LabRoboticsProject

Generated by Doxygen 1.8.14

Contents

1	Clas	s Index			1
	1.1	Class I	₋ist		1
2	File	Index			3
	2.1	File Lis	st		3
3	Clas	s Docui	mentation	1	5
	3.1	Angle (Class Refe	erence	5
		3.1.1	Detailed	Description	6
		3.1.2	Member	Enumeration Documentation	6
			3.1.2.1	ANGLE_TYPE	6
		3.1.3	Construc	ctor & Destructor Documentation	6
			3.1.3.1	Angle() [1/2]	7
			3.1.3.2	Angle() [2/2]	7
		3.1.4	Member	Function Documentation	7
			3.1.4.1	add()	7
			3.1.4.2	copy()	7
			3.1.4.3	degToRad()	8
			3.1.4.4	get()	8
			3.1.4.5	getType()	8
			3.1.4.6	getTypeName()	8
			3.1.4.7	normalize()	8
			3.1.4.8	operator+()	8
			3149	operator+=()	q

ii CONTENTS

		3.1.4.10	operator-()	9
		3.1.4.11	operator-=()	9
		3.1.4.12	operator=()	11
		3.1.4.13	radToDeg()	11
		3.1.4.14	set()	11
		3.1.4.15	setType()	12
		3.1.4.16	sub()	12
		3.1.4.17	toDeg()	12
		3.1.4.18	toRad()	13
	3.1.5	Friends A	And Related Function Documentation	13
		3.1.5.1	operator<<	13
3.2	Config	uration2<	T1 > Class Template Reference	13
	3.2.1	Detailed	Description	14
	3.2.2	Construc	tor & Destructor Documentation	15
		3.2.2.1	Configuration2() [1/3]	15
		3.2.2.2	Configuration2() [2/3]	15
		3.2.2.3	Configuration2() [3/3]	15
	3.2.3	Member	Function Documentation	16
		3.2.3.1	angle() [1/2]	16
		3.2.3.2	angle() [2/2]	16
		3.2.3.3	distance()	16
		3.2.3.4	EuDistance()	17
		3.2.3.5	MaDistance()	17
		3.2.3.6	offset() [1/3]	18
		3.2.3.7	offset() [2/3]	18
		3.2.3.8	offset() [3/3]	18
		3.2.3.9	offset_angle()	19
		3.2.3.10	offset_x()	19
		3.2.3.11	offset_y()	20
		3.2.3.12	x() [1/2]	20

CONTENTS

		3.2.3.13	x() [2/2]	20
		3.2.3.14	y() [1/2]	21
		3.2.3.15	y() [2/2]	21
	3.2.4	Friends A	And Related Function Documentation	21
		3.2.4.1	operator<<	21
3.3	dubins	Class Ref	ference	22
	3.3.1	Construc	etor & Destructor Documentation	22
		3.3.1.1	dubins() [1/3]	22
		3.3.1.2	dubins() [2/3]	22
		3.3.1.3	dubins() [3/3]	23
		3.3.1.4	~dubins()	23
3.4	Point2	<t>Cla</t>	ss Template Reference	23
	3.4.1	Detailed	Description	24
	3.4.2	Construc	etor & Destructor Documentation	24
		3.4.2.1	Point2() [1/2]	24
		3.4.2.2	Point2() [2/2]	24
	3.4.3	Member	Function Documentation	25
		3.4.3.1	distance()	25
		3.4.3.2	EuDistance()	25
		3.4.3.3	MaDistance()	26
		3.4.3.4	offset() [1/3]	26
		3.4.3.5	offset() [2/3]	26
		3.4.3.6	offset() [3/3]	27
		3.4.3.7	offset_x()	27
		3.4.3.8	offset_y()	28
		3.4.3.9	x() [1/2]	28
		3.4.3.10	x() [2/2]	28
		3.4.3.11	y() [1/2]	29
		3.4.3.12	y() [2/2]	29
	3.4.4	Friends A	And Related Function Documentation	29

iv CONTENTS

		3.4.4.1	operator<<	. 29
3.5	Setting	js Class Re	eference	. 30
	3.5.1	Member E	Enumeration Documentation	. 32
		3.5.1.1	InputType	. 32
		3.5.1.2	Pattern	. 32
	3.5.2	Construct	tor & Destructor Documentation	. 32
		3.5.2.1	Settings()	. 32
	3.5.3	Member F	Function Documentation	. 32
		3.5.3.1	isListOfImages()	. 32
		3.5.3.2	nextImage()	. 33
		3.5.3.3	read()	. 33
		3.5.3.4	readStringList()	. 33
		3.5.3.5	validate()	. 34
		3.5.3.6	write()	. 34
	3.5.4	Member [Data Documentation	. 35
		3.5.4.1	aspectRatio	. 35
		3.5.4.2	atlmageList	. 35
		3.5.4.3	boardSize	. 35
		3.5.4.4	calibFixPrincipalPoint	. 35
		3.5.4.5	calibrationPattern	. 35
		3.5.4.6	calibZeroTangentDist	. 36
		3.5.4.7	cameralD	. 36
		3.5.4.8	delay	. 36
		3.5.4.9	fixK1	. 36
		3.5.4.10	fixK2	. 36
		3.5.4.11	fixK3	. 36
		3.5.4.12	fixK4	. 37
		3.5.4.13	fixK5	. 37
		3.5.4.14	flag	. 37
		3.5.4.15	flipVertical	. 37

CONTENTS

		3.5.4.16	goodInput	37
		3.5.4.17	imageList	37
		3.5.4.18	input	37
		3.5.4.19	inputCapture	38
		3.5.4.20	inputType	38
		3.5.4.21	nrFrames	38
		3.5.4.22	outputFileName	38
		3.5.4.23	showUndistorsed	38
		3.5.4.24	squareSize	38
		3.5.4.25	useFisheye	39
		3.5.4.26	writeExtrinsics	39
		3.5.4.27	writePoints	39
3.6	Tuple<	< T > Clas	ss Template Reference	39
	3.6.1	Detailed	Description	40
	3.6.2	Construc	tor & Destructor Documentation	40
		3.6.2.1	Tuple() [1/2]	40
		3.6.2.2	Tuple() [2/2]	40
	3.6.3	Member	Function Documentation	41
		3.6.3.1	add()	41
		3.6.3.2	distance()	41
		3.6.3.3	EuDistance()	41
		3.6.3.4	get()	42
		3.6.3.5	MaDistance()	42
		3.6.3.6	remove()	43
		3.6.3.7	set()	43
		3.6.3.8	size()	43
	3.6.4	Friends A	And Related Function Documentation	43
		3.6.4.1	operator<<	44

vi

4	File	Docum	entation	45
	4.1	src/cal	libration.cc File Reference	45
		4.1.1	Function Documentation	46
			4.1.1.1 calcBoardCornerPositions()	46
			4.1.1.2 calibration()	46
			4.1.1.3 computeReprojectionErrors()	46
			4.1.1.4 read()	47
			4.1.1.5 runCalibration()	47
			4.1.1.6 runCalibrationAndSave()	48
			4.1.1.7 saveCameraParams()	49
	4.2	src/cal	libration.hh File Reference	49
		4.2.1	Detailed Description	50
		4.2.2	Enumeration Type Documentation	50
			4.2.2.1 anonymous enum	50
		4.2.3	Function Documentation	51
			4.2.3.1 calibration()	51
			4.2.3.2 runCalibrationAndSave()	51
	4.3	src/cal	libration_run.cc File Reference	52
		4.3.1	Function Documentation	52
			4.3.1.1 main()	52
	4.4	src/cre	eate_xml.cc File Reference	52
		4.4.1	Function Documentation	53
			4.4.1.1 main()	53
	4.5	src/det	tection.cc File Reference	53
		4.5.1	Macro Definition Documentation	54
			4.5.1.1 WAIT	54
		4.5.2	Function Documentation	54
			4.5.2.1 crop_number_section()	54
			4.5.2.2 detection()	54
			4.5.2.3 erode_dilation()	55

CONTENTS vii

		4.5.2.4	find_contours()	. 55
		4.5.2.5	load_number_template()	. 55
		4.5.2.6	number_recognition()	. 56
		4.5.2.7	save_convex_hull()	. 56
		4.5.2.8	shape_detection()	. 56
	4.5.3	Variable	Documentation	. 57
		4.5.3.1	fs_xml	. 57
		4.5.3.2	templates	. 57
		4.5.3.3	xml_settings	. 57
4.6	src/det	ection.hh	File Reference	. 57
	4.6.1	Function	Documentation	. 58
		4.6.1.1	crop_number_section()	. 58
		4.6.1.2	detection()	. 59
		4.6.1.3	erode_dilation()	. 59
		4.6.1.4	find_contours()	. 59
		4.6.1.5	load_number_template()	. 60
		4.6.1.6	number_recognition()	. 60
		4.6.1.7	save_convex_hull()	. 60
		4.6.1.8	shape_detection()	. 61
4.7	src/det	ection_rur	n.cc File Reference	. 61
	4.7.1	Function	Documentation	. 61
		4.7.1.1	main()	. 61
4.8	src/duk	oins.cc File	e Reference	. 62
4.9	src/duk	oins.hh File	e Reference	. 62
4.10	src/ma	in.cc File I	Reference	. 63
	4.10.1	Function	Documentation	. 63
		4.10.1.1	main()	. 63
4.11	src/ma	ths.cc File	e Reference	. 64
4.12	src/ma	ths.hh File	e Reference	. 64
	4.12.1	Macro D	efinition Documentation	. 65

viii CONTENTS

		4.12.1.1 DEGTORAD	66
		4.12.1.2 RADTODEG	66
	4.12.2	Enumeration Type Documentation	66
		4.12.2.1 DISTANCE_TYPE	66
	4.12.3	Function Documentation	66
		4.12.3.1 pow2()	66
4.13	src/unv	vrapping.cc File Reference	66
	4.13.1	Macro Definition Documentation	67
		4.13.1.1 area_ratio	67
		4.13.1.2 WAIT	67
	4.13.2	Function Documentation	67
		4.13.2.1 distance()	67
		4.13.2.2 loadCoefficients()	68
		4.13.2.3 swap()	68
		4.13.2.4 unwrapping()	68
	4.13.3	Variable Documentation	69
		4.13.3.1 xml_settings	69
4.14	src/unv	vrapping.hh File Reference	69
	4.14.1	Function Documentation	70
		4.14.1.1 loadCoefficients()	70
		4.14.1.2 unwrapping()	70
4.15	src/unv	vrapping_run.cc File Reference	71
	4.15.1	Function Documentation	71
		4.15.1.1 main()	71
4.16	src/utils	s.cc File Reference	71
	4.16.1	Function Documentation	71
		4.16.1.1 my_imshow()	72
4.17	src/utils	s.hh File Reference	72
	4.17.1	Macro Definition Documentation	72
		4.17.1.1 INFO	73
	4.17.2	Function Documentation	73
		4.17.2.1 my_imshow()	73

Index

75

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Angle	
This class allows to save and handle angles. It supports DEG and RAD, operations such as addition and subtraction with operators overloading, conversion from RAD to DEG and viceversa	
and normalization of the angle	5
Configuration2< T1 >	
This class stores a configuration, that is a point and an angle	13
dubins	22
Point2< T >	
Class that stores two value to construct a point in 2D. The value is saved in a Tuple	23
Settings	30
Tuple < T >	39

2 Class Index

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

/calibration.cc	45
/calibration.hh	
Library for calibration	49
/calibration_run.cc	52
/create_xml.cc	52
/detection.cc	53
/detection.hh	57
/detection_run.cc	61
/dubins.cc	62
/dubins.hh	62
/main.cc	63
/maths.cc	64
/maths.hh	64
/unwrapping.cc	66
/unwrapping.hh	69
/unwrapping_run.cc	71
/utils.cc	71
/utils.hh	72

File Index

Chapter 3

Class Documentation

3.1 Angle Class Reference

This class allows to save and handle angles. It supports DEG and RAD, operations such as addition and subtraction with operators overloading, conversion from RAD to DEG and viceversa and normalization of the angle.

```
#include <maths.hh>
```

Public Types

enum ANGLE_TYPE { DEG, RAD, INVALID }

Public Member Functions

• Angle ()

A void constructor to create an angle.

Angle (double _th, ANGLE_TYPE _type)

This constructor takes the angle value and the type of angle and stores them. It also normalize the angle in case is above 2pi (360°) or below 0.

• double get () const

Returns the dimension of the angle.

ANGLE_TYPE getType () const

Returns the type of the angle.

- string getTypeName () const
- template < class T >

void set (const T _th)

Set the value of the angle.

void setType (ANGLE_TYPE _type)

Set the type of the angle.

• double degToRad ()

Convert and store the angle from DEG to RAD.

double radToDeg ()

Converts and stores the angle from RAD to DEG.

• double toRad () const

Converts but does not store the value of the angle from DEG to RAD.

• double toDeg () const

Converts but does not store the value of the angle from RAD to DEG.

• void normalize ()

Normalize the angle, that is to set it in $[0, 2\pi]$ or [0, 360].

Angle add (const Angle phi)

Sums and angle to this one. In the process a new angle is created so normalize () is also called.

• Angle sub (const Angle phi)

Subtracts and angle to this one. In the process a new angle is created so normalize () is also called.

• Angle copy (const Angle phi)

Copies an angle to this one. In the process a new angle is created so normalize () is also called.

- Angle operator+ (const Angle phi)
- Angle operator- (const Angle phi)
- Angle operator= (const Angle phi)
- Angle & operator+= (const Angle phi)
- Angle & operator-= (const Angle phi)

Friends

ostream & operator<< (ostream &out, const Angle &data)

3.1.1 Detailed Description

This class allows to save and handle angles. It supports DEG and RAD, operations such as addition and subtraction with operators overloading, conversion from RAD to DEG and viceversa and normalization of the angle.

3.1.2 Member Enumeration Documentation

3.1.2.1 ANGLE_TYPE

enum Angle::ANGLE_TYPE

Enumerator

DEG	
RAD	
INVALID	

3.1.3 Constructor & Destructor Documentation

```
3.1.3.1 Angle() [1/2]
Angle::Angle ( ) [inline]
```

A void constructor to create an angle.

This constructor takes the angle value and the type of angle and stores them. It also normalize the angle in case is above 2pi (360°) or below 0.

Parameters

in	_th	The dimension of the angle.
in	_type	The type of the angle.

3.1.4 Member Function Documentation

3.1.4.1 add()

Sums and angle to this one. In the process a new angle is created so normalize () is also called.

Parameters

in	phi	The angle to be summed.
----	-----	-------------------------

Returns

The angle summed.

3.1.4.2 copy()

```
Angle Angle::copy (

const Angle phi ) [inline]
```

Copies an angle to this one. In the process a new angle is created so normalize () is also called.

Parameters

in phi The angle to be cop	ied.
----------------------------	------

Returns

The new angle.

```
3.1.4.3 degToRad()
```

```
double Angle::degToRad ( ) [inline]
```

Convert and store the angle from DEG to RAD.

Returns

The value of the angle.

```
3.1.4.4 get()
```

```
double Angle::get ( ) const [inline]
```

Returns the dimension of the angle.

3.1.4.5 getType()

```
ANGLE_TYPE Angle::getType ( ) const [inline]
```

Returns the type of the angle.

3.1.4.6 getTypeName()

```
string Angle::getTypeName ( ) const [inline]
```

<Returns a string that tells the type of angle.

3.1.4.7 normalize()

```
void Angle::normalize ( ) [inline]
```

Normalize the angle, that is to set it in $[0,2\pi]$ or [0,360].

3.1.4.8 operator+()

This function overload the operator +. It simply calls the ${\tt add}$ () function.

Parameters

in	phi	The angle to be summed.
----	-----	-------------------------

Returns

The angle summed.

3.1.4.9 operator+=()

This function overload the operator +. It simply calls the add () function and then assign the result to this.

Parameters

in	phi	The angle to be summed.
----	-----	-------------------------

Returns

this.

3.1.4.10 operator-()

This function overload the operator -. It simply calls the sub () function.

Parameters

```
in phi The angle to be subtracted.
```

Returns

The angle subtracted.

3.1.4.11 operator-=()

This function overload the operator -. It simply calls the sub () function and then assign the result to this.

Parameters

in	phi	The angle to be subtracted.
----	-----	-----------------------------

Returns

this.

3.1.4.12 operator=()

This function overload the operator -. It simply calls the $\verb"sub"$ () function.

Parameters

in phi The angle to be cop	oied.
----------------------------	-------

Returns

The new angle.

3.1.4.13 radToDeg()

```
double Angle::radToDeg ( ) [inline]
```

Converts and stores the angle from RAD to DEG.

Returns

The value of the angle.

3.1.4.14 set()

Set the value of the angle.

Template Parameters

The programming type for the value to be stored. It's then cast to double.

Parameters

in	\leftarrow	The dimension of the angle to be stored.
	_←	
	th	

3.1.4.15 setType()

Set the type of the angle.

Parameters

in	\leftarrow	The type of the angle to be stored.
	_←	
	th	

3.1.4.16 sub()

Subtracts and angle to this one. In the process a new angle is created so normalize () is also called.

Parameters

in	phi	The angle to be subtracted.
----	-----	-----------------------------

Returns

The angle subtracted.

3.1.4.17 toDeg()

```
double Angle::toDeg ( ) const [inline]
```

Converts but does not store the value of the angle from RAD to DEG.

Returns

The value of the angle

3.1.4.18 toRad()

```
double Angle::toRad ( ) const [inline]
```

Converts but does not store the value of the angle from DEG to RAD.

Returns

The value of the angle

3.1.5 Friends And Related Function Documentation

3.1.5.1 operator < <

This function overload the << operator so to print with std::cout the most essential info, that is the dimension and the type of angle.

Parameters

in	out	The out stream.
in	data	The angle to print.

Returns

An output stream to be printed.

The documentation for this class was generated from the following file:

· src/maths.hh

3.2 Configuration2 < T1 > Class Template Reference

This class stores a configuration, that is a point and an angle.

```
#include <maths.hh>
```

Public Member Functions

· Configuration2 ()

Default constructor that use as point (0,0) and as angle 0 RAD.

Configuration2 (const T1 _x, const T1 _y, const Angle _th)

Default constructor that takes the coordinates, the angle, and stores them.

Configuration2 (const Point2< T1 > P, const Angle _th)

Default constructor that takes the point, the angle, and stores them.

- T1 x () const
- T1 y () const
- Angle angle () const
- int x (const T1 _x)

This function stores a new value for the abscissa.

int y (const T1 _y)

This function stores a new value for the ordinate.

void angle (const Angle th)

This function stores a new value for the angle.

template < class T2 >

```
int offset (const T2 _offset, const Angle phi, const Angle _th)
```

This function compute the offset of the point given a vector, that is the length of the vector and its angle. The angle must be an Angle variable. It takes also another Angle to change the Angle in the configuration.

int offset (Configuration2< T1 > p)

This function compute the offset of the point given another Configuration2.

• int offset (Point2< T1 > p, const Angle th=Angle())

This function compute the offset of the point given a Point2 containing the offsets for the abscissa and the ordinate and an Angle to change the Angle in the configuration.

int offset_x (const T1 _offset)

Function to add an offset to the abscissa.

int offset_y (const Angle _offset)

Function to add an offset to the ordinate.

void offset_angle (const Angle _th)

Function to add an offset to the angle.

template < class T2 >

```
Tuple < double > distance (Configuration2 < T2 > B, DISTANCE TYPE dist type=EUCLIDEAN)
```

Wrapper to compute different distances. T2 The type of the elements in the second Configuration2.

• template<class T2 >

```
Tuple < double > EuDistance (Configuration2 < T2 > B)
```

Function that compute the Euclidean Distance between two configurations. T2 The type of the elements in the second Configuration2.

template < class T2 >

```
Tuple < double > MaDistance (Configuration2 < T2 > B)
```

Function that compute the Manhattan Distance between two configurations. T2 The type of the elements in the second Configuration2.

Friends

ostream & operator<< (ostream &out, const Configuration2 &data)

Overload of operator << to output the content of a Configuration2.

3.2.1 Detailed Description

```
template < class T1 > class Configuration 2 < T1 >
```

This class stores a configuration, that is a point and an angle.

Template Parameters

```
T1 The type of the coordinates.
```

3.2.2 Constructor & Destructor Documentation

```
3.2.2.1 Configuration2() [1/3]
template<class T1>
Configuration2< T1 >::Configuration2 ( ) [inline]
```

Default constructor that use as point (0,0) and as angle 0 RAD.

3.2.2.2 Configuration2() [2/3]

Default constructor that takes the coordinates, the angle, and stores them.

Parameters

in	\leftarrow	The abscissa coordinate.
	_←	
	X	
in	\leftarrow	The ordinate coordinate.
	_←	
	У	
in	\leftarrow	The angle.
	_←	
	th	

3.2.2.3 Configuration2() [3/3]

Default constructor that takes the point, the angle, and stores them.

Parameters

in	Р	The coordinates.
in	\leftarrow	The angle.
	_← th	

3.2.3 Member Function Documentation

```
3.2.3.1 angle() [1/2]

template<class T1>
Angle Configuration2< T1 >::angle ( ) const [inline]
```

Returns

The angle.

```
3.2.3.2 angle() [2/2]
```

This function stores a new value for the angle.

Parameters

in	\leftarrow	The value to be stored.
	_← th	

Returns

1 if everything went ok, 0 otherwise.

3.2.3.3 distance()

```
template<class T1>
template<class T2 >
```

Wrapper to compute different distances. T2 The type of the elements in the second Configuration2.

Parameters

in	В	The second Configuration2 to use for computing the distance.
in	dist	The type of distance to be computed.

Returns

The distance between the two configurations.

3.2.3.4 EuDistance()

Function that compute the Euclidean Distance between two configurations. T2 The type of the elements in the second Configuration2.

Parameters

```
in \ensuremath{B} the second Configuration2 to use for computing the distance.
```

Returns

The Euclidean distance between the two configurations.

3.2.3.5 MaDistance()

Function that compute the Manhattan Distance between two configurations. T2 The type of the elements in the second Configuration2.

Parameters

in	В	the second Configuration2 to use for computing the distance.	
----	---	--	--

Returns

The Manhattan distance between the two configurations.

This function compute the offset of the point given a vector, that is the length of the vector and its angle. The angle must be an Angle variable. It takes also another Angle to change the Angle in the configuration.

Template Parameters

This function compute the offset of the point given another Configuration2.

Parameters

```
in p The configuration containing the offsets.
```

Returns

1 if everything went fine, 0 otherwise.

This function compute the offset of the point given a Point2 containing the offsets for the abscissa and the ordinate and an Angle to change the Angle in the configuration.

Parameters

in	р	The point containing the offsets.
in	\downarrow	The offset for the Angle in the configuration. It's set to 0 as default so to easily change just the
	_←	coordinates.
	th	

Returns

1 if everything went fine, 0 otherwise.

3.2.3.9 offset_angle()

Function to add an offset to the angle.

Parameters

in _offset The	offset.
----------------	---------

Returns

1 if everything went fine, 0 otherwise.

3.2.3.10 offset_x()

Function to add an offset to the abscissa.

Parameters

in	offset	The offset.
T11	_011001	1110 011001.

Returns

1 if everything went fine, 0 otherwise.

3.2.3.11 offset_y()

Function to add an offset to the ordinate.

Parameters

in	_offset	The offset.
----	---------	-------------

Returns

1 if everything went fine, 0 otherwise.

```
3.2.3.12 x() [1/2]
```

```
template<class T1>
T1 Configuration2< T1 >::x ( ) const [inline]
```

Returns

The abscissa coordinate.

```
3.2.3.13 x() [2/2]
```

This function stores a new value for the abscissa.

Parameters

in	\leftrightarrow	The value to be stored.
	_←	
	X	

Returns

1 if everything went ok, 0 otherwise.

```
3.2.3.14 y() [1/2]

template<class T1>
T1 Configuration2< T1 >::y ( ) const [inline]
```

Returns

The ordinate coordinate.

This function stores a new value for the ordinate.

Parameters

in	\leftarrow	The value to be stored.
	_←	
	У	

Returns

1 if everything went ok, 0 otherwise.

3.2.4 Friends And Related Function Documentation

$\textbf{3.2.4.1} \quad \text{operator} <<$

Overload of operator << to output the content of a Configuration2.

Parameters

in	out	The output stream.
in	data	The Configuration2 to print.

Returns

An output stream to be printed.

The documentation for this class was generated from the following file:

src/maths.hh

3.3 dubins Class Reference

```
#include <dubins.hh>
```

Public Member Functions

```
• dubins (double x0, double y0, double th0, double x1, double y1, double th1, double max=1.0)
```

- dubins (Point2 _P0, Point2 _P1, Angle _th1, Angle _th2, Kmax=1.0)
- dubins (Configuration2 _P0, Configuration2 _P1, Kmax=1.0)
- \sim dubins ()

3.3.1 Constructor & Destructor Documentation

The documentation for this class was generated from the following file:

src/dubins.hh

3.4 Point2 < T > Class Template Reference

Class that stores two value to construct a point in 2D. The value is saved in a Tuple.

```
#include <maths.hh>
```

Public Member Functions

• Point2 ()

Default constructor to build an empty Tuple.

Point2 (const T _x, const T _y)

Constructor that taked to elements and builds a point.

- Tx() const
- Ty()const
- int x (const T _x)

Set the abscissa value.

int y (const T _y)

Set the ordinate value.

template<class T1 >

```
int offset (const T1 _offset, const Angle th)
```

This function compute the offset of the point given a vector, that is the length of the vector and its angle. The angle must be an Angle variable.

int offset (const Point2< T > p)

This function compute an offset given another point made of the abscissa offset and the ordinate offset.

int offset (const Tuple < T > p)

 $\textit{This function compute an offset given a $\tt Tuple $ made of the abscissa offset and the ordinate offset.}$

int offset_x (const T _offset)

This function compute an offset for the abscissa.

• int offset_y (const T _offset)

This function compute an offset for the ordinate.

template < class T1 >
 double distance (Point2 < T1 > B, DISTANCE_TYPE dist=EUCLIDEAN)

Wrapper to compute different distances. T1 The type of the elements in the second Point 2.

template < class T1 > double MaDistance (Point2 < T1 > B)

Function that compute the Manhattan Distance between two points. T1 The type of the elements in the second Point 2.

template < class T1 >
 double EuDistance (Point2 < T1 > B)

Function that compute the Euclidean Distance between two points. T1 The type of the elements in the second Point2.

Friends

ostream & operator << (ostream &out, const Point2 < T > &data)
 Overload of operator << to output the content of a Point2.

3.4.1 Detailed Description

```
\begin{array}{l} \text{template}{<}\text{class T}{>} \\ \text{class Point2}{<}\text{ T}{>} \end{array}
```

Class that stores two value to construct a point in 2D. The value is saved in a Tuple.

Template Parameters

```
The type of the coordinates to be stored.
```

3.4.2 Constructor & Destructor Documentation

```
3.4.2.1 Point2() [1/2]

template<class T>
Point2< T >::Point2 ( ) [inline]
```

Default constructor to build an empty Tuple.

Constructor that taked to elements and builds a point.

Parameters

in	\leftarrow	The abscissa coordinate.
	_←	
	X	
in	\leftarrow	The ordinate coordinate.
in	<i>→</i>	The ordinate coordinate.

3.4.3 Member Function Documentation

3.4.3.1 distance()

Wrapper to compute different distances. T1 The type of the elements in the second Point 2.

Parameters

in	В	The second Point2 to use for computing the distance.
in	dist	The type of distance to be computed.

Returns

The distance between the two points.

3.4.3.2 EuDistance()

```
template<class T> template<class T1 > double Point2< T >::EuDistance (  Point2< T1 > B ) \quad [inline]
```

Function that compute the Euclidean Distance between two points. T1 The type of the elements in the second Point2.

Parameters

in	В	the second Point 2 to use for computing the distance.
----	---	---

Returns

The Euclidean distance between the two points.

3.4.3.3 MaDistance()

```
template<class T> template<class T1 > double Point2< T >::MaDistance (  Point2< T1>B ) \quad [inline]
```

Function that compute the Manhattan Distance between two points. T1 The type of the elements in the second Point2.

Parameters

```
in B the second Point 2 to use for computing the distance.
```

Returns

The Manhattan distance between the two points.

This function compute the offset of the point given a vector, that is the length of the vector and its angle. The angle must be an Angle variable.

Template Parameters

This function compute an offset given another point made of the abscissa offset and the ordinate offset.

Parameters

The point with th	e offsets.
-------------------	------------

Returns

1 if everything went fine, 0 otherwise.

This function compute an offset given a Tuple made of the abscissa offset and the ordinate offset.

Parameters

```
in p The Tuple with the offsets. Its dimension must be 2.
```

Returns

1 if everything went fine, 0 otherwise.

3.4.3.7 offset_x()

This function compute an offset for the abscissa.

Parameters

```
in _offset The offset.
```

Returns

1 if everything went fine, 0 otherwise.

3.4.3.8 offset_y()

This function compute an offset for the ordinate.

Parameters

in	_offset	The offset.
----	---------	-------------

Returns

1 if everything went fine, 0 otherwise.

```
3.4.3.9 x() [1/2]
```

```
template<class T>
T Point2< T >::x ( ) const [inline]
```

Returns

The abscissa coordinate

```
3.4.3.10 x() [2/2]
```

Set the abscissa value.

Parameters

in	1	The new abscissa value
	_←	
	Χ	

Returns

1 if it was successful, 0 otherwise.

```
3.4.3.11 y() [1/2]
```

```
template<class T>
T Point2< T >::y ( ) const [inline]
```

Returns

The ordinate coordinate

Set the ordinate value.

Parameters

in	\leftarrow	The new ordinate value
	_←	
	X	

Returns

1 if it was successful, 0 otherwise.

3.4.4 Friends And Related Function Documentation

3.4.4.1 operator <<

Overload of operator << to output the content of a Point2.

in	out	The output stream.
in	data	The Point2 to print.

Returns

An output stream to be printed.

The documentation for this class was generated from the following file:

· src/maths.hh

3.5 Settings Class Reference

```
#include <calibration.hh>
```

Public Types

- enum Pattern { NOT_EXISTING =0, CHESSBOARD =1 }
- enum InputType { INVALID =0, IMAGE_LIST =3 }

Public Member Functions

· Settings ()

Constructor that sets goodInput to false.

• void write (FileStorage &fs) const

Write serialization.

• void read (const FileNode &node)

Read serialization.

• void validate ()

This function validate the content of the file.

· Mat nextImage ()

Get next image from list.

Static Public Member Functions

- static bool readStringList (const string &filename, vector < string > &I)

Read from file a list of images.

• static bool isListOflmages (const string &filename)

Check if the file from which is trying to retrive a list is a valid format (xml or yaml).

Public Attributes

Size boardSize

The size of the board -> Number of items by width and height.

Pattern calibrationPattern = CHESSBOARD

One of the Chessboard, circles, or asymmetric circle pattern.

float squareSize

The size of a square in your defined unit (point, millimeter,etc).

· int nrFrames

The number of frames to use from the input for calibration.

float aspectRatio

The aspect ratio.

· int delay

In case of a video input.

bool writePoints

Write detected feature points.

· bool writeExtrinsics

Write extrinsic parameters.

· bool calibZeroTangentDist

Assume zero tangential distortion.

· bool calibFixPrincipalPoint

Fix the principal point at the center.

bool flipVertical

Flip the captured images around the horizontal axis.

· string outputFileName

The name of the file where to write.

· bool showUndistorsed

Show undistorted images after calibration.

string input

The input.

• bool useFisheye = false

use fisheye camera model for calibration

bool fixK1

fix K1 distortion coefficient

bool fixK2

fix K2 distortion coefficient

bool fixK3

fix K3 distortion coefficient

· bool fixK4

fix K4 distortion coefficient

• bool fixK5

fix K5 distortion coefficient

- int cameralD
- vector< string > imageList
- size_t atlmageList
- VideoCapture inputCapture
- InputType inputType = IMAGE_LIST
- bool goodInput
- int flag

3.5.1 Member Enumeration Documentation

3.5.1.1 InputType

```
enum Settings::InputType
```

Enumerator

INVALID	
IMAGE_LIST	

3.5.1.2 Pattern

```
enum Settings::Pattern
```

Enumerator

NOT_EXISTING	
CHESSBOARD	

3.5.2 Constructor & Destructor Documentation

3.5.2.1 Settings()

```
Settings::Settings ( ) [inline]
```

Constructor that sets goodInput to false.

3.5.3 Member Function Documentation

3.5.3.1 isListOfImages()

Check if the file from which is trying to retrive a list is a valid format (xml or yaml).

Parameters

in filename The name of the file to check for v	validity.
---	-----------

Returns

false is the file is not xml or yaml true otherwise.

3.5.3.2 nextImage()

```
Mat Settings::nextImage ( )
```

Get next image from list.

Returns

A matrix containing the next image to consider.

3.5.3.3 read()

Read serialization.

This function read data from a file and stores each node in their corresponding variables.

Parameters

```
in node The node of the file to consider.
```

3.5.3.4 readStringList()

Read from file a list of images.

Parameters

	in	filename	The name of the file from which to read.
ĺ	out	1	A vector which will contain the names of the file from the list.

Returns

false if the file could not be opened or if the file doesn't contain a list true otherwise.

3.5.3.5 validate()

```
void Settings::validate ( )
```

This function validate the content of the file.

Even though this function doesn't return anything nor has any parameters for output, it sets a variable of the Settings class, that is <code>googInput</code>, to <code>false</code> if some infos were wrong. <code>true</code> otherwise. The options it takes in consideration are the following:

· Size must be positive.

- Cells must be greater than 10^{-6} .
- The number of frames considered, that is images, must be greater than 0.
- Check for valid input, that is a valid list of images.
- · Else a list of image is being used.
- Check the field pattern: if it doesn't correspond to a known one than it's invalid.

3.5.3.6 write()

Write serialization.

This function write data to a file.

Parameters

in	fs	The filename where to write.
----	----	------------------------------

3.5.4 Member Data Documentation

3.5.4.1 aspectRatio

float Settings::aspectRatio

The aspect ratio.

3.5.4.2 atlmageList

size_t Settings::atImageList

3.5.4.3 boardSize

Size Settings::boardSize

The size of the board -> Number of items by width and height.

3.5.4.4 calibFixPrincipalPoint

bool Settings::calibFixPrincipalPoint

Fix the principal point at the center.

3.5.4.5 calibrationPattern

Pattern Settings::calibrationPattern = CHESSBOARD

One of the Chessboard, circles, or asymmetric circle pattern.

3.5.4.6 calibZeroTangentDist bool Settings::calibZeroTangentDist Assume zero tangential distortion. 3.5.4.7 cameralD int Settings::cameraID 3.5.4.8 delay int Settings::delay In case of a video input. 3.5.4.9 fixK1 bool Settings::fixK1 fix K1 distortion coefficient 3.5.4.10 fixK2 bool Settings::fixK2 fix K2 distortion coefficient 3.5.4.11 fixK3 bool Settings::fixK3

fix K3 distortion coefficient

3.5 Settings Class Reference 3.5.4.12 fixK4 bool Settings::fixK4 fix K4 distortion coefficient 3.5.4.13 fixK5 bool Settings::fixK5 fix K5 distortion coefficient 3.5.4.14 flag int Settings::flag 3.5.4.15 flipVertical bool Settings::flipVertical Flip the captured images around the horizontal axis. 3.5.4.16 goodInput bool Settings::goodInput 3.5.4.17 imageList vector<string> Settings::imageList

3.5.4.18 input

string Settings::input

The input.

3.5.4.19 inputCapture

VideoCapture Settings::inputCapture

3.5.4.20 inputType

InputType Settings::inputType = IMAGE_LIST

3.5.4.21 nrFrames

int Settings::nrFrames

The number of frames to use from the input for calibration.

3.5.4.22 outputFileName

string Settings::outputFileName

The name of the file where to write.

3.5.4.23 showUndistorsed

bool Settings::showUndistorsed

Show undistorted images after calibration.

3.5.4.24 squareSize

float Settings::squareSize

The size of a square in your defined unit (point, millimeter,etc).

3.5.4.25 useFisheye

```
bool Settings::useFisheye = false
```

use fisheye camera model for calibration

3.5.4.26 writeExtrinsics

```
bool Settings::writeExtrinsics
```

Write extrinsic parameters.

3.5.4.27 writePoints

bool Settings::writePoints

Write detected feature points.

The documentation for this class was generated from the following files:

- · src/calibration.hh
- · src/calibration.cc

3.6 Tuple < T > Class Template Reference

```
#include <maths.hh>
```

Public Member Functions

• Tuple ()

Defualt constructor.

• Tuple (int n,...)

Constructors that takes the number of objectes to be stored, the objects and then stores them.

- · int size () const
- T get (const int _n) const

Gets the n-th element.

void add (const T _new)

Adds a value at the end of the list.

int remove (const T pos)

Removes a value from the list.

int set (const int pos, const T _new)

Set a value in a certain position, or adds the element if the position equals the number of elements.

• template<class T1 >

```
double EuDistance (const Tuple < T1 > B)
```

Function that compute the Euclidean Distance between two tuples. They must have the same number of elements. T1 The type of the elements in the second Tuple.

template<class T1 >

```
double MaDistance (const Tuple < T1 > B)
```

Function that compute the Manhattan Distance between two tuples. They must have the same number of elements. T1 The type of the elements in the second Tuple.

• template<class T1 >

```
double distance (const Tuple < T1 > B, const DISTANCE_TYPE dist=EUCLIDEAN)
```

Wrapper to compute different distances. They must have the same number of elements. T1 The type of the elements in the second Tuple.

Friends

ostream & operator << (ostream &out, const Tuple &data)
 Overload of operator << to output the content of the tuple.

3.6.1 Detailed Description

```
\label{eq:template} \begin{split} \text{template} &< \text{class T}> \\ \text{class Tuple} &< \text{T}> \end{split}
```

This class allows the definition and storage of tuples of different dimensions. Functions to compute distance between tuples are also available.

Template Parameters

```
The type of elements to be stored.
```

3.6.2 Constructor & Destructor Documentation

```
3.6.2.1 Tuple() [1/2]

template<class T>
Tuple< T >::Tuple ( ) [inline]
```

Defualt constructor.

Constructors that takes the number of objectes to be stored, the objects and then stores them.

in	\leftarrow	Number of obejctes to store.
	_←	
	n	
in		Objects to store.

3.6.3 Member Function Documentation

3.6.3.1 add()

Adds a value at the end of the list.

Parameters

in new The new valu	e to be added.
---------------------	----------------

3.6.3.2 distance()

Wrapper to compute different distances. They must have the same number of elements. T1 The type of the elements in the second Tuple.

Parameters

in	В	The second Tuple to use for computing the distance.
in	dist	The type of distance to be computed.

Returns

The distance between the two Tuple.

3.6.3.3 EuDistance()

Function that compute the Euclidean Distance between two tuples. They must have the same number of elements. T1 The type of the elements in the second Tuple.

Parameters

ln B the second tuple to use for computing the distance.	in	В	the second Tuple to use for computing the distance.
--	----	---	---

Returns

The Euclidean distance between the two Tuple.

3.6.3.4 get()

Gets the n-th element.

Parameters

in	\leftarrow	The position of the element to retrieve.
	_←	
	n	

Returns

The element in the n-th position.

3.6.3.5 MaDistance()

Function that compute the Manhattan Distance between two tuples. They must have the same number of elements. T1 The type of the elements in the second Tuple.

Parameters

-			
	in	В	the second Tuple to use for computing the distance.

Returns

The Manhattan distance between the two Tuple.

3.6.3.6 remove()

Removes a value from the list.

Parameters

in	pos	The position of the value to be removed.
----	-----	--

3.6.3.7 set()

Set a value in a certain position, or adds the element if the position equals the number of elements.

Parameters

in	pos	Must be in $[0, n-1]$. If $\operatorname{pos} = n$ then the element is added at the end of the vector.
in	_new	The new element to be set.

Returns

1 if everything went right, 0 if the position was greater than n or less the 0.

3.6.3.8 size()

```
template<class T>
int Tuple< T >::size ( ) const [inline]
```

Returns

The number of stored elements.

3.6.4 Friends And Related Function Documentation

3.6.4.1 operator < <

Overload of operator << to output the content of the tuple.

Parameters

in	out	The output stream.
in	data	The Tuple to print.

Returns

An output stream to be printed.

The documentation for this class was generated from the following file:

• src/maths.hh

Chapter 4

File Documentation

4.1 src/calibration.cc File Reference

#include "calibration.hh"
Include dependency graph for calibration.cc:

Functions

• int calibration (const string inputFile)

Function to run the complete calibration.

static void read (const FileNode &node, Settings &x, const Settings &default_value)

Reads settings from file. If there is none then initiate a new Settings.

static double computeReprojectionErrors (const vector< vector< Point3f > > &objectPoints, const vector< vector< Point2f > > &imagePoints, const vector< Mat > &rvecs, const vector< Mat > &tvecs, const Mat &cameraMatrix, const Mat &distCoeffs, vector< float > &perViewErrors, bool fisheye)

Compute the errors of the projection.

void calcBoardCornerPositions (Size boardSize, float squareSize, vector < Point3f > &corners)

This function compute the position of the upper corners of every cell.

static bool runCalibration (Settings &s, Size &imageSize, Mat &cameraMatrix, Mat &distCoeffs, vector < vector < Point2f > > imagePoints, vector < Mat > &rvecs, vector < Mat > &tvecs, vector < float > &reproj ← Errs, double &totalAvgErr)

This function run the calibration creating the matrixed for the camera and the distorsion coefficients.

static void saveCameraParams (const Settings &s, const Size &imageSize, const Mat &cameraMatrix, const
 Mat &distCoeffs, const vector < Mat > &rvecs, const vector < Mat > &tvecs, const vector < float > &reproj
 Errs, const vector < vector < Point2f > > &imagePoints, const double totalAvgErr)

Function to save the computed parameters to a file.

bool runCalibrationAndSave (Settings &s, Size imageSize, Mat &cameraMatrix, Mat &distCoeffs, vector
 vector < Point2f > > imagePoints)

Reads settings from file. If there is none then initiate a new Settings.

4.1.1 Function Documentation

4.1.1.1 calcBoardCornerPositions()

This function compute the position of the upper corners of every cell.

Parameters

in		boardSiz	The dimension of the chess board.
in		squareSize	The dimension of the edge of a cell.
ou	t	corners	A vector of Point3fs which equals to the corners of the cells.

4.1.1.2 calibration()

Function to run the complete calibration.

Parameters

in	inputFile	Name of the setting.xml file. It's set to default to default.xml
----	-----------	--

Returns

- -2 if the settings file could be load but the input was not well-formed
- -1 if the settings file could not be opened.
- 0 if everything went fine.

4.1.1.3 computeReprojectionErrors()

```
const Mat & distCoeffs,
vector< float > & perViewErrors,
bool fisheye ) [static]
```

Compute the errors of the projection.

Parameters

in	objectPoints	The real image points which will be projected	
in	rvecs	Input vector of rotation vectors estimated for each pattern view.	
in	tvecs	Input vector of translation vectors estimated for each pattern view.	
in	cameraMatrix	The matrix containing the parameters for the camera	
in	distCoeffs	The matrix containing the distortion coefficients.	
in	fisheye	A variable which says if a fish eye correction should be applied or no.	
out	perViewErrors	A vector containing the error for each image.	
out	imagePoints	The projected points for each image.	

Returns

The total error.

4.1.1.4 read()

Reads settings from file. If there is none then initiate a new Settings.

Parameters

in	node	node to consider for getting settings;
in	Х	Settings to configure;
in	default_value	Settings default value. Setted to Settings ().

4.1.1.5 runCalibration()

```
vector< Mat > & tvecs,
vector< float > & reprojErrs,
double & totalAvgErr ) [static]
```

This function run the calibration creating the matrixed for the camera and the distorsion coefficients.

Parameters

in	s	The Settings read from the file and memorized.
in	imageSize The size of the image used in calibrateCamera() to initialize the camera	
in	imagePoints	The projected points for each image.
in	reprojErrs	The re-projection error, that is a geometric error corresponding to the image distance
		between a projected point and a measured one.
out	cameraMatrix	The matrix of the camera parameters
out	distCoeffs	The matrix of the distorsion coefficients.
out	rvecs	Output vector of rotation vectors estimated for each pattern view.
out	tvecs	Output vector of translation vectors estimated for each pattern view.
out	totalAvgErr	The total avarage error given from distorsion.

Returns

 ${\tt false} \ \ \textit{if one or more elements in the} \ {\tt cameraMatrix} \ \ \textit{and} \ {\tt distCoeffs} \ \ \textit{are invalid}.$ ${\tt true} \ \ \textit{if all the elements are valid}.$

4.1.1.6 runCalibrationAndSave()

Reads settings from file. If there is none then initiate a new Settings.

Parameters

in	s	The Settings being used during the execution.
in	imageSize	The dimensions of the images.
in	imagePoints	The projected points for each image.
out	cameraMatrix	The matrix which is used to store the values for the camera parameters.
out	distCoeffs	The matrix which is used to store the distortion coefficients.

Returns

true if the calibration succeded. false otherwise.

4.1.1.7 saveCameraParams()

Function to save the computed parameters to a file.

Parameters

in	s	Use the Settings got at the beginning for information as the output file name, image
		and board size.
in	imageSize	The size of the imgage.
in	cameraMatrix	The camera matrix.
in	distCoeffs	The distorsion coefficient matrix.
	[int]	rvecs Vector of rotation vectors estimated for each pattern view.
in	tvecs	Vector of translation vectors estimated for each pattern view.
in	reprojErrs	The re-projection error, that is a geometric error corresponding to the image distance
		between a projected point and a measured one.
in	imagePoints	The projected points for each image.
in	totalAvgErr	The total avarage error given from distorsion.

Open file for writing

Stores time of calibration

Store infos about the images

4.2 src/calibration.hh File Reference

Library for calibration.

```
#include "utils.hh"
#include <iostream>
#include <sstream>
#include <string>
#include <ctime>
#include <cstdio>
#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/videoio.hpp>
```

#include <opencv2/highgui.hpp>
Include dependency graph for calibration.hh:

This graph shows which files directly or indirectly include this file:

Classes

· class Settings

Enumerations

• enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 }

Functions

• int calibration (const string inputFile="data/calib_config.xml")

Function to run the complete calibration.

bool runCalibrationAndSave (Settings &s, Size imageSize, Mat &cameraMatrix, Mat &distCoeffs, vector
 vector< Point2f >> imagePoints)

Reads settings from file. If there is none then initiate a new Settings.

4.2.1 Detailed Description

Library for calibration.

4.2.2 Enumeration Type Documentation

4.2.2.1 anonymous enum

anonymous enum

Enumerator

DETECTION	
CAPTURING	
CALIBRATED	

4.2.3 Function Documentation

4.2.3.1 calibration()

Function to run the complete calibration.

Parameters

n inputFile Name of the	e setting.xml file. It's set to default to default.xml
-----------------------------	--

Returns

- -2 if the settings file could be load but the input was not well-formed
- -1 if the settings file could not be opened.
- 0 if everything went fine.

4.2.3.2 runCalibrationAndSave()

Reads settings from file. If there is none then initiate a new Settings.

in	s	The Settings being used during the execution.
in	imageSize	The dimensions of the images.
in	imagePoints	The projected points for each image.
out	cameraMatrix	The matrix which is used to store the values for the camera parameters.
out	distCoeffs	The matrix which is used to store the distortion coefficients.

Returns

true if the calibration succeded. false otherwise.

4.3 src/calibration_run.cc File Reference

#include "calibration.hh"
Include dependency graph for calibration_run.cc:

Functions

• int main ()

4.3.1 Function Documentation

4.3.1.1 main()

int main ()

4.4 src/create_xml.cc File Reference

```
#include <opencv2/core/core.hpp>
#include <iostream>
#include <string>
Include dependency graph for create_xml.cc:
```


Functions

• int main ()

4.4.1 Function Documentation

4.4.1.1 main()

int main ()

4.5 src/detection.cc File Reference

#include "detection.hh"
Include dependency graph for detection.cc:

Macros

• #define WAIT

Functions

• int detection ()

Loads some images and detects shapes according to different colors.

• void load number template ()

Load some templates and save them in the global variable 'templates'.

void shape_detection (const Mat &img, const int color)

Detect shapes inside the image according to the variable 'color'.

void erode_dilation (Mat &img, const int color)

It apply some filtering function for isolate the subject and remove the noise.

void find_contours (const Mat &img, Mat original, const int color)

Given an image, in black/white format, identify all the borders that delimit the shapes.

void save_convex_hull (const vector< Point >> &contours, const int color, const vector< int >
 &victims)

Given some vector save it in a xml file.

• int number_recognition (Rect blob, const Mat &base)

Detect a number on an image inside a region of interest.

void crop_number_section (Mat &ROI)

Given an image identify the region of interest(ROI) and crop it out.

Variables

- const string xml_settings = "data/settings.xml"
- FileStorage fs_xml
- vector< Mat > templates

4.5.1 Macro Definition Documentation

4.5.1.1 WAIT

#define WAIT

4.5.2 Function Documentation

4.5.2.1 crop_number_section()

Given an image identify the region of interest(ROI) and crop it out.

Parameters

in,out	ROI	Is the image that the function will going to elaborate.
--------	-----	---

4.5.2.2 detection()

```
int detection ( )
```

Loads some images and detects shapes according to different colors.

Returns

Return 0 if the function reach the end.

4.5.2.3 erode_dilation()

```
void erode_dilation ( \label{eq:mat_alpha} \text{Mat \& $img$,} \text{const int $color$ )}
```

It apply some filtering function for isolate the subject and remove the noise.

An example of the sub functions called are: GaussianBlur, Erosion, Dilation and Threshold.

Parameters

in,out	img	Is the image on which the function apply the filtering.
in	color	Can has 4 value:
		0 -> Red
		1 -> Green
		2 -> Blue
		3 -> Black
		According to the color the filtering functions apply can change in the type and in the order.

4.5.2.4 find_contours()

Given an image, in black/white format, identify all the borders that delimit the shapes.

Parameters

in	img	Is an image in HSV format at the base of the elaboration process.
out	original	Is the original source of 'img', it is used for showing the detected contours.
in	color	Can has 3 value: 0 -> Red 1 -> Green 2 -> Blue Is used for decid which procedure apply to the image.

4.5.2.5 load_number_template()

```
void load_number_template ( )
```

Load some templates and save them in the global variable 'templates'.

4.5.2.6 number_recognition()

Detect a number on an image inside a region of interest.

Parameters

in	blob	Identify the region of interest inside the image 'base'.
in	base	Is the image where the function will going to search the number.

Returns

The number recognise, '-1' otherwise.

4.5.2.7 save_convex_hull()

Given some vector save it in a xml file.

Parameters

in	contours	Is a vector that is saved in a xml file.
in	color	Is the parameter according to which the function decide if saved ('color==1') or not
		('otherwise') the vector 'victims'.
in	victims	Is a vector that is saved in a xml file.

4.5.2.8 shape_detection()

Detect shapes inside the image according to the variable 'color'.

in	img	Image on which the research will done.	
in	color	Can has 3 value:	
		0 -> Red	
		1 -> Green	
		2 -> Blue	Senerated by Doxygen
		These color identify the possible spectrum that the function search on the image.	

4.5.3 Variable Documentation

4.5.3.1 fs_xml

FileStorage fs_xml

4.5.3.2 templates

vector<Mat> templates

4.5.3.3 xml_settings

const string xml_settings = "data/settings.xml"

4.6 src/detection.hh File Reference

```
#include <tesseract/baseapi.h>
#include <leptonica/allheaders.h>
#include "utils.hh"
#include <iostream>
#include <fstream>
#include <cmath>
#include <cmath>
#include <opencv2/highgui.hpp>
#include <opencv2/core.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/imgcodecs.hpp>
Include dependency graph for detection.hh:
```


This graph shows which files directly or indirectly include this file:

Functions

• int detection ()

Loads some images and detects shapes according to different colors.

void shape_detection (const Mat &img, const int color)

Detect shapes inside the image according to the variable 'color'.

• void erode_dilation (Mat &img, const int color)

It apply some filtering function for isolate the subject and remove the noise.

void find_contours (const Mat &img, Mat original, const int color)

Given an image, in black/white format, identify all the borders that delimit the shapes.

• int number_recognition (Rect blob, const Mat &base)

Detect a number on an image inside a region of interest.

void save_convex_hull (const vector< Point >> &contours, const int color, const vector< int >
 &victims)

Given some vector save it in a xml file.

• void load_number_template ()

Load some templates and save them in the global variable 'templates'.

void crop_number_section (Mat &processROI)

Given an image identify the region of interest(ROI) and crop it out.

4.6.1 Function Documentation

4.6.1.1 crop_number_section()

Given an image identify the region of interest(ROI) and crop it out.

in,out	ROI	Is the image that the function will going to elaborate.
--------	-----	---

4.6.1.2 detection()

```
int detection ( )
```

Loads some images and detects shapes according to different colors.

Returns

Return 0 if the function reach the end.

4.6.1.3 erode_dilation()

It apply some filtering function for isolate the subject and remove the noise.

An example of the sub functions called are: GaussianBlur, Erosion, Dilation and Threshold.

Parameters

in,out	img	Is the image on which the function apply the filtering.
in	color	Can has 4 value:
		0 -> Red
		1 -> Green
		2 -> Blue
		3 -> Black
		According to the color the filtering functions apply can change in the type and in the order.

4.6.1.4 find_contours()

Given an image, in black/white format, identify all the borders that delimit the shapes.

i	n	img	Is an image in HSV format at the base of the elaboration process.
0	ut	original	Is the original source of 'img', it is used for showing the detected contours.

Parameters

in	color	Can has 3 value:
		0 -> Red
		1 -> Green
		2 -> Blue
		Is used for decid which procedure apply to the image.

4.6.1.5 load_number_template()

```
void load_number_template ( )
```

Load some templates and save them in the global variable 'templates'.

4.6.1.6 number_recognition()

Detect a number on an image inside a region of interest.

Parameters

in	blob	Identify the region of interest inside the image 'base'.
in	base	Is the image where the function will going to search the number.

Returns

The number recognise, '-1' otherwise.

4.6.1.7 save_convex_hull()

Given some vector save it in a xml file.

in	contours	Is a vector that is saved in a xml file.
in	color	Is the parameter according to which the function decide if saved ('color==1') or not
		('otherwise') the vector 'victims'. Generated by Doxyge
in	victims	Is a vector that is saved in a xml file.

4.6.1.8 shape_detection()

Detect shapes inside the image according to the variable 'color'.

Parameters

in	img	Image on which the research will done.
in	color	Can has 3 value:
		0 -> Red
		1 -> Green
		2 -> Blue
		These color identify the possible spectrum that the function search on the image.

4.7 src/detection_run.cc File Reference

#include "detection.hh"
Include dependency graph for detection_run.cc:

Functions

• int main ()

4.7.1 Function Documentation

4.7.1.1 main()

int main ()

4.8 src/dubins.cc File Reference

#include "dubins.hh"
Include dependency graph for dubins.cc:

4.9 src/dubins.hh File Reference

#include "maths.hh"
Include dependency graph for dubins.hh:

This graph shows which files directly or indirectly include this file:

Classes

· class dubins

4.10 src/main.cc File Reference

```
#include <tesseract/baseapi.h>
#include <leptonica/allheaders.h>
#include "utils.hh"
#include "detection.hh"
#include "unwrapping.hh"
#include "calibration.hh"
Include dependency graph for main.cc:
```


Functions

• int main ()

4.10.1 Function Documentation

```
4.10.1.1 main()
```

int main ()

4.11 src/maths.cc File Reference

#include "maths.hh"
Include dependency graph for maths.cc:

4.12 src/maths.hh File Reference

#include <iostream>
#include <cmath>
#include <vector>
#include <stdarg.h>

Include dependency graph for maths.hh:

This graph shows which files directly or indirectly include this file:

Classes

• class Angle

This class allows to save and handle angles. It supports DEG and RAD, operations such as addition and subtraction with operators overloading, conversion from RAD to DEG and viceversa and normalization of the angle.

- class Tuple < T >
- class Point2< T >

Class that stores two value to construct a point in 2D. The value is saved in a Tuple.

class Configuration2< T1 >

This class stores a configuration, that is a point and an angle.

Macros

- #define DEGTORAD M_PI/180
- #define RADTODEG 180/M_PI

Enumerations

• enum DISTANCE_TYPE { EUCLIDEAN, MANHATTAN }

Functions

• template < class T > T pow2 (const T x)

4.12.1 Macro Definition Documentation

4.12.1.1 **DEGTORAD**

```
#define DEGTORAD M_PI/180
```

4.12.1.2 RADTODEG

```
#define RADTODEG 180/M_PI
```

4.12.2 Enumeration Type Documentation

4.12.2.1 DISTANCE_TYPE

```
enum DISTANCE_TYPE
```

Enumerator

EUCLIDEAN	
MANHATTAN	

4.12.3 Function Documentation

4.12.3.1 pow2()

4.13 src/unwrapping.cc File Reference

```
#include "unwrapping.hh"
Include dependency graph for unwrapping.cc:
```


Macros

- #define WAIT
- #define area_ratio 0.7

Functions

• static float distance (Point c1, Point c2)

Compute the euclidean distance.

• static void swap (int &a, int &b)

Swap the two integers passed.

• int unwrapping ()

Take some images according to a xml and unwrap the black rectangle inside the image after appling undistortion trasformation.

• void loadCoefficients (const string filename, Mat &camera_matrix, Mat &dist_coeffs)

Load coefficients from a file.

Variables

• const string xml_settings = "data/settings.xml"

4.13.1 Macro Definition Documentation

```
4.13.1.1 area_ratio
```

```
#define area_ratio 0.7
```

4.13.1.2 WAIT

#define WAIT

4.13.2 Function Documentation

4.13.2.1 distance()

Compute the euclidean distance.

Parameters

in,out	c1	The first point.
in,out	c2	The second point.

Returns

The euclidean distance.

4.13.2.2 loadCoefficients()

Load coefficients from a file.

Load two matrix 'camera_matrix' and 'distortion_coefficients' from the xml file passed.

Parameters

in	filename	The string that identify the location of the xml file.
out	camera_matrix	Where the 'camera_matrix' matrix is saved.
out	dist_coeffs	Where the 'distortion_coefficients' matrix is saved.

4.13.2.3 swap()

Swap the two integers passed.

Parameters

in,out	а	First parameter.
in,out	b	Second parameter.

4.13.2.4 unwrapping()

```
int unwrapping ( )
```

Take some images according to a xml and unwrap the black rectangle inside the image after appling undistortion trasformation.

Load from the xml file 'data/settings.xml' the name of some images, load the images from the file, apply the calibration (undistortion trasformation) thanks to the matrices load with the 'loadCoefficients' function. Then, with the use of a filter for the black the region of interest (a rectangle) is identified and all the perspective is rotated for reach a top view of the rectangle. Finally, the images are saved on some files.

Returns

A 0 is return if the function reach the end.

4.13.3 Variable Documentation

```
4.13.3.1 xml_settings
const string xml_settings = "data/settings.xml"
```

4.14 src/unwrapping.hh File Reference

```
#include "utils.hh"
#include <iostream>
#include <fstream>
#include <string>
#include <cmath>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/core.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/imgcodecs.hpp>
Include dependency graph for unwrapping.hh:
```


This graph shows which files directly or indirectly include this file:

Functions

• int unwrapping ()

Take some images according to a xml and unwrap the black rectangle inside the image after appling undistortion trasformation.

void loadCoefficients (const string filename, Mat &camera_matrix, Mat &dist_coeffs)

Load coefficients from a file.

4.14.1 Function Documentation

4.14.1.1 loadCoefficients()

Load coefficients from a file.

Load two matrix 'camera_matrix' and 'distortion_coefficients' from the xml file passed.

Parameters

in	filename	The string that identify the location of the xml file.
out	camera_matrix	Where the 'camera_matrix' matrix is saved.
out	dist_coeffs	Where the 'distortion_coefficients' matrix is saved.

4.14.1.2 unwrapping()

```
int unwrapping ( )
```

Take some images according to a xml and unwrap the black rectangle inside the image after appling undistortion trasformation.

Load from the xml file 'data/settings.xml' the name of some images, load the images from the file, apply the calibration (undistortion trasformation) thanks to the matrices load with the 'loadCoefficients' function. Then, with the use of a filter for the black the region of interest (a rectangle) is identified and all the perspective is rotated for reach a top view of the rectangle.

Finally, the images are saved on some files.

Returns

A 0 is return if the function reach the end.

4.15 src/unwrapping_run.cc File Reference

#include "unwrapping.hh"
Include dependency graph for unwrapping_run.cc:

Functions

• int main ()

4.15.1 Function Documentation

4.15.1.1 main()

int main ()

4.16 src/utils.cc File Reference

#include "utils.hh"
Include dependency graph for utils.cc:

Functions

• void my_imshow (const char *win_name, Mat img, bool reset)

4.16.1 Function Documentation

4.16.1.1 my_imshow()

4.17 src/utils.hh File Reference

```
#include <tesseract/baseapi.h>
#include <leptonica/allheaders.h>
#include <cstdio>
#include <opencv2/highgui.hpp>
#include <opencv2/core.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/imgcodecs.hpp>
Include dependency graph for utils.hh:
```


This graph shows which files directly or indirectly include this file:

Macros

• #define INFO(msg)

Functions

• void my_imshow (const char *win_name, Mat img, bool reset=false)

4.17.1 Macro Definition Documentation

4.17.1.1 INFO

```
#define INFO( ${\it msg}$ )
```

4.17.2 Function Documentation

4.17.2.1 my_imshow()

Index

\sim dubins	calibration.hh, 51
dubins, 23	calibration.cc
ANGLE_TYPE	calcBoardCornerPositions, 46 calibration, 46
Angle, 6	computeReprojectionErrors, 46
add	read, 47
Angle, 7	runCalibration, 47
Tuple, 41	runCalibrationAndSave, 48
Angle, 5	saveCameraParams, 48
ANGLE_TYPE, 6	calibration.hh
add, 7	calibration, 51
Angle, 6, 7	runCalibrationAndSave, 51
copy, 7	calibration_run.cc
degToRad, 8	main, <mark>52</mark>
get, 8	calibrationPattern
getType, 8	Settings, 35
getTypeName, 8	cameraID
normalize, 8	Settings, 36
operator<<, 13	computeReprojectionErrors
operator+, 8	calibration.cc, 46
operator+=, 9	Configuration2
operator-, 9	angle, 16
operator-=, 9	Configuration2, 15
operator=, 11	distance, 16
radToDeg, 11	EuDistance, 17
set, 11	MaDistance, 17
setType, 12	offset, 18
sub, 12	offset_angle, 19
toDeg, 12	offset_x, 19
toRad, 13	offset_y, 19
angle	operator<<, 21
Configuration2, 16	x, 20
area_ratio	y, 20, 21
unwrapping.cc, 67	Configuration $2 < T1 > 13$
aspectRatio	сору
Settings, 35	Angle, 7
atlmageList	create_xml.cc
Settings, 35	main, 53
	crop_number_section
boardSize	detection.cc, 54
Settings, 35	detection.hh, 58
calcBoardCornerPositions	DEGTORAD
calibration.cc, 46	maths.hh, 65
calibFixPrincipalPoint	DISTANCE TYPE
Settings, 35	maths.hh, 66
calibZeroTangentDist	degToRad
Settings, 35	Angle, 8
calibration	delay
calibration.cc. 46	Settings, 36

76 INDEX

detection	flipVertical
detection.cc, 54	Settings, 37
detection.hh, 59	fs_xml
detection.cc	detection.cc, 57
crop_number_section, 54	
detection, 54	get
erode_dilation, 54	Angle, 8
find_contours, 55	Tuple, 42
fs_xml, 57	getType
load_number_template, 55	Angle, 8
number_recognition, 55	getTypeName
save_convex_hull, 56	Angle, 8
shape_detection, 56	goodInput
templates, 57	Settings, 37
WAIT, 54	
xml_settings, 57	INFO
detection.hh	utils.hh, 72
crop_number_section, 58	imageList
detection, 59	Settings, 37
erode_dilation, 59	input
find_contours, 59	Settings, 37
load number template, 60	inputCapture
number recognition, 60	Settings, 37
save_convex_hull, 60	inputType
shape detection, 61	Settings, 38
detection_run.cc	InputType
main, 61	Settings, 32
distance	isListOfImages
Configuration2, 16	Settings, 32
Point2, 25	
Tuple, 41	load_number_template
unwrapping.cc, 67	detection.cc, 55
dubins, 22	detection.hh, 60
∼dubins, 23	loadCoefficients
dubins, 22	unwrapping.cc, 68
,	unwrapping.hh, 70
erode_dilation	
detection.cc, 54	MaDistance
detection.hh, 59	Configuration2, 17
EuDistance	Point2, 26
Configuration2, 17	Tuple, 42
Point2, 25	main
Tuple, 41	calibration_run.cc, 52
	create_xml.cc, 53
find_contours	detection_run.cc, 61
detection.cc, 55	main.cc, 63
detection.hh, 59	unwrapping_run.cc, 71
fixK1	main.cc
Settings, 36	main, 63
fixK2	maths.hh
Settings, 36	DEGTORAD, 65
fixK3	DISTANCE_TYPE, 66
Settings, 36	pow2, 66
fixK4	RADTODEG, 66
Settings, 36	my_imshow
fixK5	utils.cc, 71
Settings, 37	utils.hh, 73
flag	
Settings, 37	nextImage

INDEX 77

Settings, 33	read
normalize	calibration.cc, 47
Angle, 8	Settings, 33
nrFrames	readStringList
Settings, 38	Settings, 33
number_recognition	remove
detection.cc, 55	Tuple, 42
detection.hh, 60	runCalibration
	calibration.cc, 47
offset	runCalibrationAndSave
Configuration2, 18	calibration.cc, 48
Point2, 26, 27	calibration.hh, 51
offset_angle	
Configuration2, 19	save_convex_hull
offset_x	detection.cc, 56
Configuration2, 19	detection.hh, 60
Point2, 27	saveCameraParams
offset_y	calibration.cc, 48
Configuration2, 19	set
Point2, 27	Angle, 11
operator<<	Tuple, 43
Angle, 13	setType
Configuration2, 21	Angle, 12
Point2, 29	Settings, 30
Tuple, 43	aspectRatio, 35
operator+	atlmageList, 35
Angle, 8	boardSize, 35
operator+=	calibFixPrincipalPoint, 35
Angle, 9	calibZeroTangentDist, 35
operator-	calibrationPattern, 35
Angle, 9	cameralD, 36
operator-=	delay, 36
Angle, 9	fixK1, 36
operator=	fixK2, 36
Angle, 11	fixK3, 36
outputFileName	fixK4, 36
Settings, 38	fixK5, 37
Collings, 60	flag, 37
Pattern	flipVertical, 37
Settings, 32	goodInput, 37
Point2	imageList, 37
distance, 25	input, 37
EuDistance, 25	inputCapture, 37
MaDistance, 26	inputType, 38
offset, 26, 27	InputType , 32
offset x, 27	isListOfImages, 32
offset y, 27	nextImage, 33
operator<<, 29	nrFrames, 38
Point2, 24	outputFileName, 38
x, 28	Pattern, 32
y, 28, 29	read, 33
y, 28, 29 Point2< T >, 23	readStringList, 33
pow2	Settings, 32
maths.hh, 66	showUndistorsed, 38
manishin, oo	squareSize, 38
RADTODEG	useFisheye, 38
maths.hh, 66	validate, 34
radToDeg	write, 34
Angle, 11	writeExtrinsics, 39
7gio, 11	WINGEAUTIONS, 00

78 INDEX

writePoints, 39	unwrapping, 68
shape_detection	WAIT, 67
detection.cc, 56	xml_settings, 69
detection.hh, 61	unwrapping.hh
showUndistorsed	loadCoefficients, 70
Settings, 38	unwrapping, 70
size	unwrapping_run.cc
Tuple, 43	main, 71
squareSize	useFisheye
Settings, 38	Settings, 38
src/calibration.cc, 45	utils.cc
src/calibration.hh, 49	my_imshow, 71
src/calibration_run.cc, 52	utils.hh
src/create_xml.cc, 52	INFO, 72
src/detection.cc, 53	my_imshow, 73
src/detection.hh, 57	,
src/detection run.cc, 61	validate
src/dubins.cc, 62	Settings, 34
src/dubins.hh, 62	
src/main.cc, 63	WAIT
src/maths.cc, 64	detection.cc, 54
src/maths.hh, 64	unwrapping.cc, 67
src/unwrapping.cc, 66	write
src/unwrapping.hh, 69	Settings, 34
src/unwrapping_run.cc, 71	writeExtrinsics
src/utils.cc, 71	Settings, 39
src/utils.th, 72	writePoints
sub	Settings, 39
Angle, 12	X
	^
swap	Configuration2, 20
swap unwrapping.cc, 68	
unwrapping.cc, 68	Configuration2, 20
unwrapping.cc, 68 templates	Configuration2, 20 Point2, 28
unwrapping.cc, 68 templates detection.cc, 57	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57
unwrapping.cc, 68 templates detection.cc, 57 toDeg	Configuration2, 20 Point2, 28 xml_settings
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42 operator<<, 43	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42 operator < < , 43 remove, 42	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42 operator < < , 43 remove, 42 set, 43	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42 operator<<<, 43 remove, 42 set, 43 size, 43	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42 operator<<<, 43 remove, 42 set, 43 size, 43 Tuple, 40	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42 operator<<<, 43 remove, 42 set, 43 size, 43	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42 operator <<, 43 remove, 42 set, 43 size, 43 Tuple, 40 Tuple < T >, 39	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42 operator <<, 43 remove, 42 set, 43 size, 43 Tuple < T >, 39 unwrapping	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42 operator <<, 43 remove, 42 set, 43 size, 43 Tuple, 40 Tuple < T >, 39 unwrapping unwrapping.cc, 68	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42 operator<<, 43 remove, 42 set, 43 size, 43 Tuple, 40 Tuple< T >, 39 unwrapping unwrapping.cc, 68 unwrapping.hh, 70	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
unwrapping.cc, 68 templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42 operator<<, 43 remove, 42 set, 43 size, 43 Tuple unwrapping unwrapping.cc, 68 unwrapping.cc unwrapping.cc	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42 operator<<, 43 remove, 42 set, 43 size, 43 Tuple, 40 Tuple< T >, 39 unwrapping.cc, 68 unwrapping.cc area_ratio, 67	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42 operator << , 43 remove, 42 set, 43 size, 43 Tuple, 40 Tuple < T >, 39 unwrapping unwrapping.cc area_ratio, 67 distance, 67	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21
templates detection.cc, 57 toDeg Angle, 12 toRad Angle, 13 Tuple add, 41 distance, 41 EuDistance, 41 get, 42 MaDistance, 42 operator<<, 43 remove, 42 set, 43 size, 43 Tuple, 40 Tuple< T >, 39 unwrapping.cc, 68 unwrapping.cc area_ratio, 67	Configuration2, 20 Point2, 28 xml_settings detection.cc, 57 unwrapping.cc, 69 y Configuration2, 20, 21