MAT02035 - Modelos para dados correlacionados

Apresentações

Rodrigo Citton Padilha dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2024

O professor

O professor

Olá!

Olá!

- Bacharel em Estatística pelo Departamento de Estatística da Universidade Federal do Rio Grande do sul (UFRGS) em 2008;
- Mestre (2010) e Doutor (2014) em Estatística pelo Programa de Pós Graduação em Estatística da Universidade Federal de Minas Gerais.
- Professor do Departamento de Estatística da UFRGS;
- Coordenador do Programa de Pós Graduação em Epidemiologia da UFRGS;
- Pesquisador no Estudo Longitudinal de Saúde do Adulto (ELSA-Brasil);
- ▶ Coordenador do Centro de Dados do ELSA-Brasil.

Olá!

- ► Interesses de pesquisa em:
 - epidemiologia do Diabetes Mellitus
 - ▶ inferência causal em epidemiologia
 - técnicas de amostragem
 - modelos de predição de risco
 - análise de sobrevivência.

A disciplina

A disciplina

Objetivos

- Capacitar os alunos para identificar situações em que pode existir correlação nos dados observados.
- Apresentar aos alunos as técnicas de Equações de Estimação Generalizadas e Modelos Mistos Lineares.
- Capacitar os alunos no uso das técnicas para análise de dados correlacionados proporcionando domínio teórico, aplicado e computacional dos conceitos envolvidos.

Organização

- Disciplina: Modelos para dados correlacionados
- ► Turma: U
- Modalidade: Ensino presencial
- Professor: Rodrigo Citton Padilha dos Reis
 - e-mail: citton.padilha@ufrgs.br ou rodrigocpdosreis@gmail.com
 - Sala: B215 do Instituto de Matemática e Estatística

Aulas e material didático

- Aulas (teóricas e práticas)
 - Exposição e discussão dos conteúdos
 Faremos leituras semanais de artigos e capítulos de livros
 - Exemplos
- Notas de aula
 - Slides
 - Arquivos de rotinas em R
- Exercícios
 - Listas de exercícios
 - Para casa
 - Questionários do Moodle
- Canais de comunicação:
 - Durante as aulas
 - Moodle: aulas, materiais, listas de exercícios
 - Sala de aula virtual: notas das avaliações
 - e-mail do professor

Aulas e material didático

► Aulas: terças e quintas, das 8hs 30min às 10hs 10min, na Sala A114 do Instituto de Química e Matemática - Campus do Vale

Aulas e material didático

- Exemplos e exercícios com o apoio do computador:
 - R e RStudio

```
hist(x, col = 'black', border = 'white')
```


Conteúdo programático

Área 1

- 1. Introdução aos dados correlacionados
- 2. Dados longitudinais
- 3. Visão geral dos modelos lineares para dados longitudinais
- 4. Estimação e inferência estatística

Conteúdo programático (cont.)

Área 2

- 5. Modelando a média
- 6. Modelando a covariância
- 7. Modelos lineares de efeitos mistos
- 8. Modelos de efeitos fixos versus efeitos aleatórios
- 9. Diagnóstico e análise de resíduos

Conteúdo programático (cont.)

Área 3

- 10. Modelos marginais: introdução e visão geral
- 11. Modelos marginais: Equações de Estimação Generalizadas (GEE)
- 12. Modelos multiníveis
- 13. Tópicos complementares

Avaliação

- Serão realizadas três atividades de avaliação (uma em de cada área):
 - rês provas $(P_1, P_2 \in P_3)$ presenciais e individuais.
- Cada atividade de avaliação vale 10 pontos.
- Será realizado uma prova presencial e individual como atividade de recuperação (PR):
 - Para os alunos que não atingirem o conceito mínimo;
 - Esta prova abrange todo o conteúdo da disciplina

Avaliação

$$MF = \frac{P_1 + P_2 + P_3}{3}$$

- ► **A**: $9 \le MF \le 10$
- ▶ **B**: $7,5 \le MF < 9$
- ▶ **C**: $6 \le MF < 7,5$
- **▶ D**: *MF* < 6
- ► **FF:** se o aluno tiver frequência inferior a 75% da carga horária prevista no plano da disciplina

Avaliação

Se MF < 6 e frequência mínima de 75% o aluno poderá realizar a prova de recuperação e neste caso

$$MF' = MF \times 0, 4 + PR \times 0, 6$$

- ► **C**: $MF' \ge 6$
- ▶ **D**: MF' < 6

Referências bibliográficas

Principal

Fitzmaurice, G., Laird, N., Ware, J. **Applied Longitudinal Analysis**. John Wiley & Sons, 2011, 2ed.

Complementares

Singer, J. M., Nobre, J. S., Rocha, F. M. M. **Análise de dados longitudinais**. USP, 2018.

Diggle, P., Heagerty, P., Liang, K. Y., Zeger, S. **Analysis of Longitudinal Data**. Oxford University Press, 2002, 2ed.

Referências bibliográficas

https://content.sph.harvard.edu/fitzmaur/ala2e/

Os dados correlacionados

Os dados correlacionados

Séries temporais

- Não discutiremos!
 - Disciplina MAT02263 ANÁLISE DE SÉRIES TEMPORAIS A

Dados espaciais

- ► Não discutiremos!
 - ► Disciplina MAT02040 ESTATÍSTICA ESPACIAL

Dados espaço-temporais

- ► Não discutiremos!
 - ► Disciplina MAT02040 ESTATÍSTICA ESPACIAL

Dados longitudinais

Discutiremos!

Dados agrupados

Discutiremos!

O que veremos nesta disciplina?

Daremos atenção a estruturas de dados longitudinais e dados agrupados (multiníveis ou hierárquicos) para:

- Descrever os dados;
 - Gráficos e resumos numéricos;
- Modelar os dados:
 - Aplicar modelos estatísticos para representar de maneira compacta a estrutura dos dados;
 - Fazer estimação e inferência (construção de intervalos de confiança e testes de hipóteses) com respeito às quantidades de interesse (coeficientes de regressão, componentes de variância, etc.);
 - Avaliar o modelo que melhor descreve os dados através da comparação de modelos;