

Moreno Baricevic

CNR-IOM DEMOCRITOS
Trieste, ITALY

Installation Procedures for Clusters

PART 1 – Cluster Services and Installation Procedures

Agenda

- Introduction and Cluster Services
- Overview on Installation Procedures
- Configuration and Setup of a NETBOOT Environment
- Troubleshooting
- Cluster Management Tools
- Notes on Security
- Hands-on Laboratory Session

What's a cluster?

What's a cluster?

A cluster **needs**:

- Several computers, <u>nodes</u>, often in special cases for easy mounting in a rack
- One or more networks (<u>interconnects</u>) to hook the nodes together
- Software that allows the nodes to communicate with each other (e.g. <u>MPI</u>)
- Software that reserves resources to individual users
- A cluster is: all of those components working together to form one big computer

Some definitions (1/2)

Parallel computing

The simultaneous execution of a task split up on multiple processors in order to obtain results faster.

Distributed computing

Same thing but with many computers (concept of network).

Cluster

Group of linked computers working together (can be seen as a single computer).

Some definitions (2/2)

Node (aka Computing Node)

Computer used for its computational power.

Frontend

It's through this node that the users will submit/launch/manage jobs.

Access Node

A cluster is usually isolated from outside for security purpose, this node is the access gateway.

Master Node

Management server, that might as well act as frontend and access node.

Batch Scheduler

Software responsible for scheduling the users' jobs on the cluster.

Resources Manager

Software that enable the jobs to connect the nodes and run.

Cluster example (internal network)

What's a cluster from the HW side?

PC / WORKSTATION

RACKs + rack mountable SERVERS

BLADE Servers

IBM Blade Center 14 bays in 7U 2x

HP c7000 8-16 bays in 10U

What's a cluster from the HW side?

"K Computer" 京 (kei), means 10¹⁶ (@RIKEN, Advanced Institute for Computational Science - Japan)

 1^{st} in TOP500 in 2011-12, 4^{th} 2013-15, 7^{th} since 2016

```
864 racks
88.128 nodes
640.000 cores
10,51 *PETA* Flops => 10 * 10<sup>15</sup>
```

each rack

→ 96 computing nodes and 5 1/0 nodes

each node

- → single 2.0 GHz 8-core SPARC64 VIIIfx processor
- → 16GB RAM

12,6 *MEGA* WATT

257th in GREEN500-2016 with 830,2 MFLOPS/W

"天河 -2" Tianhe-2 (MilkyWay-2)

(National Super Computer Center, Guangzhou - China)

1st in TOP500 in 2013-2015, 2nd since 2016

125 racks 16.000 nodes 3,120.000 cores 33,86 *PETA* Flops (54,9 theoretical peak)

each rack

→ 123 computing nodes

ebon node

- → 2x lyy Bridge XEON + 3x XEON PHI
- → 88GB RAM (64GB Ivy Bridge + 8GB each PHI)

17,8 *MEGA* WATT

135th in GREEN500-2016 with 1.901,5 MFLOPS/W

	K	Tianhe-2	Sunway TaihuLight
1 st in top500 (year)	2011	2013	2016
top500-2016	7 th	2 nd	1 st
green500-2016	257 th	135 th	4 th
#racks	864	125	40
#nodes	88.128	16.000	40.960
#cores	640.000	3.120.000	10.649.600
#nodes/rack	96+6	128	1.024
Processor	1x8c@2GHz	2x12c@2.2GHz + 3xPHI	1x256c@1.5Ghz
Architecture	SPARC	Intel (Xeon IvyBridge + PHI)	Sunway
RAM (GB)	16	88	32
Rmax (PFLOPS)	10,51	33,86	93,01
Rpeak (PFLOPS)	11,28	54,9	125,43
Power (MW)	12,6	17,8	15,4
En.Eff.(MFLOPS/W)	830,2	1.901,5	6.051,30

CLUSTER SERVICES

HPC SOFTWARE INFRASTRUCTURE Overview

Users' Parallel Applications Users' Serial Applications Parallel Environment: MPI/PVM Software Tools for Applications CLOUD-enabling software (compilers, scientific libraries) Resources Management Software System Management Software (installation, administration, monitoring) O.S. Network Storage (shared and parallel (fast interconnection services file systems) among nodes)

HPC SOFTWARE INFRASTRUCTURE Overview (our experience)

Fortran, C/C++ codes

MVAPICH / MPICH / openMPI / LAM

Fortran, C/C++ codes

INTEL, PGI, GNU compilers
BLAS, LAPACK, ScaLAPACK, ATLAS, ACML, FFTW libraries

PBS/Torque batch system + MAUI scheduler

SSH, C3Tools, ad-hoc utilities and scripts, IPMI, SNMP Ganglia, Nagios

LINUX

Gigabit Ethernet Infiniband Myrinet NFS LUSTRE, GPFS, GFS SAN OpenStack

<u>Installation can be performed:</u>

- interactively
- non-interactively
- Interactive installations:
 - finer control
- Non-interactive installations:
 - minimize human intervention and let you save a lot of time
 - are less error prone
 - are performed using programs (such as RedHat Kickstart) which:
 - "simulate" the interactive answering
 - can perform some post-installation procedures for customization

MASTERNODE

Ad-hoc installation once forever (hopefully), usually interactive:

- local devices (CD-ROM, DVD-ROM, Floppy, ...)
- network based (PXE+DHCP+TFTP+NFS/HTTP/FTP)

CLUSTER NODES

One installation reiterated for each node, usually non-interactive.

Nodes can be:

- 1) disk-based
- 2) disk-less (not to be really installed)

CLUSTER MANAGEMENT Cluster Nodes Installation

1) Disk-based nodes

- CD-ROM, DVD-ROM, Floppy, ...
 Time expensive and tedious operation
- HD cloning: mirrored raid, dd and the like (tar, rsync, ...)

 A "template" hard-disk needs to be swapped or a disk image needs to be available for cloning, configuration needs to be changed either way
- Distributed installation: PXE+DHCP+TFTP+NFS/HTTP/FTP
 More efforts to make the first installation work properly (especially for heterogeneous clusters), (mostly) straightforward for the next ones

2) Disk-less nodes

- Live CD/DVD/Floppy
- ROOTFS over NFS
- ROOTFS over NFS + UnionFS
- initrd (RAM disk)

CLUSTER MANAGEMENT Existent toolkits

Are generally made of an ensemble of already available software packages thought for specific tasks, but configured to operate together, plus some add-ons.

Sometimes limited by rigid and not customizable configurations, often bound to some specific LINUX distribution and version. May depend on vendors' hardware.

- Free and Open
 - OSCAR (Open Source Cluster Application Resources)
 - NPACI Rocks
 - xCAT (eXtreme Cluster Administration Toolkit)
 - Warewulf/PERCEUS
 - SystemImager
 - Kickstart (RH/Fedora), FAI (Debian), AutoYaST (SUSE)
- Commercial
 - Scyld Beowulf
 - IBM CSM (Cluster Systems Management)
 - HP, SUN and other vendors' Management Software...

Network-based Distributed Installation Overview

Network-based Distributed Installation Basic services

<u>Deployment</u>

- PXE: network booting
- DHCP: IP binding + NBP (pxelinux.0)
- TFTP: pxe configuration file (pxelinux.cfg/<HEXIP>), alternative boot-up images (memtest, UBCD, ...)
- NFS: kickstart + RPM repository (with little modification HTTP(S)
 or FTP can be used too)

Maintenance

- passive updates: post-boot updates using port-knocking, ssh, distributed shells, wget, ...
- active configuration/package updates: ssh, distributed shells
- advanced IT automation tools: Ansible, CFEngine, ...

Customization layersInstallation process

Customization layers

Ramdisk/Ramfs for disk-less nodes, rescue and HW test

Network booting (NETBOOT) PXE + DHCP + TFTP + KERNEL + INITRD

SERVER / MASTERNODE

Installation

Network-based Distributed Installation NETBOOT + KICKSTART INSTALLATION

get NFS:kickstart.cfg

kernel + initrd **NFS** get RPMs anaconda+kickstart **NFS** CLIENT / COMPUTING NODE tftp get tasklist kickstart: %post **TFTP** tftp get task#1 kickstart: %post **TFTP** tftp get task#N kickstart: %post **TFTP** tftp get pxelinux.cfg/default kickstart: %post **TFTP** tftp put pxelinux.cfg/HEXIP kickstart: %post **TFTP**

SERVER / MASTERNODE

Diskless Nodes NFS Based NETBOOT + NFS

CLIENT / COMPUTING NODE

ROOTFS over NFS

kernel + initrd

mount /nodes/rootfs/
NFS

kernel + initrd

mount /nodes/IPADDR/
NFS

kernel + initrd

mount /nodes/IPADDR/
NFS

kernel + initrd

mount /tmp

TMPFS

Removable media (CD/DVD/floppy):

- not flexible enough
- needs both disk and drive for each node (drive not always available)

ROOTFS over NFS:

- NFS server becomes a single point of failure
- doesn't scale well, slow down in case of frequently concurrent accesses
- requires enough disk space on the NFS server

RAM disk:

- need enough memory
- less memory available for processes

Local installation:

- upgrade/administration not centralized
- need to have an hard disk (not available on disk-less nodes)

That's All Folks!


```
( questions ; comments ) | mail -s uheilaaa baro@democritos.it
( complaints ; insults ) &>/dev/null
```


REFERENCES AND USEFUL LINKS

Cluster Toolkits:

- OSCAR Open Source Cluster Application Resources http://oscar.openclustergroup.org/
- NPACI Rocks http://www.rocksclusters.org/
- Scyld Beowulf http://www.beowulf.org/
- CSM IBM Cluster Systems Management http://www.ibm.com/servers/eserver/clusters/software/
- xCAT eXtreme Cluster Administration Toolkit http://www.xcat.org/
- Warewulf/PERCEUS http://www.warewulf-cluster.org/ http://www.perceus.org/

Installation Software:

SystemImager http://www.systemimager.org/

FAI http://www.informatik.uni-koeln.de/fai/

• Anaconda/Kickstart http://fedoraproject.org/wiki/Anaconda/Kickstart

Management Tools:

- openssh/openssl http://www.openssh.com http://www.openssl.org
- C3 tools The Cluster Command and Control tool suite http://www.csm.ornl.gov/torc/C3/
- PDSH Parallel Distributed SHell https://computing.llnl.gov/linux/pdsh.html
- DSH Distributed SHell http://www.netfort.gr.jp/~dancer/software/dsh.html.en
- ClusterSSH http://clusterssh.sourceforge.net/
- C4 tools Cluster Command & Control Console http://gforge.escience-lab.org/projects/c-4/

Monitoring Tools:

Ganglia http://ganglia.sourceforge.net/

Nagios http://www.nagios.org/Zabbix http://www.zabbix.org/

Network traffic analyzer:

tcpdumpwiresharkhttp://www.tcpdump.orghttp://www.wireshark.org

UnionFS:

- Hopeless, a system for building disk-less clusters http://www.evolware.org/chri/hopeless.html
- UnionFS A Stackable Unification File System http://www.unionfs.org http://www.fsl.cs.sunysb.edu/project-unionfs.html

RFC: (http://www.rfc.net)

- RFC 1350 The TFTP Protocol (Revision 2) http://www.rfc.net/rfc1350.html
- RFC 2131 Dynamic Host Configuration Protocol http://www.rfc.net/rfc2131.html
- RFC 2132 DHCP Options and BOOTP Vendor Extensions http://www.rfc.net/rfc2132.html
- RFC 4578 DHCP PXE Options http://www.rfc.net/rfc4578.html
- RFC 4390 DHCP over Infiniband http://www.rfc.net/rfc4390.html
- PXE specification http://www.pix.net/software/pxeboot/archive/pxespec.pdf
- SYSLINUX http://syslinux.zytor.com/

Some acronyms...

HPC - High Performance Computing

OS - Operating System

LINUX - LINUX is not UNIX

GNU - GNU is not UNIX

RPM - RPM Package Manager

CLI - Command Line Interface

BASH - Bourne Again SHell

PERL - Practical Extraction and Report Language

PXE - Preboot Execution Environment

INITRD - INITial RamDisk

NFS - Network File System

SSH - Secure SHell

LDAP - Lightweight Directory Access Protocol

NIS - Network Information Service

DNS - Domain Name System

PAM - Pluggable Authentication Modules

LAN – Local Area Network

WAN - Wide Area Network

IP - Internet Protocol

TCP - Transmission Control Protocol

UDP - User Datagram Protocol

DHCP - Dynamic Host Configuration Protocol

TFTP - Trivial File Transfer Protocol

FTP - File Transfer Protocol

HTTP - Hyper Text Transfer Protocol

NTP - Network Time Protocol

NIC - Network Interface Card/Controller

MAC - Media Access Control

OUI - Organizationally Unique Identifier

API - Application Program Interface

UNDI - Universal Network Driver Interface

PROM – Programmable Read-Only Memory

BIOS - Basic Input/Output System

SNMP - Simple Network Management Protocol

MIB - Management Information Base

OID - Object IDentifier

IPMI - Intelligent Platform Management Interface

LOM - Lights-Out Management

RSA - IBM Remote Supervisor Adapter

BMC - Baseboard Management Controller