Homework 3

1. Filling in the blanks.

- (1) If the probability for the success in a Bernoulli trial is p, and the probability that the success appears at least one time in three independent repeated trials is $\frac{19}{27}$, then p =_____?
- (2) Assume that random *X* has the following probability distribution $X \sim \begin{bmatrix} 0 & 1 & 3 \\ 0.5 & 0.3 & 0.2 \end{bmatrix}$, then $P(X \le 2) =$ _____.
- (3) Assume that random variable *X* has probability distribution $X \sim \begin{bmatrix} 1 & 2 & 3 \\ 0.2 & 0.3 & 0.5 \end{bmatrix}$, then its accumulative distribution function F(X) =_____.
- (4) Suppose the accumulative distribution function of a random variable X is given as $F(x) = \begin{cases} 0, & x < -1 \\ 0.4, & -1 \le x < 1 \\ 0.8, & 1 \le x < 3 \end{cases}$, then the probability distribution of X is ______.
- (5) Let $X \sim b(2, p)$, $Y \sim b(3, p)$. If $P(X \ge 1) = \frac{5}{9}$, then $P(Y \ge 1) = \underline{\hspace{1cm}}$.
- (6) Suppose that a random variable *X* obeys a Poisson distribution with parameter $\lambda > 0$. If P(X = 1) = P(X = 2), then $\lambda = \underline{\hspace{1cm}}$.

2. Single Choice.

(1) Let $F_1(x)$ and $F_2(x)$ be the corresponding cumulative functions of two random variables. If $F(x) = aF_1(x) - bF_2(x)$ is a cumulative function of another random variable, then the values of a and b can be possibly selected as ().

A.
$$a = 0.6, b = -0.4$$
; B. $a = b = \frac{2}{3}$; C. $a = -0.5, b = 1.5$; D. $a = 0.5, b = -1.5$

3. Calculations.

- 1. Suppose someone has only 6 bullets and shoots a target. Assume the probability that the target is hit for each shooting is *p*, and all the possible shootings are independent. The shooting will stop if the target is hit. Let *X* be the shooting times. Find the probability distribution of *X*.
- 2. Suppose a box contains 5 cards, which are numbered 1, 2, 3, 4 and 5. Now, select 3 of them randomly. Let *X* be the max number of these three labelled numbers. Find the probability distribution of *X*.
- 3. Suppose that a random variable *X* obeys the probability distribution $P(X = k) = \frac{a}{N}$, where $k = 1, 2, \dots, N$. Find the value of *a*.

I