

planetmath.org

Math for the people, by the people.

parallelism of line and plane

Canonical name ParallelismOfLineAndPlane

Date of creation 2013-03-22 18:47:58 Last modified on 2013-03-22 18:47:58

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 6

Author pahio (2872) Entry type Theorem Classification msc 51M04

Related topic ParallelismOfTwoPlanes

Parallelity of a line and a plane means that the angle between line and plane is 0, i.e. the line and the plane have either no or infinitely many common points.

Theorem 1. If a line (l) is parallel to a line (m) contained in a plane (π) , then it is parallel to the plane or is contained in the plane.

Proof. So, $l || m \subset \pi$. If $l \not\subset \pi$, we can set a set along the parallel lines l and m another plane ϱ . The common points of π and ϱ are on the intersection line m of the planes. If l would intersect the plane π , then it would intersect also the line m, contrary to the assumption. Thus $l || \pi$.

Theorem 2. If a plane is set along a line (l) which is parallel to another plane (π) , then the intersection line (m) of the planes is parallel to the first-mentioned line.

Proof. The lines l and m are in a same plane, and they cannot intersect each other since otherwise l would intersect the plane π which would contradict the assumption. Accordingly, $m \mid\mid l$.