Теория и реализация языков программирования.

Задание 7: контекстно-свободные языки и магазинные автоматы

Сергей Володин, 272 гр.

задано 2013.10.16

Упражнение 1

Упражнение 2

Упражнение 3

- 1. Грамматика $\Gamma = (\{S\}, \Sigma_n \cup \overline{\Sigma}_n, P, S)$. $P = \{S \longrightarrow \sigma_i \overline{\sigma}_i | \sigma_i S \overline{\sigma}_i | SS\}$. $D_n = L(\Gamma)$.
- 2. Исходное утверждение: $\forall w \left(\underbrace{w \in D_n}_A \Rightarrow \underbrace{\forall i \leqslant n \, \forall k \leqslant |w| \hookrightarrow ||w[1,k]||_i \geqslant 0, \, ||w||_i = 0}_B\right)$
- 3. Отрицание обратного утверждения: $\exists w \colon (B \wedge \neg A)$. Пусть $w = \varepsilon$.
 - а. Тогда $k\leqslant |w|\Rightarrow k=0$, поэтому $\forall i\leqslant n\hookrightarrow ||w[1,k]||_i\equiv |\varepsilon|_{\sigma_i}-|\varepsilon|_{\overline{\sigma_i}}=0$ и $\forall i\leqslant n\hookrightarrow ||w||_i=0$. Получаем B.
 - b. Но $w = \varepsilon$ не порождается грамматикой Γ : первые два правила добавляют нетерминалов, поэтому не могут быть применены, и применение третьего правила не уменьшает количества нетерминалов. Получаем ¬А ■

Задача 1

Определим МП-автомат $\mathcal{A} = (\Sigma, \Gamma, Q, q_0, Z, \delta, F)$, допускающий по пустому стеку.

- 1. $n \stackrel{\text{def}}{=} 2$
- $2. \ \Sigma_n \stackrel{\text{\tiny def}}{=} \{[_1,...,[_n\} \equiv \{[_1,[_2\},\,\overline{\Sigma}_n \stackrel{\text{\tiny def}}{=} \{]_1,...,]_n\} \equiv \{]_1,]_2\}.$
- 3. $\Sigma \stackrel{\text{def}}{=} \Sigma_n \cup \overline{\Sigma}_n \equiv \{[1,]_1, [2,]_2\}$
- 4. $\Gamma \stackrel{\text{def}}{=} \{Z\} \cup \overline{1,n} \equiv \{Z,1,2\}.$
- 5. $Q \stackrel{\text{def}}{=} \{q_0, q_1\}$
- 6. δ изображена справа
- 7. $F \stackrel{\text{\tiny def}}{=} \varnothing (N\text{-abtomat})$

Задача 2

Задача 3