Вопросы и билеты

Содержание

_	
1	Семестр
2	Семестр 2.1 Математический анализ 2.2 Физика 2.3 Линейная алгебра
1	Семестр
2	Семестр
2.	1 Математический анализ
Бі	илет 1:
	1. Признаки сравнения сходимости несобственных интегралов.
	2. Формула Тейлора для функции нескольких переменных.
	3. Переход к пределу под знаком интеграла для семейства фукнций
Бі	илет 4:
	1. Компактные множества в метрических пространствах. Необходи мое условие компактности.
	2. Признак Раабе.
	3. Ряды Фурье. Коэффициенты тригонометрического ряда Фурье.
Бі	илет 5:
	 Связность и линейная связность. Образ связного множества при непрерывном отображении.
	2. Признак Дирихле для числового ряда.
	3. Переход к пределу под знаком интеграла для семейства функций

Билет 6:

- 1. Критерий компактности в \mathbb{R}^n .
- 2. Признак Даламбера сходимости положительного ряда.
- 3. Дифференцируемость интеграла, зависящего от параметра.

Билет 7:

- 1. Образ компакта при непрерывном отображении.
- 2. Формула Коши-Адамара.
- 3. Бета-функция и её свойства.

Билет 8:

- 1. Достаточное условие дифференцируемости в терминах частных производных.
- 2. Критерий сходимости положительного ряда.
- 3. Равенство Парсеваля и неравенство Бесселя.

Билет 9:

- 1. Теорема о дифференцируемости композиции дифференцируемых функций.
- 2. Равномерная сходимость и интегрирование.
- 3. Разложение в ряд Тейлора: ln(1+x), arctg(x).

Билет 10:

- 1. Связность и линейная связность. Образ связного множества при непрерывном отображении.
- 2. Достаточное условие абсолютного экстремума.
- 3. Интегральный признак сходимости.

Билет 11:

- 1. Инвариантность первого дифференциала.
- 2. Совпадение смешанных частных производных.
- 3. Равномерная сходимость несобственных интегралов, зависящих от параметра. Аналог теоремы Вейерштрасса.

Билет 12:

- 1. Равномерная непрерывность. Обобщение теоремы Кантора.
- Теорема Абеля о поведении степенного ряда на границе интервала сходимости.
- 3. Признак Дини.

2.2 Физика

Билет 3:

- 1. Идеальный газ. Агрегатные состояния вещества. Закон Дальтона.
- 2. Молекулярно-кинетическая формулировка температуры и теплового равновесия.

Билет 4:

- 1. Теплоёмкость.
- 2. Распределение Ферми-Дирака

Билет 9:

- 1. Статистика Бозе-Эйнштейна.
- 2. Вязкость газа; внутреннее трение; коэффициент вязкости; сила вязкого трения; оценка коэффициента вязкости.

Билет 10:

- 1. Термодинамические процессы; квазистатические процессы (обратимые); адиабатическое расширение и сжатие (общий вид, примеры).
- 2. Спектр излучения абсолютно чёрного тела; распределение по степеням свободы для электромагнитного излучения; формула Планка; закон Стефана-Больцмана; закон Вина.

Билет 13:

- 1. Второе начало термодинамики.
- 2. Фазы вещества: классификация и условие равновесия.

Билет 14:

- 1. Обратимые круговые процессы. Идеальный газ. Цикл Карно.
- 2. Вывод уравнения Клайперона-Клаузиуса.

Билет 17:

- 1. Энтропия обратимых и необратимых процессов. Неравенство Клаузиуса.
- 2. Поверхностное натяжение и его термодинамический смысл (связь коэффициента полезного действия с температурой).

Билет 18:

1. Коэффициент полезного действия в необратимом круговом процессе (физические причины необратимости; примеры).

2. Смачивание и несмачивание; условие равновесия границы; краевой угол (примеры).

Билет 19:

- 1. Реальные газы (определение); газ Ван-дер-Ваальса (уравнение; изотермы в координатах P(V); внутренняя энергия; теплоёмкость).
- 2. Соотношение между давлением и кривизной поверхности; формулы Лапласа; закон Жюрена.

Билет 20:

- 1. Термодинамическое и статистическое определение макропараметров физической системы. Эргодические системы.
- 2. Характер движения отдельной частицы в газе. Длина свободного пробега. Среднеквадратичное отклонение частицы от начального положения.

2.3 Линейная алгебра

- **Билет 2:** Подпространства. Разложение подпространства в прямую сумму подпространств. Примеры разложения на подпространства.
- Билет 17: Унитарные операторы и их матрицы. (Всё, что знаете)
- Билет 18: Ортогональные операторы и их матрицы. (Всё, что знаете)
- **Билет 20:** Квадратичные формы: определение и диагонализация методом ортогональных преобразований. Закон инерции.
- Билет 21: Метод Якоби диагонализации квадратичных форм.
- **Билет 22:** Положительно определённые квадратичные формы и операторы в терминах квадратичных форм. (Определение; Необходимые и достаточные условия)
- Билет 24: Одновременная диагонализация квадратичных форм