Data-Driven Models for Zebrafish Motion IDP final

Lukas Krenz

Advisers: Dr. Jacob Davidson (Constance), Nicola Rieke (CAMP)

Supervisor: Prof. Dr. Nassir Navab

June 1, 2018

TUM, Chair for Computer Aided Medical Procedures & Augmented Reality Collaboration with Couzin Lab (Max Plank Institute for Ornithology/University of Constance)

Introduction

Goal: Develop models for social behavior of juvenile zebrafish that extend to large groups.

Contributions:

- Comparison of models with increasing complexity for modeling interactions between two fish
- Data-driven spatial discretization
- Evaluation of importance of past trajectories
- Development and evaluation of a non-linear recurrent neural network that predicts parameters for mixture of Gaussians

Example use case: controlling a fish in a virtual reality environment "Pilot experiment" for neural network models for collective motion

Zebrafish: Our Input Video

Modeling Fish Motion

Data: Annotated (no tracking needed) videos from 10 experiments with 2 fish swimming, each for 1h. Annotations: positions of both fish and their orientation

Segmentation into c.a. 148000 kicks

Use wall model¹ to ignore areas with high wall influence (any wall closer than c.a. 4.8 cm).

Final data: c.a. 19400 kicks in training set (80% of all kicks)

We model kick trajectory (=kick direction and kick length).

¹D. S. Calovi, A. Litchinko, V. Lecheval, U. Lopez, A. P. Escudero, H. Chaté, C. Sire and G. Theraulaz (2018). 'Disentangling and modeling interactions in fish with burst-and-coast swimming reveal distinct alignment and attraction behaviors'. In: *PLoS computational biology* 14.1, e1005933.

Receptive Field²—Local coordinate system

Rotate coordinate system s.t. focal fish (red) has angle 0 (parallel to x-axis) and is at origin.

²R. Harpaz, G. Tkačik and E. Schneidman (2017). 'Discrete modes of social information processing predict individual behavior of fish in a group'. In: *Proceedings of the National Academy of Sciences*, p. 201703817.

Receptive Field—Discretization

We discretize the area surrounding the fish in the local coordinate system.

We want:

- Symmetry around origin: to distinguish left/right, before/behind
- Bins should have equal number of fish.

Use 8×8 bins.

Discretizing (with symmetry) axes independently is standard approach.

But: mean number of data points per bin of roughly 2428 \pm 8483 (mean \pm std.) for training and 555 \pm 1926 for testing.

12 bins completely empty, even for training set!

Receptive Field—Data-driven discretization

Mean number of kicks per testing bin

Leads to 2482 \pm 212 and 555 \pm 162 data points per bin, instead of 2428 \pm 8483 and 555 \pm 1926.

Receptive Field—Data-driven discretization (zoomed in)

Mean number of kicks per testing bin

Receptive Field—Extracted features

Bin number is one-hot encoded, alternative interpretation as 64 features, each is number of fish currently in bin.

Relative orientation of other fish encoded as unit vector with appropriate orientation, multiplied with bin-feature. Alternative interpretation as mean heading of fish in bin.

Extract this for timesteps 0 s, 0.05 s, ..., 0.35 s before kick-off-time.

Overall $64 \times (1+2) = 192$ features per timestep

Social Models—Linear without memory

No memory: Only current position, etc.

$$egin{aligned} \mathbf{y^i} &= \mathbf{X_0^i} eta_0^i + \mathrm{bias} + \varepsilon \ & arepsilon \sim \mathcal{N}\left(0, \sigma^2
ight) \end{aligned}$$

With: $\mathcal{N}(\text{mean}, \text{variance})$ normal distribution σ standard deviation of residuals y^i i-th component of output vector X_0^i, β_0^i input matrix and weights for i-th component and timestep

0

Social Models—Linear with memory

Memory: Current position and trace

Concatenated: Concatenate features for all timesteps then linear model

Static: Keep spatial weights β_t^i static for all t

$$\mathbf{y}^{i} = \sum_{t} c_{t} \mathbf{X}_{t}^{i} \boldsymbol{\beta}^{i} + \varepsilon$$

with c_t mixing coefficient $c_i \geq 0, \sum_i c_i = 1$, normalized with softmax

Social Models—Neural networks

General architecture. Symbols \approx and \mapsto correspond to encoding and decoding. Blue is input, gray hidden and black output.

Neural Networks can capture non-linear effects.

Encoder-decoder architecture with

Encoder transforms input features into hidden state

Decoder transforms hidden state into output

We discuss two encoders & two decoders.

Neural Networks—Encoders: Multilayer-Perceptron

Architecture of MLP encoder. Symbol d(*) corresponds to linear layer, followed by tanh and dropout³. Blue is input, gray hidden state.

Multilayer perceptron encoder consists of two stacked layers (Linear -> Tanh -> Dropout) with 64 hidden neurons.

³N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov (2014). 'Dropout: A simple way to prevent neural networks from overfitting'. In: *The Journal of Machine Learning Research* 15.1, pp. 1929–1958.

Neural Networks—Encoders: Recurrent neural network

Architecture of RNN encoder. Symbol * is linear layer, d() is recurrent dropout⁴, + is summation and f to tanh. Blue is input, gray hidden state.

Input-to-hidden weights w_{ih} , hidden-to-hidden weights w_{hh} , biases b, recurrent dropout d(x) (same mask for all timesteps), learned initial state of size 64 (h_0)

$$\mathbf{h}_{t}(\mathbf{X}) = \tanh\left(\mathbf{b} + \mathbf{w}_{ih}\mathbf{X}_{t} + \mathbf{w}_{hh}d(\mathbf{h}_{i-1})\right),$$

⁴S. Semeniuta, A. Severyn and E. Barth (2016). 'Recurrent dropout without memory loss'. In: *arXiv preprint arXiv:1603.05118*.

Neural Networks—Decoder: Mixture density networks⁵

Predict mixture of Gaussians

$$p(\mathbf{y}|\mathbf{X}) = \sum_{i}^{n} \kappa_{i} \mathcal{N}(\mu_{i}, \Sigma_{i}),$$

with mixing coefficients κ_i , multivariate normal $\mathcal{N}(\mu_i, \Sigma_i)$ with mean vector μ_i and covariance matrix Σ_i

Constraints: $\kappa_i \geq 0$, $\sum_i \kappa_i = 1$, enforced by softmax

 Σ_i valid (diagonal) covariance, diagonals (variances) must be positive, enforced by *exp*.

⁵C. M. Bishop (1994). *Mixture density networks*. Technical Report.

Neural Networks—Decoder: Mixture density networks (cont.)⁶

Architecture of MDN decoder. Symbol \ast is linear layer. Gray is hidden state and black output.

⁶C. M. Bishop (1994). *Mixture density networks*. Technical Report.

Results—Quantitative

Model	NLL-train	NLL-test	MSE-train	MSE-test
Baseline (Train-Mean)	2.25	2.01	0.558	0.423
MLP-MDN	1.63	1.60	0.448	0.373
RNN-MDN	1.43	1.69	0.436	0.371
MLP-MSE	2.04	1.87	0.452	0.375
RNN-MSE	2.00	1.86	0.432	0.377
Linear (w/o time)	2.04	1.87	0.451	0.376
Linear (time conc.)	2.00	1.86	0.432	0.373
Linear (static spatial)	2.04	1.86	0.451	0.374

Results for all models. Baseline: Always predict mean.

Note: Comparison of negative log likelihood NLL is valid, all models can be interpreted as mixture of Gaussians.

Results—Example simulation with RNN-MDN

Conclusion

- Data-driven discretization leads to more equal fish distribution than standard approach.
- Models extend trivially to larger fish groups.
- MDN-models allow sampling, multi-modal distributions and model uncertainty. This is biologically more plausible than our alternatives.
- Non-linear models work but do not show a significant improvement (but should work well for larger groups).