COMP 6721 Applied Artificial Intelligence (Fall 2021)

Worksheet #3: Naïve Bayes Classifier

Joint Probabilities. Given the following joint probability distribution:

P(Toothache ∩ Cavity)		evidei	evidence		
sis		Toothache	~Toothache		
othe	Cavity	0.04	0.06		
hyp J	~Cavity	0.01	0.89		

Compute the probability that someone has a cavity, given a toothache:

 $P(\text{cavity}|\text{toothache}) = \underline{\hspace{2cm}}$

Bayes' Theorem. Assume students come to the lecture either by car (event A) or by metro. Event B means the student arrives on-time for the lecture. One student uses the car 70% of the time, i.e., P(car) = P(A) = 0.7. In this case, the student is 80% on-time, i.e., P(ontime|car) = P(B|A) = 0.8. Also, this student is on-time in general in 60% of all cases, i.e., P(ontime) = P(B) = 0.6. Today the student arrived on time. How likely is it that this student came by car? Apply Bayes' Theorem:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} = \dots$$

Al Fraud Detection. You just built your first AI system for detecting fraudulent credit card transactions (event B). In your company, 0.01% of all transactions are fraudulent, i.e., P(B) = 0.0001. Event A is "system detected fraud". You tested your system with existing training data and determined that it finds fraudulent cases with a 96% success rate, i.e., P(A|B) = 0.96. Unfortunately, it also sounds an alarm in 1% of non-fraudulent cases, i.e., $P(A|\overline{B}) = 0.01$ (\overline{B} is the complement of B).

So, when you system sounds the fraud alarm, how often was it actually a fraudulent transaction vs. a false alarm?

Hint: You will need P(A), which you can compute using $P(A) = P(A|B) \cdot P(B) + P(A|\overline{B}) \cdot P(\overline{B})$.

Al Weather Prediction. Now we can build a weather-predicting AI using Bayes' theorem:

Assume we have 3 hypothesis...

- \Box H₁: weather will be nice $P(H_1) = 0.2$
- \Box H_2 : weather will be bad $P(H_2) = 0.5$
- \vdash H_3 : weather will be mixed $P(H_3) = 0.3$

And 1 piece of evidence with 3 possible values

- □ E1: today, there's a beautiful sunset
- □ E₂: today, there's a average sunset
- □ E3: today, there's no sunset

P(E _x H _i)	E ₁	E₂	E₃
H₁	0.7	0.2	0.1
H ₂	0.3	0.3	0.4
H ₃	0.4	0.4	0.2

Today we observe an average sunset (E_2) . What kind of weather will we have tomorrow? Compute the probabilities for each hypothesis (H_1, H_2, H_3) using

$$P(H_i|E_2) = \frac{P(H_i) \cdot P(E_2|H_i)}{P(E_2)}, \text{ with } P(E_2) = P(H_1) \cdot P(E_2|H_1) + P(H_2) \cdot P(E_2|H_2) + P(H_3) \cdot P(E_2|H_3) = 0.31$$

- 1. $P(H_1|E_2) =$ ______
- 2. $P(H_2|E_2) =$ ______
- 3. $P(H_3|E_2) =$ ______

So, tomorrow's weather will be:

Email Spam Detector. Let's train an email spam detector using a *Multinomial Naïve Bayes Classifier*, so it can classify future emails for you into the classes *spam & ham*. Here is your training data:

 c_1 : **SPAM** documents:

 c_2 : **HAM** documents:

• d_1 : "cheap meds for sale"

• d_4 : "cheap book sale, not meds"

• d_2 : "click here for the best meds"

• d_5 : "here is the book for you"

• d_3 : "book your trip"

1. Record the *count* of each word per class below. Ignore words from the documents that are not in the table:

	best	book	cheap	sale	trip	meds	#words
c_1 : SPAM							
c ₂ : HAM							

2. Now compute the conditional probabilities $P(w_j|c_i)$ for each word/class, as well as the prior probability $P(c_i)$ for each class, based on your training data:

	best	book	cheap	sale	trip	meds	$P(c_i)$
c_1 : SPAM							
c_2 : HAM							

- 3. Now you have a new email coming in:
 - d_6 : "the cheap book"

Is this email spam or ham? Apply Bayes' Algorithm to find out which class has a higher probability:

(a) $P(c_1) =$ (b) $P(c_2) =$

So, the new email is:

Machine Learning System Evaluation. Consider the results from three different ML systems on a binary classification task. Here, X1–X5 are the instances that the systems should have recognized as belonging to a specific class (e.g., spam email, cat photo, fraud transaction). The remaining 495 instances do not belong to this class:

Target	system 1	system 2	system 3
X1 √	X1 ×	X1 √	X1 √
X2 √	X2 X	X2 X	X2 √
X3 √	X3 ×	X3 √	X3 √
X4 √	X4 ×	X4 √	X4 √
X5 √	X5 ×	X5 ×	X5 √
X6 ×	X6 ×	X6 ×	X6 √
X7 ×	X7 ×	X7 ×	X7 √
×		×	×
×		×	×
X500 ×	X500 ×	X500 ×	X500 ×

Evaluate the performance of the three systems using the measures Accuracy, Precision, and Recall:

	system 1	system 2	system 3
Accuracy			
Precision			
Recall			