Apprentissage statistique

Chapitre 1: Modèle statistique

Lucie Le Briquer

8 janvier 2019

Table des matières

inition formelle	
Intuition	
Définition mathématique	
Modèles statistiques induits	
Modèles produits et n -échantillon	

1 Exemples de modèles et problèmes statistiques

Exemple. (sondage)

On interroge n individus sur leur intention de vote entre M et P, on note y_i la réponse du i-ème individus, $y_i \in \{M, P\}$.

$$n_M = \sum_{i=1}^n \mathbb{1}\{y_i = M\}$$
 $n_P = \sum_{i=1}^n \mathbb{1}\{y_i = P\}$

Questions.

- 1. Peut-on faire une prédiction sur le candidat qui va gagner?
- 2. Peut-on prédire les scores des candidats?
- 3. Peut-on mesurer l'incertitude de mes réponses?

Exemple. (reconstruction d'un signal)

On considère que l'on a une fonction $f:[0,1] \longrightarrow \mathbb{R}$, on a pas accès directement à f mais uniquement à sa valeur en certains points $t_1, \ldots, t_n \in [0,1], t_1 < \ldots < t_n$ avec un temps d'échantillonnage T_e $(t_i = iT_e)$. Au lieu d'observer $\{f(t_i)\}_{i \in \{1,\ldots,n\}}$ on observe :

$$y_i = f(t_i) + e_i$$

où e_i modélise le bruit e_i , l'erreur de mesure.

Objectif. On cherche à reconstruire f, i.e. à définir $\hat{f}: [0,1] \longrightarrow \mathbb{R}$ qui approxime f en un certain sens (mauvaise idée : joindre de manière linéaire les y_i).

La difficulté provient des trois caractéristiques :

- temps d'échantillonnage T_e
- $(e_i)_{i \in \{1,\dots,n\}}$ "caractéristique" du bruit
- ullet complexité du modèle de f

Dans le cas où f est simplement constante ou linéaire on a juste à retrouver soit sa valeur soit les coefficients.

Exemple. (contrôle de qualité avec données censurées)

On a une usine produisant des tanks, on aimerait estimer la fiabilité du tank. Pour cela, on suppose qu'on a produit n tanks. On observe pour chacun d'entre eux le premier instant de disfonctionnement t_1, \ldots, t_n .

Questions.

- 1. Quelle est la durée moyenne sans panne d'un tank?
- 2. On se fixe T, on veut estimer la "probabilité" qu'un tank tombe en panne entre [0,T]?

En général, il est coûteux en temps d'attendre qu'un tank tombe en panne. Un autre modèle est alors le suivant : on fixe T_c et on observe les tanks tombés en panne sur $[0, T_c]$.

2 Définition formelle

2.1 Intuition

Le point de départ du statisticien est un triplet :

- 1. Les données, observations (y_1, \ldots, y_n) qui sont à valeurs dans $(\mathbb{Y}, \mathcal{Y})$ un espace mesurable.
- 2. Modèles probabilistes ou statistiques. On va supposer que les (y_i) sont des réalisations de variables aléaoires Y_1, \ldots, Y_n sur (Ω, \mathcal{F}) . Notons $z = (y_1, \ldots, y_n)$ et $Z = (Y_1, \ldots, Y_n)$. $z = Z(\omega)$ pour $\omega \in \Omega$.

On se donne ensuite une famille de probabilités sur Ω notée \mathcal{P} . À partir de \mathcal{P} , on peut définir :

$$\mathcal{P}^Z = \{ \mathbb{P}_Z \mid \mathbb{P} \in \mathcal{P} \}$$

Alors \mathcal{P}^Z définit une famille de loi sur $\mathbb{Z} = \mathbb{Y}^n$ et $\mathcal{Z} = \mathcal{Y}^{\otimes n}$. Maintenant l'idée est de trouver une loi $\hat{\mathbb{P}}_Z \in \mathcal{P}^Z$ qui explique au mieux mes données. De manière informelle, le statisticien suppose que l'on a une vraie \mathbb{P}_Z^* qui est la distribution de Z et on veut trouver \hat{P} "proche" de \mathbb{P}_Z^* .

Exemple. (sondage)

On suppose que mes réponses $\in \{0,1\}$. Un modèle dans ce cas :

$$\mathcal{P} = \{ \operatorname{Ber}(p) \mid p \in \{0, 1\} \}$$

On suppose que mes données proviennent de $Ber(p^*)$ et on veut estimer p^* .

- 3. Question que l'on veut résoudre.
 - reconstruction du signal
 - prédiction sur le résultat de l'élection
 - incertitude du modèle

2.2 Définition mathématique

- **Définition 1** (expérience statistique) -

Une expérience statistique est la donnée de :

- 1. Un espace mesurable (Ω, \mathcal{F})
- 2. Un espace d'observation ou d'échantillon $(\mathbb{Z}, \mathcal{Z})$, espace mesurable
- 3. Une variable aléatoire $Z: \Omega \longrightarrow \mathbb{Z}$

- **Définition 2** (modèle statistique) —

Un modèle statistique associé à une expérience est la donnée d'une famille de lois \mathcal{P} sur (Ω, \mathcal{F}) . On note le modèle associé :

$$((\Omega, \mathcal{F}), (\mathbb{Z}, \mathcal{Z}), Z, \mathcal{P})$$

Définition 3 (modèle paramétrique) —

On dit que le modèle est paramétrique si il existe $\Theta \subset \mathbb{R}^d$ tel que :

$$\mathcal{P} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$$

i.e. il existe une fonction φ surjective de Θ dans \mathcal{P} .

Dans l'autre cas on dit que θ est non-paramétrique.

- **Définition 4** (identifiable) —

On dit que le modèle est identifiable s'il est paramétrique et $\varphi \colon \Theta \longrightarrow \mathbb{R}^d$ est injective.

Remarques.

- 1. Il sera toujours sous-entendu $\mathcal{P} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$ mais $\Theta \not\subset \mathbb{R}^d$ pour $d < \infty$.
- 2. On supposera la plupart du temps que $\Omega = \mathbb{Z}$ et $\mathcal{F} = \mathcal{Z}$ car on est juste intéressés par la famille de lois images $\mathcal{P}^Z = \{\mathbb{P}_Z : \mathbb{P} \in \mathcal{P}\}$. En général, on se prend juste $(\mathbb{Z}, \mathcal{Z})$ et \mathcal{P} et on pose : $\Omega = \mathbb{Z}$, $\mathcal{F} = \mathcal{Z}$ et $Z = \mathrm{id}$.

- **Définition 5** (modèle statistique canonique) —

Un modèle statistique canonique est juste la donnée de :

- $(\mathbb{Z}, \mathcal{Z})$ un espace mesurable
- \mathcal{P} une famille de lois sur \mathbb{Z}

Exemple. (sondage)

On suppose que on interroge n individus parmi $N, n \ll N$. $(y_1, \ldots, y_n) \in \{0, 1\}^n$

1.

$$\mathbb{Z} = \{0, 1\}^n$$
 $Z = (Y_1, \dots, Y_n)$ $\mathcal{Z} = 2^{\{0, 1\}^n}$ $\mathcal{P} = \left\{ \operatorname{Ber}(p)^{\otimes n} : p \in \frac{1}{N} \{0, \dots, N\} \right\}$

2. $N_1 = \sum_{i=1}^n \mathbb{1}\{Y_i = 1\}, N_0 = \sum_{i=1}^n \mathbb{1}\{Y_i = 0\}.$

$$\tilde{\mathbb{Z}} = \{0, \dots, n\}$$
 $\mathcal{Z} = 2^{\tilde{Z}}$ $\mathcal{P} = \left\{ \mathcal{B}(p, n) : p \in \frac{1}{N} \{0, \dots, N\} \right\}$

2.3 Modèles statistiques induits

- **Définition 6** (statistique, modèle induite) -

- Soit $(\mathbb{Z}, \mathcal{Z}, \mathcal{P})$ un modèle canonique et $(\mathbb{T}, \mathcal{T})$ un espace complet et séparable $((\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d)))$. On appelle statistique T toute application mesurable de $(\mathbb{Z}, \mathcal{Z})$ dans $(\mathbb{T}, \mathcal{T})$.
- \bullet On appelle modèle induit par T est le modèle :

$$(\mathbb{T}, \mathcal{T}, \mathcal{P}^T)$$
 où $\mathcal{P}^T = \{\mathbb{P}_T : \mathbb{P} \in \mathcal{P}\}$

Définition 7 (statistiques indépendantes) –

Soient T_1, T_2 deux statistiques, elles sont indépendantes ssi :

 $\forall \mathbb{P} \in \mathcal{P}, \ (T_1, T_2) \text{ indépendant suivant } \mathbb{P}$

- **Définition 8** (statistiques identiquement distribuées) -

Soient T_1, T_2 deux statistiques, elles sont identiquement distribuées ssi :

$$\forall \mathbb{P} \in \mathcal{P}, \ \mathbb{P}_{T_1} = \mathbb{P}_{T_2}$$

Exemple. (sondage) $z \in \{0,1\}^n$, les observations (ou statistiques) canoniques sont :

$$z = (y_1, \dots, y_n) \mapsto y_i$$

pour $i=1,\ldots,n$. Sous le modèle donné précédemment, elles sont i.i.d.

2.4 Modèles produits et n-échantillon

- **Définition 9** (modèle produit) -

Soient $(\mathbb{Z}_1, \mathcal{Z}_1, \mathcal{P}_1)$ et $(\mathbb{Z}_2, \mathcal{Z}_2, \mathcal{P}_2)$ deux modèles statistiques. On appelle modèle produit de ces deux modèles :

$$(\mathbb{Z}_1 \times \mathbb{Z}_2, \mathcal{Z}_1 \otimes \mathcal{Z}_2, \mathcal{P}_1 \otimes \mathcal{P}_2)$$

où
$$\mathcal{P}_1 \otimes \mathcal{P}_2 = \{ \mathbb{P}_1 \otimes \mathbb{P}_2 : \mathbb{P}_1 \in \mathcal{P}_1, \mathbb{P}_2 \in \mathcal{P}_2 \}.$$

Remarques.

 $\bullet\,$ Si on a n modèles, on notera le modèle associé :

$$\left(\prod_{i=1}^n \mathbb{Z}_i, \bigotimes_{i=1}^n \mathcal{Z}_i, \bigotimes_{i=1}^n \mathcal{P}_i\right)$$

• Les applications $\prod_{i=1}^n \mathbb{Z}_i \longrightarrow \mathbb{Z}_i$ données par $(z_1, \ldots, z_n) \mapsto z_i$ sont appelées observations/statistiques/applications canoniques.

Définition 10 (n-'echantillon) -

Soit $(\mathbb{Z}, \mathcal{Z}, \mathcal{P})$ un modèle statistique. On appelle modèle à n-échantillon le modèle statistique :

$$(\mathbb{Z}^n, \mathcal{Z}^{\otimes n}, \mathcal{P}^{\otimes n})$$

Lemme 1

Dans le modèle à n—échantillon, les observations sont i.i.d. De plus, le modèle induit par chacune d'elle est $(\mathbb{Z}, \mathcal{Z}, \mathcal{P})$.

Remarque. Pour simplifier les énoncés et la rédaction on remplace le plus souvent :

"Soit $(\mathbb{Z}, \mathcal{Z}, \mathcal{P})$ un modèle statistique, $(\mathbb{Z}^n, \mathcal{Z}^{\otimes n}, \mathcal{P}^{\otimes n})$ un n-échantillon et Z_1, \ldots, Z_n les observations canoniques."

Par:

- "Soit (Z_1, \ldots, Z_n) i.i.d. de loi \mathbb{P}_{θ} pour $\theta \in \Theta$."
- ou "Soit (Z_1, \ldots, Z_n) un n-échantillon de \mathbb{P}_{θ} pour $\theta \in \Theta$."

Exemple. (censure)

Le premier modèle présenté "avec les mains" :

$$\mathbb{Z} = \mathbb{R}_+$$
 $\mathcal{Z} = \mathcal{B}(\mathbb{R}_+)$ $\mathcal{P} = \{ \operatorname{Exp}(\theta) : \theta \in \mathbb{R}_+^* = \Theta \}$

Le n-échantillon associé à deviner. On considère Y_1, \ldots, T_n les observations canoniques.

$$\tilde{Y}_i = Y_i \wedge T_c$$

On peut trouver le modèle induit par $(\tilde{Y}_1, \dots, \tilde{Y}_n)$.

$$\tilde{\mathbb{Z}}^n = [0, T_c]^n \qquad \tilde{\mathcal{Z}}^{\otimes n} = \mathcal{B}([0, T_c])^{\otimes n}$$

Il reste à trouver $\tilde{\mathcal{P}} = \mathcal{P}^{(\tilde{Y}_1,...,\tilde{Y}_n)}$. Pour cela on remarque (\tilde{Y}_i) sont i.i.d., on en déduit que $\forall \mathbb{P} \in \mathcal{P}$, $\mathbb{P}_{(\tilde{Y}_1,...,\tilde{Y}_n)} = \tilde{\mathbb{P}}^{\otimes n}$ où $\tilde{\mathbb{P}} = \mathbb{P}_{\tilde{Y}_i}$.

3 Modèle statistique dominé

Définition 11

Soit (X, X) un espace mesurable et μ σ -finie.

1. Soit $f: \mathbb{S} \longrightarrow \overline{\mathbb{R}}_+$ mesurable. Alors, l'application :

$$A \mapsto \int_A f(x) d\mu(x)$$

définit une mesure sur (X, \mathcal{X}) .

2. Soit ν une mesure sur $(\mathbb{X}, \mathcal{X})$. On dit que ν admet une densité si $\exists f \colon \mathbb{X} \longrightarrow \mathbb{R}_+$ tel que :

$$\nu(A) = \int_{A} f(x) d\mu(x) \quad \forall A \in \mathcal{X}$$

f est appelée une densité de ν .

- 3. Si f_1 et f_2 sont deux densités de ν alors $f_1=f_2$ $\mu-\text{p.p.}$.
- 4. On dit que ν est absolument continue par rapport à μ si $\forall A \in \mathcal{X} \ \mu(A) = 0 \ \nu(A) = 0$.
- 5. μ et ν sont dites sigulières si $\exists A \in \mathcal{X}$ tel que :

$$\mu(A) = 0$$
 et $\nu(A^C) = 0$

Notation.

- On note $f d\nu/d\mu$.
- Si ν admet une densité par rapport à μ on dit que μ domine ν .

Propriété 1

Soit ν qui admet une densité par rapport à μ . Alors $\forall h \colon \mathbb{X} \longrightarrow \mathbb{R}_+$:

$$\int_{\mathbb{S}} h(x)d\nu(x) = \int_{\mathbb{X}} h(x)\frac{d\nu}{d\mu}(x)d\mu(x)$$

- **Théorème 1** (Radon-Nikodym) -

Soit $(\mathbb{X}, \mathcal{X})$ un espace mesurable, μ σ -finie sur $(\mathbb{X}, \mathcal{X})$. Soit ν une mesure sur $(\mathbb{X}, \mathcal{X})$. Alors $\nu \ll \mu$ ssi ν admet une densité par rapport à μ : f. Et :

- 1. ν est σ -finie ssi $f < \infty \mu$ -p.p.
- 2. ν est finie si $\int_X f d\mu < \infty$

Remarque. On considèrera toujours des densités à valeurs dans \mathbb{R}_+ .

Preuve. (idée) On se ramène à μ et ν finies. On considère :

$$M = \sup \left\{ \int_{\mathbb{X}} f(x) d\mu(x) : f: \mathbb{X} \longrightarrow \mathbb{R}_+ \text{ mes. et } \int_A f(x) d\mu(x) \leqslant \nu(A) \ \forall A \in \mathcal{X} \right\}$$

On considère une suite (f_n) telle que $\int f_n d\mu \longrightarrow M$. Et on pose $f = \limsup f_n$. On a par définiton que pour tout $A \in \mathcal{X}$,

$$\int_{A} f(x)d\mu(x) \leqslant \nu(A)$$

Il reste à montrer que $\int_A f(x)\mu(dx) = \nu(A)$ pour tout A. Pour cela on raisonne par l'absurde.

- **Définition 12** (modèle statistique dominé) -

Soit $(\mathbb{Z}, \mathcal{Z}, \mathcal{P})$ un modèle statistique. On dit qu'il est dominé par μ σ -finie sur $(\mathbb{Z}, \mathcal{Z})$ si $\forall \mathbb{P} \in \mathcal{P}$, \mathbb{P} admet une densité par rapport à μ .

Remarques.

- On pourra directement considérer des modèles associés à des familles de densités par rapport à une mesure, le modèle est alors automatiquement dominé.
- Supposons que l'on a deux mesures de domination μ_1 et μ_2 . On en déduit deux familles de densité $\{f_{\theta}^{(1)}: \theta \in \Theta\}$ et $\{f_{\theta}^{(2)}: \theta \in \Theta\}$. On considère $\mu_1 + \mu_2$, elle domine aussi le modèle. Par unicité des densité, on en déduit $\forall \theta \in \Theta, (\mu_1 + \mu_2)$ -p.p.:

$$\frac{d\mathbb{P}_{\theta}}{d(\mu_1+\mu_2)} = \frac{d\mathbb{P}_{\theta}}{d\mu_1} \frac{d\mu_1}{d(\mu_1+\mu_2)} = \frac{d\mathbb{P}_{\theta}}{d\mu_2} \frac{d\mu_2}{d(\mu_1+\mu_2)}$$

Alors, il existe $\psi \colon \mathbb{X} \longrightarrow \overline{\mathbb{R}}_+$ tel que $\forall \theta \ (\mu_1 + \mu_2) - \text{p.p.}$:

$$\frac{d\mathbb{P}_{\theta}}{d\mu_1}(x) = \frac{d\mathbb{P}_{\theta}}{d\mu_2}(x)\psi(x)$$

Lemme 2

Soit $(\mathbb{Z}, \mathcal{Z}, \mathcal{P})$ un modèle dominé par μ . Il existe une famille dénombrable $(\mathbb{P}_n)_{n \in \mathbb{N}} \subset \mathcal{P}$ telle que :

$$\nu = \sum_{n \ge 1} \frac{1}{2^n} \mathbb{P}_n$$
 est aussi une mesure de domination

Preuve.

Comme μ est σ -finie, on peut toujours la remplacer par $\bar{\mu}$ mesure de probabilité qui domine \mathcal{P} par quelque chose comme :

$$\bar{\mu} = \sum c_k \frac{\mu(\cap A_k)}{\mu(A_k)}$$
 avec $\sum c_k = 1$

et A_k suite croissante d'ensembles de mesures finies. On suppose que $\mu(\mathbb{Z})=1$. On définit :

$$\mathcal{Q} = \left\{ \sum c_k \mathbb{P}_k : (\mathbb{P}_k) \in \mathcal{P}^{\mathbb{N}^*}, \sum c_k = 1 \right\}$$

Q est stable par combinaison convexe.

Supposons que $\mathbb{Q}^* = \sum c_k \mathbb{P}_k$ domine \mathcal{Q} . Soit $\nu^* = \sum \frac{1}{2^k} \mathbb{P}_k$. On suppose par l'absurde que $\exists A$ tel que $\mathbb{Q}(A) > 0$ et $\nu^*(A) = 0$. Alors $\mathbb{P}_k(A) = 0$ $\forall k$ et donc \mathbb{Q}^* ne domine pas \mathbb{Q} .

Il suffit donc d'exhiber un $\mathbb{Q} \in \mathcal{Q}$ qui domine \mathcal{Q} , comme $\mathcal{P} \subset \mathcal{Q}$ on peut conclure.

1.

$$C = \{A : \exists \mathbb{Q} \in \mathcal{Q} \text{ t.q. } f_{\mathbb{Q}}|_A > 0 \ \mu - \text{p.p.} \}$$

où $(f_{\mathbb{Q}})_{\mathbb{Q}\in\mathcal{Q}}$ sont définis comme $f_{\mathbb{Q}}=\frac{d\mathbb{Q}}{d\mu}$. \mathcal{C} est stable par union finie. En effet, si A_1 et A_2 sont dans \mathcal{C} alors $A_1 \cup A_2 \in \mathcal{C}$ en considérant $\frac{\mathbb{Q}_1+\mathbb{Q}_2}{2}$.

2. $M = \sup_{A \in \mathcal{C}} \mu(A)$. Le sup existe si \mathcal{C} est non vide. C'est le cas car, si l'on suppose $\mathcal{P} \neq \emptyset$, \mathcal{C} contient :

$$A = \left(\frac{d\mathbb{P}}{d\mu}\right)^{-1} (\mathbb{R}_+^*)$$

3. On considère $(A_n)_{n\in\mathbb{N}}$ tel que $\mu(A_n) \longrightarrow M$ quand $n \to +\infty$.

Posons $\tilde{A} = \bigcup_{n \in \mathbb{N}} A_n$. Comme $\forall n \in \mathbb{N} \ A_n \in \mathcal{C}, \ \exists \mathbb{Q}_n \in \mathcal{Q} \ \text{tel que } f_{\mathbb{Q}_n}|_{A_n} > 0$. On définit alors :

$$\mathbb{Q}^* = \sum 2^{-n} \mathbb{Q}_n$$

On montre que \mathbb{Q}^* domine \mathbb{Q} . $\tilde{A} \in \mathcal{C}$ (car $f_{\mathbb{Q}^*}|_{\tilde{A}} > 0$) et $\mu(\tilde{A}) = \sup_{A \in \mathcal{C}} \mu(A)$. Conséquence : $\mu|_{\tilde{A}}$ est équivalent à $\mathbb{Q}_{\tilde{A}}^*$. Soit $\mathbb{Q} \in \mathcal{Q}$ et $A \in \mathbb{Z}$ tel que $\mathbb{Q}^*(A) = 0$. Montrons que $\mathbb{Q}(A) = 0$.

- 1. $\mathbb{Q}(A \cap \tilde{A}) = 0$ car comme $\mu|_{\tilde{A}}$ et $\mathbb{Q}_{\tilde{A}}^*$ sont équivalentes on a $\mathbb{Q}^*(A) = 0 \Rightarrow \mathbb{Q}^*(A \cap \tilde{A}) = 0 \Rightarrow \mu(A \cap \tilde{A}) = 0$. On conclut car μ domine \mathbb{Q} .
- 2. $\mathbb{Q}(A \cap \tilde{A}^C) = 0$. Soit $B = \{f_{\mathbb{Q}} > 0\}$. Par définition il suffit de montrer que :

$$\mathbb{Q}(A \cap \tilde{A}^C \cap B) = 0$$

On suppose par l'absurde que $\mathbb{Q}(A\cap \tilde{A}^C\cap B)>0$. Alors comme $A\cap \tilde{A}\cap B\in \mathcal{C}$ et \mathcal{C} stable par union $\tilde{A}\sqcup (\tilde{A}^C\cap B\cap C)\in \mathcal{C}$. Or si $\mathbb{Q}(\tilde{A}^C\cap A\cap B)>0$, $\mu(\tilde{A}^C\cap A\cap B)>0$. On aurait alors que :

 $\mu(\tilde{A}) < \mu(\tilde{A} \sqcup (\tilde{A}^C \cap B \cap A))$

qui est absurde car $\mu(\tilde{A}) = \sup_{\mathcal{C}} \mu$.

9