Build, train and deploy Machine Learning models on Amazon Web Services

Julien Simon Global Evangelist, AI & Machine Learning, AWS @julsimon

Machine learning cycle

AWS services for Machine Learning

Build your dataset

Annotating data at scale is time-consuming and

Amazon SageMaker Ground Truth

Build scalable and cost-effective labeling workflows

Quickly label training data

Easily integrate human labelers

Get accurate results

KEY FEATURES

Automatic labeling via machine learning

Ready-made and custom workflows for image bounding box, segmentation, and text

Private and public human workforce

Prepare your dataset for Machine Learning

Build, train and deploy models using compute services

AWS Deep Learning AMIs

Preconfigured environments on Amazon Linux or Ubuntu

Deep Learning containers for Tensorflow and Apache MXNet

Conda AMI

For developers who want preinstalled pip packages of DL frameworks in separate virtual environments.

Base AMI

For developers who want a clean slate to set up private DL engine repositories or custom builds of DL engines.

ONNX

Amazon SageMaker

Amazon SageMaker

Collect and prepare training data

Choose and optimize your ML algorithm

Set up and manage environments for training

Train and Tune ML Models

Deploy models in production

Scale and manage the production environment

Same service and APIs from experimentation to production

SIEMENS

Build, train and deploy models using SageMaker

The Amazon SageMaker API

- Python SDK orchestrating all Amazon SageMaker activity
 - High-level objects for algorithm selection, training, deploying, automatic model tuning, etc.
 - Spark SDK (Python & Scala)
- AWS SDK
 - For scripting and automation
 - CLI: 'aws sagemaker'
 - Language SDKs: boto3, etc.

Model options

Training code

Factorization Machines

Linear Learner

Principal Component

Analysis

K-Means Clustering

XGBoost

And more

Built-in Algorithms (17)

No ML coding required
No infrastructure work required
Distributed training
Pipe mode

Built-in Frameworks

Bring your own code: script mode
Open source containers
No infrastructure work required
Distributed training

© 2019, Amazon Web Services Hoods affiliates All rights reserved.

Bring Your Own Container

Full control, run anything!
R, C++, etc.
No infrastructure work required

Built-in algorithms orange: supervised, yellow: unsupervised

Linear Learner: regression, classification	Image Classification: Deep Learning (ResNet)
Factorization Machines: regression, classification, recommendation	Object Detection (SSD): Deep Learning (VGG, ResNet)
K-Nearest Neighbors: non-parametric regression and classification	Neural Topic Model: topic modeling
XGBoost: regression, classification, ranking https://github.com/dmlc/xgboost	Latent Dirichlet Allocation: topic modeling (mostly)
K-Means: clustering	Blazing Text: GPU-based Word2Vec, and text classification
Principal Component Analysis: dimensionality reduction	Sequence to Sequence: machine translation, speech to text
Random Cut Forest: anomaly detection	DeepAR: time-series forecasting (RNN)
Object2Vec: general-purpose embedding	IP Insights: usage patterns for IP addresses
Semantic Segmentation: Deep Learning	ices, Inc. or its affiliates. All rights reserved.

Optimize and deploy models using SageMaker

Demo:

Built-in image classification on Caltech-256

https://gitlab.com/juliensimon/dlnotebooks/blob/master/sagemaker/06-Image-classification-deeplens.ipynb

Optimize and deploy models using SageMaker

Amazon SageMaker Neo

Optimize models for the underlying hardware architecture

- Train once, run anywhere
- Supported frameworks and algorithms
 - TensorFlow, Apache MXNet, PyTorch, ONNX, and XGBoost
- Supported hardware architectures
 - ARM, Intel, and NVIDIA
 - More hardware architectures coming.

The Neo compiler and runtime are open source, enabling hardware vendors to customize it for their processors and devices: https://github.com/neo-ai/

Compiling ResNet-50 for the Raspberry Pi

```
Configure the compilation job
  "RoleArn":$ROLE ARN,
  "InputConfig": {
   "S3Uri": "s3://jsimon-neo/model.tar.gz",
   "DataInputConfig": "{\"data\": [1, 3, 224, 224]}",
   "Framework": "MXNET"
  },
 "OutputConfig": {
  "S30utputLocation": "s3://jsimon-neo/",
  "TargetDevice": "rasp3b"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 300
```

```
Compile the model
$ aws sagemaker create-compilation-job
--cli-input-json file://config.json
--compilation-job-name resnet50-mxnet-pi
$ aws s3 cp s3://jsimon-neo/model-
rasp3b.tar.gz .
$ gtar tfz model-rasp3b.tar.gz
compiled.params
compiled_model.json
compiled.so
```

```
Predict with the compiled model
from dlr import DLRModel
model = DLRModel('resnet50', input_shape,
output_shape, device)
out = model.run(input_data)
```

Amazon Elastic Inference

Attach fractional acceleration to any EC2 instance

Lower inference costs up to 75%

Match capacity to demand

Available between 1 to 32 TFLOPS

Integrated with
Amazon EC2,
Amazon SageMaker,
and Amazon DL
AMIs

Support for TensorFlow,
Apache MXNet, and
ONNX
with PyTorch coming soon

Single and mixed-precision operations

Demo:

Image classification with Keras and Elastic Inference

https://gitlab.com/juliensimon/dlnotebooks/tree/master/keras/05-keras-blog-post

Getting started

http://aws.amazon.com/free

https://ml.aws

https://aws.amazon.com/sagemaker

https://github.com/aws/sagemaker-python-sdk

https://github.com/aws/sagemaker-spark

https://github.com/awslabs/amazon-sagemaker-examples

https://gitlab.com/juliensimon/ent321

https://medium.com/@julsimon

https://gitlab.com/juliensimon/dlnotebooks

Mercil

Julien Simon Global Evangelist, AI & Machine Learning, AWS @julsimon