Рентгеновские пульсары и их временной анализ

Горизонты физики ИКИ РАН, 2024 отдел Астрофизики высоких энергий Мухин Андрей

Рентгеновское излучение в космосе

Историческая справка

Пульсары (одиночные)

Пульсары (в двойных системах)

Временной анализ

Чем мы займемся на практике?

Историческая справка

Открыли рентгеновское излучение Rontgen, W. (1896). On a New Kind of Rays. Nature.

(череда открытий излучения Солнца)

Нашли рентгеновский источник вне Солнечной Системы (Sco X-1) Giacconi, Riccardo et al. (1962). Evidence for x Rays From Sources Outside the Solar System

Нашли первый рентгеновский пульсар (Cen X-3)

Giacconi, R. et al. (1971). Discovery of Periodic X-Ray Pulsations in Centaurus X-3 from UHURU

Почему так долго?

Почему так долго?

Эволюция звёзд

Нейтронные звезды

Экстремальный объект:

Что такого экстремального?

Магнитное поле

Напряженность магнитного поля:

Земли 0,5 Гс

Магнит на холодильнике 50 Гс

3везд 10 – 1000 Гс

Для левитации лягушки 10⁵ Гс

Сильнейшее в лаборатории 10⁶ Гс

Нейтронной звезды 10¹²-10¹³ Гс

Размеры

Радиус объекта:

Солнц	a	696 340 км
	<u>o.</u>	

Белого карлика 7000 км

Земли 6371 км

Радиус МКАД 19 км

Нейтронной звезды

Откуда такая экстремальность?

Экстремальность: размер

Экстремальность: размер

Экстремальность: размер

Экстремальность: **все остальное**

Законы сохранения

магнитного момента

 \sim BR² = const

момента импульса

 $M\omega R^2 = const$

Из звезды (Солнца)

1000000 км

В объект радиусом

10 KM

Что имеем в итоге?

Пульсары (одиночные)

Периодическое излучение в **радио-диапазоне**

Как это работает?

Пульсар вращается вокруг оси вращения излучение идет вдоль магнитной оси

Пульсары (одиночные)

Откуда излучение?

Магнитное поле теряет энергию, ускоряя частицы до релятивистских скоростей

Частицы теряют энергию, излучая в радиодиапазоне

Пульсары (в двойных системах)

Пульсары (в двойных системах)

Пульсары (в двойных системах)

Два режима:

pulsars: nsient X

Временной анализ Как выглядят данные?

TIME	RAWX	RAWY	PI
float64	int16	int16	int16
599643821.5373161	56	58	12182
599643821.8530335	61	20	151
599643822.0233889	53	151	11881
599643823.9122173	2	120	213
599643823.909506	10	120	266
599643823.8954127	14	120	195
599643823.8982813	17	120	354
599643823.9380039	29	120	208
599643823.9085362	42	120	385
599643823.8976709	45	120	198

Временной анализ Как выглядят данные?

Ссылка

Strohmayer, T. and Keek, L, IGR J17062-6143 Is an Accreting Millisecond X-Ray Pulsar // ApJL 2017

Основные виды: Вейвлет анализ

Normalized

power (dB)

Ссылка

2.8

2.1

1.4

1.0

0.5

Основные виды:

Наложение эпох (Epoch folding)

Что можно узнать о пульсаре?

Период собственного вращения

Период орбитального вращения

Наклон пульсара (?)

Возраст (???)

Наклон пульсара Физические модели go brrrrrrr

Сила статистики (и еще немного моделей)

Пульсары теряют момент

Пульсары замедляются

Можно **оценить** возраст

Чем мы займемся на практике?

Ha искусственных данных научимся использовать **Epoch folding**:

- Что такое кривые блески и фазовые профили
- Что такое хи-квадрат
- Как это написать в коде

Возьмем настоящие данные **рентгеновского пульсара Cen X-3** и найдем в них **его период**

- Какой период детектируется у этого объекта
- Как определить истинный период в данных

Спасибо за внимание