Q7

Due Mar 4 at 5:30am **Points** 150 **Questions** 11

Available Feb 26 at 9:30am - Mar 4 at 5:30am 7 days Time Limit 45 Minutes

Instructions

Instructions:

- 1. The context of the questions is what we discussed in the class.
- 2. You have 45 minutes to attempt the quiz
- 3. Once you start the quiz, you cannot go back and re-attempt it
- 4. You will not find answers online, so please make sure you are ready for the quiz
- 5. For Multiple Answer Questions, ALL the answers must be correct to score any point

All the best!

Attempt History

	Attempt	Time	Score	
LATEST	Attempt 1	29 minutes	66.67 out of 150	

Score for this quiz: 66.67 out of 150

Submitted Mar 3 at 11:55pm This attempt took 29 minutes.

	Question 1	3.33 / 10 pts
	When would you want to use 1x1?	
Correct!	✓ to reduce number of channels	
orrect Answer	to increase number of channels, instead of 3x3 to save total nunparameters on a constrained hardware	nber of

to increase number of channels to increase available pixel resolutions

to increase number of channels on any hardware

Checkerboard issue may be caused due to:

Using stride of more than 1

Using deconvolution or transpose convolution

Using dilated convolition

Using an image scaled using bilinear interpolation

Atrous or Dilated convolutions can be used for:

Correct!

Image (or instance) segmentation

Correct!

Super Resolution related problems

Correct!

Denoising images

Keypoint Detection

Question 4

Which is better for capturing the global context in a channel?

Atrous Convolution

Normal Convolution

Transpose Convolution

Pointwise Convolution

Pixel Shuffle algorithm: was introduced to fix checker board issue was introduced to increase global receptive field was introduced to because deconvolution was compute expensive is a replacement for normal convolution

Question 6 Consider a layer with resolution 64x64x128. In the next layer, we intend to add normal 256 kernels of size 3x3. Assume this add X number of parameters. If instead, we add depthwise separable convolution, we would add Y number of parameters.

	The X:Y ratio is close or equal to?	
orrect Answer	8.69:1	
	12.23:1	
	7.23:1	
ou Answered	9:1	

0 / 10 pts **Question 7** Consider a layer with resolution 128x128x256. In the next layer, we intend to add normal 512 kernels of size 3x3. Assume this add X number of parameters. If instead, we add separable convolutions (3x1 followed by 1x3), we would add Y number of parameters. The X:Y ratio is close or equal to? orrect Answer 2:1 ou Answered **3**:1 2.5:1 3.5:1

Question 8 6.67 / 10 pts

	Select all which apply for grouped convolution:	
Correct!	✓ Different kernels must have same number of channels	
orrect Answer	Different kernel types can have different sizes	
	Total number of kernels used for each size (say 3x3, 5x5, etc) must be same	
Correct!	The output resolution from each kernel type must be same	

	Question 9	26.67 / 40 pts
	Select which all are true:	
orrect Answer	It is advisable to use Dllated Kernels alone (i.e. without norm convolutions	al 3x3
Correct!	Grouped convolution should help in handling scenarios wher might be different	e object sizes
Correct!	☑ Dilated Kernels are beneficials when "dense resolution" char expected in the network	nnels are
orrect Answer	☐ Spatially Separable Convolutions are preferred early in the	ne network.

Correct!

If only RAM is an issue, one would prefer depthwise over spatially separable convolutions

Assume two layers are to be merged. One should prefer merging the layers (32+32 = 32) instead of first concatenating them (32+32=64) and then using 1x1 kernels to convert 64 to 32.

Correct!

Dilated convolutions would be better for Scene Classification network as compared to Object Detection Networks

Question 10

5 / 5 pts

If memory is not an issue, what another advantage Depthwise Separable Convolutions might provide because of which you might want to use it?

Correct!

- Reduced number of total multiplications
- No other benefit.

Question 11

0 / 25 pts

A 3x3(x3) kernel would move 9x3 times on 5x5x3 image. This gives us 27 moves. Assume Each Move equals 1 Computation Unit.

Let us say we have an input of 7x7x128. Assuming we need to increase channel size to 256.

We use two approaches, normal convolution (needing X Moves) and depthwise separable convolution (needing Y Moves).

3/3/2020	Q7: EVA 4
	What is X:Y close or equal to?
orrect Answer	22.94
	12.32
	16.32
ou Answered	☑ 8.69:1

Quiz Score: **66.67** out of 150