Lecture 9: The k-means algorithm

Sophie Rober

Principle

K-means

Selecting the right number

Advantages and drawbacks

Possible

Lecture 9: The k-means algorithm Introduction to Machine Learning

Sophie Robert

L3 MIASHS — Semestre 2

2022-2023

Advantages and drawbacks

Possible variant: PAM 1 Principle

2 K-means algorithm

3 Selecting the right number of clusters

4 Advantages and drawbacks

5 Possible variant: PAM

Reminder on previous session

Lecture 9: The k-means algorithm

Principle

K-means algorithm

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM

Question

Can anyone remind me what is the definition of **unsupervised learning** ?

Principle

Lecture 9: The k-means algorithm

_ . . .

Principle

K-means algorithm

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM

K-Means algorithm

The k-means algorithm* (MacQueen, 1967) is a clustering algorithm that partitions the space into k cluster by minimizing the within-cluster variance.

Principle

Lecture 9: The k-means algorithm

Sopille 1

Principle

K-means algorithm

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM

K-Means algorithm

The k-means algorithm* (MacQueen, 1967) is a clustering algorithm that partitions the space into k cluster by minimizing the within-cluster variance.

Given a set of individuals described by their features (X_1, \ldots, X_n) find k sets to partition the data into by minimzing the within cluster variance.

$$\sum_{i=1}^{k} \sum_{X \in S_i} = ||X - \mu_i||^2$$

with:

$$\mu_i = \frac{1}{|S_i|} \sum_{X \in S_i} X$$

 $(\mu_i$ is the mean or centroid)

Medoids and centroids

Lecture 9: The k-means algorithm

Sophie Ro

Principle

K-means algorithm

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM

Centroids

A centroid* is the arithmetic mean of a cluster, that is most often **not part of the dataset**.

Medoids and centroids

Lecture 9: The k-means algorithm

Sophie R

Principle

K-means algorithn

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM

Centroids

A centroid* is the arithmetic mean of a cluster, that is most often **not part of the dataset**.

Medoids

A medoid* is a **member of the dataset** which sum of dissimilarities to all the objects in the cluster is minimal.

Lecture 9: The k-means algorithm

K-means

algorithm

In practice, problem is NP-hard, so we rely on Lloyd's iterative algorithm:

Lecture 9: The k-means algorithm

K-means

algorithm

In practice, problem is NP-hard, so we rely on Lloyd's iterative algorithm:

Given a set of k means $m_1^{(1)}, \ldots, m_k^{(1)}$, iteratively perform two steps:

Lecture 9: The k-means algorithm

K-means algorithm

In practice, problem is NP-hard, so we rely on **Lloyd's** iterative algorithm:

Given a set of k means $m_1^{(1)}, \ldots, m_k^{(1)}$, iteratively perform two steps:

1 Assignment step: Assign each observation to the cluster with the nearest mean using the **Euclidean distance**.

Lecture 9: The k-means algorithm

Sophie Rober

K-means

algorithm

right number of clusters

Advantages and drawbacks

Possible variant: PAM In practice, problem is NP-hard, so we rely on **Lloyd's** iterative algorithm:

Given a set of k means $m_1^{(1)}, \ldots, m_k^{(1)}$, iteratively perform two steps:

- **Assignment step**: Assign each observation to the cluster with the nearest mean using the **Euclidean distance**.
- 2 Update step: Recalculate the mean for each cluster.

Lecture 9: The k-means algorithm

K-means

algorithm

In practice, problem is NP-hard, so we rely on **Lloyd's** iterative algorithm:

Given a set of k means $m_1^{(1)}, \ldots, m_k^{(1)}$, iteratively perform two steps:

- **1 Assignment step**: Assign each observation to the cluster with the nearest mean using the **Euclidean distance**.
- **Update step**: Recalculate the mean for each cluster.

Run steps until assignment do not change.

Lecture 9: The k-means algorithm

K-means

algorithm

In practice, problem is NP-hard, so we rely on **Lloyd's** iterative algorithm:

Given a set of k means $m_1^{(1)}, \ldots, m_k^{(1)}$, iteratively perform two steps:

- **1 Assignment step**: Assign each observation to the cluster with the nearest mean using the **Euclidean distance**.
- **Update step**: Recalculate the mean for each cluster.

Run steps until assignment do not change.

There is no garantee to find the optimum (but efficient in practice).

Lecture 9: The k-means algorithm

Sophie Robert

Duin aint.

K-means

algorithm
Selecting t

Advantages

Possible

Assign each individual to a cluster

Lecture 9: The k-means algorithm

Sophie Rober

Principle

K-means algorithm

Selecting the right numbe of clusters

Advantages and drawbacks

Possible variant: PAM

Compute new medoids

Lecture 9: The k-means algorithm

Sophie Robert

Dringinl

K-means algorithm

Selecting the right numbe of clusters

Advantages and drawbacks

Possible variant: PAM

Repeat until stable

Lecture 9: The k-means algorithm

Sophie Robert

Principl

K-means algorithm

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM

Lecture 9: The k-means algorithm

оор...с та

Duin ainta

K-means algorithm

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM Most common initialization for the algorithm:

■ Fully random approach: randomly choose *k* vectors in the feature space.

Lecture 9: The k-means algorithm

oop...c ..

Principle

K-means algorithm

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM Most common initialization for the algorithm:

- Fully random approach: randomly choose *k* vectors in the feature space.
- **Forgy partition**: Randomly choose *k* observations from the dataset.

Lecture 9: The k-means algorithm

Sophie R

Drinciplo

K-means algorithm

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM Most common initialization for the algorithm:

- Fully random approach: randomly choose *k* vectors in the feature space.
- **Forgy partition**: Randomly choose *k* observations from the dataset.
- Random partition: Randomly assign a cluster to each observation.

Example: k-means algorithm

Lecture 9: The k-means algorithm

Sophie Rober

Principle

K-means algorithm

Selecting the right number of clusters

Advantages and drawbacks

Possible

Questions

- Perform the k-means algorithm on the following dataset for k=2
- 2 Assign each individual to a cluster
- 3 Give coordinates of each centroid

ID	Sepal length	Sepal width
1	5	2
2	5	3
3	4	3
4	7	4
5	6	5

Hyperparameters

Lecture 9: The k-means algorithm

Sophie Robei

Principle

K-means algorithn

Selecting the right number of clusters

Advantages and drawbacks

Possible

Question

What are the hyperparameters of the algorithm ?

Hyperparameters

Lecture 9: The k-means algorithm

Sophie Robe

Principle

K-means algorithm

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM

Question

What are the hyperparameters of the algorithm ?

k !

Selecting the number of clusters using the elbow method

Lecture 9: The k-means algorithm

oop...e . tob

K-means

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM

Elbow method

An elbow plot* is a visual method by plotting the *within cluster* variance against the number of clusters and selecting the number of clusters before the curve flattens.

Selecting the number of clusters using the elbow method

Lecture 9: The k-means algorithm

Selecting the right number of clusters

Elbow method

An elbow plot* is a visual method by plotting the within cluster variance against the number of clusters and selecting the number of clusters before the curve flattens.

Selecting the number of clusters using silhouette score

Lecture 9: The k-means algorithm The silhouette score (see previous lecture) reaches its global maximum for the optimum number of k.

K-means

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAN

Selecting the number of clusters using silhouette score

Lecture 9: The k-means algorithm

Sophie Rol

K-means

Selecting the right number of clusters

Advantages and drawbacks

Possible

The silhouette score (see previous lecture) reaches its global maximum for the optimum number of k.

Line plot between K and Silhouette score

Advantages and drawbacks

Lecture 9: The k-means algorithm

Principle

K-means algorithn

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM

Advantages

- Fast to compute
- Easy to understand
- Work very well when clusters have a spherical shape

Advantages and drawbacks

Lecture 9: The k-means algorithm

Principle

K-means algorithm

Selecting the right numbe of clusters

Advantages and drawbacks

Possible variant: PAM

Advantages

- Fast to compute
- Easy to understand
- Work very well when clusters have a spherical shape

Limits

- Random algorithm
- No garantee to not be in a local optimum
- k must be chosen beforehand
- Class representative does not exist making it harder to interprete

Similar algorithm: PAM

Lecture 9: The k-means algorithm

Sophie Ro

Drinciplo

K-means algorithn

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM

Partitioning Around Medoids

Partitioning Around Medoids* (PAM) (Leonard Kaufman and Peter J. Rousseeuw) is a clustering algorithm that attempts to minimize the distance between points labeled to be in a cluster and a point designated as the center of that cluster.

Similar algorithm: PAM

Lecture 9: The k-means algorithm

Sophie R

Drinciple

K-means

Selecting the right number of clusters

Advantages and drawback

Possible

Partitioning Around Medoids

Partitioning Around Medoids* (PAM) (Leonard Kaufman and Peter J. Rousseeuw) is a clustering algorithm that attempts to minimize the distance between points labeled to be in a cluster and a point designated as the center of that cluster.

Fixes one of the problem of k-means: the *medoid* (instead of centroid) exists in the dataset.

PAM algorithm

Lecture 9: The k-means algorithm

Possible variant: PAM The PAM algorithm is iterative: Given k and a cost function $\sum_{i=1}^{k} \sum_{X \in S_i} = d(X, x^{(i)})$ with $x^{(i)}$ the medoid of cluster i and d a dissimilarity,

PAM algorithm

Lecture 9: The k-means algorithm

Sophie Rober

K-means algorithm

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM

The PAM algorithm is iterative: Given k and a cost function $\sum_{i=1}^k \sum_{X \in S_i} = d(X, x^{(i)})$ with $x^{(i)}$ the medoid of cluster i and d a dissimilarity, **Initialize**: greedily select k of the n data points as the medoids to minimize the cost.

PAM algorithm

Lecture 9: The k-means algorithm

Possible variant: PAM The PAM algorithm is iterative:

Given k and a cost function $\sum_{i=1}^{k} \sum_{X \in S_i} = d(X, x^{(i)})$ with $x^{(i)}$ the medoid of cluster i and d a dissimilarity, **Initialize**: greedily select k of the n data points as the medoids to minimize the cost.

Until the cost function does not decrease anymore:

- 1 Associate each non-medoid data point to the closest medoid
- 2 For each medoid m, and for each non-medoid data point o
 - 1 Swap m and o
 - 2 Compute the cost change
 - If the cost decreases, the store the value for the cost decrease
- 3 Perform the swap of o and m that decreases the most the cost function

Example: PAM algorithm

Lecture 9: The k-means algorithm

Possible variant: PAM

Questions

- 1 Perform the PAM algorithm on the following dataset for k=2
- 2 Assign each individual to a cluster
- 3 Give coordinates of each centroid

ID	Sepal length	Sepal width
1	5	2
2	5	3
3	4	3
4	7	4
5	6	5

Advantages and limits

Lecture 9: The k-means algorithm

Sophie Ro

Drinciple

K-means algorithm

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM

Advantages:

- The medoid is part of the dataset and can easily be interpreted.
- Selected dissimilarity can be customized.

Advantages and limits

Lecture 9: The k-means algorithm

Sophie R

Principle

K-means algorithn

Selecting the right numbe of clusters

Advantages and drawbacks

Possible variant: PAM

Advantages:

- The medoid is part of the dataset and can easily be interpreted.
- Selected dissimilarity can be customized.

Limits:

- We need to decide a value for k
- Algorithm initialization is random

Questions

Lecture 9: The k-means algorithm

Sophie Rober

Principle

K-means algorithm

Selecting the right number of clusters

Advantages and drawbacks

Possible variant: PAM

Questions ?