Params	Context	Dist Z-stat	Shape	Critical Value
μ	$n > 30$ normal σ known	$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0; 1)$	D Za	Z_{lpha}
μ	$n > 30$ normal σ unknown	$\frac{\bar{X} - \mu}{s / \sqrt{n}} \sim t(n-1)$	0 ta; n-1	$t_{lpha;n-1}$
σ^2	Normal μ unknown	$\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$	2 x2,n-1	$\chi^2_{\alpha;n-1}$
p	n large enough	$\frac{F-p}{\sqrt{p(1-p)/n}} \sim N(0;1)$	D Za	Z_{lpha}

Params	Context	Sampling dist	Test statistic	Shape
$\mu_1 - \mu_2$	Normal $n \ge 30$ σ_1^2 ; σ_2^2 known	$\overline{X_1} - \overline{X_2} \sim N(\mu_1; \mu_2; \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$	$Z = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0; 1)$	D ZZ
$\mu_1 - \mu_2$	Normal $n \ge 30$ $\sigma_1^2; \sigma_2^2$ unknown	S_p^2 $= \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	$T = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}} \sim t(n_1 + n_2 - 2)$	0 ta; n,+ nz-2
$\frac{\sigma_1^2}{\sigma_2^2}$	Normal μ_1 ; μ_2 unknown	$F = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} \sim F(n_1 - 1; n_2 - 1)$	$F = \frac{s_1^2/s_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 - 1; n_2 - 1)$	δα; η ₁ -1; η ₂ -1
$p_1 - p_2$	Normal <i>n</i> is large enough	$ \widehat{p_{1}} - \widehat{p_{2}} \sim \\ N(p_{1} - p_{2}; \frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}) $	$= \frac{\widehat{p_1} - \widehat{p_2} - (p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}} \sim N(0; 1)$	D Za

9.47.

- a)
- 1. The parameter of interest is the true mean speed, μ .
- 2. H_0 : $\mu = 100$
- 3. H_1 : μ < 100
- $4. z_0 = \frac{\bar{x} \mu}{\sigma / \sqrt{n}}$
- 5. Reject H_0 if $z_0 < -z_\alpha$ where $\alpha = 0.05$ and $-z_\alpha = -1.65$
- 6. $\bar{x} = 102.2$, $\sigma = 4$

$$z_0 = \frac{102.2 - 100}{\frac{4}{sqrt(8)}} = 1.56$$

7. Because 1.56 > -1.56 fail to reject the null hypothesis. There is insufficient evidence to conclude that the true mean speed is less than 100 at $\alpha = 0.05$

b)
$$z_0 = 1.56$$
, then $P - value = \Phi(z_0) \approx 0.94$

c)
$$\beta = 1 - \Phi\left(-z_{0.05} - \frac{(95 - 100)\sqrt{8}}{4}\right) = 0.0294$$

Power =
$$1 - \beta = 0.9706$$

9.75.

- a) H_0 : $\mu = 98.2$ and H_1 : $\mu \neq 98.2$
- b) Test statistic:

$$z_0 = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{98.285 - 98.2}{0.625 / \sqrt{52}} = 0.98$$

We know that, $\alpha = 0.05 \rightarrow z_{\frac{\alpha}{2}} = z_{0.025} = 1.96$

If $-z_{\alpha} \le z_0 \le z_{\alpha}$, then we should fail to reject H_0 . Therefore: $0.98 = z_0 < z_{\alpha} = 1.96$ and H_0 : $\mu = 98.2$ is true

The P-value for the test:

$$P(z_{\alpha} > z_{0}) = 2[1 - \Phi(|z_{0}|)]$$

$$= 2[1 - \Phi(0.98)]$$

$$= 2[1 - 0.836457]$$

$$P(z_{\alpha} > z_{0}) = 2[1 - \Phi(|z_{0}|) = 2[1 - \Phi(0.98)] = 2[1 - 0.836457] = 0.327$$

c) 95% two-sided CI on the mean:

$$98.285 - 1.96 \frac{0.625}{\sqrt{52}} \le \mu \le 98.285 + 1.96 \frac{0.625}{\sqrt{52}}$$
$$98.285 - \frac{1.96(0.625)}{\sqrt{52}} \le \mu \le 98.285 + \frac{1.96(0.625)}{\sqrt{52}}$$
$$98.11 \le \mu \le 98.45$$

We fail to rejected H0 because $98.2 \in (98.11, 98.45)$

9.91.

a) A one-sided test because the alternative hypothesis is p < 0.6

b) The test is the normal approximation (np > 5 and n(1-p) > 5

c) Sample: $\hat{p} = \frac{X}{N} = 0.574$

Z-value: $z_0 = \frac{x - np}{\sqrt{np(1-p)}} = \frac{287 - 500(0.6)}{\sqrt{500(0.6)(0.4)}} = -1.1867$

P-value: $P - value = \Phi(-1.1867) = 0.117$

95% upper confident interval:

$$p \le \hat{p} + z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$p \le 0.574 + 1.65 \sqrt{\frac{0.574(0.426)}{500}}$$

 $p \le 0.6105$

d) P-value for two-side test is: P – value = $2[1 - \Phi(|-1.1867|)] = 0.234$

10.66.

1) The parameters of interest are the std σ_1 , σ_2

2) H_0 : $\sigma_1^2 = \sigma_2^2$

3) $H_1: \sigma_1^2 > \sigma_2^2$

4) The test statistic is

$$f_0 = \frac{s_1^2}{s_2^2}$$

5) Reject the null hypothesis if $f_0 > f_{0.01;19;7} = 6.18$

6)
$$f_0 = \frac{4.5}{2.3} = 1.9565$$

7) Conclusion: $1.9565 < 6.16 \rightarrow$ fail to reject the null hypothesis.

95% CI:

$$\left(\frac{s_1^2}{s_2^2}\right) f_{0.99;n_2-1;n_1-1} \le \frac{\sigma_1^2}{\sigma_2^2}$$

$$1.9565 \left(\frac{1}{3.77}\right) \le \frac{\sigma_1^2}{\sigma_2^2}$$

$$0.519 \le \frac{\sigma_1^2}{\sigma_2^2}$$

→ There is no significant difference in the variances.

10.67.

a)

- 1) The parameters of interest are the standard deviations σ_1 , σ_2
- 2) H_0 : $\sigma_1^2 = \sigma_2^2$
- 3) $H_1: \sigma_1^2 \neq \sigma_2^2$
- 4) The test statistic is

$$f_0 = \frac{s_1^2}{s_2^2}$$

- 5) Reject the null hypothesis if $f_0 < f_{0.975;14;14} = 0.33$ and $f_0 > f_{0.025;14;14} = 3$ for $\alpha = 0.05$
- 6) $f_0 = \frac{2.3}{1.9} = 1.2105$
- 7) Conclusion: Because 0.33 < 1.2105 < 3, we fail to reject the null hypothesis.

95% CI:

$$1.2105(0.33) \le \frac{\sigma_1^2}{\sigma_2^2} \le 1.2105(3)$$

$$0.399465 \le \frac{\sigma_1^2}{\sigma_2^2} \le 3.6315$$

→ There is no significant difference in the variances.

- b) We get $\beta = 0.35 \rightarrow 1 \beta = 0.65$
- c) We know that $\beta = 0.05$ and the σ_2 is half of σ_1 than $\lambda = 2$. That sample size is: $n_1 = n_2 = n = 31$

10-6.

a)

- 1) The parameter of interest is the difference in mean burning rate, $\mu_1 \mu_2$
- 2) H_0 : $\mu_1 \mu_2 = 0$ or $\mu_1 = \mu_2$
- 3) $H_1: \mu_1 \mu_2 \neq 0 \text{ or } \mu_1 \neq \mu_2$
- 4) The test statistic is

$$z_0 = \frac{\overline{x_1} - \overline{x_1} - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

5) Reject
$$H_0$$
 if $z_0 < -z_{\frac{\alpha}{2}} = -1.96$ or $z_0 > z_{\frac{\alpha}{2}} = 1.96$ for $\alpha = 0.05$

6)

$$z_0 = \frac{18 - 24}{\sqrt{\frac{3^2}{20} + \frac{3^2}{20}}} = -6.325$$

7) Conclusion: Because -6.325 < -1.96 reject the null hypothesis and conclude the mean burning rates differ significantly at $\alpha = 0.05$

$$P - value = 2(1 - \Phi(6.325)) = 2(1 - 1) = 0$$

b) CI for $\mu_1 - \mu_2$

$$(18 - 24) - 1.96 \sqrt{\frac{3^2}{20} + \frac{3^2}{20}} \le \mu_1 - \mu_2 \le (18 - 24) + 1.96 \sqrt{\frac{3^2}{20} + \frac{3^2}{20}} -7.859 \le \mu_1 - \mu_2 \le -4.1406$$

We are 95% confident that the mean burning rate for solid fuel propellant 2 exceeds that of propellant 1 by between 4.14 and 7.86 cm/s.

c)

$$\beta = \Phi\left(1.96 - \frac{2.5}{\sqrt{\frac{3^2}{20} + \frac{3^2}{20}}}\right) - \Phi\left(-1.96 - \frac{2.5}{\sqrt{\frac{3^2}{20} + \frac{3^2}{20}}}\right)$$
$$= \Phi(-0.675) - \Phi(-4.595) = 0.25 - 0 = 0.25$$

- \rightarrow The power of the test in part a) is $1 \beta = 0.75$
- d) Assume the sample sizes are to be equal, use $\alpha = 0.05$, $\beta = 1 power = 0.1$, $\Delta = 14$

$$n = \frac{\left(z_{\frac{\alpha}{2}} + z_{\beta}\right)^{2} \left(\sigma_{1}^{2} + \sigma_{2}^{2}\right)}{\delta^{2}} = \frac{(1.96 + 1.28)^{2} (3^{2} + 3^{2})}{14^{2}}$$

So the sample size is n = 1

10-82.

a) The test is two-sided.

b)
$$\widehat{p_p} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{114}{540} \approx 0.2111$$

Value of test statistic

$$z = \frac{\widehat{p_1} - \widehat{p_2}}{\sqrt{\widehat{p_p} - (1 - \widehat{p_p})} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{0.216 - 0.206897}{\sqrt{0.2111(1 - 0.2111)} \sqrt{\frac{1}{250} + \frac{1}{290}}} \approx 0.26$$

$$P - \text{value} = P(Z < -0.26 \text{ or } Z > 0.26) = 2P(Z < -0.26) = 2(0.397432) = 0.794864$$

c) P > 0.05 \rightarrow Fail to reject H_0

There is not sufficient evidence to reject the null hypothesis.

d) For confidence level $1 - \alpha = 0.9$, we have $z_{\alpha/2} = z_{0.05} = 1.64$

$$\widehat{p_1} - \widehat{p_2} - z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{p_1}(1 - \widehat{p_1})}{n_1} + \frac{\widehat{p_2}(1 - \widehat{p_2})}{n_2}}$$

$$= (0.216 - 0.206897) - 1.64 \sqrt{\frac{0.216(1 - 0.216)}{250} + \frac{0.206897(1 - 0.206897)}{290}} \approx -0.0487$$

$$\begin{split} \widehat{p_1} - \widehat{p_2} + z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{p_1}(1 - \widehat{p_1})}{n_1} + \frac{\widehat{p_2}(1 - \widehat{p_2})}{n_2}} \\ &= (0.216 - 0.206897) + 1.64 \sqrt{\frac{0.216(1 - 0.216)}{250} + \frac{0.206897(1 - 0.206897)}{290}} \approx 0.0669 \\ &\Rightarrow -0.0487 < p_1 - p_2 < 0.0669 \end{split}$$