In [195... import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score In [197... file_path = "C:/Users/gundr/Downloads/Civil_Engineering_Regression_Dataset.csv" df = pd.read_csv(file_path) In [199... X = df[['Building_Height', 'Material_Quality_Index', 'Labor_Cost', 'Concrete_Strength', 'Foundation_Depth']] y = df['Construction_Cost'] In [201... X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) In [203... model = LinearRegression() model.fit(X_train, y_train) Out[203... LinearRegression LinearRegression() In [205... intercept = model.intercept_ coefficients = model.coef_ feature_names = X.columns In [207... print("Regression Equation:") equation = f"Construction_Cost = {intercept:.2f}" for feature, coef in zip(feature_names, coefficients): equation += f" + ({coef:.2f} * {feature})" print(equation) Regression Equation: Construction_Cost = -9.64 + (49.81 * Building_Height) + (10.33 * Material_Quality_Index) + (0.53 * Labor_Cost) + (20.20 * Concrete_Strength) + (30.14 * Foundation_Depth) In [209... max_coef_index = np.argmax(np.abs(coefficients)) highest_impact_variable = feature_names[max_coef_index] print(f"The variable with the highest impact on Construction Cost is: {highest_impact_variable} ({coefficients[max_coef_index]:.2f})") The variable with the highest impact on Construction Cost is: Building_Height (49.81) In [211... y_pred = model.predict(X_test) r2 = r2_score(y_test, y_pred) mse = mean_squared_error(y_test, y_pred) print(f"R-squared: {r2:.4f}") print(f"Mean Squared Error: {mse:.4f}") R-squared: 0.9998 Mean Squared Error: 113.5044 In [213... plt.figure(figsize=(10,6)) sns.barplot(x=feature_names, y=coefficients, palette='coolwarm') plt.xlabel("Independent Variables") plt.ylabel("Regression Coefficients") plt.title("Feature Impact on Construction Cost") plt.xticks(rotation=45) plt.show() C:\Users\gundr\AppData\Local\Temp\ipykernel_12256\1071397503.py:2: FutureWarning: Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

Independent Variables

In []:

In []: