CE394M: An introduction to continuum mechanics

Krishna Kumar

University of Texas at Austin

March 10, 2019

Overview

- Review of vector calculus
- 2 Index notation
- Tensors
- Definition of stress and strain tensors

Vector calculus

A vector is expressed in terms of its components and the unit vectors in the x- and y- directions.

$$\mathbf{q} = q_{\mathsf{x}}\mathbf{i} + q_{\mathsf{y}}\mathbf{j}$$

where q_x is the x-component and q_y is the y-component and i and j are basis vectors (are unit length).

Scalar product:

$$\mathbf{q} \cdot \mathbf{r} = \mathbf{q}^T \mathbf{r} = \begin{bmatrix} q_X & q_Y \end{bmatrix} \begin{bmatrix} r_X \\ r_Y \end{bmatrix} = q_X r_X + q_Y r_Y$$

Vector calculus

Grad: If the del operator acts on a scalar field, say temperature T(x, y), it produces a vector that points in the direction of the steepest slope.

$$\nabla \mathbf{T} = \begin{bmatrix} \frac{\partial T}{\partial x} \\ \frac{\partial T}{\partial y} \end{bmatrix}$$

Divergence: The scalar product of the del operator with a vector field q gives the divergence

$$div\mathbf{q} = \nabla \cdot \mathbf{q} = \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y}$$

Notice the divergence of a vector field is a scalar.

Divergence theorem

$$\int_{\Omega} di v \mathbf{q} d\Omega = \oint_{\Gamma} \mathbf{q} \cdot \mathbf{n} d\Gamma$$

Vector calculus

Contour map for a terrain (left) and the associated three-dimensional model (right). If T is interpreted as the height, the vector ΔT points in the direction of the steepest slope.

Differention and Integration

INTEGRATION BY PARTS:

GIVEN A PROBLEM OF THE FORM:

$$\int f(x)g(x)dx = ?$$

CHOOSE VARIABLES U AND V SUCH THAT:

$$u = f(x)$$

 $dv = q(x) dx$

NOW THE ORIGINAL EXPRESSION BECOMES:

WHICH DEFINITELY LOOKS EASIER.

ANYWAY, I GOTTA RUN.

BUT GOOD LUCK!

XKCD - Randall Munroe

The summation convention

Suppose x and y are vectors, and A and B are matrices. Write a few common combinations in terms of their components:

Dot product:

• Matrix-vector product:

• Matrix-vector product:

The summation convention

We can use a simplified notation by adopting the summation convention (due to Einstein), Do not write the summation symbol \sum . A repeated index implies summation. (An index may not appear more than twice on one side of an equality.) Using the summation convention

• Dot product:

• Matrix-vector product:

• Matrix-vector product:

This may seem a very peculiar trick, with no obvious benefit. However, it will turn out to be surprisingly powerful, and make many calculations involving vector identities and vector differential identities much simpler.

The Kronecker delta δ_{ij}

The identity matrix:

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

We define the 'Kronecker delta' as:

We know that: $\mathbf{ly} = \mathbf{y}$

In other words 'if one index of δ_{ij} is summed, the effect is to swap this to the other index'.

The permutation symbol ϵ_{ijk}

Cross product of two vectors:

$$\mathbf{x} \times \mathbf{y} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = \begin{bmatrix} x_2y_3 - x_3y_2, & x_3y_1 - x_1y_3, & x_1y_2 - x_2y_1 \end{bmatrix}$$

where e_i are the basis for the vectors. We have assumed that e_i are the unit vectors for Cartesian coordinates (you may have seen the basis vectors written as i, j and k). To express the cross product in index notation, we will use the permutation symbol ϵ_{ijk} . The permutation symbol ϵ_{ijk} is defined as:

The permutation symbol ϵ_{ijk}

For example:

The permutation symbol is also known as the 'alternating symbol' or the 'Levi-Civita symbol'. Using the permutation symbol, we can write the cross product of two vectors as:

Vector derivatives

The real power of index notation is revealed when we look at vector differential identities. The vector derivatives known as the gradient, the divergence and the curl can all be written in terms of the operator ∇

$$abla = \begin{bmatrix} \frac{\partial}{\partial x_1}, & \frac{\partial}{\partial x_2}, & \frac{\partial}{\partial x_3} \end{bmatrix}$$

where $[x_1, x_2, x_3]$ are the components of the position vector **x**.

Gradient:

Divergence:

• Curl: $[\mathbf{a} \times \mathbf{b}]_i = \epsilon_{ijk} a_i b_k$

What is a Tensor?

Stresses

Stresses

Stress vector on a plane

Stress vector on a plane normal to $\hat{\mathbf{n}}$ (Reddy., 2008)

If we denote by $\Delta(\mathbf{f}\hat{\mathbf{n}})$ the force on a small area $\hat{\mathbf{n}}$ located at the position x, the stress vector can be defined:

To establish the relationship between \mathbf{t} and $\hat{\mathbf{n}}$ we now set up an infinitesimal tetrahedron in Cartesian coordinates:

If $-\mathbf{t}_1, -\mathbf{t}_2, -\mathbf{t}_3$ and \mathbf{t} denote the stress vectors in the outward directions on the faces of the infinitesimal tetrahedron whose areas are $\Delta a_1, \Delta a_2, \Delta a_3$, and Δa , respectively. Δv is the volume of the tetrahedron, ρ the density, f the body force per unit mass, and \mathbf{a} the acceleration.

we have by Newton's second law for the mass inside the tetrahedron:

Since the total vector area of a closed surface is zero (gradient theorem):

The volume Δv can be expressed as: where Δh is the perpendicular distance from the origin to the slant face.

In the limit when the tetrahedron shrinks to a point $\Delta h \rightarrow 0$:

$$\mathbf{t} = (\mathbf{\hat{n}} \cdot \mathbf{\hat{e}}_1)\mathbf{t}_1 + (\mathbf{\hat{n}} \cdot \mathbf{\hat{e}}_2)\mathbf{t}_2 + (\mathbf{\hat{n}} \cdot \mathbf{\hat{e}}_3)\mathbf{t}_3 = (\mathbf{\hat{n}} \cdot \mathbf{\hat{e}}_i)\mathbf{t}_i$$

where the summation convention is used.

The terms in the parenthesis is the **stress tensor** σ :

$$\sigma \equiv \mathbf{\hat{e}}_1 \mathbf{t}_1 + \cdot \mathbf{\hat{e}}_2 \mathbf{t}_2 + \mathbf{\hat{e}}_3 \mathbf{t}_3$$

The stress tensor is a property of the medium that is independent of the $\hat{\mathbf{n}}$

The stress vector \mathbf{t} represents the vectorial stress on a plane whose normal is $\hat{\mathbf{n}}$. σ is the Cauchy stress tensor defined to be the current force per unit deformed area. In Cartesian component, the Cauchy formula is: $t_i = n_i \sigma_{ii}$.

Cauchy stress vs Piola-Kirchoff stress

An introduction to continuum mechanics - J. N. Reddy (2008)

Strains

Normal strain

$$\varepsilon_{11} = du_1/dx_1$$

Shear strain

$$\gamma_{13} = du_3/dx_1$$

Green's strain tensor

If u_1 is displacement in x_1 direction. Then:

$$\varepsilon_{12} = \frac{1}{2} \left\{ \frac{\partial \textit{u}_1}{\partial \textit{x}_2} + \frac{\partial \textit{u}_2}{\partial \textit{x}_1} + \frac{1}{2} \left[\left(\frac{\partial \textit{u}_1}{\partial \textit{x}_1} \frac{\partial \textit{u}_1}{\partial \textit{x}_2} \right) + \left(\frac{\partial \textit{u}_2}{\partial \textit{x}_1} \frac{\partial \textit{u}_2}{\partial \textit{x}_2} \right) + \left(\frac{\partial \textit{u}_3}{\partial \textit{x}_1} \frac{\partial \textit{u}_3}{\partial \textit{x}_2} \right) \right] \right\}$$

Engineering shear strain:

Typically, we assume small displacements + small strains. Therefore the quadratic terms (higher order) can be ignored. Pile driving or progression of slope failure cannot be modeled as a small strain problem!

Linearization of strain tensor

Ignoring higher order terms is called as the linearization of the strain tensor. This assumption allows for two simplifications:

Alternative, use natural strain approach:

For a 1D deformation of a bar

- $I_0 = 5, I_f = 4.9$
- $I_0 = 5, I_f = 4$

As long as strains are small, small strain formulation is very close - OK! (If you have large strains - a correction / alternatives is to update the **B** matrix every iteration to adhust for finite strains).