Предельный переход под знаком интеграла Лебега

Теорема 1. (**теорема Фату**) Пусть $\{f_n(x)\}_{n=1}^{\infty}$ - измеримы и неотрицательны на X, предположим, что μ - полна и функция $f_n(x) \xrightarrow{as,X} f(x)$, где $f(x) \geq 0$ на X, тогда:

$$\int\limits_{X} f(x)d\mu \le \underline{\lim}_{n \to \infty} \int\limits_{X} f_n(x)d\mu$$

Пример: Рассмотрим последовательность функций: $f_n(x) = n \cdot \chi_{(0,\frac{1}{n})}(x)$. Будем рассматривать всё на отрезке [0,1] и мера Лебега в данном случае - классическая. Тогда:

$$\forall x \in [0,1], f_n(x) \xrightarrow[n \to \infty]{} f(x) = 0$$

В то же самое время, интеграл от этой функции на отрезке [0, 1] равен 1:

$$\forall n, \int_{[0,1]} f_n(x) d\mu = 1 \neq \int_{[0,1]} f(x) d\mu = \int_{[0,1]} 0 d\mu = 0$$

Теорема Лебега

Теорема 2. (Лебега) Пусть $F(x) \in \mathcal{L}(X), F(x) \geq 0$ на X, а $\{f_n(x)\}_{n=1}^{\infty}$ - измеримые функции:

$$\forall n, \forall x \in X, |f_n(x)| < F(x)$$

Пусть μ - полна и $f_n(x) \xrightarrow{as,X} f(x)$, тогда $f(x) \in \mathcal{L}(X)$ и кроме того:

$$\int_{X} f(x)d\mu = \lim_{n \to \infty} \int_{X} f_n(x)d\mu$$

 \square Прежде всего заметим, что: $|f(x)| \le F(x)$ п.в. $\Rightarrow f(x) \in \mathcal{L}(X)$. Далее, определим множество E:

$$E = \{x \in X : f_n(x) \to f(x)\} \Rightarrow \mu(X \setminus E) = 0 \Rightarrow \int_X f(x)d\mu = \int_E f(x)d\mu$$

Рассмотрим последовательности на X:

$$F(x) + f_n(x) \ge 0, \quad F(x) - f_n(x) \ge 0$$

$$\forall x \in E, \lim_{n \to \infty} (F(x) + f_n(x)) = F(x) + f(x), \quad \lim_{n \to \infty} (F(x) - f_n(x)) = F(x) - f(x)$$

Следовательно, по теореме Фату мы имеем следующие неравенства:

$$\int_{E} (F(x) + f(x)) d\mu \le \lim_{n \to \infty} \int_{E} (F(x) + f_n(x)) d\mu \Rightarrow \int_{E} f(x) d\mu \le \lim_{n \to \infty} \int_{E} f_n(x) d\mu$$

$$\int_{E} (F(x) - f(x)) d\mu \le \lim_{n \to \infty} \int_{E} (F(x) - f_n(x)) d\mu \Rightarrow$$

$$\Rightarrow \int_{E} F(x)d\mu - \int_{E} f(x)d\mu \le \int_{E} F(x)d\mu + \lim_{n \to \infty} \int_{E} (-f_{n}(x))d\mu = \int_{E} F(x)d\mu - \overline{\lim_{n \to \infty}} \int_{E} f_{n}(x)d\mu \Rightarrow$$

$$\Rightarrow \int_{E} f(x)d\mu \ge \overline{\lim_{n \to \infty}} \int_{E} f_{n}(x)d\mu \Rightarrow \exists \lim_{n \to \infty} \int_{E} f_{n}(x)d\mu = \int_{E} f(x)d\mu$$

поскольку верхний предел больше или равен нижнему пределу только в том случае, когда существует обычный предел. Заметим, что:

$$\lim_{n \to \infty} \int\limits_X f_n(x) d\mu = \lim_{n \to \infty} \int\limits_E f_n(x) d\mu = \int\limits_E f(x) d\mu = \int\limits_X f(x) d\mu$$

Некоторые свойства интеграла Лебега

Пусть (X, \mathcal{M}, μ) - измеримое пространство.

Теорема 3. Пусть $f(x) \in \mathcal{L}(X)$ и кроме того $X = \bigsqcup_{n=1}^{\infty} A_n$, где $A_n \in \mathcal{M}$, тогда:

$$\forall n, f(x) \in \mathcal{L}(A_n), \int_X f(x)d\mu = \sum_{n=1}^{\infty} \int_{A_n} f(x)d\mu$$

□ По условию будет верно:

$$\forall n, |f(x)\cdot\chi_{A_n}(x)| \leq |f(x)| \in \mathcal{L}(X) \Rightarrow f(x)\cdot\chi_{A_n}(x) \in \mathcal{L}(X) \Leftrightarrow f(x) \in \mathcal{L}(A_n)$$

Пусть $F_N(x) = \sum_{k=1}^N f(x) \cdot \chi_{A_k}(x)$, тогда:

$$|F_N(x)| = \left| f(x) \cdot \chi_{\bigsqcup_{k=1}^N A_k}(x) \right| \le |f(x)|, \ \forall x \in X, \ F_N(x) \xrightarrow[N \to \infty]{} f(x)$$

По теореме Лебега, получаем равенство:

$$\int\limits_X f(x)d\mu = \lim_{N \to \infty} \int\limits_X F_N(x)d\mu = \lim_{N \to \infty} \sum_{k=1}^N \int\limits_X f(x) \cdot \chi_{A_k}(x)d\mu = \lim_{N \to \infty} \sum_{k=1}^N \int\limits_{A_k} f(x)d\mu = \sum_{k=1}^\infty \int\limits_{A_k} f(x)d\mu$$

Теорема 4. (об абсолютной непрерывности интеграла Лебега) Пусть $f(x) \in \mathcal{L}(X)$, тогда:

$$\forall \varepsilon > 0, \ \exists \ \delta > 0 \colon A \subset X, \ A \in \mathcal{M}, \ \mu(A) < \delta \Rightarrow \left| \int_A f(x) d\mu \right| < \varepsilon$$

 \square Поскольку верно: $\left|\int_X f(x)d\mu\right| \leq \int_A |f(x)|d\mu$, то достаточно доказать утверждение для $f(x) \geq 0$ (или для |f(x)|). Пусть задано $\varepsilon > 0$, поскольку $f(x) \in \mathcal{L}(X)$, то $\exists \, h(x) \in Q_f$ такая, что:

$$\int\limits_X f(x)d\mu \ge \int\limits_X h(x)d\mu \ge \int\limits_X f(x)d\mu - \frac{\varepsilon}{2}$$

поскольку интеграл от f(x) есть верхняя грань интегралов от простых функций из Q_f и $f(x) \in \mathcal{L}(X)$, то есть интеграл существует. Так как h(x) - простая и неотрицательная, то существует представление:

$$h(x) = \sum_{l=1}^{r} a_l \cdot \chi_{E_l}(x), \ 0 < a_1 < \ldots < a_r, \ \forall l, \ E_l \in \mathcal{M}, \ \forall l \neq j, \ E_l \cap E_j = \varnothing$$

Тогда пусть $\delta = \frac{\varepsilon}{2a_r}$ и $A \in \mathcal{M}$: $\mu(A) < \delta$, тогда:

$$\int\limits_A f(x)d\mu \leq \int\limits_A (\underbrace{f(x)-h(x)}_{\geq 0})d\mu + \int\limits_A h(x)d\mu \leq \int\limits_X (f(x)-h(x))d\mu + \int\limits_X h(x)\cdot \chi_A(x)d\mu$$

где мы воспользовались неотрицательностью f(x) - h(x) и тем, что область интегрирования увеличивается \Rightarrow интеграл может только увеличится. Следовательно:

$$\int_{X} (f(x) - h(x)) d\mu + \int_{X} h(x) \cdot \chi_{A}(x) d\mu < \frac{\varepsilon}{2} + \int_{X} \sum_{l=1}^{r} a_{l} \cdot \chi_{A \cap E_{l}}(x) d\mu = \frac{\varepsilon}{2} + \sum_{l=1}^{r} a_{l} \cdot \mu(A \cap E_{l}) \le \frac{\varepsilon}{2} + a_{r} \cdot \sum_{l=1}^{r} \mu(A \cap E_{l}) \le \frac{\varepsilon}{2} + a_{r} \cdot \mu(A) < \frac{\varepsilon}{2} + a_{r} \cdot \frac{\varepsilon}{2a_{r}} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

где мы воспользовались тем, что сумма пересечений с A не больше, чем мера A.

Теорема 5. (неравенство Чебышева) Пусть $f(x) \in \mathcal{L}(X)$, $\lambda > 0$ и $E_{\lambda} = \{x \in X : |f(x)| > \lambda\}$, тогда:

$$\mu(E_{\lambda}) \le \frac{1}{\lambda} \cdot \int_{X} |f(x)| d\mu$$

 \square Поскольку $|f(x)| \ge 0$, то мы имеем неравенства:

$$\int\limits_X |f(x)| d\mu \ge \int\limits_{E_{\lambda}} |f(x)| d\mu \ge \int\limits_{E_{\lambda}} \lambda d\mu = \lambda \cdot \mu(E_{\lambda}) \Rightarrow \frac{1}{\lambda} \cdot \int\limits_X |f(x)| d\mu \ge \mu(E_{\lambda})$$

Rm: 1. Заметим, что мера E_{λ} всегда будет конечной, иначе интеграл был бы равен бесконечности.

Следствие 1. Если $f(x) \in \mathcal{L}(X), \, \forall x \in X, \, f(x) \geq 0$ и $\int_X f(x) d\mu = 0$, то f(x) = 0 п.в. на X.

Заметим, что по неравенству Чебышева верно:

$$\forall n, \, \mu(\{x \in X \colon f(x) \ge \frac{1}{n}\}) \le n \cdot \int_X f(x) d\mu = 0$$

$$\{x \in X : f(x) > 0\} = \bigcup_{n=1}^{\infty} \{x \in X : f(x) > \frac{1}{n}\} \Rightarrow \mu(\{x \in X : f(x) > 0\}) = 0$$

Это равносильно нашему утверждению, поскольку $f(x) \ge 0$ и мера множества, где она положительна равна 0, значит всё остальное множество - это то, где она равна 0.

Критерий интегрируемости по Лебегу на множестве конечной меры

Если f(x) измерима на X, то $\forall k \geq 1$ положим $F_k = \{x \in X : |f(x)| \geq k\}$.

Теорема 6. (критерий интегрируемости по Лебегу на множестве конечной меры) Пусть мера множества - конечна: $\mu(X) < \infty$, f(x) измерима на X, тогда:

$$f(x) \in \mathcal{L}(X) \Leftrightarrow \sum_{k=1}^{\infty} \mu(F_k) < \infty$$

□ Рассмотрим функцию:

$$h(x) = \sum_{k=1}^{\infty} \chi_{F_k}(x)$$

Есть несколько случаев:

- 1) Если $x: k \le |f(x)| < k+1$, то $x \in F_1, \dots, F_k$ и $x \notin F_{k+1} \Rightarrow h(x) = k$;
- 2) Если $|f(x)| = \infty$, то $\forall k, x \in F_k \Rightarrow h(x) = \infty$;

Поэтому $\forall x \in X$ справедливо неравенство (как для конечного, так и для бесконечных значений):

$$h(x) \le |f(x)| \le h(x) + 1$$

Так как $\mu(X) < \infty$, то $1 \in \mathcal{L}(X)$, поэтому $f(x) \in \mathcal{L}(X) \Leftrightarrow h(x) \in \mathcal{L}(X)$. По следствию 4 предыдущей лекции, будет верно равенство:

$$\int\limits_X h(x)d\mu = \sum\limits_{k=1}^\infty \int\limits_X \chi_{F_k}(x)d\mu = \sum\limits_{k=1}^\infty \mu(F_k)$$

Из чего уже следует требуемое.

Сравнение интегралов Римана и Лебега

Собственный интеграл Лебега и Римана

Теорема 7. Пусть $n \geq 1$, $n \in \mathbb{N}$, $[a,b] = \prod_{j=1}^{n} [a_j,b_j] \subset \mathbb{R}^n$ - параллеленинед в \mathbb{R}^n , μ - это классическая мера Лебега на подмножествах [a,b]. Функция $f(x) \in \mathcal{R}([a,b])$ - интегрируема по Риману на [a,b]. Тогда:

$$f(x) \in \mathcal{L}([a,b], \mathcal{M}, \mu), \ (\mathcal{L}) \int_{[a,b]} f(x) d\mu = (\mathcal{R}) \int_{[a,b]} f(x) dx$$

Rm: 2. Из этой теоремы будет вытекать, что интеграл Лебега обобщает интеграл Римана. Тот факт, что это не одно и тоже осознается уже из одномерной ситуации, например, на функции Дирихле. С точки зрения интеграла Римана она не интегрируема на [0,1], а с точки зрения интеграла Лебега это простая функция, принимающая два значения: 0 и 1.

 \square Пусть $r \in \mathbb{N}, s \in [1, n]$ - номер координаты, $k \in \{0, 1, \dots, 2^r\}$. Тогда рассмотрим точки:

$$x_s(k) = a_s + \frac{b_s - a_s}{2^r} \cdot k$$

то есть, мы взяли равномерное разбиение отрезка $[a_s,b_s]$ с шагом $\frac{b_s-a_s}{2^r}$. Затем, при $1\leq k<2^r$ возьмем полуинтервал: $\Delta_s(k)=[x_s(k-1),x_s(k))$ и отрезок: $\Delta_s(2^r)=[x_s(2^r-1),x_s(2^r)]$. Заметим, что:

$$[a_s, b_s] = \bigsqcup_{k=1}^{2^r} \Delta_s(k)$$

Затем, если $\overline{k}=(k_1,\ldots,k_n)$, где $k_i\in[1,2^r]$, то определим множество:

$$E_{\overline{k}} = \prod_{s=1}^{n} \Delta_s(k_s) \Rightarrow [a, b] = \bigsqcup_{k_1=1}^{2^r} \dots \bigsqcup_{k_n=1}^{2^r} E_{\overline{k}}$$

Определим переменные $M_{\overline{k}}, m_{\overline{k}}$ и две функции $\overline{f}_r(x), f_r(x)$:

$$\forall \overline{k}, M_{\overline{k}} = \sup_{x \in E_{\overline{k}}} f(x), m_{\overline{k}} = \inf_{x \in E_{\overline{k}}} f(x)$$

$$\overline{f}_r(x) = \sum_{k_1=1}^{2^r} \dots \sum_{k_n=1}^{2^r} M_{\overline{k}} \cdot \chi_{E_{\overline{k}}}(x), \quad \underline{f}_r(x) = \sum_{k_1=1}^{2^r} \dots \sum_{k_n=1}^{2^r} m_{\overline{k}} \cdot \chi_{E_{\overline{k}}}(x)$$

Нетрудно заметить, что эти функции - простые: они принимают конечное число значений на n-мерных промежутках. Тогда:

$$(\mathcal{L}) \int_{[a,b]} \overline{f}_r(x) d\mu = \sum_{k_1=1}^{2^r} \dots \sum_{k_n=1}^{2^r} M_{\overline{k}} \cdot \mu(E_{\overline{k}}) = \sum_{k_1=1}^{2^r} \dots \sum_{k_n=1}^{2^r} M_{\overline{k}} \cdot \prod_{s=1}^n \frac{b_s - a_s}{2^r}$$

$$(\mathcal{L}) \int_{[a,b]} \underline{f}_r(x) d\mu = \sum_{k_1=1}^{2^r} \dots \sum_{k_n=1}^{2^r} m_{\overline{k}} \cdot \mu(E_{\overline{k}}) = \sum_{k_1=1}^{2^r} \dots \sum_{k_n=1}^{2^r} m_{\overline{k}} \cdot \prod_{s=1}^n \frac{b_s - a_s}{2^r}$$

Можем заметить, что суммы выше это суммы Дарбу для интеграла Римана, и при измельчении разбиения и та, и другая сумма сходится к интегралу Римана:

$$\sum_{k_1=1}^{2^r} \dots \sum_{k_n=1}^{2^r} M_{\overline{k}} \cdot \prod_{s=1}^n \frac{b_s - a_s}{2^r} \xrightarrow[r \to \infty]{} (\mathcal{R}) \int_{[a,b]} f(x) dx = I$$

$$\sum_{k_1=1}^{2^r} \dots \sum_{k_n=1}^{2^r} m_{\overline{k}} \cdot \prod_{s=1}^n \frac{b_s - a_s}{2^r} \xrightarrow[r \to \infty]{} (\mathcal{R}) \int_{[a,b]} f(x) dx = I$$

Разбиение по степеням двойки мы взяли чтобы при увеличении r каждое последующее разбиение получается разбиением предыдущего, то есть каждый из полуинтервалов предыдущего разбиения мы разобьем на два. Это приведет к тому, что:

$$\forall r, \, \forall x \in [a, b], \, \overline{f}_{r+1}(x) \leq \overline{f}_r(x), \, \underline{f}_{r+1}(x) \geq \underline{f}_r(x)$$

что верно в силу поведения верхней и нижней граней при более мелких разбиениях. Кроме того:

$$\forall r, \, \forall x, \, \underline{f}_r(x) \leq f(x) \leq \overline{f}_r(x)$$

Следовательно, будет верно:

$$\forall x \in [a, b], \ \overline{f}_r(x) \downarrow \overline{f}(x) \ge f(x) \land \underline{f}_r(x) \uparrow \underline{f}(x) \le f(x)$$

Функции $\overline{f}(x)$ и $\underline{f}(x)$ измеримы по Лебегу как пределы измеримых функций. По теореме Беппо-Леви (а точнее её следствию):

$$(\mathcal{L})\int\limits_{[a,b]}\overline{f}(x)d\mu=\lim\limits_{r\to\infty}\int\limits_{[a,b]}\overline{f}_r(x)d\mu=\mathrm{I},\quad (\mathcal{L})\int\limits_{[a,b]}\underline{f}(x)d\mu=\lim\limits_{r\to\infty}\int\limits_{[a,b]}\underline{f}_r(x)d\mu=\mathrm{I} \Rightarrow (\mathcal{L})\int\limits_{[a,b]}(\overline{f}(x)-\underline{f}(x))d\mu=0$$

Поскольку $\overline{f}(x) - \underline{f}(x) \ge 0$, то применяя неравенство Чебышева, будет верно: $\overline{f}(x) = \underline{f}(x)$ п.в. на [a,b]. В силу того, что верно неравенство: $\forall x \in [a,b], \ \underline{f}(x) \le f(x) \le \overline{f}(x),$ то $f(x) = \overline{f}(x) = \underline{f}(x)$ п.в. на [a,b]. Так как мера Лебега полна, то отсюда следует: $\overline{f}(x) \in \mathcal{L}([a,b])$ и её интеграл будет равен:

$$(\mathcal{L})\int_{[a,b]} f(x)d\mu = \int_{[a,b]} \overline{f}(x)d\mu = I = (\mathcal{R})\int_{[a,b]} f(x)dx$$

Таким образом, если мы в многих случаях можем понять чему равен интеграл Лебега. Если функция интегрируема по Риману и мы умеем брать интеграл Римана, то мы его просто берем и тем самым находим значение интеграла Лебега. В некоторых случаях интеграла Римана не существует, тогда мы можем разбить наше множество на некоторые куски и на каждом из кусков функция по Риману будет интегрируема, тогда там интеграл Лебега и Римана совпадают. Затем нужно будет как-то просуммировать эти значения и найти значение интеграла Лебега.

Несобственный интеграл Лебега и Римана

Также заметим, что пока речь шла про собственный интеграл Римана и мы выяснили, что собственный интеграл Лебега более общий, чем собственный интеграл Римана. В несобственном случае же, всё немного сложнее.

Пример: $f(x) = \frac{1}{x}\sin\frac{1}{x}$, она в несобственном смысле интегрируема по Риману: $f(x) \in \mathcal{R}(0+,1)$, где под 0+ подразумевается несобственность вблизи точки 0. В то же время: $f(x) \notin \mathcal{L}(0,1)$, относительно классической меры Лебега (без доказательства).

Теорема 8. Пусть $f(x) \ge 0$ на (a,b] и $f(x) \in \mathcal{R}((a+,b])$, где под a+ подразумевается несобственность вблизи точки a. Тогда $f(x) \in \mathcal{L}((a,b))$ относительно классической меры Лебега и интеграл равен:

$$(\mathcal{L}) \int_{a}^{b} f(x) d\mu = (\mathcal{R}) \int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0+} (\mathcal{R}) \int_{a+\varepsilon}^{b} f(x) dx$$

Rm: 3. Заметим, что здесь несущественно писать интервал или полуинтервал, поскольку для классической меры Лебега мера индивидуальной точки равна 0.

Rm: 4. Таким образом, когда речь идет о неотрицательной функции, то здесь по-прежнему интеграл Лебега обобщает интеграл Римана, то есть если неотрицательная функция по Риману в несобственном смысле интегрируема, то она будет интегрируема и по Лебегу.

 \square Пусть n_0 таково, что: $\frac{1}{n_0} < b - a$, тогда при $n \ge n_0$ определим функции:

$$f_n(x) = f(x) \cdot \chi_{(a + \frac{1}{n}, b)}(x)$$

Заметим, что:

$$f(x) \cdot \chi_{(a + \frac{1}{n}, b)}(x) \in \mathcal{R}([a + \frac{1}{n}, b])$$

Следовательно: $f_n(x) \in \mathcal{L}((a,b))$ по теореме 7, поскольку она равна 0, вне промежутка выше и верно:

$$(\mathcal{L}) \int_{(a,b)} f_n(x) d\mu = (\mathcal{R}) \int_{a+\frac{1}{n}}^b f(x) dx$$

Так как $f_n(x) \ge 0$, то $f_n(x) \uparrow f(x)$ на (a,b). Кроме того:

$$\int_{(a,b)} f_n(x)d\mu \le (\mathcal{R}) \int_{a+}^b f(x)dx = c$$

По следствию 3 лекции 9 будет верно, что:

$$(\mathcal{L}) \int_{(a,b)} f(x) d\mu = \lim_{n \to \infty} (\mathcal{L}) \int_{(a,b)} f_n(x) d\mu = \lim_{n \to \infty} (\mathcal{R}) \int_{a+\frac{1}{n}}^b f(x) dx = (\mathcal{R}) \int_{a+\frac{1}{n}}^b f(x) dx$$

Получилось равенство интегралов и автоматически функция оказалась интегрируемой.

Rm: 5. В случае, когда функция меняет знак, то возможны всякие неприятности и возможно ситуация, когда функция интегрируема по Риману, но не интегрируема по Лебегу.

Это непосредственно связано с тем, что функция интегрируема по Лебегу тогда и только тогда, когда у неё модуль интегрируем по Лебегу. В случае интеграла Римана, если несобственный интеграл существует, то не факт, что будет существовать несобственный интеграл от модуля функции (достаточно легко построить такой пример).

Заряды. Теорема Радона-Никодима

Опр: 1. Пусть \mathcal{M} - σ -алгебра, функция $\varphi \colon \mathcal{M} \to \mathbb{R}$ называется зарядом тогда и только тогда, когда:

$$\forall A, A_1, \dots, A_n, \dots \in \mathcal{M} \colon A = \bigsqcup_{n=1}^{\infty} A_n, \ \varphi(A) = \sum_{n=1}^{\infty} \varphi(A_n)$$

Rm: 6. В определение входит существование суммы этого ряда.

Иными словами, заряд это знакопеременная мера. Вместе с этим, чтобы здесь всё было определено нет σ -конечного случая, в отличие от меры (когда мы можем допустить σ -конечность).

Rm: 7. Легко также понять, что если мы возьмем две σ -аддитивные различные меры на какой-то σ -алгебре, то если мы возьмем их разность, то вообще говоря это будет заряд, поскольку сохранится σ -аддитивность, но возможно, что мера какого-то множества будет отрицательной.

Опр: 2. Пусть \mathcal{M} - σ -алгебра, φ - заряд на \mathcal{M} и $A \in \mathcal{M}$, тогда A называется положительным множеством относительно φ тогда и только тогда, когда:

$$\forall B \in \mathcal{M} \colon B \subseteq A, \, \varphi(B) \ge 0$$

Опр: 3. Пусть \mathcal{M} - σ -алгебра, φ - заряд на \mathcal{M} и $A \in \mathcal{M}$, тогда A называется <u>отрицательным</u> множеством относительно φ тогда и только тогда, когда:

$$\forall B \in \mathcal{M} \colon B \subseteq A, \, \varphi(B) \le 0$$

Rm: 8. Заметим, что это не тоже самое, что и потребовать $\varphi(A) \ge 0$ или $\varphi(A) \le 0$, поскольку внутри таких множеств может найтись подмножество B у которого $\varphi(B) \le 0$ или $\varphi(B) \ge 0$ соответственно.