数理统计期中

Eurekaimer

- 1. 己知 $X_1, X_2, ..., X_n \stackrel{IID}{\sim} B(1, p)$, 设其中 $0 , <math>\theta = p^2$
 - (1) 试求 θ 的无偏估计的 C-R 下界
 - (2) 试求 θ 的极大似然估计 $\hat{\theta}_{ML}$
 - (3) 试证明 $E(\hat{\theta}_{ML}) \neq \theta$, 问 $\hat{\theta}_{ML}$ 是向上偏还是向下偏

- 2. 设总体 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$ 中分别抽取容量为 $n_1 = 10, n_2 = 15$ 的独立样本,可计算得 $\overline{x} = 82, s_x^2 = 56.5, \overline{y} = 76, s_y^2 = 52.4$
 - (1) 若已知 $\sigma_1^2 = 64$, $\sigma_2^2 = 49$, 求 $\mu_1 \mu_2$ 的置信水平为 95
 - (2) 若已知 $\sigma_1^2 = \sigma_2^2$, 求 $\mu_1 \mu_2$ 的置信水平为 95
 - (3) 若对 σ_1^2, σ_2^2 一无所知, 求 $\mu_1 \mu_2$ 的置信水平为 95
 - (4) 求 $\frac{\sigma_1^2}{\sigma_2^2}$ 置信水平为 95

3. 在买面包作早点的男女消费者中,男性购买者的比例 p 未知,但知道 $\frac{1}{3} \le p \le \frac{1}{2}$,设在 70 个购买者中发现 12 个是男性,58 个是女性,试求 p 的 MLE. 如果对 p 没有限制,试求 p 的 MLE

- 4. 已知 $X_1, X_2, \dots, X_n \stackrel{IID}{\sim} N(\mu, \sigma^2)$, 其中 $\mu \in R$ 为未知参数, $\sigma^2 > 0$ 为已知参数
 - (1) 试求 μ^3 , μ^4 的 UMVUE
 - (2) 试求概率 $P(X_1 \leq t)$ 和 $\frac{\partial}{\partial t}P(X_1 \leq t)$ 的 UMVUE, 其中 $t \in R$ 为给定常数

- **5.** 设随机样本 $X_1, X_2, ..., X_n$ 来自分布 $f(x, \theta) = \theta^2 x \exp(-\theta x), x > 0, \theta > 0$
 - (1) 试证明 $T = \sum_{i=1}^{n} X_i$ 为 θ 的充分完备统计量
 - (2) 试求 $E\left(\frac{1}{T}\right)$

6. 设 $X_1, X_2, \ldots, X_m \stackrel{IID}{\sim} N(\theta, \sigma^2)$, 我们需求出 θ^2 的估计,下面提供三种不同的估计序列:

$$\delta_{1,n} = \overline{X}^2 - \frac{\sigma^2}{n}, \sigma^2$$
已知
$$\delta_{2,n} = \overline{X}^2 - \frac{s^2}{n(n-1)}, \sigma^2$$
未知
$$\delta_{3,n} = \overline{X}^2, \sigma^2$$
已知或未知

- (1) 试给出 $\delta_{i,n}$ 的渐进分布
- (2) 试证明 $\delta_{1.n}$ 和 $\delta_{2,n}$ 是渐进无偏的,而 $\delta_{3,n}$ 是渐进有偏的.

7. 设 $X_1, X_2, \dots, X_n \overset{IID}{\sim} F(x)$,对于固定的 $x \in R$,试求总体分布 F(x) 的置信水平近似为 $1-\alpha$ 的大样本置信区间