DATA SCIENCE - SVM CLASSIFIER

M.Nivethithaa

Breast Cancer SVM Classification

Importing Libraries

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns

from sklearn.preprocessing import LabelEncoder
   from sklearn.model_selection import train_test_split
   from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score
   from sklearn.metrics import classification_report
   from sklearn.metrics import confusion_matrix
```

Displaying Dataset

```
In [2]: df = pd.read_csv("data.csv")
    df.head()
```

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mea
0	842302	М	17.99	10.38	122.80	1001.0	0.1184
1	842517	М	20.57	17.77	132.90	1326.0	0.0847
2	84300903	М	19.69	21.25	130.00	1203.0	0.1096
3	84348301	М	11.42	20.38	77.58	386.1	0.1425
4	84358402	М	20.29	14.34	135.10	1297.0	0.1003

5 rows × 33 columns

Columns present in the dataset

Shape of the dataset

```
In [4]: df.shape
Out[4]: (569, 33)
```

Exploratory Data Analysis

Summary of the dataset

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype			
0	id	569 non-null	int64			
1	diagnosis	569 non-null	object			
2	radius_mean	569 non-null	float64			
3	texture_mean	569 non-null	float64			
4	perimeter_mean	569 non-null	float64			
5	area_mean	569 non-null	float64			
6	smoothness_mean	569 non-null	float64			
7	compactness_mean	569 non-null	float64			
8	concavity_mean	569 non-null	float64			
9	concave points_mean	569 non-null	float64			
10	symmetry_mean	569 non-null	float64			
11	<pre>fractal_dimension_mean</pre>	569 non-null	float64			
12	radius_se	569 non-null	float64			
13	texture_se	569 non-null	float64			
14	perimeter_se	569 non-null	float64			
15	area_se	569 non-null	float64			
16	smoothness_se	569 non-null	float64			
17	compactness_se	569 non-null	float64			
18	concavity_se	569 non-null	float64			
19	concave points_se	569 non-null	float64			
20	symmetry_se	569 non-null	float64			
21	<pre>fractal_dimension_se</pre>	569 non-null	float64			
22	radius_worst	569 non-null	float64			
23	texture_worst	569 non-null	float64			
24	perimeter_worst	569 non-null	float64			
25	area_worst	569 non-null	float64			
26	smoothness_worst	569 non-null	float64			
27	compactness_worst	569 non-null	float64			
28	concavity_worst	569 non-null	float64			
29	concave points_worst	569 non-null	float64			
30	symmetry_worst	569 non-null	float64			
31	<pre>fractal_dimension_worst</pre>	569 non-null	float64			
32	Unnamed: 32	0 non-null	float64			
dtyp	dtypes: float64(31), int64(1), object(1)					

dtypes: float64(31), int64(1), object(1)

memory usage: 146.8+ KB

In [6]: df.describe()

Out[6]:

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.000000
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.096360
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.014064
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.052630
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.086370
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.095870
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.105300
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.163400

8 rows × 32 columns

Checking for missing values

```
In [7]: df.isnull().sum()
Out[7]: id
                                       0
        diagnosis
                                       0
        radius_mean
                                       0
        texture mean
                                       0
        perimeter_mean
        area_mean
                                       0
        smoothness_mean
                                       0
        compactness_mean
                                       0
        concavity_mean
        concave points_mean
        symmetry_mean
        fractal_dimension_mean
                                       0
        radius_se
                                       0
        texture_se
        perimeter_se
                                       0
        area se
         smoothness_se
                                       0
                                       0
        compactness_se
        concavity_se
        concave points_se
        symmetry_se
        fractal_dimension_se
                                       0
        radius_worst
                                       0
        texture_worst
        perimeter_worst
        area worst
        smoothness_worst
                                       0
        compactness_worst
                                       0
        concavity_worst
        concave points_worst
        symmetry_worst
        fractal dimension worst
                                       0
        Unnamed: 32
                                     569
        dtype: int64
```

Cleaning Missing Values

```
In [8]: df= df.drop(['Unnamed: 32','id'],axis=1)
df
```

Out[8]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	comp
0	М	17.99	10.38	122.80	1001.0	0.11840	
1	М	20.57	17.77	132.90	1326.0	0.08474	
2	М	19.69	21.25	130.00	1203.0	0.10960	
3	М	11.42	20.38	77.58	386.1	0.14250	
4	М	20.29	14.34	135.10	1297.0	0.10030	
564	М	21.56	22.39	142.00	1479.0	0.11100	
565	М	20.13	28.25	131.20	1261.0	0.09780	
566	М	16.60	28.08	108.30	858.1	0.08455	
567	М	20.60	29.33	140.10	1265.0	0.11780	
568	В	7.76	24.54	47.92	181.0	0.05263	

569 rows × 31 columns

4

Detect prescence(Malignant-M) or absence(Benign-B) of cancer cells

```
In [9]: df['diagnosis'].value_counts()
```

Out[9]: B 357 M 212

Name: diagnosis, dtype: int64

Checking for the correlation

In [10]: plt.figure(figsize=(20,10))
 sns.heatmap(df.corr(),annot=True)
 plt.ioff()

Data Visualization

ScatterPlot

```
In [11]: sns.scatterplot(x= 'area_mean', y= 'smoothness_mean', hue= 'diagnosis', data=df,
```

Out[11]: <AxesSubplot:xlabel='area_mean', ylabel='smoothness_mean'>

Count Plot

In [12]: sns.countplot(df['diagnosis'],palette='Paired')

c:\users\nivethitha\appdata\local\programs\python\python39\lib\site-packages\se aborn_decorators.py:36: FutureWarning: Pass the following variable as a keywor d arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[12]: <AxesSubplot:xlabel='diagnosis', ylabel='count'>

Histogram

Histogram of Radius Mean for Bening and Malignant

```
In [13]: m = plt.hist(df[df["diagnosis"] == "M"].radius_mean,bins=30,fc = (1,0,0,0.5),lab
b = plt.hist(df[df["diagnosis"] == "B"].radius_mean,bins=30, fc = (1,0,0.5), lab

plt.legend()
plt.xlabel ("Radius Mean Values")
plt.ylabel ("Frequency")
plt.title("Histogram of Radius Mean for Bening and Malignant")
plt.show()
```


Encoding categorical data

Encoding malignan as 1 and benign as 0

```
In [14]: LEncoder = LabelEncoder()

df['diagnosis'] = LEncoder.fit_transform(df['diagnosis'])
df
```

Out[14]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	comp
0	1	17.99	10.38	122.80	1001.0	0.11840	
1	1	20.57	17.77	132.90	1326.0	0.08474	
2	1	19.69	21.25	130.00	1203.0	0.10960	
3	1	11.42	20.38	77.58	386.1	0.14250	
4	1	20.29	14.34	135.10	1297.0	0.10030	
564	1	21.56	22.39	142.00	1479.0	0.11100	
565	1	20.13	28.25	131.20	1261.0	0.09780	
566	1	16.60	28.08	108.30	858.1	0.08455	
567	1	20.60	29.33	140.10	1265.0	0.11780	
568	0	7.76	24.54	47.92	181.0	0.05263	

569 rows × 31 columns

Pre-Modeling Tasks

Separating the independant and the dependant variable

```
In [15]: X = df.drop('diagnosis',axis=1).values
y = df['diagnosis'].values
```

Splitting the dataset

```
In [16]: random_state = 42
    x_train, x_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_s
```

Feature Scaling

```
In [17]: sc = StandardScaler()

X_train = sc.fit_transform(x_train)
    X_test= sc.transform(x_test)
```

Modeling

Evaluating the model

Confusion Matrix

Out[20]:

predicted_cancer predicted_healthy

cancer	41	2
healthy	0	71

```
In [21]: sns.heatmap(cm,annot=True,fmt='g',cmap='Set2')
```

Out[21]: <AxesSubplot:>

True Positive(TP): Model predicted as Healthy, and is actually Healthy True Negative(TN): Model predicted as No Cancer, and is actually No Cancer False Positive(FP): Model predicted as Healthy, but actually No Cancer False Negative(FN): Model predicted as No Cancer, but actually Healthy

Accuracy_Score

```
In [22]: print(accuracy_score(y_test, y_pred_svc)) #(TP+TN)/total
```

0.9824561403508771

Classification Report

In [23]: print(classification_report(y_test, y_pred_svc))

	precision	recall	f1-score	support
0	0.97	1.00	0.99	71
1	1.00	0.95	0.98	43
accuracy			0.98	114
macro avg	0.99	0.98	0.98	114
weighted avg	0.98	0.98	0.98	114

Result

True Positive(TP): 71

True Negative(TN): 41

False Positive(FP): 2

False Negative(FN): 0

How often Model predicted as Healthy, and is actually Healthy?

True Positive Rate = TP/TP+FP = 71/(71+2) = 0.97

How often the model predicts Healthy when it's actually No Cancer?

False Positive Rate = FP/FP+TN = 2/2+41 = 0.04

In []: