Subsequences (ag)
Given a character array. Count the mo. of pairs (i,j) s.t. $i < j \neq A(i) = 'a'$, A(j) = 'a'. All characters are boneroux alphabets.

A= [baaagdcag] (1,3)(2,3)(6,7) Ans = 5. (1,7) (2,7)[gcaggaag] (2,3)(2,4) (6,7)(2,7)

Solt) Bonte force

Tij when icj > Sterate & check

if (Ali) == 'a' & Ali] == 'g')

(fr j = i+1...)

⇒ ¥ Ali]	where Ali	$\mathfrak{J} = \mathfrak{G}^{1}$	you need
the cou	~ 1 '	a'is in	I the left
side	0		
			1
	0 1 2	* * *	7 7
A = (9 c a		a 9
	9	9 9 a	
Con f 1	001	1 1 2	3 3
count of	J		4 4
index	a	NS	
3	-	· 1 \ /	
4	+	- 1)(>/
	+	- 3	
	_	^	
)	
<u> </u>			
<u> </u>	/	^	1- 200 000
The The	answer of	u, cau	se calculated 1 i-1.
ponerry	nscry The	unsper	<u> </u>
to i) Piwas		$\mathcal{A}(\tilde{c}-1)$

```
ans = 0;
Count = 0;
for (i=0; i< ~; i++) ~
         (A(i) = = 'a') \( \) count ++',
       else if (Ali] = = 191) &
              ans += count;
       6
      ans.
             T. (. = 0(N)
             S.C. = O(1)
```

Given an integer array A.

Court the no. of leader in the array.

header > An element which is greater

than all the elements in

the right

Note > Aln-1) is always a leader.


```
A = (5, 1, 7, 2), 5, 4, 2, 3
       \left( 15, 1, 2, 2 \right) \longrightarrow \left[ 0, 3 \right]
         [5,2,7] × (order should se
same as order
S,e] > e-S+1
 Given an integer array of size N.
  find the length of the smellest subarray which toutains both max of the array.
  A: [2,2,6,4,5,1,5,2,6,4,1]
           find mex & min > 0 (N)
(6) (1)
```

A: \[8, 8, 8, 8, 8, 8 \]

max = 8 min = 8 min = 1

Solo Obs 1: Subarray will always start & end with men & min.

Ohs 2: Ans subarray there will

Ohs 2: Ans subarray there will only be one men &

1) Brute brue

is (mex, min) or (min, mex)

> length = (e-s+1)

global _ min,

Code

length Min = N:, for (8 = 0; &<M; &++) & (e=s; e<N; e++) d // A[s,e] > subarrey. if (A(s) == min & A(e) == mex) | (A (s) == mer 88 A(e) == min)) d length Min = min (length Min, l);

l = i - min Ind + 1 ans = men (ans, l); max Ind = i; else if (Ali) == min) & (mex Ind = -1) < d = i - mac Ind +1; ans = min (ans, e); min Ind = i; ans, T.C. = O(N) $S \cdot C = O(1)$ A Always Jocus on cursent Do not live in part.

Lsum =
$$0+1=1+2=3+3=6+4=10$$

Rsum = $2+-2=95-3=22-4=18-8=10$