Homework 5

Problem 1. Let G be a finite group with |G| > 4 and let N and N' be simple subgroups, both of index 2 in G (so in particular, they are normal in G). Show that N = N. This is the last step in our proof that $PSL(2,7) \cong PSL(3,2)$.

Proof. Consider $N \cap N'$. Since N and N' are both normal, any conjugate of $N \cap N'$ is contained in both N and N', so $N \cap N'$ is normal in G. It is thus also normal in N and N'. Since N and N' are both simple, we see that $N \cap N'$ is either trivial or equal to N and N'. Suppose that $N \cap N'$ is trivial. Then since N is normal we know NN' is a subgroup of N and $NN' = |N||N'|/|N \cap N'| = |N||N'| = (|G|/2)(|G|/2) = |G|(|G|/4)$. But |G| > 4 so |NN'| > |G|, a contradiction. Thus $N = N \cap N' = N'$.

Problem 2. Let β be a bilinear form on a finite dimensional vector space V. Write $B_{\mathcal{E}}$ for its matrix with respect to a basis \mathcal{E} . Show that the following are equivalent:

- $\det B_{\mathcal{E}} \neq 0$ for some basis \mathcal{E} .
- det $B_{\mathcal{E}} \neq 0$ for every basis \mathcal{E} .
- For every nonzero vector $v \in V$, there is some $v' \in V$ such that $\beta(v,v') \neq 0$
- The maps $v \mapsto \beta(v,\cdot)$ and $v \mapsto \beta(\cdot,v)$ are isomorphisms $V \to V^*$.

If these equivalent conditions hold, we say β is nondegenerate.

Proof. Suppose $\det B_{\mathcal{E}} \neq 0$ for some basis \mathcal{E} and let \mathcal{F} be another basis. Then if A is the change of basis matrix from \mathcal{E} to \mathcal{F} we know $B_{\mathcal{F}} = A^T B_{\mathcal{E}} A$. Taking determinants we see $\det B_{\mathcal{F}} = \det(A^T) \det(B_{\mathcal{E}}) \det(A) = \det B_{\mathcal{E}} \neq 0$.

Now assume det $B_{\mathcal{E}} \neq 0$ for every basis \mathcal{E} . Let $v \in V$ be nonzero and let \mathcal{E} be a basis containing v. Then some column of $B_{\mathcal{E}}$ contains $\beta(v, w)$ for each $w \in \mathcal{E}$. Since det $B_{\mathcal{E}} \neq 0$ we see that this column cannot be 0 so there must be some $w \in \mathcal{E}$ with $\beta(v, w) \neq 0$.

Now assume for each nonzero $v \in V$ there exists $v' \in V$ such that $\beta(v,v') \neq 0$. Let $\varphi : V \to V^*$ be a map given by $\varphi : v \mapsto \beta(v,\cdot)$. Let $v \in \ker \varphi$ so that $\varphi(v)$ is the linear functional taking every element of V to 0. But by assumption, if $v \neq 0$ then there exists $v' \in V$ such that $\beta(v,v') \neq 0$. Therefore v=0 and $\ker \varphi = 0$. Thus φ is injective. Now let $\gamma \in V^*$. Let $\beta(v,w) = \gamma(w)$ for each $w \in V$. Then β is clearly a linear functional and $\varphi(v) = \beta(v,\cdot)$ so φ is surjective and thus an isomorphism. The proof for $\beta(\cdot,v)$ is nearly identical.

Finally, suppose that the maps $v \mapsto \beta(v,\cdot)$ and $v \mapsto \beta(\cdot,v)$ are isomorphisms from V to V^* . Then the kernel of these maps are 0 so for $v \neq 0$ there must be some vector w such that $\beta(v,w) \neq 0$. Let \mathcal{E} be a basis for V and note that for each basis vector v_i it's not possible that $\beta(v_i,v_j)=0$ for all j because then $\beta(v_i,w)=0$ for any vector w. Thus $\beta(v_i,v_j)\neq 0$ for at least value of j for each i which ensures that $\det B_{\mathcal{E}}\neq 0$.