Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. І. Сікорського» Інститут прикладного системного аналізу

Курсова робота

з дисципліни «Теорія керування»

Виконав: студент 4 курсу

групи КА-81

Галганов Олексій

Прийняв: професор

Романенко Віктор Демидович

3MICT

РОЗДІ	ІЛ 1 Вступ	2			
1.2.	Теоретичні дані	3			
1.3.	Значення коефіцієнтів та сталих	4			
РОЗДІ	ІЛ 2 Розрахунок дискретних передаточних функцій	5			
2.1.	Теоретичні дані	5			
2.2.	Випадок $W_O(S) = \frac{k}{T_1 + 1}$	5			
2.3.	. Випадок $W_O(S) = \frac{k}{(T_1 + 1)(T_2 + 1)}$				
2.4.	Випадок $W_O(S) = \frac{k_1 e_{T_1}^{T_1} e_{T_1}^{T_2} e_{T$	7			
2.5.	Теоретичні дані Випадок $W_O(S) = \frac{k}{T_1 s + 1}$ Випадок $W_O(S) = \frac{k}{(T_1 s + 1)(T_2 s + 1)}$ Випадок $W_O(S) = \frac{k e^{-\tau s}}{T_1 s + 1}$ Випадок $W_O(S) = \frac{k e^{-\tau s}}{(T_1 s + 1)(T_2 s + 1)}$	8			
РОЗДІ	ІЛ 3 Розрахунок періодів квантування	10			
3.1.		10			
	3.1.1 Випадок $W_{O_1}(s) = \frac{ke^{-\tau s}}{T_{1,s+1}}$	10			
	3.1.1 Випадок $W_{O_1}(s) = \frac{ke^{-\tau s}}{T_1s+1}$	11			
3.2.	Розрахунок за критерієм Джурі	11			
3 3	Розрахунок для об'єкта з динамікою в чисельнику	12			

РОЗДІЛ 1

ВСТУП

1.1. Теоретичні дані

Розглядається одноконтурна система автоматичного цифрового керування (ЦК) з наступною структурною схемою:

Рисунок 1.1 – Структурна схема типового контура ЦК

Тут $W_O(s)$ – передаточна функція об'єкта керування по керуючому діянню, G(s) і u(s) – відповідно задаюче і керуюче діяння в формі перетворення Лапласа, $W_p^*(s)$ – передаточна функція цифрового регулятора (ЦАП) у формі дискретного перетворення Лапласа, $W_E(s)$ – передаточна функція цифро-аналогового регулятора, $E^*(s)$, $u^*(s)$, $y^*(s)$ – відповідно помилка керування, керуюче діяння та вихідна керована координата у формі дискретного перетворення Лапласа. Передаточні функції об'єкта для окремих задач мають вигляд

$$W_O(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)(T_3s+1)}$$
(1.1)

$$W_O(s) = \frac{k(T_1s+1)}{(T_2s+1)(T_3s+1)}$$
(1.2)

де k – коефіцієнт передачі об'єкта керування, T_1, T_2, T_3 – сталі часу в секундах, τ – час запізнення в секундах.

Регулятор ЦК, представлений в різницевій формі на основі позиційного алгоритма пропорційно-інтегрально-диференціального (ПІД) закону керування записується таким чином:

$$u(nT_0) = K_p \left(e(nT_0) + \frac{T_0}{T_I} \sum_{i=1}^n e(iT_0) + \frac{T_D}{T_0} \left[e(nT_0) - e((n-1)T_0) \right] \right)$$
(1.3)

Тут $u(nT_0)$ та $e(nT_0)$ – відповідно керуюче діяння і помилка керування в n-тий період квантування, K_p – коефіцієнт передачі регулятора, T_I та T_D – відповідно сталі часу інтегрування та диференціювання в секундах, T_0 – період квантування в секундах.

Відповідно до (1.3), дискретна передаточна функція ПІД-регулятора має вигляд

$$W_p(z) = K_p \left(1 + \frac{T_0}{T_I (1 - z^{-1})} + \frac{T_D (1 - z^{-1})}{T_0} \right)$$
 (1.4)

Якщо час диференціювання $T_D=0$, то для цифрового ПІ-регулятора матимемо дискретну передаточну функцію

$$W_p(z) = K_p \left(1 + \frac{T_0}{T_I (1 - z^{-1})} \right)$$
 (1.5)

де $z=e^{sT_0}$ — оператор z-перетворення.

1.2. Завдання курсової роботи

1. Розрахувати дискретну передаточну функцію замкненого контура цифрового керування, попередньо розрахувавши дискретну передаточну функцію приведеної неперервної частини (ПНЧ) об'єкта

$$W_{\Pi}(z) = z \{ W_E(s) \cdot W_O(s) \}$$
 (1.6)

для наступних варіантів передаточної функції об'єкта:

$$W_O(S) = \frac{k}{T_1 s + 1}, W_O(S) = \frac{k}{(T_1 s + 1)(T_2 s + 1)}, W_O(S) = \frac{k e^{-\tau s}}{T_1 s + 1}, W_O(S) = \frac{k e^{-\tau s}}{(T_1 s + 1)(T_2 s + 1)}.$$

2. Розрахувати періоди квантування в системі цифрового керування для об'єктів

$$W_{O_1}(s) = \frac{ke^{-\tau s}}{T_1 s + 1} \tag{1.7}$$

$$W_{O_2}(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}$$
(1.8)

і для об'єкта (1.2), передаточна функція якого має динаміку в чисельнику.

3. На основі методу «прямого» синтезу визначити структуру і оптимальні настройки регуляторів цифрового керування і неперервного регулятора для управління об'єктами, передаточна функція яких має вигляд (1.7). При цьому приймається період квантування T_0 , розрахований у пункті 2 на основі умови забезпечення необхідної точності керування. Значення коефіцієнта підсилення регулятора $K_{P_{\text{опт}}}$ необхідно визначити при таких параметрах настройки λ :

а)
$$\lambda = \frac{1}{T_1}$$
; б) $\lambda = \frac{1}{1.5T_1}$; в) $\lambda = \frac{1}{2T_1}$; г) $\lambda = \frac{1}{3T_1}$.

Для вказаного набору параметрів настройки λ шляхом цифрового моделювання побудувати перехідні процеси в замкненому контурі цифрового керування.

- 4. Розрахувати оптимальні параметри ПІ-регулятора цифрового керування і періоду квантування резонансним методом для об'єкта керування (1.1), (1.8). На основі цифрового моделювання побудувати перехідні процеси вихідної координати y в замкненому контурі при подачі імпульсних тестів на задаюче діяння цифрового регулятора.
- 5. Виконати синтез лінійно-квадратичного регулятора стану і виконати цифрове моделювання замкненої системи з регулятором стану.
- 6. Дослідити стійкість контура цифрового керування, розрахованої за пунктом 3. При цьому використовувати відомі критерії стійкості.
- 7. Сформувати позиційний і швидкісний алгоритм цифрового керування в формі, зручній для програмування для регуляторів цифрового керування відповідно до пунктів 3, 4.
- 8. Виконати цифрове моделювання замкнених систем керування при синтезованих цифрових регуляторах.

1.3. Значення коефіцієнтів та сталих

k	T_1	T_2	T_3	τ
9.32	35	19	11	14

k – коефіцієнт передачі об'єкта керування, T_1, T_2, T_3 – сталі часу в секундах, τ – час запізнення в секундах.

РОЗДІЛ 2

РОЗРАХУНОК ДИСКРЕТНИХ ПЕРЕДАТОЧНИХ ФУНКЦІЙ

2.1. Теоретичні дані

Дискретну передаточну функцію приведеної неперервної частини (ПНЧ) об'єкта має вигляд

$$W_{\Pi}(z) = z \left\{ W_{E}(s) \cdot W_{O}(s) \right\} = z \left\{ \frac{1 - e^{-sT_{0}}}{s} \cdot W_{O}(S) \right\} =$$

$$= z \left\{ \left(1 - e^{-sT_{0}} \right) \cdot \frac{W_{O}(s)}{s} \right\} = \left(1 - z^{-1} \right) \cdot z \left\{ \frac{W_{O}(s)}{s} \right\}$$
(2.1)

Дискретна передаточна функція замкненого контуру цифрового керування має вигляд

$$W_{3}(z) = \frac{W_{\Pi}(z) \cdot W_{p}(z)}{1 + W_{\Pi}(z) \cdot W_{p}(z)}$$
(2.2)

де $W_p(z)$ — дискретна передаточна функція регулятора, що для ПІД-регулятора має вигляд (1.3), а для ПІ-регулятора — вигляд (1.5). Далі за текстом термін «дискретна передаточна функція» буде скорочено до ДПФ.

2.2. Випадок $W_O(S) = \frac{k}{T_1 s + 1}$

Обчислимо z-перетворення для $\frac{W_O(S)}{s}=\frac{k}{s(T_1s+1)}=\frac{k}{s}-\frac{kT_1}{T_1s+1}.$ За таблицею z-перетворення отримаємо

$$z\left\{\frac{W_O(s)}{s}\right\} = \frac{kz}{z-1} - \frac{kz}{z - e^{T_0/T_1}} = \frac{k\left(1 - e^{-T_0/T_1}\right)z}{(z-1)\left(z - e^{-T_0/T_1}\right)}$$
(2.3)

Тому ДПФ ПНЧ має вигляд

$$W_{\Pi}(z) = (1 - z^{-1}) \cdot z \left\{ \frac{W_O(s)}{s} \right\} = \frac{z - 1}{z} \cdot \frac{k \left(1 - e^{-T_0/T_1} \right) z}{(z - 1) \left(z - e^{-T_0/T_1} \right)} = \frac{k \left(1 - e^{-T_0/T_1} \right)}{z - e^{-T_0/T_1}}$$
(2.4)

Отже, ДПФ замкненого контуру цифрового керування з ПІД-регулятором має вигляд

$$W_{3}(z) = \frac{W_{\Pi}(z) \cdot W_{p}(z)}{1 + W_{\Pi}(z) \cdot W_{p}(z)} = \frac{\frac{k(1 - e^{-T_{0}/T_{1}})}{z - e^{-T_{0}/T_{1}}} \cdot K_{p} \left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{1 + \frac{k(1 - e^{-T_{0}/T_{1}})}{z - e^{-T_{0}/T_{1}}} \cdot K_{p} \left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)} = \frac{k\left(1 - e^{-T_{0}/T_{1}}\right) \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{\left(z - e^{-T_{0}/T_{1}}\right) + k\left(1 - e^{-T_{0}/T_{1}}\right) \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)} = \frac{kK_{p}(1 - e^{-T_{0}/T_{1}})\left(T_{0}T_{I}(1 - z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1 - z^{-1})^{2}\right)}{\left(z - e^{-T_{0}/T_{1}}\right)T_{0}T_{I}(1 - z^{-1}) + kK_{p}(1 - e^{-T_{0}/T_{1}})\left(T_{0}T_{I}(1 - z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1 - z^{-1})^{2}\right)z^{-1}} = \frac{kK_{p}(1 - e^{-T_{0}/T_{1}})\left(T_{0}T_{I}(1 - z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1 - z^{-1})^{2}\right)z^{-1}}{\left(1 - e^{-T_{0}/T_{1}}\right)T_{0}T_{I}(1 - z^{-1}) + kK_{p}(1 - e^{-T_{0}/T_{1}})\left(T_{0}T_{I}(1 - z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1 - z^{-1})^{2}\right)z^{-1}}}$$

$$(2.5)$$

Відповідно, з ПІ-регулятором ($T_D = 0$):

$$W_{3}(z) = \frac{kK_{p}(1-e^{-T_{0}/T_{1}})(T_{0}T_{1}(1-z^{-1})+T_{0}^{2})z^{-1}}{(1-e^{-T_{0}/T_{1}}z^{-1})T_{0}T_{1}(1-z^{-1})+kK_{p}(1-e^{-T_{0}/T_{1}})(T_{0}T_{1}(1-z^{-1})+T_{0}^{2})z^{-1}} = \frac{kK_{p}(z-e^{-T_{0}/T_{1}})(T_{1}(1-z^{-1})+T_{0})z^{-1}}{(1-e^{-T_{0}/T_{1}z^{-1}})T_{1}(1-z^{-1})+kK_{p}(z-e^{-T_{0}/T_{1}})(T_{1}(1-z^{-1})+T_{0})z^{-1}}$$
(2.6)

2.3. Випадок $W_O(S) = \frac{k}{(T_1s+1)(T_2s+1)}$

Обчислимо z-перетворення для $\frac{W_O(S)}{s}=\frac{k}{s(T_1s+1)(T_2s+1)}=\frac{k}{s}-\frac{kT_1^2}{(T_1-T_2)(T_1s+1)}+\frac{kT_2^2}{(T_1-T_2)(T_2s+1)}.$ За таблицею z-перетворення отримаємо

$$z\left\{\frac{W_O(s)}{s}\right\} = k\left(\frac{z}{z-1} - \frac{az}{T_1(z-d_1)} + \frac{bz}{T_2(z-d_2)}\right)$$
(2.7)

де $a=\frac{T_1^2}{T_1-T_2},\,b=\frac{T_2^2}{T_1-T_2},\,d_1=e^{-T_0/T_1},\,d_2=e^{-T_0/T_2}.$ Тому ДПФ ПНЧ має вигляд

$$W_{\Pi}(z) = (1 - z^{-1}) \cdot z \left\{ \frac{W_O(s)}{s} \right\} =$$

$$= \frac{z - 1}{z} \cdot k \left(\frac{z}{z - 1} - \frac{az}{T_1(z - d_1)} + \frac{bz}{T_2(z - d_2)} \right) =$$

$$= k \left(1 - \frac{a(z - 1)}{T_1(z - d_1)} + \frac{b(z - 1)}{T_2(z - d_2)} \right)$$
(2.8)

Отже, ДПФ замкненого контуру цифрового керування з ПІД-регулятором має вигляд

$$W_{3}(z) = \frac{W_{\Pi}(z) \cdot W_{p}(z)}{1 + W_{\Pi}(z) \cdot W_{p}(z)} =$$

$$= \frac{k\left(1 - \frac{a(z-1)}{T_{1}(z-d_{1})} + \frac{b(z-1)}{T_{2}(z-d_{2})}\right) K_{p}\left(1 + \frac{T_{0}}{T_{I}(1-z^{-1})} + \frac{T_{D}(1-z^{-1})}{T_{0}}\right)}{1 + k\left(1 - \frac{a(z-1)}{T_{1}(z-d_{1})} + \frac{b(z-1)}{T_{2}(z-d_{2})}\right) K_{p}\left(1 + \frac{T_{0}}{T_{I}(1-z^{-1})} + \frac{T_{D}(1-z^{-1})}{T_{0}}\right)} =$$

$$= \frac{kK_{p}\left(1 - \frac{a(z-1)}{T_{1}(z-d_{1})} + \frac{b(z-1)}{T_{2}(z-d_{2})}\right) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}{T_{0}T_{I}(1-z^{-1}) + kK_{p}\left(1 - \frac{a(z-1)}{T_{1}(z-d_{1})} + \frac{b(z-1)}{T_{2}(z-d_{2})}\right) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)} =$$

$$= \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1}) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}{T_{0}T_{I}T_{1}T_{2}(1-z^{-1})(z-d_{2}) + kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1}) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}$$

$$= \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1}) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}{T_{0}T_{I}T_{1}T_{2}(1-z^{-1})(z-d_{2}) + kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1}) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}$$

$$= \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1}) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}{T_{0}T_{1}T_{1}T_{2}(1-z^{-1})(z-d_{2}) + kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1}) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}$$

$$= \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) + kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{2}) + tT_{0}^{2}}{T_{0}T_{1}T_{1}T_{2}(1-z^{-1}) + tT_{0}^{2}}$$

Відповідно, з ПІ-регулятором ($T_D = 0$):

$$W_{3}(z) = \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2})-aT_{2}(z-1)(z-d_{2})+bT_{1}(z-1)(z-d_{1}))\left(T_{0}T_{I}\left(1-z^{-1}\right)+T_{0}^{2}\right)}{T_{0}T_{I}T_{1}T_{2}(1-z^{-1})(z-d_{1})(z-d_{2})+kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2})-aT_{2}(z-1)(z-d_{2})+bT_{1}(z-1)(z-d_{1}))\left(T_{0}T_{I}(1-z^{-1})+T_{0}^{2}\right)} = \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2})-aT_{2}(z-1)(z-d_{2})+bT_{1}(z-1)(z-d_{1}))\left(T_{I}\left(1-z^{-1}\right)+T_{0}\right)}{T_{I}T_{1}T_{2}(1-z^{-1})(z-d_{1})(z-d_{2})+kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2})-aT_{2}(z-1)(z-d_{2})+bT_{1}(z-1)(z-d_{1}))(T_{I}(1-z^{-1})+T_{0})}$$
 (2.10)

2.4. Випадок $W_O(S) = \frac{ke^{-\tau s}}{T_1 s + 1}$

Обчислимо z-перетворення для $\frac{W_O(S)}{s}=\frac{ke^{-\tau s}}{s(T_1s+1)}=\frac{ke^{-\tau s}}{s}-\frac{kT_1e^{-\tau s}}{T_1s+1}$. За таблицею z-перетворення отримаємо для $dT_0<\tau\le (d+1)T_0$

$$z\left\{\frac{W_O(s)}{s}\right\} = \frac{kz^{-d}}{z-1} - \frac{kz^{-d-1}}{1 - e^{-T_0/T_1}z^{-1}} e^{\left[\frac{\tau}{T_1} - (d+1)\frac{T_0}{T_1}\right]}$$
(2.11)

Тоді після перетворень ДПФ ПНЧ матиме вигляд

$$W_{\Pi}(z) = (1 - z^{-1}) \cdot z \left\{ \frac{W_O(s)}{s} \right\} = \frac{k \left(C_1 + C_2 z^{-1} \right) z^{-d-1}}{\left(1 - e^{-T_0/T_1} z^{-1} \right)}$$
(2.12)

де d — ціла частина від ділення часу запізнення τ на період квантування $T_0, a=1-\frac{\tau-dT_0}{T_0}, C_1=1-e^{\frac{aT_0}{T_1}}, C_2=e^{\frac{aT_0}{T_1}}-e^{\frac{T_0}{T_1}}.$ Отже, ДПФ замкненого контуру цифрового керування з ПІД-регулятором має вигляд

$$W_{\mathbf{3}}(z) = \frac{W_{\mathbf{\Pi}}(z) \cdot W_{p}(z)}{1 + W_{\mathbf{\Pi}}(z) \cdot W_{p}(z)} = \frac{\frac{k\left(C_{1} + C_{2}z^{-1}\right)z^{-d-1}}{\left(1 - e^{-T_{0}/T_{1}}z^{-1}\right)} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}\left(1 - z^{-1}\right)}{T_{0}}\right)}{1 + \frac{k\left(C_{1} + C_{2}z^{-1}\right)z^{-d-1}}{\left(1 - e^{-T_{0}/T_{1}}z^{-1}\right)} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)} = \frac{1}{1 + \frac{k\left(C_{1} + C_{2}z^{-1}\right)z^{-d-1}}{\left(1 - e^{-T_{0}/T_{1}}z^{-1}\right)} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{1 + \frac{k\left(C_{1} + C_{2}z^{-1}\right)z^{-d-1}}{\left(1 - e^{-T_{0}/T_{1}}z^{-1}\right)} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{1 + \frac{k\left(C_{1} + C_{2}z^{-1}\right)z^{-d-1}}{\left(1 - e^{-T_{0}/T_{1}}z^{-1}\right)} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{1 + \frac{k\left(C_{1} + C_{2}z^{-1}\right)z^{-d-1}}{\left(1 - e^{-T_{0}/T_{1}}z^{-1}\right)} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}$$

$$= \frac{k \left(C_{1} + C_{2} z^{-1}\right) z^{-d-1} \cdot K_{p} \left(1 + \frac{T_{0}}{T_{I}(1-z^{-1})} + \frac{T_{D}(1-z^{-1})}{T_{0}}\right)}{\left(1 - e^{-T_{0}/T_{1}} z^{-1}\right) + k \left(C_{1} + C_{2} z^{-1}\right) z^{-d-1} \cdot K_{p} \left(1 + \frac{T_{0}}{T_{I}(1-z^{-1})} + \frac{T_{D}(1-z^{-1})}{T_{0}}\right)} = \frac{kK_{p} z^{-d-1} \left(C_{1} + C_{2} z^{-1}\right) \left(T_{0} T_{I} \left(1-z^{-1}\right) + T_{0}^{2} + T_{I} T_{D} \left(1-z^{-1}\right)^{2}\right)}{T_{0} T_{I} \left(1 - e^{-T_{0}/T_{1}} z^{-1}\right) \left(1 - z^{-1}\right) + kK_{p} z^{-d-1} \left(C_{1} + C_{2} z^{-1}\right) \left(T_{0} T_{I} \left(1-z^{-1}\right) + T_{0}^{2} + T_{I} T_{D} \left(1-z^{-1}\right)^{2}\right)}$$

$$(2.13)$$

Відповідно, з ПІ-регулятором ($T_D = 0$):

$$W_{3}(z) = \frac{kK_{p}z^{-d-1}(C_{1}+C_{2}z^{-1})(T_{0}T_{I}(1-z^{-1})+T_{0}^{2})}{T_{0}T_{I}(1-e^{-T_{0}/T_{1}}z^{-1})(1-z^{-1})+kK_{p}z^{-d-1}(C_{1}+C_{2}z^{-1})(T_{0}T_{I}(1-z^{-1})+T_{0}^{2})} = \frac{kK_{p}(C_{1}+C_{2}z^{-1})z^{-d-1}(T_{I}(1-z^{-1})+T_{0})}{T_{I}(1-e^{-T_{0}/T_{1}}z^{-1})(1-z^{-1})+kK_{p}z^{-d-1}(C_{1}+C_{2}z^{-1})(T_{I}(1-z^{-1})+T_{0})}$$

$$(2.14)$$

2.5. Випадок $W_O(S) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}$

Обчислимо z-перетворення для $\frac{W_O(S)}{s}=\frac{ke^{-\tau s}}{s(T_1s+1)(T_2s+1)}=\frac{ke^{-\tau s}}{s}-\frac{kT_1^2e^{-\tau s}}{(T_1-T_2)(T_1s+1)}+\frac{kT_2^2e^{-\tau s}}{(T_1-T_2)(T_2s+1)}.$ За таблицею z-перетворення отримаємо для $dT_0<\tau\le (d+1)T_0$

$$z\left\{\frac{W_O(s)}{s}\right\} = \frac{kz^{-d}}{z-1} - \frac{kT_1e^{\left[\frac{\tau}{T_1}-(d+1)\frac{T_0}{T_1}\right]}z^{-d-1}}{(T_1-T_2)\left(1-e^{-T_0/T_1}z^{-1}\right)} + \frac{kT_2e^{\left[\frac{\tau}{T_2}-(d+1)\frac{T_0}{T_2}\right]}z^{-d-1}}{(T_1-T_2)\left(1-e^{-T_0/T_2}z^{-1}\right)}$$
(2.15)

Тоді після перетворень ДПФ ПНЧ матиме вигляд

$$W_{\Pi}(z) = (1 - z^{-1}) \cdot z \left\{ \frac{W_O(s)}{s} \right\} = \frac{k \left(\tilde{C}_0 + \tilde{C}_1 z^{-1} + \tilde{C}_2 z^{-2} \right) z^{-d-1}}{\left(1 - e^{-T_0/T_1} z^{-1} \right) \left(1 - e^{-T_0/T_2} z^{-1} \right)}$$
(2.16)

де $a=(d+1)-rac{ au}{T_0}$ і сталі $ilde{C}_0, ilde{C}_1, ilde{C}_2$ визначаються з

$$\tilde{C}_0 = 1 - \frac{T_1 e^{-aT_0/T_1} - T_2 e^{-aT_0/T_2}}{T_1 - T_2}$$

$$\tilde{C}_1 = \frac{T_1 e^{-aT_0/T_1} \left(1 + e^{-T_0/T_2}\right) - T_2 e^{-aT_0/T_2} \left(1 + e^{-T_0/T_1}\right)}{T_1 - T_2} - e^{-T_0/T_1} - e^{-T_0/T_2}$$

$$\tilde{C}_2 = e^{-T_0/T_1} e^{-T_0/T_2} - \frac{T_1 e^{-aT_0/T_1} e^{-T_0/T_2} - T_2 e^{-T_0/T_1} e^{-aT_0/T_2}}{T_1 - T_2}$$

як і раніше, d — ціла частина від ділення часу запізнення τ на період квантування T_0 . Отже, ДПФ замкненого контуру цифрового керування з ПІД-регулятором має вигляд

$$W_{3}(z) = \frac{W_{\Pi}(z) \cdot W_{p}(z)}{1 + W_{\Pi}(z) \cdot W_{p}(z)} = \frac{k(\tilde{C}_{0} + \tilde{C}_{1}z^{-1} + \tilde{C}_{2}z^{-2})z^{-d-1}}{(1 - e^{-T_{0}/T_{1}z^{-1}})(1 - e^{-T_{0}/T_{2}z^{-1}})} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{1 + \frac{k(\tilde{C}_{0} + \tilde{C}_{1}z^{-1} + \tilde{C}_{2}z^{-2})z^{-d-1}}{(1 - e^{-T_{0}/T_{1}z^{-1}})(1 - e^{-T_{0}/T_{2}z^{-1}})} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{k(\tilde{C}_{0} + \tilde{C}_{1}z^{-1} + \tilde{C}_{2}z^{-2})z^{-d-1} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}\right)} = \frac{k(\tilde{C}_{0} + \tilde{C}_{1}z^{-1} + \tilde{C}_{2}z^{-2})z^{-d-1} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{(1 - e^{-T_{0}/T_{1}z^{-1}})(1 - e^{-T_{0}/T_{2}z^{-1}}) + k(\tilde{C}_{0} + \tilde{C}_{1}z^{-1} + \tilde{C}_{2}z^{-2})z^{-d-1} \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}\right)} = \frac{kK_{p}z^{-d-1}(\tilde{C}_{0} + \tilde{C}_{1}z^{-1} + \tilde{C}_{2}z^{-2})(T_{0}T_{I}(1 - z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1 - z^{-1})^{2})}{T_{0}T_{I}(1 - z^{-1})(1 - e^{-T_{0}/T_{1}z^{-1}})(1 - e^{-T_{0}/T_{1}z^{-1}}) + kK_{p}z^{-d-1}(\tilde{C}_{0} + \tilde{C}_{1}z^{-1} + \tilde{C}_{2}z^{-2})(T_{0}T_{I}(1 - z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1 - z^{-1})^{2})}}$$

$$(2.17)$$

Відповідно, з ПІ-регулятором ($T_D = 0$):

$$W_{\Pi}(z) = \frac{kK_{p}z^{-d-1}(\tilde{C}_{0}+\tilde{C}_{1}z^{-1}+\tilde{C}_{2}z^{-2})(T_{0}T_{I}(1-z^{-1})+T_{0}^{2})}{T_{0}T_{I}(1-z^{-1})(1-e^{-T_{0}/T_{1}}z^{-1})(1-e^{-T_{0}/T_{2}}z^{-1})+kK_{p}z^{-d-1}(\tilde{C}_{0}+\tilde{C}_{1}z^{-1}+\tilde{C}_{2}z^{-2})(T_{0}T_{I}(1-z^{-1})+T_{0}^{2})} = \frac{kK_{p}z^{-d-1}(\tilde{C}_{0}+\tilde{C}_{1}z^{-1}+\tilde{C}_{2}z^{-2})(T_{I}(1-z^{-1})+T_{0})}{T_{I}(1-z^{-1})(1-e^{-T_{0}/T_{1}}z^{-1})(1-e^{-T_{0}/T_{2}}z^{-1})+kK_{p}z^{-d-1}(\tilde{C}_{0}+\tilde{C}_{1}z^{-1}+\tilde{C}_{2}z^{-2})(T_{I}(1-z^{-1})+T_{0})}$$
 (2.18)

РОЗДІЛ 3

РОЗРАХУНОК ПЕРІОДІВ КВАНТУВАННЯ

3.1. Розрахунок на умові забезпечення необхідної точності керування

За цим критерієм період квантування обчислюється з умови $T_0 \leq \frac{\varepsilon}{B_{\max}}$, де B_{\max} — максимальне значення функції $B(\omega) = \omega A(\omega)$, а $A(\omega)$ — амплітудно-частотна характеристика (АЧХ) об'єкта. $B(\omega)$ описує верхню границю можливих швидкостей зміни сигналу на виході об'єкта.

3.1.1. Випадок
$$W_{O_1}(s) = \frac{ke^{-\tau s}}{T_1s+1}$$

Знайдемо $B(\omega)$:

$$B(\omega) = \omega A(\omega) = \omega \cdot |W_{O_1}(j\omega)| = \omega \cdot \frac{k |e^{-\tau j\omega}|}{|T_1 j\omega + 1|} = \frac{k\omega}{\sqrt{1 + T_1^2 \omega^2}}$$
(3.1)

Оскільки $\frac{k\omega}{\sqrt{1+T_1^2\omega^2}}=\frac{k}{\sqrt{\frac{1}{\omega^2}+T_1^2}},$ то $B(\omega)$ – монотонно зростаюча за ω функція, тому

$$B_{\text{max}} = \lim_{\omega \to +\infty} B(\omega) = \frac{k}{T_1} \Rightarrow T_0 = \frac{\varepsilon T_1}{k}$$
 (3.2)

Отже, отримуємо наступні періоди квантування для різних ε :

ε	0.01	0.02	0.03	0.04	0.05
T_0	0.0376	0.0751	0.1127	0.1502	0.1878

Залежність T_0 від ε :

3.1.2. Випадок
$$W_{O_2}(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}$$

Знайдемо $B(\omega)$:

$$B(\omega) = \omega A(\omega) = \omega \cdot |W_{O_2}(j\omega)| = \omega \cdot \frac{k \left| e^{-\tau j\omega} \right|}{|T_1 j\omega + 1| |T_2 j\omega + 1|} = \frac{k\omega}{\sqrt{(1 + T_1^2 \omega^2)(1 + T_2^2 \omega^2)}}$$
(3.3)

 B_{\max} можна знайти за допомогою відповідної таблиці:

$$B_{\text{max}} = \frac{k}{T_1 + T_2} \Rightarrow T_0 = \frac{\varepsilon (T_1 + T_2)}{k}$$
(3.4)

Отже, отримуємо наступні періоди квантування для різних ε :

ε	0.01	0.02	0.03	0.04	0.05
T_0	0.0579	0.1159	0.1738	0.2318	0.2897

Залежність T_0 від ε :

3.2. Розрахунок за критерієм Джурі

За цим критерієм період квантування обчислюється як $T_0=\frac{\pi}{\omega_k}$, де ω_k – розв'язок рівняння

$$W_{3}(\omega_{k}) = \left| \frac{W_{O}(j\omega_{k})W_{p}(j\omega_{k})}{1 + W_{O}(j\omega_{k})W_{p}(j\omega_{k})} \right| = \varepsilon$$
(3.5)

$$W_p = ???$$

3.3. Розрахунок для об'єкта з динамікою в чисельнику

Розглядається об'єкт з передаточною функцією $W_O(s)=\frac{k(T_1s+1)}{(T_2s+1)(T_3s+1)}$. Через те, що передаточна функція має динаміку в чисельнику, критерій забезпечення необхідної точності керування та критерій Джурі непридатні для застосування. Приведемо передаточну функцію до вигляду $W_O(s)=\frac{K(bTs+1)}{T^2s^2+2\nu Ts+1}$:

$$\frac{k(T_1s+1)}{(T_2s+1)(T_3s+1)} = \frac{k(T_1s+1)}{T_2T_3s^2 + (T_2+T_3)s+1}$$

тому $T=\sqrt{T_2T_3}\approx 14.4568,$ $b=\frac{T_1}{T}\approx 2.421,$ $\nu=\frac{T_2+T_3}{2\sqrt{T_2T_3}}=\frac{T_2+T_3}{2T}\approx 1.0376.$ Знайдемо $|W_O(j\omega)|$:

$$|W_O(j\omega)| = \frac{k |bT \cdot j\omega + 1|}{|-T^2\omega^2 + 2\nu T \cdot j\omega + 1|} = \frac{k\sqrt{1 + b^2 T^2\omega^2}}{\sqrt{(1 - T^2\omega^2)^2 + 4\nu^2 T^2\omega^2}}$$

Введемо $\omega_{\rm 3p}=\frac{q}{T}$ — найвищу частоту сигналу, який необхідно відновити на виході системи:

$$|W_O(j\omega_{3p})| = \frac{k\sqrt{1+b^2q^2}}{\sqrt{(1-q^2)^2+4\nu^2q^2}}$$

Розв'яжемо рівняння $|W_O(j\omega_{\rm 3p})|=\frac{1}{\theta},$ де $\theta=31,$ відносно q:

Розв'яжемо це рівняння спочатку відносно q^2 . Приблизні значення коренів:

Оскільки комплексні та від'ємні q не розглядаються, то отримуємо $q\approx 699.4725.$ Отже, період квантування $T_0=\frac{\pi}{\omega_{\rm sp}}=\frac{\pi T}{q}=0.0649.$