Recitation 12

We want to minimize a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$. Remember: We say that $x \in \mathbb{R}^n$ is

- a critical point of f if $\nabla f(x) = 0$.
- a global minimizer of f if $\forall x' \in \mathbb{R}^n$, $f(x) \leq f(x')$.
- a local minimizer of f if there exists $\delta > 0$ such that for all $x' \in B(x, \delta)$, $f(x) \le f(x')$, where $B(x, \delta) = \{x' | \|x' x\| \le \delta\}$.

Theorem (First order necessary conditions)

Let $x \in \mathbb{R}^n$ be a point at which f is differentiable. Then,

$$x$$
 is a local minimizer of $f \implies \nabla f(x) = 0$

Theorem (Second order sufficient conditions)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a twice-differentiable function. Let $x \in \mathbb{R}^n$ be a critical point of f, i.e. $\nabla f(x) = 0$. Then,

- If H f (x) is positive definite (that is, if all the eigenvalues of H f (x) are strictly positive), then x is a local minimizer of f.
- If H f (x) is negative definite (that is, if all the eigenvalues of H f (x) are strictly negative), then x is a local maximizer of f.
- If H f (x) admits strictly positive eigenvalues and strictly negative eigenvalues, then x is neither a local maximum nor a local minimum. We call x a saddle point.

The theorem in the previous slide begs for a study of the case in which $x \in \mathbb{R}^n$ is a critical point of f such that Hf(x) is positive semidefinite (and similarly negative semidefinite).

- 1. Give an example of a twice-differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$ with a local minimizer x such that Hf(x) is positive semidefinite.
- 2. Give an example of a twice-differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$ with a critical point x of f that is not a local minimizer and such that Hf(x) is positive semidefinite.

1. Give an example of a twice-differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$ with a local minimizer x such that Hf(x) is positive semidefinite.

2. Give an example of a twice-differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$ with a critical point x of f that is not a local minimizer and such that Hf(x) is positive semidefinite.

2. Give an example of a twice-differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$ with a critical point x of f that is not a local minimizer and such that Hf(x) is positive semidefinite.

Remember: The problem we consider is

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i=1,\ldots,m,$
$$h_i(x)=0, \quad i=1,\ldots,p.$$
 (1)

with a variable $x \in \mathbb{R}^n$.

Theorem (KKT necessary conditions)

Assume that the functions $f,g_1,\ldots,g_m,h_1,\ldots,h_p$ are continuously differentiable. Assume that x is a solution of (1) with $\{\nabla g_i(x)|g_i(x)=0\}\cup\{\nabla f_i(x)|i\in\{1,\ldots,p\}\}$ a linearly independent set of vectors. Then there exists $\lambda_1,\ldots,\lambda_m\geq 0$ and $\nu_1,\ldots,\nu_p\in\mathbb{R}$ such that:

$$\nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x) = 0$$

and for all
$$i \in \{1, \ldots, m\}$$
, $\lambda_i = 0$ if $g_i(x) < 0$.

Using the KKT necessary conditions, find the minimum and the minimizer(s) of the following problem:

$$\label{eq:continuous_equation} \begin{split} & \text{minimize} \quad x_1^2 + x_2^2 \\ & \text{subject to} \quad 4 - (x_1 + 1)^2 - x_2^2 \leq 0 \end{split}$$

Using the KKT necessary conditions, find the minimum and the minimizer(s) of the following problem:

$$\label{eq:continuous_equation} \begin{split} & \text{minimize} \quad x_1^2 + x_2^2 \\ & \text{subject to} \quad 4 - (x_1 + 1)^2 - x_2^2 \leq 0 \end{split}$$

Using the KKT necessary conditions, find the minimum and the minimizer(s) of the following problem:

$$\label{eq:continuous_equation} \begin{split} & \text{minimize} \quad x_1^2 + x_2^2 \\ & \text{subject to} \quad 4 - (x_1 + 1)^2 - x_2^2 \leq 0 \end{split}$$

Definition (Lagrangian)

The Lagrangian of problem (1) is defined as:

$$L(x, \mu, \nu) = f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x)$$

Definition (Lagrange dual function and dual problem)

The Lagrange dual function is defined as

$$\ell(\mu,\nu) = \inf_{x \in \mathbb{R}^n} L(x,\mu,\nu)$$

and the dual problem is defined as

$$\begin{array}{ll} \text{maximize} & \ell(\mu,\nu) \\ \text{subject to} & \lambda_i \geq 0, \quad i=1,\ldots,m \\ & \nu_i \in \mathbb{R}, \quad i=1,\ldots,p. \end{array} \tag{2}$$

Theorem (Weak duality)

The optimal value p^* of the primal problem (1) is larger or equal than the optimal value d^* of the dual problem (2):

$$d^{\star} = \sup_{\lambda \geq 0, \nu} \inf_{x \in \mathbb{R}^n} L(x, \lambda, \nu) \leq \inf_{x \in \mathbb{R}^n} \sup_{\lambda \geq 0, \nu} L(x, \lambda, \nu) = p^{\star}$$

Theorem (Slater's condition and strong duality)

We say that the problem (1) verifies Slater's condition if there exists a feasible point x such that $g_i(x) < 0$ for all $i \in \{1,...,m\}$. If the problem (1) is convex and verifies Slater's condition, then strong duality holds: $p^\star = d^\star$. Moreover if $p^\star = d^\star$ is finite then the optimal value of the dual problem is attained at some $(\lambda, \nu) \in \mathbb{R}^m > 0$.

Theorem (KKT necessary and sufficient conditions)

Assume that the functions f,g_1,\ldots,g_m are convex, differentiable and that h_1,\ldots,h_p are affine. Assume that strong duality holds, that $p^\star=d^\star$ is finite, and that the optimal value of the dual problem is attained at some $(\lambda,\nu)\in\mathbb{R}^m_{\geq 0}\times\mathbb{R}^p$. (This is for instance the case under Slater's condition).

Then $x \in \mathbb{R}^n$ is a solution of (1) if and only if x is feasible and

$$\begin{cases} \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{i=1}^{p} \nabla h_i(x) = 0 & \text{(stationarity)} \\ \lambda_i g_i(x) = 0 & \text{for all } i = 1, \dots, m & \text{(complementarity)} \end{cases}$$

Consider the primal problem of minimizing $f_0(x) = \frac{1}{2}x^\top Qx$ subject to h(x) = Ax - b, where Q is a symmetric positive definite $n \times n$ matrix and A is $m \times n$, with $m \le n$, with full rank m (in other words, A has m linearly independent rows. There are no inequality constraints.

- 1. Write down the Lagrangian $L(x, \nu)$.
- 2. Since $L(x,\nu)$ is convex, differentiable and bounded below in x, set its gradient to zero to find its minimizer and write down a formula for the Lagrange dual function $g(\nu)=\inf_x L(x,\nu)$ (as \inf can be replaced by \min , in this case).
- 3. Find the maximizer ν^* of the Lagrange dual function $g(\nu)$ (which is concave) by setting its gradient to zero. What is the dual optimal value $d^*=g(\nu^*)$?
- 4. Find the associated \hat{x} attaining the minimizer of the Lagrangian $L(x, \nu^*)$.

Consider the primal problem of minimizing $f_0(x) = \frac{1}{2}x^\top Qx$ subject to h(x) = Ax - b, where Q is a symmetric positive definite $n \times n$ matrix and A is $m \times n$, with $m \le n$, with full rank m (in other words, A has m linearly independent rows. There are no inequality constraints.

- 1. Write down the Lagrangian $L(x, \nu)$.
- 2. Since $L(x,\nu)$ is convex, differentiable and bounded below in x, set its gradient to zero to find its minimizer and write down a formula for the Lagrange dual function $g(\nu)=\inf_x L(x,\nu)$ (as \inf can be replaced by \min , in this case).
- 3. Find the maximizer ν^* of the Lagrange dual function $g(\nu)$ (which is concave) by setting its gradient to zero. What is the dual optimal value $d^*=g(\nu^*)$?
- 4. Find the associated \hat{x} attaining the minimizer of the Lagrangian $L(x, \nu^*)$.

- 5. Check whether \hat{x} is feasible for the primal problem (whether it satisfies Ax = b).
- 6. Find the primal value $f_0(\hat{x})$. If \hat{x} is primal feasible, then the optimal primal value $p^* \leq f_0(\hat{x})$.
- 7. Do you conclude that there is no duality gap, i.e., that $d^* = p^*$?
- 8. Is Slater's condition verified?

- 5. Check whether \hat{x} is feasible for the primal problem (whether it satisfies Ax = b).
- 6. Find the primal value $f_0(\hat{x})$. If \hat{x} is primal feasible, then the optimal primal value $p^* \leq f_0(\hat{x})$.
- 7. Do you conclude that there is no duality gap, i.e., that $d^* = p^*$?
- 8. Is Slater's condition verified?

1. Write down the Lagrangian $L(x, \nu)$.

2. Since $L(x,\nu)$ is convex, differentiable and bounded below in x, set its gradient to zero to find its minimizer and write down a formula for the Lagrange dual function $g(\nu)=\inf_x L(x,\nu)$ (as \inf can be replaced by \min , in this case).

3. Find the maximizer ν^* of the Lagrange dual function $g(\nu)$ (which is concave) by setting its gradient to zero. What is the dual optimal value $d^*=g(\nu^*)$?

4. Find the associated \hat{x} attaining the minimizer of the Lagrangian $L(x, \nu^*)$.

5. Check whether \hat{x} is feasible for the primal problem (whether it satisfies Ax = b).

6. Find the primal value $f_0(\hat{x})$. If \hat{x} is primal feasible, then the optimal primal value $p^* \leq f_0(\hat{x})$.

7. Do you conclude that there is no duality gap, i.e., that $d^* = p^*$?

8. Is Slater's condition verified?

Penalized & constrained problems

For $\lambda>0$, consider the ridge regression problem we saw in the previous recitation:

$$\min_{x \in \mathbb{R}^n} \{ \|Ax - y\|^2 + \lambda \|x\|^2 \}$$
 (3)

For t > 0, consider as well the constrained optimization problem

$$\min \quad ||Ax - y||^2$$

$$\text{st} \quad ||x||^2 \le t$$
(4)

Use the KKT conditions to show that when $y \notin \operatorname{Im}(A)$, the two problems are "equivalent" in the following sense: for all $\lambda > 0$ any solution of (3) is a solution of (4) for some t > 0, and vice versa, for all t > 0 any solution of (4) is a solution of (3) for some $\lambda > 0$.