ArsDigitaUniversity Month2:DiscreteMathematics -ProfessorShaiSimonson

ProblemSet3 -RecursionandInduction

- 1. SolvetheChineseRingsPuzzle,alsocalledthePatiencePuzzle, (http://johnrausch.com/PuzzleWorld/patience.htm). This will prepare you for recurrence equations, proofs by induction and graph representations.
- 2. ConsiderthevariationoftheTowersofHanoiProblemwhereyouhavefourpegsinstead ofthree.Forsim plicityyoumayassumethat *n* isapoweroftwo.SloppyJoedesignsthis *solution:*

Inordertomove *n*disksfrom *From*to *To*, using *Using1* and *Using2*: If *n* equals1, then movea diskfrom *From* to *To*, otherwise dothethree recursive steps: Move *n*/2 disk sfrom *From* to *Using1*, using *To* and *Using2*; Move *n*/2 disksfrom *From* to *To*, using *Using1* and *Using2*; Move *n*/2 disksfrom *Using1* to *To*, using *From* and *Using2*;

- a. ExplainwhySloppyJoe'ssolutiondoesnotwork.
- b. FruityFreddiesuggestschangingthesecondline :
 Move n/2disksfrom From to To,using Using1 and Using2; to
 Move n/2disksfrom From to To,using Using2 and Using1;
 - Explain why the algorithm still does not working eneral.
- c. CodethealgorithmsinSchemeandreportwhathappensfor n = 4, and n = 8.
- $d. \ \ Even though neither solution above works, set up are currence equation for the number of moves it takes to run the algorithms.$
- e. Solvethisrecurrenceequationbyrepeatedsubstitution.
- 3. FixJoeandFreddie'sfailures.
 - a. ConstructacorrectsolutiontotheTow ersofHanoiproblemwithfourpegs,thatis fasterthanthestandardsolutionwiththreepegs.
 - b. CodeyoursolutioninSchemeandshowtheresultfor n=4 and n=8.
 - c. Constructarecurrenceequationforyoursolutionandsolveit.
- 4. Forthe 3 -pegversion, make a picture of the Towers of Hanoi graph for n=4. Recall that this graph is composed of three copies of the Hanoi graph for 3 disks.

- 5. Intheoriginal Towers of Hanoi problem, alternately color the disks black and white asyou go from the top to the bottom of the starting tower, including the base of the *From* tower. The color of the *To* base is the same as the color of the *From* tower, and different than the color of the *Using* tower. Then in addition to the standard rules, add the constraint that only disks of different color scan be placed on top of one another, and a disk cannot be placed on a base with the same color.
 - a. ShowthepathofthesolutionintheTowersofHanoigraphfor n=4.
 - b. Provethatasidefromgoingbackwards,thereisnochoice foreachsubsequentmove.
 - c. Provebyinductiononthenumberofdisks n,thatthesolutionimpliedbythisnew rule,isidenticaltothestandardrecursivesolution.Hint:Firstprovethe followinglemmabyinduction:FortheHanoigraphon n disks,letth enode labeledwithall i'sbecalled i^n , $i \in \{1,2,3\}$. Thentherightmostoccurrencesof a and b, inthelabelofanynodeonthesolutionpathfrom a^n to b^n , occurinodd numberedslotscountingfromrighttoleft.
- 6. IntheoriginalTowersofHanoi problem,addtheconstraintthatnodirectmovesbetween the *From*pegtothe *To*pegareallowed.
 - a. Provebyinduction, that following this new rule, will take you through every legal configuration of the game. Hint: Use the graph representation.
 - b. Writear ecurrenceequationforthesmallestnumberofmovesittakestosolvethe problemunderthenewconstraint.
 - c. Solvetheequation.
- 7. Double-diskHanoihasthreepegsand diskstackedontopofeachother.The samesizetoreversetheirorder.
 - a. Describeamethodtosolvethisproblem.
 - b. Writeandsolvearecurrenceequationforthenumberofmovesimpliedbyyour solution.
- 8. ConsiderthestandardGraycodesequ enceforbinarynumbersoflength4.
 - a. WritedownthestandardGraycodesinorderforbinarynumbersoflengthfour.
 - b. Drawafour -dimensionalhypercube, labeling the vertices appropriately, and show that the Gray code ordering is a Hamiltonian Circuit through the Hypercube.
- 9. Provebyinductionthatthestandard *n*-bitGraycode(definedinductivelyintermsofthe *n*-litGraycode)isaHamiltonianCircuitthroughthe *n*-dimensionalhypercube.

- 10. Makeatableofthe 2^n elementsofthe Graycode for some n, by writing the minor der starting from 0^n , one underneath the other.
 - a. Conjectureatheoremregardingthepatternsofthebitsinthe *i*thcolumnofyourchart. Ifyouarehavingtroublewritingdownatheoremforthe writeone downforaparticular *i*.
 - b. Proveyourtheorem.
- 11. Converting Graycodes. (The class handout will help with this).
 - a. WriteaSchemeprogramthattakesabinarynumber *n* andoutputsthe *n*thelementof aGraycode.
 - b. WriteaSchemeprogramthatdoestheinverseof (a).
- 12. Consider the algorithm for computing a^n where a and n are integers. If n=0, then return 1. If n is even then compute $a^{n/2}$ recursively, and square it. Otherwise, compute a^{n-1} recursively and multiply the result by a.
 - a. Howmanymultiplicationsdo esthismethodusewhen *n*isapoweroftwo?
 - b. Howmanymultiplications when n is one less than a power of two?
 - c. Whatexactlydeterminesthenumberofmultiplicationsforgeneral *n*. Beasspecific aspossible.