$$\begin{array}{c|ccccc}
 & R_1 \to R_1 + 2R_2 \\
\hline
 & R_3 \to R_3 - R_2
\end{array}
\longrightarrow
\begin{pmatrix}
1 & 0 & 13 & | & 4 \\
0 & -1 & 7 & | & 2 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

Las ecuaciones correspondientes a los primeros dos renglones del último sistema son

$$x_1 = 4 - 13x_3$$
 y $x_2 = -2 + 7x_3$

con lo que las soluciones son

$$\mathbf{x} = (x_1, x_2, x_3) = (4 - 13x_3, -2 + 7x_3, x_3) = \mathbf{x_n} + \mathbf{x_h}$$

donde $\mathbf{x_p} = (4, -2, 0)$ es una solución particular y $\mathbf{x_h} = x_3(-13, 7, 1)$, donde x_3 es un número real, es una solución al sistema homogéneo asociado. Por ejemplo, $x_3 = 0$ lleva a la solución (4, -2, 0) mientras que $x_3 = 2$ da la solución (-22, 12, 2).

RESUMEN 2.3

• Los sistemas de ecuaciones lineales se pueden escribir como Ax = b, donde

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad \mathbf{y} \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

• Toda solución del sistema de ecuaciones A**x** = **b** se puede escribir como $x = x_p + x_h$, donde x_p es alguna solución particular y x_h es toda solución homogénea.

AUTOEVALUACIÓN 2.3

I) Si el sistema
$$\begin{pmatrix} x & -z = 2 \\ y + z = 3 \\ x + 2y & = 4 \end{pmatrix}$$
 se escribe en la forma $A\mathbf{x} = \mathbf{b}$, con $\mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ y $\mathbf{b} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$, entonces $A = \underline{\qquad}$.

a)
$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix}$

Respuesta a la autoevaluación

I) *d*)