LINGI2263: Part-of-Speech Tagging

Pierre Dupont

```
annotation deep learning
computational linguistics
algorithm natural language processing stemming hidden markov model ngrams
machine translation phrase structure personal assistant
context grammar syntax word embeddings
corpus chatbots
```

Outline

- Introduction
- Three approaches to POS Tagging
 - Rule-Based approach
 - Probabilistic approach
 - Transformation-based tagging
- HMM POS tagging
 - Model definition
 - HMM POS Tagging = Viterbi Decoding
 - How to estimate HMMs parameters?
- Evaluation
- Conclusion

Outline

- Introduction
- 2 Three approaches to POS Tagging
- 3 HMM POS tagging
- 4 Evaluation
- Conclusion

Part-Of-Speech Tagging

Sequence labeling problem

Associate a POS tag to each word token in a sentence

NNS VB TO VB AT NN IN AT NN IN JJ NN

People continue to inquire the reason for the race for outer space

reopie continue to inquire the reason for the race for outer spa

NNP VBZ VBN TO VB NR

Secretariat is expected to race tomorrow

pacc	
AT	article
JJ	adjective
IN	preposition
NN	singular noun
NNP	proper noun, singular
NNS	noun, plural
NR	adverbial noun
TO	to
VB	verb, base form
VBN	verb, past participle
VBZ	verb, 3sg present
	•••

45-tag Penn TreeBank tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	**	left quote	or "
POS	possessive ending	's	,,	right quote	or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	. ! ?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

Illustration from Speech and Language Processing/2e, D.Jurafsky and J.H.Martin, Pearson International Edition, 2009.

87-tag Brown Corpus tagset

Tag	Description	Example
	opening parenthesis	6.1
	closing parenthesis).j
	negator	not, n't
	comma	
	dash	
	sentence terminator	.21
	colon	
ABL.	pre-qualifier	quite, rather, such
ABN	pre-quantifier	half, all
ABX	pre-quantifier, double conjunction	both .
AP		
	post-determiner article	many, next, several, last
AT		a, the, an, no, a, every
	D/BEDZ/BEG/BEM/BEN/BER/BEZ	be/were/was/being/am/been/are/is
CC	coordinating conjunction	and, or, but, either, neither
CD	cardinal numeral	two, 2, 1962, million
CS	subordinating conjunction	that, as, after, whether, before
DO/DO	D/DOZ	do, did, does
DT	singular determiner	this, that
DTI	singular or plural determiner	some, any
DTS	plural determiner	these, those, them
DTX	determiner, double conjunction	either, neither
EX	existential there	there
HV/HV	D/HVG/HVN/HVZ	have, had, having, had, has
IN	preposition	of, in, for, by, to, on, at
II	adjective	cy, m, joi, cy, io, on, ai
JJR	comparative adjective	better, greater, higher, larger, lower
JJS		
	semantically superlative adj.	main, top, principal, chief, key, foremost
JJT	morphologically superlative adj.	best, greatest, highest, largest, latest, wors
MD	modal auxiliary	would, will, can, could, may, must, should
NN	(common) singular or mass noun	time, world, work, school, family, door
NNS	possessive singular common noun	father's, year's, city's, earth's
NNS	plural common noun	years, people, things, children, problems
NNS\$	possessive plural noun	children's, artist's parent's years'
NP	singular proper noun	Kennedy, England, Rachel, Congress
NP\$	possessive singular proper noun	Plato's Faulkner's Viola's
NPS	plural proper noun	Americans, Democrats, Chinese
NPS\$	possessive plural proper noun	Yankees', Gershwins' Earthmen's
NR	adverbial noun	home, west, tomorrow, Friday, North
NRS	possessive adverbial noun	today's, yesterday's, Sunday's, South's
NRS	plural adverbial noun	Sundays, Fridays
OD	ordinal numeral	second, 2nd, twenty-first, mid-twentieth
PN	nominal pronoun	one, something, nothing, anyone, none
PNS	possessive nominal pronoun	one's, someone's, anyone's
PPS	possessive personal pronoun	his, their, her, its, my, our, your
PPSS		mine, his, ours, yours, theirs
PPL	second possessive personal pronoun	myself, herself
PPLS	singular reflexive personal pronoun	ourselves, themselves
PPO	plural reflexive pronoun	me, us, him
	objective personal pronoun	
PPS	3rd. sg. nominative pronoun	he, she, it
PPSS	other nominative pronoun	I, we, they
QL	qualifier	very, too, most, quite, almost, extremely
QLP	post-qualifier	enough, indeed
RB	adverb	
RBR	comparative adverb	later, more, better, longer, further
RBT	superlative adverb	best, most, highest, nearest
RN	nominal adverb	here, then
figure :		corpus tagset (Francis and Kučera, 1982). For

Tag	Description	Example
RP	adverb or particle	across, off, up
TO	infinitive marker	to
UH	interjection, exclamation	well, oh, say, please, okay, uh, goodbye
VB	verb, base form	make, understand, trv, determine, drop
VBD	verb, past tense	said, went, looked, brought, reached, kep
VBG	verb, present participle, gerund	getting, writing, increasing
VBN	verb, past participle	made, given, found, called, required
VBZ	verb, 3rd singular present	says, follows, requires, transcends
WDT	wh- determiner	what, which
WPS	possessive wh- pronoun	whose
WPO	objective wh- pronoun	whom, which, that
WPS	nominative wh- pronoun	who, which, that
WOL	how	
WRB	wh- adverb	how, when

Illustrations from Speech and Language Processing/2e,

D.Jurafsky and J.H.Martin, Pearson International Edition, 2009.

Tag ambiguity on the Brown corpus

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous (1 tag)		44,019		38,857	
Ambiguous (2-7 tags)		5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round, open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

- Despite having coarser tags, the 45-tag Treebank tagset is more ambiguous
- It is however most commonly used at least for evaluating automatic taggers

Illustration from Speech and Language Processing/2e, D.Jurafsky and J.H.Martin, Pearson International Edition, 2009.

Outline

- Introduction
- Three approaches to POS Tagging
 - Rule-Based approach
 - Probabilistic approach
 - Transformation-based tagging
- 3 HMM POS tagging
- 4 Evaluation
- 6 Conclusion

- Three approaches to POS Tagging
 - Rule-Based approach
 - Probabilistic approach
 - Transformation-based tagging

Rule-based approach

Use a large dictionary to assign each word a set of possible tags

Word	POS
	Adverb
that	Pronoun Demonstrative Singular
llial	Determiner
	Complementizer (subordinating conjunction)

Apply a large list of disambiguation rules to restrict each set to a single tag for each word

Input: that

if (next word is adjective, adverb, or quantifier)

AND (it is followed by a sentence boundary)

AND (the previous word is not a verb like 'consider')

then eliminate non-ADV tags;

else eliminate ADV tag;

Limitations of the rule-based approach

The EngCG system is built on a lexicon of 56,000 entries for English word stems and includes 3,744 disambiguation rules

- Dictionary and disambiguation rules are specific to a given language
- Those linguistic resources need to be constantly updated while the language evolves

- Three approaches to POS Tagging
 - Rule-Based approach
 - Probabilistic approach
 - Transformation-based tagging

A probabilistic approach to POS tagging

- As tagging is ambiguous, a probabilistic approach relies on the frequencies of word-tag associations in a training corpus to assign the tag of each word in a new sentence
- Choosing only the most likely tag for a given word would always assign the same tag to any word
- A better probabilistic model assigns a tag to a word according to its context: HMM POS-tagging
- When a new sentence needs to be tagged
 - the sequence of words is observed
 - the sequence of tags is hidden (= not observed)

Illustration from Speech and Language Processing/2e, D.Jurafsky and J.H.Martin, Pearson International Edition, 2009.

- Three approaches to POS Tagging
 - Rule-Based approach
 - Probabilistic approach
 - Transformation-based tagging

Brill tagger

- Like rule-based approaches, each word is tagged according to some explicit rules
- Like probabilistic approaches, a disambiguation model is learned from a corpus of tagged sentences (supervised learning)

- The most likely tag is first assigned to each word $P(NN \mid race) = .98 \quad P(VB \mid race) = .02$
- Change the current tag by applying an ordered list of transformation rules:

Change NN to VB when the previous tag is TO

Learning Transformation Rules

Given a POS tagged corpus **and** transformation templates such as: Change tag a to b when

- the preceding (following) word is tagged z
- the word two before (after) is tagged z
- the preceding (following) word is tagged **z** and the word two before (after) is tagged w

Input: A tagged corpus

Output: An ordered list of transformation rules

Tag each word with its most likely tag

repeat

Try every possible transformation by instantiating some template

Select the one that results in the most improved tagging

Relabel the corpus accordingly

until stopping criterion is met;

Pros and cons of Brill tagger

Pros

- Transformation rules can be interpreted 'linguistically'
- Learning those rules makes it possible to adapt the tagger to several languages (or language evolutions)

Limitations

- A transformation rule can be learned only if it is an instance of an abstract transformation template
- Learning is supervised only ⇒ a tagged corpus is mandatory
- Computational complexity of learning (and, to some extent, tagging) is an issue

Outline

- Introduction
- 2 Three approaches to POS Tagging
- HMM POS tagging
 - Model definition
 - HMM POS Tagging = Viterbi Decoding
 - How to estimate HMMs parameters?
- 4 Evaluation
- 6 Conclusion

- HMM POS tagging
 - Model definition
 - HMM POS Tagging = Viterbi Decoding
 - How to estimate HMMs parameters?

A probabilistic finite state model

- Each state is associated to a specific POS tag
- Each state emits words according to a specific emission probability distribution
- When a new sentence needs to be tagged
 - the sequence of states is hidden
 - the sequence of emitted words is observed
- Tagging a sentence reduces to find the most likely state sequence given the observed word sequence
 - a global criterion to tag words

First-order Markov Chain Structure

- This is equivalent to a TAG Bigram model (Start = <s> and End = </s>)
- Such a model can be estimated from a tagged corpus by counting the successive POS tags

$$a_{21} = \hat{P}(VB|TO) = \frac{C(TO, VB)}{C(TO)}$$
 + some appropriate smoothing

However TAGs are not observed when a new sentence need to be tagged

Illustration from Speech and Language Processing/2e, D.Jurafsky and J.H.Martin, Pearson International Edition, 2009.

HMM Tagger

- first-order Markov Chain (= a BiGram): transition probabilities
- emission probabilities

Illustration from Speech and Language Processing/2e, D.Jurafsky and J.H.Martin, Pearson International Edition, 2009.

Hidden Markov Models

Definition

A discrete HMM (with state emission)

- W is a finite vocabulary (a, b,... represent the words)
- Q is a set of states
 each state 1, 2,... is associated to a specific POStag
- A a $|Q| \times |Q|$ transition probability matrix $(\sum_{q' \in Q} \mathbf{A}_{qq'} = 1)$
- **B** a $|Q| \times |W|$ emission probability matrix $(\sum_{a \in W} \mathbf{B}_{qa} = 1)$
- π an initial probability distribution ($\sum_{q \in Q} \pi_q = 1$) π_q is equivalent to the transition probability a_{0q} with state 0 = Start

P. Dupont (UCLouvain) LINGI2263 23/42

0.6

Path likelihood

The likelihood $P(s, \nu | M)$ of a sequence $s = s_1 \dots s_{|s|}$ along a path or state sequence $\nu = q_1 \dots q_{|s|}$ in a HMM M

$$P(s, \nu | M) = \prod_{i=1}^{|s|} P(s_i, q_i | M) = \pi_{q_1} \mathbf{B}_{q_1 s_1} \prod_{i=2}^{|s|} \mathbf{A}_{q_{i-1} q_i} \mathbf{B}_{q_i s_i}$$

Interpretation

Probability to observe the sentence **a b b** generated by the sequence of POStags **1 2 2**

P. Dupont (UCLouvain) LINGI2263 24/42

Sequence likelihood

The likelihood P(s|M) of a sequence $s = s_1 \dots s_{|s|}$ in a HMM M $P(s|M) = \sum_{\nu \in Q^{|s|}} P(s, \nu|M)$

$$P(abb|M) = P(abb, 111|M) + P(abb, 112|M) + P(abb, 121|M) + P(abb, 122|M) + P(abb, 211|M) + \dots$$

Interpretation

Probability to observe the sentence **a b b** generated by any sequence of 3 POStags

P. Dupont (UCLouvain) LINGI2263 25/42

- HMM POS tagging
 - Model definition
 - HMM POS Tagging = Viterbi Decoding
 - How to estimate HMMs parameters?

HMM POS tagging = the inverse problem

The decoding problem

Given a sentence (= sequence of words assumed to have been produced by a HMM) which is the **most likely state sequence** (= sequence of POStags) that produced it

The naïve approach

$$P(abb|M) = P(abb, 111|M) + P(abb, 112|M) + P(abb, 121|M) + P(abb, 122|M) + P(abb, 211|M) + \dots$$

Decoding

$$\nu^* = \operatorname*{argmax}_{\nu} P(abb, \nu | M)$$

Exponential complexity

 $\mathcal{O}(|Q|^{|s|})$ possible state sequences !! $\mathcal{O}(45^{20}) \approx 10^{33}$ possibilities for 45 POS tags and a sentence made of 20 words

P. Dupont (UCLouvain) LINGI2263 28/42

Viterbi decoding

$$u^* = \operatorname{argmax}_{\nu} P(s, \nu | M)$$

Most likely state sequence for *abb* = 212

Viterbi recurrence

$$\nu^* = \operatorname{argmax}_{\nu} P(s, \nu | M)$$

Auxiliary quantity: $\gamma(k, t) = P(s_1 \dots s_t, \nu_t^* = k|M)$

The probability of the most likely path ν^* reaching state k at step t

Initialization: $\gamma(k, 1) = \pi_k \mathbf{B}_{ks_1}$

Recurrence: $\gamma(k, t) = \max_{l} [\gamma(l, t - 1) \mathbf{A}_{lk}] \mathbf{B}_{ks_t}$

 $back(k, t) = argmax_{I}[\gamma(I, t - 1)\mathbf{A}_{Ik}]$

Termination: $P(s, \nu^*|M) = \max_{l} \gamma(l, |s|)$ $q_{|s|}^* = \operatorname{argmax}_{l} \gamma(l, |s|)$

Time complexity: $\Theta(m|s|)$

31/42

Viterbi alignment

- $P(s, \nu^*)$ gives the probability of an optimal path ν^*
- Computations are done usually with log's:

$$-\log \gamma(k,t) = \min_{I} [-\log \gamma(I,t-1) - \log \mathbf{A}_{Ik}] - \log \mathbf{B}_{ks_t}$$

- The actual path ν^* can be recovered from the backpointers
- Time complexity is $\Theta(m|s|)$ with m the number of HMM transitions
- ullet The path u^* defines an alignment between states and words
- This alignment defines a segmentation of the sequence : $\frac{a}{2} \mid \frac{b}{1} \mid \frac{b}{2}$

P. Dupont (UCLouvain) LINGI2263

HMM POS Tagging = Viterbi decoding

Underlying assumptions

Given a sequence of n words $w_1^n = w_1, \dots, w_n$ find a sequence of n tags \hat{t}_1^n that maximises the posterior probability (MAP decision rule)

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(t_{1}^{n} \mid w_{1}^{n}) \\
= \underset{t_{1}^{n}}{\operatorname{argmax}} \underbrace{P(w_{1}^{n} \mid t_{1}^{n})}_{likelihood} \underbrace{P(t_{1}^{n})}_{prior} \\
\approx \underset{t_{1}^{n}}{\operatorname{argmax}} \underbrace{\prod_{i=1}^{n} P(w_{i} \mid t_{i})}_{Hyp.1} \underbrace{\prod_{i=1}^{n} P(t_{i} \mid t_{i-1})}_{Hyp.2} = \underset{t_{1}^{n}}{\operatorname{argmax}} \underbrace{\prod_{i=1}^{n} P(w_{i} \mid t_{i})}_{Emission} \underbrace{P(t_{i} \mid t_{i-1})}_{Transition}$$

Hyp. 1: each word w_i given its tag t_i is independent of the other words and tags Hyp. 2: bigram tag model

- HMM POS tagging
 - Model definition
 - HMM POS Tagging = Viterbi Decoding
 - How to estimate HMMs parameters?

The learning problem

Given an HMM structure (by default, a fully connected graph) and several sentences (= a training corpus) to model

estimate the HMM parameters: A, $B(,\pi)$

Supervised learning

The learning sentences are annotated with their respective states

HMM supervised estimation

Build the probability estimates

$$\mathbf{B}_{ki} = \hat{P}(w_k|t_i) = \frac{C(t_i, w_k)}{C(t_i)} \quad \mathbf{A}_{kl} = \hat{P}(t_l|t_k) = \frac{C(t_k, t_l)}{C(t_k)}$$

 $C(t_i, w_k)$ = number of times word w_k is observed on the POS state t_i $C(t_k, t_l)$ = number of times POS t_k is followed by POS t_l

Smooth the probability estimates

$$\hat{P}(w_k|t_i) = \frac{C(t_i, w_k) + \varepsilon}{C(t_i) + \sum_{w \in W} \varepsilon} \quad \hat{P}(t_i|t_k) = \frac{C(t_k, t_i) + \varepsilon'}{C(t_k) + \sum_{q \in Q} \varepsilon'}$$

$$10^{-6} \le \varepsilon, \varepsilon' \le 1$$

Tagging an unknown word

$$\hat{P}(w_k|t_i) = \frac{C(t_i, w_k) + \varepsilon}{C(t_i) + \sum_{w \in W} \varepsilon} \quad 10^{-6} \le \varepsilon \le 1$$

- Problem: even with a smoothed emission probability, any out-of-vocabulary word in the test set is assigned a zero probability
 - there is no Viterbi path because there is no path producing the observed sequence to be tagged
- Usual solution:
 - Replace any word occurring only once (or very few times) in the training set with a special marker <UNK>
 - Reduce the observed vocabulary accordingly and add <UNK> to it
 - Smooth the emission probability according to this new vocabulary

Outline

- Introduction
- 2 Three approaches to POS Tagging
- 3 HMM POS tagging
- Evaluation
- Conclusion

Tagging Performance

	IN	JJ	NN	NNP	RB	VBD	VBN
IN	()	.2			.7		
JJ	.2	_	3.3	2.1	1.7	.2	2.7
NN		8.7	_				.2
NNP	.2	3.3	4.1	_	.2		
RB	2.2	2.0	.5		_		
VBD		.3	.5			_	4.4
VBN		2.8				2.6	_

TAG Confusion Matrix

- Each row corresponds to an actual tag
- Each column corresponds to a predicted tag
- Each entry defines the error percentage with respect to an actual tag frequency f(i) (in **bold** the most common errors)
- Performance metrics:
 - ► Average error rate per TAG = $\frac{1}{number\ of\ row_i}$ $\sum_i (total\ of\ row_i)$ ► Tagging error rate = $\frac{\sum_i f(i)(total\ of\ row_i)}{\sum_i f(i)}$

 - ► Tagging accuracy = 100% Tagging error rate

Outline

- Introduction
- 2 Three approaches to POS Tagging
- 3 HMM POS tagging
- 4 Evaluation
- Conclusion

Summary

- Rule-based approaches are not adaptive to various languages or their evolutions
- Transformation-based tagging includes some learning component but
 - A tagged corpus must be provided
 - Rules are restricted from a predefined set of abstract rules
 - Computation time during training and tagging is an issue
 - ▶ No easy way to propose the N-best tagging alternatives
- HMMs offer a powerful statistical method for POS tagging
 - ▶ They can be built automatically but usually from a tagged corpus
 - ► N-best alternatives can be computed (not detailed here)
 - Smoothing needs to be done with some care

Your Project 2

inginious.info.ucl.ac.be/course/LINGI2263

Further reading

- Jurafsky D. and Martin J.H. (2009).
 Speech and Language Processing, 2nd edition, chapter 5, 6.
 Pearson International Edition.
- Brants, T. (2000).

 TnT A Statistical Part-of-Speech Tagger

 Proceedings of 6th Applied Natural Language Processing

 Conference, p. 224–231, Seattle, Washington.