CS 113: Mathematical Structures for Computer Science

Dr. Francis Parisi

Pace University

Fall 2018

Background

- ► The circuits in computers and other electronic devices have inputs and outputs
- Each input is either a 0 or a 1, and produces outputs that are also 0s and 1s
- Circuits can be constructed using any basic element that has two different states
- These include switches that can be in either the on or the off position
- ... and optical devices that can be either lit or unlit

Background

- ▶ Boolean algebra provides the set of operations for working with the set {0,1}
- It is helpful to compare the operations of Boolean algebra to the rules of logic
- ▶ In Boolean algebra $0 \equiv$ False, and $1 \equiv$ True
- The most common operations are complementation (complement of an element), Boolean sum, and Boolean product
- ▶ The complement of an element, denoted with a bar, is defined by $\overline{0} = 1$ and $\overline{1} = 0$
- Boolean sum, denoted by + or by OR, has the following values:
 - 1+1=1,1+0=1,0+1=1,0+0=0
 - ▶ The logical equivalent is disjunction $T \lor T \equiv T$, $T \lor F \equiv T$, $F \lor T \equiv T$, $F \lor F \equiv F$,

Background

- ► The Boolean product, denoted by · or by AND, has the following values:
 - $1 \cdot 1 = 1, 1 \cdot 0 = 0, 0 \cdot 1 = 0, 0 \cdot 0 = 0$
 - ▶ The logical equivalent is conjunction $T \wedge T \equiv T$, $T \wedge F \equiv F$, $F \wedge T \equiv F$, $F \wedge F \equiv F$,
 - We can exclude the symbol · if there is no danger of confusion
- Rules of precedence for Boolean operators are: first, all complements are computed, second all Boolean products, third all Boolean sums, unless we use parentheses to explicitly override the order of precedence

Example

Find the value of $1 \cdot 0 + \overline{(0+1)}$

$$1 \cdot 0 + \overline{(0+1)}$$
 = $1 \cdot 0 + \overline{1}$
= $1 \cdot 0 + 0$
= $0 + 0$
= 0

Example

Translate $1 \cdot 0 + \overline{(0+1)}$ into a logical equivalence

$$(T \wedge F) \vee \sim (F \vee T)$$

$$(T \wedge F) \vee \sim (F \vee T) \equiv F$$

Definition

A Boolean algebra is a set S with two or more elements, binary operations addition + and multiplication \cdot and these properties, often denoted $(S, +, \cdot)$:

Commutative Laws

$$a + b = b + a$$
 and $a \cdot b = b \cdot a$ for all $a, b \in S$

Associative Laws

$$(a+b)+c=a+(b+c)$$
 and $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ for all $a,b,c\in S$

Distributive Laws

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 and $a + (b \cdot c) = (a+b) \cdot (a+c)$ for all $a,b,c \in S$

Existence of Zero and Unity

There exist distinct elements $0, 1 \in S$ such that (a + 0) = aand $a \cdot 1 = a$ for each $a \in S$

Existence of Complements

For every $a \in S$, there exists $\overline{a} \in S$ such that $a + \overline{a} = 1$ and

CS 113: Mathematical Structures for Computer Science

7 / 24

Other properties that Boolean algebras satisfy

Absorption Laws

$$a \cdot (a+b) = a$$
 and $a + (a \cdot b) = a$ for all $a, b \in S$
Logical equivalent: $A \wedge (A \vee B) \equiv A$, and $A \vee (A \wedge B) \equiv A$

Idempotent Laws

$$a+a=a$$
 and $a\cdot a=a$ for every $a\in S$

Logical equivalent: $A \lor A \equiv A$, and $A \land A \equiv A$

Domination Laws

$$a+1=1$$
 and $a\cdot 0=0$ for every $a\in S$

Logical equivalent: $A \vee T \equiv T$ and $A \wedge F \equiv F$

- Each property of a Boolean algebra has a dual property
- ▶ The Duality Principle for Boolean Algebras For each theorem concerning a Boolean algebra S there is a dual theorem concerning S obtained by interchanging + and and by interchanging 0 and 1
- Each of DeMorgan's Laws can be derived from the other using the duality principle

$$\overline{a+b}=\overline{a}\cdot\overline{b}$$
 and $\overline{a\cdot b}=\overline{a}+\overline{b}$

Taking a closer look at the simplest Boolean algebra with only two elements

Let's take another look at the disjunction, conjunction, and negation of statements

P	Q	$P \lor Q$
Т	Т	Т
Т	F	T
F	Т	Т
F	F	F

P	Q	$P \wedge Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

P	$\sim P$
Т	F
F	Т

If we interpret \vee and \wedge as binary operations on the set $\{T, F\}$

V	T	F
T	Т	Т
F	Т	F

V	T	F
T	Т	F
F	F	F

This gives us a Boolean algebra if we let 1=T and 0=F Let $B=\{0,1\}$ and define addition, multiplication and complementation as follows:

+	1	0
1	1	1
0	1	0

$$\overline{\overline{0}} = 0$$
 $\overline{0} = 1$

The Basics

- Let $B = \{0, 1\}$
- ▶ x is a **Boolean variable** if it takes a value from B, i.e., 0 or 1
- ▶ A Boolean function of degree n is a function $f: B^n \to B$, where $B^n = B \times B \times \cdots \times B$ is the Cartesian product of n sets
- We can represent a Boolean function by a Boolean expression from Boolean variables and operations

Example

For Boolean variables x,y, and z, function f defined by $f(x,y,z)=x\cdot \overline{y}+z$ is a Boolean function. Since $f:B^3\to Bf$ has degree 3. We can display the values of f in a table, similar to the truth tables we learned in logic.

x	у	z	\overline{y}	$x \cdot \overline{y}$	$f(x, y, z) = x \cdot \overline{y} + z$
1	1	1	0	0	1
1	1	0	0	0	0
1	0	1	1	1	1
1	0	0	1	1	1
0	1	1	0	0	1
0	1	0	0	0	0
0	0	1	1	0	1
0	0	0	1	0	0

Example

For Boolean variables x, y, and z, determine the values of function f of degree 3 defined by $f(x, y, z) = (\overline{x} + \overline{y}) \cdot z$.

Example

Find the Boolean expression that represents the function f from the values given in the table.

$\boldsymbol{\mathcal{X}}$	y	z.	f
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	0

This is called the **sum-of-products expansion** or **disjunctive normal form** (**DNF**) of the Boolean function f

Example

Find the DNF of the Boolean function f of degree 3 defined by

$$f(x, y, z,) = (x + \overline{y})z.$$

Solution: Another way to find the DNF without using a table.

$$f(x, y, z) = (x + \overline{y})z = xz + \overline{y}z$$

$$= x \cdot 1 \cdot z + 1 \cdot \overline{y}z$$

$$= x(y + \overline{y})z + (x + \overline{x})\overline{y}z$$

$$= xyz + x\overline{y}z + x\overline{y}z + \overline{x}\overline{y}z$$

$$= xyz + x\overline{y}z + \overline{x}\overline{y}z$$

- Another common form of a Boolean expression is the product-of-sums expansion or conjunctive normal form (CNF)
- ▶ Recall that to find the DNF we looked for all triples (x, y, z) for which f(x, y, z) = 1
- ► To find the CNF we look for all triples (x, y, z) for which f(x, y, z) = 0

Example

Find the CNF that represents the function f from the values given in the table.

x	у	z	f
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	0

Solution
$$f(x, y, z) = (\overline{x} + \overline{y} + \overline{z})(\overline{x} + y + z)(x + y + z)$$
 (there's a typo in the text)

Definition

A **combinatorial circuit** converts a combination of inputs each 0 or 1, into a uniquely defined output, which is also wither 0 or 1

- Every combinatorial circuit can be designed using the rules of Boolean algebra
- The basic elements of these circuits are gates
- ► An OR gate converts inputs x and y into the output x + y
- An AND gate converts inputs x and y into the output xy
- An **inverter** or **NOT gate** converts an input x into the output \overline{x}

Type of Gate	Symbolic Representation	Action
NOT	P NOT R	Input Output P R
AND	P AND R	Input Output P Q R
OR	P OR R	Input Output P Q R

Example

Find a combinatorial circuit that produces the output

$$x \cdot (\overline{y} + z) + y$$

Boolean Algebra - Key Results

▶ If $(S, +, \cdot)$ is a Boolean algebra, then

Idempotent Laws a+a=a and $a\cdot a=a$ for every $a\in S$ **Domination Laws** a+1=1 and $a\cdot 0=0$ for every $a\in S$ **Absorption Laws**

$$a \cdot (a + b) = a$$
 and $a + (a \cdot b) = a$ for all $a, b \in S$

- In a Boolean algebra every element has a unique complement
- ▶ Let *S* be a Boolean algebra then for every $a \in S$, $\overline{a} = a$
- ► Every Boolean algebra S satisfies De Morgan's Laws for all a, b ∈ S:

$$\overline{a+b} = \overline{a} \cdot \overline{b}$$
 and $\overline{a \cdot b} = \overline{a} + \overline{b}$

Boolean Algebra - Key Results

- ► The Duality Principle for Boolean Algebras For each theorem concerning a Boolean algebra S there is a dual theorem concerning S obtained by interchanging + and and by interchanging 0 and 1
- ▶ Let *S* be a Boolean algebra and let $a, b \in S$, then $a \cdot \overline{b} + a \cdot b = a$
- For elements a and b in a Boolean algebra, $a \cdot b = a$ if and only if $a \cdot \overline{b} = 0$
- For elements a and b in a Boolean algebra, a+b=a if and only if $a+\overline{b}=1$