Cholesky 분해법(Cholesky Decomposition)

1. Cholesky 분해법의 이론

Cholesky 분해는 대칭 행렬 A에 대해 다음과 같이 표현됩니다:

$$A = L \cdot L^T$$

- A: 대칭이고 양의 정부호인 $n \times n$ 행렬.
- L: 하삼각 행렬 (Lower triangular matrix).
- L^T : L의 전치행렬 (Transpose of L).

Cholesky 분해는 LU 분해와 달리 행렬 A를 두 개의 삼각 행렬로 분해하되, 두 행렬이 서로 전치 관계에 있기 때문에 대칭 행렬의 구조를 활용하여 연산량을 절감할 수 있습니다.

양의 정부호 행렬

양의 정부호 행렬이란, 행렬 A의 모든 고유값이 양수인 경우를 말합니다. 이는 수치적으로 안정적인 해를 보장하며, Cholesky 분해가 가능한 조건이기도 합니다.

2. Cholesky 분해법의 수식

Cholesky 분해법의 수식은 다음과 같이 전개됩니다.

2.1 Cholesky 분해

행렬 A는 다음과 같은 요소로 표현됩니다:

$$A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

이 행렬을 하삼각 행렬 L과 그 전치 L^T 로 분해할 수 있습니다:

$$L = egin{bmatrix} l_{11} & 0 & 0 & \cdots & 0 \ l_{21} & l_{22} & 0 & \cdots & 0 \ dots & dots & \ddots & dots \ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix}$$

이때, 각 l_{ij} 는 다음과 같은 공식을 이용하여 계산됩니다:

대각 성분 l_{ii}:

$$l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2}$$

• 비대각 성분 $l_{ij}(i > j)$:

$$l_{ij} = rac{a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk}}{l_{jj}}$$

이 공식들은 대칭성과 하삼각 행렬의 구조를 고려하여 순차적으로 계산됩니다.

2.2 Cholesky 분해를 통한 해법

Cholesky 분해법은 선형 방정식 $A\cdot x=b$ 를 푸는 데 유용합니다. A를 $L\cdot L^T$ 로 분해한 후, 두 단계로 문제를 해결할 수 있습니다.

1. 전진 대입(Forward Substitution):

먼저 $L \cdot y = b$ 를 풀어 중간 변수 y를 계산합니다.

$$y_i = rac{b_i - \sum_{k=1}^{i-1} l_{ik} y_k}{l_{ii}}$$

2. 후진 대입(Backward Substitution):

다음으로 $L^T \cdot x = y$ 를 풀어 최종 해 x를 구합니다.

$$x_i = rac{y_i - \sum_{k=i+1}^n l_{ki} x_k}{l_{ii}}$$

3. 구체적인 사례: Cholesky 분해를 이용한 선형 방정식 풀이

문제 설정

다음의 대칭 행렬 A와 우변 벡터 b가 주어졌다고 합시다.

$$A = egin{bmatrix} 6 & 15 & 55 \ 15 & 55 & 225 \ 55 & 225 & 979 \end{bmatrix}, \quad b = egin{bmatrix} 1 \ 3 \ 5 \end{bmatrix}$$

이 문제를 Cholesky 분해법으로 풀어 해 x를 구해봅시다.

3.1 Cholesky 분해 과정

우선 A를 Cholesky 분해하여 하삼각 행렬 L을 구합니다.

1. 첫 번째 행에서 l_{11} 을 계산합니다:

$$l_{11} = \sqrt{6} \approx 2.4495$$

2. 두 번째 행에서 l_{21} 과 l_{22} 를 계산합니다:

$$l_{21} = rac{15}{2.4495} pprox 6.1237, \quad l_{22} = \sqrt{55 - (6.1237)^2} pprox 4.1833$$

3. 세 번째 행에서 l_{31}, l_{32}, l_{33} 를 계산합니

Ft:131=2.449555≈22.454,132=4.1833225-6.1237×22.454≈20.917,133=979-(22.454)2-(20.917)2≈6.1101

$$egin{aligned} l_{31} &= rac{55}{2.4495} pprox 22.454, \ l_{32} &= rac{225 - 6.1237 imes 22.454}{4.1833} pprox 20.917, \end{aligned}$$

$$l_{33} = \sqrt{979 - (22.454)^2 - (20.917)^2} \approx 6.1101$$

최종적으로 하삼각 행렬 L은 다음과 같습니다:

$$L = egin{bmatrix} 2.4495 & 0 & 0 \ 6.1237 & 4.1833 & 0 \ 22.454 & 20.917 & 6.1101 \end{bmatrix}$$

3.2 전진 대입 (Forward Substitution)

이제 $L \cdot y = b$ 를 풀어 중간 변수 y를 구합니다.

1. 첫 번째 요소 y_1 :

$$y_1 = \frac{1}{2.4495} \approx 0.4082$$

2. 두 번째 요소 y_2 :

$$y_2 = rac{3 - 6.1237 imes 0.4082}{4.1833} pprox -0.1220$$

3. 세 번째 요소 *u*₃:

$$y_3 = \frac{5-22.454 \times 0.4082 - 20.917 \times (-0.1220)}{6.1101} \approx 0.6541$$

따라서, 중간 변수 y는 다음과 같습니다:

$$y = \begin{bmatrix} 0.4082 \\ -0.1220 \\ 0.6541 \end{bmatrix}$$

3.3 후진 대입 (Backward Substitution)

이제 $L^T \cdot x = u$ 를 풀어 최종 해 x를 구합니다.

1. 마지막 요소 x_3 :

$$x_3 = \frac{0.6541}{6.1101} \approx 0.1071$$

2. 두 번째 요소 x_2 :

$$x_2 = rac{-0.1220 - 20.917 imes 0.1071}{4.1833} pprox -0.5912$$

3. 첫 번째 요소 x_1 :

$$x_1 = rac{0.4082 - 6.1237 imes (-0.5912)}{2.4495} pprox 2.0404$$

따라서 최종 해 x는 다음과 같습니다:

$$x = \begin{bmatrix} 2.0404 \\ -0.5912 \\ 0.1071 \end{bmatrix}$$

4. Cholesky 분해법의 실제 적용 사례

4.1 수치 해석에서의 열전도 문제

- 1차원 열전도 방정식을 수치적으로 풀 때, 유한 차분법을 사용하면 대칭 행렬이 생성됩니다. Cholesky 분해법은 이 행렬을 효율적으로 분해하는 데 사용됩니다.
- 예시: 금속 막대의 온도 분포 계산에서 Cholesky 분해법을 활용하여 열 전달 방정식을 신속하게 해결할 수 있습니다.

4.2 확률 및 통계: 회귀 분석

- 최소 제곱법을 사용한 회귀 분석에서 생성되는 대칭 행렬을 Cholesky 분해법으로 효율적으로 처리할 수 있습니다.
- **예시**: 선형 회귀 모델 학습 시 Cholesky 분해를 통해 회귀 계수를 계산할 수 있습니다.

4.3 최적화 문제

- 이차 형식의 최소화 문제에서 자주 등장하는 대칭 행렬을 Cholesky 분해로 처리하면 계산 시간을 크게 단축할 수 있습니다.
- **예시**: 제한 조건 하에서 비용 함수를 최소화하는 문제에서 Cholesky 분해를 이용해 대칭 행렬을 빠르게 처리할 수 있습니다.

4.4 전기 회로 분석

- 전기 회로망 해석 시 발생하는 대칭 행렬을 Cholesky 분해법으로 해결할 수 있습니다. 이는 대규모 회로망의 전압과 전류 계산에 유용합니다.
- **예시**: 복잡한 전기 회로의 노드 전압 계산 시 대칭 행렬을 Cholesky 분해하여 시스템을 효율적으로 해결할 수 있습니다.

결론

Cholesky 분해법은 대칭적이고 양의 정부호인 행렬을 다루는 문제에서 매우 효율적입니다. 구조 해석, 회귀 분석, 열전도 문제, 최적화 문제 등 다양한 분야에서 널리 사용되며, 특히 대규모 행렬 시스템의 계산 효율성을 크게 향상시킵니다.