transceiver.

- 2. The method of claim 1 wherein determining a characteristic includes determining a characteristic of a local noise source at a first network node and transmitting information about said local noise source to a second network node, and using said information to control a wireless transmission from said second network node to said first network node.
- 3. The method of claim 1 further including controlling transmissions from said second transceiver to reduce the probability of interference between said transmission and said local noise source.
- 1 c) 4. The method of claim 1 wherein transmitting
 2 information about said local noise source includes
 3 transmitting information about the probability of a

2

3

4

1

2

3

- 4 transmission occurring at a given time from said local noise source.
- 5. The method of claim 4 including delaying a transmission from said second transceiver to said first transceiver until the probability of interference with said local noise source is reduced.
- 1 6. The method of claim 1 wherein determining a 2 characteristic of a local noise source includes identifying 3 a characteristic of said local noise source without 4 demodulating said local noise source.
 - 7. The method of claim 6 wherein identifying a characteristic includes measuring a received signal strength, and identifying a periodicity in said noise source without demodulating said noise source.
 - 8. The method of claim 1 wherein transmitting information includes transmitting a statistical model of said noise source to predict the future behavior of said noise source.
- 9. An article comprising a medium storing instructions that enable a processor-based system to:

2

3

4

5

determine a characteristic of a local noise
source at a first transceiver;
transmit information about said local noise
source to a second transceiver; and
use said information to control a wireless
transmission from said second transceiver to said first
transceiver.

- 10. The article of claim 9 further storing instructions that enable the processor-based system to control a transmission from said second transceiver to reduce the probability of interference between said transmission and said local noise source.
- 1 11. The article of claim 9 further storing
 2 instructions that enable a processor-based system to
 3 transmit information about the probability of a
 4 transmission from said local noise source occurring at a
 5 given time.
- 1 12. A transceiver comprising:
 2 a module to determine a characteristic of a local
 3 noise source;
 4 a transmitter to transmit information about the
- 5 local noise source; and

2

3

4

6	a	receiver	that	receives	information	about a	
7	local noise	source re	emote	to said	transceiver	to control	ā
8	wireless tra	ansmission	ns fro	m said t	ransceiver.		

- 1 13. The transceiver of claim 12 wherein said 2 transceiver is a network node.
- 1 14. The transceiver of claim 12 including a received 2 signal strength indication detector coupled to said module.
- 1 15. A method comprising:
 2 receiving a noise signal;
- identifying a characteristic in said noise signal
 without demodulating said signal; and
- using said characteristic to identify said noise signal.
 - 16. The method of claim 15 wherein receiving a noise signal includes receiving a noise signal having a characteristic identifiable without demodulating said signal and using said characteristic to predict the behavior of said signal without demodulating said signal.
- 1 17. The method of claim 16 wherein identifying the 2 characteristic includes identifying a time characteristic 3 in said noise signal without demodulating said signal.

1	18. The method of claim 17 wherein identifying a					
2	characteristic includes identifying a periodicity in said					
3	noise signal and using said periodicity to predict the					
4	future behavior of said noise signal.					
1	19. A device comprising:					
2	a receiver that receives a noise signal and					
3	identifies a characteristic in said noise signal without					
4	demodulating said signal; and					
5	a unit that uses said characteristic to identify					
6	said noise signal.					
1	20. The device of φ laim 19 including a transmitter					
2	that controls transmissions to reduce the likelihood of					
3	interference at an intended transmission recipient.					
1	21. The device of claim 19 wherein said receiver					
2	includes a circuit that develops a statistical estimation					
3	of the likelihood of the occurrence of the noise signal					
4	based on the nature of said characteristic.					
1	22. A method comprising:					
2	/ receiving a noise signal having a characteristic					
3	identifiable without demodulating said signal; and					

2

3

4

5

7

- using said characteristic to predict the behavior

 of said signal without demodulating said signal.
- 23. The method of claim 22 including receiving a slotted noise signal and determining the probability that a given slot is occupied.
- 1 24. The method of claim 22 wherein receiving a signal 2 having a characteristic includes receiving a signal having 3 a time characteristic and using said time characteristic to 4 predict the behavior of said signal at a future time.

28. A device comprising:

- a receiver that identifies a noise signal without demodulating said signal based on a characteristic of said noise signal; and
- a unit that predicts the behavior of said signal based on said characteristic without demodulating said signal.
- 1 26. The device of claim 25 wherein said unit 2 identifies a slotted noise signal and determines the 3 probability that a given slot is occupied.

1	27. The device of claim 25 wherein said receiver					
2	develops a statistical package indicating the probability					
3	that a noise signal will occur at a given time instance.					
1	28. A method comprising:					
2	measuring a received signal strength;					
3	determining when a radio frequency device is					
4	actively transmitting or receiving; and					
5	analyzing the received signal strength when the					
6	device is not actively transmitting or receiving.					
1	29. The method of claim 28 including analyzing said					
2	received signal strength to determine a characteristic of a					
3	noise signal.					
1	30. The method of chaim 29 including using said					
2	characteristic to predict the behavior of said noise signal					
2	without demodulating gald signal					