

Q 2.

D'où $Q_{12} = -W_{12} = -nRT_1 \ln r < 0$

transfert thermique à la source froide (donc $Q_{12} < 0$).

 \triangleright Les signes étaient attendus car $1 \to 2$ est une compression (donc $W_{12} > 0$) au cours de laquelle le fluide cède un

 V_1 $V (10^{-3} \text{ m}^3)$ \triangleright Pour Q_{12} on applique le 1^{er} principe sur le fluide de la machine entre 1 et 2 :

 ${\bf 3.} \ \triangleright$ Puisque l'on a un gaz parfait (noté GP dans la suite) en transformation isotherme, on a : $W_{12} = -\int_{1}^{2} P dV = -nRT_{1} \int_{1}^{2} \frac{dV}{V} = nRT_{1} \ln \frac{V_{1}}{V_{2}} = nRT_{1} \ln r \text{ soit } \left[W_{12} = nRT_{1} \ln r > 0 \right]$ $Q_{12} = \Delta U_{12} - W_{12} = 0 - W_{12} = -nRT_1 \ln r \ (\Delta U_{12} = 0 \text{ car } U(T) \text{ pour un GP et que } 1 \rightarrow 2 \text{ est une isotherme}).$