Binary Logistic Regression

Aaron Avram

June 4 2025

Introduction

In this write up I will go through my derivation of the objective function and the optimization algorithm for my Multinomial Logistic Regression model.

Construction

For my notation let $X \in \mathbb{R}^{n \times p}$ be the matrix with each of the n training inputs as rows. Where we define p to be the dimension of each input vector (or equivalently the number of features). Next let $y \in \{1, \ldots, K\}^n$ equal the vector of training labels, where there are K output classes. I will apply the shortcut used in the Binary Model Construction where each row of X is given an additional final entry with a 1, to account for the bias term. So X is now a $n \times (p+1)$ dimensional matrix. Where we can let p+1=d as our feature number. The model is parametrized by K-1 p+1 dimensional vectors $\theta^{(1)}, \ldots, \theta^{(k-1)}$, which I will collectively refer to by the flattened combined vector θ . Where the probabilities are given by:

$$\Pr(\kappa | x; \theta^{(\kappa)}) = \begin{cases} \frac{\exp((\theta^{(\kappa)})^T x)}{1 + \sum_{1 \le i < K} \exp((\theta^{(i)})^T x)} & \kappa < K \\ \frac{1}{1 + \sum_{1 \le i < K} \exp((\theta^{(i)})^T x)} & \kappa = K \end{cases}$$

The log likelihood function is then given by:

$$\mathcal{L}(\theta) = \sum_{1 \le r \le n} \log \Pr(y_r | x_r; \theta^{y_r})$$

Using a one hot encoding with the kronecker delta function we can write this as:

$$= \sum_{1 \le r \le n} \sum_{1 \le s \le K} \delta_{y_r s} \log \Pr(y_r | x_r; \theta^{(s)})$$

Consider the Likelihood function with respect to one input vector x_r and one parameter $\theta^{(j)}$:

$$\mathcal{L}_{rj}(\theta) = \log \Pr(y_r|x_r)$$

However we can condense this further, as if $y_r \neq j$ the numerator of the probability function is irrelevant to $\theta^{(j)}$, and if we decompose the fraction via the logarithm rules we can omit the numerator

term and replace it with a kronecker delta. I.e Suppose $\Pr = N/D$ then $\log(\Pr) = \log(N) - \log(D)$ and so if N is independent of $\theta^{(j)}$ we can omit it. Thus:

$$\mathcal{L}_{rj}(\theta) = \delta_{y_r j} \log(\exp((\theta^{(j)})^T x_r)) - \log(1 + \sum_{1 \le i < K} \exp((\theta^{(i)})^T x))$$
$$= \delta_{y_r j}(\theta^{(j)})^T x_r - \log(1 + \sum_{1 \le i < K} \exp((\theta^{(i)})^T x))$$

Gradient Calculations

First lets take the partial derivative with respect to $\theta^{(j)}$ we find

$$\frac{\partial \mathcal{L}_{rj}}{\partial \theta^{(j)}} = \delta_{y_r j} x_r - \frac{x_r \exp((\theta^{(j)})^T x_r)}{1 + \sum_{1 \le i < K} \exp((\theta^{(i)})^T x)}$$
$$= x_r (\delta_{y_r j} - \Pr(j|x_i))$$

Reusing some calculations from the previous write up it is clear that $\frac{\partial \mathcal{L}}{\partial \theta^{(j)}} = X(y - p_j)$ Which form the columns of the Jacobian matrix of \mathcal{L} .

Now let us take the second partial derivative of this expression with respect to $\theta^{(i)}$

$$\frac{\partial}{\partial \theta^{(i)}} \frac{\partial \mathcal{L}_{rj}}{\partial \theta^{(j)}} = \begin{cases} -x_r x_r^T \Pr(j|x_r) (1 - \Pr(j|x_r)) & i = j \\ x_r x_r^T \Pr(j|x_r) \Pr(i|x_r) & i \neq j \end{cases}$$

We can make this more compact utilizing the kronecker delta function:

$$\frac{\partial}{\partial \theta^{(i)}} \frac{\partial \mathcal{L}_{rj}}{\partial \theta^{(j)}} = x_r x_r^T \Pr(i|x_r) (\delta_{ij} - \Pr(j|x_r))$$

Now let $\Pr(j|x_r) = p_{jr}$ So the total second derivative of \mathcal{L} is:

$$\frac{\partial}{\partial \theta^{(i)}} \frac{\partial \mathcal{L}}{\partial \theta^{(j)}} = \sum_{1 \le r \le n} x_r x_r^T p_{ir} (\delta_{ij} - p_{jr})$$
$$= \sum_{1 \le r \le n} x_r x_r^T p_{ir} (\delta_{ij} - p_{jr})$$

If we let $W_{ij} = \text{diag}(p_{ir}(\delta_{ij} - p_{jr}))_r$ We can write this more compactly by observing that

$$\frac{\partial}{\partial \theta^{(i)}} \frac{\partial \mathcal{L}}{\partial \theta^{(j)}} = X^T W_{ij} X$$

Thus the Hessian of the Log-Likelihood is the block matrix H with blocks $H_{ij} = W_{ij}$, where this is the Hessian of the flattened vector θ made by combining all $\theta^{(1)}, \ldots, \theta^{(K-1)}$. Note that the Gradient of this flattened vector is the vector created by stacking the columns of the Jacobian.

Optimization

The objective function will be maximized via the Newton-Raphson Method. Reusing work from the previous write up, the update rule is given by:

$$\theta^{(new)} = \theta^{(old)} + H^{-1}(\nabla_{\theta}(\mathcal{L})(\theta^{(old)}))$$

Where H represents the full hessian matrix and $\nabla_{\theta}(\mathcal{L})$ is the flattened Jacobian where each column of the Jacobian is stacked (So that the gradients of each class parameter are kept together). If we let $g = \nabla_{\theta}(\mathcal{L})(\theta^{(old)})$ We can simplify the computations in each step of the method by solving for $\Delta\theta = \theta^{(new)} - \theta^{(old)}$. Where $H(\Delta\theta) = g$. H is a semi-positive definite matrix. If we apply some regularization we can ensure that H is a positive definite matrix, and so can use the conjugate gradient method to solve for $\Delta\theta$. This method leverages the property that given $u, v \in \mathbb{R}^m$ ($m := d \times (C-1)$), $u^T H v$ defines an inner product $\langle u, v \rangle_H := u^T H v$, a fact that is easy to check. By Gram-Schmidt we can always find a basis of orthogonal vectors P_1, \ldots, P_m for the inner product space given by \mathbb{R}^m with respect to this inner product. Thus, we can express $\Delta\theta$ as a linear combination of these vectors with coefficients $\alpha_1, \ldots \alpha_m$. Thus:

$$H(\Delta \theta) = H(\sum_{i=1}^{m} \alpha_i p_i)$$
$$g = \sum_{i=1}^{m} \alpha_i H p_i$$

Now left multiplying by taking the dot product with p_k we have:

$$p_k^T g = p_k^T \sum_{i=1}^m \alpha_i H p_i$$
$$= \sum_{i=1}^m \alpha_i p_k^T H p_i$$
$$= \sum_{i=1}^m \alpha_i \langle p_k, p_i \rangle_H$$

By the orthonormality of the basis we have:

$$p_k^T g = \alpha_k \langle p_k, p_k \rangle$$
$$\alpha_k = \frac{p_k^T g}{\langle p_k, p_k \rangle_H}$$

This gives us an algorithm for computing the coefficient of a basis vector. We can combine this with the Gram-Schmidt algorithm for computing this orthogonal basis and recover the coefficients at each step.

This can save us a lot of time as H is only used to compute the inner product, but since H is a block matrix and v is a block vector we can use this to compute Hv without ever constructing H, saving a lot of computing time. To do this consider the block vector Hv where H and v are viewed as a block matrix and a block vector respectively. You can think of v as a magtrix with each

column i being an arbitrary parameter vector for class i. By the block matrix-vector multiplication rule we have:

$$(Hv)_{i} = \sum_{j=1}^{C-1} H_{ij}v_{j}$$

$$= \sum_{j=1}^{C-1} X^{T}W_{ij}Xv_{j}$$

$$= X^{T} \sum_{j=1}^{C-1} W_{ij}Xv_{j}$$

Fix P to be the matrix with its r-th row containing the probability vector of the r-th training sample. Now consider first Xv_j :

$$Xv_j = \begin{bmatrix} X_1^T v_j \\ \vdots \\ X_n^T v_j \end{bmatrix}$$

Since W_{ij} is a diagonal matrix, multiplying Xv_j by it corresponds to elementwise scaling by the diagonal elements of W_{ij} .

$$Xv_j = \begin{bmatrix} X_1^T v_j \\ \vdots \\ X_n^T v_j \end{bmatrix}$$