(1) Calculate equilibrium solution with regards to rigid body modes	$oldsymbol{\lambda_{ extsf{N}0}} = oldsymbol{A}oldsymbol{G}^Toldsymbol{A}oldsymbol{G})^{-1}oldsymbol{e}$
(2) Projector to natural subspace	$\mathbf{P} = \mathbf{I} - \mathbf{A}\mathbf{G}(\mathbf{G}^T\mathbf{A}\mathbf{G})^{-1}\mathbf{G}^T$
(3) Calculate residual(gap) in natural subspace	$\mathbf{r}_0 = \mathbf{P}^T (\mathbf{d} - \mathbf{F} oldsymbol{\lambda}_0)$
(4) Calculate resulting forces for each substructure (preconditioning)	$\mathbf{Z}_0 = \left[\cdots, \mathbf{S}^{[s]}\mathbf{r}_0, \cdots ight]$
(5) Rigid body-components of forces	$\mathbf{W}_0 = \mathbf{PZ}_0$
(6) Initialize	$\lambda_{F0} = 0, i = 0$
(7) While not converged	$\sqrt{\mathbf{r}^T\mathbf{Z}1}>\epsilon$
(8) Compute gap-changes due to forces \mathbf{W}_i	$\boldsymbol{Q}_i = \boldsymbol{FW}_i$
(9) Auxiliary variable	$oldsymbol{\Delta}_i = {f Q}_i^{\ T} {f W}_i$
(10) Auxiliary variable	$oldsymbol{\gamma}_i = {oldsymbol{Z}_i}^T oldsymbol{r}_i$
(11) Step in new direction	$oldsymbol{\lambda_{F}}_{i+1} = oldsymbol{\lambda_{F}}_i + oldsymbol{W}_i oldsymbol{\Delta}_i^{\ +} oldsymbol{\gamma}_i$
(12) Gap change due to force step	$\mathbf{r}_{i+1} = \mathbf{r}_i - \mathbf{P}^T \mathbf{Q}_i \mathbf{\Delta}_i^+ oldsymbol{\gamma}_i$
(13) Calculate resulting forces for each substructure (preconditioning)	$\mathbf{Z}_{i+1} = egin{bmatrix} igl(\cdots, \mathbf{S}^{[s]} \mathbf{r}_{i+1}, \cdots igr] \end{bmatrix}$
(14) Remove rigid body-components of forces	$\mathbf{W}_{i+1} = \mathbf{PZ}_{i+1}$
(15) Loop over previous iterations	for: $0 \le j \le i$
(16) Compute othogonalization	$egin{aligned} factor & \phi_{i,j} = \mathbf{Q}_j^T \mathbf{W}_{i+1} \end{aligned}$
(17) Orhtogonalize to direction	j $\mathbf{W}_{i+1} \leftarrow \mathbf{W}_{i+1} - \mathbf{W}_{j} \mathbf{\Delta}_{j}^{+} \phi_{i,j}$
(18) Increase iteration counter	$i \leftarrow i + 1$