(1) Method of moment estimator

Let X_1, \ldots, X_n be a random sample from a population with pdf

$$f(x) = \begin{cases} \frac{\theta x^{\theta-1}}{3^{\theta}}, & 0 < x < 3\\ 0, & \text{otherwise} \end{cases}$$

where $\theta \in \mathbb{R}^+$ is unknown parameter.

- (a) Show that the method of moments estimator for θ is $T_n = \frac{\bar{X}}{3-\bar{X}}$.
- (b) Find the limiting distribution of $\frac{T_n \theta}{\frac{1}{\sqrt{n}}}$ as $n \to \infty$.

$$\alpha)_{M(\theta)} = \int_{0}^{3} \frac{\theta \times^{\theta-1}}{3\theta} \times dx = \theta \int_{0}^{3\theta} \left[\frac{x^{\theta+1}}{\theta+1} \right]_{X=0}^{3\theta} = \frac{\theta}{\theta+1} \int_{0}^{3\theta} \frac{1}{X} \left(\frac{1}{X} \right) \left(\frac{1}{X} - \frac{1}{X} - \frac{1}{X} - \frac{1}{X} - \frac{1}{X} \right) \left(\frac{1}{X} - \frac{$$

b)
$$g:]0, 3[\rightarrow \mathbb{R}: y \mapsto \frac{y}{3-y}]$$
, $g'(y) = (3-y)^{-7} + y(3-y)^{-2} = \frac{3-y+y}{(3-y)^2} = \frac{3}{(3-y)^2}$
 $(5(\theta))^2 - (\mu(\theta))^2 = \int_0^3 \frac{\theta \times \theta^{-1}}{3\theta} \times^2 d(x = \theta)^{-\theta} \left[\frac{x^{\theta+2}}{\theta+2} \right]_0^3 = \frac{9\theta}{\theta+2} \Rightarrow (5(\theta))^2 = \frac{9\theta}{\theta+2} - \frac{9\theta^2}{(\theta+1)^2}$
 $\Rightarrow (5(\theta))^2 = ((6+2)(\theta+1)^2)^{-7} (9\theta(\theta+1)^2 - 9\theta^2(\theta+2))$
 $= (16+2)(\theta+1)^2)^{-7} (9\theta^3 + 18\theta^2 + 9\theta - 9\theta^3 - 18\theta^2) = 9\theta((\theta+1)(\theta+1)^2)$
By CLT, we have $\sqrt{n} (X - \frac{3\theta}{\theta+1}) \xrightarrow{d} V \sim \mathcal{N}(0, (5(\theta))^2) = \mathcal{N}(0, \frac{9\theta}{(\theta+2)(\theta+1)^2})$.
 $g(\frac{3\theta}{\theta+1}) = \frac{3\theta}{3-\frac{1}{2}} = \frac{3\theta}{3(\theta+1)-3\theta} = \frac{3\theta}{3(\theta+3-3\theta)} = \theta$

We apply the della method and obtain

$$\sqrt{n} \left(T_{n} - \Theta \right) = \sqrt{n} \left(\varphi \left(\overline{x} \right) - \varphi \left(\frac{3\theta}{\theta + 1} \right) \right) \longrightarrow \mathcal{N} \left(O_{1} \left(\overline{G}(\theta) \right)^{2} \left(y' \left(\frac{3\theta}{\theta + 1} \right) \right)^{2} \right)$$

$$q' \left(\frac{2\theta}{\theta + 1} \right) = \frac{3}{\left(3 - \frac{3\theta}{\theta + 1} \right)^{2}} = \frac{3(\theta + 1)^{2}}{\left(3(\theta + 1) - 3\theta \right)^{2}} = \frac{(\theta + 1)^{2}}{3}$$

$$= \left(\overline{G}(\theta) \right)^{2} \left(\varphi' \left(\frac{3\theta}{\theta + 1} \right) \right)^{2} = \frac{q_{\theta}}{(\theta + 2)(\theta + 1)^{2}} \cdot \frac{(\theta + 1)^{4}}{q} = \frac{\Theta(\theta + 1)^{2}}{\theta + 2}$$