Ш



Europäisches Patentamt
European Patent Office
Office européen des brevets



11) Publication number:

0 632 048 A1

(12)

### **EUROPEAN PATENT APPLICATION**

- 21 Application number: 94109742.0
- (a) Int. Cl.6: **C07F** 9/6561, A61K 31/675

- 2 Date of filing: 23.06.94
- 3 Priority: 29.06.93 JP 159693/93
- 43 Date of publication of application: 04.01.95 Bulletin 95/01
- Designated Contracting States:
  AT BE CH DE DK ES FR GB GR IE IT LI LU NL
  PT SE
- Applicant: MITSUBISHI KASEI CORPORATION 5-2, Marunouchi 2-chome Chiyoda-ku Tokyo 100 (JP)
- Inventor: Takashima, Hideaki 3-23-1-8 Tuchihashi, Miyamae-ku Kawasaki-shi, Kanagawa-ken (JP) Inventor: Inoue, Naoko 2-6-3-108 Tachibanadai. Midori-ku Yokohama-shi, Kanagawa-ken (JP) Inventor: Ubasawa, Masaru 2864-3-2-506 Naracho, Midori-ku Yokohama-shi, Kanagawa-ken (JP) Inventor: Sekiya, Kouichi 23-4 Tanamachi, Midori-ku Yokohama-shi, Kanagawa-ken (JP) Inventor: Yabuuchi, Shingo 5-1 Tutujigaoka, Midori-ku Yokohama-shi, Kanagawa-ken (JP)
- Representative: ter Meer, Nicolaus, Dipl.-Chem., Dr. Patentanwälte TER MEER-MÜLLER-STEINMEISTER & PARTNER Mauerkircherstrasse 45 D-81679 München (DE)
- <sup>54</sup> Phosphonate-nucleotide ester derivatives.
- Thosphonate-nucleotide ester derivatives of the present invention have excellent antiviral activity and activity. Further, it can be orally administered.

#### BACKGROUND OF THE INVENTION

#### Field of the Invention

5

10

20

25

30

35

40

45

This invention relates to novel phosphonate-nucleotide ester derivatives or pharmaceutically acceptable salts thereof. More particularly, it relates to novel phosphonate-nucleotide ester derivatives or pharmaceutically acceptable salts thereof which can be orally administered as antiviral agents.

#### 2. Background of the Invention

Infectious viral diseases have been recognized as medically important problems. For treatment of such diseases, drugs having antiviral activity but no inhibitory activity on growth of normal cell lines have been

developed. For example, 9-(2-phosphonylmethoxy)ethyladenine (PMEA), 9-(2-phosphonylmethoxy)ethyl-2,6-diaminopurine (PMDAP) etc. have been reported to be effective on herpes simplex viruses type-I and II (HSV-1 and HSV-2), human immunodeficiency virus (HIV), hepatitis B virus (Yokota et al., Antimicrob. Agents Chemother., 35, 394 (1991); Votruba et al., Mol. Pharmacol., 32, 524 (1987)].

The problems of these nucleotides and ionic organophosphate esters are their deficiency of oral absorptivity [see, De Clercq et al., Antimicrob. Agents Chemother., 33, 185 (1989)]. Therefore, these compounds should be parenterally administered, for example, by intravenous or intramuscular injection, to attain sufficient blood concentration to elicit their effect.

However, it is difficult to apply treatment utilizing parenteral administration unless the subject is in a hospital. Accordingly, it is not a preferred method to treat subjects suffering from altricious diseases such as AIDS and HBV diseases. Accordingly, there required development of drugs which have antiviral activity and can be parenterally administered. Up to date, no drugs have been put into practical use.

#### SUMMARY OF THE INVENTION

The present inventors have studied intensively to solve the above problems. As the results, we have found that the object can be attained using a certain kind of phosphonatenucleotide esters, and have attained the present invention.

That is, the point of the present invention resides in phosphonatenucleotide ester derivatives of the following general formula (I):

(wherein ring A represents

50

(wherein  $R^1$  and  $R^2$  independently represent hydrogen, halogen, hydroxyl, mercapto,  $C_6$ - $C_{10}$  arylthio or amino),  $R^3$  represents  $C_1$ - $C_4$  alkyl or ethyl having one or more substituents selected from the group consisting of fluorine,  $C_1$ - $C_4$  alkoxy, phenoxy,  $C_7$ - $C_{10}$  phenylalkoxy and  $C_2$ - $C_5$  acyloxy;  $R^4$  represents ethyl having one or more substituents selected from the group consisting of fluorine,  $C_1$ - $C_4$  alkoxy, phenoxy,  $C_7$ - $C_{10}$  phenylalkoxy and  $C_2$ - $C_5$  acyloxy; X, Y and Z independently represent methyne or nitrogen atom); or pharmaceutically acceptable salts thereof.

# DETAILED DESCRIPTION OF THE INVENTION

The present invention will be explained in detail.

Phosphonate-nucleotide ester derivatives of the present invention are represented by the above general formula (I), halogen atoms in  $R^1$  and  $R^2$  include, for example, fluorine, chlorine, bromine, inodine;  $C_6$ - $C_{10}$  arylthio includes, for example, phenylthio, tolylthio, naphthylthio.  $C_1$ - $C_4$  alkylin  $R^3$  includes, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert-butyl.  $C_1$ - $C_4$  alkoxy as a substituent on ethyl in  $R^3$  includes, for example, methoxy, ethoxy, n-propoxy, i-propoxy, butoxy.  $C_7$ - $C_{10}$  phenylalkoxy includes, for example, phenyl- $C_1$ - $C_4$  alkoxy such as benzyloxy, phenethyloxy, phenyl-propoxy.  $C_2$ - $C_5$  acyloxy includes, for example, acetoxy, propionyloxy, butyryloxy, i-butyryloxy, valeryloxy.  $C_1$ - $C_4$  alkoxy,  $C_7$ - $C_{10}$  phenylalkoxy and  $C_2$ - $C_5$  acyloxy as substituents on ethyl in  $R^4$  include those on ethyl in  $R^3$ .

A preferred ring A in the above general formula (I) includes:

(wherein R¹ and R² independently represent hydrogen, halogen, hydroxyl, mercapto, C<sub>6</sub>-C<sub>10</sub> arylthio or amino).

A particularly preferred A is

55

20

25

$$\bigcap_{N \to \mathbb{R}^2}^{\mathbb{R}^1}$$

(wherein R¹ represents hydrogen, chlorine, hydroxyl, mercapto, tolylthio or amino; R² represents hydrogen, chlorine, iodine, hydroxyl or amino);

$$\begin{bmatrix} R^1 \\ N \end{bmatrix}^0$$

20 (wherein R¹ represents amino; R² represents hydrogen); or

$$\mathbb{R}^1$$
 $\mathbb{N}$ 
 $\mathbb{R}^2$ 

(wherein R1 and R2 represent amino).

 $R^3$  is preferably  $C_1$ - $C_3$  alkyl, 2,2,2-trifluoroethyl or an ethyl group having a substituent selected from a group consisting of  $C_1$ - $C_3$  alkoxy, phenoxy,  $C_7$ - $C_{10}$  phenylalkoxy and  $C_2$ - $C_5$  acyloxy. Particularly,  $C_1$ - $C_3$  alkyl or 2,2,2-trifluoroethyl is preferred.

 $R^4$  is preferably 2,2,2-trifluoroethyl or an ethyl group having a substituent selected from a group consisting of  $C_1$ - $C_3$  alkoxy, phenoxy,  $C_7$ - $C_{10}$  phenylalkoxy and  $C_2$ - $C_5$  acyloxy. Particularly, 2,2,2-trifluoroethyl is preferred. When  $R^3$  or  $R^4$  represents a substituted ethyl group, such an ethyl group is preferably substituted at 2-position. Further, at least one of  $R^3$  and  $R^4$  is preferably 2,2,2-trifluoroethyl. X and Z are preferably nitrogen atoms.

Phosphonate-nucleotide ester derivatives of the present invention represented by the above general formula (I) can form pharmaceutically acceptable salts thereof. Examples of such salt include, for example, in the presence of acidic groups, metal salt such as lithium, sodium, potassium, magnesium, calcium salt, ammonium salt such as methylammonium, dimethylammonium, trimethylammonium, dicyclohexylammonium; in the presence of basic groups, mineral salts such as hydrochloride, hydrobromide, sulfate, nitrate, phosphate, organic salts such as methanesulfonate, benzenesulfonate, paratoluenesulfonate, acetate, propionate, tartrate, fumarate, maleate, malate, oxalate, succinate, citrate, benzoate, mandelate, cinnamate, lactate.

Compounds of the present invention may form tautomers such as keto-enol tautomers depending on the substituents. Such tautomers are also included in the present invention.

Examples of the present compounds are shown in the following tables 1 to 7 (in the tables, P.S. indicates the position of the substituent:

55

50

5

15

25

30

$$- (CH2)2 - O - CH2 - P - OR3$$

as X, Y or Z; and C for X, Y or Z represents -CH = ).

25 .

|    | •     | Tab | 1 e | 1                                                               |                                                                 |   |   |   |       |
|----|-------|-----|-----|-----------------------------------------------------------------|-----------------------------------------------------------------|---|---|---|-------|
| 15 | Comp. | R۱  | R²  | R³                                                              | R⁴                                                              | X | Y | Z | P. S. |
|    | 1     | -Н  | -н  | —CH₃                                                            | -CF <sub>2</sub> CF <sub>3</sub>                                | N | С | N | X     |
| 20 | 2     | -Н  | -H  | −CH <sub>3</sub>                                                | -CF <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Z     |
|    | 3     | -H  | -H  | —CH <sub>3</sub> ··                                             | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | X     |
|    | 4     | -H  | -H  | −CH <sub>3</sub>                                                | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Z     |
| 25 | 5     | -H  | -H  | -CF <sub>2</sub> CF <sub>3</sub>                                | -CF <sub>2</sub> CF <sub>3</sub>                                | N | С | Ν | Х     |
|    | 6     | -H  | -H  | -CF <sub>2</sub> CF <sub>3</sub>                                | -CF <sub>2</sub> CF <sub>3</sub>                                | N | С | Ν | Z     |
|    | 7     | -H  | -H  | -CF <sub>2</sub> CF <sub>3</sub>                                | -CH <sub>2</sub> CF <sub>3</sub>                                | N | С | Ν | X     |
| 30 | 8     | -Н  | -н  | -CF <sub>2</sub> CF <sub>3</sub>                                | -CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Z     |
|    | 9     | -H  | -Н  | −CH <sub>2</sub> CF <sub>3</sub>                                | -CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | X     |
|    | 10    | -H  | -H  | -CH <sub>2</sub> CF <sub>3</sub>                                | -CH <sub>2</sub> CF <sub>3</sub>                                | Ν | С | Ν | Z     |
| 35 | 11    | -H  | -H  | —CH₂CH₂OCH₃                                                     | -CH <sub>2</sub> CF <sub>3</sub>                                | Ν | С | Ν | X     |
|    | 12    | -H  | -H  | -CH₂CH₂OCH₃                                                     | -CH <sub>2</sub> CF <sub>3</sub>                                | N | С | Ν | Z     |
|    | 1 3   | -Н  | -H  | -CH₂CH₂OCH₃                                                     | —CH₂CH₂OCH₃                                                     | Ν | С | Ν | X     |
| 40 | 1 4   | -Н  | -H  | —CH₂CH₂OCH₃                                                     | -CH₂CH₂OCH₃                                                     | N | С | N | Z     |
|    | 1 5   | -H  | -Н  | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> | Ν | С | Ν | X     |
| :  | 1 6   | -H  | -H  | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> | -CH2CH2OC2H5                                                    | Ν | С | Ν | Z     |
| 45 | 1 7   | -H  | -H  | —CH₂CH₂OC₃H <sub>7</sub>                                        | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> | N | С | N | X     |
|    | 1 8   | -H  | -H  | -CH₂CH₂OC₃H <sub>7</sub>                                        | -CH₂CH₂OC₃H <sub>7</sub>                                        | Z | С | N | Z     |
|    | 1 9   | -H  | -Н  | -CH₂CH₂OC <sub>6</sub> H₅                                       | -CH <sub>2</sub> CF <sub>3</sub>                                | N | С | Ν | X     |
| 50 | 2 0   | -H  | -н  | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Z     |
|    |       |     |     |                                                                 |                                                                 |   |   |   |       |

Table 1 (Continued)

|    |              |    |    | (OOH t TH d c d) |                                                                 |   |    |   |       |
|----|--------------|----|----|------------------|-----------------------------------------------------------------|---|----|---|-------|
| 5  | Comp.<br>No. | R' | R² | R³               | R'                                                              | X | Y  | Z | P. S. |
|    | 2 1          | -Н | -H | —CH₂CH₂OC₅H₅     | —CH₂CH₂OCH₃                                                     | Ν | С  | N | X     |
| 10 | 2 2          | -Н | -H | —CH₂CH₂OC₅H₅     | —CH₂CH₂OCH₃                                                     | N | С  | N | Z     |
|    | 2 3          | -Н | -H | —CH₂CH₂OC₅H₅     | —CH₂CH₂OC₅H₅                                                    | N | С  | N | X     |
| 15 | 2 4          | -Н | -H | —CH₂CH₂OC₅H₅     | -CH2CH2OC6H5                                                    | N | С  | Ν | Z     |
|    | 2 5          | -Н | -Н | —CH₂CH₂OCH₂C₅H₅  | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С  | N | X     |
|    | 26           | -н | -Н | -CH2CH2OCH2C6H5  | —CH₂CF₃                                                         | Ν | С  | Ν | Z     |
| 20 | 27           | -Н | -H | —CH₂CH₂OCH₂C6H5  | —CH₂CH₂OCH₃                                                     | N | С  | Ν | X     |
|    | 2 8          | -Н | -Н | —CH₂CH₂OCH₂C₅H₅  | -CH₂CH₂OCH₃                                                     | N | С  | N | Z     |
| 25 | 29           | -Н | -H | —CH₂CH₂OCH₂C₅H₅  | −CH2CH2OC6H5                                                    | N | С  | Z | X     |
|    | 3 0          | -н | -н | —CH₂CH₂OCH₂C6H5  | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | Ν | С  | N | Z     |
| 30 | 3 1          | -Н | -Н | —CH₂CH₂OCH₂C₅H₅  | —CH₂CH₂OCH₂C₅H₅                                                 | Ν | С  | N | X     |
|    | 3 2          | -Н | -Н | —CH₂CH₂OCH₂C₅H₅  | —CH2CH2OCH2C6H5                                                 | Ν | C. | Ν | Z     |
| 35 | 3 3          | -н | -H | —CH₂CH₂OC₂H₄C₅H₅ | -CH2CH2OC2H4C6H5                                                | N | С  | Ν | X     |
| 33 | 3 4          | -Н | -H | -CH2CH2OC2H4C6H5 | −CH2CH2OC2H4C6H5                                                | N | С  | Ν | Z     |
|    | 3 5          | -Н | -H | —CH₂CH₂OC(O)CH₃  | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С  | Ν | X     |
| 40 | 3 6          | -H | -H | —CH₂CH₂OC(O)CH₃  | −CH <sub>2</sub> CF <sub>3</sub>                                | Z | С  | Ν | Z     |
|    | 3 7          | -H | -H | —CH₂CH₂OC(O)CH₃  | -CH2CH2OCH3                                                     | N | C  | N | X     |
| 45 | 3 8          | -H | -H | -CH₂CH₂OC(O)CH₃  | -CH2CH2OCH3                                                     | Ν | С  | Ν | Z     |
|    | 3 9          | -Н | -H | —CH₂CH₂OC(O)CH₃  | —CH₂CH₂OC₅H₅                                                    | Ν | С  | Ν | X     |
| 50 | 4 0          | -н | -H | -CH₂CH₂OC(0)CH₃  | −CH2CH2OC6H5                                                    | Ν | С  | Ν | Z     |

Table 1 (Continued)

| Comp. | R¹ | R² | R³                                                                  | R <sup>4</sup>                                                      | X | Y | z | P. S. |
|-------|----|----|---------------------------------------------------------------------|---------------------------------------------------------------------|---|---|---|-------|
| 4 1   | -н | -Н | -CH₂CH₂OC(O)CH₃                                                     | -CH₂CH₂OCH₂C6H5                                                     | N | С | Ν | Х     |
| 4 2   | -н | -н | -CH₂CH₂OC(O)CH₃                                                     | -CH₂CH₂OCH₂C₅H₅                                                     | N | С | N | Z     |
| 4 3   | -Н | -Н | —CH₂CH₂OC(O)CH₃                                                     | —CH₂CH₂OC(0)CH₃                                                     | N | С | N | X     |
| 4 4   | -Н | -н | —CH₂CH₂OC(O)CH₃                                                     | -CH₂CH₂OC(O)CH₃                                                     | N | С | N | Z     |
| 4 5   | -H | -H | —CH2CH2OC(0)C2H5                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | N | С | Ν | X     |
| 4 6   | -H | -H | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | N | С | Ν | Z     |
| 47    | -Н | -H | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | Ν | С | N | X     |
| 4 8   | -н | -Н | -CH <sub>2</sub> CH <sub>2</sub> OC(O)C <sub>3</sub> H <sub>7</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | Ν | С | N | Z     |
| 4 9   | -Н | -Н | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | N | С | N | X     |
| 5 0   | -H | -Н | -CH <sub>2</sub> CH <sub>2</sub> OC(O)C <sub>4</sub> H <sub>9</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | Z | С | Ν | Z     |

Table 1 (Continued)

|    | _     | labi |     | CONTINUE                                                        |                                  |   |   |   |            |
|----|-------|------|-----|-----------------------------------------------------------------|----------------------------------|---|---|---|------------|
| 5  | Comp. | R¹   | R²  | R³                                                              | R4                               | X | Y | Z | P. S.      |
|    | 5 1   | -Н   | -он | −CH <sub>3</sub>                                                | −CF <sub>2</sub> CF <sub>3</sub> | N | С | N | X          |
| 10 | 5 2   | -Н   | -он | −CH <sub>3</sub>                                                | −CF <sub>2</sub> CF <sub>3</sub> | N | С | Ν | Z          |
|    | 5.3   | -Н   | -он | -CH₃                                                            | −CH <sub>2</sub> CF <sub>3</sub> | N | С | N | X          |
| 15 | 5 4   | -Н   | -он | −CH <sub>3</sub>                                                | -CH₂CF₃                          | N | С | N | Z          |
| •  | 5 5   | -Н   | -он | -CF <sub>2</sub> CF <sub>3</sub>                                | -CF₂CF₃                          | Ν | С | Ν | X          |
| 20 | 5 6   | -Н   | -он | -CF <sub>2</sub> CF <sub>3</sub>                                | −CF <sub>2</sub> CF <sub>3</sub> | N | С | N | Z          |
| 20 | 5 7   | -Н   | -он | -CF <sub>2</sub> CF <sub>.3</sub>                               | −CH₂CF₃                          | Ν | С | Ν | X          |
|    | 5 8   | -Н   | -он | -CF <sub>2</sub> CF <sub>3</sub>                                | −CH <sub>2</sub> CF <sub>3</sub> | N | С | Ν | Z          |
| 25 | 5 9   | -Н   | -он | -CH <sub>2</sub> CF <sub>3</sub>                                | −CH <sub>2</sub> CF <sub>3</sub> | Ν | С | N | X          |
|    | 6.0   | -Н   | -он | -CH <sub>2</sub> CF <sub>3</sub>                                | −CH <sub>2</sub> CF <sub>3</sub> | Ν | С | N | $_{_{I}}Z$ |
| 30 | 6 1   | -Н   | -он | -CH₂CH₂OCH₃                                                     | -CH <sub>2</sub> CF <sub>3</sub> | Ν | С | N | X          |
|    | 6 2   | -н   | -он | —CH₂CH₂OCH₃                                                     | −CH <sub>2</sub> CF <sub>3</sub> | N | С | Ν | Z          |
| 35 | 6 3   | -Н   | -он | -CH2CH2OCH3                                                     | —CH₂CH₂OCH₃                      | N | С | N | X          |
|    | 6 4   | -Н   | -он | —CH2CH2OCH3                                                     | —CH₂CH₂OCH₃                      | N | С | N | Z          |
| 40 | 6 5   | -Н   | -он | —CH2CH2OC2H5                                                    | -CH2CH2OC2H5                     | N | С | N | X          |
|    | 6 6   | -Н   | -он | -CH2CH2OC2H5                                                    | −CH2CH2OC2H5                     | N | С | N | Z          |
|    | 6 7   | -н   | -OH | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> | -CH2CH2OC3H7                     | N | С | N | X          |
| 45 | 6 8   | -н   | -он | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> | —CH₂CH₂OC₃H <sub>7</sub>         | N | С | N | Z          |
|    | 6 9   | -н   | -он | -CH2CH2OC6H5                                                    | −CH <sub>2</sub> CF <sub>3</sub> | N | С | N | X          |
| 50 | 7 0   | -Н   | -он | -CH2CH2OC6H5                                                    | −CH₂CF₃                          | N | С | N | Z          |

Table 1 (Continued)

|    |             | 101 |     | (Continued)                                           |                                                                                 |   |   |   |       |
|----|-------------|-----|-----|-------------------------------------------------------|---------------------------------------------------------------------------------|---|---|---|-------|
| 5  | Comp.<br>Na | R۱  | R²  | R³                                                    | R4                                                                              | Х | Y | z | P. S. |
|    | 7 1         | -Н  | OH  | -CH₂CH₂OC₀H₅                                          | -CH₂CH₂OCH₃                                                                     | Ν | С | N | X     |
| 10 | 7 2         | -H  | -он | -CH2CH2OC6H5                                          | —CH₂CH₂OCH₃                                                                     | Ν | С | Ν | Z     |
|    | 7 3         | -H  | -он | -CH2CH2OC6H5                                          | —CH₂CH₂OC₅H₅                                                                    | Ν | С | N | Х     |
| 15 | 7 4         | -Н  | -он | -CH2CH2OC6H5                                          | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub>                 | N | С | Ν | Z     |
|    | 7 5         | -H  | -он | —CH2CH2OCH2C6H5                                       | −CH <sub>2</sub> CF <sub>3</sub>                                                | Ν | С | N | Х     |
|    | 7 6         | -H  | -OH | -CH2CH2OCH2C6H5                                       | −CH <sub>2</sub> CF <sub>3</sub>                                                | N | С | Ν | Z     |
| 20 | 77          | -H  | -он | —CH2CH2OCH2C6H5                                       | —CH₂CH₂OCH₃                                                                     | Ν | С | N | Х     |
|    | 7 8         | -H  | -он | —CH₂CH₂OCH₂C₅H₅                                       | —CH₂CH₂OCH₃                                                                     | N | С | Ν | Z     |
| 25 | 7 9         | -H  | -он | -CH2CH2OCH2C6H5                                       | —CH₂CH₂OC6H5                                                                    | Ν | С | Ν | Х     |
|    | 8 0         | -H  | -OH | -CH2CH2OCH2C6H5                                       | —CH₂CH₂OC6H5                                                                    | N | С | N | Z     |
| 30 | 8 1         | -H  | -OH | —CH2CH2OCH2C6H5                                       | −CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | N | С | Ν | X     |
|    | 8 2         | -Н  | -0H | —CH2CH2OCH2C6H5                                       | -CH2CH2OCH2C6H5                                                                 | Ν | С | N | Z     |
| 35 | 8 3         | -H  | -OH | -CH2CH2OC2H4C6H5                                      | -CH2CH2OC2H4C6H5                                                                | Ν | С | Ν | X     |
|    | 8 4         | -H  | -он | -CH2CH2OC2H4C6H5                                      | -CH2CH2OC2H4C6H5                                                                | N | С | N | Z     |
|    | 8 5         | -H  | -OH | —CH₂CH₂OC(O)CH₃                                       | −CH <sub>2</sub> CF <sub>3</sub>                                                | N | С | N | X     |
| 40 | 8 6         | -H  | -он | —CH₂CH₂OC(0)CH₃                                       | −CH₂CF₃                                                                         | Ν | С | N | Z     |
|    | 8 7         | -H  | -он | -CH2CH2OC(0)CH3                                       | —CH₂CH₂OCH₃                                                                     | Ν | С | N | X     |
| 45 | 8 8         | -H  | -он | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> | —CH₂CH₂OCH₃                                                                     | N | С | Ν | Z     |
| i  | 8 9         | -H  | -OH | −CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub>                 | Ν | С | Ν | X     |
| 50 | 9 0         | -H  | -OH | -CH₂CH₂OC(0)CH₃                                       | -CH₂CH₂OC6H5                                                                    | N | С | N | Z     |

Table 1 (Continued)

| Comp. | R' | R²   | R³                                                    | R4                                                                  | X | Y | Z | P. S. |
|-------|----|------|-------------------------------------------------------|---------------------------------------------------------------------|---|---|---|-------|
| 9 1   | -Н | -он  | -CH2CH2OC(O)CH3                                       | —CH₂CH₂OCH₂C6H5                                                     | N | С | N | X     |
| 9 2   | -н | -он  | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> | —CH₂CH₂OCH₂C₅H₅                                                     | N | C | N | Z     |
| 9 3   | -Н | -он  | -CH2CH2OC(O)CH3                                       | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH₃                           | Ν | Ċ | Ν | X     |
| 9 4.  | -Н | -он  | -CH2CH2OC(0)CH3                                       | —CH₂CH₂OC(O)CH₃                                                     | N | С | N | Z     |
| 9 5   | -H | -он  | -CH2CH2OC(0)C2H5                                      | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | Ν | C | N | X     |
| 9 6   | -Н | -OH  | -CH2CH2OC(0)C2H5                                      | -CH₂CH₂OC(0)C₂H₅                                                    | Ν | С | N | Z     |
| 9 7   | -Н | -он  | -CH2CH2OC(0)C3H7                                      | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | N | С | N | X     |
| 9 8   | -н | -он. | -CH2CH2OC(0)C3H7                                      | -CH2CH2OC(0)C3H7                                                    | Ν | С | N | Z     |
| 9 9   | -Н | -он  | -CH2CH2OC(0)C4H9                                      | -CH2CH2OC(O)C4Hs                                                    | Ν | С | N | X     |
| 1 0 0 | -н | -OH  | -CH2CH2OC(0)C4H9                                      | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | Ν | С | N | Z     |

Table 1 (Continued)

|    | _     | abı | • •              | (Continued)                                                     |                                                                 |    |    |   |       |
|----|-------|-----|------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|----|----|---|-------|
| 5  | Comp. | R¹  | R²               | R³                                                              | R <sup>4</sup>                                                  | X  | Y  | Z | P. S. |
|    | 1 0 1 | -Н  | -NH <sub>2</sub> | —CH₃                                                            | -CF <sub>2</sub> CF <sub>3</sub>                                | N  | С  | N | Х     |
| 10 | 102   | -Н  | -NH <sub>2</sub> | —CH₃                                                            | -CF <sub>2</sub> CF <sub>3</sub>                                | Ν  | С  | N | Z     |
|    | 1 0 3 | -н  | -NH2             | —СН₃                                                            | −CH <sub>2</sub> CF <sub>3</sub>                                | N  | С  | N | X     |
| 15 | 104   | -Н  | -NH <sub>2</sub> | —CH₃                                                            | −CH <sub>2</sub> CF <sub>3</sub>                                | N  | С  | N | Z     |
|    | 1 0 5 | -Н  | −NH₂             | -CF <sub>2</sub> CF <sub>3</sub>                                | −CF₂CF₃                                                         | N  | С  | Ν | X     |
| 20 | 106   | -Н  | -NH2             | -CF <sub>2</sub> CF <sub>3</sub>                                | -CF <sub>2</sub> CF <sub>3</sub>                                | Ν  | ·C | N | Z     |
|    | 107   | -Н  | -NH2             | -CF <sub>2</sub> CF <sub>3</sub>                                | −CH <sub>2</sub> CF <sub>3</sub>                                | N  | С  | Ν | X     |
|    | 108   | -н  | -NH <sub>2</sub> | -CF <sub>2</sub> CF <sub>3</sub>                                | −CH₂CF₃                                                         | Ν  | C  | N | Z     |
| 25 | 1 0 9 | -Н  | -NH2             | -CH₂CF₃                                                         | −CH <sub>2</sub> CF <sub>3</sub>                                | N  | С  | N | X     |
| •  | 1 1 0 | -н  | -NH2             | -CH <sub>2</sub> CF <sub>3</sub>                                | -CH <sub>2</sub> CF <sub>3</sub>                                | N  | С  | N | Z     |
| 30 | 111   | -Н  | -NH2             | -CH₂CH₂OCH₃                                                     | -CH₂CF₃                                                         | N. | С  | N | X     |
|    | 112   | -Н  | -NH2             | -CH₂CH₂OCH₃                                                     | −CH <sub>2</sub> CF <sub>3</sub>                                | N  | С  | N | Z     |
| 35 | 1 1 3 | -Н  | -NH <sub>2</sub> | -CH₂CH₂OCH₃                                                     | —CH₂CH₂OCH₃                                                     | N  | С  | N | X     |
|    | 1 1 4 | -н  | -NH2             | -CH₂CH₂OCH₃                                                     | —CH₂CH₂OCH₃                                                     | N  | С  | N | Z     |
| 40 | 1 1 5 | -н  | -NH2             | -CH₂CH₂OC₂H₅                                                    | -CH2CH2OC2H5                                                    | N  | С  | N | X     |
| 40 | 1 1 6 | -н  | -NH2             | -CH₂CH₂OC₂H₅                                                    | -CH2CH2OC2H5                                                    | N  | С  | N | Z     |
|    | 117   | -н  | -NH2             | −CH₂CH₂OC₃H₁                                                    | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> | N  | С  | N | X     |
| 45 | 1 1 8 | -Н  | −NH₂             | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> | -CH2CH2OC3H7                                                    | N  | С  | N | Z     |
|    | 1 1 9 | -н  | -NH2             | -CH₂CH₂OC₅H₅                                                    | -CH <sub>2</sub> CF <sub>3</sub>                                | N  | С  | N | X     |
| 50 | 120   | -Н  | -NH <sub>2</sub> | -CH₂CH₂OC 6H5                                                   | −CH₂CF₃                                                         | N  | С  | N | z     |

55

Table 1 (Continued)

|    | Comp. |    |                  |                                                                                               |                                                                                               |   | 1 |   |       |
|----|-------|----|------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---|---|---|-------|
| 5  | Na.   | R¹ | R²               | R³                                                                                            | R⁴                                                                                            | X | Y | Z | P. S. |
|    | 121   | -н | -NH2             | -CH2CH2OC6H5                                                                                  | -CH₂CH₂OCH₃                                                                                   | N | С | N | X     |
|    | 122   | -H | -NH <sub>2</sub> | -CH2CH2OC6H5                                                                                  | -CH₂CH₂OCH₃                                                                                   | N | С | N | z     |
| 10 | 123   | -H | -NH2             | -CH2CH2OC6H5                                                                                  | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub>                               | Ν | С | Ν | X     |
|    | 124   | -Н | -NH2             | -CH2CH2OC6H5                                                                                  | -CH2CH2OC6H5                                                                                  | Ν | С | N | Z     |
| 15 | 125   | -H | -NH2             | -CH2CH2OCH2C6H5                                                                               | −CH <sub>2</sub> CF <sub>3</sub>                                                              | Ν | С | N | X     |
|    | 1 2 6 | -H | -NH <sub>2</sub> | -CH2CH2OCH2C6H5                                                                               | −CH <sub>2</sub> CF <sub>3</sub>                                                              | Ν | С | N | Z     |
| 20 | 127   | -H | -NH2             | -CH2CH2OCH2C6H5                                                                               | −CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>                                             | N | С | Ν | Х     |
|    | 128   | -Н | -NH2             | —CH2CH2OCH2C6H5                                                                               | —CH₂CH₂OCH₃                                                                                   | Ν | С | N | Z     |
| 25 | 1 2 9 | -H | -NH2             | —CH2CH2OCH2C6H5                                                                               | −CH2CH2OC6H5                                                                                  | N | С | N | X     |
|    | 1 3 0 | -Н | −NH₂             | -CH2CH2OCH2C6H5                                                                               | -CH2CH2OC6H5                                                                                  | N | С | Ν | Z     |
| 30 | 1 3 1 | -Н | -NH <sub>2</sub> | -CH₂CH₂OCH₂C6H5                                                                               | -CH2CH2OCH2C6H5                                                                               | N | С | Ν | Х     |
| 30 | 1 3 2 | -H | -NH2             | -CH2CH2OCH2C6H5                                                                               | -CH2CH2OCH2C6H5                                                                               | N | С | N | Z     |
|    | 1 3 3 | -н | -NH2             | -CH2CH2OC2H4C6H5                                                                              | -CH2CH2OC2H4C6H5                                                                              | N | С | N | X     |
| 35 | 1 3 4 | -Н | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub> C <sub>6</sub> H <sub>5</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub> C <sub>6</sub> H <sub>5</sub> | N | С | N | Z     |
|    | 1 3 5 | -Н | -NH <sub>2</sub> | -CH₂CH₂OC(O)CH₃                                                                               | −CH <sub>2</sub> CF <sub>3</sub>                                                              | N | С | N | X     |
| 40 | 1 3 6 | -Н | -NH2             | -CH₂CH₂OC(O)CH₃                                                                               | −CH <sub>2</sub> CF <sub>3</sub>                                                              | N | С | N | Z     |
|    | 1 3 7 | -н | -NH <sub>2</sub> | -CH2CH2OC(0)CH3                                                                               | -CH₂CH₂OCH₃                                                                                   | N | С | N | X     |
| 45 | 138   | -н | -NH2             | -CH₂CH₂OC(0)CH₃                                                                               | -CH₂CH₂OCH₃                                                                                   | N | С | N | Z     |
|    | 1 3 9 | -н | -NH <sub>2</sub> | -CH₂CH₂OC(0)CH₃                                                                               | -CH2CH2OC6H5                                                                                  | N | С | N | Χ     |
| 50 | 1 4 0 | -н | -NH2             | -CH₂CH₂OC(O)CH₃                                                                               | -CH₂CH₂OC 6H5                                                                                 | N | С | N | Z     |
|    |       |    |                  |                                                                                               |                                                                                               |   |   |   |       |

Table 1 (Continued)

|              | 101 | - 1 (( | Jon t Inde dy                                                       |                                                                     |   |   |   |       |
|--------------|-----|--------|---------------------------------------------------------------------|---------------------------------------------------------------------|---|---|---|-------|
| Comp.<br>No. | R¹  | R²     | R³                                                                  | R4                                                                  | х | Y | z | P. S. |
| 1 4 1        | -Н  | −NH₂   | -CH₂CH₂OC(O)CH₃                                                     | -CH2CH2OCH2C6H5                                                     | N | С | N | X     |
| 1 4 2        | -Н  | −NH₂   | -CH₂CH₂OC(O)CH₃                                                     | -CH₂CH₂OCH₂C₅H₅                                                     | N | С | N | Z     |
| 1 4 3        | -Н  | −NH₂   | -CH₂CH₂OC(O)CH₃                                                     | -CH₂CH₂OC(0)CH₃                                                     | N | С | N | X     |
| 1 4 4        | -Н  | -NH2   | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH₂CH₂OC(0)CH₃                                                     | N | С | N | Z     |
| 1 4 5        | -H  | −NH₂   | -CH2CH2OC(0)C2H5                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | N | С | N | X     |
| 146          | -Н  | −NH₂   | -CH2CH2OC(0)C2H5                                                    | -CH2CH2OC(0)C2H5                                                    | N | С | N | Z     |
| 147          | -H  | −NH₂   | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7                                                    | N | С | N | X     |
| 1 4 8        | -H  | -NH2   | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7                                                    | N | С | Ν | Z     |
| 1 4 9        | -Н  | -NH2   | -CH2CH2OC(0)C4H9                                                    | -CH2CH2OC(0)C4H9                                                    | N | С | Ν | X     |
| 150          | -H  | -NH2   | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH2CH2OC(0)C4H9                                                    | Ν | С | N | Z     |

5

Table 1 (Continued)

| 5  | Comp.<br>Na | R¹  | R² | R³                                | R⁴                                                              | X | Y | Z | P. S. |
|----|-------------|-----|----|-----------------------------------|-----------------------------------------------------------------|---|---|---|-------|
|    | 151         | -он | -Н | −CH <sub>3</sub>                  | −CF <sub>2</sub> CF <sub>3</sub>                                | N | С | N | X     |
| 10 | 152         | -он | -Н | −СН₃                              | -CF <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Z     |
|    | 153         | -ОН | -Н | —СН₃                              | −CH <sub>2</sub> CF <sub>3</sub>                                | Ν | С | N | Х     |
| 15 | 154         | -он | -Н | −СН₃                              | −CH <sub>2</sub> CF₃                                            | Ν | С | Ν | Z     |
|    | 155         | -он | -H | -CF <sub>2</sub> CF <sub>3</sub>  | -CF <sub>2</sub> CF <sub>3</sub>                                | Ν | С | Ν | Х     |
| 20 | 156         | -он | -H | -CF <sub>2</sub> CF <sub>3</sub>  | -CF <sub>2</sub> CF <sub>3</sub>                                | Ν | С | Z | Z     |
|    | 157         | -он | -H | -CF <sub>2</sub> CF <sub>.3</sub> | —CH₂CF₃                                                         | Ν | С | N | X     |
|    | 158         | -он | -н | -CF <sub>2</sub> CF <sub>3</sub>  | —CH₂CF₃                                                         | Ν | С | N | Z     |
| 25 | 1 5 9       | -он | -Н | -CH <sub>2</sub> CF <sub>3</sub>  | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Х     |
|    | 160         | -он | -н | -CH <sub>2</sub> CF <sub>3</sub>  | —CH₂CF₃                                                         | Ν | С | Ν | . Z   |
| 30 | 1 6 1       | -он | -н | -CH₂CH₂OCH₃                       | -CH₂CF₃                                                         | N | С | Ν | X     |
|    | 162         | -он | -H | -CH₂CH₂OCH₃                       | -CH₂CF₃                                                         | Ν | С | Ν | Z     |
| 35 | 163         | -он | -H | -CH₂CH₂OCH₃                       | —CH₂CH₂OCH₃                                                     | Ν | С | Ν | Х     |
| :  | 164         | -он | -H | -CH2CH2OCH3                       | —CH₂CH₂OCH₃                                                     | Ν | С | Ν | Z     |
| 40 | 1 6 5       | -он | -Н | -CH2CH2OC2H5                      | —CH2CH2OC2H5                                                    | N | С | N | X     |
|    | 166         | -он | -H | -CH2CH2OC2H5                      | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> | Ν | С | N | Z     |
|    | 167         | -он | -H | -CH2CH2OC3H7                      | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> | N | С | N | X     |
| 45 | 1 6 8       | -он | -H | −CH2CH2OC3H7                      | -CH₂CH₂OC₃H7                                                    | Ν | С | N | Z     |
|    | 169         | -он | -Н | —CH₂CH₂OC₅H₅                      | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Х     |
| 50 | 170         | -он | -H | -CH2CH2OC6H5                      | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Z     |

Table 1 (Continued)

| Comp. | R¹  | R² | R³                                                    | R <sup>4</sup>                                                  | х  | Y | z  | P. S. |
|-------|-----|----|-------------------------------------------------------|-----------------------------------------------------------------|----|---|----|-------|
| 171   | -ОН | -Н | —CH₂Ch. OC₅Hs                                         | CH₂CH₂OCH₃                                                      | Ν  | С | N  | X     |
| 1,72  | -он | -Н | —CH2CH2OC6H5                                          | —CH₂CH₂OCH₃                                                     | Z  | С | N  | Z     |
| 173   | -он | -H | —CH2CH2OC6H5                                          | —CH₂CH₂OC₅H₅                                                    | N  | С | Ν  | X     |
| 174   | -ОН | -Н | —CH₂CH₂OC₅H₅                                          | —CH₂CH₂OC₅H₅                                                    | N  | С | Ν  | Z     |
| 1 7 5 | -OH | -H | —CH2CH2OCH2C6H5                                       | -CH₂CF₃                                                         | N  | С | Ν  | X     |
| 176   | -он | -Н | -CH2CH2OCH2C6H5                                       | −CH <sub>2</sub> CF <sub>3</sub>                                | N. | С | Ν  | Z     |
| 177   | -он | -H | -CH2CH2OCH2C6H5                                       | −CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>               | N  | С | N. | X     |
| 1 7 8 | -ОН | -H | -CH2CH2OCH2C6H5                                       | —CH₂CH₂OCH₃                                                     | N  | С | N  | Z     |
| 179   | -он | -Н | -CH2CH2OCH2C6H5                                       | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | N  | С | N  | Х     |
| 180   | -он | -H | —CH2CH2OCH2C6H5                                       | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | N  | С | N  | Z     |
| 181   | -он | -H | —CH2CH2OCH2C6H5                                       | —CH₂CH₂OCH₂C₅H₅                                                 | N  | С | N  | Х     |
| 182   | -он | -H | -CH2CH2OCH2C6H5                                       | -CH2CH2OCH2C6H5                                                 | N  | С | N  | Z     |
| 183   | -он | -H | -CH2CH2OC2H4C6H5                                      | -CH2CH2OC2H4C6H5                                                | N  | С | N  | X     |
| 184   | -он | -H | -CH2CH2OC2H4C6H5                                      | -CH2CH2OC2H4C6H5                                                | N  | С | N  | Z     |
| 185   | -он | -Н | -CH₂CH₂OC(0)CH₃                                       | −CH₂CF₃                                                         | N  | С | N  | X     |
| 186   | -он | -Н | -CH2CH2OC(0)CH3                                       | −CH₂CF₃                                                         | N  | С | Ņ  | Z     |
| 187   | -он | -н | -CH₂CH₂OC(0)CH₃                                       | —CH₂CH₂OCH₃                                                     | N  | С | N  | X     |
| 188   | -он | -H | —CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> | —CH₂CH₂OCH₃                                                     | N  | С | N  | Z     |
| 1 8 9 | -он | -H | -CH₂CH₂OC(0)CH₃                                       | -CH2CH2OC6H5                                                    | N  | С | N  | X     |
| 190   | -он | -н | -CH₂CH₂OC(0)CH₃                                       | −CH2CH2OC6H5                                                    | N  | С | N  | Z     |

Table 1 (Continued)

| Comp. | R'  | R² | R³                                                                  | R <sup>4</sup>                                                      | X | Y  | Z | P. S. |
|-------|-----|----|---------------------------------------------------------------------|---------------------------------------------------------------------|---|----|---|-------|
| 1 9 1 | -он | -H | -CH₂CH₂OC(0)CH₃                                                     | -CH2CH2OCH2C6H5                                                     | N | С  | N | X     |
| 1 9 2 | -он | -Н | -CH₂CH₂OC(O)CH₃                                                     | -CH2CH2OCH2C6H5                                                     | Ν | С  | Ν | Z     |
| 1 9 3 | -он | -H | -CH₂CH₂OC(O)CH₃                                                     | -CH2CH2OC(O)CH3                                                     | N | С  | Ν | X     |
| 194   | -он | -H | -CH2CH2OC(O)CH3                                                     | -CH₂CH₂OC(O)CH₃                                                     | N | С  | N | Z     |
| 1 9 5 | -он | -Н | -CH2CH2OC(0)C2H5                                                    | -CH2CH2OC(0)C2H5                                                    | N | С  | N | X     |
| 1 9 6 | -он | -H | -CH2CH2OC(0)C2H5                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | N | С  | N | Z     |
| 197   | -он | -Н | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(O)C3H7                                                    | N | С  | N | Х     |
| 1 9 8 | -он | -н | -CH2CH2OC(0)C3H7                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | N | С  | N | Z     |
| 199   | -он | -н | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | N | С  | N | Х     |
| 200   | -он | -н | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH2CH2OC(0)C4H9                                                    | N | C. | N | Z     |

Table 1 (Continued)

| 1     | `able | 1 ( | (Continued)                      |                                  | - т |   |   | <del></del> - |
|-------|-------|-----|----------------------------------|----------------------------------|-----|---|---|---------------|
| Comp. | R'    | R²  | R³                               | R <sup>4</sup>                   | X   | Y | z | P. S.         |
| 2 0 1 | -ОН   | -он | −CH <sub>3</sub>                 | -CF <sub>2</sub> CF <sub>3</sub> | N   | С | N | X             |
| 202   | -он   | -он | −CH <sub>3</sub>                 | -CF <sub>2</sub> CF <sub>3</sub> | Ν   | С | Ν | Z             |
| 203   | -он   | -он | −CH <sub>3</sub>                 | -CH₂CF₃                          | Ν   | С | Ν | X             |
| 204   | -он   | -ОН | —СН₃                             | −CH <sub>2</sub> CF <sub>3</sub> | N   | С | Ν | Z             |
| 205   | -он   | -он | -CF <sub>2</sub> CF <sub>3</sub> | −CF₂CF₃                          | N   | С | Ν | X             |
| 206   | -он   | -он | −CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub> | N   | С | Ν | Z             |
| 207   | -ОН   | -OH | -CF <sub>2</sub> CF <sub>3</sub> | −CH <sub>2</sub> CF <sub>3</sub> | N   | С | Ν | X             |
| 2.08  | -он   | -он | -CF <sub>2</sub> CF <sub>3</sub> | −CH <sub>2</sub> CF <sub>3</sub> | N   | С | N | Z             |
| 209   | -он   | -ОН | −CH <sub>2</sub> CF <sub>3</sub> | -CH₂CF₃                          | N   | С | N | X             |
| 210   | -он   | -OH | -CH <sub>2</sub> CF <sub>3</sub> | −CH <sub>2</sub> CF <sub>3</sub> | N   | С | N | Z             |
| 2 1 1 | -он   | -он | -CH₂CH₂OCH₃                      | −CH₂CF₃                          | N   | С | N | X             |
| 2 1 2 | -он   | -он | -CH₂CH₂OCH₃                      | -CH <sub>2</sub> CF <sub>3</sub> | N   | С | N | Z             |
| 2 1 3 | -он   | -он | -CH2CH2OCH3                      | −CH₂CH₂OCH₃                      | N   | С | N | X             |
| 2 1 4 | -он   | -он | -CH₂CH₂OCH₃                      | −CH₂CH₂OCH₃                      | N   | С | N | Z             |
| 2 1 5 | -он   | -он | −CH2CH2OC2H5                     | -CH2CH2OC2H5                     | N   | С | N | X             |
| 2 i 6 | -он   | -он | -CH2CH2OC2H5                     | -CH₂CH₂OC₂H₅                     | N   | С | N | Z             |
| 21.7  | -он   | -он | -CH₂CH₂OC₃H₁                     | -CH₂CH₂OC₃H₁                     | N   | С | N | X             |
| 2 1 8 | -он   | -он | -CH₂CH₂OC₃H₁                     | -CH₂CH₂OC₃H₁                     | N   | С | N | Z             |
| 2 1 9 | -он   | -он | -CH2CH2OC6H5                     | -CH <sub>2</sub> CF <sub>3</sub> | N   | С | N | X             |
| 2 2 0 | -он   | -он | -CH₂CH₂OC₅H₅                     | -CH₂CF₃                          | N   | c | N | Z             |

Table 1 (Continued)

|    |       | DIE |     | On trinaca,                                                     |                                                                 |   |   |   |       |
|----|-------|-----|-----|-----------------------------------------------------------------|-----------------------------------------------------------------|---|---|---|-------|
| 5  | Comp. | R¹  | R²  | R³                                                              | R4                                                              | Х | Y | Z | P. S. |
|    | 2 2 1 | -он | -он | —CH2CH2OC6H5                                                    | −CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>               | N | С | N | X     |
| 10 | 2 2 2 | -он | -ОН | -CH2CH2OC6H5                                                    | —CH₂CH₂OCH₃                                                     | N | С | N | Z     |
|    | 2 2 3 | -он | -он | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | -CH2CH2OC6H5                                                    | N | С | Ν | X     |
| 15 | 224   | -он | -он | -CH <sub>2</sub> CH <sub>2</sub> 0C <sub>6</sub> H <sub>5</sub> | -CH2CH2OC6H5                                                    | Ν | С | N | Z     |
|    | 2 2 5 | -он | -он | -CH2CH2OCH2C6H5                                                 | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | X     |
|    | 2 2 6 | -он | -он | -CH₂CH₂OCH₂C₅H₅                                                 | -CH₂CF₃                                                         | Ν | С | N | Z     |
| 20 | 227   | -он | -он | -CH2CH2OCH2C6H5                                                 | -CH₂CH₂OCH₃                                                     | N | С | Ν | X     |
|    | 2 2 8 | -он | -он | -CH2CH2OCH2C6H5                                                 | -CH₂CH₂OCH₃                                                     | Ν | С | N | Z     |
| 25 | 229   | -он | -он | -CH2CH2OCH2C6H5                                                 | -CH <sub>2</sub> CH <sub>2</sub> OC ₅H <sub>5</sub>             | N | С | N | Х     |
|    | 2 3 0 | -ОН | -он | -CH2CH2OCH2C6H5                                                 | -CH2CH2OC6H5                                                    | N | С | Ν | Z     |
| 30 | 2 3 1 | -он | -он | -CH2CH2OCH2C6H5                                                 | -CH2CH2OCH2C6H5                                                 | N | С | N | X     |
|    | 2 3 2 | -он | -он | -CH2CH2OCH2C6H5                                                 | -CH2CH2OCH2C6H5                                                 | N | С | Ν | Z     |
| 35 | 2 3 3 | -он | -он | -CH2CH2OC2H4C6H5                                                | -CH2CH2OC2H4C6H5                                                | N | С | N | X     |
|    | 2 3 4 | -он | -он | -CH2CH2OC2H4C6H5                                                | -CH2CH2OC2H4C6H5                                                | N | С | N | Z     |
| 40 | 2 3 5 | -он | -он | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>           | -CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | X.    |
| 40 | 2 3 6 | -он | -он | -CH₂CH₂OC(0)CH₃                                                 | -CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Z     |
|    | 237   | -он | -он | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>           | −CH₂CH₂OCH₃                                                     | N | С | N | X     |
| 45 | 2 3 8 | -он | -он | -CH₂CH₂OC(0)CH₃                                                 | −CH₂CH₂OCH₃                                                     | N | С | N | Z     |
|    | 2 3 9 | -он | -он | -CH₂CH₂OC(O)CH₃                                                 | -CH₂CH₂OC₅H₅                                                    | N | С | N | Х     |
| 50 | 2 4 0 | -он | -он | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>           | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | N | С | N | Z     |

Table 1 (Continued)

| Comp. | R'  | R²  | R³                                                                  | R⁴                                                                  | X | Y | Z | P. S. |
|-------|-----|-----|---------------------------------------------------------------------|---------------------------------------------------------------------|---|---|---|-------|
| 2 4 1 | -он | -OH | -CH <sub>2</sub> CH <sub>2</sub> OC(0)Ch <sub>2</sub>               | -CH2CH2OCH2C6H5                                                     | N | С | N | X     |
| 2 4 2 | -он | -OH | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH2CH2OCH2C6H5                                                     | N | С | N | Z     |
| 2 4 3 | -он | -OH | —CH₂CH₂OC(0)CH₃                                                     | -CH2CH2OC(0)CH3                                                     | Ν | С | N | X     |
| 2 4 4 | -он | -он | -CH₂CH₂OC(0)CH₃                                                     | -CH₂CH₂OC(O)CH₃                                                     | N | С | N | Z     |
| 2 4 5 | -он | -он | -CH2CH2OC(0)C2H5                                                    | -CH2CH2OC(0)C2H5                                                    | N | С | N | X     |
| 2 4 6 | -ОН | -он | -CH2CH2OC(0)C2H5                                                    | -CH2CH2OC(O)C2H5                                                    | N | С | N | Z     |
| 2 4 7 | -ОН | -ОН | -CH₂CH₂OC(0)C₃H₁                                                    | -CH2CH2OC(0)C3H7                                                    | N | С | Ν | X     |
| 2 4 8 | -он | -он | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7                                                    | N | С | N | Z     |
| 2 4 9 | -он | -OH | -CH2CH2OC(0)C4H9                                                    | -CH2CH2OC(0)C4H9                                                    | N | С | N | X     |
| 250   | -он | -он | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | N | С | Ν | Z     |

Table 1 (Continued)

|    | 1                   | able | : 1 (C           | ontinued)                                         |                                                                 |   |   |   |       |
|----|---------------------|------|------------------|---------------------------------------------------|-----------------------------------------------------------------|---|---|---|-------|
| 5  | Сотр.<br><b>No.</b> | R¹   | R²               | R³                                                | R4                                                              | Х | Y | Z | P. S. |
|    | 251                 | -он  | -NH2             | −CH₃                                              | -CF <sub>2</sub> CF <sub>3</sub>                                | N | С | Ν | X     |
| 10 | 252                 | -он  | -NH <sub>2</sub> | −CH <sub>3</sub>                                  | -CF <sub>2</sub> CF <sub>3</sub>                                | Ν | С | Ν | Z     |
|    | 253                 | -он  | -NH <sub>2</sub> | −CH <sub>3</sub>                                  | -CH <sub>2</sub> CF <sub>3</sub>                                | Ν | С | N | X     |
| 15 | 254                 | -OH  | −NH₂             | -CH₃                                              | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | Ν | Z     |
|    | 255                 | -он  | -NH2             | -CF <sub>2</sub> CF <sub>3</sub>                  | -CF <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Х     |
| 20 | 256                 | -он  | -NH2             | -CF <sub>2</sub> CF <sub>3</sub>                  | -CF <sub>2</sub> CF <sub>3</sub>                                | Ν | С | Ν | Z     |
| 20 | 257                 | -он  | -NH <sub>2</sub> | -CF <sub>2</sub> CF <sub>3</sub>                  | −CH <sub>2</sub> CF <sub>3</sub>                                | Ν | С | Ν | X     |
|    | 258                 | -он  | -NH2             | -CF <sub>2</sub> CF <sub>3</sub>                  | -CH <sub>2</sub> CF <sub>3</sub>                                | Ν | С | N | Z     |
| 25 | 259                 | -он  | -NH2             | -CH <sub>2</sub> CF <sub>3</sub>                  | −CH <sub>2</sub> CF <sub>3</sub>                                | Ν | С | Ν | X     |
|    | 260                 | -он  | -NH2             | -CH <sub>2</sub> CF <sub>3</sub>                  | −CH₂CF₃                                                         | Ν | С | Ν | Z     |
| 30 | 261                 | -OH  | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> | -CH₂CF₃                                                         | N | С | N | Х     |
|    | 262                 | -OH  | -NH <sub>2</sub> | —CH2CH2OCH3                                       | -CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Z     |
| 35 | 263                 | -он  | -NH <sub>2</sub> | -CH₂CH₂OCH₃                                       | —CH₂CH₂OCH₃                                                     | N | С | N | X     |
|    | 264                 | -он  | -NH <sub>2</sub> | -CH₂CH₂OCH₃                                       | −CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>               | N | С | N | Z     |
| 40 | 265                 | -он  | -NH <sub>2</sub> | -CH2CH2OC2H5                                      | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> | N | С | N | X     |
| 40 | 266                 | -он  | -NH2             | -CH2CH2OC2H5                                      | -CH2CH2OC2H5                                                    | N | С | N | Z     |
|    | 267                 | -он  | -NH <sub>2</sub> | -CH₂CH₂OC₃H₁                                      | -CH₂CH₂OC₃H <sub>7</sub>                                        | N | С | N | X     |
| 45 | 268                 | -он  | -NH <sub>2</sub> | -CH₂CH₂OC₃H₁                                      | —CH₂CH₂OC₃H₁                                                    | N | С | N | Z     |
|    | 269                 | -он  | -NH <sub>2</sub> | -CH2CH2OC6H5                                      | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | X     |
| 50 | 270                 | -он  | -NH <sub>2</sub> | -CH2CH2OC6H5                                      | —CH₂CF₃                                                         | N | С | N | Z     |

Table 1 (Continued)

| 1 0   | ble | 1 (00            | ntinuedi                                                                        |                                                   |   |   |   |      |
|-------|-----|------------------|---------------------------------------------------------------------------------|---------------------------------------------------|---|---|---|------|
| Comp. | R¹  | R²               | R³                                                                              | R4                                                | X | Y | Z | P.S. |
| 271   | -он | -NH <sub>2</sub> | -CH2CH2OC6H5                                                                    | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> | N | С | Ν | X    |
| 272   | -он | −NH₂             | -CH2CH2OC6H5                                                                    | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> | N | С | N | Z    |
| 273   | -он | -NH2             | -CH2CH2OC6H5                                                                    | -CH2CH2OC6H5                                      | N | С | N | X    |
| 274   | -он | -NH <sub>2</sub> | —CH2CH2OC6H5                                                                    | —CH₂CH₂OC₅H₅                                      | N | С | N | Z    |
| 2 7 5 | -он | -NH2             | -CH2CH2OCH2C6H5                                                                 | -CH₂CF₃                                           | N | С | Ν | X    |
| 276   | -ОН | -NH <sub>2</sub> | -CH2CH2OCH2C6H5                                                                 | −CH <sub>2</sub> CF <sub>3</sub>                  | N | С | Ν | Z    |
| 277   | -он | −NH₂             | -CH2CH2OCH2C6H5                                                                 | −CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> | N | С | N | X    |
| 278   | -он | −NH₂             | -CH2CH2OCH2C6H5                                                                 | -CH2CH2OCH3                                       | N | С | N | Z    |
| 2 7 9 | -он | −NH₂             | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | -CH2CH2OC6H5                                      | N | С | N | X    |
| 280   | -он | -NH2             | -CH2CH2OCH2C6H5                                                                 | -CH2CH2OC6H5                                      | N | С | N | Z    |
| 2 8 1 | -он | −NH₂             | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | -CH2CH2OCH2C6H5                                   | N | С | N | X    |
| 282   | -он | −NH₂             | -CH2CH2OCH2C6H5                                                                 | -CH2CH2OCH2C6H5                                   | N | c | N | Z    |
| 283   | -он | -NH2             | -CH2CH2OC2H4C6H5                                                                | -CH2CH2OC2H4C6H5                                  | N | С | N | X    |
| 284   | -он | -NH <sub>2</sub> | -CH2CH2OC2H4C6H5                                                                | -CH2CH2OC2H4C6H5                                  | N | С | N | Z    |
| 2 8 5 | -он | -NH2             | -CH₂CH₂OC(0)CH₃                                                                 | -CH <sub>2</sub> CF <sub>3</sub>                  | N | С | N | X    |
| 286   | -он | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>                           | -CH <sub>2</sub> CF <sub>3</sub>                  | N | С | N | Z    |
| 287   | -он | -NH <sub>2</sub> | -CH₂CH₂OC(0)CH₃                                                                 | —CH₂CH₂OCH₃                                       | N | С | N | X    |
| 288   | -он | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>                           | —CH₂CH₂OCH₃                                       | N | С | N | Z    |
| 289   | -он | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>                           | —CH₂CH₂OC 6H5                                     | N | c | N | X    |
| 290   | -он | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>                           | -CH2CH2OC6H5                                      | N | С | N | Z    |

Table 1 (Continued)

| Comp. | R'  | R²               | R³               | R <sup>4</sup>                                                      | X | Y | Z | P. S. |
|-------|-----|------------------|------------------|---------------------------------------------------------------------|---|---|---|-------|
| 2 9 1 | -он | −NH₂             | —CH2CH2OC(0)CH3  | -CH2CH2OCH2C6H5                                                     | N | С | N | X     |
| 292   | -он | -NH <sub>2</sub> | -CH₂CH₂OC(O)CH₃  | -CH2CH2OCH2C6H5                                                     | N | С | Ν | Z     |
| 293   | -он | -NH2             | -CH₂CH₂OC(O)CH₃  | -CH2CH2OC(0)CH3                                                     | N | С | N | X     |
| 294   | -он | -NH2             | -CH₂CH₂OC(O)CH₃  | -CH₂CH₂OC(0)CH₃                                                     | N | С | N | Z     |
| 295   | -он | -NH2             | -CH2CH2OC(0)C2H5 | -CH2CH2OC(0)C2H5                                                    | N | С | N | Х     |
| 296   | -он | -NH2             | -CH2CH2OC(0)C2H5 | -CH2CH2OC(0)C2H5                                                    | N | С | N | Z     |
| 297   | -он | -NH2             | -CH2CH2OC(0)C3H7 | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | N | С | N | X     |
| 298   | -он | -NH2             | -CH₂CH₂OC(0)C₃H₁ | -CH2CH2OC(0)C3H7                                                    | N | С | N | Z     |
| 299   | -он | -NH2             | -CH2CH2OC(0)C4H9 | -CH2CH2OC(0)C4H9                                                    | N | С | N | X     |
| 3 0 0 | -он | -NH2             | -CH2CH2OC(0)C4H9 | -CH2CH2OC(0)C4H3                                                    | N | С | N | Z     |

Table 1 (Continued)

|       | abic             |              | (Continued)                      |                                  | , |   |   | ·     |
|-------|------------------|--------------|----------------------------------|----------------------------------|---|---|---|-------|
| Comp. | R'               | R²           | R³                               | R⁴                               | X | Y | Z | P. S. |
| 3 0 1 | -NH <sub>2</sub> | -Н           | −CH <sub>3</sub>                 | −CF <sub>2</sub> ∪F <sub>3</sub> | Ν | С | N | X     |
| 3 0 2 | -NH <sub>2</sub> | -Н           | −CH <sub>3</sub>                 | -CF <sub>2</sub> CF <sub>3</sub> | Ν | С | N | Z     |
| 3 0 3 | -NH <sub>2</sub> | -н           | −CH <sub>3</sub>                 | −CH <sub>2</sub> CF <sub>3</sub> | N | С | N | X     |
| 3 0 4 | -NH2             | -Н           | −СН₃                             | −CH <sub>2</sub> CF <sub>3</sub> | N | С | Ν | Z     |
| 3 0 5 | -NH2             | - <u>.</u> H | -CF <sub>2</sub> CF <sub>3</sub> | −CF₂CF₃                          | N | С | Ν | X     |
| 3 0 6 | -NH2             | -Н           | -CF <sub>2</sub> CF <sub>3</sub> | −CF <sub>2</sub> CF <sub>3</sub> | N | С | Ŋ | Z     |
| 3 0 7 | -NH2             | -Н           | -CF <sub>2</sub> CF <sub>3</sub> | −CH <sub>2</sub> CF <sub>3</sub> | N | С | N | Х     |
| 3 0 8 | -NH <sub>2</sub> | -Н           | -CF <sub>2</sub> CF <sub>3</sub> | −CH₂CF₃                          | N | С | Ν | Z     |
| 3 0 9 | -NH <sub>2</sub> | -Н           | −CH <sub>2</sub> CF <sub>3</sub> | −CH₂CF₃                          | N | С | N | X     |
| 3 1 0 | -NH2             | -H           | -CH₂CF₃                          | -CH₂CF₃                          | N | С | Ν | Z     |
| 3 1 1 | −NH₂             | -Н           | —CH₂CH₂OCH₃                      | −CH₂CF₃                          | N | С | N | X     |
| 3 1 2 | -NH₂             | -Н           | -CH₂CH₂OCH₃                      | −CH₂CF₃                          | N | С | N | Z     |
| 3 1 3 | -NH2             | -Н           | -CH₂CH₂OCH₃                      | -CH₂CH₂OCH₃                      | N | С | N | X     |
| 3 1 4 | -NH2             | -Н           | -CH₂CH₂OCH₃                      | -CH₂CH₂OCH₃                      | N | С | N | Z     |
| 3 1 5 | -NH2             | -Н           | -CH2CH2OC2H5                     | -CH₂CH₂OC₂H₅                     | N | С | N | X     |
| 3 1 6 | -NH2             | -Н           | -CH2CH2OC2H5                     | -CH₂CH₂OC₂H₅                     | N | С | N | Z     |
| 3 1 7 | −NH₂             | -Н           | -CH₂CH₂OC₃H <sub>7</sub>         | -CH₂CH₂OC₃H₁                     | N | С | N | X     |
| 3 1 8 | −NH₂             | -Н           | -CH₂CH₂OC₃H <sub>7</sub>         | -CH₂CH₂OC₃H <sub>7</sub>         | N | С | N | Z     |
| 3 1 9 | -NH2             | -Н           | -CH2CH2OC6H5                     | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | X     |
| 3 2 0 | -NH <sub>2</sub> | -Н           | -CH2CH2OC6H5                     | -CH₂CF₃                          | N | С | N | Z     |

Table 1 (Continued)

|    |             |                  |    | Jon t Thucu,                                                                    | · <u>·                                    </u>                  |   |   |   |       |
|----|-------------|------------------|----|---------------------------------------------------------------------------------|-----------------------------------------------------------------|---|---|---|-------|
| 5  | Comp.<br>Na | R¹               | R² | R³                                                                              | R <sup>4</sup>                                                  | X | Y | Z | P. S. |
|    | 3 2 1       | -NH2             | -Н | -CH₂CH₂OC₀H₅                                                                    | -CH2CH2OCH3                                                     | N | С | N | Х     |
| 10 | 3 2 2       | -NH <sub>2</sub> | -H | -CH2CH2OC6H5                                                                    | —CH2CH2OCH3                                                     | Ν | С | N | Z     |
|    | 3 2 3       | -NH2             | -н | -CH2CH2OC6H5                                                                    | —CH2CH2OC6H5                                                    | N | C | N | Х     |
| 15 | 3 2 4       | −NH₂             | -н | -CH2CH2OC6H5                                                                    | -CH2CH2OC6H5                                                    | Ν | С | N | Z     |
|    | 3 2 5       | −NH₂             | -Н | -CH2CH2OCH2C6H5                                                                 | -CH₂CF₃                                                         | Ν | С | N | X     |
|    | 3 2 6       | -NH <sub>2</sub> | -Н | −CH2CH2OCH2C6H5                                                                 | −CH <sub>2</sub> CF <sub>3</sub>                                | Ν | С | Ν | Z     |
| 20 | 3 2 7       | -NH <sub>2</sub> | -H | -CH2CH2OCH2C6H5                                                                 | -CH₂CH₂OCH₃                                                     | Ν | С | Ν | Х     |
|    | 3 2 8       | -NH2             | -Н | -CH2CH2OCH2C6H5                                                                 | −CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>               | N | Ċ | N | Z     |
| 25 | 3 2 9       | −NH₂             | -H | -CH2CH2OCH2C6H5                                                                 | −CH2CH2OC6H5                                                    | N | С | N | Х     |
|    | 3 3 0       | −NH₂             | -н | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | Ν | U | Ν | Z     |
| 30 | 3 3 1       | -NH2             | -Н | -CH2CH2OCH2C6H5                                                                 | -CH2CH2OCH2C6H5                                                 | Ν | С | N | Х     |
|    | 3 3 2       | −NH₂             | -H | -CH2CH2OCH2C6H5                                                                 | -CH2CH2OCH2C6H5                                                 | N | С | N | Z     |
| 35 | 3 3 3       | -NH2             | -H | -CH2CH2OC2H4C6H5                                                                | -CH2CH2OC2H4C6H5                                                | Ν | C | Ν | Х     |
|    | 3 3 4       | -NH2             | -H | -CH2CH2OC2H4C6H5                                                                | -CH2CH2OC2H4C6H5                                                | Ν | C | N | Z     |
| 40 | 3 3 5       | -NH2             | -H | -CH₂CH₂OC(O)CH₃                                                                 | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | X     |
| 40 | 3 3 6       | −NH₂             | -Н | -CH₂CH₂OC(O)CH₃                                                                 | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Z     |
|    | 3 3 7       | −NH₂             | -Н | -CH₂CH₂OC(0)CH₃                                                                 | -CH₂CH₂OCH₃                                                     | N | С | N | Х     |
| 45 | 3 3 8       | -NH2             | -Н | -CH₂CH₂OC(O)CH₃                                                                 | -CH₂CH₂OCH₃                                                     | N | С | Ν | Z     |
|    | 3 3 9       | −NH₂             | -Н | -CH₂CH₂OC(O)CH₃                                                                 | -CH2CH2OC6H5                                                    | N | С | Ν | Х     |
| 50 | 3 4 0       | -NH <sub>2</sub> | -H | -CH₂CH₂OC(O)CH₃                                                                 | -CH2CH2OC6H5                                                    | N | С | N | Z     |

Table 1 (Continued)

|             |                  |    | 30111111111111   |                                                                     | , |   |   |       |
|-------------|------------------|----|------------------|---------------------------------------------------------------------|---|---|---|-------|
| Comp.<br>Na | R¹               | R² | R³               | R⁴ .                                                                | X | Y | Z | P. S. |
| 3 4 1       | −NH₂             | -H | -CH₂CH₂OC(O)CH₃  | -CH2CH2OCH2C6H5                                                     | N | С | N | X     |
| 3 4 2       | -NH2             | -Н | -CH₂CH₂OC(O)CH₃  | -CH2CH2OCH2C6H5                                                     | N | С | Ν | Z     |
| 3 4 3       | -NH <sub>2</sub> | -Н | -CH₂CH₂OC(O)CH₃  | -CH2CH2OC(O)CH3                                                     | N | С | Ν | X     |
| 3 4 4       | -NH <sub>2</sub> | -Н | -CH₂CH₂OC(O)CH₃  | -CH₂CH₂OC(O)CH₃                                                     | N | С | N | Z     |
| 3 4 5       | -NH2             | -H | -CH2CH2OC(0)C2H5 | -CH2CH2OC(O)C2H5                                                    | N | С | Ν | Х     |
| 3 4 6       | -NH2             | -Н | -CH2CH2OC(0)C2H5 | -CH₂CH₂OC(O)C₂H₅                                                    | N | С | N | Z     |
| 3 4 7       | -NH <sub>2</sub> | -Н | -CH2CH2OC(0)C3H7 | -CH2CH2OC(O)C3H7                                                    | N | С | N | Х     |
| 3 4 8       | -NH2             | -н | -CH₂CH₂OC(O)C₃H7 | -CH2CH2OC(0)C3H7                                                    | N | С | N | Z     |
| 3 4 9       | -NH2             | -Н | -CH2CH2OC(0)C4H9 | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | N | С | N | X     |
| 350         | -NH2             | -н | -CH2CH2OC(0)C4H9 | -CH2CH2OC(O)C4H9                                                    | N | С | N | Z     |

5

Table 1 (Continued)

|    |              | abic             |            | (CONTINUED)                      | · · · · · · · · · · · · · · · · · · · |   |   |    |       |
|----|--------------|------------------|------------|----------------------------------|---------------------------------------|---|---|----|-------|
| 5  | Comp.<br>No. | R¹               | R²         | R³                               | R⁴                                    | X | Y | Z  | P. S. |
|    | 3 5 1        | -NH2             | - I        | −СН3                             | -CF <sub>2</sub> CF <sub>3</sub>      | N | С | Ν  | X     |
| 10 | 3 5 2        | -NH <sub>2</sub> | - I        | —СН₃                             | -CF <sub>2</sub> CF <sub>3</sub>      | N | С | N  | Z     |
|    | 3 5 3        | -NH2             | - I        | —СН₃                             | −CH <sub>2</sub> CF <sub>3</sub>      | N | С | N- | Х     |
| 15 | 354          | -NH2             | - Ì        | −CH₃                             | −CH <sub>2</sub> CF <sub>3</sub>      | Ν | С | Ν  | Z     |
| 75 | 3 5 5        | -NH <sub>2</sub> | - I        | -CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub>      | Ν | С | 7  | X     |
|    | 3 5 6        | -NH2             | - I        | −CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub>      | N | С | Ν  | Z     |
| 20 | 3 5 7        | -NH <sub>2</sub> | - I        | -CF <sub>2</sub> CF <sub>3</sub> | −CH <sub>2</sub> CF <sub>3</sub>      | N | С | Ν  | X     |
|    | 3 5 8        | -NH2             | - I        | −CF <sub>2</sub> CF <sub>3</sub> | -CH <sub>2</sub> CF <sub>3</sub>      | N | С | N  | Z     |
| 25 | 3 5 9        | -NH2             | <b>– I</b> | −CH <sub>2</sub> CF <sub>3</sub> | −CH <sub>2</sub> CF <sub>3</sub>      | N | С | Ν  | Х     |
|    | 360          | -NH2             | - I        | -CH <sub>2</sub> CF <sub>3</sub> | -CH₂CF₃                               | N | С | Ν  | Z     |
| 30 | 3 6 1        | -NH2             | - I        | -CH2CH2OCH3                      | -CH <sub>2</sub> CF <sub>3</sub>      | N | С | N  | Х     |
|    | 3 6 2        | -NH <sub>2</sub> | - I        | -CH₂CH₂OCH₃                      | −CH <sub>2</sub> CF <sub>3</sub>      | N | С | Ν  | Z     |
|    | 363          | -NH2             | <u> </u>   | —CH₂CH₂OCH₃                      | -CH₂CH₂OCH₃                           | Ν | Ç | Ν  | X     |
| 35 | 3 6 4        | -NH2             | - I        | —CH₂CH₂OCH₃                      | -CH2CH2OCH3                           | N | С | N  | Z     |
| -  | 3 6 5        | -NH2             | - I        | -CH2CH2OC2H5                     | -CH2CH2OC2H5                          | N | С | Ν  | X     |
| 40 | 366          | -NH <sub>2</sub> | - I        | -CH2CH2OC2H5                     | -CH2CH2OC2H5                          | N | С | N. | Z     |
|    | 367          | -NH <sub>2</sub> | - I        | —CH₂CH₂OC₃H7                     | -CH2CH2OC3H7                          | N | С | N  | Х     |
| 45 | 3 6 8        | −NH₂             | - I        | —CH2CH2OC3H7                     | -CH2CH2OC3H7                          | N | С | Ν  | Z     |
|    | 369          | −NH₂             | - I        | -CH2CH2OC6H5                     | −CH <sub>2</sub> CF <sub>3</sub>      | N | С | N  | Х     |
| 50 | 370          | −NH₂             | - I        | -CH2CH2OC6H5                     | −CH <sub>2</sub> CF <sub>3</sub>      | N | С | N  | Z     |

Table 1 (Continued)

|       | able             | <u> </u>   | (Continued)                                                     |                                                                 |   |   |     |                |
|-------|------------------|------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---|---|-----|----------------|
| Comp. | R'               | R²         | R³                                                              | R4                                                              | X | 7 | 7 2 | P. S.          |
| 3 7 1 | -NH2             | - I        | -CH2CH2OC6H5                                                    | -CH₂CH₂OCH₃                                                     | N | ı | : N | X              |
| 3 7 2 | -NH2             | - I        | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>               | N |   | N   |                |
| 3 7 3 | −NH₂             | - I        | -CH2CH2OC6H5                                                    | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | N | C | N   | X              |
| 374   | -NH2             | - I        | -CH₂CH₂OC₅H₅                                                    | -CH2CH2OC6H5                                                    | N | C | N   | Z              |
| 3 7 5 | −NH₂             | - 1        | -CH2CH2OCH2C6H5                                                 | -CH <sub>2</sub> CF <sub>3</sub>                                | N | C | N   | X              |
| 3 7 6 | -NH2             | - I        | -CH2CH2OCH2C6H5                                                 | -CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N   | Z              |
| 3 7 7 | -NH <sub>2</sub> | - 1        | -CH2CH2OCH2C6H5                                                 | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>               | N | C | N   | X              |
| 3 7 8 | -NH2             | - I        | -CH2CH2OCH2C6H5                                                 | -CH₂CH₂OCH₃                                                     | N | C | N   | z              |
| 3 7 9 | -NH2             | - I        | -CH2CH2OCH2C6H5                                                 | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | N | С | N   | X              |
| 3 8 0 | −NH₂             | - 1        | -CH2CH2OCH2C6H5                                                 | -CH2CH2OC6H5                                                    | N | c | N   | Z              |
| 3 8 1 | -NH <sub>2</sub> | <u>- 1</u> | -CH2CH2OCH2C6H5                                                 | -CH2CH2OCH2C6H5                                                 | N | С | N   | X              |
| 3 8 2 | -NH2             | 1 - 1      | -CH2CH2OCH2C6H5                                                 | -CH2CH2OCH2C6H5                                                 | N | С | N   | Z              |
| 3 8 3 | −NH₂             | <u> </u>   | -CH2CH2OC2H4C6H5                                                | -CH2CH2OC2H4C6H5                                                | N | С | N   | Х              |
| 3 8 4 | -NH <sub>2</sub> | - I        | -CH2CH2OC2H4C6H5                                                | -CH2CH2OC2H4C6H5                                                | N | С | N   | Z              |
| 3 8 5 | -NH <sub>2</sub> | - I        | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>           | -CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N   | Х              |
| 3 8 6 | −NH₂             | <b>–</b> I | -CH₂CH₂OC(0)CH₃                                                 | -CH₂CF₃                                                         | N | С | N   | $\overline{z}$ |
| 387   | -NH <sub>2</sub> | - I        | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>           | -CH₂CH₂OCH₃                                                     | N | С | N   | X              |
| 3 8 8 | -NH <sub>2</sub> | - I        | -CH₂CH₂OC(0)CH₃                                                 | -CH₂CH₂OCH₃                                                     | N | С | N   | Z              |
| 389   | -NH <sub>2</sub> | - I        | -CH₂CH₂OC(0)CH₃                                                 | -CH2CH2OC6H5                                                    | N | С | N   | X              |
| 3 9 0 | -NH <sub>2</sub> | - I        | -CH₂CH₂OC(O)CH₃                                                 | -CH2CH2OC6H5                                                    | N | С | N   | Z              |

Table I (Continued)

|       | <del> </del>     | Т              | <u> </u>                                                            |                                                                     | т       |   |   | ,    |
|-------|------------------|----------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------|---|---|------|
| Comp. | R'               | R <sup>2</sup> | R³                                                                  | R <sup>4</sup>                                                      | $ _{X}$ | Y | z | P.S. |
| No    |                  |                |                                                                     |                                                                     | 1       | 1 | _ | 1.5. |
| 391   | −NH₂             | I —            | -CH₂CH₂OC(O)CH₃                                                     | -CH2CH2OCH2C6H5                                                     | N       | С | N | X    |
| 3 9 2 | -NH2             | - I            | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH2CH2OCH2C6H5                                                     | N       | С | N | Z    |
| 3 9 3 | -NH2             | - 1            | -CH2CH2OC(0)CH3                                                     | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | N       | С | N | X    |
| 3 9 4 | -NH2             | - I            | -CH₂CH₂OC(O)CH₃                                                     | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | N       | С | Ν | Z    |
| 3 9 5 | −NH₂             | - I            | -CH2CH2OC(0)C2H5                                                    | -CH2CH2OC(0)C2H5                                                    | N       | С | Ν | X    |
| 3 9 6 | −NH₂             | - I            | -CH2CH2OC(0)C2H5                                                    | -CH2CH2OC(0)C2H5                                                    | N       | С | Ν | Z    |
| 3 9 7 | -NH2             | - I            | -CH2CH2OC(0)C3H7                                                    | -CH₂CH₂OC(O)C₃H₁                                                    | N       | С | N | X    |
| 3 9 8 | -NH <sub>2</sub> | - I            | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7                                                    | Ν       | С | N | Z    |
| 3 9 9 | -NH2             | <u> </u>       | -CH2CH2OC(0)C4H9                                                    | -CH2CH2OC(0)C4H9                                                    | Ν       | С | N | X    |
| 4 0 0 | −NH₂             | - I            | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | Ν       | С | N | Z    |

Table 1 (Continued)

| <del>-</del> | able             | 1 (0 | Jon t Thue dy                    |                                  |   |   |   |       |
|--------------|------------------|------|----------------------------------|----------------------------------|---|---|---|-------|
| Comp.        | R۱               | R²   | R³                               | R'                               | х | Y | Z | P. S. |
| 4 0 1        | -NH <sub>2</sub> | -ОН  | −CH <sub>3</sub>                 | -CF <sub>2</sub> CF <sub>3</sub> | Ν | С | N | Х     |
| 4 0 2        | -NH2             | -он  | −CH <sub>3</sub>                 | -CF <sub>2</sub> CF <sub>3</sub> | N | С | N | Z     |
| 4 0 3        | -NH2             | -OH  | −CH <sub>3</sub>                 | -CH <sub>2</sub> CF <sub>3</sub> | Ν | С | N | X     |
| 4 0 4        | -NH <sub>2</sub> | -он  | −CH <sub>3</sub>                 | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | Z     |
| 4 0 5        | -NH2             | -он  | -CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub> | Ν | С | Ν | X     |
| 4 0 6        | -NH2             | -OH  | -CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub> | N | С | N | Z     |
| 407          | -NH2             | -он  | -CF <sub>2</sub> CF <sub>3</sub> | −CH₂CF₃                          | N | С | N | X     |
| 408          | -NH2             | -он  | -CF <sub>2</sub> CF <sub>3</sub> | −CH₂CF₃                          | Ν | С | N | Z     |
| 4 0 9        | -NH2             | -OH  | -CH₂CF₃                          | −CH₂CF₃                          | N | С | N | Х     |
| 4 1 0        | −NH₂             | -он  | -CH₂CF₃                          | −CH₂CF₃                          | Ν | С | N | Z     |
| 4 1 1        | −NH₂             | -OH  | -CH₂CH₂OCH₃                      | −CH₂CF₃                          | N | С | N | X     |
| 4 1 2        | −NH₂             | -OH  | -CH₂CH₂OCH₃                      | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | Z     |
| 4 1 3        | −NH₂             | -он  | -CH₂CH₂OCH₃                      | —CH₂CH₂OCH₃                      | N | С | N | Х     |
| 4 1 4        | -NH2             | -он  | -CH₂CH₂OCH₃                      | −CH₂CH₂OCH₃                      | N | С | N | Z     |
| 4 1 5        | −NH₂             | -он  | -CH₂CH₂OC₂H₅                     | -CH2CH2OC2H5                     | N | С | N | X     |
| 4 1 6        | -NH2             | -он  | -CH₂CH₂OC₂H₅                     | -CH₂CH₂OC₂H₅                     | N | С | N | Z     |
| 4 1 7        | −NH₂             | -он  | -CH₂CH₂OC₃H7                     | -CH2CH2OC3H7                     | N | С | N | Х     |
| 4 1 8        | −NH₂             | -OH  | -CH₂CH₂OC₃H₁                     | -CH₂CH₂OC₃H₁                     | N | С | N | Z     |
| 4 1 9        | −NH₂˙            | -OH  | -CH2CH2OC6H5                     | -CH₂CF₃                          | N | С | N | X     |
| 4 2 0        | −NH₂             | -он  | -CH2CH2OC6H5                     | -CH₂CF₃                          | N | С | N | Z     |

Table 1 (Continued)

|    |       | •                | - (0 | 0 0 0,           |                                                                 |   |   |   |       |
|----|-------|------------------|------|------------------|-----------------------------------------------------------------|---|---|---|-------|
| 5  | Comp. | R'               | R²   | R³               | R'                                                              | X | Y | Z | P. S. |
|    | 42,   | −NH₂             | -он  | —CH₂CH₂OC₅H₅     | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>               | N | С | N | Х     |
| 10 | 422   | -NH2             | -он  | -CH₂CH₂OC6H5     | -CH₂CH₂OCH₃                                                     | N | С | N | Z     |
|    | 4 2 3 | -NH2             | -он  | -CH₂CH₂OC₀H₅     | -CH2CH2OC6H5                                                    | N | С | N | Х     |
| 15 | 424   | -NH2             | -он  | -CH2CH2OC6H5     | -CH2CH2OC4H5                                                    | N | С | N | Z     |
| 75 | 4 2 5 | -NH2             | -он  | -CH2CH2OCH2C6H5  | -CH₂CF₃                                                         | N | С | N | Х     |
|    | 4 2 6 | −NH₂             | -он  | -CH2CH2OCH2C6H5  | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Z     |
| 20 | 427   | -NH2             | -он  | -CH2CH2OCH2C6H5  | -CH₂CH₂OCH₃                                                     | N | С | N | X     |
|    | 4 2 8 | -NH2             | -OH  | -CH2CH2OCH2C6H5  | -CH₂CH₂OCH₃                                                     | N | С | Ν | Z     |
| 25 | 4 2 9 | -NH2             | -он  | -CH2CH2OCH2C6H5  | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | N | С | N | X     |
|    | 4 3 0 | −NH₂             | -он  | -CH2CH2OCH2C6H5  | -CH2CH2OC6H5                                                    | N | С | N | Z     |
| 30 | 4 3 1 | −NH₂             | -он  | —CH₂CH₂OCH₂C6H5  | -CH2CH2OCH2C6H5                                                 | N | С | N | X     |
|    | 4 3 2 | -NH <sub>2</sub> | -он  | -CH2CH2OCH2C6H5  | -CH2CH2OCH2C6H5                                                 | N | С | N | Z     |
|    | 4 3 3 | -NH2             | -он  | —CH2CH2OC2H4C6H5 | -CH2CH2OC2H4C6H5                                                | N | С | N | Х     |
| 35 | 4 3 4 | -NH2             | -он  | -CH2CH2OC2H4C6H5 | -CH2CH2OC2H4C6H5                                                | N | С | N | Z     |
|    | 4 3 5 | -NH2             | -он  | -CH₂CH₂OC(O)CH₃  | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | X     |
| 40 | 4 3 6 | ►NH₂             | -он  | -CH₂CH₂OC(O)CH₃  | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Z     |
|    | 4 3 7 | −NH₂             | -OH  | -CH₂CH₂OC(0)CH₃  | -CH₂CH₂OCH₃                                                     | N | С | N | X     |
| 45 | 4 3 8 | −NH₂             | -он  | -CH₂CH₂OC(O)CH₃  | —CH₂CH₂OCH₃                                                     | N | С | Ν | Z     |
|    | 4 3 9 | -NH2             | -он  | -CH₂CH₂OC(O)CH₃  | -CH₂CH₂OC <sub>6</sub> H₅                                       | Ν | С | Ν | Х     |
| 50 | 4 4 0 | −NH₂             | -он  | -CH₂CH₂OC(0)CH₃  | -CH2CH2OC6H5                                                    | N | С | N | Z     |

Table 1 (Continued)

| Comp. | R¹               | R²  | R³                                                                  | R4                                                                              | X | Y | Z | P. S. |
|-------|------------------|-----|---------------------------------------------------------------------|---------------------------------------------------------------------------------|---|---|---|-------|
| 4 4 1 | -NH2             | -он | -CH₂CH₂OC(O)CH₃                                                     | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | N | С | N | X     |
| 4 4 2 | −NH₂             | -он | -CH₂CH₂OC(O)CH₃                                                     | -CH2CH2OCH2C6H5                                                                 | N | С | Ν | Z     |
| 4 4 3 | -NH <sub>2</sub> | -он | -CH2CH2OC(O)CH3                                                     | -CH₂CH₂OC(O)CH₃                                                                 | N | С | N | X     |
| 4 4 4 | −NH₂             | -он | -CH₂CH₂OC(O)CH₃                                                     | -CH₂CH₂OC(0)CH₃                                                                 | N | С | Ν | Z     |
| 4 4 5 | −NH₂             | -он | -CH2CH2OC(O)C2H5                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub>             | N | С | Ν | X     |
| 4 4 6 | -NH2             | -OH | -CH2CH2OC(0)C2H5                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub>             | N | С | N | Z     |
| 4 4 7 | -NH2             | -он | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7                                                                | N | С | Ν | X     |
| 4 4 8 | -NH <sub>2</sub> | -он | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | -CH2CH2OC(0)C3H7                                                                | N | С | N | Z     |
| 4 4 9 | -NH2             | -он | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C₄H₃                          | -CH2CH2OC(0)C4H9                                                                | N | С | Ν | X     |
| 4 5 0 | -NH2             | -OH | -CH2CH2OC(0)C4H9                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub>             | N | С | N | Z     |

Table 1 (Continued)

| •  |              |                  | . (0             | on that cay                      |                                  |   |    |   |       |
|----|--------------|------------------|------------------|----------------------------------|----------------------------------|---|----|---|-------|
| 5  | Comp.<br>No. | R¹               | R²               | R³                               | R <sup>4</sup>                   | Х | Y  | Z | P. S. |
|    | 4 5 1        | -NH2             | -NH <sub>2</sub> | −СН₃                             | -CF <sub>2</sub> CF <sub>3</sub> | Ν | С  | Ν | X     |
| 10 | 452          | -NH <sub>2</sub> | -NH2             | −CH <sub>3</sub>                 | -CF <sub>2</sub> CF <sub>3</sub> | Ν | С  | Ν | Z     |
|    | 453          | -NH2             | -NH <sub>2</sub> | —СН₃                             | −CH <sub>2</sub> CF <sub>3</sub> | Ν | С  | N | X     |
| 15 | 454          | -NH2             | -NH2             | —СН₃                             | −CH <sub>2</sub> CF <sub>3</sub> | Ν | C  | N | Z     |
|    | 4 5 5        | -NH <sub>2</sub> | -NH <sub>2</sub> | -CF <sub>2</sub> CF <sub>3</sub> | −CF <sub>2</sub> CF <sub>3</sub> | Ν | С  | Ν | Х     |
| 20 | 456          | -NH2             | -NH2             | -CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub> | Ν | С  | Ν | Z     |
| 20 | 4 5 7        | -NH <sub>2</sub> | -NH <sub>2</sub> | −CF <sub>2</sub> CF <sub>3</sub> | -CH <sub>2</sub> CF <sub>3</sub> | Ν | С  | Ν | Х     |
|    | 4 5 8        | -NH2             | -NH2             | −CF <sub>2</sub> CF <sub>3</sub> | -CH <sub>2</sub> CF <sub>3</sub> | Ν | С  | Ν | Z     |
| 25 | 459          | -NH2             | -NH2             | -CH₂CF₃                          | -CH₂CF₃                          | Ν | С  | Ν | X     |
|    | 460          | -NH2             | -NH2             | -CH₂CF₃                          | -CH <sub>2</sub> CF <sub>3</sub> | Ν | С  | Ν | Z     |
| 30 | 4 6 1        | -NH <sub>2</sub> | -NH2             | -CH₂CH₂OCH₃                      | −CH <sub>2</sub> CF <sub>3</sub> | Ν | С  | Ν | X     |
|    | 462          | -NH <sub>2</sub> | -NH2             | -CH₂CH₂OCH₃                      | -CH <sub>2</sub> CF <sub>3</sub> | Ν | С  | Ν | Z     |
| 35 | 463          | -NH2             | −NH₂             | -CH₂CH₂OCH₃                      | -CH₂CH₂OCH₃                      | Ν | O  | Ν | Х     |
|    | 4 6 4        | -NH2             | −NH₂             | —CH₂CH₂OCH₃                      | —CH₂CH₂OCH₃                      | Ν | С  | Ż | Z     |
| 40 | 4 6 5        | -NH <sub>2</sub> | -NH2             | -CH2CH2OC2H5                     | -CH2CH2OC2H5                     | И | С  | N | X     |
|    | 466          | −NH₂             | -NH2             | -CH2CH2OC2H5                     | -CH2CH2OC2H5                     | Ν | С  | Ν | Z     |
|    | 467          | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH₂CH₂OC₃H₁                     | -CH₂CH₂OC₃H7                     | Z | O, | Ν | X     |
| 45 | 468          | -NH <sub>2</sub> | -NH2             | -CH₂CH₂OC₃H7                     | -CH₂CH₂OC₃H7                     | Ν | С  | Ν | Z     |
|    | 469          | -NH <sub>2</sub> | -NH2             | -CH₂CH₂OC₅H₅                     | −CH <sub>2</sub> CF <sub>3</sub> | Ν | С  | Ν | Х     |
| 50 | 470          | -NH2             | -NH2             | -CH2CH2OC6H5                     | -CH <sub>2</sub> CF <sub>3</sub> | N | С  | Ν | Z     |

Table 1 (Continued)

|       | Table            | 1 (0             | Ontinued)                                                                       | T                                                 |   |    | , |       |
|-------|------------------|------------------|---------------------------------------------------------------------------------|---------------------------------------------------|---|----|---|-------|
| Comp. | R¹               | R²               | R³                                                                              | R4                                                | x | Y  | z | P. S. |
| 471   | −NH₂             | -NH <sub>2</sub> | -CH₂CH₂OC₅H₅                                                                    | -CH₂CH₂OCH₃                                       | N | С  | N | X     |
| 472   | −NH₂             | -NH <sub>2</sub> | -CH₂CH₂OC₅H₅                                                                    | -CH₂CH₂OCH₃                                       | N | С  | N | Z     |
| 473   | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH₂CH₂OC₅H₅                                                                    | -CH2CH2OC6H5                                      | N | С  | N | Х     |
| 474   | -NH2             | -NH <sub>2</sub> | -CH2CH2OC6H5                                                                    | -CH2CH2OC6H5                                      | N | С  | N | Z     |
| 475   | −NH₂             | −NH₂             | -CH2CH2OCH2C6H5                                                                 | −CH <sub>2</sub> CF <sub>3</sub>                  | N | С  | N | Х     |
| 476   | -NH2             | -NH2             | -CH2CH2OCH2C6H5                                                                 | -CH <sub>2</sub> CF <sub>3</sub>                  | N | С  | N | Z     |
| 477   | -NH2             | -NH <sub>2</sub> | -CH2CH2OCH2C6H5                                                                 | -CH₂CH₂OCH₃                                       | N | С  | N | X     |
| 478   | −NH₂             | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | -CH₂CH₂OCH₃                                       | N | С  | Ν | Z     |
| 479   | −NH₂             | -NH2             | -CH2CH2OCH2C6H5                                                                 | -CH2CH2OC6H5                                      | N | ·C | Ν | X     |
| 4 8 0 | −NH₂             | -NH <sub>2</sub> | -CH2CH2OCH2C6H5                                                                 | -CH2CH2OC6H5                                      | N | С  | N | ·Z    |
| 4 8 1 | -NH2             | −NH₂             | -CH2CH2OCH2C6H5                                                                 | -CH2CH2OCH2C6H5                                   | N | С  | N | X     |
| 482   | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH₂CH₂OCH₂C₅H₅                                                                 | -CH2CH2OCH2C6H5                                   | N | С  | N | Z     |
| 4 8 3 | −NH₂             | -NH2             | -CH2CH2OC2H4C6H5                                                                | -CH2CH2OC2H4C6H5                                  | N | С  | N | X     |
| 484   | −NH₂             | -NH <sub>2</sub> | -CH2CH2OC2H4C6H5                                                                | -CH2CH2OC2H4C6H6                                  | N | С  | N | Z     |
| 4 8 5 | −NH₂             | -NH2             | -CH₂CH₂OC(0)CH₃                                                                 | −CH <sub>2</sub> CF <sub>3</sub>                  | N | С  | N | X     |
| 4 8 6 | -NH2             | -NH2             | -CH₂CH₂OC(0)CH₃                                                                 | −CH <sub>2</sub> CF <sub>3</sub>                  | N | С  | N | Z     |
| 487   | -NH2             | -NH <sub>2</sub> | —CH₂CH₂OC(O)CH₃                                                                 | —CH₂CH₂OCH₃                                       | Ν | С  | N | X     |
| 4 8 8 | -NH2             | −NH₂             | -CH₂CH₂OC(O)CH₃                                                                 | −CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> | Ν | С  | N | Z     |
| 4 8 9 | -NH2             | -NH2             | -CH₂CH₂OC(O)CH₃                                                                 | -CH2CH2OC6H5                                      | N | С  | N | Х     |
| 4 9 0 | -NH2             | -NH <sub>2</sub> | -CH₂CH₂OC(O)CH₃                                                                 | −CH₂CH₂OC6H5                                      | N | С  | N | Z     |

Table 1 (Continued)

| 5  | Comp.<br>No. | R¹               | R²               | R³                                                                  | R4                                                                              | X | Y | z | P. S. |
|----|--------------|------------------|------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------|---|---|---|-------|
|    | 491          | -NH              | -NH <sub>2</sub> | -CH₂CH₂OC(O)CH₃                                                     | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | N | С | N | Х     |
| 10 | 492          | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH₂CH₂OC(0)CH₃                                                     | -CH2CH2OCH2C6H5                                                                 | N | С | N | Z     |
|    | 493          | -NH2             | -NH <sub>2</sub> | -CH2CH2OC(0)CH3                                                     | -CH2CH2OC(0)CH3                                                                 | N | С | N | Х     |
|    | 494          | -NH <sub>2</sub> | -NH2             | -CH₂CH₂OC(O)CH₃                                                     | -CH2CH2OC(O)CH3                                                                 | N | С | N | Z     |
| 15 | 495          | −NH₂             | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | -CH2CH2OC(0)C2H5                                                                | N | С | Ν | Х     |
|    | 496          | -NH <sub>2</sub> | -NH2             | -CH2CH2OC(0)C2H5                                                    | -CH2CH2OC(0)C2H5                                                                | N | С | N | Z     |
| 20 | 497          | −NH₂             | -NH <sub>2</sub> | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7                                                                | N | С | Ν | Х     |
|    | 498          | -NH <sub>2</sub> | -NH2             | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7                                                                | N | С | N | Z     |
| 25 | 499          | -NH2             | -NH2             | -CH2CH2OC(0)C4H9                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub>             | Ν | С | Ν | X     |
|    | 500          | -NH <sub>2</sub> | -NH2             | -CH2CH2OC(0)C4H9                                                    | -CH2CH2OC(0)C4H9                                                                | N | Č | N | Z     |

Table 1 (Continued)

|    |       | Tabl | - 1 (            | Continued.                       | <i></i>                          |   |   |   |       |
|----|-------|------|------------------|----------------------------------|----------------------------------|---|---|---|-------|
| 5  | Comp. | R'   | R²               | R³                               | R'                               | X | Y | Z | P. S. |
|    | 501   | -C1  | -NH <sub>2</sub> | −CH <sub>3</sub>                 | -CF <sub>2</sub> CF <sub>3</sub> | N | С | N | X     |
| 10 | 502   | -C1  | -NH <sub>2</sub> | -CH₃                             | -CF <sub>2</sub> CF <sub>3</sub> | N | С | N | Z     |
|    | 503   | -C1  | -NH <sub>2</sub> | −CH <sub>3</sub>                 | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | X     |
| 15 | 5 0 4 | -C1  | −NH₂             | −СН₃                             | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | Z     |
|    | 505   | -C1  | -NH2             | -CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub> | N | С | N | X     |
|    | 506   | -C1  | -NH <sub>2</sub> | -CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub> | N | С | N | Z     |
| 20 | 507   | -C1  | -NH <sub>2</sub> | -CF <sub>2</sub> CF <sub>3</sub> | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | X     |
|    | 508   | -C1  | -NH <sub>2</sub> | -CF <sub>2</sub> CF <sub>3</sub> | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | Z     |
| 25 | 509   | -C1  | -NH <sub>2</sub> | -CH <sub>2</sub> CF <sub>3</sub> | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | X     |
| ,  | 510   | -C1  | −NH₂             | -CH <sub>2</sub> CF <sub>3</sub> | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | Z     |
| 30 | 511   | -C1  | -NH2             | -CH2CH2OCH3                      | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | X     |
|    | 512   | -C1  | -NH2             | -CH₂CH₂OCH₃                      | -CH₂CF₃                          | N | С | N | Z     |
| 35 | 513   | -C1  | -NH <sub>2</sub> | —CH₂CH₂OCH₃                      | -CH₂CH₂OCH₃                      | N | С | N | X     |
|    | 514   | -C1  | -NH <sub>2</sub> | -CH₂CH₂OCH₃                      | -CH₂CH₂OCH₃                      | N | С | N | Z     |
|    | 515   | -C1  | -NH2             | -CH2CH2OC2H5                     | -CH₂CH₂OC₂H₅                     | N | С | N | X     |
| 40 | 516   | -C1  | -NH2             | -CH2CH2OC2H5                     | -CH2CH2OC2Hs                     | N | C | N | Z     |
|    | 517   | -C1  | -NH2             | -CH2CH2OC3H7                     | -CH₂CH₂OC₃H₁                     | N | С | N | X     |
| 45 | 518   | -C1  | -NH <sub>2</sub> | -CH₂CH₂OC₃H <sub>7</sub>         | -CH₂CH₂OC₃H <sub>7</sub>         | N | С | N | Z     |
|    | 5 1 9 | -C1  | -NH <sub>2</sub> | -CH2CH2OC6H5                     | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | X     |
| 50 | 520   | -C1  | -NH <sub>2</sub> | -CH2CH2OC6H5                     | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | Z     |

Table 1 (Continued)

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                              | P. S. X Z X Z X Z Z X Z |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 5 2 2                                                                                                                                                                                                                                                                                                                               | Z   X   Z   X           |
| 5 2 3 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> N C N 5 2 4 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> N C N | X<br>Z<br>X             |
| 5 2 4 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> N C N                                                                                                                                                                   | Z                       |
| 15                                                                                                                                                                                                                                                                                                                                  | X                       |
|                                                                                                                                                                                                                                                                                                                                     | ├                       |
| 525 $-C1$ $-NH2$ $-CH2CH2OCH2C6H5 -CH2CF3 N C N$                                                                                                                                                                                                                                                                                    | Z                       |
| 5 2 6 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CF <sub>3</sub> N C N                                                                                                                                                                                  | F                       |
| 20 5 2 7 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C N                                                                                                                                                              | X                       |
| 5 2 8 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C N                                                                                                                                                                 | Z                       |
| 5 2 9 - C 1 - NH <sub>2</sub> - CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> - CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> N C N                                                                                                                                               | X                       |
| 5 3 0 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> N C N                                                                                                                                                   | Z                       |
| 5 3 1 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> N C N                                                                                                                                   | X                       |
| 5 3 2 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> N C N                                                                                                                                   | Z                       |
| 5 3 3 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub> C <sub>6</sub> H <sub>5</sub> N C N                                                                                                       | Х                       |
| 5 3 4 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub> C <sub>6</sub> H <sub>5</sub> N C N                                                                                                       | Z                       |
| 5 3 5 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CF <sub>3</sub> N C N                                                                                                                                                                                                            | Х                       |
| 40 5 3 6 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CF <sub>3</sub> N C N                                                                                                                                                                                                         | Z                       |
| 5 3 7 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C N                                                                                                                                                                                           | Х                       |
| 5 3 8 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C N                                                                                                                                                                                           | Z                       |
| 5 3 9 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> N C N                                                                                                                                                                             | Х                       |
| 5 4 0 -C 1 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> N C N                                                                                                                                                                             | Z                       |

Table 1 (Continued)

|       |     | 1 (0,            | on thucu,                                                           |                  |   |   |   |       |
|-------|-----|------------------|---------------------------------------------------------------------|------------------|---|---|---|-------|
| Comp. | R'  | R²               | R³                                                                  | R4               | x | Y | z | P. S. |
| 5 4 1 | -C1 | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH2CH2OCH2C6H5  | N | С | N | Х     |
| 5 4 2 | -C1 | -NH2             | -CH₂CH₂OC(O)CH₃                                                     | -CH2CH2OCH2C6H5  | N | С | N | Z     |
| 5 4 3 | -C1 | -NH <sub>2</sub> | -CH2CH2OC(O)CH3                                                     | -CH₂CH₂OC(0)CH₃  | N | С | Ν | X     |
| 5 4 4 | -C1 | −NH₂             | -CH₂CH₂OC(O)CH₃                                                     | -CH₂CH₂OC(0)CH₃  | N | С | N | Z     |
| 5 4 5 | -C1 | -NH <sub>2</sub> | -CH2CH2OC(0)C2H5                                                    | -CH2CH2OC(0)C2H5 | N | С | N | X     |
| 5 4 6 | -C1 | -NH <sub>2</sub> | -CH2CH2OC(0)C2H5                                                    | -CH2CH2OC(0)C2H5 | N | С | N | Z     |
| 5 4 7 | -C1 | -NH2             | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7 | N | C | N | X     |
| 5 4 8 | -C1 | -NH2             | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7 | N | С | Ν | Z     |
| 5 4 9 | -C1 | -NH2             | -CH2CH2OC(0)C4H9                                                    | -CH2CH2OC(0)C4H9 | N | С | N | Х     |
| 550   | -C1 | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH2CH2OC(0)C4H9 | N | С | N | Z     |

5

45 .....

Table 1 (Continued)

| 5  | Comp.<br>Na | R¹  | R²   | R³                               | R <sup>4</sup>                   | X | Y | Z | P. S. |
|----|-------------|-----|------|----------------------------------|----------------------------------|---|---|---|-------|
|    | 5 5 1       | -C1 | -C I | -СН3                             | -CF <sub>2</sub> CF <sub>3</sub> | N | С | Ν | Х     |
| 10 | 5 5 2       | -C1 | -C1  | —СН₃                             | -CF <sub>2</sub> CF <sub>3</sub> | N | С | N | Z     |
|    | 5 5 3       | -C1 | -C1  | —СН₃                             | −CH <sub>2</sub> CF <sub>3</sub> | Ν | С | Ν | Х     |
| 15 | 5 5 4       | -C1 | -C1  | —СН₃                             | -CH₂CF₃                          | Ν | С | N | Z     |
|    | 5 5 5       | -C1 | -C1  | −CF <sub>2</sub> CF <sub>3</sub> | −CF <sub>2</sub> CF <sub>3</sub> | Ν | С | Ν | X     |
|    | 5 5 6       | -C1 | -C1  | -CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub> | Ν | С | Ν | Z     |
| 20 | 5 5 7       | -C1 | -C1  | -CF <sub>2</sub> CF <sub>3</sub> | −CH <sub>2</sub> CF <sub>3</sub> | N | С | Ν | X     |
|    | 5 5 8       | -C1 | -C1  | −CF <sub>2</sub> CF <sub>3</sub> | -CH <sub>2</sub> CF <sub>3</sub> | Ν | С | Ν | Z     |
| 25 | 5 5 9       | -C1 | -C1  | -CH₂CF₃                          | −CH <sub>2</sub> CF <sub>3</sub> | N | С | N | Х     |
| ·  | 560         | -C1 | -C1  | -CH₂CF₃                          | -CH₂CF₃                          | Ν | С | Ν | Z     |
| 30 | 5 6 1       | -C1 | -C1  | −CH₂CH₂OCH₃                      | −CH <sub>2</sub> CF <sub>3</sub> | Ν | С | Ν | X     |
|    | 562         | -C1 | -C1  | -CH₂CH₂OCH₃                      | -CH <sub>2</sub> CF <sub>3</sub> | N | С | Ν | Z     |
| 35 | 563         | -C1 | -C1  | -CH₂CH₂OCH₃                      | -CH₂CH₂OCH₃                      | Ν | С | Ν | X     |
|    | 564         | -C1 | -C1  | -CH₂CH₂OCH₃                      | -CH₂CH₂OCH₃                      | Ν | C | Ν | Z     |
|    | 5 6 5       | -C1 | -C1  | -CH2CH2OC2H5                     | -CH2CH2OC2H5                     | Z | U | Ν | X     |
| 40 | 5 6 6       | -C1 | -C1  | -CH2CH2OC2H5                     | -CH2CH2OC2H5                     | Ν | С | N | Z     |
|    | 567         | -C1 | -C1  | -CH2CH2OC3H7                     | −CH2CH2OC3H7                     | Ν | O | Ν | Х     |
| 45 | 568         | -C1 | -C1  | -CH₂CH₂OC₃H7                     | -CH₂CH₂OC₃H7                     | Ν | C | Ν | Z     |
| :  | 569         | -C1 | -C1  | —CH2CH2OC6H5                     | -CH <sub>2</sub> CF <sub>3</sub> | Ν | С | N | X     |
| 50 | 570         | -C1 | -C1  | −CH2CH2OC6H5                     | −CH₂CF₃                          | N | С | N | Z     |

Table 1 (Continued)

|    | Comp. | Di   | D?   | TO 3                                                            | D4                                                  | 37 | 37 | ~ | D.O.    |
|----|-------|------|------|-----------------------------------------------------------------|-----------------------------------------------------|----|----|---|---------|
| 5  | No.   | R¹   | R²   | R³                                                              | R <sup>4</sup>                                      | X  | Y  | Z | P. S.   |
|    | 5 7 1 | -C1  | -C1  | —CH₂CH₂OC₅H₅                                                    | -CH₂CH₂OCH₃                                         | N  | С  | N | X       |
| 10 | 572   | -C1  | -C1  | -CH₂CH₂OC₅H₅                                                    | -CH₂CH₂OCH₃                                         | N  | С  | Ν | Z       |
|    | 573   | -C 1 | -C1  | -CH₂CH₂OC₅H₅                                                    | -CH₂CH₂OC₀H₅                                        | N  | С  | N | X       |
| 15 | 574   | -C1  | -C1  | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | -CH₂CH₂OC₅H₅                                        | Ν  | O  | Ν | Z       |
|    | 575   | -C1  | -C1  | -CH2CH2OCH2C6H5                                                 | -CH₂CF₃                                             | Ν  | С  | Ν | X       |
|    | 576   | -C1  | -C1  | -CH2CH2OCH2C6H5                                                 | -CH <sub>2</sub> CF <sub>3</sub>                    | N  | С  | N | $Z^{-}$ |
| 20 | 577   | -C1  | -C1  | -CH2CH2OCH2C6H5                                                 | -CH₂CH₂OCH₃                                         | N  | С  | N | X       |
|    | 578   | -C1  | -C1  | —CH2CH2OCH2C6H5                                                 | -CH₂CH₂OCH₃                                         | N  | С  | Ν | Z       |
| 25 | 579   | -C1  | C 1  | -CH2CH2OCH2C6H5                                                 | -CH2CH2OC6H5                                        | N  | С  | N | X       |
|    | 580   | -C1  | -C1  | -CH2CH2OCH2C6H5                                                 | -CH <sub>2</sub> CH <sub>2</sub> OC ₅H <sub>5</sub> | N  | С  | N | Z       |
| 30 | 5 8 1 | -C1  | -c i | —CH2CH2OCH2C6H5                                                 | -CH2CH2OCH2C5H5                                     | N  | O  | N | X       |
|    | 582   | -C1  | -C I | -CH2CH2OCH2C6H5                                                 | -CH2CH2OCH2C6H5                                     | N  | C  | N | Z       |
| 25 | 583   | -C1  | -C1  | -CH2CH2OC2H4C6H5                                                | -CH2CH2OC2H4C6H5                                    | N  | Ċ  | Ñ | X       |
| 35 | 584   | -C1  | -C1  | -CH2CH2OC2H4C6H5                                                | -CH2CH2OC2H4C6H5                                    | N  | С  | N | Z       |
|    | 5 8 5 | -C1  | -C1  | -CH₂CH₂OC(O)CH₃                                                 | -CH <sub>2</sub> CF <sub>3</sub>                    | N  | C  | N | X       |
| 40 | 586   | -C1  | -C1  | -CH₂CH₂OC(0)CH₃                                                 | −CH <sub>2</sub> CF <sub>3</sub>                    | N  | С  | Ν | Z       |
|    | 587   | -C1  | -C1  | -CH₂CH₂OC(O)CH₃                                                 | -CH₂CH₂OCH₃                                         | Ν  | С  | Ν | X       |
| 45 | 588   | -C1  | -C1  | -CH₂CH₂OC(O)CH₃                                                 | -CH₂CH₂OCH₃                                         | N  | С  | N | Z       |
|    | 589   | -C1  | -C1  | —CH₂CH₂OC(O)CH₃                                                 | -CH2CH2OC6H5                                        | N  | С  | N | X       |
| 50 | 590   | -C1  | -C1  | —CH₂CH₂OC(O)CH₃                                                 | -CH2CH2OC6H5                                        | N  | C  | Ν | Z       |

Table 1 (Continued)

| Comp. | R'   | R²  | R³                                                                  | R⁴                                                                  | X | Y | Z | P. S. |
|-------|------|-----|---------------------------------------------------------------------|---------------------------------------------------------------------|---|---|---|-------|
| 5 9 1 | -C1  | -C1 | -CH2CH2OC(0)CH3                                                     | -CH₂CH₂OCH₂C₅H₅                                                     | N | С | N | X     |
| 5 9 2 | -C1  | -C1 | -CH₂CH₂OC(0)CH₃                                                     | -CH2CH2OCH2C6H5                                                     | N | С | N | Z     |
| 5 9 3 | -C 1 | -C1 | -CH₂CH₂OC(0)CH₃                                                     | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | N | С | N | X     |
| 5 9 4 | -C1  | -C1 | -CH₂CH₂OC(0)CH₃                                                     | -CH2CH2OC(O)CH3                                                     | N | С | N | Z     |
| 5 9 5 | -C1  | -C1 | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | -CH2CH2OC(0)C2H5                                                    | N | С | N | X     |
| 5 9 6 | -C1  | -C1 | -CH2CH2OC(0)C2H5                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | N | С | N | Z     |
| 5 9 7 | -C1  | -C1 | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7                                                    | N | С | Ν | X     |
| 5 9 8 | -C1  | -C1 | -CH2CH2OC(0)C3H7                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | N | С | N | Z     |
| 5 9 9 | -C1  | -C1 | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH2CH2OC(O)C4H9                                                    | N | С | Ν | X     |
| 6 0 0 | -C 1 | -C1 | -CH2CH2OC(0)C4H9                                                    | -CH2CH2OC(0)C4H9                                                    | Ν | Č | N | Z     |

Table 1 (Continued)

| R <sup>4</sup>                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00.00                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -CF <sub>2</sub> CF <sub>3</sub>                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -CF <sub>2</sub> CF <sub>3</sub>                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| −CH₂CF₃                                                                                        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| −CH <sub>2</sub> CF <sub>3</sub>                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -CF <sub>2</sub> CF <sub>3</sub>                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -CF <sub>2</sub> CF <sub>3</sub>                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| −CH₂CF₃                                                                                        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -CH <sub>2</sub> CF <sub>3</sub>                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| −CH <sub>2</sub> CF <sub>3</sub>                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| −CH <sub>2</sub> CF <sub>3</sub>                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CH₃ —CH₂CF₃                                                                                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CH <sub>3</sub> -CH <sub>2</sub> CF <sub>3</sub>                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>                              | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X <sub>.</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CH₃ —CH₂CH₂OCH₃                                                                                | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub>  | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub>  | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C <sub>3</sub> H <sub>7</sub> - CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C <sub>3</sub> H <sub>7</sub> — CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C <sub>6</sub> H <sub>5</sub> —CH <sub>2</sub> CF <sub>3</sub>                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C <sub>6</sub> H <sub>5</sub> —CH <sub>2</sub> CF <sub>3</sub>                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                | -CH <sub>2</sub> CF <sub>3</sub> -CH <sub>2</sub> CF <sub>3</sub> -CF <sub>2</sub> CF <sub>3</sub> -CF <sub>2</sub> CF <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> -CH <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub> N  -CH <sub>2</sub> CF <sub>3</sub> N  -CH <sub>2</sub> CF <sub>3</sub> N  -CF <sub>2</sub> CF <sub>3</sub> N  -CF <sub>2</sub> CF <sub>3</sub> N  -CF <sub>2</sub> CF <sub>3</sub> N  -CH <sub>2</sub> CF <sub>3</sub> N  CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N  CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N  CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N  CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N  CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N  CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N  CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N  CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N | -CF <sub>2</sub> CF <sub>3</sub> N C -CH <sub>2</sub> CF <sub>3</sub> N C -CH <sub>2</sub> CF <sub>3</sub> N C -CH <sub>2</sub> CF <sub>3</sub> N C -CF <sub>2</sub> CF <sub>3</sub> N C -CF <sub>2</sub> CF <sub>3</sub> N C -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> N C -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> N C -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> N C -CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> N C -CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> N C -CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> N C -CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> N C -CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> N C -CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> N C -CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> N C | -CF <sub>2</sub> CF <sub>3</sub> N C N -CH <sub>2</sub> CF <sub>3</sub> N C N -CH <sub>2</sub> CF <sub>3</sub> N C N -CF <sub>2</sub> CF <sub>3</sub> N C N -CF <sub>2</sub> CF <sub>3</sub> N C N -CF <sub>2</sub> CF <sub>3</sub> N C N -CH <sub>2</sub> CF <sub>3</sub> N C N CH <sub>3</sub> -CH <sub>2</sub> CF <sub>3</sub> N C N CH <sub>3</sub> -CH <sub>2</sub> CF <sub>3</sub> N C N CH <sub>3</sub> -CH <sub>2</sub> CF <sub>3</sub> N C N CH <sub>3</sub> -CH <sub>2</sub> CF <sub>3</sub> N C N CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C N CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C N CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C N CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C N CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C N CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C N CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C N CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C N CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N C N |

50

Table 1 (Continued)

|    | Comp. |     | <b>~</b> 2       | <b>D</b> 2       |                                  |   |   |   |       |
|----|-------|-----|------------------|------------------|----------------------------------|---|---|---|-------|
| 5  | Na    | R'  | R²               | R³               | R⁴                               | X | Y | Z | P. S. |
|    | 621   | -SH | -NH <sub>2</sub> | —CH₂CH₂OC₅H₅     | —CH₂CH₂OCH₃                      | N | С | N | X     |
| 10 | 622   | -SH | -NH2             | —CH2CH2OC6H5     | —CH₂CH₂OCH₃                      | N | С | N | Z     |
|    | 623   | -SH | -NH2             | —CH2CH2OC6H5     | —CH2CH2OC5H5                     | N | С | N | X     |
| 15 | 624   | -SH | -NH2             | —CH₂CH₂OC₀H₅     | —CH2CH2OC6H5                     | N | С | Ν | Z     |
| ,3 | 625   | -SH | -NH2             | -CH2CH2OCH2C6H5  | −CH <sub>2</sub> CF <sub>3</sub> | Ν | С | Ν | Х     |
|    | 626   | -SH | -NH2             | -CH2CH2OCH2C6H5  | -CH₂CF₃                          | Ν | С | Ν | Z     |
| 20 | 627   | -SH | -NH2             | -CH2CH2OCH2C6H5  | —CH₂CH₂OCH₃                      | Ν | С | N | X     |
| -  | 628   | -SH | -NH <sub>2</sub> | -CH₂CH₂OCH₂C6H5  | —CH₂CH₂OCH₃                      | N | С | N | Z     |
| 25 | 629   | -SH | -NH2             | -CH2CH2OCH2C6H5  | -CH2CH2OC6H5                     | N | С | N | X     |
|    | 630   | -SH | -NH2             | -CH2CH2OCH2C6H5  | —CH₂CH₂OC₅H₅                     | Ν | Ç | N | Z     |
| 30 | 631   | -SH | -NH2             | -CH2CH2OCH2C6H5  | -CH2CH2OCH2C6H5                  | Ν | С | N | X     |
|    | 632   | -SH | -NH2             | —CH2CH2OCH2C6H5  | -CH2CH2OCH2C6H5                  | Ν | U | Ν | Z     |
|    | 633   | -SH | -NH2             | -CH2CH2OC2H4C6H5 | -CH2CH2OC2H4C6H5                 | N | C | N | X     |
| 35 | 634   | -SH | -NH <sub>2</sub> | -CH2CH2OC2H4C6H5 | -CH2CH2OC2H4C6H5                 | Ν | С | N | Z     |
|    | 635   | -SH | -NH <sub>2</sub> | -CH₂CH₂OC(0)CH₃  | —CH₂CF₃                          | N | С | N | X     |
| 40 | 636   | -SH | -NH2             | -CH₂CH₂OC(0)CH₃  | -CH₂CF₃                          | Ν | С | N | Z     |
|    | 637   | -SH | -NH2             | -CH₂CH₂OC(0)CH₃  | —CH₂CH₂OCH₃                      | N | U | N | Х     |
| 45 | 638   | -SH | -NH2             | -CH₂CH₂OC(O)CH₃  | -CH2CH2OCH3                      | Ν | С | N | Z     |
| ٠. | 639   | -SH | -NH2             | -CH₂CH₂OC(0)CH₃  | —CH2CH2OC6H5                     | Ν | С | N | Х     |
| 50 | 640   | -SH | -NH <sub>2</sub> | -CH₂CH₂OC(0)CH₃  | —CH2CH2OC₅H5                     | N | С | N | ·Z    |

Table 1 (Continued)

|       | 1   | 1                |                                                                     |                  | , |   |   | <del>,</del> |
|-------|-----|------------------|---------------------------------------------------------------------|------------------|---|---|---|--------------|
| Comp. | R'  | R²               | R³                                                                  | R'               | X | Y | z | P. S.        |
| 6 4 1 | -SH | -NH2             | -CH₂CH₂OC´O)CH₃                                                     | -CH2CH2OCH2C6H5  | N | С | N | Х            |
| 642   | -SH | -NH2             | -CH2CH2OC(O)CH3                                                     | -CH2CH2OCH2C6H5  | N | С | N | Z            |
| 6 4 3 | -SH | -NH2             | -CH2CH2OC(O)CH3                                                     | -CH₂CH₂OC(O)CH₃  | N | С | N | Х            |
| 644   | -SH | -NH2             | -CH₂CH₂OC(0)CH₃                                                     | -CH₂CH₂OC(O)CH₃  | N | С | N | Z            |
| 6 4 5 | -SH | -NH <sub>2</sub> | -CH2CH2OC(0)C2H5                                                    | -CH2CH2OC(0)C2H5 | N | С | N | X            |
| 646   | -SH | −NH₂             | -CH2CH2OC(0)C2H5                                                    | -CH2CH2OC(0)C2H5 | N | С | N | Z            |
| 647   | -SH | -NH2             | -CH₂CH₂OC(0)C₃H₁                                                    | -CH2CH2OC(0)C3H7 | N | С | N | Х            |
| 648   | -SH | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | -CH2CH2OC(0)C3H7 | N | С | N | Z            |
| 649   | -SH | −NH₂             | -CH2CH2OC(0)C4H9                                                    | -CH2CH2OC(0)C4H9 | N | С | N | X            |
| 650   | -ѕн | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH2CH2OC(0)C4H9 | N | С | N | Z            |

.15

Table 1 (Continued)

|    | -           | lable            | 1, (0)           | ) II t II d e d)                 |                                                   |   |   |   |       |
|----|-------------|------------------|------------------|----------------------------------|---------------------------------------------------|---|---|---|-------|
| 5  | Comp.<br>Na | R'               | R²               | R³                               | R'                                                | X | Y | Z | P. S. |
|    | 651         | -NH2             | -NH2             | −CH₃                             | -CF <sub>2</sub> CF <sub>3</sub>                  | Ν | N | N | X     |
| 10 | 652         | -NH2             | -NH2             | −CH₃                             | -CF <sub>2</sub> CF <sub>3</sub>                  | Ν | Ν | N | Y     |
|    | 653         | -NH2             | -NH2             | —CH₃                             | -CF <sub>2</sub> CF <sub>3</sub>                  | Ν | N | Ν | Z     |
| 15 | 654         | -NH2             | -NH2             | —CH₃                             | −CH <sub>2</sub> CF <sub>3</sub>                  | Ν | N | N | X     |
|    | 655         | -NH2             | -NH <sub>2</sub> | −CH₃                             | −CH₂CF₃                                           | Ν | N | N | Y     |
| 20 | 656         | -NH2             | -NH2             | −CH₃                             | −CH₂CF₃                                           | Ν | N | N | Z     |
|    | 657         | -NH2             | -NH2             | -CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub>                  | Ν | N | N | Х     |
| 25 | 658         | -NH2             | −NH₂             | -CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub>                  | Ν | N | N | Y     |
|    | 659         | -NH2             | -NH2             | −CF <sub>2</sub> CF <sub>3</sub> | −CF <sub>2</sub> CF <sub>3</sub>                  | Ν | N | N | Z     |
|    | 660         | -NH2             | -NH2             | -CF₂CF₃                          | -CH₂CF₃                                           | Ν | N | N | Х     |
| 30 | 661         | -NH <sub>2</sub> | -NH2             | -CF <sub>2</sub> CF <sub>3</sub> | -CH <sub>2</sub> CF <sub>3</sub>                  | N | Ν | Ν | Y     |
|    | 662         | -NH2             | -NH2             | -CF <sub>2</sub> CF <sub>3</sub> | -CH₂CF₃                                           | Ν | Ν | N | Z     |
| 35 | 663         | -NH2             | -NH2             | −CH <sub>2</sub> CF <sub>3</sub> | -CH <sub>2</sub> CF <sub>3</sub>                  | N | N | N | X     |
|    | 664         | -NH2             | -NH2             | -CH₂CF₃                          | -CH <sub>2</sub> CF <sub>3</sub>                  | N | N | Ν | Y     |
| 40 | 665         | -NH2             | -NH2             | −CH₂CF₃                          | −CH₂CF₃                                           | Z | Ν | N | Z     |
|    | 666         | -NH2             | -NH2             | -CH2CH2OCH3                      | -CH <sub>2</sub> CF <sub>3</sub>                  | N | Ν | Ν | Х     |
|    | 667         | -NH <sub>2</sub> | -NH2             | -CH2CH2OCH3                      | -CH₂CF₃                                           | Ν | Z | N | Y     |
| 45 | 668         | -NH2             | -NH2             | —CH₂CH₂OCH₃                      | −CH <sub>2</sub> CF <sub>3</sub>                  | N | N | N | Z     |
|    | 6 6 9       | -NH <sub>2</sub> | -NH2             | -CH₂CH₂OCH₃                      | -CH₂CH₂OCH₃                                       | N | Ν | Ν | X     |
| 50 | 670         | -NH2             | -NH2             | -CH₂CH₂OCH₃                      | −CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> | Ν | Ν | N | Y     |

Table 1 (Continued)

| C | omp.<br>Na | R¹               | R²               | R³                                                              | R <sup>4</sup>                   | х  | Y | Z | P. S. |
|---|------------|------------------|------------------|-----------------------------------------------------------------|----------------------------------|----|---|---|-------|
| 6 | 6 7 1      | −NH₂             | -NH2             | -CH2CH2OCH3                                                     | -CH2CH2OCH3                      | N  | Ν | N | Z     |
| 6 | 372        | -NH2             | -NH2             | -CH2CH2OC2H5                                                    | -CH₂CH₂OC₂H₅                     | N  | Ν | N | Х     |
| ( | 673        | -NH2             | -NH2             | -CH2CH2OC2H5                                                    | -CH2CH2OC2H5                     | Ν  | Ν | Ν | Y     |
| E | 674        | −NH₂             | −NH₂             | −CH2CH2OC2H5                                                    | -CH2CH2OC2H5                     | N  | N | Ν | Z     |
| ( | 675        | -NH2             | −NH₂             | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> | -CH2CH2OC3H7                     | Ν  | N | Ν | X     |
| 6 | 676        | −NH₂             | -NH2             | -CH₂CH₂OC₃H7                                                    | -CH₂CH₂OC₃H7                     | N  | N | N | Y     |
| ( | 677        | -NH2             | -NH <sub>2</sub> | —CH₂CH₂OC₃H7                                                    | -CH2CH2OC3H7                     | N  | N | Ν | Z     |
| ( | 6 7 8      | -NH <sub>2</sub> | -NH2             | -CH2CH2OC6H5                                                    | -CH₂CF₃                          | Ν  | N | Ν | X     |
| ( | 6 7 9      | -NH2             | -NH2             | -CH2CH2OC6H5                                                    | -CH <sub>2</sub> CF <sub>3</sub> | Ν  | N | Ν | Y     |
| ( | 680        | -NH2             | −NH₂             | -CH2CH2OC6H5                                                    | −CH <sub>2</sub> CF <sub>3</sub> | N  | N | N | Z     |
| ( | 681        | -NH2             | -NH2             | -CH2CH2OC6H5                                                    | -CH₂CH₂OCH₃                      | Ν  | N | N | X     |
| [ | 682        | -NH2             | −NH₂             | -CH₂CH₂OC₅H₅                                                    | -CH2CH2OCH3                      | N  | N | N | Y     |
| ( | 683        | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH₂CH₂OC₅H₅                                                    | -CH₂CH₂OCH₃                      | N  | N | N | Z     |
|   | 684        | -NH <sub>2</sub> | -NH2             | -CH₂CH₂OC₅H₅                                                    | -CH₂CH₂OC₅H₅                     | N  | N | Ν | X     |
| [ | 685        | -NH2             | −NH₂             | -CH2CH2OC6H5                                                    | -CH₂CH₂OC₅H₅                     | N. | N | N | Y     |
|   | 686        | −NH₂             | -NH <sub>2</sub> | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | −CH2CH2OC6H5                     | N  | N | N | Z     |
|   | 687        | −NH₂             | −NH₂             | -CH2CH2OCH2C6H5                                                 | -CH₂CF₃                          | N  | N | N | X     |
|   | 688        | -NH2             | −NH₂             | -CH2CH2OCH2C6H5                                                 | -CH₂CF₃                          | N  | N | N | Y     |
|   | 689        | -NH2             | -NH2             | -CH2CH2OCH2C6H5                                                 | −CH <sub>2</sub> CF <sub>3</sub> | N  | N | N | Z     |
|   | 690        | -NH <sub>2</sub> | -NH2             | -CH2CH2OCH2C6H5                                                 | -CH2CH2OCH3                      | N  | N | N | X     |

Table 1 (Continued)

| 5  | Comp.<br>Na | R'               | R²               | R³                                                    | R <sup>4</sup>   | X | Y | z | P. S. |
|----|-------------|------------------|------------------|-------------------------------------------------------|------------------|---|---|---|-------|
|    | 6 9 1       | -NH2             | -NH <sub>2</sub> | -CH2CH2OCH2C6H5                                       | -CH₂CH₂OCH₃      | N | N | N | Y     |
| 10 | 692         | −NH₂             | -NH <sub>2</sub> | -CH₂CH₂OCH₂C6H5                                       | −CH₂CH₂OCH₃      | N | N | N | Z     |
|    | 693         | -NH2             | -NH2             | -CH2CH2OCH2C6H5                                       | -CH2CH2OC5H5     | N | N | N | Х     |
|    | 694         | −NH₂             | -NH <sub>2</sub> | —CH₂CH₂OCH₂C₅H₅                                       | -CH2CH2OC6H5     | N | N | N | Y     |
| 15 | 695         | −NH₂             | -NH2             | -CH2CH2OCH2C6H5                                       | -CH2CH2OC6H5     | N | N | N | Z     |
|    | 696         | -NH2             | -NH2             | -CH2CH2OCH2C6H5                                       | -CH2CH2OCH2C6H5  | N | Ν | N | Х     |
| 20 | 697         | -NH2             | -NH2             | -CH2CH2OCH2C6H5                                       | -CH2CH2OCH2C6H5  | N | Ν | Ν | Y     |
|    | 698         | −NH₂             | -NH <sub>2</sub> | -CH2CH2OCH2C6H5                                       | -CH2CH2OCH2C4H5  | N | N | Ν | Z     |
| 25 | 699         | -NH2             | -NH2             | -CH2CH2OC2H4C6H5                                      | -CH2CH2OC2H4C6H5 | N | Z | Ν | X     |
|    | 700         | -NH2             | -NH2             | -CH2CH2OC2H4C6H5                                      | -CH2CH2OC2H4C6H5 | N | Ν | Ν | Y     |
|    | 701         | -NH2             | -NH <sub>2</sub> | —CH2CH2OC2H4C6H5                                      | -CH2CH2OC2H4C6H5 | N | Ν | N | Z     |
| 30 | 702         | −NH₂             | -NH2             | -CH₂CH₂OC(O)CH₃                                       | -CH₂CF₃          | N | Ν | Ν | Х     |
|    | 703         | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH₂CH₂OC(O)CH₃                                       | -CH₂CF₃          | N | Ν | N | Y     |
| 35 | 704         | -NH2             | -NH <sub>2</sub> | -CH₂CH₂OC(0)CH₃                                       | -CH₂CF₃          | N | Ν | N | Z     |
|    | 705         | −NH₂             | -NH2             | -CH₂CH₂OC(0)CH₃                                       | -CH₂CH₂OCH₃      | N | Ν | N | X     |
| 40 | 706         | -NH2             | -NH2             | -CH₂CH₂OC(O)CH₃                                       | -CH2CH2OCH3      | Ν | N | N | Y     |
|    | 707         | -NH2             | -NH2             | -CH₂CH₂OC(0)CH₃                                       | -CH2CH2OCH3      | N | N | N | Z     |
|    | 708         | -NH2             | -NH <sub>2</sub> | -CH₂CH₂OC(O)CH₃                                       | -CH2CH2OC6H5     | N | Ν | N | Х     |
| 45 | 709         | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> | -CH₂CH₂OC6H5     | N | N | N | Y     |
| Į  | 710         | -NH2             | -NH <sub>2</sub> | -CH₂CH₂OC(0)CH₃                                       | -CH₂CH₂OC₅H₅     | N | N | N | Z     |

50

. 55

Table 1 (Continued)

| Comp. | R¹               | R²               | R <sup>3</sup>                                                      | R4                                                                  | X        | Y        | z | P. S. |
|-------|------------------|------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|----------|----------|---|-------|
| No.   |                  |                  |                                                                     |                                                                     | <u> </u> | <u> </u> |   |       |
| 7 1 1 | -NH <sub>2</sub> | -NH <sub>2</sub> | —CH₂CH₂OC(0)CH₃                                                     | -CH2CH2OCH2C5H5                                                     | N        | N        | N | X     |
| 712   | -NH2             | -NH2             | -CH2CH2OC(O)CH3                                                     | -CH2CH2OCH2C6H5                                                     | N        | N        | N | Y     |
| 713   | -NH2             | -NH2             | -CH₂CH₂OC(O)CH₃                                                     | -CH2CH2OCH2C6H5                                                     | N        | N        | N | Z     |
| 714   | −NH₂             | -NH <sub>2</sub> | -CH₂CH₂OC(O)CH₃                                                     | -CH₂CH₂OC(O)CH₃                                                     | N        | N        | N | Х     |
| 715   | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH₂CH₂OC(O)CH₃                                                     | -CH₂CH₂OC(O)CH₃                                                     | N        | N        | N | Y     |
| 716   | -NH2             | −NH₂             | -CH₂CH₂OC(0)CH₃                                                     | -CH₂CH₂OC(O)CH₃                                                     | N        | N        | N | Z     |
| 717   | -NH2             | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | -CH2CH2OC(0)C2H5                                                    | N        | Ν        | Ν | Х     |
| 718   | -NH2             | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | -CH2CH2OC(0)C2H5                                                    | Ν        | N        | Ν | Y     |
| 719   | −NH₂             | -NH <sub>2</sub> | -CH2CH2OC(0)C2H5                                                    | -CH2CH2OC(0)C2H5                                                    | Ν        | Ν        | Ν | Z     |
| 720   | -NH2             | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | -CH2CH2OC(0)C3H7                                                    | N        | N        | Ν | X     |
| 721   | -NH2             | -NH2             | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7                                                    | N        | N        | Ν | Y     |
| 722   | -NH2             | −NH₂             | -CH₂CH₂OC(O)C₃H₁                                                    | -CH2CH2OC(0)C3H7                                                    | N        | Ν        | Ν | Z     |
| 723   | -NH2             | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH2CH2OC(0)C4H9                                                    | N        | N        | Ν | X     |
| 724   | -NH <sub>z</sub> | -NH2             | -CH2CH2OC(O)C4Hs                                                    | -CH2CH2OC(0)C4H9                                                    | Ν        | N        | Ν | Y     |
| 725   | -NH2             | -NH2             | -CH2CH2OC(0)C4H9                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | N        | N        | N | Z     |

Table 1 (Continued)

| 5  | Comp. | R'               | R²               | R³                               | R4                               | X | Y | z | P. S. |
|----|-------|------------------|------------------|----------------------------------|----------------------------------|---|---|---|-------|
|    | 7 2 6 | -NH2             | −NH₂             | −СН₃                             | -CF <sub>2</sub> CF <sub>3</sub> | N | N | С | Х     |
| 10 | 727   | -NH2             | -NH₂             | −CH <sub>3</sub>                 | -CF <sub>2</sub> CF <sub>3</sub> | N | N | С | Y     |
|    | 728   | −NH₂             | -NH <sub>2</sub> | —CH <sub>3</sub>                 | −CH <sub>2</sub> CF <sub>3</sub> | N | N | С | X     |
| 15 | 7 2 9 | −NH₂             | −NH₂             | −СН₃                             | −CH <sub>2</sub> CF <sub>3</sub> | N | Ν | С | Y     |
|    | 730   | −NH₂             | -NH2             | −CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub> | N | Ν | С | Х     |
|    | 7 3 1 | -NH2             | -NH2             | -CF <sub>2</sub> CF <sub>3</sub> | −CF <sub>2</sub> CF <sub>3</sub> | Ν | N | С | Y     |
| 20 | 7 3 2 | -NH2             | -NH2             | -CF₂CF₃                          | −CH₂CF₃                          | Ν | N | С | X     |
|    | 7 3 3 | −NH₂             | -NH2             | −CF <sub>2</sub> CF <sub>3</sub> | -CH₂CF₃                          | Ν | Ν | С | Y     |
| 25 | 7 3 4 | -NH2             | -NH <sub>2</sub> | −CH <sub>2</sub> CF <sub>3</sub> | −CH <sub>2</sub> CF <sub>3</sub> | Ν | Ν | С | Х     |
| j  | 7 3 5 | -NH2             | -NH2             | -CH₂CF₃                          | -CH <sub>2</sub> CF <sub>3</sub> | N | Ν | С | Y     |
| 30 | 7 3 6 | -NH2             | -NH2             | -CH₂CH₂OCH₃                      | −CH <sub>2</sub> CF <sub>3</sub> | Ν | Ν | С | Х     |
|    | 737   | −NH₂             | -NH2             | -CH₂CH₂OCH₃                      | −CH <sub>2</sub> CF <sub>3</sub> | N | Ν | С | Y     |
| 35 | 7 3 8 | −NH₂             | -NH2             | -CH₂CH₂OCH₃                      | -CH₂CH₂OCH₃                      | N | N | С | X     |
|    | 7.39  | −NH₂             | -NH2             | -CH₂CH₂OCH₃                      | -CH₂CH₂OCH₃                      | Ν | N | С | Y     |
|    | 740   | -NH2             | -NH2             | -CH₂CH₂OC₂H₅                     | -CH₂CH₂OC₂H₅                     | N | Ν | С | X     |
| 40 | 741   | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH2CH2OC2H5                     | -CH2CH2OC2H5                     | N | Ν | С | Y     |
|    | 742   | -NH2             | -NH2             | -CH2CH2OC3H7                     | -CH2CH2OC3H7                     | Ν | Ν | С | X     |
| 45 | 7 4 3 | −NH₂             | −NH₂             | -CH₂CH₂OC₃H7                     | -CH₂CH₂OC₃H₁                     | N | N | С | Y     |
|    | 744   | -NH2             | -NH2             | -CH2CH2OC6H5                     | −CH₂CF₃                          | N | Ν | С | X     |
| 50 | 7 4 5 | −NH₂             | −NH₂             | -CH2CH2OC6H5                     | −CH₂CF₃                          | N | Ν | С | Y     |

Table 1 (Continued)

| Comp. | 1                | T .              | T                | <u> </u>                         | Г | Ι |   | T     |
|-------|------------------|------------------|------------------|----------------------------------|---|---|---|-------|
| No.   | R'               | R²               | R³               | R <sup>4</sup>                   | X | Y | Z | P. S. |
| 7 4 6 | -NH2             | -NH2             | -CH₂CH₂OC₅H₅     | −CPaCH2OCH3                      | N | N | С | Х     |
| 747   | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH2CH2OC6H5     | -CH₂CH₂OCH₃                      | N | N | С | Y     |
| 7 4 8 | −NH₂             | -NH <sub>2</sub> | -CH2CH2OC6H5     | -CH₂CH₂OC₅H₅                     | N | N | С | Х     |
| 7 4 9 | -NH2             | -NH2             | -CH₂CH₂OC₅H₅     | -CH₂CH₂OC₅H₅                     | N | N | С | Y     |
| 750   | −NH₂             | −NH₂             | -CH2CH2OCH2C6H5  | −CH <sub>2</sub> CF <sub>3</sub> | N | N | С | X     |
| 751   | −NH₂             | -NH <sub>2</sub> | -CH2CH2OCH2C6H5  | -CH <sub>2</sub> CF <sub>3</sub> | N | N | С | Y     |
| 7 5 2 | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH2CH2OCH2C6H5  | -CH₂CH₂OCH₃                      | N | N | С | Х     |
| 753   | -NH2             | -NH2             | -CH2CH2OCH2C6H5  | −CH₂CH₂OCH₃                      | N | Ν | С | Y     |
| 754   | -NH2             | -NH2             | -CH2CH2OCH2C6H5  | −CH2CH2OC6H5                     | N | Ν | С | X     |
| 755   | -NH2             | −NH₂             | -CH2CH2OCH2C6H5  | -CH2CH2OC6H5                     | N | Ν | С | Y     |
| 756   | -NH2             | −NH₂             | -CH2CH2OCH2C6H5  | -CH2CH2OCH2C6H5                  | N | Ν | С | X     |
| 757   | -NH2             | -NH2             | -CH2CH2OCH2C6H5  | -CH2CH2OCH2C6H5                  | N | Ν | С | Y     |
| 758   | -NH2             | -NH2             | -CH2CH2OC2H4C6H5 | -CH2CH2OC2H4C6H5                 | N | N | С | X     |
| 759   | -NH <sub>2</sub> | -NH2             | -CH2CH2OC2H4C6H5 | -CH2CH2OC2H4C6H5                 | N | N | С | Y     |
| 760   | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH₂CH₂OC(O)CH₃  | −CH₂CF₃                          | N | Ν | С | X     |
| 7 6 1 | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH₂CH₂OC(0)CH₃  | −CH <sub>2</sub> CF <sub>3</sub> | N | N | С | Y     |
| 762   | −NH₂             | −NH₂             | -CH₂CH₂OC(0)CH₃  | -CH₂CH₂OCH₃                      | N | N | С | X     |
| 763   | -NH2             | -NH <sub>2</sub> | -CH₂CH₂OC(0)CH₃  | —CH₂CH₂OCH₃                      | N | Z | С | Y     |
| 764   | −NH₂             | -NH2             | -CH₂CH₂OC(0)CH₃  | -CH₂CH₂OC₅H₅                     | N | Ν | С | X     |
| 765   | -NH2             | -NH2             | -CH₂CH₂OC(0)CH₃  | -CH2CH2OC6H5                     | N | Ν | С | Y     |

Table 1 (Continued)

| Comp. | R¹               | R²               | R²                                                                  | R'                                                                  | X | Y | Z | P. S. |
|-------|------------------|------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---|---|---|-------|
| 766   | -NH <sub>2</sub> | −NH₂             | -CH2CH2OC(0)CH3                                                     | -CH₂CH₂OCH₂C₅H₅                                                     | Ν | N | С | X     |
| 767   | -NH2             | -NH2             | -CH₂CH₂OC(O)CH₃                                                     | -CH2CH2OCH2C6H5                                                     | N | Ν | С | Y     |
| 768   | -NH2             | -NH <sub>2</sub> | -CH2CH2OC(0)CH3                                                     | -CH2CH2OC(0)CH3                                                     | N | N | С | X     |
| 769   | -NH2             | −NH₂             | -CH₂CH₂OC(0)CH₃                                                     | -CH₂CH₂OC(O)CH₃                                                     | N | Ν | С | Y     |
| 770   | −NH₂             | −NH₂             | -CH2CH2OC(0)C2H5                                                    | -CH2CH2OC(0)C2H5                                                    | N | Ν | С | X     |
| 771   | -NH2             | −NH₂             | -CH2CH2OC(0)C2H5                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | Ν | Ν | С | Y     |
| 772   | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | -CH2CH2OC(0)C3H7                                                    | N | N | С | X     |
| 773   | -NH2             | −NH₂             | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7                                                    | Ν | N | С | Y     |
| 774   | -NH <sub>2</sub> | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH2CH2OC(0)C4H9                                                    | Ν | N | С | X     |
| 775   | -NH <sub>2</sub> | -NH2             | -CH2CH2OC(0)C4H9                                                    | -CH2CH2OC(0)C4H9                                                    | Ν | N | С | Y     |

Table 2

| ,  | Comp. | R²                               | R <sup>4</sup>                                                  |
|----|-------|----------------------------------|-----------------------------------------------------------------|
| 15 | No.   | K*                               | K '                                                             |
|    | 776   | —СН₃                             | -CF <sub>2</sub> CF <sub>3</sub>                                |
|    | 777   | —CH₃                             | −CH <sub>2</sub> CF <sub>3</sub>                                |
| 20 | 778   | -CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub>                                |
|    | 779   | -CF <sub>2</sub> CF <sub>3</sub> | −CH <sub>2</sub> CF <sub>3</sub>                                |
| 25 | 780   | −CH <sub>2</sub> CF <sub>3</sub> | −CH <sub>2</sub> CF <sub>3</sub>                                |
| 20 | 781   | —CH₂CH₂OCH₃                      | −CH₂CF₃                                                         |
|    | 782   | -CH2CH2OCH3                      | -CH₂CH₂OCH₃                                                     |
| 30 | 783   | —CH2CH2OC2H5                     | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> |
|    | 784   | —CH₂CH₂OC₃H <sub>7</sub>         | —CH₂CH₂OC₃H₁                                                    |
|    | 785   | −CH2CH2OC6H5                     | −CH <sub>2</sub> CF <sub>3</sub>                                |
| 35 | 786   | —CH2CH2OC6H5                     | —CH₂CH₂OCH₃                                                     |
|    | 787   | -CH2CH2OC6H5                     | —CH₂CH₂OC₅H₅                                                    |
|    | 788   | —CH2CH2OCH2C6H5                  | -CH <sub>2</sub> CF <sub>3</sub>                                |
| 40 | 789   | —CH2CH2OCH2C6H5                  | —CH₂CH₂OCH₃                                                     |
|    | 790   | -CH2CH2OCH2C6H5                  | −CH2CH2OC6H5                                                    |
|    | 791   | —CH2CH2OCH2C6H5                  | -CH2CH2OCH2C6H5                                                 |
| 45 | 792   | -CH2CH2OC2H4C6H5                 | -CH2CH2OC2H4C6H5                                                |
|    | 793   | -CH2CH2OC(O)CH3                  | -CH <sub>2</sub> CF <sub>3</sub>                                |
|    | 794   | -CH₂CH₂OC(0)CH₃                  | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> |
| 50 | 7 9 5 | -CH₂CH₂OC(0)CH₃                  | -CH2CH2OCH2C6H5                                                 |

55

5

# Table 2 (Continued)

| Comp.<br>Na | R³                           | R <sup>4</sup>                                                      |
|-------------|------------------------------|---------------------------------------------------------------------|
| 7 9 6       | -CH₂CH₂OC(0)CH₃              | -CH2CH2OCH2C6H5                                                     |
| 797         | -CH₂CH₂OC(0)CH₃              | —CH₂CH₂OC(0)CH₃                                                     |
| 798         | -CH2CH2OC(0)C2H5             | -CH2CH2OC(0)C2H5                                                    |
| 799         | -CH₂CH₂OC(0)C₃H <sub>7</sub> | -CH2CH2OC(0)C3H7                                                    |
| 800         | -CH2CH2OC(O)C4H9             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> |

R4

 $-CH_2CH_2OC_6H_5$ 

-CH<sub>2</sub>CF<sub>3</sub>

 $-CH_2CH_2OC_6H_5$ 

-CH2CH2OCH2C5H5

-CH2CH2OCH2C6H5

 $-CH_2CH_2OC_2H_4C_6H_5$ 

Table 3

R³

Comp.

Na

8 1 5

8 1 6

8 1 7

8 1 8

8 1 9

8 2 0

-CH2CH2OCH2C6H5

-CH2CH2OCH2C6H5

 $-CH_2CH_2OC_2H_4C_6H_5$ 

-CH<sub>2</sub>CH<sub>2</sub>OC(0)CH<sub>3</sub>

-CH<sub>2</sub>CH<sub>2</sub>OC(0)CH<sub>3</sub>

-CH<sub>2</sub>CH<sub>2</sub>OC(0)CH<sub>3</sub>

|    | 801   | −CH₃                                                                            | -CF <sub>2</sub> CF <sub>3</sub> |
|----|-------|---------------------------------------------------------------------------------|----------------------------------|
| 20 | 802   | —CH₃                                                                            | −CH <sub>2</sub> CF <sub>3</sub> |
|    | 803   | -CF <sub>2</sub> CF <sub>3</sub>                                                | −CF <sub>2</sub> CF <sub>3</sub> |
|    | 804   | -CF <sub>2</sub> CF <sub>3</sub>                                                | —CH₂CF₃                          |
| 25 | 805   | −CH <sub>2</sub> CF <sub>3</sub>                                                | −CH <sub>2</sub> CF <sub>3</sub> |
|    | 806   | —CH₂CH₂OCH₃                                                                     | —CH₂CF₃                          |
|    | 807   | —CH₂CH₂OCH₃                                                                     | —CH₂CH₂OCH₃                      |
| 30 | 808   | -CH2CH2OC2H5                                                                    | —CH₂CH₂OC₂H₅                     |
|    | 809   | —CH₂CH₂0C₃H <sub>7</sub>                                                        | —CH2CH2OC3H7                     |
|    | 810   | -CH2CH20C6H5                                                                    | —CH₂CF₃                          |
| 35 | 811   | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub>                 | —CH₂CH₂OCH₃                      |
|    | 812   | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub>                 | —CH₂CH₂OC₅H₅                     |
|    | 8 1 3 | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | —CH₂CF₃                          |
| 40 | 8 1 4 | -CH2CH2OCH2C6H5                                                                 | —CH₂CH₂OCH₃                      |
|    |       |                                                                                 |                                  |

55

45

50

5

Table 3 (Continued)

| Comp. | R³                                                                  | R'                                                                  |
|-------|---------------------------------------------------------------------|---------------------------------------------------------------------|
| 8 2 1 | -CH₂CH₂OC(O)CH₃                                                     | -CH₂CH₂OCH₂C₅H₅                                                     |
| 8 2 2 | -CH2CH2OC(0)CH3                                                     | -CH₂CH₂OC(0)CH₃                                                     |
| 8 2 3 | -CH2CH2OC(0)C2H5                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> |
| 8 2 4 | -CH2CH2OC(0)C3H7                                                    | —CH₂CH₂OC(0)C₃H <sub>7</sub>                                        |
| 8 2 5 | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | —CH₂CH₂OC(O)C₄H₃                                                    |

Table 4

| Comp.<br>Na. | R¹               | R²               | R³                                                | R4                               | X | Y  | Z | P. S.          |
|--------------|------------------|------------------|---------------------------------------------------|----------------------------------|---|----|---|----------------|
| 8 2 6        | -NH2             | -NH <sub>2</sub> | −СН₃                                              | -CF <sub>2</sub> CF <sub>3</sub> | N | N  | N | X              |
| 827          | -NH <sub>2</sub> | -NH <sub>2</sub> | −CH <sub>3</sub>                                  | -CF <sub>2</sub> CF <sub>3</sub> | N | N  | N | Y              |
| 828          | -NH <sub>2</sub> | -NH <sub>2</sub> | −CH₃                                              | -CF <sub>2</sub> CF <sub>3</sub> | N | N  | N | Z              |
| 829          | -NH <sub>2</sub> | -NH2             | —СH₃                                              | -CH <sub>2</sub> CF <sub>3</sub> | N | N  | N | X              |
| 830          | -NH <sub>2</sub> | -NH2             | —СH₃                                              | -CH <sub>2</sub> CF <sub>3</sub> | N | N  | N | Y              |
| 8 3 1        | −NH₂             | -NH2             | −СН₃                                              | -CH <sub>2</sub> CF <sub>3</sub> | N | N  | N | Z              |
| 8 3 2        | -NH <sub>2</sub> | −NH₂             | -CF <sub>2</sub> CF <sub>3</sub>                  | -CF <sub>2</sub> CF <sub>3</sub> | N | N  | N | X              |
| 8 3 3        | -NH <sub>2</sub> | −NH₂             | -CF <sub>2</sub> CF <sub>3</sub>                  | -CF <sub>2</sub> CF <sub>3</sub> | N | N  | N | Y              |
| 8 3 4        | -NH2             | -NH2             | -CF <sub>2</sub> CF <sub>3</sub>                  | -CF <sub>2</sub> CF <sub>3</sub> | N | N  | N | Z              |
| 8 3 5        | -NH <sub>2</sub> | −NH₂             | -CF <sub>2</sub> CF <sub>3</sub>                  | -CH <sub>2</sub> CF <sub>3</sub> | N | N  | N | X              |
| 8 3 6        | -NH <sub>z</sub> | -NH2             | -CF <sub>2</sub> CF <sub>3</sub>                  | -CH <sub>2</sub> CF <sub>3</sub> | N | N  | Ν | Y              |
| 8 3 7        | −NH₂             | −NH₂             | −CF <sub>2</sub> CF <sub>3</sub>                  | -CH <sub>2</sub> CF <sub>3</sub> | N | N  | N | Z              |
| 838          | -NH2             | -NH2             | −CH <sub>2</sub> CF <sub>3</sub>                  | −CH <sub>2</sub> CF <sub>3</sub> | N | N  | N | X              |
| 8 3 9        | −NH₂             | −NH₂             | -CH <sub>2</sub> CF <sub>3</sub>                  | -CH₂CF₃                          | N | N  | N | Y              |
| 8 4 0        | −NH₂             | -NH <sub>2</sub> | −CH <sub>2</sub> CF <sub>3</sub>                  | -CH <sub>2</sub> CF <sub>3</sub> | N | N  | Ν | Z              |
| 8 4 1        | −NH₂             | -NH <sub>2</sub> | -CH2CH2OCH3                                       | -CH <sub>2</sub> CF <sub>3</sub> | N | N  | N | X              |
| 8 4 2        | -NH2             | -NH <sub>2</sub> | -CH₂CH₂OCH₃                                       | -CH <sub>2</sub> CF <sub>3</sub> | N | N. | N | Y              |
| 8 4 3        | -NH <sub>2</sub> | -NH2             | -CH2CH2OCH3                                       | -CH₂CF₃                          | N | N  | N | $\overline{z}$ |
| 844          | −NH₂             | -NH2             | -CH2CH2OCH3                                       | -CH2CH2OCH3                      | N | N  | N | X              |
| 8 4 5        | -NH2             | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> | -CH₂CH₂OCH₃                      | N | N  | N | Y              |

Table 4 (continued)

|      |       |                  |                  | Jii t I ii u c u /       |                                                   |   |   |   |       |
|------|-------|------------------|------------------|--------------------------|---------------------------------------------------|---|---|---|-------|
| 5    | Comp. | R'               | R²               | R³                       | R <sup>4</sup>                                    | X | Y | z | P. S. |
|      | 8 : 6 | -NH2             | -NH2             | -CH₂CH₂OCH₃              | -CH₂CH₂OCH₃                                       | N | N | Ν | Z     |
| 10 . | 8 4 7 | -NH <sub>2</sub> | -NH2             | -CH2CH2OC2H5             | -CH2CH2OC2H5                                      | N | N | N | X     |
|      | 8 4 8 | -NH <sub>2</sub> | -NH2             | -CH2CH2OC2H5             | -CH2CH2OC2H5                                      | N | Ν | Ν | Y     |
| 15   | 8 4 9 | -NH2             | -NH <sub>2</sub> | -CH₂CH₂OC₂H₅             | -CH2CH2OC2H5                                      | N | Ν | Ν | Z     |
|      | 850   | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH₂CH₂OC₃H <sub>7</sub> | -CH2CH2OC3H7                                      | N | Ν | N | X     |
|      | 851   | -NH2             | -NH2             | -CH₂CH₂OC₃H7             | -CH2CH2OC3H7                                      | N | Ν | Ν | Y     |
| 20   | 8 5 2 | -NH2             | −NH₂             | -CH2CH2OC3H7             | -CH2CH2OC3H7                                      | N | Ν | N | Z     |
|      | 8 5 3 | -NH2             | -NH2             | -CH2CH2OC6H5             | -CH <sub>2</sub> CF <sub>3</sub>                  | Ν | Ν | N | Х     |
| 25   | 854   | −NH₂             | -NH2             | -CH₂CH₂OC₀H₅             | -CH <sub>2</sub> CF <sub>3</sub>                  | N | Ν | N | Y     |
|      | 8 5 5 | -NH2             | −NH₂             | -CH₂CH₂OC6H5             | −CH <sub>2</sub> CF <sub>3</sub>                  | Ν | Ν | N | Z     |
| 30   | 856   | -NH2             | -NH2             | -CH₂CH₂OC₅H₅             | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> | N | Ν | N | X     |
|      | 857   | -NH2             | -NH2             | -CH₂CH₂OC₅H₅             | -CH₂CH₂OCH₃                                       | Ν | N | N | Y     |
| 35   | 8 5 8 | -NH2             | -NH2             | -CH2CH2OC6H5             | —CH₂CH₂OCH₃                                       | Ν | Ν | N | Z     |
|      | 859   | −NH₂             | -NH2             | -CH₂CH₂OC₅H₅             | -CH2CH2OC6H5                                      | Ν | N | N | X     |
|      | 860   | -NH2             | -NH2             | —CH₂CH₂OC₅H₅             | -CH2CH2OC6H5                                      | N | Ν | N | Y     |
| 40   | 861   | -NH2             | -NH <sub>2</sub> | -CH2CH2OC6H5             | -CH2CH2OC6H5                                      | N | N | N | Z     |
|      | 862   | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH2CH2OCH2C6H5          | -CH <sub>2</sub> CF <sub>3</sub>                  | Ν | N | N | X     |
| 45   | 863   | −NH₂             | −NH₂             | -CH2CH2OCH2C6H5          | -CH <sub>2</sub> CF <sub>3</sub>                  | N | N | N | Y     |
|      | 8 6 4 | -NH2             | -NH2             | -CH2CH2OCH2C6H5          | −CH <sub>2</sub> CF <sub>3</sub>                  | Ν | Ν | N | Z     |
| 50   | 865   | -NH2             | -NH2             | -CH₂CH₂OCH₂C₅H₅          | -CH₂CH₂OCH₃                                       | Ν | N | N | X     |

Table 4 (continued)

| Comp. R <sup>1</sup> R <sup>2</sup> R <sup>3</sup> R <sup>4</sup> X                                                                                                                                                                      | . [ |   | П |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|-------|
| [ Nu ]                                                                                                                                                                                                                                   | ١.  | Y | Z | P. S. |
| 8 6 6 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N                                                              |     | N | N | Y     |
| 10 8 6 7 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N                                                           | 1   | N | N | Z     |
| 8 6 8 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> N                                                | 1   | N | N | X     |
| 8 6 9 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> N                                                | 1   | N | N | Y     |
| 870 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> N                                                  | 1   | Ν | N | Z     |
| 871 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> N                                  | 1   | N | N | X     |
| 20 8 7 2 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> N                             | 1   | 7 | N | Y     |
| 873 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> N                                  | 1   | 7 | N | Z     |
| 25 8 7 4 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub> C <sub>6</sub> H <sub>5</sub> N | 1   | 7 | N | X     |
| 875 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub> C <sub>6</sub> H <sub>5</sub> N      | 1   | 7 | Ν | Y     |
| 8 7 6 -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub> C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub> C <sub>6</sub> H <sub>5</sub> N                     | 1   | 1 | Ν | Z     |
| 877 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CF <sub>3</sub> N                                                                                                           | N   | 7 | Ν | X     |
| 878 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CF <sub>3</sub> N                                                                                                           | N   | 1 | N | Y     |
| 8 7 9 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CF <sub>3</sub> N                                                                                                         | N   | 1 | N | Z     |
| 8 8 0 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N                                                                                        | N   | 1 | N | X     |
| 881 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N                                                                                          | N   | 1 | N | Y     |
| 882 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> N                                                                                          | N   | 1 | N | Z     |
| 883 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> N                                                                            | N   | 1 | N | Х     |
| 8 8 4 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> N                                                                          | N   | 1 | N | Y     |
| 885 -NH <sub>2</sub> -NH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> N                                                                            | N   | 1 | N | Z     |

Table 4 (continued)

|    |              |                  |                  | on trituca,                                                         |                                                                     |   |   |   |       |
|----|--------------|------------------|------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---|---|---|-------|
| 5  | Comp.<br>No. | R'               | R²               | R³                                                                  | R'                                                                  | X | Y | Z | P. S. |
|    | 886          | -NH2             | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH2CH2OCH2C6H5                                                     | N | N | N | X,    |
| 10 | 887          | -NH2             | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH2CH2OCH2C6H5                                                     | Ν | Ν | Ν | Y     |
|    | 888          | -NH2             | -NH <sub>2</sub> | -CH2CH2OC(O)CH3                                                     | -CH2CH2OCH2C6H5                                                     | Ν | Ν | N | Z     |
| 15 | 889          | -NH2             | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH2CH2OC(0)CH3                                                     | Ν | Ν | Ν | X     |
|    | 890          | -NH2             | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH2CH2OC(0)CH3                                                     | Ν | N | N | Y     |
| 20 | 8 9 1        | -NH <sub>2</sub> | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH2CH2OC(O)CH3                                                     | Ν | Ν | N | Z     |
|    | 892          | -NH2             | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | -CH2CH2OC(0)C2H5                                                    | N | N | N | X     |
|    | 8 9 3        | -NH <sub>2</sub> | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | -CH2CH2OC(0)C2H5                                                    | Ν | N | N | Y     |
| 25 | 8 9 4        | -NH2             | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | -CH2CH2OC(0)C2H5                                                    | N | N | Ν | Z     |
|    | 8 9 5        | -NH2             | -NH <sub>2</sub> | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7                                                    | N | N | N | Х     |
| 30 | 896          | -NH2             | −NH₂             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | -CH2CH2OC(0)C3H7                                                    | Ν | Ν | Ν | Y     |
|    | 8 9 7        | -NH₂             | -NH <sub>2</sub> | -CH2CH2OC(O)C3H7                                                    | -CH2CH2OC(0)C3H7                                                    | Ν | Ν | N | Z     |
| 35 | 8 9 8        | -NH <sub>2</sub> | -NH2             | -CH2CH2OC(0)C4H9                                                    | -CH2CH2OC(0)C4H9                                                    | Ν | Ν | N | Х     |
|    | 8 9 9        | -NH2             | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | N | Ν | N | Y     |
| 40 | 900          | -NH2             | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH2CH2OC(0)C4H9                                                    | Ν | N | Ν | Z     |

45

50

Table 4 (continued)

|    | Comp. | R'               | R <sup>2</sup>   |                                                                 |                                                                 | T | T | $\top$ |       |
|----|-------|------------------|------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---|---|--------|-------|
| 5  | Na    | K                | R.               | R³                                                              | R <sup>4</sup>                                                  | X | Y |        | P. S. |
|    | 901   | -NH <sub>2</sub> | -NH <sub>2</sub> | −CH <sub>3</sub>                                                | -CF <sub>2</sub> CF <sub>3</sub>                                | N | N | С      | X     |
| 10 | 902   | -NH2             | -NH2             | −CH <sub>3</sub>                                                | -CF <sub>2</sub> CF <sub>3</sub>                                | N | N | С      | Y     |
|    | 903   | −NH₂             | -NH2             | −CH <sub>3</sub>                                                | -CH <sub>2</sub> CF <sub>3</sub>                                | N | N | C      | X     |
| 15 | 9 0 4 | -NḤ2             | -NH2             | −СН₃                                                            | -CH <sub>2</sub> CF <sub>3</sub>                                | N | N | C      | Y     |
|    | 905   | -NH <sub>2</sub> | -NH <sub>2</sub> | -CF <sub>2</sub> CF <sub>3</sub>                                | -CF <sub>2</sub> CF <sub>3</sub>                                | N | N | С      | X     |
|    | 906   | −NH₂             | -NH <sub>2</sub> | -CF <sub>2</sub> CF <sub>3</sub>                                | -CF <sub>2</sub> CF <sub>3</sub>                                | N | N | С      | Y     |
| 20 | 907   | -NH <sub>2</sub> | -NH <sub>2</sub> | -CF <sub>2</sub> CF <sub>3</sub>                                | -CH <sub>2</sub> CF <sub>3</sub>                                | N | N | С      | X     |
|    | 908   | -NH2             | −NH₂             | -CF <sub>2</sub> CF <sub>3</sub>                                | -CH <sub>2</sub> CF <sub>3</sub>                                | N | N | С      | Y     |
| 25 | 909   | −NH₂             | −NH₂             | -CH <sub>2</sub> CF <sub>3</sub>                                | -CH <sub>2</sub> CF <sub>3</sub>                                | N | N | С      | X     |
|    | 910   | −NH₂             | -NH2             | -CH <sub>2</sub> CF <sub>3</sub>                                | -CH <sub>2</sub> CF <sub>3</sub>                                | N | N | С      | Y.    |
| 30 | 911   | −NH₂             | -NH2             | -CH₂CH₂OCH₃                                                     | -CH <sub>2</sub> CF <sub>3</sub>                                | N | N | С      | X     |
|    | 912   | -NH <sub>2</sub> | -NH2             | —CH₂CH₂OCH₃                                                     | −CH <sub>2</sub> CF <sub>3</sub>                                | N | N | С      | Y     |
| 35 | 913   | -NH2             | -NH <sub>2</sub> | -CH₂CH₂OCH₃                                                     | -CH₂CH₂OCH₃                                                     | N | N | С      | X     |
|    | 914   | -NH <sub>2</sub> | −NH₂             | —CH₂CH₂OCH₃                                                     | -CH₂CH₂OCH₃                                                     | N | N | С      | Y     |
|    | 915   | −NH₂             | −NH₂             | -CH2CH2OC2H5                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> | N | N | С      | X     |
| 40 | 916   | -NH2             | −NH₂             | -CH2CH2OC2H5                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> | N | N | С      | Y     |
|    | 917   | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> | N | N | С      | X     |
| 45 | 918   | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH₂CH₂OC₃H₁                                                    | -CH2CH2OC3H7                                                    | N | N | С      | Y     |
|    | 919   | -NH <sub>2</sub> | -NH2             | -CH2CH2OC6H5                                                    | -CH₂CF₃                                                         | N | N | С      | X     |
| 50 | 920   | -NH <sub>2</sub> | -NH2             | -CH₂CH₂OC₅H₅                                                    | -CH <sub>2</sub> CF <sub>3</sub>                                | N | N | С      | Y     |

Table 4 (continued)

| 5  | Comp.<br>Na | R¹               | R²   | R³                                                    | R <sup>4</sup>                   | Х | Y | Z | P. S. |
|----|-------------|------------------|------|-------------------------------------------------------|----------------------------------|---|---|---|-------|
|    | 921         | -NH2             | -NH2 | -CH2CH2OC6H5                                          | −CH₂CH₂OCH₃                      | Ν | Ν | С | X     |
| 10 | 922         | −NH₂             | −NH₂ | —CH2CH2OC6H5                                          | −CH₂CH₂OCH₃                      | N | Ν | С | Y     |
|    | 923         | -NH <sub>2</sub> | −NH₂ | -CH2CH2OC6H5                                          | -CH2CH2OC6H5                     | Ν | Ν | С | X     |
| 15 | 924         | -NH2             | -NH2 | —CH₂CH₂OC₅H₅                                          | -CH2CH2OC6H5                     | Ν | N | С | Y     |
|    | 925         | -NH <sub>2</sub> | -NH2 | -CH2CH2OCH2C6H5                                       | −CH₂CF₃                          | Ν | N | С | X     |
| 20 | 926         | -NH2             | -NH2 | -CH2CH2OCH2C6H5                                       | -CH <sub>2</sub> CF <sub>3</sub> | Ν | Ν | C | Y     |
|    | 927         | -NH <sub>2</sub> | -NH2 | -CH2CH2OCH2C6H5                                       | -CH₂CH₂OCH₃                      | Ν | N | С | Х     |
|    | 928         | -NH2             | −NH₂ | -CH2CH2OCH2C6H5                                       | —CH₂CH₂OCH₃                      | Z | Z | С | Y     |
| 25 | 929         | -NH <sub>2</sub> | -NH2 | -CH2CH2OCH2C6H5                                       | -CH2CH2OC6H5                     | Ν | Ν | С | X     |
|    | 930         | −NH₂             | -NH2 | -CH2CH2OCH2C6H5                                       | -CH2CH2OC6H5                     | Z | Ν | С | Y.    |
| 30 | 931         | -NH2             | −NH₂ | -CH2CH2OCH2C6H5                                       | -CH2CH2OCH2C5H5                  | N | Ν | С | X     |
|    | 932         | -NH <sub>2</sub> | -NH2 | -CH2CH2OCH2C6H5                                       | -CH2CH2OCH2C6H5                  | Ν | N | С | Y     |
| 35 | 933         | -NH2             | -NH2 | -CH2CH2OC2H4C6H5                                      | -CH2CH2OC2H4C6H5                 | Ν | Ν | С | Х     |
|    | 934         | -NH2             | -NH2 | -CH2CH2OC2H4C6H5                                      | -CH2CH2OC2H4C6H5                 | Ν | Ν | С | Y     |
| 40 | 935         | -NH <sub>2</sub> | -NH2 | -CH₂CH₂OC(0)CH₃                                       | -CH₂CF₃                          | Ŋ | Z | С | X     |
| 40 | 936         | -NH <sub>2</sub> | -NH2 | -CH2CH2OC(0)CH3                                       | -CH <sub>2</sub> CF <sub>3</sub> | Ν | Ν | С | Y     |
|    | 937         | -NH <sub>2</sub> | -NH2 | -CH₂CH₂OC(0)CH₃                                       | -CH₂CH₂OCH₃                      | Ν | Ν | С | Х     |
| 45 | 938         | -NH2             | -NH2 | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> | -CH₂CH₂OCH₃                      | N | N | С | Y     |
|    | 939         | -NH <sub>2</sub> | -NH2 | -CH₂CH₂OC(0)CH₃                                       | -CH2CH2OC6H5                     | N | И | С | X     |
| 50 | 940         | -NH2             | −NH₂ | -CH₂CH₂OC(O)CH₃                                       | -CH₂CH₂OC₀H₅                     | Ν | Ν | С | Y     |

Table 4 (continued)

|        |             | <del></del>      | ,                | ,                                                                   | <del> </del>                                                        |   |   |    |       |
|--------|-------------|------------------|------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---|---|----|-------|
| 5      | Comp.<br>Na | R¹               | R²               | R³                                                                  | R⁴                                                                  | Х | Y | Z  | P. S. |
|        | 9 4 1       | −NH₂             | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH2CH2OCH2C6H5                                                     | Ν | N | С  | X     |
| 10     | 9 4 2       | -NH <sub>2</sub> | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH2CH2OCH2C5H5                                                     | Ν | Ν | С  | Y     |
|        | 9 4 3       | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | Ν | Ν | С  | Х     |
| 15     | 9 4 4       | -NH2             | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | N | N | С  | Y     |
|        | 9 4 5       | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | Ν | Ν | С  | Х     |
| 20     | 9 4 6       | −NH₂             | -NH2             | -CH2CH2OC(0)C2H5                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | N | N | С  | Y     |
|        | 947         | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7                                                    | Ν | N | С  | X     |
| 25     | 948         | −NH₂             | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | -CH2CH2OC(0)C3H7                                                    | Ν | N | С  | Y     |
|        | 949         | −NH₂             | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | 7 | Ν | C  | X     |
| ·<br>• | 950         | -NH2             | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | Ν | Ν | .C | Y     |

Table 4 (continued)

| 5 No.  | R'                 | R²               | R³                               | R'                               | X | Y | Z | P. S. |
|--------|--------------------|------------------|----------------------------------|----------------------------------|---|---|---|-------|
| 9 5    | 1 -NH <sub>2</sub> | -NH <sub>2</sub> | −CH <sub>3</sub>                 | -CF <sub>2</sub> CF <sub>3</sub> | N | С | N | X     |
| 10 95  | 2 -NH <sub>2</sub> | -NH <sub>2</sub> | -CH₃                             | -CF <sub>2</sub> CF <sub>3</sub> | N | С | N | Z     |
| 9 5    | 3 -NH <sub>2</sub> | -NH2             | —CH₃                             | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | X     |
| 9 5    | 4 -NH <sub>2</sub> | -NH <sub>2</sub> | -CH <sub>3</sub>                 | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | Z     |
| 9 5    | 5 -NH <sub>2</sub> | -NH <sub>2</sub> | -CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub> | N | С | N | X     |
| 9 5    | 6 -NH <sub>2</sub> | -NH <sub>2</sub> | -CF <sub>2</sub> CF <sub>3</sub> | -CF <sub>2</sub> CF <sub>3</sub> | N | С | Ν | Z     |
| 9 5    | 7 -NH <sub>2</sub> | -NH <sub>2</sub> | -CF <sub>2</sub> CF <sub>3</sub> | -CH <sub>2</sub> CF <sub>3</sub> | N | С | Ν | X     |
| 9 5    | B −NH₂             | -NH <sub>2</sub> | -CF₂CF₃                          | -CH <sub>2</sub> CF <sub>3</sub> | N | С | N | Z     |
| 25 9 5 | P −NH₂             | -NH2             | -CH₂CF₃                          | −CH₂CF₃                          | N | С | N | X     |
| 9 6    | NH₂                | -NH2             | -CH₂CF₃                          | -CH <sub>2</sub> CF <sub>3</sub> | N | С | Ν | Z     |
| 30 9 6 | -NH <sub>2</sub>   | -NH <sub>2</sub> | -CH₂CH₂OCH₃                      | -CH <sub>2</sub> CF <sub>3</sub> | N | С | Z | X     |
| 96     | 2 -NH2             | -NH2             | -CH₂CH₂OCH₃                      | −CH₂CF₃                          | Ν | С | Ν | Z     |
| 9 6    | B -NH <sub>2</sub> | -NH <sub>2</sub> | -CH₂CH₂OCH₃                      | -CH₂CH₂OCH₃                      | N | С | N | X     |
| 96     | I −NH₂             | -NH <sub>2</sub> | -CH2CH2OCH3                      | -CH₂CH₂OCH₃                      | N | С | N | Z     |
| 9 6    | -NH <sub>2</sub>   | -NH2             | -CH2CH2OC2H5                     | -CH2CH2OC2H5                     | N | С | N | X     |
| 96     | S −NH₂             | -NH2             | -CH₂CH₂OC₂H₅                     | -CH2CH2OC2H5                     | Ν | С | N | Z     |
| 96     | -NH <sub>2</sub>   | -NH2             | -CH₂CH₂OC₃H7                     | -CH₂CH₂OC₃H₁                     | N | С | N | Х     |
| 9 6 8  | NH <sub>2</sub>    | -NH2             | -CH₂CH₂OC₃H₁                     | -CH2CH2OC3H7                     | N | С | N | Z     |
| 969    | -NH <sub>2</sub>   | -NH <sub>2</sub> | -CH₂CH₂OC₀H₅                     | -CH₂CF₃                          | Ν | С | N | Х     |
| 970    | -NH <sub>2</sub>   | -NH2             | —CH2CH2OC6H5                     | −CH₂CF₃                          | N | С | Ν | Z     |

Table 4 (continued)

| 5      | Comp. | R¹               | R²               | R³                                                              | R⁴               | Х | Y | Z | P. S. |
|--------|-------|------------------|------------------|-----------------------------------------------------------------|------------------|---|---|---|-------|
|        | 971   | -NH2             | -NH2             | -CH2CH2OC6H5                                                    | —CH₂CH₂OCH₃      | N | С | N | X     |
| 10     | 9 7 2 | -NH2             | -NH2             | −CH2CH2OC6H5                                                    | —CH₂CH₂OCH₃      | Ν | С | N | Z     |
|        | 973   | -NH2             | -NH2             | −CH2CH2OC6H5                                                    | —CH2CH2OC6H5     | Ν | С | N | X     |
| 15     | 974   | -NH2             | -NH2             | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | —CH2CH2OC6H5     | Ν | С | Ν | Z     |
| e ye f | 975   | -NH2             | -NH2             | -CH2CH2OCH2C8H5                                                 | −CH₂CF₃          | Ν | С | Ν | Х     |
| 20     | 976   | -NH2             | −NH₂             | -CH2CH2OCH2C6H5                                                 | CH₂CF₃           | N | С | Ν | Z     |
|        | 977   | -NH2             | -NH2             | -CH2CH2OCH2C6H5                                                 | -CH₂CH₂OCH₃      | N | C | Ν | X     |
|        | 978   | -NH2             | −NH₂             | -CH2CH2OCH2C6H5                                                 | —CH₂CH₂OCH₃      | Ν | С | Ν | Z     |
| 25     | 979   | -NH2             | -NH2             | -CH2CH2OCH2C6H5                                                 | -CH2CH2OC6H5     | Ν | С | N | Х     |
|        | 980   | -NH2             | −NH₂             | -CH2CH2OCH2C6H5                                                 | -CH2CH2OC6H5     | Ν | С | N | Z     |
| 30     | 981   | -NH <sub>2</sub> | −NH₂             | -CH2CH2OCH2C6H5.                                                | —CH2CH2OCH2C6H5  | Ν | С | N | Х     |
|        | 982   | −NH₂             | -NH2             | -CH2CH2OCH2C6H5                                                 | -CH2CH2OCH2C6H5  | Ν | С | N | Z     |
| 35     | 983   | −NH₂             | −NH₂             | -CH2CH2OC2H4C6H5                                                | -CH2CH2OC2H4C6H5 | Ν | С | N | Х     |
|        | 984   | −NH₂             | −NH₂             | -CH2CH2OC2H4C6H5                                                | -CH2CH2OC2H4C6H5 | Ν | С | N | Z     |
| 40     | 985   | −NH₂             | -NH2             | -CH₂CH₂OC(0)CH₃                                                 | −CH₂CF₃          | Ν | С | N | X     |
|        | 986   | -NH2             | −NH₂             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>           | −CH₂CF₃          | N | С | N | Z     |
|        | 987   | −NH₂             | -NH <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>           | —CH₂CH₂OCH₃      | Ν | С | N | X     |
| 45     | 988   | -NH2             | -NH2             | -CH₂CH₂OC(O)CH₃                                                 | —CH₂CH₂OCH₃      | Ν | С | N | Z     |
|        | 989   | −NH₂             | -NH2             | -CH2CH2OC(0)CH3                                                 | —CH₂CH₂OC₅H₅     | Ν | С | N | X     |
| 50     | 990   | −NH₂             | -NH2             | -CH₂CH₂OC(O)CH₃                                                 | —CH₂CH₂OC₅H₅     | N | С | N | Z     |

Table 4 (continued)

| Сотр.<br>No. | R'               | R²               | R³                                                                  | R4                                                                  | х | Y | z | P. S. |
|--------------|------------------|------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---|---|---|-------|
| 991          | −NH₂             | -Nh <sub>2</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH2CH2OCH2C6H5                                                     | N | С | N | Х     |
| 992          | -NH <sub>2</sub> | -NH <sub>2</sub> | -CH₂CH₂OC(O)CH₃                                                     | -CH2CH2OCH2C6H5                                                     | N | С | N | Z     |
| 993          | -NH2             | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | N | С | N | X     |
| 9 9 4        | -NH2             | −NH₂             | -CH₂CH₂OC(0)CH₃                                                     | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | N | С | N | Z     |
| 9 9 5        | -NH2             | -NH2             | -CH2CH2OC(0)C2H5                                                    | -CH2CH2OC(0)C2H5                                                    | Ν | С | N | X     |
| 9 9 6        | -NH2             | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | -CH2CH2OC(0)C2H5                                                    | Ν | С | N | Z     |
| 9 9 7        | -NH <sub>2</sub> | −NH₂             | -CH2CH2OC(0)C2H7                                                    | -CH2CH2OC(0)C3H7                                                    | Ν | С | Ν | X     |
| 9 9 8        | -NH2             | -NH2             | -CH2CH2OC(0)C3H7                                                    | -CH2CH2OC(0)C3H7                                                    | Ν | С | Ν | Z     |
| 999          | -NH2             | -NH2             | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | Ν | С | N | X     |
| 1000         | −NH₂             | -NH2             | -CH2CH2OC(0)C4H9                                                    | -CH2CH2OC(0)C4H9                                                    | Ν | С | N | Z     |

Table 5

10

| -  |       | lable 5                          |                                  |
|----|-------|----------------------------------|----------------------------------|
| 15 | Comp. | R³                               | R <sup>4</sup>                   |
|    | 1001  | —СH₃                             | -CF <sub>2</sub> CF <sub>3</sub> |
|    | 1002  | −CH₃                             | -CH <sub>2</sub> CF <sub>3</sub> |
| 20 | 1003  | −CF₂CF₃                          | -CF <sub>2</sub> CF <sub>3</sub> |
|    | 1004  | -CF <sub>2</sub> CF <sub>3</sub> | −CH <sub>2</sub> CF <sub>3</sub> |
| 25 | 1005  | −CH₂CF₃                          | -CH <sub>2</sub> CF <sub>3</sub> |
| 25 | 1006  | —CH₂CH₂OCH₃                      | −CH <sub>2</sub> CF <sub>3</sub> |
|    | 1007  | —CH₂CH₂OCH₃                      | -CH₂CH₂OCH₃                      |
| 30 | 1008  | -CH2CH2OC2H5                     | -CH2CH2OC2H5                     |
|    | 1009  | —CH₂CH₂OC₃H₁                     | —CH₂CH₂OC₃H₁                     |
|    | 1010  | −CH2CH2OC6H5                     | −CH <sub>2</sub> CF <sub>3</sub> |
| 35 | 1011  | -CH2CH2OC6H5                     | -CH₂CH₂OCH₃                      |
|    | 1012  | -CH2CH2OC6H5                     | —CH₂CH₂OC₅H₅                     |
|    | 1013  | -CH2CH2OCH2C6H5                  | -CH₂CF₃                          |
| 40 | 1014  | -CH2CH2OCH2C6H5                  | −CH₂CH₂OCH₃                      |
|    | 1015  | -CH2CH2OCH2C6H5                  | —CH₂CH₂OC₅H₅                     |
| 1  | 1016  | -CH₂CH₂OCH₂C₀H₅                  | -CH2CH2OCH2C6H5                  |
| 45 | 1017  | -CH2CH2OC2H4C6H5                 | -CH2CH2OC2H4C6H5                 |
|    | 1.018 | -CH₂CH₂OC(O)CH₃                  | -CH <sub>2</sub> CF <sub>3</sub> |
|    | 1019  | -CH2CH2OC(0)CH3                  | —CH₂CH₂OC 6H5                    |
| 50 | 1020  | -CH2CH2OC(O)CH3                  | -CH2CH2OCH2C6H5                  |

Table 5 (Continued)

| Comp. | R <sup>2</sup>                                                     | R <sup>4</sup>   |
|-------|--------------------------------------------------------------------|------------------|
| 1021  | —CH₂CH₂OC(O)CH₃                                                    | -CH2CH2OCH2C6H5  |
| 1022  | —CH₂CH₂0C(0)CH₃                                                    | -CH₂CH₂OC(0)CH₃  |
| 1023  | CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | -CH2CH2OC(0)C2H5 |
| 1024  | -CH2CH2OC(0)C3H7                                                   | -CH2CH2OC(0)C3H7 |
| 1025  | -CH2CH2OC(0)C4H9                                                   | -CH2CH2OC(0)C4H9 |

CH<sub>2</sub>

N
N
N
NH<sub>2</sub>

O
P-OR<sup>3</sup>

Table 6

|   |   | au | 1 0 |  |
|---|---|----|-----|--|
| 5 | 1 |    |     |  |

5

10

| 15 |       | T                                                               |                                                                                               |
|----|-------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|    | Comp. | R³                                                              | R'                                                                                            |
|    | No.   |                                                                 | , R                                                                                           |
| 20 | 1026  | —CH <sub>3</sub>                                                | -CF <sub>2</sub> CF <sub>3</sub>                                                              |
| 20 | 1027  | —CH <sub>3</sub>                                                | −CH₂CF₃                                                                                       |
|    | 1028  | -CF <sub>2</sub> CF <sub>3</sub>                                | -CF <sub>2</sub> CF <sub>3</sub>                                                              |
|    | 1029  | -CF <sub>2</sub> CF <sub>3</sub>                                | -CH₂CF₃                                                                                       |
| 25 | 1030  | −CH₂CF₃                                                         | −CH₂CF₃                                                                                       |
|    | 1031  | −CH <sub>2</sub> CH <sub>2</sub> 0CH <sub>3</sub>               | -CH₂CF₃                                                                                       |
|    | 1032  | —CH₂CH₂OCH₃                                                     | —CH₂CH₂OCH₃                                                                                   |
| 30 | 1033  | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> | —CH₂CH₂OC₂H₅                                                                                  |
|    | 1034  | —CH₂CH₂OC₃H <sub>7</sub>                                        | —CH₂CH₂OC₃H₁                                                                                  |
|    | 1035  | —CH2CH2OC6H5                                                    | —CH₂CF₃                                                                                       |
| 35 | 1036  | —CH2CH2OC6H5                                                    | —CH₂CH₂OCH₃                                                                                   |
|    | 1037  | −CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | —CH₂CH₂OC₅H₅                                                                                  |
|    | 1038  | -CH2CH2OCH2C6H5                                                 | -CH <sub>2</sub> CF <sub>2</sub>                                                              |
| 40 | 1,039 | -CH2CH2OCH2C6H5                                                 | -CH₂CH₂OCH₃                                                                                   |
|    | 1040  | —CH₂CH₂OCH₂C₅H₅                                                 | -CH2CH2OC6H5                                                                                  |
|    | 1041  | —CH₂CH₂OCH₂C6H5                                                 | -CH₂CH₂OCH₂C₅H₅                                                                               |
| 45 | 1042  | —CH₂CH₂OC₂H₄C6H5                                                | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub> C <sub>6</sub> H <sub>5</sub> |
|    | 1043  | -CH2CH2OC(O)CH3                                                 | -CH <sub>2</sub> CF <sub>3</sub>                                                              |
|    | 1044  | -CH2CH2OC(O)CH3                                                 | -CH2CH2OC6H5                                                                                  |
| 50 | 1045  | -CH₂CH₂OC(O)CH₃                                                 | -CH2CH2OCH2C6H5                                                                               |
|    |       |                                                                 |                                                                                               |

Table 6 (Continued)

| Comp. | R³                                                                  | R*                                                                  |
|-------|---------------------------------------------------------------------|---------------------------------------------------------------------|
| 1046  | -CH₂CH₂OC(O)CH₃                                                     | -CH2CH2OCH2C6H5                                                     |
| 1047  | -CH₂CH₂0C(0)CH₃                                                     | -CH₂CH₂OC(0)CH₃                                                     |
| 1048  | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> |
| 1049  | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> |
| 1050  | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> |

CH<sub>3</sub>

N
N
N
O
P-OR<sup>3</sup>

Table 7

15

10

| 10  | Comp. | R³                                                                              | R4                               |
|-----|-------|---------------------------------------------------------------------------------|----------------------------------|
|     | No.   | IC .                                                                            | 10                               |
| 20  | 1051  | −CH₃                                                                            | -CF <sub>2</sub> CF <sub>3</sub> |
|     | 1052  | —СН₃                                                                            | —CH₂CF₃                          |
|     | 1053  | −CF <sub>2</sub> CF <sub>3</sub>                                                | -CF <sub>2</sub> CF <sub>3</sub> |
|     | 1054  | -CF <sub>2</sub> CF <sub>3</sub>                                                | −CH₂CF₃                          |
| 25  | 1055  | −CH <sub>2</sub> CF <sub>3</sub>                                                | -CH <sub>2</sub> CF <sub>3</sub> |
| _[_ | 1056  | —CH₂CH₂OCH₃                                                                     | —CH₂CF₃                          |
|     | 1057  | —CH₂CH₂OCH₃                                                                     | —CH₂CH₂OCH₃                      |
| 30  | 1058  | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub>                 | —CH₂CH₂OC₂H₅                     |
|     | 1059  | —CH₂CH₂OC₃H <sub>7</sub>                                                        | —CH₂CH₂OC₃H7                     |
| Ł   | 1060  | -CH2CH2OC6H5                                                                    | −CH <sub>2</sub> CF <sub>3</sub> |
| 35  | 1061  | —CH₂CH₂OC₅H₅                                                                    | —CH₂CH₂OCH₃                      |
|     | 1062  | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub>                 | -CH₂CH₂OC₅H₅                     |
|     | 1063  | -CH2CH2OCH2C6H5                                                                 | —CH₂CF₃                          |
| 40  | 1064  | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | —CH₂CH₂OCH₃                      |
|     | 1065  | -CH2CH2OCH2C6H5                                                                 | —CH2CH2OC6H5                     |
|     | 1066  | —CH2CH2OCH2C6H5                                                                 | —CH₂CH₂OCH₂C₅H₅                  |
| 45  | 1067  | -CH2CH2OC2H4C6H5                                                                | -CH2CH2OC2H4C6H5                 |
|     | 1068  | -CH2CH2OC(O)CH3                                                                 | −CH₂CF₃                          |
|     | 1069  | —CH₂CH₂OC(O)CH₃                                                                 | −CH2CH2OC5H5                     |
| 50  | 1070  | —CH₂CH₂OC(O)CH₃                                                                 | -CH2CH2OCH2C6H5                  |

# Table 7 (Continued)

| Comp. | R³                                                                  | . R4                                                                            |
|-------|---------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1071  | -CH₂CH₂OC(O)CH₃                                                     | −CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> |
| 1072  | —CH₂CH₂OC(O)CH₃                                                     | -CH₂CH₂0C(0)CH₃                                                                 |
| 1073  | -CH2CH2OC(0)C2H5                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub>             |
| 1074  | -CH₂CH₂OC(0)C₃H₁                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>,7</sub>            |
| 1075  | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub>             |

Table 1

|    |             | Tab | le : |                                                                 |                                                                 |   |   |   |       |
|----|-------------|-----|------|-----------------------------------------------------------------|-----------------------------------------------------------------|---|---|---|-------|
| 15 | Comp.<br>Na | R'  | R²   | R³                                                              | R*                                                              | X | Y | z | P. S. |
|    | 1076        | -C1 | -Н   | —СН₃                                                            | -CF <sub>2</sub> CF <sub>3</sub>                                | N | С | N | X     |
| 20 | 1077        | -C1 | -Н   | −CH3                                                            | -CF <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Z     |
|    | 1078        | -C1 | -H   | −CH³ .                                                          | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | X     |
| 25 | 1079        | -C1 | -H   | −CH₃                                                            | −CH <sub>2</sub> CF <sub>3</sub>                                | N | С | Ν | Z     |
|    | 1080        | -C1 | -H   | -CF <sub>2</sub> CF <sub>3</sub>                                | -CF <sub>2</sub> CF <sub>3</sub>                                | Ν | С | Ν | X     |
|    | 1081        | -C1 | -H   | -CF <sub>2</sub> CF <sub>3</sub>                                | -CF <sub>2</sub> CF <sub>3</sub>                                | N | С | Ν | Z     |
| 30 | 1082        | -C1 | -H   | -CF <sub>2</sub> CF <sub>3</sub>                                | -CH₂CF₃                                                         | Ν | С | Ν | X     |
|    | 1083        | -C1 | -H   | -CF <sub>2</sub> CF <sub>3</sub>                                | −CH <sub>2</sub> CF <sub>3</sub>                                | Z | C | Ν | Z     |
|    | 1084        | -C1 | -H   | —CH₂CF₃                                                         | −CH <sub>2</sub> CF <sub>3</sub>                                | Z | U | Ν | X     |
| 35 | 1085        | -C1 | -H   | —CH₂CF₃                                                         | -CH <sub>2</sub> CF <sub>3</sub>                                | Ν | С | Ν | Z     |
|    | 1086        | -C1 | -H   | -CH₂CH₂OCH₃                                                     | -CH <sub>2</sub> CF <sub>3</sub>                                | Ν | С | Ν | X     |
|    | 1087        | -C1 | -H   | —CH₂CH₂OCH₃                                                     | -CH₂CF₃                                                         | Ν | С | Ν | Z     |
| 40 | 1088        | -C1 | -H   | -CH₂CH₂OCH₃                                                     | —CH₂CH₂OCH₃                                                     | N | С | N | X     |
|    | 1089        | -C1 | -H   | -CH₂CH₂OCH₃                                                     | -CH2CH2OCH3                                                     | N | С | N | Z     |
|    | 1090        | -C1 | -H   | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> | -CH2CH2OC2H5                                                    | Ν | С | N | X     |
| 45 | 1091        | -C1 | -H   | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub> | N | С | N | Z     |
|    | 1092        | -C1 | -Н   | -CH2CH2OC3H7                                                    | -CH₂CH₂OC₃H <sub>7</sub>                                        | N | С | N | X     |
|    | 1093        | -C1 | -H   | -CH₂CH₂OC₃H <sub>7</sub>                                        | -CH₂CH₂OC₃H <sub>7</sub>                                        | N | С | N | Z     |
| 50 | 1094        | -C1 | -H   | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | -CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | X     |
|    | 1095        | -C1 | -H   | -CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>5</sub> | -CH <sub>2</sub> CF <sub>3</sub>                                | N | С | N | Z     |

55

5

Table 1 (Continued)

|    | <del></del>  | <del>,</del> |    |                                                       |                                  | , |   | <u>.</u> |        |
|----|--------------|--------------|----|-------------------------------------------------------|----------------------------------|---|---|----------|--------|
| 5  | Comp.<br>No. | R¹           | R² | R³                                                    | R'                               | X | Y | Z        | .P. S. |
|    | 1096         | -C1          | -н | —CH2CH2OC6H5                                          | —CH₂CH₂OCH₃                      | Ν | С | N        | X      |
| 10 | 1097         | -C1          | -Н | —CH₂CH₂OC₅H₅                                          | —CH₂CH₂OCH₃                      | Ν | С | Ν        | Z      |
|    | 1098         | -C 1         | -Н | −CH2CH2OC6H5                                          | —CH₂CH₂OC₅H₅                     | Ν | С | Ν        | X      |
| 15 | 1099         | -C1          | -Н | −CH2CH2OC6H5                                          | —CH₂CH₂OC₅H₅                     | N | С | N        | Z      |
|    | 1100         | -C1          | -Н | -CH₂CH₂OCH₂C6H5                                       | —CH₂CF₃                          | Ν | C | Ν        | X      |
|    | 1101         | -C 1         | -Н | -CH2CH2OCH2C6H5                                       | —CH₂CF₃                          | N | С | N        | Z      |
| 20 | 1102         | -C 1         | -н | —CH2CH2OCH2C6H5                                       | —CH₂CH₂OCH₃                      | N | С | Ν        | X      |
|    | 1103         | -C1          | -Н | -CH2CH2OCH2C6H5                                       | —CH₂CH₂OCH₃                      | Ν | С | Ν        | Z      |
| 25 | 1104         | -C1          | -Н | -CH2CH2OCH2C6H5                                       | —CH₂CH₂OC6H5                     | N | С | Ν        | X      |
|    | 1105         | -C 1         | -Н | -CH2CH2OCH2C6H5                                       | —CH2CH2OC6H5                     | Ν | С | Ν        | Z      |
| 30 | 1106         | -C 1         | -H | —CH2CH2OCH2C6H5                                       | —CH₂CH₂OCH₂C₅H₅                  | Ν | С | N        | X      |
|    | 1 1 0 7      | -C1          | -H | -CH2CH2OCH2C6H5                                       | -CH₂CH₂OCH₂C6H5                  | N | С | N        | Z      |
| 35 | 1108         | -C1          | -H | -CH2CH2OC2H4C6H5                                      | -CH2CH2OC2H4C6H5                 | Ν | С | Ν        | X      |
|    | 1109         | -C1          | -H | -CH2CH2OC2H4C6H5                                      | -CH2CH2OC2H4C6H5                 | N | С | Ν        | Z.     |
|    | 1110         | -C1          | -Н | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub> | —CH₂CF₃                          | N | С | Ν        | X      |
| 40 | 1111         | -C1          | -H | -CH₂CH₂OC(0)CH₃                                       | −CH <sub>2</sub> CF <sub>3</sub> | Ν | С | Ν        | Z      |
| 45 | 1112         | -C 1         | -Н | -CH₂CH₂OC(0)CH₃                                       | —CH₂CH₂OCH₃                      | N | С | N        | X      |
|    | 1113         | -C1          | -H | -CH₂CH₂OC(0)CH₃                                       | —CH₂CH₂OCH₃                      | N | С | Ν        | Z      |
|    | 1114         | -C 1         | -Н | -CH₂CH₂OC(0)CH₃                                       | —CH2CH2OC6H5                     | N | С | Ν        | X      |
| 50 | 1115         | -C1          | -Н | -CH₂CH₂OC(0)CH₃                                       | -CH2CH2OC6H5                     | N | С | N        | Z      |
| 50 |              |              |    |                                                       |                                  |   |   |          |        |

Table 1 (Continued)

| Comp. | R¹  | R² | R³                                                                  | R <sup>4</sup>                                                      | х | Y | Z | P. S. |
|-------|-----|----|---------------------------------------------------------------------|---------------------------------------------------------------------|---|---|---|-------|
| 1116  | -C1 | -н | -CH₂CH₂OC(O)CH₃                                                     | -CH2CH2OCH2C5H5                                                     | N | С | N | Х     |
| 1117  | -C1 | -Н | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH₂CH₂OCH₂C₅H₅                                                     | N | С | N | Z     |
| 1118  | -C1 | -Н | -CH <sub>2</sub> CH <sub>2</sub> OC(0)CH <sub>3</sub>               | -CH₂CH₂OC(0)CH₃                                                     | N | С | N | Х     |
| 1119  | -C1 | -Н | -CH₂CH₂OC(O)CH₃                                                     | -CH₂CH₂OC(O)CH₃                                                     | N | С | N | Z     |
| 1120  | -C1 | -Н | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | N | Ċ | N | Х     |
| 1121  | -C1 | -H | -CH2CH2OC(0)C2H5                                                    | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>2</sub> H <sub>5</sub> | N | С | Ν | Z     |
| 1122  | -C1 | -Н | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>3</sub> H <sub>7</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C₃H <sub>7</sub>              | Ν | С | Ν | X     |
| 1123  | -C1 | -Н | -CH2CH2OC(0)C3H7                                                    | —CH₂CH₂OC(O)C₃H₁                                                    | Ν | С | N | Z     |
| 1124  | -C1 | -Н | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | Ν | С | N | ·X    |
| 1125  | -C1 | -н | -CH <sub>2</sub> CH <sub>2</sub> OC(0)C <sub>4</sub> H <sub>9</sub> | -CH2CH2OC(O)C4H9                                                    | N | С | N | Z     |

The compound of the present invention may be synthesized according to the following reaction scheme (1) or (2):

Reaction Scheme (I):

5

15

20

$$W \xrightarrow{O} \xrightarrow{O} P \xrightarrow{P - OR^3} \xrightarrow{H} \xrightarrow{X} A (V)$$

$$OR^4 \qquad base \qquad (IV)$$

(wherein, R1 to R4, and a ring A are as defined above; R5 is an ethyl group having one or more substituents selected from a group consisting of fluorine, C1-C4 alkoxy, phenoxy, C7-C10 phenylalkoxy, C2-C5 acyloxy, C<sub>1</sub>-C<sub>4</sub> acylamino and hydroxyl; W is a leaving group such as halogen, paratoluenesulfonyloxy, methanesulfonyloxy, trifluoromethanesulfonyloxy).

A compound of Formula (II) is reacted with a compound of Formula (III) at 10 - 250 °C, preferably at 130 - 180 °C for 0.1 - 20 hours, preferably for 3 - 15 hours.

A compound of Formula (IV) may be separated and purified, as needed, by the conventional means for separation and purification, for example, by distillation, adsorption, partition chromatography. A compound of Formula (IV) may be separated and purified as described above, but may be directly used in the subsequent reaction without purification.

Subsequently, a compound of Formula (IV) is reacted with a compound of Formula (V) in the presence of a base, for example, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydride, potassium hydride, triethylamine, diazabicycloundecene in a solvent such as acetonitrile, tetrahydrofuran, dimethylsulfoxide, dimethylformamide, methylpyrrolidone at 10 - 200 °C, preferably at 50 - 150 °C, for 0.1 to 100 hours, preferably for 5 - 20 hours to give a compound (I).

40

35

45

50

Reaction Scheme (2):

(wherein, R1 to R4, and a ring A are as defined above; Me is methyl and Et is ethyl)

A compound of Formula (VI) is reacted with trimethylsilyldiethylamine in a solvent, for example, in a chlorinated solvent such as dichloromethane, dichloroethane, chloroform at the temperature around room temperature for about an hour. In this case, two moles or more trimethylsilyldiethylamine is used based on one mole of a compound of Formula (VI).

Subsequently, after the reaction mixture is concentrated to dryness, the residue is dissolved in a chlorinated solvent such as dichloromethane, and two mole or more oxalyl chloride is added to 1 mole of the compound of Formula (VI), and the reaction is carried out in the presence of a catalytic amount of dimethylformamide under ice cooling for about an hour, then at the temperature around room temperature for about an hour.

After a solvent is distilled off, thus obtained compound of Formula (VII) without purification is usually reacted with R³OH, R⁴OH in a solvent, for example, a chlorinated solvent such as dichloromethane or pyridine, acetonitrile, tetrahydrofuran, dimethylsulfoxide, dimethylformamide, methylpyrrolidone, etc. at 10 - 100 °C, preferably at 20 - 30 °C for 0.1 - 100 hours, preferably for 5 - 24 hours to give a compound (I).

A compound of Formula (I) which may be obtained according to the above reaction scheme (1) or (2) may be separated and purified by properly selecting conventional means for separation and purification for nucleotide, for example, recrystallization, adsorption, ion-exchange, partition chromatography or the like, as needed. Various base derivatives may be derived from thus obtained compound of Formula (I) according to the known methods, as needed.

As the compound of Formula (II), (III) or (VI) in the above reaction schemes, those commercially available reagents may be purchased and used. Alternatively, those synthesized according to the known methods may be suitably used.

As shown in the following experimental examples, the compound of the present invention may be expected as antiviral agents which can be orally administered, and further expected to possess antineoplastic activity like other ionic phosphonate-nucleotide analogs. The viruses of interest may not be particularly limited, but include, for example, RNA viruses such as human immunodeficiency virus, influenza virus, hepatitis C virus; DNA viruses such as herpes simplex virus type-I, herpes simplex virus type-II, cytomegalovirus, herpes zoster, hepatitis B virus. More preferably, it is hepatitis B virus.

50

The compound of the present invention can be orally administered to a human patient. The dose is appropriately determined depending on, for example, the age, the conditions, the weight of the subject. Generally, 1 - 1,000 mg/kg, preferably 5 - 50 mg/kg is administered once or more daily.

The compound of the present invention is preferably used as a composition comprising pharmaceutically acceptable carrier such as conventional pharmaceutical carrier, excipient, etc. Such carrier may be either solid or liquid. Solid carrier includes, for example, lactose, kaolin, sucrose, crystalline cellulose, corn starch, talc, agar, pectin, stearic acid, magnesium stearate, lecithin, sodium chloride; and liquid carrier includes, for example, glycerin, peanut oil, polyvinyl pyrrolidone, olive oil, ethanol, benzyl alcohol, propylene glycol, physiological saline, water, etc.

Various dosage form may be employed, including tablets, powders, granules, troches, etc. when a solid carrier is used; and syrups, soft gelatin capsules, gels, pastes, etc. when a liquid carrier is used.

#### Example

The present invention will be explained in detail in the following examples, which are not a limitation of the scope of the invention.

# Example 1

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]adenine (compound No. 309 in Table 1)

2-Chloroethylchloromethylether (1.96 g, 15.2 mmol) was reacted with tris(2,2,2-trifluoroethyl)phosphite (5 g, 15.2 mmol) at 160 °C for 14 hours to quantitatively obtain 5.15 g of 2-[bis(2,2,2-trifluoroethyl)-phosphonylmethoxylethyl chloride.

Adenine (2.07 g, 15.3 mmol) was suspended in dimethylformamide (30 ml) and reacted with sodium hydride (60 % in mineral oil, 0.61 g) at 100 °C for an hour. Subsequently, 2-[bis(2,2,2-trifluoroethyl)-phosphonylmethoxy]ethyl chloride (5.15 g) was added to the above reaction solution and reacted at 100 °C for 5 hours. After reaction was over, the product was cooled to room temperature and concentrated to dryness. The residue was dissolved in chloroform, adsorbed on silica gel column and eluted with 5 % methanol/chloroform to give the title compound (2.77 g, 42 %).

m.p.: 111 - 113 °C (ethyl acetate/hexane)

1H-NMR (CDCl3,  $\delta$ ): 3.91 (d, J=8.0Hz, 2H) 3.94 (t, J=5.0Hz, 2H) 4.30-4.39 (m, 6H) 6.00 (br, 2H) 7.83 (s, 1H) 8.31 (s. 1H)

# Example 2

35

40

45

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2,6-diaminopurine (compound No. 459 in Table 1)

The procedure in Example 1 was repeated, except that 2,6-diaminopurine was used instead of adenine, to obtain the title compound.

m.p.: 108 °C (ether)

1H-NMR (CDCl3,  $\delta$ ): 3.91-3.95 (m, 4H) 4.24 (t, J=5.1Hz, 2H) 4.30-4.42 (m, 4H) 4.68 (br, 2H) 5.32 (br, 2H) 7.57 (s, 1H)

## Example 3

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-amino-6-chloropurine (compound No. 509 in Table 1)

The procedure in Example 1 was repeated, except that 2-amino-6-chloropurine was used instead of adenine, to obtain the title compound.

m.p.: 132 °C (ether)

1H-NMR (CDCl3,  $\delta$ ) : 3.91 (t, J=4.7Hz, 2H) 3.94 (d, J=7.6Hz, 2H) 4.30 (t, J=4.7Hz, 2H) 4.35-4.49 (m, 4H) 5.16 (br, 2H) 7.83 (s, 1H)

# Example 4

Production of 7-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-amino-6-chloropurine (compound No. 510 in Table 1)

5

10

The procedure in Example 1 was repeated, except that 2-amino-6-chloropurine was used instead of adenine, to obtain the title compound.

m.p.: amorphous

1H-NMR (CDCl3, δ): 3.93 (t, J=5.1Hz, 2H) 3.94 (d, J=7.7Hz, 2H) 4.24 (t, J=5.1Hz, 2H) 4.31-4.42(m, 4H) 4.66 (br, 2H) 5.27 (br, 2H) 7.56 (s, 1H)

Example 5

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-8-aza-2,6-diaminopurine (compound No. 663 in Table 1)

The procedure in Example 1 was repeated, except that 8-aza-2,6-diaminopurine was used instead of adenine, to obtain the title compound. m.p.: 169 °C (ethanol)

<sup>1</sup>H-NMR (Me<sub>2</sub>SO-d<sub>6</sub>, δ): 3.98 (t, J = 5.1Hz, 2H) 4.11 (d, J = 7.8Hz, 2H) 4.46-4.86 (m, 6H) 6.38 (br, 2H)

7.18-8.00 (m, 2H)

Example 6

Production of 8-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-8-aza-2,6-diaminopurine (compound No. 664 in Table 1)

The procedure in Example 1 was repeated, except that 8-aza-2,6-diaminopurine was used instead of adenine, to obtain the title compound.

m.p.: 128 °C (diisopropyl ether)

1H-NMR (Me2 SO-d6,  $\delta$ ) : 4.03-4.15 (m, 4H) 4.55-4.71 (m, 4H) 6.05 (br, 2H) 7.50 (br, 2H)

Example 7

Production of 7-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]theophylline (compound No. 805 in Table 3)

The procedure in Example 1 was repeated, except that theophylline was used instead of adenine, to obtain the title compound.

m.p.: 77 °C (hexane)

1H-NMR (CDCl3, δ): 3.41 (s, 3H) 3.60 (s, 3H) 3.93 (d, J=8.1Hz, 2H) 3.94 (t, J=5.0Hz, 2H) 4.31-4.48 (m, 4H) 4.52 (t, J = 5.0Hz, 2H) 7.60 (s, 1H)

Example 8

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2,6-dichloropurine (compound No. 559 in Table 1)

The procedure in Example 1 was repeated, except that 2,6-dichloropurine was used instead of adenine, to obtain the title compound.

m.p.: 71-72 °C (ethyl acetate/hexane)

1H-NMR (CDCI3,  $\delta$ ): 3.90-4.08 (m, 4H) 4.32-4.52 (m, 6H) 8.19 (s, 1H)

# Example 9

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-3-deaza-8-aza-2,6-diaminopurine (compound No. 838 in Table 4)

5

The procedure in Example 1 was repeated, except that 3-deaza-8-aza-2,6-diaminopurine was used instead of adenine, to obtain the title compound.

m.p.: 116 - 122 °C (ether)

 $^{1}\text{H-NMR}$  (Me<sub>2</sub> SO-d<sub>6</sub>,  $\delta$ ):

3.94 (t, J=5.2Hz, 2H) 4.09 (d, J=7.7Hz, 2H) 4.46-4.78 (m, 6H) 5.55 (s, 2H) 5.57 (s, 1H) 6.66 (s, 2H)

10

# Example 10

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-7-deaza-8-aza-2,6-diaminopurine (compound No. 734 in Table 1)

The procedure in Example 1 was repeated, except that 7-deaza-8-aza-2,6-diaminopurine was used instead of adenine, to obtain the title compound.

m.p.: 54 - 64 °C (ether)

<sup>1</sup>H-NMR (Me<sub>2</sub> SO-d<sub>6</sub>,  $\delta$ ): 3.91 (t, J=5.3Hz, 2H) 4.07 (d, J=8.0Hz, 2H) 4.27 (t, J=5.3Hz, 2H) 4.52-4.78 (m, 4H) 8.00 (s, 1H)

# Example 11

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-6-chloropurine (compound No. 1,084 in Table 1)

The procedure in Example 1 was repeated, except that 6-chloropurine was used instead of adenine, to obtain the title compound.

m.p.: oil

11.p., 011

<sup>1</sup>H-NMR (CDCl<sub>3</sub>,  $\delta$ ): 3.95 (d, J=7.8Hz, 2H) 4.00 (t, J=4.9Hz, 2H) 4.34-4.48 (m, 4H) 4.52 (t, J=4.9Hz, 2H) 8.20 (s, 1H) 8.75 (s, 1H)

# Example 12

35

30

Production of 9-[2-[methyl(2,2,2-trifluoloethyl)phosphonylmethoxy]ethyl]adenine (compound No. 303 in Table 1)

The compound obtained in Example 1 (1 g, 2.3 mmol) was dissolved in methanol (10 ml), to which was added silica gel (5 g). After reaction at 50 °C for 7 hours, the product was concentrated to dryness. The residue was eluted with 5 % methanol/chloroform to obtain the title compound (0.75 g, 88%). m.p.: 107 - 110 °C (ethyl acetate/hexane)

1H-NMR (CDCl3,  $\delta$ ): 3.74 (d, J=11.1Hz, 3H) 3.83 (d, J=8.3Hz, 2H) 3.93 (t, J=4.1Hz, 2H) 4.30-4.39

(m, 4H) 5.65 (br, 2H) 7.86 (s, 1H) 8.33 (s. 1H)

Evan

# Example 13

Production of 9-[2-[methyl(2,2,2-trifluoloethyl)phosphonylmethoxy]ethyl]-2,6-diaminopurine (compound No. 453 in Table 1)

50

55

45

The procedure in Example 9 was repeated, except that the compound obtained from Example 2 was used instead of that obtained from Example 1, to obtain the title compound. m.p.: amorphous

1 H-NMR (CDCl3,  $\delta$ ): 3.77 (d, J=11.0Hz, 3H) 3.86 (d, J=8.2Hz, 2H) 3.91 (t, J=5.0Hz, 2H) 4.24 (t, J=4.1Hz, 2H) 4.25-4.42 (m, 2H) 4.69 (br, 2H) 5.35 (br, 2H) 7.60 (s. 1H)

# Example 14

Production of 9-[[2-[bis(2-methoxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 313 in Table 1)

9-[(2-Phosphonylmethoxy)ethyl]adenine (1 g, 3.5 mmol) was suspended in dichloromethane (10 ml) and reacted with trimethylsilyldiethylamine (3 ml) at room temperature for an hour and concentrated to dryness. The residue was dissolved in dichloromethane (10 ml), to which were added dimethylformamide (0.05 ml) and oxalyl chloride (0.9 ml). The mixture was reacted under ice-cooling for an hour, then at room temperature for an hour. After solvent was distilled off, the residue was dissolved in pyridine (20 ml) and reacted with 2-methoxyethanol (0.76 g) at room temperature for 12 hours. After concentration to dryness, the residue was dissolve in chloroform, adsorbed on silica gel column, eluted with 5 % methanol/chloroform to give the title compound (0.3 g, 22%).

m.p.: 90 - 93 °C (ethyl acetate/hexane)

1H-NMR (CDCl3,  $\delta$ ) : 3.35 (s, 6H) 3.55. (d, J=4.6Hz, 4H) 3.86 (d, J=8.2Hz, 2H) 3.95 (t, J=4.9Hz, 2H) 4.16-4.19 (m, 4H) 4.40 (t, J=4.9Hz, 2H) 5.67 (br, 2H) 7.98 (s, 1H) 8.35 (s. 1H)

#### Example 15

production of 9-[[2-bis(2-phenoxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 323 in Table 1)

The procedure in Example 11 was repeated, except that 2-phenoxyethanol was used instead of 2-methoxyethanol, to obtain the title compound.

m.p.: 112 - 115 °C (hexane)

1H-NMR (CDCl3,  $\delta$ ): 3.88 (t, J=4.8Hz, 2H) 3.95 (d, J=8.0Hz, 2H) 4.07 (t, J=4.4Hz, 4H) 4.21-4.26 (m, 4H) 4.30 (t, J=4.8Hz, 2H) 5.55 (br, 2H) 6.85-6.92 (m, 6H) 7.26 (t, J=7.4Hz, 4H) 8.06 (s, 1H) 8.12 (s. 1H)

# Example 16

30

35

25

15

Production of 9-[[2-bis(2-benzyloxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 331 in Table 1)

The procedure in Example 11 was repeated, except that 2-benzyloxyethanol was used instead of 2-methoxyethanol to obtain the title compound.

m.p.: 45 - 48 °C (hexane)

1H-NMR (CDCl3,  $\delta$ ): 3.61 (d, J=4.6Hz, 4H) 3.81 (d, J=8.1Hz, 2H) 3.84 (t, J=5.0Hz, 2H) 4.17-4.23 (m, 4H) 4.30 (t, J=5.0Hz, 2H) 4.51 (s, 4H) 5.49 (br, 2H) 7.29-7.33 (m, 10H) 7.91 (s, 1H) 8.35 (s. 1H)

# 40 Example 17

Production of 9-[[2-bis(2-acetoxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 343 in Table 1)

The procedure in Example 11 was repeated, except that 2-acetoxyethanol was used instead of 2-methoxyethanol, to-obtain the title compound.

m.p.: 68 - 70 °C (ethyl acetate/hexane)

1H-NMR (CDCl3,  $\delta$ ): 2.08 (s, 6H) 3.84 (d, J=8.3Hz, 2H) 3.95 (t, J=4.9Hz, 2H) 4.22-4.26 (m, 8H) 4.42 (t, J=4.9Hz, 2H) 5.63 (br, 2H) 7.94 (s, 1H) 8.36 (s. 1H)

# 50 Example 18

Production of 9-[[2-bis(2-valeryloxyethyl)phosphonylmethoxy]ethyl]adenine (compound No. 349 in Table 1)

The procedure in Example 11 was repeated, except that 2-valeryloxyethanol was used instead of 2-methoxyethanol to obtain the title compound.

m.p.: oil

1H-NMR (CDCl3,  $\delta$ ): 0.91 (t, J=7.5Hz, 6H) 1.36 (qt, J=7.5Hz, 4H) 1.60 (tt, J=7.5Hz, 4H) 2.33 (t, J=7.5Hz, 4H) 3.83 (d, J=8.1Hz, 2H) 3.95 (t, J=5.0Hz, 2H) 4.21-4.25 (m, 8H)

4.41 (t, J=5.0Hz, 2H) 5.73 (br, 2H) 7.94 (s, 1H) 8.35 (s. 1H)

#### Example 19

5 Production of 9-[2-bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-iodoadenine (compound No. 359 in Table 1)

The procedure in Example 11 was repeated, except that 2,2,2-trifluoroethanol and 9-[(2-phosphonyl-methoxy)ethyl]-2-iodoadenine were used instead of 2-methoxyethanol and 9-[(2-phosphonyl-methoxy)ethyl]-adenine, respectively, to obtain the title compound.

m.p.: 179 °C (CHCl<sub>3</sub>)

1H-NMR (Me2 SO-d6,  $\delta$ ): 3.88 (t, J=5.0Hz, 2H) 4.13 (d, J=8.0Hz, 2H) 4.28 (t, J=5.0Hz, 2H) 4.56-4.70 (m, 4H) 7.63 (br, 2H) 7.99 (s, 1H)

#### 15 Example 20

Production of 9-[2-bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]guanine (compound No. 259 in Table 1)

The procedure in Example 1 was repeated, except that 6-O-benzylguanine, which can be synthesized by the known method, was used instead of adenine, to obtain 9-[2-[bis(2,2,2-trifluoroethyl)-phosphonylmethoxy]ethyl]-6-O-benzylguanine.

The compound (2.21 g, 4.07 mmol) was dissolved in ethanol (20 ml), to which were added cyclohexene (20 ml) and 20 % palladium hydroxide carbon (1.5 g), and the mixture was reacted under reflux for 2 hours. After palladium hydroxide carbon was removed by filtration, the solution was concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column and eluted with 5 % methanol/chloroform to obtain the title compound (1.01 g, 55 %).

m.p.: 214 °C (ethanol)

1H-NMR (Me2 SO-d6,  $\delta$ ): 3.86 (t, J=5.1Hz, 2H) 4.13 (d, J=8.1Hz, 2H) 4.17 (t, J=5.0Hz, 2H) 4.58-4.70 (m, 4H) 6.61 (br, 2H) 8.06 (s, 1H) 10.88 (br, 1H)

# Example 21

30

35

Production of 7-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]guanine (compound No. 260 in Table 1)

Guanosine (1 g, 3.53 mmol) was suspended in dimethylacetaminde (10 ml), to which was added 2-[bis-(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl iodide (1.7 g), and the reaction was carried out at 100 °C for 2 hours. The reaction solution was concentrated to dryness, and the residue was dissolved in 30 % methanol/water, adsorbed on an octadecyl silica gel column, eluted with 30 % methanol/water to give the title compound (0.1 g, 6.3 %).

m.p.: 255 °C (H<sub>2</sub>O)

1H-NMR (Me2 SO-d6,  $\delta$ ): 3.89 (t, J=5.0Hz, 2H) 4.10 (d, J=8.0Hz, 2H) 4.40 (t, J=5.0Hz, 2H) 4.57-4.70 (m, 4H) 6.34 (br, 2H) 8.09 (s, 1H) 10.95 (br, 1H)

## 45 Example 22

Production of 9-[2-bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]adenine-1-N-oxide (compound No. 780 in Table 2)

The compound in Example 1 (8.12 g, 18.6 mmol) was dissolved in chloroform (150 ml), to which was added m-chloroperbenzoic acid (15 g), and reacted at 50 °C for 2 hours. The separated precipitate was removed by filtration, then adsorbed on a silica gel column and eluted with 5 % methanol/chloroform to give the title compound (3.42 g, 42 %).

m.p.: 186 °C (ethyl acetate)

1H-NMR (Me2 SO-d6,  $\delta$ ): 3.88 (t, J=5.0Hz, 2H) 4.10 (d, J=8.0Hz, 2H) 4.36 (t, J=5.0Hz, 2H) 4.52-4.66 (m, 4H) 8.18 (s, 1H) 8.56 (s, 1H)

. 50

#### Example 23

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-6-thioguanine (compound No. 609 in Table 1)

5

10

15

25

The compound in Example 3 (800 mg, 1.7 mmol) was dissolved in ethanol (15 ml), to which was added thiourea (157 mg) and reacted under reflux for 4 hours. After reaction was over, the mixture was cooled to room temperature and concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column and eluted with 5 % methanol/chloroform to give the title compound (252 mg, 32 %).

m.p.: 144 °C (ethanol)

1H-NMR (Me2 SO-d6,  $\delta$ ): 3.80 (t, J=5.1Hz, 2H) 4.06-4.16 (m, 4H) 4.49-4.68 (m, 4H) 6.73 (br. 2H) 7.76 (s, 1H)

#### Example 24

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-amino-6-p-toluylthiopurine (compound No. 1,030 in Table 6)

The compound in Example 3 (9.4 mg, 20 mmol) was dissolved in DMF (90 ml). p-Thiocresol (5.23 g) and triethylamine (2.8 ml) were added at room temperature, and the mixture was reacted at 100 °C for 4 hours. After reaction was over, the reaction mixture was cooled to room temperature and concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column and eluted with chloroform to give the title compound (9.8 g, 88 %).

m.p.: oil

1H-NMR (CDCl3,  $\delta$ ): 2.40 (s, 3H) 3.89-3.96 (m, 4H) 4.26 (d, J=5.1Hz, 2H) 4.39-4.47 (m, 4H) 4.79 (br, 2H) 7.23 (d, J=9.8Hz, 2H) 7.31 (d, J=9.8Hz, 2H) 7.71 (s, 1H)

## Example 25

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-2-hydroxy-6-p-toluylthiopurine (compound No. 1.055 in Table 7)

The compound in Example 21 (6.9 mg, 12.3 mmol) was dissolved in 50 % aqueous acetic acid (120 ml). Sodium nitrite (12 g) was added thereto, and the mixture was reacted at 50 °C for 1 hour. After reaction was over, the reaction mixture was cooled to room temperature and concentrated to dryness. The residue was partitioned between chloroform and aqueous sodium bicarbonate, and the chloroform layer was dried on magnesium sulfate and filtered. The filtrate was concentrated to dryness, crystallized from ether to give the title compound (2.31 g, 34 %).

m.p.: 176 °C (ether)

1H-NMR (Me2 SO-d6,  $\delta$ ): 2.33 (s, 3H) 3.85 (t, J=5.1Hz, 2H) 4.01 (d, J=8.0Hz, 2H) 4.25 (d, J=5.1Hz, 2H) 4.53-4.69 (m, 4H) 7.24 (d, J=8.1Hz, 2H) 7.43 (d, J=8.1Hz, 2H) 8.05 (s, 1H) 11.58 (br, 1H)

# Example 26

45

40

Production of 9-[2-[bis(2,2,2-trifluoroethyl)phosphonylmethoxy]ethyl]-1-methylguanine (compound No. 1,005 in Table 5)

The compound in Example 20 (500 mg, 1.1 mmol) was dissolved in DMF (7 ml), and reacted with potassium carbonate (150 mg), molecular sieves (0.4 nm, 100 mg) and methyl iodide (203 mg) at room temperature for 2 hours. The reaction solution was filtered and concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column and eluted with 5 % methanol/chloroform to give the title compound (30 mg, 5.8 %).

m.p.: oil

 $^{1}$ H-NMR (Me<sub>2</sub> SO-d<sub>6</sub>,  $\delta$ ): 3.27 (s, 3H) 3.80 (d, J = 5.0Hz, 2H) 4.05-4.11 (m, 4H) 4.52-4.68 (m, 4H) 6.98 (br, 2H) 7.59 (s, 1H)

# Reference Example 1

Production of 9-[[2-bis(2-acetamidethyl)phosphonylmethoxy]ethyl]adenine

.

10

5

$$\begin{array}{c|c}
N & H_2 \\
N & N \\
N & N \\
N & N \\
N & O \\
P & (OCH_2CH_2NHCOCH_3)_2
\end{array}$$

15

20

The procedure in Example 11 was repeated, except that 2-acetamide etahnol was used instead of 2-methoxyethanol, to obtain the title compound.

m.p.: oil

1H-NMR (CDCI3, δ):

2.02 (s, 6H) 3.41-3.53 (m, 4H) 3.81 (d, J=8.5Hz, 2H) 3.94 (t, J=4.9Hz, 2H) 3.97-4.21 (m, 4H) 4.43 (t, J=4.9Hz, 2H) 6.18 (br, 2H) 6.77 (br, 2H) 8.00 (s, 1H) 8.34 (s. 1H)

# 5 Reference Example 2

Production of 9-[[2-bis(2-hydroxyethyl)phosphonylmethoxy]ethyl]adenine

30

35

$$\begin{array}{c|c}
N H_2 \\
N \\
N \\
N \\
N \\
O \\
P (OCH_2CH_2OH)_2
\end{array}$$

40

The compound obtained from Example 13 (1 g, 1.9 mmol) was dissolved in ethanol, 10 % palladium-carbon (0.1 g) was added and reacted at 60 °C for 7 hours under hydrogen atmosphere. After palladium-carbon was removed by filtration, the solution was concentrated to dryness. The residue was dissolved in chloroform, adsorbed on a silica gel column, eluted with 5 % methanol/chloroform to give the title compound (0.38 g, 55 %).

m.p.: 102 - 104 °C (ethyl acetate)

1H-NMR (Me2 SO-d6,  $\delta$ ): 3.50 (q, J=3.9Hz, 4H) 3.86-3.96 (m, 8H) 4.32 (t, J=5.1Hz, 2H) 4.85 (t, J=5.6Hz, 2H) 7.21 (br, 2H) 8.09 (s, 1H) 8.13 (s. 1H)

# Experiment 1

Inhibition of HBV growth

55

50

HB611 cells (recombinant human lever cancer cell producing HBV, 2x10<sup>4</sup>) was incubated on Dulbecco ME medium containing bovine fetal serum, streptomycin (100 mg/ml), penicillin (100 IU/ml) and G-418 (0.2 mg/ml) at 37 °C. On the 2nd and 5th days of cultivation, the medium was changed, then the media

containing specimens at final concentration of 10 mM were substituted on the 8th, 11th and 14th days. On 17 days of cultivation, DNA of the cell was recovered. The amount of HBV-DNA was measured by southern blotting, and inhibition of HBV-DNA synthesis in the cell was determined. In addition, the concentration of the compound required for 50 % death of the HB611 cells was determined. The results are shown in the following Table 8.

Table 8

| 10  | Compound            | Inhibition of HBV-DNA Synthesis(%) | LD <sub>50</sub> of HB611 cell (μM) |
|-----|---------------------|------------------------------------|-------------------------------------|
| . • | Example 1           | 91.5                               | >1000                               |
|     | Example 2           | 99.9                               | 840                                 |
|     | Example 3           | 99.9                               | 399                                 |
|     | Example 5           | 97.2                               | -                                   |
| 15  | Example 12          | 86.3                               | >1000                               |
|     | Example 13          | 100                                | >1000                               |
|     | Example 14          | 55.0                               | >1000                               |
|     | Example 15          | 59.7                               | 174                                 |
|     | Example 16          | 57.8                               | 178                                 |
| 20  | Example 17          | 66.2                               | >1000                               |
|     | Example 18          | 73.4                               | 47                                  |
|     | Example 20          | 99.9                               | -                                   |
|     | Example 21          | 71.3                               | -                                   |
|     | Example 22          | 76.2                               | . <del>-</del>                      |
| 25  | Example 23          | 86.1                               | -                                   |
|     | Example 24          | 99.9                               | -                                   |
|     | Example 25          | 99.9                               | -                                   |
|     | Example 26          | 99.9                               | -                                   |
|     | Reference Example 1 | -                                  | >1000                               |
| 30  | Referemce Example 2 | 31.0                               | >1000                               |

## Experiment 2

Inhibition of HBV growth in rat or mouse serum upon oral administration

Groups of rats (3 rats per group) were received single oral dose of specimen (1 g/kg or 0.5 g/kg), bled at 1 hour after administration and serum was prepared. Separately, groups of mice (3 mice per group) were received single oral dose of specimen (0.3 g/kg), bled at 30 minutes after administration and serum was prepared.

HB611 cells (2x10<sup>4</sup>) were incubated on Dulbecco ME medium containing 10 % bovine fetal serum, streptomycin (100 mg/ml), penicillin (100 IU/ml) and G-418 (0.2 mg/ml) at 37 °C. On the 2nd and 5th days of cultivation, the medium was changed, then substituted with a medium containing 5 % of the above serum (rat or mouse serum after oral administration of the specimen) on the 8th, 11th and 14th day, and DNA of the cell was recovered on the 17th days of cultivation. The amount of HBV-DNA was measured by southern blotting, and intracellular HBV-DNA synthesis inhibition was determined. For reference, the same experiment was conducted on PMEA. The results are shown in the following Table 9.

50

Table 9

| Compound            | Subject | Oral Dosage (g/kg) | HBV-DNA Synthesis Inhibition(%) |
|---------------------|---------|--------------------|---------------------------------|
| Example 1           | Rat     | 1                  | 89.9                            |
| Example 2           | Rat     | 1                  | 71.9                            |
| Example 3           | Mouse   | 0.3                | 99.9                            |
| Example 4           | Mouse   | 0.3                | 36.3                            |
| Example 5           | Mouse   | 0.3                | 87.2                            |
| Example 12          | Rat     | 1                  | 92.9                            |
| Example 13          | Rat     | 1                  | 77.7                            |
| Example 14          | Rat     | 0.5                | 25.4                            |
| Example 15          | Rat     | 0.5                | 38.5                            |
| Example 16          | Rat     | 0.5                | 43.6                            |
| Example 18          | Rat     | 0.5                | 61.4                            |
| Example 20          | Mouse   | 0.3                | 99.9                            |
| Example 22          | Mouse   | 0.3                | 15.2                            |
| Reference Example 1 | Rat     | 0.5                | 0                               |
| Referemce Example 2 | Rat     | 0.5                | 0                               |
| PMEA                | Rat     | 1                  | 35.5                            |
|                     |         |                    |                                 |

# Claims

5

10

15

20

1. A phosphonate-nucleotide ester derivative of the following general formula (I):

wherein ring A represents

wherein  $R^1$  and  $R^2$  independently represent hydrogen, halogen, hydroxyl, mercapto,  $C_6$ - $C_{10}$  arylthio or amino;  $R^3$  represents  $C_1$ - $C_4$  alkyl or ethyl having one or more substituents selected from the group consisting of fluorine,  $C_1$ - $C_4$  alkoxy, phenoxy,  $C_7$ - $C_{10}$  phenylalkoxy and  $C_2$ - $C_5$  acyloxy;  $R^4$  represents ethyl having one or more substituents selected from the group consisting of fluorine,  $C_1$ - $C_4$  alkoxy, phenoxy,  $C_7$ - $C_{10}$  phenylalkoxy and  $C_2$ - $C_5$  acyloxy; X, Y and Z independently represent methyne or

nitrogen atom; or a pharmaceutically acceptable salt thereof.

2. A compound according to Claim 1, wherein the ring A is

wherein R<sup>1</sup> and R<sup>2</sup> are as defined in Claim 1.

5

15

25

40

45

3. A compound according to Claim 1, wherein the ring A is

wherein R¹ is hydrogen, chlorine, hydroxyl, mercapto, tolylthio or amino; R² is hydrogen, chlorine, iodine, hydroxyl or amino.

4. A compound according to Claim 1, wherein the ring A is

wherein R1 is amino; R2 is hydrogen.

5. A compound according to Claim 1, wherein the ring A is

wherein R1 and R2 are amino.

6. A compound according to Claim 1, wherein R³ is C¹-C₃ alkyl, 2,2,2-trifluoroethyl or ethyl having a substituent selected from the group consisting of C¹-C₃ alkoxy, phenoxy, Cȝ-C¹₀ phenylalkoxy and C₂-

C<sub>5</sub> acyloxy.

- 7. A compound according to Claim 1, wherein  $R^3$  is  $C_1 C_3$  alkyl or 2,2,2-trifluoroethyl.
- 5 8. A compound according to claim 1, wherein R<sup>4</sup> is 2,2,2-trifluoroethyl or ethyl having a substituent selected from a group consisting of C<sub>1</sub>-C<sub>3</sub> alkoxy, phenoxy, C<sub>7</sub>-C<sub>10</sub> phenylalkoxy and C<sub>2</sub>-C<sub>5</sub> acyloxy.
  - 9. A compound according to Claim 1, wherein R<sup>4</sup> is 2,2,2-trifluoroethyl.
- 10. A compound according to Claim 1, wherein X and Z are nitrogen atoms, X and Y are nitrogen atoms, or X, Y and Z are nitrogen atoms.
  - 11. A pharmaceutical composition which comprises a compound of Claim 1 and a pharmaceutically acceptable carrier.
  - 12. An antiviral agent containing a compound of Claim 1 as an active ingredient.
  - 13. A method for treatment of viral infection which comprises administering a compound of Claim 1 to a patient infected with a virus.
  - 14. A method for treatment of Claim 13, wherein the virus is hepatitis B virus.

25

15

20

30

35

40

45

50



# **EUROPEAN SEARCH REPORT**

Application Number EP 94 10 9742

| Category                                                                          | Citation of document with inc<br>of relevant pass                                                                                    |                                                                | Relevant<br>to claim                                              | CLASSIFICATION OF THI<br>APPLICATION (Int.CL6) |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|
| Υ                                                                                 | EP-A-0 481 214 (BRIS<br>* the whole document                                                                                         | TOL-MYERS SQUIBB CO.)                                          | 1-14                                                              | C07F9/6561<br>A61K31/675                       |
| Y                                                                                 | WO-A-92 09611 (BEECH<br>* the whole document                                                                                         |                                                                | 1-14                                                              |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   | TECHNICAL FIELDS<br>SEARCHED (Int.Cl.6)        |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   | CO7F                                           |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   | A61K                                           |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
| ĺ                                                                                 |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   |                                                                                                                                      |                                                                |                                                                   |                                                |
|                                                                                   | The present search report has bee                                                                                                    |                                                                |                                                                   |                                                |
|                                                                                   | Place of search THE HAGUE                                                                                                            | Date of completion of the search 22 September 199              | 4 Ros                                                             | Examiner<br>lier, L                            |
| X : parti<br>Y : parti<br>docu                                                    | ATEGORY OF CITED DOCUMENT<br>cularly relevant if taken alone<br>cularly relevant if combined with anoth<br>ment of the same category | S T: theory or princip E: earlier patent do after the filing d | ole underlying the<br>cument, but publicate<br>in the application | invention<br>ished on, or                      |
| A : technological background O : non-written disclosure P : intermediate document |                                                                                                                                      | &: member of the s<br>document                                 | ame patent famil                                                  |                                                |

BNSDOCID: <EP\_\_\_\_\_0632048A1\_I\_>

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.