AutoML e sua contribuição para o desenvolvimento de modelos para a Aprendizagem Profunda

Aluno: Lucas Henrique Lírio Costa Orientador: Talles Henrique de Medeiros

Departamento de Computação e Sistemas - DECSI Instituto de Ciências Exatas e Aplicadas - ICEA Universidade Federal de Ouro Preto - UFOP

21/02/2024

Lucas H. L. Costa

Introducão

Revisão Bibliográfica

Decenvolvimento

Resultados

Desafine

Conclusão

Pafarâncias

Resultados

Desafios

Conclusão

Revisão Bibliográfica

Desenvolvimento

Revisão Bibliográfica

Decenvolvimento

Resultados Desafios

Conclusão

- IA nos dias atuais
- O AutoML
- Objetivos do trabalho:
 - ► Implementar uma abordagem do AutoML otimização de hiperparâmetros
 - Encontrar automaticamente os melhores hiperparâmetros para um modelo
 - Encontrar automaticamente os melhores pesos para uma função de custo multiobjetivo
 - Alcançar modelos que tenham um bom desempenho

Desafios

Conclusão

Referências

► AutoML e Otimização de Hiperparâmetros

Fonte: (HE; ZHAO; CHU, 2021)[1]

Lucas H. L. Costa

Introdução

Revisão Bibliográfica

Desenvolvimento

Resultados Desafios

Conclusão

Referências

Otimização Bayesiana

- ► Abordagem multiobjetivo
 - Conjunto Pareto Ótimo

Fonte:(NGATCHOU; ZAREI; EL-SHARKAWI, 2005)[2]

Fonte:(SHAHRIARI et al., 2015)[3]

Revisão Bibliográfica

Lucas H. L. Costa

Introdução

Revisão Bibliográfica

Desenvolvimento Resultados

Desafios

Conclusão

Referências

Função de custo multiobjetivo

- Erro Entropia Cruzada
- ightharpoonup Complexidade Norma L_2

Escalarização Chebyshev

$$g = max_i [w_i | f_i - z_i^* |]$$

$$ChebLoss = max (w_1 \cdot EC | w_2 \cdot NL2)$$

Fonte: (NAGY; MANSOUR; ABDELMOHSEN, 2020)[4]

Fonte: (WANG; ZHANG; GUO, 2013)[5]

Revisão Bibliográfica

Desenvolvimento

Resultados

Desafios

Conclusão

Referências

Linguagem: Python

▶ Biblioteca: KerasTuner

► IDE: Google Colaboratory (Colab)

- Experimentos com hiperparâmetros:
 - Bases de dados:MNIST e Fashion MNIST
 - Funções de perda: Crossentropy e CustomChebyshev
 - Modelos: Modelo MLP e Modelo CNN
- ► Testes com pesos fixos da função
- Visualização do conjunto Pareto ótimo

Fonte:(BOOTH, 2020)[6]

Revisão Bibliográfica

Beschvorvinier

Resultados

Desafios Conclusão

Referências

flatten_input input: [(None, 28, 28)] InputLayer output: [(None, 28, 28)] flatten input: (None, 28, 28) Flatten output: (None, 784)

dense input: (None, 784)
Dense output: (None, 32)

₩						
dense_1	input:	(None, 32)				
Dense	output:	(None. 10)				

Fonte: Produzido pelo autor.

Hiperparâmetros otimizados:

- ▶ Unidades na camada densa (oculta) [32 512;32]
- ► Taxa de aprendizado $[1 \cdot 10^{-1}; 1 \cdot 10^{-2}; 1 \cdot 10^{-3}]$
- Peso 1 (w1) da função objetiva $[0 \sim 1]$
- ightharpoonup Peso 2 (w2) da função objetiva $[0\sim1]$

Desenvolvimento

Introdução

Taxa de aprendizado $[1 \cdot 10^{-1}; 1 \cdot 10^{-2}; 1 \cdot 10^{-3}]$

- Peso 1 (w1) da função objetiva $[0 \sim 1]$
- Peso 2 (w2) da função objetiva $[0 \sim 1]$
- Camadas convolucionais:
 - ► Unidades [32 512;32]
 - ightharpoonup Tamanho do kernel [3-5;1]
 - ightharpoonup Tamanho do stride [1-5;1]
- Camadas de pooling:
 - ightharpoonup Tamanho do kernel [2-4;1]
 - ightharpoonup Tamanho do stride [1-5;1]
- ► Função de ativação [relu; tanh; sigmoid]
- ▶ Unidades nas 2 camadas densas [32 512;32]
- Taxa de dropout [0-0.5;0.1]
- Função otimizadora do modelo [adam; SGD; rmsprop]

Fonte:Produzido pelo autor.

Lucas H. L. Costa

Revisão Bibliográfica

Desenvolvimento

Resultados

Desafios

Conclusão

Revisão Bibliográfica

Desenvolvimento Resultados

Desafios

Conclusão

Referências

► Experimentos com redes MLP e CNN

Modelo	1	2	3	4
Dataset	MNIST	MNIST	FashionMNIST	FashionMNIST
Loss function	CustomCheb	CrossEnt	CustomCheb	CrossEnt
loss_wgt1	0.9	-	0.5	-
loss_wgt2	0.0	-	0.0	-
Dense units	512	256	384	448
Learning rate	0.001	0.001	0.001	0.001
Test loss	0.1450	0.1471	0.2839	0.5861
Test accuracy	98.13 %	97.87%	88.51 %	88.78%
HP searching time (min)	38.68	16.43	64.17	20.53
HModel training time (min)	9.38	5.06	7.95	4.30

Fonte:Produzido pelo autor.

Modelo	1	2	3	4
Dataset	MNIST	MNIST	FashionMNIST	FashionMNI
Loss function	CrossEnt	CustomCheb	CrossEnt	CustomChe
conv1_units	352	128	128	512
conv2_units	352	96	384	192
conv3_units	192	128	192	128
kern_size1	5	5	5	4
kern_size2	5	3	4	4
kern_size3	4	5	3	4
pool_size1	2	2	4	3
pool_size2	4	2	2	2
pool_size3	3	2	3	3
stride_conv1	3	1	1	4
stride_conv2	1	2	5	3
stride_conv3	1	5	1	5
stride_pool1	1	2	3	3
stride_pool2	2	2	2	4
stride_pool3	4	5	5	4
activation	tanh	tanh	relu	relu
dense_units1	64	128	416	480
dense_units2	288	128	512	384
dropout_rate1	0.1	0.4	0.2	0.0
dropout_rate2	0.0	0.5	0.0	0.0
optimizer	SGD	adam	adam	rmsprop
Learning rate	0.1	0.001	0.001	0.001
loss_wgt1		0.7	-	0.8
loss_wgt2	-	0.0	-	0.0
Test loss	0.2710	0.0970	0.7022	1.510
Test accuracy	99.34 %	95.79 %	90.17%	82.90 %
HP searching time (min)	46.68	101.85	48.58	80.52
HModel training time (min)	38.38	13.30	12.38	14.15

Fonte:Produzido pelo autor.

Resultados

Lucas H. L. Costa

 Teste com pesos fixos e visualização da fronteira de Pareto

Fonte:Produzido pelo autor.

Fonte:Produzido pelo autor.

Fonte:Produzido pelo autor.

Revisão Bibliográfica

Desenvolvimento

Resultados

Introducão

Desafios Conclusão

- Introdução
- Revisão Bibliográfica
- Desenvolvimento
- Resultados
- Desafios

 Conclusão

- ► Tentativa de implementar o NAS
- ► Testes com base de dados CIFAR-10
- ► Limites de recursos computacionais

- Introdução
- Revisão Bibliográfica
- Desenvolvimento
- Resultados
- Desafios

Conclusão

Referências

Link para o repositório:

 $\verb|https://github.com/LucasHLirio/TCC_II|$

Implementação da otimização de hiperparâmetros

Determinação dos pesos para uma abordagem multiobjetivo

Revisão Bibliográfica

Desenvolvimento

Resultados Desafios

Conclusão

- 1. He, X., Zhao, K. & Chu, X. AutoML: A survey of the state-of-the-art. Knowledge-Based Systems 212, 106622 (2021).
- Ngatchou, P., Zarei, A. & El-Sharkawi, A. Pareto multi objective optimization. em Proceedings of the 13th international conference on, intelligent systems application to power systems (2005), 84–91.
- Shahriari, B., Swersky, K. et al. Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE 104, 148–175 (2015).
- Nagy, M., Mansour, Y. & Abdelmohsen, S. Multi-objective optimization methods as a decision making strategy. *Int. J. Eng. Res. Technol. (IJERT)* 9, 516–522 (2020).
- Wang, R., Zhang, T. & Guo, B. An enhanced MOEA/D using uniform directions and a pre-organization procedure. em (2013), 2390–2397. doi:10.1109/CEC.2013.6557855.
- Booth, S. Bayes-Probe: Distribution-Guided Sampling for Prediction Level Sets. https://www.researchgate.net/figure/Inferred-high-classification-samples-for-CLEVR-top-MNIST-middle-and-Fashion-MNIST_fig3_339471054. 2020.

