COMPUTER SCIENCE

Database Management System

FD's & Normalization

Lecture_11

Vijay Agarwal sir

Normal Forms Decomposition

PW

RDBMS Concept FD Concept 2 its the Attribute closure keys Concept Super Keys Canadidate key Finding Multiple C.K Membership set

Equality b/n 2 FD Set Minimal Cover closure of FD set Binding # Superkeys 4 Max. Ck Properties of Decomposition. Glossless Join Decomposition. La Dependency Preserving Decomposition.

Normal Form is a set of Rules to Reduce eliminate the Redundancy

Redundandency is unnecessary Repeation of Data

**

There are Various Normal Forms

- 1NF (First Normal Form)
- (2) 2NF (Second Normal Form)
- (3) 3NF (Third Normal Form)
- (B) BCNF (Boyce Godd Normal Form)
 4NF)
 511-1X

(18the) Every Higher Normal Form Contain the Lower Normal Form.

(68) If a Relation R is in 2NF, then its already is in INF.

(NOTE) IB a Relation R is in 3NF them R already is in 2NF & LNF

(Note) If a Relation R is in BCNF them R already is in 3NF, 2NF & INF.

First Normal Form [LNF]:

All Attorbute of R A Relation Schema R is in INF ib are atomic.

A Relation Schema R is in LNF is R does not contain Any Multivalued Attribute. STUDENT

Rellino Name Subject I Ajay C/JAVA) = Multivolved I Ajay JAVI
Now In INF Not in INF

R (ABC) [A ->B)

(A) t= CAB]

C is Not Present in FD, Whenever Any Attribute Not Present in FD them Add in (Make a part of) Candidate key.

Candidate key = [AC].

· INF Ensured by using Candidate key

(Note) Default RDBMS is in INF.

(1000) In LNF Redundancy Level is too High of Redundancy (X+)

Redundancy: LNF > 2NF > 3NF > BCNF

Prime Attribute: is a Set of Attribute that beloyes Present in Some (Any) Candidate by

Non key Non Prime Attribute: Set of Attributes that Not belongs Not Present in Any Candidak key AB Proper Subset ABC AB BC AC (AD) (R)

AB.

Possible Non Trivial FD which Cause Redundancy.

CASEI

Proper Subset of Candidate key

Non key

RIABODEF) [ABJC. C)D, D)F, B)E)

Canadidate key = (AB)

Non key Attribute = (C.D.E. F)

Proper Subsof

Non Key Attribute Proper subset

CASETT

CK is Minimal.

R(ABCD) [AR-CD, D-A)

Candidate key - [AB, DB]

Proper subset of One Condidate bey another cik

BAA

B-10

Not DB

R(ABC) [AB-)C, A-)

which is the Poetial FD.

Ang(A) (35.71)

(B) and F (54.76)

@ Both (9.521)

(d) None

Identity Partial FD

Are [c]

Postial FD

AB-3C is foutial FD

•

Navathe

15.3.5 Second Normal Form

Second normal form (2NF) is based on the concept of *full functional dependency*. A functional dependency $X \to Y$ is a full functional dependency if removal of any attribute A from X means that the dependency does not hold any more; that is, for any attribute $A \in X$, $(X - \{A\})$ does *not* functionally determine Y. A functional dependency $X \to Y$ is a partial dependency if some attribute $A \in X$ can be removed from X and the dependency still holds; that is, for some $A \in X$, $(X - \{A\}) \to Y$ In Figure 15.3(b), {Ssn, Pnumber} \to Hours is a full dependency (neither Ssn \to Hours nor Pnumber \to Hours holds). However, the dependency {Ssn, Pnumber} \to Ename is partial because Ssn \to Ename holds.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully functionally dependent on the primary key of R.

SSN Pumber -> Ename is
SSN -> Ename

is Butial

AB -> C is Postial FD

AB-SC is Full FD

(b)

EMP_PROJ

8.17

kooth

- A functional dependency $\alpha \to \beta$ is called a **partial dependency** if there is a proper subset γ of α such that $\gamma \to \beta$. We say that β is *partially dependent* on α . A relation schema R is in **second normal form** (2NF) if each attribute A in R meets one of the following criteria:
 - It appears in a candidate key.
 - It is not partially dependent on a candidate key.

(ii)
$$AE \rightarrow C$$
 (P) $AB \rightarrow D$

(iii)
$$AF \rightarrow D$$

(iv)
$$AB \rightarrow D$$

(v)
$$AC \rightarrow D$$

(vi)
$$BC \rightarrow D$$

(vii) DE
$$\rightarrow$$
 C

(vii)
$$AB \rightarrow F$$

Identify faction FD 7
R(ABCDEF) {ABC → DE, DE → ABC, AB → D, DE → F, E → C}

- (i) $ABC \rightarrow D$
- (ii) $AE \rightarrow C$
- (iii) $AF \rightarrow D$
- (iv) $AB \rightarrow D$
- (v) $AC \rightarrow D$
- (vi) $BC \rightarrow D$
- (vii) $DE \rightarrow C$
- (vii) $AB \rightarrow F$

