Formal verification of the 5G EAP-TLS authentication protocol using Proverif

2023

Alessandro Zanatta

University of Pisa

Reference paper (DOI): 10.1109/ACCESS.2020.2969474

• Symbolic verification tool:

Proverif

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao;

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao;
 - \circ Messages \rightarrow terms;

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao;
 - \circ Messages \rightarrow terms;
 - Cryptographic primitives → black-box;

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao;
 - Messages → terms;
 - ∘ Cryptographic primitives → black-box;
 - o Perfect cryptography assumption.

Proverif

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao:
 - Messages → terms;
 - Cryptographic primitives → black-box;
 - o Perfect cryptography assumption. Suppose we have:
 - Two primitives: enc, dec;
 - Two terms: *m*, *k*;
 - The following equality:

$$dec (enc (m, k), k) = m$$
 (1)

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao;
 - Messages → terms;
 - Cryptographic primitives → black-box;
 - o Perfect cryptography assumption. Suppose we have:
 - Two primitives: enc, dec;
 - Two terms: *m*, *k*;
 - The following equality:

$$dec (enc (m, k), k) = m$$
 (1)

• can decrypt enc $(m, k) \iff k$ is known

Proverif

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao:
 - \circ Messages \rightarrow terms;
 - Cryptographic primitives → black-box;
 - o Perfect cryptography assumption. Suppose we have:
 - Two primitives: enc, dec;
 - Two terms: m, k;
 - The following equality:

$$dec (enc (m, k), k) = m$$
 (1)

- can decrypt enc $(m, k) \iff k$ is known
- Based on applied π -calculus;

```
Grammar of processes (P, Q):
                      (* null process *)
0
```

Grammar of processes (*P*, *Q*):

```
0
                    (* null process *)
out(N, M); P
                    (* output to channel N the message M *)
in(N, M: T); P
                   (* input from channel N of message M *)
                    (* parallel composition *)
PIQ
!P
                   (* infinite replication *)
new a: T: P
                 (* fresh value of sort T *)
if M then P else Q (* conditional *)
```

Additionally:

```
query event(EventName(x)). (* define a query on events *)
```

Grammar of processes (*P*, *Q*):

Additionally:

Grammar of processes (*P*, *Q*):

```
0
                     (* null process *)
out(N, M); P
                     (* output to channel N the message M *)
in(N, M: T); P
                     (* input from channel N of message M *)
PIQ
                     (* parallel composition *)
!P
                     (* infinite replication *)
                    (* fresh value of sort T *)
new a: T: P
if M then P else Q (* conditional *)
```

Additionally:

```
event EventName(x):
                       (* add event to trace *)
query event(EventName(x)). (* define a query on events *)
let macroName = P.
                          (* create a process macro *)
let x = M in P else Q. (* assignment and pattern matching *)
                           (* execute a process in phase t *)
phase t;
```

Involved entities:

- User Equipment (UE):
 - o Subscription Permanent Identifier (SUPI)
 - $\circ~$ Public asymmetric key pk_{HN}

Involved entities:

- User Equipment (UE):
 - Subscription Permanent Identifier (SUPI)
 - \circ Public asymmetric key pk_{HN}
- Home Network (HN):
 - Authentication Server Function (AUSF)
 - Unified Data Management (UDM)

5G EAP-TLS AUTHENTICATION PROTOCOL

Involved entities:

- User Equipment (UE):
 - Subscription Permanent Identifier (SUPI)
 - \circ Public asymmetric key pk_{HN}
- Home Network (HN):
 - Authentication Server Function (AUSF)
 - Unified Data Management (UDM)

5G EAP-TLS AUTHENTICATION PROTOCOL

- Serving Network (SN):
 - Security Anchor Function (SEAF)

Involved entities:

- User Equipment (UE):
 - Subscription Permanent Identifier (SUPI)
 - Public asymmetric key *pk*_{HN}
- Home Network (HN):
 - Authentication Server Function (AUSF)
 - Unified Data Management (UDM)
- Serving Network (SN):
 - Security Anchor Function (SEAF)

Assumptions:

• HN ↔ SN communications are secure

5G EAP-TLS protocol execution I

5G EAP-TLS protocol execution II

00000

Required security properties

Required security properties

Authentication properties:

- A1. Both the home network and the subscriber should agree on the identity of each other after successful termination
- A2. Both the home network and the subscriber should agree on the pre-master key R_{prekey} after successful termination

Required security properties

Authentication properties:

- A1. Both the home network and the subscriber should agree on the identity of each other after successful termination
- A2. Both the home network and the subscriber should agree on the pre-master key R_{prekey} after successful termination

Secrecy properties:

- S1. The attacker cannot obtain the identity SUPI of an honest subscriber
- S2. The attacker cannot obtain the pre-master key R_{prekey} of an honest subscriber
- S3. The attacker cannot obtain the session key $K_{session}$ of an honest subscriber

It's **DEMO** time!!

Broken properties

• Authentication properties:

- A1. Both the home network and the subscriber should agree on the identity of each other after successful termination
- A2. Both the home network and the subscriber should agree on the pre-master key R_{prekey} after successful termination

• Secrecy properties:

- S1. The attacker cannot obtain the identity *SUPI* of an honest subscriber
- S2. The attacker cannot obtain the pre-master key R_{prekey} of an honest subscriber
- S3. The attacker cannot obtain the session key $K_{session}$ of an honest subscriber

Counterexample for property A1

Counterexample for property A2

Fixing the protocol

