Equidistribution and Peyre's Constant

Sebastian Monnet

2022

1 Heights associated to adelic metrics

1.1 Motivation

The standard height function on \mathbb{Q} is defined by

$$H(a/b) = \max\{|a|, |b|\},\$$

where a/b is a fraction written in its lowest term.

Consider the natural embedding

$$\mathbb{Q} \to \mathbb{P}^1_{\mathbb{Q}}, \quad x \mapsto [x:1].$$

We would like to define a height $H: \mathbb{P}^1_{\mathbb{Q}} \to \mathbb{R}$ extending the standard height on \mathbb{Q} . That is, we want

$$H([a/b:1])=\max\{|a|,|b|\}$$

for coprime integers a, b with $b \neq 0$. In other words, we want

$$H([a:b])=\max\{|a|,|b|\}$$

for coprime integers a, b with $b \neq 0$. Therefore we define H by

$$H([a:b]) = \max\{|a|, |b|\}$$

for all coprime pairs of integers a, b, with b possibly 0. This generalises naturally to $\mathbb{P}^n_{\mathbb{Q}}$. Let $x \in \mathbb{P}^n_{\mathbb{Q}}$, and write $x = [x_0 : \ldots : x_n]$ for mutually coprime integers x_i . Then define

$$H(x) = \max_{i} \{|x_i|\}.$$

The condition on coprime integer coordinates is a bit annoying, so we would like a more intrinsic characterisation.

Lemma 1.1. For mutually coprime integers x_0, \ldots, x_n , we have

$$\max_{i} \{|x_{i}|\} = \prod_{v \in M_{\mathbb{O}}} \max_{i} \{|x_{i}|_{v}\}.$$

Proof. Since the x_i are integers, we have

$$\max_{i} \{|x_{i}|_{v}\} = \begin{cases} \max_{i} |x_{i}| & \text{if } v = \infty, \\ 1 & \text{otherwise.} \end{cases}$$

Corollary 1.2. Let $x \in \mathbb{P}^1_{\mathbb{Q}}$ and let $x = [x_0 : \ldots : x_n]$ be any choice of coordinates. Then we have

$$H(x) = \prod_{v \in M_{\mathbb{O}}} \max_{i} \{|x_i|_v\}.$$

Proof. Follows from the product formula, which tells us that

$$\prod_{v \in M_k} |\lambda|_v = 1$$

for all
$$\lambda \in \mathbb{Q}^{\times}$$
.

This characterisation extends naturally to \mathbb{P}_k^n for any number field k. Define $H_k: \mathbb{P}_k^n \to \mathbb{R}$ by

$$H_k(x) = \prod_{v \in M_k} \max_i \{|x_i|_v\}.$$

Let V be a variety over k and let \mathcal{L} be a very ample sheaf. Let $s_0, \ldots, s_n \in \Gamma(X, \mathcal{L})$ be a basis, so that we have a closed embedding

$$\iota: V \hookrightarrow \mathbb{P}_k^n, \quad x \mapsto [s_0(x):\ldots:s_n(x)].$$

Define $H_{\mathcal{L}}: V(k) \to \mathbb{R}$ by

$$H_{\mathcal{L}}(x) = H_k(\iota(x)) = \prod_{v \in M_k} \max_i \{|s_i(x)|_v\}.$$

Pick a section $s \in \Gamma(V, \mathcal{L})$, and define

$$||s(x)||_v := \min_i \left| \frac{s(x)}{s_i(x)} \right|_v,$$

where we adopt the convention that $\frac{1}{0} = \infty$ and $|\infty|_v = \infty$. Then we have

$$H_{\mathcal{L}}(x) = \prod_{v \in M_k} ||s(x)||_v^{-1}.$$

The plan is to replace the collection $(\|\cdot\|_v)_{v\in M_k}$ by a more general notion called a **adelic metric**, and then define the height in terms of $\|\cdot\|_v$ in the same way.

1.2 Adelic metrics and their heights

Let \mathcal{L} be a very ample sheaf on a Fano variety V over a number field k, and let $v \in M_k$. For $x \in V(k_v)$, we may pull \mathcal{L} back to a sheaf on the base change V_{k_v} , which we also denote by \mathcal{L} . The sections $s \in \Gamma(V, \mathcal{L})$ take values s(x) in a vector space

$$\mathcal{L}(x) = \mathcal{L}_x \otimes_{\mathcal{O}_{V_{k_v},x}} k_v(x),$$

where $k_v(x)$ is the residue field of the local ring $\mathcal{O}_{V_{k_v},x}$. A v-adic metric on \mathcal{L} is a collection $\|\cdot\|_v := (\|\cdot\|_{v,x})_{x \in V(k_v)}$, such that for all $s \in \Gamma(V,\mathcal{L})$, the map

$$x \mapsto ||s(x)||_{v,x}, \quad V(k_v) \to \mathbb{R}$$

is continuous. An **adelic metric** on V is a collection $(\|\cdot\|_v)_{v\in M_k}$ of v-adic metrics such that there exists a basis s_0, \ldots, s_n of $\Gamma(V, \mathcal{L})$ such that for almost all $v \in M_f$, the following statement is true:

• For all $x \in V(k_v)$ and all $s \in \Gamma(V, \mathcal{L})$ with $s(x) \neq 0$, we have

$$||s(x)||_{v,x} = \min_{i} \left| \frac{s(x)}{s_i(x)} \right|_v.$$

Given an adelic metric $(\|\cdot\|_v)_{v\in M_k}$ on V, the height associated to it is

$$\mathbf{h}(x) = \prod_{x \in M_k} ||s(x)||_{v,x}^{-1}.$$

Example 1.3. Defining

$$||s(x)||_{v,x} := \min_{i} \left| \frac{s(x)}{s_i(x)} \right|_{x}$$

for all places gives an adelic metric, and the associated height function is the usual height function corresponding to a basis of $\Gamma(V, \mathcal{L})$.

Example 1.4. Another adelic metric is given by

$$||s(x)||_{x,v} = \begin{cases} \min_i \left| \frac{s(x)}{s_i(x)} \right|_v & \text{if } v \in M_f, \\ \sqrt{\left| \frac{s_0(x)}{s(x)} \right|_v^2 + \ldots + \left| \frac{s_n(x)}{s(x)} \right|_v^2} & \text{if } k_v \cong \mathbb{R}, \\ \left(\left| \frac{s_0(x)}{s(x)} \right|_v + \ldots + \left| \frac{s_n(x)}{s(x)} \right|_v \right)^{-1} & \text{if } k_v \cong \mathbb{C}. \end{cases}$$

Then this gives a genuinely different height function, which was used by Jeffrey Lin Thunder to count rational points on flag varieties.

2 Manin's Conjecture

2.1 Accumulating subvarieties and thin sets

Define

$$n_{\mathbf{h},V}(H) = \#\{P \in U(k) : \mathbf{h}(P) \le H\}.$$

Ideally we would like to have

$$n_{\mathbf{h},V}(H) \sim CH(\log H)^{t-1}$$

for some constant C. Unfortunately this does not hold, and we have the following counterexample by Batyrev, Manin, Serre, et al.

Example 2.1. Let V be the projective plane $\mathbb{P}^2_{\mathbb{Q}}$ blown up at the point $P_0 = [0:0:1]$. Explicitly, we can write

$$V = \{([x:y:z],[s:t]) \in \mathbb{P}^2_{\mathbb{Q}} \times \mathbb{P}^1_{\mathbb{Q}} : xt = ys\}.$$

Let h be the height function

$$\mathbf{h}(P,Q) = \mathbf{h}_{\mathcal{O}_{\mathbb{P}^2_{\mathbb{O}}}(1)}(P) \cdot \mathbf{h}_{\mathcal{O}_{\mathbb{P}^1_{\mathbb{O}}}(1)}(Q)$$

Then we have

$$n_{\mathbf{h},V}(H) \sim \frac{2}{\zeta_{\mathbb{Q}}(2)} H^2,$$

so V does not satisfy the super naive conjecture. It turns out that the failure is "explained" by the exceptional divisor

$$E = \{([0:0:1], [s:t]) : [s:t] \in \mathbb{P}^1_{\mathbb{Q}}\}.$$

In particular, we have

$$n_{\mathbf{h},E}(H) \sim \frac{2}{\zeta_{\mathbb{Q}}(2)} H^2,$$

and

$$n_{\mathbf{h},V\setminus E}(H) \sim \frac{8}{3\zeta_{\mathbb{Q}}(2)^2} H \log H,$$

which is what we wanted.

This counterexample led Manin (I think) to define "accumulating subvarieties". Given a subset U of V, write

$$\beta_U = \limsup_{H \to \infty} \frac{\log n_U(H)}{\log H}.$$

This is essentially the power of H appearing in the asymptotic formula for $n_U(H)$.

Definition 2.2. An accumulating subvariety of V is a subvariety F of V such

that for all nonempty open $W \subseteq F$, there is some nonempty open $U \subseteq V$ such that $\beta_W > \beta_U$.

The conjecture in Peyre is stated for the complements of all accumulating subvarieties. Unfortunately this also does not hold:

Example 2.3 (Batyrev-Tschinkel). Let V be the subvariety of $\mathbb{P}^3_{\mathbb{Q}} \times \mathbb{P}^3_{\mathbb{Q}}$ defined by the equation

$$\sum_{i=0}^{3} X_i Y_i^3 = 0.$$

There is a natural height function given by

$$\mathbf{h}(P,Q) = \mathbf{h}_{\mathcal{O}_{\mathbb{P}^3_{\mathbb{O}}}(1)}(P) \cdot \mathbf{h}_{\mathcal{O}_{\mathbb{P}^3_{\mathbb{O}}}(1)}(Q).$$

Let $\pi:V\to\mathbb{P}^3_{\mathbb{Q}}$ be the projection onto the first factor. For each $P=[x_0:x_1:x_2:x_3]\in\mathbb{P}^3(\mathbb{Q})$, with all x_i nonzero, the fibre $V_P=\pi^{-1}(P)$ is a smooth cubic hypersurface in $\mathbb{P}^3_{\mathbb{Q}}$. Let U_P be the complement of the 27 lines in V_P . We can choose P such that $\mathrm{rank}\,\mathrm{Pic}(V_P)=4$. Apparently, the conjecture is expected to be true for all dense open subsets of a smooth cubic surface, so for all dense open $U\subseteq U_P$ we have

$$n_{\mathbf{h},U}(H) \sim CH(\log H)^3$$
.

On the other hand, apparently rank Pic(V) = 2, so the conjecture implies that

$$n_{\mathbf{h},U}(H) \sim CH(\log H),$$

for some dense open subset U. However, the set of P with $\operatorname{rank}\operatorname{Pic}(V_P)=4$ is precisely the image of the map

$$c: \mathbb{P}^3 \to \mathbb{P}^3, \quad [x_0: x_1: x_2: x_3] \mapsto [x_0^3: x_1^3: x_2^3: x_3^3],$$

which is dense in \mathbb{P}^3 . It follows that $U \cap U_P$ is nonempty for some such P, so

$$n_{\mathbf{h},U\cap U_P}(H) \sim CH(\log H)^3$$
,

contradicting the conjectural asymptotics of $n_{\mathbf{h},U}(H)$.

This counterexample is explained by so-called **thin subsets**.

Definition 2.4. Let V be a nice variety. A subset T of V(k) is called **thin** if it is in the image of a morphism $\varphi: X \to V$ of varieties that is generically finite and has no rational section.

The union of all badly behaved V_P above is thin. The crucial difference here is that thin sets are not necessarily Zariski closed, so the argument of the counterexample no longer applies.

Conjecture 2.5 (Manin's Conjecture). Let V be a Fano variety over k with a very ample sheaf \mathcal{L} , and assume that V(k) is dense in $V(\mathbb{A}_k)$. Then there exists some thin set $T \subseteq V(k)$ such that

$$n_{\mathbf{h},V\setminus T}(H) \sim CH(\log H)^{t-1}$$
.

3 Peyre's constant

3.1 Local measures

Let V be a Fano variety over a number field k with very ample anticanonical sheaf. Fix an adelic measure on ω_V^{-1} . Let U be an open set of V with affine coordinates $x_1, \ldots, x_n : U \to \mathbb{A}^n_k$. Somehow it seems like the differential operator

$$\frac{\partial}{\partial x_1} \wedge \ldots \wedge \frac{\partial}{\partial x_n}$$

is in $\omega_V^{-1}(U)$, so its stalks are measured by the adelic metric. Using this as some kind of Jacobian, we get a measure

$$\boldsymbol{\omega}_v = \|\frac{\partial}{\partial x_1} \wedge \ldots \wedge \frac{\partial}{\partial x_n}\|_v dx_{1,v} \ldots dx_{n,v}.$$

on U, and we can glue to get a well-defined measure on V.

3.2 Local densities

For a finite set S of places of a number field k, write \mathcal{O}_S for the set of S-integers

$$\mathcal{O}_S = \{x \in k : v(x) \ge 0 \text{ for all } v \notin S\}.$$

Lemma 3.1. Let V be an n-dimensional Fano variety over a number field k, with very ample anticanonical bundle. There exists a finite set of places S of k and a geometrically smooth model $\mathscr V$ with geometrically integral fibres, such that for all $\mathfrak p \in M_k \setminus S$, we have

1. There is an isomorphism of Galois modules

$$\operatorname{Pic}(V_{\bar{k}}) \to \operatorname{Pic}(\mathscr{V}_{\bar{\mathbb{F}}_{\mathfrak{p}}}).$$

2. For all primes ℓ not divisible by \mathfrak{p} , the ℓ -primary part $\operatorname{Br}(\mathscr{V}_{\overline{\mathbb{P}}_{\mathfrak{p}}})[\ell^{\infty}]$ is finite.

We will always write \mathcal{V} and S for objects as in the lemma.

Definition 3.2. For $\mathfrak{p} \in M_{k,f} \setminus S$, the **local density** of V at \mathfrak{p} is

$$d_{\mathfrak{p}}(V) = \frac{\# \mathscr{V}(\mathbb{F}_{\mathfrak{p}})}{N(\mathfrak{p})^{\dim V}}.$$

Lemma 3.3. For almost all $\mathfrak{p} \in M_{k,f}$, we have

$$d_{\mathfrak{p}}(V) = \boldsymbol{\omega}_{\mathfrak{p}}(V(k_{\mathfrak{p}})).$$

The product

$$\prod_{\mathfrak{p}\in M_{k,f}\setminus S}d_{\mathfrak{p}}(V)$$

is divergent, so the product

$$\prod_{\mathfrak{p}\in M_k}\omega_v(V(k_v))$$

is as well. The Frobenius $x \mapsto x^{N(\mathfrak{p})}$ on $\bar{\mathbb{F}}_{\mathfrak{p}}$ induces a morphism $\mathscr{V}_{\bar{\mathbb{F}}_{\mathfrak{p}}} \to \mathscr{V}_{\bar{\mathbb{F}}_{\mathfrak{p}}}$, which in turn induces an automorphism of Pic $\mathscr{V}_{\bar{\mathbb{F}}_{\mathfrak{p}}}$. Write Frob_{\mathfrak{p}} for the inverse of this automorphism.

Call Frob_p the **geometric Frobenius morphism** on Pic $\mathscr{V}_{\mathbb{F}_{\mathfrak{p}}}$. Write $\overline{V} = V \times_k \overline{k}$. The local L-function associated to Pic \overline{V} at \mathfrak{p} is

$$L_{\mathfrak{p}}(s, \operatorname{Pic} \overline{V}) = \frac{1}{\det(1 - N(\mathfrak{p})^{-s} \operatorname{Frob}_{\mathfrak{p}} \mid \operatorname{Pic} \mathscr{V}_{\overline{\mathbb{F}}_{\mathfrak{p}}} \otimes_{\mathbb{Z}} \mathbb{Q})}.$$

Lemma 3.4. For all $\mathfrak{p} \in M_{k,f} \setminus S$, the quantity $L_{\mathfrak{p}}(1, \operatorname{Pic} \overline{V})$ is well-defined, and the product

$$\prod_{\mathfrak{p}\in M_{\mathfrak{p},\mathfrak{q}}\setminus S} \frac{d_{\mathfrak{p}}(V)}{L_{\mathfrak{p}}(1,\operatorname{Pic}\overline{V})}$$

converges absolutely.

3.3 Definition of the constant

Define real numbers λ_v by

$$\lambda_v = \begin{cases} L_v(1, \operatorname{Pic} \overline{V}) & \text{if } v \in M_{k,f} \setminus S, \\ 1 & \text{otherwise.} \end{cases}$$

Define the measure $\omega_{\mathbf{h},S}$ by

$$\omega_{\mathbf{h},S} = |\mathrm{disc}(k)|^{-\frac{\dim V}{2}} \cdot \prod_{v \in M_k} \frac{\omega_v}{\lambda_v}.$$

This measure depends on the model \mathcal{V} , and in particular on its set of primes of bad reduction S. We can make the measure independent of this information by defining

$$\omega_{\mathbf{h}} = \lim_{s \to 1} \left((s-1)^t L_S(s, \operatorname{Pic} \overline{V}) \right) \omega_{\mathbf{h}, S},$$

where L_S is given by

$$L_S(s, \operatorname{Pic} \overline{V}) = \prod_{\mathfrak{p} \in M_{k,f} \setminus S} L_{\mathfrak{p}}(s, \operatorname{Pic} \overline{V}).$$

Adding a prime to S multiplies the right-hand factor by $L_v(1, \operatorname{Pic} \overline{V})$ and divides the left-hand factor by the same thing, so $\omega_{\mathbf{h}}$ is well-defined.

Definition 3.5. The **Tamagawa constant** associated to **h** is

$$\tau_{\mathbf{h}} = \omega_{\mathbf{h}}(\overline{V(k)}).$$

Pick a basis e_1, \ldots, e_t for Pic V. There is a natural isomorphism of \mathbb{R} -vector spaces

$$\varphi: \operatorname{Pic} V \otimes \mathbb{R} \to \wedge^{t-1}(\operatorname{Pic} V \otimes \mathbb{R})^{\vee},$$

given by

$$e_i \mapsto e_1 \wedge \ldots \wedge e_{i-1} \wedge e_{i+1} \wedge \ldots e_t$$
.

For $x \in \text{Pic } V$, the element $\varphi(x)$ is in the subspace

$$\wedge^{t-1} x^{\perp} \subseteq \wedge^{t-1} (\operatorname{Pic} V \otimes \mathbb{R})^{\vee},$$

so $\varphi(x)$ is a (t-1)-form on the space x^{\perp} . Since dim x^{\perp} is (t-1)-dimensional, $\varphi(x)$ is a volume form on x^{\perp} . For all λ , the hyperplane

$$\mathscr{H}_x(\lambda) = \{ y \in (\operatorname{Pic} V \otimes \mathbb{R})^{\vee} : y(x) = \lambda \}$$

is a translate of x^{\perp} , so $\varphi(x)$ defines a measure θ_x on $\mathscr{H}_x(\lambda)$. The above discussion only makes sense for $t \geq 2$. When t = 1, so that $\operatorname{Pic} V = \mathbb{Z} \cdot e_1$, we adopt the convention that

$$\theta_{me_1}(\mathscr{H}_{me_1}(\lambda)) = \frac{1}{m}$$

for all positive integers m and all $\lambda \in \mathbb{R}$.

Definition 3.6. The dual effective cone is

$$C_{\mathrm{eff}}^{\vee}(V) = \{ y \in (\operatorname{Pic} V \otimes \mathbb{R})^{\vee} : y([D]) \geq 0 \text{ for all effective } D \in \operatorname{Pic} V \}.$$

Definition 3.7. The α -constant is

$$\alpha(V) = \theta_{\omega_V^{-1}}(C_{\text{eff}}^{\vee}(V) \cap \mathscr{H}_{\omega_V^{-1}}(1)).$$

Definition 3.8. Peyre's constant $C_{\mathbf{h}}(V)$ is defined by

$$C_{\mathbf{h}}(V) = \alpha(V)\tau_{\mathbf{h}}(V).$$

3.4 Refined Manin conjecture

The following conjecture is as stated in [Pey95]. It does not mention thin sets, so it is known to be wrong.

Conjecture 3.9. Let V be a Fano variety with very ample anticanonical sheaf ω_V^{-1} , and let \mathbf{h} be the height defined by an adelic metric on ω_V^{-1} . Assume that V(k) is dense in $V(\mathbb{A}_k)$ and $\operatorname{Pic} \overline{V}$ is a "permutation module" of G_k . Then there is a dense open subset U of V such that

$$n_U(H) \sim C_{\mathbf{h}}(V)H(\log H)^{t-1},$$

where $t = \operatorname{rank} \operatorname{Pic} V$.

4 Independence from choice of metrics

Whenever we use the world "height", it will be relative to ω_V^{-1} and an adelic metric.

Fix an open subset $U \subseteq V$ and let **h** be a height. Define

$$n_{\mathbf{h},W}(H) := \#\{x \in U(k) \cap W : \mathbf{h}(x) \le H\}.$$

Definition 4.1. A good open set is an open set $W \subseteq V(\mathbb{A}_k)$ such that there is a height **h** with

$$\omega_{\mathbf{h}}(\partial W) = 0.$$

Lemma 4.2. If W is a good open set, then $\omega_{\mathbf{h}}(\partial W) = 0$ for all heights \mathbf{h} .

Definition 4.3. We say that the rational points of V are equidistributed on U if there is a height function \mathbf{h} such that for all good open sets W, we have

$$\lim_{H \to \infty} \frac{n_{\mathbf{h},W}(H)}{n_U(H)} = \frac{\omega_{\mathbf{h}}(\overline{V(k)} \cap W)}{\omega_{\mathbf{h}}(\overline{V(k)})}.$$

As shorthand, we say that V satisfies condition (E_U) .

Theorem 4.4 ([Pey95, Proposition 3.3]).

1. Suppose that V satisfies (E_U) for a height function **h**. Then for all continuous $f: V(\mathbb{A}_k) \to \mathbb{R}$, we have

$$\lim_{H \to \infty} \frac{\sum_{\{x \in U(k): \mathbf{h}(x) \leq H\}} f(x)}{n_U(H)} = \frac{\int_{\overline{V(k)}} f \omega_{\mathbf{h}}}{\omega_{\mathbf{h}}(\overline{V(k)})}.$$

2. Let U be the complement of all accumulating subvarieties of V. Suppose that U is a Zariski open set defined over k and that V satisfies (E_U) . Suppose that

$$n_U(H) \sim C_{\mathbf{h}}(V)H(\log H)^{t-1}$$

for some height function **h**. Then actually the formula holds for all choices of **h**, i.e. the refined Manin conjecture for one height function implies the refined Manin conjecture for all height functions.

3. If the refined Manin conjecture is true, then V satisfies (E_U) , where U is the complement of all accumulating subvarieties.

References

[Pey95] Emmanuel Peyre. "Hauteurs et mesures de Tamagawa sur les variétés de Fano". In: **Duke Mathematical Journal** 79.1 (1995), pp. 101–218. DOI: 10.1215/S0012-7094-95-07904-6. URL: https://doi.org/10.1215/S0012-7094-95-07904-6.