System Requirements

Project: Hệ thống giám sát môi trường

R1. Hệ thống phải là thiết bị giám sát môi trường tiêu thụ thấp và dễ mở rộng/ ghép nối

- R1.1. Hệ thống phải giám sát được các chỉ số: nhiệt độ, độ ẩm và ánh sáng.
 - R1.1.1 Hê thống phải đo nhiệt đô với sai số tối thiểu ±1 °C.
 - R1.1.2. Hệ thống phải đo độ ẩm với sai số tối thiểu ±5% RH.
 - R1.1.3. Hệ thống phải đo cường độ ánh sáng trong dải (1–50000 lux).
- R1.2. Hệ thống phải sử dụng MCU có giao tiếp I²C, UART và SPI.
- R1.3. Hệ thống phải được cấp nguồn qua USB 5V, và cấp nguồn ổn áp 3V3 cho linh kiện, dòng tiêu thụ tổng < 50 mA.
 - R1.4. Hệ thống phải dễ ghép nối qua headers/ pads mở rộng:
 - R1.4.1. Header nên cung cấp 3V3, GND, I²C, UART và các GPIO.
 - R1.4.2. Headers/ pads hỗ trợ có thể gắn thêm module RTC ngoài,
 hoặc module tương thích Wi-fi.

R2. Hệ thống phải cung cấp hiển thị và cảnh báo âm thanh tích hợp

- R2.1. Hệ thống phải có màn hình LCD 16x2 hiển thị từng chỉ số môi trường và giá trị ngưỡng cảnh báo.
 - R2.2. Hệ thống phải có các đèn LED để hiển thị và cảnh báo:
 - R2.2.1. Sử dụng tối thiểu 3 LEDs (đỏ, vàng, xanh dương) để cảnh bảo giá trị tương ứng của loại môi trường (nhiệt độ/ độ ẩm/ ánh sáng) đã vượt ngưỡng.
 - R2.2.2. Sử dụng đèn LED để báo nguồn và chế độ hiện tại của mạch.
 - R2.3. Hệ thống phải có buzzer cảnh báo khi vượt ngưỡng hoặc gặp lỗi.

R3. Hệ thống phải có công tắc để chọn chế độ hiển thị và nút nhấn để chọn chỉ số hiển thị

- R3.1. Sử dụng công tắc để chọn chế độ hiển thị.
 - R3.1.1. Công tắc ON, hệ thống ở chế độ Auto, tự động chuyển màn hình hiển thị chỉ số sau mỗi ≥ 3s.
 - R3.1.2. Công tắc OFF, hệ thống ở chế độ Manual, chuyển màn hình hiển thị theo nút nhấn điều khiển bởi người dùng.
- R3.2. Hệ thống phải có nút nhấn để thay đổi chỉ số môi trường hiển thị.
 - R3.2.1. Nút nhấn Next để chuyển sang chỉ số môi trường kế tiếp.
 - R3.2.2. Nút nhấn Prev để chuyển về chỉ số môi trường trước đó.

R4. Tác vụ của hệ thống phải được phần mềm quản lý hiệu quả, rõ ràng và đáp ứng kịp thời.

- R4.1. Hệ thống phải được quản lý theo kiến trúc bare-metal hoặc OS kernel.
- R4.2. Các tác vụ được phân chia và đảm bảo yêu cầu cụ thể:
 - R4.2.1. Task-Sensor phải đọc dữ liệu mỗi 1 giây qua l²C.
 - R4.2.2. Task-LCD cập nhật LCD 16×2 với chu kỳ 500 ms.
 - R4.2.3. Task-Button xử lý nút nhấn và công tắc (Next, Prev, Auto).
 - R4.2.4. Task-StatusLED để hiện thị LEDs kịp thời với độ trễ 500ms.

R5. Hệ thống phải nhỏ gọn và đảm bảo vận hành ổn định trong điều kiện phòng thí nghiệm cơ bản

- R5.1. Hệ thống là loại PCB đơn giản (2 layer), kích thước gọn (≤ 10×10 cm).
- R5.2. Hệ thống phải hoạt động ổn định trong điều kiện phòng lab (0–50 °C, 20–85% RH, không ngưng tụ).
- R5.3. Hệ thống phải chịu được rung lắc và thao tác cơ bản trong phòng thí nghiệm mà vẫn hoạt động ổn định.