Theory of Automata & Formal Languages (Theory of Computation)

Compiled By

Prof. M. S. Bhatt

Outline

- Regular Expressions
- Regular Languages

Regular Expressions

- Ø is a regular language corresponding to the regular expression Ø.
- $\{\lambda\}$ is a regular language corresponding to the regular expression λ .
- For any symbol $a \in \Sigma$, $\{a\}$ is a regular language corresponding to the regular expression a.
- If L_1 and L_2 are regular languages corresponding to the regular expression r_1 and r_2 , then
 - $L_1 \cup L_2$, $L_1 \cdot L_2$, and L_1^* are regular languages corresponding to $(r_1 + r_2)$, $(r_1 \cdot r_2)$, and (r_1^*) .

Example. The following are some regular expressions over alphabet $A = \{a, b\}$, and the corresponding regular languages:

<u>Expression</u>	<u>Language</u>
a + ab	{ a, ab}
(a + b)*bb	{ <i>a</i> , <i>b</i> }*{ <i>bb</i> }
ba(a + b)*ab	{ ba}{ a, b}*{ ab
λ	{λ}

Regular Expressions:

To simplify the notations of regular languages, and drawing analogy to arithmetic expressions used in algebra, we could replace the union symbol ∪ with the plus sign +, drop the braces "{" and "}" for sets, and use parentheses "(" and ")" for grouping when necessary

$$0* + 1* \neq (0+1)*$$

Examples

Find a string of minimum length in {0,1}* not in the language corresponding to given regular expressions.

$$2)(0*+1*)(0*+1*)(0*+1*)$$

Examples

Find a string of minimum length in $\{0,1\}^*$ not in the language corresponding to given regular expressions.

1)
$$1*(01)*0*$$
 \rightarrow 001

$$2)(0*+1*)(0*+1*)(0*+1*) \rightarrow 0101$$

3)
$$0*(100*)*1*$$
 \rightarrow 110

$$R = 0^* + 1^*$$

$$S = 01*+10*+1*0 + (0*1)*$$

- 1) Find a string corresponding to r but not is s
- 2) Find a string corresponding to s but not is r
- 3) Find a string corresponding to both r and s

$$R = 0* + 1*$$

$$S = 01*+10*+1*0 + (0*1)*$$

1) Find a string corresponding to r but not is s

00

2) Find a string corresponding to s but not is r

01

3) Find a string corresponding to both r and s

Simple examples

Let
$$\Sigma = \{0, 1\}$$

- $\{\alpha \in \Sigma^* | \alpha \text{ does not contain 1's} \}$
- $\{\alpha \in \Sigma^* | \alpha \text{ contains 1's only} \}$
- ∑*
- $\{\alpha \in \Sigma^* | \alpha \text{ contains only 0's or only 1's} \}$

Simple examples

```
Let \Sigma = \{0,1\}.
• \{\alpha \in \Sigma^* | \alpha \text{ does not contain 1's} \}
     \bullet (0*)
• \{\alpha \in \Sigma^* | \alpha \text{ contains 1's only} \}
     • (1\cdot(1^*)) (which can can be denoted by (1^+))
\sum^*
     \bullet ((0+1)*)
• \{\alpha \in \Sigma^* | \alpha \text{ contains only 0's or only 1's} \}
     \bullet ((00*)+(11*))
```

(a)

The language of integer constants as in C:

(b)

The set of strings over {a, b} that contain the substring aa:

(c)

The set of strings over {a, b} that contain exactly two occurrences of symbol a:

(a)
The language of integer constants as in C: (0+1+2+3+4+5+6+7+8+9) (0+1+2+3+4+5+6+7+8+9)*

(c)
The set of strings over {a, b} that contain exactly two occurrences of symbol a:

b*ab*ab*

More complex examples

Let
$$\Sigma = \{0,1\}$$
.

• $\{\alpha \in \Sigma^* | \alpha \text{ contains odd number of } 1's\}$

• 0*(10*10*)*10*

• $\{\alpha \in \Sigma^* | \text{ any two 0's in } \alpha \text{ are separated by at least three 1's} \}$

• 1*(0111)*1*01*+1*

More complex examples

```
Let \Sigma = \{0,1\}.
```

- $\{\alpha \in \Sigma^* | \alpha \text{ is a binary number divisible by 4} \}$ • (0+1)*00
- $\{\alpha \in \Sigma^* | \alpha \text{ does not contain } 11\}$
 - $0*(10^+)*(1+\lambda)$ or $(0+10)*(1+\lambda)$