Université de Bordeaux Master Mathématiques et Applications Année 2017-2018

Algorithmique Arithmétique

16 décembre 2017

Documents allowed The exercises are independent

Part 1: Quantum computing

In this part, we will consider the following *search problem*: given a boolean function $\mathcal{A}: \{0,1\}^n \to \{0,1\}$, how many calls to \mathcal{A} do we need to find $y \in \{0,1\}^n$ such that $\mathcal{A}(y) = 1$ (or to decide that there is none?). It is clear that in classical computing we cannot do better in the worst case that calling \mathcal{A} a number of times $O(2^n)$. In the quantum setting, we will see that there is a quantum algorithm that solves this problem using $O(2^{n/2})$ calls to the quantum version of \mathcal{A} .

We start to gather a few standard geometric properties of unitary reflections. We take the following notations : for $N \geq 1$, the Hilbert space \mathbb{C}^N is endowed with the hermitian product $\langle u|v\rangle = \sum_{j=1}^N \overline{u_j}v_j$, and we set $\|u\| = \sqrt{\langle u|u\rangle}$. To $u \in \mathbb{C}^N$ such that $\|u\| = 1$, we associate the reflection $\rho_u : \mathbb{C}^N \to \mathbb{C}^N$ defined by $\rho_u(x) = x - 2\langle u|x\rangle u$.

- **1.** Show that $\rho_u(u) = -u$, that $\rho_u(x) = x$ if $x \in (\mathbb{C}u)^{\perp}$, and that $\rho_u^2 = \mathrm{Id}$.
- **2.** Show that $\rho_u \in U(\mathbb{C}^N)$.
- **3.** Show that, if $W \in U(\mathbb{C}^n)$, $W \rho_u W^{-1} = \rho_{W(u)}$.
- **4.** Let $u, v \in \mathbb{C}^N$ such that $\langle u|v\rangle = \cos\theta$ for some angle $\theta \in (0, \pi)$. Let $P = \mathbb{C}u \oplus \mathbb{C}v$. Show that $R := \rho_v \circ \rho_u$ is on P the rotation of angle 2θ and is on P^{\perp} the identity (you can compute the matrix of R in the orthonormal basis $\{e_1, e_2\}$ of P such that $e_1 = u$ and $v = (\cos\theta)e_1 + (\sin\theta)e_2$ and/or you can draw a convincing picture).

Now we go back to the search problem and assume that the classical oracle \mathcal{A} is turned to a quantum oracle U. With the notations of the lectures : $\mathcal{B} = \mathbb{C} |0\rangle \oplus \mathbb{C} |1\rangle$, $N = 2^n$, and $\{|x\rangle, x \in \{0,1\}^n\}$ denotes the computational basis of $\mathcal{B}^{\otimes n}$, U is defined by

$$U|x\rangle = \begin{cases} |x\rangle & \text{if } \mathcal{A}(x) = 0\\ -|x\rangle & \text{if } \mathcal{A}(x) = 1 \end{cases}$$

Moreover we will assume for simplicity that there is a unique y_0 such that $A(y_0) = 1$.

- **5.** Show that *U* is the reflection of $\mathcal{B}^{\otimes n}$ relative to $|y_0\rangle$
- **6.** Let $|\varphi\rangle := \frac{1}{\sqrt{N}} \sum_{x \in \{0,1\}^n} |x\rangle$ and let V be the reflection relative to $|\varphi\rangle$. Let R := -VU. Show that R is a rotation in the plane $P = \mathbb{C} |\varphi\rangle \oplus \mathbb{C} |y_0\rangle$ of angle $\alpha \approx \frac{2}{\sqrt{N}}$.
- 7. Show that, if $s = \lfloor \frac{\pi \sqrt{N}}{4} \rfloor$, measuring $|\psi\rangle := (VU)^s |\varphi\rangle$ in the computational basis will output y_0 with probability tending to 1 when n tends to ∞ .
- **8.** Show that *V* can be decomposed into a polynomial number of elementary gates (*for this you can express V in terms of the reflection relative to* $|0^n\rangle$).
- **9.** Conclude with a description of a quantum algorithm that finds y_0 with high probability using $O(\sqrt{N})$ quantum queries to U and a polynomial number of elementary gates.

Part 2: Lattices

We take the following notation : for $y_1, \ldots, y_m \in \mathbb{R}^n$, we set

$$L(y_1,\ldots,y_m):=\{\lambda_1y_1+\cdots+\lambda_my_m\mid (\lambda_1,\ldots,\lambda_m)\in\mathbb{Z}^m\}$$

the set of *integer* linear combinations of the vectors y_1, \ldots, y_m .

We consider the following problems:

(1) Lattice basis problem

Given $y_1, \ldots, y_m \in \mathbb{Z}^n$, compute a basis z_1, \ldots, z_k of $L(y_1, \ldots, y_m)$ together with a matrix $\Lambda = (\lambda_{i,j}) \in \mathbb{Z}^{m \times k}$ such that, for $1 \leq j \leq k$, $z_j = \sum_{i=1^m} \lambda_{i,j} y_i$. Note that we do not assume that the vectors y_i are linearly independent, nor that the lattice L is of full rank n.

(2) Lattice membership problem

Given $y_1, \ldots, y_m \in \mathbb{Z}^n$, and $u \in \mathbb{Z}^n$, decide if $u \in L(y_1, \ldots, y_m)$ and, if so, compute $(\lambda_1, \ldots, \lambda_m) \in \mathbb{Z}^m$ such that $u = \lambda_1 y_1 + \cdots + \lambda_m y_m$.

(3) Integer linear system of equations:

Given $A \in \mathbb{Z}^{n \times m}$ and $b \in \mathbb{Z}^n$, decide if there exists $x \in \mathbb{Z}^m$ such that Ax = b and, if so, compute such an x.

(4) Modular system of equations:

Given $A \in \mathbb{Z}^{n \times m}$, $b \in \mathbb{Z}^n$ and $c \in \mathbb{Z}^n$, decide if there exists $x \in \mathbb{Z}^m$ such that $Ax = b \mod c$ and, if so, compute x. (Here $Ax = b \mod c$ means : for all $1 \le i \le n$, $(Ax)_i = b_i \mod c_i$.)

- 1. Show that Problem (2) reduces to Problem (1).
- 2. Show that Problem (3) reduces to Problem (2).
- 3. Show that Problem (4) reduces to Problem (3).

Now we want to address Problem 1. For this we introduce the notion of a matrix $A \in \mathbb{Z}^{m \times n}$ in *Hermite normal form* (HNF). Let k denote the rank of A. For the column of index j, let r(j) denote the first index such that $A_{r(j),j} \neq 0$ (with the convention $r(j) = \infty$ if the column is identically 0^n).

We say that *A* is in HNF if :

- (a) The first *k* columns are non zero and the remaining ones are equal to zero.
- **(b)** $r(1) < r(2) < \cdots < r(k)$.
- (c) $A_{r(i),j} > 0$ for all $1 \le j \le k$
- (d) $0 \le A_{r(j),\ell} < A_{r(j),j}$ for all $1 \le j < \ell \le k$.

Moreover, we recall that $SL_m(Z) = \{U \in \mathbb{Z}^{m \times m} \mid \det(U) = \pm 1\}$ is the group of *unimodular matrices*. We will prove :

Theorem : For all $A \in \mathbb{Z}^{n \times m}$, there exists $U \in SL_m(\mathbb{Z})$ such that AU = B is in HNF. Moreover there is an algorithm to compute U (and B) having polynomial algebraic complexity.

- **4.** Draw a picture of a matrix in HNF form; give a few examples of matrices in HNF form and of matrices which are not in HNF form.
- **5.** Show that if y_1, \ldots, y_m denote the columns of A, and if AU = B like in the Theorem, the non zero columns of B give a basis of $L(y_1, \ldots, y_m)$.
- **6.** Derive that the Theorem above answers Problem (1).
- 7. We call *elementary operations* any of the following operations on *A*:

$$y_i \leftarrow -y_i$$
 $y_i \leftrightarrow y_j$ $y_i \leftarrow y_i + \lambda y_j \ (j \neq i, \lambda \in \mathbb{Z})$

Show that each of them amounts to multiplying A on the right by a unimodular matrix.

- **8.** Assume that the first row of A is non zero; using successive Euclidean divisions between the coefficients of the first row of A, show that a succession of elementary operations on A will transform A into a matrix $A' \in \mathbb{Z}^{n \times m}$ with a first row of the form $[A'_{1,1}, 0, \ldots, 0]$, where $A'_{1,1} > 0$.
- **9.** Give an algorithm that transforms *A* in HNF form through a succession of elementary operations.
- **10.** Execute this algorithm on the following matrix in order to compute its HNF form (the explicit computation of the matrix U is not required):

$$A = \begin{pmatrix} 2 & 5 & 8 \\ 3 & 6 & 3 \\ 6 & 1 & 1 \\ 2 & 6 & 1 \end{pmatrix}$$

11. Prove the Theorem. What would you suggest to control the *binary* complexity of this algorithm? (no proof required here).