Part I

- ◎ 單選擇題 (單選十題, 每題五分, 共五十分, 答錯不倒扣。)
 - 1. How many horizontal, vertical and slant **asymptotes** does the function

$$f(x) = \frac{x^3 - 1}{x(x+1)} \text{ have?}$$
 65:35

(A) 4; **(B)** 3; (C) 2; (D) 1.

$$\lim_{\substack{x \to \pm \infty \\ \lim_{x \to 0^{\pm}}}} f(x) = \pm \infty. \quad \text{No H.A..}$$

$$\lim_{\substack{x \to 0^{\pm} \\ \lim_{x \to -1^{\pm}}}} f(x) = \mp \infty, \quad \text{...... V.A.: } x = 0.$$

$$\lim_{\substack{x \to -1^{\pm} \\ x \to -1^{\pm}}} f(x) = \pm \infty, \quad \text{..... V.A.: } x = -1.$$

$$f(x) = x - 1 + \frac{x - 1}{x(x + 1)}, \text{ S.A.: } y = x - 1.$$

- 2. Given that g(3) = 3, g'(3) = 7, h(6) = 3, and h'(6) = -2, and let $f(x) = \frac{g(h(x))}{h(x)}$. Then f'(6) = 85:15
 - (A) $-\frac{8}{3}$; (B) $-\frac{16}{3}$; (C) -2; (D) $\boxed{-4}$.

Solution:
$$f'(x) = \frac{g'(h(x))h'(x)h(x) - g(h(x))h'(x)}{[h(x)]^2}$$
,
 $f'(6) = \frac{g'(h(6))h'(6)h(6) - g(h(6))h'(6)}{[h(6)]^2}$

$$= \frac{g'(3) \cdot (-2) \cdot 3 - g(3) \cdot (-2)}{3^2} = \frac{7 \cdot (-2) \cdot 3 - 3 \cdot (-2)}{3^2} = -4.$$

3. Find the **derivative** of $f(x) = \ln |x^3 - 4x + 1|$ when $x^3 - 4x + 1 \neq 0$. 67:33

(A)
$$f'(x) = \frac{3x^2 - 4}{x^3 - 4x + 1}$$
; (B) $\frac{3x^2 - 4}{|x^3 - 4x + 1|}$; (C) $-\frac{3x^2 - 4}{|x^3 - 4x + 1|}$; (D) $-\frac{3x^2 - 4}{x^3 - 4x + 1}$.

(C)
$$-\frac{3x^2-4}{|x^3-4x+1|}$$
; (D) $-\frac{3x^2-4}{x^3-4x+1}$.

Solution: Let
$$u = x^3 - 4x + 1$$
, $\frac{d}{dx}f(x) = \frac{df(u)}{du}\frac{du}{dx}$
 $= (\ln|u|)'(x^3 - 4x + 1)' = \frac{1}{u}(3x^2 - 4) = \frac{3x^2 - 4}{x^3 - 4x + 1}.$
[Quick sol] $(\ln|u|)' = \frac{u'}{u} = \frac{(x^3 - 4x + 1)'}{x^3 - 4x + 1} = \frac{3x^2 - 4}{x^3 - 4x + 1}.$

- 4. The limit $\lim_{x \to \infty} \left(1 \frac{1}{x} \frac{2}{x^2} \right)^x =$ 45:55
 - **(B)** e^{-1} ; (C) e^{-2} ; (D) e^{-3}

Solution: Let
$$y = \left(1 - \frac{1}{x} - \frac{2}{x^2}\right)^x$$
, $\ln y = x \ln \left(1 - \frac{1}{x} - \frac{2}{x^2}\right)$, $\lim_{x \to \infty} \ln y = \lim_{x \to \infty} \frac{\ln(1 - 1/x - 2/x^2)}{1/x}$ $(1^{\infty} \to \infty \cdot 0 \to \frac{0}{0})$ $= \lim_{t \to 0^+} \frac{\ln(1 - t - 2t^2)}{t}$ $(t = \frac{1}{x} \to 0^+ \text{ as } x \to \infty, (\frac{0}{0} \to \frac{\infty}{\infty}))$ $\frac{-1 - 4t}{1 - t - 2t^2} = -1$, $\lim_{x \to \infty} y = \lim_{x \to \infty} e^{\ln y} = e^{\lim_{x \to \infty} \ln y} = e^{-1}$. [Quick sol] $\lim_{x \to \infty} \left(1 - \frac{1}{x} - \frac{2}{x^2}\right)^x = \lim_{x \to \infty} \left[\left(1 + \frac{1}{x}\right)^x \left(1 - \frac{2}{x}\right)^x\right]$ $= \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \lim_{x \to \infty} \left(1 + \frac{-2}{x}\right)^x = e^{1}e^{-2} = e^{-1}$. [Quicker sol] When $x \to \infty$, $1 - \frac{1}{x} - \frac{2}{x^2} \approx 1 - \frac{1}{x}$, $\lim_{x \to \infty} \left(1 - \frac{1}{x} - \frac{2}{x^2}\right)^x = \lim_{x \to \infty} \left(1 + \frac{-1}{x}\right)^x = e^{-1}$.

- 5. How many points of inflection does the function $f(x) = x^6 15x^2 + 1$ have?
 - 83:17

- (A) 0;(B) 1;
- (C) 2;
- (D) 4.

Solution: $f'(x) = 6x^5 - 30x$, $f''(x) = 30(x^4 - 1) = 0$ when $x = \pm 1$. f''(x) > 0 when x < -1 or x > 1, and f''(x) < 0 when -1 < x < 1, and f(x) is continues at $x = \pm 1 \implies$ two inflection points.

- ◎ 多選擇題 (多選五題, 每題五分, 共二十五分。答錯一個選項扣兩 分, 錯兩個選項以上不給分, 分數不倒扣。)
- 11. If $f(x) = \frac{ax}{x^2 + b^2}$ has a local minimum at x = -2 and f'(0) = 1, then a92:3:4
 - (A) a = 4, b = 2; (B) a = 4, b = -2; (C) a = 2, b = 4; (D) a = -2, b = 4.

Solution: $f'(x) = \frac{a(x^2 + b^2) - ax(2x)}{(x^2 + b^2)^2} = \frac{a(b^2 - x^2)}{(x^2 + b^2)^2} = 0$ when $x = \pm b = -2$, $b = \pm 2$. $f'(0) = \frac{a}{b^2} = 1$, $a = b^2 = 4$.

- 12. Which of the following statements are **True** for $f(x) = x^{2/3}(9-x)^{1/3}$? 14:39:47
 - (A) f is increasing on (0,4).
 - (B) f has a local minimum at x = 9.
 - (C) f has a local minimum at x = 0.
 - (D) f has a local maximum at x = 6.

◎ 填空題 (填空五題, 每題五分, 共二十五分, 答錯不倒扣。)

16. The limit $\lim_{x \to \infty} \frac{x^{2017}}{2^x} =$ 78:19

Solution: 0. $\lim_{x \to \infty} \frac{x^{2017}}{2^x} \stackrel{l'H^{2017}}{=} \lim_{x \to \infty} \frac{2017!}{2^x (\ln 2)^{2017}} = 0. \quad (\ell'\text{Hospital rule 2017 times.})$

17. The **tangent line** to the curve $x^2 + y^2 = (2x^2 + 2y^2 - x)^2$ at the point $\left(0, \frac{1}{2}\right)$. 55:37

Solution: $y = x + \frac{1}{2}$. $x^{2} + y^{2} = (2x^{2} + 2y^{2} - x)^{2},$ $\frac{d}{dx} : 2x + 2yy'$ $= 2(2x^{2} + 2y^{2} - x)(4x + 4yy' - 1),$ $take <math>\left(0, \frac{1}{2}\right) : 2(0) + 2\frac{1}{2}y'$ $= 2(2(0)^{2} + 2\frac{1}{2}^{2} - 0)(4(0) + 4\frac{1}{2}y' - 1),$ y' = 2y' - 1, y' = 1. $tangent line: <math>y = 1(x - 0) + \frac{1}{2} = x + \frac{1}{2}.$

18. The absolute maximum value of the function $f(x) = x\sqrt{9-x^2}$, $-3 \le x \le 3$ is

Solution: $f(\frac{3\sqrt{2}}{2}) = \frac{9}{2}$.

... $f'(x) = \frac{9 - 2x^2}{2\sqrt{9 - x^2}} = 0 \text{ when } x = \pm \frac{3}{\sqrt{2}},$ does not exist when $x = \pm 3$. $f(\pm \frac{3}{\sqrt{2}}) = \pm \frac{9}{2}, f(\pm 3) = 0$.

The abs. $\max f(\frac{3}{\sqrt{2}}) = \frac{9}{2}$.

[Quick sol] $x = 3\sin t, -\frac{\pi}{2} \le t \le \frac{\pi}{2},$ $f(x(t)) = \frac{9}{2}\sin 2t \le \frac{9}{2}.$

End _____

Part II

◎ 單選擇題 (單選十題, 每題五分, 共五十分, 答錯不倒扣。)

6.
$$\int_{0}^{\frac{1}{2}\ln 3} e^{x} \sqrt{1 + e^{2x}} \, dx =$$

$$(A) \left[\frac{1}{2} \left(2\sqrt{3} - \sqrt{2} + \ln \frac{2 + \sqrt{3}}{1 + \sqrt{2}} \right); \right]$$

$$(B) 2\sqrt{3} - \sqrt{2} + \ln \frac{2 + \sqrt{3}}{1 + \sqrt{2}};$$

$$(C) \frac{1}{2} \left(2\sqrt{2} - \sqrt{3} + \ln \frac{2 + \sqrt{2}}{1 + \sqrt{3}} \right);$$

$$(D) 2\sqrt{2} - \sqrt{3} + \ln \frac{2 + \sqrt{2}}{1 + \sqrt{3}}.$$

- 7. If the infinite region $\Omega = \left\{ (x,y) | x \ge 1, 0 \le y \le \frac{1}{x} \right\}$ is rotated about the **x-axis**, how about the **volume** of the resulting solid and its **surface** area?
 - (A) Volume is finite. Surface area is finite.
 - (B) Volume is infinite. Surface area is finite.
 - (C) Volume is finite. Surface area is infinite.
 - (D) Volume is infinite. Surface area is infinite.

- 8. Let R be the region bounded by $y = \cos x$ and the line y = 1 with $x \in [0, 2\pi]$. The **volume** of the solid obtained by rotating the region R about the line y = 1 is
 - (A) π^2 ; (B) $2\pi^2$; (C) $3\pi^2$; (D) $4\pi^2$.

$$= \pi \left[\frac{3}{2}x - 2\sin x + \frac{\sin 2x}{4} \right]_0^{2\pi} = \pi \cdot \frac{3}{2} \cdot 2\pi = 3\pi^2.$$

- 9. The **length** of the curve $x=3\cos t-\cos 3t$ and $y=3\sin t-\sin 3t,$ $0\leq t\leq \pi$ is
 - (A) 10; (B) 11; (C) 12; (D) 13.

10. Let R be the region enclosed by $y = \ln x$, $y = \ln(x+1)$, y = 0, and x = t(t > 1). If V(t) is the volume of the solid obtained by rotating R about the **y-axis**, then the limit $\lim_{t\to\infty} \left(\frac{d}{dt}V(t)\right) =$ 61:39

- (B) $|2\pi;$
- (C) 3π ;
- (D) 4π .

Solution: Cylindrical shell:

$$V(t) = \int_0^1 \frac{2\pi x \ln(x+1) \ dx}{1 + \int_1^t 2\pi x [\ln(x+1) - \ln x] \ dx},$$

$$V'(t) = 0 + 2\pi t \left[\ln(t+1) - \ln t\right] = 2\pi t \ln(1 + \frac{1}{t}) = 2\pi \ln\left(1 + \frac{1}{t}\right)^t$$

$$V'(t) = 0 + 2\pi t [\ln(t+1) - \ln t] = 2\pi t \ln(1 + \frac{1}{t}) = 2\pi \ln\left(1 + \frac{1}{t}\right)^t.$$

$$\lim_{t \to \infty} V'(t) = 2\pi \lim_{t \to \infty} \frac{\ln(1+1/t)}{1/t} = 2\pi \lim_{s \to 0^+} \frac{\ln(1+s)}{s} \quad (\infty \cdot \mathbf{0} \to \frac{\mathbf{0}}{\mathbf{0}})$$

$$\stackrel{l'H}{=} 2\pi \lim_{s \to 0^+} \frac{1/(1+s)}{1} = 2\pi \cdot 1 = 2\pi.$$

$$\lim_{t \to \infty} V'(t) = 2\pi \lim_{t \to \infty} \ln\left(1 + \frac{1}{t}\right)^t = 2\pi \ln\lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^t$$

$$=2\pi\ln e=2\pi.$$

- ◎ 多選擇題 (多選五題, 每題五分, 共二十五分。答錯一個選項扣兩 分, 錯兩個選項以上不給分, 分數不倒扣。)
- 13. Consider $x \in [0,1]$ and $f(x) = \frac{\sin x}{x}$ if $x \neq 0$, f(x) = 0 if x = 0. Which of the following statements are **True**? 15:40:44
 - (A) f(x) is continuous.
 - (B) |f(x)| is differentiable on (0,1).
 - (C) |f(x)| is integrable.
 - (D) $|(f \circ f)(x)|$ is integrable.

- 14. Let R be the region bounded below by the graph of $y = x^3 x$ and bounded above by the graph $y = \sin(\pi x)$. Which of the following statements are **True**?
 - 34:48:18
 - (A) (0,0) and $(\pi,0)$ are on the boundary of the region R.
 - The area of $R = \int_0^1 (\sin(\pi x) x^3 + x) \ dx$.
 - Let S be a solid with the base R and each cross-section (C) perpendicular to the base R is an equilateral triangle. Then the volume of this solid is equal to $\frac{\sqrt{3}}{4} \int_{0}^{1} (x^3 - x - \sin(\pi x))^2 dx.$
 - The volume of the solid obtained by rotating the region (D) R about the line x = -1 can be evaluated as $2\pi \int_0^1 (x+1)(\sin(\pi x) - x^3 + x) \ dx.$

Solution:
$$A = \int_0^1 [\sin(\pi x) - (x^3 - x)] dx$$
.
$$A(x) = \frac{\sqrt{3}}{4} [\sin(\pi x) - (x^3 - x)]^2, V = \int_0^1 A(x) dx.$$
 邊長
$$V = \int_0^1 \frac{2\pi(x+1)}{5} [\sin(\pi x) - (x^3 - x)] \frac{dx}{5}.$$
 厚度

15. Let
$$f$$
 be the function given by $f(x) = \int_1^x (t^2 - 4t + 3)e^{-t} dt$. Which of the following statements about f must be **True**? 62:20:17

- (A) f is increasing on the interval (1,3).
- (B) f is increasing on the interval (3,4).
- (C) f(3) > 0.
- (D) f(1) = 0.

Solution: $f'(x) = (x^2 - 4x + 3)e^{-x} = 0$ when x = 1, 3. f'(x) > 0 when x < 1 or x > 3, f'(x) < 0 when 1 < x < 3. $f(x) = \int_{1}^{x} (t^2 - 4t + 3)e^{-t} dt = [-(x^2 - 4x + 3) - (2x - 4) - (2)]e^{-x}$ $= -(x - 1)^2 e^{-x}$, $f(3) = -4e^{-3} < 0$, f(1) = 0.

[Quick sol] f is decreasing on (1,3), $f(3) < f(1) = \int_{1}^{1} \cdots dt = 0$.

◎ 填空題 (填空五題, 每題五分, 共二十五分, 答錯不倒扣。)

19. Let
$$f(x) = \int_0^x e^{t^2} dt$$
. Then $f''(x) =$ 71:25

Solution: $2xe^{x^2}$.

.....

By TFTC, $f'(x) = e^{x^2}$, by Chain Rule $f''(x) = e^{x^2}(x^2)' = 2xe^{x^2}$.

Solution: p < -1.

$\begin{array}{l} \therefore \ 0 \leq |\sin x| \leq 1, \ 0 \leq x^p |\sin x| \leq x^p, \ \text{for} \ x > 0. \\ \int_1^\infty x^p \ dx = \int_1^\infty \frac{1}{x^{-p}} \ dx \ \text{converges} \iff -p > 1 \iff p < -1 \ \text{by} \\ \text{the Comparison Theorem}, \ \int_1^\infty x^p |\sin x| \ dx \ \text{converges} \ \text{when} \ p < -1. \end{array}$ For $p \ge -1$, $\int_{1}^{\infty} x^{p} |\sin x| \, dx \ge \int_{1}^{\infty} \frac{|\sin x|}{x} \, dx$ $(x^{p} > x^{-1} = \frac{1}{x})$ $\ge \frac{1}{2} \left(\int_{\pi}^{\infty} \frac{|\sin x|}{x} \, dx + \int_{\pi/2}^{\infty} \frac{|\sin x|}{x} \, dx \right)$ $(\pi > \pi/2 > 1)$ $\ge \frac{1}{2} \left(\int_{\pi}^{\infty} \frac{|\sin x|}{x} \, dx + \int_{\pi}^{\infty} \frac{|\cos x|}{x - \pi/2} \, dx \right)$ $(\sin(x - \pi/2) = \cos x)$ $\ge \frac{1}{2} \int_{\pi}^{\infty} \left(\frac{|\sin x|}{x} + \frac{|\cos x|}{x} \right) \, dx$ $\left(\frac{1}{x - \pi/2} \ge \frac{1}{x} \right)$ $\ge \frac{1}{2} \int_{\pi}^{\infty} \frac{\sin^{2} x + \cos^{2} x}{x} \, dx$ $(|\sin x| \ge \sin^{2} x, |\cos x| \ge \cos^{2} x)$ $= \frac{1}{2} \int_{\pi}^{\infty} \frac{1}{x} \, dx (= \infty)$ diverges, by the Comparison Theorem,

$$\geq \frac{1}{2} \int_{\pi} \left(\frac{|\sin x|}{x} + \frac{|\cos x|}{x} \right) dx \qquad \left(\frac{1}{x - \pi/2} \geq \frac{1}{x} \right)$$

$$\geq \frac{1}{2} \int_{\pi}^{\infty} \frac{\sin^2 x + \cos^2 x}{x} dx \qquad (|\sin x| \geq \sin^2 x, |\cos x| \geq \cos^2 x)$$

$$= \frac{1}{2} \int_{\pi} \frac{1}{x} dx (= \infty) \text{ diverges, by the Comparison Theor}$$

$$\int_{1}^{\infty} x^{p} |\sin x| dx \text{ diverges when } p \ge -1.$$

16. (105-2) Suppose that the equation of the **tangent line** to the polar curve $r = 1 + \cos \theta$ at the point $(r, \theta) = (\frac{1}{2}, \frac{2\pi}{3})$ is ax + by + 1 = 0, then the pair (a, b) is

Solution: (4,0).

.....

$$x = r \cos \theta = (1 + \cos \theta) \cos \theta = -\frac{1}{4} \text{ when } \theta = \frac{2\pi}{3},$$

$$\frac{dx}{d\theta} = -\sin\theta - \sin 2\theta = 0 \text{ when } \theta = \frac{2\pi}{3},$$

$$y = r \sin \theta = (1 + \cos \theta) \sin \theta = \frac{\sqrt{3}}{4}$$
 when $\theta = \frac{2\pi}{3}$,

$$\frac{dy}{d\theta} = \cos\theta + \cos 2\theta = -1 \text{ when } \theta = \frac{2\pi}{3},$$

$$\lim_{\theta \to 2\pi/3^-} \frac{dy}{dx} = \infty \text{ and } \lim_{\theta \to 2\pi/3^+} \frac{dy}{dx} = -\infty,$$

vertical tangent line: $x = -\frac{1}{4}$, 4x + 0y + 1 = 0.

17. (105-2) The **area** of the region that lies inside both curves $r=3\sin\theta$ and $r=1+\sin\theta$ is 0+1:86-1

End _____