1

GATE 2007 EE

GUNDA SRIHAAS EE24BTECH11026

- 69. Which one of the following statements regarding the INT (*interrupt*) and the BRQ (*busrequest*) pins in a CPU is true?
 - a) The BRQ pin is sampled after every instruction cycle ,but the INT is sampled after every machine cycle
 - b) Both INT and BRQ are sampled after every machine cycle
 - c) The INT pin is sampled after every instruction cycle, but the BRQ is sampled after every machine cycle
 - d) Both INT and BRQ are sampled after every instruction cycle
- 70. A bridge circuit is shown in the figure below .Which one of the sequences given below is most suitable for balancing the bridge?

- a) First adjust R_4 , and then adjust R_1
- b) First adjust R_2 , and then adjust R_3
- c) First adjust R_2 , and then adjust R_4
- d) First adjust R_4 , and then adjust R_2

I. Common Data Questions

Common Data for Questions 71, 72, 73:

A three phase squirrel cage induction motor has a starting current of seven times the full load current and full load slip of 5%

71. If an autotransformer is used for reduced voltage starting to provide 1.5 per unit starting torque,the autotransformer ratio (%) should be

d) 81.33%

72. If a star-delta starter is used to star this induction motor,the per unit starting torque will be			
a) 0.607	b) 0.816	c) 1.225	d) 1.616
73. If a starting torque of 0.5 per unit is required then the per unit starting current should be			
a) 4.65	b) 3.75	c) 3.16	d) 2.13
Common Data for Questions 74,75: A 1: 1 Pulse Transformer (PT) is used to trigger the SCR in the below figure. The SCR is rated at 1.5 kV, 250 A with $I_L = 250mA$, $I_H = 150mA$, $andI_Gmax = 150mA$, $I_Gmin = 100mA$. The SCR is connected to an inductive load, where $L = 150mH$ in series with a small resistance and the supply voltage is 200 V dc. The forward drops of all transistors/diodes and gate-cathode junction during ON state are 1.0 V 74. The resistance R should be			
a) $4.7 \text{ k}\Omega$	b) 470 Ω	c) 47 Ω	d) 4.7 Ω
75. The minimum approximate volt-second rating of pulse transformer suitable for triggering the SCR should be: (volt-second rating is the maximum of product of the voltage and the width of the pulse that may applied)			
a) 2000 μ V-s	b) 200 μV-s	c) 20 μV-s	d) $2.0~\mu\text{V-s}$
II. Linked Answer Questions: Q.76 to Q.85 carry two marks each.			
Statement for Linked Answer Questions 76&77: An inductor designed with 400 turns coil wound on an iron core of $16cm^2$ cross-sectional area and with a cut of an air gap length of 1 mm. The coil is connected to a 230 V, 50 Hz AC supply. Neglect coil resistance, core loss, iron reluctance and leakage inductance. ($\mu_0 = 4\pi \times 10^{-7}$ H/m) 76. The current in the inductor is			
a) 18.08 A	b) 9.04 A	c) 4.56 A	d) 2.28 A
77. The average force on the core to reduce the air gap will be			
a) 829 N	b) 1666.22 N	c) 3332.47 N	d) 6664.84 N
Statement for Linked Answer Questions 78 & 79: Cayley-Hamilton Theorem states that a square matrix satisfies its own characteristic equation. Consider a matrix			
		$\begin{pmatrix} -3 & 2 \\ -1 & 0 \end{pmatrix}$	(1)
78. A satisfies the relation			
a) $A^3 + 3A + 2I = 0$	b) $A^2 + 2A + 2I = 0$	c) $(A + I)(A + 2I) =$	$0 d) \ \exp(A) = 0$
79. A^9 equals			

c) 78.25%

a) 57.77%

b) 72.56%

- a) 511A + 510I
- b) 309A + 104I
- c) 154A + 155I
- d) $\exp(9A)$

Consider the R-L-C circuit shown in figure.

- 80. For a step-input e_i , the overshoot in the output e_o will be
 - a) 0, since the system is not under-damped
 - b) 5%
 - c) 16%
 - d) 48%
- 81. If the above step response is to be observed on a non-storage CRO, then it would be best to have the e_i as
 - a) Step function
- c) Square wave of 300d) Square wave of 2.0
- b) Square wave of 50 Hz Hz

KHz

Statement for Linked Answer Questions 82 & 83:

The associated figure shows the two types of rotate right instructions R1, R2 available in a microprocessor where Reg is an 8-bit register and C is the carry bit. The rotate left instructions L1 and L2 are similar except that C now links the most significant bit of Reg instead of the least significant one.

- 82. Suppose *Reg* contains the 2's complement number 11010110. If this number is divided by 2 the answer should be
 - a) 01101011
 - b) 10010101
 - c) 11110001
 - d) 11101011
- 83. Such a division can be correctly performed by the following set of operations
 - (A) L2, L2, R1
 - (B) L2, R1, R2
 - (C) R2, L1, R1

(D) R1, L2, R2

Statement for Linked Answer Questions 84 & 85:

- 84. A signal is processed by a causal filter with transfer function G(s). For a distortion-free output signal waveform, G(s) must
 - a) provide zero phase shift for all frequency
 - b) provide constant phase shift for all frequency
 - c) provide linear phase shift that is proportional to frequency
 - d) provide a phase shift that is inversely proportional to frequency
- 85. $G(z) = \alpha z^2 + \beta z^5$ is a low-pass digital filter with a phase characteristic same as that of the above question if
 - a) $\alpha = \beta$
 - b) $\alpha = -\beta$
 - c) $\alpha = \beta^{1/3}$
 - d) $\alpha = \beta^{-(1/3)}$