RABIES — Confound Correction Problemas Comunes / Troubleshooting (fMRI en ratón)

Este documento resume los problemas más frecuentes durante la etapa de 'confound correction' en RABIES y cómo resolverlos. El formato sigue el de los documentos previos (tablas, ejemplos y notas prácticas). Se hace referencia a los outputs de RABIES (p. ej., cleaned_timeseries/, frame_censoring_mask/, aroma_out/, plot_CR_overfit/) y a opciones de la CLI del subcomando `confound_correction`. Las rutas y ejemplos usan placeholders genéricos para evitar exponer directorios reales.

Cómo usar este documento / How to use this document

- Identifique el síntoma en la tabla (columna "Síntoma").
- Revise la causa y qué output de RABIES inspeccionar para confirmarla (columna "Detección (QC)").
- Aplique la corrección propuesta con las opciones de `confound_correction` (columna "Solución").
- Vuelva a evaluar con el checklist de QC al final.

Checklist de QC (rápido) / Quick QC Checklist

- Validar máscara de censura: `confound_correction_datasink/frame_censoring_mask/`.
- Revisar series limpiadas: `confound_correction_datasink/cleaned_timeseries/`.
- Verificar AROMA: `confound_correction_datasink/aroma_out/` (componentes y clasificación).
- Comprobar sobreajuste: `confound_correction_datasink/plot_CR_overfit/`.
- Confirmar TR y bandas de filtrado en los parámetros de ejecución.
- Corroborar que las máscaras/ROIs sean del mismo espacio (nativo vs commonspace).

Problemas comunes / Common issues

#	Síntoma	Causa probable	Detección (QC)	Solución (RABIES)
1	Tras la 'limpieza', persiste relación conectividad-movimiento o reaparecen artefactos.	Orden y compatibilidad espectral entre filtrado y regresión; pasos modulares mal orquestados.	Inspeccionar correlaciones residuales con movimiento y espectros post-filtrado; revisar etapa y orden aplicado.	Usar el orden de RABIES (censura → detrend → AROMA → filtrado con simulación → regresión → escalado → suavizado). Mantener regresores

2	Duraciones muy distintas entre sujetos tras scrubbing; métricas inestables por tDOF.	Censura agresiva (FD/DVARS) que deja diferentes números de volúmenes por sujeto.	Contar TRs válidos por sujeto (frame_censoring_mask/) y revisar estabilidad de métricas.	compatibles con el filtrado; re-lanzar con el pipeline estándar. Usar ` match_number_timepoints` y ajustar `minimum_timepoint` dentro de `
3	Varianza explicada por	Sobreajuste por	Revisar	frame_censoring`. Activar `
3	confounds 'demasiado' alta; pérdida de señal neuronal.	demasiados regresores vs. duración (pocas TRs).	`confound_correction_datasink/plot_CR_overfit/` (reales vs. aleatorios).	generate_CR_null'; reducir o priorizar regresores (p. ej., 'mot_6' en vez de 'mot_24' si procede).
4	Aparecen anticorrelaciones 'nítidas' solo con cierto pipeline.	Regresión de señal global (GSR) sin estrategia de reporte/interpretación.	Comparar matrices/conectividad con y sin GSR.	Si se usa `global_signal` en `conf_list`, reportar ambos (con/sin GSR) y justificarlo.
5	Señal neuronal removida o movimiento residual tras ICA-AROMA.	Clasificación subóptima de componentes; parámetros AROMA por defecto no adecuados.	Revisar `aroma_out/` (componentes, clasificación) y QC posterior.	Ajustar `ica_aroma` (p. ej., `dim=0` auto, `random_seed` fijo). Validar componentes antes/después.
6	Filtros no coinciden con el TR real; bordes con artefactos.	TR incorrecto en cabecera NIfTI o asumido.	Confirmar TR real; coherencia con bandas (Nyquist).	Especificar `TR` explícito y usar `edge_cutoff` (~20–30 s) para mitigar artefactos de borde.
7	Conectividad inestable a pequeños cambios de banda; posible aliasing.	Banda de frecuencias inadecuada para el TR/duración total.	Inspeccionar espectros y estabilidad de métricas al variar banda.	Elegir banda compatible con TR (p. ej., 0.01–0.1 Hz cuando encaje con muestreo y duración).

8	Regresores WM/CSF poco efectivos; 'fugas' fuera del tejido objetivo.	Máscaras en espacio incorrecto o mala superposición EPI↔máscara.	Verificar solapamiento de máscaras (nativo vs commonspace).	Alinear máscaras al espacio de la EPI correspondiente o usar ` nativespace_analysis` cuando aplique.
9	Pérdida de contraste regional; ROIs pequeñas 'difuminadas'.	Suavizado espacial excesivo respecto al tamaño de estructura.	Comparar métricas con/sin suavizado; revisar tamaño de kernel.	Reducir` smoothing_filter` (p. ej., 0.3–0.8 mm) o desactivar si análisis laminar/MVPA.
10	Demasiados TRs censurados o, al contrario, residuos de movimiento.	Umbrales FD/DVARS mal calibrados para el dataset.	Revisar `frame_censoring_mask/` y relación conectividad-movimiento residual.	Ajustar `frame_censoring` (p. ej., `FD_threshold`, activar DVARS) y re-evaluar tDOF.
11	Resultados no reproducibles entre corridas iguales.	Semillas aleatorias no fijadas; diferencias menores de config.	Cambios en clasificación AROMA, particionado o librerías.	Fijar `random_seed` donde aplique (p. ej., en ` ica_aroma`) y registrar versión/imagen Docker.
12	RABIES no encuentra archivos esperados; outputs inconsistentes.	Estructura de datasinks distinta a la esperada o rutas mezcladas.	Validar que `*_datasink/` mantiene la jerarquía estándar.	Usar `read_datasink` con rutas coherentes y revisar consistencia de sujetos/sesiones.

Snippets de solución rápida (Docker + PowerShell, Windows 11)

```
# Re-evaluar sobreajuste
docker run --rm -it -v "<HOST_PREPRO_DIR>:/data/prepro_out:ro" -v "<HOST_CONFOUND_DIR>:/data/conf_out" `
   ghcr.io/cobralab/rabies:latest -p MultiProc --local_threads 6 `
   confound_correction /data/prepro_out /data/conf_out `
    --conf_list WM_signal CSF_signal mot_6 aCompCor_5 `
   --generate_CR_null --highpass 0.01 --lowpass 0.10 --edge_cutoff 30

# Igualar tDOF entre sujetos después de scrubbing
docker run --rm -it -v "<HOST_PREPRO_DIR>:/data/prepro_out:ro" -v "<HOST_CONFOUND_DIR>:/data/conf_out" `
   ghcr.io/cobralab/rabies:latest -p MultiProc --local_threads 6 `
```

```
confound_correction /data/prepro_out /data/conf_out`
   --frame_censoring "FD_censoring=true,FD_threshold=0.05,DVARS_censoring=true,minimum_timepoint=300"`
   --match_number_timepoints

# TR manual + mitigación de bordes por filtrado
docker run --rm -it -v "<HOST_PREPRO_DIR>:/data/prepro_out:ro" -v "<HOST_CONFOUND_DIR>:/data/conf_out"`
   ghcr.io/cobralab/rabies:latest -p MultiProc --local_threads 6 `
   confound_correction /data/prepro_out /data/conf_out`
   --TR 0.8 --highpass 0.01 --lowpass 0.20 --edge_cutoff 30

# AROMA con semilla fija + suavizado moderado
docker run --rm -it -v "<HOST_PREPRO_DIR>:/data/prepro_out:ro" -v "<HOST_CONFOUND_DIR>:/data/conf_out"`
   ghcr.io/cobralab/rabies:latest -p MultiProc --local_threads 6 `
   confound_correction /data/prepro_out /data/conf_out`
   --ica_aroma "apply=true,dim=0,random_seed=1" --smoothing_filter 0.6
```

Referencias y recursos

RABIES Documentation: https://rabies.readthedocs.io/en/stable/confound_correction.html

Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage, 82, 208-225. https://doi.org/10.1016/j.neuroimage.2013.05.116

Lindquist, M. A., Geuter, S., Wager, T. D., & Caffo, B. S. (2019). *Modular preprocessing pipelines can reintroduce artifacts into fMRI data. Human Brain Mapping*, 40(8), 2358-2376. https://doi.org/10.1002/hbm.24528

Pruim, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015). *ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data*. *NeuroImage*, 112, 267-277. https://doi.org/10.1016/j.neuroimage.2015.02.064