Universidade Federal do Rio de Janeiro Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia

Programa de Engenharia de Sistemas e Computação

CPS863 - Aprendizado de Máquina Prof. Dr. Edmundo de Souza e Silva (PESC/COPPE/UFRJ)

Classificação de embarcações utilizando técnicas de Visão Computacional

Luiz Henrique Souza Caldas email: lhscaldas@cos.ufrj.br

14 de outubro de 2024

Questão 1

Este exercício foi feito em classe no dia 10/Out/2024. A lista contém as questões resolvidas e ainda alguns itens a mais. Faça a lista e complete as questões que faltaram.

Este exercício é motivado pelo trabalho em https://ieeexplore.ieee.org/document/9006548, Seção H (Leveraging spatio-temporal correlation across homes). O problema foi simplificado neste exercício.

Imagine que dispomos de um classificador implementado em roteadores residenciais de um provedor de Internet (ISP). A cada janela de tempo (por exemplo a cada 5 minutos) o classificador do roteador i fornece como saída uma dentre 2 possibilidades: (a) existe um ataque DDoS acontecendo a partir da residência do roteador i, nesta janela de tempo; (b) não há ataque acontecendo a partir da residência do roteador i nesta janela.

A cada 5 minutos o ISP amostra o resultado de M roteadores escolhidos de forma aleatória dentre todos os roteadores da sua base que, para todos os efeitos deste problema, pode ser considerada como muito grande (infinita). O objetivo do ISP é determinar, a partir das M amostras coletadas, se um ataque aconteceu ou não durante a janela de tempo amostrada. Em outras palavras, o ISP quer determinar a possibilidade de uma das seguintes hipóteses serem verdadeiras: h_a (há um ataque DDoS acontecendo na rede do ISP na janela amostrada) ou h_b que é a hipótese complementar.

O ISP conhece o classificador usado em cada roteador residencial, e sabe que o resultado não é 100% confiável. Portanto, ele usará correlação espacial conforme sugerido no artigo acima e explicado em classe.

No que se segue usaremos algumas definições comuns que podem ser encontradas em https://en.wikipedia.org/wiki/Confusion_matrix (ver também a figura em https://en.wikipedia.org/wiki/Confusion_matrix).

Notação:

- M: número de roteadores amostrados (em uma janela de tempo);
- Inf: variável aleatória (va) indicando se a residência é um "bot", isto é, está ou não infectada. P[Inf] ($P[\overline{Inf}]$) é a probabilidade de uma residência estar infectada (não estar infectada);
- TPR: (true positive rate ou hit rate) taxa de acerto do classificador, ou probabilidade do classificador corretamente sinalizar um ataque, dado que um ataque está acontecendo no ISP (Nota: obviamente somente residências infectadas podem gerar um ataque quando ele ocorre);
- FPR: (false positive rate) ou probabilidade do classificador do roteador residencial erradamente sinalizar um ataque a partir da residência;
- L: variável aleatória indicadora L=1 se o roteador alarma, L=0, caso contrário;
- $P[h_a]$: probabilidade de ocorrer um ataque DDoS no ISP em uma janela de tempo. (Se você tem algum conhecimento prévio sobre ataques, talvez possa estimar o $P[h_a]$).

Suponha que, em uma determinada janela de tempo, das M amostras coletadas, V roteadores sinalizaram que um ataque estava ocorrendo na janela (e então M-V roteadores sinalizaram que tudo estava normal nas suas respectivas residências). Suponha ainda que um ataque ocorre em um intervalo independentemente das infecções nas residências.

Para os seus cálculos, suponha que: TPR = 0.8, FPR = 0.1, P[Inf] = 0.2. Como você não tem conhecimento prévio sobre $P[h_a]$, suponha inicialmente que $P[h_a] = P[h_b] = 0.5$, V = 20, M = 200.

Responda as seguintes perguntas, mas só substitua os valores no final:

1. Suponha que um ataque esteja ocorrendo. Calcule $P[L=1|\text{Inf},h_a]$ e $P[L=1|\overline{\text{Inf}},h_a]$, e então $P[L=1|h_a]$ e $P[L=0|h_a]$.

Resposta:

Se o ataque está ocorrendo, temos:

$$P[L=1|\text{Inf}, h_a] = TPR = 0.8$$

e

$$P[L=1|\overline{\text{Inf}}, h_a] = FPR = 0.1$$

Podemos calcular $P[L=1|h_a]$ pela lei total da probabilidade:

$$P[L=1|h_a] = P[L=1|\mathrm{Inf},h_a] \cdot P[\mathrm{Inf}] + P[L=1|\overline{\mathrm{Inf}},h_a] \cdot P[\overline{\mathrm{Inf}}]$$

Substituindo os valores:

$$P[L = 1|h_a] = 0.8 \cdot 0.2 + 0.1 \cdot 0.8 = 0.16 + 0.08 = 0.24$$

Agora, $P[L=0|h_a]$ é simplemente o complementar de $P[L=1|h_a]$:

$$P[L = 0|h_a] = 1 - P[L = 1|h_a] = 1 - 0.24 = 0.76$$

2. Suponha que um ataque não esteja ocorrendo. Calcule $P[L=1|\text{Inf},h_b]$ e $P[L=1|\overline{\text{Inf}},h_b]$, e então $P[L=1|h_b]$ e $P[L=0|h_b]$.

Resposta:

Se um ataque não está ocorrendo, temos:

$$P[L=1|\text{Inf}, h_b] = FPR = 0.1$$

e

$$P[L=1|\overline{\ln f},h_b] = FPR = 0.1$$

Podemos calcular $P[L=1|h_b]$ usando a lei total da probabilidade:

$$P[L=1|h_b] = P[L=1|\text{Inf}, h_b] \cdot P[\text{Inf}] + P[L=1|\overline{\text{Inf}}, h_b] \cdot P[\overline{\text{Inf}}]$$

Substituindo os valores:

$$P[L = 1|h_b] = 0.1 \cdot 0.2 + 0.1 \cdot 0.8 = 0.02 + 0.08 = 0.10$$

Agora, $P[L=0|h_b]$ é o complementar de $P[L=1|h_b]$:

$$P[L = 0|h_b] = 1 - P[L = 1|h_b] = 1 - 0.10 = 0.90$$

3. Calcule $P[D|h_a]$ em função de V e M (Likelihood).

Resposta:

Sabemos que D representa os dados observados, isto é, V roteadores sinalizando um ataque de um total de M roteadores.

A probabilidade $P[D|h_a]$ pode ser modelada como uma distribuição binomial, onde V roteadores sinalizam um ataque dado que um ataque realmente está ocorrendo (h_a) :

$$P[D|h_a] = {M \choose V} (P[L=1|h_a])^V (P[L=0|h_a])^{M-V}$$

Substituindo $P[L=1|h_a]=0.24$ e $P[L=0|h_a]=0.76$:

$$P[D|h_a] = \binom{M}{V} (0.24)^V (0.76)^{M-V}$$

4. Calcule $P[D|h_b]$ em função de V e M (Likelihood).

Resposta:

De forma similar à Pergunta 3, modelamos $P[D|h_b]$ como uma distribuição binomial. Agora, h_b indica que não há ataque acontecendo, e portanto utilizamos $P[L=1|h_b]$ e $P[L=0|h_b]$:

$$P[D|h_b] = {M \choose V} (P[L=1|h_b])^V (P[L=0|h_b])^{M-V}$$

Substituindo $P[L = 1|h_b] = 0.1 \text{ e } P[L = 0|h_b] = 0.9$:

$$P[D|h_b] = \binom{M}{V} (0.1)^V (0.9)^{M-V}$$

5. Calcule $P[h_a|D]$ e $P[h_b|D]$ (Posterior).

Resposta:

Usamos o teorema de Bayes para calcular $P[h_a|D]$ e $P[h_b|D]$.

Para $P[h_a|D]$:

$$P[h_a|D] = \frac{P[D|h_a] \cdot P[h_a]}{P[D]}$$

A probabilidade total P[D] é dada por:

$$P[D] = P[D|h_a] \cdot P[h_a] + P[D|h_b] \cdot P[h_b]$$

Substituímos os valores de $P[D|h_a], P[D|h_b], P[h_a] = 0.5$ e $P[h_b] = 0.5$ (hipóteses iguais):

$$P[h_a|D] = \frac{P[D|h_a] \cdot 0.5}{P[D|h_a] \cdot 0.5 + P[D|h_b] \cdot 0.5}$$

Similarmente, para $P[h_b|D]$:

$$P[h_b|D] = \frac{P[D|h_b] \cdot 0.5}{P[D|h_a] \cdot 0.5 + P[D|h_b] \cdot 0.5}$$

Substituindo os valores de $P[D|h_a]$ e $P[D|h_b]$ calculados anteriormente, podemos encontrar os valores de $P[h_a|D]$ e $P[h_b|D]$ em função de V e M:

$$P[h_a|D] = \frac{(0.24)^V (0.76)^{M-V}}{(0.24)^V (0.76)^{M-V} + (0.1)^V (0.9)^{M-V}}$$

$$P[h_b|D] = \frac{(0.1)^V (0.9)^{M-V}}{(0.24)^V (0.76)^{M-V} + (0.1)^V (0.9)^{M-V}}$$

6. Qual o mínimo de roteadores que deveriam alarmar (V) para que você tenha confiança de que um ataque ocorreu.

Resposta:

O número mínimo de roteadores V que devem alarmar para termos confiança de que um ataque está ocorrendo pode ser calculado comparando $P[h_a|D]$ e $P[h_b|D]$. Queremos encontrar V tal que:

$$P[h_a|D] > P[h_b|D]$$

Para garantir essa desigualdade, substituímos as expressões que encontramos para $P[h_a|D]$ e $P[h_b|D]$:

$$\frac{(0.24)^{V}(0.76)^{M-V}}{(0.24)^{V}(0.76)^{M-V} + (0.1)^{V}(0.9)^{M-V}} > \frac{(0.1)^{V}(0.9)^{M-V}}{(0.24)^{V}(0.76)^{M-V} + (0.1)^{V}(0.9)^{M-V}}$$

Cancelando o denominador, que é o mesmo dos dois lados da desigualdade, e rearranjando os termos, obtemos:

$$\frac{(0.24)^V}{(0.1)^V} > \frac{(0.9)^{M-V}}{(0.76)^{M-V}}$$

Definindo $k_1 = \frac{0.24}{0.1} = 2.4$ e $k_2 = \frac{0.9}{0.76}$:

$$(2.4)^V > (k_2)^{M-V}$$

Tomando o logaritmo em ambos os lados, temos:

$$V \cdot \log(2.4) > (M - V) \cdot \log(k_2)$$

Distribuindo, isso se torna:

$$V \cdot \log(2.4) + V \cdot \log(k_2) > M \cdot \log(k_2)$$

Rearranjando:

$$V \cdot (\log(2.4) + \log(k_2)) > M \cdot \log(k_2)$$

Assim, isolando V:

$$V > \frac{M \cdot \log(k_2)}{\log(2.4) + \log(k_2)}$$

Finalmente, para M = 200:

Portanto, pelo menos 33 roteadores devem alarmar para garantir que a probabilidade de um ataque esteja ocorrendo seja maior do que a probabilidade de não estar ocorrendo.

7. Caso $P[h_a] = 0.1$, os resultados variam? Trace as curvas $P[h_a|D]$ e $P[h_b|D]$ em função de V e explique as curvas.

Resposta:

Quando alteramos $P[h_a]$ para 0.1, os cálculos de $P[h_a|D]$ e $P[h_b|D]$ são impactados. Isso ocorre porque o valor anterior $P[h_a] = 0.5$ era uma suposição de hipóteses equiprováveis.

Com $P[h_a] = 0.1$, temos:

$$P[h_a|D] = \frac{P[D|h_a] \cdot 0.1}{P[D|h_a] \cdot 0.1 + P[D|h_b] \cdot 0.9}$$

е

$$P[h_b|D] = \frac{P[D|h_b] \cdot 0.9}{P[D|h_a] \cdot 0.1 + P[D|h_b] \cdot 0.9}$$

Substituímos os valores conhecidos:

•
$$P[D|h_a] = {M \choose V} (0.24)^V (0.76)^{M-V}$$

•
$$P[D|h_b] = {M \choose V} (0.1)^V (0.9)^{M-V}$$

A fórmula para $P[h_a|D]$ agora se torna:

$$P[h_a|D] = \frac{\binom{M}{V}(0.24)^V(0.76)^{M-V} \cdot 0.1}{\binom{M}{V}(0.24)^V(0.76)^{M-V} \cdot 0.1 + \binom{M}{V}(0.1)^V(0.9)^{M-V} \cdot 0.9}$$

E para $P[h_b|D]$:

$$P[h_b|D] = \frac{\binom{M}{V}(0.1)^V(0.9)^{M-V} \cdot 0.9}{\binom{M}{V}(0.24)^V(0.76)^{M-V} \cdot 0.1 + \binom{M}{V}(0.1)^V(0.9)^{M-V} \cdot 0.9}$$

Simplificando $\binom{M}{V}$ e fazendo M=200:

$$P[h_a|D] = \frac{(0.24)^V (0.76)^{200-V} \cdot 0.1}{(0.24)^V (0.76)^{200-V} \cdot 0.1 + (0.1)^V (0.9)^{200-V} \cdot 0.9}$$

$$P[h_b|D] = \frac{(0.1)^V (0.9)^{200-V} \cdot 0.9}{(0.24)^V (0.76)^{200-V} \cdot 0.1 + (0.1)^V (0.9)^{200-V} \cdot 0.9}$$

Como demonstrado na figura 1, a probabilidade de um ataque estar ocorrendo $P[h_a|D]$ aumenta conforme V aumenta, enquanto a probabilidade de não haver ataque $P[h_b|D]$ diminui. Isso é esperado, pois mais roteadores alarmando indica uma maior probabilidade de um ataque estar ocorrendo.

Figura 1: Probabilidades $P[h_a|D]$ e $P[h_b|D]$ em função de V para $P[h_a]=0.1$.

8. Caso $P[h_a] = 0.1$, trace a curva $\log(P[h_a|D]/P[h_b|D])$ em função de V.

Resposta:

A curva $\log(P[h_a|D]/P[h_b|D])$ representa a relação logarítmica entre a probabilidade de um ataque estar ocorrendo em relação à probabilidade de não haver ataque, para diferentes valores de V.

Com $P[h_a]=0.1$, a equação que devemos traçar é:

$$\log\left(\frac{P[h_a|D]}{P[h_b|D]}\right) = \log\left(\frac{P[D|h_a] \cdot 0.1}{P[D|h_b] \cdot 0.9}\right) = \log\left(\frac{(0.24)^V (0.76)^{200-V} \cdot 0.1}{(0.1)^V (0.9)^{200-V} \cdot 0.9}\right)$$

Podemos então traçar a curva dessa razão logarítmica, como visto na figura 2. Conforme V aumenta, a razão $P[h_a|D]/P[h_b|D]$ também aumenta, indicando uma maior confiança de que um ataque está ocorrendo.

Figura 2: Razão logarítmica entre $P[h_a|D]$ e $P[h_b|D]$ em função de V para $P[h_a]=0.1$.

- 9. Para TPR=0.9 e FPR=0.1, plote, em um mesmo gráfico, a função de probabilidade de massa:
 - (a) do número de roteadores que alarmam quando há um ataque;
 - (b) do número de roteadores que alarmam quando não há um ataque.

Na implementação do classificador central (aquele que recebe os sinais dos roteadores domésticos, e que são os "sensores" em cada residência), você deve decidir a partir de quantos roteadores residenciais alarmando o classificador central deverá detectar que um ataque está ocorrendo.

- (a) Explique como avaliar o erro da sua decisão.
- (b) Estime esse erro para o valor escolhido.

Resposta:

Para TPR = 0.9 e FPR = 0.1, queremos traçar a função de probabilidade de massa (PMF) para o número de roteadores que alarmam em dois cenários:

(a) Quando há um ataque (hipótese h_a),

A função de probabilidade segue a distribuição binomial:

$$P(V|h_a) = {M \choose V} (TPR)^V (1 - TPR)^{M-V}$$

onde:

- M = 200 é o número total de roteadores,
- V é o número de roteadores que alarmam,
- TPR = 0.9 é a taxa de verdadeiros positivos, ou seja, a probabilidade de um roteador alarmar corretamente quando há um ataque.

Como TPR = 0.9, a maior parte dos roteadores deverá alarmar quando um ataque está ocorrendo, portanto a função de probabilidade de massa será concentrada em valores altos de V, próximos a M.

(b) Quando não há um ataque (hipótese h_b),

Aqui, a distribuição binomial também é utilizada, mas com FPR = 0.1 (taxa de falsos positivos):

$$P(V|h_b) = \binom{M}{V} (FPR)^V (1 - FPR)^{M-V}$$

onde:

- M = 200 é o número total de roteadores,
- V é o número de roteadores que alarmam,
- FPR = 0.1 é a probabilidade de um roteador alarmar erroneamente quando não há ataque.

Como FPR=0.1, esperamos que poucos roteadores alarmem no cenário sem ataque. Portanto, a função de probabilidade de massa será concentrada em valores baixos de V, próximos de zero.

Resposta (continuação):

Explicação do Gráfico:

O gráfico resultante (figura 3) tem duas curvas:

- (a) A primeira curva, $P(V|h_a)$, mostra a probabilidade de V roteadores alarmarem quando há um ataque. Como TPR=0.9, a probabilidade será maior para valores altos de V, indicando que muitos roteadores devem alarmar quando o ataque ocorre.
- (b) A segunda curva, $P(V|h_b)$, mostra a probabilidade de V roteadores alarmarem quando não há ataque. Como FPR=0.1, a probabilidade será maior para valores baixos de V, indicando que poucos roteadores alarmam quando não há ataque.

Figura 3: Funções de probabilidade de massa (PMF) para o número de roteadores que alarmam.

Resposta (continuação):

Decisão do Limiar:

A partir do gráfico, podemos definir um limiar V_{limiar} que determina o número mínimo de roteadores alarmando necessário para que o classificador central conclua que um ataque está ocorrendo:

- Se $V > V_{\text{limiar}}$, o classificador detecta um ataque.
- Se $V \leq V_{\text{limiar}}$, o classificador conclui que não há ataque.

Erro de Decisão:

O erro de decisão é composto por:

- Falsos positivos: ocorrem quando $V > V_{\text{limin}}$ no cenário sem ataque (h_b) .
- Falsos negativos: ocorrem quando $V \leq V_{\text{limiar}}$ no cenário com ataque (h_a) .

A escolha do limiar V_{limiar} afeta diretamente a taxa de erro:

- Um limiar baixo aumenta os falsos positivos, pois mais alarmes serão registrados mesmo sem ataque.
- Um limiar alto aumenta os falsos negativos, pois pode haver um ataque, mas o número de alarmes não é suficiente para detectá-lo.

O ponto ideal de V_{limiar} deve ser escolhido de maneira a equilibrar os erros de decisão, minimizando falsos positivos e falsos negativos.

Estimativa do Erro:

Para um valor específico de V_{limiar} , você pode estimar o erro somando:

- A probabilidade de falsos positivos $P(V > V_{\text{limiar}}|h_b)$,
- A probabilidade de falsos negativos $P(V \leq V_{\text{limiar}}|h_a)$.

Essas probabilidades são obtidas a partir das funções de probabilidade de massa traçadas anteriormente.