Data Mining & Organization: Iris and others data sets Clustering

Donatella Merlini

Università di Firenze Corso di Laurea Magistrale in Informatica Curriculum Data Science

WEKA K-means: parameters

- DisplayStdDev: displays the standard deviation of the individual point distances from the center of the cluster. The measurement is reported separately for each attribute.
 - The smaller the StdDev the greater the cluster cohesion with respect to the attribute.
 - Allows you to choose which attributes to use in computing similarity.
- Distance function: type of distance used in the calculation
- MaxIteration: maximum number of iterations to get the convergence
- NumCluster: K value
- Seed: random value for the choice of the initial centroids;
 changing it changes their initial positioning

K-means clustering the Iris data set

 Apply simple K-means with DisplayStdDev=true and NumCluster=3, after ignoring the attribute Class

```
kMeans
=====
Number of iterations: 6
Within cluster sum of squared errors: 6.998114004826762
Initial starting points (random):
Cluster 0: 6.1,2.9,4.7,1.4
Cluster 1: 6.2,2.9,4.3,1.3
Cluster 2: 6.9,3.1,5.1,2.3
Missing values globally replaced with mean/mode
```

Final cluster centroids:

Cluster#

Attribute	Full Data (150.0)	0 (61.0)	1 (50.0)	(39.0)
slength	5.8433 +/-0.8281	5.8885 +/-0.4487		
swidth	3.054 +/-0.4336	2.7377 +/-0.2934	3.418 +/-0.381	
plength	3.7587 +/-1.7644	4.3967 +/-0.5269	1.464 +/-0.1735	
pwidth	1.1987	1.418	0.244	2.0795

Time taken to build model (full training data): 0.01 seconds

=== Model and evaluation on training set ===

Clustered Instances

- 0 61 (41%) 1 50 (33%)
- 2 39 (26%)

Now apply simple K-means by selecting Classes to cluster evaluation instead of Use training set

```
Time taken to build model (full training data): 0.01 seconds
=== Model and evaluation on training set ===
Clustered Instances
       61 (41%)
      50 ( 33%)
      39 ( 26%)
Class attribute: class
Classes to Clusters:
 0 1 2 <-- assigned to cluster
 0 50 0 | Tris-setosa
47 0 3 | Tris-versicolor
14 0 36 | Iris-virginica
Cluster O <-- Tris-versicolor
Cluster 1 <-- Iris-setosa
Cluster 2 <-- Iris-virginica
```

Projection on petal attributes

 You can visualize clustering results for each pair of attributes (use Jitter)

Projection on sepal attributes

You can save the clustering results as an .arff file by selecting the Save button $\ \ \,$

Improving K-means results

- In *K*-means clustering, there are a number of ways one can often use to improve results
- One of the most common is to normalize the data so that the differences in scale of the numerical attributes do not dominate the distance measure: in WEKA this can be done during the Pre-processing phase by using the filter: Unsupervised → Attribute → Normalize
- Visualization can sometimes help us discern the attributes that best separate the data: to this purpose, we can examine the scatter plots of the Iris data set

Clustering on petal attributes

 Now apply simple K-means by selecting Classes to cluster evaluation and ignoring attributes slength and swidth

```
kMeans
=====

Number of iterations: 6
Within cluster sum of squared errors: 1.7050986081225123
Initial starting points (random):
Cluster 0: 4.7,1.4
Cluster 1: 4.3,1.3
Cluster 2: 5.1,2.3
Missing values globally replaced with mean/mode
```

```
Final cluster centroids:
```

		Cluster#		
Attribute	Full Data	0	1	2
	(150.0)	(52.0)	(50.0)	(48.0)
plength	3.7587	4.2962	1.464	5.5667
	+/-1.7644	+/-0.5053	+/-0.1735	+/-0.549
pwidth	1.1987	1.325	0.244	2.0562
	+/-0.7632	+/-0.1856	+/-0.1072	+/-0.2422

Time taken to build model (full training data): 0.01 seconds === Model and evaluation on training set === Clustered Instances

- 0 52 (35%) 1 50 (33%) 2 48 (32%)
- Class attribute: class Classes to Clusters:
 - 0 1 2 <-- assigned to cluster 0 50 0 | Iris-setosa
- 48 0 2 | Iris-versicolor 4 0 46 | Iris-virginica
- Cluster 0 <-- Iris-versicolor Cluster 1 <-- Iris-setosa

Cluster 2 <-- Iris-virginica
Incorrectly clustered instances: 6.0 4 %

New projection on petal attributes

Exercise: the FoodNutrientClassified data set

Contains the nutrition information of 25 foods: load the *FoodNutrientClassified.arff* file.

- Normalize and cluster data using K-means with a number of clusters between 2 and 6
- Analyze the results by making assumptions about the meaning of the classes according to the characteristics of the centroid and StdDev of the clusters.

Exercise: the Coordinates data set

Contains geographic coordinates of 480 points: load the *Coordinates.arff* file.

- Classify data using K-means with a number of clusters between 2 and 6
- How does SSE change?
- Starting from which K SSE value stabilizes?
- Can K-means capture natural clusters?

Numerical and nominal attributes in K-means

- For two numeric attribute values x and y, the value of x y is used in the distance calculation.
- For two nominal attribute values x and y, 0 is used when the two values are the same, and 1 is used when they are different.
- This only makes sense when numeric attributes have been rescaled (normalized) to the [0,1] interval.
 EuclideanDistance and ManhattanDistance both do this by default.

WEKA Agglomerative Hierarchical cluster

- The first column of the data set should be of type string to visualize the correct labels in the dendogram: you can use the filter Unsupervised → Attribute → NominalToString
- Different distance functions and link type can be used
- To visualize the complete dendogram set numCluster to 1
- The cluster can be printed in Newick format
- We work on the following small data set:

Point	Χ	Υ
P1	0.4	0.53
P2	0.22	0.38
P3	0.35	0.32
P4	0.26	0.19
P5	0.08	0.41
P6	0.45	0.3

The results with SINGLE link

```
=== Run information ===
Scheme:
              weka.clusterers.HierarchicalClusterer -N 1 -L SINGLE -P -A "weka.core.EuclideanDistance
              -R first-last"
Relation:
             HierarchicalDataSetLibro-weka.filters.unsupervised.attribute.NominalToString-Cfirst
Instances:
Attributes:
              Point.
              X
Test mode:
             evaluate on training data
=== Clustering model (full training set) ===
Cluster 0
(P1:0.63226.(((P2:0.38853,P5:0.38853):0.00465.(P3:0.2766,P6:0.2766):0.11658):0.05999.P4:0.45317):0.17909)
Time taken to build model (full training data) : 0 seconds
=== Model and evaluation on training set ===
Clustered Instances
      6 (100%)
```

The resulting dendograms

Single link

Complete link

The resulting dendograms

Average link

Ward link

Exercise

- Use KEWA agglomerative hierarchical clustering on the Iris data set
- Preprocess the data in order to apply the algorithm
- Try the algorithm by using several options:
 - select different clustering attributes
 - select different lynk type options
 - use different number of clusters
- Discuss the results

WEKA DBSCAN algorithm

- In the most recent version of WEKA the DBSCAN algorithm is not available in the basic version of the software
- The algorithm must be added from the Package manager menu (please search for Optics_dbScan algorithm and install it)

WEKA DBSCAN parameters

- Different distance functions, epsilon and minpoints can be used
- By default, EuclideanDistance normalizes attributes values to lie between zero and one, set dontNormalize to True for using more intuitive values for epsilon and minpoints.
- We work on the following small data set:

Point	Χ	Υ
P1	2	10
P2	2	5
P3	8	4
P4	5	8
P5	7	5
P6	6	4
P7	1	2
P8	4	9

The results with $\epsilon = 2$ and minpoints=2

```
=== Clustering model (full training set) ===
DBSCAN clustering results
Clustered DataObjects: 8
Number of attributes: 2
Epsilon: 2.0; minPoints: 2
Distance-type:
Number of generated clusters: 2
Elapsed time: .0
(0.) 2,10 --> NOISE
(1.) 2,5
            --> NOISE
(2.) 8,4
             --> 0
(3.) 5,8 --> 1
(4.) 7,5 --> 0
(5.) 6,4 --> 0
(6.) 1,2
            --> NOISE
(7.) 4.9 --> 1
Time taken to build model (full training data): 0 seconds
=== Model and evaluation on training set ===
Clustered Instances
     3 (60%)
     2 ( 40%)
Unclustered instances : 3
```

$\epsilon = 2$ and minpoints=2: 2 clusters and 3 outliers

$\epsilon = 3.2$ and minpoints=2: 3 clusters and 0 outliers

Exercise

- Use KEWA DBSCAN algorithm on the Iris data set
- Preprocess the data in order to apply the algorithm
- Try the algorithm by using several options:
 - select different clustering attributes
 - select different epsilon and minpoints
- Discuss the results

Coordinates with DBSCAN

- Evaluate the result of the classification with DBSCAN
- Identify the correct values for epsilon and minpoints