Trees

Bùi Tiến Lên

2021

Contents

1. Trees and Their Applications

2. Binary Trees

3. Binary Search Trees

4. Workshop

Trees and Their Applications

- Trees
- M-ary trees
- Parental trees
- Visualsing trees
- Applications

Trees and Their **Applications**

Introduction

Trees are a mathematical abstraction that play a central role in the design and analysis of algorithms because

- Trees are used to describe dynamic properties of algorithms.
- Trees are fundamental data storage structures that combine advantages of an array and a linked list.
 - Searching as fast as array.
 - Insertion and deletion as fast as linked list.

Trees

A tree is a nonlinear collection. It consists of

- A set of **nodes** that often represent entities.
- A set of edges/links that represent the relationship between nodes.

A tree T (rooted tree)

• is **empty tree**

$$T = \emptyset$$
 (1)

• is a node r (called the **root**) connected to a sequence of of disjoint trees $\{T_1, T_2, ..., T_m\}$ (called the **subtrees**)

$$T = \{r \to \{T_1, T_2, ..., T_m\}\}$$
 (2)

es and The

Trees

M-ary tre

Visualsing tre

Binary Tree

omary free:

Binary Tree AP

Binary Sear

Troop

Concepts

Tree AP

Workshop

Trees (cont.)

Tree vs. Subtree

• Node A has two subtrees

Trees

Terminology

In a tree

- Node: a simple object
- Edge/Link/Branch: a connection between two nodes

In a connection

- Parent node: above a node
- Child node: below a node

Trees

Terminology (cont.)

In a tree or subtree

- Root node: node doesn't have parent
- Leaf node/External node: node doesn't have children
- Internal node: node has children
- Sibling nodes: nodes have the same parent

Degree of node p

deg(p) = the number of children of p (3)

Degree of tree T

$$\deg(T) = \max(\deg(p_i), p_i \in T)$$
(4)

Binary Trees

Concepts
Binary Tree API

Rinary Spare

Trees

Workshop

Terminology (cont.)

Level/depth of node p:

$$level(p) = \begin{cases} 0 & p = root \\ level(parent(p)) + 1 & p \neq root \end{cases}$$
 (5)

• Height of tree *T*:

$$height(T) = \max(level(p_i) + 1, p_i \in T)$$
(6)

rees and The

Trees

M-ary trees
Parental trees
Visualsing tree

Binary Tree

Binary Tree A

Binary Searc

Concepts
Tree API

Workshop

Terminology (cont.)

• Path: A path in a tree is a list of distinct nodes in which successive nodes are connected by edges in the tree. In a path $p_1 - p_2 - ... - p_k$ is path, node p_1 is the ancestor and p_k is the descendant.

ees and The

Trees

M-ary trees
Parental trees
Visualsing tree

Binary Tree

Concepts
Binary Tree AP

Trees Concepts

Workshop

Terminology (cont.)

Concept 2

- The **path length of a tree** is the sum of the levels of all the tree's nodes.
- The internal path length of a tree is the sum of the levels of all the tree's internal nodes.
- The external path length of a tree is the sum of the levels of all the tree's external nodes

M-ary tree

Concept 3

An M-ary tree is each node connected to an ordered sequence of M trees that are also M-ary trees

- linear tree/linked list: each node has only 1 subtree
- binary tree: each node has 2 subtrees
- ternary tree: each node has 3 subtrees

ees and Th

Trees M-ary tre

Parental trees

Pinary Tree

Concepts

Binary Tree AF

Trees Concepts

Worksho

Parental Trees

Concept 4

A **parental tree** is a tree where each node only keeps a reference to its parent node

Binary Sea

Concepts
Tree API

Workshop

Parental Trees (cont.)

The parental tree representation is used in numerous places:

- Prim's algorithm: storing a minimum spanning trees of a weighted graph
- Dijkstra's algorithm: storing the minimum paths in a weighted graph
- Tree search based Al algorithms in general

rees and The

Trees

M-ary trees

.

Visualsing trees

Binary Tree

Binary Tree

Dinant Tree AE

Binary Sear

Trees

Community

Tree Al

Worksho

Visualsing Trees

• Seven visual representations showing the same tree dataset

rees and Th

Tree

M-ary tree

rarental tree

Visualsing tr Applications

Binary Tree

Concepts

Binary Tree AF

Binary Sear

Trees

Concept

Tree AF

VVorkshop

Applications

Figure 1: The Bernoulli

rees and The

Trees

M-ary trees

visuaising

Applications

Binary Tree

Dinama Tana Al

Binary Sear

Trees

Tree AF

vvorksnop

Figure 2: Animal tree

rees and The

Tree

M-ary trees

visuaising

Applications

Binary Tree

Concepts

Binary Tree

Binary Sea

Trees

Tree AF

Workshop

Figure 3: Management tree

Applications

Figure 4: Syntax tree of the sentenece "the cat sat on the mat"

Applications

Figure 5: Tree of the algebra expression (a + b) * (c - d)

ees and Th

Tree

M-ary trees

Visualsing t

Applications

Binary Tree

Dillary Tree

Binary Tree Al

Rinary Sear

Troos

Trees

Tree Al

Worksho

Figure 6: A file directory on Linux OS

Trees and Tl Applications Trees M-ary trees

Parental tree

Applications

Binary Tree

Binary Tree

Binary Tree AP

Dinary Saara

Troop

Concept

Tree AP

vvorksnop

Figure 7: Structure of html file

rees and The

Trees

M-ary trees

isualsing tr

Applications

Binary Trees

Concepts
Binary Tree AP

Binary Searc

Concept

Tree AP

Workshop

Figure 8: Database

Binary Trees

- Concepts
- Binary Tree API

ees and The

Trees

M-ary trees
Parental trees
Visualsing trees

Binary Tree

Concepts

Binary Tree AF

Binary Sea

Concepts
Tree API

Workshop

Binary Trees

Concept 5

A binary tree is each node connected to a pair of binary trees, which are called the **left subtree** and the **right subtree** of that node

- Each node may have up to two successors, a left child node or a right child node.
- The concrete representation that we use most often is a structure with two links (a left link and a right link) for each node.

rees and Their

Trees

M-ary tree

Visualsing tre

Visualsing tre

Binary Tree

Concepts

Binary Tree API

Binary Sea

Concept

Tree API

Workshor

Binary-tree representation


```
struct Node {
  Item item;
  Node *left, *right;
};
typedef Node *link;
```


es and Th

Tree

M-ary tree

M-ary trees Parental tree

Visualsing tre

Binary Tree

Concepts

Binary Tree AP

Binary Tree Al

Trees

Tree API

Workshop

Special Binary Trees

Concept 6

A full binary tree is binary in which each internal node has two children.

Concepts

Special Binary Trees (cont.)

Concept 7

A complete binary tree is a binary tree in which

- From level 0 to h-1: the tree is completely full (maximum number of nodes)
- At the last level h: nodes are filled from left to right.

Concepts

Special Binary Trees (cont.)

Concept 8

A perfect binary tree in which all internal nodes have two children and all leaf nodes are at the same level.

Trees

M-ary trees
Parental trees
Visualsing tree

Binary Tree

Concepts

Binary Sear Trees

.....

Workshop

Number of nodes in binary tree

size is the number of nodes in a binary tree/subtree T

$$size(T) = size(T \rightarrow leftSubtree) + size(T \rightarrow rightSubtree) + 1$$
 (7)

Level	Maximum number of nodes at each level
0	$2^0 = 1$
1	$2^1 = 2$
2	$2^2 = 4$
3	$2^3 = 8$
	10
10	$2^{10} = 1024$
1	2^{\prime}

Concepts

Height in binary tree

• A binary tree/subtree T

$$\textit{height}(\textit{T}) = \max(\textit{height}(\textit{T} \rightarrow \textit{leftSubtree}), \textit{height}(\textit{T} \rightarrow \textit{rightSubtree})) + 1 ~~(8)$$

rees and The

Trees

M-ary trees Parental trees

Visualsing tre

Binary Tree

Concepts
Binary Tree AP

Binary Tree Al

Binary Se

Concept

Concepts
Tree API

VVorksho

Properties of Binary Trees

Theorem 1

A binary tree T

- 1. The number of nodes at level I is
 - at least 1 and
 - at most 2¹.
- 2. The of nodes in a binary tree of height h is
 - at least h and
 - at most $2^h 1$.
- 3. The number of leaf nodes in a binary tree of height h is
 - at least 1 and
 - at most 2^{h-1} .

Concepts

Properties of Binary Trees (cont.)

Theorem 1

- 1. The height of a binary tree with N nodes is
 - at least $log_2(N+1)$ and
 - at most N.
- **2.** A binary tree with N nodes has N+1 null links and N-1 not null links.

ees and Their

Trees

M-ary trees
Parental trees
Visualsing trees

Binary Tree

D: T AD

Binary Tree API

Binary Sea

Concepts

Worksho

Representing a Binary Tree

- A binary tree is represented by a reference to its root node.
 link root;
- An empty binary tree is represented with a reference whose value is null.

```
template <class Item>
class BinaryTree {
public:
  struct Node {
    Item item:
    Node *left, *right;
    Node(Item val) {
      item = val:
      left = nullptr;
      right = nullptr;
    Node(Item val, Node *leftChild
```

```
, Node *rightChild) {
      item = val:
      left = leftChild:
      right = rightChild;
  typedef Node *link:
private:
  link root:
public:
  . . .
};
```

ees and The

Tree

M-ary trees

Visualsing tree

Binary Trees

Binary Tree API

D:----- C--

Trees

Concept Tree AP

Worksho

Traversal of Binary Trees

- A traversal of a binary tree is a systematic method of visiting each node in the binary tree. There are three binary tree traversal techniques:
 - Preorder traversal
 - Inorder traversal
 - Postorder traversal

Binary Tree API

Preorder Traversal

 Preorder traversal visits the root first, and then recursively traverses the left and right subtrees.

```
void preorder(link root) {
  if (root != nullptr) {
    visit(root);
    preorder(root->left);
    preorder(root->right);
```

ees and The

Trees

M-ary trees
Parental trees
Visualsing trees

Binary Tree

Binary Tree API

Binary Tree Ar

Binary Sea Trees

Concepts

Worksho

Inorder Traversal

• Inorder traversal recursively traverses the left subtree, then visits the root, and then traverses the right subtree.

```
void inorder(link root) {
  if (root != nullptr) {
    inorder(root->left);
    visit(root);
    inorder(root->right);
}
```

rees and The

Trees

M-ary trees
Parental trees
Visualsing trees

Binary Tree

Binary Tree API

Binary Tree Ar

Binary Sear Trees

Concepts

Workshop

Postorder Traversal

 Postorder traversal recursively traverses the left and right subtrees, and then visits the root.

```
void postorder(link root) {
  if (root != nullptr) {
    postorder(root->left);
    postorder(root->right);
    visit(root);
  }
}
```

rees and The

Trees

M-ary trees
Parental trees
Visualsing tree

Binary Tree

Binary Tree API

binary free Ar

Binary Searc

Concepts

Workshop

Draw tree

 This recursive program keeps track of the tree height and uses that information for indentation in printing out a representation of the tree that we can use to debug tree-processing programs

```
void printNode(Item x, int h) {
  for (int i = 0; i < h; i++)
    cout << " ":
  cout << x << endl:
void printTree(link t, int h) {
  if (t == nullptr) {
    for (int i = 0; i < h; i++)</pre>
      cout << " ":
    cout << "* " << endl;
    return:
```

Binary Tree API

Draw tree (cont.)

```
printTree(t->left, h + 1);
  printNode(t->item, h);
  printTree(t->right, h + 1);
void printTree() {
  printTree(root, 0);
```

Binary Search Trees

- Concepts
- Tree API

Concents

Binary Search Trees

- Binary search trees are binary trees that organize their nodes to allow a form of binary search.
- Binary search trees work with values such as strings or numbers, that can be sorted.
- The idea is to store values in nodes so that small values are stored in the left subtree, and larger values are stored in the right subtree.

Concents

Binary Search Trees (cont.)

Concept 9

A binary search tree (BST) is a binary tree, at each node p,

• Every key stored in the left subtree of p is less than the key stored at p.

$$\forall q \in \textbf{\textit{LeftSubtree}}(p) : q.\textit{key} < p.\textit{key}$$

• Every key stored in the right subtree of p is greater than key stored at p.

$$\forall q \in \textit{RightSubtree}(p) : q.key > p.key$$

rees and The

Tree

M-ary trees

Visualsing tre

Binary Tree

Binary Tree /

Binary Sear

Concepts

Concep

Tree A

VVorkshop

Binary Search Trees (cont.)

Figure 9: A binary search tree

rees and The

Trees

M-ary trees
Parental trees
Visualsing tree

Binary Trees

Concepts

Dillary Tree A

Binary

Concents

Concep

Worksho

Binary Search Trees (cont.)


```
template <class Key, class Value>
class BST {
public:
  struct Node {
    Key key;
    Value value:
    int N, h;
    Node *left, *right;
    Node (Key key, Value value) {
      this->kev = val;
      this->value = value;
```

```
N = 1; h = 1;
      left = nullptr;
      right = nullptr;
  };
  typedef Node *link;
private:
  link root;
public:
  . . .
};
```

Size & Height


```
int size() {
    return size(root);
int size(link x) {
    if (x == nullptr) { return 0; }
    else return x.N:
int height() {
    return height(root);
int height(link x) {
    if (x == nullptr) { return 0; }
    else return x.height;
```

ees and The

Trees

M-ary trees
Parental trees
Visualsing tree

Binary Tree

Concepts
Binary Tree AF

Dinam. Car

Binary Se Trees

Concepts
Tree API

Workshop

Search

Search. If less, go left; if greater, go right; if equal, search hit.

The strategy for checking if a binary search tree contains a key value *key* is recursive.

- Base case: if the tree is empty, search miss.
- Non base case: Compare key to the key in the root node x
 - If key equals the value in the root, search hit and return value.
 - If key is less, recursively check if the left subtree contains key.
 - If key is greater, recursively check if the right subtree contains key.

Figure 10: Searching 20 (search hit)

ees and The

Tree

M-ary tre

M-ary trees
Parental tree

Visualsing tre

Binary Tree

Binary Trees

Rinary Tree AF

Binary Tree Al

Binary Sear

Trees

. . .

Tree API

Workshor

Figure 10: Searching 20 (search hit)

Figure 10: Searching 20 (search hit)

Insert

Insert. If less, go left; if greater, go right; if null, insert.

The strategy for adding (key, value) to a binary search tree is recursive.

- Base case: if the tree is empty, create a tree with a single node containing (key, value).
- Non base case: Compare key to the key value of the root node x
 - If key is less, recursively add key to the left subtree.
 - If key is greater, recursively add key to the right subtree.

Illustration

• Built BST from keys {4, 3, 5, 1, 2, 7, 9, 8}. The initial is a empty tree.

Trees and Th Applications

Trees

M-ary trees

Visualsing tre

Binary Trees

Binary Tree Af

Binary Sear

Trees

. . .

Tree API

Workshop

Figure 11: Insert 4

Trees and Th Applications

Trees M-ary tree

Parental tree

Visualsing tre

Binary Trees

Binary Tree AP

Binary Searc

Trees

Tree API

Workshop

Figure 12: Insert 3

Figure 13: Insert 5

Trees and The Applications

Tree

M-ary trees

Parental trees
Visualsing tre

Binary Tree

Binary Tree AF

Binary Tree Al

Binary Search

Trees

Concep

Tree API

Workshop

Trees and The Applications

Tree

M-ary tree

Parental trees Visualsing tre

Binary Tree

Binary Tree Af

. .

Troos

Trees

Tree API

Worksho

Figure 15: Insert 2

Trees and The Applications Trees

Trees M-ary tree

> Parental tree Visualsing tre

Binary Tree

Binary Tree A

Binary Sear

Trees

Concepts
Tree API

Workshop

Trees and The Applications

Tree

M-ary trees

Visualsing tr

Binary Tree

Binary Tree A

Binary Sear

Trees

Concep

Tree API

Workshop

Figure 17: Insert 9

rees and The

Tree

M-ary trees

Visualsing tre

Binary Trees

Binary Tree A

Binary Sear

Trees

Tree API

Worksho

Figure 18: Insert 8

Tree shape

- Many BSTs correspond to same set of keys.
- Tree shape depends on order of insertion.
- Number of comparisons for search/insert is equal to 1 + depth of node.

ees and Their

Tree

M-ary trees
Parental trees
Visualsing trees

Binary Tree

Concepts

Binary Tree AF

Trees

Concent

Tree API

Workshop

Tree shape (cont.)

- If N distinct keys are inserted into a BST in random order, the expected number of comparisons for a search/insert is $\sim 2 \ln N$
- Typical BST, built from 256 random keys

ees and The

Tree

M-ary trees

Visualsing tre

Binary Tree

oncepts Sinary Tree Al

Binary Sear

Troos

rrees

Tree API

Workshop

Minimum and maximum

Minimum. Smallest key in BST.

Maximum. Largest key in BST.

ees and Thei

Trees

M-ary trees
Parental trees
Visualsing trees

Binary Tree

Binary Tree A

Binary Tree A

Concepts

Tree API

Workshop

Floor

Computing the floor of key k

- Case 1 (k equals the key in the node): the floor of k is k
- Case 2 (k is less than the key in the node): the floor of k is in the left subtree
- Case 3 (k is greater than the key in the node): the floor of k is in the right subtree if there is any key $\leq k$ in there; otherwise, it is the key in the node

Ceiling

Computing the ceiling of key k

- Case 1 (k equals the key in the node): the ceiling of k is k
- Case 2 (k is greater than the key in the node): the ceiling of k is in the right subtree
- Case 3 (k is less than the key in the node): the ceiling of k is in the left subtree if there is any key > k in there; otherwise, it is the key in the node

rees and The

Tree

M-ary trees

Visualsing tree

Binary Tree

billary Tree

Binary Tree A

Binary Sea

Troos

Trees

Concep

Tree API

Workshop

Rank and selection

Rank. How many keys < k?

Select. Key has rank k?

Delete min or max

To delete the minimum (maximum) key

- Go left (right) until you find a node with null left (right) link
- Replace that node by its right (left) link
- Update subtree counts

ees and Their

Tree

M-ary trees
Parental trees
Visualsing trees

Binary Tree

Binary Tree AP

Billary Tree AF

C----

Tree API

VVorksho

Delete (Hibbard deletion)

To delete a node with key k, search for the node t containing key k

- Case 1 (0 children): delete t by setting parent link to null
- Case 2 (1 child): delete t by replacing parent link
- Case 3 (2 children): find successor x of t (x has no left child); delete the minimum in t's right subtree; and put x in t's spot

and update subtree counts

Illustration

• Deleting leaf node 4: Before deletion

rees and The

Tree

M-ary trees

Visualsing tre

Binary Tree

Concepts
Binary Tree AF

Binary Sear

Trees

Tree API

Workshop

Illustration (cont.)

• Deleting leaf node 4: After deletion

ees and The

Tree

M-ary trees

Visualsing tre

Binary Tree

Binary Tree A

Binary Sear

Concepts
Tree API

Workshop

Illustration (cont.)

• Deleting node 7: Before deletion

ees and The

Tree

M-ary trees

Visualsing tree

Binary Tree

Binary Tree Al

Binary Sear

Concepts

Tree API

Workshop

Illustration (cont.)

• Deleting node **7**: After deletion

rees and The

Trees

M-ary trees

Parental trees
Visualsing tre
Applications

Binary Tree

Binary Tree A

Trees

Concepts
Tree API

Workshop

Illustration (cont.)

• Deleting node **15**: Before deletion

ees and The

Tree

M-ary trees

Parental trees
Visualsing tre
Applications

Binary Tree

Binary Sea

Trees

Concepts
Tree API

Workshop

Illustration (cont.)

• Deleting node 15: After deletion

Tree API

Hibbard deletion: analysis

- Unsatisfactory solution. Not symmetric.
- Surprising consequence. Trees not random $\rightarrow \sqrt{N}$ per op.
- Longstanding open problem. Simple and efficient delete for BSTs.

ees and Thei

Trees

M-ary trees Parental trees

Visualsing tre

Binary Tree

Binary Tree AP

Trees

Concepts
Tree API

Worksho

Deletion: lazy approach

To remove a node with a given key:

- Set its value to null.
- Leave key in tree to guide search (but don't consider it equal in search).
- Deleting node 15

rees and The

Trees

M-ary trees

Parental trees
Visualsing tree

Binary Tree

Binary Tree A

Binary Sear

Concept

Tree API

Workshop

Performance Characteristics

Summary of Operations

operation	BST
search	h
insert	h
delete	\sqrt{N}
min/max	h
floor/ceiling	h
rank	h
select	h
ordered iteration	Ν

ees and Thei

M-ary trees
Parental trees

Binary Tree

Concepts
Binary Tree API

Trees

Concepts
Tree API

Workshop

Cost summary for symbol-table implementations

implementation	worst case			average case			ordered	1
	search	insert	remove	search hit	insert	remove	iteration	key
unordered list	N	1	N	N/2	1	N/2	no	equal
ordered list	N	N	N	N/2	N/2	N/2	yes	compare
ordered array	$\log_2 N$	N	N	$\log_2 \mathit{N}$	N/2	N/2	yes	compare
BST	N	N	N	$c\log_2 N$	$c\log_2 N$	\sqrt{N}	yes	compare
goal?								

Note: c = 1.39

Workshop

Workshop

1. What is a tree?

2. What is a binary sreach tree?

Workshop

• Programming exercises in [Cormen, 2009, Sedgewick, 2002]

References

Cormen, T. H. (2009).

Introduction to algorithms.

MIT press.

Sedgewick, R. (2002).

Algorithms in Java, Parts 1-4, volume 1.

Addison-Wesley Professional.

Walls and Mirrors (2014).

Data Abstraction And Problem Solving with C++.

Pearson.