${f D}$ epartamento de ${f F}$ ísica e ${f M}$ atemática

EXAME DE ANÁLISE MATEMÁTICA II

 $09/07/2014 \gg Duração: 2h30+30m$

Nota: A resolução completa dos exercícios inclui a justificação do raciocínio utilizado.

Exame da Época de Recurso

- 1. Considere a equação não linear $\cos x + x^2 4 = 0$
- [0.5] (a) Indique, justificando, um intervalo de amplitude igual a $\frac{\pi}{2}$ no qual a equação dada tem uma única raiz x^* real e positiva.
- [1.5] (b) Mostre que $x_0 = \pi$ é uma aproximação inicial favorável à aplicação do método de Newton-Raphson e obtenha um valor aproximado da raiz positiva efetuando uma iteração.
 - 2. Nas Festas 2014 da Cidade de Coimbra e da Rainha Santa Isabel, algumas ruas estão iluminadas com fios modelados matematicamente pelas funções representadas na figura 1

$$f(x) = \frac{\sin(\pi x)}{x} e g(x) = -f(x).$$

- [2.0] (a) Aplicando a interpoladora de Newton das diferenças divididas, determine o polinómio interpolador de grau 2 da função f para $x \in [-2,-1]$
- [2.0] **(b)** Utilize a regra de Simpson simples para determinar um valor aproximado para $I=\int_{-2}^{-1}g(x)\,dx \quad \text{e interprete o resultado}$ obtido.

Figura 1: Gráficos de $f \in g$

- 3. Considere o problema de valor inicial y' + ty = 0, y(0) = 1, $t \in [0,2]$
- [2.0] (a) Sabendo que $y(t) = \exp(-\frac{1}{2}t^2)$ é a solução exata do problema, complete a tabela seguinte e interprete os resultados obtidos.

			Ap	roximações		Erros		
		$y(t_i)$	y_i	y_i	y_i	$ y(t_i) - y_i $	$ y(t_i)-y_i $	$ y(t_i)-y_i $
i	t_{i}	Exata	Euler	RK2	RK4	Euler	RK2	RK4
0	0							
1		0.6065					0.1065	0.0024
2	2			0.25	0.151			

[1.5] (b) Complete a função seguinte e acrescente comentários para explicar o algoritmo/regra que lhes está associada.

```
function y = NRK4(f,a,b,n,y0)
h=_____;
t=_____;
y=zeros(__,___);
y(1)=___;
for i=__:___
    k1=____; k2=____;
k3=____; k4=___;
y(i+1)=___;
```

4. Seja
$$f(x,y) = -\sqrt{29 - x^2 - y^2}$$
,

e os campos escalares g e h dados sob a forma dos algoritmos seguintes:

- [1.0] (a) Determine o domínio da função g e represente-o geometricamente. O domínio é fechado? Justifique.
- [1.5] **(b)** Trace um esboço da superfície definida por z = g(x, y).
- [1.5] (c) Das alíneas seguintes resolva apenas <u>duas</u>

Qual o valor lógico das seguintes afirmações? Justifique a sua resposta.

- (i) O vetor [1, y, -5] define a equação da reta tangente à curva de intersecção da superfície z = h(x, y) com o plano x = 1 no ponto P(1, 1, 5).
- (ii) Supondo que o potencial qualquer ponto do plano cartesiano xOy for dado por $V=f^2(x,y)$, as taxa de variação mínima e máxima do potencial no ponto P(-1,-1) ocorrem na direção e sentido dos vetores $\vec{u}=\left\langle -2,-2\right\rangle$ e $\vec{v}=\left\langle 2,2\right\rangle$ respetivamente.
- (iii) A função h é contínua nos pontos do $cord\~ao$ de soldadura definido por $C=\left\{(x,y)\in\mathbb{R}^2:x^2+y^2=4\right\}$
- [1.5] (d) Das alíneas seguintes resolva apenas <u>uma</u>

$$\text{(i) Mostre que se e } z = f^2(x,y) \,, \ y = r \sin \theta \ \text{ e } \ x = r \cos \theta \,, \\ \text{então} \ \frac{\partial^2 z}{\partial y^2} + \frac{\partial}{\partial x} \bigg(\frac{\partial z}{\partial x} \bigg) + \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial z}{\partial \theta} + 2 \times \frac{\partial^2 z}{\partial r^2} \,.$$

(ii) A rotina seguinte, implementada em Maple, traduz corretamente a avaliação se uma função é harmónica, isto é, se satisfaz a equação de Laplace $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$? Justifique.

```
isHarmonica:= proc(f)
  if diff(f, x, x)= - diff(f, y)
  then printf("A função não é harmónica\n")
  else printf("A função é harmónica\n")
  end if
end proc;
```

- **5.** A figura 2 representa um sólido, de densidade constante $\rho(x,y,z)=2$, composto por duas partes:
 - Cilindro de raio $r = \sqrt{29}$ e altura h = 5
 - Segmento de esfera de raio $r=\sqrt{29}$ seccionado por um cone de raio r=2 e altura h=5

-5,5 -3,0 -0,5 2,0 4,5 -2,5-

Figura 2

Figura 3

[2.0] (a) Justifique, associando os conjuntos seguintes a dois sistemas de coordenadas 3D, que o sólido é definido por $S = S_1 \cup S_2$, onde:

$$\begin{split} S_1 &= \left\{ (R,\theta,\varphi) : 0 \leq R \leq \sqrt{29} \wedge 0 \leq \theta \leq 2\pi \wedge \arctan(\frac{2}{5}) \leq \varphi \leq \frac{\pi}{2} \right\} \\ S_2 &= \left\{ (\rho,\theta,z) : 0 \leq \rho \leq \sqrt{29} \wedge 0 \leq \theta \leq 2\pi \wedge -5 \leq z \leq 0 \right\} \end{split}$$

- [1.5] (b) Calcule o volume e a massa do sólido.
- [1.5] (c) Das alíneas seguintes resolva apenas <u>uma</u>
 - (i) Prove, usando coordenadas cilíndricas, que o volume de uma cone de raio r e altura h é igual a $\frac{1}{3}\pi r^2 h$.
 - (ii) Mostre que a área da superfície cónica que limita o sólido é igual a $A(S) = 2\sqrt{29}\pi$.
 - (iii) Mostre que em coordenadas cartesianas o sólido é definido por $S=S_1 \cup S_2$, onde:

$$\begin{split} S_1 &= \left\{ (x,y,z) \in \mathbb{R}^3 : \left(4 < x^2 + y^2 \le 29 \land 0 \le z \le \sqrt{29 - x^2 - y^2} \,\right) \lor \left(x^2 + y^2 \le 4 \land 0 \le z \le \frac{5}{2} \sqrt{x^2 + y^2} \,\right) \right\} \\ S_2 &= \left\{ (x,y,z) \in \mathbb{R}^3 : x^2 + y^2 \le 29 \land -5 \le z \le 0 \right\} \end{split}$$

(iv) Complete a rotina seguinte e apresente uma 2ª versão, em Maple ou Matlab, com critérios de validação dos parâmetros de entrada.

```
Cilindricas2Cartesianas := proc(rho, theta, z)
    local x, y;
    x := ______;
    y := ______;
    return [x, y, z];
end proc;
```

Nome Completo:						
Número:						
Nome/login utilizado no LVM:						
Curso						
Licenciatura em Eng. Informática						
Licenciatura em Eng. Informática - Pós-laboral						
Licenciatura em Eng. Informática - Curso Europeu						
Trabalhador-Estudante						
Sim						
Não						
Frequência às aulas de AM2						
Regime diurno						
Regime Pós-laboral						
Atividades de aprendizagem e avaliação						
Não						
Sim						
At01_Matlab - ACrescimento + Prog.Geométrica						
At02_Matlab - Método da Secante e Método da Falsa Posição						
At03_Matlab - Integração Numérica (Presencial)						
At04_Matlab - Métodos de Euler e de Runge-Kutta com GUI						
At05_TP_Maple - Cálculo Diferencial e Integral em IR^n						
Participação nos fóruns (pelo menos 3 vezes)						
Acompanhou registos sobre AM2 e outros em facebook/armeniocorreia						
Sim						
Não						