Nomenclature organique: Règles I.U.P.A.C.

(remplace 5.2, 5.3 et 6)

1.) Représentation des molécules

Le *modèle à calottes* est la représentation la plus proche de la structure réelle.

La *formule de structure* représente la nature des atomes, leurs liaisons et leur disposition spatiale.

La *formule de Newman* représente l'image qu'aurait un observateur de la formule de structure en regardant suivant l'axe de la liaison principale. (C - C dans notre cas)

La *formule plane développée* représente la nature des atomes et leurs liaisons.

CH₃-CH₂-OH

La *formule semi-développée* représente toutes les liaisons de la formule développée sauf celles avec les atomes d'hydrogène.

La formule en bâtonnets ou représentation stylisée représente uniquement les liaisons carbone - carbone, les groupes significatifs et les liaisons avec ces groupes.

 C_2H_6O

La *formule brute* représente la nature et le nombre d'atomes de chaque élément.

1.) Alcanes normaux

Les alcanes sont des hydrocarbures (composés de carbone et hydrogène)

saturés (pas de multiples liaisons)

aliphatiques (à chaîne carbonée ouverte)

Les alcanes normaux ont en plus une chaîne non ramifiée

Corps du nom	Suffixe ane
(désigne le nombre d'atomes C)	(veut dire: ni double, ni triple liaison)

Formule semi-développée	Nom
CH ₄	méthane
CH ₃ -CH ₃	éthane
CH ₃ -CH ₂ -CH ₃	propane
CH_3 - $(CH_2)_2$ - CH_3	butane
CH_3 - $(CH_2)_3$ - CH_3	pentane
CH_3 - $(CH_2)_4$ - CH_3	hexane
CH_3 - $(CH_2)_5$ - CH_3	heptane
CH_3 - $(CH_2)_6$ - CH_3	octane
CH_3 - $(CH_2)_7$ - CH_3	nonane
CH_3 - $(CH_2)_8$ - CH_3	décane

2.) Cycloalcanes (cyclanes)

Exemple:

cyclopentane

3.) Alcanes ramifiés

a) Les chaînes principales sont toujours les chaînes les plus longues.

b) Les chaînes principales portent les noms des alcanes correspondants

Exemple: 4-éthylheptane:

3-méthylpentane:

c) Les positions des chaînes latérales doivent être indiquées par des indices si une confusion est possible.

Chaînes latérales normales			
Formule semi-développée	Nom		
CH ₄	méthyl		
CH ₃ -CH ₂	éthyl		
CH ₃ -CH ₂ -CH ₂	propyl		
CH_3 - $(CH_2)_2$ - CH_2 -	butyl		
CH_3 - $(CH_2)_3$ - CH_2 -	pentyl		
CH_3 - $(CH_2)_4$ - CH_2 -	hexyl		
CH ₃ -(CH ₂) ₅ -CH ₂ -	heptyl		
CH_3 - $(CH_2)_6$ - CH_2 -	octyl		
CH_3 - $(CH_2)_7$ - CH_2 -	nonyl		
CH ₃ -(CH ₂) ₈ -CH ₂ -	décyl		

d) Plusieurs chaînes latérales sont écrites par ordre alphabétique

Exemple: 3,4-diéthyl-5-méthyloctane

d) Indices: di, tri, tétra, penta, hexa, hepta, octo, nona, déca,...

e) La numérotation de la chaîne principale commence par l'extrémité à partir de laquelle apparaît en premier lieu le plus grand nombre de ramifications *Exemple*: 2,3,8-triméthylnonane et non 2,7,8-triméthylnonane

3

f)¹La nomenclature des chaînes latérales suit les mêmes règles que celle des chaînes principales avec la seule exception que le carbone d'attache à la chaîne principale porte le numéro 1 *Exemple*: 5-(1-méthylpropyl)nonane

¹ pas matière d'examen

4) (Cyclo)alcènes et (cyclo)alcynes

Ce sont des hydrocarbures (composés de carbone et hydrogène) non saturés (au moins une double ou triple liaison)

non satures (at mone and accord of the name)			
Préfixes	Corps du nom	Suffixe pour une	Suffixe pour une
éventuels		double liaison: ène	triple liaison: yne

Exemples:

3-méthylcyclohex-1-ène

5) Composés aromatiques

benzène naphtalène toluène

Exemples:

éthylbenzène

1,2-diméthylbenzène o-diméthylbenzène

1,3-diméthylbenzène 1,4-diméthylbenzène *m*-diméthylbenzène

p-diméthylbenzèr

4

² naphtalène et toluène:hors programme o se lit : ortho, m se lit méta, p se lit: para AdM

6) Groupes latéraux à nomenclature non systématique

(CH₃)₂CH- isopropyl

(CH₃)₃C- *tert*-butyl ou tertiobutyl

CH₂=CH- vinyl

phényl

naphtyl

Exemples:

vinylbenzène ou phényléthène³

dinaphtylméthane

7) Fonctions chimiques

Tout groupe d'atomes qui confère à la molécule des propriétés spécifiques (caractéristiques de ce groupe) s'appelle groupement fonctionnel. L'ensemble des substances qui possèdent ce groupement fonctionnel s'appelle fonction chimique. En pratique, on ne fait pas de différence entre les notions de groupement fonctionnel et fonction chimique.

Exemple:

le groupe ______ peut être considéré comme groupement fonctionnel,

parce que toutes les substances qui possèdent ce groupe réagissent avec le sodium.

Toutes les molécules possédant le groupe appartiennent à la

fonction chlorure d'alkyle; ce sont des chlorures d'alkyle

Préfixes éventuels	Corps du	Suffixe ane ou bien	Suffixe d'une
	nom	(ène ou yne)	fonction

Si une molécule possède plusieurs fonctions, une des fonctions doit être placée en suffixe (sauf les halogénures d'alkyle), toutes les autres en préfixe. La nomenclature des fonctions ainsi que l'ordre de priorité pour le suffixe (de haut en bas) sont donnés par le tableau suivant:

³nomenclature non systématique: styrène; en nomenclature IUPAC il existe ici des règles précises pour attribuer la chaîne principale sur lesquelles nous n'insistons pas ici

Fonction	Formule	Préfixe	Suffixe
Cations	— <u>o</u> —		oxonium
Cations	——N— 		ammonium
Acides carboxyliques	_с <u>`</u> о́	* carboxy ⁴	acideoïque
Carboxylates		* carboxylatode (cation)	oate de (cation)
Esters	-c´ōl	*yloxycarbonyl	oate deyle
Halogénures d'acide	X —C´ <u>O</u> (X= F,Cl,Br ou I)	* halogénoformyl	halogénure deoyle
Amides	NH ₂ —C´ <u>O</u>	* carbamoyl	amide
Nitriles	—c≡n	* cyano	nitrile
Aldéhydes	—с́. Н	* formyl	al

⁻

 $^{^{\}rm 4}$ en couleur dans ce tableau: pas matière d'examen AdM

Cétones	5 O	0X0	one
Alcools	<mark>⊙</mark> −н /	hydroxy	ol
Amines		ylyl amino	ylyl amine ou Nyl-Nylamine
Halogénure d'alkyle	-X (X= F,Cl,Br ou I)	halogéno (p.ex: chloro)	

Remarques

- 1) Seulement dans les cas marqués d'un astérisque *, le carbone de la fonction ne fait pas partie de la chaîne principale. Par exemple, OHCCO(NH₂) est la formyl**méth**anamide et non la formyléthanamide (en bleu la chaîne pricipale)
- 2) Il existe trois systèmes de nomenclature des amines. Dans beaucoup de manuels on en fait un pot-pourri assez indigeste !
- a) le sytème en accord avec la nomenclature systématique I.U.P.A.C.: La chaîne principale est la chaîne la plus longue partant de l'azote de l'amine (carbone 1 = carbone attaché à cet azote.) Elle prend le nom normal en -an ou -én ou -yn. La fonction amine est désignée par le suffixe -amine.

Les chaînes latérales sont désignées normalement par des suffixes –yl, leur position d'attache à la chaîne principale est déterminée normalement par des indices. Dans le cas où une telle chaîne est attachée à l'azote, sa position est déterminée par l'indice *N*-

Exemple:

$$\langle N \rangle$$

N-éthyl-*N*,4,4-triméthylpentanamine

b) le système ancien où l'azote seul est considéré en quelque sorte comme chaîne principale, toutes les chaînes attachées étant latérales : *Exemple* :

éthyl méthyl 4,4-diméthylpentylamine

⁵ Le groupe C=O **carbonyle** intervient dans maintes fonctions organiques: ce n'est pas une fonction spéciale AdM

c) un troisième système ancien, où l'azote est toujours désigné par le **préfixe** amino. Ce système est à proscrire absolument *Exemple*:

CH₃CH₂NH₂ aminoéthane

8) Espèces diverses à nomenclature non scientifique

Pour des raisons historiques ou par commodité, certaines espèces (et leurs dérivés) *peuvent* conserver leur nom trivial :

Formule	Nom trivial
Н	Styrène
C—H	
CH ₃ Cl	Chlorure de méthyle
CHCl ₃	Chloroforme
CCl ₄	Tétrachlorure de carbone
CH ₃ OH	Alcool méthylique
CH₃CH₂OH	Alcool éthylique Alcool ordinaire
) —ОН	Alcool isopropylique
CH ₂ OHCH ₂ OH	Glycol Ethylèneglycol
CH ₂ OHCHOHCH ₂ OH	Glycérine Glycérol
H—C, H	Formaldéhyde
ОН	Phénol
NH ₂	Aniline
O CH ₃ —C/ H	Acétaldéhyde

1105100	
CH₂OHCHOHC, H	Glycéraldéhyde
C,H	Benzaldéhyde
O CH ₃ CCH ₃	Acétone
H-C OH	Acide formique
CH ₃ —COOH	Acide acétique
О С—СНОН—СНОН—С ОН	Acide tartrique
СН3—СНОН—С ОН	Acide lactique
O OH	Acide oxalique
OH OH	Acide benzoïque
HO C OH	Acide téréphtalique
CH ₃ (CH ₂) ₁₆ COOH	Acide stéarique
CH ₃ (CH ₂) ₁₄ COOH	Acide palmitique
CH ₃ (CH ₂) ₆ CH=CH(CH ₂) ₆ COOH	Acide oléique
	Peroxyde de dibenzoyle
CH ₃ C Cl	Chlorure d'acétyle
CI CI	Chlorure de benzoyle
NH ₂	Benzamide

Règles

CH ₃ CHNH ₂ COOH	Alanine
CH ₂ ONO ₂	Nitroglycérine
CHONO ₂	
CH ₂ ONO ₂	
CH2OOC(CH2)16CH3	Stéarine
CHOOC(CH ₂) ₁₆ CH ₃	
CH ₂ OOC(CH ₂) ₁₆ CH ₃	
CH2OOC(CH2)14CH3	Palmitine
CHOOC(CH ₂) ₁₄ CH ₃	
CH ₂ OOC(CH ₂) ₁₄ CH ₃	
CH ₂ OOC(CH ₂) ₆ CH=CH(CH ₂) ₆ CH ₃	Oléine
CHOOC(CH ₂) ₆ CH=CH(CH ₂) ₆ CH ₃	
CH ₂ OOC(CH ₂) ₆ CH=CH(CH ₂) ₆ CH ₃	