Prova scritta di Ricerca Operativa

Corso di Laurea in Ingegneria Informatica e Automatica

9 luglio 2020

Istruzioni

- Usate i fogli bianchi allegati per calcoli, ragionamenti e quanto altro reputiate necessario fare per rispondere alle 10 domande seguenti.
- Per ciascuna delle 10 domande indicare in corrispondenza di ciascuna delle affermazioni a), b),
 c) e d) se essa è VERA o FALSA, apponendo un segno sul rettangolo VERO o sul rettangolo FALSO sul foglio risposte.
- Ricordatevi di scrivere su tale *foglio risposte* tutte le informazioni richieste ed in particolare il vostro nome e cognome (i fogli senza nome e cognome saranno cestinati e dovrete ripetere l'esame in un'altra sessione).
- Avete un'ora esatta di tempo per svolgere gli esercizi. Al termine del tempo dovete consegnare il solo foglio risposte (potete tenere il testo delle domande e i fogli bianchi).
- Ricordatevi di segnare esattamente sui fogli che rimarranno a voi le risposte che avete dato in modo da potervi autovalutare una volta che vi verrà fornita la soluzione.
- Scaduta l'ora rimanete seduti. Passeremo a raccogliere i fogli risposte. Chi non consegna immediatamente il foglio al nostro passaggio non avrà altra possibilità di consegna e dovrà ripetere l'esame in un altro appello.
- ATTENZIONE. Durante la prova di esame:
 - Non è possibile parlare, per nessuna ragione, con i vostri colleghi.
 - Non è possibile allontanarsi dall'aula.
 - Non si possono usare telefoni cellulari
 - Non si possono usare calcolatrici, palmari o simili
 - Non è possibile usare dispense, libri o appunti.

Chi contravviene anche a una sola di queste regole dovrà ripetere la prova di esame in altro appello.

Valutazione

- Per ogni affermazione VERO/FALSO correttamente individuata viene assegnato 1 punto
- Per ogni affermazione VERO/FALSO non risposta vengono assegnati 0 punti
- Per ogni affermazione VERO/FALSO NON correttamente individuata viene assegnato un punteggio negativo pari a -0.25 punti

Supera la prova chi totalizza un punteggio pari ad almeno 28 punti

- 1. Sia A una matrice $m \times n$.
 - (a) A è totalmente unimodulare se e solo se i suoi elementi sono tutti appartenenti all'insieme $\{-1,0,1\}$.
 - (b) Sia $P = \{x \in \mathbb{R}^n \mid Ax \ge 0, \ x \ge 0\}$. Allora condizione necessaria e sufficiente affinché P abbia tutti i vertici a componenti intere è che A sia totalmente unimodulare.
 - (c) Sia $P = \{x \in \mathbb{R}^n \mid Ax = 0, \ x \ge 0\}$. Allora condizione necessaria e sufficiente affinché P abbia tutti i vertici a componenti intere è che A sia unimodulare.
 - (d) Se A contiene almeno un elemento diverso da 0, 1 o -1 allora non può essere totalmente unimodulare.
- 2. Sia dato un poliedro $P \subseteq \mathbb{R}^n$.
 - (a) P può essere illimitato.
 - (b) P può avere infiniti vertici.
 - (c) P può essere l'insieme vuoto.
 - (d) se P non contiene rette allora non ammette vertici.
- 3. Si consideri un problema di Programmazione Lineare (PL) in forma di minimo.
 - (a) L'insieme delle soluzioni ottime di (PL) è un poliedro.
 - (b) L'insieme delle soluzioni ottime di (PL) è un iperpiano.
 - (c) L'insieme delle soluzioni ottime di (PL) è un politopo.
 - (d) Se (PL) non è illimitato inferiormente allora ammette certamente soluzione ottima.
- 4. Si consideri il problema di Programmazione Lineare $\min\{c^T x : Ax \geq b\}$, con $x \in \mathbb{R}^n$, A matrice $m \times n$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, ed un punto ammissibile \bar{x} .
 - (a) In \bar{x} sono attivi almeno n vincoli.
 - (b) In \bar{x} sono attivi al più n vincoli.
 - (c) In \bar{x} sono attivi al più m vincoli.
 - (d) Se in \bar{x} sono attivi n vincoli allora \bar{x} è un vertice.
- 5. Sia data una soluzione di base ammissibile $x = (2, 1, 0, 0, 3)^T$ alla quale corrisponde un valore della funzione obiettivo pari a 15 e dove le variabili fuori base sono la x_3 e la x_4 . Supponiamo che risulti $\gamma = (2, 3)^T$. Se $y = (0, 2, 0, 1, 5)^T$ è un punto ammissibile, dire quali delle seguenti affermazioni sono corrette
 - (a) La funzione obiettivo nel nuovo punto y vale 21.
 - (b) La funzione obiettivo nel nuovo punto y rimane pari a 20.
 - (c) Non sono fornite tutte le informazioni necessarie per determinare il valore della funzione obiettivo nel nuovo punto y.
 - (d) Se il problema di PL è in forma di minimizzazione, allora x è l'unica soluzione ottima del problema.
- 6. Si consideri un poliedro $P \subseteq \mathbb{R}^n$, un problema di Programmazione Lineare $\min\{c^T x : x \in P\}$ ed un punto $\bar{x} \in P$.
 - (a) È sempre possibile determinare un vertice $v \in P$ tale che $c^T v \leq c^T \bar{x}$.

- (b) Se P non contiene rette, è sempre possibile determinare un vertice $v \in P$ tale che $c^T v < c^T \bar{x}$.
- (c) Se P non è illimitato, è sempre possibile determinare un vertice $v \in P$ tale che $c^T v \le c^T \bar{x}$.
- (d) Se il problema è illimitato inferiormente, è sempre possibile determinare un punto $\tilde{x} \in P$ tale che $c^T \tilde{x} < c^T \bar{x}$.
- 7. Sia Dato un problema di Programmazione Lineare in forma standard.
 - (a) Ad esso è sempre possibile applicare la Fase I del metodo del Simplesso.
 - (b) Il problema artificiale che si risolve nella la Fase I del metodo del Simplesso permette di determinare se il problema originario è illimitato.
 - (c) Durante le iterazioni della Fase I del metodo del Simplesso può accadere che il criterio di illimitatezza sia verificato.
 - (d) La Fase I del metodo del Simplesso determina sempre una prima SBA del problema originario.
- 8. Al termine della Fase I del metodo del Simplesso si ha $x_B = (\alpha_2, x_2, x_4)^T$, $x_N = (\alpha_1, x_1, \alpha_3, x_3)^T$, $B^{-1}b = (0, 1, 6)^T$,

$$B^{-1}N = \left(\begin{array}{rrrr} -7 & 0 & 3 & 0 \\ 2 & 1 & 7 & 0 \\ 11 & 0 & 4 & 1 \end{array}\right).$$

- (a) Una prima base ammissibile da cui far partire la Fase II del metodo del Simplesso prevede in base le variabili x_2 e x_4 .
- (b) Una prima base ammissibile da cui far partire la Fase II del metodo del Simplesso prevede in base le variabili x_3 x_2 e x_4 .
- (c) La matrice A del problema originario ha rango massimo.
- (d) Sulla base delle informazioni date, si può concludere che il problema originario non è ammissibile.
- 9. In una iterazione della Fase II del metodo del Simplesso si ha $x_B = (x_1, x_3, x_5)^T$, $x_N = (x_2, x_6, x_4, x_7)^T$, $\gamma^T = (\beta, 2, 4, 1)$, $\beta^{-1}b = (3, 0, 0)^T$,

$$B^{-1}N = \left(\begin{array}{cccc} -7 & 0 & 3 & 0 \\ 2 & 1 & 7 & 0 \\ 11 & 0 & 4 & 1 \end{array}\right).$$

- (a) Per ogni $\beta > 0$ la SBA corrente è l'unica soluzione ottima.
- (b) Per $\beta = -1$ la successiva SBA sarà certamente degenere.
- (c) Per $\beta = -1$ il valore del $\bar{\rho}$ ottenuto mediante il criterio del rapporto minimo è negativo.
- (d) Per $\beta = -1$ le variabili candidate ad uscire dalla base sono x_3 e x_5 .
- 10. Dato il poliedro definito dal sistema

$$3x_1 + x_2 - x_4 \ge 2$$

$$-x_2 - 2x_3 \le -2$$

$$\tau x_1 + 2x_2 + x_3 \ge 2$$

$$x > 0$$

- (a) Il punto $(1,\ 0,\ 1,\ 1)^T$ è un vertice del poliedro per ogni valore di $\tau.$
- (b) Per $\tau = 0$ l'origine è un vertice del poliedro.
- (c) Per $\tau=1$ il punto $(1,\ 0,\ 0,\ 1)^T$ è un vertice del poliedro.
- (d) Per $\tau \geq -1$ il punto $(1, 2, 1, 1)^T$ appartiene al poliedro.