Natural Language Processing

Lecture 8: Dependency Parsing

11/13/2020

COMS W4705 Yassine Benajiba

Dependency Structure

- The edges can be labeled with grammatical relations between words (typed dependencies):
 - Arguments (Subject, Object, Indirect Object, Prepositional Object)
 - Adjunct (Temporal, Locative, Causal, Manner...) / Modifier
 - Function words

Dependency Structure

- Long history in linguistics (Starting with Panini's Grammar of Sanskrit, 4th century BCE).
 - Modern dependency grammar originates with Tesniere and Mel'čuk.
- Different from phrase structure (but related via the concept of constituency and heads)
 - Focus is on grammatical relationships between words (Subject, Object, ...)
- Tighter connection to natural language semantics.

Dependency Relations

 Each dependency relation consists of a head and a dependent.

girl likes dependent head

- Represent individual edges as subj(likes-02, girl-01)
- or as a triple (likes, nsubj, girl)
- And the entire sentence structure as a set of edges:

root(likes-2), subj(likes-2, girl-1), det(the-0, girl-1), obj(likes-2, boys-7), det(boys-7, few-4), det(few-4, a-3), amod(boys-7, friendly-6), advmod(friendly-6, very-5)

Heads and Dependents

- How do we identify the the grammatical relation between head H and Dependent D (in a particularly constituent C)?
 - H determines the syntactic category of C and can often replace C.
 - H determines the semantic category of C; D gives semantic specification.
 - H is obligatory; D may be optional.
 - H selects D and determines whether D is obligatory or optional.
 - The form of D depends on H (agreement or government).
 - The linear position of D is specified with reference to H.

Another Example

Dependency structure $G = (V_s, A)$

Another Example

G = (V, A)

V = {root, Economic, news, had, little, effect, on, financial, markets, . }

A = {(root, PRED, had), (had, SBJ, news), (had, OBJ, effect),(had, PU, .), (news,ATT,Economic),(effect,ATT,little),(effect,ATT,on), (on,PC,markets), (markets, ATT, financial)}

Different Dependency Representations

• How to deal with prepositions?

• How to deal with conjunctions?

Inventory of Relations

"Universal Dependencies" (Marneffe et al. 2014)

	Nominals	Clauses	Modifier words	Function Words
Core arguments	nsubj obj iobj	csubj ccomp xcomp		
Non-core dependents	obl vocative expl dislocated	<u>advcl</u>	advmod* discourse	aux cop mark
Nominal dependents	nmod appos nummod	<u>acl</u>	amod	det clf case
Coordination	MWE	Loose	Special	Other
conj cc	fixed flat compound	<u>list</u> <u>parataxis</u>	orphan goeswith reparandum	punct root dep

Source: http://universaldependencies.org/u/dep/

Dependency Trees

- Dependency structure is typically assumed to be a tree.
 - Root node 0 must not have a parent.
 - All other nodes must have exactly one parent.
 - The graph needs to be connected.
 - Nodes must not form a cycle.

Projectivity

- Words in a sentence appear in a linear order.
- If dependency edges cross, the dependency structure is nonprojective.

- Non-projective structures appear more frequently in some languages than others (Hungarian, German, ...)
- Some approaches to dependency parsing cannot handle non-projectivity.

Projectivity

Words in a sentence stand in a linear order.

If dependency edges cross, the dependency structure is non-

projective.

- Non-projective structures appear more frequently in some languages than others (Hungarian, German, ...)
- Some approaches to dependency parsing cannot handle non-projectivity.

Projectivity

An edge (i, r, j) in a dependency tree is projective if there is a directed path from i to k for all i < k < j (if i < j) or all j < k < i (j < i).

Dependency Parsing

- Input:
 - a set of nodes $V_s = \{w_0, w_1, ..., w_m\}$ corresponding to the input sentence $s = w_1, ..., w_m$ (0 is the special **root** node)
 - an inventory of labels R = {PRED, SBJ, OBJ, ATT, ... }
- Goal: Find a set of labeled, directed edges between the nodes, such that the resulting graph forms a correct dependency tree over V_{s.}

structural constraints

Dependency Parsing

- What information could we use?
 - bi-lexical affinities
 - financial markets, meeting... scheduled
 - dependency distance (prefer close words?)
 - Intervening words
 - had little effect, little gave effect
 - subcategorization/valency of heads.

Subcategorization/Valency

- Verbs may take a different number of arguments of different syntactic types in different positions:
 - The baby slept.
 * The baby slept the house.
 - He pretended to sleep.
 *He pretended the cat.
 - Godzilla destroyed the city. *Godzilla destroyed.
 - Jenny gave the book to Carl. *Jenny gave the book.
 - ... examples for ask, promise, bet, load,...

Dependency Parsing

- As with other NLP problems, we can think of dependency parsing as a kind of search problem:
 - Step 1: Define the space of possible analyses for a sentence
 - Step 2: Select the best analysis from this search space.

 Need to define the search space, search algorithm, and a way to determine the "best" parse.

Dependency Parsing

- Approaches to Dependency Parsing:
 - Grammar-based
 - Data-based
 - Dynamic Programming (e.g. Eisner 1996,)
 - Graph Algorithms (e.g. McDonald 2005, MST Parser)
 - Transition-based (e.g. Nivre 2003, MaltParser)
 - Constraint satisfaction (Karlsson 1990)

Transition-Based Dependency Parsing

- Defines the search space using parser states (configurations) and operations on these states (transitions).
- Start with an initial configuration and find a sequence of transitions to the terminal state.
- Uses a greedy approach to find the best sequence of transitions.
 - Uses a discriminative model (classifier) to select the next transition.

Transition-Based Parsing - States

- A parser state (configuration) is a triple $c = (\sigma, \beta, A)$
 - σ is a **stack** of words $w_i \in V_S$
 - β is a **buffer** of words $w_i \in V_S$
 - A is a set of dependency arcs (w_i, r, w_j)

([root, news]_σ, [had, little, effect, on, financial, markets,.]_β, { (news, ATT, Economic) }_A

Transition-Based Parsing - initial and terminal state

$$c_0:$$
 $([\mathbf{W_0}]_{\sigma}, [\mathbf{W_1}, \mathbf{W_2}, \dots, \mathbf{W_m}]_{\beta}, \{\}_A)$ $\xrightarrow{t_0} c_1 \xrightarrow{t_1} c_2 \xrightarrow{t_2} \dots c_{n-1} \xrightarrow{t_{n-1}} c_T: ([\sigma, []_{\beta}, A))$ initial state transitions terminal state (for any σ and A)

- Start with initial state c₀.
- Apply sequence of transitions, t₀, ..., t_{n-1}.
- Once a terminal state C_T is reached, return final parse A from state C_T .

Transition-Based Parsing - Transitions ("Arc-Standard")

• Shift:

Move next word from the buffer to the stack

$$(\sigma, w_i | \beta, A) \Rightarrow (\sigma | w_i, \beta, A)$$

Left-Arc (for relation r):

Build an edge from the next word on the buffer to the top word on the stack.

$$(\sigma \mid w_i, w_j \mid \beta, A) \implies (\sigma, w_j \mid \beta, A \cup \{w_j, r, w_i\})$$

Right-Arc (for relation r)

Build an edge from the top word on the stack to the next word on the buffer.

$$(\sigma \mid w_i, w_j \mid \beta, A) => (\sigma, w_i \mid \beta, A \cup \{w_i, r, w_j\})$$

Transition-Based Parsing - Transitions

Shift

Move next word from the buffer to the stack

$$(\sigma, w_i | \beta, A) => (\sigma | w_i, \beta, A)$$

Transition-Based Parsing - Transitions

Arc-left_r

Build an edge from the next word on the buffer to the top word on the stack.

$$(\sigma \mid w_i, w_j \mid \beta, A) => (\sigma, w_j \mid \beta, A \cup \{w_j, r, w_i\})$$

Not allowed if i=0 (root may not have a parent)

note: w_j remains in the buffer

Transition-Based Parsing - Transitions

Arc-right_r

Build an edge from the next word on the buffer to the top word on the stack.

$$(\sigma \mid w_i, w_j \mid \beta, A) => (\sigma, w_i \mid \beta, A \cup \{w_i, r, w_j\})$$

note: wi is moved from the top of the stack back to the buffer!

Transition-Based Parsing - Some Observations

- Does the transition system contain dead ends? (states from which a terminal state cannot be reached)? No!
- What is the role of the buffer?
 - Contains words that can become dependents of a right-arc. Keep unseen words.
- What is the role of the stack?
 - Keep track of nodes that can become dependents of a left-arc.
- Once a word disappears from the buffer and the stack it cannot be part of any further edge!

Another Example

$$G = (V_s, A)$$

V_s= {root, Economic, news, had, little, effect, on, financial, markets, . }

A = {(root, PRED, had), (had, SBJ, news), (had, OBJ, effect),(had, PU, .), (news,ATT,Economic),(effect,ATT,little),(effect,ATT,on), (on,PC,markets), (markets, ATT, financial)}

Transition-Based Parsing - Complete Example

initial state
next transition: shift (these are all predicted by discriminative ML classifier)

A:

 σ : root β : [Economic, news, had, little, effect, on, financial, markets,.]

next-transition: Left-Arcatt

A:

Economic

σ: root

β:

[news, had, little, effect, on, financial, markets,.]

next transition: shift

A:

σ:

root

β:

[news, had, little, effect, on, financial, markets,.]

next transition: Left-ArcsbJ

A:

news

root

σ:

β:

[had, little, effect, on, financial, markets,.]

next transition: shift

A:

σ:

root

β:

[had, little, effect, on, financial, markets,.]

next transition: shift

A:

σ: had root

β:

[little, effect, on, financial, markets,.]

next transition: Left-ArcsbJ

A:

had root

β:

[effect, on, financial, markets,.]

σ:

next transition: shift

A:

σ:

__ β:

had

root

[effect, on, financial, markets,.]

next transition: shift

A:

effect

had

root

β:

[on, financial, markets,.]

σ:

next transition: shift

A:

on effect had root

β:

[financial, markets,.]

σ:

next transition: Left-Arcatt

A:

financial
on
effect
had
root

σ:

β:

[markets,.]

next transition: Right-Arcpc

A:

on effect had root

β:

[markets,.]

σ:

next transition: Right-ArcobJ

A:

effect had root

σ:

β:

[on,.]

next transition: Right-ArcobJ

A:

σ: noot

β:

[effect,.]

next transition: shift

A:

σ:

root

β:

[had,.]

next transition: Right-Arcpu

A:

σ: root

β:

σ:

root

β:

[had]

σ:

β:

[root]

σ:

root

β:

Properties of the Transition System

- The time required to parse $w_1,..., w_m$ with an oracle is O(m). Why?
- Bottom-up approach: A node must collect all its children before its parent. Why?
- Can only produce projective trees. Why?
- This algorithm is complete (all projective trees over $w_1,..., w_m$ can be produced by some sequence of transitions)
- Soundness: All terminal structures are projective forests (but not necessarily trees)

Deciding the Next Transition

- Instead of the unrealistic oracle, predict the next transition (and relation label) using a discriminative classifier.
 - Could use perceptron, log linear model, SVM, Neural Network, ...
 - This is a greedy approach (could use beam-search too).
 - If the classifier takes O(1), the runtime for parsing is still O(m) for m words.
- Questions:
 - What features should the classifier use?
 - Local features from each state (buffer, stack, partial dependency structure) ... but ideally want to model entire history of transitions leading to the state.
 - How to train the model?

Extracting Features

- Need to define a feature function that maps states to feature vectors.
- Each feature consists of:
 - an address in the state description: (identifies a specific word in the configuration, for example "top of stack").
 - an attribute of the word in that address:
 (for example POS, word form, lemma, word embedding, ...)

Example Features

Table 3.2: Typical feature model for transition-based parsing with rows representing address functions, columns representing attribute functions, and cells with + representing features.

	Attributes				
Address	FORM	LEMMA	POSTAG	FEATS	DEPREL
STK[0]	+	+	+	+	
STK[1]			+		
LDEP(STK[0])					+
RDEP(STK[0])					+
BUF[0]	+	+	+	+	
BUF[1]	+		+		
BUF[2]			+		
BUF[3]			+		
LDEP(BUF[0])					+
RDEP(BUF[0])					+

Source: S. Kübler, R. McDonald, J. Nivre (2009): "Dependency Parsing", Morgan & Claypool

Training the Model

- Training data: Manually annotated (dependency) treebank
 - Prague Dependency Treebank
 English/Czech parallel data, dependencies for full PTB WSJ.
 - Universal Dependencies Treebank
 Treebanks for more than 80 languages (varying in size)
 (http://universaldependencies.org/)
- Problem: We have not actually seen the transition sequence, only the dependency trees!
- Idea: Construct oracle transition sequences from the dependency tree.
 Train the model on these transitions.

Constructing Oracle Transitions

- Start with initial state ([$\mathbf{w_0}$] $_{\sigma}$, [$\mathbf{w_1}$, $\mathbf{w_2}$, ..., $\mathbf{w_m}$] $_{\beta}$, {}A).
- Then predict the next transition using the annotated dependency tree A_d

$$o(c = (\sigma, \beta, A)) = \begin{cases} \text{Left-Arc}_r & \text{if } (\beta[0], r, \sigma[0]) \in A_d \\ \text{Right-Arc}_r & \text{if } (\sigma[0], r, \beta[0]) \in A_d \text{ and, for all } w, r', \\ & \text{if } (\beta[0], r', w) \in A_d \text{ then } (\beta[0], r', w) \in A \\ \text{Shift}_r & \text{otherwise} \end{cases}$$

"Arc-Standard" Transitions

• Shift:

Move next word from the buffer to the stack

$$(\sigma, w_i | \beta, A) \Rightarrow (\sigma | w_i, \beta, A)$$

Left-Arc (for relation r):

Build an edge from the next word on the buffer to the top word on the stack.

$$(\sigma \mid w_i, w_j \mid \beta, A) \implies (\sigma, w_j \mid \beta, A \cup \{w_j, r, w_i\})$$

Right-Arc (for relation r)

Build an edge from the top word on the stack to the next word on the buffer.

$$(\sigma \mid w_i, w_j \mid \beta, A) => (\sigma, w_i \mid \beta, A \cup \{w_i, r, w_j\})$$

"Arc-Eager" Transitions

• Shift:

Move next word from the buffer to the stack

$$(\sigma, w_i | \beta, A) => (\sigma | w_i, \beta, A)$$

• Left-Arc (for relation r):

Build an edge from the next word on the buffer to the top word on the stack.

$$(\sigma \mid w_i, w_j \mid \beta, A) => (\sigma, w_j \mid \beta, A \cup \{(w_j, r, w_i)\})$$

Precondition: (w_j, *, w_i) is not yet in A.

Right-Arc (for relation r)

Build an edge from the top word on the stack to the next word on the buffer.

$$(\sigma \mid w_i, w_j \mid \beta, A) => (\sigma \mid w_i \mid w_j, \beta, A \cup \{w_i, r, w_j\})$$

Reduce

Remove a completed node from the stack.

$$(\sigma \mid w_i, \beta, A) => (\sigma, \beta, A)$$

Precondition: there is some (*, *, w_i) in A.

next transition: RightArcpred

Can immediately attach had to root.

A:

σ:

root

β:

[had, little, effect, on, financial, markets,.]

β:

had root

[little, effect, on, financial, markets,.]

σ:

β:

had

root

[on, financial, markets,.]

effect little had root

σ:

β:

[.]

little had root

σ:

β:

had root

β:

Graph-Based Approach

- Transition Based Parsing can only produce projective dependency structures? Why?
- Graph-based approaches do not have this restriction.
- Basic idea:
 - Each word is a vertex. Start with a completely connected graph.
 - Use standard graph algorithms to compute a Maximum Spanning Tree:
 - Need a model that assigns a score to each edge ("edge-factored model"). $score(G) = \sum_{(w_i,r,w_i)\in A} \lambda(w_i,r,w_j)$

R. McDonald, K. Crammer, and F. Pereira (2005)

MST Example

total score: 70

Computing the MST

- For undirected graphs, there are two common algorithms:
 - Kruskal's and Prim's, both run in O(E log V)
- For dependency parsing we deal with directed graphs, so these algorithms are not guaranteed to find a tree.
 - Instead use Chu–Liu-Edmonds' algorithm, which runs in O(EV) (naive implementation) or O(E log V) (with optimizations).