Assignment 0

Assignment objective

The objective of this assignment is to learn:

- o Understanding of a given RL problem parameters.
- o The implementation of the environment.
- o The implementation of Value iteration and q values.

Assignment Rules

- Due date is 19/3.
- The assignment will be delivered in groups of 4 5 students.
- Your file name should be 1ID_2ID_3ID_4ID.py
- Any cheats will got zero.

• Assignment Description

Implement value iteration and q-values methods on the Grid World problem.

- 1. Build the Environment.
 - * Number of states is 12 (each grid represent state)
 - * Number of actions is 4 (Up, Down, Left, Right)
 - * Reward of grid 3 is 1, for grid 7 is -1 and grid 5 is a wall
 - * Discount factor (Gamma) = 0.9, noise = 0.2, Num of iterations = 100
- 2. For every iteration print the Grid Values

Example of the output:

```
| -0.01 | -0.01 | 0.782 | +1 |
| -0.01 | WALL| -0.01 | -1 |
| -0.01 | -0.01 | -0.01 |
```

3. After the model converges or go through all iterations extract the policy and print it

Example of the output:

Tip: for building the environment you could use $3*4\ 2d$ array and each state is represented by the index of that array (state $1 \Rightarrow [0][0]$, state $2 \Rightarrow [0][1]$ and so on), and for the actions you could write it as Actions = $[(1, 0), (0, -1), (-1, 0), (0, 1)] \Rightarrow$ Down, Left, Up, Right then the next state when taking action a can be obtained by adding the current state indexes and the action values Ex. We are in state [0][1] and we go down which is (1,0) so the new state will be $[0+1][1+0] \Rightarrow [1][1]$. (You can use this implementation or do it your way)

Hint: Any trial will be appreciated so please try.