

Readings and deadlines

- Lab preface assignment due at the start of class
- Readings for this lab:
 - Chapter 1- Models
 - We'll be using our first model today!
 - Data organization in spreadsheets
 - Esp. important for importing data into R

Population estimation using mark-recapture

Lincoln-Peterson estimator

$$\frac{\widehat{N}}{M} = \frac{C}{m}$$

or

$$\frac{\textit{Total \# of animals}}{\textit{\# of animals marked on first occasion}} = \frac{\textit{\# of animals marked on second occasion}}{\textit{\# of animals marked on both occassions}}$$

What assumptions do we make?

- Population closure
 - No individuals entering or exiting the population
 - To avoid violating, both capture sessions should be close together
- Equal probability of capture for all individuals
- Large sample sizes
 - If m is too small, then N is biased towards a very large number
 - Can be corrected using a new formula (*Equation 3*)

Using Excel

A	В	C
1	3	4
4	2	6
6	1	7
2	7	9

Using Excel

Statistics review

- Sample statistics
 - Sample mean (\overline{x}) :
 - The mean value of observations in the sample
 - Standard deviation (SD, σ):
 - The expected difference between individual points and the sample mean
- Population statistics
 - Population mean (μ):
 - The "true" mean value
 - e.g. measure the antlers of every deer in the population
 - Standard error (SE):
 - The expected difference between the sample and population mean

Statistics review

- Population statistics
 - 95% confidence intervals:
 - An interval which should include the population mean 95% of the time
 - Lower boundary: $\overline{x} 1.96 * SE$
 - Upper boundary: \overline{x} + 1.96*SE

Calculating lambda (λ)

• Definition:

- The discrete growth rate of a population
- If $\lambda = 1$, population is stable
- If $\lambda > 1$, population is rising
- If λ < 1, population is declining
- Calculating λ across multiple years:
 - Check your lecture slides from Sep. 7th

Lab 1 - Setting the Stage

Erik Blomberg (edited by Matt Mensinger and Liam Berigan)

09/08/2023

${\bf Contents}$

l	Lab	Overview	2
	1.1	Learning objectives	2
2	The	Lincoln-Petersen Estimator	2
3	Lab	Setup - Estimating Abundance	4
	3.1	Simulating a mark-recapture sample	4
	3.2	Spreadsheet basics	6
1	Completing the Lab Exercise		7
5	Try	it in R	9
3	The	Three Big Things You Should Have Learned Today	10