Question 1 (2 points)

True or False? Show your work!

(a)
$$2^{n+1} = O(2^n)$$

(b)
$$2^{2n} = O(2^n)$$

Question 2 (3 points)

For each of the following pairs of functions, either f(n) is in O(g(n)), f(n) is in $\Omega(g(n))$, or $f(n) = \Theta(g(n))$. Determine which relationship is correct and briefly explain why.

(a)
$$f(n) = \sqrt{n}$$
 and $g(n) = \log(n^2)$

(b)
$$f(n) = 2^n \text{ and } g(n) = 3^n$$

(c)
$$f(n) = 2\sqrt{(n)} + \log(n)$$
 and $g(n) = \sqrt{(n)} + 5$

Question 3 (2 points) Why is $n^2 = O(2^n)$

Question 4 (3 points)

For each of the following pairs of functions f(n) and g(n), give a minimal positive integer constant Csuch that $f(n) \leq C \cdot g(n)$ for all n > 1.

(a)
$$f(n) = n^2 + n + 1$$
 and $g(n) = 2n^3$

(b)
$$f(n) = n \cdot \sqrt{n} + n^2$$
 and $g(n) = n^2$

(c)
$$f(n) = n^2 - n + 1$$
 and $g(n) = \frac{n^2}{2}$