Studi Tanaman Penghijauan Glodokan Tiang (Polythea longifolia), Kasia Emas (Cassia surattensis), Kelapa (Cocos nucifera) sebagai Penyerap Emisi Gas Karbondioksida di Jalan PB. Sudirman Denpasar

AGUSTINA REZA PUTRI KOMANG ARTHAWA LILA*) I NYOMAN GEDE ASTAWA

Program Studi Agroekoteknologi, Fakultas Pertanian, Universitas Udayana Jl. PB. Sudirman Denpasar 80232 Bali *) Email: smsarwadana@yahoo.com

ABSTRACT

The Study of Glodokan Tiang (*Polythea longifolia*), Kasia Emas (*Cassia surattensis*), Coconut (*Cocos nucifera*) Plant as Absorbent of Carbon Dioxide Emission at PB. Sudirman Street Denpasar

The research was conducted at the green belt at PB. Sudirman Street Denpasar City on May-November 2011. This study aim to find out the ability of glodokan tiang (Polythea longifolia), kasia emas (Cassia surattensis), and coconut (Cocos nucifera) plant as absorbent of carbon dioxide emission at PB. Sudirman Street Denpasar. The research method have been used in this research were exploration method, that is determine the mass of carbon dioxide from mass of carbohydrate formed, whereas to determine the mass of carbon dioxide were conducted an analysis by using spectrometry. The results of study shows that the highest mass of carbon dioxide have been obtained successively: coconut at 48,0344 mg/50 ml, then glodokan tiang plant (32,8890 mg/50 ml), and kasia emas (25,0916 mg/50 ml).

Keyword: Study of Plant, Absorbent, Carbon Dioxide Emissions

1. Pendahuluan

1.1 Latar Belakang

Lanskap jalan yaitu wajah dari karakter lahan atau tapak yang terbentuk pada lingkungan jalan, baik yang berbentuk elemen lanskap alamiah seperti bentuk topografi lahan yang mempunyai panorama yang indah, maupun yang terbentuk dari elemen lanskap buatan manusia yang disesuaikan dengan kondisi lahannya (Direktorat Jenderal Bima Marga, 1996).

Kota Denpasar sebagai ibu kota Propinsi Bali merupakan pusat berbagai kegiatan aktivitas penduduk Bali. Berkembangnya kota menyebabkan terjadinya pertambahan jumlah kendaraan baik angkutan umum, barang maupun kendaraan pribadi di Denpasar dan sekitarnya yang menimbulkan adanya permasalahan lingkungan yaitu meningkatnya polusi udara (Maestro, 2001). Jalan PB. Sudirman merupakan salah satu ruas jalan yang cukup padat di Kotamadya Denpasar, dimana

terdapat beragam bangunan fasilitas publik seperti bangunan sekolah, perkantoran, rumah sakit dan pertokaan/perdagangan. Padatnya arus kendaraan bermotor yang melewati jalan ini sehingga berindikasi menyumbangkan CO₂.

Polutan adalah zat atau senyawa yang menyebabkan lingkungan menjadi tercemar sehingga tidak layak lagi untuk makhluk hidup. Polutan yang sering mencemari udara yaitu Karbondioksida (CO₂), adapun sumber utama dari polutan yang mencemari udara berasal dari pembakaran bahan bakar fosil, terutama dari asap kendaraan bermotor (Zaini, 2008).

Tanaman sebagai elemen lanskap perlu dipilih dan ditempatkan berdasarkan pertimbangan fungsional dan estetis. Aspek fungsional tanaman antara lain adalah kemampuan tanaman dalam memperbaiki kondisi lingkungan melalui kemampuan menyerap polutan, sehingga tercipta suasana yang nyaman secara fisik. Aspek estetis adalah suasana yang nyaman secara visual menampilkan jenis dan komposisi tanaman. Tanaman juga penting dalam upaya mengurangi pencemaran udara terutama di daerah perkotaan, maka sangat tepat jika keberadaan tanaman mendapat perhatian serius dalam penghijauan kota.

1.2 Tujuan

Tujuan dari penelitian ini adalah:

- 1. Mengetahui karbondioksida dari masing-masing tanaman dengan kabohidrat daun pada tanaman penghijauan kasia emas (cassia surattensis), kelapa (cocos nucifera), dan glodokan tiang (polythea longifolia) sebagai penyerap emisi gas karbondioksida di jalan PB.Sudirman Denpasar.
- 2. Mengetahui tanaman penghijauan kasia emas, glodokan tiang dan kelapa, manakah yang mempunyai kemampuan tertinggi dalam menyerap karbondioksida.

2. Bahan dan Metode

2.1 Tempat dan Waktu Penelitian

Penelitian dilaksanakan di Jalur Hijau tepi serta median Jalan PB.Sudirman Denpasar dan analisis sampel tanaman dilakukan di Laboratorium Kesehatan Lingkungan Sanglah Denpasar. Penelitian berlangsung dimulai dari bulan Mei 2011 sampai November 2011.

2.2 Bahan dan Alat

Bahan yang dipergunakan dalam penelitian ini adalah : daun dari sampel tanamanan kasia emas, glodokan tiang dan kelapa yang akan diteliti (daun dewasa), alkohol 95%, larutan fenol, Aquades, latutan asam sulfat pekat, kloroform, Cutex dan alat yang digunakan dalam penelitian ini : tabung reaksi, alat tulis, pipet kaca bersekala, hand tally counter, labu ukur, spektrofotometri, Mortar, cawan porselin,

sentrifuge, oven, batang kayu, kertas filter, pisau, timbangan elektrik, miskroskop, silet, gelas objek, gunting, kamera digital, plastik kertas preparat.

2.3 Metode Penelitian

Penentuan massa karbohidrat dianalisis menggunakan alat spektrofotometri untuk menganalisis karbohidrat.

2.3.1 Pengambilan Sampel Daun

Pada penelitian dibagi tiga stasiun lokasi pengambilan sampel daun yang terletak pada jalur tepi serta median jalan yang lokasinya di Jalan PB. Sudirman Denpasar. Stasiun I terletak pada jalur tepi serta median jalan depan Kantor Kejaksaan Denpasar, stasiun II terletak pada jalur hijau depan Universitas Udayana Denpasar dan stasiun III terletak pada jalur hijau samping Fakultas Ekonomi Universitas Udayana Denpasar. Pengambilan sampel daun dilakukan pada pagi hari (pk. 07.00 – 08.00 WITA), siang hari (pk. 12.00 – 13.00 WITA), dan sore hari (pk. 15.00 – 16.00 WITA) dan dilkukan pada hari yang sama.

2.2.2 Analisis Massa Karbohidrat

Penentuan massa karbohidrat dengan mengambil sampel seberat 0,2 g dan dipotong kecil-kecil, kemudian dimasukkan ke dalam 15 ml alkohol 95%, dan dipanaskan selama 15 menit sampai mendidih, setelah itu dilakukan pendinginan daun lalu dilumatkan dan diekstrak kembali kedalam alkohol dan dipanaskan kembali selama 15 menit sampai mendidih lagi, kemudian ekstrak tersebut dijadikan menjadi satu dan ditambahkan alkohol kembali hingga volumenya mencapai 50 ml, diambil 5 ml larutan ekstrak ke dalam tabung reaksi dan ditambahkan 1 ml klorofrom, lalu ditambahkan air sebanyak ± 10 ml sampai warna hijau klorofil tidak terdapat pada bagian atas tabung reaksi. Tabung tersebut kemudian disentrifuge selama ± 5 menit dengan kecepatan 3000 rpm. Kemudian diambil 1 ml larutan yang bening dari bagian atas tabung reaksi dan ditambahkan 1 ml larutan 0,5% fenol, kemudian diaduk dan ditambah 5,0 mlasamsulfat pekat. Setelah dingin dilakukan pembacaan dengan spektrofotometri pada panjang gelombang 490 nm (zhong fu et al., 2009). Larutan standar dibuat dengan menggunakan sukrosa 2,5 gr, 5 gr, dan 10 gr masing-masing diperlakukan hingga dibaca pada spektrofotometer. Massa karbohidrat hasil fotosintesis dianalisis dengan metode Somogyi Nelson, sehingga didapat nilai absorpsi karbohidrat (A). Perhitungan karbohidrat kering (% KH kering) dengan rumus:

$$\left\{ \frac{\frac{A}{S} x \frac{100}{0.2} x \frac{20}{1} x 100\%}{10000000} \right\}$$
(1)

Keterangan:

S: rata - rata standar karbohrat

A: absorpsi kabohidrat sampel $\frac{100}{0.2}$ dan $\frac{20}{1}$ faktor pengenceran.

2.2.3 Pengkuran Massa Karbondioksida

Pengukuran Massa Karbondioksida menggunakan analisis pengkuran Massa Karbohidrat. Menurut Harjadi (1992), karbon yang terdapat pada karbondioksida berbanding lurus dengan karbon yang terdapat gulanya. Oleh karena itu massa karbohidrat dihitung dengan rumus :

Persamaan reaksi fotosintesis:

$$\begin{array}{ll}
6 \, \text{CO}_2 + 6 \, \text{H}_2 \, \text{O} & \longrightarrow & \text{C}_6 \text{H}_{12} \text{O}_6 + 6 \, \text{O}_2 \\
1. \, 1 \, \text{mol} \, \text{C}_6 \text{H}_{12} \text{O}_6 & = \text{massa} \, \text{C}_6 \text{H}_{12} \text{O}_6 & \text{x} \, \text{Mr} \, \text{C}_6 \text{H}_{12} \text{O}_6 \\
2. \, \text{Massa} \, \text{CO}_2 & = 6 \, \text{x} \, \text{mol} \, \text{C}_6 \text{H}_{12} \text{O}_6 & \text{x} \, \text{Mr} \, \text{CO}_2 \\
&= 6 \, \text{x} \, \frac{\text{massaC}_6 \text{H}_{12} \text{O}_6}{\text{MrC}_6 \text{H}_{12} \text{O}_6} \text{xMrCO}_2 \\
&= 6 \, \text{x} \, \frac{\text{massaC}_6 \text{H}_{12} \text{O}_6}{180} \text{x44}
\end{array}$$

= massa $C_6H_{12}O_6 \times 1,467$

Penentuan jumlah stomata pada tanaman kasia emas, glodokan tiang dan kelapa dengan cara mengoleskan cutex ukurannya 2x1 cm² dengan tipis pada permukaan atas dan bawah daun, biarkan hingga cutex kering, setelah kering kelupas cutex

tersebut, diletakkan di atas gelas preparat, diamati di bawah miskroskop dan kemudian dihitung di bawah miskroskop.

3. Hasil dan Pembahasan

3.1 Massa Karbohidrat

Jalur hijau Jalan PB. Sudirman merupakan ruang terbuka hijau yang berbentuk jalur, mempunyai pola linear mengikuti bentuk jalan. Jalur hijau disediakan pada tepian serta median jalan. Median merupakan jalur pemisah antara lajur-lajur jalan dan dapat berbentuk taman maupun non taman (Direktorat Jenderal Bima Marga, 1996). Vegetasi yang ditanam di jalur median jalan yaitu tanaman kelapa sedangkan tanaman glodokan tiang dan kasia emas ditanam di jalur tepian jalan.

Berdasarkan hasil penelitian (Tabel 1), rata-rata massa karbohidrat tanaman kasia emas, glodokan tiang, dan kelapa yang tertinggi diperoleh berturut-turut;

tanaman kelapa sebesar 32,7433 mg/50 ml, diikuti tanaman glodokan tiang (22,1052 mg/50 ml), dan selanjutnya tanaman kasia emas (17,4111 mg/50 ml).

Sedangkan dilihat dari waktu pengamatan ternyata hasil massa karbohidrat meningkat sesuai dengan waktu, diamana pada pagi hari diperoleh, pada tanaman kelapa sebesar 11,3249 mg/50 ml, kemudian tanaman glodokan tiang (9,1079 mg/50 ml) dan tanaman kasia emas (7,1339 mg/50 ml), sedangkan untuk siang hari pada tanaman kelapa sebesar 19,7399 mg/50 ml, diikuti tanaman glodokan tiang (12,9522 mg/50 ml) dan tanaman kasia emas (11,3053 mg/50 ml).

Tabel 1. Massa Karbohidrat

		Massa Karbohidrat		
Tanaman	Stasiun	Pagi	Siang	Sore
		mg/50 ml	mg/50 ml	mg/50 ml
	I	9,4234	16,4848	25,7072
Kasia Emas	II	7,2875	9,7418	13,4172
	III	4,6908	7,6895	13,1091
Jumlah		21,4017	33,9161	52,2335
Rata-rata/Stasiun		7,1339	11,3053	17,4111
	I	10,8391	19,2361	31,3026
Glodokan Tiang	II	8,3513	9,8538	22,8255
	III	8,1335	9,7669	12,1877
Jumlah		27,3239	38,8568	66,3158
Rata-rata/Stasiun		9,1079	12,9522	22,1052
	I	14,0472	26,0481	38,5984
Kelapa	II	11,2160	17,5330	32,8690
-	III	8,7115	15,6387	26,7626
Jumlah		33,9747	59,2198	98,2300
Rata-rata/Stasiun		11,3249	19,7399	32,7433

Sumber: Hasil Penelitian, 2011

Dilihat dari waktu pengamatan pembentukan massa karbohidrat pada waktu pagi hari paling rendah, perbedaan pembentukkan massa karbohidrat ini karena cahaya merupakan salah satu faktor yang mempengaruhi fotosintesis. Karbohidrat sebagai produk dari fotosinsis mempunyai pengaruh juga terhadap peningkatan cahaya. Pada pagi hari fotositesis belum aktif berlangsung sehingga belum terjadi peningkatan intensitas cahaya yang mempengaruhi proses fotosintesis. Gardner et al (1991), menyatakan bahwa peningkatan cahaya secara berangsur-angsur akan meningkatkan fotosintesis sampai pada tingkat kompesasi cahaya.

Dari Tabel 1 di atas, massa karbohidrat di masing-masing tanaman yang diamati tertinggi terdapat pada tanaman kelapa, kemudian diikuti tanaman glodokan tiang dan tanaman kasia emas. Tingginya massa karbohidrat yang terbentuk sangat terkait dengan proses fotosintesis. Proses fotosintesis membutuhkan air dan karbondioksida. Karbondioksida pada proses fotosintesis terutama berasal dari CO₂ di udara yang diserap oleh daun. Sesuai pernyataan Kramer dan Kozlowski (1979), bahwa gas CO₂ diserap oleh daun, akan diubah menjadi karbohidrat.

3.2 Massa Karbondioksida

Berdasarkan hasil penelitian (Tabel 2). Rata-rata massa karbondioksida tanaman kasia emas, glodokan tiang dan kelapa tertinggi berturut-turut diperoleh pada tanaman kelapa sebesar 48,0344 mg/50 ml, kemudian diikuti tanaman glodokan tiang (32,8890 mg/50 ml), dan selanjutnya tanaman kasia emas (25,0916 mg/50 ml). Seperti halnya hasil analisis massa karbonidrat dari segi waktu, pengamatan massa karbondioksida terendah diperoleh pada waktu pagi hari dan selanjutnya meningkat sesuai dengan waktu. Pada pagi hari massa karbondioksida tanaman kelapa diperoleh sebesar 16,6136 mg/50 ml, diikuti tanaman glodokan tiang (13,3614 mg/50 ml) dan selanjutnya tanaman kasia emas (10,4654 mg/50 ml), sedangkan siang hari tanaman kelapa sebesar 28,9585 mg/50 ml, diikuti tanaman glodokan tiang (19,0009 mg/50 ml), dan tanaman kasia emas (16,5849 mg/50 ml).

Selanjutnya tingginya massa karbondioksida pada tanaman kelapa dibandingkan dengan tanaman glodokan tiang dan tanaman kasia emas sangat tergantung massa kabohidrat yang terbentuk. Hal ini sesuai dengan pernyataan Harjadi (1992), bahwa massa karbondioksida yang digunakan dalam proses fotosintesis berbanding lurus dengan jumlah C dalam gula (karbohidrat). Sehingga semakin tinggi massa karbohidrat maka menunjukkan semakin tinggi pula massa karbondioksida yang digunakan oleh tanaman.

Massa Karbondioksida Tanaman Stasiun Siang Sore Pagi mg/50 ml mg/50 mlmg/50 mlI 13,8241 24,1832 37,7125 Kasia Emas II 10,6908 14.2912 19,6830 Ш 6,8814 11,2805 17,8794 Jumlah 31,3963 49,7549 75,2749 Rata-rata/Stasiun 10,4654 25,0916 16,5849 Ι 15,9010 28,2194 45,9509 Glodokan Tiang II 12,2514 14,4555 33,4850 Ш 11,9318 14,3280 19,2311 Jumlah 40,0842 57,0029 98,6670 Rata-rata/Stasiun 13,3614 19,0009 32,8890 Ι 20,6072 38,2126 56,6239 II Kelapa 16,4539 25,7209 48,2188 39,2607 Ш 12,7798 22,9420 Jumlah 49,8409 86,8755 144,1034 Rata-rata/Stasiun 16,6136 28,9585 48,0344

Tabel 2. Massa Karbondioksida

Sumber: Hasil Penelitian, 2011

3.2 Lebar, Panjang dan Jumlah Stomata

Pada Tabel 3 di bawah ini, merupakan hasil pengamatan stomata tanaman kasia emas, glodokan tiang dan kelapa di Laboratorium Kesehatan Lingkungan Sanglah Denpasar.

Tanaman Lebar **Panjang Jumlah Stomata** No 12-24 µm 24-36 µm 683 mm^2 1 Kelapa 411 mm^2 2 Glodokan tiang 14,4-16,8 µm 19,2-21,6 µm Kasia emas 209 mm^2 3 7,2-12 µm 9,6-16,8 µm

Tabel 3. Lebar, Panjang dan Jumlah Stomata

Sumber: Hasil Penelitian, 2012

Dari tabel 3 dapat dilihat bahwa lebar, panjang, dan jumlah stomata dari hasil pengamatan ini, yang tertinggi diperoleh berturut-turut pada tanaman kelapa dengan lebar sebesar 12-24 μ m, panjang sebesar 24-36 μ m, dan jumlah stomata sebesar 683/mm², selanjutnya tanaman glodokan tiang dengan lebar (14,4-16,8 μ m), panjang (19,2-21,6 μ m), dan jumlah stomata (411/mm²), kemudian tanaman kasia emas dengan lebar (7,2-12 μ m), panjang (9,6-16,8 μ m), dan jumlah stomata (209/mm²).

Stomata memiliki fungsi sebagai pintu masuknya CO₂ dalam proses fotosintesis (June, 2006). Semakin Tingginya stomata, maka akan meningkatkan CO₂ yang diserap dari hasil fotosintesis seperti yang terlihat pada tanaman kelapa (Tabel 3). Tanaman kelapa mempunyai jumlah, lebar dan panjang stomata yang lebih tinggi dibandingkan dengan tanaman glodokan tiang dan tanaman kasia emas. Salisbury dan Cleon (1995), menyatakan bahwa karbon masuk ke dalam tumbuhan sebagai karbondioksida (CO₂) melalui pori stomata, yang paling banyak terdapat di permukaan daun dan air keluar secara difusi melalui pori yang sama pada saat stomata membuka.

4. Kesimpulan

4.1 Simpulan

Simpulan dari penelitian ini adalah sebagai berikut:

- 1. Tanaman penghijauan kelapa mampunyai kemampuan mengabsorsi massa karbondioksida tertinggi sekian 48,0344 mg/50 ml, kemudian diikuti tanaman glodokan tiang (32,8890 mg/50 ml) dan tanaman kasia emas (25,0916 mg/50 ml).
- 2. Penanaman vegetasi tanaman kelapa, tanaman glodokan tiang, dan tanaman kasia emas di jalur tepi serta median Jalan PB. Sudirman dapat mengurangi polutan karbondioksida.

4.2 Saran

- 1. Tanaman kelapa baik digunakan sebagai tanaman penghijauan di tepi serta median jalan di Kota Denpasar, karena tanaman ini dapat menyerap emisi gas karbondioksida yang tinggi dengan catatan melakukan pemeliharaan setiap hari.
- 2. Sebaiknya dilakukan penelitian sejenis ini tentang tanaman lain yang mempunyai kemampuan menyerap karbondioksida.

Daftar Pustaka

- Direktorat Jenderal Bima Marga. 1996. *Tata Cara Perencanaan Teknik Lanskap Jalan*. Departement Pekerjaan Umum.
- Gardner, FP. 1991. Fisiologi Tanaman Budidaya. U.I Press. Jakarta.
- Harjadi, SS. 1992. Pengantar Agronomi, PT. Gramedia. Jakarta.
- June, T. 2006. *Kenaikan CO₂ Dan Perubahan Iklim Implikasinya Terhadap Pertumbuhan Tanaman*. http://www.members.tripad.com/-buletin/tania/>. Denpasar. Diunduh Agustus 2009.
- Kramer, PJ., dan Kozlowski, TT. 1979. *Physiology Of Woody Plant*. Acad. Presss, New York.
- Maestro, 2001. Wacana Informasi Milik Rakyat. Fakultas Teknik. Universitas Udayana. Denpasar.
- Salisbury FB, dan Cleon WR. 1995. Fisiologi Tumbuhan. ITB Press. Bandung.
- Zaini, J. 2010. *Dampak Polusi Udara Terhadap Kesehatan*. http://io.ppi-http://io.ppi-jepang.org/10/09.htm/>. Denpasar. Diunduh 31 Januari 2012.