ELECTRE III: Voitures électriques/thermiques SNCF 1

Johanna BERLIET, Louis BERTHIER, Aurel CHARRETON et Léo DEHAY

1. Présentation du processus de décision

La comparaison de différents modèles de voiture est un problème **stratégique.** Il fait appel à des méthodes multicritères pour sa résolution (MCDA).

Le décideur dans le cas d'une comparaison peut être soit les autorités publiques, les autorités locales ou les industriels. Dans notre cas c'est **SCNF (1)** qui est un industriel.

Les alternatives que nous avions pour ce sujet étaient les véhicules particuliers : **VE DE, VE EU 27, VE FR, VT Gasoline NEDC** et **VT Diesel NEDC**. Le décideur a donc le choix entre plusieurs véhicules électriques et plusieurs véhicules thermiques.

L'objectif global de cette étude est d'établir un classement des véhicules donnés afin de donner une recommandation finale au décideur en fonction de plusieurs critères de comparaison qu'il nous aura donnés. Le but est donc de **minimiser les différents impacts environnementaux** de ces véhicules (bilans énergétiques, émissions de gaz à effet de serre, etc...) et de choisir le plus approprié.

Les critères d'évaluation des alternatives sont les suivants : **CC** (changement climatique), **AC** (acidification), **Eutro** (Eutrophisation), **CED** (Énergie primaire totale), **Dec rad** (déchets radioactifs), **Em rad** (Émissions radioactives dans l'air) et **Nox** (Émissions de NOx).

Les experts qui vont évaluer ces alternatives sont les membres de l'ADEME, qui dirige cette étude.

ELECTRE I permet d'identifier un ensemble de solutions alors qu'ELECTRE III permet de classer un ensemble de solutions de la meilleure à la moins bonne - même si elle nécessite plus de calculs qu'ELECTRE I. De plus, ELECTRE III prend en compte les préférences associées aux critères de jugement. C'est à travers une étape de pondération que les différents acteurs peuvent donner leurs opinions et exprimer d'éventuelles différences de jugement - méthode de Simos. On choisit donc la méthode ELECTRE III.

2. Méthode SIMOS: calcul des poids des indicateurs

Nous évaluons dans un premier temps l'impact des indicateurs en suivant la méthode SIMOS. Le décideur a trié au préalable les critères dans l'ordre croissant d'importance qu'il préfère. Il peut aussi rajouter des "cartes blanches" entre les critères s'il juge qu'un critère est bien plus important que le suivant.

Rang attribué	Indicateurs ex.aequo
1	{ Em. Rad. , CC }
2	{ Déchets rad. }
3	carte blanche
4	{ CED / Nox }
5	carte blanche
6	{ Eutro. / Ac. }

A partir de ce classement, nous calculons les poids non normalisés puis normalisés des critères.

					Wj	
	cartes = critères				arrondi à 0.5	nbre carte * arrondi
	Nombre de cartes	Positions	Poids non normalisés	р	oids normalisés	Total
	2	1,2	1,5	4,41176471	4,5	9
	1	3	3	8,82352941	9	9
	1	4				0
	2	5,6	5,5	16,1764706	16	32
	1	7				0
	2	8,9	8,5	25	25	50
Somme :	9	34	18,5	54,4117647	54,5	100
	(9 critères en tout)	(somme de 1 à 9)				
		et on retire les cartes blanches				

Finalement, on obtient le tableau des poids (w_i) suivant :

	Wj
CC	4,5
AC	25
Eurto	25
CED	16
DEC Rad	9
Em Rad	4,5
Nox	16
	_
Somme	100

3. Calcul de la matrice de crédibilité

Nous détaillerons comment nous avons obtenu la première ligne de la matrice de crédibilité. Bien sûr, pour obtenir la matrice de crédibilité « globale », il faut répéter cette méthode et ces calculs pour **chacune des alternatives** - soit 5 fois au total.

La première étape consiste à calculer le delta de chaque critère entre VE DE et toutes les autres alternatives.

	VE DE	VE EU 27	VE FR	VT Gasoline NEDC	VT Diesel NEDC
CC	1,78E+04	1,49E+04	6,78E+03	2,69E+04	2,22E+04
AC	4,78E+01	7,03E+01	3,43E+01	4,15E+01	4,90E+01
Eurto	4,00E+00	4,27E+00	2,56E+00	3,75E+00	6,46E+00
CED	3,09E+05	2,99E+05	3,02E+05	4,11E+05	3,32E+05
Dec Rad	5,08E-02	6,25E-02	1,51E-01	1,27E-02	1,28E-02
Em Rad	1,06E+09	1,28E+09	2,32E+09	7,94E+08	7,85E+08
Nox	2,34E+01	2,66E+01	1,41E+01	2,00E+01	3,48E+01

Tout d'abord, nous avons donc besoin de la matrice delta δ (x, VE DE) :

Let
$$\delta_j(b,a) = g_j(b) - g_j(a)$$
.

VE DE

Delta(x, VE DE)	VE DE	VE EU 27	VE FR	VT Gasoline NEDC	VT Diesel NEDC
СС		2,90E+03	1,10E+04	-9,10E+03	-4,40E+03
AC		-2,25E+01	1,35E+01	6,30E+00	-1,20E+00
Eurto		-2,70E-01	1,44E+00	2,50E-01	-2,46E+00
CED		1,00E+04	7,00E+03	-1,02E+05	-2,30E+04
Dec rad		-1,17E-02	-1,00E-01	3,81E-02	3,80E-02
Em rad		-2,20E+08	-1,26E+09	2,66E+08	2,75E+08
Nox		-3,20E+00	9,30E+00	3,40E+00	-1,14E+01

Afin de déterminer les indices de concordance partielle, nous avons besoin de déterminer les seuils -préférence, indifférence et véto- pour chaque critère et chaque alternative :

	Calcul de seuil pour VE DE								
	VE EU 27	VE FR	VT Gasoline NEDC	VT Diesel NEDC					
	Seuils d'indiff	érence Qj (VE DE, x)							
CC	1,78E+03	1,78E+03	2,69E+03	2,22E+03					
AC	3,52E+00	2,39E+00	2,39E+00	2,45E+00					
Eutro	2,14E-01	2,00E-01	2,00E-01	3,23E-01					
CED	3,09E+04	3,09E+04	4,11E+04	3,32E+04					
DEC	9,38E-03	2,27E-02	7,62E-03	7,62E-03					
EM	1,92E+08	3,48E+08	1,59E+08	1,59E+08					
Nox	2,66E+00	2,34E+00	2,34E+00	3,48E+00					
	Seuils de pré	férence Pj (VE DE, x)							
CC	5,34E+03	5,34E+03	8,07E+03	6,66E+03					
AC	1,41E+01	9,56E+00	9,56E+00	9,80E+00					
Eutro	8,54E-01	8,00E-01	8,00E-01	1,29E+00					
CED	9,27E+04	9,27E+04	1,23E+05	9,96E+04					
DEC	2,50E-02	6,04E-02	2,03E-02	2,03E-02					
EM	5,12E+08	9,28E+08	4,24E+08	4,24E+08					
Nox	7,98E+00	7,02E+00	7,02E+00	1,04E+01					
	Seuils de	véto Vj (VE DE, x)							
CC	8,90E+03	8,90E+03	1,35E+04	1,11E+04					
AC	6,33E+01	4,30E+01	4,30E+01	4,41E+01					
Eutro	3,84E+00	3,60E+00	3,60E+00	5,81E+00					
CED	2,32E+05	2,32E+05	3,08E+05	2,49E+05					
DEC	3,13E-02	7,55E-02	2,54E-02	2,54E-02					
EM	7,68E+08	1,39E+09	6,36E+08	6,36E+08					
Nox	1,60E+01	1.40E+01	1,40E+01	2,09E+01					

La matrice précédente pour les seuils a été établie à partir des indications suivantes :

				In	dicateurs d'impact I			
		Changement climatique	Acidification	Eutrophisation	Consommation d'énergie primaire totale	Déchets radioactifs	Emissions radioactives	Emission de NO
	" je considère que l'impact du scénario A est équivalent à							
Seuil d'indifférence qj	l'impact du scénario B sur l'indicateur I si la différence	0,1	0,05	0,05	0,1	0,15	0,15	0,1
	d'impact est inférieure ou égale à%"							
	" je considère que l'impact du scénario A est préféré à							
Seuil de préférence pj	l'impact du scénario B sur l'indicateur I si la différence	0,3	0,2	0,2	0,3	0,4	0,4	0,3
	d'impact est supérieure ou égale à%"							
	" je considère que l'impact du scénario A est tellement							
	meilleur que l'impact du scénario B sur l'indicateur I							
Seuil de veto vi	qu'en aucun cas, B ne pourra être considéré meilleur	0,5	0.9	0,9	0.75	0.5	0.6	0,6
Seuli de Veto Vj	que A quelles que soient les performances de A et B	0,5	0,9	0,9	0,75	0,5	0,6	0,6
	sur tous les autres critères si la différence d'impact est							
	supérieure ou égale à%"							

 $q_i(g_i(a))=(x)^* max(g_i(a),g_i(b))$

quand les valeurs sont négatives, il faut prendre le max des valeurs absolues.

Ensuite, on peut donc calculer la matrice des indices de **concordance partielle c**_i (VE DE, x):

$$c_j(a,b) = \left\{ egin{array}{ll} 1 & ext{if } \delta_j(b,a) \leq q_j(g_j(a)), \ rac{p_j(g_j(a)) - \delta_j(b,a)}{p_j(g_j(a)) - q_j(g_j(a))} & ext{if } q_j(g_j(a)) < \delta_j(b,a) \leq p_j(g_j(a)), \ 0 & ext{if } \delta_j(b,a) > p_j(g_j(a)). \end{array}
ight.$$

Cj(VE DE, x)	VE DE	VE EU 27	VE FR	VT Gasoline NEDC	VT Diesel NEDC
CC		0,685393	0	1	1
AC		1	0	0,454672245	1
Eurto		1	0	0,916666667	1
CED		1	1	1	1
Dec rad		1	1	0	0
Em rad		1	1	0,596226415	0,562264151
Nox		1	0	0,773504274	1

Enfin, nous pouvons calculer la **concordance globale C(VE DE, x)** à l'aide de la formule suivante :

$$c(a,b) = \frac{1}{\sum \omega_j} \sum_j \omega_j \ c_j(a,b)$$

C (VE DE, x)	VE DE	VE EU 27	VE FR	VT Gasoline NEDC	VT Diesel NEDC
CC		3,08427	0	4,5	4,5
AC		25	0	11,36680614	25
Eurto		25	0	22,91666667	25
CED		16	16	16	16
Dec rad		9	9	0	0
Em rad		4,5	4,5	2,683018868	2,530188679
Nox		16	0	12,37606838	16
Concordance globale		0,985843	0,295	0,6984256	0,890301887

La deuxième étape consiste à calculer les **indices de discordance partielle** d_i (VE DE, x) selon la formule suivante :

$$d_{j}(a,b) = \begin{cases} 1 & \text{if } \delta_{j}(b,a) > v_{j}(g_{j}(a)), \\ \frac{\delta_{j}(b,a) - p_{j}(g_{j}(a))}{v_{j}(g_{j}(a)) - p_{j}(g_{j}(a))} & \text{if } p_{j}(g_{j}(a)) < \delta_{j}(b,a) \leq v_{j}(g_{j}(a)), \\ 0 & \text{if } \delta_{j}(b,a) \leq p_{j}(g_{j}(a)). \end{cases}$$

dj(VE DE, x)	VE DE	VE EU 27	VE FR	VT Gasoline NEDC	VT Diesel NEDC
CC		0	1	0	0
AC		0	0,1177525	0	0
Eurto		0	0,2285714	0	0
CED		0	0	0	0
Dec rad		0	0	1	1
Em rad		0	0	0	0
Nox		0	0,3247863	0	0

Pour continuer, on construit **l'ensemble F** défini ainsi :

let
$$ar{\mathcal{F}}(a,b)=\{j\in\mathcal{F}:d_j(a,b)>c(a,b)\}$$

F(a,b)	VE DE	VE EU 27	VE FR	VT Gasoline NEDC	VT Diesel NEDC
CC		0	1	0	0
AC		0	0	0	0
Eurto		0	0	0	0
CED		0	0	0	0
Dec rad		0	0	1	1
Em rad		0	0	0	0
Nox		0	1	0	0

Maintenant, nous possédons toutes les informations pour calculer la discordance globale :

$$d(a,b) = \left\{egin{array}{ll} 0 & ext{if $ar{\mathcal{F}}(a,b) = \emptyset$,} \ 1 - \prod\limits_{j \in ar{\mathcal{F}}(a,b)} rac{1 - d_j(a,b)}{1 - c(a,b)} & ext{otherwise.} \end{array}
ight.$$

	F(a,b)	VE DE	VE EU 27	VE FR	VT Gasoline NEDC	VT Diesel NEDC
	CC		1	0	1	1
\mathbf{T} 1- $d_i(a,b)$	AC		1	1	1	1
$\frac{1}{a_j(a,b)}$	Eurto		1	1	1	1
$\underline{1} 1 1 - c(a,b)$	CED		1	1	1	1
$j\in\bar{\mathcal{F}}(a,b)$	Dec rad		1	1	0	0
	Em rad		1	1	1	1
	Nox		1	0,9577499	1	1

Discordance globale	0	1	1	1

Actuellement, nous avons accès la concordance globale et à la discordance globale. On peut donc en déduire **les index de crédibilité** associés à l'alternative VE DE et ainsi construire la **première ligne de la matrice de crédibilité** ρ (VE DE, x):

$$\rho_{\mathcal{S}}(a,b) = (1 - d(a,b)) \ c(a,b)$$

Index de crédibilité	0.985843	0	0	0
IIIdox do diodibilito	0,303043	U	U	U

Il faut maintenant reproduire cette méthode sur l'ensemble des véhicules à comparer pour obtenir la **matrice de crédibilité** ρ complète.

			Matric	ce de crédibilité			
ρS(a,b)	VE DE	VE EU 27	VE FR	VT Gasoline NEDC	VT Diesel NEDC		
VE DE		0,9858427	0	0	0		
VE EU 27	0,694376815		0	0	0		
VE FR	0	0		0	0		
VT Gasoline NEDC	0,83645985	0,81699513	0		0,909416443		
VT Diesel NDEC	0,56790541	0,59649425	0	0,418231293			

4. Classement final

Afin d'obtenir le classement final, il est nécessaire de faire appel à **deux algorithmes de distillation** -un ascendant et un descendant. En effet, avec ELECTRE III, la relation de surclassement devient floue quand on introduit le concept de pseudo-critère : a surclasse b dans la mesure de ρ S(a, b).

Pour obtenir la relation de surclassement S, un seuil λ , appelé λ -coupe ou λ -seuil, est introduit :

$$aSb \Leftrightarrow \rho_S(a,b) \geq \lambda$$

On obtient une structure à partir de cette relation binaire de surclassement (aSb) avec de la **préférence** (P), de l'**indifférence** (I) et de l'**incomparabilité** (R).

On part donc de notre matrice de crédibilité:

ρS(a,b)	VE DE	VE EU 27	VE FR	VT Gasoline NEDC	VT Diesel NEDC
VE DE		0,9858427	0	0	0
VE EU 27	0,694376815		0	0	0
VE FR	0	0		0	0
VT Gasoline NEDC	0,83645985	0,81699513	0		0,909416443
VT Diesel NDEC	0,56790541	0,59649425	0	0,418231293	

→ Algorithme de distillation (classement descendant)

Tout d'abord, on commence par **établir le** λ -coupe pour la première étape de l'algorithme (k = 0).

$$RM_k$$
 is the set of remaining alternatives at step k . $\lambda_{max} = \max_{(a,b) \in RM_k} \{
ho_S(a,b) \}$ $S(\lambda_{max}) = 0.3 - 0.15 * \lambda_{max}.$ $\lambda_k = \max_{(a,b) \in RM_k} \{
ho_S(a,b) < \lambda_{max} - S(\lambda_{max}) \}.$

Après avoir déterminé le λ-coupe, **on détermine os, od** et **q** :

$$egin{aligned} os(a) &= |\{b \in A \setminus \{a\}, aS^{\lambda_k}b\}| \ od(a) &= |\{b \in A \setminus \{a\}, bS^{\lambda_k}a\}| \ q(a) &= os(a) - od(a) \end{aligned}$$

			Obte	ntion des classemer	nts (descendant)								
				Matrio	ce de crédibilité								
	ρS(a,b)	VE DE	VE EU 27	VE FR	VT Gasoline NEDC	VT Diesel NEDC							
	VE DE		0,9858427	0	0	0							
	VE EU 27	0,694376815		0	0	0							
	VE FR	0	0		0	0							
	VT Gasoline N	DC 0,83645985	0,81699513	0		0,909416443							
	VT Diesel ND	EC 0,56790541	0,59649425	0	0,418231293								
k = 0	λmax	0,9858427											
	S(λmax)	0,1521236											
	λmax - S(λm	x) 0,8337191											
	λk	0,81699513											
										_			
	ρS(a,b)	VE DE	VE EU 27	VE FR	VT Gasoline NEDC	VT Diesel NEDC	os	od	q		Descendi	ng weak or	der
	VE DE		1	0	0	0	1	1	0		FIRST = V	T Gasoline	NEDC
	VE EU 27	0		0	0	0	0	1	-1	•			
	VE FR	0	0		0	0	0	0	0				
	VT Gasoline N		0	0		1	2	0	2				
	VT Diesel ND	EC 0	0	0	0		0	1	-1				

On récupère et on classe donc par **ordre décroissant** les alternatives sélectionnées à chaque étape -alternative où le q est maximal.

Une fois ceci fait, **on retire l'alternative du tableau** et **on réitère** la procédure jusqu'à ce qu'il ne reste aucune alternative.

				Matric	e de crédibilité						
	ρS(a,b)	VE DE	VE EU 27	VE FR	VT Diesel NEDC						
	VE DE		0,9858427	0	0						
	VE EU 27	0,694376815		0	0						
	VE FR	0	0		0						
	VT Diesel NDEC	0,56790541	0,59649425	0							
k = 1	λmax	0,9858427									
	S(\lambdamax)	0,1521236									
	λmax - S(λmax)	0,8337191									
	λk	0,69437681									
	ρS(a,b)	VE DE	VE EU 27	VE FR	VT Diesel NEDC	os	od	q		ding weak or	
	VE DE		1	0	0	1	0	1		VT Gasoline	NEDC
	VE EU 27	0		0	0	0	1	-1	SECOND	= VE DE	
	VE FR	0	0		0	0	0	0			
	VT Diesel NDEC	0	0	0		0	0	0			
										_	
				Matrio	e de crédibilité						
										-	
	ρS(a,b)	VE EU 27	VE FR	VT Diesel NEDC						+	
	VE EU 27	VE EU 27	0	0							
	VE FR	0	U	0							
	VT Diesel NDEC	0.59649425	0	0							
	VI DIESEI INDEC	0,55045425									
k = 2	λmax	0.59649425									
	S(\lambdamax)	0.21052586									
	λmax - S(λmax)	0,38596839									
	λk	0									
	ρS(a,b)	VE EU 27	VE FR	VT Diesel NEDC	os	od	q		Descending weak	order	
	VE EU 27		0	0	0	1	-1		FIRST = VT Gasolin	ie NEDC	
	VE FR	0		0	0	0	0		SECOND = VE DE		
	VT Diesel NDEC	1	0		1	0	1		THIRD = VT DIESEL I	NDEC	

				Matrio	ce de crédibilité				
	o5/o h)	VE EU 27	VE FR						
	ρS(a,b) VE EU 27	VE EU 27	0						
		0	U						
	VE FR	0							
k=3	λmax	0							
K = 3									
	S(\lambdamax)	0,3							
	λmax - S(λmax)	-0,3						iding weak order	
	λk	0					FIRST = 1	/T Gasoline NEDC	
							SEC	OND = VE DE	
	ρS(a,b)	VE EU 27	VE FR	os	od	q	THIRD	= VT DIESEL NDEC	
	VE EU 27		0	0	0	0	FOURTH	= VE EU 27 et VE FR	
	VE FR	0		0	0	0			

On obtient donc le ranking suivant pour le classement descendant :

- > Rank 1 = VT Gasoline NEDC
 - ➤ Rank 2 = VE DE
- Rank 3 = VT Diesel NEDC
- > Rank 4 = VE EU 27 et VE FE

→ Algorithme de distillation (classement ascendant)

```
Data: the matrix \rho_S(a,b), the matrix s(\rho_S(a,b)) Result: Ascending weak order \sigma_{asc} A_{asc} \leftarrow A;// The remaining alternatives while A_{asc} \neq \emptyset do  \begin{array}{c} \text{Mode } \\ \text{Mode }
```

lci, le principe est exactement le même que pour l'algorithme descendant. La seule différence est que l'on récupère les alternatives où **q** est **minimal**. On classe donc par **ordre croissant**.

			Obtention	des classements (as	cendant)									
				Matrice de	crédibilité									
	-C(- h)	VEDE	VE 511.27	VE 50	VE Coording MEDIC	ACT DISSUED IN THE								
	ρS(a,b)	VE DE	VE EU 27	VE FR 0	VT Gasoline NEDC	VI Diesel NEDC								
	VE DE VE EU 27	0,694376815	0,985842697	0	0	0								
	VE FR	0,094370813	0	0	0	0								
	VT Gasoline NEDC	0,836459854	0,816995134	0	ů	0,909416443								
	VT Diesel NDEC	0,567905405	0,596494253	0	0.418231293	0,505110115								
		-,		_	.,									
k = 0	λmax	0,985842697												
	S(λmax)	0,152123596												
	λmax - S(λmax)	0,833719101												
	λk	0,816995134												
	ρS(a,b)	VE DE	VE EU 27	VE FR	VT Gasoline NEDC		os	od	q			g weak ord		
	VE DE		1	0	0	0	1	1	0		FIRST = V	E EU 27 et	VT DIESEL	L NDEC
	VE EU 27	0		0	0	0	0	1	-1					
	VE FR	0	0		0	0	0	0	0					
	VT Gasoline NEDC	1	0	0	_	1	2	0	2					
	VT Diesel NDEC	0	0	0	0		0	1	-1					
				Matrice de	crédibilité									
	ρS(a,b)	VE DE	VE FR	VT Gasoline NEDC										
	VE DE		0	0										
	VE FR	0		0										
	VT Gasoline NEDC	0,836459854	0											
	λmax	0,836459854												
k = 1	S(\lambdamax)	0,174531022												
	λmax - S(λmax)	0,661928832												
	λk	0												
	** **													
	ρS(a,b)	VE DE	VE FR	VT Gasoline NEDC		od	q		Ascendin			I NDEC		
	VE DE VE FR	0	0	0	0	0	- 1	-	SECOND:		et VT DIESE	L NDEC		
	VT Gasoline NEDC	1	0	Ü	1	0	1		JECOND	- 45 05				
	VI Gasonne NEDC	-	·			v	-							

				Matrice de d	crédibilité			
	ρS(a,b)	VE FR	VT Gasoline NEDC					
	VE FR		0					
	VT Gasoline NEDC	0						
k = 2	λmax	0						
	S(\lambdamax)	0,3						
	λmax - S(λmax)	-0,3						
	λk	0					Ascending weak	order
							FIRST = VE EU 27 et VT I	DIESEL NEDC
	ρS(a,b)	VE FR	VT Gasoline NEDC	os	od	q	SECOND = VE	DE
	VE FR		0	0	0	0	THIRD = VE FR et VT GAS	OLINE NEDC
	VT Gasoline NEDC	0		0	0	0		

On obtient donc le ranking suivant pour le classement descendant :

- Rank 1 = VE EU 27 et VT Diesel NEDC
 - > Rank 2 = VE DE
- Rank 3 = VE FR et VT Gasoline NEDC

Afin d'obtenir le classement final, il faut « fusionner » les classements des deux algorithmes. Pour ce faire, on va donc construire les ensembles de préférence (P), d'indifférence (I) et d'incomparabilité (R) définis comme suit :

- a is preferred to b, $(a, b) \in P$, if a is better ranked than b in one of the two weak orders and at least as well ranked as b in the other;
- a is indifferent to b, $(a, b) \in I$, if a and b are indifferent in the two weak orders;
- a is incomparable to b, $(a, b) \in R$, if a is better ranked than b in one of the two weak orders and b is better ranked than a in the other.

Avec les correspondances suivantes :

a = VT Gas	oline NEDC
b = VE DE	
c = VT DIES	SEL NDEC
d = VE EU	27
e = VE FR	

On voit tout de suite que « a » est la meilleure alternative et « d » la pire dans le classement final selon les deux classements de l'algorithme de distillation ainsi que des ensembles P, I et R.

Il nous manque « b », « c » et « e ». D'après l'ensemble R, il faut simplement déterminer qui est le meilleur entre « b » et « c » et selon l'ensemble P, il s'agit de « b ». On obtient donc notre classement final :

	Final rank
Rank 1	VT Gasoline NEDC
Rank 2	VE DE et VE FR (incomparables)
Rank 3	VT DIESEL NDEC
Rank 4	VE EU 27

5. Interprétation et recommandations

D'après le classement final, on en déduit que le **véhicule thermique Gasoline NEDC** est la **meilleure alternative** parmi les 5 proposées selon les critères et la pondération du décideur SNCF 1 afin de minimiser l'impact environnemental induit par les véhicules.

Toutefois, le fait qu'ici le véhicule thermique soit meilleur qu'un véhicule électrique n'est absolument **pas une généralité**. En effet en deuxième position ce sont deux véhicules électriques que l'on retrouve, devant un autre véhicule thermique : VT Diesel NEDC.

De plus, la pondération des critères joue un **rôle crucial** dans le classement. Aujourd'hui notre décideur a proposé une telle importance parmi les critères mais peut être que dans 5 ans la pondération va **varier** selon les besoins du moment, selon la philosophie du décideur, selon de nombreux facteurs. Et une fois cette nouvelle pondération effectuée et selon certainement de nouveaux seuils, le résultat sera **complètement différent**.

De plus, ici seulement un aspect a été pris en compte : l'aspect environnemental. Cependant, pour pousser un peu plus l'étude et le choix du véhicule, il pourrait être intéressant de s'intéresser à deux autres aspects :

L'économie : le decideur veut-il favoriser les bénéfices ?

La société : le décideur veut-il plaire à la population ?

Une fois les classements obtenus dans ces trois aspects respectifs, on peut à nouveau proposer un système de pondération selon la stratégie du décideur et ainsi proposer LE véhicule pour satisfaire au mieux ces trois aspects.

Il est donc essentiel pour le décideur de toujours **vérifier** et **mettre à jour** sa stratégie et ses critères pour déterminer la meilleure alternative.

On remarque bien à travers cet exemple l'intérêt et la puissance de la **recherche opérationnelle**. En effet, avec une telle multitude de critères, il est **difficile de faire un choix** à première vue.

6. Annexe

Voici un lien pour accéder à l'ensemble de notre travail :

 $\underline{https://imtminesales-my.sharepoint.com/:x:/g/personal/louis_berthier_minesales_org/Edq875CSaDFFtkJkxH_Ym3ABeBgprGqchPxc71V-HGwJUg?e=qFBTr2$

