1 Hacking with the untyped call-by-value lambda calculus

In this exercise, you have to implement some operations for Church encoding of lists. There are several ways to Church encode a list, among which Church encoding based on its right fold function is more popular. As an example, an empty list (nil) and the cons construct are represented as follows in this encoding:

```
nil = \lambdac. \lambdan. n
cons = \lambdah. \lambdat. \lambdac. \lambdan. c h (t c n)
```

As another example, a list of 3 elements x, y, z is encoded as:

$$\lambda c. \lambda n. c x (c y (c z n))$$

The complete list of predefined operations can be found in the appendix, and only these operations can be used in the exercise. Define the following operations on a list:

- 1. (2 points) The *map* function which applies the given function to each element of the given list.
- 2. (2 points) The *length* function which returns the size of the given list. The result should be in Church encoding.
- 3. (2 points) The *sum* function which returns the sum of all elements of the given list. Assume all elements and the result are Church encoded numbers.
- 4. (2 points) The concat function which concatenates two input lists.
- 5. (2 points) The *exists* function which checks if there is any element satisfying the given predicate. The given predicate and the result should be both in Church encoding.

2 Simply typed SKI combinators

In this exercise we're going to explore an alternative calculus called SKI that's based on three combinators: S, K and I instead of lambda abstraction. Those combinators can be translated into STLC as derived forms:

$$I[T] = \lambda x : T. x \tag{D-I}$$

$$K[T, U] = \lambda x : T. \ \lambda y : U. \ x \tag{D-K}$$

$$S[T, U, W] = \lambda x : T \to U \to W. \ \lambda y : T \to U. \ \lambda z : T. \ xz(yz)$$
 (D-S)

An interesting aspect of SKI is that those combinators are sufficient to exclude lambda abstraction from the language without loss of expressiveness. More concretely the system has the following syntax:

Values in this language are the aforementioned combinators as well as their partially applied versions.

Questions:

- Provide small-step reduction rules assuming call-by-value evaluation semantics (4 points).
- Provide typing rules $\Gamma \vdash t : T$ and prove the *preservation* property (6 points).

Note: There is no lambda abstraction in the language any longer. You may not use it as a means to express typing or evaluation rules.

3 Appendix

3.1 The call-by-value simply typed lambda calculus

The complete reference of the variant of simply typed lambda calculus (with Bool ground type representing the type of values true and false) used in "The call-by-value simply typed lambda calculus with returns" is as follows:

$$\begin{array}{lll} v ::= \lambda x \colon T. \ t \mid bv & (values) \\ bv ::= \mathtt{true} \mid \mathtt{false} & (boolean \ values) \\ t ::= x \mid v \mid t \ t & (terms) \\ p ::= t & (programs) \\ T ::= \mathtt{Bool} \mid T \rightarrow T & (types) \end{array}$$

Evaluation rules:

$$\frac{t_1 \longrightarrow t_1'}{t_1 \ t_2 \longrightarrow t_1' \ t_2} \tag{E-App1}$$

$$\frac{t_2 \longrightarrow t_2'}{v_1 \ t_2 \longrightarrow v_1 \ t_2'} \tag{E-App2}$$

$$(\lambda x \colon T_1. \ t_1) \ v_2 \longrightarrow [x \mapsto v_2]t_1$$
 (E-APPABS)

Typing rules:

$$\frac{x \colon T \in \Gamma}{\Gamma \vdash x \colon T} \tag{T-VAR}$$

$$\frac{\Gamma, \ x \colon T_1 \vdash t_2 \ \colon T_2}{\Gamma \vdash (\lambda x \colon T_1. \ t_2) \ \colon T_1 \to T_2} \tag{T-Abs}$$

$$\frac{\Gamma \vdash t_1 : T_1 \to T_2 \quad \Gamma \vdash t_2 : T_1}{\Gamma \vdash t_1 \ t_2 : T_2} \tag{T-App}$$

$$\frac{}{\Gamma \vdash \mathsf{true} \; : \; \mathsf{Bool}}$$
 (T-FALSE)

$$\frac{}{\Gamma \vdash \mathtt{false} \; : \; \mathtt{Bool}}$$
 (T-True)