The "magic" of things

starting in 5:00

Dr. Goran Soldar Dr. Khuong An Nguyen

Fastest time to memorise and recall a deck of playing cards

Who ZOU LUJIAN

Where CHINA (SHENZHEN)

What

13.96 SECOND(S)

When

08 DECEMBER 2017

The fastest time to memorize and recall a deck of playing cards is 13.96 seconds, achieved by Zou Lujian (China) at the 2017 World Memory Championships held in Shenzhen, Guangdong Province, China, on 6-8 December 2017.

Contestants have a maximum of five minutes to memorize their deck, and then another five minutes to recall.

Why do we need it?

3 How to build one?

Innovations

The internet

Electronic devices

Big data

Innovations

The internet

Light & Switch example

Add 5 light switches

£250

Light & Switch example

How

Internet of Things

Number of connected devices

(Burhan, M., Rehman, R.A., Khan, B. and Kim, B.S., IoT elements, layered architectures and security issues: A comprehensive survey. Sensors, 18(9), p.2796)

Why

Internet of Things

Sending data to the processing unit.

Sensors

magnetometer

(I) Why

Sensor example

- 1 Measures a specific attribute of the environment.
- Presenting the data in visual or numeric format.

Analog vs Digital

Analog signal

Digital signal

Analog vs Digital

	Analog	Digital
Precision	Capturing the data in full.	Taking a snapshot of the environment.
Convenience	Harder to read.	Easier to interpret.
Replication	Very challenging to replicate.	Easy to duplicate with perfect quality.
Noise	Very susceptible to interference.	More robust to interference.

(I) Why

Analog vs Digital

Analog signal

Digital signal

Local processing unit

- Receiving the raw data from sensors.
- Processing (e.g. filtering) the data.
- Passing the processed data onto the Cloud.

Fog computing (Edge computing)

Local Processing Unit

Sensors

\bigcirc

How it began

(I) Why

Microcontroller

Why

Arduino

- Programmable devices.
- Modular.
- 3 Open source hardware.

Nano

Arduino (expandable)

Uno

Ethernet shield

(I)

Arduino (IDE)

```
← → C  

create.arduino.cc/editor/khuongn/283938a3-0ce4-45ff-93b5-24ad0
                         sketch_dec19a
> EDITOR
                                      Arduino Nano 33 BLE
                                                                                            · · · SHARE
Sketchbook
                           sketch_dec19a.ino
                                                 Scan.ino
                      1 #include <ArduinoBLE.h>
Examples
                      3 ▼ void setup() {
                           Serial.begin(9600);
Libraries
                           while (!Serial);
                           // begin initialization
                           if (!BLE.begin()) {
⊙<sup>..</sup> Monitor
                             Serial.println("starting BLE failed!");
                      10
                     11
? Help
                             while (1);
                     13
                      14
                           Serial.println("BLE Central scan");
! | Preferences
                      15
                      16
                           // start scanning for peripheral
                     17
                           BLE.scan();
( ) Features usage
                      18 }
                      20 void loop() {
                           // check if a peripheral has been discovered
                           BLEDevice peripheral = BLE.available();
                      22
                      23
                      24 ▼
                           if (peripheral) {
                             // discovered a peripheral
                      26
                             Serial.println("Discovered a peripheral");
                     27
                             Serial.println("-----");
                     28
 amazon
web services
                     29
                             // print address
                             Serial.print("Address: "):
```

```
adice | Arduino 1.8.13
File Edit Sketch Tools Help
#include <ArduinoBLE.h>
// constants won't change. They're used here to
// set pin numbers:
// (A2, A1, A0, A5, A4, A3)
const int led1 = A2;
                           // the number of the LED pin
const int led2 = A1;
const int led3 = A0;
const int led4 = A5;
const int led5 = A4;
const int led6 = A3;
int period = 4000;
unsigned long time_now = 0, scanning_time = 0;
int fl = 1, scan once = 0;
BLECharacteristic simpleKeyCharacteristic;
void connectToBLE(BLEDevice peripheral)
  // connect to the peripheral
  Serial.println("Connecting ...");
  if (peripheral.connect())
    Serial.println("Connected");
  else
    Serial.println("Failed to connect!");
```

Web editor

Windows editor

Raspberry Pi

- Runs Linux.
- Full networking system.
- 3 Similar to a 'computer'.

Microcontroller vs Embedded board

Microcontroller

Designed to control hardware

Low speed

Small memory

firmware

Embedded board

Designed to explore programming
Higher speed
Larger memory

software

Why

Network and the Internet

- Bridging the "things" and the "Internet".
- Receiving the processed sensor data.
- 3 Sending it to the Cloud.

Gateway

Similar to the WiFi router.

CoAP

MQTT

HTTP

XMPP

Why

Cloud processing unit

- Aggregating the data.
- 2 Inferring the results to take action.
- 3 Storing the data.

Questions, feedback

Cockcroft building C519 (Khuong) C537 (Goran)

K.A.Nguyen@brighton.ac.uk G.Soldar@brighton.ac.uk

https://khuong.uk

