

Knowledge Distillation on Graphs: A survey

Yijun Tian¹, Shichao Pei¹, Xialiang Zhang¹, Chuxu Zhang², Nitesh V. Chawla¹ ¹University of Notre Dame, ²Brandeis University

DMAIS@CAU

Joohee Cho

What is a Knowledge Distillation?

☐ Technique to transfer knowledge from a teacher model to a student model

Examples of Graph Knowledge Distillation

Model Name	TinyGNN	FreeKD		
Reason to Use Distillation	For compression (Reduce time)	For performance (Make perform better)		
What to Distillate	Logits	Logits, Structures		
How to Distillate	Direct	Adaptive		

Where to Use Distillation For Graphs - Compression

☐ Distill knowledge from a big GNN model to a small GNN model

Where to Use Distillation For Graphs - Performance

☐ Distill knowledge between similar models to achieve better performances

What to Distillate From the Teacher Model

☐ Distill the structure of the graph, output logits, and the embedding space of the models

How to Distillate - Direct

□ Divergence between models is minimized so that the student model fully mimics the teacher model

Teacher

Student

How to Distillate - Adaptive

☐ Adaptively considers the significance of knowledge before conducting

Teacher

Student

Goal of TinyGNN

☐ Make shallow GNNs to have similar representation powers as deep GNNs

Full Structure of TinyGNN

Relations Between Neighbor Nodes

□ Neighborhood nodes are connected to each other in maximum 2 hops

Relations Between Neighbor Nodes (cont.)

☐ Many peer nodes are also directly connected to each other

Table 1: Statistics of direct link rate among peer nodes.

Data Sets	Facebook	Chameleon	Squirrel	AliGraph
rate (%)	32.81	42.94	46.91	20.69

Peer-Aware Module for Student Model

☐ Add module to update representation of nodes considering its peers

Peer-Aware Module for Student Model (cont.)

☐ Apply self-attention to aggregate peer information

$$\alpha_{i,j} = \frac{exp(a_{i,j})}{\sum_{k} exp(a_{i,k})}$$

$$a_{i,j} = \frac{dot(W_a h_j, W_a h_i)}{\sqrt{d}}$$

$$h_i^* = \sum_{j} \alpha_{i,j} \cdot (W_v \cdot h_j)$$

Neighbor Distillation Strategy

☐ Both teacher and student model learns by the loss between the true label and its prediction

$$L_{CE}^{t} = \sum_{i=1}^{N} y_{i} \log(\widehat{y_{i}^{t}}) + (1 - y_{i}) \log(1 - \widehat{y_{i}^{t}})$$

Teacher Model Cross-Entropy Loss

$$L_{CE}^{t} = \sum_{i=1}^{N} y_{i} \log(\widehat{y_{i}^{t}}) + (1 - y_{i}) \log(1 - \widehat{y_{i}^{t}})$$

Student Model Cross-Entropy Loss

Neighbor Distillation Strategy (cont.)

☐ Student model additionally uses soft cross-entropy loss between teacher model's logits and the logits of itself

$$L_{ND} = -softmax(z_t/T) \cdot \log softmax(z_s/T)$$
Soft Cross-Entropy Loss of Logits

$$L_{Student} = L_{CE}^{s} + \alpha L_{ND}$$

Final Loss Function of the Student Model

Full Algorithm of the Model

Experiments – Datasets

Table 2: Data Sets Information.

Data Sets	#Nodes	#Edges	#Class
Facebook	22,470	171,002	4
Chameleon	2,277	31,421	10
Squirrel	5,201	198,493	6
AliGraph	46,800	946,175	7

Experiments – Node Classification (cont.)

Table 4: The inference time for each model on different data sets.

model Facebook		Chameleon	Squirrel	AliGraph	
GNN ₃ (Teacher)	18.1999 (1×)	1.2715 (1×)	3.2022 (1×)	106.7618 (1×)	
GNN_2 (Base)	0.8654 (21.03×)	0.0856 (14.85×)	0.164 (19.53×)	3.4994 (30.51×)	
GNN_1 (Base)	0.2703 (67.33×)	0.03 (40.50×)	0.0447 (67.13×)	0.5081 (210.12×)	
$TinyGNN_1$	0.4314 (42.19×)	0.0332 (38.30×)	0.0897 (35.70×)	0.8434 (126.59×)	
$TinyGNN_2$	2.3542 (7.73×)	0.1059 (12.00×)	0.3112 (10.29×)	5.0072 (21.32×)	

Experiments – Node Classification

Table 3: Results for node classification. The best results for one- or two-layer GNNs are in bold, respectively. GNN_3 (Teacher) is the teacher GNN. GNN_1 (Base) and GNN_2 (Base) are direct trained on each dataset without using NDS and PAM.

Model	Facebook		Chameleon		Squirrel		AliGraph	
	Micro-f1(%)	Macro-f1(%)	Micro-f1(%)	Macro-f1(%)	Micro-f1(%)	Macro-f1(%)	Micro-f1(%)	Macro-f1(%)
GNN ₃ (Teacher)	89.43	88.69	39.12	38.16	30.68	30.41	60.34	53.75
GNN ₂ (Base)	87.69	86.83	38.73	36.92	30.47	30.08	49.98	43.45
GNN ₁ (Base)	82.75	81.65	36.88	35.79	29.83	29.24	33.77	25.22
GNN ₁ -NDS	83.32	82.11	37.46	36.42	30.73	30.38	35.30	24.88
GNN_1 -PAM	83.15	81.79	38.05	36.56	31.32	31.08	40.19	32.05
$TinyGNN_1$	84.56	83.41	39.71	38.46	32.09	32.00	42.34	32.37
GNN_2 - NDS	88.90	88.15	39.51	38.21	30.98	30.52	54.72	46.97
GNN_2 - PAM	88.56	87.72	40.98	39.62	32.69	31.95	57.81	50.40
$TinyGNN_2$	89.40	88.66	41.17	40.01	33.33	33.17	61.12	54.17

Experiments – Different Teacher and Student Models

Table 5: Performance comparison with different teacher and different student GNNs. The best results for GNNs with the same layer number are in **bold**.

		Face	book	Chameleon		Squirrel		AliGraph	
F	Base	Micro-f1(%)	Macro-f1(%)	Micro-f1(%)	Macro-f1(%)	Micro-f1(%)	Macro-f1(%)	Micro-f1(%)	Macro-f1(%)
G	NN_1	82.75	81.65	36.88	35.79	29.83	29.24	33.77	25.22
G.	NN_2	87.69	86.83	38.73	36.92	30.47	30.08	49.98	43.45
G	NN_3	89.43	88.69	39.12	38.16	30.68	30.41	60.34	53.75
G	NN_4	90.21	89.53	38.73	36.57	29.70	28.94	64.37	58.35
Teacher	Student								
GNN_4	$TinyGNN_1$	84.99	83.75	39.22	37.72	32.86	32.48	42.67	32.39
GNN_3	$TinyGNN_1$	84.56	83.41	39.71	38.46	32.09	32.00	42.34	32.37
GNN_2	TinyGNN ₁	83.04	81.73	38.24	36.12	32.22	31.66	41.43	31.85
GNN_4	$TinyGNN_2$	89.89	89.24	40.68	39.22	32.44	32.29	61.28	54.26
GNN_3	TinyGNN ₂	89.40	88.66	41.17	40.01	33.33	33.17	61.12	54.17
GNN_4	TinyGNN ₃	90.83	90.25	41.46	40.46	31.58	31.40	67.07	60.83

Experiments – Convergence

(e) Micro-f1 of 1-layer GNNs on Squirrel (f) Micro-f1 of 2-layer GNNs on Squirrel (g) Micro-f1 of 1-layer GNNs on AliGraph (h) Micro-f1 of 2-layer GNNs on AliGraph

Figure 4: The Micro-f1 of GNNs in different epoch on different data sets.

FreeKD: Free-direction Knowledge Distillation for Graph Neural Networks

Kaituo Feng, Changsheng Li, Ye Yuan, Guoren Wang

Beijing Institute of Technology

DMAIS@CAU
Joohee Cho

Limitation of Previous Work

☐ Deep models gets into over-smoothing problems, and shallow models cannot perfectly imitate their representations

Node Representations on Different Models

☐ Given two models of a graph, some nodes of a model outperform the corresponding nodes in another model while the others do not

Figure 1: Cross entropy losses for nodes with ID from 1 to 10 on the Cora dataset obtained by two typical GNN models, GraphSAGE [13] and GAT [33], after training 20 epochs. The value in each block denotes the corresponding loss.

Idea of FreeKD Model

☐ Each graph distills the other graph the nodes that have great performance

What to Distillate From the Teacher Model

☐ Distill structure and the logits that performs better than the other model

What to Consider

- ☐ Which model to regard as a teacher for each batch
- ☐ How to distill logits of the nodes
- ☐ Which nodes' structures to distillate
- ☐ How to distill structures of the nodes

How to Choose a Teacher Model

☐ Set predicted probabilities and the cross-entropy losses of batches as the input of RL based ML Model

Node-level Distillation

☐ Minimize the KL divergence of the predictions of both graphs

$$\begin{split} L_{node}^{\Psi} &= \sum_{i=1}^{N} (1 - a_i^{[1]}) KL(\mathbf{p}_i^{\Phi} || \mathbf{p}_i^{\Psi}) \\ L_{node}^{\Phi} &= \sum_{i=1}^{N} a_i^{[1]} KL(\mathbf{p}_i^{\Psi} || \mathbf{p}_i^{\Phi}), \end{split}$$

How to Use Structure Information

☐ Set input of node-level distillation and the center similarities of the models as the input of the ML Model

How to Use Structure Information (cont.)

☐ Center similarity compares the average similarities between a node and its neighbors

$$\mathbf{u}_{i} = \begin{cases} \left(\frac{1}{|\mathbf{M}_{i}^{\Phi}|} \sum_{v \in \mathbf{M}_{i}^{\Phi}} g(\mathbf{h}_{i}^{\Phi}, \mathbf{h}_{v}^{\Phi}), \frac{1}{|\mathbf{M}_{i}^{\Phi}|} \sum_{v \in \mathbf{M}_{i}^{\Phi}} g(\mathbf{h}_{i}^{\Psi}, \mathbf{h}_{v}^{\Psi})\right), if \ a_{i}^{[1]} = 0 \\ \left(\frac{1}{|\mathbf{M}_{i}^{\Psi}|} \sum_{v \in \mathbf{M}_{i}^{\Psi}} g(\mathbf{h}_{i}^{\Psi}, \mathbf{h}_{v}^{\Psi}), \frac{1}{|\mathbf{M}_{i}^{\Psi}|} \sum_{v \in \mathbf{M}_{i}^{\Psi}} g(\mathbf{h}_{i}^{\Phi}, \mathbf{h}_{v}^{\Phi})\right), if \ a_{i}^{[1]} = 1 \end{cases}$$

$$\mathbf{s}_{i}^{[2]} = CONCAT(\mathbf{s}_{i}^{[1]}, \mathbf{u}_{i})$$

Structure-level Distillation

☐ Minimize the KL divergence of the similarities of both graphs

$$\hat{s}_{ij}^{\Phi} = \frac{e^{g\left(\mathbf{h}_{i}^{\Phi}, \mathbf{h}_{j}^{\Phi}\right)}}{\sum_{v \in \mathbf{M}_{i}^{\Phi}} e^{g\left(\mathbf{h}_{i}^{\Phi}, \mathbf{h}_{v}^{\Phi}\right)}}, \quad \hat{s}_{ij}^{\Psi} = \frac{e^{g\left(\mathbf{h}_{i}^{\Psi}, \mathbf{h}_{j}^{\Psi}\right)}}{\sum_{v \in \mathbf{M}_{i}^{\Phi}} e^{g\left(\mathbf{h}_{i}^{\Psi}, \mathbf{h}_{v}^{\Psi}\right)}}$$

Similarity

$$L_{struct}^{\Psi} = \sum_{i=1}^{N} (1 - a_i^{[1]}) a_i^{[2]} K L(\hat{\mathbf{s}}_i^{\Phi} || \hat{\mathbf{s}}_i^{\Psi})$$
$$L_{struct}^{\Phi} = \sum_{i=1}^{N} a_i^{[1]} a_i^{[2]} K L(\bar{\mathbf{s}}_i^{\Psi} || \bar{\mathbf{s}}_i^{\Phi})$$

Loss Function

Loss Function of the Model

☐ Minimize the summation of cross-entropy losses, node-level losses and structure-level losses

$$L^{\Phi} = L_{CE}^{\Phi} + \mu L_{node}^{\Phi} + \rho L_{struct}^{\Phi}$$

$$L^{\Psi} = L_{CE}^{\Psi} + \mu L_{node}^{\Psi} + \rho L_{struct}^{\Psi}$$

Rewards of the Policy Network

☐ The RL model (policy network) aims to maximize its rewards

$$R_{i} = -\frac{\sum\limits_{u \in \mathbf{B}} (L_{CE}^{\Phi}(u) + L_{CE}^{\Psi}(u))}{|\mathbf{B}|} - \gamma \frac{\sum\limits_{v \in \mathcal{N}_{i}} (L_{CE}^{\Phi}(v) + L_{CE}^{\Psi}(v))}{|\mathcal{N}_{i}|}$$

Reward of a Node

$$\nabla_{\theta,\delta} J = \frac{1}{|\mathbf{B}|} \sum_{i \in \mathbf{B}} (R_i - b_i) \nabla_{\theta,\delta} \log(\pi_{\theta}(\mathbf{s}_i^{[1]}, a_i^{[1]}) \pi_{\delta}(\mathbf{s}_i^{[2]}, a_i^{[2]}))$$

Cumulative Rewards

Full Model

Experiments - Performance

			Cora		Chameleon		Citeseer		Texas	
Method	thod Basic Model F1 Score (↑Impv.)		F1 Score (↑Impv.)		F1 Score (↑Impv.)		F1 Score (†Impv.)			
	Φ	Ψ	Φ	Ψ	Φ	Ψ	Φ	Ψ	Φ	Ψ
GCN	-	-	85.12	-	33.09	-	75.42	-	57.57	-
GSAGE	-	-	85.36	-	48.77	-	76.56	-	76.22	-
GAT	-	-	85.45	-	40.29	-	75.66	-	57.84	-
FreeKD	GCN	GCN	86.53(1.41)	86.62(1.50)	37.61(1.52)	37.70(14.61)	77.28(1.86)	77.33(1.91)	60.28(2.71)	60.55(2.98)
FreeKD	GSAGE	GSAGE	86.41(1.05)	86.55(1.19)	49.89(1.12)	49.85(1.08)	77.78(1.22)	77.58(1.02)	78.76(12.54)	77.85(1.63)
FreeKD	GAT	GAT	86.46(1.01)	86.68(1.23)	43.96(13.67)	44.42(14.13)	77.13(1.47)	77.42(1.76)	61.18(13.34)	61.36(†3.52)
FreeKD	GCN	GAT	86.65(1.53)	86.72(1.27)	35.58(2.49)	43.79(\^3.53)	77.39(1.97)	77.58(1.92)	61.06(†3.49)	60.38(12.54)
FreeKD	GCN	GSAGE	86.26(1.14)	86.76(1.40)	35.39(12.30)	49.89(1.12)	77.08(1.66)	77.68(1.12)	60.61(†3.04)	77.58(1.36)
FreeKD	GAT	GSAGE	86.67(1.22)	86.84(1.48)	43.96(13.67)	49.87(1.10)	77.24(1.58)	77.62(1.06)	62.45(1.61)	78.36(†2.14)

Experiments – Ablation Study

	Cham	neleon	Co	ra			
Method	Netv	vork	F1 S	F1 Score		F1 Score	
	Φ	Ψ	Φ	Ψ	Φ	Ψ	
GCN	-	-	33.09	-	85.12	-	
FreeKD-node	GCN	GCN	36.35	36.42	86.17	86.03	
FreeKD-w.ojudge	GCN	GCN	35.33	35.27	85.83	85.76	
FreeKD-loss	GCN	GCN	35.86	35.79	85.89	85.97	
FreeKD-all-neighbors	GCN	GCN	36.85	36.73	86.21	86.26	
FreeKD-all-structures	GCN	GCN	36.53	36.62	86.13	86.07	
FreeKD	GCN	GCN	37.61	37.70	86.53	86.62	