PAKET 15

PELATIHAN ONLINE

po.alcindonesia.co.id

2019 SMA

WWW.ALCINDONESIA.CO.ID

@ALCINDONESIA

085223273373

SOAL

Untuk nomor 1 dan 2

Sebuah partikel melaju dengan kecepatan v_0 dari posisi tak hingga menuju suatu massa M dimana M > m dengan b sebagai parameter impak (*impact parameter*).

1. Tentukan jarak terdekat antara m dengan M.

a.
$$r_{min} = -\frac{GM}{v_0^2} + \sqrt{\left(\frac{GM}{v_0^2}\right)^2 + b^2}$$

b.
$$r_{min} = \frac{GM}{v_0^2} + \frac{1}{2} \sqrt{\left(\frac{GM}{v_0^2}\right)^2 + \frac{1}{4}b^2}$$

c.
$$r_{min} = \frac{2GM}{v_0^2} + b$$

d.
$$r_{min} = \frac{2GM}{v_0^2} + \sqrt{\left(\frac{2GM}{v_0^2}\right)^2 - b^2}$$

e.
$$r_{min} = \sqrt{\left(\frac{GM}{v_0^2}\right)^2 + 4b^2}$$

2. Tentukan besar sudut defleksi ξ .

a.
$$\xi = 2 \arcsin\left(\frac{2GM}{3v_0^2b}\right)$$

b.
$$\xi = \arctan\left(\frac{2GM}{v_0^2 b}\right)$$

c.
$$\xi = \frac{1}{2} \arccos\left(\frac{v_0^2 b}{2GM}\right)$$

d.
$$\xi = 2 \arctan\left(\frac{GM}{v_0^2 b}\right)$$

e.
$$\xi = \arcsin\left(\frac{2GM}{v_0^2b}\right)$$

3. Terdapat sebuah sistem segiempat dengan lingkaran. Lingkaran tidak bergerak terhadap tanah dan mempunyai radius *R*. Persegi panjang diatas akan diberi gangguan dan berosilasi harmonik. Tentukan periode osilasi sistem tersebut.

a.
$$T = 2\pi \sqrt{\frac{a^2}{3gb}}$$

b.
$$T = 2\pi \sqrt{\frac{b^2}{3ga}}$$

$$c. \quad T = 2\pi \sqrt{\frac{a^2 + b^2}{2g(R - a - b)}}$$

d.
$$T = 2\pi \sqrt{\frac{4a^2 + b^2}{3g(R-a)}}$$

e.
$$T = 2\pi \sqrt{\frac{a^2 + b^2}{2gR}}$$

Untuk nomor 4-8

Terdapat kasus 3 bintang yang mengorbit pada pusat massanya. Berikut merupakan diagram orbitnya.

4. Dua benda bermassa, M dan m (abaikan μ) bergerak dalam orbit lingkaran dengan radius R dan r (diukur dari pusat massa). Carilah ω_0 dari M dan m.

a.
$$\omega_0 = \sqrt{\frac{G(M+m)}{(R+r)^3}}$$

b.
$$\omega_0 = \sqrt{\frac{G(M+m)}{8(R+r)^3}}$$

c.
$$\omega_0 = \sqrt{\frac{GM}{(R+r)^3}}$$

d.
$$\omega_0 = \sqrt{\frac{Gm}{(R+r)^3}}$$

d.
$$\omega_0 = \sqrt{\frac{Gm}{(R+r)^3}}$$
 e.
$$\omega_0 = \sqrt{\frac{GMm}{(M+m)(R+r)^3}}$$

Objek μ yang massanya sangatlah kecil dibandingkan M dan m (tidak mengubah posisi pusat massa) diletakkan pada orbit yang sebidang dengan M dan m. Obejk μ diam relatif terhadap M dan m.

5. Tentukan jarak dari m ke μ .

a.
$$R + r$$

b.
$$\sqrt{R^2 + rR + r^2}$$

c.
$$\sqrt{R^2 + 3rR + r^2}$$

d.
$$R-r$$

e.
$$\sqrt{R^2 - rR + r^2}$$

6. Tentukan jarak dari M ke μ .

a.
$$R + r$$

b.
$$\sqrt{R^2 + rR + r^2}$$

c.
$$\sqrt{R^2 + 3rR + r^2}$$

d.
$$R-r$$

e.
$$\sqrt{R^2 - rR + r^2}$$

7. Tentukan jarak dari pusat massa ke μ .

a.
$$R + r$$

b.
$$\sqrt{R^2 + rR + r^2}$$

c.
$$\sqrt{R^2 + 3rR + r^2}$$

d.
$$R-r$$

e.
$$\sqrt{R^2 - rR + r^2}$$

8. Terdapat suatu asumsi jika M dan m bermassa sama. Jika μ diberi simpangan kecil arah radial, tentukan frekuensi angular dari osilasi sistem.

a.
$$\omega' = \frac{1}{2}\omega_0\sqrt{7}$$

b.
$$\omega' = \frac{1}{4}\omega_0\sqrt{6}$$

c.
$$\omega' = \frac{1}{3}\omega_0\sqrt{3}$$

d.
$$\omega' = \frac{1}{2}\omega_0\sqrt{3}$$

e.
$$\omega' = \frac{1}{2}\omega_0$$

Untuk nomor 9-13

Sebuah meriam bermassa M_1 dilengkapi dengan peluru besi bermassa M_2 yang siap diluncurkan. Meriam membentuk sudut β terhadap bidang horizontal. Kemudian, peluru ditembakan. Asumsikan system licin sempurna dan meriam dapat memberikan energi mekanik sebesar E. Sudut β konstant tiap waktu.

9. Tentukan besar kecepatan meriam akibat peluru yang ditembakkan relatif terhadap tanah

a.
$$v_2 = \sqrt{\frac{2E_0m_1}{(m_1+m_2)(m_2+m_1\sin^2\theta)}}\cos\theta$$
 b.
$$v_2 = \frac{m_2}{m_1}\sqrt{\frac{2E_0m_1}{(m_1+m_2)(m_2+m_1\sin^2\theta)}}\cos\theta$$
 c.
$$v_2 = \sqrt{\frac{2E_0}{(m_1+m_2)}}\sin\theta$$
 d.
$$v_2 = \left(1 + \frac{m_2}{m_1}\right)\sqrt{\frac{2E_0m_1}{(m_1+m_2)(m_2+m_1\sin^2\theta)}}\sin\theta$$

e.
$$v_2 = \sqrt{\frac{2E_0}{m_2 + m_1 \tan^2 \theta}}$$

e. $v_{1x} = \sqrt{\frac{2E_0}{m_2 + m_1 \tan^2 \theta}}$

10. Tentukan besar kecepatan peluru horizontal yang ditembakkan relatif terhadap tanah.

a.
$$v_{1x} = \sqrt{\frac{2E_0m_1}{(m_1 + m_2)(m_2 + m_1 \sin^2 \theta)}} \cos \theta$$
b.
$$v_{1x} = \frac{m_2}{m_1} \sqrt{\frac{2E_0m_1}{(m_1 + m_2)(m_2 + m_1 \sin^2 \theta)}} \cos \theta$$
c.
$$v_{1x} = \sqrt{\frac{2E_0}{(m_1 + m_2)}} \sin \theta$$
d.
$$v_{1x} = \left(1 + \frac{m_2}{m_1}\right) \sqrt{\frac{2E_0m_1}{(m_1 + m_2)(m_2 + m_1 \sin^2 \theta)}} \sin \theta$$

11. Tentukan besar kecepatan peluru vertikal yang ditembakkan relatif terhadap tanah.

a.
$$v_{1y} = \sqrt{\frac{\frac{2E_0m_1}{(m_1+m_2)(m_2+m_1\sin^2\theta)}}{\cos\theta}}\cos\theta$$

b. $v_{1y} = \frac{m_2}{m_1}\sqrt{\frac{\frac{2E_0m_1}{(m_1+m_2)(m_2+m_1\sin^2\theta)}}\cos\theta$
c. $v_{1y} = \sqrt{\frac{\frac{2E_0}{(m_1+m_2)}}{\sin\theta}}$

d.
$$v_{1y} = \left(1 + \frac{m_2}{m_1}\right) \sqrt{\frac{2E_0 m_1}{(m_1 + m_2)(m_2 + m_1 \sin^2 \theta)}} \sin \theta$$

e.
$$v_{1y} = \sqrt{\frac{2E_0}{m_2 + m_1 \tan^2 \theta}}$$

12. Tentukan besar sudut β agar jarak yang dicapai peluru meriam maksimum. Asumsikan hanya 1 dimensi pada sistem.

a.
$$\theta = \arcsin \sqrt{\frac{m_2}{m_1}}$$

b.
$$\theta = \arcsin \sqrt{\frac{2m_2}{2m_1 + m_2}}$$

c.
$$\theta = \arctan \sqrt{\frac{2m_2}{m_1}}$$

d.
$$\theta = \arctan \sqrt{\frac{m_1}{2m_2}}$$

e.
$$\theta = \arctan \sqrt{\frac{m_2}{m_1 + m_2}}$$

13. Tentukan jarak maksimumnya.

a.
$$S = \frac{3E_0}{m_1 g}$$

b.
$$S = \frac{E_0}{2m_1g} \sqrt{\frac{m_2}{m_1 + 2m_2}}$$

b.
$$S = \frac{E_0}{2m_1 g} \sqrt{\frac{m_2}{m_1 + 2m_2}}$$

c. $S = \frac{E_0}{m_1 g} \sqrt{\frac{m_2}{2m_1 + m_2}}$

d.
$$S = \frac{E_0}{m_1 g}$$

d.
$$S = \frac{E_0}{m_1 g}$$

e. $S = \frac{2E_0}{m_1 g} \sqrt{\frac{m_2}{m_1 + m_2}}$