CS321: Computer Architecture

Course web:

http://172.16.1.6/~jimson/

Computer Architecture

Basic functional blocks of a computer: CPU, memory, input-output subsystems, control unit. Instruction set architecture of a CPU - registers, instruction execution cycle, RTL interpretation of instructions, addressing modes, instruction set. Case study - instruction sets of some common CPUs; Assembly language programming for some processor; Data representation: signed number representation, fixed and floating point representations, character representation. Computer arithmetic - integer addition and subtraction, ripple carry adder, carry look-ahead adder, etc. multiplication — shift-and-add, Booth multiplier, carry save multiplier, etc. Division - non-restoring and restoring techniques, floating point arithmetic; CPU control unit design: hardwired and microprogrammed design approaches, Case study - design of a simple hypothetical CPU; Pipelining:

Basic concepts of pipelining, throughput and speedup, pipeline hazards; Memory organization: Memory interleaving, concept of hierarchical memory organization, cache memory, cache size vs block size, mapping functions, replacement algorithms, write policy; Peripheral devices and their characteristics: Input-output subsystems, I/O transfers - program controlled, interrupt driven and DMA, privileged and non-privileged instructions, software interrupts and exceptions. Programs and processes - role of interrupts in process state transitions.

Prerequisite & Text Book

• Prerequisite: CS225 & CS226

Text Books

- David A. Patterson, John L. Hennessy, Computer Organization and Design, Fourth Edition:
- The Hardware/Software Interface, Morgan Kaufmann; 4 edition, 2011.
- 2. A. Tenenbaum, Structured Computer Organization, 4th Ed, Prentice-Hall of India, 1999.
- 3. W. Stallings, Computer Organization and Architecture: Designing for Performance, 6th
- Ed, Prentice Hall, 2005.
- 4. J. Hennessy and D. Patterson, Computer Architecture A Quantitative Approach, 3rd Ed,
- Morgan Kaufmann, 2002...

Evaluation Policy(CS321)

Assignments

& Quizzes : 40%

• Mid-Sem : 25%

• End-Sem : 25%

Performance:10 %

Architecture Lab(CS322)

Regular Lab work, 40%

Mid-Sem : 15%

• End-Sem : 25%

Mini Project:45 %

Levels of Transformation

"The purpose of computing is insight" (*Richard Hamming*) We gain and generate insight by solving problems How do we ensure problems are solved by electrons?

Problem

Algorithm

Program/Language

Runtime System

(VM, OS, MM)

ISA (Architecture)

Microarchitecture

Logic

Circuits

Electrons

The Power of Abstraction

Levels of transformation create abstractions

- Abstraction: A higher level only needs to know about the interface to the lower level, not how the lower level is implemented
- E.g., high-level language programmer does not really need to know what the ISA is and how a computer executes instructions

Abstraction improves productivity

- No need to worry about decisions made in underlying levels
- E.g., programming in Java vs. C vs. assembly vs. binary vs. by specifying control signals of each transistor every cycle
- Then, why would you want to know what goes on underneath or above?

Why CS321?

What if

- The program you wrote is running slow?
- The program you wrote does not run correctly?
- The program you wrote consumes too much energy?

What if

- The hardware you designed is too hard to program?
- The hardware you designed is too slow because it does not provide the right primitives to the software?

An Example: Multi-Core Systems

Multi-Core Chip

^{*}Die photo credit: AMD Barcelona

Unexpected Slowdowns in Mul High priority

Moscibroda and Mutlu, "Memory performance attacks: Denial of memory service in multi-core systems," USENIX Security 2007.

A Question or Two

 Can you figure out why there is a disparity in slowdowns if you do not know how the processor executes the programs?

 Can you fix the problem without knowing what is happening "underneath"? Why the Disparity in Slowdowns?

DRAM Bank Operation

INTRODUCTION

Generations of Computer

- 1. First Generation 1940-1956: Vacuum Tubes
- 2. Second Generation 1956-1963: Transistors
- 3. Third Generation 1964-1971: Integrated Circuits
- 4. Fourth Generation 1971-Present: Microprocessors
- 5. Fifth Generation Present and Beyond: Artificial Intelligence

FIRST GENERATION 1940 - 1956

- First generation computers used Vacuum Tubes
- Vacuum tubes are glass tubes with circuits inside.
- The word vacuum indicates that they have no air inside, which protects the circuitry.
- Building a computer with these vacuum tubes would result in a very large machine occupying one full room.

First Transistor

- Uses Silicon
- developed in 1948
- won a Nobel prize
- on-off switch
- Second Generation Computers used Transistors, starting in 1956

Integrated Circuits

- Third Generation Computers used Integrated Circuits (chips).
- Integrated Circuits are transistors, resistors, and capacitors integrated together into a single "chip"
- Instead of punched cards and printouts, users started interacting with keyboards and mouse.

1972: 8008 Microprocessor

- The 8008 was twice as powerful as the 4004.
- According to the magazine Radio
 Electronics, Don Lancaster, a
 dedicated computer hobbyist,
 used the 8008 to create a
 predecessor to the first personal
 computer, a device Radio
 Electronics dubbed a "TV
 typewriter." It was used as a dumb
 terminal.

1978: 8086-8088 Microprocessor

- In 1978 intel
 - 16-bit
 - 2.5MIPS millions of instructions per second
 - 1M-byte memory
 - 4- or 6-byte instruction (cache) queue that prefetch instructions
 - over 20,000 variations instructions.
 - 64K bytes of memory found in 8-bit microprocessors to execute efficiently
 - The 16-bit 8086 and 8088 provided 1M byte of memory for these applications
 - Popularity of Intel ensured in 1981 when IBM chose the 8088 in its personal computer

1982: 286 Microprocessor

- The 286, also known as the 80286, was the first Intel processor that could run all the software written for its predecessor.
- This software compatibility remains a hallmark of Intel's family of microprocessors.
- Within 6 years of it release, there were an estimated 15 million 286-based personal computers installed around the world.

- 80286: updated 8086
 - 16M byte memory addressing
 - Instructions identical to 8086 few more added
 - 4MIPS
 - 8Mhz clock speed

1985: Intel 386(TM) Microprocessor

- The Intel 386[™] microprocessor featured 275,000 transistors--more than 100times as many as the original 4004.
- It was a 32-bit chip and was "multi tasking," meaning it could run multiple programs at the same time.

- 32-bit address bus and 32-bit data bus
- 4GB memory
- Hardware circuitry for memory management
- Additional instructions referenced 32-bit registers and managed the memory system

1989: Intel 486(TM) DX CPU

- The 486[™] generation really allowed the shift from command-level computing into point-and-click computing.
- The Intel 486[™] processor was the first to offer a built-in math coprocessor, which speeds up computing because it offers complex math functions from the central processor.

80486

- Highly integrated package.
- 80386-like microprocessor.80387-like numeric coprocessor.
- 50 MIPS
- 8K-byte cache memory system
- Half of its instructions executed in 1 clock cycle rather 2

1993: Pentium® Processor

- The Pentium® processor allowed computers to more easily incorporate "real world" data such as speech, sound, handwriting and photographic images.
- The name Pentium®, mentioned in the comics and on television talk shows, became a household word soon after introduction.
- Originally named P5 or 80586
- Clock speed of 60MHZ
- Executes 110MIPS
- Cache size: 16K bytes (8K cache in 8048
 - 8K-byte instruction cache and data cache.
- Memory system up to 4G bytes.
- Data bus width increased to a full 64 bits.
- Data bus transfer speed 60 MHz or 66 MHz.
 - depending on the version of the Pentium

1995: Pentium[®] Pro Processor

- Released in the fall of 1995 the Pentium® Pro processor is designed to fuel 32-bit server and workstation-level applications, enabling fast computer-aided design, mechanical engineering and scientific computation.
- Each Pentium® Pro processor is packaged together with a second speed-enhancing cache memory chip.
- The powerful Pentium[®] Pro processor boasts 5.5 million transistors.

1997: Pentium® II Processor

- The 7.5 million-transistor Pentium® II
 processor incorporates Intel MMX[™]
 technology, which is designed
 specifically to process video, audio and
 graphics data efficiently.
- It is packaged along with a high-speed cache memory chip in an innovative Single Edge Contact (S.E.C.) cartridge that connects to a motherboard via a single edge connector, as opposed to multiple pins.
- With this chip, PC users can capture, edit and share digital photos with friends and family via the Internet; edit and add text, music or betweenscene transitions to home movies; and, with a video phone, send video over standard phone lines and the Internet.

Moore's Law

- IC capacity doubling about every 18 months for several decades
 - Known as "Moore's Law" after Gordon Moore, co-founder of Intel
 - Predicted in 1965 predicted that components per IC would double roughly every year or so
 - Picture depicts related phenomena
 - For a particular number of transistors, the IC shrinks by half every 18 months
 - Notice how much shrinking occurs in just about 10 years
 - Enables incredibly powerful computation in incredibly tiny devices
 - Today's ICs hold billions of transistors
 - The first Pentium processor (early 1990s) needed only 3 million

Moore's law in Microprocessors

Die

From http://www.amd.com

In Picture...

Silicon Process Technology 1.5µ 1.0µ 0.8µ 0.6µ 0.35µ 0.25µ 0.18µ 0.13µ

Intel386™ DX **Processor**

Intel486™ DX **Processor**

Pentium® Pro **Processor**

Pentium® II **Processor**

Pentium® III **Processor**

Pentium® 4 **Processor**

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Number of transistors on an integrated circuit doubles ~ every two years

Image source: Wikipedia

Scaling at its best

386 Processor

May 1986 @16 MHz core 275,000 1.5μ transistors ~1.2 SPECint2000

17 Years 200x 200x/11x 1000x

Pentium® 4 Processor

August 27, 2003 @3.2 GHz core 55 Million 0.13μ transistors 1249 SPECint2000

Historical Driving Forces

The Act of Balancing

Delivered Performance = Instructions Per Cycle (IPC) * Frequency

Goal is higher performance and lower power

Power α C_{dvnamic} * V * V * Frequency

Power will be a major problem

Power delivery and dissipation will be prohibitive

Dual core with voltage scaling

Linear Scaling Trend

Submillimeter Dimensions

Submicrometer Dimensions

Linear Scaling Extrapolation

What Moore's Law Has Meant

- 1976 Cray 1
 - 250 M Ops/second
 - ~170,000 chips
 - 0.5B transistors
 - 5,000 kg, 115 KW
 - \$9M
 - 80 manufactured

- 2017 iPhone >
 - > 10 B Ops/second
 - 16 chips
 - 4.3B transistors (CPU only)
 - 174 g, < 5 W
 - \$999
 - ~3 million sold in first 3 days

What Moore's Law Has Meant

 1965 Consumer Product

 2017 Consumer Product

Visualizing Moore's Law to Date If transistors were the size of a grain of sand

Intel 4004 1970 2,300 transistors

0.1 g

Apple A11 2017 4.3 B transistors

189 kg

What Moore's Law Has Meant

iPhone	Released with	Release date	
iPhone (1st Gen.)	iPhone OS 1.0	June 29, 2007	
iPhone 3G	iPhone OS 2.0	July 11, 2008	
iPhone 3GS	iPhone OS 3.0	June 19, 2009	
iPhone 4	iOS 4.0	June 21, 2010	
iPhone 4S	iOS 5.0	October 14, 2011	
iPhone 5	iOS 6.0	September 21, 2012	
iPhone 5C	iOS 7.0	September 20, 2013	
iPhone 5S	iOS 7.0	September 20, 2013	
iPhone 6 (Plus)	iOS 8.0	September 19, 2014	
iPhone 6S (Plus)	iOS 9.0	September 25, 2015	
iPhone SE	iOS 9.3	March 31, 2016	
iPhone 7 (Plus)	iOS 10.0	September 16, 2016	
iPhone 8 (Plus)	iOS 11.0	September 22, 2017	
iPhone X	iOS 11.0.1	November 3, 2017	

12 generations of iPhone since 2007

What Moore's Law Could Mean

 2017 Consumer Product

• 2065 Consumer Product

- Portable
- Low power
- Will drive markets & innovation

Requirements for Future Technology

- Must be suitable for portable, low-power operation
 - Consumer products
 - Internet of Things components
- Must be inexpensive to manufacture
 - Comparable to current semiconductor technology
 - O(1) cost to make chip with O(N) devices
- Need not be based on transistors
 - Memristors, carbon nanotubes, DNA transcription, ...
 - Possibly new models of computation
 - But, still want lots of devices in an integrated system

Moore's Law: 100 Years Device Count by Year

N	IVIDIA GPU Specific	cation Comparison	NVIDIA GV100 Volta 2017
	GV100	GP100	21.1 B transistors
CUDA Cores	5376	3840	815 mm ²
Tensor Cores	672		
SMs	84		
CUDA Cores/SM	64		of Mis
Tensor Cores/SM	8	333333 3433333 3333333 3333333 333333 3333333 333333	********* ******* ******* *******
Texture Units	336	99333 3223333 322333 323333 22332 223333 223333 223333 22332 223333 223333	******** ******* ******* ******* ******
Memory	HBM HBM	99988 9599988 9999999 9998999 99988 9599899 9998899 99989 9599899 9999999	******** ******* ******* ******* ******
Memory Bus Width	4096-	22122 222222 222222 222222 22222 222222 222222	******** ******* ******* ******* ******
Shared Memory	128KB, Con	541245 5415134 5255213 53513531 54124 5415521 5255213 5351315 54125 5415132 5256313 5351313 54125 5415132 5251332 5413332	1111111 1111111 1111111 11111111 111111
L2 Cache	6ME		gereretere
Half Precision	2:1 (Ve	****** ******* ******* *******	
Double Precision	1:2	92232	******** ******* ******* *******
Die Size	815mr	93333 933333 933333 9333333 93333 933333 933333 9333333	********* ******* ******* ******* ******
Transistor Count	21.1	NAMES	3333333 3333333 3333333 3333333 3333333
TDP	300V	900500 2000500 2000500 3000500 900500 2000500 2000500 900500 2000500 3000500 3000500	22302222 2432222 2232222 2332222 24
Manufacturing Process	TO 10 10	****** ******* ****** ******* ***** ******	******** ******* ******* *******
Architecture	Volta		tatatatatutatatatatatatatatatatatatatat

Chip Size Trend

Chip Size Extrapolation Area by Year

This Course

 Micro-architecture: how to implement an architecture in hardware

- Processor:
 - Datapath: functional blocks
 - Control: control signals

What is Computer Architecture?

 The science and art of designing, selecting, and interconnecting hardware components and designing the hardware/software interface to create a computing system that meets functional, performance, energy consumption, cost, and other specific goals.

• We will soon distinguish between the terms architecture, and microarchitecture.

Why Study Computer Architecture?

- Enable better systems: make computers faster, cheaper, smaller, more reliable, ...
 - By exploiting advances and changes in underlying technology/circuits
- Enable new applications
 - Life-like 3D visualization 20 years ago?
 - Virtual reality?

- Enable better solutions to problems
 - Software innovation is built into trends and changes in computer architecture
 - > 50% performance improvement per year has enabled
- Understand why computers work the way they do

Computer Architecture Today

- Today is a very exciting time to study computer architecture
- Industry is in a large paradigm shift (to multi-core)
- Many problems motivating and caused by the shift
 - Power/energy constraints
 - Complexity of design → multi-core
 - Technology scaling → new technologies
 - Memory wall/gap
 - Reliability wall/issues
 - Programmability wall/problem

What is A Computer?

- Three key components
- Computation
- Communication
- Storage (memory)

Computing System

Typical PC Architecture: **northbridge** or **host bridge**

(Typical PC Architecture) northbridge or host bridge

Graphics and Memory Controller Ho (GMCH)

I/O Controller Hub (ICH)

Intel 945 Express Chipset

What is A Computer?

Courtesy, Intel

What is A Computer?

We will cover all three components

The Von Neumann Model/Architecture

 Also called stored program computer (instructions in memory). Two key properties:

Stored program

- Instructions stored in a linear memory array
- Memory is unified between instructions and data
 - The interpretation of a stored value depends on the control signals

When is a value interpreted as an instruction?

Sequential instruction processing

- One instruction processed (fetched, executed, and completed) at a time
- Program counter (instruction pointer) identifies the current instr.
- Program counter is advanced sequentially except for control transfer instructions

Dataflow Model (of a Computer)

- Von Neumann model: An instruction is fetched and executed in control flow order
 - As specified by the instruction pointer
 - Sequential unless explicit control flow instruction
- Dataflow model: An instruction is fetched and executed in data flow order
 - i.e., when its operands are ready
 - i.e., there is no instruction pointer
 - Instruction ordering specified by data flow dependence
 - Each instruction specifies "who" should receive the result
 - An instruction can "fire" whenever all operands are received
 - Potentially many instructions can execute at the same time
 - Inherently more parallel

Von Neumann vs Dataflow

- Consider a von Neumann program
 - ☐ What is the significance of the program order?
 - ☐ What is the significance of the storage locations?

Sequential

Which model is more natural to you as a programmer?

ISA vs. Microarchitecture Level Tradeoff

- A similar tradeoff (control vs. data-driven execution) can be made at the microarchitecture level
- ISA: Specifies how the programmer sees instructions to be executed
 - Programmer sees a sequential, control-flow execution order vs.
 - Programmer sees a data-flow execution order
- Microarchitecture: How the underlying implementation actually executes instructions
 - Microarchitecture can execute instructions in any order as long as it obeys the semantics specified by the ISA when making the instruction results visible to software
 - Programmer should see the order specified by the ISA

ISA vs. Microarchitecture Level

- ISA: Specifies how the programmer sees instructions to be executed
- Microarchitecture: How the underlying implementation actually executes instructions
 - Microarchitecture can execute instructions in any order as long as it obeys the semantics specified by the ISA when making the instruction results visible to software
 - Programmer should see the order specified by the ISA

The Von-Neumann Model

- All major instruction set architectures today use this model
 - x86, ARM, MIPS, SPARC, Alpha, POWER
- Underneath (at the microarchitecture level), the execution model of almost all implementations (or, microarchitectures) is very different
 - Pipelined instruction execution: Intel 80486 uarch
 - Multiple instructions at a time: Intel Pentium uarch
 - Out-of-order execution: Intel Pentium Pro uarch
 - Separate instruction and data caches
- But, what happens underneath that is not consistent with the von Neumann model is not exposed to software
 - Difference between ISA and microarchitecture

ISA vs. Microarchitecture

- ISA
 - Agreed upon interface between software and hardware
 - SW/compiler assumes, HW promises
 - What the software writer needs to know to write and debug system/user programs
- Microarchitecture
 - Specific implementation of an ISA
 - Not visible to the software
- Microprocessor
 - ISA, uarch, circuits
 - "Architecture" = ISA + microarchitecture

Problem
Algorithm
Program
ISA
Microarchitecture
Circuits
Electrons

CISC versus RISC

CISC

Emphasis on hardware

Includes multi-clock complex instructions

Memory-to-memory:
"LOAD" and "STORE"
incorporated in instructions

Small code sizes, high cycles per second

Transistors used for storing complex instructions

Emphasis on software

Single-clock, reduced instruction only

Register to register:

"LOAD" and "STORE"

are independent instructions

Low cycles per second, large code sizes

Spends more transistors on memory registers