

Amorphous powder cores for high efficiency

AmoFlux® is a new powder alloy distributed gap material that is ideal for power factor correction (PFC) and output chokes. This alloy starts with amorphous ribbon that is pulverized into powder and then pressed into a toroid. By converting the ribbon into a powder, the resulting AmoFlux cores have the same excellent properties, including soft saturation, as Magnetics' other powder core materials: Kool Mµ®, MPP, High Flux, and XFLux®. What makes this amorphous powder core material unique is the combination of low core loss and high DC bias. These attributes make AmoFlux an excellent choice for computer, server, and industrial power supplies that require high current inductors with superior efficiency.

	Core Loss				
Material	100 mT 100 kHz				
MPP	590				
AmoFlux	700				
Kool Mµ	700				
High Flux	1,300				
XFLUX	2,000				
Iron Powder	6,000				
Units	mW/cm³				

	DC Bias				
Material	80% Rolloff	50% Rolloff			
XFLUX	75	136			
High Flux	70	130			
AmoFlux	62	111			
MPP	48	84			
Kool Mµ	34	76			
Iron Powder	23	56			
Units	A-T/cm	A-T/cm			

Attribute	AmoFlux vs. Other Products					
Attribute	High Flux	Sendust	MPP			
Core Loss	AmoFlux is 50% better	Similar	MPP is better			
DC Bias	High Flux is better	AmoFlux is 50% better	AmoFlux is 30% better			
Cost	AmoFlux is lower and not subject to changes in Ni	Sendust is lower	AmoFlux is much lower and not subject to changes in Ni			
AmoFlux Benefits	AmoFlux Benefits Better efficiency and a more cost-effective solution		Higher current handling, potential size reduction, less copper required, and a more cost-effective solution			

Material	Alloy Composition	Core Loss	DC Bias	Relative Cost	Saturation Flux Density (Tesla)	Curie Temperature	Operating Temperature Range	60 µ µ flat to
AmoFlux	Fe Si B	Low	Better	Medium	1.5	400° C	-55° C to 155° C	2 MHz
High Flux	Fe Ni	Moderate	Best	Medium	1.5	500° C	-55° C to 200° C	1 MHz
Kool Mµ	Fe Si Al	Low	Good	Low	1.0	500° C	-55° C to 200° C	900 kHz
MPP	Fe Ni Mo	Very Low	Better	High	0.75	460° C	-55° C to 200° C	2 MHz
XFLUX	Fe Si	High	Best	Low	1.6	700° C	-55° C to 200° C	500 kHz
Iron Powder	Fe	Highest	Good	Lowest	1.2 - 1.5	770° C	-30° C to 75° C	500 kHz
Ferrite	Ceramic	Lowest	Poor	Lowest	0.45	100 - 250° C	Variable	Variable

AmoFlux® Core Loss Density

 $\begin{array}{lll} 1 \text{kHz} - 49 \text{kHz} & P_{L} = 360 \; (B^{2.22}) \, (f^{1.184}) \\ 50 \text{kHz} - 99 \text{kHz} & P_{L} = 55.6 \; (B^{2.20}) \, (f^{1.65}) \\ 100 \text{kHz} - 250 \text{kHz} & P_{L} = 820 \; (B^{2.19}) \, (f^{1.06}) \end{array}$

AmoFlux® Permeability vs. DC Bias

$$\begin{array}{ll} (\mu/\mu) = & 0.9931 + (2.295^*10^3 \text{ H}) \\ & - (1.291^*10^4 \text{ H}^2) + (7.653^*10^7 \text{ H}^3) \\ & - (1.361^*10^9 \text{ H}^4) \end{array}$$

AmoFlux® Magnetization Curve

$$B = \left[\begin{array}{c} (8.252 \times 10^{2} + 1.236 \times 10^{1} \text{ H} + 2.017 \times 10^{2} \text{ H}^{2}) \\ \hline (1 + \text{H} + 1.689 \times 10^{2} \text{ H}^{2}) \end{array} \right]$$

AmoFlux® Permeability vs. AC Flux Density

0.01

AC Flux Density (Tesla)

0.1

0.001

AmoFlux® Permeability vs. Frequency

AmoFlux® Permeability vs. Temperature

$$\begin{array}{rl} (\Delta\mu/\mu) = & -1.014^*10^2 + (5.222^*10^4\,\text{T}) \\ & - \, (1.491^*10^6\,\text{T}^2) \end{array}$$

AmoFlux® Dimensions and Magnetic Data

Dimens	ions (after	finish)	Part	V +80%	A,±8%	Magnetic Data				
OD (mm) max	ID (mm) min	HT (mm) max	Number	Permeability	(nH/T ²)	W _a (mm²)	A _e (mm²)	L _e (mm)	V _e (mm³)	Weight (g)
24.4	13.7	9.66	0088351A7	60	51	149	38.8	58.8	2,280	14
27.69	14.1	12.0	0088894A7	60	75	156	65.4	63.5	4,150	26
33.66	19.4	11.5	0088071A7	60	61	297	65.6	81.4	5,340	33
40.77	23.3	15.4	0088083A7	60	81	427	107	98.4	10,600	65
47.63	23.3	19.0	0088439A7	60	135	427	199	107	21,300	131
58.04	25.57	16.2	0088192A7	60	138	514	229	125	28,600	173

Magnetics powder cores are able to continuously operate at a temperature of 200° C. This limit is set by the core coating as opposed to the material. With AmoFlux, closer attention needs to be paid to the continuous operating temperature since the limit is set at 155° C. Inductance, bias and core losses were all confirmed to be stable up to 155° C.

Applications	Markets
High current AC output chokes	Renewable
PFC chokes	Consumer/UPS
Output chokes for industrial supplies	Industrial
High frequency flyback transformers	UPS

New sizes will be added.

Go to www.mag-inc.com/products/powder-cores/amoflux-cores for updates.

HEADQUARTERS

Pittsburgh, PA 15238 (p) 1.412.696.1333 1.800.245.3984

magnetics@spang.com www.mag-inc.com

MAGNETICS INTERNATIONAL

Kowloon, Hong Kong (p) +852.3102.9337 +86.13911471417

asiasales@spang.com www.mag-inc.com.cn