Appunti Semantics

Diego Oniarti

Anno 2024-2025

Contents

1	Lambda Calculus 1.1 Sintassi	2 2
2	SOS - Structural Operational Semantics	3
3	SOS - Call By Name	5
4	Big Step 4.1 Equivalenza con SS	5
5	Contextual Operation Semantics 5.1 COS, SS, CBV	6
6	Teorema di equivalenza SOS e COS 6.1 Prova per induzione del lemma 1	6 6 7
7	Simply Typed Lambda Calculus	8
8		9 10 11
9	If Then Else	13
10	10.1 Type soundness	13 13 13 13 14 14 14
	10.3.2 Proof of Preservation	14

10.3.3 Proof of Normalization	15
11 Logical Relationships (and semantic typing)	16
12 Proof of Normalization	16
13 lemma: vals in terms	17
14 Compatibility lemmas 14.1 Application	1 7 17
15 Introduction and Destruction 15.1 logica	1 7 17

1 Lambda Calculus

Modello formale per il calcolo funzionale.

Il "While Language" (?) è più o meno la stessa cosa ma per la programmazione procedurale, che non faremo.

1.1 Sintassi

Sintassi per l'Untyped Lambda Calculus (ULC):

$$\begin{aligned} t := & n \in \mathbb{N} \\ & | t \oplus t \\ & | \lambda x.t \\ & | x \in X \\ & | t \ t \end{aligned}$$

dove:

- \bullet t è una metabariabile
- := è "RNF" (?)
- \bullet \oplus è +, -, e \times
- λ indica una funzione, in questo caso con parametro x e body t.
- Tutto è associativo a sinistra

Questo vuol dire che un termine nel nostro linguaggio è un numero naturale o una somma di termini.

 ${f nb.}$ Possiamo fare delle semplificazioni come usare n per rappresentare i numeri reali invece che preoccuparci della rappresentazione binaria.

example: $(\lambda x.x+1)$ 3 Questo rappresenta una funzione "successivo" e invoca la funzione sul numero 3.

2 SOS - Structural Operational Semantics

$$\begin{array}{c} t ::= n \\ |t \oplus t \\ |\lambda x.t \\ |x \in X \\ |t \ t \end{array}$$

$$\overbrace{\Omega}^{\text{progrm state}} ::=t \\ |fail$$

We can divide terms in **redexes** and **values**.

Redexes

- $n \oplus n$
- $(\lambda x.t) v$

Values

$$v ::= n$$
$$|\lambda x.t|$$

Redexes change the state of the program according to some rules:

rules

$$\frac{[n \oplus n'] = n''}{n \oplus n' \to n''}$$
 sos-bop
$$\frac{(\lambda x.t)v \to t[\frac{v}{x}]}{(t \to t'')}$$
 sos-beta
$$\frac{t \to t''}{t \oplus t' \to t'' \oplus t'}$$
 sos-bop-1

$$\frac{t \to t'}{n \oplus t \to n \oplus t'}$$
 sos-bop-2
$$\frac{t \to t''}{t \ t' \to t'' \ t'}$$
 sos-app-1
$$\frac{t' \to t''}{(\lambda x. t) t' \to (\lambda x. t) \ t''}$$
 sos-app-2

substitution

$$n[v/x] = n$$

 $x[v/x] = v$
 $y[v/x] = y$
 $(t \oplus t')[v/x] = t[v/x] \oplus t'[v/x]$
 $(t t')[v/x] = t[v/x] t'[v/x]$
 $(\lambda y.t)[v/x] = \lambda y.t[v/x]$

Ogni regola modifica lo stato del programma, quindi possiamo dire abbiano la forma $\Omega \to \Omega$. Un programma corretto risolve a un *valore* dopo una serie di "steps".

Errori Programmi come "5 4" o " $0 + (\lambda x.x)$ " sono ben formati dal punto di vista della grammatica indicata. Portano però a delle redex a cui non di può applicare alcuna regola.

Aggiungiamo quindi uno stato "fail" a Ω e delle regole per propagare questo fail.

Fails

$$\frac{(\lambda x.t) \oplus t \to fail}{n \ t \to fail} \ \text{sos-f-L}$$

$$\frac{n \ t \to fail}{n \ \oplus \lambda x.t \to fail} \ \text{sos-f-L2}$$

$$\frac{t \to t'' \ t'' \to fail}{t \oplus t' \to fail} \ \text{sos-bop-f1}$$

$$\frac{t \to t'' \ t'' \to fail}{n \oplus t \to fail} \ \text{sos-bop-f2}$$

$$\frac{t \to t'' \ t'' \to fail}{t \ t' \to fail} \ \text{sos-app-f1}$$

$$\frac{t' \to t'' \ t'' \to fail}{(\lambda x.t) \ t' \to fail} \text{ sos-app-f2}$$

3 SOS - Call By Name

We don't apply a function to values but to symbols. The symbols are then lazily evaluated when they're used.

$$\Omega \overset{N}{\rightarrow} \Omega$$

Let's see which rules change under these new assumption:

$\overline{n \oplus n' \overset{N}{\rightarrow} n}$ "	sos-bop N
$\frac{1}{(\lambda x.t) \ t' \xrightarrow{N} t[\frac{t'}{x}]}$	sos-beta N
untouched	sos-app1N
untouched	sos-bop1N
untouched	sos-bop2N

4 Big Step

Una semantica big step ha un judgement del tipo:

$$t \Downarrow v$$

Questo vuol dire che le inverence rules non fatto più pattern matching su $\Omega \to \Omega$ ma su $t \Downarrow v$ (il termine t riduce a un valore v). rules:

$$\frac{t \Downarrow n \ t' \Downarrow n' \ n \oplus n' = n"}{t \oplus t' \Downarrow n"} \text{ bs-bop}$$

$$\frac{t \Downarrow \lambda x.t" \ t' \Downarrow v \ t"[v/x] \Downarrow v'}{t \ t' \Downarrow v'} \text{ bs-app}$$

4.1 Equivalenza con SS

Big Step e Small Step sono equivalenti. Questo vuol dire che ogni termine che riduce a un valore in big step, converge allo stesso valore in small step. Questo è utile per alcune dimostrazioni, in quanto possiamo usare la struttura ad albero di BS nelle dimostrazioni per SS.

5 Contextual Operation Semantics

5.1 COS, SS, CBV

Chiamiamo E l'evaluation context, così definito.

$$E ::=[]$$

$$|E \ t$$

$$|(\lambda x.t)E$$

$$|E \oplus t$$

$$|n \oplus E$$

Abbiamo poi 2 judgements

$$\Omega \leadsto \Omega$$
 main reduction $\Omega \leadsto^p \Omega$ primitive reduction

$$\frac{t \rightsquigarrow^{\mathbf{p}} t'}{E[t] \rightsquigarrow E[t']} \text{ ctx}$$

$$\frac{1}{n \oplus n' \rightsquigarrow^{\mathbf{p}} n''} \text{ c-bop}$$

$$\frac{1}{(\lambda x. t) v \rightsquigarrow^{\mathbf{p}} t[v/x]} \text{ c-beta}$$

esercizio.
$$(((\lambda x. \lambda y. \lambda z. z \ x - y \ x)5)(\lambda v. v))(\lambda w. 2 * w)$$

wow. SOS e COS risolvono un'espressione con lo stesso numero di passaggi

6 Teorema di equivalenza SOS e COS

$$\forall t, t'.t \to t' \iff t \leadsto t'$$

Per ogni coppia di termini t e t', t fa uno step SOS a t' se e solo se t fa anche uno step COS a t'. Per dimostrare l'iff dimostriamo prima il \implies e poi l' \iff .

lem.1
$$\forall t, t'.t \rightarrow t' \implies t \sim t'$$

lem.2
$$\forall t, t'.t \rightarrow t' \iff t \rightsquigarrow t'$$

6.1 Prova per induzione del lemma 1

Usiamo i termini come struttura induttiva. Se vediamo i termini come il loro Abstract Syntax Tree, possiamo partire da termini la cui altezza è zero e costruirne altri più complessi per induzione.

L'altra struttura induttiva che possiamo usare è la derivazione SOS. Anche essa è un albero, quindi lo stresso ragionamento vale.

Iniziamo quindi con i casi base. In questo caso abbiamo solo bop e beta.

• BOP

$$t = n \oplus n' \quad t' = n$$
TS: $n \oplus n' \leadsto n$ "
by ctx with $E = []$
TS: $n \oplus n' \leadsto^p n$ "
by c-bop

• BETA

$$t = (\lambda x. t")v \quad t' = t"[v/x]$$
 TS:
$$(\lambda x. t")v \leadsto t"[v/x]$$
 by ctx with $E = []$ TS:
$$(\lambda x. t")v \leadsto^{p} t"[v/x]$$
 by c-beta

Dimostriamo ora il passo induttivo per la prova del della 1: In questo caso avremmo 4 casi induttivi da dimostrare (bop1, bop2, app1, app2) ma ne facciamo uno (app1) solo per brevità.

TH:
$$\forall t_h, t'_h \ if \ t_h \rightarrow t'_h \ then \ t_h \sim t'_h$$

• app1: $t = t_1 \ t_2 \quad t' = t'_1 \ t_2$

TH: $t_1 \ t_2 \sim t'_1 \ t_2$

HP1: $t_1 \ t_2 \rightarrow t'_1 \ t_2$

HP2: $t_1 \rightarrow t'_1$

by IH with HP2 wh $t_1 \sim t'_1 \ HT1$

$$t'_1 \equiv E[t_0] \quad HE1$$

by inversion on HT1 wh

$$\begin{cases} t_1 \equiv E[t_0] \quad HE1 \\ t'_1 \equiv E[t'_0] \quad HE1 \end{cases}$$

by HE1, HE1' TS $E[t_0] \ t_2 \sim E[t'_0] \ t_2$

by ctx

with $E' = E \ t_2$ and HPR

$$E[t_0] \ t_2 \equiv E'[t_0] \sim E'[t'_0] \quad (*)$$

6.2 Prova per definizione del lemma 2

$$\forall t, t'. \ t \sim t' \implies t \rightarrow t'$$

lemma a
$$\forall t, t'. t \rightarrow t' \implies E[t] \rightarrow E[t']$$

lemma b $\forall t, t'. t \rightsquigarrow^{p} t' \implies t \rightarrow t'$

by inversion on HP
$$t \equiv E[t_0]$$
 $HE0$ $t' \equiv E[t'_0]$ $HE0'$ $t_0 \leadsto^{\mathrm{P}} t'_0$ HPR by LB with HPR w.h. $t_0 \to t'_0$ HR by HE0,HE0' T.S. $E[t_0] \to E[t'_0]$ by LA with HR the thesis holds

Proof Lemma B Proof by case study on \sim ^p

Proof Lemma A Proof by induction on E

• Base

$$E = []$$
$$TSt \to t' \text{by HP}$$

• Induzione.

$$\begin{array}{ll} -\text{ IH: } t \to t' \implies E'[t] \to E'[t'] \\ -E = E'[t"] \\ -\text{ by IH with HP.} E' \text{ w.h. } E'[t] \to E'[t'] \\ -\text{ TS } (E' \ t")[t] \to () \end{array}$$

7 Simply Typed Lambda Calculus

I programmi descritti dal STLC sono un subset di tutti i programmi descritti dal ULC.

STLC non descrive però l'insieme di **tutti** i programmi che non falliscono. I *type system* fanno una over-approssimazione, rifiutando alcuni programmi che potrebbero ridurre a un valore.

In fine, un programma STLC può ancora divergere (finire in un loop infinito).

Progranna ULC non STLC che non fallisce:

$$(\lambda x.0)(\lambda y.3 + \lambda z.z)$$

Il programma, assumendo call by name, riduce correttamente a 0. Questo è un comportamento che si può apprezzare a run time, ma non a compile time (dove vive il type system).

Tipi

$$\tau := N$$

$$\tau \to \tau$$

Judgment

 $vedi\ foto$

recap

temini

$$\begin{aligned} t := & n \\ & t \oplus t \\ & \lambda x : \tau . \, t \\ & x \\ & t \, t \end{aligned}$$

 ${f v}$

$$\begin{aligned} v := & n \\ & \lambda x : \tau . \, t \end{aligned}$$

tipi

$$\tau := \!\! N$$

$$\tau \to \tau$$

typing environment

$$\Gamma := \emptyset$$

$$\Gamma, x : \tau$$

8 Expanding The STLC

8.1 Aggiungere tuple

$$\begin{aligned} t := \dots \\ | < t, t > \end{aligned}$$

$$\begin{array}{c} |t.1| \\ |t.2| \\ \\ \tau := \dots \\ |\tau \times \tau \\ \\ v := \dots \\ |< v, v> \\ \\ E := \dots \\ |< E, t> \\ |< v, E> \\ |E.1| \\ |E.2| \\ \\ \hline < v_1, v_2 > .1 \leadsto^{\mathrm{p}} v_1} p1 \\ \hline < v_1, v_2 > .2 \leadsto^{\mathrm{p}} v_2} p2 \\ \end{array}$$

8.2 Aggiungere inums

$$\begin{array}{c} t := \dots \\ | inl \ t \\ | inr \ t \\ | case \ t \ of \ inl \ x \mapsto t | inr \ x \mapsto t \\ \\ \tau := \dots \\ | \tau_1 \cup + \tau_2 \\ \\ v := \dots \\ | inl \ v \\ | inr \ v \\ \end{array}$$

$$\frac{case \ inl \ v \ of \ inl \ x_1 \mapsto t_1 | inr \ x_2 \mapsto t_2 \rightsquigarrow^{\mathbf{p}} t_1[v/x_1]}{case \ inr \ v \ of \ inl \ x_1 \mapsto t_1 | inr \ x_2 \mapsto t_2 \rightsquigarrow^{\mathbf{p}} t_2[v/x_2]} inR$$

8.3 Booleani

Ci sono due modi in cui potremmo aggiungere booleani nel linguaggio.

- true: $\lambda x.\lambda y.x$
- false: $\lambda x.\lambda y.y$
- $if t then t_1 else t_2 t t_1 t_2$

Questo fa evaluation sia di t_1 che t_2 . Possiamo risolvere così:

- true: $\lambda x.\lambda y.x$ 0
- false: $\lambda x.\lambda y.y$ 0
- if t then t_1 else t_2 t $(\lambda_-.t_1)$ $(\lambda_-.t_2)$

Oppure così:

- true: $\lambda x.\lambda y.x$
- false: $\lambda x.\lambda y.y$
- if t then t_1 else t_2 (t $(\lambda_-.t_1)$ $(\lambda_-.t_2)$)0

$$\frac{\Gamma(x) = \mathbb{N} \to \mathbb{N} \to \mathbb{N}}{\Gamma \vdash x : \mathbb{N} \to \mathbb{N} \to \mathbb{N}} \text{val} \quad \frac{\Gamma(y) = \mathbb{N} \to \mathbb{N}}{\Gamma \vdash y : \mathbb{N} \to \mathbb{N}} \text{var} \quad \frac{\Gamma(a) = \mathbb{N}}{\Gamma \vdash a : \mathbb{N}} \text{var}}{\Gamma \vdash a : \mathbb{N}} \text{app} \quad \frac{\Gamma(y) = \mathbb{N} \to \mathbb{N}}{\Gamma \vdash y : \mathbb{N} \to \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var}}{\Gamma \vdash b : \mathbb{N}} \text{app} \quad \frac{\Gamma(y) = \mathbb{N} \to \mathbb{N}}{\Gamma \vdash y : \mathbb{N} \to \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var}}{\Gamma \vdash b : \mathbb{N}} \text{app} \quad \frac{\Gamma(y) = \mathbb{N} \to \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac{\Gamma(b) = \mathbb{N}}{\Gamma \vdash b : \mathbb{N}} \text{var} \quad \frac$$

$$\frac{x: \mathbb{N} \vdash 2*x: \mathbb{N}}{ \emptyset \vdash \lambda x: \mathbb{N}. 2*x: \mathbb{N} \to \mathbb{N}} \text{lam} \quad \frac{\emptyset \vdash 5: \mathbb{N}}{\emptyset \vdash (\lambda x: \mathbb{N}. 2*x) 5: \mathbb{N}} \text{app}$$

9 If Then Else

Assumiamo questo encoding per true e false:

$$True = inl0$$
 $Bool = \mathbb{N} \uplus \mathbb{N}$ $False = inr1$

$$if\ t\ then\ t'=$$

10 Properties of STLC

10.1 Type soundness

$$if \emptyset \vdash t : \tau \text{ and } t \sim^* t' \text{ then either}$$

 $\vdash t.VAL$
 or
 $\exists t".t' \sim t"$

Se abbiamo un termine well typed, prima o poi riduce a un valore o a un termine che può ancora ridurre.

star-step.

$$\frac{t \rightsquigarrow t}{t \rightsquigarrow^* t} \quad \frac{t \rightsquigarrow t" \quad t" \rightsquigarrow^* t'}{t \rightsquigarrow^* t'}$$

10.1.1 Progress

$$if \emptyset \vdash t.\tau \ then \ either \\ \vdash t.VAL \ or \\ \exists t'.t \leadsto t'$$

10.1.2 Preservation

if
$$\emptyset \vdash t.\tau$$
 and $t \leadsto t'$ then $\emptyset \vdash t'.\tau$

Lem: Canonicity

$$\begin{array}{lll} if \ \Gamma \vdash v.N & then & v = n \\ if \ \Gamma \vdash v.\tau \rightarrow \tau' & then & v = \lambda x:\tau.t' \\ if \ \Gamma \vdash v.\tau \times \tau' & then & v = < v_1, v_2 > \\ if \ \Gamma \vdash v.\tau \uplus \tau' & then & v = \dots \end{array}$$

10.2 Normalization

$$if \emptyset \vdash t.\tau \ then \exists v.t \leadsto^* v$$

10.3 proofs

10.3.1 Proof of Progress

$$if \emptyset \vdash t.\tau \ then \ either \\ \vdash t.VAL \ or \\ \exists t'.t \leadsto t'$$

Proof by induction on the typing derivation.

Base

• t.VAR

$$\frac{\emptyset(x) = \tau}{\emptyset \vdash x.\tau} \text{contradiziona}$$

• t.NAT

$$\overline{\emptyset \vdash n.\mathbb{N}}$$

TS either $\vdash n.VAL$ or $\exists \tau'.n \leadsto t'$

Induction

• T-lam

$$\overline{\emptyset \vdash \lambda x : \tau . t' : \tau \to \tau'}$$

TS either $\vdash \lambda x : \tau . t. VAL$ or $\exists ...$

• T-app

$$\frac{\emptyset \vdash t' : \tau' \to \tau \quad \emptyset \vdash t" : \tau'}{\emptyset \vdash t' \ t" : \tau}$$

10.3.2 Proof of Preservation

Assumendo $t \equiv E[t_0]$, abbiamo il judgment $\vdash E : \tau \to \tau$

$$\begin{array}{l} \overline{\vdash [\cdot] : \tau \to \tau} \text{et-hole} \\ \\ \vdash E : \tau \to (\tau" \to \tau') \quad \emptyset \vdash t : \tau" \\ \\ \vdash E \ t : \tau \to \tau' \end{array} \text{et-app} \\ \end{array}$$

$$\begin{array}{l} \underbrace{\emptyset \vdash (\lambda x : \tau.t) : \tau \rightarrow \tau' \quad \vdash E : \tau" \rightarrow \tau}_{\vdash (\lambda x : \tau.t)E : \tau" \rightarrow \tau'} \text{et-lam} \\ \underbrace{\vdash E : \tau \rightarrow \mathbb{N} \quad \emptyset \vdash t : \mathbb{N}}_{\vdash E \oplus t : \tau \rightarrow \mathbb{N}} \text{et-bopp} \\ \underbrace{\emptyset \vdash n : \mathbb{N} \quad \vdash E : \tau \rightarrow \mathbb{N}}_{\vdash n \oplus E : \tau \rightarrow \mathbb{N}} \text{et-bopp} \end{array}$$

Primitive Preservation if $\emptyset \vdash t : \tau$ and $t \leadsto^{p} t'$ then $\emptyset \vdash t'.\tau$

proof Casa analisys on \sim ^p

Decomposition if $\emptyset \vdash E[t] : \tau \text{ then } \exists \tau' . \vdash E : \tau' \to \tau \text{ and } \emptyset \vdash t : \tau'$

Proof induction on E

Composition if $\vdash E : \tau \to \tau'$ and $\emptyset \vdash t : \tau$ then $\emptyset \vdash E[t] : \tau'$

Proof by induction on $\vdash E : \tau \to \tau'$

$$\begin{aligned} \text{by inversion on HP}t &\equiv E[t_0] & HT0 \\ t' &\equiv E[t_0'] & HT1 \\ t_0 &\sim^{\text{P}} t_0' & HTP \\ \text{by HT0 to HP1 with } \emptyset \vdash E[t_0] : \tau & HP1N \\ \text{by HT1 to TH. TS}\emptyset \vdash E[t_0'] : \tau & HE \\ \emptyset \vdash t_0 : \tau' & HTT0 \\ \text{by prim. pres with HTT0 and HTP w.h}\emptyset \vdash t_0' : \tau' & HTT1 \\ \text{by compos with HE and HTT1 W.h.}\emptyset \vdash E[t_0'] : \tau & HF \\ \text{by HF the thesis holds} \end{aligned}$$

10.3.3 Proof of Normalization

$$if\emptyset \vdash t : \tau \ then \ \exists v.t \leadsto^* v$$

Proof by induction on T.D of t

- base
- induction

$$- t = t_1 \ t_2 \quad \frac{\emptyset \vdash t_1 : \tau' \to \tau \quad \emptyset \vdash t_2 : \tau'}{\emptyset \vdash t_1 \ t_2 : \tau}$$

Questo non possiamo provarlo con gli strumenti che abbiamo fin ora. Serve quindi introdurre le relazioni logiche.

11 Logical Relationships (and semantic typing)

$$\begin{split} V\left[\tau\right] & \text{Quali valori constituiscono un tipo} \\ & E\left[\tau\right] & \text{Quali termini constituiscono un tipo} \\ & G\left[\Gamma\right] & \text{Sostituzione} \\ & \gamma ::= \emptyset \\ & |\gamma[v/x] \end{split}$$

Def SemTy (semantic typing) :

$$\Gamma \vDash t : \tau \hat{=} \forall \gamma \in G[\tau]. t \gamma \in E[\tau]$$

Semantic soundness

if
$$\Gamma \vdash t : \tau \ then \ \Gamma \vDash t : \tau$$

Se un programma è well typed in sintactic typing, lo è anche in semantic typing.

AAAH

$$\begin{split} V[\mathbb{N}] &= \{n\} \\ or \\ V[\mathbb{N}] &= \{v|v \equiv n\} \\ V[\tau' \rightarrow \tau] &= \{v|v \equiv \lambda x : \tau'.t \text{ and } \forall v' \text{ if } v' \in V[\tau'] \text{ then } t[v'/x] \in E[\tau]\} \\ E[\tau] &= \{t|\exists v.t \leadsto^* v \text{ and } v \in V[\tau]\} \\ V[\tau \times \tau'] &= \{v|v \equiv < v_1, v_2 > \text{ and } t \in V[\tau] \text{ and } t' \in V[\tau']\} \\ V[\tau \uplus \tau'] &= \{v|v \equiv v.inlv_1 \text{ and } v_1 \in V[\tau]\} \cup \{v|v \equiv v.inrv_2 \text{ and } v_2 \in V[\tau']\} \end{split}$$

12 Proof of Normalization

 $proof\ by\ SS\ w.h\ \emptyset \vDash t.\tau$

..

first projection $t = t_1$

$$\Gamma \vDash \tau \times \tau' \ and$$

13 lemma: vals in terms

$$\forall t \ if \ t \in V[\tau] \ then \ t \in E[\tau]$$

14 Compatibility lemmas

14.1 Application

$$if\Gamma \vDash t_1 : \tau \to \tau' \ and \ \Gamma \vDash t_2 : \tau \ then \ \Gamma \vDash t_1 \ t_2 : \tau'$$

proof

by def s.t take
$$\gamma \in G[\Gamma]$$
 t.s $(t_1 \ t_2)\gamma \in E[\tau']$
by def s.t with HP1 wh $t_1\gamma \in E[\tau \to \tau']$
by def $E \exists v_1.(t_1\gamma) \leadsto^* v_1$ and $v_1 \in V[\tau \to \tau']$
... by def $V \ v_1 \equiv \lambda x : \tau . t_1'$ and $\forall v_1'$ if $v_1' \in V[\tau]$ then $t_1'[v_1'/x] \in E[\tau']$
by def s.t with HP2 wh $t_2\gamma \in E[\tau]$ by def $E \exists v_2.(t_2\gamma) \leadsto^* v_2$ and $v_2 \in V[\tau]$
 $(t_1 \ t_2)\gamma = (t_1\gamma)(t_2\gamma)$

15 Introduction and Destruction

Le regole del linguaggio semantico possono essere divise in introduzioni e eliminazioni

$$\frac{\Gamma, x:\tau \vDash t:\tau'}{\Gamma \vDash \tau x:\tau t:\underline{\tau \to \tau'}} \text{introduzione}$$

$$\frac{\Gamma \vDash t_1 : \underline{\tau \to \tau_1} \quad \Gamma \vDash t_2 : \underline{\tau}}{\Gamma \vDash t_1 \ t_2 : \tau_1} \text{distruzione}$$

15.1 logica

$$\frac{A \quad A \Longrightarrow B}{B} \Longrightarrow \mathbf{E}$$

$$\vdots$$

$$\frac{\dot{B}}{A \Longrightarrow B} \Longrightarrow \mathbf{I}$$

$$\frac{A \quad B}{A \land B} \land \mathbf{I}$$

$$\frac{A \wedge B}{A} AE1$$
$$\frac{A \wedge B}{B} AE2$$