#### Lecture I

#### Machine Learning Basics

Dong Kook Kim

#### Basic ML Concepts

- What is DL, ML and Al
- What is Learning?
  - Supervised
  - Unsupervised
- What is Regression?
- What is Classification?
- 5 Steps for Learning

#### What is DL, ML, and Al

#### ARTIFICIAL INTELLIGENCE

Any technique that enables computers to mimic human behavior



#### MACHINE LEARNING

Ability to learn without explicitly being programmed



#### DEEP LEARNING

Extract patterns from data using neural networks

313472

#### What is DL, ML, and Al



#### ML vs DL

#### Machine Learning



#### Deep Learning



# What is the "Deep" in DL?



# Types of ML



https://www.techleer.com/articles/203-machine-learning-algorithm-backbone-of-emerging-technologies/

## Types of ML



#### Learning Algorithms

- Supervised learning
  - learning with labeled data
  - given input x and target y
  - -y = f(x): predict target y corresponding to input x

- Unsupervised learning
  - learning with un-labeled data
  - given only input x
  - f(x) : Estimate the distribution of input x
  - -z = f(x): Find the latent variable z given input x

#### Learning Algorithms

- Reinforcement Learning
  - learning with un-labelled
  - given input x
  - -y = f(x): Predict action y based on input x to maximize a future reward z

#### Types of Machine Learning – At a Glance



#### Supervised learning

An example training set for four visual categories



- Learn a function f to map  $x \rightarrow y$ 



#### Supervised learning



https://www.newtechdojo.com/list-machine-learning-algorithms/

## Supervised learning

- Most common problem type in ML
  - Image labeling: learning from tagged images
  - Email spam filter: learning from labeled (spam or ham email)
  - Predicting exam score: learning from previous exam score and time spent

## Types of supervised learning

- Predicting final exam score based on time spent
  - Regression (target : real )
- Pass / Non-pass based on time spent
  - Binary classification (target : binary)
- Letter grade (A, B, C, E and F) based on time spent
  - Multi-label classification (target: integer)

## Predicting final exam score based on time spent

input - target

regression

#### Pass / Non-pass based on time spent

- input - target

x (hours) y (pass/fail)

10 P

9 P

3 F

- binary classification

## Letter grade (A, B, C, E and F) based on time spent

target

- input

- multi-label classification

| - Impac   | 800       |
|-----------|-----------|
| x (hours) | y (grade) |
| 10        | Α         |
| 9         | В         |
| 3         | D         |
| 2         | F         |

A: I B: 2 C: 3 D: 4 E: 5

F:6

#### Unsupervised learning

An example training set (no labels)



- Learn a function **f** to find some underlying hidden structure of the data x

## Unsupervised learning



## Types of Unsupervised learning

• Feature learning: given x, find a new feature z



Generative modeling : given z, generate a new x

[0.1, 0.3, -0.8, 0.4, ...] 
$$g$$

$$- x = g(z)$$

# 5 Steps for Learning

- Step I. Training examples,  $(x^{(i)}, y^{(i)})$  or  $x^{(i)}$  only  $x^{(i)}$ : input feature (vectors),  $y^{(i)}$ : target
- Step 2. A model, a function that represents the relationship between x and y y = f(x) or, a function that models x, f(x), with parameters  $\theta$
- Step 3. A loss or a cost or an objective function  $C(\theta)$ , which tells us how well our model approximates the training examples
- Step 4. Optimization, a way of finding the parameters of our model that minimizes the loss function
- Step 5. Testing, performance evaluation using test examples

#### Inference and Decision

- 2 Classification Stage
- I. Inference stage in which we use training data to learn a model y=f(x)
  - Step 1. ~ Step 4.
  - Learning, Training Phase
- 2. Decision stage in which we use these model to make optimal class assignments
  - Step 5.
  - Testing Phase

#### Step I. Data

- Application dependent
- Examples
  - MNIST (handwritten digits recognition)
  - IMAGENET (object recognition)
  - WSJ (speech recognition)
  - Text etc.

# Training, Validation, and Test DataSets

- Training: The sample of data used to fit the model.
- Validation: The sample of data used to provide an unbiased evaluation of a model fit on the training dataset while tuning model hyperparameters. The evaluation becomes more biased as skill on the validation dataset is incorporated into the model configuration.
- Test: The sample of data used to provide an unbiased evaluation of a final model fit on the training dataset.



https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7

#### Full-batch, mini-batch

• Full batch : All data

Mini-batch : Subsets of data



#### Data Representation

|         | Scalar   | Vector                                        | Matrix                                 | 3 Tensor                          | 4 Tensor                                       |
|---------|----------|-----------------------------------------------|----------------------------------------|-----------------------------------|------------------------------------------------|
| Binary  | 0, 1     | Gray image - a reshaped image (28*28=784-dim) | Gray image<br>- (28, 28)<br>- (N, 784) | Batch gray image<br>- (N, 28, 28) |                                                |
| Integer | 1,2,, 10 | Text - A word - One-hot encoded               | Text - A word seq.                     | Text - Batch word seq.            |                                                |
| Real    | 3.14     | Speech - A frame                              | Speech - Batch frame                   | Color image<br>- RGB (28, 28, 3)  | Batch color image - Batch RGB - (N, 28, 28, 3) |

N: batch size

Gray image: MNIST, Color image: CIFAR-10

#### MNIST Data

10 classes, 60000 training images, 10000 test images

```
train-images-idx3-ubyte.gz: training set images (9912422 bytes)
train-labels-idx1-ubyte.gz: training set labels (28881 bytes)
t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)
t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)
```

## Step 2. Models

- Supervised learning
  - I. Linear models
    - Linear regression
    - Linear classification (logistic/multinomial)
  - 2. Nonlinear models (Neural Networks)
    - Feed-forward neural network (FFNN)
    - Convolutional neural network (CNN)
    - Recurrent neural network (RNN)

#### Step 2. Models

- Unsupervised learning
  - I. Feature Learning
    - Autoencoder (AE)
  - 2. Generative Modeling
    - Variational autoencoder (VAE)
    - Generative adversarial network (GAN)

# Step 2. Models

#### Deterministic/Probabilistic models

| Мо                                                                                                                                                                                                                                                           | dels                     | Deterministic                                   | Probabilistic                                                   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------|-----------------------------------------------------------------|--|--|
| Supervised                                                                                                                                                                                                                                                   | Regression               | $y = f_{\theta}(x)$                             | $p_{\theta}(y x)$                                               |  |  |
|                                                                                                                                                                                                                                                              | Binary                   | $y = f_{\theta}(\mathbf{x})$                    | $p_{\theta}(y \mathbf{x})$                                      |  |  |
|                                                                                                                                                                                                                                                              | Multi-class<br>(K-class) | $y_1 = f_{1,\theta}(x)$ $y_K = f_{K,\theta}(x)$ | $p_{\theta}(y = 1 \mathbf{x})$ : $p_{\theta}(y = K \mathbf{x})$ |  |  |
| Unsupervised                                                                                                                                                                                                                                                 |                          | $f_{\theta}(\mathbf{x})$                        | $p_{	heta}(\mathrm{x})$ or $p_{	heta}(\mathrm{x},\mathrm{z})$   |  |  |
| $f_{	heta}(\mathbf{x})$ : functions, $p_{	heta}(\mathbf{y} \mathbf{x})$ : conditional pdf/pmf, $p_{	heta}(\mathbf{x})$ : pdf/pmf, $p_{	heta}(\mathbf{x},\mathbf{z})$ : joint pdf/pmf $\mathbf{x}: input, \ \mathbf{y}: target, \ \theta: model \ parameters$ |                          |                                                 |                                                                 |  |  |

#### Step 3. Loss functions

- Cost function  $C(\theta)$ : tells us how well our model fits the training data
  - function of parameters  $\theta$

#### I. Regression

- sum of square error function, or
- MSE (mean square error)

#### 2. Classification

- cross-entropy function (negative log-likelihood function)
- Binary or multi-class

#### Step 4. Optimization

- Optimization: determines how the network will be updated the parameters based on the loss function
- Gradient descent (GD) optimization
- Optimizers
  - I. SGD
  - 2. AdaGrad
  - 3. RMSProp
  - 4. Adam
  - 5. etc.

# Step 5. Testing

#### Decision rules

| Models     |                          | Deterministic                                       | Probabilistic                                                           |
|------------|--------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|
| Supervised | Regression               | $\hat{\mathbf{y}} = f_{\theta}(\mathbf{x})$         | $\hat{y} = E[y x]$                                                      |
|            | Binary                   | $  if   y = f_{\theta}(\mathbf{x}) > T : 1 $ else 0 | if $p_{\theta}(y=1 \mathbf{x}) > p_{\theta}(y=1 \mathbf{x})$ : I else 0 |
|            | Multi-class<br>(K-class) | Decide class $k$ $k = \max_{j} f_{j,\theta}(x)$     | Decide class $k$ $k = \max_{j} p_{\theta}(y = j   \mathbf{x})$          |
| Unsupe     | ervised                  | $z = f_{\theta}(\mathbf{x})$                        | $z = p_{\theta}(\mathbf{x}) \text{ or } x = p_{\theta}(\mathbf{z})$     |

 $x : new input, \hat{y} : predicted target, \theta : model parameter$ 

#### Step 5. Performance Metrics

- Metrics: function that is used to judge the performance of the model
- I. Metrics for regression: MSE, or MAE
- 2. Metrics for classification: Accuracy (%) or Error rate (%)
- 3. Metrics for unsupervised: log-likelihood etc.