

Course > Final A... > 2.0 Mo... > 2.1 Qui...

2.1 Quiz: Pendulum Model

□ Bookmark this page

Recall our pendulum model:

$$rac{d^2 heta}{dt^2} = -rac{g}{l}{
m sin}(heta)$$

Question 1: Think About It...

1/1 point (graded)

How does the ideal pendulum model differ from a real-world pendulum, like in a clock? What assumptions are not completely valid?

The rod may bend or stretch.

The entire mass m of the pendulum is not concentrated at the center of the bob. The rod has some mass.

Thank you for your response.

Explanation

A clock pendulum may experience some friction or air resistance and its rod is not mass-less. Some of these assumptions mean this model is not a perfect model. However, it still may provide us some interesting insights.

Submit

You have used 1 of 2 attempts

Answers are displayed within the problem

Question 2

1/1 point (graded)

Let's consider two different pendulums at a specific instant in time at which both pendulums are at an angle of θ_0 away from the vertical. Pendulum A has a rod of length l=1, and pendulum B has a rod of length l=2. For which pendulum, if any, is the absolute value of the angular acceleration $\left|\frac{d^2\theta}{dt^2}\right|$ greatest at this moment in time?

View Larger Image Image Description

• The value of $\left| \frac{d^2 \theta}{dt^2} \right|$ is greater for the shorter pendulum A than for the longer pendulum B.

- The value of $\left|\frac{d^2\theta}{dt^2}\right|$ is greater for the longer pendulum B than for the shorter pendulum A.
- The value of $\left| \frac{d^2 \theta}{dt^2} \right|$ is the same for the shorter pendulum A as for the longer pendulum B.
- We cannot tell which pendulum has the greater value of $\left|\frac{d^2\theta}{dt^2}\right|$ until we select units and have a value for g.

Explanation

We know that $rac{d^2 heta}{dt^2}=-rac{g}{l}\sin(heta_0).$ For pendulum A, $rac{d^2 heta}{dt^2}=-rac{g}{1}\sin(heta_0).$ For pendulum B, $rac{d^2 heta}{dt^2}=-rac{g}{2}\sin(heta_0).$

In other words, the angular acceleration $\frac{d^2\theta}{dt^2}$ for the shorter pendulum A is two times the acceleration for the longer pendulum B, so the absolute value is larger for A.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Question 3

1/1 point (graded)

The function heta(t) describing how the angle of the pendulum's swing changes over time satisfies the differential equation

$$rac{d^2 heta}{dt^2} = -rac{g}{l}{
m sin}(heta)$$

Which of the functions below, if any, is a solution to this differential equation?

(Hint: You do not need to solve the differential equation; just test whether each function is a solution or not.)

$$\theta(t) = rac{g}{l} \sin(heta)$$

$$hinspace hinspace hin$$

$$heta hinspace heta(t) = \sin(\sqrt{rac{g}{l}}t)$$

$$heta hinspace heta(t) = -\sin(\sqrt{rac{g}{l}}t)$$

None of the above.

Explanation

We calculate $\frac{d^2\theta}{dt^2}$ and $-\frac{g}{l}\sin(\theta)$ for each of the possible responses and see if they are equal.

For example, if we define $\theta(t)=\frac{g}{l}\sin(t)$ then $\frac{d^2\theta}{dt^2}=-\frac{g}{l}\sin(t)$. This looks promising, until we realize that

$$-rac{g}{l} ext{sin}(heta)=-rac{g}{l} ext{sin}\Big(rac{g}{l} ext{sin}(t)\Big)$$

when
$$heta(t)=rac{g}{l} ext{sin}(t)$$
 .

Since $-rac{g}{l}\sin(heta)
eq -rac{g}{l}\sin(t)$,this choice of heta(t) is not a solution.

In fact, none of the definitions of $\theta(t)$ suggested above solves the differential equation given. (Note that choice (a) does not make sense, because θ is in the definition of the function θ .) Solving the differential equation is beyond the scope of this course; the solution is not in terms of

elementary functions.

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

Question 4

1/1 point (graded)

In the next section, we will further simplify our model by assuming $m{ heta}$ is a small angle.

Which of the following is the linear approximation of $y=\sin(\theta)$ at $\theta=0$? (By linear approximation, we mean the tangent line approximation to the function $y=\sin(\theta)$ when $\theta=0$.)

You can add an optional tip or note related to the prompt like this.

$$ullet$$
 $y=0$, or $\sin hetapprox 0$ for small $heta$

$$ullet$$
 $y= heta$, or $\sin hetapprox heta$ for small $heta$

~

$$y = heta + 1$$
, or $\sin heta pprox heta + 1$ for small $heta$

$$lacksquare y = heta \cos(heta)$$
, or $\sin heta pprox heta \cos(heta)$ for small $heta$

None of the above.

Explanation

The function $y = \theta \cos(\theta)$ is not linear, so we can eliminate this option immediately.

The graph of the sine function goes through the point (0,0). When $\theta=0$, the slope of the graph of $\sin(\theta)$ will be $\cos(0) = 1$. Thus, a good linear approximation would be a line through the origin with slope 1. This is the line $y = \theta$.

You can observe this is a good approximation using a scientific calculator. When $m{ heta}$ is small, we can see the value of $\sin(\theta)$ is very close to the value of θ .

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Learn About Verified Certificates

© All Rights Reserved

© 2012–2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open edX logos are registered trademarks or trademarks of edX Inc. | 粤ICP备17044299号-2

