

What triggered the Cambrian Explosion? ...the ultimate inverse problem!

Rachel Wood

~570 - 541 Ma: the first probably animals (metazoans)

~541 Ma: The 'Cambrian Explosion'

Erwin et al., 2011

'Oxygen as a Prerequisite to the Origin of the Metazoa' J. R. Nursall, Nature (1959)

Erwin et al., 2011

Hypothesis: 'Oxygen controlled the rise of metazoans'

Erwin et al., 2011

Snowball Earths – tropical glaciations

The Earth 550 million years ago....

Approximate palaeogeographic position of published

Ediacaran sections considered in this review (550- 540Ma)

Nama Group, Namibia ~550-541 Ma

4D Redox: Shelf-basin transect

Hypothesis: Oxygen controlled the rise of metazoans

Hypothesis: Oxygen controlled the rise of metazoans

Hypothesis: Oxygen controlled the rise of metazoans

Local Redox Proxy: Fe-speciation

Poulton and Canfield, 2011

Highly Reactive Fe FeHR = Fecarb + Feox + Femag + Fepy

Low-oxygen waters limited habitable space for oldest animals

What drove the stabilisation of oxygen?

Dissolved oxygen (ml I-1)

What drove the stabilisation of oxygen?

Phosphorous (P) Speciation

Reactive P = mobile and bioavailable $P_{reac} = P_{Fe} + P_{org} + P_{auth}$

Chemical Index of Alteration (CIA)

CIA (%) =
$$[Al_2O_3/(Al_2O_3 + CaO^* + Na_2O + K_2O)] \times 100$$

Phosphorous speciation method

Redox-controlled Phosphorous cycling

Anoxia = phosphate drawdown = limited recycling = increase productivity

Oxia = phosphate burial = retention = reduced productivity

Bowyer et al., 2020

How did animals respond? 1 ~545 Ma Soft Skeletal -20 -10 0 10 $\delta^{13}C_{VPDB}$ ‰ δ18O_{VPDB} ‰

Co-evolution of oxygen and life

Co-evolution of oxygen and life and tectonics

Approximate palaeogeographic position of published

Ediacaran sections considered in this review (550- 540Ma)

A few parameters, one place, one narrative....

Approximate palaeogeographic position of published

Ediacaran sections considered in this review (550- 540Ma)

A few parameters, one place, one narrative....

