Chinese Reminder Theorem

CRT state that you can recover any number from its residu modulo, in the following way

for
$$1 \le i, j \le k$$
 and $i \ne j$ with $gcd(m_i, m_j) = 1$, we declare $M = \prod_{i=1}^k m_i$, for which every m_i

is in \mathbb{Z}_{m_i} , any number A inside \mathbb{Z}_M can be expressed as $(a_1,...,a_k)$ k – tuple value with $a_i = A \mod m_i$, and we can reconstruct A from thoes k – tuple and its a unique set of values, we can say that there is some fuction ϕ that is bijectif and verify

$$\phi: \mathbb{Z}_M \to \mathbb{Z}_{m_1} \times ... \times \mathbb{Z}_{m_k}$$
$$A \to \phi(A) = (a_1, ..., a_k)$$

and

$$\phi^{-1}: \mathbb{Z}_{m_1} \times \dots \times \mathbb{Z}_{m_k} \to \mathbb{Z}_M$$

$$(a_1, \dots, a_k) \to \phi^{-1}(a_1, \dots, a_k) = A$$

Proof:

for $1 \le i, j \le k$ and $i \ne j$ with $gcd(m_i, m_j) = 1$, we declare $M = \prod_{i=1}^k m_i$, for which every

 $m_i \in \mathbb{Z}_{m_i}$, any number A inside \mathbb{Z}_M , we can easly construct the k – tuple values for any $1 \le i \le k$ with $a_i = A \mod m_i$, for the other way we need to construct the number in way that

can reproduce the k – tuple for every m_i , that means $\sum_{i=1}^{k} a_i c_i$ with $c_i \mod m_j = 0$ if $i \neq j$

and $c_i \mod m_j = 1$ if i = j, we can do that by introducing $M_i = \frac{M}{m_i}$ which clearly give use that $gcd(M_i, m_i) = 1$, mean that M_i has a inverse multiplicative with m_i , we can write c_j as $c_j = M_j \times \left(M_j^{-1} \mod m_j\right)$, so that $c_j \mod m_j = \left(M_j \times \left(M_j^{-1} \mod m_j\right)\right) \mod m_j$ then we can use modular arithmetics, to have $c_j \mod m_j = \left(M_j \times M_j^{-1}\right) \mod m_j = 1 \mod m_j$, and we can also observe that c_j is written as $M_j \times q$ with $q = M_j^{-1} \mod m_j$, so any $i \neq j$ will equal to

 $0 \mod m_i$, hence if we add all the result from each $a_i c_i$ and preforme $\left(\sum_{i=1}^k a_i c_i\right) \mod m_i$ we will

have exactly a_l , for safety we add mod M to the sum so that we are sure it stays in Z_M hence

$$A = \left(\sum_{i=1}^{k} a_i c_i\right) \mod M$$
, this is unique because suppose $A, A' \in \mathbb{Z}_M$, with each a has the same a_i

k – tuples, that means $A \equiv A' \mod m_i$ for each i, implying $(A - A') = 0 \mod m_i$ for each i $m_i | (A - A')$, that mean M | (A - A') hence $A \equiv A' \mod M$.
