json -> latex convert test

kora

Questions

1.	Evaluate the integral $\frac{1}{2} \times \frac{\tan^3(x)}{3} + C$ when $x = \frac{\tau}{4}$, where $\tau = 2\tau$ represents a full rotation.	
2.	Find the derivative of the function $f(x) = \frac{x^3 - 4x^2 + x}{x}$ and evaluate at $x = 2$.	
3.	Solve for z in the complex equation: $(z-5)(\bar{z}-3)+\mathrm{i}(4z-2\bar{z})=10+6i.$	
4.	Calculate the integral $\int (3x^2 + 4) \times e^{2x} dx$ using integration by parts.	

Determine the derivative of $f(x) = \tan^{-1}(x)$ and evaluate at $x = \sqrt{3}$.
Find the critical points of the function $g(x) = x^4 - 8x^3 + 18x^2 - 16x$ and classify them as maxima, minima or inflection.
Solve for z in the complex equation: $ z-1 ^2+ z+1 ^2=6$.
Evaluate the integral of $f(x) = x^3 e^{-2x}$ from 0 to $\tau/4$. (Hint: Use integration by parts twice).
Find the derivative of $f(x) = \tan^{-1}(\frac{x^2+1}{x})$ and evaluate it at $x = \tau/4$. (Note: $\tau = \pi$ for radians).
Given the complex equation $z^2 - 6z + (9 + 4i) = 0$, find solutions for z.