МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа природных ресурсов Направление подготовки 18.04.01 «Химическая технология» Образовательная программа «Химическая технология подготовки нефти и газа»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 6

По дисциплине	
РҮТНО N ДЛЯ ЗАДАЧ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ	

Студент

Группа	ФИО	Подпись	Дата
2ДМ22	Лукьянов Д.М.	My	30.12.2023

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
доцент ОХИ ИШПР	Чузлов В.А.	к.т.н.		30.12.2023

ЗАДАНИЕ

Рассчитать химико-технологическую систему (определить составы и свойства всех потоков):

Рисунок 1 – Химико-технологическая схема для расчета

Для решения поставленной задачи необходимо реализовать объектную модель: каждый элемент химико-технологической системы должен быть описан как отдельный класс.

Состав, расход и температуру потоков можно задать произвольно.

Описание класса Flow

Рекомендуемые атрибуты:

Атрибут	Описание
<pre>mass_flow_rate: float</pre>	Массовый расход, кг/ч
<pre>mole_flow_rate: float</pre>	Мольный расход, кмоль/ч
<pre>volume_flow_rate: float</pre>	Объемный расход, м ³ /ч
<pre>mass_fraction: np.ndarray</pre>	Массовые доли
<pre>mole_fraction: np.ndarray</pre>	Мольные доли
<pre>volume_fractions: np.ndarray</pre>	Объемные доли
temperature: float	Температура потока, К
density: float	Плотность потока, г / см 3
<pre>average_mol_mass: float</pre>	Средняя молярная масса, г/моль
cp: float	Массовая теплоемкость потока,
	кДж/кг
<pre>definit(self,</pre>	Создает новый экземпляр класса
<pre>mass_flow_rate: float,</pre>	Flow, заполняя все поля

Атрибут	Описание
<pre>mass_fractions: np.ndarray,</pre>	
temperature: float) -> None	

Функции для пересчета составов

1. Пересчет массовых долей в объемные:

$$\varphi_i = \frac{\frac{\omega_i}{\rho_i}}{\sum_{i=1}^n \frac{\omega_i}{\rho_i}}$$

где ϕ_i – объемная доля i-го компонента;

 ω_i – массовая доля i-го компонента;

 ho_i — плотность i-го компонента;

n – число компонентов в системе;

i – индекс компонента в системе.

2. Пересчет массовых долей в мольные:

$$\chi_i = \frac{\frac{\omega_i}{M_i}}{\sum_{i=1}^n \frac{\omega_i}{\rho_i}}$$

где χ_i – мольная доля i-го компонента;

 ω_i – массовая доля i-го компонента;

 ho_i — плотность i-го компонента;

 M_i — молярная масса i-го компонента;

n — число компонентов в системе;

i – индекс компонента в системе.

Функции для расчета плотности и средней молекулярной массы

1. Расчет плотности:

$$\rho = \frac{1}{\sum_{i=1}^{n} \frac{\omega_i}{\rho_i}}$$

где ρ – плотность потока;

 ω_i – массовая доля i-го компонента;

 ho_i – плотность i-го компонента;

n — число компонентов в системе;

i – индекс компонента в системе.

2. Расчет средней молекулярной массы потока:

$$m = \frac{1}{\sum_{i=1}^{n} \frac{\omega_i}{M_i}}$$

где m — средняя молярная масса потока;

 ω_i – массовая доля i-го компонента;

 M_i – молярная масса i-го компонента

n — число компонентов в системе;

i – индекс компонента в системе.

Функции для расчета теплоемкости потока

Расчет теплоемкости потока в зависимости от состава потока и температуры среды осуществляется следующим образом:

1. Определяется теплоемкость компонентов потока при температуре среды:

$$Cp_i = \sum_{i=1}^{5} j \cdot k[i, j] \cdot T^{j-1}$$

где Cp_i – теплоемкость i-го компонента, кДж/кг;

k[i,j] — коэффициенты аппроксимации температурной зависимости энтальпии для i-го компонента;

T — температура потока, К;

2. Определяется общая теплоемкость потока:

$$Cp = \sum_{i}^{n} \omega_{i} \cdot Cp_{i}$$

где ω_i – массовая доля i-го компонента;

 $\mathcal{C}p_i$ – теплоемкость i-го компонента, кДж/кг;

n — число компонентов в системе;

Коэффициенты для температурной зависимости теплоемкости представлены в таблице:

Номер компонента	k_1	k_2	k_3	k_4	k_5
1	0,071254	0,002979	-0,0000007	0	0
2	13,83761	0,0003	0,000000346	-0,000000000097	0,000000000000000773
3	-0,09689	0,003473	-0,0000013	0,000000000256	-0,000000000000014
4	0,9985	-0,00018	0,000000557	-0,00000000032	0,00000000000000637

Плотность компонентов:

Номер компонента	Плотность, г/см ³
1	0,821537454674234
2	8,57E-05
3	0,634118153548788
4	0,0138331933625558

Молярная масса компонентов:

Номер компонента	Молярная масса, г/моль
1	128,1332
2	2,02
3	131,82935
4	34,01

Описание класса Mixer

Рекомендуемые атрибуты

Атрибут	Описание	
<pre>def mix(self, *flows: Flow) -</pre>	Реализация метода смешения потоков,	
> Flow	Возвращает результирующий поток в	
> FIOM	виде объекта класса Flow	
def	Закрытый метод, необходимый для	
<pre>calculate_temperature(self)</pre>	расчета температуры смесевого	
-> float	потока	

Материальный и тепловой балансы смешения

Состав смесевого потока (в массовых долях) можно найти следующим образом:

$$\omega_i = \frac{\sum_{j=1}^n G_j \cdot \omega_{i,j}}{\sum_{j=1}^n G_j}$$

где ω_i – массовая доля i-го компонента;

 G_i – массовый расход j-го потока, кг/ч;

 $\omega_{i,j}$ — массовая доля i-го компонента в j-ом потоке;

n – количество смешиваемых потоков.

Теплоемкость смесевого потока можно найти следующим образом:

$$Cp = \frac{\sum_{i=1}^{n} G_i \cdot Cp_i}{\sum_{i=1}^{n} G_i}$$

где Cp – теплоемкость смесевого потока, кДж/(кг·К);

 G_i – массовый расход i-го потока, кг/ч;

 Cp_i – теплоемкость i-го потока, кДж/(кг·К);

n – количество смешиваемых потоков.

Температура смесевого потока определяется следующим образом:

$$T = \frac{\sum_{i=1}^{n} G_i \cdot Cp_i \cdot T_i}{G \cdot Cp(T)}$$

где T — температура смесевого потока, K;

 G_i – массовый расход i-го потока, кг/ч;

 $\mathcal{C}p_i$ – теплоемкость i-го потока, кДж/(кг·К);

n – количество смешиваемых потоков.

G – массовый расход смесевого потока, кг/ч;

Cp(T) — теплоемкость смесевого потока, кДж/(кг·К), являющаяся функцией от температуры.

В итоге получаем нелинейное уравнение, корнем которого является искомое значение температуры смесевого потока.

Описание класса HeatExchanger

Будем рассматривать теплообменник типа «труба в трубе».

Рекомендуемые атрибуты

Атрибут	Описание
<pre>definit(self, d_in:</pre>	Конструктор класса HeatExchanger
<pre>float = .1, d_out: float:</pre>	Koherpykrop knacca neacexerianger

.25, length: float = 3.0, k:	
float = 4900) -> None	
	Расчет теплообменного аппарата. В
<pre>def calculate(self, hot:</pre>	качестве результата возвращается
Flow, cold: Flow) ->	кортеж, состоящий из двух элементов:
<pre>tuple[Flow]:</pre>	горячего и холодного потоков
	(объекты класса Flow)

Расчет теплообменного аппарата в стационарном режиме

В стационарном режиме уравнения теплового баланса теплообменного аппарата примут следующий вид:

$$\frac{dT_h}{dl} = -\frac{k \cdot \pi \cdot d}{v_h \cdot \rho_h \cdot Cp_h} \cdot (T_h - T_c)$$

$$\frac{dT_c}{dl} = \frac{k \cdot \pi \cdot d}{v_c \cdot \rho_c \cdot Cp_c} \cdot (T_h - T_c)$$

где T_h и T_c — температуры горячего и холодного потоков, соответственно, K;

k – коэффициент теплопередачи, кДж/(м²·К·ч);

d – диаметр трубы, м;

 v_h, v_c — объемные расходы горячего и холодного теплоносителей, соответственно, м $^3/$ ч;

 ho_h , ho_c — плотности горячего и холодного потоков, кг/м³;

 $\mathcal{C}p_h, \mathcal{C}p_c$ — теплоемкости горячего и холодного потоков, соответственно, кДж/(кг·К).

Описание класса Splitter

Атрибу	Т			Описание
def	calculate(s	elf,	flow:	Расчет делителя потока; возвращает в
Flow,	*ratio:	float)	->	качестве результата список объектов
list[F	low]			Flow

Программная реализация:

Cell 1

import numpy as np
from scipy import optimize
import copy
from scipy.integrate import solve_ivp

Cell 2

```
class Flow:
 def __init__(self, name: str,
               mass_flow_rate: float,
               mass_fractions: np.ndarray,
               densities: np.ndarray,
               mole_weights: np.ndarray,
               cp_coeffs: np.ndarray,
               temperature: float) -> None:
    self.name = name
    self.mass_flow_rate = mass_flow_rate
    self.mass_fractions = mass_fractions
    self.n_comps = len(self.mass_fractions)
    self.densities = densities
    self.mole_weights = mole_weights
    self.cp_coeffs = cp_coeffs
    self.temperature = temperature
    self.convert_mass_to_volume_fractions()
    self.convert_mass_to_mole_fractions()
    self.calc_flow_density()
    self.calc_average_molar_mass()
    self.calc comp cp()
    self.calc_avr_cp()
    self.volume_flow_rate = self.mass_flow_rate / self.density
 def convert_mass_to_volume_fractions(self) -> np.ndarray:
    x = self.mass fractions / self.densities
    s = x.sum()
    self.volume fractions = x / s
 def convert_mass_to_mole_fractions(self) -> np.ndarray:
    x = self.mass_fractions / self.mole_weights
    s = x.sum()
    self.mole fractions = x / s
  def calc_flow_density(self) -> float:
    self.density = (self.mass_fractions / (1000 * self.densities)).sum() ** (-1)
 def calc_average_molar_mass(self) -> float:
    self.mole_mass = (self.mass_fractions / self.mole_weights).sum() ** (-1)
```

```
def calc_comp_cp(self) -> np.ndarray:
    self.comp_cp = np.zeros(self.n_comps)
    for i in range(self.n comps):
      for j in range(len(self.cp_coeffs[0])):
        self.comp_cp[i] += j * self.cp_coeffs[i, j] * self.temperature**j
 def calc_avr_cp(self) -> float:
    self.avr_cp = (self.mass_fractions * self.comp_cp).sum()
 def set t(self, temperature: float) -> None:
    self.temperature = temperature
    self.calc_comp_cp()
    self.calc_avr_cp()
 def describe(self) -> None:
    print(f'Имя потока: {self.name}')
    print(f'Temneparypa = {self.temperature:1.2f} °C')
    print(f'Теплоемкость = {self.avr_cp:1.3f} кДж/кг')
    print(f'Maccoвый расход = {self.mass_flow_rate:1.2f} кг/ч')
    print(f'Объемный расход = {self.volume_flow_rate:1.3f} м3/ч')
    print(f'Плотность = {self.density:1.3f} кг/м3')
    print('Массовые доли:')
    for i in range(self.n comps):
      print(f'{self.mass_fractions[i]:1.3f} κΓ/κΓ')
    print(20 * '-')
class Mixer:
 def mix(self, name, *flows: Flow) -> Flow:
    self.flows = flows
    self.mass flow rate = np.sum([flow.mass flow rate for flow in self.flows])
    self.mass_fractions = np.sum(
    [flow.mass_fractions * flow.mass_flow_rate for flow in self.flows],
    axis=0,
    ) / self.mass flow rate
    t_mean = self.__calc_t_mix()
    self.mixture = Flow(name=name,
```

```
densities=self.flows[0].densities,
                        mole weights=self.flows[0].mole weights,
                        cp_coeffs=self.flows[0].cp_coeffs,
                        temperature=t_mean)
    return self.mixture
 def __calc_t_mix(self) -> float:
    def cp func(T: float) -> float:
      n_comps = self.flows[0].n_comps
      comp_cp = np.zeros(n_comps)
     for i in range(n comps):
        for j in range(len(self.flows[0].cp_coeffs[0])):
          comp_cp[i] += j * self.flows[0].cp_coeffs[i, j] * T**j
      cp_mix = (self.mass_fractions * comp_cp).sum()
      err = np.sum(
      [flow.mass_flow_rate * flow.avr_cp * flow.temperature for flow in self.flows]
      ) / (self.mass_flow_rate * cp_mix) - T
      return err
    t_mix = optimize.root_scalar(f=cp_func, bracket=[1, 1000],
            x0=270, x1=370, method='secant').root
    return t mix
class HeatExchanger():
  def __init__(self, d_in: float = 0.1,
               d_out: float = 0.25,
               length: float = 3.0,
               k: float = 4900) -> None:
    self.d_in = d_in
    self.d out = d out
    self.length = length
    self.k = k
    self.l_eval = np.linspace(0, self.length, 1000)
 def calculate(self, hot: Flow, hot_name: str,
                cold: Flow, cold_name: str) -> tuple[Flow]:
    hot_out = copy.copy(hot)
    cold_out = copy.copy(cold)
    self.hot name = hot name
```

mass_flow_rate=self.mass_flow_rate,
mass_fractions=self.mass_fractions,

```
cold_out.name = self.cold_name
          def right_parts(1: float,
                          y: tuple[float]) -> tuple[float]:
            dt_h = - self.k * np.pi * self.d_in / (hot_out.volume_flow_rate *
                  hot_out.density * hot_out.avr_cp) * (y[0] - y[1])
            dt_c = self.k * np.pi * self.d_in / (cold_out.volume_flow_rate *
                  cold_out.density * cold_out.avr_cp) * (y[0] - y[1])
            hot out.set t(y[0])
            cold_out.set_t(y[1])
            return dt h, dt c
          solution = solve_ivp(right_parts, (0, self.length),
                  (hot_out.temperature, cold_out.temperature),
                           t eval=self.l eval)
          self.hot_profile = solution.y[0]
          self.cold profile = solution.y[1]
          return (hot_out, cold_out)
      class Splitter():
        def calculate(self, flow: Flow, names: list[str],
                      ratio: list[float] = [1.0]) -> list[Flow]:
          n_out_flows = len(ratio)
          ratio = [ratio[i] / sum(ratio) for i in range(n out flows)]
          out_flows = []
          for number in range(n_out_flows):
            new flow = copy.copy(flow)
            new_flow.name = names[number]
            new_flow.mass_flow_rate = flow.mass_flow_rate * ratio[number]
            out_flows.append(new_flow)
          return out flows
      Cell 3
      cp_coeffs = np.array([[0.071254, 0.002979, -0.00000007, 0, 0],
                           [13.83761,
                                           0.0003,
                                                       0.000000346,
                                                                         -0.000000000097,
0.000000000000000773],
```

self.cold_name = cold_name
hot_out.name = self.hot_name

```
[-0.09689, 0.003473,
                                                     -0.0000013,
                                                                     0.000000000256,
0.000000000000014],
                           [0.9985,
                                                       0.000000557,
                                                                         -0.00000000032,
                                         -0.00018,
0.0000000000000637]])
      densities = np.array([0.821537454674234, 8.57E-5,
                               0.634118153548788, 0.0138331933625558])
      mole_weights = np.array([128.1332, 2.02, 131.82935, 34.01])
      Cell 4
      flow1 = Flow(name = 'flow1',
                   mass flow rate=1000,
                   mass_fractions=np.array([0.80, 0.0, 0.15, 0.0]),
                   densities=densities,
                   mole_weights=mole_weights,
                   cp_coeffs=cp_coeffs,
                   temperature=363)
      flow2 = Flow(name = 'flow2',
                   mass flow rate=1500,
                   mass_fractions=np.array([0.80, 0.02, 0.15, 0.03]),
                   densities=densities,
                   mole_weights=mole_weights,
                   cp_coeffs=cp_coeffs,
                   temperature=353)
      flow3 = Flow(name = 'flow3',
                   mass_flow_rate=1200,
                   mass_fractions=np.array([0.9, 0.01, 0.08, 0.01]),
                   densities=densities,
                   mole_weights=mole_weights,
                   cp coeffs=cp coeffs,
                   temperature=373)
      flow8 = Flow(name = 'flow8',
                   mass_flow_rate=2500,
                   mass_fractions=np.array([0.75, 0.03, 0.21, 0.01]),
                   densities=densities,
                   mole_weights=mole_weights,
                   cp coeffs=cp coeffs,
                   temperature=293)
      mixer1 = Mixer()
```

```
flow4 = mixer1.mix('flow4', flow1, flow2, flow3)
       he1 = HeatExchanger()
       flow5, flow9 = he1.calculate(flow4, 'flow5', flow8, 'flow9')
       spl1 = Splitter()
       flow6, flow7 = spl1.calculate(flow5, ['flow6', 'flow7'], [2, 3])
       flows = [flow1, flow2, flow3, flow4, flow5, flow6, flow7, flow8, flow9]
       for flow in flows:
         flow.describe()
       Cell 5
       fig = plt.figure(figsize=(8,6), dpi=150)
                                                                  ylim=[he1.cold_profile[0]-5,
                  fig.add subplot(xlim=[0,
                                                 he1.length],
he1.hot_profile[0]+5])
       ax.plot(he1.l_eval,
                               he1.cold_profile,
                                                         c='c',
                                                                     label=f'Холодный
                                                                                            поток
({he1.cold name})')
       ax.plot(he1.l_eval,
                               he1.hot_profile,
                                                        c='r',
                                                                     label=f'Горячий
                                                                                            поток
({he1.hot_name})')
       ax.legend(frameon=True, edgecolor='black')
       ax.set_xlabel('Координата по теплообменнику, м')
       ax.set_ylabel('Температура, °C');
       Ответ:
       Имя потока: flow1
       Температура = 363.00 °C
       Теплоемкость = 0.861 кДж/кг
       Массовый расход = 1000.00 \text{ кг/ч}
       Объемный расход = 1.210 м3/ч
       Плотность = 826.219 \text{ кг/м}3
       Массовые доли:
       0.800~\mathrm{kg/kg}
       0.000~\mathrm{kg/kg}
       0.150 \ \text{kg/kg}
       0.000~\mathrm{kg/kg}
       Имя потока: flow2
       Температура = 353.00 °C
       Теплоемкость = 0.847 \text{ кДж/кг}
       Массовый расход = 1500.00 \text{ кг/ч}
```

Объемный расход = 355.127 м3/ч

Плотность = 4.224 кг/м3

Массовые доли:

0.800~kg/kg

 $0.020~{\rm kg/kg}$

 $0.150~\mathrm{kg/kg}$

0.030~kg/kg

Имя потока: flow3

Температура = 373.00 °C

Теплоемкость = 0.905 кДж/кг

Массовый расход = 1200.00 кг/ч

Объемный расход = 142.357 м3/ч

Плотность = 8.430 кг/м3

Массовые доли:

 $0.900~\mathrm{kg/kg}$

 $0.010~\mathrm{kg/kg}$

 $0.080~{\rm kg/kg}$

0.010~kg/kg

Имя потока: flow4

Температура = 362.34 °C

Теплоемкость = $0.870 \ кДж/кг$

Массовый расход = 3700.00 кг/ч

Объемный расход = 498.694 м3/ч

Плотность = 7.419 кг/м3

Массовые доли:

 $0.832~\mathrm{kg/kg}$

 $0.011\ \mathrm{kg/kg}$

 $0.127~\mathrm{kg/kg}$

 $0.015~\mathrm{kg/kg}$

Имя потока: flow5

Температура = 336.45 °C

Теплоемкость = 0.820 кДж/кг

Массовый расход = 3700.00 кг/ч

Объемный расход = 498.694 м3/ч

Плотность = 7.419 кг/м3

Массовые доли:

 $0.832~\mathrm{kg/kg}$

0.011 кг/кг

 $0.127~\mathrm{kg/kg}$

```
0.015~\mathrm{kg/kg}
```

Имя потока: flow6

Температура = 336.45 °C

Теплоемкость = $0.820 \ кДж/кг$

Массовый расход = 1480.00 кг/ч

Объемный расход = 498.694 м3/ч

Плотность = 7.419 кг/м3

Массовые доли:

 $0.832~\mathrm{kg/kg}$

 $0.011\ \mathrm{kg/kg}$

 $0.127~\mathrm{kg/kg}$

 $0.015 \ {\rm kg/kg}$

Имя потока: flow7

Температура = 336.45 °C

Теплоемкость = 0.820 кДж/кг

Массовый расход = 2220.00 кг/ч

Объемный расход = 498.694 м3/ч

Плотность = 7.419 кг/м3

Массовые доли:

0.832 kg/kg

 $0.011~\mathrm{kg/kg}$

 $0.127~\mathrm{kg/kg}$

 $0.015\ \mathrm{kg/kg}$

Имя потока: flow8

Температура = 293.00 °C

Теплоемкость = 0.740 кДж/кг

Массовый расход = 2500.00 кг/ч

Объемный расход = 880.063 м3/ч

Плотность = 2.841 кг/м3

Массовые доли:

0.750 kg/kg

 $0.030~{\rm kg/kg}$

0.210~kg/kg

 $0.010~\mathrm{kg/kg}$

Имя потока: flow9

Температура = 334.84 °C

Теплоемкость = 0.825 кДж/кг

Массовый расход = 2500.00 кг/ч

Объемный расход = 880.063 м3/ч

Плотность = 2.841 кг/м3

Массовые доли:

 $0.750~{\rm kg/kg}$

 $0.030~{\rm kg/kg}$

 $0.210~\mathrm{kg/kg}$

 $0.010~{\rm kg/kg}$
