Foundations of QM HW 5

Ozaner Hansha

November 19, 2020

Recall that the z and x components of the spin of a spin-1/2 quantum particle are given by the following observables:

$$\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \quad \sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Question 1

Problem: What are the possible values of σ_z ?

Solution: After measurement, the possible values the z-component of the spin of a spin-1/2 particle could take are given by the eigenvalues of σ_z . Since this is a diagonal matrix, it is plain to see that these eigenvalues are its diagonal entries 1, -1.

Question 2

Problem: What are the possible values of σ_x ?

Solution: As with problem 1, the possible values are given by the eigenvalues of σ_x . We now solve for them:

$$0 = \det(\sigma_x - \lambda I_2)$$
 (characteristic equation)

$$= \det\begin{pmatrix} -\lambda & 1\\ 1 & -\lambda \end{pmatrix}$$

$$= \lambda^2 - 1$$
 (det. of 2×2 matrix)

$$1 = \lambda^2$$

$$\pm 1 = \lambda$$

And so we have that the possible observed values of the x-component of the spin (i.e. the eigenvalues of the observable σ_x) are 1, -1.

Question 3

Problem: Find a state $|\sigma_x = 1\rangle$ such that $\sigma_x = 1$.

Solution: The state $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ has $\sigma_x = 1$. To see this note the following:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = 1 \cdot \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

And so we have that $|\sigma_x = 1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ since it is a an eigenvector of σ_x with eigenvalue 1. As such, the probability of measuring $\sigma_x = 1$ for a given state ϕ is given by:

$$p_{x=1}(\phi) = |\langle \phi | \sigma_x = 1 \rangle|^2$$

In the case of $\sigma_x = 1$ itself, its probability is given by:

$$p_{x=1}(\phi) = \left| \left\langle \sigma_x = 1 \middle| \sigma_x = 1 \right\rangle \right|^2 = 1$$

Thus, when the x-component of a 1/2-spin particle's spin is measured in the state $|\sigma_x = 1\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\1 \end{bmatrix}$, it will give the value $\sigma_x = 1$ with 100% certainty.

Question 4

Problem: Suppose σ_x is measured when the particle is in the state $|\sigma_x = 1\rangle$. What is the probability that $\sigma_x = -1$?

Solution: First note that $|\sigma_x = -1\rangle$ is given by $\frac{1}{\sqrt{2}}\begin{bmatrix} -1\\1 \end{bmatrix}$:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = -1 \cdot \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

As such the probability of a particle ϕ to be measured with $\sigma_x = -1$ is given by:

$$p_{x=-1}(\phi) = \left| \langle \phi | \sigma_x = -1 \rangle \right|^2$$

In the case of $|\sigma_x = 1\rangle$ we have:

$$p_{x=-1}(|\sigma_x = 1\rangle) = |\langle \sigma_x = 1 | \sigma_x = -1 \rangle|^2$$

$$= ||\sigma_x = -1\rangle^{\dagger} |\sigma_x = 1\rangle|^2$$

$$= \left| \left[-\frac{1}{\sqrt{2}} \quad \frac{1}{\sqrt{2}} \right] \left[\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \right] \right|^2$$

$$= |0|^2 = 0$$

And so the probability that a particle in state $|\sigma_x = 1\rangle$ has its spin's x-component measured to be $\sigma_x = -1$ is 0, as these states are orthogonal.

Question 5

Problem: Suppose σ_z is measured when the particle is in the state $|\sigma_x = 1\rangle$. What is the probability that $\sigma_z = -1$?

Solution: First note that $|\sigma_z = -1\rangle$ is given by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -1 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

As such the probability of a particle ϕ to be measured with $\sigma_z = -1$ is given by:

$$p_{x=-1}(\phi) = |\langle \phi | \sigma_z = -1 \rangle|^2$$

In the case of $|\sigma_x = 1\rangle$ we have:

$$p_{z=-1}(|\sigma_x = 1\rangle) = |\langle \sigma_x = 1 | \sigma_z = -1 \rangle|^2$$

$$= ||\sigma_z = -1\rangle^{\dagger} |\sigma_x = 1\rangle|^2$$

$$= \left| \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \right|^2$$

$$= \left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2}$$

And so the probability that a particle in state $|\sigma_x = 1\rangle$ has its spin's z-component measured to be $\sigma_z = -1$ is $\frac{1}{2}$.

Question 6

Problem: Consider a particle in state $|\sigma_x = 1\rangle$. Give the probability distribution of the state of the particle immediately after σ_z has been measured.

Solution: First note that, from problem 5, we have that the probability of measuring the particle with $\sigma_z = -1$ is $\frac{1}{2}$. We will now show the same is true for $\sigma_z = 1$ (i.e. it's only other possible value):

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = -1 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$p_{z=1}(|\sigma_x = 1\rangle) = |\langle \sigma_x = 1 | \sigma_z = 1 \rangle|^2$$

$$= ||\sigma_z = 1\rangle^{\dagger} |\sigma_x = 1\rangle|^2$$

$$= \left| \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \right|^2$$

$$= \left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2}$$

Now recall that, immediately after a measurement, a quantum particle's state collapses to the eigenvector associated with its measured value. And so after having σ_z measured, our particle ψ can only be one of σ_z 's eigenvectors, each with 50% probability:

$$P(\psi = |\sigma_z = 1\rangle) = P\left(\psi = \begin{bmatrix} 1\\0 \end{bmatrix}\right) = \frac{1}{2}$$
$$P(\psi = |\sigma_z = -1\rangle) = P\left(\psi = \begin{bmatrix} 0\\1 \end{bmatrix}\right) = \frac{1}{2}$$

Question 7

Problem: Suppose we immediately measure σ_x after the situation in problem 6. What is the probability that $\sigma_x = -1$?

Solution: Let ψ_b and ψ_a denote the particle's state before and after the measurement of σ_x respectively. We then have the following:

$$P(\psi_{a} = |\sigma_{x} = -1\rangle) = P(\psi_{a} = |\sigma_{x} = -1\rangle \land \psi_{b} = |\sigma_{z} = 1\rangle)$$

$$+ P(\psi_{a} = |\sigma_{x} = -1\rangle \land \psi_{b} = |\sigma_{z} = -1\rangle)$$

$$= P(\psi_{a} = |\sigma_{x} = -1\rangle |\psi_{b} = |\sigma_{z} = 1\rangle) P(\psi_{b} = |\sigma_{z} = 1\rangle)$$

$$+ P(\psi_{a} = |\sigma_{x} = -1\rangle |\psi_{b} = |\sigma_{z} = -1\rangle) P(\psi_{b} = |\sigma_{z} = 1\rangle)$$

$$+ P(\psi_{a} = |\sigma_{x} = -1\rangle |\psi_{b} = |\sigma_{z} = -1\rangle) P(\psi_{b} = |\sigma_{z} = 1\rangle)$$

$$= \frac{1}{2} P(\psi_{a} = |\sigma_{x} = -1\rangle |\psi_{b} = |\sigma_{z} = -1\rangle)$$

$$+ \frac{1}{2} P(\psi_{a} = |\sigma_{x} = -1\rangle |\psi_{b} = |\sigma_{z} = -1\rangle)$$

$$= \frac{1}{2} |\phi_{x} = |\sigma_{x} = -1\rangle |^{2} + \frac{1}{2} |\phi_{z} = -1\rangle$$

$$= \frac{1}{2} |\langle \sigma_{z} = 1 |\sigma_{x} = -1\rangle |^{2} + \frac{1}{2} |\langle \sigma_{z} = -1 |\sigma_{x} = -1\rangle |^{2}$$

$$= \frac{1}{2} ||\sigma_{x} = -1\rangle |^{2} + \frac{1}{2} ||\sigma_{x} = -1\rangle |^{2}$$

$$= \frac{1}{2} ||\sigma_{x} = -1\rangle |^{2} + \frac{1}{2} ||\sigma_{x} = -1\rangle |^{2}$$

$$= \frac{1}{2} ||\sigma_{x} = -1\rangle |^{2} + \frac{1}{2} ||\sigma_{x} = -1\rangle |^{2}$$

$$= \frac{1}{2} ||\sigma_{x} = -1\rangle |^{2} + \frac{1}{2} ||\sigma_{x} = -1\rangle |^{2}$$

$$= \frac{1}{2} ||\sigma_{x} = -1\rangle |^{2} + \frac{1}{2} ||\sigma_{x} = -1\rangle |^{2}$$

$$= \frac{1}{2} ||\sigma_{x} = -1\rangle ||\sigma_{x} = \frac{1}{2} ||\sigma_{x} = -1\rangle ||\sigma_{$$