Real Variables: Problem Set I

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains the solutions to the first problem set of Real Variables 2015.

1 Solutions

Question 1. Royden 2.4. Counting Measure.

Solution. We wish to show that the counting measure, $c: \mathcal{P}(\mathbb{R}) \to [0, \infty]$, where $\mathcal{P}(\mathbb{R})$ denotes the power set of \mathbb{R} , is countably additive and translation invariant.

We first prove that it is countably additive. Let $\{E_k\}_{k=1}^{\infty}$ be a countable, disjoint collection of subsets of \mathbb{R} . If one of the set in the collection has infinite cardinality, then we have

$$\sum_{k=1}^{\infty} c(E_k) = \infty,$$

as $c(E_k) = \infty$ for some k. Notice that the union of the collection $\bigcup_{k=1}^{\infty} E_k$, also has infinite cardinality, as it has a subset with an infinite cardinality. Hence, by the definition of counting measure, we have $c(\bigcup_{k=1}^{\infty} E_k) = \infty$. Therefore, we have

$$c(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} c(E_k),$$

for the case under consideration. Now, assume that $c(E_k) < \infty$ for all k. There are two sub-cases now. First, assume that the series $\sum_{k=1}^{\infty} c(E_k)$ converges. In particular, we have that $\lim_{k \to \infty} c(E_k) = \sum_{k=1}^{\infty} c(E_k) = \sum_{k=1}^{\infty} c(E_k)$

0. For some $\epsilon < 1$, we have an N such that $c(E_k) < \epsilon$ for all $k \ge N$. As the counting measure only takes an integer value or ∞ , we obtain that $c(E_k) = 0$ and $E_k = \emptyset$ for all $k \ge N$. Furthermore, we get that

$$c(\bigcup_{k=1}^{\infty} E_k) = c(\bigcup_{k=1}^{N} E_k),$$

 $\sum_{k=1}^{\infty} c(E_k) = \sum_{k=1}^{N} c(E_k).$

As the finite additivity of counting measure trivially holds (can be shown with a simple inductive argument), $c(\cup_{k=1}^N E_k) = \sum_{k=1}^N c(E_k)$ holds, and thus we conclude that

$$c(\cup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} c(E_k).$$

Now, for the last case, assume that $\sum_{k=1}^{\infty} c(E_k) = \infty$. This gives that for any N, there exists N' > N, such that $c(E_{N'}) > 0$. Hence, there exists a subsequence of $\{E_k\}_{k \in \lambda}$, which only consists of disjoint nonempty subsets. Therefore, $\bigcup_{k=1}^{\infty} E_k$ contains a countably infinite sub-collection of nonempty disjoint sets. Hence, the set $\bigcup_{k=1}^{\infty} E_k$ must contain infinitely many members. Therefore, we have $c(\bigcup_{k=1}^{\infty} E_k) = \infty$, thus,

$$c(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} c(E_k).$$

As we covered all possible cases, this completes the proof for the countable additivity of counting measure. \Box

We now prove the translation invariant property of counting measure. Consider a set E and its translation defined by $E+y=\{x+y|x\in E\}$. Notice that a map, $\phi:\mathbb{R}\to\mathbb{R}$ where $\phi(x)=x+y$, establishes a bijection between E and E+y. Hence, the cardinality of E and E+y are equal. As the equal cardinality is a sufficient condition(in fact, strictly more) for the equal counting measure, we have shown that the counting measure is translation invariant. \Box

Question 2. Royden 2.8.

Solution. Before we proceeding to the main part of the proof, we first prove the following lemma. Lemma. Let $\{X_k\}_{k=1}^n$ be a finite collection of sets of real numbers. Then, we have that

$$\overline{\cup_{k=1}^n X_k} = \cup_{k=1}^n \overline{X_k},$$

where $\overline{X_k}$ denotes a closure of the set X_k .

Proof. Let X_1 and X_2 be sets of real numbers. Then, we have $X_1 \subseteq X_1 \cup X_2$ and $X_2 \subseteq X_1 \cup X_2$. Consequently, we have $\overline{X_1} \subseteq \overline{X_1} \cup \overline{X_2}$ and $\overline{X_2} \subseteq \overline{X_1} \cup \overline{X_2}$. Hence, we have $\overline{X_1} \cup \overline{X_2} = \overline{X_1} \cup \overline{X_2}$. This can be trivially extended to any finite n with an induction using set union, i.e. take $\bigcup_{k=1}^{n-1} X_k$ with X_n . Therefore, $\bigcup_{k=1}^n \overline{X_k} \subseteq \overline{\bigcup_{k=1}^n X_k}$.

Now, notice that $\overline{X_1} \cup \overline{X_2}$ is closed, as it is a finite union of closed sets. Since $X_1 \subseteq \overline{X_1}$ and $X_2 \subseteq \overline{X_2}$, we have $X_1 \cup X_2 \subseteq \overline{X_1} \cup \overline{X_2}$. As $\overline{X_1} \cup \overline{X_2}$ is closed, we obtain $\overline{X_1} \cup \overline{X_2} \subseteq \overline{X_1} \cup \overline{X_2}$. Again, this argument can be extended inductively for a finite n, by taking $\bigcup_{k=1}^{n-1} X_k$ and X_n . Therefore, $\overline{\bigcup_{k=1}^n X_k} \subseteq \bigcup_{k=1}^n \overline{X_k}$. This concludes that $\bigcup_{k=1}^n \overline{X_k} = \overline{\bigcup_{k=1}^n X_k}$ for n finite. One should note that this argument fails with n infinite, as we no longer can leverage the fact that finite union of closed sets is closed.

We now proceed to the main part of the proof. Let B be a set of rational numbers in the interval [0,1], and let $\{I_k\}_{k=1}^n$ be a finite collection of open intervals that cover B. As $B\subseteq \bigcup_{k=1}^n I_k$, we have $\overline{B}\subseteq \overline{\bigcup_{k=1}^n I_k}$. Furthermore, with n being finite, we obtain that $\overline{\bigcup_{k=1}^n I_k}=\bigcup_{k=1}^n \overline{I_k}$. Then, it follows from the monotonicity, and finite sub-additivity property that

$$m^*(\overline{B}) \le m^*(\bigcup_{k=1}^n \overline{I_k}) \le \sum_{k=1}^n m^*(\overline{I_k}).$$
 (1)

In particular, we have $m^*(\overline{B})=1$, as B=[0,1], and $\sum_{i=1}^n m^*(\overline{I_k})=\sum_{i=1}^n m^*(I_k)$, as the outer measure of an open interval and corresponding closed interval are equal. Substituting the two equalities into the (1) inequality, we obtain

$$\sum_{i=1}^{n} m^*(I_k) \ge 1,$$

as desired. \square

Question 3. Royden 2.14.

Solution. Let $m^*(E) > 0$. We wish to find a subset X of E such that $m^*(X) > 0$. Consider the countable collection of sets $\{(-M,M)\}_{M=1}^{\infty}$. Notice that, as (-M,M) is bounded for some fixed $M, E \cap (-M,M)$ is a bounded subset of E. Furthermore, $E = \bigcup_{M=1}^{\infty} E \cap (-M,M)$. Then, by the countable sub-additivity of outer measure, we have

$$\sum_{M=1}^{\infty} m^*(E \cap (-M, M)) \ge m^*(E).$$

If $m^*(E\cap (-M,M))=0$ for all M, then we have the sum on the LHS equals 0, and obtain 0>0, as $m^*(E)>0$. This is a contradiction. Hence, there exists a M such that $m^*(E\cap (-M,M))>0$, and $E\cap (-M,M)$ is precisely the bounded subset of E with positive outer measure. We have shown that if a set E has positive outer measure, then there is a bounded subset of E that also has positive outer measure. \Box

Question 4. Royden 2.15.

Solution. Let $m(E) < \infty$ and $\epsilon > 0$. We wish to show that E is the disjoint union of a finite number of measurable sets, each of which has measure at most ϵ . First, assume that E is bounded. Then, there exists an interval [-M,M] such that $E \subseteq [-M,M]$. By the Archimedean principle, there exists $N \in \mathbb{N}$ such that $\frac{2M}{N} < \epsilon$. Now, consider the following finite disjoint collection of sets:

$$\{[-M + \frac{2M}{N}(n-1), -M + \frac{2M}{N}n) \cap E\}_{n=1}^{N+1}.$$

Notice that $E = \bigcup_{n=1}^{N+1} [-M + \frac{2M}{N}(n-1), -M + \frac{2M}{N}n) \cap E$. Furthermore, as every interval is measurable and intersection of two measurable sets is measurable, each set in the collection is measurable. By the monotonicity property of measure, we have

$$\begin{split} m([-M + \frac{2M}{N}(n-1), -M + \frac{2M}{N}n) \cap E) & \leq & m([-M + \frac{2M}{N}(n-1), -M + \frac{2M}{N}n)) \\ & = & \frac{2M}{N} \\ & < & \epsilon. \end{split}$$

Hence, we have found a finite disjoint collection of measurable sets, each of which has measure at most ϵ , whose union equals E. We have proven the statement for the E bounded case.

Now assume that E is unbounded. Notice that $E = \bigcup_{M=1}^{\infty} E \cap [-M, M]$. As $\{E \cap [-M, M]\}_{M=1}^{\infty}$ forms an ascending collection of measurable sets, by the continuity of measure, we have

$$m(E) = \lim_{M \to \infty} m(E \cap [-M, M]).$$

As $m(E) < \infty$, there exists an N such that

$$m(E) - \epsilon < m(E \cap [-N, N]) \le m(E). \tag{2}$$

Note that, by the finite additivity of measure, we have

$$m(E \cap [-N, N]) + m(E \setminus [-N, N] = m(E). \tag{3}$$

Combining (2) and (3), we obtain that $m(E \setminus [-N,N]) \le \epsilon$. Now, as $E \cap [-N,N]$ is bounded, there exists a finite collection of measurable sets $\{E_i\}_{i=1}^K$ such that $m(E_i) \le \epsilon$ for $1 \le i \le k$, and $\bigcup_{i=1}^K E_i = E \cap [-N,N]$. Notice that $E = \bigcup_{i=1}^K E_i \cup (E \setminus [-N,N])$. In particular, the collection $\{\{E_i\}_{i=1}^K, E \setminus [-N,N]\}$ is a finite disjoint collection of measurable sets, whose union equals E, each of which has measure at most ϵ . This proves the statement for the E unbounded case, and we have completed the proof. \square

Question 5. Royden 2.17.

Solution. From the inner approximation by closed sets, and outer approximation by open sets, we have that E is measurable if and only if, for any $\epsilon > 0$, there exists a closed set F and an open set O, such that

$$E\subseteq O \text{ with } m^*(O\setminus E)<\frac{\epsilon}{2} \text{ and } F\subseteq E \text{ with } m^*(E\setminus F)<\frac{\epsilon}{2}.$$

Applying the sub-additivity property of outer measure with $O \setminus E$ and $E \setminus F$, we have

$$m^*(O \setminus F) < m^*(O \setminus E) + m^*(E \setminus F) < \epsilon.$$

Hence, E is measurable, if and only if, there exists an open set O and a closed set F for which $F \subseteq E \subseteq O$ and $m^*(O \setminus F) < \epsilon$. \square

Question 6. Royden 2.28.

Solution. Let $\{E_k\}_{k=1}^{\infty}$ be a countable, disjoint collection of measurable sets. By the finite additivity property, we have

$$m(\bigcup_{k=1}^{N} E_k) = \sum_{k=1}^{N} m(E_k),$$

for all N. Notice that $\{\cup_{k=1}^N E_k\}_{N=1}^\infty$ forms an ascending collection of measurable sets. Hence, by applying the continuity of measure to the ascending collection, $\{\cup_{k=1}^N E_k\}_{N=1}^\infty$, we have

$$m(\bigcup_{N=1}^{\infty} \bigcup_{k=1}^{N} E_k) = \lim_{N \to \infty} m(\bigcup_{k=1}^{N} E_k).$$

Simplifying the LHS and applying the finite additivity property to the RHS, we obtain

$$m(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} m(E_k).$$

Since $\{E_k\}_{k=1}^{\infty}$ was chosen to be an arbitrary countable, disjoint collection of measurable sets, we have shown that finite additivity and continuity of measure implies countable additivity. \square