Lecture 04 The Finite Volume Method

汪 洋

wangyangstayfoolish@gmail.com

July 2022

▶ 构建计算域

▶ 离散计算域

▶ 构建与物理场控制方程等效的代数方程组

▶ 使用迭代求解器计算

▶ 通过求解一系列给定点上的 ∅ 值来离散整个关注的区域

▶ 因此 ϕ 离散了,不再连续,将 Partial Differential Equations 方程变为一系列代数方程,这个过程为离散过程

▶ 将代数方程求解

▶ 一维例子

$$\frac{\mathrm{d}}{\mathrm{d}x}\mu\frac{\mathrm{d}\phi}{\mathrm{d}x} = 1$$

July 2022

矩阵形式

July 2022

几何和物理模型

▶ 控制方程, $-\nabla \cdot (k\nabla T) = q$

几何离散

1	2	3	4	5	6
			23	24	25

拓扑关系

Element 9 Neighbours [10 4 8 15] Faces [12 8 11 16] Vertices [19 11 12 18]

Element 9
Element 10
Vertices [19 12]

Vertices
Elements [...]
Faces [...]

例题 1

▶ 对图示网格,推导单元连通性和矩阵形式

	3	4	5	
	8	9	10	
	14	15	16	

	•	f_2	•	
	f3,	,	f_1	
	•	f_4	•	

▶ 散度定理

$$\int\limits_{\partial V_C} (k\nabla T) \cdot dS = q_C V_C$$

▶ 一次精度损失

$$\sum_f k \nabla T \cdot S_f = q_C V_C$$

▶ 一次精度损失

$$\begin{split} \sum_f k \nabla T \cdot S_f &= q_C V_C \\ (k \nabla T)_{f_1} \cdot S_{f_1} + (k \nabla T)_{f_2} \cdot S_{f_2} + (k \nabla T)_{f_3} \cdot S_{f_3} + (k \nabla T)_{f_4} \cdot S_{f_4} = q_C V_C \end{split}$$

$$(k\nabla T)_{f_1}\cdot S_{f_1}+(k\nabla T)_{f_2}\cdot S_{f_2}+(k\nabla T)_{f_3}\cdot S_{f_3}+(k\nabla T)_{f_4}\cdot S_{f_4}=q_CV_C$$

▶ 对于面 1 来说

$$\mathbf{S}_{f_1} = \Delta y_{f_1} \mathbf{i}$$

$$\delta x_{f_1} = x_{F_1} - x_C$$

$$\nabla T_{f_1} = \left(\frac{\partial T}{\partial x}\right) \mathbf{i} + \left(\frac{\partial T}{\partial y}\right) \mathbf{j}$$

▶ 对于温度梯度

$$\left(\frac{\partial T}{\partial x}\right) = \frac{T_{F_1} - T_C}{\delta x_{f_1}}$$
$$\nabla T_{f_1} \cdot \mathbf{S}_{f_1} = \frac{T_{F_1} - T_C}{\delta x_{f_1}} \Delta y_{f_1}$$
$$(k \nabla T)_{f_1} \cdot \mathbf{S}_{f_1} = a_{F_1} (T_{F_1} - T_C)$$

▶ 那么系数项为

$$a_{F_1} = k \frac{\Delta y_{f_1}}{\delta x_{f_1}}$$
 $a_{F_2} = k \frac{\Delta x_{f_2}}{\delta y_{f_2}}$
 $a_{F_3} = k \frac{\Delta y_{f_3}}{\delta x_{f_3}}$
 $a_{F_4} = k \frac{\Delta x_{f_4}}{\delta y_{f_4}}$

▶ 那么系数项为

$$\sum_{f} (k \nabla T)_{f} \cdot \mathbf{S}_{f} = \sum_{f} a_{f} (T_{F} - T_{C})$$

$$= -(a_{F_{1}} + a_{F_{2}} + a_{F_{3}} + a_{F_{4}}) T_{C} + a_{F_{1}} T_{F_{1}} + a_{F_{2}} T_{F_{2}} + a_{F_{3}} T_{F_{3}} + a_{F_{4}} T_{F_{4}}$$

$$= q_{C} V_{C}$$

▶ 紧凑形式

$$a_C T_C + \sum_f a_F T_F = b$$

矩阵形式

矩阵求解

▶ 直接解法

$$\mathbf{T} = \mathbf{A}^{-1}\mathbf{b}$$

▶ 计算开销 O(n³)

矩阵求解

- ▶ 迭代解法
- ▶ 对角占优 Scarborough 标准

$$a_{ii} \geq \sum_{i \neq j} a_{ij}$$