(8) Dar al menos dos conjuntos Γ diferentes que sean consistentes maximales y contengan al conjunto $\{p_0, \neg (p_1 \to p_2), p_3 \lor p_2\}$

d, T asignaciones de simbolos proposicionales en 10,11 tales que

$$\frac{\left| \gamma : \mathcal{N} \longrightarrow \{0,1\} \right|}{\gamma(\beta) := 1 \quad \text{Si} \quad i \neq 2 \quad \& \quad i \neq 4}$$

Por lo demostrado en BSE7b, 8 x γ validan $\{P_0, \neg (P_1 \longrightarrow P_2), P_3 \lor P_2\}$, Ademas 8 valida Γ y γ valida Γ dentonces por lema 28 sabernos que tanto Γ como Γ on ambos consitentes.

Por lema 30 (De lindenbaum): si A es consistente entonces existe un consonto consistente maximal que lo incluye.

los conjuntos $H(S):=\{\varphi\in Pop: [\varphi]S=1\}$ & $H(Y):=\{\varphi\in Pop: [\varphi]Y=1\}$ son ambos maximales (sustificación en exemplo 13 del aporte)

Vego
$$\Gamma \subseteq H(S)$$
 & $\Gamma^{+} \subseteq H(T)$
Pero $H(S) \neq H(T)$, veamos esto

Corollary 1.5.10 If Γ is maximally consistent, then $\varphi \in \Gamma \Leftrightarrow \neg \varphi \notin \Gamma$, and $\neg \varphi \in \Gamma \Leftrightarrow \varphi \notin \Gamma$.

Supongamos que
$$th(8) = th(7)$$

$$P_{4} \in \Gamma$$

$$\subseteq \{ \Gamma \subseteq H_{N}(S) \}$$

$$P_{4} \in H_{N}(S)$$

$$\equiv \{ H_{1} \text{ potesis} \}$$

$$P_{4} \in H_{N}(Y)$$

$$\equiv \{ Corollary 1. 5.10 \ Van Dalen \}$$

$$P_{4} \notin H_{N}(Y)$$

$$\equiv \{ T^{+} \subseteq H_{N}(Y) \}$$

$$Contradicción$$

Como suponer
$$H(\delta) = H(\gamma)$$
 es contradictorio

Concluimos
$$th(s) \neq th(r)$$