Notes for Week 7/17/19 - 7/31/19

Alden Green

August 5, 2019

1 Goodness-of-Fit Testing in the Sampling Model.

Let $\mathcal{D} = [0,1]^d$. Suppose we observe the random design x_1, \ldots, x_n independently sampled from the uniform distribution over $[0,1]^d$. Additionally, for $i \in [n]$, we observe

$$z_i = f(x_i) + \varepsilon_i, \quad \varepsilon_i \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0, 1), \quad \varepsilon \perp x$$

where $f \in \mathcal{H} \subseteq L^2(\mathcal{D})$. Our statistical goal is hypothesis testing. We wish to distinguish:

$$\mathbf{H}_0: ||f||_2 = 0 \text{ vs } \mathbf{H}_a: ||f||_2 > 0.$$

We will evaluate our performance using worst-case error: for a given function class \mathcal{H} , test function $\phi : \mathbb{R}^n \to \{0,1\}$ and $\epsilon > 0$, let

$$\mathcal{R}_{\epsilon}(\phi; \mathcal{H}) = \mathbb{E}_{f=0}(\phi) + \sup_{f \in \mathcal{H}: ||f||_2 > \epsilon} \mathbb{E}_f(1 - \phi)$$

An example function class \mathcal{H} we will consider will be the unit ball in a Sobolev space. Let s,d be known, fixed positive integers. For $f: \mathcal{D} \to \mathbb{R}$ locally summable, we use the multiindex notation $D^{\alpha}f$ to denote the α th-weak partial derivative of f (if one exists). Then, the Sobolev norm is

$$||f||_{W^{s,2}(\mathcal{D})}^2 = \sum_{|\alpha| \le s} \int_{\mathcal{D}} ||D^{\alpha}f||_2^2 dx$$

and the corresponding unit ball is $W^{s,2}(\mathcal{D};L) = \{f: ||f||_{W^{s,2}(\mathcal{D})} \leq L\}.$

1.1 Test statistic.

For $x, y \in \mathcal{D}$ and radius r > 0 to be specified later, let $\eta_r(x, y) = \mathbf{1}(\|x - y\|/r \le 1)$. and let A be the $n \times n$ adjacency matrix with entires $A_{ij} = \eta_r(x_i, x_j)$. Let B be the incidence matrix associated with A, and $L = B^T B$ be the associated Laplacian matrix. Write $B = U \Lambda^{1/2} V^T$ for the singular value decomposition of B. Then $L = V \Lambda V^T$ is the eigendecomposition of L, where Λ is a diagonal matrix of eigenvalues with diagonal entries $\lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$, and V is an orthonormal matrix of eigenvectors.

Our test statistic will be the norm of a projection of z onto the subspace spanned by the first few eigenvectors of V. In particular, for C > 0 to be specified later, our test statistic will be

$$T_C := \sum_{k: \lambda_i^s < C^2} y_k^2, \quad y_k = \frac{1}{\sqrt{n}} z^T v_k.$$

For $b \ge 1$, let $\tau(b) = b\sqrt{2N(C)/n^2}$. Then our test will be $\phi_C = \mathbf{1} \{T_C \le N(C)/n + \tau(b)\}$.

1.2 Fixed design testing.

Let β be the length-n random vector with jth entry $\beta_j = f(x_j)$. We introduce the scaling $C_{n,r} > 0$, defined by $C_{n,r}^2 = n^2 r^{d+2s}$. We will apply results about testing over balls in discrete Sobolev classes. Let $b \geq 1$ denote $N(C) := \sharp \{k : \lambda_k^s \leq C^2\}$, and consider the following events:

(E1) Discrete Sobolev norm of β :

$$||B^{(s)}\beta||_2 \le C_{n,r}$$

(E2) Eigenvalue tail decay: For the choice $C = C_r^{\star}$, where

$$C_r^{\star} = \frac{(C_{n,r} n^{s/d})^{4s/(4s+d)}}{n^{s/d}},$$

the following inequality is satisfied:

$$N(C_r^{\star}) \le n(C_r^{\star})^{d/s}.$$

(E3) L_2 norm of β :

$$\frac{\|\beta\|_2^2}{n} \ge \frac{(2\sqrt{2}b+1)}{n} \left(C_{n,r}n^{s/d}\right)^{2d/(4s+d)}.$$

Suppose for a given $x = x_1, ..., x_n$, and for a particular choice of radius r, the events (E3)-(E2) hold. The worst-case error conditional on x can then be upper bounded.

Lemma 1. For any x and r such that (E1) and (E2) hold, we have that if f = 0,

$$\mathbb{E}_{\beta}(\phi|x) \le \frac{1}{b^2}$$

If $f \neq 0$ is such that (E3) is additionally satisfied, we have that

$$\mathbb{E}_{\beta}(1 - \phi|x) \le \frac{1}{2h^2} + o(1)$$

We now turn to showing that each of (E1) and (E2) (and, under appropriate conditions on $||f||_2$, (E3)) hold with probability at least $1 - \frac{1}{b^2} - o(1)$.

2 Bounding discrete Sobolev norm.

Recall that our goal is to show (E1) occurs with high probability. We will build slowly to this goal.

2.1 s = 1, f Lipschitz.

To start, we provide a bound in the case when s=1, and f has bounded Lipschitz norm. Precisely, we define the space of 1-Holder (Lipschitz) functions $C_{\mathcal{X}}^{0,1}(1)$ to consist of all continuous functions $g:\mathcal{D}\to\mathbb{R}$ such that

$$||g||_{C^{0,1}_{\mathcal{D}}} := ||g||_{C(\mathcal{D})} + [g]_{C^{0,1}_{\mathcal{D}}} \le 1$$

where $||g||_{C(\mathcal{D})} = \sup_{x \in \mathcal{D}} |g(x)|$, and

$$[g]_{C_{\mathcal{D}}^{0,1}} = \sup_{x,y \in \mathcal{D}} \frac{|g(x) - g(y)|}{\|x - y\|}.$$

Let P_n be the empirical distribution associated with x_1, \ldots, x_n , i.e. $P_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$. We begin by providing a deterministic bound involving the distance between the measures P_n and P. As these are measures over

different spaces, it is not obvious how to relate them. We will use transportation distance to do so. Recall that a mapping $T: \mathcal{D} \to \mathcal{D}$ is a transportation map between P and P_n if for all measurable $A \subseteq \mathcal{D}$,

$$P_n(A) = P(T^{-1}(A))$$

Lemma 2. For any $f \in C^{0,1}_{\mathcal{D}}$, the following bound holds on the Sobolev discrete norm:

$$||B\beta||_2^2 \le n^2 r^2 (r + ||\mathrm{Id} - T||_{L^{\infty}(P)})^d$$

Proof. We write

$$\begin{split} \frac{1}{n^2} \|B^{(s)}\beta\|_2^2 &= \frac{1}{n^2} \beta^T L \beta \\ &= \frac{1}{2n^2} \sum_{i,j=1}^n (\beta_i - \beta_j)^2 A_{ij} \\ &= \int_{\mathcal{D}} \int_{\mathcal{D}} (f(x) - f(y))^2 \eta_r(x,y) \, dP_n(y) \, dP_n(x) \end{split}$$

We examine the inner integral. By the Holder property of f, and a change of variables, we obtain

$$\int_{\mathcal{D}} (f(x) - f(y))^{2} \eta_{r}(x, y) dP_{n}(y) \leq \int_{\mathcal{D}} ||x - y||^{2} \eta_{r}(x, y) dP_{n}(y)
= \int_{\mathcal{D}} ||x - T(y)||^{2} \eta_{r}(x, T(y)) dP(y)
\leq r^{2} \int_{\mathcal{D}} \eta_{r}(x, T(y)) dP(y)
\leq r^{2} (r + ||\text{Id} - T||_{L^{\infty}(P)})^{d}$$

and the desired result is shown.

2.2 $s = 1, f \in \mathcal{W}^{1,2}(\mathcal{D}; 1).$

Let P be an absolutely continuous probability measure over \mathcal{D} with density function p bounded above and below by constants, i.e

$$0 < p_{\min} < p(x) < p_{\max} < \infty$$
, for all $x \in \mathcal{D}$

Lemma 3. For any $f \in W^{1,2}(\mathcal{D}; L)$, and any $b \geq 1$, we have that there exists a constant $c_2 > 0$ which depends only on d and p_{\max} such that

$$||B\beta||_2^2 \le L^2 b^2 c_2 n^2 r^{d+2} \tag{1}$$

with probability at least $1 - \frac{1}{b^2}$.

Proof. Observe that

$$\frac{1}{n^2} \mathbb{E}(\beta^T L \beta) = \mathbb{E}\left(\frac{1}{n^2} \sum_{i,j=1}^n (\beta_i - \beta_j)^2 A_{ij}\right) = \frac{(n-1)}{n} \int_{\mathcal{D}} \int_{\mathcal{D}} (f(x) - f(y))^2 \eta_r(x, y) \, dP(y) \, dP(x) \\
\leq p_{\max}^2 \frac{(n-1)}{n} \int_{\mathcal{D}} \int_{\mathcal{D}} (f(x) - f(y))^2 \eta_r(x, y) \, dy \, dx.$$

We will show that for any $f \in \mathcal{W}^{1,2}(\mathcal{D}; L)$, there exists a constant c_4 which depends only on dimension d such that

$$\int_{\mathcal{D}} \int_{\mathcal{D}} (f(x) - f(y))^2 \eta_r(x, y) \, dy \, dx \le c_4 L^2 r^{d+2} \tag{2}$$

whence the desired result of (1) follows by Markov's inequality.

We begin by dealing with complications due to the boundary of \mathcal{D} . Let V be any bounded open set such that $\mathcal{D} \subset V$. Note that as $\partial \mathcal{D}$ is C^1 , by Theorem 1 there exists $g \in W^{1,2}(\mathbb{R}^d)$ such that

- 1. g = f, P-almost-everywhere in \mathcal{D}
- 2. g has support within V, and
- 3. $||g||_{W^{1,2}(\mathbb{R}^d)} \leq C||f||_{W^{1,2}(\mathcal{D})}$ for a constant C which depends only on \mathcal{D} .

As a result of the first point,

$$\int_{\mathcal{D}} \int_{\mathcal{D}} (f(x) - f(y))^2 \eta_r(x, y) \, dy \, dx \le \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} (g(x) - g(y))^2 \eta_r(x, y) \, dy \, dx. \tag{3}$$

Next, we smooth g, so that we may work with ordinary partial derivatives. We let $\kappa \in C^{\infty}(\mathbb{R}^d)$ be given by

$$\kappa(x) := \begin{cases} C \exp\left\{\frac{1}{\|x\|^2 - 1}\right\} & \text{if } \|x\|_2 \le 1\\ 0 & \text{if } \|x\|_2 \ge 1 \end{cases}$$

where the normalizing constant C > 0 is chosen so that $\int_{\mathbb{R}^d} \eta dx = 1$. Let $\kappa_r(x) := (1/r^d)\kappa(x/r)$. Then, the mollification of g by κ_r is given by

$$g^{r} := g * \eta_{r}$$
$$= \int_{\mathbb{R}^{d}} \eta_{r}(x - y)g(y)dy$$

(Refer to [Evans, 2010], Appendix C, Theorem 7 for a proof that $g^r \in C^{\infty}(\mathbb{R}^d)$.) Adding and subtracting within (3), we have

$$\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} (g(x) - g(y))^{2} \eta_{r}(x, y) \, dy \, dx \qquad (4)$$

$$\leq \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \left((g(x) - g^{r}(x))^{2} + (g^{r}(x) - g^{r}(y))^{2} + (g^{r}(y) - g(y))^{2} \right) \eta_{r}(x, y) \, dy \, dx$$

$$= 2 \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \left((g(y) - g^{r}(y))^{2} \eta_{r}(x, y) \, dy \, dx + \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \left((g^{r}(x) - g^{r}(y))^{2} \eta_{r}(x, y) \, dy \, dx \right) \tag{5}$$

We deal with each summand individually, beginning with the first one. We have

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} ((g(y) - g^r(y))^2 \eta_r(x, y) \, dy \, dx = \int_{\mathbb{R}^d} \int_{B(x, r)} ((g(y) - g^r(y))^2 \, dy \, dx$$

$$= \int_{\mathbb{R}^d} \int_{B(y, r)} ((g(y) - g^r(y))^2 \, dx \, dy \qquad \text{(Tonelli's Theorem)}$$

$$= r^d \int_{\mathbb{R}^d} ((g(y) - g^r(y))^2 \, dy \qquad (6)$$

$$\leq r^{d+2} \int_{\mathbb{R}^d} ||\nabla g(y)||^2 \, dy \qquad (7)$$

where the last line follows from Lemma 4.

We now turn our attention to the second summand. Note that as $g^r \in C^{\infty}(\mathbb{R}^d)$, we may apply Theorem 3 and obtain

$$(g^{r}(x) - g^{r}(y))^{2} = \left(\int_{0}^{1} \nabla g^{r}(x + t(y - x)) \cdot (y - x) dt\right)^{2}$$

$$\leq \int_{0}^{1} \left(\nabla g^{r}(x + t(y - x)) \cdot (y - x)\right)^{2} dt \qquad \text{(Jensen's inequality)}$$

$$\leq \|y - x\|^{2} \int_{0}^{1} \|\nabla g^{r}(x + t(y - x))\|^{2} dt. \qquad \text{(Cauchy-Schwarz inequality)}$$

As a result, we have

$$\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} ((g^{r}(x) - g^{r}(y))^{2} \eta_{r}(x, y) \, dy) \, dx \leq \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \|y - x\|^{2} \int_{0}^{1} \|\nabla g^{r}(x + t(y - x))\|^{2} \eta_{r}(x, y) \, dt \, dy \, dx
\leq r^{2} \int_{\mathbb{R}^{d}} \int_{0}^{1} \|\nabla g^{r}(x + t(y - x))\|^{2} \eta_{r}(x, y) \, dt \, dy \, dx
= r^{2} \int_{\mathbb{R}^{d}} \int_{0}^{1} \int_{\mathbb{R}^{d}} \|\nabla g^{r}(x + t(y - x))\|^{2} \eta_{r}(x, y) \, dx \, dt \, dy
= r^{2} \int_{\mathbb{R}^{d}} \int_{0}^{1} \int_{\mathbb{R}^{d}} \|\nabla g^{r}(x + tz)\|^{2} \eta_{r}(z) \, dx \, dt \, dz \qquad (z = y - x)$$

where we write $\eta_r(z) = \mathbf{1}(\|z\| \le r)$ in an abuse of notation. Next, we note that

$$\int_{\mathbb{R}^d} \|\nabla g^r(x+tz)\|^2 \, dx = \int_{\mathbb{R}^d} \|\nabla g^r(x)\|^2 \, dx \le \int_{\mathbb{R}^d} \|\nabla g(x)\|^2 \, dx$$

with the inequality following from Lemma 5. Therefore,

$$r^{2} \int_{\mathbb{R}^{d}} \int_{0}^{1} \int_{\mathbb{R}^{d}} \|\nabla g^{r}(x+tz)\|^{2} \eta_{r}(z) dx dt dz \leq r^{2} \int_{\mathbb{R}^{d}} \eta_{r}(z) \int_{0}^{1} \int_{\mathbb{R}^{d}} \|\nabla g(x)\|^{2} dx dt dz$$
$$= r^{2+d} \int_{\mathbb{R}^{d}} \|\nabla g(x)\|^{2} dx. \tag{8}$$

By (5), (7) and (8), we have that

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} (g(x) - g(y))^2 \eta_r(x, y) \, dx \, dy \le 3 \int_{\mathbb{R}^d} \|\nabla g(x)\|_2^2 \, dx$$

Then by (3), $\int_{\mathbb{R}^d} \|\nabla g(x)\|_2^2 dx \leq C \int_{\mathcal{D}} \|\nabla f(x)\|_2^2 dx \leq C$ where C is a constant depending only on \mathcal{D} . So the desired result of (3) follows.

3 Supporting Results.

Theorem 1 ([Evans, 2010] Chapter 5.4, Theorem 1). Assume U is bounded and ∂U is C^1 . Select a bounded open set V such that $U \subset V$ (U is compactly contained in V). Then there exists a bounded linear operator $E: W^{1,2}(U) \to W^{1,2}(\mathbb{R}^d)$ such that for each $u \in W^{1,2}(U)$:

- 1. Eu = u a.e. in U,
- 2. Eu has support within V, and

$$||Eu||_{W^{1,2}(\mathbb{R}^d)} \le C||u||_{W^{1,2}(\mathbb{R}^d)}$$

the constant C depending only on U and V.

For $u \in W^{1,2}(\mathbb{R}^d)$ and $x \in \mathbb{R}^d$, write $\nabla u(x) = (D^{e_1}(x), \dots, D^{e_d}(x))$, for the gradient of u.

Theorem 2 ([Evans, 2010] Chapter 5.8.1, Theorem 2). There exists a constant C, depending only on d, such that

$$||u - u^r||_{L^2(B(x,r))} \le Cr ||\nabla u||_{L^2(B(x,r))}$$

Theorem 3 (Taylor expansion.). For any function $u \in C^1$, and any $x, y \in \mathbb{R}^d$,

$$u(y) - u(x) = \int_0^1 \nabla(u(x + t(y - x))) \cdot (y - x) dt$$

Lemma 4. For any function $g \in W^{1,2}(\mathbb{R}^d)$ compactly supported in a bounded open set $V \subset \mathbb{R}^d$, we have

$$\int_{\mathbb{R}^d} (g(x) - g^r(x))^2 dx \le r^2 \int_{\mathbb{R}^d} \|\nabla g(x)\|^2 dx \tag{9}$$

Proof. This Lemma is essentially a reproduction of part of the proof of the Rellich-Kondrachov Compactness Theorem from [Evans, 2010]. Note that it is sufficient to prove in the case when g is smooth. To see this, for the moment assume (9) holds for all $u \in C^{\infty}(V)$, and let $g \in W^{1,2}(V)$. By Theorem 4, we may take a sequence $g_m \in C^{\infty}(V)$ such that

$$||g - g_m||_{L^2(V)} \to 0$$
, and $||\nabla g - \nabla g_m||_{L^2(V)} \to 0$,

Then we have

$$\int_{\mathbb{R}^d} (g(x) - g^r(x))^2 dx \le \int_{\mathbb{R}^d} (g(x) - g_m(x))^2 dx + \int_{\mathbb{R}^d} (g_m(x) - g_m^r(x))^2 dx + \int_{\mathbb{R}^d} (g_m^r(x) - g^r(x))^2 dx
\le \int_{\mathbb{R}^d} (g(x) - g_m(x))^2 dx + r^2 \int_{\mathbb{R}^d} ||\nabla g_m(x)||^2 dx + \int_{\mathbb{R}^d} (g_m^r(x) - g^r(x))^2 dx$$

and taking the limit as m goes to infinity, the right hand side converges to $\int_{\mathbb{R}^d} \|\nabla g(x)\|^2 dx$.

It remains to show (9) in the case where q is smooth. In this case, we have

$$\begin{split} g^r(x) - g(x) &= \frac{1}{r^d} \int_{B(x,r)} \kappa \left(\frac{x - z}{r} \right) \left(g(z) - g(x) \right) dz \\ &= \int_{B(0,1)} \kappa(y) \left(g(x - ry) - g(x) \right) dy \\ &= \int_{B(0,1)} \kappa(y) \int_0^1 \frac{d}{dt} \left(g(x - try) \right) dt dy \\ &= -r \int_{B(0,1)} \kappa(y) \int_0^1 \left(\nabla g(x - try) \right) \cdot y dt dy. \end{split}$$

Therefore, by Jensen's and Cauchy-Schwarz inequalities, we have

$$\begin{split} \int_{\mathbb{R}^d} (g(x) - g^r(x))^2 \, dx &\leq r^2 \int_{\mathbb{R}^d} \int_{B(0,1)} \kappa(y) \int_0^1 \|\nabla g(x - try)\|^2 \|y\|^2 \, dt \, dy \, dx \\ &\leq r^2 \int_{B(0,1)} \kappa(y) \int_0^1 \int_{\mathbb{R}^d} \|\nabla g(x - try)\|^2 \, dx \, dt \, dy \\ &= r^2 \int_{\mathbb{R}^d} \|\nabla g(z)\|^2 \, dz \end{split}$$

The following theorem is Theorem 1 in Section 5.3 of [Evans, 2010].

Theorem 4 (Local approximation by smooth functions.). Assume U is bounded, and $u \in W^{k,p}(U)$ for some $1 \leq p < \infty$. Then there exists functions $u_m \in C^{\infty}(U) \cap W^{k,p}(U)$ such that

$$||u_m - u||_{W^{k,p}(U)} \stackrel{m}{\to} 0.$$

Lemma 5. For any $u \in W^{1,2}(\mathbb{R}^d)$, we have

$$\int_{\mathbb{R}^d} \|\nabla u^r(x)\|_2^2 \, dx \le \int_{\mathbb{R}^d} \|\nabla u(x)\|_2^2 \, dx$$

Proof. Observe that $\|\nabla u(x)\|_2^2 = \sum_{j=1}^d (D^{e_j}u(x))^2$. Therefore,

$$\int_{\mathbb{R}^d} \|\nabla u^r(x)\|_2^2 dP(x) = \sum_{j=1}^d \int_{\mathbb{R}^d} (D^{e_j} u^r(x))^2 dx$$
$$= \sum_{j=1}^d \int_{\mathbb{R}^d} ((D^{e_j} u)^r(x))^2 dx$$

where the second equality follows from equation (1) in Section 5.3 of [Evans, 2010]. Then, for any $v \in L^2(\mathbb{R}^d)$, we have that

$$|v^r(x)| = \int_{\mathbb{R}^d} \kappa_r^{1/2}(x - y)\kappa_r^{1/2}(x - y)v(y) dy$$

$$\leq \left(\int_{\mathbb{R}^d} \kappa_r(x - y) dy\right)^{1/2} \left(\int_{\mathbb{R}^d} \kappa_r(x - y)v^2(y)\right)^{1/2}$$

$$= \left(\int_{\mathbb{R}^d} \kappa_r(x - y)v^2(y)\right)^{1/2}$$

and therefore

$$\int_{\mathbb{R}^d} (v^r(x))^2 dx \le \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \kappa_r(x - y) v^2(y) dy dx$$
$$= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \kappa_r(x - y) v^2(y) dy dx$$
$$= \int_{\mathbb{R}^d} v^2(y) dy$$

Applying this to $D^{e_j}u \in L^2(\mathbb{R}^d)$, we have that

$$\sum_{j=1}^{d} \int_{\mathbb{R}^{d}} ((D^{e_{j}}u)^{r}(x))^{2} dx \leq \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} ((D^{e_{j}}u(x))^{2} dx = \int_{\mathbb{R}^{d}} \|\nabla u(x)\|^{2} dx.$$

REFERENCES

Lawrence C. Evans. Partial differential equations. American Mathematical Society, 2010.