Teoremi di Fondamenti Matematici per l'Informatica

Carlo Ramponi May 29, 2019

Contents

1	L'ordinamento dei numeri naturali è un buon ordinamento	3
2	Il principio di induzione (seconda forma)	4
3	La divisione euclidea (esistenza e unicità)	5
4	Codifica dei natuali in base maggiore o uguale a 2	6
5	Il massimo comun divisore	8
6	Il minimo comune multiplo	9
7	Teorema fondamentale dell'aritmetica	10
8	Il Teorema Cinese del resto	11
9	Teorema di Fermat-Eulero	12
10	Crittografia RSA	13
11	Equivalenza tra congiungibilità con cammini e congiungibilità con passeggiate	14
12	La relazione di congiungibilità	15
13	Relazione fondamentale dei grafi finiti	16

1 L'ordinamento dei numeri naturali è un buon ordinamento

Enunciato

L'ordinamento dei numeri naturali è un buon ordinamento

Dimostrazione

Supponiamo che l'insieme $A\subseteq\mathbb{N}$ non abbia minimo e proviamo che allora $A=\emptyset$. Chiamiamo B il suo complementare $(B=\mathbb{N}\setminus A)$ e dimostriamo per induzione che

$$\forall n \in \mathbb{N} \quad \{0, 1, ..., n\} \subseteq B$$

- $0 \notin A$, altrimenti ne sarebbe il minimo, quindi $0 \in B$ e pertanto $\{0\} \subseteq B$.
- Supponiamo che $\{0,1,...,n\}\subseteq B$, allora $0,1,...,n\notin A$ e quindi $n+1\notin A$, altrimenti ne sarebbe il minimo, ma allora $n+1\in B$ e pertanto $\{0,1,...,n,n+1\}\subseteq B$.

Per il principio di induzione di prima forma un insieme con queste proprietà coincide con quello dei numeri naturali $(B = \mathbb{N})$ e quindi $A = \emptyset$

2 Il principio di induzione (seconda forma)

Enunciato

Sia P(n) una famiglia di proposizioni indicate su \mathbb{N} e si supponga che

- 1. P(0) sia vera
- 2. $\forall n > 0 (P(k)vera \forall k < n) \Rightarrow P(n)vera$

allora P(n) è vera $\forall n \in \mathbb{N}$

Dimostrazione

Sia $A = \{n \in \mathbb{N} | P(n) \text{ non è vera } \}$, e supponiamo per assurdo che $A \neq \emptyset$. Allora per la proprietà di buon ordinamento A ha minimo n.

Chiaramente $n \neq 0$ in quanto P(0) è vera per ipotesi.

Inoltre se k < n allora $k \notin A$ in quanto $n = \min A$, ma allora dalla (2) segue che P(n) è vera e quindi $n \notin A$, contraddicendo il fatto che $n \in A$.

3 La divisione euclidea (esistenza e unicità)

Enunciato

Siano $n, m \in \mathbb{Z}$ con $m \neq 0$, allora esistono unici $q, r \in \mathbb{Z}$ tali che

$$\begin{cases} n = mq + r \\ 0 \le r < |m| \end{cases}$$

Dimostrazione

- Esistenza Supponiamo dapprima che $n, m \in \mathbb{N}$, ed usiamo il principio di induzione della seconda forma su n.
 - Se n = 0 basta prendere q = 0 e r = 0.
 - Supponiamo n>0 e che la tesi sia vera $\forall k< n$. Se n< m basta prendere q=0 e r=n, altrimenti sia k=n-m, dato che $m\neq 0$, 0< k< n, quindi per ipotesi di induzione esistono $q,r\in\mathbb{N}$ tali che

$$\begin{cases} k = mq + r \\ 0 \le r < |m| \end{cases}$$

ma allora n = k + m = mq + r + m = (q + 1)m + r.

Supponiamo ora n < 0 e m > 0. Allora -n > 0 e quindi per il caso precedente si ha che esistono $q, r \in \mathbb{Z}$ tali che -n = mq + r e $0 \le r < m = |m|$. E quindi n = m(-q) - r. Se r = 0 abbiamo finito, se invece 0 < r < m allora 0 < m - r < m = |m| e n = m(-q) - r = m(-q) - m + m - r = m(-1 - q) + (m - r).

Sia infine m<0 allora -m>0, quindi per i due casi precedenti $\exists q,r\in\mathbb{Z}$ tali che n=(-m)q+r=m(-q)+r con $0\leq r<-m=|m|$

- Unicità Supponiamo che n=mq+r e n=mq'+r' con $0 \le r, r' < m$. Supponiamo che $r' \ge r$, allora m(q-q')=r'-r e quindi passando ai moduli si ha |m||q-q'|=|r'-r|=r'-r<|m|, da cui $0 \le |q-q'|<1$ e quindi |q-q'|=0 ovvero q=q'.
 - Ma allora da mq + r = mq' + r' segue che anche r = r'.

4 Codifica dei natuali in base maggiore o uguale a 2

Enunciato

Definizione Sia $b \in \mathbb{N}$, diremo che $n \in \mathbb{N}$ è rappresentabile in base b se esistono numeri $\epsilon_0, \epsilon_1, ..., \epsilon_k \in I_b = \{0, 1, ..., b - 1\}$ tali che $n = \epsilon_0 + \epsilon_1 b + \epsilon_2 b^2 + ... + \epsilon_k b^k$.

Sia $b \in \mathbb{N}, b \geq 2$. Allora ogni $n \in \mathbb{N}$ è rappresentabile in modo unico in base b. Ossia esiste una successione $\{\epsilon_i\}_{i\in\mathbb{N}}$ tale che:

- 1. $\{\epsilon_i \text{ è definitivamente nulla } (\exists i_0 \in \mathbb{N} : \epsilon_i = 0 \quad \forall i > i_0)$
- 2. $\epsilon_i \in I_b$ (ossia $0 \le \epsilon_i < b$) per ogni $i \in \mathbb{N}$
- 3. $n = \sum_{i=0}^{\infty} \epsilon_i b^i$

e se $\{\epsilon_i'\}_{i\in\mathbb{N}}$ è un'altra tale successione, allora $\epsilon_i=\epsilon_i'$ $\forall i\in\mathbb{N}$

Dimostrazione

Esistenza per induzione su n.

- 1. Se n = 0 basta prendere $\epsilon_i = 0 \quad \forall i \in \mathbb{N}$.
- 2. Supponiamo ora n > 0 e che la tesi sia vera per ogni k < n. Siano q, r tali che n = bq + r con $0 \le r < b$. Dato che $b \ge 2$ si ha che $0 \le q < bq \le bq + r = n$ e quindi per l'ipotesi di induzione esiste una successione definitivamente nulla $\{\delta_i\}_{i \in \mathbb{N}}$, costituita da interi tali che $0 \le \delta_i < b \quad \forall i \in \mathbb{N}$ e tale che $q = \sum_{i=0}^{\infty} \delta_i b^i$. Ma allora

$$n = bq + r = b\sum_{i=0}^{\infty} \delta_i b^i + r = \sum_{i=0}^{\infty} \delta_i b^{i+1} + r = \sum_{i=1}^{\infty} \delta_{i-1} b^i + r = \sum_{i=0}^{\infty} \epsilon_i b^i$$

dove si è posto $\epsilon_0 = r$ e $\epsilon_i = \delta_{i-1} \quad \forall i > 0$.

La successione $\{\epsilon_i\}$ è definitivamente nulla, dato che lo è $\{\delta_i\}$ ed inoltre $0 \le \epsilon_i = \delta_{i-1} < b \quad \forall i > 0 \text{ e } 0 \le \epsilon_0 = r < b.$

Unicità per induzione su n.

1. Se $n=0=\sum_i \epsilon_i b^i$ allora ogni addendo della somma, essendo non negativo, deve essere nullo e quindi $\epsilon_i=0 \quad \forall i\in\mathbb{N}$

2. Supponiamo ora n>0 e che l'espressione in base b sia unica per tutti i numeri k< n. Sia n tale che $n=\sum_{i=0}^{\infty}\epsilon_ib^i=\sum_{i=0}^{\infty}\epsilon_i'b^i$, allora possiamo scrivere

$$n = b \sum_{i=1}^{\infty} \epsilon_i b^{i-1} + \epsilon_0 = b \sum_{i=1}^{\infty} \epsilon'_i b^{i-1} + \epsilon'_0$$

ma per l'unicità della divisione euclidea si ha che $\epsilon_0=\epsilon_0'$ e $q=\sum_{i=1}^\infty \epsilon_i b^{i-1}=\sum_{i=1}^\infty \epsilon_i' b^{i-1}$. Come prima q< n e quindi per ipotesi induttiva si ha anche che $\epsilon_i=\epsilon_i'$ $\forall i\geq 1$

5 Il massimo comun divisore

Enunciato

Definizione Dati due interi $n, m \in \mathbb{Z}$ non entrambi nulli, si dice che d è un massimo comun divisore tra n e m se:

1.
$$d|n \in d|m$$
 (è un divisore)

2. Se
$$c|n \in c|m$$
 allora $c|d$ (è il massimo)

Proposizione Se d e d' sono due massimi comun divisori tra n ed m allora $d' = \pm d$.

Dimostrazione d è un divisore comune di n e m, quindi poichè d' è un massimo comun divisore di ha che d|d'. Scambiando i ruoli di d e d' si ha allora che anche d'|d e quindi si ha che $d' = \pm d$.

Definizione Diremo che d è il massimo comun divisore di n e m se è un massimo comun divisore positivo. La proposizione precedente ci garantisce che se esiste un massimo comun divisore esso è unico.

Dati due numeri $n, m \in \mathbb{Z}$ non entrambi nulli, allora esiste il massimo comun divisore tra n ed m.

Dimostrazione

Esistenza Si consideri l'insieme

$$S = \{ s \in \mathbb{Z} | s > 0, \exists x, y \in \mathbb{Z} : s = nx + my \}$$

 $S \neq \emptyset$ dato che nn+mm>0 (visto che
n ed m non sono entrambi nulli). Sia ora

$$d = nx + my = \min S$$

dimostriamo che d è il massimo comun divisore:

Se c|n e c|m allora n = ck e m = ch, quindi d = nx + my = ckx + chy = c(kx + hy), ossia c|d.

Dimostriamo ora che d|n:

consideriamo la divisione euclidea tra n e d, ossia n = dq + r con $0 \le r < d$, se r > 0, allora $r = n - dq = n - (nx + my)q = n(1 - qx) + (-m)y \in S$. Ciò è assurdo perchè r < d e $d = \min S$. Quindi r = 0 ossia d|n. In modo del tutto analogo si prova che d|m.

6 Il minimo comune multiplo

Enunciato

Definizione Dati due interi $n, m \in \mathbb{Z}$ si dice che M è un minimo comune multiplo di n ed m se:

1.
$$n|M \in m|M$$
 (è un multiplo)

2. se
$$n|c$$
 e $m|c$ allora $M|c$ (è il minimo)

Come nel caso del massimo comun divisore di dimostra che due minimi comuni multipli sono uguali a meno del segno e quindi si chiama il minimo comune multiplo quello positivo (è quindi unico)

Siano $n, m \in \mathbb{Z}$ non entrambi nulli, allora esiste il minimo comune multiplo tra $n \in \mathbb{Z}$.

Dimostrazione

Esistenza Sia

$$M = \frac{nm}{(n,m)} = n'm'(n,m)$$

dove si è posto

$$\begin{cases} n = n'(n, m) \\ m = m'(n, m) \end{cases}$$

Chiaramente allora M=nm'=n'm e quindi n|M e m|M. Se n|c e m|c allora (n,m)|c e quindi posto c=c'(n,m) si ha che n'|c' e m'|c'. Dato che (n',m')=1, si ha che n'm'|c' e quindi che M=n'm'(n,m)|c'(n,m)=c.

7 Teorema fondamentale dell'aritmetica

Enunciato

Per ogni $n \in \mathbb{Z}, n \geq 2$ esistono numeri primi $p_1, p_2, ..., p_k > 0$ tali che $n = p_1 p_2 ... p_k$

Se anche $q_1, q_2, ..., q_h$ sono numeri primi positivi tali che $n = q_1 q_2 ... q_h$, allora esiste una bigezione $\sigma : \{1, 2, ..., h\} \rightarrow \{1, 2, ..., k\}$ tale che $q_i = p_{\sigma(i)}$.

In altre parole, ogni intero maggiore di 1 si scrive in modo unico, a meno dell'ordine, come prodotto di numeri primi positivi.

Dimostrazione

Esistenza. Procediamo per induzione su n:

- 1. Se n=2 non c'è nulla da dimostrare in quanto 2 è primo.
- 2. Supponiamo n > 2 e che la tesi sia vera per ogni k < n: Se n è primo non c'è nulla da dimostrare, se n non è primo allora esistono due numeri d_1, d_2 con $1 < d_1, d_2 < n$ tali che $n = d_1 d_2$.

Per ipotesi di induzione esistono dei numeri primi positivi tali che $d_1 = p_1 p_2 ... p_{k_1}$ e $d_2 = q_1 q_2 ... q_{k_2}$,

ma allora $n = p_1 p_2 ... p_{k_1} q_1 q_2 ... q_{k_2}$ è prodotto di numeri primi positivi.

Unicità. Sia $n = p_1...p_k = q_1...q_h$ con p_i e q_j numeri primi positivi e $k \le h$. Procediamo per induzione su k:

- 1. Se k = 1 allora $n = p_1 = q_1...q_h$, quindi $q_j|p_1 \quad \forall j$, e dato che p_1 è primo $q_j = p_1 \quad \forall j$. Se fosse h > 1 si avrebbe $n = q_1...q_h \ge q_1q_2 = p_1^2 > p_1 = n$ e questo è assurdo, e quindi h = 1 e $q_1 = p_1$.
- 2. Sia k > 1, allora $p_k | n = q_1...q_h$, quindi esiste un j tale che $p_k | q_j$. Dato che sia p_k che q_j sono primi positivi, allora $p_k = q_j$. Ma allora $p_1...p_{k-1} = q_1...q_{j-1}q_{j+1}...q_h$, per ipotesi di induzione possiamo allora dire che le due fattorizzazioni hanno lo stesso numero di elementi, ossia k-1=h-1, e che esiste una bugezione $\delta:\{1,...,j-1,j+1,...,k\} \rightarrow \{1,...,k-1\}$ tale che $q_i=p_{\delta(i)} \quad \forall i$. Definendo allora $\sigma:\{1,2,...,k\} \rightarrow \{1,2,...,k\}$ tale che

$$\sigma(i) = \begin{cases} k & \text{se } i = j\\ \delta(i) & \text{se } i \neq j \end{cases}$$

si ottiene una bigezione tale che $q_i = p_{\sigma(i)} \quad \forall i$.

8 Il Teorema Cinese del resto

Enunciato

Il sistema di congruenze:

$$\begin{cases} x \equiv a & \mod n \\ x \equiv b & \mod m \end{cases}$$

ha soluzione se e solo se (n, m)|b - a.

Se c è una soluzione del sistema, allora gli elementi di $[c]_{[n,m]}$ sono **tutte** e **sole** le soluzioni del sistema. (i.e. le soluzioni del sistema sono tutte e sole della forma c + k[n,m] al variare di $k \in \mathbb{Z}$).

Dimostrazione

Sia c una soluzione del sistema, allora $\exists h, k \in \mathbb{Z}$ tali che c = a + hn = b + km e quindi a - b = km - hn.

Ma allora dal fatto che (n, m)|n e (n, m)|m si ha che (n, m)|a - b.

Viceversa, supponiamo che (n,m)|a-b, allora, per quanto visto in precedenza, $\exists h, k \in \mathbb{Z}$ tali che a-b=hn+km. Ma allora a-hn=b+kn, detto quindi c=a-hn=b+km, si ha evidentemente che c risolve entrambe le congruenze.

Sia $S = \{x \in \mathbb{Z} \mid x \text{ risolve il sistema}\}$. Dobbiamo provare che se c è una soluzione del sistema allora $S = [c]_{[n,m]}$.

• $\mathbf{S} \subseteq [\mathbf{c}]_{[\mathbf{n},\mathbf{m}]}$. Sia c' un'altra soluzione del sistema, allora c = a + hn = b + km e c' = a + h'n = b + k'm e quindi sottraendo si ha:

$$c - c' = a + hn - a - h'n = (h - h')n \Rightarrow n \mid (c - c')$$

 $c - c' = a + km - a - k'm = (k - k')m \Rightarrow m \mid (c - c')$

Ma allora $[n, m] \mid c - c'$, ossia $c' \equiv c \mod [n, m]$ ovvero $c' \in [c]_{[n, m]}$.

• $[\mathbf{c}]_{[\mathbf{n},\mathbf{m}]} \subseteq \mathbf{S}$. Sia $c' \in [c]_{[n,m]}$, ovvero c' = c + h[n,m]. Dal fatto che $c \equiv a \mod n$ e che $h[n,m] = \equiv 0 \mod n$ segue che $c' = c + h[n,m] \equiv a \mod n$. In modo analogo si ha che $c' \equiv b \mod m$ e quindi che $c' \in S$.

9 Teorema di Fermat-Eulero

Enunciato

Sia $u \in \mathbb{Z}/n\mathbb{Z}^*$ allora $u^{\Phi(n)} = 1$ (in $\mathbb{Z}/n\mathbb{Z}$).

Dimostrazione

Sia $L_u: \mathbb{Z}/n\mathbb{Z}^* \to \mathbb{Z}/n\mathbb{Z}^*$ tale che $L_u(v) = uv$, osserviamo che la funzione risulta iniettiva, infatti $L_u(v_1) = L_u(v_2) \Leftrightarrow uv_1 = uv_2$ e dato che u è invertibile $\Leftrightarrow v_1 = v_2$. Visto che l'insieme $\mathbb{Z}/n\mathbb{Z}^*$ è finito L_u risulta essere bigettiva. Sia $k = \Phi(n)$, e siano $x_1, ..., x_k$ tutti gli elementi di $\mathbb{Z}/n\mathbb{Z}^*$, dato che l'applicazione L_u è bigettiva, allora $L_u(x_1), ..., L_u(x_k)$ sono ancora tutti elementi di $\mathbb{Z}/n\mathbb{Z}^*$, ma allora, per la commutatività del prodotto

$$x_1 x_2 ... x_k = L_u(x_1) L_u(x_2) ... L_u(x_k)$$

e quindi:

$$x_1x_2...x_k = ux_1ux_2...ux_k = u^k(x_1x_2...x_k)$$

Dato che $x_1x_2...x_k$ è invertibile ne segue che

$$u^k = 1 \quad (\text{in } \mathbb{Z}/n\mathbb{Z})$$

10 Crittografia RSA

Enunciato

Sia c coprimo con $\Phi(n)$ allora l'applicazione

$$C: \mathbb{Z}/n\mathbb{Z}^* \to \mathbb{Z}/n\mathbb{Z}^*$$
 definita da $x \mapsto x^c$

è invertibile e la sua inversa è data da

$$D(x) = x^d \text{ con } cd \equiv 1 \mod \Phi(n)$$

Dimostrazione

Se c è coprimo con $\Phi(n)$, allora esiste un d cone nell'enunciato, ossia tale che $cd \equiv 1 \mod \Phi(n)$, ma allora $cd = k\Phi(n) + 1$ e quindi, $\forall x \in \mathbb{Z}/n\mathbb{Z}^*$ si ha:

$$D(C(x)) = (x^c)^d = x^{cd} = x^{k\Phi(n)+1} = x(x^{\Phi(n)})^k = x \cdot 1^k = x$$

Del tutto analoga è la prova che anche $C(D(x))=x \ \forall x \in \mathbb{Z}/n\mathbb{Z}^*,$ da cui la tesi.

11 Equivalenza tra congiungibilità con cammini e congiungibilità con passeggiate

Enunciato

Definizione. Sia G = (V, E) e siano $v, w, \in V$. Diremo che v e w sono congiungibili con un cammino [rispettivamente con una passeggiata] se esiste un cappino [risp. una passeggiata] $(v_0, v_1, ..., v_n)$ tale che $v_0 = v$ e $v_n = w$ Due vertici sono congiungibili mediante un cammino se e solo se lo sono tramite una passeggiata.

Dimostrazione

- (cammino ← passeggiata): Banale, in quanto un cammino è anche una passeggiata.
- (cammino \Rightarrow passeggiata): Supponiamo quindi che \exists una passeggiata $P = (v_0, ..., v_k)$ in G tale che $v_0 = v$ e $v_k = w$.

Indichiamo con \mathbb{P} l'insieme di tutte le passeggiate Q in G che partono da v e arrivano in w.

Per ipotesi $P \in \mathbb{P}$, quindi $\mathbb{P} \neq \emptyset$.

Dunque $\mathbb{A} = \{lunghezza(Q) \in \mathbb{N} \mid Q \in \mathbb{P}\} \neq \emptyset.$

Poichè (\mathbb{N}, \leq) è **ben** ordinato, $\exists \min \mathbb{A}$.

Dunque $\exists P_0 \in \mathbb{P}$ tale che:

- $-\ P_0$ è una passeggiata in G che parte da ve arriva in w
- $-lunghezza(P_0) \le lunghezza(Q) \qquad \forall Q \in \mathbb{P}$

Proviamo quindi che P_0 è un cammino. Sia:

$$P_0 = (y_0, y_1, ..., y_h)$$
 dove $y_0 = v$ e $y_h = w$

Se P_0 non fosse un cammino esisterebbero $i, j \in \{0, 1, ..., h\}$ tali che $i \neq j$ e $y_i = y_j$ (Supp. i < j). Possiamo definire:

$$P_1 = (y_0, y_1, ..., y_i, y_{i+1}, ..., y_i, y_{i+1}, ..., y_h) \in \mathbb{P}$$

Vale che $lung(P_1) = lung(P_0) - (j - i) \Rightarrow lung(P_1) < lung(P_0)$, ma questo è assurdo perchè P_0 ha lunghezza minima. $\Rightarrow P_0$ è un cammino in G.

12 La relazione di congiungibilità

Enunciato

La relazione di congiungibilità è una relazione di equivalenza sui vertici di un grafo finito.

Dimostrazione

Indichiamo con \sim la relazione di congiungibilità.

Dobbiamo provare che la relazione di essere congiungibili \sim è riflessiva, simmetrica e transitiva.

- 1. \sim è riflessiva. Infatti $\forall v \in V(G), (v)$ è un cammino che congiunge v con se stesso, quindi $\forall v \in V(G), v \sim v$.
- 2. \sim è simmetrica. Se $u \sum v$ allora esiste una passeggiata $P = (v_0, ..., v_n)$ tale che $u = v_0$ e $v = v_n$. Ma allora $P' = (v_n, v_{n-1}, ..., v_0)$ è una passeggiata (perchè due vertici consecutivi in P' sono adiacenti dato che lo sono, anche se scambiati, in P) il cui primo vertice è $v_n = v$ e l'ultimo è $v_0 = u$, ovvero $v \sim u$.
- 3. \sim è transitiva. Se $u \sim v$ e $v \sim w$ allora esistono due passeggiate $P_1 = (v_0, ..., v_n)$ e $P_2 = (u_0, ..., u_m)$ tali che $u = v_0, v = v_n = u_0$ e $w = u_m$. Sia $Q = (v_0, ..., v_n, u_1, ..., u_m)$, Q è una passeggiata dato che vertici consecutivi in Q sono consecutivi in P_1 o in P_2 (si osservi che essendo $v_n = u_0$ si ha che v_n e u_1 sono consecutivi in P_2), d'altra parte il primo e l'ultimo vertice di Q sono u e w, quindi $u \sim w$.

13 Relazione fondamentale dei grafi finiti

Enunciato

Se G = (V, E) è un grafo finito, allora:

$$\sum_{v \in V} \deg_G(v) = 2|E|$$

Dimostrazione

Siano v_1, \ldots, v_n i vertici di G e e_1, \ldots, e_k i suoi lati. Per ogni $i = 1, \ldots, n$ e $j = 1, \ldots, k$ consideriamo il numero

$$m_{i,j} = \begin{cases} 1 & \text{se } v_i \in e_j \\ 0 & \text{se } v_i \notin e_j \end{cases}$$

Dalle proprietà associativa e commutativa della somma si ha evidentemente che

$$\sum_{i=1}^{n} \left(\sum_{j=1}^{k} m_{i,j} \right) = \sum_{j=1}^{k} \left(\sum_{i=1}^{n} m_{i,j} \right)$$

Ma fissato i,il numero $\sum_{j=1}^k$ è uguale alla cardinalità dell'insieme

$${j \mid m_{i,j} = 1} = {j \mid v_i \in e_j}$$

che è uguale al numero di lati che contengono v_i , ossia $\sum_{j=1}^k m_{i,j} = \deg_G(v_i)$. Pertanto il lato sinistro dell'uguaglianza è pari a $\sum_{i=1}^n \deg_g(v_i)$ ossia la somma dei gradi di tutti i vertici.

Invece fissato j, il numero $\sum_{i=1}^n m_{i,j}$ è uguale alla cardinalità dell'insieme

$$\{i \mid v_i \in e_j\}$$

che è uguale a 2, dato che ogni lato contiene esattamente due vertici. Ne consegue che il lato destro dell'equazione è uguale a 2k = 2|E|

Lemma (delle strette di mano)

In un grafo il numero di vertici di grado dispari è pari.

Dimostrazione

Segue banalmente dal fatto che la somma dei gradi (essendo il doppio del numero dei lati) è un numero pari, quindi, dal fatto che sommando un qualsiasi numero di numeri pari si ottiene sempre un numero pari e sommando un numero pari di numeri dispari si ottiene sempre un numero pari, segue che il numero di gradi dispari deve essere pari.