- 1. BayesSurv_HReg: independent, univariate time-to-event data fit to a Cox PH model with Weibull baseline hazard
- 2. BayesSurv_HReg: independent, univariate time-to-event data fit to a Cox PH model with PEM baseline hazard
- 3. BayesSurv_AFT: independent, univariate time-to-event data fit to an AFT model with LN baseline survival distribution
- 4. BayesSurv_AFT: independent, univariate time-to-event data fit to an AFT model with DPM baseline survival distribution
- 5. BayesSurv_HReg: cluster-correlated, univariate time-to-event data fit to a Cox PH model with Weibull baseline hazard
- 6. BayesSurv_HReg: cluster-correlated, univariate time-to-event data fit to a Cox PH model with PEM baseline hazard
- 7. BayesID_HReg: independent semi-competing risks data using an illness-death model with Weibull baseline hazards
- 8. BayesID_HReg: independent semi-competing risks data using an illness-death model with PEM baseline hazards
- 9. BayesID_AFT: independent semi-competing risks data using an AFT illness-death model with LN baseline survival distribution
- 10. BayesID_AFT: independent semi-competing risks data using an AFT illness-death model with DPM baseline survival distribution
- 11. BayesID_HReg: cluster-correlated semi-competing risks data using an illness-death model with Weibull baseline hazards
- 12. BayesID_HReg: cluster-correlated semi-competing risks data using an illness-death model with PEM baseline hazards

Let t_i denote the time-to-event of interest for individuals $i=1,\ldots,n$, subject to right censoring at time c_i . Let (y_i,δ_i,x_i) denote independent observations, where $y_i=\min(t_i,c_i)$, $\delta_i=\mathbb{I}(y_i\leq c_i)$, and x_i is a vector of covariates for individual i. The following Cox proportional hazards model is assumed

$$h(t_i|x_i) = h_0(t_i) \exp\left(x_i^{\mathsf{T}}\beta\right), \ t_i > 0,$$

where the baseline hazard h_0 is defined parametrically by a Weibull hazard, $h_0(t) = \alpha \kappa t^{\alpha-1}$.

In the Bayesian framework, priors must be specified for the regression parameter, β , and the shape and scale parameters of baseline hazard function, α and κ , respectively. The following specifications are made

$$\pi(\beta) \propto 1,$$

 $\pi(\alpha) \sim Gamma(a, b),$
 $\pi(\kappa) \sim Gamma(c, d).$

Hyperparameters

The hyperparameters a and b must be specified for the prior distribution of α which is a Gamma distribution with mean ab and variance ab^2 . Similarly, the hyperparameters c and d must be specified for the Gamma prior of κ .

Arguments to specify

Model-related	
Formula	a Formula object that corresponds to the hazard $h(t_i x_i)$: $y + \delta \sim x$.
data	an $(n \times q)$ -dimensional data frame; the q-columns correspond to q covariate vectors named in the formula in Formula.
	an $(n \times q)$ -unnensional data. If an equation is correspond to q covariate vectors named in the formula.
Hyperparameters	
WB.ab	a 2-vector of positive hyperparameters a and b of the prior distribution for the shape parameter α of the Weibull baseline hazard. Example: WB.ab <- c(0.5, 0.01).
WB.cd	a 2-vector of positive hyperparameters c and d of the prior distribution for the scale parameter κ of the Weibull baseline hazard. Example: WB.cd <- c(0.5, 0.05).
MCMC Settings	
numReps	total number of scans
thin	extent of thinning, e.g. if thin=10 retain every 10 th sample.
burninPerc	the proportion of burn-in (samples to be discarded before analyzing the data).
mhProp_alpha_var	the shape parameter α is updated using a Metropolis-Hastings random walk step generating proposals from a Gamma distribution with variance mhProp_alpha_var.
Starting Values	
startValues	use initiate.startValues_HReg(Formula, data, model, nChain, beta = NULL, WB.alpha = NULL, WB.kappa = NULL) which initiates starting values for β , α and κ in the Metropolis-Hastings algorithm if left unspecified. Users may set non-null starting values for any of these parameters.
Storage	
path	name of the directory where results are stored. Can leave unspecified.

${\bf Implementation}$

```
data(survData)
form <- Formula(time + event ~ cov1 + cov2)</pre>
WB.ab <- c(0.5, 0.01) # prior parameters for alpha
WB.cd <- c(0.5, 0.05) # prior parameters for kappa
hyperParams <- list(WB=list(WB.ab=WB.ab, WB.cd=WB.cd))
##
numReps <- 2000
burninPerc <- 0.5</pre>
thin <- 10
mhProp_alpha_var <- 0.01
mcmc <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),</pre>
             tuning=list(mhProp_alpha_var=mhProp_alpha_var))
##
myModel <- "Weibull"
myPath <- "Output/01-Results-WB/"</pre>
startValues <- initiate.startValues_HReg(form, survData, model=myModel, nChain=2)
fit_WB <- BayesSurv_HReg(form, survData, id=NULL, model=myModel, hyperParams, startValues, mcmc, myPath)
summary(fit_WB)
pred_WB <- predict(fit_WB, tseq=seq(from=0, to=30, by=5))</pre>
plot(pred_WB, plot.est="Haz")
plot(pred_WB, plot.est="Surv")
```

Let t_i denote the time-to-event of interest for individuals $i=1,\ldots,n$, subject to right censoring at time c_i . Let (y_i,δ_i,x_i) denote independent observations, where $y_i=\min(t_i,c_i)$, $\delta_i=\mathbbm{1}(y_i\leq c_i)$, and x_i is a vector of covariates for individual i. The following Cox proportional hazards model is assumed

$$h(t_i|x_i) = h_0(t_i) \exp\left(x_i^{\top}\beta\right), \ t_i > 0.$$

The baseline hazard h_0 is defined non-parametrically by a mixture of piecewise exponential functions as follows

$$\lambda_0(t) = \log h_0(t) = \sum_{k-1}^{K+1} \lambda_k \mathbb{1} \left\{ t \in (s_{k-1}, s_k] \right\},$$

where λ_k is constant and the time interval between 0 and the largest observed failure time, denoted s_k , is partitioned into K+1 disjoint intervals: $0 < s_1 < \cdots < s_{K+1}$.

In the Bayesian framework, priors must be specified for the regression parameter, β , the number of intervals, K, and the partition points (s_1, \ldots, s_{K+1}) , respectively. The following specifications are made

$$\pi(\beta) \propto 1,$$

$$\lambda | K, \mu_{\lambda}, \sigma_{\lambda}^{2} \sim MVN_{K+1}(\mu_{\lambda} \mathbb{1}, \sigma_{\lambda}^{2} \Sigma_{\lambda})$$

$$K \sim Poisson(\alpha),$$

$$\pi(s|K) \propto \frac{(2K+1)! \prod_{k=1}^{K+1} (s_{k} - s_{k-1})}{(s_{K+1})^{(2K+1)}},$$

$$\pi(\mu_{\lambda}) \propto 1,$$

$$\sigma_{\lambda}^{-2} \sim Gamma(a, b).$$

The prior specification for λ follows a MVN-ICAR (see Supplemental Material to Lee, Haneuse, Schrag and Dominici, 2015). Note that K and s jointly form a time-homogeneous Poisson process prior for the partition.

Hyperparameters

The hyperparameter α must be specified for the prior distribution of K, as well as a and b, the rate and shape of the Gamma distributed hyperprior for σ_1^{-2} .

Model-related	
Formula	a Formula object that corresponds to the hazard $h(t_i x_i)$: $y + \delta \sim x$.
data	an $(n \times q)$ -dimensional data.frame; the q -columns correspond to q covariate vectors named in the formula in Formula.
Hyperparameters	
PEM.ab	a 2-vector of positive hyperparameters a and b of the prior distribution for σ_1^{-2} . Example: PEM.ab <- c(0.7,0.7).
PEM.alpha	hyperparameter α of the prior distribution for K , which is one less than the number of partition points. Example: PEM.alpha <- 10.
MCMC Settings	
numReps	total number of scans
thin	extent of thinning, e.g. if thin=10 retain every 10^{th} sample.
burninPerc	the proportion of burn-in (samples to be discarded before analyzing the data).
C	a numeric value for the proportion that determines the sum of probabilities choosing the birth and death moves. ¹
delPert	the perturbation parameter in the birth updates; values must be between 0 and $0.5.^{1}$
rj.scheme	rj.scheme=1: the birth update will draw the proposal time split from $1: s_{max}$; rj.scheme=2: the birth update will draw the proposal time split from uniquely ordered failure times in the data.
K_max	the number of splits allowed in each iteration of the Metropolis-Hastings-Green algorithm.
s_max	the largest observed failure time, given by s_max <- max(data\$time[data\$event==1])
time_lambda	time points at which the λ is monitored for convergence. Example: time_lambda <- seq(1, s_max, 1). The chains for these monitoring points can be found in lambda.fin in the chains of the BayesSurv_HReg object.
Starting Values	
startValues	use initiate.startValues_HReg(Formula, data, model, nChain, beta = NULL) which initiates all necessary starting values in the Metropolis-Hastings-Green algorithm. Users may set non-null starting values for beta.
Storage	
path	name of the directory where results are stored. Can leave unspecified.

¹See Section A in Supplemental Material to Lee et al. (2015)

```
data(survData)
form <- Formula(time + event ~ cov1 + cov2)</pre>
PEM.ab <- c(0.7, 0.7) # prior parameters for 1/sigma^2
PEM.alpha <- 10 # prior parameters for K
hyperParams <- list(PEM=list(PEM.ab, PEM.alpha))</pre>
##
numReps <- 2000
burninPerc <- 0.5
thin <- 10
C <- 0.2
delPert <- 0.5
rj.scheme <- 2
K_max <- 50
       <- max(survData$time[survData$event == 1])</pre>
time_lambda <- seq(1, s_max, 0.5)</pre>
mcmc <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),</pre>
             tuning=list(C=C, delPert=delPert, rj.scheme=rj.scheme,
                          K_max=K_max, s_max=s_max, time_lambda=time_lambda) )
##
myModel <- "PEM"
myPath <- "Output/02-Results-PEM/"
                 <- initiate.startValues_HReg(form, survData, model=myModel, nChain=2)</pre>
fit_PEM <- BayesSurv_HReg(form, survData, id=NULL, model=myModel,</pre>
                   hyperParams, startValues, mcmc, path=myPath)
summary(fit_PEM)
pred_PEM <- predict(fit_PEM)</pre>
plot(pred_PEM, plot.est="Haz")
plot(pred_PEM, plot.est="Surv")
```

Let t_i denote the time-to-event of interest for individuals i = 1, ..., n. In the presence of interval censoring, the time-to-event for the ith subject satisfies $c_{ij} \le t_i < c_{ij+1}$. Let $(c_{ij}, c_{ij+1}, L_i, x_i)$ denote independent observations, where L_i is the left-truncation time and x_i is a vector of covariates for individual i. The following AFT model is assumed

$$\log(t_i) = x_i^{\top} \beta + \epsilon_i, \ t_i > 0.$$

We take ϵ_i to follow the Normal(μ , σ^2) distribution for ϵ_i for the parametric AFT model. In the Bayesian framework, priors must be specified for β , μ , and σ^2 . The following specifications are made

$$\pi(\beta, \mu) \propto 1,$$

$$\sigma^2 \sim Inverse - Gamma(a_\sigma, b_\sigma).$$

Hyperparameters

The hyperparameters, a_{σ} and b_{σ} , must be specified for the prior distribution of σ^2 .

Arguments to specify

Model-related	
Formula	a Formula object that corresponds to $\log(t_i)$: $L y_L + y_U \sim x$.
data	an $(n \times q)$ -dimensional data frame; the q -columns correspond to q covariate vectors named in the formula in Formula.
Hyperparameters	
LN.ab	a 2-vector of positive hyperparameters a and b of the prior distribution for σ^2 . Example: LN.ab <- c(0.7,0.7).
MCMC Settings	
numReps	total number of scans
thin	extent of thinning, e.g. if thin=10 retain every 10^{th} sample.
burninPerc	the proportion of burn-in (samples to be discarded before analyzing the data).
beta.prop.var	the parameter β is updated using a Metropolis-Hastings random walk step generating proposals from a Normal distribution with variance beta.prop.var.
mu.prop.var	the parameter μ is updated using a Metropolis-Hastings random walk step generating proposals from a Normal distribution with variance mu.prop.var.
zeta.prop.var	the parameter $\zeta = 1/\sigma^2$ is updated using a Metropolis-Hastings random walk step generating proposals from a log-Normal distribution with variance zeta.prop.var.
Starting Values	
startValues	use initiate.startValues_AFT(Formula, data, model, nChain, beta = NULL, y = NULL, LN.mu = NULL,
	LN.sigSq = NULL) which initiates all necessary starting values in the Metropolis-Hastings algorithm. Users may
	set non-null starting values for beta, y, LN.mu, LN.sigSq.
Storage	
path	name of the directory where results are stored. Can leave unspecified.

Implementation

data(survData)

```
survData$yL <- survData$yU <- survData[,1]</pre>
survData$yU[which(survData[,2] == 0)] <- Inf</pre>
survData$LT <- rep(0, dim(survData)[1])</pre>
form <- Formula(LT | yL + yU ~ cov1 + cov2)</pre>
LN.ab <- c(0.3, 0.3)
hyperParams <- list(LN=list(LN.ab=LN.ab))</pre>
##
           <- 1000
numReps
thin
           <- 10
burninPerc <- 0.5
beta.prop.var <- 0.01
mu.prop.var <- 0.1
zeta.prop.var <- 0.1
mcmcParams <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),</pre>
tuning=list(beta.prop.var=beta.prop.var, mu.prop.var=mu.prop.var,
zeta.prop.var=zeta.prop.var))
##
myModel <- "LN"
myPath <- "Output/01-Results-LN/"
startValues
                 <- initiate.startValues_AFT(form, survData, model=myModel, nChain=2)</pre>
fit_LN <- BayesSurv_AFT(form, survData, model=myModel, hyperParams,</pre>
startValues, mcmcParams, path=myPath)
summary(fit_LN)
pred_LN <- predict(fit_LN, time = seq(0, 35, 1), tseq=seq(from=0, to=30, by=5))</pre>
plot(pred_LN, plot.est="Haz")
plot(pred_LN, plot.est="Surv")
```

Let t_i denote the time-to-event of interest for individuals $i=1,\ldots,n$. Considering interval censoring, the time-to-event for the i^{th} subject satisfies $c_{ij} \leq t_i < c_{ij+1}$. Let $(c_{ij}, c_{ij+1}, L_i, x_i)$ denote independent observations, where L_i is the left-truncation time and x_i is a vector of covariates for individual i. The following AFT model is assumed

$$\log(t_i) = x_i^{\top} \beta + \epsilon_i, \ t_i > 0,$$

where ϵ_i is assumed to be taken as draws from the DPM of normal distributions:

$$\epsilon_i | r_i \sim \text{Normal}(\mu_{r_i}, \sigma_{r_i}^2),$$
 $(\mu_r, \sigma_r^2) \sim G_0, \text{ for } r = 1, \dots, M,$
 $r_i | p \sim Discrete(r_i | p_1, \dots, p_M),$
 $p \sim Dirichlet(\tau/M, \dots, \tau/M).$

In the Bayesian framework, priors must be specified for the unknown parameters. We take the G_0 as a normal distribution centered at μ_0 with a variance σ_0^2 for μ_r and an inverse-Gamma (a_σ, b_σ) for σ_r^2 . For β , we adopt non-informative flat priors on the real line. Finally, we specify a Gamma (a_τ, b_τ) hyperprior for the precision parameter τ .

Hyperparameters

The hyperparameter $(\mu_0, \sigma_0^2, a_\sigma, b_\sigma)$ must be specified for the centering distribution G_0 , as well as a_τ and b_τ , the rate and shape of the Gamma distributed hyperprior for τ .

Model-related	
Formula	a Formula object that corresponds to $\log(t_i)$: $L y_L + y_U \sim x$.
data	an $(n \times q)$ -dimensional data.frame; the q -columns correspond to q covariate vectors named in the formula in Formula.
Hyperparameters	
DPM.mu	a hyperparameter μ_0 of the centering distribution G_0 .
DPM.sigSq	a positive-valued hyperparameter σ_0^2 of the centering distribution G_0 .
DPM.ab	a 2-vector of positive hyperparameters a_{σ} and b_{σ} of the centering distribution G_0 .
Tau.ab	a 2-vector of positive hyperparameters a_{τ} and b_{τ} of the hyperprior distribution for τ . Example: Tau.ab <- c(1.5, 0.0125).
MCMC Settings	
numReps	total number of scans
thin	extent of thinning, e.g. if thin=10 retain every 10^{th} sample.
burninPerc	the proportion of burn-in (samples to be discarded before analyzing the data).
beta.prop.var	the parameter β is updated using a Metropolis-Hastings random walk step generating proposals from a Normal distribution with variance beta.prop.var.
mu.prop.var	the parameter μ_r is updated using a Metropolis-Hastings random walk step generating proposals from a Normal distribution with variance mu.prop.var.
zeta.prop.var	the parameter $\zeta_r = 1/\sigma_r^2$ is updated using a Metropolis-Hastings random walk step generating proposals from a log-Normal distribution with variance zeta.prop.var.
Starting Values	
startValues	use initiate.startValues_AFT(Formula, data, model, nChain, beta = NULL, y = NULL, DPM.class = NULL, DPM.mu = NULL, DPM.zeta=NULL, DPM.tau=NULL) which initiates all necessary starting values in the Metropolis-Hastings algorithm. Users may set non-null starting values for beta, y, DPM.class, DPM.mu, DPM.zeta, DPM.tau.
Storage	
path	name of the directory where results are stored. Can leave unspecified.

```
data(survData)
survData$yL <- survData$yU <- survData[,1]</pre>
survData$yU[which(survData[,2] == 0)] <- Inf</pre>
survData$LT <- rep(0, dim(survData)[1])</pre>
form <- Formula(LT | yL + yU ~ cov1 + cov2)</pre>
DPM.mu <- log(12)
DPM.sigSq <- 100
DPM.ab <- c(2, 1)
Tau.ab <- c(1.5, 0.0125)
hyperParams <- list(DPM=list(DPM.mu=DPM.mu, DPM.sigSq=DPM.sigSq, DPM.ab=DPM.ab, Tau.ab=Tau.ab))
##
numReps
          <- 1000
thin
           <- 10
burninPerc <- 0.5
beta.prop.var <- 0.01
mu.prop.var <- 0.1
zeta.prop.var <- 0.1</pre>
mcmcParams <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),</pre>
tuning=list(beta.prop.var=beta.prop.var, mu.prop.var=mu.prop.var,
zeta.prop.var=zeta.prop.var))
##
myModel <- "DPM"
myPath <- "Output/02-Results-DPM/"
startValues
                 <- initiate.startValues_AFT(form, survData, model=myModel, nChain=2)</pre>
fit_DPM <- BayesSurv_AFT(form, survData, model=myModel, hyperParams,</pre>
startValues, mcmcParams, path=myPath)
summary(fit_DPM)
pred_DPM <- predict(fit_DPM, time = seq(0, 35, 1), tseq=seq(from=0, to=30, by=5))</pre>
plot(pred_DPM, plot.est="Haz")
plot(pred_DPM, plot.est="Surv")
```

Let t_{ji} denote the time-to-event of interest for individuals $i=1,\ldots,n_j$ in cluster $j=1,\ldots J$, subject to right censoring at time c_{ji} . Let $(y_{ji},\delta_{ji},x_{ji})$ denote independent observations, where $y_{ji}=\min\left(t_{ji},c_{ji}\right)$, $\delta_{ji}=\mathbbm{1}(y_{ji}\leq c_{ji})$, and x_{ji} is a vector of covariates for individual i. The following Cox proportional hazards model is assumed

 $h(t_{ji}|x_{ji}) = h_0(t_{ji}) \exp\left(x_{ii}^{\top}\beta + V_j\right), \ t_{ji} > 0,$

where the V_j 's are cluster-specific random effects and the baseline hazard h_0 is defined parametrically by a Weibull hazard, $h_0(t) = \alpha \kappa t^{\alpha-1}$.

In the Bayesian framework, priors must be specified for the regression parameter, β , the cluster-specific random effects, V_j , and the shape and scale parameters of baseline hazard function, α and κ , respectively. The prior distributions for β , α and κ are given below.

 $\pi(\beta) \propto 1,$ $\pi(\alpha) \sim Gamma(a, b),$ $\pi(\kappa) \sim Gamma(c, d).$

We provide two possible prior specifications for the cluster-specific random effects below.

In the first column, the individual specific-random effects are assumed to be $\stackrel{iid}{\sim} N(0, \sigma^2)$. In the second column, the cluster-specific random effects are drawn from a mixture of M normal distributions each with mean and variance (μ_m, σ_m^2) which are distributed as a multivariate Normal/Inverse-Gamma (NIG), denoted by G_0 ; we refer to this as the Dirichlet process mixture (DPM) prior. The probability density of G_0 is defined by the product

$$f_{\rm NIG}(\mu,\,\sigma^2|\mu_0,\,\zeta_0,\,a_0,\,b_0) = f_{\rm Normal}(\mu|\mu_0,\,1/\zeta_0^2) \times f_{\rm Gamma}(\zeta=1/\sigma^2|a_0,\,b_0).$$

We assume $\mu_0=0$ and $\zeta_0=1$.

Hyperparameters

a, b : shape and rate of Gamma prior for α c, d : shape and rate of Gamma prior for κ a_N, b_N : mean and variance of normal prior for V_j

 a_0, b_0 : shape and rate of Gamma component of the prior distribution, G_0 , of (μ_m, σ_m^2) (DPM prior)

 $a_{\tau},\,b_{\tau}$: shape and rate of Gamma hyperprior for τ (DPM prior)

Arguments to specify

Model-related	
Formula	a Formula object that corresponds to the hazard $h(t_i x_i)$: $y + \delta \sim x$.
data	an $(n \times q)$ -dimensional data.frame; the q -columns correspond to q covariate vectors named in the formula in Formula.
model	a character vector that specifies the type of components in the model. Use model <- c("Weibull", "Normal") for Normal prior for V_i and use model <- c("Weibull", "DPM") for DPM prior.
id	an n -vector of cluster information where cluster membership corresponds to one of the positive integers $1, \ldots, J$.
Hyperparameters	
WB.ab	a 2-vector of positive hyperparameters a and b of the prior distribution for the shape parameter α of the Weibull baseline hazard. Example: WB.ab <- c(0.5, 0.01).
WB.cd	a 2-vector of positive hyperparameters c and d of the prior distribution for the scale parameter κ of the Weibull baseline hazard. Example: WB.cd <- c(0.5, 0.05).
Normal prior for V_i	
Normal.ab	a 2-vector of positive hyperparameters a_N and b_N of the prior for $1/\sigma^2$, the precision of the normally distributed cluster-specific random effects. Example: Normal.ab <- c(0.5, 0.01).
DPM prior for V_i	
DPM.ab	a 2-vector of positive hyperparameters a_0 and b_0 of the prior for (μ_m, σ_m^2) , the parameters of the normally distributed cluster-specific random effects. Example: DPM.ab <- c(0.5, 0.01).
aTau	a positive-valued hyperparameter corresponding to the shape parameter, a_{τ} , of the Gamma prior of τ .
bTau	a positive-valued hyperparameter corresponding to the rate parameter, b_{τ} , of the Gamma prior of τ .
MCMC Settings	
numReps	total number of scans
thin	extent of thinning, e.g. if thin=10 retain every 10^{th} sample.
burninPerc	the proportion of burn-in (samples to be discarded before analyzing the data).

from a Gamma distribution with variance mhProp_alpha_var.

non-null starting values for any of these parameters.

generates proposals from a Normal distribution with variance mhProp_V_var

Starting Values

mhProp_alpha_var

mhProp_V_var

startValues

use initiate.startValues_HReg(Formula, data, model, id, nChain, beta = NULL, WB.alpha = NULL, WB.kappa = NULL, V.j = NULL, Normal.zeta = NULL, DPM.class = NULL, DPM.tau = NULL) which initiates starting values for β , α , κ , V_j , ζ (in the DPM model for V_j) and τ in the Metropolis-Hastings-Green algorithm if left unspecified; DPM.class sets the starting value for class membership in the DPM model. Users may set

the shape parameter α is updated using a Metropolis-Hastings random walk algorithm which generates proposals

the cluster-specific random effects, V_{ji} , are updated using a Metropolis-Hastings random walk algorithm which

```
data(survData)
id=survData$cluster
form <- Formula(time + event ~ cov1 + cov2)</pre>
WB.ab <- c(0.5, 0.01) # prior parameters for alpha
WB.cd <- c(0.5, 0.05) # prior parameters for kappa
Normal.ab <- c(0.5, 0.01) # for Normal random effects
DPM.ab <- c(0.5, 0.01) # For DPM
    aTau <- 1.5
    bTau <- 0.0125
hyperParams.WB.Normal <- list(WB=list(WB.ab=WB.ab, WB.cd=WB.cd),
                        Normal=list(Normal.ab=Normal.ab))
hyperParams.WB.DPM <- list(WB=list(WB.ab=WB.ab, WB.cd=WB.cd),
                        DPM=list(DPM.ab=DPM.ab, aTau=aTau, bTau=bTau))
numReps <- 2000
burninPerc <- 0.5
thin <- 10
mhProp_alpha_var <- 0.01
mhProp_V_var
                 <- 0.05
storeV <- TRUE
mcmc.WB <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),</pre>
             storage=list(storeV=storeV),
             tuning=list(mhProp_alpha_var=mhProp_alpha_var, mhProp_V_var=mhProp_V_var))
##
myModel.WB.Normal <- c("Weibull","Normal")</pre>
myPath.WB.Normal <- "Output/03-Results-WB_Normal/"</pre>
startValues.WB.Normal <- initiate.startValues_HReg(form, survData, id, model=myModel.WB.Normal, nChain=2)
fit_WB_Normal <- BayesSurv_HReg(form, survData, id, model=myModel.WB.Normal, hyperParams.WB.Normal,
  startValues.WB.Normal, mcmc.WB, myPath.WB.Normal)
summary(fit_WB_Normal)
pred_WB_N \leftarrow predict(fit_WB_N, tseq=seq(from=0, to=30, by=5))
plot(pred_WB_N, plot.est="Haz")
plot(pred_WB_N, plot.est="Surv")
myModel.WB.DPM <- c("Weibull","DPM")</pre>
myPath.WB.DPM <- "Output/04-Results-WB_DPM/"
startValues_WB.DPM <- initiate.startValues_HReg(form, survData, id, model=myModel.WB.DPM, nChain=2)
fit_WB_DPM <- BayesSurv_HReg(form, survData, id, model=myModel.WB.DPM, hyperParams.WB.DPM,
  startValues.WB.DPM, mcmc.WB, myPath.WB.DPM)
summary(fit_WB_DPM)
pred_WB_DPM <- predict(fit_WB_DPM, tseq=seq(from=0, to=30, by=5))</pre>
plot(pred_WB_DPM, plot.est="Haz")
plot(pred_WB_DPM, plot.est="Surv")
```

Let t_{ji} denote the time-to-event of interest for individuals $i=1,\ldots,n_j$ in cluster $j=1,\ldots J$, subject to right censoring at time c_{ji} . Let $(y_{ji},\delta_{ji},x_{ji})$ denote independent observations, where $y_{ji}=\min\left(t_{ji},c_{ji}\right)$, $\delta_{ji}=\mathbbm{1}(y_{ji}\leq c_{ji})$, and x_{ji} is a vector of covariates for individual i. The following Cox proportional hazards model is assumed

$$h(t_{ji}|x_{ji}) = h_0(t_{ji}) \exp\left(x_{ii}^{\top}\beta + V_j\right), \ t_{ji} > 0,$$

The baseline hazard h_0 is defined non-parametrically by a mixture of piecewise exponential functions as follows

$$\lambda_0(t) = \log h_0(t) = \sum_{k=1}^{K+1} \lambda_k \mathbb{1} \{ t \in (s_{k-1}, s_k] \},$$

where λ_k is constant and the time interval between 0 and the largest observed failure time, denoted s_k , is partitioned into K+1 disjoint intervals: $0 < s_1 < \cdots < s_{K+1}$.

In the Bayesian framework, priors must be specified for the regression parameter, β , the number of intervals, K, and the partition points (s_1, \ldots, s_{K+1}) , respectively. The following specifications are made

$$\pi(\beta) \propto 1,$$

$$\lambda | K, \mu_{\lambda}, \sigma_{\lambda}^{2} \sim MVN_{K+1}(\mu_{\lambda} \mathbb{1}, \sigma_{\lambda}^{2} \Sigma_{\lambda})$$

$$K \sim Poisson(\alpha),$$

$$\pi(s|K) \propto \frac{(2K+1)! \prod_{k=1}^{K+1} (s_{k} - s_{k-1})}{(s_{K+1})^{(2K+1)}},$$

$$\pi(\mu_{\lambda}) \propto 1,$$

$$\sigma_{1}^{-2} \sim Gamma(a, b).$$

The prior specification for λ follows a MVN-ICAR (see Supplemental Material to Lee, Haneuse, Schrag and Dominici, 2015). Note that K and s jointly form a time-homogeneous Poisson process prior for the partition.

We provide two possible prior specifications for the cluster-specific random effects below.

In the first column, the individual specific-random effects are assumed to be $\stackrel{iid}{\sim} N(0,\sigma^2)$. In the second column, the cluster-specific random effects are drawn from a mixture of M normal distributions each with mean and variance (μ_m, σ_m^2) which are distributed as a multivariate Normal/Inverse-Gamma (NIG), denoted by G_0 ; we refer to this as the Dirichlet process mixture (DPM) prior. The probability density of G_0 is defined by the product

$$f_{\text{NIG}}(\mu, \sigma^2 | \mu_0, \zeta_0, a_0, b_0) = f_{\text{Normal}}(\mu | \mu_0, 1/\zeta_0^2) \times f_{\text{Gamma}}(\zeta = 1/\sigma^2 | a_0, b_0).$$

We assume $\mu_0 = 0$ and $\zeta_0 = 1$.

Hyperparameters

 α : hyperparameter of K

a, b: shape and rate of Gamma prior for σ_{λ}^{-2} a_N, b_N : mean and variance of normal prior for V_j

 a_0, b_0 : shape and rate of Gamma component of the prior distribution, G_0 , of (μ_m, σ_m^2)

 $a_{ au},\,b_{ au}$: shape and rate of Gamma hyperprior for au

Arguments to specify

Model-related Formula a Formula object that corresponds to the hazard $h(t_i|x_i)$: $y + \delta \sim x$. data an $(n \times q)$ -dimensional data frame; the q-columns correspond to q covariate vectors named in the formula in Formula. model a character vector that specifies the type of components in the model. Use model <- c("PEM", "DPM"). id an n-vector of cluster information where cluster membership corresponds to one of the positive integers $1, \ldots, J$. Hyperparameters PEM.ab a 2-vector of positive hyperparameters a and b of the prior distribution for σ_{λ}^{-2} . Example: PEM.ab <- c(0.7,0.7). PEM.alpha hyperparameter α of the prior distribution for K, which is one less than the number of partition points. Example: PEM.alpha <- 10.

Normal prior for V_j Normal.ab

a 2-vector of positive hyperparameters a_N and b_N of the prior for $1/\sigma^2$, the precision of the normally distributed cluster-specific random effects. Example: Normal.ab <- c(0.5, 0.01).

a 2-vector of positive hyperparameters a_0 and b_0 of the prior for (μ_m, σ_m^2) , the parameters of the normally distributed cluster-specific random effects. Example: DPM.ab <- c(0.5, 0.01).

aTau a positive-valued hyperparameter corresponding to the shape parameter, a_{τ} , of the Gamma prior of τ . bTau a positive-valued hyperparameter corresponding to the rate parameter, b_{τ} , of the Gamma prior of τ .

MCMC Settings

numReps total number of scans

thin extent of thinning, e.g. if thin=10 retain every 10^{th} sample.

burninPerc the proportion of burn-in (samples to be discarded before analyzing the data).

mhProp_V_var the cluster-specific random effects, V_{ii} , are updated using a Metropolis-Hastings random walk algorithm which generates proposals from a Normal distribution with variance mhProp_V_var a numeric value for the proportion that determines the sum of probabilities choosing the birth and death moves.² C delPert the perturbation parameter in the birth updates; values must be between 0 and 0.5. rj.scheme=1: the birth update will draw the proposal time split from $1:s_{max}$; rj.scheme=2: the birth update will rj.scheme draw the proposal time split from uniquely ordered failure times in the data. the number of splits allowed in each iteration of the Metropolis-Hastings-Green algorithm. K_{max} the largest observed failure time, given by s_max <- max(data\$time[data\$event==1]) s max time_lambda time points at which the λ is monitored for convergence. Example: time_lambda <- seq(1, s_max, 1). The chains for these monitoring points can be found in lambda.fin in the chains of the BayesSurv object. Starting Values startValues use initiate.startValues_HReg(Formula, data, model, nChain, beta = NULL, V.j=NULL, Normal.zeta=NULL, DPM.class=NULL, DPM.tau=NULL) which initiates starting values for β , V_j , ζ (in the DPM model for V_j) and τ in the Metropolis-Hastings-Green algorithm if left unspecified; DPM. class sets the starting value for class membership in the DPM model. Users may set non-null starting values for any of these parameters. Storage path name of the directory where results are stored. Can leave unspecified. storeV a TRUE/FALSE logical constant indicating storage of V_i values.

Implementation

data(survData)

```
id=survData$cluster
form <- Formula(time + event ~ cov1 + cov2)</pre>
##
PEM.ab <- c(0.7, 0.7) # prior parameters for 1/sigma^2
PEM.alpha <- 10 # prior parameters for K
Normal.ab <- c(0.5, 0.01) # for Normal random effects
DPM.ab <- c(0.5, 0.01) # For DPM
    aTau <- 1.5
    bTau <- 0.0125
hyperParams.PEM.Normal <- list(PEM=list(PEM.ab=PEM.ab, PEM.alpha=PEM.alpha),
                        Normal=list(Normal.ab=Normal.ab))
hyperParams.PEM.DPM <- list(PEM=list(PEM.ab=PEM.ab, PEM.alpha=PEM.alpha),
                        DPM=list(DPM.ab=DPM.ab, aTau=aTau, bTau=bTau))
##
numReps <- 2000
burninPerc <- 0.5
thin <- 10
mhProp_V_var
                 <- 0.05
storeV <- TRUE
C <- 0.2
delPert <- 0.5
rj.scheme <- 2
        <- 50
K_max
         <- max(survData$time[survData$event == 1])
time_lambda <- seq(1, s_max, 0.5)</pre>
mcmc.PEM <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),</pre>
       storage=list(storeV=storeV),
             tuning=list(mhProp_V_var=mhProp_V_var, C=C, delPert=delPert, rj.scheme=rj.scheme,
                         K_max=K_max, s_max=s_max, time_lambda=time_lambda) )
##
myModel.PEM.Normal <- c("PEM","Normal")</pre>
myPath.PEM.Normal <- "Output/05-Results-PEM_Normal/"
startValues.PEM.Normal <- initiate.startValues_HReg(form, survData, id, model=myModel.PEM.Normal, nChain=2)
fit_PEM_Normal <- BayesSurv_HReg(form, survData, id, model=myModel.PEM.Normal, hyperParams.PEM.Normal,
  startValues.PEM.Normal, mcmc.PEM, path=myPath.PEM.Normal)
summary(fit_PEM_Normal)
pred_PEM_N <- predict(fit_PEM_N)</pre>
plot(pred_PEM_N, plot.est="Haz")
plot(pred_PEM_N, plot.est="Surv")
##
myModel.PEM.DPM <- c("PEM","DPM")</pre>
myPath.PEM.DPM <- "Output/06-Results-PEM_DPM/"
startValues.PEM.DPM <- initiate.startValues_HReg(form, survData, id, model=myModel.PEM.DPM, nChain=2)
##
fit_PEM_DPM <- BayesSurv_HReg(form, survData, id, model=myModel.PEM.DPM, hyperParams.PEM.DPM,
  startValues.PEM.DPM, mcmc.PEM, path=myPath.PEM.DPM)
pred_PEM_DPM <- predict(fit_PEM_DPM)</pre>
plot(pred_PEM_DPM, plot.est="Haz")
plot(pred_PEM_DPM, plot.est="Surv")
```

 $^{^2{\}rm See}$ Section A in Supplemental Material to Lee et al. (2015)

Let t_{i1} and t_{i2} denote the time to nonterminal event and terminal event from subject $i=1,\ldots,n$, subject to right censoring at time c_i . Let $(y_{i1},y_{i2},\delta_{i1},\delta_{i2},x_i)$ denote independent observations, where $y_{i1}=\min(t_{i1},t_{i2},c_i)$, $\delta_{i1}=\mathbbm{1}\{t_{i1}\leq\min(t_{i2},c_i)\}$, $y_{i2}=\min(t_{i2},c_i)$, $\delta_{i2}=\mathbbm{1}\{t_{i2}\leq c_i\}$, and x_i is a vector of covariates for individual i. The independent semi-competing risks data are assumed to arise from an illness-death model system with transitions that are modeled through the following three hazard functions:

$$h_1(t_{i1}|\gamma_{ji}, x_{i1}) = \gamma_{ji}h_{01}(t_{i1})\exp\left(x_{i1}^{\top}\beta_1\right), \ t_{i1} > 0,$$
 (1)

$$h_2(t_{i2}|\gamma_{ji}, x_{i2}) = \gamma_{ji}h_{02}(t_{i2})\exp\left(x_{i2}^{\top}\beta_2\right), \ t_{i2} > 0,$$
 (2)

$$h_3(t_{i2}|t_{i1}, \gamma_{ji}, x_{i3}) = \gamma_{ji}h_{03}(t_{i2})\exp\left(x_{13}^\top \beta_3\right), \ t_{i2} > 0,$$
 (3)

where γ_{ji} is a subject-specific frailty with vectors of covariates x_{i1} , x_{i2} and x_{i3} which are subsets of x_i . The baseline hazard functions are defined parametrically by Weibull hazards of the form $h_{0g}(t) = \alpha_g \kappa_g t^{\alpha_g - 1}$, for $g \in \{1, 2, 3\}$. The baseline hazard function h_{03} is assumed to be Markov with respect to t_{i1} ; we will refer to the set of conditional hazard functions in (13)-(15) as the Markov model. Alternatively, we consider modeling h_3 as follows:

$$h_3(t_{i2}|t_{i1}, \gamma_{ii}, x_{i3}) = \gamma_{ii}h_{03}(t_{i2} - t_{i1}) \exp\left(x_{i3}^{\top}\beta_3\right), \ 0 < t_{i1} < t_{i2}.$$

We will refer to the set of conditional hazard functions in (13), (14) and (16) as the semi-Markov model.

In the Bayesian framework, priors must be specified for the regression parameter, β_g , the shape and scale parameters of baseline hazard function, α_g and κ_g , and the frailty parameter, γ_{ii} , respectively, for $g \in \{1, 2, 3\}$. The following specifications are made

$$\begin{split} \pi(\beta_g) &\propto 1, \\ \alpha_g &\sim Gamma(a_g,b_g), \\ \kappa_g &\sim Gamma(c_g,d_g), \\ \gamma_{ji} |\theta &\sim Gamma(\theta^{-1},\theta^{-1}), \\ \theta^{-1} &\sim Gamma(\psi,\omega). \end{split}$$

Hyperparameters

 $a_g,\,b_g$: shape and rate of Gamma prior for α_g for $g\in\{1,2,3\}$ $c_g,\,d_g$: shape and rate of Gamma prior for κ_g for $g\in\{1,2,3\}$

 ψ : the shape of Gamma prior for θ^{-1} ω : the rate of Gamma prior for θ^{-1}

Model-related	
Formula	a Formula object that corresponds to h_q , for $g \in \{1, 2, 3\}$: $y_1 + \delta_1 y_2 + \delta_2 \sim x_1 x_2 x_3$.
data	an $(n \times q)$ -dimensional data frame; the q -columns correspond to q covariate vectors named in the formula in Formula
	below.
model	c("Markov", "Weibull") for Markov definition of h_3 in (15); c("semi-Markov", "Weibull") for semi-Markov definition of h_3 in (16).
Hyperparameters	
WB.ab1	a 2-vector of positive hyperparameters a_1 and b_1 of the prior distribution for the shape parameter α_1 of the Weibull baseline hazard. Example: WB.ab1 <- c(0.5, 0.01).
WB.ab2	a 2-vector of positive hyperparameters a_2 and b_2 of the prior for α_2 .
WB.ab3	a 2-vector of positive hyperparameters a_3 and b_3 of the prior for α_3 .
WB.cd1	a 2-vector of positive hyperparameters c_1 and d_1 of the prior distribution for the scale parameter κ_1 of the Weibull baseline hazard. Example: WB.cd1 <- c(0.5, 0.05).
WB.cd2	a 2-vector of positive hyperparameters c_2 and d_2 of the prior for κ_2 .
WB.cd3	a 2-vector of positive hyperparameters c_3 and d_3 of the prior for κ_3 .
theta	a 2-vector of positive hyperparameters ψ and ω for the hyperprior θ .
MCMC Settings	
. numReps	total number of scans
thin	extent of thinning, e.g. if thin=10 retain every 10^{th} sample.
burninPerc	the proportion of burn-in (samples to be discarded before analyzing the data).
mhProp_theta_var	the parameter θ is updated using a Metropolis-Hastings random walk step generating proposals from a Gamma distribution with variance mhProp_theta_var.
mhProp_alphag_var	a 3-vector which specifies the variances of the three random walk Metropolis-Hastings Gamma proposal distributions corresponding to α_1 , α_2 , α_3 .
Starting Values	
startValues	use initiate.startValues_HReg(Formula, data, model, nChain, beta1 = NULL, beta2 = NULL, beta3 = NULL, gamma.ji=NULL, theta = NULL, WB.alpha = NULL, WB.kappa = NULL) which initiates starting values for β_g , γ_{ji} , θ , α_g , and κ_g in the Metropolis-Hastings algorithm if left unspecified. Users may set non-null starting values for any of these parameters.
Storage	
path	name of the directory where results are stored. Can leave unspecified.
nGam_save	the number of γ to be stored.

```
data(scrData)
form <- Formula(time1 + event1 | time2 + event2 \sim x1 + x2 + x3 | x1 + x2 | x1 + x2)
WB.ab1 <- c(0.5, 0.01)
WB.ab2 <- c(0.5, 0.01)
WB.ab3 <- c(0.5, 0.01)
WB.cd1 <- c(0.5, 0.05)
WB.cd2 <- c(0.5, 0.05)
WB.cd3 <- c(0.5, 0.05)
theta <- c(0.7, 0.7) # prior params for 1/theta
hyperParams <- list(theta=theta,</pre>
                WB=list(WB.ab1=WB.ab1, WB.ab2=WB.ab2, WB.ab3=WB.ab3,
                        WB.cd1=WB.cd1, WB.cd2=WB.cd2, WB.cd3=WB.cd3))
##
numReps
         <- 2000
thin
          <- 10
burninPerc <- 0.25
mhProp_theta_var <- 0.05</pre>
mhProp_alphag_var <- c(0.01, 0.01, 0.01)
nGam_save <- 0
mcmc.WB <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),</pre>
                    storage=list(nGam_save=nGam_save),
                    tuning=list(mhProp_theta_var=mhProp_theta_var, mhProp_alphag_var=mhProp_alphag_var))
##
myModel <- c("semi-Markov", "Weibull")</pre>
myPath <- "Output/01-Results-WB/"</pre>
startValues <- initiate.startValues_HReg(form, scrData, model=myModel, nChain=2)
fit_WB <- BayesID_HReg(form, scrData, id=NULL, model=myModel,</pre>
                hyperParams, startValues, mcmc.WB, path=myPath)
fit_WB
summary(fit_WB)
pred_WB <- predict(fit_WB, tseq=seq(from=0, to=30, by=5))</pre>
plot(pred_WB, plot.est="Haz")
plot(pred_WB, plot.est="Surv")
```

Let t_{i1} and t_{i2} denote the time to nonterminal event and terminal event from subject $i=1,\ldots,n$, subject to right censoring at time c_i . Let $(y_{i1},y_{i2},\delta_{i1},\delta_{i2},x_i)$ denote independent observations, where $y_{i1}=\min(t_{i1},t_{i2},c_i)$, $\delta_{i1}=\mathbbm{1}\{t_{i1}\leq\min(t_{i2},c_i)\}$, $y_{i2}=\min(t_{i2},c_i)$, $\delta_{i2}=\mathbbm{1}\{t_{i2}\leq c_i\}$, and x_i is a vector of covariates for individual i. The independent semi-competing risks data are assumed to arise from an illness-death model system with transitions that are modeled through the following three hazard functions:

$$h_1(t_{i1}|\gamma_{ji}, x_{i1}) = \gamma_{ji}h_{01}(t_{i1})\exp\left(x_{i1}^{\top}\beta_1\right), \ t_{i1} > 0,$$
 (5)

$$h_2(t_{i2}|\gamma_{ji}, x_{i2}) = \gamma_{ji}h_{02}(t_{i2})\exp\left(x_{i2}^{\top}\beta_2\right), \ t_{i2} > 0,$$
 (6)

$$h_3(t_{i2}|t_{i1}, \gamma_{ji}, x_{i3}) = \gamma_{ji}h_{03}(t_{i2})\exp\left(x_{13}^\top \beta_3\right), \ t_{i2} > 0,$$
 (7)

where γ_{ji} is a subject-specific frailty with vectors of covariates x_{i1} , x_{i2} and x_{i3} which are subsets of x_i . The baseline hazard h_0 is defined non-parametrically by a mixture of piecewise exponential functions as follows

$$\lambda_0(t) = \log h_0(t) = \sum_{k=1}^{K+1} \lambda_k \mathbb{1} \{t \in (s_{k-1}, s_k]\},$$

where λ_k is constant and the time interval between 0 and the largest observed failure time, denoted s_k , is partitioned into K+1 disjoint intervals: $0 < s_1 < \cdots < s_{K+1}$. The baseline hazard function h_{03} is assumed to be Markov with respect to t_{i1} ; we will refer to the set of conditional hazard functions in (13)-(15) as the Markov model. Alternatively, we consider modeling h_3 as follows:

$$h_3(t_{i2}|t_{i1}, \gamma_{ji}, x_{i3}) = \gamma_{ji}h_{03}(t_{i2} - t_{i1}) \exp\left(x_{i3}^{\top}\beta_3\right), \ 0 < t_{i1} < t_{i2}.$$

$$\tag{8}$$

We will refer to the set of conditional hazard functions in (13), (14) and (16) as the semi-Markov model.

In the Bayesian framework, priors must be specified for the regression parameter, β , the number of intervals, K, the partition points (s_1, \ldots, s_{K+1}) , and the frailty, γ_{ji} , respectively. The following specifications are made

$$\pi(\beta) \propto 1,$$

$$\lambda | K, \mu_{\lambda}, \sigma_{\lambda}^{2} \sim MVN_{K+1}(\mu_{\lambda} \mathbb{1}, \sigma_{\lambda}^{2} \Sigma_{\lambda})$$

$$K \sim Poisson(\alpha),$$

$$\pi(s|K) \propto \frac{(2K+1)! \prod_{k=1}^{K+1} (s_{k} - s_{k-1})}{(s_{K+1})^{(2K+1)}},$$

$$\pi(\mu_{\lambda}) \propto 1,$$

$$\sigma_{\lambda}^{-2} \sim Gamma(a, b),$$

$$\gamma_{ji} | \theta \sim Gamma(\theta^{-1}, \theta^{-1}),$$

$$\theta^{-1} \sim Gamma(\psi, \omega).$$

The prior specification for λ follows a MVN-ICAR (see Supplemental Material to Lee, Haneuse, Schrag and Dominici, 2015). Note that K and s jointly form a time-homogeneous Poisson process prior for the partition.

Hyperparameters

 α : parameter corresponding to the Poisson prior of K

a, b: shape and rate of Gamma prior for σ_{λ}^{-2} ψ : the shape of Gamma prior for θ^{-1} ω : the rate of Gamma prior for θ^{-1}

Arguments to specify

Model-related	
Formula	a Formula object that corresponds to h_g , for $g \in \{1, 2, 3\}$: $y_1 + \delta_1 y_2 + \delta_2 \sim x_1 x_2 x_3$.
data	an $(n \times q)$ -dimensional data frame; the q -columns correspond to q covariate vectors named in the formula in Formula
	below.
model	c("Markov", "PEM") for Markov definition of h_3 in (15); c("semi-Markov", "PEM") for semi-Markov definition of h_3 in (16).
Hyperparameters	
PEM.ab1	a 2-vector of positive hyperparameters a_1 and b_1 which represent the shape and rate of the Gamma prior for $\sigma_{\lambda_1}^{-2}$.
	Example: PEM.ab1 <- c(0.7,0.7).
PEM.ab2	a 2-vector of positive hyperparameters a and b of the prior distribution for $\sigma_{\lambda,2}^{-2}$.
PEM.ab3	a 2-vector of positive hyperparameters a and b of the prior distribution for $\sigma_{\lambda,3}^{-2}$.
PEM.alpha1	hyperparameter α of the prior distribution for K_1 , which is one less than the number of partition points.
PEM.alpha2	hyperparameter α of the prior distribution for K_2 , which is one less than the number of partition points.
PEM.alpha3	hyperparameter α of the prior distribution for K_3 , which is one less than the number of partition points.
theta	a 2-vector of positive hyperparameters ψ and ω for the hyperprior θ .
MCMC Settings	
numReps	total number of scans
thin	extent of thinning, e.g. if thin=10 retain every 10^{th} sample.

burninPerc the proportion of burn-in (samples to be discarded before analyzing the data).

the parameter θ is updated using a Metropolis-Hastings random walk step generating proposals from a Gamma

distribution with variance mhProp_theta_var.

```
Cg
                           a 3-vector for the proportion that determines the sum of probabilities choosing the birth and death moves for each of
                           the baseline hazards, h_{0g}, for g \in \{1, 2, 3\}.
     delPertg
                           a 3-vector for the perturbation parameter in the birth updates for all three baseline hazard functions; values must be
                           between 0 and 0.5.^3
                           rj.scheme=1: the birth update will draw the proposal time split from 1:s_{max}; rj.scheme=2: the birth update will
     rj.scheme
                           draw the proposal time split from uniquely ordered failure times in the data.
                           a 3-vector for the number of splits allowed in each iteration of the Metropolis-Hastings-Green algorithm for the three
     Kg_max
                           baseline hazard functions.
     sg_max
                           the largest observed failure time, given by sg_max <- c( max(data$time1[data$event1==1]),
                                             max(data$time2[data$event1==0 & data$event2==1]),
                                            max(data$time2[data$event1==1] & data$event2==1]))
                           time points at which the \lambda_1 is monitored for convergence. Example: time_lambda1 <- seq(1, sg_max[1], 1). The
     time_lambda1
                           chains for these monitoring points can be found in lambda.fin in the chains of the BayesID object.
     time_lambda2
                           time points at which the \lambda_2 is monitored for convergence. Example: time_lambda2 <- seq(1, sg_max[2], 1).
                           time points at which the \lambda_3 is monitored for convergence. Example: time_lambda3 <- seq(1, sg_max[3], 1).
     time_lambda3
Starting Values
     startValues
                            use initiate.startValues_HReg(form, data, model, nChain) which initiates all necessary starting values. Users may
                           set non-null starting values for any of the following: beta1, beta2, beta3, gamma.ji, theta.
Storage
                           name of the directory where results are stored. Can leave unspecified.
     path
                           the number of \gamma to be stored.
     nGam_save
```

```
data(scrData)
form <- Formula(time1 + event1 | time2 + event2 ^{\sim} x1 + x2 + x3 | x1 + x2 | x1 + x2)
##
theta <- c(0.7, 0.7)
PEM.ab1 <- c(0.7, 0.7) # prior parameters for 1/sigma_1^2
PEM.ab2 <- c(0.7, 0.7) # prior parameters for 1/sigma_2^2
PEM.ab3 <- c(0.7, 0.7) # prior parameters for 1/sigma_3^2
PEM.alpha1 <- 10 # prior parameters for K1
PEM.alpha2 <- 10 # prior parameters for K2
PEM.alpha3 <- 10 # prior parameters for K3
hyperParams <- list(theta=theta,
           PEM=list(PEM.ab1=PEM.ab1, PEM.ab2=PEM.ab2, PEM.ab3=PEM.ab3,
                     PEM.alpha1=PEM.alpha1, PEM.alpha2=PEM.alpha2, PEM.alpha3=PEM.alpha3))
##
           <- 2000
numReps
thin
           <- 10
burninPerc <- 0.25
mhProp_theta_var <- 0.05
         <- c(0.2, 0.2, 0.2)
Cg
delPertg <- c(0.5, 0.5, 0.5)
rj.scheme <- 1
Kg_max
          <- c(50, 50, 50)
sg_max
          <- c(max(scrData$time1[scrData$event1 == 1]),
               max(scrData$time2[scrData$event1 == 0 & scrData$event2 == 1]),
               max(scrData$time2[scrData$event1 == 1 & scrData$event2 == 1]))
time_lambda1 <- seq(1, sg_max[1], 1)</pre>
\label{eq:time_lambda2 <- seq(1, sg_max[2], 1)} time_lambda2 <- seq(1, sg_max[2], 1)
time_lambda3 <- seq(1, sg_max[3], 1)</pre>
nGam_save <- 0
mcmc.PEM <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),</pre>
                  storage=list(nGam_save=nGam_save),
                  tuning=list(mhProp_theta_var=mhProp_theta_var,
                              Cg=Cg, delPertg=delPertg,
                              rj.scheme=rj.scheme, Kg_max=Kg_max, sg_max=sg_max,
                              time_lambda1=time_lambda1, time_lambda2=time_lambda2,
                              time_lambda3=time_lambda3))
##
myModel <- c("semi-Markov", "PEM")</pre>
myPath <- "Output/02-Results-PEM/"
startValues <- initiate.startValues_HReg(form, scrData, model=myModel, nChain=2)
fit_PEM <- BayesID_HReg(form, scrData, id=NULL, model=myModel,</pre>
                  hyperParams, startValues, mcmc.PEM, path=myPath)
fit PEM
summ.fit_PEM <- summary(fit_PEM); names(summ.fit_PEM)</pre>
summ.fit PEM
pred_PEM <- predict(fit_PEM)</pre>
plot(pred_PEM, plot.est="Haz")
plot(pred_PEM, plot.est="Surv")
```

 $^{^3}$ See Section A in Supplemental Material to Lee et al. (2015)

Let t_{i1} , t_{i2} denote time to non-terminal and terminal event from subject i = 1, ..., n. The independent semi-competing risks data are assumed to arise from an illness-death model system with transitions that are modeled through the following three hazard functions:

$$\begin{array}{rcl} \log(t_{i1}) & = & x_{i1}^{\top}\beta_{1} + \gamma_{i} + \epsilon_{i1}, & t_{i1} > 0, \\ \log(t_{i2}) & = & x_{i2}^{\top}\beta_{2} + \gamma_{i} + \epsilon_{i2}, & t_{i2} > 0, \\ \log(t_{i2} - t_{i1}) & = & x_{i3}^{\top}\beta_{3} + \gamma_{i} + \epsilon_{i3}, & t_{i2} > t_{i1}, \end{array}$$

where γ_i is a study participant-specific random effect, x_{ig} is a vector of transition-specific covariates, β_g is a corresponding vector of transition-specific regression parameters, and ϵ_{ig} is a transition-specific random variable whose distribution determines that of the corresponding transition time, $g \in \{1, 2, 3\}$. In the presence of interval censoring, the times-to-event for the i^{th} subject satisfy $c_{ij} \leq t_{i1} < c_{ij+1}$ for some j and $c_{ik} \leq t_{i2} < c_{ik+1}$ for some k. Let $\{c_{ij}, c_{ij+1}, c_{ik}, c_{ik+1}, L_i, x_{i1}, x_{i2}, x_{i3}\}$ denote independent observations, where L_i is the left-truncation time.

For the parametric AFT illness-death model, we build on the log-Normal formulation and take the ϵ_{ig} to follow independent Normal(μ_g , σ_g^2) distributions, g=1,2,3. In the Bayesian framework, priors must be specified for the unknown parameters. The following specifications are made

$$\pi(\beta_g, \mu_g) \propto 1,$$

$$\sigma_g^2 \sim inverse - Gamma(a_{\sigma_g}, b_{\sigma_g}),$$

$$\gamma_i | \theta \sim Normal(0, \theta),$$

$$\theta^{-1} \sim inverse - Gamma(a_{\theta}, b_{\theta}).$$

Hyperparameters

The hyperparameters $a_{\sigma g}$ and $b_{\sigma g}$ must be specified for the prior of σ_g^2 , as well as a_{θ} and b_{θ} , the rate and shape of the inverse-Gamma distributed hyperprior for θ .

Model-related	
Formula	a Formula object that corresponds to h_g , for $g \in \{1, 2, 3\}$: $L y_{1L} + y_{1U} y_{2L} + y_{2U} \sim x1 x2 x3$.
data	an $(n \times q)$ -dimensional data.frame; the q -columns correspond to q covariate vectors named in the formula in Formula.
Hyperparameters	
theta	a 2-vector of positive hyperparameters a_{θ} and b_{θ} for the hyperprior θ .
LN.ab1	a 2-vector of positive hyperparameters a_{σ_1} and b_{σ_1} which represent the shape and rate of the inverse-Gamma prior for σ_1^2 . Example: LNab1 <- c(0.3,0.3).
LN.ab2	a 2-vector of positive hyperparameters a_{σ_2} and b_{σ_2} which represent the shape and rate of the inverse-Gamma prior for σ_2^2 . Example: LNab2 <- c(0.3,0.3).
LN.ab3	a 2-vector of positive hyperparameters a_{σ_3} and b_{σ_3} which represent the shape and rate of the inverse-Gamma prior for σ_3^2 . Example: LNab3 <- c(0.3,0.3).
MCMC Settings	
numReps	total number of scans
thin	extent of thinning, e.g. if thin=10 retain every 10^{th} sample.
burninPerc	the proportion of burn-in (samples to be discarded before analyzing the data).
betag.prop.var	the parameter β_g is updated using a Metropolis-Hastings random walk step generating proposals from a Normal distribution with variance betag.prop.var.
gamma.prop.var	the parameter γ is updated using a Metropolis-Hastings random walk step generating proposals from a Normal distribution with variance gamma.prop.var.
mug.prop.var	the parameter μ_g is updated using a Metropolis-Hastings random walk step generating proposals from a Normal distribution with variance mug.prop.var.
zetag.prop.var	the parameter $\zeta_g = 1/\sigma_g^2$ is updated using a Metropolis-Hastings random walk step generating proposals from a log-Normal distribution with variance zetag.prop.var.
Starting Values	
$\mathtt{startValues}$	use initiate.startValues_AFT(Formula, data, model, nChain) which initiates all necessary starting values. Users may set non-null starting values for any of the following: beta1, beta2, beta3, gamma, theta, y1, y2, LN.mu, LN.sigSq.
Storage	
nGam_save	the number of γ to be stored
nY1_save	the number of $\log(t_1)$ to be stored
nY2_save	the number of $\log(t_2)$ to be stored
nY1.NA_save	the number of $\mathbb{I}\left\{t_1 > t_2\right\}$ to be stored
path	name of the directory where results are stored. Can leave unspecified.

```
data(scrData)
scrData$y1L <- scrData$y1U <- scrData[,1]</pre>
scrData$y1U[which(scrData[,2] == 0)] <- Inf</pre>
scrData$y2L <- scrData$y2U <- scrData[,3]</pre>
scrData$y2U[which(scrData[,4] == 0)] <- Inf</pre>
scrData$LT <- rep(0, dim(scrData)[1])</pre>
form <- Formula(LT | y1L + y1U | y2L + y2U ~ x1 + x2 + x3 | x1 + x2 | x1 + x2)
theta.ab <- c(0.5, 0.05)
LN.ab1 < c(0.3, 0.3)
LN.ab2 <- c(0.3, 0.3)
LN.ab3 < - c(0.3, 0.3)
hyperParams <- list(theta=theta.ab,
LN=list(LN.ab1=LN.ab1, LN.ab2=LN.ab2, LN.ab3=LN.ab3))
                          <- 300
numReps
                          <- 3
thin
burninPerc <- 0.5
nGam_save <- 10
nY1_save <- 10
nY2_save <- 10
nY1.NA_save <- 10
betag.prop.var <- c(0.01,0.01,0.01)
mug.prop.var <- c(0.1,0.1,0.1)
zetag.prop.var <- c(0.1,0.1,0.1)
gamma.prop.var <- 0.01</pre>
mcmcParams <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),</pre>
\verb|tuning=list(betag.prop.var=betag.prop.var|, \verb|mug.prop.var=mug.prop.var|, \verb|zetag.prop.var=zetag.prop.var|, \verb|var=betag.prop.var|, \verb|
gamma.prop.var=gamma.prop.var))
##
myModel <- "LN"
myPath <- "Output/01-Results-LN/"</pre>
startValues
                                           <- initiate.startValues_AFT(form, scrData, model=myModel, nChain=2)</pre>
fit_LN <- BayesID_AFT(form, scrData, model=myModel, hyperParams,</pre>
startValues, mcmcParams, path=myPath)
summary(fit_LN)
pred_LN <- predict(fit_LN, time = seq(0, 35, 1), tseq=seq(from=0, to=30, by=5))</pre>
plot(pred_LN, plot.est="Haz")
plot(pred_LN, plot.est="Surv")
```

Let t_{i1} , t_{i2} denote time to non-terminal and terminal event from subject i = 1, ..., n. The independent semi-competing risks data are assumed to arise from an illness-death model system with transitions that are modeled through the following three hazard functions:

$$\begin{array}{rcl} \log(t_{i1}) & = & x_{i1}^{\top}\beta_{1} + \gamma_{i} + \epsilon_{i1}, & t_{i1} > 0, \\ \log(t_{i2}) & = & x_{i2}^{\top}\beta_{2} + \gamma_{i} + \epsilon_{i2}, & t_{i2} > 0, \\ \log(t_{i2} - t_{i1}) & = & x_{i3}^{\top}\beta_{3} + \gamma_{i} + \epsilon_{i3}, & t_{i2} > t_{i1}, \end{array}$$

where γ_i is a study participant-specific random effect, x_{ig} is a vector of transition-specific covariates, β_g is a corresponding vector of transition-specific regression parameters, and ϵ_{ig} is a transition-specific random variable whose distribution determines that of the corresponding transition time, $g \in \{1, 2, 3\}$. In the presence of interval censoring, the times-to-event for the i^{th} subject satisfy $c_{ij} \leq t_{i1} < c_{ij+1}$ for some j and $c_{ik} \leq t_{i2} < c_{ik+1}$ for some k. Let $\{c_{ij}, c_{ij+1}, c_{ik}, c_{ik+1}, L_i, x_{i1}, x_{i2}, x_{i3}\}$ denote independent observations, where L_i is the left-truncation time.

For our semi-parametric AFT illness-death model, ϵ_{iq} is assumed to be taken as draws from the independent DPM of normal distributions:

$$\epsilon_{ig}|r_i \sim Normal(\mu_{r_i}, \sigma_{r_i}^2),$$
 $(\mu_{gr}, \sigma_{gr}^2) \sim G_{g0}, \text{ for } r = 1, \dots, M_g,$
 $r_i|p_g \sim Discrete(r_i|p_{g1}, \dots, p_{gM_g}),$
 $p_g \sim Dirichlet(\tau_q/M_q, \dots, \tau_q/M_q).$

In the Bayesian framework, priors must be specified for the unknown parameters. We take the G_{g0} as a normal distribution centered at μ_{g0} with a variance σ_{g0}^2 for μ_{gr} and an $\mathrm{IG}(a_{\sigma_g}, b_{\sigma_g})$ for σ_{gr}^2 . For regression parameters $\{\beta_1, \beta_2, \beta_3\}$, we adopt non-informative flat priors on the real line. For γ , we assume that each γ_i is an independent random draw from a Normal $(0, \theta)$ distribution. In the absence of prior knowledge on the variance component θ , we adopt a conjugate inverse-Gamma hyperprior, $\mathrm{IG}(a_{\theta}, b_{\theta})$. Finally, we specify a Gamma (a_{τ_g}, b_{τ_g}) hyperprior for the precision parameter τ_g .

Hyperparameters

 a_{θ}, b_{θ} : the shape and rate of inverse-Gamma prior for θ

 $\mu_{g0}, \ \sigma_{g0}^2, \ a_{\sigma g}, \ b_{\sigma g}$: hyperparameters for G_{g0}

 a_{τ_q}, b_{τ_q} : shape and rate of Gamma hyperprior for τ_q

ingaments to speen	y .
Model-related	
Formula	a Formula object that corresponds to h_g , for $g \in \{1, 2, 3\}$: $L y_{1L} + y_{1U} y_{2L} + y_{2U} \sim x1 x2 x3$.
data	an $(n \times q)$ -dimensional data.frame; the q -columns correspond to q covariate vectors named in the formula in Formula.
Hyperparameters	
theta	a 2-vector of positive hyperparameters a_{θ} and b_{θ} for the hyperprior θ .
DPM.mu1	a hyperparameter μ_{10}
DPM.mu2	a hyperparameter μ_{20}
DPM.mu3	a hyperparameter μ_{30}
DPM.sigSq1	a hyperparameter σ_{10}^2
DPM.sigSq2	a hyperparameter σ_{20}^{2}
DPM.sigSq3	a hyperparameter σ_{30}^2
DPM.ab1	a 2-vector of positive hyperparameters $a_{\sigma_1}, b_{\sigma_1}$
DPM.ab2	a 2-vector of positive hyperparameters $a_{\sigma_2},b_{\sigma_2}$
DPM.ab3	a 2-vector of positive hyperparameters $a_{\sigma_3}, b_{\sigma_3}$
Tau.ab1	a 2-vector of positive hyperparameters $a_{ au_1}$, $b_{ au_1}$
Tau.ab2	a 2-vector of positive hyperparameters $a_{ au_2},b_{ au_2}$
Tau.ab3	a 2-vector of positive hyperparameters $a_{ au_3}$, $b_{ au_3}$
MCMC Settings	
numReps	total number of scans
thin	extent of thinning, e.g. if thin=10 retain every 10^{th} sample.
burninPerc	the proportion of burn-in (samples to be discarded before analyzing the data).
betag.prop.var	the parameter β_g is updated using a Metropolis-Hastings random walk step generating proposals from a Normal
	distribution with variance betag.prop.var. the parameter γ is updated using a Metropolis-Hastings random walk step generating proposals from a Normal distri-
gamma.prop.var	bution with variance gamma.prop.var.
mug.prop.var	the parameter μ_{gr} is updated using a Metropolis-Hastings random walk step generating proposals from a Normal distribution with variance mug.prop.var.
zetag.prop.var	the parameter $\zeta_{gr} = 1/\sigma_{gr}^2$ is updated using a Metropolis-Hastings random walk step generating proposals from a log-Normal distribution with variance zetag.prop.var.
Starting Values	
startValues	use initiate.startValues_AFT(Formula, data, model, nChain) which initiates all necessary starting values. Users may set non-null starting values for any of the following: beta1, beta2, beta3, gamma, theta, y1, y2, DPM.class1, DPM.class2, DPM.class3, DPM.mu1, DPM.mu2, DPM.mu3, DPM.zeta1, DPM.zeta2, DPM.zeta3, DPM.tau.
Storage	
nGam_save	the number of γ to be stored
nY1_save	the number of $\log(t_1)$ to be stored
nY2_save	the number of $\log(t_2)$ to be stored
nY1.NA_save	the number of $\mathbb{1}\{t_1 > t_2\}$ to be stored
path	name of the directory where results are stored. Can leave unspecified.

```
data(scrData)
scrData$y1L <- scrData$y1U <- scrData[,1]</pre>
scrData$y1U[which(scrData[,2] == 0)] <- Inf</pre>
scrData$y2L <- scrData$y2U <- scrData[,3]</pre>
scrData$y2U[which(scrData[,4] == 0)] <- Inf</pre>
scrData$LT <- rep(0, dim(scrData)[1])</pre>
form <- Formula(LT | y1L + y1U | y2L + y2U ~ x1 + x2 + x3 | x1 + x2 | x1 + x2)
theta.ab <- c(0.5, 0.05)
##
DPM.mu1 <- log(12)</pre>
DPM.mu2 <- log(12)
DPM.mu3 <- log(12)</pre>
DPM.sigSq1 <- 100
DPM.sigSq2 <- 100
DPM.sigSq3 <- 100
DPM.ab1 <- c(2, 1)
DPM.ab2 <- c(2, 1)
DPM.ab3 < - c(2, 1)
Tau.ab1 <- c(1.5, 0.0125)
Tau.ab2 <- c(1.5, 0.0125)
Tau.ab3 <- c(1.5, 0.0125)
hyperParams <- list(theta=theta.ab,
DPM=list(DPM.mu1=DPM.mu1, DPM.mu2=DPM.mu2, DPM.mu3=DPM.mu3, DPM.sigSq1=DPM.sigSq1,
DPM.sigSq2=DPM.sigSq2, DPM.sigSq3=DPM.sigSq3, DPM.ab1=DPM.ab1, DPM.ab2=DPM.ab2,
DPM.ab3=DPM.ab3, Tau.ab1=Tau.ab1, Tau.ab2=Tau.ab2, Tau.ab3=Tau.ab3))
numReps
          <- 300
thin
          <- 3
burninPerc <- 0.5</pre>
nGam_save <- 10
nY1_save <- 10
nY2\_save <- 10
nY1.NA_save <- 10
betag.prop.var <- c(0.01,0.01,0.01)
mug.prop.var <- c(0.1,0.1,0.1)
zetag.prop.var <- c(0.1,0.1,0.1)
gamma.prop.var <- 0.01</pre>
mcmcParams <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),</pre>
tuning=list(betag.prop.var=betag.prop.var, mug.prop.var=mug.prop.var,
zetag.prop.var=zetag.prop.var, gamma.prop.var=gamma.prop.var))
myModel <- "DPM"
myPath <- "Output/02-Results-DPM/"
startValues
                <- initiate.startValues_AFT(form, scrData, model=myModel, nChain=2)</pre>
fit_DPM <- BayesID_AFT(form, scrData, model=myModel, hyperParams,</pre>
startValues, mcmcParams, path=myPath)
summary(fit_DPM);
pred_DPM <- predict(fit_DPM, time = seq(0, 35, 1), tseq=seq(from=0, to=30, by=5))</pre>
plot(pred_DPM, plot.est="Haz")
plot(pred_DPM, plot.est="Surv")
```

Let t_{ji1} and t_{ji2} denote the time to nonterminal event and terminal event from subject $i=1,\ldots,n_j$ in cluster $j=1,\ldots,J$, subject to right censoring at time c_{ji} . Let $(y_{ji1},y_{ji2},\delta_{ji1},\delta_{ji2},x_{ji})$ denote independent observations, where $y_{ji1}=\min\left(t_{ji1},t_{ji2},c_{ji}\right)$, $\delta_{ji1}=\mathbbm{1}\left\{t_{ji1}\leq\min\left(t_{ji2},c_{ji}\right)\right\}$, $y_{ji2}=\min\left(t_{ji2},c_{ji}\right)$, $\delta_{ji2}=\mathbbm{1}\left\{t_{ji2}\leq c_{ji}\right\}$, and x_{ji} is a vector of covariates for individual i. The independent semi-competing risks data are assumed to arise from an illness-death model system with transitions that are modeled through the following three hazard functions:

$$h_1(t_{ji1}|\gamma_{ji}, x_{ji1}, V_{j1}) = \gamma_{ji}h_{01}(t_{ji1})\exp\left(x_{ji1}^{\top}\beta_1 + V_{j1}\right), \ t_{ji1} > 0,$$
(9)

$$h_2(t_{ji2}|\gamma_{ji}, x_{ji2}, V_{j2}) = \gamma_{ji}h_{02}(t_{ji2})\exp\left(x_{ii2}^{\top}\beta_2 + V_{j2}\right), \ t_{ji2} > 0,$$
 (10)

$$h_3(t_{ji2}|t_{ji1}, \gamma_{ji}, x_{ji3}, V_{j3}) = \gamma_{ji}h_{03}(t_{ji2})\exp\left(x_{ji3}^{\top}\beta_3 + V_{j3}\right), \ t_{ji2} > 0, \tag{11}$$

where γ_{ji} is a subject-specific frailty, $V_j = (V_{j1}, V_{j2}, V_{j3})$ is a vector of cluster-specific random effects, and x_{ji1} , x_{ji2} and x_{ji3} which are subsets of x_i are vectors of covariates. The baseline hazard functions are defined parametrically by Weibull hazards of the form $h_{0g}(t) = \alpha_g \kappa_g t^{\alpha_g - 1}$, for $g \in \{1, 2, 3\}$. The baseline hazard function h_{03} is assumed to be Markov with respect to t_{ji1} ; we will refer to the set of conditional hazard functions in (13)-(15) as the Markov model. Alternatively, we consider modeling h_3 as follows:

$$h_3(t_{ji2}|t_{ji1},\gamma_{ji},x_{ji3},V_{j3}) = \gamma_{ji}h_{03}(t_{ji2}-t_{ji1})\exp\left(x_{ji3}^\top\beta_3+V_{j3}\right), \ 0 < t_{ji1} < t_{ji2}. \tag{12}$$

We will refer to the set of conditional hazard functions in (13), (14) and (16) as the semi-Markov model.

In the Bayesian framework, priors must be specified for the regression parameter, β_g , the shape and scale parameters of baseline hazard function, α_g and κ_g , and the frailty parameter, γ_{ji} , respectively, for $g \in \{1, 2, 3\}$. The following specifications are made

$$\pi(\beta_g) \propto 1,$$

$$\alpha_g \sim Gamma(a_g, b_g),$$

$$\kappa_g \sim Gamma(c_g, d_g),$$

$$\gamma_{ji} | \theta \sim Gamma(\theta^{-1}, \theta^{-1}),$$

$$\theta^{-1} \sim Gamma(\psi, \omega).$$

We provide two possible prior specifications for the cluster-specific random effects below.

In the first column, the individual specific-random effects are assumed to be $\stackrel{iid}{\sim} MVN(0, \Sigma_V)$. In the second column, the cluster-specific random effects are drawn from a mixture of M multivariate normal distributions each with mean vector and covariance matrix (μ_m, Σ_m) which are distributed as a multivariate Normal/Inverse-Wishart (NIW), denoted by G_0 ; we refer to this as the Dirichlet process mixture (DPM) prior. The probability density of G_0 is defined by the product

$$f_{\mathrm{NIW}}(\mu, \Sigma | \Psi_0, \rho_0) = f_{\mathrm{MVN}}(\mu | 0, \Sigma) \times f_{\mathrm{Inv-Wish}}(\Sigma | \Psi_0, \rho_0).$$

Hyperparameters

 $a_g,\,b_g$: shape and rate of Gamma prior for α_g for $g\in\{1,2,3\}$ $c_g,\,d_g$: shape and rate of Gamma prior for κ_g for $g\in\{1,2,3\}$

 ψ : the shape of Gamma prior for θ^{-1} ω : the rate of Gamma prior for θ^{-1}

 $\Psi_0,\,\rho_0$: shape and scale of Inverse-Wishart component of the prior distribution, $G_0,\,$ of (μ_m,Σ_m) (DPM prior)

 $a_{\tau},\,b_{\tau}$: shape and rate of Gamma hyperprior for τ (DPM prior)

Arguments to specify

Model-related	
Formula	a Formula object that corresponds to h_q , for $g \in \{1, 2, 3\}$: $y_1 + \delta_1 y_2 + \delta_2 \sim x_1 x_2 x_3$.
data	an $(n \times q)$ -dimensional data frame; the q -columns correspond to q covariate vectors named in the formula in Formula.
model	c("Markov", "Weibull") for Markov definition of h_3 in (15); c("semi-Markov", "Weibull") for semi-Markov definition of h_3 in (16).
id	an n -vector of cluster information where cluster membership corresponds to one of the positive integers $1, \ldots, J$.
Hyperparameters	
WB.ab1	a 2-vector of positive hyperparameters a_1 and b_1 of the prior distribution for the shape parameter α_1 of the Weibull
	baseline hazard. Example: WB.ab1 <- c(0.5, 0.01).
WB.ab2	a 2-vector of positive hyperparameters a_2 and b_2 of the prior for α_2 .
WB.ab3	a 2-vector of positive hyperparameters a_3 and b_3 of the prior for α_3 .
WB.cd1	a 2-vector of positive hyperparameters c_1 and d_1 of the prior distribution for the scale parameter κ_1 of the Weibull
	baseline hazard. Example: WB.cd1 <- c(0.5, 0.05).
WB.cd2	a 2-vector of positive hyperparameters c_2 and d_2 of the prior for κ_2 .
WB.cd3	a 2-vector of positive hyperparameters c_3 and d_3 of the prior for κ_3 .
theta	a 2-vector of positive hyperparameters ψ and ω for the hyperprior θ .
MVN prior for V_{ii}	
Psi_v	a positive-definite scale matrix of the Inverse-Wishart prior for the cluster random effects, V_{ji} . Example: $Psi_v \leftarrow diag(1,3)$.

the degrees of freedom of the Inverse-Wishart prior for V_{ii} . Example: rho_v <- 100.

```
DPM prior for V_{ii}
                                a positive-definite scale matrix of the Inverse-Wishart component of G_0. Example: Psi0 <- diag(1,3).
     Psi0
     rho0
                                the degrees of freedom of the Inverse-Wishart component of G_0. Example: rho0 <- 10.
     aTau
                                a positive-valued hyperparameter corresponding to the shape parameter, a_{\tau}, of the Gamma prior of \tau.
     bTau
                                a positive-valued hyperparameter corresponding to the rate parameter, b_{\tau}, of the Gamma prior of \tau.
MCMC Settings
     numReps
                                total number of scans
                               extent of thinning, e.g. if thin=10 retain every 10^{th} sample.
     thin
                                the proportion of burn-in (samples to be discarded before analyzing the data).
     burninPerc
     mhProp_theta_var
                                the parameter \theta is updated using a Metropolis-Hastings random walk step generating proposals from a Gamma
                                distribution with variance mhProp_theta_var.
                                a 3-vector which specifies the variances of the three random walk Metropolis-Hastings Gamma proposal distributions
     mhProp_alphag_var
                                corresponding to \alpha_1, \alpha_2, \alpha_3.
                                a 3-vector which specifies the variances of the three random walk Metropolis-Hastings proposals from normal
     mhProp_Vg_var
                                distributions with the same variance mhProp_Vg_var.
Starting Values
     startValues
                                use initiate.startValues_HReg(Formula, data, model, id, nChain) which initiates all necessary starting val-
                                ues. Users may set non-null starting values for: beta1, beta2, beta3, theta, WB.alpha, WB.kappa, gamma.ji,
                                V.j1, V.j2, V.j3, MVN.SigmaV, DPM.tau, DPM.class.
Storage
     path
                                name of the directory where results are stored. Can leave unspecified.
                                the number of \gamma to be stored.
     nGam_save
     storeV
                                a 3-vector of TRUE/FALSE logical constants indicating storage of V_{ii} values for q = 1, 2, 3. Example: storeV <-
                               rep(TRUE, 3).
```

data(scrData)

```
id=scrData$cluster
form <- Formula(time1 + event1 | time2 + event2 \sim x1 + x2 + x3 | x1 + x2 | x1 + x2)
##
WB.ab1 <- c(0.5, 0.01)
WB.ab2 <- c(0.5, 0.01)
WB.ab3 <- c(0.5, 0.01)
WB.cd1 <- c(0.5, 0.05)
WB.cd2 <- c(0.5, 0.05)
WB.cd3 <- c(0.5, 0.05)
theta \leftarrow c(0.7, 0.7) # prior params for 1/theta
Psi_v <- diag(1, 3) # MVN cluster-specific random effects
rho_v <- 100
Psi0 <- diag(1, 3) # DPM cluster-specific random effects
rho0 <- 10
aTau <- 1.5
bTau <- 0.0125
hyperParams.WB.MVN <- list(theta=theta,
                     WB=list(WB.ab1=WB.ab1, WB.ab2=WB.ab2, WB.ab3=WB.ab3,
                            WB.cd1=WB.cd1, WB.cd2=WB.cd2, WB.cd3=WB.cd3),
                            MVN=list(Psi_v=Psi_v, rho_v=rho_v))
hyperParams.WB.DPM <- list(theta=theta,
                     WB=list(WB.ab1=WB.ab1, WB.ab2=WB.ab2, WB.ab3=WB.ab3,
                            WB.cd1=WB.cd1, WB.cd2=WB.cd2, WB.cd3=WB.cd3),
                            DPM=list(Psi0=Psi0, rho0=rho0, aTau=aTau, bTau=bTau))
##
           <- 2000
numReps
thin
           <- 10
burninPerc <- 0.25
mhProp_theta_var <- 0.05
mhProp_alphag_var <- c(0.01, 0.01, 0.01)
                  <- c(0.05, 0.05, 0.05)
mhProp_Vg_var
nGam\_save <- 0
storeV <- rep(TRUE, 3)
mcmc.WB <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),</pre>
                     storage=list(nGam_save=nGam_save, storeV=storeV),
                     tuning=list(mhProp_theta_var=mhProp_theta_var, mhProp_alphag_var=mhProp_alphag_var,
                     mhProp_Vg_var =mhProp_Vg_var))
##
Sigma_V \leftarrow diag(0.1, 3)
Sigma_V[1,2] \leftarrow Sigma_V[2,1] \leftarrow -0.05
Sigma_V[1,3] \leftarrow Sigma_V[3,1] \leftarrow -0.06
Sigma_V[2,3] \leftarrow Sigma_V[3,2] \leftarrow 0.07
myModel <- c("semi-Markov", "Weibull", "MVN")</pre>
myPath <- "Output/03-Results-WB_MVN/ "</pre>
startValues
                  <- initiate.startValues_HReg(form, scrData, model=myModel, id, nChain=2)</pre>
##
```

```
fit_WB_MVN <- BayesID_HReg(form, scrData, id, model=myModel,</pre>
                        hyperParams.WB.MVN, startValues, mcmc.WB, path=myPath)
fit_WB_MVN
summ.fit_WB_MVN <- summary(fit_WB_MVN); names(summ.fit_WB_MVN)</pre>
summ.fit_WB_MVN
pred_WB_MVN <- predict(fit_WB_MVN, tseq=seq(from=0, to=30, by=5))</pre>
plot(pred_WB_MVN, plot.est="Haz")
plot(pred_WB_MVN, plot.est="Surv")
myModel <- c("semi-Markov", "Weibull", "DPM")</pre>
myPath <- "Output/04-Results-WB_DPM/"
startValues <- initiate.startValues_HReg(form, scrData, model=myModel, id, nChain=2)</pre>
fit_WB_DPM <- BayesID_HReg(form, scrData, id, model=myModel,</pre>
                        hyperParams.WB.DPM, startValues, mcmc.WB, path=myPath)
fit_WB_DPM
summ.fit_WB_DPM <- summary(fit_WB_DPM); names(summ.fit_WB_DPM)</pre>
summ.fit_WB_DPM
pred_WB_DPM <- predict(fit_WB_MVN, tseq=seq(from=0, to=30, by=5))</pre>
plot(pred_WB_DPM, plot.est="Haz")
plot(pred_WB_DPM, plot.est="Surv")
```

Let t_{ji1} and t_{ji2} denote the time to nonterminal event and terminal event from subject $i=1,\ldots,n_j$ in cluster $j=1,\ldots,J$, subject to right censoring at time c_{ji} . Let $(y_{ji1},y_{ji2},\delta_{ji1},\delta_{ji2},x_{ji})$ denote independent observations, where $y_{ji1}=\min\left(t_{ji1},t_{ji2},c_{ji}\right)$, $\delta_{ji1}=\mathbbm{1}\left\{t_{ji1}\leq\min\left(t_{ji2},c_{ji}\right)\right\}$, $y_{ji2}=\min\left(t_{ji2},c_{ji}\right)$, $\delta_{ji2}=\mathbbm{1}\left\{t_{ji2}\leq c_{ji}\right\}$, and x_{ji} is a vector of covariates for individual i. The independent semi-competing risks data are assumed to arise from an illness-death model system with transitions that are modeled through the following three hazard functions:

$$h_1(t_{ji1}|\gamma_{ji}, x_{ji1}, V_{j1}) = \gamma_{ji}h_{01}(t_{ji1})\exp\left(x_{ji1}^{\top}\beta_1 + V_{j1}\right), \ t_{ji1} > 0,$$
(13)

$$h_2(t_{ji2}|\gamma_{ji}, x_{ji2}, V_{j2}) = \gamma_{ji}h_{02}(t_{ji2})\exp\left(x_{ii2}^{\top}\beta_2 + V_{j2}\right), \ t_{ji2} > 0,$$
(14)

$$h_3(t_{ji2}|t_{ji1}, \gamma_{ji}, x_{ji3}, V_{j3}) = \gamma_{ji}h_{03}(t_{ji2}) \exp\left(x_{ji3}^{\top}\beta_3 + V_{j3}\right), \ t_{ji2} > 0, \tag{15}$$

where γ_{ji} is a subject-specific frailty, $V_j = (V_{j1}, V_{j2}, V_{j3})$ is a vector of cluster-specific random effects, and x_{ji1} , x_{ji2} and x_{ji3} which are subsets of x_i are vectors of covariates. The baseline hazard h_0 is defined non-parametrically by a mixture of piecewise exponential functions as follows

$$\lambda_0(t) = \log h_0(t) = \sum_{k=1}^{K+1} \lambda_k \mathbb{1} \left\{ t \in (s_{k-1}, \, s_k] \right\},$$

where λ_k is constant and the time interval between 0 and the largest observed failure time, denoted s_k , is partitioned into K+1 disjoint intervals: $0 < s_1 < \cdots < s_{K+1}$. The baseline hazard function h_{03} is assumed to be Markov with respect to t_{i1} ; we will refer to the set of conditional hazard functions in (13)-(15) as the Markov model. Alternatively, we consider modeling h_3 as follows:

$$h_3(t_{ji2}|t_{ji1}, \gamma_{ji}, x_{ji3}, V_{j3}) = \gamma_{ji}h_{03}(t_{ji2} - t_{ji1}) \exp\left(x_{ji3}^{\top}\beta_3 + V_{j3}\right), \ 0 < t_{ji1} < t_{ji2}. \tag{16}$$

We will refer to the set of conditional hazard functions in (13), (14) and (16) as the semi-Markov model.

In the Bayesian framework, priors must be specified for the regression parameter, β , the number of intervals, K, the partition points (s_1, \ldots, s_{K+1}) , and the frailty, γ_{ii} , respectively. The following specifications are made

$$\pi(\beta) \propto 1,$$

$$\lambda | K, \mu_{\lambda}, \sigma_{\lambda}^{2} \sim MVN_{K+1}(\mu_{\lambda}\mathbb{1}, \sigma_{\lambda}^{2}\Sigma_{\lambda})$$

$$K \sim Poisson(\alpha),$$

$$\pi(s|K) \propto \frac{(2K+1)! \prod_{k=1}^{K+1} (s_{k} - s_{k-1})}{(s_{K+1})^{(2K+1)}},$$

$$\pi(\mu_{\lambda}) \propto 1,$$

$$\sigma_{\lambda}^{-2} \sim Gamma(a, b),$$

$$\gamma_{ji} | \theta \sim Gamma(\theta^{-1}, \theta^{-1}),$$

$$\theta^{-1} \sim Gamma(\psi, \omega).$$

The prior specification for λ follows a MVN-ICAR (see Supplemental Material to Lee, Haneuse, Schrag and Dominici, 2015). Note that K and s jointly form a time-homogeneous Poisson process prior for the partition.

We provide two possible prior specifications for the cluster-specific random effects below.

In the first column, the individual specific-random effects are assumed to be $\stackrel{iid}{\sim} MVN(0, \Sigma_V)$. In the second column, the cluster-specific random effects are drawn from a mixture of M multivariate normal distributions each with mean vector and covariance matrix (μ_m, Σ_m) which are distributed as a multivariate Normal/Inverse-Wishart (NIW), denoted by G_0 ; we refer to this as the Dirichlet process mixture (DPM) prior. The probability density of G_0 is defined by the product

$$f_{\mathrm{NIW}}(\mu,\Sigma|\Psi_{0},\rho_{0}) = f_{\mathrm{MVN}}(\mu|0,\Sigma) \times f_{\mathrm{Inv\text{-}Wish}}(\Sigma|\Psi_{0},\rho_{0}).$$

Hyperparameters

 α : parameter corresponding to the Poisson prior of K

 $\begin{array}{lll} a,\,b & : & \text{shape and rate of Gamma prior for } \sigma_{\lambda}^{-2} \\ \psi & : & \text{the shape of Gamma prior for } \theta^{-1} \\ \omega & : & \text{the rate of Gamma prior for } \theta^{-1} \end{array}$

 $\Psi_0, \, \rho_0$: shape and scale of Inverse-Wishart component of the prior distribution, G_0 , of (μ_m, Σ_m) (DPM prior)

 a_{τ}, b_{τ} : shape and rate of Gamma hyperprior for τ (DPM prior)

Arguments to specify

Model-related Formula a Formula object that corresponds to h_g , for $g \in \{1, 2, 3\}$: $y_1 + \delta_1 | y_2 + \delta_2 \sim x_1 | x_2 | x_3$. data an $(n \times q)$ -dimensional data.frame; the q-columns correspond to q covariate vectors named in the formula in Formula. model c("Markov", "PEM") for Markov definition of h_3 in (15); c("semi-Markov", "PEM") for semi-Markov definition of h_3 in (16). id an n-vector of cluster information where cluster membership corresponds to one of the positive integers $1, \ldots, J$.

```
Hyperparameters
                            a 2-vector of positive hyperparameters a_1 and b_1 which represent the shape and rate of the Gamma prior for \sigma_1^{-2}.
     PEM.ab1
                            Example: PEM.ab1 <- c(0.7,0.7).
     PEM.ab2
                            a 2-vector of positive hyperparameters a and b of the prior distribution for \sigma_{\lambda,2}^{-2}.
                            a 2-vector of positive hyperparameters a and b of the prior distribution for \sigma_{\lambda,3}^{-2}.
     PEM.ab3
                            hyperparameter \alpha of the prior distribution for K_1, which is one less than the number of partition points.
     PEM.alpha1
     PEM.alpha2
                            hyperparameter \alpha of the prior distribution for K_2, which is one less than the number of partition points.
     PEM.alpha3
                            hyperparameter \alpha of the prior distribution for K_3, which is one less than the number of partition points.
     theta
                            a 2-vector of positive hyperparameters \psi and \omega for the hyperprior \theta.
  MVN prior for V_{ji}
     Psi_v
                            a positive-definite scale matrix of the Inverse-Wishart prior for the cluster random effects, V_{ii}.
                            Example: Psi_v <- diag(1,3).
     rho_v
                            the degrees of freedom of the Inverse-Wishart prior for V_{ji}. Example: rho_v <- 100.
  DPM prior for V_{ji}
     Psi0
                            a positive-definite scale matrix of the Inverse-Wishart component of G_0. Example: Psi0 <- diag(1,3).
                            the degrees of freedom of the Inverse-Wishart component of G_0. Example: rho0 <- 10.
     rho0
     aTau
                            a positive-valued hyperparameter corresponding to the shape parameter, a_{\tau}, of the Gamma prior of \tau.
     bTau
                            a positive-valued hyperparameter corresponding to the rate parameter, b_{\tau}, of the Gamma prior of \tau.
MCMC Settings
                            total number of scans
     numReps
     thin
                            extent of thinning, e.g. if thin=10 retain every 10^{th} sample.
     burninPerc
                            the proportion of burn-in (samples to be discarded before analyzing the data).
     mhProp_theta_var
                            the parameter \theta is updated using a Metropolis-Hastings random walk step generating proposals from a Gamma
                            distribution with variance mhProp_theta_var.
     mhProp_Vg_var
                            3-vector which specifies the variances of the three random walk Metropolis-Hastings proposals from normal distributions
                            with the same variance mhProp_Vg_var.
                            a 3-vector for the proportion that determines the sum of probabilities choosing the birth and death moves for each of
     Cg
                            the baseline hazards, h_{0q}, for g \in \{1, 2, 3\}.
                            a 3-vector for the perturbation parameter in the birth updates for all three baseline hazard functions; values must be
     delPertg
                            between 0 and 0.5.^4
                            rj.scheme=1: the birth update will draw the proposal time split from 1:s_{max}; rj.scheme=2: the birth update will
     rj.scheme
                            draw the proposal time split from uniquely ordered failure times in the data.
                            a 3-vector for the number of splits allowed in each iteration of the Metropolis-Hastings-Green algorithm for the three
     Kg_max
                            baseline hazard functions.
                            the largest observed failure time, given by
     sg max
                            sg_max <- c( max(data$time1[data$event1==1]),
                                              max(data$time2[data$event1==0 & data$event2==1]),
                                             max(data$time2[data$event1==1] & data$event2==1]))
                            time points at which the \lambda_1 is monitored for convergence. Example: time_lambda1 <- seq(1, sg_max[1], 1). The
     time_lambda1
                            chains for these monitoring points can be found in lambda.fin in the chains of the BayesID_HReg object.
     time_lambda2
                            time points at which the \lambda_2 is monitored for convergence. Example: time_lambda2 <- seq(1, sg_max[2], 1).
                            time points at which the \lambda_3 is monitored for convergence. Example: time_lambda3 <- seq(1, sg_max[3], 1).
     time_lambda3
Starting Values
     startValues
                            use initiate.startValues_HReg(Formula, data, model, id, nChain) which initiates all necessary starting values.
                            Users may set non-null starting values for any of the following: beta1, beta2, beta3, gamma.ji, theta, V.j1, V.j2,
                            V.j3, MVN.SigmaV, DPM.tau, DPM.class.
Storage
                            name of the directory where results are stored. Can leave unspecified.
     path
                            the number of \gamma to be stored.
     nGam_save
                            a 3-vector of TRUE/FALSE logical constants indicating storage of V_{ji} values for g=1,2,3. Example: storeV <-
     storeV
```

```
data(scrData)
id=scrData$cluster
form <- Formula(time1 + event1 | time2 + event2 ^{\sim} x1 + x2 + x3 | x1 + x2 | x1 + x2)
##
theta <- c(0.7, 0.7)
PEM.ab2 <- c(0.7, 0.7) # prior parameters for 1/sigma_2^2
PEM.ab3 <- c(0.7, 0.7) # prior parameters for 1/sigma_3^2
PEM.alpha1 <- 10 # prior parameters for K1
PEM.alpha2 <- 10 # prior parameters for K2
PEM.alpha3 <- 10 \# prior parameters for K3
Psi_v <- diag(1, 3) # MVN cluster-specific random effects
rho_v <- 100
PsiO <- diag(1, 3) # DPM cluster-specific random effects
rho0 <- 10
aTau <- 1.5
bTau <- 0.0125
```

rep(TRUE, 3).

 $^{^4}$ See Section A in Supplemental Material to Lee et al. (2015)

```
hyperParams.PEM.MVN <- list(theta=theta,
           PEM=list(PEM.ab1=PEM.ab1, PEM.ab2=PEM.ab2, PEM.ab3=PEM.ab3,
                     PEM.alpha1=PEM.alpha1, PEM.alpha2=PEM.alpha2, PEM.alpha3=PEM.alpha3),
           MVN=list(Psi_v=Psi_v, rho_v=rho_v))
hyperParams.PEM.DPM <- list(theta=theta,
           PEM=list(PEM.ab1=PEM.ab1, PEM.ab2=PEM.ab2, PEM.ab3=PEM.ab3,
                     PEM.alpha1=PEM.alpha1, PEM.alpha2=PEM.alpha2, PEM.alpha3=PEM.alpha3),
           DPM=list(Psi0=Psi0, rho0=rho0, aTau=aTau, bTau=bTau))
##
numReps
           <- 2000
           <- 10
thin
burninPerc <- 0.25
mhProp_theta_var <- 0.05
mhProp_Vg_var <- c(0.05, 0.05, 0.05)
         <- c(0.2, 0.2, 0.2)
delPertg <- c(0.5, 0.5, 0.5)
rj.scheme <- 1
Kg_max < - c(50, 50, 50)
sg_max
          <- c(max(scrData$time1[scrData$event1 == 1]),
               max(scrData$time2[scrData$event1 == 0 & scrData$event2 == 1]),
               max(scrData$time2[scrData$event1 == 1 & scrData$event2 == 1]))
time_lambda1 <- seq(1, sg_max[1], 1)</pre>
time_lambda2 \leftarrow seq(1, sg_max[2], 1)
time_lambda3 <- seq(1, sg_max[3], 1)</pre>
nGam_save <- 0
storeV <- rep(TRUE, 3)
mcmc.PEM <- list(run=list(numReps=numReps, thin=thin, burninPerc=burninPerc),</pre>
                  storage=list(nGam_save=nGam_save, storeV=storeV),
                  tuning=list(mhProp_theta_var=mhProp_theta_var, mhProp_Vg_var=mhProp_Vg_var,
                              Cg=Cg, delPertg=delPertg,
                               rj.scheme=rj.scheme, Kg_max=Kg_max, sg_max=sg_max,
                               time_lambda1=time_lambda1, time_lambda2=time_lambda2,
                               time_lambda3=time_lambda3))
##
Sigma_V \leftarrow diag(0.1, 3)
Sigma_V[1,2] \leftarrow Sigma_V[2,1] \leftarrow -0.05
Sigma_V[1,3] \leftarrow Sigma_V[3,1] \leftarrow -0.06
Sigma_V[2,3] \leftarrow Sigma_V[3,2] \leftarrow 0.07
myModel <- c("semi-Markov", "PEM", "MVN")</pre>
myPath <- "Output/05-Results-PEM_MVN/"</pre>
                  <- initiate.startValues_HReg(form, scrData, model=myModel, id, nChain=2)</pre>
startValues
##
fit_PEM_MVN <- BayesID_HReg(form, scrData, id, model=myModel,</pre>
                     hyperParams.PEM.MVN, startValues, mcmc.PEM, path=myPath)
fit_PEM_MVN
summ.fit_PEM_MVN <- summary(fit_PEM_MVN); names(summ.fit_PEM_MVN)</pre>
summ.fit_PEM_MVN
pred_PEM_MVN <- predict(fit_PEM_MVN)</pre>
plot(pred_PEM_MVN, plot.est="Haz")
plot(pred_PEM_MVN, plot.est="Surv")
##
myModel <- c("semi-Markov", "PEM", "DPM")</pre>
myPath <- "Output/06-Results-PEM_DPM/"</pre>
startValues
                <- initiate.startValues_HReg(form, scrData, model=myModel, id, nChain=2)</pre>
##
fit_PEM_DPM <- BayesID_HReg(form, scrData, id, model=myModel,</pre>
                       hyperParams.PEM.DPM, startValues, mcmc.PEM, path=myPath)
fit_PEM_DPM
summ.fit_PEM_DPM <- summary(fit_PEM_DPM); names(summ.fit_PEM_DPM)</pre>
summ.fit_PEM_DPM
pred_PEM_DPM <- predict(fit_PEM_DPM)</pre>
plot(pred_PEM_DPM, plot.est="Haz")
plot(pred_PEM_DPM, plot.est="Surv")
```