

به نام خدا آزمایش پنجم شبکه های بیسیم استاد: دکتر سید وحید ازهری

لطفاً پیش از حل کردن تمرین به نکات زیر توجه کنید:

- ۱. به زبان فارسی بنویسید.
 - ٢. لطفاً كبي نكنيد!
- ۳. برای قسمت هایی که با علامت " * " مشخص شده اند تصویر اجرای تمرین را نیز در فایل جواب خود ضمیمه کنید.
 - ٤. گزارش را در قالب فایل PDF و با شماره دانشجویی خودتان تحویل دهید. (مثلا ٩٣٣٣٣٣٣.pdf)
- ه فایل گزارش و کدهای خواسته شده را در کنار هم قرار داده و در قالب فایلی به نام شماره دانشجویی خودتان فشرده کنید.(مثلا ۹۳۳۳۳۳۳.zip)
 - در صورت برخورد با هرگونه مشکل در حل تمرین به karimy.f9۲@gmail.com پیام بدهید.

در این آزمایش قصد داریم به کمک پارامترهای انتشار که قبلا بدست آورده بودیم، فاصله ی خود را از اکسس پوینت تخمین بزنیم. در آزمایش قبلی، پارامتر های انتشار را برای محیط اطراف خودمان بدست آوردیم. اکنون می خواهیم از پارامترها و روابط، برای یافتن فاصله ی یک سیستم به خصوص از اکسس پوینت استفاده کنیم. با سیستم مورد نظر به اکسس پوینت وصل شده و قدرت سیگنال دریافتی را بدست می آوریم.

- ۱. ابتدا یک برنامه بنویسید که قدرت سیگنال را در مکان فعلی شما بدست آورد.(احتمالا در آزمایش های قبلی همین کد را نوشته اید!)
- ۲. سپس برنامه ی دیگری نوشته که به عنوان ورودی قدرت سیگنال را دریافت کند. خروجی تابع باید دو مقدار r_1 و r_2 باشد. با احتمال ۹۵% مکان شما در حلقه ای حول اکسس پوینت واقع شده که شعاع دایره های داخلی و خارجی آن r_2 و r_3 است. از مقادیر توان افت مسیر و انحراف معیار محیط خودتان که در آزمایش قبل بدست آورده بودید، استفاده کرده و به کمک رابطه ی زیر فاصله ی تخمینی خود را محاسبه کنید: (می توانید از جدول توزیع استاندارد که در انتها آمده است، استفاده کنید)

$$P_r(d)[dBm] = P_t[dBm] - PL(d) - 1 \cdot nlog\left(\frac{d}{d}\right) \pm z\sigma$$

۳. فاصله ی تخمینی خود را رسم کنید؛ یک حلقه به مرکز اکسس پوینت و با شعاع داخلی و خارجی r_1 و r_2 . به عنوان نمونه به تصویر زیر توجه کنید. ما سیستم خود را در مختصات (۱۵۰،۵۰) قرار دادیم. قدرت سیگنال را اندازه گرفتیم و با استفاده

از پارامترهایی که قبلا پیدا کرده بودیم، دو شعاع بدست آوردیم. طبق فرمول بخش یک سیستم ما با احتمال ۹۰% در حلقه ی آبی قرار دارد که خوشبختانه درست است!*

٤. فاصله ی حقیقی سیستم خود از اکسس پوینت را D در نظر بگیرید. میزان خطا را بدست آورید.

$$error = |D - D_{estimate}|$$

- ه. بخش دوم و چهارم را دوباره امتحان کنید. حداقل سیستم خود را در ۱۰ نقطه ی متفاوت قرار دهید. فاصله ی تخمینی و خطا را بدست آورید. میانگین خطا چقدر است؟
- ٦. اگر به خاطر داشته باشید در آزمایش ٤ با تعیین نقطه ی مرزی مقادیر مختلفی برای توان افت مسیر و انحراف معیار بدست آوردیم. حالا یک نقطه ی مرزی (breakpoint) در نظر می گیریم. فرض می کنیم که می دانیم سیستم ما قبل و یا بعد از نقطه ی مرزی قرار دارد. اگر در رابطه ی بخش ۱ بجای یک مقدار ثابت توان، از دو مقدار استفاده کنیم، میزان خطا چه تغییری خواهد کرد؟
- ۷. یک اکسس پوینت دیگر در محیط قرار دهید و این بار به آن متصل شوید. پارامترهای افت مسیر و انحراف معیار را برای آن نیز بدست آورید. همان برنامه ی بخش یک و دو را برای این اکسس پوینت اجرا کنید. حالا فاصله ی تخمینی خود را از این دو اکسس پوینت رسم کنید. این بار باید دو حلقه رسم شود.*
- ۸. بجای رابطه ی بخش اول چه روش دیگری به نظرتان می رسد؟ آیا می توانید به کمک روش دیگری قدرت تخمین خود را بالا ببرید و میزان خطا را کمتر کنید؟

P(Z<lpha) برای (Z توزیع نرمال استاندارد (توزیع

_ z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998