Last time

- Chebyshev expansions
- How to choose number of interpolation points
- Differentiation
- Recurrence relation for Chebyshev polynomials

Goals for today

- Recurrence relation for Chebyshev polynomials
- Clenshaw—Curtis integration
- Aliasing

 \blacksquare 3-term recurrence relation relating T_k to T_{k-1} and T_{k_2} :

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$

 \blacksquare 3-term recurrence relation relating T_k to T_{k-1} and T_{k_2} :

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x) \\$$

 \blacksquare Allows us to calculate $T_k(x)$ explicitly (using $T_0=1$ and $T_1(x)=x$)

 \blacksquare 3-term recurrence relation relating T_k to T_{k-1} and T_{k_2} :

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x) \\$$

- \blacksquare Allows us to calculate $T_k(x)$ explicitly (using $T_0=1$ and $T_1(x)=x$)
- Where does this recurrence relation come from?

 $\blacksquare \ \text{Consider} \ xT_k(x)$

- $\ \ \, \operatorname{Consider}\,xT_k(x)$
- This is a polynomial of degree k+1, so

$$xT_k(x) = \sum_{j=0}^{k+1} \alpha_{k,j} T_j(x)$$

- $\blacksquare \ \text{Consider} \ x T_k(x)$
- This is a polynomial of degree k+1, so

$$xT_k(x) = \sum_{j=0}^{k+1} \alpha_{k,j} T_j(x)$$

lacksquare $\alpha_{k,j} \propto (xT_k,T_j)$, i.e. equal up to normalization

We have

$$(xT_k,T_j)=\int_{-1}^{-1}xT_k(x)T_j(x)dx$$

■ Change variables using $x = \cos(\theta)$:

$$(xT_k, T_j) = \int_0^{2\pi} c_1 c_k c_j d\theta$$

where $c_j(\theta) := \cos(j\theta)$

We have

$$(xT_k, T_j) = \int_{-1}^{-1} xT_k(x)T_j(x)dx$$

■ Change variables using $x = \cos(\theta)$:

$$(xT_k, T_j) = \int_0^{2\pi} c_1 c_k c_j d\theta$$

where $c_i(\theta) := \cos(j\theta)$

Use trigonometric relation

$$\cos(A)\cos(B) = \frac{1}{2}[\cos(A+B) + \cos(A-B)]$$

We have

$$(xT_k, T_j) = \int_{-1}^{-1} xT_k(x)T_j(x)dx$$

■ Change variables using $x = \cos(\theta)$:

$$(xT_k, T_j) = \int_0^{2\pi} c_1 c_k c_j d\theta$$

where $c_i(\theta) := \cos(j\theta)$

Use trigonometric relation

$$\cos(A)\cos(B) = \frac{1}{2}[\cos(A+B) + \cos(A-B)]$$

We have

$$(xT_k,T_j) = \frac{1}{2} \int_0^{2\pi} c_1 [c_{k+j} + c_{k-j}]$$

We have

$$(xT_k,T_j) = \frac{1}{2} \int_0^{2\pi} c_1 [c_{k+j} + c_{k-j}]$$

 \blacksquare But $\int c_l c_m = 0$ if $l \neq m$

We have

$$(xT_k,T_j) = \frac{1}{2} \int_0^{2\pi} c_1 [c_{k+j} + c_{k-j}]$$

- \blacksquare But $\int c_l c_m = 0$ if $l \neq m$
- \blacksquare So (xT_k,T_j) is 0 unless j=k+1 or j=k-1

We have

$$(xT_k, T_j) = \frac{1}{2} \int_0^{2\pi} c_1 [c_{k+j} + c_{k-j}]$$

- \blacksquare But $\int c_l c_m = 0$ if $l \neq m$
- \blacksquare So (xT_k,T_j) is 0 unless j=k+1 or j=k-1
- $\label{eq:Tk} \blacksquare \mbox{ Hence } xT_k = \alpha T_{k+1} + \beta T_{k-1}$ and we can calculate the constants α and β

We have

$$(xT_k, T_j) = \frac{1}{2} \int_0^{2\pi} c_1 [c_{k+j} + c_{k-j}]$$

- But $\int c_l c_m = 0$ if $l \neq m$
- lacksquare So (xT_k,T_j) is 0 unless j=k+1 or j=k-1
- $\label{eq:Tk} \blacksquare \mbox{ Hence } xT_k = \alpha T_{k+1} + \beta T_{k-1}$ and we can calculate the constants α and β

In fact, any set of orthogonal polynomials have similar 3-term recurrence

- $\blacksquare \text{ Given } f:[-1,+1]\to \mathbb{R}$
- \blacksquare How can we calculate $\int f = \int_{-1}^{+1} f(x) \, dx$?

- lacksquare Given $f:[-1,+1]
 ightarrow \mathbb{R}$
- How can we calculate $\int f = \int_{-1}^{+1} f(x) dx$?
- Recall: trapezium rule (equally-spaced points): $\mathcal{O}(n^{-2}) \text{ convergence}$

- $\blacksquare \text{ Given } f:[-1,+1]\to \mathbb{R}$
- How can we calculate $\int f = \int_{-1}^{+1} f(x) dx$?
- \blacksquare Recall: trapezium rule (equally-spaced points): $\mathcal{O}(n^{-2}) \text{ convergence}$
- Can we do better?

- lacksquare Given $f:[-1,+1]
 ightarrow \mathbb{R}$
- How can we calculate $\int f = \int_{-1}^{+1} f(x) dx$?
- \blacksquare Recall: trapezium rule (equally-spaced points): $\mathcal{O}(n^{-2}) \text{ convergence}$

- Can we do better?
- Clenshaw & Curtis (1960)

We now have powerful Chebyshev technology at our disposal

- We now have powerful Chebyshev technology at our disposal
- \blacksquare Sample f at N+1 Chebyshev points, giving f_j

- We now have powerful Chebyshev technology at our disposal
- \blacksquare Sample f at N+1 Chebyshev points, giving f_j
- Find α_k in Chebyshev expansion $f\simeq f_N:=\sum_{k=0}^N\alpha_kT_k$ via Fast Cosine Transform

- We now have powerful Chebyshev technology at our disposal
- \blacksquare Sample f at N+1 Chebyshev points, giving f_j
- Find α_k in Chebyshev expansion $f \simeq f_N := \sum_{k=0}^N \alpha_k T_k$

via Fast Cosine Transform

 \blacksquare Double N until last few α_k are of order ϵ_{mach}

■ Now calculate $\int f$ as $\simeq \int f_N$:

$$\int f \simeq \sum_{k=0}^N \alpha_k \int T_k$$

lacksquare Now calculate $\int f$ as $\simeq \int f_N$:

$$\int f \simeq \sum_{k=0}^{N} \alpha_k \int T_k$$

 \blacksquare Error $|\int f - \int f_N|$ decays as fast as $\|f - f_N\|$ does

lacksquare Now calculate $\int f$ as $\simeq \int f_N$:

$$\int f \simeq \sum_{k=0}^{N} \alpha_k \int T_k$$

- \blacksquare Error $|\int f \int f_N|$ decays as fast as $\|f f_N\|$ does
- lacktriangle E.g. exponential (spectral) convergence if f is analytic

Need to calculate

$$\int f_N = \sum_{k=0}^N \alpha_k \int T_k$$

Need to calculate

$$\int f_N = \sum_{k=0}^N \alpha_k \int T_k$$

lacksquare Change variable in integral: $x=\cos(heta)$

$$I_k = \int_{-1}^{+1} T_k(x) \, dx = \int_0^\pi \cos(k\theta) \, \sin(\theta) \, d\theta$$

(note upper limit due to parity)

Need to calculate

$$\int f_N = \sum_{k=0}^N \alpha_k \int T_k$$

lacksquare Change variable in integral: $x=\cos(\theta)$

$$I_k = \int_{-1}^{+1} T_k(x) \, dx = \int_0^\pi \cos(k\theta) \, \sin(\theta) \, d\theta$$

(note upper limit due to parity)

 \blacksquare Find $I_k = \frac{(-1)^k + 1}{1 - k^2}$

So we have

$$\int f = \sum_{k=0}^{N} \alpha_k I_k$$

. . .

Integral becomes a dot product!

So we have

$$\int f = \sum_{k=0}^{N} \alpha_k I_k$$

- . . .
 - Integral becomes a dot product!
 - Riesz representation theorem for linear functional

- Alternative:
- \blacksquare Once have found N using decay of α_k

- Alternative:
- \blacksquare Once have found N using decay of α_k
- lacktriangle Go back to f_j

- Alternative:
- \blacksquare Once have found N using decay of α_k
- lacktriangle Go back to f_j
- \blacksquare Use Lagrange interpolant p(x) in f_j
- Integrate Lagrange interpolant explicit formulae

- Alternative:
- \blacksquare Once have found N using decay of α_k
- lacktriangle Go back to f_j
- \blacksquare Use Lagrange interpolant p(x) in f_j
- Integrate Lagrange interpolant explicit formulae
- But leads to messier results effectively Discrete Cosine Transform of above

Aliasing

Aliasing is the following phenomenon

Aliasing

- Aliasing is the following phenomenon
- \blacksquare Consider sampling Cheb. polynomial T_k at Cheb. points t_j
- \blacksquare This can give the same function values as sampling different T_ℓ

. .

- On (N+1)-point Chebyshev grid, following have same values:
- $T_m, T_{2n-m}, T_{2n+m}, \dots$

Aliasing

- Aliasing is the following phenomenon
- lacksquare Consider sampling Cheb. polynomial T_k at Cheb. points t_j
- \blacksquare This can give the same function values as sampling different T_ℓ

. .

- \blacksquare On (N+1) -point Chebyshev grid, following have same values:
- $T_m, T_{2n-m}, T_{2n+m}, \dots$
- \blacksquare Gives relationship between coefficients of truncation of f and interpolation of f
- See Trefethen, Approx. Theory, Chap. 4

Summary

- 3-term recurrence relation for Chebyshev polynomials
- Clenshaw–Curtis integration
- Spectrally accurate for analytic functions