

Arquitectura de Computadores - 22GIIN

Actividad 3 – 2da. Convocatoria - Portafolio

Gagliardo Miguel Angel

04 de Febrero de 2024

EJERCICIO 1. CARACTERÍSTICAS

- 1. El computador tiene palabras de **32 bits** y 32 registros de 32 bits.
- 2. La memoria es de 128 MB.
- 3. El juego de instrucciones se forma con el código de operación y el campo de cada operando, cuando aplica.
- 4. Todas las instrucciones deben representarse en 2 palabras
- 5. El conjunto de instrucciones es el siguiente:
 - **a.** 70 instrucciones de 3 operandos: 1 en registro y 2 en memoria. Adicionalmente tienen que almacenar la información que afecta las condiciones siguientes:
 - ZERO, No ZERO, ACARREO, No ACARREO;
 - **b.** 487 instrucciones de dos operandos: 1 en registro y 1 en memoria;
 - c. 504 instrucciones de un operando, en memoria;
 - **d.** 890 instrucciones de 0 operando.
 - e. En esta arquitectura, los modos de direccionamiento son implícitos en cada una de las instrucciones. No aparecen en el formato.

Se pide:

Definir (diseñar) el formato de cada tipo de instrucción, e incluir su descripción (formato) en forma gráfica. Todas las decisiones de diseño deben estar completamente justificadas y razonadas.

128 MB =
$$2^7 + 2^{20} = 2^{27}$$
 bytes

Total Palabras = 2^{27} / 32 bits = 2^{27} bytes / 2^2 bytes = 2^{25} palabras

Caracteristicas	Valores	Representación en bits
Tamaño de la Palabra	32 bits	32 bits
Memoria Total en Bytes	128 MB = 2 ²⁵	25 bits
Máxima dirección efectiva	2 ²⁵ - 1	25 bits
Modos de direccionamiento	Implicito	0 bits
Cantidad de Registros	32	5 bits (2 ⁵)
	3 operandos, 70 instrucciones	7 bits
Operaciones	2 operandos, 487 instrucciones	9 bits
operation to	1 operando, 504 instrucciones	9 bits
	0 operandos, 890 instrucciones	10 bits

Tabla 1. Tabla con instrucciones del Ejercicio 1. Elaboración propia

De la tabla anterior deducimos:

- Dado que el direccionamiento es implícito, no aparecerá en el formato tal como se indica en el ejercicio.
- Para la cantidad de registros necesitaremos 5 bits, dado que hay 32 como se indica en el enunciado, es lo que necesitaremos para su representación.
- Para cada tipo de operación, se incluye su representación en bits según la cantidad de operandos requeridos.
- a. 70 instrucciones de 3 operandos: 1 en registro y 2 en memoria. Adicionalmente tienen que almacenar la información que afecta las condiciones siguientes: ZERO, No ZERO, ACARREO, No ACARREO;

Dado que tenemos 4 condiciones, necesitaremos 2 bits para representarlas:

Condicion	Valor
ZERO	00
No ZERO	01
ACARREO	10
No ACARREO	11

Caracteristicas	Valores	Representación en bits
Operaciones de 3 Operandos	70 instrucciones	7 bits

Formato de Operación:

OPERACIÓN destino, Operando1, Operando2 (ZERO)

OPERACIÓN destino, Operando1, Operando2 (No ZERO)

OPERACIÓN destino, Operando1, Operando2 (ACARREO)

OPERACIÓN destino, Operando1, Operando2 (No ACARREO)

COD-OP	CONDICION	Registro	Operando 2	Operando 3
(C=7)	(D=2)	(R=5)	(P=25)	(P=25)

Tamaño de la Instrucción: C + D + R + 2P + S (bits no utilizados) = 7 + 2 + 5 + 2 * 25 + 0 =

64 bits (2 palabras)

Como se puede observar, en este caso **no hace falta** agregar bits no utilizados para llevar a múltiplo de 2 palabras, dado que la cuenta da exactamente 64 bits (o bien 2 palabras).

b. 487 instrucciones de dos operandos: 1 en registro y 1 en memoria.

Caracteristicas	Valores	Representación en bits
Operaciones de 2 Operandos	487 instrucciones	9 bits

Se lleva a múltiplo de 2 palabras agregando bits no utilizados.

Formato de Operación:

OPERACIÓN destino, Operando1

COD-OP	Registro	Operando 1	
(C=9)	(R=5)	(P=25)	(S=25)

Tamaño de la Instrucción: C + R + P + S (bits no utilizados) = 9 + 5 + 25 + 25 = 64 bits (2)

palabras)

c. 504 instrucciones de un operando, en memoria.

Caracteristicas	Valores	Representación en bits
Operaciones de 1 Operando	504 instrucciones	9 bits

Se lleva a múltiplo de 2 palabras agregando bits no utilizados.

Formato de Operación:

OPERACIÓN Operando1 (ZERO)

COD-OP	Operando 1	
(C=9)	(P=25)	(S=30)

Tamaño de la Instrucción: C + P + S (bits no utilizados) = 9 + 25 + 30 = 64 bits (2 palabras)

d. 890 instrucciones de 0 operando.

Caracteristicas	Valores	Representación en bits
Operaciones de 0 Operando	890 instrucciones	10 bits

Como se puede ver en este caso podríamos representar la instrucción en 1 palabra sin más inconvenientes, pero dado que se solicita que **todas las instrucciones** sean representadas en **2 palabras (64 bits)**, tenemos que aumentar la cantidad de bits no utilizados para llevar a múltiplo de 2 palabras hasta 54 bits.

Formato de Operación:

OPERACIÓN

COD-OP	
(C=10)	(S=54)

Tamaño de la Instrucción: C + S (bits no utilizados) = 10 + 54 = 64 bits (2 palabras)

EJERCICIO 2. CARACTERÍSTICAS

Considere un computador con memoria de 16 Mpalabras, con una longitud de palabra de 4 bytes. Posee 8 registros de 4 bytes.

Para esta arquitectura se desea implementar las siguientes instrucciones aritméticas (puras):

(SUMA, RESTA, MULTIPLICA, DIVIDE) de tres operandos: dos en memoria y uno en registro.

Los modos de direccionamiento son el directo, indirecto y el inmediato.

Para cada operando en memoria debe indicarse su modo de direccionamiento.

Se pide:

- a. **Diseñar el formato de instrucciones** para dicho juego de operaciones puras.
- b. **Indicar** el tamaño de cada tipo de instrucción.
- c. **Mostrar gráficamente** los formatos.

16 MPalabras = $2^4 + 2^{20} = 2^{24}$ palabras

Total operaciones = 4 aritméticas (Suma, Resta, Multiplica, Divide) = 2 bits

Nota: 2 bits necesarios para todas las operaciones

Caracteristicas	Valores	Representación en bits
Tamaño de la Palabra	4 bytes = 32 bits	32 bits
Memoria Total en Bytes	16 MPalabras = 2 ²⁴	24 bits
Máxima dirección efectiva	2 ²⁴ - 1	24 bits
Cantidad de Registros	8	3 bits (2 ³)
Modos de Direccionamiento	3	2 bits (2 ²)
Operaciones	4 instrucciones	2 bits
Para cada operando en memoria debe indicarse su modo de direccionamiento		

Tabla 2. Tabla con instrucciones del Ejercicio 2. Elaboración propia

De la tabla anterior deducimos/calculamos:

- Necesitaremos 2 bits para poder representar las operaciones ya que pueden tomar 4 valores (ver *Tabla 2*).
- 2. Necesitamos 2 bits para representar los 3 modos de direccionamiento.
- 3. Para la cantidad de registros necesitaremos 3 bits, ya que como nos indica el enunciado, es el número mínimo que necesitaremos para su representación.

Por todo ello, el repertorio de instrucciones y su formato quedaría del siguiente modo:

1) Formato de tipo de direccionamiento

Inmediato -> Valor (el máximo valor representable es de 24 bits)

MD-1	Valor
2 bits	24 bits

Directo -> Dirección (la máxima dirección representable es de 24 bits)

MD-1	Dirección	
2 bits	24 bits	

Indirecto -> Dirección (la máxima dirección representable es de 24 bits)

MD-1	Dirección	
2 bits	24 bits	

2) Formato de Instrucciones

OPERACIÓN destino, operando1, operando2

COD-OP	Registro	Operando 2	MD-2	Operando 3	MD-3	
(C=2)	(R=3)	(P=24)	(M=2)	(P=24)	(M=2)	(S=7)

3) Tamaño de la Instrucción

C + R + 2 * M + 2 * P + S (bits no utilizados) = 2 + 3 + 2 * 2 + 2 * 24 + 7 = 64 bits (2 palabras)

Dado que el ejercicio indica que (cito) para cada operando en memoria debe indicarse su modo de direccionamiento, como tenemos una operación con 3 operandos, 2 en memoria y 1 en registro, solo se incluye el modo de direccionamiento para los 2 operandos en memoria.

CONCLUSIONES

Estos ejercicios ayudan a comprender cómo diseñar un conjunto de instrucciones que se ajuste a las características de una arquitectura de computadora específica. Se abordan aspectos técnicos y conceptuales, incluida la representación de instrucciones en un espacio definido previamente, la organización de registros y memoria, y la consideración de diferentes modos de direccionamiento... Estos son conocimientos fundamentales en el campo de la arquitectura de computadores y sobre todo en una carrera de Ingeniería informática.

BIBLIOGRAFIA UTILIZADA

Figueras, G. E. (2019). ARQUITECTURA DE COMPUTADORES. Manual del curso.

Universidad Internacional de Valencia. **Tema 5**