2012-2013 学年第一学期《线性代数》课内考试卷 (A卷)

授课班号<u>002904**£6**</u>年级专业<u>商学院 11 级</u> 学号

	姓名	100
	总分	审核
8		

题号	, -	=	\equiv	四	五	六	总分	审核
题分	24	32	12	12	12	8		
得分								

得分	评阅人

一、填空(共24分,每空格3分)

- 1. 排列(1,3,5,…,2n-1,2,4,6,…,2n)的逆序数为 2
- 2. 已知四阶行列式 D 中第 2 列元景依次为 1, 1, 1, 1, 它们对应的代数余子式依次为 2, 3,
 - 2, 3, 则行列式 D= 🗜 🕶

3. 设 3 阶方阵
$$A$$
 的行列式 $|A| = \frac{1}{2}$,则 $|(3A)^{-1} - 2A^*| = \frac{16}{27}$

2、3、则行列式
$$D = 10$$
3. 设 3 阶方阵 A 的行列式 $|A| = \frac{1}{2}$,则 $|(3A)^{-1} - 2A^{*}| = -\frac{16}{27}$
4.
$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}^{2012} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 2 \\ 4 & 6 & 5 \\ 7 & 9 & 9 \end{bmatrix}$$
•

5. 已知
$$A = \begin{bmatrix} 3 & 1 & 0 & 2 \\ 1 & -1 & 2 & -1 \\ 1 & 3 & -4 & 4 \end{bmatrix}$$
,则 A 的秩为 2.

6. 已知
$$\vec{\beta}_1 = \vec{\alpha}_1$$
, $\vec{\beta}_2 = \vec{\alpha}_1 + 2\vec{\alpha}_2$, $\vec{\beta}_3 = \vec{\alpha}_1 + 2\vec{\alpha}_2 + 3\vec{\alpha}_3$, 且向量组 $\vec{\alpha}_1, \vec{\alpha}_2, \vec{\alpha}_3$ 线性无关,则向量组 $\vec{\beta}_1, \vec{\beta}_2, \vec{\beta}_3$ 线性 无关___。

7. 已知四元线性方程组
$$A\vec{x} = \vec{b}$$
 的文个解向量为 $\vec{\eta}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{\eta}_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$, 且 $r(A) = 3$,则方程组 $A\vec{x} = \vec{b}$ 的通解 $\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$

8. 已知
$$\vec{\alpha} = \begin{bmatrix} 1 \\ a \\ -1 \end{bmatrix}$$
, $\vec{\beta} = \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix}$, 且 $\vec{\alpha}$ 与 $\vec{\beta}$ 的内积等于9, $a = 2$.

河海人学常州校区考试试卷 第1页(共4页)

得分	评阅人

二、计算(共32分,每小题8分)

$$D = \begin{cases} |a| & |a| & |a| & |a| \\ |a| & |a| & |a| & |a| \\ |a| & |a| & |a| & |a| \\ |a| & |a| & |a| & |a| & |a| \\ |a| & |a| & |a| & |a| & |a| & |a| \\ |a| & |a| & |a| & |a| & |a| & |a| \\ |a| & |a| & |a| & |a| & |a| & |a| & |a| \\ |a| & |a| \\ |a| & |a|$$

3. 已知矩阵
$$A = \begin{bmatrix} 4 & -3 \\ 2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 3 & 0 \\ 0 & -1 & 4 \end{bmatrix}$, $XA = B^T + 3X$, 求矩阵 X .

$$\times (A^{-3}E) = B^{T} \Rightarrow (A^{-3}E)^{T} \times^{T} = B \Rightarrow (A^{T}-3E) \times^{T} B \Rightarrow X^{T}(A^{T}-3E)^{T}B$$

$$(A^{T} - 3E, B) = \begin{bmatrix} 1 & 2 & 23 & 0 \\ -3 & -2 & 0 & 14 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 23 & 0 \\ 0 & 4 & 6 & 8 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 23 & 0 \\ 0 & 2 & 3 & 4 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 1 & -2 \\ 0 & 1 & \frac{3}{2} & 2 & 1 \end{bmatrix}$$

4. 设
$$3(\vec{\alpha}_1 - \vec{\alpha}) + 2(\vec{\alpha}_2 + \vec{\alpha}) = 5(\vec{\alpha}_3 + \vec{\alpha})$$
, 其中 $\vec{\alpha}_1 = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$, $\vec{\alpha}_2 = \begin{bmatrix} 10 \\ 1 \\ 5 \end{bmatrix}$, $\vec{\alpha}_3 = \begin{bmatrix} 4 \\ 1 \\ -1 \end{bmatrix}$, 求 $\vec{\alpha}$.

与量组的秩和它的一个极大线性无关组, 并用该极大线性无关组表示

$$\vec{\alpha}_{1} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix} \quad \vec{\alpha}_{2} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \quad \vec{\alpha}_{3} = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 0 \end{bmatrix} \quad \vec{\alpha}_{4} = \begin{bmatrix} 2 \\ 5 \\ -1 \\ 4 \end{bmatrix} \quad \vec{\alpha}_{5} = \begin{bmatrix} 1 \\ -1 \\ 3 \\ -1 \end{bmatrix}.$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 0 & 4 & -1 \\ 0 & 1 & 0 & 3 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 3 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

得分	评阅人

四、(本题 12 分) 当 λ 为何值时, 线性方程组

$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \end{cases}$$
 有惟一解、无解、有无穷多解,在线性方程组有无
$$\begin{cases} x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$$

穷多解时, 求出其通解。

1) | A1=0, Bp Q=-2D N=1 by, TIOR- 24.

$$2) \ \lambda = -2 \ \text{M}, \left[\begin{array}{c|c} -2 & 1 & 1 \\ 1 & -2 & 1 & -2 \\ 1 & 1 & -2 & 4 \end{array} \right] \rightarrow \left[\begin{array}{c|c} -2 & 1 & -2 \\ 0 & -3 & 3 & -3 \\ 0 & 3 & -3 & 6 \end{array} \right] \rightarrow \left[\begin{array}{c|c} -2 & 1 & -2 \\ 0 & -3 & 3 & -3 \\ 0 & 0 & 0 & 3 \end{array} \right] \stackrel{\text{Total}}{\text{Total}} \stackrel{\text{Total}$$

得分	评阅人
. 1	*

五、(本题 12 分)

求可逆矩阵 P 及对角矩阵 Λ ,使 $P^{-1}AP = \Lambda$,其中矩阵

$$A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$

2.
$$p = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$
 s.t. $p^{-1}Ap = N = \begin{bmatrix} 4 & 4 & 2 \\ & & 2 \end{bmatrix}$.

得分	评阅人
ar i	

六、证明(本题8分)

设 $\vec{\alpha}_1,\vec{\alpha}_2,\cdots,\vec{\alpha}_{m-1}$ (m>3) 线性无关,而 $\vec{\alpha}_2,\vec{\alpha}_3,\cdots,\vec{\alpha}_{m-1},\vec{\alpha}_m$ 线性相关,证明;(1) $\vec{\alpha}_m$ 可由 $\vec{\alpha}_1,\vec{\alpha}_2,\cdots,\vec{\alpha}_{m-1}$ 线性表示;(2) $\vec{\alpha}_1$ 不能由

 $\vec{\alpha}_2, \vec{\alpha}_3, ..., \vec{\alpha}_{m-1}, \vec{\alpha}_m$ 线性表示。 \mathbb{Z}_{m}