

KinyaBERT: a Morphology-aware Kinyarwanda Language Model

Dejan Dichoski and Josè Chacon

BERT for low-resource languages

"Bidirectional Encoder Representations from Transformers is a family of language models introduced in 2018 by researchers at Google". - Wikipedia

- Most of BERT's evaluations have been conducted on high-resource languages.
 - This has obscured its applicability on low-resource languages.
- BERT-like models use sub-word tokenization algorithms, such as BPE.
 - These models are not optimal for morphologically rich languages, even given a morphological analyzer.

KinyarwandaA morphologically rich language

Morphological segmentation of the word 'ntuzamwibeshyeho'

ntuzamwibeshyeho							
nti-	-u-	-za-	-mu-	-ii-	-beshy-	-e-	-ho
Negation	Subject (2nd pers/sing.)	Tense (future)	Direct Object (1st class/human/sing.)	Reflexive (wrt. subj)	Stem	Aspect (imperative)	Prep.
not	you	will	him/her	self	lie	(imperative)	about

Morpheme-by-morpheme translation of the word

'Never lie to yourself about him/her'

Real meaning

'Never underestimate him/her'

*Antoine Nzeyimana (2020) - Morphological disambiguation from stemming data

Contributions

Architecture:

 A BERT architecture designed specifically for morphologically rich languages, like the Kinyarwanda language.

Model evaluation:

- A machine-translated subset of the GLUE benchmark and an author-generated news categorization dataset.
- Benchmark for future studies on Kinyarwanda language understanding.

KinyaBERT model architecture

Model pre-training

- Objective: Utilize a masked language model to predict stems and their associated affixes for all tokens.
- Affix prediction task = a multi-label classification problem, tackled using two methods:
 - 1. Affix Distribution Regression (ADR) KinyaBERTADR
 - Use the Kullback–Leibler (KL) divergence loss function to predict the N-length affix distribution vector.
 - 2. Affix Set Classification (ASC) KinyaBERTASC
 - Use *cross entropy loss* to predict the affix set associated with the target word.

Evaluation Tasks and Results

Machine-translated GLUE Benchmark

- Collection of nine natural language understanding tasks.
- Used Google Translate
 API to translate a subset
 of the GLUE benchmark
 into Kinyarwanda.

Task: #Train examples: Translation score:	MRPC 3.4K 2.7/4.0	QNLI 104.7K 2.9/4.0	RTE 2.5K 3.0/4.0	SST-2 67.4K 2.7/4.0	STS-B 5.8K 3.1/4.0	WNLI 0.6K 2.9/4.0
Model		Validation Set				
XLM-R	84.2/78.3±0.8/1.0	79.0±0.3	58.4±3.2	78.7±0.6	77.7/77.8±0.7/0.6	55.4±2.0
$BERT_{BPE}$	83.3/76.6±0.8/1.4	81.9 ± 0.2	59.2±1.5	80.1 ± 0.4	$75.6/75.7 \pm 7.8/7.3$	55.4 ± 1.9
$BERT_{MORPHO}$	84.3/77.4±0.6/1.1	81.6 ± 0.2	59.2±1.5	81.6 ± 0.5	$76.8/77.0\pm0.8/0.7$	54.2 ± 2.5
KinyaBERT _{ADR}	87.1/82.1±0.5/0.7	81.6 ± 0.1	61.8 ± 1.4	81.8 ± 0.6	79.6/79.5±0.4/0.3	54.5±2.2
$KinyaBERT_{ASC}$	$86.6/81.3 \pm 0.5/0.7$	82.3 ± 0.3	64.3 ±1.4	82.4 ± 0.5	$80.0/79.9 \pm 0.5/0.5$	56.2 ±0.8
Model			Test	t Set		
XLM-R	82.6/76.0±0.6/0.6	78.1±0.3	56.4±3.2	76.3±0.4	69.5/68.9±1.0/1.1	63.7±3.9
$BERT_{BPE}$	82.8/76.2±0.6/0.8	81.1±0.3	55.6 ± 2.8	79.1 ± 0.4	68.9/67.8±1.8/1.7	63.4 ± 4.1
$BERT_{MORPHO}$	$82.7/75.4 \pm 0.8/1.3$	80.8 ± 0.4	56.7 ± 1.0	80.7 ± 0.5	$68.9/67.8 \pm 1.5/1.3$	65.0 ± 0.3
KinyaBERT _{ADR}	84.4/78.7±0.5/0.6	81.2 ± 0.3	58.1 ± 1.1	80.9 ± 0.5	$73.2/72.0\pm0.4/0.3$	65.1 ± 0.0
$KinyaBERT_{ASC}$	84.6 /78.4±0.2/0.3	82.2 ± 0.6	58.8 ± 0.7	81.4 ± 0.6	74.5/73.5 ±0.2/0.2	65.0 ± 0.2

KinyaBERTASC achieved a 4.3% better average score than the strongest baseline.

Named entity recognition (NER)

The task requires predicting 4 entity types annotated by native speakers for Kinyarwanda:

- 1. Persons (PER)
- 2. Locations (LOC)
- 3. Organizations (ORG)
- 4. Date and time (DATE).

Task: #Train examples:	NER 2.1K			
Model	Validation Set	Test Set		
XLM-R	80.3±1.0	71.8±1.5		
$BERT_{BPE}$	83.4 ± 0.9	74.8 ± 0.8		
$BERT_{MORPHO}$	83.2 ± 0.9	72.8 ± 0.9		
KinyaBERT _{ADR}	87.1 ± 0.8	77.2±1.0		
$KinyaBERT_{ASC}$	86.2 ± 0.4	76.3 ± 0.5		

KinyaBERTADR achieves best performance, about 3.2% better average F1 score than the strongest baseline.

News categorization

This is a document classification task (12 categories), using data collected from seven major news websites that regularly publish in Kinyarwanda.

Task: #Train examples:	NEWS 18.0K		
Model	Validation Set	Test Set	
XLM-R	83.8±0.3	84.0±0.2	
$BERT_{BPE}$	87.6 ± 0.4	88.3 ± 0.3	Differing performances between
$BERT_{MORPHO}$	86.9 ± 0.4	86.9 ± 0.3	validation and test sets.
KinyaBERT _{ADR}	88.8 ± 0.3	88.0 ± 0.3	
KinyaBERT _{ASC}	88.4 ± 0.3	88.0 ± 0.2	

Conclusion

- The proposed BERT architecture has shown to be capable of representing morphological compositionality.
- Experiments conducted on Kinyarwanda language, revealed performance improvement on downstream NLP tasks, affirming the effectiveness of morphology-aware language models.

Future work

- Further research into morphologically-aware language models is needed.
- Character-aware language models have been presented as an alternative to the current subword tokenization techniques.
 - A comparison between this approach and morphology-aware models remains an open area for research.

