Rank-139 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_2 + X_0^2 X_3 = 0$$

(0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) The point rank of the equation over GF(8) is 74911

General information

Number of lines	6
Number of points	89
Number of singular points	1
Number of Eckardt points	2
Number of double points	3
Number of single points	42
Number of points off lines	42
Number of Hesse planes	0
Number of axes	0
Type of points on lines	96
Type of lines on points	$3^2, 2^3, 1^{42}, 0^{42}$

Singular Points

The surface has 1 singular points:

$$0: P_4 = \mathbf{P}(1, 1, 1, 1) = \mathbf{P}(1, 1, 1, 1)$$

The 6 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_1 = \mathbf{Pl}(1, 0, 1, 0, 0, 0)_3$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{8} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{8} = \mathbf{Pl}(1,0,0,0,1,0)_{82}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{65} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{65} = \mathbf{Pl}(0,0,1,0,1,0)_{96}$$

$$\ell_{3} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{138} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{138} = \mathbf{Pl}(0,0,1,1,1,1)_{1322}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{81} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{81} = \mathbf{Pl}(1,1,0,0,1,1)_{1217}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{585} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{585} = \mathbf{Pl}(1,1,1,1,0,0)_{32}$$

Rank of lines: (1, 8, 65, 138, 81, 585)

Rank of points on Klein quadric: (3, 82, 96, 1322, 1217, 32)

Eckardt Points

The surface has 2 Eckardt points:

$$0: P_0 = \mathbf{P}(1, 0, 0, 0) = \mathbf{P}(1, 0, 0, 0),$$

$$1: P_4 = \mathbf{P}(1, 1, 1, 1) = \mathbf{P}(1, 1, 1, 1).$$

Double Points

The surface has 3 Double points:

The double points on the surface are:

$$P_{19} = (0, 1, 1, 0) = \ell_0 \cap \ell_5$$

 $P_{82} = (0, 1, 0, 1) = \ell_1 \cap \ell_4$

$$P_{138} = (0, 0, 1, 1) = \ell_2 \cap \ell_3$$

Single Points

The surface has 42 single points:

The single points on the surface are:

 $0: P_5 = (1, 1, 0, 0)$ lies on line ℓ_3 16: $P_{89} = (7, 1, 0, 1)$ lies on line ℓ_1 17: $P_{139} = (1, 0, 1, 1)$ lies on line ℓ_2 1: $P_{12} = (1, 0, 1, 0)$ lies on line ℓ_4 2: $P_{20} = (1, 1, 1, 0)$ lies on line ℓ_0 18: $P_{140} = (2, 0, 1, 1)$ lies on line ℓ_2 3 : $P_{21}=(2,1,1,0)$ lies on line ℓ_0 19: $P_{141} = (3,0,1,1)$ lies on line ℓ_2 4: $P_{22} = (3, 1, 1, 0)$ lies on line ℓ_0 20: $P_{142} = (4, 0, 1, 1)$ lies on line ℓ_2 5: $P_{23} = (4, 1, 1, 0)$ lies on line ℓ_0 21: $P_{143} = (5, 0, 1, 1)$ lies on line ℓ_2 6: $P_{24} = (5, 1, 1, 0)$ lies on line ℓ_0 22: $P_{144} = (6,0,1,1)$ lies on line ℓ_2 7: $P_{25} = (6, 1, 1, 0)$ lies on line ℓ_0 23: $P_{145} = (7,0,1,1)$ lies on line ℓ_2 8: $P_{26} = (7, 1, 1, 0)$ lies on line ℓ_0 24: $P_{155} = (2, 2, 1, 1)$ lies on line ℓ_3 9: $P_{75} = (1,0,0,1)$ lies on line ℓ_5 25: $P_{164} = (3, 3, 1, 1)$ lies on line ℓ_3 10 : $P_{83} = (1, 1, 0, 1)$ lies on line ℓ_1 26 : $P_{173} = (4, 4, 1, 1)$ lies on line ℓ_3 11: $P_{84} = (2, 1, 0, 1)$ lies on line ℓ_1 27: $P_{182} = (5, 5, 1, 1)$ lies on line ℓ_3 12: $P_{85} = (3, 1, 0, 1)$ lies on line ℓ_1 28: $P_{191} = (6, 6, 1, 1)$ lies on line ℓ_3 13: $P_{86} = (4, 1, 0, 1)$ lies on line ℓ_1 29: $P_{200} = (7,7,1,1)$ lies on line ℓ_3 14: $P_{87} = (5, 1, 0, 1)$ lies on line ℓ_1 $30: P_{211} = (2, 1, 2, 1)$ lies on line ℓ_4 15 : $P_{88} = (6, 1, 0, 1)$ lies on line ℓ_1 $31: P_{218} = (1, 2, 2, 1)$ lies on line ℓ_5

```
\begin{array}{lll} 32: P_{276} = (3,1,3,1) \text{ lies on line } \ell_4 \\ 33: P_{290} = (1,3,3,1) \text{ lies on line } \ell_5 \\ 34: P_{341} = (4,1,4,1) \text{ lies on line } \ell_4 \\ 35: P_{362} = (1,4,4,1) \text{ lies on line } \ell_5 \\ 36: P_{406} = (5,1,5,1) \text{ lies on line } \ell_4 \\ 37: P_{434} = (1,5,5,1) \text{ lies on line } \ell_5 \end{array}
```

The single points on the surface are:

Points on surface but on no line

The surface has 42 points not on any line: The points on the surface but not on lines are:

```
0: P_{31} = (4, 2, 1, 0)
                                                                 22: P_{336} = (7,0,4,1)
1: P_{39} = (4, 3, 1, 0)
                                                                 23: P_{349} = (4, 2, 4, 1)
2: P_{50} = (7, 4, 1, 0)
                                                                 24: P_{357} = (4, 3, 4, 1)
3: P_{58} = (7,5,1,0)
                                                                 25: P_{377} = (0, 6, 4, 1)
4: P_{61} = (2, 6, 1, 0)
                                                                 26: P_{392} = (7,7,4,1)
5: P_{69} = (2, 7, 1, 0)
                                                                 27: P_{400} = (7,0,5,1)
6: P_{94} = (4, 2, 0, 1)
                                                                 28: P_{409} = (0, 2, 5, 1)
7: P_{102} = (4, 3, 0, 1)
                                                                 29: P_{418} = (1, 3, 5, 1)
                                                                 30: P_{442} = (1, 6, 5, 1)
8: P_{113} = (7, 4, 0, 1)
9: P_{121} = (7, 5, 0, 1)
                                                                 31: P_{456} = (7,7,5,1)
10: P_{124} = (2, 6, 0, 1)
                                                                 32: P_{459} = (2,0,6,1)
11: P_{132} = (2,7,0,1)
                                                                 33: P_{475} = (2, 2, 6, 1)
12: P_{205} = (4, 0, 2, 1)
                                                                 34: P_{482} = (1, 3, 6, 1)
13: P_{237} = (4, 4, 2, 1)
                                                                 35: P_{489} = (0,4,6,1)
14: P_{241} = (0, 5, 2, 1)
                                                                 36: P_{498} = (1, 5, 6, 1)
15: P_{251} = (2, 6, 2, 1)
                                                                 37: P_{523} = (2,0,7,1)
                                                                 38: P_{539} = (2, 2, 7, 1)
16: P_{259} = (2,7,2,1)
17: P_{269} = (4, 0, 3, 1)
                                                                 39: P_{545} = (0, 3, 7, 1)
18: P_{301} = (4, 4, 3, 1)
                                                                 40: P_{560} = (7, 4, 7, 1)
19: P_{306} = (1, 5, 3, 1)
                                                                 41: P_{568} = (7, 5, 7, 1)
20: P_{314} = (1, 6, 3, 1)
21: P_{321} = (0,7,3,1)
```

Line Intersection Graph

	012	23	4	5
0	011	. 0	0	1
1	101	. 0	1	0
2	110	1	0	0
3	001	0	1	1
4	010	1	0	1
5	011 101 110 001 010	1	1	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_5
in point	P_0	P_0	P_{19}

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_0	P_0	P_{82}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3
in point	P_0	P_0	P_{138}

Line 3 intersects

Line	ℓ_2	ℓ_4	ℓ_5
in point	P_{138}	P_4	P_4

Line 4 intersects

Line	ℓ_1	ℓ_3	ℓ_5
in point	P_{82}	P_4	P_4

Line 5 intersects

Line	ℓ_0	ℓ_3	ℓ_4
in point	P_{19}	P_4	P_4

The surface has 89 points: The points on the surface are:

$0: P_0 = (1,0,0,0)$	$30: P_{121} = (7, 5, 0, 1)$	$60: P_{321} = (0,7,3,1)$
$1: P_4 = (1, 1, 1, 1)$	$31: P_{124} = (2, 6, 0, 1)$	$61: P_{336} = (7,0,4,1)$
$2: P_5 = (1, 1, 0, 0)$	$32: P_{132} = (2,7,0,1)$	$62: P_{341} = (4, 1, 4, 1)$
$3: P_{12} = (1,0,1,0)$	$33: P_{138} = (0,0,1,1)$	$63: P_{349} = (4, 2, 4, 1)$
$4: P_{19} = (0, 1, 1, 0)$	$34: P_{139} = (1,0,1,1)$	$64: P_{357} = (4, 3, 4, 1)$
$5: P_{20} = (1, 1, 1, 0)$	$35: P_{140} = (2,0,1,1)$	$65: P_{362} = (1, 4, 4, 1)$
$6: P_{21} = (2, 1, 1, 0)$	$36: P_{141} = (3,0,1,1)$	$66: P_{377} = (0, 6, 4, 1)$
$7: P_{22} = (3, 1, 1, 0)$	$37: P_{142} = (4,0,1,1)$	$67: P_{392} = (7, 7, 4, 1)$
$8: P_{23} = (4, 1, 1, 0)$	$38: P_{143} = (5, 0, 1, 1)$	$68: P_{400} = (7, 0, 5, 1)$
$9: P_{24} = (5, 1, 1, 0)$	$39: P_{144} = (6, 0, 1, 1)$	$69: P_{406} = (5, 1, 5, 1)$
$10: P_{25} = (6, 1, 1, 0)$	$40: P_{145} = (7, 0, 1, 1)$	$70: P_{409} = (0, 2, 5, 1)$
$11: P_{26} = (7, 1, 1, 0)$	$41: P_{155} = (2, 2, 1, 1)$	$71: P_{418} = (1, 3, 5, 1)$
$12: P_{31} = (4, 2, 1, 0)$	$42: P_{164} = (3, 3, 1, 1)$	$72: P_{434} = (1, 5, 5, 1)$
$13: P_{39} = (4,3,1,0)$	$43: P_{173} = (4, 4, 1, 1)$	73: $P_{442} = (1, 6, 5, 1)$
$14: P_{50} = (7, 4, 1, 0)$	$44: P_{182} = (5, 5, 1, 1)$	$74: P_{456} = (7, 7, 5, 1)$
$15: P_{58} = (7, 5, 1, 0)$	$45: P_{191} = (6, 6, 1, 1)$	$75: P_{459} = (2, 0, 6, 1)$
$16: P_{61} = (2, 6, 1, 0)$	$46: P_{200} = (7, 7, 1, 1)$	$76: P_{471} = (6, 1, 6, 1)$
$17: P_{69} = (2, 7, 1, 0)$	$47: P_{205} = (4, 0, 2, 1)$	$77: P_{475} = (2, 2, 6, 1)$
$18: P_{75} = (1, 0, 0, 1)$	$48: P_{211} = (2, 1, 2, 1)$	$78: P_{482} = (1, 3, 6, 1)$
$19: P_{82} = (0, 1, 0, 1)$	$49: P_{218} = (1, 2, 2, 1)$	$79: P_{489} = (0, 4, 6, 1)$
$20: P_{83} = (1, 1, 0, 1)$	$50: P_{237} = (4, 4, 2, 1)$	$80: P_{498} = (1, 5, 6, 1)$
$21: P_{84} = (2, 1, 0, 1)$	$51: P_{241} = (0, 5, 2, 1)$	$81: P_{506} = (1, 6, 6, 1)$
$22: P_{85} = (3, 1, 0, 1)$	$52: P_{251} = (2, 6, 2, 1)$	$82: P_{523} = (2,0,7,1)$
$23: P_{86} = (4, 1, 0, 1)$	$53: P_{259} = (2,7,2,1)$	$83: P_{536} = (7, 1, 7, 1)$
$24: P_{87} = (5, 1, 0, 1)$	$54: P_{269} = (4, 0, 3, 1)$	$84: P_{539} = (2, 2, 7, 1)$
$25: P_{88} = (6, 1, 0, 1)$	$55: P_{276} = (3, 1, 3, 1)$	$85: P_{545} = (0, 3, 7, 1)$
$26: P_{89} = (7, 1, 0, 1)$	$56: P_{290} = (1, 3, 3, 1)$	$86: P_{560} = (7, 4, 7, 1)$
$27: P_{94} = (4, 2, 0, 1)$	$57: P_{301} = (4, 4, 3, 1)$	$87: P_{568} = (7, 5, 7, 1)$
$28: P_{102} = (4, 3, 0, 1)$	$58: P_{306} = (1, 5, 3, 1)$	$88: P_{578} = (1,7,7,1)$
$29: P_{113} = (7, 4, 0, 1)$	$59: P_{314} = (1, 6, 3, 1)$	