浙江大学 2003 —2004 学年第一学期期终考试《操作系统》课程试卷

考试时间: __120__分钟 开课学院:_计算机学院_专业:_____

姓名:______ 学号:_____ 任课教师:______

题序	_	11	三 (1)三	(2)	=	(3)	三 (4)	三 (5)	总
评分										
评阅人										
						•				
		PART I	Opera	ating S	Syste	m Pr	incip	ole Exam		
	Choose Tru			each of	f follov	wing s	tateme	ents and fill	your answe	er in
	following bl			(`	A (`	7 (`	
	1.()			()	
		7. (()	
	11. (12. () 13.	() 14	4. ()	15. ()	
	16. (17. () 18.	() 1	9. ()	20. ()	
1.	1. Process is an entity that can be scheduled.									
2.	In the <i>producer-consumer</i> problem, the order of <i>wait</i> operations cannot be reversed, while the									
	order of signal operations can be reversed.									
3.	As to semaphores, we can think an execution of <i>signal</i> operation as applying for a resource.									
4.	Mutual exclusion is a special synchronization relationship.									
5.	Paging is a virtual memory-management scheme.									
6.	6. If the size of disk space is large enough in the virtual memory-management system, then a				en a					
	process can have unlimited address space.									
7.	Priority-scheduling algorithm must be preemptive.									
8.	In the virtual memory-management system, the running program can be larger than									
	physical memory.									

- 9. File directory is stored in a fixed zone in main memory.
- 10. While searching a file, the searching must begin at the root directory.
- 11. Thread can be a basic scheduling unit, but it is not a basic unit of resource allocation.
- 12. A process will be changed to waiting state when the process can not be satisfied its applying for CPU.
- 13. If there is a loop in the resource-allocation graph, it shows the system is in a deadlock state.
- 14. The size of address space of a virtual memory is equal to the sum of main memory and secondary memory.
- 15. Virtual address is the memory address that a running program want to access.
- 16. If a file is accessed in direct access and the file length is not fixed, then it is suitable to use indexed file structure.
- 17. SPOOLing system means Simultaneous Peripheral Operation Off Line.
- 18. Shortest-seek-time-first(SSTF) algorithm select the request with the minimum head move distance and seek time. It may cause starvation.
- 19. The main purpose to introduce buffer technology is to improve the I/O efficiency.
- 20. RAID level 5 stores data in N disks and parity in one disk.

二,	Choose	the C	CORREC	T and	BEST	answer	for each o	of follo	wing que	stions and fi	ill your
ansv	wer in fol	lowir	g blanks	, (30 m	arks)						
	1. ()	2. ()	3. ()	4. ()	5. ()	
	6. ()	7. ()	8. ()	9. ()	10. ()	
	11. ()	12. ()	13. ()	14. ()	15. ()	
	16. ()	17. ()	18. ()	19. ()	20. ()	
	21. ()	22. ()	23. ()	24. ()	25. ()	
	26. ()	27. ()	28. ()	29. ()	30. ()	
1.	A systen	n call	is	_ 0							
	A, a us	er wri	tten sub-j	orogram	1	B, a	library pro	gram ir	advance	l language	
	C, a co	mmar	nd in oper	ating sy	stem	D, an	interface j	provide	d by OS f	or user progr	am
2.		syste	m is able	to mana	ige and	run mu	tiple appli	cation 1	orograms .		

	A. GUI B. Windo	ws Applications	C.	Multitasking	D.	Networking
3.	In the following componen A. process scheduling C. address mapping		ageme	ent	eed ha	rdware support ?
4.	Which of following descrip A. process is a dynami	•		correct? . process has	life	-cycle
	C. process is a set of	instructions	D.	. processes c	an ru	n concurrently
5.	when round-robin(RR) sch a running state process u become					
	A. Waiting B. Runni	ng C. Ready	D.	Terminated		
6.	Suppose there are three pro are in following table		nd th	eir arriving	time a	nd executing time
	Process	Arriving Time	·	Executing	Time	
	P1	8:00		2 hour	S	
	P2	8:45		1 hour	r	
	P3	9:30		0.25 ho	ur	
	They run on a CPU of (non-preemptive) is adopted A.P3, P2, P1 B.	-	ses wi		ing ord	
7.	Which of following process	s state changing is i	mpos	sible to occur?		
	A. Ready →Running	B. Ru	nning	g→Ready		
	C. Running→Waiting	D. Wa	iting	g→Running		
8.	If there are N(N>2) proces now, then which of following A. a running process, B. a running process, C. a running process,	ng case is impossib no ready proces N-1 ready proce a ready process	le to describe and sees and	occur。 d N-1 waiting and no waiti N-2 waiting	proces	esses ocess sses
9.	D. no running process, Suppose 9 producers and 6	consumers share a	buffe	er with size of 8	. In ord	ler to use the buffer
	properly, the semaphore <i>mu</i> A. 1 B. 6 C. 8	utex of mutual excludes D. 9	sion	of the buffer is i	initializ	zed to。
10.	Suppose 5 processes share mutual exclusive sections a be initialized to			_	-	

11.	Suppose 4 processes arrive at the same time and the average execution time of every process is 2 hours. If they run on a CPU one by one, then the average turnaround time is
	A.1 hour B.5 hours C.2.5 hours D.8 hours
12.	Banker's algorithm is one ofalgorithm.
	A. deadlock recovery B. deadlock avoidance
	C. deadlock prevention D. deadlock detection
13.	If following situation appears in the resource-allocation graph, then we can consider that system is in deadlock state. A. there is a loop B. there is not any loop
	C. each resource has only one instance and there is a loop
	D. there is at least one request edge for each process node
14.	Which of following scheduling algorithm can make minimum average turnaround time in case all jobs arrive at same time?
	A. FCFS B. SJF C. RR D. Priority
15.	Which memory management scheme will not suffer from internal fragmentation?
	A. Paging B. Segmentation
	C. Fixed-sized partitions D. Segmentation with paging
16.	In computer systems <i>Translation Look-aside Buffer</i> (TLB) is used for
	A. storing file information B. exchanging data with main memory
	C. translating address D. storing channel programs
17.	Which of following memory management schemes is fit for program's dynamic linking?
	A. Segmentation B. Paging
	C. Dynamic-sized partitions D. Fixed-sized partitions
18.	The maximum capacity of virtual memory is
	A. the sum of main and secondary memory size
	B. determined by computer's address structure
	C. unlimited
	D. determined by job's address space
10	Suppose there is a virtual memory system. A process is allocated 3 frames and
10.	FIFO page-replacement algorithm is used. What is the number of page faults if
	the reference string is $1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5, 6$?
	A.7 B.8 C.9 D.10

A. 5 B. 3 C.1 D. 0

20.	Suppose there length of segr	•		-	•	•			
		B. 2 ¹⁶ C							
21.	In a paging men	nory manager	nent system	, there is	a page tabl	e as foll	owing:		
		D	N E	NT	_		_		
		Page		me No.	_				
		0	•	2					
		1		1					
		2		6					
		3		3					
		4		7	_				
	If the page size physical address		n paging ac	ldress h	ardware wil	l conve	rt logica	l address 0	into
		3.4096	C.2048		D.1024				
	We can infer from solution can impare A. to install a far B. to increase swifted to increase the D. to increase place.	orove system ster hard disk vap space wit e number of	performance th large capa running proc	e? acity hare cesses	l disk			ich of follow	wing
23.	If a file system each block occumanage? A. 2GB B. 10	pies 4 bytes)), what is the	e maxin					
24.	To prevent unau operating system A. file protection	n to ensure th		isers aut		he file o		n access files	•
25.	In order to solvi in file system.	ng "naming c	conflict" for	differen	t users' files	, we oft	en use fo	ollowing met	thod
	A. special metho	od	B. tree-st	ructured	directories				
	C. path		D. index						

B. record

D. track

26. The basic access unit of files on disk is _____.

A. block

C. cylinder

27. An I/O channel is a special ______.

A. I/O device B.I/O controller C. processor D. memory

28. Virtual devices are implemented with ______ technology.

A. channel B. buffer C. SPOOLing D. controller

29. The I/O control of disk devices mainly adopt following method.

A. bit B. byte C. frame D. DMA

30. The speed of CPU output data is much faster than printing speed of a printer. In order to solving this problem, which of following technology is used?

A. parallel technologyB. channel technologyC. buffer technologyD. virtual technology

Ξ, Please solve following questions (50 marks, 10 marks for each question):

1. Suppose there are two processes P1 and P2 which own same priority. Semaphores S1 and S2 are initialized to 0. Please tell the possible value of x, y and z when concurrent processes P1 and P2 finish executing.

Process P1	Process P2				
y=1;	x=1;				
y=y+2;	x=x+1;				
Signal(S1);	Wait(S1);				
z=y+1;	x=x+y;				
Wait(S2);	Signal(S2);				
y=z+y;	z=x+z;				

- 2. Suppose there are 8 tape drivers in a computer system and N processes compete to use these devices. The maximum demand of each process for tape drivers is 3. What is the maximum of N that system can avoid deadlock? Give explanation of your answer.
- 3. There is a paging system and its page table is in main memory.
 - (1) If it takes 1.5 microsecond to access main memory once, what is the time to finish accessing the desired byte in memory in this paging system?
 - (2) If there is a TLB in the system and its average hit ratio is 85%, and search time to TLB is 60 nanoseconds, what is time to finish a complete memory access?

- 4. Consider a file system on a disk that has both logical and physical block size of 512 bytes. Assume that the information about each file is already in memory. For each of the three allocation strategies (contiguous, linked, indexed), answer these questions:
 - (1). How is the logical-to-physical address mapping accomplished in this system? (For the indexed allocation, assume that a file is always less than 512 blocks long.)
 - (2). If we are currently at logical block 10 (the last block accessed was 20) and want to access logical block 5, how many physical blocks must be read from the disk?
- 5. Suppose that a disk drive has 1000 cylinders, numbered 0 to 999. The drive is currently serving a request at cylinder 345, and the disk arm will move in the direction of cylinder 0. The queue of pending requests, in FIFO order, is

Starting from the current head position, what is the total distance (in cylinders) that the disk arm moves to satisfy all the pending requests, for each of the following disk scheduling algorithms?

(A) FCFS, (B) SSTF, (C) SCAN, (E) C SCAN, (F) C LOOK