Artificial Intelligence (18CSC305J)

Faculty: Helen Victoria A

Team Tesla 2.0

Name	Regno.	Email Id
Abhighyan B	RA1911033010002	ab2134@srmist.edu.in
Sanjana N B	RA1911033010016	sn8740@srmist.edu.in
Roehit Ranganathan	RA1911033010017	rr9344@srmist.edu.in
Venkata Naga Sai Ram Nomula	RA1911033010021	vn4903@srmist.edu.in
K. Dushyant Reddy	RA1911033010029	kr7119@srmist.edu.in

Experiment 1 - Implementation of toy problem

Problem Statement:

To implement the '**Tic Tac Toe**' problem, i.e, using dictionary elements create a grid to play the game using python.

Algorithm:

- 1. Use a dictionary to create a board.
- 2. Create a print board function
- 3. Initiate a Loop with a range of '10' to get input from users. I.e, user with 'X' and a user with 'O'
- 4. Check if the user input slot is free, if not inform the user before taking input from the next user.
- 5. Check for winning conditions with every user input after a minimum of five inputs, there are a total of 8 combinations.
- 6. Print 'GAME OVER' if winning combination is achieved
- 7. Break the loop and ask the user whether they wanna play again.

Code:

```
bk.append(key)
def printB(X):
   print(X['7'] + '|' + X['8'] + '|' + X['9'])
   print('-+-+-')
   print(X['4'] + '|' + X['5'] + '|' + X['6'])
   print('-+-+-')
    print(X['1'] + '|' + X['2'] + '|' + X['3'])
def game():
    for i in range(10):
       printB(B)
        print("It's your turn," + turn + ".Move to which place?")
       move = input()
        else:
            print("That place is already filled.\nMove to which place?")
            continue
```

```
printB(B)
    print("\nGame Over.\n")
    print(" **** " +turn + " won. ****")
    printB(B)
    print("\nGame Over.\n")
    print(" **** " +turn + " won. ****")
    printB(B)
    print("\nGame Over.\n")
   break
    printB(B)
    print("\nGame Over.\n")
    print(" **** " +turn + " won. ****")
    break
    printB(B)
    print("\nGame Over.\n")
    break
elif B['3'] == B['6'] == B['9'] != ' ': # down the right
    printB(B)
    print("\nGame Over.\n")
    print(" **** " +turn + " won. ****")
elif B['7'] == B['5'] == B['3'] != ' ': # diagonal
    printB(B)
    print("\nGame Over.\n")
    print(" **** " +turn + " won. ****")
    printB(B)
```

```
print("\nGame Over.\n")
    print(" **** " +turn + " won. ****")
    break

if count == 9:
    print("\nGame Over.\n")
    print("It's a Tie!!")

if turn =='X':
    turn = 'O'
    else:
        turn = 'X'

restart = input("Do want to play Again?(y/n)")
    if restart == "y" or restart == "Y":
        for key in bk:
            B[key] = " "

        game()

if __name__ == "__main__":
        game()
```

Output:

```
| |
-+-+-
It's your turn, X. Move to which place?
x| |
It's your turn, O. Move to which place?
x| |0
It's your turn, X. Move to which place?
|X|
x| |0
It's your turn, O. Move to which place?
|X|O
-+-+-
X| |0
It's your turn, X. Move to which place?
| |X
|X|O
x| |0
Game Over.
**** X won. ****
Do want to play Again?(y/n)n
...Program finished with exit code 0
Press ENTER to exit console.
```

Real World Solution:

Spatial Analysis for Geography Mapping solves location problems basically using math in maps. It blends geography with modern technology to measure, quantify, and understand our world.

What is Spatial Analysis?

It's more of such manifest uncover patterns we've never seen before by studying their topological, geometric, and geographic properties. This is **spatial analysis!**

Understanding with Example:

Mr. X sets up his tic-tac-toe boards with intention and attention to detail. The 9-cell grid is designed to make sure that no matter which way a student chooses to make the 'three in a row,' they are showing their understanding of key concepts and ideas in different ways.

Now, Students show their basic **knowledge of a concept** with activities such as listing, defining, drawing, or labeling. When students choose a square to show they comprehend, they summarize, compare, and **discuss the concept**. This square asks students to **apply knowledge** in a new way, such as symbolizing, modifying or changing. Mr. X asks students to **analyze content** by explaining, ordering and classifying. So, Students may also choose to **arrange information** by rewriting, modifying the content. Finally, students can **evaluate content** by measuring, ranking, judging, arguing, and convincing.

Result: The 'Tic Tac Toe' problem has been implemented successfully.