- 2. Egyszerű osztályok II.
- 1. Adott síkbeli pontok közül hány esik rá egy adott kör lemezére?

Megj: Ha az x egy [1..n] indexelésű tömb lenne, akkor a tömb elemeinek felsorolását egy i=1..n számlálós ciklussal is végezhetnénk; az e változó helyett pedig x[i]-t kellene használni.

Kör és a Pont típusa. Ábrázoljuk a köröket a középpontjukkal és a sugarukkal, a pontokat a koordinátájukkal.

Típusdefiníciók:

Kor		
körök	l := p∈k (k:Kör, p:Pont, l:L)	
c : Pont		
r : ℝ Inv: r > 0	l := \(\overline{c}, \overline{p} \) ≤ r	

Pont	
pontok	$d := \overline{q, p} (p, q : Pont, d:\mathbb{R})$
x, y :ℝ	d := $\sqrt{(p.x - q.x)^2 + (p.y - q.y)^2}$

Megj: A tervezés során inkább a "felülről-lefelé" irányt követjük, de az objektum-orientált kódolás az "alulról-felfelé" építkezést szereti.

Osztályok:

Megj: Két pont távolsága, illetve egy pontnak egy másiktól való távolsága nem eltérő fogalmak, ám metódusként való leírásuk különbözhet. Itt a második értelmezés jelenik meg: egy adott pontra (c) kell meghívni a Távolság() metódust egy másik ponttal (p), hogy a két pont távolságát kiszámoljuk: c.Távolság(p). A további példákban viszont két egyenlő súlyú objektum műveleteivel találkozunk, amelyeket ezért osztályszintű metódusként vezetünk be.

2. Adott síkvektorok összege merőleges-e egy adott síkvektorra (skaláris szorzatuk nulla-e).

A = (v:Vector
n
, w:Vector, I: \mathbb{L})
Ef = (v=v' \wedge w=w')
Uf = (Ef \wedge I = (($\Sigma_{i=1..n}$ $v[i]$)* $w=0.0$))

Algoritmus:

Típusdefiníció: Vector

síkvektorok	c := a+b	(a, b, c : Vector)	
	s := a·b	(a, b: Vector, s:ℝ)	
x, y:ℝ	c.x, c.y := a.x+b.x, a.y+b.y		
	$s := a.x \cdot b.x + a.y \cdot b.y$		

A programok leírásában meg kell különböztetnünk, hogy mikor beszélünk az 'a', a 'b', vagy a 'c' vektor x koordinátájáról: a.x, b.x, illetve c.x.

Osztály:

Az összeadás és a skaláris szorzás bemenete nem egy vektorról szól: a bemenetük két vektor, az összeadásnak a kimenete egy harmadik. Nem lenne elegáns (bár megtehetnénk), ha ezeket a műveleteket egyetlen Vector típusú objektum műveleteiként vezetnénk be. Ehelyett ezek a Vector osztály (osztályszintű) metódusai lesznek, és ezeket nem egy kitüntetett vektor objektumra kell meghívni úgy, hogy paraméterként adjuk a másik vektort, hanem olyan metódusként, amelynek két vektor partamétere van, az összeadás esetében pedig a Vector típusú visszatérési értéke.

3. Racionális számok. (Ábrázoljuk a racionális számokat egész számpárokkal.)

Típusdefiníció: Rac

Q	$c := a \pm b$ (a, b, c: Rac)		
	c := a · b (a, b, c: Rac)		
	c := a / b (b≠0) (a, b, c: Rac)		
n, d: 🏻	c.n, c.d := a.n \cdot b.d \pm a.d \cdot b.n, a.d \cdot b.d		
Inv: d≠0	c.n, c.d := a.n · b.n, a.d · b.d		
	if b.n=0 then error endif		
	c.n, c.d := a.n · b.d, a.d · b.n (b.n≠0)		

A típusinvariáns lehetne a d>0 is, vagy "n és d relatív prím" is.

Osztálydiagram:

4. Komplex számok. (Ábrázoljuk a komplex számokat az algebrai alakjukkal (x+y·i).)

Típusdefiníció: Komplex

\mathbb{C}	$c := a \pm b$ (a, b, c: Komplex)		
	c := a*b (a, b, c: Komplex)		
	c := a/b ($b\neq 0$) (a, b, c: Komplex)		
x, y: ℝ	c.x, c.y := $a.x \pm b.x$, $a.y \pm b.y$		
	c.x, c.y := $a.x \cdot b.x - a.y \cdot b.y$, $a.x \cdot b.y + a.y \cdot b.x$		
// x+i·y	if b.x=0 or b.y=0 then error endif c.x, c.y := $(a.x \cdot b.x + a.y \cdot b.y) / (b.x^2 + b.y^2)$, $(a.y \cdot b.x - a.x \cdot b.y) / (b.x^2 + b.y^2)$		
	c.x, c.y := $(a.x \cdot b.x + a.y \cdot b.y) / (b.x^2 + b.y^2)$,		
	$(a.y \cdot b.x - a.x \cdot b.y) / (b.x^2 + b.y^2)$		

Osztálydiagram:

