Observation of the Stratorotational Instability with a Large Density Gradient

Bruce Rodenborn, Ahbay Argarwal and Harry L. Swinney

Center for Nonlinear Dynamics University of Texas at Austin

Background and Motivation

- Stratification suppresses onset of Taylor vortices, i.e. stabilizing if $\Omega_o=0$ (Thorpe 1968)
- Destabilizes Couette flow when $d\Omega/dr < 0$ (Yavneh, McWilliams and Molemaker 2001)
- Protoplanetary disks: $\frac{d\Omega}{dr}\sim -\frac{3}{2}r^{-5/2}$ and are stratified, is SRI important?
- SRI analyses assume Boussinesq approximation

Couette Flow with Axial Density Gradient

• Reynold's Number:
$$Re \equiv \frac{\Omega_i r_i (r_o - r_i)}{\nu}$$

• Buoyancy frequency:
$$N \equiv \sqrt{-\frac{g}{\rho} \frac{d\rho}{dz}}$$

• Froude Number: $Fr \equiv \Omega_i/N$

Taylor-Couette Phase Diagram

Experiment with $\Delta \rho/h = 100\%$

Onset of SRI: $\Delta \rho/h = 100\%$

Data Collection

- SRI is present
 with the large
 density gradient
 outside of the
 Boussinesq limit
- Supercritical Hopf bifurcation
- Spectral
 Analysis: FFT of pixel values across movie frames

Spectral Analysis

Inner Cylinder = 0.600 Hz, Outer Cylinder = 0.467 Hz

Spectral Analysis

Summary

- Strato-rotational instability is found outside of Boussinesq limit
- Frequency gives m-number of wave
- m=2 and m=3 modes lock to each other at onset of SRI when Fr=.5