Distance Metrics for Machine Learning in Time-Domain Astronomy

Siddharth Chaini (17275)
Department of Physics, IISER Bhopal

Advisors: Prof. Ashish Mahabal (Caltech)

Prof. Ajit Kembhavi (IUCAA)

Prof. Sukanta Panda (IISER Bhopal)

Time-Domain Astronomy

Subfield of astronomy related to how cosmic objects change with time

- Typically 3 main categories of objects:
 - Moving Objects (e.g. Asteroids)
 - Transients Fade over time (e.g. Supernovae)
 - Variable Objects (e.g. Pulsating Stars)
- Changes in brightness can be studied with light curves
- Important right now because of improved telescopes like the Zwicky Transient Facility (ZTF) and the Rubin Observatory

Credits: CAASTRO

Big Data and Machine Learning

- ZTF is already expected to produce over 3.2 petabytes of data by the end of its lifecycle.
- Rubin Observatory will take this to new levels 15 petabytes expected by 2033
- Machine Learning:
 Computer algorithms that learn tasks and patterns from data.
- Data in Time-Domain Astronomy: Light curves (in 2 filters for ZTF g/r)
 but these are irregular and sparse.
- Instead, we extract features from light curves (variability/periodicity/shape/etc.)
- But 108 total features (2 filters) HIGHLY DIMENSIONAL!!!
 Sanchez-Saez et al. (2021)

A new approach: Distance Metrics

<u>A</u> distance tells us about the degree of closeness of two physical objects or ideas.
 Even distances between light curves (and their features)!

Calculate distance between light curve feature in four ways:

1. Euclidean Distance:
$$d(x,y) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

2. Cityblock Distance:
$$d(x, y) = \sum_{i=1}^{n} |y_i - x_i|$$

3. Canberra Distance:
$$d(x,y) = \sum_{i=1}^{n} \frac{|y_i - x_i|}{|x_i| + |y_i|}$$

4. Braycurtis Distance:
$$d(x,y) = \frac{\sum_{i=1}^{n} |y_i - x_i|}{\sum_{i=1}^{n} |x_i + y_i|}$$

Take 600 objects from each of these 4 classes:

- 1. BY Draconis variables (BYDra)
- 2. RR Lyrae variables (RR)
- 3. Mira variables (Mira)
- 4. Eclipsing Algol variables (EA)

And calculate all distances pairwise.

Results (I) - Outlier Removal

• For known objects: Distances between objects from the same class

Results (II) - Classification

For unknown objects:

- 1. Drop outliers
- 2. Shuffle data, split data into training set and test set
- Create a "canonical" feature set for each class using training set (median)
- 4. Calculate distance between test object and the canonical feature set for all 4 classes
- 5. Set label based on class with minimum distance

Distance Metric	Accuracy
Euclidean	73.61%
Cityblock	82.29%
Canberra	94.10%
Braycurtis	84.03%

Future work

- Why does Canberra perform better?
- 2. Combine multiple distances
- 3. Increase dataset size number of objects as well as classes
- 4. Eliminate redundant features decrease dimensionality
- 5. Find distance between light curves directly, without feature extraction

Thank you!

Appendix

App. 01 Light Curve Construction

App. 02 Feature Extraction

App. 03 **Definition of Distance**

Definition 1. The distance d between two points, in a set X, is a function $d: X \times X \to [0, \infty)$ that gives a distance between each pair of points in that set such that, for all $x, y, z \in X$, the following properties hold:

1.
$$d(x,y) = 0 \iff x = y \text{ (identity of indiscernibles)}$$

- 2. d(x,y) = d(y,x) (symmetry)
- 3. $d(x,y) \leq d(x,z) + d(z,y)$ (triangle inequality)

The above three axioms also imply the following condition:

$$d(x,y) \ge 0$$
, for all $x,y \in X$

App. 04 Notebooks

- 1. <u>distance analysis.ipynb</u>
- 2. <u>LCdistance classifier.ipynb</u>