Low Precision Using Unsigned 8-bit Integer

In this section, we describe the low representation of a generic GEMM in the form of b = Ax. We define shifted and scaled elements \hat{A} , \hat{x} , and \hat{b} as:

$$A = \sigma_A \hat{A} + \mu_A 1_A$$
$$x = \sigma_x \hat{x} + \mu_x 1_x$$
$$b = \sigma_b \hat{b} + \mu_b 1_b$$

Using this affine transformation we can write b = Ax as:

$$\hat{b} = \frac{\sigma_A \sigma_x}{\sigma_b} \left((\hat{A} + \frac{\mu_A}{\sigma_A} 1_A)(\hat{x} + \frac{\mu_x}{\sigma_x} 1_x) - \frac{\mu_b}{\sigma_A \sigma_x} 1_b \right)$$
(1)

So far, everything was exact and there were no approximations. Now we assume that \hat{A} , \hat{x} , and \hat{b} are represented using unsigned 8-bit integer, and therefore

$$\hat{A}, \hat{x}, \hat{b} \in \{0, 1, \cdots, 255\}.$$

Using this representation, we need to set μ s and σ s such that the quantization error is minimum. We do not go into details of how to optimize these values here but one obvious choice (but not necessarily optimized) is

$$\mu_A = \min(A)$$

$$\sigma_A = (\max(A) - \min(A)) / 2^8$$

for A. Using these parameters, \hat{A} can be computed as

$$\hat{A} = \text{uint8}\left(\frac{A - \min(A)}{\max(A) - \min(A)} \times 2^{8}\right)$$

where uint 8 is the cast operation to an unsigned 8-bit integer with proper overflow and underflow.

gemmlowp as well as farm calculate matrix multiplications in the form

$$\hat{b} = \frac{\gamma}{2^e} \left((\hat{A} + \alpha 1_A)(\hat{x} + \zeta 1_x) + \beta 1_b \right) \tag{2}$$

where $\alpha,\,\zeta,\,\beta,\,\gamma,$ and e are all 32-bit integers. Matching Equations 1 and 2, we

get

$$\frac{\gamma}{2^e} = \frac{\sigma_A \sigma_x}{\sigma_b}$$

$$\alpha = \frac{\mu_A}{\sigma_A}$$

$$\zeta = \frac{\mu_x}{\sigma_x}$$

$$\beta = \frac{\mu_b}{\sigma_A \sigma_x}$$

The above equations impose a soft constraint on values of μ s and σ s, i.e., they should be chosen such that α , ζ , β , γ , and e can be represented using 32-bit integer.

Please note that the α , ζ , β , γ , and e here correspond to variables **lhs_offset**, **rhs_offset**, **result_offset**, **result_mult_int**, and **result_shift** in the farm library, respectively.