CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2025

Admin

Lab 4 grades & feedback posted on Moodle

Lab 5 due tonight at midnight

- Lab 6 posted (due next Tuesday)
 - pair-programming optional

Midterm 1 returned today

Outline for today

Entropy and Shannon encoding

Information gain for selecting features

Go over Midterm 1

Outline for today

Entropy and Shannon encoding

Information gain for selecting features

Go over Midterm 1

Applications of Decision Trees

Examples

Medical diagnostics

Credit risk analysis

Modeling calendar scheduling preferences

Decision Trees in Chemistry reactions

- Example of decision trees in practice
- Use decision trees to interpret another ML algorithm (SVMs)

Machine-learning-assisted materials discovery using failed experiments

Paul Raccuglia, Katherine C. Elbert, Philip D. F. Adler, Casey Falk, Malia B. Wenny, Aurelio Mollo, Matthias Zeller, Sorelle A. Friedler →, Joshua Schrier → & Alexander J. Norquist →

Nature **533**, 73–76 (05 May 2016) | Download Citation **±**

How do we choose the best feature?

Single feature model + evaluate with a ROC curve (Lab 4)

 What feature gives us the most information about the label? (Lab 6)

Idea of Entropy

Average # of bits needed to send one datapoint

Idea of Entropy

Average # of bits needed to send one datapoint

Poisonous & edible mushrooms

high entropy

low entropy

Entropy

$$H(y) = -\sum_{c \in vals(y)} p(y = c) \log_2(p(y = c))$$
| Hof bits

$$H(y) = 1$$

$$H(y) = 0$$

Encoding data

Class year	Fixed-length encoding
senior	00
junior	01
sophomore	10
first year	11

Works!

Encoding data

Class year	Prob (p)
senior	0.5
junior	0.25
sophomore	0.125
first year	0.125

Idea: Use fewer bits to encode values that appear more often

Shannon Encoding

Class year	Prob (p)	Cumulative prob	Cumulative prob in binary
senior	0.5	0	0.000
junior	0.25	0.5	0.100
sophomore	0.125	0.75	0.110
first year	0.125	0.875	0.111

sort highest to lowest

Decimal to binary conversion

- Multiply the decimal point number with 2
- Take note of the number before the decimal point in the result
- Multiply the result's value after and including the decimal point with 2
- Repeat until the result is 1
- Place the numbers we noted down after the decimal point in the order we got them

Shannon Encoding

ceiling
/ (round up)

Class year	Prob (p)	Cumulative prob	Binary	$\lceil -log_2p \rceil$	Encoding
senior	0.5	0	0.000	1	0
junior	0.25	0.5	0.100	2	10
sophomore	0.125	0.75	0.110	3	110
first year	0.125	0.875	0.111	3	111

sort highest to lowest

of bits to use from the binary form

 $H(class\ year)$ = 0.5 * 1 + 0.25 * 2 + 0.125 * 3 + 0.125 * 3 = 1.75

Outline for today

Entropy and Shannon encoding

Information gain for selecting features

Go over Midterm 1

Conditional Entropy

 Quantifies the amount of information needed to describe the outcome of Y given X

$$H(Y|X) = \sum_{\substack{v \in vals(X) \\ \text{feature} \\ \text{e.g., cap shape}}} p(X = v) H(Y|X = v)$$

$$H(Y|X = v) = -\sum_{c \in vals(Y)} p(Y = c|X = v) \log_2 p(Y = c|X = v)$$

single feature value e.g., cap shape = bell

Information Gain

Reduction in entropy/uncertainty given some information

$$G(Y,X) = H(Y) - H(Y|X)$$
want high want low

Select the feature that maximizes the information gain

Handout 12

Movie	Туре	Length	Director	Famous actors	Liked?	Handout 12
m1	Comedy	Short	Adamson	No	Yes	Handut 12
m2	Animated	Short	Lasseter	No	No	
m3	Drama	Medium	Adamson	No	Yes	
m4	Animated	Long	Lasseter	Yes	No	
m5	Comedy	Long	Lasseter	Yes	No	
m6	Drama	Medium	Singer	Yes	Yes	
m7	Animated	Short	Singer	No	Yes	
m8	Comedy	Long	Adamson	Yes	Yes	
m9	Drama	Medium	Lasseter	No	Yes	
$\begin{array}{ll} P({\rm Li} = {\rm yes}) = & 2/3 \\ H({\rm Li}) = & 0.92 \\ \\ H({\rm Li} \mid {\rm T}) = & 0.61 \\ H({\rm Li} \mid {\rm Le}) = & 0.61 \\ \\ H({\rm Li} \mid {\rm D}) = & 0.36 \\ \\ H({\rm Li} \mid {\rm F}) = & 0.85 \\ \end{array} \begin{array}{l} \text{Director} \\ \\ \end{array}$						
$\begin{aligned} &\mathrm{Gain}(\mathrm{Li},\mathrm{T}) = 0.92 - 0.61 = 0.31 \\ &\mathrm{Gain}(\mathrm{Li},\mathrm{Le}) = 0.92 - 0.61 = 0.31 \\ &\mathrm{Gain}(\mathrm{Li},\mathrm{D}) = 0.92 - 0.36 = 0.56 \\ &\mathrm{Gain}(\mathrm{Li},\mathrm{F}) = 0.92 - 0.85 = 0.07 \end{aligned}$ Start of the tree						

Outline for today

Entropy and Shannon encoding

Information gain for selecting features

Go over Midterm 1

Midterm solutions not posted online