Matrius i Vectors Grupo Mañanas Examen de reevaluación, problemas

Febrero 2014

Todos los teléfonos deberán estar desconectados durante el examen. Pongan nombre y apellidos en cada hoja. Entreguen los problemas en hojas separadas y al menos una hoja por problema (aunque sea sólo con el nombre). En la parte de problemas pueden consultarse libros y apuntes propios.

Al terminar la parte de problemas dejen todo el material escrito en la tarima bajo la pizarra.

Horario:

• Problemas: de 9 a 12.50 horas

• Teoría: de 13 a 14 horas

1.- En \mathbb{R}^4 se consideran los subespacios

$$F_1 = <(1, 2, 5, 1), (-1, 0, 3, -1)>,$$

 $F_2 = <(3, 1, 1, 2), (5, 3, 3, 4), (1, -1, -1, 0)>$

y G, dado por la ecuación

$$x + (a-2)y + 2az - t = 0, \quad a \in \mathbb{R}.$$

Se pide

- calcular bases y las dimensiones de F_1 y F_2 ,
- determinar, mediante ecuaciones independientes o una base, $H = F_1 \cap F_2$, y
- encontrar los valores de a para los cuales $G \supset H$.
- 2.- Dados vectores $A_1, A_2, A_3 \in \mathbb{R}^3$ se consideran las matrices A, que tiene columnas A_1, A_2, A_3 , y B, que tiene columnas $A_2 + A_3, A_1 + A_3, A_1 + A_2$, y se pide:

- expresar $\det B$ en función de $\det A$;
- Usar la expresión anterior para probar que A_1, A_2, A_3 son linealmente independientes si y sólo si lo son $A_2 + A_3, A_1 + A_3, A_1 + A_2$.
- 3.- a) Fijada en un espacio vectorial E una base (e_1, e_2, e_3) , se consideran los endomorfismos de E: f que tiene matriz

$$M = \left(\begin{array}{ccc} a & 2 & a \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{array}\right),$$

y g determinado por las relaciones

$$g(e_1) = e_2, \quad g(e_2) = e_3, \quad g(e_3) = -e_1.$$

Se pide determinar para qué valores de $a \in \mathbb{R}$ el endomorfismo $h = g \circ f$ no es exhaustivo, y determinar para tales valores, mediante ecuaciones independientes o una base, ker h, Im h y ker $h + \operatorname{Im} h$.

4.- Si $f:E\to F$ es una aplicación lineal entre espacios vectoriales y $v_1,\ldots,v_r\in E$ son vectores independientes, se pide demostrar que:

- $f(v_1), \ldots, f(v_r)$ generan Im f si y sólo si $E = \ker f + \langle v_1, \ldots, v_r \rangle$.
- $f(v_1), \dots, f(v_r)$ son base de Imf si y sólo si $E = \ker f \oplus \langle v_1, \dots, v_r \rangle$.