

Experimentação Estatística Delineamentos em quadrados latinos

Discente: Cleidson dos Santos Souza

cleidson.santos.souza@gmail.com

Docente: Dr. Rômulo Barbosa Veloso

romulo.veloso@unimontes.br

Programa de Pós-Graduação em Modelagem Computacional e Sistemas Universidade Estadual de Montes Claros

1° Semestre/2019

Sumário

Introdução

Média aritmética Variância e Desvio padrão Graus de liberdade Soma de quadrados dos resíduos

Delineamentos

Introdução Experimentos inteiramente casualizados Experimentos em blocos casualizados

Delineamento em quadrados latinos

Introdução Um exemplo Parcela perdida

Conclusão

 Consideremos uma amostra de dados de lavoura de cana-deaçúcar em uma fazenda, com cinco observações tomadas ao acaso, uma de cada talhão, todas em um mesmo tipo de solo e com trato culturais semelhantes.

• As produções (x_i) em t/ha, das amostras foram as seguintes:

152, 2

118, 9

148, 8

130, 5

 $155,6 (A_1)$

Para ter uma ideia sobre a produtividade do canavial, na fazenda: qual é e como varia, deve-se antes de mais nada, calcular a média aritmética desses dados, da seguinte forma:

$$\bar{x} = \frac{1}{n} \sum x_i \tag{1}$$

Assim, temos que:

$$ar{x} = rac{152, 2 + 118, 9 + 148, 8 + 130, 5 + 155, 6}{5} = rac{706, 0}{5}$$
 $ar{x} = 141, 2 \ t/ha$

- Num conjunto como esse, de dados observados, a média aritmética sempre ocupa a posição central, de modo que sempre haverá valores acima dela e outros abaixo.
- Nesse exemplo estão acima 152,2; 155,6; 148,8, e estão abaixo 118,9 e 130,5;

 Por isso, a média aritmética é considerada uma medida de posição ou medida de tendência central.

 Se na mesma fazenda fizermos outra amostragem ao acaso, os novos dados serão diferentes do anterior. Por exemplo:

160,0 119,2 138,4 167,6 150,3 (A_2)

Assim, teríamos que:

$$\bar{x_2} = 147, 1 \ t/ha$$

 Podemos imaginar, porém, um valor ideal da média (seria a média correta, exata, de toda a área de cana da fazenda, isto é, da população - ou universo em estudo) de todas as amostras possíveis:

$$\mu = 139, 3$$

• A média aritmética de cada amostra (\bar{x}) possível representa apenas uma estimativa do valor exato (μ) .

Média aritmética Variância e Desvio padrão Graus de liberdade Soma de quadrados dos resíduos

Introdução Variância e Desvio padrão

- A média aritmética de uma amostra dá, evidentemente, uma boa ideia do conjunto de seus dados, mas não permite avaliar desigualdades entre seus elementos, isto é, a sua dispersão.
- Há vários modos de medir a dispersão. Mas um dos melhores é o desvio padrão.

Calcular a variância (s^2) e o desvio padrão (s) quando se conhece a média da população (μ)

 Para explicar o que é desvio padrão, vamos primeiro dizer o que é desvio (d), definido como a diferença:

$$d_i = x_i - \mu \tag{2}$$

onde:

- x_i é um valor observado
- ullet μ é a média da população

Calcular a variância (s^2) e o desvio padrão (s) quando se conhece a média da população (μ)

Para o primeiro e segundo valor observado na amostra (A₁) temos 152,2 e 118,9, respectivamente, e a média da população se admite ser 139,3. Conclui-se, pois, que os desvios correspondentes são:

$$d_1 = 152, 2 - 139, 3 = +12, 9$$

$$d_2 = 118, 9 - 139, 3 = -20, 4$$

• Para todos os valores da amostra A_1 , os desvios seriam:

$$+12,9$$
 $-20,4$ $+9,5$ $-8,8$ $+16,3$

Calcular a variância (s^2) e o desvio padrão (s) quando se conhece a média da população (μ)

A partir desses desvios, também chamados erros ou afastamentos, calculamos assim a variância da amostra:

$$s^{2} = \frac{\sum (x_{i} - \mu)^{2}}{N} = \frac{\sum d_{i}^{2}}{N}$$
 (3)

Isto é, no caso presente:

$$s^{2} = \frac{(+12,9)^{2} + (-20,4)^{2}(+9,5)^{2} + (-8,8)^{2} + (+16,3)^{2}}{5}$$
$$s^{2} = 203,19$$

Calcular a variância (s^2) e o desvio padrão (s) quando se conhece a média da população (μ)

• O desvio padrão (s) é a raiz quadrada positiva da variância:

$$s = \sqrt{s^2} \tag{4}$$

Isto é, no caso presente:

$$s = \sqrt{203, 19} = 14, 25$$

Calcular a variância (s^2) e o desvio padrão (s) quando $\underline{não}$ se conhece a média da população (μ)

- O método que acabamos de usar para o cálculo da variância e do desvio padrão seria excelente se conhecêssemos a média (μ) da população. Mas isso quase nunca ocorre, conhecemos apenas sua estimativa (x̄);
- Podemos usar a estimativa (\bar{x}) para calcular os **resíduos** relativos às observações da amostra:

$$r_i = x_i - \bar{x} \tag{5}$$

Calcular a variância (s^2) e o desvio padrão (s) quando $\underline{não}$ se conhece a média da população (μ)

Os resíduos relativos às observações da amostra A₁ são:

$$r_1 = 152, 2 - 141, 2 = +11, 0$$

 $r_2 = 118, 9 - 141, 2 = -22, 3$
 $r_3 = 148, 8 - 141, 2 = +7, 6$
 $r_4 = 130, 5 - 141, 2 = -10, 7$
 $r_5 = 155, 6 - 141, 2 = +14, 4$

Calcular a variância (s^2) e o desvio padrão (s) quando $\underline{não}$ se conhece a média da população (μ)

 A soma dos resíduos deve ser nula (o que não acontece, em geral, com a soma dos desvios):

$$r_1 + r_2 + r_3 + r_4 + r_5 = 0 (6)$$

 Com os resíduos podemos calcular a variância s², desde que dividamos a soma dos seus quadrados por N - 1 e não por N, sendo N o tamanho da amostra, isto é, o número de dados da amostra.

Introdução

Variância e Desvio padrão

Calcular a variância (s^2) e o desvio padrão (s) quando $\underline{não}$ se conhece a média da população (μ)

No caso geral, temos que:

$$s^{2} = \frac{\sum (x - \bar{x})^{2}}{N - 1} = \frac{\sum r_{i}^{2}}{N - 1}$$
 (7)

No caso presente, temos pois:

$$s^{2} = \frac{(+11,0)^{2} + (-22,3)^{2}(+7,6)^{2} + (-10,7)^{2} + (+14,4)^{2}}{4}$$
$$s^{2} = \frac{997,90}{4} = 249,475$$

Calcular a variância (s^2) e o desvio padrão (s) quando $\underline{não}$ se conhece a média da população (μ)

O desvio padrão seria, pois:

$$s = \sqrt{249,475} = 15,79 \approx 15,8$$

Introdução Graus de liberdade

Quando a média verdadeira (μ) é conhecida

- O número N de observações em que se baseia o cálculo de s quando se conhece a média verdadeira (μ) dá uma indicação sobre a precisão da estimativa (s) obtida e constitui seu número de graus de liberdade;
- Assim, a estimativa s = 14,25 tem 5 graus de liberdade;

Introdução Graus de liberdade

Quando a média verdadeira (μ) <u>não</u> é conhecida

- Quando, porém, como acontece quase sempre, a média verdadeira (μ) não é conhecida e fazemos o cálculo de s a partir de uma estimativa (x̄), a teoria prova que isso equivale exatamente a perda de uma das informações;
- Assim, o cálculo de s com 5 observações, sem o conhecimento de (μ), nos deu 15,8, e esta estimativa tem 5 1 = 4 graus de liberdade, pois o uso da estimativa média, em vez de seu valor exato, permite-nos obter uma estimativa de s menos precisa, aliás, de precisão equivalente à que teríamos com 4 observações, se conhecêssemos a média verdadeira (μ);

Introdução Graus de liberdade

Quando a média verdadeira (μ) não é conhecida

Sendo assim, os cálculos a seguir são equivalentes:

$$\frac{\sum (x_i - \mu)_2}{N} \approx \frac{\sum (x - \bar{x})^2}{N - 1} \tag{8}$$

No caso geral, com N observações, se utilizarmos uma estimativa de x̄ para calcular s, este terá N - 1 graus de liberdade.

Introdução

Soma de quadrados dos resíduos

 Sabemos que, numa amostra de N unidades, estimativa da variância (s²) se obtém com a fórmula:

$$s^{2} = \frac{\sum r_{i}^{2}}{N-1} = \frac{r_{1}^{2} + r_{2}^{2} + \dots + r_{N}^{2}}{N-1} = \frac{SQRes}{N-1}$$
 (9)

onde:

- SQRes = $\sum r_i^2$ = Soma de Quadrados dos Resíduos
- Mas, algebricamente, esta soma de quadrados se obtém mais facilmente pela expressão:

$$SQRes = \sum x^2 - \frac{(\sum x)^2}{N} \tag{10}$$

Introdução

Soma de quadrados dos resíduos

• Por exemplo, para os dados da amostra A_1 , temos que:

$$\sum x^2 = (152, 2)^2 + (118, 9)^2 + (148, 8)^2 + (130, 5)^2 + (155, 6)^2$$

$$\sum x = (152, 2) + (118, 9) + (148, 8) + (130, 5) + (155, 6)$$

$$SQRes = 100.685, 10 - \frac{(706, 0)^2}{5}$$

$$SQRes = 100.685, 10 - 99.687, 20 = 997, 90$$

Temos, pois:

$$s^2 = \frac{SQRes}{N-1} = \frac{997,90}{4} = 249,90$$

Média aritmética Variância e Desvio padrão Graus de liberdade Soma de quadrados dos resíduos

Introdução Soma de quadrados dos resíduos

 Na prática, portanto, o cálculo da variância s² se faz pela fórmula:

$$s^{2} = \frac{\sum x^{2} - \frac{(\sum x)^{2}}{N}}{N - 1} \tag{11}$$

Introdução Experimentos inteiramente casualizad

Delineamentos Introdução

Aplicações

- Muitas áreas como, por exemplo, agricultura e pecuária, dependem muito da pesquisa experimental, pois, em muitos casos, é só com experimentos, nas condições locais, que se conseguem informações básicas necessárias, como:
 - qual o melhor cultivar
 - qual o melhor técnica de semeadura
 - qual o efeito, no campo de doses de nutrientes
 - qual o aditivo alimentar mais adequado à alimentação de frangos ou de galinhas poedeiras
 - etc.

Delineamentos Introdução

Unidade experimental ou parcela

- Em cada experimento (ou ensaio) há unidades experimentais ou parcelas, que serão medidas e que receberão os métodos em estudo, que são os tratamentos;
- Alguns exemplos de parcela são:
 - Em experimentos de adubação: Uma área cujo tamanho depende fundamentalmente do porte da planta estudada
 - 10m², por exemplo, para o arroz; 30m², para o algodão ou café; 200m², ou mais, para árvores frutíferas.
 - Em experimentos com vacas leiteiras: a parcela é geralmente uma vaca.
 - Em experimentos com suínos: a parcela pode ser um conjunto de três ou quatro leitões.

Introdução

Delineamentos Introdução

Terminologia

 Chama-se delineamento experimental a forma de dispor as parcelas no ensaio.

Introdução Experimentos inteiramente casualiza

Delineamentos Introdução

Generalidades

- Num experimento como norma geral, cada tratamento deve ser aplicado a pelo menos duas parcelas, isto é, deve haver repetição. Na prática, há quase sempre, pelo menos três ou quatro repetições, para todos os tratamentos;
- A atribuição dos tratamentos às parcelas deve ser feita por sorteio (casualização);

Introdução Experimentos inteiramente casualizado

Delineamentos Introdução

Análise de Variância - Analytic Of Variance (ANOVA)

A análise estatística de um experimento, na atualidade, começa, geralmente, com o cálculo da análise de variância (ANOVA) dos dados, método que, embora sofisticado, é de fácil realização e leva rapidamente à obtenção da variância experimental (s²) e do desvio padrão respectivo, essenciais à aplicação dos modernos testes de estatística.

Experimentos inteiramente casualizados Definição

 Quando os materiais com que se trabalha (as parcelas) são razoavelmente uniformes, pode-se instalar o experimento apenas com o uso de repetição e de casualização ou aleatorização.
 Ex.: Experimento de laboratório ou de animais pequenos bem uniformes, como frangos.

Descrição

Consideremos um experimento de competição de progênies de *Eucalyptus saligna*, inteiramente casualizado, com 4 repetições.

Dados médios do diâmetro à altura do peito (DAP) de parcelas de um experimento de competição de 10 progênies de *Eucalyptus saligna*, em centímetros.

Progênieis	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	Total
	16	14,3	14,7	13,6	11,6	11	13,1	10,3	8,5	8,2	
	16,4	14,5	15,6	13,1	10,5	15	10,3	13,2	8,6	8,4	
	14,1	13,8	11,6	14,7	15,9	10,7	14,3	10,2	9,5	9,3	
	11,7	14,6	15	15,1	14	13	10,5	13	9,4	9,2	
Total	58,2	57,2	56,9	56,5	52	49,7	48,2	46,7	36	35,1	496,5

Resolução

- 1) Definir o número de graus de liberdade
 - G.L. para o SQTotal: 39,
 porque são N = 40 as parcelas e o seu número de G.L é N 1
 = 40 1 = 39.
 - G.L. para o Progênies (Tratamentos): 9, porque são 10 progênies, ou seja, N=10 tratamentos e o seu número de G.L é N - 1 = 10 - 1 = 9.
 - G.L. para o Resíduo: 9, porque são N = 10 tratamentos e o seu número de G.L é N -1 = 10 - 1 = 9.

Resolução

Causa (ou fonte) de variação	G.L.	s.Q.	Q.M.	F
Progênieis (Tratamentos)	9			
Resíduos	30			
Total	39			

Resolução

2) Calcular o SQTotal - Soma de Quadrados (Total) dos Resíduos

$$SQTotal = \sum x^2 - \frac{(\sum x)^2}{N} = \sum x^2 - C$$
 (12)

onde:

- x é o valor numérico relativo a cada parcela
- N é o número de parcelas do experimento

Resolução

2) Calcular o SQTotal - Soma de Quadrados (Total) dos Resíduos

$$\sum x = 16, 0 + 16, 4 + \dots + 9, 3 + 9, 2 = 496, 5$$

$$\sum x^2 = (16,0)^2 + (16,4)^2 + \dots + (9,3)^2 + (9,2)^2 = 6.401,35$$

$$SQTotal = 6.401, 35 - \frac{(496, 6)^2}{40} = 6.401, 35 - 6.162, 81 = 238, 54$$

Resolução

3) Calcular o SQTrat - Soma de Quadrados (dos Resíduos) de Tratamentos

$$SQTrat = \frac{T_1^2 + T_2^2 + T_3^2 + \dots + T_n^2}{r} - C$$
 (13)

$$SQTrat = \frac{(58,20)^2 + (57,20)^2 + ... + (35,10)^2}{4} - 6.162,81 = 160,98$$

onde:

- T_i (i =1, 2, 3, ..., 10) é o total do tratamento i
- r é o número de repetições

•
$$\mathbf{C} = \frac{(\sum x)^2}{N} = \frac{(496,5)^2}{40} = 6.162,81$$

Resolução

4) Calcular o SQRes - Soma de Quadrados do Resíduo (ou dos Resíduos)

$$SQRes = SQTotal - SQTrat = 238,54 - 160,98 = 77,56$$

Resolução

Causa (ou fonte) de variação	G.L.	S.Q.	Q.M.	F
Progênieis (Tratamentos)	9	160,98		
Resíduos	30	77,56		
Total	39	238,54		

Resolução

5) Calcular o QMTrat - Quadrado Médio para Tratamentos

$$QMTrat = s_{Trat}^2 = \frac{SQTrat}{GLTrat} = \frac{160,98}{9} = 17,89$$

6) Calcular o QMRes - Quadrado Médio do Resíduo:

$$QMRes = s_{Res}^2 = \frac{SQRes}{GLRes} = \frac{77,56}{30} = 2,59$$

Resolução

Causa (ou fonte) de variação	G.L.	S.Q.	Q.M.	F
Progênieis (Tratamentos)	9	160,98	17,89	
Resíduos	30	77,56	2,59	
Total	39	238,54		

Resolução

7) Calcular o valor de F

O desvio padrão é:

$$s = \sqrt{77,56} = 8,8$$

O valor de F é:

$$F = \frac{s_1^2}{s^2}$$

$$F = \frac{s_{Trat}^2}{s_{Res}^2} = \frac{17,89}{2,59} = 6,91$$
(14)

Resolução

Causa (ou fonte) de variação	G.L.	S.Q.	Q.M.	F
Progênieis (Tratamentos)	9	160,98	17,89	6,91**
Resíduos	30	77,56	2,59	
Total	39	238,54		

Interpretações

- O valor de F é significativo a 1%, pois o valor da tabela F(9; 30) = 3.07, é superado pelo F = 6.91.
 - **OBS.:** Os valores 9 e 30 correspondem aos graus de liberdade.
- Em outras palavras, o resultado foi significativo, isto é, se comprovaram, com uma probabilidade de 99%, que há diferencas entre os tratamentos:
- Nesse caso, a hipótese nula H₀ é rejeitada.

Interpretações

									_	
n ₂ \n ₁	1	2	3	4	5	6	7	80	9	10
- 1	4052	5000	5403	5625	5764	5859	5928	5982	6022	6056
2	98,50	99,00	99,17	99,25	99,30	99,33	99,36	99,37	99 39	99,40
3	34,12	30,82	29,46	28,71	28,24	27,91	27,67	27,49	27 35	27,23
4	21,20	18,00	16,69	15,98	15,52	15,21	14,98	14,80	14 66	14,55
5	16,26	13,27	12,06	11,39	10,97	10,67	10,46	10,29	10 16	10,05
6	13,75	10,92	9,78	9,15	8,75	8,47	8,26	8,10	7,98	7,87
7	12,25	9,55	8,45	7,85	8,46	7,19	6,99	6,84	6, 2	6,62
8	11,26	8,65	7,59	7,01	6,63	6,37	6,18	6,03	5,91	5,81
9	10,56	8,02	6,99	6,42	6,06	5,80	5,61	5,47	5,85	5,26
10	10,04	7,56	6,55	5,99	5,64	5,39	5,20	5,06	4,94	4,85
11	9,65	7,21	6,22	5,67	5,32	5,07	4,89	4,74	4,63	4,54
12	9,33	6,93	5,95	5,41	5,06	4,82	4,64	4,50	4,89	4,30
13	9,07	6,70	5,74	5,21	4,86	4,62	4,44	4,30	4, 9	4,10
14	8,86	6,51	5,56	5,04	4,69	4,46	4,28	4,14	4,03	3,94
15	8,68	6,36	5,42	4,89	4,56	4,32	4,14	4,00	3,89	3,80
16	8,53	6,23	5,29	4,77	4,44	4,20	4,03	3,89	3, 8	3,69
17	8,40	6,11	5,18	4,67	4,34	4,10	3,93	3,79	3,68	3,59
18	8,29	6,01	5,09	4,58	4,25	4,01	3,84	3,71	3,60	3,51
19	8,18	5,93	5,01	4,50	4,17	3,94	3,77	3,63	3,52	3,43
20	8,10	5,85	4,94	4,43	4,10	3,87	3,70	3,56	3,16	3,37
21	8,02	5,78	4,87	4,37	4,04	3,81	3,64	3,51	3,10	3,31
22	7,95	5,72	4,82	4,31	3,99	3,76	3,59	3,45	3,85	3,26
23	7,88	5,66	4,76	4,26	3,94	3,71	3,54	3,41	3,80	3,21
24	7,82	5,61	4,72	4,22	3,90	3,67	3,50	3,36	3,26	3,17
25	7,77	5,57	4,68	4,18	3,85	3,63	3,46	3,32	3,22	3,13
26	7,72	5,53	4,64	4,14	3,82	3,59	3,42	3,29	3, 8	3,09
27	7,68	5,49	4,60	4,11	3,78	3,56	3,39	3,26	3, 5	3,06
28	7,64	5,45	4,57	4,07	3,75	3,53	3,36	3,23	3,12	3,03
29	7,60	5,42	4,54	4,04	3,73	3,50	3,33	3,20	3,09	3,00
(30)-	7,56	5,20	4,51	4,02	2,70	3,47	3,30	2,17	3,07	2,98
40	7,31	5,18	4,31	3,83	3,51	3,29	3,12	2,99	2,89	2,80

Interpretações

- Quando o F observado é inferior ao limite de 5%, F(9; 30)
 = 2,21, geralmente se considera que o resultado não foi significativo, isto é, que não se comprovaram diferenças entre os tratamentos;
- Se nos interessar a comparação entre duas médias de tratamentos escolhidas entre as 10 de que dispomos, um teste conveniente para avaliar o contraste entre elas é o teste de Tukey.

Experimentos em blocos casualizados Introdução

- Sempre que se verifica ou se teme que haja heterogeneidade entre as parcelas de um experimento, ensaios que envolvam animais grandes, como vacas, cavalos, etc., é preferível usar o delineamento em blocos causalizados, ou de blocos ao acaso, em lugar do inteiramente casualizado;
- Neste caso, o material do experimento é repartido em porções bem uniformes, chamadas blocos. No caso dos blocos completos, o mais comum, cada bloco recebe todos os tratamentos, atribuídos por sorteio às parcelas do bloco.

Experimentos inteiramente casualizados x Experimentos em blocos casualizados

 Se tivermos em mira, por exemplo, um experimento de competição de 7 procedências florestais, o ensaio inteiramente casualizado, com 4 repetições, e o experimento em blocos ao acaso, com 4 blocos, apresentariam, respectivamente, análise de variância com o esquema a seguir.

Experimentos inteiramente casualizados x Experimentos em blocos casualizados

Causa (ou fonte) de variação	G.L.	S.Q.
Procedências (tratamentos)	6	SQTrat
Resíduos	21	SQRes
Total	27	SQTotal
Causa (ou fonte) de variação	G.L.	S.Q.
Causa (ou fonte) de variação Blocos (B)	G.L.	S.Q. SQBlocos
		•
Blocos (B)	3	SQBlocos

Experimentos inteiramente casualizados x Experimentos em blocos casualizados

Nesse caso, temos que:

$$SQRes = SQTotal - SQBlocos - SQTrat$$
 (15)

Pontos positivos e negativos

Pontos negativos:

 O novo esquema acarreta redução do número de graus de liberdade para Resíduo de 21 para 18, o que pode reduzir a precisão do experimento.

Pontos positivos:

- Mas se houver realmente discrepância entre os blocos, podemos ter valor relativamente alto para SQBlocos, de tal sorte que diminua muito o valor de SQRes e também o de QMRes;
- Em tais condições, o ensaio se torna bem mais eficiente com a inclusão de blocos, sem aumento da área ou de custo de experimento.

Descrição

Consideremos um experimento de produção de madeira, em m^3/ha , em 4 blocos causalizados, de competição de 7 procedências de *Eucalyptus grandis*.

Dados de produção de madeira, em m^3/ha , de um experimento de competição de 7 procedências de *Eucalyptus grandis*.

Procedência	P1	P2	Р3	P4	P5	P6	P7	Totais de blocos
Bloco I	358	284	273	284	258	249	318	2024
Bloco II	380	249	222	242	263	217	312	1885
Bloco III	353	259	236	266	242	267	327	1950
Bloco IV	360	242	226	252	231	220	319	1850
Totais de								
tratamentos	1451	1034	957	1044	994	953	1276	7709

Resolução

- 1) Definir o número de graus de liberdade
 - G.L. para o SQTotal: 27
 - G.L. para o SQTrat: 6
 - G.L. para o SQBlocos: 3
 - G.L. para o SQRes: 18

Causa (ou fonte) de variação	G.L.	S.Q.	Q.M.	F
Blocos (B)	3			
Procedências (tratamentos)	6			
Resíduos	18			
Total	27			

Resolução

2) Calcular o SQTotal - Soma de Quadrados (Total) dos Resíduos

$$\sum x^2 = 2.182.735 \qquad \sum x = 7.709 \qquad C = \frac{(7.709)^2}{28} = 2.122.452,89$$

$$SQTotal = \frac{(\sum x)^2}{N} = 2.182.735 - 2.122.452,89$$

$$SQTotal = 60.282,11$$

Resolução

3) Calcular o SQTrat - Soma de Quadrados (dos Resíduos) de Tratamentos

$$SQTrat = \frac{T_1^2 + T_2^2 + T_3^2 + ... + T_n^2}{r} - C$$

$$SQTrat = \frac{1451^2 + 1034^2 + ... + 1276^2}{4} - 2.122.452,89$$

$$SQTrat = 53.737,86$$

Resolução

4) Calcular o SQBlocos - Soma de Quadrados para Blocos

$$SQBlocos = \frac{B_1^2 + B_2^2 + B_3^2 + ... + B_n^2}{t} - C$$

$$SQBlocos = \frac{2024^2 + 1885^2 + 1950^2 + 1850^2}{t} - 2.122.452,89$$

$$SQBlocos = 2.518,68$$

Resolução

5) Calcular o SQRes - Soma de Quadrados do Resíduo (ou dos Resíduos)

$$SQRes = SQTotal - SQTrat - SQBlocos = 4.025, 57$$

Causa (ou fonte) de variação	G.L.	S.Q.	Q.M.	F
Blocos (B)	3	2.518,68		
Procedências (tratamentos)	6	53.737,86		
Resíduos	18	4.025,57		
Total	27	60.282,11		

Resolução

6) Calcular o QMTrat - Quadrado Médio para Tratamentos

$$QMTrat = s_{Trat}^2 = \frac{SQTrat}{GLTrat} = \frac{53.737,86}{6} = 8.956,31$$

7) Calcular o QMRes - Quadrado Médio do Resíduo:

$$QMBlocos = s_{Blocos}^2 = \frac{SQBlocos}{GLBlocos} = \frac{2.518,68}{3} = 839,56$$

8) Calcular o QMRes - Quadrado Médio do Resíduo:

$$QMRes = s_{Res}^2 = \frac{SQRes}{GLRes} = \frac{4.025, 57}{18} = 223, 64$$

Causa (ou fonte) de variação	G.L.	S.Q. Q.I	M. F
Blocos (B)	3	2.518,68 839	,56
Procedências (tratamentos)	6	53.737,86 8.95	6,31
Resíduos	18	4.025,57 223	,64
Total	27	60.282,11	

Resolução

7) Calcular o desvio padrão

$$s = \sqrt{4.025, 57} = 63,44$$

Resolução

8) Calcular o valor de F para Blocos

$$F = \frac{s_1^2}{s^2} = \frac{s_{Blocos}^2}{s_{Res}^2} = \frac{839,56}{223,64} = 3,75$$

Resolução

9) Calcular o valor de F para Tratamentos

$$F = \frac{s_1^2}{s^2} = \frac{s_{Trat}^2}{s_{Res}^2} = \frac{8.956, 31}{223, 64} = 40, 05$$

Causa (ou fonte) de variação	G.L.	S.Q.	Q.M.	F
Blocos (B)	3	2.518,68	839,56	3,75
Procedências (tratamentos)	6	53.737,86	8.956,31	40,05
Resíduos	18	4.025,57	223,64	
Total	27	60.282,11		

Interpretações

Valor de F para Blocos

- Com 3 e 18 graus de liberdade, ou seja, F = (3; 18), o resultado obtido (3,75) é significativo para o nível de 5%, pois atinge o limite de 5% de probabilidade (3,16), conforme tabela;
- Nesse caso, rejeita-se a hipótese H₀, ou seja, pelo menos um dos blocos tem alterações significativas em relação aos outros.

Interpretações

Valor de F para Blocos

v1 _	⇒	1	2	3	4
v2	Д			Т	
	*				
	1	161.45	199.50	215.71	224.58
	2	18.51	19.00	19.16	19.25
	3	10.13	9.55	9.28	9.12
	4	7.71	6.94	6.59	6.39
	5	6.61	5.79	5.41	5.19
	6	5.99	5.14	4.76	4.53
	7	5.59	4.74	4.35	4.12
	8	5.32	4.46	4.07	3.84
	9	5.12	4.26	3.86	3.63
	10	4.96	4.10	3.71	3.48
	11	4.84	3.98	3.59	3.36
	12	4.75	3.89	3.49	3.26
	13	4.67	3.81	3.41	3.18
	14	4.60	3.74	3.34	3.11
	15	4.54	3.68	3.29	3.06
	16	4.49	3.63	3.24	3.01
	17	4.45	3.59	3.20	2.96
	18	1.11	2.55	3.16	2.93
	19	4.38	3.52	3.13	2.90

Interpretações

Valor de F para Tratamentos

- Com 3 e 6 graus de liberdade, ou seja, F = (3; 6), o resultado obtido (40,05) é significativo para o nível de 5%, pois atinge o limite de 5% de probabilidade (4,76), conforme tabela;
- Nesse caso, rejeita-se a hipótese H₀, ou seja, pelo menos um dos tratamentos mostra-se discrepante em relação a um dos outros.

Interpretações

Valor de F para Tratamentos

				_	_	
v1	Ą	1	2		3	4
v2	Д					
	~					
	1	161.45	199.50	2	5.71	224.58
	2	18.51	19.00		9.16	19.25
	3	10.13	9.55		9.28	9.12
	4	7.71	6.94		6.59	6.39
		6.61	5.79		5.41	5.19
	6	5.33	5.14		4.76	4.53
	7	5.59	4.74		4.35	4.12
	_					

Delineamento em quadrados latinos Introdução

- A única diferença entre experimentos em blocos ao acaso e experimentos em quadrados latinos é que, nos experimentos causalizados, há um só tipo de blocos;
- Nos quadrados latinos, os blocos são organizados de duas maneiras diferentes, uns constituindo as linhas, outros as colunas,
 Como se vê a seguir, no caso de um quadrado latino 5x5.

	Coluna 1	Coluna 2	Coluna 3	Coluna 4	Coluna 5
Linha 1	В	Е	D	Α	С
Linha 2	С	Α	В	D	Ε
Linha 3	D	В	С	Ε	Α
Linha 4	Α	С	Ε	В	D
Linha 5	E	D	Α	С	В

Delineamento em quadrados latinos

• A análise de variância segue o seguinte esquema

4
4
4
12
24

Delineamento em quadrados latinos Introdução

- Cada linha e cada coluna é um bloco completo;
- O uso de quadrados latinos pode ajudar a controlar heterogeneidades;
- Mas há duas desvantagens sérias:
 - O número de tratamentos deve ser igual ao número de linhas (ou colunas) e ao de repetições, o que torna o delineamento pouco flexível;
 - Nos quadrados latinos é grande a redução do número dos graus de liberdade do Resíduo, por desconto dos que cabem as linhas e as colunas.

Delineamento em quadrados latinos Introdução

- Os quadrados latinos constituem um bom tipo de delineamento, mas sua flexibilidade é muito menor que a dos blocos causalizados;
- Os quadrados latinos mais usados são os de 5x5 a 8x8.

Descrição

Em um experimento de competição de variedades de cana-de-açúcar foram usadas cinco variedades (A, B, C, D, E) dispostas em um quadrado latino de 5x5. As produções de cana-planta, em kg por parcela, são dadas na tabela que segue.

	Coluna 1	Coluna 2	Coluna 3	Coluna 4	Coluna 5	Totais de linhas
Linha 1	D 432	A 518	B 458	C 583	E 331	2322
Linha 2	C 724	E 478	A 524	B 550	D 400	2676
Linha 3	E 489	B 384	C 556	D 297	A 420	2146
Linha 4	B 494	D 500	E 313	A 486	C 501	2294
Linha 5	A 515	C 660	D 438	E 394	B 318	2325
Totais de						
Colunas	2654	2540	2289	2310	1970	11763

Resolução

Temos:

$$\sum x^2 = 5,792.451$$
 $\sum x = 11.763$ $C = \frac{(11.763)^2}{25} = 5.534.727$

Logo:

$$SQTotal = \sum x^2 - C = 257.724$$

Resolução

A soma dos quadrados para as linhas é:

$$SQLinhas = \frac{L_1^2 + L_2^2 + L_3^2 + \dots + L_n^2}{t} - C$$
 (16)

$$SQLinhas = \frac{1}{5}[(2.322)^2 + (2.676)^2 + ... + (2.325)^2] - C = 30.480$$

Resolução

E para a colunas temos:

$$SQColunas = \frac{C_1^2 + C_2^2 + C_3^2 + \dots + C_n^2}{t} - C$$
 (17)

$$SQColunas = \frac{1}{5}[(2.654)^2 + ... + (1.970)^2] - C = 55.640$$

Resolução

Para obter a soma de quadrados relativa a tratamentos, calculamos primeiro os totais deles:

A - 2.463

B - 2.204

C - 3.024

D - 2.067

E - 2.005

Temos, então:

$$SQTrat = \frac{1}{5}[(2.463)^2 + ... + (2.005)^2] - C = 137.488$$

Resolução

Podemos, então, completar a análise de variância, que é dada a seguir:

Causa de variação	G.L.	s.Q.	Q.M.	F
Linhas	4	30.480,00		
Colunas	4	55.640,00		
Tratamentos	4	137.488,00	34.372,00	12,09**
Resíduos	12	34.116,00	2.843,00	
Total	24	257.724,00		

Resolução

Na tabela, temos:

n ₂ \n ₁	1	2	3	4	
1	4052	5000	5403	5025	
2	98,50	99,00	99,17	99 25	
3	34,12	30,82	29,46	28 71	
4	21,20	18,00	16,69	15 98	
5	16,26	13,27	12,06	11 39	
6	13,75	10,92	9,78	9 15	
7	12,25	9,55	8,45	7 35	
8	11,26	8,65	7,59	7 01	
9	10,56	8,02	6,99	6 12	
10	10,04	7,56	6,55	5 99	
11	9,65	7,21	6,22	5 57	
12	0,22	C,02	5,05	5,41	
13	9,07	6,70	5,74	5,21	

Delineamento em quadrados latinos Parcela perdida

- No exemplo anterior, suponhamos que foi perdida a parcela com tratamento A na primeira linha;
- Temos então de estimar um valor para substituir o que deveria ser obtido. A fórmula é, nesse caso:

$$y = \frac{r(L+C+T) - 2G}{(r-1)(r-2)}$$
 (18)

onde:

- r: é o número de repetições
- G: é o total geral das parcelas não perdidas
- L, C, T: são, respectivamente, total da linha, da coluna e do tratamento em que figura a parcela perdida.

Delineamento em quadrados latinos Parcela perdida

No caso, temos:

$$y = \frac{5(1.804 + 2.022 + 1945) - 2x11.245}{4x3} = 530$$

Referências bibliográficas

- GOMES, F. P. Curso de estatística experimental. Piracicaba: FEALQ, 2009.
- GOMES, F. P.; GARCIA. C. H. Estatística aplicada a experimentos agronômicos e florestais. Piracicaba: FEALQ, 2002.