

(51) Internationale Patentklassifikation 6 : C07C 257/18, 257/20, 271/64, A61K 31/155	A1	(11) Internationale Veröffentlichungsnummer: WO 98/11062 (43) Internationales Veröffentlichungsdatum: 19. März 1998 (19.03.98)
(21) Internationales Aktenzeichen: PCT/EP97/04921		pher, John, Montague [GB/DE]; Burgstrasse 104, D-55411 Bingen (DE).
(22) Internationales Anmeldedatum: 9. September 1997 (09.09.97)		
(30) Prioritätsdaten: 196 36 689.5 10. September 1996 (10.09.96) DE		(81) Bestimmungsstaaten: AU, BG, BR, BY, CA, CN, CZ, EE, HU, IL, JP, KR, KZ, LT, LV, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, UZ, VN, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser AU CA GB IE NZ SG US</i>): BOEHRINGER INGELHEIM PHARMA KG [DE/DE]; Binger Strasse 173, D-55216 Ingelheim am Rhein (DE).		Veröffentlicht <i>Mit internationalem Recherchenbericht.</i>
(71) Anmelder (<i>nur für AU CA GB IE NZ SG</i>): BOEHRINGER INGELHEIM INTERNATIONAL GMBH [DE/DE]; D-55216 Ingelheim am Rhein (DE).		
(72) Erfinder; und		
(75) Erfinder/Anmelder (<i>nur für US</i>): SCHROMM, Kurt [DE/DE]; In der Dörrwiese 35, D-55218 Ingelheim am Rhein (DE). ANDERSKEWITZ, Ralf [DE/DE]; Stromberger Strasse 36c, D-55411 Bingen (DE). RENTH, Ernst-Otto [DE/DE]; Bismarckallee 5, D-24105 Kiel (DE). BIRKE, Franz [DE/DE]; Albrecht-Dürer-Strasse 21, D-55218 Ingelheim am Rhein (DE). JENNEWIN, Hans, Michael [DE/DE]; Idsteiner Strasse 14, D-65193 Wiesbaden (DE). MEADE, Christo-		

(54) Title: BENZAMIDINE DERIVATIVES AND THE USE THEREOF AS MEDICAMENTS WITH LTB4-ANTAGONISTIC EFFECT

(54) Bezeichnung: BENZAMIDINDERIVATE UND IHRE VERWENDUNG ALS ARZNEIMITTEL MIT LTB4-ANTAGONISTISCHER WIRKUNG

(57) Abstract

The current invention relates to new benzamidine derivatives, a process for the manufacture and the use thereof as medicaments. The new benzamidine derivatives have the general formula (1).

(57) Zusammenfassung

Die vorliegende Erfindung betrifft neue Benzamidinderivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Arzneimittel. Die neuen Benzamidinderivate entsprechen der allgemeinen Formel (1).

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Amenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Boenien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

**BENZAMIDINDERIVATE UND IHRE VERWENDUNG ALS ARZNEIMITTEL
MIT LTB4-ANTAGONISTISCHER WIRKUNG**

Die vorliegende Erfindung betrifft neue Benzamidinderivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Arzneimittel. Die neuen Benzamidinderivate entsprechen der allgemeinen Formel 1

worin

A -OC₂-C₄-Alkylen-O- oder -C₁-C₃-Alkylen-O-

R₁ C₁-C₆-Alkyl, verzweigt oder unverzweigt, C₃-C₆-Alkenyl, verzweigt oder unverzweigt, vorzugsweise Allyl oder F, Cl, Br, I;

R₂ Wasserstoff, C₁-C₆-Alkyl, verzweigt oder unverzweigt, C₃-C₆-Alkenyl, verzweigt oder unverzweigt, vorzugsweise Allyl oder F, Cl, Br, I;

R₃ und R₄, die gleich oder verschieden sein können, unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, verzweigt oder unverzweigt, C₃-C₆-Alkenyl, verzweigt oder unverzweigt, vorzugsweise Allyl, C₁-C₆-Alkoxy, (C₁-C₄-Alkyl)OC(O)O-, OH, CF₃ oder zusammen einen ankondensiertes ein- oder zweikerniges Ringsystem bilden können, das vollständig oder teilweise durchkonjugiert sein kann und gegebenenfalls ein oder zwei Heteroatome aus der Gruppe Sauerstoff, Schwefel oder Stickstoff aufweisen kann, die gleich oder verschieden sein können, das gegebenenfalls durch OH, C₁-C₄-Alkoxy, C₁-C₄-Alkyl substituiert sein kann;

R₅ Wasserstoff, Aryl, bevorzugt Phenyl, -OPhenyl, -CR₇R₈Phenyl, -COPhenyl, SO₂-Phenyl, -CH(OH)Phenyl, wobei der Phenylring durch OH oder C₁-C₄-Alkoxy substituiert sein kann oder -C(O)NR₉R₁₀:

- 2 -

R₆ Wasserstoff, C₁-C₆-Alkoxy carbonyl, (C₁-C₅-Alkyl)-carbonyl oder -C(O)-O-(C₁-C₆-Alkylen)-NR₁₁R₁₂;

R₇ und R₈, die gleich oder verschieden sein können, Wasserstoff, C₁-C₈-Alkyl, verzweigt oder unverzweigt;

R₉ und R₁₀, die gleich oder verschieden sein können, unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl, verzweigt oder unverzweigt;

R₁₁ und R₁₂, die gleich oder verschieden sein können, unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl, verzweigt oder unverzweigt;

bedeuten können,

gegebenenfalls in Form der einzelnen optischen Isomeren, Mischungen der einzelnen Enantiomeren oder Racemate sowie in Form der freien Basen oder der entsprechenden Säureadditionssalze mit pharmakologisch unbedenklichen Säuren.

Bevorzugt sind Verbindungen der allgemeinen Formel 1, in der

A -OCH₂CH₂O-, -CH₂O-, -CH₂CH₂CH₂O-;

R₁ C₁-C₅-Alkyl, verzweigt oder unverzweigt, Allyl;

R₂ Wasserstoff;

R₃ Wasserstoff, C₁-C₆-Alkyl, OCH₃, C₂H₅OC(O)O-, OH, Cl, F, CF₃;

R₄ Wasserstoff, -OCH₃, OH;

R₃ und R₄ zusammen einen ankondensierten Benzolring, ein 3,4-Dihydrocumarinsystem oder ein 1,3-Dioxolansystem, der bzw. das durch OH, C₁-C₃-Alkyl, OCH₃ substituiert sein kann;

R₅ Wasserstoff, Phenyl, OPhenyl, -CR₇R₈Phenyl, wobei der Phenylring durch OH, OCH₃ substituiert sein kann, oder -C(O)NR₉R₁₀;

- 3 -

R₆ Wasserstoff oder C₁-C₄-Alkoxycarbonyl oder -C(O)-O-(CH₂)₂-N(C₂H₅)₂:

R₇ und R₈, die gleich oder verschieden sein können, unabhängig voneinander Wasserstoff, CH₃ oder CF₃:

R₉ und R₁₀, die gleich oder verschieden sein können, Wasserstoff, C₁-C₈-Alkyl, verzweigt oder unverzweigt;

bedeuten können,

Soweit nicht im einzelnen abweichende Angaben gemacht werden, werden die allgemeinen Definitionen im folgenden Sinn gebraucht:

C₁-C₈-Alkyl, C₁-C₅-Alkyl und C₁-C₄-Alkyl steht im allgemeinen für einen verzweigten oder unverzweigten Kohlenwasserstoffrest mit 1 bis 4 oder 5 bzw. 8 Kohlenstoffatom(en), der gegebenenfalls mit einem oder mehreren Halogenatom(en) - vorzugsweise Fluor - substituiert sein kann, die untereinander gleich oder verschieden sein können. Als Beispiele seien folgende Kohlenwasserstoffreste genannt:

Methyl, Ethyl, Propyl, 1-Methylethyl (Isopropyl), n-Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2,-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl. Bevorzugt sind - sofern nicht anders angegeben - Niederalkylreste mit 1 bis 4 Kohlenstoffatomen, wie Methyl, Ethyl, Propyl, iso-Propyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl oder 1,1-Dimethylethyl.

Entsprechend bedeutet Alkylen eine verzweigte oder unverzweigte zweibindige Kohlenwasserstoffbrücke mit 1 bis 8 Kohlenstoffatomen, die gegebenenfalls mit einem oder mehreren Halogenatom(en) - vorzugsweise Fluor - substituiert sein kann, die untereinander gleich oder verschieden sein können.

- 4 -

Aryl steht im allgemeinen für einen aromatischen Rest mit 6 bis 10 Kohlenstoffatomen - auch in Zusammensetzungen, wobei der Aromat mit einer oder mehreren Niederalkylgruppe(n), Trifluormethylgruppe(n), Cyanogruppe(n), Alkoxygruppe(n), Nitrogruppe(n), Aminogruppe(n) und/oder einem oder mehreren Halogenatom(en) - untereinander gleich oder verschieden - substituiert sein kann; bevorzugter Arylrest ist ein gegebenenfalls substituierter Phenylrest, wobei als Substituenten Halogen - wie Fluor, Chlor oder Brom - sowie Hydroxyl bevorzugt sind.

Alkoxy steht im allgemeinen für einen über ein Sauerstoffatom gebundenen geradkettigen oder verzweigten Kohlenwasserstoffrest mit 1 bis 8 Kohlenstoffatom(en). Bevorzugt ist ein Niederalkoxyrest mit 1 bis 3 Kohlenstoffatom(en). - Besonders bevorzugt ist die Methoxygruppe.

Wie gefunden wurde, zeichnen sich die Verbindungen der Formel I durch vielfältige Anwendungsmöglichkeiten auf therapeutischem Gebiet aus. Hervorzuheben sind solche Anwendungsmöglichkeiten, für welche die LTB₄-rezeptorantagonistischen Eigenschaften eine Rolle spielen. Hier sind insbesondere zu nennen:

Arthritis, Asthma, chronische obstruktive Lungenerkrankungen, etwa chronische Bronchitis, Psoriasis, Colitis ulcerosa, durch nichtsteroidale Antiphlogistika induzierte Gastro- oder Enteropathie, cystische Fibrose, Alzheimer-Krankheit, Schock, Reperfusionssschäden/Ischämien, Atherosklerose, Multiple Sklerose.

Auch lassen sich mit den neuen Verbindungen Krankheiten oder Zustände behandeln, bei denen die Passage von Zellen aus dem Blut über das vaskuläre Endothelium in das Gewebe von Bedeutung ist (etwa Metastasis) oder Krankheiten und Zustände, bei denen die Kombination des LTB₄ oder eines anderen Moleküls (beispielsweise 12-HETE) mit dem LTB₄-Rezeptor einen Einfluß auf die Zell-Proliferation hat (etwa chronische myelozytische Leukämie).

Die neuen Verbindungen können auch in Kombination mit anderen Wirkstoffen angewendet werden, etwa solchen, die für dieselben Indikationen Verwendung finden, oder z.B. mit Antiallergika, Sekretolytika, β_2 -Adrenergika, inhalativ anwendbaren Steroiden, Antihistaminika und/oder PAF-Antagonisten. Die Verabreichung kann topisch, oral, transdermal, nasal, parenteral oder inhalativ erfolgen.

- 5 -

Zur pharmakologischen und biochemischen Untersuchung der Wirkungsverhältnisse eignen sich Tests, wie sie beispielsweise in der WO 93/16036, S 15 bis 17 - auf die hier inhaltlich Bezug genommen wird - offenbart sind.

Die therapeutische oder prophylaktische Dosis ist - außer von der Wirkungsstärke der einzelnen Verbindungen und dem Körpergewicht des Patienten - abhängig von der Beschaffenheit und Ernsthaftigkeit des Krankheitszustandes. Bei oraler Anwendung liegt die Dosis zwischen 10 und 500 mg, vorzugsweise zwischen 20 und 250 mg. Bei inhalativer Anwendung werden dem Patienten zwischen etwa 0,5 und 25, vorzugsweise zwischen etwa 2 und 20 mg Wirkstoff zugeführt.

Inhalationslösungen enthalten im allgemeinen zwischen etwa 0,5 und 5 % Wirkstoff. Die neuen Verbindungen können in üblichen Zubereitungen verabreicht werden, etwa als Tabletten, Dragées, Kapseln, Oblaten, Pulver, Granulate, Lösungen, Emulsionen, Sirupe, Inhalationsaerosole, Salben, Suppositorien.

Formulierungsbeispiele

Die nachstehenden Beispiele zeigen einige Möglichkeiten für die Formulierung der Darreichungsformen:

1. Tabletten

Zusammensetzung:

Wirkstoff gemäß der Erfindung	20 Gew.-Teile
Stearinsäure	6 Gew.-Teile
Traubenzucker	474 Gew.-Teile

Die Bestandteile werden in üblicher Weise zu Tabletten von 500 mg Gewicht verarbeitet. Gewünschtenfalls kann der Wirkstoffgehalt erhöht oder vermindert und die Traubenzuckermenge entsprechend vermindert oder erhöht werden.

- 6 -

2. Suppositorien

Zusammensetzung:

Wirkstoff gemäß der Erfindung	100 Gew.-Teile
Laktose, gepulvert	45 Gew.-Teile
Kakao-Butter	1555 Gew.-Teile

Die Bestandteile werden in üblicher Weise zu Suppositorien von 1,7 g Gewicht verarbeitet.

3. Inhalationspulver

Mikronisiertes Wirkstoffpulver (Verbindung der Formel I; Teilchengröße ca. 0,5 bis 7 µm) werden in einer Menge von 5 mg gegebenenfalls unter Zusatz mikronisierter Lactose in Hartgelatinekapseln abgefüllt. Das Pulver wird aus üblichen Inhalationsgeräten, z.B. gemäß DE-A 33 45 722, auf die hiermit inhaltlich Bezug genommen wird, inhaliert.

Die neuen Verbindungen können nach folgenden konventionellen Methoden hergestellt werden, die an sich aus dem Stand der Technik bekannt sind:

1. Reduktion eines Amidoxims der allgemeinen Formel 2

worin R₁ bis R₅ und A die oben angegebene Bedeutung haben.

Für die Reduktion des Amidoxims der allgemeinen Formel 2 eignet sich die katalytische Hydrierung, insbesondere mit Raney-Nickel in einem niederen Alkohol, z.B. Methanol.

Zweckmäßigerweise wird das Amidoxim der allgemeinen Formel 2 unter Zugabe der berechneten Menge derjenigen Säure, deren Salz als Endprodukt gewünscht wird, in Methanol gelöst und bei Raumtemperatur unter leichtem Druck, z.B. bei 5 bar, bis zur beendeten Wasserstoffsaufnahme hydriert.

2. Umsetzung von Iminoestern der allgemeinen Formel 3

in der R₁ bis R₅ und A die obige Bedeutung haben und R bevorzugt für einen niederen Alkylrest steht, mit Ammoniak.

Die Umsetzung erfolgt zweckmäßig in einem organischen Lösungsmittel bei Temperaturen zwischen etwa 0°C und der Siedetemperatur des Reaktionsgemisches, vorzugsweise zwischen Raumtemperatur und etwa 100°C bzw. der Siedetemperatur, soweit diese niedriger ist. Geeignete Lösungsmittel sind polare Lösungsmittel wie Methanol, Ethanol, Propanole.

- 8 -

3. Umsetzung eines Phenols der allgemeinen Formel 4

worin R₁, R₂, R₆ die oben angegebene Bedeutung haben, mit einer Verbindung der Formel 5

worin A, R₃, R₄, R₅ die obige Bedeutung haben und L₁ eine nucleofuge Abgangsgruppe wie ein Halogenatom oder einen Sulfonsäurerest darstellt.

Die Umsetzung erfolgt in aprotischen Lösungsmitteln wie Dimethylsulfoxid, Dimethylformamid, Acetonitril oder Alkoholen wie Methanol, Ethanol oder Propanol unter Zusatz einer Base (vorzugsweise eines Alkali- oder Eralkalimetallcarbonats, -hydroxids oder -hydride) bei Temperaturen zwischen etwa 0 und 140°C bzw. der Siedetemperatur des Reaktionsgemischs.

4. Umsetzung eines Amidins der allgemeinen Formel 6

in der R₁ bis R₅ und A die oben angegebene Bedeutung haben, mit einer Verbindung der Formel 7

in der R_{6'} dieselbe Bedeutung wie R₆ hat, ausgenommen H, und L₂ eine nucleofuge Austrittsgruppe wie ein Halogenatom (etwa Cl, Br) oder Acyloxy bedeutet.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Tetrahydrofuran, Methylenchlorid, Chloroform oder Dimethylformamid, vorzugsweise in Gegenwart einer Base wie Natriumcarbonat, Kaliumcarbonat oder Natronlauge oder in Gegenwart einer tertiären organischen Base wie Triethylamin, N-Ethyl-diisopropylamin, N-Methylmorpholin oder Pyridin, welche gleichzeitig als Lösungsmittel dienen können, bei Temperaturen zwischen -30 und 100°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 80°C, durchgeführt.

Die erfindungsgemäßen Verbindungen sind ausgehend von aus dem Stand der Technik bekannten Verbindungen u.a. nach den in den folgenden Beispielen beschriebenen Verfahren herstellbar. Verschiedenartige, andere Ausgestaltungen der Verfahren werden für den Fachmann aus der vorliegenden Beschreibung ersichtlich. Es wird jedoch ausdrücklich darauf hingewiesen, daß diese Beispiele und die diesen zugeordnete Beschreibung lediglich zum Zweck der Erläuterung vorgesehen und nicht als Einschränkung der Erfindung anzusehen sind.

- 10 -

Amidoxim: X = C(=NOH)NH₂

5,3 g des Nitrils der obigen Formel (X = CN) wird zusammen mit 98 ml Ethanol, 3,65 g Hydroxylamin x HCl, 2,9 g Na₂CO₃ und 21 ml Wasser 5 Stunden am Rückfluß gekocht. Danach wird bis zur Trockne abdestilliert und der Rückstand mit Wasser verrührt und abgesaugt. 5,7 g wird in 25 ml Acetonitril aufgeschlämmt und mit 0,85 ml Methansulfonsäure versetzt, erwärmt und wieder abgekühlt. Nach dem Absaugen erhält man 6,4 g des Methansulfonats als weiße Kristalle.

Amidin: X = C(=NH)-NH₂

6,4 g des Amidoxims [X = C(=NOH)-NH₂] als Methansulfonat wird in 100 ml Methanol gelöst und mit Raney-Nickel als Katalysator unter Normalbedingungen bis zur 100 %igen Wasser-stoffaufnahme hydriert. Nach Absaugen wird eingeengt und der Rückstand aus Methanol umkristallisiert. Ausbeute: 3,8 g der Amidinverbindung als Methansulfonat. Fp. 228 - 30°C.

Ethoxycarbonylamidin: X = C(NCOOC₂H₅)-NH₂

2,6 g des Amidinmethansulfonats wird mit 1,6 ml Triethylamin in 50 ml Essigester suspendiert und dazu läßt man 0,6 ml Chlorameisensäureethylester in 5,5 ml Essigester bei Raum-temperatur in etwa 15 Minuten zutropfen. Das Reaktionsgemisch wird dann dreimal mit Wasser gewaschen, mit Na₂SO₄ getrocknet und eingedampft. Nach Umkristallisieren aus Acetonitril erhält man die Ethoxycarbonylamidinverbindung vom Fp. 142 - 144°C.

Gemäß dieser Vorschrift werden u.a. folgende Verbindungen erhalten:

Lfd. Nr.	Verbindung	Salzform	Fp. [°C]
1		Methansulfonat	221-223
2		Methansulfonat	212-213
3		Methansulfonat	219-222
4		Methansulfonat	>230
5		Methansulfonat	185-188

- 12 -

6		Methansulfonat	228-230
7		Methansulfonat	233-234
8		Methansulfonat	211-213
9		Methansulfonat	206-208
10		Methansulfonat	201-203

11		Methansulfonat	207-211
12		Methansulfonat	212-214
13		Methansulfonat	225-227
14		Methansulfonat	198-200
15		Methansulfonat	>230

16		Methansulfonat	209-211
17		Methansulfonat	188-190
18			
19		Methansulfonat	>230°
20			
21			

22			
23			
24		Chlorid	302 (Zersetzung.)
25		Methansulfonat	221-223
26		Methansulfonat	188-190
27		Methansulfonat	216-219

- 16 -

28		Methansulfonat	219-222
29		Methansulfonat	176
30		Methansulfonat	212-213
31		Methansulfonat	196-200
32			158-160

- 17 -

33		Methansulfonat	221-223
34		Methansulfonat	230
35		Methansulfonat	185-188
36		Methansulfonat	228-230
37		Methansulfonat	233-234
38		Methansulfonat	211-213

- 18 -

39		Methansulfonat	201-203
40		Methansulfonat	212-214
41		Methansulfonat	230
42		Methansulfonat	206-208
43			84-86

44		Methansulfonat	225-227
45		Methansulfonat	207-211
46			142-144
47		Methansulfonat	215-221
48		Methansulfonat	209-211
49		Methansulfonat	>230

- 20 -

50		Methansulfonat	>230
51		Methansulfonat	>230
52		Methansulfonat	198-200
53		Methansulfonat	218-222
54			144-147
55		Methansulfonat	185-191

56		Dichlorid	150-154
57		Methansulfonat	220
58		Di-Methansulfonat	198-202
59		Chlorid	302
60		Methansulfonat	158
61		Methansulfonat	151

62		Chlorid	170-175
63		Methansulfonat	135-142
64		Chlorid	178
65		Chlorid	138-145
66		Chlorid	209-210

67		Chlorid	182-183
68		Chlorid	211-216
69		Methansulfonat	168-175
70		Methansulfonat	170-174
71			

- 24 -

72		Chlorid	171-175
73		Chlorid	180-188
74		Chlorid	126-129
75		Methansulfonat	158-166

76		Methansulfonat	175-183
77		Methansulfonat	180

Ergänzend wird auf die Offenbarung der Deutschen Patentanmeldung Nr.: 196 36 689.5, deren Priorität von der vorliegenden Anmeldung in Anspruch genommen wird, vollinhaltlich Bezug geriommen.

Patentansprüche

1. Benzamidinderivate der allgemeinen Formel 1

worin

A -OC₂-C₄-Alkylen-O- oder -C₁-C₃-Alkylen-O-R₁ C₁-C₆-Alkyl, verzweigt oder unverzweigt, C₃-C₆-Alkenyl, verzweigt oder unverzweigt, vorzugsweise Allyl oder F, Cl, Br, I;R₂ Wasserstoff, C₁-C₆-Alkyl, verzweigt oder unverzweigt, C₃-C₆-Alkenyl, verzweigt oder unverzweigt, vorzugsweise Allyl oder F, Cl, Br, I;

R₃ und R₄, die gleich oder verschieden sein können, unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, verzweigt oder unverzweigt, C₃-C₆-Alkenyl, verzweigt oder unverzweigt, vorzugsweise Allyl, C₁-C₆-Alkoxy, (C₁-C₄-Alkyl)OC(O)O-, OH, CF₃ oder zusammen einen ankondensiertes ein- oder zweikerniges Ringsystem bilden können, das vollständig oder teilweise durchkonjugiert sein kann und gegebenenfalls ein oder zwei Heteroatome aus der Gruppe Sauerstoff, Schwefel oder Stickstoff aufweisen kann, die gleich oder verschieden sein können, das gegebenenfalls durch OH, C₁-C₄-Alkoxy, C₁-C₄-Alkyl substituiert sein kann;

R₅ Wasserstoff, Aryl, bevorzugt Phenyl, -OPhenyl, -CR₇R₈Phenyl, -COPhenyl, -SO₂-Phenyl, -CH(OH)Phenyl, wobei der Phenylring durch OH oder C₁-C₄-Alkoxy substituiert sein kann oder -C(O)NR₉R₁₀:

R₆ Wasserstoff, C₁-C₆-Alkoxycarbonyl, (C₁-C₅-Alkyl)-carbonyl oder
-C(O)-O-(C₁-C₆-Alkylen)-NR₁₁R₁₂;

R₇ und R₈, die gleich oder Verschieden sein können, Wasserstoff, C₁-C₈-Alkyl,
verzweigt oder unverzweigt;

R₉ und R₁₀, die gleich oder verschieden sein können, unabhängig voneinander
Wasserstoff, C₁-C₈-Alkyl, verzweigt oder unverzweigt;

R₁₁ und R₁₂, die gleich oder verschieden sein können, unabhängig voneinander
Wasserstoff, C₁-C₈-Alkyl, verzweigt oder unverzweigt;

bedeuten können,

gegebenenfalls in Form der einzelnen optischen Isomeren, Mischungen der
einzelnen Enantiomeren oder Racemate sowie in Form der freien Basen oder der
entsprechenden Säureadditionssalze mit pharmakologisch unbedenklichen
Säuren.

2. Verbindungen der allgemeinen Formel 1 nach Anspruch 1, in der

A -OCH₂CH₂O-, -CH₂O-, -CH₂CH₂CH₂O-;

R₁ C₁-C₅-Alkyl, verzweigt oder unverzweigt, Allyl;

R₂ Wasserstoff;

R₃ Wasserstof, C₁-C₆-Alkyl, OCH₃, C₂H₅OC(O)O-, OH, Cl, F, CF₃;

R₄ Wasserstoff, -OCH₃, OH;

R₃ und R₄ zusammen einen ankondensierten Benzolring, ein 3,4-Dihydrocumarinsystem oder ein 1,3-Dioxolansystem, der bzw. das durch OH, C₁-C₃-Alkyl, OCH₃ substituiert sein kann;

R₅ Wasserstoff, Phenyl, OPhenyl, -CR₇R₈Phenyl, wobei der Phenylring
durch OH, OCH₃ substituiert sein kann, oder -C(O)NR₉R₁₀;

R₆ Wasserstoff oder C₁-C₄-Alkoxy carbonyl oder
-C(O)-O-(CH₂)₂-N(C₂H₅)₂;

R₇ und R₈, die gleich oder verschieden sein können, unabhängig voneinander
Wasserstoff, CH₃ oder CF₃;

R₉ und R₁₀, die gleich oder verschieden sein können, Wasserstoff, C₁-C₈-Alkyl,
verzweigt oder unverzweigt;

bedeuten können.

3. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel 1,
dadurch gekennzeichnet, daß man ein Amidoxim der allgemeinen Formel 2

worin R₁ bis R₅ und A die in Anspruch 1 angegebene Bedeutung haben, auf
an sich bekannte Weise reduziert.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man die
Reduktion auf kataytischem Wege, bevorzugt in Gegenwart von Raney-
Nickel, durchführt.

5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die
katalytische Reduktion des Amidoxims in einem niederen Alkohol, bevorzugt
in Methanol, durchgeführt wird.

6. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel 1, dadurch gekennzeichnet, daß man

in der R₁ bis R₅ und A worin R₁ bis R₅ und A die in Anspruch 1 angegebene Bedeutung haben, mit Ammoniak umsetzt.

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Umsetzung in einem organischen Lösungsmittel bei Temperaturen zwischen etwa 0°C und der Siedetemperatur des Reaktionsgemisches, bevorzugt in einem Temperaturintervall zwischen Raumtemperatur und etwa 100°C bzw. der Siedetemperatur, soweit diese niedriger ist, erfolgt.

8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Umsetzung in einem polaren Lösungsmittel, bevorzugt Methanol, Ethanol oder in einem Propanol, erfolgt.

9. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel 1, dadurch gekennzeichnet, daß man ein Phenol der allgemeinen Formel 4

- 30 -

worin R₁, R₂, R₆ die in Anspruch 1 angegebene Bedeutung haben, mit einer Verbindung der Formel 5

worin A, R₃, R₄, R₅ die in Anspruch 1 angegebene Bedeutung haben und L₁ eine nucleofuge Abgangsgruppe, bevorzugt ein Halogenatom oder einen Sulfonsäurerest, bedeutet, in einem aprotischen Lösungsmittel umgesetzt.

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Lösungsmittel Dimethylsulfoxid, Dimethylformamid, Acetonitril oder ein Alkohol, bevorzugt Methanol, Ethanol oder ein Propanol ist.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Umsetzung in Gegenwart einer Base, bevorzugt in Gegenwart eines Alkalimetall- oder Erdalkalimetallcarbonats, Metallhydroxids oder Metallhydrids, durchgeführt wird.
12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß die Umsetzung bei einer Temperatur in einem Intervall zwischen 0 °C und dem Siedepunkt der Reaktionsmischung und bevorzugt in einem Temperaturintervall von 0 bis 140°C durchgeführt wird.
13. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel 1, dadurch gekennzeichnet, daß man ein Amidin der allgemeinen Formel 6

in der R₁ bis R₅ und A die in Anspruch 1 angegebene Bedeutung haben, mit einer Verbindung der allgemeinen Formel 7

in der R_{6'} C₁-C₆-Alkoxy carbonyl oder C₁-C₆-Acyl und L₂ eine nucleofuge Austrittsgruppe, bevorzugt Chlor, Brom oder Acyloxy, bedeutet, umsetzt.

14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Umsetzung in einem polaren Lösungsmittel erfolgt.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß das Lösungsmittel Tetrahydrofuran, Methylenchlorid, Chloroform oder Dimethylformamid ist.
16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß die Umsetzung in Gegenwart einer anorganischen Base, vorzugsweise Natriumcarbonat, Kaliumcarbonat oder Natronlauge, oder in Gegenwart einer tertiären organischen Base, vorzugsweise Triethylamin, N-Ethyl-diisopropylamin, N-Methylmorpholin oder Pyridin erfolgt.
17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, daß die Umsetzung in einem Temperaturintervall zwischen -30 und 100°C, vorzugsweise in einem Temperaturintervall zwischen -10 und 80°C, durchgeführt wird.

18. Pharmazeutische Zubereitung, gekennzeichnet durch einen Gehalt an einer Verbindung nach einem der Ansprüche 1 bis 2 und deren Säureadditionssalze neben üblichen Hilfs- und Trägersstoffen.
19. Verwendung von Verbindungen nach einem der Ansprüche 1 bis 2 als Arzneimittel.
20. Verwendung von Verbindungen nach Anspruch 19 als Arzneimittel mit LTB₄-antagonistischer Wirkung.
21. Verwendung von Verbindungen der allgemeinen Formel 1, deren Stereoisomere sowie deren Säureadditionssalze zur Herstellung eines Medikaments zur therapeutischen Behandlung von Arthritis, Asthma, chronischer obstruktiver Lungenerkrankung wie chronischer Bronchitis, Psoriasis, Colitis ulcerosa, durch nichtsteroidale Antiphlogistika induzierter Gastro- oder Enteropathie, cystischer Fibrose, Alzheimer-Krankheit, Schock, Reperfusionsschäden/Ischämien, Atherosklerose, multipler Sklerose.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 97/04921

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 C07C257/18 C07C257/20 C07C271/64 A61K31/155

According to International Patent Classification(IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 6 C07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 44 24 713 A (BOEHRINGER INGELHEIM KG) 18 January 1996 see the whole document ---	1,2, 18-21
A	EP 0 518 818 A (CIBA GEIGY AG) 16 December 1992 see claims ---	1,2, 18-21
A	WO 93 16036 A (BOEHRINGER INGELHEIM KG) 19 August 1993 see claims ---	1,2, 18-21
A	EP 0 574 808 A (DR KARL THOMAE GMBH) 22 December 1993 see claims ---	1,2, 18-21
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

11 December 1997

Date of mailing of the international search report

18/12/1997

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Henry, J

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 97/04921

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 496 378 A (DR KARL THOMAE GMBH) 29 July 1992 see claims ----	1,2, 18-21
P,X	DE 195 46 452 A (BOEHRINGER INGELHEIM KG) 19 June 1997 see the whole document -----	1,18-21

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 97/04921

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 4424713 A	18-01-96	AU 2674295 A WO 9602497 A EP 0770059 A FI 970094 A HR 950365 A NO 970122 A PL 318115 A SK 1997 A ZA 9505780 A	16-02-96 01-02-96 02-05-97 10-01-97 31-08-97 10-01-97 12-05-97 06-08-97 15-01-96
EP 0518818 A	16-12-92	AU 1807292 A CA 2070796 A CS 9201781 A HU 61977 A JP 5239008 A MX 9202748 A US 5246965 A	17-12-92 12-12-92 16-12-92 29-03-93 17-09-93 01-12-92 21-09-93
WO 9316036 A	19-08-93	DE 4203201 A DE 4224289 A DE 4244241 A AU 3349793 A CA 2129526 A CZ 9401886 A EP 0625138 A FI 943618 A HU 68419 A JP 7503718 T MX 9300630 A NO 942903 A NZ 246593 A SK 91494 A ZA 9300733 A	12-08-93 27-01-94 30-06-94 03-09-93 06-08-93 15-03-95 23-11-94 04-08-94 28-06-95 20-04-95 01-09-93 03-10-94 27-07-97 08-02-95 06-08-93
EP 0574808 A	22-12-93	DE 4219158 A AU 4120193 A CA 2098158 A CN 1080917 A JP 6073038 A MX 9303466 A	16-12-93 23-12-93 12-12-93 19-01-94 15-03-94 31-01-94

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 97/04921

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0574808 A		NO 932120 A PL 299260 A ZA 9304090 A	13-12-93 07-03-94 11-12-94
EP 0496378 A	29-07-92	DE 4102024 A AT 128120 T AU 648379 B AU 1040392 A DE 59203704 D ES 2079694 T IE 69973 B JP 4334351 A MX 9200269 A NO 177852 B NZ 241355 A US 5597825 A ZA 9200464 A	30-07-92 15-10-95 21-04-94 30-07-92 26-10-95 16-01-96 16-10-96 20-11-92 01-07-92 28-08-95 26-07-94 28-01-97 23-07-93
DE 19546452 A	19-06-97	AU 1369997 A WO 9721670 A	03-07-97 19-06-97

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 97/04921

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 6 C07C257/18 C07C257/20 C07C271/64 A61K31/155

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
 IPK 6 C07C

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	DE 44 24 713 A (BOEHRINGER INGELHEIM KG) 18.Januar 1996 siehe das ganze Dokument ---	1,2, 18-21
A	EP 0 518 818 A (CIBA GEIGY AG) 16.Dezember 1992 siehe Ansprüche ---	1,2, 18-21
A	WO 93 16036 A (BOEHRINGER INGELHEIM KG) 19.August 1993 siehe Ansprüche ---	1,2, 18-21
A	EP 0 574 808 A (DR KARL THOMAE GMBH) 22.Dezember 1993 siehe Ansprüche ---	1,2, 18-21
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung,

eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindnerischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindnerischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"S" Veröffentlichung, die Mitglied derselben Patentfamilie ist

1

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

11.Dezember 1997

18/12/1997

Name und Postanschrift der Internationalen Recherchenbehörde
 Europäisches Patentamt, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Henry, J

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 97/04921

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	EP 0 496 378 A (DR KARL THOMAE GMBH) 29.Juli 1992 siehe Ansprüche ---	1,2, 18-21
P,X	DE 195 46 452 A (BOEHRINGER INGELHEIM KG) 19.Juni 1997 siehe das ganze Dokument -----	1,18-21

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 97/04921

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE 4424713 A	18-01-96	AU 2674295 A WO 9602497 A EP 0770059 A FI 970094 A HR 950365 A NO 970122 A PL 318115 A SK 1997 A ZA 9505780 A	16-02-96 01-02-96 02-05-97 10-01-97 31-08-97 10-01-97 12-05-97 06-08-97 15-01-96
EP 0518818 A	16-12-92	AU 1807292 A CA 2070796 A CS 9201781 A HU 61977 A JP 5239008 A MX 9202748 A US 5246965 A	17-12-92 12-12-92 16-12-92 29-03-93 17-09-93 01-12-92 21-09-93
WO 9316036 A	19-08-93	DE 4203201 A DE 4224289 A DE 4244241 A AU 3349793 A CA 2129526 A CZ 9401886 A EP 0625138 A FI 943618 A HU 68419 A JP 7503718 T MX 9300630 A NO 942903 A NZ 246593 A SK 91494 A ZA 9300733 A	12-08-93 27-01-94 30-06-94 03-09-93 06-08-93 15-03-95 23-11-94 04-08-94 28-06-95 20-04-95 01-09-93 03-10-94 27-07-97 08-02-95 06-08-93
EP 0574808 A	22-12-93	DE 4219158 A AU 4120193 A CA 2098158 A CN 1080917 A JP 6073038 A MX 9303466 A	16-12-93 23-12-93 12-12-93 19-01-94 15-03-94 31-01-94

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 97/04921

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0574808 A		NO 932120 A PL 299260 A ZA 9304090 A	13-12-93 07-03-94 11-12-94
EP 0496378 A	29-07-92	DE 4102024 A AT 128120 T AU 648379 B AU 1040392 A DE 59203704 D ES 2079694 T IE 69973 B JP 4334351 A MX 9200269 A NO 177852 B NZ 241355 A US 5597825 A ZA 9200464 A	30-07-92 15-10-95 21-04-94 30-07-92 26-10-95 16-01-96 16-10-96 20-11-92 01-07-92 28-08-95 26-07-94 28-01-97 23-07-93
DE 19546452 A	19-06-97	AU 1369997 A WO 9721670 A	03-07-97 19-06-97