### Eigenvalues & Eigenvectors

Mathematical Methods for Economics (771)

Stellenbosch University

### Contents:

- Readings
- Review of Linear Independence (Chapter 11)
  - Linear combinations and span
  - Spanning sets
  - Basis and dimension in R<sup>n</sup>
- Eigenvalues and Eigenvectors (Chapter 23)
  - Definitions
  - Finding eigenvalues and eigenvectors
  - Solving linear difference equations
  - Markov processes
  - Symmetric matrices

### Readings

- Simon & Blume, Chapter 23.1-23.3, 23.6-23.7 (recommended self-study 23.8-23.9)
- Additional: 3Blue1Brown

### Linear combinations and span

The set of all scalar multiplies of a nonzero vector  ${\bf v}$  is a straight line through the origin.

Formally, we denote this set by:

$$\mathcal{L}[\mathbf{v}] \equiv \{r.\mathbf{v} : r \in \mathbf{R}\} , \qquad (1)$$

and call it the line generated or spanned by v.



Figure: The line  $\mathcal L$  spanned by vector  $\mathbf v$ 

### Linear combinations and span

The set spanned by two nonzero vectors  $v_1$  and  $v_2$  is given by:

$$\mathcal{L}[\mathbf{v_1}, \mathbf{v_2}] \equiv \{r_1.\mathbf{v_1} + r_2.\mathbf{v_2} : r_1, r_2 \in \mathbf{R}\},$$
 (2)

If  $v_1$  is a multiple of  $v_2$ , or vice versa, we say  $v_1$  and  $v_2$  are linearly dependent. Otherwise, we say that  $v_1$  and  $v_2$  are linearly independent.



Figure: If  $v_1$  is a multiple of  $v_2$ , then  $\mathcal{L}[v_1, v_2] = \mathcal{L}[v_2]$  is simply a line spanned by  $v_2$ .

## Linear combinations and span

That is, given the linear combination of two nonzero vectors  $\mathbf{v_1}$  and  $\mathbf{v_2}$ ,  $c_1\mathbf{v_1}+c_2\mathbf{v_2}=0$ , we say  $\mathbf{v_1}$  and  $\mathbf{v_2}$  are:

- **linearly dependent** if  $c_1$  or  $c_2$  nonzero ( $\mathcal{L}[\cdot]$  is a line);
- linearly independent if  $c_1 = c_2 = 0$  ( $\mathcal{L}[\cdot]$  is a plane).

#### **Definition**

Vectors  $v_1, v_2, \ldots, v_k$  in  $\mathbf{R^n}$  are **linearly dependent** if and only if there exists scalars  $c_1, c_2, \ldots, c_k$ , not all zero, such that

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} + \ldots + c_k\mathbf{v_k} = 0$$

Vectors  $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}$  in  $\mathbf{R^n}$  are **linearly independent** if and only if  $c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_k\mathbf{v_k} = 0$  for scalars  $c_1, \dots, c_k$  implies that  $c_1 = \dots = c_k = 0$ .

## Theorem (11.1)

Vectors  $v_1,v_2,\dots,v_k$  in  ${\bf R}^{\rm n}$  are linearly dependent if and only if the linear system

$$A \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix} = 0$$

has a nonzero solution  $(c_1, c_2, \dots, c_k)$ , where A is the  $n \times k$  matrix whose columns are the vectors  $\mathbf{v_1}, \dots, \mathbf{v_k}$  under study:

$$A = \begin{pmatrix} \mathbf{v_1} & \mathbf{v_2} & \cdots & \mathbf{v_k} \end{pmatrix} .$$

#### Theorem (11.2, case k = n)

A set of n vectors  $\mathbf{v_1}, \dots, \mathbf{v_n}$  in  $\mathbf{R^n}$  are linearly independent if and only if

$$\det A = \det \begin{pmatrix} \mathbf{v_1} & \mathbf{v_2} & \cdots & \mathbf{v_n} \end{pmatrix} \neq 0.$$

### Theorem (11.3, case k > n)

If k > n, any set A set of k vectors in  $\mathbb{R}^n$  is linearly dependent.

### Spanning sets

Recall that the set spanned by  $v_1, v_2, \dots, v_k$  can be written as

$$\mathcal{L}[\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}] \equiv \{c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_k\mathbf{v_k} : c_1, c_2, \dots, c_k \in \mathbf{R}\}.$$

Suppose we are given a subset V of  $\mathbf{R^n}$ . Then there exists  $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}$  in  $\mathbf{R^n}$  such that every vector in V can be written as a linear combination of  $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}$ :

$$V = \mathcal{L}[\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}] .$$

That is,  $v_1, v_2, \dots, v_k$  span V.

## Spanning sets

#### Example (11.4)

The  $x_1x_2$ -plane in  ${\bf R^3}$  is the span of the unit vectors  $e_1=(1,0,0)$  and  $e_2=(0,1,0)$ , because any vector (a,b,0) in this plane can be written as a linear combination of  $e_1$  and  $e_2$ :

$$\begin{pmatrix} a \\ b \\ 0 \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

#### Theorem (11.6)

A set of k vectors that spans  $\mathbb{R}^n$  must contain at least n vectors (k > n).

### Basis and dimension in R<sup>n</sup>

It is clear from Theorem 11.6 that we can find a "more efficient" spanning set:

#### Definition

Let  $\mathbf{v_1}, \dots, \mathbf{v_k}$  be a fixed set of k vectors in  $\mathbf{R^n}$ . Let V be the set  $\mathcal{L}[\mathbf{v_1}, \dots, \mathbf{v_k}]$  spanned by  $\mathbf{v_1}, \dots, \mathbf{v_k}$ . Then,  $\mathbf{v_1}, \dots, \mathbf{v_k}$  forms a **basis** of V if:

- (a)  $\mathbf{v_1}, \dots, \mathbf{v_k}$  span V, and
- (b)  $v_1, \dots, v_k$  are linearly independent.

#### Example (11.8)

The unit vectors

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

form a basis of  $\mathbf{R}^{\mathbf{n}}$ . Since this is such a natural basis, it is called the **canonical basis**.

### Basis and dimension in R<sup>n</sup>

#### Theorem (11.7)

Every basis of  $\mathbb{R}^n$  contains n vectors.

#### Theorem (11.8)

Let  $\mathbf{v_1}, \dots, \mathbf{v_n}$  be a collection of n vectors in  $\mathbf{R^n}$ . Form the  $n \times n$  matrix A whose columns are these  $\mathbf{v_j}$ 's:  $A = \begin{pmatrix} \mathbf{v_1} & \mathbf{v_2} & \cdots & \mathbf{v_n} \end{pmatrix}$ . Then, the following statements are equivalent:

- (a)  $v_1, \dots, v_n$  are linearly independent,
- (b)  $v_1, \ldots, v_n$  span  $\mathbb{R}^n$ ,
- (c)  $v_1, \ldots, v_n$  form a basis of  $\mathbb{R}^n$ , and
- (d) the determinant of  $A_{n\times n}$  is nonzero

The **dimension** of a vector space V is the # of vectors in any basis of V. Since every basis of  $\mathbb{R}^n$  contains exactly n vectors, there are n independent directions in  $\mathbb{R}^n$ , and  $\mathbb{R}^n$  is n-dimensional.

### Chapter 23. Eigenvalues and Eigenvectors

Eigenvalues ("characteristic values") and eigenvectors of a square matrix summarize the essential properties of linear and nonlinear systems of equations:

- They are the components of explicit solutions to *linear* dynamic models.
- The signs of eigenvalues determine the stability of equilibria in nonlinear dynamic models, and the definiteness of a symmetric matrix.
- Important for economic optimization problems.

# Eigenvalues and Eigenvectors

Example (See 23.1, 23.2, 23.3, & 23.4., pp. 580-1)

#### **Definition**

Let A be a square matrix. An **eigenvalue** of A is a number r which when subtracted from each of the diagonal entries of A converts A into a singular matrix. Therefore, r is an eigenvalue of A if and only if A-rI is a singular matrix.

### Theorem (23.1)

The diagonal entries of a diagonal matrix D are eigenvalues of D.

### Theorem (23.2)

A square matrix A is singular if and only if 0 is an eigenvalue of A.

A matrix is singular if and only if its determinant is zero. That is, A-rI is a singular matrix, if and only if  $\det(A-rI)=0$ .

For an  $n \times n$  matrix A,  $\det(A - rI)$  is an nth order polynomial in the variable r, called the **characteristic polynomial**.

### Example

For a general  $2 \times 2$  matrix, the characteristic polynomial is

$$\det(A - rI) = \det\begin{pmatrix} a_{11} - r & a_{12} \\ a_{21} & a_{22} - r \end{pmatrix} 
= r^2 - (a_{11} + a_{22})r + (a_{11}a_{22} - a_{12}a_{21}),$$
(3)

a second-order polynomial.

#### Therefore,

- ullet The eigenvalues r of A are the roots of the characteristic polynomial;
- a  $2 \times 2$  matrix has at most two eigenvalues (we can use the quadratic formula); a  $n \times n$  matrix has at most n eigenvalues.

When r is an eigenvalue of A, a *nonzero* vector  $\mathbf{v}$  such that

$$(A - rI)\mathbf{v} = \mathbf{0} \tag{4}$$

is called an **eigenvector** of A corresponding to eigenvalue r. Multiplying out (4) yields

$$A\mathbf{v} - rI\mathbf{v} = \mathbf{0}$$

$$A\mathbf{v} - r\mathbf{v} = \mathbf{0}$$

$$A\mathbf{v} = r\mathbf{v}$$

If r is an eigenvalue and  $\mathbf{v}$  is a corresponding eigenvector, then  $A\mathbf{v} = r\mathbf{v}$ .

We can summarize the above as follows:

### Theorem (23.3)

Let A be an  $n \times n$  matrix and let r be a scalar. Then, the following statements are equivalent:

- (a) Subtracting r from each diagonal entry of A transforms A into a singular matrix.
- (b) A rI is a singular matrix.
- (c)  $\det(A rI) = 0$
- (d)  $(A rI)\mathbf{v} = \mathbf{0}$  for some nonzero vector  $\mathbf{v}$ .
- (e)  $A\mathbf{v} = r\mathbf{v}$  for some nonzero vector  $\mathbf{v}$ .

#### Example

Examples 23.5 and 23.6 (pp. 583-4)

In general, one chooses the "simplest" of the nonzero candidates.

The **eigenspace** of A is the span of the set of all eigenvectors, including  $\mathbf{v} = 0$ . i.e., the set of all solutions to (4).

In some problems, one will need to use Guassian elimination to solve the linear system  $(A-rI)\mathbf{v}=\mathbf{0}$  for an eigenvector  $\mathbf{v}$ .

One-dimensional equations

To solve a one-dimensional equation  $y_{n+1} = ay_n$ ,

$$y_1 = ay_0$$
  
 $y_2 = ay_1 = a(ay_0) = a^2y_0$   
 $y_3 = ay_2 = a(a^2y_0) = a^3y_0$   
 $\vdots = \vdots$   
 $y_n = a^ny_0$  (5)

In what settings could the solution (5) arise?

Two-dimensional systems

Now, consider a system of two linear difference equations:

$$x_{n+1} = ax_n + by_n (6)$$

$$y_{n+1} = cx_n + dy_n (7)$$

In matrix form, the system of difference equations becomes:

$$\mathbf{z}_{n+1} = \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} \equiv A\mathbf{z}_n \tag{8}$$

- If b = c = 0, (6) and (7) are uncoupled, and can be solved as two seperate one-dimensional problems (5).
- If  $b \neq 0$  or  $c \neq 0$ , we need to transform the coefficient matrix A into a diagonal matrix so that (6) and (7) become uncoupled and therefore more easily solved; and
- To transform matrix A into a diagonal matrix D we use the technique of a change-of-coordinates (or change-of-bases):  $P^{-1}AP = D$

### Visual example: conic section



Figure: A conic section in a coordinate system adapted for it.

$$Ax^2 + Bxy + Cy^2 - D = 0 \qquad , B \neq 0$$
 
$$\therefore \text{ find } \quad x = \alpha x' + \beta y' \; , \quad y = \gamma x' + \delta y'$$
 
$$\text{to remove } xy\text{-term}$$

Two-dimensional systems

Consider the abstract system of difference equations:

$$\mathbf{z}_{n+1} = A\mathbf{z}_n \ .$$

We want to choose a transformation P and  $P^{-1}$  such that:\*

$$\mathbf{z} = P\mathbf{Z}$$
, or  $\mathbf{Z} = P^{-1}\mathbf{z}$ .

$$\mathbf{Z}_{n+1} = P^{-1}\mathbf{z}_{n+1}$$

$$= P^{-1}(A\mathbf{z}_n)$$

$$= (P^{-1}A)\mathbf{z}_n$$

$$= (P^{-1}A)(P\mathbf{Z}_n)$$

$$= (P^{-1}AP)\mathbf{Z}_n$$

$$\mathbf{Z}_{n+1} = D\mathbf{Z}_n$$
(9)

<sup>\*</sup>Trace these steps in the Leslie population model example.

Diagonalization

It turns out  $\dots$  since P is an invertible matrix then AP=PD. In the two-dimensional system we can write this as:

$$A[\mathbf{v}_1 \ \mathbf{v}_2] = [\mathbf{v}_1 \ \mathbf{v}_2] \begin{pmatrix} r_1 & 0 \\ 0 & r_2 \end{pmatrix} ,$$

where  $v_1$  and  $v_2$  are the two column vectors of the  $2 \times 2$  matrix P. Therefore:

$$\begin{bmatrix} A\mathbf{v}_1 & A\mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} r_1\mathbf{v}_1 & r_2\mathbf{v}_2 \end{bmatrix}$$
$$A\mathbf{v}_1 = r_1\mathbf{v}_1, \text{ and } A\mathbf{v}_2 = r_2\mathbf{v}_2$$

 $\dots r_1$  and  $r_2$  must be eigenvalues of A, and  $\mathbf{v}_1$  and  $\mathbf{v}_2$  are the corresponding eigenvectors!! (see Theorem 23.3)

Diagonalization

This holds for k-Dimensional systems . . . which gives us

#### Theorem (23.4)

Let A be a  $k \times k$  matrix. Let  $r_1, r_2, \dots, r_k$  be eigenvalues of A, and  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$  the corresponding eigenvectors. Form the matrix

$$P = [\mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_k]$$

whose columns are these k eigenvectors. If P is invertible, then

$$P^{-1}AP = \begin{pmatrix} r_1 & 0 & \cdots & 0 \\ 0 & r_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_k \end{pmatrix}$$
 (10)

Conversely, if  $P^{-1}AP$  is a diagonal matrix D, the columns of P must be eigenvectors of A and the diagonal entries of D must be eigenvalues of A.

A general solution

#### Theorem (23.6)

Let A be a  $k \times k$  matrix with k distinct real eigenvalues  $r_1, \ldots, r_k$  and corresponding eigenvectors  $\mathbf{v}_1, \ldots, \mathbf{v}_k$ . The general solution of the system of difference equations  $\mathbf{z}_{n+1} = A\mathbf{z}_n$  is

$$\mathbf{z}_n = c_1 r_1^n \mathbf{v}_1 + c_2 r_2^n \mathbf{v}_2 + \dots + c_k r_k^n \mathbf{v}_k$$
 (11)

Note: We need to know the initial vector  $\mathbf{z}_0$  to solve the numerical formula  $\mathbf{z}_n$  (recall (5)). To see this, set n=0 in (11):

$$\mathbf{z}_{0} = c_{1}\mathbf{v}_{1} + \dots + c_{k}\mathbf{v}_{k}$$

$$= \left[\mathbf{v}_{1} \cdots \mathbf{v}_{k}\right] \begin{pmatrix} c_{1} \\ \vdots \\ c_{k} \end{pmatrix} = P \begin{pmatrix} c_{1} \\ \vdots \\ c_{k} \end{pmatrix} . \tag{12}$$

Therefore, for *any* specific initial vector  $\mathbf{z}_0$ , the proper choice of  $c_1, \ldots, c_k$  gives the solution for (11).

### An alternative approach: the powers of a matrix

#### Theorem (23.7)

Let A be a  $k \times k$  matrix. Suppose that there is a nonsingular matrix P such that

$$P^{-1}AP = \begin{pmatrix} r_1 & 0 & \cdots & 0 \\ 0 & r_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_k \end{pmatrix}, \quad [(10)]$$

a diagonal matrix. Then,

$$A^{n} = P \begin{pmatrix} r_{1}^{n} & 0 & \cdots & 0 \\ 0 & r_{2}^{n} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{k}^{n} \end{pmatrix} P^{-1} .$$

The solution of the corresponding system of difference equations  $\mathbf{z}_{n+1} = A\mathbf{z}_n$  with initial vector  $\mathbf{z}_0$  is

$$\mathbf{z}_{n} = P \begin{pmatrix} r_{1}^{n} & 0 & \cdots & 0 \\ 0 & r_{2}^{n} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{r}^{n} \end{pmatrix} P^{-1} \mathbf{z}_{0} .$$

### Stability of equilibria

#### It follows:

- For  $z_0 = 0$ , we have  $z_n = 0$ . Such a solution is called a **steady state**, **equilibrium**, or **stationary solution**.
- The solution is **asymptotically stable** if every solution of  $\mathbf{z}_{n+1} = A\mathbf{z}_n$  tends to the steady state  $\mathbf{z} = \mathbf{0}$  as n tends to infinity.
- For every solution to have a steady state, the absolute value of all the eigenvalues of A must be less than 1  $(|r_i| < 1)$  such that  $r_i^n \to 0$  as  $n \to \infty$ .

### Theorem (23.8)

If the  $k \times k$  matrix A has k distinct real eigenvalues, then every solution of the general system of linear difference equations  $\mathbf{z}_{n+1} = A\mathbf{z}_n$  tends to  $\mathbf{0}$  if and only if all the eigenvalues of A have absolute value less than 1.

## Markov processes

#### **Definition**

A **stochastic process** is a rule which gives the probability that the system (or the individual in this system) will be in state i at time n+1, given the probabilities of its being in the various states in previous periods.

When the probability that the system is in any state i at time n+1 depends only on what state the system was in at time n, the stochastic process is called a **Markov process**.

That is, only the *immediate* past matters.

The key elements of a Markov process are:

- (1) the probability  $x^i(n)$  that state i occurs at time period n, or alternatively, the fraction of the population under study that is in state i at time period n; and
- (2) the transition probabilities  $m_{ij}$ , where  $m_{ij}$  is the probability that the process will be in state i at time n+1 if it is in state j at time n.

### Markov processes

$$\begin{pmatrix} x^{1}(n+1) \\ \vdots \\ x^{k}(n+1) \end{pmatrix} = \underbrace{\begin{pmatrix} m_{11} & \cdots & m_{1k} \\ \vdots & \ddots & \vdots \\ m_{k1} & \cdots & m_{kk} \end{pmatrix}}_{\mathbf{Markov} \text{ (transition) matrix}} \begin{pmatrix} x^{1}(n) \\ \vdots \\ x^{k}(n) \end{pmatrix} ; \tag{13}$$

that is, 
$$\mathbf{x}(n+1) = M\mathbf{x}(n)$$
,

where M is any nonnegative matrix whose column sums  $\sum_i m_{ij}$  all equal 1.

For example, each element  $m_{ij}$  in first column of M gives the (conditional) probability that the system will be in state  $i=1,\ldots,k$  next period, given that it was in state j=1 today. We therefore have  $\sum_{i=1}^k m_{i1}=1$ .

### Example (23.20, p. 617)

$$\begin{pmatrix} x^{em}(n+1) \\ x^{un}(n+1) \end{pmatrix} = \begin{pmatrix} 0.9 & 0.4 \\ 0.1 & 0.6 \end{pmatrix} \begin{pmatrix} x^{em}(n) \\ x^{un}(n) \end{pmatrix}$$

### Markov processes

Some general principles that example 23.20 illustrates

### Theorem (23.15)

Let M be a positive Markov matrix. Then,

- (a)  $r_1 = 1$  is an eigenvalue of every M;
- (b) every other eigenvalue r of M satisfies |r| < 1
- (c) eigenvalue r=1 has an eigenvector  $\mathbf{w}_1$  with strictly positive components; and
- (d) if we write  $\mathbf{v}_1$  for  $\mathbf{w}_1$  divided by its components, then  $\mathbf{v}_1$  is a probability vector and each solution  $\mathbf{x}(n)$  of  $\mathbf{x}(n+1) = M\mathbf{x}(n)$  tends to  $\mathbf{v}_1$  as  $n \to \infty$ .

## Symmetric matrices

Most matrices that arise in optimization and econometrics are symmetric matrices (e.g., Hessians). If A is a symmetric matrix. Then,

#### **Definition**

 $A = A^T$ ;

A is a  $k \times k$  square matrix;

its "counter-diagonals" have the same entries:  $a_{ij} = a_{ji}$ ;

it is orthogonally diagonalizable, meaning that we can find an orthogonal matrix  $P\left(P^{-1}=P^{T}\right)$  which diagonalizes  $A\colon D=P^{-1}AP$ .

See also Section 23.8: Definiteness