Introduction: Greatest Common Divisors I

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Algorithmic Toolbox Data Structures and Algorithms

Learning Objectives

- Define greatest common divisors.
- Compute greatest common divisors inefficiently.

GCDs

- Put fraction $\frac{a}{b}$ in simplest form.
- Divide numerator and denominator by d, to get $\frac{a/d}{b/d}$.

GCDs

- Put fraction $\frac{a}{b}$ in simplest form.
- Divide numerator and denominator by d, to get $\frac{a/d}{b/d}$.
 - Need *d* to divide *a* and *b*.
 - Want *d* to be as large as possible.

GCDs

- Put fraction $\frac{a}{b}$ in simplest form.
- Divide numerator and denominator by d, to get $\frac{a/d}{b/d}$.
 - Need *d* to divide *a* and *b*.
 - Want *d* to be as large as possible.

Definition

For integers, a and b, their greatest common divisor or gcd(a, b) is the largest integer d so that d divides both a and b.

Number Theory

Cryptography

Computation

Compute GCD

Input: Integers $a, b \ge 0$.

Output: gcd(a, b).

Computation

Compute GCD

Input: Integers $a, b \ge 0$.

Output: gcd(a, b).

Run on large numbers like

gcd(3918848, 1653264).

Naive Algorithm

Function NaiveGCD(a, b)

```
best \leftarrow 0
```

for d from 1 to a+b: if d|a and d|b:

 $best \leftarrow d$

return best

Naive Algorithm

Function NaiveGCD(a, b)

```
best \leftarrow 0
for d from 1 to a + b:
    if d|a and d|b:
    best \leftarrow d
return best
```

- \blacksquare Runtime approximately a + b.
- Very slow for 20 digit numbers.