(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-194572

(43)公開日 平成6年(1994)7月15日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FI .

技術表示箇所

G 0 2 B 15/20 13/18 9120-2K 9120-2K

審査請求 未請求 請求項の数 2(全 17 頁)

(21)出願番号

特願平4-344640

(22)出願日

平成 4年(1992)12月24日

See Apply

(71)出願人 000006079

ミノルタカメラ株式会社

大阪府大阪市中央区安土町二丁目3番13号

大阪国際ビル

(72)発明者 坂 真奈美

大阪市中央区安土町二丁目3番13号 大阪

国際ビル ミノルタカメラ株式会社内

(72)発明者 中川 朋子

大阪市中央区安土町二丁目3番13号 大阪

国際ビル ミノルタカメラ株式会社内

(72)発明者 荻野 修司

大阪市中央区安土町二丁目3番13号 大阪

国際ピル ミノルタカメラ株式会社内

(54) 【発明の名称 】 変倍レンズ

(57)【要約】

【目的】変倍比が12倍程度でFナンバーが1.8程度と いう高変倍でかつ明るい変倍レンズを、コンパクトかつ 少ない構成枚数で実現し、しかも性能面でも充分満足で きるものを提供する。

【構成】物体側より順に、正の屈折力の第1レンズ成 分、負の屈折力の第2レンズ成分、正の屈折力の第3レ ンズ成分、正の屈折力の第4レンズ成分を有する変倍レ ンズにおいて、第1レンズ成分及び第2レンズ成分の屈 折力を適切に規定している。さらに、変倍時における第 2、第3、第4レンズ成分それぞれの動きを適切に規定 ている。

【特許請求の範囲】

【請求項1】物体側より順に、正の屈折力の第1レンズ 成分、負の屈折力の第2レンズ成分、正の屈折力の第3 レンズ成分、正の屈折力の第4レンズ成分とを有し、以 下の条件式を満足することを特徴とする変倍レンズ

 $0.10 \le f s \cdot \phi 1 \le 0.25$

 $0.45 < f s \cdot |\phi 2| < 1.25$

但し、fsは広角端における全系の焦点距離、

φ1は第1レンズ成分の屈折力、

φ2は第2レンズ成分の屈折力である。

【請求項2】前記第2レンズ成分は変倍のために光軸上を前後に可動であり、前記第3レンズ成分は同じく変倍のために第2レンズ成分とは反対方向に光軸上を前後に可動であり、前期第4レンズ成分は変倍時の像面の位置を一定にするために光軸上をUターン状の軌跡を描いて前後に可動であることを特徴とする請求項1に記載の変倍レンズ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ビデオカメラ等の小型 カメラに適用される変倍比の大きい変倍レンズに関す る。

[0002]

【従来の技術】近年、ビデオカメラ等のカメラ本体は電子部品のパッケージ化や集積率の向上により、重量・体積とも格段にコンパクト化が進んでいる。一方、カメラ本体の価格面・コスト面においても低廉価が著しい。

【0003】このような中において、レンズの重量・体積・コストも、絶対値では少しずつ改善されている。しかし、カメラ本体に対する相対値は年々上昇している状況である。従って、レンズのコンパクト化・コストダウンの要請はより強いものとなっている。

【0004】また、撮像素子の小型化による照度不足を補うための大口径比化や、さらには高画素化・高解像度化に対応するための高性能化というように、レンズに求められる性能はより高くなってきている。

【0005】基本的に本発明では、変倍比として、現在特にビデオカメラ分野で主流である12倍程度、FナンバーはF1.8程度の大口径比の変倍レンズを想定する。

【0006】このようなスペックを満足するものは4成分または5成分よりなるズームレンズで、特開平1-179117号公報等これまで数多く提案されているが、その大半は13~15枚程度のレンズよりなる構成であり、コスト的にも大きさ的にも現在の要求を満足できるものとはいえない。

【0007】また一眼レフカメラ用のレンズでは、特開平2-66509号公報等で提案されているように、多成分を移動させることにより各レンズ成分の移動量を減らしコンパクト化を図ったものが多くみられる。この様なタイプでは、ズーミング時に第1レンズ成分も移動させてい

るが、ビデオカメラでは駆動部分のコンパクト化も重要な目的のため、ズーミング時には重量の大きい第1レンズ成分を固定する方がはるかに有利である。

【0008】そこで最近のビデオカメラでは、非球面を用いることによって構成枚数を削減するといったような動きが見られるようになってきた。例えば特開昭57-272 19号公報に示されたズームレンズは、正負正の3成分よりなる系で、第1レンズ成分を像点位置補正成分(コンペンセーター)、第2レンズ成分を変倍成分(バリエーター)として光軸上を移動させ、各レンズ成分に非球面を1面ずつ使用することによってF1.6の3倍ズームレンズを12枚のレンズで実現している。しかし、これはズーム構成やレンズ形状・配置等が有効とはいえず、構成枚数はそのスペックから考えて少なくない。

【0009】また、このタイプのレンズをを6倍以上の高変倍ズームにまで拡張することは不可能である。その理由の一つは、上述したレンズ形状・配置等の不適性の他に次のような欠点を持つからである。すなはち、変倍時に第3レンズ成分を移動させていないため、必然的に第1レンズ成分がコンペンセーターレンズ成分として移動し、そのとき6倍以上の高変倍を達成するには、広角端もしくはミドル域(中間焦点距離)での使用を考慮すると、4成分及び5成分よりなるズームレンズに対し、第1レンズ成分(前玉)の径がかなり大きくなり、また重量が相当重くなるからである。

【0010】これに対し、4成分ズームレンズでレンズ 形状・配置と非球面の配置をかなり有効に行い、構成枚 数を大幅に削減したものとして、特開昭61-110112号公 報や特開昭60-107013号公報で提案されたものがある。

【0011】特開昭61-110112号公報で提案されたレンズは正負負正の4成分系で、各レンズ成分を簡潔に構成し、4面の非球面をうまく使用することにより、全系でわずか8枚のレンズで6倍ズームレンズを達成している。しかし、収差性能はかなり悪く、現在の要求性能を満足することは困難である。

【0012】また、特開昭60-107013号公報は正負正正の4成分系で8枚構成の模式図が図示されているが、数値データ不在のため、その性能や大きさが判断できず、またスペック的にもF2の4倍ズームであるので高変倍ズームには応用できないと予想される。

【0013】その他、低変倍比ではあるが、特開昭63-304218号公報や特開昭64-44907号公報、特開平1-223408号公報等、第2レンズ成分を1枚、第1レンズ成分を1~2枚とした正負正の3成分系によって、非球面の力も借りながら思い切って枚数削減を図ったものも提案されている。しかし、これらのレンズタイプは、変倍の主役でかつ変倍に際し光軸上を大きく移動する第2レンズ成分内での色収差補正がなされていないために、変倍による色収差の変動が大きく、高変倍に応用した時には性能保障

が出来ない。こと実これらの例は、変倍比が2~3倍と低く、FナンバーもF2~4程度と暗いものしか実現出来ていない。この色収差変動は非球面を多用しても改善できるものではなく、このようなレンズタイプは現在の要求性能(色収差含む)から考慮して、せいぜい3倍どまりの変倍比までしか達成できる見込みがなく、12倍クラスに応用することは不可能である。

【0014】さらに、特開昭64-91110号公報や特開平1-185608号公報にも斬新なズームレンズが提案されてい る。特開昭64-91110号公報は3成分ズームレンズとほぼ 同じようなレンズ形状でありながら、この第2レンズ成 分に相当する部分を2枚の負レンズよりなる負成分と1 枚の正レンズよりなる成分とに分離することにより、実 質的な構成を4成分系として、構成枚数を3成分並の8 ~11枚におさえ3倍ズームを実現している。変倍は上 述した負成分と正成分を各々独立に移動させることによ り行なっている。しかし、この4成分ズームレンズの本 質的な弱点は、独立に移動する第2レンズ成分と第3レ ンズ成分の各々のレンズ成分内での色補正が完結してい ないために、高変倍ズームに応用した場合には、変倍に よる色収差変動を充分に抑えきれないことである。この 例では3倍という低変倍比にとどめてズーム解を工夫す ることによりなんとか色収差変動を抑えているが、これ を6倍ズームに応用するのはかなり困難である。

【0015】特開平1-185608号公報は、非球面を多用す ることによって、特開昭64-91110号公報で提案されたレ ンズの構成枚数を減らしつつ6倍ズームにまで発展させ たものである。これは特開昭64-91110号公報で提案され たレンズの第2レンズ成分を負単レンズ1枚、第3レン ズ成分を正単レンズ1枚にしてあり、第4レンズ成分も 簡略化してある。しかし、これにおいても上述した色収 差変動が大きいため、ズーム解の工夫をかなり施してあ るもののまだ残存色収差が大きく、現状の要求性能を満 たすことは難しい。さらに色収差補正にかなりのウェー トを置いたズーム解になっているため、移動レンズ成分 である第2レンズ成分と第3レンズ成分の移動量がかな り大きく、全長が長くなっているということと、特に重 量に大きな影響を与える前玉の外径が、既存の同スペッ クの一般的なものに比べかなり大きくなっているため、 コンパクト性という観点にたてば、ここで提案されてい るものは悪化しているといわざるを得ない。このように 特開平1-185608号公報で提案されたズームレンズは枚数 削減という目的は達成しているものの、コンパクト性・ 色収差性能は現状のニーズを満足できるものではないと いう結論になる。

【0016】さらに、特開平1-185608号公報と同じく正 負正正の4成分の構成で色収差変動も抑えることが出来 るものとして、特開平2-39011号公報に開示されたもの がある。これは、非球面を3面使用し、F1.4の6倍ズ ームを8枚のレンズで達成しているものであり、上述の 各例よりコスト面・性能面・大きさ面より、実現可能性が高いものと思われる。しかし残存する問題点としては、前玉の径が小さいとはいえず重量的には既存のものに対しさしたる優位性がないということと、収差図には現われにくいサジタル方向のコマ収差(リンネンフェラー)が非常に大きく軸外の性能劣化が大きいということが挙げられる。4成分系ズームレンズは、この延長線上で徐々にこれら問題点を改良してゆくことが期待される。

【0017】また、正負正の3成分系で各レンズ成分を移動させることにより枚数を削減し高変倍化を図ったもので、一眼レフ用やコンパクトカメラ用として提案されたものとしては、特開昭54-30855号公報、特開昭54-80143号公報に開示されたものや特開平2-39116号公報に開示されたものがある。各々順に変倍比と構成レンズ枚数は、2.4倍/10枚、3倍/11枚、3倍/12枚であり、変倍比が不十分でかつ特に第2レンズ成分や第3レンズ成分の簡略化が充分達成されておらず、コスト的にも充分ではない。

[0018]

【発明が解決しようとする課題】本発明は、変倍比が12倍程度でドナンバーが1.8程度という高変倍でかつ明るい変倍レンズを、コンパクトかつ少ない構成枚数で実現し、しかも性能面でも充分満足できるものを提供することを目的とする。

[0019]

【課題を解決するための手段】上記目的を達成するために本発明では、物体側より順に、正の屈折力の第1レンズ成分、負の屈折力の第2レンズ成分、正の屈折力の第3レンズ成分、正の屈折力の第4レンズ成分を有する変倍レンズにおいて、第1レンズ成分及び第2レンズ成分の屈折力を適切に規定した。

【0020】さらに、変倍時における第2、第3、第4 レンズ成分それぞれの動きを適切に規定した。

[0021]

【作用】上記構成を有することにより、本発明はコンパクトでしかも構成枚数が少ないにもかかわらず、変倍比が12倍程度でFナンバーも1.8程度という高変倍でかつ明るい変倍レンズが実現できる。

[0022]

【実施例】以下、本発明の実施例について詳述する。本発明の変倍レンズは、物体側より順に、正の屈折力の第1レンズ成分、負の屈折力の第2レンズ成分、正の屈折力の第3レンズ成分、正の屈折力の第4レンズ成分とを有し、以下の条件式(1)、(2)を満足することを特徴とする。

[0023]

$$0.10 \le f s \cdot \phi 1 \le 0.25$$
 (1)

$$0.45 < f s \cdot | \phi 2 | < 1.25$$
 (2)

但し、fsは広角端における全系の焦点距離、φ1は第1

レンズ成分の屈折力、 ϕ 2は第2レンズ成分の屈折力である。

"

【0024】条件式(1)は、第1レンズ成分の屈折力の適正な範囲を規定するものである。4成分のレンズ系においては、各レンズ成分で発生する収差を適正に抑えなければ、全焦点距離範囲にわたって良好な収差性能を有する高変倍のズームレンズを実現することが不可能となる。条件式(1)の上限を越えて第1レンズ成分の屈折力が強くなると、第1レンズ成分内で発生する収差変動も大きくなるためズーミングによる全系の収差変動も大きくなり、例えばミドル付近で要求性能を満たさなくなってしまう。ミドル付近は望遠端あるいは広角端と比べると使用頻度が少ないが、極端に悪い性能であれば、ますます高性能・高スペック化が求められる最近のレンズではまったく許容できない。

【0025】条件式(1)の下限を越えて第1レンズ成分の屈折力が弱くなると、ズーミングのために取らなくてはならない第1レンズ成分と第2レンズ成分との間隔が極端に長くなり、従ってレンズ全長も著しく長くなってしまう。ビデオカメラ自体が小型化してきているため、最近のレンズ系はスペックや性能と共により一層のコンパクト化が要求されるようになってきている。このためいくら性能やスペックが高くても、著しく全長の長いレンズ系ではカメラとの間で全くバランスが取れない。

【0026】条件式(2)は第2レンズ成分の屈折力の 適正な範囲を規定するものである。第1レンズ成分の場 合と同じように、第2レンズ成分で発生する収差も全焦 点距離範囲の収差変動に大きく関与している。条件式

(2) の上限を越えて第2レンズ成分の屈折力が強くなると、第2レンズ成分で発生する収差が大きくなり、ズーミングによる全系の収差変動が著しく大きくなってしまう。また、第2レンズ成分は変倍を主に行っているため特に屈折力が強く、第3レンズ成分や第4レンズ成分の収差補正にも大きな影響を及ぼし、明るいレンズ系の実現が困難となる。

【0027】条件式(2)の下限を越えて第2レンズ成分の屈折力が弱くなると、ズーミングのために第2レンズ成分が移動する量が大きくなりレンズ全長が著しく長くなってしまう。第2レンズ成分は主として変倍のために移動しているので、全長に及ぼす寄与は著しい。

【0028】また、本発明の変倍レンズでは、第2レンズ成分は変倍のために光軸上を前後に可動であり、第3レンズ成分は同じく変倍のために第2レンズ成分とは反対方向に光軸上を前後に可動であり、前期第4レンズ成分は変倍時の像面の位置を一定にするために光軸上をUターン状の軌跡を描いて前後に可動であることを特徴とする。

【0029】上記のように、変倍時に各レンズ成分が移動することにより、第3成分にも変倍効果を分担させる

ことができ、しかも第3レンズ成分の移動による全長の大型化が防止される。

【0030】さらに、第2レンズ成分及び第3レンズ成分はともに線型に移動するのが望ましい。一般にズームレンズでは、移動するレンズ成分の数が少ない方が機構も簡単でコンパクトになる。しかしながら複数のレンズ成分を一つの機構を使って移動させることが可能であれば、移動レンズ成分が比較的多くても簡単な機構とすることが可能である。上述のように第2レンズ成分及び第3レンズ成分を線型に移動させることによって、ギア・リード等を介して二つの移動レンズ成分を一つの機構で比較的簡単に移動させることができる。

【0031】さらに、本発明の変倍レンズは、以下の条件式(3)を満足することが望ましい。

[0032]

 $0.10 < \phi 1 / | \phi 2 | < 0.35$ (3)

条件式(3)は、第1レンズ成分と第2レンズ成分の屈 折力配分の適正なバランスを規定するものである。全系 のレンズ枚数は、第1レンズ成分と第2レンズ成分との 屈折力のバランスに大きく左右される。

【0033】条件式(3)の上限を越えて第1レンズ成分の屈折力が強くなると、像面位置を補正する第4レンズ成分の軌跡が望遠端よりも広角端で物体側に寄り、最も物体側となる位置がより第3レンズ成分に近くなる。第3レンズ成分と第4レンズ成分との間隔が小さくなると第4レンズ成分に入射する光束幅が大きくなり、第4レンズ成分で補正しなければならない収差量が大きくなって第3レンズ成分や第4レンズ成分のレンズ枚数が増加してしまう。

【0034】条件式(3)の下限を越えて第2レンズ成 分の屈折力が強くなると、第4レンズ成分の軌跡が望遠 端よりも広角端で像面側に寄り、レンズバックが短くな ったりレンズ全長が長くなったりする。ビデオレンズで は一眼レフと比較して長いレンズバックを必要としてい る。これはレンズの像面側にローパスフィルターやフェ イスプレート等の厚い平板を挿入するためである。最近 では画面サイズ(CCDサイズ)が小さくなる傾向にあ るが、CCDをカバーするフェイスプレートの厚みはほ とんど変わっていないため、レンズの全長に対するレン ズバックの比はますます大きくなっている。つまり、レ ンズバックが極端に短くなるとレンズ系自体が実現でき なくなってしまう可能性がある。もちろんレンズの構成 枚数を変えることでレンズバックを長くすることはある 程度可能ではあるが、そのためにはレンズ枚数を著しく 多くしなくてはならない。

【0035】さらに、第1レンズ成分は高分散材料の負レンズを少なくとも1枚含む2枚以上のレンズで構成され、第2レンズ成分は高分散材料の正レンズを少なくとも1枚含む2枚以上のレンズで構成され、第4レンズ成分は高分散材料の負レンズを少なくとも1枚含む2枚以

上のレンズで構成されていることが望ましい。

【0036】 さらに、本発明の変倍レンズは、以下の条件式(4) \sim (6) を満足することが望ましい。

[0037]

$$v \text{ 1N} < 30 \tag{4}$$

$$v \, 2P \, < \, 30$$
 (5)

$$v \, 3N \, < \, 30$$
 (6)

但し、ν INは第1 レンズ成分中の負の高分散レンズのアッペ数、ν 2Pは第2 レンズ成分中の正の高分散レンズのアッペ数、ν 3Nは第3 レンズ成分中の負の高分散レンズのアッペ数である。

【0038】条件式(4)~(6)は各レンズ成分の色収差補正に関するものである。ズームレンズにおいてはどのようなレンズタイプであるかに関わらず、各レンズ成分内で色収差が補正されていることが必要である。これは、各レンズ成分の相対位置が変倍にともなって大きく変化しているためで、もし各レンズ成分内での色収差補正がされていなかったり不十分であると、変倍によって色収差が大きく変動してしまい要求性能を満たすことが出来ない。この傾向は、変倍比が大きくなるほど顕著で8倍ズーム以上になると色収差補正は必ず適正にとれていなければならない。条件式(4)~(6)の上限を越えてアッベ数が大きくなると、各レンズ成分内の色収差補正の能力が不十分となり、変倍による色収差変動が許容量を越えてしまう。

【0039】また、前記第1レンズ成分は、物体側より 順に負メニスカスレンズおよび正レンズの合計2枚のレ ンズで構成されるのが望ましい。第1レンズ成分を最も 少ないレンズ枚数で構成するときには、前述のように各 レンズ成分内での色収差を補正する必要から、少なくと も2枚のレンズが必要である。しかしながら、レンズの 形状や並びが適切でなければ、少ない枚数で色収差以外 の収差を補正することが困難となる。従って最も適切な レンズ構成としては上述のようになる。より詳細には、 負メニスカスレンズは像面側に強い曲率の面を向け、正 レンズは物体側に強い曲率の面を向けるのが望ましい。 【0040】前記第2レンズ成分は、物体側より順に負 レンズおよび正レンズの合計2枚のレンズで構成される のが望ましい。第2レンズ成分を最も少ないレンズ枚数 で構成するには、やはり色収差補正を考慮にいれて、少 なくとも2枚のレンズ構成にしなくてはならない。この 時、第2レンズ成分で発生する収差をできるだけ補正す るには上述のような構成にする必要がある。より詳細に は、負レンズは像面側に強い屈折力の面を向け、正レン ズは物体側に強い屈折力の面を向けるのが望ましい。

【0041】あるいは、前記第1レンズ成分は、物体側より順に負メニスカスレンズ、正レンズおよび正メニスカスレンズの合計3枚のレンズで構成されるのが望ましい。高性能で高変倍のズームレンズになると、各レンズ成分での収差補正をより厳格に行う必要がある。これは

各レンズ成分で発生する収差を補正しなければズーミングにおける収差の変動が大きくなってしまい、全ての焦点距離範囲で必要な性能を得ることができないためである。各レンズ成分の収差をできるだけ小さく抑えるには、一つの方法として各レンズ成分の屈折力を弱く当までは、一つの方法として各レンズ成分の屈折力をでは当るになが考えられる。しかしながら、この方法では当当ないでは、一ミング時の各レンズ成分の移動量が大きくなってしまう。もう一つの方法は各レンズ成分のレンズ枚数を増やすものである。この方法ないズスをコンパクトにできレンズ外径もいってくできるため、レンズ系をコンパクトにできレンズ外径もいってくできるため、レンズ枚数が少ないものよりもかえてコストが安くなるというメリットもある。具体的には、3枚構成はかなり収差を補正する効果があり、12倍程度のズームレンズにも十分応用可能である。

【0042】また、前記第2レンズ成分は、物体側より順に負レンズ、両凹レンズおよび正レンズの合計3枚のレンズで構成されるのが望ましい。高変倍比のズームレンズでは第2レンズ成分も上述のような3枚構成にすることでズーミングによる収差変動をかなり小さくすることができる。

【0043】さらに、本発明の変倍レンズは、以下の条件式(7)を満足することが望ましい。

[0044]

0.01 < |t2|/|t3| < 0.35 (7)

但し、t2は第2レンズ成分の全移動量、t3は第3レンズ成分の全移動量である。

【0045】条件式(7)は第2レンズ成分と第3レンズ成分との移動量の比を規定するものである。主として変倍を行うのは第2レンズ成分であり、第3レンズ成分は補助的な変倍を行うことで、第2レンズ成分の移動量を減らしてレンズ全長の短縮化を助けている。条件式

(7)の上限を越えて第2レンズ成分の移動量が第3レンズ成分の移動量と比べて大きくなると、第3レンズ成分で変倍を助ける量がわずかとなり実質的にほとんど効果が無い。つまり、多くのレンズ成分を移動させなくてはならないデメリットだけが残る。

【0046】条件式(7)の下限を越えて第3レンズ成分の移動量が大きくなると、ミドル付近から広角端で第3レンズ成分と第4レンズ成分とが極端に接近し、第4レンズ成分に入射する光束幅が大きくなる。このため第4レンズ成分での収差補正が困難となり、明るいレンズを実現することが困難となる。

【0047】また、フォーカシングは第4レンズ成分で行うのがよい。従来のように前玉でフォーカシングを行うと前玉径が大変大きくなってしまう。これを防ぐために、最近では前玉以外でフォーカシングするインナーフォーカスやリアフォーカスが主流となってきている。本発明のレンズタイプでは第4レンズ成分でフォーカシングを行うのが最も良い。前玉以外でフォーカシングを行

う利点は前玉径が大きくならないということのほかに、 広角端ではほとんどレンズ先端までフォーカシングが可 能であることが挙げられる。インナーフォーカスやリア フォーカスでは、同じ距離の物体に対するフォーカシン グレンズ成分の繰り出し量が焦点距離によって異なって しまうという不便さはあるが、メリットの方がはるかに 多い。

【0048】以下に本発明にかかわる変倍レンズの具体的な数値実施例を示す。ここで、各実施例において、r $i(i=1,2,3,\ldots)$ は物体側から数えて第 i 番目の面の曲率半径、d $i(i=1,2,3,\ldots)$ は物体側から数えて第 i 番目の軸上面間隔、n $i(i=1,2,3,\ldots)$ 、v $i(i=1,2,3,\ldots)$ はそれぞれ物体側から数えて第 i 番目のレンズの d 線 $(\lambda=587.6nm)$ に対する屈折率及びアッベ数を示す。また、f は全系の焦点距離を示す。

【0049】実施例中、曲率半径に*印を付した面は非球面で構成された面であることを示し、以下の非球面の面形状を表す式で定義するものとする。

曲率半径 軸上面間隔 屈折率(Nd) アッベ数(νd) r 1 45,676 d 1 1.300 N11.83350 21.00 ν 1 r2 27, 898 d 2 4.900 N2 56.47 1.69680 ν2 -1209.6140.150 r 3 d3r 4 2.400 N3 23, 117 d 4 1.69680 ν 3 56.47 34.926 d 5 24.467~8.443~1.000 r 5 75.390 r 6 d 6 0.800 N4 1. 77250 49.77 ν4 6.939 d 7 3,700 r 7 -28.920 0.700 r 8 d 8 N5 1.75450 51.57 ν 5 20.942 r 9 d 9 0.300 r 10 13.634 d 10° 2.200 N6 1.83350 ν6 21.00 61.279 2.000~18.023~25.467 d 11 r 11 ∞ d 12 2.500~3.795~4.393 r 12 14.918 d 13 r 13* 3.200 N7 1.58913 ν7 61.11 142.908 d 14 7. $500\sim2$. $910\sim3$. 958r 14 96.674 d 15 0.900 N8 1.84666 r 15 ν8 23.82 15.069 d 16 3.100 N9 1.60311 r 16 ν9 60.74 -82. 162 r 17 d 17 0.100 48.748 2.800 r 18 d 18 N10 1. 58913 ν 10 61.11 r 19* -19.386d 19 $3.000\sim6.294\sim4.649$ r 20 ∞ d 20 4.840 N11 1.51680 64.20 ν 11 r 21 ∞

[非球面係数]

r 13

 $\varepsilon = 1.0$

 $A4 = -0.72177 \times 10^{-4}$

 $A6 = -0.72868 \times 10^{-7}$

r 19

曲率半径 軸上面間隔 屈折率(Nd) アッベ数(vd) 44.403 r 1 d 1 1.300 N1 1.84666 ν1 23.82 r 2 25.645 d 2 ' 5.900 N2 1.67000 ν 2 57.07 r 3 -787. 042 0.150 d 3

 $\varepsilon = 1.0$

 $A4 = 0.45621 \times 10^{-4}$

 $A6 = 0.65836 \times 10^{-6}$

 $A8 = -0.11464 \times 10^{-7}$

 $f = 65.0 \sim 10.0 \sim 5.8$

【0054】<実施例2>

【0050】 【数1】

$$X(h) = \frac{h^2/r}{1 + (1 - \varepsilon \cdot (h/r)^2)^{1/2}} + \sum_{n=2}^{\infty} Anh^n$$

[0051]

ここで、X:光軸方向の基準面からの偏移量

r:近軸曲率半径

h: 光軸と垂直な方向の高さ

An:n次の非球面係数

ε: 2次曲面パラメータである。

【0052】尚、下記の実施例は全て4成分構成であるが、そのレンズ成分間や全系の像側あるいは物体側に、簡単な構成で比較的屈折力の弱い固定若しくは可動のレンズ成分を配置することは容易であり、本発明の主旨に含まれるものである。

【0053】<実施例1>

 $f = 65.0 \sim 10.0 \sim 5.8$

r 4	21. 452	d 4	2. 100	N3	1.67000	ν3	57. 07
r 5	32. 063	d 5	25. 341~	8. 775 ~ 1.	. 000		
r 6	37. 766	d 6	0.800	N4	1. 77250	ν4	49. 77
r 7	6. 585	d 7	3.900				
r 8	-28. 742	d 8	0.700	N5	1. 75450	ν 5	51. 57
r 9	19.849	d 9	0.300				
r 10	13. 219	d 10	2. 200	N6	1.83350	ν6	21.00
r 11	60. 533	d 11	2.000~	18.566~	26. 341		
r 12	· ∞	d 12	2.500~	3. 795∼ <u>.</u> 4.	393	-	
r 13*	22.823	d 13	3. 200	N7	1. 58913	$\nu \cdot 7$	61. 11
r 14	-53. 028	d 14	7.500~	2. 931 ~ 3.	940		
r 15	78. 836	d 15	0.900	N8	1.84666	ν8	23.82
r 16	14. 964	d 16	4. 000	N9	1. 58913	ν9	61. 11
r 17	-27. 783	d 17	1. 000	,			•
r 18	82.700	d [.] 18	2. 400	N10	1. 51680	ν 10	64. 20
r 19	-25. 998	d 19	3.000~	6. 274 ~ 4.	667		
r 20	∞	d 20	4.840	N11	1. 51680	ν 11	64. 20
r 21	. ∞						

[非球面係数]

r 13

 $\epsilon = 1.0$

 $A4 = -0.68914 \times 10^{-4}$

 $A6 = -0.39999 \times 10^{-7}$ °

【0055】<実施例3>

 $f = 65.0 \sim 10.0 \sim 5.8$

曲率半径		上軸	上面間隔	面間隔 屈折率(Nd)		アッベ数(νd)	
r 1	37. 983	d1 .	1.300	N1	1.83350	ν1	21.00
r 2	24. 242	d 2	5. 500	N2	1.67000	ν2	57. 07
r 3	-2615. 405	d 3	0. 150				
r 4	23. 712	d 4	2. 200	N3	1. 60311	ν 3	60.74
r 5	42. 796	d 5	22. 250~7	7. 696~1.	. 000		
r 6	106. 934	d 6	0.800	N4	1.71300	ν 4	53. 93
r 7	6. 755	d 7	3.700				
r 8	-24. 054	d 8	0.700	N5	1. 67000	v 5	57. 07
r 9	14. 255	d 9	0.300				
r 10	11. 986	d 10	2. 200	N6	1.83350	ν6	21.00
r 11	46. 901	d 11	2.000~1	l6. 554~2	23. 250		
r 12	∞	d 12	2.500~3	3. 795 ~ 4.	393		
r 13*	14. 744	d 13	3. 200	N7	1.64000	, v _. 7	58. 61
r 14	280. 502	d 14	1.000				
r 15	-20. 215	d 15	0.900	N8	1.80518	ν8	25. 43
r 16	-29. 341	d 16	7.500~2	2. 290~3.	266		
r 17	41. 796	d 17	0. 900	N9	1.84666	ν9	23.82
r 18	14. 176	d 18	3. 100	N10	1. 69680	ν 10	56. 47
r 19	-242.844	d 19	0. 100				
r 20	86. 229	d 20	2.800	N11	1. 58913	ν 11	61. 11
r 21*	-18. 417	d 21	3.000∼€	6. 915∼5.	341		
r 22	∞	d 22	4. 840	N12	1.51680	ν 12	64. 20
r 23	∞					•	

[非球面係数]

r 13

 $\varepsilon = 1.0$

 $A4 = -0.49003 \times 10^{-4}$

 $A6 = 0.21064 \times 10^{-6}$

r 21

 $\varepsilon = 1.0$

 $A4 = 0.79885 \times 10^{-4}$

$A6 = 0.11328 \times 10^{-5}$					[00) 5 6】<実	施例4>	
$A8 = -0.15926 \times 10^{-7}$		$f = 65.0 \sim 10.0 \sim 5.8$						
曲率半径			軸上	上面間隔 屈折率(Nd)				
	r l	37. 983	d 1	1. 300	N1	1. 83350	ν1	21.00
•	r 2	24. 242	d 2	5. 500	N2	1. 67000	ν 2	57. 07
•		-2957. 967	d3	0. 150		2. 5. 5. 5		
•	r 4	23. 706	d 4	2. 200	N3	1. 60311	ν3	60. 74
	r 5	42. 873	d 5	22. 222~7				00.11
	r 6	107. 044	d 6	0.800	N4	1. 71300	ν 4	53. 93
	r 7		d 7	3. 700	. 10-4	1. 71500	V 4	00. 90
•		6. 755			NE	1 67000	a. 5	57 07
	r8	-24. 073	d 8	0. 700	N5	1. 67000	ν 5	57. 07
	r 9	14. 257	d 9	0. 300	N. C.	1 00050	0	. 01 00
	r 10	11. 990	d 10	2. 200	N6		ν6	21. 00
	r 11	46. 912	d 11	2.000~1				
	r 12	∞ .		2.500~3				
	r 13*	14. 676	d 13	3. 200	· N7	1. 62041	ν 7,	60. 29
	r 14	353. 499	d 14	1.000		•		
	r 15	28. 077	d 15	0.900	N8	1. 83350	ν8	21.00
	r16.	20. 619	d 16	7. 500~2.	308~3.	290		
	r 17	40. 575	d 17	0.900	N9	1. 84666	ν9	23.82
	r 18	.14. 186	d 18	3. 100	N 10	1.69680	ν 10	56. 47
•	r 19	-236. 624	d 19	0. 100				
	r 20	86. 147	d 20	2.800	N11	1. 58913	ν 11	61.11
	r 21*	-18. 476	d 21	3.000~6	6.897~5	. 317		
•	r 22	∞	d 22	4.840	N12	1.51680	ν·12	64. 20
	r 23	. ・∞	•					
[非球面係数]					$\varepsilon = 1$. 0		
r 13				•	A4=	0.62913×1	0-4	
$\epsilon = 1.0$					A6=	0.88209×1	0–6	
$A4 = -0.70889 \times 10^{-4}$,		A8=	-0. 15916×1	0 ⁻⁷ 。	
$A6 = -0.50264 \times 10^{-7}$			•		[00	057】<実	施例5>	
r 21					f = 3	7.9~18.0~	6. 7	
	曲率	半径	軸」	上面間隔	屈抄	f率(Nd)、	アッヘ	<数(νd)
	r 1	20. 340	d 1	1. 100	N1	1.83350	· ν 1	21.00
	r 2	15. 420	d 2	1.200				
	r 3	17. 018	d 3	4.650	N2	1. 69680	ν2	56. 47
,	r 4	500. 706	d 4	19.417~				
,	r 5	-40. 819	d 5	0.600	N3	1. 75450	· v3	51. 57
	r 6	7. 006	d 6	2. 400				
	r 7*	19. 466	d 7	2. 300	N4	1.84506	ν 4	23. 66
•	r8	39. 586	d 8	1. 650~8.				20.00
•	r 9	∞ ∞	d 9		6. 682 ~ 7			
	r 10*	13. 674	d 10	2. 700	0.002 - 7 N5	1. 76683		
		32. 597	d 10		1. 803~2			
	r 11						E	25 42
	r 12	44. 528	d 12	1.300	N6	1.80518	ν 5	25. 43
•	r 13	8. 405	d 13	3. 600	N7	1. 76683		
	r 14*	-22. 463	d 14	2. 211~	4. 327~2	. 102		04.00

[非球面係数]

 ∞

 ∞

r 15

r 16

N8

1.51680

ν6

64. 20

d 15 4.840

```
\epsilon = 1.0
                                                                    A10 = -0.72788 \times 10^{-9}
A4 = 0.20592 \times 10^{-3}
                                                                    r 14
A6 = -0.48934 \times 10^{-6}
                                                                    \varepsilon = 1.0
A8 = 0.21295 \times 10^{-6}
                                                                    A4 = 0.11166 \times 10^{-3}
A10 = -0.44687 \times 10^{-8}
                                                                    A6 = -0.45960 \times 10^{-5}
r 10
                                                                    A8 = 0.25463 \times 10^{-6}
\epsilon = 1.0
                                                                    A10 = -0.51255 \times 10^{-8}
A4 = -0.44636 \times 10^{-4}
                                                                     【0058】<実施例6>
A6 = -0.80443 \times 10^{-6}
                                                                    f = 70.0 \sim 36.0 \sim 6.2
A8 = 0.40863 \times 10^{-7}
                                                 軸上面間隔
                         曲率半径
                                                                     屈折率(Nd)
                                                                                          アッベ数(vd)
                                 30.682
                       r 1
                                               d 1
                                                       1.100
                                                                   N1
                                                                           1.83350
                                                                                          ν1
                                                                                                  21.00
                       r 2
                                 20.799
                                               d 2
                                                       4.200
                                                                            1. 58913
                                                                                          \nu 2
                                                                   N2
                                                                                                  61.11
                       r 3
                                343.739
                                               d 3
                                                       0.100
                                 20.902
                       r 4
                                               d 4
                                                       2.700
                                                                   N3
                                                                           1.58913
                                                                                          \nu 3
                                                                                                  61.11
                       r 5
                                 46.220
                                               d 5
                                                      19.776~16.288~1.100
                                 44.854
                                               d 6
                                                       1.100
                                                                   N4
                       r 6
                                                                            1.69680
                                                                                          ν4
                                                                                                  56.47
                       r 7
                                  5.850
                                               d 7
                                                       3.000
                       r 8
                                -23.754
                                               d 8
                                                       0.700
                                                                   N5
                                                                           1.69680
                                                                                          ν5
                                                                                                  56.47
                       r 9
                                 33.701
                                               d9
                                                       0.100
                       r 10
                                 10.582
                                               d 10
                                                       1.700
                                                                   N6
                                                                           1.83350
                                                                                          ν6
                                                                                                  21.00
                                 20.456
                                               d 11
                                                       2.000~5.488~20.676
                       r 11
                                   \infty
                                               d 12
                       r 12
                                                       1. 700 \sim 2. 746 \sim 7. 303
                                 16.429
                                               d 13
                                                       3.000
                                                                   N7
                       r 13
                                                                           1.58913
                                                                                          ν7
                                                                                                  61.11
                                 52.853
                       r 14*
                                               d 14
                                                      13.000~4.503~0.782
                                 29.905
                                               d 15
                                                       0.750
                       r 15
                                                                   N8
                                                                           1.83350
                                                                                          \nu 8
                                                                                                  21.00
                       r 16
                                 12.665
                                               d 16
                                                       0.400
                                 10.646
                                               d 17
                                                       4.600
                       r 17
                                                                   N9
                                                                           1.58913
                                                                                          ν9
                                                                                                  61.11
                       r 18*
                                -14.972
                                               d 18
                                                       1.500~8.950~8.116
                                   \infty
                                               d 19
                       r, 19
                                                       4.840
                                                                   N10
                                                                           1.51680
                                                                                                  64.20
                                                                                          ν 10
                       r 20
                                   \infty
 [非球面係数]
                                                                    \epsilon = -0.30872
r 14
                                                                    A4 = 0.47860 \times 10^{-4}
\epsilon = 0.66708 \times 10^{-1}
                                                                    A6 = 0.14001 \times 10^{-5}
A4 = -0.14598 \times 10^{-3}
                                                                    A8 = 0.56602 \times 10^{-7}
A6 = 0.22461 \times 10^{-5}
                                                                    A10 = -0.13320 \times 10^{-8}
A8 = 0.34191 \times 10^{-7}
                                                                    【0059】<実施例7>
A10 = -0.47697 \times 10^{-9}
                                                                    f = 70.0 \sim 36.0 \sim 6.2
r 18
                        曲率半径
                                                 軸上面間隔
                                                                     屈折率(Nd)
                                                                                          アッベ数(νd)
                       r 1
                                 35.679
                                              d 1
                                                       1.100
                                                                   N1
                                                                           1.83350
                                                                                                  21.00
                                                                                          ν1
                       r 2
                                 23.809
                                               d 2
                                                       4.200
                                                                   N2
                                                                           1.58913
                                                                                          \nu 2
                                                                                                  61.11
                       r \cdot 3
                              -291.279
                                               d 3
                                                       0.100
                                 22.567
                                               d 4
                                                       2.700
                                                                   N3
                       r 4
                                                                           1.58913
                                                                                          ν3
                                                                                                  61.11
                       r 5
                                 49.220
                                               d 5
                                                     20. 393~16. 605~1. 100
                                 97.975
                      r 6
                                               d 6
                                                       0.800
                                                                   N4
                                                                           1.69680
                                                                                                  56.47
                                                                                          ν4
                      r 7
                                  5.961
                                              d 7
                                                       3.000
                      r 8
                               -26.786
                                              d 8
                                                       0.700
                                                                   N5
                                                                           1.69680
                                                                                          ν5
                                                                                                  56.47
                      r 9
                                 32.854
                                              d 9
                                                       0.300
```

r 10

11.024

d 10

1.400

N6

1.83350

21.00

ν6

```
r 11
                               21.368
                                            d 11
                                                    2.000~5.788~21.293
                                 \infty
                                            d 12
                                                    1. 700\sim2. 647\sim6. 523
                     r 12
                                                                                              61.11
                               14.036
                                            d 13
                                                    2.400
                                                                N7
                                                                        1.58913
                                                                                      ν7
                     r 13
                                                    0.800
                              -47.783
                                            d 14
                     r 14
                     r 15
                              -30.522
                                            d 15
                                                    0.600
                                                                N8
                                                                        1.80518
                                                                                      ν8
                                                                                              25.43
                              237.731
                                            d 16
                                                   13.000~4.385~2.450
                     r 16*
                               23.104
                                            d 17
                                                    0.750
                                                                N9
                                                                        1.83350
                                                                                              21.00
                     r 17
                                           d 18
                                                   0.400
                     r18
                              17.108
                                                                        1.58913
                                                                                              61.11
                     r 19
                               12.830
                                            d 19
                                                    4.600
                                                                N10
                                                                                      ν 10
                                                    1.500~9.168~7.227
                     r 20*
                              -27.086
                                            d 20
                                                                                              64.20
                                            d 21
                                                    4.840
                                                                N11
                                                                        1.51680
                                                                                      ν 11
                     r 21
                                  \infty
                     r 22
                                  \infty
                                                                 A6 = 0.11126 \times 10^{-5}
[非球面係数]
                                                                 A8 = 0.12889 \times 10^{-7}
r 16
                                                                 A10 = -0.67695 \times 10^{-9}
\varepsilon = 1.0
                                                                  【0060】<実施例8>
r 20
                                                                 f = 66.0 \sim 35.0 \sim 5.7
\varepsilon = -0.91873 \times 10
A4 = 0.11455 \times 10^{-3}
                                              軸上面間隔
                                                                  屈折率(Nd)
                                                                                      アッベ数(νd)
                       曲率半径
                                                                                              23.82
                                                    1.100
                                                                N1
                               41.873
                                             d 1
                                                                        1.84666
                                                                                      ν1
                      r 1
                                                                                       \nu 2
                                                                                              64.20
                      r 2
                               23.085
                                             d 2
                                                    5.700
                                                                N2
                                                                        1.51680
                                                    0.100
                              -86.708
                                             d 3
                      r 3
                                                                                              64.20
                                19.106
                                             d 4
                                                    2.700
                                                                N3
                                                                        1.51680
                                                                                       \nu 3
                      r 4
                                             d 5
                                                    18. 458~14. 850~0. 570
                      r 5
                                78. 181
                             -217.994
                                             d 6
                                                    0.650
                                                                N4
                                                                        1.77250
                                                                                              49.77
                      r 6
                                                                                       ν4
                      r 7
                                 8.760
                                             d 7
                                                    3.300
                              -10.233
                                             d 8
                                                    0.550
                                                                N5
                                                                        1.75450
                                                                                       ν5
                                                                                              51.57
                      r 8
                                                                                              23.82
                                 8.008
                                             d 9
                                                    1.900
                                                                N6
                                                                        1.84666
                                                                                       ν6
                      r 9
                             -392.682
                                             d 10
                                                    2.000~5.608~19.888
                      r 10
                                             d 11
                                                     1.500~1.861~3.289
                      r 11
                                  \infty
                     r12
                              13.840
                                            d 12
                                                   2.800
                                                               N7
                                                                       1.59844
                             -346.342
                                             d 13
                                                    9.453~3.853~10.186
                      r 13*
                                                                                              23.82
                                18.017
                                                    0.650
                                                                N8
                                                                         1.84666
                      r 14
                                             d 14
                                                                                       ν7
                                                     3.800
                                                                N9
                                                                        1.59844
                      r 15
                                 8.630
                                             d 15
                                             d 16
                                                     4.000~9.239~1.478
                      r 16*
                               -26.722
                                                                                              64. 20
                      r 17
                                  \infty
                                             d 17
                                                     4.840
                                                                 N10
                                                                        1.51680
                                                                                       ν8
                                  \infty
                      r 18
 [非球面係数]
                                                                 \varepsilon = 1.0
                                                                 A4 = 0.54030 \times 10^{-4}
r 13
                                                                 A6 = 0.16398 \times 10^{-6}
\varepsilon = 1.0
                                                                 A8 = -0.31394 \times 10^{-8}
A4 = 0.82831 \times 10^{-4}
                                                                  【0061】<実施例9>
A6 = -0.49893 \times 10^{-7}
                                                                  f = 66.0 \sim 15.0 \sim 5.7
A8 = 0.11039 \times 10^{-8}
r 16
                                                                                       アッベ数(νd)
                                               軸上面間隔
                                                                   屈折率(Nd)
                        曲率半径
                                                                                       ν1
                                                                                               23.82
                              . 36. 192
                                             d 1
                                                     1.100
                                                                 N1
                                                                         1.84666
                      r 1
                                                                                               64.20
                      r 2
                                22. 258
                                             d 2
                                                     6.000
                                                                 N2
                                                                         1.51680
                                                                                       \nu 2 .
                               -80. 549
                                             d 3
                                                     0.100
                      r 3
                                                                                       ν3
                                                                                               64.20
                                19.560
                                             d 4
                                                     2.500
                                                                N3
                                                                         1.51680
                      r 4
                                47.684
                                             d 5
                                                    18.800~9.673~0.572
                      r 5
```

r 6	24. 332	d 6	0.700	N4	1. 77250	ν4	49. 77
r 7	8. 591	d 7	3. 200				
r8	-11. 153	d 8	0.600	N5	1. 75450	ν5	51.57
r 9	7. 775	d 9	2.000	N6	1.84666	ν6	23.82
r 10	40. 449	d 10	1.700~	-10.827 ~	19. 928		
r 11	∞	d 11	2.000~	-2. 913 ~ 3	. 823		
r 12	11. 558	d 12	3. 300	N7	1. 58913	ν7	61. 11
r 13	-20. 417	d 13	1. 200				
r 14	-11.008	d 14	0.800	N8	1. 58913	ν8	61. 11
r 15*	-68. 185	d 15	8. 500 ⁻	∼ 1. 919∼	3. 919		
r 16	18. 723	d 16	0.650	N9	1.83350	ν9	21.00
r 17	9. 750	d 17	0.500		•		
r 18	10. 996	d 18	3.800	N10	1. 58913	ν 10	61. 11
r 19*	-13. 722	d 19	1.000~	-6. 669 ~ 3	. 759		
r 20	∞	d 20	4. 840	N11	1. 51680	ν 11	64. 20
r 21	∞						

[非球面係数]

r 15

 $\epsilon = 0.26051$

 $A4 = -0.10940 \times 10^{-4}$

 $A6 = 0.32705 \times 10^{-6}$

A8 = -0.19181×10^{-6}

 $A10 = 0.19709 \times 10^{-8}$

r 19

 $\varepsilon = -0.35363 \times 10$

 $A4 = -0.37759 \times 10^{-4}$

A6 = -0.19674×10^{-5}

 $A8 = 0.11961 \times 10^{-6}$

 $A10 = -0.12711 \times 10^{-8}$

【0062】尚、各実施例における各条件式の値は以下のとおりである。

条件式	(1)	(2)	(3)	(7)
実施例1	0. 144	0. 690	0. 273	0. 081
実施例2	0. 139	0.664	0. 209	0.078
実施例3	0.156	0. 746	0. 209	0.089
実施例4	0. 156	. 0. 746	0. 209	0.089
実施例 5	0. 184	0.669	0. 276	0.088
実施例6	0.182	0. 733	0. 248	0.300
実施例7	0.182	0. 757	0. 240	0. 250
実施例8	0.184	0. 970	0. 189	0.100
実施例9	0. 174	0.861	0. 203	0. 100.

[0063]

【発明の効果】以上説明したように、本発明によれば、変倍比が12倍程度でFナンバーが1.8程度という高変倍でかつ明るい変倍レンズを、コンパクトかつ少ない構成枚数で実現し、しかも性能面でも充分満足できるものを提供することができる。

【図面の簡単な説明】

- 【図1】本発明の実施例1に対応するレンズの構成図である。
- 【図2】本発明の実施例2に対応するレンズの構成図で あろ。
- 【図3】本発明の実施例3に対応するレンズの構成図である。
- 【図4】本発明の実施例4に対応するレンズの構成図である。

- 【図5】本発明の実施例5に対応するレンズの構成図である。
- 【図6】本発明の実施例6に対応するレンズの構成図である。
- 【図7】本発明の実施例7に対応するレンズの構成図である。
- 【図8】本発明の実施例8に対応するレンズの構成図である。
- 【図9】本発明の実施例9に対応するレンズの構成図である。
- 【図10】本発明の実施例1に対応するレンズの収差図である。
- 【図11】本発明の実施例2に対応するレンズの収差図である。
- 【図12】本発明の実施例3に対応するレンズの収差図

である。

【図13】本発明の実施例4に対応するレンズの収差図である。

【図14】本発明の実施例5に対応するレンズの収差図である。

【図15】本発明の実施例6に対応するレンズの収差図である。

【図16】本発明の実施例7に対応するレンズの収差図である。

【図17】本発明の実施例8に対応するレンズの収差図である。

【図18】本発明の実施例9に対応するレンズの収差図である。

【図14】 【図15】 4.3.1 FN0=3.17 Y-3.1 **<L> (L)** DS -0.1 -5.0 球面収差 正弦条件 非点収差 歪曲% 球面收益 正弦条件 歪曲 % 非点収差 Y- 9.1 <M> DM DM D5 DS. -6.1 -6.1 非"成 収差 **赴曲%** 球面収差 正弦条件 非忠 収免 歪曲% 球面板差 正陆条件 Y=31 Fuo=1.83 **<**5> **<5>** D5 **D**5 五 五 五 -0.1 -5.0 50 -01 -0.1 走曲% 球面板差 正弦纤 非点収差 球面收差 正珍条件 非点収差

【図17】

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第2区分

【発行日】平成11年(1999)8月6日

【公開番号】特開平6-194572

【公開日】平成6年(1994)7月15日

【年通号数】公開特許公報6-1946

【出願番号】特願平4-3.44640

【国際特許分類第6版】

G02B 15/20

13/18

[FI]

G02B 15/20

13/18

【手続補正書】

【提出日】平成10年8月27日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 物体側から順に、正の屈折力の第1レンズ成分、負の屈折力の第2レンズ成分、正の屈折力の第3レンズ成分、正の屈折力の第4レンズ成分とを有し、前記第2レンズ成分、第3レンズ成分、第4レンズ成分は光軸上を前後に可動であって、以下の条件式を満足す

ることを特徴とする変倍レンズ

 $0.01 \le f \text{ s} \cdot \phi 1 \le 0.25$

0. 45< f s \cdot | ϕ 2|<1. 25

但し、fsは広角端における全系の焦点距離、

φ1は第1レンズ成分の屈折力、

φ2は第2レンズ成分の屈折力である。

【請求項2】 前記第4レンズ成分は変倍時に光軸上を Uターン状の軌跡を描いて前後に可動であることを特徴 とする請求項1に記載の変倍レンズ。

【請求項3】 以下の条件を満足することを特徴とする 請求項2記載の変倍レンズ

 $0.10 < \phi 1 | \phi 2 | < 0.35$