

UNIVERSITÄ BERN

# From chest to hand X-rays: Transfer learning for skeletal age prediction

PyData Zurich Meetup, November 1st, 2018

Joel Niklaus, cand. MSc CS, University of Bern Lukas Zbinden, cand. MSc CS, University of Fribourg









# From chest to hand X-rays?

UNIVERSITÄT BERN



?



112'120x

14'236x



#### Challenge

UNIVERSITÄT BERN

- Skeletal age prediction based on pediatric hand X-rays 2017 RSNA global ML competition to develop best model winner: 16BitNet with mean absolute error (MAE) of 4.265 months Radiologist performance: MAE of 7.32 months
- Our idea: apply transfer learning



#### **Transfer Learning Recap**

b UNIVERSITÄT BERN

Transfer learning and domain adaptation refer to the situation where what has been learned in one setting ... is exploited to improve generalization in another setting

Page 526, <u>Deep Learning</u>, 2016



#### **Transfer Learning Recap**

b Universität Bern

#### **Example from ImageNet dataset (for MURA)**

"The weights of the network were initialized with weights from a model pretrained on ImageNet."







1'300'000x

40'561x



#### **Method**

UNIVERSITÄT BERN

#### **Architecture (by 16BitNet)**



#### **Method**

UNIVERSITÄT BERN

#### **Transfer learning from NIH chest dataset**





## NIH chest X-Ray: 112'120 images

UNIVERSITÄ BERN



https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x -ray-datasets-scientific-community



# RSNA hand X-Ray: 14'236

UNIVERSITÄT BERN





# MURA arm X-Ray: 40'561 images

UNIVERSITÄT BERN



# $u^{^{t}}$

#### **Experiments**

UNIVERSITÄ BERN

#### **Setup**

- 1. Keras on Tensorflow
- Dataset split training <-> validation 4:1
- 3. Data augmentation: left-right flip, random shift (20%), random rotation (20 degree), zoom (0.2)
- 4. Batch size 16
- 5. Adam optimizer with initial learning rate 1e-3
- 6. SGD optimizer with learning rate 1e-4 for finetuning
- 7. Learning rate decays to 0.01 of original learning rate
- 8. MAE (mean absolute error) loss function



UNIVERSITÄT BERN

#### Pretraining on ImageNet vs. random initialization

| Experiment                                  | <b>Epochs</b> | MAE  |
|---------------------------------------------|---------------|------|
| Imagenet                                    | 50            | 76.8 |
| Imagenet                                    | 250           | 8.8  |
| No Transfer Learning, random initialization | 250           | 10.8 |

b UNIVERSITÄ

#### Predict chest within hand X-Ray age range only (0-20 years)

87 years, female



12 years, female





UNIVERSITÄT Bern

#### Chest 0-20 years (train: 1560 images), Finetuning

| Experiment                            | <b>Epochs</b> | MAE  |
|---------------------------------------|---------------|------|
| Chest 0-20yrs., 30 layers finetuning  | 50            | 33.9 |
| Chest 0-20yrs., 100 layers finetuning | 50            | 37   |
| Chest 0-20yrs., 100 layers finetuning | 250           | 41.8 |
| Chest 0-20yrs., 50 layers finetuning  | 250           | 34.5 |
| Chest 0-20yrs., 20 layers finetuning  | 250           | 36.7 |
| Chest 0-20yrs., 30 layers finetuning  | 250           | 35.8 |



UNIVERSITÄT Bern

#### Chest 0-100 years (train: 89696 images), Finetuning

| Experiment                            | <b>Epochs</b> | MAE     |
|---------------------------------------|---------------|---------|
| Chest 0-100yrs, 3 layers finetuning   | 250           | running |
| Chest 0-100yrs, all layers finetuning | 250           | running |

# $u^{^{b}}$

#### **Conclusions, Future Work**

UNIVERSITÄT Bern

- Pretraining with Imagenet confirmed
- > chest X-Rays vs. ImageNet pending
- Code available:
  - https://github.com/lukaszbinden/pediatric-bone-age-prediction
  - → simple framework to run experiments
- > Use more recent deep models
- hyperparameter tuning
- experiment with MURA Dataset



UNIVERSITÄT BERN

# **Questions || Comments**