATCCTTTC GCGACTTGATAAAGTCGAGGCGGAGGTA

HR-N2 (916-973)

ATTCAAGAATCACTTACAACAACATCAACTGCATTGGGCAAGCTGCAAGACGTTGTTAACCA GAATGCTCAAGCATTAAACACACTTGTTAAACAACTTAGCTCTAATTTTGGTGCAATTTCAA GTGTGCTAAATGATATCCTTTCGCGACTTGATAAAGTCGAGGCGGAGGTA

HR-N3 (927-973)

TTGGGCAAGCTGCAAGACGTTGTTAACCAGAATGCTCAAGCATTAAACACACTTGTTAAACA ACTTAGCTCTAATTTTGGTGCAATTTCAAGTGTGCTAAATGATATCCTTTCGCGACTTGATA AAGTCGAGGCGGAGGTA

HR-N4 (974-1011)

CAAATTGACAGGTTAATTACAGGCAGACTTCAAAGCCTTCAAACCTATGTAACACAACAACTAATCAGGGCTGCTGAAATCAGGGCTTCTGCTAATCTTGCTGCTACTAAAATG

HR-N5 (882-916)

HR-N6 (888-922)

TTCAATGGCATTGGAGTTACCCAAAATGTTCTCTATGAGAACCAAAAACAAATCGCCAACCA ATTTAACAAGGCGATTAGTCAAATTCAAGAATCACTTACAACA

HR-N7 (895-929)

FIG. 18A

19/23

HR-N8 (902-936)

CAAAAACAAATCGCCAACCAATTTAACAAGGCGATTAGTCAAATTCAAGAATCACTTACAAC AACATCAACTGCATTGGGCAAGCTGCAAGACGTTGTTAACCAG

HR-N9 (909-943)

TTTAACAAGGCGATTAGTCAAATTCAAGAATCACTTACAACAACATCAACTGCATTGGGCAA GCTGCAAGACGTTGTTAACCAGAATGCTCAAGCATTAAACACA

HR-N10 (916-950)

ATTCAAGAATCACTTACAACAACATCAACTGCATTGGGCAAGCTGCAAGACGTTGTTAACCA GAATGCTCAAGCATTAAACACACTTGTTAAACAACTTAGCTCT

HR-N11 (923-957)

ACATCAACTGCATTGGGCAAGCTGCAAGACGTTGTTAACCAGAATGCTCAAGCATTAAACAC ACTTGTTAAACAACTTAGCTCTAATTTTGGTGCAATTTCAAGT

HR-N12 (931-965)

CAAGACGTTGTTAACCAGAATGCTCAAGCATTAAACACACTTGTTAAACAACTTAGCTCTAA TTTTGGTGCAATTTCAAGTGTGCTAAATGATATCCTTTCGCGA

HR-N13 (938-972)

GCTCAAGCATTAAACACCTTGTTAAACAACTTAGCTCTAATTTTGGTGCAATTTCAAGTGT GCTAAATGATATCCTTTCGCGACTTGATAAAGTCGAGGCGGAG

HR-N14 (945-979)

GTTAAACAACTTAGCTCTAATTTTGGTGCAATTTCAAGTGTGCTAAATGATATCCTTTCGCG ACTTGATAAAGTCGAGGCGGAGGTACAAATTGACAGGTTAATT

HR-N15 (952-986)

TTTGGTGCAATTTCAAGTGTGCTAAATGATATCCTTTCGCGACTTGATAAAGTCGAGGCGGA GGTACAAATTGACAGGTTAATTACAGGCAGACTTCAAAGCCTT

HR-N16 (959-993)

CTAAATGATATCCTTTCGCGACTTGATAAAGTCGAGGCGGAGGTACAAATTGACAGGTTAAT TACAGGCAGACTTCAAAGCCTTCAAACCTATGTAACACAACAA

HR-N17 (966-1000)

CTTGATAAAGTCGAGGCGGAGGTACAAATTGACAGGTTAATTACAGGCAGACTTCAAAGCCT TCAAACCTATGTAACACAACAACTAATCAGGGCTGCTGAAATC

FIG. 18B

20/23

HR-C peptides, HR-C1 to HR-C4

Nucleotide sequences for SARS peptides. The amino acid region is shown in brackets.

HR-C1 (1147-1185)

GATGTTGATCTTGGCGACATTTCAGGCATTAACGCTTCTGTCGTCAACATTCAAAAAGAAAT TGACCGCCTCAATGAGGTCGCTAAAAATTTAAATGAATCACTCATTGACCTTCAAGAATTG

HR-C2 (1165-1185)

ATTGACCGCCTCAATGAGGTCGCTAAAAATTTAAATGAATCACTCATTGACCTTCAAGAATT

HR-C3 (1158-1185)

GTCGTCAACATTCAAAAAGAAATTGACCGCCTCAATGAGGTCGCTAAAAATTTAAATGAATC ACTCATTGACCTTCAAGAATTG

HR-C4 (1151-1185)

ATTTCAGGCATTAACGCTTCTGTCGTCAACATTCAAAAAGAAATTGACCGCCTCAATGAGGT CGCTAAAAATTTAAATGAATCACTCATTGACCTTCAAGAATTG

Amino acid sequence for SARS peptide HR-C1

HR-C1 (1147-1185)

DLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQEL

HR-N

Nucleotide sequences for SARS peptides. The amino acid region is shown in brackets.

HR-N (882-1011)

ATGTTTATTTTCTTATTTTCTTACTCTCACTAGTGGTAGTGACCTTGACCGGTGCACCACTTTTGATG ATGTTCAAGCTCCTAATTACACTCAACATACTTCATCTATGAGGGGGGTTTACTATCCTGATGAAATTTT TAGATCAGACACTCTTTATTTAACTCAGGATTTATTTCTTCCATTTTATTCTAATGTTACAGGGTTTCAT AATCAAATGTTGTCCGTGGTTGGGTTTTTGGTTCTACCATGAACAACAAGTCACAGTCGGTGATTATTAT TCTAAACCCATGGGTACACAGACACATACTATGATATTCGATAATGCATTTAATTGCACTTTCGAGTACA TATCTGATGCCTTTTCGCTTGATGTTTCAGAAAAGTCAGGTAATTTTAAACACTTACGAGAGTTTGTGTT TAAAAATAAAGATGGGTTTCTCTATGTTTATAAGGGCTATCAACCTATAGATGTAGTTCGTGATCTACCT TCTGGTTTTAACACTTTGAAACCTATTTTTAAGTTGCCTCTTGGTATTAACATTACAAATTTTAGAGCCA TTCTTACAGCCTTTTCACCTGCTCAAGACATTTGGGGCACGTCAGCTGCAGCCTATTTTGTTGGCTATTT AAAGCCAACTACATTTATGCTCAAGTATGATGAAAATGGTACAATCACAGATGCTGTTGATTGTTCTCAA AATCCACTTGCTGAACTCAAATGCTCTGTTAAGAGCTTTGAGATTGACAAAGGAATTTACCAGACCTCTA ATTTCAGGGTTGTTCCCTCAGGAGATGTTGTGAGATTCCCTAATATTACAAACTTGTGTCCTTTTGGAGA GGTTTTTAATGCTACTAAATTCCCTTCTGTCTATGCATGGGAGAGAAAAAAATTTCTAATTGTGTTGCT GATTACTCTGTGCTCTACAACTCAACATTTTTTTCAACCTTTAAGTGCTATGGCGTTTCTGCCACTAAGT TGAATGATCTTTGCTTCTCCAATGTCTATGCAGATTCTTTTGTAGTCAAGGGAAGATGATGTAAGACAAAT AGCGCCAGGACAAACTGGTGTTATTGCTGATTATAATTATAAATTGCCAGATGATTTCATGGGTTGTGTC CTTGCTTGGAATACTAGGAACATTGATGCTACTTCAACTGGTAATTATAATTATAAATATAGGTATCTTA GACATGCCAAGCTTAGGCCCTTTGAGAGAGACATATCTAATGTGCCTTTCTCCCCTGATGGCAAACCTTG CACCCCACCTGCTCTTAATTGTTATTGGCCATTAAATGATTATTGGTTTTTTACACCACTACTGGCATTGGC TACCAACCTTACAGAGTTGTAGTACTTTCTTTTGAACTTTTAAATGCACCGGCCACGGTTTGTGGACCAA AATTATCCACTGACCTTATTAAGAACCAGTGTGTCAATTTTAATTTTAATGGACTCACTGGTACTGGTGT GTTAACTCCTTCTTCAAAGAGATTTCAACCATTTCAACAATTTGGCCGTGATGTTTCTGATTTCACTGAT TCCGTTCGAGATCCTAAAACATCTGAAATATTAGACATTTCACCTTGCTCTTTTGGGGGGTGTAAGTGTAA TTACACCTGGAACAATGCTTCATCTGAAGTTGCTGTTCTATATCAAGATGTTAACTGCACTGATGTTTC TACAGCAATTCATGCAGATCAACTCACACCAGCTTGGCGCATATATTCTACTGGAAACAATGTATTCCAG ACTCAAGCAGGCTGTCTTATAGGAGCTGAGCATGTCGACACTTCTTATGAGTGCGACATTCCTATTGGAG $\tt CTGGCATTTGTGCTAGTTACCATACAGTTTCTTTATTACGTAGTACTAGCCAAAAATCTATTGTGGCTTA$ TACTATGTCTTTAGGTGCTGATAGTTCAATTGCTTACTCTAATAACACCATTGCTATACCTACTATT TCAATTAGCATTACTACAGAAGTAATGCCTGTTTCTATGGCTAAAACCTCCGTAGATTGTAATATGTACA TCTGCGGAGATTCTACTGAATGTGCTAATTTGCTTCTCCAATATGGTAGCTTTTGCACACAACTAAATCG TACAAAACCCCAACTTTGAAATATTTTGGTGGTTTTTAATTTTTCACAAATATTACCTGACCCTCTAAAGC CAACTAAGAGGTCTTTTATTGAGGACTTGCTCTTTAATAAGGTGACACTCGCTGATGCTGGCTTCATGAA GCAATATGGCGAATGCCTAGGTGATATTAATGCTAGAGATCTCATTTGTGCGCAGAAGTTCAATGGACTT AAGGCGATTAGTCAAATTCAAGAATCACTTACAACAACATCAACTGCATTGGGCAAGCTGCAAGACGTTG TTAACCAGAATGCTCAAGCATTAAACACTTGTTAAACAACTTAGCTCTAATTTTTGGTGCAATTTCAAG TGTGCTAAATGATATCCTTTCGCGACTTGATAAAGTCGAGGCGGAGGTACAAATTGACAGGTTAATTACA GGCAGACTTCAAAGCCTTCAAACCTATGTAACACAACAACTAATCAGGGCTGCTGAAATCAGGGCTTCTG CTAATCTTGCTGCTACTAAAATGTCTGAGTGTGTTCTTGGACAATCAAAAAGAGTTGACTTTTGTGGAAA GGGCTACCACCTTATGTCCTTCCCACAAGCAGCCCCGCATGGTGTTGTCTTCCTACATGTCACGTATGTG CCATCCCAGGAGAGGAACTTCACCACAGCGCCAGCAATTTGTCATGAAGGCAAAGCATACTTCCCTCGTG AAGGTGTTTTTGTGTTTAATGGCACTTCTTGGTTTATTACACAGAGGAACTTCTTTTCTCCACAAATAAT TACTACAGACAATACATTTGTCTCAGGAAATTGTGATGTCGTTATTGGCATCATTAACAACACAGTTTAT GATCCTCTGCAACCTGAGCTCGACTCATTCAAAGAAGAGCTGGACAAGTACTTCAAAAATCATCAC CAGATGTTGATCTTGGCGACATTTCAGGCATTAACGCTTCTGTCGTCAACATTCAAAAAGAAATTGACCG CCTCAATGAGGTCGCTAAAAATTTAAATGAATCACTCATTGACCTTCAAGAATTGGGAAAATATGAGCAA TATATTAAATGGCCTTGGTATGTTTGGCTCGGCTTCATTGCTGGACTAATTGCCATCGTCATGGTTACAA TCTTGCTTTGTTGCATGACTAGTTGTTGCAGTTGCCTCAAGGGTGCATGCTCTTGTGGTTCTTGCTGCAA GTTTGATGAGGATGACTCTGAGCCAGTTCTCAAGGGTGTCAAATTACATTACACATAA

FIG. 21

HR-C Native		O:48).							
	1150		1161		1171			1181	
	DISGINA		IQKEID:		VAKN		SLI	DLQEL	
	ga d	a d	a	d	a	d	a	d	
HR-C Analog	gue 1 (SEQ	ID NO:	67). Mod	lulation	of the	e "a"	residu	e positio	n
	1150		1161		1171	L.		1181	
	DISGINAS	SVVN	IQKEID:	RLNE	<u>Aīk</u> v	ILNE	SLI	DLQEL	
HR-C Analog	gue 2 (SEQ	ID NO:	68). Cha	nge of H	Telica	l proj	pensity	7	
	1150		1161	_	1171	_	_	1181	
	DISGINA	SVVN	IQKEI <u>A</u>	RLNE	VAK <u>Z</u>	LNE	SLI	DLQEL	
HR-C Analog "a" position	gue 3 (SEQ	ID NO:	69). Cha	nge of I	Helica	l proj	pensity	and mo	dulation of
	1150		1161		1171	Ĺ		1181	
	DISGINA	SVVN	I OKE I A	RLNE	V <u>I</u> K <u>Z</u>	LINE	SLI	DLQEL	
HR-C Analog	gue 4 (SEQ	ID NO:	70). Cha	nge of H	Telica	l proj	pensity	Ţ	
	1150		1161		1171	Ĺ		1181	
	DI AA INA:	SV A N	IQKEI <u>A</u>	RLNE	VAK <u>Z</u>	LNE	SL A	$\mathbf{\underline{A}}$ LQ $\mathbf{\underline{A}}$ L	
HR-C Analog		ID NO:		oductio	n of la	ctam	ì		
	1150		1161		1171	L		1181	
	DISGINA	SVVN	IQKEI <u>E</u>	RLN <u>K</u>	VAKN	ILNE	SLI	DLQEL	
TTD C A	C (CIEC)	ID NO.	70\ T 4	1 4.	e	74 T	• 1		
HR-C Analog	1150	ID NO:	1161	oauctio	n or sa 1171		age	1181	
	DISGINA	SVVN	IQKEI <u>E</u>	rln <u>k</u>	VAKN	ILNE	SLI	DLQEL	
HR-C Analog	gue 7 (SEQ	ID NO:	73).						
	1150		1161		1171	L		1181	
	DI EE IN K I	K∨ <u>ee</u>	IOKKIE	<u>ELNK</u>	KAEE	<u>LNK</u>	KLE	\mathbf{E} LQ $\mathbf{K}\mathbf{K}$	
HR-C Analog	gue 8 (SEQ	ID NO:	74). Intr	oductio	n of sa	alt br	idges		
_	1150		1161		1171	L	_	1181	
	DISGINA	SVV <u>E</u>	IQKKIE	<u>E</u> LNK	KAEE	<u>LINK</u>	<u>K</u> LI	DLQEL	

FIG. 22