Lecture 12

Arithmetic and Logical Operations

CPSC 275
Introduction to Computer Systems

Complete Memory Addressing Modes

Most General Form

D(Rb,Ri,S) Mem[Reg[Rb] + S * Reg[Ri] + D]

- D: Constant "displacement" 1, 2, or 4 bytes
- Rb: Base register: Any of 8 integer registers
- Ri:Index register: Any, except for %esp
- S: Scale: 1, 2, 4, or 8

Special Cases

(Rb,Ri) Mem[Reg[Rb] + Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb] + Reg[Ri] + D]
(Rb,Ri,S) Mem[Reg[Rb] + S * Reg[Ri]]

Address Computation Examples

%edx	0xf000
%есх	0x0100

Expression	Address Computation	Address
0x8 (%edx)		
(%edx,%ecx)		
(%edx,%ecx,4)		
0x80(,%edx,2)		

Address Computation Instruction

- leal src,dest
- Load effective address
- src is address mode expression
- Set dest to address denoted by expression
- Uses
- Computing addresses without a memory reference
 - E.g., translation of p = &x[i];
- Computing arithmetic expressions
- Example Converted to ASM by compiler:

 int mul12(int x)
 {

 leal (%eax,%eax,3),%eax # t <- x + x*3
 sall \$2, %eax # return t <<2

return x*12; }

Some Arithmetic Operations

Two Operand Instructions:

Format		Computation
addl	Src,Dest	Dest = Dest + Src
subl	Src,Dest	Dest = Dest - Src
imull	Src,Dest	Dest = Dest * Src
sall	Src,Dest	Dest = Dest << Src
sarl	Src,Dest	Dest = Dest >> Src
shrl	Src,Dest	Dest = Dest >> Src
xorl	Src,Dest	Dest = Dest ^ Src
andl	Src,Dest	Dest = Dest & Src
orl	Src,Dest	Dest = Dest Src

- Watch out for argument order!
- No distinction between signed and unsigned int

Some Arithmetic Operations

One Operand Instructions

 incl
 Dest
 Dest = Dest + 1

 decl
 Dest
 Dest = Dest - 1

 negl
 Dest
 Dest = - Dest

 notl
 Dest
 Dest = ~ Pest

Arithmetic Expression Example %esp, %ebp movl int arith(int x, int y, movl 8(%ebp), %ecx int t1 = x + y; int t2 = z + t1; int t3 = x + 4; int t4 = y * 48; int t5 = t3 + t4; int rval = t2 * t5; 12(%ebp), %edx movl leal (%edx,%edx,2), %eax sall \$4. %eax 4(%ecx,%eax), %eax Body leal addl %ecx, %edx 16(%ebp), %edx %edx, %eax addl return rval; imull %ebp popl

Practice Problems

• Read CSaPP Sec. 3.5.1-3.5.4 and try the following problems:

3.6, 3.7, 3.8, 3.9, 3.10