4-2a Degrees of Freedom Associated with Spatial Rotations

Rotational motion in two dimensions (rotation about a fixed axis) has a very simple structure. The orientation is characterized by the azimuthal angle ϕ , and the state of motion by the eigenvalue M of the conjugate angular momentum. The associated rotational wave function is

$$\varphi_{M}(\phi) = (2\pi)^{-1/2} \exp\{iM\phi\}$$
 (4-5)

The orientation of a body in three-dimensional space involves three angular variables, such as the Euler angles, $\omega = \phi$, θ , ψ (see Fig. 1A-1, Vol. I, p. 76), and three quantum numbers are needed in order to specify the state of motion. The total angular momentum I and its component $M = I_z$ on a space-fixed axis provide two of these quantum numbers; the third may be obtained by considering the components of I with respect to an intrinsic (or body-fixed) coordinate system with orientation ω (see Sec. 1A-6a). The

- 20 - restation allout a fixal pas

Figure 1A-1 Euler angles. The rotation from $\mathcal{K}(x, y, z)$ to $\mathcal{K}'(x', y', z')$ can be decomposed into three parts: a rotation by ϕ about the z axis to $\mathcal{K}''(x'', y'', z'')$, a rotation of θ about the new y axis (y'') to $\mathcal{K}''(x''', y''', z''')$, and finally a rotation of ψ about the new z axis (z'''). It is seen that the Euler angles (ϕ, θ, ψ) are so defined that (θ, ϕ) are the polar angles of z' in \mathcal{K}' , while $(\theta, \pi - \psi)$ are the polar angles of z in \mathcal{K}' . The Euler angles are, collectively, denoted by ω .