Dynamic Programming

Example:

nth Fibonacci number

Recursive algorithm:

Tib(n): IN

if n=0-ret 0

if n=1 ret 1

else

ret Fib(n-1)+Fib(n-2)

$$F_0 = 0$$
 $F_1 = 1$
 $F_n = F_{n-1} + F_{n-2}$

DP algorithm:

Fib(n): A:N[3]

A[0]:=0 A[1]:=1 A[2]:=1

for i = 3... A[O] := A(1), A(1) := A(2)A[2] := A(0) + A(1)

Matrix Chain multiplication problem $A_{1} \times A_{2} \times A_{3} \times A_{4}$ $5 \times 10 \quad 10 \times 2 \quad 2 \times 30 \quad 30 \times 4$ $P \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right]$ The cost of multiplication of antres of SIZE pxq and gxr is pogort 400 366 600((A, xA,) x A,) x A, $(A_1 \times A_2) \times (A_3 \times A_4) \leftarrow 5 \times 10 \times 2 + 2 \times 30 \times 4 + 5 \times 2 \times 4$

II.) Subproblems $A_{1} \times A_{2} \times A_{3} \times ... \times A_{n}$ $R[i_{1}] := is the problem of optimal parenthesization of <math>A_{i} \times A_{i+1} \times A_{i+2} \times ... \times A_{j}$

-> where should we put the brackets So the cost is minimal? [2] Optimal substructure property If I have an optimal solution for R[ij], and the last multiplication is between -

(AixAirxxxAk) × (Ak+1 × Ak+2 × ... × Aj) [A A]A A then the other brackets give an optimal solution for R[i,k] and R(k+1,j]

If optimal (A A) A) A (A A) then)

(A A/A A) Optima (

13.) Recursive formula m[ijj]:= the cost of the optimal Solution for problem R[ij] from (2.) it follows: if in the optimal solution of RCijj the last multiplication is after Ae, then we have

A1: Poxp1 Az: P1 X P2 Ai: Pi-1 X Pc An: Phyx Ph We don't know which "k" this is, so Calculate all, and take the minimal one.

$$m[i,j] = min \begin{cases} m[i,k] + m[k+1,j] + p_i \times p_j \\ i \leq k \leq j \end{cases}$$

$$M[i,i] := 0$$

$$m(i_1i+1) = p_{i-1} \times p_i \times p_{i+1}$$

Aix Aix Aix Aix XAix XAix XAj

(4.) Table to fill

i m[i,j]

Example: An Az As An As A. As A. 25 x 30 30×10 10×5 5×10 10×15 15×20

$$m(3) = \min \left\{ \frac{1}{3} + \frac{1}{2} + \frac{3}{2} + \frac{25 \times 30 \times 5}{30 \times 5} \right\} = \min \left\{ \frac{1}{2} + \frac{3}{2} + \frac{25 \times 30 \times 5}{30 \times 5} \right\} = \min \left\{ \frac{1}{2} + \frac{3}{2} + \frac{3}{2$$

25 30 10 5 10 15 20

$$m[1,4] = min \begin{cases} m(1,1) + m(2,4) + 25 \times 30 \times 10 \\ m(1,2) + m(3,4) + 25 \times 10 \times 10 \\ m(1,3) + m(4,4) + 25 \times 5 \times 10 \end{cases}$$

$$m[2,5] = min \begin{cases} m(2,2) + m[3,5] + 30 \times 10 \times 15 \\ m(2,3) + 10 \times 15 \end{cases}$$

$$m[3,4] + m[4,6] + 10 \times 5 \times 20$$

$$m[3,4] + m[5,6] + 10 \times 15 \times 20$$

$$m[3,4] + m[6,6] + 10 \times 15 \times 20$$

$$m[3,5] + m[6,6] + 10 \times 15 \times 20$$

$$m[1,5] = \dots$$

$$m[2,67 = \dots$$

$$M[\Lambda,67=...$$

[5.) Giving an optimal solution:

In a new table keep track of the "k" values, where the minimum is taken.

