Polar Coordinates

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

Chapter: 10 (10.5, 10.6, 10.7)

Book: Calculus (5th Edition) by Swokowski, Olinick and Pence

Chapter: 13 (13.3, 13.4)

Calculus & Analytical Geometry MATH-101 Instructor: Dr. Naila Amir (SEECS, NUST)

Relating Polar and Cartesian Coordinates

$$A = \frac{1}{2} \int_{0}^{2\pi} r_{1}^{2} d\varphi - 2\left(\frac{1}{2} \int_{0}^{\frac{\pi}{6}} r_{2}^{2} d\varphi + \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} r_{1}^{2} d\varphi\right) = \frac{11\pi}{12} + \sqrt{3}$$

Polar Coordinates

- If P is any point in the plane, let:
 - r be the distance from O to P.
 - θ be the angle (usually measured in radians) between the polar axis and the line OP.
- P is represented by the ordered pair (r, θ) . r, θ are called polar coordinates of P.
- We use the convention that an angle is:
 - Positive—if measured in the counterclockwise direction from the polar axis.
 - Negative—if measured in the clockwise direction from the polar axis.

Polar Coordinates

- Note that the points $(-r, \theta)$ and (r, θ) lie on the same line through O and at the same distance |r| from O, but on opposite sides of O.
 - If r > 0, the point (r, θ) lies in the same quadrant as θ .
 - If r < 0, it lies in the quadrant on the opposite side of the pole.
- Notice that $(-r, \theta)$ represents the same point as $(r, \theta + \pi)$.

Cartesian & Polar Coordinates

- The connection between polar and Cartesian coordinates can be seen from the following figure. The pole corresponds to the origin and the polar axis coincides with the positive x —axis
- If the point P has Cartesian coordinates (x, y) and polar coordinates (r, θ) , then:

$$x = r \cos \theta$$
, $y = r \sin \theta$

- These equations allow us to find the Cartesian coordinates of a point when the polar coordinates are known.
- To find r and θ when x and y are known, we use the equations

$$r^2 = x^2 + y^2, \qquad \tan \theta = \frac{y}{x}.$$

Polar Equations and Graphs

- One way to graph a polar equation $r = f(\theta)$ is to make a table of (r, θ) —values plot the corresponding points, and connect them in order of increasing θ .
- This can work well if enough points have been plotted to reveal all the loops and dimples in the graph.
- Another method of graphing that is usually quicker and more reliable is to:
 - First graph $r = f(\theta)$ in the Cartesian $r\theta$ plane,
 - then use the Cartesian graph as a "table" and guide to sketch the *polar* coordinate graph.

Graph the sets of points whose polar coordinates satisfy the following conditions:

a)
$$1 \le r \le 2$$
 and $0 \le \theta \le \frac{\pi}{2}$.

b)
$$-3 \le r \le 2$$
 and $\theta = \frac{\pi}{4}$.

c)
$$r \le 0$$
 and $\theta = \frac{\pi}{4}$.

d)
$$\frac{2\pi}{3} \le \theta \le \frac{5\pi}{6}$$
 (no restriction on r).

$$\Theta = \Theta_0$$

Solution

Sketch the curve with polar equation $r = 2 \cos \theta$.

Solution:

First, we find the values of r for some convenient values of θ . We plot the corresponding

points (r, θ) . Then, we join these points to sketch the curve.

The curve appears to be a **circle.** Note that we have used only values of θ between 0 and π . Since, if we let θ increase beyond π , we obtain the same points again.

θ	$r = 2 \cos \theta$
0	2
$\pi/6$	$\sqrt{3}$
$\pi/4$	$\sqrt{2}$
$\pi/3$	1
$\pi/2$	0
$2\pi/3$	-1
$3\pi/4$	$-\sqrt{2}$
$5\pi/6$	$-\sqrt{3}$
π	-2

Sketch the curve $r = 1 + \sin \theta$.

Solution:

Here, we do not plot points as we did in previous example. Rather, we first sketch the graph of $r=1+\sin\theta$ in Cartesian coordinates by shifting the sine curve up one unit. This enables us to see immediately the values of r that correspond to increasing values of θ . For instance, we see that, as θ increases from 0 to $\pi/2$, r (the distance from θ) increases from 1 to 2. So, we sketch the corresponding part of the polar curve.

Solution

As θ increases from $\pi/2$ to π , the figure (b) shows that r=2-decreases from 2 to 1. So, we sketch the next part of the curve. As θ increases from to π to $3\pi/2$, r decreases from 1 to 0, as shown in (c). Finally, as θ increases from $3\pi/2$ to 2π , r increases from 0 to 1, as shown in (d).

Solution

Note that, If we let θ increase beyond 2π or decrease beyond 0, we would simply retrace our path. It is called a **cardioid**—because it's shaped like a heart.

Symmetry

When we sketch polar curves, it is sometimes helpful to take advantage of symmetry.

RULE 1: Symmetry about the polar axis

If a polar equation is unchanged when (r,θ) is replaced by either $(r,-\theta)$ or $(-r,\pi-\theta)$, the curve is symmetric about the polar axis.

Symmetry

RULE 2: Symmetry about the pole

If the equation is unchanged when (r,θ) is replaced by $(-r,\theta)$, or by $(r,\theta+\pi)$, then the curve is symmetric about the pole. This means that the curve remains unchanged if we rotate it through 180° about the origin.

by out $(-r, \theta)$ or $(r, \theta + \pi)$

RULE 3: Symmetry about the vertical line

If the equation is unchanged when (r,θ) is replaced by $(r,\pi-\theta)$ or by $(-r,-\theta)$, the curve is symmetric about the vertical line $\theta=\pi/2$.

Graph the curve $r^2 = 4 \cos \theta$.

Solution:

The curve is symmetric about the polar axis because:

$$(r,\theta)$$
 on the graph $\Rightarrow r^2 = 4\cos\theta$
 $\Rightarrow r^2 = 4\cos(-\theta)$ [: $\cos\theta = \cos(-\theta)$]
 $\Rightarrow (r,-\theta)$ on the graph

The curve is also symmetric about the pole because:

$$(r, \theta)$$
 on the graph $\Rightarrow r^2 = 4 \cos \theta$
 $\Rightarrow (-r)^2 = 4 \cos \theta$
 $\Rightarrow (-r, \theta)$ on the graph

Together, these two symmetries imply symmetry about the vertical line because (r, θ) on the graph $\Rightarrow (-r, -\theta)$ on the graph.

Solution

The curve passes through origin when $\theta=-\pi/2$ and $\theta=\pi/2$. Moreover, for each value of θ in the interval between $-\pi/2$ and $\pi/2$, the formula $r^2=4\cos\theta$ gives two values of r: $r=\pm 2\sqrt{\cos\theta}$. We make a small table of values, plot the corresponding points and use the information about symmetry to guide us in connecting the points with a smooth curve.

θ	$\cos \theta$	$r = \pm 2\sqrt{\cos\theta}$
0	1	±2
$\pm \frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	≈ ±1.9
$\pm \frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	≈ ±1.7
$\pm \frac{\pi}{3}$	$\frac{1}{2}$	≈ ±1.4
$\pm \frac{\pi}{2}$	0	0

Special Polar Curves

Limacon with a dimple

 $r = 0.5 + \cos \theta$

$$r = a + b \cos \theta$$
; $a < b$
Limacon with a loop

$$r = b \cos \theta$$
 Circle

Special Polar Curves

Arclength Of a Polar Curve

If the curve $r=f(\theta)$ has a continuous first derivative for $\alpha \leq \theta \leq \beta$ and if the point $P(r,\theta)$ traces the curve $r=f(\theta)$ exactly once as θ varies from α to β , then the length of the curve is:

Find the length of the curve $r = 5\sin\theta$; $0 \le \theta \le \pi$.

Solution:

For the present case:

$$r = 5 \sin \theta \Longrightarrow \frac{dr}{d\theta} = 5 \cos \theta$$
.

and

$$r^2 + \left(\frac{dr}{d\theta}\right)^2 = (5\sin\theta)^2 + (5\cos\theta)^2 = 25.$$

Thus,

$$L = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_{0}^{\pi} \sqrt{25} d\theta = \int_{0}^{\pi} 5 d\theta = 5 \theta \Big|_{0}^{\pi} = 5\pi.$$

Find the length of the curve $r = e^{\theta}$; $0 \le \theta \le \pi$.

Solution:

For the present case:

$$r = e^{\theta} \Longrightarrow \frac{dr}{d\theta} = e^{\theta}$$
.

and

$$r^{2} + \left(\frac{dr}{d\theta}\right)^{2} = (e^{\theta})^{2} + (e^{\theta})^{2} = 2e^{2\theta}.$$

Thus,

$$L = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_{0}^{\pi} \sqrt{2e^{2\theta}} d\theta = \sqrt{2} \int_{0}^{\pi} e^{\theta} d\theta = \sqrt{2} e^{\theta} \Big|_{0}^{\pi} = \sqrt{2} (e^{\pi} - 1).$$

Find the length of the cardioid $r=1-\cos\theta$.

Solution:

Note that the point $P(r,\theta)$ traces the curve once, counterclockwise as runs from 0 to

 $r = 1 - \cos \theta$

 $P(r, \theta)$

 2π , so these are the values we take for α and β . For the present case:

$$r = 1 - \cos \theta \Longrightarrow \frac{dr}{d\theta} = \sin \theta$$
.

and

$$r^2 + \left(\frac{dr}{d\theta}\right)^2 = (1 - \cos\theta)^2 + (\sin\theta)^2 = 2(1 - \cos\theta) = 4\sin^2\left(\frac{\theta}{2}\right).$$

Thus,

$$L = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_{0}^{2\pi} \sqrt{4\sin^2\left(\frac{\theta}{2}\right)} d\theta = 8.$$

Area Of a Polar Curve

Area of the fan-shaped region between the pole and the curve $r = f(\theta)$; $\alpha \le \theta \le \beta$ is given as:

Area of a polar curve
$$= A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta = \int_{\alpha}^{\beta} \frac{1}{2} f(\theta)^2 d\theta$$

Area of the region bounded between two polar curves $r_1(\theta)$ and $r_1(\theta)$ from $\theta = \alpha$ to $\theta = \beta$, i.e.,

Find the area of the region enclosed by the cardioid $r = 2(1 + \cos \theta)$.

Solution:

For the present case $r = 2(1 + \cos \theta)$ with $0 \le \theta \le 2\pi$. Thus,

$$A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta = \int_{0}^{2\pi} \frac{1}{2} (2 + 2\cos\theta)^2 d\theta$$

$$= 2 \int_{0}^{2\pi} (1 + \cos \theta)^{2} d\theta = 6\pi.$$

Find the area of the region enclosed by the curve $r = 5\cos(3\theta)$; $0 \le \theta \le \pi$.

Solution:

For the present case $r=5\cos(3\theta)$ with $0 \le \theta \le \pi$. Thus, area of entire region is given as:

$$A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta = \int_{0}^{\pi} \frac{1}{2} (5\cos(3\theta))^2 d\theta = 19.635.$$

Area of one petal is given as:

$$A = \frac{19.635}{3} = 6.545.$$

Determine the Area of the region outside r=2 and inside $r=4\sin\theta$.

Solution:

For the present case, limits of integration can be determined by considering

$$2 = 4 \sin \theta \implies \sin \theta = \frac{1}{2} \implies \theta = \frac{\pi}{6}, \frac{5\pi}{6}.$$

$$A = \int_{\alpha}^{\beta} \frac{1}{2} (r_2^2 - r_1^2) d\theta A = \int_{\pi/6}^{5\pi/6} \frac{1}{2} [(4\sin\theta)^2 - 2^2] d\theta$$

$$= \frac{4}{2} \int_{\pi/6}^{5\pi/6} [4\sin^2\theta - 1] d\theta = 2 \int_{\pi/6}^{5\pi/6} \left[4\left(\frac{1 - \cos 2\theta}{2}\right) - 1 \right] d\theta = 7.653.$$

Determine the Area of the region that lies inside the circle r=1 and outside the cardioid $r=1-\cos\theta$.

Solution:

For the present case, limits of integration can be determined by considering

$$1 - \cos \theta = 1 \Longrightarrow \cos \theta = 0 \Longrightarrow \theta = \frac{\pi}{2}, \frac{-\pi}{2}.$$

$$A = \int_{\alpha}^{\beta} \frac{1}{2} (r_2^2 - r_1^2) d\theta A$$

$$= \int_{-\pi/2}^{\pi/2} \frac{1}{2} ((1)^2 - (1 - \cos \theta)^2) d\theta = 2 - \frac{\pi}{4}.$$

Find the area of the region outside $r=2+2sin\theta$, inside $r=2+2cos\theta$, and in the first quadrant.

Solution:

For the present case, limits of integration can be determined by considering

$$2 + 2\sin\theta = 2 + 2\cos\theta \implies 2\sin\theta = 2\cos\theta \implies \tan\theta = 1 \implies \theta = \frac{\pi}{4} = 0.785.$$

$$A = \int_{\alpha}^{\beta} \frac{1}{2} (r_2^2 - r_1^2) d\theta A$$

$$= \int_{0.785}^{0.785} \frac{1}{2} ((2 + 2\cos\theta)^2 - (2 + 2\sin\theta)^2) d\theta = 2.657.$$

Practice Questions

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

Exercise: 10.5

■ Exercise: 10.6

■ Exercise: 10.7

Book: Calculus (5th Edition) by Swokowski, Olinick and Pence

■ Exercise: 13.3

■ Exercise: 13.4

ESE: Total Marks: 100

— Q - 1: Blend of all CLOs (15+10+15 = 40 marks)

MCQs + Fill in the blanks & True/False + Short question / Answers

Basics of functions, limit, continuity, types of discontinuity, basics of derivatives, types of non-differentiability, applications of derivatives, applications of integrals, improper integral, CLO-3 complete excluding concept of sequence.

Q - 2: CLO-1 (10 marks)

Applications of derivatives: related rates, rate of change, extreme values, concavity, optimization problems.

Q – 3: CLO-2 (25 marks) (There will be subparts of this question)

Applications of integrals:

Area, Arclength (cartesian & polar coordinates) and Volume (cartesian coordinates)

Q – 4: CLO-3 (25 marks) (There will be subparts of this question)

Infinite series, all tests, alternating series, power series, Taylor's & Maclaurin's series