

CBMIA User's Guide

Matthieu Cattin

June 19, 2012

Abstract

This document descibes the CBMIA board usage for firmware version 2.00 and older. The CBMIA is a MIL1553 bus controller in PCI form-factor.

Revision	Date	Author	Comments
0.1	19.06.2012	Matthieu CATTIN	Initial revision

Contents

1	Ove	rview	4
2	Froi	nt panel LEDs	5
3	Glos	ssary	5
4	Mer	mory Map	6
5	Reg	isters detailed description	7
	5.1	Interrupt source	7
	5.2	Interrupt enable mask	7
	5.3	Temperature	7
	5.4	Status register	8
	5.5	Command register	8
	5.6	Reserved	8
	5.7	Unique ID (MSBs)	9
	5.8	Unique ID (LSBs)	9
	5.9	Transmit register	9
	5.10	Receive register	9
	5.11	Receive buffer	10
	5.12	Transmit buffer	10
		Transmitted frame counter	10
	5.14	Reveived frame counter	11
	5.15	Parity error counter	11
	5.16	Manchester error counter	11
	5.17	Number of word received error counter	11
	5.18	Sent request during transaction error counter	12
	5.19	Number of word transmitted, expected and received	12
		RT response time	12
		Reception error counter	13
		Response timeout counter	13

1 Overview

At CERN MIL1553 is used to control several types of equipments (e.g. power converters). CERN implementation of MIL1553 is based on MIL-STD-1553-B, but is not fully compliant to it. Nevertheless, the encoding, the frames structure and the low level protocol are compliant.

The MIL1553 bus uses a command/response protocol. It is based on Manchester encoded 16-bit words. Each word starts with an additional 3-bit synchronisation pattern and ends with an odd parity bit ¹.

In this document, a command/response couple is called a transaction. There is two types of transactions; "BC to RT" and RT to BC". In any case, the transaction is initiated by the BC. Writing a command word to the TX_REG register will start a transaction. Then a response from a RT is expected. The end of a transaction is detected either when a RT finished sending a frame or upon response timeout. The response timeout t in seconds is set in hardware to:

$$t = \frac{2^{10} - 1}{40e^6} = 25.575us$$

Note that according the MIL-STD-1553 specification, a RT must reply to a BC request within the time period of 4 to 12us. A response time counter starts just after the end of the BC transmission. It will generate an error in case of timeout (no reply from RT). If enabled in the IRQ_EN register, an interrupt request is generated at the end of a transaction.

Figure 1: CBMIA firmware architecure, only main entities and blocks are shown.

 $^{^1\}mathrm{See}$ MIL-STD-1553B specification for further details.

2 Front panel LEDs

LED nb	Description
0	Tx in progress
1	Parity error
2	Rx in progress
3	Manchester error
4	Response timeout
5	Number of word error
6	PCI bus access
7	Overwrite error ²

3 Glossary

BC : Bus Controller, this is a master on a MIL1553 bus. RT : Remote Terminal, this is a slave on a MIL1553 bus.

Transaction : Command/response couple

Frame : One or more words send by either the BC or the RT.

 $^{^2\}mathrm{Transmission}$ request during a transaction will generate an error.

4 Memory Map

The register width is 32 bits. Addresses in the following table represents an offset from the first address of the PCI window. The addresses are 32-bit words addresses.

Table 1: CBMIA memory map.

Address	Access	Description
00	CR	Interrupt source
01	RW	Interrupt enable mask
02	RO	Temperature
03	RO	Status register
04	RW	Command register
05	RW	Reserved
06	RO	Unique ID (MSBs)
07	RO	Unique ID (LSBs)
08	RW	Transmit register
09	RO	Receive register
10 - 26	RO	Receive buffer
27 - 42	RW	Transmit buffer
43	RO	Transmitted frame counter
44	RO	Reveived frame counter
45	RO	Parity error counter
46	RO	Manchester error counter
47	RO	Number of word received error counter
48	RO	Sent request during transaction error counter
49	RO	Number of word transmitted, expected and received
50	RO	RT response time
51	RO	Reception error counter
52	RO	Response timeout counter

5 Registers detailed description

5.1 Interrupt source

Name : IRQ_SRC Offset : 0 (0x0)

Access: CR (Clear on read)

Fields	Description	
bit [0]	End of transaction IRQ.	
bit [14:1]	Unused. Ignore on read.	
bit [15]	Reception error (FSM watchdog).	
bit [16]	Response timeout (no reply from RT).	
bit [17]	Number of received word differs from number of expected	
	word (in the frame causing this IRQ).	
bit [18]	Manchester error (in the frame causing this IRQ).	
bit [19]	Parity error (in the frame causing this IRQ).	
bit [20]	T/R flag, $0 = BC-iRT$ transaction, $1 = RT-iBC$ transaction.	
bit [26:21]	Word count. If T/R flag = 1, countains the number of word	
	present in the receive buffer, including the status word.	
bit $[31:27]$	RT number, 0 = response timeout or truncated/corrupted	
_	frame.	

5.2 Interrupt enable mask

Name : IRQ_EN Offset : 1 (0x1)

Access: WR (Read/write)

Fields	Description
bit [0]	0 = Disables end of transaction IRQ, 1 = Enables end of
	transaction IRQ.
bit [31:1]	Unused. Ignore on read, write with 0.

5.3 Temperature

Name : TEMP Offset : 2 (0x2)

Access: RO (Read only)

Temperature of the board in degree Celsius. The temperature value is refreshed every second.

Fields	Description
bit [3:0]	Fractional part.
bit $[10:4]$	Integer part.
bit [15:11]	Sign.
bit [31:16]	Unused. Ignore on read.

5.4 Status register

Name: STAT Offset: 3 (0x3)

Access: RO (Read only)

Fields	Description
bit [15:0]	BCD encoded HDL version (e.g. $0203 = 0.00000000000000000000000000000000000$
bit $[30:16]$	Unused. Ignore on read.
bit [31]	Transaction flag. $0 = MIL1553$ bus is idle, $1 = Transaction$
	in progress on MIL1553 bus.

5.5 Command register

Name : CMD Offset : 4 (0x4)

Access: RW (Read/write)

Fields	Description
bit [0]	Software reset command. Write 1 to reset (automatically
	cleared).
bit [15:1]	Unused. Ignore on read, write with 0.
bit [19:16]	Test point 0 mux (See mux correspondence table).
bit $[23:20]$	Test point 1 mux (See mux correspondance table).
bit $[27:24]$	Test point 2 mux (See mux correspondance table).
bit [31:28]	Test point 3 mux (See mux correspondance table).

5.6 Reserved

Name : RFU Offset : 5 (0x5)

Fields	Description
bit [31:0]	Unused. Ignore on read, write with 0.

5.7 Unique ID (MSBs)

Name : ID_MSB Offset : 6 (0x6)

Access: RO (Read only)

Fields	Description
bit [31:0]	Board's unique ID. MSBs of DS1822 64-bit unique ID.

5.8 Unique ID (LSBs)

Name : ID_LSB Offset : 7 (0x7)

Access: RO (Read only)

Fields	Description
bit [31:0]	Board's unique ID. LSBs of DS1822 64-bit unique ID.

5.9 Transmit register

Name: TX_REG Offset: 8 (0x8)

Access: RW (Read/write)

Fields	Description
bit [4:0]	Word count.
bit [9:5]	Sub-module address.
bit [10]	T/R.
bit [15:11]	RT address.
bit [31:16]	Unused. Ignore on read, write with 0.

Bits [15:0] corresponds to the command word to be sent on the MIL1553 bus. When this register is written, a transaction starts (if no other transaction are in progress). If a transaction is already in progress, the request is ignored.

5.10 Receive register

Name: RX_REG Offset: 9 (0x9)

Fields	Description
bit [15:0]	RT status word of the last transaction.
bit $[31:16]$	First received data word of the last transaction (if any, oth-
	erwise 0).

5.11 Receive buffer

Name: RX_BUF

Offset: 10-26 (0xA-0x1A) Access: RO (Read only)

The receive buffer contains the last frame received from an RT. Every buffer address contains two 16-bit words. The first word is always the RT status, as defined in the MIL1553 protocol. The receive buffer is reset to zero at the beginning of a transaction. In a transaction, it is mandatory for the RT to transmit at least its status. Then in "RT to BC" transactions, the RT can send up to 32 words. The number of word in the receive buffer, including the status word, is stored in the IRQ_SRC register bit[26:21].

Address	Upper 16-bit word	Lower 16-bit word
10	Data word 0	RT status word
11	Data word 2	Data word 1
•••		
25	Data word 30	Data word 29
26	0x0000	Data word 31

5.12 Transmit buffer

Name: TX_BUF

Offset: 27-42 (0x1B-2A) Access: RW (Read/write)

The transmit buffer contains the frame to be send to the RT. In a "BC to RT" transaction, the BC can send up to 32 words to a RT. The command word (first word in a frame) is taken from the TX_REG register.

${f Address}$	Upper 16-bit word	Lower 16-bit word
27	Data word 1	Data word 0
28	Data word 3	Data word 2
41	Data word 29	Data word 28
42	Data word 31	Data word 30

5.13 Transmitted frame counter

 $Name: TX_FRAME_CNT$

Offset: 43 (0x2B)

Access: RO (Read only)

Fields	Description
bit [31:0]	Transmitted frame counter. Cleared on reset.

5.14 Reveived frame counter

 $Name: RX_FRAME_CNT$

Offset: 44 (0x2C)

Access: RO (Read only)

Fields	Description
bit [31:0]	Received frame counter. Cleared on reset.

5.15 Parity error counter

Name : PARITY_ERR_CNT

Offset: 45 (0x2D)

Access: RO (Read only)

Fields	Description
bit [31:0]	Parity error counter. Incermented on parity error in the re-
	ceived frame. Cleared on reset.

5.16 Manchester error counter

 $Name: MANCH_ERR_CNT$

Offset: 46 (0x2E)

Access: RO (Read only)

${f Fields}$	Description
bit [31:0]	Manchester encoding error. Incermented on Manchester en-
	coding error in the received frame. Cleared on reset.

5.17 Number of word received error counter

 $Name: NB_WORD_ERR_CNT$

Offset: 47 (0x2F)

Fields	Description
bit [31:0]	Number of word error counter. Incermented when the number
	of received words is different from the expected number of
	words. Cleared on reset.

5.18 Sent request during transaction error counter

Name: TX_ERR_CNT Offset: 48 (0x30)

Access: RO (Read only)

Fields	Description	
bit [31:0]	Transmission error counter. Incremented when a transmis-	
	sion request (write to TX_REG) arrives during a transaction.	
	Cleared on reset.	

5.19 Number of word transmitted, expected and received

Name : NB_WORD Offset : 49 (0x31)

Access: RO (Read only)

Fields	Description
bit [5:0]	Word count transmitted (for BC-¿RT and RT-¿BC).
bit [11:6]	Word count received (for RT-¿BC only).
bit $[17:12]$	Expected number of word (for BC-¿RT and RT-¿BC).
bit $[25:18]$	Unused. Ignore on read.
bit [26]	Reception error (FSM watchdog).
bit [27]	Response timeout (no reply from RT).
bit [28]	Number of received word differs from number of expected
	word (in the frame causing this IRQ).
bit [29]	Manchester error (in the frame causing this IRQ).
bit [30]	Parity error (in the frame causing this IRQ).
bit [31]	T/R flag, $0 = BC-\xi RT$ transaction, $1 = RT-\xi BC$ transaction.

5.20 RT response time

 $\begin{array}{l} Name: RESP_TIME \\ Offset: 50~(0x32) \end{array}$

Access: RO (Read only)

Response time t in seconds is calculated as follow:

$$t = \frac{1023 - counter_value}{40e^6}$$

Fields	Description	
bit [9:0]	Response timeout counter value.	Can be used to measure
	the RT response time.	
bit [31:10]	Unused. Ignore on read.	

If Response timeout counter value is 1023, it means that a the RT didn't reply and a timeout occured.

5.21 Reception error counter

 $Name: RX_ERROR_CNT$

Offset: 51 (0x33)

Access: RO (Read only)

Fields	Description
bit [31:0]	Reception error counter. Incremented if the bus is idle for
	more than 3.2us during a frame reception (-; FSM watchdog).
	Cleared on reset.

5.22 Response timeout counter

 $Name: RESP_TIMEOUT_CNT$

Offset: 52 (0x34)

Fields	Description
bit [31:0]	Response timeout counter. Incremented on RT response time-
	out. Cleared on reset.