BLACK HOLE THEORY

Based on The Polyphysics Project Playlist: Black Hole Theory Written by Daniel Volinski at danielvolinski@yahoo.es

(%i2) info:build_info()\$info@version;

5.38.1

(%i2) reset()\$kill(all)\$
(%i1) derivabbrev:true\$
(%i2) ratprint:false\$
(%i3) fpprintprec:5\$
(%i4) if get('draw,'version)=false then load(draw)\$
(%i5) wxplot_size:[1024,768]\$
(%i6) if get('optvar,'version)=false then load(optvar)\$
(%i7) if get('rkf45,'version)=false then load(rkf45)\$
(%i8) declare(s,mainvar)\$
(%i9) declare(trigsimp,evfun)\$
1 Settings

- 2 Using optvar
- 3 Using ctensor
- 4 Using cartan

```
 \begin{tabular}{ll} (\%i66) & kill(labels,t,r,\theta,\phi) \$ \\ (\%i1) & if $\gcd('cartan,'version)=false then $load(cartan) \$ \\ (\%i2) & init\_cartan(\xi) \$ \\ (\%i3) & cartan\_basis; \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &
```

(%o2)

(%i5) cartan_dim;

$$4$$
 (%o5)

(%i6) extdim;

$$4$$
 (%o6)

Coframe

(%i7) depends([V,W],[r,t])\$

(%i15) Eq_t:e_t=V*dt\$ sol_t:solve(Eq_t,dt)\$ Eq_r:e_r=W*dr\$ sol_r:solve(Eq_r,dr)\$ Eq_ θ :e_ θ =r*d θ \$ sol_ θ :solve(Eq_ θ ,d θ)\$ Eq_ ϕ :e_ ϕ =r*sin(θ)*d ϕ \$sol_ ϕ :solve(Eq_ ϕ ,d ϕ)\$

(%i16) ldisplay(e:ev([e_t,e_r,e_ θ ,e_ ϕ],Eq_t,Eq_r,Eq_ θ ,Eq_ ϕ))\$

$$e = [V dt, W dr, r d\theta, r d\phi \sin(\theta)]$$
(%t16)

Exterior derivative of the coframe

(%i20) de_t:ext_diff(e_t),Eq_t\$ de_r:ext_diff(e_r),Eq_r\$ de_ θ :ext_diff(e_ θ),Eq_ θ \$ de_ ϕ :ext_diff(e_ ϕ),Eq_ ϕ \$

(%i21) ldisplay(de: [de_t,de_r,de_ θ ,de_ ϕ])\$

$$de = [-(V_r) dr dt, (W_t) dr dt, dr d\theta, dr d\phi \sin(\theta) + r d\theta d\phi \cos(\theta)]$$
 (%t21)

Cartan's first equation of structure: $\mathrm{d} e^{\hat{\alpha}} + \omega_{\hat{\beta}}^{\hat{\alpha}} \wedge e^{\hat{\beta}} = 0$

Cartan's second equation of structure: $R^{\hat{\alpha}}_{\hat{\beta}} = d\omega^{\hat{\alpha}}_{\hat{\beta}} + \omega^{\hat{\alpha}}_{\hat{\gamma}} \wedge \omega^{\hat{\gamma}}_{\hat{\beta}}$

Relation between the Ricci tensor to the Riemann tensor: $R^{\hat{\alpha}}_{\hat{\beta}} = R^{\hat{\alpha}}_{\hat{\beta}\gamma\delta} \,\mathrm{d}\gamma \wedge \mathrm{d}\delta$

To convert the Riemann tensor in orthonormal basis to coordinate basis we use the fact that $R^{\hat{\alpha}}_{\hat{\beta}\gamma\delta}\,e^{\alpha}_{\hat{\alpha}}\,e^{\beta}_{\hat{\beta}}=R^{\alpha}_{\beta\gamma\delta}$, where $e^{\alpha}_{\beta}\,\mathrm{d}x^{\beta}=e^{\alpha}$ is the connection 2-form

 $ldisplay(de_t:ev(de_t,sol_t,sol_r,sol_\theta,sol_\phi)) \\ $ldisplay(de_r:ev(de_r,sol_t,sol_r,sol_\theta,sol_\phi)) \\ $ldisplay(de_\theta:ev(de_\theta,sol_t,sol_r,sol_\theta,sol_\phi)) \\ $ldisplay(de_\theta:ev(de_\theta,sol_t,sol_r,sol_\theta,sol_\phi)) \\ $ldisplay(de_\theta:ev(de_\theta,sol_t,sol_r,sol_\theta,sol_\phi)) \\ $ldisplay(de_\theta:ev(de_\theta,sol_t,sol_r,sol_\theta,sol_\phi)) \\ $ldisplay(de_\theta:ev(de_\theta,sol_t,sol_r,sol_\theta,sol_\phi)) \\ $ldisplay(de_\theta:ev(de_\theta,sol_t,sol_r,sol_\theta,sol_\phi)) \\ $ldisplay(de_\theta:ev(de_\theta,sol_t,sol_r,sol_\theta,sol_\phi)) \\ $ldisplay(de_\theta:ev(de_\theta,sol_t,sol$

(%i22) $\Omega:genmatrix(lambda([i,j],sum(f[i,j,k]*cartan_basis[k],k,1,dim)),dim,dim)$$

(%i23) for i thru dim do for j thru dim do ldisplay($\Omega[i,j]$)\$

$$\Omega_{1,1} = f_{1,1,4} \, d\phi + f_{1,1,3} \, d\theta + f_{1,1,1} \, dt + f_{1,1,2} \, dr \tag{\%t23}$$

$$\Omega_{1,2} = f_{1,2,4} \, d\phi + f_{1,2,3} \, d\theta + f_{1,2,1} \, dt + f_{1,2,2} \, dr \tag{\%t24}$$

$$\Omega_{1,3} = f_{1,3,4} d\phi + f_{1,3,3} d\theta + f_{1,3,1} dt + f_{1,3,2} dr$$
(%t25)

$$\Omega_{1,4} = f_{1,4,4} \, d\phi + f_{1,4,3} \, d\theta + f_{1,4,1} \, dt + f_{1,4,2} \, dr \tag{\%t26}$$

$$\Omega_{2,1} = f_{2,1,4} \, d\phi + f_{2,1,3} \, d\theta + f_{2,1,1} \, dt + f_{2,1,2} \, dr \tag{\%t27}$$

$$\Omega_{2,2} = f_{2,2,4} \, d\phi + f_{2,2,3} \, d\theta + f_{2,2,1} \, dt + f_{2,2,2} \, dr \tag{\%t28}$$

$$\Omega_{2,3} = f_{2,3,4} \, d\phi + f_{2,3,3} \, d\theta + f_{2,3,1} \, dt + f_{2,3,2} \, dr \tag{\%t29}$$

$$\Omega_{2,4} = f_{2,4,4} \, d\phi + f_{2,4,3} \, d\theta + f_{2,4,1} \, dt + f_{2,4,2} \, dr \tag{\%t30}$$

$$\Omega_{3,1} = f_{3,1,4} \, d\phi + f_{3,1,3} \, d\theta + f_{3,1,1} \, dt + f_{3,1,2} \, dr \tag{\%t31}$$

$$\Omega_{3,2} = f_{3,2,4} d\phi + f_{3,2,3} d\theta + f_{3,2,1} dt + f_{3,2,2} dr \tag{\%t32}$$

$$\Omega_{3,3} = f_{3,3,4} d\phi + f_{3,3,3} d\theta + f_{3,3,1} dt + f_{3,3,2} dr \tag{\%t33}$$

$$\Omega_{3,4} = f_{3,4,4} \, d\phi + f_{3,4,3} \, d\theta + f_{3,4,1} \, dt + f_{3,4,2} \, dr \tag{\%t34}$$

$$\Omega_{4,1} = f_{4,1,4} \, d\phi + f_{4,1,3} \, d\theta + f_{4,1,1} \, dt + f_{4,1,2} \, dr \tag{\%t35}$$

$$\Omega_{4,2} = f_{4,2,4} \, d\phi + f_{4,2,3} \, d\theta + f_{4,2,1} \, dt + f_{4,2,2} \, dr \tag{\%t36}$$

$$\Omega_{4,3} = f_{4,3,4} \, d\phi + f_{4,3,3} \, d\theta + f_{4,3,1} \, dt + f_{4,3,2} \, dr \tag{\%t37}$$

$$\Omega_{4,4} = f_{4,4,4} \, d\phi + f_{4,4,3} \, d\theta + f_{4,4,1} \, dt + f_{4,4,2} \, dr \tag{\%t38}$$

Change matrix multiplication operator

(%i39) matrix_element_mult:"~"\$

(%i40) Θ :expand(Ω .e)\$

(%i41) map(ldisp, Θ)\$

 $[f_{1,4,3}r\ d\theta\ d\phi\ \sin(\theta) + f_{1,4,1}r\ dt\ d\phi\ \sin(\theta) + f_{1,4,2}r\ dr\ d\phi\ \sin(\theta) - f_{1,3,4}r\ d\theta\ d\phi - f_{1,1,4}V\ dt\ d\phi - f_{1,2,4}W\ dr\ d\phi + f_{1,3,1}r\ dt\ d\theta - f_{1,1,4}V\ dt\ d\phi - f_{1,2,4}W\ dr\ d\phi + f_{1,3,1}r\ dt\ d\theta - f_{1,1,4}V\ d\theta\ d\phi - f_{1,2,4}W\ dr\ d\phi + f_{1,3,1}r\ dt\ d\theta - f_{1,1,4}W\ d\theta\ d\phi - f_{1,2,4}W\ dr\ d\phi + f_{1,3,1}r\ d\theta\ d\phi - f_{1,1,4}W\ d\theta\ d\phi - f_{1,2,4}W\ d\theta\ d\phi - f_{1,2,4}$

 $[f_{2,4,3}r\ d\theta\ d\phi\ \sin(\theta) + f_{2,4,1}r\ dt\ d\phi\ \sin(\theta) + f_{2,4,2}r\ dr\ d\phi\ \sin(\theta) - f_{2,3,4}r\ d\theta\ d\phi - f_{2,1,4}V\ dt\ d\phi - f_{2,2,4}W\ dr\ d\phi + f_{2,3,1}r\ dt\ d\theta - f_{2,1,4}V\ dt\ d\phi - f_{2,2,4}W\ dr\ d\phi + f_{2,3,1}r\ dt\ d\theta - f_{2,1,4}V\ dr\ d\phi + f_{2,2,4}W\ dr\ d\phi + f_{2,3,1}r\ dt\ d\theta - f_{2,1,4}V\ dr\ d\phi + f_{2,3,1}r\ dt\ d\theta - f_{2,1,4}V\ dr\ d\phi + f_{2,2,4}W\ dr\ d\phi + f_{2,3,1}r\ dt\ d\theta - f_{2,1,4}V\ dr\ d\phi + f_{2,2,4}W\ dr\ d\phi + f_{2,3,1}r\ dt\ d\theta - f_{2,1,4}V\ dr\ d\phi + f_{2,2,4}W\ dr\ d\phi + f_{2,3,1}r\ dt\ d\phi - f_{2,2,4}W\ dr\ d\phi + f_{2,3,1}r\ dt\ d\phi + f_{2,3,1}r\ dt\ d\phi - f_{2,2,4}W\ dr\ d\phi + f_{2,3,1}r\ dt\ d\phi + f_{2,3,1}r\ dr\ d\phi + f_{2,3,1}r\ d\phi + f$

 $[f_{3,4,3}r\ d\theta\ d\phi\ \sin(\theta) + f_{3,4,1}r\ dt\ d\phi\ \sin(\theta) + f_{3,4,2}r\ dr\ d\phi\ \sin(\theta) - f_{3,3,4}r\ d\theta\ d\phi - f_{3,1,4}V\ dt\ d\phi - f_{3,2,4}W\ dr\ d\phi + f_{3,3,1}r\ dt\ d\theta - f_{3,1,4}V\ dt\ d\phi - f_{3,2,4}W\ dr\ d\phi + f_{3,3,1}r\ dt\ d\theta - f_{3,1,4}V\ dr\ d\phi + f_{3,2,4}W\ dr\ d\phi + f_{3,3,1}r\ dt\ d\theta - f_{3,1,4}V\ dr\ d\phi + f_{3,2,4}W\ dr\ d\phi + f_{3,3,1}r\ dt\ d\theta - f_{3,1,4}V\ dr\ d\phi + f_{3,2,4}W\ dr\ d\phi + f_{3,3,1}r\ dt\ d\theta - f_{3,1,4}V\ dr\ d\phi + f_{3,2,4}W\ dr\ d\phi + f_{3,3,1}r\ dt\ d\theta - f_{3,1,4}V\ dr\ d\phi + f_{3,2,4}W\ dr\ d\phi + f_{3,3,1}r\ dt\ d\theta - f_{3,1,4}V\ dr\ d\phi + f_{3,2,4}W\ dr\ d\phi + f_{3,3,1}r\ dt\ d\phi - f_{3,2,4}W\ dr\ d\phi + f_{3,3,1}r\ dt\ d\phi + f_{3,3,1}r\ dt\ d\phi - f_{3,2,4}W\ dr\ d\phi + f_{3,3,1}r\ dt\ d\phi + f_{3,3,1}r\ d\phi + f_{3,3$

 $[f_{4,4,3}r\ d\theta\ d\phi\ \sin{(\theta)} + f_{4,4,1}r\ dt\ d\phi\ \sin{(\theta)} + f_{4,4,2}r\ dr\ d\phi\ \sin{(\theta)} - f_{4,3,4}r\ d\theta\ d\phi - f_{4,1,4}V\ dt\ d\phi - f_{4,2,4}W\ dr\ d\phi + f_{4,3,1}r\ dt\ d\theta - f_{4,1,4}V\ dt\ d\phi + f_{4,4,1}r\ dt\ d\theta - f_{4,4,1}r\ dt\ d\theta - f_{4,4,4}V\ dt\ d\phi + f_{4,4,4}W\ dr\ d\phi + f_{4,4,4}R\ d\theta +$

(%i45) Eq:coeff(coeff($\Theta[1,1],dt$), $d\theta$)=coeff(coeff(de[1],dt), $d\theta$);

$$f_{1,3,1}r - f_{1,1,3}V = 0 (Eq)$$

Restore matrix multiplication operator

(%i46) matrix_element_mult:"*"\$

(%i56) ω :zeromatrix(dim,dim)\$ $\omega[1,2]$:-diff(V,r)/V/W*e_t+diff(W,t)/V/W*e_r\$ $\omega[2,1]$:+diff(V,r)/V/W*e_t-diff(W,t)/V/W*e_r\$ $\omega[3,2]$:-1/r/W*e_ θ \$ $\omega[2,3]$:+1/r/W*e_ θ \$ $\omega[4,3]$:-cos(θ)/sin(θ)/r*e_ ϕ \$ $\omega[3,4]$:+cos(θ)/sin(θ)/r*e_ ϕ \$ $\omega[2,4]$:+1/r/W*e_ θ \$ $\omega[4,2]$:-1/r/W*e_ ϕ \$ 1display(ω)\$

$$\omega = \begin{pmatrix} 0 & \frac{(W_t) e_r}{VW} - \frac{(V_r) e_t}{VW} & 0 & 0\\ \frac{(V_r) e_t}{VW} - \frac{(W_t) e_r}{VW} & 0 & \frac{e_{\theta}}{Wr} & \frac{e_{\phi}}{Wr} \\ 0 & -\frac{e_{\theta}}{Wr} & 0 & \frac{e_{\phi} \cos(\theta)}{r \sin(\theta)} \\ 0 & -\frac{e_{\phi}}{Wr} & -\frac{e_{\phi} \cos(\theta)}{r \sin(\theta)} & 0 \end{pmatrix}$$
 (%t56)

(%i57) $ldisplay(\omega:ev(\omega,Eq_t,Eq_r,Eq_\theta,Eq_\phi))$ \$

$$\omega = \begin{pmatrix} 0 & \frac{(W_t) dr}{V} - \frac{(V_r) dt}{W} & 0 & 0\\ \frac{(V_r) dt}{W} - \frac{(W_t) dr}{V} & 0 & \frac{d\theta}{W} & \frac{d\phi \sin(\theta)}{W} \\ 0 & -\frac{d\theta}{W} & 0 & d\phi \cos(\theta) \\ 0 & -\frac{d\phi \sin(\theta)}{W} & -d\phi \cos(\theta) & 0 \end{pmatrix}$$
(%t57)

Change matrix multiplication operator

(%i58) matrix_element_mult:"~"\$

(%i59) list_matrix_entries(ω .e);

$$[-(V_r) dr dt, (W_t) dr dt, dr d\theta, dr d\phi \sin(\theta) + r d\theta d\phi \cos(\theta)]$$
(%059)

(%i60) is(%=de);

true
$$(\%060)$$

Restore matrix multiplication operator

(%i61) matrix_element_mult:"*"\$