객체 추적을 위한 재귀적 딥러닝 모델 연구

이수환*, 서동환**
*한국해양대학교 전기전자공학과
**한국해양대학교 전자전기정보공학부
e-mail: config5246@naver.com

A Recurrent Deep Learning Model for Object Tracking

Soo-Hwan Lee*, Dong-Hoan Seo**

*Dept of Electrical and Electronics Engineering,
Korea Maritime and Ocean University

**Division of Electronics and Electrical Information Engineering,
Korea Maritime and Ocean University

1. 연구 필요성 및 문제점

영상 장비의 보편화 및 고도화는 관련 시스템 및 기반서비스들의 발달을 불러왔으며, 이는 자동화와 같은 환경에 대한 시공간적 이해를 바탕으로 하는 분야에까지 확장되고 있다. 특히, 영상 내 객체들의 이동성 및 방향성에대한 분석이 필수적인 무인 감시 및 자율 운행과 같은 시스템은 객체 추적 기술의 적용이 필수적이다. 기존의 객체추적 기술을 목표 객체의 정보를 주기적으로 검색하여 추적하거나, 이동 궤적을 모델링하여 방향성을 분석한다[1]. 최근 딥러닝 기반 컴퓨터 비전 알고리즘들이 소개되면서큰 성능 향상을 가져왔으나, 특징을 추출하여 점 단위로연산되는 CNN 알고리즘의 한계로 인해 Low 단계와High 단계로 분할하여 객체의 궤적을 생성하고 추적을 하였다. 이러한 구조는 딥러닝 구조의 비효율성을 떨어뜨리기 때문에 이러한 문제를 해결하기 위한 단일화된 재귀모델이 필요하다.

2. 연구내용과 방법

본 연구에서는 기존의 객체 추적 알고리즘의 효율성을 향상시키기 위해 객체의 이동 궤적을 생성하는 부분과 객 체의 특징 선별하는 부분을 하나의 딥러닝 네트워크로 구 성하여 연산 속도를 향상시키며, 단일 셀 형태의 재귀 구 조로 설계하여 정밀도를 향상시킨다. 그림 1은 제안된 딥 러닝 모델의 구조를 나타낸다.

그림 1. 제안된 딥러닝 모델의 구조

그림 1의 L_D , L_G , L_C 는 각각 판별기, 생성기, 비교기의 손실 함수를 의미하며, L 은 생성기의 학습을 위한 GAN(Generative Adversarial Network)의 손실 함수를 의미한다. c_t 은 재귀 셀에 다음 시간으로 전달되는 모델 벡터를 의미하고 x_t 는 전 시점의 결과값을 의미한다. x_t 는 생성기를 통해 예측된 t 시점의 결과를 말하며, z_t 는 실제 t 시점에 입력되는 실제 데이터를 의미한다. $\hat{x_t}$ 는 비교기를 통해 최종 선택된 결과를 의미한다. 제안된 Recurrent Prediction Cell을 통해 딥러닝 기반 객체 이동 제적을 예측하며 이를 High Level 분석기와 결합함으로써학습의 효율성을 높인다.

3. 결론 및 향후 연구

본 논문에서 제안한 재귀 모델을 통해 객체 이동의 궤적을 예측하고 이를 바탕으로 객체 추적을 진행하였다. 실험은 다양한 데이터세트를 기반으로 진행하였고 정확도를 나타내었다. 기존의 분할된 알고리즘에 비해 학습의 효율이 향상되었다. 향후 이 연구를 바탕으로 영상 및 물리적예측 알고리즘에 적용하여 정확도 및 연산 속도를 개설할 예정이다.

후기

"이 논문은 2016년도 정부(교육부)의 재원으로 한국연구 재단 기본연구지원사업의 지원을 받아 수행된 기본연구임 (No.2016R1D1A1B03934812)"

참고문헌

[1] Bae, Seung-Hwan, and Kuk-Jin Yoon. "Confidence-based data association and discriminative deep appearance learning for robust online multi-object tracking." IEEE transactions on pattern analysis and machine intelligence 40.3 (2018): 595-610.