Assignment 02 Modelling Viewing and Projection

Saumil Lakra, 2021097

Q1.(a)

$$w = -\frac{g}{\|g\|}$$
 $u = \frac{t \times w}{\|t \times w\|}$ $v = w \times u$

The above formulas form the basis of camera transformation, hance the coordinates of the modified camera position have been incremented or decremented in the factors of these equations.

u has been used as the basis when there is a change in the x-axis of camera position.

v has been used as the basis when there is a change in the y-axis of camera position.

w has been used as the basis when there is a change in the z-axis of the camera position.

Here g are the coordinates of camera, t is the up vector of the camera.

Q2:

1) We use the glm::ortho function to get the orthographic projection of the given figure. Click 'O' to get the orthographic projection and 'P' to get back the perspective projection.

Perspective Projection

Orthogonal Projection

- 2) Modifier keys for different views are:
 - 'S' Key: Side elevation
 - 'T' Key: Top view
 - 'F' Key: Front elevation

For this to work we give the desired camera coordinates and call the setupViewTranformation function.

Top View

Front elevation

Side elevation

3).	To find $\begin{bmatrix} R & t \end{bmatrix}$, R is a 3×3 rotation matrix & t is a 3-vector.
	From Section 6.4 (Inverses of transformation matrices), we know that a matrix with [0001] in the bottom row has own [0001] at the bottom in its inverse as well.
	Let the inverse be $\begin{bmatrix} A & B \\ 0.00 & 1 \end{bmatrix}$ we know that, for a matrix K , $KK^{-1} = I$ — G
	$\Rightarrow \begin{bmatrix} R & t \end{bmatrix} \begin{bmatrix} A & B \end{bmatrix} = \begin{bmatrix} T & O \\ O & O \end{bmatrix}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	inverse is $\begin{bmatrix} R^{-1} & -t/R \\ O^{T} & 1 \end{bmatrix}$
	for orthogonal vectors, $R = R'$ R' $= \begin{bmatrix} R & + \\ O^T & 1 \end{bmatrix} = \begin{bmatrix} R^T & -tR^T \\ O^T & 1 \end{bmatrix}$ $= \begin{bmatrix} R & + \\ O^T & 1 \end{bmatrix}$ $= \begin{bmatrix} R^T & -tR^T \\ 0^T & 1 \end{bmatrix}$
	$= \begin{bmatrix} R^{T} & -tR^{T} \\ 000 & 1 \end{bmatrix}$