INF01 118

Técnicas Digitais para Computação

Circuitos Aritméticos

Somadores e Subtratores

1. Meio Somador ou *Half-Adder* (soma 2 bits)

X	\mathbf{Y}	S	<u>C</u>
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$\mathbf{S} = \overline{\mathbf{X}}\mathbf{Y} + \mathbf{X}\overline{\mathbf{Y}} = \mathbf{X} \oplus \mathbf{Y}$$

$$C = X \cdot Y$$

2. Somador Completo ou Full-Adder (soma 3 bits)

X	Y	$\mathbf{C_{in}}$	S	$\mathbf{C}_{\mathbf{out}}$	
0	0	0	0	0	$X \longrightarrow \square$
0	0	1	1	0	$Y \longrightarrow FA$
0	1	0	1	0	$C \longrightarrow C$
0	1	1	0	1	in out
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	$S = \overline{X}\overline{Y}C_{in} + \overline{X}Y\overline{C}_{in} + X\overline{Y}\overline{C}_{in} + XYC_{in}$
					$C_{out} = \overline{X}YC_{in} + X\overline{Y}C_{in} + XY\overline{C}_{in} + XYC_{in}$

$S YC_i$	n 00	01	11	10
0	0	1	0	1
1	1	0	1	0

- não há aparentemente nenhuma minimização a fazer
- no entanto $S = X \oplus Y \oplus C_{in}$
- XOR é comutativo e associativo

C_{out}: Solução 1

$$\mathbf{C}_{\text{out}} = \mathbf{XY} + \mathbf{XC}_{\text{in}} + \mathbf{YC}_{\text{in}}$$
$$= \mathbf{XY} + \mathbf{C}_{\text{in}} (\mathbf{X} + \mathbf{Y})$$

C_{out}: Solução 2

$$C_{out} = XY + C_{in} (X \oplus Y)$$

solução é preferível porque usa XOR também existente na expressão de S

• Para comprovar que as 2 soluções são equivalentes

$$C_{out} = XY + C_{in}(X \oplus Y)$$

- não é =1 se X=1 e Y=1, mas este caso já é coberto pelo 1º termo
- pode-se portanto reduzir X+Y para $X \oplus Y$

$$C_{out} = XY + C_{in}(X+Y)$$
 igual a 1 se X=1, ou Y=1, ou X=1 e Y=1

Circuito obtido a partir das expressões para S e C_{out}

Se reconhece dois *Half-Adders* (HA's)

$$S_1 = X \oplus Y$$

$$C_1 = X \cdot Y$$

$$S = S_2 = S_1 \oplus C_{in}$$

$$C_2 = S_1 \cdot C_{in}$$

$$C_{out} = C_1 + C_2$$

3. Somador de N Bits (Ripple Carry Adder)

4. Subtratores

Meio Subtrator (X-Y)

X	Y	D	В
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

$$B = Borrow$$

$$\mathbf{D} = \mathbf{X} \oplus \mathbf{Y}$$

$$\mathbf{B} = \overline{\mathbf{X}} \cdot \mathbf{Y}$$

Subtrator Completo: X-Y

X	Y	$\mathbf{B_{in}}$	D	$\mathbf{B}_{\mathbf{out}}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$\mathbf{D} = \mathbf{X} \oplus \mathbf{Y} \oplus \mathbf{B}_{in}$$

$$\mathbf{B}_{out} = \mathbf{XYB}_{in} + \mathbf{XYB}_{in} + \mathbf{XYB}_{in} + \mathbf{XYB}_{in}$$

$$\mathbf{B}_{\text{out}} = \overline{\mathbf{X}}\mathbf{Y} + \overline{\mathbf{X}}\mathbf{B}_{\text{in}} + \mathbf{Y}\mathbf{B}_{\text{in}}$$
$$= \overline{\mathbf{X}}\mathbf{Y} + \mathbf{B}_{\text{in}}(\overline{\mathbf{X}} + \mathbf{Y})$$

5. Somador/Subtrator

Somador Completo

$$S = X \oplus Y \oplus C_{in}$$

$$C_{out} = XY + C_{in} (X \oplus Y)$$

Subtrator Completo

$$\begin{aligned} \mathbf{D} &= \mathbf{X} \oplus \mathbf{Y} \oplus \mathbf{B}_{in} \\ \mathbf{B}_{out} &= \overline{\mathbf{X}} \mathbf{Y} + \overline{\mathbf{X}} \mathbf{B}_{in} + \mathbf{Y} \mathbf{B}_{in} = \overline{\mathbf{X}} \mathbf{Y} + \mathbf{B}_{in} (\overline{\mathbf{X}} + \mathbf{Y}) \end{aligned}$$

Pode-se fazer um subtrator usando-se um FA (Full Adder) com:

- entrada Y invertida
- $-C_{in}=1$

Isto corresponde a

$$X + Y + 1 = X - Y$$
 $2's de Y$

Somador / Subtrator

6. Somador usando apenas Meio-Somadores (HAs)

$$(\mathbf{A} + \mathbf{B} = \mathbf{S})$$

7. Somador com Carry Look-Ahead (vai-um antecipado)

Problema com Somador "Ripple Carry" e com o somador usando HAs:

_ tempo de propagação do último carry-out (último 'vai-um')

p.ex.

- Existe um carry em cada estágio
- Bits de carry e soma do último estágio só estão disponíveis após os tempos de propagação dos estágios anteriores

Alternativa 1

- Calcular cada S_i diretamente em função de X_i , Y_i , X_{i-1} , Y_{i-1} , ...
 - construir tabela-verdade
 - implementar circuito com lógica de 2 níveis

p.ex. soma com 2 estágios

$\mathbf{X_0}$	$\mathbf{Y_0}$	\mathbf{X}_1	$\mathbf{Y_1}$	Cin	S_1
0	0	0	0	0	0
0	0	0	1	0	1
0	0	0	0	1	1
0	0	0	1	1	0
0	1	1	0	0	1
•	:	:	•	•	:

Vantagem: Tempo de propagação só de 2 portas

Desvantagem: Equações muito grandes quando N é grande

Exige muitas portas, com muitas entradas

Alternativa 2

Um estágio causa carry se

a) gerar um carry, pois
$$X_i = 1$$
 e $Y_i = 1$

$$G_i = X_i \cdot Y_i$$

b) propagar um carry vindo do estágio anterior

$$\mathbf{P_i} = \mathbf{X_i} \oplus \mathbf{Y_i}$$

$$C_i = 1 e (X_i = 1 OU Y_i = 1)$$

mas não ambos, pois então recai-se no caso a

Unidade Somadora

- Expandindo as Equações para Geração de Carry :
 - P/ Carry Look-ahead de 1, 2 e 3 estágios

$$\begin{split} &C_1 = G_0 + P_0 \ C_0 \\ &C_2 = G_1 + P_1 \ C_1 = G_1 + P_1 \ (G_0 + P_0 C_0) \\ &C_3 = G_2 + P_2 \ C_2 = G_2 + P_2 \ (G_1 + P_1 \ (G_0 + P_0 C_0)) \\ &= G_2 + P_2 \ G_1 + P_2 \ P_1 \ G_0 + P_2 \ P_1 \ P_0 \ C_0 \end{split}$$

$$\mathbf{C_{out}} = \mathbf{XY} + \mathbf{C_{in}} (\mathbf{X} \oplus \mathbf{Y})$$

$$\mathbf{G}$$

ou seja

$$C_3 = 1$$
 se

- for gerado carry no estágio 2 (G₂), ou
- for propagado carry pelo estágio 2, gerado no estágio $1 (P_2 G_1)$, ou
- for propagado carry pelos estágios 1 e 2, gerado no estágio 0 ($P_2P_1G_0$), ou
- for propagado o carry Co (entrada) pelos estágios $0, 1 e 2 (P_2 P_1 P_0 C_0)$

Rede Lógica para o Carry Look-ahead de 3 estágios

- Analisando o tempo de propagação:
 - C_i em cada estágio tem tempo de propagação de 3 portas
 - C_i em cada estágio não depende de C_{i-1}
 - C_i é calculado em função de A_i , B_i , A_{i-1} , B_{i-1} ,... e C_{i-3}
 - S_i em cada estágio tem tempo de propagação de 4 portas
- Número de Entradas nas portas AND ou OR (ou NAND ou NOR):
 - Para N-estágios de Look-Ahead ----> Portas de N+1 Entradas! (atraso)

Solução intermediária (Com Carry Look-ahead de 4 estágios)

• por exemplo supondo um somador de 16 bits

- dentro de cada somador de 4 bits as equações não crescem demais
 - gasto moderado de portas e entradas
- tempo de propagação = 4 x tempo de um somador com carry antecipado