

MA211 - LISTA 14

Integrais de Superfícies

 \mathbf{E}

TEOREMA DE STOKES

4 de dezembro de 2016

EXERCÍCIOS RESOLVIDOS

- 1. ♦ ([1], seção 16.7) ([2], seção 9.4) Calcule a integral de superfície.
 - a) $\iint_S x^2 z^2 dS$, onde S é a parte do cone $z^2 = x^2 + y^2$ que está entre os planos z = 1 e z = 3.
 - b) $\iint\limits_{S} \frac{z}{\sqrt{1+4x^2+4y^2}}\,dS, \text{ onde } S \text{ \'e a parte do paraboloide } z=1-x^2-y^2$ que se encontra dentro do cilindro $x^2+y^2\leq 2y.$

Solução:

a) Temos que S é a porção do cone $z^2 = x^2 + y^2$ para $1 \le z \le 3$, ou equivalentemente, S é a parte da superfície $z = \sqrt{x^2 + y^2}$ sobre a região $D = \{(x,y) | 1 \le x^2 + y^2 \le 9\}$. Assim,

$$\iint_{S} x^{2}z^{2} dS = \iint_{D} x^{2}(x^{2} + y^{2}) \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1} dA$$

$$= \iint_{D} x^{2}(x^{2} + y^{2}) \sqrt{\left(\frac{x}{\sqrt{x^{2} + y^{2}}}\right)^{2} + \left(\frac{y}{\sqrt{x^{2} + y^{2}}}\right)^{2} + 1} dA$$

$$= \iint_{D} x^{2}(x^{2} + y^{2}) \sqrt{\frac{x^{2} + y^{2}}{x^{2} + y^{2}} + 1} dA = \iint_{D} \sqrt{2} x^{2}(x^{2} + y^{2}) dA$$

$$= \sqrt{2} \iint_{D} x^{2}(x^{2} + y^{2}) dA.$$

Por coordenadas polares, temos que

$$x = r \cos \theta$$
, $y = r \sin \theta$, $1 \le r \le 3$, $0 \le \theta \le 2\pi$ e $dA = r dr d\theta$.

Logo,

$$\iint_{S} x^{2}z^{2} dS = \sqrt{2} \int_{0}^{2\pi} \int_{1}^{3} (r^{2} \cos^{2} \theta)(r^{2}) r dr d\theta = \sqrt{2} \int_{0}^{2\pi} \cos^{2} \theta d\theta \cdot \int_{1}^{3} r^{5} dr$$
$$= \sqrt{2} \cdot (\theta) \Big|_{0}^{2\pi} \cdot \left(\frac{r^{6}}{6}\right) \Big|_{1}^{3} = \sqrt{2} \cdot \pi \cdot \frac{1}{6} \cdot (3^{6} - 1) = \frac{364\sqrt{2}}{3}\pi$$

b) Parametrizando a superfície S, temos as seguintes equações paramétricas:

$$x = u$$
, $y = v$ e $z = 1 - u^2 - v^2$.

Então,

$$\mathbf{r}(u, v) = u \,\mathbf{i} + v \,\mathbf{j} + (1 - u^2 - v^2) \,\mathbf{k}.$$

Logo,

$$f(\mathbf{r}(u,v)) = \frac{1 - u^2 - v^2}{\sqrt{1 - 4u^2 - 4v^2}},$$

$$\mathbf{r}_u = \mathbf{i} + 0\,\mathbf{j} - 2u\,\mathbf{k}$$

 \mathbf{e}

$$\mathbf{r}_v = 0\,\mathbf{i} + \mathbf{j} - 2v\,\mathbf{k}.$$

Temos que

$$\mathbf{r}_{u} \times \mathbf{r}v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & -2u \\ 0 & 1 & -2v \end{vmatrix}$$
$$= 2u \mathbf{i} + 2v \mathbf{j} + \mathbf{k}$$

implicando que

$$|\mathbf{r}_u \times \mathbf{r}_v| = \sqrt{(2u)^2 + (2v)^2 + 1^2} = \sqrt{1 + 4u^2 + 4v^2}.$$

Assim,

$$\iint_{S} \frac{z}{\sqrt{1+4x^2+4y^2}} dS = \iint_{D} f(\mathbf{r}(u.v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| du dv$$

$$= \iint_{D} \frac{1-u^2-v^2}{\sqrt{1-4u^2-4v^2}} \sqrt{1+4u^2+4v^2} du dv = \iint_{D} (1-u^2-v^2) du dv$$

Notemos que

$$D = \{(u, v) | u^2 + v^2 \le 2v\} = \{(u, v) | u^2 + (v - 1)^2 \le 1\}.$$

Em coordenadas polares teremos que

$$u = r \cos \theta$$
, $v - 1 = r \sin \theta$

$$du \, dv = \begin{vmatrix} \frac{\partial u}{\partial r} & \frac{\partial u}{\partial \theta} \\ \frac{\partial v}{\partial r} & \frac{\partial v}{\partial \theta} \end{vmatrix} dr \, d\theta = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} du \, dv = r \, dr \, d\theta.$$

Como $u^2 + u^2 = 2u \Rightarrow r^2 \cos^2 \theta + r^2 \sin^2 \theta = r \sin \theta \Rightarrow r = 2 \sin \theta$. Assim

$$0 < r < 2 \operatorname{sen} \theta$$
 e $0 < \theta < \pi$.

Então,

$$\iint_{S} \frac{z}{\sqrt{1+4x^{2}+4y^{2}}} dS = \int_{0}^{\pi} \int_{0}^{2 \sin \theta} (1-r^{2} \cos^{2} \theta - r^{2} \sin^{2} \theta) r dr d\theta$$

$$\int_{0}^{\pi} \int_{0}^{2 \sin \theta} (1-r^{2}) r dr d\theta = \int_{0}^{\pi} \int_{0}^{2 \sin \theta} (r-r^{3}) dr d\theta$$

$$= \int_{0}^{\pi} (2 \sin^{2} \theta - 4 \sin^{4} \theta) \Big|_{0}^{2 \sin \theta} d\theta = 2 \int_{0}^{\pi} \sin^{2} \theta d\theta - 4 \int_{0}^{\pi} \sin^{4} \theta$$

$$= 2 \cdot \left(\frac{\theta}{2} - \frac{1}{4} \sin 2\theta\right) \Big|_{0}^{\pi} - 4 \cdot \left(-\frac{1}{4} \sin^{3} \theta \cos \theta + \frac{3}{8} \theta - \frac{3}{16} \sin 2\theta\right) \Big|_{0}^{\pi}$$

$$= 2 \cdot \frac{\pi}{2} - 4 \cdot \left(\frac{3}{8} \pi\right) = -\frac{\pi}{2}.$$

2. ([1], seção 16.7) A temperatura em um ponto (x,y,z) em uma substância com condutividade K=6,5 é $u(x,y,z)=2y^2+2z^2$. Determine a taxa de transmissão de calor nessa substância para dentro da superfície cilíndrica $y^2+z^2=6,\ 0\leq x\leq 4$.

Solução: O fluxo de calor, com $u(x, y, z) = 2y^2 + 2z^2$, é dado por

$$\mathbf{F}(x, y, z) = -K \nabla u = -6, 5(0 \mathbf{i} + 4y \mathbf{j} + 4z \mathbf{k}) = 0 \mathbf{i} - 26y \mathbf{j} - 26z \mathbf{k}.$$

Temos que S é a superfície cilíndrica $y^2 + z^2 = 6$ e $0 \le x \le 4$. As equações paramétricas de S são:

$$x = x$$
, $y = \sqrt{6} \cos \theta$ e $z = \sqrt{6} \sin \theta$

onde $0 \le x \le 4$ e $0 \le \theta \le 2\pi$. Então,

$$\mathbf{r}(x, \theta) = x \mathbf{i} + \sqrt{6} \cos \theta \mathbf{j} + \sqrt{6} \sin \theta \mathbf{k}.$$

Como queremos o fluxo de calor para dentro de S devemos calcular

$$\iint\limits_{S} \mathbf{F} \cdot dS = \iint\limits_{D} \mathbf{F}(\mathbf{r}(x,\theta)) \cdot (\mathbf{r}_{x} \times \mathbf{r}_{\theta}) \, dA.$$

Então,

$$\mathbf{r}_x(x,\theta) = \mathbf{i} + 0\,\mathbf{j} + 0\,\mathbf{k}$$

e

$$\mathbf{r}_{\theta}(x,\theta) = 0\,\mathbf{i} - \sqrt{6}\,\sin\theta\,\mathbf{j} - \sqrt{6}\,\cos\theta\,\mathbf{k}.$$

Logo,

$$\mathbf{r}_{x} \times \mathbf{r}_{\theta} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 0 \\ 0 & -\sqrt{6} \sin \theta & -\sqrt{6} \cos \theta \end{vmatrix}$$
$$= 0 \mathbf{i} - \sqrt{6} \cos \theta \mathbf{j} - \sqrt{6} \sin \theta \mathbf{k},$$

$$\mathbf{F}(\mathbf{r}(x,\theta)) = (0\,\mathbf{i} - 26\sqrt{6}\,\cos\theta\,\mathbf{j} - 26\sqrt{6}\,\sin\theta\,\mathbf{k})$$

е

$$\mathbf{F}(\mathbf{r}(x,\theta))\cdot(\mathbf{r}_x\times\mathbf{r}_\theta) = (0\,\mathbf{i} - 26\sqrt{6}\,\cos\theta\,\mathbf{j} - 26\sqrt{6}\,\sin\theta\,\mathbf{k})\cdot(0\,\mathbf{i} - \sqrt{6}\,\cos\theta\,\mathbf{j} - \sqrt{6}\,\sin\theta\,\mathbf{k}) = 156$$

Assim, a taxa de fluxo de calor para dentro de S é:

$$\iint_{S} \mathbf{F} \cdot dS = \iint_{D} \mathbf{F}(\mathbf{r}(x,\theta)) \cdot (\mathbf{r}_{x} \times \mathbf{r}_{\theta}) dA = \iint_{D} 156 dA = 156 \iint_{D} 1 dA$$
$$= 156 \int_{0}^{2\pi} \int_{0}^{4} 1 dx d\theta = 156 \int_{0}^{2\pi} d\theta \cdot \int_{0}^{4} dx = 156 \cdot (\theta) \Big|_{0}^{2\pi} \cdot (x) \Big|_{0}^{4} = 156 \cdot 2\pi \cdot 4 = 1248 \pi.$$

3. ([1], seção 16.8) Use o Teorema de Stokes para calcular $\int_C \mathbf{F} \cdot d\mathbf{r}$, com $\mathbf{F}(x,y,z) = yz\,\mathbf{i} + 2xz\,\mathbf{j} + e^{xy}\,\mathbf{k}$ e C é a circunferência $x^2 + y^2 = 16$, z = 5, orientada no sentido anti-horário quando vista de cima.

Solução: Temos que

$$\operatorname{rot} \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz & 2xz & e^{xy} \end{vmatrix} \\
= \left(\frac{\partial (e^{xy})}{\partial y} - \frac{\partial (2xz)}{\partial z} \right) \mathbf{i} + \left(\frac{\partial (yz)}{\partial z} - \frac{\partial (e^{xy})}{\partial x} \right) \mathbf{j} + \left(\frac{\partial (2xz)}{\partial x} - \frac{\partial (yz)}{\partial y} \right) \mathbf{k} \\
= (xe^{xy} - 2x) \mathbf{i} - (ye^{xy} - y) \mathbf{j} + z \mathbf{k}.$$

Tomemos S como o disco $x^2+y^2\leq 16$ no plano z=5, logo a fronteira de S é C. Como C é orientada no sentido anti-horário quando vista de cima, orientamos S para cima. Então $\mathbf{n}=\mathbf{k}$ e

$$rot \mathbf{F} \cdot \mathbf{k} = z.$$

Portanto,

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \operatorname{rot} \mathbf{F} \cdot dS = \iint_{S} \operatorname{rot} \mathbf{F} \cdot \mathbf{n} \, dS$$
$$= \iint_{S} z \, dS = \iint_{S} 5 \, dS = 5 \iint_{S} 1 \, dS = A(S) = 5 \cdot \pi \cdot (4)^{2} = 80 \, \pi.$$

4. ([1], seção 16.8) Se S é uma esfera e \mathbf{F} satisfaz as hipóteses do Teorema de Stokes, mostre que $\iint_S \operatorname{rot} \mathbf{F} \cdot d\mathbf{S} = 0$.

Solução: Suponha que S seja a esfera de raio a centrada na origem. Considere H_1 e H_2 os hemisférios superior e inferior de S, respectivamente. Então,

$$\iint_{S} \operatorname{rot} \mathbf{F} \cdot dS = \iint_{H_{1}} \operatorname{rot} \mathbf{F} \cdot dS + \iint_{H_{2}} \operatorname{rot} \mathbf{F} \cdot dS = \underbrace{\oint_{C_{1}} \mathbf{F} \cdot d\mathbf{r} + \oint_{C_{2}} \mathbf{F} \cdot d\mathbf{r}}_{\text{Teorema de Stokes}}.$$

Mas C_1 é a curva $x^2+y^2=a^2$ orientada no sentido anti-horário, enquanto C_2 é a mesma curva só que orientada no sentido horário. Assim,

$$\oint_{C_2} \mathbf{F} \cdot d\mathbf{r} = -\oint_{C_1} \mathbf{F} \cdot d\mathbf{r}.$$

Portanto,

$$\iint_{C} \operatorname{rot} \mathbf{F} \cdot dS = \oint_{C_{1}} \mathbf{F} \cdot d\mathbf{r} + \oint_{C_{2}} \mathbf{F} \cdot d\mathbf{r} = \oint_{C_{1}} \mathbf{F} \cdot d\mathbf{r} - \oint_{C_{1}} \mathbf{F} \cdot d\mathbf{r} = 0.$$

EXERCÍCIOS PROPOSTOS

- 5. ♦ ([1], seção 16.7) ([2], seção 9.4) Calcule a integral de superfície.
 - a) $\iint x^2yz\,dS$, onde S é a parte do plano z=1+2x+3y que está acima do retângulo $[0,3] \times [0,2]$.
 - **b)** $\iint yz \, dS$, onde S é a parte do plano x + y + z = 1 que está no primeiro
 - c) \bigstar $\iint yz \, dS$, onde S é a superfície com equações paramétricas $x = u^2$, $y = u \operatorname{sen} v, z = u \operatorname{cos} v, 0 \le u \le 1, 0 \le v \le \pi/2.$
 - d) $\iint\limits_{S} \sqrt{1+x^2+y^2}\,dS, \text{ onde } S \text{ \'e o helicoide com equação vetorial}$ $\mathbf{r}(u,v) = u\cos v\,\mathbf{i} + u\sin v\,\mathbf{j} + v\,\mathbf{k}, \, 0 \leq u \leq 1, \, 0 \leq v \leq \pi.$ e) $\iint\limits_{S} z\,dS, \text{ onde } S \text{ \'e a superf\'icie } x = y + 2z^2, \, 0 \leq y \leq 1, \, 0 \leq z \leq 1.$

 - f) $\iint y \, dS$, onde S é a parte do paraboloide $y = x^2 + z^2$ que está dentro do cilindro $x^2 + z^2 = 4$.
 - g) $\iint_S y^2 dS$, onde S é a parte da esfera $x^2 + y^2 + z^2 = 4$ que está dentro do cilindro $x^2 + y^2 = 1$ e acima do plano xy.
 - h) $\iint x \, dS$, onde S é a superfície com equações paramétricas x = u, y = v, $z = u^2 + v, \ 0 \le u \le 1, \ u^2 \le v \le 1.$
 - i) $\iint xy \, dS$, onde S é a superfície com equações paramétricas x = u v, $y = u + v, z = 2u + v + 1, 0 \le u \le 1, 0 \le v \le u.$
 - j) $\iint_S y \, dS$, onde S é a superfície com equações paramétricas $x=u,\,y=v,$ $z = 1 - u^2$, 0 < u < 1, $0 < v < \sqrt{u}$.

- 6. ([4], seção 18.5) Calcule $\iint\limits_{S}g(x,y,z)\,dS.$
 - a) $g(x,y,z) = x^2$; S é o hemisfério superior de $x^2 + y^2 + z^2 = a^2$.
 - **b)** $g(x,y,z)=x^2+y^2+z^2; S$ é a parte do plano z=y+4 interior ao cilindro $x^2+y^2=4.$
 - c) g(x, y, z) = x + y; S é parte do primeiro octante do plano 2x + 3y + z = 6.
 - d) $g(x,y,z)=(x^2+y^2+z^2)^{1/2};$ S é a porção do paraboloide $2z=x^2+y^2$ interior ao cilindro $x^2+y^2=2y.$
- 7. ([3], seção 13.5) Integre g(x, y, z) = x + y + z sobre a superfície do cubo cortado do primeiro octante pelos planos x = a, y = a e z = a.
- 8. ([3], seção 13.5) Integre g(x, y, z) = xyz sobre a superfície do sólido retangular cortado do primeiro octante pelos planos x = a, y = b e z = c.
- 9. ([3], seção 13.5) Integre g(x,y,z)=x+y+z sobre a porção do plano 2x+2y+z=2 que está no primeiro octante.
- 10. \blacklozenge ([1], seção 16.7) ([4], seção 18.5) Calcule a integral de superfície $\iint_S \mathbf{F} \cdot d\mathbf{S}$ para o campo vetorial \mathbf{F} e superfície orientada S. Em outras palavras, determine o fluxo de \mathbf{F} através de S. Para superfícies fechadas, use a orientação positiva (para fora).
 - a) $\mathbf{F}(x,y,z) = xy\,\mathbf{i} + yz\,\mathbf{j} + zx\,\mathbf{k}$, S é a parte do paraboloide $z = 4 x^2 y^2$ que está acima do quadrado $0 \le x \le 1$, $0 \le y \le 1$, com orientação para cima.
 - **b)** $\mathbf{F}(x,y,z) = xze^y \mathbf{i} xze^y \mathbf{j} + z \mathbf{k}$, S é a parte do plano x+y+z=1 no primeiro octante, com orientação para baixo.
 - c) $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$, S é a esfera $x^2 + y^2 + z^2 = 9$.
 - **d)** \bigstar $\mathbf{F}(x,y,z) = y\mathbf{j} z\mathbf{k}$, S é formada pelo paraboloide $y = x^2 + z^2$, $0 \le y \le 1$ e pelo círculo $x^2 + z^2 \le 1$, y = 1.
 - e) $\mathbf{F}(x, y, z) = x \mathbf{i} + 2y \mathbf{j} + 3z \mathbf{k}$, $S \in \mathcal{C}$ o cubo com vértices $(\pm 1, \pm 1, \pm 1)$.
 - f) $\mathbf{F}(x,y,z) = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$, S é a fronteira do semicilindro sólido $0 \le z \le \sqrt{1 y^2}$, $0 \le x \le 2$.
 - g) $\mathbf{F}(x,y,z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, S é a parte no primeiro octante do plano 2x + 3y + z = 6.
 - h) $\mathbf{F}(x,y,z) = (x^2+z)\mathbf{i} + y^2z\mathbf{j} + (x^2+y^2+z)\mathbf{k}$, S é a parte no primeiro octante do paraboloide $z=x^2+y^2$ interceptada pelo plano z=4.
 - i) $\mathbf{F}(x, y, z) = (x + y)\mathbf{i} + z\mathbf{j} + xz\mathbf{k}$, S é a superfície do cubo de vértices $(\pm 1, \pm 1, \pm 1)$.
 - **j**) $\mathbf{F}(x,y,z) = x\mathbf{i} y\mathbf{j} + z\mathbf{k}$, S é a superfície do sólido delimitado pelos gráficos de $z = x^2 + y^2$ e z = 4.

- 11. \blacklozenge ([4], seção 18.5) Ache $\iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \, dS$ se
 \mathbf{n} é uma normal unitária superior de S
 - a) $\mathbf{F} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$; S é o hemisfério superior de $x^2 + y^2 + z^2 = a^2$.
 - b) $\mathbf{F} = x \mathbf{i} y \mathbf{j}$; S é a parte no primeiro octante da esfera $x^2 + y^2 + z^2 = a^2$.
 - c) $\mathbf{F} = 2\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$; S é a parte do cone $z = (x^2 + y^2)^{1/2}$ interior ao cilindro $x^2 + y^2 = 1$.
 - d) $\mathbf{F} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$; S é a parte do plano 3x + 2y + z = 12 interceptada pelos planos x = 0, y = 0, x = 1 e y = 2.
- 12. ([3], seção 13.5) Encontre o fluxo do campo ${\bf F}$ ao longo da porção da superfície dada no sentido especificado.
 - a) $\bigstar \mathbf{F}(x, y, z) = -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$; S é a superfície retangular $z = 0, 0 \le x \le 2$, $0 \le y \le 3$, sentido \mathbf{k} .
 - **b)** $\mathbf{F}(x,y,z)=yx^2\mathbf{i}-2\mathbf{j}+xz\,\mathbf{k};\ S$ é a superfície retangular y=0, $-1\leq x\leq 2,\ 2\leq z\leq 7,$ sentido $-\mathbf{j}.$
- 13. ([3], seção 13.5) Encontre o fluxo exterior do campo $\mathbf{F}(x,y,z) = z^2 \mathbf{i} + x \mathbf{j} 3z \mathbf{k}$ através da superfície cortada do cilindro parabólico $z = 4 y^2$ pelos planos x = 0, x = 1 e z = 0.
- 14. ([3], seção 13.5) Encontre o fluxo exterior do campo $\mathbf{F} = 2xy\,\mathbf{i} + 2yz\,\mathbf{j} + 2xz\,\mathbf{k}$ ao longo da superfície do cubo cortado do primeiro octante pelos planos x = a, y = a e z = a.
- 15. ([2], seção 10.1) Seja S a superfície $z=f(x,y),\ (x,y)\in K$, de classe C^1 num aberto contendo K. (Observação: trata-se da superfície dada por x=u, y=v e z=f(u,v)). Seja ${\bf n}$ a normal a S com componente z>0 e seja ${\bf F}=P\,{\bf i}+Q\,{\bf j}+R\,{\bf k}$ um campo vetorial contínuo na imagem de S. Mostre que

$$\iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint\limits_{K} \left[-P \frac{\partial f}{\partial x}(x, y) - Q \frac{\partial f}{\partial y} + R \right] dx dy,$$

onde $P,\,Q$ e R são calculadas em (x,y,f(x,y)).

16. ([1], seção 16.7) Determine uma fórmula para $\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S}$ semelhante à Fórmula

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{D} \left(-P \frac{\partial f}{\partial x} - Q \frac{\partial f}{\partial y} + R \right) dA$$

para o caso onde S é dada por y = h(x, z) e \mathbf{n} é o vetor normal unitário que aponta para a esquerda.

17. ([1], seção 16.7) Um fluido tem densidade $870\,kg/m^3$ e esco
a com velocidade

$$v = z\,\mathbf{i} + y^2\,\mathbf{j} + x^2\,\mathbf{k},$$

onde x, y e z são medidos em metros e as componentes de v em metros por segundo. Encontre a vazão para fora do cilindro $x^2+y^2=4, \ 0\leq z\leq 1.$

- 18. ([1], seção 16.7) A água do mar tem densidade $1025\,kg/m^3$ e escoa em um campo de velocidade $\mathbf{v}=y\,\mathbf{i}+x\,\mathbf{j}$, onde $x,\,y$ e z são medidos em metros e as componentes de \mathbf{v} em metros por segundo. Encontre a vazão para fora do hemisfério $x^2+y^2+z^2=9,\,z\geq 0$.
- 19. ([1], seção 16.7) Use a Lei de Gauss para achar a carga contida no hemisfério sólido $x^2 + y^2 + z^2 \le a^2$, $z \ge 0$, se o campo elétrico for $\mathbf{E}(x,y,z) = x\,\mathbf{i} + y\,\mathbf{j} + 2z\,\mathbf{k}$.
- 20. ([1], seção 16.7) Seja \mathbf{F} um campo inverso do quadrado, ou seja, $\mathbf{F}(r) = cr/|r|^3$ para alguma constante c, onde $r = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$. Mostre que o fluxo de \mathbf{F} por uma esfera S com centro na origem é independente do raio de S.
- 21. ([2], seção 10.1) Considere um escoamento com velocidade $\mathbf{v}(x,y,z)$ e densidade $\rho(x,y,z)$, tal que $\mathbf{u}=\rho\mathbf{v}$ seja dado por $\mathbf{u}=x\,\mathbf{i}+y\,\mathbf{j}-2z\,\mathbf{k}$. Seja S a superfície $x^2+y^2+z^2=4,\ z\geq\sqrt{2}$, e seja \mathbf{n} a normal com componente z>0. Calcule o fluxo de \mathbf{u} através de S. (Observe que, neste caso, o fluxo tem dimensões MT^{-1} (massa por unidade de tempo).)
- 22. ([2], seção 10.1) Seja **u** o campo do Exercício 21 e seja $B=\{(x,y,z)\in\mathbb{R}^3|\,x^2+y^2+z^2\leq 4$ e $z\geq \sqrt{2}\}.$ Mostre que

$$\iint\limits_{S} \mathbf{u} \cdot \mathbf{n} \, dS = \iiint\limits_{B} \operatorname{div} \mathbf{u} \, dx dy dz,$$

onde S é a fronteira de B e ${\bf n}$ a normal unitária apontado para fora de B. Interprete.

- 23. ([2], seção 10.1) Seja **u** o campo do Exercício 21 e seja B a esfera $x^2+y^2+z^2 \le 4$. Calcule $\iint_S \mathbf{u} \cdot \mathbf{n} \, dS$, onde S é a fronteira de B, com normal \mathbf{n} apontado para fora de B. (Sugestão: utilize coordenadas esféricas.)
- 24. \blacklozenge ([1], seção 16.8) Dados um hemisfério H e uma parte P de um paraboloide, suponha que \mathbf{F} seja um campo vetorial sobre \mathbb{R}^3 cujas componentes tenham derivadas parciais contínuas. Explique por que

$$\iint\limits_{H} \operatorname{rot} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{P} \operatorname{rot} \mathbf{F} \cdot d\mathbf{S}.$$

- 25. \blacklozenge ([1], seção 16.8) (Provas, 2014,2007) Use o Teorema de Stokes para calcular $\iint\limits_S {\rm rot}\, {\bf F}\cdot d{\bf S}.$
 - a) $\mathbf{F}(x,y,z) = x^2 z^2 \mathbf{i} + y^2 z^2 \mathbf{j} + xyz \mathbf{k}$, S é a parte do paraboloide $z = x^2 + y^2$ que está dentro do cilindro $x^2 + y^2 = 4$, orientado para cima.
 - **b)** $\mathbf{F}(x,y,z) = xyz\,\mathbf{i} + xy\,\mathbf{j} + x^2yz\,\mathbf{k}$, S é formada pelo topo e pelos quatro lados (mas não pelo fundo) do cubo com vértices $(\pm 1, \pm 1, \pm 1)$, com orientação para fora.
 - c) $\star \mathbf{F}(x,y,z) = x \mathbf{i} z \mathbf{j} + y \mathbf{k}$, S é a parte do plano x + z = 1 dentro do cilindro $x^2 + y^2 = 1$, com orientação para cima.
 - **d)** $\mathbf{F}(x,y,z) = (e^{xy}\cos z, (x^2+1)z, -y), S$ é o hemisfério $x^2 + y^2 + z^2 = 1, x \ge 0$, orientado na direção positiva do eixo x.
- 26. \blacklozenge ([1], seção 16.8) (Provas, 2014,2006) Use o Teorema de Stokes para calcular $\int_C \mathbf{F} \cdot d\mathbf{r}$. Em cada caso, C é orientada no sentido anti-horário quando vista de cima.
 - a) $\mathbf{F}(x,y,z) = (x+y^2)\mathbf{i} + (y+z^2)\mathbf{j} + (z+x^2)\mathbf{k}$, C é o triângulo com vértices (1,0,0), (0,1,0), (0,0,1).
 - **b)** $\mathbf{F}(x, y, z) = xy \, \mathbf{i} + 2z \, \mathbf{j} + 3y \, \mathbf{k}$, C é a curva de interseção do plano x + z = 5 com o cilindro $x^2 + y^2 = 9$.
 - c) $\mathbf{F}(x,y,z) = (x^2 y)\mathbf{i} + 4z\mathbf{j} + x^2\mathbf{k}$, C é a curva de interseção do plano z = 2 com o cone $z = \sqrt{x^2 + y^2}$.
 - **d)** $\mathbf{F}(x,y,z) = x^2 z \mathbf{i} + xy^2 \mathbf{j} + z^2 \mathbf{k}$, C é a curva de interseção do plano x+y+z=1 com o cilindro $x^2+y^2=9$.
 - e) \bigstar $\mathbf{F}(x,y,z)=(y+z,-z,y), \ C$ é a curva obtida como interseção do cilindro $x^2+y^2=2y$ com o plano y=z.
 - f) $\mathbf{F}(x,y,z)=(2xyz-2y,x^2+2x,x^2+2y),$ C é a circunferência $y^2+z^2=1,$ x=2.
- 27. ([1], seção 16.8) Verifique que o Teorema de Stokes é verdadeiro para o campo vetorial ${\bf F}$ dado e a superfície S.
 - a) $\mathbf{F}(x,y,z)=y^2\mathbf{i}+x\mathbf{j}+z^2\mathbf{k}$, S é a parte do paraboloide $z=x^2+y^2$ que está acima do plano z=1, orientado para cima.
 - **b)** $\mathbf{F}(x,y,z)=y\,\mathbf{i}+z\,\mathbf{j}+x\,\mathbf{k},\ S$ é o hemisfério $x^2+y^2+z^2=1,\ y\geq 0,$ orientado na direção positiva do eixo y.
- 28. ([1], seção 16.8) \blacklozenge Seja C uma curva fechada, simples e lisa que está no plano x+y+z=1. Mostre que a integral de linha

$$\int_C z \, dx - 2x \, dy + 3y \, dz$$

depende apenas da área da região englobada por C e não da forma de C ou de sua posição no plano.

29. ([1], seção 16.8) Uma partícula se move ao longo de segmentos de reta da origem aos pontos (1,0,0), (1,2,1), (0,2,1) e de volta para a origem sob a influência do campo de forças

$$\mathbf{F}(x,y,z) = z^2 \mathbf{i} + 2xy \mathbf{j} + 4y^2 \mathbf{k}.$$

Encontre o trabalho feito.

30. ([1], seção 16.8) Suponha que S e C satisfaçam as hipóteses do Teorema de Stokes e f e g tenham derivadas parciais de segunda ordem contínuas. Demonstre que:

a)
$$\int_C (f \nabla g) \cdot d\mathbf{r} = \iint_S (\nabla f \times \nabla g) \cdot d\mathbf{S}$$

b)
$$\int_C (f\nabla f) \cdot d\mathbf{r} = 0$$

c)
$$\int_C (f\nabla g + g\nabla f) \cdot d\mathbf{r} = 0$$

- 31. ([2], seção 11.1) Utilizando o Teorema de Stokes, transforme a integral \iint_S rot $\mathbf{F} \cdot \mathbf{n} \, dS$ numa integral de linha e calcule.
 - a) $\mathbf{F}(x,y,z) = y \mathbf{k}$, S a superfície parametrizada por $\mathbf{r}(u,v) = (u,v,u^2+v^2)$, $u^2+v^2 < 1$, sendo \mathbf{n} a normal apontando para cima.
 - **b)** $\mathbf{F}(x,y,z) = y\,\mathbf{i}-x^2\,\mathbf{j}+5\,\mathbf{k}$, S a superfície parametrizada por $\mathbf{r}(u,v) = (u,v,1-u^2), \ u \geq 0, \ v \geq 0, \ u+v \leq 1$, sendo \mathbf{n} a normal apontando para cima.
 - c) $\mathbf{F}(x,y,z) = y\mathbf{i} + x^2\mathbf{j} + z\mathbf{k}$, S a superfície parametrizada por $\mathbf{r}(u,v) = (u,v,2u+v+1), u \geq 0, u+v \leq 2$, sendo \mathbf{n} a normal apontando para baixo.
 - d) $\mathbf{F}(x, y, z) = y \mathbf{i} + x^2 \mathbf{j} + z \mathbf{k}$, S a superfície $x^2 + y^2 = 1$, $0 \le z \le 1$ e $y \ge 0$, sendo \mathbf{n} a normal com componente $y \ge 0$.
 - e) $\mathbf{F}(x,y,z)=x\,\mathbf{j},\ S$ a superfície $\{(x,y,z)\in\mathbb{R}^3; 0\leq z\leq 1, x^2+y^2=1, x\geq 0, y\geq 0\}$, sendo \mathbf{n} a normal componente x positiva.
 - f) $\mathbf{F}(x,y,z) = y\mathbf{i}$, S a superfície $z = x^2 + y^2$ com $z \le 1$, sendo \mathbf{n} a normal com componente z positiva.
 - g) $\mathbf{F}(x,y,z) = y\mathbf{i}$, S a superfície $x^2 + y^2 + z^2 = 2$, $x^2 + y^2 \le 1$ e $z \ge 0$, sendo \mathbf{n} a normal apontando para cima.
 - h) $\mathbf{F}(x,y,z) = -y\,\mathbf{i} + x\,\mathbf{j} + x^2\,\mathbf{k}$, S a superfície $x^2 + y^2 + z^2 = 4$, $\sqrt{2} \le z \le \sqrt{3}$ e $y \ge 0$, sendo \mathbf{n} a normal apontando para cima.
 - i) $\mathbf{F}(x,y,z) = -y^2 \mathbf{i} + x^2 \mathbf{j} + z^2 \mathbf{k}$, S a superfície $x^2 + \frac{y^2}{4} + z^2 = 2$, $z \ge 1$, sendo \mathbf{n} a normal que aponta para cima.
 - **j**) $\mathbf{F}(x,y,z) = y\,\mathbf{i} + x\,\mathbf{j} + xz\,\mathbf{k}$, S a superfície z = x + y + 2 e $x^2 + \frac{y^2}{4} \le 1$, sendo **n** a normal que aponta para baixo.

- l) $\mathbf{F}(x,y,z) = \frac{1}{x^2 + y^2 + z^2}(-y\,\mathbf{i} + x\,\mathbf{j} + z^2\,\mathbf{k})$, S a superfície $x^2 + y^2 + z^2 = 1$, sendo \mathbf{n} a normal apontando para fora da esfera.
- 32. (Prova, 2008) Calcule a integral de linha

$$\oint_C (y^2 + z^2) \, dx + (z^2 + x^3) \, dy + (y^2 + x^3) \, dz,$$

em que C é a curva de interseção do cone $y=\sqrt{x^2+z^2}$ com a esfera $x^2+y^2+z^2=2$, orientada no sentido horário quando C é vista da origem.

RESPOSTAS DOS EXERCÍCIOS PROPOSTOS

- 5. **a)** $171\sqrt{14}$.
 - **b**) $\frac{\sqrt{3}}{24}$.
 - c) $\frac{5\sqrt{5}}{48} + \frac{1}{240}$.
 - d) $\frac{4\pi}{3}$.
 - e) $\frac{13\sqrt{2}}{12}$.
 - $\mathbf{f)} \ \frac{\pi(391\sqrt{17}+1)}{60}.$
 - $\mathbf{g)} \ \pi \left(\frac{32}{3} 6\sqrt{3} \right).$
 - h) $\frac{\sqrt{2}}{10}(3\sqrt{3}-2)$.
 - **j**) $\frac{(5\sqrt{5}-1)}{24}$.
- 6. **a**) $\frac{2\pi a^4}{3}$.
 - **b**) $76\pi\sqrt{2}$.
 - c) $5\sqrt{14}$.
 - d) $\frac{5\pi}{2}$.
- 7. $9a^3$.
- $8. \ \frac{abc(ab+ac+bc)}{4}.$
- 9. 2.
- 10. **a)** $\frac{713}{180}$.
 - **b**) $-\frac{1}{6}$.
 - c) 108π .
 - **d**) 0.
 - e) 48.
 - **f**) $2\pi + \frac{8}{3}$.
 - **g)** 18.
 - **h)** $4\pi \frac{320}{7}$.
 - i) 8.

- j) 8π .
- 11. **a)** $2\pi a^3$.
 - **b**) 0.
 - **c**) 3π .
 - **d**) 24.
- 12. **a)** 18.
 - **b**) 30.
- 13. -32.
- 14. $3\pi a^4$.
- 15. Veja a subseção "Integrais de superfície de campos vetoriais" da seção 16.7 do livro do Stewart.

16.
$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{D} \left(P - Q \frac{\partial k}{\partial y} - R \frac{\partial k}{\partial z} \right) dA.$$

- 17. 0 kg/s.
- 18. 0 kg/s.
- 19. $\frac{8\pi a^3 \epsilon_0}{3}$.

20.
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = 4\pi c.$$

21. $-4\pi\sqrt{2}$.

22.
$$\iiint_{B} \operatorname{div} \mathbf{u} \, dx dy dz = -4\pi\sqrt{2}.$$

- 23. 0.
- 24. Note que H e P satisfazem as hipóteses do Teorema de Stokes. Logo,

$$\iint\limits_{H} \operatorname{rot} \mathbf{F} \cdot d\mathbf{S} = \int\limits_{C} \mathbf{F} \cdot d\mathbf{r} = \iint\limits_{P} \operatorname{rot} \mathbf{F} \cdot d\mathbf{S},$$

onde C é a curva de fronteira.

- 25. **a)** 0.
 - **b**) 0.
 - c) 2π .
 - **d**) -2π .
- 26. **a)** 1.

- **b)** 9π .
- c) 4π .
- **d**) $\frac{81\pi}{2}$.
- e) $\frac{4\pi}{3}$.
- **f**) 2π .
- 27. a) $\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \operatorname{rot} \mathbf{F} \cdot d\mathbf{S} = \pi$.
 - b) $\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \operatorname{rot} \mathbf{F} \cdot d\mathbf{S} = -\pi$.
- 28. $\int_C z \, dx 2x \, dy + 3y \, dz = \frac{2}{\sqrt{3}} \times \text{(\'Area da região englobada por } C\text{)}.$
- 29. 3.
- 30. a) Note que $rot(f\nabla g) = \nabla f \times \nabla g$.
 - **b)** Note que $rot(f\nabla f) = \mathbf{0}$.
 - c) Note que $rot(f\nabla g + g\nabla f) = 0$.
- 31. **a)** 0.
 - **b**) $-\frac{5}{6}$.
 - **c**) $-\frac{2}{3}$.
 - **d**) 0.
 - **e**) 0.
 - f) $-\pi$.
 - $\mathbf{g}) -\pi.$
 - h) π.
 - **i)** 0.
 - **j**) 4π .
 - **1)** 0.
- 32. $-\frac{3\pi}{4}$.

Referências

- [1] J. Stewart. *Cálculo*, Volume 2, 6^a Edição, São Paulo, Pioneira/ Thomson Learning.
- [2] H. L. Guidorizzi. Um Curso de C'alculo, Volume 3, 5^a Edição, 2002, Rio de Janeiro.
- [3] G. B. Thomas. $C\'{a}lculo$, Volume 2, 10^a edição, São Paulo, Addison-Wesley/Pearson,2002.
- [4] E. W. Swokowski. *Cálculo com Geometria Analítica*, Volume 2, 2^a Edição, Markron Books, 1995.