Appendix A

Lemma 1 The dissimilarity between the distribution of original sensitive features and the distribution of k-hop neighbor sensitive features exhibits a pronounced correlation with the eigenvector corresponding to the largest magnitude eigenvalue of the adjacency matrix. Concurrently, the correlation with other eigenvectors diminishes exponentially.

Proof. Assume $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a adjacency matrix with real-valued entries. The k-hop neighbor feature matrix is $\mathbf{A}^k \mathbf{H}$, and the k-hop neighbor sensitive features are $\mathbf{A}^k \mathbf{H}[:,s]$. $|\lambda_1| > |\lambda_2| \geq \ldots \geq |\lambda_n|$ are n real eigenvalues, and \mathbf{p}_i ($i \in \{1,2,\ldots,n\}$) are corresponding eigenvectors. The eigendecomposition of \mathbf{A} can be written as $\mathbf{A} = \mathbf{P} \Lambda \mathbf{P}^\top$ with $\mathbf{P} = (\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n), \|\mathbf{p}_i\| = 1$ ($i \in \{1,2,\ldots,n\}$) and $\Lambda = diag(\lambda_1, \lambda_2, \ldots, \lambda_n)$: We assume $\alpha_i = \mathbf{H}[:,s]^\top \mathbf{p}_i$. We use cosine similarity to measure the dissimilarity.

 $cos(\langle \mathbf{p}_{i}, \mathbf{H}[:, s] \rangle)$ $= \frac{\mathbf{H}[:, s]^{\top} \mathbf{p}_{i}}{\|\mathbf{H}[:, s]\| \|\mathbf{p}_{i}\|}$ $= \frac{\mathbf{H}[:, s]^{\top} \mathbf{p}_{i}}{\|\mathbf{H}[:, s]\|}$ $= \frac{\mathbf{H}[:, s]^{\top} \mathbf{p}_{i}}{\sqrt{\mathbf{H}[:, s]^{\top} \mathbf{H}[:, s]}}$ $= \frac{\mathbf{H}[:, s]^{\top} \mathbf{p}_{i}}{\sqrt{(\mathbf{P}^{\top} \mathbf{H}[:, s])^{\top} \mathbf{P}^{\top} \mathbf{H}[:, s]}}$ $= \frac{\mathbf{H}[:, s]^{\top} \mathbf{p}_{i}}{\sqrt{\sum_{j=1}^{n} (\mathbf{H}[:, s]^{\top} \mathbf{p}_{j})^{2}}}$ $= \frac{\alpha_{i}}{\sqrt{\sum_{i=1}^{n} \alpha_{i}^{2}}}.$

Then,

$$\begin{split} &cos(<\mathbf{A}^{k}\mathbf{H}[:,s],\mathbf{H}[:,s]>)\\ &=\frac{(\mathbf{A}^{k}\mathbf{H}[:,s])^{\top}\mathbf{H}[:,s]}{\|\mathbf{A}^{k}\mathbf{H}[:,s]\|\|\mathbf{H}[:,s]\|}\\ &=\frac{(\mathbf{A}^{k}\mathbf{H}[:,s])^{\top}\mathbf{H}[:,s]}{\sqrt{(\mathbf{A}^{k}\mathbf{H}[:,s])^{\top}\mathbf{A}^{k}\mathbf{H}[:,s]}\sqrt{\mathbf{H}[:,s]^{\top}\mathbf{H}[:,s]}}\\ &=\frac{(\mathbf{P}^{\Lambda}\mathbf{P}^{\top}\mathbf{H}[:,s])^{\top}\mathbf{H}[:,s]}{\sqrt{(\mathbf{P}^{\Lambda}\mathbf{P}^{\top}\mathbf{H}[:,s])^{\top}(\mathbf{P}^{\Lambda}\mathbf{P}^{\top}\mathbf{H}[:,s])}\sqrt{\mathbf{H}[:,s]^{\top}\mathbf{H}[:,s]}}\\ &=\frac{(\mathbf{P}^{\top}\mathbf{H}[:,s])^{\top}\Lambda^{k}(\mathbf{P}^{\top}\mathbf{H}[:,s])}{\sqrt{(\mathbf{P}^{\top}\mathbf{H}[:,s])^{\top}\Lambda^{2k}(\mathbf{P}^{\top}\mathbf{H}[:,s])}\sqrt{\mathbf{H}[:,s]^{\top}\mathbf{H}[:,s]}}\\ &=\frac{\sum_{i=1}^{n}\alpha_{i}^{2}\lambda_{i}^{k}}{\sqrt{\sum_{i=1}^{n}\alpha_{i}^{2}\lambda_{i}^{2k}}\sqrt{\sum_{i=1}^{n}\alpha_{i}^{2}}}\\ &=\frac{\alpha_{1}^{2}+\sum_{i=2}^{n}\alpha_{i}^{2}(\frac{\lambda_{i}}{\lambda_{1}})^{k}}{\sqrt{\alpha_{1}^{2}+\sum_{i=2}^{n}\alpha_{i}^{2}(\frac{\lambda_{i}}{\lambda_{1}})^{2k}}\sqrt{\sum_{i=1}^{n}\alpha_{i}^{2}}}. \end{split}$$

Thus, the correlation between \mathbf{p}_i and $cos(<\mathbf{A}^k\mathbf{H}[:,s],\mathbf{H}[:,s]>)$ is proportional to $(\frac{\lambda_i}{\lambda_1})^k$. Because of $|\lambda_1|>$

 $|\lambda_i|$, the correlation decays exponentially. Specifically, when $k \to \infty$, we have:

$$\begin{split} &\lim_{k \to \infty} \cos(\langle \mathbf{A}^k \mathbf{H}[:,s], \mathbf{H}[:,s] >) \\ &= \lim_{k \to \infty} \frac{\alpha_1^2 + \sum_{i=2}^n \alpha_i^2 \left(\frac{\lambda_i}{\lambda_1}\right)^k}{\sqrt{\alpha_1^2 + \sum_{i=2}^n \alpha_i^2 \left(\frac{\lambda_i}{\lambda_1}\right)^{2k}} \sqrt{\sum_{i=1}^n \alpha_i^2}} \\ &= \frac{\alpha_1}{\sqrt{\sum_{i=1}^n \alpha_i^2}} \\ &= \cos(\langle \mathbf{p}_1, \mathbf{H}[:,s] >). \end{split}$$

Appendix B

Lemma 2 The sensitive feature distribution of $\mathbf{H}^{(k)}$ is the same as \mathbf{H} :

$$\mathbf{H}^{(k)}[i,s] = q^k \mathbf{H}[i,s],\tag{1}$$

where $i \in \{1, 2, ..., n\}$, q denotes the number of nodes whose sensitive feature is 1.

Proof. The based case (k=1): $\mathbf{H}^{(1)} = \mathbf{A}_s \mathbf{H}$ and $\mathbf{H}[i,s] \in \{0,1\}$.

Because

$$\mathbf{H}^{(1)}[i, s] = \mathbf{A}_{s}[i, :]\mathbf{H}[:, s].$$

$$\mathbf{A}_{s}[i, j] = \begin{cases} 1, \mathbf{H}[i, s] = \mathbf{H}[j, s], \\ 0, \mathbf{H}[i, s] \neq \mathbf{H}[j, s]. \end{cases}$$

$$\mathbf{A}_{s}[i, j]\mathbf{H}[j, s] = \begin{cases} 0, \mathbf{H}[i, s] = 0, \\ 0, \mathbf{H}[i, s] = 1, \mathbf{H}[j, s] = 0, \\ 1, \mathbf{H}[i, s] = \mathbf{H}[j, s] = 1. \end{cases}$$

Thus,

$$\mathbf{H}^{(1)}[i, s] = \begin{cases} 0, \mathbf{H}[i, s] = 0, \\ p, \mathbf{H}[i, s] = 1. \end{cases}$$

The conclusion is valid.

Inductive hypothesis (k=r): Assume that the conclusion holds when k=r, thus $\mathbf{H}^{(r)}[i,s]=q^r\mathbf{H}[i,s]$. Thus,

$$\mathbf{H}^{(1)}[i,s] = \begin{cases} 0, \mathbf{H}^{(r-1)}[i,s] = 0, \\ q^r, \mathbf{H}^{(r-1)}[i,s] = q^{r-1}. \end{cases}$$

Inductive Step (k = r + 1):

Because $\mathbf{H}^{(r+1)}[i, s] = \mathbf{A}_s[i, :]\mathbf{H}^{(r)}[:, s].$

$$\mathbf{A}_{s}[i,j]\mathbf{H}^{(r+1)}[j,s] = \begin{cases} 0, & \mathbf{H}^{(q)}[i,s] = 0, \\ 0, & \mathbf{H}^{(q)}[i,s] = q^{r}, \\ & \mathbf{H}^{(q)}[j,s] = 0, \\ q^{r}, & \mathbf{H}^{(q)}[i,s] = q^{r}, \\ & \mathbf{H}^{(q)}[j,s] = q^{r}. \end{cases}$$

Thus,

$$\mathbf{H}^{(r+1)}[i,s] = \begin{cases} 0, \mathbf{H}^{(r)}[i,s] = 0, \\ q^{(r+1)}, \mathbf{H}^{(r)}[i,s] = q^r. \end{cases}$$

The conclusion is confirmed in the inductive step.

Combining the foundational step, the inductive hypothesis, and the inductive step, we show that this mathematical statement holds for all positive integer k.

Appendix C

More details of experimental results.

Methods	NBA		Bail		German		Credit		Income	
	F1 ↑	AUC ↑	F1 ↑	AUC ↑	F1 ↑	AUC ↑	F1 ↑	AUC ↑	F1 ↑	AUC ↑
GCN GCNII GAT	76.09	71.10 77.63 73.97	89.43	94.13	82.97	53.16	84.46	61.22	41.71	67.94
FairGNN NIFTY BIND	71.91	$77.84 \\ 68.85 \\ 62.82$	76.40	78.20	82.75	68.78	84.08	68.30	41.27	70.21
GTrans SAN NAG	73.42	74.81 75.51 78.91	93.07	97.84	83.37	76.79	80.46	63.30	32.09	63.29
FairGT	78.16	81.22	94.46	99.07	84.54	78.32	87.19	69.38	51.46	76.01

Table 1: Comparison of performance (F1 and AUC) in percentage (%). \uparrow denotes the larger, the better. The best results are bold-faced.