Весенний семестр 2005-2006 учебного года

ΠΡΟΓΡΑΜΜΑ

спецсеминара кафедры Физики элементарных частиц Физического факультета МГУ "Физика микромира"

к.ф.-м.н. Никитин Николай Викторович (НИИЯФ МГУ)

3 курс, 6 семестр, 30 часов

Цели и задачи курса

Данный курс задумывается как самостоятельный внутренне согласованный курс, который может ввести студентов в квантовомеханическую терию "с нуля" и должен дать им четкое представление о происхождении математического формализма нерелятивистской квантовой механики и о связи этого формализма с экспериментальными и философскими основаниями рассматриваемой теории. В качестве программы максимум предполагается раскрыть перед заинтересованными студентами внутреннюю красоту квантового мира, которая обычно не проявляется в стандартных курсах, ориентированых на вычислительные аспекты квантовой механики.

Предполагается, что студенты уже изучили атомную и ядерную физику в рамках университетского курса общей физики, но только приступают к изучению годового теоретического курса нерелятивистской квантовой механики.

О всех замеченных неточностях и опечатках просьба сообщать автору по телефону (095) 932-89-72 или по электронной почте nik679@monet.npi.msu.su. В заголовке письма необходимо ставить "QM-3", чтобы данное письмо можно было отличить от спама.

Примерная программа курса

І. Квантовая теория в современном мире (две вводные лекци).

Лекция N1:

- Три фундаментальные идеи в истории физики.
- Окружающий нас мир.
- Куб физических теорий А.Л.Зельманова.
- Виды взаимодействий в природе.
- Стратегия объединения.

Лекция N2:

- Краткая история развития представлений о нерелятивистской квантовой физике.
- Практическое применение квантовой механики.

II. Постулаты квантовой механики (четыре лекции).

Лекции N3 и N4:

- Макроскопический наблюдатель в микромире.
- Аксиомы квантовой механики.
 - * Классическое волновое описание эксперимента с призмой Николя.
 - * Классическое механическое описание эксперимента с призмой Николя.
 - * Несовместимость классических подходов и требование новой теории.
 - * Теория селективных измерений Швингера: предуведомления и обозначения.
 - * Теория селективных измерений Швингера: символы измерений и операции над ними на примере эксперимента с призмами Николя. Принцип суперпозиции.
 - * Предположения о математической природн векторов состояния как постулаты квантовой механики.
 - * Физический смысл коэффициентов разложения в принципе суперпозиции и вероятности в квантовой механике.
 - * Операторы физических величин: определение и свойства.

- * Основы теории представлений.
- * Операторы интенсивности необыкновенного и обыкновенного лученй призмы Николя как пример операторов физических величин.

Лекции N5, N6 и N7:

- Эволюция квантовой системы во времени.
 - * Лекции N5 и N6:
 - * Фазовая и групповая скорости волны.
 - * Волны материи Луи де Бройля.
 - * Волновая механика Шредингера.
 - * Стационарное уравнение Шредингера.
 - * Аналогия между механикой и оптикой как материал для исторического гадания.
 - * Явный вид операторов координаты и импульса.
 - * Нестационарное уравнение Шредингера.
 - * Производная от оператора по времени.
 - * Теорема Эренфеста и квантовая версия уравнений Ньютона.
 - * Представление Гейзенберга.
 - * Лекция N7:
 - * Представление взаимодействия.
 - * Свойства матриц Паули.
 - * Задача о спине мюона в слабом радиочастотном поле.

III. Измерения в квантовой механике (две лекции).

Лекции N8 и N9:

- Процесс измерения в квантовой механике.
 - * Символ измерения Швингера как проекционный оператор.
 - * След оператора.
 - * Матрица плотности чистого состояния.
 - * Неидеальные приборы и смешанные состояния.

- * Проекционные постулаты в квантовой механике. Понятие о редукции.
- * Матрица плотности запутанного состояния.
- * Декогеренция при взаимодействии микрочастицы с макроприбором.
- * Декогеренция общее описание.
- * Пример Д.И.Блохинцева.
- * Выводы о декогеренции.
- * Парадоксы "кота Шредингера" и "друга Вигнера".
- * Квантовый парадокс Зенона.
- * Эффект Ааронова-Бома.
- * Эксперимент Бибермана-Сушкина-Фабриканта по дифракции одиночных электронов.
- * Роль термодинамически необратимого внешнего окружения в проведении границы между микро— и макромиром.
- * Термодинамическая модель редукции.

III. Интерпретации квантовой механики (одна лекция).

Лекция N10:

- Формулировки и интерпретации квантовой механики.
- Копенгагенская интерпретация.
- Статистическая интерпретация.
- Многомировая интерпретация.

IV. Неравенства Белла (две лекции).

Лекции N11 и N12:

- Парадокс Эйнштейна-Подольского-Розена (ЭПР).
- ЭПР-парадокс в формулировке Д.Бома.
- Теорема фон Неймана и контрпример Белла.
- Теорема Кохена-Шпекера.
- Вероятности и определение элемента физической реальности.

- Неравенства Белла в форме Вигнера.
- Классические неравенства Белла.
- Неравенства Белла в теориях со скрытыми параметрами.
- \bullet Нарушение неравенств Белла для спина 1/2 в квантовой механике.
- Нарушение неравенств Белла для произвольного спина в квантовой механике.
- Эксперимент Аспекта.
- Проверка неравенств Белла на ускорителях.

Задачи для самостоятельного решения

Задачи к Лекциям N1 и N2

Задача N1 Из фундаментальных констант \hbar (приведенной постоянной Планка), c (скорости света в вакууме) и G_N (гравитационной постоянной Ньютона) составить величины, имеющие размерность длины l_{Pl} , времени t_{Pl} , массы m_{Pl} , энергии E_{Pl} и температуры T_{Pl} (так называемые планковские величины, поскольку их впервые предложил использовать Макс Планк в 1899 году как "данные самой природой единицы измерения физических величин"). Как численные значения планковских величин соотносятся с численными значениями длины, времени, массы, энергии и температуры в окружающим Вас мире?

Задача N2 Почти за 30 лет до М.Планка в 1870 году ирландский физик Дж.Стоней (известен как человек, введший в физикув термин "электрон") предложил построить систему единиц физических величин, основанную на значениях e (элементарного электрического заряда), c (скорости света в вакууме) и G_N (гравитационной постоянной Ньютона). Используя данный набор, получить единицы измерения длины l_S , времени t_S , массы m_S , энергии E_S и температуры T_S . Как "стонейские" величины соотносятся с планковскими? Почему планковская система единиц является более фундаментальной?

Задача N3 Почему для открытия элементарных частиц большой массы (скажем, порядка 1 $\mathrm{T}_{}^{3}\mathrm{B/c^{2}}$) выгоднее использовать коллайдеры, чем ускорители с фиксированной (неподвижной) мишенью?

Задача N4 (задача Дж.Белла) Три маленькие космические ракеты A, Б и В свободно дрейфуют в пространстве, где нет никакого иного вещества, без вращения и без относительного движения. Ракеты Б и В дрейфуют друг за другом по одной прямой и удалены от ракеты A на одинаковое расстояние.

По получении сигнала с ракеты A, двигатели ракет Б и В запускаются, и обе ракеты начинают плавно ускоряться. Пусть ракеты Б и В имеют абсолютно идентичные программы ускорения. Тогда, по мнению наблюдателя из ракеты A, ракеты Б и В в каждый момент времени будут иметь одинаковую скорость и, следовательно, оставаться смещенными друг относительно друга на фиксированное расстояние.

Предположим, что с самого начала ракеты Б и В связаны тонкой нитью, длина которой вточности равна расстоянию между покоящимися ракетами. Порвется ли нить при ускорении

ракет Б и В?

<u>Ответ</u>: порвется, и это можно объяснить как в инерционной системе отсчета, связанной с ракетой A, так и в системе отсчета, ускоряющейся вместе с ракетами Б и B.

Задача N5 Определить, на сколько порядков электромагнитное отталкивание двух первоначально покоящихся протонов превосходит их гравитационное притяжение.

Задача N6 Показать, что в микромире гравитационное взаимодействие становится важным при энергиях порядка планковских.

<u>Указание</u>: рассмотреть две сталкивающиеся в системе центра масс ультрарелятивистские частицы, приравнять их энергию столкновения к гравитационной и воспользоваться соотношением неопределенностей.

Задача N7 Может ли упругое рассеяние протона на протоне происходить за счет обмена только одним глюоном? А только одним фотоном? Как изменится ответ, если вместо рассеяния рассматривать аннигиляцию протона и антипротона в другие адроны за счет излучения одного виртуального глюона или одного виртуального фотона?

Задача N8 Оценить, с какой точностью должны быть измерены массы $\Upsilon(4S)$ -мезона и B-мезонов, чтобы численное значение массы $\Upsilon(4S)$ -мезона было чувствительно к тому, происходит данное измерение в распаде $\Upsilon(4S) \to B^0 \bar{B}^0$ или в распаде $\Upsilon(4S) \to B^+ B^-$? Важно ли это различие в натоящее время, когда массы всех частиц, входящих в написанные выше реакции, известны с точностью порядка 1 МэВ?

<u>Указание</u>: рассмотреть распад покоящегося $\Upsilon(4S)$ -мезона и вспомнить, что энергия ионизации атома водорода равна 13,6 эВ.

Задача N9* Почему вероятность слабого распада $K^+ \to \mu^+ \nu_\mu$ порядка 63%, в то время как вероятность аналогичного по виду распада $K^0 \to \mu^+ \mu^-$ составляет примерно 10^{-6} %? <u>Подсказка</u>: вторая реакция, как и первая, также идет только за счет СЛАБОГО взаимодействия и отношение фазовых объемов обеих реакций в данном случае играет второстепенную (проверьте!) роль.

Задачи к Лекциям N3 и N4

Задача N10 В каких случаях символы измерений не коммутируют между собой? А в каких коммутируют? Приведите примеры реальных измерений, соответствующих обеим ситуациям.

Задача N11 Показать, что не возможно клонировать (т.е. создать одну или более копий) систему, находящуюся в состоянии, описываемом при помощи векторо состояния $|\psi\rangle$.

<u>Подсказка</u>: это фундаментальное свойство чистых состояний, на котором основана идея квантовой криптографии, тривиально следует из принципа суперпозиции.

Задача N12 Ядро атома трития испытало β -распад $^3H \rightarrow ^3He + e^- + \bar{\nu}_e$, в результате которого атом трития превратился в ион гелия. Какова вероятность, что в результате этого процесса электрона атомной оболочки перейдет в возбужденное состояние, если до β -распада трития электрон находился в невозбужденном состоянии?

<u>Указание</u> Разложить вектор состояния электрона в атоме трития по базису векторов состояния электрона в ионе гелия.

Задача N13 Может ли использоваться формула

$$\int df |f\rangle F(f) \langle f| \equiv F(\hat{f}).$$

для определения функции F от произвольного (неэрмитовского) линейного оператора \hat{L} ?

Задача N14 Каков результат действия оператора $\sin(\hat{f})$ на состояние квантовой системы $|\psi\rangle$, которое раскладывается по базису $|f\rangle$ следующим образом: $|\psi\rangle = \int df \cos(f) |f\rangle$?

Задача N15 Если известен явный вид эрмитовского оператора \hat{f} в a-представлении, то как будет выглядеть этот оператор в b-представлении. Применить общие формулы к частному случаю: известен вид опертора импульса $\hat{p}=-i\hbar\partial/\partial x$ в координатном представлении. Найти вид этого оператора в импульсном представлении.

Задачи к Лекциям N5 и N6

Задача N16 Пользуясь методом де Бройля определить уровни энергии атома водорода.

Задача N17 Волновой пакет составлен из N одинаковых квантов света с длиной волны λ каждый. Какова будет длина волны де Бройля такого волнового пакета?

Задача N18 Написать квантовомеханический оператор, соответствующий $(\vec{x}\,\vec{p})^2$.

Задача N19 Какой оператор в квантовой механике соответствует векторному произведению импульса и координаты?

Задача N20 Написать уравнение Шредингера с потенциалом, зависящим только от координат, в импульсном представлении.

Задача N21 Доказать, что

$$\frac{d}{dt} \left(\hat{A} + \hat{B} \right) = \frac{d\hat{A}}{dt} + \frac{d\hat{B}}{dt},$$

$$\frac{d}{dt} \left(\hat{A} \, \hat{B} \right) = \hat{A} \frac{d\hat{B}}{dt} + \frac{d\hat{A}}{dt} \, \hat{B}.$$

Задача N22 Доказать операторное тождество

$$e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + \left[\hat{A},\hat{B}\right] + \frac{1}{2!}\left[\hat{A},\left[\hat{A},\hat{B}\right]\right] + \dots$$

Задача N23 В представлении Гейзенберга найти выражения для производных операторов координаты и импульса гармонического осциллятора.

Задача N24 В представлении Гейзенберга получить уравнения Эренфеста и квантовое уравнение Ньютона.

Задачи к Лекции N7

Задача N25 доказать, что если \hat{f} – эрмитовский оператор, то оператор $\hat{O} = e^{i\hat{f}}$ – унитарный оператор.

Задача N26 Доказать следующие соотношения для матриц Паули:

$$e^{i\frac{\varphi}{2}\sigma_z} \sigma_x e^{-i\frac{\varphi}{2}\sigma_z} = \sigma_x \cos\varphi - \sigma_y \sin\varphi,$$

$$e^{i\frac{\varphi}{2}\sigma_z} \sigma_y e^{-i\frac{\varphi}{2}\sigma_z} = \sigma_x \sin\varphi + \sigma_y \cos\varphi,$$

$$e^{i\frac{\varphi}{2}\sigma_z} \sigma_{\pm} e^{-i\frac{\varphi}{2}\sigma_z} = e^{\pm i\varphi} \sigma_{\pm},$$

где $\sigma_{\pm} = (\sigma_x \pm i\sigma_y)/2$.

Задача N27 На покоящийся мюон, находящийся в сильном однородном магнитном поле \vec{H}_0 , параллельном оси z, действует слабое радиочастотное поле $\vec{h}(t) \perp \vec{H}_0$. Компоненты радиочастотного поля

$$\vec{h}(t) = (h_0 \cos(\omega t), h_0 \sin(\omega t), 0).$$

В момент времени t=0 спин мюона направлен **против** оси z. Найти зависимость от времени вероятности спину мюона остаться направленым против оси z. В шредингеровском представлении и представлении взаимодействия найти **все** компоненты вектора спиновой поляризации мюона

$$\vec{P}(t) = \langle \chi(t) | \vec{\sigma} | \chi(t) \rangle.$$

Задачи к Лекциям N8 и N9

Задача N28 Показать, что оператор интенсивности обыкновенного луча \hat{I}_o для призмы Николя обладает всеми свойствами проекционного оператора, и что его можно представить в виде

$$\hat{I}_o = |o\rangle\langle o|.$$

Задача N29 Доказать, что комутатор двух проекционных операторов равен нулю.

Задача N30 Проверить, что для двух операторов самого общего вида $\hat{O}_1 = |a_i\rangle \zeta_{ij} \langle b_j|$ и $\hat{O}_2 = |c_i\rangle \chi_{ij} \langle d_j|$ выполняется условие $Sp\left(\hat{O}_1\hat{O}_1\right) = Sp\left(\hat{O}_2\hat{O}_1\right)$.

Задача N31 Доказать, что для смешанного состояния $Sp\left(\hat{\rho}^2\right) \leq 1$. Равенство достигается только для чистого состояния.

Задача N32 Показать, что в представлении Шредингера эволюция матрицы плотности описывается уравнением:

$$i\hbar \frac{\partial \hat{\rho}(t)}{\partial t} = \left[\hat{H}, \, \hat{\rho}(t) \right].$$

<u>Указание</u>: начните с уравнения матрицы плотности для чистого состояния, которое легко выводится из уравнения Шредингера. Затем вспомните, как матрица плотности смешанного состояния определяется через вероятности и проекторы.

Задача N33 Как уравнения для временной эволюции матрицы плотности будут выглядить в представлении Гейзенберга и представлении взаимодействия?