data.head()

	country	iso_code	date	total_vaccinations	people_vaccinated	people_fully_vaccinated	daily_vaccinations_raw	daily_vaccinations
0	Afghanistan	AFG	2021- 02-22	0.0	0.0	NaN	NaN	Nah
1	Afghanistan	AFG	2021- 02-23	NaN	NaN	NaN	NaN	1367.(
2	Afghanistan	AFG	2021- 02-24	NaN	NaN	NaN	NaN	1367.(
3	Afghanistan	AFG	2021- 02-25	NaN	NaN	NaN	NaN	1367.(
4	Afghanistan	AFG	2021- 02-26	NaN	NaN	NaN	NaN	1367.(

data_manu.head()

	location	date	vaccine	total_vaccinations	==
0	Argentina	2020-12-29	Moderna	2	ıl.
1	Argentina	2020-12-29	Oxford/AstraZeneca	3	
2	Argentina	2020-12-29	Sinopharm/Beijing	1	
3	Argentina	2020-12-29	Sputnik V	20481	
4	Argentina	2020-12-30	Moderna	2	

make statistical aalysis on the datas

data.describe()

	total_vaccinations	people_vaccinated	<pre>people_fully_vaccinated</pre>	daily_vaccinations_raw	daily_vaccinations	total_vaccinations_pe
count	2.705700e+04	2.603900e+04	2.437700e+04	2.193500e+04	5.216000e+04	270
mean	5.691027e+07	1.923211e+07	1.487287e+07	3.420715e+05	1.613521e+05	
std	2.795499e+08	8.494562e+07	6.809048e+07	1.511664e+06	9.695998e+05	
min	0.000000e+00	0.000000e+00	1.000000e+00	0.000000e+00	0.000000e+00	
25%	3.963830e+05	2.793155e+05	1.731230e+05	3.230500e+03	7.380000e+02	
50%	2.589469e+06	1.580100e+06	1.190856e+06	2.008900e+04	5.568500e+03	
75%	1.521038e+07	7.464513e+06	6.170630e+06	1.160790e+05	3.537500e+04	1
max	3.263129e+09	1.275541e+09	1.240777e+09	2.474100e+07	2.242429e+07	3

on the manufactururas data we can only have total vaccination in the countries on day by day

data manu.describe()

to	tal_vaccinations	
count	3.562300e+04	1
mean	1.508357e+07	
std	5.181768e+07	
min	0.000000e+00	
25%	9.777600e+04	
50%	1.305506e+06	
75%	7.932423e+06	
max	6.005200e+08	

Find Correlation of the column

sns.heatmap(data.corr(),cmap="Accent",annot=True,vmin=-1,vmax=1,center=0)

<ipython-input-35-4236846674f2>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version
sns.heatmap(data.corr(),cmap="Accent",annot=True,vmin=-1,vmax=1,center=0)

Number of Countries that are present in dataset

len(data["country"].unique())

134

checking the cont of missing values

```
print(data.isnull().sum())
print("----")
print(data_manu.isnull().sum())
    country
                                          0
    iso_code
                                          0
    date
                                          0
    total_vaccinations
                                       25309
    people_vaccinated
                                       26327
    people_fully_vaccinated
                                       27989
    daily_vaccinations_raw
                                       30431
    daily_vaccinations
                                        206
    total_vaccinations_per_hundred
                                       25309
    people_vaccinated_per_hundred
                                       26327
    people_fully_vaccinated_per_hundred
                                       27989
    daily_vaccinations_per_million
                                         206
    vaccines
                                          0
    source_name
                                          0
    source_website
                                          0
    dtype: int64
             0
    location
    date
                        0
    vaccine
                        0
    total_vaccinations
                        0
    dtype: int64
```

dataset given by manufacturer have no null value

But country vaccination datset have null values so remove null values or missing values make a good analysis

data.dropna(axis=0,inplace=True)

data.head()

	country	iso_code	date	total_vaccinations	people_vaccinated	people_fully_vaccinated	daily_vaccinations_raw	daily_vaccination
94	Afghanistan	AFG	2021- 05-27	593313.0	479574.0	113739.0	2859.0	648
101	Afghanistan	AFG	2021- 06-03	630305.0	481800.0	148505.0	4015.0	528
339	Afghanistan	AFG	2022- 01-27	5081064.0	4517380.0	3868832.0	6868.0	980
433	Albania	ALB	2021- 02-18	3049.0	2438.0	611.0	1348.0	25
515	Albania	ALB	2021- 05-11	622507.0	440921.0	181586.0	9548.0	1216

Make some visualizations

Distributions of the data

sns.histplot(data=data_manu["total_vaccinations"],bins=20,color= 'red')

```
<Axes: xlabel='total_vaccinations', ylabel='Count'>
```

```
30000 -
25000 -
20000 -
15000 -
```

Calculate the Total vaccination on date wise

```
10000
z=0
total_vac1=[]
for x in data_manu["location"].unique():
    for y in data_manu["location"]:
       if x == y:
           total= 0 + data_manu["total_vaccinations"].iloc[z]
           z=z+1
    total_vac1.append(total)
z=0
total_vac2=[]
for x in data["country"].unique():
    for y in data["country"]:
       if x == y:
           total= 0 + data["total_vaccinations"].iloc[z]
           z=z+1
    total_vac2.append(total)
```

Country wise vaccination

```
x=data_manu["location"].unique()
y=total_vac1
plt.figure(figsize=(10,10))
plt.ylabel("Locatoion")
plt.xlabel("Total_vaccination")
plt.barh(x,y,color=["red",'green','yellow'])
plt.show()
```


Calculate the peple_vaccinated and people_fully_vaccinated for countries

```
Cyprus -
z=0
people_vac=[]
for x in data["country"].unique():
     for y in data["country"]:
        if x == y:
            total= 0 + data["people_vaccinated"].iloc[z]
            z=z+1
     people_vac.append(total)
z=0
people_fulvac=[]
for x in data["country"].unique():
     for y in data["country"]:
        if x == y:
            total= 0 + data["people_fully_vaccinated"].iloc[z]
     people_fulvac.append(total)
```

Create dataframe for country wise vaccination distibution

datafre={"country":data['country'].unique(), "People_Vaccinated":people_Fully_vaccinated":people_fulvac}
new_data=pd.DataFrame(datafre)
new_data

	country	People_Vaccinated	people_Fully_vaccinated
0	Afghanistan	4517380.0	3868832.0
1	Albania	1275907.0	1209791.0
2	Algeria	6875003.0	5391232.0
3	Andorra	9781.0	4484.0
4	Antigua and Barbuda	63704.0	61327.0
102	Mexico	85580293.0	79711762.0
103	Moldova	557291.0	513094.0
104	Mongolia	2272327.0	2174398.0
105	Montenegro	289687.0	281571.0
106	Morocco	4284060.0	2844916.0

```
x1=new_data["People_Vaccinated"]
y1=new_data["people_Fully_vaccinated"]
```

```
plt.figure(figsize=(16,4))
plt.subplot(1,4,1)
plt.scatter(x1,y1,color="red")
plt.subplot(1,4,2)
plt.plot(x1,y1,color='blue')
plt.subplot(1,4,3)
sns.kdeplot(x1,shade=True,label="people_vaccinated")
plt.legend()
plt.subplot(1,4,4)
sns.distplot(y1,color='green',label='people_fully_vaccinated')
plt.legend()
plt.show()
     <ipython-input-23-fffecbf8546b>:9: FutureWarning:
     `shade` is now deprecated in favor of `fill`; setting `fill=True`.
     This will become an error in seaborn v0.14.0; please update your code.
       sns.kdeplot(x1,shade=True,label="people_vaccinated")
     <ipython-input-23-fffecbf8546b>:12: UserWarning:
     `distplot` is a deprecated function and will be removed in seaborn v0.14.0.
     Please adapt your code to use either `displot` (a figure-level function with
```

similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(y1,color='green',label='people_fully_vaccinated')

From above graph we can say that these two fields are positively relatived

sns.heatmap(new_data.corr(),cmap='GnBu',annot=True)

<ipython-input-33-2bfd1593bd5d>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versior
sns.heatmap(new_data.corr(),cmap='GnBu',annot=True)

