

#### NPTEL ONLINE CERTIFICATION COURSES

# DIGITAL CONTROL IN SMPCs AND FPGA-BASED PROTOTYPING

Dr. Santanu Kapat Electrical Engineering Department, IIT KHARAGPUR

Module 04: Modeling Techniques and Mode Validation using MATLAB

Lecture 34: Derivation of Discrete-Time Large-Signal Models





# **CONCEPTS COVERED**

- Discrete-time modeling in DC-DC converters
- Derivation of discrete-time large-signal models

#### State-Space Matrices of a Synchronous Buck Converter



Synchronous buck converter

$$B_{1} = \begin{bmatrix} \frac{1}{L} & \frac{\alpha r_{C}}{L} \\ 0 & -\frac{\alpha}{C} \end{bmatrix} \quad B_{2} = \begin{bmatrix} 0 & \frac{\alpha r_{C}}{L} \\ 0 & -\frac{\alpha}{C} \end{bmatrix}$$



in absence of current sink



# Waveforms under Trailing-Edge Modulation with Interval-2 Sampling













# Periodic Evolution of State Vector over within a Sampling Cycle (contd..)





# Periodic Evolution of State Vector over within a Sampling Cycle (contd..)



| S. No | o. Mode          | Duration                                    | Initial state<br>vector | Final state<br>vector | State matrices |
|-------|------------------|---------------------------------------------|-------------------------|-----------------------|----------------|
| 1.    | M <sub>2</sub>   | $nT \le t < nT + t_s  \text{-}$             | $(x_n)$                 | $(x_1)$               | $(A_2)B_2$     |
| 2.    | M <sub>1</sub> . | $nT + t_s \le t < nT + t_s + t_{\text{on}}$ | $(x_1)^A$               | $(x_2)$               | $(A_1)(B_1)$   |
| 3.    | M <sub>2</sub>   | $nT + t_s + t_{\text{on}} \le t < (n+1)T$   | $(x_2)$                 | $(x_{n+1})$           | $(A_2)(B_2)$   |
|       |                  |                                             |                         |                       |                |

[S. Kapat, "An Analytical Approach of Discrete-Time Modeling ..." IEEE APEC, 2021]



| S. No.               | Mode           | Duration                                    | Initial state vector | Final state<br>vector | State matrices     |
|----------------------|----------------|---------------------------------------------|----------------------|-----------------------|--------------------|
| <br>1.               | $M_2$          | $nT \le t < nT + t_s$                       | $x_n$                | $x_1$                 | $A_2 = A, B_2 = 0$ |
| 2.                   | $M_1$          | $nT + t_s \le t < nT + t_s + t_{\text{on}}$ | $x_1$                | $x_2$                 | $A_1 = A, B_1$     |
| 3.                   | M <sub>2</sub> | $nT + t_s + t_{\rm on} \le t < (n+1)T$      | $\chi_2$             | $x_{n+1}$             | $A_2 = A, B_2 = 0$ |
| State space solution |                |                                             |                      |                       |                    |



$$x(t) = e^{A_q(t-t_o)} x(t_o) + (e^{A_q(t-t_o)} - I) A_q^{-1} B_q u$$

State-space solution 
$$x(t) = e^{A_q(t-t_o)}x(t_o) + (e^{A_q(t-t_o)} - I)A_q^{-1}B_qu$$

$$t_o = nT \Rightarrow x(t_o) = x_n$$

$$t = nT + t_s \Rightarrow x(t) = x_1$$

$$Mode M_2 \Rightarrow x_1 = e^{At} x_n$$



|   | S. No. | Mode           | Duration                                  | Initial state vector | Final state vector | State matrices     |
|---|--------|----------------|-------------------------------------------|----------------------|--------------------|--------------------|
|   | 1.     | $M_2$          | $nT \le t < nT + t_s$                     | $x_n$                | $x_1$              | $A_2 = A, B_2 = 0$ |
| - | 2.     | $\mathrm{M}_1$ | $nT + t_s \le t < nT + t_s + t_{on}$      | $x_1$                | $x_2$              | $A_1 = A, B_1$     |
|   | 3.     | $M_2$          | $nT + t_s + t_{\text{on}} \le t < (n+1)T$ | $\chi_2$             | $x_{n+1}$          | $A_2 = A, B_2 = 0$ |

$$\begin{array}{c} \text{State-space solution} \\ x(t) = e^{A_q(t-t_o)} x(t_o) + (e^{A_q(t-t_o)} - I) A_q^{-1} B_q u \end{array}$$

$$t_o = \underbrace{n\,T + t_s}_{o} \Rightarrow x(t_o) = \underbrace{x_1}_{o}$$

$$t = nT + t_{s} + t_{on} \Rightarrow x(t) = x_{2}$$

Mode 
$$M_1 \Rightarrow x_2 = e^{At_{on}} x_1 + (e^{At_{on}} - I)A^{-1}B_1 v_{in}$$



| S   | . No. | Mode  | Duration                                    | Initial state vector | Final state vector | State matrices     |
|-----|-------|-------|---------------------------------------------|----------------------|--------------------|--------------------|
|     | 1.    | $M_2$ | $nT \le t < nT + t_s$                       | $x_n$                | $x_1$              | $A_2 = A, B_2 = 0$ |
|     | 2.    | $M_1$ | $nT + t_s \le t < nT + t_s + t_{\text{on}}$ | $x_1$                | $x_2$              | $A_1 = A, B_1$     |
| -[_ | 3.    | $M_2$ | $nT + t_s + t_{\rm on} \le t < (n+1)T$      | $\chi_2$             | $x_{n+1}$          | $A_2 = A, B_2 = 0$ |

State-space solution

$$x(t) = e^{A_q(t-t_o)} x(t_o) + (e^{A_q(t-t_o)} - I) A_q^{-1} B_q u$$

$$t_o = nT + t_s + t_{on} \Rightarrow x(t_o) = x_2$$
  
$$t = (n+1)T \Rightarrow x(t) = x_{n+1}$$

$$\mathbf{Mode} \ \mathbf{M_2} \Rightarrow x_{n+1} = e^{A(T - t_{on} - t_s)} x_2 + \left( \ \ \bigcirc \ \ \right)$$



| S. No. | Mode           | Duration                                    | Initial state vector  | Final state<br>vector | State matrices     |
|--------|----------------|---------------------------------------------|-----------------------|-----------------------|--------------------|
| 1.     | M <sub>2</sub> | $nT \le t < nT + t_s$                       | $x_n$                 | $x_1$                 | $A_2 = A, B_2 = 0$ |
| 2.     | $M_1$          | $nT + t_s \le t < nT + t_s + t_{\text{on}}$ | $x_1$                 | $x_2$                 | $A_1 = A, B_1$     |
| 3.     | M <sub>2</sub> | $nT + t_s + t_{on} \le t < (n+1)T$          | $\langle x_2 \rangle$ | $x_{n+1}$             | $A_2 = A, B_2 = 0$ |



Mode M<sub>1</sub>: 
$$x_2 = e^{At_{on}} \dot{x_1} + (e^{At_{on}} - I)A^{-1}B_1v_{in}$$

Mode M<sub>2</sub>: 
$$x_{n+1} = e^{A(T - t_{on} - t_s)} x_2$$

[S. Kapat, "An Analytical Approach of Discrete-Time Modeling ..." IEEE APEC, 2021]



Eliminate  $x_1$  and  $x_2$  to obtain  $x_{n+1}$  in terms of  $x_n$ 



Mode 
$$M_1$$
:  $(x_2 = e^{At_{on}}x_1 + (e^{At_{on}} - I)A^{-1}B_1v_{in}$ 

Mode 
$$M_2$$
:  $x_{n+1} = e^{A(T - t_{on} - t_s)}$ 

Large-Signal Discrete-Time Model

$$x_{n+1} = e^{AT}x_n + e^{A(T-t_{on}-t_s)}(e^{At_{on}} - I)A^{-1}B_1v_{in}$$



#### Complete Discrete-Time Large-Signal Model with Resistive Load

#### Large-Signal Discrete-Time Model

$$x_{n+1} = e^{AT}x_n + e^{A(T - t_{on} - t_s)}(e^{At_{on}} - I)A^{-1}B_1v_{in}$$

$$x_{n+1} = e^{AT}x_n + e^{A(T-t_{\text{on}}-t_s)}(e^{At_{\text{on}}} - I)A^{-1}B_1v_{\text{in}} = f(x_n, t_{\text{on}}) = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

[S. Kapat, "An Analytical Approach of Discrete-Time Modeling ..." IEEE APEC, 2021]





# **CONCLUSION**

- Discrete-time modeling in DC-DC converters
- Derivation of discrete-time large-signal models

