

ФГАОУ ВО «Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

ТЕОРИЯ АВТОМАТОВ

Практическое задание **№2** Вариант 8

> Лабушев Тимофей Группа Р3302

 ${
m Cahkt-} \Pi$ етербург 2020

Цель работы

Овладение навыками минимизации полностью определенных абстрактных автоматов (на примере автомата Мура).

Задание

- 1. В соответствии с номером варианта выбрать абстрактный автомат $S=(A,Z,W,\delta,\lambda,a_1).$
- 2. Найти последовательные разбиения $\pi_1, \pi_2, \dots, \pi_k, \pi_{k+1}$ множества на классы одно-, двух-, ..., k+1 эквивалентных между собой состояний.
- 3. Разбиение на классы производить до тех пор, пока на каком-то k+1 шаге не окажется, что $\pi k + 1 = \pi k$.
- 4. В каждом классе эквивалентности разбиения π выбрать по одному элементу, которые образуют множество ' состояний минимального автомата $S' = (A', Z, W, \delta', \lambda', a'_1)$, эквивалентного исходному автомату S.
- 5. Функции переходов и выходов автомата S' определить на множестве A'*Z, то есть $\delta':A'*Z\mapsto A',\lambda':A'*Z\mapsto W.$
- 6. В качестве a'_1 выбрать одно из состояний, эквивалентных a_1 .
- 7. Используя навыки полученные при выполнении практического задания 1, осуществить проверку исходного и минимизированного автоматов на эквивалентность.

Исходный автомат Мура

λ	w_2	w_2	w_2	w_2	w_1	w_2	w_2	w_2
δ	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
z_1	a_1	a_6	a_1	a_7	a_1	a_8	a_3	a_1
z_2	a_4	a_5	a_2	a_6	a_3	a_4	a_1	a_4

Ход работы

Найдем классы одноэквивалентных состояний по выходам:

$$B_1=\{a_5\}, B_2=\{a_1,a_2,a_3,a_4,a_6,a_7,a_8\}$$

Получим разбиение $\Pi_1 = \{B_1, B_2\}.$

Заменим состояния в таблице переходов соответствующими классами эквивалентности:

	B_1		B_2								
	a_5	a_1	a_2	a_3	a_4	a_6	a_7	a_8			
z_1	B_2										
z_2	B_2	B_2	B_1	B_2	B_2	B_2	B_2	B_2			

Найдем классы k-эквивалентных (k=2) состояний:

$$C_1 = \{a_5\}, C_2 = \{a_2\}, C_3 = \{a_1, a_3, a_4, a_6, a_7, a_8\}$$

Получим разбиение $\Pi_2 = \{C_1, C_2, C_3\}$, которое не совпадает с предыдущим.

Заменим состояния в таблице переходов соответствующими классами эквивалентности:

	C_1	C_2	C_3						
	a_5	a_2	a_1	a_3	a_4	a_6	a_7	a_8	
z_1	C_3								
z_2	C_3	C_1	C_3	C_2	C_3	C_3	C_3	C_3	

Найдем классы k-эквивалентных (k=3) состояний:

$$D_1 = \{a_5\}, D_2 = \{a_2\}, D_3 = \{a_3\}, D_4 = \{a_1, a_4, a_6, a_7, a_8\}$$

Заменим состояния в таблице переходов соответствующими классами эквивалентности:

	D_1	D_2	D_3	D_4					
	a_5	a_2	a_3	a_1	a_4	a_6	a_7	a_8	
z_1	D_4	D_4	D_4	D_4	D_4	D_4	D_3	D_4	
z_2	D_3	D_1	D_2	D_4	D_4	D_4	D_4	D_4	

Найдем классы k-эквивалентных (k=4) состояний:

$$E_1 = \{a_5\}, E_2 = \{a_2\}, E_3 = \{a_3\}, E_4 = \{a_7\}, E_5 = \{a_1, a_4, a_6, a_8\}$$

Заменим состояния в таблице переходов соответствующими классами эквивалентности:

	E_1	E_2	E_3	E_4	E_5			
	a_5	a_2	a_3	a_7	a_1	a_4	a_6	a_8
z_1	E_5	E_5	E_5	E_3	E_5	E_4	E_5	E_5
z_2	E_3	E_1	E_2	E_5	E_5	E_5	E_{5}	E_{5}

Найдем классы k-эквивалентных (k=5) состояний:

$$F_1 = \{a_5\}, F_2 = \{a_2\}, F_3 = \{a_3\}, F_4 = \{a_7\}, F_5 = \{a_4\}, F_6 = \{a_1, a_6, a_8\}$$

Заменим состояния в таблице переходов соответствующими классами эквивалентности:

	F_1	F_2	F_3	F_4	F_5		F_6	
	a_5	a_2	a_3	a_7	a_4	a_1	a_6	a_8
z_1	F_6	F_6	F_6	F_3	F_4	F_6	F_6	F_6
z_2	F_3	F_1	F_2	F_6	F_6	F_5	F_5	F_5

Найдем классы k-эквивалентных (k=6) состояний:

Получим разбиение $\Pi_6 = \{G_1, G_2, G_3, G_4, G_5, G_6\}$, которое совпадает с предыдущим.

Минимизация завершена.

Полученный автомат

λ	w_2	w_2	w_2	w_2	w_1	w_2
δ	a_1	a_2	a_3	a_4	a_5	a_6
z_1	a_1	a_1	a_1	a_6	a_1	a_3
z_2	a_4	a_5	a_2	a_1	a_3	a_1

Проверка на эквивалентность

Проверим исходный и минимизированный автоматы на эквивалентность, используя входное слово, достаточное для осуществления всех возможных переходов в исходном графе:

Вывод

В ходе выполнения работы был освоен навык минимизации абстрактного автомата при помощи алгоритма минимизации, предложенного Ауфенкампом и Хоном, на примере автомата Мура. Результатом применения алгоритма стало уменьшение числа состояний с сохранением реакции на входное слово.