Preliminary	Examinations:	Complex	Variables
Name:			

January 9, 2009

Show all your work.

	Score
1	/12
2	/12
3	/12
4	/12
5	/13
6	/13
7	/13
8	/13
Total	/100

Problem 1 (12 points). Find the roots implied by $(-i)^{1/3}$.

Problem 2 (12 points). For

$$f(z) = e^{ix}e^{-|y|}$$

derive an expression for f'(z) and indicate where f'(z) exists.

Problem 3 (12 points). Evaluate the integral

$$\oint_{\mathcal{C}} \frac{e^{-3z}}{\sin^2 z} dz$$

where the path C given by

$$x = \cos t$$
, $y = \sin t$, $0 \le t \le 2\pi$.

Problem 4 (12 points). Exploit the properties of analytic functions to evaluate the integral

$$\oint_{\mathcal{C}} 2x(1-y) + i(x^2 - y^2 + 2y) \, dz$$

where the path $\mathcal C$ is given by |z|=1.

Problem 5 (13 points). Use complex variables to determine

$$\int_0^\infty \frac{dx}{x^{1/2}(1+x)}.$$

Sketch the integration contour you use and show which, if any, of the contributions to the contour integral vanish.

Problem 6 (13 points). Use complex variables to determine

$$\int_0^\infty \frac{x \sin x}{1 + x^2} \, dx.$$

Sketch the integration contour you use and show which, if any, of the contributions to the contour integral vanish.

Problem 7 (13 points). The Fourier transform of the solution u(x) to the differential equation

$$\frac{du}{dx} + \alpha u = \delta(x), \qquad -\infty < x < \infty,$$

is given by

$$\tilde{u}(k) = \frac{1}{ik + \alpha}.$$

For $\alpha > 0$ determine u(x) by the inverse transform

$$u(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{ikx}}{ik + \alpha} dk.$$

Sketch the integration contour you use and show which, if any, of the contributions to the contour integral vanish.

Problem 8 (13 points). Use the mapping $\zeta = \log z$ to solve the boundary-value problem

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad -\infty < x < \infty, \quad y > 0,$$

with

$$u(x,0) = H(x), \quad -\infty < x < \infty,$$

where H(x) is the Heaviside function.