Diplomski seminar

Modeliranje pogojne neodvisnosti s pomočjo grafov

Jošt Gojkovič

Fakulteta za matematiko in fiziko

12. 12. 2022

Grafično modeliranje

Grafično modeliranje se uporablja v:

- statistični fiziki
- genetiki
- še kej

G(V, E) enostaven graf, torej nima večkratnih povezav in zank. Večinoma bodo vozlišča označena, to je bodo razdeljena v 2 skupini.

Množica vozlišč ima obliko

$$V = \Delta \cup \Gamma$$
 z $\Delta \cap \Gamma = \emptyset$

Pravimo, da so vozlišča v Δ diskretna, v Γ pa zvezna.

• Grafi z označenimi vozlišči so označeni grafi

3/6

- Poln graf je graf, v katerem vsaka povezava povezuje par njegovih točk, oziroma kjer so vse točke povezane vsaka z vsako.
- Če je $A \subseteq V$, A inducira podgraf $G_A = (A, E_A)$, kjer je $E_A = E \cap (A \times A)$ dobljen iz G tako da ohranimo povezave z začetnim in končnim vozliščem v A.
- Podmnožica je polna, če inducira poln podgraf
- Polni podmnožici, ki je maksimalna oziroma se je ne da povečat, pravimo klika

- Če imamo povezavo $\alpha \longrightarrow \beta$, pravimo, da je α starš od β . Množica staršev vozlišča β je označena s $pa(\beta)$.
- Množico sosedov vozlišča α označimo z $ne(\alpha)$
- Oznaki pa(A) in ne(A) pa označujeta množico staršev in sosedov vozlišč v A, katera sama niso v A:

$$pa(A) = \bigcup_{\alpha \in A} pa(\alpha) \setminus A$$
$$ne(A) = \bigcup_{\alpha \in A} pa(\alpha) \setminus A$$

- $Meja\ bd(A)$ podmnožice vozlišč A je množica vozlišč v $V\setminus A$, ki so starši ali sosedi vozliščem v A. Torej $bd(A)=pa(A)\cup ne(A)$.
- *Zaprtje* množice *A* je $cl(A) = A \cup bd(A)$

5/6

- Množica $C \subseteq V$ je (α, β) -seperator, če vse poti od α do β sekajo množico C.
- $C \subseteq V$ separira A od B, če je (α, β) -seperator za vse $\alpha \in A$ in $\beta \in B$

Definicija

Trojica (A, B, C) disjunktnih podmnožic vozlišč neusmerjenega označenega garfa G tvori močno dekompozicijo grafa G, če je $V = A \cup B \cup C$ in velja naslednje:

- ① C separira A od B
- C je polna podmnožica množice V
- - Če pri enakih predpostavkah veljata samo 1. in 2. pogoj, potem trojica (A, B, C) tvori šibko dekompozicijo.
 - Pravimo, da (A, B, C) dekompozira G v komponenti $G_{A \cup C}$ in $G_{B \cup C}$