Fraud Detection Case Study

Jim, Kayla, Trent, Juno

- I. Objectives
- II. Exploratory Data Analysis
- III. Data Preprocessing
- IV. Model Selection
- V. Model Results
- VI. Development Process
- VII. Challenges
- VIII. Demo

Objectives

- Create a model that helps EventBrite identify fraudsters
- Provide sustainable software by deploying our model in the cloud

Exploratory Data Analysis

twitter_org

sale_duration versus sale_duration2

Country

All Accounts

Fraudulent Accounts

Sale Duration

Data Preprocessing

- Drop collinear features (eg. event dates/duration, body length/description)
- Drop features with > 10% null values (header, venue location details)
- Impute null values with mean for other features
- Extracted # previous payments from previous payouts feature

Most frauds had 0 previous payments while others had 10+

Included this in munging.py which created .clean data.csv

Selected Features

delivery_method ticket_types

sale_duration user_type

previous_payouts fb_published

channels

Model Selection

Random Forest Classifier

Gradient Boosting Classifier

Random Forest Classifier

	Predicted No	Predicted Fraud
True No	3265	16
True Fraud	27	277

Accuracy: 0.9880

Recall: 0.9112

Gradient Boosting Classifier

	Predicted No	Predicted Fraud
True No	3207	58
True Fraud	48	272

Accuracy: 0.9704

Recall: 0.8500

Development Process

Challenges

Feature Engineering

Time Constraints: waiting for POSTs

Converting DATA stream to list of dictionaries

Demo