

Test de sélection de l'équipe pour l'Olympiade Panafricaine d'Informatique

Omar et l'Avion

Limite de temps : 2 secondes Limite de mémoire : 512 Mo

Omar est assis au pire siège de l'avion reliant Madrid à Santa Cruz, juste à côté des toilettes. Chaque fois qu'une personne passe, une odeur nauséabonde se propage jusqu'à son siège, rendant l'air irrespirable. Heureusement, Raouf a eu la gentillesse de lui fournir une réserve infinie de masques et de parfum.

Pendant le vol, exactement N personnes se rendent aux toilettes, de sorte que la i-ème personne y va au à la minute T[i], pour tout $0 \le i < N$. Chaque fois que quelqu'un entre aux toilettes, Omar peut choisir soit d'utiliser du parfum, ce qui le protège de l'odeur pendant 1 minute au coût de P Bolivianos, soit de mettre un masque qui le protège pendant M minutes - avant que celui-ci ne soit imprégné par l'odeur des toilettes - pour un coût de Q Bolivianos. Omar n'est pas très proactif, donc il ne décide jamais d'utiliser le parfum ou de mettre un masque qu'uniquement à l'un des instants T[i].

Étant donné les valeurs N, P, Q, M et tous les T[i], calculez le coût minimal nécessaire pour protéger Omar de l'odeur pendant tout le vol. De plus, décrivez l'une des stratégies optimales possibles pour Omar.

Description du problème

On vous donne un tableau T[i] de N entiers. À chaque instant S[i], vous pouvez choisir de placer un 0 pour ne rien faire, un 1 pour couvrir uniquement la minute T[i], ou un 2 pour couvrir M minutes à partir de T[i]. Sachant que chaque 1 a un coût de P et chaque 2 a un coût de Q, trouvez le coût minimal, noté C, nécessaire pour couvrir toutes les minutes de T et produisez une configuration de S[i] atteignant ce coût minimal.

Entrée

L'entrée est formatée comme suit :

```
N M P Q
T[0] T[1] T[2] ... T[N-1]
```

Sortie

La sortie doit être formatée comme suit :

```
C
S[0] S[1] S[2] ... S[N-1]
```

Contraintes

- $1 < N < 2 * 10^5$
- $1 \le P, Q, M \le 10^9$
- Pour tout $0 \le i < N-1, T[i] < T[i+1]$ et $1 \le T[i] \le 10^{16}$

Sous-tâches

Dans ce problème, 50% des points sont attribués si votre programme détermine correctement la valeur de C pour tous les cas de test mais ne parvient pas à générer une stratégie optimale pour l'un d'entre eux ; ceci est indiqué par un verdict « Partiellement correct ». En revanche, si votre programme ne détermine pas correctement C pour l'un des cas de test, vous recevrez un verdict « Mauvaise réponse » et aucun point.

Sous-tâche	Points	Contraintes
1	4	N = 1
2	6	Q = 2NP
3	12	$N \le 14$
4	18	$N \le 2000$
5	10	M=2
6	22	$T[i] = i + 1$ pour tout $0 \le i < N$
7	28	Aucune contrainte supplémentaire

Exemples

Exemple 1

```
5 2 1 2
1 2 4 5 6
```

Sortie:

```
5
1 1 1 1 1
```

Exemple 2

```
8 10 2 5
1 3 4 5 7 8 11 12
```

Sortie:

```
7
1 2 0 0 0 0 0
```

Explication

Dans le premier cas de test, N=5, M=2, P=1 et Q=2. Omar peut choisir simplement d'utiliser du parfum à chaque fois que quelqu'un visite les toilettes, pour un coût minimal de 1+1+1+1+1=5 Bolivianos. C'est optimal car Omar couvre chaque personne au coût de 1 Boliviano par minute, ce qui reste vrai même s'il décidait de couvrir deux personnes pendant deux minutes avec le masque.

Dans le second cas de test, N=8, M=10, P=2 et Q=5. Omar peut se protéger pendant 1 minute lorsque la première personne entre, puis pendant 10 minutes dès que la deuxième personne entre, dépensant ainsi un total de 2+5=7 Bolivianos.