Estatística para Cursos de Engenharia e Informática

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia

São Paulo: Atlas, 2004

Cap. 8 – Testes de hipóteses

APOIO:

Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC)

Departamento de Informática e Estatística – UFSC (INE/CTC/UFSC)

Teste de hipóteses

População

Amostra

Conjectura (hipótese) sobre o comportamento de variáveis

Decisão sobre a admissibilidade da hipótese

Resultados reais obtidos

Hipóteses

- a) Substituindo o processador A pelo processador B, altera-se o tempo de resposta de um computador.
- **b)** Aumentando a dosagem de cimento, aumenta-se a resistência do concreto.
- c) Uma certa campanha publicitária produz efeito positivo nas vendas.
- d) A implementação de um programa de melhoria da qualidade em uma empresa prestadora de serviços melhora a satisfação de seus clientes.

Hipóteses em termos de parâmetros

- a) A *média* dos tempos de resposta do equipamento com o processador *A é diferente* da *média* dos tempos de resposta com o processador *B*.
- **b)** A *média* dos valores de resistência do concreto com a dosagem d_2 de cimento *é maior* do que a *média* dos valores de resistência com a dosagem d_1 .
- c) A *média* das vendas depois da campanha publicitária *é maior* do que a *média* das vendas antes da campanha publicitária.
- **d)** A *proporção* de reclamações após a realização do programa de melhoria da qualidade *é menor* do que antes da realização do programa.

Hipóteses nulas

- **a)** H_0 : $\mu_A = \mu_B$ e H_1 : $\mu_A \neq \mu_B$ onde:
 - μ_A é o tempo médio de resposta com o processador A; e μ_B é o tempo médio de resposta com o processador B.
- **b)** H_0 : $\mu_2 = \mu_1$ e H_1 : $\mu_2 > \mu_1$ onde:

 μ_2 é a resistência média do concreto com a dosagem d_2 de cimento; e μ_1 é a resistência média do concreto com a dosagem d_1 de cimento.

Hipóteses nulas

- **c)** H_0 : $\mu_2 = \mu_1$ e H_1 : $\mu_2 > \mu_1$ onde:
- μ_1 é o valor médio das vendas antes da campanha publicitária; e
- μ_2 é o valor médio das vendas depois da campanha publicitária.
- **d)** H_0 : $\rho_2 = \rho_1$ e H_1 : $\rho_2 < \rho_1$ onde:
- p₁ é a proporção de reclamações antes do programa de melhoria da qualidade; e
- p₂ é a proporção de reclamações depois do programa de melhoria da qualidade.

Conceitos básicos Exemplo:

 Suspeita-se que uma moeda não seja perfeitamente equilibrada (probab. de cara ≠ probab. de coroa ≠ 0,5)

p = probab. de cara

 H_0 : p = 0.5

 $H_1: p \neq 0.5$

Planejamento da amostra

 n = 10 lançamentos imparciais e independentes da moeda.

Resultado da amostra

• Situação 1: Valor obtido: y = 10 caras.

Qual seria a conclusão?

Exemplo da moeda

Probabilidade de Significância ou valor p

 Probabilidade da estatística do teste acusar um resultado tão (ou mais) distante do esperado quanto o resultado ocorrido na amostra observada, supondo H₀ como a hipótese verdadeira.

Situação 1

Valor p = 0,002 ou 0,2%

Conclusão...

- Valor p = 0,2% (probabilidade de uma moeda honesta acusar um valor tão distante quanto ao que se observou na amostra). Probabilidade muito pequena!!!
- Qual é a conclusão?
- O teste rejeita H₀, ou seja, prova-se estatisticamente que a moeda é viciada.

Resultado da amostra

Situação 2: Valor obtido: y = 7 caras.

Qual seria a conclusão?

Situação 2

Valor p = 0.344 ou 34.4%

Conclusão...

- Valor p = 34,4% (probabilidade de uma moeda honesta acusar um valor tão distante quanto ao que se observou na amostra). Não é muito pequeno!!!
- Qual é a conclusão?
- O teste aceita H₀, ou seja, não se pode afirmar que a moeda é viciada.

Nível de Significância (a)

- Representa a probabilidade tolerável de se rejeitar H₀ quando esta for verdadeira.
- Os valores mais comuns para o nível de significância são 5%, 10% e 1%.

Regra de decisão

Exercício

 Para testar se existe diferença entre dois sistemas computacionais (A e B), observou-se o desempenho com 12 cargas de trabalho. Em 3 casos o sistema A apresentou melhor desempenho do que o B. Nos demais, o sistema B foi melhor. Qual a conclusão ao nível de significância de 5%?

Hipóteses:

$$H_0$$
: $p = 0.5$

$$H_1: p \neq 0,5$$

p = probabilidade do sistema Aapresentar melhor desempenho do que o sistema B.

• Distribuição binomial (n = 12, p = 0.5).

• Valor $\mathbf{p} = P\{(X < 3) \text{ ou } (X > 9)\}$

Valor $\mathbf{p} = 0.146$ ou 14.6%

• Valor $p = 14.6\% > 5\% (\alpha = 5\%)$

O teste aceita H₀, ao nível de significância de 5%.

 Não se pode afirmar (ao nível de significância de 5%) que existe diferença entre os dois tipos de sistemas, em termos de desempenho.

Tipos de erro num teste estatístico

Realidade (desconhecida)	Decisão do teste			
	aceita H ₀	rejeita H ₀		
H ₀ verdadeira	decisão correta (probab = $1 - \alpha$)	erro tipo I (probab = α)		
H ₀ falsa	erro tipo II (probab = β)	decisão correta (probab = $1 - \beta$)		

Tipos de erro num teste estatístico

Realidade (desconhecida)	Decisão do teste			
	aceita H ₀	rejeita H ₀		
H ₀ verdadeira	decisão correta (probab = $1 - \alpha$)	erro tipo I (probab = α)		
H ₀ falsa	erro tipo II (probab = β)	decisão correta (probab = $1 - \beta$)		

 $P(\text{erro tipo I}) = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ é verdadeira}) = \alpha$

 $P(\text{erro tipo II}) = P(\text{aceitar H}_0 \mid \text{H}_0 \text{ \'e falsa}) = \beta$

Abordagem clássica

- Constrói a regra de decisão antes de observar a amostra
- Retomando o experimento de lançar 10 vezes a moeda, a regra de decisão para α = 0,05 é construída com base na equação:

P (erro tipo I) = P (rejeitar H₀ | H₀ é verdadeira) = α = 0,05

Abordagem clássica

Regra de decisão em termos de $Y = número de caras em 10 lançamentos da moeda, com <math>\alpha = 0.05$.

Testes unilaterais

- Quando a hipótese alternativa tem sinal > ou < (pelas características do problema em estudo).
- Ex.
 - H_0 : p = 0.5 (a moeda é honesta) e
 - H_1 : p > 0.5 (a moeda tende a dar mais caras do que coroas).

Testes unilaterais

• Cálculo do valor **p**, considerando n = 10:

Valor
$$\mathbf{p} = p(7) + p(8) + p(9) + p(10) = 0,172$$

Teste para proporção

- H_0 : $p = p_0$ e H_1 : $p \neq p_0$ (p_0 é um valor dado)
- No caso de teste unilateral, a hipótese alternativa seria H_1' : $p > p_0$ (unilateral à direita) ou H_1'' : $p < p_0$ (unilateral à esquerda).
- Suponha amostra suficientemente grande para aproximação da binomial à normal:

$$n.p_0 \ge 5$$
 e $n.(1 - p_0) \ge 5$

Teste para proporção

• Sejam:

$$\hat{p} = \frac{y}{n} = \frac{n \hat{u}mero \ de \ elementos \ com \ o \ atributo \ de \ interesse}{n}$$

$$y' = y - 0.5$$
 se $y > n.p_0$; ou $y' = y + 0.5$ se $y < n.p_0$ (correção de continuidade)

Cálculo da estatística do teste:

$$z = \frac{y' - n.p_0}{\sqrt{n.p_0.(1 - p_0)}}$$

Teste para proporção – abordagem do valor p

Teste para proporção – abordagem do valor p

(ver enunciado no livro)

- H_0 : p = 0.015 e H_1 : p > 0.015. Usar $\alpha = 0.01$.
- Amostra: y = 9 em n = 500.

$$\hat{p} = \frac{9}{500} = 0.018$$

$$z = \frac{y' - n.p_0}{\sqrt{n.p_0.(1 - p_0)}} = \frac{8.5 - (500).(0.015)}{\sqrt{(500).(0.015).(1 - 0.015)}} = \frac{1}{2.718} \approx 0.37$$

Aceita H₀ ao nível de significância de 1%.

Teste para proporção – abordagem clássica

Valores usuais de z_c , obtidos da distribuição normal padrão:

teste bilateral, α:	0,20	0,10	0,05	0,02	0,01	0.005
teste unilateral, α:	0,10	0,05	0,025	0,01	0,005	0,0025
valor crítico (z_c) :	1,282	1,645	1,960	2,326	2,576	2,807

Teste para proporção – abordagem clássica

BARBETTA, REIS e BORNIA - Estatística para Cursos de Engenharia e Informática. Atlas, 2004

Teste para proporção – abordagem clássica

BARBETTA, REIS e BORNIA - Estatística para Cursos de Engenharia e Informática. Atlas, 2004

(ver enunciado no livro)

- H_0 : p = 0.015 e H_1 : p > 0.015. Usar $\alpha = 0.01$.
- Regra de decisão:

• Amostra: y = 9 em n = 500.

$$\hat{p} = \frac{9}{500} = 0.018$$

$$z = \frac{y' - n.p_0}{\sqrt{n.p_0.(1 - p_0)}} = \frac{8.5 - (500).(0.015)}{\sqrt{(500).(0.015).(1 - 0.015)}} = \frac{1}{2.718} \approx 0.37$$

 $\alpha = 0,01$

• Conclusão:

Da amostra:

 \rightarrow Aceita H_0 .

(Ver comentários práticos no livro.)

Teste para média

• H_0 : $\mu = \mu_0$ e H_1 : $\mu \neq \mu_0$

• No caso de teste unilateral, a hipótese alternativa seria H1': $\mu > \mu_0$ (unilateral à direita) ou H1": $\mu < \mu_0$ (unilateral à esquerda).

Teste para média - Caso de variância conhecida

Cálculo da estatística do teste:

$$z = \frac{\left(\overline{x} - \mu_0\right) \cdot \sqrt{n}}{\sigma}$$

onde: μ_0 é o valor da média segundo H0;

n é tamanho da amostra;

 σ é o desvio padrão populacional; e

 \bar{x} é a média da amostra.

O teste é feito com a distribuição normal, análogo ao da proporção.

Teste para média - Caso de variância desconhecida

Cálculo da estatística do teste:

$$t = \frac{\left(\overline{x} - \mu_0\right) \cdot \sqrt{n}}{s}$$

onde: μ_0 é o valor da média segundo H0;

n é tamanho da amostra;

s é o desvio padrão da amostra; e

 \bar{x} é a média da amostra.

Uso da distribuição t com gl = n - 1 (supondo população com distribuição normal)

Teste para média – Caso de variância desconhecida Exemplo 8.8 (ver enunciado no livro):

- H_0 : $\mu = 7.4 s$
- H_1 : $\mu < 7.4 s$
- Amostra:

$$t = \frac{(\overline{x} - \mu_0) \cdot \sqrt{n}}{s} = \frac{(6,82 - 7,4) \cdot \sqrt{10}}{0,551} = -3,33$$

Teste para média – Caso de variância desconhecida Exemplo 8.8 (ver enunciado no livro):

Uso da tabela t para obter o valor p:

Teste para média – Caso de variância desconhecida Exemplo 8.8. Abordagem do valor p:

Uso da tabela t para obter o valor p:

dados observados	Área na cauda superior						
Observados	gl	0,25		0,01	0,005	0,0025	
t = 3,33	 9 	0,703		2,821	3,250	3,690	

- → $0.0025 < \text{valor } \mathbf{p} < 0.005$ → $\text{valor } \mathbf{p} < 0.01$
- \rightarrow Teste rejeita H_0 . (Ver comentários práticos no livro.)