Extracting Motion Primitives from Human Biomechanics using Deep Learning

^{1,2}Carlos Carrasquillo. **Advisors:** ^{1,2}Anirban Mazumdar, ³Lena Ting, ^{1,2}Aaron Young

¹George W. Woodruff School of Mechanical Engineering, ²Institute for Robotics and Intelligent Machines, ³W.H. Coulter Department of Biomedical Engineering

more

Background

Biological torque control is the current state-of-the-art technique for user independent exoskeleton assistance [1].

Problem: Commanding biological torque is not globally (i.e., across all tasks) optimal.

Hypothesis

Idea: We can create a globally optimal exoskeleton controller by optimizing a parametrization of biological torque for a set of known motion primitives.

Hypothesis: Let $C(\cdot)$ be the metabolic cost of completing some circuit: **№** → **№** ...

Then, C(Primitive - Based) < C(Baseline)

Methods

Steps:

- Generate set of motion primitives
- Classify primitives in real time
- Perform human-in-the-loop optimization on each primitive
- Compare the primitive-based bio torque controller against the baseline bio torque controller

Step 1: Classify primitives in real time

Steps 2-4 are future work.

Preliminary Results

Example: Level ground walking

- N=8-2 train-validation split
- model spec: 400 ms window size, 3 layers
- 4 primitives

Offline Walking EF -**Trial Analysis**

Angle

Angle

Impact

Understanding what a globally optimal task and user-independent control profile looks like could bring us one step closer to developing a true end-to-end controller and facilitate the widespread adoption of active wearable exoskeletons.

Angle

