Лабораторная работа 2

«Эмпирическая функция распределения. Поведение в точке»

1. Генеральная совокупность X~N(a, σ^2)

Код Программы:

```
clc
clear
pkg load statistics
up=[];
down=[];
m=10^2;
n=10^4;
a=0;
sigma=sqrt(2);
t=2;
mean_delta=0;
k=10;
ft0=normcdf(t,a,sigma);
for (j=1:k)
gam=0.89+j*0.01
T=norminv((1+gam)/2);
x=normrnd(a,sigma,n,m);
y=mean(x<t);
d=T*sqrt(y.*(1-y)/n);
up=y+d;
down=y-d;
count=0;
for (i=1:m)
 if (up(i)<ft0)
  count=count+1;
 endif
 if (down(i)>ft0)
  count=count+1;
 endif
endfor
delta=count/m
mean_delta=mean_delta+delta;
endfor
mean_delta=mean_delta/10
```


 $mean(\delta_n) = 0.064$

Таблица:

γ	$mean(\delta_n)$
0.90	0.13
0.91	0.09
0.92	0.09
0.93	0.08
0.94	0.06
0.95	0.06
0.96	0.03
0.97	0.05
0.98	0.02
0.99	0.03

2. Генеральная совокупность X~U(a, b) Код

Программы:

clc

clear

pkg load statistics

m=10^2;

n=10^4;

a=1;

b=11

t=3;

mean_delta=0;

k=10;

ft0=unifcdf(t,a,b);

```
for (j=1:k)
gam=0.89+j*0.01
T=norminv((1+gam)/2);
x=unifrnd(a,b,n,m);
y=mean(x<t);
d=T*sqrt(y.*(1-y)/n);
up=y+d;
down=y-d;
count=0;
for (i=1:m)
 if (up(i)<ft0)
  count=count+1;
 endif
 if (down(i)>ft0)
  count=count+1;
 endif
endfor
delta=count/m
mean_delta=mean_delta+delta;
endfor
mean_delta=mean_delta/10
График: \gamma = 0.95
```


 $mean(\delta_n) = 0.059$ Таблица:

γ	$mean(\delta_n)$
0.90	0.12
0.91	0.12
0.92	0.1
0.93	0.06
0.94	0.08

0.95	0.03
0.96	0.05
0.97	0.04
0.98	0.02
0.99	0

Вывод: В ходе лабораторной работы выявили, что для нормального и равномерного распределения количество точек не попавших в доверительный интервал F(t0) прямо пропорционально $m*(1-\gamma)$, где m- кол-во выборок, γ - надежность