CARDAMOM DALEC Model ID 813

January 12, 2021

1 Mathematical Dynamics

Let $\vec{C}^{(t)} = \left[C_{\text{lab}}^{(t)}, C_{\text{fol}}^{(t)}, C_{\text{roo}}^{(t)}, C_{\text{woo}}^{(t)}, C_{\text{som}}^{(t)}, C_{\text{som}}^{(t)} \right]$ denote the labile (lab), foliar (fol), fine root (roo), wood (woo), litter (lit), and soil organic matter (SOM) carbon pools on day t. The dynamics are given by

$$\begin{split} \vec{C}^{(t+1)} &= \mathrm{DALEC}_{813} \Big(\vec{C}^{(t)} \Big) \\ &= \mathrm{DALEC}_{813}^{\mathrm{fire}} \Big(\mathrm{DALEC}_{813}^{\mathrm{pre-fire}} \Big(\vec{C}^{(t)} \Big) \Big), \end{split}$$

where DALEC $_{813}^{\text{pre-fire}}(\cdot)$ denotes Carbon dynamics in the absence of fire and DALEC $_{813}^{\text{fire}}(\cdot)$ denotes Carbon Carbon dynamics due to fires.

1.1 Pre-fire Dynamics

Denote $\left[C_{\text{lab}}^{(t+1)'}, C_{\text{fol}}^{(t+1)'}, C_{\text{roo}}^{(t+1)'}, C_{\text{woo}}^{(t+1)'}, C_{\text{lit}}^{(t+1)'}, C_{\text{som}}^{(t+1)'}\right] = \vec{C}^{(t+1)'} = \text{DALEC}_{813}^{\text{pre-fire}}(\vec{C}^{(t)}).$ The pre-fire dynamics are given by

$$C_{\text{lab}}^{(t+1)'} = f_{\text{lab}} F_{\text{gpp}}^{(t)} + \left(1 - \phi_{\text{onset}}^{(t)}\right) C_{\text{lab}}^{(t)},\tag{1}$$

$$C_{\text{fol}}^{(t+1)'} = \phi_{\text{onset}}^{(t)} C_{\text{lab}}^{(t)} + \left(1 - \phi_{\text{fall}}^{(t)}\right) C_{\text{fol}}^{(t)} + f_{\text{fol}} F_{\text{gpp}}^{(t)}, \tag{2}$$

$$C_{\text{roo}}^{(t+1)'} = (1 - \theta_{\text{roo}})C_{\text{roo}}^{(t)} + f_{\text{roo}}F_{\text{gpp}}^{(t)}, \tag{3}$$

$$C_{\text{woo}}^{(t+1)'} = (1 - \theta_{\text{woo}})C_{\text{woo}}^{(t)} + f_{\text{woo}}F_{\text{gpp}}^{(t)}, \tag{4}$$

$$C_{\text{lit}}^{(t+1)'} = \left(1 - (\theta_{\text{lit}} + \theta_{\text{min}}) \rho^{(t)}\right) C_{\text{lit}}^{(t)} + \phi_{\text{fall}}^{(t)} C_{\text{fol}}^{(t)} + \theta_{\text{roo}} C_{\text{roo}}^{(t)}, \tag{5}$$

$$C_{\text{som}}^{(t+1)'} = \left(1 - \theta_{\text{som}} \rho^{(t)}\right) C_{\text{som}}^{(t)} + \theta_{\text{woo}} C_{\text{woo}}^{(t)} + \theta_{\text{min}} \rho^{(t)} C_{\text{lit}}^{(t)}.$$
 (6)

Here $F_{\text{gpp}}^{(t)}$ denotes the gross primary production (GPP) of Carbon on day t and is a function of meteorology and atmospheric vapor pressure:

$$F_{\text{gpp}}^{(t)} = F_{\text{gpp(max)}}^{(t)} \times \min\left(1, \frac{W^{(t)}}{\omega}\right),\tag{7}$$

where ω is the water stress threshold, $F_{\text{gpp(max)}}^{(t)}$ denotes the maximum GPP on day t, which is given by the Aggregated Canopy Model (ACM), described in another document, and $W^{(t)}$ is the plant-available water pool on day t. $W^{(t)}$ is given dynamically:

$$W^{(t+1)} = W^{(t)} + P^{(t)} - R^{(t)} - ET^{(t)},$$
(8)

where $P^{(t)}$, $R^{(t)}$, and $ET^{(t)}$ are the precipitation, runoff, and evapotranspiration on day t, respectively. Evapotranspiration and runoff are given by

$$ET^{(t)} = F_{\text{gpp}}^{(t)} \frac{VPD^{(t)}}{v_e},$$
 (9)

$$R^{(t)} = \begin{cases} \alpha (W^{(t)})^2 & \text{if } W^{(t)} \le \frac{1}{2\alpha}, \\ W^{(t)} - \frac{1}{2\alpha} & \text{if } W^{(t)} > \frac{1}{2\alpha}, \end{cases}$$
(10)

where v_e is the inherent water-use efficiency, α is a runoff decay constant, and $VPD^{(t)}$ is the vapor pressure defincit on day t.

 θ_{roo} and θ_{woo} are the fine root and stem C turnover rates, respectively. $\theta_{\text{lit}}\rho^{(t)}$ and $\theta_{\text{som}}\rho^{(t)}$ are the litter and SOM C turnover rates, respectively, and $\theta_{\text{min}}\rho^{(t)}$ is the rate of litter mineralization to SOM, where $\rho^{(t)}$ is a function of daily and monthly average temperature and precipitation values:

$$\rho^{(t)} = e^{\Theta\left(T^{(t)} - \overline{T}\right)} \left(\left(\frac{P^{(t)}}{\overline{P}} - 1\right) s_p + 1 \right) \tag{11}$$

Here Θ and s_p are heterotrophic temperature and precipitation dependence factors, \overline{T} and \overline{P} are long term running averages of temperature and precipitation, and $T^{(t)}$ and $P^{(t)}$ are the average temperature and precipitation on day t.

A constant proportion f_{auto} of GPP is lost due to autotrophic respiration. f_{lab} , f_{fol} , f_{roo} , and f_{woo} are constant proportions of GPP allocated to the labile, foliar, fine root, and wood Carbon pools. The sum of these proportions is equal to 1: $f_{\text{lab}} + f_{\text{fol}} + f_{\text{roo}} + f_{\text{woo}} + f_{\text{auto}} = 1$.

 $\phi_{\text{onset}}^{(t)}$ and $\phi_{\text{fall}}^{(t)}$ are phenological functions describing the rates of labile to foliar and foliar to litter pool transfer on day t:

$$\phi_{\text{onset}}^{(t)} = \frac{\sqrt{2}}{\sqrt{\pi}} \times \left(\frac{-\log(1 - c_{\text{lr}})}{c_{\text{ronset}}}\right) \times \exp\left[-\left(\frac{s\sqrt{2}}{c_{\text{ronset}}}\sin\left(\frac{t - d_{\text{onset}} - 0.6245c_{\text{ronset}}}{s}\right)\right)^{2}\right],\tag{12}$$

$$\phi_{\text{fall}}^{(t)} = \frac{\sqrt{2}}{\sqrt{\pi}} \times \left(\frac{-\log(1 - c_{\text{ll}})}{c_{\text{rfall}}}\right) \times \exp\left[-\left(\frac{s\sqrt{2}}{c_{\text{rfall}}}\sin\left(\frac{t - d_{\text{fall}} - \psi_f}{s}\right)\right)^2\right]. \tag{13}$$

Here c_{ronset} and c_{rfall} are the labile release and leaf fall periods, d_{onset} and d_{fall} are the leaf onset and fall days, c_{lr} and c_{ll} are the annual labile C release and leaf loss fractions, respectively, and $s = \frac{365.25}{\pi}$. ψ_f is the solution to a transcendental equation discussed in another document.

1.2 Fire Dynamics

Denote $\left[C_{\text{lab}}^{(t+1)}, C_{\text{fol}}^{(t+1)}, C_{\text{roo}}^{(t+1)}, C_{\text{woo}}^{(t+1)}, C_{\text{lit}}^{(t+1)}, C_{\text{som}}^{(t+1)}\right] = \vec{C}^{(t+1)} = \text{DALEC}_{813}^{\text{fire}}(\vec{C}^{(t+1)'})$. The fire dynamics are given by

$$C_i^{(t+1)} = C_i^{(t+1)'} - FE_i^{(t)} - FM_i^{(t)}, \tag{14}$$

for i = lab, fol, roo, woo, and

$$C_{\text{lit}}^{(t+1)} = C_{\text{lit}}^{(t+1)'} - FE_{\text{lit}}^{(t)} + FM_{\text{lab}}^{(t)} + FM_{\text{fol}}^{(t)} + FM_{\text{roo}}^{(t)}, \tag{15}$$

$$C_{\text{som}}^{(t+1)} = C_{\text{som}}^{(t+1)'} - FM_{\text{som}}^{(t)} + FM_{\text{woo}}^{(t)}.$$
(16)

Here $FE_i^{(t)}$ and $FM_i^{(t)}$ are fire emission and fire mortality fluxes for pool i on day t:

$$FE_i^{(t)} = C_i^{(t+1)'} BA^{(t)} k_i, (17)$$

$$FM_i^{(t)} = C_i^{(t+1)'} BA^{(t)} (1 - k_i) r, (18)$$

where $BA^{(t)}$ is the burned area on day t, k_i are the combustion factors for pool i, and r is the resilience factor.

1.3 Leaf Area Index

Leaf Area Index (LAI) on day t is proportional to the foliar pool on day t:

$$LAI^{(t)} = \frac{C_{\text{fol}}^{(t)}}{c_{\text{lma}}},\tag{19}$$

where c_{lma} is the leaf Carbon mass per unit area (sq. m).

2 Comparison to DALEC_813.c

2.1 Dynamic State Variables

$\texttt{POOLS[p+0]} = C_{\mathrm{lab}}^{(t)}$	Eqn. $(1) = \text{Line } 206$
${\tt POOLS[p+1]} = C_{\rm fol}^{(t)}$	Eqn. $(2) = \text{Line } 207$
$\texttt{POOLS[p+2]} = C_{\text{roo}}^{(t)}$	Eqn. $(3) = \text{Line } 208$
POOLS[p+3] $=C_{ m woo}^{(t)}$	Eqn. $(4) = \text{Line } 209$
${\tt POOLS[p+4]} = C_{\rm lit}^{(t)}$	Eqn. $(5) = \text{Line } 200$
POOLS[p+5] $= C_{ m som}^{(t)}$	Eqn. $(6) = \text{Line } 208$
${\tt POOLS[p+6]} = W^{(t)}$	Eqn. $(8) = \text{Line } 219$
$\texttt{POOLS[nxp+0]} = C_{\mathrm{lab}}^{(t+1)'}, \text{ then } C_{\mathrm{lab}}^{(t+1)}$	Eqn. $(14) = \text{Line } 236$
$\texttt{POOLS[nxp+1]} = C_{\mathrm{fol}}^{(t+1)'}, \text{ then } C_{\mathrm{fol}}^{(t+1)}$	
$\texttt{POOLS[nxp+2]} = C_{\text{roo}}^{(t+1)'}, \text{ then } C_{\text{roo}}^{(t+1)}$	
POOLS[nxp+3] = $C_{\text{woo}}^{(t+1)'}$, then $C_{\text{woo}}^{(t+1)}$	
$\texttt{POOLS[nxp+4]} = C_{\mathrm{lit}}^{(t+1)'}, \text{ then } C_{\mathrm{lit}}^{(t+1)}$	Eqn. $(15) = \text{Line } 239$
$\texttt{POOLS[nxp+5]} = C_{\mathrm{som}}^{(t+1)'}, \text{ then } C_{\mathrm{som}}^{(t+1)}$	Eqn. $(16) = \text{Line } 241$

2.2 Fluxes and Supporting Equations

ELLIVEG [4.0] $E^{(t)}$	Fem. (7) Line 160
FLUXES[f+0] = $F_{ ext{gpp}}^{(t)}$	Eqn. $(7) = \text{Line } 169$
$\texttt{FLUXES[f+3]} = f_{\text{fol}} F_{\text{gpp}}^{(t)}$	
$\texttt{FLUXES[f+4]} = f_{\text{lab}} F_{\text{gpp}}^{(t)}$	
$\texttt{FLUXES[f+5]} = f_{\text{roo}} F_{\text{gpp}}^{(t)}$	
$\texttt{FLUXES[f+6]} = f_{\text{woo}} F_{\text{gpp}}^{(t)}$	
$\texttt{FLUXES[f+7]} = \phi_{\mathrm{onset}}^{(t)} C_{\mathrm{lab}}^{(t)}$	
$\texttt{FLUXES[f+9]} = \phi_{\mathrm{fall}}^{(t)} C_{\mathrm{fol}}^{(t)}$	
$\texttt{FLUXES[f+10]} = \phi_{\mathrm{fall}}^{(t)} C_{\mathrm{fol}}^{(t)}$	
$\texttt{FLUXES[f+11]} = \theta_{\text{roo}} C_{\text{roo}}^{(t)}$	
$\texttt{FLUXES[f+12]} = \theta_{\mathrm{lit}} \rho^{(t)} C_{\mathrm{lit}}^{(t)}$	
$\texttt{FLUXES[f+13]} = \theta_{\mathrm{som}} \rho^{(t)} C_{\mathrm{lit}}^{(t)}$	
$\texttt{FLUXES[f+14]} = \theta_{\min} \rho^{(t)} C_{\mathrm{lit}}^{(t)}$	
$\texttt{FLUXES[f+1]} = \rho^{(t)}$	Eqn (11) = Line 174
$\texttt{FLUXES[f+8]} = \phi_{\mathrm{fall}}^{(t)}$	Eqn (13) = Line 186
$\texttt{FLUXES[f+15]} = \phi_{\mathrm{onset}}^{(t)}$	Eqn (12) = Line 188
$\mathtt{FLUXES}[\mathtt{f+28}] = ET^{(t)}$	Eqn. $(9) = \text{Line } 171$
$\mathtt{FLUXES[f+29]} = R^{(t)}$	Eqn. $(10) = \text{Lines } 215, 217$
$\mathtt{FLUXES[f+17+nn]} = FE_i^{(t)}$	Eqn. $(17) = \text{Line } 231$
$\mathtt{FLUXES[f+13+nn]} = FM_i^{(t)}$	Eqn. $(18) = \text{Line } 232$
$\mathtt{LAI}[\mathtt{n}] = \mathrm{LAI}^{(t)}$	Eqn. $(19) = \text{Line } 157$

2.3 Parameters

```
pars[0] = \theta_{min}
                          pars [1] = %GPP lost to autotrophic respiration (f_{\text{auto}})
                          pars [2] = %NPP allocated to foliar pool
                                            f_{\rm fol} = (1 - {\sf pars[1]}) {\sf pars[2]}
                         pars[12] = %(NPP not allocated to foliar pool) allocated to labile pool
                                            f_{\text{lab}} = (1 - \text{pars}[1])(1 - \text{pars}[2]) \text{pars}[12]
                          pars[3] = %(NPP not allocated to foliar or labile pools) allocated to fine root pool
                                            f_{\text{roo}} = (1 - \text{pars}[1])(1 - \text{pars}[2])(1 - \text{pars}[12]) \text{pars}[3]
                                            f_{\rm woo} = (1-{\tt pars[1]})(1-{\tt pars[2]})(1-{\tt pars[12]})(1-{\tt pars[3]})
                          	exttt{pars[4]} = rac{1}{c_{	ext{ll}}}
                          pars[5] = \theta_{woo}
                          pars[6] = \theta_{roo}
                          pars[7] = \theta_{lit}
                          pars[8] = \theta_{som}
                          pars[9] = \Theta
                         pars[10] = one of the nitrogen constants in the ACM
                         pars[11] = d_{onset}
                         pars[13] = c_{ronset}
                         pars[14] = d_{fall}
                         pars[15] = c_{rfall}
                         pars[16] = c_{lma}
\texttt{pars[17] through pars[22]} = \left[ C_{\text{lab}}^{(0)}, C_{\text{fol}}^{(0)}, C_{\text{roo}}^{(0)}, C_{\text{woo}}^{(0)}, C_{\text{som}}^{(0)} \right] \text{ (initial condition)}
                         pars[23] = v_e
                        pars [24] = \frac{1}{\alpha}
                         pars[25] = \omega
                         pars [26] = W^{(0)} (initial condition)
                         pars[27] = k_{fol}
                         pars[28] = k_{lab} = k_{roo} = f_{woo}
    pars [27]/2+pars [28]/2 = k_{\rm lit}
                         pars[29] = k_{som}
                         pars[30] = 1 - r
                        pars[31] = \frac{1}{c_{lr}}
                         pars[32] = s_p
```

${\bf 2.4}\quad {\bf Meteorological\ Data\ and\ Other\ Inputs}$

$\mathtt{DATA.MET[m+O]} = t$	eqn. (12) and (13)
DATA.MET[m+1] = min. temp on day t	ACM
DATA.MET[m+2] = max. temp on day t	ACM
<code>DATA.MET[m+2]*0.5+DATA.MET[m+1]*0.5=$T^{(t)}$</code>	eqn. (11)
$\mathtt{DATA.MET[m+3]} = \mathrm{radiation}$	ACM
$\mathtt{DATA.MET[m+4]} = \mathrm{CO}_2$	ACM
${\tt DATA.MET[m+5]} = {\rm yearday}$	ACM
$\mathtt{DATA.MET[m+6]} = BA^{(t)}$	eqn. (17) and (18)
$\mathtt{DATA.MET[m+7]} = VPD^{(t)}$	eqn. (9)
$\mathtt{DATA.MET} [\mathtt{m+8}] = P^{(t)}$	eqn. (8) and (11)
${\tt DATA.meantemp} = \overline{T}$	eqn. (11)
$\mathtt{DATA.meanprec} = \overline{P}$	eqn. (11)