上海交通大学 2021 年研究生入学考试高等代数试题 解析

微信公众号: 小小和尚数学考研

1. 解答如下问题:

- (1) 证明: 实数域上奇数次多项式必有实根;
- (2) 证明:有理数域上存在任意次不可约多项式.

证明 (1) 由于实数域上的奇数次多项式一定有奇数个复根 (计算重数), 而对于一个实系数多项式, 虚根是成对出现的, 故奇数次实系数多项式必定有一个实数根.

或者,将奇数次实系数多项式 f(x) 视为实函数 f(x),则 f(x)为 \mathbb{R} 上的连续函数,注意到 $\lim_{x\to -\infty} f(x) \lim_{x\to +\infty} f(x) < 0$,则可由 (推广的) 零点定理知,f(x) 至少有一个实根.

(2) 考察有理系数多项式 $p(x) = x^n - 2$, 由于 $2 \nmid 1, 2 \mid 2, 2^2 \nmid 2$, 则由 *Eisenstein* 判别法 知整系数多项式 p(x) 是不可约的,从而在有理数域上也不可约,而 $\deg p(x) = n$ 可以 为任意次数,故有理数域上存在任意次不可约多项式.

2. 设 $A \in \mathbb{R}^{m \times n}$, 证明:

- (1) $\operatorname{rank}(A) = m$ 当且仅当存在 $B \in \mathbb{R}^{n \times m}$ 使得 $AB = I_m$;
- (2) $\operatorname{rank}(A) = 1$ 当且仅当存在 $0 \neq \alpha \in \mathbb{R}^{m \times 1}, 0 \neq \beta \in \mathbb{R}^{n \times 1}$, 使得 $A = \alpha \beta^T$.

证明 (1)" \Rightarrow ":若 $\operatorname{rank}(A) = m$,则 $\operatorname{rank}(A, I_m) = m = \operatorname{rank}(A)$. 因此 (A, I_m) 的列向量空间与 A 的列向量空间相同,故 I_m 的列向量可由 A 的列向量线性表示,即存在 $B \in \mathbb{R}^{n \times m}$ 使得 $AB = I_m$;

" \Leftarrow :" 由于 $m = \operatorname{rank}(AB) \leq \operatorname{rank}(A) \leq m$, 故 $\operatorname{rank}(A) = m$.

(2)" ⇒ ": 若 rank(A) = 1, 将 A 按列分块为 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$, 设 α_k 是非零的,则 对任意 $i = 1, 2, \dots, n$. 存在 $b_i \in \mathbb{R}$ 使得 $\alpha_i = b_i \alpha_k$. 取 $\alpha = \alpha_k, \beta = (b_1, b_2, \dots, b_n)^T$, 注意到 $b_k = 1$, 则 $\alpha \neq 0, \beta \neq 0$, 并且 $A = \alpha \beta^T$.

" \Leftarrow : " 若存在 $0 \neq \alpha \in \mathbb{R}^{m \times 1}, 0 \neq \beta \in \mathbb{R}^{n \times 1}$, 使得 $A = \alpha \beta^T$. 则

$$1 \le \operatorname{rank}(\alpha \beta^T) \le 1 \Rightarrow \operatorname{rank}(A) = 1.$$

3. 设 $A \in \mathbb{R}^{m \times n}$, 证明: 线性方程组 Ax = b 有解当且仅当 $A^Ty = 0, y^Tb = 1$ 无解.

证明 " \Rightarrow ":若存在 y_0 使得 $A^Ty_0=0, y_0^Tb=1$,而 Ax=b 有解,即存在 x_0 使得 $b=Ax_0$,进而

$$1 = y_0^T b = y_0^T A x_0 = (A^T y_0)^T x_0 = 0$$

矛盾! 故 $A^T y = 0, y^T b = 1$ 无解.

"
$$\Leftarrow$$
: " 若 $A^Ty = 0, y^Tb = 1$ 无解,则 $\begin{pmatrix} A^T \\ b^T \end{pmatrix} y = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 无解,则

$$\operatorname{rank} \begin{pmatrix} A^T & 0 \\ b^T & 1 \end{pmatrix} = \operatorname{rank} \begin{pmatrix} A^T \\ b^T \end{pmatrix} + 1$$

而

$$\begin{pmatrix} A^T & 0 \\ b^T & 1 \end{pmatrix} \begin{pmatrix} I_n & 0 \\ -b^T & 1 \end{pmatrix} = \begin{pmatrix} A^T & 0 \\ 0 & 1 \end{pmatrix}$$

因此

$$\operatorname{rank} \begin{pmatrix} A^T & 0 \\ b^T & 1 \end{pmatrix} = \operatorname{rank}(A^T) + 1 \Rightarrow \operatorname{rank} \begin{pmatrix} A^T \\ b^T \end{pmatrix} = \operatorname{rank}(A^T)$$

亦即 rank(A) = rank(A, b), 故线性方程组 Ax = b 有解.

- - (1) 设 α , β 线性无关, 求线性方程组 $Ax = \gamma + \delta$ 的通解;
 - (2) 设 $\alpha^T \alpha = \beta^T \beta = 1$, 且 $\alpha^T \beta = 0$, 求矩阵 $P \in \mathbb{R}^{m \times m}$ 满足下列条件

$$\operatorname{rank}(P)=\operatorname{rank}(A),\ P^T=P=P^2,\ P\gamma=\gamma,\ P\delta=\delta.$$

 \mathbf{R} (1) 显然 $\xi = (0,0,1,1)^T$ 是 $Ax = \gamma + \delta$ 的一个特解,由题目条件知 γ,δ 可由 α,β 线性表示,又 α,β 是线性无关的,因此 $\mathrm{rank}(A) = 2$,则 Ax = 0 的解空间维数是 2,注意到

$$\eta_1 = (1, -1, 2, 1)^T, \eta_2 = (1, 2, -1, -2)^T$$

是 Ax = 0 两个线性无关的解, 因此 $Ax = \gamma + \delta$ 的通解为 $\eta = \xi + k_1\eta_2 + k_2\eta_2, k_1, k_2 \in \mathbb{R}$.

(2) 由于
$$\begin{cases} \gamma = -\alpha \\ \delta = \alpha + \beta \end{cases}$$
 ,并且 α 与 β 是正交的,进而是线性无关的,因此 $\mathrm{rank}(A) = 2$.

注意到要求的 P 是实对称的幂等矩阵,并且有特征值 1 以及两个线性无关的特征向量 γ 与 δ ,而 $\mathrm{rank}(P)=2$,因此 P 的特征值为 $1(2 \pm 1,0)(m-2 \pm 1)$ 。设 P 属于特征值零的特征向量为 θ ,则

$$\theta^T(\gamma, \delta) = (0, 0) \Leftrightarrow \theta^T(\alpha, \beta) = 0 \Leftrightarrow A^T \theta = 0.$$

设 $\zeta_1,\zeta_2,\cdots,\zeta_{m-2}$ 是解空间 $A^Tx=0$ 的标准正交基,令 $Q=(\alpha,\beta,\zeta_1,\zeta_2,\cdots,\zeta_{m-2})$,则 $P=Q\begin{pmatrix}I_2&0\\0&0_{m-2}\end{pmatrix}Q^T$ 满足条件.

5. 定义 \mathbb{R}^3 上的线性变换 A 如下:

$$\mathcal{A}: \quad \mathbb{R}^3 \quad \longrightarrow \quad \mathbb{R}^3$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad \longmapsto \quad \begin{pmatrix} 3x_1 + x_2 \\ x_2 + 2x_3 \\ x_2 + 2x_3 \end{pmatrix}$$

- (1) 求 A 的特征值.
- (2) 求 A 的特征子空间.
- (3) 求 \mathbb{R}^3 的一组基使得 A 在该组基下的矩阵为 Jordan 标准型 J.
- (4) 对任意正整数 k, 计算 J^k

解 记
$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, 则$$

$$\mathcal{A}(e_1, e_2, e_3) = (e_1, e_2, e_3) \begin{pmatrix} 3 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$$

故
$$A$$
 在基 e_1,e_2,e_3 下的矩阵为 $A=\begin{pmatrix} 3 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$.

(1) 矩阵 A 的特征多项式为 $\varphi(\lambda) = \lambda(\lambda-3)^2$, 因此 A 的特征值为 0,3(二重).

(2) 矩阵
$$A$$
 属于特征值 0 的特征向量为 $\xi_1=k\begin{pmatrix}2\\-6\\3\end{pmatrix}$, $k\in\mathbb{R}$, 属于特征值 3 的特征向

量为
$$\xi_2 = k \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, k \in \mathbb{R}$$
, 进而 A 的特征子空间为

$$V_0 = \{(2k, -6k, 3k) | k \in \mathbb{R}\}, \ V_3 = \{(k, 0, 0) | k \in \mathbb{R}\}.$$

(3) 先求
$$(3I_3 - A)^2 x = 0$$
 的基础解系: $\gamma = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, 再取 $\beta = (A - 3I_3)\gamma = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, 记

$$\alpha = \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix}$$
, 则 \mathcal{A} 在基 $\{\alpha, \beta, \gamma\}$ 下的矩阵为

$$J = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

(4) 由于

$$J = 3 \begin{pmatrix} 0 & & \\ & 1 & \\ & & 1 \end{pmatrix} + \begin{pmatrix} 0 & & \\ & 0 & 1 \\ & & 0 \end{pmatrix}$$

则

$$J^k = \begin{pmatrix} 0 & & \\ & 3^k & k \cdot 3^{k-1} \\ & & 3^k \end{pmatrix}$$

- 6. 设 $A, B \in \mathbb{R}^{n \times n}, A^T = A, B^T = B,$ 记 $C = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$.
 - (1) 证明: C 可逆当且仅当 A B, A + B 可逆;
 - (2) 证明: C 为正定矩阵当且仅当 $A, A BA^{-1}B$ 都是正定矩阵.

证明 (1) 由于

$$\begin{pmatrix} I_n & I_n \\ O & I_n \end{pmatrix} \begin{pmatrix} A & B \\ B & A \end{pmatrix} \begin{pmatrix} I_n & -I_n \\ O & I_n \end{pmatrix} = \begin{pmatrix} A+B & 0 \\ B & A-B \end{pmatrix}$$

两边取行列式得 $\det(C) = \det(A+B) \cdot \det(A-B)$. 从而 C 可逆当且仅当 A-B, A+B 可逆.

(2) 若 C 是正定矩阵,则 C 的顺序主子式都是大于零的,进而 A 的顺序主子式也都是大于零的,故 A 是正定的,又

$$\begin{pmatrix} I_n & 0 \\ -BA^{-1} & I_n \end{pmatrix} \begin{pmatrix} A & B \\ B & A \end{pmatrix} \begin{pmatrix} I_n & -A^{-1}B \\ 0 & I_n \end{pmatrix} = \begin{pmatrix} A & 0 \\ 0 & A - BA^{-1}B \end{pmatrix}$$

从而 $A - BA^{-1}B$ 也是正定矩阵.

反之, 若 $A, A - BA^{-1}B$ 都是正定矩阵, 则由

$$\begin{pmatrix} I_n & 0 \\ -BA^{-1} & I_n \end{pmatrix} \begin{pmatrix} A & B \\ B & A \end{pmatrix} \begin{pmatrix} I_n & -A^{-1}B \\ 0 & I_n \end{pmatrix} = \begin{pmatrix} A & 0 \\ 0 & A - BA^{-1}B \end{pmatrix}$$

知 C 也是正定矩阵.

- 7. 设 $V = \mathbb{R}^{n \times m}$, 对任意 $A, B \in V$, 定义 $(A, B) = \operatorname{tr}(A^T B)$.
 - (1) 证明:函数 (\cdot,\cdot) 是 V 的一个内积.
 - (2) 试求 V 的一个标准正交基.

证明 (1) 由迹的线性性可得函数 (\cdot,\cdot) 是双线性函数,又 $(A,B)=\operatorname{tr}(A^TB)=\operatorname{tr}(B^TA)=(B,A)$. 并且若 $(A,A)=\operatorname{tr}(A^TA)=\sum_{i,j}a_{ij}^2\geq 0$ 其中等号成立当且仅当 A=0. 因此 (\cdot,\cdot) 是内积.

(2) 对于 E_{ij} , $i = 1, 2, \dots, n$; $j = 1, 2, \dots, n$. 直接验证即有

$$(E_{ij}, E_{kl}) = \begin{cases} 1 & , E_{ij} = E_{kl} \\ 0 & , E_{ij} \neq E_{kl} \end{cases}$$

故 $\{E_{ij}: i=1,2,\cdots n; j=1,2,\cdots,m\}$ 是 V 的标准正交基.

8. 设 \mathcal{A} 是 n 维向量空间 V 上的线性变换,证明: $V = \text{Im} \mathcal{A}^n \oplus \ker \mathcal{A}^n$.

证明 根据维数公式有 $\dim \operatorname{Im} \mathcal{A}^n + \dim \ker \mathcal{A}^n = \dim V$,故只需证明 $\operatorname{Im} \mathcal{A}^n + \ker \mathcal{A}^n$ 是 直和即可,等价于证明: $\operatorname{Im} \mathcal{A}^n \cap \ker \mathcal{A}^n = 0$.

考虑子空间升链:

$$\ker \mathcal{A} \subseteq \ker \mathcal{A}^2 \subseteq \cdots \subseteq \ker \mathcal{A}^n \subseteq \ker \mathcal{A}^{n+1}$$
.

若 $\ker A = 0$, 则 A 是单射, 从而是同构, 此时显然有 $\ker A^n = \ker A^{2n}$.

若 $\ker A \neq 0$,则 $\dim \ker A \geq 1$,而 $\dim V = n$,则存在 $m \leq n$ 使得 $\ker A^m = \ker A^{m+1}$. 再设 $x \in \ker A^{m+2}$,则 $Ax \in \ker A^{m+1} = \ker A$,故 $A^{m+1}x = 0$,进而 $\ker A^{m+1} = \ker A^{m+2}$,依次下去有 $\ker A^m = \ker A^{m+k}$, $k = 1, 2, \cdots$ 特别的有 $\ker A^n = \ker A^{2n}$.

设 $\alpha \in \text{Im} \mathcal{A}^n \cap \ker \mathcal{A}^n$, 则存在 $\beta \in V$ 使得 $\alpha = \mathcal{A}^n(\beta)$, 进而

$$0 = \mathcal{A}^n(\alpha) = \mathcal{A}^{2n}(\beta) \Rightarrow \beta \in \ker \mathcal{A}^{2n} = \ker \mathcal{A}^n \Rightarrow \alpha = \mathcal{A}^n(\beta) = 0.$$

即得 $\operatorname{Im} \mathcal{A}^n \cap \ker \mathcal{A}^n = 0$. 故 $V = \operatorname{Im} \mathcal{A}^n \oplus \ker \mathcal{A}^n$.