Victor Kitov

v.v.kitov@yandex.ru

Table of Contents

- 1 Linearly separable case
- 2 Linearly non-separable case
- Solution
- 4 Visualization of kernel SVM

Main idea

Select hyperplane maximizing the spread between classes.

Objects x_i for i=1,2,...n lie at distance b/|w| from discriminant hyperplane if

$$\begin{cases} x_i^T w + w_0 \ge b, & y_i = +1 \\ x_i^T w + w_0 \le -b & y_i = -1 \end{cases} \quad i = 1, 2, ...N.$$

This can be rewritten as

$$y_i(x_i^T w + w_0) \ge b, \quad i = 1, 2, ...N.$$

The margin is equal to $2b/\|w\|$. Since w, w_0 and b are defined up to multiplication constant, we can set b=1.

Problem statement

Problem statement:

$$\begin{cases} \frac{1}{2}w^Tw \to \min_{w,w_0} \\ y_i(x_i^Tw + w_0) \ge 1, \quad i = 1, 2, ...N. \end{cases}$$

Support vectors

non-informative observations: $y_i(x_i^T w + w_0) > 1$

do not affect the solution

support vectors:
$$y_i(x_i^T w + w_0) = 1$$

- lie at distance $1/\|w\|$ to separating hyperplane
- affect the the solution.

Table of Contents

- 1 Linearly separable case
- 2 Linearly non-separable case
- Solution
- 4 Visualization of kernel SVM

$$\begin{cases} \frac{1}{2} w^T w \to \min_{w, w_0} \\ y_i(x_i^T w + w_0) \ge 1, \quad i = 1, 2, ... N. \end{cases}$$

$$\begin{cases} \frac{1}{2} w^T w \to \min_{w,w_0} \\ y_i(x_i^T w + w_0) \ge 1, \quad i = 1, 2, ... N. \end{cases}$$

Problem

Constraints become incompatible and give empty set!

No separating hyperplane exists. Errors are permitted by including slack variables ξ_i :

$$\begin{cases} \frac{1}{2}w^{T}w + C\sum_{i=1}^{N}\xi_{i} \to \min_{w,\xi} \\ y_{i}(w^{T}x_{i} + w_{0}) \geq 1 - \xi_{i}, \ i = 1, 2, ...N \\ \xi_{i} \geq 0, \ i = 1, 2, ...N \end{cases}$$

- Parameter C is the cost for misclassification and controls the bias-variance trade-off.
- It is chosen on validation set.
- Other penalties are possible, e.g. $C \sum_{i} \xi_{i}^{2}$.

Classification of training objects

- Non-informative objects:
 - $y_i(w^Tx_i + w_0) > 1$
- Support vectors *SV*:
 - $y_i(w^Tx_i + w_0) \leq 1$
 - boundary support vectors \widetilde{SV} :
 - $y_i(w^Tx_i + w_0) = 1$
 - violating support vectors:
 - y_i(w^Tx_i + w₀) > 0: violating support vector is correctly classified.
 - $y_i(w^Tx_i + w_0) < 0$: violating support vector is misclassified.

SVM with unconstrained optimization

Optimization problem:

$$\begin{cases} \frac{1}{2} w^T w + C \sum_{i=1}^{N} \xi_i \to \min_{w, w_0, \xi} \\ y_i (w^T x_i + w_0) = M_i (w, w_0) \ge 1 - \xi_i, \\ \xi_i \ge 0, \ i = 1, 2, ... N \end{cases}$$

can be rewritten as

$$\frac{1}{2C} \|w\|_2^2 + \sum_{i=1}^N [1 - M_i(w, w_0)]_+ \to \min_{w, w_0, \xi}$$

Thus SVM is linear discriminant function with cost approximated with $\mathcal{L}(M) = [1 - M]_+$ and L_2 regularization.

Sparsity of solution

- SVM solution depends only on support vectors
- This is also clear from loss function, satisfying $\mathcal{L}(M) = 0$ for $M \ge 1$.
 - objects with margin≥ 1 don't affect solution!
- Sparsity causes SVM to be less robust to outliers
 - because outliers are always support vectors

Multiclass SVM

C discriminant functions are built simultaneously:

$$g_c(x) = (\mathbf{w}^c)^T x + w_0^c, \qquad c = \overline{1, C}.$$

Linearly separable case:

$$\begin{cases} \sum_{c=1}^{C} (\mathbf{w}^c)^T \mathbf{w}^c \to \min_{\mathbf{w}} \\ (\mathbf{w}^{y_n})^T x_n + w_0^{y_n} - (\mathbf{w}^c)^T x - w_0^c \ge 1 \quad \forall c \ne y_n, \\ n = \overline{1, N}. \end{cases}$$

Linearly non-separable case:

$$\begin{cases} \sum_{c=1}^{C} (\mathbf{w}^c)^T \mathbf{w}^c + C \sum_{n=1}^{N} \xi_n \to \min_w \\ (\mathbf{w}^{y_n})^T x + w_0^{y_n} - (\mathbf{w}^c)^T x - w_0^c \ge 1 - \xi_n & \forall c \ne y_n, \\ \xi_n \ge 0, \quad n = \overline{1, N}. \end{cases}$$

Is slower, but shows similar accuracy to one-vs-all, one-vs-one SVM.

Table of Contents

- 1 Linearly separable case
- 2 Linearly non-separable case
- Solution
- 4 Visualization of kernel SVM

Dual problem

Solving Karush-Kuhn-Takker conditions, get **dual optimization problem**:

$$\begin{cases}
L_D = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j x_i^T x_j \to \max_{\alpha} \\
\sum_{n=1}^N \alpha_n y_n = 0 \\
0 \le \alpha_n \le C, \quad n = \overline{1, N}
\end{cases} \tag{1}$$

It is standard quadratic programming task.

Comments on support vectors

- non-informative vectors: $y_i(w^Tx_i + w_0) > 1$ have $\alpha_i = 0$
- non-boundary support vectors $SV \setminus \tilde{SV}$: $y_i(w^Tx_i + w_0) < 1$ have $\alpha_i = C$.
- boundary support vectors \widetilde{SV} : $y_i(w^Tx_i + w_0) = 1$ Typically $\alpha_i \in (0, C)$, though $\alpha_i = 0, C$ are possible as special cases.

Solution

- Solve (1) to find optimal dual variables α_i^*
- ② Find optimal w ($\alpha_i^* \neq 0$ only for support vectors):

$$w = \sum_{i \in \mathcal{SV}} \alpha_i^* y_i x_i$$

$$y_i(x_i^T w + w_0) = 1, \forall i \in \widetilde{SV}$$
 (2)

Solution for w_0

By multiplyting (2) by y_i obtain

$$x_i^T w + w_0 = y_i \quad \forall i \in \widetilde{\mathcal{SV}}$$
 (3)

Get more numerically stable from summing 3 over all $i \in \widetilde{SV}$:

$$n_{\tilde{SV}}w_0 = \sum_{j \in \tilde{SV}} \left(y_j - x_j^T w \right) = \sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} x_j^T w, \quad n_{\tilde{SV}} = \left| \tilde{SV} \right|$$

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i x_i^T x_j \right)$$

If there exist no boundary support vectors (only violating SV), then find w_0 by grid search.

Making predictions

1 Solve dual task to find α_i^* , i = 1, 2, ...N

$$\begin{cases} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \to \max_{\alpha} \\ \sum_{i=1}^{N} \alpha_i y_i = 0 \\ 0 \le \alpha_i \le C \end{cases}$$

② Find optimal w_0 :

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i \langle x_i, x_j \rangle \right)$$

3 Make prediction for new x:

$$\widehat{y} = \text{sign}[w^T x + w_0] = \text{sign}[\sum_{i \in SV} \alpha_i^* y_i \langle x_i, x \rangle + w_0]$$

Making predictions

• Solve dual task to find α_i^* , i = 1, 2, ...N

$$\begin{cases} L_D = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle \to \max_{\alpha} \\ \sum_{i=1}^N \alpha_i y_i = 0 \\ 0 \le \alpha_i \le C \end{cases}$$

② Find optimal w_0 :

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{i \in \tilde{SV}} y_i - \sum_{i \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i \langle \mathbf{x}_i, \mathbf{x}_j \rangle \right)$$

3 Make prediction for new x:

$$\widehat{y} = \text{sign}[w^T x + w_0] = \text{sign}[\sum_{i \in SV} \alpha_i^* y_i \langle x_i, x \rangle + w_0]$$

• On all steps we don't need exact feature representations, only scalar products $\langle x, x' \rangle$!

Kernel trick generalization

• Solve dual task to find α_i^* , i = 1, 2, ...N

$$\begin{cases} L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j) \to \max_{\alpha} \\ \sum_{i=1}^{N} \alpha_i y_i = 0 \\ 0 \le \alpha_i \le C \end{cases}$$

② Find optimal w_0 :

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i K(x_i, x_j) \right)$$

3 Make prediction for new x:

$$\widehat{y} = \operatorname{sign}[w^T x + w_0] = \operatorname{sign}[\sum_{i \in \mathcal{C}} \alpha_i^* y_i K(x_i, x) + w_0]$$

• We replaced $\langle x, x' \rangle \to K(x, x')$ for $K(x, x') = \langle \phi(x), \phi(x') \rangle$ for some feature transformation $\phi(\cdot)$.

Illustration

Consider 2-dimensional feature case: $x = (x_1, x_2), z = (z_1, z_2)$

$$K(x,z) = (x^{T}z)^{2} = (x_{1}z_{1} + x_{2}z_{2})^{2} =$$

$$= x_{1}^{2}z_{1}^{2} + x_{2}^{2}z_{2}^{2} + 2x_{1}z_{1}x_{2}z_{2}$$

$$= \phi^{T}(x)\phi(z), \quad \phi(x) = (x_{1}^{2}, x_{2}^{2}, \sqrt{2}x_{1}x_{2})$$

Kernel generalized prediction

Kernel generalized prediction for x:

$$\widehat{y}(x) = \operatorname{sign}[w^T x + w_0] = \operatorname{sign}[\sum_{i \in \mathcal{SV}} \alpha_i^* y_i \frac{K(x_i, x) + w_0}{K(x_i, x)}]$$

 $K(x,z) = \langle \phi(x), \phi(z) \rangle$ - kernel, corresponding to feature transformation $\phi(x)$

Kernel	K(x,z)
linear	$\langle x,z \rangle$
polynomial	$(a\langle x,z\rangle + b)^d$, $a > 0$, $b \ge 0$, $d = 1, 2,$
RBF (Gaussian)	$e^{-\gamma \ x-z\ ^2}, \ \gamma > 0$

Table of Contents

- 1 Linearly separable case
- 2 Linearly non-separable case
- Solution
- 4 Visualization of kernel SVM
 - SVM linear kernel
 - SVM polynomial kernel
 - SVM Gaussian kernel

SVM - Victor Kitov Visualization of kernel SVM SVM - linear kernel

- 4 Visualization of kernel SVM
 - SVM linear kernel
 - SVM polynomial kernel
 - SVM Gaussian kernel

Parameter C

Conditional optimization:

$$\begin{cases} \frac{1}{2}w^{T}w + C\sum_{i=1}^{N}\xi_{i} \to \min_{w,w_{0},\xi} \\ y_{i}(w^{T}x_{i} + w_{0}) = M(x_{i}, y_{i}) \geq 1 - \xi_{i}, \ i = 1, 2, ...N \\ \xi_{i} \geq 0, \ i = 1, 2, ...N \end{cases}$$

Unconditional optimization:

$$\frac{1}{2C} \|w\|_2^2 + \sum_{i=1}^N [1 - M_i(w, w_0)]_+ \to \min_{w, w_0}$$

Parameter C controls accuracy \leftrightarrow simplicity tradeoff.

SVM - Victor Kitov Visualization of kernel SVM SVM - polynomial kernel

- 4 Visualization of kernel SVM
 - SVM linear kernel
 - SVM polynomial kernel
 - SVM Gaussian kernel

Polynomial kernel

Polynomial kernel:

$$K(x,z) = (a\langle x,z\rangle + b)^{d}, \ a > 0, \ b \ge 0, \ d = 1,2,...$$

Prediction

$$\widehat{y}(x) = \operatorname{sign}\left(\sum_{i \in \mathcal{SV}} \alpha_i^* y_i K(x_i, x) + w_0\right) =$$

$$= \operatorname{sign}\left(\sum_{i \in \mathcal{SV}} \alpha_i^* y_i \left(a\langle x, x_i \rangle + b\right)^d + w_0\right)$$

The border between the classes - polynomial surface of order d.

- Visualization of kernel SVM
 - SVM linear kernel
 - SVM polynomial kernel
 - SVM Gaussian kernel

Gaussian kernel

Gaussian kernel:

$$K(x,z) = e^{-\gamma ||x-z||^2}, \ \gamma > 0$$

Prediction

$$\widehat{y}(x) = \operatorname{sign}\left(\sum_{i \in \mathcal{SV}} \alpha_i^* y_i K(x_i, x) + w_0\right)$$
$$= \operatorname{sign}\left(\sum_{i \in \mathcal{SV}} \alpha_i^* y_i e^{-\gamma \|x - x_i\|^2} + w_0\right)$$

Classification based on proximity of x to the support vectors weighted by α_i^* .

SVM - Gaussian kernel

Summary

- SVM linear classifier with L_2 regularization and hinge loss.
- Geometrically SVM maximizes border between classes.
- Solution depends only on support vectors, having margin ≤ 1 .
- Solution depends on x only through $\langle x, x' \rangle$
 - "kernel trick" generalization $\langle x, x' \rangle \to K(x, x') = \langle \phi(x), \phi(x') \rangle$.
 - Gaussian kernel is the most popular
 - some other methods also allow kernel generalization:
 - e.g. kernel ridge regression, PCA, k-means.