Linear Regression with One Variable

전 재 욱

Embedded System 연구실 성균관대학교

Outline

- Model representation
- Cost function
 - Cost function
 - Hypothesis of one parameters
 - Hypothesis of two parameters
- Gradient descent
- Gradient descent for linear regression

Outline

- Model representation
- Cost function
 - Cost function
 - Hypothesis of one parameters
 - Hypothesis of two parameters
- Gradient descent
- Gradient descent for linear regression

- Supervised Learning
 - "Right answers" are given for every examples in the data
- Regression
 - Predict continuous real-valued output (price)

Training set of housing prices

Size in feet ² (x)	Size in 坪	Price (\$) in 1000's (y)
2104	59.12	460
1416	39.79	232
1534	43.11	315
852	23.94	178

Notation

m: Number of training examples

x's: "input" variable / features, $x^{(1)} = 2104$, $x^{(2)} = 1416$

y's: "output" variable / "target" variable, $y^{(1)} = 460$

(x, y): one training example, $(x^{(i)}, y^{(i)})$: i-th training example

■ How do we represent h?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

- Linear regression with one variable
 - Univariate linear regression

Outline

- Model representation
- Cost function
 - Cost function
 - Hypothesis of one parameters
 - Hypothesis of two parameters
- Gradient descent
- Gradient descent for linear regression

Training set of housing prices

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

 θ_i 's: parameters

How to choose θ_i 's?

 $\blacksquare h_{\theta}(x) = \theta_0 + \theta_1 x$

 $\blacksquare h_{\theta}(x) = \theta_0 + \theta_1 x$

Cost Function

- Idea
 - Choose θ_0 , θ_1 so that

 $h_{\theta}(x)$ is close to y for our training examples (x, y)

$$\min_{\theta_0, \theta_1} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

- **Cost function:** $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) y^{(i)})^2$
 - Goal: $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$

Outline

- Model representation
- Cost function
 - Cost function
 - Hypothesis of one parameters
 - Hypothesis of two parameters
- Gradient descent
- Gradient descent for linear regression

Hypothesis

Parameters

$$\theta_0, \theta_1$$

Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal

Simplified Hypothesis

$$h_{\theta}(x) = \theta_1 x$$

Parameters

$$\theta_1$$

Cost function

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal

- $\blacksquare h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_1

- $I(\theta_1)$
 - fct of the parameter θ_1

- $h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_1

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$
$$= \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_1 x^{(i)} - y^{(i)} \right)^2$$
$$J(1) = \frac{1}{2m} (0^2 + 0^2 + 0^2) = 0$$

- $I(\theta_1)$
 - fct of the parameter θ_1

$$J(1) = 0$$

- $h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_1

- $I(\theta_1)$
 - \blacksquare fct of the parameter θ_1

$$J(0.5) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$
$$= \frac{1}{2m} ((0.5 - 1)^{2} + (1 - 2)^{2} + (1.5 - 3)^{2})$$
$$= \frac{1}{2*3} (3.5) \approx 0.58$$

$$I(1) = 0, J(0.5) = 0.58$$

- $h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_1

$$J(0) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$
$$= \frac{1}{2m} ((0-1)^{2} + (0-2)^{2} + (0-3)^{2})$$
$$= \frac{1}{2*3} (14) \approx 2.3$$

- $I(\theta_1)$
 - fct of the parameter θ_1

Outline

- Model representation
- Cost function
 - Cost function
 - Hypothesis of one parameters
 - Hypothesis of two parameters
- Gradient descent
- Gradient descent for linear regression

Hypothesis of Two Parameters

- Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$
- Parameters: θ_0 , θ_1
- Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

Hypothesis of Two Parameters

- $I(\theta_0, \theta_1)$
 - If fct of the parameter θ_0 , θ_1

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Contour Plot

- $\blacksquare h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_0 , θ_1

- $I(\theta_0, \theta_1)$
 - If fct of the parameter θ_0 , θ_1

- $h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_0 , θ_1

- $I(\theta_0, \theta_1)$
 - fct of the parameter θ_0 , θ_1

- $\blacksquare h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_0 , θ_1
 - $\theta_1 < 0$

- $I(\theta_0, \theta_1)$
 - In fct of the parameter θ_0 , θ_1

- $\blacksquare h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_0 , θ_1
 - $\theta_1 > 0$

- $I(\theta_0, \theta_1)$
 - If fct of the parameter θ_0 , θ_1

Outline

- Model representation
- Cost function
 - Cost function
 - Hypothesis of one parameters
 - Hypothesis of two parameters
- Gradient descent
- Gradient descent for linear regression

Gradient Descent

- Given $J(\theta_0, \theta_1)$, try to find $min_{\theta_0, \theta_1}J(\theta_0, \theta_1)$
- Outline
 - Start with some θ_0 , θ_1
 - Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

Gradient Descent

Gradient Descent

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 0$ and $j = 1$)

Correct: Simultaneous update

$$temp0 \leftarrow \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$
$$temp1 \leftarrow \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 \leftarrow temp0$$

 $\theta_1 \leftarrow temp1$

Incorrect

$$temp0 \leftarrow \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$
$$\theta_0 \leftarrow temp0$$

$$temp1 \leftarrow \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$
$$\theta_1 \leftarrow temp1$$

Linear regression with one variable

Gradient descent intuition

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (simultaneously update

for
$$j = 0$$
 and $j = 1$)

Repeat until convergence {

(simultaneously update

for
$$j = 0$$
 and $j = 1$)

$$\theta_1 \leftarrow \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$
$$\frac{\partial}{\partial \theta_1} J(\theta_1) > 0$$

 $\theta_1 \leftarrow \theta_1 - \alpha * (positive number)$

$$\theta_1 \leftarrow \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$
$$\frac{\partial}{\partial \theta_1} J(\theta_1) \le 0$$

 $\theta_1 \leftarrow \theta_1 - \alpha * (negative number)$

$$\blacksquare \ \theta_1 \leftarrow \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

- If α is too small,
 - gradient descent can be slow.

- \blacksquare If α is too large,
 - gradient descent can overshoot the minimum.
 - It may fail to converge, or even diverge.

Gradient Descent Algorithm

Current value of θ_1

$$\theta_1 \leftarrow \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

 $\theta_1 \leftarrow \theta_1 - \alpha \times 0$ at local min

Gradient Descent Algorithm

- Gradient descent can converge to a local minimum,
 - even with the learning rate α fixed.

$$\theta_1 \leftarrow \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

- As we approach a local minimum,
 - gradient descent will automatically take smaller steps.
 - So, no need to decrease α over time.

 $J(heta_1)$

Outline

- Model representation
- Cost function
 - Cost function
 - Hypothesis of one parameters
 - Hypothesis of two parameters
- Gradient descent
- Gradient descent for linear regression

Gradient descent algorithm

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
(for $j = 0$ and $j = 1$)

Linear regression model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2}$$
$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)}\right)^{2}$$

j=1 $\frac{\partial}{\partial \theta_{i}} J(\theta_{0}, \theta_{1}) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x^{(i)} = \frac{1}{m} \sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)} \right) x^{(i)}$

Repeat until convergence {

$$\theta_0 \leftarrow \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 \leftarrow \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x^{(i)}$$

(Update for θ_0 and θ_1 simultaneously)

Gradient Descent

Gradient Descent

Convex function

- $\blacksquare h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_0 , θ_1

- $I(\theta_0, \theta_1)$
 - fct of the parameter θ_0 , θ_1

- $\blacksquare h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_0 , θ_1

- $I(\theta_0, \theta_1)$
 - fct of the parameter θ_0 , θ_1

- $\blacksquare h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_0 , θ_1

- $I(\theta_0, \theta_1)$
 - fct of the parameter θ_0 , θ_1

- $\blacksquare h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_0 , θ_1

- $I(\theta_0, \theta_1)$
 - fct of the parameter θ_0 , θ_1

- $\blacksquare h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_0 , θ_1

- $I(\theta_0, \theta_1)$
 - fct of the parameter θ_0 , θ_1

- $\blacksquare h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_0 , θ_1

- $I(\theta_0, \theta_1)$
 - fct of the parameter θ_0 , θ_1

- $\blacksquare h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_0 , θ_1

- $I(\theta_0, \theta_1)$
 - fct of the parameter θ_0 , θ_1

- $\blacksquare h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_0 , θ_1

- $I(\theta_0, \theta_1)$
 - fct of the parameter θ_0 , θ_1

- $\blacksquare h_{\theta}(x)$
 - \blacksquare a fct of x for fixed θ_0 , θ_1

- $I(\theta_0, \theta_1)$
 - fct of the parameter θ_0 , θ_1

"Batch" Gradient Descent

- "Batch"
 - Each step of gradient descent uses all the training examples.

Repeat until convergence {

$$\theta_0 \leftarrow \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \theta_0 - \alpha \frac{1}{m} \left(\sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \right)$$

$$\theta_1 \leftarrow \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \theta_1 - \alpha \frac{1}{m} \left(\sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)} \right)$$

(Update for θ_0 and θ_1 simultaneously)

References

- Andrew Ng, https://www.coursera.org/learn/machine-learning
- http://www.holehouse.org/mlclass/01_02_Introduction_regression_analysis_and_gr.html