Cahier d'entraînement

— réponses —

Margarita Philosophica de Gregor Reisch (1503)

Cette gravure représente Claude Ptolémée (100 – 168) aux côtés d'une femme symbolisant l'astronomie.

L'œuvre de Ptolémée, grand astronome, constitue un aboutissement des pratiques scientifiques de l'Antiquité : observation des astres, réflexion mathématique, pratique du calcul et mesures.

Page web du *Cahier d'entraînement*, dernières versions

Ce cahier d'entraînement a été écrit collectivement par des professeurs en classes préparatoires scientifiques.

Coordination

Colas Bardavid et Jimmy Roussel

Équipe des participants

Stéphane Bargot, Claire Boggio, Cécile Bonnand, Alexis Brès, Geoffroy Burgunder, Erwan Capitaine, Caroline Chevalier, Maxime Defosseux, Raphaëlle Delagrange, Alexis Drouard, Gaelle Dumas, Alexandre Fafin, Jean-Julien Fleck, Aéla Fortun, Florence Goutverg, Chahira Hajlaoui, Mathieu Hebding, Lucas Henry, Didier Hérisson, Jean-Christophe Imbert, Fanny Jospitre, Tom Kristensen, Emmanuelle Laage, Catherine Lavainne, Maxence Miguel-Brebion, Anne-Sophie Moreau, Louis Péault, Isabelle Quinot, Valentin Quint, Alain Robichon, Caroline Rossi-Gendron, Nancy Saussac, Anthony Yip

Le pictogramme • de l'horloge a été créé par Ralf SCHMITZER (The Noun Project). Le pictogramme • du bulldozer a été créé par Ayub IRAWAN (The Noun Project). L'illustration de la couverture vient de WIKIMEDIA.

Version 1.2.3 — 11 août 2025

Sommaire

1.	Conversions	1
2.	Signaux	2
3.	Étude des circuits électriques I	3
4.	Étude des circuits électriques II	4
5 .	Étude des filtres	6
6.	Énergie et puissance électriques	8
7.	Amplificateurs linéaires intégrés	10
8.	Sources lumineuses et lois de Snell-Descartes	. 11
9.	Lentilles	. 12
10.	Cinématique	. 13
11.	Principe fondamental de la dynamique	. 15
12.	Approche énergétique en mécanique	16
13.	Moment cinétique	17
14.	Champ électrique	. 18
15.	Particule dans un champ électromagnétique	. 20
16.	Champ magnétique	. 21
17.	Induction	. 23
18.	Gaz parfaits	. 25
19.	Premier Principe	26
20.	Second principe et machines thermiques	27
21.	Statique des fluides	. 29
22.	Fondamentaux de la chimie des solutions	31
23.	Fondamentaux de la chimie en phase gazeuse	32
24.	Réactions chimiques.	33
25 .	Cinétique chimique	35
26.	Chiffres significatifs et incertitudes	. 36

Fiche nº 1. Conversions

D			
К	.en	on	ses
_			

1.6 h) $1,67 \cdot 10^6 \mathrm{qg}$	1.13 a)
1.6 i)	1.13 b) $\boxed{4,33 \cdot 10^{13} \mathrm{km}}$
1.6 j) $9,10 \cdot 10^2 \mathrm{qg}$	1.14 a) $10 000 \mathrm{m}^2$
1.7 a)	1.14 b) $0.01 \mathrm{km}^2$
1.7 b)	1.14 c) $\boxed{6.72 \cdot 10^{11} \mathrm{m}^2}$
1.7 c)	1.14 d) $\boxed{6.72 \cdot 10^7 \text{ha}}$
1.7 d)	1.14 e)
1.8 a)	1.14 f) $5.89 \cdot 10^4$ ha
1.8 b)	1.15 a)oui
1.8 c)	1.15 b)
,	1.16 a) $1 \cdot 10^3 \mathrm{kg/m^3}$
,	1.16 b) $625 \mathrm{kg/m^3}$
,	1.17 a)
	1.17 b) $1.6 \times 10^3 \mathrm{kg/m^3}$
,	1.18 La boule en or
,	1.19 non
,	1.20 voiture
,	1.21 a)
,	1.21 b) 1 année-lumière/an
,	1.22 a)
	1.22 b)
,	,
	1.22 c) $1,90 \cdot 10^{-6}$ tr/min
,	1.22 d) $1,99 \cdot 10^{-7} \text{rad/s}$
1.12 b) [0,000 000 000 1 m]	
	1.6 i) 9,10 · 10 ⁻¹ rg 1.6 j) 9,10 · 10 ² qg 1.7 a) 250 g 1.7 b) 200 g 1.7 c) 125 g 1.8 a) 10% 1.8 b) 0,7% 1.8 c) 50% 1.8 d) 5% 1.8 e) 180% 1.8 f) 0,5% 1.9 5,2% 1.10 a) 1,03 × 10 ³ TWh 1.10 b) 722 TWh 1.10 c) 406 TWh 1.10 e) 64 TWh 1.10 g) 41 TWh 1.10 h) 134 TWh 1.11 (10 h) 134 TWh 1.12 a) 1 · 10 ⁻¹⁰ m

Fiche n° 1. Conversions

Fiche nº 2. Signaux

reponses	
2.1 a) $-\sin(\alpha)$	2.8 a) En retard
2.1 b) $-\sin(\alpha)$	2.8 b)
2.1 c	2.8 c)
2.1 d) $\cos(\alpha)$	2.9 a)
2.2 a)	2.9 b)
2.2 b) $ -2\sin(t+4)\cos(t+4) = -\sin(2t+8) $	2.9 c)
2.2 c) $\cos^2(t) - \sin^2(t) = \cos(2t)$	2.10 a)
2.3 a) $2A\cos\left(\frac{\omega_1-\omega_2}{2}t\right)\cos\left(\frac{\omega_1+\omega_2}{2}t\right)$	2.10 b) $ \frac{U_0}{\sqrt{2}} $
2.3 b) $2A\sin\left(\frac{\omega_2-\omega_1}{2}t\right)\sin\left(\frac{\omega_1+\omega_2}{2}t\right)$	2.11 a)
	2.11 b) $\sqrt{3} V$
2.4 $A\sin(\varphi)\cos(\omega t) + A\cos(\varphi)\sin(\omega t)$ 2.5 a) Courbe 2	2.12 a)
2.5 b)	2.12 b)
2.5 c)	
2.5 d) Courbe 1	2.13 a)
2.6	2.13 b)
2.7 a)	2.13 c)
π	2.14
2.7 b) $\left\lfloor \frac{\pi}{2} \text{ rad} \right\rfloor$	2.15 a)
2.7 c)	2.15 b)
2.7 d)	2.15 c) $2\sin(3.9t - 13x + 0.3\pi)$
$2.7 \; \mathrm{e}) \ldots \qquad \qquad \boxed{\pi \; \mathrm{rad} \cdot \mathrm{s}^{-1}}$	

Fiche n° 3. Étude des circuits électriques I

rteponses		
3.1 b	3.8 b) $\frac{R}{5}$	3.14 a) $ \frac{E}{R} $
3.2 $2,5 \cdot 10^{17}$ 3.3 a) $2i$	3.8 c)	3.14 b) $ \frac{3E}{4R} $
3.3 b)	3.8 d) $R\left(\frac{1-a^2}{3-a^2}\right)$	3.15 a) $\boxed{\frac{ER_1}{R_1 + R_2 + R_3 + R_4}}$
3.4 a)	3.9 a)	3.15 b) $\boxed{\frac{E(R_2 + R_3)}{R_1 + R_2 + R_3 + R_4}}$
3.4 b)	3.9 b) $1 k\Omega$ 3.9 c) $1 k\Omega$	3.15 c) $\frac{-ER_4}{R_1 + R_2 + R_3 + R_4}$
3.5 a) $E - U_1$	3.10 $\boxed{\frac{4R(R+R')}{2R+R'}}$	$R_1 + R_2 + R_3 + R_4$ 3.16 a)
3.5 b) $U_1 - E$	3.11 a) $2R$	3.16 b)
3.5 c) $E - U_1$ 3.6 a)	3.11 b)	3.17 a) $\left[\frac{3}{4}R\right]$
3.6 b)	3.11 c)	3.17 b)
3.6 c) $ 7V $ 3.7 a) $ -u/R $		3.17 c) $\left[-\frac{E}{4} \right]$
3.7 b)	3.12 b) $\left[\frac{R_2}{R_1 + R_2}I_0\right]$	3.18 a) $\frac{3E}{8R}$
3.7 c)	$3.13 \text{ a)} \dots \qquad \boxed{\frac{1}{4}Ri + Ri_1}$	2 18 h)
3.8 a) $\left\lfloor \frac{5}{6}R \right\rfloor$	3.13 b)	
		3.18 c) $\left[-\frac{E}{8R} \right]$

Fiche n^{o} 4. Étude des circuits électriques II

reponses	
4.1	4.10 b)
4.2 a) $u = L \frac{\mathrm{d}i}{\mathrm{d}t} + L' \frac{\mathrm{d}i}{\mathrm{d}t}$	4.10 c)
(L+L')	4.10 d)
4.2 c) $\frac{\mathrm{d}i}{\mathrm{d}t} = \frac{u}{L} + \frac{u}{L'}$	4.10 e) $\left\lfloor \frac{E}{R} \right\rfloor$
	4.11 a)
4.2 d) $\left\lfloor \frac{LL'}{L+L'} \right\rfloor$	4.11 b)
4.3 L	4.11 c)
4.4 a)	4.11 d) $ \frac{1}{3}E $
4.4 b)	4.12 a) $ \frac{L}{R} $
4.4 c) $i = (C + C') \frac{\mathrm{d}u}{\mathrm{d}t}$	4.12 b) $ \frac{RC}{2} $
4.4 d)	4.13 a) $\left[\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{R}{L}i = \frac{E}{L}\right]$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.13 b) $\frac{du_C}{dt} + \frac{1}{RC}u_C = \frac{1}{RC}E$
4.7 a)	4.13 c) $\frac{\mathrm{d}i(t)}{\mathrm{d}t} + \frac{1}{RC}i(t) = 0$
4.7 b)	4.13 d) $i = \frac{u}{R} + C \frac{du}{dt}$
4.8	4.13 e)
4.9 a)	4.14 a) $u_C(t) = E(1 - e^{-t/\tau})$
4.9 c)	4.14 b) $i(t) = \frac{E}{R} e^{-t/\tau}$
4.9 d)	4.14 c) $u_C(t) = \frac{1}{2}E$
4.9 e)	4.15 a)
4.10 a)	

4.15 b)	4.17 a) $\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{R}{L} \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{LC} u = \frac{E}{LC}$
4.15 c)	4.17 b) $\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{1}{RC} \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{LC} u = 0$
4.15 d) 4V 4V 4V	4.18 a) $E \times (1 - \cos(\omega_0 t))$
4.15 f)	4.18 b) $\left[\frac{E}{L\omega_0}\sin(\omega_0 t)\right]$
4.16 a)	4.19 a)
$4.16 \; \mathrm{c}) \; \ldots \; \qquad \qquad \boxed{\frac{1}{\sqrt{LC}}}$	4.19 b)
4.16 d) $R\sqrt{\frac{C}{L}}$	4.19 d)
V L	4.19 e)

Fiche nº 5. Étude des filtres

Reponses	
5.1 a) $\sqrt{a^2 + b^2}$	5.7 c)
5.1 b)	5.7 d)
5.1 c)	5.7 e)
5.1 d)	5.7 f)
5.2 a)	5.8 a)
5.2 b)	5.8 b)
5.2 c)	5.8 c)
5.2 d)	5.8 d)
$5.2 \; \mathrm{e}) \dots \qquad \qquad \boxed{\frac{1}{C\omega}}$	
5.2 f)	5.9 a) $\frac{\frac{1}{3}}{1 + \frac{1}{3jRC\omega} + \frac{jRC\omega}{3}}$
5.3 a) $R + \frac{1}{jC\omega}$	5.9 b)
	5.9 c)
5.3 b) $\frac{RjL\omega}{R+jL\omega}$	5.9 d)
5.3 c) $\frac{RjL\omega}{R+iL\omega-RLC\omega^2}$	5.10 a) $[\underline{i}_1 + \underline{i}_2]$
$\boxed{\frac{1}{R + jL\omega - RLC\omega^2}}$	5.10 b) $ \underline{u}(2 + jRC\omega) - \underline{u}_s $
5.3 d) $\frac{R(1 - LC\omega^2)}{1 - LC\omega^2 + jRC\omega}$	5.10 c) $\boxed{\frac{1}{1 + 3jRC\omega - (RC\omega)^2}}$
5.4	5.10 d)
5.5 a)	5.10 e)
5.5 b)	
5.6 d	5.10 f)
5.7 a) $\frac{1}{2}\cos(a+b) + \frac{1}{2}\cos(a-b)$	5.11 a)
$S_0 \cos(2\pi f_p t)$	5.11 b)
5.7 b) $+\frac{mS_0}{2} \left(\cos(2\pi(f_p + f_0)t)\right)$	$\begin{array}{c c} & & & \\ \hline \end{array}$
$+\cos(2\pi(f_p-f_0)t)$	5.11 c)
/	

5 11 d)	$10\log\left(9+\left(\frac{\omega}{\omega_0}\right)^2\right)$	5.13 a)
3.11 d)		5.13 b)
5.11 e)	$20\log\left(\frac{\omega}{\omega_0}\right) - 10\log\left(1 + \left(\frac{\omega}{\omega_1}\right)^2\right)$	5.13 c)
		5.14 a)
5.11 f)	$20\log\left(\frac{\omega}{\omega_0}\right) + 10\log\left(1 + \left(\frac{\omega}{\omega_1}\right)^2\right)$	5.14 b)
		5.14 c)
5.12 a)	0	5.15 a)
5.12 b)	$-\dots$ $\pi/2$	5.15 b)
5.12 c)	$\arctan\left(\frac{\omega}{\omega_1}\right)$	5.15 c)
- >		5.15 d)
5.12 d)	$ -\arctan\left(\frac{\omega}{3\omega_0}\right) $	5.16 a)
5.12 e)	$\frac{\pi}{2} - \arctan\left(\frac{\omega}{\omega_1}\right)$	5.16 b)
	(- /	5.16 c)
5.12 f)	$\frac{\pi}{2} + \arctan\left(\frac{\omega}{\omega_1}\right)$	

Fiche n° 5. Étude des filtres

.....0

 $-28,0\,{\rm dB}$

 $-17,1\,\mathrm{dB}$

 $-8,0\,\mathrm{dB}$

 $15,0\,\mathrm{kHz}$

 $11,7\,\mathrm{kHz}$

 $19,2\,\mathrm{kHz}$

 $+20\,\mathrm{dB/d\acute{e}cade}$

Fiche nº 6. Énergie et puissance électriques

Réponses	
6.1 a)	6.9 $\ln(2)R_0$
6.1 b)	6.10 a) $ \frac{E-e}{R+r} $
6.2 a)	aR + Fr
6.2 b)	6.10 b) $\frac{ext + Et}{R + r}$
6.2 c)	6.10 c) $E\frac{E-e}{R+r}$
6.3 a)	
6.3 b)	6.10 d) $\frac{(E-e)^2}{R+r}$
6.3 c)	6.10 e)
6.4	6.10 f) $\frac{e}{E}$
6.5 a) $\left \frac{2\pi}{\omega} \right $	
6.5 b)	6.10 g)
	6.11 a)
6.5 c) $\left\lfloor \frac{u_0 i_0}{2} \cos(\varphi) \right\rfloor$	6.11 b)
6.5 d)	6.12 a)
6.6 a)	6.12 b)
6.6 b)	6.13 a) $\frac{CE^2}{\tau} \exp(-t/\tau)$
6.6 c) $3\cos\left(\frac{7\pi}{12}\right)$ W	6.13 b) $\boxed{\frac{CE^2}{\tau} \exp(-2t/\tau)}$
6.6 d)	6.13 c)
6.7 a) $\left \frac{E}{r+R} \right $	
	6.13 d)
6.7 b) $E^2 \frac{R}{(r+R)^2}$	6.13 e) $\left[\frac{1}{2}CE^2\right]$
6.8 a) $E^2 \frac{r - R}{(r + R)^3}$	6.13 f) $ \frac{1}{2}CE^2 $
6.8 b)	6.14 a) $EC\frac{\mathrm{d}u_C}{\mathrm{d}t}$

6.14 b) $\boxed{\frac{\mathrm{d}\left(\frac{1}{2}Cu_C^2(t)\right)}{\mathrm{d}t}}$	6.15 a) $R_u I^2$
6.14 c) $ \frac{d(\frac{1}{2}Li^2(t))}{dt} $	6.15 b) $\frac{E}{\sqrt{(R_G + R_u)^2 + (X_G + X_u)^2}}$
6.14 d)	6.15 c) $-R_u E^2 \frac{2(X_G + X_u)}{\left((R_G + R_u)^2 + (X_G + X_u)^2\right)^2}$
6.14 e) $\left[\frac{1}{2}CE^2\right]$ 6.14 f)	6.15 d) $E^{2} \frac{(R_{G}^{2} - R_{u}^{2}) + (X_{G} + X_{u})^{2}}{\left((R_{G} + R_{u})^{2} + (X_{G} + X_{u})^{2}\right)^{2}}$
6.14 g) $ \frac{1}{2}CE^2 $	6.15 e)

Fiche nº 7. Amplificateurs linéaires intégrés

$\frac{E}{RC}t + K$
(b)
$\frac{\alpha}{1+\alpha^2}$
$1 + \alpha^2$
$R_1 = R_2$
. $\alpha = 1$
$\boxed{i_1 = i_2}$
$\frac{R_1}{1+R_2}v_s$
v_e
$1 + \frac{R_2}{R_1}$
16
d
$v_s = v_e$
\dots ∞
0 A
💿
$\cdots \left\lfloor \frac{v_e}{Z_1} \right\rfloor$
\ldots Z_1
····· <u>∞</u>
0
$= 10 \mathrm{nF}$

Fiche nº 8. Sources lumineuses et lois de Snell-Descartes

8.1 a)
$$\frac{\pi}{180} \times \alpha_{\text{deg}}$$

8.1 b).....
$$60 \times \alpha_{\text{deg}}$$

8.3 b)
$$\frac{\pi}{2}$$

8.3 c)
$$\arcsin\left(\frac{n_1}{n_2}\sin(i)\right)$$

8.3 d) ..
$$\left| \frac{\pi}{2} - \arcsin\left(\frac{n_1}{n_2}\sin(i)\right) \right|$$

8.5 a)
$$r - i$$

8.5 b)
$$\pi - 2i$$

8.6 a)
$$(\alpha_1 + \alpha_2) - \pi$$

8.6 b)
$$r + r'$$

8.9 a)
$$\sqrt{1 - \frac{\sin^2(\theta_i)}{n_1^2}}$$

8.9 b)
$$\cos(\theta_r) > \frac{n_2}{n_1}$$

8.9 c) . . .
$$\left| \sin(\theta_i) < \sqrt{n_1^2 - n_2^2} \right|$$

8.10 b).......
$$3.74 \times 10^{-19}$$
 J

8.12 a)
$$2.26 \times 10^8 \,\mathrm{m \cdot s^{-1}}$$

Fiche nº 9. Lentilles

9.4 d)	9.11 a) $\frac{-f'^2}{F'A'}$
9.5 (b)	
9.6 a)	9.11 b) $\overline{FA} - f'$
9.6 b) Incorrect	9.11 c) réel
9.6 c) Incorrect	9.12 a)
9.6 d)	9.12 b)
9.7 a)	9.13 a) $\overline{OA} = -5.02 \text{cm}$
9.7 b) $+20 \delta$	9.13 b) $10.8 \text{ m} \times 7.2 \text{ m}$
9.8	
9.9 a)	9.14 a)
9.9 b)	9.14 b)
$\overline{\overline{OA} \times \overline{OF'}}$	9.15 a) $\overline{OA'} = -15 \mathrm{cm}$
$9.10 \text{ a)} \dots \frac{\overline{OA \times OP}}{\overline{OA} + \overline{OF'}}$	9.15 b) virtuelle
$\overline{\Omega \Delta'} \times f'$	9.15 c)
9.10 b) $\left \frac{\overline{OA'} \times f'}{f' - \overline{OA'}} \right $	9.15 d) droite
9.10 c)	9.16 a) $\frac{D^2 - d^2}{4D}$
9.10 d) après	9.16 b) $\frac{15D}{64}$

Fiche nº 10. Cinématique

10.9 b) $\sqrt{(a\omega)^2 + b^2}$
10.9 c) $\left[-a\omega^2(\cos(\omega t)\overrightarrow{e_x} + \sin(\omega t)\overrightarrow{e_y}) \right]$
10.9 d)
10.10 a) $\cos \theta \overrightarrow{e_x} + \sin \theta \overrightarrow{e_y}$
10.10 b) $ \overrightarrow{\det_r} = \dot{\theta}(-\sin\theta \overrightarrow{e_x} + \cos\theta \overrightarrow{e_y}) $
10.10 c) $\overrightarrow{e_x} = \cos\theta \overrightarrow{e_r} - \sin\theta \overrightarrow{e_\theta}$
10.10 d) $\overrightarrow{e_y} = \sin \theta \overrightarrow{e_r} + \cos \theta \overrightarrow{e_\theta}$
10.10 e) $\boxed{\frac{\overrightarrow{\mathrm{d}}\overrightarrow{e_r}}{\overrightarrow{\mathrm{d}}t} = \dot{\theta}\overrightarrow{e_{\theta}}}$
10.11 a) $\begin{bmatrix} \underline{L} \\ \underline{T} \end{bmatrix}$
10.11 b)
10.11 c) $a\vec{e_r}$
$10.11 \text{ d)} \dots \dots \dots \boxed{2abt^2 \overrightarrow{e_{\theta}}}$
10.11 e) $a\vec{e_r} + 2abt^2\vec{e_\theta}$
10.12 a) $r_0 e^{-t/\tau} \left(-\frac{1}{\tau} \overrightarrow{e_r} + \omega \overrightarrow{e_\theta} \right)$
10.12 b) $r_0 e^{-t/\tau} \left(\left(\frac{1}{\tau^2} - \omega^2 \right) \overrightarrow{e_r} - \left(2 \frac{\omega}{\tau} \right) \overrightarrow{e_\theta} \right)$
10.12 c) orthoradiale
10.12 d)
10.12 e) $r = r_0 e^{-\theta}$
10.13 a)
10.13 b)
10.13 c)
10.13 d)

10.13 e)	10.14 c)	$z = -\frac{g}{2}x^2 + \frac{v_{0z}}{2}x$
10.14 b)	10.15 a)	
10.14 b)	10.15 b)	2,9 m

Fiche nº 11. Principe fondamental de la dynamique

Fiche nº 12. Approche énergétique en mécanique

1	
12.1	12.9 a) $ \left[\ddot{z} + \frac{\alpha}{m} \dot{z} + \frac{k}{m} z = g + \frac{k\ell_0}{m} \right] $
12.2 a) $mg(\ell - y)$ 12.2 b) $mg(x \sin(\alpha) - H)$	12.9 b) $ \boxed{ \zeta + \frac{\alpha}{m} \dot{\zeta} + \frac{k}{m} \zeta = 0 }$
12.2 c) $-mgR\cos(\theta)$	12.10 a)
12.2 d) $mgr(\cos(\psi) - 1) + E_0$	12.10 b)
12.3 <u>b</u>	12.10 c)
12.4 a) $\boxed{\frac{1}{2}k(y-\ell_0)^2 - \frac{k{\ell_0}^2}{2}}$	12.10 d)
	12.11 a)
12.4 b) $ \frac{1}{2}k\left(\frac{x}{\cos(\beta)} - \ell_0\right)^2 - \frac{1}{2}k\left(\frac{L}{\sin(\beta)} - \ell_0\right)^2 $	12.11 b)
	12.11 c)
12.4 c)	12.11 d)
12.5 a)	12.12 a)
12.5 b) $-hR\alpha$	12.12 b)
$12.5 \text{ c}) \dots \qquad \boxed{-(2a+2b)h}$	12.12 c)
12.5 d) $-(a+b+c)h$	
12.5 e)	12.12 d)
12.6	12.12 e)
v_0^2	12.12 f)
12.7 a)	12.13 a)
12.7 b) $0.65 \text{rad} = 37^{\circ}$	10.10.1)
12.8 a) $5.8 \mathrm{m\cdot s^{-1}}$	12.13 b)
12.8 b)	12.13 c)
12.8 c)	12.13 d)
	12.14

Fiche nº 13. Moment cinétique

13.1 a)	13.4 e)
13.1 c)	13.4 f) $\begin{pmatrix} -6 \\ -33 \\ 24 \end{pmatrix}$
13.1 d) $-\ \vec{T}\ \cos(\gamma)$ 13.1 e) $\ \vec{N}\ \cos(\beta)$	13.5 la Terre
13.1 f)	13.6 $m r v \sin(\alpha) \overrightarrow{e_z}$
13.2 a) $\overrightarrow{P} = -\ \overrightarrow{P}\ \overrightarrow{e_y}$	13.7 $\left\lfloor \frac{1}{3}ML^2 \right\rfloor$
13.2 b) $ \vec{P} (-\sin(\theta) \vec{e_r} - \cos(\theta) \vec{e_\theta}) $ 13.2 c) $ - \vec{T} \vec{e_y} $	13.8
13.2 d) $\overrightarrow{T} = \overrightarrow{T} (-\cos(\gamma) \overrightarrow{e_r} + \sin(\gamma) \overrightarrow{e_\theta}) $	13.10 a) $-\ell F \sin \alpha \cos \alpha$
13.2 e) $ \vec{R} (\cos(\theta + \alpha) \vec{e_x} + \sin(\theta + \alpha) \vec{e_y}) $ 13.2 f) $ \vec{R} (\cos(\alpha) \vec{e_r} + \sin(\alpha) \vec{e_\theta}) $	13.10 b)
13.2 g) $\ \vec{N}\ (-\sin(\beta+\gamma)\vec{e_x}+\cos(\beta+\gamma)\vec{e_y})\ $	13.11 a) $\frac{mgL}{2}\cos\alpha \overrightarrow{e_z}$ 13.11 b) $-mg\left(\ell - \frac{L}{2}\cos\alpha\right)\overrightarrow{e_z}$
13.2 h) $ \vec{N} (\cos(\beta)\vec{e_r} + \sin(\beta)\vec{e_\theta}) $ 13.3 a) $ \vec{P} \vec{R} \cos(\theta + \alpha)\vec{e_z} $	13.11 c) $-mg\left(\ell - \frac{L}{2}\cos\alpha\right)\vec{e_z}$
13.3 b) $\boxed{-\ \vec{T}\ \sin(\gamma)\vec{e_z}}$	13.12 a) $\left[\frac{a}{2}\overrightarrow{e_X} + a\overrightarrow{e_Y}\right]$
13.3 c) $\ \vec{N}\ \cos(\gamma+\beta)\vec{e_z}$	13.12 b) $\left[\frac{a}{2} \overrightarrow{e_X} + \frac{a}{3} \overrightarrow{e_Y}\right]$
13.4 a)	13.12 c)
13.4 b)	13.12 e) $aF\left(\frac{\sin\alpha}{2} + \cos\alpha\right) \overrightarrow{e_z}$
13.4 c)	13.12 f) $aP\left(-\frac{\cos\alpha}{2} + \frac{\sin\alpha}{3}\right) \overrightarrow{e_z}$
13.4 d)	13.12 g) $\frac{3P - 6F}{3F + 2P}$

Fiche nº 14. Champ électrique

14.1 b)
$$\frac{a}{\sqrt{a^2 + y^2}}$$

14.1 c)
$$\sqrt{\frac{y}{\sqrt{a^2 + y^2}}}$$

14.1 d)
$$\frac{\|\vec{F}\|}{\sqrt{a^2 + y^2}} (-a\vec{e_x} + y\vec{e_y})$$

14.3 a)
$$\overrightarrow{e_y}$$

14.3 c)
$$\overrightarrow{e_x}$$

14.4 d)
$$\sqrt{\frac{qV_0}{2m}}$$

14.4 e)
$$\frac{v(a)}{2}$$

14.5 c)
$$\sqrt{r^2 - 2ax + a^2}$$

14.5 e)
$$\sqrt{r^2 - 2ar\cos(\theta) + a^2}$$

14.5 f).....
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{\sqrt{r^2 - 2ar\cos(\theta) + a^2}}$$

14.5 g).....
$$\sqrt{(x+a)^2+y^2}$$

14.5 h)
$$\sqrt{r^2 + 2ax + a^2}$$

14.5 i).....
$$\sqrt{r^2 + 2ar\cos(\theta) + a^2}$$

14.5 j)
$$-\frac{1}{4\pi\varepsilon_0} \frac{q}{\sqrt{r^2 + 2ar\cos(\theta) + a^2}}$$

14.5 k)....
$$\frac{1}{4\pi\varepsilon_0} q \left(\frac{1}{\sqrt{r^2 - 2ar\cos(\theta) + a^2}} - \frac{1}{\sqrt{r^2 + 2ar\cos(\theta) + a^2}} \right)$$

14.6 a)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{r} \left(1 - \frac{2a}{r} \right)$$

14.6 b)
$$\frac{1}{4\pi\varepsilon_0} \frac{qa\cos(\theta)}{r^2}$$

14.6 c)
$$\left| \frac{1}{4\pi\varepsilon_0} \frac{qa}{r^2} \left(1 - \frac{1}{2}\theta^2 \right) \right|$$

14.6 d)
$$\frac{1}{4\pi\varepsilon_0} \frac{qa}{r^2}$$

14.6 e)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{r} \ln\left(1 + \frac{r^2}{a^2}\right)$$

14.7 a)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} (\sin(2\theta) \overrightarrow{e_r} - 2\cos(2\theta) \overrightarrow{e_\theta})$$

14.7 b)
$$-\frac{8}{4\pi\varepsilon_0} \frac{q}{a^2} \overrightarrow{e_{\theta}}$$

14.8 a)
$$\frac{1}{4\pi\varepsilon_0} \frac{qa}{r^3} (2\cos(\theta)\vec{e_r} + \sin(\theta)\vec{e_\theta})$$

14.8 b)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{a^2} \overrightarrow{e_{\theta}}$$

14.8 c)
$$3.4 \cdot 10^4 \, \text{V.m}^{-1}$$

14.9 a)
$$\frac{1}{2}E_0d$$

14.9 b) $ \frac{1}{3}E_0d $	14.10 b)
14.9 c) $ \frac{2}{3\pi} E_0 d $	14.10 c) $ \frac{16}{5} R^3 \rho_0 $
14.9 d) $E_0 de^{-1}$	14.11 a) $3\pi R^2 h$
14.10 a) $ \frac{8}{3} \pi R^3 \rho_0 $	14.11 b) $\boxed{\frac{4}{5}\pi R^2 h}$
	14.11 c)

Fiche nº 15. Particule dans un champ électromagnétique

15.1 a) $\boxed{6.3 \times 10^{18} \text{eV}}$	15.6 a) $ q vB\overrightarrow{e_y} $	15.9 b)
15.1 b)	15.6 b) $qvB\cos(\alpha)\overrightarrow{e_z}$	15.9 c)
15.1 c) $5.0 \times 10^{-19} \mathrm{J}$	15.6 c). $ -qvB(\cos(\alpha)\overrightarrow{e_x} + \sin(\alpha)\overrightarrow{e_y}) $	$15.9 \text{ d}) \dots \qquad \boxed{nqU}$
15.1 d) violet	$+\sin(\alpha)e_y)$	15.0 a)
15.2 tau	15.7 a) 0	15.9 e)
15.3 a)	15.7 b)	15.10 a) $\frac{q}{m} \overrightarrow{v} \wedge \overrightarrow{B}$
15.3 b)	15.7 c)	15.10 b) $R\dot{\theta}\overrightarrow{e_{\theta}}$
		15.10 c) $qRB\dot{\theta}\overrightarrow{e_r}$
$15.4 \text{ a)} \dots \dots -Ex + C$	15.7 d) $\left[-\frac{qEv}{2} \right]$	15.10 d) $R\ddot{\theta}\vec{e_{\theta}} - R\dot{\theta}^2\vec{e_r}$
15.4 b) $\left\lfloor \frac{\alpha}{r} + C \right\rfloor$		10.10 d)
15.4 c) $\left[-\beta \ln(r) + C\right]$	15.8 a) $\left \sqrt{3} \frac{m v_0}{q E} \right $	15.10 e)
$[\beta \Pi(r) + C]$	mala	
15.4 d) $\boxed{-\gamma xy + C}$	15.8 b) $\left \sqrt{3} \frac{m v_0}{q E} \right $	15.10 f)
15.5 a) $qE\overrightarrow{e_y}$	15.8 c) $\frac{\pi}{3}$	15.11 a) $q(E - v_0 B) \vec{e_y}$
15.5 b) $ qE \overrightarrow{e_x} $	3	
	15.9 a)	15.11 b) $v_0 = \frac{E}{B}$
15.5 c). $qE(\cos(\beta)\overrightarrow{e_y} - \sin(\beta)\overrightarrow{e_x})$		

Fiche nº 16. Champ magnétique

Réponses oui **16.10** b)..... 16.1 oui **16.10** c)..... (d) 16.2 **16.11** a)..... $\mu_0 I$ $2\pi d \tan(\alpha)$ **16.11** b)..... **16.3** b)..... $20.8 \, \mu T$ **16.12** a)..... $\sqrt{R^2 + z^2}$ 16.4 **16.12** b)..... 16.5 $4\sqrt{2}R$ **16.12** d) $|R\sqrt{2^{5/3}-1}|$ μIa^2 **16.13** a)..... **16.13** b)..... **16.7** a) $B_0(1+\cos(\alpha))\overrightarrow{e_x} + B_0\sin(\alpha)\overrightarrow{e_y}$ **16.7** b)..... $B_0\sqrt{2(1+\cos(\alpha))}$ $34.6\,\mathrm{mT}$ **16.14** a) . . . **16.8** a)..... **16.8** b) $\left| -\sin(\theta) \overrightarrow{e_x} + \cos(\theta) \overrightarrow{e_y} \right|$ $\mu_0 n I \ell$ **16.14** b)..... $\sqrt{4R^2 + \ell^2}$ **16.8** c) $\left| -\sin(\theta) \overrightarrow{e_x} - \cos(\theta) \overrightarrow{e_y} \right|$ $-2B_0\sin(\theta)\vec{e_x}$ **16.8** e)..... **16.14** d)..... cosh (

16.10 a).....

16.15 c)	16.16 e) $B_0 + e^{-\frac{\omega_0}{2Q}t} \left(\lambda \cos\left(\frac{\omega_0}{2Q}\sqrt{4Q^2 - 1} \cdot t\right) + \mu \sin\left(\frac{\omega_0}{2Q}\sqrt{4Q^2 - 1} \cdot t\right)\right)$
10.10 a)	16.16 f) $B_0 \left(1 - e^{-\frac{\omega_0}{Q}t} \left(\cos\left(\frac{\omega_0}{Q}\sqrt{4Q^2 - 1} \cdot t\right) + \frac{1}{\sqrt{4Q^2 - 1}} \sin\left(\frac{\omega_0}{Q}\sqrt{4Q^2 - 1} \cdot t\right) \right)$
16.16 c) $\Delta < 0$ 16.16 d) B_0	16.17

Fiche nº 17. Induction

Réponses	
17.1 a)	17.7 a) $i > 0$
17.1 b)	17.7 b) $i < 0$
17.1 c)	17.7 c) $i > 0$
17.1 d)	17.7 d) $i < 0$
17.2 a)	17.7 e)
17.2 b) Oui	17.7 f) $i < 0$
,	17.8 a) le flux diminue
,	17.8 b) le flux ne varie pas
17.3 a)	17.8 c) le flux diminue
17.3 b)	17.8 d) $i > 0$
17.3 c)	17.8 e)
17.3 d)	17.8 f) $i > 0$
17.3 e) <i>Bac</i>	17.9 a) $B_0 S_0 \omega \sin(\omega t + \varphi)$
17.4 a)	
17.4 b)	17.9 b)
17.4 c)	17.9 c) $\left[-8B_0 S_0 \omega \cos(\omega t) \sin^3(\omega t) \right]$
Ba^2	17.9 d) $\left[-B_0 S_0 \omega [2\cos(4\omega t) + \cos(2\omega t)] \right]$
17.4 d) $\frac{2\alpha}{4}$	17.10 a)
17.4 e)	17.10 b) $ -\frac{IBd}{m}t + v_0 $
$17.4 \text{ f}) \dots \qquad \qquad \boxed{\frac{Ba^2}{4}}$	17.10 c) $ \frac{mv_0^2}{2IBd} $
17.5 a)	17.11 a) $\boxed{-IaB\overrightarrow{e_y}}$
17.5 b)	$(\sqrt{3}, 1, \sqrt{3})$
17.5 c)	17.11 b) $\left IaB\left(\frac{\sqrt{3}}{2}\overrightarrow{e_x} + \frac{1}{2}\overrightarrow{e_y}\right) \right $
17.5 d)	17.11 c) $\boxed{IaB\left(-\frac{\sqrt{3}}{2}\overrightarrow{e_x} + \frac{1}{2}\overrightarrow{e_y}\right)}$
17.5 e) Ba^2	
$17.5 \text{ f}) \dots Ba(b-a)$	17.11 d)
17.6	17.12 a) $\boxed{IaB\overrightarrow{e_z}}$

17.12 b)	17.12 h) $\boxed{-Ia^2B\overrightarrow{e_x}}$
17.12 c) $-IaB\overrightarrow{e_z}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
17.12 d)	17.13 b)
17.12 e)	17.13 c) $ \boxed{ -\frac{a}{2} mg \sin \theta } $
17.12 f) $-Ia^2B\overrightarrow{e_x}$	(2ibB)
17.12 g) $Ia^2\overrightarrow{e_z}$	17.13 d) $\left[\arctan\left(\frac{2ibB}{mg}\right)\right]$

Fiche nº 17. Induction

Fiche nº 18. Gaz parfaits

responses		
18.1 a)	18.6 a)	18.11 a) $\left[\frac{4}{3}\pi r^3\right]$
18.1 b)	18.6 b)	
18.1 c) $6.8 \times 10^2 \mathrm{L}$		18.11 b) $\frac{4\pi P_0 r^3 + 16\pi \gamma r^2}{3RT_0}$
18.2 a) $58 \mathrm{g \cdot mol^{-1}}$	18.7 a) $\left\lfloor \frac{MP}{RT} \right\rfloor$	18.12 a) $18,2 \mathrm{g \cdot mol^{-1}}$
18.2 b) $1.8 \times 10^2 \mathrm{bar}$	18.7 b)	18.12 b)
18.2 c) $5.5 \mathrm{m}^3$	18.8 a)	18.13 a) $30.6 \mathrm{g \cdot mol^{-1}}$
18.3 a) $24.8 \mathrm{L} \cdot \mathrm{mol}^{-1}$	18.8 b) $3,7\rho_1$	18.13 b)
18.3 b) $13.4 \mathrm{L \cdot mol^{-1}}$	18.9 a) $\left \frac{n_2}{n_1} = \frac{P_2}{P_1} \right $	18.14 5,5 kg
18.4 64°C		18.15 a)
18.5 a)	18.9 b) $\left \frac{2P_1}{P_1 + P_2} V \right $	18.15 b)
18.5 b)	18.10 $M_{ m A}$,

Fiche no 19. Premier Principe

19.1 a)	19.9 c)
19.1 b)	
19.1 c)	19.10
19.2 a) 0 J	19.11 $T_i + \frac{n^2 a}{C_V} \left(\frac{1}{V_f} - \frac{1}{V_i} \right)$
19.2 b)	
19.3 <i>B</i>	19.12 a) $T_i + \frac{Q}{C}$
19.4 a) $-P_0(V_{\text{final}} - V_{\text{initial}})$	19.12 b) $T_i e^{\frac{Q}{A}}$
19.4 b) $\frac{-(P_2 + P_1)(V_{\text{final}} - V_{\text{initial}})}{2}$	19.12 c)
19.5 a) $-nRT_0 \ln \left(\frac{V_f}{V_i} \right)$	19.13 a) $nRT_i \ln \left(\frac{V_f}{V_i} \right)$
19.5 b) $ \frac{P_f V_f - P_i V_i}{k-1} $	19.13 b)
19.6 a)	$\gamma - 1$
19.6 b)	19.13 c)
	19.14 a) $W_1 - Q_1$
19.7 a)	19.14 b)
19.7 b)	19.14 c) $W_1 - Q_2$
19.8 a)	19.15
19.8 b) $\boxed{6.2 \times 10^2 \mathrm{J}}$	19.16 a)
19.8 c)	19.16 b) $T_a + (T_0 - T_a)e^{-\frac{ht}{C}}$
19.8 d) $8.7 \times 10^2 \mathrm{J}$	19.17
19.9 a)	19.18 a) $ \left\lceil \frac{m_1 T_1 + m_2 T_2}{m_1 + m_2} \right\rceil $
19.9 b)	19.18 b) $ \frac{m_1 T_1 + m_2 T_2}{m_1 + m_2} + \frac{Q}{(m_1 + m_2)c} $

Fiche nº 20. Second principe et machines thermiques

Réponses	
20.1	20.9 c)
20.2	20.10 $nR \ln(2)$
20.3 a) $dH = T dS + V dP$	20.11 a)
20.3 b) $dU = 0$	20.11 b)
20.3 c) $dS = nR \frac{dV}{V}$	20.11 c)
20.4 a) $dU = \delta W = -P_{\text{ext}} dV$	20.11 d)
20.4 b) $dU = \delta W = -P dV$	20.11 e)
$20.4 \text{ c)} \dots \qquad \boxed{\mathrm{d}U = \delta Q}$	20.12 a) $393 \mathrm{J\cdot K^{-1}\cdot kg^{-1}}$
$20.5 \text{ a}) \dots \qquad \qquad \boxed{dS = \delta S_c}$	20.12 b)
20.5 b)	20.12 c)
	20.12 d)
20.6 a) $T_f V_f^{\gamma - 1} = T_i V_i^{\gamma - 1}$	20.12 e)
20.6 b) $T_f^{\gamma} P_f^{1-\gamma} = T_i^{\gamma} P_i^{1-\gamma}$	20.12 f)
20.6 c) $P_f V_f^{\gamma} = P_i V_i^{\gamma}$	20.13 a)
20.7 a)	20.13 b)
20.7 b) $x = \frac{\gamma}{(1 - \gamma)}$	20.13 c)
20.7 c) $x = \frac{(1-\gamma)}{\gamma}$	20.14 a)
	20.14 b) $\eta = 33\%$
20.7 d) $x = \frac{\gamma^2}{(1 - \gamma)}$	20.15 a) $\frac{-Q_C}{\text{COP}}$
20.7 e)	20.15 b)
20.8 a)	20.15 c)
20.8 b) $0.31 \mathrm{J \cdot K^{-1}}$	20.15 d) 1.2×10^3 euros
20.9 a)	20.16 a)
20.9 b)	20.16 b) $\frac{\eta Q_F}{(1-\eta)}$

20.16 c)	20.17 b)
20.16 d)	
20.17 a) $ \frac{1}{P} $	20.17 c)

Fiche nº 21. Statique des fluides

Réponses **21.1** a)..... $75\,\mathrm{N}\cdot\mathrm{cm}^{-2}$ **21.11** c)..... $7.5 \, \mathrm{bar}$ **21.12** b) 21.3 21.4 **21.13** b)..... **21.5** a)..... $p_0 + \rho g z_1$ **21.5** b) $p_0 + \rho g(H - h - z_2)$ **21.5** c) $\rho g(H - z_3 \sin(\alpha)) + p_0$ **21.14** b)..... **21.6** a)..... **21.6** c)..... **21.15** a)..... **21.15** b)..... **21.15** c)..... **21.7** c)..... **21.16** b) $|By^2\vec{e_x} + 2Bxy\vec{e_y} + 2Ce^{2z}\vec{e_z}|$ $ho_{ m h} V_{ m h}$ **21.7** d)..... $43.6 \,\mathrm{g \cdot mol^{-1}}$ **21.17** c)..... 2p $z_{\rm max}$ 21.10

21.19 b)	21.21 a) $ \frac{1}{2} \rho g L h^2 $
21.19 c)	21.21 b) $\left[\frac{1}{6}\rho gLh^{3}\right]$
21.20 a)	21.21 c) $\begin{bmatrix} 1 \\ -h \end{bmatrix}$
21.20 b) $z = \frac{a}{g}y$	3"

Fiche nº 22. Fondamentaux de la chimie des solutions

Réponses	
22.1 a)	22.11 b) $ \frac{C_1V_1 + C_2V_2}{V_1 + V_2} $
22.1 b)	22.12 a)
22.2 b)	$(V \times C_m)$
22.2 c)	$22.12 \text{ c)} \dots \qquad \qquad \boxed{V = \frac{m}{C \times M}}$
22.3 b)	22.13 a)
22.3 c)	22.13 b)
22.5 a)	22.14 b)
22.5 b) $[H_3O^+] = 10^{-7} \text{mol} \cdot L^{-1}$ 22.5 c)	22.15 a)
22.6 a)	22.15 c)
22.6 b) (a) = H_2A , (b) = HA^- et (c) = A^{2-}	22.16 a)
22.6 d)	22.16 c)
22.6 e)	22.17 a)
22.7 a) Le premier 22.7 b) Le premier	22.17 c) Il a diminué.
22.8 a)	22.18 a)
22.8 b)	22.18 b)
22.9 a)	22.19 a)
22.9 b)	22.19 b)
22.10 a)	22.19 c) $12 \mod \cdot L^{-1}$ 22.20 96%
22.11 a)	22.21

Fiche nº 23. Fondamentaux de la chimie en phase gazeuse

•		
23.1 $\boxed{\frac{RT}{P}}$	23.9 a)	23.12 f) $0.21 \mathrm{bar}$ 23.13 a) $4n-2\xi$
23.2 a) $12.5 \mathrm{L} \cdot \mathrm{mol}^{-1}$	23.9 b) P_0	23.13 a) $4n - 2\xi$ 23.13 b) $\frac{2n - \xi}{2n} P_i$
23.2 b) $24.9 \mathrm{L \cdot mol^{-1}}$ 23.2 c) $495 \mathrm{L \cdot mol^{-1}}$	23.9 c)	
23.2 d)	Nn_0RT_0	23.13 c) $\left\lfloor \frac{\xi}{2-\xi} P_i \right\rfloor$
23.3 ⓒ	23.10 a)	$23.13 \text{ d}) \dots \underbrace{\left[\frac{(n-\xi)}{4n} P_i \right]}$
23.4 a)	23.10 b)	23.13 e) $\boxed{\frac{3(n-\xi)}{4n}P_i}$
23.4 b)	23.10 c)	23.14
23.4 c)	23.10 e)	23.15 a)
23.4 d)	23.10 f)	23.15 c)
23.6 a)	23.10 g)	23.15 d)
23.6 b) $24.8 \mathrm{L \cdot mol^{-1}}$	23.11 a)	23.16 a) $ \frac{P_{\text{NH}_3}^2(P^{\circ})^2}{P_{\text{N}_2}P_{\text{H}_2}^3} $
23.6 c)	23.11 b)	23.16 b) $ \frac{(P^{\circ})^5}{P_{\text{H}_2}^4 P_{\text{O}_2}} $
$23.6 \text{ d}) \dots \qquad H_2$ $23.7 \text{ a}) \dots \qquad RT$	23.11 d) faux	$[CO_{\circ}](P^{\circ})^{3}$
23.7 b) $RT + bP - \frac{a}{V_m} + \frac{ab}{V_m^2}$	23.12 a)	23.16 c) $\frac{ CC_2 (1-r)}{P_{CH_4}P_{O_2}^2C^\circ}$
$V_m V_m^2$ 23.7 c)	23.12 c)	23.16 d) $\frac{[\mathrm{H}_2\mathrm{CO}_3]P^{\circ}}{P_{\mathrm{CO}_2}C^{\circ}}$
23.8 a	23.12 d) 9×10^{1} bar	23.17
	23.12 e) 6×10^{-3} bar	

Fiche nº 24. Réactions chimiques

24.1 a)		$\dots \ \boxed{2 \operatorname{CO} + \operatorname{O}_2 = 2 \operatorname{CO}_2}$
24.1 b)	2 Ag	$g^+ + Cu = 2 Ag + Cu^{2+}$
24.1 c)	2 NO	$O + 2 CO = N_2 + 2 CO_2$
24.1 d)	S ₂ 0	$O_8^{2-} + 2I^- = 2SO_4^{2-} + I_2$
24.1 e)	$2 C_8 H_{18} + 2$	$25 O_2 = 16 CO_2 + 18 H_2 O$
24.1 f) [$MnO_4^- + 8H^+ + 5Fe^{2+} =$	$= 5 \mathrm{Fe^{3+}} + \mathrm{Mn^{2+}} + 4 \mathrm{H_2O}$
24.2		$\dots \qquad \boxed{n_1 - \xi}$
24.2		$\dots \qquad \boxed{n_2 - 3\xi}$
24.2		2ξ
24.3		
24.4		<u>e</u>
24.5 a)		$ \frac{a(\text{NH}_3)_{\text{eq}} \times a(\text{H}_2\text{O})_{\text{eq}}}{a(\text{NH}_4^+)_{\text{eq}} \times a(\text{HO}^-)_{\text{eq}}} $
24.5 b)		$\boxed{\frac{a(\mathrm{NH_3})_{\mathrm{eq}} \times a(\mathrm{H_3O}^+)_{\mathrm{eq}}}{a(\mathrm{NH_4}^+)_{\mathrm{eq}} \times a(\mathrm{H_2O})_{\mathrm{eq}}}}$
24.5 c)		$\frac{a(\mathrm{HO^-})_{\mathrm{eq}} \times a(\mathrm{H_3O^+})_{\mathrm{eq}}}{a(\mathrm{H_2O})_{\mathrm{eq}}^2}$
24.5 d)		116
24.5 e)		10 ^{4,75}
24.6 a)		(a)
24.6 b)		
24.6 c)		b
24.6 d)		<u>c</u>
24.7		b
24.8 a)		$\dots \qquad \boxed{5.0 \times 10^{-2} \mathrm{mol}}$

24.8.1
24.8 b)
24.9 a)
24.9 b)
24.10 a)
24.10 b) $ \xi^2 - \xi (C_1 V_1 + C_2 V_2) + C_1 C_2 V_1 V_2 - \frac{[C^{\circ} (V_1 + V_2)]^2}{K^{\circ}} = 0 $
24.11 a) $ [\xi_v^2(1-K^\circ) + \xi_v K^\circ(C_1+C_2) - K^\circ C_1 C_2 = 0] $
24.11 b)
24.11 c)
24.11 d)
24.11 e) $ [\xi^2(4K^{\circ}P + P^{\circ}) - \xi(4nK^{\circ}P + nP^{\circ}) + K^{\circ}n^2P = 0] $
24.12 a)
24.12 b)
24.13 a)
24.13 b)
24.14 a)
24.14 b)
24.14 c)
24.14 d)
24.15 a)
24.15 b)
24.16 a)
24.16 b)
24.16 c)

Fiche nº 25. Cinétique chimique

Réponses **25.7** b)..... (a) **25.1** b)..... $\left(\mathbf{d}\right)$ **25.8** a)..... v = k[A](c) **25.9** a)..... $k[A]^2$ (a) $+\alpha kt$ **25.2** b)..... (b) $\overline{1+\alpha}[A]_0kt$ $[A]_0$ $2\alpha k$ **25.3** a) | Oui : 2 ln(2)Oui: αk **25.10** c)..... **25.3** c) Non $[A]_0 \alpha k$ **25.4** a) $5.0 \,\mathrm{mmol \cdot L^{-1} \cdot min^{-1}}$ **25.11** a)..... **25.4** c) $3.3 \, \text{mmol} \cdot \text{L}^{-1} \cdot \text{min}^{-1}$ **25.12** a)..... **25.5** a) $|RT(\ln(A) - \ln(k))|$ **25.12** c)..... $53 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ **25.12** d)..... ln(A) -**25.13** a)..... m = 1**25.13** b) $\left| \ln \left(k \times [H_2]_0^m \right) + n \ln \left([S]_0 \right) \right|$ **25.6** b) $1.8 \times 10^2 \,\mathrm{kJ \cdot mol^{-1}}$ **25.6** c) $5.3 \times 10^{11} \,\mathrm{L \cdot mol^{-1} \cdot s^{-1}}$ **25.13** c)..... 1 d[A]**25.13** d)..... $3.00 L^{1/2} \cdot mol^{-1/2} \cdot min^{-1}$ $\alpha \ \mathrm{d}t$

Fiche n^o 26. Chiffres significatifs et incertitudes

•	
26.1 a)	26.7 a)
26.1 b)	26.7 b) $(1,175 \pm 0,059) \mathrm{W}$
26.1 c)	26.7 c)
26.1 d)	26.8 a)
26.1 e)	26.8 b)
26.1 f)	26.8 c)
26.1 g)	
26.1 h)	26.9 a) $\left d\sqrt{\left(\frac{u(\lambda)}{\lambda}\right)^2 + \left(\frac{u(D)}{D}\right)^2 + \left(\frac{u(\ell)}{\ell}\right)^2} \right $
26.2 a)	26.9 b) $(74.4 \pm 4.4) \mu\text{m}$
26.2 b)	
26.2 c)	26.10 a)
26.2 d)	26.10 b)
26.3 a)	26.10 c)
26.3 b)	26.11 $(25,017 \pm 0,092) \text{ cm}$
26.3 c)	26.12
26.4	26.13 a)
26.5 a)	26.13 b)
26.5 b) $(0.90 \pm 0.36) \mathrm{m}$	26.14 a)
26.5 c)	26.14 b)
26.5 d)	26.14 c)
26.6 $(59.0 \pm 1.4) \text{mmol} \cdot \text{L}^{-1}$	