NM Homework 10

Adam Kit - 3707437

18 June 2020

1 First Order derivatives with three point formula

The three-point method for approximating $f'(x_j)$ is given by Eq. 1. The points are represented in terms of step size (grid spacing), i.e., $x_0 = x_0$, $x_1 = x_0 + h$, $x_2 = x_0 + 2h$.

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right] + f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + E_j$$
(1)

where the error term is represented by

$$E_j = \frac{f^{(2)}(\varepsilon(x_j))}{6} \prod_{k=0: k \neq j}^{2} (x_j - x_k)$$

When we look at the point x_0 , we find:

$$f'(x_0) = f(x_0) \left[\frac{2x_0 - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_0 - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right] + f(x_2) \left[\frac{2x_0 - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + E_0$$

$$= f(x_0) \left[\frac{-3h}{(-h)(-2h)} \right] + f(x_1) \left[\frac{-2h}{(h)(-h)} \right] + f(x_2) \left[\frac{-h}{(2h)(h)} \right] + E_0$$

$$= f(x_0) \left[\frac{-3}{2h} \right] + f(x_1) \left[\frac{2}{h} \right] + f(x_2) \left[\frac{-1}{2h} \right] + E_0$$

$$= \frac{1}{2h} \left[-3f(x_0) + 4f(x_1) - f(x_2) \right] + E_0$$

The same type of derivation goes for point x_1 :

$$f'(x_1) = f(x_0) \left[\frac{2x_1 - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_1 - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right] + f(x_2) \left[\frac{2x_1 - x_0 - x_1}{(x_1 - x_0)(x_1 - x_2)} \right] + E_1$$

$$= f(x_0) \left[\frac{-h}{2h^2} \right] + f(x_1) \left[\frac{0}{-h^2} \right] + f(x_2) \left[\frac{h}{2h^2} \right] + E_1$$

$$= -f(x_0) \left[\frac{1}{2h} \right] + f(x_2) \left[\frac{1}{2h} \right] + E_1 = \frac{1}{2h} \left[-f(x_0) + f(x_2) \right] + E_1$$

And for x_2 :

$$f'(x_2) = f(x_0) \left[\frac{2x_2 - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_2 - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right] + f(x_2) \left[\frac{2x_2 - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + E_2$$

$$= f(x_0) \left[\frac{h}{2h^2} \right] + f(x_1) \left[\frac{2h}{-h^2} \right] + f(x_2) \left[\frac{3h}{2h^2} \right] + E_2 = f(x_0) \left[\frac{1}{2h} \right] - f(x_1) \left[\frac{2}{h} \right] + f(x_2) \left[\frac{3}{2h} \right] + E_2$$

$$= \frac{1}{2h} \left[f(x_0) - 4f(x_1) + 3f(x_2) \right]$$

1.1 Error

2 Second order derivatives and the three point formula

The second order derivative for the three point formula given in the lecture notes is written below:

$$\frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = f''(x) + \frac{h^2}{12}f^{(4)}(\varepsilon)$$
 (2)

The analytical derivative of f(x) is:

$$f'(x) = -\frac{1}{x^2} \Rightarrow f'(1) = -1$$

and the second derivative:

$$f''(x) = 2x^{-3} \Rightarrow f''(1) = 2$$

The approximate absolute error is found as:

$$\epsilon = |y - y_{approx}|$$

and the relative error:

$$\nu = \frac{\epsilon}{|y|}$$

2.1 h = 0.1

With h = 0.1 and x = 1, equation 2 becomes:

$$\frac{f(1+0.1) - 2f(1) + f(1-0.1)}{0.1^2} = \frac{\frac{1}{1.1} - 2 + \frac{1}{0.9}}{0.01} = 2.020202$$

This has a absolute error of .02 and a relative error of 0.01 or 1%

2.2 h = 0.01

With h = 0.01 and x = 1, equation 2 becomes:

$$\frac{f(1+0.01)-2f(1)+f(1-0.01)}{0.01^2} = \frac{\frac{1}{1.01}-2+\frac{1}{0.99}}{0.0001} = 2.000200020002$$

Which will have an absolute error of 0.0002 and a relative error of 0.0001 or 0.01%

2.3 h = 0.001

With h = 0.001 and x = 1, equation 2 becomes:

$$\frac{f(1+0.001)-2f(1)+f(1-0.001)}{0.001^2} = \frac{\frac{1}{1.001}-2+\frac{1}{0.999}}{0.000001} = 2.00000200002000002$$

Which will have an absolute error of 0.000002 and a relative error of 0.000001 or 0.0001% The errors for each h are all on the order of h^2

3 Practicality

For the first derivative, we can use the modified 5-point endpoint formula (see eq 3), which in this case places x_0 at 1.5 and h = 0.5.

$$f'(x_0) = \frac{1}{12h} \left[-25f(x_0) - 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h) \right] + \frac{h^4}{5} f^{(5)}(\varepsilon)$$
(3)

So plugging in for $x_j = x_0 = 1.5$, we see:

$$f'(x_0) = \frac{1}{12h} \left[-25(3.375) - 48(7) - 36(13.625) + 16(38.875) - 3(59) \right] + \frac{h^4}{5} f^{(5)}(\varepsilon)$$

4 Integration

Okay a more fun approach to this is Monte Carlo integration, however it is sometimes not as effecient. I have shown this in my python tutorials found in my github fusionby2030.github.io. The actual value of our integral from which we approximate the error is 2.

4.1 Trapezoidal Rule

The trapezoidal rule is defined below, where we consider a partition of the domain we wish to integrate over $(a = 0, b = \pi)$ as $\{x_k\}$:

$$\int_{b}^{a} f(x)dx \approx \sum_{k=1}^{N} \frac{f(x_{k-1}) + f(x_k)}{2} \Delta x_k \tag{4}$$

The code for this problem can be found in the file: and is clipped in figure 1 where we find that $\int_0^{\pi} \sin(x) dx \approx 1.9663$, which has an absolute error of 0.03368 and relative error of 0.01684 or $\approx 1.6\%$

4.2 Simpsons Rule

The formula for Simson's rule is below where N is the number of partitions of [a, b] and $\Delta x = (b - a)/N$ and $x_i = a + i\Delta x$

$$S_N(f) = \frac{\Delta x}{3} \sum_{i=1}^{N/2} (f(x_{2i-2}) + 4f(x_{2i-1}) + f(x_{2i}))$$
 (5)

the code for this problem can be found in the figure 2 where we find $\int_0^{\pi} \sin(x) dx \approx 2.000269$, which then has an absolute error of: 0.000269 and a relative error of 0.000135 or 0.0135%

Figure 1: Trapezoidal Rule in Python

```
def simpsonrule(f, a, b, n):
    partition= np.linspace(a, b, n+1)
    h = (b-a)/n
    y = f(partition)
    S = h/3.0*np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
    return S 
simpsonrule(func, 0, np.pi, 8) 2.0002691699483877
```

Figure 2: Simpsons Rule in Python