

TEST DE HIPÓTESIS **CORRELACIÓN Y REGRESIÓN**

CLASE 9

- Test de hipótesis
- . Intervalos de confianza

TEST DE HIPÓTESIS

- Hipótesis: afirmación acerca de algún PARÁMETRO
 - > Parámetro: poblacional
 - > Estimador: muestral
- 2 tipos de hipótesis (en la mayoría de los casos y según el test):
 - > Nula (Ho): no hay diferencia
 - > Alternativa (H1): hay diferencia

¿Qué decisión tomar?

- 2° decidir:
 - \triangleright Si p-valor $< \alpha$: la diferencia es estadísticamente significativa. Rechazo Ho
 - > Si el p-valor >= α : la diferencia NO es estadísticamente significativa. No se rechaza Ho

INTERPRETACIÓN

- Rechazo Ho: la diferencia es significativa
- No rechazo Ho: no significa que aceptamos Ho, decimos que no hay evidencia suficiente para decir que son distintos

PROCEDIMIENTO INFERENCIAL

- 1) Plantear las hipótesis estadísticas
- 2) Elegir un valor de nivel de significación (en general < 0,05).
- 3) Calcular un estadístico (fórmula)
- 4) Calcular el p-valor asociado al estadístico
- 5) Comparar el valor de p-valor con el valor del nivel de significación para rechazar o no rechazar la hipótesis nula

EJEMPLO

- HO=
- H1=
- Test t p-valor: 0.06
- Conclusión?

TIPOS DE ERRORES

	Ho Verdadera	Ho Falsa
No rechazo Ho	OK	Error tipo II
Rechazo Ho	Error tipo I	OK

Definiciones:

Error tipo I: Rechazar Ho cuando es verdadera.

Error tipo II: No rechazar Ho cuando es falsa.

α: Probabilidad de error tipo I

β: Probabilidad de error tipo II

Potencia: 1 – β : probabilidad de rechazar H0 cuando es H0 es falsa

- Error tipo I: se controla con el nivel de significación del test
- Error tipo II: se controla con el tamaño muestral
- Error tipo I y II están inversamente relacionados: cuando α aumenta, β disminuye y viceversa.
- Fijando α , se puede disminuir β aumentando el tama \tilde{n} o muestral

	N pequeño	N grande
Rechazo Ho	CONCLUYENTE El efecto es tan grande, que aún con un n pequeño pudo ser detectado	CUIDADO!!! Ver si la magnitud del efecto es clínicamente importante
No rechazo Ho	CUIDADO!!! Es posible que el efecto exista y no pueda ser demostrado	CONCLUYENTE El efecto existente es despreciable

INTERVALO DE CONFIANZA

- IC es un rango de valores dentro del cual se cree que se encuentra el PARÁMETRO, con una confianza del 95 % (o 99% o lo que definamos).
- Ejemplo de cálculo IC para media:

Error Estándar de la media (ESM) =
$$\frac{\sigma}{\sqrt{n}}$$

Error Estándar de la proporción (ESP) =
$$\sqrt{\frac{pq}{n}}$$

IC95% = 1,96 ± ESM = 1,96 ±
$$\frac{s}{\sqrt{n}}$$

TEST DE HIPÓTESIS

Muestras independientes

Variable dependiente	Variable independiente	Prueba estadística	Ejemplo
Cuantitativa	Cuali: 2 grupos	T de Student (P) U de Mann-Whitney (NP)	Nivel de glucemia entre niños con padres con DBT y sin DBT
	Cuali: más de 2 grupos	ANOVA (P) Kruskal-Wallis (NP)	Nivel de colesterol en 3 grupos con diferente dieta
	Cuanti	Correlación de Pearson (P) Spearman (NP)	Relación entre Tensión arterial y edad
Cualitativa	Cuali	Chi cuadrado Test exacto de Fisher	Asociación entre mate y gastritis

Muestras dependientes

Variable dependiente	Variable independiente	Prueba estadística	Ejemplo
Cuantitativa	Cuali: 2 grupos	Test de Wilcoxon (NP) Test del signo (NP)	Analizar la TAS antes y después de tratamiento
	Cuali: más de 2 grupos	ANOVA de medidas repetidas (P) Friedman (NP)	Comparar TAS al inicio, 3 meses y 6 meses de tto
Cualitativa	Cuali: 2 grupos	Test de McNemar	
	Cuali: más de 2 grupos	Test de Cochran	

P: Paramétrico NP: No Paramétrico

CORRELACIÓN

Evalúa si dos variables están asociadas y estima el grado de asociación

- Variables: numéricas y ordinales
- Evaluación por medio de:
 - Gráfico de dispersión (Scatter plot)
 - Coeficientes de correlación

Scatter plot o Gráfico de dispersión

Gráfico de dispersión

Coeficientes de correlación ()

- Miden la fuerza de asociación **lineal** entre las variables
- Coeficiente de Pearson (r) es un test paramétrico y Coeficiente de Spearman (rho) es No paramétrico
- Va de -1 a 1
- Hipótesis:
 - > Ho: No hay asociación lineal entre x e y (ρ = 0)

H1: hay asociación lineal entre x e y ($\rho \neq 0$)

Interpretación:

- r o rho = 0 ---> No hay asociación lineal
- r o rho = 1 ---> Hay asociación perfecta positiva
- r o rho = -1 ---> Hay asociación perfecta negativa

Supuestos:

- Los pares de observaciones, (x1, y1)....(xn, yn), son independientes entre si
- Están igualmente distribuidos
- Cada muestra (x e y) tienen distribución normal→ Pearson, sino tiene distribución normal o son de escala ordinal →Spearman

Otras asociaciones NO lineales

REGRESIÓN LINEAL Y LOGÍSTICA

Objetivo de la regresión

- Explicar la relación entre una variable dependiente y una o varias variables independientes.
- Predecir el resultado de una variable dependiente, con en los valores de una o más variables independientes, explicativas o predictoras.

REGRESIÓN LINEAL

MODELO GENERAL

Modelo General:

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

Donde:

- Y = variable dependiente o resultado
- β₀= ordenada al origen o intercepto
- β1= pendiente de la recta
 - variable independiente o predictora
 - error → variable desconocida

MODELO AJUSTADO

Modelo ajustado:

- Donde:
- $\hat{\mathbf{Y}}$ = glucemia
- b_0 = nivel de glucemia cuando x = 0
- b_1 = cambio de glucemia cuando x aumenta 1 unidad
- X = peso

SUPUESTOS ESTADÍSTICOS

- Los errores tienen todos la misma varianza (homocedasticidad)
- Los errores tienen distribución normal
- Los errores son independientes entre sí

ANÁLISIS ESTADÍSTICO

- 1°) ANOVA (F)
- Permiten saber hay una regresión lineal significativa.
- Regresión lineal significativa: existe una relación lineal entre una variable dependiente (Y) y una variable independiente (X)
- $> p < \alpha$: hay regresión lineal significativa.
- p ≥ α: no hay regresión lineal

- > Vade 0 a 1
- > Un R² cercano a 1 indica que la recta obtenida permite una buena predicción de valores de Y a partir de valores de X.
- > Un R² cercano a 0 indica que la variable independiente (X) no predice los valores de la variable dependiente (Y) (mediante una ecuación lineal).

• 3°) Test t para coeficientes bo y b1

- > Hipótesis:
 - Ho: b=0
 - H1: b≠0
- p < α: rechazo Ho</p>
- > p ≥ α: no rechazo Ho

VERIFICACIÓN DE SUPUESTOS

Como los errores son desconocidos, se estiman por los residuos

Verificación de supuestos con residuos

- Normalidad:
 - Gráficos (histograma, qq-plot, box plot)
 - > Test de normalidad (Shapiro, Kolmogorov)
- Homocedasticidad y linealidad:
 - Gráficos de dispersión de residuos estandarizados (eje y) versus pronosticados (eje x)

REGRESIÓN LOGÍSTICA

Repaso de algunos conceptos

OR= Odds de enfermedad en expuestos Odds de enfermedad en No expuestos

ODDS RATIO

	Enfermo	No Enfermo	Total
Expuesto	а	b	a + b
No Expuesto	С	d	c + d
Total	a + c	b + d	a +b + c + d

Odds = <u>proporción</u> 1 – proporción

Proporción = odds

1 + odds

Odds y proporción >> son medidas de frecuencias

OR o Razón de odds -> medida de asociación

MODELO GENERAL

3 formas de expresar el Modelo General:

$$\ln\left(\text{odds}(\mathbf{x})\right) = \ln\left(\frac{p(\mathbf{x})}{1 - p(\mathbf{x})}\right) = \alpha + \beta \cdot \mathbf{x}$$

$$E(Y/X = x) = p(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

Donde:

- ► Logit $(p(x)) \rightarrow Y \rightarrow variable dependiente dicotómica$
- → X → variable predictora
- \rightarrow OR para Y=1 (tiene el evento) dado X=x
- > $\alpha \rightarrow$ medida de frecuencia para Y=1 dado X=0

- El modelo establece que la transformación logit de la proporción de la variable dependiente (Y) se relaciona linealmente con la variable regresora o predictora o independiente (X).
- En este modelo la variable Y condicional al valor de la variable X = x tiene distribución binomial

El parámetro de mayor interés es la pendiente β

ANÁLISIS ESTADÍSTICO

- Tabla de codificación interna de variable dependiente: ver si la codificación interna corresponde con nuestra codificación
- -2 log verosimilitud: sirve para comparar modelos, mientras menor sea mayor es la verosimilitud, por lo tanto el agregar la variable mejora el modelo

Test de máxima verosimilitud (test omnibus):

 \rightarrow Ho: todos los β = 0 vs

> H1: algún β ≠ 0

• Test de wald:

> Ho: cada coeficiente aislado es igual a 0

H1: cada coeficiente aislado es distinto de 0

- Tabla de clasificación:
 - > Valora que tan bien clasifica el modelo a los valores observados según los pronosticados por el modelo.

- Test de Hosmer-Lemeshow:
 - > Es un test de bondad de ajuste que indica que tan bien ajusta el modelo
 - > Compara frecuencias observadas y esperadas
 - Ho: observadas = esperadas
 - Se busca **NO** rechazar Ho

Interpretación de coeficientes

- Variable independiente continua:
 - Es el cambio en el logit(p) cuando x aumenta 1 unidad. O sea es el aumento o disminución de las chances de Y=1 (tener el evento) cuando x aumenta 1 unidad.
- Variable independiente categórica:

Es el cambio en el logit(p) entre las categorías de x=1 y x=0 (tener y no tener el factor de exposición).

Bibliografía

- Material docente de la Unidad de Bioestadística Clínica. Hospital Universitario Ramón y Cajal.
 - Disponible en: http://www.hrc.es/bioest/Mdocente.html
- Correlación y modelos de regresión lineal.
 - Disponible en: http://www.hrc.es/bioest/Reglin1.html
- Modelos de regresión logística.
 - Disponible en: http://www.hrc.es/bioest/Reglog1.html

