Numpy Syntaxes

```
In [1]: import numpy as np
```

1. Creating Numpy Array 1d and 2d

```
In [2]: |list1 = [2,4,6,8,10]
 In [3]: list1
 Out[3]: [2, 4, 6, 8, 10]
 In [4]: |arr1= np.array(list1)
 In [5]: arr1
 Out[5]: array([ 2, 4, 6, 8, 10])
 In [6]: type(list1)
 Out[6]: list
 In [7]: |type(arr1)
 Out[7]: numpy.ndarray
 In [8]: #main use of numpy operation is to use vector operation
         arr1 + 2
 Out[8]: array([ 4, 6, 8, 10, 12])
 In [9]: list2 = [[0,6,9],[2,3,4]]
In [10]: list2
Out[10]: [[0, 6, 9], [2, 3, 4]]
In [11]: | arr2 = np.array(list2)
In [12]: arr2
Out[12]: array([[0, 6, 9],
                [2, 3, 4]])
In [13]: type(arr2)
Out[13]: numpy.ndarray
In [14]: | arr3 = np.array(arr2,dtype="float")
```

```
In [15]: arr3
Out[15]: array([[0., 6., 9.],
                [2., 3., 4.]])
In [16]: | arr4 = np.array(list2,dtype="float")
In [17]: arr4
Out[17]: array([[0., 6., 9.],
                [2., 3., 4.]])
In [18]: | arr5 = np.array(arr3,dtype="bool")
         arr5
Out[18]: array([[False, True,
                                True],
                [ True, True,
                                True]])
In [19]: |#converting float array to int
         arr6 = np.array(arr4,dtype="int")
         arr6
Out[19]: array([[0, 6, 9],
                [2, 3, 4]])
In [20]: #converting float array to int
         arr6 = arr4.astype('int')
         arr6
Out[20]: array([[0, 6, 9],
                [2, 3, 4]])
In [21]: #creating object array
         list7 = [2,5,6.7,True,'g',"sai"]
         arr7 = np.array(list7,dtype="object")
         arr7
Out[21]: array([2, 5, 6.7, True, 'g', 'sai'], dtype=object)
In [22]: #converting numpy array to list
         list8 = arr7.tolist()
         list8
Out[22]: [2, 5, 6.7, True, 'g', 'sai']
         2.Array Dimensions
```

```
In [24]: #shape of array
         arr8.shape
Out[24]: (2, 3)
In [25]: #size of array
         arr8.size
Out[25]: 6
In [26]: #dtype of array
         arr8.dtype
Out[26]: dtype('float64')
In [27]: #dimensions of an array
         arr8.ndim
Out[27]: 2
         3. Reversing Rows & Columns
In [28]: arr8
Out[28]: array([[0., 6., 9.],
                [2., 3., 4.]])
In [29]: #reversing rows
         arr8[::-1]
Out[29]: array([[2., 3., 4.],
                [0., 6., 9.]]
In [30]: #reversing rows and columns
         arr8[::-1,::-1]
Out[30]: array([[4., 3., 2.],
                [9., 6., 0.]])
In [31]: #reversing columns
         arr8[:,::-1]
```

4.Specific Element Extraction

[4., 3., 2.]])

Out[31]: array([[9., 6., 0.],

```
In [33]: arr8[0, :]
Out[33]: array([0., 6., 9.])
In [34]: arr8[:1,:]
Out[34]: array([[0., 6., 9.]])
In [35]: | arr8[:-1,:]
Out[35]: array([[0., 6., 9.]])
In [36]: arr8[:,:-1]
Out[36]: array([[0., 6.],
                [2., 3.]])
In [37]: arr8[:,-1]
Out[37]: array([9., 4.])
In [38]: arr8[:,1:3]
Out[38]: array([[6., 9.],
                [3., 4.]])
In [39]: # : everything
         # :-1 everything except last
         # :x everyting from 0 to x-1
         # x specific row x or column x
         # x:y slicing from x to y-1
         5.Basic Statistics
In [40]: arr8
```

```
In [44]: #mean
         arr8.mean()
Out[44]: 4.0
In [45]: #mean
         np.average(arr8)
Out[45]: 4.0
In [46]: #median
         np.median(arr8)
Out[46]: 3.5
In [47]: #mode
         from scipy import stats as s
         s.mode(arr8)
Out[47]: ModeResult(mode=array([[0., 3., 4.]]), count=array([[1, 1, 1]]))
In [48]: arr8.var()
Out[48]: 8.3333333333333334
In [49]: arr8.std()
Out[49]: 2.886751345948129
         6.Reshaping and Flattening
In [50]: arr8
Out[50]: array([[0., 6., 9.],
                [2., 3., 4.]]
In [51]: arr8.shape
Out[51]: (2, 3)
In [52]: arr8.reshape(1,6)
Out[52]: array([[0., 6., 9., 2., 3., 4.]])
In [53]: arr8.reshape(6,1)
Out[53]: array([[0.],
                [6.],
                [9.],
                [2.],
                [3.],
                [4.]])
```

```
In [54]: arr8.reshape(3,2)
Out[54]: array([[0., 6.],
                [9., 2.],
                [3., 4.]])
In [55]: arr9 = arr8.flatten()
In [56]: arr9.ndim
Out[56]: 1
         7. Random Arrays and Sequences
In [57]: |np.arange(10)
Out[57]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [58]: np.arange(2,10)
Out[58]: array([2, 3, 4, 5, 6, 7, 8, 9])
In [59]: # np.arange(start, end+1 , step_size)
         np.arange(2,10,3)
Out[59]: array([2, 5, 8])
In [60]: #array in descending order
         np.arange(10,0,-1)
Out[60]: array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1])
In [61]: #it automatically caluculates stepsize by averaging
         np.linspace(1,10,5)
Out[61]: array([ 1. , 3.25, 5.5 , 7.75, 10. ])
In [62]: #creating arrays with 0 as default value
         #np.zeros([i,j,...])
```

8. Unique items and Count

[0., 0.]])

np.zeros([2,2])

Out[62]: array([[0., 0.],

```
In [63]: arr10 = [[2,4,6,8,10],
                  [4,6,8,10,12],
                  [6,8,10,12,14],
                  [8,10,12,14,16],
                  [10,12,14,16,18]
         arr10
Out[63]: [[2, 4, 6, 8, 10],
          [4, 6, 8, 10, 12],
          [6, 8, 10, 12, 14],
          [8, 10, 12, 14, 16],
          [10, 12, 14, 16, 18]]
In [64]: | arr11 = np.array(arr10)
         arr11
Out[64]: array([[ 2, 4, 6, 8, 10],
                [4, 6, 8, 10, 12],
                [ 6, 8, 10, 12, 14],
                [ 8, 10, 12, 14, 16],
                [10, 12, 14, 16, 18]])
In [65]: | u_val,count= np.unique(arr11,return_counts=True)
In [66]: u_val
Out[66]: array([ 2, 4, 6, 8, 10, 12, 14, 16, 18])
In [67]: count
Out[67]: array([1, 2, 3, 4, 5, 4, 3, 2, 1], dtype=int64)
In [68]: | u val= np.unique(arr10)
In [69]: u_val
Out[69]: array([ 2, 4, 6, 8, 10, 12, 14, 16, 18])
         Pandas Syntaxes
In [70]: import pandas as pd
         import numpy as np
```

1.Create DataFrame

```
In [71]: data = {
             'roll_no' : [1,2,3,4,5],
             'course_id' : ['a','b','c','b','a'],
              'marks': [85,89,85,74,96],
         }
         data
Out[71]: {'roll_no': [1, 2, 3, 4, 5],
          'course_id': ['a', 'b', 'c', 'b', 'a'],
          'marks': [85, 89, 85, 74, 96]}
In [72]: df = pd.DataFrame(data)
         df
Out[72]:
```

	roll_no	course_id	marks
0	1	а	85
1	2	b	89
2	3	С	85
3	4	b	74
4	5	а	96

2.Setting Index

```
In [73]: | df1 = pd.DataFrame(data,index=['p','q','r','s','t'])
```

Out[73]:

	roll_no	course_id	marks
р	1	а	85
q	2	b	89
r	3	С	85
s	4	b	74
t	5	а	96

3.Extracting Info

```
In [74]: #Row wise extraction
         df1.loc['s']
Out[74]: roll_no
                       4
```

course id b marks 74 Name: s, dtype: object

```
In [75]: #column wise extraction
          # df1.iloc[ri:rj , ci:cj]
          df1.iloc[:,-1]
Out[75]: p
               85
               89
               85
          s
               74
          t
               96
          Name: marks, dtype: int64
In [76]: df1.iloc[:]
Out[76]:
              roll_no course_id marks
                  1
           р
                            а
                                  85
                  2
                            b
                                  89
           q
                  3
                                  85
                  4
                            b
                                  74
           t
                  5
                                  96
In [77]: df1.iloc[0:3]
Out[77]:
              roll_no course_id marks
                  1
                                  85
           p
                            а
                  2
                            b
                                  89
           q
                  3
                                  85
In [78]: df1.iloc[:,2]
Out[78]: p
               85
               89
               85
          s
               74
               96
          Name: marks, dtype: int64
In [79]: df1.iloc[:,1:3]
Out[79]:
              course_id marks
                          85
           р
                    b
                          89
           q
                     С
                          85
                    b
                          74
```

96

```
In [80]: df1.iloc[:,[0,2]]
Out[80]:
              roll_no marks
                  1
                        85
           р
           q
                  2
                        89
                  3
                        85
                        74
                  5
           t
                        96
In [81]: df1.iloc[[1,3],:]
Out[81]:
              roll_no course_id marks
                  2
                            b
                                  89
           q
                  4
                                  74
In [82]: df1.iloc[[1,4],[0,2]]
Out[82]:
              roll_no marks
                  2
                        89
           q
           t
                  5
                        96
In [83]: df1.iloc[4,2]
Out[83]: 96
```

4.Loading Data from CSV or Excel Sheet

In [84]: df = pd.read_csv('C:\\Users\\G.SAI KRISHNA\\Desktop\\ML_Projects\\ML_GFG\\iris_dataset.csv

In [85]: df

Out[85]:

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

In [86]: df.head()

Out[86]:

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

In [87]: df.tail()

Out[87]:

	sepal_length	sepal_width	petal_length	petal_width
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

In [88]: df.head(15)

Out[88]:

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4
6	4.6	3.4	1.4	0.3
7	5.0	3.4	1.5	0.2
8	4.4	2.9	1.4	0.2
9	4.9	3.1	1.5	0.1
10	5.4	3.7	1.5	0.2
11	4.8	3.4	1.6	0.2
12	4.8	3.0	1.4	0.1
13	4.3	3.0	1.1	0.1
14	5.8	4.0	1.2	0.2

5.Data Info

In [89]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	sepal_width	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64

dtypes: float64(4)
memory usage: 4.8 KB

6.Data Description

```
In [90]: df.describe()
```

Out[90]:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

7.Data Selection

1

2

3

4.9

4.7

4.6

5.0

3.0

3.2

3.1

3.6

```
In [91]: df['sepal_length'][0:5]
Out[91]: 0
               5.1
               4.9
          1
               4.7
          3
               4.6
               5.0
          Name: sepal_length, dtype: float64
In [92]: df.iloc[0:5,0]
Out[92]: 0
               5.1
          1
               4.9
               4.7
               4.6
               5.0
          Name: sepal_length, dtype: float64
In [93]: df[['sepal_length','sepal_width']][:5]
Out[93]:
             sepal_length sepal_width
          0
                     5.1
                                3.5
```

```
In [94]: df.iloc[:5,0:2]
```

Out[94]:

	sepal_length	sepal_width
0	5.1	3.5
1	4.9	3.0
2	4.7	3.2
3	4.6	3.1
4	5.0	3.6

8. Missing Values - Null Values

Out[96]:

	roll_no	course_id	marks
0	1	а	NaN
1	2	b	89.0
2	3	С	85.0
3	4	b	74.0
4	5	а	96.0

```
In [97]: #Check whether a cell is null or not
    df3.isnull()
```

Out[97]:

	roll_no	course_id	marks
0	False	False	True
1	False	False	False
2	False	False	False
3	False	False	False
4	False	False	False

```
In [99]: #Filling null values with a default value
df4 = df3.fillna(0)
df4
```

Out[99]:

	roll_no	course_id	marks
0	1	а	0.0
1	2	b	89.0
2	3	С	85.0
3	4	b	74.0
4	5	а	96.0

dtype: int64

```
In [100]: #Dropping null values(Entire row will be deleted)
    df5=df3.dropna()
    df5
```

Out[100]:

	roll_no	course_ia	marks
1	2	b	89.0
2	3	С	85.0
3	4	b	74.0
4	5	а	96.0

```
In [101]: df5 = df3.dropna(axis=0)
df5
```

Out[101]:

	roll_no	course_id	marks
1	2	b	89.0
2	3	С	85.0
3	4	b	74.0
4	5	а	96.0

```
In [102]: df5 = df3.dropna(axis=1)
df5
```

Out[102]:

	roll_no	course_id
0	1	а
1	2	b
2	3	С
3	4	b
4	5	а

```
In [103]: #Creating data with not null values
df6 = pd.notnull(df3["marks"])
df6
```

```
Out[103]: 0 False
1 True
2 True
3 True
4 True
Name: marks, dtype: bool
```

9.Statistics

```
In [104]: data = {
        'roll_no' : [1,2,3,4,5],
        'course_id' : ['a','b','c','b','a'],
        'marks' : [76,89,85,74,96],
    }
    data
```

```
In [105]: df7 = pd.DataFrame(data)
df7
```

Out[105]:

	roll_no	course_id	marks
0	1	а	76
1	2	b	89
2	3	С	85
3	4	b	74
4	5	а	96

```
In [106]:
          #Sum
          df7["marks"].sum()
Out[106]: 420
In [107]: | #Average
          df7["marks"].mean()
Out[107]: 84.0
In [108]: #Cumulative Sum
          df7["marks"].cumsum()
Out[108]: 0
                 76
                165
           2
                250
                324
                420
          Name: marks, dtype: int64
In [109]: #Count
          df7["marks"].count()
Out[109]: 5
In [110]: | #Minimum
          df7["marks"].min()
Out[110]: 74
In [111]: #Maximum
          df7["marks"].max()
Out[111]: 96
In [112]: #Variance
          df7["marks"].var()
Out[112]: 83.5
In [113]: #Standard Deviation
          df7["marks"].std()
Out[113]: 9.137833441248533
In [114]:
          #Correlation
          df7.corr()
Out[114]:
                   roll_no
                           marks
           roll_no 1.00000 0.43258
```

Matplotlib Graphs

marks 0.43258 1.00000

```
In [115]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
```

1.Line Plot

```
In [116]: x = [2,5,7,-8,9]
y = [3,-1,4,7,1]
plt.plot(x,y)
plt.title("Line Graph")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show
```

Out[116]: <function matplotlib.pyplot.show(*args, **kw)>


```
In [117]: x = [2,5,7,-8,9]
y = [3,-1,4,7,1]
plt.plot(x,y)
plt.plot(x,y,"*")
plt.title("Line Graph")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show
```

Out[117]: <function matplotlib.pyplot.show(*args, **kw)>

Out[118]: <function matplotlib.pyplot.show(*args, **kw)>


```
In [119]: x = np.arange(0,4*np.pi,0.1)
y = np.cos(x)
plt.plot(x,y)
plt.plot(x,y,"*")
plt.title("Cose Graph")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show
```

Out[119]: <function matplotlib.pyplot.show(*args, **kw)>

2.Scatter Graph

```
In [120]: x = [2,5,7,-8,9]
y = [3,-1,4,7,1]
plt.scatter(x,y)
plt.title("Scatter Graph")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show
```

Out[120]: <function matplotlib.pyplot.show(*args, **kw)>

3.Compare Two Graphs

```
In [121]: x1 = [2,5,7,-8,9]
y1 = [3,-1,4,7,1]

x2 = [1,5,9,2,6]
y2 = [5,7,1,6,3]

plt.plot(x1,y1,color='g',linewidth=4)
plt.plot(x2,y2,color='r',linewidth=4)
plt.title("Scatter Graph")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show
```

Out[121]: <function matplotlib.pyplot.show(*args, **kw)>


```
In [122]: #Annotating the graph
    x1 = [2,5,7,-8,9]
    y1 = [3,-1,4,7,1]

    x2 = [1,5,9,2,6]
    y2 = [5,7,1,6,3]

    plt.plot(x1,y1,color='g',linewidth=4)
    plt.plot(x2,y2,color='r',linewidth=4)
    plt.title("Scatter Graph")
    plt.xlabel("X-axis")
    plt.ylabel("Y-axis")

plt.annotate(xy=[2,3],s='FirstLine')
    plt.annotate(xy=[1,5],s='SecondLine')

plt.legend(['FirstLine','SecondLine'],loc=3)

plt.show
```

Out[122]: <function matplotlib.pyplot.show(*args, **kw)>

4. Vertical Bar Graph

```
In [123]: x1 = [2,5,7,-8,9]
y1 = [3,-1,4,7,1]

x2 = [1,5,9,2,6]
y2 = [5,7,1,6,3]
plt.bar(x1,y1,color='g',linewidth=4)
plt.bar(x2,y2,color='r',linewidth=4)
plt.title("Vertical Bar Graph")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show
```

Out[123]: <function matplotlib.pyplot.show(*args, **kw)>

5.Horizontal Bar Graph

```
In [124]: x1 = [2,5,7,-8,9]
y1 = [3,-1,4,7,1]

x2 = [1,5,9,2,6]
y2 = [5,7,1,6,3]
plt.barh(x1,y1,color='g',linewidth=4)
plt.barh(x2,y2,color='r',linewidth=4)
plt.title("Vertical Bar Graph")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show
```

Out[124]: <function matplotlib.pyplot.show(*args, **kw)>

6.Bubble Graph

```
In [125]: x = [2,5,7,-8,9]
y = [3,-1,4,7,1]
plt.scatter(x,y,s=np.random.rand(5)*1000,c=np.random.rand(5))
plt.title("Bubble Graph")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show
```

Out[125]: <function matplotlib.pyplot.show(*args, **kw)>

7.Pie Chart

```
In [126]: x = [2,5,7,8,9]
    lb = ['a','b','c','d','e']
    ex = [0,0.1,0.2,0,0]
    plt.pie(x,labels=lb,explode=ex,shadow=True)
    plt.show
```

Out[126]: <function matplotlib.pyplot.show(*args, **kw)>

Handling Categorical Data

```
import numpy as np
In [128]:
          data=pd.read_csv("C:\\Users\\G.SAI KRISHNA\\Desktop\\ML_Projects\\ML_GFG\\employee_data.csv
           data
Out[128]:
               Emploee_ID Gender Remarks
             0
                       45
                             Male
                                      Nice
             1
                       78
                           Female
                                     Good
             2
                       56
                           Female
                                     Great
             3
                       12
                             Male
                                     Great
                        7
                           Female
                                      Nice
             5
                       68
                           Female
                                     Great
             6
                       23
                             Male
                                     Good
             7
                       45
                           Female
                                      Nice
             8
                       89
                             Male
                                     Great
                       75
                           Female
                                      Nice
            10
                       47
                                     Good
                           Female
            11
                       62
                             Male
                                      Nice
In [129]: data.count()
Out[129]: Emploee_ID
                          12
           Gender
                          12
           Remarks
           dtype: int64
           1. Checking labels in the column
In [130]: data["Remarks"].unique()
Out[130]: array(['Nice', 'Good', 'Great'], dtype=object)
In [131]: | data["Gender"].unique()
Out[131]: array(['Male', 'Female'], dtype=object)
           2. Checking count of each label
In [132]: | data["Remarks"].value_counts()
```

In [127]:

Out[132]: Nice

Great

Good

5

4

3

Name: Remarks, dtype: int64

import pandas as pd

Approach 1 - Label Encoding

Label Encoder encodes labels with values between 0 and number_of_classes-1

```
In [133]: | from sklearn.preprocessing import LabelEncoder
           label_encoder_X = LabelEncoder()
In [134]: label_encoded_data = label_encoder_X.fit_transform(data['Remarks'])
In [135]:
          label_encoded_data = pd.DataFrame(data = label_encoded_data,columns=['Remarks'])
           label_encoded_data
Out[135]:
               Remarks
                     2
            0
            1
                     0
            2
                     1
            3
                     1
                     2
                     1
                     0
            7
                     2
            8
                     1
            9
                     2
            10
                     0
            11
                     2
In [136]: label_encoded_data['Remarks'].unique()
Out[136]: array([2, 0, 1])
```

Approach 2 - One Hot Encoding

Binary Labelling with 1 at position where the label is present else 0

```
In [137]: #Binary Transformation
    one_hot_encoded_data = pd.get_dummies(data,columns=['Remarks','Gender'])
    one_hot_encoded_data
```

Out[137]:

	Emploee_ID	Remarks_Good	Remarks_Great	Remarks_Nice	Gender_Female	Gender_Male
0	45	0	0	1	0	1
1	78	1	0	0	1	0
2	56	0	1	0	1	0
3	12	0	1	0	0	1
4	7	0	0	1	1	0
5	68	0	1	0	1	0
6	23	1	0	0	0	1
7	45	0	0	1	1	0
8	89	0	1	0	0	1
9	75	0	0	1	1	0
10	47	1	0	0	1	0
11	62	0	0	1	0	1

In [138]: data

Out[138]:

	Emploee_ID	Gender	Remarks
0	45	Male	Nice
1	78	Female	Good
2	56	Female	Great
3	12	Male	Great
4	7	Female	Nice
5	68	Female	Great
6	23	Male	Good
7	45	Female	Nice
8	89	Male	Great
9	75	Female	Nice
10	47	Female	Good
11	62	Male	Nice

Data Scaling

```
Out[140]:
                 longitude
                            latitude
                                     housing_median_age total_rooms total_bedrooms
                                                                                           population
                                                                                                        households median_incor
              0
                   -122.23
                               37.88
                                                                   880.0
                                                                                                 322.0
                                                                                                                              8.32
                                                      41.0
                                                                                    129.0
                                                                                                              126.0
              1
                   -122.22
                               37.86
                                                      21.0
                                                                  7099.0
                                                                                   1106.0
                                                                                                2401.0
                                                                                                             1138.0
                                                                                                                              8.30
              2
                   -122.24
                               37.85
                                                      52.0
                                                                  1467.0
                                                                                    190.0
                                                                                                 496.0
                                                                                                              177.0
                                                                                                                              7.25
              3
                   -122.25
                               37.85
                                                      52.0
                                                                  1274.0
                                                                                    235.0
                                                                                                 558.0
                                                                                                              219.0
                                                                                                                              5.64
              4
                   -122.25
                               37.85
                                                      52.0
                                                                                    280.0
                                                                                                 565.0
                                                                                                              259.0
                                                                                                                              3.84
                                                                  1627.0
              5
                   -122.25
                               37.85
                                                      52.0
                                                                   919.0
                                                                                    213.0
                                                                                                 413.0
                                                                                                              193.0
                                                                                                                              4.03
              6
                   -122.25
                               37.84
                                                      52.0
                                                                                    489.0
                                                                                                1094.0
                                                                                                              514.0
                                                                                                                              3.65
                                                                  2535.0
              7
                   -122.25
                               37.84
                                                      52.0
                                                                  3104.0
                                                                                    687.0
                                                                                                1157.0
                                                                                                              647.0
                                                                                                                              3.12
              8
                   -122.26
                               37.84
                                                      42.0
                                                                  2555.0
                                                                                    665.0
                                                                                                1206.0
                                                                                                              595.0
                                                                                                                              2.08
                                                      52.0
                                                                                    707.0
                                                                                                                              3.69
              9
                   -122.25
                               37.84
                                                                  3549.0
                                                                                                1551.0
                                                                                                              714.0
             from sklearn.preprocessing import MinMaxScaler
In [141]:
```

As we can observe the scaler is giving error so we need to preprocess the data first

Data Preprocessing: Drop Categorical Data, Drop rows with null values

In [140]: data.head(10)

In [142]:

#scaler = MinMaxScaler()

#scaler.fit(data)

```
In [143]: data = data.drop(data.columns[[9]],axis=1)
    data = data.dropna(axis=0)

In [144]: scaler = MinMaxScaler()
    scaler.fit(data)

Out[144]: MinMaxScaler()
```

Out[145]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median
0	0.211155	0.567481	0.784314	0.022331	0.019863	0.008941	0.020556	
1	0.212151	0.565356	0.392157	0.180503	0.171477	0.067210	0.186976	
2	0.210159	0.564293	1.000000	0.037260	0.029330	0.013818	0.028943	
3	0.209163	0.564293	1.000000	0.032352	0.036313	0.015555	0.035849	
4	0.209163	0.564293	1.000000	0.041330	0.043296	0.015752	0.042427	
20635	0.324701	0.737513	0.470588	0.042296	0.057883	0.023599	0.054103	1
20636	0.312749	0.738576	0.333333	0.017676	0.023122	0.009894	0.018582	1
20637	0.311753	0.732200	0.313725	0.057277	0.075109	0.028140	0.071041	
20638	0.301793	0.732200	0.333333	0.047256	0.063315	0.020684	0.057227	
20639	0.309761	0.725824	0.294118	0.070782	0.095438	0.038790	0.086992	

20433 rows × 9 columns

In [146]: | scaled_data.describe()

Out[146]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	househ
count	20433.000000	20433.000000	20433.000000	20433.000000	20433.000000	20433.000000	20433.00
mean	0.476027	0.328716	0.541825	0.067005	0.083313	0.039854	0.08
std	0.199560	0.227030	0.246898	0.055579	0.065392	0.031761	0.06
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00
25%	0.253984	0.147715	0.333333	0.036828	0.045779	0.021974	0.04
50%	0.583665	0.182784	0.549020	0.054046	0.067349	0.032596	0.06
75%	0.631474	0.550478	0.705882	0.079887	0.100248	0.048180	0.09
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.00
4							>

Data Splitting

Out[147]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_incor
0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.32
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.30
2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.25
3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.64
4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.84

In [148]: data.describe()

Out[148]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	househ
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.00
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.53
std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.32
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.00
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000	280.00
50%	-118.490000	34.260000	29.000000	2127.000000 435.000000		1166.000000	409.00
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000	605.00
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.00

In [149]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	longitude	20640 non-null	float64
1	latitude	20640 non-null	float64
2	<pre>housing_median_age</pre>	20640 non-null	float64
3	total_rooms	20640 non-null	float64
4	total_bedrooms	20433 non-null	float64
5	population	20640 non-null	float64
6	households	20640 non-null	float64
7	median_income	20640 non-null	float64
8	<pre>median_house_value</pre>	20640 non-null	float64
9	ocean_proximity	20640 non-null	object
	(1 (64/6) 1 1	-+/11	

dtypes: float64(9), object(1)

memory usage: 1.6+ MB

In [150]: | data['total_bedrooms'] = data['total_bedrooms'].fillna(data['total_bedrooms'].mean())

```
<class 'pandas.core.frame.DataFrame'>
           RangeIndex: 20640 entries, 0 to 20639
           Data columns (total 10 columns):
                                      Non-Null Count
                Column
                                                       Dtype
           - - -
            0
                longitude
                                      20640 non-null
                                                       float64
                latitude
                                      20640 non-null float64
            1
            2
                housing_median_age
                                      20640 non-null
                                                       float64
            3
                total rooms
                                      20640 non-null float64
                total bedrooms
            4
                                      20640 non-null float64
            5
                population
                                      20640 non-null float64
            6
                households
                                      20640 non-null float64
            7
                median income
                                      20640 non-null
                                                      float64
                median house value
                                     20640 non-null float64
                ocean proximity
                                                       object
                                      20640 non-null
           dtypes: float64(9), object(1)
           memory usage: 1.6+ MB
In [152]: data.shape
Out[152]: (20640, 10)
           Approach 1 - Manual splitting through Slicing
           Splitting the data to input and output data
In [153]: | x = data.drop('median_house value',axis=1)
           x.head()
Out[153]:
              longitude latitude housing_median_age total_rooms total_bedrooms population households median_incor
            0
                -122.23
                         37.88
                                             41.0
                                                        880.0
                                                                      129.0
                                                                                322.0
                                                                                            126.0
                                                                                                         8.32
            1
                -122.22
                         37.86
                                             21.0
                                                       7099.0
                                                                     1106.0
                                                                               2401.0
                                                                                           1138.0
                                                                                                         8.30
            2
                -122.24
                         37.85
                                             52.0
                                                       1467.0
                                                                      190.0
                                                                                496.0
                                                                                            177.0
                                                                                                         7.25
            3
                -122.25
                         37.85
                                             52.0
                                                       1274.0
                                                                      235.0
                                                                                558.0
                                                                                            219.0
                                                                                                         5.64
            4
                -122.25
                         37.85
                                             52.0
                                                       1627.0
                                                                      280.0
                                                                                565.0
                                                                                            259.0
                                                                                                         3.84
In [154]:
           y = data['median_house_value']
           y.head()
Out[154]: 0
                452600.0
                358500.0
           1
```

In [151]: data.info()

2

3

352100.0

341300.0 342200.0

Name: median_house_value, dtype: float64

```
In [155]: x.shape
Out[155]: (20640, 9)
In [156]: y.shape
Out[156]: (20640,)
```

Further split the input and output into train data and test data

```
In [157]: x_train = x.iloc[0:20000, :]
x_test = x.iloc[20000:,:]

In [158]: y_train = y.iloc[0:20000]
y_test = y.iloc[20000:]
```

Approach 2 - Splitting data using sklearn

Everything is automated

```
In [159]: from sklearn.model_selection import train_test_split
In [160]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2)
```

Handling Missing Values

Out[161]:

	Unnamed: 0	Suburb	Address	Rooms	Туре	Price	Method	SellerG	Date	Distance	 Bathr
0	1	Abbotsford	85 Turner St	2	h	1480000.0	S	Biggin	3/12/2016	2.5	
1	2	Abbotsford	25 Bloomburg St	2	h	1035000.0	S	Biggin	4/02/2016	2.5	
2	4	Abbotsford	5 Charles St	3	h	1465000.0	SP	Biggin	4/03/2017	2.5	
3	5	Abbotsford	40 Federation La	3	h	850000.0	PI	Biggin	4/03/2017	2.5	
4	6	Abbotsford	55a Park St	4	h	1600000.0	VB	Nelson	4/06/2016	2.5	

5 rows × 22 columns

```
In [162]: data.describe()
Out[162]:
                    Unnamed: 0
                                      Rooms
                                                     Price
                                                               Distance
                                                                           Postcode
                                                                                        Bedroom2
                                                                                                      Bathroom
             count 18396.000000
                                18396.000000
                                              1.839600e+04
                                                           18395.000000
                                                                        18395.000000
                                                                                    14927.000000 14925.000000
                   11826.787073
                                    2.935040
                                              1.056697e+06
                                                              10.389986
                                                                         3107.140147
                                                                                         2.913043
             mean
                                                                                                      1.538492
                    6800.710448
                                    0.958202
                                             6.419217e+05
                                                               6.009050
                                                                           95.000995
                                                                                         0.964641
                                                                                                      0.689311
               std
                       1.000000
                                    1.000000
                                             8.500000e+04
                                                               0.000000
                                                                         3000.000000
                                                                                         0.000000
                                                                                                      0.000000
              min
              25%
                    5936.750000
                                    2.000000
                                             6.330000e+05
                                                               6.300000
                                                                         3046.000000
                                                                                         2.000000
                                                                                                      1.000000
              50%
                   11820.500000
                                    3.000000
                                             8.800000e+05
                                                               9.700000
                                                                         3085.000000
                                                                                         3.000000
                                                                                                      1.000000
                                                                                         3.000000
                                                                                                      2.000000
              75%
                   17734.250000
                                    3.000000
                                             1.302000e+06
                                                              13.300000
                                                                         3149.000000
                   23546.000000
                                   12.000000
                                             9.000000e+06
                                                              48.100000
                                                                         3978.000000
                                                                                        20.000000
                                                                                                      8.000000
              max
In [163]: | data.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 18396 entries, 0 to 18395
            Data columns (total 22 columns):
             #
                 Column
                                  Non-Null Count
                                                    Dtype
                                   _____
                                                     ----
            - - -
                 Unnamed: 0
             0
                                  18396 non-null
                                                    int64
             1
                 Suburb
                                  18396 non-null
                                                    object
             2
                 Address
                                  18396 non-null
                                                    object
             3
                 Rooms
                                  18396 non-null
                                                    int64
             4
                                  18396 non-null
                                                    object
                 Type
             5
                 Price
                                  18396 non-null
                                                    float64
             6
                 Method
                                  18396 non-null
                                                    object
             7
                 SellerG
                                  18396 non-null
                                                    object
                                                     object
             8
                                  18396 non-null
                 Date
             9
                                  18395 non-null
                                                    float64
                 Distance
             10
                 Postcode
                                  18395 non-null
                                                    float64
             11
                 Bedroom2
                                  14927 non-null
                                                    float64
             12
                 Bathroom
                                  14925 non-null
                                                    float64
```

float64

float64

float64

float64

object

float64

float64

float64

object

Approach 1 - Dropping Missing Values Column wise

14820 non-null

13603 non-null

7762 non-null

8958 non-null

12233 non-null

15064 non-null

15064 non-null

18395 non-null

Propertycount 18395 non-null

dtypes: float64(12), int64(2), object(8)

13

14

15

16

17

18

19

20

Car

Landsize

YearBuilt

Lattitude

Longtitude

Regionname

memory usage: 3.1+ MB

BuildingArea

CouncilArea

```
In [164]: | temp = data.dropna(axis=1)
           temp.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 18396 entries, 0 to 18395
           Data columns (total 9 columns):
                             Non-Null Count Dtype
            #
                Column
                             -----
            0
                Unnamed: 0 18396 non-null int64
            1
                Suburb
                             18396 non-null object
            2
                             18396 non-null object
                Address
            3
                           18396 non-null int64
                Rooms
            4
                Type 18396 non-null object
Price 18396 non-null float64
Method 18396 non-null object
                Type
                             18396 non-null object
            5
            6
            7
                SellerG
                             18396 non-null
                                              object
                             18396 non-null
                Date
                                              object
           dtypes: float64(1), int64(2), object(6)
           memory usage: 1.3+ MB
```

Approach 2 - Dropping Missing Values Row wise

```
In [165]:
          temp = data.dropna(axis=0)
          temp.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 6196 entries, 1 to 15395
          Data columns (total 22 columns):
                              Non-Null Count Dtype
           #
               Column
                              -----
           0
               Unnamed: 0
                              6196 non-null
                                              int64
           1
               Suburb
                              6196 non-null
                                              object
           2
               Address
                              6196 non-null
                                              object
           3
               Rooms
                              6196 non-null
                                              int64
           4
                              6196 non-null
                                              object
               Type
           5
               Price
                              6196 non-null
                                              float64
           6
               Method
                              6196 non-null
                                              object
           7
                                              object
               SellerG
                              6196 non-null
           8
               Date
                              6196 non-null
                                              object
           9
               Distance
                                              float64
                              6196 non-null
           10
               Postcode
                              6196 non-null
                                              float64
           11
               Bedroom2
                              6196 non-null
                                              float64
           12
               Bathroom
                              6196 non-null
                                              float64
           13
                              6196 non-null
               Car
                                              float64
           14
                              6196 non-null
               Landsize
                                              float64
           15
               BuildingArea
                              6196 non-null
                                              float64
               YearBuilt
CouncilArea
           16
                              6196 non-null
                                              float64
           17
                              6196 non-null
                                              object
           18
               Lattitude
                              6196 non-null
                                              float64
           19
               Longtitude
                              6196 non-null
                                              float64
           20
               Regionname
                                              object
                              6196 non-null
               Propertycount 6196 non-null
                                              float64
          dtypes: float64(12), int64(2), object(8)
          memory usage: 1.1+ MB
```

Approach 3 - Using fillna method

In [166]: cols=['Bathroom','Car','Landsize','BuildingArea'] data[cols].head(10)

Out[166]:

	Bathroom	Car	Landsize	BuildingArea
0	1.0	1.0	202.0	NaN
1	1.0	0.0	156.0	79.0
2	2.0	0.0	134.0	150.0
3	2.0	1.0	94.0	NaN
4	1.0	2.0	120.0	142.0
5	1.0	0.0	181.0	NaN
6	2.0	0.0	245.0	210.0
7	1.0	2.0	256.0	107.0
8	NaN	NaN	NaN	NaN
9	NaN	NaN	NaN	NaN

In [167]: | temp = data[cols].fillna(value = 999) temp.head(10)

Out[167]:

	Bathroom	Car	Landsize	BuildingArea
0	1.0	1.0	202.0	999.0
1	1.0	0.0	156.0	79.0
2	2.0	0.0	134.0	150.0
3	2.0	1.0	94.0	999.0
4	1.0	2.0	120.0	142.0
5	1.0	0.0	181.0	999.0
6	2.0	0.0	245.0	210.0
7	1.0	2.0	256.0	107.0
8	999.0	999.0	999.0	999.0
9	999.0	999.0	999.0	999.0

In [168]: temp.mean()

Out[168]: Bathroom 189.741846 Car 195.497173 Landsize 672.986736

BuildingArea 641.288179

dtype: float64

```
In [169]: temp = data[cols].fillna(value = data[cols].mean())
temp.head(10)
```

Out[169]:

	Bathroom	Car	Landsize	BuildingArea
0	1.000000	1.00000	202.000000	151.220219
1	1.000000	0.00000	156.000000	79.000000
2	2.000000	0.00000	134.000000	150.000000
3	2.000000	1.00000	94.000000	151.220219
4	1.000000	2.00000	120.000000	142.000000
5	1.000000	0.00000	181.000000	151.220219
6	2.000000	0.00000	245.000000	210.000000
7	1.000000	2.00000	256.000000	107.000000
8	1.538492	1.61552	558.116371	151.220219
9	1.538492	1.61552	558.116371	151.220219

```
In [170]: | temp.mean()
```

Out[170]: Bathroom

Bathroom 1.538492 Car 1.615520 Landsize 558.116371 BuildingArea 151.220219

dtype: float64

Approach 4 - Using Imputer

Strategy to handle missing values can be:

- Mean
- Median
- · most frequent

```
In [171]: from sklearn.impute import SimpleImputer
```

```
In [172]: imputer_mean = SimpleImputer(missing_values=np.nan,strategy="mean")
imputer_median = SimpleImputer(missing_values=np.nan,strategy="median")
imputer_mode = SimpleImputer(missing_values=np.nan,strategy="most_frequent")
```

```
In [173]: imputer_data_mean = imputer_mean.fit_transform(data[cols])
   imputer_data_median = imputer_median.fit_transform(data[cols])
   imputer_data_mode = imputer_mode.fit_transform(data[cols])
```

```
In [174]: df_mean = pd.DataFrame(data=imputer_data_mean,columns=cols)
    df_mean.head(10)
```

Out[174]:

	Bathroom	Car	Landsize	BuildingArea
0	1.000000	1.00000	202.000000	151.220219
1	1.000000	0.00000	156.000000	79.000000
2	2.000000	0.00000	134.000000	150.000000
3	2.000000	1.00000	94.000000	151.220219
4	1.000000	2.00000	120.000000	142.000000
5	1.000000	0.00000	181.000000	151.220219
6	2.000000	0.00000	245.000000	210.000000
7	1.000000	2.00000	256.000000	107.000000
8	1.538492	1.61552	558.116371	151.220219
9	1.538492	1.61552	558.116371	151.220219

In [175]: df_median = pd.DataFrame(data=imputer_data_median,columns=cols)
 df_median.head(10)

Out[175]:

	Bathroom	Car	Landsize	BuildingArea
0	1.0	1.0	202.0	126.0
1	1.0	0.0	156.0	79.0
2	2.0	0.0	134.0	150.0
3	2.0	1.0	94.0	126.0
4	1.0	2.0	120.0	142.0
5	1.0	0.0	181.0	126.0
6	2.0	0.0	245.0	210.0
7	1.0	2.0	256.0	107.0
8	1.0	2.0	440.0	126.0
9	1.0	2.0	440.0	126.0

```
In [176]: df_mode = pd.DataFrame(data=imputer_data_mode,columns=cols)
    df_mode.head(10)
```

Out[176]:

	Bathroom	Car	Landsize	BuildingArea
0	1.0	1.0	202.0	120.0
1	1.0	0.0	156.0	79.0
2	2.0	0.0	134.0	150.0
3	2.0	1.0	94.0	120.0
4	1.0	2.0	120.0	142.0
5	1.0	0.0	181.0	120.0
6	2.0	0.0	245.0	210.0
7	1.0	2.0	256.0	107.0
8	1.0	2.0	0.0	120.0
9	1.0	2.0	0.0	120.0