Analysis 1 - Serie 1

1.1.

a)
$$0 + 1 = 1 \land 0 > 1$$
 false

b)
$$0 + 1 = 1 \lor 0 < 1$$
 true

c)
$$0+1=1$$
 $\forall~0<1$ false

d)
$$0 > 1 \Rightarrow 0 + 1 = 0$$
 true

Should be \Leftrightarrow

e)
$$0 + 1 = 1 \Rightarrow 0 > 1$$
 false

1.2

a)

P	Q	$\neg (P \land Q)$	$\neg P \vee \neg Q$
T	T	F	F
T	F	T	T
F	T	T	T
F	F	T	T

b, d, f, h und j) Sie haben dieselbe Taffeln, deshalb sind sie logisch aequivalent. c)

P	Q	$\neg (P \vee Q)$	$\neg P \wedge \neg Q$
Т	T	F	F
Т	F	F	F
F	T	F	F
F	F	Т	T

e)

_		
P	Q	$\neg(Q) \Rightarrow \neg P$
Т	T	T
Т	F	F
F	T	T
F	F	Т

g) Die Musterloesung ist falsch

P	Q	$(P\Rightarrow Q)\wedge (Q\Rightarrow P)$
Т	Т	T
Т	F	F
F	T	F
F	F	T

F)	Q	R	$P \wedge (Q \vee R)$	$(P \wedge Q) \vee (P \wedge R)$
Т	•	T	Т	T	T
Т	•	T	F	T	T
Т	,	F	Т	T	T
Т	,	F	F	F	F
F		T	Т	F	F
F		T	F	F	F
F		F	Т	F	F
F		F	F	F	F

k)

P	Q	R	$P \wedge (Q \vee R)$	$(P \wedge Q) \vee R$
Т	T	Т	Т	Т
Т	T	F	Т	Т
Т	F	Т	Т	Т
Т	F	F	F	F
F	T	Т	F	Т
F	T	F	F	F
F	F	Т	F	Т
F	F	F	F	F

Sie sind nicht gleich, deshalb $P \wedge (Q \vee R) \not\equiv (P \wedge Q) \vee R$.

- l) M Menu
- A Kaffee
- U Kuchen

Moegliche Interpretationen:

$$(M \wedge A) \vee U - \text{gleich}$$
 wie entweder ... oder
$$M \wedge (A \vee U)$$

Sie sind nicht aequivalent.

1.3

a)

Sei
$$n \coloneqq 123456789$$

$$5 \cdot 4^{\frac{(3n+1)^2-1}{3}} = 5 \cdot 4^{\frac{9n^2+6n}{3}} = 5 \cdot 4^{3n^2+2n}$$

Lemma: eine Ganze zahl Quadriert ist eine ganze Zahl.

Lemma: 2 eine ganze zahl ist ganz.

$$3n^2 + 2n$$
 ist ganz

Lemma: Eine ganze Zahl hoch eine ganze Zahl ist eine ganze Zahl

∴
$$5 \cdot 4^{\frac{(3 \cdot 123456789+1)^2-1}{3}}$$
 ist ganz \blacksquare

b) i) Zu beweisen $\sqrt{3} < \sqrt{5}$

Nehmen wir an, dass $\sqrt{3} \ge \sqrt{5}$

Lemma: Monotonie des Quadrierens

$$\therefore \sqrt{5} \le \sqrt{3} \Rightarrow 5 \le 3$$

Kontraposition: $\neg (5 \le 3) \Rightarrow \neg (\sqrt{5} \le \sqrt{3})$

$$5 > 3 \Rightarrow \sqrt{5} < \sqrt{3} \blacksquare$$

Widerspruch: $5 \le 3$ ist falsch, therefore $\neg \left(\sqrt{3} < \sqrt{5}\right)$ wurde widersprochen

ii)