GLOBAL FIT OF $b \to s \ell^+ \ell^-$

$$B \to K^*(\to K\pi) \, \ell^+\ell^-$$
 at high- q^2

based on arXiv:1006.5013 + 1105.0376 + 1111.2558

Christoph Bobeth, Gudrun Hiller, Danny van Dyk and Christian Wacker

TU Dortmund and TU München (IAS + Excellence Cluster "Universe")

LHCb-Theory Workshop

OUTLINE

- 1) Global fit of $b \rightarrow s \ell^+ \ell^-$
 - A) Experimental input
 - B) Fit results
- 2) $B \to K^*(\to K\pi) \ell^+\ell^-$ at high- q^2
 - A) Angular distribution and Observables
 - B) NP sensitivity

Global fit of $b \rightarrow s \ell^+ \ell^-$

FCNC $b \to s + \{\gamma, \bar{\ell}\ell\}$ in the SM

Background contribution $B \to K^{(*)}(\bar{q}q) \to K^{(*)}\bar{\ell}\ell$ from 4-quark operators $b \to s\bar{q}q$ $q^2 =$ dilepton invariant mass:

$b \rightarrow s \ell^+ \ell^-$ Data – Number of events

# of evts	BaBar	Belle	CDF	LHCb	CP avaraged regulta
	2008	2009	2011	2011	• CP-averaged results • vetoed q^2 region around J/ψ and ψ' regions
	384 M <i>BB</i>	$605 \; {\rm fb^{-1}}$	$6.8 \mathrm{fb^{-1}}$	$309 \mathrm{pb}^{-1}$	
$B^0 o K^{st 0}ar\ell\ell$	64 ± 16	$247 \pm 54^{\dagger}$	164 ± 15	323 ± 21	
$B^+ o K^{*+} ar{\ell} \ell$			20 ± 6		• † unknown mixture of
$B^+ o K^+ ar\ell \ell$	53 ± 12	$162\pm38^{\dagger}$	234 ± 19		B^0 and B^\pm
$B^0 o K_S^0 \bar{\ell} \ell$			28 ± 9		Babar arXiv:0804.4412
$B_{s} ightarrow \phi ar{\ell} \ell$			49 ± 7	Belle arXiv:0904.0770 CDF arXiv:1107.3753 + 1108.0695 LHCb LHCB-CONF-2011-038	
$\Lambda_b \to \Lambda \bar{\ell} \ell$			24 ± 5		

Outlook/Prospects:

- Belle reprocessed all data 711 fb⁻¹
- CDF recorded perhaps about 10 fb⁻¹ ???
- LHCb recorded now about 1 fb⁻¹ \rightarrow naively: about 1000 events
- SuperB expects about 10000-15000 $B \to K^* \bar{\ell} \ell$ events [A.J.Bevan arXiv:1110.3901]

$B \rightarrow K \ell^+ \ell^-$ Data used in fit

Data available in 6 q^2 -bins for: $\langle Br \rangle$

in fit used: $[q_{min}^2, q_{max}^2] = [1.0, 6.0], [14.18, 16.0], [16.0, 22.86] \text{ GeV}^2$

[BaBar] [Belle] [CDF]

[SM predicition: CB/GH/DvD/Wacker arXiv:1111.2558]

$B \to K^* \ell^+ \ell^-$ data used in fit

data in q^2 -bins for: $\langle Br \rangle$, $\langle A_{FB} \rangle$, $\langle F_L \rangle$

 $[1.0,\,6.0],[14.18,\,16.0],[16.0,\,19.2]~\text{GeV}^2$

angular analysis in θ_ℓ and θ_{K*} : each q^2 -bin

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{K*}} = \frac{3}{2} F_{L} \cos^{2}\theta_{K*} + \frac{3}{4} (1 - F_{L}) \sin^{2}\theta_{K*},$$

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_\ell} = \frac{3}{4} \frac{\textit{F}_L}{\textit{L}} \sin^2\!\theta_\ell + \frac{3}{8} (1 - \frac{\textit{F}_L}{\textit{L}}) (1 + \cos^2\!\theta_\ell) + \frac{\textit{A}_{\text{FB}}}{\textit{B}} \cos\theta_\ell$$

- $B o X_s \bar{\ell}\ell$: Br in $q^2 \in [1,6]$ GeV² [Babar/Belle]
- $B \to K^* \bar{\ell} \ell$: Br, A_{FB} , F_L in $q^2 \in [1, 6]$ GeV²

 [Belle/CDF] Br, A_{FB} in $q^2 \in [14.2, 16] + [> 16]$ GeV²

Before Summer 2011

Determining 68 (95) % CL in 6D pmr-space $|C_{7,9,10}|$ and $\phi_{7,9,10} \rightarrow$ projection on $|C_9| - |C_{10}|$

 \Rightarrow without high- q^2 data [left] and with [right] \rightarrow important impact, BUT form factors from lattice very desirable !!!

- $lackbox{B}
 ightarrow X_{s} \overline{\ell} \ell$: Br in $q^2 \in [1,6]$ GeV^2 [Babar/Belle]
- $B \to K^* \bar{\ell} \ell$: Br, A_{FB} , F_L in $q^2 \in [1, 6] \text{ GeV}^2$ [Belle/CDF] Br, A_{FB} in $q^2 \in [14.2, 16] + [> 16] \text{ GeV}^2$

Before Summer 2011

Determining 68 (95) % CL in 6D pmr-space $|C_{7,9,10}|$ and $\phi_{7,9,10} \rightarrow$ projection on $|C_9| - |C_{10}|$

 \Rightarrow without high- q^2 data [left] and with [right] \rightarrow important impact, BUT form factors from lattice very desirable !!!

- $B \rightarrow X_s \bar{\ell} \ell$: Br in $q^2 \in [1, 6]$ GeV² [Babar/Belle]
- $B \to K^* \bar{\ell} \ell$: Br, A_{FB} , F_L in $q^2 \in [1,6] \text{ GeV}^2$ [Belle/CDF/LHCb] Br, A_{FB} in $q^2 \in [14.2,16] + [>16] \text{ GeV}^2$

Adding also ...

● $B \to K\bar{\ell}\ell$: Br in $q^2 \in [1, 6]$ GeV^2 [Belle/CDF] Br in $q^2 \in [14.2, 16] + [> 16]$ GeV^2

[CB/GH/DvD/Wacker arXiv:1111.2558v2]
Scan resolution

$$|C_7| \in [.30, .40],$$
 $\Delta |C_7| = .02$ $|C_{9,10}| \in [0, 15],$ $\Delta |C_{9,10}| = 0.25$

$$\phi_7 \in [0, 2\pi), \qquad \Delta\phi_7 = \pi/16$$
 $\phi_{9,10} \in [0, 2\pi), \qquad \Delta\phi_{9,10} = \pi/16$

SM = green square

November 2011

- $lacksquare B o X_s ar{\ell} \ell$: Br in $q^2 \in [1,6]$ GeV^2 [Babar/Belle]
- $B \to K^* \bar{\ell} \ell$: Br, A_{FB} , F_L in $q^2 \in [1,6] \text{ GeV}^2$ [Belle/CDF/LHCb] Br, A_{FB} in $q^2 \in [14.2,16] + [>16] \text{ GeV}^2$

Adding also ...

■
$$B \to K\bar{\ell}\ell$$
: Br in $q^2 \in [1, 6]$ GeV^2

[Belle/CDF] Br in $q^2 \in [14.2, 16] + [> 16]$ GeV^2

[CB/GH/DvD/Wacker arXiv:1111.2558v2]
Scan resolution

$$|C_7| \in [.30, .40],$$
 $\Delta |C_7| = .02$ $|C_{9,10}| \in [0, 15],$ $\Delta |C_{9,10}| = 0.25$

$$\phi_7 \in [0, 2\pi), \qquad \Delta\phi_7 = \pi/16$$
 $\phi_{9,10} \in [0, 2\pi), \qquad \Delta\phi_{9,10} = \pi/16$

SM = green square

November 2011

Global Fit of \emph{C}_9 and \emph{C}_{10} – real

OTHER MODEL-INDEPENDENT GLOBAL FITS

Descotes-Genon/Ghosh/Matias/Ramon arXiv:1104.3342

included data (before summer)

- $B \to X_s \bar{\ell} \ell$ (low- q^2 : Br), • $B \to K^* \bar{\ell} \ell$ (only low- q^2 : A_{FB} , F_L)
- upper bound on $Br(B_s \to \bar{\mu}\mu)$

and NP in real Wilson coefficients

- C_{7.7′}
- \bullet + $C_{9,10}$
- \bullet + $C_{9',10'}$

Altmannshofer/Paradisi/Straub arXiv:1111.1257

included data (up to date)

•
$$B \to X_S \gamma$$
 (Br),
 $B \to K^* \gamma$ (S)

•
$$B \to X_s \bar{\ell} \ell$$
 (low + high- q^2 : Br),
• $B \to K^* \bar{\ell} \ell$ (low + high- q^2 : Br, A_{FB} , F_{ℓ})

and NP in real and complex Wilson coefficients

- $C_{7.7', 9.9', 10.10'}$ (in varying stages)
- Z-penguin + C_{7,7}
 - \Rightarrow relates $b \rightarrow s \bar{\ell} \ell$ and $b \rightarrow s \bar{\nu} \nu$

EOS IMPLEMENTATION

DEPENDENCIES

- written in C++0x, needs >=g++-4.4
- written for Linux, but any UNIXoid OS should do
- minimal library dependencies
- GNU Scientific Library for special functions, random number generation, simplex method
- HDF5 for input/output

EXTENT

- multi-threaded calculations (POSIX threads!)
- extensive collection of test cases
- ~150 File of Code, ~30k Lines of Code

http://project.het.physik.tu-dortmund.de/eos

$$B \rightarrow K^*(\rightarrow K\pi) \ell^+\ell^-$$
 at high- q^2

KINEMATICS $B \rightarrow V \left[\rightarrow P_1 P_2 \right] + \ell \ell$

4-body decay with on-shell intermediate *V*(ector)

1)
$$q^2 = m_{\bar{\ell}\ell}^2 = (p_{\bar{\ell}} + p_{\ell})^2 = (p_B - p_V)^2$$

- 2) $\cos\theta_{\ell}$ with $\theta_{\ell} \angle (\vec{p}_B, \vec{p}_{\bar{\ell}})$ in $(\bar{\ell}\ell)$ c.m. system
- 3) $\cos\theta_V$ with $\theta_V \angle (\vec{p}_B, \vec{p}_1)$ in (P_1P_2) c.m. system
- 4) $\phi \angle (\vec{p}_1 \times \vec{p}_2, \ \vec{p}_{\bar{\ell}} \times \vec{p}_{\ell})$ in *B*-RF

$$\begin{split} \bar{B}^0 \rightarrow \bar{K}^{*0}(\rightarrow K^-\pi^+) + \bar{\ell}\ell : \qquad & I_i^{(s,c)}(q^2) = \text{``ANGULAR OBSERVABLES''} \\ \frac{32\pi}{9} \frac{d^4\Gamma}{dq^2 \, d\cos\theta_\ell \, d\cos\theta_{K*} \, d\phi} = I_1^s \sin^2\!\theta_{K*} + I_1^c \cos^2\!\theta_{K*} + (I_2^s \sin^2\!\theta_{K*} + I_2^c \cos^2\!\theta_{K*}) \cos 2\theta_\ell \\ & + I_3 \sin^2\!\theta_{K*} \sin^2\!\theta_\ell \cos 2\phi + I_4 \sin 2\theta_{K*} \sin 2\theta_\ell \cos\phi + I_5 \sin 2\theta_{K*} \sin\theta_\ell \cos\phi \\ & + (I_6^s \sin^2\!\theta_{K*} + I_6^c \cos^2\!\theta_{K*}) \cos\theta_\ell + I_7 \sin 2\theta_{K*} \sin\theta_\ell \sin\phi \\ & + I_8 \sin 2\theta_{K*} \sin 2\theta_\ell \sin\phi + I_9 \sin^2\!\theta_{K*} \sin^2\!\theta_\ell \sin 2\phi \end{split}$$

November 11, 2011

KINEMATICS $B \rightarrow V \left[\rightarrow P_1 P_2 \right] + \bar{\ell} \ell$

4-body decay with on-shell intermediate *V*(ector)

1)
$$q^2 = m_{\bar{\ell}\ell}^2 = (p_{\bar{\ell}} + p_{\ell})^2 = (p_B - p_V)^2$$

- 2) $\cos\theta_{\ell}$ with $\theta_{\ell} \angle (\vec{p}_B, \vec{p}_{\bar{\ell}})$ in $(\bar{\ell}\ell)$ c.m. system
- 3) $\cos\theta_V$ with $\theta_V \angle (\vec{p}_B, \vec{p}_1)$ in $(P_1 P_2)$ c.m. system
- 4) $\phi \angle (\vec{p}_1 \times \vec{p}_2, \ \vec{p}_{\bar{\ell}} \times \vec{p}_{\ell})$ in *B*-RF

$$\bar{B}^0 \to \bar{K}^{*0} (\to K^- \pi^+) + \bar{\ell}\ell : \qquad I_i^{(s,c)}(q^2) = \text{"ANGULAR OBSERVABLES"}$$

$$\begin{split} \frac{32\pi}{9} \, \frac{d^4\Gamma}{dq^2 \, d\!\cos\!\theta_\ell \, d\!\cos\!\theta_{K^*} \, d\phi} &= \, l_1^{\it S} \sin^2\!\theta_{K^*} + l_1^{\it C} \cos^2\!\theta_{K^*} + (l_2^{\it S} \sin^2\!\theta_{K^*} + l_2^{\it C} \cos^2\!\theta_{K^*}) \cos 2\theta_\ell \\ &+ l_3 \sin^2\!\theta_{K^*} \sin^2\!\theta_\ell \cos 2\phi + l_4 \sin 2\theta_{K^*} \sin 2\theta_\ell \cos \phi + l_5 \sin 2\theta_{K^*} \sin \theta_\ell \cos \phi \\ &+ (l_6^{\it S} \sin^2\!\theta_{K^*} + l_6^{\it C} \cos^2\!\theta_{K^*}) \cos \theta_\ell + l_7 \sin 2\theta_{K^*} \sin \theta_\ell \sin \phi \\ &+ l_8 \sin 2\theta_{K^*} \sin 2\theta_\ell \sin \phi + l_9 \sin^2\!\theta_{K^*} \sin^2\!\theta_\ell \sin 2\phi \end{split}$$

$$\Rightarrow$$
 "2 × (12 + 12) = 48" if measured separately: A) decay + CP-conj & B) for $\ell = e, \mu$

$$\Rightarrow$$
 for (SM + χ -flipped) operators and $m_{\ell}=0$: $l_1^S=3l_2^S$, $l_1^C=-l_2^C$, $l_6^C=0$, +4th rel.

$HIGH-q^2: OPE - I$

Hard momentum transfer $(q^2 \sim M_B^2)$ through $(\bar{q}q) \rightarrow \bar{\ell}\ell$ allows local OPE

$$\frac{b}{qq} = \frac{b}{q} = \frac{$$

$$\mathcal{M}[\bar{B} \to \bar{K}^* + \bar{\ell}\ell] \sim \frac{8\pi^2}{q^2} i \int d^4x \, e^{iq \cdot x} \langle \bar{K}^* | T\{\mathcal{L}^{\text{eff}}(0), j_{\mu}^{\text{em}}(x)\} | \bar{B} \rangle [\bar{\ell}\gamma^{\mu}\ell]$$

$$= \left(\sum_a \mathcal{C}_{3a} \mathcal{Q}_{3a}^{\mu} + \sum_b \mathcal{C}_{5b} \mathcal{Q}_{5b}^{\mu} + \sum_c \mathcal{C}_{6c} \mathcal{Q}_{6c}^{\mu} + \mathcal{O}(\dim > 6) \right) [\bar{\ell}\gamma_{\mu}\ell]$$

Buchalla/Isidori hep-ph/9801456, Grinstein/Pirjol hep-ph/0404250, Beylich/Buchalla/Feldmann arXiv:1101.5118

Leading dim = 3 operators: $\langle \bar{K}^* | \mathcal{Q}_{3,a} | \bar{B} \rangle \sim \text{usual } B \to K^* \text{ form factors } V, A_{0,1,2}, T_{1,2,3}$

$$Q_{3,1}^{\mu} = \left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{\sigma^2}\right) \left[\bar{s}\,\gamma_{\nu}(1-\gamma_5)\,b\right] \qquad \to \qquad C_9 \to C_9^{\text{eff}}, \qquad (V, A_{0,1,2})$$

$$Q_{3,2}^{\mu} = \frac{im_b}{q^2} \, q_{\nu} \, [\bar{s} \, \sigma_{\nu\mu} (1 + \gamma_5) \, b]$$
 \rightarrow $C_7 \rightarrow C_7^{\text{eff}},$ $(T_{1,2,3})$

Bobeth/Hiller/van Dyk CERN November 11, 2011 15 / 23

$HIGH-q^2: OPE - II$

- dim = 3 α_s matching corrections are also known
- $\it m_{\rm S} \ne 0$ 2 additional $\it dim = 3$ operators, suppressed with $\it \alpha_{\rm S}\it m_{\rm S}/\it m_{\rm b} \sim 0.5$ %, NO new form factors
- dim = 4 absent
- dim = 5 suppressed by $(\Lambda_{\rm QCD}/m_b)^2 \sim 2$ %, explicite estimate @ $q^2 = 15$ GeV²: < 1% [Beylich/Buchalla/Feldmann arXiv:1101.5118]
- dim=6 suppressed by $(\Lambda_{\rm QCD}/m_b)^3\sim 0.2$ % and small QCD-penguin's: $C_{3,4,5,6}$ spectator quark effects: from weak annihilation
- BEYOND OPE duality violating effects [Beylich/Buchalla/Feldmann arXiv:1101.5118]
 - based on Shifman model for c-quark correlator + fit to recent BES data
 - ± 2 % for integrated rate $q^2 > 15 \text{ GeV}^2$
- \Rightarrow OPE of exclusive $\bar{B} \to \bar{K}^*(\bar{K}) + \bar{\ell}\ell$ predicts small sub-leading contributions !!!

BUT, still missing $B \to K^*$ form factors @ high- q^2 for predictions of angular observables $I_i^{(k)}$

HIGH- q^2 – TRANSVERSITY AMPLITUDES

$$A_{\perp}^{L,R} = + \left[{\color{red} {\color{blue} C^{L,R}} + {\color{blue} \tilde{r}_a}} \right] f_{\perp} \, , \qquad \qquad A_{\parallel}^{L,R} = - \left[{\color{blue} {\color{blue} C^{L,R}} + {\color{blue} \tilde{r}_b}} \right] f_{\parallel} \, ,$$

$$A_0^{L,R} = -\frac{\mathbf{C}^{L,R}}{6} f_0 - NM_B \frac{(1 - \hat{\mathbf{s}} - \hat{M}_{K*}^2)(1 + \hat{M}_{K*})^2 \tilde{\mathbf{r}}_b A_1 - \hat{\lambda} \tilde{\mathbf{r}}_c A_2}{2 \, \hat{M}_{K*} (1 + \hat{M}_{K*}) \sqrt{\hat{\mathbf{s}}}}$$

$$\Rightarrow$$
 Universal short-distance coefficients: $C^{L,R} = C_9^{\rm eff} + \kappa \frac{2m_b M_B}{q^2} C_7^{\rm eff} \mp C_{10}$
(SM: $C_9 \sim +4$, $C_{10} \sim -4$, $C_7 \sim -0.3$)

known structure of sub-leading corrections [Grinstein/Pirjol hep-ph/0404250]

$$\tilde{r}_i \sim \pm \frac{\Lambda_{\rm QCD}}{m_{\rm b}} \left(C_7^{\rm eff} + \alpha_{\rm S}(\mu) e^{i\delta_i} \right) \,, \qquad \qquad i = a, b, c$$

form factors ("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])

$$f_{\perp} = \frac{\sqrt{2\hat{\lambda}}}{1+\hat{M}_{K^{*}}} \, V, \quad f_{\parallel} = \sqrt{2} \, (1+\hat{M}_{K^{*}}) \, A_{1}, \quad f_{0} = \frac{(1-\hat{s}-\hat{M}_{K^{*}}^{2})(1+\hat{M}_{K^{*}})^{2} A_{1} - \hat{\lambda} \, A_{2}}{2 \, \hat{M}_{K^{*}} (1+\hat{M}_{K^{*}}) \sqrt{\hat{s}}}$$

$HIGH-q^2 - SM$ OPERATOR BASIS

$$\begin{split} (2\,l_2^S + l_3) &= 2\,\rho_1 \times f_\perp^2, & -l_2^c = 2\,\rho_1 \times f_0^2, & l_5/\sqrt{2} = 4\,\rho_2 \times f_0 f_\perp, \\ (2\,l_2^S - l_3) &= 2\,\rho_1 \times f_\parallel^2, & \sqrt{2}\,l_4 = 2\,\rho_1 \times f_0 f_\parallel, & l_6^S/2 = 4\,\rho_2 \times f_\parallel f_\perp, \\ l_7 &= l_8 = l_9 = 0, & (l_6^c = 0) & (m_\ell = 0) \end{split}$$

A) ho_1 and ho_2 are largely μ -scale independent and B) $f_{\perp,\parallel,0}$ FF-dependent

$$\rho_1(q^2) \equiv \left| C_9^{\rm eff} + \kappa \frac{2m_b^2}{q^2} C_7^{\rm eff} \right|^2 + \left| C_{10} \right|^2, \qquad \rho_2(q^2) \equiv \text{Re} \left(C_9^{\rm eff} + \kappa \frac{2m_b^2}{q^2} C_7^{\rm eff} \right) C_{10}^*$$

$$\begin{split} \frac{dI}{dq^2} &= 2 \, \rho_1 \times (f_0^2 + f_\perp^2 + f_\parallel^2), & A_{\rm FB} &= 3 \, \frac{\rho_2}{\rho_1} \times \frac{f_\perp \cdot ||}{(f_0^2 + f_\perp^2 + f_\parallel^2)}, \\ f_\perp &= \frac{f_0^2}{f_0^2 + f_\parallel^2 + f_\parallel^2}, & A_T^{(2)} &= \frac{f_\perp^2 - f_\parallel^2}{f_\parallel^2 + f_\parallel^2}, & A_T^{(3)} &= \frac{f_\parallel}{f_\perp}, & A_T^{(4)} &= 2 \, \frac{\rho_2}{\rho_1} \times \frac{f_\perp}{f_\parallel} \end{split}$$

Short-distance-free ratios !!! TEST lattice vs exp. data + OPE or FIT FF-shapes !!

$$\begin{split} \frac{f_0}{f_{\parallel}} &= \frac{\sqrt{2} I_5}{I_6} = \frac{-I_2^c}{\sqrt{2} I_4} = \frac{\sqrt{2} I_4}{2 I_2^s - I_3} = \sqrt{\frac{-I_2^c}{2 I_2^s - I_3}}, \\ &= \sqrt{\frac{2 I_2^s + I_3}{2 I_2^s - I_3}} = \frac{\sqrt{-I_2^c \left(2 I_2^s + I_3\right)}}{\sqrt{2} I_4}, \qquad \qquad \frac{f_0}{f_{\perp}} = \sqrt{\frac{-I_2^c}{2 I_2^s + I_3}} \end{split}$$

$HIGH-q^2 - SM$ OPERATOR BASIS

$$\begin{split} (2\,l_2^s + l_3) &= 2\,\rho_1 \times f_\perp^2, & -l_2^c = 2\,\rho_1 \times f_0^2, & l_5/\sqrt{2} = 4\,\rho_2 \times f_0 f_\perp, \\ (2\,l_2^s - l_3) &= 2\,\rho_1 \times f_\parallel^2, & \sqrt{2}\,l_4 = 2\,\rho_1 \times f_0 f_\parallel, & l_6^s/2 = 4\,\rho_2 \times f_\parallel f_\perp, \\ l_7 &= l_8 = l_9 = 0, & (l_6^c = 0) & (m_\ell = 0) \end{split}$$

A) ho_1 and ho_2 are largely μ -scale independent and B) $f_{\perp,\parallel,0}$ FF-dependent

$$\rho_1(q^2) \equiv \left| C_9^{\rm eff} + \kappa \frac{2 m_b^2}{q^2} C_7^{\rm eff} \right|^2 + \left| C_{10} \right|^2, \qquad \rho_2(q^2) \equiv {\rm Re} \left(C_9^{\rm eff} + \kappa \frac{2 m_b^2}{q^2} C_7^{\rm eff} \right) C_{10}^*$$

$$\frac{d\Gamma}{dq^2} = 2 \rho_1 \times (f_0^2 + f_\perp^2 + f_\parallel^2), \qquad A_{\text{FB}} = 3 \frac{\rho_2}{\rho_1} \times \frac{f_\perp f_\parallel}{(f_0^2 + f_\perp^2 + f_\parallel^2)},$$

$$f_0^2 = (2) \quad f_\perp^2 - f_\parallel^2 \qquad (3) \quad f_\parallel \qquad (4) \quad \rho_0$$

$$F_{L} = \frac{f_{0}^{2}}{f_{0}^{2} + f_{\perp}^{2} + f_{\parallel}^{2}}, \qquad A_{T}^{(2)} = \frac{f_{\perp}^{2} - f_{\parallel}^{2}}{f_{\perp}^{2} + f_{\parallel}^{2}}, \qquad A_{T}^{(3)} = \frac{f_{\parallel}}{f_{\perp}}, \qquad A_{T}^{(4)} = 2\frac{\rho_{2}}{\rho_{1}} \times \frac{f_{\perp}}{f_{\parallel}}$$

Short-distance-free ratios !!! TEST lattice vs exp. data + OPE or FIT FF-shapes !!

$$\frac{f_0}{f_{\parallel}} = \frac{\sqrt{2}I_5}{I_6} = \frac{-I_2^c}{\sqrt{2}I_4} = \frac{\sqrt{2}I_4}{2I_2^s - I_3} = \sqrt{\frac{-I_2^c}{2I_2^s - I_3}},$$

$$\frac{I_2^s + I_3}{I_2^s + I_3} = \sqrt{\frac{-I_2^c}{2I_2^s + I_3}},$$

$$\frac{f_0}{I_2^s + I_3} = \sqrt{\frac{-I_2^c}{2I_2^s + I_3}},$$

$HIGH-q^2 - SM$ OPERATOR BASIS

$$\begin{aligned} (2\,l_2^S + l_3) &= 2\,\rho_1 \times f_\perp^2, & -l_2^C &= 2\,\rho_1 \times f_0^2, & l_5/\sqrt{2} &= 4\,\rho_2 \times f_0 f_\perp, \\ (2\,l_2^S - l_3) &= 2\,\rho_1 \times f_\parallel^2, & \sqrt{2}\,l_4 &= 2\,\rho_1 \times f_0 f_\parallel, & l_6^S/2 &= 4\,\rho_2 \times f_\parallel f_\perp, \\ l_7 &= l_8 &= l_9 &= 0, & (l_6^C &= 0) & (m_\ell &= 0) \end{aligned}$$

A) ρ_1 and ρ_2 are largely μ -scale independent and B) $f_{\perp,\parallel,0}$ FF-dependent

$$\rho_1(q^2) \equiv \left| C_9^{\text{eff}} + \kappa \frac{2m_b^2}{q^2} C_7^{\text{eff}} \right|^2 + |C_{10}|^2, \qquad \rho_2(q^2) \equiv \text{Re} \left(C_9^{\text{eff}} + \kappa \frac{2m_b^2}{q^2} C_7^{\text{eff}} \right) C_{10}^*$$

$$\frac{d\Gamma}{dq^2} = 2 \rho_1 \times (f_0^2 + f_\perp^2 + f_\parallel^2), \qquad A_{FB} = 3 \frac{\rho_2}{\rho_1} \times \frac{f_\perp f_\parallel}{(f_0^2 + f_\perp^2 + f_\parallel^2)},$$

$$f_\perp^2 = \frac{f_\perp^2 - f_\perp^2}{\rho_1^2} \times \frac{f_\perp f_\parallel}{(f_0^2 + f_\perp^2 + f_\parallel^2)},$$

$$F_{L} = \frac{f_{0}^{2}}{f_{0}^{2} + f_{\perp}^{2} + f_{\parallel}^{2}}, \qquad A_{T}^{(2)} = \frac{f_{\perp}^{2} - f_{\parallel}^{2}}{f_{\perp}^{2} + f_{\parallel}^{2}}, \qquad A_{T}^{(3)} = \frac{f_{\parallel}}{f_{\perp}}, \qquad A_{T}^{(4)} = 2\frac{\frac{\rho_{2}}{\rho_{1}}}{\rho_{1}} \times \frac{f_{\perp}}{f_{\parallel}}$$

Short-distance-free ratios !!! TEST lattice vs exp. data + OPE or FIT FF-shapes !!!

$$\frac{f_0}{f_{||}} = \frac{\sqrt{2}I_5}{I_6} = \frac{-I_2^c}{\sqrt{2}I_4} = \frac{\sqrt{2}I_4}{2I_2^s - I_3} = \sqrt{\frac{-I_2^c}{2I_2^s - I_3}},$$

$$\frac{f_{\perp}}{f_{\parallel}} = \sqrt{\frac{2I_2^s + I_3}{2I_2^s - I_2}} = \frac{\sqrt{-I_2^c \left(2I_2^s + I_3\right)}}{\sqrt{2}I_4}, \qquad \qquad \frac{f_0}{f_{\perp}} = \sqrt{\frac{-I_2^c}{2I_2^s + I_2}}$$

Bobeth/Hiller/van Dyk

HIGH- q^2 – "LONG-DISTANCE FREE"

FF-FREE RATIOS

!!! TEST SD FLAVOUR COUPLINGS VERSUS EXP. DATA + OPE

$$H_T^{(1)} = \frac{\sqrt{2}I_4}{\sqrt{-I_2^c (2I_2^s - I_3)}} = sgn(f_0) \cdot 1$$

$$H_T^{(2)} = \frac{I_5}{\sqrt{-2I_2^c \left(2I_2^s + I_3\right)}} = 2\frac{\rho_2}{\rho_1}, \qquad H_T^{(3)} = \frac{I_6}{2\sqrt{(2I_2^s)^2 - I_3^2}} = 2\frac{\rho_2}{\rho_1}$$

FF-free CP-asymmetries: SM operator basis [CB/GH/DvD arXiv:1105.0367

$$a_{\text{CP}}^{(1)} = rac{
ho_1 - ar{
ho}_1}{
ho_1 + ar{
ho}_1}, \qquad \qquad a_{\text{CP}}^{(2)} = rac{rac{
ho_2}{
ho_1} - rac{ar{
ho}_2}{ar{
ho}_1}}{rac{
ho_2}{
ho_1} + rac{ar{
ho}_2}{ar{
ho}_1}}, \qquad \qquad a_{\text{CP}}^{(3)} = 2 \, rac{
ho_2 - ar{
ho}_2}{
ho_1 + ar{
ho}_2}$$

- NLO QCD corrections large ⇒ decrease CP-asymmetries
- still, theoretical uncertainties large: dominated by renorm. scale μ_b
- time-integrated a_{CP}^{mix} in $B_s \to \phi(\to K^+K^-) + \bar{\ell}\ell$ is CP-odd = untagged
- @ high- q^2 : $A_{CP}[B \to K\bar{\ell}\ell] = a_{CP}^{(1)}[B \to K^*\bar{\ell}\ell]$

HIGH- q^2 – "LONG-DISTANCE FREE"

FF-FREE RATIOS

!!! TEST SD FLAVOUR COUPLINGS VERSUS EXP. DATA + OPE

$$H_T^{(1)} = \frac{\sqrt{2}I_4}{\sqrt{-I_2^c (2I_2^s - I_3)}} = sgn(f_0) \cdot 1$$

$$H_T^{(2)} = \frac{I_5}{\sqrt{-2I_2^c \left(2I_2^s + I_3\right)}} = 2\frac{\rho_2}{\rho_1}, \qquad \qquad H_T^{(3)} = \frac{I_6}{2\sqrt{(2I_2^s)^2 - I_3^2}} = 2\frac{\rho_2}{\rho_1}$$

FF-FREE CP-ASYMMETRIES: SM OPERATOR BASIS [CB/GH/DvD ArXiv:1105.0367]

$$a_{\text{CP}}^{(1)} = \frac{\rho_1 - \bar{\rho}_1}{\rho_1 + \bar{\rho}_1}, \qquad \qquad a_{\text{CP}}^{(2)} = \frac{\frac{\rho_2}{\rho_1} - \frac{\bar{\rho}_2}{\bar{\rho}_1}}{\frac{\rho_2}{\rho_1} + \frac{\bar{\rho}_2}{\bar{\rho}_2}}, \qquad \qquad a_{\text{CP}}^{(3)} = 2\,\frac{\rho_2 - \bar{\rho}_2}{\rho_1 + \bar{\rho}_1}$$

- NLO QCD corrections large ⇒ decrease CP-asymmetries
- ullet still, theoretical uncertainties large: dominated by renorm. scale μ_b
- time-integrated \mathbf{a}_{CP}^{mix} in $B_s \to \phi(\to K^+K^-) + \bar{\ell}\ell$ is CP-odd = untagged
- @ high- q^2 : $A_{\rm CP}[B \to K\bar{\ell}\ell] = a_{\rm CP}^{(1)}[B \to K^*\bar{\ell}\ell]$

COMMENTS

For SM operator basis($C_{7,9,10}$):

- measure all angular observables $I_i^{(s,c)}$
- ullet test $H_T^{(1)}=\mathbf{1}$ and $H_T^{(2)}=H_T^{(3)}
 ightarrow$ deviations signal problem with OPE
- $H_T^{(2,3)}$ are better than $A_{\rm FB}$ (or $A_T^{(4)}$) @Êhigh- q^2
- short-distance-free ratios \rightarrow give handle on $B \rightarrow K^*$ form factor ratios

 $H_{T}^{(2)}[14.18, 19.2]$ $H_{T}^{(3)}[14.18, 19.2]$

 $\begin{aligned} &H_{T}^{(2)}[14.18,19.2] \\ &H_{T}^{(3)}[14.18,19.2] \\ &A_{FB}[14.18,19.2] \\ &A_{FB}[1,6] \\ &A_{T}^{(re)}[1,6] \end{aligned}$

 $\begin{aligned} &H_{T}^{(2)}[14.18, 19.2] \\ &H_{T}^{(3)}[14.18, 19.2] \\ &A_{FB}[14.18, 19.2] \\ &A_{FB}[1, 6] \\ &A_{T}^{(re)}[1, 6] \\ &A_{FB}[2, 4.3] \\ &A_{T}^{(re)}[2, 4.3] \end{aligned}$

 $\begin{aligned} &H_{T}^{(2)}[14.18,\,19.2]\\ &H_{T}^{(3)}[14.18,\,19.2]\\ &A_{FB}[14.18,\,19.2]\\ &A_{FB}[2,\,4.3]\\ &A_{T}^{(re)}[2,\,4.3]\\ &Br[1,\,6]\\ &Br[14.18,\,19.2] \end{aligned}$

$$\begin{split} &H_{T}^{(2)}[14.18, 19.2] \\ &H_{T}^{(3)}[14.18, 19.2] \\ &A_{FB}[14.18, 19.2] \\ &A_{FB}[2, 4.3] \\ &A_{T}^{(re)}[2, 4.3] \\ &Br[1, 6] \\ &Br[14.18, 19.2] \\ &F_{L}[1, 6] \\ &F_{L}[14.18, 19.2] \end{split}$$

 $H_{\rm T}^{(2)}$ [14.18, 19.2] $H_{\rm T}^{(3)}$ [14.18, 19.2]

 $\begin{aligned} &H_{T}^{(2)}[14.18, 19.2] \\ &H_{T}^{(3)}[14.18, 19.2] \\ &A_{FB}[14.18, 19.2] \\ &A_{FB}[1, 6] \\ &A_{T}^{(re)}[1, 6] \end{aligned}$

 $\begin{aligned} &H_{T}^{(2)}[14.18, 19.2] \\ &H_{T}^{(3)}[14.18, 19.2] \\ &A_{FB}[14.18, 19.2] \\ &A_{FB}[1, 6] \\ &A_{T}^{(re)}[1, 6] \\ &A_{FB}^{(re)}[2, 4.3] \end{aligned}$

 $\begin{aligned} & H_{T}^{(2)}[14.18, 19.2] \\ & H_{T}^{(3)}[14.18, 19.2] \\ & A_{FB}[14.18, 19.2] \\ & A_{FB}[2, 4.3] \\ & A_{T}^{(re)}[2, 4.3] \\ & Br[1, 6] \\ & Br[14.18, 19.2] \end{aligned}$

$$\begin{split} &H_{T}^{(2)}[14.18, 19.2] \\ &H_{T}^{(3)}[14.18, 19.2] \\ &A_{FB}[14.18, 19.2] \\ &A_{FB}[2, 4.3] \\ &A_{T}^{(re)}[2, 4.3] \\ &Br[1, 6] \\ &Br[14.18, 19.2] \\ &F_{L}[1, 6] \\ &F_{L}[14.18, 19.2] \end{split}$$

Backup Slides

q^2 -INTEGRATED OBSERVABLES

Experimental measurements of observables P always imply binning in kinematical variables x, i.e.

$$\langle P \rangle_{[x_{min}, x_{max}]} \equiv \int_{x_{min}}^{x_{max}} dx P(x)$$

Assume, that angular observables $l_i^{(k)}(q^2)$ are measured in experiment for certain q^2 binning (omitting q^2 -interval boundaries)

$$\langle I_i^{(k)} \rangle = \int_{q_{min}^2}^{q_{max}^2} dq^2 I_i^{(k)}(q^2)$$

and "transversity observables" are then determined as follows (for example)

$$\left\langle \left. A_{T}^{(3)} \right. \right\rangle = \sqrt{\frac{4 \left\langle \left. I_{4} \right. \right\rangle^{2} + \left\langle \left. I_{7} \right. \right\rangle^{2}}{-2 \left\langle \left. I_{2}^{c} \right. \right\rangle \left\langle \left. 2 I_{2}^{s} + I_{3} \right. \right\rangle}}$$

→ This has to accounted for in theoretical predictions !!!

"TRANSVERSITY OBSERVABLES"

form factors are cancelling → reduced hadronic uncertainties

@ low-q²

$$A_{T}^{(2)} = \frac{I_{3}}{2I_{2}^{s}}, \qquad \qquad A_{T}^{(re)} = \frac{I_{6}^{s}}{4I_{2}^{s}}, \qquad \qquad A_{T}^{(im)} = \frac{I_{9}}{2I_{2}^{s}}$$

$$A_T^{(3)} = \sqrt{\frac{(2I_4)^2 + (I_7)^2}{-2I_2^c(2I_2^s + I_3)}}, \qquad \qquad A_T^{(4)} = \sqrt{\frac{(I_5)^2 + (2I_8)^2}{(2I_4)^2 + (I_7)^2}},$$

[Krüger/Matias hep-ph/0502060, Egede/Hurth/Matias/Ramon/Reece arXiv:0807.2589 + 1005.0571, Becirevic/Schneider, arXiv:1106.3283]

@ high-q²

$$\begin{split} H_T^{(2)} &= \frac{I_5}{\sqrt{-2I_2^c \left(2I_2^s + I_3\right)}}, \qquad \qquad H_T^{(3)} &= \frac{I_6^s}{2\sqrt{(2I_2^s)^2 - (I_3)^2}}, \\ H_T^{(4)} &= \frac{\sqrt{2}I_8}{\sqrt{-I_2^c \left(2I_2^s + I_3\right)}}, \qquad \qquad H_T^{(5)} &= \frac{I_9}{\sqrt{(2I_2^s)^2 - (I_3)^2}} \end{split}$$

[CB/Hiller/van Dyk arXiv:1006.5013 + in prep]

MEASURING ANGULAR OBSERVABLES

likely that exp. results only in some q^2 -integrated bins: $\langle \dots \rangle = \int_{q^2_{min}}^{q^2_{max}} dq^2 \dots$, then use some (quasi-) single-diff. distributions in θ_ℓ , θ_{K^*} , ϕ

•

$$\frac{d\langle\Gamma\rangle}{d\phi} = \frac{1}{2\pi} \left\{ \langle\Gamma\rangle + \langle I_3\rangle \cos 2\phi + \langle I_9\rangle \sin 2\phi \right\}$$

• 2 bins in $\cos \theta_{\kappa*}$

$$\frac{d\langle A_{\theta_{K*}}\rangle}{d\phi} \equiv \int_{-1}^{1} d\cos\theta_{I} \left[\int_{0}^{1} - \int_{-1}^{0} \right] d\cos\theta_{K*} \frac{d^{3}\langle \Gamma \rangle}{d\cos\theta_{K*} d\cos\theta_{I} d\phi}$$
$$= \frac{3}{16} \left\{ \langle I_{5}\rangle\cos\phi + \langle I_{7}\rangle\sin\phi \right\}$$

• (2 bins in $\cos \theta_{K*}$) + (2 bins in $\cos \theta_l$)

$$\frac{d\langle A_{\theta_{K^*},\theta_{I}}\rangle}{d\phi} \equiv \left[\int_{0}^{1} - \int_{-1}^{0}\right] d\cos\theta_{I} \frac{d^{2}\langle A_{\theta_{K^*}}\rangle}{d\cos\theta_{I} d\phi} = \frac{1}{2\pi} \left\{\langle \frac{l_{4}}{}\rangle\cos\phi + \langle \frac{l_{8}}{}\rangle\sin\phi\right\}$$

$High-q^2$: OPE + HQET

Framework developed by Grinstein/Pirjol hep-ph/0404250

1) OPE in $\Lambda_{\rm QCD}/Q$ with $Q=\{m_b,\sqrt{q^2}\}$ + matching on HQET + expansion in m_c

$$\begin{split} \mathcal{M}[\bar{B} \to \bar{K}^* + \bar{\ell}\ell] &\sim \frac{8\pi}{q^2} \sum_{i=1}^6 \mathcal{C}_i(\mu) \, \mathcal{T}_{\alpha}^{(i)}(q^2, \mu) \, [\bar{\ell}\gamma^{\alpha}\ell] \\ \mathcal{T}_{\alpha}^{(i)}(q^2, \mu) &= i \int d^4x \, e^{iq \cdot x} \langle \bar{K}^* | T\{\mathcal{O}_i(0), j_{\alpha}^{\text{em}}(x)\} | \bar{B} \rangle \\ &= \sum_{k \geqslant -2} \sum_j \mathcal{C}_{i,j}^{(k)} \langle \mathcal{Q}_{j,\alpha}^{(k)} \rangle \end{split}$$

$\neg Q = 1 + expansion in m_c$					
$\mathcal{Q}_{j,lpha}^{(k)}$	power	$\mathcal{O}(lpha_{ extsf{S}})$			
$\mathcal{Q}_{1,2}^{(-2)}$	1	$\alpha_s^0(\mathbf{Q})$			
$Q_{1-5}^{(-1)}$	$\Lambda_{ m QCD}/{\it Q}$	$\alpha_s^1(Q)$			
$Q_{1,2}^{(0)}$	m_c^2/Q^2	$\alpha_s^0(\mathbf{Q})$			
$\mathcal{Q}_{j>3}^{(0)}$	$\Lambda_{\text{QCD}}{}^2/\textit{Q}^2$	$\alpha_s^0(\mathbf{Q})$			
$Q_i^{(2)}$	m_c^4/Q^4	$\alpha_s^0(Q)$			
included					

included.

unc. estimate by naive pwr cont.

2) HQET FF-relations at sub-leading order + α_s corrections in leading order

$$T_1(q^2) = \kappa V(q^2),$$
 $T_2(q^2) = \kappa A_1(q^2),$ $T_3(q^2) = \kappa A_2(q^2) \frac{M_B^2}{q^2},$ $\kappa = \left(1 + \frac{2D_0^{(v)}(\mu)}{C^{(v)}(\mu)}\right) \frac{m_b(\mu)}{M_B}$

can express everything in terms of QCD FF's V, $A_{1,2}$ @ $\mathcal{O}(\alpha_s \Lambda_{\rm OCD}/Q)$!!!

EXCLUSIVE OBSERVABLES (I)

$$ar{\mathcal{B}}
ightarrow ar{\mathcal{K}}^* \ell^+ \ell^-$$
HI- q^2 \mathcal{B} , $\mathcal{A}_{\mathrm{FB}}$, \mathcal{F}_{L} , $\mathcal{A}_{\mathrm{T}}^{(i)}$, $\mathcal{H}_{\mathrm{T}}^{(i)}$, $\mathcal{a}_{\mathrm{CP}}^{(i)}$

all observables: q^2 -integrated and single-differential in q^2 calculation according to C. Bobeth,G. Hiller,DvD '10

$$ar{\mathcal{B}}
ightarrow ar{\mathcal{K}}\ell^+\ell^-$$
 HI- q^2 $\mathcal{B},$ $F_{
m H},$ $R_{
m K}^{\mu/e},$ $a_{
m CP}^{(1)}$

all observables: q^2 -integrated $\mathcal{B}, F_{\mathrm{H}}$: also single-differential in q^2 calculation according to C. Bobeth,G. Hiller,DvD,C. Wacker '11

EXCLUSIVE OBSERVABLES (II)

$$ar{\mathcal{B}}
ightarrow ar{\mathcal{K}}^* \ell^+ \ell^-$$

LO- q^2 $\mathcal{B},$ $A_{FB},$ $F_L,$ $A_T^{(i)}$

all observables: q^2 -integrated and single-differential in q^2 calculation according to M. Beneke,Th. Feldmann,D. Seidel '01 and '04

$$ar{\mathcal{B}}
ightarrow ar{\mathcal{K}} \ell^+ \ell^-$$
 LO- q^2 $\mathcal{B}, \, F_{
m H}, \, R_K^{\mu/e}$

all observables: q^2 -integrated $\mathcal{B}, F_{\mathrm{H}}$: also single-differential in q^2 calculation according to M. Beneke,Th. Feldmann,D. Seidel '01 and '04

EXCLUSIVE OBSERVABLES (III)

$$\bar{B} \to \bar{K}^* \gamma$$

$$\mathcal{B}$$
, $S_{K*_{\gamma}}$, $C_{K*_{\gamma}}$

calculation according to M. Beneke,Th. Feldmann,D. Seidel '01 and '04 for $q^2
ightarrow 0$

$$\bar{B}_{s,d} \rightarrow \ell^+ \ell^-$$

 \mathcal{B}

calculation according to C. Bobeth, T. Ewerth, F. Krüger, J. Urban '02

[Also: $\bar{B} \to X_s \ell^+ \ell^-$ is implemented for the SM Basis only.]