MLOps: Fundamentos y Mejores Prácticas

Del Desarrollo a Producción

¿Qué es MLOps?

MLOps es un conjunto de prácticas que buscan:

- Simplificar flujos de trabajo
- Automatizar despliegues de ML/DL
- Mantener modelos en producción de forma confiable
- Escalar iniciativas de ML de forma eficiente
- Alinear demandas del negocio con requerimientos regulatorios

MLOps en Sistemas Embebidos

Optimización de Modelos

- Cuantización de modelos
- Pruning y compresión
- TinyML frameworks
- Edge computing optimizations

Hardware Constraints

- Memoria limitada
- Capacidad computacional
- Consumo energético
- Latencia real-time

Pipeline Específico

- Cross-compilation
- Testing en hardware real
- Simulación previa
- Versionado de firmware

Frameworks Compatibles

- TensorFlow Lite
- TinyML
- Edge Impulse
- Arduino TinyML Kit

Pipeline MLOps para Embebidos

Desarrollo

- Prototipado rápido
- Simulación hardware
- Test unitarios específicos
- Optimización recursos

Despliegue

- OTA updates
- Rollback automático
- Monitoreo remoto
- Gestión de versiones

Validación

- Testing en dispositivo
- Benchmarking
- Medición consumo
- Pruebas de estrés

Monitorización

- Telemetría
- Debug remoto
- Alertas hardware
- Logs específicos

Beneficios Clave de MLOps

Incremento de Productividad

- Automatización de tareas repetitivas
- Despliegue y mantenimiento eficiente
- Alineación entre equipos

Reproducibilidad

- Automatización de workflows
- Versionado de datos y modelos
- Feature store y snapshots

Reducción de Costos

- Minimización de esfuerzos manuales
- Detección temprana de errores

Monitorización

- Seguimiento sistemático
- Reentrenamiento continuo
- Alertas de data/model drift
- Insights de performance

Sostenibilidad

- Reducción de tareas repetitivas
- Uso eficiente de recursos
- Automatización de procesos

Ciclo de Vida MLOps

Obtención de Datos

- Múltiples fuentes
- Datos numéricos, texto, video
- Validación y calidad

Ingeniería de Features

- Procesamiento y transformación
- Limpieza de duplicados
- Refinamiento de características

Entrenamiento y Testing

- Experimentación con frameworks ML
- Optimización y tuning
- Versionado de modelos y datos

Despliegue

- Frecuencia de actualización
- Gestión de alertas
- Monitorización continua

Roles Clave en MLOps

Data Scientist

- Análisis exploratorio
- Desarrollo de modelos
- Experimentación y validación
- Optimización de hiperparámetros

ML Engineer

- Diseño de pipelines
- Automatización de procesos
- Integración de sistemas
- Optimización de rendimiento

DevOps Engineer

- Infraestructura y escalabilidad
- CI/CD para ML
- Monitorización y logging
- Seguridad y gobernanza

Principios MLOps

Versionado

- Scripts ML
- Datasets
- Modelos
- Control de cambios

Testing

- Validación de datos
- Tests de features
- Tests de infraestructura
- Tests de modelos

Automatización

- Pipeline ML
- CI/CD
- Reentrenamiento
- Monitorización

Reproducibilidad

- Resultados consistentes
- Backup de datos
- Control de versiones
- Documentación

MLflow en Acción

Tracking

```
import mlflow
with mlflow.start_run():
    mlflow.log_param("learning_rate", 0.01)
    mlflow.log_metric("accuracy", 0.95)
    mlflow.pytorch.log_model(model, "model")
```

Registro de Modelos

```
model_name = "ProductRecommender"
mlflow.register_model(
    "runs:/d16076a3ec534311817565e6527539c0/model",
    model_name
)
```

Mejores Prácticas MLOps

Seguridad desde Día 1

- Protección de datos
- Prevención de accesos
- Evitar data poisoning
- Gestión de vulnerabilidades

Cumplimiento Normativo

- Regulaciones de privacidad
- Normativas financieras
- Guías de compliance

Gestión de Desastres

- Backups de datos
- Modelos de respaldo
- Reentrenamiento rápido
- Planes de contingencia

Calidad de Código

- Tests unitarios
- Linters y formatters
- Revisión de código
- Documentación clara

Monitorización en Producción

Métricas Clave

- Model drift
- Data drift
- Métricas de performance
- Métricas de sistema

Herramientas

- MLflow
- Prometheus
- Grafana
- Custom dashboards

Conclusiones

- 1. MLOps es fundamental para ML en producción
- 2. Requiere colaboración entre roles
- 3. Automatización y monitorización son clave
- 4. La seguridad y compliance son prioritarios
- 5. El testing y la reproducibilidad aseguran calidad