Software Engineering is still improving...

- You won't develop software:
 - ■as it was done 15-30 years ago
 - the same way in 15-30 years from now

Scrum + Engineering Practices: Experiences of Three Microsoft Teams

- •Williams_ESEM2011[...].pdf presents the experiences of three Microsoft teams with Scrum
 - Laurie Williams is a Software Engineering researcher at NCSU and has worked for years on agile methodologies
 - The other authors work at Microsoft

Scrum + Engineering Practices: Experiences of Three Microsoft Teams

- •Thesis: Scrum, when augmented with engineering practices, improves:
 - quality
 - productivity and
 - estimation accuracy

Scrum is Popular

- 2008 Industry Survey of Agile Methodologies
 - 49% of respondents using agile are using Scrum
 - 22% of respondents are using Scrum with Extreme Programming (XP)

Extreme Programming (XP)

Extreme Programming (XP)

- Agile development methodology, on:
 - Adaptable to customer changes
 - Focusing on software quality

Extreme Programming (XP)

Practices:

- Pair Programming (PP)
- Test-Driven Development (TDD)
- Continuous Integration (CI)
- Refactoring
- Coding Standards
- Collective/Team/Shared Code Ownership
- Sustainable Pace
- etc.

Scrum is Popular

- •2008 Industry Survey of Agile Methodologies
 - 49% of respondents using agile are using Scrum
 - •22% of respondents are using Scrum with Extreme Programming
 - •What do you think the other respondents are using?

Scrum is Popular

- 2008 Industry Survey of Agile Methodologies
 - •49% of respondents using agile are using Scrum
 - •22% of respondents are using Scrum with Extreme Programming
 - What do you think the other respondents are using?
- 60% of respondents in a Microsoft Survey use Scrum

•Current popularity may be even higher!

What Scrum Practices were used at Microsoft?

- Product Owner creates and prioritizes requirements
- Incremental development ("iterations" in 2011Williams) through sprints
- Spikes (prototypes)
- Poker Planning
- Sprint Planning Meeting
- "Quality Gates" (aka Definition of Done)
- Time-boxing
- Daily Scrum Meeting
- Sprint Review
- Sprint Retrospective

Notice Some Differences with the "Sims book" Scrum?

Roles: Project Manager, "Tester" and Management also attend Sprint Planning Meeting. Why?

Notice Some Differences with the "Sims book" Scrum?

- Roles: Project Manager, "Tester" and Management also attend Sprint Planning Meeting. Why?
- •What type of language can users stories be written in if teams are building "internal" tools for other engineers?

Notice Some Differences with the "Sims book" Scrum?

- •Roles: Project Manager, "Tester" and Management also attend Sprint Planning Meeting. Why?
- •What type of language can users stories be written in if teams are building "internal" tools for other engineers?
- Microsoft augmented Scrum with engineering practices

Why Augment Scrum with Engineering Practices?

Scrum doesn't describe how to build software

Consequently... it's arguably not a software lifecycle!

•The original Scrum article almost didn't mention software!

What <u>Engineering Practices</u> are in Use at the Microsoft Scrum Teams?

- Planning Poker
- Continuous integration
- Unit Test-Driven development
- "Quality Gates" (aka Definition of Done)
- Source control (TFS)
- Code coverage
- Static Analysis Tools
- Peer Review
- Code Documentation (XML annotations)

Sample Definition of Done for Microsoft Teams

- All unit tests must pass
- •Unit test code coverage must be at least 80% (for all teams except Team B)
- •All public methods must have documentation
- •All non-unit test code must not have any static analysis errors or warnings (see Section IV.9)
- Build must compile with no errors or warnings on the highest level

Team Productivity

(assumption 1 month = 20 work days)

Team A:

4 engineers ... 24,952LOC ... 14 months

~...LOC engineer/day

■Team B:

3 engineers ... 8,826LOC ... 11 months

~...LOC engineer/day

■Team C:

19 engineers ... 31,399LOC ... 18 months

~...LOC engineer/day

Team Productivity

(assumption 1 month = 20 work days)

Team A:

4 engineers ... 24,952LOC ... 14 months

~22LOC engineer/day

■Team B:

3 engineers ... 8,826LOC ... 11 months

~13LOC engineer/day

Team C:

19 engineers ... 31,399LOC ... 18 months

~4.6LOC engineer/day

Team A Cumulative LOC Produced

	Team-A	Team-B	Team-C
Product LoC	24,952	8,826	31,399
Test LoC	20,912	4,031	26,283
Test Product LoC Ratio			
Test Coverage			
Project Duration			
Continuous Integration			
Delivered Defects			
Defect Density (Defects/KLOC)			

	Team-A	Team-B	Team-C
Product LoC	24,952	8,826	31,399
Test LoC	20,912	4,031	26,283
Test Product LoC Ratio	0.84	0.46	0.84
Test Coverage			
Project Duration			
Continuous Integration			
Delivered Defects			
Defect Density (Defects/KLOC)			

T C S O T C S			
	Team-A	Team-B	Team-C
Product LoC	24,952	8,826	31,399
Test LoC	20,912	4,031	26,283
Test Product LoC Ratio	0.84	0.46	0.84
Test Coverage	82%	53%	N/A
Project Duration			
Continuous Integration			
Delivered Defects			
Defect Density (Defects/KLOC)			

Team-B

yes

187

Team-C

yes

149

Product LoC	24,952	8,826	31,399
Test LoC	20,912	4,031	26,283
Test Product LoC Ratio	0.84	0.46	0.84
Test Coverage	82%	53%	N/A
Project Duration	14 months	11 months	18 months

yes

70

Team-A

Continuous

Integration

Delivered Defects

Defect Density

(Defects/KLOC)

Team-B

yes

187

21

Team-C

yes

149

4.75

Team-A

Continuous

Integration

Delivered Defects

Defect Density

(Defects/KLOC)

Product LoC	24,952	8,826	31,399
Test LoC	20,912	4,031	26,283
Test Product LoC Ratio	0.84	0.46	0.84
Test Coverage	82%	53%	N/A
Project Duration	14 months	11 months	18 months

yes

70

2.8

Scrum vs. non-Scrum Teams: Defect Density Comparison

Defect Density

Learnings

Scrum with sound Engineering Practices delivered higher quality (about 3-5 defects/KLOC) than nonscrum teams (about 7 defects/KLOC)

Scrum with weak Engineering Practices (testing) failed

Planning Poker improved estimation accuracy

What's on the Scrum Quiz? Texts and Lectures

"The Elements of Scrum"

Scrum lectures

- Williams_ESEM2011_Scrum_3_Microsoft_Teams.pdf on Piazza (Additional Reading)
 - Williams, Brown, Meltzer and Nagappan. "Scrum + Engineering Practices: Experiences of Three Microsoft Teams." Proceedings of the 2011 International Symposium on Empirical Software Engineering and Measurement. IEEE Computer Society. 2011.

Scrum Quiz

- Take-home
- Open book, open notes
- Assigned via Blackboard
- Assigned ~Monday (2/12) due Monday (2/19)
- Designed to take ~20-30 minutes
- Time limit not enforced

Scrum Review

Scrum: Sprint Meetings / Activities

- Initial Planning (start of the project)
- Sprint Planning Meeting (start of Sprint)
- Daily Scrum (daily)
- Backlog Grooming (~ middle of sprint)
- Sprint Review (end of Sprint)
- Sprint Retrospective (end of Sprint)

What's on the Quiz? Product Backlog

User Stories

- Who writes them?
- Template for writing them (Role-Goal-Benefit)
- Prioritized (Who prioritizes them?)
- Estimates (Who estimates them? How?)
- Epics vs. detailed stories

Acceptance Criteria

Template for writing them (Given-When-Then)

What's on the Quiz? Sprint Backlog

Tasks

- Engineering Language
- Owner
- Estimated (by who?)

Expect Questions

Which test your knowledge of Scrum concepts

Test your in-depth understanding of Scrum (WHY do we do things this way)

Test your ability to apply Scrum

Class Exercise: New Team Member

 Your scrum team is developing a classroom response (i.e. clicker) service and mobile apps

Your team will begin Sprint 5 (of 10 expected) on Monday

Class Exercise: New Team Member

•Management promoted Alice, the developer who did your database table design, to lead another project

 Alice hired Bob, a recent graduate with 400-level database coursework and database intern experience, to replace her

•What does Bob need to know to become productive?

Class Exercise: New Team Member

•Management promoted Alice, the developer who did your database table design, to lead another project

 Alice hired Bob, a recent graduate with 400-level database coursework and database intern experience, to replace her

- •What does Bob need to know to become productive?
- •How can Scrum help introduce Bob to your project?