Introdução aos Sistemas Dinâmicos

Outubro 2019 Teste 1 Duração: 2h

Nome: Número:

Justifique, convenientemente, todas as respostas.

Exercício 1. (2 valores) Indique, justificando, a qual das equações indicadas em baixo corresponde o seguinte campo de direções tangentes (apresente a resposta na folha de resolução do teste):

 $\Box y' = -y^2 \qquad \qquad \Box y' = x^2 \qquad \qquad \Box y' = -x^2$

Exercício 2.

- 1. (4 valores) Determine as soluções maximais da equação diferencial $y'=-2x\,(y-1)^2$ que passam em cada um dos pontos P=(1,1) e $Q=\left(0,\frac{1}{2}\right)$.
- 2. (3 valores) Determine a solução maximal da equação diferencial $x \frac{dy}{dx} y = x^2 \operatorname{sen} x$ que passa no ponto $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- 3. (3 valores) Responda a <u>uma e uma só</u> das duas **Questões** seguintes:

Questão 1. Determine a solução maximal da equação diferencial $y' = \frac{3y^2 - x^2}{2xy}$ que passa no ponto (1, -2).

Questão 2. Determine a solução maximal da equação diferencial $y' - \frac{y}{x} = -2xy^3$ que passa no ponto $(1, \frac{1}{3})$.

Exercício 3. (3.5 valores) Responda a uma e uma só das duas Questões seguintes:

Questão 1.

(a) Estabeleça uma equação diferencial ordinária linear e homogénea cuja solução geral seja dada por

$$\varphi(x) = e^x(c_1 + c_2 x + c_3 \cos x + c_4 \sin x), \quad c_1, c_2, c_3, c_4 \in \mathbb{R}.$$

(b) A partir da alínea anterior, construa uma equação diferencial ordinária cuja solução geral seja dada por

$$y(x) = e^x(c_1 + c_2 x + c_3 \cos x + c_4 \sin x) + x^2 + 1, \quad c_1, c_2, c_3, c_4 \in \mathbb{R}.$$

Questão 2. Resolva a seguinte equação diferencial:

$$y'' - 2y' - 3y = 2 \sin x + x e^{-x}.$$

Exercício 4.

- 1. (2.5 valores) Considere a equação diferencial planar X' = AX, onde $A = \begin{pmatrix} -1 & 1 \\ 3 & 1 \end{pmatrix}$.
 - (a) Calcule a solução do seguinte PVI: $X' = AX \text{ com } X(0) = X_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$.
 - (b) Esboce o retrato de fase.
- 2. (2 valores) Considere o seguinte sistema de equações diferenciais ordinárias:

$$\begin{cases} x' = x(9 - 3x - 6y) \\ y' = y(4 - 2x - 2y) \end{cases}$$

Justifique que $X^* = (1,1)$ é um ponto de equilíbrio e estude a sua estabilidade.

 FIM

Considere a matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Tem-se que: $\det(A - \lambda I) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A)$, onde $\operatorname{tr}(A) = a + d$ é o traço da matriz A. Consequentemente, $\det(A - \lambda I) = 0 \Leftrightarrow \lambda = \frac{\operatorname{tr}(A)}{2} \pm \sqrt{\left(\frac{\operatorname{tr}(A)}{2}\right)^2 - \det(A)}$. Se A é invertível, então a matriz inversa da matriz A é a matriz $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.