СОДЕРЖАНИЕ

BBE	ЕДЕНИЕ																		(
1.	Постано	вка з	адач	и.														,	-

ВВЕДЕНИЕ

Потребность в изучении дифракции на различных телах очень высока. Знания, полученные путем изучения дифракции с помощью моделей, используются как в гидроакустике и эхолокации, так и в других областях. В дефектоскопии основной задачей является обнаружение различных включений в однородном теле. Это позволяет проводить исследование различных объектов методом неразрушающего контроля.

В настоящей работе рассматривается задача дифракции плоских звуковых волн на упругой сфере, имеющей произвольно расположенную полость и неоднородное покрытие. С помощью таких покрытий можно изменять звукоотражающие свойства тел. В качестве рассматриваемого тела выбрана сфера, т.к. более сложные тела можно аппроксиммировать с помощью сферы.

1. Постановка задачи.

Рассмотрим изотропный однородный упругий шар радиуса r_0 , плотность материала которого ρ_0 , упругие постоянные λ_0 и μ_0 . Шар имеет покрытие в виде неоднородного изотропного упругого слоя, внешний радиус которого равен r_1 . Полагаем, что модули упругости λ_1 и μ_1 материала слоя описываются дифференцируемыми функциями радиальной координаты r сферической системы координат (r, θ, φ) , а плотность ρ_1 — непрерывной функцией координаты r. Окружающая тело жидкость — идеальная, ее плотность ρ_2 , скорость звука c.

Пусть из внешнего пространства на шар падает плоская звуковая волна. Потенциал скоростей гармонической падающей волны запишем в виде:

$$\Psi_2(\bar{\mathbf{x}}, t) = A_2 \exp\left[i\left(\bar{\mathbf{k}} \cdot \bar{\mathbf{x}} - \omega t\right)\right],\tag{1}$$

где A_2 — амплитуда волны, $\bar{\mathbf{k}}$ — волновой вектор в окружающей жидкости, $|\bar{\mathbf{k}}|=k=\omega/c$ — волновое число, ω — круговая частота.

Без ограничения общности будем полагать, что волна распространяется в направлении $\theta=0$. Тогда в сферической системе координат (1) запишется в виде:

$$\Psi_2(r, \theta, t) = A_2 \exp\left[i\left(kr\cos\theta - \omega t\right)\right],\tag{2}$$

В дальнейшем временной множитель $\exp(-i\omega t)$ будем опускать.

Определим отраженную от тела волну, а также найдем поля смещений в упругом шаре и неоднородном слое.