

Sri Chaitanya IIT Academy.,India.

□ A.P □ T.S □ KARNATAKA □ TAMILNADU □ MAHARASTRA □ DELHI □ RANCHI

A right Choice for the Real Aspirant

ICON Central Office - Madhapur - Hyderabad

SEC: Sr.S60_Elite, Target & LIIT-BTs Time: 09.00Am to 12.00Pm

JEE-MAIN GTM-14/09

Date: 05-01-2025 Max. Marks: 300

KEY SHEET

MATHEMATICS

1	2	2	2	3	3	4	3	5	3
6	3	7	1	8	1	9	2	10	4
11	1	12	1	13	3	14	4	15	4
16	4	17	4	18	2	19	1	20	2
21	1	22	5	23	96	24	1	25	180

PHYSICS

26	4	27	1	28	3	29	4	30	4
31	2	32	2	33	4	34	3	35	3
36	2	37	2	38	4	39	1	40	2
41	1	42	4	43	4	44	4	45	1
46	6	47	20	48	18	49	200	50	144

CHEMISTRY

51	3	52	4	53	3	54	1	55	3
56	4	57	2	58	1	59	3	60	1
61	4	62	4	63	2	64	2	65	10
66	1	67	4	68	4	69	2	70	3
71	7	72	4	73	790	74	7	75	25

MATHEMATICS

1.
$$\lim_{x \to 0} \frac{e^{x^2} - \cos x}{\sin^2 x} = \lim_{x \to 0} \frac{2xe^{x^2} - \sin x}{2\sin x \cos x}$$
(Using L' Hospital Rule),
$$\lim_{x \to 0} \left(\frac{x}{\sin x} e^{x^2} + \frac{1}{2} \right) \frac{1}{\cos x} = 1 + \frac{1}{2} = \frac{3}{2}$$

- 2. Put sinx = t
- $\sum x_i = 15 \times 12$ and $\frac{\sum x_i^2}{15} 12^2 = 14$, And $\sum y_i = 15 \times 14$ and $\frac{\sum y_i^2}{15} 14^2 = \sigma^2$ Now $13 = \frac{(14+144)\times15 + (\sigma^2 + 196)\times15}{30} - 13^2$ $\Rightarrow 3\sigma^2 = 30$ Use a_n formula to find a = 4 and d = 5
- 4.
- Take the terms as $4/r^2$, 4/r, 4, 4r, $4r^2$ 5.
- $x^2 8x + 17 = (x-4)^2 + 1$ or differentiate or use formula for minimum of quadratic 6. function.
- Given, $2\omega + 1 = z$ $2\omega + 1 = \sqrt{-3} \left[:: z = \sqrt{-3} \right]$ $\Rightarrow \omega = \frac{-1 + \sqrt{3}i}{2}$ 7. $\therefore \omega^2 = \frac{-1 - \sqrt{3}i}{2} \text{ and } \omega^{3n} = 1$ Since, ω is cube root of unity. $\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{vmatrix} = 3k$ Now, $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k$

$$\left[\therefore 1 + \omega + \omega^2 = 0 \text{ and } \omega^7 = \left(\omega^3 \right)^2 \cdot \omega = \omega \right]$$

On applying
$$R_1 \rightarrow R_1 + R_2 + R_3$$
, we get
$$\begin{vmatrix} 3 & 1 + \omega + \omega^2 & 1 + \omega + \omega^2 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{vmatrix} = 3k$$

$$\Rightarrow \begin{vmatrix} 3 & 0 & 0 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{vmatrix} = 3k \Rightarrow 3(\omega^2 - \omega^4) = 3k \Rightarrow (\omega^2 - \omega) = k$$

$$\therefore k = \left(\frac{-1 - \sqrt{3}i}{2}\right) - \left(\frac{-1 + \sqrt{3}i}{2}\right) = -\sqrt{3}i = -z$$

8. Let A is $(1-3\mu, \mu-1, 2+5\mu)$

$$\overline{AB} = (3\mu + 2)\hat{i} + (3-\mu)\hat{j} + (4-5\mu)\hat{k}$$
 which is parallel to plane $x-4y+3z=1$

$$=-8\mu+2=0 \Rightarrow \mu=\frac{1}{4}$$
 $\therefore 4\mu=1$

9.
$$x+y+z=5$$
, $x+2y+3z=9$, $x+3y+\alpha z=\beta$

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & \alpha \end{vmatrix} = 0 \Rightarrow (2\alpha-9)+(3-\alpha)+(3-2)=0 \Rightarrow \alpha=5$$

Sec: Sr.S60_Elite, Target & LIIT-BTs

Now,
$$D_3 = \begin{vmatrix} 1 & 1 & 5 \\ 1 & 2 & 9 \\ 1 & 3 & \beta \end{vmatrix} = 0 \Rightarrow 2\beta - 27 + 9 - \beta + 5(3 - 2) = 0 \Rightarrow \beta = 13 \Rightarrow at \alpha = 5, \beta = 13$$

10.
$$\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12} = \lambda [say].....(i)$$

And equation of plane is x - y + z = 16

Any point on the line (i) is $(3\lambda + 2, 4\lambda - 1, 12\lambda + 2)$

Let this point of intersection of the line and plane.

$$(3\lambda+2)-(4\lambda-1)+(12\lambda+2)=16$$
 ::11 $\lambda=11\Rightarrow\lambda=1$ So, the point of intersection is (5,3,14)

Now, distance between the points
$$(1,0,2)$$
 and $(5,3,14) = \sqrt{(5-1)^2 + (3-0)^2 + (14-2)^2}$
= $\sqrt{16+9+144} = \sqrt{169} = 13$. \therefore Twice the distance =26

- 11. Substituting the points in the given line gives negative values for both points
- 12. $\therefore x_1 + x_2 + x_3 + x_4 + x_5 = 3 \rightarrow \text{(remaining)} \therefore {}^{3+5-1}C_{5-1} = {}^{7}C_4 = {}^{7}C_3 \therefore \text{ total arrangement}$ = ${}^{7}C_3 \times 4! = 840$
- 13. The planes are parallel, the normal of one plane is perpendicular to any vector of the other plane $\vec{p} \times \vec{q}$ and \vec{r} are parallel.

14. Reqd. prob. =
$$\frac{7_{c_2}}{12_{c_2}} + \frac{5_{c_2}}{12_{c_2}}$$
 = $\frac{21+10}{66} = \frac{31}{66}$

15. A) $f'(x)=(1-x)(2x+1)e^{x(1-x)} \ge 0$ range is [0,1]

B)
$$f(x) = \begin{cases} 1-2x & x < -2 \\ 5 & -2 \le x < 3 \\ 2x-1 & x \ge 3 \end{cases}$$
 Min. value of $f(x) = 5$

Max. value of f(x)=2(4)-1=7

- C) $f(x) = (x^2 + 1)^2 + 4$ Minimum at x = 0
- D) $f'(x) = 2x^3(2-x^2)e^{-x^2} \Rightarrow$ Decreasing in [-1,0]
- 16. $f(x) = 8ax a\sin 6x 7x \sin 5x$ $f'(x) = 8a - 6a\cos 6x - 7 - 5\cos 5x = 8a - 7 - 6a\cos 6x - 5\cos 5x$

f(x) is an increasing function

$$f'(x) > 0 : .8a - 7 > 6a + 5$$
 (no critical points) $\Rightarrow 2a > 12$ $a > 6$ $a \in (6, \infty)$

- 17. $5x^2(1+^{11}C_1x^2+...)$
- 18. $(x-2)^2 + y^2 = 4$ Centre is (2,0) and radius =2

Distance between (2,0) and (5,6) is $\sqrt{9+36} = 3\sqrt{5}$

$$\therefore r_1 r_2 = \frac{\left(3\sqrt{5} - 2\right)\left(3\sqrt{5} + 2\right)}{2} = \frac{41}{4} \therefore 4r_1 r_2 = 41$$

Sec: Sr.S60_Elite, Target & LIIT-BTs

19.
$$f'(x) = 3\sin^2 x \cdot \cos x + \frac{2x}{1+x^2}$$

20.
$$\frac{dy}{dx} + \frac{x}{x^2 - 1}y = \frac{x^4 + 2x}{\sqrt{1 - x^2}}$$

The I. F. of this differential equation is $e^{\int \frac{x}{x^2 - 1} dx} = e^{-\int \frac{x}{1 - x^2} dx} = e^{\frac{1}{2} \log(1 - x^2)} = \sqrt{1 - x^2}$

The solution is given by $y\sqrt{1-x^2} = \int \frac{x(x^3+2)}{\sqrt{1-x^2}} \sqrt{1-x^2} \, dx + \lambda \int (x^4+2x) \, dx + \lambda = \frac{x^5}{5} + x^2 + \lambda$

At
$$y(0) = 0 \Rightarrow \lambda = 0 \Rightarrow y\sqrt{1-x^2} = \frac{x^5}{5} + x^2$$

$$\int_{-\sqrt{3}/2}^{\sqrt{3}/2} \frac{x^5}{5} + x^2 dx = \int_{-\sqrt{3}/2}^{\sqrt{3}/2} \frac{x^2}{\sqrt{1-x^2}} dx$$

(The other part is odd) = $2 \int_{1}^{\sqrt{3}/2} \frac{x^2}{\sqrt{1-x^2}} dx$

Let $x = \sin \theta$, we get $I = 2 \int_{-\cos \theta}^{\pi/3} \frac{\sin^2 \theta}{\cos \theta} \cos \theta \, d\theta = 2 \int_{-\cos \theta}^{\pi/3} \sin^2 \theta \, d\theta = \int_{-\cos \theta}^{\pi/3} (1 - \cos 2\theta) \, d\theta$

$$= \theta - \frac{\sin 2\theta}{2} \Big|_{0}^{\pi/3} = \frac{\pi}{3} - \frac{\sqrt{3}}{4} :: 2I = \frac{2\pi}{3} - \frac{\sqrt{3}}{2}$$

Point $S\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, Point T(1,1,1) 21.

$$\vec{\mathrm{p}} = \overrightarrow{SP} = \frac{\hat{i} - \hat{j} - \hat{k}}{2} \,, \, \vec{q} = \overrightarrow{SQ} = \frac{-\hat{i} + \hat{j} - \hat{k}}{2} \,, \, \vec{r} = \overrightarrow{SR} = \frac{-\hat{i} - \hat{j} + \hat{k}}{2} \,, \, \vec{t} = \overrightarrow{ST} = \frac{\hat{i} + \hat{j} + \hat{k}}{2}$$

Now
$$\vec{p} \times \vec{q} = \frac{\hat{i} + \hat{j}}{2}$$
 $\vec{r} \times \vec{t} = \frac{-\hat{i} + \hat{j}}{2}$, Now $(\vec{p} \times \vec{q})(\vec{r} \times \vec{t}) = \frac{\hat{k}}{2}$

22. Let
$$I = \int_{0}^{1} (1 + \sqrt{x}) dx + \int_{1}^{2} (3 - x) dx - \int_{0}^{2} \frac{x^{2}}{4} dx$$

$$= \left[x + \frac{x^{3/2}}{3/2}\right]_0^1 + \left[3x - \frac{x^2}{2}\right]_1^2 - \left[\frac{x^3}{12}\right]_0^2 = \left(1 + \frac{2}{3}\right) + \left(6 - 2 - 3 + \frac{1}{2}\right) - \left(\frac{8}{12}\right)$$

$$= \frac{5}{3} + \frac{3}{2} - \frac{2}{3} = 1 + \frac{3}{2} = \frac{5}{2} sq. \text{ unit } \therefore 2I = 5$$

$$(1 + x^2)^4: \text{ the middle terms is the third term}$$

 $(1+x^2)^4$: the middle terms is the third term = 4 C₂ x^4 = 96 when x = 2 23.

24. Vertex is
$$(2,0)$$
, $a = 1$

Directrix is
$$x = 1$$

25.
$$\frac{6!}{2!2!}$$

PHYSICS

26.
$$\sin\left(\frac{\alpha x}{kt}\right)$$
=Dimensionless
$$\therefore \frac{\alpha[L]}{[ML^2T^{-2}]} = [M^0L^0T^0] \Rightarrow \alpha = [ML^1T^{-2}]$$

$$\alpha = Energy = [ML^2T^{-2}] \Rightarrow \beta = [ML^1T^{-2}]$$

$$\frac{\alpha}{\beta} = \frac{Energy}{Volume} = \frac{\left[ML^{2}T^{-2}\right]}{\left[L^{3}\right]} \Rightarrow \beta = \frac{\left[ML^{1}T^{-2}\right]\left[L^{3}\right]}{ML^{2}T^{-2}}$$
$$= \left[M^{0}L^{2}T^{0}\right]$$

27. We know that if range is same for two angle of projection, then these angle must be complementary.

Let first angle of projection be 'θ' then second will be (90-θ)

$$\therefore h_1 = \frac{u^2 \sin^2 \theta}{2g} \text{ and } h = \frac{u^2 \sin^2 (90 - \theta)}{2g} = \frac{u^2 \cos^2 \theta}{2g}$$

$$\therefore h_1 h_2 = \frac{u^2 \sin^2 \theta}{2g} \cdot \frac{u^2 \cos^2 \theta}{2g}. \text{ So, reason is correct}$$

$$\Rightarrow \sqrt{h_1 h_2} = \frac{u^2 \sin \theta \cos \theta}{2g} \Rightarrow 4\sqrt{h_1 h_2} = \frac{4u^2 \sin \theta \cos \theta}{2g}$$

$$\Rightarrow 4\sqrt{h_1 h_2} = \frac{u^2 (\sin \theta \cos \theta)}{g} \Rightarrow 4\sqrt{h_1 h_2} = \frac{u^2 \sin 2\theta}{g} = R$$

So, assertion is correct and reason is correct explanation of assertion.

28. mv=(m+M)V

Or
$$v = \frac{mv}{m+M} = \frac{mv}{m+4m} = \frac{v}{5}$$

Using conservation of ME, we have

$$\frac{1}{2} \text{mv}^2 = \frac{1}{2} \left(\text{m} + 4 \text{m} \right) \left(\frac{\text{v}}{5} \right)^2 + \text{mgh or h} = \frac{2}{5} \frac{\text{v}^2}{\text{g}}$$

29. About the diameter of the circular loop (ring)

$$I=\frac{1}{2}MR^2$$

Using parallel axis theorem

Moment of inertia of the loop about XX' axis

$$I_{xx'} = \frac{MR^2}{2} + MR^2 = \frac{3}{2}MR^2$$

Here mass M=L ρ and radius R= $\frac{L}{2\pi}$;

:
$$I_{XX'} = \frac{3}{2} (L\rho) \left(\frac{L}{2\pi}\right)^2 = \frac{3L^3\rho}{8\pi^2}$$

30. Due to complete solid sphere, potential point P

$$V_{\text{sphere}} = \frac{-GM}{2R^3} \left[3R^2 - \left(\frac{R}{2}\right)^2 \right]$$

SRI CHAITANYA IIT ACADEMY. INDIA

$$=\frac{-GM}{2R^3}\left(\frac{11R^2}{4}\right)=-11\frac{GM}{8R}$$

Due to cavity part potential at point P

$$V_{capacity} = \frac{3}{2} \frac{\frac{M}{8}}{\frac{R}{2}} = \frac{3GM}{8R}$$

So potential at the centre of cavity

$$=V_{\text{sphere}}-V_{\text{capacity}} = -\frac{11GM}{8R} - \left(-\frac{3}{8}\frac{GM}{R}\right) = \frac{-GM}{R}$$

31.
$$T = \frac{(T_1 + T_2 + T_3)}{3} = 60$$

32. work done=Area of graph

$$W = \frac{1}{2} (400 - 100) (4 - 2)$$

$$W = 300J$$

33. Time taken by the harmonic oscillator to move from mean position to half of the amplitude is $\frac{T}{12}$

so,
$$\frac{T}{12} = 3$$

$$T = 36 \sec$$

34. $f = \frac{n}{21} \sqrt{\frac{T}{\mu}}$, where n = nth harmonic and is equal to number of antinodes.

$$f_A = \frac{p}{21} \sqrt{\frac{T}{\rho A_0}} \Rightarrow f_B = \frac{q}{21} \sqrt{\frac{T}{4\rho A_0}} \qquad \therefore \frac{f_A}{f_B} = \frac{2p}{q} \Rightarrow \frac{p}{q} = \frac{1}{2}$$

35. When electric field is parallel to surface, it makes 90° angle with area vector so flux = 0 As $\phi = \overline{E}.\overline{A} = E A \cos 90^{\circ} = 0$

36.
$$dv = \frac{1}{4\pi \in {}_{0}} \frac{\lambda d\ell}{R}; v \int dv = \frac{1}{4\pi \in {}_{0}} \frac{\lambda \ell}{R}$$

Potential at centre, $V=V_2+V_1$ $\Rightarrow V=\frac{(\lambda.\pi R_2)}{4\pi\varepsilon_0R_2}+\frac{(\lambda.\pi R_1)}{4\pi\varepsilon_0R_1}=\frac{\lambda}{2\varepsilon_0}$

37. Resistance between P and Q

$$r_{PQ} = r \left\| \left(\frac{r}{3} + \frac{r}{2} \right) \right\| = \frac{r \times \frac{5}{6}r}{r + \frac{5}{6}r} = \frac{5}{11}r$$

Resistance between Q and R
$$r_{QR} = \frac{r}{2} \left\| \left(r + \frac{r}{3} \right) \right\| = \frac{\frac{r}{2} \times \frac{4}{3} r}{\frac{r}{2} \times \frac{4}{3}} = \frac{4}{11} r$$

Resistance between P and R
$$r_{PR} = \frac{r}{3} \left\| \left(\frac{r}{2} + r \right) \right\| = \frac{\frac{r}{3} \times \frac{3}{2} r}{\frac{r}{3} \times \frac{3}{2} r} = \frac{3}{11} r$$

Hence, it is clear that r_{PO} is maximum.

38.
$$F = \frac{mV^2}{r} \text{ and } F = qVB : \frac{mV^2}{r} = qVB \Rightarrow r = \frac{mV}{qB}$$

$$or, r = \frac{\sqrt{2mK}}{qB} \qquad \left(\because p = mV = \sqrt{2mK}\right) \Rightarrow \frac{r^2q^2B^2}{2m} = K$$

$$k_p = \frac{r_p^2q_p^2B^2}{2m_p} \text{ and } k_\alpha = \frac{r_\alpha^2q_\alpha^2B^2}{2m_q} \qquad \therefore \frac{K_p}{K_\alpha} = \frac{r_p^2q_p^2m_\alpha}{r_\alpha^2q_\alpha^2m_p} = \left(\frac{2}{1}\right)^2 \left(\frac{1}{2}\right)^2 \left(\frac{4}{1}\right) \text{ or, } \frac{K_p}{K_\alpha} = 4:1$$

39. According to Curie's law, magnetic susceptibility is inversely proportional to temperature for a fixed value of external magnetic field i.e. $X = \frac{C}{T}$

The same is applicable for ferromagnet & the relation is given as

$$X = \frac{C}{T - T_{C}} (T_{C} \text{ is curie's Temperature})$$

Dimagnetism is due to non-cooperative behaviour of orbiting electrons when exposed to external magnetic field.

40. For LC oscillation, Maximum current,
$$I=Q_0.\omega = \frac{CV}{\sqrt{LC}} = V\sqrt{\frac{C}{L}}$$

$$\left[\because \omega = \frac{1}{\sqrt{LC}} \& Q_0 - CV \right] = 12\sqrt{\frac{100 \times 10^{-6}}{6.4 \times 10^{-3}}} = 1.5A$$

$$\frac{E}{B} = C$$

$$\frac{E}{B} = 3 \times 10^{8}$$

$$B = \frac{E}{3 \times 10^{8}} = \frac{9.6}{3 \times 10^{8}}$$

41.

$$B = 3.2 \times 10^{-8} T$$

$$\hat{B} = \hat{v} \times \hat{E}$$

$$=\hat{i}\times\hat{j}=\hat{k}$$

so,
$$\vec{B} = 3.2 \times 10^{-8} \hat{k}T$$

42. If side of object square = ℓ and side of image square ℓ'

From question, $\frac{\ell^{'2}}{\ell^2} = 9 \text{ or } \frac{\ell^{'}}{\ell} = 3$

i.e., magnification m = 3,

$$u = -40 \text{ cm}$$

$$v=3\times40=120\,cm$$

$$f = ?$$

From formula, $\frac{1}{v} - \frac{1}{u} = \frac{1}{r} \Rightarrow \frac{1}{120} - \frac{1}{-40} = \frac{1}{f}$

Or,
$$\frac{1}{f} = \frac{1}{120} + \frac{1}{40} = \frac{1+3}{120}$$
 : $f = 30$ cm

43. From the Einstein's photoelectric equation

$$eV_0 = \frac{hc}{\lambda} - \phi_0 = \frac{hc}{\lambda} - \frac{hc}{\lambda_0} \qquad \dots (i)$$

$$\&\frac{eV_0}{4} = \frac{hc}{2\lambda} - \frac{hc}{\lambda_0} \qquad ...(ii)$$

$$\Rightarrow \frac{1}{4} \left(\frac{hc}{\lambda} - \frac{hc}{\lambda_0} \right) = \frac{hc}{2\lambda} - \frac{hc}{\lambda_0}$$

$$\Rightarrow \frac{1}{\lambda_0} - \frac{1}{4\lambda_0} = \frac{1}{2\lambda} - \frac{1}{4\lambda} \Rightarrow \frac{3}{4\lambda_0} = \frac{1}{4\lambda}$$

$$\Rightarrow \lambda_0 = 3\lambda$$

44. Nuclear fission between neutron $\binom{1}{0}$ and uranium isotope 235 U

$$235 \text{ U} + \frac{1}{0}n \rightarrow 144 \text{ Ba} + \frac{89}{36} \text{ Kr} + 3\frac{1}{0}n$$

45. P.D. across 800Ω resistors = 5.6 V

So,
$$I_{800\Omega} = \frac{5.6}{800} A = 7 \text{ mA}$$

Now, P.D. across

200Ω resistors

So,
$$I_{200\Omega} = \frac{9-5.6}{200} = 17 \text{ mA}$$

So, current through zener diode $=I_2=17-7=10 \text{ mA}$

46. For 4m

For M

T-mg=Ma

Adding (i) & (ii), we get(ii)

Mg=5 Ma
$$\Rightarrow$$
 a= $\frac{g}{5}$

So,
$$T=Ma+Mg=\frac{Mg}{5}+Mg=\frac{6}{5}Mg$$

47. Given, Height of cylinder, h=20 cm Acceleration due to gravity, $g = 10ms^{-2}$

Velocity of efflux
$$v = \sqrt{2gh}$$

Where h is the height of the free surface of liquid from the hole

$$\Rightarrow v = \sqrt{2 \times 10 \times 20} = 20m / s$$

48. Magnetic field $F=i\ell B$ $(:: \varepsilon = iR)$

$$= \left(\frac{\varepsilon}{R}\right) \ell B = \left(\frac{vB}{R}\right) \ell B = \frac{vB^2 \ell^2}{R} = \frac{4}{5} \times \left(\frac{15}{100}\right)^2 \times 1^2$$
$$= \frac{4}{5} \times \frac{225}{10^4} = 18 \times 10^{-3} N \qquad (\because \varepsilon = vB\ell)$$

49. Intensity at a point is given by

$$I = I_0 \cos^2\left(\frac{\Delta\phi}{2}\right)$$

 \Rightarrow According to question $\frac{I_0}{4} = \cos^2\left(\frac{\Delta\phi}{2}\right)$

$$\Delta \phi = \frac{2\pi}{3} : \Delta \phi = \frac{2\pi}{\lambda} \left(\frac{yd}{D} \right) = \frac{2\pi}{3}$$

$$\Rightarrow y = \frac{\lambda D}{3d} = \frac{600 \times 10^{-9} \times 1}{3 \times 10^{-3}} = 2 \times 10^{-4} m$$

50. Longest wavelength corresponds to transition between n = 3 and n = 4

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{3^2} - \frac{1}{4^2} \right) = RZ^2 \left(\frac{1}{9} - \frac{1}{16} \right) = \frac{7RZ^2}{9 \times 16}$$

$$\Rightarrow \lambda = \frac{144}{7R} = \frac{\alpha}{7R} (given) \text{ for } Z=1 :: \alpha = 144$$

CHEMISTRY

51. The first electron gain enthalpy is exothermic (or negative). Generally, electron gain enthalpy becomes less exothermic (or less negative) when comparing elements of a group from top to bottom.

There fore, electron gain enthalpy of S> Se and Li>Na.

But there are some exceptions to this.

One of them is the case of a group 17 elements where electron gain is most negative for C1 instead of F, due to extra small size of fluorine

:. Upon an electron gain, energy releases in the order :

Cl > F, S > Se and Li > Na.

- 52. Structure I is Trigonal Planar, Structure II, III & IV are pyramidal
- 53. MnO₂ is not reduced, rather oxidized to KMnO₄ during the preparation reaction
- 54. Conceptual
- 55. 3° Carbocation is more stable then 2° or 1° Carbocations
- 56. In Aryl halides Chlorine has resonating structures with benzene ring makes double bond character. Thus makes it a weak leaving group
- 57. Formaldehyde doesn't have alpha hydrogen.
- 58. A gives +ve Iodoform test with lower molecular mass.
- 59. Conceptual
- 60. Acetic Acid contains alpha hydrogen for halogenations
- 61. Sucrose is a non reducing sugar. Glucose and Fructose makes a acetal bond with glycosidic linkage.
- 62. Conceptual
- 63. $w = -nRT.2.303 \log \frac{v2}{v_1}$
- 64. $K_2 = \frac{1}{\sqrt{K_1}}$
- $65. K_{sp} = s^2$
- 66. Conceptual
- $67. P_s = P^0 \times 2$
- The correct order for Ionisation Energy is O > S > Se > Te > Po
- 69. I & II are exhibiting Cis and Trans geometrical Isomers
- 70. Conceptual
- 71. Except for O_3 , SCl_2 rest all are linear molecules.
- 1, V, Vi, VII are O,P Directing groups while others are meta directing
- 73. $\Delta H_{solution}$ =Lattice energy + Hydration energy
- 74. No.of equation acid= no.of equation base
- $75. \qquad t_{\frac{1}{2}} = \frac{a_0}{2k}$