Применение языковых моделей для выявления поляризации текстов в новостном потоке Выпускная квалификационная работа

Авдеев Роман Артемович Научный руководитель: профессор РАН, д.ф-м.н. Воронцов К.В.

Факультет вычислительной математики и кибернетики Кафедра математических методов прогнозирования

- 1 Актуальность
- 2 Постановка задачи
- **3** Данные
- 4 Метрики
- **5** Эксперименты
- 6 Архитектура модели
- Результат

Актуальность задачи

- 1 Область Opinion Mining и Sentiment Analysis
- Для задач идентификации мнений клиентов, сбора общественного мнения, прогнозирования выборов, выявления рисков в банковских системах
- 3 Полярность сформированная точка зрения
- Polarization Detection как часть Fake News Detection

- 1 Актуальность
- 2 Постановка задачи
- 3 Данные
- 4 Метрики
- **5** Эксперименты
- 6 Архитектура модели
- Результат

Задача

Дано: корпус текстов, относящийся к определенной теме **Найти:** кластеры-мнения (полярности), нерелевантные и нейтральные сообщения

Особенности задачи:

- Кластеры нерелевантных/нейтральных сообщений могут отсутствовать
- 2 Нерелевантные документы шумовой фон
- 3 Число кластеров-мнений может быть произвольным

- 1 Актуальность
- 2 Постановка задачи
- **3** Данные
- 4 Метрики
- **5** Эксперименты
- 6 Архитектура модели
- Результат

Основной датасет

Датасет: набор из 30-ти корпусов новостных сообщений из

рубрик "Политика" и "Происшествия"

Всего: 452 документа

Рис. 1: Количество документов в каждом корпусе

Разметка

Разметкой будем называть набор меток $X = \{x_1, ..., x_n\}$ x_i - метка i-го сообщения в корпусе

Метки $\{1,2,3,...\}$ соответствуют кластерам-полюсам общественного мнения по данной теме.

Метка <0> означает, что сообщение является нейтральным.

Метка <-1> означает, что документ нерелевантен.

Разметка

Нерелевантные документы

	Разметка 1 Разметка		Разметка 3	
Кол-во нерелевантных док-ов	31	59	38	
В процентах (%)	6.9 %	13 %	8.4 %	

Нейтральные документы

	Разметка 1	Разметка 2	Разметка 3	
Кол-во нейтральных док-ов	110	55	73	
В процентах (%)	24.3 %	12.2 %	16.2 %	

- 1 Актуальность
- 2 Постановка задачи
- 3 Данные

Актуальность

4 Метрики

BCubed Согласованность асессоров

- 5 Эксперименты
- 6 Архитектура модели
- 7 Результат

- 1 Актуальность
- 2 Постановка задачи
- 3 Данные
- 4 Метрики
 BCubed
 Согласованность асессоров
- 5 Эксперименты
- 6 Архитектура модели
- 7 Результат

Критерий М1

Полученные метки: $X=\{x_1,...,x_n\}$ "Золотой стандарт" — экспертная разметка $Y=\{y_1,...,y_n\}$

Критерий М1: точность и полнота кластеризации мнений

$$P = \underset{x_{i}>0}{\text{avr}} P_{i}; \qquad P_{i} = \frac{\sum_{k} [x_{k} = x_{i} \text{ and } y_{k} = y_{i}]}{\sum_{k} [x_{k} = x_{i}]}$$

$$R = \underset{y_{i}>0}{\text{avr}} R_{i}; \qquad R_{i} = \frac{\sum_{k} [x_{k} = x_{i} \text{ and } y_{k} = y_{i}]}{\sum_{k} [y_{k} = y_{i}]}$$

Агрегированный критерий (F1-мера):

$$M_1(X,Y) = \frac{2PR}{P+R}$$

Критерий М2

Критерий M2: точность и полнота отсева нейтральных документов

$$P_c = \frac{\sum_k [x_k \neq c \text{ and } y_k \neq c]}{\sum_k [x_k \neq c]}$$

$$R_c = \frac{\sum_k [x_k \neq c \text{ and } y_k \neq c]}{\sum_k [y_k \neq c]}$$

Агрегированный критерий (F1-мера):

$$M_2(X,Y) = \frac{2P_0R_0}{P_0+R_0}$$

Критерии М3 и М4

Критерий M3: точность и полнота отсева нерелевантных документов

Агрегированный критерий (F1-мера):

$$M_3(X,Y) = \frac{2P_{-1}R_{-1}}{P_{-1}+R_{-1}}$$

Критерий М4: точность определения числа мнений Обозначим через K_x и K_y число различных мнений в разметках X и Y соответственно.

$$M_4(X,Y) = \frac{\min\{K_x,K_y\}}{\max\{K_x,K_y\}}$$

- 1 Актуальность
- 2 Постановка задачи
- З Данные
- 4 Метрики
 BCubed
 Согласованность асессоров
- 5 Эксперименты
- 6 Архитектура модели
- 7 Результат

Асессоры

Проверка, насколько асессоры совпадают в своих разметках. Полученные значения используются для сравнения с качеством работы алгоритма.

$$M_3(X,Y) = \underset{\substack{i,j \in \{1,2,3\}\\i \neq j}}{avr} M_3^{ij}$$

где $M_3^{\it y}$ - значение метрики M_3 для пары $\it i$ -го и $\it j$ -го асессоров Усредненные метрики принимают следующие значения:

	M1	M2	М3	M4
Разметка	0.64	0.62	0.93	0.69

- 1 Актуальность
- 2 Постановка задачи
- 3 Данные
- 4 Метрики
- 5 Эксперименты
- 6 Архитектура модели
- 7 Результат

Нерелевантные документы

- OPTICS (обобщение DBSCAN)
- Isolation Forest

Рис. 2: Зависимость метрики М3 от числа деревьев

OneClassSVM

Нерелевантные документы

OneClassSVM

Сравнение разных типов ядер:

	linear	rbf	poly	
M3	0.680	0.632	0.682	

Сравнение разных степеней полинома:

	1	2	3	4	5	6	7	8
М3	0.666	0.666	0.682	0.672	0.671	0.684	0.680	0.669

Сравнение порогов ожидаемой доли шума:

Нейтральные документы

Анализ эмоциональной окраски. Три подхода:

- проверка наличия / отсутствия эмоционально окрашенных именованных сущностей
- 2 дополнительно проверяется гипотеза, что сентименты разной окраски могут друг друга компенсировать
- если сентименты отсутствует, проводится анализ всего текста при помощи предобученных моделей библиотеки SpaCy

Сравнение полученных значений

•	epablicative mony termbia and term				
		Подход 1	Подход 2	Подход 3	
	M2	0.64	0.65	0.68	

Кластеризация мнений

Решение на основе Tf-Idf сентиментов

Сравнение инициализаций:

	M1	M4
KMeans	0.639	0.685
KMeans++	0.650	0.696

Подбор числа кластеров (Elbow Technique):

Кластеризация мнений

SPO триплеты

SPO = subject-predicate-object

Рассматриваются триплеты вида:

- 1 субъект глагол объект
- 2 субъект причастие объект
- 3 существительное есть существительное
- 4 существительное есть прилагательное

Решение на основе Tf-Idf SPO триплетов

		M1	M4
ĺ	KMeans++	0.680	0.720

- 1 Актуальность
- 2 Постановка задачи
- 3 Данные
- 4 Метрики
- 5 Эксперименты
- 6 Архитектура модели
- Результат

Трехступенчатая модель:

- выделение нерелевантных сообщений (OneClassSVM / Isolation Forest) на основе семантической близости
- выделение нейтральных, используя предоставленную информацию об эмоциональной окраске именованных сущностей; а в случае, если такая информация отсутствует, определение сентимента средствами библиотеки SpaCy
- кластеризация мнений на основе Tf-Idf эмоционально окрашенных именованных сущностей и SPO-триплетов при помощи Elbow Technique и KMeans++

- 1 Актуальность
- 2 Постановка задачи
- **3** Данные
- 4 Метрики
- 5 Эксперименты
- 6 Архитектура модели
- 7 Результат

Полученный результат

Сравнение полученных значений метрик:

	M1	M2	M3	M4
Разметка	0.64	0.62	0.93	0.69
Sem Dist + Sentiment	0.67	0.63	0.85 / 0.9	0.73
Sem Dist + SPO	0.68	0.63	0.85 / 0.9	0.72
Sem Dist + Sentiment + SPO	0.70	0.68	0.85 / 0.9	0.77

Выводы

Разработана трехступенчатая модель, последовательно выделяющая нерелевантные, нейтральные документы и разделяющая релевантные документы на кластеры-мнения. Было показано, что

- существует несколько рабочих стратегий выделения нерелевантных (в зависимости от наличия информации о датасете)
- использование эмоционально окрашенных именованных сущностей является более корректным и полезным методом, чем применение всей лексики
- **3** комбинация SPO триплетов и эмоционально окрашенных именованных сущностей повышает качество
- отсутствует явная зависимость качества работы модели от размера корпуса документов

