

"ANÁLISIS NUMÉRICO I" "MÉTODOS MATEMÁTICOS Y NUMÉRICOS"

<75.12> <95.04> <95.13>

DATOS DEL TRABAJO PRÁCTICO

	2 0 2 2	Resolución de Sistemas de Ecuaciones Lineales
AÑO Conducción de calor 2D en un anillo"		Conducción de calor 2D en un anillo"
	2	
TP NRO	CUAT	TEMA

INTEGRANTES DEL GRUPO

	D E	1 0	0 5 5 8	
	APELLIDO Y NOMBRE	PADRÓN		
GRUPO	APELLIDO Y NOMBRE	F	PADRÓN	

Objetivos

El objetivo del trabajo es analizar la problemática de la transmisión de calor en el tubo durante la soldadura.

Se resolverá el sistema de ecuaciones AX=b obtenido luego de la aplicación del método de las diferencias finitas.

Para esto, se utilizarán los métodos iterativos Gauss-Seidel y SOR. Luego se hará un análisis y comparación entre ambos métodos sobre su convergencia.

Desarrollo

a) Implementación función x=solver_SOR(A,b)

Ver ANEXO I

Se implementó la función utilizando el cálculo de los índices, en base a:

$$x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} \right]$$

Además, se hizo un análisis de las 3 matrices A, las cuales poseen valores en una cierta cantidad de diagonales. Así, se optimizó el código, de forma que sólo se hagan los cálculos sobre dichas posiciones y evitar hacer cálculos innecesarios con los valores nulos.

b) Determinación experimental de $w_{\delta ptimo}$

Matriz 090 020

Se calculó la cota del error, fijando la cantidad de iteraciones en 50 y variando en cada caso el valor de w. Inicialmente entre 1 y 2:

Donde w=1.5 obtuvo el menor error: 1.57e-10. Luego se volvió a calcular otra serie de w entre 1.4 y 1.6, donde se determinó que el $w_{\acute{o}ptimo}=1,52$

Matriz 180 020

Se calculó la cota del error, fijando la cantidad de iteraciones en 50 y variando en cada caso el valor de w. Inicialmente entre 1 y 2:

Donde w=1,7 obtuvo el menor error: 3.48e-05. Luego se volvió a calcular otra serie de w entre 1.6 y 1.8, donde se determinó que $w_{\acute{o}ptimo}=1,72$

Matriz 360_050

Se calculó la cota del error, fijando la cantidad de iteraciones en 80 y variando en cada caso el valor de w. Inicialmente entre 1 y 1.9:

Donde w=1.8 obtuvo el menor error: 0,0054. Luego se volvió a calcular otra serie de w entre más próxima a 1.8, donde se determinó que $w_{\acute{o}ptimo}=1,85$

Valores	W _{óptimo}	
$ni = 90 \ nj = 10$	1,52	
$ni = 180 \ nj = 20$	1,72	
ni = 360 nj = 50	<u>1,85</u>	

c)

d) Utilizando SOR con el w óptimo en cada caso:

Valores	Tiempo de procesamiento	
$ni = 90 \ nj = 10$	0,35s	
$ni = 180 \ nj = 20$	5,2s	
$ni = 360 \ nj = 50$	<u>126s</u>	

e) Temperatura en la mitad de espesor del tubo:

f)

g) Tiempo de procesamiento utilizando Gauss-Seidel

Valores	Tiempo de procesamiento	
$ni = 90 \ nj = 10$	0,6s	
ni = 180 nj = 20	7,6s	
$ni = 360 \ nj = 50$	212s	

h)

Análisis de convergencia

$$p = \frac{\ln \left(\Delta^{(k+1)}/\Delta^{(k)}\right)}{\ln \left(\Delta^{(k)}/\Delta^{(k-1)}\right)}$$

$$\Delta^{(k+1)} = |\,\overline{x}^{(k+1)} - \overline{x}^{(k)}|$$

Se calculó $m{p}$ en cada caso, utilizando la diferencia en el error de las últimas 3 iteraciones al llegar a la tolerancia.

Radio espectral (ρ)

Se calculó en cada caso, obteniendo la matriz T_{SOR}

$$T_{SOR} = (D - wL)^{-1} \cdot [(1 - w)D + wU]$$

 $T_{SOR}=(D-wL)^{-1} \ . \ [(1-w)D\ +\ wU]$ Utilizando la descomposición A=D-L-U, con D diagonal, L triangular superior y U triangular inferior.

 $\rho(T_{SOR}) = m$ áximo autovalor de T_{SOR}

Notar que para analizar el método Gauss-Seidel alcanza con utilizar w=1

Método SOR

Valores	Orden de convergencia $m{p}$	Radio espectral
$ni = 90 \ nj = 10$	1,024	0,62
ni = 180 nj = 20	0,988	0,82
$ni = 360 \ nj = 50$	1	0,95

Método Gauss-Seidel

Valores	Orden de convergencia $oldsymbol{p}$	Radio espectral	
$ni = 90 \ nj = 10$	1	0,90	
ni = 180 nj = 20	1	0,98	
$ni = 360 \ nj = 50$	1	0,996	

Se observa en los datos de las tablas, que para todos los casos $\rho(T) < 1$. Esto indica que los métodos convergen.

Además, el radio espectral es parámetro de la velocidad de convergencia. Esto se puede notar observando que los valores hallados para Gauss-Seidel son mayores a los de SOR.

También se comprobó que el orden de convergencia de los métodos analizados es lineal de

$$p = 1$$

Gráficos Comparación métodos, Error K+1 sobre Error K

Matriz 090 010

Matriz 180 020

Matriz 360 050

Lo observado en los gráficos se corresponde con lo calculado anteriormente, se halló que $p\approx 1$ para ambos métodos y para todas las matrices. Esto se condice con la pendiente observada en los gráficos.

Gráficos comparación del error relativo en cada iteración

Matriz 090 010

Matriz 180 020

Matriz 360 050

A partir de los gráficos, se observa que inicialmente en unas pocas iteraciones, el método Gauss-Seidel es capaz de reducir el error relativo "más rápido". Sin embargo, a partir de cierta iteración, el método SOR consolida su mayor reducción del error.

- i) Para resolver este tipo de sistemas lineales con gran cantidad de ecuaciones, el método SOR es apropiado, ya que al optimizar su w se logra llegar a la solución con un menor error y en menor cantidad de iteraciones.
 - En la medida de lo posible, es mejor evitar utilizar resoluciones que utilicen matrices y evitar también cálculos que impliquen el cálculo de una matriz inversa, ya que son operaciones con un gran costo computacional.

CONCLUSIONES

Se pudo comprobar experimentalmente que los métodos de resolución iterativos son efectivos. En particular, se probó que el método SOR con su w óptimo da como resultado cantidad de iteraciones y tiempos de cómputo menores.

Se verificó tal como indica la teoría, que ambos métodos iterativos son de orden 1 y que el método SOR tiene una mayor velocidad de convergencia. Esto se ve contrastado en el menor espectro radial y gráficamente en la pendiente más pronunciada observada al graficar el error.

ANEXO I

```
def solver SOR(A,b):
  tolerancia = 0.00001
  max iteraciones = 2000
  posicion_valores_090 = [-889, -9, 0, 2, 11, 891]
  posicion valores 180 = [-3579, -19, 0, 2, 21, 3581] # No incluyo 1 porque es la
diagonal i=j
  posicion_valores_360 = [-17949, -49, 0, 2, 51, 17951]
  return resolver_SOR(A, b, w, tolerancia, max_iteraciones,posicion_valores)
def calcularR(X,XAnterior):
  diferencia = [0] * len(X)
  for i in range(len(X)):
     diferencia[i] = X[i] - XAnterior[i]
  maxDif = max([abs(valor) for valor in diferencia])
  return maxDif
def calcularRRelativo(X, XAnterior):
  maxActual = max([abs(valor) for valor in X])
  R = calcularR(X,XAnterior)
  return R / maxActual
def calcularPosicionValoresFila(posicion_valores, i):
  posicion = [x + (i - 1) \text{ for } x \text{ in posicion valores}]
  posicion[:] = [x for x in posicion if (x >= 0 and x < tam_matriz)]
  return posicion
def resolver SOR(A, b, w, tolerancia, max iteraciones, posicion valores):
  start = time.time()
  tam matriz = len(b)
  X = [20] * tam matriz # semilla Tamb
  X[0] = b[0] # La primer fila viene resuelta
  X[tam_matriz - 1] = b[tam_matriz - 1] # La ultima fila viene resuelta
  for iteracion in range(max iteraciones):
     XAnterior = X.copy()
     for i in range(1, tam_matriz - 1):
        posicion valores fila = calcularPosicionValoresFila(posicion valores, i)
DE LA PLATA FACUNDO - Padrón 100558
                                                                          Página 13 de 21
```

```
for j in posicion valores fila:
          sum = sum + A[i][j] * X[j]
       X[i] = (1 - w) * X[i] + (b[i] - sum) * (w / A[i][i])
     R = calcularRRelativo(X, XAnterior)
     print("R = " + str(R))
     if R <= tolerancia:</pre>
        print("Se llegó a la tolerancia: " + str(tolerancia))
        print("Cantidad de iteraciones: ", iteracion + 1)
        print("R = " + str(R))
       break
  end = time.time()
  print("Tiempo calculo: ", end - start)
  return X
def resolver_GS(A, b, tol, max_iteraciones):
  resolver_SOR(A, b, 1, tol, max_iteraciones)
def leerCSV(nombreArchivo):
  matriz = list()
  with open(nombreArchivo) as csv_file:
     csv_reader = csv.reader(csv_file, delimiter=',')
     for fila in csv_reader:
       filaFloat = [float(i) for i in fila]
       filaNumeros = [int(i) for i in filaFloat]
       if len(fila) == 1:
          matriz.append(int(float(fila[0])))
          matriz.append(filaNumeros)
  return matriz
def cantidadIteracionesSOR(A, b, w, tolerancia, max_iteraciones):
  tam matriz = len(b)
  X = [20] * tam matriz # semilla
  cantidadIteraciones = 0
  for iteracion in range(max_iteraciones):
     XAnterior = X.copy()
```

```
for i in range(tam matriz):
       sum = 0
       for j in range(tam_matriz):
          if i == i:
            continue
          sum = sum + A[i][i] * X[i]
       X[i] = (1 - w) * X[i] + (b[i] - sum) * (w / A[i][i])
     R = calcularRRelativo(X, XAnterior)
     if R <= tolerancia:
       cantidadIteraciones = iteracion + 1
       break
  return cantidadIteraciones
def graficarResultadolteraciones(listaW, resultadosError, iteraciones):
  plt.title("Cantidad iteraciones: " + str(iteraciones))
  plt.xlabel("w")
  plt.ylabel("Cota error")
  plt.plot(listaW, resultadosError, color="green", marker='.')
  plt.show()
def hallarWOptimolteraciones(A, b, wDesde, wHasta, iteraciones, posicion_valores):
  start = time.time()
  resultadosError = list()
  paso = (wHasta - wDesde) / 10
  listaW = np.arange(wDesde, wHasta, paso) # start (included), stop (excluded),
step
  for w in listaW:
     tam matriz = len(b)
     X = [20] * tam matriz # semilla
     XAnterior = X.copy()
     X[0] = b[0] # La primer fila viene resuelta
     X[tam_matriz - 1] = b[tam_matriz - 1] # La ultima fila viene resuelta
     for iteracion in range(iteraciones):
       XAnterior = X.copy()
       for i in range(1, tam matriz - 1):
          sum = 0
          posicion valores fila = calcularPosicionValoresFila(posicion valores, i)
```

```
for j in posicion valores fila:
             sum = sum + A[i][j] * X[j]
          X[i] = (1 - w) * X[i] + (b[i] - sum) * (w / A[i][i])
     R = calcularRRelativo(X, XAnterior)
     print("w: ", w, " R: ", R)
     resultadosError.append(R)
  end = time.time()
  print("Tiempo calculo: ", end - start)
  graficarResultadoIteraciones(listaW, resultadosError, iteraciones)
def obtenerT(X, numero_filas, numero_columnas):
  T = [[None] * numero_columnas for i in range(numero_filas)] # Defino la matriz
del tamaño requerido
  for i in range(1, ni + 1):
     for j in range(1, nj + 1):
       kx = j + nj * (i - 1) # fila-columna
       T[i - 1][j - 1] = X[kx - 1]
  return T
def graficarCentroTubo(T, ni, nj):
  plt.title("Temperatura tubo")
  plt.xlabel("ni")
  plt.ylabel("T(ni,nj/2)")
  temperatura = list()
  for i in range(ni):
     temperatura.append(T[i][int(nj / 2)])
  plt.plot(range(ni), temperatura, color="green")
  # plt.savefig("tempTubo.eps", dpi=1200)
  plt.show()
def graficarTuboPolar(T, rext, wt, ni, nj, dr):
  theta = np.linspace(0, 2 * np.pi, ni)
  r = np.linspace(rext - wt, rext, nj)
  R, THETA = np.meshgrid(r, theta)
```

```
Z = np.sin(THETA) * R
  plt.subplot(111, projection='polar')
  plt.pcolormesh(THETA, R, T, cmap='plasma')
  plt.gca().set_rmin(0.0)
  plt.show()
def graficarMatrizT(T, ni, nj):
  plt.rcParams["figure.figsize"] = [1, 4]
  plt.rcParams["figure.autolayout"] = True
  fig, ax = plt.subplots()
  ax.set_title("Matriz T ni=" + str(ni) + " nj=" + str(nj))
  ax.set xlabel("ni")
  ax.set ylabel("nj")
  matrix = T
  ax.matshow(matrix, cmap='twilight')
  # plt.savefig("matrizT.eps", dpi=1200)
  plt.show()
def calcularRadioEspectral(A):
  matriz = np.matrix(A)
  autovalores = linalg.eigvals(A)
  a = list()
  return numpy.abs(autovalores).max()
def hallarTSOR(A1, w):
  A = np.matrix(A1, dtype=np.int32)
  # Descomposicion A = d-l-u
  u = -np.triu(A, 1) # Separa la parte diagonal superior e invierte los signos
  I = -np.tril(A, -1) # Separa la parte diagonal inferior e invierte los signos
  d = np.tril(np.triu(A)) # Separa la diagonal
  invertida = numpy.linalg.inv(d - w * I)
  tSOR = np.matmul(invertida,((1 - w) * d + w * u))
  return tSOR
def obtenerErroresSOR(A,B,w,cantidadIteraciones,posicion valores):
```

```
start = time.time()
  tam_matriz = len(b)
  X = [20] * tam matriz # semilla Tamb
  listaErrores = list()
  X[0] = b[0] # La primer fila viene resuelta
  X[tam matriz - 1] = b[tam matriz - 1] # La ultima fila viene resuelta
  for iteracion in range(cantidadIteraciones):
     XAnterior = X.copy()
     for i in range(1, tam_matriz - 1):
       sum = 0
       posicion_valores_fila = calcularPosicionValoresFila(posicion_valores, i)
       for j in posicion valores fila:
          sum = sum + A[i][j] * X[j]
       X[i] = (1 - w) * X[i] + (b[i] - sum) * (w / A[i][i])
     R = calcularRRelativo(X, XAnterior)
     listaErrores.append(R)
     print("R = " + str(R))
  end = time.time()
  print("Tiempo calculo: ", end - start)
  return listaErrores
def obtenerErroresGS(A,b,cantidadIteraciones,posicion_valores):
  return obtenerErroresSOR(A,b,1,cantidadIteraciones,posicion valores)
def graficarErrorRelativolteraciones (A, b, w, cantidadIteraciones, posicion valores):
  resultadosErrorSOR =
obtenerErroresSOR(A,b,w,cantidadIteraciones,posicion_valores)
  resultadosErrorGS = obtenerErroresGS(A,b,cantidadIteraciones,posicion valores)
  listalteraciones = range(1,cantidadIteraciones+1)
  print(listalteraciones)
  print(len(listalteraciones))
  print(len(resultadosErrorSOR))
  plt.xlabel("Iteraciones")
  plt.ylabel("Error")
  plt.plot(listalteraciones, resultadosErrorSOR, color="green", marker='.',label=
"SOR")
  plt.plot(listalteraciones, resultadosErrorGS, color="orange", marker='.',
label="GS")
  plt.yscale('log')
  plt.legend()
```

```
def obtenerListasErroresSOR(A,b,w,tolerancia,max_iteraciones,posicion_valores):
  tam matriz = len(b)
  X = [20] * tam matriz # semilla Tamb
  X[0] = b[0] # La primer fila viene resuelta
  X[tam_matriz - 1] = b[tam_matriz - 1] # La ultima fila viene resuelta
  listaErrores = list()
  for iteracion in range(max iteraciones):
     XAnterior = X.copy()
     for i in range(1, tam matriz - 1):
       sum = 0
       posicion valores fila = calcularPosicionValoresFila(posicion valores, i)
       for j in posicion valores fila:
          sum = sum + A[i][j] * X[j]
       X[i] = (1 - w) * X[i] + (b[i] - sum) * (w / A[i][i])
     R = calcularR(X,XAnterior)
     listaErrores.append(R)
     print("R = " + str(R))
     if R <= tolerancia:</pre>
       print("Se llegó a la tolerancia: " + str(tolerancia))
       print("Cantidad de iteraciones: ", iteracion + 1)
       print("R = " + str(R))
       break
  return listaErrores
def obtenerListasErroresGrafico(listaErrores):
  if len(listaErrores) % 2 != 0:
     listaErrores.pop()
  listaImparEjeY = listaErrores[1::2] # Elements from list1 starting from 1 iterating
by 2
  listaParEjeX = listaErrores[::2] # Elements from list1 starting from 0 iterating by 2
  listaImparEjeY[:] = [numpy.log(x) for x in listaImparEjeY]
  listaParEjeX[:] = [numpy.log(x) for x in listaParEjeX]
  return listaParEjeX, listaImparEjeY
def obtenerListasErroresGS(A, b, tolerancia, max_iteraciones, posicion_valores):
  w = 1
```

plt.show()

```
return
obtenerListasErroresSOR(A,b,w,tolerancia,max_iteraciones,posicion_valores)
def graficarErrorIteracion(A,b,w,tolerancia,posicion_valores):
  listaErrores = obtenerListasErroresSOR(A,b,w,tolerancia,3000,posicion valores)
  listaEjeXSOR, listaEjeYSOR = obtenerListasErroresGrafico(listaErrores)
  listaErrores = obtenerListasErroresGS(A, b, tolerancia, 3000, posicion valores)
  listaEjeXGS, listaEjeYGS = obtenerListasErroresGrafico(listaErrores)
  plt.xlabel("In(| xk - xk-1|)")
  plt.ylabel("In(| xk+1 - xk|)")
  plt.plot(listaEjeXSOR, listaEjeYSOR, color="green", marker='.',label= "SOR")
  plt.plot(listaEjeXGS, listaEjeYGS, color="orange", marker='.', label="GS")
  plt.legend()
  plt.show()
def calcularOrdenConvergencia(A, b, w, tolerancia, max_iteraciones,
posicion valores):
  listaErrores = obtenerListasErroresSOR(A, b, w, tolerancia, max iteraciones,
posicion valores)
  ultimoError = listaErrores.pop()
  anteUltimoError = listaErrores.pop()
  antePenultimoError = listaErrores.pop()
  p = numpy.log(ultimoError/anteUltimoError) /
numpy.log(anteUltimoError/antePenultimoError)
  return p
def hallarRadioEspectral(A,w):
  tSOR = hallarTSOR(A, w)
  max ava = calcularRadioEspectral(tSOR)
```

```
padron = 100558

tHot = padron / 100 + 300 # °C

tAmb = 20

ni = 180 # 360 # nodos coordenada angular

nj = 20 # 50 # nodos coordenada radial
```

print("Radio Espectral: ", max_ava)

if __name__ == '__main__':
 start = time.time()

```
n = ni * nj # nodos totales
  rExt = 0.250 # radio externo del tubo en metros
  wt = 0.015 # espesor de la pared del tubo en metros
  rInt = rExt - wt # radio interno del tubo en metros
  dr = wt / (ni - 1) # delta r de la malla en metros
  #A = leerCSV("A 090 010.csv")
  #b = leerCSV("b_090_010.csv")
  A = leerCSV("A 180 020.csv")
  b = leerCSV("b_180_020.csv")
\# A = IeerCSV("A_360_050.csv")
# b = leerCSV("b 360 050.csv")
  posicion_valores_090 = [-889, -9, 0, 2, 11, 891]
  posicion_valores_180 = [-3579, -19, 0, 2, 21, 3581] # No incluyo 1 porque es la
diagonal i=j
  posicion valores 360 = [-17949, -49, 0, 2, 51, 17951]
  posicion_valores = posicion_valores_180
  tam_matriz = len(b)
  X = [0] * tam matriz # semilla
  max iteraciones = 20000
  tolerancia = 0.00001
  # Resuelvo el SEL A*x=b por el método Gauss-Seidel
  X = resolver_SOR(A, b, w, tolerancia, max_iteraciones, posicion_valores)
```