Valós függvények differenciálszámítása I.

Differenciálhatóság

1. Definíció. Legyen $]a,b[\subset \mathbb{R}$ valódi intervallum, és $f:]a,b[\to \mathbb{R}$ egy valós függvény. Ekkor a

$$\varphi(x,x_0) = \frac{f(x) - f(x_0)}{x - x_0} \qquad (x \neq x_0, x, x_0 \in]a,b[)$$

módon definiált függvényt az f függvény x, x_0 pontokhoz tartozó **differenciahányados függvény**ének nevezzük.

- **1. Megjegyzés (A differenciahányados függvény geometriai interpretációja).** Az f függvény x, x_0 pontokhoz tartozó $\varphi(x, x_0)$ differenciahányados függvénye éppen az f függvény görbéjének (x, f(x)) és $(x_0, f(x_0))$) pontjaihoz tartozó szelő meredeksége.
- **2. Definíció.** Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $x_0 \in I$. Azt mondjuk, hogy az $f: I \to \mathbb{R}$ függvény az $x_0 \in I$ pontban **differenciálható**, ha létezik és véges az alábbi határérték

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

2. Megjegyzés (A differenciálhányados geometriai interpretációja). $f'(x_0)$ éppen az f függvény görbéjéhez az x_0 pontban húzott érintő meredeksége.

3. Definíció. Legyen $]a,b[\subset \mathbb{R} \ valódi\ intervallum,\ ha\ az\ f:\]a,b[\to \mathbb{R} \ fiiggvény\ differenciálható\ az\ x_0\in]a,b[\ pontban,\ akkor\ az$

$$y = f'(x_0) \cdot (x - x_0) + f(x_0)$$

egyenletű egyenest az f függvény görbéje $(x_0, f(x_0))$ -beli **érintőjé**nek nevezzük.

1. Példa. Legyen $c \in \mathbb{R}$ egy rögzített konstans és $f : \mathbb{R} \to \mathbb{R}$, f(x) = c. Ekkor minden $x_0 \in \mathbb{R}$ esetén

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{c - c}{x - x_0} = \lim_{x \to x_0} 0 = 0.$$

Tehát f'(x) = 0 $(x \in \mathbb{R})$.

2. Példa. Tekintsük az $f: \mathbb{R} \to \mathbb{R}$, f(x) = x függvényt, ekkor tetszőleges $x_0 \in \mathbb{R}$ esetén

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x - x_0}{x - x_0} = \lim_{x \to x_0} 1 = 1,$$

 $azaz \ f'(x) = 1 \ (x \in \mathbb{R}).$

1. Tétel (Differenciálhatóság \Rightarrow **folytonosság).** Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $x_0 \in I$ Ha a $f: I \to \mathbb{R}$ függvény differenciálható az $x_0 \in I$ pontban, akkor f folytonos is az x_0 pontban.

1

3. Megjegyzés (Folytonosság \Rightarrow **differenciálhatóság).** Az előző tétel megfordítása **nem** igaz, ugyanis az f(x) = |x| függvény folytonos a 0 pontban, de ott nem differenciálható, hiszen nem létezik a

$$\lim_{x \to 0} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0} \frac{|x|}{x}$$

határérték.

2. Tétel (Differenciálhatóság és műveletek). Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum és $x_0 \in I$. Ha az $f, g: I \to \mathbb{R}$ függvények differenciálhatóak az $x_0 \in I$ pontban, akkor az f+g, $\lambda \cdot f$ ($\lambda \in \mathbb{R}$ tetszőleges konstans), $f \cdot g$, és ha $g(x) \neq 0$ teljesül az x_0 pont valamely környezetében, akkor az $\frac{f}{g}$ függvény is differenciálható az x_0 pontban, továbbá

(ii)
$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$

(ii)
$$\left(\frac{f}{g}\right)'(x_0) = \lambda \cdot f'(x_0)$$

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) g(x_0) - f(x_0) g'(x_0)}{g^2(x_0)}.$$

3. Tétel (Az összetett függvény differenciálhatósága). Legyen $I \subset \mathbb{R}$ nemüres, nyílt intervallum, $x_0 \in I$ és $g: I \to \mathbb{R}$ és $f: g(I) \to \mathbb{R}$ olyan függvények, hogy g differenciálható az x_0 pontban, f pedig differenciálható a $g(x_0)$ pontban. Ekkor az $f \circ g$ függvény differenciálható az x_0 pontban, továbbá

$$(f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0).$$

4. Tétel (Az inverz függvény differenciálhatósága). Legyen $]a,b[\subset \mathbb{R} \ valódi\ intervallum,\ ha\ az\ f:\]a,b[\to \mathbb{R} \ függvény\ szigorúan\ monoton,\ folytonos\]a,b[-n,\ és\ létezik\ f'\ (x_0)\ és\ az\ nem\ nulla,\ akkor\ az\ f^{-1}\ függvény\ differenciálható\ az\ f\ (x_0)\ pontban\ és$

 $(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)},$

azaz,

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}.$$

Néhány elemi függvény differenciálhányados függvénye

f(x)	f'(x)
C	0
x	1
$x^{\mu} (\mu \neq 0)$	$\mu x^{\mu-1}$
$\exp(x)$	$\exp(x)$
$a^x (a > 0)$	$a^x \ln(a)$
ln(x)	$\frac{1}{x}$
$\sin(x)$	cos(x)
$\cos(x)$	$-\sin(x)$
tg(x)	$\frac{1}{\cos^2(x)}$
sinh(x)	$\cosh(x)$
cosh(x)	sinh(x)

f(x)	f'(x)
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
arccos(x)	$\frac{1}{\sqrt{1-x^2}}$
arctg(x)	$\frac{1}{1+x^2}$
arcctg(x)	$-\frac{1}{1+x^2}$
tanh(x)	$\frac{1}{\cosh^2(x)}$
coth(x)	$-\frac{1}{\sinh^2(x)}$

Feladatok

 $x^3 - \sqrt[3]{x} + 3x$

1. Feladat. A differenciálhányados definíciójából kiindulva határozzunk meg az alábbi függvények differenciálhányadosfüggvényeit.

(a) (b) (c) (d) (e)
$$x^2 x^3 \frac{1}{x} \sqrt{x} \sqrt{x}$$

2. Feladat. Számítsuk ki az f'(1), f'(2) és f'(3) értékeket, ha

$$f(x) = (x-1)(x-2)^2(x-3)^3 \qquad (x \in \mathbb{R}).$$

3. Feladat. Legyen $f(x) = \frac{x^3}{3} + \frac{x^2}{2} - 2x$ $(x \in \mathbb{R})$. Milyen $x_0 \in \mathbb{R}$ értékekre teljesül, hogy

(a)
$$f'(x_0) = 0$$
 (b) $f(x_0) = -2$ (c) $f'(x_0) = 10$ $f'(x_0) = -\pi$.

4. Feladat. Határozzuk meg a következő függvények differenciálhányados függvényeit.

(a)
$$(e)$$
 (f) (f)

 $\sqrt[3]{x}$

5. Feladat. Határozzuk meg az alábbi függvények differenciálhányadosfüggvényeit.

(a) (d) (g) (j)
$$x^{11} + x^{\frac{1}{11}} - 11x + \sqrt{10}\sqrt{x}$$
 (e)
$$x^{5} + \frac{2}{\sqrt{x}} + \frac{3}{x^{4}}$$
 (h)
$$x^{5} - 4x^{10} + 5x^{6}$$
 (f)
$$x^{100} + x^{10} + x + x^{-10}$$
 (i)
$$x^{100} + x^{10} + x + x^{-10}$$
 (j)
$$x^{100} + x^{10} + x + x^{-10}$$
 (i)
$$x^{100} + x^{10} + x + x^{-10}$$
 (j)
$$x^{100} + x^{10} + x + x^{-10}$$
 (i)
$$x^{100} + x^{10} + x + x^{-10}$$
 (j)
$$x^{100} + x^{10} + x + x^{-10}$$
 (i)
$$x^{100} + x^{10} + x + x^{-10}$$
 (j)
$$x^{100} + x^{10} + x + x^{-10}$$
 (i)
$$x^{100} + x^{10} + x + x^{-10}$$
 (j)
$$x^{100} + x^{10} + x + x^{-10}$$
 (i)
$$x^{100} + x^{10} + x + x^{-10}$$
 (j)
$$x^{100} + x^{10} + x + x^{-10}$$
 (i)
$$x^{100} + x^{10} + x + x^{-10}$$
 (j)
$$x^{100} + x^{10} + x + x^{-10}$$
 (i)
$$x^{100} + x^{10} + x + x^{-10}$$
 (j)
$$x^{100} + x^{10} + x + x^{-10}$$
 (j)
$$x^{100} + x^{10} + x + x^{-10}$$
 (i)
$$x^{100} + x^{10} + x + x^{-10}$$
 (j)
$$x^{100} + x^{10} + x + x^{-10}$$
 (i)
$$x^{100} + x^{10} + x + x^{-10}$$
 (j)
$$x^{100} + x^{10} + x + x^{-10}$$
 (i)
$$x^{100} + x^{10} + x + x^{-10}$$
 (j)
$$x^{100} + x^{10} + x + x^{-10}$$
 (k)
$$x^{10} + x^{10} + x + x^{-10}$$
 (k)
$$x^{10} + x^{10} + x + x^{-10}$$
 (l)
$$x^{10} + x^{10} + x + x^{-10}$$
 (l)
$$x^{10} + x^{10} + x + x^{-10}$$

6. Feladat. Határozzuk meg az alábbi függvények differenciálhányados függvényeit.

$$\frac{x^3}{3} - \frac{3x^4}{2} + \frac{13x^5}{5} - 2x^6 + \frac{4x^7}{4}$$

$$3x^{\frac{7}{3}} - 4x^{\frac{13}{4}} + 9x^{\frac{2}{3}} - 6x^{\frac{1}{2}} + 4x^{-\frac{1}{2}} - \frac{4}{7}x^{-\frac{7}{2}}$$

(c)
$$\sqrt[3]{x^2} + \frac{2}{x^3} + \frac{x\sqrt[3]{x^2}}{5} + \frac{m}{n}\sqrt[m]{x^n} - \frac{p}{\sqrt[q]{x^q}} + \frac{1}{\sqrt{x}}$$
 (e) $\frac{5x^2}{\sqrt[5]{x^2}} + 30\sqrt[15]{x} + \frac{6}{\sqrt[3]{x}}$

(d)
$$27x^{3} - \frac{81x^{2}\sqrt[3]{x^{2}}}{2} + 12x^{2} + \frac{12x\sqrt[3]{x^{2}}}{2} \qquad x\sqrt[6]{x^{5}} - \frac{18x^{2}\sqrt[6]{x^{5}}}{17} + \frac{3x^{3}\sqrt[3]{x}}{10}$$

7. Feladat. A szorzat differenciálási szabályát alkalmazva, határozzuk meg a következő függvények differenciálhányados függvényeit.

(a)
$$-\frac{1}{2}x(x^2 - 2)$$
 (g)
$$(x^2 + x + 1)\ln(x)$$
 (n)
$$e^{ax} (a\cos(x) + \sin(x))$$
 (o)

(b)
$$\ln(x)(e^x - 2^x)$$

$$x^3 \left(\frac{2x^2 \sqrt{x}}{11} - \frac{27x}{23 \sqrt[6]{x}} + \frac{16}{3}\right)$$
 (i)

(c)
$$(ax-1)(x^2+5x+6)$$
 (p)

(d)
$$(x-1)(x-2)(x-3) \qquad \sqrt[3]{x} \left(\frac{x\sqrt[3]{x}}{5} + \frac{18x\sqrt{x}}{11} + \frac{27\sqrt[6]{x^5}}{7} \right)$$
 (k)

(e)
$$(a+bx)(c+dx)$$

$$(\sqrt{x}+\frac{1}{\sqrt{x}}+3)$$
 (l)
$$e^x(x^3-3x^2+6x-6)$$

$$(\sqrt{x}+\frac{1}{\sqrt{x}})\left(\frac{1}{x}+\frac{1}{x^{100}}+x^{100}\right)$$

(q)

(f)
$$e^{x} \sqrt{x}$$

$$(m)$$

$$\left(\sqrt{x} - \sqrt[4]{x} \right) (\sin(x) + \sinh(x) - 1)$$

8. Feladat. A hányados differenciálási szabályát alkalmazva, határozzuk meg a következő függvények differenciálhányados függvényeit.

(a)
$$\frac{x-1}{x-2}$$
 (b) $\frac{x-1}{x-2}$ (c) $\frac{x}{x+1}$ (d) $\frac{x}{x+3}$ (e) $\frac{x}{1-x}$ (f) $\frac{x}{1-x}$ (g) $\frac{x}{\ln(x)}$ (g) $\frac{x}{\ln(x)}$ (g) $\frac{x}{e^x}$ (g) $\frac{x}{e^x}$ (g) $\frac{x}{e^x}$ (g) $\frac{x}{e^x}$ (g) $\frac{x}{e^x+1}$ (g) $\frac{x}{e^x+1}$ (h) $\frac{x}{e^x+1}$ (g) $\frac{x}{e^x+1}$ (h) $\frac{x}{e^x+1}$ (h) $\frac{x}{e^x+1}$ (h) $\frac{x}{e^x+1}$ (h) $\frac{x^2-x^2}{a^2+x^2}$ (h)

(e)
$$\frac{1-x}{x+5}$$
 (1) (n) (s)
$$\frac{5+3x+x^2}{5-3x+x^2}$$
 $e \cdot \ln(x)$ $\frac{2^x+x^2}{3^x+x^3}$ (x)

$$\frac{\sqrt{x}}{\sqrt{x}+2} \qquad (j) \qquad e^x \qquad (o) \qquad \frac{\sin(x)}{\sinh(x)} \qquad \frac{ax+b}{a-bx+cx^2}$$