

Introduction to GIS & Remote Sensing Applications

November, 2020

Agenda

- About Me & Doktar
- GIS & Remote Sensing
- The Industry & Community
- Types of GIS & Remote Sensing Data
- Data Science in GIS & Remote Sensing
- Implications for Decision Making & Opportunities

Who I am?

3

Batuhan Kavlak

Who we are?

Established

January 2012

Purpose

Improve agriculture via informed decisions.

Capabilities

Agronomic know-how, software and hardware development, big data

Offices

- 3 offices (Istanbul & Izmir) in Technology Development Zones
- Total team: 49

Highligts

- More than 500k registered farmers
- Growth protocols for 117 different crops
- Robust methodology to develop growth protocol for a new crop, in a new region
- Algorithms for fungal diseases, irrigation and fertilization programs
- Crop identification via remote sensing for highvalue crops besides all grains and industrial crops

Clients

Since 2012, Doktar has been growing both in number of offered services and clients.

Cárgill

Digital Agriculture Services of Doktar

High Level Service Architecture

Doktar Products & Services

Dijital Products

Smart Phone Applications

Farm Management System

Agenda

- About Me & Doktar
- GIS & Remote Sensing
- The Industry & Community
- Types of GIS & Remote Sensing Data
- Machine Learning in GIS & Remote Sensing
- Implications for Decision Making & Opportunities

GIS is set of tools and methods to organize, communicate, and understand the data of our world.

Geographical Information Systems

System Diagram

GIS are helpful systems for tracking the situation of our world and for taking action.

Geographical Information Systems

Coronavirus Map

GIS is necessary for us to mobilize all over the world easily and safely.

Geographical Information Systems

Google Maps

Source: Google Maps 11

GIS are advanced systems to monitor the Earth and analyze our environment.

Geographical Information Systems

Timelapse of Aral Sea

Remote sensing technologies use electromagnetic spectrum to extract desired information from a target.

Remote Sensing Technologies

Electromagnetic Spectrum

The reaction of the objects to electromagnetic spectrum changes, and their reactions determine the measurements.

Remote Sensing Technologies

Optic Sensor Measurements

The Sun is a significant source of light, and Sun's interaction with the Earth helps us see and monitor.

Remote Sensing Technologies

Earth & Atmosphere Observation

Interpreting the reflection from sun, the satellite technologies can render images to analyze and process further.

Remote Sensing Technologies

Satellite Imagery

Doktar's Product

Crop Health Monitoring via Satellite (1/2)

Set field boundaries from Orbit App,...

atl Turkcell LTE 17:44 ø Doktar Now, you are out of the field. 27 Jul 25 Jul 23 Jul 22 Jul 21 Jul Ø

... satellite data then processed to create health map,...

...low progressing areas identifed for inspection

Doktar's Product

Crop Health Monitoring via Satellite (2/2)

Health Map
Phenological Progress

Inspection MapInspection Priotization

Difference Map Field Follow-up

Drones can be equipped with multispectral sensors to increase the amount of information taken from the area.

Remote Sensing Technologies

Drone Imagery

Meteorological stations and satellites are also using remote sensing technologies to measure variables such as precipitation and land-surface temperature.

Remote Sensing Technologies

Weather Data

Remote sensing technologies are also used for more precise calculations on the ground.

Remote Sensing Technologies

Soil Analysis Device

Agenda

- About Me & Doktar
- GIS & Remote Sensing
- The Industry & Community
- Types of GIS & Remote Sensing Data
- Machine Learning in GIS & Remote Sensing
- Implications for Decision Making & Opportunities

GIS and Remote Sensing industry can be categorized into three: the users, the miners, and the providers.

GIS & Remote Sensing Industry

The Value Chain

Governments use such system for decision making in many topics such as agriculture, economical planning, environment, security & emergency.

GIS & Remote Sensing Industry

The Governments

Users

24

Businesses are integrating GIS & Remote Sensing to their operation flows. There are also companies built on the geographical information systems.

GIS & Remote Sensing Industry

The Businesses

Users

The use of GIS & Remote Sensing in Agriculture is becoming widespread across continents.

GIS & Remote Sensing Industry

Agriculture

Miners

Because of the Climate Change, the need for analyzing environmental variables is increasing.

GIS & Remote Sensing Industry

Environment

Miners

overstory

GIS & Remote Sensing are widespread in the arms industry. In addition, thanks to recent advancements, we are able to use RS efficiently in the state of emergency.

GIS & Remote Sensing Industry
Security & Emergency

Miners

Companies are now using GIS analyses to optimize their operations and their marketing purposes.

GIS & Remote Sensing Industry
Marketing & Supply Chain

Miners

There are many imagery providers from both private sectors and government institutions.

GIS & Remote Sensing Industry Data

Providers

Especially in remote sensing, software capabilities are barriers for analysts. Different solutions are becoming popular.

GIS & Remote Sensing Industry Software

Providers

31

Companies mainly provide solutions at the back-end for map integrations to the applications. There are now new platforms for analyzing RS data with cloud integration, as well.

GIS & Remote Sensing Industry
Web Solutions

Providers

Mostly research institutions consult to governments and some privately holding companies, especially in construction industry.

GIS & Remote Sensing Industry

Technique Consulting

You can find full of benevolent people in GIS & Remote Sensing communities where everything is shared freely.

GIS & Remote Sensing Community

Open Source Platforms

r-spatial

SPATIAL ECOLOGY

Agenda

- About Me & Doktar
- GIS & Remote Sensing
- The Industry & Community
- Types of GIS & Remote Sensing Data
- Machine Learning in GIS & Remote Sensing
- Implications for Decision Making & Opportunities

While vector data are defined geometrically with their attributes in the data set, raster data stored as pixel values on time and space dimension associated with their locations.

Vector Data

Raster Data

There is not an exact model of the Earth.

Geoid: https://en.wikipedia.org/wiki/Geoid

We need to project the Earth (3D object) into maps (2D surface), and there isn't any perfect projection.

See here for example: https://mathigon.org/course/circles/sphe
res-cones-cylinders#sphere-maps

Mathematical Explanation:
https://www.youtube.com/watch?v=D3td
W9l1690&ab_channel=Numberphile

Vectoral data store attributes, coordinates and coordinate reference systems. If we know those variables, we can convert and process the data.

Vector Data

Geographical Format

Kaynak: Doktar

This is not different than a usual tabular data; however, we have an extra columns here to define the geometry.

PolygonID	Class	Region	City	District	Geom
1	Building	MARMARA	ISTANBUL	EYUP	POLYGON (21.
2	Building	MARMARA	ISTANBUL	EYUP	POLYGON (21.
3	Building	MARMARA	ISTANBUL	EYUP	POLYGON (21.
4	Building	MARMARA	ISTANBUL	ATASEHIR	POLYGON (21.
5	Building	MARMARA	ISTANBUL	ATASEHIR	POLYGON (21.
6	Forest	MARMARA	ISTANBUL	BEYKOZ	POLYGON (21.
7	Forest	MARMARA	ISTANBUL	BEYKOZ	POLYGON (21.
8	Forest	MARMARA	ISTANBUL	BEYKOZ	POLYGON (21.
9	Forest	MARMARA	ISTANBUL	SARIYER	POLYGON (21.
10	Forest	MARMARA	ISTANBUL	SARIYER	POLYGON (21.
11	Water	MARMARA	ISTANBUL		POLYGON (21.
12	Water	MARMARA	ISTANBUL		POLYGON (21.
13	Water	MARMARA	ISTANBUL		POLYGON (21.

The information from raster data can change according to different parameters such as resolution, band number, and projection.

Worldview – 30cm RGB Image Sentinel-2 – 10m RGB Image

Raster data store extent, resolution, coordinate reference system, band attributes, and pixel values. If we know those variables, we can convert and process the data.

Raster Data

Geographical Format

Kaynak: Doktar 42

Raster data can also be converted to tabular data format if we can extract the pixel values and organize them properly.

	Coordi	inates	t ₁ Satellite Bands				t _{2,,} t _n Satellite Bands	
PixelID	Х	Υ	Red1	Green1	Blue1	NIR1	Red2	
1	27.7834	40.1535	660	500	369	1049	630	•••
2	27.7835	40.1536	615	572	379	1136	580	
3	27.7836	40.1537	681	546	389	1066	652	••••
4	27.7837	40.1538	660	553	434	1168	620	
5	27.7838	40.1539	651	538	385	1183	630	
6	27.7804	40.1525	608	503	429	1032	573	
7	27.7805	40.1526	656	489	356	1008	643	
8	27.7806	40.1527	646	549	392	1069	618	
9	27.7807	40.1528	671	519	351	1181	661	
10	27.7808	40.1529	660	529	359	1168	503	
11	27.7734	40.1435	672	559	366	1017	648	
12	27.7735	40.1436	634	539	358	1137	601	
13	27.7736	40.1437	669	510	361	1074	623	

Vectoral data store attributes, coordinates and coordinate reference systems. If we know those variables, we can convert and process data.

Computing Environment

Open Source Computing Environment

Dependencies

Languages

Agenda

- About Me & Doktar
- GIS & Remote Sensing
- The Industry & Community
- Types of GIS & Remote Sensing Data
- Data Science in GIS & Remote Sensing
- Implications for Decision Making & Opportunities

We can work with many models in GIS & Remote Sensing; however, geographical considerations are needed to be taken when analyzing the cases.

Geostatistics

Tobler's First Law of Geography

"everything is related to everything else, but near things are more related than distant things."

Kaynak: Doktar

Spatial and temporal autocorrelation are some painful bias on the datasets. You need be aware of such biases when testing your accuracy.

47

GeostatisticsSpatial Cross-Validation

Kaynak: Doktar

Ground truth data collection on large areas is the most challenging issue against the development of statistical models in GIS.

FieldWork
Field Location, Crop Type

Electronic DevicesSoil and Temperature Information

Almost in all geographical decision-making, data science techniques are necessary for extracting relevant information.

Data Science in GIS & RS

Epidemiology

Lymphatic filariasis in sub-Saharan Africa

See here for nice examples: https://www.paulamoraga.com/res earch/

The demand and need for environmental solutions are increasing; thus, the data are being collected more.

Machine Learning in GIS & RS

Environment

Especially in meteorology, physical models are being powered with deep learning models for weather forecasts.

Machine Learning in GIS & RS

Weather Forecast

Deep Learning algorithms are perfect fit with the civil engineering and urban planning since there is a large amount of capital to collect and process data.

Machine Learning in GIS & RS Civil Engineering & Urban Planning

RGB channels

Rasterized Aerial LiDAR

Manually digitized Hip (purple) and Gable (orange) segments

3D reconstruction of building using manually digitized segments

Agenda

- About Me & Doktar
- GIS & Remote Sensing
- The Industry & Community
- Types of GIS & Remote Sensing Data
- Data Science in GIS & Remote Sensing
- Implications for Decision Making & Opportunities

Governments increased their support on Earth Observation data data collection, and now, there are many free data providers.

Satellite Data Sources

Atmosphere Data Sources

NASA POWER
Prediction of worldwide energy resources

Challenges in Remote Sensing are trying to be solved with crowdsource solutions.

Announcing the Winners of the Data Labeling Contest

Representative hand-labeled task for the prize category, Best Quality Labeler.

Heavy computations are now being solved with different solutions.

In the near future, the cost of operating with satellite will decrease as the services become more widespread. The increases in frequency will solve many problems.

Service	Spectral Resolution	Spatial Resolution	Temporal Resolution	Access
MODIS	36 Bands	250m	1 day	Free
Landsat-8	11 Bands	15m	16 days	Free
Sentinel-2	13 Bands	10m	5 days	Free
PlanetScope	4 Bands (5 ve 8 Bands)	3m	1 day	On-demand
Pleiades	4 Bands	50cm	On-demand	On-demand
Worldview	8 Bands	30cm	On-demand	On-demand \$\$

Software and Web Solutions segments are growing as the need for data processing is increasing. You can also create solutions in marketing with the locational data especially in retail.

GIS & Remote Sensing Industry

The Value Chain

Erzene Mahallesi Ege Üniversitesi Kampüsü ideEGE-TGB Mercan Binası
No:172/70-I Bornova/İzmir
+90 538 057 70 75
www.doktar.com

