Modèle GARCH Application à la prévision de la volatilité

Olivier Roustant

Ecole des Mines de St-Etienne 3A - Finance Quantitative

Objectifs

 Améliorer la modélisation de Black et Scholes des rendements des titres financiers

 Prévoir la volatilité à court terme dans l'univers historique

Modèle de Black et Scholes

Notations

- S₁, ..., S_n: v.a. représentant les cours aux dates 1, 2, ..., n
- R₁, ..., R_n: v.a. représentant les rendements logarithmiques
 - $R_t = In(S_t / S_{t-1})$

Modèle de Black et Scholes

- Dans l'univers historique, $R_1, ..., R_n$ sont i.i.d. et de loi $N(m, s^2)$

Remarque

 A ne pas confondre avec la formule d'évaluation de Black et Scholes, où tous les calculs se font dans l'univers risque-neutre

Validité du modèle de B&S ?

CAC 40 - Données journalières sur une période d'environ 15 ans

Validité du modèle de B&S Des défauts d'indépendance

Validité du modèle de B&S Des défauts de normalité

Questions de volatilité

- Hypothèse forte du modèle de B&S
 - La volatilité est constante
- Critiques
 - Variations locales
 - La volatilité d'un jour influe sur celle du lendemain en période d'emballement des marchés
 - ⇒ volatilité conditionnelle non constante

Le modèle GARCH Définition (1/3)

Modèle GARCH(p,q)

$$R_t = \eta_t \sqrt{h_t}$$

avec

 $-(\eta_t)$ bruit blanc fort gaussien N(0,1)

$$-h_{t} = \alpha_{0} + \alpha_{1}R_{t-1}^{2} + \dots + \alpha_{q}R_{t-q}^{2} + \beta_{1}h_{t-1} + \dots + \beta_{p}h_{t-p}$$
• $\alpha_{0} > 0, \alpha_{1}, \dots, \alpha_{q}, \beta_{1}, \dots \beta_{p} \ge 0$

 $-(\eta_t)$ et (h_t) sont deux processus indépendants

Le modèle GARCH Définition (2/3)

Interprétation

- (η_t) : correspond aux rendements que l'on obtiendrait par le modèle de Black et Scholes (à 1 cste près)
- $-h_t = var(R_t \mid \mathfrak{T}_{t-1})$
 - Le modèle décrit une forme simple de dépendance de la variance conditionnelle

Remarque

- Le processus GARCH(p,0) n'existe pas
 - On aurait h_t tend vers 0 ou l'infini, impossible dans les 2 cas

Le modèle GARCH Définition (3/3)

Signification

G : Generalized

- AR: Auto Regressive

– CH : Conditional Heteroskedasticity

 Variance conditionnelle non constante, modélisée par une relation de régression (sur le processus lui-même)

Origine

– Engle (1982) : ARCH(q)

Bollerslev (1986) : GARCH(p,q)

Le modèle GARCH Variance globale

- Dans le modèle GARCH, on veut que la variance globale soit constante
 - Important pour pouvoir identifier les paramètres
 - Difficulté conceptuelle :
 - variance globale constante
 - mais variance conditionnelle (« locale ») non constante
- Condition pour que la variance globale soit constante

$$\alpha_1 + ... + \alpha_q + \beta_1 + ... + \beta_p < 1$$

Exercice : le vérifier pour un modèle ARCH(1)

Le modèle GARCH Propriétés

- Désormais on suppose que la condition de stabilité de la variance globale est vérifiée
- (R_t) est un bruit blanc faible, mais pas fort
 - Il est clair que R_t n'est pas indépendant de R_{t-1}
 - Vérifier que cov(R_t, R_{t-k}) = 0 si k≠0
 - En particulier, le processus est faiblement stationnaire
- (R_t) a une distribution leptokurtique (queues de distribution plus épaisses que pour une loi normale)
 - Lorsque la kurtosis a une valeur finie, on a :
 - $kurtosis(R_t) \ge kurtosis(\eta_t)$

Le modèle GARCH Exemple d'utilisation avec R© (1/3)

```
> g <- garch(r, order=c(1,1))
> summary(g) # table d'analyse de variance
...

Coefficient(s):
    Estimate Std. Error t value Pr(>|t|)
a0 4.346e-06 5.035e-07 8.631 <2e-16 ***
a1 8.277e-02 7.716e-03 10.727 <2e-16 ***
b1 8.929e-01 9.222e-03 96.827 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- A vérifier : positivité des coefficients, condition de stationnarité
 - Tenir compte de l'erreur d'estimation

Le modèle GARCH Exemple d'utilisation avec R[©] (2/3)

Le modèle GARCH Exemple d'utilisation avec R[©] (3/3)

Application à la prévision

- Connaissant l'information \mathfrak{I}_{t} apportée par les rendements jusqu'à t, comment prévoir R_{t+k} ?
 - On cherche la loi de R_{t+k} conditionnellement à \mathfrak{I}_t
 - a minima, $E(R_{t+k} | \mathfrak{I}_t)$ et $var(R_{t+k} | \mathfrak{I}_t)$
- Propriété : ∀k≥1, E(R_{t+k} | ℑ_t) = 0
 - Autrement dit, que ce soit avec B&S ou GARCH, la prévision des rendements est la valeur moyenne
 - L'apport de GARCH est dans la prévision du <u>risque</u>
 - $var(R_{t+k} | \mathfrak{I}_t)$

Prévision de la volatilité

- Black et Scholes : ∀k≥1, var(R_{t+k} | ℑ_t) = σ²
- GARCH Ex. 1 : ARCH(1) ∀k≥1, $var(R_{t+k} | \Im_t) = \alpha_1^{k-1} h_{t+1} + (1 - \alpha_1^{k-1})\sigma^2$
- GARCH Ex. 2 : GARCH(1,1) $\forall k \geq 1, \quad \text{var}(R_{t+k} \mid \mathfrak{T}_t) = (\alpha_1 + \beta_1)^{k-1} h_{t+1} + (1 (\alpha_1 + \beta_1)^{k-1})\sigma^2$
- Interprétation
 - Moyenne de la variance globale σ^2 et de la variance conditionnelle h_{t+1} , pondérée par les paramètres du modèle GARCH

Prévision de la volatilité Cas de l'horizon 1

Propriété

- La loi de $R_{t+1} \mid \mathfrak{I}_t$ est $N(0, h_{t+1})$

Application

- $-P(R_{t+1} \in [-2\sqrt{h_{t+1}}, 2\sqrt{h_{t+1}}] \mid \Im_t) = 95\%$
- [-2 $\sqrt{h_{t+1}}$, 2 $\sqrt{h_{t+1}}$] est un intervalle de prévision à 95%

Remarque

Pour k≥2, la loi de R_{t+k} | S_t n'est pas normale en général

Prévision de la volatilité Exemple (1/3)

- Découpage des données
 - Période d'apprentissage, période test
 - Estimation (statique) sur l'ensemble d'apprentissage
- Pour toute date dans la période test, prévision de la volatilité du lendemain
 - Rep. des intervalles de confiance à 95% (en rouge)
 - Comparaison avec les intervalles de B&S
 - Volatilité globale (en bleu)
 - Volatilité glissante estimée sur 50 jours (en vert)

Prévision de la volatilité Exemple (2/3)

Prévision de la volatilité Exemple (3/3)

Conclusion

- Avantages du modèle GARCH
 - Plus réaliste que B&S :
 - Volatilité conditionnelle non constante
 - Bruit blanc faible, mais pas fort
 - Leptokurticité de la distribution des rendements
 - Prévisions de la volatilité beaucoup plus réactives
- Défauts souvent constatés
 - Modèle en limite de stationnarité
 - On a souvent $\alpha_1 + \beta_1 \approx 1$ pour GARCH(1,1)
 - Les résidus ne sont pas toujours de loi normale

Pour aller plus loin

- Bollerslev T. (1986), Generalized Autoregressive Conditional Heteroskedasticity, *Journal of Econometrics*, 31, 307-327
- Engle R.F. (1982), Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of U.K. Inflation, *Econometrica*, 50, 987-1008
- Gouriéroux C. (1997), ARCH Models and Financial Applications, Springer
- Hull J.C. (2005), Options, Futures, and Other Derivatives, Sixth Edition,
 Prentice Hall,
 - http://www.rotman.utoronto.ca/~hull/
 - Possibilité de télécharger les transparents (chapitre 19, 6ème édition)

