composition de mathématiques générales

Tous les résultats introduits par "On remarquera que..." peuvent être utilisés sans démonstration et ne doivent pas être démontrés.

Partie 1 Partitions d'un entier

On appelle partition d'un entier n une suite $\lambda = (r_k)_{k \ge 1}$ d'entiers naturels tels que $\sum_{k=1}^{+\infty} k r_k = n$. L'entier r_k s'appelle la multiplicité de k dans la partition λ .

Si $r_k \ge 1$ on dit que k est une part de la partition. Il existe une unique partition de 0, elle ne possède aucune part et se note 0. La partition $\lambda = (r_k)_{k \ge 1}$ de n se note formellement

 $(1^{r_1} 2^{r_2} \cdots)$. La taille de la partition $\lambda = (r_k)_{k \ge 1}$ est par définition l'entier $r = \sum_{k=1}^{+\infty} r_k$. Si

 λ n'est pas la partition 0, il sera pratique de noter ses parts dans l'ordre décroissant de leur valeur $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > 0$. Pour une partition λ , on définira la suite $(\lambda_i)_{i \in \mathbb{N}}$ de ses parts en complétant la suite précédente par $\lambda_i = 0$ pour $i \geq r + 1$.

Donnons un exemple : $(1,0,2,0,1,0,\cdots)$ est une partition de n=12 associée à la décomposition 12=5+3+3+1. Elle se note $(1^1 2^0 3^2 4^0 5^1 \cdots)$ ou $(1^1 3^2 5^1)$. Elle est de taille r=4 et on a $\lambda_1=5, \lambda_2=\lambda_3=3, \lambda_4=1$.

On constatera (sans avoir à en faire la preuve) que, réciproquement, la donnée d'une suite $(\lambda_i)_{i \in \mathbb{N}^*}$ telle qu'il existe un entier r vérifiant

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r > 0$$
 et $\lambda_i = 0$ pour $i \ge r + 1$

détermine une unique partition λ de l'entier $n=\sum_{i=1}^{+\infty}\lambda_i$ dont la taille est r et dont la suite des parts est la suite donnée. L'entier n s'appelle alors le poids de la partition λ et se note $|\lambda|$.

On peut représenter λ par un diagramme de n carrés rangés en r lignes, la $i^{\text{ème}}$ ligne contenant exactement λ_i carrés.

Un exemple : la partition précédente est associée au diagramme :

Si l'on transpose le diagramme d'une partition $\lambda = (r_k)_{k \geq 1}$ de n par rapport à la diagonale (de telle sorte que la $i^{\text{ème}}$ colonne devienne la $i^{\text{ème}}$ ligne) on obtient un diagramme associé à une nouvelle partition $\lambda' = (r'_k)_{k \geq 1}$ de n, que l'on appelle la conjuguée de λ . Dans l'exemple on obtient la partition 12 = 4 + 3 + 3 + 1 + 1. La taille de λ' sera notée r' et la suite de ses parts $(\lambda'_i)_{i \in \mathbb{N}^*}$.

1) Exprimer r' ainsi que les r'_k à l'aide des λ_i . En déduire l'expression des λ_i en fonction des r'_k , puis des λ'_i en fonction des r_k .

On remarquera que $\lambda'_j = \text{Card } \{i; \lambda_i \geq j\}.$

Si λ et μ sont deux partitions, dont les suites des parts sont respectivement $(\lambda_i)_{i \in \mathbb{N}^*}$ et $(\mu_i)_{i \in \mathbb{N}^*}$, on écrira $\lambda \subset \mu$ si et seulement si $\lambda_i \leq \mu_i$ pour tout entier i plus grand que 1.

2) Montrer que $(\lambda \subset \mu)$ si et seulement si $(\lambda' \subset \mu')$.

Définissons deux additions sur l'ensemble P des partitions par des opérations géométriques sur les diagrammes qui leur sont associés.

En additionnant à chaque ligne du diagramme associé à la partition λ de n la ligne correspondante du diagramme de la partition μ de m, nous obtenons une partition notée $\lambda + \mu$ de n + m. Une opération similaire sur les colonnes des diagrammes nous donne la partition $\lambda \oplus \mu$ de n + m.

3) Quel est le lien entre les opérateurs +, \oplus et '?

Partie 2 Quelques lemmes

- 4) On se place dans l'algèbre $\mathbb{Q}[X,T]$ des polynômes à deux indéterminées sur le corps des rationnels.
 - a) Montrer qu'il existe une famille de polynômes en une seule indéterminée à coefficients entiers positifs, notés $P_{n,k}(X)$, $0 \le k \le n$, telle que pour tout entier n:

$$\prod_{i=0}^{n-1} (1 + X^i T) = \sum_{k=0}^n X^{\frac{k(k-1)}{2}} P_{n,k}(X) T^k .$$

On prendra pour convention $P_{0,0} = 1$.

- b) Déterminer la relation de récurrence définissant de manière unique la famille précédente.
- 5) On considère la famille de fractions rationnelles

$$F_{n,k}(X) = \frac{(1 - X^{n-k+1}) \cdots (1 - X^n)}{(1 - X) \cdots (1 - X^k)},$$

pour $1 \le k \le n$ et $F_{n,0} = 1$, n et k entiers positifs.

- a) Montrer que $F_{n,k}$ est en fait un polynôme à coefficients entiers positifs.
- b) Quel est son degré?
- c) Prouver l'égalité de $F_{n,k}$ et $F_{n,n-k}$, pour tout couple (n,k) d'entiers vérifiant $0 \le k \le n$.

- 6) Soit E un espace vectoriel de dimension n sur le corps $\frac{\mathbb{Z}}{p\mathbb{Z}}$, où p est un nombre premier.
 - a) Exprimer à l'aide des polynômes précédents le nombre de sous-espaces de dimension r de E.
 - b) Si F est un sous-espace de dimension l de E, exprimer de même le nombre $c_{n,l,r}$ de sous-espaces G tels que $F \subset G \subset E$ et dim G = r. Justifier la relation $c_{n,l,r} = c_{n,l,n-r+l}$, où (n,l,r) est un triplet quelconque d'entiers vérifiant $0 \le l \le r \le n$.
 - c) Prouver que $\sum_{k=0}^{n-l} (-1)^k p^{\frac{k(k-1)}{2}} c_{n,l,l+k}$ vaut 1 si n=l et 0.si n>l.
 - d) En déduire que si (f_F) et (g_F) sont deux suites de réels indexées par les sousespaces F de E telles que, pour tout sous-espace F de E, on ait

$$f_F = \sum_{G \subset F} g_G,$$

alors, pour tout sous-espace F de E

$$g_F = \sum_{G \subset F} (-1)^l p^{\frac{l(l-1)}{2}} f_G,$$

où l (que l'on aurait dû noter $l_F(G)$), est la codimension de G dans F.

On s'intéresse maintenant aux groupes commutatifs. On notera leur loi +. On rappelle que tout groupe commutatif est naturellement muni d'une structure de module sur \mathbb{Z} . Si G est un groupe commutatif et n un entier la notation nG désigne l'ensemble $\{ng : g \in G\}$.

- 7) Soient H et K deux sous-groupes du groupe commutatif G.
 - a) Si $K\subset H\subset G$, démontrer que $\frac{H}{K}$ est un sous-groupe de $\frac{G}{K}$ et que $\frac{G}{K}$ est isomorphe à $\frac{G}{H}$.
 - b) Prouver que $\frac{H}{H \cap K}$ est isomorphe à $\frac{H+K}{K}$.
 - c) Soit q un entier positif, montrer que $\frac{qG}{H\cap qG}$ est isomorphe à $q\frac{G}{H}$, sous-groupe de $\frac{G}{H}$.

Partie 3 Les p-groupes commutatifs finis

Soit p un nombre premier. On considère un p-groupe G, commutatif et fini. On rappelle qu'il est isomorphe à

$$G_{\lambda}(p) = \frac{\mathbb{Z}}{n^{\lambda_1} \mathbb{Z}} \times \cdots \times \frac{\mathbb{Z}}{n^{\lambda_r} \mathbb{Z}}$$

avec $\lambda_1 \ge \cdots \ge \lambda_r > 0$, et $\lambda_1 + \cdots + \lambda_r = n$ avec Card $G = p^n$. De plus, ces conditions déterminent la suite λ de manière unique, ce qui nous permet d'établir une bijection entre l'ensemble des classes d'isomorphisme de p-groupes commutatifs finis et l'ensemble des partitions.

Math Géné 4/7

Si G est un groupe isomorphe à $G_{\lambda}(p)$, on dira qu'il est de type λ . Si H est un sous-groupe de G tel que $\frac{G}{H}$ soit de type ν , on dira que H est de cotype ν dans G. Si G est de type λ , le poids de λ s'appelle la longueur de G; on la note l(G). Elle est aussi définie par C and $G = p^{l(G)}$.

CONVENTION: Dans la suite tous les groupes considérés sont des p-groupes commutatifs finis.

- 8) On s'intéresse au comportement du type vis-à-vis des opérations sur les groupes.
 - a) Exprimer le type du produit direct des groupes G et H en fonction des types de G et H.
 - b) Montrer que $l(\frac{G}{H}) = l(G) l(H)$ si H est un sous-groupe de G.
 - c) Soient $K \subset H$ deux sous-groupes du groupe G. Montrer que le cotype de H dans G est égal au cotype de $\frac{H}{K}$ dans $\frac{G}{K}$.

Construisons une algèbre sur le corps des rationnels notée A(p) de la manière suivante : comme base de l'espace vectoriel A(p), nous choisissons les $G_{\lambda}(p)$ eux-mêmes, où λ parcourt l'ensemble Λ des partitions. Un élément de A(p) est une somme $\sum_{\lambda \in \Lambda} a_{\lambda} G_{\lambda}(p)$ où les a_{λ} sont des rationnels, nuls sauf pour un nombre fini de λ . Nous définissons dans

$$G_{\lambda}(p)G_{\mu}(p) = \sum_{\rho \in \Lambda} g_{\lambda\mu}^{\rho}(p)G_{\rho}(p),$$

où $g_{\lambda\mu}^{\rho}(p)$ est le nombre de sous-groupes H de $G_{\rho}(p)$ tels que

A(p) la multiplication distributive par la règle

$$H \sim G_{\lambda}(p), \quad \frac{G_{\rho}(p)}{H} \sim G_{\mu}(p)$$

(c'est à dire le nombre de sous-groupes H de $G_{\rho}(p)$ de type λ et de cotype μ), la loi s'étendant à A(p) par bilinéarité.

9) Montrer que $g_{\lambda\mu}^{\rho}(p) = 0$ sauf si $|\rho| = |\lambda| + |\mu|$. En déduire que la multiplication de A(p) est bien définie.

On notera $g_{\lambda_0\lambda_1\cdots\lambda_k}^{\rho}(p)$ le nombre de chaînes de sous-groupes $H_1\subset H_2\subset\cdots\subset H_k$ dans $G_{\rho}(p)$, telles que $H_1,\frac{H_2}{H_1},\ldots,\frac{G_{\rho}(p)}{H_k}$ soient respectivement de type $\lambda_0,\lambda_1,\ldots,\lambda_k$.

- 10) Justifier l'associativité de la multiplication de A(p).
- 11) Soit G un p-groupe commutatif fini. On appelle dual de G, noté \widehat{G} , l'ensemble des homorphismes de groupes de G dans le groupe multiplicatif des nombres complexes. Cet ensemble \widehat{G} est un groupe lorsqu'on le munit de la loi :

$$\forall (\phi, \psi) \in \widehat{G}^2 \quad \forall g \in G \quad \phi \psi(g) = \phi(g)\psi(g).$$

Soit H un sous-groupe de G. On pose $H^{\circ} = \{ \phi \in \widehat{G}; \phi(H) = \{1\} \}$. Soit K un sous-groupe de \widehat{G} . On pose $K^{\perp} = \{ x \in G; \forall \phi \in K \ \phi(x) = 1 \}$.

- a) Montrer que \widehat{G} est isomorphe à G.
- b) Montrer que pour x non nul dans G, il existe un élément ϕ de \widehat{G} tel que $\phi(x) \neq 1$ (on pourra faire la démonstration dans le cas de $G_{\lambda}(p)$). En déduire que $\Phi: x \mapsto (\phi \mapsto \phi(x))$ est un isomorphisme de G sur $\widehat{\widehat{G}}$.
- c) Montrer que H° est isomorphe à $\left(\frac{\widehat{G}}{H}\right)$.
- d) Montrer que $\frac{\widehat{G}}{H^{\circ}}$ est isomorphe à \widehat{H} .
- e) Prouver que l'application $H\mapsto H^\circ$ est une bijection de l'ensemble des sous-groupes de \widehat{G} .
- f) Déduire des questions précédentes que la multiplication de A(p) est commutative.
- 12) Etablir que si G est un groupe de type λ et si pour tout entier i non nul on pose $\mu_i = l(\frac{p^{i-1}G}{p^iG})$, alors $\mu = \lambda'$.
- 13) Prouver que si G est un groupe de type ρ , H un sous-groupe de G de type λ et de cotype μ , alors $\lambda \subset \rho$ et $\mu \subset \rho$ (on établira d'abord $\mu' \subset \rho'$).

Partie 4 Dénombrement de sous-groupes

On rappelle que p est un nombre premier et que tous les groupes considérés sont des p-groupes commutatifs finis. On dira qu'un groupe G est élémentaire si pG = 0.

- 14) Prouver que tout groupe G possède un plus grand sous-groupe élémentaire, que l'on appellera le socle de G, noté S. Exprimer le cotype $\tilde{\lambda}$ de S à l'aide du type λ de G.
- 15) Montrer que tout groupe élémentaire peut être naturellement muni d'une structure d'espace vectoriel sur le corps $\frac{\mathbb{Z}}{p\mathbb{Z}}$.

Soit H un sous-groupe de G tel que $\frac{G}{H}$ soit élémentaire. Par définition, une famille (x_1,\ldots,x_l) d'éléments de G est libre modulo H si et seulement si la famille des images de ces éléments dans le $\frac{\mathbb{Z}}{p\mathbb{Z}}$ -espace vectoriel $\frac{G}{H}$ est libre.

- 16) Soient G un groupe et H un sous-groupe de G tel que $\frac{G}{H}$ soit élémentaire. Calculer en fonction de l et des longueurs de G et H, le nombre de familles (x_1, \ldots, x_l) d'éléments de G libres modulo H, dans le cas $0 \le l \le l(G) l(H)$.
- 17) On se donne un groupe élémentaire G, deux sous-groupes H' et H de G et un entier l, avec $H' \subset H$ et $0 \le l \le l(G) l(H)$. On voudrait dénombrer les sous-groupes G' de G tels que :

(C)
$$G' \cap H = H' \quad , \quad l(\frac{G'}{H'}) = l \quad .$$

(On remarquera que les groupes $\frac{G}{H}$ et $\frac{G}{H'}$ sont élémentaires.)

- a) Soit (x_1, \ldots, x_l) une famille d'éléments d'éléments de G libre modulo H. Prouver que si G' est le sous-groupe engendré par H' et les éléments de cette famille, alors il vérifie la condition (C).
- b) Montrer que tout sous-groupe G' vérifiant la condition (C) est engendré par H' et les éléments d'une famille $(x_1, \ldots, x_l), x_i \in G$, libre modulo H.
- c) Donner le nombre de sous-groupes G' de G vérifiant la condition (C), et en déduire que ce nombre est une fonction polynomiale de p.

Partie 5
Précisions sur
$$g_{\lambda\mu}^{\rho}(p)$$

On se propose de démontrer que $g_{\lambda\mu}^{\rho}(p)$ est une fonction polynomiale de p.

- 18) Soient G un groupe de type ρ , H un sous-groupe de cotype α dans G, β une partition telle que $\alpha \subset \beta \subset \rho$. Posons $H_i = p^i G \cap H$.
 - a) Montrer $l(H_i) = \sum_{j>i} (\rho'_j \alpha'_j)$, en prouvant auparavant que

$$l(H_i) = l(p^i G) - l(p^i \frac{G}{H}) .$$

- b) Soit K un sous-groupe de H; notons $K_i = K \cap p^i G = K \cap H_i$. Prouver que K est de cotype β dans G si et seulement si pour tout entier i non nul $l(K_{i-1}) l(K_i) = \rho'_i \beta'_i$.
- c) On suppose de plus que H est élémentaire. Montrer que le nombre de sous-groupes K de G, contenus dans H et de cotype β dans G, est une fonction polynomiale de p, notée $h_{\alpha\beta\rho}(p)$.
- 19) Soient G un groupe de type ρ , H un sous-groupe de G; pour tout sous-groupe L de H, on désigne par f(H,L) (resp. g(H,L)) le nombre de sous-groupes K de cotype α dans G tels que $pK \subset L \subset H \subset K$ (resp. $pK = L \subset H \subset K$). Etablir:

$$f(H,L) = \sum_{T \subset L} g(H,T),$$

en déduire

$$g(H,L) = \sum_{T \subset L} (-1)^m p^{\frac{m(m-1)}{2}} f(H,T),$$

où $m = l(\frac{L}{T})$.

- 20) Soit G un groupe de type ρ , H un sous-groupe élémentaire de cotype β dans G, L un sous-groupe de H de cotype γ dans G. Nous aurons $\alpha \subset \beta \subset \gamma \subset \rho$.
 - a) Montrer qu'il existe un sous-groupe S de G contenant H tel que $\frac{S}{L}$ soit le socle de $\frac{G}{L}$.

Math Géné 7/7

- b) Soit K un sous-groupe de G contenant H, de cotype α dans G; montrer que $pK \subset L \subset H \subset K$ si et seulement si $\frac{K}{H} \subset \frac{S}{H}$. En déduire l'égalité $f(H,L) = h_{\tilde{\gamma}\alpha\beta}(p)$.
- c) Prouver qu'il existe un polynôme $F_{\alpha\beta\rho}(X)$ à coefficients entiers tel que le nombre de sous-groupes K de cotype α dans G tels que pK = H soit égal à $F_{\alpha\beta\rho}(p)$.

Soit G un groupe de type ρ , soit H un sous-groupe de type λ et de cotype μ . Pour tout i, soit $\rho^{(i)}$ le cotype de p^iH . Soit r le plus petit entier tel que $p^rH=\{0\}$. On note U(H) la suite $(\rho^{(0)},\ldots,\rho^{(r)})$. On remarquera que $\rho^{(0)}=\mu$ et $\rho^{(r)}=\rho$. Toute suite de partitions pouvant s'obtenir par ce procédé (choix d'un entier premier p, puis d'un p-groupe commutatif G et d'un de ses sous-groupes H et construction de la suite des cotypes) s'appellera une RL-suite.

On admettra que la propriété pour une suite $(\rho^{(0)}, \ldots, \rho^{(r)})$ d'être une RL-suite est indépendante de p: si $(\rho^{(0)}, \ldots, \rho^{(r)})$ est une RL-suite pour un entier premier p, elle l'est pour tout autre entier premier.

- 21) Prouver que l'ensemble des RL-suites $(\rho^{(0)}, \dots, \rho^{(r)})$ telles que $\rho^{(0)} = \mu$ et $\rho^{(r)} = \rho$ est fini.
- 22) Soient G un groupe de type ρ et

$$U = (\rho^{(0)} = \mu, \dots, \rho^{(r)} = \rho)$$

une RL-suite. On note $g_U(p)$ le nombre de sous-groupes H de G de type λ et de cotype μ tels que U(H)=U.

- a) Montrer que si chaque $g_U(p)$ est une fonction polynomiale de p, il en est de même de $g_{\lambda\mu}^{\rho}(p)$.
- b) Soit H un sous-groupe tel que $U(H) = (\rho^{(0)}, \dots, \rho^{(r)})$, notons H' = pH. Prouver que $U(H') = (\rho^{(1)}, \dots, \rho^{(r)}) = U'$.
- c) Soit H' un sous-groupe de G tel que U(H')=U'. Alors le nombre de sous-groupes H de G tels que U(H)=U et pH=H' est $F_{\rho^{(0)}\rho^{(1)}\rho^{(2)}}(p)$ (indication : quotienter par pH'). En déduire $g_U(p)=F_{\rho^{(0)}\rho^{(1)}\rho^{(2)}}(p)g_{U'}(p)$.
- d) En déduire que $g_U(p)$ est une fonction polynomiale. Il en est donc ainsi de $g_{\lambda\mu}^{\rho}(p)$.