Homework 3 for Math 173A - Fall 2024

- 1. Determine whether each function is Lipschitz, and if so find the smallest possible Lipschitz constant for the function. For all problems, $\|\cdot\|$ represents the Euclidean norm (2-norm).
 - (a) $f: \mathbb{R}^n \to \mathbb{R}$ for f(x) = ||x||
 - (b) $f: \mathbb{R}^n \to \mathbb{R}$ for $f(x) = ||x||^2$
 - (c) $\rho : \mathbb{R} \to \mathbb{R}$ for $\rho(x) = \frac{1}{1+e^{-x}}$.
 - (d) $f: \mathbb{R}^n \to \mathbb{R}$ for $f(x) = \rho(w^T x + b)$ for some weight vector $w \in \mathbb{R}^n$, $b \in \mathbb{R}$, and ρ from part (c).
- 2. Let f be a convex and differentiable. Let x^* be the global minimum and suppose $x^{(0)}$ is the initialization such that $||x^* x^{(0)}|| \le 5$.
 - (a) Let f be L-Lipschitz function where L=3. Determine the step size 1 μ and number of steps needed to satisfy

$$\left\| f\left(\frac{1}{t} \sum_{s=0}^{s-1} x^{(s)}\right) - f\left(x^*\right) \right\| \le 10^{-4}.$$

(b) Let f be L-smooth where L=3. Determine the step size μ and number of steps needed to satisfy

$$||f(x^{(t)}) - f(x^*)|| \le 10^{-4}.$$

- 3. Consider the function $f(x_1, x_2) = (2x_1 1)^4 + (x_1 + x_2 1)^2$.
 - (a) Find the global minimum of f, and justify your answer.
 - (b) Starting at $x^{(0)} = (0,0)$, perform gradient descent with backtracking line-search.
 - i. Starting at $x^{(0)} = (0,0)$ with stepsize, which is also called learning rate in the machine learning community, $\mu^{(0)}$, write down the gradient descent equation for $x^{(1)}$.
 - ii. Suppose we want to set $\mu^{(0)}$ using backtracking line search with $\gamma = 0.2$ and Armijo's condition $f(x^{(1)}) \leq f(x^{(0)}) \mu^{(0)} \gamma \|\nabla f(x^{(0)})\|_2^2$. Find a value of $\mu^{(0)}$ that satisfies this.
 - iii. Suppose instead you started with $\mu^{(0)} = 1$ and an update of $\mu^{(0)} \leftarrow \frac{1}{2}\mu^{(0)}$ (i.e. $\beta = \frac{1}{2}$). In the worst case, how many steps of back-tracking would you have to take before accepting $x^{(1)}$?

¹Note that we mostly use η in the lectures to denote the stepsize.