Semiparametric robust mean estimations based on the orderliness of quantile averages

Tuban Lee

This manuscript was compiled on June 9, 2023

semiparametric | mean-median-mode inequality | asymptotic | unimodal | Hodges—Lehmann estimator

Inequalities related to weighted averages

- So far, it is quite natural to hypothesize that the value of
- 3 ϵ, γ -trimmed mean should be monotonically related to the
- 4 breakdown point in a semiparametric distribution, since it is
- ${\scriptscriptstyle 5}$ $\,$ a linear combination of quantile averages as shown in Section
- $_{6}$??. Analogous to the γ -orderliness, the γ -trimming inequality
- for a right-skewed distribution is defined as $\forall 0 \le \epsilon_1 \le \epsilon_2 \le \epsilon_1$
- 8 $\frac{1}{1+\gamma}$, $TM_{\epsilon_1,\gamma} \geq TM_{\epsilon_2,\gamma}$. γ -orderliness is a sufficient condition
- $_{9}$ for the $\gamma\text{-trimming}$ inequality, as proven in the SI Text. The
- $_{10}$ $\,$ next theorem shows a relation between the $\epsilon,\gamma\text{-quantile}$ average
- and the ϵ, γ -trimmed mean under the γ -trimming inequality,
- $_{12}$ $\,$ suggesting the $\gamma\text{-}\mathrm{orderliness}$ is not a necessary condition for
- the γ -trimming inequality.
- 4 **Theorem .1.** For a distribution that is right-skewed and
- follows the γ -trimming inequality, it is asymptotically true
- that the quantile average is always greater or equal to the
- corresponding trimmed mean with the same ϵ and γ , $0 \le \epsilon \le 1$
- 18 $\frac{1}{1+x}$.
- Data Availability. Data for Figure ?? are given in SI Dataset
- 20 S1. All codes have been deposited in GitHub.
- ACKNOWLEDGMENTS. I sincerely acknowledge the insightful
- comments from the editor which considerably elevated the lucidity
- 23 and merit of this paper.