ቁቁቁቁ Exercice 1 4 points

Soient m et p deux entiers relatifs. Démontrer que :

$$9m + 5 \equiv p \quad [26] \iff m \equiv 3p + 11 \quad [26].$$

★★★☆☆ Exercice 2 7 points

On se place dans un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

On considère le point M_n d'affixe z_n où (z_n) est la suite définie sur \mathbb{N} par $z_0 = 1$ et pour tout entier naturel n par :

$$z_{n+1} = \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) z_n$$

- 1. Déterminer le module et un argument de $\frac{\sqrt{3}}{2} \frac{1}{2}i$.
- 2. (a) Démontrer, par récurrence, que pour tout entier naturel n, on a $|z_n|=1$.
 - (b) En déduire que le point M_n appartient à un cercle dont vous préciserez le centre et le rayon.
- 3. Démontrer que le point O est situé sur la médiatrice du segment $[M_nM_{n+1}]$.

**** Exercice 3 9 points

Le plan est muni d'un repère orthonormé direct (O; \overrightarrow{u} , \overrightarrow{v}).

Les points A, B et C ont pour affixes respectives a = -4, b = 2 et c = 4.

On considère les trois points A', B' et C' d'affixes respectives $a'=ja,\,b'=jb$ et c'=jc où j est le nombre complexe $-\frac{1}{2}+\mathrm{i}\frac{\sqrt{3}}{2}$.

- 1. Calculer la forme algébrique de a'. On admettra que $b' = -1 + i\sqrt{3}$ et $c' = -2 + 2\sqrt{3}i$.
- 2. (a) Calculer le module et un argument de j.
 - (b) En déduire le module et un argument de a', b' et c'.
- 3. Placer les points A', B' et C' dans le repère donné page 2.
- 4. Démontrer que les points A', B' et C' sont alignés.
- 5. On note M le milieu du segment [A'C], N le milieu du segment [C'C] et P le milieu du segment [C'A].

Démontrer que le triangle MNP est isocèle.

