Universidad Centroamericana "José Simeón Cañas"

Facultad de Ingeniería y Arquitectura

Tutorías - Fundamentos de Programación

Tutor: Ernesto José Canales Guillén

Ciclo 01/2021

Conversión de números de una base a otra

Decimal	Binario	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

1. Conversión de Números en Base 10 a otras bases (Ejercicios)

a) $(690)_{10} = (1262)_8$

$$(690)_{10} \rightarrow 8$$

$$(690)_{10} \rightarrow 8$$

$$286 \frac{8}{108}$$

$$(1262)_{8}$$

b) $(38.123)_{10} = (100110.00011)_2$

$$\begin{array}{c|cccc}
(38,123) & & & & & & & \\
3812 & & & & & & \\
3812 & & & & & \\
0.123 \times 2 & = 0 \\
0.246 \times 2 & = 0 \\
0.492 \times 2 & = 0 \\
0.492 \times 2 & = 0 \\
0.936 \times 2 & = 1 \\
0.936 \times 2 & = 1 \\
0.936 \times 2 & = 1 \\
0.00110 & 00011
\end{array}$$

c) $(333.598)_{10} = (14D.991)_{16}$

$$(333.598)10 = (14D.991)16$$

$$(333.598)10 = (14D.991)16$$

$$0.598 \times 16 = 9$$

$$0.568 \times 16 = 9$$

$$0.568 \times 16 = 1$$

$$1413$$

$$991$$

$$(14D.991)_{16}$$

2. Conversión de Números expresados en otras bases a Base 10

a)
$$(513)_8 = (331)_{10}$$

$$(513)_8 - 10$$

$$(5 \times 8^{2}) + (1 \times 8) + (3 \times 8^{\circ})$$

b) $(100110.00011)_2 = (38.09375)_{10}$

$$(1\times2^{5})+(1\times2^{2})+(1\times2^{2})+(1\times2^{2})+(1\times2^{5})$$

 $32+4+2+0.0625+0.03125$
 $(38.09375)_{10}$

c) $(14D.991)_{16} = (333.597)_{10}$

$$(140.991)_{16} \rightarrow 10$$

$$1 \quad 4 \quad 0 \quad 9 \quad 9 \quad 1$$

$$1 \quad 1 \quad 0 \quad -1 \quad -2 \quad -3$$

$$(1 \times 16^{2}) + (4 \times 16^{1}) + (13 \times 16^{0}) + (9 \times 16^{1}) + (9 \times 16^{1}) + (12 \times 16^{0})$$

$$256 + 64 + 13 + 0.56 + 0.03^{\circ} + 0.0002^{\circ}$$

$$\simeq (333.597)_{10}$$

3. Conversión de Números entre dos bases cualesquiera 3.1. Conversión de la base a, hacia base 10 y luego a base b

a) $(10101)_2 = (21)_{10} = (15)_{16}$

$$(10101)_{2} \rightarrow 10$$
 $1 \not 0 1 \not 0 1$
 $4 \not 3 \not 2 1 \circ (1 \times 2^{4}) + (1 \times 2^{2}) + (1 \times 2^$

b)
$$(14A)_{16} = (330)_{10} = (512)_8$$

$$(14 \stackrel{\circ}{A})_{16} \rightarrow 10$$

$$1 + 4 \qquad A$$

$$2 \qquad 1 \qquad 0$$

$$(1 \times 16^{2}) + (4 \times 16^{2}) + (10 \times 16^{2})$$

$$256 + 64 + 10$$

$$(330)_{10} \rightarrow 16$$

$$330 \stackrel{\circ}{A} \rightarrow 16$$

$$330 \stackrel{\circ}{A} \rightarrow 16$$

$$310 \stackrel{\circ}{A} \rightarrow 16$$

Conversión de Números entre dos bases cuando una es potencia de la otra

3.1.1. Base origen es menor que la base destino

a) $(1001.1001)_2 = (11.44)_8$

b) $(1101.1101)_2 = (D.D)_{16}$

$$(1101.1101)_{2}$$
 $\rightarrow 16$ $2 = 16$

3.2.2 Base origen es mayor que la base destino

a) $(17)_8 = (1111)_2$

b) $(F)_{16} = (1111)_2$