

Mutual Mean-Teaching:

Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification

Yixiao Ge, Dapeng Chen, Hongsheng Li Multimedia Laboratory, The Chinese University of Hong Kong

Person re-identification

[1] Zheng L, et al. Person re-identification: Past, present and future[J]. arXiv preprint arXiv:1610.02984, 2016.

Single domain (dataset) vs Direct transfer

Market-1501^[2]

Captured in Tsinghua University

DukeMTMC-reID^[3]

Captured in Duke University

^[2] Zheng L, et al. Scalable person re-identification: A benchmark[C]. CVPR, 2015: 1116-1124.

Unsupervised domain adaptation (UDA)

Adaptation

Clustering-based UDA Pipeline

Issue: noisy hard labels

Solution: robust soft labels

Mutual Mean-Teaching (MMT)

Mutual Mean-Teaching (MMT)

Mean Net

At iteration 0,

$$E^{(0)}[\theta_1] = \theta_1, E^{(0)}[\theta_2] = \theta_2$$

At iteration T (T>0),

$$E^{(T)}[\boldsymbol{\theta}_1] = \alpha E^{(T-1)}[\boldsymbol{\theta}_1] + (1 - \alpha)\boldsymbol{\theta}_1$$
$$E^{(T)}[\boldsymbol{\theta}_2] = \alpha E^{(T-1)}[\boldsymbol{\theta}_2] + (1 - \alpha)\boldsymbol{\theta}_2$$

Why mean-teaching? --- One option:

[4] Han B, et al. Co-teaching: Robust training of deep neural networks with extremely noisy labels. NIPS, 2018: 8527-8537. [5] Zhang Y, et al. Deep mutual learning. CVPR, 2018: 4320-4328.

Why mean-teaching?

Soft classification loss

$$\mathcal{L}_{sid}^t(oldsymbol{ heta}_1|oldsymbol{ heta}_2) = -rac{1}{N_t} \sum_{i=1}^{N_t} \left(C_2^t(F(oldsymbol{x'}_i|E^{(T)}[oldsymbol{ heta}_2])) \cdot \log C_1^t(F(oldsymbol{x}_i^t|oldsymbol{ heta}_1))
ight)$$

$$\mathcal{L}_{sid}^t(\boldsymbol{\theta}_2|\boldsymbol{\theta}_1) = -\frac{1}{N_t} \sum_{i=1}^{N_t} \left(C_1^t(F(\boldsymbol{x}_i^t|E^{(T)}[\boldsymbol{\theta}_1])) \log C_2^t(F(\boldsymbol{x'}_i^t|\boldsymbol{\theta}_2)) \right)$$

replace one-hot labels in cross-entropy loss

Soft triplet loss --- hard-version softmax-triplet

Softmax-triplet:
$$\mathcal{T}_i(\boldsymbol{\theta}_1) = \frac{\exp(\|F(\boldsymbol{x}_i^t|\boldsymbol{\theta}_1) - F(\boldsymbol{x}_{i,n}^t|\boldsymbol{\theta}_1)\|)}{\exp(\|F(\boldsymbol{x}_i^t|\boldsymbol{\theta}_1) - F(\boldsymbol{x}_{i,p}^t|\boldsymbol{\theta}_1)\|)} + \exp(\|F(\boldsymbol{x}_i^t|\boldsymbol{\theta}_1) - F(\boldsymbol{x}_{i,n}^t|\boldsymbol{\theta}_1)\|)$$

$$\mathcal{L}_{tri}^{t}(m{ heta}_1) = rac{1}{N_t} \sum_{i=1}^{N_t} \mathcal{L}_{bce}igg(\mathcal{T}_i(m{ heta}_1), ar{m{1}}igg)$$

The sample should be closer to its (potential) positive than its (potential) negative.

Soft triplet loss --- soft-version softmax-triplet

Softmax-triplet:
$$\mathcal{T}_i(\boldsymbol{\theta}_1) = \frac{\exp(\|F(\boldsymbol{x}_i^t|\boldsymbol{\theta}_1) - F(\boldsymbol{x}_{i,n}^t|\boldsymbol{\theta}_1)\|)}{\exp(\|F(\boldsymbol{x}_i^t|\boldsymbol{\theta}_1) - F(\boldsymbol{x}_{i,p}^t|\boldsymbol{\theta}_1)\|) + \exp(\|F(\boldsymbol{x}_i^t|\boldsymbol{\theta}_1) - F(\boldsymbol{x}_{i,n}^t|\boldsymbol{\theta}_1)\|)}$$

replace hard label "1"

MMT vs state-of-the-arts

MMT vs state-of-the-arts

MMT vs state-of-the-arts

Mutual Mean-Teaching:

Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification

Yixiao Ge, Dapeng Chen, Hongsheng LiMultimedia Laboratory, The Chinese University of Hong Kong

Code available at

https://github.com/yxgeee/MMT