1. Using a poisson distribution, I would represent the data as show below

	Number of corps with x deaths in a given year	NumberOfDeaths
139	144	0
97	91	1
34	32	2
8	11	3
1	2	4

```
table2 = cbind(table1, predicted)
colnames(table2)[3]="Poisson prediction"
table2 %>%
  kable() %>%
  column_spec(column = 1:3, width = "10em") %>%
  kable_styling(c("striped", "bordered"))
```

The best way to plot this particular horse kick data is using a bar diagram in my opinion, since we are trying to compared the actual data to the poison data

2.a for each column of the mrnaseq_count_data the boxcox transformation that can make them gaussian is

There does not seem to be a universal transform in this data due to there being an apex and a minimum in the transformation as well.

Looking at this graph I dont think a log transform would be good enough because each column of the data has a different value that would make it gassian