(1) ARITHMETIC CORE INSTRUCTION SET OPCODE 2 MIPS Reference Data / FMT /FT / FUNCT NAME, MNEMONIC OPERATION MAT (Hex) Branch On FP True bc1 if(FPcond)PC=PC+4+BranchAddr (4) **CORE INSTRUCTION SET** OPCODE 11/8/1/-if(!FPcond)PC=PC+4+BranchAddr(4) Branch On FP False bclf FI 11/8/0/--FOR. / FUNCT Divide Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] 0/--/--/1aNAME, MNEMONIC MAT OPERATION (in Verilog) (Hex) Divide Unsigned Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] 0/--/--/1b divu R 0 / 20_{hex} R[rd] = R[rs] + R[rt]FP Add Single add.s $FR ext{ } F[fd] = F[fs] + F[ft]$ 11/10/--/0 Add Immediate addi R[rt] = R[rs] + SignExtImm(1,2)FP Add ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$ 11/11/--/0 Add Imm. Unsigned addiu Ι R[rt] = R[rs] + SignExtImm(2) 9_{hex} Double ${F[ft],F[ft+1]}$ FPcond = (F[fs] op F[ft]) ? 1 : 011/10/--/y 0 / 21_{hex} FP Compare Single Add Unsigned R[rd] = R[rs] + R[rt]addu FP Compare $FPcond = ({F[fs],F[fs+1]}) op$ 0 / 24_{hex} R[rd] = R[rs] & R[rt]11/11/--/y c.x.d* Double $\{F[ft],F[ft+1]\}\)?1:0$ * (x is eq, lt, or le) (op is == FP Divide Single div.s FR F And Immediate andi Ι R[rt] = R[rs] & ZeroExtImm c_{hex} <, or <=) (y is 32, 3c, or 3e) div.s $FR ext{ } F[fd] = F[fs] / F[ft]$ 11/10/--/3 f(R[rs] == R[rt])Branch On Equal FP Divide ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$ PC=PC+4+BranchAddr div.d FR 11/11/--/3 Double {F[ft],F[ft+1]} f(R[rs]!=R[rt])Branch On Not Equal bne 5_{hex} F[fd] = F[fs] * F[ft]11/10/--/2 FP Multiply Single PC=PC+4+BranchAddr (4) FP Multiply ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$ Jump mul.d FR (5) 2_{hex} PC=JumpAddr 11/11/--/2 Double {F[ft],F[ft+1]} Jump And Link R[31]=PC+8;PC=JumpAddr (5) 3_{hex} jal FP Subtract Single FR F[fd]=F[fs] - F[ft] 11/10/--/1 0 / 08_{hex} Jump Register R FP Subtract ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$ 11/11/--/1 {F[ft],F[ft+1]} Double $R[rt]={24'b0,M[R[rs]]}$ Load Byte Unsigned 1bu I 24_{hex} Load FP Single 31/--/--/--+SignExtImm](7:0)} F[rt]=M[R[rs]+SignExtImm] (2)Load FP F[rt]=M[R[rs]+SignExtImm]; Load Halfword $R[rt] = \{16'b0, M[R[rs]]$ 35/--/--1 hii 25_{hex} F[rt+1]=M[R[rs]+SignExtImm+4] Double +SignExtImm](15:0)} (2)Unsigned mfhi R 0 /--/--/10 Move From Hi R[rd] = HiLoad Linked 11 R[rt] = M[R[rs] + SignExtImm](2,7) 30_{hex} Move From Lo ${\tt mflo}$ R R[rd] = Lo0 /--/--/12 Load Upper Imm. $R[rt] = \{imm, 16'b0\}$ I fhex R[rd] = CR[rs]10 /0/--/0 Move From Control mfc0 $\{Hi,Lo\} = R[rs] * R[rt]$ Multiply 0/--/--/18 R Load Word lw R[rt] = M[R[rs] + SignExtImm] 23_{hex} mult. $\{Hi,Lo\} = R[rs] * R[rt]$ 0/--/--/19 Multiply Unsigned multu R $R[rd] = \sim (R[rs] \mid R[rt])$ 0 / 27_{hex} nor 0/--/--/3 Shift Right Arith. R[rd] = R[rt] >>> shamtsra 0 / 25_{hex} or $R[rd] = R[rs] \mid R[rt]$ 39/--/--Store FP Single M[R[rs]+SignExtImm] = F[rt] d_{hex} Or Immediate I R[rt] = R[rs] | ZeroExtImmori Store FP M[R[rs]+SignExtImm] = F[rt];0 / 2a_{hex} Double M[R[rs]+SignExtImm+4] = F[rt+1]R R[rd] = (R[rs] < R[rt]) ? 1 : 0Set Less Than Set Less Than Imm. slti Ι R[rt] = (R[rs] < SignExtImm)? 1 : 0 (2)**FLOATING-POINT INSTRUCTION FORMATS** a_{hex} Set Less Than Imm. R[rt] = (R[rs] < SignExtImm)FR opcode fmt ft fs fdfunct b_{hex} sltin Unsigned ?1:0 (2.6)Set Less Than Unsig. sltu R[rd] = (R[rs] < R[rt]) ? 1 : 0(6) $0/2b_{hex}$ opcode fmt ft immediate 0 / 00_{hex} Shift Left Logical $R[rd] = R[rt] \ll shamt$ 26 25 21 20 16 15 0 / 02_{hex} Shift Right Logical R R[rd] = R[rt] >> shamt**PSEUDOINSTRUCTION SET** M[R[rs]+SignExtImm](7:0) =MNEMONIC OPERATION NAME 28_{hex} Store Byte (2)Branch Less Than $if(R[rs] \le R[rt]) PC = Label$ R[rt](7:0)h1t M[R[rs]+SignExtImm] = R[rt];Branch Greater Than bgt if(R[rs]>R[rt]) PC = LabelStore Conditional 38_{hex} $if(R[rs] \le R[rt]) PC = Label$ Branch Less Than or Equal ble R[rt] = (atomic) ? 1 : 0if(R[rs] >= R[rt]) PC = LabelBranch Greater Than or Equal bge M[R[rs]+SignExtImm](15:0) =Store Halfword sh I 29_{hex} Load Immediate li R[rd] = immediate(2)R[rt](15:0) R[rd] = R[rs]Move move 2b_{hex} Store Word M[R[rs]+SignExtImm] = R[rt](2) REGISTER NAME, NUMBER, USE, CALL CONVENTION (1) 0 / 22_{hex} R Subtract sub R[rd] = R[rs] - R[rt]PRESERVEDACROSS NAME NUMBER Subtract Unsigned R R[rd] = R[rs] - R[rt] $0/23_{hex}$ subu A CALL? (1) May cause overflow exception \$zero The Constant Value 0 N.A. (2) SignExtImm = { 16{immediate[15]}, immediate } \$at Assembler Temporary No (3) $ZeroExtImm = \{ 16\{1b'0\}, immediate \}$ Values for Function Results (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } \$v0-\$v1 2-3 No and Expression Evaluation (5) $JumpAddr = \{ PC+4[31:28], address, 2'b0 \}$ \$a0-\$a3 4-7 No Arguments (6) Operands considered unsigned numbers (vs. 2's comp.) \$t0-\$t7 8-15 No Temporaries (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic \$s0-\$s7 16-23 Saved Temporaries Yes **BASIC INSTRUCTION FORMATS** 24-25 Nο \$t8-\$t9 Temporaries opcode funct \$k0-\$k1 26-27 Reserved for OS Kernel No 21 20 16 15 11 10 \$gp 28 Global Pointer Yes opcode immediate rs rt 29 Stack Pointer Yes \$sp 16 15 21.20 \$fp 30 Frame Pointer Yes opcode address \$ra Return Address No

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

	OPCODES, BASE CONVERSION, ASCII SYMBOLS						3				
	(1) MIPS	(2) MIPS	ISION, F			ASCII		Hexa-	ASCII		
opcode	funct	funct	Binary	Deci-	deci-	Char-	Deci-	deci-	Char-		
(31:26)	(5:0)	(5:0)	Dinary	mal	mal	acter	mal	mal	acter		
(1)	sll	add.f	00 0000	0	0	NUL	64	40	(a)		
(1)		sub.f	00 0001	1	1	SOH	65	41	Ã		
j	srl	mul.f	00 0010		2	STX	66	42	В		
jal	sra	div.f	00 0011	3	3	ETX	67	43	C		
beq	sllv	sqrt.f	00 0100	4	4	EOT	68	44	D		
bne		abs f	00 0101	5	5	ENQ	69	45	E		
blez	srlv	mov.f	00 0110		6	ACK	70	46	F		
bgtz	srav	neg f	00 0111	7	7	BEL	71	47	G		
addi	jr		00 1000		8	BS	72	48	H		
addiu	jalr		00 1001	9	9	HT	73	49	I		
slti	movz		00 1010 00 1011	10 11	a b	LF VT	74 75	4a 4b	J K		
sltiu	movn syscall	round.w.f	00 1011		c	FF	76	4c	L		
ori	break	trunc.w.f	00 1100	13	d	CR	77	4d	M		
xori	DICAN	ceil.w.f	00 1110		e	SO	78	4e	N		
lui	sync	floor.w.f	00 1111	15	f	SI	79	4f	Ö		
	mfhi		01 0000		10	DLE	80	50	P		
(2)	mthi		01 0001	17	11	DC1	81	51	Q		
` ′	mflo	movz.f	01 0010	18	12	DC2	82	52	Ř		
	mtlo	movn f	01 0011	19	13	DC3	83	53	S		
		-	01 0100	20	14	DC4	84	54	T		
			01 0101	21	15	NAK	85	55	U		
			01 0110		16	SYN	86	56	V		
			01 0111	23	17	ETB	87	57	W		
	mult		01 1000		18	CAN	88	58	X		
	multu		01 1001	25 26	19	EM SUB	89 90	59 5a	Y Z		
	div divu		01 1010 01 1011	27	la lb	ESC	91	5b	[
	uivu		01 1100		1c	FS	92	5c	L		
			01 1101	29	1d	GS	93	5d	ì		
			01 1110		1e	RS	94	5e	^		
			01 1111	31	1f	US	95	5f	_		
lb	add	cvt.s.f	10 0000	32	20	Space	96	60	,		
lh	addu	$\operatorname{cvt.d} f$	10 0001	33	21	!	97	61	a		
lwl	sub		10 0010		22	"	98	62	b		
lw	subu		10 0011	35	23	#	99	63	С		
lbu	and	cvt.w.f	10 0100	36	24	\$	100	64	d		
lhu	or		10 0101	37	25	%	101	65	e f		
lwr	nor		10 0110 10 0111	38 39	26 27	&	102	66 67			
sb	1101		10 1000		28	(103	68	g h		
sh			10 1000	41	29)	105	69	i		
swl	slt		10 1010		2a	*	106	6a	j		
sw	sltu		10 1011	43	2b	+	107	6b	k		
			10 1100	44	2c	,	108	6c	1		
			10 1101	45	2d	-	109	6d	m		
swr			10 1110		2e	•	110	6e	n		
cache			10 1111	47	2f	/	111	6f	О		
11	tge	c.f.f	11 0000		30	0	112	70	p		
lwc1	tgeu	c.un.f	11 0001	49	31	1	113	71	q		
lwc2	tlt +l+	c.eq.f	11 0010 11 0011	50 51	32 33	2	114	72 73	r		
pref	tltu	c.ueq.f	11 0100		34	4	116	74	s t		
ldc1		c.ult.f	11 0100		35	5	117	75	u		
ldc2	tne	c.ole,f	11 0110		36	6	118	76	V		
		c.ule.f	11 0111	55	37	7	119	77	w		
sc		c.sf.f	11 1000		38	8	120	78	X		
swc1		c.ngle f	11 1001	57	39	9	121	79	У		
swc2		${\tt c.seq}.f$	11 1010		3a	:	122	7a	Z		
		c.ngl.f	11 1011	59	3b	;	123	7b	{		
		c.lt.f	11 1100		3c	<	124	7c	ĺ		
sdc1		c.nge.f	11 1101	61	3d	=	125	7d	}		
sdc2		c.le.f	11 1110		3e	> ?	126	7e 7f	~ DEL		
(1) onco	da(21,26) =	c.ngt.f	11 1111	63	3f		127	7f	DEL		

 $^{(1) \}operatorname{opcode}(31:26) == 0$

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

IEEE 754 Symbols Exponent Fraction Object ± 0 0 0 0 **≠**0 ± Denorm 1 to MAX - 1 anything ± Fl. Pt. Num. MAX NaN MAX **≠**0

S.P. MAX = 255, D.P. MAX = 2047

DATA ALIGNMENT

Double Word									
Word Word									
Halfv	vord	Half	word	Hal	fword	Halfword			
Byte Byte		Byte	Byte	Byte Byte		Byte Byte			
0 1 2 3 4 5 6 7									

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

	 		-	 				
В		Interrupt	1		Exception			
D	Mask				Exception Code			
31	15		8	6		2		
		Pending			U		Е	Ι
		Interrupt			M		L	Е
	15		8		4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

EXCEPTION CODES

Number	Name	Cause of Exception	Number	Name	Cause of Exception
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
4	AdEL	Address Error Exception (load or instruction fetch)	10	RI	Reserved Instruction Exception
5	AdES	Address Error Exception (store)	11	CpU	Coprocessor Unimplemented
6	IBE	Bus Error on Instruction Fetch	12	Ov	Arithmetic Overflow Exception
7	DBE	Bus Error on Load or Store	13	Tr	Trap
8	Sys	Syscall Exception	15	FPE	Floating Point Exception
7 8		Bus Error on Load or Store			Trap

SIZE PREFIXES (10^x for Disk. Communication: 2^x for Memory)

ter blee (10 for block) communication, 2 for monory,												
	PRE-		PRE-		PRE-		PRE-					
SIZE	FIX	SIZE	FIX	SIZE	FIX	SIZE	FIX					
$10^3, 2^{10}$	Kilo-	$10^{15}, 2^{50}$	Peta-	10-3	milli-	10 ⁻¹⁵	femto-					
$10^6, 2^{20}$	Mega-	$10^{18}, 2^{60}$	Exa-	10 ⁻⁶	micro-							
$10^9, 2^{30}$	Giga-	$10^{21}, 2^{70}$	Zetta-	10 ⁻⁹	nano-	10 ⁻²¹	zepto-					
$10^{12}, 2^{40}$	Tera-	$10^{24}, 2^{80}$	Yotta-	10-12	pico-	10-24	yocto-					

The symbol for each prefix is just its first letter, except μ is used for micro.

⁽²⁾ opcode(31:26) == 17_{ten} (11_{hex}); if fmt(25:21)== 16_{ten} (10_{hex}) f = s (single); if $fmt(25:21) == 17_{ten} (11_{hex}) f = d (double)$