工创赛总结与改进——方案分享

元件方案

元 件	型号	数量	单 价	总价	淘宝链接	备注
电机	直流减速电机-光 电编码器	4	53	212	驰海电机光电编码器直流有刷减速电机	50减速比12V光电编 码器
麦轮	70mm麦克纳姆轮 *4	1	356	356	天府之土 麦克纳姆 轮四个356	6mm联轴器
关节 电机	HP8-U45-M	3	295	894	fashionstar 伺服总线 舵机45kg 低压 360 度磁编码 器	单轴,低压
关 节 电 机	HA8-U25	2	95	190	25KG总线 <u>伺服舵机</u>	单轴,双轴各一个, 一个用在物料台,一 个用在爪子;和 45kg的是一家的, 协议相同。
摄 像 头	USB免驱摄像头	1	125	125	<u>1080P150</u> 度线长 <u>1.5m</u>	1080P150超广角
主控	STM32F407VET6	1	50	50	<u>反客科技</u> 板子	无
图像处理模块	旭日X3派V1.2	1	329	329	老版本好 像找不到 了, 这个 是V2.0版 本, 都差 不多	RDK X3就是新版 本,不影响。
电池	疾风3s锂电池	1	105	105	<u>疾风锂电</u> 池	3s T型头 5200mah 40C
生维	优信电子家的二				<u>二维码识</u>	

码 扫 描	维码识别模块	1	95	95	別模块	
陀 螺 仪	HWT101	1	337	337	<u>单轴水晶</u> <u>陀螺仪</u>	没必要
总 计				2595		

再加上耗材,线材,PCB元件之类的,应该3000左右,尽管便宜,但并不好,电机不是很好,图像处理够用,但一边调试一边图像处理会很卡,陀螺仪性能过剩了,关节电机略贵,我建议可以整步进电机,又准又便宜,不会写代码就用FOC模块

建议元件更迭

元 件	型号	数量	单价	总 价	淘宝链接	备注
电机	42步进电机	4	35	140	张大头42步进电机	长度48mm
闭环控制器	EMM42_V5.0_Can 通信	4	57	228	张大头步进电机伺服控制器	CAN总线通信或者485通信 都行,级连的话注意通信速 度够不够,好多电机呢,可 能要加can总线扩展板。
机械臂关节电	也用步进电机最好					

机						
主 控 +陀 螺 仪	大疆A板或者达妙 的DM-MC02 (H723)	1	199 (达 妙)	199	达妙电机控制板	大疆的A板也可以,代码很多,达妙的DM-MC02是H7主控,MC01是F4,MC01没有板载陀螺仪,我更喜欢DM-MC02,H7真好玩

方案

选什么元件,要根据题目需求,自己的需求定,你要使用什么样的机械臂,什么样的运动方式,定了之后,再去选择相应的元件。

这里给大家分享一个提高车车运行速度,也很有用的设计点。

这个地方,因为转盘运动,绝大部分队伍都是选择在这里使用摄像头监视,"等待"目标物料 转到自己面前

物料更迭的速度最快也要6s, 所以在这个地方, 按照我们大多数队伍的方案, 最多需要花费: 12s+12s+12s=36s, 最少也需要12s; 而且往往我们写代码并不会看到就抓, 因为我们不知道下一秒物料是不是就转走了, 我们可能会放弃第一次看到物料就是目标物料而去抓的机会, 因为这绝大多数抓了就寄。自己实践就知道了。

有些大佬,以及我的队友徐狗蛋,想到了一种方法,**我们不再原地等待,我们用摄像头扫描整个转盘,或者扫描两个物料,就可以获得原料区物料随时间变化各个颜色物料的位置状态,然后我们的机器人不再等待目标物料来到跟前再去抓,我们使用有效范围更长的机械臂,在物料停稳定后,机械臂伸出去,直接去拿我们想要的,化被动为主动。**这样每次都可以控制在15s左右拿完物料;甚至更低,不用等它停稳,直接抓,能做到的队那么他们的机械臂控制绝对相当牛逼,那么后面的环节,放置物料什么的更不在话下。

而且,因为这个方案点,我们给机器人扩展了一种新的摄像头运用方式,扫描物料台;如果 我们队在2023年,使用了这个方案,那么面对决赛题目,就不会那么无力了,因为这个方 法可以解决决赛题目最难的两个点位;

2023年徐总提了这个方案,我没用,否了,原因很简单,2023比赛题目中规定了机器人以及机器人投影不能出界,不是压到黄色地区,而是直接说了不能出界,原料区的转盘有一半在场地外;郑州省赛上很多模糊不清的规则大都直接判犯规了,好不容易进国赛了,我不愿意冒险;还有一个原因当时我没给徐说,我们的机械臂结构根本做不到,我不想拆不想改,时间不够了。

但2025年不一样了,比赛文件中直接说了机械臂只要符合规定,随便去哪里。随意读到这个总结的学弟学妹们,一定要认真思考一下面对这种转盘式的物料台,需不需要制定这样的 化被动为主动的方案,如果决定做了,对机械臂设计,摄像头位置,都有很大影响。