Министерство образования Республики Беларусь Учреждение Образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра электроники

Лабораторная работа № 2, 3 «Исследование биполярных транзисторов»

Проверила: Стома С.С.

Выполнили: ст. гр. 950503 Сякачёв П.В. Шалль И.Э. Прудников А.С.

Порядок выполнения первой части работы:

- 1 Ознакомиться с методическим описанием лабораторной работы. (Теоретическое описание лабораторной работы изложено в методическом пособии [1], стр. 28-40).
- 2 Получить у преподавателя необходимый комплект для проведения лабораторной работы.
 - 3 Уточнить тип исследуемого транзистора у преподавателя.
- 4 Собрать схему, представленную на рисунке 1 данного отчета, для исследования параметров биполярного транзистора p-n-p типа.
- 5 Исследовать входные характеристики биполярного транзистора с общей базой для двух вариантов выходного напряжения (Uкб). Полученные результаты записать в таблицы 1-2 данного отчета. (Качественный вид и описание входных характеристик представлены в методическом пособии [1], стр. 34).
- 6 Исследовать выходные характеристики биполярного транзистора с общей базой для двух вариантов входного тока (Іэ). Полученные результаты записать в таблицы 3 4 данного отчета. (Качественный вид и описание выходных характеристик представлены в методическом пособии [1], стр. 34).
- 7 Исследовать параметры генератора на основе биполярного транзистора в схеме с общей базой.
 - 8 Предоставить измеренные данные на проверку преподавателю.

Порядок оформления отчета:

- 1 По измеренным данным построить соответствующие графики.
- 2 По построенным графикам рассчитать h-параметры биполярного транзистора в схеме с общей базой в окрестностях рабочей точки.
 - 3 Записать общие выводы по проделанной лабораторной работе.

[1] — Электронные приборы. Лабораторный практикум: учеб.-метод. пособие. В 2 частях. Часть 1: Активные компоненты полупроводниковой электроники / А. Я. Бельский — Минск: БГУИР, 2012

1 Цель работы

Изучить, режим работы, принцип действия, схемы включения и классификацию биполярных транзисторов (БТ). Экспериментально исследовать статические вольт-амперные характеристики (ВАХ) транзисторов и рассчитать дифференциальные параметры в заданной рабочей точке.

2 Ход работы

2.1 Исследование входных характеристик БТ в схеме с общей базой (ОБ)

Для исследования характеристик БТ собрана цепь по схеме, представленной на рисунке 1.

Рисунок 1 – Схема исследования входных характеристик БТ в схеме с ОБ

Семейство входных характеристик БТ в схеме с ОБ Iэ=f(Uэб) измерено для двух фиксированных значений напряжения коллектора-база Uкб = 1; 10В. Результаты исследований занесены в таблицу 1 и таблицу 2 соответственно.

Таблица 1 — Результаты измерения входной характеристики БТ (изменять значение $U_{\text{пит}1}$) Іэ = f(Uэб), при фиксированном значении Uпит2 = Uк6 = 1В

Ік, мА	0	0,1+0,05	$0,5\pm0,1$	$1\pm 0,1$	$2\pm0,1$	$3\pm0,1$
Uэб, В	0	0,516	0,563	0,580	0,602	0,6123
Іэ, мА	0	0,102	0,523	0,934	2,037	2,960
Ік, мА	$4\pm0,1$	$5\pm0,1$	6±0,1	7±0,1	8±0,1	9±0,1
Uэб, В	0,621	0,6263	0,6312	0,636	0,640	0,642
Іэ, мА	4,067	4,961	5,951	7,05	8,008	9,002

Таблица 2 — Результаты измерения входной характеристики БТ (изменять значение $U_{\text{пит}1}$) Іэ = f(Uэб), при фиксированном значении Uпит2 = Uк6 = 10В

Ік, мА	0	0,1+0,05	$0,5\pm0,1$	1±0,1	2±0,1	3±0,1
Uэб, В	0	0,5177	0,563	0,581	0,6001	0,6085
Іэ, мА	0	0,104	0,502	0,981	2,086	2,962
Ік, мА	4 <u>±</u> 0,1	5±0,1	6 <u>±</u> 0,1	7±0,1	8 <u>±</u> 0,1	9±0,1
Uэб, В	0,615	0,617	0,620	0,622	0,623	0,624
Іэ, мА	4,069	4,945	5,955	7,056	8,012	9,013

2.2 Исследование выходных характеристик БТ в схеме с общей базой (OБ)

Семейство выходных характеристик $I_K=f(U_K \delta)$ измерено для двух фиксированных значений входного тока эмиттера $I_2=3$; 9 мА. Результаты исследований занесены в таблицу 3 и таблицу 4 соответственно.

Таблица 3 — Результаты измерения (изменять значение $U_{\text{пит}2}$) выходной характеристики БТ $I\kappa = f(U\kappa \delta)$, при фиксированном значении $I\mathfrak{g} = 3\mathsf{M}\mathsf{A}$

Uкб , В	10	9	8	7	6	5	4
Ік, мА	2,941	2,942	2,960	2,643	2,944	2,942	2,943
Uэб, В	0,6075	0,6077	0,6078	0,6084	0,6087	0,6099	0,6105
Uкб, В	3	2	1	0,6	0,3	0,1	0,01
Uкб, В Ік, мА	3 2,941	2,940	1 2,941	0,6 2,941	0,3 2,939	0,1 2,939	0,01 2,939

Таблица 4 — Результаты измерения (изменять значение $U_{\text{пит}2}$) выходной характеристики БТ $I\kappa = f(U\kappa\delta)$, при фиксированном значении $I\mathfrak{g} = 9mA$

Uкб , В	10	9	8	7	6	5	4
Ік, мА	8,946	8,946	8,944	8,943	8,943	8,941	8,939
Uэб, В	0,6253	0,6277	0,6300	0,6322	0,6322	0,6367	0,6388
Uкб, В	3	2	1	0,6	0,3	0,1	0,01
Ік, мА	8,939	8,939	8,938	8,940	8,943	8,949	8,960
Uэб, В	0,6406	0,6424	0,6436	0,6442	0,6447	0,6451	0,6453

2.3 Исследование генератора синусоидальных сигналов на основе биполярного транзистора в схеме с общей базой

Генераторы представляют собой устройства, преобразовывающие энергию питающего их источника постоянного напряжения в периодические колебания различной формы, определенные собственной схемой генератора. На рисунке 2 представлен генератор на биполярном транзисторе типа «емкостная трехточка», генерирующего синусоидальные сигналы. Рабочая частота данного генератора определяется колебательным контуром, образованным С1, С2 и L1.

Рисунок 2 – Генератор на основе биполярного транзистора

Для исследования параметров генератора собрана схема (рисунок 2). Напряжение питания генератора — 10В. Для оценки параметров выходного сигнала подключен канал A (1) осциллографа (Осц, рисунок 2).

Амплитуда выходного сигнала без нагрузки составила $U_{xx}=1460\ B.$

Амплитуда выходного сигнала с подключенной на выходе нагрузкой 10кОм (параллельно осциллографу) составила $U_{\rm H} = 1300~{\rm B}$.

Частота выходного сигнала составила f = 545.7 к Γ ц.

Выходное сопротивление генератора рассчитали по формуле:

Rвых=
$$10$$
кОм* $\left(\frac{U_{\text{xx}}}{U_{\text{H}}}-1\right)=10000*\left(\frac{1460}{1300}-1\right)=1,230$ (кОм).

2.4 Результаты экспериментальных исследований

По результатам измерений БТ в схеме с ОБ построены графики входных, выходных, передаточных характеристик БТ (рисунки 3, 4, 5, 6).

Рисунок 3 — Входные характеристики БТ в Рисунок 4 — Выходные характеристики БТ в схеме с ОБ схеме с ОБ

Рисунок 5 — Характеристики прямой передачи БТ в схеме с ОБ

Рисунок 6 – Характеристики обратной передачи БТ в схеме с ОБ

2.5 Расчет дифференциальных параметров БТ в схеме с ОБ

По построенным графикам характеристик БТ в схеме с ОБ рассчитаны его дифференциальные параметры в окрестностях рабочей точки $I_9 = 9$ мA, $U_K G = 10B$.

$$h_{11\mathrm{B}} = \frac{\Delta U_{3\mathrm{B}}}{\Delta I_{3}} = \frac{U_{3\mathrm{B}}'' - U_{3\mathrm{B}}'}{I_{3}'' - I_{3}'} = \frac{0,632 - 0,6145}{(9,083 - 6,0,52) \cdot 10^{-3}} = 5,7 \text{ OM}$$

$$h_{12\mathrm{B}} = \frac{\Delta U_{3\mathrm{B}}}{\Delta U_{K\mathrm{B}}} = \frac{U_{3\mathrm{B}}'' - U_{3\mathrm{B}0}}{U_{K\mathrm{B}}'' - U_{K\mathrm{B}}'} = \frac{0,6463 - 0,6285}{1 - 10} = 0,0019$$

$$h_{21\mathrm{B}} = \frac{\Delta I_{\mathrm{K}}}{\Delta I_{3}} = \frac{I_{\mathrm{K}}'' - I_{\mathrm{K}}'}{I_{3}'' - I_{3}'} = \frac{9 - 3}{9,083 - 3,057} = 0,99$$

$$h_{22\mathrm{B}} = \frac{\Delta I_{\mathrm{K}}}{\Delta U_{K\mathrm{B}}} = \frac{I_{\mathrm{K}}''' - I_{\mathrm{K}}''}}{U_{K\mathrm{B}}'' - U_{K\mathrm{B}}'} = \frac{(8,927 - 8,94) \cdot 10^{-3}}{10 - 1} = 1,4 \cdot 10^{-6} \text{ CM}$$

Порядок выполнения второй части работы:

- 1 Ознакомиться с методическим описанием лабораторной работы. (Теоретическое описание лабораторной работы изложено в методическом пособии [1], стр. 28-40).
- 2 Получить у преподавателя необходимый комплект для проведения лабораторной работы.
 - 3 Уточнить тип исследуемого транзистора у преподавателя.
- 4 Собрать схему, представленную на рисунке 2 данного отчета, для исследования параметров биполярного транзистора n-p-n типа.
- 5 Исследовать входные характеристики биполярного транзистора с общим эмиттером для двух вариантов выходного напряжения (Икэ). Полученные результаты записать в таблицы 5-6 данного отчета. (Качественный вид и описание входных характеристик представлены в методическом пособии [1], стр. 34).
- 6 Исследовать выходные характеристики биполярного транзистора с общим эмиттером для двух вариантов входного тока (Іб). Полученные результаты записать в таблицы 7 8 данного отчета. (Качественный вид и описание выходных характеристик представлены в методическом пособии [1], стр. 34).
- 7 Исследовать параметры усилителя на основе биполярного транзистора в схеме с общим эмиттером.
 - 8 Предоставить измеренные данные на проверку преподавателю.

Порядок оформления отчета:

- 1 По измеренным данным построить соответствующие графики.
- 2 По построенным графикам рассчитать h-параметры биполярного транзистора в схеме с общим эмиттером в окрестностях рабочей точки.
 - 3 Записать общие выводы по проделанной лабораторной работе.

[1] — Электронные приборы. Лабораторный практикум: учеб.-метод. пособие. В 2 частях. Часть 1: Активные компоненты полупроводниковой электроники / А. Я. Бельский — Минск: БГУИР, 2012

2.6 Исследование входных характеристик БТ в схеме с общим эмиттером (OЭ)

Для исследования характеристик БТ собрана цепь по схеме, представленной на рисунке 7.

Рисунок 7 – Схема исследования входных характеристик БТ в схеме с ОЭ

Семейство входных характеристик БТ в схеме с ОЭ I6=f(Uбэ) измерено для двух фиксированных значений напряжения коллектора-эмиттер: Uкэ = 1; 10В. Результаты исследований занесены в таблицу 5 и таблицу 6 соответственно.

Таблица 5 — Результаты измерения входной характеристики БТ (изменять значение Uпит1) Iб=f(Uбэ), при фиксированном значении Uкэ = Unur2 = 1B

		<u> </u>				
Ік, мА	0	0,1+0,05	$0,5\pm0,1$	1±0,1	2±0,1	3±0,1
Ибэ , В	0	0,5602	0,5945	0,6130	0,6315	0,6416
Іб, мА	0	0,001	0,005	0,009	0,018	0,025
Ік, мА	4±0,1	5±0,1	$6\pm0,1$	7±0,1	8±0,1	9±0,1
Ибэ , В	0,6490	0,6551	0,6598	0,6639	0,6670	0,6703
Іб, мА	0,032	0,040	0,047	0,054	0,061	0,070

Таблица 6 — Результаты измерения входной характеристики БТ (изменять значение Uпит1) I6=f(U69), при фиксированном значении $U\kappa_3 = Unu\tau_2 = 10B$

Ік, мА	0	0,1+0,05	$0,5\pm0,1$	1±0,1	2±0,1	3±0,1
Ибэ , В	0	0,5489	0,5926	0,6124	0,6278	0,6361
Іб, мА	0	0,001	0,004	0,010	0,015	$x_1 = 0.023$
Ік, мА	4±0,1	$5\pm0,1$	6±0,1	7±0,1	8±0,1	9±0,1
Ибэ , В	0,6419	0,6459	0,6481	0,6487	0,6505	0,6510
Іб, мА	0,028	0,038	0,048	0,053	0,062	$x_2 = 0.067$

Значения в ячейках, обозначенных х1, х2, будут использованы в дальнейшем.

2.7 Исследование выходных характеристик БТ в схеме с общим эмиттером (ОЭ)

Семейство выходных характеристик $I_K=f(U_K)$ измерено для двух фиксированных значений входного тока базы $I_6=x_1$; x_2 мА. Результаты исследований занесены в таблицу 7 и таблицу 8 соответственно.

Таблица 7 — Результаты измерения выходной характеристики БТ (изменять значение $U_{\text{пит2}}$) Ік=f(Uкэ), при фиксированном значении **Iб** = \mathbf{x}_1

	(из т	гаоли	щы о	<i>)</i> – v,	,UZ3 N	ИА							
Uкэ, B	0,01	0,1	0,5	1	2	3	4	5	6	7	8	9	10
Ік, мА	0,044	1,734	2,778	2,784	2,791	2,798	2,805	2,814	2,825	2,831	2,840	2,847	2,856
Uбэ, В	0,5687	0,6246	0,6360	0,6362	0,6362	0,6360	0,6358	0,6353	0,6347	0,6342	0,6337	0,6332	0,6325

Таблица 8 — Результаты измерения выходной характеристики БТ (изменять значение $U_{\text{пит}2}$) $I\kappa = f(U\kappa 3)$, при фиксированном значении $I\mathbf{6} = \mathbf{x}_2$ (из таблицы 6) = 0,067 мА

				, ,									
Uкэ, B	0,01	0,1	0,5	1	2	3	4	5	6	7	8	9	10
Ік, мА	0,179	5,021	8,783	8,808	8,850	8,909	8,954	9,013	9,079	9,178	9,243	9,299	085,6
Uбэ, В	0,6029	0,6544	0,6676	0,6673	0,6666	0,6653	0,6643	0,6623	0,6608	0,6576	0,6555	0,6541	0,6511

2.8 Исследование усилителя на основе биполярного транзистора в схеме с общим эмиттером

Усилители — это устройства, как правило, четырехполюсники, имеющие входные и выходные клеммы, и предназначенные для увеличения амплитуды напряжения (либо тока) входного сигнала. Выходной сигнал усилителя формируется активным элементом (транзистором) за счет энергии питающего источника постоянного напряжения и оказывается пропорционален входному. На рисунке 8 представлен усилитель сигналов на биполярном транзисторе с коллекторной стабилизацией. Транзистор включен по схеме с общим эмиттером, что позволяет усилить входной сигнал как по напряжению, так и по току.

Рисунок 8 – Усилитель с коллекторной стабилизацией

Для исследования усилителя собрана схема (рисунок 8). Параметры входного сигнала: размах сигнала Uвх = 30 mVpp, частота $f = 1 \text{к} \Gamma \text{ц}$, форма сигнала – синусоидальная. Напряжение питания усилителя – 10B. Для оценки параметров выходного сигнала усилителя подключен канал A (1) осциллографа (Осц, рисунок 8).

Размах выходного сигнала составил Uвых = 0,452 В.

Коэффициент усиления по напряжению Ku = Uвых/Uвх = 15,067

Увеличивая размах входного сигнала, определили максимальный размах выходного сигнала без искажения его формы, он составил Uвых_{тах} = 8,64 В. Размах входного сигнала при этом составил Uвх_{тах} = 1,08 В.

2.9 Результаты экспериментальных исследований

По результатам измерений БТ в схеме с ОЭ построены графики входных, выходных, передаточных характеристик БТ (рисунки 9, 10, 11, 12).

Рисунок 9 — Входные характеристики БТ в Рисунок 10 — Выходные характеристики БТ в схеме с ОЭ схеме с ОЭ

Рисунок 11 – Характеристики прямой передачи БТ в схеме с ОЭ

Рисунок 12 – Характеристики обратной передачи БТ в схеме с ОЭ

2.10 Расчет дифференциальных параметров БТ в схеме с ОЭ

По построенным графикам характеристик БТ в схеме с ОЭ рассчитаны его дифференциальные параметры в окрестности рабочей точки Іб = x_2 (из таблицы 6) = 0,067 мA, Uкэ = 10B.

$$h_{113} = \frac{\Delta U_{\text{B3}}}{\Delta I_{\text{B}}} = \frac{U_{\text{B3}}" - U_{\text{B3}}'}{I_{\text{B}}" - I_{\text{B}}'} = \frac{0,6510 - 0,6505}{(0,067 - 0,062) \cdot 10^{-3}} = 100 \text{ OM}$$

$$h_{123} = \frac{\Delta U_{\text{B3}}}{\Delta U_{\text{K3}}} = \frac{U_{\text{B3}}" - U_{\text{B30}}}{U_{\text{K3}}" - U_{\text{K3}}'} = \frac{0,67 - 0,65}{10 - 1} = 0,0022$$

$$h_{213} = \frac{\Delta I_{\text{K}}}{\Delta I_{\text{B}}} = \frac{I_{\text{K}}" - I_{\text{K}}'}{I_{\text{B}}" - I_{\text{B}}'} = \frac{0,067 - 0,023}{9,38 - 2,85} = 0,0067$$

$$h_{223} = \frac{\Delta I_{\text{K}}}{\Delta U_{\text{K3}}} = \frac{I_{\text{K}}"" - I_{\text{K}}'"}{U_{\text{K3}}" - U_{\text{K3}}'} = \frac{(9,380 - 9,299) \cdot 10^{-3}}{10 - 9} = 8,1 \cdot 10^{-5} \text{CM}$$