Применение LSTM ENCODER-DECODER моделей для выявления аномалий в работе энергетического оборудования

Егоров Максим Сергеевич, Шевченко Михаил Евгеньевич Научный руководитель: Полковников Александр Александрович

Волжский филиал ФГАОУ ВПО "Волгоградский государственный университет"

31 октября 2023 г.

Введение Правило трех сигм Межквартильный размах LSTM ENCODER-DECODER Заключение

Введение

Введение

Для обеспечения контроля технологического процесса используются системы мониторинга и диагностики оборудования, которые осуществляют сбор технологических параметров работы оборудования. Таким образом, возникает массив данных, которые могут быть проанализированы с целью повышения надежности и безопасности эксплуатации энергетического оборудования. Одним из методов анализа данных является применение моделей выявления аномалий. Технологическое применение данных моделей возможно для параметров, которые представляют собой временные ряды.

Временные ряды

Временным рядом называют последовательность наблюдений, упорядоченную по какому-либо параметру. К временным рядам можно отнести параметры, представленные аналоговыми сигналами. Результаты применения моделей прогнозирования технологических параметров могут быть использованы для выявления анормальных состояний в работе энергетического оборудования на ранних этапах. Пример, который будем использовать — данные параметра температуры баббита упорного подшипника турбины. Будем обозначать данный временной ряд $X = \{x_i\}_{i=1}^n$.

Рис. 1: Температура баббита упорного подшипника турбины

Введение
Правило трех сигм
Межквартильный размах
LSTM ENCODER-DECODER
Заключение

Модели выявления аномалий во временных рядах

Правило трех постоянных сигм (Constant 3-sigma rule)

Пусть X — данный временной ряд в котором n наблюдений, $X = \{x_i\}_{i=1}^n$

Определим среднее

$$\mathbb{E}X = \frac{1}{n} \sum_{i=1}^{n} x_i$$

и стандартное отклонение

$$\sigma_X = \sqrt{\mathbb{D}X}$$

данного временного ряда X со значениями x_i , $i \in \{1, n\}$. Утвердим, что если $|x_i| \geqslant \mathbb{E} X + 3 \cdot \sigma_X$, то в i-й момент времени произошла аномалия.

Рис. 2: Пример правила трех постоянных сигм

Правило трех скользящих сигм (Rolling 3-sigma rule)

Пусть $\frac{k}{k}$ — некоторое последнее наблюдение ряда X, тогда $X_k = \{x_i\}_{i=1}^k$ Определим скользящее среднее

$$\mathbb{E} X_{k} = \frac{1}{k} \sum_{i=1}^{k} x_{i}$$

И скользящее стандартное отклонение

$$\sigma_{X_k} = \sqrt{\mathbb{D}X_k}$$

где k - срез по последнему наблюдению временного ряда. Теперь, если $|x_j|\geqslant \mathbb{E} X_j+3\cdot\sigma_{X_j}$, то в j-й момент времени произошла аномалия.

Рис. 3: Пример правила трех скользящих сигм

Постоянный межквартильный размах (Constant IQR)

Пусть $F_X(x)$ — функция распределения сл. величины данного нам временного ряда.

Обозначим

$$Q_1: F_X(Q_1) = 0,25,$$

$$Q_3: F_X(Q_3) = 0,75.$$

Введем $IQR = Q_3 - Q_1$.

Будем говорить, что x_i — аномалия, если: $\begin{vmatrix} x_i \geqslant Q_3 + 1, 5 \cdot IQR \\ x_i \leqslant Q_1 - 1, 5 \cdot IQR \end{vmatrix}$

$$X_i \leqslant Q_1 - 1, \dots, Q_N$$

Рис. 4: Пример постоянного межквартильного размаха

Скользящий межквартильный размах (Rolling IQR)

По аналогии со скользящим правилом трех сигм, возьмем некоторое k, и обозначим ряд $X_k = \{x_i\}_{i=1}^n$ Теперь обозначим

$$Q_{\mathbf{1}_{k}}: F_{\mathbf{X}_{k}}(Q_{\mathbf{1}_{k}}) = 0,25,$$

$$Q_{3_k}: F_{X_k}(Q_{3_k}) = 0,75.$$

Тогда $IQR_{k=Q_{3_{L}}-Q_{1_{k}}}$.

Будем говорить, что x_j — аномалия, если $\begin{vmatrix} x_j \geqslant Q_{3_j} + 1, 5 \cdot IQR_j \\ x_i \leqslant Q_{1_i} - 1, 5 \cdot IQR_i \end{vmatrix}$

$$\begin{bmatrix} x_j \geqslant Q_{3_j} + 1, 5 \cdot IQR_j \\ x_j \leqslant Q_{1_j} - 1, 5 \cdot IQR_j \end{bmatrix}$$

Рис. 5: Пример скользящего межквартильного размаха

LSTM ENCODER-DECODER модели

Long short-term memory (LSTM) - архитектура рекуррентных нейронных сетей. LSTM-сеть хорошо приспособлена к обучению на задачах обработки и прогнозирования временных рядов. Разобьем исходный ряд X на m равных частей:

$$X = \bigcup_{i=1}^{m} X_i,$$

причем

$$X_i = \bigcup_{k=1}^i X_k.$$

Каждый X_i разобьем на тренировочную и тестовую части, на них будем учить LSTM модель.

Будем считать RMSE на тестовой и тренировочных частях для каждого разбиения $X_i,\ i\in\{1,m\}.$

RMSE =
$$\sqrt{\frac{1}{n}\sum_{j=1}^{n}(y_{j}-\hat{y}_{j})^{2}}$$
,

где y_j — предсказанные значения моделью, а $\hat{y_j}$ — фактические значения. Составим отношение

$$\frac{TEST_{i_{MAPE}}}{TRAIN_{i_{MAPE}}}. (1)$$

Теперь, с помощью ранее описанных моделей будем фиксировать выбросы и определять участок разбиения с аномалиями. Затем, на каждом таком выбросе будем запускать модели трех сигм или межквартильного размаха и вычислять аномалии.

Пример запуска программы

```
model = models.ModelLSTM(1, 1, 1)
anomaly lstm = models.AnomalyLSTM(nn model=model,
                                  data=data,
                                  num epochs=15,
                                  n splits=10,
                                  threshold=1,
                                  plot=False.
                                  all outputs=True,
                                  show print=False)
anomalies = anomaly lstm.anomalies
utils.anomalies plot(data=data.iloc[:, 1],
                     anomalies=anomalies)
```

Рис. 6: Код для запуска LSTM модели

Рис. 7: Значения отношения (1) на каждом разбиении

Рис. 8: Пример работы LSTM ENCODER-DECODER модели

Рис. 9: Пример работы LSTM ENCODER-DECODER модели на данных другого подшипника

Заключение

Полученные результаты могут быть использованы для построения систем, направленных на выявление развития дефектов и предупреждения аварийных режимов работы. Данная модель применялась к параметру температуры баббита, однако данная модель также может применяться для обнаружения аномалий иных технологических параметров. Такие модели могут быть применены для предупреждения отказов оборудования, оптимизации процессов регулирования и управления технологическими параметрами, а также для выявления скрытых закономерностей в данных, которые могут быть использованы для улучшения эффективности работы станции.

Введение Правило трех сигм Межквартильный размах LSTM ENCODER-DECODER Заключение

Спасибо за внимание!

E-mail: maksim.egorov1@yandex.ru