

Digital Signal Processing Systems

Problems about Phase Locked Loops (PLLs)

I — Check only one answer. The penalty for a wrong answer is ¼ point. The minimum score in this group is zero. 1) An analog multiplier used as a phase detector: and a can have positive or negative gain. \Box allows a phase excursion of 2π radians. only works with square wave signals. does not generate undesirable signal components at the output. 2) An analog phase locked loop (PLL) in which the loop filter has a pole at a finite frequency: responds with a nonzero but finite phase error to a phase step. responds with a finite nonzero phase error to a frequency step. responds with a finite nonzero phase error to a frequency ramp. responds with an infinite phase error to a phase ramp. 3) In an analog PLL in which the loop filter has a pole at the origin, the hold range: \square is always limited by the VCO. \Box does not depend on the saturation limits of the VCO. is not limited by the phase detector. \square does not depend on the characteristics of the loop filter. 4) An analog PLL (with positive return gain): has a lock range which may be higher than the hold range. \square is always stable if its order is less or equal to 2. ☐ is always unstable it its order is greater or equal to 3. has a lock range which is always less than the hold range. 5) An analog PLL with return gain $\lambda > 0$: \square is stable only if it is of first order. is stable regardless of the order. if it is of third order it cannot be made stable.

and a can be designed to be stable no matter the order.

II — Consider an analog PLL in which the phase detector characteristic is shown in the box at right. The loop has a lowpass filter with -6V and +8V saturation voltages, DC gain F(0) and a pole at f_p . The voltage-controlled oscillator (VCO) generates a wave with the characteristics in the box at right.

- a) Determine the maximum filter gain F(0) such that 1) the loop is stable and 2) the hold range is as large as possible.
- $\omega_o = \begin{cases} \omega_{o1} = 10\pi \times 10^6 \text{ rad/s}, & v_E \leq -8V \\ \omega_{ol} + k_o v_E & -8V \leq v_E \leq 8V \\ \omega_{o2} = 2\pi \times 10^6 \text{ rad/s}, & v_E \geq 8V \end{cases}$
- b) Determine the static characteristics of all PLL components and sketch them interconnected. Determine k_o , ω_{ol} and the phase detector gain k_D . If you did not answer a) consider F(0) = 2 from now on.
- c) Determine the PLL hold range $\Delta\omega_L$ stating which components are responsible for its limitation. Determine the filter pole frequency f_p such that the lock range is approximately $\Delta\omega_C\approx 0.8\Delta\omega_L$. Justify.
- d) Determine the input frequency for which the phase shift between the input and VCO signals is $\Delta \phi = 3\pi/2$.
- e) Explain how the PLL should be modified such that the phase shift between the input and VCO signals is always $\Delta \phi = 3\pi/2$, independently of the input frequency. With this modification, would the hold range be different? If yes, recompute it.
- f) Determine the detection characteristic of a logic AND gate when operation is with rectangular waves both with duty-cycle $\delta = 0.25$ and amplitude levels 0V e 1V. Comment on its usefulness and shortcomings as a phase detector.
- g) Redesign the loop acting on K_0 to have a Butterworth frequency response characteristic $(Q_c=1/\sqrt{2})$ at a lock frequency $f_i=3$ MHz with pole frequency $f_c=10$ kHz. Recompute the hold and lock ranges assuming full signal excursions at the phase detector and filter.

$$\Delta\omega_C = \sqrt{2\omega_p^{\ 2} \left(\sqrt{1 + \left(\frac{\Delta\omega_L}{\omega_p}\right)^2} - 1\right)} \quad \stackrel{\Delta\omega_L \gg \omega_p}{\approx} \sqrt{2\omega_p \cdot \Delta\omega_L}$$
 Solution:
$$\omega_p \approx \frac{\Delta\omega_C^2}{2\Delta\omega_L} \text{ (approximate)} \quad \therefore \quad \omega_p = \frac{\Delta\omega_C}{2} \frac{1}{\sqrt{\left(\frac{\Delta\omega_L}{\Delta\omega_C}\right)^2 - 1}} \text{ (exact)}$$

Note: Ignore questions g') and f') in the resolution.

II-a) To have an hold range as large as possible the maximum voltage encursion, at UE, should be achieved. Since ko/o and ko/o, F(0) must be positive. Because the filter saturates at -6V, the maximum value of F(0) is F(0)=3 Since Vomin = -2V. b) C) Duc = VZupAWL -> wp = Duc2 = 0.82 DWL = 0.32 DWL = DWL 10 12-7 00 Wp = Duc 1 = 0.5333 DWL (Solned Nowe)2-1 (1.6 MHZ)

de epiece

spechtie => approximation $K_D = -\frac{2}{\pi} \cdot V/rad$ it aut valid bleance DUL>>WO is false F(0)=3 $\frac{3\pi/2}{-4V} = \frac{7}{2\pi} \Delta d = \frac{-3V}{-6}$ $k_0 = \frac{1017 - 277}{-8 - 8} =$ WL+= 9TT Mrod/s (PD++ eta) Mo(Mrad/s) WLT=9TT WL-= 31T Mrcs/15 (PD) 10T = - I Mral/O/V AWL = 6TT Mrad/s 1 (3 MHZ) components 2=-=x3x(-=)=3Mbz which limit NOL = GT d) Dd=3/1, V0=-1V, VE=-3V, W0=611-12(-3)=15/1 uncl/s e) To have a constant phase shift of between the input and the VCO a perfect integrator is required as loop filter so F(S) = K 1+5/WZ the gers at -WZ is needed for stability. In this case the Sloop operates with (VD) =0 So Od = IT. To have Ad = ST/2 it is necessary to add IV before the filter so (VD) becomes -IV (the perfect integrator always operate with an input signal which, on average is zero. The hold range is modified because now VE can extend from - 6v to 8V, So Wet is the same but we is now 2TTMred/s, DWL= 7TTMred/s Af=37 1---The PD is no longer reponsible for the (3.5MH2) AWL linitation, the filter is for we and Wet and the VCO also, for WL-. g) the loop is stable for $0 \le \lambda \le 2 \frac{1+\alpha}{1+\beta}$ (see slides) So to have any 200 1td must be infinite, so B=-1 i.e., place a zero at Z=-1. Works for any Wol = STMcd/s = 3MHz. f) SPOS (continuction) 01451. f) SPDS, AND g -t, J = 0.25 AND = f (J-D), A(J (AnD) = f (T-J-A) 0 神 개学 21 proles never leave

$$f(s) = \frac{\kappa_0 F(0)}{1 + s / s / s} \frac{1}{s} = \frac{\kappa_0 F(0) \kappa_0 \omega_p}{1 + \kappa_0 F(0) \frac{1}{1 + s / s} \frac{1}{s}} = \frac{\kappa_0 F(0) \kappa_0 \omega_p}{1 + \kappa_0 F(0) \frac{1}{1 + s / s} \frac{1}{s}} = \frac{\kappa_0 F(0) \kappa_0 \omega_p}{1 + \kappa_0 F(0) \kappa_0 \omega_p}$$

$$\omega_p = \frac{\omega_c}{Q_c} = \sqrt{2} \omega_c = 2\pi \times 14.14 \text{ acd/s} \qquad \omega_c^2$$

$$\kappa_0 = \frac{\omega_c^2}{\kappa_0 F(0) \omega_p} = \frac{\omega_c}{\kappa_0 F(0) \sqrt{2}} = 23263 \text{ acd/s/v}$$

$$\kappa_0 = \frac{\omega_c^2}{\kappa_0 F(0) \omega_p} = \frac{\omega_c}{\kappa_0 F(0) \sqrt{2}} = 23263 \text{ acd/s/v}$$

$$\kappa_0 = \frac{\omega_c^2}{\kappa_0 F(0) \omega_p} = \frac{\omega_c}{\kappa_0 F(0) \sqrt{2}} = 23263 \text{ acd/s/v}$$

$$\kappa_0 = \frac{\omega_c^2}{\kappa_0 F(0) \omega_p} = \frac{\omega_c}{\kappa_0 F(0) \sqrt{2}} = 23263 \text{ acd/s/v}$$

$$\kappa_0 = \frac{\omega_c^2}{\kappa_0 F(0) \omega_p} = \frac{\omega_c}{\kappa_0 F(0) \sqrt{2}} = 23263 \text{ acd/s/v}$$

$$\kappa_0 = \frac{\omega_c^2}{\kappa_0 F(0) \omega_p} = \frac{\omega_c}{\kappa_0 F(0) \sqrt{2}} = 23263 \text{ acd/s/v}$$

$$\kappa_0 = \frac{\omega_c^2}{\kappa_0 F(0) \omega_p} = \frac{\omega_c}{\kappa_0 F(0) \sqrt{2}} = 23263 \text{ acd/s/v}$$

$$\kappa_0 = \frac{\omega_c^2}{\kappa_0 F(0) \omega_p} = \frac{\omega_c}{\kappa_0 F(0) \sqrt{2}} = 23263 \text{ acd/s/v}$$

$$\kappa_0 = \frac{\omega_c^2}{\kappa_0 F(0) \omega_p} = \frac{\omega_c}{\kappa_0 F(0) \sqrt{2}} = 23263 \text{ acd/s/v}$$

$$\kappa_0 = \frac{\omega_c^2}{\kappa_0 F(0) \omega_p} = \frac{\omega_c}{\kappa_0 F(0) \sqrt{2}} = \frac{\omega_c}{\kappa_0 F$$

AWC = \[2\omega_p^2 \left[\left(\frac{\delta v}{\delta p} \right)^2 - i - i = 2\tau \times 34.51 Kncd/s