1 Static Semantics

 $\Theta; \Delta; \Gamma \vdash e : t$ Typing rules for expressions

$$\begin{split} \frac{\Theta, fc; \Delta; \Gamma \vdash e : t}{\Theta; \Delta; \Gamma \vdash \mathbf{fun} \, fc \to e : \forall fc.t} & \text{Ty_Gen} \\ \frac{\Theta \vdash f \, \mathsf{Cap}}{\Theta; \Delta; \Gamma \vdash e : \forall fc.t} & \frac{\Theta \vdash f \, \mathsf{Cap}}{\Theta; \Delta; \Gamma \vdash e [f] : t [f/fc]} & \text{Ty_Spc} \\ \frac{\Theta; \Delta; \Gamma \vdash e [f] : t [f/fc]}{\Theta; \Delta; \Gamma \vdash \mathbf{fix} \, (g, x : t, e : t') : t \multimap t'} & \text{Ty_Fix} \end{split}$$

2 Dynamic Semantics

operational semantics

 $\langle \sigma, e \rangle \to StepsTo$

$$\overline{\langle \sigma, \operatorname{let} () = () \operatorname{in} e \rangle} \to \langle \sigma, e \rangle \quad \operatorname{OP-LET-UNIT}$$

$$\overline{\langle \sigma, \operatorname{let} x = v \operatorname{in} e \rangle} \to \langle \sigma, e[x/v] \rangle \quad \operatorname{OP-LET-VAR}$$

$$\overline{\langle \sigma, \operatorname{if} (\operatorname{Many true}) \operatorname{then} e_1 \operatorname{else} e_2 \rangle} \to \langle \sigma, e_1 \rangle} \quad \operatorname{OP-IF-TRUE}$$

$$\overline{\langle \sigma, \operatorname{if} (\operatorname{Many false}) \operatorname{then} e_1 \operatorname{else} e_2 \rangle} \to \langle \sigma, e_2 \rangle} \quad \operatorname{OP-IF-TRUE}$$

$$\overline{\langle \sigma, \operatorname{if} (\operatorname{Many} x = \operatorname{Many} v \operatorname{in} e \rangle} \to \langle \sigma, e[x/v] \rangle} \quad \operatorname{OP-LET-Many}$$

$$\overline{\langle \sigma, \operatorname{let} (a, b) = (v_1, v_2) \operatorname{in} e \rangle} \to \langle \sigma, e[a/v_1] | b/v_2 \rangle} \quad \operatorname{OP-LET-Many}$$

$$\overline{\langle \sigma, \operatorname{let} (a, b) = (v_1, v_2) \operatorname{in} e \rangle} \to \langle \sigma, e[a/v_1] | b/v_2 \rangle} \quad \operatorname{OP-LET-DAIR}$$

$$\overline{\langle \sigma, \operatorname{let} (a, b) = (v_1, v_2) \operatorname{in} e \rangle} \to \langle \sigma, e[a/v_1] | b/v_2 \rangle} \quad \operatorname{OP-P-FRAC_CAP}$$

$$\overline{\langle \sigma, \operatorname{let} (a, b) = (v_1, v_2) \operatorname{in} e \rangle} \to \langle \sigma, v[fe/f] \rangle \quad \operatorname{OP-P-FRAC_CAP}$$

$$\overline{\langle \sigma, \operatorname{let} (a, c) = (v_1, v_2) \operatorname{in} e \rangle} \to \langle \sigma, v[fe/f] \rangle \quad \operatorname{OP-APP-I-AMBDA}$$

$$\overline{\langle \sigma, \operatorname{let} (a, c) = (v_1, v_2) \operatorname{oP-APP-I-AMBDA}} \quad \overline{\langle \sigma, \operatorname{let} (a, c) = (v_1, v_2) \rangle} \quad \operatorname{OP-APP-I-AMBDA}$$

$$\overline{\langle \sigma, \operatorname{let} (a, c) = (v_1, v_2) \rangle} \quad \operatorname{OP-CONTEXT}$$

$$\overline{\langle \sigma, \operatorname{let} (a, c) = (v_1, v_2) \rangle} \quad \operatorname{OP-CONTEXT-ERR} \quad 0 \to (v_1, v_2) \quad \operatorname{OP-AMATRIX}} \quad \overline{\langle \sigma, e \rangle} \to \operatorname{err} \quad \operatorname{OP-CONTEXT-ERR} \quad 0 \to (v_1, v_2) \quad \operatorname{OP-AMATRIX}} \quad \overline{\langle \sigma, e \rangle} \to \operatorname{err} \quad \overline{\langle \sigma, e \rangle} \to \operatorname{err} \quad \operatorname{OP-AMATRIX}} \quad \overline{\langle \sigma, e \rangle} \to \operatorname{err} \quad \overline{\langle \sigma, e$$

3 Interpretation

3.1 Definitions

Operationally, $Heap \sqsubseteq Loc \times Permission \times Matrix$ (a multiset), denoted with a σ . Define its interpretation to be $Loc \rightharpoonup Permission \times Matrix$ with $\star : Heap \times Heap \rightharpoonup Heap$ as follows:

$$(\varsigma_1 \star \varsigma_2)(l) \equiv \begin{cases} \varsigma_1(l) & \text{if } l \in \text{dom}(\varsigma_1) \land l \notin \text{dom}(\varsigma_2) \\ \varsigma_2(l) & \text{if } l \in \text{dom}(\varsigma_2) \land l \notin \text{dom}(\varsigma_1) \\ (f_1 + f_2, m) & \text{if } (f_1, m) = \varsigma_1(l) \land (f_2, m) = \varsigma_2(l) \land f_1 + f_2 \le 1 \\ \text{undefined} & \text{otherwise} \end{cases}$$

Commutativity and associativity of \star follows from that of +. $\varsigma_1 \star \varsigma_2$ is defined if it is for all $l \in \text{dom}(\varsigma_1) \cup \text{dom}(\varsigma_2)$. Implicitly denote $\varsigma \equiv \mathcal{H}[\![\sigma]\!] \equiv \bigstar_{(l,f,m)\in\sigma}[l \mapsto_f m]$.

The n-fold iteration for the (functional) StepsTo relation, is also a (functional) relation:

$$\forall n. \ \mathbf{err} \to^n \mathbf{err}$$

$$\forall n. \ \langle \sigma, v \rangle \to^n \langle \sigma, v \rangle$$

$$\langle \sigma, e \rangle \to^0 \langle \sigma, e \rangle$$

$$\langle \sigma, e \rangle \to^{n+1} ((\langle \sigma, e \rangle \to) \to^n)$$

Hence, all bounded iterations end in either an err, a heap-and-expression or a heap-and-value.

3.2 Interpretation

$$\begin{split} \mathcal{V}_{k} & \| \mathbf{notl} \| = \{(\emptyset, *)\} \\ \mathcal{V}_{k} & \| \mathbf{bool} \| = \{(\emptyset, true), (\emptyset, false)\} \\ \mathcal{V}_{k} & \| \mathbf{int} \| = \{(\emptyset, n) \mid 2^{-63} \leq n \leq 2^{63} - 1\} \\ \mathcal{V}_{k} & \| \mathbf{int} \| = \{(\emptyset, f) \mid f \text{ a IEEE Float64 }\} \\ \mathcal{V}_{k} & \| \mathbf{fmat} \| = \{(\{l \mapsto_{2^{-f} -}\}, l)\} \\ \mathcal{V}_{k} & \| \mathbf{fmat} \| = \{(\{l \mapsto_{2^{-f} -}\}, l)\} \\ \mathcal{V}_{k} & \| \mathbf{ftat} \| = \{(\varsigma, \mathbf{fun} fc \to v) \mid \forall f. \ (\varsigma, (\mathbf{fun} fc \to v) \mid f]) \in \mathcal{V}_{k} & \| t \| fc/f \| \| \} \\ \mathcal{V}_{k} & \| \mathbf{ftat} \| \leq t_{2} \| = \{(\varsigma, \mathbf{fun} fc \to v) \mid \forall f. \ (\varsigma, (\mathbf{fun} fc \to v) \mid f]) \in \mathcal{V}_{k} & \| t \| fc/f \| \| \} \} \\ \mathcal{V}_{k} & \| t_{1} \| \otimes t_{2} \| = \{(\varsigma, v') \mid (v' = \mathbf{fun} x : t \to e \lor v' = \mathbf{fix} (g, x : t, e : t')) \land \forall j < k, (\varsigma_{v}, v) \in \mathcal{V}_{j} & \| t \| \} \} \\ \mathcal{V}_{k} & \| t_{1} \| = \{(\varsigma, v') \mid (v' = \mathbf{fun} x : t \to e \lor v' = \mathbf{fix} (g, x : t, e : t')) \land \forall j < k, (\varsigma_{v}, v) \in \mathcal{V}_{j} & \| t \| \} \} \\ \mathcal{V}_{k} & \| t_{1} \| = \{(\varsigma, v') \mid (v' = \mathbf{fun} x : t \to e \lor v' = \mathbf{fix} (g, x : t, e : t')) \land \forall j < k, (\varsigma_{v}, v) \in \mathcal{V}_{j} & \| t \| \} \} \\ \mathcal{V}_{k} & \| t_{1} \| = \{(\varsigma, v') \mid (v' = \mathbf{fun} x : t \to e \lor v' = \mathbf{fix} (g, x : t, e : t')) \land \forall j < k, (\varsigma_{v}, v) \in \mathcal{V}_{j} & \| t \| \} \} \\ \mathcal{V}_{k} & \| t_{1} \| = \{(\varsigma, v') \mid (v' = \mathbf{fun} x : t \to e \lor v' = \mathbf{fix} (g, x : t, e : t')) \land \forall j < k, (\varsigma_{v}, v) \in \mathcal{V}_{j} & \| t \| \} \} \\ \mathcal{V}_{k} & \| t_{1} \| = \{(\varsigma, v') \mid (v' = \mathbf{fun} x : t \to e \lor v' = \mathbf{fix} (g, x : t, e : t')) \land \forall j < k, (\varsigma_{v}, v) \in \mathcal{V}_{j} & \| t \| \} \} \\ \mathcal{V}_{k} & \| t_{1} \| = \{(\varsigma, v') \mid (v' = \mathbf{fun} x : t \to e \lor v' = \mathbf{fix} (g, x : t, e : t')) \land \forall j < k, (\varsigma_{v}, v') \in \mathcal{C}_{j} & \| t \| \} \} \\ \mathcal{V}_{k} & \| t_{1} \| = \{(\varsigma, v') \mid (v' = \mathbf{fun} x : t \to e \lor v' = \mathbf{fix} (g, x : t, e : t') \land (v' \to v) \in \mathcal{C}_{k} & \| t \| \} \} \\ \mathcal{V}_{k} & \| t_{1} \| = \{(\varsigma, v') \mid (v' = \mathbf{fun} x : t \to e \lor v' = \mathbf{fix} (g, x : t, e : t') \land (v' \to v) \in \mathcal{C}_{k} & \| t \| \} \} \\ \mathcal{V}_{k} & \| t_{1} \| = \{(\varsigma, v, v) \mid (v, v) \in \mathcal{V}_{k} & \| t \| \land (v, v) \in \mathcal{V}_{k} & \| t \| \} \} \\ \mathcal{V}_{k} & \| t_{1} \| = \{(\varsigma, v, v) \mid (v, v) \in \mathcal{V}_{k} & \| t \| \land (v, v) \in \mathcal{V}_{k} & \| t \| \land (v, v) \in \mathcal{V}_{k} & \| t \| \land (v, v) \in \mathcal{V}_{k} & \| t \| \land (v, v) \in \mathcal{V}_{k} & \| t$$

4 Proofs

4.1 Lemmas

4.1.1
$$\forall \sigma_s, \sigma_r, e. \ \varsigma_s \star \varsigma_r \ \mathbf{defined} \ \Rightarrow \forall n. \ \langle \sigma_s, e \rangle \to^n = \langle \sigma_f + \sigma_r, e \rangle \to^n$$

SUFFICES: By induction on n, consider only the cases $\langle \sigma_s, e \rangle \to \langle \sigma_f, e_f \rangle$ where $\sigma_s \neq \sigma_f$.

PROOF SKETCH: Only OP-{FREE, MATRIX, SHARE, UNSHARE_EQ, GEMM_MATCH} change the heap: the rest are either parametric in the heap or step to an **err**.

PROVE: $\langle \sigma_s + \sigma_r, e \rangle \rightarrow \langle \sigma_f + \sigma_r, e_f \rangle$.

- $\langle 1 \rangle 1$. CASE: OP_FREE, $\sigma_s \equiv \sigma' + \{l \mapsto_1 m\}$, $\sigma_f = \sigma'$. PROOF: Instantiate OP_FREE with $(\sigma' + \sigma_r) + \{l \mapsto_1 m\}$, valid because $l \notin \text{dom}(\varsigma_r)$ by $\varsigma' \star [l \mapsto_1 m] \star \varsigma_r$ defined (assumption).
- $\langle 1 \rangle 2$. Case: Op_Matrix Proof: Rule has no requirements on σ_s so will also work with $\sigma_s + \sigma_r$.
- $\langle 1 \rangle 3$. Case: Op_Share, $\sigma_s \equiv \sigma' + \{l \mapsto_f m\}$, $\sigma_f = \sigma' + \{l \mapsto_{\frac{1}{2} \cdot f} m\} + \{l \mapsto_{\frac{1}{2} \cdot f} m\}$. Proof: Union-ing σ_r does not remove $l \mapsto_f m$, so that can be split out of $\sigma_s + \sigma_r$ as before.
- $\langle 1 \rangle 4$. Case: Op_Unshare_Eq, $\sigma_s \equiv \sigma' + \{l \mapsto_{\frac{1}{2} \cdot f} m\} + \{l \mapsto_{\frac{1}{2} \cdot f} m\}, \ \sigma_f = \sigma' + \{l \mapsto_f m\}.$
 - $\langle 2 \rangle 1$. Union-ing σ_r does not remove $l \mapsto_{\frac{1}{2} \cdot f} m$, so that can still be split out of $\sigma_s + \sigma_r$.
 - $\langle 2 \rangle 2$. There may also be other valid splits introduced by σ_r .
 - $\langle 2 \rangle 3$. However, by assumption of $\varsigma_s \star \varsigma_r$ defined, any splitting of $\sigma_s + \sigma_r$ will satisfy $f \leq 1$.
- $\langle 1 \rangle$ 5. Case: Op_Gemm_Match
 - $\langle 2 \rangle 1$. By assumption of $\varsigma_s \star \varsigma_r$ defined, either l_1 (or l_2 , or both) are not in σ_r , or they are and the matrix values they point to are the same.
 - $\langle 2 \rangle 2$. The permissions (of l_1 and/or l_2) may differ, but OP_GEMM_MATCH universally quantifies over them and leaves them unchanged, so they are irrelevant.
 - $\langle 2 \rangle 3$. Only the pointed to matrix value at l_3 changes.
 - $\langle 2 \rangle 4$. Suffices: $l_3 \notin \pi_1[\sigma_r]$.
 - $\langle 2 \rangle 5$. By assumption of $\varsigma_s \star \varsigma_r$ defined, $l_3 \notin \text{dom}(\varsigma_r)$.
 - $\langle 2 \rangle 6$. Hence $l_3 \notin \pi_1[\sigma_r]$.

4.1.2 $\forall k, t. \ \mathcal{V}_k[\![t]\!] \subseteq \mathcal{C}_k[\![t]\!]$

Follows from definition of $C_k[\![t]\!]$, $\to^j (\forall n. \langle \sigma, v \rangle \to^n \langle \sigma, v \rangle)$ for arbitrary $j \leq k$ and 4.1.1.

4.1.3 $\forall \delta, \gamma, v. \ \delta(\gamma(v))$ is a value.

By construction, δ and γ only map variables to values, and values are closed under substitution.

6

4.1.4 $\forall k, \sigma, \sigma', e, e', t. \ (\varsigma', e') \in \mathcal{C}_k[\![t]\!] \land \langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \Rightarrow (\varsigma, e) \in \mathcal{C}_{k+1}[\![t]\!]$

Assume: arbitrary $j \leq k+1$, and σ_r such that $\varsigma \star \varsigma_r$ defined.

- $\langle 1 \rangle 1$. Case: j = 0. Clearly $\sigma_f = \sigma_s + \sigma_r$ and e' = e. Remains to show that if e is a value then $(\varsigma_s \star \varsigma_r, e) \in \mathcal{V}_k[\![t]\!]$. This is true vacuously, because by assumption, e is not a value.
- $\langle 1 \rangle 2$. Case: $j \geq 1$. We have $\langle \sigma, e \rangle \to^j = \langle \sigma', e' \rangle \to^{j-1}$. Instantiate $(\varsigma', e') \in \mathcal{C}_k[\![t]\!]$, with $j-1 \leq k$ and σ_r to conclude the required conditions.

4.1.5
$$j \leq k \Rightarrow -k \llbracket \cdot \rrbracket \subseteq -i \llbracket \cdot \rrbracket$$

Need to prove for $\mathcal{V}[]$, by induction on 4.1.4 for $\mathcal{C}[]$.

4.2 Soundness

$$\forall \Theta, \Delta, \Gamma, e, t. \ \Theta; \Delta; \Gamma \vdash e : t \Rightarrow \forall k. \ _k \llbracket \Theta; \Delta; \Gamma \vdash e : t \rrbracket$$

PROOF SKETCH: Induction over the typing judgements.

Assume: 1. Arbitrary $\Theta, \Delta, \Gamma, e, t$ such that $\Theta; \Delta; \Gamma \vdash e : t$.

- 2. Arbitrary $\theta, k, \delta, \gamma, \sigma$ such that:
 - a. $dom(\Theta) = dom(\theta)$
 - b. $(\sigma, \gamma) \in \mathcal{L}_k \llbracket \Gamma \rrbracket \theta$
 - c. $\delta \in \mathcal{I}_k \llbracket \Delta \rrbracket \theta$.
- 3. W.l.o.g., all variables are distinct/dom(Δ) and dom(Γ) are disjoint.
- 4. And so that over expressions $\gamma \circ \delta = \delta \circ \gamma$.
- 5. By construction, $dom(\Delta) = dom(\delta)$ and $dom(\Gamma) = dom(\gamma)$.

PROVE: $(\sigma, \gamma(\delta(e))) \in \mathcal{C}_k \llbracket \theta(t') \rrbracket$.

Assume: Arbitrary $j \leq k$ and σ_r .

Suffices: Show whole expression either reduces to \mathbf{err} or takes j steps.

 $\langle 1 \rangle 1$. Case: Ty_Let.

PROVE:
$$(\sigma, \gamma(\delta(\mathbf{let} \ x = e \ \mathbf{in} \ e'))) \in \mathcal{C}_k[\![\theta(t')]\!].$$

SUFFICES: $(\sigma, \mathbf{let} \ x = \gamma(\delta(e)) \ \mathbf{in} \ \gamma(\delta(e'))) \in \mathcal{C}_k[\![\theta(t')]\!].$

- $\langle 2 \rangle 1$. By induction,
 - 1. $\llbracket \Theta; \Delta; \Gamma \vdash e : t \rrbracket$
 - 2. $\Theta; \Delta; \Gamma', x : t \vdash e' : t'$.
- $\langle 2 \rangle 2$. By 2b and induction on Γ' , we know there exist $\sigma_{e'}$, $(\sigma_e, \gamma_e) \in \mathcal{L}_k[\![\Gamma]\!]$, such that $\sigma = \sigma_e \star \sigma_{e'}$.
- $\langle 2 \rangle 3$. So, using them, θ, k, δ , and 3 we have $(\sigma_e, \gamma_e(\delta(e))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 4$. By 3, $(\sigma_e, \gamma(\delta(e))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle$ 5. By definition of $\mathcal{C}_k[\cdot]$ and $\langle 2 \rangle$ 2, we instantiate with j and $\sigma_r = \sigma_{e'}$ to conclude that $\langle \sigma, \gamma(\delta(e)) \rangle$ either reduces to **err** or another heap and expression.
- $\langle 2 \rangle 6$. Case: **err**

??? By OP_CONTEXT_ERR and 3, the whole expression reduces to **err** in $j \leq k$ steps. Since $j \leq k$ and σ_r (for 4.1.1) are arbitrary, $(\sigma, \gamma(\delta(\mathbf{let} \ x = e \ \mathbf{in} \ e'))) \in \mathcal{C}_k[\![\theta(t')]\!]$.

- $\langle 2 \rangle$ 7. Case: j steps to another heap and expression. By Op_Context and 3, the whole expression does the same.
- $\langle 2 \rangle 8$. If it is not a value, we are done. ??? If it is $(\sigma_{ef}, v) \in \mathcal{V}_{k-j}[\![\theta(t)]\!]$ by 4.1.3. SUFFICES: $(\sigma_{ef} \star \sigma_{e'}, \mathbf{let} \ x = v \mathbf{in} \ \gamma(\delta(e'))) \in \mathcal{C}_{k-j}[\![\theta(t')]\!]$. SUFFICES: ??? $(\sigma_{ef} \star \sigma_{e'}, \gamma(\delta(e'))[x/v]) \in \mathcal{C}_{k-j-1}[\![\theta(t')]\!]$ by 4.1.4.
- $\langle 2 \rangle 9$. Define: $\gamma_{e'}(y) = v$ if y = x and $\gamma(y)$ if $y \in \text{dom}(\Gamma')$. ??? Thus, by 4.1.5, $(\sigma_{e'}, \gamma_{e'}) \in \mathcal{L}_k \llbracket \Gamma', x : t \rrbracket \theta \subseteq \mathcal{L}_{k-j-1} \llbracket \Gamma', x : t \rrbracket \theta$.
- $\langle 2 \rangle 10$. Instantiate 2 of step $\langle 2 \rangle 1$ with $\theta, k j 1, \delta, \gamma_{e'}, \sigma_{e'}$ to conclude $(\sigma_{e'}, \gamma_{e'}(\delta(e'))) \in \mathcal{C}_{k-j-1} \llbracket \theta(t') \rrbracket$.
- $\langle 2 \rangle$ 11. By 3, we have $\gamma(\delta(e'))[x/v] = \gamma_{e'}(\delta(e'))$ and by 4.1.1 we conclude $(\sigma_{ef} \star \sigma_{e'}, \gamma(\delta(e'))[x/v]) \in \mathcal{C}_{k-j-1}\llbracket \theta(t') \rrbracket$
- $\langle 1 \rangle 2$. Case: Ty_Pair_Elim.

PROVE: $(\sigma, \gamma(\delta(\mathbf{let}(a, b) = e \, \mathbf{in} \, e'))) \in \mathcal{C}_k \llbracket \theta(t') \rrbracket$.

PROOF: Similar to TY_LET but with OP_LET_PAIR

- $\langle 2 \rangle 1$. When $(\sigma_{ef}, v) \in \mathcal{V}_{k-i} \llbracket \theta(t_1) \otimes \theta(t_2) \rrbracket$, we have $v = (v_1, v_2)$.
- $\langle 2 \rangle 2$. SUFFICES: ??? $(\sigma_{e'}, \gamma(\delta(e'))) \in \mathcal{C}_{k-j-1} \llbracket \theta(t') \rrbracket$ by 4.1.4.
- $\langle 2 \rangle 3$. Define: $\gamma_{e'}$ to be the restriction of γ to dom(Γ'). ??? Thus, by 4.1.5, $(\sigma_{e'}, \gamma_{e'}[a \mapsto v_1, b \mapsto v_2]) \in \mathcal{L}_k[\![\Gamma', a: t_1, b: t_2]\!]\theta$ $\subseteq \mathcal{L}_{k-j-1}[\![\Gamma', a: t_1, b: t_2]\!]\theta$.
- $\langle 2 \rangle 4$. Instantiate $\llbracket \Theta; \Delta; \Gamma', a: t_1, b: t_2 \vdash e': t' \rrbracket$ with $\theta, k-j-1, \delta, \gamma_{e'}[a \mapsto v_1, b \mapsto v_2], \sigma_{e'}$.
- $\langle 2 \rangle 5$. ??? By 3 $(\sigma_{e'}, \gamma(\delta(e'))) \in \mathcal{C}_{k-i-1} \llbracket \theta(t') \rrbracket$.
- $\langle 1 \rangle 3$. Case: Ty_Bang_Elim.

PROVE: $(\sigma, \gamma(\delta(\mathbf{let} \mathbf{Many} x = e \mathbf{in} e'))) \in \mathcal{C}_k[\![\theta(t)]\!].$

PROOF SKETCH: Similar to TY_LET, but with the following key differences.

- $\langle 2 \rangle 1$. When $(\sigma_{ef}, v) \in \mathcal{V}_{k-j}[\![\theta(!t)]\!]$, since $\mathcal{V}_{k-j}[\![\theta(!t)]\!] = \mathcal{V}_{k-j}[\![!\theta(t)]\!]$, we have $\sigma_{ef} = \emptyset$ and $v = \mathbf{Many} \ v'$ for some $(\emptyset, v') \in \mathcal{V}_{k-j}[\![\theta(t)]\!]$.
- $\langle 2 \rangle 2$. Suffices: $(\sigma_{e'}, \mathbf{let} \, \mathbf{Many} \, x = \mathbf{Many} \, v' \, \mathbf{in} \, \gamma(\delta(e'))) \in \mathcal{C}_{k-j} \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 3$. SUFFICES: $(\sigma_{e'}, \gamma(\delta(e'))[x/v]) \in \mathcal{C}_{k-i-1}[\theta(t)]$.
- $\langle 2 \rangle 4$. Define: $\gamma_{e'}$ as the restriction of γ to dom(Γ').
- $\langle 2 \rangle$ 5. Instantiate $\llbracket \Theta; \Delta, x : t, \Gamma' \vdash e' : t' \rrbracket$ with $\theta, k j 1, \delta_{e'} = \delta[x \mapsto v'], \gamma_{e'}, \sigma_{e'}$ to conclude $(\sigma_{e'}, \gamma_{e'}(\delta_{e'}(e'))) \in \mathcal{C}_{k-j-1}\llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 6$. ??? By 3, $(\sigma_{e'}, \gamma(\delta(e'))[x/v]) \in \mathcal{C}_{k-i-1}[\theta(t)]$.
- $\langle 1 \rangle 4$. Case: Ty_Unit_Elim.

PROVE: $(\sigma, \gamma(\delta(\mathbf{let}() = e \mathbf{in} e'))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.

PROOF: Similar to TY_LET but with OP_LET_UNIT.

- $\langle 2 \rangle 1$. When $(\sigma_{ef}, v) \in \mathcal{V}_{k-j}[[\mathbf{unit}]]$, we have $\sigma_{ef} = \emptyset$ and v = ().
- $\langle 2 \rangle 2$. Suffices: ??? $(\sigma_{e'}, \gamma(\delta(e'))) \in \mathcal{C}_{k-j-1} \llbracket \theta(t') \rrbracket$ by 4.1.4.
- $\langle 2 \rangle 3$. Define: $\gamma_{e'}$ to be the restriction of γ to dom(Γ'). ??? Thus, by 4.1.5, $(\sigma_{e'}, \gamma_{e'}) \in \mathcal{L}_k \llbracket \Gamma' \rrbracket \theta \subseteq \mathcal{L}_{k-j-1} \llbracket \Gamma' \rrbracket \theta$.
- $\langle 2 \rangle 4$. Instantiate $\llbracket \Theta; \Delta; \Gamma' \vdash e' : t' \rrbracket$ with $\theta, k j 1, \delta, \gamma_{e'}, \sigma_{e'}$.
- $\langle 2 \rangle 5$. ??? By $3 (\sigma_{e'}, \gamma(\delta(e'))) \in \mathcal{C}_{k-j-1} \llbracket \theta(t') \rrbracket$.
- $\langle 1 \rangle$ 5. Case: Ty_Bool_Elim.

PROVE: $(\sigma, \gamma(\delta(\mathbf{if}\ e\ \mathbf{then}\ e_1\ \mathbf{else}\ e_2))) \in \mathcal{C}_k[\![\theta(t)]\!].$

PROOF: Similar to Ty_Unit_Elim but with Op_If_{True,False}

and $\sigma_{ef} = \emptyset$ and v =Many true or v =Many false.

 $\langle 1 \rangle 6$. Case: Ty_Bang_Intro.

PROVE: $(\sigma, \gamma(\delta(\mathbf{Many}\,e))) \in \mathcal{C}_k[\![\theta(!t)]\!].$

SUFFICES: $(\sigma, \mathbf{Many} \gamma(\delta(e))) \in \mathcal{C}_k[\![!\theta(t)]\!]$.

- $\langle 2 \rangle$ 1. By assumption of TY_BANG_INTRO, e = v for some value $v \neq l$, $\Gamma = \emptyset$ and so $\llbracket \Theta; \Delta; \cdot \vdash v : t \rrbracket$ by induction.
- $\langle 2 \rangle 2$. Suffices: $(\emptyset, \mathbf{Many} \, \delta(v)) \in \mathcal{C}_k \llbracket ! \theta(t) \rrbracket$ by 3 and 2b.
- $\langle 2 \rangle 3$. Instantiate $\llbracket \Theta; \Delta; \cdot \vdash v : t \rrbracket$ with $\theta, k, \delta, \gamma = \llbracket, \sigma = \emptyset$ to obtain $(\emptyset, \delta(v)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 4$. Instantiate $(\emptyset, \delta(v)) \in \mathcal{C}_k[\![\theta(t)]\!]$ with j = 0, and $\sigma_r = \emptyset$, to conclude $(\emptyset, v) \in \mathcal{V}_k[\![\theta(t)]\!]$.
- $\langle 2 \rangle 5$. ??? By definition of $\mathcal{V}_k[\![!\theta(t)]\!]$, 4.1.3 and 4.1.2 we have $(\emptyset, \mathbf{Many} \delta(v)) \in \mathcal{C}_k[\![!\theta(t)]\!]$.
- $\langle 1 \rangle$ 7. Case: Ty_Pair_Intro.

PROVE: $(\sigma, \gamma(\delta((e, e')))) \in \mathcal{C}_k \llbracket \theta(t \otimes t') \rrbracket$.

Assume: Arbitrary $j \leq k$ and σ_r .

Suffices: Show whole expression either reduces to **err** or a heap and expression in j steps.

- $\langle 2 \rangle 1$. Define: $(\sigma_1, \gamma_1) \in \mathcal{L}_j[\![\Gamma]\!]$ similar to (σ_e, γ_e) in Ty_Let.
- $\langle 2 \rangle 2$. By induction,
 - 1. $\llbracket \Theta; \Delta; \Gamma_1 \vdash e_1 : t_1 \rrbracket$
 - 2. $\llbracket \Theta; \Delta; \Gamma_2 \vdash e_2 : t_2 \rrbracket$.
- $\langle 2 \rangle 3$. Instantiate the first with $\theta, k, \delta, \gamma_1, \sigma_1$.
- $\langle 2 \rangle 4$. Therefore, $(\sigma_1, \gamma_1(\delta(e_1))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle$ 5. So, $(\sigma_1 \star \sigma_2, \gamma_1(\delta(e_1)))$ either reduces to **err** or a heap and expression in j steps.
- $\langle 2 \rangle$ 6. Case: **err** ??? By Op_Context_Err and 3, so too does the whole expression. Since $j \leq k$ and σ_r (for 4.1.1) are arbitrary, $(\sigma, \gamma(\delta((e, e')))) \in \mathcal{C}_k[\![\theta(t \otimes t')]\!]$.
- $\langle 2 \rangle$ 7. Case: j steps to another heap and expression. By OP_CONTEXT and 3, the whole expression does the same.
- $\langle 2 \rangle 8$. If it is not a value, we are done. ??? If it is $(\sigma_{1f}, v_1) \in \mathcal{V}_{k-j} \llbracket \theta(t_1) \rrbracket$ by 4.1.3.

SUFFICES: ??? By 4.1.4, $(\sigma_{1f} \star \sigma_{e_2}, (v_1, e_2)) \in \mathcal{C}_{k-i} \llbracket \theta(t_1 \otimes t_2) \rrbracket$.

- $\langle 2 \rangle 9$. Instantiate the second IH with $\theta, j, \delta, \gamma_2, \sigma_2$ defined as per usual.
- $\langle 2 \rangle 10$. So, $(\sigma_{1f} \star \sigma_2, \gamma_2(\delta(e_2)))$ either reduces to **err** or a heap and expression in j steps.
- $\langle 2 \rangle$ 11. Case: **err** ??? By Op_Context_Err, 3, so too does the whole expression. Since $j \leq k$ and σ_r (for 4.1.1) are arbitrary, $(\sigma_{e_2}, (v_1, e_2)) \in \mathcal{C}_{k-j} \llbracket \theta(t_1 \otimes t_2) \rrbracket$.
- $\langle 2 \rangle$ 12. Case: j steps to another heap and expression. By Op_Context and 3, the whole expression does the same.
- $\langle 2 \rangle 13$. If it is not a value, we are done. ??? If it is $(\sigma_{2f}, v_2) \in \mathcal{V}_{k-j}[\![\theta(t_2)]\!]$ by 4.1.3. Suffices: ??? By 4.1.4, $(\sigma_{1f} \star \sigma_{2f}, (v_1, v_2)) \in \mathcal{C}_{k-2i}[\![\theta(t_1 \otimes t_2)]\!]$.
- $\langle 2 \rangle 14$. ??? By 4.1.5 and 4.1.2, $(\sigma_{1f} \star \sigma_{2f}, (v_1, v_2)) \in \mathcal{V}_{k-i} \llbracket \cdot \rrbracket \subseteq \mathcal{V}_{k-2i} \llbracket \cdot \rrbracket \subseteq \mathcal{C}_{k-2i} \llbracket \cdot \rrbracket$ as needed.
- $\langle 1 \rangle 8$. Case: Ty_Lambda.

PROVE: $(\sigma, \gamma(\delta(\mathbf{fun}\,x:t\to e))) \in \mathcal{C}_k[\![\theta(t\multimap t')]\!].$

SUFFICES: ??? By 6, to show $\ldots \in \mathcal{V}_k[\![\theta(t \multimap t')]\!]$.

Assume: Arbitrary j < k, $(\sigma_v, v) \in \mathcal{V}_j[\![\theta(t)]\!]$ such that $\sigma \star \sigma_v$ is defined.

SUFFICES: $(\sigma \star \sigma_v, \gamma(\delta(\mathbf{fun}\,x:t\to e))\,v) \in \mathcal{C}_j[\![\theta(t')]\!].$

SUFFICES: $(\sigma \star \sigma_v, \gamma(\delta(e))[x/v]) \in C_i[\![\theta(t')]\!]$.

- $\langle 2 \rangle 1$. By induction, $\llbracket \Theta; \Delta; \Gamma, x : t \vdash e \rrbracket$.
- $\langle 2 \rangle 2$. Instantiate it $\theta, j-1, \gamma[x \mapsto v], \sigma_v \star \sigma$.
- $\langle 2 \rangle 3$. Hence, $(\sigma_v \star \sigma, \gamma[x \mapsto v](\delta(e))) \in \mathcal{C}_{j-1}[\theta(t)]$.
- $\langle 2 \rangle 4$. ??? By 3, we are done.
- $\langle 1 \rangle 9$. Case: Ty_App.

PROVE: $(\sigma, \gamma(\delta(ee'))) \in \mathcal{C}_k[\![\theta(t)]\!]$.

Assume: Arbitrary j and σ_r such that $\sigma \star \sigma_r$ defined.

Suffices: Show whole expression either reduces to **err** or a heap and expression in j steps.

- $\langle 2 \rangle 1$. By induction,
 - 1. $\llbracket \Theta; \Delta; \Gamma \vdash e : t' \multimap t \rrbracket$
 - 2. $\llbracket \Theta; \Delta; \Gamma' \vdash e' : t' \rrbracket$.
- $\langle 2 \rangle 2$. Instantiate the first with $\theta, k, \delta, \gamma_e, \sigma_e$ as per usual definitions, to conclude $(\sigma_e, \gamma_e(\delta(e))) \in \mathcal{C}_k \llbracket \theta(t' \multimap t) \rrbracket$.
- $\langle 2 \rangle 3$. Instantiate this with j and $\sigma_{e'}$ to conclude $(\sigma = \sigma_e \star \sigma_{e'}, \gamma(\delta(ee')))$ reduces to **err** or another heap and expression in j steps (using 3).
- $\langle 2 \rangle 4$. Case: **err**

??? By Op_Context_Err, so too does the whole expression.

Since $j \leq k$ and σ_r (for 4.1.1) are arbitrary, $(\sigma, \gamma(\delta(ee'))) \in \mathcal{C}_k \llbracket \theta(t' \multimap t) \rrbracket$.

 $\langle 2 \rangle$ 5. Case: j steps to another heap and expression.

By Op_Context, the whole expression does the same.

If it is not a value, we are done.

???? If it is $(\sigma_{ef}, \mathbf{fun} \, x : t \to e_b) \in \mathcal{V}_{k-j} \llbracket \theta(t' \multimap t) \rrbracket$ by 4.1.3.

- $\langle 2 \rangle 6$. SUFFICES: ??? By 4.1.4, to show $(\sigma_{ef} \star \sigma_{e'}, \gamma(\delta((\mathbf{fun} \ x : t \to e_b) \ e'))) \in \mathcal{C}_{k-j}[\![\theta(t)]\!]$.
- $\langle 2 \rangle$ 7. Instantiate the second IH with $\theta, j, \delta, \gamma_{e'}, \sigma_{e'}$ defined as per usual.
- $\langle 2 \rangle 8$. So, $(\sigma_{ef} \star \sigma_{e'}, \gamma_{e'}(\delta(e')))$ either reduces to **err** or a heap and expression in j steps.
- $\langle 2 \rangle$ 9. CASE: **err** ??? By OP_CONTEXT_ERR and 3, so too does the whole expression. Since $j \leq k$ and σ_r (for 4.1.1) are arbitrary, $(\sigma_{ef} \star \sigma_{e'}, \gamma(\delta((\mathbf{fun} \ x : t \rightarrow e_b) \ e'))) \in \mathcal{C}_{k-j}[\![\theta(t)]\!]$.
- $\langle 2 \rangle$ 10. Case: j steps to another heap and expression. By Op_Context and 3, the whole expression does the same.
- $\langle 2 \rangle$ 11. If it is not a value, we are done. ??? If it is, by definition of $(\sigma_{ef}, \mathbf{fun} \, x : t \to e_b) \in \mathcal{V}_{k-j}[\![\theta(t' \multimap t)]\!]$, we have $(\sigma_{ef} \star \sigma_{e'f}, \gamma(\delta((\mathbf{fun} \, x : t \to e_b) \, v'))) \in \mathcal{C}_{k-2j}[\![\theta(t)]\!]$.
- $\langle 1 \rangle 10$. Case: Ty_Gen. Prove: $(\sigma, \gamma(\delta(\mathbf{fun} \ fc \to e))) \in \mathcal{C}_k \llbracket \theta(\forall \ fc. \ t) \rrbracket$.
- $\langle 1 \rangle 11$. Case: Ty_Spc. Prove: $(\sigma, \gamma(\delta(e[f]))) \in \mathcal{C}_k \llbracket \theta(t[fc/f]) \rrbracket$.
- $\langle 1 \rangle 12$. Case: Ty_Fix. Prove: $(\sigma, \gamma(\delta(\mathbf{fix}(g, x:t, e:t')))) \in \mathcal{C}_k[\![\theta(!(t \multimap t'))]\!]$. Suffices: ??? to show ... $\in \mathcal{V}_k[\![!(\theta(t) \multimap \theta(t'))]\!]$, by 4.1.2.
 - $\langle 2 \rangle 1$. Assume: Arbitrary j < k and $(\sigma, v) \in \mathcal{V}_j \llbracket \theta(t) \rrbracket$.
 - $\langle 2 \rangle 2$. Suffices: $(\sigma, letManyG \ g \ v) \in \mathcal{C}_{j} \llbracket \theta(t') \rrbracket$.
 - $\langle 2 \rangle 3$. Let: $e_1 = e[g/\mathbf{fun} \ x : t \to letManyG \ g \ x].$
 - $\langle 2 \rangle 4$. SUFFICES: ??? by 4.1.4, $(\sigma, (\mathbf{fun} \, x : t \to e_1) \, v) \in \mathcal{C}_{j-1} \llbracket \theta(t') \rrbracket$.
 - $\langle 2 \rangle 5. \text{ Suffices: } ??? \text{ by } 4.1.4, \ (\sigma, e_1[x/v]) \in \mathcal{C}_{j-2}\llbracket \theta(t') \rrbracket.$
 - $\langle 2 \rangle 6. \ \ \text{By induction, we have} \ \llbracket \Theta ; \Delta, g : t \multimap t' ; x : t \vdash e : t' \rrbracket.$
 - $\langle 2 \rangle$ 7. Instantiate this with $\theta, j-2, \delta[g \mapsto \mathbf{fun} \ x : t \to e_1], \gamma = [x \mapsto v], \sigma$ (???). Prove: $(\sigma, \mathbf{fun} \ x : t \to e_1) \in \mathcal{V}_{j-2}[\![\theta(t) \multimap \theta(t')]\!]$.
 - (3)1. Suffices: ??? by 4.1.4, $(\sigma', e_1[x/v']) \in C_{j-2}[\![\theta(t')]\!]$ for arbitrary $(\sigma', v') \in V_{j-2}[\![\theta(t)]\!]$.
 - $\langle 3 \rangle 2$. We can again use the induction hypothesis $[\Theta; \Delta, g: t \multimap t'; x: t \vdash e: t']$.
 - $\langle 3 \rangle 3$. But since it's true for $C_0[\cdot]$ (base case), it's true by induction ???
 - $\langle 2 \rangle 8$. Lastly, we show $\delta(\gamma(e)) = e_1[x/v]$, which follows by their definitions, to conclude $(\sigma, e_1[x/v]) \in \mathcal{C}_{j-2}[\theta(t')]$.
- $\langle 1 \rangle 13$. Case: Ty_Var_Lin. Prove: $(\sigma, \gamma(\delta(x))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.

- $\langle 2 \rangle 1$. $\Gamma = \{x : t\}$ by assumption of Ty_VAR_LIN.
- $\langle 2 \rangle 2$. Suffices: $(\sigma, \gamma(x)) \in \mathcal{C}_k[\![\theta(t)]\!]$ by 3.
- $\langle 2 \rangle 3$. By 2b, there exist $(\sigma_x, v_x) \in \mathcal{V}_k[\![\theta(t)]\!]$, such that $\sigma = \sigma_x$ and $\gamma = [x \mapsto v_x]$.
- $\langle 2 \rangle 4$. ??? Hence, $(\sigma_x, v_x) \in \mathcal{C}_k[\![\theta(t)]\!]$, by 4.1.2.
- $\langle 1 \rangle 14$. Case: Ty_Var.

PROVE: $(\sigma, \gamma(\delta(x))) \in \mathcal{C}_k[\![\theta(t)]\!].$

- $\langle 2 \rangle 1$. $x : t \in \Delta$ and $\Gamma = \emptyset$ by assumption of Ty_VAR.
- $\langle 2 \rangle 2$. Suffices: $(\emptyset, \delta(x)) \in \mathcal{C}_k[\![\theta(t)]\!]$ by 3 and 2b.
- $\langle 2 \rangle 3$. By 2c, there exists v_x such that $(\emptyset, v_x) \in \mathcal{V}_k[\![\theta(t)]\!]$.
- $\langle 2 \rangle 4$. ??? Hence, $(\emptyset, v_x) \in \mathcal{C}_k[\![\theta(t)]\!]$, by 4.1.2.
- $\langle 1 \rangle 15$. Case: Ty_Unit_Intro.

PROVE: $(\sigma, \gamma(\delta(()))) \in \mathcal{C}_k[\![\theta(\mathbf{unit})]\!].$

 $\langle 1 \rangle 16.$ Case: Ty_Bool_True, Ty_Bool_False, Ty_Int_Intro, Ty_Elt_Intro. Similar to Ty_Unit_Intro.

5 Grammar Definition

```
::=
                                        matrix expressions
m
              M
                                           matrix variables
             m + m'
                                           matrix addition
              m m'
                                           matrix multiplication
              (m)
                          S
                                        fractional capability
             fc
                                           variable
             1
                                           whole capability
                                        linear type
             unit
                                           unit
             bool
                                           boolean (true/false)
             int
                                           63-bit integers
             \mathbf{elt}
                                           array element
             f \operatorname{\mathbf{arr}}
                                           arrays
             f mat
                                           matrices
              !t
                                           multiple-use type
             \forall fc.t
                          bind fc in t
                                           frac. cap. generalisation
              t \otimes t'
                                           pair
              t \multimap t'
                                           linear function
                          S
              (t)
                                           parentheses
       ::=
                                        primitive
p
             \mathbf{not}
                                           boolean negation
              (+)
                                           integer addition
              (-)
                                           integer subtraction
                                           integer multiplication
              (*)
                                           integer division
              (/)
                                           integer equality
                                           integer less-than
              (\langle)
                                           element addition
              (+.)
                                           element subtraction
              (-.)
                                           element multiplication
             (*.)
             (/.)
                                           element division
                                           element equality
              (=.)
              (<.)
                                           element less-than
                                           array index assignment
             \mathbf{set}
                                           array indexing
             get
             share
                                           share array
             unshare
                                           unshare array
             free
                                           free arrary
                                           Owl: make array
             array
                                           Owl: copy array
             copy
             \sin
                                           Owl: map sine over array
```

```
Owl: x_i := \sqrt{x_i^2 + y_i^2}
             hypot
                                                           BLAS: \sum_{i} |\dot{x}_{i}|
             asum
                                                            BLAS: x := \alpha x + y
             axpy
             dot
                                                            BLAS: x \cdot y
             rotmg
                                                            BLAS: see its docs
                                                            BLAS: x := \alpha x
             \mathbf{scal}
                                                            BLAS: \operatorname{argmax} i : x_i
             amax
             \mathbf{set}\mathbf{M}
                                                            matrix index assignment
             \mathbf{get}\mathbf{M}
                                                           matrix indexing
             shareM
                                                           share matrix
             unshareM
                                                           unshare matrix
             freeM
                                                           free matrix
             matrix
                                                            Owl: make matrix
             copyM
                                                            Owl: copy matrix
             copyM\_to
                                                            Owl: copy matrix onto another
                                                            dimension of matrix
             sizeM
                                                            transpose matrix
             trnsp
                                                            BLAS: C := \alpha A^{T?} B^{T?} + \beta C
             gemm
                                                            BLAS: C := \alpha AB + \beta C
             symm
             posv
                                                            BLAS: Cholesky decomp. and solve
                                                           BLAS: solve with given Cholesky
             potrs
                                                        values
v
       ::=
                                                            primitives
             p
                                                            variable
             \boldsymbol{x}
              ()
                                                            unit introduction
             true
                                                            true
             false
                                                           false
              k
                                                           integer
              l
                                                           heap location
              el
                                                            array element
             Many v
                                                           !-introduction
             \mathbf{fun}\,fc \to v
                                                           frac. cap. abstraction
              v[f]
                                                            frac. cap. specialisation
              (v, v')
                                                           pair introduction
             \mathbf{fun}\,x:t\to e
                                     bind x in e
                                                           abstraction
             \mathbf{fix}\left(g,x:t,e:t'\right)
                                     bind g \cup x in e
                                                           fixpoint
                                                           parentheses
                                                         expression
       ::=
                                                            primitives
             p
                                                            variable
             \mathbf{let}\,x=e\,\mathbf{in}\,e'
                                     bind x in e'
                                                           let binding
                                                           unit introduction
             \mathbf{let}() = e \, \mathbf{in} \, e'
                                                            unit elimination
              true
                                                            true
```

```
false
                                                                          false
                if e then e_1 else e_2
                                                                          if
                k
                                                                          integer
                l
                                                                          heap location
                el
                                                                          array element
                                                                          !-introduction
                Many e
                \mathbf{let}\,\mathbf{Many}\,x=e\,\mathbf{in}\,e'
                                                                          !-elimination
                \mathbf{fun}\,fc \to e
                                                                          frac. cap. abstraction
                                                                          frac. cap. specialisation
                e[f]
                (e, e')
                                                                          pair introduction
                \mathbf{let}\,(a,b) = e\,\mathbf{in}\,e'
                                                bind a \cup b in e'
                                                                          pair elimination
                \mathbf{fun}\,x:t\to e
                                                \mathsf{bind}\ x\ \mathsf{in}\ e
                                                                          abstraction
                e e'
                                                                          application
                \mathbf{fix}\left(g,x:t,e:t'\right)
                                                bind g \cup x in e
                                                                          fixpoint
                                                                          parentheses
C
                                                                       evaluation contexts
                \mathbf{let}\,x = [-]\,\mathbf{in}\,e
                                                bind x in e
                                                                          let binding
                \mathbf{let}() = [-] \mathbf{in} e
                                                                          unit elimination
                if [-] then e_1 else e_2
                Many [-]
                                                                          !-introduction
                \mathbf{let}\,\mathbf{Many}\,x = [-]\,\mathbf{in}\,e
                                                                          !-elimination
                \mathbf{fun}\,fc \to [-]
                                                                          frac. cap. abstraction
                [-][f]
                                                                          frac. cap. specialisation
                ([-], e)
                                                                          pair introduction
                (v, [-])
                                                                          pair introduction
                \mathbf{let}(a,b) = [-] \mathbf{in} e
                                                bind a \cup b in e
                                                                          pair elimination
                [-]e
                                                                          application
                v[-]
                                                                          application
Θ
                                                                       fractional capability environment
         ::=
                \Theta, fc
Γ
                                                                       linear types environment
         ::=
                \Gamma, x:t
                \Gamma, \Gamma'
\Delta
                                                                       intuitionistic types environment
                \Delta, x:t
                                                                       heap (multiset of triples)
        ::=
               \{\}
\sigma + \{l \mapsto_f m_{k_1, k_2}\}
                                                                          empty heap
                                                                          location l points to matrix m
```