Uppsala University

June 5th, 2025

Conformal Prediction: Study case of Regression and Classification for Binding Affinity Modelling

By Dinh Long Huynh

CONFORMAL PREDICTION

Classification model

$$\alpha_i = 1 - p(class|x_i)$$

$$\alpha_i = -\log[p(class|x_i)]$$

Regression model

$$\alpha_i = |y_pred_i - y_true_i|$$

$$\alpha_i = \frac{|y_predi-y_truei|}{residual_pred_i}$$

Nonconformity score (α_i)

Relationship: Small error

=> Small α_i

=> Large p_value

Calibration α_i distiribution

 $lpha_{ ext{i_sample}}$

 $p_value = \frac{n}{Total}$

Classification

Given a certain class

- Calculate $lpha_{i_sample}$
- Calculate p_value
- If $p_value > \varepsilon$ then class

Regression

Given ε , compute confidence interval

DATA HANDLING PIPELINE

DATA CLEANING

DATA EXPLORATION

Threshold selection

Threshold: $pK_i = 9$, $K_i = 1nM$

Total: 4531 compounds

DATA EXPLORATION

Chemical Space of whole dataset

DATA FEATURIZING

RDKit Descriptors

DATA FEATURIZING

Morgan Fingerprint

Guarantee > 95% explained variance

MODEL TRANING PROCESS

Tracking metrics: RMSE

Interval from Turkey-HSD with correction

Overfitting analysis

Overfitting analysis

LGBM + DESC + FP

- Only use fingerprint
- More efficient

Predicted Normalised pKi

Final models: XGBoost + FP

XGBoost with Fingerprint

XGBoost with Fingerprint

Median interval width: 1.12

Tracking metrics: AUC-PR

Interval from Turkey-HSD with correction

Random Forest with Descriptors and Fingerprint

Random Forest with Descriptors and Fingerprint

TAKE HOME MESSAGE

Data Cleaning and Context is important.

- Understand the data source and domain-specific nuances.
- Handle duplicates, missing values, and inconsistent records carefully.

Data Splitting is important

- Random splits often yield better-calibrated conformal predictors.
- Alternative methods like cluster-based splitting may harm calibration due to distribution shift.
- Always evaluate the impact of your split strategy on model calibration.

Multiple optimization is always needed

- Trade-off between validity and efficiency in CP
- Trade-off between recall and precision in classification model
- Trade-off between loss_value and overfitting in any kind of model

REFERENCE

Arvidsson McShane, S., Norinder, U., Alvarsson, J., Ahlberg, E., Carlsson, L., & Spjuth, O. (2024). **CPSign: conformal prediction for cheminformatics modeling**. *Journal of Cheminformatics*, *16*(75). https://doi.org/10.1186/s13321-024-00870-9

Vovk, V., Gammerman, A., & Shafer, G. (2005). *Algorithmic learning in a random world*. Springer Science & Business Media.

Johansson, U., Ahlberg, E., Boström, H., Carlsson, L., Linusson, H., & Sönströd, C. (2015). Handling small calibration sets in Mondrian Inductive Conformal Regressors. In *Proceedings of the 3rd International Symposium on Statistical Learning and Data Sciences (SLDS 2015)*. (In press).

Pharmbio/plot_utils (n.d.). *plot_utils: Utility scripts for plotting*. GitHub repository. https://github.com/pharmbio/plot_utils

Thank you for listening

Feedbacks and Questions

Random Forest with Descriptors and Fingerprint

At threshold 0.33