Planche nº 27. Polynômes

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (***I)

$$\mathrm{Calculer}\ \alpha_n = \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) \ \mathrm{pour}\ n \geqslant 2.$$

Exercice nº 2 (***)

 $\begin{aligned} & \text{Pour } n \in \mathbb{N}^* \text{ et } k \in [\![0,n-1]\!], \text{ on pose } \omega_k = e^{2\mathrm{i} k\pi/n}. \text{ On note } Q \text{ le polynôme } Q = 1+2X+...+nX^{n-1}. \end{aligned} \\ & \text{Calculer } \prod_{k=0}^{n-1} Q \left(\omega_k\right). \end{aligned}$

Exercice n° 3 (****I)
$$(\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6})$$

- 1) Soient p un entier naturel et a un réel. Donner le développement de $(\cos a + i \sin a)^{2p+1}$ puis en choisissant astucieusement a, déterminer $\sum_{k=1}^p \cot^2 \frac{k\pi}{2p+1}$. En déduire alors $\sum_{k=1}^p \frac{1}{\sin^2 \frac{k\pi}{2p+1}}$.
- 2) Pour n entier naturel non nul, on pose $u_n = \sum_{k=1}^n \frac{1}{k^2}$. Montrer que la suite $(u_n)_{n \in \mathbb{N}^*}$ converge (pour majorer u_n , on remarquera que $\frac{1}{k^2} \leqslant \frac{1}{k(k-1)}$).
- 3) Montrer que pour tout réel x de]0, $\frac{\pi}{2}$ [, on a $\cot x < \frac{1}{x} < \frac{1}{\sin x}$.
- 4) En déduire un encadrement de u_n puis la limite de (u_n) .

Exercice nº 4 (**T)

Déterminer le PGCD de $X^6 - 7X^4 + 8X^3 - 7X + 7$ et $3X^5 - 7X^3 + 3X^2 - 7$.

Exercice no 5 (**IT)

Pour quelles valeurs de l'entier naturel n le polynôme $(X+1)^n - X^n - 1$ est-il divisible par $X^2 + X + 1$?

Exercice nº 6 (***)

Soit P un polynôme à coefficients réels tel que $\forall x \in \mathbb{R}, \ P(x) \geqslant 0$. Montrer qu'il existe deux polynômes R et S à coefficients réels tels que $P = \mathbb{R}^2 + \mathbb{S}^2$.

Exercice no 7 (**)

Soit P un polynôme différent de X. Montrer que P(X) - X divise P(P(X)) - X.

Exercice nº 8 (***)

Soit P un polynôme à coefficients entiers relatifs de degré supérieur ou égal à 1. Soit n un entier relatif et m = P(n).

- 1) Montrer que $\forall k \in \mathbb{Z}$, P(n + km) est un entier divisible par m.
- 2) Montrer qu'il n'existe pas de polynômes non constants à coefficients entiers tels que P(n) soit un nombre premier pour tout entier n.

Exercice nº 9 (***) (Polynômes P vérifiant $P(\mathbb{Z}) \subset \mathbb{Z}$)

Soit E la partie de $\mathbb{C}[X]$ formée des polynômes P vérifiant $\forall \alpha \in \mathbb{Z}, \ P(\alpha) \in \mathbb{Z}$.

- 1) On pose $P_0=1$ et pour n entier naturel non nul, $P_n=\frac{1}{n!}\prod_{k=1}^n(X+k)$ (on peut définir la notation $P_n=\binom{X+n}{n}$). Montrer que $\forall n\in\mathbb{N},\ P_n\in E.$
- 2) Montrer que toute combinaison linéaire à coefficients entiers relatifs des P_n est encore un élément de E.

3) Montrer que E est l'ensemble des combinaisons linéaires à coefficients entiers relatifs des P_n . (Pour traiter cette question, on admettra le résultat suivant qui sera démontré au deuxième semestre : si $(P_k)_{k\in\mathbb{N}}$ est une famille de polynômes tels que pour tout $k\in\mathbb{N}$, $\deg(P_k)=k$, alors tout polynôme P de degré inférieur ou égal à n (n donné) s'écrit de manière unique comme combinaison linéaire des polynômes P_k , $k\in[0,n]$.)

Exercice nº 10 (****)

Division euclidienne de $P=\sin \alpha X^n-\sin(n\alpha)X+\sin((n-1)\alpha)$ par $Q=X^2-2X\cos \alpha+1,\ \alpha$ réel donné, $n\geqslant 2.$

Exercice nº 11 (***I) (Théorème de Lucas.)

Soit $P \in \mathbb{C}[X]$ de degré supérieur ou égal à 1. Montrer que pour toute racine z de P', il existe des réels positifs $\lambda_1, \ldots, \lambda_n$, de somme égale à 1 tels que $z = \sum_{k=1}^n \lambda_k z_k$ où z_1, \ldots, z_n sont les n racines distinctes ou confondues de P dans \mathbb{C} (on dit que les racines de P' sont des barycentres à coefficients positifs des racines de P ou encore que les racines de P' sont dans l'enveloppe convexe des racines de P). Indication : calculer $\frac{P'}{P}$.

Exercice nº 12 (***)

Décomposer en produit de facteurs irréductibles dans $\mathbb{R}[X]$ le polynôme $X^6 - 2X^3 \cos \alpha + 1$ où α est un réel donné dans $[0, \pi]$.

Exercice no 13 (***T)

Trouver un polynôme de degré 5 tel que P(X) + 10 soit divisible par $(X + 2)^3$ et P(X) - 10 soit divisible par $(X - 2)^3$.

Exercice nº 14 (***I)

Trouver les polynômes P de $\mathbb{R}[X]$ vérifiant $P(X^2) = P(X)P(X+1)$ (penser aux racines de P).

Exercice nº 15 (**T)

Déterminer $a \in \mathbb{C}$ tel que $P = X^5 - 209X + a$ admette deux zéros dont le produit vaut 1.

Exercice no 16 (***T)

 $\mathrm{Soit}\ (\alpha_k)_{1\leqslant k\leqslant 5}\ \mathrm{la}\ \mathrm{famille}\ \mathrm{des}\ \mathrm{racines}\ \mathrm{de}\ P=X^5+2X^4-X-1.\ \mathrm{Calculer}\ \sum_{k=1}^5\frac{\alpha_k+2}{\alpha_k-1}.$

Exercice nº 17 (**)

Résoudre dans \mathbb{C}^3 le système : $\begin{cases} x+y+z=1\\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\\ xyz=-4 \end{cases}.$

Exercice no 18 (**T)

Trouver tous les polynômes P vérifiant P(2X) = P'(X)P''(X).

Exercice nº 19 (***I)

1) Soit $P = \sum_{k=0}^{n} a_k X^k$ un polynôme non nul de degré $n \in \mathbb{N}$, dont les coefficients a_0, \ldots, a_n , sont des entiers relatifs avec $a_0 \neq 0$ et $a_n \neq 0$.

Soient p un entier relatif non nul et q un entier naturel non nul tels que $\mathrm{PGCD}(p,q)=1$ puis $r=\frac{p}{q}$.

Montrer que si P(r) = 0, alors p divise a_0 et q divise a_n .

2) Factoriser dans $\mathbb{C}[X]$ le polynôme $12X^4 + X^3 + 15X^2 - 20X + 4$.

Exercice nº 20 (***)

Soit $n \in \mathbb{N}^*$. Montrer que $(X-1)^{2n}-X^{2n}+2X-1$ est divisible par $2X^3-3X^2+X$ puis déterminer le quotient.

Exercice nº 21 (**I)

- 1) Soit $\mathfrak n$ un entier naturel non nul. Déterminer deux polynômes $\mathfrak U$ et V tels que $\mathfrak UX^{\mathfrak n}+V(1-X)^{\mathfrak n}=1$ et $\deg(\mathfrak U)<\mathfrak n$ et $\deg(V)<\mathfrak n$..
- 2) Plus généralement, si n et m sont deux entiers naturels non nuls, déterminer deux polynômes U et V vérifiant $UX^n + V(1-X)^m = 1$ et $\deg(U) < m$ et $\deg(V) < n$.

Exercice nº 22 (**I)

Soit P un polynôme réel de degré supérieur ou égal à 2.

- 1) a) Montrer que si P n'a que des racines simples et réelles, il en est de même de P'.
 - b) Le résultat persiste-t-il si on suppose simplement que les racines de P sont simples mais pas nécessairement réelles?
- 2) Montrer que si P est scindé sur \mathbb{R} , il en est de même de P'.

Exercice nº 23 (****)

Former une équation du sixième degré dont les racines sont les sin $\frac{k\pi}{7}$ où $k \in \{-3, -2, -1, 1, 2, 3\}$ puis montrer que ces six nombres sont irrationnels.

Exercice nº 24 (***)

Résoudre dans
$$\mathbb{C}^3$$
 le système
$$\left\{ \begin{array}{l} y^2+yz+z^2=7\\ z^2+zx+x^2=13\\ x^2+xy+y^2=3 \end{array} \right..$$

Exercice nº 25 (***)

Déterminer λ et μ complexes tels que les zéros de $z^4 - 4z^3 - 36z^2 + \lambda z + \mu$ soient en progression arithmétique.

Exercice nº 26 (***)

Résoudre dans \mathbb{C} l'équation $z^4 - 21z + 8 = 0$ sachant qu'il existe deux des solutions sont inverses l'une de l'autre.

Exercice nº 27 (***)

Soient x_1 , x_2 , x_3 les zéros de $X^3 + 2X - 1$. Calculer $x_1^4 + x_2^4 + x_3^4$.

Exercice nº 28 (****)

Soit P un polynôme à coefficients complexes de degré 4.

Montrer que les images dans le plan complexe des racines de P forment un parallélogramme si et seulement si P' et $P^{(3)}$ ont une racine commune

Exercice nº 29 (***I)

Soit n un entier naturel supérieur ou égal à 2. Pour $k \in \mathbb{Z}$, on pose $\omega_k = e^{2ik\pi/n}$.

1) Calculer
$$\prod_{k=0}^{n-1} \left(1 + \frac{2}{2 - \omega_k}\right)$$
.

$$\textbf{2)} \ \ \mathrm{Montrer} \ \mathrm{que}, \ \mathrm{pour} \ \mathrm{tout} \ \mathrm{r\'eel} \ \alpha, \ \prod_{k=0}^{n-1} \left(\omega_k^2 - 2\omega_k \cos\alpha + 1\right) = 2(1-\cos(n\alpha)) \ (\mathrm{questions} \ \mathrm{ind\'ependantes.})$$