WHAT IS CLAIMED IS:

1	1. An apparatus for executing a secure program in a computer system,
2	wherein the ability to make workable copies of the secure program from the computer
3	system is inhibited, the apparatus comprising:
4	a program memory in which the secure program data is stored in an
5	encrypted form;
6	a security chip coupled to the program memory, the security chip
7	comprising:
8	means for decrypting portions of the secure program into a clear
9	portion and a remainder portion;
10	means for providing the clear portion to memory locations
11	accessible by a processor; and
12	remainder memory for storing the remainder portion of the secure
13	program, the remainder memory not directly accessible by the processor;
14	means for requesting subsets of the remainder portion for use by the
15	processor; and
16	means, within the security chip, for checking that the requested subset is a
17	subset expected to be requested given a stored state for the processor.
1	2. The apparatus of claim 1, wherein the secure program stored in the
2	program memory is stored with the program portion and the remainder portion stored
3	separately.
1	3. The apparatus of claim 1, wherein the remainder portion is a set of
2	branch instructions of the secure program.

- 4. The apparatus of claim 3, wherein the security chip further includes means for caching branch statements based on recently executed branches.
- 5. The apparatus of claim 1, wherein the means for decrypting branches is configured with a decryption key.

1 6. The apparatus of claim 5, wherein the decryption key is stored in 2 volatile memory. 1 7. The apparatus of claim 6, wherein the volatile memory is distributed 2 over the security chip, the security chip further comprising overlying circuitry which 3 overlies and obscures at least a part of the volatile memory. 1 8. The apparatus of claim 7, wherein the overlying circuitry is coupled to 2 a power source for the volatile memory such that the removal of the overly circuitry 3 removes the power to the overlying circuitry. 1 9. The apparatus of claim 1, further comprising a clocking means, within 2 the security chip, for determining a rate of instruction execution of the processor, 3 wherein the security chip responds to processor requests only when the clocking means 4 determines that the rate is within an expected range. 1 10. The apparatus of claim 1, further comprising a data decompressor for 2 decompressing the secure program after decryption, wherein the secure program is 3 compressed before encryption. 1 11. The apparatus of claim 10, wherein the decompressor is an entropy 2 decoder. 1 12. The apparatus of claim 1, further comprising a checksum means, 2 within the security chip, for determining a checksum of bus accesses on a processor bus, 3 wherein the security chip responds to processor requests only when the determined 4 checksum matches an expected checksum. 1 13. The apparatus of claim 1, further comprising a data scrambler for 2 reordering data elements of the secure program according to a reversible and 3 deterministic pattern determined by a key value, wherein the secure program is reordered by the inverse of the data scrambler before being placed in the program memory. 4

1	14. The apparatus of claim 13, wherein the data scrambler comprises a
2	plurality of first-in, first-out buffers.
1	15. The apparatus of claim 13, wherein the reversible and deterministic
2	pattern is generated by reference to the output of a pseudorandom number generator.
1	16. The apparatus of claim 1, wherein the means for decrypting operates
2	based on the key value and the output of a pseudorandom number generator.
1 2	17. The apparatus of claim 1, further comprising means for altering the
3	operation of the security chip and the flow of the program when said means for checking
	detects that an unexpected subset has been requested, where by the altered operation
4	causes a negative effect on the program flow or operation.
1	18. The apparatus of claim 17, wherein the means for altering is a
2	means for halting the processor.
1	19. An apparatus for securing program data from unauthorized
2	copying, comprising;
3	a branch separator for extracting branch statements from the program data
4	a compressor for compressing the extracted branch statements and a
5	remainder of the program data to form compressed data; and
6	an encryptor for encrypting the compressed data.
1	20. The apparatus of claim 19, wherein the branch separator comprises
2	means for automatically generating checksum data representing checksums
3	of program data; and
4	means for automatically generating timing information used to assess
5	timing of program data processing,
6	whereby the checksum data and the timing information are compressed by
7	the compressor and encrypted by the encryptor.

1	21. A method of executing a secure program to prevent copying of the
2	secure program in a usable form from information acquired over an insecure processor
3	bus, comprising the steps of:
4	accepting a request from the insecure processor for a block of program
5	data, the block of program data including at least one of one or more program
6	instructions or one or more program data elements;
7	decrypting, in a secure manner, the block of program data into a clear
8	portion and a remainder portion;
9	providing the clear portion to the insecure processor; and
10	accepting requests from the insecure processor for elements of the
11	remainder portion;
12	checking that the request is proper given the state of the insecure processor
13	and previous requests;
14	processing the requests from the insecure processor for elements of the
15	remainder portion; and
16	responding to the requests, wherein underlying remainder portion elements
17	are not feasibly determined by reference to only the information content of a response to
18	a request.
1	22. The method of claim 21, further comprising the steps of:
2	separating a program into the clear portion and the remainder portion to
3	form a secure program; and
4	encrypting the secure program prior to placing the secure program in a
5	memory accessible by attackers intent on making unauthorized copies of the secure
6	program.
1	23. The method of claim 22, wherein the step of separating is a step of
2	separating branch instructions of the secure program from other instructions of the secure
3	program.
_	
1	24. The method of claim 21, wherein the step of decrypting is performed
2	with a decryption key

1	25. The method of claim 24, further comprising the step of storing the
2	decryption key in volatile memory.
1	26. The method of claim 25, further comprising the steps of:
2	providing a power source to the volatile memory;
3	covering the volatile memory with a circuit such that the power source is
4	removed from the volatile memory when the circuit is disturbed and the contents of the
5	volatile memory cannot be easily measured without removing the circuit.
1	27. The method of claim 21, further comprising the step of checking a
2	rate of instruction execution of the processor prior to providing a response to a request
3	for information.
1	28. The method of claim 21, further comprising the step of
2	decompressing the secure program after decryption, wherein the secure program is
3	compressed before encryption.
1	29. The method of claim 21, further comprising the steps of:
2	determining a checksum of bus accesses on a processor bus;
3	comparing the checksum to a precalculated checksum expected for the
4	instructions of the secure program which were expected to be executed; and
5	preventing the unobstructed operation of the secure program when the
6	checksum and the precalculated checksum differ.
1	30. The method of claim 21, further comprising a steps of:
2	scrambling an order of data elements of the secure program according to a
3	reversible and deterministic pattern determined by a key value prior to storage in a
4	memory accessible by attackers; and
5	descrambling the order of the data elements upon proper request of the
6	processor.
	-

1	31. The method of claim 30, wherein the step of scrambling comprises a
2	step of generating a pseudorandom number used to form the reversible and deterministic
3	pattern.
	. /
1	32. A method for securing a program against unauthorized copying,
2	comprising the steps of:
3	separating program code according to sequences of nonbranch instructions
4	and branch instructions;
5	compressing the non-branch instructions to form a first set of compressed
6	data;
7	compressing the branch instructions to form a second set of compressed
8	data; and
9	encrypting the first and second sets of compressed data.