SISTEM PENUNJANG KEPUTUSAN INTELIJEN PENGENDALIAN PRODUKTIVITAS PADA INDUSTRI SUSU

Oleh LISTHYA AYU INDRIYANI F 34104069

2009
FAKULTAS TEKNOLOGI PERTANIAN
INSTITUT PERTANIAN BOGOR
BOGOR

INSTITUT PERTANIAN BOGOR FAKULTAS TEKNOLOGI PERTANIAN

SISTEM PENUNJANG KEPUTUSAN INTELIJEN PENGENDALIAN PRODUKTIVITAS PADA INDUSTRI SUSU

SKRIPSI

Sebagai salah satu syarat untuk memperoleh gelar

SARJANA TEKNOLOGI PERTANIAN

pada Departemen Teknologi Industri Pertanian Fakultas Teknologi Pertanian Institut Pertanian Bogor

> Oleh LISTHYA AYU INDRIYANI F 34104069

2009
FAKULTAS TEKNOLOGI PERTANIAN
INSTITUT PERTANIAN BOGOR
BOGOR

INSTITUT PERTANIAN BOGOR FAKULTAS TEKNOLOGI PERTANIAN

SISTEM PENUNJANG KEPUTUSAN INTELIJEN PENGENDALIAN PRODUKTIVITAS PADA INDUSTRI SUSU

SKRIPSI

Sebagai salah satu syarat untuk memperoleh gelar

SARJANA TEKNOLOGI PERTANIAN

pada Departemen Teknologi Industri Pertanian
Fakultas Teknologi Pertanian
Institut Pertanian Bogor

Oleh LISTHYA AYU INDRIYANI F 34104069

Dilahirkan di Bekasi, 1 Maret 1987

Tanggal Lulus: 5 Desember 2008

Disetujui:

Bogor, Januari 2009

Dr. Ir. Yandra Arkeman, M.Eng Pembimbing Akademik

SURAT PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama: Listhya Ayu Indriyani

NRP : F 34104069

menyatakan dengan sebenarn-benarnya bahwa skripsi yang berjudul:

Sistem Penunjang Keputusan Intelijen Pengendalian Produktivitas pada Industri Susu

adalah hasil karya sendiri dengan arahan pembimbing dan belum pernah dipublikasikan, kecuali yang telah ditunjuk rujukannya.

Demikian pernyataan ini saya buat dengan sebenar-benarnya tanpa tekanan dari siapapun.

Bogor, Januari 2009

Yang membuat pernyataan

Listhya Ayu Indriyani

F34104069

RIWAYAT HIDUP

Penulis dilahirkan di Bekasi pada tanggal 1 Maret 1987. Penulis adalah anak pertama dari pasangan Gunawan dan Meyrida Agustina Rizaliyanti. Penulis adalah anak pertama dari dua bersaudara, adik laki-laki bernama Prasetya Adi Nugraha.

Riwayat pendidikan penulis dimulai pada tahun 1991 sampai tahun 1992 di Taman Kanak-Kanak Maria

Monti. Pada tahun 1992 sampai tahun 1998, penulis melanjutkan pendidikan di SDN Pekayon Jaya III Bekasi. Tahun 1998 sampai tahun 2001, penulis melanjutkan pendidikan di SLTPN 9 Bekasi. Pada tahun 2001 sampai tahun 2004, penulis melanjutkan pendidikan di SMUN 2 Bekasi. Pada tahun 2004, penulis lulus seleksi masuk IPB melalui jalur Undangan Seleksi Masuk IPB (USMI) dan diterima sebagai mahasiswa Departemen Teknologi Industri Pertanian, Fakultas Teknologi Pertanian.

Selama mengikuti perkuliahan di IPB, penulis berpartisipasi dalam organisasi dan kegiatan di dalam kampus IPB. Penulis menjadi pengurus Himalogin di departemen Publis Relation (Hubungan External) tahun 2005-2006 dan mengikuti beberapa kepanitiaan antara lain Agroindustry Day (Seksi Humas, 2005), Blue Ocen Strategy (Koord.Humas, 2006), Hagatri (Seksi KomDis, 2006), Agroindustry Day (Koord.Humas, 2006), Java-Bali Agroindustrial Trip (Seksi Kesekretariatan, 2007). Pada tahun 2007, penulis melaksanakan Praktek Lapangan (PL) di KPBS Pangalengan, Bandung selama 42 hari (2 Juli-16 Agustus). Penulis pernah menjadi asisten mata kuliah Teknik Optimasi pada tahun 2008 dan kemudian pada tahun yang sama, penulis menyelesaikan tugas akhir dengan judul "Sistem Penunjang Keputusan Intelijen Pengendalian Produktivitas pada Industri Susu".

Listhya Ayu Indriyani. F34104069. Sistem Penunjang Keputusan Intelijen Pengendalian Produktivitas Pada Industri Susu. Di bawah Bimbingan Yandra Arkeman. 2009.

RINGKASAN

Dalam usaha mensukseskan kampanye minum susu yang dilakukan oleh pemerintah maka para industri susu diharapkan dapat meningkatkan produksinya. Namun produksi susu nasional hanya mencukupi 25% dari kebutuhan susu nasional sehingga 75% kebutuhan susu lainnya ditutupi melalui impor. Hal tersebut terjadi karena kurangnya efisiensi dalam penggunaan sumber daya yang ada sehingga hanya sedikit produk yang dapat dihasilkan. Oleh karena itu industri susu membutuhkan suatu alat yang dapat memudahkan untuk menghitung dan mengendalikan produktivitas.

Tujuan dari penelitian ini adalah merancang, mengembangkan dan mengaplikasikan sistem penunjang keputusan intelijen untuk pengendalian produktivitas pada industri susu, mengintegrasikan algoritma genetika dan *expert system* (sistem pakar) dengan sistem penunjang keputusan intelijen ini untuk menyelesaikan permasalahan produktivitas di industri susu dan mengintegrasikan pendekatan-pendekatan produktivitas antara lain produktivitas tenaga kerja, bahan baku, mesin, energi, dan pengeluaran lainnya ke dalam sistem penunjang keputusan intelijen untuk meningkatkan produktivitas industri susu.

Sistem penunjang keputusan intelijen pengendalian produktivitas pada industri susu ini diberi nama IDSS_MP. Model ini terdiri dari 9 basis model yaitu basis model total output, produktivitas tenaga kerja, produktivitas bahan baku, produktivitas energi, produktivitas mesin, produktivitas pengeluaran lainnya, total produktivitas, penentuan jumlah karyawan pengemasan, dan model konsultasi pakar.

Verifikasi basis model ini menggunakan data bulan Januari sampai Juni 2008. Jumlah penjualan pada Juni 2008 adalah susu dingin 3.488.669 kg, susu prepack 188.739 pack dan susu cup 387.662 cup. Basis model total output bertujuan untuk mengetahui jumlah pendapatan dari penjualan produk dalam sebulan. Hasilnya menunjukan bahwa pendapatan pada Juni 2008 adalah Rp 12.096.903.190. Basis model produktivitas tenaga kerja bertujuan untuk mengetahui nilai produktivitas dan indeks produktivitas tenaga kerja. Tenaga kerja di MT KPBS terdiri dari 12 bagian dan 8 kasie yang dibagi ke dalam 3 bagian yaitu karyawan magang, karyawan kontrak dan karyawan tetap dengan gaji yang berbeda. Hasilnya menunjukan bahwa nilai produktivitas tenaga kerja pada Juni 2008 sebesar 175,175 dengan indeks 1,062.

Basis model produktivitas bahan baku bertujuan untuk mengetahui nilai produktivitas dan indeks produktivitas bahan baku. Bahan baku yang digunakan adalah untuk memproduksi ketiga jenis produk tersebut. Pada akhir Mei 2008 terjadi kenaikan harga BBM sehingga berpengaruh terhadap harga bahan baku pada bulan Juni 2008 yaitu terjadi kenaikan sekitar 20%. Hasilnya menunjukan bahwa nilai produktivitas bahan baku pada Juni 2008 sebesar 1,191 dengan indeks 1,077. Basis model produktivitas energi bertujuan untuk mengetahui nilai produktivitas dan indeks produktivitas energi. Energi yang digunakan adalah bahan bakar (solar kendaraan dan solar industri), listrik dan air. Pada akhir Mei

2008 terjadi kenaikan harga BBM sehingga berpengaruh terhadap biaya dan jumlah energi yang digunakan. Hasilnya menunjukan bahwa nilai produktivitas energi pada Juni 2008 sebesar 37,052 dengan indeks 0,965.

Basis model produktivitas mesin bertujuan untuk mengetahui nilai produktivitas dan indeks produktivitas mesin prepack dan mesin cup sehingga dapat terlihat apakah kinerja mesin tersebut masih baik atau tidak. Hasilnya menunjukan bahwa nilai produktivitas mesin prepack sebesar 0,970 dengan indeks 0,997 dan nilai produktivitas mesin cup sebesar 0,982 dengan indeks 1,000. Basis model produktivitas pengeluaran lainnya bertujuan untuk mengetahui nilai produktivitas dan indeks produktivitas pengeluaran lainnya. Pengeluaran lainnya terdiri dari biaya distribusi, pajak dan pembelian alat-alat. Hasilnya menunjukan bahwa nilai produktivitas pengeluaran lainnya pada Juni 2008 sebesar 29,327 dengan indeks 0,467.

Basis model total produktivitas bertujuan untuk mengetahui nilai total produktivitas dan indeksnya. Hasilnya menunjukan bahwa nilai total produktivitas pada Juni 2008 sebesar 1,001 dengan indeks 1,050. Tahap selanjutnya setelah menghitung semua indeks produktivitas dari setiap bagian adalah konsultasi pakar untuk menyelesaikan masalah apabila ada indeks yang turun. Hasilnya menunjukan bahwa pada bulan Juni 2008 indeks yang turun adalah tenaga kerja, energi, mesin prepack dan pengeluaran lainnya dan akan didapatkan solusi untuk masalah tersebut yang disertai dengan faktor kepastian dari pakar. Basis model yang terakhir adalah basis model penentuan jumlah karyawan bagian pengemasan yang bertujuan untuk mendapatkan komposisi yang ideal antara penambahan karyawan atau jam lembur. Hasilnya menunjukan bahwa untuk bulan Juni 2008, bagian pengemasan prepack dan cup masing-masing harus ditambah 1 orang karyawan. Secara keseluruhan, model IDSS_MP akan menggambarkan keadaan produktivitas di industri dan menghasilkan suatu solusi apabila terjadi masalah dengan produktivitas (produktivitas menurun).

Listhya Ayu Indriyani. F34104069. Intelligent Decision Support System of Controlling Productivity in Milk Industry. Supervised by **Yandra Arkeman. 2009**.

SUMMARY

The government campaigned "Milk Drink Campaign", so as to make it successful, the milk industry must increase their production. But the national milk production fulfiled 25% from the national milk needed so the other 75% is by import. It can happen by inefficiency to use resources that can make minimum production and this reason are decreases productivity. Because of that, the milk industry needs a tool to facilitate to count and control productivity.

The objective of this research is to design, expand, and apply intelligent decission support system for controlling the productivity in the milk industry, to integrate genetic algoritms and expert system in this Intelligent Decission Support System for solve the productivity problem, and to the integration approach productivity that are labor, material, energy, machine and other expense productivity in the intelligent decision support system.

The name of the intelligent decision support system of controlling productivity in milk industry is IDSS_MP. This model consists of 9 models that are base model of total output, labor productivity, material productivity, energy productivity, machine productivity, of other expense productivity, total productivity, decision quantity from packaging labor, and model of consultation from expert.

The verification of this base model used data from January until June 2008. The quantity selling in June 2008 was chilled milk 3.488.669 kg, prepack milk 188.739 pack and cup milk 387.662 cup. The objective from the base model of total output was to know the total income in one month. The result in June 2008 is Rp 12.096.903.190. The objective from the base model of labor productivity was to know the value of labor productivity and this index. The labor in MT KPBS consists of 12 levels and 8 head levels that consist of 3 parts those are candidate labor, contract labor and permanent labor with a different salary. The result of that the value of labor productivity in June 2008 was 175,175 with index 1,062.

The objective from the base model of material productivity was to know the value of material productivity and this index. This material used 3 products. In the end of Mei 2008, the price of fuel had been increased so that it could influence the price of material that increased 20%. The result of that the value of material productivity in June 2008 was 1,191 with index 1,077. The objective from the base model of energy productivity was to know the value of energy productivity and this index. This energy was fuel (diesel fuel and diesel industry), electricity and water. In the end of Mei 2008, the price of fuel was increased so that it influenced the price and quantity in use. The result of that the value of energy productivity in June 2008 was 37,052 with index 0,965.

The objective from the base model of machine productivity was to know the value of productivity and index productivity of prepack machine and cup machine whether operation machine was good or not. The result of that the value of prepack machine productivity was 0,970 with index 0,997 and the value of cup machine productivity was 0,982 with index 1,000. The objective from the base

model of other expense productivity was to know the value of other expense productivity and this index. The other expense consists of distribution fee, tax and purchasing spareparts. The result of that the value of other expense productivity in June 2008 was 29,327 with index 0,467.

The objective from the base model of the total productivity was to know the the value of total productivity and this index. The result of that the value of total productivity in June 2008 was 1,001 with index 1,050. The next stage was consultation with expert to solve the productivity problem. The result of that index decreased in June 2008 that were labor, energy, prepack machine and other expense and to get the solution for this including certainty factor from expert. The last base model was base model of decision quantity from packaging labor that objective for to get an ideal composition with recruitment or overtime. The result of that in June 2008, labor in prepack packaging and cup packaging must recruit 1 labor. For all, IDSS_MP explain the productivity in milk industry and solve their productivity problem if it was decreased.

KATA PENGANTAR

Puji syukur penulis panjatkan ke hadirat Allah SWT yang telah memberi nikmat dan karunia-Nya sehingga penulis dapat menyelesaikan skripsi dengan judul "Sistem Penunjang Keputusan Intelijen Pengendalian Produktivitas pada Industri Susu". Semua hal dalam skripsi ini tidak mungkin tercapai tanpa dukungan dan bantuan dari berbagai pihak. Oleh karena itu, pada kesempatan ini penulis ingin mengucapkan terima kasih kepada:

- 1. Dr. Ir. Yandra Arkeman, MEng, selaku dosen pembimbing akademik yang telah memberikan bimbingan dan pengarahan dalam penyusunan skripsi.
- 2. Dr. Ir. Aji Hermawan, MM. dan Ir. Ade Iskandar, MSi, sebagai dosen penguji yang telah memberikan pengarahan dan masukan dalam penyempurnaan skripsi ini.
- 3. Kedua orang tua, Bapak Gunawan Sukram dan Ibu Meyrida Agustina R., adikku Prasetya Adi N. beserta keluarga besar lainnya yang telah memberikan kasih sayang, semangat, dukungan baik perhatian dan material serta doa.
- 4. Pimpinan Koperasi Peternakan Bandung Selatan (KPBS), Bapak Andri (Humas), Bapak Faisal W. (Manajer Produksi dan Pengolahan) dan Bapak Rahmat Asman (Kepala Seksi Laboratorium) dan staf KPBS lainnya yang telah bersedia membantu dalam mengumpulkan data.
- 5. Radityo Andi Dharma atas segala bantuan, support dan doanya dalam suka dan suka selama menyelesaikan skripsi ini.
- 6. Irawan Suryawijaya dan Rifqi Ansari yang telah berjuang bersama dalam suka maupun duka dan membantu dalam menyelesaikan skripsi ini.
- 7. Sahabat–sahabatku yaitu *Thousand Islands* (mildaa, nini, anes, ami, dyna, fenny, niken, neisya, dan dila), Mba Jane, Kak Ari, Tante Poppy beserta teman–teman TIN 41 atas bantuan, doa, semangat dan persahabatan ini.
- 8. Semua pihak yang telah membantu dalam penyusunan skripsi.

Bogor, Januari 2009

DAFTAR ISI

KAT	A PENGANTAR	i
DAF'	TAR GAMBAR	. iv
DAF'	TAR TABEL	. vi
DAF'	TAR LAMPIRAN	vii
I. PE	NDAHULUAN	. 1
A	. LATAR BELAKANG	1
В	. RUANG LINGKUP	2
C	. TUJUAN	3
II. T	INJAUAN PUSTAKA	4
A	. SISTEM PENUNJANG KEPUTUSAN	4
В	. SISTEM PENUNJANG KEPUTUSAN INTELIJEN	5
C	. ALGORITMA GENETIKA	. 6
D	. SISTEM PAKAR	8
Е	PRODUKTIVITAS	16
F	SUSU	18
III.N	IETODOLOGI PENELITIAN	21
A	. KERANGKA PEMIKIRAN	21
В	. PENDEKATAN SISTEM	22
C	. TATA LAKSANA	26
IV.P	EMODELAN SISTEM	27
A	. KONFIGURASI MODEL	27
В	. SISTEM MANAJEMEN BASIS DATA	27
C	. SISTEM MANAJEMEN BASIS MODEL	39
D	. SISTEM MANAJEMEN DIALOG	37
Е	SISTEM PAKAR	38
V. H	ASIL DAN PEMBAHASAN	40
A	. INDUSTRI SUSU	40
В	. PROGRAM UTAMA IDSS_MP	40
C	. SISTEM MANAJEMEN BASIS MODEL	43

LAMPIRAN	85
DAFTAR PUSTAKA	83
B. SARAN	82
A. KESIMPULAN	80
VI. KESIMPULAN DAN SARAN	80
D. VERIFIKASI MODEL IDSS_MP	64

DAFTAR GAMBAR

Gambar 1. Struktur Sistem Penunjang Keputusan	5
Gambar 2. Representasi Kromososm String Biner	
Gambar 3. Representasi Kromososm String Integer	
Gambar 4. Diagram Lingkar Sebab Akibat	
Gambar 5. Diagram Input-Output	24
Gambar 6. Diagram Alir Total Output	30
Gambar 7. Diagram Alir Produktivitas Tenaga Kerja	31
Gambar 8. Diagram Alir Produktivitas Bahan Baku	32
Gambar 9. Diagram Alir Produktivitas Energi	33
Gambar 10. Diagram Alir Produktivitas Mesin	34
Gambar 11. Diagram Alir Produktivitas Pengeluaran Lainnya	35
Gambar 12. Diagram Alir Total Produktivitas	36
Gambar 13. Diagram Alir Konsultasi Pakar	39
Gambar 14. Tampilan Menu <i>Home</i> IDSS_MP	42
Gambar 15. Tampilan Menu Form Total Output	44
Gambar 16. Tampilan Form Produktivitas Tenaga Kerja	46
Gambar 17. Tampilan Form Data Tenaga Kerja	47
Gambar 18. Tampilan Form Produktivitas Bahan Baku	49
Gambar 19 Tampilan Form Produktivitas Energi	51
Gambar 20. Tampilan Form Produktivitas Mesin	53
Gambar 21. Tampilan Form Produktivitas Pengeluaran Lainnya	55
Gambar 22. Tampilan Form Total Produktivitas	57
Gambar 23. Tampilan Form Konsultasi Pakar (Bagian 1)	58
Gambar 24. Tampilan Form Konsultasi Pakar (Bagian 2)	58
Gambar 25. Tampilan Form Solusi dari Konsultasi Pakar	59
Gambar 26. Tampilan Form Penentuan Jumlah Karyawan Pengemasan	61
Gambar 27. Kromosom Tipe Integer Untuk Model Penentuan Jumlah Karyawan Pengemasan	61
Gambar 28. Tampilan Solusi untuk Masalah Produktivitas Bulan Juni	74

Gambar 29. Hasil dari Model Penentuan Jumlah Karyawan Pengemasan	. 78
Gambar 30. Grafik Nilai Fitness Rata-Rata dan Fitness Minimum	. 79

DAFTAR TABEL

Tabel 1. Perkembangan Produksi Susu di Indonesian tahun 2001-2005	2
Tabel 2. Perbandingan Kemampuan antara Seorang Pakar dengan Sistem Pakar	9
Tabel 3. Perbandingan Sistem Konvensional dengan Sistem Pakar	10
Tabel 4. Aturan MYCIN untuk Mengkombinasikan Evidence dan Anteceder	nt15
Tabel 5. Data Penjualan Susu di MT KPBS Tahun 2008	41
Tabel 6. Nilai Masukan Total <i>Output</i>	65
Tabel 7. Nilai Keluaran Total <i>Output</i>	65
Tabel 8. Nilai Masukan Produktivitas Tenaga Kerja	65
Tabel 9. Nilai Keluaran Produktivitas Tenaga Kerja	66
Tabel 10. Nilai Masukan Produktivitas Bahan Baku	67
Tabel 11. Nilai Keluaran Produktivitas Bahan Baku	67
Tabel 12. Nilai Masukan Produktivitas Energi	68
Tabel 13. Nilai Keluaran Produktivitas Energi	69
Tabel 14. Nilai Masukan Produktivitas Mesin	70
Tabel 15. Nilai Masukan (Pendukung) Produktivitas Mesin	70
Tabel 16. Nilai Keluaran Produktivitas Mesin	70
Tabel 17. Nilai Masukan Produktivitas Pengeluaran Lainnya	71
Tabel 18. Nilai Keluaran Produktivitas Pengeluaran Lainnya	71
Tabel 19. Nilai Masukan Total Produktivitas	72
Tabel 20. Nilai Keluaran Total Produktivitas	72
Tabel 21. Nilai Perubahan <i>Index</i>	73
Tabel 22. Nilai Output dan Input yang Terjadi Penurunan	74
Tabel 23. Nilai Masukan Penentuan Jumlah Karyawan Pengemasan	75
Tabel 24. Nilai Keluaran Inisiasi Data	76

DAFTAR LAMPIRAN

Lampiran 1. Produk KPBS Pangalengan	85
Lampiran 2. Diagram Alir Susu Dingin (IPS)	86
Lampiran 3. Diagram Alir Susu Prepack	87
Lampiran 4. Diagram Alir Susu Cup	88
Lampiran 5. Standar Mutu Susu KPBS	89
Lampiran 6. Output dan Input Model Total Output	90
Lampiran 7. Output dan Input Model Produktivitas Tenaga Kerja	81
Lampiran 8. Output dan Input Model Produktivitas Bahan Baku	91
Lampiran 9. Output dan Input Model Produktivitas Energi	94
Lampiran 10. Output dan Input Model Produktivitas Mesin	95
Lampiran 11. Output dan Input Model Produktivitas Pengeluaran Lainnya	96
Lampiran 12. Output dan Input Model Total Produktivitas	97
Lampiran 13. Inisiasi Populasi Awal (Generasi 0)	99
Lampiran 14. Generasi 0 sampai Generasi 2	. 100
Lampiran 15. Generasi 98 sampai Generasi 100	. 103
Lampiran 16. Basis Pengetahuan	106

1. PENDAHULUAN

A. LATAR BELAKANG

Agroindustri memiliki beberapa sektor yaitu sektor pertanian, perikanan, peternakan dan kehutanan. Pengembangan sektor agroindustri berbasis hasil peternakan diantaranya adalah pengolahan susu segar menjadi berbagai macam produk berbahan dasar susu antara lain susu cair (pasteurisasi), susu kental manis dan susu bubuk. Pengolahan susu segar merupakan salah satu usaha untuk menyukseskan program pemerintah yaitu Kampanye Minum Susu yang bertujuan untuk membiasakan masyarakat Indonesia agar minum susu setiap hari dan menyadari pentingnya mengkonsumsi susu bagi kesehatan. Berdasarkan data internal Tetra Pak Indonesia tahun 2007, konsumsi susu nasional hanya 9 liter per kapita per tahun. Nilai ini sangat rendah bila dibandingkan dengan Malaysia sebesar 25,4 liter per kapita per tahun.

Walaupun jumlah konsumsi susu nasional rendah, tetapi industri susu dalam negeri juga belum mampu memenuhi kebutuhan susu nasional sehingga Indonesia harus mengimpor susu dari Australia, Selandia Baru dan Amerika Serikat untuk menutupi kekurangan tersebut. Menurut data Ditjen Pengolahan dan Pemasaran Hasil Pertanian (PPHP) Departemen Pertanian (Deptan) tahun 2008, produksi susu nasional hanya mencukupi 25 % dari kebutuhan susu nasional sehingga 75 % kebutuhan susu lainnya ditutupi melalui impor. Hal tersebut terjadi karena kurangnya efisiensi dalam penggunaan sumber daya yang ada sehingga hanya sedikit produk yang dapat dihasilkan. Oleh sebab itu, setiap industri susu di Indonesia harus mengevaluasi kembali produktivitasnya sehingga dapat ditingkatkan.

Peningkatan produktivitas meliputi peningkatan efisiensi seluruh bagian dalam industri. Tujuan utama dari pengendalian produktivitas adalah meningkatkan produktivitas keseluruhan perusahaan sehingga produksi menjadi optimum dan keuntungan yang didapatkan semakin besar. Apabila produksi telah optimum maka industri susu dapat membantu untuk memenuhi

kebutuhan susu masyarakat Indonesia dan menurunkan ketergantungan terhadap susu impor.

Tabel 1. Perkembangan Produksi Susu di Indonesia tahun 2003-2007

Tahun	Produksi (ton)	Pertumbuhan (%)
2003	553.400	-
2004	549.900	- 0,63
2005	536.000	- 2,53
2006	616.500	15
2007	636.900	3,31
Pertumbuhan rata-	3,78	

Sumber: Badan Pusat Statistika, 2008

Oleh sebab itu, untuk memudahkan dalam mengendalikan produktivitas maka diperlukan suatu sistem penunjang keputusan sehingga persoalan dapat diselesaikan dengan cepat. Dengan menggunakan sistem penunjang keputusan intelijen yang telah diintegrasikan dengan algoritma genetika dan sistem pakar diharapkan dapat membantu dalam menyelesaikan permasalahan dan meningkatkan produktivitas industri susu sehingga produksi susu di Indonesia meningkat dan dapat memenuhi kebutuhan dalam negeri.

B. RUANG LINGKUP

Ruang lingkup penelitian ini adalah pengendalian produktivitas di industri susu sehingga dapat menghasilkan produk yang optimum untuk memenuhi permintaan susu. Pengendalian produktivitas dilakukan dengan meningkatkan produktivitas tenaga kerja, bahan baku, energi, mesin dan pengeluaran lainnya sehingga dapat mengurangi *loss* yang terjadi agar didapatkan hasil produksi yang optimal. Sistem ini dapat digunakan oleh manajer pabrik pada industri susu. Penggunaan algoritma genetika digunakan untuk menentukan komposisi jumlah karyawan bagian pengemasan yang ideal.

Penggunaan sistem pakar digunakan untuk menganalisa kendalakendala yang dapat menyebabkan menurunnya produktivitas sehingga para manajer pabrik dapat mengatasi faktor-faktor yang menyebabkan menurunnya produktivitas. Ruang lingkup obyek penelitian sebagai studi dan verifikasi adalah *Milk Treatment* KPBS Pangalengan, Bandung.

C. TUJUAN

Tujuan dari penelitian ini adalah:

- 1. Merancang, mengembangkan dan mengaplikasikan sistem penunjang keputusan intelijen untuk pengendalian produktivitas pada industri susu.
- 2. Mengintegrasikan algoritma genetika dan *expert system* (sistem pakar) dengan sistem penunjang keputusan intelijen ini untuk menyelesaikan permasalahan produktivitas di industri susu.
- 3. Mengintegrasikan pendekatan-pendekatan produktivitas antara lain produktivitas tenaga kerja, bahan baku, mesin, energi, dan pengeluaran lainnya ke dalam sistem penunjang keputusan intelijen untuk meningkatkan produktivitas industri susu.

II. TINJAUAN PUSTAKA

A. SISTEM PENUNJANG KEPUTUSAN (SPK)

Sistem penunjang keputusan adalah pendekatan secara sistematis dalam menentukan teknologi ilmiah yang tepat untuk mengambil keputusan, merupakan konsep spesifik yang menghubungkan sistem komputerisasi informasi dengan para pengambil keputusan sebagai pengguna (Eriyatno, 1999). Sistem penunjang keputusan merupakan bagian dari sistem informasi manajemen dan digunakan sebagai bagian dari sebuah proses dimana di dalamnya manusia melakukan kegiatan pengambilan keputusan yang dilakukan secara berulang (Dhar dan Stein, 1997). Menurut Marimin (2004), SPK berfungsi untuk mentransformasikan data dan informasi menjadi alternatif keputusan dan prioritasnya.

Secara umum, sistem penunjang keputusan terdiri dari tiga komponen, antara lain:

1. Sistem Manajemen Basis Data

Sistem manajemen data harus bersifat interaktif dan luwes, dalam arti mudah dilakukan perubahan terhadap ukuran, isi, dan struktur elemenelemen data.

2. Sistem Manajemen Basis Model

Sistem manajemen basis model memberikan fasilitas pengelolaan model untuk mengkomputasi pengambilan keputusan dan meliputi semua aktifitas yang tergabung dalam pemodelan SPK, seperti pembuatan model, implementasi, pengujian, validasi, eksekusi dan pemeliharaan model.

3. Sistem Manajemen Dialog

Sistem manajemen dialog satu-satunya subsistem yang berkomunikasi dengan pengguna yang berfungsi untuk menerima input dan memberikan output yang dikehendaki pengguna. Struktur sistem penunjang keputusan dapat dilihat pada Gambar 1 di bawah ini (Eriyatno, 1999).

Gambar 1. Struktur Sistem Penunjang Keputusan

B. SISTEM PENUNJANG KEPUTUSAN INTELIJEN

Sistem penunjang keputusan intelijen merupakan suatu sistem penunjang keputusan yang menggunakan teknik-teknik di bidang intelijensi buatan (artificial intelligent) antara lain fuzzy systems, neural networks, machine learning, dan genetic algorithms (algoritma genetika) yang mempunyai tujuan untuk membantu pengguna dalam mengakses, menampilkan, memahami, serta memanipulasi data secara lebih cepat dan mudah untuk membantunya dalam mengambil keputusan (Dhar dan Stein, 1997).

Pengukuran suatu sistem penunjang keputusan intelijen berdasarkan tingkat kecerdasannya yaitu tingkat kerapatan kecerdasan (*intelligence density*). Tingkat kerapatan kecerdasan merupakan perbandingan antara tingkat kepuasan yang dihasilkan dalam proses pengambilan keputusan dengan jumlah waktu analisis yang dihabiskan seorang pembuat keputusan. Oleh sebab itu, sistem penunjang keputusan intelijen yang baik adalah sistem

yang mampu mengasilkan keluaran yang dapat membantu pengambil keputusan menentukan keputusan dengan cepat tanpa mengurangi kualitas keputusan, atau dapat meningkatkan kualitas keputusan dalam rentang waktu yang sama (Dhar dan Stein, 1997).

C. ALGORITMA GENETIKA

Menurut Strafaci (2002), pada tahun 1975 oleh John Holland menemukan sebuah konsep baru tentang pencarian secara tersusun untuk menyelesaikan masalah yang rumit dan kompleks yang menggunakan persamaan matematika berdasarkan evolusi tiruan dan dikenal dengan algoritma genetika. Menurut Goldberg (1989), algoritma genetika adalah suatu teknik pencarian dan optimasi stokastik (melibatkan probabilitas) yang cara kerjanya meniru proses evolusi dan perubahan genetik pada struktur kromosom makhluk hidup.

Algoritma genetika dapat mencari solusi minimum dan maksimum dari satu variabel bebas dengan representasi dasar atau biner. Untuk fungsi yang lebih kompleks atau lebih dari satu variabel bebas dapat menggunakan representasi *float* atau integer. Hal tersebut dilakukan untuk penyederhanaan sistem, karena gen biner akan menyebabkan besarnya ukuran kromosom (Basuki, 2003). Algoritma dapat diaplikasikan dalam berbagai bidang antara lain, seperti pada desain mesin jet pesawat terbang, prediksi tingkat suku bunga, pengendalian persediaan (*inventory*), perencanaan dan penjadwalan produksi dan otomatisasi sistem produksi (Gunawan, 2003).

1. Prosedur Umum Algoritma Genetika

Prosedur umum algoritma genetika, antara lain:

Langkah 1 : Pengkodean calon solusi dan *set-up* parameter awal yaitu jumlah individu, probablitas, penyilangan dan mutasi, dan jumlah generasi maksimum.

Langkah 2 : t ← 0 {inisiasi awal}

Pembangkitan acak sejumlah n kromosom pada generasi ke-0.

Langkah 3: Evaluasi masing-masing kromosom dengan menghitung nilai *fitness*.

Langkah 4 : Seleksi beberapa kromosom dari sejumlah n individu yang memiliki nilai *fitness* terbaik.

Langkah 5 : Rekombinasikan kromosom terpilih dengan cara melakukan penyilangan (*crossover*) dan mutasi (*mutation*).

Langkah 6 : t ← t+1

Menambah jumlah generasi dan kembali ke langkah 2

sampai jumlah generasi maksimum tercapai.

2. Representasi Kromosom

Untuk menyelesaikan masalah optimasi menggunakan algoritma genetika maka perlu adanya pengkodean sebagai variabel keputusan. Representasi kromosom yang pertama kali direpresentasi adalah string biner oleh John Holland pada tahun 1975 yang terdiri dari beberapa elemen yang disimbolkan dengan angka nol (0) dan satu (1) yang terlihat pada Gambar 2. Selain representasi biner terdapat pula representasi integer yang disimbolkan dengan angka 0 – 9 yang dapat dilihat pada Gambar 3.

1	2	3	4	5		•		n	
1	1	0	0	1	1	0	1	0	

Gambar 2. Representasi Kromosom String Biner

1	2	3	4	5				n
8	7	3	5	7	9	6	3	1

Gambar 3. Representasi Kromosom String Integer

3. Fungsi Fitness

Fungsi *fitness* adalah fungsi yang akan mengukur tingkat kebugaran suatu kromosom dalam populasi. Semakin besar nilai *fitness*, semakin bugar suatu kromosom dalam populasi semakin besar kemungkinan kromosom tersebut dapat tetap bertahan pada generasi selanjutnya. Untuk mencari solusi (kromosom baru) dalam populasi maka dibutuhkan operator-operator genetik antara lain:

4. Seleksi (selection)

Proses pemilihan beberapa kromosom untuk dijadikan sebagai kromosom induk bagi generasi selanjutnya. Kromosom terpilih kemudian akan direproduksi lalu hasilnya akan ditempatkan pada *mating pool* (tempat berkumpulnya kromosom-kromosom induk yang akan mengalami persilangan atau mutasi).

5. Penyilangan (*crossover*)

Menukar informasi genetika antara dua kromosom induk yang terpilih dari proses seleksi untuk menentukan dua anak. Peluang penyilangan (Pc) adalah rasio antara jumlah kromosom yang diharapkan mengalami penyilangan dalam setiap generasi dengan jumlah kromosom total dalam populasi. Nilai Pc antara 0,6-1.

6. Mutasi (*mutation*)

Digunakan dalam pencarian solusi optimal untuk mengembalikan gen-gen yang hilang pada generasi-generasi sebelumnya dan memunculkan gen-gen baru yang belum pernah muncul pada generasi-generasi sebelumnya. Nilai peluang mutasi (Pm) antara 0,001-0,2.

Goldberg (1989) menyebutkan empat perbedaan algoritma genetika dengan teknik pencarian dan optimasi konvensional antara lain :

- 1. Algoritma genetika bekerja pada sekumpulan calon solusi yang telah dikodekan, bukan pada solusi itu sendiri.
- 2. Algoritma genetika melakukan pencarian nilai optimum pada sekumpulan calon solusi secara paralel (bersifat *parallel search* atau *population-based search*).
- 3. Algoritma genetika secara langsung memanfaatkan fungsi tujuan atau fungsi *fitness*, bukan fungsi turunannya.
- 4. Algoritma genetika bekerja dengan menggunakan aturan probabilistik, bukan aturan deterministik.

D. SISTEM PAKAR (Expert System)

Sistem pakar merupakan program komputer yang memiliki basis pengetahuan yang luas dalam domain yang terbatas dan menggunakan penalaran yang kompleks untuk menjalankan tugas yang biasa dilakukan oleh seorang ahli. Sistem pakar juga dapat didefinisikan sebagai program komputer yang dapat mensimulasikan logika berfikir seorang ahli dalam bidang pengetahuan yang spesifik. Keunggulan penggunaan sistem pakar adalah karena ketersediaan, konsistensi, dan komprehensif yang terlihat pada Tabel 2 dan 3. Faktor ketersediaan disebabkan karena umumnya dibutuhkan waktu lima tahun agar seseorang memiliki keahlian dalam suatu bidang tertentu sedangkan jika menggunakan sistem pakar, pengetahuan deklaratif dan pengetahuan prosedural dari pakar akan selalu tersedia. Eksekusi dari sistem basis pengetahuan disebut konsultasi karena asal usul sistem pakar adalah konsultasi dengan seorang pakar (Lyons, 1994).

Tabel 2. Perbandingan Kemampuan antara Seorang Pakar dengan Sistem Pakar

Faktor	Human Expert	Expert System
Time availibility	Hari kerja	Setiap saat
Geografis	Lokal/tertentu	Di mana saja
Keamanan	Tidak tergantikan	Dapat diganti`
Perishable(dapat habis)	Ya	Tidak
Performansi	Variabel	Konsisten
Kecepatan	Variabel	Konsisten
Biaya	Tinggi	Terjangkau

Sumber: Fitrianto, 2007

Sistem pakar adalah konsisten. Jika pemrogamannya benar maka program itu akan konsisten benar. Kesalahan dapat terjadi tetapi sangat jarang dibandingkan manusia. Sistem pakar dapat bersifat komprehensif karena dapat menggabungkan keahlian dari beberapa ahli sehingga diperoleh satu konsensus (Hart, 1986). Menurut Turban (1995), terdapat 3 orang yang terlibat dalam lingkungan sistem pakar, yaitu:

- 1. Pakar
- 2. *Knowledge engineer* (KE)

3. Pemakai

Tujuan perancangan sistem pakar menurut Marimin (2005) adalah untuk mempermudah kerja atau bahkan mengganti tenaga ahli, penggabungan ilmu dan pengalaman dari beberapa tenaga ahli, *training* tenaga ahli baru,

penyediaan keahlian yang diperlukan oleh suatu proyek yang tidak ada atau tidak mampu membayar tenaga ahli. Hal ini dapat dipahami secara rasional, karena kaderisasi tenaga ahli dalam suatu organisasi sangat diperlukan, terutama untuk badan usaha yang mempunyai keterbatasan dana untuk menyediakan tenaga ahli.

Tabel 3. Perbandingan Sistem Konvensional dan Sistem Pakar

Sistem Konvensional	Sistem Pakar
Informasi dan pemrosesan umumnya digabung dalam satu program sekuensial	Basis pengetahuan dari mekanisme pemrosesan (inferensi)
Program tidak pernah salah (kecuali pemrogramannya yang salah)	Program bisa saja melakukan kesalahan
Tidak menjelaskan kenapa input dibutuhkan atau bagaimana hasil yang diperoleh	Penjelasan merupakan bagian dari sistem pakar
Membutuhkan semua input data	Tidak harus membutuhkan semua input data
Perubahan pada program merepotkan	Perubahan pada kaidah dapat dilakukkan dengan mudah
Sistem bekerja jika sudah lengkap	Sistem dapat bekerja dengan kaidah yang sedikit
Eksekusi secara algoritmik (<i>step by step</i>)	Eksekusi dilakukan secara heuristik dan logis
Manipulasi efektif pada database yang besar	Manipulasi efektif pada basis pengetahuan yang besar
Efisiensi adalah tujuan utama	Efektivitas adalah tujuan utama
Data kuantitatif	Data kualitatif
Representasi dalam numerik	Representasi pengetahuan dalam simbolik
Menangkap, menambah dan mendistribusikan data numerik atau informasi	Menangkap, menambah dan mendistribusikan pertimbangan dan pengetahuan

Sumber: Arhami, 2004

Struktur dasar sistem pakar terdiri dari 5 komponen antara lain:

1. Sistem Basis Pengetahuan (Knowledge Base System)

Sistem basis pengetahuan merupakan inti sistem pakar, diperoleh melalui proses akuisisi pengetahuan dan pada tahap selanjutnya mengalami proses pengkodean kedalam komputer yaitu berupa representasi pengetahuan. Menurut Lyons (1994), basis pengetahuan berisi pengetahuan-pengetahuan dalam menyelesaikan masalah didalam domain

tertentu. Basis pengetahuan tersusun atas fakta (*deklaratif knowledge*) dan kaidah (*procedural knowledge*). Fakta adalah informasi tentang objek, peristiwa atau situasi. Kaidah adalah cara untuk membangkitkan suatu fakta baru dari fakta yang sudah diketahui.

Proses akuisisi pengetahuan bisa dilakukan dalam beberapa metode yaitu metode secara manual, semi otomatis dan secara otomatis. Metode akuisisi ini dipilih berdasarkan pertimbangan kapasitas, peran, dan alat bantu pembangunan. Pengetahuan dapat direpresentasikan dalam bentuk sederhana atau kompleks tergantung dari masalahnya. Beberapa model representasi pengetahuan yang penting antara lain:

a. Logika

Merupakan suatu pengkajian ilmiah tentang serangkaian penalaran, sistem kaidah, dan prosedur yang membantu proses penalaran.

b. Jaringan semantik (semantic nets)

Merupakan penggambaran grafis dari pengetahuan yang memperlihatkan hubungan hirarkis dari objek-objek. Komponennya terdiri atas simpul (node) dan penghubung (link). Simpul merepresentasikan obyek, konsep atau situasi. Penghubung digambarkan sebagai anak panah berarah dan diberi label untuk menyatakan hubungan yang direpresentasikan.

c. Bingkai (Frame)

Berupa ruang-ruang yang berisi atribut untuk mendeskripsikan pengetahuan. Bingkai digunakan untuk merepresentasikan pengetahuan deklaratif (Kusrini, 2006).

d. *Object-Attribute-Value* (OAV)

Object dapat berupa bentuk fisik atau konsep. Attribute adalah karakteristik atau sifat dari object tersebut. Value adalah besaran/nilai/takaran spesifik dari attribute tersebut pada situasi tertentu, dapat berupa numerik, string atau boolean.

e. Kaidah produksi

Kaidah yang ditulis dalam bentuk jika-maka (*if-then*). Kaidah jika-maka menghubungkan anteseden (*antecedent*) dengan konsekuensi yang diakibatkannya, tindakan mengacu pada kegiatan yang harus dilakukan sebelum hasil dapat diharapkan.

2. Mesin Inferensi

Mesin inferensi berfungsi untuk memandu proses penalaran terhadap suatu kondisi, berdasarkan basis pengetahuan yang tersedia. Dalam prosesnya, mesin inferensi menggunakan strategi penalaran, strategi pengendalian dan strategi pelacakan. Strategi penalaran dapat dilakukan terhadap setiap kejadian yang bersifat pasti dan tidak pasti. Setiap ahli memiliki strategi penalaran yang khas untuk memecahkan suatu permasalahan. Pada kejadian yang bersifat pasti, strategi penalaran yang dapat digunakan adalah modus ponens, modus tollens atau teknik resolusi. Bentuk umum modus ponens adalah jika ada suatu aturan yang menyatakan "jika A maka B" (A → B) dan pernyataan A diketahui benar maka dapat disimpulakan pernyataan B adalah benar. Bentuk umum modus tollens adalah "jika A maka B" (A → B) dan pernyataan B adalah salah maka pernyataan A adalah salah (Lyons, 1994).

Strategi pengendalian berfungsi sebagai panduan arah dalam melakukan proses penalaran. Terdapat tiga teknik pengendalian yang sering digunakan, yaitu forward chaining (runut maju), backward chaining (runut balik) dan gabungan dari kedua teknik pengendalian tersebut (Ginanjar, 2006). Forward chaining yaitu penalaran yang dimulai dari fakta-fakta atau informasi yang tersedia, kemudian dilakukan penarikan kesimpulan. Dalam metode ini, data digunakan untuk menentukan aturan mana yang akan dijalankan, kemudian aturan tersebut dijalankan. Backward chaining sering disebut goal-driven approach karena melakukan penelusuran menuju ke premis. Metode ini cocok digunakan untuk memecahkan masalah diagnosis (Ginanjar, 2006).

Strategi pelacakan terdiri dari 3 kategori yaitu *Depth-First Search* (DFS) melakukan penelusuran kaidah secara mendalam dari simpul akar bergerak menurun ke tingkat dalam yang berurutan, *Breadth First Search*

(BFS) bergerak dari simpul akar, simpul yang ada pada setiap tingkat diuji sebelum pindah ke tingkat selanjutnya dan *Best First Search* (BeFS) bekerja berdasarkan kedua kombinasi metode sebelumnya.

Menurut Lyons (1994), ada beberapa faktor yang mempengaruhi pemilihan *backward* atau *forward*, antara lain:

- a. **Banyaknya keadaan awal dan tujuan.** Jika jumlah keadaan awal lebih kecil daripada tujuan, maka digunakan penalaran *forward*. Sebaliknya, jika jumlah tujuan lebih banyak daripada keadaan awal, maka dipilih penalaran *backward*.
- b. Bentuk kejadian yang akan memicu penyelesaian masalah. Jika kejadian itu berupa fakta baru, maka akan lebih baik dipilih penalaran *forward*. Namun, jika kejadian itu berupa *query*, maka lebih baik digunakan penalaran *backward*.

3. Akuisisi Pengetahuan (Knowledge Acquisition)

Akuisisi pengetahuan adalah akumulasi, transfer dan transformasi keahlian dalam menyelesaikan masalah dari sumber pengetahuan ke dalam program komputer. Dalam tahap ini *knowledge engineer* berusaha menyerap pengetahuan untuk selanjutnya ditransfer ke dalam basis pengetahuan. Pengetahuan diperolah dari pakar, dilengkapi dengan buku, basis data, laporan penelitian dan pengalaman pemakai. Menurut Turban (1995), proses akuisisi pengetahuan dapat dikelompokan dalam 5 tahapan, yaitu:

a. Tahap identifikasi

Tahap ini mengidentifikasi pemasalahan dan dibagi menjadi beberapa sub permasalahan.

b. Tahap konseptualitas

Tahap ini mengidentifikasi dan menentukan konsep dan hubungan yang digunakan, mengklasifikasikan semua informasi yang ada dan perincian alternatif-alternatif yang mungkin terjadi.

c. Tahap formalisasi

Tahap ini erat hubungannya dengan metode ekstraksi pengetahuan. Representasi pengetahuan dan bentuk pengorganisasian

mempengaruhi proses akuisisi, misalnya dalam sistem yang berbasisi kaidah maka representasi pengetahuan dalam bentuk kaidah.

d. Tahap implementasi

Tahap ini mencakup pemrogaman pengetahuan ke dalam komputer, perbaikan struktur dan penambahan pengetahuan baru.

e. Tahap uji coba

Tahap ini menguji coba basis pengetahuan dengan kasus-kasus yang ada sesuai dengan tujuan pengembangan sistem pakar.

Selain itu, sistem pakar juga memiliki 3 metode utama dalam akuisisi pengetahuan yaitu:

a. Wawancara

Metode ini melibatkan pembicaraan dengan pakar secara langsusng dalam suatu wawancara. Terdapat beberapa bentuk wawancara yang dapat digunakan, yaitu contoh masalah (pakar dihadapkan dengan suatu masalah nyata), wawancara klasifikasi (untuk memperoleh wawasan pakar untuk domain permasalahan tertentu), wawancara terarah (pakar dan *knowledge engineer* mendiskusikan domain dan acara penyelesaian maslah dalam tingkat yang lebih umum dari 2 metode sebelumnya) dan diskusi kasus dalam konteks dari sebuah prototipe sistem.

b. Analisis protokol

Pakar diminta untuk melakukan suatu pekerjaan dan mengungkapkan proses pemikirannya dengan menggunakan kata-kata. Pekerjaan tersebut direkam, dituliskan dan dianalisis.

c. Observasi pada pekerjaan pakar

Dalam metode ini, pekerjaan dalam bidang tertentu yang dilakukan pakar direkam dan diobservasi.

4. User Interface

Digunakan sebagai media komunikasi antara pemakai terhadap sistem.

5. Fasilitas Penjelasan

Komponen tambahan yang akan meningkatkan kemampuan sistem pakar. Komponen ini menggambarkan penalaran sistem kepada pemakai.

Faktor kepastian (*certainty factor*) merupakan nilai parameter klinis yang diberikan untuk menunjukan besarnya kepercayaan. *Certainty factor* didefinisikan sebagai berikut (Kusrini, 2006):

$$CF(H,E) = MB(H,E) - MD(H,E)$$

CF(H,E) : certainty factor dari hipotesis H yang dipengaruhi oleh gejala (evidence) E berkisar antara -1 (ketidakpercayaan mutlak) sampai dengan 1 (kepercayaan mutlak).

MB(H,E) : ukuran kenaikan kepercayaan terhadap hipotesis H yang dipengaruhi oleh gejala E.

MD(H,E): ukuran kenaikan ketidakpercayaan terhadap hipotesis H yang dipengaruhi oleh gejala E.

Tabel 4. Aturan MYCIN untuk Mengkombinasikan *Evidence* dan *Antecedent*

Evidence E	Antecedent Ketidakpastian
E ₁ DAN E ₂	$min[CF(H,E_1), CF(H,E_2)]$
E ₁ OR E ₂	$\max[CF(H,E_1), CF(H,E_2)]$
TIDAK E	- CF(H,E)

Sumber: Kusrini, 2006

Bentuk dasar *certainty factor* sebuah aturan JIKA E MAKA H sebagai berikut:

$$CF(H,e) = CF(E,e) * CF(H,E)$$

CF(E,e) : certainty factor evidence E yang dipengaruhi oleh evidence e

CF(H,E): *certainty factor* hipotesis dengan asumsi *evidence* diketahui dengan pasti, yaitu ketika CF(E,e) = 1

CF(E,e): certainty factor hipotesis yang dipengaruhi oleh evidence e Jika semua evidence pada antecedent diketahui dengan pasti maka rumusnya akan menjadi:

$$CF(H,e) = CF(H,E)$$

dengan nilai certainty factor hipotesis pada saat evidence pasti adalah:

$$\mathrm{CF}(\mathrm{H,E}) = \mathrm{CF}(\mathrm{H,E}_1 \cap \mathrm{E}_2 \cap \mathrm{E}_3)$$

E. PRODUKTIVITAS

Di dalam ilmu ekonomi, produktivitas merupakan nisbah atau rasio antara hasil kegiatan (keluaran) dan segala pengorbanan (biaya) untuk mewujudkan hasil tersebut (masukan). Pada umumnya, nisbah ini berupa suatu bilangan rata-rata yang mengungkapkan hasil bagi antara keluaran total dan angka masukan total dari beberapa kategori barang dan jasa (Nasution, 2004). Sedangkan produksi terfokus pada kegiatan membuat barang atau jasa. Menurut Sinungan (1995), produktivitas merupakan hubungan antara hasil nyata maupun fisik (barang atau jasa) dengan masukan sebenarnya.

Produktivitas merupakan ukuran kemampuan individu, kelompok maupun organisasi perusahaan. Tujuan utama dari produktivitas adalah mengurangi hal-hal yang tidak diperlukan sehingga suatu perusahaan dapat berjalan dengan efektif dan efisien. Pengukuran produktivitas dapat dilaksanakan dengan 3 cara yaitu:

1. Produktivitas total

Rasio antara total output dengan seluruh seluruh sumber daya yang digunakan.

Produktivitas total =
$$\frac{\text{Total Output}}{\text{Total Input}}$$

Model total produktivitas adalah sistem pengukuran produktivitas yang mempuyai ciri sebagai berikut:

- a. menetapkan indeks produktivitas agregat (tingkat perusahaan) maupun detail (tingkat satuan operasi)
- b. menunjukan bagian (unit operasional) mana yang menguntungkan dan yang tidak menguntungkan
- c. menunjukan bagian sumber daya (*input*) mana yang penggunaannya tidak efisien sehingga tindakan perbaikan dapat diambil
- d. model ini bersifat matematis sehingga memudahkan analisis sensitifitas dan validasinya
- e. model ini dapat diintegrasikan dengan fase evaluasi, perencanaan dan

peningkatan dalam siklus produktivitas

- f. menentukan informasi penting bagi perencanaan strategis dan pengambil keputusan sehubungan dengan kebijakan dalam produktivitas perusahaan
- g. menawarkan kemampuan kontrol pada bagian yang kritis manajemen

Model total produktivitas menurut Sumanth (1984) total *output* dengan total *input*. Total *output* terdiri dari nilai dari produk jadi, nilai dari produk setengah jadi, keuntungan saham, bunga obligasi, dan pendapatan lainnya. Total *input* terdiri dari tenaga kerja (manajer, staf dan buruh), kapital (kapital berjalan dan kapital tetap), bahan baku, energi (minyak, gas, batu bara, air dan listrik) dan pengeluaran lainnya (pajak, distribusi, pemasaran, R & D dan lainnya).

2. Produktivitas parsial

Rasio antara *output* dengan satu bagian *input*, contohnya produktivitas tenga kerja merupakan produktivitas parsial.

Produktivitas parsial (j) =
$$\frac{\text{Output (i)}}{\text{Input (ij)}}$$
, untuk semua j

3. Produktivitas faktor total

Rasio antara *output* bersih (total *output* dikurangi dengan pembelian dan barang setengah jadi) dengan (penjumlahan faktor tenaga kerja dan modal).

Siklus produktivitas terdiri dari 4 tahap antara lain :

1. Pengukuran produktivitas (*Measurement*)

Tahap ini merupakan pengukuran setiap aspek produktivitas yaitu tenaga kerja, material, energi, kapital dan lainnya sehingga didapatkan produktivitas parsial dan total produktivitas.

2. Evaluasi produktivitas (Evaluation)

Tahap ini merupakan evaluasi produktivitas dibandingkan dengan periode sebelumnya dengan menggunakan pohon evaluasi produktivitas (*productivity evaluation tree*) sehingga dapat diketahui bahwa produktivitas turun, naik atau stabil.

3. Perencanaan produktivitas (*Planning*)

Tahap ini dapat dibagi menjadi 2, yaitu perencanaan jangka panjang dan jangka pendek.

4. Peningkatan produktivitas (*Improvement*)

Tahap ini produktivitas ditingkatkan melaui beberapa cara yang sesuai dengan permasalahan yang terjadi pada masing-masing perusahaan, misalnya teknologi, produk dan lainnya.

(Sumanth, 1984)

Teknik produktivitas lebih terfokus untuk mendisain, menerapkan, dan pemeliharaan pengukuran produktivitas, perencanaan dan evaluasi produktivitas, serta meningkatkan sistem produktifitas. Sedangkan manajemen produktivitas merupakan proses manajemen formal yang meliputi manajemen dan pekerja di seluruh bagian dengan tujuan untuk mengurangi biaya dari produksi, distribusi, penjualan produk atau jasa dengan mengintegrasikan 4 fase dari siklus produktivitas yaitu pengukuran produktivitas, evaluasi, perencanaan dan peningkatan (Sumanth, 1984).

F. SUSU

Susu merupakan cairan berwarna putih yang diperoleh dari pemerahan sapi atau hewan menyusui lainnya, yang dapat dimakan atau sebagai bahan pangan yang sehat serta tidak dikurangi komponen-komponen atau ditambah bahan-bahan lainnya (Hadiwiyoto, 1983). Binatang penghasil susu antara lain sapi, kambing, kerbau dan unta. Namun selama berabad-abad, sapi selalu dipilih sebagai hewan yang jumlah produksi susu yang tinggi, sehingga sekarang sapi perah adalah salah satu penghasil susu paling efisien. Dalam kenyataannya seekor sapi perah yang baik akan menghasilkan sekitar 5.000 liter susu per tahun. Jenis sapi perah yang biasa digunakan adalah *Fries Holland* dan peranakan *Fries Holland*.

Menurut Soeparno (1992), normalnya susu mengandung rata-rata 3,60% lemak; 3,20% protein; 4,70% laktosa; abu 0,65%; air 87,25%; serta bahan kering 12,75%. Faktor-faktor terpenting yang menyebabkan susu merupakan bahan makanan sempurna antara lain:

- 1. Susu mengandung hampir semua zat gizi yang diperlukan oleh tubuh.
- 2. Perbandingan sempurna dari kadar-kadar zat gizi terdapat di dalam susu.
- 3. Zat gizi yang terkandung pada susu dapat dicerna dan diabsorpsi secara sempurna oleh tubuh.
- 4. Protein dan lemak di dalam susu memiliki mutu yang lebih tinggi daripada protein dan lemak di dalam bahan makanan lain.

Selain memiliki keunggulan seperti diatas, susu juga memiliki sifat-sifat yang dapat menjadi kelemahannya yaitu:

- Jumlah dan kualitasnya berubah. Masalah dalam besarnya jumlah produk menimbulkan kesulitan dalam penyimpanan dan penyelesaian produk disebabkan karena perbedaan kualitas.
- 2. **Bulky** dan *perishable*. *Bulky* memerlukan penanganan transfer dan pergudangan yang besar. Sedangkan *perishable* memerlukan penanganan dan biaya proses yang sangat mahal.

Sifat dari susu yang mudah rusak ini memerlukan suatu tindakan penanganan pasca panen susu. Agar susu dapat tahan lebih lama dari kerusakan dengan kandungan yang tidak jauh berubah salah satu caranya adalah mengolah susu dengan teknik pasteurisasi. Pasteurisasi pada susu diperlukan untuk mencegah penularan penyakit dan kerusakan karena mikroorganisme dan enzim.

Pengolahan susu dimaksudkan untuk mengolah susu menjadi bahan makanan yang enak dan memiliki aroma yang lebih baik, serta meningkatkan daya simpan susu itu sendiri. IDF (*International Dairy Federation*) mendefinisikan pasteurisasi sebagai salah satu proses pemanasan yang dilakukan pada susu dengan tujuan menghindari bahaya kesehatan pada produk susu yang mungkin terjadi karena hadirnya mikroorganisme patogen sekaligus meminimalisasi perubahan pada susu baik secara kimiawi, fisik dan organoleptik (Hadiwiyoto, 1982).

Menurut Fardiaz (1992), susu pasteurisasi adalah susu sapi segar yang mengalami proses pasteurisasi sehingga tidak berbahaya jika dikonsumsi langsung. Pasteurisasi merupakan pengolahan susu pada sushu dan waktu

tertentu untuk menghambat pertumbuhan mikrooragnisme dan bakteri patogen yang berbahay bagi manusia, namun tidak membunuh spora bakteri susu. Prinsip pasteurisasi susu adalah memanaskan susu dibawah titik didih susu. Penggunaan panas pada pasteurisasi susu tidak menimbulkan perubahan pada komposisi dan rasa secara nyata sehingga susu tidak menimbulkan perubahan pada komposisi dan rasa secara nyata sehingga susu pasteurisasi masih mempunyai rasa seperti susu segar (Babe, 2002).

Tujuan utama dilakukan proses pasteurisasi pada susu adalah untuk mencegah penularan penyakit dan mencegah kerusakan akibat jasad renik dan enzim sehingga kualitas susu tetap baik (Hadiwiyoto, 1982). Tujuan pasteurisasi adalah untuk memusnahkan semua sel vegetatif dan bakteri patogen dan sebagai besar mikroorganisme pembusuk (Hadiwiyoto, 1982). Susu pasteurisasi tidaklah steril sehingga harus disimpan pada sushu dingin (Hadiwiyoto, 1982). Karena apabila disimpan dalam suhu kamar akan mengakibatkan perubahan secara drastis dalam satu hari (Winarno, 1984)

III. METODOLOGI PENELITIAN

A. KERANGKA PEMIKIRAN

Menurut data Badan Pusat Statistika tahun 2008, produksi susu di Indonesia meningkat setiap tahunnya namun jumlah produksi susu tersebut hanya mampu memenuhi 25% kebutuhan konsumsi susu nasional. Banyak hal yang mempengaruhi industri susu nasional tidak dapat memenuhi kebutuhan konsumsi susu dalam negeri. Salah satu faktornya adalah rendahnya produktivitas setiap industri sehingga setiap tahunnya kita harus mengimpor susu agar kebutuhan dalam negeri dapat terpenuhi. Rendahnya produktivitas industri susu dalam negeri disebabkan kurang efisien dan efektif dalam penggunaan sumber daya yang ada yaitu tenaga kerja, bahan baku, energi, mesin dan pengeluaran lainnya sehingga dapat menyebabkan berkurangnya produk yang akan dipasarkan dan menyebabkan kebutuhan susu dalam negeri tidak terpenuhi.

Oleh sebab itu, untuk meningkatkan keseluruhan produktivitas pada industri susu maka dibutuhkan pengendalian produktivitas pada masingmasing bagian yaitu tenaga kerja, bahan baku, energi, mesin dan pengeluaran lainnya sehingga integrasi dari beberapa bagian tersebut dapat meningkatkan produktivitas. Meningkatkan produktivitas dilakukan dengan meningkatkan nilai produktivitas setiap bagian yang pada akhirnya akan menjadi nilai total produktivitas. Nilai produktivitas akan digunakan untuk menghitung indeks produktivitas yang menjadi suatu nilai pembanding produktivitas setiap bulannya dan apabila terjadi penurunan ataupun kenaikan nilai indeks produktivitas maka dapat ditentukan penyebab terjadinya keadaan tersebut serta solusi untuk menyelesaikannya menggunakan sistem pakar.

Salah satu bagian yang menjadi salah satu faktor dalam produktivitas adalah produktivitas tenaga kerja yang dipengaruhi oleh jumlah tenaga kerja. Jumlah tenaga kerja yang mempengaruhi waktu proses produksi adalah jumlah tenaga kerja bagian pengemasan karena pada bagian pengemasan masih membutuhkan penambahan jumlah karyawan apabila terjadi kenaikan

permintaan. Oleh karena itu, untuk menentukan jumlah tenaga kerja bagian pengemasan yang efektif diperlukan suatu alat yaitu menggunakan algoritma genetika yang akan menghasilkan jumlah tenaga kerja sesuai dengan jumlah produksi setiap bulannya. Suatu pendekatan sistem yang terintegrasi dengan sistem pakar (*expert system*) dan algoritma genetika akan menjadi sistem penunjang keputusan intelijen sehingga industri susu dapat mengendalikan produktivitas sehingga jumlah produksi dapat ditingkatkan.

B. PENDEKATAN SISTEM

Sistem merupakan sekumpulan gugus atau elemen yang saling berinteraksi dan terorganisasi (Eriyatno, 1998). Sistem mencakup lima unsur utama yaitu elemen-elemen (bagian), adanya interaksi atau hubungan antara elemen-elemen, adanya sesuatu yang mengikat elemen-elemen tersebut menjadi suatu kesatuan, terdapat tujuan bersama sebagai hasil akhir dan berada dalam suatu lingkungan kompleks. Menurut Eriyatno (1999), pendekatan sistem ini dicirikan dengan adanya metodologi perencanaan atau pengelolaan yang bersifat multidisiplin dan terorganisir, penggunaan model matematika, mampu berfikir secara kualitatif, penggunaan teknik simulasi dan optimasi, serta diaplikasikan dengan komputer. Pendekatan sistem dengan menggunakan model yaitu suatu abstraksi keadaan nyata atau penyederhanaan sistem nyata untuk memudahkan pengkajian suatu sistem.

1. Analisis Kebutuhan

Analisis kebutuhan selalu mengangkut interaksi antara respon yang timbul dari seorang pengambil keputusan terhadap jalannya sistem. Analisis ini dapat meliputi hasil survei, pendapat ahli, observasi lapangan dan sebagainya (Marimin, 2004). Analisis kebutuhan untuk Sistem Penunjang Keputusan Intelijen Pengendalian Produktivitas pada Industri Susu antara lain:

- a. Industri susu
 - 1) Peningkatan jumlah produksi
 - 2) Efisiensi biaya produksi
 - 3) Solusi dari masalah produktivitas yang terjadi

b. Bagian Tenaga Kerja

- 1) Efisiensi biaya tenaga kerja
- 2) Mendapatkan jumlah tenaga kerja ideal untuk bagian pengemasan
- 3) Solusi dari masalah produktivitas tenaga kerja

c. Bagian Produksi

- 1) Efisiensi penggunaan bahan baku dan bahan tambahan
- 2) Solusi dari masalah produktivitas bagian produksi

d. Bagian Mesin

- 1) Efisiensi penggunaan mesin
- 2) Efisiensi pengunaan energi tiap mesin
- 3) Solusi dari masalah produktivitas energi dan mesin

2. Formulasi Permasalahan

Permasalahan yang dihadapi pemerintah saat ini adalah kurangnya produksi susu dalam negeri. Kurangnya produksi susu dalam negeri disebabkan karena industri susu di Indonesia mengalami penurunan produktivitas. Hal ini disebabkan kurang efisien dan efektif dalam penggunaan sumber daya yang ada antara lain tenaga kerja, bahan baku, energi, mesin dan pengeluaran lainnya. Sumber daya tersebut merupakan faktor utama yang sangat berpengaruh pada produksi susu. Oleh karena itu, pemimpin industri membutuhkan suatu alat yang dapat membantu mereka dalam menyelesaikan masalah tersebut sehingga produktivitas di industri susu meningkat dan produksi dalam negeri pun meningkat.

3. Identifikasi Sistem

Identifikasi sistem bertujuan untuk memberi gambaran tentang sistem yang dikaji. Identifikasi sistem dapat dilakukan dengan menggunakan diagram sebab akibat dan diagram *input-output*. Diagram sebab akibat menggambarkan keterkaitan antara komponen dan aktivitas yang saling mempengaruhi dan dapat dilihat pada Gambar 4. Diagram *input-output* menggambarkan skema identifikasi dari model yang akan dikembangkan yang dapat dilihat pada Gambar 5.

Gambar 4. Diagram Lingkar Sebab Akibat

Ket: -----: Sebab-Akibat untuk internal industri susu

Gambar 5. Diagram Input-Output

4. Pemodelan Sistem

Perancangan Sistem Penunjang Keputusan Intelijen Pengendalian Produktivitas terdiri dari sistem manajemen basis data, sistem manajemen basis pengetahuan, sistem manajemen basis model, sistem manajemen dialog dan algoritma genetika. Sistem manajemen basis data berfungsi untuk menyimpan data dan mudah dilakukan perubahan-perubahan. Sistem manajemen basis pengetahuan berfungsi untuk menyimpan pengetahuan-pengetahuan untuk menyelesaikan masalah didalam domain tertentu. Sistem manajemen basis model memberikan fasilitas pengelolaan model untuk mengkomputasi pengambilan keputusan dan meliputi semua aktifitas yang tergabung dalam pemodelan SPK. Sistem manajemen dialog berfungsi untuk menerima input dan memberikan output yang dikehendaki pengguna. Algoritma genetika berfungsi untuk mencari solusi yang optimum dari suatu permasalahan yang komplek.

5. Pembuatan Program Komputer

Model sistem yang berhasil dibuat, kemudian diimplementasikan dalam bentuk suatu program komputer. Program komputer dirancang memiliki sistem manajemen basis data, sistem manajemen basis model, sistem manajemen dialog, sistem manajemen basis pengetahuan dan algoritma genetika. Dalam perancangan program komputer, disesuaikan dengan spesifikasi komputer agar program dapat dijalankan dengan baik.

6. Verifikasi

Program yang telah dibuat kemudian diuji dengan melakukan pengaturan masukan, mendebug program, dan melakukan pengecekan untuk melihat kesesuaian dengan keluaran. Pengujian bertujuan untuk mengetahui kemampuan program dalam melakukan simulasi sesuai dengan yang diinginkan. Data-data yang dimasukan merupakan data *real* (nyata) yang berasal dari *Milk Treatment* KPBS Pangalengan, Bandung.

C. TATA LAKSANA

1. Studi Pustaka

Studi pustaka dilakukan untuk memperoleh pengetahuan dasar tentang hal-hal yang mempengaruhi produktivitas, konsep sistem pakar, prosedur algoritma genetika dan sistem penunjang keputusan. Studi pustaka dilakukan di perpustakaan LSI-IPB, melalui internet dan buku.

2. Sumber dan Cara Pengumpulan Data

Pengambilan data dilakukan pada industri susu yaitu KPBS Pangalengan dengan cara wawancara dengan pimpinan pabrik dan pegawai-pegawai yang terkait dengan produksi secara langsung dan melalui pengamatan langsung di lapangan.

3. Perancangan Sistem

Perancangan sistem didasarkan pada sistem yang akan dibuat yaitu meliputi perancangan sistem manajemen basis data, sistem manajemen basis model, sistem manajemen basis pengetahuan, sistem manajemen dialog dan algoritma genetika.

4. Implementasi

Implementasi dilakukan dengan adanya koordinasi antar basis model dan basis data yang telah dirancang dan akan diimplementasikan ke dalam suatu program komputer yaitu menggunakan perangkat lunak *Borland Delphi* 7.0.

5. Verifikasi

Model yang telah terbentuk dalam sistem, maka dilakukan verifikasi dan validasi dengan menggunakan data untuk melihat apakah model tersebut layak untuk digunakan dan memenuhi kriteria yang telah ditetapkan. Verifikasi dilakukan di KPBS Pangalengan dengan menggunakan data aktual dari industri susu tersebut.

6. Evaluasi

Tujuan dari evaluasi adalah untuk mengetahui hasil verifikasi (benar atau tidak) dan sebagai pembanding dengan perhitungan manual untuk membuktikan kebenarannya.

IV. PEMODELAN SISTEM

A. KONFIGURASI MODEL

Sistem Penunjang Keputusan Intelijen Pengendalian Produktivitas pada Industri Susu merupakan suatu sistem penunjang keputusan yang terintegrasi dengan algoritma genetika dan sistem pakar dengan nama IDSS_MP (Intelligent Decision Support System Milk Productivity). Model sistem penunjang keputusan intelijen ini dirancang untuk membantu pengambilan keputusan oleh pimpinan industri susu untuk mengendalikan produktivitas dari berbagai aspek diantaranya tenaga kerja, bahan baku, energi, mesin dan pengeluaran lainnya di industri tersebut.

IDSS_MP terdiri dari sistem manajemen basis data, sistem manajemen basis model, sistem manajemen dialog, sistem manajemen basis pengetahuan, dan algoritma genetika. Pengembangan model IDSS_MP menggunakan bahasa pemrograman *Borland Delphi* 7.0 untuk pengembangan sistem, *Microsoft Office Access* 2003 untuk pengembangan basis data dan *Adobe ImageReady* CS2 untuk desain tampilannya.

B. SISTEM MANAJEMEN BASIS DATA

Sistem manajemen basis data digunakan sebagai pusat penyimpanan, pengolahan, dan pemasukan data. Sistem manajemen basis data harus mudah diubah, ditambah dan dihapus. Pembuatan sistem manajemen basis data pada Sistem Penunjang Keputusan Intelijen Pengendalian Produktivitas pada Industri Susu ini menggunakan *Microsoft Office Access* 2003. Hasil dari setiap basis model yang berupa *output* ataupun *input* disimpan pada basis data dan dapat dipanggil kembali untuk melihat data pada bulan sebelumnya. Data yang tersimpan pada setiap basis data merupakan data periode dalam satu bulan dalam bentuk tabel data meliputi:

a. Basis Data Total Output

Basis data total *output* terdiri atas nama bulan dan tahun, jumlah penjualan susu IPS, jumlah pesanan susu prepack, susu *cup* coklat dan

cup strawberry, harga dari masing-masing produk tersebut dan total *output* pada satu periode. Data-data tersebut merupakan data yang dimasukan dan hasil dari basis model total *output*.

b. Basis Data Tenaga Kerja

Basis data tenaga kerja terdiri atas nama bulan dan tahun, jumlah gaji karyawan magang, kontrak, dan tetap, tunjangan kasie dan THR (Tunjangan Hari Raya) dari semua bagian di MT KPBS, total *input* tenaga kerja, serta nilai produktivitas dan indeks produktivitas tenaga kerja. Datadata tersebut merupakan data yang dimasukan dan hasil dari basis model produktivitas tenaga kerja.

c. Basis Data Biodata Tenaga Kerja

Basis data Biodata tenaga kerja terdiri atas nama karyawan, jenis kelamin, tanggal lahir, nomor telepon, alamat, tahun masuk kerja, divisi, jabatan, status karyawan, pendidikan terakhir, gaji dan THR. Data-data tersebut merupakan data yang digunakan pada basis model produktivitas tenaga kerja.

d. Basis Data Bahan Baku

Basis data bahan baku terdiri atas nama bulan dan tahun, jumlah dan harga dari susu segar yang digunakan untuk memproduksi susu IPS, prepack dan cup, flavour coklat dan strawberry, bubuk coklat, pewarna strawberry, stabilizer, gula pasir, kemasan prepack, kemasan cup, seal cup, total input bahan baku, serta nilai produktivitas dan indeks produktivitas bahan baku. Data-data tersebut merupakan data yang dimasukan dan hasil dari basis model produktivitas bahan baku.

e. Basis Data Energi

Basis data energi terdiri atas nama bulan dan tahun, biaya solar, listrik dan air yang digunakan untuk memproduksi susu IPS, *prepack* dan *cup*, total input energi, serta nilai produktivitas dan indeks produktivitas energi. Data-data tersebut merupakan data yang dimasukan dan hasil dari basis model produktivitas energi.

f. Basis Data Panggil Mesin

Basis data panggil mesin terdiri atas nama bulan dan tahun, jumlah produksi *prepack* dan *cup* (dalam liter) yang merupakan hasil perhitungan pada model produktivitas bahan baku. Data-data tersebut merupakan data masukan untuk basis model produktivitas mesin.

g. Basis Data Mesin

Basis data mesin terdiri atas nama bulan dan tahun, nilai produktivitas dan indeks produktivitas mesin *prepack* dan *cup*. Data-data tersebut merupakan data keluaran dari basis model produktivitas mesin.

h. Basis Data Lainnya

Basis data lainnya terdiri atas nama bulan dan tahun, biaya distribusi susu ke IPS, biaya pajak (bangunan, kendaran dan pendapatan) serta biaya pembelian alat ataupun *spareparts*, total input pengeluaran lainnya, serta nilai produktivitas dan indeks produktivitas pengeluaran lainnya. Data-data tersebut merupakan data yang dimasukan dan hasil dari basis model produktivitas pengeluaran lainnya.

i. Basis Data Total Produktivitas

Basis data total produktivitas terdiri atas nama bulan dan tahun, total *output* dan nilai dari setiap bagian (total *input*), nilai dari total produktivitas dan indeksnya. Data-data tersebut merupakan data yang dimasukan dan hasil dari basis model total produktivitas.

j. Basis Data Solusi

Basis data solusi terdiri atas kode, solusi dan CF (*certainty factor*). Data-data tersebut merupakan data yang digunakan pada basis model konsultasi pakar.

C. SISTEM MANAJEMEN BASIS MODEL

Sistem manajemen basis model digunakan sebagai keterkaitan antar model yang digunakan untuk menganalisa data yang terdapat pada basis data untuk menunjang tujuan SPK tersebut. Pembuatan sistem manajemen basis model menggunakan *Borland Delphi* 7.0. SPK Intelijen Pengendalian

Produktivitas pada Industri Susu ini terdiri dari beberapa basis model antara lain:

1. Basis Model Total Output

Basis model total *output* merupakan model yang digunakan untuk menghitung total *output* dalam 1 bulan. Nilai masukan untuk model ini adalah jumlah penjualan dan harga jual susu IPS (Industri Pengolahan Susu) serta jumlah pesanan dan harga susu *prepack*, susu *cup* coklat dan strawberry. Satuan jumlah penjualan untuk susu IPS adalah kg, untuk susu *prepack* dan *cup* berdasarkan kemasan yaitu per *pack* dan per *cup* dan untuk harga jual yaitu Rp (rupiah). Hasil dari perhitungan basis model ini akan disimpan pada basis data total *output*. Diagram alir basis model total *output* dapat dilihat pada Gambar 6.

Gambar 6. Diagram Alir Total Output

2. Basis Model Produktivitas Tenaga Kerja

Basis model produktivitas tenaga kerja merupakan model yang digunakan untuk menghitung nilai produktivitas tenaga kerja dan indeks produktivitas tenaga kerja dalam 1 bulan. Nilai masukan untuk model ini dipanggil melalui basis data biodata tenaga kerja. Nilai keluarannya berupa nilai total *input* tenaga kerja, nilai produktivitas tenaga kerja dan indeks produktivitas tenaga kerja. Hasil dari perhitungan basis model ini akan disimpan pada basis data tenaga kerja dan dapat dipanggil kembali untuk melihat data pada bulan sebelumnya. Diagram alir basis model produktivitas tenaga kerja dapat dilihat pada Gambar 7.

Gambar 7. Diagram Alir Produktivitas Tenaga Kerja

3. Basis Model Produktivitas Bahan Baku

Basis model produktivitas bahan baku merupakan model yang digunakan untuk menghitung nilai produktivitas bahan baku dan indeks

produktivitas bahan baku dalam 1 bulan. Nilai masukan untuk model ini adalah harga bahan baku antara lain susu segar, *flavour* coklat, *flavour* strawberry, pewarna strawberry, bubuk coklat, stabilizer, gula pasir, kemasan *prepack* dan *cup* beserta *seal*-nya. Nilai keluarannya berupa jumlah bahan baku yang digunakan, nilai total *input* bahan baku, nilai produktivitas dan indeks produktivitas bahan baku. Hasil dari perhitungan basis model ini akan disimpan pada basis data bahan baku dan dapat dipanggil kembali untuk melihat data pada bulan sebelumnya. Diagram alir basis model produktivitas bahan baku dapat dilihat pada Gambar 8.

Gambar 8. Diagram Alir Produktivitas Bahan Baku

4. Basis Model Produktivitas Energi

Basis model produktivitas energi merupakan model yang digunakan untuk menghitung nilai produktivitas energi dan indeks produktivitas energi dalam 1 bulan. Nilai masukan untuk model ini adalah

harga dan jumlah energi yang digunakan meliputi solar (untuk kendaraan dan boiler), listrik dan air. Nilai keluarannya berupa nilai total *input* energi, nilai produktivitas dan indeks produktivitas energi. Hasil dari perhitungan basis model ini akan disimpan pada basis data energi dan dapat dipanggil kembali untuk melihat data pada bulan sebelumnya. Diagram alir basis model produktivitas energi dapat dilihat pada Gambar 9.

Gambar 9. Diagram Alir Produktivitas Energi

5. Basis Model Produktivitas Mesin

Basis model produktivitas mesin merupakan model yang digunakan untuk menghitung nilai produktivitas dan indeks produktivitas mesin *prepack* dan *cup* dalam 1 bulan. Data untuk melakukan perhitungan pada model ini dipanggil melalui basis data panggil mesin yaitu berupa

jumlah produksi *prepack* dan *cup*. Selain itu ada juga data yang dimasukkan secara langsung yaitu ukuran kemasan *prepack* dan *cup* serta jumlah *prepack* dan *cup* yang dihasilkan (*real*). Nilai keluaran dari model ini berupa produktivitas dan indeks produktivitas mesin *prepack* dan *cup*. Hasil dari perhitungan basis model ini akan disimpan pada basis data mesin dan dapat dipanggil kembali untuk melihat data pada bulan sebelumnya. Diagram alir basis model produktivitas mesin dapat dilihat pada Gambar 10.

Gambar 10. Diagram Alir Produktivitas Mesin

6. Basis Model Produktivitas Pengeluaran Lainnya

Basis model produktivitas pengeluaran lainnya merupakan model yang digunakan untuk menghitung nilai produktivitas pengeluaran lainnya dan indeks produktivitas pengeluaran lainnya dalam 1 bulan. Nilai masukan untuk model ini adalah biaya distribusi IPS, pajak (kendaraan, bangunan dan pendapatan) dan pembelian alat-alat. Nilai keluarannya berupa nilai total *input* pengeluaran lainnya, nilai produktivitas dan indeks produktivitas pengeluaran lainnya. Hasil dari perhitungan basis model ini akan disimpan pada basis data pengeluaran lainnya dan dapat dipanggil kembali untuk melihat data pada bulan sebelumnya. Diagram alir basis model produktivitas pengeluaran lainnya dapat dilihat pada Gambar 11.

Gambar 11. Diagram Alir Produktivitas Pengeluaran Lainnya

7. Basis Model Total Produktivitas

Basis model total produktivitas merupakan model yang digunakan untuk menghitung nilai total produktivitas dan indeks total produktivitas dalam 1 bulan. Data untuk melakukan perhitungan pada model ini tidak dimasukan secara langsung karena semua data yang akan di gunakan,

dipanggil melalui masing-masing basis data yang telah tersimpan sebelumnya. Data tersebut dipanggil berdasarkan tahun dan bulan data tersebut disimpan. Nilai masukan untuk model ini adalah total *output*, total *input* tenaga kerja, total *input* bahan baku, total *input* energi dan total *input* pengeluaran lainnya. Nilai keluarannya berupa nilai total produktivitas dan indeks total produktivitas. Hasil dari perhitungan basis model ini akan disimpan pada basis data total produktivitas dan dapat dipanggil kembali untuk melihat data pada bulan sebelumnya. Diagram alir basis model total produktivitas dapat dilihat pada Gambar 12.

Gambar 12. Diagram Alir Total Produktivitas

8. Basis Model Penentuan Jumlah Karyawan Pengemasan

Basis model penentuan jumlah karyawan pengemasan merupakan model yang digunakan untuk menghitung jumlah karyawan bagian

pengemasan *prepack* dan *cup* karena sangat berpengaruh pada waktu proses produksi. Distributor susu *prepack* dan *cup* selalu mengambil susu pesanan mereka mulai pukul 10 pagi sehingga apabila jumlah karyawan pengemasan sedikit dan jumlah pesanan sangat banyak maka distributor harus menunggu lama untuk membawa pesanan mereka. Apabila jumlah karyawan sesuai dengan jumlah pesanan yang ada maka distributor tidak perlu menunggu lama dan waktu produksi secara keseluruhan dapat diminimalkan. Untuk mendapatkan jumlah karyawan yang dibutuhkan berdasarkan dengan jumlah pesanan setiap bulan maka menggunakan algoritma genetika karena algoritma genetika dapat melakukan pencarian optimum sehingga didapatkan jumlah karyawan yang optimum. Teknik yang digunakan adalah algoritma genetika yang berfungsi untuk menentukan komposisi jumlah karyawan bagian pengemasan yang ideal sehingga dapat mengevaluasi indeks produktivitas tenaga kerja bulan ini dan yang akan datang.

Nilai masukan untuk model ini adalah jumlah karyawan saat ini, kapasitas kerja karyawan per jam, jam kerja per hari, maksimal jam lembur, gaji pegawai perbulan, upah jam lembur per jam, biaya rekrut karyawan, biaya pecat karyawan dan biaya bila tidak bisa memenuhi pesanan. Nilai keluaran yang dihasilkan adalah jumlah karyawan yang dibutuhkan yaitu menggunakan jam lembur dan jumlah produksi lembur, merekrut karyawan. Nilai keluaran dari model ini akan menjadi bahan evaluasi atau pertimbangan oleh perusahaan. Apabila pada bulan-bulan meningkat yang akan datang pesanan maka perusahaan bisa mengatisipasinya dengan merekrut beberapa karyawan magang.

D. SISTEM MANAJEMEN DIALOG

Sistem manajemen dialog digunakan sebagai fasilitas penghubung dari sistem kepada *user*. Sistem manajemen dialog harus dibuat menarik dan mudah digunakan oleh *user*. Sistem manajemen pada program ini merupakan sarana untuk memudahkan pengguna dalam menentukan model yang akan digunakan dan mempertimbangkan keputusan-keputusan yang dihasilkan oleh

model tersebut. Tampilan sistem manajemen basis dialog menggunakan *Adobe ImageReady* CS2 agar lebih menarik. *User* dapat memasukkan data perhitungan pada tempat-tempat yang telah disediakan oleh program dan memproses perhitungan itu dengan satu tombol pada setiap bagian sehingga user mudah menggunakannya. Hasil-hasil dari perhitungan tersebut akan berupa angka, kalimat atau grafik sehingga user lebih mudah untuk memahami.

E. SISTEM PAKAR

Sistem pakar adalah sistem yang mempunyai kemampuan untuk menginterprestasikan data menjadi suatu kesimpulan dengan bantuan pengetahuan atau keahlian dari seorang ahli (pakar). Basis pengetahuan pada sistem pakar adalah pengalaman dan pengetahuan pakar. Basis pengetahuan ini tersimpan dalam suatu basis data yaitu basis data solusi. Dimana basis data ini menyimpan seluruh solusi yang dapat digunakan untuk menyelesaikan masalah produktivitas. Basis pengetahuan ini didapat melalui akuisisi pengetahuan. Akuisisi pengetahuan dilakukan dengan wawancara dengan pakar dan melihat secara langsung kegiatan pakar dalam mengatasi masalah produktivitas. Wawancara berupa menanyakan solusi yang harus dilakukan apabila terjadi masalah produktivitas.

Pemilihan pakar didasarkan atas keahliannya dan pengalamannya dalam industri susu. Pakar yang diwawancarai terdiri dari 3 orang yaitu manajer pabrik, bagian proses produksi dan seseorang yang telah berpengalaman dalam industri susu (selama bertahun-tahun bekerja pada industri susu namun berbeda perusahaan). Kesulitan yang terjadi dalam akuisisi pengetahuan adalah waktu yang tersedia untuk mewawancarai pakar. Oleh karena itu, wawancara dilakukan pada jam istirahat kerja. Setelah akuisisi pengetahuan maka kita representasikan pengetahuan tersebut dalam bentuk pernyataan **if** (jika) **then** (maka) Apabila pada bagian **jika** terpenuhi harus dilakukan tindakan yang sesuai dengan bagian **maka** dan dapat disimpulkan bahwa bagian **maka** bernilai benar.

Tahap selanjutnya adalah mengembangkan mesin inferensi (mekanisme inferensi). Dalam prosesnya, mesin inferensi menggunakan strategi penalaran, strategi pengendalian dan strategi pelacakan. Strategi penalaran yang digunakan pada sistem manajemen ahli ini adalah modus ponens. Pada modus ponens jika A maka B" (A → B) dan pernyataan A diketahui benar maka dapat disimpulkan pernyataan B adalah benar. Misalnya, jika output mesin cup turun maka cek kerusakan mesin dan diperbaiki. Selanjutnya adalah strategi pengendalian yang digunakan pada sistem ini adalah forward chaining (runut maju) dengan strategi pelacakan Breadth First Search (DFS). Metode inferensi runut maju cocok digunakan untuk masalah pengendalian (controlling) dan peramalan (prognosis) (Kusrini, 2006). Diagram alir basis model konsultasi pakar dapat dilihat pada Gambar 13.

Gambar 13. Diagram Alir Konsultasi Pakar

V. HASIL DAN PEMBAHASAN

A. INDUSTRI SUSU

Berdasarkan data Ditjen Pengolahan dan Pemasaran Hasil Pertanian (PPHP), Departemen Pertanian (Deptan), produksi susu nasional hanya menutupi 25% dari kebutuhan susu nasional sehingga 75% kebutuhan susu lainnya ditutupi melalui impor. Walaupun tingkat konsumsi susu masyarakat Indonesia masih rendah akan tetapi produksi susu nasional pun ikut rendah. Oleh karena itu, KPBS merupakan salah satu industri susu yang berbasis koperasi yang terus berupaya untuk meningkatkan produksi susu di Indonesia. KPBS memiliki kurang lebih 3000 peternak binaan yang siap untuk menyetorkan susu segar setiap pagi dan sore sehingga produksi susu dapat meningkat.

KPBS memproduksi 2 jenis susu yaitu susu dingin dan susu pasteurisasi. Susu dingin merupakan susu segar yang diproses sehingga menghasilkan susu dengan suhu 4 °C dan didistribusikan ke Industri Pengolahan Susu (IPS) untuk dijadikan susu cair (pasteurisasi), susu bubuk ataupun susu kental manis. Susu pasteurisasi merupakan susu segar yang diolah menggunakan teknologi pasteurisasi. Teknologi pasteurisasi yang digunakan oleh KPBS adalah HTST (*High Temperature Short Time*), produk yang dihasilkan dengan teknologi ini terdiri dari dua jenis yaitu susu *prepack* dan susu *cup*. Produk, diagram alir proses produksi dan satndar mutu produk di KPBS Pangalengan dapat dilihat pada Lampiran 1 sampai 5.

B. PROGRAM UTAMA IDSS_MP

Pengendalian produktivitas sangat berguna di semua industri, salah satunya adalah industri susu. Berdasarkan data pada Badan Pusat Statistika tahun 2008, jumlah produksi susu di Indonesia belum mampu memenuhi kebutuhan konsumsi susu nasional sehingga kita masih harus mengimpor susu dari luar negeri. IDSS_MP adalah suatu paket program komputer yang terintegrasi dengan beberapa model yang saling terkait yang berguna untuk

mengendalikan produktivitas pada industri susu. IDSS_MP dirancang sebagai suatu alat pengambilan keputusan untuk menyelesaikan masalah produktivitas yang terjadi di industri susu dan dapat digunakan oleh para manajer pabrik sehingga produksi susu dalam negeri dapat meningkat.

IDSS_MP terdiri dari sistem manajemen basis data, sistem manajemen basis model, sistem manajemen basis pengetahuan, sistem manajemen dialog dan algoritma genetika. IDSS_MP tersusun dari 9 model antara lain model total *output*, 5 model perhitungan produktivitas parsial (tenaga kerja, bahan baku, energi, mesin dan pengeluaran lainnya), model total produktivitas, model sistem pakar untuk konsultasi kepada pakar mengenai masalah produktivitas yang sedang terjadi dan yang terakhir adalah model perencanaan penentuan jumlah karyawan bagian pengemasan yang didasarkan kepada jumlah pesanan selama 6 bulan dengan menggunakan metode algoritma genetika.

Verifikasi program ini dilakukan di MT KPBS Pangalengan, Bandung Selatan. MT KPBS memproduksi 2 jenis susu yaitu susu dingin dan susu pasteurisasi (*prepack* dan *cup*) dan data penjualan produk tersebut tahun 2008 dapat dilihat pada Tabel 5.

Tabel 5. Data Penjualan Susu di MT KPBS Tahun 2008

	Susu Dingin IPS	Susu Prepack	Susu Cup
Januari 2008	3.204.725,32 kg	186.942 pack	545.207 cup
Februari 2008	3.182.069,04 kg	165.757 pack	352.511 <i>cup</i>
Maret 2008	3.265.916,03 kg	177.284 pack	374.955 cup
April 2008	3.247.378,08 kg	185.473 pack	370.880 cup
Mei 2008	3.535.251,01 kg	216.997 pack	404.444 cup
Juni 2008	3.488.669,00 kg	188.739 pack	387.662 cup

Sumber: KPBS Pangalengan, 2008

Halaman utama pada program IDSS_MP adalah menu *Home*, dimana pada menu ini pengguna dapat menentukan model mana yang akan digunakan. Akan tetapi, untuk memulai menghitung produktivitas pada bulan tertentu maka pengguna harus memilih Total *Output* sebagai langkah awal untuk memulainya. Model Total *Output* merupakan model awal untuk menghitung produktivitas. Pengguna tidak akan dapat menghitung produktivitas parsial apabila pengguna belum menghitung total *output*nya pada bulan tersebut.

Setelah menghitung total *output* maka kita dapat melanjutkan untuk menghitung produktivitas parsial antara lain produktivitas tenaga kerja, produktivitas bahan baku, produktivitas energi, produktivitas mesin dan produktivitas pengeluaran lainnya.

Apabila semua model produktivitas parsial telah dilakukan perhitungan maka tahap selanjutnya adalah menghitung Total Produktivitas yang merupakan gabungan dari produktivitas parsial antara lain produktivitas tenaga kerja, produktivitas bahan baku, produktivitas energi dan pengeluaran lainnya. Tahap selanjutnya adalah konsultasi pakar. Pada tahap ini kita membandingkan indeks produktivitas parsial pada bulan ini dengan bulan sebelumnya sehingga dapat diketahui apakah produktivitas parsial turun atau naik. Apabila turun maka kita melanjutkan ketahap berikutnya yaitu membandingkan nilai output dan inputnya setelah itu kita mendapatkan solusi dari pakar tentang apa yang harus kita lakukan untuk memperbaikinya agar produktivitas dapat naik. Model berikutnya adalah model penentuan jumlah karyawan pengemasan. Model ini menggunakan metode algoritma genetika untuk mendapatkan kombinasi antara penggunaaan jam lembur atau penambahan jumlah karyawan magang berdasarkan jumlah pesanan selama 6 bulan. Tampilan menu *Home* program IDSS_MP dapat dilihat pada Gambar 14.

Gambar 14. Tampilan Menu Home IDSS_MP

C. SISTEM MANAJEMEN BASIS MODEL

Sistem manajemen basis model pada IDSS_MP terdiri dari 9 basis model, antara lain:

1. Basis Model Total Output

Basis model total output digunakan untuk menghitung jumlah pendapatan dari penjualan susu dingin (susu IPS) dan susu pasteurisasi dalam satu bulan. Untuk melakukan perhitungan dalam model ini maka pengguna diharuskan memasukkan jumlah penjualan susu IPS (kg), jumlah pesanan susu *prepack* serta jumlah pesanan susu *cup* coklat dan strawberry. MT KPBS Pangalengan menjual susu dingin ke Indusri Pengolahan Susu (IPS) antara lain PT. Foremost Indonesia, PT. Frisian Flag Indonesia, PT. Ultra Jaya dan *Home Industry* di daerah pangalengan. dan Untuk penjualan susu *prepack* susu cup, **KPBS** tidak mendistribusikannya secara langsung ke distributor, akan tetapi distributor-distributor yang berada di daerah DKI Jakarta dan Jawa Barat yang mengambil pesanannya ke MT KPBS. Tahap selanjutnya adalah pengguna memasukkan harga jual susu dingin, susu prepack dan susu cup. Harga jual susu dingin ke IPS sangat bervariasi karena harga jual didasarkan kepada kualitas susu dingin yaitu total solid dan jumlah mikroba dalam susu tersebut (TPC). Yang menentukan harga susu dingin adalah pihak industri pengolahan susu berdasarkan standar kualitas susu yang telah mereka tentukan, sehingga setiap industri pengolahan susu mempunyai selisih harga beli sekitar Rp 10 namun masih dalam rentang yang telah ditentukan bersama antara industri pengolahan susu dan GKSI (Gabungan Koperasi Susu Indonesia). Untuk harga susu *prepack* dan susu cup, pihak KPBS yang menentukan harga jual kepada ditributor.

Apabila semua data telah dimasukkan maka selanjutnya adalah menekan tombol Hitung maka proses perhitungan yang terjadi adalah :

Total Output =
$$(a \times b) + (c \times d) + ((e+f) \times g)$$

Keterangan:

a: jumlah penjualan susu IPS (kg)

b: harga jual susu IPS (Rp/kg)

c: jumlah pesanan susu *prepack* (pack)

d: harga jual susu *prepack* (Rp/pack)

e: jumlah pesanan *cup* coklat (*cup*)

f: jumlah pesanan *cup* strawberry (*cup*)

g: harga jual susu *cup* (Rp/*cup*)

Hasil perhitungan tersebut akan terlihat pada form yaitu pada static text dan apabila kita ingin menyimpan data tersebut maka pengguna dapat menekan tombol Simpan. Maka hasil perhitungan (Total Output) beserta data yang telah dimasukkan (jumlah dan harga penjualan susu IPS, susu prepack dan susu cup) akan disimpan kedalam basis data total output dengan nama tabel_output. Total Output yang disimpan dalam basis data digunakan perhitungan produktivitas akan untuk tenaga produktivitas bahan baku, produktivitas energi, produktivitas pengeluaran lainnya dan total produktivitas. Apabila ingin melihat data bulan sebelumnya maka pilih tahun dan bulan yang diinginkan kemudian menekan tombol dan data bulan sebelumnya akan tampil. Tampilan form Total Output dapat dilihat pada Gambar 15.

Gambar 15. Tampilan Form Total Output

2. Basis Model Produktivitas Tenaga Kerja

Basis model produktivitas tenaga kerja digunakan untuk menentukan nilai produktivitas dan indeks tenaga kerja dalam 1 bulan sehingga dapat terlihat, apakah produktivitas tenaga kerja bulan ini naik atau turun bila dibandingkan dengan bulan sebelumnya. Untuk melakukan perhitungan dengan model ini maka pengguna menggunakan basis data biodata tenaga kerja. Karyawan magang adalah karyawan yang bekerja selama 3 bulan, karyawan kontrak yang telah bekerja selama 2 tahun dan karyawan tetap adalah karyawan yang telah bekerja lebih dari 2 tahun. Jumlah dan gaji karyawan dapat berubah dalam jangka waktu tertentu sesuai dengan kebijakan perusahaan.

Untuk memulai proses ini maka kita dapat menekan tombol Jumlah Karyawan yang akan menentukan jumlah karyawan yang ada pada saat ini. Setelah semua data telah dimasukkan maka pengguna dapat langsung menekan tombol Hitung untuk proses selanjutnya. Maka proses perhitungan yang terjadi adalah:

Produktivitas tenaga kerja =
$$\frac{to}{(a+b+c+d+e)}$$

Indeks produktivitas tenaga kerja = produktivitas tenaga kerja = bulan i - 1

Keterangan:

to: total *output* pada bulan ke-i (Rp)

a: gaji karyawan magang (Rp/bln)

b: gaji karyawan kontrak (Rp/bln)

c: gaji karyawan tetap (Rp/bln)

d: tunjangan kasie (Rp/bln)

e: THR (Tunjangan Hari Raya) (Rp)

Hasil perhitungan tersebut akan terlihat pada *form* yaitu pada *static text* dan apabila kita ingin menyimpan data tersebut maka pengguna dapat menekan tombol Simpan. Maka hasil perhitungan (nilai total *input* tenaga kerja, nilai Produktivitas dan Indeks Produktivitas Tenaga Kerja) beserta data yang telah dimasukkan (jumlah dan gaji karyawan magang, kontrak, dan tetap) akan disimpan kedalam basis data tenaga kerja dengan nama

tabel_tk. Apabila ingin melihat data bulan sebelumnya maka pilih tahun dan bulan yang diinginkan kemudian menekan tombol dan data bulan sebelumnya akan tampil. Nilai total *input* tenaga kerja yang disimpan dalam basis data akan digunakan untuk perhitungan pada model total produktivitas dan konsultasi pakar. Pada model ini, apabila kita menekan tombol Edit Karyawan maka dapat dilihat profil karyawan yang bekerja di KPBS yang sangat mudah untuk ditambah, dikurangi ataupun di edit. Selain itu, indeks produktivitas tenaga kerja akan digunakan pada model konsultasi pakar. Tampilan *form* Tenaga Kerja dapat dilihat pada Gambar 16 dan tampilan form Data Tenaga Kerja dapat dilihat pada Gambar 17.

Gambar 16. Tampilan Form Produktivitas Tenaga Kerja

gata Karyawan DATA	KARYAWAN	
Nama		
Jenis Kelamin		
Tanggal Lahir		
No Telp		
Alamat		
Tahun Masuk Kerja		
Divisi		
Jabatan		
Status Karyawan		
Pendidikan Terakhir		
Saji		
THR	+ -	▲ ≪ X C
No Nama_Karyawan	Jenis_Kelamin	Tanggal_Lahir
2		

Gambar 17. Tampilan Form Data Karyawan

3. Basis Model Produktivitas Bahan Baku

Basis model produktivitas bahan baku digunakan untuk menentukan nilai produktivitas dan indeks bahan baku dalam 1 bulan sehingga dapat terlihat, apakah produktivitas bahan baku bulan ini naik atau turun bila dibandingkan dengan bulan sebelumnya. Untuk melakukan perhitungan dengan model ini maka pengguna diharuskan memasukkan berat jenis susu dingin dan harga bahan baku pada tabel yang telah disediakan. Data lain yang dibutuhkan adalah jumlah penjualan susu ke IPS dan jumlah pesanan susu *prepack* dan *cup*. Data tersebut dipanggil dari basis data total *output*. Tahap selanjutnya adalah menekan tombol Hitung dan proses yang terjadi selanjutnya adalah:

Susu segar (liter) = susu dingin + d + (b+c)

Gula (kg) = $(b \times a \times 0.075) + (c \times a \times 0.06)$

Stabilizer (kg) = $(b \times a \times 0.05) + (c \times a \times 0.05)$

Flavour coklat dan bubuk coklat (kg) = $(b \times a \times 0.001)$

Flavour dan pewarna strawberry (kg) = $(c \times a \times 0.001)$

$$\mathbf{Kemasan} \ \mathbf{Prepack} \ (\mathbf{gulung}) = \frac{\frac{d \times 1000}{ukuran \ kemasan}}{3000}$$

$$(b+c)\times 1000$$

Kemasan Cup (kardus) = $\frac{ukuran kemasan}{2000}$

Seal
$$Cup$$
 (gulung) = $\frac{\text{jumlah cup}}{1500}$

Produktivitas bahan baku =

to

(jumlah bahan baku (i) x harga bahan baku (i))

Indeks produktivitas bahan baku = produktivitas bahan baku $\frac{\text{bulan i}}{\text{bulan i - 1}}$

Keterangan:

a: berat jenis susu rasa (1,0450)

b: susu *cup* coklat dengan penambahan resiko 5% (liter)

c: susu *cup* strawberry dengan penambahan resiko 5% (liter)

d: susu *prepack* dengan penambahan resiko 5% (liter)

to: total *output* pada bulan ke-i (Rp)

i : jenis-jenis bahan baku

Hasil perhitungan tersebut akan terlihat pada *form* yaitu pada *static text* dan tabel jumlah bahan baku. Apabila pengguna ingin menyimpan data tersebut maka pengguna dapat menekan tombol Simpan. Maka hasil perhitungan (jumlah bahan baku, nilai total *input* bahan baku, Produktivitas dan Indeks Produktivitas Bahan Baku) beserta data yang telah dimasukkan (harga bahan baku) akan disimpan ke dalam basis data bahan baku dengan nama tabel_bahan_baku. Apabila ingin melihat data bulan sebelumnya maka pilih tahun dan bulan yang diinginkan kemudian menekan tombol dan data bulan sebelumnya akan tampil. Nilai *input* bahan baku yang disimpan dalam basis data akan digunakan untuk perhitungan pada model total produktivitas dan konsultasi pakar. Selain itu, indeks produktivitas bahan baku akan digunakan pada model konsultasi pakar. Tampilan *form* Produktivitas Bahan Baku dapat dilihat pada Gambar 18.

Gambar 18. Tampilan Form Produktivitas Bahan Baku

4. Basis Model Produktivitas Energi

Basis model produktivitas energi digunakan untuk menentukan nilai produktivitas dan indeks produktivitas energi dalam 1 bulan sehingga dapat terlihat apakah produktivitas energi bulan ini naik atau turun bila dibandingkan dengan bulan sebelumnya. Untuk melakukan perhitungan dengan model ini maka pengguna diharuskan memasukkan jumlah dan harga energi yang digunakan dalam 1 bulan. Jenis energi yang digunakan antara lain solar kendaraan, solar industri, listrik dan air. Apabila pengguna telah selesai memasukkan data maka selanjutnya menekan tombol Hitung dan proses perhitungan yang terjadi adalah:

Produktivitas energi =
$$\frac{\text{to}}{(a \times b) + (c \times d) + (e \times f) + (g \times h)}$$

Indeks produktivitas energi = produktivitas energi $\frac{\text{bulan i}}{\text{bulan i - 1}}$

Keterangan:

to: total output (Rp)

a: jumlah solar untuk kendaraan (liter)

b: harga solar (Rp/ltr)

c: jumlah solar untuk boiler (liter)

d: harga solar industri (Rp/ltr)

e: jumlah pemakaian listrik (kwh)

f: harga listrik (Rp/kwh)

g: jumlah pemakaian air (ton)

h: harga air (Rp/ton)

Hasil perhitungan tersebut akan terlihat pada *form* yaitu pada *static text*. Apabila pengguna ingin menyimpan data tersebut maka pengguna dapat menekan tombol Simpan. Maka hasil perhitungan (biaya solar ips, biaya solar tpk, biaya listrik, biaya air, nilai total *input* energi, Produktivitas dan Indeks Produktivitas Energi) akan disimpan ke dalam basis data energi dengan nama tabel_energi. Apabila ingin melihat data bulan sebelumnya maka pilih tahun dan bulan yang diinginkan kemudian menekan tombol dan data bulan sebelumnya akan tampil. Nilai *input* energi yang disimpan dalam basis data akan digunakan untuk perhitungan pada model total produktivitas dan konsultasi pakar. Selain itu, indeks energi akan digunakan pada model konsultasi pakar. Tampilan *form* Produktivitas Energi dapat dilihat pada Gambar 19.

Gambar 19. Tampilan Form Produktivitas Energi

5. Basis Model Produktivitas Mesin

Basis model produktivitas mesin digunakan untuk menentukan nilai produktivitas dan indeks produktivitas mesin dalam 1 bulan sehingga dapat terlihat, apakah produktivitas mesin bulan ini naik atau turun bila dibandingkan dengan bulan sebelumnya yaitu dengan membandingkan jumlah kemasan yang telah diproduksi dengan jumlah kemasan yang seharusnya diproduksi. Produktivitas mesin ini hanya pada mesin pengemasan prepack dan cup karena kedua mesin menentukan waktu produksi akhir dan banyak terjadi *loss* karena kurangnya kinerja mesin. Untuk melakukan perhitungan dengan model ini maka pengguna diharuskan memasukkan ukuran kemasan prepack dan cup serta jumlah kemasan yang telah diproduksi. Data lain yang dibutuhkan adalah jumlah produksi susu prepack, susu cup coklat, dan susu cup strawberry yang dipanggil melaui basis data panggil mesin dengan nama tabel_panggil_mesin.

Apabila pengguna telah selesai memasukkan data maka tahap selanjutnya menekan tombol Hitung dan proses perhitungan yang terjadi adalah:

Produktivitas mesin =
$$\frac{\text{(jumlah produksi*1000)/ukuran kemasan}}{\text{jumlah } pack \text{ atau } cup \text{ (real)}}$$

Indeks produktivitas mesin = produktivitas mesin $\frac{\text{bulan i}}{\text{bulan i - 1}}$

Keterangan:

jumlah produksi : produksi susu *prepack* dan *cup* (liter) ukuran kemasan : *prepack* (500 ml) dan *cup* (160 ml)

jumlah pack atau *cup* (real): jumlah *prepack* dan *cup* yang siap dijual

Hasil perhitungan tersebut akan terlihat pada *form* yaitu pada *static text*. Apabila pengguna ingin menyimpan data tersebut maka pengguna dapat menekan tombol Simpan. Maka hasil perhitungan (Produktivitas dan Indeks Produktivitas Mesin *Prepack* dan *Cup*) akan disimpan ke dalam basis data mesin dengan nama tabel_mesin. Apabila ingin melihat data bulan sebelumnya maka pilih tahun dan bulan yang diinginkan kemudian menekan tombol dan data bulan sebelumnya akan tampil. Indeks mesin *prepack* dan *cup* akan digunakan pada model konsultasi pakar. Tampilan *form* Produktivitas Mesin dapat dilihat pada Gambar 20.

	2008	Februari	<u> </u>
Prepack		Cup	
Susu yang diproduksi (Itr)	87022.425	Susu yang diproduksi	59221.848
Ukuran Pack (ml)	500	Ukuran Cup (ml)	160
Pack yang diproduksi (ideal)	174045	Cup yang diproduksi (ideal)	370137
Output		Output	
Pack yang diproduksi (nyata)	168244	Cup yang diproduksi (nyata)	364698
		8	Hitung
Produktivitas Mesin Prepack		0.967	
	Indeks Produktivitas Mesin Prepack		
ndeks Produktivita	s Wesin Pi	The state of the s	

Gambar 20. Tampilan Form Produktivitas Mesin

6. Basis Model Produktivitas Pengeluaran Lainnya

Basis model produktivitas pengeluaran lainnya digunakan untuk menentukan nilai produktivitas dan indeks produktivitas pengeluaran lainnya dalam 1 bulan sehingga dapat terlihat, apakah produktivitas pengeluaran lainnya bulan ini naik atau turun bila dibandingkan dengan bulan sebelumnya. Untuk melakukan perhitungan dengan model ini maka pengguna diharuskan memasukkan biaya distribusi susu ke IPS, pajak kendaraan, pajak bangunan, pajak penghasilan dan pembelian alat-alat atau spareparts.

Apabila pengguna telah selesai memasukkan data maka tahap selanjutnya menekan tombol Hitung dan proses perhitungan yang terjadi adalah:

Produktivitas pengeluaran = ______ to
lainnya Biaya distribusi IPS + pajak+ pembelian alat

Indeks produktivitas pengeluaran = produktivitas lainnya $\frac{\text{bulan } 1}{\text{bulan } i-1}$

Lainnya

Keterangan:

to: total output (Rp)

pajak: jumlah pajak bangunan, kendaraan dan pendapatan (Rp)

Hasil perhitungan tersebut akan terlihat pada *form* yaitu pada *static text*. Apabila pengguna ingin menyimpan data tersebut maka pengguna dapat menekan tombol Simpan. Maka hasil perhitungan (nilai total *input* pengeluaran lainnya, biaya distribusi dalam 1 bulan, pajak dan pembelian alat-alat atau *spareparts*, Produktivitas dan Indeks Produktivitas Pengeluaran Lainnya) akan disimpan ke dalam basis data pengeluaran lainnya dengan nama tabel_lainnya. Apabila ingin melihat data bulan sebelumnya maka pilih tahun dan bulan yang diinginkan kemudian menekan tombol dan data bulan sebelumnya akan tampil. Nilai *input* pengeluaran lainnya yang disimpan dalam basis data akan digunakan untuk perhitungan pada model total produktivitas dan konsultasi pakar. Selain itu, indeks pengeluaran lainnya akan digunakan pada model konsultasi pakar. Tampilan *form* Produktivitas Pengeluaran Lainnya dapat dilihat pada Gambar 21.

Gambar 21. Tampilan Form Produktivitas Pengeluaran Lainnya

7. Basis Model Total Produktivitas

Basis model total produktivitas lainnya digunakan untuk menentukan nilai total produktivitas dan indeksnya dalam 1 bulan sehingga dapat terlihat, apakah total produktivitas bulan ini naik atau turun bila dibandingkan dengan bulan sebelumnya. Untuk melakukan perhitungan dengan model ini, pengguna tidak diharuskan memasukkan data apapun ke dalam Form karena data yang dibutuhkan untuk perhitungan dipanggil melaui beberapa basis data. Data yang dibutuhkan adalah total output (melalui basis data total output), input tenaga kerja (melalui basis data tenaga kerja), input bahan baku (melalui basis data bahan baku), input energi (melalui basis data energi) dan input pengeluaran lainnya (melalui basis data pengeluaran lainnya). Produktivitas mesin tidak dilibatkan dalam model total produktivitas karena basis perhitungannya bukan dalam satuan rupiah (Rp) dan

merupakan salah satu bagian dari *input* kapital. Menurut Hancourt dalam Sumanth, 1984, *input* kapital merupakan yang sulit untuk didefinisikan.

Untuk menjalankan model ini, pengguna hanya menekan tombol Hitung dan proses perhitungan yang terjadi adalah:

Total Produktivitas =
$$\frac{to}{a+b+c+d}$$

Indeks total produktivitas = total produktivitas $\frac{\text{bulan i}}{\text{bulan i - 1}}$

Keterangan:

to: total output (Rp)

a: biaya tenaga kerja (Rp)

b: biaya bahan baku (Rp)

c: biaya energi (Rp)

d: biaya pengeluaran lainnya (Rp)

Hasil perhitungan tersebut akan terlihat pada *form* yaitu pada *static text*. Apabila pengguna ingin menyimpan data tersebut maka pengguna dapat menekan tombol Simpan. Maka hasil perhitungan (nilai semua *input*, Total Produktivitas dan Indeksnya) akan disimpan ke dalam basis data total produktivitas dengan nama tabel_total_produktivitas. Apabila ingin melihat data bulan sebelumnya maka pilih tahun dan bulan yang ingin dilihat, kemudian menekan tombol dan data bulan sebelumnya akan tampil.Tampilan *form* Total Produktivitas dapat dilihat pada Gambar 22.

Gambar 22. Tampilan Form Total Produktivitas

8. Basis Model Konsultasi Pakar

Basis model konsultasi pakar merupakan tahap selanjutnya setelah model total produktivitas. Pada model ini kita membandingkan nilai indeks dari masing-masing produktivitas di bulan sekarang dengan bulan sebelumnya sehingga dapat terlihat apakah produktivitas parsial naik atau turun. Untuk menjalankan model ini maka pengguna diharuskan memilih bulan yang akan dilihat indeks produktivitasnya dan selanjutnya menekan tombol Lihat. Maka akan muncul indeks produktivitas bulan yang dipilih dan bulan sebelumnya sehingga pada kolom Perubahan akan terlihat apakah produktivitas parsial akan naik atau turun dan dapat dilihat pada Gambar 23. Apabila indeks produktivitas parsial turun maka pengguna diharuskan melanjutkan ke tahap berikutnya dengan menekan tombol Lanjut. Pada tabsheet selanjutnya akan diperlihatkan nilai input dan output pada bulan ini dan bulan sebelumnya dari masing-masing bagian yang mengalami penurunan nilai produktivitas. Sehingga pengguna dapat mengetahui apakah nilai input atau output yang menyebabkan menurunnya produktivitas dan dapat dilihat pada Gambar 24.

Gambar 23. Tampilan Form Konsultasi Pakar (Bagian 1)

Gambar 24. Tampilan Form Konsultasi Pakar (Bagian 2)

Tahap selanjutnya adalah solusi dari masalah yang terjadi, pengguna akan mendapatkan sebuah solusi yang dapat menyelesaikan masalah produktivitas yang telah terjadi. Untuk mendapatkan solusi tersebut menggunakan strategi pengendalian *backward chaining* (runut balik) dengan teknik pencarian *depth first search*. Solusi tersebut didapatkan dari pakar yang telah berpengalaman di dalam industri susu.

Solusi didapatkan melalui hasil wawancara dengan pakar dan setiap solusi memiliki nilai CF (*certainty factor*) yang menunjukan keyakinan pakar dengan solusi tersebut. Nilai CF berkisar antara 0 (tidak yakin) hingga 1 (sangat yakin). Tampilan solusi dari konsultasi pakar dapat dilihat pada Gambar 25.

Gambar 25. Tampilan Solusi dari Konsultasi Pakar

9. Basis Model Penentuan Jumlah Karyawan Pengemasan

Basis model penentuan jumlah karyawan pengemasan digunakan untuk menetukan jumlah karyawan pengemasan *prepack* dan *cup* selama 6 bulan. Hasil yang didapatkan akan dijadikan sebagai bahan evaluasi pada produktivitas tenaga kerja sehingga industri dapat memperkirakan jumlah tenaga kerja atau jam lembur yang digunakan berdasarkan jumlah pesanan. Hasil yang didapatkan dalam basis model penentuan jumlah karyawan adalah jumlah tenaga kerja harian yang dibutuhkan, jumlah tenaga kerja harian yang harus direkrut, jumlah tenaga kerja harian yang harus dipecat, jumlah produksi lembur, jumlah produksi reguler, dan jumlah *pack* atau *cup* yang tidak tertangani.

Model ini menggunakan metode algoritma genetika untuk menyelesaikan permasalahan tersebut. Penggunaan algoritma genetika dikarenakan fungsi persamaan linier penentuan jumlah karyawan pengemasan merupakan fungsi yang kompleks dan memiliki banyak solusi yaitu mendapatkan kombinasi jumlah tenaga kerja yang optimal dengan total biaya tenaga kerja yang seminimal mungkin, sehingga dapat menaikkan produktivitas tenaga kerja.

Untuk memulai program ini kita memilih Penentuan Jumlah Karyawan Pengemasan pada menu *Home* seperti terlihat pada Gambar 26. Tahap selanjutnya adalah memilih penentuan jumlah karyawan *prepack* atau *cup* kemudian memasukkan data jumlah pekerja saat ini, kapasitas kerja per jam, jam kerja reguler per orang, gaji pegawai per bulan, biaya rekrut karyawan, biaya pecat karyawan, biaya *stock out* per kemasan, jumlah pesanan setiap 6 bulan, bilangan acak, generasi maksimum, probabilitas penyilangan dan probabilitas mutasi.

Biaya *stock out* per kemasan adalah biaya kerugian industri apabila tidak bisa memenuhi pesanan. Generasi maksimum adalah jumlah iterasi maksimum yang dilakukan oleh algoritma genetika. Probabilitas penyilangan (Pc) adalah rasio antara jumlah kromosom yang diharapkan mengalami penyilangan dalam setiap generasi dengan jumlah kromosom total dalam populasi dan nilainya berkisar antara 0,6-1. Probabilitas mutasi (Pm) adalah rasio antara jumlah gen yang diharapkan mengalami mutasi pada setiap generasi dengan jumlah gen total dalam populasi dan nilainya berkisar antara 0,001-0,2. Apabila data telah terisi semua maka selanjutnya kita menekan tombol Inisisasi Data untuk menghitung *input* yang akan digunakan ke dalam algoritma genetika yaitu produksi reguler per orang per bulan, upah reguler per kemasan dan upah lembur per kemasan, dengan rumus:

Produksi reguler per orang per bulan = $a \times b \times jumlah hari kerja dalam 1 bulan$

Upah lembur per kemasan = $\frac{\text{upah lembur per jam}}{\text{jumlah produksi per jam}}$

Keterangan:

a : jumlah produksi per jamb : jumlah jam kerja reguler

Gambar 26. Tampilan *Form* Penentuan Jumlah Karyawan Pengemasan

Tahap selanjutnya adalah menekan tombol GA untuk mendapatkan kombinasi jumlah tenaga kerja tersebut. Solusi yang ingin dihasilkan oleh algoritma genetika harus direpresentasikan ke dalam bentuk kromosom. Di dalam kromosom terdapat gen yang menyimbolkan setiap variabel yang akan dihasilkan. Kromosom pada model penentuan jumlah karyawan pengemasan yaitu kromosom dengan bilangan integer yang akan menghasilkan bilangan integer pada setiap variabel solusinya dan dapat dilihat pada Gambar 27.

Gambar 27. Kromosom Tipe Integer Untuk Model Penentuan Jumlah Karyawan Pengemasan

Kromosom integer ini terdiri dari 30 buah gen, yaitu gen K1,K2,...,K6 yang merepresentasikan jumlah karyawan pengemasan pada bulan ke-1 sampai bulan ke-6, gen H1,H2,...,H6 yang merepresentasikan jumlah karyawan yang direkrut pada bulan ke-1 sampai bulan ke-6, gen

F1,F2,...,F6 yang merepresentasikan jumlah karyawan yang di pecat pada bulan ke-1 sampai bulan ke-6, gen L1,L2,...,L6 yang merepresentasikan jumlah produksi lembur pada bulan ke-1 sampai bulan ke-6, dan gen C1,C2,...,C6 yang merepresentasikan jumlah produksi *stock out* pada bulan ke-1 sampai bulan ke-6.

Fungsi tujuan model ini adalah:

Biaya tenaga kerja =
$$\sum_{j=1}^{6} (a_{j} \times b_{j} \times c) + \sum_{j=1}^{6} (d_{j} \times e) + \sum_{j=1}^{6} (f_{j} \times g) + \sum_{j=1}^{6} (h_{j} \times i) + \sum_{j=1}^{6} (j_{j} \times k)$$

Keterangan:

 a_j : jumlah karyawan pengemasan pada bulan ke-j

b : kapasitas produksi kemasan per orang per bulan

c : upah reguler per kemasan

 ${\bf d}$: jumlah karyawan yang di rekrut pada bulan ke-j

e: biaya rekrut karyawan per orang

f: jumlah karyawan yang di pecat pada bulan ke-j

g: biaya pecat karyawan per orang

h: jumlah produksi lembur bulan ke-j

i : upah lembur per kemasan

j : jumlah produksi stock out bulan ke-j

k: biaya stock out per kemasan

sedangkan fungsi kendala untuk model ini adalah:

a. Kendala Jumlah Karyawan Pengemasan

 $\label{eq:maksimum_jumlah_karyawan} \begin{aligned} & \text{Maksimum jumlah karyawan}_j = \frac{(\text{jumlah permintaan}_j \, / \, \text{jumlah hari kerja})}{(\text{kapasitas produksi per orang per hari} \times \, \text{jam kerja dlm 1 hari})} \\ & \text{Untuk setiap } j = 1, 2, ..., 6 \end{aligned}$

Jika jumlah karyawan bulan ke j-1 < Maksimum jumlah karyawan bulan ke j

maka jumlah karyawan bulan ke j-1 \leq jumlah karyawan bulan ke j \leq Maksimum jumlah karyawan bulan ke j

- 2. Jika jumlah karyawan bulan ke j-1 > Maksimum jumlah karyawan bulan ke j
 - maka Maksimum jumlah karyawan bulan ke $j \leq$ jumlah karyawan bulan ke $j \leq$ jumlah karyawan bulan ke j 1
- 3. Jika jumlah karyawan bulan ke j-1 = Maksimum jumlah karyawan bulan ke j

maka jumlah karyawan bulan ke j = jumlah karyawan bulan ke j-1

b. Kendala Jumlah Karyawan yang di rekrut

- 1. Jika jumlah karyawan bulan ke j-1 < jumlah karyawan bulan ke j maka jumlah karyawan rekrut bulan ke j = jumlah karyawan bulan ke j jumlah karyawan bulan ke j-1
- 2. Jika jumlah karyawan bulan ke j-1 > jumlah karyawan bulan ke j maka jumlah karyawan rekrut bulan ke j = 0
- 3. Jika jumlah karyawan bulan ke j-1 = jumlah karyawan bulan ke j maka jumlah karyawan rekrut bulan ke j = 0

c. Kendala Jumlah Karyawan yang di pecat

- 1. Jika jumlah karyawan bulan ke j-1 < jumlah karyawan bulan ke j maka jumlah karyawan pecat bulan ke j = 0
- 2. Jika jumlah karyawan bulan ke j-1 > jumlah karyawan bulan ke j maka jumlah karyawan pecat bulan ke j = jumlah karyawan bulan ke j jumlah karyawan bulan ke j-1
- 3. Jika jumlah karyawan bulan ke j-1 = jumlah karyawan bulan ke j maka jumlah karyawan pecat bulan ke j = 0

d. Kendala Jumlah Produksi Lembur per Bulan

Jumlah produksi reguler bulan ke $j=a_j\times b\times j$ am kerja dlm 1 hari $\times j$ umlah hari kerja dlm 1 bulan Maksimum jumlah produksi lembur = $\frac{j$ umlah produksi reguler bulan ke $j\times j$ am kerja lembur jam kerja dlm 1 hari

Jumlah produksi lembur bulan ke $j \leq$ Maksimum jumlah produksi lembur bulan ke j-1

e. Kendala Jumlah Kemasan yang tidak tertangani (stock out)

Jumlah produksi reguler $_{j}={_{a_{_{j}}\times\,b\times\,jam\;kerja\;dlm\,1\;hari\times\,jumlah\;hari\;kerja\;dlm\,1\;bulan}}$

1. Jika jumlah permintaan produk bulan ke j > 0 maka

Jumlah *stock out* bulan ke j = jml permintaan bulan ke j - jml produksi reguler bulan ke j - jml produksi lembur bulan ke j

2. Jika jumlah permintaan produk bulan ke j = 0 maka Jumlah stock out bulan ke j = 0

Fungsi *fitness* dalam basis model ini adalah untuk meminimasi fungsi biaya tenaga kerja sehingga nilai *fitness* yang akan dipilh adalah nilai *fitness* terkecil. Untuk mendapatkan nilai *fitness* tersebut, maka harus dilakukan seleksi kromosom terlebih dahulu untuk menentukan komosom yang akan dijadikan kromosom induk untuk penyilangan. Metode penyilangan yang dilakukan pada basis model ini adalah penyilangan dua titik atau *two point crossover* karena kromosom pada model ini merupakan kromosom bertipe integer yang bisa mempunyai nilai yang sama pada setiap gen dan ada 2 kelompok gen yang berpengaruh terhadap kelompok gen lainnya yaitu kelompok gen yang merepresentasikan jumlah karyawan bagian pengemasan pada bulan ke 1 sampai 6 dan jumlah produksi lembur pada bulan ke 1 sampai 6 sehingga penyilangan dilakukan pada kedua kelompok tersebut.

D. VERIFIKASI MODEL IDSS_MP

Verifikasi data untuk model IDSS_MP menggunakan data bulan Juni 2008 karena bulan tersebut merupakan pasca kenaikan harga BBM yang berpengaruh terhadap kenaikan harga bahan baku (sebesar 20%) sehingga akan terlihat perbedaan produktivitas pada bulan Juni dan Mei (sebelum kenaikan harga BBM).

a. Total Output

Pada basis model ini dimasukkan jumlah penjualan dan harga jual nya untuk susu ke IPS, susu *prepack* dan susu *cup* pada bulan Juni 2008. Harga susu dingin dan susu pasteurisasi pada bulan Juni merupakan harga baru yang dinaikan seiring dengan kenaikan biaya bahan baku dan operasional akibat kenaikan BBM pada bulan Mei. Hasil yang didapatkan dari model ini adalah nilai Total *Output* yang merupakan omset (pendapatan) penjualan selama bulan Juni 2008. Nilai masukkan dan

keluaran yang didapatkan dapat terlihat pada Tabel 6 dan 7, serta untuk melihat nilai masukkan dan keluaran model Total *Output* secara lengkap dapat dilihat pada Lampiran 6.

Tabel 6. Nilai Masukkan Total Output

Keterangan	Jumlah	Harga
Susu Dingin (IPS)	3.488.669 kg	Rp 3.210/kg
Susu Prepack	188.739 pack	Rp 2.500/pack
Susu Cup Coklat	213.214 cup	Rp 1.100/cup
Susu Cup Strawberry	174.448 cup	Rp 1.100/cup

Tabel 7. Nilai Keluaran Total Output

Keterangan	Nilai Keluaran
Total Output	Rp 12.096.903.190

b. Produktivitas Tenaga Kerja

Pada basis model ini dimasukkan data dari basis data karyawan. Jumlah karyawan magang, kontrak dan tetap merupakan penjumlahan karyawan dari masing-masing bagian yang ada di MT KPBS yaitu penerimaan, proses, laboratorium, packaging (*prepack* dan *cup*), supir (IPS dan TPK), asisten manajer, MS (*Maintenance Service*), satpam, bengkel, gudang, rumah tangga dan administrasi. Hanya 8 bagian di MT KPBS yang memiliki kasie antara lain proses, laboratorium, packaging *prepack*, MS, bengkel, satpam, gudang dan administrasi. Nilai masukkan dan keluaran yang didapatkan dapat telihat pada Tabel 8 dan 9, serta untuk melihat nilai masukkan dan keluaran model Produktivitas Tenaga Kerja secara lengkap dapat dilihat pada Lampiran 7.

Tabel 8. Nilai Masukkan Produktivitas Tenaga Kerja

Keterangan	Jumlah Karyawan	Gaji
Karyawan Magang	0	Rp 360.000
Karyawan Kontrak	36	Rp 896.000
Karyawan Tetap	29	Rp 1.200.000
Kasie.	8	Rp 250.000

Tabel 9. Nilai Keluaran Produktivitas Tenaga Kerja

Keterangan	Nilai Keluaran
Input Tenaga Kerja	Rp 69.056.000
Produktivitas Tenaga Kerja	175,175
Indeks Produktivitas Tenaga Kerja	1,062 *)

Ket: *) produktivitas tenaga kerja $\frac{\text{bulan Juni}}{\text{bulan Mei}} = \frac{175,175}{164,991}$

indeks produktivitas tenaga kerja bulan Mei = 1,092

c. Produktivitas Bahan Baku

Pada basis model ini dimasukkan harga bahan baku dan berat jenis susu segar. Hasil yang didapatkan dari model ini adalah jumlah bahan baku yang digunakan, nilai Produktivitas dan Indeks Produktivitas Bahan Baku. Data pendukung yang dibutuhkan oleh model ini adalah jumlah penjualan susu ke IPS (3.488.669 kg), jumlah pesanan susu *prepack* (188.739 pack), jumlah pesanan susu *cup* coklat (213.214 *cup*) dan jumlah pesanan susu *cup* strawberry (174.448 *cup*) yang dipanggil melalui basis data total *output*. Nilai masukkan dan keluaran yang didapatkan dapat terlihat pada Tabel 10 dan 11, serta untuk melihat nilai masukkan dan keluaran model Produktivitas Bahan Baku secara lengkap dapat dilihat pada Lampiran 8.

Tabel 10. Nilai Masukkan Produktivitas Bahan Baku

Keterangan	Nilai Masukan
Berat Jenis Susu	1,0247
Susu Segar	Rp 2.500/liter
Gula Pasir	Rp 5.600/kg
Stabilizer	Rp 80.000/kg
Flavour Coklat	Rp 78.500/kg
Flavour Strawberry	Rp 78.500/kg
Bubuk Coklat	Rp 23.000/kg
Pewarna Strawberry	Rp.25.000/kg
Kemasan Prepack	Rp 1.080.000/ gulung
Kemasan Cup	Rp 300.000/kardus
Seal Cup	Rp 500.000/gulung

Tabel 11. Nilai Keluaran Produktivitas Bahan Baku

Keterangan	Nilai Keluaran
Jumlah Susu Segar	3.932.661,678 liter
Jumlah Gula Pasir	4.644,954 kg
Jumlah Stabilizer	340,290 kg
Jumlah Flavour Coklat	37,432 kg
Jumlah Flavour Strawberry	30,626 kg
Jumlah Bubuk Coklat	37,432 kg
Jumlah Pewarna Strawberry	30,626 kg
Jumlah Kemasan Prepack	66,059 gulung
Jumlah Kemasan Cup	203,523 kardus
Jumlah Seal Cup	271,363 gulung
Input Bahan Baku	Rp 10.159.940.396
Produktivitas Bahan Baku	1,191
Indeks Produktivitas Bahan Baku	1,077 *)

Ket: *) produktivitas bahan baku $\frac{\text{bulan Juni}}{\text{bulan Mei}} = \frac{1,191}{1,106}$

indeks produktivitas bahan baku bulan Mei = 0,999

Hasil yang didapatkan dari model ini adalah nilai *input* bahan baku, Produktivitas dan Indeks Produktivitas Bahan Baku. Indeks bahan baku bulan Juni menunjukan kenaikan dari bulan Mei. Hal ini disebabkan penjualan susu dingin dan susu pasteurisasi pada bulan Juni menurun akan tetapi harga jual naik dari bulan Mei sehingga total *output* pun lebih tinggi dari bulan Mei. Dengan menurunnya jumlah pesanan pada bulan Juni maka jumlah bahan baku yang digunakan lebih rendah walaupun harga bahan baku naik sekitar 20% sehingga *input* bahan baku menurun. Jadi total *output* nya tinggi dan *input* bahan baku rendah yang menyebabkan produktivitas bahan baku tinggi sehingga pada akhirnya pun indeks bahan baku lebih tinggi (naik dari bulan Mei).

d. Produktivitas Energi

Pada basis model ini dimasukkan jumlah dan harga energi yaitu solar, listrik dan air. Solar yang digunakan terbagi menjadi 2 jenis yaitu solar kendaraan dan solar industri. Solar kendaraan digunakan untuk bahan bakar truk ke TPK (mengambil susu segar dari peternak) dan untuk bahan bakar truk ke IPS (distribusi susu dingin). Solar industri digunakan untuk bahan bakar pada boiler. Listrik dan air digunakan untuk operasional di MT KPBS. Nilai masukkan dan keluaran yang didapatkan dapat terlihat pada Tabel 12 dan 13, serta untuk melihat nilai masukkan dan keluaran model Produktivitas Energi secara lengkap dapat dilihat pada Lampiran 9.

Tabel 12. Nilai Masukan Produktivitas Energi

Keterangan	Jumlah	Harga
Solar Kendaraan IPS	25.500 liter	Rp 5.500/liter
Solar Kendaraan TPK	6.300 liter	Rp 5.500/liter
Solar Industri	9.000 liter	Rp 11.000/liter
Listrik	36.150 kwh	Rp 1.380/kwh
Air	2.700 ton	Rp 1.000/ton

Tabel 13. Nilai Keluaran Produktivitas Energi

Keterangan	Nilai Keluaran
Input Energi	Rp 326.487.000
Produktivitas Energi	37,052
Indeks Produktivitas Energi	0,965 *)

Ket: *) produktivitas energi $\frac{\text{bulan Juni}}{\text{bulan Mei}} = \frac{37,052}{38,403}$

indeks produktivitas energi bulan Mei = 1,062

Hasil yang didapatkan dari model ini adalah nilai *input* energi, Produktivitas dan Indeks Produktivitas Energi. Indeks produktivitas energi bulan Juni menurun dari bulan Mei. Hal ini disebabkan oleh adanya kenaikan harga BBM yaitu solar kendaraan dan solar industri sedangkan penggunaan solar kendaraan relatif stabil dan untuk solar industri dilakukan penggurangan pemakaian menjadi 300 liter/hari dari 500 liter/hari, maka *input* energi menjadi naik. Walaupun total *output* bulan Juni lebih tinggi dari bulan Mei tetapi produktivitas energi tetap menurun sehingga pada akhirnya pun indeks produktivitas energi rendah (turun dari bulan Mei).

e. Produktivitas Mesin

Pada basis model ini dimasukkan ukuran kemasan *prepack* dan *cup*, jumlah kemasan *prepack* dan *cup* yang berhasil diproduksi. Hal ini akan mengetahui apakah mesin *prepack* atupun *cup* bermasalah atau tidak. Apabila mesin sedang dalam masalah maka *loss* akan semakin banyak karena menurunnya kemampuan mesin dalam mengemas sehingga produktivitas mesin menurun. Data pendukung yang dibutuhkan oleh model ini adalah jumlah susu *prepack* dan *cup* yang diproduksi (dalam liter) dan dikonversi menjadi jumlah produk yang dihasilkan (*pack* atau *cup*) dan data tersebut dipanggil melalui basis data panggil mesin. Nilai masukkan dan keluaran yang didapatkan dapat terlihat pada Tabel 14, 15 dan 16, serta untuk melihat nilai masukkan dan keluaran model Produktivitas Mesin secara lengkap dapat dilihat pada Lampiran 10.

Tabel 14. Nilai Masukan Produktivitas Mesin

Keterangan	Nilai Masukan
Ukuran Kemasan Prepack	500 ml
Ukuran Kemasan Cup	160 ml
Produksi Prepack (Nyata)	192.176 pack
Produksi Cup (Nyata)	399.545 cup

Tabel 15. Nilai Masukan (Pendukung) Produktivitas Mesin

Keterangan	Nilai Masukkan
Produksi <i>Prepack</i> (seharusnya)	198.176 pack
Produksi Cup (seharusnya)	407.045 cup

Tabel 16. Nilai Keluaran Produktivitas Mesin

Keterangan	Nilai Keluaran
Produktivitas Mesin Prepack	0,970
Indeks Produktivitas Mesin	0,997 *)
Prepack	
Produktivitas Mesin Cup	0,982
Indeks Produktivitas Mesin Cup	1,000 *)

Ket: *) produktivitas mesin *prepack* $\frac{\text{bulan Juni}}{\text{bulan Mei}} = \frac{0.970}{0.973}$

indeks produktivitas mesin prepack bulan Mei = 1,004

*) produktivitas mesin
$$cup$$
 $\frac{\text{bulan Juni}}{\text{bulan Mei}} = \frac{0.982}{0.982}$

indeks produktivitas mesin cup bulan Mei = 0,996

Hasil yang didapatkan dari model ini adalah Produktivitas dan Indeks Produktivitas Mesin *Prepack* dan *Cup*. Indeks mesin *prepack* bulan Juni turun dari bulan Mei berarti kondisi mesin *prepack* sedang bermasalah sehingga menghasilkan produk *prepack* tidak sesuai dengan yang seharusnya (*loss* yang banyak). Indeks produktivitas mesin *cup* bulan Juni naik dari bulan Mei berarti kondisi mesin *cup* dalam keadaan baik (tidak rusak) sehingga dapat menghasilkan produk *cup* yang banyak (*loss* yang dihasilkan sedikit).

f. Produktivitas Pengeluaran Lainnya

Pada basis model ini dimasukkan biaya distribusi susu ke IPS selama 1 bulan, biaya pajak dan pembelian alat-alat atau spareparts. Biaya distribusi susu ke IPS merupakan biaya distribusi perjalanan 10 truk/hari dalam sebulan. Pajak bangunan dibayarkan pada bulan maret, pajak kendaraan setiap bulannya dijadwalkan untuk membayara pajak 1 truk tpk dan 1 truk IPS dan pajak penghasilan merupakan 30% dari keuntungan dalam sebulan. Nilai masukkan dan keluaran yang didapatkan dapat terlihat pada Tabel 17 dan 18, serta untuk melihat nilai masukkan dan keluaran model Produktivitas Pengeluaran Lainnya secara lengkap dapat dilihat pada Lampiran 11.

Tabel 17. Nilai Masukan Produktivitas Pengeluaran Lainnya

Keterangan	Nilai Masukan
Biaya Distribusi Susu ke IPS	Rp 51.450.000
Pajak Bangunan	Rp 0
Pajak Kendaraan	Rp 4.000.000
Pajak Penghasilan	Rp 356.886.649
Pembelian Alat-alat/Spareparts	Rp 150.000

Tabel 18. Nilai Keluaran Produktivitas Pengeluaran Lainnya

Keterangan	Nilai Keluaran
Input Pengeluaran Lainnya	Rp 412.486.649
Produktivitas Pengeluaran Lainnya	29,327
Indeks Produktivitas Pengeluaran Lainnya	0,467 *)

Ket: *) produktivitas pengeluaran lainnya $\frac{\text{bulan Juni}}{\text{bulan Mei}} = \frac{29,327}{62,811}$

indeks produktivitas pengeluaran lainnya bulan Mei = 0,980

Hasil yang didapatkan dari model ini adalah nilai *input* pengeluaran lainnya, Produktivitas dan Indeks Produktivitas Pengeluaran Lainnya. Indeks produktivitas pengeluaran lainnya pada bulan Juni menurun dari bulan Mei. Hal ini disebabkan oleh tingginya pajak

penghasilan karena keuntungan yang didapatkan pada bulan Juni meningkat sehingga pajak yang harus dibayarkanpun ikut meningkat. Walaupun total *output* bulan Juni lebih tinggi dari bulan Mei tetapi produktivitas pengeluaran lainnya tetap menurun karena nilai *input* pengeluaran lainnya yang lebih besar dibandingkan bulan Mei sehingga pada akhirnya pun indeks pengeluaran lainnya rendah.

g. Total Produktivitas

Pada basis model ini, data yang diperlukan antara lain total *output*, *input* tenaga kerja, *input* bahan baku, *input* energi dan *input* pengeluaran lainnya yang dipanggil melalui masing-masing basis data. Nilai masukkan dan keluaran yang didapatkan dapat telihat pada Tabel 19 dan 20, serta untuk melihat nilai masukkan dan keluaran model Produktivitas Bahan Baku secara lengkap dapat dilihat pada Lampiran 12.

Tabel 19. Nilai Masukan Total Produktivitas

Keterangan	Nilai Masukan
Total Output	Rp 12.096.903.190
Input Tenaga Kerja	Rp 69.056.000
Input Bahan Baku	Rp 10.159.940.396
Input Energi	Rp 326.487.000
Input Pengeluaran Lainnya	Rp 412.486.649

Tabel 20. Nilai Keluaran Total Produktivitas

Keterangan	Nilai Keluaran
Total Produktivitas	1,103
Indeks Total Produktivitas	1,050 *)

Ket: *) total produktivitas $\frac{\text{bulan Juni}}{\text{bulan Mei}} = \frac{1,103}{1,050}$

indeks total produktivitas = 1,001

Hasil yang didapatkan dari model ini adalah nilai Total Produktivitas dan Indeksnya. Indeks total produktivitas bulan Juni meningkat dari bulan Mei sehingga dapat dikatakan kenaikan BBM tidak terlalu mempengaruhi produktivitas secara total karena dengan menaikan

harga jual merupakan suatu keputusan yang tepat seiring dengan kenaikan BBM sehingga produktivitas tetap terjaga.

h. Konsultasi Pakar

Pada basis model ini, terdiri dari 3 tab sheet yaitu perubahan indeks, penyebab perubahan dan solusi. Pada tab sheet Perubahan Indeks akan memperlihatkan indeks produktivitas tenaga kerja, indeks indeks produktivitas produktivitas bahan baku, energi, indeks produktivitas mesin prepack, indeks produktivitas mesin cup dan indeks produktivitas pengeluaran lainnya pada bulan Juni dan Mei. Berdasarkan Tabel 21, maka pada bulan Juni terdapat 4 produktivitas yang turun yaitu tenaga kerja, energi, mesin *prepack* dan pengeluaran lainnya. Maka akan dianalisis penyebab indeks tersebut turun pada tabsheet Penyebab Perubahan dengan menjabarkan nilai output dan input dari masing-masing bagian. Penjabaran nilai *output* dan *input* tersebut dapat dilihat pada Tabel 22.

Tabel 21. Nilai Perubahan Indeks

Indeks	Bln Sekarang	Bln Sebelumnya	Perubahan
	(Juni)	(Mei)	
Tenaga Kerja	1,062	1,092	Turun
Bahan Baku	1,077	0,999	Naik
Energi	0,965	1,062	Turun
Mesin Prepack	0,997	1,004	Turun
Mesin Cup	1,000	0,996	Naik
Pengeluaran Lainnya	0,467	0,980	Turun

Tabel 22. Nilai Output dan Input yang Terjadi Penurunan

Keterangan	Bulan Juni	Bulan Mei	
Tenaga Kerja (I)	6.9056.000	6.9056.000	Tetap
Tenaga Kerja (O)	12.096.903.190	11.393.40.780	Naik
Energi (I)	326.487.000	296.682.500	Naik
Energi (O)	12.096.903.190	11.393.40.780	Naik
Mesin Prepack (I)	198.176	227.847	Turun
Mesin Prepack (O)	192.176	221.646	Turun
Pengeluaran Lainnya (I)	412.486.649	181.395.784	Naik
Pengeluaran Lainnya (O)	12.096.903.190	11.393.40.780	Naik

Tahap selanjutnya adalah mendapatkan solusi yang berasala dari tabel_solusi seperti tersaji pada Lampiran 16 untuk menyelesaikan masalah yaitu pada *tabsheet* Solusi. Pada Gambar 28 dapat dilihat solusi yang dianjurkan untuk mnyelesaikan masalah produktivitas sehingga prduktivitas dapat meningkat.

Gambar 28. Solusi untuk Masalah Produktivitas Bulan Juni

i. Penentuan Jumlah Karyawan Pengemasan

Pada model ini, pengguna diharuskan memilih ingin menentukan jumlah karyawan *prepack* atau *cup*. Tahap selanjutnya, pengguna memasukkan data jumlah pekerja saat ini, kapasitas kerja per jam, jam kerja reguler per orang, gaji pegawai per bulan, biaya rekrut karyawan, biaya pecat karyawan, biaya stock out per kemasan dan jumlah pesanan setiap 6 bulan, bilangan acak, generasi maksimum, probabilitas penyilangan dan probabilitas mutasi dan dapat dilihat pada Tabel 23. Apabila data telah dimasukkan maka ketika menekan tombol Inisiasi Data maka akan keluar nilai produksi per orang per bulan, upah reguler per kemasan dan upah lembur per kemasan dan dapat dilihat pada Tabel 24.

Tabel 23. Nilai Masukan Penentuan Jumlah Karyawan Pengemasan

Keterangan	Nilai Masukan		
Jumlah Karyawan Saat ini		2	
Kapasitas Kerja (<i>Prepack</i>)/jam		300	
Jam Kerja Reguler/orang		8	
Max Jam Kerja Lembur/orang		2	
Gaji Pegawai/bulan	Rp	1.200.000	
Gaji Lembur/jam	Rp	8.000	
Biaya Rekrut Karyawan	Rp	100.000	
Biaya Pecat Karyawan	Rp	2.000.000	
Biaya stock out/prepack	Rp	750	
Bilangan Acak		0,7	
Generasi Maksimum		100	
Probabilitas Penyilangan		0,8	
Probabilitas Mutasi		0,05	
Permintaan bulan ke 1		190.089 pack	
Permintaan bulan ke 2		168.244 pack	
Permintaan bulan ke 3		179.948 pack	
Permintaan bulan ke 4		188.746 pack	
Permintaan bulan ke 5		221.646 pack	
Permintaan bulan ke 6		192.176 pack	

Tabel 24. Nilai Keluaran Inisiasi Data

Keterangan	Nilai Keluaran
Produksi <i>Prepack</i> /orang/bulan	62400
Upah Reguler/prepack	Rp 19
Upah Reguler/prepack	Rp 27

Tahap selanjutnya adalah menekan tombol GA yang akan menghasilkan kombinasi jumlah tenaga kerja. Inisiasi populasi awal pada generasi 0 dapat dilihat pada Lampiran 13. Hasil *running* generasi 0-2 yang dibangkitkan secara acak oleh model ini dapat dilihat pada Lampiran 14 dan hasil *running* populasi akhir generasi 98-100 dapat dilihat pada Lampiran 15. Setelah populasi awal terbentuk, setiap kromosom-*i* dalam populasi dievaluasi dengan menghitung nilai *fitness*-nya. Nilai *fitness* dalam perencanaan tenaga kerja ini adalah nilai TCTK. Berikut ini adalah nilai *fitness* dari masing-masing kromosom pada generasi 0 anatar lain:

F1 = 148273015	F21 = 76405840
F2 = 164567305	F22 = 116602393
F3 = 184364491	F23 = 146801208
F4 = 117479392	F24 = 102623917
F5 = 78082477	F25 = 129063849
F6 = 65827627	F26 = 105702853
F7 = 85546006	F27 = 127875409
F8 = 34547932	F28 = 180407616
F9 = 30624934	F29 = 123911608
F10 = 90853549	F30 = 70977556
F11 = 140019325	F31 = 116229010
F12 = 143421001	F32 = 187757634
F13 = 140370295	F33 = 162871831
F14 = 162445404	F34 = 168186604
F15 = 123722221	F35 = 32303017
F16 = 195516147	F36 = 41499577
F17 = 89630233	F37 = 134391808
F18 = 190439964	F38 = 133795333
F19 = 125922586	F39 = 67910911
F20 = 72946285	F40 = 132091945

Tahap selanjutnya adalah seleksi kromosom untuk penyilangan dengan mencari kromosom secara acak pada generasi 0 dan membandingkan nilai fitness nya, yang terkecil yang akan dipilih. Setelah proses seleksi maka persilangan yang terjadi yaitu:

Kromosom (10) dan Kromosom (17) Persilangan ke-1 Persilangan ke-2 Kromosom (20) dan Kromosom (30) Persilangan ke-3 Kromosom (8) dan Kromosom (21) Persilangan ke-4 Kromosom (19) dan Kromosom (22) Persilangan ke-5 Kromosom (17) dan Kromosom (30) Persilangan ke-6 Kromosom (10) dan Kromosom (12) Kromosom (39) dan Kromosom (34) Persilangan ke-7 Persilangan ke-8 Kromosom (20) dan Kromosom (23) Persilangan ke-9 Kromosom (8) dan Kromosom (37) Persilangan ke-10: Kromosom (35) dan Kromosom (6) Persilangan ke-11: Kromosom (28) dan Kromosom (26) Persilangan ke-12: Kromosom (24) dan Kromosom (8) Persilangan ke-13: Kromosom (2) dan Kromosom (31) Persilangan ke-14: Kromosom (18) dan Kromosom (20) Persilangan ke-15: Kromosom (17) dan Kromosom (22) Persilangan ke-16: Kromosom (1) dan Kromosom (37) Persilangan ke-17: Kromosom (30) dan Kromosom (31) Persilangan ke-18: Kromosom (7) dan Kromosom (1) Persilangan ke-19: Kromosom (5) dan Kromosom (8) Persilangan ke-20: Kromosom (6) dan Kromosom (11)

Akan dihasilkan 2 buah kromosom anak dalam setiap persilangan sehingga persilangan diatas akan menghasilkan 40 buah kromosom anak daroi 20 persilangan. Probabilitas penyilangan (Pc) pada verifikasi ini adalah 0,8 yang berarti 80% anggota populasi kromosom berikutnya adalah hasil dari persilangan. Probabilitas mutasi (Pm) pada verifikasi ini adalah 0,05 yang berarti 5% anggota populasi kromosom baru merupakan hasil mutasi.

Mutasi terjadi pada penyilangan 1 yaitu generasi 0 dan generasi 1 yaitu pada kromosom anak ke-23 dan ke 24. mutasi yang terjadi adalah mutasi pada kelompok gen jumlah karyawan pengemasan yang ditandai dengan m1. Mutasi pada persilangan generasi 1 dan generasi 2 pada kromosom anak ke-7, ke-28, ke-39 dan ke-40, untuk kromosom anak ke-39 mengalami mutasi m2 yaitu mutasi pada kelompok gen produksi lembur. Generasi maksimum pada verifikasi ini adalah 100 sehingga iterasi akan berhenti ketika sampai ke iterasi 100. Maka didapatkan bahwa dengan menggunakan data penjualan susu prepack pada Januari samapi Juni 2008 perlu ditambahkan 1 orang pekerja dan dapat dilihat pada Gambar 29. Berdasarkan Gambar 30, nilai *fitness* mulai menurun mulai dari generasi 1 sampai generasi 14 yaitu menurun dari 120000000 sampai 22624939 dan mulai konvergen mulai dari generasi 14 sampai terakhir.

Gambar 29. Hasil dari Model Penentuan Jumlah karyawan Pengemasan

Gambar 30. Grafik Nilai fitness rata-rata dan fitness minimum

VI. KESIMPULAN DAN SARAN

A. KESIMPULAN

Industri susu di Indonesia belum mampu memenuhi kebutuhan susu nasional. Hal ini disebabkan karena masih kurangnya jumlah peternak sapi perah di Indonesia serta produktivitas industri susu yang belum optimal. Oleh karena itu untuk mengendalikan produktivitas industri susu maka dibutuhkan suatu sisitem penunjang keputusan yaitu IDSS_MP. Sistem ini berfungsi untuk mengendalikan produktivitas melalui produktivitas parsial (tenaga kerja, bahan baku, energi, mesin dan pengeluaran lainnya) dan membantu menyelesaikan masalah produktivitas tersebut dengan menggunakan sistem pakar. Selain itu, sistem ini juga dilengkapi dengan suatu model untuk menentukan jumlah karyawan pada bagian pengemasan agar diperoleh jumlah karyawan yang ideal sehingga dapat mempersingkat waktu pada tahap akhir proses produksi.

Verifikasi IDSS_MP dilakukan di MT KPBS Pangalengan dengan menggunakan data bulan Juni 2008 karena bulan tersebut merupakan pasca kenaikan BBM yang mempengaruhi kenaikan semua harga bahan baku. Data yang digunakan dalam verifikasi tersebut merupakan biaya untuk menghasilkan 3 produk KPBS yaitu susu dingin (susu IPS), susu *prepack* dan susu *cup*. Hasil verifikasi menunjukan bahwa total output KPBS adalah Rp 12.096.903.190, biaya tenaga kerja adalah Rp 69.056.000, biaya bahan baku adalah Rp 10.159.940.396, biaya energi adalah Rp 326.487.000 dan biaya pengeluaran lainnya adalah Rp 412.486.649.

Berdasarkan total output dan biaya tersebut maka dapat dihitung produktivitas dan indeksnya, untuk produktivitas dan indeks produktivitas tenaga kerja adalah 175,175 dan 1,062, untuk produktivitas dan indeks produktivitas bahan baku adalah 1,191 dan 1,077, untuk produktivitas dan indeks produktivitas energi adalah 37,052 dan 0,965, untuk produktivitas dan indeks produktivitas mesin prepack adalah 0,970 dan 0,997, untuk produktivitas dan indeks produktivitas mesin cup adalah 0,982 dan 1,000

dan untuk produktivitas dan **indeks produktivitas pengeluaran lainnya** adalah 29,327 dan **0,467**. bila dibandingkan dengan data bulan Mei (sebelum kenaikan BBM) maka indeks yang mengalami penurunan adalah indeks tenaga kerja, indeks energi, indeks mesin prepack dan indeks pengeluaran lainnya.

Oleh karena itu, masalah penurunan produktivitas tersebut harus dicari solusinya. Solusi tersebut berasal dari wawancara dengan pakar yang kemudian disimpan dalam basis pengetahuan. Solusi untuk masalah tenaga kerja adalah dengan mempertahankan jumlah karyawan yang ada. Solusi untuk masalah energi adalah menggunakan energi sehemat mungkin. Apabila ada beberapa proses produksi yang menggunakan uap boiler, maka diharapkan proses tersebut tidak dilakukan dalam waktu bersamaan agar pemakaian solar industri dapat diminimumkan. Solusi untuk masalah mesin prepack adalah melakukan pemanasan mesin secara rutin selama 1 jam sebelum digunakan dan melakukan perawatan rutin minimal 1 bulan sekali. Solusi untuk masalah pengeluaran lainnya adalah melakukan penjadwalan pembayaran pajak dan pembelian alat-alat serta rute pengiriman susu ke IPS sesuai rute yang telah ditentukan.

Berdasarkan hasil output dari model penentuan jumlah karyawan pengemasan didapatkan bahwa jumlah karyawan untuk pengemasan prepack harus ditambah 1 orang sehingga menjadi 3 orang agar kinerja karyawan di bagian prepack dapat ditingkatkan dan menggunakan jam lembur. Hasil output ini dapat menjadi pertimbangan bagi industri apabila ingin menambahkan karyawan magang ketika jumlah pesanan meningkat sehingga dapat efisien dalam waktu pengemasan. Jadi, IDSS_MP dapat membantu pengguna mengontrol produktivitas industri susu secara bulanan dan dengan penerapan algoritma genetika dan sistem pakar mampu menghasilkan informasi yang berkualitas dalam waktu yang relatif singkat

B. SARAN

Beberapa saran yang diperlukan untuk pengembangan lebih lanjut program IDSS_MP ini adalah:

- 1. Mengembangkan algoritma genetika dalam model perencanaan jumlah tenaga kerja untuk menyelesaikan masalah yang penjadwalan karyawan yang lebih kompleks dengan pendekatan *The Time Table Problem*, sehingga pengguna tidak saja dapat mengetahui jumlah karyawan optimal pada suatu divisi, namun dapat mengoptimalkan jumlah karyawan pada seluruh divisi, mengatur jadwal kerja harian, serta meminimumkan biaya tenaga kerja.
- 2. Perlu dilakukan pengembangan program sistem penunjang keputusan intelijen mengontrol produktivitas pada usaha agrondustri lainnya.

DAFTAR PUSTAKA

- Andria, Y. 2008. Optimas Model Rantai Pasokan Agroindustri Cocodiesel Dengan Menggunakan Algoritma Genetika. <u>Skripsi</u>. Fakultas Teknologi Pertanian. Institut Pertanian Bogor.
- Arhami, M. 2004. Konsep Dasar Sistem Pakar. Penerbit Andi. Yogyakarta.
- Babe, A. W. 2002. Rancang Bangun Alat Pasteurisasi. <u>Skripsi</u>. Fakultas Peternakan. Institut Pertanian Bogor.
- Basuki, 2003. Algoritma Genetika: Suatu alternatif Penyelesaian Permasalahan Searching, Optimasi, dan Machine Learning. Surabaya: Politeknik Elektronika Negeri Surabaya- ITS.
- Dhar, V. dan Roger S. 1997. *Intelligence Decision Support Methods: The Science of Knowledge Work*. United States of America: Pearson Prentice Hall, Inc.
- Eriyatno. 1998. Analisa Sistem Industri Pangan. PAU. Institut Pertanian Bogor.
- _____. 1999. Ilmu Sistem : Meningkatkan Mutu dan Efektifitas Manajemen. IPB Press. Bogor.
- Fardiaz, S. 1992. Mikrobiologi Pangan. PT. Gramedia pustaka utama. Jakarta.
- Fitrianto, I. 2007. Rancang Bangun Sistem Pakar Manajemen Risiko Untuk Perencanaan Agroindustri Rumput Laut. <u>Skripsi</u>. Fakultas Teknologi Pertanian. Institut Pertanian Bogor.
- Ginanjar, T. 2006. Pembangunan Sistem Pakar Identifikasi Kegagalan Mutu Pada Pengolahan Teh Hitam CTC (Studi Kasus PTPN VIII Gunung Mas). Skripsi. Fakultas Teknologi Pertanian. Institut Pertanian Bogor.
- Goldberg, D. E. 1989. Genetic Algorithm in Search, Optmization, and Machine Learning. Addison-Weasley, Reading, MA.
- Gunawan, H. 2003. Aplikasi Algoritma Genetika untuk Optimasi Masalah Penjadwalan *Flow-Shop*. <u>Skripsi</u>. Fakultas Teknologi Pertanian. Institut Pertanian Bogor.
- Hadiwiyoto, S. 1982. Teknik Uji Mutu Susu dan Hasil Olahannya. Liberty. Yogyakarta.
- ______ . 1983. Hasil-hasil Olahan Susu, Ikan, Daging, dan Telur. Liberty. Yogyakarta.
- Hart, A. 1986. Knowledge Acquisition for Expert System. McGrawl-Hill Book Company. New York.

- Kusrini. 2006. Sistem Pakar Teori dan Aplikasi. Penerbit Andi. Yogyakarta.
- Lohjayanti, A. 2007. Keragaan dan Sistem Penunjang Keputusan Pengendalian Proses Produksi Gula Kristal di Rajawali II Pabrik Gula Jatitujuh-Majalengka. <u>Skripsi</u>. Fakultas Teknologi Pertanian. Institut Pertanian Bogor.
- Lyons, P. J. 1994. Applying Expert System, Technology to Business. Blemont, Widsworth Publishing Company. California.
- Marimin. 2004. Teknik dan Aplikasi Pengambilan Keputusan Kriteria Majemuk. Grasindo. Jakarta.
- ———. 2005. Teori dan Aplikasi Sistem Pakar dalam Teknologi Manajerial. Edisi ke-2. IPB Press. Bogor.
- Nasution, M. N. 2004. Manajemen Mutu Terpadu. Ghalia Indonesia. Bogor.
- Ravianto, J. 1990. Produktivitas dan Mutu Kehidupan. Lembaga Sarana Informasi Usaha dan Produktivitas. Jakarta.
- Sinungan, M. 1995. Produktivitas Apa dan Bagaimana. Bumi Aksara. Jakarta
- Soeparno. 1992. Prinip Kimia dan Teknologi Susu. Universitas Gajah Mada, Yogyakarta.
- Strafaci, A. 2002. Genetic Algorithms in Water Resources Engineering. The Future of Water Distributing Modelling. www.haestad.com.
- Sumanth, D. J. 1984. *Productivity Engineering and Management*. United States of America: McGraw-Hill Book Company.
- Turban, E. 2005. Decision Support System and Intelligent System Seventh Edition. Pearson Education, Inc. New Jersey. USA.
- Winarno, F. G. 1984. *Kimia Pangan dan Gizi*. PT. Gramedia Pustaka Utama, Jakarta.
- Zainal, Y. 2008. Rancang Bangun Sistem Pakar Untuk Penerapan Manajemen Mutu Terpadu Pada Agroindustri Perikanan. <u>Skripsi</u>. Fakultas Teknologi Pertanian. Institut Pertanian Bogor.
- Http://www.kapanlagi.com. 2008. Produksi Susu Nasional Baru 25 % Dari Total Kebutuhan. Akses 7 September 2008.
- Http://www.republika.co.id. 2007. Konsumsi Susu Indonesia Masih Rendah. Akses 7 September 2008.

LAMPIRAN

Lampiran 1. Produk KPBS Pangalengan

Susu untuk IPS (Industri Pengolahan Susu)

Susu Prepack

Lampiran 2. Diagram Alir Susu Dingin (IPS)

Lampiran 3. Diagram Alir Susu Prepack

Lampiran 4. Diagram Alir Susu Cup

Lampiran 5. Standar Mutu Susu KPBS

No.	Tempat Pengujian	Pengujian	Keterangan
		Organoleptik	Normal
		Uji Alkohol	Negatif
		Berat Jenis	1.025-1.027
1	Tempat Pelayanan Koperasi	Suhu	27-30 °C
		Fat	3.7
		SNF	7,94
		Berat Jenis	1.0274
		Kadar Air	5.32
		Titik Beku	52.3
		Protein	2.8
		Uji Alkohol	Negatif
		рН	6.7
		Uji Rezasurin	4.5-5
		Uji TPC	$2.5 - 3 \cdot 10^6$
2	Milk Treatment	Suhu	26-29
		Fat	3-3.5
		SNF	7.6-7.8
		Berat Jenis	1.025-1.027
		Kadar Air	3.35-5
		Titik Beku	52.8
		Protein	2.6
		Uji Alkohol	Negatif
		рН	6.6-6.8
3	Sebelum Pasteurisasi	Uji Rezasurin	4.5-5
		Organoleptik	Normal
		Uji Alkohol	Negatif
		Kadar Gula	14
		Berat Jenis	1.047
4	Pengujian Terakhir	Uji TPC	$2-2.5 \ 10^6$

Lampiran 6. Output dan Input Model Total Output

	J	an '08		Feb '08
Variabel Input				
Jumlah penjualan ke IPS	3.2	04.725,32 kg	3.	.182.069,04 kg
Jumlah pesanan susu prepack	-	186.942 pack		165.757 pack
Jumlah pesanan susu cup coklat		299.864 cup		193.881 cup
Jumlah pesanan susu cup				
strawberry		245.343 cup		158.630 cup
Harga jual susu ke IPS	Rp	3.000	Rp	3.000
Harga jual susu prepack	Rp	2.000	Rp	2.000
Harga jual susu cup	Rp	875	Rp	875
Variabel Output				
Nilai Total Output	R p 10	.465.116.085	Rp 1	0.186.168.245

	Mar '08		April '08	
Variabel Input				
Jumlah penjualan ke IPS	3.2	65.916,03 kg	3.	247.378,08 kg
Jumlah pesanan susu prepack]	177.284 pack		185.473 pack
Jumlah pesanan susu cup coklat		206.225 cup		203.984 cup
Jumlah pesanan susu cup				
strawberry		168.730 cup		166.896 cup
Harga jual susu ke IPS	Rp	3.000	Rp	3.000
Harga jual susu prepack	Rp	2.000	Rp	2.000
Harga jual susu cup	Rp	875	Rp	875
Variabel Output				
Nilai Total Output	R p 10	.480.401.715	Rp 1	0.437.600.240

	M	ei '08		Jun '08
Variabel Input				
Jumlah penjualan ke IPS	3.53	5.251,01 kg		3.488.669 kg
Jumlah pesanan susu prepack	2	16.997 pack		188.739 pack
Jumlah pesanan susu cup coklat	,	222.444 cup		213.214 cup
Jumlah pesanan susu cup				
strawberry		182.006 cup		174.448 cup
Harga jual susu ke IPS	Rp	3.000	Rp	3.210
Harga jual susu prepack	Rp	2.000	Rp	2.500
Harga jual susu cup	Rp	875	Rp	1.100
Variabel Output		·		
Nilai Total Output	Rp 11.	393.640.780	Rp 1	12.096.903.190

Lampiran 7. Output dan Input Model Produktivitas Tenaga Kerja

	Jan '08				Feb '08			
Variabel Input	Magang	Kontrak	Tetap	Kasie	Magang	Kontrak	Tetap	Kasie
Penerimaan	0	1	0	_	0	1	0	_
Proses	0	5	0	ada	0	5	0	ada
Laboratorium	0	5	0	ada	0	5	0	ada
Packaging prepack	0	0	2	ada	0	0	2	ada
Packaging cup	0	5	0	_	0	5	0	_
Asst manajer	0	0	1	_	0	0	1	_
Supir IPS	0	2	11	_	0	2	11	_
Supir TPK	0	10	6	_	0	10	6	
MS	0	5	0	ada	0	5	0	ada
Bengkel	0	2	1	ada	0	2	1	ada
Satpam	0	1	4	ada	0	1	4	ada
Gudang	0	0	1	ada	0	0	1	ada
Rumah Tangga	0	0	1		0	0	1	
Administrasi	0	0	2	ada	0	0	2	ada
	Rp	Rp	Rp			Rp	Rp	
Gaji atau tunjangan	360.000	896.000	1.200.000	Rp 250.000	Rp 360.000	896.000	1.200.000	Rp 250.000
Variabel Output								
Nilai Tenaga Kerja	Rp			69.056.000	Rp			69.056.000
Produktivitas Tenaga								
Kerja				151.545				147.506

Indeks Tenaga Kerja	1.000	0,973
---------------------	-------	-------

	Mar '08				April '08			
Variabel Input	Magang	Kontrak	Tetap	Kasie	Magang	Kontrak	Tetap	Kasie
Penerimaan	0	1	0		0	1	0	_
Proses	0	5	0	ada	0	5	0	ada
Laboratorium	0	5	0	ada	0	5	0	ada
Packaging prepack	0	0	2	ada	0	0	2	ada
Packaging cup	0	5	0	_	0	5	0	_
Asst manajer	0	0	1	_	0	0	1	_
Supir IPS	0	2	11		0	2	11	-
Supir TPK	0	10	6	_	0	10	6	-
MS	0	5	0	ada	0	5	0	ada
Bengkel	0	2	1	ada	0	2	1	ada
Satpam	0	1	4	ada	0	1	4	ada
Gudang	0	0	1	ada	0	0	1	ada
Rumah Tangga	0	0	1		0	0	1	
Administrasi	0	0	2	ada	0	0	2	ada
Gaji atau tunjangan	Rp	Rp	Rp	Rp	Rp 360.000	Rp	Rp	Rp

	7	1			ı			1
	360.000	896.000	1.200.000	250.000		896.000	1.200.000	250.000
Variabel Output								
Nilai Tenaga Kerja	Rp			69.056.000	Rp			69.056.000
Produktivitas Tenaga Kerja				151.767				151.147
Indeks Tenaga Kerja				1.029				0,996
		Mei '(8			Jun '08		
Variabel Input	Magang	Kontrak	Tetap	Kasie	Magang	Kontrak	Tetap	Kasie
Penerimaan	0	1	0	_	0	1	0	_
Proses	0	5	0	ada	0	5	0	ada
Laboratorium	0	5	0	ada	0	5	0	ada
Packaging prepack	0	0	2	ada	0	0	2	ada
Packaging cup	0	5	0	_	0	5	0	_
Asst manajer	0	0	1	_	0	0	1	_
Supir IPS	0	2	11	_	0	2	11	_
Supir TPK	0	10	6	_	0	10	6	_

MS	0	5	0	ada		0	5	0	ada
Bengkel	0	2	1	ada		0	2	1	ada
Satpam	0	1	4	ada		0	1	4	ada
Gudang	0	0	1	ada		0	0	1	ada
Rumah Tangga	0	0	1			0	0	1	
Administrasi	0	0	2	ada		0	0	2	ada
	Rp	Rp	Rp	Rp			Rp	Rp	Rp
Gaji atau tunjangan	360.000	896.000	1.200.000	250.000	Rp	360.000	896.000	1.200.000	250.000
Variabel Output									
Nilai Input Tenaga Kerja	Rp			69.056.000	Rp				69.056.000
Produktivitas Tenaga									
Kerja	164.991								175.175
Indeks Tenaga Kerja				1.092					1.062

Lampiran 8. Output dan Input Model Produktivitas Bahan Baku

	Jan '08	Feb '08	Mar '08	April '08	Mei '08	Jun '08
Variabel Input						
Berat jenis	1,0248	1,0242	1,0239	1,0247	1,0254	1,0247
3	Rp	Rp	Rp	Rp	Rp	Rp
Harga susu segar	2.500/liter	2.500/liter	2.500/liter	2.500/liter	2.500/liter	2.500/liter
Hansa sula nasin	Rp	Rp	Rp	Rp	Rp	Rp
Harga gula pasir	4.600/kg Rp	4.600/kg Rp	4.600/kg Rp	4.600/kg Rp	4.600/kg Rp	5.500/kg Rp
Harga stabilizer	66.600/kg	66.600/kg	66.600/kg	66.600/kg	66.600/kg	80.000/kg
	Rp	Rp	Rp	Rp	Rp	Rp
Harga flavour coklat	65.400/kg	65.400/kg	65.400/kg	65.400/kg	65.400/kg	78.500/kg
TT (1	Rp	Rp	Rp	Rp	Rp	Rp
Harga flavour strawberry	65.400/kg Rp	65.400/kg Rp	65.400/kg Rp	65.400/kg Rp	65.400/kg Rp	78.500/kg Rp
Harga bubuk coklat	19.100/kg	19.100/kg	19.100/kg	19.100/kg	19.100/kg	23.000/kg
	Rp	Rp	Rp	Rp	Rp	Rp
Harga pewarna strawberry	20.800/kg	20.800/kg	20.800/kg	20.800/kg	20.800/kg	25.000/kg
TT 1 1	Rp	Rp	Rp	Rp	Rp	Rp
Harga kemasan pack	900.000/glg Rp	900.000/glg Rp	900.000/glg Rp	900.000/glg Rp	900.000/glg Rp	1.080.000/glg Rp
Harga kemasan cup	250.000/kardus	250.000/kardus	250.000/kardus	250.000/kardus	250.000/kardus	300.000/kardus
Transa Remasan cap	Rp	Rp	Rp	Rp	Rp	Rp
Harga seal cup	416.000/glg	416.000/glg	416.000/glg	416.000/glg	416.000/glg	500.000/glg
Variabel Output						
•	3.657.008,416	3.581.603,316	3.681.419,658	3.667.999,560	4.004.258,320	3.932.661,678
Jumlah susu segar	liter	liter	liter	liter	liter	liter
Jumlah gula pasir	6.532,654 kg	4.223,776 kg	4.492,699 kg	4.443,873 kg	4.846,099 kg	4.644,954 kg
Jumlah stabilizer	478,583 kg	309,434 kg	329,135 kg	325,558 kg	355,026 kg	340,290 kg
Jumlah flavour coklat	52,644 kg	34,038 kg	36,205 kg	35,811 kg	39,052 kg	37,432 kg
Jumlah flavour strawberry	43,072 kg	27,849 kg	29,622 kg	29,300 kg	31,9530 kg	30,626 kg
Jumlah bubuk coklat	52,644 kg	34,038 kg	36,205 kg	35,811 kg	39,052 kg	37,432 kg
Jumlah pewarna	, ,		, ,		, ,	, ,
strawberry	43,072 kg	27,849 kg	29,622 kg	29,300 kg	31,9530 kg	30,626 kg
Jumlah kemasan pack	65,430 gulung	58,015 gulung	62,049 gulung	64,916 gulung	75,949 gulung	66,059 gulung
Jumlah kemasan cup	286,234 kardus	185,068 kardus	196,851 kardus	194,712 kardus	212,336 kardus	203,523 kardus
•	381,645	246,758	262,469	259,616		271,363
Jumlah seal cup	gulung	gulung	gulung	gulung	283,115 gulung	gulung
Nilai Innut Dahan Dal	Rp	Rp	Rp 9.465.992.644	Rp	D=10 201 950 760	Rp
Nilai Input Bahan Baku	9.501.815.920	9.200.454.586		9.432.777.224	Rp10.301.850.769	10.159.940.396
Produktivitas Bahan Baku	1,101	1,107	1,107	1,107	1,106	1,191
Indeks Bahan Baku	1,000	1,005	1,000	1,000	0,999	1,077

Lampiran 9. Output dan Input Model Produktivitas Energi

	Jan '08				Feb	'08	
Variabel Input	Ha	rga	Jumlah	Harga		Jumlah	
Solar kend TPK	Rp	3.800	6.510 liter	Rp	3.800	6.090 liter	
Solar kend IPS	Rp	3.800	26.350 liter	Rp	3.800	24.650 liter	
Solar untuk boiler	Rp	7.679	15.500 liter	Rp	7.679	14.500 liter	
Listrik	Rp	1.380	36.232 kwh	Rp	1.380	35.900 kwh	
Air	Rp	1.000	2.790 ton	Rp	1.000	2.610 ton	
Variabel Output							
Nilai Input Energi	Rp	296.	682.660	Rp	280	.369.500	
Produktivitas							
Energi			35,274			36,339	
Indeks Energi			1,000			1,030	

	Mar '08				Apri	1 '08	
Variabel Input	Ha	rga	Jumlah	Harga		Jumlah	
Solar kend TPK	Rp	3.800	6.510 liter	Rp	3.800	6.300 liter	
Solar kend IPS	Rp	3.800	26.350 liter	Rp	3.800	25.500 liter	
Solar untuk boiler	Rp	7.679	15.500 liter	Rp	7.679	15.000 liter	
Listrik	Rp	1.380	36.232 kwh	Rp	1.380	36.150 kwh	
Air	Rp	1.000	2.790 ton	Rp	1.000	2.700 ton	
Variabel Output							
Nilai Input Energi	Rp	296.	682.660	Rp	288.	612.000	
Produktivitas							
Energi			35,325			36,165	
Indeks Energi			0,972			1,024	

	Mei '08			Jun '08			
Variabel Input	Hai	rga	Jumlah	На	ırga	Jumlah	
Solar kend TPK	Rp	3.800	6.510 liter	Rp	5.500	6.300 liter	
Solar kend IPS	Rp	3.800	26.350 liter	Rp	5.500	25.500 liter	
Solar untuk boiler	Rp	7.679	15.500 liter	Rp	11.000	9.000 liter	
Listrik	Rp	1.380	36.232 kwh	Rp	1.380	36.150 kwh	
Air	Rp	1.000	2.790 ton	Rp	1.000	2.700 ton	
Variabel Output							
Nilai Input Energi	Rp	296.	682.660	Rp	326	5.487.000	
Produktivitas							
Energi			38,403			37,052	
Indeks Energi			1,062			0,965	

Lampiran 10. Output dan Input Model Produktivitas Mesin

	Jan '08	Feb '08
Variabel Input		
Ukuran kemasan prepack	500 ml	500 ml
Jumlah pack (Input)	196.289 pack	174.045 pack
Jumlah pack (Output)	190.089 pack	168.244 pack
Ukuran kemasan cup	160 ml	160 ml
Jumlah cup (Input)	572.467 cup	370.137 cup
Jumlah cup (Output)	564.718 cup	364.698 cup
Variabel Output		
Produktivitas Mesin		
Prepack	0,968	0,967
Indeks Mesin Prepack	1,000	0,999
Produktivitas Mesin Cup	0,986	0,985
Indeks Mesin Cup	1,000	0,999

	Mar '08	April '08
Variabel Input		
Ukuran kemasan prepack	500 ml	500 ml
Jumlah pack (Input)	186.148 pack	194.747 pack
Jumlah pack (Output)	179.948 pack	188.746 pack
Ukuran kemasan cup	160 ml	160 ml
Jumlah cup (Input)	393.703 cup	389.424 cup
Jumlah cup (Output)	384.015 cup	383.800 cup
Variabel Output		
Produktivitas Mesin		
prepack	0,967	0,969
Indeks Mesin Prepack	1,000	1,002
Produktivitas Mesin Cup	0,975	0,986
Indeks Mesin Cup	0,990	1,011

	Mei '08	Juni '08
Variabel Input		
Ukuran kemasan prepack	500 ml	500 ml
Jumlah pack (Input)	227.847 pack	198.176 pack
Jumlah pack (Output)	221.646 pack	192.176 pack
Ukuran kemasan cup	160 ml	160 ml
Jumlah cup (Input)	389.424 cup	407.045 cup
Jumlah cup (Output)	416.916 cup	399.545 cup

Variabel Output		
Produktivitas Mesin		
prepack	0,973	0,970
Indeks Mesin Prepack	1,004	0,997
Produktivitas Mesin Cup	0,982	0,982
Indeks Mesin Cup	0,996	1,000

Lampiran 11. Output dan Input Model Produktivitas Pengeluaran Lainnya

		Jan '08		Feb '08
Variabel Input				
Biaya distribusi ke IPS	Rp	53.165.000	Rp	49.736.000
Pajak bangunan	Rp	0	Rp	0
Pajak kendaraan	Rp	4.000.000	Rp	4.000.000
Pajak penghasilan	Rp	73.118.835	Rp	108.008.854
Pembelian alat atau spareparts	Rp	150.000	Rp	100.000
Variabel Output				
Input Pengeluaran Lainnya	Rp	116.161.287	Rp	174.489.254
Produktivitas Pengeluaran				
Lainnya		80,233		58,377
Indeks Pengeluaran Lainnya		1,000		0,728

		Mar '08		April '08
Variabel Input				
Biaya distribusi ke IPS	Rp	53.165.000	Rp	51.450.000
Pajak bangunan	Rp	24.866.500	Rp	0
Pajak kendaraan	Rp	4.000.000	Rp	4.000.000
Pajak penghasilan	Rp	120.698.495	Rp	107.259.968
Pembelian alat atau spareparts	Rp	125.000	Rp	100.000
Variabel Output				
Input Pengeluaran Lainnya	Rp	202.854.995	Rp	168.572.818
Produktivitas Pengeluaran				
Lainnya		51,664		61,917
Indeks Pengeluaran Lainnya		0,885		1,198

		Mei '08		Juni '08
Variabel Input				
Biaya distribusi ke IPS	Rp	53.165.000	Rp	51.450.000
Pajak bangunan	Rp	0	Rp	0
Pajak kendaraan	Rp	4.000.000	Rp	4.000.000
Pajak penghasilan	Rp	138.847.832	Rp	356.886.649
Pembelian alat atau spareparts	Rp	200.000	Rp	150.000
Variabel Output				
Input Pengeluaran Lainnya	Rp	181.395.784	Rp	412.486.649
Produktivitas Pengeluaran				
Lainnya		62,811		29,327
Indeks Pengeluaran Lainnya		0,980		0,467

Lampiran 12. Output dan Input Model Total Produktivitas

		Jan '08		Feb '08
Variabel Input				
Nilai total output	Rp	10.465.116.085	Rp	10.186.168.245
Nilai input tenaga kerja	Rp	69.056.000	Rp	69.056.000
Nilai input bahan baku	Rp	9.501.815.920	Rp	9.200.454.586
Nilai input energi	Rp	250.822.500	Rp	234.631.500
Nilai input pengeluaran				
lainnya	Rp	130.433.835	Rp	174.489.254
Variabel Output				
Total Produktivitas		1,052		1,052
Indeks Total Produktivitas		1,000		1,000

		Mar '08		April '08
Variabel Input				
Nilai total output	Rp	10.480.401.715	Rp	10.437.600.240
Nilai input tenaga kerja	Rp	69.056.000	Rp	69.056.000
Nilai input bahan baku	Rp	9.465.992.644	Rp	9.432.777.224
Nilai input energi	Rp	250.822.500	Rp	242.796.000
Nilai input pengeluaran				
lainnya	Rp	202.854.995	Rp	168.572.818
Variabel Output				
Total Produktivitas		1,049		1,053
Indeks Total Produktivitas		0,997		1,004

		Mei '08		Juni '08
Variabel Input				
Nilai total output	Rp	11.393.640.780	Rp	12.096.903.190
Nilai input tenaga kerja	Rp	69.056.000	Rp	69.056.000
Nilai input bahan baku	Rp	10.301.850.769	Rp	10.159.940.396
Nilai input energi	Rp	250.822.500	Rp	73.118.835
Nilai input pengeluaran				
lainnya	Rp	196.212.832	Rp	425.716.949
Variabel Output				
Total Produktivitas		1,050		1,001
Indeks Total Produktivitas		1,103		1,050

Lampiran 13. Inisiasi Populasi Awal (Generasi 0)

This output is written at: 9/11/2008 2:56:50 PM

INITIAL REPORT
Simple Function Optimization with GAS
HIRED AND FIRED

INITIAL GENERATION STASTISTICS

Sum of Fitness = 4742010108.0000 Max. Fitness = 195516147.0000 Min. Fitness = 30624934.0000 Avg. Fitness = 118550252.7000

Lampiran 14. Generasi 0 sampai Generasi 2

Generatio																																
No. c	6 c5	с4	c3	c2		16		14	13	12	I 1	f6	5 f	5	f4	f3	f2	f1	h6	h5	h4	h3	h.	2 h	1 I	k6	k5	k4	k3	k2	k1	Total Cost
3\() 31\() 4\() 11\() 5\() 21\() 6\() 35\() 7\() 29\() 9\() 2\() 9\() 2\() 9\() 2\() 9\() 2\() 31\() 36\() 11\() 36\() 31\() 36\() 31\() 36\() 31\() 36\() 31\() 36\() 31\() 36\() 31\() 31\() 32\() 31\() 32\() 31\() 32\() 31\() 32\() 31\() 32\() 31\() 32\() 31\() 32\() 31\() 32\() 31\() 32\() 31\() 32\() 31\() 32\() 33\() 3	77 1012;79 2725;31 1598;81 1598;81 1598;81 1598;81 1598;98 1715;61 1598;98 1715;61 1602;71 161 1602;71 177 1913;71 191	7 50236 501447 7 734 1 7749 2 837 7 704 1 7719 1 105 5 106 6 288 6 25 6 61 6 2828 6 5 50186 6 5 50186 6 5 50186 6 5 50186 7 702 8 103 8 1	52739 53938 25903 33956 26417 27344 0 0 0 0 46205 40453 36865 46692 41207 46603 31342 29122 28374 37689 27634 34517 28506 26233 49394 49765 333414 28716 333414 28776 333414 28776 33341 28769 49765 33417 28649 49765 33417 48776 34776 48776 4	35787 37313 36953 37313 36953 37313 36953 37313 36953 37313 36953 37313 36953 37313 36953 37313 36953 37313	40552 50047 1892 1695 1495 2729 1785 2167 46831 40831 40831 40831 40831 53225 1529 1691 42330 53225 1529 1691 63746 5978 2078 2078 2078 2078 2078 2078 2078 20	4899 3845 1797 3845 1422 2063 2716 4657 3878 4665 1360 3499 166662 22915 1145 682 22915 1145 682 2527 2994 43845 43845 43845 43845 4562 2527 2994 43845 43845 43845 4562 4567 4747 1964 4657	12171 15314 8651 19114 6736 21924 31600 5586 13300 31988 18947 27323 17146 29512 4865 34142	1375 844 351 11979 13698 128463 22560 1510 1118 855 1529 1418 18094 12556 25194 26692 1380 28357 28825 13861 16960 4417 5373 1344 698 144 814 8144	28731 27804 0 0 8943 14695 18283 8456 26026 26774 17459 27514 20631 26642 28915 5754 18139 19621 26493 21734 26432	9582 0 0 23171 18908 0	13408 13408			000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000011100011000110011000000000000000000		011000000000000000000000000000000000000	100000000000000000000000000000000000000	0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_	0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	333333333333332323232323232323232333333	322333333332322223233333333333333333333	222333333332233222332333332222232233223333	222222333222222222222222222222222222222	222222333222222222222222222222222222222	222233333332222323223333333222333322223322233	148273015.000000 14457305.000000 184364491.000000 184364491.000000 184364491.000000 78082477.000000 8582627.000000 85846006.000000 3662734.000000 36624934.000000 14037932.000000 140370295.0000000 143421001.000000 143421001.000000 143421001.000000 162445404.000000 162445404.000000 17952616147.000000 17952616147.000000 17952616147.000000 17952616147.000000 17962616147.000000 17962616147.000000 17962616147.000000 17962616147.000000 179626161616161616161616161616161616161616
No. <p< td=""><td>1, p2> <xsi< td=""><td></td><td>с6</td><td></td><td>c4 c3</td><td></td><td></td><td></td><td>15</td><td></td><td></td><td></td><td>I 1</td><td>f6</td><td>f5</td><td></td><td>f3</td><td></td><td>f1</td><td></td><td>h5</td><td>h4</td><td></td><td>h2</td><td></td><td>k6</td><td></td><td>k4</td><td>k3</td><td>k2 k</td><td></td><td>Total Cost</td></xsi<></td></p<>	1, p2> <xsi< td=""><td></td><td>с6</td><td></td><td>c4 c3</td><td></td><td></td><td></td><td>15</td><td></td><td></td><td></td><td>I 1</td><td>f6</td><td>f5</td><td></td><td>f3</td><td></td><td>f1</td><td></td><td>h5</td><td>h4</td><td></td><td>h2</td><td></td><td>k6</td><td></td><td>k4</td><td>k3</td><td>k2 k</td><td></td><td>Total Cost</td></xsi<>		с6		c4 c3				15				I 1	f6	f5		f3		f1		h5	h4		h2		k6		k4	k3	k2 k		Total Cost
1) (1) (2) (2) (3) (2) (4) (5) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	0. 17) 6 0. 30) C 0. 12) C 0. 13) C 0. 14) C 0. 15) C 0.	5, 21 5, 21 5, 21 5, 21 5, 21 5, 21 5, 22 5, 23 5,	1098 1 660 2 1131 1 2 2449 4005 2449 2260 1 1872 2 3767 2 660 2 2449 1 1366 1 1366 1 13565 1 1565 1 1565 1 1592 3 554 695 0 594 2260 1 77 1 1982 2 44461 1131 1 2 3767 2	7156 1 5795 2522 304 1 2886 1 831 8860 77710 1 304 1 57756 6029 6 4724 8365 5 6029 6 4724 8365 5 8010 6 3664 3 3674 3 3987 3 3674 3 3987 3 3263 5 5580 4 9386 6 5588 6	1195 291 36 462 462 462 1207 287 17 17 17 171 128 285 975 376 1207 287 36 291 0 368 85595 462 102 434 8573 320 0 262 3061 276 171 1532 452 202 749 551 7254 355	22 321105 5232234 228816 2887:17.17 2800 0 0 0 0 221089 203116 2877:17.17 2800 0 0 221089 203116 2877:22 321165 134605 2322 332133 2501 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 1647 11 2166 17 1522 2123 1697 169	3878 4316	17290 8651 21924 34142 31600 23115 5586 6736 34142 8651 17290 15281 11924 13300 23115 24665 22785 30772 27323 29512 31988 23115 5730 21924 1914 5586	351 1510 885 339 1529 1375 1418 571 339 1510 13698 351 1444 5373 18094 885 1375 1375 128357 12556 1375 13710 21861 885 13710	26026 8943 27514 26432 20631 0 26642 217459 2439 26026 18283 8943 11715 23062 28915 27514 0 9005 0 0 19621 5383 0 0 2409 16844 27514 26742	11334 20203 20627 14672 15441 0 21341 123134 14672 20203 0 9582 18430 20627 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1242 722 1360 1766 1198 1600 19763 1206 1245 2155 193 2292 1360 12852 1194 1961 1981 1983 1983 1983 1983 1983 1983 198				000000000000000000000000000000000000000	1111110000011000001100000110000110000110000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	111100111100110000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	111111111111111111111111111111111111111	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	39 33 33 33 33 33 34 35 35 34 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36	3333333333333333333333333333333333333	22 222 222 222 222 222 222 222 222 222 222 222	22 222 222 222 222 222 222 222 222 222 222 222 222 222 222 222	333333222332233233233233233223223	84538867. 0000000 95944915. 0000000 72946285. 0000000 72946285. 0000000 76405840. 0000000 16405840. 0000000 115232308. 0000000 115232308. 0000000 115232308. 0000000 0000000000000000000000000000

31) 32) 33) 34) 35) 36) 37) 38) 39) 40)	(1,3 (1,3 (7,2 (7,2 (30,3 (30,3 (7, (7, (6,1 (6,1	0) 5, 0) 5, 1) 2, 1) 2, 1) 0, 1) 0, 1) 4,	19 20 20 0 0 23	3263 2913 1131 2449 1982 2913 3263 3554 311	5119 10012 12522 304 28716 10012 5119 21571 3674	0 34 837 27 661 27 1207 28 42085 38 837 27 52904 34 51967 40 749 26	1436 24 1344 41 1634 22 13716 12 1304 28 1344 41 1436 24 1453 43 1417 20	120 152 817 149 424 195 772 212 120 149 401 5188 255 81	31 171: 29 206: 25 384: 38 252: 23 299: 25 206: 31 171: 17 142: 25 466:	3 29327 3 24434 5 21924 7 34142 4 5730 3 24434 3 29327 2 12875 5 30772	709 885 339 21861 709 11042 11979 797	9905 20712 27804 27514 26432 16844 27804 20712 14695 28731	23171 19043 2324 20627 31020 14672 2324 19043 189 23085	12852 13408 1360 1394 931 766 1394 13408 2072 1194	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 1 1 1 1 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	1 0 0 0 0 1 0 1 1 0	0 1 1 1 1 0 1 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 1 1 1 1 1 0 1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 3 3 2 2 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2233333233	180006208. 0000000 109780615. 0000000 85570588. 0000000 72921703. 0000000 59038657. 0000000 128167909. 0000000 148273015. 0000000 148273015. 0000000 14384014. 0000000 63482938. 0000000
Max. F Min. F Avg. F Cum. c Cum. c	itness itness itness f NCros f NMuta	lue of go Value of Value of Value of s until tion unt	generat generat generat gen. 1 = il gen.	i on i on i on 1 1 = 2	1 = 1800 1 = 2710 1 = 101	9114876. (006208. 0(01872. 00(727871. 9(000																										
		1 and c5				c1	16	15	14	13	12	I 1	fé	f5	f4	. 1	f3	f2	f1	h6	h5	h4	h3	h2	h1	k6	k5		k4	k3	k2	k1	Total Cost
3) 4) 4) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 26) 27) 28) 29) 31) 33) 33) 33) 33) 33) 33) 33	1098 6600 6600 6600 6600 6600 6600 6600 6	17156 25795 12522 304 2846 11331 28860 27710 304 25795 17156 16029 14724 8365 12522 18010 11331 129781 11661 3674 4248 11326 3987 4248 11331 11363 25580 29860 25795 2781 5119 10012 12522 304 28716 10012 5119	1195 36 661 1207 17 17 171 128 975 36 063595 102 58573 0 63691 171 1532 202 749 202 749 37254 42085 63061 4208 128 63092 63091 4208 128 63932 63932 63932 7490 742085 7420 742085 7420 742085 7420 742085 7420 742085 7420 742085 7420 742085 7420 742085 742085 7420 742085 7420 742085 7420 742085 7420 742085 7420 742085 742085 7420 742085 7420 742085 7420 742085	29122 46205 27634 28716 34517 0 28506 37689 28716 29122 36865 46205 43433 32086 26233 27634	32110 23241 228177 280732 2800310 221033 20310 23241 33862 25014 22817 0 0 12424 27118 25754 35787 22817 41342 22103 22103 22213 22103	1647 2167 2167 1529 2123 1691 2729 45526 53225 2123 1647 2167 734 6597 77 1529 2729 2729 2729 2729 2729 2729 2729 2	3878845434444444444444444444444444444444	17290 8651 21924 34142 31600 23115 5586 6736 34142 8651 17290 15281 17292 26081 21922 26081 21924 13300 23115 4665 2785 30772 27323 29512 31988 23115 21183 5730 21183 6730 24344 24344 24344 24344 24344 24344 24327 24327	351 1510 885 339 1529 1375 1418 571 339 1510 13698 351 1444 5373 18094	26026 8943 27514 26432 20631 7459 2642 17459 26026 18283 8943 11715 23062 28915 27514 0 9905 0 0 19621 5383 0 0 0 2409 16844 27514 26774 26642 26926	11334 20203 20627 14672 15441 0 21341 23134 14672 11334 29983 20203 9582 18430 20627	12424 7222 7222 7222 7222 7225 7225 7225					000000000000000000000000000000000000000	1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000000000000000000000000000000000000		1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1			333333333333333333333333333333333333333	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 2 2 2 3 3 3 3 3 3 2 2 2 3 3 3 3 3 2 2 2 3 3 3 3 3 3 2 2 2 3 3 3 3 3 3 3 2 2 3	222232222222222222222222222222222222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33 333 24 33 24 33 24 33 24 33 24 33 24 33 24 33 24 24 24 24 24 24 24 24 24 24 24 24 24	84538867.0000000 95944915.0000000 72946285.0000000 72946285.0000000 74077556.0000000 740755840.0000000 34547932.0000000 115232308.0000000 115232308.0000000 127292671.0000000 90923680.0000000 136203370.0000000 136203370.0000000 136203370.0000000 15918180.0000000 15918180.0000000 159341643.0000000 159341643.0000000 159341643.0000000 12736054.0000000 102736054.0000000 102736054.0000000 110736054.0000000 110736054.0000000 110736054.00000000000000000000000000000000000
No. 1) 2) 3)	(6, (6, (23,	2> <xsi te<br="">9) 0, 9) 0, 1) 1,</xsi>	0 0 24	2260 660 1098	11331 304 17156	171 1207 28 1195	0 8716 28 0	0 272 772 212 0 164	29 2710 23 4310 17 3878	34142 3 17290	1 4 1375 339 351	26432 0	0 14672 0	160 766 1242	f6 0 0	f5 0 0	f4 0 0 0	f3 0 0	f2 0 1 0	f1 0 0	h6 0 0	h5 0 0	h4 0 1 0	h3 0 0	h2 0 0	h1 1 1	k6 k	3 3 3	k4 3 3 3	k3 3 2 3	k2 3 2 3		Total Cost 34547932,000000 69684109,0000000 37877347,0000000
4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15)	(23, (4, (5, 2) (5, 2) (30, (19, 3) (19, 3) (1, 3) (38, 2)	3) 1, 1 3) 0, 3) 0, 3) 6, 1 3) 6, 2 2) 2, 2	22 22 23 23 0 0 0 23 23 23 24	595 2913 3263	2458 304 2846 2458 2846 25795 12522 10012 11661 5119 17156 5119	17 34 1207 28 0 55 17 36 29 661 27 837 27 202 0 34 1195 29	3716 28 5148 43 0 7122 32 7634 22 7344 41 0 1436 24 7122 32	003 169 772 212 444 272 0 169 110 164 817 152 120 152 0 169	252 23 97 29 97 21 438 29 384 29 438 29 438 29 438 29 438 21 171 21 387	7 34142 1 31600 1 31988 2 31600 6 8651 5 21924 1 24434 3 22785 3 29327	1529 339 12556 1529 1510 885 709 1344 11042 351	0 20631 26432 0 0 26026 27514 27804 0 20712 26026 20712	11334	160 1198 766 160 1198 1242 1360 1360 1194 13408 1242 13408	0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	1 1 1 0 1 1 1 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0	1 1 1 0 1 1 1 0 1 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	1 1 1 1 1 1 1 1 0 0	のののののののののののの	333 333 333 333 333	ຑ ო ო ო ო ო ო ო ო ო ო ო	2 2 2 3 2 2 2 3 2 2 2 2	22223222222	33333333232	100774672, 0000000 73442986, 0000000 73440410, 0000000 103240825, 0000000 859534233, 0000000 83894674, 0000000 83894674, 0000000 94534372, 0000000 109780615, 0000000 148273015, 0000000

16)	(38, 29)	0, 0	3767 28860	128	28506	22103	45526	1209	5586	1418	26642	21341	19763	0	0	0	0	0	0	0	0	1	0	0	0	3	3	3	2	2	2	116602393. 0000000
17)	(10, 2)	0, 0	2449 25795	36	29122		1647	2527	8651	1510	26026	11334	1242	0	0	0	0	1	0	0	0	1	0	0	1	3	3	3	2	2	3	90923680.0000000
18)	(10, 2)	0, 0	660 25795	36	46205	23241	2167	4316	8651	1510	8943	20203	722	0	0	0	0	1	0	0	0	1	0	0	1	3	3	3	2	2	3	95944915.0000000
19)	(3, 17)	5, 23	1131 11331	171	0	0	2729	3845	23115	1375	0	0	160	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	33731665.0000000
20)	(3, 17)	5, 23	2260 12522	661	27634	22817	1529	2716	21924	885	27514	20627	1360	0	0	0	0	1	0	0	0	1	0	0	1	3	3	3	2	2	3	73762552.0000000
21)	(15, 18)	3, 24	4229 29781	1532	45243	20273	52437	747	4665	14	9905	23171	12852	0	0	0	0	0	0	0	0	1	0	0	0	3	3	3	2	2	2	134391808. 0000000
22)	(15, 18)	3, 24	1131 12522	0	26233	25014	597	3845	21924	18094	28915	18430	2292	0	0	0	0	1	0	0	0	1	0	0	1	3	3	3	2	2	3	72816850.0000000
23)	(28, 4)	0, 0	1131 15332	428	28374	41342	42330	3845	19114	1118	26774	2102	22959	0	0	0	0	0	0	0	0	1	0	0	0	3	3	3	2	2	2	116636374.0000000
24)	(28, 4)	0, 0	2449 304	1207	28716	28772	2123	2527	34142	339	26432	14672	766	0	0	0	0	1	0	0	0	1	0	0	1	3	3	3	2	2	3	70977556. 0000000
25)	(19, 19)	3, 20	595 11661	202	0	0	1695	4381	22785	1344	0	0	1194	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	32857558.0000000
26)	(19, 19)	3, 20	595 11661	202	0	0	1695	4381	22785	1344	0	0	1194	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	32857558.0000000
27)	(30, 5)	0, 0	660 25795	36	29122		1647	4316	8651	1510	26026	11334	1242	0	0	0	0	1	0	0	0	1	0	0	1	3	3	3	2	2	3	89630233.0000000
28)	(30, 5)	0, 0	4005 2846	17	34517	28003	1691	971	31600	1529	20631	15441	1198	0	0	0	0	1	0	0	0	1	0	0	1	3	3	3	2	2	3	76405840.0000000 m1
29)	(9, 17)	4, 19	660 304	1207	0	0	2729	4316	34142	339	0	0	160	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	26167639.0000000
30)	(9, 17)	4, 19	2260 11331	171	55148	43444	2123	2716	23115	1375	0	0	766	0	0	0	0	1	0	0	0	1	0	0	1	3	3	3	2	2	3	107782594. 0000000
31)	(8, 9)	0, 0	3767 27710	975	37689	20310	53225	1209	6736	571	17459	23134	12064	0	0	0	0	0	0	0	0	1	0	0	0	3	3	3	2	2	2	127292671. 0000000
32)	(8, 9)	0, 0	660 304	1207	28716	28772	2123	4316	34142	339	26432	14672	766	0	0	0	0	1	0	0	0	1	0	0	1	3	3	3	2	2	3	69684109.0000000
33)	(27, 7)	3, 20	44461 9386	63061	27634	22103	45526	22915	21924		27514	21341	19763	0	0	0	0	0	0	0	0	0	0	0	0	2	2	2	2	2	2	176442684. 0000000
34)	(27, 7)	3, 20	1872 28860	128	28506	22817	1529	3104	5586	1418	26642	20627	1360	0	0	0	0	1	0	0	0	1	0	0	1	3	3	3	2	2	3	85539499. 0000000
35)	(40, 34)	2, 19	311 3674	749	26417	20359	1495	4665	30772	797	28731	23085	1394	0	0	0	0	1	0	0	0	1	0	0	1	3	3	3	2	2	3	63338338.0000000
36)	(40, 34)	2, 19	1131 12522	661	27634	22817	1695	3845	21924	885	27514	20627	1194	0	0	0	0	1	0	0	0	1	0	0	1	3	3	3	2	2	3	73066303.0000000
37)	(35, 11)	6, 24	1098 17156	0	36865	13461	46831	3878	17290	13698	18283	29983	18458	0	0	0	0	0	0	0	0	1	0	0	0	3	3	3	2	2	2	107185180. 0000000
38)	(35, 11)	6, 24	2449 304	1207	28716	12424	1958	2527	34142	339	26432	31020	931	0	0	0	0	1	0	0	0	1	0	0	1	3	3	3	2	2	3	59038657.0000000
39)	(5,34)	3, 21	0 2846	17	27634	22817	1495	4976	31600	1529	27514	20627	1394	0	0	0	0	1	0	0	0	1	0	0	1	3	3	3	2	2	3	64642630.0000000 m2
40)	(5,34)	3, 21	1131 12522	661	34517	28003	64091	3845	21924	885	20631	15441	1198	0	0	0	0	0	0	0	0	1	0	0	0	3	3	3	2	2	2	125303698.0000000 m1
																															-	

SumFitness Value of generation 2 = 3266475369.0000 Max Fitness Value of generation 2 = 176442684.0000 Min. Fitness Value of generation 2 = 26167639.0000 Avg. Fitness Value of generation 2 = 26167639.0000 Cum. of NCross until gen. 2 = 29 Cum. of NMutation until gen. 2 = 6

Lampiran 15. Generasi 98-100

		98 and g		on 99																													
No.	c6	c5	c4	с3	c2	c1	16	15	14	13		I 1	f6	f5	f4	f3	f2	f1	h6	h5	h4	h3		h1	k6	k5	k4	k3	k2	k1	Total	Cost	
1) 2) 3)	0	0	0	0 0 0	0	0	4976 4976	34446 34446 34446	1546 1546 1546	0	0	2889 2889 2889	0 0 0	0	0 0	0 0 0	0	0 0 0	0 0 0	0	0	0	0	1 1 1	3 3	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	226249 226249	39. 0000000 39. 0000000 39. 0000000) m1
5) 6)	0	0	0	0 0 0	0	0	4976 4976 4976	34446 34446 34446	1546 1546 1546	0	0	2889 2889 2889	0	0	0	0	0	0	0	0	0	0	0	1	3 3	3 3	3 3	3 3	3 3	3 3	226249 226249	39. 0000000 39. 0000000 39. 0000000)
7) 8) 9)	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	4976 4976	34446 34446 34446	1546 1546 1546	0 0 0	0	2889 2889 2889	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 1 1	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	226249 226249	39. 0000000 39. 0000000 39. 0000000)
10) 11) 12)	0 0 0	0 0 0	0 0 0	0	3444 0 0	0 0 0	4976 4976	34446 34446 34446	1546 1546 1546	0 0 0	0	2889 2889 2889	0 0 0	0 0 0	0 0 0	0 0 0	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 0 0	0 0 0	1 1 1	3 3 3	3 3 3	3 3 3	3 3 3	2 3 3	3 3 3	226249 226249	39. 0000000 39. 0000000 39. 0000000	
13) 14) 15)	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	4976 4976	34446 34446 34446	1546 1546 1546	0 0 0	0	2889 2889 2889	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 1 1	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	226249 226249	39. 0000000 39. 0000000 39. 0000000)
16) 17) 18)	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	4976 4976 4976	34446 34446 34446	1546 1546 1546	0 0 0	0	2889 2889 2889	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 1 1	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	226249 226249	39. 0000000 39. 0000000 39. 0000000) m2
19) 20) 21)	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	4976 4976 4976	34446 34446 34446	1546 1546 1546	0 0 0	0	2889 2889 2889	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 1 1	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	226249 226249	39. 0000000 39. 0000000 39. 0000000	
22) 23) 24)	0	0	0	0 0 0	0	0		34446 34446 34446	1546 1546 1546	0	0	2889 2889 2889	0	0	0	0	0	0	0	0	0	0	0	1 1 1	3 3 3	3 3	3 3 3	3 3 3	3 3	3 3 3	226249 226249	39. 0000000 39. 0000000 39. 0000000)
25) 26) 27)	0	0 0 0	0 0 0	0 0 0	0 0 0	0	4976 4976	34446 34446 34446	1546 1546 1546	0 0 0	0	2889 2889 2889	0 0 0	0	0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0 0 0	1 1 1	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	226249 226249	39. 0000000 39. 0000000 39. 0000000)
28) 29) 30)	0	0	0	0 0 0	0	0	4976 4976	34446 34446 34446	1546 1546 1546	0	0	2889 2889 2889	0 0 0	0	0	0	0	0	0	0	0	0	0	1 1 1	3 3	3 3	3 3	3 3	3 3	3 3 3	226249 226249	39. 0000000 39. 0000000 39. 0000000)) m2
31) 32) 33)	0	0	0	0 0 0	0	0	4976 4976 4976	34446 34446 34446	1546 1546 1546	0	0	2889 2889 2889	0 0 0	0 0 0	0	0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0 0 0	1 1 1	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	226249 226249	39. 0000000 39. 0000000 39. 0000000)
34) 35) 36)	0	0	0	0	0	0	4976 4976 4976	34446 34446 34446	1546 1546 1546	0	0	2889 2889 2889	0	0	0	0	0	0	0	0	0	0	0	1 1	3 3	3 3	3 3	3 3	3 3	3 3	226249 226249	39. 0000000 39. 0000000 39. 0000000	
37) 38) 39) 40)	0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	4976 4976 4976 4976	34446 34446 34446 34446	1546 1546 1546 1546	0 0 0	0	2889 2889 2889 2889	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0 0 0	1 1 1	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	226249 226249	39. 0000000 39. 0000000 39. 0000000 39. 0000000)
	<p1< th=""><th>, p2> <xsi< th=""><th></th><th>c6</th><th>с5</th><th>c4</th><th>c3</th><th>c2</th><th></th><th>16</th><th></th><th>I 4</th><th>13</th><th>12</th><th>I 1</th><th>f6</th><th>f5</th><th>f4</th><th>f3</th><th>f2</th><th>f1</th><th>h6</th><th>h5</th><th>h4</th><th>h3</th><th>h2</th><th>h1</th><th>k6</th><th>k5</th><th>k4</th><th></th><th>2 k1</th><th>Total Cost</th></xsi<></th></p1<>	, p2> <xsi< th=""><th></th><th>c6</th><th>с5</th><th>c4</th><th>c3</th><th>c2</th><th></th><th>16</th><th></th><th>I 4</th><th>13</th><th>12</th><th>I 1</th><th>f6</th><th>f5</th><th>f4</th><th>f3</th><th>f2</th><th>f1</th><th>h6</th><th>h5</th><th>h4</th><th>h3</th><th>h2</th><th>h1</th><th>k6</th><th>k5</th><th>k4</th><th></th><th>2 k1</th><th>Total Cost</th></xsi<>		c6	с5	c4	c3	c2		16		I 4	13	12	I 1	f6	f5	f4	f3	f2	f1	h6	h5	h4	h3	h2	h1	k6	k5	k4		2 k1	Total Cost
1) 2) 3)	(29 (29	, 5) 5 , 5) 5	, 24 , 24	0	0	(0 0		4976 4976	34446	1546 1546	0	0	2889	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3 3	3 3	22624939. 0000000
4) 5)	(39	(34) 1 (16) C	1, 19 1, 19), 0	0 0 0	0 0 0	()	0 0 0 0 0 0	0	4976 4976 4976	34446 34446 34446	1546 1546 1546 1546	0	0	2889 2889	0 0 0	0 0	0 0 0	0 0 0	0 0 0		0	0 0	0	0	0	1	3 3 3		3 3	3 3 3	3 3 3	22624939. 0000000
6) 7) 8)	(6	(28) C	0, 0 0, 0 0, 0 5, 22	0	0	(0 0 0 0 0 0	0	4976 4976 4976 4976	34446 34446 34446	1546 1546 1546 1546	0 0 0			0	0	0	0	0	0		0			0	1	3 3	3	3	3 3	3 3	
10) 11) 12)	(25 (17 (17	(15) 5 (18) 2	5, 22 2, 21 2, 21	0	0	()	0 0	0	4976 4976 4976 4976	34446 34446 34446	1546 1546 1546	0	0	2889 2889	0	0	0	0	0	0	0	0	0	0	0	1 1	3	3	3	3	3 3	22624939. 0000000 22624939. 0000000 22624939. 0000000 22624939. 0000000
13) 14) 15)	(2 (2 (27	, 8) 3 , 8) 3	3, 23 3, 23 5, 23	0	0	()	0 0	0	4976 4976 4976	34446 34446 34446	1546 1546 1546	0	0	2889 2889	0	0	0	0	0	0	0	0	0	0	0	1 1 1	3 3	3 3	3 3	3	3 3	22624939. 0000000 22624939. 0000000 22624939. 0000000
16) 17) 18)	(27 (5 (5	, 8) 6	5, 23 1, 20 1, 20	0	0	()	0 0	0	4976 4976 4976	34446 34446 34446	1546 1546 1546	0	0	2889 2889	0	0	0	0	0	0	0	0	0	0	0	1 1	3 3	3 3	3	3	3 3	22624939. 0000000 22624939. 0000000 22624939. 0000000
19) 20) 21)	(2	, 29)), 0), 0 3, 21	0	0	()	0 0	0	4976 4976 4976	34446 34446 34446	1546 1546 1546	0	0	2889 2889	0	0	0	0	0	0	0	0	0	0	0	1 1 1	3 3 3	3 3	3 3	3 3	3 3	22624939. 0000000 22624939. 0000000 22624939. 0000000
22) 23) 24)	(21 (11	(33) 3 (5) C	3, 21), 0), 0	0	0 0 0	()	0 0	0	4976 4976 4976	34446 34446 34446	1546 1546 1546	0	0	2889 2889	0 0 0	0	0 0 0	0	0	0	0	0	0	0	0	1 1 1	3 3 3	3 3	3 3 3	3 3 3	3 3 3 3 3 3	22624939. 0000000 22624939. 0000000
25) 26) 27)	(37 (37 (14	, 20) 6	o, 21 o, 21 o, 0	0	0 0	()	0 0	Ō	4976 4976 4976	34446 34446 34446	1546 1546 1546	0 0 0	0	2889	0 0	0 0	0 0	0 0 0	0 0	0 0	0 0	0	0 0	0	0 0	1 1 1	3 3 3	3 3 3	3 3 3	3 3 3	3 3 3 3 3 3	

28)	(14, 22)	0, 0	0	0	0	0	0	0	4976	34446	1546	0	0	2889	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	22624939.0000000 m1
29)	(21, 38)	5, 23	0	0	0	0	0	0	4976	34446	1546	0	0	2889	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	22624939. 0000000
30)	(21, 38)	5, 23	0	0	0	0	0	0	4976	34446	1546	0	0	2889	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	22624939. 0000000
31)	(38, 35)	3, 20	0	0	0	0	0	0	4976	34446	1546	0	0	2889	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	22624939. 0000000
32)	(38, 35)	3, 20	0	0	0	0	0	0	4976	34446	1546	0	0	2889	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	22624939. 0000000
33)	(36, 14)	2, 23	0	0	0	0	0	0	4976	34446	1546	0	0	2889	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	22624939. 0000000
34)	(36, 14)	2, 23	0	0	0	0	0	0	4976	34446	1546	0	0	2889	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	22624939. 0000000
35)	(14, 9)	1, 20	0	0	0	0	0	0	4976	34446	1546	0	0	2889	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	22624939. 0000000
36)	(14, 9)	1, 20	0	0	0	0	0	0	4976	34446	1546	0	0	2889	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	22624939. 0000000
37)	(4,31)	0, 0	0	0	0	0	0	0	4976	34446	1546	0	0	2889	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	22624939. 0000000
38)	(4,31)	0, 0	0	0	0	0	0	0	4976	34446	1546	0	0	2889	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	22624939. 0000000
39)	(12, 18)	5, 21	0	0	0	0	0	0	4976	34446	1546	0	0	2889	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	22624939. 0000000
40)	(12, 18)	5, 21	0	0	0	0	0	0	4976	34446	1546	0	0	2889	0	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	3	3	22624939.0000000

SumFitness Value of generation 99 = 904997560.0000 Max. Fitness Value of generation 99 = 22624939.0000 Min. Fitness Value of generation 99 = 22624939.0000 Avg. Fitness Value of generation 99 = 22624939.0000 Cum. of NCross until gen. 99 = 1582 Cum. of MMutation until gen. 99 = 410

Generation 99 and generation 100

erati on ======																																				
c6	c5	c4	c3	c2	с1	16	15			13	12	I 1	f6	f5	f4	f3	f2	f1	h6	h5	h4	h3	h2	h1	k6	k5	k4	k3	k2		k1		al Cos			
1) 0 0 2) 3) 0 0 4) 4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000						34444 34444 34444 34444 34444 3444 344	6 15456 6 15	16 16 16 16 16 16 16 16 16 16 16 16 16 1	000000000000000000000000000000000000000	000000000000000000000000000000000000000	2889 2889 2889 2889 2889 2889 2889 2889	000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000			000000000000000000000000000000000000000		000000000000000000000000000000000000000				56 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	33 33 33 33 33 33 33 33 33 33 33 33 33	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	333333333333333333333333333333333333333		333333333333333333333333333333333333333	226.6.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	24939, 24	00000000 00000000 00000000 00000000 0000	m1	
o. <p1,< td=""><td>p2> <xsi< td=""><td></td><td>с6</td><td>с5</td><td>с4</td><td>c3</td><td></td><td></td><td></td><td>16</td><td>15</td><td>14</td><td>13</td><td></td><td>l 1</td><td>f6</td><td>f5</td><td>f4</td><td>f3</td><td>f2</td><td>f1</td><td>h6</td><td>h5</td><td>h4</td><td>h3</td><td>h2</td><td>h1</td><td>k6</td><td></td><td></td><td>k4</td><td>k3</td><td>k2</td><td>k1</td><td>Total</td><td>Cost</td></xsi<></td></p1,<>	p2> <xsi< td=""><td></td><td>с6</td><td>с5</td><td>с4</td><td>c3</td><td></td><td></td><td></td><td>16</td><td>15</td><td>14</td><td>13</td><td></td><td>l 1</td><td>f6</td><td>f5</td><td>f4</td><td>f3</td><td>f2</td><td>f1</td><td>h6</td><td>h5</td><td>h4</td><td>h3</td><td>h2</td><td>h1</td><td>k6</td><td></td><td></td><td>k4</td><td>k3</td><td>k2</td><td>k1</td><td>Total</td><td>Cost</td></xsi<>		с6	с5	с4	c3				16	15	14	13		l 1	f6	f5	f4	f3	f2	f1	h6	h5	h4	h3	h2	h1	k6			k4	k3	k2	k1	Total	Cost
1) (8, 2) (8, 3) (1,	14) 4 14) 25) (25) (4) 5 4) 5 8) 28	4, 23 4, 23 0, 0 0, 0 5, 24 5, 24 2, 19 2, 19 6, 24	0 0 0 0 0 0			0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	4976 4976 4976 4976 4976 4976 4976 4976	34446 34446 34446 34446 34446 34446 34446 34446	1546 1546 1546 1546 1546 1546 1546 1546	0 0 0 0 0 0	0 0 0 0 0 0	2889 2889 2889 2889 2889 2889	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0					1 1 1 1 1 1 1 1 1 1		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	33333333333	3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3	226: 226: 226: 226: 226: 226: 226:	24939. 00 24939. 00 24939. 00 24939. 00 24939. 00 24939. 00 24939. 00 24939. 00 24939. 00

10) (34, 28) 11) (37, 2) 12) (37, 2) 12) (37, 2) 12) (37, 2) 13) (30, 8) 14) (30, 8) 15) (26, 37) 16) (26, 37) 17) (5, 19) (34, 8) 20) (34, 8) 20) (34, 8) 21) (19, 32) 22) (19, 32) 22) (19, 32) (24) (9, 36) 24) (9, 36) 24) (10, 23) 28) (10, 23) 28) (10, 23) 29) (36, 1) 30) (36, 1) 31) (7, 3) 32) (7, 3) 33) (32, 1) 34) (32, 1) 34) (32, 1) 35) (6, 38) 36) (6, 38) 37) (14, 20) 38) (14, 20) 39) (19, 31) 40) (19, 31)	6. 24 5. 23 5. 23 0. 0 0. 0 5. 19 5. 19 5. 24 3. 19 3. 19 3. 19 3. 19 3. 19 2. 23 5. 24 3. 19 6. 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000		4976 34446 4976 34446	1546 1546 1546 1546 1546 1546 1546 1546	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	2889 2889 2889 2889 2889 2889 2889 2889	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		33 33 33 33 33 33 33 33 33 33 33 33 33	3333333333333333333333333333333333333	333333333333333333333333333333333333333	<u> </u>		33333333333333333333333333333333333333	22624939, 0000000 22624939, 00000000 22624939, 00000000 22624939, 00000000 22624939, 00000000 22624939, 00000000000000 22624939, 00000000000000000000000000000000000
---	--	--	---	---	---	--	--	--	---	---	--	---	---	---	---	---	---	---	---	---	---	---	--	--	--	---	----------	---------	--	--

SumFitness Value of generation 100 = 904997560.0000 Max. Fitness Value of generation 100 = 22624939.0000 Min. Fitness Value of generation 100 = 22624939.0000 Avg. Fitness Value of generation 100 = 22624939.0000 Cum. of NCross until gen. 100 = 1598 Cum. of NMutation until gen. 100 = 411

Lampiran 16. Basis Pengetahuan

Index Turun	Keterangan
Input Naik	Jika input tenaga kerja naik dan output turun maka sebaiknya tidak
Output Turun	melakukan penambahan karyawan dalam waktu dekat dan diantisipasi
	dengan menambahkan jam lembur (CF=0,8).
	Jika input bahan baku naik dan output turun maka lakukan perencanaan
	pembelian bahan baku untuk beberapa bulan ke depan sehingga apabila
	terjadi kenaikan harga maka dapat diminimalkan (CF=0,8).
	Jika input energi naik dan output turun maka gunakan energi yang ada
	sehemat mungkin antara lain listrik, air dan solar, untuk beberapa proses
	produksi yang menggunakan uap panas dari boiler dapat dilakukan dalam
	satu waktu yang bersamaan sehingga pemakaian solar industri dapat
	dihemat (CF=0,7) dan matikan listrik dan air setelah digunakan serta tetap
	menggunakan energi yang ada sehemat mungkin (CF=0,6).
	Jika input mesin <i>prepack</i> naik dan output turun maka cek kerusakan mesin
	prepack, apabila ada spareparts yang harus diganti maka diganti secepat
	mungkin sebelum waktu produksi keesokan harinya (CF=0,9) dan lakukan
	pemanasan mesin prepack 1 jam sebelum digunakan untuk produksi
	(CF=0,8) serta lakukan perawatan mesin prepack secara intensif minimal 1
	bulan sekali pada seluruh bagian mesin terutama pada bagian pengemasan
	(CF=0,7).
	Jika input mesin <i>cup</i> naik dan output turun maka cek kerusakan mesin cup,
	apabila ada spareparts yang harus diganti maka diganti secepat mungkin
	sebelum waktu produksi keesokan harinya (CF=0,9) dan lakukan
	pemanasan mesin cup 1 jam sebelum digunakan untuk produksi (CF=0,8)
	serta lakukan perawatan mesin cup secara intensif minimal 1 bulan sekali
	pada seluruh bagian mesin terutama pada bagian pengemasan (CF=0,7).
	Jika input pengeluaran lainnya naik dan output turun maka lakukan
	penjadwalan pembayaran pajak dan pembelian spareparts secara terencana
	dan teratur (CF=0,8) dan lakukan pengiriman susu IPS sesuai jadwal dan
	rute yang telah ditentukan (CF=0,7).
Input Turun	Jika input tenaga kerja turun dan output turun maka tetap dengan jumlah
Output Turun	karyawan yang ada (CF=0,7).
	Jika input bahan baku turun dan output turun maka lakukan lakukan
	perencanaan pembelian bahan baku untuk beberapa bulan ke depan
	sehingga apabila terjadi kenaikan harga maka dapat diminimalkan (CF=0,8).
	Jika input energi turun dan output turun maka tetap menggunakan energi
	sehingga apabila terjadi kenaikan harga maka dapat diminimalkan (CF=0,8).

yang ada sehemat mungkin (CF=0,8).

Jika input mesin *prepack* turun dan output turun maka lakukan pemanasan mesin prepack 1 jam sebelum digunakan untuk produksi (CF=0,8) dan lakukan perawatan mesin prepack secara intensif minimal 1 bulan sekali pada seluruh bagian mesin terutama pada bagian pengemasan (CF=0,7).

Jika input mesin *cup* turun dan output turun maka lakukan pemanasan mesin cup 1 jam sebelum digunakan untuk produksi (CF=0,8) dan lakukan perawatan mesin cup secara intensif minimal 1 bulan sekali pada seluruh bagian mesin terutama pada bagian pengemasan (CF=0,7).

Jika input pengeluaran lainnya turun dan output turun maka tetap melakukan penjadwalan pembayaran pajak dan pembelian spareparts secara terencana (CF=0,8) dan tetap menggunakan jadwal dan rute pengiriman susu IPS sesuai jalur sebelumnya (CF=0,8).

Input Tetap Output Turun

Jika input tenaga kerja tetap dan output turun maka sebaiknya tetap dengan jumlah karyawan yang ada (CF=0,7).

Jika input bahan baku tetap dan output turun maka lakukan lakukan perencanaan pembelian bahan baku untuk beberapa bulan ke depan sehingga apabila terjadi kenaikan harga maka dapat diminimalkan (CF=0,8).

Jika input energi tetap dan output turun maka gunakan energi yang ada sehemat mungkin antara lain listrik, air dan solar. Untuk beberapa proses produksi yang menggunakan uap panas dari boiler dapat dilakukan dalam satu waktu yang bersamaan sehingga pemakaian solar industri dapat dihemat (CF=0,7).

Jika input mesin *prepack* tetap dan output turun maka cek kerusakan mesin prepack, apabila ada spareparts yang harus diganti maka diganti secepat mungkin sebelum waktu produksi keesokan harinya (CF=0,9), lakukan pemanasan mesin prepack 1 jam sebelum digunakan untuk produksi (CF=0,8) dan lakukan perawatan mesin prepack secara intensif minimal 1 bulan sekali pada seluruh bagian mesin terutama pada bagian pengemasan (CF=0,7).

Jika input mesin *cup* tetap dan output turun maka lakukan pemanasan mesin cup 1 jam sebelum digunakan untuk produksi (CF=0,8) dan lakukan perawatan mesin cup secara intensif minimal 1 bulan sekali pada seluruh bagian mesin terutama pada bagian pengemasan (CF=0,7).

Jika input pengeluaran lainnya tetap dan output turun maka tetap melakukan penjadwalan pembayaran pajak dan pembelian spareparts secara terencana (CF=0,8) dan tetap menggunakan jadwal dan rute pengiriman susu IPS sesuai jalur sebelumnya (CF=0,8).

Input Naik Output Tetap

Jika input tenaga kerja naik dan output tetap maka sebaiknya tidak melakukan penambahan karyawan dalam waktu dekat dan diantisipasi dengan menambahkan jam lembur (CF=0,8).

Jika input bahan baku naik dan output tetap maka lakukan perencanaan pembelian bahan baku untuk beberapa bulan ke depan sehingga apabila terjadi kenaikan harga maka dapat diminimalkan (CF=0,8).

Jika input energi naik dan output tetap maka gunakan energi yang ada sehemat mungkin antara lain listrik, air dan solar. Untuk beberapa proses produksi yang menggunakan uap panas dari boiler dapat dilakukan dalam satu waktu yang bersamaan sehingga pemakaian solar industri dapat dihemat (CF=0,7).

Jika input mesin *prepack* naik dan output tetap maka lakukan terus perbaikan mesin prepack sehingga mesin dapat menghasilkan loss produksi yang sangat kecil (CF=0,7).

Jika input mesin *cup* naik dan output tetap maka lakukan perawatan mesin cup secara intensif minimal 1 bulan sekali pada seluruh bagian mesin terutama pada bagian pengemasan (CF=0,7).

Jika input pengeluaran lainnya naik dan output tetap maka lakukan penjadwalan pembayaran pajak dan pembelian spareparts secara terencana (CF=0,8) dan lakukan pengiriman susu IPS sesuai jadwal dan rute yang telah ditentukan (CF=0,7).

Input Turun Output Tetap

Jika input tenaga kerja turun dan output tetap maka sebaiknya tetap dengan jumlah karyawan yang ada (CF=0,7).

Jika input bahan baku turun dan output tetap maka tetap melakukan perencanaan pembeliaan dan negosiasi dengan suplier agar biaya bahan baku dapat lebih ditekan (CF=0,6).

Jika input energi turun dan output tetap maka gunakan energi yang ada sehemat mungkin antara lain listrik, air dan solar. Untuk beberapa proses produksi yang menggunakan uap panas dari boiler dapat dilakukan dalam satu waktu yang bersamaan sehingga pemakaian solar industri dapat dihemat (CF=0,7).

Jika input mesin *prepack* turun dan output tetap maka lakukan pemanasan mesin prepack 1 jam sebelum digunakan untuk produksi (CF=0,8) dan lakukan perawatan mesin prepack secara intensif minimal 1 bulan sekali pada seluruh bagian mesin terutama pada bagian pengemasan (CF=0,7).

Jika input mesin *cup* turun dan output tetap maka lakukan pemanasan mesin cup 1 jam sebelum digunakan untuk produksi (CF=0,8) dan lakukan perawatan mesin cup secara intensif minimal 1 bulan sekali pada seluruh

	hagian masin tarutama nada bagian nangamasan (CE-0.7)
	bagian mesin terutama pada bagian pengemasan (CF=0,7).
	Jika input pengeluaran lainnya turun dan output tetap maka tetap melakukan
	penjadwalan pembayaran pajak dan pembelian spareparts secara terencana
	(CF=0,8) dan tetap menggunakan jadwal dan rute pengiriman susu IPS
	sesuai jalur sebelumnya (CF=0,8).
Input Naik	Jika input tenaga kerja naik dan output naik maka sebaiknya tidak
Output Naik	melakukan penambahan karyawan dalam waktu dekat dan diantisipasi
	dengan menambahkan jam lembur (CF=0,8).
	Jika input bahan baku naik dan output naik maka lakukan lakukan
	perencanaan pembelian bahan baku untuk beberapa bulan ke depan
	sehingga apabila terjadi kenaikan harga maka dapat diminimalkan (CF=0,8).
	Jika input energi naik dan output naik maka gunakan energi yang ada
	sehemat mungkin antara lain listrik, air dan solar. Untuk beberapa proses
	produksi yang menggunakan uap panas dari boiler dapat dilakukan dalam
	satu waktu yang bersamaan sehingga pemakaian solar industri dapat
	dihemat (CF=0,7).
	Jika input mesin <i>prepack</i> naik dan output naik maka lakukan perawatan
	mesin prepack secara intensif minimal 1 bulan sekali pada seluruh bagian
	mesin terutama pada bagian pengemasan (CF=0,7).
	Jika input mesin <i>cup</i> naik dan output naik maka lakukan perawatan mesin
	cup secara intensif minimal 1 bulan sekali pada seluruh bagian mesin
	terutama pada bagian pengemasan (CF=0,7).
	Jika input pengeluaran lainnya naik dan output naik maka lakukan
	pengiriman susu IPS sesuai jadwal dan rute yang telah ditentukan (CF=0,7)
	dan tetap melakukan penjadwalan pembayaran pajak dan pembelian
	spareparts secara terencana (CF=0,8).
Input Tetap	Jika input tenaga kerja tetap dan output naik maka sebaiknya tetap dengan
Output Naik	jumlah karyawan yang ada (CF=0,7).
	Jika input bahan baku tetap dan output naik maka tetap melakukan
	perencanaan pembeliaan dan negosiasi dengan suplier agar biaya bahan
	baku dapat lebih ditekan (CF=0,6).
	Jika input energi tetap dan output naik maka gunakan energi yang ada
	sehemat mungkin antara lain listrik, air dan solar. Untuk beberapa proses
	produksi yang menggunakan uap panas dari boiler dapat dilakukan dalam
	satu waktu yang bersamaan sehingga pemakaian solar industri dapat
	dihemat (CF=0,7).
	Jika input mesin <i>prepack</i> tetap dan output naik maka lakukan pemanasan
	mesin prepack 1 jam sebelum digunakan untuk produksi (CF=0,8) dan

lakukan perawatan mesin prepack secara intensif minimal 1 bulan sekali
pada seluruh bagian mesin terutama pada bagian pengemasan (CF=0,7).
Jika input mesin <i>cup</i> tetap dan output naik maka lakukan pemanasan mesin
cup 1 jam sebelum digunakan untuk produksi (CF=0,8) dan lakukan
perawatan mesin cup secara intensif minimal 1 bulan sekali pada seluruh
bagian mesin terutama pada bagian pengemasan (CF=0,7).
Jika input pengeluaran lainnya tetap dan output naik maka tetap melakukan
penjadwalan pembayaran pajak dan pembelian spareparts secara terencana
(CF=0,8) dan tetap menggunakan jadwal dan rute pengiriman susu IPS
sesuai jalur sebelumnya (CF=0,8).