Gamma and Beta Functions

Introduction

As introduced by the Swiss mathematician Leonhard Euler in 18th century, gamma function is the extension of factorial function to real numbers. Beta function (also known as Euler's integral of the first kind) is closely connected to gamma function; which itself is a generalization of the factorial function. Both Beta and Gamma functions are very important in calculus as complex integrals can be moderated into simpler form using and Beta and Gamma function.

I Gamma Function

We define Gamma function as: $\Gamma n = \int_0^\infty e^{-x} x^{n-1} dx$

Important results

1. *i*.
$$\Gamma 1 = 1$$

Proof:
$$\Gamma 1 = \int_0^\infty e^{-x} x^0 dx = -[e^{-x}]_0^\infty = 1$$

ii.
$$\Gamma \frac{1}{2} = \sqrt{\pi}$$

Proof:
$$\Gamma \frac{1}{2} = \int_0^\infty e^{-x} x^{-\frac{1}{2}} dx = \int_0^\infty e^{-t^2} t^{-1} 2t \ dt$$
, by putting $x = t^2$
$$= 2 \int_0^\infty e^{-t^2} dt = \sqrt{\pi}, \qquad \because \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

$$\therefore \Gamma^{\frac{1}{2}} = \Gamma(0.5) = \sqrt{\pi} = 1.772$$

2. Reduction formula for Γn : $\Gamma(n+1) = n\Gamma n$

We have
$$\Gamma(n+1) = \int_0^\infty e^{-x} x^n dx$$

$$= -[x^n e^{-x}]_0^{\infty} + n \int_0^{\infty} x^{n-1} e^{-x} dx = 0 + n \Gamma n$$

$$\therefore \Gamma(n+1) = n\Gamma n$$

$$3. \int_0^\infty e^{-kx} x^{n-1} dx = \frac{\Gamma n}{k^n}$$

Proof: We have $\Gamma n = \int_0^\infty e^{-t} t^{n-1} dt$

Putting
$$t = kx \implies dt = kdx$$

$$\therefore \Gamma n = \int_0^\infty e^{-kx} (kx)^{n-1} k dx = k^n \int_0^\infty e^{-kx} x^{n-1} dx$$

$$\Rightarrow \int_0^\infty e^{-kx} \, x^{n-1} dx = \frac{\Gamma n}{k^n}$$

Extension of Gamma function from factorial notation

Case i. When n is a positive integer

We have
$$\Gamma(n+1) = n\Gamma n$$

$$= n(n-1)\Gamma(n-1)$$

$$= n(n-1)(n-2)\Gamma(n-2)$$

$$\vdots$$

$$= n(n-1)(n-2)\cdots 3.2.1\Gamma 1 = n!$$

$$\therefore \Gamma 2 = 1!$$
, $\Gamma 3 = 2!$, $\Gamma 4 = 3!$ etc.

case ii. When n is a positive rational number

 $\Gamma n = (n-1)(n-2) \cdots$ upto a positive number in Γ function

Illustration:
$$\Gamma \frac{7}{2} = \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \Gamma \frac{1}{2} = \frac{15\sqrt{\pi}}{8}$$
Also $\Gamma \frac{11}{4} = \frac{7}{4} \cdot \frac{3}{4} \Gamma \frac{3}{4}$

Now value of $\Gamma^{\frac{3}{4}}$ can be obtained from table of gamma function.

case iii. When n is a negative rational number

Using
$$\Gamma(n+1) = n\Gamma n$$

$$\Rightarrow \Gamma n = \frac{\Gamma(n+1)}{n} = \frac{(n+1)\Gamma(n+1)}{n(n+1)}$$

$$= \frac{\Gamma(n+2)}{n(n+1)}$$

$$= \frac{\Gamma(n+3)}{n(n+1)(n+2)}$$
:

Continuing in this manner, we get $\Gamma n = \frac{\Gamma(n+k+1)}{n(n+1)...(n+k)}$, where k is the least positive integer such that (n+k+1)>0

Illustration:
$$\Gamma(-3.4) = \frac{\Gamma(-3.4+k+1)}{(-3.4)(-2.4)...(-3.4+k)}$$
, $(-3.4+k+1) > 0$
 $\Rightarrow k > 2.4 \Rightarrow k = 3$
 $\therefore \Gamma(-3.4) = \frac{\Gamma(-3.4+4)}{(-3.4)(-2.4)(-1.4)(-0.4)} = \frac{\Gamma0.6}{(-3.4)(-2.4)(-1.4)(-0.4)}$

 Γ 0.6 can be found using tables.

Also, to evaluate $\Gamma(-2.5)$,

$$\Gamma(-2.5) = \frac{\Gamma(-2.5+k+1)}{(-2.5)(-1.5)...(-2.5+k)}, (-2.5+k+1) > 0$$

$$\Rightarrow k > 1.5 \Rightarrow k = 2$$

$$\therefore \Gamma(-2.5) = \frac{\Gamma(-2.5+3)}{(-2.5)(-1.5)(-0.5)} = \frac{\Gamma(-2.5+3)}{(-2.5)(-1.5)(-0.5)} = -\frac{1.772}{1.875} = -0.945$$

case iv. Γn is not defined when n=0 or a negative integer

We know
$$\Gamma n = \frac{\Gamma(n+k+1)}{n(n+1)...(n+k)}$$
, $n = 0, -1, -2, ...$

For all n = 0, -1, -2, ..., we will have a zero in the denominator

For instance,
$$\Gamma 0 = \frac{\Gamma(0+k+1)}{0(1)...(0+k)}$$
, $\Gamma(-1) = \frac{\Gamma(-1+k+1)}{(-1)(0)...(-1+k)}$, ...

Hence, we can conclude that gamma function cannot be defined for zero or negative integers.

Example 1 If *n* is a positive integer, show that

$$2^{n}\Gamma\left(n+\frac{1}{2}\right) = 1.3.5 \dots (2n-1)\sqrt{\pi}$$
Solution: $\Gamma\left(n+\frac{1}{2}\right) = \Gamma\left(n-\frac{1}{2}+1\right)$

$$= \left(n-\frac{1}{2}\right)\Gamma\left(n-\frac{1}{2}\right) \quad \because \Gamma(n+1) = n\Gamma n$$

$$= \left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)\Gamma\left(n-\frac{3}{2}\right)$$
:

$$= \left(n - \frac{1}{2}\right) \left(n - \frac{3}{2}\right) \left(n - \frac{5}{2}\right) \dots \frac{3}{2} \cdot \frac{1}{2} \cdot \Gamma \frac{1}{2}$$

$$= \left(\frac{2n-1}{2}\right) \left(\frac{2n-3}{2}\right) \left(\frac{2n-5}{2}\right) \dots \frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi}$$

$$\Rightarrow 2^{n} \Gamma \left(n + \frac{1}{2}\right) = 1.3.5 \dots (2n-1) \sqrt{\pi}$$

Example 2 Evaluate the following integrals

$$i. \int_0^\infty e^{-x^2} x^{2n-1} dx, n > 1$$

$$ii. \int_0^\infty e^{-\sqrt{x}} x^{\frac{1}{4}} dx$$

$$iii. \int_0^\infty \frac{x^a}{a^x} dx$$

$$iv. \int_0^1 \left(\log \frac{1}{x}\right)^{n-1} dx, n > 0$$

Solution: i. We have $\Gamma n = \int_0^\infty e^{-t} t^{n-1} dt$, ... 1 Putting $t = x^2$ in 1, we get $\Gamma n = \int_0^\infty e^{-x^2} x^{2n-2} \cdot 2x dx$

$$\Rightarrow \int_0^\infty e^{-x^2} x^{2n-1} dx = \frac{\Gamma n}{2}$$

ii. Putting $t = \sqrt{x}$ in ①, we get

$$\Gamma n = \int_0^\infty e^{-\sqrt{x}} x^{\frac{n}{2} - \frac{1}{2}} \cdot \frac{1}{2} x^{-\frac{1}{2}} dx = \frac{1}{2} \int_0^\infty e^{-\sqrt{x}} x^{\frac{n}{2} - 1} dx$$
Substituting $\frac{n}{2} - 1 = \frac{1}{4}$, i.e. $n = \frac{5}{2}$, we get

$$\Gamma\left(\frac{5}{2}\right) = \frac{1}{2} \int_0^\infty e^{-\sqrt{x}} x^{\frac{1}{4}} dx$$

$$\therefore \int_0^\infty e^{-\sqrt{x}} x^{\frac{1}{4}} dx = 2\Gamma\left(\frac{5}{2}\right) = 2 \cdot \frac{3}{2} \cdot \frac{1}{2} \Gamma\left(\frac{1}{2}\right) = \frac{3\sqrt{\pi}}{2}$$

iii. Putting $a^x = e^t$ or $x \log a = t \Rightarrow dx = \frac{dt}{\log a}$

$$\therefore \int_0^\infty \frac{x^a}{a^x} \, dx = \int_0^\infty e^{-t} \left(\frac{t}{\log a}\right)^a \frac{dt}{\log a}$$
$$= \frac{1}{(\log a)^{a+1}} \int_0^\infty e^{-t} t^{(a+1)-1} \, dt = \frac{\Gamma(a+1)}{(\log a)^{a+1}}$$

iv. We have
$$\Gamma n = \int_0^\infty e^{-t} t^{n-1} dt$$

Putting
$$t = \log \frac{1}{x} \Rightarrow -t = \log x \Rightarrow e^{-t} = x$$

Also
$$dt = -\frac{1}{x}dx$$

as
$$t = 0 \Rightarrow x = 1$$
, $t = \infty \Rightarrow x = 0$

$$\therefore \Gamma n = \int_1^0 x \left(\log \frac{1}{x}\right)^{n-1} \left(-\frac{1}{x}\right) dx = \int_0^1 \left(\log \frac{1}{x}\right)^{n-1} dx$$
$$\Rightarrow \int_0^1 \left(\log \frac{1}{x}\right)^{n-1} dx = \Gamma n$$

II Beta Function

Beta function is defined as:

$$\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx, \quad m,n > 0$$

Important Results

4. Beta function is symmetric i.e. $\beta(m, n) = \beta(n, m)$

Proof:
$$\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$$
, $m,n > 0$

$$= \int_0^1 (1-x)^{m-1} (1-(1-x)^{n-1} dx, m, n > 0$$

$$\therefore \int_0^a f(x) dx = \int_0^a f(a-x) dx$$

$$= \int_0^1 x^{n-1} (1-x)^{m-1} dx, n,m > 0$$

$$= \beta(n,m)$$

5. Another definition of Beta function:

$$\beta(m,n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx, \quad m,n > 0$$
Proof: $\beta(m,n) = \int_0^1 y^{m-1} (1-y)^{n-1} dy, \quad m,n > 0$
Putting $y = \frac{1}{1+x}, \quad dy = -\frac{1}{(1+x)^2} dx$

$$\Rightarrow \beta(m,n) = -\int_\infty^0 \left(\frac{1}{1+x}\right)^{m-1} \left(1 - \frac{1}{1+x}\right)^{n-1} \frac{1}{(1+x)^2} dx, \quad m,n > 0$$

$$= \int_0^\infty \left(\frac{1}{1+x}\right)^{m-1} \left(\frac{x}{1+x}\right)^{n-1} \left(\frac{1}{1+x}\right)^2 dx$$

$$= \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$$

$$= \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx \qquad :: \beta(m,n) = \beta(n,m)$$

6. Another form of Beta function is given by:

$$\beta(m,n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$$
Proof: we have $\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$
Let $x = \sin^2\theta \Rightarrow dx = 2\sin\theta\cos\theta d\theta$

$$\therefore \beta(m,n) = \int_0^{\frac{\pi}{2}} (\sin^2\theta)^{m-1} (\cos^2\theta)^{n-1} 2\sin\theta\cos\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$$

7. Relation between Beta Gamma functions:

$$\beta(m,n)=\frac{\Gamma m\Gamma n}{\Gamma(m+n)},\quad m,n>0$$

Proof: Using result 3, $\int_0^\infty e^{-kx} x^{m-1} dx = \frac{\Gamma m}{k^m}$... 1 Replacing k by y, we get $\frac{\Gamma m}{y^m} = \int_0^\infty e^{-yx} x^{m-1} dx$ $\Rightarrow \Gamma m = \int_0^\infty e^{-yx} y^m x^{m-1} dx$ $\Rightarrow e^{-y} y^{n-1} \Gamma m = \int_0^\infty e^{-y(1+x)} y^{m+n-1} x^{m-1} dx$

Integrating both sides with respect to y within limits 0 to ∞ $\Gamma m \int_0^\infty e^{-y} y^{n-1} dy = \int_0^\infty \int_0^\infty e^{-y(1+x)} y^{m+n-1} x^{m-1} dx dy$

$$\Rightarrow \Gamma m \Gamma n = \int_0^\infty \left[\int_0^\infty e^{-(1+x)y} \, y^{(m+n-1)} dy \right] x^{m-1} dx$$

$$\Rightarrow \Gamma m \Gamma n = \int_0^\infty \frac{\Gamma(m+n)}{(1+x)^{m+n}} x^{m-1} dx \text{, comparing with } 1$$

$$\Rightarrow \frac{\Gamma m \Gamma n}{\Gamma(m+n)} = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$$

$$\Rightarrow \frac{\Gamma m \Gamma n}{\Gamma(m+n)} = \beta(m,n), \text{ using result 5}$$

8.
$$\int_0^{\frac{\pi}{2}} \sin^p \theta \cos^q \theta d\theta = \frac{\Gamma(\frac{p+1}{2})\Gamma(\frac{q+1}{2})}{2\Gamma(\frac{p+q+2}{2})}$$

Proof: we have $\beta(m,n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$

$$\Rightarrow \frac{\Gamma m \Gamma n}{\Gamma(m+n)} = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta :: \beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$$

Replacing 2m - 1 by p and 2n - 1 by q

i.e
$$m = \frac{p+1}{2}$$
 and $n = \frac{q+1}{2}$

$$\Rightarrow \int_0^{\frac{\pi}{2}} \sin^p \theta \cos^q \theta d\theta = \frac{\Gamma(\frac{p+1}{2})\Gamma(\frac{q+1}{2})}{2\Gamma(\frac{p+q+2}{2})} \dots (1)$$

Putting
$$q = 0$$
 in ①, we get $\int_0^{\frac{\pi}{2}} \sin^p \theta d\theta = \frac{\Gamma(\frac{p+1}{2})\Gamma(\frac{1}{2})}{2\Gamma(\frac{p+2}{2})}$

Putting
$$p = 0$$
 in 1, we get $\int_0^{\frac{\pi}{2}} \sin^p \theta d\theta = \frac{\Gamma(\frac{q+1}{2})\Gamma(\frac{1}{2})}{2\Gamma(\frac{q+2}{2})}$

9. Duplication formula is given by:

$$\Gamma m\Gamma\left(m+\frac{1}{2}\right)=\frac{\sqrt{\pi}.\Gamma(2m)}{2^{2m-1}}, m>0$$

Proof: We have $\beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)} = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$

$$\therefore 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = \frac{\Gamma m \Gamma n}{\Gamma(m+n)} \qquad \dots \boxed{1}$$

Putting $n = \frac{1}{2}$ on both sides, we get

$$2\int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta d\theta = \frac{\Gamma m\sqrt{\pi}}{\Gamma(m+\frac{1}{2})} \qquad \dots \boxed{2}$$

Again Putting n = m in \bigcirc , we get

$$\frac{(\Gamma m)^2}{\Gamma(2m)} = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2m-1}\theta d\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} \left(\frac{2\sin\theta\cos\theta}{2}\right)^{2m-1} d\theta$$

$$= \frac{1}{2^{2m-2}} \int_0^{\frac{\pi}{2}} \sin^{2m-1}2\theta d\theta$$

$$= \frac{1}{2^{2m-1}} \int_0^{\pi} \sin^{2m-1}t dt \text{ Putting } 2\theta = t$$

$$= \frac{2}{2^{2m-1}} \int_0^{\frac{\pi}{2}} \sin^{2m-1}t dt$$

$$\therefore \int_0^{2a} f(x) dx = 2 \int_0^a f(x) dx \text{ if } f(2a-x) = f(x)$$

$$\Rightarrow \frac{(\Gamma m)^2}{\Gamma(2m)} = \frac{2}{2^{2m-1}} \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta d\theta$$

$$\Rightarrow 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta d\theta = \frac{2^{2m-1}(\Gamma m)^2}{\Gamma(2m)} \qquad \dots \qquad 3$$

Comparing 2 and 3, we get
$$\frac{\Gamma m \sqrt{\pi}}{\Gamma(m+\frac{1}{2})} = \frac{2^{2m-1}(\Gamma m)^2}{\Gamma(2m)}$$

$$\Rightarrow \Gamma m \Gamma \left(m + \frac{1}{2} \right) = \frac{\sqrt{\pi} \Gamma(2m)}{2^{2m-1}}$$

10.
$$\Gamma n \Gamma(1-n) = \frac{\pi}{\sin n\pi}, \ 0 < n < 1$$

Proof: we have
$$\beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)} = \int_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} dx$$
, $m,n > 0$

$$\Rightarrow \frac{\Gamma m \Gamma n}{\Gamma(m+n)} = \int_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} dx$$

Putting m = 1 - n on both sides, we get

$$\Gamma n \Gamma(1-n) = \int_0^\infty \frac{x^{n-1}}{1+x} dx$$

Putting $x = e^t$, $dx = e^t dt$

As $x \to 0$, $t \to -\infty$ and as $x \to \infty$, $t \to \infty$

$$\therefore \Gamma n \ \Gamma(1-n) = \int_{-\infty}^{\infty} \frac{e^{nt}}{1+e^t} dt$$

Now by using complex integration, we have:

$$\int_{-\infty}^{\infty} \frac{e^{nt}}{1+e^t} dt = \frac{\pi}{\sin n\pi}, \ 0 < n < 1$$

$$\therefore \Gamma n \Gamma(1-n) = \frac{\pi}{\sin n\pi}, \ 0 < n < 1$$

Example 3 Evaluate $i. \int_0^{\frac{\pi}{2}} \sin^3 x \cos^{\frac{5}{2}} x dx$ $ii. \int_0^{\frac{\pi}{2}} \sin^{10} x dx$ $iii. \int_0^{\frac{\pi}{2}} \sqrt{\tan \theta} + \sqrt{\sec \theta} \ d\theta$

$$iv. \int_0^2 x^{m-1} (2-x)^{n-1} dx$$

$$iv. \int_0^2 x^{m-1} (2-x)^{n-1} dx$$
 $v. \int_0^\pi sin^2 \theta (1+\cos\theta)^4 d\theta$ $vi. \int_0^1 x^{m-1} \left(\log\frac{1}{x}\right)^{n-1} dx$

Solution:
$$i. \int_0^{\frac{\pi}{2}} \sin^3 x \cos^{\frac{5}{2}} x dx = \frac{\Gamma(\frac{3+1}{2})\Gamma(\frac{\frac{5}{2}+1}{2})}{2\Gamma(\frac{3+\frac{5}{2}+2}{2})} = \frac{\Gamma 2\Gamma(\frac{7}{4})}{2\Gamma(\frac{15}{4})}$$

$$= \frac{1.\Gamma(\frac{7}{4})}{2.\frac{11}{4}.\frac{7}{4}\Gamma(\frac{7}{4})} = \frac{8}{77} \quad : \Gamma 2 = 1! = 1, \text{ also } \Gamma(n+1) = n\Gamma n$$

$$ii. \int_0^{\frac{\pi}{2}} sin^{10} x dx = \frac{\Gamma(\frac{11}{2})\Gamma(\frac{1}{2})}{2\Gamma6} = \frac{\frac{9}{2} \cdot \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2}}{240} \Gamma(\frac{1}{2})\Gamma(\frac{1}{2})}{7680} = \frac{945\pi}{7680}$$

$$:$$
 Γ6 = 5! = 120, also Γ(n + 1) = n Γ n

$$=\frac{63\pi}{512} \qquad :\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$iii. \int_0^{\frac{\pi}{2}} \sqrt{\tan \theta} + \sqrt{\sec \theta} \ d\theta = \int_0^{\frac{\pi}{2}} (\sin^{\frac{1}{2}} \theta \cos^{-\frac{1}{2}} \theta + \cos^{-\frac{1}{2}} \theta) d\theta$$

$$= \frac{\Gamma\left(\frac{\frac{1}{2}+1}{2}\right)\Gamma\left(\frac{-\frac{1}{2}+1}{2}\right)}{2\Gamma\left(\frac{\frac{1}{2}-\frac{1}{2}+2}{2}\right)} + \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{-\frac{1}{2}+1}{2}\right)}{2\Gamma\left(\frac{-\frac{1}{2}+2}{2}\right)}$$

$$= \frac{\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{1}{4}\right)}{2\Gamma 1} + \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{4}\right)}{2\Gamma\left(\frac{3}{4}\right)}$$
$$= \frac{1}{2}\Gamma\left(\frac{1}{4}\right)\left\{\Gamma\left(\frac{3}{4}\right) + \frac{\sqrt{\pi}}{\Gamma\left(\frac{3}{4}\right)}\right\}$$

iv. Let
$$I = \int_0^2 x^{m-1} (2-x)^{n-1} dx$$

Putting $x = 2sin^2\theta$,

$$I = \int_0^{\frac{\pi}{2}} 2^{m-1} \sin^{2m-2}\theta \cdot 2^{n-1} \cos^{2n-2}\theta \cdot 2 \sin\theta \cos\theta \, d\theta$$

$$\Rightarrow I = 2^{m+n-2} \cdot 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2m-1}\theta d\theta = 2^{m+n-2}\beta(m,n)$$

$$\therefore 2\int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2m-1}\theta d\theta = \beta(m,n)$$

v. Let
$$I = \int_0^{\pi} \sin^2 \theta (1 + \cos \theta)^4 d\theta$$

$$= \int_0^{\pi} \left(2\sin\frac{\theta}{2}\cos\frac{\theta}{2} \right)^2 \left(2\cos^2\frac{\theta}{2} \right)^4 d\theta$$
$$= 64 \int_0^{\pi} \sin^2\frac{\theta}{2}\cos^{10}\frac{\theta}{2} d\theta$$

Putting
$$\frac{\theta}{2} = x$$
, $d\theta = 2xdx$

$$= 128 \int_0^{\frac{\pi}{2}} \sin^2 x \cos^{10} x \, dx$$

$$= \frac{64.\Gamma(\frac{3}{2})\Gamma(\frac{11}{2})}{\Gamma7} = \frac{64.\frac{1}{2}\Gamma(\frac{1}{2}).\frac{9.7}{2}.\frac{5.3}{2}.\frac{1}{2}\Gamma(\frac{1}{2})}{720} = \frac{21\pi}{16}$$

$$\begin{array}{c} : \Gamma 7 = 6! = 720, \, \operatorname{also} \, \Gamma(n+1) = n \Gamma n \\ vi. \, \operatorname{Let} I = \int_0^1 x^{m-1} \left(\log \frac{1}{x} \right)^{n-1} dx \\ \operatorname{Putting} \log \frac{1}{x} = t \, \operatorname{or} \, x = e^{-t} \Rightarrow dx = -e^{-t} dt, \\ I = -\int_{\infty}^0 e^{-(m-1)t} \, t^{n-1} e^{-t} dt \\ = \int_0^\infty e^{-mt} \, t^{n-1} dt \\ \operatorname{Putting} \, mt = y \\ I = \frac{1}{m} \int_0^\infty e^{-y} \left(\frac{y}{m} \right)^{n-1} \, dy = \frac{1}{m^n} \int_0^\infty e^{-y} \, y^{n-1} dy = \frac{\Gamma n}{m^n} \\ \operatorname{Example 4 \, Prove \, that } \, i. \, \beta(m,n) = \beta(m+1,n) + \beta(m,n+1) \\ ii. \, \frac{\beta(m+1,n)}{\beta(m,n)} = \frac{m}{m+n} \\ iii. \, \beta\left(m, \frac{1}{2} \right) = 2^{2m-1} \beta(m,m) \\ \operatorname{Solution:} \, i. \, \operatorname{R.H.S.} = \beta(m+1,n) + \beta(m,n+1) \\ = \frac{\Gamma(m+1)\Gamma n}{\Gamma(m+n+1)} + \frac{\Gamma m \Gamma(n+1)}{\Gamma(m+n+1)} \\ = \frac{m \Gamma m . \Gamma n + \Gamma m . n \Gamma n}{\Gamma(m+n+1)} \\ = \frac{\Gamma m \Gamma n (m+n)}{(m+n)\Gamma(m+n)} \\ = \frac{\Gamma m \Gamma n}{\Gamma(m+n)} = \beta(m,n) = \operatorname{L.H.S.} \end{array}$$

ii. L.H.S. =
$$\frac{\beta(m+1,n)}{\beta(m,n)} = \frac{\Gamma(m+1)\Gamma n}{\Gamma(m+n+1)} \cdot \frac{\Gamma(m+n)}{\Gamma m \Gamma n}$$

= $\frac{m\Gamma m \Gamma n}{(m+n)\Gamma(m+n)} \cdot \frac{\Gamma(m+n)}{\Gamma m \Gamma n} = \frac{m}{m+n} = \text{R.H.S.}$

iii. We have
$$\beta\left(m, \frac{1}{2}\right) = \frac{\Gamma m \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(m + \frac{1}{2}\right)}$$
 ... 1

Again, by Duplication formula $\Gamma m \Gamma \left(m + \frac{1}{2} \right) = \frac{\sqrt{\pi} \Gamma(2m)}{2^{2m-1}}$

$$\therefore \Gamma\left(m + \frac{1}{2}\right) = \frac{\sqrt{\pi} \Gamma(2m)}{2^{2m-1}\Gamma m} \dots 2$$

Using ② in ①, we get
$$\beta\left(m, \frac{1}{2}\right) = \frac{\Gamma m \Gamma\left(\frac{1}{2}\right) 2^{2m-1} \Gamma m}{\sqrt{\pi} \Gamma(2m)}$$

$$= 2^{2m-1} \frac{\Gamma m \Gamma m}{\Gamma(2m)} : \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$= 2^{2m-1} \beta(m, m)$$

Example 5 Express the following integrals in terms of Beta function

i.
$$\int_0^1 x^m (1-x^2)^n dx$$
 ii. $\int_0^1 \frac{x^2}{\sqrt{1-x^5}} dx$

Solution: i. Let
$$I = \int_0^1 x^m (1 - x^2)^n dx = \frac{1}{2} \int_0^1 x^{m-1} (1 - x^2)^n 2x dx$$

Putting
$$x^2 = y \implies 2xdx = dy$$

$$\Rightarrow I = \frac{1}{2} \int_0^1 y^{\frac{m-1}{2}} (1 - y)^n dy$$

$$= \frac{1}{2} \int_{0}^{1} y^{\frac{m+1}{2}-1} (1-y)^{(n+1)-1} dy$$

$$= \frac{1}{2} \beta \left(\frac{m+1}{2}, n+1 \right)$$
ii. Let $I = \int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{5}}} dx = \frac{1}{5} \int_{0}^{1} x^{-2} (1-x^{5})^{-\frac{1}{2}} 5x^{4} dx$
Putting $x^{5} = y \Rightarrow 5x^{4} dx = dy$

$$\Rightarrow I = \frac{1}{5} \int_{0}^{1} y^{\frac{3}{5}-1} (1-y)^{\frac{1}{2}} dy$$

$$= \frac{1}{5} \int_{0}^{1} y^{\frac{3}{5}-1} (1-y)^{\frac{1}{2}-1} dy = \frac{1}{5} \beta \left(\frac{3}{5}, \frac{1}{2} \right)$$
Example 6 Prove that i. $\Gamma \left(\frac{3}{2} - x \right) \Gamma \left(\frac{3}{2} + x \right) = \left(\frac{1}{4} - x^{2} \right) \pi$. sec πx
ii. $\int_{a}^{b} (x-a)^{m} (b-x)^{n} dx = (b-a)^{m+n+1} \beta (m+1,n+1)$
Solution i. L.H.S.= $\Gamma \left(\frac{3}{2} - x \right) \Gamma \left(\frac{3}{2} + x \right)$

$$= \left(\frac{1}{2} - x \right) \Gamma \left(\frac{1}{2} - x \right) \cdot \left(\frac{1}{2} + x \right) \Gamma \left(\frac{1}{2} + x \right)$$

$$\therefore \Gamma (n+1) = n\Gamma n$$

$$= \left(\frac{1}{4} - x^{2} \right) \Gamma \left(\frac{1}{2} + x \right) \Gamma \left(1 - \left(\frac{1}{2} + x \right) \right)$$

$$\therefore \Gamma \left(\frac{1}{2} - x \right) = \Gamma \left(1 - \left(\frac{1}{2} + x \right) \right)$$

$$= \left(\frac{1}{4} - x^{2} \right) \frac{\pi}{\sin(\frac{1}{2} + x)\pi}, 0 < \frac{1}{2} + x < 1$$

$$: \Gamma n \ \Gamma(1-n) = \frac{\pi}{\sin n\pi}, \ 0 < n < 1$$

$$= \left(\frac{1}{4} - x^2\right) \frac{\pi}{\cos \pi x}$$

$$= \left(\frac{1}{4} - x^2\right) \pi . \sec \pi x, \ -\frac{1}{2} < x < \frac{1}{2}$$

$$ii. \text{ Let } I = \int_a^b (x - a)^m (b - x)^n \, dx$$

$$= \int_0^{b-a} y^m (b - a - y)^n \, dy \quad \text{By putting } x - a = y$$

$$= \int_0^1 (b - a)^m t^m (b - a - (b - a)t)^n (b - a) dt$$

$$\text{By putting } y = (b - a)t$$

$$I = \int_0^1 x^m (1 - x^n)^p dx = \int_0^1 (b - a)^m t^m (b - a)^n (1 - t)^n (b - a) dt$$

$$= (b - a)^{m+n-1} \int_0^1 t^m (1 - t)^n dt$$

$$I = \int_0^1 x^m (1 - x^n)^p dx = \int_0^1 (b - a)^m t^m (b - a)^n (1 - t)^n (b - a) dt$$

$$= (b - a)^{m+n-1} \int_0^1 t^m (1 - t)^n dt$$

$$= (b - a)^{m+n-1} \int_0^1 t^{(m+1)-1} (1 - t)^{(n+1)-1} dt$$

$$= (b - a)^{m+n+1} \beta(m+1, n+1)$$

Example 7 Express the integral $\int_0^1 x^m (1-x^n)^p dx$ in terms of gamma function and hence evaluate

$$\int_0^1 x^{\frac{3}{2}} \left(1 - x^{\frac{1}{2}}\right)^{\frac{1}{2}} dx$$

Solution: Let $I = \int_0^1 x^m (1 - x^n)^p dx$

Putting $x^n = t$, so that $nx^{n-1}dx = dt$, we get

$$I = \frac{1}{n} \int_0^1 t^{\frac{m}{n}} (1-t)^p t^{-\frac{n-1}{n}} dt = \frac{1}{n} \int_0^1 t^{\frac{m+1}{n}-1} (1-t)^{p+1-1} dt$$

$$\therefore I = \int_0^1 x^m (1-x^n)^p dx = \frac{1}{n} \beta \left(\frac{m+1}{n}, p+1 \right) = \frac{1}{n} \frac{\Gamma\left(\frac{m+1}{n}\right) \Gamma(p+1)}{\Gamma\left(\frac{m+1}{n}+p+1\right)} \dots 1$$

Putting $m = \frac{3}{2}$, $n = \frac{1}{2}$, $p = \frac{1}{2}$ in ①, we get

$$\int_{0}^{1} x^{\frac{3}{2}} \left(1 - x^{\frac{1}{2}}\right)^{\frac{1}{2}} dx = 2\beta \left(\frac{\frac{3}{2} + 1}{\frac{1}{2}}, \frac{1}{2} + 1\right) = 2\beta \left(5, \frac{3}{2}\right)$$

$$= \frac{2\Gamma(5)\Gamma(\frac{3}{2})}{\Gamma(5 + \frac{3}{2})} = \frac{2.4! \Gamma(\frac{3}{2})}{\Gamma(\frac{13}{2})} = \frac{48\Gamma(\frac{3}{2})}{\frac{11}{2} \cdot \frac{9}{2} \cdot \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2}} \Gamma(\frac{3}{2}) = \frac{512}{3465}$$

Example 8 Evaluate $i \cdot \int_0^\infty x^{n-1} \cos ax \ dx$ $ii \cdot \int_0^\infty x^{n-1} \sin ax \ dx$

Solution: let $I = \int_0^\infty x^{n-1} e^{-iax} dx = \int_0^\infty x^{n-1} (\cos ax - i\sin ax) dx$

Putting iax = t, $dx = \frac{dt}{ia}$

$$\therefore I = \frac{1}{ia} \int_0^\infty e^{-t} \left(\frac{t}{ia}\right)^{n-1} dt = \frac{1}{i^n a^n} \int_0^\infty e^{-t} t^{n-1} dt = \frac{\Gamma n}{i^n a^n}$$
$$= \frac{\Gamma n}{a^n} \left(-i\right)^n = \frac{\Gamma n}{a^n} \left(\cos\frac{\pi}{2} - i\sin\frac{\pi}{2}\right)^n$$
$$= \frac{\Gamma n}{a^n} \left(\cos\frac{n\pi}{2} - i\sin\frac{n\pi}{2}\right)$$

$$\therefore \int_0^\infty x^{n-1} \left(\cos ax - i\sin ax\right) dx = \frac{\Gamma n}{a^n} \left(\cos \frac{n\pi}{2} - i\sin \frac{n\pi}{2}\right)$$

Comparing real and imaginary parts we get,

$$i. \int_0^\infty x^{n-1} \cos ax \ dx = \frac{\Gamma n}{a^n} \cos \frac{n\pi}{2}$$

$$ii. \int_0^\infty x^{n-1} \sin ax \ dx = \frac{\Gamma n}{a^n} \sin \frac{n\pi}{2}$$

Exercise

1. Show that
$$\int_0^{\frac{\pi}{2}} tan^n x \, dx = \frac{\pi}{2} \sec\left(\frac{n\pi}{2}\right), \, 0 < n < 1$$

2. Given that
$$\Gamma\left(\frac{8}{5}\right) = 0.8935$$
, find the values of $\Gamma\left(-\frac{5}{2}\right)$ and $\Gamma\left(-\frac{12}{5}\right)$

3. Find
$$i.\beta\left(\frac{3}{2},\frac{1}{2}\right)$$
 $ii.\beta\left(\frac{4}{3},\frac{5}{3}\right)$

4. Evaluate
$$\int_0^1 x^2 (1-x^2)^4 dx$$

5. Prove that
$$\Gamma n = 2 \int_0^\infty e^{-x^2} x^{2n-1} dx$$

6. Prove that for
$$a, b > 0$$

$$i. \int_0^\infty x^{n-1} e^{-ax} \cos bx \, dx = \frac{\Gamma n}{(a^2 + b^2)^{n/2}} \cos \left(n \tan^{-1} \frac{b}{a} \right)$$

$$ii. \int_0^\infty x^{n-1} e^{-ax} \sin bx \, dx = \frac{\Gamma n}{(a^2 + b^2)^{n/2}} \cos \left(n \tan^{-1} \frac{b}{a} \right)$$

$$ii. \int_0^\infty x^{n-1} e^{-ax} \sin bx \, dx = \frac{\Gamma n}{(a^2 + b^2)^{n/2}} \sin \left(n \tan^{-1} \frac{b}{a} \right)$$

7. Show that
$$\frac{\beta(m+1,n)}{m} = \frac{\beta(m,n)}{m+n+1}$$

7. Show that
$$\frac{\beta(m+1,n)}{m} = \frac{\beta(m,n)}{m+n+1}$$

8. Show that $\int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin x}} dx$. $\int_0^{\frac{\pi}{2}} \sqrt{\sin x} dx = \pi$

9. Show that
$$\int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx = \beta(m, n)$$

10. Prove that $\beta(m, \frac{1}{2}) = 2^{2m-1} \cdot \beta(m, m)$

Answers

2.
$$-\frac{8}{15}\sqrt{\pi}$$
, -1.108

3.
$$i.\frac{\pi}{2}$$
 $ii.\frac{2\pi}{9\sqrt{3}}$

4.
$$\frac{128}{3465}$$