IMAGE PROCESSING KOCABI University Laboratory of Image and Signal Processing (Prof. Dr. Sarp ERTÜRK)

Sources

- Digital Image Processing Using MATLAB(R)
- Edition

John C. Russ, 2006

9/25/2016

Conent

- Basic Concepts
- File Types and Basic Operations
- Image Enhancement
- Image Quantization
- Neighborhood Operations
- Image Segmentation
- Color Images
- Morphological Operations
- Image Frequency Space
- Image Compression

- Rafael C. Gonzalez, 2003
- Image Processing Handbook The: Second

Image Processing Lecture-1

Basic Concepts

(Prof. Dr. Sarp ERTÜRK)

Camera Obscura: A Pinhole Camera History Chinese philosopher Mo-Ti (5th century BC) was the earliest to report such a device Aristotle (384-322 BC) understood the optical principle of pinhole projection • 11th century, Al-Haytham wrote a book on optics Aristotle's pinhole camera 1490 Leonardo Da Vinci gave a well defined description Lenses were used in 16th century allowing more light Common use as a drawing tool in 17th century Drawing tool used for 9/25/2016 recording human anatomy

First Photograph

 Inspired by the newlyinvented art of lithography (a printing technique), after several years of work Joseph Nicéphore Niépce succeded in recording an image captured by a camera obscura (1826)

9/25/2016

1952 reproduction with touchups

History of Photography

- Eastman Kodak establishes his company (at age 24) in 1880. After roll film is introduced in 1889 Photographic process becomes widely-used.
- Louis Lumiere invents the first motion picture camera (Cinematographe) in 1895
- 1936: development of Kodachrome, the first color multi-layered color film.
- In 1971 C-41 color negative process introduced
- 199X- Digital age

9/25/2016

- Digital Image Processing (Sayısal İmge İşleme): Image enhancement, transformation or information extraction
- Computer Vision (Bilgisayarla Görü):
 Processing images to extract real-world information.

9/25/2016

Related Fields: · Image Processing: image to image All three are · Computer Vision: Image to model interrelated! · Computer Graphics: model to image -• Pattern Recognition: image to class - image data mining/ video mining · Artificial Intelligence: machine smarts **Applications** · Photogrammetry: camera geometry, 3D reconstruction Medical Imaging: CAT, MRI, 3D reconstruction (2nd meaning) · Video Coding: encoding/decoding, compression, transmission-· Physics: basics · Mathematics: basics **Fundamentals** 9/25/2@omputer Science: programming skills

Application Fields Medicine & Biomedical Geographical Archeological Games Physics Space Defense Industrial Consumer Security Remote Sensing

42

Image Model

• 2-D Function:

 $(x, y) \rightarrow$ yatay ve düşey konumları belirtir.

- · Physically the brightness is related to reflected energy
- Therefore:

$$0 < f(x, y) < \infty$$

9/25/2016

9/25/2016

5/2016

Image Representation

- Illumination of light source
- Reflectance from object surface

$$f(x,y) = i(x,y)r(x,y)$$
$$0 < i(x,y) < \infty$$
$$0 < r(x,y) < 1$$

Gray-Images:

$$\begin{split} &\ell = f\left(x,y\right) \\ &L_{\min} < \ell < L_{\max} & \left[L_{\min}, L_{\max}\right] \text{: Gri ton aralığı.} \\ &L_{\min} = i_{\min} r_{\min} \approx 10 & \text{Pratikte: } L_{\min} = \text{siyah}, \ \ L_{\max} = \text{beyaz} \\ &L_{\max} = i_{\max} r_{\max} \approx 1000 & \end{split}$$

9/25/2016

Sampling $(x'_0, y'_{M-1}) \qquad (x'_{N-1}, y'_{M-1})$ j = 0 $(x'_0, y'_0) \qquad (x'_{N-1}, y'_1)$ $i = 0 \quad 1 \quad 2 \cdots \qquad N-1$ $comb(x', y') = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \delta(x' - i\Delta_x, y' - j\Delta_y)$ $sampling \rightarrow \qquad f_C(x', y') \times comb(x', y')$

Digital Images

No. of bits required for representation:

$$b = M \times N \times k$$

M = N:

N/k	1(L=2)	2(L=4)	3(L=8)	4(L=16)	5(L=32)	6 (L = 64)	7(L=128)	8(L=256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

9/25/2016

