```
# Notebook setup: run this before everything
       %load ext autoreload
        %autoreload 2
       # Control figure size
        figsize=(14, 4)
        from sklearn.neighbors import KernelDensity
        from sklearn.model selection import GridSearchCV
        from util import util
        import numpy as np
        from matplotlib import pyplot as plt
        import pandas as pd
        import os
       # Load data
        data_folder = os.path.join('..', 'data', 'nab')
        file_name = os.path.join('realKnownCause', 'nyc_taxi.csv')
        data, labels, windows = util.load_series(file_name, data_folder)
       # Train and validation end
        train_end = pd.to_datetime('2014-10-24 00:00:00')
        val_end = pd.to_datetime('2014-12-10 00:00:00')
       # Cost model parameters
        c_alrm = 1 # Cost of investigating a false alarm
        c_missed = 10 # Cost of missing an anomaly
        c_late = 5 # Cost for late detection
        # Separate the training data
        data_tr = data[data.index < train_end]</pre>
        # Build a cost model
        cmodel = util.ADSimpleCostModel(c_alrm, c_missed, c_late)
```

Sliding Windows

Temporal Correlations

Let's have a closer look at our time series

```
In [2]: util.plot_series(data.iloc[:48], figsize=figsize)
```


- · Nearby points tend to have similar values
- ...Meaning they are correlated

Determine the Correlation Interval

How can we study such correlation?

A useful tool: autocorrelation plots

- Consider a range of possible lags
- For each lag value l:
 - Make a copy of the series and shift it by l time steps
 - Compute the Pearson Correlation Coefficient with the original series
- Plot the correlation coefficients over the lag values

Then we look at the resulting plot:

- Where the curve is far from zero, there is a significant correlation
- Where it gets close to zero, no significant correlation exists

Temporal Correlations

Let's have a look at our plot

• The correlation is strong up to 4-5 lags

Temporal Correlations

These correlations are a source of information

- They could be exploited to improve our estimated probabilities
- ...But our models so far make no use of them

How can we take advantage of them?

For example, rather then feeding our model with individual observations

We can use sequences of observations as input

- This is a very common approach in time series
- · ...And in many cases it's a good idea

Sliding Window

A common approach consist in using a sliding window

- We choose a window length w, i.e. the length of each sub-sequence
- We place the "window" at the beginning of the series
- ...We extract the corresponding observations
- Then, we move the forward by a certain stride and we repeat

Sliding Window

The result is a table

Let m be the number of examples and w be the window length

	$\mathbf{s_0}$	$\mathbf{s_1}$		\mathbf{s}_{w-1}
$\mathbf{t_{w-1}}$	x_0	x_1		x_{w-1}
$\mathbf{t_w}$	x_1	x_2		x_w
$\mathbf{t_{w+1}}$	x_2	x_3		x_{w+1}
:	:	•	:	:
$\mathbf{t_{m-1}}$	x_{m-w}	x_{m-w+1}	:	x_{m-1}

- The first window includes observations from x_0 to x_{w-1}
- The second from x_1 to x_w and so on
- t_i is the *time window index* (where it was applied)
- s_j is the position of an observation within a window

Sliding Window in pandas

pandas provides a sliding window iterator

DataFrame.rolling(window, ...)

```
In [4]: wlen = 10
        for i, w in enumerate(data['value'].rolling(wlen)):
            print(w)
            if i == 2: break # We print the first three windows
       timestamp
       2014-07-01
                     10844.0
       Name: value, dtype: float64
       timestamp
       2014-07-01 00:00:00
                              10844.0
       2014-07-01 00:30:00
                               8127.0
       Name: value, dtype: float64
       timestamp
       2014-07-01 00:00:00
                              10844.0
       2014-07-01 00:30:00
                               8127.0
       2014-07-01 01:00:00
                               6210.0
       Name: value, dtype: float64
```

Notice how the first windows are not full (shorter than wlen)

Sliding Window in pandas

We can build our dataset using the rolling iterator

- We discard the first wlen-1 (incomplete) applications
- Then we store each window in a list, and we wrap everything in a DataFrame

```
In [5]: %time
    rows = []
    for i, w in enumerate(data['value'].rolling(wlen)):
        if i >= wlen-1: rows.append(w.values)

wdata_index = data.index[wlen-1:]
    wdata = pd.DataFrame(index=wdata_index, columns=range(wlen), data=rows)
```

CPU times: user 151 ms, sys: 2.22 ms, total: 153 ms Wall time: 152 ms

- The values field allows access to the Series content as a numpy array
- We use it to discard the index
- ...Since the series for multiple iterations have inconsistent indexes

Sliding Window in pandas

This method works, but it's a bit slow

- We are building our table by rows...
- ...But it is usually faster to do it by columns!
- After all, there are usually fewer columns than rows

Let us look again at our table:

	$\mathbf{s_0}$	$\mathbf{s_1}$	• • •	\mathbf{s}_{w-1}
$\mathbf{t_{w-1}}$	x_0	x_1		x_{w-1}
$\mathbf{t_w}$	x_1	x_2		x_w
$\mathbf{t_{w+1}}$	x_2	x_3		x_{w+1}
:	:	:	:	:
$\mathbf{t_{m-1}}$	x_{m-w}	x_{m-w+1}	:	x_{m-1}

Sliding Window in pandas

We can build the columns by slicing the original DataFrame

```
In [6]: m = len(data)
    c0 = data.iloc[0:m-wlen+1]  # first column
    c1 = data.iloc[1:m-wlen+1+1]  # second column
    print(c0.iloc[0:3])
    print(c1.iloc[0:3])
```

```
value
timestamp
2014-07-01 00:00:00 10844.0
2014-07-01 00:30:00 8127.0
2014-07-01 01:00:00 6210.0
value
timestamp
2014-07-01 00:30:00 8127.0
2014-07-01 01:00:00 6210.0
2014-07-01 01:30:00 4656.0
```

iloc in pandas allows to address a DataFrame by position

Sliding Window in pandas

Now we collect all columns in a list and we stack them

```
In [7]: | lc = [data.iloc[i:m-wlen+i+1].values for i in range(0, wlen)]
        lc = np.hstack(lc)
        wdata = pd.DataFrame(index=wdata_index, columns=range(wlen), data=lc)
        wdata.head()
Out[7]:
                                                                            7
                                                                                   8
                        0
                                       2
                                               3
                                                             5
                                                                     6
        timestamp
         2014-07-
               01 10844.0 8127.0 6210.0 4656.0 3820.0 2873.0 2369.0 2064.0
         04:30:00
         2014-07-
                    8127.0 6210.0 4656.0 3820.0 2873.0 2369.0 2064.0
                                                                        2221.0
                                                                               2158.0
               01
         05:00:00
         2014-07-
                    6210.0 4656.0 3820.0 2873.0 2369.0 2064.0 2221.0 2158.0
                                                                               2515.0
         05:30:00
         2014-07-
                    4656.0 3820.0 2873.0 2369.0 2064.0 2221.0 2158.0 2515.0 4364.0
               01
         06:00:00
         2014-07-
               01
                    3820.0 2873.0 2369.0 2064.0 2221.0 2158.0 2515.0 4364.0 6526.0
         06:30:00
```

Sliding Window in pandas

We can wrap this approach in a function:

```
def sliding_window_1D(data, wlen):
    m = len(data)
    lc = [data.iloc[i:m-wlen+i+1] for i in range(0, wlen)]
```

```
wdata = np.hstack(lc)
  wdata = pd.DataFrame(index=data.index[wlen-1:], data=wdata,
columns=range(wlen))
  return wdata
```

```
In [8]: %time
wdata = util.sliding_window_1D(data, wlen=wlen)
```

CPU times: user 1.03 ms, sys: 609 $\mu s,$ total: 1.64 ms Wall time: 1.11 ms

- This is available in the (updated)) nab module
- The function works for *univariate* data (but the approach is general)