重庆大学学生实验报告

实验课程名称		(数学模型	型》		
	2019	至	2020	学年第	2	学期

小组成员信息					
小组成员 1					
姓名	学号	班号	点名册序号		
邓露	20184275	004	94		
小组成员 2					
姓名	学号	班号	点名册序号		
王桂梅	20181814	004	62		
小组成员 3					
姓名	学号	班号	点名册序号		
杨紫怡	20184272	20184272 004 76			

第一题:

题目: 收集近年淘宝天猫双 11 的销售额数据,采用数据拟合预测 2020 年淘宝天猫的销售额。

分析: 从网上收集到 2009 年至 2019 年的淘宝天猫双 11 的销售额数据,记录到 Excel 表中,并绘制出数据折线图。并用 excel 得出3 个趋势线,显示其函数为

$$y1 = 0.0142x4 - 0.8015x3 + 42.138x2 - 153.48x + 126.86$$

$$y2 = -0.4601x3 + 39.421x2 - 145.46x + 120.2$$

$$y3 = 31.139x2 - 103.96x + 69.955$$

分别为 4 次、3 次、2 次多项式。故小组讨论决定用 matlab 分别做出三个多项式的拟合曲线,并预测 2020 年淘宝天猫的销售额。再带入目标函数求目标函数的值,取最小的函数作为其拟合曲线。

模型1(2次):

$$f(x) = a_1 x^2 + a_2 x + a_3$$

决策变量: $a=(a_1+a_2+a_3)$

目标函数: $\sum_{i=1}^{11} [f(x_i) - y_i]^2$

程序1(2次):

```
>> x=1:1:11;
>> x1=1:1:12;
```

>> y=Untitled(1,:);

>> a=polyfit(x,y,2)

a =

31.1390 -103.9587 69.9553

>> plot(x,y,'k+',x1,z,'r');

>> title('淘宝双十一交易额拟合');

>> xlabel('年份 2009—2020 ');

>> ylabel('交易额,单位/亿');

>> *m*=*polyval(a,12)*

m =

3.3065e+03

>> *z2=polyval(a,x)*;

>> z3=z2-y;

>> sum(z3.^2)

ans =

1.3378e+04

结果1(2次):

```
>> a=polyfit(x, y, 2)
```

a =

31. 1390 -103. 9587 69. 9553

```
>> z2=polyval(a,x);
>> z3=z2-y;
>> sum(z3.^2)
ans =
```

1.3378e+04

二次多项式拟合函数: $f(x)=31.1390x^2-103.9587x+69.9553$ 目标函数值为 1.3378e+04

模型 2 (3 次):

$$f(x) = a_1 x^3 + a_2 x^2 + a_3 x + a_4$$

决策变量:
$$a=(a_1+a_2+a_3+a_4)$$

目标函数:
$$\sum_{i=1}^{11} [f(x_i) - y_i]^2$$

程序2(3次):

a =

-0.4601 39.4209 -145.4602 120.1988

```
>> b=polyval(a,x);
```

m =

>> vpa(m)

ans =

3256.22

ans =

1.2070e+04

结果2(3次):

```
>> x=1:11;
>> y=S1(2,1:11);
>> a = polyfit(x, y, 3)
a =
  -0.4601 39.4209 -145.4602 120.1988
>> b=polyval(a,x);
>> plot(x, y, 'k+', x, b, 'r');
>> title('淘宝双十一交易额拟合');
>> xlabel('年份 2009-2020');
>> ylabel('交易额 单位/亿');
>> m=polyval(a, 12)
m =
   3.2562e+03
>> vpa(m)
ans =
3256.22
>> c=b-y;
>> sum(c.^2)
ans =
   1.2070e+04
```


145. 4602*x*+120. 1988

目标函数值为 1.2070e+04

模型3(4次):

$$f(x) = a_1 x^4 + a_2 x^3 + a_3 x^2 + a_4 x + a_5$$

决策变量: $a=(a_1+a_2+a_3+a_4+a_5)$

目标函数: $\sum_{i=1}^{11} [f(x_i) - y_i]^2$

程序3(4次):

```
>> x=1:11;
>> y=[0.52,9.36,52,59,352,571,912,1207,1682.65,2135,2684];
>> a=polyfit(x,y,4);
>> z=polyval(a,x);
```

>> a

>> plot(x,y,'k+',x,z,'r');

>> title('淘宝双十一交易额预测');

>> xlabel('年份(2009-2020)');

>> ylabel('交易额 单位: 亿元');

>> y20=polyval(a,12) %预测 2020 年

%检验程序

>> z2=z-y;

sum(*z2.*^2)

ans =

1.206055325780884e+04

结果3(4次):

a1= 0.000142948717949e+02,

a2=0.008030108780108e+02,

a3=0.421481876456869e+02,

a4=1.535087490287468e+02,

a5=1.268742424242404e+02

y20=3.262923939393938e+03,

综上:

经过对比发现 4 次多项式的目标函数值最小,所以拟合多项式

为:
$$f(x) = 0.0143x^4 + 0.8030x^3 + 42.1482x^2$$

+153.5087x+126.8742, 预测 2020 年的销售额为 3262.9240 亿元

第二题:

题目:增加生产、发展经济所依靠的主要因素有增加投资、增加劳动力以及技术革新等,在研究国民经济产值与这些因素的数量关系时,由于技术水平不像资金、劳动力那样容易定量化,作为初步的模型,可认为技术水平不变,只讨论产值和资金、劳动力之间的关系。在科学技术发展不快时,如资本主义经济发展的前期,这种模型是有意义的。

用 Q, K, L 分别表示产值、资金、劳动力,要寻求的数量关系 Q(K, L)。经过简化假设与分析,在经济学中,推导出一个著名的 Cobb-Douglas 生产函数:

$$Q(K, L) = aK \alpha L \beta$$
, $0 < \alpha$, $\beta < 1$ (*)

式中 α , β , α 要由经济统计数据确定。现有美国马萨诸塞州 1900—1926 年上述 三个经济指数的统计数据,如下表,试用数据拟合的方法,求出式(*)中的参数 α , β , α . (选做)

表1							
t	Q	K	L	t	Q	K	L
1900	1.05	1.04	1.05	1914	2.01	3.24	1.65
1901	1.18	1.06	1.08	1915	2.00	3.24	1.62
1902	1.29	1.16	1. 18	1916	2.09	3.61	1.86
1903	1.30	1.22	1.22	1917	1.96	4.10	1.93
1904	1.30	1.27	1. 17	1918	2. 20	4.36	1.96
1905	1.42	1.37	1.30	1919	2. 12	4.77	1.95
1906	1.50	1.44	1.39	1920	2. 16	4.75	1.90
1907	1.52	1.53	1.47	1921	2.08	4. 54	1.58
1908	1.46	1.57	1.31	1922	2. 24	4. 54	1.67
1909	1.60	2.05	1.43	1923	2.56	4. 58	1.82
1910	1.69	2.51	1.58	1924	2. 34	4. 58	1.60
1911	1.81	2.63	1.59	1925	2.45	4. 58	1.61
1912	1.93	2.74	1.66	1926	2. 58	4. 54	1.64
1913	1.95	2.82	1.68				

分析:由于(*)式对参数 a, α, β 是非线性的,因此,可以有两种方式进行拟合,一是直接使用 MATLAB 软件中的曲线或曲面拟合命令,另一个是将非线性函数转化成线性函数的形式,使用线性函数拟合。本组采用这两种方法进行拟合。

- 直接使用 matlab 中的非线性拟合函数:将表格数据存入 Excel, 再将 Excel 中的数据导入 matlab,对参数 a,α,β 分别以 0.1,0.1,0.2 作为初值用 lsqcurvefit 函数对数据进行非线性 拟合,并作出 Q, K, L 的关系图形。
- 2) 转化为线性函数进行拟合:由于产值Q和资金 K 劳动力 L 之间有关系,Q(K,L) = $aK \alpha L \beta$, $O<\alpha$, $\beta<1$,注意到等式两边取对数后,lnQ 是 lnK 和 lnL 的线性函数,即 $lnQ=lna+\alpha lnK+\beta lnL$,于是可以用线性拟合的方法确定未知参数 $x=[lna \alpha \beta]$

模型 1:

 $Q(K, L) = aK \alpha L \beta$, $0 < \alpha$, $\beta < 1$

决策变量: 参数 a, α, β ,分别对应程序中的 x1, x2, x3.

目标函数: Min (Σ(f-Q))

程序 1:

函数:

```
function a = curvefun(x, KL) 
 a=x(1)*(KL(:,1).^x(2)).*(KL(:,2).^x(3)); end
```

主程序:

```
>> Q=CobbDouglas(:,2);
>> KL=CobbDouglas(:,3:4);
>> x0=[0.1,0.1,0.2];
>> x=lsqcurvefit(curvefun,x0,KL,Q);
```

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to

its initial value is less than the value of the function tolerance.

结果1:

导入数据:

CobbDouglas 💥						
1 27x4 double						
	1	2	3	4		
1	1900	1.0500	1.0400	1.0500		
2	1901	1.1800	1.0600	1.0800		
3	1902	1.2900	1.1600	1.1800		
4	1903	1.3000	1.2200	1.2200		
5	1904	1.3000	1.2700	1.1700		
6	1905	1.4200	1.3700	1.3000		
7	1906	1.5000	1.4400	1.3900		
8	1907	1.5200	1.5300	1.4700		
9	1908	1.4600	1.5700	1.3100		
10	1909	1.6000	2.0500	1.4300		
11	1910	1.6900	2.5100	1.5800		
12	1911	1.8100	2.6300	1.5900		
13	1912	1.9300	2.7400	1.6600		
14	1913	1.9500	2.8200	1.6800		
15	1914	2.0100	3.2400	1.6500		
16	1915	2	3.2400	1.6200		
17	1916	2.0900	3.6100	1.8600		
18	1917	1.9600	4.1000	1.9300		
19	1918	2.2000	4.3600	1.9600		
20	1919	2.1200	4.7700	1.9500		

21	1920	2.1600	4.7500	1.9000
22	1921	2.0800	4.5400	1.5800
23	1922	2.2400	4.5400	1.6700
24	1923	2.5600	4.5800	1.8200
25	1924	2.3400	4.5800	1.6000
26	1925	2.4500	4.5800	1.6100
27	1926	2.5800	4.5400	1.6400

程序部分(含求解参数值):

```
>> Q=CobbDouglas(:,2);
>> KL=CobbDouglas(:,3:4);
>> x0=[0.1,0.1,0.2];
>> x=lsqcurvefit(curvefun,x0,KL,Q);
```

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.

```
<stopping criteria details>
```

```
>> x

x =

1.2246    0.4612   -0.1277

>> m=linspace(0, 2.7, 27);
>> n=linspace(0, 2.7, 27);
>> [M, N]=meshgrid(m, n);

>> a=x(1)*(M.^x(2)).*(N.^x(3));
>> surf(M, N, a);
>> xlabel('K'), ylabel('L'), zlabel('Q')
>>
>> b=x(1)*(KL(:,1).^x(2)).*(KL(:,2).^x(3))-Q;
>> sum(b.^2)

ans =

0.4230
```

图形:

参数值 a 为 1. 2246, α 为 0. 4612, β 为-0. 1277, 平方差之和为 0. 4230。 生产函数为 $Q(K,L)=1.2246K^{0.4612}L^{-0.1277}$ 。

模型 2:

在本程序中

```
a=\exp(x(1)), K=1nK, L=1nL, \alpha=x(2), \beta=x(3); Q=1nQ f=x(1)+x(2)K+x(3)L 目标函数 Min(\Sigma(f-Q))
```

程序 2:

```
curverfun.m × +
    function f=curverfun(x)
      kdata = [1.04, 1.06, 1.16, 1.22, 1.27, 1.37, 1.44, 1.53, 1.57, 2.05, 2.51, 2.63, 2.74, 2.82, 3.24, 3.24, 3.61, 4.10,
      1data = [1.05, 1.08, 1.18, 1.22, 1.17, 1.30, 1.39, 1.47, 1.31, 1.43, 1.58, 1.59, 1.66, 1.68, 1.65, 1.62, 1.86, 1.93,
      Qdata = [1.05, 1.18, 1.29, 1.30, 1.30, 1.42, 1.50, 1.52, 1.46, 1.60, 1.69, 1.81, 1.93, 1.95, 2.01, 2.00, 2.09, 1.96,
      {\tt Q=log\,(Qdata)\,;K=log\,(kdata)\,;L=log\,(1data)\,;}
      f=x(1)+x(2)*K+x(3)*L-Q;
                                                                                                英 🤈 🙂 🎍 🖽
>> x0=[0.1, 0.1, 0.2];
>> x=1sqnonlin('curverfun', x0);
>> f=curverfun(x)
    列 1 至 10
      0.1386
                0.0304 -0.0190 -0.0047
                                                0.0122 -0.0424 -0.0751
                                                                              -0.0616
    列 11 至 20
      0.0463 -0.0022 -0.0483 -0.0461 -0.0168
                                                        -0.0120
                                                                    -0.0080
                                                                                           0.0225
                                                                                                     0.0982
                                                                                0.1114
```

结果 2:

```
>> sum(f.^2)
ans =
```

0.1084

```
>> x
x =
0.1700  0.4306  0.0102

>> exp(x)
ans =
1.1853  1.5382  1.0102
```

由结果可得 a=1.1853 α =0.4306 β =0.0102, 平方差之和为 0.1084。