Artificial Intelligence & Machine Learning and Pattern Recognition — Association Rule Mining

Yanghui Rao Assistant Prof., Ph.D School of Mobile Information Engineering, Sun Yat-sen University raoyangh@mail.sysu.edu.cn

• Retailers (商家) are interested in the purchasing behavior of their customers.

¥46.40 (7.87折) 机器学习导论(原书

¥51.80 (7.51折) 机器学习实战 [美] Peter

¥36.50 (7.45折) 图解机器学习 [日]杉山将 著,许

¥28.00 (8折) 机器学习(决战大数 (美)米歇尔

买过本商品的人还买了 -

Association rules

- Antecedent → Consequent [support, confidence]
- 。前项→后项[支持度,置信度]
- buys(x, "diapers") \rightarrow buys(x, "beers") [0.5%, 60%]
- major(x, "SE") $^{\text{takes}}(x, \text{"AI"}) \rightarrow \text{grade}(x, \text{"A"}) [1\%, 75\%]$

Support,
$$s(A \rightarrow C) = s(C \rightarrow A) = p(A, C)$$

Confidence,
$$c(A \rightarrow C) = p(A, C) / p(A)$$

Applications

- Cross-selling, Customer relationship management
- Inventory management, Marketing promotions
- Classification & Clustering...

- Rules: $X \& Y \Rightarrow Z$ 满足最小支持度和置信度
 - 。 支持度, s, 一次交易中包含 $\{X\}$ Y、Z}的可能性
 - 。 置信度, c, 包含 $\{X \times Y\}$ 的交易 中也包含Z的条件概率

交易ID	购买的商品
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

设最小支持度为50%,最小置 信度为50%,则可得到

- A ⇒ C (50%, 66.6%)
 C ⇒ A (50%, 100%)

交易ID	购买商品
2000	A,B,C
1000	A,C A,D
4000	A,D
5000	B,E,F

最小支持度 (minsup) 50% 最小置信度 (minconf) 50%

	频繁项集	支持度
	{A}	75%
-	{B}	50%
	{C}	50%
	{A,C}	50%

```
对于 A \Rightarrow C:
support = support({A,C}) = 50%
confidence = support({A,C})/support({A}) = 66.6%
```

Key Step: Get Frequent Itemset

- Frequent Itemset: 满足最小支持度 (minsup)
 的项目集合
 - 。频繁项集的子集一定是频繁的
 - · 例如, 如果{A,B}是频繁项集,则{A}、{B}也一定是 频繁项集
 - 。从1到k (k-频繁项集)递归查找所有频繁项集
- 用得到的频繁项集生成所有关联规则
 - 。应满足最小置信度 (minconf)

- 自连接:用 L_{k-1}自连接得到C_k
- 修剪: 一个k-项集,如果他的一个k-1项集(他的子集) 不是频繁的,那他本身也不可能是频繁的。
- pseudo code:

```
C_k: Candidate itemset of size k
L_k: frequent itemset of size k

L_1 = {frequent items};

for (k = 1; L_k != \emptyset; k++) do begin

C_{k+1} = candidates generated from L_k;

for each transaction t in database do

increment the count of all candidates in C_{k+1} that are contained in t

L_{k+1} = candidates in C_{k+1} with minsup

end

return \bigcup_k L_k;
```

Database D		
	Items	
100	134 235 1235 25	
200	235	
300	1235	
400	2 5	
L_{α}	temset s	

	itemset	sup.
C_{I}	{1}	2
	{2}	3
Scan D	{3}	3
	{4 }	1
	{5}	3

L_1	itemset	sup.
- ₁	{1}	2
→	{2}	3
	{3}	3
	{5}	3

 C_2

Scan D

L_2	itemset	sup
2	{1 3}	2
	{2 3}	2
	{2 5}	3
	{3.5}	2

	()	
C_2	itemset	sup
	{1 2}	1
	{1 3}	2
←	{1 5}	1
	{2 3}	2
	{2 5}	3
	{3 5}	2
	•	

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

 C_3 itemset $\{2 \ 3 \ 5\}$

 $\underbrace{\operatorname{Scan} D} L_3$

itemset	sup
{2 3 5}	2

- 假定 L_{k-1} 中的项按顺序排列
- 第一步: 自连接 L_{k-1} insert into C_k select $p.item_1$, $p.item_2$, ..., $p.item_{k-1}$, $q.item_{k-1}$

from $L_{k-1} p$, $L_{k-1} q$

where $p.item_1=q.item_1$, ..., $p.item_{k-2}=q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$

• 第二步: 修剪

For all *itemsets c in* C_k do

For all (k-1)-subsets s of c do

if (s is not in L_{k-1}) **then delete** c **from** C_k

- L_3 ={abc, abd, acd, ace, bcd}
- 自连接: L₃*L₃
 - · abc 和 abd 得到 abcd
 - · acd 和 ace 得到 acde

- L_3 ={abc, abd, acd, ace, bcd}
- 自连接: L₃*L₃
 - · abc 和 abd 得到 abcd
 - · acd 和 ace 得到 acde
- 修剪:
 - ade 不在 L₃中,删除 acde
- C_4 ={abcd}

- Apriori的核心
 - 。用频繁的(k-1)-项集生成候选的频繁 k-项集
 - 。用数据库扫描和模式匹配计算候选项集的支持度
- Apriori 的瓶颈
 - 。巨大的候选项集
 - 104 个频繁1-项集要生成 107 个候选 2-项集
 - ・要找尺寸为100的频繁模式,如 $\{a_1, a_2, ..., a_{100}\}$,你必须先产生 $2^{100} \approx 10^{30}$ 个候选集
 - 。多次扫描数据库

Rule Generation

- Let Y={a,b,c} be a frequent itemset.
- There are six candidate association rules that can be generated from Y
 - $\circ \{a,b\} \rightarrow \{c\}$
 - $\circ \{a,c\} \rightarrow \{b\}$
 - $\circ \{b,c\} \rightarrow \{a\}$
 - $\circ \{a\} \rightarrow \{b,c\}$
 - \circ {b} \rightarrow {a,c}
 - $\circ \{c\} \rightarrow \{a,b\}$
- Compare their confidence with *minconf*

Compact Representation

- The number of frequent itemsets produced from a transaction data set can be very large.
- It is useful to identify a small representative set of frequent itemsets from which all other frequent itemsets can be derived.
- Two compact representations are
 - Maximal frequent itemsets
 - Closed frequent itemsets

- A maximal frequent itemset is defined as a frequent itemset for which none of its immediate supersets are frequent.
- We consider the itemset lattice shown in the following figure.
- The itemsets in the lattice are divided into two groups
 - Those that are frequent
 - Those that are infrequent

- {a,d}, {a,c,e} and {b,c,d,e} are considered to be maximal frequent itemsets.
 - This is because their immediate supersets are infrequent.

• {a,c} is non-maximal because one of its immediate supersets, {a,c,e}, is frequent.

• Maximal frequent itemsets do not contain the support information of their subsets.

• An additional pass over the database is required to determine the support counts of the non-maximal frequent itemsets.

• An itemset X is closed if none of its immediate supersets has exactly the same support count as X.

• In other words, X is not closed if at least one of its immediate supersets has the same support count as X.

 Examples of closed itemsets are shown in the following figure.

• Each node (itemset) in the lattice is associated with a list of its corresponding TIDs.

• We notice that every transaction that contains b also contains c.

• Consequently, the support for {b} is identical to {b,c}.

• {b} should not be considered a closed itemset.

- Similarly, the itemset {a,d} is not closed, since c occurs in every transaction that contains both a and d.
- On the other hand, {b,c} is a closed itemset.
 - This is because it does not have the same support count as any of its supersets.

- An itemset is a closed frequent itemset if
 - It is closed and
 - Its support is greater than or equal to *minsup*.
- In the previous example, assuming that the support threshold is 40%.
- {b,c} is a closed frequent itemset because its support is 60%.
- The rest of the closed frequent itemsets are indicated by the shaded nodes.

- We can use the closed frequent itemsets to determine the support counts for the nonclosed frequent itemsets.
- For example, we consider the frequent itemset {a,d} shown in the figure.
- Because the itemset is not closed, its support count must be identical to one of its immediate supersets.
- The key is to determine which superset (among {a,b,d}, {a,c,d} or {a,d,e}) has exactly the same support count as {a,d}.

• Any transaction that contains the superset of {a,d} must also contain {a,d}.

• However, any transaction that contains {a,d} does not have to contain the supersets of {a,d}.

• For this reason, the support for {a,d} must be equal to the largest support among its supersets.

• {a,c,d} has a larger support than both {a,b,d} and {a,d,e}.

• As a result, the support for {a,d} must be identical to the support for {a,c,d}.

• To find the support for a non-closed frequent itemset, the support for all of its supersets must be known.

- All maximal frequent itemsets are closed.
- This is because none of the maximal frequent itemsets can have the same support count as their immediate supersets.
- The relationship among frequent, maximal frequent, and closed frequent itemsets are shown in the following figure.

Summary

