CS60073: Advanced Machine Learning

Class Test I

Time: 1 hrs, Marks: 20 (4 X 5)

Solve the problem <u>neatly</u> on paper. Write your <u>Name and Roll number</u> clearly on top of the paper. Take photograph of the paper(s) and convert to a SINGLE pdf file. Upload the file in MS Teams.

1. Let vector \mathbf{V}_t denote the values of a set stocks on the t-th day. The change of stock values is governed by the following model -

$$V_t = MV_{t-1} + \eta_t$$
 for $t > 1$

where M is a given matrix and η_t is a zero mean Gaussian noise vector with covariance $\sigma^2 I$.

Also, $p(\mathbf{V}_1) = \mathcal{N}(\mathbf{0}, \Sigma)$ is a Gaussian. Further, let \mathbf{Y}_t be an economic index with the linear relation –

$$\mathbf{Y}_t = \mathbf{N}\mathbf{V}_t + \mathbf{\varepsilon}_t$$

where N, is known, and ε_t is a zero mean Gaussian noise with covariance $\tau^2 I$. The η and ε noise vectors are uncorrelated.

- i. Show that V_1 , V_2 , ..., V_t is Gaussian distributed.
- ii. Show that the covariance matrix of V_1 , V_2 , ..., V_t has elements, $M^{t'-t}\Sigma$ if $t \neq t'$, and $M^t\Sigma(M^t)^T$ if t = t'. M^t is the M matrix raised to power t.
- iii. Explain if V_1 , V_2 , ..., V_t is a Gaussian Process.
- iv. Show that the sequence \mathbf{Y}_1 , \mathbf{Y}_2 , ..., \mathbf{Y}_t is a Gaussian Process.