L310 AA11/12 (Teoria delle I	APPELLO X (Scritto)								Roma, 17 Settembre 201		
olvere il massimo numero di ci predisposti. NON SI ACCI	esercizi acco ETTANO R.	mpag ISPO	STE	lo le r SCRI	ispos TTTE	te cor SU A	spie LTR	gazio: I <i>FO</i> (ni chi GLI .	are ed ess Scrivere i	LA senziali. Inserire le risposte ne l proprio nome anche nell'ultir e durante gli ultimi 20 minut
	FIRMA	1	2	3	4	5	6	7	8	ТОТ.	
Rispondere alle sequenti de portano punteggio nullo):	mande forn	endo	una g	giusti	ficazi	one d	i una	riga	(gius	tificazioni	i incomplete o poco chiare co
a. Quali possono essere tu	ıtti i possibi	ili gru	ıppi d	li Gal	ois de	ei pol	inomi	di g	rado 4	4 su Q e s	su \mathbf{F}_2 ?
b. Scrivere una $\mathbf{Q}[\sqrt{3}]$ -ba	se del camp	o di s	spezza	ament	to del	polir	nomio	X^4	$-\sqrt{3}$	$\in \mathbf{Q}[\sqrt{3}][$	X].
c. È vero che due polinon	ni in $\mathbf{F}_n[X]$	avent	i lo st	tesso	grado	o potr	ebbei	o ave	ere ca	mpi di sp	ezzamento non isomorfi?
•	P.L. J				Ü	•					
d. Elencare tutti i polinor	ni irriducibi	li (mo	onici)	di gr	ado 1	minor	e di 5	su F	r_2 .		
				• • • • •							

e. Si scriva un costruzione di $\cos 2\pi/32$ utilizzando la formula di duplicazione $\cos 2\alpha = 2\cos^2\alpha - 1$.

4. Descrivere il gruppo di Galois del polinomio $(X+5)^6+3$ specificandone l'ordine.
5. Dopo aver definito la nozione di polinomio ciclotomico ed averne elencato alcune proprietà fondamentali, dimostrare che se
5. Dopo aver definito la nozione di polinomio ciclotomico ed averne elencato alcune proprietà fondamentali, dimostrare che se p è primo, allora $(X^{p^{k+1}}-1)/(X^{p^k}-1)$ è il p^k -esimo polinomio ciclotomico.
5. Dopo aver definito la nozione di polinomio ciclotomico ed averne elencato alcune proprietà fondamentali, dimostrare che se p è primo, allora $(X^{p^{k+1}}-1)/(X^{p^k}-1)$ è il p^k -esimo polinomio ciclotomico.
5. Dopo aver definito la nozione di polinomio ciclotomico ed averne elencato alcune proprietà fondamentali, dimostrare che se p è primo, allora $(X^{p^{k+1}}-1)/(X^{p^k}-1)$ è il p^k -esimo polinomio ciclotomico.
5. Dopo aver definito la nozione di polinomio ciclotomico ed averne elencato alcune proprietà fondamentali, dimostrare che se p è primo, allora $(X^{p^{k+1}}-1)/(X^{p^k}-1)$ è il p^k -esimo polinomio ciclotomico.
5. Dopo aver definito la nozione di polinomio ciclotomico ed averne elencato alcune proprietà fondamentali, dimostrare che se p è primo, allora $(X^{p^{k+1}}-1)/(X^{p^k}-1)$ è il p^k –esimo polinomio ciclotomico.
5. Dopo aver definito la nozione di polinomio ciclotomico ed averne elencato alcune proprietà fondamentali, dimostrare che se p è primo, allora $(X^{p^{k+1}}-1)/(X^{p^k}-1)$ è il p^k –esimo polinomio ciclotomico.
5. Dopo aver definito la nozione di polinomio ciclotomico ed averne elencato alcune proprietà fondamentali, dimostrare che se p è primo, allora $(X^{p^{k+1}}-1)/(X^{p^k}-1)$ è il p^k -esimo polinomio ciclotomico.
5. Dopo aver definito la nozione di polinomio ciclotomico ed averne elencato alcune proprietà fondamentali, dimostrare che se p è primo, allora $(X^{p^{k+1}}-1)/(X^{p^k}-1)$ è il p^k -esimo polinomio ciclotomico.
5. Dopo aver definito la nozione di polinomio ciclotomico ed averne elencato alcune proprietà fondamentali, dimostrare che se p è primo, allora $(X^{p^{k+1}}-1)/(X^{p^k}-1)$ è il p^k -esimo polinomio ciclotomico.
5. Dopo aver definito la nozione di polinomio ciclotomico ed averne elencato alcune proprietà fondamentali, dimostrare che se p è primo, allora $(X^{p^{k+1}}-1)/(X^{p^k}-1)$ è il p^k -esimo polinomio ciclotomico.

nio