

planetmath.org

Math for the people, by the people.

equivalence class of equinumerous sets is not a set

 ${\bf Canonical\ name} \quad {\bf Equivalence Class Of Equinumerous Sets Is Not A Set}$

Date of creation 2013-03-22 18:50:34 Last modified on 2013-03-22 18:50:34

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 4

Author CWoo (3771)

Entry type Result Classification msc 03E10 Recall that two sets are equinumerous iff there is a bijection between them.

Proposition 1. Let A be a non-empty set, and E(A) the class of all sets equinumerous to A. Then E(A) is a proper class.

Proof. $E(A) \neq \emptyset$ since A is in E(A). Since $A \neq \emptyset$, pick an element $a \in A$, and let $B = A - \{a\}$. Then $C := \{y \mid y \text{ is a set, and } y \notin B\}$ is a proper class, for otherwise $C \cup B$ would be the "set" of all sets, which is impossible. For each y in C, the set $F(y) := B \cup \{y\}$ is in one-to-one correspondence with A, with the bijection $f : F(y) \to A$ given by f(x) = x if $x \in B$, and f(y) = a. Therefore E(A) contains F(y) for every y in the proper class C. Furthermore, since $F(y_1) \neq F(y_2)$ whenever $y_1 \neq y_2$, we have that E(A) is a proper class as a result.

Remark. In the proof above, one can think of F as a class function from C to E(A), taking every $y \in C$ into F(y). This function is one-to-one, so C embeds in E(A), and hence E(A) is a proper class.