

FCC PART 22/24 TEST REPORT

FCC Part 22 /Part 24

File administrators Martin Ao

Test Engineer Martin Ao

Report Reference No.....: MWR150600401 FCC ID.....: 2AFAUTIS001

Compiled by

(position+printed name+signature)..:

Supervised by

(position+printed name+signature)..:

Approved by

(position+printed name+signature)..:

Date of issue....: Jul 09, 2015

Representative Laboratory Name.:

Applicant's name.....

Address....:

Testing Laboratory Name.....

Address....:

Address....:

Test specification....:

Standard...:

TRF Originator....: Maxwell International Co., Ltd. All rights reserved.

interpretation of the reproduced material due to its placement and context. Test item description....: Mobile Phone

Trade Mark....: **Tigers**

Manufacturer WASAM TECHNOLOGY (SHEN ZHEN) CO.,LTD.

Model/Type reference.....: TIS001 Listed Models N/A Ratings...... DC 3.7V

Adapter information : Trademark: Tigers

INPUT:AC 100-240V 50/60Hz 0.15A

OUTPUT: DC 5.0V,1A

Modulation GMSK for GSM/GPRS and 8PSK for EGPRS

GPRS..... Supported EGPRS..... Supported Hardware version..... F1H-V1.1

Software version bestsonny.f1h.w500c.V1.0.20140910

Frequency..... GSM 850MHz; PCS 1900MHz;

Result....: **PASS**

Marin

Maxwell International Co., Ltd.

Room 509, Hongfacenter building, Baoan District, Shenzhen,

Guangdong, China

Manager Dixon Hao

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road,

Nanshan, Shenzhen, China

HGR HERMANOS GARCIA ROMERO S.A.S

CARRERA 20 No. 13 - 39 off. 212 BOGOTA, COLOMBIA

DC 110111

FCC Part 22: PUBLIC MOBILE SERVICES

FCC Part 24: PERSONAL COMMUNICATIONS SERVICES

Maxwell International Co., Ltd.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Maxwell International Co., Ltd. as copyright owner and source of the material. Maxwell International Co., Ltd. takess no responsibility for and will not assume liability for damages resulting from the reader's

Page 2 of 42 Report No.: MWR150600401

TEST REPORT

Test Report No. :	MWR150600401	Jul 09, 2015
	191991X 15000040 1	Date of issue

Equipment under Test : Mobile Phone

Model /Type : TIS001

Listed Models : N/A

Applicant : HGR HERMANOS GARCIA ROMERO S.A.S

Address : CARRERA 20 No. 13 - 39 off. 212 BOGOTA, COLOMBIA

DC 110111

Manufacturer : WASAM TECHNOLOGY (SHEN ZHEN) CO.,LTD.

B,F Building, (Henggiang Industrial Park), Bogang Taifeng

Address Industrial Zone, Shajing Town, Bao'an District, Shenzhen,

China

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: MWR150600401

Contents

1.	TEST STANDARDS	4
2.	SUMMARY	5
2.1.	General Remarks	5
2.2.	Product Description	5
2.3.	Equipment under Test	6
2.4.	Short description of the Equipment under Test (EUT)	6
2.5.	Internal Identification of AE used during the test	7
2.6.	Normal Accessory setting	7
2.7.	EUT configuration	7
2.8.	Related Submittal(s) / Grant (s)	7
2.9.	Modifications	7
2.10. 2.11.	General Test Conditions/Configurations Note	8 8
3.	TEST ENVIRONMENT	9
3.1.	Address of the test laboratory	9
3.2.	Test Facility	9
3.3.	Environmental conditions	9
3.4.	Statement of the measurement uncertainty	9
3.5.	Test Description	10
3.6.	Equipments Used during the Test	11
4.	TEST CONDITIONS AND RESULTS	13
4.1.	Output Power	13
4.2.	Radiated Spurious Emssion	18
4.3.	Occupied Bandwidth and Emission Bandwidth	21
4.4.	Band Edge Complicance	29
4.5.	Spurious Emssion on Antenna Port	33
4.6.	Frequency Stability Test	40
5	TEST SETUP PHOTOS OF THE FUT	42

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Part 22 (10-1-12 Edition): PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24(10-1-12 Edition): PUBLIC MOBILE SERVICES

<u>TIA/EIA 603 D June 2010:</u> Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

ANSI C63.4:2009: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	May 20, 2015
Testing commenced on	:	May 21, 2015
Testing concluded on	:	Jul 09, 2015

2.2. Product Description

The **HGR HERMANOS GARCIA ROMERO S.A.S** 's Model: TIS001 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Mobile Phone		
Model Number	TIS001		
Modilation Type	GMSK for GSM/GPRS,8-PSK for EDGE,QPSK for UMTS		
Antenna Type	Internal		
UMTS Operation Frequency Band	Device supported UMTS FDD Band II and FDD Band V		
	IEEE 802.11b:2412-2462MHz		
WLAN FCC Operation frequency	IEEE 802.11g:2412-2462MHz		
WEART CO Operation frequency	IEEE 802.11n HT20:2412-2462MHz		
	IEEE 802.11n HT40:2422-2452MHz		
BT FCC Operation frequency	2402MHz-2480MHz		
HSDPA Release Version	Release 7		
HSUPA Release Version	Release 6		
DC-HSUPA Release Version	Not Supported		
WCDMA Release Version	R99		
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)		
WLAN FCC Modulation Type	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)		
WLAN FCC Modulation Type	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)		
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)		
BT Modulation Type	GFSK (BT4.0 BLE)/GFSK,8DPSK,π/4DQPSK(BT 3.0+EDR)		
Hardware version	F1H-V1.1		
Software version	bestsonny.f1h.w500c.V1.0.20140910		
GPS function	Supported		
WLAN	Supported 802.11b/802.11g/802.11n		
Bluetooth	Supported BT4.0 BLE /BT 3.0+EDR		
GSM/EDGE/GPRS	Supported GSM/GPRS/EDGE		
GSM/EDGE/GPRS Power Class	GSM850:Power Class 4/PCS1900:Power Class 1		
GSM/EDGE/GPRS Operation	GSM850 :824.2MHz-848.8MHz/PCS1900:1852.4MHz-1907.6MHz		
Frequency			
GSM/EDGE/GPRS Operation	GSM850/PCS1900/GPRS850/ GPRS 1900/EDGE850/EDGE1900		
Frequency Band			
GSM Release Version	R99		
GPRS/EDGE Multislot Class	GPRS/EDGE: Multi-slot Class 12		
Extreme temp. Tolerance	-30°C to +50°C		
Extreme vol. Limits	3.40VDC to 4.20 VDC (nominal: 3.70 VDC)		
GPRS operation mode	Class B		
	GSM850:-2.92dBi,GSM1900:-0.07dBi		
Ant Gain	WCDMA Band 850: -2.92dBi WCDMA1900: GSM1900:-0.07dBi		
	WIFI/BT:-0.58 dBi		

Note:

- 1.. The EUT is Dual SIM, But The two SIMs cannot use synchronization and only one can use for each time.
- 2. 3D and ALS+PS sensor used by this device and ,no power reduction during use.

Page 6 of 42 Report No.: MWR150600401

2.3. Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)

DC 3.70V

Test frequency list

Took Mode	TV/DV	RF Channel			
Test Mode	TX/RX	Low(L)	Middle (M)	High (H)	
	TX	Channel 128	Channel 190	Channel 251	
GSM850	17	824.2 MHz	836.6 MHz	848.8 MHz	
GSIVIOSU	RX	Channel 128	Channel 190	Channel 251	
	KA.	869.2 MHz	881.6 MHz	893.8 MHz	
Test Mode	TX/RX		RF Channel		
Test Mode	IA/KA	Low(L)	Middle (M)	High (H)	
	TX	Channel 512	Channel 661	Channel 810	
GSM1900	17	1850.2 MHz	1880.0 MHz	1909.8 MHz	
GOWITHOU	RX	Channel 512	Channel 661	Channel 810	
	ΓΛ	1930.2 MHz	1960.0 MHz	1989.8 MHz	
Test Mode	TX/RX	RF Channel			
1 est Mode		Low(L)	Middle (M)	High (H)	
	TX RX	Channel 4132	Channel 4182	Channel 4233	
WCDMA850		826.4 MHz	836.4 MHz	846.6 MHz	
VVCDIVIA030		Channel 4357	Channel 4407	Channel 4458	
		871.4 MHz	881.4 MHz	891.6 MHz	
Test Mode	TX/RX	RF Channel			
1 est Mode	IA/KA	Low(L)	Middle (M)	High (H)	
	TX	Channel 9262	Channel 9400	Channel 9538	
WCDMA1900	17	1852.4 MHz	1880.0 MHz	1907.6 MHz	
AACDINIV 1900	RX	Channel 9662	Channel 9800	Channel 9938	
	IVA	1932.4 MHz	1960.0 MHz	1987.6 MHz	

2.4. Short description of the Equipment under Test (EUT)

2.4.1 General Description

TIS001 is subscriber equipment in the WCDMA/GSM system. The HSPA/UMTS frequency band is Band II, Band V; The GSM/GPRS/EDGE frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900, but only Band II and Band V and GSM850 and PCS1900 bands test data included in this report. The Mobile Phone implements such functions as RF signal receiving/transmitting, HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS and WIFI etc. Externally it provides micro SD card interface, earphone port (to provide voice service) and SIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.4.2 Technical Specification

Characteristics	Description		
Radio System Type	⊠ GSM/⊠ UMTS		
	GSM850/WCDMA850	Transmission(TX): 824 to 849MHz	
Supported Frequency Range		Receiving(RX): 869 to 894MHz	
Supported Frequency Range	GSM1900/WCDMA1900	Transmission(TX): 1850 to 1910MHz	
		Receiving(RX): 1930 to 1990MHz	
TX and RX Antenna Ports	TX& RX port:	1	
Supported Channel Bandwidth	GSM system:	200 kHz	
Designation of Emissions	UMTS system:	5 MHz	
(Note: the necessary bandwidth of which	GSM850:	250KGXW	
is the worst value from the measured	GSM1900:	250KGXW	
occupied bandwidths for each type of	UMTS 850:	4M20F9W	
channel bandwidth configuration.)	UMTS 1900:	4M17F9W	

2.5. Internal Identification of AE used during the test

AE ID*	Description
AE1	N/A

^{*}AE ID: is used to identify the test sample in the lab internally.

2.6. Normal Accessory setting

Fully charged battery was used during the test.

2.7. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O supplied by the lab

0	Power Cable	Length (m):	1
		Shield :	1
		Detachable :	1
0	Multimeter	Manufacturer:	1
		Model No. :	1

2.8. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AFAUTIS001 filing to comply with FCC Part 22 and Part 24 Rules

2.9. Modifications

No modifications were implemented to meet testing criteria.

Page 8 of 42 Report No.: MWR150600401

2.10. General Test Conditions/Configurations

2.10.1 Test Modes

NOTE: The test mode(s) are selected according to relevant radio technology specifications.

Test Mode	Test Modes Description
GSM/TM1	GSM system, GSM,GMSK modulation
GSM/TM2	GSM system, GPRS, GMSK modulation
GSM/TM3	GSM system, EDGE, 8PSK modulation
UMTS/TM1	WCDMA system, QPSK modulation
UMTS/TM2	HSDPA system, QPSK modulation
UMTS/TM3	HSUPA system, QPSK modulation

Note:

- 1. This EUT owns two SIM cards, after we perform the pretest for these two SIM cards; we found the SIM 1 is the worst case, so its result is recorded in this report.
- 2. EDGE and GPRS use differentmodulation type, we test GPRS and EDGE according to 3GPPP TS 151 010 requirement.

2.10.2 Test Environment

Environment Parameter	Selected Values During Tests			
Relative Humidity	Ambient			
Temperature	TN	Ambient		
	VL	3.40V		
Voltage	VN	3.70V		
	VH	4.20V		

NOTE: VL=lower extreme test voltage VN=nominal voltage VH=upper extreme test voltage TN=normal temperature

2.11. Note

1. The EUT is a Mobile Phone with WCDMA/GSM/GPRS/EDGE,WiFi and Bluetooth fuction,The functions of the EUT listed as below:

the ECT hoted do below:		
	Test Standards	Reference Report
GSM/GPRS/EDGE	FCC Part 22/FCC Part 24	MWR150600401
WCDMA	FCC Part 22/FCC Part 24	MWR150600402
Bluetooth	FCC Part 15 C 15.247	MWR150600403
BLE	FCC Part 15 C 15.247	MWR150600404
WiFi	FCC Part 15 C 15.247	MWR150600405
USB Port	FCC Part 15 B	MWR150600406
SAR	FCC Part 2 §2.1093	MWR150600407

Page 9 of 42 Report No.: MWR150600401

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, Dec 19, 2013

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. National Digital Electronic Product Testing Center quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTL Testing Technology Co., Ltd. National Digital Electronic Product Testing Center is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.24 dB	(1)
Radiated Emission	1~18GHz	5.16 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.5. Test Description

3.4.1 Cellular Band (824-849MHz paired with 869-894MHz)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	§2.1046, §22.913	FCC: ERP ≤ 7W.	Pass
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	§2.1051, §22.917	≤-13dBm/1%*EBW, in 1MHz bands immediately outside and adjacent to The frequency block.	Pass
Spurious Emission at Antenna Terminals	§2.1051, §22.917	FCC: ≤ -13dBm/100kHz, from 9kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass
Field Strength of Spurious Radiation	§2.1053, §22.917	FCC: ≤ -13dBm/100kHz.	Pass
Frequency Stability	§2.1055, §22.355	≤ ±2.5ppm.	
NOTE 1: For the verdict, t	he "N/A" denotes	s "not applicable", the "N/T" de notes "not tested".	

3.4.2 PCS Band (1850-1915MHz paired with 1930-1995MHz)

Test Item	FCC Rule No.	Requirements	Verdict			
Effective(Isotropic) Radiated Output Power	§2.1046, §24.232	EIRP ≤ 2W	Pass			
Peak-Average Ratio	§2.1046, §24.232	FCC:Limit≤13dB	N/A			
Modulation Characteristics	§2.1047	Digital modulation	N/A			
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass			
Band Edges Compliance	§2.1051, §24.238	≤ -13dBm/1%*EBW, In 1MHz bands immediately outside and adjacent to The frequency block.	Pass			
Spurious Emission at Antenna Terminals	§2.1051, §24.238	≤-13dBm/1MHz, from 9kHz to10th harmonics but outside authorized Operating frequency ranges.	Pass			
Field Strength of Spurious Radiation	§2.1053, §24.238	≤ -13dBm/1MHz.	Pass			
Frequency Stability	§2.1055, §24.235	FCC: within authorized frequency block.	Pass			
NOTE 1: For the verdict, t	NOTE 1: For the verdict, the "N/A" denotes "not applicable", the "N/T" de notes "not tested".					

Remark:

3.6. Equipments Used during the Test

	Output Power(Conducted) & Occupied Bandwidth & Emission Bandwidth & Band Edge Compliance & Conducted Spurious Emission							
No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due		
	UNIVERSAL RADIO	D 1 1 00 1	01411000	140040	2014/06/21	2015/06/20		
1	COMMUNICATION	Rohde&Schwarz	CMU200	112012	2015/05/22	2016/05/21		
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201148	2015/05/20	2016/05/19		
3	Splitter	Mini-Circuit	ZAPD-4	400059	2015/05/20	2015/05/19		
4	Spectrum Analyzer	Agilent	E4407B	MY41440676	2015/05/21	2016/05/20		
5	RF cable 1	MURATA	MXHS83QE3000 (9KHz-26.5G)	1420355	2014/10/19	2015/10/18		
6	RF cable 2	MURATA	MXHS83QE3000 (9KHz-26.5G)	1420356	2014/10/19	2015/10/18		

Frequency Stability						
No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due
_	UNIVERSAL RADIO	Dalada 00 alama	ON 11 1000	440040	2014/06/21	2015/06/20
1	COMMUNICATION	Rohde&Schwarz	Schwarz CMU200	112012	2015/05/22	2016/05/21
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201148	2015/05/20	2016/05/19
3	Climate Chamber	ESPEC	EL-10KA	05107008	2015/05/20	2016/05/19
4	Splitter	Mini-Circuit	ZAPD-4	400059	2015/05/20	2016/05/19
5	RF cable 1	MURATA	MXHS83QE3000 (9KHz-26.5G)	1420355	2015/05/20	2016/05/19

^{1.} The measurement uncertainty is not included in the test result.

Report No.: MWR150600401

Outp	Output Power (Radiated) & Radiated Spurious Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due
1	Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2015/05/19	2016/05/18
2	Bilog Antenna	Sunol Sciences Corp.	JB1	A061714	2015/05/19	2016/05/18
	EMI TEST	D 1 1 00 1	E0010	100710	2014/07/02	2015/07/01
3	Receivcer	Rohde&Schwarz	ESCI3	103710	2015/06/02	2016/06/01
4	EMI TEST Software	Audix	E3	N/A	N/A	N/A
5	EMI TEST Software	Rohde&Schwarz	ESK1	N/A	N/A	N/A
6	HORN ANTENNA	Sunol Sciences Corp.	DRH-118	A062013	2015/05/19	2016/05/18
7	HORN ANTENNA	Sunol Sciences Corp.	DRH-118	A062014	2015/05/19	2016/05/18
8	Amplifer	HP	8447D	3113A07663	2015/05/19	2016/05/18
9	Preamplifier	HP	8349B	3155A00882	2015/05/19	2016/05/18
10	Amplifer	Compliance Direction systems	PAP1-4060	129	2015/05/19	2016/05/18
11	Active Loop Antenna	Daze	ZN30900A	N/A	2015/05/19	2016/05/18
12	TURNTABLE	MATURO	TT2.0	N/A	N/A	N/A
13	ANTENNA MAST	MATURO	TAM-4.0-P	N/A	N/A	N/A
14	Horn Antenna	SCHWARZBECK	BBHA9170	25849	2015/05/19	2016/05/18
15	Horn Antenna	SCHWARZBECK	BBHA9170	25850	2015/05/19	2016/05/18
16	Spectrum Analyzer	Rohde&Schwarz	FSU26	201148	2015/05/20	2016/05/19
17	Signal Generator	Rohde&Schwarz	SMF100A	101932	2014/06/21	2015/06/20
	UNIVERSAL				2014/06/21	2015/06/20
18	RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2015/05/22	2016/05/21
19	Splitter	Mini-Circuit	ZAPD-4	400062	2014/06/22	
20	Coaxial Cables	HUBER+SUHNER	SUCOFLE X 104PEA- 10M (9KHz- 26.5G)	10m	2014/10/19	2015/10/18
21	Coaxial Cables	HUBER+SUHNER	SUCOFLE X 104PEA- 3M (9KHz- 26.5G)	3m	2014/10/19	2015/10/18

The calibration interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. Output Power

TEST APPLICABLE

During the process of testing, the EUT was controlled by Radio Communication tester (CMU200) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

4.1.1. Conducted Output Power

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. 1. The transmitter output port was connected to base station.
 - 2.The RFoutput of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
 - 3. Set EUT at maximum power through base station.
 - 4. Select lowest, middle, and highest channels for each band and different modulation.
 - 5. Measure the maximum PK burst power
- 6.These measurements were done at 3 frequencies, 1850.20 MHz, 1880.00 MHz and 1909.80 MHz for PCS1900 band; 824.20 MHz, 836.60 MHz and 848.80 MHz for GSM850 band. (Low, middle and high of operational frequency range).

TEST CONDITION

GSM850					
Function	Power step	Nominal Peak output power (dBm)	Power &Multislot class	Operation class	
GSM	5	33dBm(2W)	4	1	
GPRS	3	33dBm(2W)	12	В	
EDGE	8	27dBm(0.5W)	12	В	

PCS1900					
Function	Power step	Nominal Peak output power (dBm)	Power &Multislot class	Operation class	
GSM	0	30dBm(1W)	1	1	
GPRS	3	30dBm(1W)	12	В	
EDGE	2	26dBm(0.5W)	12	В	

TEST RESULTS

GSM/TM1/GSM850(GMSK)					
Frequency (MHz)	Power Step	Output Power Peak(dBm)			
824.20	5	32.15			
836.60	5	32.20			
848.80	5	32.40			

Report No.: MWR150600401

GSM/TM2/GPRS850(GMSK,1Slot)					
Frequency (MHz) Power Step Output Power Peak(dBm)					
824.20	3	31.98			
836.60	3	32.19			
848.80	3	32.35			

	GSM/TM1/GSM850(8PSK,	1Slot)
Frequency (MHz)	Power Step	Output Power Peak(dBm)
824.20	8	27.15
836.60	8	27.54
848.80	8	27.32

GSM/TM1/PCS1900(GMSK)				
Frequency (MHz)	Power Step	Output Power Peak(dBm)		
1850.20	0	29.45		
1880.00	0	29.86		
1909.80	0	29.59		

GSM/TM2/GPRS1900(GMSK,1Slot)				
Frequency (MHz)	Power Step	Output Power Peak(dBm)		
1850.20	3	29.40		
1880.00	3	29.79		
1909.80	3	29.57		

	GSM/TM2/GPRS1900(8PSK,1Slot)	
Frequency (MHz)	Power Step	Output Power Peak(dBm)
1850.20	2	26.24
1880.00	2	26.35
1909.80	2	26.27

4.1.2. Radiated Output Power

TEST DESCRIPTION

This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(e) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the

substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

Report No.: MWR150600401

5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Aq}) should be recorded after test.

The measurement results are obtained as described below:

Power(EIRP)= P_{Mea} - P_{Ag} - P_{cl} + G_a

- We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: $Power(EIRP) = P_{Mea} P_{cl} + G_{a}$
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST LIMIT

Note: We test the H direction and V direction and V direction is worse.

According to 22.913(a) and 24.232(c), the ERP should be not exceed following table limits:

	GSM850(GPRS850,EDGE850)	
Function	Power Step	Burst Peak ERP (dBm)
GSM	5	≤38.45dBm (7W)
GPRS	3	≤38.45dBm (7W)
EGPRS	8	≤38.45dBm (7W)

PCS1900(GPRS1900,EDGE1900)					
Function	Power Step	Burst Peak EIRP (dBm)			
GSM	0	≤33dBm (2W)			
GPRS	3	≤33dBm (2W)			
EGPRS	2	≤33dBm (2W)			

TEST RESULTS

	GSM/TM1/GSM850	
Frequency (MHz)	ERP (dBm)	Polarization
824.20	28.44	V
836.60	28.83	V
848.80	28.32	V
·	GSM/TM2/GPRS850	
ERP (dBm)	ERP (dBm)	Polarization
824.20	28.36	V
836.60	28.78	V
848.80	28.27	V
	GSM/TM3/EGPRS850	•
Frequency (MHz)	ERP (dBm)	Polarization
824.20	23.63	V
836.60	24.02	V
848.80	23.51	V

GSM/TM1/ PCS1900					
Frequency (MHz)	EIRP (dBm)	Polarization			
1850.20	27.45	V			
1880.00	28.26	V			
1909.80	27.71	V			
	GSM/TM2/ GPRS1900				
Frequency (MHz)	EIRP (dBm)	Polarization			
1850.20	27.32	V			
1880.00	28.19	V			
1909.80	27.67	V			
	GSM/TM3/EGPRS1900				
Frequency (MHz)	EIRP (dBm)	Polarization			
1850.20	22.49	V			
1880.00	22.81	V			
1909.80	22.87	V			

Report No.: MWR150600401

4.2. Radiated Spurious Emssion

TEST APPLICABLE

According to the TIA/EIA 603D:2010 test method, The Receiver or Spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. The resolution bandwidth is set as outlined in Part 24.238 and Part 22.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of PCS1900 and GSM850.

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated

- through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=P_{Mea}- P_{Ag} P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
TM1/GSM 850	1~2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
	1~2	1 MHz	3 MHz	2
TM4/CCM 1000	2~5	1 MHz	3 MHz	3
TM1/GSM 1900	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2

TEST LIMITS

According to 24.238 and 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Frequency	Channel	Frequency Range	Verdict
	Low	9KHz-10GHz	PASS
TM1/GSM 850	TM1/GSM 850 Middle		PASS
	High	9KHz -10GHz	PASS
	Low	9KHz -20GHz	PASS
TM1/GSM 1900	Middle	9KHz -20GHz	PASS
	High	9KHz -20GHz	PASS

GSM/TM1/GSM850							
	Channel N	umber: 128		-	Test Frequency	: 824.20 MI	Нz
Frequency (MHz)	Р _{Меа} (dВm)	Path Loss	Antenna Gain	Correction Peak Limit (dB) ERIP(dBm) (dBm) Polarizat			Polarization
1648.40	-40.20	4.32	6.77	2.15	-37.75	-13.00	Н
2472.60				2.15		-13.00	Н
2472.57	-33.24	4.32	6.77	2.15	-30.79	-13.00	V
2472.60				2.15		-13.00	V

GSM/TM1/GSM850							
	Channel N	umber: 190			Test Frequency:	836.60 MH	lz
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain				
1673.20	-37.54	4.55	6.77	2.15	-35.32	-13.00	Н
2509.80				2.15		-13.00	Н
1673.20	-30.37	4.55	6.77	2.15	-28.15	-13.00	V
2509.80				2.15		-13.00	V

	GSM/TM ₁ /GSM850									
Channel Number: 251			Test Frequency: 848.80 MHz							
Frequency (MHz)	Р _{Меа} (dВm)	Path Loss	Antenna Gain	Correction (dB)	Peak ERIP(dBm)	Limit (dBm)	Polarization			
1697.60	-39.61	4.29	6.83	2.15	-37.07	-13.00	Н			
2546.40				2.15		-13.00	Н			
1697.60	-32.77	4.29	6.83	2.15	-30.23	-13.00	V			
2546.40				2.15		-13.00	V			

GSM/TM1/PCS1900									
Channel Number: 512				Test Frequency: 1850.20 MHz					
Frequency	P _{Mea}	Path	Antenna	Correction	Peak	Limit	Polarization		
(MHz)	(dBm)	Loss	Gain	(dB)	ERIP(dBm)	(dBm)			
3700.40	-42.41	4.55	12.34	2.15	-34.62	-13.00	Н		
5550.60				2.15		-13.00	Н		
3700.40	-46.45	4.55	12.34	2.15	-38.66	-13.00	V		
5550.60				2.15		-13.00	V		

GSM/TM1/PCS1900									
Channel Number: 661			Test Frequency: 1880.00 MHz						
Frequency	P _{Mea}	Path	Antenna	Correction	Peak	Limit	Polarization		
(MHz)	(dBm)	Loss	Gain	(dB)	ERIP(dBm)	(dBm)	1 Glarization		
3760.00	-40.97	4.55	12.40	2.15	-33.12	-13.00	Н		
5640.00				2.15		-13.00	Н		
3760.00	-42.75	4.55	12.40	2.15	-34.9	-13.00	V		
5640.00				2.15		-13.00	V		

GSM/TM1/PCS1900										
Channel Number: 810				Т	est Frequency:	1909.80 M	Hz			
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Peak ERIP(dBm)	Limit (dBm)	Polarization			
3819.60	-42.25	4.51	12.43	2.15	-34.33	-13.00	Н			
5729.40				2.15		-13.00	Н			
3819.60	-43.60	4.51	12.43	2.15	-35.68	-13.00	V			
5729.40				2.15		-13.00	V			

Note:

- In general, the worse case attenuation requirement shown above was applied.
 *** means that the emission level is too low to be measured or at least 20 dB down than the limit.

4.3. Occupied Bandwidth and Emission Bandwidth

TEST APPLICABLE

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of PCS1900 band and GSM850 band. The table below lists the measured 99% Bandwidth and -26dBc Bandwidth.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- 2. The Occupied bandwidth and Emission Bandwidth were measured with Spectrum Analyzer FSU26(Peak).
- 3. Set RBW=10KHz, VBW=30KHz, Span=1MHz;
- 4. Set SPA Max hold and View, Set 99% Occupied Bandwidth/ Set -26dBc Occupied Bandwidth
- These measurements were done at 3 frequencies, 1850.20 MHz, 1880.00 MHz and 1909.80 MHz for PCS1900 band; 824.20MHz, 836.60 MHz and 848.80 MHz for GSM850 band. (Low, middle and high of operational frequency range).

TEST RESULTS

		GSM/TM1/GSM850		
Channel Number	Frequency (MHz)	Occupied Bandwidth (99% BW) (kHz)	Emission Bandwidth (26 dBc BW) (kHz)	Verdict
128	824.20	245.19	322.12	PASS
190	836.60	245.19	315.71	PASS
251	848.80	246.79	322.12	PASS

	GSM/TM2/GPRS850						
Channel Number	Frequency (MHz)	Occupied Bandwidth (99% BW) (kHz)	Emission Bandwidth (26 dBc BW) (kHz)	Verdict			
128	824.20	246.79	315.71	PASS			
190	836.60	245.19	309.29	PASS			
251	848.80	243.59	306.09	PASS			

	GSM/TM3/EDGES850						
Channel Number	Frequency (MHz)	Occupied Bandwidth (99% BW) (kHz)	Emission Bandwidth (26 dBc BW) (kHz)	Verdict			
128	824.20	250.00	320.51	PASS			
190	836.60	243.59	312.50	PASS			
251	848.80	246.79	317.31	PASS			

Page 22 of 42 Report No.: MWR150600401

	GSM/TM1/GSM1900						
Channel Number	Frequency (MHz)	Occupied Bandwidth (99% BW) (kHz)	Emission Bandwidth (26 dBc BW) (kHz)	Verdict			
512	1850.20	245.19	315.71	PASS			
661	1880.00	243.59	315.71	PASS			
810	1909.80	248.40	318.91	PASS			

	GSM/TM2/GPRS1900						
Channel Number	Frequency (MHz)	Occupied Bandwidth (99% BW) (kHz)	Emission Bandwidth (26 dBc BW) (kHz)	Verdict			
512	1850.20	245.19	317.31	PASS			
661	1880.00	245.19	318.91	PASS			
810	1909.80	243.59	312.50	PASS			

	GSM/TM3/EDGE1900						
Channel Number	Frequency (MHz)	Occupied Bandwidth (99% BW) (kHz)	Emission Bandwidth (26 dBc BW) (kHz)	Verdict			
512	1850.20	245.19	310.90	PASS			
661	1880.00	243.59	317.31	PASS			
810	1909.80	250.00	315.71	PASS			

%>

Report No.: MWR150600401

Report No.: MWR150600401

4.4. Band Edge Complicance

TEST APPLICABLE

During the process of testing, the EUT was controlled By Digital Radio Communication tester (CMU200) to ensure max power transmission and proper modulation.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- 2. The power was measured with Spectrum Analyzer FSU26
- 3. Set RBW=5KHz,VBW=10KHz,Span=2MHz, Dector: RMS;
- 3. These measurements were done at 3 frequencies, 1850.20 MHz, 1880.00 MHz and 1909.80 MHz for PCS1900 band; 824.20 MHz, 836.60 MHz and 848.80 MHz for GSM850 band. (bottom, middle and top of operational frequency range).

TEST RESULTS

Channal	Fraguency	GPR		Limit	
Channel	Frequency	Measureme		Limit	Verdict
Number	(MHz)	Frequency (MHz)	Values (dBm)	(dBm)	
128	824.20	823.98	-15.76	-13.00	Pass
251	848.80	849.02	-15.09	-13.00	Pass
Ref 40 dBm 40 Offset 26 dB	*RBW 5 kHz 1 *VBW 10 kHz *Att 30 dB SWT 80 ms	Marker 1 [T1] -15.76 dBm 823.980769231 MHz	Ref 40 dBm *At	*VBW 10 kHz	ker 1 [T1] -15.09 dBm 849.019230769 MHz
-10 -13 dBm20		LVI.	-10 -01 -13 dBm		507L
-30	A CONTRACTOR OF THE PARTY OF TH	M. Whole have	-30	The state of the s	th pays it is the best way
Center 824 MHz ate: 28.JUN.2015 15:45:51	200 kHz/	Span 2 Miz	Center 849 MHz Date: 28.JUN.2015 15:46:44	200 kHz/	Span 2 MHz

Date: 28.JUN.2015 16:49:32

Channel	Frequency		E1900 ent Results	Limit	
Number	(MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Verdict
512	1850.20	1849.98	-17.95	-13.00	Pass
810	1909.80	1910.02	-18.47	-13.00	Pass
Ref 40 dBm	*RBW 5 kHz *VBW 10 kHz *Att 30 dB SWT 80 ms	Marker 1 [T1] -17.95 dBm 1.849977564 GHz	Ref 40 dBm *At	*RBW 5 kHz Ma *VBW 10 kHz t 30 dB SWT 80 ms	rker 1 [T1] -18.47 dBm 1.910022436 GHz
40 Offset 26 dB	5 da	1.045577504 0.12	40 Offset 26 dB	SWI GO IIII	1.516621456 4.11
30			30		A
20		LVL	1 PM * MAXII 20		INL
10				<i>M</i>	
				∮ ₹	
-0			0	1 1	
-10 D1 -13 dBm		EXT	-10 D1 -13 dBm		IXT
-20	 	3DB	-20	T T	3DB
-30	<u> </u>	4	-30	Ĭų l	
		V .		1 1	
-40		Made Made 1	-40	Vay Nata	1.
ويدالته مراده محدوله الموادي والموادي والموادي	AT PORTOR OF THE	Male Mary miles	Lington And Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-	- Manual pu	واستريب أخارته والمتاريخ والمتارغ والمتاريخ والمتاريخ والمتاريخ والمتاريخ والمتاريخ والمتاريخ والمتارغ وال
-60			-60		

Date: 28.JUN.2015 16:50:07

Report No.: MWR150600401

Page 33 of 42 Report No.: MWR150600401

4.5. Spurious Emssion on Antenna Port

TEST APPLICABLE

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 9 KHz to 19.1 GHz, data taken from 9 KHz to 25 GHz. For GSM850, data taken from 9 KHz to 9 GHz.
- 2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; if the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give an optimal sweep time according the selected span and RBW.
- The procedure to get the conducted spurious emission is as follows:
 The trace mode is set to MaxHold to get the highest signal at each frequency;
 Wait 25 seconds;
 Get the result.
- 4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- 2. The power was measured with Rhode & Schwarz Spectrum Analyzer FSU 26(peak);
- 3. These measurements were done at 3 frequencies, 1850.20 MHz, 1880.00 MHz and 1909.80 MHz for PCS1900 band; 824.20 MHz, 836.60 MHz and 848.80 MHz for GSM850 band. (Low, middle and high of operational frequency range).

TEST LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dR

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST RESULTS

4.6.1 For GSM/TM1/GSM850Test Results

Report No.: MWR150600401

A. Test Verdict

Test Mode/ Channel	Frequency (MHz)	Frequency Range	Limit (dBm)	Verdict
GSM/TM1/GSM850 /128	824.20	30MHz-1GHz	-13.00	PASS
		1GHz-5GHz	-13.00	PASS
		5GHz-10GHz	-13.00	PASS
GSM/TM1/GSM850 /190		30MHz-1GHz	-13.00	PASS
	836.60	1GHz-5GHz	-13.00	PASS
		5GHz-10GHz	-13.00	PASS
GSM/TM1/GSM850 /251	848.80	30MHz-1GHz	-13.00	PASS
		1GHz-5GHz	-13.00	PASS
		5GHz-10GHz	-13.00	PASS

Note:

- 1. In general, the worse case attenuation requirement shown above was applied.
- 2."---" means that the emission level is too low to be measured or at least 20 dB down than the limit.

B. Test Plots

Report No.: MWR150600401 GSM850 Channel: Test mode: 190 **% %** *RBW 1 MHz *VBW 3 MHz SWT 2.5 ms *RBW 1 MHz *VBW 3 MHz SWT 25 ms Date: 28.JUN.2015 15:32:54 Date: 28.JUN.2015 15:33:10 30MHz~1GHz 1GHz~5GHz Test mode: GSM850 **%** 1 PK

Date: 28.JUN.2015 15:33:30

5GHz~10GHz

Report No.: MWR150600401 GSM850 Channel: Test mode: 251 **% %** *RBW 1 MHz *VBW 3 MHz SWT 2.5 ms *RBW 1 MHz *VBW 3 MHz SWT 25 ms Date: 28.JUN.2015 15:33:58 Date: 28.JUN.2015 15:34:20 30MHz~1GHz 1GHz~5GHz Test mode: GSM850 **%** 1 PK

Date: 28.JUN.2015 15:34:41

5GHz~10GHz

4.6.2 For GSM/TM1/GSM 1900 Test Results

A. Test Verdict

Test Mode/ Channel	Frequency (MHz)	Frequency Range	Limit (dBm)	Verdict
GSM/TM1/GSM1900 /512	1850.20	30MHz-3GHz	-13.00	PASS
		3GHz-10GHz	-13.00	PASS
		10GHz-20GHz	-13.00	PASS
GSM/TM1/GSM1900 /661	1880.00	30MHz-3GHz	-13.00	PASS
		3GHz-10GHz	-13.00	PASS
		10GHz-20GHz	-13.00	PASS
GSM/TM1/GSM1900 /810	1909.80	30MHz-3GHz	-13.00	PASS
		3GHz-10GHz	-13.00	PASS
		10GHz-20GHz	-13.00	PASS

Note:

- 1. In general, the worse case attenuation requirement shown above was applied.
- 2."---" means that the emission level is too low to be measured or at least 20 dB down than the limit.
- B. Test Plots

Report No.: MWR150600401 PCS1900 Channel: Test mode: 661 **% %** *RBW 1 MHz *VBW 3 MHz SWT 45 ms Date: 28.JUN.2015 16:26:51 Date: 28.JUN.2015 16:27:10 30MHz~3GHz 3GHz~15GHz Test mode: GSM850 **%** 1 PK

Date: 28.JUN.2015 16:27:27

15GHz~20GHz

Date: 28.JUN.2015 16:28:32

15GHz~20GHz

4.6. Frequency Stability Test

TEST APPLICABLE

- 1. According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from -30℃ to +50℃ centigrade.
- 2. According to FCC Part 2 Section 2.1055 (E) (2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- 3. Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried voltage equipment and the end voltage point was 3.40V.

TEST PROCEDURE

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature;
- 2. Subject the EUT to overnight soak at -30°C;
- 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on middle channel of PCS 1900 and GSM850, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming;
- 4. Repeat the above measurements at 10℃ increments from -30℃ to +50℃. Allow at least 0.5 hours at each temperature, unpowered, before making measurements;
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 0.5 hours unpowered, to allow any self-heating to stabilize, before continuing;
- 6. Subject the EUT to overnight soak at +50°C;
- 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming;
- 8. Repeat the above measurements at 10℃ increments from +50℃ to -30℃. Allow at least 0.5 hours at each temperature, unpowered, before making measurements;
- 9. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure;

TEST CONFIGURATION

TEST LIMITS

For Hand carried battery powered equipment

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability.

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.40VDC and 4.20VDC, with a nominal voltage of 3.70DC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

Report No.: MWR150600401

For equipment powered by primary supply voltage

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

TEST RESULTS

Remark: We tested GSM and GPRS mode, recorded worst case at GSM mode.

GSM/TM1/GSM850					
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
3.40	25	22.41	0.03	2.50	PASS
3.70	25	22.93	0.03	2.50	PASS
4.20	25	20.06	0.02	2.50	PASS
3.70	-30	22.19	0.03	2.50	PASS
3.70	-20	22.26	0.03	2.50	PASS
3.70	-10	22.85	0.03	2.50	PASS
3.70	0	22.45	0.03	2.50	PASS
3.70	10	22.84	0.03	2.50	PASS
3.70	20	22.82	0.03	2.50	PASS
3.70	30	22.58	0.03	2.50	PASS
3.70	40	18.36	0.02	2.50	PASS
3.70	50	21.79	0.03	2.50	PASS

GSM/TM1/PCS1900					
DC Power	Temperature (℃)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
3.40	20	45.24	0.02	2.50	PASS
3.70	20	41.79	0.02	2.50	PASS
4.20	20	48.15	0.03	2.50	PASS
3.70	-30	45.04	0.02	2.50	PASS
3.70	-20	49.25	0.03	2.50	PASS
3.70	-10	55.59	0.03	2.50	PASS
3.70	0	45.44	0.02	2.50	PASS
3.70	10	47.44	0.03	2.50	PASS
3.70	20	36.76	0.02	2.50	PASS
3.70	30	42.21	0.02	2.50	PASS
3.70	40	44.83	0.02	2.50	PASS
3.70	50	45.10	0.02	2.50	PASS

5. Test Setup Photos of the EUT

.....End of Report.....