# Algorithms & Data Structures I CSC 225

Ali Mashreghi

Fall 2018



Department of Computer Science, University of Victoria

#### How good is the Insertion-Sort algorithm?

What does good even mean?!?!?!

• Does it mean easy to understand, fast, requiring little memory, having less power consumption, ....?

#### How good is the Insertion-Sort algorithm?

What does good even mean?!?!?!

• Does it mean easy to understand, fast, requiring little memory, having less power consumption, ....?

- In this course we consider running time (speed) as the main measure of goodness of algorithms.
- Sometimes we consider memory consumption as well.

How to compare running time?

#### How to compare running time?

- To compare the running time of two algorithms A and B:
  - 1. Implement both using the same language
  - 2. Provide them with the same input
  - 3. Run both programs on the same machine

#### How to compare running time?

- To compare the running time of two algorithms A and B:
  - 1. Implement both using the same programming language
    - → This is a hassle
  - 2. Provide them with the same input
    - → Providing one input doesn't really seem to be enough
    - → Moreover, even if we provide a set of inputs:
      - (1) Does this set represent all possible inputs?
      - (2) What if sometimes A is faster and sometimes B?
  - 3. Run both programs on the same machine
    - → This may take quite some time
- This kind of comparison uses experimental results which is useful in its own way; however, we want all good things at the same time ©

#### What is our ideal way of comparing algorithms?

- Comparing without implementing the algorithm
- Comparing without executing the code
- Comparing without considering every single input

#### Model of computation

 Similarities between the abstract mathematical world and the real world:

| Real World                                  | Abstract World |
|---------------------------------------------|----------------|
| Program                                     | Algorithm      |
| Programming Language                        | Pseudocode     |
| Computer What your program is allowed to do | ????           |

#### Model of computation

 Similarities between the abstract mathematical world and the real world:

| Real World                                  | Abstract World                                            |
|---------------------------------------------|-----------------------------------------------------------|
| Program                                     | Algorithm                                                 |
| Programming Language                        | Pseudocode                                                |
| Computer What your program is allowed to do | Model of computation What your algorithm is allowed to do |

#### Model of computation

- Model of computation specifies what operations algorithm is allowed to do and the cost of each operation.
- We use Random Access Machine (RAM) as our model of computation.
- What else does RAM stand for?

word 1

word 2

word 3

word 4

•

.

.

•

•

- RAM is actually very similar to Random Access Memory
- You can think of both of them as an array of words

word 1

word 2

word 3

word 4

•

•

.

•

- RAM is actually very similar to Random Access Memory
- You can think of both of them as an array of words
- Because we assume random access, we can access and modify any location of this array in one time unit

word 1

word 2

word 3

word 4

•

•

.

•

.

- RAM is actually very similar to Random Access Memory
- You can think of both of them as an array of words
- Because we assume random access, we can access and modify any location of this array in one time unit
- A word is a unit of memory that a computer uses. (w bits)

word 1

word 2

word 3

word 4

•

•

.

•

- RAM is actually very similar to Random Access Memory
- You can think of both of them as an array of words
- Because we assume random access, we can access and modify any location of this array in one time unit
- A word is a unit of memory that a computer uses. (w bits)
- We assume that when we are working with inputs of size n, w is at least  $\log n$  bits. So, each word can hold the value of n. Ex.  $n=1024, w\geq 11$

log n bits

word 1

word 2

word 3

word 4

•

•

.

\_\_\_\_

1. Each simple operation (e.g. +, \*, -, =, if, call) takes exactly one time step.

- 1. Each simple operation (e.g. +, \*, -, =, if, call) takes exactly one time step.
- 2. Loops and subroutines are not considered simple operations. Instead, they are the composition of many single-step operations.

- 1. Each simple operation (e.g. +, \*, -, =, if, call) takes exactly one time step.
- 2. Loops and subroutines are not considered simple operations. Instead, they are the composition of many single-step operations.
- 3. Each memory access takes exactly one time step. Further, we have as much memory as we need.

- 1. Each simple operation (e.g. +, \*, -, =, if, call) takes exactly one time step.
- 2. Loops and subroutines are not considered simple operations. Instead, they are the composition of many single-step operations.
- 3. Each memory access takes exactly one time step. Further, we have as much memory as we need.

**Note:** It makes no sense for sort to be a single-step operation, since sorting 1,000,000 items will certainly take much longer than sorting 10 items.

• Assume size of the input array is n (A.length = n)

```
INSERTION-SORT (A)
  for j = 2 to A. length
 key = A[j]
  // Insert A[j] into the sorted
         sequence A[1 ... j - 1].
    i = j - 1
   while i > 0 and A[i] > key
        A[i+1] = A[i]
  i = i - 1
   A[i+1] = key
```

```
INSERTION-SORT (A)
   for j = 2 to A. length \leftarrow
  key = A[j]
   // Insert A[j] into the sorted
         sequence A[1..j-1].
     i = j - 1
    while i > 0 and A[i] > key
         A[i+1] = A[i]
   i = i - 1
   A[i+1] = key
```

| Type of operation                                 | Required Time Units |
|---------------------------------------------------|---------------------|
| assignment of j = 2                               |                     |
| increment of j (addition)                         | ?                   |
| field access on A.length (which is memory access) | ?                   |
| comparison of j and A.length                      | ?                   |
| Sum of all these operations                       | ?                   |

```
INSERTION-SORT (A)
   for j = 2 to A. length \leftarrow
  key = A[j]
   // Insert A[j] into the sorted
         sequence A[1..j-1].
     i = j - 1
    while i > 0 and A[i] > key
         A[i+1] = A[i]
   i = i - 1
   A[i+1] = key
```

| Type of operation                                 | Required Time Units    |
|---------------------------------------------------|------------------------|
| assignment of j = 2                               | 1                      |
| increment of j (addition)                         | n - 1                  |
| field access on A.length (which is memory access) | n (once when j == n+1) |
| comparison of j and A.length                      | n (once when j == n+1) |
| Sum of all these operations                       | 3n                     |

```
INSERTION-SORT (A)
   for j = 2 to A. length
   key = A[j] \leftarrow
     // Insert A[j] into the sorted
          sequence A[1 ... j - 1].
     i = j - 1
     while i > 0 and A[i] > key
         A[i+1] = A[i]
      i = i - 1
    A[i+1] = key
```

| Type of operation           | Required Time Units |
|-----------------------------|---------------------|
| memory access A[j]          | n - 1               |
| assignment of key = A[j]    | n - 1               |
| Sum of all these operations | 2n - 2              |

```
INSERTION-SORT(A)
```

```
for j = 2 to A.length

key = A[j]

// Insert A[j] into the sorted sequence A[1...j-1].

i = j-1

while i > 0 and A[i] > key

A[i+1] = A[i]

A[i+1] = key
```

| Type of operation           | Required Time Units |
|-----------------------------|---------------------|
| Nothing it's just a comment | 0                   |
| Sum of all these operations | 0                   |

```
INSERTION-SORT (A)
  for j = 2 to A. length
  key = A[j]
   // Insert A[j] into the sorted
        sequence A[1 ... j - 1].
     i = j - 1
   while i > 0 and A[i] > key
        A[i+1] = A[i]
   i = i - 1
   A[i+1] = key
```

| Type of operation           | Required Time Units |
|-----------------------------|---------------------|
| subtraction j - 1           | n - 1               |
| assignment i = j - 1        | n - 1               |
| Sum of all these operations | 2n - 2              |

```
INSERTION-SORT (A)
  for j = 2 to A. length
  key = A[j]
    // Insert A[j] into the sorted
        sequence A[1...j-1].
     i = j - 1
                                  Question: How many times is the while
    while i > 0 and A[i] > key
                                  condition checked in terms of j?
        A[i+1] = A[i]
     i = i - 1
    A[i+1] = key
```

```
INSERTION-SORT (A)
  for j = 2 to A. length
   key = A[j]
     // Insert A[j] into the sorted
        sequence A[1..j-1].
     i = j - 1
                                  Question: How many times is the while
     while i > 0 and A[i] > key
                                  condition checked in terms of j?
        A[i+1] = A[i]
                                  Answer: It depends on the value of key.
     i = i - 1
    A[i+1] = key
```

- Assume  $t_i$  is the number of times the while condition is checked for a specific j
  - For example,  $t_5$  is the number of times the test of while loop is performed when j=5

#### INSERTION-SORT (A)

```
for j = 2 to A. length

key = A[j]

// Insert A[j] into the sorted sequence A[1..j-1].

i = j-1

while i > 0 and A[i] > key

A[i+1] = A[i]

i = i-1

A[i+1] = key
```

| Type of operation                                | Required Time Units |
|--------------------------------------------------|---------------------|
| comparison i > 0                                 | ?                   |
| memory access A[i]                               | ?                   |
| comparison of A[i] > key                         | ?                   |
| evaluating the expression "i > 0 and A[i] < key" | ?                   |
| Sum of all these operations                      | ?                   |

- Assume  $t_i$  is the number of times the while condition is checked for a specific j
  - For example,  $t_5$  is the number of times the test of while loop is performed when j=5

#### INSERTION-SORT (A)

```
for j = 2 to A. length

key = A[j]

// Insert A[j] into the sorted sequence A[1..j-1].

i = j-1

while i > 0 and A[i] > key

A[i+1] = A[i]

i = i-1

A[i+1] = key
```

| Type of operation                                | Required Time Units                          |
|--------------------------------------------------|----------------------------------------------|
| comparison i > 0                                 | $t_2 + t_3 + \dots + t_n = \sum_{j=2}^n t_j$ |
| memory access A[i]                               | $\sum_{j=2}^{n} t_j$                         |
| comparison of A[i] > key                         | $\sum_{j=2}^{n} t_j$                         |
| evaluating the expression "i > 0 and A[i] < key" | $\sum_{j=2}^{n} t_j$                         |
| Sum of all these operations                      | $4\sum_{j=2}^{n}t_{j}$                       |

```
INSERTION-SORT (A)
  for j = 2 to A. length
  key = A[j]
   // Insert A[j] into the sorted
         sequence A[1..j-1].
     i = j - 1
    while i > 0 and A[i] > key
        A[i+1] = A[i]
     i = i - 1
    A[i+1] = key
```

| Type of operation             | Required Time Units        |
|-------------------------------|----------------------------|
| memory access A[i]            | $\sum_{j=2}^{n} (t_j - 1)$ |
| memory access A[i+1]          | $\sum_{j=2}^{n} (t_j - 1)$ |
| addition of i + 1             | $\sum_{j=2}^{n} (t_j - 1)$ |
| assignment of A[i + 1] = A[i] | $\sum_{j=2}^{n} (t_j - 1)$ |
| Sum of all these operations   | $4\sum_{j=2}^{n}(t_j-1)$   |

```
INSERTION-SORT (A)
  for j = 2 to A. length
  key = A[j]
   // Insert A[j] into the sorted
         sequence A[1 ... j - 1].
     i = j - 1
    while i > 0 and A[i] > key
        A[i+1] = A[i]
     i = i - 1
    A[i+1] = key
```

| Type of operation           | Required Time Units        |
|-----------------------------|----------------------------|
| subtraction of i - 1        | $\sum_{j=2}^{n} (t_j - 1)$ |
| assignment of i = i - 1     | $\sum_{j=2}^{n} (t_j - 1)$ |
| Sum of all these operations | $2\sum_{j=2}^{n}(t_j-1)$   |

```
INSERTION-SORT (A)
  for j = 2 to A. length
  key = A[j]
   // Insert A[j] into the sorted
         sequence A[1..j-1].
     i = j - 1
    while i > 0 and A[i] > key
        A[i+1] = A[i]
     i = i - 1
    A[i+1] = key
```

| Type of operation            | Required Time Units |
|------------------------------|---------------------|
| memory access A[i+1]         | n - 1               |
| addition of i + 1            | n - 1               |
| assignment of A[i + 1] = key | n - 1               |
| Sum of all these operations  | 3n - 3              |

• The running time of the algorithm is the sum of running times each operation is executed

#### INSERTION-SORT (A)for j = 2 to A. length key = A[j]// Insert A[j] into the sorted sequence A[1 ... j - 1]. i = j - 1while i > 0 and A[i] > keyA[i+1] = A[i]i = i - 1A[i+1] = kev

| Required Time Units                                               |                           |
|-------------------------------------------------------------------|---------------------------|
|                                                                   | 3n                        |
|                                                                   | 2n - 2                    |
|                                                                   | 0                         |
|                                                                   | 2n - 2                    |
|                                                                   | $4\sum_{j=2}^n t_j$       |
|                                                                   | $4\sum_{j=2}^n (t_j - 1)$ |
|                                                                   | $2\sum_{j=2}^{n}(t_j-1)$  |
|                                                                   | 3n - 3                    |
| Running time of Insertion-Sort = $10 \sum_{j=2}^{n} t_j + 4n - 1$ |                           |

$$10\sum_{j=2}^{n} t_j + 4n - 1$$

$$10\sum_{j=2}^{n} t_j + 4n - 1$$



$$10\sum_{j=2}^{n} t_j + 4n - 1$$

- $t_2$ , ...,  $t_n$  depend on the input
- How can we fix it?

$$10\sum_{j=2}^{n} t_j + 4n - 1$$

- $t_2$ , ...,  $t_n$  depend on the input
- How can we fix it?
  - 1. Consider the time on the **best input** (the one that causes the algorithm to work fastest) This is called **best-case analysis**

$$10\sum_{j=2}^{n} t_j + 4n - 1$$

- $t_2$ , ...,  $t_n$  depend on the input
- How can we fix it?
  - 1. Consider the time on the **best input** (the one that causes the algorithm to work fastest) This is called **best-case analysis**
  - 2. Consider the time on the worst input (the one that causes the algorithm to work slowest) This is called worst-case analysis

$$10\sum_{j=2}^{n} t_j + 4n - 1$$

- $t_2$ , ...,  $t_n$  depend on the input
- How can we fix it?
  - 1. Consider the time on the **best input** (the one that causes the algorithm to work fastest) This is called **best-case analysis**
  - 2. Consider the time on the worst input (the one that causes the algorithm to work slowest) This is called worst-case analysis
  - 3. Consider the average time on all inputs This is called average-case analysis