Основные свойства ортоцентра

Ортоцентр - это точка пересечения прямых, содержащих высоты треугольника.

Ортотреугольник или ортоцентрический треугольник - это треугольник, вершины которого являются основаниями высот данного треугольника.

Обратим внимание на следующие свойства ортоцентра и ортотреугольника и покажем, как они применяются в решении задач разного уровня.

1 свойство. Точка, симметричная ортоцентру относительно стороны треугольника, лежит на описанной около него окружности.

2 свойство. Точка, симметричная ортоцентру относительно середины стороны треугольника, лежит на описанной около него окружности и диаметрально противоположна вершине треугольника, противолежащей данной стороне.

3 свойство. При изогональном сопряжении ортоцентр переходит в центр описанной окружности.

4 свойство. Расстояние от вершины треугольника до ортоцентра в 2 раза больше расстояния от центра описанной окружности до противолежащей стороны.

5 свойство. Сумма квадратов расстояния от вершины треугольника до ортоцентра и длины стороны, противолежащей этой вершине, равна квадрату диаметра описанной окружности.

6 свойство. Радиусы описанной окружности, проведённые к вершинам треугольника, перпендикулярны соответствующим сторонам ортотреугольника.

7 свойство. Ортоцентр в остроугольном треугольнике является инцентром ортотреугольника.

8 свойство. Если AD и BE — высоты треугольника ABC, то треугольник DEC подобен треугольнику ABC с коэффициентом $|\cos \angle B|$.

Задача 1. Высоты треугольника ABC пересекаются в точке Н. Докажите, что радиусы описанных окружностей треугольников ABC, ABH, BCH, CAH равны.

Задача 2. В треугольнике ABC проведены высоты AD, BE и CF, пересекающиеся в точке H. Докажите, что $HA \cdot HD = HB \cdot HE = HC \cdot HF$.

Задача 3. На стороне BC остроугольного треугольника ABC как на диаметре построена полуокружность; L — точка её пересечения с высотой, опущенной на сторону BC, H — ортоцентр треугольника. Докажите, что площадь треугольника BLC есть среднее геометрическое площадей треугольников ABC и BHC.

Задача 4. *Задача Архимеда*. Сумма квадратов отрезков, на которые точка пересечения делит взаимно перпендикулярные хорды, равна квадрату диаметра окружности.

