Decision Theory: Part 4

Dr. Qiuzhuang Sun STAT3023

Asymptotically minimax procedures

 We have so far only looked at examples of asymptotically minimax procedures using 0-1 loss, that is:

$$L(d|\theta) = 1\{|d - \theta| > C_n\},\,$$

for which the risk is the non-coverage probability of the interval:

$$d(\mathbf{X}) \pm C_n$$
.

 This has been because it is easier to derive limiting (maximum) risk for Bayes procedures using a uniform prior, since procedures are level sets of truncated densities, and only convergence in distribution is needed.

Asymptotically minimax procedures

- In particular, we showed the limiting risk of the Bayes procedure $\tilde{d}(\mathbf{X})$ using a uniform prior can be derived by
 - 1. deriving the limiting risk of $d_{\text{flat}}(\mathbf{X})$, the Bayes procedure using the flat prior $w(\theta) = 1$;
 - 2. showing that with probability tending to 1,

$$\tilde{d}(\mathbf{X}) = d_{\mathsf{flat}}(\mathbf{X}).$$

It turns out the same is true for the case of squared error loss.
In many cases, the Bayes procedure (the posterior mean)
using a UNIFORM prior is "close" to that obtained using a flat prior.
In particular, the limiting (rescaled) risk for the two procedures is the same.

Example (**Binomial with squared error loss**): Suppose $\mathbf{X} = (X_1, \dots, X_n)$ consists of iid Binomial $(1, \theta)$ random variables for some unknown $\theta \in (0, 1)$. Consider the decision problem with decision space $\mathcal{D} = (0, 1)$ and loss function $L(d|\theta) = (d - \theta)^2$. Show that for any $\alpha_0 > 0$, $\beta_0 > 0$, the Bayes procedure using the conjugate prior

$$w(\theta) = \frac{\theta^{\alpha_0 - 1} (1 - \theta)^{\beta_0 - 1}}{B(\alpha_0, \beta_0)}$$

is asymptotically minimax. You may use the fact that

$$\lim_{n\to\infty} nE_{\theta}[(\tilde{d}(\mathbf{X})-\theta)^2] = \lim_{n\to\infty} nE_{\theta}[(d_{\mathsf{flat}}(\mathbf{X})-\theta)^2], \quad \forall \theta \in (\theta_0,\theta_1),$$

where $\tilde{d}(\mathbf{X})$ and $d_{\mathsf{flat}}(\mathbf{X})$ are Bayes procedures under the $U(\theta_0, \theta_1)$ prior and flat prior $w(\theta) = 1$, $\theta \in (0, 1)$, respectively.

Example (Normal variance (with known mean)): Suppose $\mathbf{X}=(X_1,\ldots,X_n)$ consists of iid $N(0,\theta)$ random variables for some unknown $\theta\in(0,\infty)$. Consider the decision problem with decision space $\mathcal{D}=(0,\infty)$ and the squared error loss. Show that both the MLE and the Bayes procedure under the Inverse Gamma (conjugate) prior:

$$w(\theta)=rac{\lambda_0^{lpha_0}e^{-\lambda_0/ heta}}{ heta^{lpha_0+1}\Gamma(lpha_0)},\; heta>0,\quad ext{for some known } lpha_0,\gamma_0>0,$$

are asymptotically minimax. You may assume for any $0<\theta_0<\theta_1<\infty$:

$$\lim_{n\to\infty} n E_{\theta}[(\tilde{d}(\mathbf{X})-\theta)^2] = \lim_{n\to\infty} n E_{\theta}[(d_{\mathsf{flat}}(\mathbf{X})-\theta)^2], \quad \forall \theta \in (\theta_0,\theta_1),$$

where $\tilde{d}(\mathbf{X})$ and $d_{\mathsf{flat}}(\mathbf{X})$ are Bayes procedures under the $U(\theta_0,\theta_1)$ prior and flat prior $w(\theta)=1,\ \theta>0$, respectively.

Example (**Normal mean**): Suppose $\mathbf{X}=(X_1,\ldots,X_n)$ consists of iid $N(\theta,1)$ random variables for some unknown $\theta\in\mathbb{R}$. Consider the decision problem with decision space $\mathcal{D}=\mathbb{R}$ and loss $L(d|\theta)=|d-\theta|$. Show \bar{X} is asymptotically minimax.

Example (**Uniform scale parameter**): Suppose $\mathbf{X}=(X_1,\ldots,X_n)$ consists of iid $U(0,\theta)$ random variables for some unknown $\theta>0$. Consider the decision problem with decision space $\mathcal{D}=\Theta=(0,\infty)$ and loss $L(d|\theta)=|d-\theta|$. Compare $d_{\mathsf{ML}}(\mathbf{X})=\hat{\theta}_{\mathsf{ML}}$, which is the MLE and a "median unbiased" version of the MLE $d_{\mathsf{med}}(\mathbf{X})=2^{\frac{1}{n}}X_{(n)}$. Show $d_{\mathsf{med}}(\mathbf{X})$ is asymptotically minimax. You may assume for any $0<\theta_0<\theta_1<\infty$:

$$\lim_{n\to\infty} nE_{\theta}[(\tilde{d}(\mathbf{X})-\theta)^2] = \lim_{n\to\infty} nE_{\theta}[(d_{\mathsf{flat}}(\mathbf{X})-\theta)^2], \quad \forall \theta \in (\theta_0,\theta_1),$$

where $\tilde{d}(\mathbf{X})$ and $d_{\mathsf{flat}}(\mathbf{X})$ are Bayes procedures under the $U(\theta_0, \theta_1)$ prior and flat prior $w(\theta) = 1$, $\theta > 0$, respectively.

Summary

- We have examined many examples with a variety of loss functions
 - Squared error loss
 - Absolute error loss
 - 0-1 loss (for interval estimation)
- In "regular" cases (usually exponential family), the MLE is generally different from Bayes estimators. However:
 - · The differences are mainly in the bias, not the variance
 - The bias is asymptotically negligible compared to variance
 - Both MLE and Bayes estimators are optimal (in the sense that they are asymptotically minimax) under various loss functions

Summary

- In "non-regular" cases (e.g., $U(0,\theta)$), the MLE and Bayes estimators can be "more different"
 - Bias in the MLE is of the same order as the variance, and it is not asymptotically negligible
 - Bias-corrected versions of the MLE can be asymptotically minimax
 - Bayes estimators "asymptotically" adjust for the bias, and are asymptotically minimax
- Why use asymptotically minimax as a criterion for optimality?
 - Non-asymptotic optimality results are more difficult to establish
 - It gets around the "super-efficiency" problem
 - The AMLB theorem applies to any procedures. This is rather rare in statistics. Many optimality criteria apply to a restricted class of procedures, e.g., UMP tests to 1-parameter exponential family and 1-sided alternative