Вопросы к экзамену по курсу "Теория вероятностей"

лектор — профессор Д. А. Шабанов весна 2023

- 1. Вероятностное пространство $(\Omega, \mathcal{F}, \mathsf{P})$. Системы событий: алгебры, σ -алгебры, π и λ -системы. Первая теорема о π и λ -системах. Лемма о существовании наименьшей алгебры (σ -алгебры, π или λ -системы), порожденной произвольной системой подмножеств. Борелевские σ -алгебры в $\mathbb{R}, \mathbb{R}^n, \mathbb{R}^\infty$.
- 2. Вторая теорема о π и λ -системах. Следствие из нее.
- 3. Независимость событий и систем событий на вероятностном пространстве. Критерий независимости для конечного набора σ -алгебр. Независимость бесконечного набора систем событий.
- 4. Функция распределения вероятностной меры на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, ее основные свойства. Теорема о взаимно-однозначном соответствии функций распределения и вероятностных мер на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
- 5. Классификация вероятностных мер и функций распределения на прямой. Примеры дискретных распределений: равномерное, биномиальное, пуассоновское. Примеры абсолютно непрерывных распределений: равномерное, нормальное, экспоненциальное, гамма. Пример сингулярного распределения: "канторова лестница". Теорема Лебега о разложении произвольной функции распределения(б/д).
- 6. Вероятностные меры на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Многомерная функция распределения, ее основные свойства. Теорема о построении вероятностной меры на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ по функции распределения (6/д). Примеры многомерных функций распределения, плотность многомерного распределения. Теорема Колмогорова о продолжении меры на $(\mathbb{R}^\infty, \mathcal{B}(\mathbb{R}^\infty))$ (6/д).
- 7. Случайные элементы, случайные величины и векторы на вероятностном пространстве. Критерий измеримости отображения. Следствие: эквивалентные определения случайных величин и векторов.
- 8. Характеристики случайной величины и случайного вектора: распределение вероятностей, функция распределения, порожденная σ -алгебра. Классы случайных величин: простые, дискретные, абсолютно непрерывные и сингулярные. Теорема о приближении случайной величины ξ простыми \mathcal{F}_{ξ} -измеримыми случайными величинами.

- 9. Независимость произвольного набора случайных величин. Критерий независимости в терминах совместной функции распределения, его обобщение для случайных векторов. Теорема о независимости борелевских функций от независимых случайных векторов. Независимость функций от непересекающихся наборов независимых с.в.
- 10. Теорема о математическом ожидании произведения независимых случайных величин с конечными математическими ожиданиями ("свойство 10").
- 11. Теорема о замене переменных в интеграле Лебега, следствия из нее. Понятие обобщенной плотности вероятностной меры. Теорема о вычисление интеграла Лебега по вероятностной мере с помощью плотности. Формулы для вычисления математических ожиданий функций от случайной величины (вектора) в дискретном и абсолютно непрерывном случаях.
- 12. Прямое произведение вероятностных пространств, лемма о существовании. Теорема Фубини (б/д).
- 13. Совместное распределение независимых случайных величин как прямое произведение. Лемма о свертке распределений. Формула свертки для вычисления плотности суммы независимых случайных величин.
- 14. Дисперсия, ковариация и коэффициент корреляции, их основные свойства. Следствие для дисперсии суммы независимых случайных величин. Матрица ковариаций случайного вектора, ее неотрицательная определенность.
- 15. Виды сходимостей случайных величин: с вероятностью 1 (почти наверное), по вероятности, в среднем порядка p>0, по распределению. Критерий сходимости с вероятностью 1. Теорема о взаимоотношении различных видов сходимостей.
- 16. Достаточное условие сходимости с вероятностью 1. Лемма о наличии подпоследовательности, сходящейся п.н., если вся последовательность сходится по вероятности. Усиленный закон больших чисел в форме Кантелли. Смысл усиленного закона больших чисел.
- 17. Фундаментальность с вероятностью 1 последовательности случайных величин. Критерий Коши для сходимости с вероятностью 1. Неравенство Колмогорова. Теорема Колмогорова—Хинчина о сходимости почти наверное ряда из случайных величин.
- 18. Леммы Теплица и Кронекера (б/д). Лемма Бореля Кантелли. Усиленный закон больших чисел в форме Колмогорова для независимых одинаково распределенных случайных величин с ограниченным математическим ожиданием.
- 19. Слабая сходимость и сходимость в основном вероятностных мер и функций распределения. Теорема Александрова (б/д). Теорема об эквивалентности слабой сходимости и сходимости в основном для вероятностных мер и соответствующих им функций распределения. Следствие для сходимости по распределению случайных величин.
- 20. Характеристические функции случайных величин, векторов и вероятностных мер. Вычисление характеристической функции для стандартного нормального распределения. Основные свойства характеристических функций случайных величин (единственность 6/д).

- 21. Теорема единственности для характеристических функций распределений на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Вычисление распределения суммы независимых нормальных случайных величин. Формула обращения для характеристических функций (6/д).
- 22. Теорема о производных характеристических функций. Разложение характеристической функции в ряд в окрестности нуля. Критерий независимость компонент случайного вектора в терминах характеристических функций. Неотрицательная определенность комплекснозначных функций на прямой. Теорема Бохнера Хинчина (только док-во необходимости).
- 23. Плотность и относительная компактность семейств вероятностных мер. Теорема Прохорова (док-во только для \mathbb{R}).
- 24. Три леммы о свойствах плотных последовательностей вероятностных мер на прямой. Теорема непрерывности для характеристических функций.
- 25. Центральная предельная теорема для независимых одинаково распределенных случайных величин, следствия из нее. Смысл ЦПТ. Теорема Берри–Эссеена об оценке скорости сходимости в центральной предельной теореме (б/д).
- 26. Виды сходимостей случайных векторов, связь с одномерными сходимостями. Теорема о наследовании сходимости. Усиленный закон больших чисел для случайных векторов. Многомерная центральная предельная теорема (б/д).
- 27. Лемма Слуцкого. Пример применения: построение асимптотического доверительного интервала для параметра в схеме Бернулли.
- 28. Гауссовские случайные векторы (многомерное нормальное распределение). Теорема о трех эквивалентных определениях. Следствия из нее: основные свойства гауссовских случайных векторов.
- 29. Условное математическое ожидание случайной величины относительно σ -алгебры. Теорема о существовании (б/д). Явный вид условного математического ожидания в случае, если σ -алгебра порождена счетным разбиением.
- 30. Основные свойства условного математического ожидания (10 штук).
- 31. Условное математическое ожидание $\mathsf{E}\left(\xi|\eta=y\right)$, существование и основные свойства (б/д). Связь с $\mathsf{E}(\xi|\eta)$. Условное распределение и условная плотность одной случайной величины относительно другой. Теорема о вычислении условного математического ожидания с помощью условной плотности. Теорема о достаточном условии существования условной плотности.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ширяев А. Н., *Вероятность*. В 2-х кн. 6-е изд. М.: МЦНМО, 2017.
- 2. Гнеденко Б. В., Kypc теории вероятностей. 12-е изд. М.: УРСС, 2019.
- 3. Боровков А. А., Teopus вероятностей. 4-е изд. М.: Едиториал УРСС, 2003.
- 4. Биллингсли П., Сходимость вероятностных мер. М.: Наука, 1977.