Max Entropy Theorems

Samuel Epstein

February 18, 2025

Theorem 1 Let (\mathcal{X}, μ) and (\mathcal{Y}, ν) be computable measure spaces. Let $A : \mathbb{N} \to X$, $B : \mathbb{N} \to Y$ be injective functions with $\mathbf{I}(\langle A, B \rangle : \mathcal{H}) < \infty$. For $s \in \mathbb{N}$, m < s, there exists 2^{s-m} indices $t < 2^s$ with $\max\{\mathbf{G}_{\mu}(A(t)), \mathbf{G}_{\nu}(B(t))\} < -m + O(\log s)$.

Theorem 2 Let L be the Lebesgue measure over \mathbb{R} , (\mathcal{X}, μ) , (\mathcal{Y}, ν) be non-atomic computable measure spaces. Let $A:[0,1] \to \mathcal{X}$ and $B:[0,1] \to \mathcal{Y}$ be continuous. Let $\mathbf{I}(\langle A,B\rangle:\mathcal{H}) < \infty$. There is a constant c with $L\{t \in [0,1]: \max\{\mathbf{G}_{\mu}(A(t)), \mathbf{G}_{\nu}(B(t))\} < \log \mu(X) - n\} > 2^{-n-\mathbf{K}(n)-c}$.

Theorem 3 Let (\mathcal{X}, μ) , (\mathcal{Y}, ν) , and be non-atomic computable measure spaces with $U = \log \mu(\mathcal{X}) = \log \nu(\mathcal{Y})$. Let (\mathcal{Z}, ρ) be a non-atomic computable probability space. Let $A : \mathcal{Z} \to \mathcal{X}$ and $B : \mathcal{Z} \to \mathcal{Y}$ be continuous. Let $\mathbf{I}(\langle A, B \rangle : \mathcal{H}) < \infty$. There is a constant c with $\rho\{\alpha : \max\{\mathbf{G}_{\mu}(A(\alpha)), \mathbf{G}_{\nu}(B(\alpha))\} < \log U - n\} > 2^{-n-\mathbf{K}(n)-c}$.