

INFS 2044

Workshop 5b Answers

Preparation

- Read the required readings
- Watch the Week 5 Lecture
- Bring a copy of the workshop instructions (this document) to the workshop

Where We Are At

- Designed components, their interfaces, and their interactions
- Documented implementation design using UML Sequence diagrams and UML Class diagrams
- Assessed designs using Design Principles
- "Repaired" designs using Design Patterns

Learning Objectives

- Define components, connectors, and deployment design
- Document deployment design using UML Deployment Diagrams
- Assess non-functional properties of deployment designs

Task 1. Packaging Design

- Define the deployable components for the Booking System.
- Use the decomposition of the Booking System shown on the next slide as the basis for your component design

Booking System Components

Packaging Considerations Heuristics

- Which elements in the decomposition shall be packaged as stand-alone elements, and which shall be packaged together with other elements?
- Implementation of the components impact
 - Code-only elements may be aggregated with other elements
 - Data-holding elements may be aggregated, subject to nonfunctional requirements; may be difficult to duplicate (inconsistencies!)
 - External services are separate by definition

Booking System Components

Packaging Considerations Heuristics

- Coupling
 - <<depends>> Source code dependencies
 - <<use>>> relationships
- Non-functional properties impact
 - Communication latency (non-local connectors)
 - Synchronicity of communication (synchronous vs asynchronous)
 - Maintainability (upgrades & patches)
 - Resource constraints
 - Cost (development & deployment)

Booking System <<use>>> Rels

Options for Connectors

- In-process invocation (only if packaged together)
- Inter-process communication on the same host
- Remote invocation
- Queues for asynchronous communication
- There are many options...

Booking System <<use>>> Rels

Resulting Runtime Components

Discussion

- All the code-only components have been packaged together
 - Assume that the system implementation components are upgraded together
 - Separation of components may not be worth the extra effort
- We kept the public-facing components separate
 - Each Guest/Staff/Bot application may need to connect to the same Booking System
 - They may be deployed on separate hosts
 - The Booking system cannot be aggregated with these components

Discussion

- Data stores kept separate for now.
 - Likely implemented as off-the-shelf DBMS's, hence best separate.
 - Flexibility to decide later how to deploy them (on the same host/DBMS, separate, etc)
- External services are not components in our system.
 - They are separate by definition, someone else runs them for us.

Task 2. Deployment Design

- Create a Deployment Diagram for the Booking System runtime components defined in Task 1.
- Allocate each component to a node, and show how the links and protocols the components use for communication.

UML Deployment Diagram

Bc

Task 3. Non-Functional Properties

- Discuss the non-functional properties of the deployment configuration developed in Task 1.
- Compare the deployment design with that given on the next slide w.r.t:
 - Cost
 - Latency
 - Reliability
 - Maintainability
 - Scalability
 - Security

B

- One Server for Everything
 - Simple
 - Cheap
 - Single point of failure
 - Performance is limited, may not scale easily
 - All is exposed if security is breached

- Deploy Guest/Staff/Bot application on the same server as the main Booking Application Component, or on a separate server?
 - Separate server is better for security, scalability, maintainability
 - Same server is better for latency (assuming sufficient resources on that node)
 - Latency should not be an issue for access via LAN

- AD on a separate server is better for security
- Data stores on separate server(s) is better for security
- Guest/Staff/Bot app all on the same server
 - Cheaper, but cannot scale out separately
 - This deployment configuration may change as the system load grows

- DBMS on the same host as the main system
 - Poor for security (what if the application server gets compromised?)
 - Poor for scalability and reliability (DBMS uses a lot of resources)
 - Cheaper
- All data stores in the same DBMS?
 - Leaner resource profile
 - Separating them makes sense if deployed on separate nodes or if the DBMS technology differs among the stores
 - Separating them is better for data security, but costs more

You Should Know

- Design deployment of components
- Draw UML Deployment Diagrams
- Assess properties of deployment designs

Activities this Week

- Complete Quiz 5
- Continue working on Assignment 1

Next Week

- Attend INFS2045 System Design Studio
- INFS2044 will resume in Week 10

University of South Australia