

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Grundlagen der Nachrichtentechnik

Pulse-Code-Modulation

Autoren:

Tommy Jahnke J.Sebastian Frisch Nils Parche Professorin: Prof. Dr. LI

8. Dezember 2016

Abbildungsverzeichnis

1		3
2		4
3		5
4		7
5		8
6		9
7	Amplitudengang Butterworth-Tiefpass mit Marker	15
8	Amplitudengang Butterworth- und Tschebyscheff-Tiefpass mit Mar-	
	ker bei Tschebyscheff	15
9	Amplitudengang Butterworth-, Tschebyscheff- und Bessel-Tiefpass	
	mit Marker bei Bessel	16
10	Amplitudengang Butterworth-Hochpass mit Marker	16
11	Amplitudengang Butterworth- und Tschebyscheff-Hochpass mit Mar-	
	ker bei Tschebyscheff	17
12	Amplitudengang Butterworth-, Tschebyscheff- und Bessel-Hochpass	
	mit Marker bei Bessel	17
13	Amplitudengang Bandsperre mit Marker	18
14	Amplitudengang Bandsperre und Bandpass mit Maker beim Band-	
	pass	18
15	Phasengang Butterworth-Tiefpass mit Markern	19
16	Phasengang Butterworth- und Tschebyscheff-Tiefpass mit Markern	
	bei Tschebyscheff	19
17	Phasengang Butterworth-, Tschebyscheff- und Bessel-Tiefpass mit	
	Markern bei Bessel	20

Tabellenverzeichnis

1	Tiefpassfilter - Grundverstärkung V_0 , Grenzfrequenz f_g	2
2	Hochpassfilter - Grundverstärkung V_{∞} , Grenzfrequenz f_g	7
3	Gemessenen Grenzfrequenzen der verschieden Tiefpässe/Hochpässe	11
4	Frequenzen bei einer Phasenverschiebung von -60° und -120°	11
5	Mittenfrequenz und Sperrfrequenz des Bandpasses sowie der Band-	
	sperre	11

Inhaltsverzeichnis

1	Vorbereitung			
	1.1	Grundverstärkung und Grenzfrequenzen der Hoch- und Tiefpässe .	1	
		1.1.1 Tiefpassfilter	1	
		1.1.2 Hochpassfilter	4	
		1.1.3 Bandpassfilter	8	
		1.1.4 Bandsperre	10	
2		Messung von Amplituden- und Phasengang der Filterschaltungen .		
3 Auswertung				
	3.1	Zu: Messung von Amplituden- und Phasengang der Filterschaltungen	13	
	3.2	Zu: Sprungantworten der Tiefpässe	14	
4	Anh	nang	15	

1 Vorbereitung

Es sind an einem Universalfilter verschiedenen Filtertypen 2. Ordnung zu Untersuchen. Über die Widerstandsbeschaltung R_a , R_b , R_c , R_d , R_e und R_f können bestimmte Filtercharakteristiken, wie Butterworth, Tschebyscheff und Bessel nachgebildet werden. Mit der Tabelle [?] in der Aufgabenstellung sollen bei den Hochpassund Tiefpassfilter der drei genannten Filtercharakteristiken die Grenzfrequenz f_g und die Grundverstärkung V_0 bestimmt werden. Bei dem Bandpass ist die Mittenfrequenz f_M und die Bandbreite B zu berechnen. Die Bandsperre wird auf ihre Sperrfrequenz untersucht.

1.1 Grundverstärkung und Grenzfrequenzen der Hoch- und Tiefpässe

1.1.1 Tiefpassfilter

In der Versuchsbeschreibung [?] Kapitel 7: Gleichungen zum Universal-Filter wird die Übertragungsfunktion H_{TP} angegeben mit.

$$H_{TP}(j\omega) = \frac{U_{TP}}{U_e} = \frac{R_b \cdot R_f}{R_a \cdot R_c} \cdot \frac{1}{1 + \frac{R_b \cdot R_f}{R_c \cdot R_e} \cdot (j\omega\tau) + \frac{R_f}{R_d} \cdot (j\omega\tau)^2} \quad mit \ \tau = R \cdot C \ (1)$$

Durch die Wahl von $R_b=R_c=R_f=R_0$ vereinfacht sich die Gleichung zu:

$$H_{TP}(j\omega) = \frac{R_0}{R_a} \cdot \frac{1}{1 + \frac{R_0}{R_a} \cdot (j\omega\tau) + \frac{R_0}{R_d} \cdot (j\omega\tau)^2}$$
 (2)

Aus der Allgemeinen Gleichung eines Tiefpassfilter 2. Ordnung können so die Parameter a_1, b_1 und V_0 zugewiesen werden. V_0 ist die maximale Verstärkung bei $\omega - > 0$.

$$\frac{V_0}{1 + a_1 \cdot j\omega + b_1 \cdot (j\omega)^2} = \frac{R_0}{R_a} \cdot \frac{1}{1 + \frac{R_0}{R_e} \cdot (j\omega\tau) + \frac{R_0}{R_d} \cdot (j\omega\tau)^2}$$
(3)

$$V_0 = \frac{R_0}{R_a} \tag{4}$$

$$a_1 = \frac{R_0}{R_e} \cdot \tau \tag{5}$$

$$b_1 = \frac{R_0}{R_d} \cdot \tau^2 \tag{6}$$

Allgemeine Formel zur Bestimmung der Grenzfrequenzen

Der Amplitudengang lautet:

$$|H_{TP(j\omega)}| = \frac{|V_0|}{\sqrt{(1 - b_1 \cdot \omega^2)^2 + a_1^2 \cdot \omega^2}}$$
 (7)

Mit der Definition $H_{TP(j\omega_g)}=|H_{TP(j\omega)}|_{max}\cdot\frac{1}{\sqrt{2}}$ und $V_0=1$ (Tabelle 1) kann über einen Koeffizientenvergleich die Grenzfrequenz bestimmt werden.

$$2 = (1 - b_1 \cdot \omega^2)^2 + a_1^2 \cdot \omega^2 \tag{8}$$

$$0 = b_1^2 \cdot \omega^4 - (2 \cdot b_1 - a_1^2) \cdot \omega^2 - 1 \qquad substitutert \ \omega^2 = x$$
 (9)

$$0 = x^2 - \frac{2 \cdot b_1 - a_1^2}{b_1^2} \cdot x - \frac{1}{b_1^2} \tag{10}$$

Bestimmen der Möglichen Frequenzen:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{2} - q} \tag{11}$$

$$w_{g1} = +\sqrt{x1} \tag{12}$$

$$w_{g2} = -\sqrt{x1} \tag{13}$$

$$w_{g3} = +\sqrt{x1} \tag{14}$$

$$w_{g4} = -\sqrt{x2} \tag{15}$$

$TP_{Filter charakteristik}$	Grundverstärkung V_0	Grenzfrequenz f_g
Butterworth	1	1,5726 kHz
Tschebyscheff	1	1,5777 kHz
Bessel	1	$1,585~\mathrm{kHz}$

Tabelle 1: Tiefpassfilter - Grundverstärkung V_0 , Grenzfrequenz f_g

Bodeplot der TP-Filter Butterworth, Tschebyscheff und Bessel.

Abbildung 2

1.1.2 Hochpassfilter

In der Versuchsbeschreibung [?] Kapitel 7: Gleichungen zum Universal-Filter wird die Übertragungsfunktion H_{HP} angegeben mit.

$$H_{HP}(j\omega) = \frac{U_{HP}}{U_e} = \frac{R_b \cdot R_d}{R_a \cdot R_c} \cdot \frac{\frac{R_f}{R_d} \cdot (j\omega\tau)^2}{1 + \frac{R_b \cdot R_f}{R_c \cdot R_e} \cdot (j\omega\tau) + \frac{R_f}{R_d} \cdot (j\omega\tau)^2} \quad mit \ \tau = R \cdot C$$
(16)

Durch die Wahl von $R_b=R_c=R_d=R_0$ vereinfacht sich die Gleichung zu:

$$H_{HP}(j\omega) = \frac{R_0}{R_a} \cdot \frac{\frac{R_f}{R_d} \cdot (j\omega\tau)^2}{1 + \frac{R_f \cdot R_0}{R_0 \cdot R} \cdot (j\omega\tau) + \frac{R_f}{R_0} \cdot (j\omega\tau)^2}$$
(17)

Aus der Allgemeinen Gleichung eines Hochpassfilter 2. Ordnung können so die Parameter a_1, b_1 und V_0 zugewiesen werden. V_{∞} ist die maximale Verstärkung bei $\omega - > \infty$.

$$V_{\infty} \cdot \frac{\frac{1}{b_1} \cdot (j\omega)^2}{1 + \frac{a_1}{b_1} \cdot j\omega + \frac{1}{b_1} \cdot (j\omega)^2} = \frac{R_0}{R_a} \cdot \frac{\frac{R_f}{R_0} \cdot (j\omega\tau)^2}{1 + \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot (j\omega\tau) + \frac{R_0}{R_d} \cdot (j\omega\tau)^2}$$
(18)

Abbildung 3

$$V_{\infty} = \frac{R_0}{R_a}$$

$$b_1 = \frac{R_0}{R_f} \cdot \frac{1}{\tau^2}$$

$$(20)$$

$$b_1 = \frac{R_0}{R_f} \cdot \frac{1}{\tau^2} \tag{20}$$

$$\frac{a_1}{b_1} = \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau \qquad (21)$$

$$a_1 = \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau \cdot b_1 \qquad (22)$$

$$\Rightarrow \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau \cdot \frac{R_0}{R_f} \cdot \frac{1}{\tau^2} \qquad (23)$$

$$a_1 = \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau \cdot b_1 \tag{22}$$

$$\Rightarrow \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau \cdot \frac{R_0}{R_f} \cdot \frac{1}{\tau^2} \tag{23}$$

$$\Rightarrow \frac{R_0}{R_e} \cdot \frac{1}{\tau} \tag{24}$$

5 8. Dezember 2016

Allgemeine Formel zur Bestimmung der Grenzfrequenzen

Der Amplitudengang lautet:

$$|H_{HP(j\omega)}| = \frac{|V_{\infty}| \cdot \left(\frac{1}{b_1}\right) \cdot \omega^2}{\sqrt{\left(1 - \left(\frac{1}{b_1}\right) \cdot \omega^2\right)^2 + \left(\frac{a_1}{b_1}\right) \cdot \omega^2}}$$
(25)

Mit der Definition $H_{HP(j\omega_g)} = |H_{HP(j\omega)}|_{max} \cdot \frac{1}{\sqrt{2}}$ und $V_{\infty} = 1$ (Tabelle 1) kann die Gleichung nach ω_g aufgelöst werden.

$$\frac{1}{\sqrt{2}} = \frac{|V_{\infty}| \cdot \left(\frac{1}{b_1}\right) \cdot \omega^2}{\sqrt{\left(1 - \left(\frac{1}{b_1}\right) \cdot \omega^2\right)^2 + \left(\frac{a_1}{b_1}\right) \cdot \omega^2}} \tag{26}$$

$$\sqrt{2} \cdot |V_{\infty}| \cdot \left(\frac{1}{b_1}\right) \cdot \omega^2 = \sqrt{\left(1 - \left(\frac{1}{b_1}\right) \cdot \omega^2\right)^2 + \left(\frac{a_1}{b_1}\right) \cdot \omega^2} \tag{27}$$

$$2 \cdot |V_{\infty}|^2 \cdot \left(\frac{1}{b_1^2}\right) \cdot \omega^2 = \left(1 - \left(\frac{1}{b_1}\right) \cdot \omega^2\right)^2 + \left(\frac{a_1}{b_1}\right) \cdot \omega^2 \tag{28}$$

$$0 = \left(\frac{1}{b_1^2} - 2 \cdot |V_{\infty}|^2 \cdot \frac{1}{b_1^2}\right) \cdot \omega^4 + \left(\frac{a_1^2}{b_1^2} - 2 \cdot \frac{1}{b_1}\right) \cdot \omega^2 + 1 \tag{29}$$

$$0 = x^2 + \frac{a_1^2 - 2 \cdot b_1}{1 - 2 \cdot |V_{\infty}|^2} \cdot x + \frac{b_1^2}{1 - 2 \cdot |V_{\infty}|^2}$$
 (30)

Bestimmen der Möglichen Frequenzen:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{2} - q} \tag{31}$$

$$w_{g1} = +\sqrt{x1} \tag{32}$$

$$w_{a2} = -\sqrt{x1} \tag{33}$$

$$w_{g3} = +\sqrt{x1} \tag{34}$$

$$w_{g4} = -\sqrt{x2} \tag{35}$$

$HP_{Filter charakteristik}$	Grundverstärkung V_{∞}	Grenzfrequenz f_g
Butterworth	1	1,6107 kHz
Tschebyscheff	1	1,6055 kHz
Bessel	1	$1,582~\mathrm{kHz}$

Tabelle 2: Hochpassfilter - Grundverstärkung $V_{\infty},$ Grenzfrequenz f_g

Bodeplot der HP-Filter Butterworth, Tschebyscheff und Bessel.

Bandpassfilter

Die vereinfachte Formel für den Bandpassfilter hergeleitet vom Universalfilter kann der Allgemeinen Übertragungsfunktion eine Bandpassen gleichgesetzt und so die Parameter bestimmt werden.

$$H_{BP}(j\omega) = V_{max} \cdot \frac{A \cdot j\omega}{1 + A \cdot j\omega + b \cdot (j\omega)^2} \Longleftrightarrow -\frac{R_0}{R_a} \cdot \frac{\frac{R_0}{R_C} \cdot (j\omega\tau)}{1 + \frac{R_0}{R_c} \cdot (j\omega\tau) + (j\omega\tau)^2}$$
(36)

Dadurch ergeben sich die nachfolgenden Parameter:

$$A = \frac{R_0}{R_c} \tag{37}$$

$$b = \tau^2 \tag{38}$$

$$A = \frac{R_0}{R_c}$$

$$b = \tau^2$$

$$V_{max} = -\frac{R_0}{R_a}$$
(37)
(38)

Das Maximum des Bandpassfilter wird erreicht wenn der Imaginärteil des Nenner = 0 ist. Somit entspricht V_{max} dem erreichbaren Maximum. An diesem Punkt befindet sich die Mittenfrequenz f_0 .

8 8. Dezember 2016

$$H_{BP}(jw) = V_{max} \cdot \frac{1}{\frac{1}{j\omega \cdot A} + 1 + \frac{j\omega \cdot b}{A}}$$

$$\tag{40}$$

$$\Rightarrow V_{max} \cdot \frac{1}{1 + j\left(\frac{b}{A} \cdot \omega - \frac{1}{A_{sol}}\right)} \tag{41}$$

$$0 = \frac{b}{A} \cdot \omega - \frac{1}{A \cdot \omega} \tag{42}$$

$$\frac{1}{A \cdot \omega} = \frac{b}{A} \cdot \omega \tag{43}$$

$$\omega_0 = \frac{1}{\sqrt{b}} \tag{44}$$

$$f_0 = \frac{1}{\tau} \cdot \frac{1}{2 \cdot \pi} = 1,592kHz \tag{45}$$

$$V_{f_0} = 1 \tag{46}$$

Die zwei zu berechnenden Grenzfrequenzen können nach der Definition $H_{BP(j\omega_g)}=$ $|H_{BP(j\omega)}|_{max} \cdot \frac{1}{\sqrt{2}}$ berechnet werden.

$$\frac{1}{\sqrt{2}} = \frac{V_{max} \cdot A \cdot \omega}{\sqrt{(1 - b \cdot \omega^2)^2 + A^2 \cdot \omega^2}}$$

$$0 = x^2 + \frac{A^2 - 2 \cdot b - 2 \cdot A^2 \cdot V_{max}}{b^2} \cdot x + \frac{1}{b^2}$$
(47)

$$0 = x^2 + \frac{A^2 - 2 \cdot b - 2 \cdot A^2 \cdot V_{max}}{b^2} \cdot x + \frac{1}{b^2}$$
 (48)

9 8. Dezember 2016

Bestimmen der Möglichen Frequenzen:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{2} - q} \tag{49}$$

$$w_{g1} = +\sqrt{x1} \tag{50}$$

$$w_{g2} = -\sqrt{x1} \tag{51}$$

$$w_{g3} = +\sqrt{x1} \tag{52}$$

$$w_{g4} = -\sqrt{x2} \tag{53}$$

$$f_{gu} = 1,4395kHz (54)$$

$$f_{go} = 1,7597kHz (55)$$

$$B = f_{go} - f_{gu} = 320, 2Hz (56)$$

1.1.4 Bandsperre

Werte müssen noch berechnet werden und stammen aus der PSPice simulation.

$$f_0 = 1,5922kHz (57)$$

$$f_{go} = 1,76014kHz (58)$$

$$f_{gu} = 1,43911kHz (59)$$

$$B = 321Hz \tag{60}$$

$$V_{0,\infty} = 1 \tag{61}$$

2 Messungen

2.1 Messung von Amplituden- und Phasengang der Filterschaltungen

In diesem Versuch geht es darum, die Amplituden und Phasengänge der Butterworth-, Tschebyscheff- und Bessel-Tiefpässe und die Amplitudengänge der Butterworth-, Tschebyscheff- und Bessel-Hochpässe sowie des Bandpasses und der Bandsperre mittels dem Audio-Analyzer UVP zu messen. Die folgende Tabelle zeigt unsere gemessenen Grenzfrequenzen der Tiefpässe/Hochpässe. Die Graphen sind im Anhang zu finden.

	Butterworth	Tschebyscheff	Bessel
Tiefpass	1.538kHz	1.557kHz	1.551kHz
Hoch pass	1.596kHz	1.592kHz	1.610kHz

Tabelle 3: Gemessenen Grenzfrequenzen der verschieden Tiefpässe/Hochpässe

Anschließend ging es darum, die Phasengänge der oben genannten Filtertypen für den Tiefpass zu messen. Die Frequenzen bei einer Phasenverschiebung von -60° und -120° wurden bestimmt und in die folgende Tabelle eingetragen. Auch diese Graphen sind im Anhang zu finden.

	Butterworth	Tschebyscheff	Bessel
-60°	1.046kHz	898.250kHz	1.229kHz
-120°	2.381kHz	1.400kHz	3.225kHz

Tabelle 4: Frequenzen bei einer Phasenverschiebung von -60° und -120°

Schließlich wurden die Mittenfrequenz und Sperrfrequenz des Bandpasses sowie der Bandsperre gemessen. Ergebnisse sind der folgenden Tabelle zu entnehmen. Für die Graphen siehe Anhang.

	Mitten frequenz	Sperrfrequenz
Bandpass	1.556kHz	/
Band sperre	/	1.568kHz

Tabelle 5: Mittenfrequenz und Sperrfrequenz des Bandpasses sowie der Bandsperre

2.2 Sprungantworten der Tiefpässe

3 Auswertung

3.1 Zu: Messung von Amplituden- und Phasengang der Filterschaltungen

3.2 Zu: Sprungantworten der Tiefpässe

4 Anhang

Abbildung 7: Amplitudengang Butterworth-Tiefpass mit Marker

Abbildung 8: Amplitudengang Butterworth- und Tschebyscheff-Tiefpass mit Marker bei Tschebyscheff

Abbildung 9: Amplitudengang Butterworth-, Tschebyscheff- und Bessel-Tiefpass mit Marker bei Bessel

Abbildung 10: Amplitudengang Butterworth-Hochpass mit Marker

Abbildung 11: Amplitudengang Butterworth- und Tschebyscheff-Hochpass mit Marker bei Tschebyscheff

Abbildung 12: Amplitudengang Butterworth-, Tschebyscheff- und Bessel-Hochpass mit Marker bei Bessel

Abbildung 13: Amplitudengang Bandsperre mit Marker

Abbildung 14: Amplitudengang Bandsperre und Bandpass mit Maker beim Bandpass

Abbildung 15: Phasengang Butterworth-Tiefpass mit Markern

Abbildung 16: Phasengang Butterworth- und Tschebyscheff-Tiefpass mit Markern bei Tschebyscheff

Abbildung 17: Phasengang Butterworth-, Tschebyscheff- und Bessel-Tiefpass mit Markern bei Bessel

Literatur