### ЛЕКЦИЯ № 15.

Приведение квадратичной формы к каноническому виду методом ортогональных преобразований. Приведение кривой второго порядка к каноническому виду.

# Приведение квадратичной формы к каноническому виду методом ортогональных преобразований.

Рассмотрим метод приведения квадратичной формы к каноническому виду с помощью ортогональный преобразований.

Пусть  $\mathbb{E}$  — n-мерное пространство.  $S=\{\overline{e}_1; ... \overline{e}_n\}$ - ортонормированный базис;  $\varphi(\overline{x})$ -квадратичная форма, A-её матрица, симметричная. Рассмотрим линейный оператор  $\hat{A}$  с этой матрицей.  $\hat{A}$  будет самосопряженным согласно теореме 2 => существует ортонормированный базис  $S'=\{\overline{f_1}; ... \overline{f}_n\}$ , в котором матрица оператора  $\hat{A}$ , A' будет диагональной.

Матрица перехода  $P_{s \to S'}$  переводит ортонормированный базис в ортонормированный, следовательно, матрица  $P_{s \to S'}$  ортогональная,  $P^{-1} = P^T$ . Тогда  $A' = P^{-1} A P = P^T A P$ ,

то есть , приводя матрицу оператора A к диагональному виду мы и квадратичную форму  $\varphi(\overline{x})$  приведем к диагональному виду.

Такое преобразование  $A' = P^T A P$ , где P- ортогональная матрица, называют **ортогональным преобразованием**.

**Теорема 13.** Любая симметричная матрица ортогональным преобразованием приводится к диагональному виду.

## Алгоритм приведения квадратичной формы к каноническому виду методом ортогональных преобразований.

- 1) Составляем матрицу квадратичной формы. Находим собственные значения,  $\lambda_i \in R$  (вещественные числа), так как матрица симметричная и является матрицей некоторого самосопряженного линейного оператора.
  - 2) Находим собственные векторы.
- Если они попарно различны, то они образуют ортогональный базис, надо преобразовать его в ортонормированный базис.

- Если нет, то строим ортонормированный базис при помощи алгоритма ортогонализации Грама-Шмидта. В этом базисе матрица квадратичной формы будет иметь диагональный вид. На главной диагонали будут стоять собственные значения.

<u>Задача 1</u>. Привести квадратичную форму к каноническому виду методом ортогональных преобразований.

$$\varphi(\overline{x}) = 6x_1^2 + 5x_2^2 + 7x_3^2 - 4x_1x_2 + 4x_1x_3$$

#### Решение.

$$A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix}; \det(A - \lambda E) = \begin{vmatrix} 6 - \lambda & -2 & 2 \\ -2 & 5 - \lambda & 0 \\ 2 & 0 & 7 - \lambda \end{vmatrix} = 0;$$

$$-\lambda^3 + 18\lambda^2 - 99\lambda + 162 = 0$$
.  $\lambda_1 = 3$ ;  $\lambda_2 = 6$ ;  $\lambda_3 = 9$ ;

Находим собственные векторы, отвечающие собственным значениям.

$$\overline{f}_1 = \begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix}; \overline{f}_2 = \begin{pmatrix} -1/2 \\ 1 \\ 1 \end{pmatrix}; \overline{f}_3 = \begin{pmatrix} 1 \\ -1/2 \\ 1 \end{pmatrix}$$
 – ортогональные, так как

 $\lambda_i$ - попарно различны. Можно проверить.

Нормируем: 
$$\overline{e}_1 = \frac{\overline{f}_1}{\|\overline{f}_1\|} = \begin{pmatrix} -2/3 \\ -2/3 \\ 1/3 \end{pmatrix}; \overline{e}_2 = \frac{\overline{f}_2}{\|\overline{f}_2\|} = \begin{pmatrix} -1/3 \\ 2/3 \\ 2/3 \end{pmatrix};$$

$$\overline{e}_2 = \frac{\overline{f}_3}{\|\overline{f}_3\|} = \begin{pmatrix} 2/3 \\ -1/3 \\ 2/3 \end{pmatrix}$$

$$A' = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 9 \end{pmatrix}; \varphi(\overline{x}) = 3y_1^2 + 6y_2^2 + 9y_3^2;$$

Выпишем преобразование координат: Х=РҮ;

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2/3 & -1/3 & 2/3 \\ -2/3 & 2/3 & -1/3 \\ 1/3 & 2/3 & 2/3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

Приведение кривой второго порядка к каноническому виду.

**Задача 2.** Написать каноническое уравнение кривой второго порядка, определить ее тип и найти каноническую систему координат.

$$9x^2 - 4xy + 6y^2 + 16x - 8y - 2 = 0$$

### Решение.

Выпишем матрицу квадратичной части.  $A = \begin{pmatrix} 9 & -2 \\ -2 & 6 \end{pmatrix}$ ;

Det 
$$(A-\lambda E) = (9 - \lambda)(6 - \lambda) - 4 = 0$$

$$\lambda^2 - 15\lambda + 50 = 0$$
;  $\lambda_1 = 5$ ;  $\lambda_2 = 10$ ;

Заметим, что  $\lambda_1 \neq \lambda_2$ .

Находим собственные векторы , соответствующие  $\lambda_1$  и  $\lambda_2$  , они будут ортогональны. Затем нормируем их.

$$\lambda_{1} = 5$$

$$\begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}; X1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix};$$

$$\overline{e_{1}} = \begin{pmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix};$$

$$\begin{split} &\lambda_2 = 10 \\ &\binom{-1}{-2} - \binom{2}{x_1} \binom{x_1}{x_2} = \binom{0}{0}; \ \binom{1}{0} \quad \binom{2}{0}; \ X2 = \binom{-2}{1} \\ &\overline{e_2} = \binom{-2/\sqrt{5}}{1/\sqrt{5}}; \end{split}$$

 $\{\overline{e_1},\overline{e_2}\}$ - ортонормированный базис из собственных векторов.

Матрица перехода 
$$P_{i,j\to\overline{e_1},\overline{e_2}} = \begin{pmatrix} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{pmatrix};$$

Выпишем преобразование координат:

$$x = x' \frac{1}{\sqrt{5}} - y' \frac{2}{\sqrt{5}} = x' \cos \alpha - y' \sin \alpha$$
$$y = x' \frac{2}{\sqrt{5}} + y' \frac{1}{\sqrt{5}} = x' \sin \alpha + y' \cos \alpha$$

Данное преобразование соответствуют повороту системы координат на угол  $\alpha$  против часовой стрелки.

Перейдем к новым координатам:

Для квадратичной части справедливо:

$$9x^2 - 4xy + 6y^2 = 5x'^2 + 10y'^2$$

Тогда получаем:

$$5x'^2 + 10y'^2 + 16(x'\frac{1}{\sqrt{5}} - y'\frac{2}{\sqrt{5}}) - 8(x'\frac{2}{\sqrt{5}} + y'\frac{1}{\sqrt{5}}) - 2 = 0$$

После раскрытия скобок и приведения подобных членов имеем:

$$5x'^2 + 10y'^2 - \frac{40}{\sqrt{5}}y' - 2 = 0;$$

Выделим полный квадрат.

$$\frac{{x'}^2}{2} + (y' - \frac{2}{\sqrt{5}})^2 = 1;$$
  
$$y'' = y' - \frac{2}{\sqrt{5}}; \qquad x'' = x';$$

Данное преобразование соответствует сдвигу системы координат по оси OY'.

Получаем каноническое уравнение эллипса :  $\frac{{x''}^2}{2} + {y''}^2 = 1$ ;

Найдем окончательное преобразование координат:

$$x = x' \frac{1}{\sqrt{5}} - y' \frac{2}{\sqrt{5}} = x'' \frac{1}{\sqrt{5}} - (y'' + \frac{2}{\sqrt{5}}) \frac{2}{\sqrt{5}}$$
$$y = x' \frac{2}{\sqrt{5}} + y' \frac{1}{\sqrt{5}} = x'' \frac{2}{\sqrt{5}} + (y'' + \frac{2}{\sqrt{5}}) \frac{1}{\sqrt{5}}$$

Окончательное преобразование координат выглядит так:

$$\mathbf{x} = \mathbf{x}'' \frac{1}{\sqrt{5}} - \mathbf{y}'' \frac{2}{\sqrt{5}} - \frac{4}{5};$$

$$\mathbf{y} = \mathbf{x}'' \frac{2}{\sqrt{5}} + \mathbf{y}'' \frac{1}{\sqrt{5}} + \frac{2}{5};$$

Новый центр системы координат  $\boldsymbol{0}''(\frac{-4}{5};\frac{2}{5})$ .

