

Laurea magistrale in Ingegneria e scienze informatiche

Docente:

Domenico Daniele Bloisi

See-Think-Act Cycle

Sensori propriocettivi/etorocettivi

- Sensori propriocettivi (proprioceptive sensors)
 servono a valutare lo stato interno del robot
 Es. angoli dei giunti, velocità delle ruote, carica delle batterie,
 accelerazione...
- Sensori esterocettivi (exteroceptive sensors)
 acquisiscono informazioni che provengono dall'ambiente operativo
 del robot
 - Es. luminosità, misure di distanza, suoni...

Le misure effettuate con sensori eterocettivi sono interpretate dal robot per estrarre feature di interesse dell'ambiente (per es. presenza di oggetti di interesse, ostacoli)

Sensori passivi/attivi

Sensori passivi

Misurano l'energia dell'ambiente che viene catturata dal sensore

Es. termometri, microfoni, telecamere

Sensori attivi

Emettono energia nell'ambiente e misurano la reazione che viene generata dall'ambiente

Es. Kinect-like depth cameras, laser rangefinders

I sensori attivi offrono generalmente prestazioni più elevate, ma possono soffrire di interferenze

Sensori – NAO robot

http://doc.aldebaran.com/2-4/family/nao_h25/index_h25.html

Sensori – Turtlebot3

360 Laser Distance Sensor LDS-01

Intel® Realsense™ R200

OpenCR1.0

Gyroscope 3Axis, Accelerometer 3Axis, Magnetometer 3Axis

https://turtlebot3.readthedocs.io/en/latest/hardware.html

Rumore

Interpretare e capire lo stato dell'ambiente attraverso i sensori di percezione è un compito difficile

Ambiente dinamico

Le misure cambiano nel tempo

Rumore

Tutti i sensori sono soggetti a rumore (per es. dovuto a interferenze elettroniche o fluttuazioni aleatorie)

Può essere utile fondere informazioni provenienti da più sensori

Encoder

Un encoder è un dispositivo elettromeccanico in grado di convertire la posizione lineare o angolare di un asse in un segnale analogico o digitale, facendone quindi un trasduttore di posizione lineare/angolare

encoder ottico

Rotary Encoder

In un encoder rotazionale la posizione angolare di un asse rotante viene trasformata in un segnale analogico o digitale

- Assoluto

 indica la posizione corrente dell'asse
 rotante
- fornisce informazioni sul movimento dell'asse che sono processate separatamente per ottenere altre informazioni quali velocità, distanza e posizione

https://www.teachengineering.org/activities/view/nyu_encoders_activity1

Absolute Encoder

DYNAMIXEL XM430-W210-T

Incremental Encoder

- Nell'encoder in quadratura sono presenti due coppie emettitore/ricevitore traslate tra loro di 90 gradi
- Le due onde quadre così generate possono essere usate per ottenere la posizione relativa dell'asse rotante
- La direzione di rotazione è data dall'ordine con cui si verificano le salite delle onde quadre

State	Ch A	Ch B
s_I	high	low
s_2	high	high
53	low	high
s ₄	low	low

Risoluzione

- Le misure fornite dagli encoder possono essere integrate per ottenere una stima della posizione (odometria)
- Gli encoder ottici sono sensori propriocettivi → la stima della posizione è migliore nel body frame, mentre quando viene usata per la localizzazione è necessario effettuare delle correzioni
- La risoluzione è misurata in cycles per revolution (CPR)
- Risoluzioni tipiche: da 64 a 2048 incrementi per revolution

Linear Encoder

http://content.heidenhain.de/presentation/elearning/EN/index/ 1271254390233/1271254390241/1271254390244/1271254390 244.html

Sensori di Heading

- Giroscopio, accelerometro (propriocettivi)
- Bussola, inclinometro (esterocettivi)
- Servono a determinare l'orientazione e l'inclinazione del robot
- Le misure prodotte dai sensori di heading, insieme ad informazioni sulla velocità, possono essere usate per ottenere una stima della posizione
- Questa procedura prende il nome di dead reckoning e deriva dalla navigazione marittima

Giroscopio

 I giroscopi sono sensori di heading che conservano la propria orientazione in relazione ad un sistema di riferimento fisso

 Forniscono una misura assoluta per l'heading di un sistema mobile

Giroscopio meccanico a due assi

Inertial measurement unit (IMU)

- Un IMU è un dispositivo per stimare la posizione relativa, la velocità e l'accelerazione di un sistema mobile
- Contiene al proprio interno giroscopi e accelerometri
- Fornisce stima per la robot pose con 6 DOF: posizione (x, y, z) e orientazione (roll, pitch, yaw)

Ground Beacons

Global Positioning System (GPS)

Multipath

Satellite coverage

Multipath problem

IntCatch @ Ecomondo 2017

https://youtu.be/gXWxykYZP2g

Sensori di distanza

Sonar

- Laser range finder
- Time of Flight Camera

I sensori di distanza basati sul time-of-flight sfruttano la velocità di propagazione del suono o delle onde elettromagnetiche per calcolare la distanza

Laser Range Finder

laser range sensor with rotating mirror

Laurea magistrale in Ingegneria e scienze informatiche

Docente:

Domenico Daniele Bloisi

