2017/1/11

生成器

2195次阅读

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器(Generator)。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

```
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x104feab40>
```

创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过generator的next()方法:

```
>>> g. next()
>>> g. next()
1
>>> g. next()
>>> g. next()
>>> g. next()
>>> g. next()
25
\Rightarrow \Rightarrow g. next()
36
>>> g. next()
49
\Rightarrow \Rightarrow g. next()
64
>>> g. next()
81
\Rightarrow \Rightarrow g. next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
```

我们讲过,generator保存的是算法,每次调用next(),就计算出下一个元素的值,直到计算到 最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next()方法实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

```
>>> g = (x * x for x in range(10))
>>> for n in g:
...     print n
...
0
1
4
9
16
25
36
49
64
81
```

所以,我们创建了一个generator后,基本上永远不会调用next()方法,而是通过for循环来迭代它。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

```
def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print b
        a, b = b, a + b
        n = n + 1</pre>
```

上面的函数可以输出斐波那契数列的前N个数:

```
>>> fib(6)
1
1
2
3
5
```

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素 开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print b改为yield b就可以了:

```
def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1</pre>
```

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

```
>>> fib(6)
<generator object fib at 0x104feaaa0>
```

这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个generator,依次返回数字1,3,5:

```
>>> def odd():
     print 'step 1'
        yield 1
. . .
        print 'step 2'
        yield 3
        print 'step 3'
        yield 5
>>> o = odd()
>>> o. next()
step 1
>>> o. next()
step 2
>>> o. next()
step 3
>>> o. next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
```

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next()就报错。

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来调用它,而是直接使用for循环来迭代:

```
>>> for n in fib(6):
... print n
...
1
1
2
3
5
```

小结

generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。

要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。