Statistique & Apprentissage

Paul-Henry Cournède

Amphi 9

Introduction à l'Apprentissage Statistique

V - Apprentissage Non-Supervisé

Soit X à valeurs dans \mathbb{R}^p .

V.1 - Apprentissage de représentations - Réduction de Dimension

Objectif : Déterminer une transformation $\psi: \mathbb{R}^p \to \mathbb{R}^q$ telle que $\psi(X)$ soit une variable mieux adaptée à la résolution d'un problème (de régression, de classification, de partitionnement...) : $\psi(X)$ sera appelée une représentation de X.

Un critère important peut être celui de la dimension : $q \ll p$.

Cette transformation ψ sera déterminée (apprise) à partir de données (x_1,\ldots,x_N) .

V.1.a - Analyse en Composantes Principales

Définition : On appelle variété affine de dimension q dans \mathbb{R}^p l'ensemble \mathcal{A}_q :

$$\mathcal{A}_q = \{ y \in \mathbb{R}^p : y = \mu + A_q \lambda, \, \lambda \in \mathbb{R}^q \}, \quad \text{où} :.$$

- $\mu \in \mathbb{R}^p$ est un facteur de localisation.
- $A_q \in \mathcal{M}_{p,q}$ est une matrice de q vecteurs orthonormés $(A_q^T A_q = I_q)$

Problème d'approximation d'une variable aléatoire sur une variété affine :

Soit q fixé, soit X notre variable aléatoire, on cherche donc ψ telle que :

- $\psi(X)$ soit à valeurs dans une variété affine d'ordre q
- $\mathbb{E}(\|\psi(X) X\|^2)$ soit minimale.

Problème d'approximation d'une variable aléatoire sur une variété affine : Soit q fixé, soit X notre variable aléatoire, on cherche donc ψ telle que :

- $\psi(X)$ soit à valeurs dans une variété affine d'ordre q $\Longrightarrow \psi(X) = \mu + A_q \lambda(X)$, avec $\lambda(X)$ à valeurs dans \mathbb{R}^q
- $\mathbb{E}(\|\psi(X) X\|^2)$ soit minimale.

Pour (x_1,\ldots,x_N) , on prend l'espérance empirique de $\|\psi(X)-X\|^2=\|\mu+A_q\lambda(X)-X\|^2$ et on cherche donc à minimiser :

$$\mathcal{E}(\mu, A_q, \{\lambda_i\}_{1 \le i \ N}) = \frac{1}{N} \sum_{i=1}^{N} \|x_i - \mu - A_q \lambda_i\|^2.$$

Pour A_q fixé, CNS pour que μ et $\{\lambda_i\}_{1 \le i \le N}$ minimisent $\mathcal E$:

$$\begin{cases} \frac{\partial \mathcal{E}}{\partial \mu} = 2 \sum_{i=1}^{N} (x_i - \mu - A_q \lambda_i) = 0 \\ \frac{\partial \mathcal{E}}{\partial \lambda_i} = -2 \sum_{i=1}^{N} A_q^T (x_i - \mu - A_q \lambda_i) = 0, \quad \forall \ 1 \le i \le N. \end{cases}$$

- \implies réalisée pour $\mu = \overline{x}$ et $\lambda_i = A_a^T(x_i \overline{x})$
- \Longrightarrow minimisation sur l'ensemble des matrices orthogonales dans $\mathcal{M}_{p,q}$ de

$$\frac{1}{N}\mathcal{E}\left(A_{q}\right) = \sum_{i=1}^{N} \|x_{i} - \overline{x} - A_{q}A_{q}^{T}(x_{i} - \overline{x})\|^{2}$$

 \implies Projection orthogonale sur le sous-espace engendré par les vecteurs colonnes de A_q

-1

-3

···· principal axis 1

Théorème de décomposition en valeurs singulières :

Soit $X \in \mathcal{M}_{N,p}(\mathbb{R})$. Alors il existe :

- $U \in \mathcal{M}_{N,N}(\mathbb{R})$ orthogonale $(U^T U = I_p)$,
- $D \in \mathcal{M}_{N,p}(\mathbb{R})$, matrice diagonale rectangle de rang $r, D = \operatorname{diag}(d_1, \dots, d_r, 0, \dots, 0)$, avec $d_1 > d_2 > \cdots > d_r > 0$
- $V \in \mathcal{M}_{p,p}$ orthogonale telles que : $X = UDV^T$.

- lacktriangle colonnes de $U\equiv$ vecteurs singuliers à gauches, colonnes de $V\equiv$ vecteurs singuliers à droite.
- Théorème d'approximation sur une variété affine par composantes principales :

éléments diagonaux non nuls de $D \equiv$ valeurs singulières de X, elles sont uniques.

Soit
$$\tilde{X} \in \mathcal{M}_{N,p}$$
, $\tilde{X} = \begin{pmatrix} x_{11} - \overline{x}_1 & \dots & x_{1p} - \overline{x}_p \\ \vdots & & \vdots \\ x_{N1} - \overline{x}_1 & \dots & x_{Np} - \overline{x}_p \end{pmatrix}$: matrice de design centrée, de rang r .

Soit une décomposition en valeurs singulières pour $\tilde{X} : \tilde{X} = UDV^T$. Soit $q \le r$ et soit V_q , la matrice des q premiers vecteurs singuliers à droite.

Alors V_q est solution du problème de minimisation de $\mathcal{E}\left(A_q\right) = \sum_{i=1}^N \|x_i - \overline{x} - A_q A_q^T (x_i - \overline{x})\|^2$

sur l'ensemble des matrices orthogonales de $\mathcal{M}_{p,q}$.

C'est à dire : $x_i \approx \overline{x} + V_q V_q^T (x_i - \overline{x})$. Les vecteurs colonnes de V_q sont dits les directions principales ou axes principaux.

- $V_q^T(x_i \overline{x}) = (U_{i1}d_1, U_{i2}d_2, ... U_{iq}d_q)^T$ donne les q coordonnées de $x_i \overline{x}$ selon les axes principaux : appelées loadings.
- ▶ $d_k u_k \in \mathbb{R}^N$ est la k-ème composante principale, projection des $x_i \overline{x}$ sur le k-ème axe pr.

Bilan : Soient (x_1, \ldots, x_N) , $x_i \in \mathbb{R}^p$, et $\tilde{X} \in \mathcal{M}_{N,p}$ la matrice de design centrée associée.

L'Analyse en Composantes Principales repose sur une SVD : $\tilde{X} = UDV^T$ qui donne :

- les valeurs singulières ordonnées $d_1 \ge d_2 \ge \cdots \ge d_r$
- lacktriangle des axes principaux ordonnés v_1,\ldots,v_r correspondant aux colonnes de V
- la matrice $UD = \tilde{X}V$, dont les colonnes sont les composantes principales et les lignes les loadings.

 ${\sf NB}$: Choix du nombre de composantes principales q a priori ou après analyse des résultats

-1

-3

···· principal axis 1

Soit (x_1, \ldots, x_N) un échantillon d'observations centrées, $\overline{x} = 0$, et soit $X \in \mathcal{M}_{N,p}$ la matrice de design associée de rang r, et la décomposition en valeurs singulières : $X = UDV^T$.

Définition : On appelle variance totale de l'échantillon :

$$VT(x_1,...,x_N) = \frac{1}{N} \sum_{i=1}^{N} ||x_i||^2 = \frac{1}{N} \operatorname{tr}(X^T X) = \frac{1}{N} \sum_{i=1}^{p} d_i^2$$

En effet :
$$\operatorname{tr}(X^TX) = \operatorname{tr}(VD^TU^TUDV^T) = \operatorname{tr}(VD^TDV^T) = \operatorname{tr}(D^TD) = \sum_{i=1}^{r} d_i^2$$
.

Proposition : Soit $q \le r$, V_q les q premiers vecteurs colonnes de V.

Soit $X_q = XV_q$: matrice de design $\in \mathcal{M}_{N,q}$ de l'échantillon projeté orthogonalement sur V_q Alors X_q est l'échantillon projeté de variance totale maximale sur un sous-espace de dimension q.

La variance totale de l'échantillon associé à X_q est $VT_q = \frac{1}{N} \sum_{i=1}^{N} d_i^2$.

On appelle proportion de variance expliquée :

$$rac{V\mathcal{T}_q}{V\mathcal{T}(\mathsf{x}_1,\ldots,\mathsf{x}_N)} = rac{\displaystyle\sum_{i=1}^q d_i^2}{\displaystyle\sum_{i=1}^p d_i^2} \;.$$

V.1.b - Auto-encodeurs

ACP = approximation sur une variété affine de dimension $q: X \approx \overline{x} + V_q V_q^T (X - \overline{x})$

 \implies Perceptron à 3 couches $\psi: \mathbb{R}^p \to \mathbb{R}^p$, avec une couche cachée à q neurones :

$$\psi(x) = h_2 \circ g_2 \circ h_1 \circ g_1(x)$$

$$g_1: \mathbb{R}^p \to \mathbb{R}^q$$

$$x \mapsto V_q^T x - V_q^T \overline{x}$$

$$g_2: \mathbb{R}^q \to \mathbb{R}^p$$

$$z \mapsto V_q z + \overline{x}$$

$$h_2: \mathbb{R}^p \to \mathbb{R}^p$$

$$z \mapsto y \mapsto y$$

$$h_3: \mathbb{R}^p \to \mathbb{R}^p$$

$$h_4: \mathbb{R}^p \to \mathbb{R}^p$$

$$h_5: \mathbb{R}^p \to \mathbb{R}^p$$

$$h_7: \mathbb{R}^p \to \mathbb{R}^p$$

- Le réseau ainsi défini minimise $J(\theta) = \sum_{i=1}^{N} \|x_i \psi(x_i)\|^2$ parmi tous les réseaux de même type (p, q, p) et fonctions d'activation identité
- ▶ L'étape $x \mapsto g_1(x) = z$ est appelée encodage.
- ▶ L'étape $z \mapsto g_2(z) = y \approx x$ est appelée décodage.
- ▶ Si $\overline{x} = 0$: $g_1(x) = V_q^T x$ et $g_2(z) = V_q z$.
- ⇒ Généralisation à des architectures plus complexes et des fonctions d'activation non-linéaires.

Un autoencodeur est un réseau de neurones $\psi:\mathbb{R}^p\to\mathbb{R}^p$ qui se décompose en deux sous réseaux : $\psi=\psi^{dec}\circ\psi^{enc}$, où $\psi^{enc}:\mathbb{R}^p\to\mathbb{R}^q$ est dit réseau d'encodage, et $\psi^{dec}:\mathbb{R}^q\to\mathbb{R}^p$ est dit réseau de décodage.

q < p et pour $x \in \mathbb{R}^p$, $\psi^{enc}(x)$ est appelée représentation de x.

Le réseau est entraîné de façon non supervisée pour la fonction de perte $||x - \psi(x)||^2$.

V.2 - Clustering

Soit X variable aléatoire dans $\mathcal{X} \subset \mathbb{R}^p$, et soit $E = (x_1, \dots, x_N)$ un échantillon i.i.d. pour X.

Objectif du clustering : regrouper les points les plus similaires dans des groupes appelés clusters : un cluster doit être le plus homogène possible, et des clusters différents les plus séparés possible

NB : La similarité dépend fortement de la métrique choisie.

Définitions :

Un cluster $E^{(k)}$ est un sous ensemble de E. On identifiera le cluster avec l'ensemble des indices des points qu'il contient : $\pi^{(k)} = \{i : x_i \in E^{(k)}\}$.

Le centroïde de $E^{(k)}$ est le barycentre du cluster : $\overline{x}^{(k)} = \frac{1}{|\pi^{(k)}|} \sum_{j \in \pi^{(k)}} \mathsf{x}_j$,

Un partitionnement (clustering) de taille K est une partition de E en K clusters non vides : $\Pi = \{\pi^{(1)}, \cdots, \pi^{(K)}\}$

Remarque: Le clustering peut également être vu comme une réduction de dimension : $\forall i \in \pi^{(k)}, \ x_i \approx \overline{x}^{(k)}$, les N points sont résumés par les K centroïdes, avec $K \ll N$.

 \Rightarrow À K fixé, maximiser la cohérence globale de la partition Π parmi les partitions de taille K.

V.2.a - Algorithme de clustering pour une taille K fixée

Définition : Nous appellons inertie d'un échantillon (X_1, \ldots, X_N) la statistique

$$T(X_1,\ldots,X_N) = \sum_{i=1} \|X_i - \overline{X}\|^2$$

Propriété : Soit une réalisation (x_1, \ldots, x_N) , et soit un clustering associé à ce nuage de points : $\Pi = \{\pi^{(1)}, \dots, \pi^{(K)}\}$. Soit l'inertie $T := T(x_1, \dots, x_N)$, nous avons :

$$T = W(\Pi) + B(\Pi)$$
, avec :

Inertie intra-cluster :
$$W(\Pi) = \sum_{i=1}^{K} \sum_{j \in \mathcal{X}} \|x_i - \overline{x}^{(k)}\|^2$$

Inertie inter-cluster :
$$B(\Pi) = \sum_{k=1}^{N} |\pi^{(k)}| \|\overline{x}^{(k)} - \overline{x}\|^2$$
.

En effet :
$$T = \sum_{k=1}^{K} \sum_{i \in \pi(k)} \|x_i - \overline{x}\|^2 = \sum_{k=1}^{K} \sum_{i \in \pi(k)} (\|x_i - \overline{x}^{(k)}\|^2 + \|\overline{x}^{(k)} - \overline{x}\|^2)$$
, en utilisant la

décomposition de König-Huygens.

Soit finalement :
$$T = \sum_{k=1}^{K} \sum_{i \in \pi^{(k)}} \|x_i - \overline{x}^{(k)}\|^2 + \sum_{k=1}^{K} |\pi^{(k)}| \|\overline{x}^{(k)} - \overline{x}\|^2$$

Problème d'optimisation : On souhaite : $W(\Pi) \setminus A$ et $B(\Pi) \nearrow A$

Comme T est constant pour un échantillon donné, il suffit de minimiser $W(\Pi) = \sum_{k=1}^K \sum_{i \in \pi^{(k)}} \|x_i - \overline{x}^{(k)}\|^2$ sur l'ensemble des partitions possibles.

On cherche :
$$\Pi^* = \underset{\Pi \in \{\text{partitions de taille } k\}}{\arg\min} W(\Pi) = \sum_{k=1}^K \sum_{i \in \pi^{(k)}} \|x_i - \overline{x}^{(k)}\|^2.$$

Une procédure heuristique d'optimisation : le K-means

Soit K, taille du clustering donnée.

Initialisation : Soit une première partition obtenue aléatoirement $\Pi_0 = \{\pi_0^{(1)}, \cdots, \pi_n^{(K)}\}$ et $\overline{x}_0^{(1)}, \dots, \overline{x}_0^{(K)}$ les centroïdes correspondants.

Do

For
$$i=1:N$$
 trouver le centroïde $\overline{x}_{t-1}^{(\rho)}$ le plus proche de x_i et classer x_i dans le cluster ρ .

t+=1

 $\Pi_t = \text{la nouvelle partition obtenue.}$

Calcul de $\overline{x}_t^{(1)}, \dots, \overline{x}_t^{(K)}$ les nouveaux centroïdes.

While
$$|W(\Pi_t) - W(\Pi_{t-1})| > 0$$

Proposition : Soit $(\Pi_t)_{t>t_0}$ la séquence de partitions construites pendant l'algorithme K-means. Alors, $\exists T \geq 0$ tel que $\forall t < T : W(\Pi_t) < W(\Pi_{t-1})$ et $W(\Pi_T) = W(\Pi_{T-1})$.

Pendant les itérations du K-means, $W(\Pi_t)$ est strictement décroissante puis se stabilise.

Convergence vers un minimum local \implies répétition de l'algorithmes pour différentes initialisations aléatoires, puis choix de la meilleure configuration finale.

NB: Parfois, plus intéressant de réaliser le clustering sur $(\psi(x_i), \dots, \psi(x_N))$ où $\psi(X)$ est une représentation mieux adaptée de la variable X.

V.2.b - Choix du nombre de clusters optimal

▶ Equivalent à la sélection de modèle ⇒ définition de critères adaptés

Définitions : Soit $\Pi = (\pi^{(1)}, \dots, \pi^{(K)})$ un clustering de l'échantillon (x_1, \dots, x_N) .

• L'homogénéité d'un cluster $\pi^{(k)}$ est définie par : $H^{(k)} = \frac{1}{|\pi^{(k)}|} \sum_{i \in \pi^{(k)}} \|x_i - \overline{x}^{(k)}\|$.

L'homogénéité du clustering sera alors : $H(\Pi) = \frac{1}{K} \sum_{k=1}^{N} H^{(k)}$.

• La séparabilité entre deux clusters $\pi^{(k)}$ et $\pi^{(l)}$ est simplement donnée par la distance entre les deux centroïdes $\|\overline{\chi}^{(k)} - \overline{\chi}^{(l)}\|$, et la séparabilité du clustering est la moyenne de la séparabilité de tous les clusters pris deux à deux :

$$S(\Pi) = \frac{2}{K(K-1)} \sum_{k=1}^{N} \sum_{l=k+1}^{N} \|\overline{x}^{(k)} - \overline{x}^{(l)}\|.$$

• L'indice de Davies-Bouldin du cluster $\pi^{(k)}$ est donné par : $DB^{(k)} = \max_{l: \, l \neq k} \frac{H^{(k)} + H^{(l)}}{\|\overline{\chi}^{(k)} - \overline{\chi}^{(l)}\|}$.

Et l'indice de Davies-Bouldin du clustering Π est $DB(\Pi) = \frac{1}{K} \sum_{k=1}^{K} DB^{(k)}$.

NB : Plus les clusters sont homogènes et bien séparés, plus $DB(\Pi)$ sera petit.

Définition : Soit $\Pi = (\pi^{(1)}, \dots, \pi^{(K)})$ un clustering. Soit $i \in \pi^{(k)}$.

Pour le point x_i , on considère la moyenne des distances aux autres points du même cluster :

$$a(x_i) = \frac{1}{|\pi^{(k)}|} \sum_{j \in \pi^{(k)}, j \neq i} ||x_j - x_i||$$

et la valeur minimale que pourrait prendre cette grandeur si x_i appartenait à un autre cluster :

$$b(x_i) = \min_{l: l \neq k} \frac{1}{|\pi^{(l)}|} \sum_{j \in \pi^{(l)}} ||x_j - x_i||$$

Le coefficient de silhouette du point x_i est alors donné par : $s(x_i) = \frac{b(x_i) - a(x_i)}{\max \left(a(x_i), b(x_i)\right)}$, et le coefficient de silhouette du clustering par : $s(\Pi) = \frac{1}{N} \sum_{i=1}^N s(x_i)$.

 $s(\Pi) \leq 1$ et plus $s(\Pi)$ sera proche de 1, meilleur le clustering sera considéré.

Le mot de la fin...

- Apprentissage statistique, Data Science, Intelligence artificielle... thématiques les plus porteuses dans la recherche et dans l'industrie actuellement
 - ⇒ des besoins dans tous les domaines (biologie, marketing, sciences sociales, finance, médias, industrie...)
- Domaine facilement accessible : ressources web, logiciels, librairies disponibles facilement...
- Artisanat, ingénierie, et art...
- Ne pas considérer les algorithmes comme des recettes!
- Ne pas oublier de bien réfléchir au problème en amont : modélisation, prétraitement des données, feature engineering, ...
- Vos forces différenciantes :
 - votre capacité à comprendre pourquoi et comment les algorithmes peuvent donner des résulats;
 - votre capacité à transposer ces algorithmes dans des applications très spécifiques, des nouveaux domaines.