Scribed by: Kyle Dituro

Definition 1. A subset I of \mathbb{R} is said to be convex if for any $a, b \in I$ with a < b, we have $[a, b] \subseteq I$.

Example 1. \emptyset , $\{a\}$, (a,b), (a,b], [a,b), [a,b], $[a,\infty)$, (a,∞) , $(-\infty,a)$, $(-\infty,a]$, (∞,∞) .

Theorem 1. A subspace I of \mathbb{R} is connected if and only if it is convex.

Proof. Suppose I is connected. Suppose for the sake of contradiction that I is not convex. Then $\exists a, b \in I$, a < b such that $\exists z$ with a < z < b and $z \notin I$.

Consider $U = (-\infty, z) \cap I$, $V = (z, \infty) \cap I$.

U, V are clearly disjoint and nonempty (since $a \in U$ $b \in V$ by construction), open, and have union I.

This is therefore a separation, and a contradiction. So I is convex.

Now suppose I is convex. Suppose for contradiction that U, V is a separation of I.

Let $a \in U, b \in V$. Now without loss of generality, assume that a < b. Consider the interval [a, b].

Let

a

$$U_0 = U \cap [a, b] \quad V_0 = V \cap [a, b].$$

This is a separation. U_0, V_0 are disjoint, open in [a, b], nonempty since $a \in U$, $b \in V$, and their union is all of [a, b].

Let
$$c = \sup U_0$$

(Case 1):

$$U_0$$
 V_0
 \vdots X Y_0
 \vdots Y_0
 \vdots Y_0

Since U_0 is open in [a, b] and c < b and $c \in U_0$, there is some $d \in (a, b)$ such that $[c, d) \subseteq U_0$. But then $\frac{c+d}{2} \in U_0$ and $c < \frac{c+d}{2}$, so c is not an upper bound on U_0 , a contradiction.

(Case 2): $(c \in V_0)$ Then c = b or a < c < b.

Since V_0 is open in [a, b] and $a < c, c \in V_0$, there is some $e \in (a, b)$ such that $(e, c] \subseteq V_0$. Then e is an upper bound on U_0 , but this contradicts that c is the least upper bound on U_x . Now $c \notin U_0$ and $c \notin V_0$, so $[a, b] \neq U_0 \cup V_0$, and thus I is connected.

Theorem 2 (Intermediate Value Theorem). Let $f: X \to \mathbb{R}$ be a continuous function where X is a connected topological space. Then if $a, b \in X$ and y is between f(a) and f(b), then there exists $c \in X$ such that f(c) = y.

Proof. Since X is connected and f is continuous, f(X) is connected. By the previous theorem, f(X) is convex, so $y \in f(X)$. Then by the definition of the image, $\exists c \in X$ such that f(c) = y.

Now we will give yet another characterization of continuity. One that is perhaps a bit stronger than our prior ones, but should aide our intuition.

Definition 2. Let X be a topological space, $p, q \in X$. A **path** from p to q in X is a continuous function $f: [a, b] \to X$ such that f(a) = p, f(b) = q.

We say that X is **path connected** if for any $p, q \in X$ there is a path in X from p to q.

Proposition 1. If X is path connected, then X is connected.

Proof. Suppose for the sake of contradiction that U, V is a separation of X. Let $p \in U, q \in V$. Since X is path connected, there is a continuous function $f : [a, b] \to X$. Then f(a) = p and q = f(b). Then f([a, b]) is connected since [a, b] is connected.

Then
$$f([a,b]) \subseteq U$$
 or $f([a,b]) \subseteq V$, but this is impossible since $p \notin V$, $q \notin U$.

Example 2. The unit ball B in \mathbb{R}^n is connected, since it is path connected.

If
$$\mathbf{p}, \mathbf{q} \in B$$
, then $f: [0,1] \to B$ will be a path from \mathbf{p} to \mathbf{q} .

Example 3 (Connected $\not\Rightarrow$ Path connected).

Let $S = \left\{ (t, \sin\left(\frac{1}{t}\right) \mid 0 < t \le 1) \right\}.$

This is connected, since it is the image of a connected space. Take the closure:

$$\overline{S} = \{0\} \times [-1,1] \cup S$$

Fact. Closures of connected subspaces are also connected.

Let $\mathbf{p} = (0,0), q = (1,\sin(1)).$

Suppose $f:[0,1]\to \overline{S}$ is a path from **p** to **q**.

notice $0 \times [-1, 1]$ is a closed set, so its preimage under f is a closed set, with some max. Reparameterizing, we may assume this max is 0.

By the intermediate value theorem, for each integer n>0, there is some t_n such that $f(t_n)=\left(\frac{1}{2\pi n+\frac{\pi}{2}}\cdot\sin\left(2\pi n+\frac{\pi}{2}\right)\right)=\left(\frac{1}{2\pi},1\right)$. Then

$$\lim_{n \to \infty} f(t_n) = (0, 1) \neq f(0) = (0, 0)$$
$$\lim_{n \to \infty} t_n = 0$$