Prove that there exists an animal that weights more mat 500 tons Proof . - - 1 Not drue The opposite! All animals weigh fee Than 500 tous foorly

Universal statements

The vast majority of mathematical statements to be proved are universal. In discussing how to prove such statements, it is helpful to imagine them in a standard form:

For example,

Proving universal statements: The method of exhaustion

Some theorems can be proved by examining relatively small number of examples.

- Prove that $(n+1)^3 \ge 3^n$ if n is a positive integer with $n \le 4$.
 - *n* = 1
- 8 33

- n = 2
- n = 3
- n=4
- Prove for every natural number n with n < 40 that $n^2 + n + 41$ is prime.

Generalising from the Generic

Particular

Motivating example: "Mathematical trick"

Pick any number, add 5, multiply by 4, subtract 6, divide by 2, and subtract twice the original number. The answer is 7.

Step	Visual Result	Algebraic Result
Pick a number.		х
Add 5.		x + 5
Multiply by 4.		$(x+5) \cdot 4 = 4x + 20$
Subtract 6.		(4x + 20) - 6 = 4x + 14
Divide by 2.		$\frac{4x + 14}{2} = 2x + 7$
Subtract twice the original number.	 	(2x+7)-2=7

Generalising from the Generic Particular

The most powerful technique for proving a universal statement is one that works regardless of the choice of values for x.

To show that every x satisfies a certain property, suppose x is a particular but arbitrarily chosen and show that x satisfies the property.

Method of direct proof

- Express the statement to be proved in the form " $\forall x$, if P(x) then Q(x)." (This step is often done mentally.)
- Start the proof by supposing x is a particular but arbitrarily chosen element for which the hypothesis P(x) is true.

 (This step is often abbreviated "Suppose P(x).")
- Show that the conclusion Q(x) is true by using definitions, previously established results, and the rules for logical inference.

Prove that the sum of any two even integers is even

Prove that Vab if a and b are even mayer that a+ b is even Proof Sprok that a and b are parkenlar but arbitrarily chem ever inkgers. By def. of even, $a = d \cdot k$, where $k \circ an reger$. b= 2.l, mer e on more

a+b= 24+21= 2(K+l) As le, l ave mt., 50 B le+l so by definition of even at b B even (QED)

By defertion of ever, n=de where $n^2 = (ak)^2 = a^2 \cdot k^2 =$ $4.\kappa^{2} = 2(2\kappa^{2})$ Smee guz is an int. Mt by def. of even, n's an net.

Is it true that for every positive integer n, $n^2 \ge 2n$?

Disproving universal statements by counterexample

To disprove a statement means to show that it is false. Consider the question of disproving a statement of the form

$$\forall x$$
, if $P(x)$ then $Q(x)$.

Showing that this statement is false is equivalent to showing that its negation is true. The negation of the statement is existential:

 $\exists x \text{ such that } P(x) \text{ and not } Q(x).$

Is this true?

Prove for all integers m and n, if $m^2 = n^2$ then m = n?

Goldbach's conjecture

Every even integer greater than 2 is the sum of two primes.

(Christian Goldbach (1690-1764))

- \blacksquare up to 10^{17}

$$N = 2$$
 $0^{2} + 6^{2} = c^{2}$
 $0^{3} + 4^{2} = 5^{2}$
 $0^{4} + 6^{2} = 25^{2}$

Fermat's last theorem

No three positive integers a, b, and c satisfy the equation

$$a^n + b^n = c^n$$

for any integer value of n greater than 2.

- Conjectured around 1637 by Pierre de Fermat (1607-1665)
- Proved 1995 by Andrew Wiles