#01. 작업준비

패키지 참조

데이터 가져오기

그래프 초기화

#02. 데이터 분석

데이터 분할

처음부터 70% 위치까지의 데 이터

검증용 데이터 (나머지 30%)

모델 구축

모델 학습

잔차 플롯 검토

예상치 생성

관측치와 예상치 비교

시계열 분석 (Auto ARIMA)

#01. 작업준비

패키지 참조

pmdarima 패키지의 설치가 필요하다

```
from pandas import read_excel, DataFrame, Series
from matplotlib import pyplot as plt
from matplotlib import dates as mdates
from pmdarima.arima import auto_arima
from datetime import timedelta
import seaborn as sb
import sys
```

데이터 가져오기

```
df = read_excel("https://data.hossam.kr/E06/air_passengers.xlsx", index_
df.head()
```

1/13

file:///D:/14 시계열분석(Auto).ipynb

23. 8. 4. 오후 4:15

시계열 분석 (Auto ARIMA)

#01. 작업준비

패키지 참조

데이터 가져오기

그래프 초기화

#02. 데이터 분석

데이터 분할

처음부터 70% 위치까지의 데 이터

검증용 데이터 (나머지 30%)

모델 구축

모델 학습

잔차 플롯 검토

예상치 생성

관측치와 예상치 비교

	Passengers
Month	
1949-01-01	112
1949-02-01	118
1949-03-01	132
1949-04-01	129
1949-05-01	121

그래프 초기화

```
plt.rcParams["font.family"] = 'AppleGothic' if sys.platform = 'darwin'
plt.rcParams["font.size"] = 12
plt.rcParams["axes.unicode_minus"] = False
```

#02. 데이터 분석

데이터 분할

처음부터 70% 위치까지의 데이터

분석모델 구축용(=학습용)

#01. 작업준비

패키지 참조

데이터 가져오기

그래프 초기화

#02. 데이터 분석

데이터 분할

처음부터 70% 위치까지의 데 이터

검증용 데이터 (나머지 30%)

모델 구축

모델 학습

잔차 플롯 검토

예상치 생성

관측치와 예상치 비교

# 처음부터	70%	위치	전까지	분할
train = d	f[:i	nt(0	.7*len	(df))]
train.hea	d()			

	Passengers
Month	
1949-01-01	112
1949-02-01	118
1949-03-01	132
1949-04-01	129
1949-05-01	121

검증용 데이터 (나머지 30%)

```
# 70% 위치부터 끝까지 분할
test = df[int(0.7*len(df)):]
test.head()
```

	Passengers
Month	
1957-05-01	355
1957-06-01	422

23. 8. 4. 오후 4:15

시계열 분석 (Auto ARIMA)

#01. 작업준비

패키지 참조

데이터 가져오기

그래프 초기화

#02. 데이터 분석

데이터 분할

처음부터 70% 위치까지의 데 이터

검증용 데이터 (나머지 30%)

모델 구축

모델 학습

잔차 플롯 검토

예상치 생성

관측치와 예상치 비교

	Passengers
Month	
1957-07-01	465
1957-08-01	467
1957-09-01	404

모델 구축

시계열 데이터를 계절 ARIMA 모델에 맞추려고 할 때 첫 번째 목표는 측정항목을 최적화하는 ARIMA(p,d,q)(P,D,Q)M 값을 찾는 것

M값을 고정한 상태에서 0부터 (p,d,q)(P,D,Q)로 주어진 값의 범위 안에서 최적의 값을 검색한다.

```
my p = 5 # 적절히 넉넉히
my d = 2 # 차분 횟수 (검증한 결과를 활용)
my q = 5 # 적절히 넉넉히
my s=12 # 계절성 주기 (분석가가 판단)
model = auto arima(
                      # 모델링하려는 시계열 데이터 또는 배열
   y=train,
                      # p의 시작점
   start p=0,
                        # p의 최대값
   max_p=my_p,
                        # 차분 횟수
   d=my d,
                      # q의 시작점
   start_q=0,
                        # q의 최대값
   max_q=my_q,
   seasonal=True,
                    # 계절성 사용 여부
```

14 시계열분석(Auto).ipynb

```
m=my_s,
                                                            # 계절성 주기
시계열 분석 (Auto ARIMA)
                                  start P=0,
                                                         # P의 시작점
  #01. 작업준비
                                  max_P=my_p,
                                                            # P의 최대값
                                  D=my d,
                                                            # 계절성 차분 횟수
    패키지 참조
                                  start Q=0.
                                                         # Q의 시작점
                                                            # Q의 최대값
    데이터 가져오기
                                  max Q=my q,
                                                        # 학습 과정 표시 여부
                                  trace=True
    그래프 초기화
                              print(model.summary())
 #02. 데이터 분석
    데이터 분할
                              Performing stepwise search to minimize aic
      처음부터 70% 위치까지의 데
                               ARIMA(0,2,0)(0,2,0)[12]
                                                                  : AIC=700.560, Time=0.04 sec
      이터
                               ARIMA(1,2,0)(1,2,0)[12]
                                                                  : AIC=628.108, Time=0.27 sec
                               ARIMA(0,2,1)(0,2,1)[12]
                                                                  : AIC=inf, Time=0.50 sec
     검증용 데이터 (나머지 30%)
                               ARIMA(1,2,0)(0,2,0)[12]
                                                                  : AIC=656.611, Time=0.06 sec
    모델 구축
                               ARIMA(1,2,0)(2,2,0)[12]
                                                                  : AIC=618.256, Time=0.45 sec
                               ARIMA(1,2,0)(3,2,0)[12]
                                                                  : AIC=614.066, Time=0.87 sec
    모델 학습
                               ARIMA(1,2,0)(4,2,0)[12]
                                                                  : AIC=609.992, Time=3.41 sec
                               ARIMA(1,2,0)(5,2,0)[12]
                                                                  : AIC=inf, Time=7.91 sec
    잔차 플롯 검토
                               ARIMA(1,2,0)(4,2,1)[12]
                                                                  : AIC=inf, Time=10.24 sec
    예상치 생성
                               ARIMA(1,2,0)(3,2,1)[12]
                                                                  : AIC=inf, Time=2.72 sec
                               ARIMA(1,2,0)(5,2,1)[12]
                                                                  : AIC=inf, Time=7.96 sec
    관측치와 예상치 비교
                               ARIMA(0,2,0)(4,2,0)[12]
                                                                  : AIC=651.167, Time=2.53 sec
                               ARIMA(2,2,0)(4,2,0)[12]
                                                                  : AIC=605.939, Time=3.59 sec
                               ARIMA(2,2,0)(3,2,0)[12]
                                                                  : AIC=606.557, Time=1.08 sec
                               ARIMA(2,2,0)(5,2,0)[12]
                                                                  : AIC=inf, Time=8.47 sec
                               ARIMA(2,2,0)(4,2,1)[12]
                                                                  : AIC=inf, Time=11.74 sec
```

ARIMA(2,2,0)(3,2,1)[12]

ARIMA(2,2,0)(5,2,1)[12]

ARIMA(3,2,0)(4,2,0)[12]

: AIC=inf, Time=3.96 sec

: AIC=inf, Time=14.84 sec

: AIC=601.906, Time=4.37 sec

4. 오후 4:15	14_시계열분석(Auto).ipynb	
시계열 분석 (Auto ARIMA)	ARIMA(3,2,0)(3,2,0)[12]	: AIC=604.074, Time=2.75 sec
, , , (, , , , , , , , , , , , , ,	ARIMA(3,2,0)(5,2,0)[12]	: AIC=inf, Time=8.89 sec
#01. 작업준비	ARIMA(3,2,0)(4,2,1)[12]	: AIC=inf, Time=15.03 sec
패키지 참조	ARIMA(3,2,0)(3,2,1)[12]	: AIC=inf, Time=10.46 sec
페기지 금포	ARIMA(3,2,0)(5,2,1)[12]	: AIC=inf, Time=18.88 sec
데이터 가져오기	ARIMA(4,2,0)(4,2,0)[12]	: AIC=596.152, Time=4.44 sec
	ARIMA(4,2,0)(3,2,0)[12]	: AIC=597.717, Time=3.31 sec
그래프 초기화	ARIMA(4,2,0)(5,2,0)[12]	: AIC=inf, Time=8.83 sec
#02. 데이터 분석	ARIMA(4,2,0)(4,2,1)[12]	: AIC=inf, Time=13.65 sec
	ARIMA(4,2,0)(3,2,1)[12]	: AIC=inf, Time=12.79 sec
데이터 분할	ARIMA(4,2,0)(5,2,1)[12]	: AIC=inf, Time=17.03 sec
처음부터 70% 위치까지의 데	ARIMA(5,2,0)(4,2,0)[12]	: AIC=590.926, Time=7.23 sec
이터	ARIMA(5,2,0)(3,2,0)[12]	: AIC=590.534, Time=5.29 sec
	ARIMA(5,2,0)(2,2,0)[12]	: AIC=597.117, Time=1.24 sec
검증용 데이터 (나머지 30%)	ARIMA(5,2,0)(3,2,1)[12]	: AIC=inf, Time=12.09 sec
모델 구축	ARIMA(5,2,0)(2,2,1)[12]	: AIC=inf, Time=3.40 sec
72 I 7	ARIMA(5,2,0)(4,2,1)[12]	: AIC=inf, Time=15.32 sec
모델 학습	ARIMA(5,2,1)(3,2,0)[12]	: AIC=585.655, Time=8.15 sec
지귀 프로 가드	ARIMA(5,2,1)(2,2,0)[12]	: AIC=inf, Time=3.48 sec
잔차 플롯 검토	ARIMA(5,2,1)(4,2,0)[12]	: AIC=inf, Time=14.55 sec
예상치 생성	ARIMA(5,2,1)(3,2,1)[12]	: AIC=inf, Time=12.60 sec
	ARIMA(5,2,1)(2,2,1)[12]	: AIC=inf, Time=4.03 sec
관측치와 예상치 비교	ARIMA(5,2,1)(4,2,1)[12]	: AIC=inf, Time=16.09 sec
	ARIMA(4,2,1)(3,2,0)[12]	: AIC=inf, Time=10.63 sec
	ARIMA(5,2,2)(3,2,0)[12]	: AIC=587.252, Time=8.82 sec
	ARIMA(4,2,2)(3,2,0)[12]	: AIC=inf, Time=11.74 sec
	ARIMA(5,2,1)(3,2,0)[12] intercept	: AIC=587.606, Time=10.51 sec

Best model: ARIMA(5,2,1)(3,2,0)[12]

Total fit time: 346.290 seconds

#01. 작업준비

패키지 참조

데이터 가져오기

그래프 초기화

#02. 데이터 분석

데이터 분할

처음부터 70% 위치까지의 데 이터

검증용 데이터 (나머지 30%)

모델 구축

모델 학습

잔차 플롯 검토

예상치 생성

관측치와 예상치 비교

SARTMAX	Results

Model: SARIMAX(5, 2, 1)x(3, 2, [], 12) Log Likelihood

Date: Fri, 04 Aug 2023 AIC

Time: 14:52:23 BIC

Sample: 01-01-1949 HQIC

- 04-01-1957

Covariance Type:

opg

coef	std err	Z	P> z	[0.025	
-0.5251	0.210	-2.498	0.012	-0.937	
-0.2593	0.225	-1.155	0.248	-0.700	
-0.3176	0.211	-1.505	0.132	-0.731	
-0.3068	0.233	-1.314	0.189	-0.764	
-0.1050	0.205	-0.511	0.609	-0.507	
-0.8206	0.172	-4.768	0.000	-1.158	
-1.1211	0.117	-9.567	0.000	-1.351	
-0.8605	0.171	-5.026	0.000	-1.196	
-0.4895	0.157	-3.110	0.002	-0.798	
88.3178	18.953	4.660	0.000	51.171	1
Ljung-Box (L1) (Q):		0.00	Jarque-Bera	(JB):	
Prob(Q): 0.96 Prob(JB):					
sticity (H):		0.79	Skew:		
o-sided):		0.55	Kurtosis:		
	-0.5251 -0.2593 -0.3176 -0.3068 -0.1050 -0.8206 -1.1211 -0.8605 -0.4895 88.3178 L1) (Q):	-0.5251	-0.5251	-0.5251	-0.5251

#01. 작업준비

패키지 참조

데이터 가져오기

그래프 초기화

#02. 데이터 분석

데이터 분할

처음부터 70% 위치까지의 데 이터

검증용 데이터 (나머지 30%)

모델 구축

모델 학습

잔차 플롯 검토

예상치 생성

관측치와 예상치 비교

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (c

모델 학습

관측치를 모델에 적제하여 학습을 수행한다.

model.fit(train)

ARIMA

ARIMA(5,2,1)(3,2,0)[12]

잔차 플롯 검토

왼쪽 상단: 잔차 오차는 평균 0을 중심으로 변동하고 균일한 분산을 갖는 것으로 보임

오른쪽 상단: 밀도 도표는 평균이 0인 정규 분포를 나타냄

왼쪽 하단: 모든 점이 빨간색 선과 완벽하게 일치해야 함. 편차가 크면 분포가 왜곡되었음을 의미합니다.

오른쪽 아래: 상관관계도(ACF 플롯이라고도 함)는 잔차 오류가 자동 상관되지 않음을 보여줌. 모든 자기상관은 모델에서 설명되지 않는 잔차 오류에 일부 패턴이 있음을 의미하기 때문에 모델에 대해 더많은 X(예측 변수)를 찾아야 함.

model.plot_diagnostics(figsize=(15,10))
plt.show()

#01. 작업준비

패키지 참조

데이터 가져오기

그래프 초기화

#02. 데이터 분석

데이터 분할

처음부터 70% 위치까지의 데 이터

검증용 데이터 (나머지 30%)

모델 구축

모델 학습

잔차 플롯 검토

예상치 생성

관측치와 예상치 비교

전반적으로 잘 맞는것 같다!!!

예상치 생성

학습결과를 토대로 주어진 n_periods 수 만큼의 이후 데이터를 예상하여 결과를 반환한다.

```
# 원본 데이터 이후 10단계 까지 예측
y_predict = model.predict(n_periods=int(len(test)+10))
```

. 오후 4:15
시계열 분석 (Auto ARIMA)
#01. 작업준비
패키지 참조
데이터 가져오기
그래프 초기화
#02. 데이터 분석
데이터 분할
처음부터 70% 위치까지의 데 이터
검증용 데이터 (나머지 30%)
모델 구축
모델 학습
잔차 플롯 검토
예상치 생성
관측치와 예상치 비교

1957-05-01	353.001884
1957-06-01	404.404671
1957-07-01	458.201793
1957-08-01	438.689621
1957-09-01	388.085053
1957-10-01	331.313503
1957-11-01	287.557417
1957-12-01	327.148708
1958-01-01	337.122339
1958-02-01	318.144484
1958-03-01	370.266764
1958-04-01	360.138673
1958-05-01	368.959373
1958-06-01	435.883864
1958-07-01	496.438803
1958-08-01	468.139086
1958-09-01	412.561605
1958-10-01	347.657604
1958-11-01	302.561163
1958-12-01	346.764795
1959-01-01	358.430437
1959-02-01	341.134185
1959-03-01	392.107616
1959-04-01	382.591081
1959-05-01	388.221442
1959-06-01	462.217613
1959-07-01	526.212535
1959-08-01	494.128404

y_predict

file:///D:/14_시계열분석(Auto).ipynb

4. 오후 4:15		14_시계열문석(Auto	o).ipy
시계열 분석 (Auto ARIMA)	1959-09-01	431.669748	
, , ,	1959-10-01	356.456026	
#01. 작업준비	1959-11-01	303.324582	
패키지 참조	1959-12-01	352.010052	
페기지 ㅁㅗ	1960-01-01	360.138340	
데이터 가져오기	1960-02-01	338.451191	
그게 교 수 기술	1960-03-01	396.043429	
그래프 초기화	1960-04-01	380.204893	
#02. 데이터 분석	1960-05-01	387.902897	
	1960-06-01	467.494133	
데이터 분할	1960-07-01	532.155387	
처음부터 70% 위치까지의 데	1960-08-01	497.101941	
이터	1960-09-01	425.341205	
	1960-10-01	339.716408	
검증용 데이터 (나머지 30%)	1960-11-01	283.666773	
모델 구축	1960-12-01	330.505222	
	1961-01-01	340.060004	
모델 학습	1961-02-01	312.796958	
잔차 플롯 검토	1961-03-01	374.291074	
인시 글것 검포	1961-04-01	355.357385	
예상치 생성	1961-05-01	362.118872	
	1961-06-01	445.110866	
관측치와 예상치 비교	1961-07-01	519.065815	
	1961-08-01	473.217885	
	1961-09-01	397.377063	
	1961-10-01	302.232564	
	Freq: MS, dt	ype: float64	

관측치와 예상치 비교

```
시계열 분석 (Auto ARIMA)
 #01. 작업준비
   패키지 참조
   데이터 가져오기
   그래프 초기화
 #02. 데이터 분석
   데이터 분할
     처음부터 70% 위치까지의 데
     이터
     검증용 데이터 (나머지 30%)
   모델 구축
   모델 학습
   잔차 플롯 검토
   예상치 생성
```

관측치와 예상치 비교

```
plt.figure(figsize=(20,8))
# 앞 70%의 원본 데이터
sb.lineplot(data=train, x=train.index, v='Passengers', label='Original(1
# 뒤 30%의 원본 데이터
sb.lineplot(data=test, x=test.index, y='Passengers', label='Original(Tes
# 뒤 30% + 10단계에 대한 예측 데이터
sb.lineplot(x=y_predict.index, y=y_predict.values, label='Predict(Test)'
plt.xlabel('Month')
plt.ylabel('Passengers')
# 그래프의 x축이 날짜로 구성되어 있을 경우 형식 지정
monthyearFmt = mdates.DateFormatter('%y.%m.%d')
plt.gca().xaxis.set major formatter(monthyearFmt)
plt.grid()
plt.show()
plt.close()
```

#01. 작업준비

패키지 참조

데이터 가져오기

그래프 초기화

#02. 데이터 분석

데이터 분할

처음부터 70% 위치까지의 데 이터

검증용 데이터 (나머지 30%)

모델 구축

모델 학습

잔차 플롯 검토

예상치 생성

관측치와 예상치 비교

