ANSWERS

1.3 EXERCISE

1. (b,b), (c,c), (a,c)

3.
$$4x^2 + 4x - 1$$

4.
$$f^{-1}(x) = \frac{x+3}{2}$$

5.
$$f^{-1}\{(b,a),(d,b),(a,c),(c,d)\}$$

6.
$$f(f(x)) = x^4 - 6x^3 + 10x^2 - 3x$$

7.
$$\alpha = 2, \beta = -1$$

8. (i) represents function which is surjective but not injective

(ii) does not represent function.

9.
$$fog = \{(2,5), (5,2), (1,5)\}$$

12. (i) f is not function (ii) g is function (iii) h is function (iv) k is not function

14.
$$\left[\frac{1}{3},1\right]$$

17. Domain of $R = \{1, 2, 3, 4, \dots, 20\}$ and

Range of $R = \{1,3,5,7,9, \dots, 39\}$. R is neither reflective, nor symmetric and nor transitive.

- **21.** (i) *f* is one-one but not onto, (ii) *g* is neither one-one nor onto (iii) *h* is bijective, (iv) *k* is neither one-one nor onto.
- 22. (i) transitive (ii) symmetric (iii) reflexive, symmetric and transitive (iv) transitive.

23.
$$[(2,5)] = \{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)\}$$

25. (i)
$$(fog)(x) = 4x^2 - 6x + 1$$

(ii)
$$(gof)(x)=2x^2+6x-1$$

(iii)
$$(fof)(x) = x^4 + 6x^3 + 14x^2 + 15x + 5$$

$$(iv)(gog)(x)=4x-9$$

47. B **48.**
$$R = \{(3,8), (6,6), (9,4), (12,2)\}$$

49.
$$R = \{(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(5,5)\}$$

50.
$$gof = \{(1,3),(3,1),(4,3)\}$$
 and $fog = \{(2,5),(5,2),(1,5)\}$

51.
$$(fofof)(x) = \frac{x}{\sqrt{3x^2 + 1}}$$
 52. $f^{-1}(x) = 7 + (4 - x)^{\frac{1}{3}}$

1. 0 2. -1 4.
$$\frac{-}{12}$$
 5. $-\frac{-}{3}$

7.
$$0, -1$$
 8. $\frac{14}{15}$ 11. $\frac{-3}{4}, \frac{3}{4}$

13.
$$\tan^{-1}\frac{4}{3}-x$$

17.
$$\frac{\pi}{4}$$

17.
$$\frac{\pi}{4}$$
 19. $\frac{a_n - a_1}{1 + a_1 a_n}$

38.

39. $\frac{2}{5}$

40.
$$\sqrt{3}$$

42.
$$\frac{1}{3}$$

43.
$$\frac{2}{3}$$

47.
$$xy > -1$$

48.
$$-\cot^{-1} x$$

- 1. 28×1 , 1×28 , 4×7 , 7×4 , 14×2 , 2×14 . If matrix has 13 elements then its order will be either 13×1 or 1×13 .
- **2.** (i) 3×3 , (ii) 9, (iii) $a_{23} = x^2 y$, $a_{31} = 0$, $a_{12} = 1$

3. (i)
$$\begin{bmatrix} \frac{1}{2} & \frac{9}{2} \\ 0 & 2 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 1 & 4 \\ -1 & 2 \end{bmatrix}$$

(ii)
$$\begin{bmatrix} 1 & 4 \\ -1 & 2 \end{bmatrix}$$

4.
$$\begin{bmatrix} e^{x} \sin x & e^{x} \sin 2x \\ e^{2x} \sin x & e^{2x} \sin 2x \\ e^{3x} \sin x & e^{3x} \sin 2x \end{bmatrix}$$
 5. $a = 2, b = 2$ 6. Not possible

5.
$$a = 2, b = 2$$

7. (i)
$$X+Y=\begin{bmatrix} 5 & 2 & -2 \\ 12 & 0 & 1 \end{bmatrix}$$

7. (i)
$$X+Y=\begin{bmatrix} 5 & 2 & -2 \\ 12 & 0 & 1 \end{bmatrix}$$
 (ii) $2X-3Y=\begin{bmatrix} 0 & -1 & 1 \\ -11 & -10 & -18 \end{bmatrix}$

(iii)
$$Z = \begin{bmatrix} -5 & -2 & 2 \\ -12 & 0 & -1 \end{bmatrix}$$

8.
$$x = 4$$

11.
$$A^{-1} = \frac{-1}{7} \begin{bmatrix} -2 & -3 \\ 1 & 5 \end{bmatrix}$$

13.
$$A = [-121]$$

15.
$$AB = \begin{bmatrix} 12 & 9 \\ 12 & 15 \end{bmatrix} BA = \begin{bmatrix} 9 & 6 & 12 \\ 7 & 8 & 16 \\ 4 & 5 & 10 \end{bmatrix}$$
 18. $x = 1, y = 2$

19.
$$X = \begin{bmatrix} -2 & 0 \\ -1 & -3 \end{bmatrix}, Y = \begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}$$

24.
$$A = [-4]$$

37. (i)
$$\frac{1}{22} \begin{bmatrix} 7 & -3 \\ 5 & 1 \end{bmatrix}$$
 (ii) not possible

38.
$$x = 2$$
, $y = 4$ or $x = 4$, $y = 2$, $z = -6$, $w = 4$

39.
$$\begin{bmatrix} -24 & -10 \\ -28 & -38 \end{bmatrix}$$

41.
$$a = 2, b = 4, c = 1, d = 3$$

43.
$$\begin{bmatrix} 18 & 8 \\ 16 & 18 \end{bmatrix}$$

45.
$$a = -2$$
, $b = 0$, $c = -3$

$$\mathbf{12.} \mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

18.
$$x = 1, y = 2$$

20.
$$\begin{bmatrix} k \\ 2k \end{bmatrix}$$
, $\begin{bmatrix} k & k \\ 2k & 2k \end{bmatrix}$ etc.

where k is a real number

30. True when AB = BA

40.
$$A^3 = \begin{bmatrix} 187 & -195 \\ -156 & 148 \end{bmatrix}$$

42.
$$\begin{bmatrix} 1 & -2 & -5 \\ 3 & 4 & 0 \end{bmatrix}$$

44.True for all real values of α

50.
$$x = \pm \frac{1}{\sqrt{2}}, y = \pm \frac{1}{\sqrt{6}}, z = \pm \frac{1}{\sqrt{3}}$$

51. (i)
$$\begin{bmatrix} -7 & -9 & 10 \\ -12 & -15 & 17 \\ 1 & 1 & -1 \end{bmatrix}$$
 (ii) inverse does not exist (iii)
$$\begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$

52.
$$\begin{bmatrix} 2 & 2 & \frac{5}{2} \\ 2 & -1 & \frac{3}{2} \\ \frac{5}{2} & \frac{3}{2} & 2 \end{bmatrix} + \begin{bmatrix} 0 & 1 & \frac{-3}{2} \\ -1 & 0 & \frac{1}{2} \\ \frac{3}{2} & \frac{-1}{2} & 0 \end{bmatrix}$$

- **53.** A
- **54.** D
- **55.** B
- **56.** D

- **57.** D
- 58. D
- **59.** A

- **60.** B

- **61.** C
- **62.** D
- 63. A
- **64.** A

- 65. D
- 66. D
- 67. A
- 68. Null matrix

- Skew symmetric matrix
- **70.** 1
- **71.** 0

- 72. Rectangular matrix
- 73. Distributive

Symmetrix matrix

79. Symmetric matrix

- 75. Symmetrix matrix
- (i) B' A' (ii) kA (iii) k(A B)
- 77. Skew Symmetric matrix
- 78. (i) Skew symmetric matrix
 - (ii) neither symmetric nor skew symmetric matrix
 - **80.** AB = BA
- 81. does not exist

- 82. False
- 83. False
- **85.** True

- 84. False

- 86. True
- 87. False
- 88. False
- **89.** True

- 90. False
- 91. False
- 92. False
- 93. False

- **94.** True
- 95. False
- **96.** True
- 97. False

- **98.** True
- 99. False
- **100.** True
- **101.** True

1.
$$x^3 - x^2 + 2$$

2.
$$a^2 (a + x + y + z)$$
 3. $2x^3y^3z^3$

3.
$$2x^3y^3z^3$$

4.
$$3(x + y + z)(xy + yz + zx)$$

5.
$$16(3x+4)$$

6.
$$(a+b+c)^2$$

12. =
$$n$$
 or $n + (-1)^n \left(\frac{\pi}{6}\right)$

13.
$$x = 0, -12$$

18.
$$x = 0, y = -5, z = -3$$

19.
$$x = 1, y = 1, z = 1$$

20.
$$x = 2$$
, $y = -1$, $z = 4$

39.
$$\frac{1}{|A|}$$

41.
$$\frac{1}{2}$$

42.
$$(A^{-1})^2$$

45.
$$x = 2$$
 $y = 7$

46.
$$(y-z)(z-x)(y-x+xyz)$$

- 1. Continuous at x = 1
- 2. Discontinuous 3. Discontinuous 4. Continuous

- 5. Discontinuous
- 6. Continuous
- 7. Continuous
- 8. Discontinuous

- Continuous
- **10.** Continuous **11.** $k = \frac{7}{2}$ **12.** $k = \frac{1}{2}$

- **13.** k = -1
- **14.** $k = \pm 1$ **16.** a = 1, b = -1
- 17. Discontinuous at x = -2 and $x = \frac{-5}{2}$ 18. Discontinuous at x = 1, $\frac{1}{2}$ and 2
- **20.** Not differentiable at x = 2
- 21. Differentiable at x = 0
- 22. Not differentiable at x = 2
- **25.** $-(\log 2) \cdot \sin 2x \cdot 2^{\cos^2 x}$

26.
$$\frac{8^x}{x^8} \left[\log 8 - \frac{8}{x} \right]$$
 27. $\frac{1}{\sqrt{x^2 + a}}$ **28.** $\frac{5}{x \log(x^5) \log(\log x^5)}$

$$28. \quad \frac{5}{x \log(x^5) \log(\log x^5)}$$

29.
$$\frac{\cos\sqrt{x}}{2\sqrt{x}} - \frac{\sin 2\sqrt{x}}{2\sqrt{x}}$$
 30. $n(2ax+b)\sin^{n-1}(ax^2+bx+c)\cos(ax^2+bx+c)$

31.
$$\frac{-1}{2\sqrt{x+1}}\sin\left(\tan\sqrt{x+1}\right)\sec^2\left(\sqrt{x+1}\right)$$

32.
$$2x\cos(x)^2 + 2x\sin(2x^2) + \sin 2x$$
 33. $\frac{-1}{2\sqrt{x}(x+1)}$

33.
$$\frac{-1}{2\sqrt{x}(x+1)}$$

34.
$$(\sin x)^{\cos x} \left[\frac{\cos^2 x}{\sin x} - \sin x \cdot \log \sin x \right]$$
 35. $\sin^{mx} x \cos^n x \left(-n \tan x + m \cot x \right)$

35.
$$\sin^{mx} x \cos^n x \left(-n \tan x + m \cot x \right)$$

36.
$$(x+1)(x+2)^2(x+3)^3[9x^2+34x+29]$$

37. -1 38. $\frac{1}{2}$ 39. $\frac{1}{2}$ 40. -1

38.
$$\frac{1}{2}$$

39.
$$\frac{1}{2}$$

41.
$$\frac{-3}{\sqrt{1-x^2}}$$
 42. $\frac{3a}{a^2+x^2}$ 43. $\frac{-x}{\sqrt{1-x^4}}$ 44. $\frac{t^2+1}{t^2-1}$

42.
$$\frac{3a}{a^2 + x^2}$$

43.
$$\frac{-x}{\sqrt{1-x^4}}$$

44.
$$\frac{t^2+1}{t^2-1}$$

45.
$$e^{-2}\left(\frac{-3+2+1}{3+2+1}\right)$$
 46. $\cot \theta$ **47.** 1

51.
$$-\frac{1}{\sqrt{3}}$$

48.
$$t$$
 51. $-\frac{1}{\sqrt{3}}$ **52.** $\frac{\tan x - x}{\sin^2 x}$ **53.** $\frac{1}{2}$

53.
$$\frac{1}{2}$$

54.
$$\frac{2xy^2 - y^3 \cos(xy) - y}{xy^2 \cos(xy) - x + y^2}$$

55.
$$\frac{y - \sec(x+y)\tan(x+y)}{\sec(x+y)\tan(x+y) - x}$$

$$56. \quad \frac{-x}{y}$$

56.
$$\frac{-x}{y}$$
 57. $\frac{y-4x^3-4xy^2}{4yx^2+4y^3-x}$ 64. $-2\sin y \cos^3 y$

64.
$$-2\sin y \cos^3 y$$

70. Not applicable since f is not differentiable at x = 1

71.
$$(\pi, -2)$$
 72. $(2, -4)$ **77.** $(\frac{7}{2}, \frac{1}{4})$ **78.** $(\frac{3}{2}, 0)$

79.
$$p=3, q=5$$
 82. $x^{\tan x} \left(\sec^2 x \log x + \frac{\tan x}{x} \right) + \frac{x}{\sqrt{2} \sqrt{x^2 + 1}}$ **83.** D

79.
$$p=3, q=5$$
 82. x^{max} (x) $\sqrt{2}\sqrt{x^2+1}$ 83. D

96. B **97.**
$$|x|+|x-1|$$
 98. $\frac{2}{3x}$ **99.** $\frac{-1}{\sqrt{2}}$

100.
$$\left(\frac{\sqrt{3}+1}{2}\right)$$
 101. -1 **102.** False **103.** True

3. 8 m/s 4.
$$(\sqrt{2-\sqrt{2}})v$$
 unit/sec. 5. $=\frac{1}{3}$ 6. 31.92

7.
$$0.018\pi \text{cm}^3$$
 8. $2\frac{2}{3}$ m/s towards light, -1 m/s

9. 2000 litres/s, 3000 litre/s **11.**
$$2x^3 - 3x + 1$$

12.
$$k^2 = 8$$
 14. $(4,4)$ **15.** $\tan^{-1}\left(\frac{4\sqrt{2}}{7}\right)$ **17.** $x + 3y = \pm 8$

18.
$$(3, 2), (-1, 2)$$
 23. $(1, -16), \max. slope = 12$

26. x = 1 is the point of local maxima; local maximum = 0 x = 3 is the point of local minima; local minimum = -28x = 0 is the point of inflection.

27. Rs 100 **30.** 6cm, 12 cm,
$$864\pi$$
 cm³

34.
$$\frac{2}{3}x^3\left(1+\frac{2}{27}\right)$$

61.
$$x + y = 0$$

62.
$$(-\infty, -1)$$

64.
$$2\sqrt{ab}$$

3.
$$\frac{x^2}{2} - x + 3\log|x+1| + c$$

4.
$$\frac{x^3}{3} + c$$
 5. $\log |x + \sin x| + c$

6.
$$\tan \frac{x}{2} + C$$

6.
$$\tan \frac{x}{2} + C$$
 7. $\frac{\tan^5 x}{5} + \frac{\tan^3 x}{3} + c$ 8. $x + c$

9.
$$-2\cos\frac{x}{2} + 2\sin\frac{x}{2} + \alpha$$

9.
$$-2\cos\frac{x}{2} + 2\sin\frac{x}{2} + c$$
 10. $2\left[\frac{x\sqrt{x}}{3} - \frac{x}{2} + \sqrt{x} - \log|\sqrt{x} + 1|\right] + c$

11.
$$-a \left[\cos^{-1} \left(\frac{x}{a} \right) + \sqrt{1 - \frac{x^2}{a^2}} \right] + c$$
 12. $\frac{4}{3} \left[x^{3/4} - \log \left| 1 + x^{\frac{3}{4}} \right| \right] + c$

12.
$$\frac{4}{3} \left[x^{3/4} - \log \left| 1 + x^{\frac{3}{4}} \right| \right] + \epsilon$$

13.
$$\frac{-1}{3}\left(1+\frac{1}{x^2}\right)^{\frac{3}{2}}+c$$

14.
$$\frac{1}{3}\sin^{-1}\frac{3x}{4}+c$$

15.
$$\frac{1}{\sqrt{2}}\sin^{-1}\left(\frac{4t-3}{3}\right)+c$$

16.
$$3\sqrt{x^2+9} - \log \left| x + \sqrt{x^2+9} \right| + c$$

17.
$$\frac{x-1}{2}\sqrt{5-2x+x^2}+2\log\left|x-1+\sqrt{5-2x+x^2}\right|+c$$

18.
$$\frac{1}{4} \left\{ \log \left| x^2 - 1 \right| - \log \left| x^2 + 1 \right| \right\} + c$$
 19. $\frac{1}{4} \left\{ \log \left| \frac{1+x}{1-x} \right| \right\} - \frac{1}{2} \tan^{-1} x + c$

20.
$$\frac{x-a}{2}\sqrt{2ax-x^2} + \frac{a^2}{2}\sin^{-1}\left(\frac{x-a}{a}\right) + c$$
 21. $\frac{x\sin^{-1}x}{\sqrt{1-x^2}} + \log\left|\sqrt{1-x^2}\right|$

22.
$$-\left(\frac{1}{2}\sin 2x + \sin x\right) + c$$
 23. $\tan x - \cot x - 3x + c$

24.
$$\frac{2}{3}\sin^{-1}\sqrt{\frac{x^3}{a^3}}+c$$
 25. $2\sin x + x + c$

26.
$$\frac{1}{2}\sec^{-1}(x^2)+c$$
 27. $\frac{26}{3}$

26.
$$\frac{1}{2}\sec^{-1}(x^2)+c$$
 27. $\frac{26}{3}$
28. e^2-1 29. $\tan^{-1}e-\frac{\pi}{4}$ 30. $\frac{\log m}{m^2-1}$ 31. π

32.
$$\sqrt{2}-1$$
 33. $\frac{\pi}{3}$ 34. $\frac{\sqrt{2}}{2} \tan^{-1} \frac{\sqrt{2}}{3}$

35.
$$\frac{1}{7} \log \left| \frac{x-2}{x+2} \right| + \frac{\sqrt{3}}{7} \tan^{-1} \frac{x}{\sqrt{3}} + c$$

36.
$$\frac{1}{a^2-b^2}\left\{a \tan^{-1}\frac{x}{a}-b \tan^{-1}\frac{x}{b}\right\}+c$$
 37. π

38.
$$\log \left| \frac{\sqrt{x-3}}{(x-1)^{\frac{1}{6}} (x+2)^{\frac{1}{3}}} \right| + c$$
 39. $xe^{\tan^{-1}x} + c$

40.
$$a \left[\frac{x}{a} \tan^{-1} \sqrt{\frac{x}{a}} - \sqrt{\frac{x}{a}} + \tan^{-1} \sqrt{\frac{x}{a}} \right] + c$$
 41. $\frac{3}{2}$

42.
$$\frac{e^{-3x}}{24} \left[\sin 3x - \cos 3x \right] + \frac{3e^{-3x}}{40} \left[\sin x - 3\cos x \right] + c$$

43.
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{\tan x - 1}{\sqrt{2 \tan x}} \right) + \frac{1}{2\sqrt{2}} \log \left| \frac{\tan x - \sqrt{2 \tan x} + 1}{\tan x + \sqrt{2 \tan x} + 1} \right| + c$$

44.
$$\frac{1}{4} \left(\frac{a^2 + b^2}{a^3 b^3} \right)$$
 45. $\frac{3}{8} \log 3$

44.
$$-\frac{1}{4}\left(\frac{a^2+b^2}{a^3b^3}\right)$$
 45. $-\frac{3}{8}\log 3$ 46. $-\frac{1}{2}\log \frac{1}{2}$ 47. $-\frac{1}{4}\log \frac{1}{2}$ 48. A 49. C 50. A 51. C 52. D 53. C 54. D 55. D 56. D 57. A 58. D 59. $e-1$

60.
$$\frac{e^x}{x+4} + c$$

61.
$$\frac{1}{2}$$

60.
$$\frac{e^x}{x+4} + c$$
 61. $\frac{1}{2}$ **62.** $\frac{-1}{2\sqrt{3}} \tan^{-1} \left(\frac{2\cos x}{\sqrt{3}} \right) + c$ **63.** 0

- 1. $\frac{1}{2}$ sq.units 2. $\frac{4}{3}p^2$ sq. units 3. 10 sq.units 4. $\frac{16}{3}$ sq.units
- 5. $\frac{27}{2}$ sq.units 6. $\frac{9}{2}$ sq. units 7. $\frac{32}{3}$ sq. units 8. 2π sq.units

- 9. $\frac{4}{3}$ sq.units 10. 96 sq.units 11. $\frac{16}{3}$ sq.units 12. $\frac{a^2}{4}$ sq. units

- 13. $\frac{1}{6}$ sq. units 14. $\frac{9}{2}$ sq. units 15. 9 sq. units 16. $2 \left[-\frac{8}{3} \right]$ sq. units

- 17. 4 sq.units 18. $\frac{15}{2}$ sq. units 19. $\frac{4}{3}(\sqrt{3}+2)a^2$ sq. units
- **20.** 6 sq.units **21.** $\frac{15}{2}$ sq. units **22.** 8 sq.units
- **23.** 15 sq.units

- **24.** C
- **25.** D
- **26.** A
- **27.** B

31. A

1.
$$2^{-x} - 2^{-y} = k$$
 2. $\frac{d^2y}{dx^2} = 0$ 3. $\frac{e^6 + 9}{2}$

2.
$$\frac{d^2y}{dx^2} = 0$$

3.
$$\frac{e^6+9}{2}$$

4.
$$y(x^2-1)=\frac{1}{2}\log\left(\left|\frac{x-1}{x+1}\right|\right)+k$$
 5. $y=c.e^{x-x^2}$

5.
$$y = c.e^{x-x^2}$$

6.
$$(a+m)y=e^{mx}+ce^{-ax}$$
 7. $(x-c)e^{x+y}+1=0$

7.
$$(x-c) e^{x+y} + 1 = 0$$

8.
$$y = kxe^{\frac{-x^2}{2}}$$

8.
$$y=kxe^{\frac{-x^2}{2}}$$
 9. $y=\tan\left(x+\frac{x^2}{2}\right)$ 10. $x=y\left(y^2+c\right)$ 11. $\frac{1}{3}$

13.
$$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - 2 = 0$$
 14. $(x^2 - y^2)\frac{dy}{dx} - 2xy = 0$

14.
$$(x^2 - y^2) \frac{dy}{dx} - 2xy = 0$$

15.
$$y = \frac{4x^3}{3(1+x^2)}$$

15.
$$y = \frac{4x^3}{3(1+x^2)}$$
 16. $\tan^{-1}\left(\frac{y}{x}\right) = \log|x| + c$

17.
$$2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + c$$

17.
$$2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + c$$
 18. $\tan^{-1}\left(\frac{x}{y}\right) + \log y = c$

19.
$$x + y = k e^{x-y}$$

19.
$$x + y = k e^{x-y}$$
 20. $x^2 (y+3)^3 = e^{y+2}$ **21.** $y \sin x = \frac{-\cos 2x}{2} + \frac{3}{2}$

22.
$$xy y' + x(y')^2 - yy = 0$$

22.
$$xy y' + x(y')^2 - yy' = 0$$
 23. $\frac{1}{2} (\tan^{-1} x)^2 + \log(1 + y^2) = c$

24.
$$(x-1)+(y-2)\frac{dy}{dx}=0$$

24.
$$(x-1)+(y-2)\frac{dy}{dx}=0$$
 25. $y=-\cos x+\frac{2\sin x}{x}+\frac{2\cos x}{x^2}+\frac{x\log x}{3}-\frac{x}{9}+cx^{-2}$

26.
$$x(\sin y + \cos y) = \sin y + ce^{-y}$$

27.
$$\log \left| 1 + \tan \left(\frac{x+y}{2} \right) \right| = x+c$$

28.
$$y = -\left[\frac{3\sin 2x + 2\cos 2x}{13}\right] + ce^{3x}$$

29.
$$2(x^2 - y^2) = 3x$$

30.
$$(y-1)(x+1)+2x=0$$

31.
$$ke^{2x}(1-x+y)=1+x-y$$

32.
$$xy = 1$$
 33. $\log\left(\frac{x}{y}\right) = cx$

(ii) not defined

(iv)
$$\frac{dy}{dx} + py = Q$$

(v)
$$xe^{\int p_1 dy} = \int \left(Q_1 \times e^{-\int p_1 dy} \right) dy + c$$

(vi)
$$y = \frac{x^2}{4} + cx^{-2}$$

(vii)
$$3y(1+x^2)=4x^3+c$$

(viii)
$$xy = Ae^{-y}$$

(ix)
$$y = ce^{-x} + \frac{\sin x}{2} - \frac{\cos x}{2}$$

(x)
$$x = c \sec y$$

(xi)
$$\frac{e^x}{x}$$

77. (i) True

1.
$$\frac{1}{3}(2\hat{i}+\hat{j}+2\hat{k})$$
 2. (i) $\frac{1}{3}(2\hat{i}+\hat{j}-2\hat{k})$ (ii) $\frac{1}{\sqrt{37}}(\hat{j}+6\hat{k})$

3.
$$\frac{1}{7} \left(-2\hat{i} + 3\hat{j} - 6\hat{k} \right)$$
 4. $\vec{c} = \frac{3\overline{b} - \overline{a}}{2}$ 5. $k = -2$ 6. $\pm 2 \left(\hat{i} + \hat{j} + \hat{k} \right)$

7.
$$\frac{2}{7}, \frac{3}{7}, \frac{-6}{7}; 4\hat{i}, 6\hat{j}, -12\hat{k}$$
 8. $-2\hat{i} + 4\hat{j} + 4\hat{k}$ 9. $\cos^{-1}\left(\frac{1}{\sqrt{156}}\right)$

10. Area of the parallelograms formed by taking any two sides represented by $\overline{a}, \overline{b}$ and \overline{c} as adjacent are equal

11.
$$\frac{2}{\sqrt{7}}$$
 12. $\sqrt{21}$ 13. $\frac{\sqrt{274}}{2}$

16.
$$\hat{n} = \frac{\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}}{|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|}$$
 17.
$$\frac{\sqrt{62}}{2}$$

18.
$$\frac{1}{3} \left(5\vec{i} + 2\vec{j} + 2\vec{k} \right)$$

34. If \overline{a} and \overline{b} are equal vectors

35. 0 **36.**
$$\frac{\pi}{4}$$
 37. $k \in]-1,1[k \neq -\frac{1}{2}]$ **38.** $|\vec{a}|^2 |\vec{b}|^2$

39. 3 **40.**
$$\vec{a}$$
 41. True **42.** True

1.
$$5\hat{i} + 5\sqrt{2} \hat{j} + 5\hat{k}$$
 2. $(x-1)\hat{i} + (y+2)\hat{j} + (z-3)\hat{k} = \lambda(3\hat{j} - 2\hat{j} + 6\hat{k})$

3.
$$(-1, -1, -1)$$

4.
$$\cos^{-1}\left(\frac{19}{21}\right)$$
 7. $x+y+2z=19$ 8. $x+y+z=9$

$$3x - 2y + 6z - 27 = 0$$
10. $21x + 9y - 3z - 51 = 0$

11.
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{-1}$$
 and $\frac{x}{-1} = \frac{y}{1} = \frac{z}{-2}$ 12. 60°

14.
$$ax + by + cz = a^2 + b^2 + c^2$$
 14. (1, 1)

15.
$$15^{\circ}$$
 or 75° **16.** $(2, 6, -2)$ $3\sqrt{5}$

17. 7 18.
$$\sqrt{6}$$

19.
$$(x-3)\hat{j} + y\hat{j} + (z-1)\hat{k} = \lambda(-2\hat{i} + \hat{j} + 3\hat{k})$$

20.
$$18x + 17y + 4z = 49$$
 21. 14 **22.** $51x + 15y - 50z + 173 = 0$

24.
$$4x + 2y - 4z - 6 = 0$$
 and $-2x + 4y + 4z - 6 = 0$

26.
$$3\hat{i} + 8\hat{j} + 3\hat{k}, -3\hat{i} - 7\hat{j} + 6\hat{k}$$
 29. D **30.** I

35. D **36.** C **37.**
$$\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$$

38.
$$\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}$$
 39. $(x-5)\hat{i} + (y+4)\hat{j} + (z-6)\hat{k} = \lambda(3\hat{i} + 7\hat{j} + 2\hat{k})$

40.
$$(x-3)\hat{i} + (y-4)\hat{j} + (z+7)\hat{k} = \lambda(-2\hat{i} - 5\hat{j} + 13\hat{k})$$
 41. $x + y - z = 2$

9. Minimum value = 3 10. Maximum = 9, minimum =
$$3\frac{1}{7}$$

11. Maximise Z = 50x + 60y, subject to:

$$2x + y \le 20$$
, $x + 2y \le 12$, $x + 3y \le 15$, $x \ge 0$, $y \ge 0$

12. Minimise Z = 400x + 200y, subject to:

$$5x + 2y \ge 30$$
$$2x + y \le 15$$
$$x \le y, x \ge 0, y \ge 0$$

13. Maximise Z = 100x + 170y subject to :

$$3x + 2y \le 3600$$
, $x + 4y \le 1800$, $x \ge 0$, $y \ge 0$

14. Maximise Z = 200x + 120y subject to :

$$x + y \le 300, 3x + y \le 600, y \le x + 100, x \ge 0, y \ge 0$$

15. Maximise Z = x + y, subject to

$$2x + 3y \le 120, 8x + 5y \le 400, x \ge 0, y \ge 0$$

16. Type A: 6, Type B: 3; Maximum profit = Rs. 480

17. 2571.43

- **18.** 138600
- 19. 150 sweaters of each type and maximum profit = Rs 48,000
- **20.** $54\frac{2}{7}$ km.

- **21.** $3\frac{10}{11}$
- 22. Model X: 25, Model Y: 30 and maximum profit = Rs 40,000
- **23.** Tablet X : 1, Tablet Y : 6
- 24. Factory I: 80 days, Factory II: 60 days
- 25. Maximum: 12, Minimum does not exist
- **26.** B
- **27.** B
- **28.** A
- **29.** D

- **30.** C
- **31.** D
- **32.** D
- **33.** A

- **34.** B
- **35.** Linear constraints **36.** Linear
 - **40.** Intersection
- **37.** Unbounded

41. Convex

38. Maximum

42. True

- 39. Bounded43. False
- **44.** False
- **45.** True

2. not independent

5.
$$P(E) = \frac{1}{12}$$
, $P(F) : \frac{5}{18}$, $P(G) = \frac{7}{36}$, no pair is independent

7. (i)
$$\frac{3}{4}$$
, (ii) $\frac{1}{2}$, (iii) $\frac{1}{4}$, (iv) $\frac{5}{8}$ 8. $\frac{3}{4}$, $\frac{3}{10}$

9. (i)
$$E_1$$
 and E_2 occur

- (ii) $\mathbf{E}_{_{1}}$ does not occur, but $\mathbf{E}_{_{2}}$ occurs
- (iii) Either E_1 or E_2 , or both E_1 and E_2 occurs
- (iv) Either E₁ or E₂ occurs, but not both

10. (i)
$$\frac{1}{3}$$
, (ii) $\frac{23}{18}$ **12.** $\frac{\sqrt{3}}{2}$

18.
$$\frac{5}{9}$$

22.
$$\frac{4547}{8192}$$

24. (i) .1118

25. (i)
$$\frac{8}{15}$$
, (ii) $\frac{14}{15}$, $\frac{1}{15}$, (iii) 1

26. 0.7 (approx.) **27.** 0.18

28.
$$\frac{1}{2}$$

29.	X	0	1	2
	P (X)	.54	.42	.04

31. (i)
$$\left(\frac{49}{50}\right)^{10}$$

(ii)
$$\frac{45(49)^8}{(50)^{10}}$$

(iii)
$$\frac{59(49)^9}{(50)^{10}}$$

32.
$$\frac{1}{3}$$

33.
$$\frac{9}{44}$$

34.
$$\frac{p-1}{n-1}$$

36.
$$p = \frac{1}{2}$$

37.
$$\frac{665}{324}$$

37.
$$\frac{665}{324}$$
 38. $\frac{775}{7776}$

41. (i)
$$\frac{7}{18}$$
, (ii) $\frac{11}{18}$

41. (i)
$$\frac{7}{18}$$
, (ii) $\frac{11}{18}$ **42.** (i) $\frac{2}{11}$, (ii) $\frac{9}{11}$

44.
$$\frac{7}{11}$$

45.
$$\frac{11}{21}$$

46.
$$\frac{1}{3}$$

47.
$$\frac{110}{221}$$

48.
$$\frac{5}{11}$$

49. (i)
$$\frac{1}{50}$$
, (ii) 5.2, (iii) 1.7 (approx.) **50.** (i) 3, (ii) 19.05

51. (i) 4.32, (ii) 61.9, (iii)
$$\frac{15}{22}$$

53. Mean
$$=\frac{2}{13}$$
, S.D. = 0.377

54.
$$\frac{1}{2}$$

55. Mean =
$$6$$
, Variance = 3

92. D

93. D

94. False

95. True

96. False

97. False

98. True

99. True

100. True

101. True

102. False

103. True

104. $\frac{1}{3}$

105. $\frac{10}{9}$

106. $\frac{1}{10}$

107. $\sum p_i x_i^2 - (\sum p_i x_i)^2$

108. independent