

Computer vision algorithms

- Histogram Equalization / Thresholding / Binarization
- Image Filtering (Gaussian, Median, Image Sharpening, ...)
- Segmentation (Dilation, Erosion)
- Edge Detection (Canny Edge detector, Hough Transform, Gradient, Laplacian, Non-Maxima Supression, ...)

Histogram

- Histogram shows the distribution of intensities in the image.
- Histogram Equalization : increase global contrast, create flat histogram

Histogram Equalization

cumulative histogram

■ Thresholding/Binarization: depending on image intensity, either black or white

Dilation/Erosion

- After Thresholding, regions can be distorted by noise and texture
 - → Remove small imperfections with Dilation/Erosion

Dilation/Erosion

- Dilation : bright regions in the image to grow
- Erosion : bright regions in the image to shrink/dark regions in the image to grow

4-connectivity 8-connectivity

Image Filtering

• Mean Filter: replace pixels with the mean of the neighboring pixels

 Gaussian Smoothing Filter: replace pixels with the weighted mean of the neighboring pixels

1	1	2	1
$\frac{1}{16}$	2	4	2
16	1	2	1

 Median Filter: replace pixels with the median intensity in the window, requiring expensive computation for sorting

117, 122, 122, 123, **124**, 125, 125, 130, 137

123	122	117
125	137	124
125	130	122

mean filter

Gaussian filter

median filter

Canny Edge Detector

- 1. Gaussian filter to remove noise (smoothing)
- 2. Find derivatives along x,y and compute the edge strength and orientation
- 3. Non-maxima Suppression: select edge strength above some threshold and larger than neighbors along the edge orientation
- 4. Hysteresis Thresholding: suppress all the other edges that are weak and not connected to strong edges

Canny Edge Detector Example

Gradient

Compare intensity of vertical (along y) and horizontal (along x) neighbors

Edge orientation

Perpendicular to main gradient direction (according to x,y gradient components)

Canny Edge Detector Example – non-maxima suppression

Gradient magnitude map

25	30	35	36	33	30
29	44 –	→ 58	64	56	40
24	45	55	62	56	32
40	51	21	- 28 -	→ 53	40
64	77	65	67	77	62
64	84	94	92	79	55
33	50	63	60	43	0

"Angles" map (Edge orientation)

90	90	90	90	90	90
90	90	90	90	90	90
135	135	90	90	45	45
45	0	0	0	0	135
45	45	90	135	135	135
45	45	90	90	135	135
45	90	90	90	90	135

1. Start with Gradient and "angles" map, compare neighbors perpendicular along edge direction (erosion) -> non-maxima suppression map

Canny Edge Detector Example – non-maxima suppression

90	90	90	90	90	90
90	90	90	90	90	90
135	135	90	90	45	45
45	0	0	0	0	135
45	45	90	135	135	135
45	45	90	90	135	135
45	90	90	90	90	135

Non-maxima suppression map

0	0	0	0	0	0
29	0	58	64	56	40
0	45	0	0	56	0
0	51	0	0	53	0
64	77	0	0	77	62
0	84	94	92	79	0
0	0	0	0	0	0

1. Start with Gradient and "angles" map, compare neighbors perpendicular along edge direction (erosion) -> non-maxima suppression map

Canny Edge Detector Example – non-maxima suppression

Non-maxima suppression map

0	0	0	0	0	0
29	0	58	64	56	40
0	45	0	0	56	0
0	51	0	0	53	0
64	77	0	0	77	62
0	84	94	92	79	0
0	0	0	0	0	0

"Angles" map

90	90	90	90	90	90
90	90	90	90	90	90
135	135	90	90	45	45
45	0	0	0	0	135
45	45	90	135	135	135
45	45	90	90	135	135
45	90	90	90	90	135

$$T_H = 90$$
$$T_L = 50$$

- 1. Start with Gradient and "angles" map, compare neighbors perpendicular along edge direction (erosion) -> non-maxima suppression map
- 2. Mark values above T_H (=strong edge), set values below T_L to zero (=weak edge)

Non-maxima suppression map

0	0	0	0	0	0
29	0	58	64	56	40
0	45	0	0	56	0
0	51	0	0	53	0
64	77	0	0	77	62
0	84	94	92	79	0
0	0	0	0	0	0

"Angles" map

90	90	90	90	90	90
90	90	90	90	90	90
135	135	90	90	45	45
45	0	0	0	0	135
45	45	90	135	135	135
45	45	90	90	135	135
45	90	90	90	90	135

$$T_H = 90$$
$$T_L = 50$$

- 1. Start with Gradient and "angles" map, compare neighbors perpendicular along edge direction (erosion) -> non-maxima suppression map
- 2. Mark values above T_H (=strong edge), set values below T_L to zero (=weak edge)
- 3. Compare neighbors along edge direction; if neighbor to strong edge is above T_L = strong edge

0	0	0	0	0	0
29	0	58	64	56	40
0	45	0	0	56	0
0	51	0	0	53	0
64	77	0	0	77	62
0	84	94	92	79	0
0	0	0	0	0	0

90	90	90	90	90	90
90	90	90	90	90	90
135	135	90	90	45	45
45	0	0	0	0	135
45	45	90	135	135	135
45	45	90	90	135	135
45	90	90	90	90	135

$$T_H = 90$$
$$T_I = 50$$

"strong edge" map

0	0	0	0	0	0
0	0	58	64	56	0
0	0	0	0	56	0
0	51	0	0	53	0
64	77	0	0	77	62
0	1	1	1	1	0
0	0	0	0	0	0

- 1. Start with Gradient and "angles" map, compare neighbors perpendicular along edge direction (erosion) -> non-maxima suppression map
- 2. Mark values above T_H (=strong edge), set values below T_I to zero (=weak edge)
- 3. Compare neighbors along edge direction; if neighbor to strong edge is above T_L = strong edge
- 4. Repeat point 3. (Chain "reaction")

90	90	90	90	90	90
90	90	90	90	90	90
135	135	90	90	45	45
45	0	0	0	0	135
45	45	90	135	135	135
45	45	90	90	135	135
45	90	90	90	90	135

$$T_H = 90$$
$$T_L = 40$$

Final "strong edge" map

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
1	0	0	0	0	1
0	1	1	1	1	0
0	0	0	0	0	0

- 1. Start with Gradient and "angles" map, compare neighbors perpendicular along edge direction (erosion) -> non-maxima suppression map
- 2. Mark values above T_H (=strong edge), set values below T_I to zero (=weak edge)
- 3. Compare neighbors along edge direction; if neighbor to strong edge is above T_L = strong edge
- 4. Repeat point 3. (Chain "reaction")

Hough Transform

- Feature Extraction technique
- E.g. use normal representation of line:

$$x \cos \theta + y \sin \theta = \rho$$

- For each edge point (x,y), plot normal representation for all $\theta \rightarrow$ Hough space
- Intensities in Hough plot accumulate
 - → overlapping points get brighter; peak values describe lines in the image
- Extract (ρ, θ) of points with higher intensity

Higher intensity

