- \*Choose one of the two problems below for your term project for HSPICE simulation.
- \*10:00 am, Jan 22nd at Rm 623 to present in ppt and turn in with HSPICE simulation results.
- \*15 extra points max for one problem. DO NOT do/present two problems.

## \*Use 0.18 process file

- 1. Design the circuit of a two-integrator-loop, active–RC biquad in switched-capacitors below. At the output of the second (noninverting) integrator, a maximally flat low-pass function with  $\omega_{3dB}$  = 10<sup>3</sup> rad/s and unity dc gain. Use a clock frequency  $f_c = 100$  kHz and select  $C_1 = C_2 = 5$  pF.
  - (i) Determine the values of  $C_3$ ,  $C_4$ ,  $C_5$ , and  $C_6$ . (Hint: For a maximally flat response, Q = 1/sqrt(2) and  $\omega_{3dB} = \omega_0$ )
  - (ii) Conduct HSPICE simulation using a non-ideal op designed by yourself to adjust values of Cs for achieving the same specs of the given filter.

Hints: (1) Use an ideal clock in HSPICE to drive 1 and  $\phi_2$ .

(2) The designed  $C_3$ ,  $C_4$ ,  $C_5$ , and  $C_6$  need to be adjusted further for part (ii) to achieve  $\omega_{3dB} = 10^3$  rad/s and  $f_c = 100$  kHz exactly.



2. Design the Wien-bridge oscillator below (determine all Cs and Rs) to offer an oscillating frequency as close possible as to 10 kHz, and use HSPICE to verify your results. Use a non-perfect op designed by yourself.

Hints: The designed Cs and Rs need to be re-adjusted in HSPICE simulation to overcome the imperfection of the op designed by yourself to achieve 10 kHz exactly.

