

KALINGA INSTITUTE OF INDUSTRIAL TECHNOLOGY (KIIT)

(Deemed to be University)

DEPARTMENT OF MATHEMATICS, SAS

Mathematics-II[MA-1004], Quiz Test-1, Session-2020-21

Roll. No	,Name	,Sec
Time-15 min		FM-10
1. What is the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{(-1)^n (x-1)^{3n}}{8^n}$?		
A.		
B.		
C.	2	
D.	4	
2. If $P_m(x)$ is Legendre's polynomial then the value of $P_{100}(-1)$ is		
A.	0	
В.	-1	
C.	1	
	None of the above	
3. The Bessel function $J_{\underline{1}}(x)$ is		
	$\sqrt{\frac{2}{\pi x}}\cos x$	
	$\sqrt{\frac{2}{\pi x}}\sin x$	
C.	$\sqrt{\frac{2}{\pi x}}\sin^2 x$	
	$\sqrt{\frac{2}{\pi x}}\cos^2 x$	
4. What are the roots of the indicial equation of $(x^2 - x)y'' - xy' + y = 0$?		
	0 and ½	
B.	1 and -1	
C.	0 and 2	
	0 and 1	
5. What is one of the solutions of $(1-x^2)y'' - 2xy' + 6y = 0$?		
A.	$\frac{1}{2}(5x^3-3x)$	
В.	$\frac{1}{2}(3x^2 - 1)$ $\frac{1}{2}(3x^2 - x)$	
C.	$\frac{1}{2}(3x^2-x)$	
D.	$\frac{1}{2}(5x^2-1)$	
6. What is the	interval of convergence of the series $\sum_{m=0}^{\infty} \frac{(-1)^m (x-1)^{2m}}{4^m}$?	

- A) -1 < x < 3
- B) 1 < x < 4
- C) 0 < x < 2
- D) -1 < x < 2
- 7. If $P_m(x)$ is Legendre's polynomials then the value of $\int_{-1}^1 P_7(x) P_9(x) dx$ is
 - A) 0

- B)
- C) $\frac{2}{16}$
- D) $\frac{3}{10}$

8. Which one of the following is the perfect replacement of $P_2(x)$ in terms of $P_0(x) \& P_1(x)$ if $P_m(x)$ is the Legendre's polynomials.

A)
$$\frac{5}{2}xP_1(x) - \frac{1}{2}P_0(x)$$

B)
$$\frac{5}{2}xP_1(x) + \frac{1}{2}P_0(x)$$

C)
$$\frac{5}{2}xP_1(x) - \frac{3}{2}P_0(x)$$

D)
$$\frac{5}{2}xP_1(x) + \frac{1}{2}P_0(x)$$

9. If $J_n(x)$ is the Bessel's function of the first kind of order n then what is $\frac{d}{dx}(-x^{-3}J_3(x))$?

A)
$$x^{-3}J_4(x)$$

B)
$$x^3 J_2(x)$$

C)
$$x^2 J_2(x)$$

D)
$$-x^{-3}J_4(x)$$

10. What is the value of the integral $\int_0^\infty e^{-t^2} t^2 dt$?

A)
$$\frac{\sqrt{\pi}}{4}$$

B)
$$\frac{\sqrt{\pi}}{2}$$

C)
$$\pi$$

D)
$$\frac{\pi}{2}$$
