Московский физико-технический институт Физтех-школа прикладной математики и информатики

МНОГОМЕРНЫЙ АНАЛИЗ, ИНТЕГРАЛЫ И РЯДЫ II CEMECTP

Лектор: Редкозубов Вадим Витальевич

Автор: Головко Денис, Фёдор Стуров Проект на Github

Содержание

	0.1	Преобразование Абеля	2		
1	Hec	Несобственный интеграл Римана			
	1.1	Основные понятия	3		
	1.2	Несобственные интегралы от неотрицательных функций	6		
	1.3	Несобственные интегралы от знакопеременных функций	7		
2	Числовые ряды				
	2.1	Сумма числового ряда	11		
	2.2	Ряды с неотрицательными членами	13		
	2.3	Ряды с произвольными членами	16		
	2.4	Перестановки рядов	18		
	2.5	Произведение числовых рядов	19		
	2.6	Неупорядоченные ряды	20		
3	Φy	нкциональные ряды	22		
	3.1	Равномерная сходимость	22		
	3.2	Признаки равномерной сходимости функциональных рядов	28		
4	Степенные ряды				
	4.1	Свойства степенных рядов	32		
	4.2	Ряды Тейлора	34		
5	Me'	трические пространства	37		
	5.1	Топология метрических пространств	39		
	5.2	Подпространства метрического пространства			
	5.3	Компакты в метрических пространствах	42		
	5.4	Полные метрические пространства	44		
6	Нег	трерывные функции	45		
	6.1	Предел функции в точке	45		
	6.2	Непрерывные функции	47		
	6.3	Непрерывные функции на компактах	49		
	6.4	Связные множества	50		
	6.5	Линейные отображения в евклидовых пространствах	53		
7	Дис	фференциальное исчисление	53		

	7.1	Дифференцируемость функции в точке	53
	7.2	Правила дифференцирования	57
	7.3	Частные производные и дифференциалы высших порядков	59
8	Mej	ра Лебега	62
	8.1	Объем бруса	62
	8.2	Алгебры множеств	63
	8.3	Внешняя мера	64
	8.4	Измеримые множества	65
9	Инт	геграл Лебега	69
	9.1	Измеримые функции	69
	9.2	Интеграл Лебега в общем случае	75
	9.3	Формула суммирования Эйлера	78
	9.4	Неизмеримые множества	80

0.1 Преобразование Абеля

Определение 0.1. Пусть $\{a_n\}$, $\{b_n\}$ — (комлексные) последовательности, $m \in \mathbb{N}$, и пусть $A_n = \sum_{k=1}^n a_k$ для всех $n \in \mathbb{N}$. Тогда $a_k = A_k - A_{k-1}$ $(A_0 = 0)$, и, значит,

$$\sum_{k=m}^{n} a_k b_k = \sum_{k=m}^{n} (A_k - A_{k-1}) b_k = \sum_{k=m}^{n} A_k b_k - \sum_{k=m-1}^{n-1} A_k b_{k+1}.$$

Справедливо преобразование Абеля:

$$\sum_{k=m}^{n} a_k b_k = A_n b_n - A_{m-1} b_m - \sum_{k=m}^{n-1} A_k (b_{k+1} - b_k).$$

Лемма 0.1 (Абель). Пусть $\{a_n\}$ — (комплексная) последовательность, $\{b_n\}$ — монотонная последовательность, и пусть $\forall k |A_k| \leq M$. Тогда:

$$\left| \sum_{k=m}^{n} a_k b_k \right| \leqslant 2M(|b_m| + |b_n|).$$

Доказательство. По монотонности $\{b_n\}$ знаки $b_{k+1}-b_k$ сохраняются, поэтому: ¹

$$\left| \sum_{k=m}^{n} a_k b_k \right| \leqslant M \left(|b_n| + |b_m| + \left| \sum_{k=m}^{n-1} (b_{k+1} - b_k) \right| \right) = M \left(|b_n| + |b_m| + |b_n - b_m| \right).$$

Замечание. Пусть $\{b_n\}$ нестрого убывает и неотрицательна, $\widetilde{M}\leqslant A_k\leqslant M$, тогда при m=1 неравенство можно усилить:

$$\widetilde{M}b_1 \leqslant \sum_{k=1}^n a_k b_k \leqslant Mb_1.$$

Лемма 0.2 (Абель). Пусть $f \in \mathcal{R}[a,b]$, g монотонна на [a,b], u пусть $\forall x \in [a,b] \mid \int_a^x f(t)dt \mid \leq M$. Тогда:

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \leqslant 2M(|g(a)| + |g(b)|).$$

Доказательство. Зафиксируем $\varepsilon > 0$. Положим $I = \int_a^b f(x) dx$. Тогда $\exists \delta > 0 \ \forall (T, \xi) \ (|T| < \delta \to |\sigma_T(f, \xi) - I| < \frac{\varepsilon}{2})$.

Выберем одно такое разбиение $T = \{x_i\}_{i=0}^n$.

Пусть $T_k = \{x_i\}_{i=0}^k$ — соответствующее разбиение $[x_0, x_k], k = 1, \ldots, n$. Числа $\sigma_{T_k}(f, \xi_k)$ и $\int_{x_0}^{x_k} f(x) dx$ лежат² на отрезке $[s_{T_k}(f), S_{T_k}(f)]$, и верно $S_{T_k}(f) - s_{T_k}(f) \leqslant S_T(f) - s_T(f)$.

$$I - \frac{\varepsilon}{2} < \sigma_T(f, \xi) < I + \frac{\varepsilon}{2},$$

¹Сумма телескопируется.

 $^{^{2}}$ По критерию Дарбу.

$$I - \frac{\varepsilon}{2} \leqslant s_T(f) \leqslant S_T(f) \leqslant I + \frac{\varepsilon}{2},$$

$$\left|\sigma_{T_k}(f,\xi_k) - \int_{x_0}^{x_k} f(x)dx\right| \leqslant \varepsilon.$$

Положим $A_k = \sum_{i=1}^k f(c_i) \Delta x_i$. Тогда $A_k = \sigma_{T_k}(f, \xi_k)$ и, значит, из последнего неравенства $|A_k| \leqslant M + \varepsilon$. Применим лемму 0.1 для $a_k = f(c_k) \Delta x_k, b_k = g(c_k)$, получим

$$\left| \sum_{k=1}^{n} f(c_k) g(c_k) \Delta x_k \right| \leqslant 2(M+\varepsilon)(|g(c_1)| + |g(c_n)|).$$

Неравенство верно для любого набора отмеченных точек, в том числе и $c_1=a,\,c_n=b.$

Замечание. Предельным переходом по мелкости разбиения в случае $c_1 = a, c_n = b$ получим оценку:

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \leq 2(M+\varepsilon) \left(|g(a)| + |g(b)| \right).$$

Перейдём к $\varepsilon \to 0$:

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \leq 2M \left(|g(a)| + |g(b)| \right).$$

Задача (формула Бонне). Пусть $f \in R[a,b]$, g нестрого убывает и неотрицательна на [a,b]. Доказать, что $\exists c \in [a,b]$, такое, что выполняется

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{c} f(x)dx.$$

Выбором a из формулы Бонне можно получить emopyo uhmerpanehyo meopemy o cpedhem.

1 Несобственный интеграл Римана

1.1 Основные понятия

Определение 1.1. Функция f называется локально интегрируемой по Риману на промежутке I, если $\forall [a, c] \subset I \hookrightarrow f \in \mathcal{R}[a, c]$.

Пример. Всякая непрерывная на промежутке функция локально интегрируема на этом промежутке.

Определение 1.2. Пусть $-\infty < a < b \leqslant +\infty$, и f локально интегрируема на [a,b). Предел

$$\int_{a}^{b} f(x)dx := \lim_{c \to b-0} \int_{a}^{c} f(x)dx$$

называется несобственным интегралом (Римана) от f на [a,b).

Если предел существует и конечен, то интеграл $\int_a^b f(x)dx$ называется cxodsumumcs, иначе — pacxodsumumcs.

Замечание. Пусть $b \in \mathbb{R}$, функция f локально интегрируема и *ограничена* на [a,b). Тогда по свойствам определённого интеграла $f \in \mathcal{R}[a,b]$ (при любом доопределении в точке b). В силу непрерывности интеграла с переменным верхним пределом:

$$\lim_{c \to b-0} \int_a^c f(x) dx = \int_a^b f(x) dx.$$

Следовательно, несобственный интеграл совпадает с определённым интегралом. Поэтому новая ситуация может возникать лишь если:

 $\triangleright b = +\infty,$

 $\triangleright b \in \mathbb{R}$, f неограничена на [a,b).

Аналогично определяется несобственный интеграл от f по $(a, b], -\infty \le a < b < +\infty$.

Некоторые свойства переносятся предельным переходом из аналогичных свойств определённого интеграла:

Свойство 1.1 (принцип локализации). Пусть f локально интегрируема на [a,b), $a^* \in (a,b)$. Тогда интегралы $\int_{a^*}^b f(x)dx$ и $\int_a^b f(x)dx$ сходятся или расходятся одновременно, и если сходятся, то

$$\int_{a}^{b} f(x)dx = \int_{a}^{a^{*}} f(x)dx + \int_{a^{*}}^{b} f(x)dx$$

Доказательство. Если $c \in (a, b)$, то по свойству аддитивности определённого интеграла верно:

$$\int_{a}^{c} f(x)dx = \int_{a}^{a^{*}} f(x)dx + \int_{a^{*}}^{c} f(x)dx.$$

Поэтому пределы $\lim_{c\to b-0}\int_{a^*}^c f(x)dx = \int_{a^*}^b f(x)dx$ и $\lim_{c\to b-0}\int_a^c f(x)dx = \int_a^b f(x)dx$ существуют (конечны) одновременно. Равенство 1.1 получается из равенства для определённых интегралов переходом к пределу $c\to b-0$.

Следующие три свойства доказываются аналогично.

Свойство 1.2 (линейность). Пусть несобственные интегралы $\int_a^b f(x)dx$ и $\int_a^b g(x)dx$ сходятся, и $\alpha, \beta \in \mathbb{R}$. Тогда сходится интеграл $\int_a^b (\alpha f(x) + \beta g(x)) dx$ и

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Свойство 1.3 (формула Ньютона-Лейбница). Пусть f локально интегрируема на [a,b) и F — первообразная f на [a,b). Тогда

$$\int_{a}^{b} f(x)dx = F(b-0) - F(a) = F|_{a}^{b-0}.$$

Свойство 1.4 (интегрирование по частям). Пусть F, G дифференцируемы, а их производные f, g локально интегрируемы на [a, b). Тогда

$$\int_{a}^{b} F(x)g(x)dx = F(x)G(x)|_{a}^{b-0} - \int_{a}^{b} G(x)f(x)dx.$$

Существование двух из трёх конечных пределов влечёт существование третьего и выполнение равенства.

Свойство 1.5 (замена переменной). Пусть f непрерывна на [a,b), φ дифференцируема и строго монотонна на $[\alpha,\beta)$, причем φ' локально интегрируема на $[\alpha,\beta)$, $\varphi(\alpha)=a$, $\lim_{t\to\beta=0}\varphi(t)=b$. Тогда

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

Eсли существует один из интегралов, то существует и другой, и равенство выполняется.

Доказательство. Рассмотрим частичный интеграл $F(c) = \int_a^c f(x) dx$ на $[a,b), \Phi(\gamma) = \int_{\alpha}^{\gamma} f(\varphi(t)) \varphi'(t) dt$. По свойству замены переменной в определенном интеграле $F(\varphi(\gamma)) = \Phi(\gamma) \ \forall \gamma \in [\alpha,\beta)$. Пусть (в $\overline{\mathbb{R}}$) определен интеграл $I = \int_a^b f(x) dx$. По свойству предела композиции существует $\lim_{\gamma \to \beta = 0} \Phi(\gamma) = \lim_{c \to b = 0} F(c) = I$. Следовательно, определен $\int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt = I$.

Из условия следует, что существует обратная функция φ^{-1} и $\gamma = \varphi^{-1}(c) \to \beta$ при $c \to b-0$. Делая соответствующую замену переменной, получим, что $\lim_{\gamma \to \beta = 0} \Phi(\gamma)$ влечет существование равного $\lim_{c \to b-0} F(c)$, то есть интеграл в правой части влечет существование интеграла в левой и их равенство.

Пример. Исследовать на сходимость $\int_1^{+\infty} \frac{dx}{x^{\alpha}} \ \forall \alpha \in \mathbb{R}$.

Peшeние. 1. $\alpha \neq 1$:

$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \left. \frac{x^{-\alpha+1}}{-\alpha+1} \right|_{1}^{+\infty} = \begin{cases} \frac{1}{\alpha-1}, & \alpha > 1; \\ +\infty, & \alpha < 1. \end{cases}$$

2. $\alpha = 1$:

$$\int_{1}^{+\infty} \frac{dx}{x} = \ln x |_{1}^{+\infty} = +\infty.$$

Следовательно, интеграл сходится тогда и только тогда, когда $\alpha > 1$ и равен $\frac{1}{\alpha - 1}$.

Пример. Исследовать на сходимость $\int_0^1 \frac{dx}{x^{\alpha}} \, \forall \alpha \in \mathbb{R}$.

Peшение. Интеграл рассмотрим как несобственный на (0,1]. Сделав замену $x=\frac{1}{t},$ получим

$$\int_0^1 \frac{dx}{x^{\alpha}} = \int_1^{+\infty} \frac{dt}{t^{2-\alpha}} \text{ сходится } \Leftrightarrow 2-\alpha > 1 \Leftrightarrow \alpha < 1.$$

Следовательно, интеграл сходится тогда и только тогда, когда $\alpha < 1$.

Теорема 1.1 (критерий Коши). Пусть f локально интегрируема на [a,b). Для сходимости интеграла $\int_a^b f(x)dx$ необходимо и достаточно выполнения условия Коши:

$$\forall \varepsilon > 0 \ \exists b_{\varepsilon} \in [a, b) \ \forall \xi, \eta \in (b_{\varepsilon}, b) \ \left(\left| \int_{\xi}^{\eta} f(x) dx \right| < \varepsilon \right).$$

Доказательство. Положим $F(x) = \int_a^x f(t)dt, \ x \in [a,b)$. Поскольку $\int_{\xi}^{\eta} f(x)dx = F(\eta) - F(\xi)$, то доказательство утверждения является переформулировкой критерия Коши существования предела F при $x \to b - 0$.

Определение 1.3. Пусть f локально интегрируе ма на [a,b). Несобственный интеграл $\int_a^b f(x)dx$ называется абсолютно сходящимся, если сходится интеграл $\int_a^b |f(x)|dx$. Если интеграл $\int_a^b f(x)dx$ сходится, но не сходится абсолютно, то он называется условно сходящимся.

Следствие. Абсолютно сходящийся интеграл сходится.

 \mathcal{A} оказательство. Зафиксируем $\varepsilon > 0$. Так как $\int_a^b |f(x)| dx$ сходится, то по критерию Коши $\exists b_\varepsilon \in [a,b) \ \forall [\xi,\eta] \subset (b_\varepsilon,b) \ \left(\int_\xi^\eta |f(x)| dx < \varepsilon\right)$. Но тогда тем более $\left|\int_\xi^\eta f(x) dx\right| \leqslant \int_\xi^\eta |f(x)| dx < \varepsilon$. Следовательно, по критерию Коши, интеграл сходится.

Замечание. Из последнего неравенства следует, что если $\int_a^b f(x) dx$ абсолютно сходится, то

 $\left| \int_{a}^{b} f(x) dx \right| \leqslant \int_{a}^{b} |f(x)| dx.$

1.2 Несобственные интегралы от неотрицательных функций

Лемма 1.1. Пусть f локально интегрируема и неотрицательна на [a,b). Тогда cxodu-мость интеграла $\int_a^b f(x)dx$ равносильна ограниченности функции $F(x) = \int_a^x f(t)dt$ на [a,b).

Доказательство. Функция F нестрого возрастает на [a,b), так как

$$x_1 < x_2 \Rightarrow F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(t)dt \ge 0.$$

По теореме о пределах монотонной функции существует $\lim_{x\to b-0} F(x) = \sup_{[a,b)} F(x)$. Отсюда, учитывая неотрицательность, заключаем, что ограниченность F равносильна наличию конечного предела, то есть сходимости интеграла.

Замечание. Несобственный интеграл от неотрицательной функции либо сходится, либо расходится к $+\infty$.

Теорема 1.2 (признак сравнения). Пусть функции f, g локально интегрируемы на [a, b), $u \ 0 \leqslant f \leqslant g$ на [a, b).

- 1. Если $\int_a^b g(x)dx$ сходится, то $\int_a^b f(x)dx$ сходится.
- 2. Если $\int_a^b f(x)dx$ расходится, то $\int_a^b g(x)dx$ расходится.

Доказательство. Для любого $x \in [a,b)$ выполнено $0 \leqslant \int_a^x f(t)dt \leqslant \int_a^x g(t)dt$. Если $\int_a^b g(x)dx$ сходится, то по лемме 1.1 функция $\int_a^x g(t)dt$ ограничена на [a,b). Но тогда на [a,b) ограничена и функция $\int_a^x f(t)dt$ и, значит, по лемме 1.1 интеграл $\int_a^b f(x)dx$ сходится.

Второе доказываемое утверждение является контрапозицией первого.

Следствие. Пусть f, g локально интегрируемы и неотрицательны на [a, b). Если f(x) = O(g(x)), то справедливо заключение теоремы 1.2.

Доказательство. По определению и неотрицательности функции

$$\exists C>0 \ \exists a^* \in [a,b) \ \forall x \in [a^*,b) \left(f(x) \leqslant Cg(x)\right).$$

Если $\int_a^b g(x)dx$ сходится, то сходится интеграл $\int_{a^*}^b Cg(x)dx$. Тогда по признаку сравнения сходится интеграл $\int_{a^*}^b f(x)dx$ и, значит, сходится интергал $\int_a^b f(x)dx$.

Следствие. Пусть f,g локально интегрируемы и положительны на [a,b). Если существует $\lim_{x\to b-0}\frac{f(x)}{g(x)}\in (0,+\infty)$, то интегралы $\int_a^b f(x)dx$ и $\int_a^b g(x)dx$ сходятся или расходятся одновременно.

Доказательство. По условию также существует $\lim_{x\to b-0} \frac{g(x)}{f(x)} \in (0,+\infty)$. Поскольку существование конечного предела влечёт ограниченность функции в некоторой окрестности предельной точки, то утверждение вытекает из следствия 1.2.

Пример. Исследовать на сходимость

- 1. $\int_{1}^{+\infty} x^{2023} e^{-x} dx$;
- 2. $\int_0^1 \frac{dx}{\arctan(x)}.$

Доказательство. 1. По правилу Лопиталя $\lim_{x\to +\infty} \frac{x^{2025}}{e^x} = 0$, то есть $x^{2025} = o(e^x)$ или $x^{2023}e^{-x} = o\left(\frac{1}{x^2}\right)$ при $x\to +\infty$. Так как $\int_1^{+\infty} \frac{dx}{x^2}$ сходится, то $\int_1^{+\infty} x^{2023}e^{-x}dx$ сходится по признаку сравнения.

2. Так как $\arctan(x) \sim x$ при $x \to +0$, и $\int_0^1 \frac{dx}{x}$ расходится, то по следствию 1.2 расходится $\int_0^1 \frac{dx}{\arctan(x)}$.

1.3 Несобственные интегралы от знакопеременных функций

Лемма 1.2 (метод выделения главной части). Пусть функции f, g локально интегрируемы на [a,b).

- 1. Если $\int_a^b g(x) dx$ сходится, то интегралы $\int_a^b f(x) dx$ и $\int_a^b (f(x) + g(x)) dx$ сходятся или расходятся одновременно.
- 2. Если $\int_a^b g(x)dx$ абсолютно сходится, то интегралы $\int_a^b f(x)dx$ и $\int_a^b (f(x)+g(x))dx$ либо одновременно расходятся, либо одновременно сходятся условно, либо одновременно сходятся абсолютно.

Доказательство. Первый пункт вытекает из линейности несобственных интегралов. Одновременная расходимость вытекает из первого пункта по неравенствам $|f+g| \leq |f| + |g|$, $|f| \leq |f+g| + |g|$ и признаку сравнения.

Пример. Исследовать на сходимость и абсолютную сходимость

$$I(\alpha) = \int_{1}^{+\infty} \frac{\sin kx}{x^{\alpha}} dx, \alpha \in \mathbb{R}. \quad (k \neq 0)$$

Решение. Можно считать, что k=1 (иначе сделаем замену). Рассмотрим различные значения α :

- $ho \ \alpha > 1$. Поскольку $\forall x \geqslant 1 \hookrightarrow \frac{|\sin x|}{x^{\alpha}} \leqslant \frac{1}{x^{\alpha}}$ и интеграл $\frac{1}{x^{\alpha}}$ сходится, то по признаку сравнения интеграл от $\frac{|\sin x|}{x^{\alpha}}$ также сходится, следовательно, $I(\alpha)$ сходится абсолютно.
- $ho \ lpha \leqslant 0$. Интеграл I(lpha) расходится, так как удовлетворяет отрицанию условия Коши:

$$\exists \varepsilon > 0 \ \forall \Delta \geqslant 1 \ \exists \xi, \eta > \Delta, \ \ \frac{\xi = 2\pi n,}{\eta = \pi + 2\pi n} \ , n \in \mathbb{N},$$
$$\left| \int_{\xi}^{\eta} \frac{\sin x}{x^{\alpha}} \, dx \right| = \int_{\xi}^{\eta} x^{-\alpha} \sin x \, dx > \underbrace{(2\pi n)^{-\alpha}}_{\geqslant 1} \underbrace{\int_{2\pi n}^{\pi + 2\pi n} \sin x \, dx}_{=2} \geqslant 2.$$

По критерию Коши $I(\alpha)$ расходится.

 $ightarrow 0 < lpha \leqslant 1. \ I(lpha)$ сходится, так как

$$\int_{1}^{+\infty} \frac{\sin x}{x^{\alpha}} \, dx = \underbrace{\frac{-\cos x}{x^{\alpha}} \Big|_{1}^{+\infty}}_{=\cos 1} - \alpha \cdot \underbrace{\int_{1}^{+\infty} \frac{\cos x}{x^{\alpha+1}} \, dx}_{\text{сходится абсолютно}} \, .$$

Однако

$$\int_{\pi n}^{2\pi n} \frac{|\sin x|}{x^{\alpha}} \, dx \geqslant \int_{\pi n}^{2\pi n} \frac{|\sin x|}{x} \, dx \geqslant \frac{1}{2\pi n} \int_{\pi n}^{2\pi n} |\sin x| \, dx = \frac{n}{2\pi n} \int_{0}^{\pi} |\sin x| \, dx = \frac{1}{\pi}.$$

По критерию Коши этот интеграл расходится. Следовательно, $I(\alpha)$ сходится условно.

Ombem: $I(\alpha)$ сходится $\Leftrightarrow \alpha > 0$, $I(\alpha)$ сходится абсолютно $\Leftrightarrow \alpha > 1$.

Теорема 1.3 (признак Дирихле). Пусть f, g локально интегрируемы на [a, b), причём

- 1. $F(x) = \int_{0}^{x} f(t) dt$ ограничена на [a, b);
- 2. q монотонна на [a, b):
- 3. $\lim_{x \to b-0} g(x) = 0$.

Тогда несобственный интеграл $\int_a^b f(x)g(x)\,dx$ сходится.

 Доказательство. Покажем, что интеграл $\int_a^b f(x)g(x)\,dx$ удовлетворяет условию Коши. Пусть |F| < M на [a, b), тогда для любого $\xi \in [a, b)$ выполнено:

$$\left| \int_{\xi}^{x} f(t) dt \right| = |F(x) - F(\xi)| < 2M.$$

Зафиксируем $\varepsilon>0$. Тогда, по определению предела для g(x), $\exists b'\in[a,b)\ \forall x\in(b',b)\ \left(|g(x)|<\frac{\varepsilon}{8M}\right)$. Тогда по лемме Абеля (0.1) для любого $[\xi, \eta] \subset (b', b)$:

$$\left| \int_{\xi}^{\eta} f(t)g(t) dt \right| \leq 2 \cdot 2M \left(|g(\xi)| + |g(\eta)| \right) < 4M \left(\frac{\varepsilon}{8M} + \frac{\varepsilon}{8M} \right) = \varepsilon.$$

По критерию Коши интеграл $\int_a^b f(x)g(x) dx$ сходится.

Замечание. Условия последней теоремы выполнены, если f непрерывна и имеет ограниченную первообразную на [a,b), g дифференцируема, g' сохраняет знак на [a,b), $g(x) \to 0$ при $x \to b - 0$.

Теорема 1.4 (признак Абеля). Пусть f, g локально интегрируемы на [a, b), причём

- 1. $\int_a^b f(x) dx \ cxo \partial umcs$;
- $2. \, g$ монотонна на [a,b);
- $3. \, q$ ограничена на [a,b).

Тогда несобственный интеграл $\int_a^b f(x)g(x) dx$ сходится.

Доказательство. Так как g монотонна и ограничена на [a,b), то $\exists \lim_{x\to b-0} g(x) = c \in \mathbb{R}$.

Функции f и g-c удовлетворяют условиям признака Дирихле (1.3), поэтому $\int_a^b f(x) \left(g(x)-c\right) \, dx$ сходится. Тогда $\int_a^b f(x)g(x)\,dx=\int_a^b f(x)(g(x)-c)\,dx+c\int_a^b f(x)\,dx$ сходится как сумма схо-

Следствие. Пусть f локально интегрируема на [a,b), g монотонна на [a,b) и $\lim_{x\to b-0}g(x)=$ $c \in \mathbb{R} \setminus \{0\}.$

Тогда интеграл $\int_a^b f(x)g(x) dx$ и $\int_a^b f(x) dx$ либо одновременно расходятся, либо одновременно сходятся условно, либо одновременно сходятся абсолютно.

Доказательство. Покажем, что интегралы сходятся одновременно. Действительно, если $\int_a^b f(x) \, dx$ сходится, то сходится и $\int_a^b f(x) g(x) \, dx$ по признаку Абеля (1.4).

Так как $c \neq 0$, то $\exists a^* \in [a,b)$, такое что g сохраняет знак на $[a^*,b)$. Следовательно, на $[a^*,b)$ определена $h=rac{1}{g}$, которая является монотонной на нём.

Поскольку $\forall x \in [a^*,b) \hookrightarrow f(x) = f(x)g(x)h(x)$, то по признаку Абеля сходимость $\int_{a^*}^b f(x)g(x)\,dx$ влечёт сходимость $\int_{a^*}^b f(x)\,dx$, и, значит, сходимость $\int_a^b f(x)\,dx$. Так как g и h имеют конечные пределы при $x \to b-0$, то $|f \cdot g| = O(|f|)$, $|f| = x \to b-0$

По признаку сравнения $\int_a^b |f(x)g(x)|\,dx$ и $\int_a^b |f(x)|\,dx$ сходятся одновременно и, значит, $\int_a^b f(x)g(x)\,dx$ и $\int_a^b f(x)\,dx$ одновременно сходятся абсолютно.

Пример.

$$I(\alpha) = \int_{1}^{+\infty} \arctan^{\alpha} \frac{1}{x} \sin \sqrt{x} \, dx, \ \alpha \in \mathbb{R}.$$

Решение. Функция под интегралом знакопеременна в любой окрестности бесконечности.

$$I(\alpha) = 2 \int_{1}^{+\infty} \sqrt{x} \arctan^{\alpha} \frac{1}{x} \sin \sqrt{x} \frac{1}{2\sqrt{x}} dx \stackrel{t=\sqrt{x}}{=} 2 \int_{a}^{+\infty} t \arctan^{\alpha} \frac{1}{t^{2}} \cdot \sin t dt = 2J(\alpha).$$

Перемишем подынтегральную функцию в виде

$$\frac{\sin t}{t^{2\alpha - 1}}g(t), \ g(t) = \left(t^2 \arctan \frac{1}{t^2}\right)^{\alpha}.$$

Пусть $h(u) = u \operatorname{arctg} \frac{1}{u}, h'(u) = \operatorname{arctg} \frac{1}{u} + \frac{u}{1 + \frac{1}{u^2}} \cdot \left(-\frac{1}{u^2} \right) = \frac{1}{u} - \frac{1}{3u^3} + o\left(\frac{1}{u^3}\right) - \frac{1}{u}\left(1 - \frac{1}{u^2} + o\left(\frac{1}{u^2}\right)\right) = \frac{1}{u^2} - \frac{1}{3u^3} + o\left(\frac{1}{u^3}\right) - \frac{1}{u}\left(1 - \frac{1}{u^2} + o\left(\frac{1}{u^2}\right)\right) = \frac{1}{u^2} - \frac{1}{2u^2} + o\left(\frac{1}{u^2}\right) + o\left(\frac{1}{u^2}\right$ $\frac{1}{u^3} \left(\frac{2}{3} + o(1) \right), \ u \to \infty.$

Следовательно, $g(t) = (h(t^2))^{\alpha}$ монотонна на $[t_0, +\infty)$, $g(t) \to 1$ при $t \to +\infty$. По следствию из признака Абеля (1.4) $J(\alpha)$ имеет тот же тип сходимости, что и $\int_1^{+\infty} \frac{\sin t}{t^{2\alpha-1}} dt$.

 $I(\alpha)$ сходится $\Leftrightarrow 2\alpha-1>0 \Leftrightarrow \alpha>\frac{1}{2},$ $I(\alpha)$ сходится абсолютно $\Leftrightarrow 2\alpha-1>1 \Leftrightarrow \alpha>1.$

Определение 1.4. Пусть $a, b \in \overline{\mathbb{R}}$, a < b и функция f определена на (a, b), кроме, быть может, конечного множества точек.

Точка $c \in (a,b)$ называется особенностью f, если $f \notin \mathcal{R}[\alpha,\beta]$ для любого $[\alpha,\beta] \subset (a,b)$, $\alpha < c < \beta$.

Точка b называется особенностью f, если $b = +\infty$, или $b \in \mathbb{R}$ и $f \notin \mathcal{R}[\alpha, \beta]$, для любого

Аналогично вводится особенность a.

Замечание. Если на (c,d) нет особенностей функции f, то f локально интегрируема на

Доказательство. Пусть $[u,v] \subset (c,d)$. По условию $\forall x \in (u_x,v_x)$ и $f \in \mathcal{R}[u_x,v_x]$.

Тогда $\{(u_x,v_x)\}_{x\in[u,v]}$ образуют открытое покрытие [u,v]. По лемме Гейне-Бореля из открытого покрытия можно выделить конечное подпокрытие.

Объединяя элементы этого подпокрытия и пользуясь аддитивностью интеграла, заключаем, что f интегрируема на отрезке, содержащем [u,v], и, значит, f локально интегрируема на (c,d), так как [u,v] выбирался произвольным.

Определение 1.5. Пусть $c_1 < c_2 < \ldots < c_{N-1}$ – все особенности функции f на (a,b), $c_0 = a, c_N = b$. Пусть $\xi_k \in (c_{k-1}, c_k), k = 1, ..., N$. Несобственным интегралом функции fno(a,b) называется

$$\int_{a}^{b} f(x)dx = \sum_{k=1}^{N} \left(\int_{c_{k-1}}^{\xi_k} f(x)dx + \int_{\xi_k}^{c_k} f(x)dx \right),$$

если все интегралы в правой части (понимаются как несобственные) и их сумма имеет смысл в \mathbb{R} .

При этом $\int_a^b f(x)dx$ называется cxodsumumcs, если все интегралы в правой части сходятся, иначе – расходящимся.

Замечание. Корректность (независимость от выбора ξ_k) следует из принципа локализации.

Задача. Пусть $f:[1;+\infty)\to\mathbb{R}$ непрерывна и неотрицательна. Известно, что $\int_1^{+\infty}f(x)dx$ сходится. Верно ли, что $\lim_{x\to+\infty}f(x)=0$? А при дополнительном условии, что f равномерно непрерывна на $[1,+\infty)$?

2 Числовые ряды

2.1 Сумма числового ряда

Определение 2.1. Пусть $\{a_n\}$ – последовательность действительных (комплексных) чисел. Выражение

$$\sum_{n=1}^{+\infty} a_n = a_1 + a_2 + \dots$$

называется числовым рядом с n-ым членом a_n .

Число

$$S_N = \sum_{n=1}^N a_n = a_1 + \ldots + a_N$$

называется N-ой частичной суммой ряда 2.1.

Предел

$$\sum_{n=1}^{+\infty} a_n = \lim_{N \to +\infty} S_N$$

называется суммой pяда 2.1. Если предел конечен, то ряд называется сходящимся, иначе - pacxoдящимся.

Замечание (Телескопический ряд). С каждой последовательностью $\{s_n\}$ связан ряд, для которого s_n является n-ой частичной суммой. Достаточно положить $a_1=s_1,\,a_n=s_n-s_{n-1},\,n>1.$

Отметим, что нумерация членов ряда может начинаться с любого $m \in \mathbb{Z}$.

Пример. Исследуем сходимость

- 1. $\sum_{n=0}^{+\infty} z^n$, $z \in \mathbb{C}$ (геометрический ряд).
- 2. $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$.

Решение. 1. $S_N = \begin{cases} \frac{1-z^{N+1}}{1-z}, & z \neq 1 \\ N+1, & z=1 \end{cases}$. Пусть |z| < 1. Тогда $z^N \to 0$ и, значит, $S_N \to \frac{1}{1-z}$, ряд сходится и его сумма равна $\frac{1}{1-z}$. Пусть |z| < 1. Тогда S_N не имеет конечного предела, иначе $z^N = S_N - S_{N-1} \to 0$. Так, $\sum_{n=0}^{+\infty} z^n$ сходится $\Leftrightarrow |z| < 1$.

2. $S_N = \sum_{n=1}^N \frac{1}{n(n+1)} = \sum_{n=1}^N \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{N+1}$. Следовательно, ряд сходится и его сумма равна 1.

Лемма 2.1 (Принцип локализации). Для каждого $m \in \mathbb{N}$ ряды $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=m+1}^{+\infty} a_n$ сходятся или расходятся одновременно, и если сходятся, то

$$\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{m} a_n + \sum_{n=m+1}^{+\infty} a_n.$$

Доказательство. Если N>m, то $\sum_{n=1}^N a_n=\sum_{n=1}^m a_n+\sum_{n=m+1}^N a_n$. Поэтому пределы последовательностей $\sum_{n=1}^m a_n$ и $\sum_{n=m+1}^N a_n$ при $N\to +\infty$ существуют (конечны) одновременно.

Замечание. Ряд $r_N = \sum_{n=N+1}^{+\infty} a_n$ называется N-ым остатком ряда 2.1.

Принцип локализации можно переформулировать так: если ряд сходится, то сходится и любой его остаток. И если сходится некоторый остаток ряда, то и весь ряд сходится.

Лемма 2.2 (Линейность). Пусть ряды $\sum_{n=1}^{+\infty} a_n \ u \sum_{n=1}^{+\infty} b_n \ cxoдятся, \ u \ \alpha, \beta \in \mathbb{R}$ (или \mathbb{C}), то сходится u ряд $\sum_{n=1}^{+\infty} (\alpha a_n + \beta b_n)$, причем верно равенство

$$\sum_{n=1}^{+\infty} (\alpha a_n + \beta b_n) = \alpha \sum_{n=1}^{+\infty} a_n + \beta \sum_{n=1}^{+\infty} b_n.$$

Доказательство. Вытекает из линейности предела последовательности.

Лемма 2.3 (Необходимое условие сходимости ряда). Если $\sum_{n=1}^{+\infty} a_n \ cxodumcs, \ mo \ a_n \to 0.$

Доказательство. Пусть
$$S = \sum_{n=1}^{+\infty} a_n$$
. Так как $a_n = S_n - S_{n-1}$ (считаем, что $S_0 = 0$), то $a_n \to (S-S) = 0$.

Сходимость n-го члена к нулю не является достаточным условием сходимости ряда.

Пример. Гармонический ряд $\sum_{n=1}^{+\infty} \frac{1}{n}$ расходится.

Решение. Пусть $H_n = \sum_{k=1}^n \frac{1}{k}$, тогда $H_{2n} - H_n = \sum_{k=n+1}^{2n} \frac{1}{k} \geqslant \frac{1}{2} \not\to 0$, однако $\frac{1}{n} \to 0$.

Определение 2.2. Пусть дана строго возрастающая последовательность целых чисел $0 = n_0 < n_1 < n_2 < \dots$

Ряд $\sum_{k=1}^{+\infty} b_k$, где $b_k = a_{n_{k-1}+1} + \ldots + a_{n_k}$ называется группировкой ряда $\sum_{n=1}^{+\infty} a_n$.

Лемма 2.4. 1. Если ряд сходится, то сходится и любая его группировка, причем к той же сумме.

2. Пусть $\exists L \ \forall k \ (n_k - n_{k-1} \leqslant L)$. Если $a_n \to 0$ и группировка $\sum_{k=1}^{+\infty} b_k$, где $b_k = \sum_{j=n_{k-1}+1}^{n_k} a_j$, сходится, то сходится и ряд $\sum_{n=1}^{+\infty} a_n$, причем к той же сумме.

Доказательство. Пусть S_N обозначает N-ую частичную сумму 2.1, S_N^*-N -ую частичную сумму группировки.

- 1. Пусть $S_N \to S$. Так как $S_N^* = S_{n_N}$, то $S_N^* \to S$ как подпоследовательность.
- 2. Пусть $\varepsilon > 0$. Выберем такие $K, M \in \mathbb{N}$, что $\forall k \geqslant K \hookrightarrow |S_k^* S| < \frac{\varepsilon}{2}$ и $\forall m \geqslant M \hookrightarrow |a_m| < \frac{\varepsilon}{2L}$. Положим $N = \max\{n_K, M + L\}$. Если $n \geqslant N$, то $n_k \leqslant n < n_{k+1}$, где $k \geqslant K$. Значит,

$$|S_n - S| = |S_{n_k} + a_{n_k+1} + \dots + a_n - S| \le |S_k^* - S| + |a_{n_k+1}| + \dots + |a_n| < \frac{\varepsilon}{2} + L \frac{\varepsilon}{2L} = \varepsilon.$$

Применяя критерий Коши для последовательности частичных сумм получаем критерий Коши сходимости числового ряда.

Теорема 2.1. Для сходимости ряда $\sum_{n=1}^{+\infty} a_n$ необходимо и достаточно выполнения условия Коши

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n, m \in \mathbb{N}, \ N \leqslant m \leqslant n \left(\left| \sum_{k=m}^{n} a_k \right| < \varepsilon \right).$$

Установим утверждение, связывающее несобственные интегралы и числовые ряды.

Определение 2.3. С действительным рядом 2.1 свяжем функцию $f_a:[1,+\infty)\to\mathbb{R},$ $f_a(x)=a_{[x]}.$

Лемма 2.5. Ряд $\sum_{n=1}^{+\infty} a_n \ u \int_1^{+\infty} f_a(x) dx$ сходятся или расходтся одновременно, и если сходятся, то к одному значению.

Доказательство. Пусть $S_n = \sum_{k=1}^n a_k$. Так как $S_n = \int_1^{n+1} f_a(x) dx$, то сходимость интеграла влечет сходимость ряда. Обратное утверждение следует из оценки

$$\left| S_n - \int_1^x f_a(x) dx \right| \leqslant |a_n| \to 0$$

и необходимого условия сходимости ряда.

2.2 Ряды с неотрицательными членами

Лемма 2.6. Пусть $a_n \geqslant 0$ для всех $n \in \mathbb{N}$. Тогда сходимость ряда $\sum_{n=1}^{\infty} a_n$ равносильна ограниченности последовательности частичных сумм $\{S_n\}$.

Доказательство. Все $S_n\geqslant 0$ и нестрого возрастают, так как $S_{n+1}-S_n=a_{n+1}\geqslant 0$. Следовательно, $\exists \lim_{n\to\infty} S_n=\sup S_n$.

Теорема 2.2 (признак сравнения). Пусть $0 \leqslant a_n \leqslant b_n$ для всех $n \in \mathbb{N}$.

- 1. Если ряд $\sum_{n=1}^{\infty} b_n$ сходится, то сходится и ряд $\sum_{n=1}^{\infty} a_n$;
- 2. Если ряд $\sum_{n=1}^{\infty} a_n$ расходится, то расходится и ряд $\sum_{n=1}^{\infty} b_n$.

Доказательство. Вытекает из леммы (2.5) и признака сравнения несобственных интегралов.

Следствие. Пусть $a_n, b_n \geqslant 0$ для всех $n \in \mathbb{N}$ и $a_n = O(b_n)$ при $n \to \infty$. Тогда справедливо заключение предыдущей теоремы.

Следствие. Пусть $a_n, b_n > 0$ для всех $n \in \mathbb{N}$ и существует $\lim_{n \to \infty} \frac{a_n}{b_n} \in (0, +\infty)$. Тогда ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ сходятся или расходятся одновременно.

Теорема 2.3 (интегральный признак сходимости). Пусть функция f нестрого убывает u неотрицательна на $[1, +\infty)$. Тогда ряд $\sum_{n=1}^{\infty} f(n)$ u интеграл $\int_{1}^{+\infty} f(x) dx$ сходятся или расходятся одновременно.

Доказательство. Положим $u, v : [1, +\infty) \to \mathbb{R}, \ u|_{[n,n+1)} = f(n), \ v|_{[n,n+1)} = f(n+1).$ Так как f нестрого убывает, то $v \leqslant f \leqslant u$ на $[1, +\infty)$.

Пусть $\sum_{n=1}^{\infty} f(n)$ сходится, тогда по лемме (2.5) сходится $\int_{1}^{+\infty} u(x) dx$. Следовательно, по признаку сравнения для интегралов $\int_{1}^{+\infty} f(x) dx$ также сходится.

Пусть $\int_{1}^{+\infty} f(x) dx$ сходится, тогда по признаку сравнения сходится $\int_{1}^{+\infty} v(x) dx$. Следовательно, по лемме (2.5) сходится ряд $\sum_{n=1}^{\infty} f(n+1)$.

Пример.

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}, \alpha \in \mathbb{R}.$$

Доказательство. Если $\alpha \leqslant 0$, то $\frac{1}{n^{\alpha}} \not\to 0$ и ряд расходится по необходимому условию. Если $\alpha > 0$, то функция $f(x) = \frac{1}{x^{\alpha}}$ строго убывает и положительна на $[1, +\infty)$. Тогда $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ и $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ сходятся или расходятся одновременно по интегральному признаку. Интеграл $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ сходится, что равносильно $\alpha > 1$.

Замечание. В условиях теоремы (2.3) последовательность $\alpha_n := \sum_{k=1}^n f(k) - \int_1^{n+1} f(x) \, dx$ сходится.

Доказательство. Так как $\alpha_n = \sum_{k=1}^n f(k) - \sum_{k=1}^n \int_k^{k+1} f(x) \, dx = \sum_{k=1}^n \int_k^{k+1} \underbrace{(f(k) - f(x))}_{>0} \, dx$,

то $\alpha_n \geqslant 0$ и $\{\alpha_n\}$ нестрого возрастает. Далее,

$$\alpha_n \leqslant \sum_{k=1}^n (f(k) - f(k-1)) = f(1) - f(n+1) \leqslant f(1).$$

По теореме о пределе монотонной последовательности $\{\alpha_n\}$ сходится.

Пример. По замечанию существует

$$\gamma := \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n+1) \right),$$

(константа Эйлера-Маскерони, $\gamma = 0.5772...$).

Следовательно, $H_n = \ln n + \gamma + o(1), n \to \infty$.

Следующие теоремы основаны на сравнении с геометрическим рядом.

Теорема 2.4 (признак Коши). Пусть $a_n \geqslant 0$ для всех $n \in \mathbb{N}$ и $q = \overline{\lim}_{n \to \infty} \sqrt[n]{a_n}$.

- 1. Если q < 1, то ряд $\sum_{n=1}^{\infty} a_n$ сходится;
- 2. Если q > 1, то $a_n \not\to 0$ и ряд $\sum_{n=1}^{\infty} a_n$ расходится.

Доказательство. 1. Пусть $q_0 \in (q,1)$. Выберем N так, что $\sup_{n\geqslant N} \sqrt[n]{a_n} < q_0$ при всех $n\geqslant N$ и, значит, $a_n< q_0^n$. Следовательно, ряд сходится по признаку сравнения с геометрическим рядом.

Теорема 2.5 (признак Даламбера). Пусть $a_n > 0$ для всех $n \in \mathbb{N}$.

- 1. Если $\overline{r} = \overline{\lim}_{n \to \infty} \frac{a_{n+1}}{a_n} < 1$, то ряд $\sum_{n=1}^{\infty} a_n$ сходится;
- 2. Если $\underline{r} = \underline{\lim}_{n \to \infty} \frac{a_{n+1}}{a_n} > 1$, то $a_n \not\to 0$ и ряд $\sum_{n=1}^{\infty} a_n$ расходится.

 \mathcal{A} оказательство. 1. Пусть $r \in (\overline{r},1)$. Выберем N так, что $\sup_{n\geqslant N} \frac{a_{n+1}}{a_n} < r$ при всех $n\geqslant N,$ и, значит,

$$\forall n > N \ a_{n+1} < ra_n < \dots < r^{n+1-N} a_N = r^{1-N} a_N r^n$$

и, значит, ряд сходится по признаку сравнения с геометрическим рядом $\sum_{n=1}^{\infty} r^n$.

2. Пусть $\underline{r} > 1$. Тогда $\exists N \ \left(\inf_{n\geqslant N} \frac{a_{n+1}}{a_n} > 1\right)$ и, значит, $a_{n+1} > a_n > \ldots > a_N > 0$ для всех n > N. Следовательно, $a_n \not\to 0$ и ряд расходится.

Замечание. Если в теореме (2.4) q=1 или в теореме (2.5) $\overline{r}\geqslant 1, \underline{r}\leqslant 1$, то в общем случае о сходимости ряда $\sum_{n=1}^{\infty}a_n$ ничего нельзя сказать.

Пример. Пусть $a_n = 1$, $b_n = \frac{1}{n^2}$. Для рядов $q = \overline{r} = \underline{r} = 1$. Однако $\sum_{n=1}^{\infty} a_n$ расходится, а $\sum_{n=1}^{\infty} b_n$ сходится.

Задача. Пусть $\forall n \in \mathbb{N} \ a_n > 0$. Покажите, что

$$\underline{\lim}_{n\to\infty} \frac{a_{n+1}}{a_n} \leqslant \underline{\lim}_{n\to\infty} \sqrt[n]{a_n} \leqslant \overline{\lim}_{n\to\infty} \sqrt[n]{a_n} \leqslant \overline{\lim}_{n\to\infty} \frac{a_{n+1}}{a_n}.$$

Замечание. Из последней цепочки неравенств следует, что если к ряду применим признак Даламбера, то к нему применим признак Коши, но обратное неверно.

Пример. $\sum_{n=1}^{\infty} a_n$, где $a_n = 2^{-n+(-1)^n}$. Так как $\lim_{n\to\infty} \sqrt[n]{a_n} = \frac{1}{2}$, то ряд сходится по признаку Коши.

Однако $\forall k \in \mathbb{N} \ \frac{a_{2k+1}}{a_{2k}} = \frac{2^{-2k-2}}{2^{-2k+1}} = \frac{1}{8}, \frac{a_{2k+2}}{a_{2k+1}} = \frac{2^{-2k-1}}{2^{-2k-2}} = 2.$

Следовательно, $\bar{r} \geqslant 2, \underline{r} \leqslant \frac{1}{8}$, к ряду неприменим признак Даламбера.

Теорема 2.6 (признак Гаусса). Пусть $a_n > 0$ для всех $n \in \mathbb{N}$ и существуют такие s > 1 и ограниченная последовательность $\{\alpha_n\}$, что для всех n выполнено

$$\frac{a_{n+1}}{a_n} = 1 - \frac{A}{n} + \frac{\alpha_n}{n^s}.$$

Тогда ряд $\sum_{n=1}^{+\infty} a_n$ сходится при A > 1 и расходится иначе.

Доказательство. При n > 1 имеем

$$a_n = a_1 \cdot \frac{a_2}{a_1} \cdot \dots \cdot \frac{a_n}{a_{n-1}} = a_1 \cdot \prod_{k=1}^{n-1} \left(1 - \frac{A}{k} + \frac{\alpha_k}{k^s} \right) = a_1 \cdot \exp\left(\sum_{k=1}^{n-1} \ln(1 - \frac{A}{k} + \frac{\alpha_k}{k^s}) \right).$$

Так как $\ln(1+t) = t + O(t^2), t \to 0$, имеем

$$a_n = a_1 \cdot \exp\left(\sum_{k=1}^{n-1} \left(-\frac{A}{k} + \frac{\alpha_k}{k^s} + O\left(\frac{1}{k^2}\right)\right)\right).$$

Воспользуемся равенством $\sum_{k=1}^{n-1} \frac{1}{k} = \ln n + \gamma + o(1)$ и сходимостью рядов $\sum_{k=1}^{+\infty} \frac{1}{k^p}$ при p>1. Тогда

$$a_n = a_1 \cdot \exp(-A \ln n + O(1)) = a_1 \frac{e^{O(1)}}{n^A}.$$

Теперь утверждение следует по признаку сравнения с рядом $\sum_{n=1}^{+\infty} \frac{1}{n^A}$.

2.3 Ряды с произвольными членами

Вернемся к изучению рядов с произвольными (в общем случае комплексными) членами.

Определение 2.4. Ряд $\sum_{n=1}^{+\infty} a_n$ называется *абсолютно сходящимся*, если сходится ряд $\sum_{n=1}^{+\infty} |a_n|$.

Если ряд $\sum_{n=1}^{+\infty} a_n$ сходится, но не сходится абсолютно, то он называется условно сходящимся.

Следствие. Абсолютно сходящийся ряд сходится.

Доказательство. Для любых $m, n \in \mathbb{N}, m \leqslant n$,

$$\left| \sum_{k=m}^{n} a_k \right| \leqslant \sum_{k=m}^{n} |a_k|.$$

Поэтому, если ряд $\sum_{n=1}^{+\infty} |a_n|$ удовлетворяет условию Коши, то условию Коши удовлетворяет ряд $\sum_{n=1}^{+\infty} a_n$.

Замечание. Если ряд $\sum_{n=1}^{+\infty} a_n$ сходится абсолютно, то

$$\left| \sum_{k=1}^{+\infty} a_k \right| \leqslant \sum_{k=1}^{+\infty} |a_k|.$$

Лемма 2.7. 1. Если $\sum_{n=1}^{+\infty} b_n$ сходится, то $\sum_{n=1}^{+\infty} (a_n + b_n)$ и $\sum_{n=1}^{+\infty} a_n$ сходятся или расходятся одновременно.

2. Если $\sum_{n=1}^{+\infty} b_n$ абсолютно сходится, то $\sum_{n=1}^{+\infty} (a_n + b_n)$ и $\sum_{n=1}^{+\infty} a_n$ либо одновременно расходятся, либо одновременно сходятся условно, либо одновременно сходятся абсолютно.

Доказательство.

1. Следует из свойства линейности. Для всех $n \in \mathbb{N}$ верно

$$|a_n + b_n| \le |a_n| + |b_n|, |a_n| \le |a_n + b_n| + |b_n|.$$

Следовательно, по признаку сравнения ряды $\sum_{n=1}^{+\infty} (a_n + b_n)$ и $\sum_{n=1}^{+\infty} a_n$ одновременно абсолютно сходятся.

2. Вытекает из пункта 1.

Теорема 2.7 (признак Дирихле). Пусть $\{a_n\}$ – комплексная последовательность, $\{b_n\}$ – действительная последовательность, причем

- 1. Последовательность $A_N = \sum_{n=1}^N a_n$ ограничена,
- $2. \{b_n\}$ монотонна,
- 3. $\lim_{n\to+\infty} b_n = 0$.

Тогда ряд $\sum_{n=1}^{+\infty} a_n b_n$ сходится.

Задача. Доказать признак Дирихле.

В следующих параграфах признак будет доказан в общности. Это относится и к следующему утверждению, которое можно сформулировать как следствие признака Дирихле.

Теорема 2.8 (признак Абеля). Пусть $\{a_n\}$ – комплексная последовательность, $\{b_n\}$ – действительная последовательность, причем

- 1. Ряд $\sum_{n=1}^{+\infty} a_n$ сходится,
- $2. \{b_n\}$ монотонна,
- $3. \{b_n\}$ ограничена.

Тогда ряд $\sum_{n=1}^{+\infty} a_n b_n$ сходится.

Полезно для практики выделить частные случаи признака Дирихле, в которых ограниченность частичных сумм (условие 1) выполняется автоматически.

Следствие (признак Лейбница). Пусть последовательность $\{\alpha_n\}$ монотонна и $\alpha_n \to 0$. Тогда ряд $\sum_{n=1}^{+\infty} (-1)^{n-1} \alpha_n$ сходится, причем

$$|S - S_n| \leqslant |\alpha_{n+1}|.$$

Доказательство. Сходимость вытекает из признака Дирихле. Докажем ее прямо. Пусть для определенности $\{\alpha_n\}$ нестрого убывает, и, значит, все $\{\alpha_n\} \geqslant 0$.

 $S_{2n+2} - S_{2n} = \alpha_{2n+1} - \alpha_{2n+2} \geqslant 0 \Rightarrow \{S_{2n}\}$ нестрого возрастает.

 $S_{2n+1}-S_{2n-1}=-\alpha_{2n}+\alpha_{2n+1}\leqslant 0\Rightarrow \{S_{2n-1}\}$ нестрого убывает.

Кроме того, $S_{2n} - S_{2n-1} = -\alpha_{2n} \leqslant 0$. Поэтому для любых $m, n \in \mathbb{N}$ имеем

$$S_{2n} \leqslant S_{2k} \leqslant S_{2k-1} \leqslant S_{2m-1}$$

где $k=\max\{m,n\}$. Следовательно, последовательности $\{S_{2n}\}$ и $\{S_{2n-1}\}$ сходятся, $S_{2n}\to S'',\ S_{2n-1}\to S'',\ и,\ в частности,$

$$S_{2n} \leqslant S' \leqslant S'' \leqslant S_{2n-1}$$
.

Поскольку $S_{2n} - S_{2n-1} = -\alpha_{2n} \to 0$, то S' = S'' = S.

Следствие. Пусть $\{\alpha_n\}$ монотонна и $\alpha_n \to 0, \ x \neq 2\pi m, \ m \in \mathbb{Z}$. Тогда ряды $\sum_{n=1}^{+\infty} \alpha_n \cos(nx)$ и $\sum_{n=1}^{+\infty} \alpha_n \sin(nx)$ сходятся.

 \mathcal{A} оказательство. Положим $s_N = \sum_{n=1}^N e^{inx}$. По формуле суммы геометрической прогрессии с $q = e^{ix}$ имеем

$$s_N = \frac{e^{ix}(1 - e^{iNx})}{1 - e^{ix}}.$$

Поэтому, так как $|e^{ikx}|=1, |s_N|\leqslant \frac{2}{\sqrt{(1-\cos(x))^2+\sin^2(x)}}=\frac{2}{\sqrt{2-2\cos(x)}}=\frac{1}{|\sin(\frac{x}{2})|}.$ Ограниченность сумм $C_N=\sum_{n=1}^N\cos(nx)$ и $S_N=\sum_{n=1}^N\sin(nx)$ следует из ограниченности $\{s_N\}$ и равенств $C_N = Re(s_N), S_N = Im(s_N).$

Сходимость указанных рядов теперь следует из признака Дирихле.

Пример. Найти сумму ряда $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}$.

Решение.

$$S_{2m} = 1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{1}{2m - 1} - \frac{1}{2m} = 1 + \frac{1}{2} + \dots + \frac{1}{2m - 1} + \frac{1}{2m} - 2\left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2m}\right) =$$

$$= H_{2m} - H_m = (\ln 2m + \gamma + o(1)) - (\ln m + \gamma + o(1)) = \ln 2 + o(1), \ m \to +\infty.$$

Значит искомая сумма равна ln 2.

2.4 Перестановки рядов

Определение 2.5. Пусть дан ряд $\sum_{n=1}^{+\infty} a_n$ и биекция $\varphi: \mathbb{N} \to \mathbb{N}$. Тогда $\sum_{n=1}^{+\infty} a_{\varphi(n)}$ называется nepecmanoskoŭ ряда $\sum_{n=1}^{+\infty} a_n$.

Пример. Рассмотрим следующую перестановку ряда $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}$:

$$1, -\frac{1}{2}, -\frac{1}{4}, +\frac{1}{3}, -\frac{1}{6}, -\frac{1}{8}, +\frac{1}{5}, -\frac{1}{10}, \dots$$

Найдем сумму этой перестановки

$$S_p = (1 - \frac{1}{2}) - \frac{1}{4} + (\frac{1}{3} - \frac{1}{6}) - \frac{1}{8} + (\frac{1}{5} - \frac{1}{10}) + \dots = \frac{1}{2}(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots) = \frac{1}{2}\ln 2.$$

Заметим, что мы корректно нашли сумму, однако она отличается от ответа прошлой задачи. Это следует из условной сходимости ряда.

Теорема 2.9. Если ряд $\sum_{n=1}^{+\infty} a_n$ сходится абсолютно, то любая его перестановка $\sum_{n=1}^{+\infty} a_{\varphi(n)}$ сходится абсолютно, причем к той же сумме.

Доказательство. Абсолютная сходимость перестановки следует из оценки

$$\sum_{n=1}^{N} |a_{\varphi(n)}| \leqslant \sum_{n=1}^{\max\{\varphi(k)\}} |a_n| \leqslant \sum_{n=1}^{+\infty} |a_n| < +\infty.$$

Пусть $\varepsilon > 0$. Выберем номер m так, что $\sum_{n=m+1}^{+\infty} |a_n| < \varepsilon$. Выберем M так, что $\{1,\ldots,m\} \subset \{\varphi(1),\ldots,\varphi(M)\}$ (достаточно положить $M = \max_{1 \leqslant j \leqslant m} \varphi^{-1}(j)$). Тогда для любого $N \geqslant M$ имеем $\{1,\ldots,m\}\subset \{\varphi(1),\ldots,\varphi(N)\}$ и $\left|\sum_{n=1}^{+\infty}a_n-\sum_{n=1}^{N}a_{\varphi(n)}\right|\leqslant \sum_{n=m+1}^{+\infty}|a_n|<\varepsilon$. Таким образом, частичные суммы перестановки сходятся у сумме исходного ряда. **Задача** (Теорема Римана). Если ряд с действительными членами $\sum_{n=1}^{+\infty} a_n$ сходится условно, то для любого $L \in \mathbb{R}$ существует такая перестановка $\sum_{n=1}^{+\infty} a_{\varphi(n)}$, что её сумма равна L.

2.5 Произведение числовых рядов

Теорема 2.10 (Коши). Пусть ряды $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=1}^{+\infty} b_n$ сходятся абсолютно κ A и B соответственно. Тогда ряд $\sum_{n=1}^{+\infty} a_{i_n} b_{j_n}$ из всевозможных попарных произведений, занумерованных в произвольном порядке (то есть, $c \varphi : \mathbb{N} \to \mathbb{N}^2$, $\varphi(n) = (i_n, j_n)$ – биекция) сходится абсолютно κ AB.

Доказательство. Покажем абсолютную сходимость ряда из произведений:

$$\sum_{n=1}^{N} |a_{i_n} b_{j_n}| \leqslant \sum_{i=1}^{\max_{1 \leqslant k \leqslant N}} \sum_{j=1}^{i_k} \sum_{j=1}^{\max_{1 \leqslant k \leqslant N}} |a_i| \cdot |b_j| = \left(\sum_{i=1}^{\max_{1 \leqslant k \leqslant N}} i_k |a_i|\right) \left(\sum_{j=1}^{\max_{1 \leqslant k \leqslant N}} j_k |b_j|\right) \leqslant \left(\sum_{i=1}^{+\infty} |a_i|\right) \left(\sum_{j=1}^{+\infty} |b_j|\right).$$

По теореме (2.9) любая перестановка ряда из произведений сходится к той же сумме. Рассмотрим перестановку «по квадратам» и её частичную сумму $S_{N^2} = \sum_{i=1}^N \sum_{j=1}^N a_i b_j$. Так как $S_{N^2} = \left(\sum_{i=1}^N a_i\right) \left(\sum_{j=1}^N b_j\right) \to AB$ и если последовательность сходится, то и любая подпоследовательность сходится к тому же пределу, то заключаем, что перестановка «по квадратам», а значит, и $\sum_{n=1}^{+\infty} a_{i_n} b_{j_n}$, имеет сумму AB.

Определение 2.6. Ряд $\sum_{n=1}^{+\infty} c_n$, где $c_n = \sum_{k=1}^n a_k b_{n+1-k}$, называется *произведением по Коши* рядов $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=1}^{+\infty} b_n$.

Замечание. В развёрнутом виде

$$(a_1 + a_2 + a_3 + \dots) \cdot (b_1 + b_2 + b_3 + \dots) = a_1b_1 + (a_1b_2 + a_2b_1) + (a_1b_3 + a_2b_2 + a_3b_1) + \dots$$

Следовательно, произведение по Коши соответствует перестановке по диагонали с последующей группировкой элементов, стоящих на одной диагонали.

Следствие. Если ряды $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=1}^{+\infty} b_n$ сходятся абсолютно, то их произведение по Коши сходится абсолютно к произведению сумм рядов.

Пример. Доказать, что $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ сходится условно.

Решение. Рассмотрим произведение по Коши этого ряда на себя:

$$c_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{\sqrt{k}} \frac{(-1)^{n-k}}{\sqrt{n+1-k}} = (-1)^{n-1} \sum_{k=1}^n \frac{1}{\sqrt{k(n+1-k)}}.$$

Так как $|c_n| = \sum_{k=1}^n \frac{1}{\sqrt{k(n+1-k)}} \geqslant \sum_{k=1}^n \frac{1}{\sqrt{nn}} = 1$. Следовательно, $\sum_{n=1}^{+\infty} c_n$ расходится.

2.6 Неупорядоченные ряды

Пусть $\{a_j\}_{j\in J}$ – семейство действительных чисел, индексированное элементами множества J (возможно, несчётного).

Обозначим через $\mathcal{F}(J)$ множество всех конечных подмножеств J.

Определение 2.7. Говорят, что неупорядоченный ряд $\sum_{j\in J} a_j$ *сходится и его сумма равна s*, если

$$\forall \varepsilon > 0 \ \exists F_0 \in \mathcal{F}(J) \ \forall F \in \mathcal{F}(J), F \supset F_0 \left(\left| \sum_{j \in F} a_j - s \right| < \varepsilon \right).$$

Говорят, что неупорядоченный ряд $\sum_{j\in J} a_j$ расходится $\kappa + \infty$, если

$$\forall M > 0 \; \exists F_0 \in \mathcal{F}(J) \; \forall F \in \mathcal{F}(J), F \supset F_0 \left(\sum_{j \in F} a_j > M \right).$$

Свойство 2.1 (линейность). *Если* $\sum_{j \in J} a_j$ и $\sum_{j \in J} b_j$ сходятся и $\alpha, \beta \in \mathbb{R}$, то сходится $\sum_{j \in J} (\alpha a_j + \beta b_j)$, причём

$$\sum_{j \in J} (\alpha a_j + \beta b_j) = \alpha \sum_{j \in J} a_j + \beta \sum_{j \in J} b_j.$$

Доказательство. Достаточно взять $F_0=F_a\cup F_b$ из определений сходимости $\sum_{j\in\mathcal{J}}a_j$ и $\sum_{j\in\mathcal{J}}b_j$.

Свойство 2.2. Если $\forall j \in J \ a_j \geqslant 0$, то $\sum_{j \in J} a_j$ либо сходится, либо расходится $\kappa + \infty$, и

$$\sum_{j \in J} a_j = \sup_{F \in \mathcal{F}(J)} \sum_{j \in F} a_j s, \ s \in \mathbb{R}.$$

Доказательство. Зафиксируем $\varepsilon > 0$. Пусть $s \in R$. По определению супремума $\exists F_0 \in \mathcal{F}(J) \left(\sum_{j \in F_0} a_j > s - \varepsilon \right)$. Тогда

$$\forall F \in \mathcal{F}(J), F \supset F_0 \left(s - \varepsilon < \sum_{j \in F_0} a_j \leqslant \sum_{j \in F} a_j \leqslant s \right).$$

Случай $s = +\infty$ рассматривается аналогично.

Пример. Исследовать на сходимость ряд $\sum_{(m,n)\in\mathbb{N}\times\mathbb{N}} \frac{1}{(m+n)^p}$.

Решение. Пусть $T = \{(m, n) | 1 \le m + n \le N\}.$

$$\sum_{T} \frac{1}{(m+n)^p} = \sum_{k=2}^{N} \sum_{n=1}^{k-1} \frac{1}{k^p} = \sum_{k=2}^{N} \frac{k-1}{k^p}.$$

Если $p \leqslant 2$, то $\sum_{(m,n)} \frac{1}{(m+n)^p}$ расходится.

Пусть p>2. Рассмотрим конечное $F\subset \mathbb{N}\times \mathbb{N}$. Тогда $\exists T\supset F$ и, значит,

$$\sum_{F} \frac{1}{(m+n)^{p}} \leqslant \sum_{T} \frac{1}{(m+n)^{p}} = \sum_{k=2}^{N} \frac{k-1}{k^{p}} < \underbrace{\sum_{k=2}^{+\infty} \frac{k-1}{k^{p}}}_{\text{CXOII}}.$$

Определение 2.8. $\forall x \in \mathbb{R}$ обозначим $x^+ = \max\{x, 0\}, x^- = \max\{-x, 0\}.$

Теорема 2.11. Неупорядоченный ряд $\sum_{j\in J} a_j$ сходится тогда и только тогда, когда сходится $\sum_{j\in J} |a_j|$.

Доказательство.

 $(\Leftarrow) \ \forall x \in \mathbb{R} \ (x^{\pm} \leqslant |x|)$, тогда сходимость ряда $\sum_{j \in J} |a_j|$ влечёт сходимость рядов $\sum_{j \in J} a_j^+$ и $\sum_{j \in J} a_j^-$. По свойству линейности и равенства $x = x^+ - x^-$ следует сходимость $\sum_{j \in J} a_j$.

 (\Rightarrow) Пусть $\sum_{j\in J} a_j$ сходится. Тогда $\exists F_0 \in \mathcal{F}(J) \ \forall F \in \mathcal{F}(J), F \supset F_0 \ \left(\left|\sum_{j\in F} a_j - s\right| < 1\right)$ и, значит,

$$\left| \sum_{j \in F} a_j \right| < 1 + |s|.$$

Пусть $E \subset J$ конечно. Тогда

$$\sum_{j \in E} a_j = \sum_{j \in E \cup F_0} a_j - \sum_{j \in F_0 \setminus E} a_j \leqslant 1 + |s| + \sum_{j \in F_0} a_j^-,$$

так как $\forall x \in \mathbb{R} - x \leqslant x^-$.

Положим $P = \{ j \in J \mid a_i \ge 0 \}$. Тогда

$$\sum_{j \in E} a_j^+ = \sum_{j \in E \cap P} a_j \leqslant 1 + |s| + \sum_{j \in F_0} a_j^-.$$

Следовательно, $\sum_{j\in J} a_j^+$ сходится. Аналогично $\sum_{j\in J} a_j^-$ сходится. По линейности ввиду равенства $|x|=x^++x^-$ следует сходимость $\sum_{j\in J} |a_j|$.

Следствие. Пусть $\sum_{j\in J} a_j$ сходится. Тогда $S = \{j \in J \mid a_j \neq 0\}$ не более чем счётно.

 \mathcal{A} оказательство. Если $\sum_{j\in J} a_j$ еходится, то $\sum_{j\in J} |a_j| =: M < +\infty$.

Рассмотрим $S_n = \{j \in J \mid |a_j| > \frac{1}{n} \}$, следовательно, S_n конечно ($|S_n| \leqslant nM$). Следовательно, $S = \bigcup_{n=1}^{+\infty} S_n$ не более чем счётно.

Теорема 2.12. Пусть $\{J_n\}_{n=1}^{+\infty}$ — разбиение J, то есть $\bigcup_{n=1}^{+\infty} J_n = J$ и $J_k \cap J_i = \emptyset$. Ряд $\sum_{j \in J} a_j$ сходится тогда и только тогда, когда

$$\sum_{n=1}^{+\infty} \sum_{j \in J_n} |a_j| < +\infty.$$

В этом случае

$$\sum_{j \in J} a_j = \sum_{n=1}^{+\infty} \sum_{j \in J_n} a_j.$$

Доказательство. (\Leftarrow) Пусть выполнено (2.12). Если $F \subset J$, то $\exists N \ F \subset \bigcup_{n=1}^N J_n$.

Поэтому

$$\sum_{j \in F} |a_j| = \sum_{n=1}^N \sum_{j \in F \cap J_n} |a_j| \leqslant \sum_{n=1}^N \sum_{j \in J_n} |a_j| \leqslant \sum_{n=1}^{+\infty} \sum_{j \in J_n} |a_j|.$$

Следовательно, ряд $\sum_{j\in J} |a_j|$ сходится и, значит, сходится $\sum_{j\in J} a_j$. (\Rightarrow) Пусть ряд $\sum_{j\in J} a_j$ сходится. Тогда $\sum_{j\in J} |a_j| < +\infty$ и, значит, $\sum_{j\in J_n} |a_j| < +\infty$ для любого n. Пусть $\varepsilon > 0$. Для любого n $\exists F_n \subset J_n \sum_{j\in F_n} |a_j| > \sum_{j\in J_n} |a_j| - \frac{\varepsilon}{2^n}$.

Зафиксируем N и пусть $F = \bigcup_{n=1}^{N} F_n$. Тогда

$$\sum_{n=1}^{N} \sum_{j \in J_n} |a_j| < \sum_{n=1}^{N} \left(\sum_{j \in F_n} |a_j| + \frac{\varepsilon}{2^n} \right) = \sum_{j \in F} |a_j| + \sum_{n=1}^{N} \frac{\varepsilon}{2^n} \leqslant \sum_{j \in J} |a_j| + \varepsilon.$$

Так как N произвольно, то $\sum_{n=1}^{+\infty} \sum_{j \in J_n} |a_j| \leqslant \sum_{j \in J} |a_j|$.

Таким образом (2) верно и для $a_j \geqslant 0$. В частности, (2.12) верно для a_j^{\pm} . Поскольку $a_j = a_j^+ - a_j^-$, то (2.12) в общем случае следует по свойству линейности.

Следствие. Ряд $\sum_{n\in\mathbb{N}} a_n$ сходится тогда и только тогда, когда сходится $\sum_{n=a}^{+\infty} |a_n|$. В этом случае $\sum_{n\in\mathbb{N}} a_n = \sum_{n=1}^{+\infty} a_n$.

Следствие (теорема Фубини). Пусть $\{a_{nm}\}_{n,m=1}^{+\infty}$. Тогда

$$\sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} a_{nm} = \sum_{m=1}^{+\infty} \sum_{n=1}^{+\infty} a_{nm} = \sum_{n,m \in \mathbb{N} \times \mathbb{N}} a_{nm}$$

при условии, что хотя бы один из рядов сходится при замене a_{nm} на $|a_{nm}|$.

3 Функциональные ряды

3.1 Равномерная сходимость

Пусть $f_n, f: E \to \mathbb{R}$ (или \mathbb{C}), $n \in \mathbb{N}$.

Определение 3.1. Последовательность $\{f_n\}$ поточечно сходится к f на E, если f(x) = $\lim_{n\to+\infty} f_n(x)$ для всех $x\in E$.

Пишут $f_n \to f$ на E и f называют $npedenьной функцией последовательности <math>\{f_n\}$.

Воспользуемся определением предела последовательности. $f_n \to f$ на E тогда и только тогда, когда $\forall x \in E \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geqslant N \ (|f_n(x) - f(x)| < \varepsilon).$

Пример. Пусть $f_n:[0,1]\to\mathbb{R}, f_n(x)=x^n$. Тогда $f_n\to f$ на [0,1], где

$$f(x) = \begin{cases} 0, & x \in [0, 1) \\ 1, & x = 1 \end{cases}$$

Зафиксируем $\varepsilon \in (0,1)$. $x^n < \varepsilon \Rightarrow N(x) \geqslant \frac{\ln \varepsilon}{\ln x} \Rightarrow N(x) \to +\infty$ при $x \to 1-0$.

Если N(x) удаётся выбрать одним для всех $x \in E$ (при фиксированном ε), то приходим к следующему понятию:

Определение 3.2. Последовательность $\{f_n\}$ равномерно сходится к f на E, если

$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} \,\forall n \geqslant N \,\forall x \in E \, \left(|f_n(x) - f(x)| < \varepsilon \right).$$

Пишут $f_n \rightrightarrows f$ на E или $f_n \rightrightarrows_E f$ при $n \to +\infty$.

Замечание. Равномерная сходимость, очевидно, влечёт поточечную, но поточечная сходимость не влечёт равномерную в общем случае, как показывает предыдущий пример.

Лемма 3.1 (супремум-критерий). $f_n \rightrightarrows f$ на E тогда и только тогда, когда $\lim_{n\to +\infty} \rho_n =$ $0, \ r\partial e \ \rho_n = \sup_{x \in E} |f_n(x) - f(x)|.$

Доказательство.

$$(\forall x \in E \ (|f_n(x) - f(x)| \le \varepsilon)) \Leftrightarrow \left(\sup_{x \in E} |f_n(x) - f(x)| \le \varepsilon\right).$$

Задача. Пусть $f_n \rightrightarrows f$ на E. Покажите, что $\forall \{x_n\} \subset E \ \lim_{n \to +\infty} |f_n(x_n) - f(x_n)| = 0$.

Рассмотрим функциональный ряд $\sum_{n=1}^{+\infty} f_n$, где $f_n: E \to \mathbb{R}$ (или \mathbb{C})

Определение 3.3. Функциональный ряд $\sum_{n=1}^{+\infty} f_n$ поточечно сходится на E, если числовой ряд $\sum_{n=1}^{+\infty} f_n(x)$ сходится для любого $x \in E$. В этом случае $S(x) = \sum_{n=1}^{+\infty} f_n(x)$, $x \in E$, называется суммой ряда $\sum_{n=1}^{+\infty} f_n$. Функциональный ряд $\sum_{n=1}^{+\infty} f_n$ равномерно сходится на E, если последовательность частичных сумм $S_N = \sum_{n=1}^N f_n$ равномерно сходится на E.

Свойство 3.1 (линейность). 1. Пусть $f_n \rightrightarrows f$ на $E, g_n \rightrightarrows g$ на $E \ u \ \alpha, \beta \in \mathbb{R}$ (\mathbb{C}). Тогда $\alpha f_n + \beta g_n \Longrightarrow \alpha f + \beta g$ на E.

2. Пусть $\sum_{n=1}^{+\infty} f_n \ u \sum_{n=1}^{+\infty} g_n$ равномерно сходятся на E. Тогда $\sum_{n=1}^{+\infty} \alpha f_n + \beta g_n$ также равномерно сходится на E $u \sum_{n=1}^{+\infty} \alpha f_n + \beta g_n = \alpha \sum_{n=1}^{+\infty} f_n + \beta \sum_{n=1}^{+\infty} g_n$.

Доказательство. Пусть $x \in E$. По неравенству треугольника

$$|(\alpha f_n(x) + \beta g_n(x)) - (\alpha f(x) + \beta g(x))| \leq |\alpha| \cdot |f_n(x) - f(x)| + |\beta| \cdot |g_n(x) - g(x)|.$$

Далее по лемме (3.1).

Второй пункт вытекает из первого применением его к последовательности частичных сумм ряда.

Следствие. Если $\sum_{n=1}^{+\infty} f_n$ равномерно сходится на E, то $f_n \rightrightarrows 0$ на E.

Доказательство.
$$f_n = S_n - S_{n-1} \Rightarrow S - S = 0.$$

Свойство 3.2. Пусть $g: E \to \mathbb{R}$ (\mathbb{C}) ограничена.

1. Если $f_n \Rightarrow f$ на E, то $gf_n \Rightarrow gf$ на E.

2. Если $\sum_{n=1}^{+\infty} f_n$ равномерно сходится на E, то $\sum_{n=1}^{+\infty} g f_n$ также равномерно сходится на E и

$$\sum_{n=1}^{+\infty} g f_n = g \sum_{n=1}^{+\infty} f_n$$

Доказательство.

1. Пусть $|g(x)| \leq M$ для всех $x \in E$. Тогда

$$\sup_{x \in E} |g(x)f_n(x) - g(x)f(x)| \leqslant M \sup_{x \in E} |f_n(x) - f(x)|.$$

Значит, по супремум-критерию (3.1) $gf_n \rightrightarrows gf$ на E.

2. Вытекает из пункта 1 применением его к последовательности частичных сумм.

Теорема 3.1 (критерий Коши равномерной сходимости). Для равномерной сходимости $\{f_n\}$ на E необходимо и достаточно выполнения условия Коши:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n, m \geqslant N \ \forall x \in E\left(|f_n(x) - f_m(x)| < \varepsilon\right).$$

Доказательство.

 (\Rightarrow) Пусть $\varepsilon > 0$. Из условия равномерной сходимости:

$$\exists N \in \mathbb{N} \ \forall n \geqslant N \ \forall x \in E\left(|f_n(x) - f(x)| < \frac{\varepsilon}{2}\right).$$

Тогда для всех $n, m \geqslant N$ и $x \in E$ имеем:

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f_m(x) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

 (\Leftarrow) Пусть $\{f_n\}$ удовлетворяет (3.1). Тогда для каждого $x \in E$ числовая последовательность $\{f_n(x)\}$ фундаментальна и, значит, сходится. Положим $f(x) = \lim_{n \to \infty} f_n(x)$, $x \in E$. Пусть $\varepsilon > 0$ и номер N из условия (3.1). Зафиксируем $n \geqslant N$ в неравенстве и перейдем к пределу при $m \to \infty$. Получим, что $|f_n(x) - f(x)| \leqslant \varepsilon$ при всех $n \geqslant N$ и $x \in E$. Так как $\varepsilon > 0$ – любое, то $f_n \rightrightarrows f$ на E.

Следствие. Для равномерной сходимости $\sum_{n=1}^{+\infty} f_n$ на E необходимо и достаточно выполнения условия Коши:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n, m \geqslant N \ \forall x \in E \left(\left| \sum_{k=m}^{n} f_k(x) \right| < \varepsilon \right).$$

Следствие. Пусть $E \subset \mathbb{R}$, f_n непрерывна на \overline{E} . Если $\{f_n\}$ равномерно сходится на E, то она равномерно сходится на \overline{E} .

Доказательство. Зафиксируем $\varepsilon > 0$. По критерию Коши:

$$\exists N \ \forall n, m \geqslant N \ \forall x \in E \left(|f_n(x) - f_m(x)| < \varepsilon \right).$$

Пусть $x_0 \in \overline{E}$. Тогда $\exists \{x_n\} \subset E(x_k \to x_0)$. Пользуясь $|f_n(x_k) - f_m(x_k)| < \varepsilon$ и непрерывностью f_n, f_m , при $k \to \infty$ получим:

$$|f_n(x_0) - f_m(x_0)| \leqslant \varepsilon.$$

Таким образом, $\{f_n\}$ удовлетворяет условию (3.1) на \overline{E} . По критерию Коши $\{f_n\}$ равномерно сходится на \overline{E} .

Равномерная сходимость позволяет "перебрасывать" некоторые свойства приближающих функций на приближаемую (предельную). Приведем соответствующие теоремы для непрерывности, дифференцируемости и интегрируемости.

Теорема 3.2 (о непрерывности предельной функции). Пусть $E \subset \mathbb{R}$ и $f_n \Rightarrow f$ на E. Если все f_n непрерывны в точке $a \in E$ (на E), то функция f также непрерывна в точке a (на E).

Доказательство. Пусть $\varepsilon > 0$. Из условия равномерной сходимости:

$$\exists N \, \forall n \geqslant N \, \forall x \in E \, \left(|f_n(x) - f(x)| < \frac{\varepsilon}{3} \right).$$

Тогда для $x \in E$:

$$|f(x) - f(a)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(a)| + |f_N(a) - f(a)| < |f_N(x) - f_N(a)| + \frac{2}{3}\varepsilon.$$

Так как f_N непрерывна в точке a, то

$$\exists \delta > 0 \,\forall x \in B_{\delta}(a) \cap E \, \left(|f_N(x) - f_N(a)| < \frac{\varepsilon}{3} \right).$$

Следовательно, $|f(x) - f(a)| < \varepsilon$ для всех $x \in B_{\delta}(a) \cap E$.

Следствие (о непрерывности суммы ряда). Пусть $\sum_{n=1}^{\infty} f_n$ равномерно сходится на $E \subset \mathbb{R}$ и все f_n непрерывны в точке $a \in E$. Тогда сумма ряда непрерывна в точке a (на E).

Замечание. Если a – предельная точка на E, то в условиях теоремы (3.2)

$$\lim_{x \to a} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to a} f_n(x).$$

Теорема 3.3 (об интегрируемости предельной функции). Пусть $f_n \rightrightarrows f$ на [a,b] и $f_n \in \mathcal{R}[a,b]$ $\forall n$. Тогда $f \in \mathcal{R}[a,b]$ и $\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$.

Доказательство. Зафиксируем $\varepsilon > 0$. Из условия равномерной сходимости:

$$\exists N \ \forall n \geqslant N \ \forall x \in [a,b] \left(|f_n(x) - f(x)| < \frac{\varepsilon}{4(b-a)} \right).$$

Тогда на [a,b]:

$$f_N(x) - \frac{\varepsilon}{4(b-a)} < f(x) < f_N(x) + \frac{\varepsilon}{4(b-a)}.$$

Поскольку f_N интегрируема, то она ограничена на [a,b], значит на [a,b] ограничена f. Пусть T – произвольное разбиение [a,b]. Тогда для верхних сумм Дарбу имеем:

$$S_T(f) = S_T(f - f_N + f_N) \leqslant S_T(f - f_N) + S_T(f_N) \leqslant \frac{\varepsilon}{4} + S_T(f_N).$$

(так как $\sup_I (g(x) + h(x)) \leq \sup_I g(x) + \sup_I h(x)$ при $I \subset [a,b]$) Аналогично для нижних сумм Дарбу $s_T(f) \geq s_T(f_N) - \frac{\varepsilon}{4}$. Так как $f_N \in \mathcal{R}[a,b]$, то существует T – разбиение $(S_T(f_N) - s_T(f_N) < \frac{\varepsilon}{2})$, для такого T имеем

$$S_T(f) - s_T(f) \leqslant S_T(f_N) - s_T(f_N) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

По критерию Дарбу $f \in \mathcal{R}[a,b]$. Для $n \geqslant N$ имеем

$$\left| \int_a^b f_n(x) \, dx - \int_a^b f(x) \, dx \right| \leqslant \int_a^b |f_n(x) - f(x)| \, dx \leqslant (b - a) \cdot \frac{\varepsilon}{(b - a)} < \varepsilon.$$

Следовательно, $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$.

Следствие (о почленном интегрировании ряда). Если ряд $\sum_{n=1}^{\infty} f_n$ равномерно сходится на [a,b], и все функции $f_n \in \mathcal{R}[a,b]$, то сумма ряда интегрируема на [a,b] и

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} f_n(x) \right) dx = \sum_{n=1}^{\infty} \left(\int_{a}^{b} f_n(x) dx \right).$$

Замечание. В условиях теоремы (3.3)

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b \lim_{n \to \infty} f_n(x) \, dx.$$

Задача. Верно ли, что утверждение теоремы (3.3) верно для несобственных интегралов?

Теорема 3.4 (о дифференцировании предельной функции). Если

- 1. $\exists x_0 \in [a,b] \hookrightarrow \{f_n(x_0)\} cxo\partial umcs$.
- 2. $\forall n \in \mathbb{N}$ функция $f_n : [a,b] \to \mathbb{R}$ дифференцируема;
- 3. $f'_n \Longrightarrow g$ на [a,b].

Тогда $f_n \rightrightarrows f$ на [a,b] и f дифференцируема на [a,b], причем f'=g на [a,b].

Доказательство. Докажем, что $\{f_n\}$ равномерно сходится на [a,b]. Применяя к разности f_n-f_m теорему Лагранжа о среднем, получим $(f_n(x)-f_m(x))-(f_n(x_0)-f_m(x_0))=(f'_n(c)-f'_m(c))(x-x_0)$ для некоторой точки c между x и x_0 . Тогда имеет место оценка

$$|f_n(x) - f_m(x)| \le |f_n(x_0) - f_m(x_0)| + |f'_n(c) - f'_m(c)| \cdot (b - a).$$

Так как последовательность $\{f_n'\}$ удовлетворяет условию Коши равномерной сходимости на [a,b], ф $\{f_n(x_0)\}$ фундаментальна, то и последовательность f_n удовлетворяет условию Коши равномерной сходимости на [a,b]. По теореме (3.1) $\{f_n\}$ равномерно сходится на [a,b] к некоторой функции f.

Докажем дифференцируемость функции f. Зафиксируем x. Рассмотрим последовательность

$$\varphi_n(t) = \begin{cases} \frac{f_n(t) - f_n(x)}{t - x}, & t \neq x; \\ f'_n(x), & t = x. \end{cases}$$

Тогда $\varphi_n \to \varphi$ на [a,b], где

$$\varphi(t) = \begin{cases} \frac{f(t) - f(x)}{t - x}, & t \neq x; \\ g(x), & t = x. \end{cases}$$

Покажем, что сходимость равномерная. При $t \neq x$ по теореме Лагранжа:

$$\varphi_n(t) - \varphi_m(t) = \frac{(f_n(t) - f_m(t)) - (f_n(x) - f_m(x))}{t - x} = f'_n(\xi) - f'_m(\xi)$$

для некоторой точки ξ , лежащей между t и x. Поскольку $\{f'_n\}$ равномерно сходится на [a,b], то $\{f'_n\}$ удовлетворяет условию Коши равномерной сходимости, и, значит, $\{\varphi_n\}$ удовлетворяет условию Коши. Следовательно, $\{\varphi_n\}$ равномерно сходится на [a,b]. Поскольку f_n дифференцируема в точке x, то φ_n непрерывна в точке x. По теореме (3.2) φ непрерывна в точке x. Тогда $\lim_{t\to x} \varphi(t) = \varphi(x)$, то есть $\exists f'(x) = g(x)$.

Замечание. В условиях теоремы (3.4) имеем следующее:

$$\forall x \in [a, b] \hookrightarrow \frac{d}{dx} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{d}{dx} f_n(x).$$

Следствие (о почленном дифференцировании ряда). Пусть

- 1. $\exists x_0 \in [a, b] \hookrightarrow \sum_{n=1}^{\infty} f_n(x_0)$ сходится на [a, b];
- 2. $f_n:[a,b]\to\mathbb{R}$ дифференцируема $\forall n;$
- 3. $\sum_{n=1}^{\infty} f'_n$ равномерно сходится на [a,b].

Тогда $\sum_{n=1}^{\infty} f_n$ сходится равномерно на [a,b], его сумма дифференцируема и для каждой точки $x \in [a,b]$ выполнено

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

Замечание. В теореме (3.4) условие равномерной сходимости производных нельзя заменить на равномерную сходимость самих функций.

Пример. $f_n: [-1,1] \to \mathbb{R}, f_n(x) = \sqrt{x^2 + \frac{1}{n}}$. Имеем:

$$f_n \Longrightarrow f(x) = |x| \text{ Ha } [-1, 1], \text{ T.K.}$$

$$|f_n(x) - f(x)| \frac{\frac{1}{n}}{\sqrt{x^2 + \frac{1}{n} + |x|}} \le \frac{1}{\sqrt{n}}.$$

Все f_n дифференцируемы на [-1,1], однако f не дифференцируема в точке 0.

3.2 Признаки равномерной сходимости функциональных рядов

Теорема 3.5 (признак Вейерштрасса). Пусть $f_n: E \to \mathbb{C}, \ a_n \in \mathbb{R} \ \forall n. \ Пусть$

- 1. $\forall n \in \mathbb{N} \ \forall x \in E \ (|f_n(x)| \leqslant a_n);$
- 2. числовой ряд $\sum_{n=1}^{\infty} a_n$ сходится.

Тогда функциональный ряд $\sum_{n=1}^{\infty} f_n$ сходится равномерно и абсолютно на E.

Доказательство. Пусть $\varepsilon > 0$. Пользуясь критерием Коши как необходимым условием, найдем N, что $\sum_{k=m}^{n} a_k < \varepsilon$ при всех $n \geqslant m \geqslant N$. Тогда для таких n,m и всех $x \in E$ справедлива оценка:

$$\left| \sum_{k=m}^{n} f_k(x) \right| \leqslant \sum_{k=m}^{n} |f_k(x)| \leqslant \sum_{k=m}^{n} a_k < \varepsilon.$$

Пользуясь теперь критерием Коши как достаточным условием, получаем, что $\sum_{n=1}^{\infty} f_n$ и $\sum_{n=1}^{\infty} |f_n|$ равномерно сходятся на E.

Замечание. В условиях теоремы (3.5) ряд $\sum_{n=1}^{\infty} a_n$ называется *мажорантным* для $\sum_{n=1}^{\infty} |f_n|$.

Получим более тонкие признаки сходимости функциональных рядов – признаки Дирихле и Абеля.

Напоминание. Напомним *преобразование Абеля*. Пусть $\{a_n\}$, $\{b_n\}$ – числовые последовательности, $A_n = \sum_{k=1}^n a_k$ для всех $n \in \mathbb{N}$. Тогда $a_k = A_k - A_{k-1}$ $(A_0 = 0)$, и, значит,

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}).$$

Напоминание (лемма Абеля). Пусть $\{a_n\}$ — (комплексная) последовательность, $\{b_n\}$ — монотонная последовательность, $k=m,\ldots,n$. Пусть $\forall k \ |A_k|\leqslant M$, где $A_k=\sum_{j=m}^k a_j$. Тогда:

$$\left| \sum_{k=m}^{n} a_k b_k \right| \leqslant 2M(|b_m| + |b_n|).$$

Доказательство. Полагая $a_k = 0$ при k < m, получим:

$$\sum_{k=m}^{n} a_k b_k = A_n b_n + \sum_{k=m}^{n-1} A_k (b_k - b_{k+1}).$$

Следовательно,

$$\left| \sum_{k=m}^{n} a_k b_k \right| \leqslant M \left(|b_n| + |b_m| + \left| \sum_{k=m}^{n-1} (b_{k+1} - b_k) \right| \right) = M \left(|b_n| + |b_m| + |b_n - b_m| \right) \leqslant 2M (|b_m| + |b_n|).$$

Определение 3.4. Последовательность g_n называется равномерно ограниченной на E, если найдется такое C > 0, что $|g_n(x)| \leq C$ для всех $n \in \mathbb{N}$ и $x \in E$.

Теорема 3.6 (признак Дирихле). Пусть $a_n : E \to \mathbb{R}$ (или \mathbb{C}), $b_n : E \to \mathbb{R}$ $\forall n$ такие, что:

- 1. $A_N = \sum_{n=1}^{N} a_n$ равномерно ограничена на E;
- 2. $\{b_n(x)\}$ монотонна при каждом $x \in E$;
- $3. b_n \Longrightarrow 0$ на E.

Тогда $\sum_{n=1}^{\infty} a_n b_n$ равномерно сходится на E.

Доказательство. Зафиксируем $\varepsilon > 0$. Отметим, что при $n \geqslant m$

$$\left| \sum_{k=m}^{n} a_k(x) \right| = |A_n(x) - A_{m-1}(x)| \leqslant 2C$$

для всех $x \in E$.

Из равномерной сходимости $\{b_n\}$ следует, что

$$\exists N \, \forall n \geqslant N \, \forall x \in E \, \left(|b_n(x)| < \frac{\varepsilon}{8C} \right).$$

Тогда при $n\geqslant m\geqslant N$ и $x\in E$ по лемме Абеля

$$\left| \sum_{k=m}^{n} a_k(x)b_k(x) \right| \leqslant 2 \cdot 2C \left(|b_m(x)| + |b_n(x)| \right) < \varepsilon.$$

По критерию Коши $\sum_{n=1}^{\infty} a_n b_n$ сходится равномерно на E.

Следствие (признак Лейбница). Пусть задан $\sum_{n=1}^{\infty} (-1)^{n-1} \alpha_n(x)$ на E. Если $\{\alpha_n(x)\}$ монотонна при каждом $x \in E$ и $\alpha_n \rightrightarrows 0$ на E, то $\sum_{n=1}^{\infty} (-1)^{n-1} \alpha_n$ равномерно сходится на E.

Следствие. Пусть I – отрезок, не содержащий точки вида $2\pi m, \ m \in \mathbb{Z}$.

Если $\{\alpha_n(x)\}$ монотонна при каждом $x\in I$ и $\alpha_n \Rightarrow 0$ на I, то $\sum_{n=1}^\infty \alpha_n(x)\cos(nx)$ и $\sum_{n=1}^{\infty} \alpha_n(x) \sin(nx)$ равномерно сходятся на I.

Доказательство. Известно, что $\forall N$:

$$\left| \sum_{n=1}^{N} \sin(nx) \right| \leqslant \frac{1}{|\sin(\frac{x}{2})|}.$$

Так как $\int_{x\in I} |\sin(\frac{x}{2})| > 0$, то $\{\sum_{n=1}^N \sin(nx)\}$ равномерно ограничена на I. Следовательно, по признаку Дирихле $\sum_{n=1}^\infty \alpha_n(x) \sin(nx)$ равномерно сходится. Аналогично, для $\sum_{n=1}^\infty \alpha_n(x) \cos(nx)$.

Аналогично, для
$$\sum_{n=1}^{\infty} \alpha_n(x) \cos(nx)$$
.

Пример. Исследовать сходимость и равномерную сходимость $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^{\alpha}}$ на $E_1 = (0, 2\pi)$, $E_2 = [\delta, 2\pi - \delta], \, \delta \in (0, \pi)$ при всех $\alpha \in \mathbb{R}$.

Peшение.
$$\left|\sum_{n=1}^{N} \sin(nx)\right| \leqslant \frac{1}{|\sin(\frac{x}{2})|} \,\forall N \,\forall x \in E_1.$$

$$\frac{1}{n^{\alpha}} \to \begin{cases} 0, & \alpha > 0 \\ 1, & \alpha = 0 \\ +\infty, & \alpha < 0. \end{cases}$$

Исследуем сходимость.

- 1. $\alpha > 0$: Ряд сходится по признаку Дирихле для числовых рядов на E_1 .
- 2. $\alpha \leq 0$: Покажем, что $\{\sin(nx)\}$ бесконечно малая.

$$\sin((n+1)x) = \sin(nx)\cos(x) + \cos(nx)\sin(c) \Rightarrow$$

 $\Rightarrow \{cos(nx)\}$ – бесконечно малая, противоречие с основным тригонометрическим тождеством.

Кроме того, $n^{-\alpha}\sin(nx) \not\to 0$. Следовательно, ряд расходится (по необходимому условию сходимости).

Исследуем равномерную сходимость.

- 1. $\alpha > 1$: $\frac{|\sin(nx)|}{n^{\alpha}} \leqslant \frac{1}{n^{\alpha}}$, следовательно ряд сходится на E_1 (по признаку Вейерштрасса).
- 2. $0 \le \alpha \le 1$:
 - а) $E_2 = [\delta, 2\pi \delta] \left| \sum_{n=1}^N \sin(nx) \right| \leqslant \frac{1}{|\sin(\frac{x}{2})|}$. Следовательно, ряд сходится равномерно на E_2 (по признаку Дирихле или сл. 2);
 - б) $E_1 = (0, 2\pi)$. Покажем, что ряд удовлетворяет определению условия равномерной сходимости

$$\exists \varepsilon_0 > 0 \ \forall N \ \exists n \geqslant N \ \exists p \in \mathbb{N} \ \exists x_N \in E_1$$

$$\left(\left| \sum_{k=N+1}^{2N} \frac{\sin(kx_N)}{k^{\alpha}} \right| \geqslant \varepsilon_0 \right),\,$$

 $n = N, p = N, x_N = \frac{\pi}{4N} \in E_1 \Rightarrow \frac{\pi}{4} < kx_N \leqslant \frac{\pi}{2}, k = N + 1, \dots, 2N$:

$$\left| \sum_{k=N+1}^{2N} \frac{\sin(kx_N)}{k^{\alpha}} \right| = \sum_{k=N+1}^{2N} \frac{\sin(kx_N)}{k^{\alpha}} \geqslant \frac{1}{\sqrt{2}} \sum_{k=N+1}^{2N} \frac{1}{k} = \frac{1}{2\sqrt{2}} = \varepsilon_0.$$

По критерию Коши ряд не сходится равномерно на E_1 .

Задача. Исследовать равномерную сходимость $\sum_{n=1}^{\infty} \frac{e^{|x-n|}}{n}$ на $E = \mathbb{R}$.

Теорема 3.7 (признак Абеля). Пусть $a_n: E \to \mathbb{R}$ (или \mathbb{C}), $b_n: E \to \mathbb{R}$, такие, что

- 1. $\sum_{n=1}^{\infty} a_n$ равномерно сходится на E;
- 2. $\{b_n(x)\}$ монотонна при любом $x \in E$;
- 3. $\{b_n\}$ равномерно ограничена на $E\ (\exists C>0\ \forall n\ \forall x\in E\ (|b_n(x)|\leqslant C)).$

Тогда $\sum_{n=1}^{\infty} a_n b_n$ равномерно сходится на E.

Доказательство. Из равномерной сходимости ряда

$$\exists N \, \forall n, m \, (n \geqslant m \geqslant N) \, \forall x \in E \, \left(\left| \sum_{k=m}^{n} a_k(x) \right| < \frac{\varepsilon}{4C} \right).$$

Тогда при всех $x \in E$ и $n \geqslant m \geqslant N$ по лемме Абеля

$$\left| \sum_{k=m}^{n} a_k(x) b_k(x) \right| \leqslant 2 \cdot \frac{\varepsilon}{4C} \left(|b_m(x)| + |b_n(x)| \right) \leqslant 2 \cdot \frac{\varepsilon}{4C} (C + C) = \varepsilon.$$

Доказательство завершается ссылкой на критерий Коши (3.1).

Замечание. Характер монотонности $\{b_n(x)\}$ в теоремах (3.6) и (3.7) может быть различным в разных точках x.

Теорема 3.8 (признак Дини). Пусть $f_n \to f$ на [a,b], f и все функции f_n непрерывны на [a,b] и $\{|f_n(x)-f(x)|\}$ нестрого убывает для всякого $x \in [a,b]$. Тогда $f_n \rightrightarrows f$ на [a,b].

Доказательство. Достаточно доказать, что $g_n := |f_n - f| \implies 0$ на [a, b].

Зафиксируем $\varepsilon > 0$. Тогда для всякого $x_0 \in [a,b]$ найдётся $N = N(x_0)$, такая, что $0 \leqslant g_N(x_0) < \varepsilon$. Так как g_N непрерывна, то $\exists \delta = \delta(x_0) \, \forall x \in B_\delta(x_0) \cap [a,b] \, (0 \leqslant g_N(x) < \varepsilon)$.

В силу монотонности $0 \leqslant g_n(x) < \varepsilon$ для всех $x \in B_\delta(x_0) \cap [a,b]$ и $n \geqslant N$.

Семейство $\{B_{\delta(x)}(x)\}_{x\in[a,b]}$ образует открытое покрытие [a,b]. По теореме Гейне-Бореля $\exists x_1,\ldots,x_m\in[a,b]\;([a,b]\subset B_{\delta(x_1)}\cup\ldots\cup B_{\delta(x_m)}).$

Положим $N^* = \max_{1 \leqslant i \leqslant m} N(x_i)$. Тогда $a \leqslant g_n(x) < \varepsilon$ для всех $x \in [a,b]$ и $n \geqslant N^*$, что завершает доказательство.

Следствие. Пусть $\sum_{n=1}^{\infty} f_n$ поточечно сходится к S на [a,b], функция S и все f_n непрерывны на [a,b] и пусть $f_n \geqslant 0$ на [a,b].

Тогда ряд $\sum_{n=1}^{\infty} f_n$ равномерно сходится на [a,b].

Равномерная сходимость может использоваться для построения функций с нужными свойствами:

Пример (ван-дер-Варден). Существует $f: \mathbb{R} \to \mathbb{R}$, непрерывная на \mathbb{R} , но не дифференцируемая ни в одной точке.

Доказательство. Пусть $\varphi: \mathbb{R} \to \mathbb{R}, \varphi(x\pm 2) = \varphi(x), \varphi|_{[-1,1]}(x) = |x|$. Отметим, что если $(x,y) \cap \mathbb{Z} = \emptyset$, то φ кусочно-линейная с угловым коэффициентом ± 1 , поэтому

$$|\varphi(x) - \varphi(y)| = |x - y|.$$

Положим $f(x) = \sum_{n=1}^{\infty} f_n(x), f_n(x) = \frac{1}{4^n} \varphi(4^n x)$. Функция f непрерывна как сумма равномерно сходящегося ряда (по признаку Вейерштрасса) из непрерывных функций.

Пусть $a \in \mathbb{R}$. Покажем $\{h_k\}, 0 < h_k \to 0$, что $\frac{f(a+h_k)-f(a)}{h_k}$ не имеет конечного предела. Если $(4^ka, 4^ka + \frac{1}{2}) \cap \mathbb{Z} \neq \varnothing \Rightarrow (4^ka - \frac{1}{2}, 4^ka) \cap \mathbb{Z} \neq \varnothing$ и наоборот. Поэтому $\exists h_k = \pm \frac{1}{2}4^{-k}$, что на интервале с концами 4^ka и $4^k(a+h_k)$ нет целых чисел. Кроме того, на интервале с концами 4^na и $4^n(a+h_k)$ при n > k, также нет целых точек (иначе, домножив соответствующее неравенство на 4^{k-n} , получаем целую точку между 4^ka и $4^k(a+h_k)$).

Следовательно, по (3.2) $|\varphi(4^n(a+h_k))-\varphi(4^na)|=4^n|h_k|, 1\leqslant n\leqslant k$, и, в силу 2-периодичности φ $|\varphi(4^n(a+h_k))-\varphi(4^na)|=0$ при n>k.

Поэтому $|f_n(a+h_k) - f_n(a)| = \begin{cases} |h_k|, & 1 \le n \le k \\ 0, & n > k \end{cases}$, и, значит, разностное отношение

$$\frac{f(a+h_k)-f(a)}{h_k} = \sum_{n=1}^k \pm 1 \ (\mbox{чётность совпадает с чётностью} \ k)$$

Следовательно, разностное отношение не имеет конечного предела при $k \to \infty$.

4 Степенные ряды

4.1 Свойства степенных рядов

Определение 4.1. Степенным рядом называется функциональный ряд вида

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n,$$

где $a_n, x_0 \in \mathbb{R}$ и x — действительная переменная, или $a_n, x_0 \in \mathbb{C}$ и x — комплексная переменная (комплексный степенной ряд).

Теорема 4.1 (формула Коши-Адамара). Пусть $R=\frac{1}{\overline{\lim}_{n\to\infty}\sqrt[n]{|a_n|}}$. Тогда:

- 1. $npu |x x_0| < R$ ряд (4.1) сходится, npuчём абсолютно;
- 2. $npu |x x_0| > R$ ряд (4.1) расходится;
- 3. если $r \in (0,R)$, то ряд (4.1) равномерно сходится на $\overline{B_r}(x_0) = \{x | |x x_0| \leqslant r\}$.

Доказательство. Пусть $x \neq x_0$, тогда

$$q := \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n(x - x_0)^n|} = |x - x_0| \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} = \frac{|x - x_0|}{R}.$$

Если $|x-x_0| < R$, то q < 1 и, значит, по признаку Коши $\sum_{n=0}^{\infty} |a_n(x-x_0)^n|$ сходится, то есть, ряд (4.1) сходится абсолютно.

Если $|x-x_0| > R$, то q > 1 и, значит, по признаку Коши n-й член ряда не стремится к нулю, ряд (4.1) расходится и абсолютно расходится (то есть, расходится ряд из модулей членов).

Пусть $r \in (0, R)$. По доказанному ряд (4.1) абсолютно сходится в точке $x = x_0 + r$, то есть сходится ряд $\sum_{n=0}^{\infty} |a_n| r^n$. Если $|x - x_0| \leq r$, то $|a_n(x - x_0)^n| \leq |a_n| r^n$. Тогда по признаку Вейерштрасса ряд (4.1) равномерно сходится на $B_r(x_0)$.

Определение 4.2. Величина R из теоремы (4.1) называется $paduycom\ cxodumocmu$ ряда (4.1).

 $B_R(x_0) = \{x \mid |x - x_0| < R\}$ называется интервалом сходимости (кругом сходимости в комлексной плоскости).

Из теоремы (4.1) получаем:

Следствие. Пусть для $R \in [0, +\infty]$ выполнено следующее: при $|x - x_0| < R$ ряд абсолютно сходится и при $|x - x_0| > R$ ряд абсолютно расходится, то R — радиус сходимости.

Пример. Найти радиус сходимости $\sum_{n=1}^{+\infty} \frac{n!}{n^n} x^{2n}$.

Решение. Обозначим n-й член ряда как $u_n(x)$, тогда при $z \neq 0$ имеем

$$\frac{|u_{n+1}(x)|}{|u_n(x)|} = \frac{(n+1)n^n}{(n+1)^{n+1}}(x)^2 = (1-\frac{1}{n})x^2 \to \frac{x^2}{e}.$$

Если $\frac{x^2}{e} < 1 \Leftrightarrow |x| < \sqrt{e}$, то ряд сходится абсолютно по признаку Даламбера (2.5). Если $\frac{x^2}{e} > 1 \Leftrightarrow |x| > \sqrt{e}$, то ряд абсолютно расходится по признаку Даламбера (2.5). Значит, $R = \sqrt{e}$.

Упражнение. Исследовать на сходимость при $x = \pm \sqrt{e}$.

Теорема 4.2 (Абель). Если степенной ряд (4.1) сходится в точке $x_1 \neq x_0$, то он сходится равномерно на отрезке с концами x_1, x_0 .

Доказательство. По условию ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ сходится. Рассмотрим последовательность $\{t^n\}$: она монотонна при любом $t\in[0,1]$ и равномерно ограниченна. По признаку Абеля (3.7) ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n t^n$ равномерно сходится на [0,1]. Сделав замену $t=\frac{x-x_0}{x_1-x_0}$, получим, что ряд (4.1) равномерно сходится на $\{x: x=x_0+t(x_1-x_0)\}$.

Замечание. Если $x_1 \in B_R(x_0)$, то предыдущая теорема вытекает из теоремы Коши–Адамара (4.1), поэтому интерес представляет случай, когда x_1 лежит на границе круга сходимости.

Применяя следствие о непрерывности суммы ряда (3.1), получаем:

Следствие. Сумма степенного ряда является непрерывной функцией на множестве сходимости.

Задача. Пусть $\sum_{n=0}^{+\infty} a_n$, $\sum_{n=0}^{+\infty} b_n$ сходятся κ A u B соответственно, a ряд $\sum_{n=0}^{+\infty} c_n$, ϵ de $c_n = \sum_{k=0}^n a_k b_{n-k}$, сходится ϵ C. Покажите, что $A \cdot B = C$.

Лемма 4.1. Если ряд (4.1) имеет радиус сходимости R, то ряд $\sum_{n=1}^{+\infty} na_n(x-x_0)^{n-1}$ также имеет радиус сходимости R.

Доказательности $\{\sqrt[n]{|a_n|}\}$ и $\{\sqrt[n]{n|a_n|}\}$ имеют одинаковое множество частичных пределов, значит $\overline{\lim}_{n\to+\infty}\sqrt[n]{|a_n|}$ и $\overline{\lim}_{n\to+\infty}\sqrt[n]{|a_n|}$ равны. Тогда по формуле Коши–Адамара ряды $\sum_{n=0}^{+\infty}a_n(x-x_0)^n$ и $\sum_{n=1}^{+\infty}na_n(x-x_0)^n$ имеют одинаковые радиусы сходимости.

Ряды $\sum_{n=1}^{+\infty} na_n(x-x_0)^{n-1}$ и $\sum_{n=1}^{+\infty} na_n(x-x_0)^n$ отличаются при $x \neq x_0$ ненулевым множителем (при $x=x_0$ оба сходятся). Следовательно, эти ряды сходятся одновременно. Тогда, радиусы сходимости этих рядов также совпадают.

Теорема 4.3. Если $f(x) = \sum_{n=0}^{+\infty} a_n (x-x_0)^n$ – сумма степенного ряда с радиусом сходимости R > 0, то функция f бесконечно дифференцируема в $B_R(x_0)$, и для всякого $n \in \mathbb{N}$ выполнено:

$$f^{(m)}(x) = \sum_{n=m}^{+\infty} n(n-1) \cdot \ldots \cdot (n-m+1) a_n (x-x_0)^{n-m}.$$

Доказательство. По лемме (4.1) при дифференцировании радиус сходимости ряда не меняется, поэтому нам достаточно доказать утверждение для m=1, после чего применить индукцию. Без потери общности можно также считать, что $x_0=0$.

Пусть $t \in B_R(0)$. Покажем, что производная $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ в точке t равна $l = \sum_{n=1}^{+\infty} n a_n t^{n-1}$.

Зафиксируем такое r, что |t| < r < R. Для $x \neq t$ с |x| < r составим разность

$$\frac{f(x) - f(t)}{x - t} - l = \sum_{n=1}^{+\infty} a_n \left(\frac{x^n - t^n}{x - t} - nt^{n-1} \right) = \sum_{n=1}^{+\infty} a_n \left(x^{n-1} + tx^{n-2} + \dots + t^{n-1} - nt^{n-1} \right).$$

Выражение в скобках перепишем в следующем виде:

$$(x^{n-1} - t^{n-1}) + t(x^{n-2} - t^{n-2}) + \dots + t^{n-2}(x - t) =$$

$$= (x - t) \left[(x^{n-2} + tx^{n-3} + \dots + t^{n-2}) + t(x^{n-3} + tx^{n-4} + \dots + t^{n-3}) + \dots + t^{n-2} \right]$$

(в квадратных скобках в первой сумме (n-2) слагаемых, во второй – (n-2) слагаемых, и т.д.).

Поскольку $(n-1)+(n-2)+\ldots+1=\frac{n(n-1)}{2}$, справедлива оценка

$$|a_n||x^{n-1} + tx^{n-2} + \dots + t^{n-1} - nt^{n-1}| \le |x - t||a_n| \cdot \frac{n(n-1)}{2}r^{n-2}.$$

Ряд $\sum_{n=2}^{+\infty} |a_n| \frac{n(n-1)}{2} r^{n-2}$ сходится, т.к. r < R, и в круге сходимости дважды продифференированный ряд сходится абсолютно. Следовательно,

$$\left| \frac{f(x) - f(t)}{x - t} - l \right| \le |x - t| \sum_{n=2}^{+\infty} |a_n| \cdot \frac{n(n-1)}{2} r^{n-2} \to 0, \ x \to t.$$

Значит, существует $\lim_{x\to t} \frac{f(x)-f(t)}{x-t} = l$.

Следствие (теорема о единственности). Если степенные ряды $\sum_{n=0}^{+\infty} a_n (x-x_0)^n$ и $\sum_{n=0}^{+\infty} b_n (x-x_0)^n$ сходятся в круге $B_{\delta}(x_0)$, и их суммы там совпадают, то $a_n = b_n$, $n = 0, 1, 2, \dots$

Следствие. Сумма степенного ряда с радиусом сходимости R>0 имеет первообразную $F(x)=C+\sum_{n=0}^{+\infty}\frac{a_n}{n+1}(x-x_0)^{n+1}$ при $|x-x_0|< R$.

4.2 Ряды Тейлора

Определение 4.3. Пусть функция f определена в некоторой окрестности точки x_0 и в точке x_0 имеет производные любого порядка. Тогда $\sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ называется рядом Тейлора функции f с центром в точке x_0 . Для $x_0=0$ ряд называют рядом Маклорена.

Покажем, что ряд Тейлора может сходиться к сумме, отличной от $f(x_0)$.

Пример. Рассмотрим $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} 0, & x \le 0; \\ e^{-\frac{1}{x}}, & x > 0. \end{cases}$$

Существование производных любого порядка в точке $x \neq 0$ следует из теоремы о дифференцировании композиции. Более того, $f^{(n)}(x) = 0$ при x < 0 и $f^{(n)}(x) = p_n(\frac{1}{x})e^{-\frac{1}{x}}$, где $p_n(t)$ – многочлен степени 2n. последнее утверждение можно установить по индукции: $p_0(t) = 1$ и дифференцирование $f^{(n)}$ дает соотношение $p_{n+1}(t) = t^2[p_n(t) - p_n'(t)]$.

Индукцией по n покажем, что $f^{(n)}(0) = 0$. Для n = 0 это верно по условию. Если предположить, что $f^{(n)}(0) = 0$, то $(f^{(n)})'_{-}(0) = 0$ и

$$(f^{(n)})'_{+}(0) = \lim_{h \to +0} \frac{f^{(n)}(h) - f^{(n)}(0)}{h} = \lim_{h \to +0} \frac{p_n(\frac{1}{h})e^{-\frac{1}{h}}}{h} = \lim_{t \to +\infty} \frac{tp_n(t)}{e^t} = 0,$$

поскольку по правилу Лопиталя $\lim_{t\to+\infty}\frac{t^m}{e^t}=0$ для всех $m\in\mathbb{N}_0$. Это доказывает, что $f^{(n+1)}(0)=0$.

Таким образом, ряд Маклорена функции f нулевой, но он не сходится к f ни в какой окрестности нуля.

Задача. Покажите, что сумма $f(x) = \sum_{n=0}^{+\infty} \frac{\cos(n^2 x)}{2^n}$ бесконечно дифференцируема на \mathbb{R} , однако её ряд Маклорена имеет нулевой ряд сходимости.

Приведем достаточное условие представимости функции степенным рядом.

Лемма 4.2. Если на $(x_0 - \rho, x_0 + \rho)$ функция f имеет производные всех порядков u

$$\exists C > 0 \ \forall n \in \mathbb{N}_0 \ \forall x \in (x_0 - \rho, x_0 + \rho) \left(\left| f^{(n)}(x) \right| \leqslant \frac{Cn!}{\rho^n} \right),$$

mo

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

для всех $x \in (x_0 - \rho, x_0 + \rho)$.

Доказательство. Так как $\sqrt[n]{\frac{f^{(n)}(x)}{n!}} \leqslant \frac{C^{\frac{1}{n}}}{\rho} \to \frac{1}{\rho}$, то по формуле Коши-Адамара (4.1) для $x \in (x_0 - \rho, x_0 + \rho)$ найдется c между x_0 и x, что

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \right| = \left| \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1} \right|.$$

Поскольку $|f^{(n+1)}(c)| \leqslant C$, то справедлива оценка:

$$\left| \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{(n+1)} \right| \leqslant C \left| \frac{x - x_0}{\rho} \right|^{n+1} \to 0,$$

что завершает доказательство.

Следствие. Если на $x \in (x_0 - \rho, x_0 + \rho)$ функция f имеет производные всех порядков и

$$\exists M > 0 \ \forall n \in \mathbb{N}_0 \ \forall x \in (x_0 - \rho, x_0 + \rho) \left(|f^{(n)}(x)| \leqslant M \right),$$

то f на $(x_0 - \rho, x_0 + \rho)$ разлагается в ряд по степеням $(x - x_0)$.

Доказательство. $\left\{\frac{n!}{\rho^n}\right\}$ – бесконечно большая, значит условия леммы выполнены.

Следствие. Ряды Маклорена функций \exp, \sin, \cos сходятся на $\mathbb R$ к самим функциям, то есть $\forall x \in \mathbb{R}$:

$$e^{x} = \sum_{n=0}^{+\infty} \frac{x^{n}}{n!},$$

$$\sin(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(2n+1)!} x^{2n+1},$$

$$\cos(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(2n)!} x^{2n}.$$

Доказательство. Все указанные функции бесконечно дифференцируемы на \mathbb{R} , причем $(e^x)^{(n)} = e^x$, $\sin^{(n)}(x) = \sin(x + \frac{\pi n}{2})$, $\cos^{(n)}(x) = \cos(x + \frac{\pi n}{2})$.

Пусть $\delta > 0$ и $|x| < \delta$. Тогда $(e^x)^{(n)} \leqslant e^{\delta}$, $|\sin^{(n)}(x)| \leqslant 1$, $|\cos^{(n)}(x)| \leqslant 1$.

Следовательно, по следствию 1 ряды Маклорена этих функций сходятся к самим функциям на $(-\delta, \delta)$. Так как $\delta > 0$ – любое, то предположение верно и на \mathbb{R} .

Теорема 4.4 (биномиальный ряд). Если $\alpha \notin \mathbb{N}_0$ и $C_{\alpha}^n = \frac{\alpha \cdot (\alpha - 1) \cdot ... \cdot (\alpha - n + 1)}{n!}$, $C_{\alpha}^0 = 1$, то

$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} C_{\alpha}^n x^n, |x| < 1.$$

Доказательство. Пусть $f(x)=(1+x)^{\alpha}$. Тогда $f^{(n)}(x)=\alpha\cdot(\alpha-1)\cdot\ldots\cdot(\alpha-n+1)\cdot(1+x)^{\alpha-1}$ и, значит, $\frac{f^{(n)}(0)}{n!} = C_{\alpha}^{n}$. При $x \neq 0$:

$$\lim_{n\to +\infty}\frac{|C_{\alpha}^{n+1}x^{n+1}|}{|C_{\alpha}^{n}x^{n}|}=\lim_{n\to +\infty}\frac{|\alpha-n||x|}{n+1}=|x|.$$

Если |x| < 1, то ряд абсолютно сходится по признаку Даламбера. Если |x| > 1, то ряд

абсолютно расходится по признаку Даламбера. Следовательно, $R_{\rm cx}=1$. Обозначим $g(x)=\sum_{n=0}^{+\infty}C_{\alpha}^{n}x^{n}$, и покажем, что $g\equiv f$ на (-1,1), т.е. $(1+x)^{-\alpha}g(x)=1$ при $x \in (-1,1)$. Для этого найдем производную функции $(1+x)^{-\alpha}g(x)$. По теореме (4.3)имеем

$$((1+x)^{-\alpha}g(x))' = (1+x)^{-\alpha} \sum_{n=1}^{+\infty} nC_{\alpha}^n x^{n-1} - \alpha(1+x)^{-\alpha-1} \sum_{n=0}^{+\infty} C_{\alpha}^n x^n =$$

$$= (1+x)^{-\alpha-1} \left[\sum_{n=1}^{+\infty} nC_{\alpha}^n x^{n-1} + \sum_{n=0}^{+\infty} nC_{\alpha}^n x^n - \alpha \sum_{n=0}^{+\infty} C_{\alpha}^n x^n \right].$$

В первой сумме произведем замену индекса суммирования. После приведения подобных слагаемых получим

$$((1+x)^{-\alpha}g(x))' = (1+x)^{-\alpha-1} \left[\sum_{n=0}^{+\infty} (n+1)C_{\alpha}^{n+1}x^n - \sum_{n=0}^{+\infty} (\alpha-n)C_{\alpha}^n x^n \right] = 0.$$

Отсюда следует, что $(1+x)^{-\alpha}g(x)$ постоянна на (-1,1). Из условия g(0)=1 получаем, что $(1+x)^{-\alpha}g(x)=1$ для всех $x\in (-1,1)$.

Замечание. При $\alpha>0$ биномиальный ряд сходится к $(1+x)^{\alpha}$ равномерно на [-1,1]. Действительно, при $n>\alpha$

$$\frac{|C_{\alpha}^{n+1}|}{|C_{\alpha}^{n}|} = \frac{n-\alpha}{n+1} = 1 - \frac{\alpha+1}{n} + O(\frac{1}{n^2}).$$

По признаку Гаусса ряд $\sum |C_{\alpha}^{n}|$ сходится. Следовательно, по признаку Вуейерштрасса ряд $\sum C_{\alpha}^{n}x^{n}$ сходится равномерно на [-1,1].

Пример. Так как $\frac{1}{1+x} = \sum_{n=1}^{+\infty} (-1)^{n-1} x^{n-1}$ при |x| < 1, то по (4.1)

$$\ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}x^n}{n}, |x| < 1.$$

Ряд в правой части сходится при x=1, поэтому его сумма непрерывна на (-1,1] и, значит, равенство имеет место при x=1. Получаем известный нам результат, что $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln 2$.

Задача. Разложите функцию arctg в ряд по степеням x. C помощью полученного разложения найдите сумму ряда $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.

5 Метрические пространства

Определение 5.1. Пусть $X \neq \emptyset$. Функция $\rho: X \times X \to \mathbb{R}$ называется *метрикой* на X, если для любых $x, y, z \in X$ выполнено:

- 1. $\rho(x,y) \geqslant 0$, $\rho(x,y) = 0 \Leftrightarrow x = y$;
- 2. $\rho(x, y) = \rho(y, x);$
- 3. $\rho(x,y) \leq \rho(x,z) + \rho(z,y)$ (неравенство треугольника).

Пара (X, ρ) называется метрическим пространством.

В дальнейшем часто под метрическим пространтвом будем понимать само множество X, предполагая наличие связанной с ним метрики.

Пример. Пусть $X \neq \emptyset$, $\rho(x,y) = 1$ при $x \neq y$, $\rho(x,y) = 0$ при x = y. Тогда ρ – метрика на X, называемая дискретной. Неравенство $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$ выполняется, т.к. левая часть не больше 1. Если левая часть равна 1, то $x \neq z$ или $y \neq z$, откуда следует, что правая часть не меньше 1.

Важные примеры метрических пространств возникают из других конструкций.

Определение 5.2. Пусть V — линейное пространство. Функция $\|\cdot\|:V\to\mathbb{R}$ называется *нормой*, если для любых $x,y\in V$ и $\alpha\in\mathbb{R}$ выполнено:

- 1. $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$;
- 2. $\|\alpha x\| = |\alpha| \|x\|$;
- 3. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника).

Пара $(V, \|\cdot\|)$ называется нормированным пространством.

Лемма 5.1. Всякое нормированное пространство является метрическим с $\rho(x,y) = \|x-y\|$.

Доказательство. Проверка свойств метрики тривиальна. Например, для установления неравенства треугольника достаточно применить свойство 3 нормы для векторов x-y и y-z.

Пример. $X = \mathbb{R}^n, \ x = (x_1, \dots, x_n)^T, \ y = (y_1, \dots, y_n)^T.$

1.
$$|x| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$$
, $\rho_2(x, y) = \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2}$.

2.
$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, \, \rho_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}, \, p \geqslant 1.$$

3.
$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|, \ \rho_{\infty}(x, y) = \max_{1 \le i \le n} |x_i - y_i|.$$

Доказательство. Покажем, что $\|\cdot\|_p$ — норма на \mathbb{R}^n .

Проверим сначала, что если $||x||_p \le 1$, $||y||_p \le 1$, $\alpha + \beta = 1$, $\alpha \ge 0$, $\beta \ge 0$, то $||\alpha x + \beta y||_p \le 1$. Функция $\varphi(s) = s^p$ — выпуклая на $[0, +\infty)$, следовательно $|\alpha x_i + \beta y_i|^p \le \alpha |x_i|^p + \beta |x_i|^p$. Просуммируем по $i = 1, \ldots, n$. $||\alpha x + \beta y||_p^p \le \alpha ||x||_p^p + \beta ||y||_p^p \le \alpha + \beta = 1$.

Пусть x, y произвольны. Если x = 0 или y = 0, то неравенство выполняется. Будем предполагать, что $x \neq 0$ и $y \neq 0$. Покажем, что $\|x + y\|_p \leqslant \|x\|_p + \|y\|_p$ (индекс p будем опускать)

Введём обозначения $\alpha = \frac{\|x\|}{\|x\| + \|y\|}, \beta = \frac{\|y\|}{\|x\| + \|y\|}, \hat{x} = \frac{x}{\|x\|}, \hat{y} = \frac{y}{\|y\|}$. Тогда, учитывая, что $\|\alpha \hat{x} + \beta \hat{y}\| \leqslant 1$, имеем

$$||x + y|| = (||x|| + ||y||) \left\| \frac{x}{||x|| + ||y||} + \frac{y}{||x|| + ||y||} \right\| = (||x|| + ||y||) ||\alpha \hat{x} + \beta \hat{y}|| \le ||x|| + ||y||.$$

Проверка, что $\|\cdot\|_{\infty}$ является нормой, легко следует из свойств модуля числа. \square

Определение 5.3. Пусть (X, ρ) — метрическое пространство, $x \in X$.

Множество $B_r(x) = \{ y \in X \mid \rho(y, x) < r \}, r > 0$ называется *открытым шаром* с центром в точке x и радиуса r.

Множество $\overline{B}_r(x) = \{ y \in X \mid \rho(y,x) \leqslant r \}$ называется замкнутым шаром с центром в точке x и радиуса r.

Определение 5.4. Пусть $E \subset X$. Множество E называется *ограниченным*, если

$$\exists a \in X \, \exists r > 0 \, (E \subset B_r(a)).$$

Определение 5.5. Пусть $\{x_n\} : n \mapsto x_n \in X$.

Последовательность $\{x_n\}$ cxodumcs к a (в X), если $\rho(x_n,a)\to 0$ при $n\to\infty$. Пишут $x_n\to a$ или $\lim_{n\to\infty}x_n=a$.

Замечание.

$$x_n \to a \Leftrightarrow \forall \varepsilon > 0 \,\exists N \,\forall n \geqslant N \, (x_n \in B_{\varepsilon}(a)).$$

Свойство 5.1. Если $x_n \to a$, $x_n \to b$, то a = b.

Доказательство.
$$0 \leqslant \rho(a,b) \leqslant \rho(a,x_n) + \rho(x_n,b) \to 0.$$

Свойство 5.2. Если $x_n \to a$, то $\{x_n\}$ ограничена.

Доказательство. $\rho(x_n, a) \to 0$, следовательно $\{\rho(x_n, a)\}$ ограничена. Тогда существует $R > \sup\{\rho(x_n, a)\}$, значит $x_n \in B_R(a)$.

Свойство 5.3. Пусть $\{x_n\}$, $\{y_n\}$ — последовательности в нормированном пространстве $(V, \|\cdot\|)$, $\{\alpha_n\} \subset \mathbb{R}$. Тогда, если $x_n \to a$, $y_n \to b$ и $\alpha_n \to \alpha \in \mathbb{R}$, то $x_n + y_n \to a + b$, $\alpha_n x_n \to \alpha a$.

Доказательство. Вытекает из неравенств

$$||(x_n + y_n) - (a+b)|| \le ||x_n - a|| + ||y_n - b|| \to 0.$$

$$\|\alpha_n x_n - \alpha a\| = \|\alpha_n x_n - \alpha x_n + \alpha x_n - \alpha a\| \leqslant \underbrace{|\alpha_n - \alpha|}_{\text{6.m.}} \underbrace{\|x_n\|}_{\text{orp.}} + \underbrace{|\alpha|}_{\text{orp.}} \underbrace{\|x_n - a\|}_{\text{6.m.}} \to 0.$$

5.1 Топология метрических пространств

Определение 5.6. Пусть (X, ρ) — метрическое пространство, $E \subset X$ и $x \in X$.

- 1. Точка x называется внутренней точкой множества E, если $\exists \varepsilon > 0 \ (B_{\varepsilon}(x) \subset E)$.
- 2. Точка x называется внешней точкой множества E, если $\exists \varepsilon > 0 \ (B_{\varepsilon}(x) \subset X \setminus E)$. Обозначим ext E множество внешних точек E. Очевидно, ext $E = \operatorname{int}(X \setminus E)$.
- 3. Точка x называется zраничной точкой множества E, если

$$\forall \varepsilon > 0 \ \left\{ \begin{array}{l} B_{\varepsilon}(x) \cap E \neq \emptyset \\ B_{\varepsilon}(x) \cap (X \setminus E) \neq \emptyset \end{array} \right.$$

Обозначим ∂E — множество граничных точек E.

Замечание. $X = \text{int } E \cup \text{ext } E \cup \partial E$, причём $\text{int } E, \text{ext } E, \partial E$ попарно не пересекаются.

Определение 5.7. Множество $G \subset X$ называется *открытым*, если все точки G являются внутренними (то есть $G = \operatorname{int} G$).

Множество $F \subset X$ называется замкнутым, если $X \setminus F$ открыто.

Пример. 1. Открытый шар — открытое множество.

Доказательство. Пусть $x \in B_r(a)$. Положим $\varepsilon = r - \rho(x,a)$. Покажем, что $B_{\varepsilon}(x) \subset B_r(a)$.

Пусть
$$y \in B_{\varepsilon}(x)$$
. Тогда $\rho(y, a) \leqslant \rho(y, x) + \rho(x, a) < \varepsilon + \rho(x, a) = r$.

2. Замкнутый шар — замкнутое множество.

Доказательство. Пусть
$$x \in X \setminus \overline{B}_r(a)$$
. Положим $\varepsilon = \rho(x,a) - r$. Аналогично устанавливается, что $B_{\varepsilon}(x) \subset X \setminus \overline{B}_r(a)$. Следовательно, $X \setminus \overline{B}_r(a)$ открыто.

 $3. \, \text{int} \, E$ — открытое множество.

 \mathcal{A} оказательство. Из $x \in \text{int } E$ следует, что $\exists \underbrace{B_{\varepsilon}(x)}_{\text{откр.}} \subset E$, следовательно, каждая точка

$$y \in B_{\varepsilon}(x)$$
 является внутренней для $B_{\varepsilon}(x)$, а, значит, и для E , то есть $\exists B_{\delta}(y) \subset E$. Следовательно, $B_{\varepsilon}(x) \subset \text{int } E$.

Аналогично случаю $X = \mathbb{R}$ доказывается следующая лемма.

Лемма 5.2. Объединение произвольного семейства открытых множеств и пересечение конечного семейства открытых множеств являются открытыми множествами.

Объединение конечного семейства замкнутых множеств и пересечение произвольного семейства замкнутых множеств являются замкнутыми множествами.

Проверять замкнутость множеств «по определению» не всегда удобно. Получим критерий замкнутости.

Определение 5.8. Точка x называется npedenьной точкой множества <math>E, если $\forall \varepsilon > 0$ ($\mathring{B}_{\varepsilon}(x) \cap E \neq \varnothing$). Здесь и далее $\mathring{B}_{\varepsilon}(x) = B_{\varepsilon}(x) \setminus \{x\}$.

Определение 5.9. Точка x называется *изолированной точкой* множества E, если $x \in E$ и x не предельная.

Теорема 5.1. Следующие утверждения эквивалентны:

- *1. Е замкнуто*;
- 2. Е содержит все свои граничные точки;
- 3. Е содержит все свои предельные точки;

Доказательство.

$$(1 \Rightarrow 2) \ x \in \underbrace{X \setminus E}_{\text{откр.}} \Rightarrow \exists B_{\varepsilon}(x) \subset X \setminus E \Rightarrow x \neq \partial E \Rightarrow \partial E \subset E.$$

 $(2 \Rightarrow 3)$ Любая предельная точка является внутренней или граничной, значит E содержит все предельные точки.

$$(3\Rightarrow 1)$$
 Пусть $x\in X\setminus E$. Точка x не является предельной для E , т.е. $\exists \varepsilon>0\ (\mathring{B}_{\varepsilon}(x)\cap E=\varnothing)\Rightarrow B_{\varepsilon}(x)\subset X\setminus E$. Значит, $X\setminus E$ открыто.

Определение 5.10. $\overline{E} = E \cup \partial E -$ замыкание E.

Лемма 5.3. Множество \overline{E} замкнуто. В частности, E замкнуто $\Leftrightarrow E = \overline{E}$.

Доказательство. Отметим, что поскольку int $E \subset E \subset \text{int } E \cup \partial E$, то $\overline{E} = \text{int } E \cup \partial E$.

Пусть $x \in X \setminus \overline{E}$. Точка x является внешней для E, т.е. $\exists B_{\varepsilon}(x) \subset X \setminus E$. Шар $B_{\varepsilon}(x)$ не содержит граничных точек (иначе $B_{\varepsilon}(x) \cap E \neq \emptyset$), поэтому $B_{\varepsilon}(x) \subset X \setminus \overline{E}$. Значит, $X \setminus \overline{E}$ открыто.

По критерию замкнутости, E замкнуто $\Leftrightarrow E = \overline{E}$.

Замечание. $x \in \overline{E} \Leftrightarrow \exists \{x_n\} \subset E \ (x_n \to x).$

Доказательство. Если $x \in E \cup \partial E$, то $\forall \varepsilon > 0 \ (B_{\varepsilon}(x) \cap E \neq \varnothing)$. Выберем точку $x_n \in B_{\frac{1}{n}}(x) \cap E$. Так как $\rho(x_n, x) < \frac{1}{n}$, то $x_n \to x$.

Обратно, если $x \in X \setminus \overline{E}$, то x – внешнаяя точка E и, значит, x не может быть пределом последовательности точек из E.

Следствие. Множество E замкнуто $\Leftrightarrow \forall \{x_n\}, \ x_n \in E \ (x_n \to x \Rightarrow x \in E).$

Задача. 1. Докажите, что $\overline{E} = \bigcap \{F \mid F \text{ замкнуто}, F \supset E\};$

2. Докажите, что int $E = \bigcup \{G \mid G \text{ открыто}, G \subset E\}.$

5.2 Подпространства метрического пространства

Определение 5.11. Пусть (X, ρ) — метрическое пространство, $E \subset X, E \neq \emptyset$. Сужение $\rho|_{E \times E}$ является метрикой на E. Пара $(E, \rho|_{E \times E})$ называется nodnpocmpancmeom (X, ρ) , а функция $\rho|_{E \times E}$ — undyuuposanhoù метрикой.

Рассмотрим $B_r^E(x) = \{ y \in E \mid \rho(x, y) < r \} = B_r^X(x) \cap E$.

Лемма 5.4. Пусть (X, ρ) — метрическое пространство, $E \subset X$.

$$\underbrace{U}_{om\kappa p.\ 6\ E} \Leftrightarrow \exists \underbrace{V}_{om\kappa p.\ 6\ X} (U = V \cap E).$$

 \mathcal{A} оказательство. (\Rightarrow) Пусть U открыто в E. Тогда $\forall x \in U \,\exists B_{\varepsilon_x}^E(x) \subset U$ и, значит, $U = \bigcup_{x \in U} B_{\varepsilon_x}^E(x)$. Положим $V = \bigcup_{x \in U} B_{\varepsilon_x}^X(x)$. Тогда V открыто в X и $V \cap E = \bigcup_{x \in U} (B_{\varepsilon_x}^X(x) \cap E) = \bigcup_{x \in U} B_{\varepsilon_x}^E(x) = U$.

$$\begin{array}{l}
O_{x \in U} B_{\varepsilon_x}(x). \text{ Положим } V = O_{x \in U} B_{\varepsilon_x}(x). \text{ Гогда } V \text{ Открыто в } X \text{ и } V + E = O_{x \in U} (B_{\varepsilon_x}(x) + E) \\
E) = \bigcup_{x \in U} B_{\varepsilon_x}^E(x) = U. \\
(\Leftarrow) \text{ Пусть } x \in U \text{ и } U = \underbrace{V}_{\text{откр. в } X} \cap E, \text{ тогда } x \in V \Rightarrow \exists B_{\varepsilon}^X(x) \subset V \Rightarrow B_{\varepsilon}^E(x) = B_{\varepsilon}^X(x) \cap E \subset V \\
V \cap E = U, \text{ то есть } U \text{ открыто в } E.
\end{array}$$

Следствие.

$$\underbrace{Z}_{\text{SAMK}, B, E} \Leftrightarrow \exists \underbrace{F}_{\text{SAMK}, B, X} (Z = F \cap E).$$

Пример. $X = \mathbb{R}, E = (0, 10], A = (0, 1], B = (2, 3], C = (9, 10].$

- ightharpoonup A замкнуто в $E,\,A=[-1,1]\cap E;$
- ightharpoonup C открыто в $E, C = (9, 11) \cap E;$
- $\triangleright B$ не открыто и не замкнуто в E.

5.3 Компакты в метрических пространствах

Определение 5.12. Пусть X — множество, $Y \subset X$. Семейство $\{X_{\alpha}\}_{{\alpha}\in A}$ подмножеств X называется *покрытием* Y, если $Y \subset \bigcup_{{\alpha}\in A} X_{\alpha}$.

Если $B \subset A$ и $\{X_{\alpha}\}_{{\alpha} \in B}$ также является покрытием Y, то оно называется nodnokpumueм.

Определение 5.13. Пусть (X, ρ) — метрическое пространство, $K \subset X$. K называется компактом (в X), если из любого его открытого покрытия $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ можно выделить конечное подпокрытие, то есть $\exists \lambda_1, \ldots \lambda_m \in \Lambda \ (K \subset G_{\lambda_1} \cup \ldots \cup G_{\lambda_m})$.

Пример. $X = \mathbb{R} \Rightarrow [a, b]$ — компакт по теореме Гейне-Бореля.

Замечание. К — компакт в X тогда и только тогда, когда K — компакт «в себе», то есть в (K, ρ) .

Лемма 5.5. Пусть (X, ρ) — метрическое пространство, $K \subset X$. Если K — компакт, то K ограничено и замкнуто в X.

Доказательство. Пусть $a \in K$. Так как $\bigcup_{n=1}^{\infty} B_n(a) = X$, то $\{B_n(a)\}_{n \in \mathbb{N}}$ — открытое покрытие K. Следовательно, $K \subset B_{n_1}(a) \cup \ldots \cup B_{n_m}(a) = B_N(a)$, где $N = \max_{1 \le i \le m} \{n_i\}$, и, значит, K ограничено.

Пусть $a \in X \setminus K$. Так как $\bigcup_{n=1}^{\infty} \left(X \setminus \overline{B}_{\frac{1}{n}}(a) \right) = X \setminus \{a\}$, то $\{X \setminus \overline{B}_{\frac{1}{n}}(a)\}_{n \in \mathbb{N}}$ — открытое покрытие K. Следовательно, $K \subset \left(X \setminus \overline{B}_{\frac{1}{n_1}}(a) \right) \cup \ldots \cup \left(X \setminus \overline{B}_{\frac{1}{n_m}}(a) \right) = X \setminus \overline{B}_{\frac{1}{N}}(a)$, где $N = \max_{1 \leq i \leq m} \{n_i\}$. Тогда $\overline{B}_{\frac{1}{N}}(a) \subset X \setminus K$ и, значит, $X \setminus K$ открыто, а значит, K — замкнуто. \square

Лемма 5.6. Замкнутое подмножество компакта — компакт.

 \mathcal{A} оказательство. Пусть K — компакт в X, $\underbrace{F}_{\text{замк. в }X}$ $\subset K$. Покажем, что F — компакт. Рассмотрим открытое покрытие $\{G_{\lambda}\}_{\lambda\in\Lambda}$ множества F, тогда $\{G_{\lambda}\}_{\lambda\in\Lambda}\cup\{X\backslash F\}$ — открытое

Рассмотрим открытое покрытие $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ множества F, тогда $\{G_{\lambda}\}_{{\lambda}\in\Lambda}\cup\{X\backslash F\}$ — открытое покрытие K, так как $(\bigcup_{{\lambda}\in\Lambda}G_{\lambda})\cup(X\backslash F)=X$. Поскольку K — компакт, то $K\subset G_{{\lambda}_1}\cup\ldots\cup G_{{\lambda}_m}\cup(X\backslash F)\stackrel{F\subset K}{\Rightarrow} F\subset G_{{\lambda}_1}\cup\ldots\cup G_{{\lambda}_m}$. Значит, F — компакт.

Задача. Пусть $\{F_n\}$ — непустые компакты в X, $F_1 \supset F_2 \supset \dots$ Покажите, что $\bigcap_{n=1}^{\infty} F_n \neq \varnothing$.

Теорема 5.2. Пусть (X, ρ) — метрическое пространство, $K \subset X$. K — компакт тогда u только тогда, когда из любой последовательности элементов K можно выделить сходящуюся в K подпоследовательность.

Доказательство. (\Rightarrow) Пусть $\forall n \in \mathbb{N} \ x_n \in K$. Предположим, что из $\{x_n\}$ нельзя выделить сходяющуюся подпоследовательность в K. Тогда $\forall a \in K \ \exists \delta_a > 0 \ \exists N_a \ \forall n \geqslant N_a \ (x_n \notin B_{\delta_a}(a))$.

Рассмотрим $\{B_{\delta_a}(a)\}_{a\in K}$ — открытое покрытие K. Следовательно, $K\subset B_{\delta_{a_1}}(a_1)\cup\ldots\cup B_{\delta_{a_m}}(a_m)$.

Положим $N = \max_{1 \leqslant i \leqslant m} \{N_{a_i}\}$. Так как $N \geqslant N_{a_i}$, то $x_N \not\in B_{\delta_{a_i}}(a_i)$ $i = 1, \ldots, m \Rightarrow x_N \not\in K$ — противоречие.

 (\Leftarrow) Пусть из любой последовательности элементов K можно выделить сходящуюся в K подпоследовательность (секвенциальная компактность).

1. Покажем, что для любого $\varepsilon > 0$ K можно покрыть конечным набором открытых шаров радиуса ε .

Докажем от противного – пусть нельзя покрыть. Индуктивно построим последовательность $\{x_n\}, x_1 \in K, x_n \in K \setminus \bigcup_{i=1}^{n-1} B_{\varepsilon}(x_i)$.

По построению $\rho(x_i, x_j) \geqslant \varepsilon$, и, значит, из $\{x_n\}$ нельзя выделить сходящуюся подпоследовательность – противоречие.

2. Пусть $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ — открытое покрытие K, тогда $\exists \varepsilon > 0 \, \forall x \in K \, \exists \lambda \in \Lambda \, (B_{\varepsilon}(x) \subset G_{\lambda})$. Предположим, что это не выполняется, тогда $\forall n \in \mathbb{N} \, \exists x_n \in K \, \forall \lambda \in \Lambda \, \Big(B_{\frac{1}{n}}(x_n) \not\subset G_{\lambda}\Big)$.

Имеем
$$\{x_n\} \subset K \Rightarrow \exists x_{n_k} \to x \in K$$
, следовательно, $\exists \lambda_0 \in \Lambda(x \in G_{\lambda_0}) \Rightarrow \exists B_{\alpha}(x) \subset G_{\lambda_0}$.

Выберем k так, чтобы $x_{n_k} \in B_{\frac{\alpha}{2}}(x)$ и $\frac{1}{n_k} < \frac{\alpha}{2}$. Если $z \in B_{\frac{1}{n_k}}(x_{n_k}) \Rightarrow \rho(z, x) \leqslant \rho(z, x_{n_k}) + \rho(x_{n_k}, x) < \frac{\alpha}{2} + \frac{\alpha}{2} = \alpha$.

Следовательно, $z \in B_{\alpha}(x), B_{\frac{1}{n_{k}}}(x_{n_{k}}) \subset B_{\alpha}(x) \subset G_{\lambda_{0}}$ — противоречие.

3. Пусть $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ – открытое покрытие K. Тогда по (2):

$$\exists \varepsilon > 0 \ \forall x \in K \ \exists \lambda \in \Lambda \ (B_{\varepsilon}(x) \subset G_{\lambda})$$

По (1) $\exists x_1, x_2, ..., x_m \in K$, что $K \subset B_{\varepsilon}(x_i) \cup ... \cup B_{\varepsilon}(x_m) \subset G_{\lambda_1} \cup ... \cup G_{\lambda_m}$, где λ_i удовлетворяет условию $B_{\varepsilon}(x_i) \subset G_{\lambda_i}$.

Следовательно, K – компакт.

Опишем компакты в Евклидовом пространстве \mathbb{R}^n .

Пример. Замкнутый брус $R = [a_1, b_1] \times \ldots \times [a_n, b_n]$ является компактом в \mathbb{R}^n .

- База: n = 1 − компакт по лемме Гейне–Бореля.
- \triangleright Предположение: Пусть верно для n.
- $ightharpoonup \Pi$ ереход: $R = \underbrace{[a_1, b_1] \times \ldots \times [a_n, b_n]}_{R'} \times [a_{n+1}, b_{n+1}]$ в \mathbb{R}^{n+1} .

Пусть $\{x_k\}\subset R,\; x_k=(\underbrace{x_{1,k},\ldots,x_{n,k}}_{y_k},x_{n+1,k})^T.$ Тогда $\{y_k\}\subset R'$ и R' – компакт \Rightarrow

 $\exists \{y_{k_i}\}: y_{k_i} \to y_0 \in R'$. Рассмотрим последовательность $\{x_{n+1,k_i}\} \subset [a_{n+1},b_{n+1}]$ – компакт $\Rightarrow \exists \{x_{n+1},k_{i_j}\}: x_{n+1,k_{i_j}} \to x_{n+1,0} \in [a_{n+1},b_{n+1}].$

Тогда $y_{k_{i_j}} \to y_0 = (x_{1,0}, \dots, x_{n,0})^T$ как подпоследовательность сходящейся последовательности. Пусть $a = (x_{1,0}, \dots, x_{n,0}, x_{n+1,0})^T \in R$. Тогда $x_{k_{i_j}} \to a$ и, значит, R компакт по теореме (5.2).

Следствие. Множество K является компактом в $\mathbb{R}^n \Leftrightarrow K$ ограничено и замкнуто

Доказательство. \Rightarrow лемма (5.5).

 \Leftarrow Если K ограничено, то $K \subset B_r(x)$ для некоторой точки $x = (x_1, \dots, x_n)^T$ и r > 0. Рассмотрим замкнутый брус $[x_1 - r, x_1 + r] \times \dots \times [x_n - r, x_n + r]$. Этот брус содержит $B_r(x)$, а значит, и K.

Тогда
$$K$$
 – компакт по лемме (5.6).

Следствие (теорема Больцано–Вейерштрасса). Из любой ограниченной последовательности в \mathbb{R}^n можно выделить сходящуюся подпоследовательность.

Доказательство. Если последовательность ограничена, то она лежит в некотором замкнутом шаре. Этот шар – компакт по следствию (5.3). Осталось применить теорему (5.2).

Замечание. В общих метрических пространствах из ограниченности и замкнутости не следует компактность.

Пример. $X=\mathbb{R}$ с дискретной метрикой, K=[0,1] – ограничено, замкнуто. Рассмотрим $\bigcup_{x\in K}B_{\frac{1}{2}}(x)=K$. Из этого покрытия нельзя выделить конечное подпокрытие.

5.4 Полные метрические пространства

Пусть (X, ρ) – метрическое пространство.

Определение 5.14. Последовательность $\{x_n\}$ в X называется $\phi y + \partial a M e + m a N e N e O M e O$

$$\forall \varepsilon > 0 \ \exists N \ \forall n, m \geqslant N \ (\rho(x_n, x_m) < \varepsilon).$$

Лемма 5.7. Всякая сходящаяся последовательность фундаментальна.

Доказательство. $x_n \in X, x_n \to a$. Пусть $\varepsilon > 0$, тогда $\exists N \ \forall n \geqslant N \ (\rho(x_n, a) < \frac{\varepsilon}{2})$. Следовательно, $\forall n, m \geqslant N$:

$$\rho(x_n, x_m) \leqslant \rho(x_n, a) + \rho(x_m, a) < \varepsilon.$$

Обратное утверждение неверно.

Пример. $X=(0,1),\ \rho(x,y)=|x-y|.\ \left\{\frac{1}{n}\right\}$ – фундаментальна, однако не имеет предела в X

Определение 5.15. Метрическое пространство называется *полным*, если всякая фундаментальная последовательность в нем сходится.

Теорема 5.3. Евклидово пространство \mathbb{R}^n – полное.

Доказательство.

Пусть $\{x_k\}$ – фундаментальная последовательность в \mathbb{R}^n , $x_k = (x_{1,k}, \dots, x_{n,k})^T$. Так как $|x_{i,k}-x_{i,m}| \leqslant \rho_2(x_k,x_m)$, то из фундаментальности $\{x_k\}$ следует фундаментальность $\{x_{i,k}\}$ в \mathbb{R} для $i=1,\dots,n$. По критерию Коши для числовых последовательностей $x_{i,k}\to a_k\in\mathbb{R}$. Рассмотрим $a=(a_1,\dots,a_n)^T$. $\rho_2(x_k,a)=\sqrt{\sum_{i=1}^n(x_{k,i}-a_i)^2}\to 0$ при $k\to\infty$. Значит, $x_k\to a\Rightarrow \mathbb{R}^n$ – полное метрическое пространство.

Пример. B(E) – линейное пространство всех *ограниченных* функций $f: E \to \mathbb{R}$.

B(E) является нормированным пространством относительно $||f|| = \sup_{x \in E} |f(x)|$. Имеем $\sup |f(x) + g(x)| \le \sup |f(x)| + \sup |g(x)|$. Имеем $f_n \to f$ в $B(E) \Leftrightarrow ||f_n - f|| \to 0 \Leftrightarrow \sup_{x \in E} |f_n(x) - f(x)| \to 0 \Leftrightarrow f_n \rightrightarrows f$ на E.

Теорема 5.4. B(E) – полное.

Доказательство. Пусть $\{f_n\}$ фундаментальна в $B(E), \varepsilon > 0$. Тогда

$$\exists N \ \forall n, m \geqslant N \ (\sup_{x \in E} |f_n(x) - f_m(x)| \leqslant \varepsilon).$$

По критерию Коши равномерной сходимости $\exists f: f_n \Rightarrow f$ на E. Осталось доказать, что равномерный предел ограниченных функций – ограниченная функция. Для $\varepsilon = 1$ $\exists N: |f_N(x) - f(x)| \leq 1 \ \forall x \in E \Rightarrow |f(x)| \leq |f_N(x)| + 1 \Rightarrow f \in B(E) \Rightarrow B(E)$ – полное. \square

Следствие. C([a,b]) – линейное пространство всех непрерывных $f:[a,b] \to \mathbb{R}$ – полное.

Доказательство. $C([a,b]) \subset B(E)$ (теорема Вейерштрасса). C([a,b]) – полное как замкнутое подпространство (подмножество) полного пространства B(E).

Задача. Покажите, что $\overline{B_1}(\Theta)$ в C([0,1]) не является компактом (Θ – нулевая функция).

6 Непрерывные функции

6.1 Предел функции в точке

Пусть $(X, \rho_x), (Y, \rho_y)$ — метрические пространства, a — предельная точка X, и задана функция $f: X \setminus \{a\} \to Y$.

Определение 6.1 (Коши). Точка $b \in Y$ называется npedenom функции f в точке a, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in X(0 < \rho_X(x, a) < \delta \Rightarrow \rho_Y(f(x), b) < \varepsilon)$$

или, что эквивалентно,

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in X (x \in \mathring{B}_{\delta}(a) \Rightarrow f(x) \in B_{\varepsilon}(b).$$

Определение 6.2 (Гейне). Точка $b \in Y$ называется *пределом* функции f в точке a, если

$$\forall \{x_n\}, x_n \in X \setminus \{a\}(x_n \to a \Rightarrow f(x_n) \to b).$$

Как и в случае числовых функций, доказывается равносильность определений по Коши и по Гейне, поэтому в обоих случаях пишут $\lim_{x\to a} f(x) = b$, или $f(x) \to b$ при $x \to a$.

Свойство 6.1 (единственность). *Если* $\lim_{x\to a} f(x) = b \ u \ \lim_{x\to a} f(x) = c, \ mo \ b = c.$

Доказательство. Пусть $x_n \to a$ и $x_n \neq a$. По определению Гейне $f(x_n) \to b$ и $f(x_n) \to c$. Так как последовательность в метрическом пространстве имеет не более одного предела, то b=c.

Замечание. Пусть $E \subset \mathbb{R}^n$, a – предельная точка E, функция $f: E \to \mathbb{R}^m$. Если $x \in E$, то $f(x) = (y_1, \dots, y_m)$, и значит, для каждого $i = 1, \dots, m$ определена i-я координатная функция $f_i: E \to \mathbb{R}$, $f_i(x) = y_i$. Пишут $f = (f_1, \dots, f_m)$.

Лемма 6.1 (о покоординатной сходимости). $\lim_{x\to a} f(x) = b \Leftrightarrow \lim_{x\to a} f_i(x) = b_i$.

Доказательство. Следует из неравенств $|x_i - b_i| \leqslant \rho_2(x,b) \leqslant \sqrt{m} \max_{1 \leqslant i \leqslant m} |x_i - b_i|$.

Пример. 1. $f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$.

$$|f(x,y) - 0| = \frac{|x^3 + y^3|}{x^2 + y^2} \leqslant \frac{|x^3| + |y^3|}{x^2 + y^2} \leqslant 2 \cdot \frac{\left(\sqrt{x^2 + y^2}\right)^3}{x^2 + y^2} = 2\sqrt{x^2 + y^2} < \varepsilon \Rightarrow \rho_2((x,y),(0,0)) < \frac{\varepsilon}{2}.$$

$$(\delta = \frac{\varepsilon}{2}).$$

2. $f(x,y) = \frac{xy+y^2}{x^2+y^2}$. $f(x,0) = 0, f(0,y) = 1 \Rightarrow$ предела в (0,0) нет.

Свойство 6.2. $f, g: X \setminus \{a\} \to \mathbb{R}$ $u \lim_{x \to a} f(x) = b$, $\lim_{x \to a} g(x) = c$. Тогда $\lim_{x \to a} (f(x) + g(x)) = b + c$, $\lim_{x \to a} f(x)g(x) = bc$.

Доказательство. $x_n \in X \setminus \{a\}, x_n \to a \Rightarrow f(x_n) \to b, g(x_n) \to c \Rightarrow f(x_n) + g(x_n) \to b + c,$ $f(x_n)g(x_n) \to bc$. Утверждение следует по определению Гейне.

В дальнейшем, говоря о «пределе по подможеству», всегда будем иметь в виду подпространство с индуцированной метрикой.

Свойство 6.3 (предел по подмножеству). Пусть $E \subset X$, a – предельная точка множества E. Если $\lim_{x\to a} f(x) = b$, то $\lim_{x\to a} (f|_E)(x) = b$.

Доказательство. Пусть $x_n \subset E, \ x_n \to a$ и $x_n \neq a$. Тогда $(f|_E)(x_n) = f(x_n) \to b$. По определению Гейне $\lim_{x\to a} (f|_E)(x) = b$.

Пусть $f: D \to \mathbb{R}$, $D \subset \mathbb{R}^n$, $a, u \in \mathbb{R}^n$ и |u| = 1. $\{a + tu : 0 < t < \Delta\} \subset D$ для некоторого $\Delta > 0$. Тогда $\lim_{t \to +0} f(a+tu)$ называется пределом f в точке a по направлению u. По свойству (6.3) $\lim_{t \to +0} f(a) = b \Rightarrow \lim_{t \to +0} f(a+tu) = b$. Обратное утверждение неверно.

Пример. $f(x,y) = \begin{cases} 1, y = x^2, x \geqslant 0. \\ 0, \text{ иначе.} \end{cases}$ Рассмотрим $f(\frac{1}{n}, \frac{1}{n^2}) = 1, f(\frac{1}{n}, 0) = 0 \Rightarrow$ нет предела.

Свойство 6.4 (локальная ограниченность). *Если существует* $\lim_{x\to a} f(x)$, то $\exists \delta > 0$: $f(\mathring{B}_{\delta}(a))$ ограничено.

Доказательство. Достаточно положить в определении Коши $\varepsilon=1$.

Задача. Пусть X, Y – метрические пространства, причем Y полное, a – предельная точка $X, u f: X \setminus \{a\} \to Y$. Покажите, что $\lim_{x\to a} f(x)$ существует тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, x' \in X(x, x' \in \mathring{B}_{\delta}(a) \Rightarrow \rho_Y(f(x), f(x')) < \varepsilon).$$

Положим $a = (x_0, y_0), f : \mathring{B}_{\Delta}(x_0, y_0) \to \mathbb{R}.$

Определение 6.3. Пусть $\exists \sigma > 0 \ \forall x \in (x_0 - \sigma, x_0 + \sigma) \setminus \{x_0\}$ существует $\lim_{y \to y_0} f(x, y) = \varphi(x)$. Предел функции φ в точке x_0 называется *повторным пределом*:

$$\lim_{x \to x_0} \varphi(x) = \lim_{x \to x_0} \lim_{y \to y_0} f(x, y).$$

Лемма 6.2. Пусть $f: \mathring{B}_{\Delta}(x_0, y_0) \to \mathbb{R}$, такая что

- 1. $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = b;$
- 2. $\exists \sigma > 0 \ \forall x \in (x_0 \sigma, x_0 + \sigma) \setminus \{x_0\}$ существует $\lim_{y \to y_0} f(x, y) = \varphi(x)$ (конечный).

Тогда $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y) = b$.

Доказательство. Положим $\delta_0 = \min\{\Delta, \sigma\}$. Зафиксируем $\varepsilon > 0$. Тогда

$$\exists \delta \in (0, \delta_0) \ \forall (x, y) \ \mathring{B}_{\delta}(x_0, y_0) \left(|f(x, y) - b| < \frac{\varepsilon}{2} \right).$$

 $\forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$ существует $\varphi(x)$. Перейдем к пределу при $y \to y_0$:

$$|\varphi(x) - b| \leqslant \frac{\varepsilon}{2} < \varepsilon.$$

Это доказывает, что $\lim_{x\to x_0} \varphi(x) = b$, что и требовалось доказать.

6.2 Непрерывные функции

Пусть (X, ρ_X) и (Y, ρ_Y) – метрические пространства и задана функция $f: X \to Y$.

Определение 6.4. Функция f непрерывна в точке $a \in X$, если

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in X \left(\rho_X(x, a) < \delta \Rightarrow \rho_Y(f(x), f(a)) < \varepsilon \right)$$

или, что эквивалентно,

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in X \; (x \in B_{\delta}(a) \Rightarrow f(x) \in B_{\varepsilon}(f(a))) \; .$$

Пример. Координатная функция $p_i : \mathbb{R}^n \to \mathbb{R}$, $p_i(x_1, \dots, x_n) = x_i$, непрерывна в каждой точке \mathbb{R}^n . Это следует из неравенства $|x_i - a_i| \leq \rho_2(x, a)$.

Лемма 6.3. Пусть $f: X \to Y, \ a \in X$. Следующие условия эквивалентны:

- 1. ϕ ункция f непрерывна в точке a;
- 2. $\forall \{x_n\}, x_n \in X(x_n \to a \Rightarrow f(x_n) \to f(a));$
- 3. a изолированная точка множества X или a предельная точка X и $\lim_{x\to a} f(x) = f(a)$.

Доказательство. (1) \Rightarrow (2) Выберем $\varepsilon > 0$ и соответствующее $\delta > 0$ из определения непрерывности. Если $x_n \to a$ (в X), то существует такой номер N, что $\rho_X(x_n, a) < \delta$ при всех $n \ge N$, но тогда $\rho_Y(f(x_n), f(a)) < \varepsilon$ при $n \ge N$. Это означает, что $f(x_n) \to f(a)$.

- $(2) \Rightarrow (3)$ Если a предельная точка X, то из условия $\lim_{x\to a} f(x) = f(a)$ по определению Гейне.
- (3) \Rightarrow (1) Если a изолирована, то $B_{\delta_0}(a) \cap X = \{a\}$ для некоторого $\delta_0 > 0$. Тогда для любого $\varepsilon > 0$ определение непрерывности в точке a выполняется при $\delta = \delta_0$. Пусть a предельная для X. По определению предела по Коши $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in E \ (0 < \rho_X(x,a) < \delta \Rightarrow \rho_Y(f(x),f(a)) < \varepsilon)$. Но последняя импликация верна и для x=a. Значит, функция f непрерывна в точке a.

Теорема 6.1 (о непрерывности композиции). Пусть (X, ρ_X) , (Y, ρ_Y) и (Z, ρ_Z) – метрические пространства. Если функция $f: X \to Y$ непрерывна в точке $a \in X$, и функция $g: Y \to Z$ непрерывна в точке $f(a) \in Y$, то их композиция $g \circ f: X \to Z$ непрерывна в точке a.

Доказательство. Пусть $x_n \to a$, тогда $f(x_n) \to f(a)$ и, значит, $g(f(x_n)) \to g(f(a))$.

Следствие. Если функции $f, g: X \to \mathbb{R}$ непрерывны в точке a, то в этой точке также непрерывны функции $f + g, fg: X \to \mathbb{R}$.

Определение 6.5. Функция $f\:X\to Y\:$ непрерывна (на X), если f непрерывна в каждой точке X.

Пример. *Многочленом* называется функция $P: \mathbb{R}^n \to \mathbb{R}, P(x) = \sum_{(k_1, \dots, k_n)} a_{k_1 \dots k_n} x_1^{k_1} \dots x_n^{k_n},$ где суммирование ведется по конечному множеству наборов (k_1, \dots, k_n) целых неотрицательных чисел. Многочлен P непрерывен как линейная комбинация непрерывных функций $p_1^{i_1} \dots p_n^{i_n}$, где $p_i(x) = x_i$.

Пример. Пусть $A \subset X$, $A \neq \emptyset$. Функция $d_A : X \to \mathbb{R}$, $d_A(x) = \inf_{a \in A} \rho_X(x, a)$ непрерывна (на X).

Доказательство. Покажем, что d_A непрерывна в точке $y \in X$. Для $x \in X$, $a \in A$ по неравенству треугольника имеем $\rho_X(y,a) \geqslant \rho_X(x,a) - \rho_X(x,y) \geqslant d_A(x) - \rho_X(x,y)$. Переходя к инфимуму по всем $a \in A$, получим $d_A(y) \geqslant d_A(x) - \rho_X(x,y)$ или $d_A(x) - d_A(y) \leqslant \rho_X(x,y)$. Неравенство симметрично относительно x,y, поэтому $|d_A(x) - d_A(y)| \leqslant \rho_X(x,y)$.

Теорема 6.2 (критерий непрерывности). Функция $f: X \to Y$ непрерывна $\Leftrightarrow \partial$ ля любого открытого $V \subset Y$ множество $f^{-1}(V)$ открыто в X.

Доказательство. (\Rightarrow) Пусть V открыто в Y. Если $x \in f^{-1}(V)$, то $f(x) \in V$ и, значит, существует такое $\varepsilon > 0$, что $B_{\varepsilon}(f(x)) \subset V$. Функция f непрерывна в точке x, поэтому найдется такое $\delta > 0$, что $f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x))$. Отсюда следует, что $B_{\delta}(x) \subset f^{-1}(V) \Rightarrow f^{-1}(V)$ открыто в X.

(\Leftarrow) Пусть $x \in X$, и $\varepsilon > 0$. Шар $B_{\varepsilon}(f(x))$ открыт в Y, поэтому множество $f^{-1}(B_{\varepsilon}(f(x)))$ открыто в X и, значит, существует $\delta > 0$, что $B_{\delta}(x) \subset f^{-1}(B_{\varepsilon}(f(x)))$, или $f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x))$. Так как $\varepsilon > 0$ – любое, то f непрерывна в точке x.

Следствие. Функция $f: X \to Y$ непрерывна на $X \Leftrightarrow$ для каждого замкнутого множества $F \subset Y$ множество $f^{-1}(F)$ замкнуто в X.

Доказательство. Следует из теоремы в силу равенства $X \setminus f^{-1}(F) = f^{-1}(Y \setminus F)$, верного для любого $F \subset Y$.

Задача. Приведите пример разрывной функции $f: X \to Y$, такой что F(U) открыто для любого открытого $U \subset X$.

6.3 Непрерывные функции на компактах

Теорема 6.3. Если функция $f: K \to Y$ непрерывна, и K компакт, то f(K) – компакт g(K) – g(K)

Доказательство. Пусть $\{G_{\lambda}\}_{{\lambda}\in{\Lambda}}$ – открытое покрытие f(K). Если $x\in K$, то существует такое $\lambda_0\in{\Lambda}$, что $f(x)\in G_{\lambda_0}$ и, значит, $x\in f^{-1}(G_{\lambda_0})$. Следовательно, семейство $\{f^{-1}(G_{\lambda})\}_{{\lambda}\in{\Lambda}}$ образует открытое покрытие K. Это покрытие открыто по критерию непрерывности. Поскольку K компакт, то $K\subset f^{-1}(G_{\lambda_1})\cup\ldots\cup f^{-1}(G_{\lambda_m})$.

Покажем, что $f(K) \subset G_{\lambda_1} \cup \ldots \cup G_{\lambda_m}$. Действительно, если $y \in f(K)$, то y = f(x) для некоторого $x \in K$. Найдем такое k, что $x \in f^{-1}(G_{\lambda_k})$, тогда, в свою очередь, $y = f(x) \in G_{\lambda_k}$. Следовательно, f(K) – компакт.

Следствие (теорема Вейерштрасса). Если функция $f: K \to \mathbb{R}$ непрерывна, и K компакт, то существуют точки $x_m, x_M \in K$, такие что $f(x_M) = \sup_{x \in K} f(x)$ и $f(x_m) = \inf_{x \in K} f(x)$.

Доказательство. f(K) — компакт в \mathbb{R} , следовательно, f(K) замкнуто и ограничено.

Так как f(K) ограничено, то $M = \sup_K f(x) \in \mathbb{R}$. M — граничная точка f(K), следовательно, $M \in f(K)$ и, значит, $\exists x_M \in K \ f(x) = M$.

Доказательство для $\inf_K f$ аналогично.

Определение 6.6. Пусть V — линейное пространство, $\|\cdot\|$, $\|\cdot\|^*$ нормы на V. Нормы $\|\cdot\|$ и $\|\cdot\|^*$ называются эквивалентными, если существуют такие $\alpha>0$ и $\beta>0$, что

$$\forall x \in V \ (\alpha \|x\| \leqslant \|x\|^* \leqslant \beta \|x\|).$$

Следствие. На конечномерном пространстве V все нормы эквивалентны.

Доказательство. Покажем сначала, что все нормы на \mathbb{R}^n эквивалентны. Достаточно показать, что любая норма $\|\cdot\|$ эквивалентна евклидовой $\|\cdot\|_2$.

Пусть $x = x_1e_1 + \ldots + x_ne_n$ — разложение по стандартному базису. Тогда по неравенствам треугольника и Коши-Буняковского-Шварца

$$||x|| \le \sum_{i=1}^{n} |x_i| \cdot ||e_i|| \le \left(\sum_{i=1}^{n} ||e_i||^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} =: \beta \cdot ||x||_2.$$

В частности, $\|\cdot\|$ непрерывна на $(\mathbb{R}, \|\cdot\|_2)$. Рассмотрим $S = \{x \in \mathbb{R}^n \mid \|x\|_2 = 1\}$ — компакт в \mathbb{R}^n . Тогда по (6.3) функция $\|\cdot\|$ достигает $\alpha > 0$ — инфимума значений.

Пусть $x \neq 0 \Rightarrow \left\| \frac{x}{\|x\|_2} \right\| \geqslant \alpha$ и, значит, $\|x\| \geqslant \alpha \|x\|_2$ (очевидно и для x = 0). Тогда $\|\cdot\|$ эквивалентны $\|\cdot\|_2$.

V — конечномерное линейное пространство и $(v_i)_{i=1}^n$ — базис $V, x = \sum_{i=1}^n x_i v_i$ — разложение. Отображение $\varphi(x) = (x_1, \dots, x_n)^T$ задаёт изоморфизм между V и \mathbb{R}^n . Пусть $\|\cdot\|_V$ и $\|\cdot\|_V^*$ — нормы на V.

Определим $||y|| = ||\varphi^{-1}(y)||_V$, $||y||^* = ||\varphi^{-1}(y)||_V^*$ — нормы на \mathbb{R}^n . Так как на \mathbb{R}^n они эквивалентны, то $||\cdot||_V$ и $||\cdot||_V^*$ также эквивалентны.

Определение 6.7. Функция $f: X \to Y$ называется равномерно непрерывной (на X), если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, x' \in X \ (\rho_X(x, x') < \delta \Rightarrow \rho_Y(f(x), f(x')) < \varepsilon).$$

Теорема 6.4 (Кантор). Если функция $f: K \to Y$ непрерывна, $u \ K$ компакт, то f равномерно непрерывна.

Доказательство. Пусть $\varepsilon > 0$. По определению непрерывности

$$\forall a \in K \ \exists \delta_a > 0 \ \forall x \in X \ \left(\rho_X(x, a) < \delta_a \Rightarrow \rho_Y(f(x), f(a)) < \frac{\varepsilon}{2} \right),$$

Семейство $\{B_{\frac{\delta_a}{2}}\}_{a\in K}$ — открытое покрытие K. Так как K — компакт, то $K\subset B_{\frac{\delta_{a_1}}{2}}(a_1)\cup\ldots\cup B_{\frac{\delta_{a_m}}{2}}(a_m)$.

Положим $\delta = \min_{1 \leqslant i \leqslant m} \left\{ \frac{\delta_{a_i}}{2} \right\}$. Покажем, что δ будет удовлетворять определению равномерной непрерывности для ε .

Пусть $\rho_K(x,x')<\delta_i$. Найдётся $i,1\leqslant i\leqslant m$, что $x\in B_{\frac{\delta_{a_i}}{2}}(a_i)$. Тогда

$$\rho_K(x', a_i) \leqslant \rho_K(x', x) + \rho_K(x, a_i) < \frac{\delta_{a_i}}{2} + \frac{\delta_{a_i}}{2} = \delta_{a_i},$$

и, значит, $x, x' \in B_{\delta_{a_i}}(a_i)$. Поэтому

$$\rho_Y(f(x), f(x')) \leqslant \rho_Y(f(x), f(a_i)) + \rho_Y(f(a_i), f(x')) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Определение 6.8. Пусть X, Y – метрические пространства. Функция $f: X \to Y$ называется *гомеоморфизмом*, если f биекция и функции f и f^{-1} непрерывны.

Теорема 6.5. Если $f: K \to Y$ непрерывная биекция, и K компакт, то f – гомеоморфизм.

Доказательство. Покажем, что функция $f^{-1}:Y\to K$ непрерывна. Достаточно показать, что множество $(f^{-1})^{-1}(F)$ замкнуто для всякого замкнутого $F\subset K$. Это так, поскольку $(f^{-1})^{-1}(F)=f(F)$ – компакт, как непрерывный образ компакта.

6.4 Связные множества

Определение 6.9. Метрическое пространство X называется *несвязным*, если существуют непустые открытые $U,V\subset X,$ что $X=U\cup V$ и $U\cap V=\varnothing.$

Метрическое пространство X называется cвязным, если оно не является несвязным.

Множество $E \subset X$ называется *несвязным* (связным), если оно несвязно (связно) как подпространство X.

Пример. $\{x\}$ – связное множество.

Замечание. Согласно устройству открытых множеств подпространства получаем, что $E \subset X$ несвязно, если существуют открытые $U, V \subset X$, такие что $E \subset U \cup V$ и $E \cap U \neq \varnothing$, $E \cap V \neq \varnothing$, $U \cap V \cap E = \varnothing$.

Покажем, что U и V можно всегда выбрать непересекающимися.

Лемма 6.4. Множество $E \subset X$ несвязно \Leftrightarrow существуют открытые $U, V \subset X$, такие что $E \subset U \cup V$ и $E \cap U \neq \emptyset$, $E \cap V \neq \emptyset$, $U \cap V = \emptyset$.

Доказательство. Достаточность очевидна. Для доказательства необходимости предположим, что множество E несвязно. Тогда существуют непустые открытые $U_E, V_E \subset E$, такие что $E = U_E \cup V_E, U_E \cap V_E = \emptyset$.

Для каждого $x \in U_E$ найдется такое $\delta_x > 0$, что $B_{\delta_x}(x) \cap E \subset U_E$ и, значит, $B_{\delta_x}(x) \cap V_E = \emptyset$. Аналогично, для каждого $y \in V_E$ найдется такое $\delta_y > 0$, что $B_{\delta_y}(y) \cap E \subset V_E$ и $B_{\delta_y}(y) \cap U_E = \emptyset$.

Положим $U=\bigcup_{x\in U_E}B_{\frac{\delta_x}{2}}(x), V=\bigcup_{y\in V_E}B_{\frac{\delta_y}{2}}(y)$. Если существует $z\in U\cap V$, то $z\in B_{\frac{\delta_x}{2}}(x)$ и $z\in B_{\frac{\delta_y}{2}}(y)$ для некоторых $x\in U_E$ и $y\in V_E$, тогда

$$\rho(x,y) \leqslant \rho(x,z) + \rho(z,y) < \frac{\delta_x + \delta_y}{2} \leqslant \max\{\delta_x, \delta_y\}.$$

Если $max\{\delta_x, \delta_y\} = \delta_x$, то $y \in B_{\delta_x}(x)$; если же $max\{\delta_x, \delta_y\} = \delta_y$, то $x \in B_{\delta_y}(y)$. Обе эти ситуации невозможны. Следовательно, $U \cap V = \emptyset$.

Задача. 1. Докажите, что если $E \subset X$ связно, то \overline{E} также связно.

2. Докажите, что если E_i связно для любого $i\in I$ и $\bigcap_{i\in I}E_i\neq\varnothing$, то $\bigcup_{i\in I}E_i$ также связно.

Теорема 6.6. Множество $I \subset \mathbb{R}$ связно $\Leftrightarrow I$ – промежуток.

Доказательство. (\Rightarrow) Если I не является промежутком, то существуют $x, y \in I$ и $z \in \mathbb{R}$, такие что x < z < y и $z \notin I$. Рассмотрим $(-\infty, z) \cap I$ и $(z, +\infty) \cap I$. Это непустые (содержат соответственно точки x, y), непересекающиеся, открытые в I множества, объединение которых совпадает с I. Значит, множество I несвязно.

(⇐) Предположим, что промежуток I не является связным множеством. Тогда найдутся открытые (в \mathbb{R}) множества U и V, такие что $I \subset U \cup V$, $I \cap U \neq \varnothing$, $I \cap V \neq \varnothing$ и $U \cap V \cap I \neq \varnothing$. Пусть $x \in I \cap U$ и $y \in I \cap V$. Без ограничения общности можно считать, что x < y (тогда $[x,y] \subset I$).

Положим $S = \{z \in [x,y] : z \in U\}$. Так как S не пусто и ограничено, то существует $c = \sup S$. В силу замкнутости отрезка $c \in [x,y]$. Отрезок $[x,y] \subset I \subset U \cup V$, поэтому $c \in U$ или $c \in V$.

Если $c \in U$, то $c \neq y$, и значит, найдется $\varepsilon > 0$, что полуинтервал $[c, c + \varepsilon)$ лежит одновременно в U и [x, y]. Но тогда $[c, c + \varepsilon) \subset S$, что противоречит $c = \sup S$.

Если $c \in V$, то $c \neq x$, и значит, найдется $\varepsilon > 0$, что полуинтервал $(c - \varepsilon, c]$ лежит одновременно в V и [x,y]. В частности, отрезок $[c - \frac{\varepsilon}{2}, c]$ не пересекается с S, что противоречит $c = \sup S$.

Значит, I связно.

Теорема 6.7. Если функция $f: S \to Y$ непрерывна, и множество S связно, то множество f(S) связно в Y.

Доказательство. Предположим, что f(S) несвязно, тогда существют открытые в Y множества U и V, такие что $f(S) \subset U \cup V$, $f(S) \cap U \neq \emptyset$, $f(S) \cap V \neq \emptyset$ и $f(S) \cap U \cap V = \emptyset$. Множества $f^{-1}(U)$ и $f^{-1}(V)$ не пусты, не пересекаются, открыты в S (по критерию непрерывности) и $S = f^{-1}(U) \cup f^{-1}(V)$ (так как U, V образуют покрытие f(S)). Это противоречит связности S.

Следствие (Теорема о промежуточных значениях). Если функция $f: S \to \mathbb{R}$ непрерывна, и множество S связно, то f принимает все промежуточные значения (то есть если $u, v \in f(S)$ и u < v, то $[u, v] \subset f(S)$).

Доказательство. По теореме (6.7) множество f(S) связно в \mathbb{R} и, значит, по теореме (6.6) является промежутком.

Определение 6.10. Открытое связное множество в метрическом пространстве называется *областью*.

Пример. Выясним, является ли $E = \{(x, y, z) \in \mathbb{R}^3 : e^{x^2 + y^2} < 1 + z^2\}$ областью.

Решение. Функция $f(x,y,z)=e^{x^2+y^2}-1-z^2$ непрерывна, поэтому множество $E=f^{-1}(-\infty,0)$ открыто по критерию непрерывности. Однако E не является связным, так как $E\subset U\cup V$, где $U=\{(x,y,z)\in\mathbb{R}^3:z>0\}, V=\{(x,y,z)\in\mathbb{R}^3:z<0\}$, причем E пересекается и с U, и с V.

Выделим класс множеств, для которых проверка связности осуществляется несколько проще.

Определение 6.11. Метрическое пространство X называется линейно связным, если для любых точек $x,y\in X$ существует такая непрерывная функция $\gamma:[0,1]\to X$, что $\gamma(0)=x$, $\gamma(1)=y$.

Теорема 6.8. Всякое линейно связное метрическое пространство связно.

Доказательство. Предположим, что линейно связное пространство X несвязно. Тогда найдутся непустые открытые множества U и V, такие что $X = U \cup V$ и $U \cap V = \varnothing$. Пусть $x \in U$ и $y \in V$. Так как X линейно связно, то существует непрерывная функция $\gamma: [0,1] \to X$, такая что $\gamma(0) = x$ и $\gamma(1) = y$. Тогда $\gamma^{-1}(U)$ и $\gamma^{-1}(V)$ не пусты, не пересекаются, открыты в [0,1], и $[0,1] = \gamma^{-1}(U) \cup \gamma^{-1}(V)$, что невозможно, так как отрезок [0,1] связен.

Пример. Шар $B_r(a)$ в нормированном пространстве V – линейно связное множество.

Доказательство. Пусть $x,y\in B_r(a), x\neq y$. Рассмотрим точку $\gamma(t)=(1-t)x+ty, t\in (0,1)$. Поскольку

$$\|\gamma(t) - a\| = \|(1 - t)(x - a) + t(y - a)\| \le (1 - t)\|x - a\| + t\|y - a\| < (1 - t)r + tr = r,$$

то эта точка лежит в $B_r(a)$. Осталось положить $\gamma:[0,1]\to B_r(a),\ \gamma(t)=(1-t)x+ty$. \square

Лемма 6.5. Связное открытое множество E в нормированном пространстве линейно связно.

Доказательство. Пусть $x \in E$. Рассмотрим множество U тех точек y, которые можно соединить с x кривой, то есть существует непрерывная функция $\gamma:[0,1] \to E$, что $\gamma(0) = x$, $\gamma(1) = y$. Покажем, что U открыто. Для $y \in U$ в силу открытости E найдется такое $\varepsilon > 0$, что $B_{\varepsilon}(y) \subset E$. Любая пара точек в шаре может быть соединена открезком: для $z \in B_{\varepsilon}(y)$ рассмотрим $\sigma:[0,1] \to B_{\varepsilon}(y)$, $\sigma(t) = (1-t)y + tz$. Тогда кривая

$$\gamma \circ \sigma(t) = \begin{cases} \gamma(2t), & 0 \leqslant t \leqslant \frac{1}{2}, \\ \sigma(2t-1), & \frac{1}{2} \leqslant t \leqslant 1, \end{cases}$$

соединяет x и z, поэтому $B_{\varepsilon}(y) \subset U$. Аналогично устанавливается, что $E \setminus U$ открыто. В силу связности $E \setminus U$ пусто, то есть E = U.

Задача. Докажите, что множество $A = \{(0,y) : y \in [-1,1]\} \cup \{(x,\sin(\frac{1}{x})) : x \in (0,1]\}$ связно, но не линейно связно в \mathbb{R}^2 .

6.5 Линейные отображения в евклидовых пространствах

Определение 6.12. Отображение L называется линейным, если $\forall x_1, x_2 \in X$ и $\forall \alpha_1, \alpha_2 \in \mathbb{R}$ выполнено $L(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 L(x_1) + \alpha_2 L(x_2)$.

Пример. Пусть $L: \mathbb{R}^n \to \mathbb{R}^m$ линейно, L(x) = Ax с $A = (a_{ij})$. Так как $|L(x)|^2 = \sum_{i=1}^m (L_i, x)^2$, где $L_i = (a_{i1}, \dots, a_{in})^T$, то по неравенству Коши-Буняковского-Шварца

$$|L(x)|^2 \le \sum_{i=1}^m |L_i|^2 |x|^2 = |x|^2 \sum_{i=1}^m \sum_{j=1}^n a_{ij}^2,$$

так что $\|L\| \leqslant C$ для $C = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$.

Определение 6.13. Для $L \in \mathcal{L}(X,Y)$ определим $\|L\| = \sup_{x \neq 0} \frac{\|L(x)\|}{\|x\|}$.

Замечание. $||L|| \in \mathbb{R}$. По определению супремума $||L(x)|| \le ||L|| ||x|||$ для всех $x \in X$, и для всякого $\varepsilon > 0$ найдется такое $x_{\varepsilon} \in X$, что $||L(x)|| > (||L|| - \varepsilon)||x_{\varepsilon}||$. Это означает, что ||L|| – наименьшее из чисел C > 0, таких что $||L(x)|| \le C||x||$ для всех $x \in X$.

Нетрудно проверить, что $(\mathcal{L}(X,Y),\|\cdot\|)$ является нормированным пространством, причем $\|L_2L_1\| \leqslant \|L_2\|\|L_1\|$.

7 Дифференциальное исчисление

7.1 Дифференцируемость функции в точке

Пусть $U \subset \mathbb{R}^n$, U – открытое и задана функция $f: U \to \mathbb{R}^n$.

Определение 7.1. Функция f называется $\partial u \phi \phi e pe nuupye mo \ddot{u}$ в точке a, если существует такое непрерывное линейное отображение $L_a: X \to Y$, что

$$f(a+h) = f(a) + L_a(h) + \alpha(h) ||h||,$$

для некоторой функции α , такой что $\alpha(h) \to 0$.

Замечание. Формула (7.1) не определяет значение α в нуле. В дальнейшем будем считать, что $\alpha(0) = 0$ и, значит, функция α непрерывна в нуле.

Формулу (7.1) можно знаписать в виде

$$f(a+h) = f(a) + df_a(h) + o(||h||), h \to 0.$$

Линейное отображение L_a называется $\partial u \phi \phi e penuuanom f$ в точке a и обозначается df_a .

Замечание. Если функция f дифференцируема в точке a, то f непрерывна в точке a. Действительно, a – внутренняя точка U, и по (7.1) $\lim_{h\to 0} f(a+h) = f(a) \Leftrightarrow \lim_{x\to a} f(x) = f(a)$.

Определение 7.2. Пусть $v \in \mathbb{R}^n$ и функция f определена на множестве $\{a+tv: |t|<\delta\}$ для некоторого $\delta>0$. Предел

$$\lim_{t \to 0} \frac{f(a+tv) - f(a)}{t},$$

если этот предел существует, называется производной f по вектору v в точке a и обозначается $\frac{\partial f}{\partial v}(a)$ (а также $f'_v(a)$ и $\partial_v f(a)$).

Пример. $f: \mathbb{R}^n \to \mathbb{R}, \ f(x) = |x|$. Пусть $x, v \in \mathbb{R}^n \setminus \{0\}$. Тогда $\frac{\partial f}{\partial v}(x) = \frac{d}{dt}|_{t=0}|x + tv| = \frac{d}{dt}|_{t=0} \left(\sum_{i=1}^n (x_i + tv_i)^2\right)^{\frac{1}{2}} = \frac{1}{2|x|} \sum_{i=1}^n 2x_i v_i = \left(\frac{x}{|x|}, v\right)$.

Теорема 7.1. Если $f:U\to\mathbb{R}^n$ дифференцируема в точке $a,v\in\mathbb{R}^n$, то существует $\frac{\partial f}{\partial v}(a)=df_a(v).$

Доказательство. Для v=0 утверждение верно. Пусть $v\neq 0$. Выберем $\delta>0$ так, что $B_\delta(a)\subset U$. Тогда для всех $t\in\mathbb{R}$ с $|t|<\frac{\delta}{|v|}$, получим

$$f(a+tv) = f(a) + df_a(tv) + \alpha(tv) ||tv||.$$

В силу линейности $df_a(tv) = tdf_a(v)$. Далее, по непрерывности α в 0 имеем $\alpha(tv) \to 0$ при $t \to 0$, поэтому

$$\frac{\partial f}{\partial v}(a) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t} = \lim_{t \to 0} (df_a(v) \pm \alpha(tv) ||v||) = df_a(v).$$

Следствие. Если функция f дифференцируема в точке a, то ее дифференциал в точке a определен однозначно.

Пример. Любое линейное отображение $L: \mathbb{R}^n \to \mathbb{R}^m$ дифференцируемо в каждой точке $a \in \mathbb{R}^n$ и $dL_a = L$. Это следует из равенства

$$L(a+h) = L(a) + L(h).$$

Запишем определение дифференцируемости для конкретных случаев $X=\mathbb{R}^n$ и $Y=\mathbb{R}^m.$

Cлучай функций из \mathbb{R} в \mathbb{R}^m .

Дифференцируемость функции $\gamma:(\alpha,\beta)\to\mathbb{R}^m$ в точке $a\in(\alpha,\beta)$ определялась ранее как существование производной $\gamma'(a)=\lim_{t\to 0}\frac{\gamma(a+t)-\gamma(a)}{t}$. Это согласуется с определением дифференцируемости, поскольку наличие предела равносильно $\gamma(a+t)-\gamma(a)=t\gamma'(a)+t\sigma(t)$, где $\sigma(t)\to 0$ при $t\to 0$. Таким образом, $d\gamma_a(t)=t\gamma'(a)$.

Cлучай функций из \mathbb{R}^n в \mathbb{R} .

Пусть $U \subset \mathbb{R}^n$ открыто, и функция $f: U \to \mathbb{R}$. Пусть e_1, \dots, e_n – стандартный базис в \mathbb{R}^n .

Определение 7.3. Производная по вектору e_k в точке a, т.е. $\frac{\partial f}{\partial e_k}(a) = \lim_{t \to 0} \frac{f(a+te_k)-f(a)}{t}$, называется *частной производной* функции f по переменной x_k в точке a и обозначается $\frac{\partial f}{\partial x_k}(a)$ (а также $f'_{x_k}(a)$ и $\partial_k f(a)$).

Из теоремы 1 получим необходимое условие дифференцируемости.

Следствие. Если $f:U\to\mathbb{R}$ дифференцируема в точке a, то она имеет в этой точке частные производные $\frac{\partial f}{\partial x_k}(a), k=1,\ldots,n$, и $df_a(h)=\sum_{k=1}^n\frac{\partial f}{\partial x_k}(a)h_k$ для всех $h\in\mathbb{R}^n$.

Доказательство. По теореме 1 существуют $\frac{\partial f}{\partial x_k}(a) = df_a(e_k)$, следовательно, в силу линейности

$$df_a(h) = df_a\left(\sum_{k=1}^n h_k e_k\right) = \sum_{k=1}^n h_k df_a(e_k) = \sum_{k=1}^n \frac{\partial f}{\partial x_k}(a)h_k.$$

Замечание. Для координатной функции $p_k(x_1, \ldots, x_n) = x_k$ совпадает в любой точке с самой функцией. Обозначим его через dx_k , тогда $dx_k(h) = h_k \ \forall h \in \mathbb{R}^n$. Следовательно, имеем функциональную запись для дифференциала:

$$df_a = \sum_{k=1}^n \frac{\partial f}{\partial x_k}(a) dx_k.$$

Функции dx_1, \ldots, dx_n образуют базис в $(\mathbb{R}^n)^*$, двойственный к стандартному e_1, \ldots, e_n .

Замечание (Геометрический смысл дифференцируемости (n = 2)). Пусть $f: U \to \mathbb{R}, U$ – открыто в \mathbb{R}^2 , f – дифференцируема в точке (x_0, y_0) , то есть

$$f(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) + o(\rho),$$

где
$$\rho = \sqrt{(x-x_0)^2 + (y-y_0)^2}$$
.
$$G_f = \{(x,y,f(x,y)): (x,y) \in U\} - \text{график } f.$$
 $\pi: z = f(x_0,y_0) + \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0) + \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0).$ $\overline{n}(\frac{\partial f}{\partial x}(x_0,y_0),\frac{\partial f}{\partial y}(x_0,y_0),-1)$ – вектор нормали. $\overline{a}(x-x_0,y-y_0,f(x,y)-f(x_0,y_0))$ – непрерывный вектор в MM_0 $\cos(\varphi) = \frac{(\overline{a},\overline{n})}{|\overline{a}||\overline{n}|}$

Определение 7.4. Вектор $(\frac{\partial f}{\partial x_1}(a),\dots,\frac{\partial f}{\partial x_n}(a))^T$ называется $\mathit{градиентом}$ функции f в точке a и обозначается $\mathit{grad} f(a)$ или $\nabla f(a)$.

Следствие. Пусть f дифференцируема в точке a, и $gradf(a) \neq 0$, то для любого $v \in \mathbb{R}^n$ с |v|=1 выполнено

$$\left| \frac{\partial f}{\partial v}(a) \right| \leqslant |gradf(a)|,$$

причем равенство достигается лишь при $v = \pm \frac{gradf(a)}{|gradf(a)|}$.

Доказательство. Так как $\frac{\partial f}{\partial v}(a) = df_a(v) = (gradf(a), v)$, то по неравенству Коши-Буняковского-Шварца $\left|\frac{\partial f}{\partial v}(a)\right| \leqslant |gradf(a)| \cdot |v| = |gradf(a)|$, причем равенство достигается лишь в случае коллинеарности gradf(a) и v, то есть $v = \pm \frac{gradf(a)}{|gradf(a)|}$.

Пример. Пусть $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} 1, \ y = x^2, \ x > 0 \\ 0, \ \text{иначе.} \end{cases}$$

Тогда $\frac{\partial f}{\partial v}(0,0)=0$ для любого $v\in\mathbb{R}^2$, но функция f разрывна в точке (0,0).

Тем не менее, в терминах частных производных можно получить довольно простой признак дифференцируемости.

Теорема 7.2 (Достаточное условие дифференцируемости). Пусть $f: U \subset \mathbb{R}^n \to \mathbb{R}$, точка $a \in U$. Если все частные производные $\frac{\partial f}{\partial x_k}$ определены в окрестности а и непрерывны в точке a, то f дифференцируема в точке a.

Доказательство. Пусть все $\frac{\partial f}{\partial x_k}$ определены в $B_r(a) \subset U$. Рассмотрим $h=(h_1,\dots,h_n)^T$ с |h|< r, и определим точки $x_0=a,\,x_k=a+\sum_{j=1}^k h_j e_j.$ Тогда приращение

$$f(a+h) - f(a) = \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) = \sum_{k=1}^{n} (f(x_{k-1} + h_k e_k) - f(x_{k-1})).$$

Функция $g(t) = f(x_{k-1} + te_k) - f(x_{k-1})$ на отрезке с концами 0 и h_k (при $h_k \neq 0$) имеет производную $g'(t) = \frac{\partial f}{\partial x_k}(x_{k-1} + te_k)$. По теореме Лагранжа о среднем $g(h_k) - g(0) = g'(\xi_k)h_k$ для некоторого ξ_k между 0 и h_k . Положим $c_k(h) = x_{k-1} + \xi_k e_k$, тогда последнее равенство перепишется в виде $f(x_k) - f(x_{k-1}) = \frac{\partial f}{\partial x_k}(c_k)h_k$, причем $c_k \to a$ при $h \to 0$. Поэтому

$$f(a+h) - f(a) - \sum_{k=1}^{n} \frac{\partial f}{\partial x_k}(a) h_k = \sum_{k=1}^{n} \left(\frac{\partial f}{\partial x_k}(c_k) - \frac{\partial f}{\partial x_k}(a) \right) h_k =$$
$$= \sum_{k=1}^{n} \left(\frac{\partial f}{\partial x_k}(c_k) - \frac{\partial f}{\partial x_k}(a) \right) \frac{h_k}{|h|} |h| =: \alpha(h)|h|.$$

В силу непрерывности $\frac{\partial f}{\partial x_k}$ в точке a и неравенства $|h_k| \leqslant |h|$ функция $\alpha(h) \to 0$ при $h \to 0$. Следовательно, f дифференцируема в точке a.

Cлучай функций из \mathbb{R}^n в \mathbb{R}^m .

Пусть $U \subset \mathbb{R}^n$ открыто, и функция $f: U \to \mathbb{R}^m$, $f = (f_1, \dots, f_m)^T$.

Пемма 7.1. Функция f дифференцируема в точке а тогда и только тогда, когда все координатные функции f_i дифференцируемы в точке a.

$$f_i(a+h) = f_i + L_i(h) + \alpha_i(h)|h|.$$

Координатные функции L_i дифференциала L_a линейны, а условие " $\alpha(h) \to 0$ при $h \to \overline{0}$ " равносильно " $\alpha_i(h) \to 0$ при $h \to 0$ ", где $i = 1, \ldots, m$, поэтому функция f_i дифференцирочная в точке a и ее дифференциал $d(f_i)_a = L_i$.

Обратно, если все функции f_i дифференцируемы, то верна и формула (1) с $L_a = (L_1, \ldots, L_m)^T$ и $\alpha = (\alpha_1, \ldots, \alpha_m)^T$.

Поскольку действие линейного отображения из \mathbb{R}^n в \mathbb{R}^m на вектор есть умножение этого вектора слева на матрицу, поэтому найдется такая матрица Df_a размера $m \times n$, что $df_a(h) = Df_a \cdot h$ для всех $h \in \mathbb{R}^n$.

Определение 7.5. Матрица Df_a называется матрицей Якоби функции f в точке a.

Замечание. По лемме 1 следует, что $df(h) = (df_1(h), \dots, df_m(h))^T$, поэтому ij-й элемент матрицы Якоби в точке a равен значению $d(f_i)_a(e_j)$, то есть $\frac{\partial f_i}{\partial x_j}(a)$. Таким образом, строками матрицы Якоби являются градиенты ее координатных функций в этой точке.

7.2 Правила дифференцирования

Свойство 7.1 (линейность). Пусть $\underbrace{U}_{omkp.} \subset \mathbb{R}^n$.

Если $f,g:U\to\mathbb{R}^m$ дифференцируемы в точке $a,\lambda,\mu\in\mathbb{R}$, то $\lambda f+\mu g:U\to\mathbb{R}^m$ дифференцируема в точке a и $d(\lambda f+\mu g)_a=\lambda df_a+\mu dg_a$.

Доказательство. По определению

$$f(a+h) = f(a) + df_a(h) + \alpha(h)|h|, h \to 0 \Rightarrow \alpha(h) \to 0,$$

$$g(a+h) = g(a) + dg_a(h) + \beta(h)|h|, h \to 0 \Rightarrow \beta(h) \to 0,$$

$$(f+g)(a+h) = (f+g)(a) + (df_a + dg_a)(h) + \underbrace{(\alpha(h) + \beta(h))}_{\to 0}|h|.$$

Следовательно, f + g дифференцируема в точке a и $d(f + g)_a = df_a + dg_a$, λf дифференцируема в точке a и $d(\lambda f)_a = \lambda df_a$.

Теорема 7.3 (дифференцирование композиции). Пусть $\underbrace{U}_{omen} \subset \mathbb{R}^n, \underbrace{V}_{omen} \subset \mathbb{R}^m.$

Если $f:U\to\mathbb{R}^m$ дифференцируема в точке $a,g:V\to\mathbb{R}^k$ дифференцируема в точке $f(a),f(U)\subset V,$ то композиция $g\circ f:U\to\mathbb{R}^k$ дифференцируема в точке a u

$$d(g \circ f)_a = dg_{f(a)} \circ df_a.$$

Доказательство. Положим b=f(a). По определению

$$f(a+h) = f(a) + df_a(h) + \alpha(h)|h|, h \to 0 \Rightarrow \alpha(h) \to 0,$$

$$g(b+u) = g(b) + dg_b(u) + \beta(u)|u|, u \to 0 \Rightarrow \beta(u) \to 0,$$

Подставим вместо u во второе равенство выражение $\varkappa(h) = df_a(h) + \alpha(h)|h|$.

$$g(f(a+h)) = g(b+\varkappa(h)) = g(b) + dg_b(df_a(h) + \alpha(h)|h|) + \beta(\varkappa(h))|\varkappa(h)| =$$

$$= g(b) + dg_b(df_a(h)) + dg_b(\alpha(h)) \cdot |h| + \beta(\varkappa(h)) \cdot |\varkappa(h)| =$$

$$= g(b) + dg_b(df_a(h)) + \gamma(h)|h|, \gamma(h) = dg_b(\alpha(h)) + \beta(\varkappa(h)) \frac{|\varkappa(h)|}{|h|}.$$

По теореме о непрерывности композиции $dg_b(\alpha(h))$ и $\beta(\varkappa(h))$ непрерывны при h=0 со значением 0.

По определению нормы $\exists C \geqslant 0 \ (|df_a(h)| \leqslant C|h|).$

Следовательно, $\frac{|\varkappa(h)|}{|h|}$ ограничена в некоторой проколотой окрестности h=0 и, значит, $\gamma(h)$ — бесконечно малая при $h\to 0$ (как сумма двух бесконечно малых).

Следствие. Пусть $f,g:\underbrace{U}_{\text{откр. в }\mathbb{R}^n}\to\mathbb{R}$ дифференцируема в точке a.

Тогда:

1. $f \cdot g : U \to \mathbb{R}$ дифференцируема в точке a и

$$d(f \cdot g)_a = g(a)df_a + f(a)dg_a;$$

2. При условии $f \neq 0$ на $U: \frac{1}{f}: U \to \mathbb{R}$ дифференцируема в точке a и $d\left(\frac{1}{f}\right)_a = -\frac{1}{f^2(a)} df_a$.

Доказательство. $F = (f,g)^T$ дифференцируема в точке a и $dF_a = (df_a, dg_a)^T$.

 $\varphi: \mathbb{R}^2 \to \mathbb{R}, \varphi(x,y) = xy$ дифференцируема в каждой точке из \mathbb{R}^2 и $d\varphi = ydx + xdy$. Тогда $\varphi \circ F$ дифференцируема в точке a и $d(\varphi \circ F)_a = d\varphi_{F(a)} \circ dF_a$, то есть $d(f \cdot g)_a = g(a)df_a + f(a)dg_a$.

Второй пункт доказывается аналогично.

$$\left(\frac{\partial(g \circ f)}{\partial x_1}(a) \dots \frac{\partial(g \circ f)}{\partial x_n}(a)\right) = \left(\frac{\partial g}{\partial y_1}(b) \dots \frac{\partial g}{\partial y_m}(b)\right) \cdot \left(\begin{array}{ccc} \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(a) & \dots & \frac{\partial f_m}{\partial x_n}(a) \end{array}\right)$$

Откуда $\frac{\partial (g \circ f)}{\partial x_j}(a) = \sum_{i=1}^n \frac{\partial g}{\partial y_i}(b) \frac{\partial f_i}{\partial x_j}(a)$ и, следовательно,

$$d(g \circ f)_a = \frac{\partial (g \circ f)}{\partial x_1}(a)dx_1 + \dots + \frac{\partial (g \circ f)}{\partial x_n}(a)dx_n =$$

$$= \sum_{i=1}^n \frac{\partial g}{\partial y_i}(b) \left(\sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(a)dx_j\right) = \sum_{i=1}^m \frac{\partial g}{\partial y_i}(b)dy_i, dy_i = d(f_i)_a.$$

Определение 7.6. Пусть $\underbrace{U}_{\text{откр.}} \subset \mathbb{R}^n, f: U \to \mathbb{R}^m, f = (f_1, \dots, f_m)^T.$

Функция f называется непрерывно дифференцируемой на U, если все частные производные $\frac{\partial f_i}{\partial x_j}$ определены и непрерывны на U.

Множество всех таких функций обозначают $C^{1}(U, \mathbb{R}^{m})$.

Лемма 7.2. Функция f непрерывно дифференцируема на U тогда и только тогда, когда f дифференцируема на U и $df: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ непрерывен.

 \mathcal{A} оказательство. Пусть f дифференцируема в каждой точке из U. Тогда на $M_{n\times m}(\mathbb{R})$ $\|A\|=\sup_{h\neq 0} \frac{|Ah|}{|h|}$. Так как $\forall x\in U\ \forall h\in\mathbb{R}^h\ df_x(h)=Df(x)h\Rightarrow \|df_x\|=\|Df(x)\|$.

Ha $M_{m\times n}(\mathbb{R})\|A\|_{\infty} = \max |a_{ij}|, \|\cdot\| \sim \|\cdot\|_{\infty}.$ $\lim_{x\to a} \|df_x - df_a\| = 0 \Leftrightarrow \lim_{x\to a} \|Df_x - Df_a\|_{\infty} = 0 \Leftrightarrow \forall i, j \frac{\partial f_i}{\partial x_i}(x) \to \frac{\partial f_i}{\partial x_i}(a) \text{ при } x \to a.$

Следствие. Если $f,g\in C^1(U,\ldots),$ то $\lambda f+\mu g\in C^1(U),$ $g\circ f\in C^1(U).$ (Аналогично для $f\cdot g)$

7.3 Частные производные и дифференциалы высших порядков

Пусть
$$U$$
 $\subset \mathbb{R}^n, f: U \to \mathbb{R}, k \in \mathbb{N}.$

Определение 7.7. Частной производной нулевого порядка в точке a называют f(a).

Если частная производная $\frac{\partial^{k-1} f}{\partial x_{i_{k-1}} ... \partial x_{i_1}} k-1$ -го порядка определена в некоторой окрестности точки a и меет в точке a частную производную по x_{i_k} , то

$$\left. \frac{\partial^k f}{\partial x_{i_k} \partial x_{i_{k-1}} \dots \partial x_{i_1}} \coloneqq \frac{\partial}{\partial x_{i_k}} \left(\frac{\partial^{k-1} f}{\partial x_{i_{k-1}} \dots \partial x_{i_1}} \right) \right|_{x=a}$$

называется частной производной k-го порядка функции f в точке a.

Теорема 7.4 (Юнг). Пусть U $\subset \mathbb{R}^2, f: U \to \mathbb{R}$. Если частные производные $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$

определены в некоторой окрестности точки (a,b) и дифференцируемы в точке (a,b), то

$$\frac{\partial^2 f}{\partial y \partial x}(a, b) = \frac{\partial^2 f}{\partial x \partial y}(a, b).$$

Доказательство. Выберем окрестность $B_{\delta}(a,b)$, в которой определены $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$. Рассмотрим выражение

$$\Delta(t) = f(a+t, b+t) - f(a+t, b) - f(a, b+t) + f(a, b), \ 0 < |t| < \delta.$$

Функция g(s)=f(a+s,b+t)-f(a+s,b) на отрезке с концами 0 и t имеет производную $g'(s)=\frac{\partial f}{\partial x}(a+s,b+t)-\frac{\partial f}{\partial x}(a+s,b)$. По теореме Лагранжа $g(t)-g(0)=g'(\xi)t$ для некоторого ξ между 0 и t. Тогда в силу равенства $\Delta(t)=g(t)-g(0)$ и дифференцируемости $\frac{\partial f}{\partial x}$ имеем

$$\Delta(t) = g'(\xi)t = \frac{\partial f}{\partial x}(a+\xi,b+t)t - \frac{\partial f}{\partial x}(a+\xi,b)t =$$

$$= \left(\frac{\partial f}{\partial x}(a,b) + \frac{\partial^2 f}{\partial^2 x}(a,b)\xi + \frac{\partial^2 f}{\partial y \partial x}(a,b)t + \alpha(t)\sqrt{\xi^2 + t^2}\right)t - \left(\frac{\partial f}{\partial x}(a,b) + \frac{\partial^2 f}{\partial^2 x}(a,b)\xi + \beta(t)|\xi|\right)t =$$

$$= \left(\frac{\partial^2 f}{\partial y \partial x}(a,b) \pm \alpha(t)\sqrt{1 + \frac{\xi^2}{t^2}} \pm \beta(t)\frac{|\xi|}{|t|}\right)t^2,$$

где $\alpha(t) \to 0$, $\beta(t) \to 0$ при $t \to 0$. Следовательно, существует $\lim_{t \to 0} \frac{\Delta(t)}{t^2} = \frac{\partial^2 f}{\partial y \partial x}(a,b)$. Аналогично $\lim_{t \to 0} \frac{\Delta(t)}{t^2} = \frac{\partial^2 f}{\partial x \partial y}(a,b)$, что и доказывает теорему.

Задача (теорема Шварца). Докажсите, что если $\frac{\partial^2 f}{\partial x \partial y}$ и $\frac{\partial^2 f}{\partial y \partial x}$ определены в окрестности (a,b) и непрерывны в точке (a,b), то $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.

Распространим теорему на случай n переменных.

Следствие. Пусть $k \in \mathbb{N}, k \geqslant 2$. Если все частные производные до порядка k-2 дифференцируемы в некоторой окрестности точки a, а все частные производные порядка k-1 дифференцируемы в точке a, то

$$\frac{\partial^k f}{\partial x_{ik} \dots \partial x_{i1}}(a) = \frac{\partial^k f}{\partial x_{jk} \dots \partial x_{j1}}(a)$$

при условии, что списки (i_1,\ldots,i_k) и (j_1,\ldots,j_k) отличаются лишь порядком.

Доказательство. Индукция по k. Пусть k=2. Положим $x_r=a_r, r\neq i_1, i_2$, тогда имеем функцию двух переменных x_{i_1} и x_{i_2} , и равенство вытекает по теореме Юнга (7.4).

Пусть k > 2. Можно считать, что список (j_1, \ldots, j_k) получен из (i_1, \ldots, i_k) с помощью одной транспозиции, то есть обменом i_r и i_{r-1} .

Рассмотрим $g = \frac{\partial^{r-2}f}{\partial x_{i_{r-2}}...\partial x_{i_1}}$. По теореме Юнга в окрестности точки a имеет место равенство $\frac{\partial^2 g}{\partial x_{i_r}\partial x_{i_{r-1}}} = \frac{\partial^2 g}{\partial x_{i_{r-1}}\partial x_{i_r}}$. При r = k имеем $\frac{\partial^2 g}{\partial x_{i_r}\partial x_{i_{r-1}}}(a) = \frac{\partial^2 g}{\partial x_{i_{r-1}}\partial x_{i_r}}(a)$, что лишь формой записи отличается от требуемого равенства; при r < k еще надо продифференцировать по переменным $x_{i_{r+1}}, \ldots, x_{i_k}$ и подставить x = a.

Дифференциалы высших порядков определяются индуктивно. Пусть $U \subset \mathbb{R}^n$ открыто.

Определение 7.8. Положим $d^1f = df$. Пусть $k \in \mathbb{N}, k \geqslant 2$. Пусть $d^{k-1}f$ определен в некоторой окрестности точки a и дифференцируем в точке a, то $d^kf_a := d(d^{k-1}f)_a$, понимаемый как k-линейное отображение, называется $\partial u \phi \phi$ еренциалом k-го порядка функции f в точке a. При этом функция f называется k раз $\partial u \phi \phi$ еренцируемой в точке a.

Лемма 7.3. Дифференциал $d^k f$ симметричен, то есть на наборах k векторов, отличающихся лишь порядком, принимает одинаковые значения.

Доказательство. Достаточно установить совпадение на наборах векторов стандартного базиса и воспользуемся линейностью.

Покажем по индукции, что $d^k f_a(e_{i_1},\ldots,e_{i_k})=\frac{\partial^k f}{\partial x_{i_k}\ldots\partial x_{i_1}}(a)$. При k-1 это следует из теоремы 1 и определения частной производной. Если равенство верно для k-1, то $\frac{\partial^{k-1} f}{\partial x_{i_{k-1}}\ldots\partial x_{i_1}}=d^{k-1}f(e_{i_1},\ldots,e_{i_{k-1}})$ дифференцируема в точке a. Следовательно,

$$d^k f_a(e_{i_1,\dots,e_{i_k}}) = d\left(\frac{\partial^{k-1} f}{\partial x_{i_{k-1}} \dots \partial x_{i_1}}\right)_a (e_{i_k}) = \frac{\partial}{\partial x_{i_k}} \left(\frac{\partial^{k-1} f}{\partial x_{i_{k-1}} \dots \partial x_{i_1}}\right)|_{x=a} = \frac{\partial^k f}{\partial x_{i_k} \dots \partial x_{i_1}}(a).$$

Симметричность $d^k f$ на наборах базисных векторов теперь вытекает из следствия теоремы Юнга (7.4).

Эта теорема позволяет наряду с k- линейным отображением $d^k f_a$ рассматривать соответствующую k- форму $h\mapsto d^k f_a(h,\dots,h)=:d^k f_a(h^k)$. При m=1 форма $d^k f_a(h^k)$ является однородным многочленом степени k от компонент вектора h:

$$d^k f_a(h^k) = \sum_{i_k=1}^n \dots \sum_{i_1=1}^n \frac{\partial^k f}{\partial x_{i_k} \dots \partial x_{i_1}} (a) h_{i_1} \dots h_{i_k}, \ h = (h_1, \dots, h_n)^T \in \mathbb{R}^n.$$

Следствие. Функция f дифференцируема k раз в точке a, тогда и только тогда, когда все частные производные до порядка k-2 дифференцируемы в некоторой окрестности точки a, а все частные производные порядка k-1 дифференцируемы в точке a.

Теорема 7.5 (формула Тейлора с остаточным членом в форме Лагранжа). Пусть f: U $\to \mathbb{R}$ дифференцируема (p+1) раз на U. Если $a \in U$, $h \in \mathbb{R}^n$, такие что $[a,a+h] \subset U$, то $\exists \Theta \in (0,1)$, что

$$f(a+h) = f(a) + \sum_{k=1}^{p} \frac{1}{k!} d^{k} f_{a}(h) + \frac{1}{(p+1)!} d^{p+1} f_{a+\Theta h}(h).$$

Доказательство. $[a, a + h] = \{a + th \mid t \in [0, 1]\}$ — отрезок с концами a и a + h.

Рассмотрим функцию g(t) = f(a+th), определённую на интервале, содержащем [0,1]. Так как $t\mapsto\underbrace{a}_{\text{пост.}}+\underbrace{th}_{\text{линейн.}}\Rightarrow \forall \tau\in\mathbb{R}\ d(a+th)_t(\tau)=\tau h$. Тогда по теореме о дифференцировании композиции

$$dq_t(\tau) = df_{a+th}(\tau h).$$

По индукции

$$d^k g_t(\tau) = d^k f_{a+th}(\tau h)$$
 $k = 1, \dots, p+1.$

Имеем $d^k g_t(\tau) = g^{(k)}(t) \tau^k \stackrel{\tau=1}{\Rightarrow} g^{(k)}(t) = d^k f_{a+th}(h), \quad k = 1, \dots, p+1.$ По формуле Тейлора с остаточным членом в форме Лагранжа

$$g(t) = g(0) + \sum_{k=1}^{p} \frac{g^{(k)}(0)}{k!} t^{k} + \frac{g^{(p+1)}(\theta_{t})}{(p+1)!} t^{p+1}.$$

При t = 1 и $\theta = \theta_1$ получаем искомую формулу.

Лемма 7.4. Пусть $\varphi: \mathbb{R}^n \times \ldots \times \mathbb{R}^n \to \mathbb{R}$ – k-линейное симметрическое отображение, $u \Phi: \mathbb{R}^n \to \mathbb{R}$, $\Phi(x) = \varphi(x, \ldots, x)$. Тогда функция Φ дифференцируема $u \ d\Phi_x(h) = k\varphi(x^{k-1}, h)$.

Доказательство. Имеем $\Phi(x+h) - \Phi(x) = \varphi(x+h, \dots, x+h) - \varphi(x, \dots, x) = k\varphi(x, \dots, x, h) +$ слагаемые $\varphi(x^p, h^q)$, где $p+q=k, q \geqslant 2$.

Покажем, что найдется такое $C\geqslant 0$, что $|\varphi(x^p,h^q)|\leqslant C|x|^p|h|^q$. Если оба x,h ненулевые, то $|\varphi(x^p,h^q)|=\left|\varphi\left((\frac{x}{|x|})^p,(\frac{h}{|h|})^q\right)\right||x|^p|h|^q\leqslant C|x|^p|h|^q$ для $C=\max_{|x|=1}|\varphi(x^k)|$. Оценка очевидно выполняется, когда хотя бы один из векторов нулевой.

Так как $q\geqslant 2$, то из полученной оценки следует, что $\varphi(x^p,h^q)=o(|h|)$ при $h\to 0$, что доказывает утверждение.

Теорема 7.6 (остаточный член в форме Пеано). Если функция $f: \underbrace{U}_{omkp.} \to \mathbb{R}$ дифференцируема p раз в точке a, то

$$f(a+x) = f(a) + \sum_{k=1}^{p} \frac{1}{k!} d^k f_a(h) + o(|h|^p), \ h \to 0.$$

Доказательство. Индукция по p. При p=1 равенство верно по определению дифференцируемости. Предположим, утверждение верно при p-1.

Рассмотрим функцию $g(x)=f(a+x)-f(a)-df_a(x)-\ldots-\frac{1}{p!}d^pf_a(x)$. Зафиксируем $v\in\mathbb{R}^n$. Тогда по лемме 7.4 имеем

$$d(d^k f_a(x))(v) = k d^k f_a(x)(v)$$

и, значит,

$$dg_x(v) = df_{a+x}(v) - df_a(v) - \dots - \frac{1}{(p-1)!} d^p f_a(x, \dots, x, v).$$

Применим предположение индукции к $y \mapsto df_y(v)$:

$$df_{a+x}(v) = df_a(v) + d^2f_a(x,v) + \ldots + \frac{1}{(p-1)!}d^pf_a(x,\ldots,x,v) + o(|x|^{p-1}).$$

Заключаем, что $|dg_x(v)| = o(|x|^{p-1})$ при $x \to 0$.

Зафиксируем $\varepsilon > 0$. Найдем такое $\delta > 0$, что $||dg_h|| \leq \varepsilon |h|^{p-1}$ при всех $h \in \mathbb{R}$ с $|h| < \delta$. В шаре $B_{\delta}(0)$ применим теорему 7.5 (для p = 1), получим

$$|g(h)| = |g(h) - g(o)| \leqslant \varepsilon |h|^{p-1} |h|,$$

то есть $g(h) = o(|h|^p), h \to 0.$

Определение 7.9. Будем говорить, что f k раз непрерывно дифференцируема на U и писать $f \in C^k(U)$, если $d^{k-1}f_x \in C^1(U)$.

Замечание. Пусть $\varphi: \mathbb{R}^n \times \ldots \times \mathbb{R}^n \to \mathbb{R}$ — k-линейное отображение. Тогда $\|\varphi\| = \max_{|v_1|=1,\ldots,|v_k|=1} |\varphi(v_1,\ldots,v_k)|$ — норма на пространстве k-линейных отображений. Тогда из леммы 7.1 $f \in C^k(U) \Leftrightarrow$ все частные производные до k-го порядка непрерывны на U.

8 Мера Лебега

8.1 Объем бруса

Определение 8.1. *Брусом* в \mathbb{R}^n называется множество вида $B = I_1 \times \ldots \times I_n$, где I_k – ограниченный промежуток. Если $a_k \leqslant b_k$ – концы I_k , то $|B| = (b_1 - a_1) \cdot \ldots \cdot (b_n - a_n)$ называется *объемом* бруса B.

Если хотя бы один из промежутков I_k вырожденный, то брус B называется вырожденным, в частности, \emptyset — вырожденный брус. Объём вырожденного бруса равен 0.

Если все I_k – отрезки, то брус называется *замкнутым*.

Если все I_k – интервалы, то брус называется *открытым*.

Задача. Докажите, что пересечение двух брусов — брус, а разность двух брусов — объединение не более чем 2n брусов.

Свойство 8.1. Если B, B_1, \dots, B_m — брусы и $B \subset \bigcup_{i=1}^m B_i$, то $|B| \leqslant \sum_{i=1}^m |B_i|$.

Доказательство. Если $I \subset \mathbb{R}$ — ограниченный промежуток, то

$$|I| - 1 \leqslant \#(I \cap \mathbb{Z}) \leqslant |I| + 1,$$

$$N|I| - 1 \leqslant \#(NI \cap \mathbb{Z}) \leqslant N|I| + 1,$$

$$|I| - \frac{1}{N} \leqslant \frac{1}{N} \#\left(I \cap \frac{1}{N}\mathbb{Z}\right) \leqslant |I| + \frac{1}{N},$$

$$|I| = \lim_{N \to \infty} \frac{1}{N} \#\left(I \cap \frac{1}{N}\mathbb{Z}\right).$$

Пусть $B = I_1 \times \ldots \times I_n$, тогда

$$|B| = \lim_{N \to \infty} \prod_{j=1}^{n} \frac{1}{N} \# \left(I_j \cap \frac{1}{N} \mathbb{Z} \right) = \lim_{N \to \infty} \frac{1}{N^n} \# \left(B \cap \frac{1}{N} \mathbb{Z}^n \right).$$

Если $B \subset \bigcup_{i=1}^m B_i$, то

$$\frac{1}{N^n} \# \left(B \cap \frac{1}{N} \mathbb{Z}^n \right) \leqslant \frac{1}{N^n} \sum_{i=1}^n \# \left(B_i \cap \frac{1}{N} \mathbb{Z}^n \right).$$

Предельный переход $N \to \infty$ завершает доказательство.

Свойство 8.2. Для любого бруса B и $\varepsilon > 0$ найдутся замкнутый брус B' и открытый брус B^o , так что $B' \subset B \subset B^o$ и $|B'| > |B| - \varepsilon$, $|B^o| < |B| + \varepsilon$.

Доказательство. Пусть $B = I_1 \times \ldots \times I_n$, где I_k — ограниченный промежуток с концами $a_k \leqslant b_k$.

Если |B| > 0, то положим

$$B'_{\delta} = [a_1 + \delta, b_1 - \delta] \times \ldots \times [a_n + \delta, b_n - \delta]$$

$$B'_{\delta} = (a_1 - \delta, b_1 + \delta) \times \ldots \times (a_n - \delta, b_n + \delta)$$

Так как $|B'_{\delta}|, |B^o_{\delta}| \to |B|$ при $\delta \to +0$, то искомые брусы существуют и определяются выбором δ . Если же B – вырожденный брус, то положим $B' = \varnothing$, B^o_{δ} как выше. \square

Лемма 8.1. Каждое непустое открытое множество U в \mathbb{R}^n представимо в виде счетного объединения непересекающихся кубов (брусов, у которых длины ребер равны).

Доказательство. Куб $\left[\frac{k_1}{2^m}; \frac{k_1+1}{2^m}\right) \times \ldots \times \left[\frac{k_n}{2^m}; \frac{k_n+1}{2^m}\right)$, где $k_i \in \mathbb{Z}$, $m \geqslant 0$, будем называть двоичным m-го ранга.

Обозначим через A_0 множество всех кубов ранга 0, содержащихся в U. Если множества A_0,\ldots,A_{m-1} уже определены, то обозначим через A_m множество всех кубов ранга m, содержащихся в U и не лежащих ни в одном кубе из A_0,\ldots,A_{m-1} . Положим $A=\bigcup_{m=0}^{\infty}A_m$. Тогда A – счетное множество непересекающихся кубов. Покажем, что $U=\bigcup_{Q\in A}Q$. Пусть $x\in U$. Ввиду открытости U существует шар $\overline{B_r}(x)\subset U$. Если m таково, что $\frac{\sqrt{n}}{2^m}\leqslant r$, то содержащий точку x куб $Q_m(x)$ ранга m удовлетворяет включению $Q_m(x)\subset \overline{B_r}(x)$ и, значит, множество $\{m\in\mathbb{N}_0:Q_m(x)\subset U\}$ непусто. Обозначим через m_0 его минимум. Тогда $Q_m(x)\not\subset U$ при $m< m_0$, а $Q_{m_0}(x)\subset U$. Следовательно, $Q_{m_0}(x)\in A_{m_0}$ и поэтому $x\in\bigcup_{Q\in A}Q$. Учитывая, что обратное включение очевидно, равенство установлено. \square

8.2 Алгебры множеств

Определение 8.2. Семейство $\mathcal{A} \subset \mathcal{P}(\mathbb{R}^n)$ называется алгеброй, если

- 1. $\varnothing \in \mathcal{A}$;
- 2. если $E \in \mathcal{A}$, то $E^c = \mathbb{R}^n \setminus E \in \mathcal{A}$;
- 3. если $E, F \in \mathcal{A}$, то $E \cup F \in \mathcal{A}$.

Алгебра \mathcal{A} называется σ -алгеброй, если выполнено условие

3'. если $E_k \in \mathcal{A}, k \in \mathbb{N}$, то $\bigcup_{k=1}^{\infty} E_k \in \mathcal{A}$.

Пример.

- 1. σ -алгебра, содержащая все одноэлементные множества, также содержит все не более чем счетные множества и множества, дополнение к которым не более чем счетно.
- 2. $\mathcal{B}(\mathbb{R}^n)$ минимальная по включению σ -алгебра, содержащая все открытые множества (борелевская σ -алгебра). Чтобы установить существование $\mathcal{B}(\mathbb{R}^n)$, необходимо рассмотреть пересечение всех σ -алгебр, содержащие открытые множества.

Пример. Покажем, что минимальная σ -алгебра, содержащая двоичные кубы, совпадает с $\mathcal{B}(\mathbb{R}^n)$.

Пусть
$$O$$
 – совокупность открытых множеств в \mathbb{R}^n . $\mathcal{B}(\mathbb{R}^n) = \underbrace{\sigma(O)}_{\text{мин. } \sigma\text{-алгебра,}} \subset \sigma(\text{двоич. кубы}).$

$$\left[\frac{k_1}{2^m};\frac{k_1+1}{2^m}\right)\times\ldots\times\left[\frac{k_n}{2^m};\frac{k_n+1}{2^m}\right)=\bigcap_{i=1}^\infty\left(\frac{k_1}{2^m}-\frac{1}{i};\frac{k_1+1}{2^m}\right)\times\ldots\times\left(\frac{k_n}{2^m}-\frac{1}{i};\frac{k_n+1}{2^m}\right)\Rightarrow$$
 \Rightarrow σ (двоич. кубы) \subset $\sigma(O)$.

Задача.
$$\mathcal{B}(\mathbb{R}) = \sigma(C)$$
, $\epsilon \partial e \ C = \{(a, +\infty), a \in \mathbb{Q}\}$.

Цель: построить σ -алгебру $M\supset \mathcal{B}(\mathbb{R}^n)$ и меру $\mu:M\to [0,+\infty],$ такие что

1.
$$E = \bigsqcup_{k=1}^{+\infty} E_k$$
, где $E_k \in M$, то $\mu(E) = \sum_{k=1}^{+\infty} \mu(E_k)$ (счетная аддитивность);

- 2. $\mu(R) = |R| \forall R \text{fpyc};$
- 3. $\mu(E+y) = \mu(E)$.

8.3 Внешняя мера

Определение 8.3. Внешней мерой Лебега множества $E \subset \mathbb{R}^n$ называется величина

$$\mu^*(E) = \inf \left\{ \sum_{i=1}^{\infty} |B_i| : E \subset \bigcup_{i=1}^{\infty} B_i \right\},$$

где инфимум берется по всем счетным наборам $\{B_i\}$, покрывающих E. Очевидно, $0 \le \mu^*(E) \le +\infty$.

Теорема 8.1. Внешняя мера обладает следующими свойствами

- 1. если $E \subset F$, то $\mu^*(E) \leqslant \mu^*(F)$ (монотонность);
- 2. если $E = \bigcup_{k=1}^{\infty} E_k$, то $\mu^*(E) \leqslant \sum_{k=1}^{\infty} \mu^*(E_k)$ (счетная полуаддитивность);
- 3. $\mu^*(R) = |R|$ для любого бруса R (нормировка).

Доказательство. Докажем пункт 2. Будем предполагать, что $\mu^*(E) < +\infty$, иначе утверждение очевидно. Зафиксируем $\varepsilon > 0$ и рассмотрим семейство брусов $\{B_{i,k}\}_{i=1}^{\infty}$, образующее покрытие E_k , такие что

$$\sum_{i=1}^{\infty} |B_{i,k}| < \mu^*(E_k) + \frac{\varepsilon}{2^k}.$$

Семейство $\{B_{i,k}\}_{i,k=1}^{\infty}$ образуют покрытие $E=\bigcup_{k=1}^{\infty}E_k$ и

$$\mu^*(E) \leqslant \sum_{k=1}^{+\infty} \sum_{i=1}^{+\infty} |B_{i,k}| \leqslant \sum_{k=1}^{+\infty} \left(\mu^*(E_k) + \frac{\varepsilon}{2^k} \right) = \sum_{k=1}^{+\infty} \mu^*(E_k) + \varepsilon.$$

Так как $\varepsilon > 0$ – любое, то пункт 2 установлен.

Докажем пункт 3. Так как $\{R\}$ – покрытие R брусом, то $\mu^*(R) \leqslant |R|$. Покажем, что $\mu^*(R) \geqslant |R|$.

Сначала для случая, когда R – замкнуто. Нам достаточно показать, что $|R| \leqslant \sum_{i=1}^{\infty} |B_i|$ для всякого покрытия R брусами B_i . Зафиксируем $\varepsilon > 0$. Тогда по свойству брусов (8.2) \exists B_i^o $\supset B_i$ и $|B_i^o| < |B_i| + \frac{\varepsilon}{2^i}$. Так как $R \subset \bigcup_{i=1}^\infty$ и R – компакт, то по свойству брусов (8.1)

$$R \subset \bigcup_{i=1}^{N} B_i^o \Rightarrow |R| \leqslant \sum_{i=1}^{N} |B_i^o| \Rightarrow |R| \leqslant \sum_{i=1}^{\infty} \left(|B_i| + \frac{\varepsilon}{2^i} \right) = \sum_{i=1}^{\infty} |B_i| + \varepsilon.$$

Так как $\varepsilon > 0$ – любое, то $|R| \leqslant \sum_{i=1}^{\infty} |B_i|$.

к как $\varepsilon > 0$ — люоое, то $|n| \leqslant \angle_{i=1}|D_i|$. Пусть R — произвольный брус. Тогда для $\varepsilon > 0$ по свойству (8.2) \exists $\underbrace{R'}_{\text{замк. брус}} \subset R (|R'| > 0)$

 $|R|-\varepsilon$). Тогда

$$\mu^*(R) \geqslant \mu^*(R') = |R'| > |R| - \varepsilon.$$

Так как $\varepsilon > 0$ – любое, то $\mu^*(R) \geqslant |R|$.

8.4 Измеримые множества

Определение 8.4. Множество $E \subset \mathbb{R}^n$ называется *измеримым (по Лебегу)*, если для любого $A \subset \mathbb{R}^n : \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c).$

Замечание. При проверке измеримости достаточно установить, что $\mu^*(A) \geqslant \mu^*(A \cap E) +$ $\mu^*(A \cap E^c)$, так как противоположное неравенство следует из счетной аддитивности.

Пример. Если $\mu^*(E) = 0$, то *E* измеримо.

Действительно, $\mu^*(A \cap E) \leqslant \mu^*(E) = 0$, $\mu^*(A \cap E) \leqslant \mu^*(A)$ из монотонности μ^* . Тогда $\mu^*(A) \geqslant \mu^*(A \cap E) + \mu^*(A \cap E^c).$

Пример. Для всякого $a \in \mathbb{R}$ и $k \in \{1,\ldots,n\}$ полупространство $H = H_{a,k} = \{x = 1,\ldots,n\}$ $(x_1, \ldots, x_n)^T : x_k < a \}$ измеримо.

Рассмотрим $A \subset \mathbb{R}^n$ и произвольное покрытие $\{B_i\}_{i=1}^{\infty}$. Брусами определим

$$B_i^1 = B_i \cap H, \ B_i^2 = B_i \cap H^c.$$

Тогда B_i^1, B_i^2 – брусы. $\{B_i^1\cap H\}_{i=1}^\infty$ – покрытие $A\cap H$. $\{B_i^2\cap H^c\}_{i=1}^\infty$ – покрытие $A\cap H^c$.

$$\sum_{i=1}^{\infty} |B_i| = \sum_{i=1}^{\infty} |B_i^1| + \sum_{i=1}^{\infty} |B_i^2| \geqslant \mu^*(A \cap H) + \mu^*(A \cap H^c).$$

Следовательно, $\mu^*(A) \geqslant \mu^*(A \cap H) + \mu^*(A \cap H^c)$.

Аналогичное утверждение верно и для других неравенств между x_k и a.

Теорема 8.2 (Каратеодори). Совокупность \mathcal{M} всех измеримых множеств в \mathbb{R}^n образует σ -алгебру. Сужение $\mu^*|_{\mathcal{M}}$ счетно аддитивно.

Доказательство. $\varnothing \in \mathcal{M}, E \in \mathcal{M} \Rightarrow E^c \in \mathcal{M}.$

1. Пусть $E, F \in \mathcal{M}$. Покажем, что $E \cup F \in \mathcal{M}$. Пусть $A \subset \mathbb{R}^n$, тогда

$$\mu^*(A \cap (E \cup F)) + \mu^*(A \cap (E \cup F)^c) = \mu^*(A \cap (E \cup F) \cap E) + \mu^*(A \cap (E \cup F) \cap E^c) + \mu^*(A \cap (E \cup F)^c) = \mu^*(A \cap E) + \mu^*(A \cap E^c \cap F) + \mu^*(A \cap E^c \cap F) = \mu^*(A \cap E) + \mu^*(A \cap E^c) = \mu^*(A).$$

2. Пусть $\{E_k\} \subset \mathcal{M}$, причем $E_i \cap E_j = \emptyset$ при $i \neq j$. Покажем, что $F = \bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$. Положим $F_n = \bigcup_{k=1}^n E_k$. Если $A \subset X$, то

$$\mu^*(A \cap F_n) = \mu^*(A \cap F_n \cap E_n) + \mu^*(A \cap F_n \cap E_n^c) = \mu^*(A \cap E_n) + \mu^*(A \cap F_{n-1}).$$

Продолжая процесс, получим $\mu^*(A \cap F_n) = \sum_{k=1}^n \mu^*(A \cap E_k)$.

Поскольку $F_n \in \mathcal{M}$, то

$$\mu^*(A) = \mu^*(A \cap F_n) + \mu^*(A \cap F_n^c) \geqslant \sum_{k=1}^n \mu^*(A \cap E_k) + \mu^*(A \cap F^c).$$

Переходя к пределу при $n \to \infty$, получим $\mu^*(A) \geqslant \sum_{k=1}^{\infty} \mu^*(A \cap E_k) + \mu^*(A \cap F^c)$. Откуда по свойству счетной полуаддитивности

$$\mu^*(A) \geqslant \sum_{k=1}^{\infty} \mu^*(A \cap E_k) + \mu^*(A \cap F_c) \geqslant \mu^*(A \cap F) + \mu^*(A \cap F^c) \geqslant \mu^*(A).$$

Это доказывает, что $F \in \mathcal{M}$. Если еще положить A = F, то $\mu^*(F) = \sum_{k=1}^{\infty} \mu^*(E_k)$.

3. Пусть $\{A_k\} \subset \mathcal{M}$. Покажем, что $A = \bigcup_{k=1}^{\infty} A_k \in \mathcal{M}$. Положим $E_1 = A_1, \ E_k = A_k \setminus \bigcup_{i < k} E_i$. Тогда E_k попарно не пересекаются, и $A = \bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$ по предыдущему пункту.

Следствие. $\mathcal{B}(\mathbb{R}^n) \subset \mathcal{M}$.

Доказательство. Брус измерим, так как его можно записать в виде пересечения конечного числа подпространств (измеримы по примеру 8.4). По лемме 8.1 тогда всякое открытое множество измеримо.

Определение 8.5. $\mu = \mu^*|_{\mathcal{M}}$ – мера Лебега.

Теорема 8.3 (непрерывность меры). 1. $A_i \in \mathcal{M}, A_1 \subset A_2 \subset ..., A = \bigcup_{i=1}^{\infty} A_i$. Тогда $\mu(A) = \lim_{i \to \infty} \mu(A_i)$ (непрерывность снизу).

2. $A_i \in \mathcal{M}, A_1 \supset A_2 \supset \ldots, A = \bigcap_{i=1}^{\infty} A_i, \mu(A_1) < \infty$. Тогда $\mu(A) = \lim_{i \to \infty} \mu(A_i)$ (непрерывность сверху).

1. Положим $B_1=A_1,\,B_i=A_i\setminus A_{i-1}.$ Тогда $B_i\in\mathcal{M},\,B_i\cap B_j=\varnothing$ при $i \neq j$, и $\bigcup_{i=1}^m B_i = \bigcup_{i=1}^m A_i$ для всех $m \in \mathbb{N} \cup \infty$. Поэтому

$$\mu(A) = \mu\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} \mu(B_i) = \lim_{m \to \infty} \sum_{i=1}^{m} \mu(B_i) = \lim_{m \to \infty} \mu(A_m).$$

2. Рассмотрим $A_1 \setminus A_i$. Применим прошлый пункт к этим множествам. Тогда $\bigcup_{i=1}^{\infty} (A \setminus A_i)$ $A_i) = A_1 \setminus A$ и

$$\mu(A_1) - \mu(A) = \mu(A_1 \setminus A) = \lim_{m \to \infty} \mu(A_1 \setminus A_m) = \mu(A_1) - \lim_{m \to \infty} \mu(A_m).$$

Осталось из обоих частей вычесть $\mu(A_1)$ и изменить знак.

Задача. Покажите, что $\mu(A_1) < \infty$ – существенно.

Пример (инвариативность меры относительно сдвигов). Пусть $E \in \mathcal{M}$ и $y \in \mathbb{R}^n$. Тогда $E + y = \{x + y : x \in E\} \in \mathcal{M} \text{ if } \mu(E + y) = \mu(E).$

 \mathcal{A} оказательство. Пусть $A\subset\mathbb{R}^n$ и $\{B_i\}_{i=1}^\infty$ – покрытие A брусами.

$$A \subset \bigcup_{i=1}^{\infty} B_i \Rightarrow A + y \subset \bigcup_{i=1}^{\infty} (B_i + y).$$

Ясно, что B_i+y – брус, $|B_i+y|=|B_i|$. Тогда $\mu^*(A+y)\leqslant \sum_{i=1}^\infty |B_i|\Rightarrow \mu^*(A+y)\leqslant \mu^*(A)$. Так как $A=(A+y)-y\Rightarrow \mu^*(A)\leqslant \mu^*(A+y)$, то есть $\mu^*(A)=\mu^*(A+y)$. Пусть $E \in \mathcal{M}$. Тогда

$$\mu^*(A \cap (E+y)) + \mu^*(A \cap (E+y)^c) = \mu^* \left(((A-y) \cap E) + y \right) + \mu^* \left(((A-y) \cap E^c) + y \right) =$$

$$= \mu^* \left((A-y) \cap E \right) + \mu^* \left((A-y) \cap E^c \right) = \mu^*(A-y) = \mu^*(A),$$

так что E + y также измеримо.

Лемма 8.2 (регулярность меры). Если $E \in \mathcal{M}$, то $\forall \varepsilon > 0 \; \exists \; \mathcal{G} \supset E \; (\mu(G \setminus E) < \varepsilon)$.

Доказательство. Рассмотрим случай, когда E ограничено, а значит, $\mu^*(E) < \infty$. Для $\varepsilon > 0$ рассмотрим покрытие E счетным семейством брусов $\{B_k\}$ с $\sum_{i=1}^{\infty} |B_i| < \mu(E) + \frac{\varepsilon}{2}$. По свойству брусов $\exists B_i^o \supset B_i \left(|B_i^o| < |B_i| + \frac{\varepsilon}{2^{i+1}} \right)$. Определим $G = \bigcup_{i=1}^{\infty} B_i^o$. Тогда G –

открытое, $G \supset E$ и

$$\mu(G \setminus E) = \mu(G) - \mu(E) \leqslant \sum_{i=1}^{\infty} |B_i^0| - \mu(E) < \varepsilon.$$

Перейдем к общему случаю. Поскольку $\mathbb{R}^n = \bigcup_{k=1}^{\infty} A_k$, где $A_k = \{x \in \mathbb{R}^n : k-1 \le |x| < k\}$, то E есть счетное объединение непересекающихся играниченных измеримых множеств $E_k = E \cap A_k$. По доказанному существует такое открытое множество $G_k \supset E_k$, что $\mu(G_k \setminus E_k) \leqslant \frac{\varepsilon}{2^k}$. Тогда множество $G = \bigcup_{k=1}^{\infty} G_k$ открыто, содержит E и

$$\mu(G \setminus E) = \mu\left(\bigcup_{k=1}^{\infty} G_k \setminus E\right) \leqslant \sum_{k=1}^{\infty} \mu(G_k - E_k) < \varepsilon.$$

Следствие. Если $E \in \mathcal{M}$, то $\forall \varepsilon > 0 \ \exists \underbrace{F}_{\text{замк}} \subset E \ (\mu(E \setminus F) < \varepsilon)$.

Определение 8.6. Счетное пересечение открытых множеств называется множествами типа G_{δ} .

Счетное объединение замкнутых множеств называется множествами типа F_{σ} .

Замечание. Множества типа G_{δ} и F_{σ} являются борелевскими.

Теорема 8.4 (критерий измеримости). *Множество* E измеримо \Leftrightarrow существует множество Ω типа G_{δ} , что $E \subset \Omega$ и $\mu(\Omega \setminus E) = 0$.

Доказательство. Докажем первое утверждение.

 (\Rightarrow) Для каждого $k \in \mathbb{N}$ найдется такое открытое $G_k \supset E$ с $\mu(G_k \setminus E) \leqslant \frac{1}{k}$. Положим $\Omega = \bigcap_{k=1}^{\infty} G_k$, тогда $E \subset \Omega$, и $\mu(\Omega \setminus E) \leqslant \mu(G_k \setminus E) \leqslant \frac{1}{k}$, откуда $\mu(\Omega \setminus E) = 0$.

 (\Leftarrow) Поскольку $E = \Omega \setminus (\Omega \setminus E)$ есть разность двух измеримых множеств, то E измеримо.

Замечание. Множество E измеримо \Leftrightarrow существует множество Δ типа F_{σ} , что $\Delta \subset E$ и $\mu(E \setminus \Delta) = 0$.

Теорема 8.5 (критерий измеримости). Пусть $\mu^*(E) < \infty$. Множество E измеримо \Leftrightarrow существуют брусы B_1, \ldots, B_N , такие что $\forall \varepsilon > 0$ $\mu^*(E \triangle \bigcup_{k=1}^N B_k) < \varepsilon$.

 \mathcal{A} оказательство. (\Rightarrow) Зафиксируем $\varepsilon > 0$. Если E измеримо, то $\exists \underbrace{\{B_k\}_{k=1}^{\infty}}_{\text{брусы}}$, такие что $E \subset$

 $\bigcup_{k=1}^{\infty} B_k$ и $\sum_{k=1}^{+\infty} |B_k| < \mu^*(E) + \frac{\varepsilon}{2}$. Так как ряд $\sum_{k=1}^{+\infty} |B_k|$ сходится, то $\exists N \left(\sum_{k=N+1}^{+\infty} |B_k| < \frac{\varepsilon}{2} \right)$. Положим $C = \bigcup_{k=1}^{N} B_k$. Тогда:

$$\mu^*(E\triangle C) \leqslant \mu^*(E\setminus C) + \mu^*(C\setminus E) \leqslant \mu^*\left(\bigcup_{k=N+1}^{+\infty} B_k\right) + \mu^*\left(\bigcup_{k=1}^{+\infty} B_k\setminus E\right) \leqslant$$

$$\leq \sum_{k=N+1}^{+\infty} |B_k| + \sum_{k=1}^{+\infty} |B_k| - \mu^*(E) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

 (\Leftarrow) Пусть $\mu^*(E\triangle C)<\varepsilon$. Тогда тем более $\mu^*(E\setminus C)<\varepsilon$ и $\mu^*(C\setminus E)<\varepsilon$. Поскольку $E\subset C\cup (E\setminus C)$ и $E^c\subset C^c\cup (C\setminus E)$, то для любого $A\subset \mathbb{R}^n$ имеем

$$\mu^*(A\cap E) + \mu^*(A\cap E^c) \leqslant \mu^*(A\cap C) + \mu^*(A\cap (E\setminus C)) + \mu^*(A\cap C^c) + \mu^*(A\cap (C\setminus E)) \leqslant \mu^*(A\cap E) + \mu^$$

$$\leq \mu^*(A \cap C) + \mu^*(A \cap C^c) + \mu^*(E \setminus C) + \mu^*(C \setminus E) < \mu^*(A) + 2\varepsilon.$$

Следовательно, $\mu^*(A \cap E) + \mu^*(A \cap E^c) \leq \mu^*(A)$. Значит, *E* измеримо.

9 Интеграл Лебега

9.1 Измеримые функции

Пусть E измеримо и $f: E \to \overline{\mathbb{R}}$.

Определение 9.1. Функция f называется измеримой (по Лебегу), если $\{x \in E : f(x) < a\} = f^{-1}([-\infty, a))$ измеримо для всех $a \in \mathbb{R}$.

Лемма 9.1. Пусть $f: E \to \mathbb{R}$. Тогда следующие условия эквивалентны:

- *1. f измеримо*;
- 2. $f^{-1}(U)$ измеримо для любого открытого U в \mathbb{R} ;
- 3. $f^{-1}(\Omega)$ для любого борелевского Ω в $\overline{\mathbb{R}}$.

 \mathcal{A} оказательство. Рассмотрим $\mathcal{A} = \{A \in B(\overline{\mathbb{R}}) : f^{-1}(A) \text{ измеримо}\}$. Так как $\emptyset \in \mathcal{A}, E \setminus f^{-1}(A) = f^{-1}(\overline{\mathbb{R}} \setminus A) \Rightarrow (A \in \mathcal{A}) \Rightarrow \overline{\mathbb{R}} \setminus A \in \mathcal{A}$) и $f^{-1}(\bigcup_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} f^{-1}(A_i) \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$, то \mathcal{A} образует σ -алгебру. \mathcal{A} содержит все лучи $[-\infty, a)$. Следовательно, $B(\overline{\mathbb{R}}) = \mathcal{A}$, то есть $(1 \Rightarrow 3)$.

Импликации $(3 \Rightarrow 2 \Rightarrow 1)$ очевидны.

Замечание. В определении измеримой функции < можно заменить на \leq , >, \geqslant . Это следует из следующих равенств:

$$\{x : f(x) \le a\} = \bigcap_{k=1}^{\infty} \{x : f(x) < a + \frac{1}{k}\},\$$

$$\{x : f(x) \ge a\} = \bigcap_{k=1}^{\infty} \{x : f(x) > a - \frac{1}{k}\},\$$

$$\{x : f(x) > a\} = E \setminus \{x : f(x) \le a\},\$$

$$\{x : f(x) < a\} = E \setminus \{x : f(x) \ge a\}.$$

Пример. 1. Пусть $A \subset \mathbb{R}^n$, Определим индикатор (характеристическую функцию) A:

$$\mathbb{I}_A: \mathbb{R}^n \to \mathbb{R}^n, \ \mathbb{I}_A(x) = \begin{cases} 1, \ x \in A; \\ 0, \ x \notin A. \end{cases}$$

Поскольку $\{x : \mathbb{I}_A(x) < a\}$ пусто при $a \leq 0$, совпадает с A^c при $a \in (0,1]$ и совпадает с \mathbb{R}^n при a > 1, то функция \mathbb{I}_A является измеримой $\Leftrightarrow A$ измеримо.

2. Пусть $f: E \to \mathbb{R}$ непрерывна и измерима на E. По критерию непрерывности $f^{-1}(-\infty, a)$ открыто в E, то есть $\exists \mathcal{G} : f^{-1}(-\infty, a) = E \cap G$. Следовательно, $f^{-1}(-\infty, a)$ измеримо как пересечение измеримых множеств.

Теорема 9.1. Если $f, g : E \to \mathbb{R}$ измеримые и $\lambda \in \mathbb{R}$, то $f + g, \lambda f, |f|, fg$ также измеримы.

Доказательство. 1. Докажем измеримость суммы. Поскольку $\alpha < \beta \Leftrightarrow \exists r \in \mathbb{Q} (\alpha < r < \beta), \mathbb{Q} = \{r_k\}_{k=1}^{\infty}$, то

$$\{x \in E : f(x) + g(x) < a\} = \{x \in E : f(x) < a - g(x)\} = \bigcup_{k=1}^{\infty} \{x \in E : f(x) < r_k < a - g(x)\} = \bigcup_{k=1}^{\infty} \{x \in E : f(x) < r_r\} \cap \{x \in E : g(x) < a - r_k\}.$$

Следовательно, $\{x \in E : f(x) + g(x) < a\}$ измеримо.

- 2. Пусть $\lambda > 0$, тогда $\{x \in E : \lambda f(x) < a\} = \{x \in E : f(x) < \frac{a}{\lambda}\}$ измеримо. Если $\lambda = 0$, то тривиально. Если $\lambda < 0$, то аналогично.
- 3. Так как $\{x \in E: f^2(x) < a\} = \{x \in E: f(x) < \sqrt{a}\} \cap \{x \in E: f(x) > -\sqrt{a}\}$ измеримо $\forall a>0.$

Если $a \leq 0$, то $\{x \in E : f^2(x) < a\} = \emptyset$ – измеримо.

Следовательно, f^2 – измеримая функция. Аналогично для |f|.

Так как $fg = \frac{1}{2} ((f+g)^2 - f^2 - g^2)$, то fg измерима.

Задача. Пусть $g:E \to \mathbb{R}$ измерима, $g \neq 0$ на E. Докажите, что $\frac{f}{g}$ измерима.

Замечание. Теорема остается справедливой для функций со значениями в $\overline{\mathbb{R}}$, если операции допустимы. Например, для f+g необходимо $f^{-1}(-\infty)\cap g^{-1}(+\infty)=\varnothing$ и $f^{-1}(+\infty)\cap g^{-1}(-\infty)=\varnothing$.

Определение 9.2. Функции $f^+ = \max\{f,0\}$ и $f^- = \max\{-f,0\}$ называются положительной и отрицательной частями f соответственно.

Замечание. Из определения следует, что $f = f^+ - f^-, |f| = f^+ + f^-$ и $0 \leqslant f^\pm \leqslant |f|.$

Следствие. Измеримость f равносильна одновременной измеримости f^+ и f^- .

Доказательство. Пусть f измерима, тогда $f^{\pm}=\frac{1}{2}(|f|\pm f)$ – измеримы. Если f^{\pm} измеримы, то $f=f^+-f^-$ измерима.

Теорема 9.2. Если $f_k: E \to \overline{\mathbb{R}}$ – измеримы, то $\sup_k f_k$, $\inf_k f_k$, $\overline{\lim}_{k \to +\infty} f_k$, $\underline{\lim}_{k \to +\infty} f_k$ также измеримы на E.

 \mathcal{A} оказательство. Измеримость $g = \sup_k f_k$ следует из равенства:

$${x \in E : g(x) \leq a} = \bigcap_{k=1}^{+\infty} {x \in E : f_k(x) \leq a}$$

Измеримость $h = \inf_k f_k$ следует из $\inf_k f_k = -\sup_k (-f_k)$.

Далее, поскольку $\overline{\lim}_{k\to+\infty} f_k = \inf_k \sup_{m\geqslant k} f_m$, $\underline{\lim}_{k\to+\infty} f_k = \sup_k \inf_{m\geqslant k} f_m$, то оба предела измеримы.

Следствие. Если $f_k: E \to \overline{\mathbb{R}}$ измеримы, и $f(x) = \lim_{k \to +\infty} f_k(x)$ для всех $x \in E$, то f измерима на E.

Доказательство. Вытекает из предыдущей теоремы, но докажем непосредственно.

Имеем $f(x) < a \Leftrightarrow \exists j \in \mathbb{N} \ \exists N \ \forall k \geqslant N \ (f_k(x) < a - \frac{1}{i}).$

 $\{x:f(x)< a\}=igcup_{j=1}^{+\infty}igcup_{N=1}^{+\infty}igcap_{k=N}^{+\infty}\{x:f_k(x)< a-rac{1}{j}\}$ — измеримо как операции над измеримыми множествами.

Определение 9.3. Пусть $E \subset \mathbb{R}^n$, Q – формула на E.

Говорят, что Q верна *почти везде на* E, если $\mu(x \in E : Q(x)$ ложно) = 0.

Лемма 9.2. Пусть $f, g : E \to \mathbb{R}$. Если f = g почти везде и f измерима, то g измерима.

Доказательство. По условию, $Z = \{x \in E : f(x) \neq g(x)\}$ имеет меру нуль. Тогда для любого $a \in \mathbb{R}$ имеем $\{x \in E : g(x) < a\} = (\{x \in E : f(x) < a\} \cap Z^c) \cup (\{x \in E : g(x) < a\} \cap Z)$ – измеримо.

Следствие. Если $f_k:E\to\overline{\mathbb{R}}$ измеримы и $f_k\to f$ почти везде на E, где $f:E\to\overline{\mathbb{R}}$, то f измерима.

Доказательство. $g = \overline{\lim}_{k \to +\infty} f_k$ измерима на E, f = g почти везде на E, значит f измерима (по лемме).

Определение 9.4. Функция $\varphi: \mathbb{R}^n \to \mathbb{R}$ называется *простой*, если φ измерима и множество её значений конечно.

Замечание. Любая линейная комбинация индикаторов измеримых множеств является простой функцией.

С другой стороны, для любой простой функции φ существует разбиение \mathbb{R}^n конечным числом измеримых множеств, на которых φ постоянна (допустимое разбиение для φ). Такое разбиение можно построить следующим образом: пусть $\varphi(\mathbb{R}^n) = \{a_1, \ldots, a_m\}$, где a_i попарно различны, определим $A_i = \varphi^{-1}(a_i)$. Тогда $\varphi = \sum_{i=1}^m a_i \mathbb{I}_{A_i}$ и $\{A_i\}$ – допустимое разбиение.

Рассмотрим вопрос о приближении измеримых функций простыми.

Теорема 9.3. Если $f: E \to [0, +\infty]$ – неотрицательная измеримая функция, то существует последовательность $\{\varphi_k\}$ неотрицательных простых функций, таких что $\forall x \in E$ выполняется

- 1. $0 \leqslant \varphi_1(x) \leqslant \varphi_2(x) \leqslant \dots$
- 2. $\lim_{k\to+\infty} \varphi_k(x) = f(x)$

Доказательство. Для $k \in \mathbb{N}$ определим множества:

$$E_{k,j} = \left\{ x \in E : \frac{j-1}{2^k} \le f(x) < \frac{j}{2^k} \right\}, \ j = 1, \dots, k \cdot 2^k,$$
$$F_k = \{ x \in E : f(x) \ge k \}.$$

Множества $E_{k,j}$ и F_k измеримы и в объединении дают E.

Определим $\varphi_k = \sum_{j=1}^{k \cdot 2^k} \frac{j-1}{2^k} \mathbb{I}_{E_{k,j}} + k \cdot \mathbb{I}_{F_k}$. Пусть $x \in E$. Покажем, что $\{\varphi_k(x)\}$, возрастая, стремится к f(x).

Если $f(x) = +\infty$, то $\varphi_k(x) = k$ для всех k и утверждение верно.

Пусть $f(x) \in \mathbb{R}$ и $k \in \mathbb{N}$. Если $f(x) \geqslant k+1$, то $\varphi_{k+1}(x) = k+1 > k = \varphi_k(x)$. Если $k \leqslant f(x) < k+1$, то $\varphi_{k+1}(x) \geqslant k = \varphi_k(x)$.

Пусть f(x) < k, тогда $\frac{j-1}{2^k} \leqslant f(x) < \frac{j}{2^k}$ для некоторого $j, 1 \leqslant j \leqslant k \cdot 2^k$. Возможны два варианта: $\frac{2j-2}{2^{k+1}} \leqslant f(x) < \frac{2j-1}{2^{k+1}} \leqslant f(x) < \frac{2j-1}{2^{k+1}}$. В обоих случаях $\varphi_{k+1}(x) \geqslant \frac{2j-2}{2^{k+1}} = \frac{j-1}{2^k} = \varphi_k(x)$ и возрастание установлено. Кроме того, $0 \leqslant f(x) - \varphi_k(x) < 2^{-k}$ при всех $k \geqslant [f(x)] + 1$, откуда следует, что $\varphi_k(x) \to f(x)$.

Замечание. Если f ограничена, то $\varphi_k \rightrightarrows f$ на E.

Определение 9.5. Пусть φ – простая функция, $\varphi = \sum_{i=1}^m a_i \mathbb{I}_{A_i}$, где $\{A_i\}_{i=1}^m$ – допустимое разложение.

Интегралом от φ по измеримому множеству E называется

$$\int_{E} \varphi d\mu = \sum_{i=1}^{m} a_{i} \mu(E \cap A_{i}).$$

Лемма 9.3. Пусть φ, ψ – простые функции. Тогда:

- 1. Если $\varphi\leqslant\psi$ на $E,\ mo\ \int_{E}\varphi d\mu\leqslant\int_{E}\psi d\mu$ (монотонность).
- 2. Если $\alpha \in [0, +\infty)$, то $\int_E \alpha \varphi d\mu = \alpha \int_E \varphi d\mu$ (положительная однородность).
- 3. $\int_E (\varphi + \psi) d\mu = \int_E \varphi d\mu + \int_E \psi d\mu$ (аддитивность по функциям).

Доказательство. Пусть $\{A_i\}_{i=1}^m,\ \{B_j\}_{j=1}^k$ – допустимые разбиения φ и ψ соответственно $(\varphi|_{A_i}=a_i,\ \varphi|_{B_j}=b_j)$. Положим $C_{ij}=A_i\cap B_j$.

Тогда $\{C_{ij}\}$ – общее допустимое разбиение для φ и ψ . Поскольку $A_i = A_i \cap \mathbb{R}^n = A_i \cap (\bigcup_{j=1}^k B_j) = \bigcup_{j=1}^k C_{ij}$, то по свойству аддитивности меры $\int_E \varphi d\mu = \sum_{i=1}^m a_i \mu(E \cap A_i) = \sum_{i=1}^m a_i \mu(\bigcup_{j=1}^k (E \cap C_{ij})) = \sum_{i=1}^m \sum_{j=1}^k a_i \mu(E \cap C_{ij})$.

 $\sum_{i=1}^{m} a_{i}\mu(\bigcup_{j=1}^{k} (E \cap C_{ij})) = \sum_{i=1}^{m} \sum_{j=1}^{k} a_{i}\mu(E \cap C_{ij}).$ Аналогично, $\int_{E} \psi d\mu = \sum_{j=1}^{k} \sum_{i=1}^{m} b_{j}\mu(E \cap C_{ij})$. Если $E \cap C_{ij} \neq \emptyset$, то для любого $x \in E \cap C_{ij}$ имеем $a_{i} = \varphi(x) \leqslant \psi(x) = b_{j}$, что завершает доказательство.

Доказательство пункта 2 очевидно.

Доказательство пункта 3 аналогично пункту 1.

Замечание. Попутно про доказательстве монотонности доказана корректность определения интеграла (то есть независимость от выбора допустимого разбиения).

Определение 9.6. Пусть $f: E \to [0, +\infty]$ – неотрицательная измеримая функция. Тогда:

$$\int_E f d\mu = \sup \left\{ \int_E \varphi d\mu, \ 0 \leqslant \varphi \leqslant f, \ \varphi - \text{простая} \right\}.$$

Замечание. Покажем, что определение согласуется с интегралом от простой функции. Чтобы их различить, перед знаком введенного ранее интеграла поставим (s).

Пусть f — простая неотрицательная функция. Если $0\leqslant \varphi\leqslant f$ и φ — простая, то по свойству монотонности $(s)\int_E \varphi d\mu\leqslant (s)\int_E f d\mu$. Переходя к супремуму по φ , получим $\int_E \varphi d\mu\leqslant (s)\int_E f d\mu$. Противоположное неравенство очевидно, так как f сама является простой функцией.

Непосредственно из определений вытекают следующие свойства интеграла Лебега. Пусть $f,g:E\to [0,+\infty]$ — неотрицательные измеримые функции.

Свойство 9.1 (монотонность). *Если* $f \leqslant g$ на E, то $\int_E f \, d\mu \leqslant \int_E g \, d\mu$.

Свойство 9.2 (однородность). Если $\lambda \in [0, +\infty)$, то $\int_E \lambda f \, d\mu = \lambda \int_E f \, d\mu$.

Свойство 9.3. Eсли $E_0 \subset E$ измеримо, то $\int_{E_0} f \, d\mu = \int_E f \cdot \mathbb{I}_{E_0} \, d\mu$.

Доказательство. Пусть $0 \leqslant \underbrace{\varphi}_{\text{прост.}} \leqslant f$ на E_0 , тогда

$$\int_{E_0} \varphi \, d\mu = \int_E \varphi \cdot \mathbb{I}_{E_0} \, d\mu \leqslant \int_E f \cdot \mathbb{I}_{E_0} \, d\mu,$$
$$\int_{E_0} f \, d\mu \leqslant \int_E f \cdot \mathbb{I}_{E_0} \, d\mu \leqslant .$$

Обратно, пусть $0\leqslant \underbrace{\psi}_{\text{прост.}}\leqslant f\cdot \mathbb{I}_{E_0}$ на E. Тогда $\psi=0$ на $E\setminus E_0$ и, значит, $\psi=\psi\cdot \mathbb{I}_{E_0}$ на

E. Следовательно,

$$\int_E \psi \, d\mu = \int_E \psi \cdot \mathbb{I}_{E_0} \, d\mu = \int_{E_0} \psi \, d\mu \leqslant \int_{E_0} f \, d\mu.$$

и, значит, $\int_{E} f \cdot \mathbb{I}_{E_0} d\mu \leqslant \int_{E_0} f d\mu$.

Свойство 9.4. Если $E_0 \subset E$ измеримо, то $\int_{E_0} f \, d\mu \leqslant \int_E f \, d\mu$.

Доказательство. По свойствам (9.1) и (9.3) имеем

$$\int_{E_0} f \, d\mu = \int_E f \cdot \mathbb{I}_{E_0} \, d\mu \leqslant \int_E f \, d\mu.$$

Теорема 9.4 (Беппо Леви). Пусть $f_k: E \to [0, +\infty]$ измеримы, $u \ f_k \to f$ на E. Если $0 \leqslant f_k(x) \leqslant f_{k+1}(x)$ для всех $x \in E \ u \ k \in \mathbb{N}$, то

$$\lim_{k \to \infty} \int_E f_k \, d\mu = \int_E f \, d\mu.$$

Доказательство. Интегрируя $f_k \leqslant f_{k+1} \leqslant f$ на E, получим

$$\int_{E} f_k \, d\mu \leqslant \int_{E} f_{k+1} \, d\mu \leqslant \int_{E} f \, d\mu.$$

Следовательно, $\left\{ \int_E f \, d\mu \right\}$ нестрого возрастает (в $\overline{\mathbb{R}}$) и, значит, существует

$$\lim_{k \to \infty} \int_E f_k \, d\mu \leqslant \int_E f \, d\mu.$$

Докажем противоположное неравенство. Для этого достаточно доказать, что $\lim_{k\to\infty}\int_E f_k\,d\mu \geqslant \int_E \varphi\,d\mu$ для всех простых φ , $0\leqslant \varphi\leqslant f$ на E.

Рассмотрим такую функцию φ . Зафиксируем $t \in (0,1)$. Положим $E_k = \{x \in E : f_k(x) \geqslant t\varphi(x)\}$. Ввиду монотонности $\forall k \ E_k \subset E_{k+1}$. Докажем, что $\bigcup_{k=1}^{\infty} E_k = E$. Включение «С» очевидно.

Пусть $x \in E$. Если $\varphi(x) = 0$, то $\forall k \ x \in E_k$.

Если $\varphi(x) > 0$, то $f(x) \geqslant \varphi(x) > t\varphi(x)$. Тогда $\exists m \in \mathbb{N} \ (f_m(x) \geqslant t\varphi(x))$, то есть $x \in E_m$.

По монотонности

$$\int_{E} f_k \, d\mu \geqslant \int_{E_k} f_k \, d\mu \geqslant t \int_{E_k} \varphi \, d\mu.$$

Пусть $\varphi = \sum_{i=1}^N a_i \cdot \mathbb{I}_{A_i}$, где $\{A_i\}_1^N$ — допустимое разбиение.

Тогда по свойству монотонности меры:

$$\int_{E_k} \varphi \, d\mu = \sum_{i=1}^N a_i \mu(A_i \cap E_k) \underset{k \to \infty}{\to} \sum_{i=1}^N a_i \mu(A_i \cap E) = \int_E \varphi \, d\mu.$$

Переходя к пределу в неравенстве (9.4)

$$\lim_{k \to \infty} \int_E f_k \, d\mu \geqslant t \int_E \varphi \, d\mu, \ t \to 1 - 0.$$

Задача. Пусть $\{f_k\}$ — последовательность неотрицательных измеримых функций и $f_k \to f$ почти всюду на E. Если $\exists C > 0 \ \left(\int_E f_k \, d\mu \leqslant C \right), \ mo \int_E f \, d\mu \leqslant C.$

Теорема Леви в сочетании с теоремой о приближении неотрицательной измеримой функции простыми позволяет переносить свойства интеграла Лебега с простых функций на неотрицательные измеримые.

Свойство 9.5 (аддитивность). *Если* $f, g \geqslant 0$ измеримы на $E, mo \int_E (f+g) d\mu = \int_E f d\mu + \int_E g d\mu$.

Доказательство. Пусть $\varphi_k \uparrow$ (возрастает и стремится к) $f, \psi_k \uparrow g$ на E. Тогда $\varphi_k + \psi_k \uparrow f + g$ на E и, значит, по теореме Леви

$$\begin{split} &\int_E (f+g)\,d\mu = \lim_{k\to\infty} \int_E (\varphi_k + \psi_k)\,d\mu = \\ &= \lim_{k\to\infty} \int_E \varphi_k\,d\mu + \lim_{k\to\infty} \int_E \psi_k\,d\mu = \int_E f\,d\mu + \int_E g\,d\mu. \end{split}$$

Следствие (теорема Леви для рядов). Если $f_k \geqslant 0$ измерима на E, то

$$\int_E \sum_{k=1}^{\infty} f_k d\mu = \sum_{k=1}^{\infty} \int_E f_k d\mu.$$

Доказательство. По предыдущему свойству

$$\int_{E} \sum_{k=1}^{m} f_k \, d\mu = \sum_{k=1}^{m} \int_{E} f_k \, d\mu.$$

Поскольку $f_k \geqslant 0$, то последовательность частичных сумм ряда нестрого возрастает (по m). Поэтому по теореме Леви $\lim_{m\to\infty}\int_E\sum_{k=1}^m f_k\,d\mu=\int_E\sum_{k=1}^\infty f_k\,d\mu$.

Теорема 9.5 (счётная аддитивность интеграла). Пусть E_k измеримы и попарно не пересекаются, $E = \bigsqcup_{k=1}^{\infty} E_k$. Если $f \geqslant 0$ на E, то

$$\int_{E} f \, d\mu = \sum_{k=1}^{\infty} \int_{E_k} f \, d\mu.$$

Доказательство. Поскольку $\{E_k\}$ образуют разбиение E, то $\mathbb{I}_E = \sum_{k=1}^{\infty} \mathbb{I}_{E_k}$, $f = f \cdot \mathbb{I}_E = \sum_{k=1}^{\infty} f \cdot \mathbb{I}_{E_k}$ на E. Следовательно, по теореме Леви для рядов и

$$\int_E f \, d\mu = \sum_{k=1}^\infty \int_E f \cdot \mathbb{I}_{E_k} \, d\mu = \sum_{k=1}^\infty \int_{E_k} f \, d\mu.$$

Теорема 9.6 (неравенство Чебышёва). Если $f \geqslant 0$ измерима на $E, mo \ \forall t \in (0, +\infty)$

$$\mu\{x \in E : f(x) \geqslant t\} \leqslant \frac{1}{t} \int_{E} f \, d\mu.$$

Доказательство. Рассмотрим $E_t = \{x : f(x) \geqslant t\}$, тогда

$$\int_{E} f \, d\mu \geqslant \int_{E_{t}} f \, d\mu \geqslant t \int_{E_{t}} d\mu = t \cdot \mu(E_{t}).$$

9.2 Интеграл Лебега в общем случае

Определение 9.7. Пусть $f:E \to \overline{\mathbb{R}}$ измерима, тогда

$$\int_E f \, d\mu := \int_E f^+ \, d\mu - \int_E f^- \, d\mu,$$

при условии, что хотя бы один из $\int_E f^\pm \, d\mu$ конечен.

Функция f называется uhmerpupyemoй (по Лебегу), если оба $uhterpana \int_E f^\pm d\mu$ конечны.

Замечание. Данное определение согласуется с определением интеграла от неотрицательной функции, так как

$$f^+ = f, f^- \equiv 0$$
 и $\int_E 0 \, d\mu = 0.$

Замечание. Если f измерима на E, то условия интегрируемости f и |f| равносильны. В случае интегрируемости $\left|\int_{E} f \, d\mu\right| \leqslant \int_{E} |f| \, d\mu$.

Доказательство. Если f интегрируема на E, то $\int_E f^\pm d\mu < +\infty$. Тогда в силу оценки $|f| = f^+ + f^-$ интеграл $\int_E |f| d\mu < +\infty$. Если |f| интегрируема на E, то в силу оценки $0 \le f^\pm \le |f|$ получаем, что $\int_E f^\pm d\mu < +\infty$, то есть f интегрируема на E.

Имеем

$$\left| \int_E f d\mu \right| = \left| \int_E f^+ d\mu - \int_E f^- d\mu \right| \leqslant \int_E f^+ d\mu + \int_E f^- d\mu = \int_E |f| d\mu.$$

Замечание. Если f интегрируема на E, то f конечна почти всюду на E.

Доказательство. Определим $A = \{x \in E : |f(x)| = +\infty\}$. Тогда по неравенству Чебышева для любого $t \in (0; +\infty) : \mu(A) \leq \mu\{x : |f(x)| \geq t\} \leq \frac{1}{t} \int_{E} |f| d\mu$. Устремляя $t \to +\infty$, получаем, что $\mu(A) = 0$.

Лемма 9.4. Если $\underbrace{E_0}_{u_{3M}} \subset E \ u \ \mu(E \setminus E_0) = 0$, то интегралы $\int_E f d\mu \ u \int_{E_0} f d\mu$ существуют одновременно и в случае существования совпадают.

Доказательство. Отметим, что f на E и f на E_0 измеримы одновременно. По свойству аддитивности по множествам:

$$\int_{E} f^{\pm} d\mu = \int_{E_0} f^{\pm} d\mu + \int_{E \setminus E_0} f^{\pm} d\mu = \int_{E_0} f^{\pm} d\mu.$$

Учтем, что интеграл по множеству меры 0 от произведения измеримых функций равен 0. Это вытекает из определения интеграла, для простых функций также следует учесть, что она ограничена.

Следствие. Пусть $f,g:\underbrace{E}_{\text{изм.}}\to\mathbb{R}$. Если f интегрируема на E и f=g почти всюду на E, то g интегрируема на E и $\int_E g d\mu = \int_E f d\mu.$

Задача. Пусть f измерима на E и существует интегрируемая на E функция g, такая что $|f| \leq g$ почти всюду на E. Докажите, что f интегрируема на E.

Доказательство. Пусть
$$E_0 \subset E$$
 – подмножество, на котором $f \neq g$, $\mu(E_0) = 0$.
$$\int_E |f| d\mu = \int_{E_0} |f| d\mu + \int_{E \setminus E_0} |f| d\mu \leqslant \int_{E \setminus E_0} g d\mu \leqslant \int_E g d\mu < +\infty$$

Теорема 9.7. Пусть $f, g: E \to \mathbb{R}$ интегрируема и $\alpha \in \mathbb{R}$. Тогда:

- 1. Если $f \leqslant g$ на E, то $\int_E f d\mu \leqslant \int_E g d\mu$;
- 2. $\int_E \alpha f d\mu = \alpha \int_E f d\mu$;
- 3. $\int_E (f+g)d\mu = \int_E fd\mu + \int_E gd\mu$.

Доказательство.

- 1. Пусть $f\leqslant g$ на E. Тогда $f^+\leqslant g^+,\,f^-\geqslant g^-$ и, значит, $\int_E f^+d\mu\leqslant \int_E g^+d\mu$ и $\int_E f^-d\mu\geqslant \int_E g^-d\mu$. Вычтем одно неравенство из другого, получаем $\int_E fd\mu\leqslant \int_E gd\mu$.
- 2. Пусть $\alpha \geqslant 0$. Тогда $(\alpha f)^+ = \alpha f^+$, $(\alpha f)^- = \alpha f^-$ и, значит, $\int_E \alpha f d\mu = \int_E (\alpha f)^+ d\mu \int_E (\alpha f)^- d\mu = \alpha \int_E f^+ d\mu \alpha \int_E f^- d\mu = \alpha \int_E f d\mu$. Так как $(-f)^+ = \max\{-f, 0\} = f^-$, $(-f)^- = \max\{f, 0\} = f^+$, то:

$$\int_{E} (-f)d\mu = \int_{E} (-f)^{+} d\mu - \int_{E} (-f)^{-} d\mu = \int_{E} f^{-} d\mu - \int_{E} f^{+} d\mu = -\int_{E} f d\mu.$$

Случай $\alpha < 0$ сводится к рассмотренному, так как $\alpha = (-1)|\alpha|$.

3. Так как f и g конечны почти всюду на E (из интегрируемости), то $\exists E_0 \subset E$ и $\mu(E \setminus E_0) = 0$, на котором определена функция h = f + g. Функция h = f + g интегрируема на E_0 (так как $|h| \leq |f| + |g|$) и $h^+ - h^- = h = f + g = (f^+ - f^-) + (g^+ - g^-)$ или $h^+ + f^- + g^- = h^- + f^+ + g^+$ на E_0 . Следовательно, $\int_{E_0} h^+ d\mu + \int_{E_0} f^- d\mu + \int_{E_0} g^+ d\mu = \int_{E_0} h^- d\mu + \int_{E_0} f^+ d\mu + \int_{E_0} g^+ d\mu$.

Все интегралы в предыдущем равенстве конечны, их перегруппировка дает $\int_{E_0} h d\mu = \int_{E_0} f d\mu + \int_E g d\mu$.

Так как $\mu(E \setminus E_0)$, то доопределим на $E_0 \cup (E \setminus E_0)$ произвольным образом. Получаем равенство для интегралов из 3 пункта.

Теорема 9.8 (Лебег). Пусть $f_k: E \to \overline{\mathbb{R}}$ измеримы и $f_k \to f$ почти всюду на E. Если существует интегрируемая на E функция g, такая что $|f_k| \leqslant g \ \forall k$, то $\lim_{k \to +\infty} \int_E f_k d\mu = \int_E f d\mu$

Доказательство. Посколько при интегрируемости можно пренебрегать множествами меры 0, будем считать, что $f_k \to f$ всюду на E и g конечна на E. Так как $|f_k| \leqslant g$ на E, то все f_k интегрируемы на E. Переходя к пределу при $k \to +\infty$, получаем $|f| \leqslant g$ на E. Следовательно, f интегрируема.

Определим $h_k = \sup_{m\geqslant k} |f_m - f|$ на E, тогда имеем $0\leqslant h_{k+1}(x)\leqslant h_k(x)$ на E и $\lim_{k\to +\infty} h_k(x) = \inf_k \sup_{m\geqslant k} |f_m(x) - f(x)| = \overline{\lim}_{k\to +\infty} |f_k(x) - f(x)| = 0$. Функция h_k интегрируема на E и $|h_k|\leqslant 2g$ ($|f_k|\leqslant g$, $|f|\leqslant g$). Применим теорему Леви к последовательности $\{2g-h_k\}$:

$$\lim_{k \to +\infty} \int_E (2g - h_k) d\mu = \int_E 2g d\mu,$$

откуда $\lim_{k\to +\infty}\int_E h_k d\mu=0$. Для завершения доказательства $\int_E |f_k-f| d\mu\leqslant \int_E h_k d\mu\to 0$ при $k\to +\infty$ и, значит, $\left|\int_E f_k d\mu-\int_E f d\mu\right|\leqslant \int_E |f_k-f| d\mu\to 0$.

Теорема 9.9. Пусть f ограничена на [a,b]. f интегрируема по Риману на $[a,b] \Leftrightarrow f$ непрерывна почти всюду на [a,b]. B этом случае функция интегрируема по Лебегу и оба интеграла совпадают.

Доказательство. 1. Пусть $f \in \mathcal{R}[a,b], J = \int_a^b f(x) dx$. Покажем, что f непрерывна почти всюду на [a,b] и $\int_{[a,b]} f d\mu = J$.

Для разбиения $T = \{x_k\}_{k=0}^m$ открытого на [a,b] положим $M_i = \sup_{[x_{i-1},x_i]} f$, $m_i = \inf_{[x_{i-1},x_i]} f$ и определим простые функции

$$\varphi_T = \sum_{i=1}^m m_i \cdot \mathbb{I}_{[x_{i-1}, x_i)}, \ \psi_T = \sum_{i=1}^m \mathbb{I}_{[x_{i-1}, x_i)} \cdot M_i.$$

В последний промежуток включим точку $b=x_n$. Очевидно, что $\int_{[a,b]} \varphi_T d\mu=s_T,$ $\int_{[a,b]} \psi_T d\mu=S_T$ (сумма Дарбу).

Рассмотрим последовательность разбиений $\{T_k\}$, $T_k \subset T_{k+1}$ и $|T| \to 0$. Положим $\varphi_k = \varphi_{T_k}$, $\psi_k = \psi_{T_k}$. Имеем $\varphi_k(x) \leqslant \varphi_{k+1}(x) \leqslant f(x) \leqslant \psi_{k+1}(x) \leqslant \psi_k(x)$ для всех $x \in [a,b]$. Следовательно, существуют $\varphi(x) = \lim_{k \to +\infty} \varphi_k(x)$, $\psi(x) = \lim_{k \to +\infty} \psi_k(x)$.

Функции φ , ψ измеримы (как предел измеримых функций) и если $|f| \leqslant M$, то $|\varphi|, |\psi| \leqslant M$ и, значит, по теореме Лебега о мажорированной сходимости

$$\int_{[a,b]} (\psi - \varphi) d\mu = \lim_{k \to +\infty} \int_{[a,b]} (\psi_k - \varphi_k) d\mu = \lim_{k \to +\infty} (S_{T_k} - s_{T_k}) = 0,$$

откуда следует, что $\psi - \varphi = 0$ почти всюду на [a, b].

Пусть $Z = \{x : \varphi(x) \neq \psi(x)\}$. Рассмотрим $x \notin Z \cup (\bigcup_{k=1}^{+\infty} T_k)$ и $\varepsilon > 0$. Выберем k, так что $\psi_k(x) - \varphi_k(x) < \varepsilon$ и рассмотрим соотвествующее T_k . Выберем $(x - \delta, x + \delta)$, лежащий в одном отрезке разбиения T_k . Тогда $|f(t) - f(x)| < \psi_k(x) - \varphi_k(x) < \varepsilon \ \forall t \in (x - \delta, x + \delta)$. Это означает, что f непрерывна в точке x. Следовательно, f непрерывна почти всюду на [a, b]. По теореме Лебега

$$J = \lim_{k \to +\infty} S_{T_k} = \lim_{k \to +\infty} \int_{[a,b]} \varphi_k d\mu = \int_{[a,b]} f d\mu.$$

2. Пусть f непрерывна почти всюду на [a,b] и $\varepsilon > 0$. Рассмотрим $\{T_k\}$ — разбиение [a,b] на 2^k равных отрезка, тогда $T_{k+1} \subset T_k$. Пусть x не является точкой разрыва f и $x \notin \bigcup_{i=1}^{\infty} T_k$. Тогда, как и первом пункте , имеем $\varphi_k(x) \uparrow f(x)$ и $\psi_k \downarrow f(x)$ (учли непрерывность в точке x). По теорме Лебега $S_{T_k} = \int_{[a,b]} \psi_k d\mu \to \int_{[a,b]} f d\mu$, $s_{T_k} = \int_{[a,b]} \varphi_k d\mu = \int_{[a,b]} f d\mu$. Тогда, по критерию Дарбу $f \in \mathcal{R}[a,b]$.

Задача. Пусть f локально интегрируема (по Риману) на [a,b). Докажите, что

- 1. f измерима на [a,b);
- 2. если дополнительно $f\geqslant 0$ на [a,b), то f интегрируема на $[a,b)\Leftrightarrow \int_a^{\to b}f(x)dx$ сходится;
- 3. в общем случае f интегрируема на $[a,b) \Rightarrow \int_a^{\to b} f(x) dx$ сходится, но следствие в обратную сторону неверно.

9.3 Формула суммирования Эйлера

Теорема 9.10 (Эйлер). Пусть $f:[1,+\infty)\to\mathbb{R}$ дифференцируема и f' локально интегрируема на $[1,+\infty)$. Тогда для любого $n\in\mathbb{N}$ справедливо равенство

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n} f(t)dt + \frac{f(1) + f(n)}{2} + \int_{1}^{n} \left(\{t\} - \frac{1}{2} \right) f'(t)dt.$$

Доказательство. Интегрирование по частям дает

$$\int_{k}^{k+1} f(t)dt = f(t)(t-k) \mid_{k}^{k+1} - \int_{k}^{k+1} (t-k)f'(t)dt = f(k+1) - \int_{k}^{k+1} \{t\}f'(t)dt.$$

Суммируя полученные равенства от 1 до n-1:

$$\int_{1}^{n} f(t)dt = \sum_{k=2}^{n} f(k) - \int_{1}^{n} \{t\} f'(t)dt.$$

По формуле Ньютона-Лейбница $\frac{f(n)-f(1)}{2}=\int_1^n\frac{f'(t)}{2}dt\Rightarrow \frac{f(n)+f(1)}{2}=f(1)+\int_1^n\frac{f'(n)}{2}.$ Складывая два равенства, получим искомое.

Следствие. Пусть $f:[1,+\infty)\to\mathbb{R}$ дифференцируема, f монотонна и $f'(t)\to 0$ при $t\to+\infty$. Тогда для любого $n\in\mathbb{N}$ справедливо

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n} f(t)dt + C_f + \frac{f(n)}{2} + \varepsilon_n,$$

где
$$C_f = \frac{f(1)}{2} + \int_1^{+\infty} \left(\{t\} - \frac{1}{2} \right) f'(t) dt$$
, $\varepsilon_n = \int_n^{+\infty} \left(\{t\} - \frac{1}{2} \right) f'(t) dt$.

Доказательство. Функция $t\mapsto \{t\}-\frac{1}{2}$ – периодическая функция с периодом 1 и интеграл по каждому равен 0.

$$\int_{1}^{x} \left(\{t\} - \frac{1}{2} \right) dt = \int_{[x]}^{x} \left(t - [x] - \frac{1}{2} \right) dt = \frac{f^{2}}{2} \Big|_{[x]}^{x} - \left([x] + \frac{1}{2} \right) t \Big|_{[x]}^{x} =$$

$$= \frac{x^{2}}{2} - \frac{[x]^{2}}{2} - \left([x] + \frac{1}{2} \right) \{x\} = \frac{1}{2} \{x\} (x + [x]) - [x] \{x\} - \frac{1}{2} \{x\} = \frac{1}{2} (\{x\}^{2} - \{x\}).$$

Следовательно, $F(x) = \int_1^x (\{t\} - \frac{1}{2}) dt$ ограничена и, значит, $\int_1^{+\infty} (\{t\} - \frac{1}{2}) f'(t) dt$ сходится по признаку Дирихле.

В частности, $C_f \in \mathbb{R}$ и $\varepsilon \to 0$ (как «хвост» сходящегося интеграла).

Пример (формула Стирлинга). При $n \to +\infty$ справедлива оценка

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

Доказательство. Применим следствие к функции $f(t) = \ln t$. Тогда

$$\sum_{k=1}^{n} \ln k = n \ln n - n + 1 + C + \frac{\ln n}{2} + \varepsilon_n,$$

$$\ln n! = \ln(n^n e^{-n} \sqrt{n} e^{C+1} e^{\varepsilon_n}),$$

$$n! = c\sqrt{n} \left(\frac{n}{e}\right)^n (1 + o(1)), \quad n \to +\infty.$$

Для нахождения константы c воспользуемся формулой Валлиса:

$$\pi = \lim_{n \to +\infty} \frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2$$

Имеем

$$\frac{(2n)!!}{(2n-1)!!} = \frac{2^{2n}(n!)^2}{(2n)!} = \frac{2^{2n}c^2n\left(\frac{n}{e}\right)^{2n}(1+o(1))^2}{c\sqrt{2n}\left(\frac{2n}{e}\right)^{2n}(1+o(1))} = \frac{c\sqrt{n}}{\sqrt{2}}(1+o(1)),$$

значит,

$$\pi = \lim_{n \to +\infty} \frac{1}{n} \frac{c^2 n}{2} (1 + o(1))^2 = \frac{c^2}{2} \Rightarrow c = \sqrt{2\pi}.$$

Замечание. Формулу можно уточнить, рассматривая подробно асимптотику ε_n

$$\varepsilon_n = \int_n^{+\infty} \left(\frac{1}{2} - \{t\} \right) \frac{1}{t} dt = \left(\frac{\{t\} - \{t\}^2}{2t} \right) \Big|_n^{+\infty} - \frac{1}{2} \int_n^{+\infty} (\{t\} - \{t\}^2) \left(-\frac{1}{t} + \frac{1}{2} \right) dt =$$

$$= \int_n^{+\infty} (\{t\} - \{t\}^2) \frac{1}{2t^2} dt,$$

значит,

$$|\varepsilon_n| \leqslant \int_n^{+\infty} \frac{dt}{t^2} = -\frac{1}{t} \Big|_n^{+\infty} = \frac{1}{n}.$$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + O\left(\frac{1}{n}\right)\right).$$

9.4 Неизмеримые множества

Построим пример неизмеримого множества.

Пример (множество Витали). На [0,1] введём отношение эквивалентности $x \sim y \Leftrightarrow x - y \in \mathbb{Q} \Rightarrow [0,1] = \bigsqcup_{\alpha} H_{\alpha}, H_{\alpha}$ – классы эквивалетности.

V – множество, содержащее ровно один элемент из каждого H_{α} и только такие элементы (такое множество существует по аксиоме выбора).

Пусть $\{r_n\}_{n=0}^{+\infty}$ – некоторая нумерация $\mathbb{Q} \cap [-1,1], r_0 = 0$. Рассмотрим $V_n = V + r_n$.

1. V_n попарно не пересекаются, так как

$$x \in V_i \cap V_j \Rightarrow x_i + r_i = x_j + r_j \Rightarrow x_j - x_i \in \mathbb{Q}.$$

- 2. $[0,1] \subset \bigsqcup_{n=0}^{\infty} V_n \subset [-1,2].$ (левое включение: $y \in [0,1] \Rightarrow y \in H_{\alpha} \Rightarrow y = x_{\alpha} + r, \ r = y x_{\alpha \in [-1,1]} \Rightarrow \exists n(r-r_n)$) (правое включение: $V \subset [0,1]$ и $r_n \in [-1,1]$)
- 3. Пусть $A_n \subset V_n \Rightarrow \mu(A_n) = 0$. $(A_m = A_n r_n + r_m \subset V_m, \ \mu(A_m) = \mu(A_n) = 0, \ \mu(\bigsqcup_{n=0}^{\infty} A_n) = \sum_{n=0}^{\infty} \mu(A_n) = \sum_{n=0}^{\infty} a \leqslant \mu([-1,2]) = 3 \Rightarrow a = 0)$

Теорема 9.11. Если $E \subset \mathbb{R}$ и $\mu^*(E) > 0$, то E содержит неизмеримое подмножество.

Доказательство. 1. Рассмотрим сначала случай $E \subset [0,1]$.

$$E = E \cap (\bigsqcup_{n=0}^{\infty} V_n) = \bigsqcup_{n=0}^{\infty} (E \cap V_n), \ F_n := E \cap V_n.$$

 $F_n \subset V_n$. Если все F_n измеримы, то $\mu(F_n) = 0$. Следовательно, $\mu(E) = \sum_{n=0}^{+\infty} \mu(F_n) = 0$, противоречие. Следовательно, существует F_n неизмеримое.

2. Общий случай $E \subset \mathbb{R}$.

$$E = \bigsqcup_{k=-\infty}^{\infty} (\underbrace{E \cap [k, k+1)}_{E_k}) \Rightarrow \exists k : \mu^*(E_k) > 0.$$

$$\widetilde{E} = E_k - k \subset [0, 1] \text{ if } \mu^*(\widetilde{E}) = \mu(E_k) > 0.$$

$$\widetilde{E} = E_k - k \subset [0,1]$$
 и $\mu^*(\widetilde{E}) = \mu(E_k) > 0$.