Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 1953209.06

Figure 1: Outline of path 1

2.1.1 Alkylation of N-heterocycles with activated alcohols

Substrates:

- 1. 2-Chloroethyl methanesulfonate available at Sigma-Aldrich
- 2. 4-Bromo-5-phenyl-1H-1,2,3-triazole available at Sigma-Aldrich

Products:

$1. \ ClCCn1nnc(-c2cccc2)c1Br \\$

Typical conditions: K2CO3.MeCN.heating

Protections: none

Reference: 10.1021/jm200112k (suppl. Info p.27) and WO2013167586A1 p.9

and WO2004/24147 p.23

Retrosynthesis ID: 24133

2.1.2 Synthesis of aryl Grignard reagents

Substrates:

1. Magnesium - available at Sigma-Aldrich

 $2. \ ClCCn1nnc(-c2cccc2)c1Br$

Products:

 $1. \ \ ClCCn1nnc(-c2cccc2)c1[Mg]Br$

Typical conditions: iPrMgCl.THF or other conditions like BuLi.MgBr2 or

Mg.THF

Protections: none

Reference: DOI: 10.1016/S0040-4039(99)01404-5 and 10.1021/jo0000574 and

10.1002/anie.200454084 and 10.1021/ol400150z

2.1.3 Grignard-Type Reaction

Substrates:

- $1. \ \ ClCCn1nnc(-c2cccc2)c1[Mg]Br$
- 2. 2-Cyclohexen-1-one available at Sigma-Aldrich

Products:

 $1. \ \ OC1(c2c(-c3ccccc3)nnn2CCCl)C=CCCC1$

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jm061429p or 10.1016/j.bmc.2012.11.015 or

10.1016/j.tetasy.2012.05.024

Retrosynthesis ID: 25133

2.1.4 Alkylation of tertiary alcohols

Substrates:

1. OC1(c2c(-c3cccc3)nnn2CCCl)C=CCCC1

Products:

1. C1=CC2(CCC1)OCCn1nnc(-c3cccc3)c12

 ${\bf Typical\ conditions:}\ {\rm K2CO3.acetone.heat}$

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

Retrosynthesis ID: 31010930

2.2 Path 2

Score: 1953209.06

Figure 2: Outline of path 2

2.2.1 N-alkylation of heterocycles

Substrates:

 $1. \ 1{\text -}Bromo-2{\text -}chloroethane - \\ \qquad \textit{available at Sigma-Aldrich}$

2. 4-Bromo-5-phenyl-1H-1,2,3-triazole - available at Sigma-Aldrich

Products:

 $1. \ ClCCn1nnc(-c2cccc2)c1Br \\$

Typical conditions: NaH. DMF

Protections: none

Reference: 10.1016/j.ejmech.2010.11.014 or 10.1039/C6OB01149G (SI) or 10.1246/cl.2005.442 or 10.1021/ol403570z (SI) or 10.1016/S0040-4020(01)00360-X

Retrosynthesis ID: 10000414

2.2.2 Synthesis of aryl Grignard reagents

Substrates:

1. Magnesium - available at Sigma-Aldrich

2. ClCCn1nnc(-c2cccc2)c1Br

Products:

1. ClCCn1nnc(-c2cccc2)c1[Mg]Br

Typical conditions: iPrMgCl.THF or other conditions like BuLi.MgBr2 or Mg.THF

Protections: none

Reference: DOI: 10.1016/S0040-4039(99)01404-5 and 10.1021/jo0000574 and 10.1002/anie.200454084 and 10.1021/ol400150z

2.2.3 Grignard-Type Reaction

Substrates:

- $1. \ \ ClCCn1nnc(-c2cccc2)c1[Mg]Br$
- 2. 2-Cyclohexen-1-one available at Sigma-Aldrich

Products:

 $1. \ \ OC1(c2c(-c3ccccc3)nnn2CCCl)C=CCCC1$

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jm061429p or 10.1016/j.bmc.2012.11.015 or

10.1016/j.tetasy.2012.05.024

Retrosynthesis ID: 25133

2.2.4 Alkylation of tertiary alcohols

Substrates:

1. OC1(c2c(-c3cccc3)nnn2CCCl)C=CCCC1

Products:

1. C1=CC2(CCC1)OCCn1nnc(-c3cccc3)c12

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

Retrosynthesis ID: 31010930

2.3 Path 3

Score: 1953240.31

Figure 3: Outline of path 3

2.3.1 Alkylation of N-heterocycles with activated alcohols

Substrates:

1. 2-Chloroethyl methanesulfonate - available at Sigma-Aldrich

2. 4-Bromo-5-phenyl-1H-1,2,3-triazole - available at Sigma-Aldrich

Products:

1. ClCCn1nnc(-c2cccc2)c1Br

Typical conditions: K2CO3.MeCN.heating

Protections: none

Reference: 10.1021/jm200112k (suppl. Info p.27) and WO2013167586A1 p.9

and WO2004/24147 p.23

Retrosynthesis ID: 24133

2.3.2 Br/Li exchange

Substrates:

 $1. \ ClCCn1nnc(-c2cccc2)c1Br$

2. n-BuLi - available at Sigma-Aldrich

Products:

1. [Li]c1c(-c2cccc2)nnn1CCCl

Typical conditions: nBuLi.or.tBuLi.THF.-78C

Protections: none

Reference: 10.1002/ejoc.201101490 and 10.1016/j.tet.2012.03.058 and 10.1016/j.tetlet.2015.01.032 and 10.1021/ja0541175 and 10.1016/j.tetlet.2016.06.123

${\bf 2.3.3}\quad {\bf Addition\ of\ electrophiles\ to\ lithiated\ arenes/heteroarenes}$

Substrates:

- $1. \ [Li]c1c(-c2cccc2)nnn1CCCl$
- 2. 2-Cyclohexen-1-one available at Sigma-Aldrich

Products:

1. OC1(c2c(-c3cccc3)nnn2CCCl)C=CCCC1

Typical conditions: THF.-78 \deg C

Protections: none

Reference: 10.1021/ml300335r and 10.1021/acs.jmedchem.6b00866

Retrosynthesis ID: 31008139

2.3.4 Alkylation of tertiary alcohols

Substrates:

1. OC1(c2c(-c3ccccc3)nnn2CCCl)C=CCCC1

Products:

 $1. \ C1{=}CC2(CCC1)OCCn1nnc(-c3ccccc3)c12$

 ${\bf Typical\ conditions:}\ {\rm K2CO3.acetone.heat}$

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

Retrosynthesis ID: 31010930

2.4 Path 4

Score: 1953240.31

Figure 4: Outline of path 4

2.4.1 N-alkylation of heterocycles

Substrates:

- 1. 1-Bromo-2-chloroethane available at Sigma-Aldrich
- 2. 4-Bromo-5-phenyl-1H-1,2,3-triazole available at Sigma-Aldrich

Products:

 $1. \ ClCCn1nnc(-c2cccc2)c1Br$

Typical conditions: NaH. DMF

Protections: none

Reference: 10.1016/j.ejmech.2010.11.014 or 10.1039/C6OB01149G (SI) or 10.1246/cl.2005.442 or 10.1021/ol403570z (SI) or 10.1016/S0040-4020(01)00360-X

Retrosynthesis ID: 10000414

2.4.2 Br/Li exchange

Substrates:

 $1. \ \ ClCCn1nnc(-c2cccc2)c1Br$

2. n-BuLi - available at Sigma-Aldrich

Products:

 $1. \ [Li]c1c(-c2cccc2)nnn1CCCl$

Typical conditions: nBuLi.or.tBuLi.THF.-78C

Protections: none

Reference: 10.1002/ejoc.201101490 and 10.1016/j.tet.2012.03.058 and 10.1016/j.tetlet.2015.01.032 and 10.1021/ja0541175 and 10.1016/j.tetlet.2016.06.123

Retrosynthesis ID: 30672

2.4.3 Addition of electrophiles to lithiated arenes/heteroarenes

Substrates:

 $1. \ [\mathrm{Li}]c1c(-c2cccc2)nnn1CCCl$

2. 2-Cyclohexen-1-one - available at Sigma-Aldrich

Products:

1. OC1(c2c(-c3ccccc3)nnn2CCCl)C=CCCC1

Typical conditions: THF.-78 deg C

Protections: none

Reference: 10.1021/ml300335r and 10.1021/acs.jmedchem.6b00866

Retrosynthesis ID: 31008139

2.4.4 Alkylation of tertiary alcohols

Substrates:

1. OC1(c2c(-c3ccccc3)nnn2CCCl)C=CCCC1

Products:

1. C1=CC2(CCC1)OCCn1nnc(-c3cccc3)c12

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

2.5 Path 5

Score: 2441506.33

Figure 5: Outline of path 5

Alkylation of N-heterocycles with activated alcohols 2.5.1

Substrates:

1. 2-Chloroethyl methanesulfonate available at Sigma-Aldrich

2. 4-Bromo-5-phenyl-1H-1,2,3-triazole $available\ at\ Sigma-Aldrich$

Products:

 $1. \ \ ClCCn1nnc(-c2cccc2)c1Br$

Typical conditions: K2CO3.MeCN.heating

Protections: none

Reference: 10.1021/jm200112k (suppl. Info p.27) and WO2013167586A1 p.9

and WO2004/24147 p.23

2.5.2 Synthesis of aryl Grignard reagents

Substrates:

1. Magnesium - available at Sigma-Aldrich

2. ClCCn1nnc(-c2cccc2)c1Br

Products:

 $1. \ \ ClCCn1nnc(-c2cccc2)c1[Mg]Br$

Typical conditions: iPrMgCl.THF or other conditions like BuLi.MgBr2 or Mg.THF

Protections: none

Reference: DOI: 10.1016/S0040-4039(99)01404-5 and 10.1021/jo0000574 and 10.1002/anie.200454084 and 10.1021/ol400150z

Retrosynthesis ID: 10011461

2.5.3 Grignard-Type Reaction

Substrates:

1. ClCCn1nnc(-c2cccc2)c1[Mg]Br

2. 2-Cyclohexen-1-one - available at Sigma-Aldrich

Products:

 $1. \ \ OC1(c2c(-c3ccccc3)nnn2CCCl)C=CCCC1$

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jm061429p or 10.1016/j.bmc.2012.11.015 or

10.1016/j.tetasy.2012.05.024

Retrosynthesis ID: 25133

2.5.4 Synthesis of alkyl iodides from alkyl chlorides

Substrates:

1. OC1(c2c(-c3cccc3)nnn2CCCl)C=CCCC1

Products:

1. OC1(c2c(-c3ccccc3)nnn2CCI)C=CCCC1

 ${\bf Typical\ conditions:}\ {\bf NaI.acetone.heat}$

Protections: none

Reference: 10.1039/B812607K and 10.1021/jm030222i

2.5.5 Alkylation of tertiary alcohols

Substrates:

 $1. \ \ OC1(c2c(-c3ccccc3)nnn2CCI)C=CCCC1$

Products:

 $1. \ C1{=}CC2(CCC1)OCCn1nnc(-c3ccccc3)c12$

Typical conditions: K2CO3.acetone.heat

 ${\bf Protections:}\ {\rm none}$

Reference: 10.1039/P29910000147 and 10.1038/ncomms7703