

ECCCo+

REVISE

<u>Wachter</u>

Faithful Model Explanations through **Energy-Constrained** Conformal Counterfactuals

Patrick Altmeyer (p.altmeyer@tudelft.nl),

Mojtaba Farmanbar,

Arie van Deursen,

Cynthia C. S. Liem

Che Black Boss

Schut

BACKGROUND

Counterfactual Explanations (CE) explain

> how inputs into a model need to change for it to produce different outputs

 $\min_{\mathbf{Z'} \in \mathcal{Z}^L} \{ \text{yloss}(M_{\theta}(f(\mathbf{Z'})), \mathbf{y}^+) \}$ $+ \lambda \operatorname{cost}(f(\mathbf{Z'}))$

Figure 1: Gradient-based counterfactual search.

MOTIVATION

We propose *ECCCo*: a new way to generate counterfactuals that are as plausible as the model permits. In Figure 2,

> which counterfactual provides the best explanation for the classifier?

Figure 2: Factual images and counterfactuals for flipping the predicted label of an MLP trained on MNIST from 9 to 7.

PLAUSIBILITY

We define plausible counterfactuals as:

consistent with the true data generating process

Plausibility is positively associated with actionability, robustness and causal validity.

Figure 3: Kernel density estimate (KDE) for the conditional distribution based on observed data.

FAITHFULNESS

We define faithful counterfactuals as:

consistent with what the model has learned about the data

If the model posterior approximates the true posterior, faithful counterfactuals are also plausible.

METHOD

Use the hybrid objective of joint energy models (JEM) and a model-agnostic penalty for predictive uncertainty:

$$\min_{\mathbf{Z}' \in \mathcal{Z}^L} \{ L_{\text{clf}}(f(\mathbf{Z}'); M_{\theta}, \mathbf{y}^+) + \lambda_1 \text{cost}(f(\mathbf{Z}')) \\ + \lambda_2 \mathcal{E}_{\theta}(f(\mathbf{Z}')|\mathbf{y}^+) + \lambda_3 \Omega(C_{\theta}(f(\mathbf{Z}'); \alpha)) \}$$

Figure 5: Gradient fields and counterfactual paths for different generators.

LEARN MORE

Appendix

GitHub

Repository

Julia Package

Personal

Website

(a) (b) (d) (c)

Figure 4: KDE for conditional distribution learned

by model. Generated samples in bright yellow.

Figure 6: Turning a 'nine' into a 'seven'. ECCCo applied to MLP (a), Ensemble (b), JEM (c), JEM Ensemble (d).

RESULTS ECCCo generates counterfactuals

faithfully represent model quality achieve state-of-the-art plausibility

Helps us distinguish trustworthy from unreliable models.

		California Housing			GMSC		
Model	Generator	Unfaithfulness \	Implausibility \downarrow	Uncertainty ↓	Unfaithfulness \	Implausibility \downarrow	Uncertainty ↓
MLP Ensemble	ECCCo	3.69 ± 0.08**	1.94 ± 0.13	0.09 ± 0.01**	$3.84 \pm 0.07**$	2.13 ± 0.08	$0.23 \pm 0.01**$
	ECCCo+	$3.88 \pm 0.07**$	1.20 ± 0.09	0.15 ± 0.02	$3.79 \pm 0.05**$	1.81 ± 0.05	0.30 ± 0.01 *
	ECCCo (no CP)	$3.70 \pm 0.08**$	1.94 ± 0.13	$0.10 \pm 0.01**$	$3.85 \pm 0.07**$	2.13 ± 0.08	$0.23 \pm 0.01**$
	ECCCo (no EBM)	4.03 ± 0.07	1.12 ± 0.12	$0.14 \pm 0.01**$	4.08 ± 0.06	0.97 ± 0.08	0.31 ± 0.01 *
	REVISE	$3.96 \pm 0.07*$	$0.58 \pm 0.03**$	0.17 ± 0.03	4.09 ± 0.07	$0.63 \pm 0.02**$	0.33 ± 0.06
	Schut	4.00 ± 0.06	1.15 ± 0.12	$0.10 \pm 0.01**$	4.04 ± 0.08	1.21 ± 0.08	0.30 ± 0.01 *
	Wachter	4.04 ± 0.07	1.13 ± 0.12	0.16 ± 0.01	4.10 ± 0.07	0.95 ± 0.08	0.32 ± 0.01
JEM Ensemble	ECCCo	1.40 ± 0.08**	0.69 ± 0.05**	$0.11 \pm 0.00**$	1.20 ± 0.06*	0.78 ± 0.07**	0.38 ± 0.01
	ECCCo+	$1.28 \pm 0.08**$	$0.60 \pm 0.04**$	$0.11 \pm 0.00 **$	$1.01 \pm 0.07**$	$0.70 \pm 0.07**$	0.37 ± 0.01
	ECCCo (no CP)	$1.39 \pm 0.08**$	$0.69 \pm 0.05**$	$0.11 \pm 0.00 **$	$1.21 \pm 0.07*$	$0.77 \pm 0.07**$	0.39 ± 0.01
	ECCCo (no EBM)	1.70 ± 0.09	0.99 ± 0.08	0.14 ± 0.00 *	1.31 ± 0.07	0.97 ± 0.10	$0.32 \pm 0.01**$
	REVISE	$1.39 \pm 0.15**$	$0.59 \pm 0.04**$	0.25 ± 0.07	$1.01 \pm 0.07**$	$0.63 \pm 0.04**$	0.33 ± 0.07
	Schut	1.59 ± 0.10 *	1.10 ± 0.06	$0.09 \pm 0.00**$	1.34 ± 0.07	1.21 ± 0.10	$0.26 \pm 0.01**$
	Wachter	1.71 ± 0.09	0.99 ± 0.08	0.14 ± 0.00	1.31 ± 0.08	0.95 ± 0.10	0.33 ± 0.01

that

Table 1: Subsample of our empirical findings for tabular datasets.

Intelligence. Images produced by author