

• an episode may never finish.

Then, it is possible that iterative policy evaluation will not converge, and this is because the state-value function may not be well-defined! To see this, note that in this case, calculating a state value could involve adding up an infinite number of (expected) rewards, where the sum may not **converge**.

In case it would help to see a concrete example, consider an MDP with:

- ullet two states s_1 and s_2 , where s_2 is a terminal state
- one action a (Note: An MDP with only one action can also be referred to as a Markov Reward Process (MRP).)
- $p(s_1, 1|s_1, a) = 1$

In this case, say the agent's policy π is to "select" the only action that's available, so $\pi(s_1)=a$. Say $\gamma=1$. According to the one-step dynamics, if the agent starts in state s_1 , it will stay in that state forever and never encounter the terminal state s_2 .

In this case, $v_{\pi}(s_1)$ is not well-defined. To see this, remember that $v_{\pi}(s_1)$ is the (expected) return after visiting state s_1 , and we have that

$$v_{\pi}(s_1) = 1 + 1 + 1 + 1 + \dots$$

which **diverges** to infinity. (Take the time now to convince yourself that if either of the two convergence conditions were satisfied in this example, then $v_{\pi}(s_1)$ would be well-defined. As a **very optional** next step, if you want to verify this mathematically, you may find it useful to review **geometric series** and the **negative binomial distribution**.)

Search or ask questions in Knowledge.

Ask peers or mentors for help in **Student Hub**.