Chaînes de Marcov

Introduction

Es chaînes de Marcov (C.M) constituent une classe importante de processus stochastiques à temps discret. Elles permettent de modéliser des phénomènes aléatoires temporels dont l'évolution probabiliste à tout instant ne dépend que de l'état du système à cet instant et non de toute son évolution intérieur, autrement dit elles modélisant des phénomènes sans mémoire. On se limite à l'étude des C.M à espace d'état (E) dénombrable.

1.1 Généralités sur les C.M

Dans la suite de ce chapitre, on considère un processus aléatoire $\{X_t, t \in \mathcal{T}\}$ à temps discret $(\mathcal{T} \subseteq \mathbb{Z})$ et espace d'état discret $(E \subseteq \mathbb{Z})$ (on notera plutôt $\{X_n, n \in \mathbb{Z}\}$) définit sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$.

Dans la plupart des cas, on prendra $\mathcal{T} = \mathbb{N}$.

Définition 1.1.1. Un processus $\{X_n, n \in \mathbb{N}\}$ à temps discret est dit chaîne de Marcov (C.M) si:

$$\mathbb{P}(X_{n+1} = i_{n+1} \setminus X_n = i_n, X_{n-1} = i_{n-1}, ..., X_0 = i_0) = \mathbb{P}(X_{n+1} = i_{n+1} \setminus X_n = i_n) \quad ... (1)$$

$$\forall i_j \in E \quad tq: \ j = \overline{0, n+1}$$

Proposition 1.1.1. Les distributions fini-dimensionnelles d'une C.M sont entièrement déterminées à partir de la distribution marginale de X_0 ($\mathbb{P}_{X_0}(.)$) et des probabilités dites transitions $P_{ij}(n, n+1) = \mathbb{P}(X_{n+1} = j \backslash X_n = i), \quad \forall i, j \in E$

Preuve.

Soit $n \in \mathbb{N}^*$ et écrivons : $\mathbb{P}(X_0 = i_0, X_1 = i_1, ..., X_n = i_n) = ?$?

On a:

$$\mathbb{P}(X_0 = i_0, X_1 = i_1, ..., X_n = i_n) = \mathbb{P}(X_0 = i_0) \mathbb{P}(X_1 = i_1 \backslash X_0 = i_0) \mathbb{P}(X_2 = i_2 \backslash X_0 = i_0, X_1 = i_1) ...$$

$$\mathbb{P}(X_n = i_n \backslash X_0 = i_0, ..., X_{n-1} = i_{n-1})$$

$$\stackrel{(1)}{=} \mathbb{P}(X_0 = i_0) \mathbb{P}(X_1 = i_1 \backslash X_0 = i_0) \mathbb{P}(X_2 = i_2 \backslash X_1 = i_1) ...$$

$$\mathbb{P}(X_n = i_n \backslash X_{n-1} = i_{n-1})$$

$$= \mathbb{P}(X_0 = i_0) P_{i_0 i_1}(0, 1) P_{i_1 i_2}(1, 2) ... P_{i_{n-1} i_n}(n-1, n)$$

Remarque 1.1.1. i) On notera $\pi^{(0)}$, la distribution de X_0 .

ii) Généralement, les probabilités de transitions $P_{ij}(n-1,n), n \in \mathbb{N}$ ne dépend que de i et j et non de n. Dans ce cas, on dit que la chaîne est **homogène** et :

$$P_{ij}(n-1,n) = \mathbb{P}(X_{n+1} = j \backslash X_n = i) = \mathbb{P}(X_1 = j \backslash X_0 = i)$$

est notée tout le cours P_{ij} , $i, j \in E$

- Dans la suite de ce chapitre, on se restreint au cas de C.M homogènes.
- iii) Si la C.M $\{X_n, n \in \mathbb{N}\}$ est homogène cela n'entraîne pas nécessairement que $\mathbb{P}(X_n = i) = \pi_i^{(n)}$ est indépendante de n.

Définition 1.1.2. On définit la probabilité de transition à n-étapes de l'état i à l'état j comme suit :

$$P_{ij}^{(n)} = \mathbb{P}(X_n = j \backslash X_0 = i), \quad i, j \in E, n \in \mathbb{N}$$

avec

$$P_{ij}^{(0)} = \begin{cases} 1 & si \ i = j \\ 0 & si \ i \neq j \end{cases} \quad telle \, que : P_{ij}^{(1)} = P_{ij}$$

Propriété 1.1.1. 1) Les probabilités de transitions vérifiant $\sum_{i \in E} P_{ij} = 1$.

2) Si E est fini $(c-\grave{a}-d:E=\{e_1,e_2,...,e_N\})$, on définit la matrice carré d'ordre N, \mathcal{P} dite matrice de transition par :

$$\mathcal{P} = (P_{ij})_{i,j \in E} = \begin{cases} e_1 & P_{11} & P_{12} & \cdots & P_{1N} \\ e_2 & P_{21} & P_{22} & \cdots & P_{2N} \\ \vdots & & \ddots & \\ e_N & P_{N1} & P_{N2} & \cdots & P_{NN} \end{cases}$$

2) Même si E est infini (dénombrable : $E = \mathbb{N}$), on définit matrice de transition par :

$$\mathcal{P} = \begin{pmatrix} P_{11} & P_{12} & \cdots \\ P_{21} & P_{22} & \cdots \\ \vdots & & \end{pmatrix}$$

Remarque 1.1.2. i) La matrice de transition \mathcal{P} ayant la propriété que la somme sur les lignes égale à 1 est dite stochastique.

- ii) De plus si $\sum_{j \in E} P_{ij} = 1, \forall j \in E$ alors la matrice \mathcal{P} est dite doublement stochastique.
- iii) \mathcal{P} admet la valeur propre 1.
- iv) On peut associer à cette valeur propre un vecteur propre v ayant toutes ses composantes égale à 1.

En effet;

On considérons v comme un vecteur colonne, on a :

$$\mathcal{P}.v = v \iff \forall i \in E, \sum_{j \in E} P_{ij} \ v_i = v_i$$

il suffit de prendre $\forall i \in E, v_i = 1$

Graphique associé à une matrice de transition

À toute matrice de transition, on peut associer son graphe dont les sommets sont les états de la chaîne. Il y a une flèche étiqueté P_{ij} entre les sommets i et j ssi $P_{ij} > 0$.

Si E est fini, cette représentation est utile et parlante.

Exemple 1.1.1. La chaîne à deux états

$$E = \{e_1, e_2\}$$
 et $\mathcal{P} = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$

 $Son\ graphe\ est$:

$$1 - \alpha$$
 e_1
 β
 e_2
 $1 - \beta$

Exemple 1.1.2. La matrice de transition d'une C.M est :

$$\mathcal{P} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{6} & \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

et l'espace d'état : $E = \{1, 2, 3, 4, 5\}$ Son graphe :

Théorème 1.1.1. (Équation de chap-man-Kolmogorov)

Si $P_{ij}^{(n)}$ les probabilités de transitions en n-étapes, alors :

$$P_{ij}^{(n+m)} = \sum_{k \in E} P_{ik}^{(n)}.P_{kj}^{(m)}, \quad \forall i, j, k \in E, \ \forall \ n, m \in \mathbb{N}$$

Preuve. On a :
$$P_{ij}^{(n+m)} = \mathbb{P}(X_{n+m} = j \setminus X_0 = i)$$

où : l'événement $\{X_{n+m}=j\}$ sachant $\{X_0=i\}$ peut s'écrit :

$$\{X_{n+m} = j\} = \{X_{n+m} = j\} \cap \Omega$$
$$= \{X_{n+m} = j\} \cap (\bigcup_{k \in E} \{X_n = k\})$$
$$= \bigcup_{k \in E} (\{X_{n+m} = j\} \cap \{X_n = k\})$$

alors:

$$P_{ij}^{(n+m)} = \mathbb{P}(X_{n+m} = j \backslash X_0 = i)$$

$$= \sum_{k \in E} \mathbb{P}(X_{n+m} = j, X_n = k \backslash X_0 = i)$$

$$= \sum_{k \in E} \mathbb{P}(X_n = k \backslash X_0 = i) \, \mathbb{P}(X_{n+m} = j \backslash X_0 = i, X_n = k)$$

$$= \sum_{k \in E} \mathbb{P}(X_n = k \backslash X_0 = i) \, \mathbb{P}(X_{n+m} = j \backslash X_n = k)$$

$$= \sum_{k \in E} P_{ik}^{(n)} \cdot P_{kj}^{(m)}$$

Ce théorème est extensible aux matrices de transition comme suit : Soit $\mathcal{P}^{(2)} = (P_{ij}^{(2)})_{i,j \in E}$ la matrice de transition en deux étapes.

D'après le théorème 3.1.1, on a : $P_{ij}^{(2)} = \sum_{k \in E} P_{ik}^{(1)} \cdot P_{kj}^{(1)} = \sum_{k \in E} P_{ik} \cdot P_{kj}$, donc chaque élément d'indice (i, j) de la matrice $\mathcal{P}^{(2)}$ est égale au produit scalaire du vecteur de la ligne i de \mathcal{P} par le vecteur de la colonne j de \mathcal{P} . Ainsi $\mathcal{P}^{(2)} = \mathcal{P} \cdot \mathcal{P} = \mathcal{P}^2$.

Par récurrence, on vérifie que : $\mathcal{P}^{(n)} = \mathcal{P}^n$.

Remarque 1.1.3. Pour montrer qu'un processus $\{X_n, n \in \mathbb{N}\}$ est une C.M, l'utilisation de la définition peut être délicate, le théorème suivant signifie cette vérification en utilisant une relation de récurrence stochastique.

Théorème 1.1.2. Soit $\{X_n, n \in \mathbb{N}\}$ un processus aléatoire défini sur E par la relation de récurrence suivante :

$$\begin{cases} X_{n+1} = f(X_n, U_{n+1}), & n \in \mathbb{N}^* \\ X_0 = X \end{cases}$$

où : $(U_n)_{n\in\mathbb{N}}$ est une suite de v.a $tq: X \perp U_n, \ \forall \ n \in \mathbb{N}$ et $f: E^2 \longrightarrow E$ une fonction quelconque, alors $\{X_n, n \in \mathbb{N}\}$ définit une C.M sur E.

1.1.1 Quelques exemples de C.M

I. Processus de Bernoulli

Expérience aléatoire à deux issues possibilités succès et échec répète infiniment (sans cesse) de sorte que les issus successives sont indépendants les unes des autres.

L'espace fondamental : $\Omega = \{\omega = (\omega_1, \omega_2, ...) \ tq : \omega_i = s \lor e, \quad i \in \mathbb{N}^* \} \ \text{et} \ \mathcal{F} = \mathcal{P}(\Omega).$

La mesure de probabilité $\mathbb{P}(.)$ définit sur \mathcal{F} tq :

$$\forall \omega \in \Omega, \ \mathbb{P}(\{\omega\}) = \prod_{i \in \mathbb{N}^*} \mathbb{P}(\{\omega_i\})$$

avec:

$$\mathbb{P}(\{\omega_i\}) = \begin{cases} p \in [0,1] & si \ \omega_i = s \\ 1 - p & si \ \omega_i = e \end{cases}$$

Donc $(\Omega, \mathcal{F}, \mathbb{P})$ constitue l'espace de probabilité associé à cette expérience.

On considère le processus aléatoire $\{X_n, n \in \mathbb{N}\}$ dont les membres X_n sont :

$$X_n : \Omega \longrightarrow \{0, 1\}$$

$$\omega \longmapsto X_n(\omega) = \begin{cases} 1 & \omega_i = s \\ 0 & \omega_i = e \end{cases}$$

On dit que $\{X_n, n \in \mathbb{N}^*\}$ est le processus aléatoire de Bernoulli de taux p et on écrit $(X_n) \rightsquigarrow B(p)$ si :

- 1) Les v.a $X_1, X_2, ...$ sont indépendantes.
- 2) Les v.a $X_1,...,X_n$ sont de même loi c-à-d : $\mathbb{P}(X_n=0)=1-p$ et $\mathbb{P}(X_n=1)=p, \ \forall n\in\mathbb{N}^*.$
- 3) $E = \{0, 1\}$, il est clair que ce processus est une C.M car : $\mathbb{P}(X_{n+1} = i_{n+1} \setminus X_n = i_n, X_{n-1} = i_{n-1}, ..., X_0 = i_0) \stackrel{X_i sont \perp}{=} \mathbb{P}(X_{n+1} = i_{n+1}) = \mathbb{P}(X_{n+1} = i_{n+1} \setminus X_n = i_n).$
- 4) La matrice de transition

$$\mathcal{P} = \begin{pmatrix} P_{00} & P_{01} \\ P_{10} & P_{11} \end{pmatrix} = \begin{pmatrix} 1 - p & p \\ 1 - p & p \end{pmatrix}$$

son graphe:

II. Processus Binomiale

Soit $\{N_n, n \in \mathbb{N}\}$ un processus aléatoire dont les membres sont définis sur $(\Omega, \mathcal{F}, \mathbb{P})$ par :

$$\begin{cases} N_0 = 0 \\ N_n = X_1 + \dots + X_n, & n \ge 1 \end{cases}$$

En fait, N_n représente le nombre de succès jusqu'à la n'ème répétition, alors $\{N_n, n \in \mathbb{N}\}$ est dit un processus de comptage de Bernoulli.

ightharpoonup Loi de N_n :

Soit $k \in \{0,...,n\}$ et considérons l'événement $\{N_n = k\}, \ \forall \ n \geq 1 \ \mathrm{tq}:$

$$\{N_n = k\} = \bigcup_{i,j \in \overline{1,n}} \{X_{i_1} = 1, ..., X_{i_k} = 1, X_{i_{k+1}} = 0, ..., X_{i_n} = 0\}$$

or:
$$\mathbb{P}(X_{i_1} = 1, ..., X_{i_k} = 1, X_{i_{k+1}} = 0, ..., X_{i_n} = 0) = C_n^k p^k (1 - p)^{n-k}$$

 $\Rightarrow \mathbb{P}(N_n = k) = C_n^k p^k (1 - p)^{n-k}$

$$\forall n \in \mathbb{N}^* : N_{n+1} = \underbrace{X_1 + \dots + X_n}_{N_n} + X_{n+1} = N_n + X_{n+1}$$

On remarque que : $N_{n+1} = f(N_n, X_{n+1})$ tq : f(x,y) = x + y

et on a : $(X_n)_{n\geq 1}$ est une suite de v.a indépendantes et $N_0 = 0 \perp X_n, \forall n \in \mathbb{N}^*$ alors : $\{N_n, n \in \mathbb{N}^*\}$ est une C.M.

▶ La matrice de transition

$$\mathcal{P} = \begin{pmatrix} P_{00} & P_{01} & \cdots & P_{0n} \\ P_{10} & P_{11} & \cdots & P_{1n} \\ \vdots & & & & \\ P_{n0} & P_{n1} & \cdots & P_{nn} \end{pmatrix}$$

avec:

$$\forall i, j \in E = \{0, ..., n\} : P_{ij} = \mathbb{P}(N_{n+1} = j \setminus N_n = i)$$

$$= \mathbb{P}(N_n + X_{n+1} = j \setminus N_n = i)$$

$$= \mathbb{P}(X_{n+1} = j - i \setminus N_n = i)$$

$$\stackrel{X_n \perp N_n}{=} \mathbb{P}(X_{n+1} = j - i)$$

$$= \begin{cases} \mathbb{P}(X_{n+1} = 0) = 1 - p & \text{si } j = i \\ \mathbb{P}(X_{n+1} = 1) = p & \text{si } j = i + 1 \\ \mathbb{P}(\emptyset) = 0 & \text{si non} \end{cases}$$

III. Propriétés du processus Binomiale

- a) Stationnarité des accroissements : $\forall n, m \in \mathbb{N} : (N_{n+m} N_n)$ est de même loi que $(N_m N_0)$ ou encore la loi de $N_{n+m} N_n$ est $\perp de \ n$ c-à-d : $\mathbb{P}(N_{n+m} N_n = k) = C_n^k p^k (1-p)^{n-k}$.
- b) Indépendance

 $\forall n, m \in \mathbb{N} : N_{n+m} - N_n \perp N_m, N_{m-1}, ..., N_0$

1.2 Classification des états; Décomposition en classes

Les états d'une C.M se répartissent en classes que l'on définit à partir de la matrice de transition.

Définition 1.2.1. On dit que l'état j est <u>accessible</u> à partir de l'état i, ou est <u>conséquent</u> de l'état i, $si \exists n \geq 0 \ tq : P_{ij}^{(n)} > 0$, on écrit $: i \leadsto j$.

Proposition 1.2.1. La relation d'accessibilité entre les états réflexible et transitive.

Preuve.

Comme
$$P_{ii}^{(0)} = \mathbb{P}(X_0 = j \setminus X_0 = i) = 1, \forall i \in E \Longrightarrow i \leadsto i$$

En suite : si $i \leadsto l$ et $l \leadsto j \stackrel{??}{\Longrightarrow} i \leadsto j$

$$\exists n \geq 0 \ tq \ P_{il}^{(n)} > 0 \ \text{ et } \ \exists m \geq 0 \ tq \ P_{lj}^{(m)} > 0$$

D'après la relation de chap-man-Kolmogorov :

$$P_{ij}^{(n+m)} = \sum_{k \in E} P_{ik}^{(n)} \cdot P_{kj}^{(m)} \ge P_{il}^{(n)} \cdot P_{lj}^{(m)} > 0$$

D'où : la transitivité.

Proposition 1.2.2. Soient i, j deux états, les deux propriétés suivantes sont équivalentes :

- L'état j est accessible à partir de l'état $i: i \leadsto j$.
- Le processus, partant de i, passe par j avec une probabilité strictement positive.

Preuve. (comme un exercice)

Définition 1.2.2. On dit que deux états i et j <u>communiquent</u> et l'on écrit $i \iff j$ si on a à la $fois: i \leadsto j$ et $j \leadsto i$.

Proposition 1.2.3. La relation de communication entre états est une relation d'équivalence.

Remarque 1.2.1.

- 1) En raison du fait que $\forall i \in E, P_{ii}^{(0)} = 1$ tout état communique avec lui.
- 2) Un état est appelé état de retour si $\exists n \geq 1, P_{ii} > 0.$
- 3) Il existe des états i $tq: \exists n \geq 1 \ (0 \ exclu), \ P_{ii}^{(n)} = 0, \ de tels états sont appelées états de non retour.$

Exemple: Soit la C.M définit par
$$E = \{0,1\}$$
 et $\mathcal{P} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$

On remarque que $\forall n \geq 1$, $P_{11}^{(n)} = 0$ alors l'état 1 est un état non retour.

4) Pour la relation de communication, l'ensemble E des états se partitionne en classes d'équivalence (disjoints et non vides), dites classes indécomposables.

Soit C_1 et C_2 deux classes distinctes, on peut éventuellement aller disons de C_1 à C_2 , mais on ne peut pas retourner de C_2 à C_1 .

En revanche, tous les états d'une même classe communiquent.

Certains classes peuvent ne comporter qu'un seul élément, ce sont les <u>singletons</u>, par exemple mentionnons :

• Un état de non retour i :

$$P_{ii}^{(0)} = 1, P_{ii}^{(n)} = 0, \quad \forall n \ge 1$$

• Un état absorbant i :

$$P_{ii}^{(0)} = 1, P_{ii}^{(n)} = 1, \quad \forall n \ge 1$$

par exemple l'état 0 dans la C.M précédente est un état absorbant car $\forall n \geq 0, P_{00}^{(n)} = 1$ Donc : $E = \{C_1, C_2\}$ $tq : C_1 = \{1\}$ et $C_2 = \{0\}$

Définition 1.2.3. S'il n'y a qu'une seule classe pour la relation de communication, autrement dit, si tous les états communiquent entre eux, la C.M est dite **irréductible**.

Par exemple : pour la C.M précédente, c'est une chaîne réductible.

Exemple 1.2.1. Soit la C.M dont : $E = \{0, 1, 2\}$ et la matrice de transition :

$$\mathcal{P} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4}\\ 0 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

et le graphe associé :

On remarque que tous les états communiquent entre eux malgré que : $P_{02} = P_{20} = 0$ mais $\exists n \geq 2 \ tq: P_{02}^{(n)} \neq 0 \ et \ P_{20}^{(n)} \neq 0$

 \implies il existe une seule classe $E = \{0, 1, 2\}$.

alors : la chaîne est irréductible.

Exemple 1.2.2. Soit la C.M dont : $E = \{0, 1, 2, 3\}$ et la matrice de transition :

$$\mathcal{P} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ \frac{1}{2} & \frac{1}{2} & 0 & 0\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

et le graphe associé :

On remarque que tous l'état 2 est un état de non retour et qui forme une classe $C_1 = \{2\}$ et l'état 3 est un état absorbant car $\forall n \geq 1$ t $q: P_{33}^{(n)} = 1$ qui forme une classe $C_2 = \{3\}$ et les états 0 et 1 communiquent entre eux donc $C_3 = \{0,1\}$ alors : la chaîne est réductible.

Remarque 1.2.2. Les classes $C_3 = \{0,1\}$ et $C_2 = \{3\}$ sont des classes **récurrentes** mais la classe $C_1 = \{2\}$ est une classe **transitent** car l'état n'est plus visité après un certain temps.

1.2.1 Etats récurrents et transitents

Définition 1.2.4. Un état est récurrent s'il correspond à un sommet sans successeur. Dans le graphe si tel n'est pas le cas, l'état est dit transitent.

La classe qui contient un état transitent est dite <u>transitoire</u> et qui contient un état récurrent est dite récurrente.

1.2.2 Périodicité

Il s'agit d'étudier dans quelles conditions le temps qui sépare deux retours au même état j est ou n'est pas multiple d'un temps minimum. On introduit pour ce faire la notion de période.

Définition 1.2.5. Soit j un état de retour, on appelle période de j, le PGCD de tous les entiers $n \ge 1$ pour lequel $P_{ij}^{(n)} > 0$. On note d(j) la période de j.

- \circ Si $d(j) = d \ge 2$, on dit j est périodique de période d.
- \circ Si d(j) = 1, on dit que j est apériodique.
- o Si j est un état de non retour (à savoir que $\forall n \geq 1$, on a $P_{ij} = 0$), on pose $d(j) = +\infty$.

Théorème 1.2.1. Si i est périodique de période d finie et si i \iff j $tq j \neq i$ alors j est aussi périodique de période d.

La propriété de périodicité est une propriété de classe.

Proposition 1.2.4. L'état j à période d ssi d est le plus grand diviseur commun des longueurs des circuits (pas forcement élémentaire) du graphe représentatif passant par j.

Proposition 1.2.5. Si $P_{jj} > 0$, l'état j est apériodique.

Remarque 1.2.3. La périodicité étant une propriété de classe, on parlera de classes périodiques/apériodiques et des chaînes de Marcov irréductibles périodiques/apériodiques, selon les propriétés de leurs états.

Exemple 1.2.3. Soit la C.M avec $E = \{0, 1, 2\}$ dont le graphe est donné par :

C'est une chaîne irréductible car on a une seule classe (tous les états communiquent). L'état 0 est une état de retour, les circuits de l'état 0 sont :

$$0 \longrightarrow 1 \longrightarrow 0$$
$$0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 0$$

La période de 0 est : $d(0) = PGCD(2, 3) = 1 \Longrightarrow l$ 'état 0 est apériodique.

Comme on a une seule classe, tout les autres états sont apériodiques et la chaîne de Marcov est irréductible apériodique.

Exemple 1.2.4. Considérons la C.M dont : $E = \{0, 1, 2, 3\}$ et la matrice de transition :

$$\mathcal{P} = \begin{pmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

et le graphe associé:

On remarque que tous les états communiquent entre eux, alors on a une seule classe $\{0,1,2,3\}$, par suite la C.M est irréductible.

Prenons l'état
$$0: d(0) = PGCD(3,3) = 3 = d < +\infty$$

 $d(1) = 0$

D'où : la classe est périodique de période 3.

⇒ La C.M est irréductible et périodique.

1.3 Distribution initiale et comportement transitoire

1.3.1 Distribution initiale

La distribution des états d'une C.M après n transitions est notée $\pi^{(n)}$. Cette distribution est un vecteur de probabilités contenant la loi de la v.a X_n telle que : $\pi_i^{(n)} = \mathbb{P}(X_n = i)$, $i \in E$. La distribution initiale est $\pi^{(0)}$.

Remarque 1.3.1. Si l'état initiale est connu avec un certitude et il est égale à i, on a :

$$\pi_i^{(0)} = \mathbb{P}(X_0 = i) = 1$$

$$\pi_j^{(0)} = \mathbb{P}(X_0 = j) = 0, \quad \forall j \in E \quad (i \neq j)$$

1.3.2 Comportement transitoire

Théorème 1.3.1. Soit \mathcal{P} la matrice de transition d'une C.M et $\pi^{(0)}$ la distribution initiale, $\forall n \geq 1$ on a:

$$\pi^{(n)} = \pi^{(n-1)} \mathcal{P}$$
$$= \pi^{(0)} \mathcal{P}^{(n)}$$

Exemple 1.3.1. Soit $\{X_n, n \in \mathbb{N}\}$ une C.M à espace d'état $E = \{0, 1, 2\}$ à distribution initiale $\pi^{(0)} = (0.2, 0.5, 0.3)$ et à matrice de transition :

$$\mathcal{P} = \begin{pmatrix} 0.3 & 0.1 & 0.6 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.7 & 0.2 \end{pmatrix}$$

1)
$$\pi^{(2)} = (\pi_0^{(2)}, \pi_1^{(2)}, \pi_2^{(2)}), \quad \forall \ i = \overline{0.2}$$

D'après le théorème 3.3.1, on $a : \pi^{(2)} = \pi^{(0)} \mathcal{P}^{(2)}$
telle que :

$$\mathcal{P}^{(2)} = \mathcal{P}^2 = \begin{pmatrix} 0.19 & 0.49 & 0.32 \\ 0.3 & 0.34 & 0.36 \\ 0.33 & 0.43 & 0.24 \end{pmatrix}$$

$$\Longrightarrow \pi^{(2)} = (0.287,\ 0.397,\ 0.316)$$

2)
$$\pi_2^{(1)} = \mathbb{P}(X_1 = 2)$$
 ?

 $On \ a :$

$$\mathbb{P}(X_1 = 2) = \mathbb{P}(\{X_1 = 2\} \cap \Omega)
= \mathbb{P}(\{X_1 = 2\} \cap \bigcup_{i=0}^2 \{X_0 = i\})
= \mathbb{P}(\bigcup_{i=0}^2 \{X_1 = 2\} \cap \{X_0 = i\})
= \sum_{i=0}^2 \mathbb{P}(X_1 = 2, X_0 = i)
= \sum_{i=0}^2 \mathbb{P}(X_0 = i) \mathbb{P}(X_1 = 2 \setminus X_0 = i)
= \sum_{i=0}^2 \pi_i^{(0)} \cdot P_{i2}^{(1)} = \pi_0^{(0)} \cdot P_{02}^{(1)} + \pi_1^{(0)} \cdot P_{12}^{(1)} + \pi_2^{(0)} \cdot P_{22}^{(1)}
= 0.28$$

Le même pour :
$$\pi_0^{(1)} = \mathbb{P}(X_1 = 0) = \sum_{i=0}^2 \pi_i^{(0)}.P_{i0}^{(1)} = 0.29$$

 $\pi_1^{(1)} = \mathbb{P}(X_1 = 1) = \sum_{i=0}^2 \pi_i^{(0)}.P_{i1}^{(1)} = 0.43$
3) $\pi_1^{(2)} = \mathbb{P}(X_2 = 1)$? ?

La 1^{ère} méthode :

$$\mathbb{P}(X_2 = 1) = \mathbb{P}(\{X_2 = 1\} \cap \Omega)
= \mathbb{P}(\{X_2 = 1\} \cap \bigcup_{i=0}^2 \{X_1 = i\})
= \mathbb{P}(\bigcup_{i=0}^2 \{X_2 = 1\} \cap \{X_1 = i\})
= \sum_{i=0}^2 \mathbb{P}(X_2 = 1, X_1 = i)
= \sum_{i=0}^2 \mathbb{P}(X_1 = i) \mathbb{P}(X_2 = 1 \setminus X_1 = i)
= \sum_{i=0}^2 \pi_i^{(1)} \cdot P_{i1}^{(1)}
= 0.397$$

La 2^{ème} méthode :

$$\pi_1^{(2)} = \mathbb{P}(X_2 = 1) = \mathbb{P}(\{X_1 = 2\} \cap \Omega)$$

$$= \mathbb{P}(\{X_2 = 1\} \cap \bigcup_{i=0}^2 \{X_0 = i\})$$

$$= \sum_{i=0}^2 \mathbb{P}(X_2 = i) \mathbb{P}(X_2 = 1 \setminus X_0 = i)$$

$$= \sum_{i=0}^{2} \pi_i^{(0)} . P_{i2}^{(2)}$$
$$= 0.397$$

4)
$$\mathbb{P}(X_3 = 2 \setminus X_0 = 0) = P_{02}^{(3)}$$

Il suffit de trouver : $\mathcal{P}^{(3)} = \mathcal{P}^3 = \begin{pmatrix} 0.29 & 0.44 & 0.28 \\ 0.26 & 0.42 & 0.32 \\ 0.3 & 0.38 & 0.33 \end{pmatrix}$

alors: $\mathbb{P}(X_3 = 2 \backslash X_0 = 0) = 0.28$

$$\mathbb{P}(X_0 = 1 \mid X_1 = 2) = \frac{\mathbb{P}(X_0 = 1, X_1 = 2)}{\mathbb{P}(X_1 = 2)}$$

$$= \frac{\mathbb{P}(X_0 = 1) \cdot \mathbb{P}(X_1 = 2 \mid X_0 = 1)}{\mathbb{P}(X_1 = 2)}$$

$$= \frac{\pi_1^{(0)} \cdot P_{12}^{(1)}}{\mathbb{P}(X_1 = 2)}$$

$$= 0.357$$

5)
$$\mathbb{P}(X_1 = 1, X_3 = 1) = \mathbb{P}(X_1 = 1) \, \mathbb{P}(X_3 = 1 \setminus X_1 = 1)$$

= $\pi_1^{(1)} \cdot P_{11}^{(2)} = 0.146$

$$\mathbb{P}(X_1 = 1 \mid X_2 = 2, X_3 = 0) = \frac{\mathbb{P}(X_1 = 1, X_2 = 2, X_3 = 0)}{\mathbb{P}(X_2 = 2, X_3 = 0)}$$

$$= \frac{\mathbb{P}(X_1 = 1) \cdot \mathbb{P}(X_2 = 2 \mid X_1 = 1) \mathbb{P}(X_3 = 0 \mid X_1 = 1, X_2 = 2)}{\mathbb{P}(X_2 = 2, X_3 = 0)}$$

$$= \frac{\mathbb{P}(X_1 = 1) \cdot \mathbb{P}(X_2 = 2 \mid X_1 = 1) \mathbb{P}(X_3 = 0 \mid X_1 = 1, X_2 = 2)}{\mathbb{P}(X_2 = 2) \mathbb{P}(X_3 = 0 \mid X_2 = 2)}$$

$$= \frac{\mathbb{P}(X_1 = 1) \cdot \mathbb{P}(X_2 = 2 \mid X_1 = 1)}{\mathbb{P}(X_2 = 2)}$$

$$= \frac{\mathbb{P}(X_1 = 1) \cdot P_{12}^{(1)}}{\pi_2^{(2)}}$$

$$= 0.272$$

Exercice: Soit $\{X_n, n \in \mathbb{N}\}$ une C.M à espace d'état $E = \{e_0, e_1\}$ à distribution initiale $\pi^{(0)} = (\frac{1}{3}, \frac{2}{3})$ et à matrice de transition : $\mathcal{P} = \begin{pmatrix} 0.5 & 0.5 \\ 0.3 & 0.7 \end{pmatrix}$

calculer $\mathbb{P}(X_1 = e_0, X_4 = e_1, X_6 = e_1, X_{18} = e_1 \setminus X_0 = e_0)$, $\mathbb{P}(X_2 = e_1, X_7 = e_0, X_9 = e_1 \setminus X_0 = e_0)$ et $\mathbb{P}(X_2 = e_0 \setminus X_7 = e_1)$.

$$\circ \mathbb{P}(X_1 = e_0, X_4 = e_1, X_6 = e_1, X_{18} = e_1 \backslash X_0 = e_0) = \mathbb{P}(X_1 = e_0 \backslash X_0 = e_0) \mathbb{P}(X_4 = e_1 \backslash X_0 = e_0, X_1 = e_0)
\mathbb{P}(X_6 = e_1 \backslash X_0 = e_0, X_1 = e_0, X_4 = e_1) \mathbb{P}(X_{18} = e_1 \backslash X_0 = e_0, X_1 = e_0, X_4 = e_1, X_6 = e_1)
= P_{e_0 e_1}^{(1)} \mathbb{P}(X_4 = e_1 \backslash X_1 = e_0) \mathbb{P}(X_6 = e_1 \backslash X_4 = e_1)
\mathbb{P}(X_{18} = e_1 \backslash X_6 = e_1)
= P_{e_0 e_1} P_{e_0 e_1}^{(3)} P_{e_1 e_1}^{(2)} P_{e_1 e_1}^{(12)} \dots \otimes$$

donc il faut calculer:

$$\mathcal{P}^2 = \begin{pmatrix} 0.4 & 0.6 \\ 0.36 & 0.64 \end{pmatrix}, \, \mathcal{P}^3 = \begin{pmatrix} 0.38 & 0.62 \\ 0.37 & 0.63 \end{pmatrix} \text{ et } \mathcal{P}^4 = \begin{pmatrix} 0.37 & 0.63 \\ 0.37 & 0.63 \end{pmatrix}$$

alors:
$$\lim_{n \to \infty} \mathcal{P}^n = \begin{pmatrix} 0.37 & 0.63 \\ 0.37 & 0.63 \end{pmatrix}$$

donc: $\circledast = 0.5 (0.63) (0.64) (0.62) = 0.124$.

$$\mathbb{P}(X_2 = e_1, X_7 = e_0, X_9 = e_1 \backslash X_0 = e_0) = \mathbb{P}(X_2 = e_1 \backslash X_0 = e_0) \mathbb{P}(X_7 = e_0 \backslash X_0 = e_0, X_2 = e_1) \\
\mathbb{P}(X_9 = e_1 \backslash X_0 = e_0, X_2 = e_1, X_7 = e_0) \\
= P_{e_0 e_1}^{(2)} \mathbb{P}(X_7 = e_0 \backslash X_2 = e_1) \mathbb{P}(X_9 = e_1 \backslash X_7 = e_0) \\
= P_{e_0 e_1}^{(2)} P_{e_1 e_0}^{(5)} P_{e_0 e_1}^{(2)} \\
= 0.13$$

$$\circ \mathbb{P}(X_2 = e_0 \backslash X_7 = e_1) = \frac{\mathbb{P}(X_2 = e_0, X_7 = e_1)}{\mathbb{P}(X_7 = e_1)}$$
$$= \frac{\mathbb{P}(X_2 = e_0).\mathbb{P}(X_7 = e_1 \backslash X_2 = e_0)}{\mathbb{P}(X_7 = e_1)}$$

$$\mathbb{P}(X_2 = e_0) = \sum_{i \in E} \pi_i^{(0)} . P_{i e_0}^{(2)} = \pi_{e_0}^{(0)} P_{e_0 e_0}^{(2)} + \pi_{e_1}^{(0)} P_{e_1 e_0}^{(2)} = 0.37$$

$$\mathbb{P}(X_7 = e_1) = \sum_{i \in E} \pi_i^{(0)}.P_{i\,e_1}^{(7)} = \pi_{e_0}^{(0)}P_{e_0e_1}^{(7)} + \pi_{e_1}^{(0)}P_{e_1e_1}^{(7)} = 0.63$$

donc:

$$\mathbb{P}(X_2 = e_0 \backslash X_7 = e_1) = \frac{P_{e_0 e_1}^{(5)} \ 0.37}{0.63} = 0.37$$

1.4 Comportement asymptotique des C.M

1.4.1 Objectif et comportement asymptotique

L'étude du comportement à long terme d'une chaîne de Marcov cherche à répondre à des questions aussi diverses que :

- La distribution $\pi^{(n)}$ converge t-elle lorsque $n \longrightarrow \infty$?
- Si la distribution $\pi^{(n)}$ converge lorsque $n \longrightarrow \infty$, quelle est la limite π^* ? et cette limite est-elle indépendante de la distribution initiale $\pi^{(0)}$?
- Si l'état i est récurrent, quelle est la proportion du temps passé dans cette état ? et quel est le nombre moyen de transitions ente deux visites successives de cet état ?
- Si l'état i est transitent, quel est le nombre moyen de visites de cet état?

Définition 1.4.1. (Distribution invariante)

Une distribution π est invariante ou stationnaire si $\pi = \pi \mathcal{P}$.

Proposition 1.4.1. Si $\lim_{n\to\infty} \pi^{(n)}$ existe, alors la limite est une distribution invariante.

Proposition 1.4.2. Une C.M possède toujours au moins une distribution invariante.

Théorème 1.4.1. Une C.M possède autant de distributions invariantes linéairement indépendantes que la multiplicité de la valeur propre 1 de sa matrice de transition.

Théorème 1.4.2. La distribution $\pi^{(n)}$ des états d'une C.M converge vers une distribution (invariante) π^* indépendante de la distribution initiale $\pi^{(0)}$ ssi la suite des puissances de la matrice de transition \mathcal{P} converge vers une matrice (stochastique) \mathcal{P}^* dont toutes les lignes sont égales entre elles.

De plus, si tel est le cas, chaque ligne de \mathcal{P}^* égale à π^*

Preuve.

* La condition est nécessaire car si indépendamment de $\pi^{(0)}$, $\lim_{n\to\infty}\pi^{(n)}=\pi^*$, il suffit de considérer successivement les distributions initiales :

$$\pi_1^{(0)} = (1, 0, 0, ..., 0)$$

$$\pi_2^{(0)} = (0, 1, 0, ..., 0)$$

$$\vdots$$

$$\pi_p^{(0)} = (0, 0, 0, ..., 1)$$

pour obtenir:

$$\pi^* = \lim_{n \to \infty} \pi^{(n)} = \lim_{n \to \infty} \pi^{(0)} \mathcal{P}^{(n)}$$
$$= \lim_{n \to \infty} \pi_i^{(0)} \mathcal{P}^{(n)} = \lim_{n \to \infty} (\mathcal{P}^n)_i$$
$$= \mathcal{P}_i^*$$

ainsi \mathcal{P}^* existe et toutes les lignes sont égales à π^* .

* La condition suffisante :

Si \mathcal{P}^* existe et $P_{ij}^* = P_i^*, \ \forall i \in E$.

On a : $\lim_{n \to \infty} \pi^{(n)} = \lim_{n \to \infty} \pi^{(0)} \, \mathcal{P}^{(n)} = \pi^{(0)} \, \lim_{n \to \infty} \mathcal{P}^n = \pi^{(0)} \, \mathcal{P}^*$ et la limite π^* est existe. De plus, $\pi_j^* = \sum_{i \in E} \pi_i^{(0)} \mathcal{P}_{ij}^* = \sum_{i \in E} \pi_i^{(0)} \mathcal{P}_{j}^* = \mathcal{P}_{ij}^* \sum_{i \in E} \pi_i^{(0)} = \mathcal{P}_j^*$

De plus,
$$\pi_j^* = \sum_{i \in E} \pi_i^{(0)} \mathcal{P}_{ij}^* = \sum_{i \in E} \pi_i^{(0)} \mathcal{P}_j^* = \mathcal{P}_{ij}^* \sum_{i \in E} \pi_i^{(0)} = \mathcal{P}_{ij}^*$$

et π^* est indépendante de la loi $\pi^{(0)}$ est identique à n'importe quelle ligne de \mathcal{P}^* .

Remarque 1.4.1. Si $\pi^* = \lim_{n \to \infty} \pi^{(n)}$, on parlera de distribution asymptotique stationnaire ou invariante.

1.4.2 Comportement asymptotique de C.M irréductible et apériodique

Théorème 1.4.3. Soit \mathcal{P} la matrice de transition d'une C.M irréductible et apériodique, les propriétés suivantes sont vérifiées :

- 1. La matrice $\mathcal{P}^n \xrightarrow[n \to \infty]{} \mathcal{P}^*$ stochastique.
- 2. Les lignes de \mathcal{P}^* sont toutes égales entre elles.
- 3. $P_{ij}^* > 0, \ \forall i, j \in E$.
- 4. $\forall \pi^{(0)}$ distribution initiale, $\lim_{n\to\infty} \pi^{(n)} = \lim_{n\to\infty} \pi^{(0)} \mathcal{P}^n = \pi^*$.
- 5. π^* est la solution unique du système :

$$\begin{cases} \pi \cdot \mathcal{P} = \pi \\ \pi \cdot \mathbb{1} = 1 \end{cases}$$

- 6. π^* est égale à n'importe ligne de \mathcal{P}^* .
- 7. $\forall i \in E, \pi_i^* = \frac{1}{\mu_i}$ où μ_i est l'espérance du nombre de transitions entre deux visites successives de l'état i.

Remarque 1.4.2. Pour n suffisamment grand, on a $\pi^{(n)} \simeq \pi^*$ et π_i^* est la probabilité que la chaîne se trouve i à un instant quelconque. Cette valeur représente aussi la **proportion** du temps passé dans l'instant i.

Exemple 1.4.1. Soit chaîne de Marcov à $E = \{e_1, e_2, e_3\}$ de matrice de transition :

$$\mathcal{P} = \begin{pmatrix} \frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$

de graphe:

C'est une chaîne irréductible et apériodique.

Pour la périodicité, par exemple e_1 :

$$e_1 \longrightarrow e_1$$
 $e_1 \longrightarrow e_3 \longrightarrow e_2 \longrightarrow e_1$
 $e_1 \longrightarrow e_3 \longrightarrow e_3 \longrightarrow e_1$
 $e_1 \longrightarrow e_3 \longrightarrow e_2 \longrightarrow e_3 \longrightarrow e_1$

$$d(e_1) = PGCD(1, 2, 3, 4, 5, ...) = 1$$

D'après le théorème 3.4.3, la chaîne est irréductible et apériodique, donc $\lim_{n\to\infty}\pi^{(n)}$ existe et c'est la solution unique du système :

$$\begin{cases} \pi \cdot \mathcal{P} = \pi \\ \pi \cdot \mathbb{1} = 1 \quad avec \, \pi = (\pi_1, \pi_2, \pi_3) \end{cases}$$

$$\pi \cdot \mathcal{P} = \pi \Leftrightarrow (\pi_1, \pi_2, \pi_3) \begin{pmatrix} \frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix} = (\pi_1, \pi_2, \pi_3)$$

$$\pi \cdot \mathbb{1} = 1 \Leftrightarrow (\pi_1, \pi_2, \pi_3) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 1$$

$$\Leftrightarrow \begin{cases} \frac{1}{4}\pi_1 + \frac{1}{4}\pi_2 + \frac{1}{4}\pi_3 = \pi_1 \\ \frac{1}{4}\pi_2 + \frac{1}{2}\pi_3 = \pi_2 \\ \frac{3}{4}\pi_1 + \frac{1}{2}\pi_2 + \frac{1}{4}\pi_3 = \pi_3 \\ \pi_1 + \pi_2 + \pi_3 = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{-3}{4}\pi_1 + \frac{1}{4}\pi_2 + \frac{1}{4}\pi_3 = 0\\ \frac{-3}{4}\pi_2 + \frac{1}{2}\pi_3 = 0\\ \frac{3}{4}\pi_1 + \frac{1}{2}\pi_2 + \frac{-3}{4}\pi_3 = 0\\ \pi_1 + \pi_2 + \pi_3 = 1 & \dots & \end{cases}$$

$$\Leftrightarrow \begin{cases} \pi_1 = \frac{5}{6}\pi_2 \\ \pi_3 = \frac{3}{2}\pi_2 \end{cases}$$

remplaçons π_1 et π_3 dans \circledast , on aura : $\pi_2 = \frac{3}{10}$

$$\Rightarrow \pi_1 = \frac{1}{4} \ et \ \pi_3 = \frac{9}{20}$$

Alors :
$$\pi^* = (\frac{1}{4}, \frac{3}{10}, \frac{9}{20})$$

Donc : le processus passe en moyenne :

- -25 % du temps dans l'état e_1 .
- -30 % du temps dans l'état e_2 .
- 45 % du temps dans l'état e₃.

ainsi, on a en moyenne, il faut 4 transitions entre deux visites successifs de l'état e_1 .

1.4.3 Les chaînes ergodiques

Définition 1.4.2. Une C.M est ergodique si elle admet une distribution asymptotique c-à-d si $\lim_{n\to\infty} \pi^{(n)}$ existe, unique et indépendante de la distribution initiale.

Proposition 1.4.3. Les chaînes irréductibles et apériodiques sont ergodiques.

Théorème 1.4.4. (théorème ergodique)

Soit $\{X_n, n \geq 0\}$ une C.M ergodique de distribution stationnaire π^* et f une fonction réelle définie sur l'espace des états E de la chaîne, alors :

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(X_k) = \sum_{i \in E} \pi_i^* f(i)$$

En particulier, on a:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} P_{ij}^{(k)} = \frac{1}{\mu_j} f_{ij}$$

 $où: f_{ij} = \mathbb{P}(visite\ future\ \grave{a}\ j \setminus d\acute{e}part\ de\ i)$

 $\mu_j = \mathbb{E}(temps\ de\ premier\ retour\ \grave{a}\ j \setminus d\acute{e}part\ de\ j)$