Projekt Jakub Gwiazda, Wojciech Windak

1. Przygotowanie i analiza danych

• 1.1 Wczytanie niezbędnych bibliotek

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns;
import pandas as pd
```

• 1.2 Wczytanie danych

```
In [3]: import pandas as pd
    df = pd.read_fwf('pop_failures.dat')

df.head()
```

Out[3]:		Study	Run	vconst_corr	vconst_2	vconst_3	vconst_4	vconst_5	vconst_7	ah_corr	ah_bolus	•••	efficiency_factor	tidal_mix_max	vertical_decay_sc
	0	1	1	0.859036	0.927825	0.252866	0.298838	0.170521	0.735936	0.428325	0.567947		0.245675	0.104226	0.8690
	1	1	2	0.606041	0.457728	0.359448	0.306957	0.843331	0.934851	0.444572	0.828015		0.616870	0.975786	0.9143
	2	1	3	0.997600	0.373238	0.517399	0.504993	0.618903	0.605571	0.746225	0.195928		0.679355	0.803413	0.6439
	3	1	4	0.783408	0.104055	0.197533	0.421837	0.742056	0.490828	0.005525	0.392123		0.471463	0.597879	0.7616
	4	1	5	0.406250	0.513199	0.061812	0.635837	0.844798	0.441502	0.191926	0.487546		0.551543	0.743877	0.312

5 rows × 21 columns

1.3 Podstawowe dane o zbiorze

In [4]: print (df.describe())

count mean std min 25% 50% 75% max	Study 540.000000 2.000000 0.817254 1.000000 1.000000 2.000000 3.000000	Run 540.000000 90.500000 52.008901 1.000000 45.750000 90.500000 135.250000 180.000000	vconst_corr 540.00000 0.500026 0.288939 0.000414 0.249650 0.499998 0.750042 0.999194		vconst_3 540.000000 0.500027 0.289067 0.001181 0.251540 0.500104 0.749180 0.998263	\	
count mean std min 25% 50% 75% max	vconst_4 540.000000 0.500119 0.288993 0.001972 0.250158 0.500456 0.750348 0.997673	vconst_ 5.400000e+0 1.589598e+1 3.693892e+1 1.889182e-0 2.534061e-0 5.019133e-0 7.513031e-0 8.583829e+1	2 540.00000 3 0.49991 4 0.28885 3 0.00047 1 0.25132 1 0.49917 1 0.74816	540.000000 0.500059 0.289010 0.004590 0.253048 0.499070 0.750109	540.000000 0.500076 0.288909 0.000296 0.250402 0.500074 0.749091	\	
count mean std min 25% 50% 75% max	540. 0. 0. 0. 0.	factor tida 000000 5 500111 288966 002015 250758 500393 749447 999536	l_mix_max v 40.000000 0.499984 0.289127 0.000419 0.251676 0.500322 0.749346 0.999942	0. 0. 0. 0. 0.		ect_corr 0.000000 0.499933 0.288822 0.001312 0.249988 0.500625 0.749569 0.997518	\
count mean std min 25% 50% 75% max count	bckgrnd_vdc 540.00006 0.49994 0.28894 0.00256 0.24958 0.49908 0.75001 0.99979 Prandtl 540.000000 0.500021	540. 540. 69. 69. 66. 60. 60. 60.	000000 5.499946 1.288923 3.000732 2.49974 2.499959 5.747978 7.	rnd_vdc_eq b 400000e+02 649366e+13 832780e+14 748962e-03 528092e-01 023113e-01 510987e-01	0.5000 0.2889 0.0000 0.2889 0.0002 0.2527 0.4989 0.7489 0.9993	900 920 936 219 739 955	

```
      min
      0.000263
      0.000000

      25%
      0.249723
      1.000000

      50%
      0.499431
      1.000000

      75%
      0.749792
      1.000000

      max
      0.999655
      1.000000
```

[8 rows x 21 columns]

• 1.4.1 Wizualizacja danych dla parametru vconst_corr

```
import matplotlib.pyplot as plt
plt.plot(df['vconst_corr'], 'ro')
plt.title('Wizualizacja danych dla parametru vconst_corr')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.2 Wizualizacja danych dla parametru vconst_2

```
import matplotlib.pyplot as plt
plt.plot(df['vconst_2'], 'ro')
plt.title('Wizualizacja danych dla parametru vconst_2')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.3 Wizualizacja danych dla parametru vconst_3

```
import matplotlib.pyplot as plt
plt.plot(df['vconst_3'], 'ro')
plt.title('Wizualizacja danych dla parametru vconst_3')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.4 Wizualizacja danych dla parametru vconst_4

```
import matplotlib.pyplot as plt
plt.plot(df['vconst_4'], 'ro')
plt.title('Wizualizacja danych dla parametru vconst_4')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.5 Wizualizacja danych dla parametru vconst_5

```
import matplotlib.pyplot as plt
plt.plot(df['vconst_5'], 'ro')
plt.title('Wizualizacja danych dla parametru vconst_5')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.6 Wizualizacja danych dla parametru vconst_7

```
import matplotlib.pyplot as plt
plt.plot(df['vconst_7'], 'ro')
plt.title('Wizualizacja danych dla parametru vconst_7')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.7 Wizualizacja danych dla parametru ah_corr

```
In [11]: import matplotlib.pyplot as plt
plt.plot(df['ah_corr'], 'ro')
plt.title('Wizualizacja danych dla parametru ah_corr')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.8 Wizualizacja danych dla parametru ah_bolus

```
In [12]: import matplotlib.pyplot as plt
plt.plot(df['ah_bolus'], 'ro')
plt.title('Wizualizacja danych dla parametru ah_bolus')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.9 Wizualizacja danych dla parametru efficiency_factor

```
import matplotlib.pyplot as plt
plt.plot(df['efficiency_factor'], 'ro')
plt.title('Wizualizacja danych dla parametru efficiency_factor')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.10 Wizualizacja danych dla parametru tidal_mix_max

```
import matplotlib.pyplot as plt
plt.plot(df['tidal_mix_max'], 'ro')
plt.title('Wizualizacja danych dla parametru tidal_mix_max')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.11 Wizualizacja danych dla parametru vertical_decay_scale

```
In [15]: import matplotlib.pyplot as plt
  plt.plot(df['vertical_decay_scale'], 'ro')
  plt.title('Wizualizacja danych dla parametru vertical_decay_scale')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.12 Wizualizacja danych dla parametru convect_corr

```
import matplotlib.pyplot as plt
plt.plot(df['convect_corr'], 'ro')
plt.title('Wizualizacja danych dla parametru convect_corr')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.13 Wizualizacja danych dla parametru bckgrnd_vdc1

```
import matplotlib.pyplot as plt
plt.plot(df['bckgrnd_vdc1'], 'ro')
plt.title('Wizualizacja danych dla parametru bckgrnd_vdc1')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.14 Wizualizacja danych dla parametru bckgrnd_vdc_ban

```
import matplotlib.pyplot as plt
plt.plot(df['bckgrnd_vdc_ban'], 'ro')
plt.title('Wizualizacja danych dla parametru bckgrnd_vdc_ban')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.15 Wizualizacja danych dla parametru bckgrnd_vdc_eq

```
import matplotlib.pyplot as plt
plt.plot(df['bckgrnd_vdc_eq'], 'ro')
plt.title('Wizualizacja danych dla parametru bckgrnd_vdc_eq')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.16 Wizualizacja danych dla parametru bckgrnd_vdc_psim

```
import matplotlib.pyplot as plt
plt.plot(df['bckgrnd_vdc_psim'], 'ro')
plt.title('Wizualizacja danych dla parametru bckgrnd_vdc_psim')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.17 Wizualizacja danych dla parametru Prandtl

```
In [21]: import matplotlib.pyplot as plt
plt.plot(df['Prandtl'], 'ro')
plt.title('Wizualizacja danych dla parametru Prandtl')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 1.4.18 Wizualizacja danych dla parametru outcome

```
import matplotlib.pyplot as plt
plt.plot(df['outcome'], 'ro')
plt.title('Wizualizacja danych dla parametru outcome')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


2. Usunięcie outlinerów z danych

• 2.1 Usunięcie outlinerów poprzez wyliczenie "z score" i odrzucenie przekraczających wyznaczony próg

```
In [23]: from scipy import stats
dfCopy = df

df = df[(np.abs(stats.zscore(df)) < 5).all(axis=1)] #zscore < 5 żeby nie wycinało poprawnych danych</pre>
```

• 2.2 Weryfikacja i wizualizacja wcześniej problematycznych kolumn

```
import matplotlib.pyplot as plt
plt.plot(df['bckgrnd_vdc_eq'], 'ro')
plt.title('Wizualizacja danych dla parametru bckgrnd_vdc_eq po usunięciu outlinerów')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```

Wizualizacja danych dla parametru bckgrnd_vdc_eq po usunięciu outlinerów


```
import matplotlib.pyplot as plt
plt.plot(df['vconst_5'], 'ro')
plt.title('Wizualizacja danych dla parametru vconst_5 po usunięciu outlinerów')

plt.xlabel('Pozycja w zbiorze'); plt.ylabel('Warość');
```


• 2.3 Weryfikacja całości danych

In [26]: print (df.describe())

count mean std min 25% 50% 75% max	Study 538.000000 2.003717 0.816488 1.000000 1.000000 2.000000 3.000000 3.000000	Run 538.000000 90.286245 51.982591 1.000000 45.250000 90.000000 135.000000 180.000000	vconst_corr 538.000000 0.500628 0.288947 0.000414 0.250620 0.499998 0.750795 0.999194	538.000000 0.499685 0.289300 0.001922 0.250288 0.498645 0.750730	538.00000 0.498483 0.288463 0.001181 0.248889 0.498887 0.747663			
count mean std min 25% 50% 75% max	vconst_4 538.00000 0.500054 0.288701 0.001972 0.251064 0.500456 0.749041 0.997673	vconst_5 538.00000 0.501345 0.288396 0.001889 0.251983 0.501913 0.750208 0.998944	vconst_7 538.000000 0.501065 0.288665 0.000476 0.252380 0.501757 0.750201 0.997142	ah_corr 538.00000 0.500126 0.288985 0.004590 0.254232 0.499070 0.749003 0.998930	ah_bolus 538.000000 0.499939 0.288861 0.000296 0.251270 0.500074 0.747758 0.998506	\		
count mean std min 25% 50% 75% max	0. 0. 0. 0.		l_mix_max v 38.00000 0.499109 0.289208 0.000419 0.249863 0.498295 0.747833 0.999942	0 0 0 0 0		538.000000 0.500369 0.289049 0.001312 0.251371 0.500625 0.751128		
count mean std min 25% 50% 75% max count mean std	bckgrnd_vdc 538.00006 0.49938 0.28876 0.00256 0.24874 0.49908 0.74916 0.99979 Prandtl 538.000000 0.500602 0.289393	538. 8 0. 62 0. 9 0. 4 0. 60 0.		rnd_vdc_eq 538.000000 0.501868 0.287792 0.002749 0.253663 0.502311 0.749923 0.997265	bckgrnd_vdc_ 538.00 0.49 0.28 0.00 0.25 0.49 0.74	0000 9197 8761 0219 0790 8955 7720		

```
0.000263
                     0.000000
min
25%
         0.248217
                     1.000000
50%
         0.500931
                     1.000000
75%
         0.751430
                     1.000000
         0.999655
max
                     1.000000
[8 rows x 21 columns]
```

3. Podział danych na zestaw treningowy i testowy

```
In [27]: from sklearn.model selection import train test split
         wether train data, wether test data, \
         wether train target, wether test target = \
         train test split(df.iloc[:, 2:20].values, df.outcome.values, test size=0.35, random state=41)
         print("Zbiór treningowy:")
In [28]:
         print("wether train data:", wether train data.shape)
         print("wether train target:", wether train target.shape)
         Zbiór treningowy:
         wether train data: (349, 18)
         wether train target: (349,)
In [29]: print("Zbiór testowy:")
         print("wether test data:", wether test data.shape)
         print("wether test target:", wether test target.shape)
         Zbiór testowy:
         wether test data: (189, 18)
         wether test target: (189,)
```

4. Klasyfikacja z wykorzystaniem regresji logistycznej

```
In [30]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    clf = LogisticRegression().fit(wether_train_data, wether_train_target)
In [49]: from sklearn.metrics import accuracy_score
```

```
acc = accuracy score(wether test target, clf.predict(wether test data))
         print("Celność modelu: {0:0.2f}".format(acc))
          Celność modelu: 0.95
In [32]: from sklearn.metrics import confusion matrix
         import seaborn as sns;
          conf matrix = confusion matrix(wether test target, clf.predict(wether test data))
         print("Macierz konfuzji: ")
         print(conf matrix)
         sns.heatmap(conf matrix)
         Macierz konfuzji:
         [[ 2 9]
          [ 0 178]]
         <AxesSubplot:>
Out[32]:
                                                      - 160
                                                      - 140
                                                      - 120
                                                       - 100
                                                       - 80
                                                       60
                                                       40
                                                       - 20
                     Ò
In [62]: from sklearn.model_selection import cross_val_score
         from sklearn.linear model import LogisticRegression
         scores = cross val score(LogisticRegression(), wether test data, wether test target, cv=5)
         print("\nWaldiacja krzyżowa: ")
         print(scores)
```

file:///Y:/STUDIA N/Semestr VIII/SI/LAB1/Projekt/Projekt_Jakub_Gwiazda_Wojciech_Windak.html

[0.94736842 0.94736842 0.94736842 0.92105263 0.94594595]

Waldiacja krzyżowa:

```
In [34]: import matplotlib.pyplot as plt

plt.plot(scores, 'bo-')
plt.title('Wyniki')

plt.xlabel('Numer porządkowy walidacji'); plt.ylabel('Warość');
```


5. Klasyfikacja z wykorzystaniem sieci neuronowych MLPClassifier

```
In [36]: import keras
from keras.models import Sequential
from keras.layers import Dense

In [37]: from sklearn.model_selection import GridSearchCV
from sklearn.neural_network import MLPClassifier

parameters = {'hidden_layer_sizes': [(100), (50,25), (60,40,20,), (60, 40, 20, 10)], 'max_iter': [300,500,700],'solver': ['adam', grid_searchMLP = GridSearchCV(MLPClassifier(), parameters, n_jobs=-1, verbose=True, cv=5, return_train_score=True)
grid_searchMLP.fit(wether_train_data, wether_train_target)
print("Najlepsze parametry: ")
print(grid_searchMLP.best_params_)
```

```
Projekt Jakub Gwiazda Wojciech Windak
          Fitting 5 folds for each of 108 candidates, totalling 540 fits
          Najlepsze parametry:
          {'activation': 'tanh', 'early_stopping': True, 'hidden_layer_sizes': (60, 40, 20), 'max_iter': 300, 'solver': 'lbfgs'}
In [38]: import seaborn as sns;
          from sklearn.metrics import accuracy score
          from sklearn.metrics import confusion matrix
          classifier score = grid searchMLP.score(wether test data, wether test target)
          print("Wynik najleszej kombinacji parametrów uczenia:")
          print(classifier score)
          conf matrix = confusion matrix(wether test target, grid searchMLP.predict(wether test data))
          print("\n Macierz konfuzji:")
          print(conf matrix)
          sns.heatmap(conf matrix)
          Wynik najleszej kombinacji parametrów uczenia:
          0.9576719576719577
          Macierz konfuzji:
          [[ 9 2]
          [ 6 172]]
         <AxesSubplot:>
Out[38]:
                                                       - 160
                                                       - 140
                                                       - 120
                                                       - 100
                                                       - 80
```

```
In [39]: test_scores = grid_searchMLP.cv_results_['mean_test_score']
         train_scores = grid_searchMLP.cv_results_['mean_train_score']
         plt.plot(test scores, label='Dane testowe')
```

- 20

ò

```
plt.plot(train_scores, label='Dane treningowe')
plt.legend(loc='best')
plt.show()
```



```
In [50]: plt.rcParams['figure.figsize'] = (8.0, 6.0)
plt.imshow(np.transpose(grid_searchMLP.best_estimator_.coefs_[0]), cmap=plt.get_cmap("gray"), aspect="auto")
plt.ylabel('Neurony w pierwszej ukrytej warstwie'); plt.xlabel('Waga wejścia do neurona');
```



```
In [51]: plt.rcParams['figure.figsize'] = (8.0, 6.0)
    plt.imshow(np.transpose(grid_searchMLP.best_estimator_.coefs_[1]), cmap=plt.get_cmap("gray"), aspect="auto")
    plt.ylabel('Neurony w drugiej ukrytej warstwie'); plt.xlabel('Waga wejścia do neurona');
```



```
In [52]: plt.rcParams['figure.figsize'] = (8.0, 6.0)
    plt.imshow(np.transpose(grid_searchMLP.best_estimator_.coefs_[2]), cmap=plt.get_cmap("gray"), aspect="auto")
    plt.ylabel('Neurony w trzeciej ukrytej warstwie'); plt.xlabel('Waga wejścia do neurona');
```


6. Klasyfikacja z wykorzystaniem jeden przeciwko reszcie

```
In [44]: from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier

multiclass_classifier = OneVsRestClassifier(LogisticRegression())
multiclass_classifier.fit(wether_train_data, wether_train_target);

In [61]: from sklearn.metrics import accuracy_score
acc = accuracy_score(wether_test_target, clf.predict(wether_test_data))
print("Celność modelu: {0:0.2f}".format(acc))

Celność modelu: 0.95

In [46]: from sklearn.metrics import confusion_matrix
conf_matrix = confusion_matrix(wether_test_target, multiclass_classifier.predict(wether_test_data))
print("Macierz konfuzji:")
```

```
print(conf_matrix)
import seaborn as sns;

conf_matrix = confusion_matrix(wether_test_target, clf.predict(wether_test_data))
sns.heatmap(conf_matrix)

Macierz konfuzji:
```

Macierz konfuzji: [[2 9] [0 178]]

Out[46]: <AxesSubplot:>


```
In [60]: from sklearn.model_selection import cross_val_score
    from sklearn.linear_model import LogisticRegression

scores = cross_val_score(LogisticRegression(), wether_test_data, wether_test_target, cv=5)
    print("Waldiacja krzyżowa: ")
    print(scores)
```

Waldiacja krzyżowa:

 $[0.94736842\ 0.94736842\ 0.94736842\ 0.92105263\ 0.94594595]$

```
In [48]: import matplotlib.pyplot as plt

plt.plot(scores, 'bo-')
 plt.title('Wyniki')
 plt.xlabel('Numer porządkowy walidacji'); plt.ylabel('Warość');
```


7. Klasyfikacja z wykorzystaniem jeden przeciwko reszcie

```
In [53]: from sklearn.svm import LinearSVC
    from sklearn.pipeline import make_pipeline
    from sklearn.preprocessing import StandardScaler

lSVC = make_pipeline(StandardScaler(),LinearSVC(random_state=0, tol=1e-5))
lSVC.fit(wether_train_data, wether_train_target)
```

```
Out[53]: Pipeline

StandardScaler

LinearSVC
```

```
In [54]: from sklearn.metrics import accuracy_score
    acc = accuracy_score(wether_test_target, 15VC.predict(wether_test_data))
    print("Celność modelu: {0:0.2f}".format(acc))

Celność modelu: 0.97

In [55]: from sklearn.metrics import confusion_matrix
    import seaborn as sns;

conf_matrix = confusion_matrix(wether_test_target, 15VC.predict(wether_test_data))
    print("Macierz konfuzji: ")
    print(conf_matrix)
    sns.heatmap(conf_matrix)

Macierz konfuzji:
[[ 9 2]
    [ 4 174]]

AxesSubplot:>
```



```
In [59]: from sklearn.model_selection import cross_val_score
    from sklearn.linear_model import LogisticRegression

scores = cross_val_score(LinearSVC(), wether_test_data, wether_test_target, cv=5)
    print("\nWaldiacja krzyżowa: ")
    print(scores)

Waldiacja krzyżowa:
    [0.94736842 0.94736842 0.92105263 0.91891892]

In [58]: import matplotlib.pyplot as plt
    plt.plot(scores, 'bo-')
    plt.title('Wyniki')
    plt.xlabel('Numer porządkowy walidacji'); plt.ylabel('Warość');
```

