Титульный лист материалов по дисциплине

ДИСЦИПЛИНА

(полное наименование дисциплины без сокращений)

ИНСТИТУТ

ИТ

Математического обеспечения и стандартизации информационных технологий полное наименование кафедры)

ВИД УЧЕБНОГО МАТЕРИАЛА

(в соответствии с пп.1-11)

ПРЕПОДАВАТЕЛЬ

Муравьёва Екатерина Андреевна (фамилия, имя, отчество)

СЕМЕСТР <u>3 семестр, 2023-2024 уч. год</u> (указать семестр обучения, учебный год)

Практическая работа № 7

Тема: алгоритмические стратегии или методы разработки алгоритмов. Перебор и методы его сокращения.

Цель: получить навыки применения методов, позволяющих сократить число переборов в задачах, которые могут быть решены только методом перебора всех возможных вариантов решения.

Задание:

- 1. Разработать алгоритм решения задачи с применением метода, указанного в варианте и реализовать программу.
- 2. Оценить количество переборов при решении задачи стратегией «в лоб» грубой силы. Сравнить с числом переборов при применении метода.
- 3. Оформить отчет в соответствии с требованиями:
 - титульный лист;
 - цель работы;
 - описание алгоритмов и подхода к решению;
 - код;
 - результаты тестирования;
 - вывод.

Таблица 1 – Варианты

Nº	Задача	Метод
1	Посчитать число последовательностей нулей и	Динамическое
	единиц длины n , в которых не встречаются две	программирование
	идущие подряд единицы.	
2	Дана последовательность целых чисел.	Динамическое
	Необходимо найти ее самую длинную строго	программирование
	возрастающую подпоследовательность.	
3	Дана строка из заглавных букв латинского	Динамическое
	алфавита. Найти длину наибольшего	программирование
	палиндрома, который можно получить	
	вычеркиванием некоторых букв из данной	
	строки.	
4	Имеется рюкзак с ограниченной вместимостью	Динамическое
	по массе; также имеется набор вещей с	программирование
	определенным весом и ценностью.	
	Необходимо подобрать такой набор вещей,	
	чтобы он помещался в рюкзаке и имел	
	максимальную ценность (стоимость).	

	I_	Τ
5	Дано прямоугольное поле размером $n*m$ клеток. Можно совершать шаги длиной в одну клетку вправо или вниз. Посчитать, сколькими способами можно попасть из левой верхней клетки в правую нижнюю.	Динамическое программирование
6	Дано прямоугольное поле размером $n*m$ клеток. Можно совершать шаги длиной в одну клетку вправо, вниз или по диагонали вправовниз. В каждой клетке записано некоторое натуральное число. Необходимо попасть из верхней левой клетки в правую нижнюю. Вес маршрута — это сумма чисел всех посещенных клеток. Необходимо найти маршрут с минимальным весом.	Динамическое программирование
7	Черепашке нужно попасть из пункта А в пункт В. Поле движения разбито на квадраты. Известно время движения вверх и вправо в каждой клетке (улицы). На каждом углу она может поворачивать только на север или только на восток. Найти минимальное время, за которое черепашка может попасть из А в В.	Динамическое программирование
8	Треугольник имеет вид, представленный на рисунке. Напишите программу, которая вычисляет наибольшую сумму чисел, расположенных на пути начинающемся в верхней точке треугольника и заканчивающегося на основании треугольника.	Динамическое программирование
9	Из листа клетчатой бумаги вырезали фигуру точно по границам клеток. Разработать программу вычисления площади вырезанной фигуры.	метод ветвей и границ
10	Разработать программу расстановки на стандартной 64-клеточной шахматной доске 8 ферзей так, чтобы ни один из них не находился под боем другого.	метод ветвей и границ

11	Разработать программу поиска и вывода всех	метод ветвей и
11		
	гамильтоновых циклов в произвольном графе.	границ
12	Пронумеровать позиции в матрице размером	метод ветвей и
	$5*5$ следующим образом: если номер і $(1 \le i \le i \le j \le i)$	границ
	25) соответствует позиции (х,у), то номер i+1	
	может соответствовать позиции с	
	координатами (z,w), вычисляемыми по одному	
	из следующих правил:	
	1) $(z,w)=(x\pm 3,y)$	
	2) $(z,w)=(x,y\pm 3)$	
	3) $(z,w)=(x\pm 2,y\pm 2)$	
	1) Написать программу, которая	
	последовательно нумерует позиции матрицы	
	при заданных координатах позиции, в которой	
	содержится номер 1.	
	2) Вычислить число всех возможных	
	расстановок номеров для всех начальных	
	позиций, расположенных под главной	
	диагональю.	
13	Замок состоит из комнат. Замок имеет	метод ветвей и
	прямоугольную форму и разделен на М*N	границ
	клеток (M<=50; N>=50). Каждая клетка может	
	иметь от 0 до 4 стен, отделяющих комнаты.	
	Определить:	
	- количество комнат в замке;	
	- площадь наибольшей комнаты;	
	- какую стену следует удалить, чтобы	
	получить комнату наибольшей площади.	
	Пример плана замка:	
	1 2 3 4 5 6 7	
	1	
	2	
	3	
	4	

14	Автозаправка. Вдоль кольцевой дороги расположено М городов. В каждом городе есть автозаправка. Известна стоимость Z[i] заправки горючим в городе с номером i b стоимость C[i] проезда по дороге, соединяющей i-ый и (i+1)-й города и стоимость проезда между первым и Мым городами. Города пронумерованы по часовой стрелке. Определить для жителей каждого города тот город в котором им выгодно заправляться, и направление «по	метод ветвей и границ
	часовой стрелке» или «против часовой	
	стрелки»	
15	В массиве размером М*N, заполненном нулями и единицами найти квадратный блок, состоящий из одних нулей.	метод ветвей и границ
16	Монетная система некоторого государства состоит из монет достоинством $a_1=1< a_2< < a_n$. Требуется выдать сумму наименьшим возможным количеством монет.	Жадный алгоритм
17	Разработать процедуру оптимального способа расстановки скобок в произведении последовательности матриц, размеры которых равны (5,10,3,12,5,50,6), чтобы количество скалярных умножений стало минимальным (максимальным).	Жадный алгоритм
18	Решить задачу о раскраске вершин графа. Применить к задаче управления светофорами на сложном перекрестке. (См. Ахо А., Хопкрофт Д., Ульман Дж. Структуры данных и алгоритмы).	Жадный алгоритм
19	Задача о коммивояжере	метод ветвей и границ
20	Посчитать число последовательностей нулей и единиц длины n , в которых не встречаются две идущие подряд единицы.	Динамическое программирование

21	Дана последовательность целых чисел.	Динамическое
	Необходимо найти ее самую длинную строго	программирование
	возрастающую подпоследовательность.	
22	Дана строка из заглавных букв латинского	Динамическое
	алфавита. Найти длину наибольшего	программирование
	палиндрома, который можно получить	
	вычеркиванием некоторых букв из данной	
	строки.	
23	Имеется рюкзак с ограниченной вместимостью	Динамическое
	по массе; также имеется набор вещей с	программирование
	определенным весом и ценностью. Необходимо	
	подобрать такой набор вещей, чтобы он	
	помещался в рюкзаке и имел максимальную	
	ценность (стоимость).	
24	Из листа клетчатой бумаги вырезали фигуру	метод ветвей и
	точно по границам клеток. Разработать	границ
	программу вычисления площади вырезанной	
	фигуры.	
25	Разработать программу расстановки на	метод ветвей и
	стандартной 64-клеточной шахматной доске 8	границ
	ферзей так, чтобы ни один из них не находился	
_	под боем другого.	
26	Разработать программу поиска и вывода всех	метод ветвей и
	гамильтоновых циклов в произвольном графе.	границ
27	Монетная система некоторого государства	Жадный алгоритм
	состоит из монет достоинством	
	$a_1 = 1 < a_2 < < a_n$. Требуется выдать	
	сумму наименьшим возможным количеством	
	монет.	
28	Разработать процедуру оптимального способа	Жадный алгоритм
	расстановки скобок в произведении	
	последовательности матриц, размеры которых	
	равны (5,10,3,12,5,50,6), чтобы количество	
	скалярных умножений стало минимальным	
	(максимальным).	
29	Решить задачу о раскраске вершин графа.	Жадный алгоритм
	Применить к задаче управления светофорами	
	на сложном перекрестке. (См. Ахо А.,	

	Хопкрофт Д., Ульман Дж. Структуры данных и алгоритмы).	
30	Задача о коммивояжере	метод ветвей и границ