Programação 1 Aula 3

Valeri Skliarov, Prof. Catedrático

Email: skl@ua.pt

URL: http://sweet.ua.pt/skl/

Departamento de Eletrónica, Telecomunicações e Informática Universidade de Aveiro

http://elearning.ua.pt/

Valeri Skliarov 2019/2020

Revisão da aula anterior

Instrução if

Instrução if


```
System.out.println("O número maior é ");

if (A > B)

if (A > C) System.out.println(A);

else System.out.println(C);

else

if (B > C) System.out.println(B);

else System.out.println(B);

solution in the content of t
```

Instrução switch ... case

```
int sel;
System.out.print("sel: ");
sel = sc.nextInt();
switch(sel)
{
    case 1: System.out.println("----1----"); break;
    case 2: System.out.println("----2----"); break;
    case 3: System.out.println("----3----"); break;
    default: System.out.println("diferente de 1 e 2 e 3");
}
```

```
double sel; 
System.out.print("sel: ");
sel = sc.nextInt();
switch(sel) 
ERRO
```

```
double sel;
System.out.print("sel: ");
sel = sc.nextInt();
switch((int)sel)
Ok
```

Só são permitidos valores convertíveis a inteiro

Exemplo:

```
int A,M;
                                                              Mes de ano: 10
     System.out.print("Ano: ");
                                                              Mes 10 tem 31 dias
     A = sc.nextInt();
     System.out.println("Ano " + A);
                                                              (program exited with code: 0)
     System.out.print("Mês de ano: ");
                                                              Press return to continue
     M = sc.nextInt();
     switch(M)
       case 1: case 3: case 5: case 7: case 8: case 10: case 12:
              System.out.printf("Mês %d tem 31 dias", M);
                                                                                               break;
       case 4: case 6: case 9: case 11: System.out.printf("Mês %d tem 30 dias", M);
                                                                                               break;
       case 2:
          if( ((A % 4 == 0) && !(A % 100 == 0) ) | | (A % 400 == 0) )
               System.out.printf("Mês %d tem 29 dias", M);
          else System.out.printf("Mês %d tem 28 dias", M);
                                                                                               break;
       default: System.out.printf("Mês %d não existe", M);
                                                                                                           June, 201
     January, 2014
                         February, 2014
                                              March, 2014
                                                                 April, 2014
                                                                                      May, 2014
                                         Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
                                                                               Su Mo Tu We Th
                    26 27
```

2019/2020

Terminal

Erros potenciais

```
int A, B, C, D, S;
System.out.print("Introduza A: ");
A = sc.nextInt();
System.out.print("Introduza B: ");
B = sc.nextInt();
System.out.print("Introduza C: ");
C = sc.nextInt();
                                      ERRO!!!
System.out.print("Introduza D: ");
                                      Tem que ser constante
D = sc.nextInt();
System.out.print("Introduza S: ");
S = sc.nextInt();
switch(S)
 case A: System.out.println("S = A"); break;
 case B: System.out.println("S = B"); break;
 case C: System.out.println("S = C"); break;
 case D: System.out.println("S = D"); break;
 default: System.out.println("S != A e S != B e S != C e S != D");
```

Programação 1 Aula 3

- Estruturas de controlo repetição
- Operadores aritméticos unários
- Instrução de atribuição com operação
- Instrução repetitiva while e do...while
- Instrução repetitiva for
- Instruções de salto break e continue

- Para além da execução condicional de instruções, por vezes existe a necessidade de executar instruções repetidamente.
- A um conjunto de instruções que são executadas repetidamente designamos por ciclo.
- Um ciclo é constituído por uma estrutura de controlo que determina quantas vezes as instruções vão ser repetidas.
- As estruturas de controlo podem ser dos tipos while,
 do...while e for.
- Normalmente utilizamos as estruturas do tipo condicional quando o número de iterações é desconhecido e as estruturas do tipo contador quando sabemos à partida o número de iterações.

Operadores aritméticos unários

- incremento de 1: ++ (++x, x++)
- decremento de 1: -- (--x, x--)
- Os operadores de incremento e decremento atualizam o valor de uma variável com mais ou menos uma unidade.
- Colocados antes são pré-incremento e pré-decremento.
 Neste caso a variável é primeiro alterada antes de ser usada.
 - y = ++x; // equivalente a: x = x + 1; y = x;
- Colocados depois são pós-incremento e pós-decremento e neste caso a variável é primeiro usada na expressão onde está inserida e depois atualizada.
 - y = x++; // equivalente a: y = x; x = x + 1;

Operadores aritméticos unários

Exemplos:

```
c = 11, a = 6
int a=5, b=6, c;
                                   int a=5, b=6, c;
c = a+++b; //???
                                   c = ++a - b++; // ???
                                   System.out.printf(" c = %d a = %d
                                                                           b = %d\n'',c,a,b);
int a=5, b=6, c;
                                   System.out.printf(" c = %d a = %d
                                                                           b = %d\n'',c,++a,b++ );
c = a+++ b; // ???
                    c = -1, a = 6
                                     int a=9, b=17;
int a=5, b=6, c;
                                     double c;
c = a++ - b; // ???
                                     c = Math.sqrt(a++) + Math.sqrt(--b);
                                                                             b = %d\n'',c,a,b);
                                     System.out.printf(" c = %f a = %d
int a=5, b=6, c; c = 12, a = 6
c = ++a + b; // ???
                                     a=9; b=17;
                                     c = Math.sqrt(a++) + Math.sqrt(--b);
int a=5, b=6, c; c = 0, a = 6
                                     // c = Math.sqrt(++a) + Math.sqrt(b--);
c = ++a - b; // ???
                                     System.out.printf(" c = %f a = %d
                                                                             b = %d\n'',c,a,b);
                                                      7.000000
                  c = 0, a = 6, b = 7
int a=5, b=6, c;
                                                       7.285383
c = ++a - b++; // ???
```

```
int a=5, b=6, c; 

c = ++a - b++; // ???

System.out.printf(" c = %d   a = %d   b = %d n'', c, a, b);
```

Instrução de atribuição com operação

- É comum usar uma versão compacta do operador de atribuição (=) onde este é precedido de uma operação (por exemplo +=, -= *=, /=, %=,...).
- A instrução resultante é equivalente a uma instrução normal de atribuição em que a mesma variável aparece em ambos os lados do operador =.
- A importância desta notação tem a ver com a simplificação do código e com a clareza da operação a realizar.

```
int x, y, z;
...
y += 5; // equivalente a y = y + 5;
z *= 5 + x; // equivalente a z = z * (5 + x);
y += ++x; // x = x + 1; y = y + x;
```

Instrução repetitiva while e do...while

```
do | while(condição) | { | // instruções; | // instruções; | } | while(condição); | }
```

- A sequência de instruções colocadas no corpo do ciclo são executadas enquanto a condição for verdadeira.
- Quando a condição for falsa, o ciclo termina e o programa continua a executar o que se seguir.
- A diferença principal entre as duas instruções repetitivas reside no facto de no ciclo do ... while a sequência de instruções é executada pelo menos uma vez.
- Muito cuidado na definição da condição...

Ciclos


```
Entrada do ciclo
      Não
                condição
                    Sim
Saída do ciclo
               instruções
  corpo do ciclo
    while(condição)
             // instruções;
```

Exemplo de leitura de um valor inteiro positivo:

```
int x, cont = 0;
do
                                                                                    instruções
  System.out.print("Um valor inteiro positivo: ");
  x = sc.nextInt();
                                                                         Sim
  cont++:
                                                                                      condição
while(x <= 0);
                                                                                             Não
System.out.printf("Valor %d lido em %d tentativas\n",x,cont);
int x = -1, cont = 0; // Atenção à inicialização de x
while(x \le 0) {
                                                                   Não
  System.out.print("Um valor inteiro positivo: ");
                                                                                condição
  x = sc.nextInt();
                                                                                      Sim
  cont++; }
System.out.printf("Valor %d lido em %d tentativas\n",x,cont);
                                                                               instruções
                                                Valeri Skliarov
```

2019/2020

Instrução repetitiva for

```
for(inicialização ; condição ; atualização)
{
    // instruções;
}
```

- A inicialização é executada em primeiro lugar e apenas uma vez.
- A condição é avaliada no início de todos os ciclos e as instruções são executadas enquanto a condição for verdadeira.
- A parte da atualização é feita no final de todas as iterações.
- Em geral, a função da inicialização e da atualização é manipular variáveis de contagem utilizadas dentro do ciclo.

Instrução repetitiva for

Exemplos:

```
for(int i = 0; i < 5; i++)
System.out.printf("i = %d\n",i);

i = 1
i = 2
i = 3
i = 4
```

Instruções de salto break e continue

- Podemos terminar a execução de um bloco de instruções com duas instruções especiais: break e continue.
- A instrução break permite a saída imediata do bloco de código que está a ser executado. É usada normalmente no switch e em estruturas de repetição, terminando-as.
- A instrução continue permite terminar a execução do bloco de instruções dentro de um ciclo, forçando a passagem para a iteração seguinte (não termina o ciclo).
- A aplicação destas instruções em conjunto com os ciclos permite reduzir a complexidade dos mesmos, aumentando clareza e legibilidade do código.

Instrução repetitiva for

for(inicialização; condição; atualização)

Podemos apagar inicialização e/ou condição e/ou atualização mas não podemos apagar os pontos e vírgula (;)

Exemplos:

- 1) for(;;) ciclo infinito (pode ser útil)
- 2) for(int a = 10;;) ciclo que só tem inicialização (pode ser útil)
- 3) for(;a>b;) ciclo que só tem condição (pode ser útil)
- 4) for(;;a++) ciclo que só tem atualização (pode ser útil)
- 5) **for**(int a = 10; a>b;)
- 6) for(int a = 10; a > b; a + +)
- 7) **for**(int a = 10; a > b; a + +, b -)

Exemplo 1: Escreva um programa que leia uma série de números inteiros. Quando for introduzido um número negativo, o programa deve escrever quantos números foram introduzidos e terminar

```
int x = 0; int n = 0;
for(;x>=0;) {
    System.out.print("Introduza um numero: ");
    x = sc.nextInt(); n++;
    }
    System.out.println("n = "+n);
```

Embora qualquer dos três ciclos pode ser usado, provavelmente **do** ... **while** é o melhor porque **do** ... **while** é o mais natural para a tarefa considerada

Exemplo 2: Escreva um programa que permite calcular o fatorial de N e $(1 \le N \le 10)$

```
int N, fatorial = 1;
do {
    System.out.print("Introduza um numero: ");
    N = sc.nextInt();
    if (N > 10 || N < 1)
        System.out.println("o número errado");
    } while(N > 10 || N < 1);
for (int i = 1; i <= N; i++)
    fatorial *= i;
System.out.println("fatorial = "+fatorial);</pre>
```

```
Introduza um numero: 12
o numero errado
Introduza um numero: 8
fatorial = 40320

(program exited with code: 0)
Press return to continue
```

Para este exemplo ciclo do ... while é o melhor para verificar dados de entrada e ciclo for é o melhor para calcular o fatorial

Exemplo 3: Escreva um programa que leia dois números inteiros e determine o seu divisor máximo comum (MDC) através do algoritmo de Euclides.

Para este exemplo, provavelmente, ciclo while é o melhor

Exemplo 3: Escreva um programa que leia dois números inteiros e determine o seu divisor máximo comum (MDC) através do algoritmo de Euclides.


```
A = 33; B = 77

1. A = 77; B = 33 // trocar valores de A e B

2. B = A % B = <u>11</u>; A = <u>33</u>

3. B = A % B = 0; A = <u>11</u>.

4. MDC = A = 11.
```

Chavetas não são obrigatórias: pode remover ou não

```
int tmp;
int A,B;
System.out.print("Introduza A: ");
A = sc.nextInt();
System.out.print("Introduza B: ");
B = sc.nextInt();
while (B>0)

if (B > A) { tmp=A; A=B; B=tmp;}
else { tmp=B; B=A%B; A=tmp;}

System.out.println("MDC = "+A);
```

```
Welcome to DrJava.
> run MDC
Introduza A: 49
Introduza B: 77
MDC = 7
>
```

```
Introduza A: 1470607
Introduza B: 14379062
MDC = 929

(program exited with code: 0)
Press return to continue
```

```
int x, cont = 0;
do {
    System.out.print("Um valor inteiro positivo: ");
    x = sc.nextInt();
    cont++;
} while(x <= 0);
System.out.printf("Valor %d lido em %d tentativas\n",x,cont);</pre>

    Exemplo 4 (Exemplo de leitura de um valor inteiro positivo:)
    positivo:)
    do ... while
```

```
int x = -1, cont = 0; // Atenção à inicialização de x
while(x <= 0) {
    System.out.print("Um valor inteiro positivo: ");
    x = sc.nextInt();
    cont++; }
System.out.printf("Valor %d lido em %d tentativas\n",x,cont);</pre>
```

```
int x, cont;
for (x = -1, cont = 0; x <= 0; cont++)
      { System.out.print("Um valor inteiro positivo: ");
      x = sc.nextInt(); }
System.out.printf("Valor %d lido em %d tentativas\n",x,cont);</pre>
```

Exemplo 5:

```
int x, cont = 0;
do {
    System.out.print("Um valor inteiro positivo: ");
    x = sc.nextInt();
    cont++;
    if(cont >= 10) //depois de 10 tentativas, termina o ciclo
        break;
} while(x <= 0);
if(x > 0) System.out.printf("Valor %d lido em %d tentativas\n",x,cont);
else System.out.printf("Ultrapassadas 10 tentativas\n");
```

```
Um valor inteiro positivo: -3
Um valor inteiro positivo: 5
Valor 5 lido em 2 tentativas
```

Exemplo 6:

```
int i, n, soma = 0;
do
  System.out.print("Valor de N [1 ... 99]: ");
  n = sc.nextInt();
          } while(n < 1 || n > 100);
for(i = 1; i <= n; i++){
  // se numero par avança para a iteração seguinte
  if(i % 2 == 0) continue;
  soma += i;
System.out.printf("A soma dos impares é %d\n", soma);
```

```
de N
Valor de N
Valor de N
A soma dos impares
```

Valeri Skliarov 2019/2020

Exemplo 6: o mesmo código sem instrução continue

```
int i, n, soma = 0;
do {
    System.out.print("Valor de N [1 ... 99]: ");
    n = sc.nextInt();
        } while(n < 1 || n > 100);
    for(i = 1; i <= n; i++)
        if(i % 2 != 0) soma += i;
System.out.printf("A soma dos ímpares é %d\n", soma);</pre>
```

Exemplo 7: Gerar N números inteiros entre 0 e M-1 aleatoriamente

```
import java.util.*;
public class inteiros aleatorios
static Random rand = new Random();
static Scanner sc = new Scanner(System.in);
public static void main(String[] args)
   int N,M;
   System.out.print("Quantus números ? ");
   N = sc.nextInt();
   System.out.print("Qual é o valor máximo?");
   M = sc.nextInt();
   for(int i = 0; i < N; i++)
      System.out.println(i+") = "+rand.nextInt(M)+"; ");
```

```
Quantus numeros ? 10
Qual e o valor maximo ? 100
0) = 69;
1) = 47;
2) = 31;
3) = 48;
4) = 28;
5) = 98;
6) = 6;
7) = 32;
8) = 49;
9) = 11;

(program exited with code: 0)
Press return to continue
```

```
for(int i = 0; i < N; i++)
System.out.printf("%d) = %d;\n", i, rand.nextInt(M));</pre>
```

Exemplo 8:

Gerar N números reais aleatoriamente

```
import java.util.*;
public class inteiros reais
static Random rand = new Random();
static Scanner sc = new Scanner(System.in);
public static void main(String[] args)
   int N;
   System.out.print("Quantus números?");
   N = sc.nextInt();
   for(int i = 0; i < N; i++)
      System.out.println(i+") = "+rand.nextDouble()*1000+"; ");
```

```
Terminal
Quantus numeros
   = 745.8938381961061;
   = 157.6063919770503;
    27.852597841415914;
  = 951.8368102220779;
  = 245.1045317337257;
  = 777.3666240400028;
  = 851.6386879776835;
  = 166.11226432507476;
(program exited with code: 0)
Press return to continue
```

```
for(int i = 0; i < N; i++)
     System.out.println(i+") = "+rand.nextDouble()+"; ");
```

Exemplo 9: Entrar um valor inteiro entre 10 e 20 utilizando ciclo for e repetir a entrada se o valor for fora do intervalo 10,...,20

```
import java.util.*;
public class entrada_for
static Scanner sc = new Scanner(System.in);
public static void main(String[] args)
   int N;
   for(;;)
    System.out.print("N ? ");
    N = sc.nextInt();
    if(N >= 10 \&\& N <= 20) break;
   System.out.println("N = "+N);
```

```
Press return to continue
```