Spatial Statistics: Point-referenced Data

Samuel I. Berchuck STA 440L, Duke University

March 7, 2023

(Slides were adapted from notes by Joshua Warren, PhD)

Estimation and explanation

- Estimation and explanation
 - Typical regression parameter estimation

- Estimation and explanation
 - Typical regression parameter estimation
 - How does temperature change across the domain (large-scale)?

- Estimation and explanation
 - Typical regression parameter estimation
 - How does temperature change across the domain (large-scale)?
- Prediction at unobserved locations

- Estimation and explanation
 - Typical regression parameter estimation
 - How does temperature change across the domain (large-scale)?
- Prediction at unobserved locations
 - Original development of spatial methods

- Estimation and explanation
 - Typical regression parameter estimation
 - How does temperature change across the domain (large-scale)?
- Prediction at unobserved locations
 - Original development of spatial methods
 - Kriging named after D.G. Krige (mining applications)

- Estimation and explanation
 - Typical regression parameter estimation
 - How does temperature change across the domain (large-scale)?
- Prediction at unobserved locations
 - Original development of spatial methods
 - Kriging named after D.G. Krige (mining applications)
- Oesign issues

- Estimation and explanation
 - Typical regression parameter estimation
 - How does temperature change across the domain (large-scale)?
- Prediction at unobserved locations
 - Original development of spatial methods
 - Kriging named after D.G. Krige (mining applications)
- Oesign issues
 - Where to put a new air pollution monitor to optimize future prediction criteria?

Estimation and Explanation

Spatial Prediction

Figure: Observed Data

Spatial Prediction

Figure: Predictions

Spatial Prediction

Figure: Standard Errors

Observations closer in space tend to be more similar

- Observations closer in space tend to be more similar
- Common regression models assume independence among observations

- Observations closer in space tend to be more similar
- Common regression models assume independence among observations
 - Not a valid assumption here, especially at short distances

- Observations closer in space tend to be more similar
- Common regression models assume independence among observations
 - Not a valid assumption here, especially at short distances
- Multivariate normal distribution with valid spatial covariance function used in Bayesian modeling

- Observations closer in space tend to be more similar
- Common regression models assume independence among observations
 - Not a valid assumption here, especially at short distances
- Multivariate normal distribution with valid spatial covariance function used in Bayesian modeling
 - Spatial covariance describes how observations are correlated based on their proximity to each other

- Observations closer in space tend to be more similar
- Common regression models assume independence among observations
 - Not a valid assumption here, especially at short distances
- Multivariate normal distribution with valid spatial covariance function used in Bayesian modeling
 - Spatial covariance describes how observations are correlated based on their proximity to each other
- Advanced models built on similar ideas

- Observations closer in space tend to be more similar
- Common regression models assume independence among observations
 - Not a valid assumption here, especially at short distances
- Multivariate normal distribution with valid spatial covariance function used in Bayesian modeling
 - Spatial covariance describes how observations are correlated based on their proximity to each other
- Advanced models built on similar ideas
 - Latent processes often used

$$Y(s) = \mu(s) + e(s); s \in D$$

• $\mu(s)$: deterministic large scale trend

$$Y(s) = \mu(s) + e(s); s \in D$$

- $\mu(s)$: deterministic large scale trend
- \bullet e(s): error term, small scale structure

$$Y(s) = \mu(s) + e(s); s \in D$$

- $\mu(s)$: deterministic large scale trend
- \bullet e(s): error term, small scale structure
- Observe $\{Y(s_1), \ldots, Y(s_n)\} \in \mathbb{R}^p$ from the domain **D**

$$Y(s) = \mu(s) + e(s); s \in D$$

- $\mu(s)$: deterministic large scale trend
- \bullet e(s): error term, small scale structure
- Observe $\{Y(s_1), \ldots, Y(s_n)\} \in \mathbb{R}^p$ from the domain D
 - p > 1 in spatial setting (usually 2 or 3)

$$Y(s) = \mu(s) + e(s); s \in D$$

- $\mu(s)$: deterministic large scale trend
- e(s): error term, small scale structure
- Observe $\{Y(s_1), \ldots, Y(s_n)\} \in \mathbb{R}^p$ from the domain D
 - p > 1 in spatial setting (usually 2 or 3)
 - p = 1 is a time series (spatial process on a line)

$$Y(s) = \mu(s) + e(s); s \in D$$

- $\mu(s)$: deterministic large scale trend
- \bullet e(s): error term, small scale structure
- Observe $\{Y(s_1), \ldots, Y(s_n)\} \in \mathbb{R}^p$ from the domain **D**
 - p > 1 in spatial setting (usually 2 or 3)
 - p = 1 is a time series (spatial process on a line)
 - Inference based on this partial realization of the spatial process

Large Scale Structure

• $\mu(s)$ often modeled as a function of components of s; s = (x, y) or s = (lat, long) in two dimensions

Large Scale Structure

- $\mu(s)$ often modeled as a function of components of s; s = (x, y) or s = (lat, long) in two dimensions
- Choice of the form of $\mu(s)$ depends on exploratory analysis

Large Scale Structure

- $\mu(s)$ often modeled as a function of components of s; s = (x, y) or s = (lat, long) in two dimensions
- Choice of the form of $\mu(s)$ depends on exploratory analysis
- Often polynomial form used such that $\mu(s) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 xy + \beta_4 x^2 + \beta_5 y^2 + \dots$

Large Scale Structure

- $\mu(s)$ often modeled as a function of components of s; s = (x, y) or s = (lat, long) in two dimensions
- Choice of the form of $\mu(s)$ depends on exploratory analysis
- Often polynomial form used such that $\mu(\mathbf{s}) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 x y + \beta_4 x^2 + \beta_5 y^2 + \dots$
- Goal: Remove trend without overfitting

$$\bullet$$
 $e(s) = w(s) + \epsilon(s)$

- $e(s) = w(s) + \epsilon(s)$
- Nugget effect: $\epsilon(s)$

- \bullet $e(s) = w(s) + \epsilon(s)$
- Nugget effect: $\epsilon(s)$
 - Measurement error of the process

- $e(s) = w(s) + \epsilon(s)$
- Nugget effect: $\epsilon(s)$
 - Measurement error of the process
- w(s) is the remaining error (purely spatial)

- $e(s) = w(s) + \epsilon(s)$
- Nugget effect: $\epsilon(s)$
 - Measurement error of the process
- w(s) is the remaining error (purely spatial)
 - Zero mean random process with spatial covariance function

- $e(s) = w(s) + \epsilon(s)$
- Nugget effect: $\epsilon(s)$
 - Measurement error of the process
- w(s) is the remaining error (purely spatial)
 - Zero mean random process with spatial covariance function
- Choice of spatial covariance/semivariogram function based on sample semivariogram analysis

Common Modeling Assumptions for w(s)

• Stationarity: Constant mean and $Cov\{w(s), w(s')\} = Cov\{w(s), w(s+h)\} = C(h)$

- Stationarity: Constant mean and $Cov\{w(s), w(s')\} = Cov\{w(s), w(s+h)\} = C(h)$
 - w(s) has a constant mean of zero

- Stationarity: Constant mean and $Cov\{w(s), w(s')\} = Cov\{w(s), w(s+h)\} = C(h)$
 - w(s) has a constant mean of zero
 - Same **h** vector leads to same covariance

- Stationarity: Constant mean and $Cov\{w(s), w(s')\} = Cov\{w(s), w(s+h)\} = C(h)$
 - w(s) has a constant mean of zero
 - Same **h** vector leads to same covariance
- Isotropy:

- Stationarity: Constant mean and $Cov\{w(s), w(s')\} = Cov\{w(s), w(s+h)\} = C(h)$
 - w(s) has a constant mean of zero
 - Same **h** vector leads to same covariance
- Isotropy:
 - $Cov\{w(s), w(s')\} = Cov\{w(s), w(s+h)\} = C(\|h\|)$

- Stationarity: Constant mean and $Cov\{w(s), w(s')\} = Cov\{w(s), w(s+h)\} = C(h)$
 - w(s) has a constant mean of zero
 - Same **h** vector leads to same covariance
- Isotropy:
 - Cov $\{w(s), w(s')\} = \text{Cov}\{w(s), w(s+h)\} = C(\|h\|)$
 - Covariance depends only on Euclidean distance between the locations

- Stationarity: Constant mean and $Cov\{w(s), w(s')\} = Cov\{w(s), w(s+h)\} = C(h)$
 - w(s) has a constant mean of zero
 - Same **h** vector leads to same covariance
- Isotropy:
 - Cov $\{w(s), w(s')\} = \text{Cov}\{w(s), w(s+h)\} = C(\|h\|)$
 - Covariance depends only on Euclidean distance between the locations
 - Most common assumption in applied spatial modeling!

Common Covariance Functions (Isotropic)

• Exponential:

$$\bullet \ \ C\left(\|\boldsymbol{h}\|\right) = \left\{ \begin{array}{ll} \sigma^2 \exp\left\{-\phi \left\|\boldsymbol{h}\right\|\right\} & \|\boldsymbol{h}\| > 0 \\ \tau^2 + \sigma^2 & \text{otherwise} \end{array} \right.$$

- Cov $\{w(s), w(s+h)\} \rightarrow 0$ as ||h|| gets large
- Cov $\{w(s), w(s+h)\} = \tau^2 + \sigma^2$ when ||h|| = 0

Common Covariance Functions (Isotropic)

• Gaussian:

•
$$C(\|\boldsymbol{h}\|) = \begin{cases} \sigma^2 \exp\left\{-\phi^2 \|\boldsymbol{h}\|^2\right\} & \|\boldsymbol{h}\| > 0 \\ \tau^2 + \sigma^2 & \text{otherwise} \end{cases}$$

- Cov $\{w(s), w(s+h)\} \rightarrow 0$ as ||h|| gets large
- Cov $\{w(s), w(s+h)\} = \tau^2 + \sigma^2$ when ||h|| = 0

Common Covariance Functions (Isotropic)

Spherical:

$$\bullet \ \ \textit{C}\left(\|\boldsymbol{h}\|\right) = \left\{ \begin{array}{ll} 0 & \|\boldsymbol{h}\| > \frac{1}{\phi} \\ \sigma^2 \left\{1 - \frac{3\phi\|\boldsymbol{h}\|}{2} + \frac{1}{2}\left(\phi\|\boldsymbol{h}\|\right)^3\right\} & 0 < \|\boldsymbol{h}\| \leq \frac{1}{\phi} \\ \tau^2 + \sigma^2 & \text{otherwise} \end{array} \right.$$

• Cov
$$\{w(s), w(s+h)\} = 0$$
 for $||h|| \ge \frac{1}{\phi}$

• Cov
$$\{w(s), w(s+h)\} = \tau^2 + \sigma^2$$
 when $||h|| = 0$

• Independence after certain distance

Covariance Function Parameters (Isotropic Case)

• Nugget: τ^2 ; Measurement error variance

- Nugget: τ^2 ; Measurement error variance
- Partial sill: σ^2 ; Spatial process variance

- Nugget: τ^2 ; Measurement error variance
- ullet Partial sill: σ^2 ; Spatial process variance
 - Sill: $\tau^2 + \sigma^2$ (total variance)

- Nugget: τ^2 ; Measurement error variance
- Partial sill: σ^2 ; Spatial process variance
 - Sill: $\tau^2 + \sigma^2$ (total variance)
- Decay Parameter: ϕ ; Describes the strength of spatial correlation

- Nugget: τ^2 ; Measurement error variance
- Partial sill: σ^2 ; Spatial process variance
 - Sill: $\tau^2 + \sigma^2$ (total variance)
- Decay Parameter: ϕ ; Describes the strength of spatial correlation
 - Range: Distance at which the correlation is zero (spherical)

- Nugget: τ^2 ; Measurement error variance
- Partial sill: σ^2 ; Spatial process variance
 - Sill: $\tau^2 + \sigma^2$ (total variance)
- Decay Parameter: ϕ ; Describes the strength of spatial correlation
 - Range: Distance at which the correlation is zero (spherical)
 - Effective Range: Distance at which the correlation is 0.05 (most other structures)

Topics Not Discussed Here:

• How to choose the appropriate spatial covariance matrix?

- How to choose the appropriate spatial covariance matrix?
 - Frequentist spatial course covers this extensively

- How to choose the appropriate spatial covariance matrix?
 - Frequentist spatial course covers this extensively
- How to handle anisotropy?

- How to choose the appropriate spatial covariance matrix?
 - Frequentist spatial course covers this extensively
- How to handle anisotropy?
- How to handle nonstationarity?

- How to choose the appropriate spatial covariance matrix?
 - Frequentist spatial course covers this extensively
- How to handle anisotropy?
- How to handle nonstationarity?
 - Flexible Bayesian models are ideal in these settings

Benefits of Fully Bayesian Analysis of Spatial Data:

• Classic frequentist methods ignore the uncertainty in the estimated covariance matrix (assume parameters are known)

- Classic frequentist methods ignore the uncertainty in the estimated covariance matrix (assume parameters are known)
 - Including ϕ , σ^2 , and τ^2

- Classic frequentist methods ignore the uncertainty in the estimated covariance matrix (assume parameters are known)
 - Including ϕ , σ^2 , and τ^2
- Bayesian analysis accounts for this uncertainty and leads to improved estimation/prediction of the process

- Classic frequentist methods ignore the uncertainty in the estimated covariance matrix (assume parameters are known)
 - Including ϕ , σ^2 , and τ^2
- Bayesian analysis accounts for this uncertainty and leads to improved estimation/prediction of the process
 - Prior distributions placed on these parameters

- Classic frequentist methods ignore the uncertainty in the estimated covariance matrix (assume parameters are known)
 - Including ϕ , σ^2 , and τ^2
- Bayesian analysis accounts for this uncertainty and leads to improved estimation/prediction of the process
 - Prior distributions placed on these parameters
- Efficient MCMC algorithms available to fit basic models

- Classic frequentist methods ignore the uncertainty in the estimated covariance matrix (assume parameters are known)
 - Including ϕ , σ^2 , and τ^2
- Bayesian analysis accounts for this uncertainty and leads to improved estimation/prediction of the process
 - Prior distributions placed on these parameters
- Efficient MCMC algorithms available to fit basic models
- Note: Proc Mixed and Glimmix can handle frequentist spatial models using MLE (can be very slow)

• $Y(s_i)$: observation at location s_i

$$egin{aligned} Y\left(oldsymbol{s}_{i}
ight) &= \mathbf{x}\left(oldsymbol{s}_{i}
ight)^{T}eta + w\left(oldsymbol{s}_{i}
ight) + \epsilon\left(oldsymbol{s}_{i}
ight); \ & oldsymbol{s}_{i} \in oldsymbol{D}; i = 1, \ldots, n \end{aligned}$$

- $Y(s_i)$: observation at location s_i
- $\mathbf{x}(\mathbf{s}_i)$: vector of site specific covariates

$$Y(\mathbf{s}_i) = \mathbf{x}(\mathbf{s}_i)^T \boldsymbol{\beta} + w(\mathbf{s}_i) + \epsilon(\mathbf{s}_i);$$

 $s_i \in \mathbf{D}$: $i = 1, \ldots, n$

- $Y(s_i)$: observation at location s_i
- $\mathbf{x}(\mathbf{s}_i)$: vector of site specific covariates
- $\beta = (\beta_0, \beta_1, \dots, \beta_p)^T$: vector of regression parameters

$$Y(\mathbf{s}_i) = \mathbf{x}(\mathbf{s}_i)^T \boldsymbol{\beta} + w(\mathbf{s}_i) + \epsilon(\mathbf{s}_i);$$

$$s_i$$
 ∈ D ; $i = 1, ..., n$

- $Y(s_i)$: observation at location s_i
- $\mathbf{x}(\mathbf{s}_i)$: vector of site specific covariates
- $\beta = (\beta_0, \beta_1, \dots, \beta_p)^T$: vector of regression parameters
- $\epsilon(\mathbf{s}_i) \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$: σ_{ϵ}^2 is nugget effect

$$Y(s_i) = \mathbf{x}(s_i)^T \beta + w(s_i) + \epsilon(s_i);$$

$$s_i$$
 ∈ D ; $i = 1, ..., n$

- $Y(s_i)$: observation at location s_i
- $\mathbf{x}(\mathbf{s}_i)$: vector of site specific covariates
- $\beta = (\beta_0, \beta_1, \dots, \beta_p)^T$: vector of regression parameters
- $\epsilon(\mathbf{s}_i) \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$: σ_{ϵ}^2 is nugget effect
- $w(s_i)$: spatially correlated "random effect" (in frequentist terms)

Prior and Hyperprior Distributions:

$$\mathbf{w} = \left\{ w\left(\mathbf{s}_{1}\right), \dots, w\left(\mathbf{s}_{n}\right) \right\}^{T} \sim \mathsf{MVN}\left(\mathbf{0}_{n}, \sigma_{w}^{2} \Sigma\left(\phi\right)\right)$$

ullet $\Sigma\left(\phi\right)$: spatial correlation matrix which depends on unknown parameter(s) ϕ

Prior and Hyperprior Distributions:

$$\mathbf{w} = \left\{ w\left(\mathbf{s}_{1}\right), \dots, w\left(\mathbf{s}_{n}\right) \right\}^{T} \sim \mathsf{MVN}\left(\mathbf{0}_{n}, \sigma_{w}^{2} \Sigma\left(\phi\right)\right)$$

- ullet $\Sigma(\phi)$: spatial correlation matrix which depends on unknown parameter(s) ϕ
- $\sigma_{\epsilon}^2 \sim$ Inverse Gamma or Uniform

Prior and Hyperprior Distributions:

$$\mathbf{w} = \left\{ w\left(\mathbf{s}_{1}\right), \dots, w\left(\mathbf{s}_{n}\right) \right\}^{T} \sim \mathsf{MVN}\left(\mathbf{0}_{n}, \sigma_{w}^{2} \Sigma\left(\phi\right)\right)$$

- ullet $\Sigma(\phi)$: spatial correlation matrix which depends on unknown parameter(s) ϕ
- $\sigma_{\epsilon}^2 \sim$ Inverse Gamma or Uniform
- $\sigma_{\rm W}^2 \sim$ Inverse Gamma or Uniform

Prior and Hyperprior Distributions:

$$\mathbf{w} = \left\{ w\left(\mathbf{s}_{1}\right), \dots, w\left(\mathbf{s}_{n}\right) \right\}^{T} \sim \mathsf{MVN}\left(\mathbf{0}_{n}, \sigma_{w}^{2} \Sigma\left(\phi\right)\right)$$

- ullet $\Sigma(\phi)$: spatial correlation matrix which depends on unknown parameter(s) ϕ
- $\sigma_{\epsilon}^2 \sim \text{Inverse Gamma or Uniform}$
- $\sigma_{w}^{2} \sim$ Inverse Gamma or Uniform
- $m{eta}$: flat prior $\propto 1$ or MVN $\left(m{0}_{p+1},\sigma_{eta}^2 I_{p+1}
 ight)$; σ_{eta}^2 fixed, large

Prior and Hyperprior Distributions:

$$\mathbf{w} = \left\{ w\left(\mathbf{s}_{1}\right), \dots, w\left(\mathbf{s}_{n}\right) \right\}^{T} \sim \mathsf{MVN}\left(\mathbf{0}_{n}, \sigma_{w}^{2} \Sigma\left(\phi\right)\right)$$

- ullet $\Sigma(\phi)$: spatial correlation matrix which depends on unknown parameter(s) ϕ
- $\sigma_{\epsilon}^2 \sim \text{Inverse Gamma or Uniform}$
- $\sigma_{w}^{2} \sim$ Inverse Gamma or Uniform
- $m{\circ}$ $m{\beta}$: flat prior $\propto 1$ or MVN $\left(m{0}_{p+1},\sigma_{m{eta}}^2I_{p+1}
 ight)$; $\sigma_{m{eta}}^2$ fixed, large
- $m{\phi}$: typically only a single parameter; Uniform or Gamma $(\phi>0)$

• Fitting the Model (Two Options):

- Fitting the Model (Two Options):
 - Conditional on the spatial effects $(w(s_i))$

- Fitting the Model (Two Options):
 - Conditional on the spatial effects $(w(s_i))$
 - Unconditionally, marginalizing over the spatial effects

- Fitting the Model (Two Options):
 - Conditional on the spatial effects $(w(s_i))$
 - Unconditionally, marginalizing over the spatial effects
- Pros and cons to implementing each option

•
$$Y|\beta, \mathbf{w}, \sigma_{\epsilon}^2 \sim \text{MVN}(X\beta + \mathbf{w}, \sigma_{\epsilon}^2 I_n)$$

•
$$Y|\beta, \mathbf{w}, \sigma_{\epsilon}^2 \sim \text{MVN}(X\beta + \mathbf{w}, \sigma_{\epsilon}^2 I_n)$$

•
$$Y = \{Y(s_1), \dots, Y(s_n)\}^T$$

•
$$Y|\beta, \mathbf{w}, \sigma_{\epsilon}^2 \sim \text{MVN}(X\beta + \mathbf{w}, \sigma_{\epsilon}^2 I_n)$$

•
$$Y = \{Y(s_1), \dots, Y(s_n)\}^T$$

$$\bullet X = \{x(s_1), \ldots, x(s_n)\}^T$$

•
$$Y|\beta, \mathbf{w}, \sigma_{\epsilon}^2 \sim \text{MVN}(X\beta + \mathbf{w}, \sigma_{\epsilon}^2 I_n)$$

•
$$Y = \{Y(s_1), \dots, Y(s_n)\}^T$$

•
$$X = \{x(s_1), \dots, x(s_n)\}^T$$

 We must update the w vector each iteration since we condition on it

Pros:

• Closed form for σ_{ϵ}^2 and σ_w^2 , allowing for Gibbs sampling.

Cons:

Pros:

- Closed form for σ_{ϵ}^2 and σ_{w}^2 , allowing for Gibbs sampling.
- Automatically obtain posterior samples from the spatial effects w which may be of interest in some studies.

Cons:

Pros:

- Closed form for σ_{ϵ}^2 and σ_{w}^2 , allowing for Gibbs sampling.
- Automatically obtain posterior samples from the spatial effects w which may be of interest in some studies.

Cons:

 \bullet Updating ϕ can sometimes be difficult when the spatial correlation is strong

Pros:

- Closed form for σ_{ϵ}^2 and σ_{w}^2 , allowing for Gibbs sampling.
- Automatically obtain posterior samples from the spatial effects w which may be of interest in some studies.

Cons:

- Updating ϕ can sometimes be difficult when the spatial correlation is strong
 - No nugget effect on the diagonal to stabilize the spatial covariance matrix.

$$\bullet \ \ \mathbf{Y}|\boldsymbol{\beta}, \sigma_{\epsilon}^{2}, \sigma_{w}^{2}, \boldsymbol{\phi} \sim \mathsf{MVN}\big(\boldsymbol{X}\boldsymbol{\beta}, \sigma_{\epsilon}^{2}\boldsymbol{I}_{n} + \sigma_{w}^{2}\boldsymbol{\Sigma}\left(\boldsymbol{\phi}\right)\big)$$

Fitting the Model: Option 2

•
$$\mathbf{Y}|\boldsymbol{\beta}, \sigma_{\epsilon}^{2}, \sigma_{w}^{2}, \phi \sim \mathsf{MVN}(X\boldsymbol{\beta}, \sigma_{\epsilon}^{2}I_{n} + \sigma_{w}^{2}\Sigma(\boldsymbol{\phi}))$$

• $\Sigma(\phi)$ is the spatial correlation matrix.

- $\mathbf{Y}|\boldsymbol{\beta}, \sigma_{\epsilon}^2, \sigma_{w}^2, \phi \sim \mathsf{MVN}(X\boldsymbol{\beta}, \sigma_{\epsilon}^2 I_n + \sigma_{w}^2 \Sigma(\phi))$
 - $\Sigma(\phi)$ is the spatial correlation matrix.
 - \bullet Full covariance matrix has nugget effect (σ^2_ϵ) on the diagonal

- $\mathbf{Y}|\boldsymbol{\beta}, \sigma_{\epsilon}^2, \sigma_w^2, \phi \sim \mathsf{MVN}(X\boldsymbol{\beta}, \sigma_{\epsilon}^2 I_n + \sigma_w^2 \Sigma(\boldsymbol{\phi}))$
 - $\Sigma(\phi)$ is the spatial correlation matrix.
 - Full covariance matrix has nugget effect (σ_{ϵ}^2) on the diagonal
- We no longer update the **w** vector each iteration.

Pros:

 \bullet The process of updating ϕ is improved due to the nugget effect.

Cons:

Pros:

- \bullet The process of updating ϕ is improved due to the nugget effect.
- Less parameters to update (no $w(s_i)$ parameters).

Cons:

Pros:

- \bullet The process of updating ϕ is improved due to the nugget effect.
- Less parameters to update (no $w(s_i)$ parameters).

Cons:

• No closed form for σ^2_ϵ and σ^2_w , must use Metropolis-Hastings algorithm.

Pros:

- \bullet The process of updating ϕ is improved due to the nugget effect.
- Less parameters to update (no $w(s_i)$ parameters).

Cons:

- No closed form for σ_{ϵ}^2 and σ_{w}^2 , must use Metropolis-Hastings algorithm.
- No longer automatically obtain posterior samples from the spatial effects.

Which Option to Choose?:

Most often we choose to implement Option 2 to fit the model

Better behaved covariance matrix

Which Option to Choose?:

Most often we choose to implement Option 2 to fit the model

- Better behaved covariance matrix
- Reduced parameter space often improves convergence

• Can we still get posterior samples from $w(s_i)$ using Option 2?

- Can we still get posterior samples from $w(s_i)$ using Option 2?
- Actually pretty easy to obtain posterior samples from the spatial effects given the available posterior output

- Can we still get posterior samples from $w(s_i)$ using Option 2?
- Actually pretty easy to obtain posterior samples from the spatial effects given the available posterior output
- $f(\mathbf{w}|\mathbf{Y}) = \int \int \int \int f(\mathbf{w}, \boldsymbol{\beta}, \sigma_{\epsilon}^2, \sigma_{w}^2, \phi|\mathbf{Y}) d\boldsymbol{\beta} d\sigma_{\epsilon}^2 d\sigma_{w}^2 d\phi$

- Can we still get posterior samples from $w(s_i)$ using Option 2?
- Actually pretty easy to obtain posterior samples from the spatial effects given the available posterior output

•
$$f(\mathbf{w}|\mathbf{Y}) = \int \int \int \int f(\mathbf{w}, \boldsymbol{\beta}, \sigma_{\epsilon}^2, \sigma_{\mathbf{w}}^2, \phi|\mathbf{Y}) d\boldsymbol{\beta} d\sigma_{\epsilon}^2 d\sigma_{\mathbf{w}}^2 d\phi$$

$$\bullet = \int \int \int \int f(\mathbf{w}|\mathbf{Y}, \boldsymbol{\beta}, \sigma_{\epsilon}^2, \sigma_{\mathbf{w}}^2, \phi) f(\boldsymbol{\beta}, \sigma_{\epsilon}^2, \sigma_{\mathbf{w}}^2, \phi|\mathbf{Y}) d\boldsymbol{\beta} d\sigma_{\epsilon}^2 d\sigma_{\mathbf{w}}^2 d\phi$$

- Can we still get posterior samples from $w(s_i)$ using Option 2?
- Actually pretty easy to obtain posterior samples from the spatial effects given the available posterior output

•
$$f(\mathbf{w}|\mathbf{Y}) = \int \int \int \int f(\mathbf{w}, \boldsymbol{\beta}, \sigma_{\epsilon}^2, \sigma_{\mathbf{w}}^2, \phi|\mathbf{Y}) d\boldsymbol{\beta} d\sigma_{\epsilon}^2 d\sigma_{\mathbf{w}}^2 d\phi$$

• =
$$\int \int \int \int f(\mathbf{w}|\mathbf{Y}, \boldsymbol{\beta}, \sigma_{\epsilon}^2, \sigma_{w}^2, \phi) f(\boldsymbol{\beta}, \sigma_{\epsilon}^2, \sigma_{w}^2, \phi|\mathbf{Y}) d\boldsymbol{\beta} d\sigma_{\epsilon}^2 d\sigma_{w}^2 d\phi$$

• What is the distribution of $f(\mathbf{w}|\mathbf{Y}, \boldsymbol{\beta}, \sigma_{\epsilon}^2, \sigma_{\mathbf{w}}^2, \phi)$?

For each posterior sample, we can draw a sample from f(w|Y) using the specified multivariate normal distribution.

Composition sampling

For each posterior sample, we can draw a sample from f(w|Y) using the specified multivariate normal distribution.

- Composition sampling
- A one-for-one draw for each posterior sample

For each posterior sample, we can draw a sample from f(w|Y) using the specified multivariate normal distribution.

- Composition sampling
- A one-for-one draw for each posterior sample
- This is why Option 1 isn't necessary

• Interest in predicting the process at unobserved spatial location(s)

- Interest in predicting the process at unobserved spatial location(s)
- Interest in $f\{Y(s_0)|Y\}$, the posterior predictive distribution of the process at the new location s_0

- Interest in predicting the process at unobserved spatial location(s)
- Interest in $f\{Y(s_0)|Y\}$, the posterior predictive distribution of the process at the new location s_0
- Very similar to obtaining draws from f(w|Y)

•
$$f\{Y(\mathbf{s}_0)|\mathbf{Y}\} = \int \int \int \int f\{Y(\mathbf{s}_0), \beta, \sigma_{\epsilon}^2, \sigma_w^2, \phi|\mathbf{Y}\} d\beta d\sigma_{\epsilon}^2 d\sigma_w^2 d\phi$$

• $f\{Y(s_0)|Y\} =$

$$\iint \int \int \int \int f \left\{ Y(\mathbf{s}_0), \beta, \sigma_{\epsilon}^2, \sigma_{w}^2, \phi | \mathbf{Y} \right\} d\beta d\sigma_{\epsilon}^2 d\sigma_{w}^2 d\phi$$

$$\bullet =$$

$$\bullet = \int \int \int \int f \left\{ Y(\mathbf{s}_0) | \mathbf{Y}, \boldsymbol{\beta}, \sigma_{\epsilon}^2, \sigma_{w}^2, \phi \right\} f \left(\boldsymbol{\beta}, \sigma_{\epsilon}^2, \sigma_{w}^2, \phi | \mathbf{Y} \right) d\boldsymbol{\beta} d\sigma_{\epsilon}^2 d\sigma_{w}^2 d\phi$$

• $f\{Y(s_0)|Y\} =$

$$\iint \int \int \int f \left\{ Y(\mathbf{s}_0), \beta, \sigma_{\epsilon}^2, \sigma_{w}^2, \phi | \mathbf{Y} \right\} d\beta d\sigma_{\epsilon}^2 d\sigma_{w}^2 d\phi$$

$$\bullet =$$

$$= \int \int \int \int f \left\{ Y(\mathbf{s}_0) | \mathbf{Y}, \boldsymbol{\beta}, \sigma_{\epsilon}^2, \sigma_{w}^2, \phi \right\} f \left(\boldsymbol{\beta}, \sigma_{\epsilon}^2, \sigma_{w}^2, \phi | \mathbf{Y} \right) d\boldsymbol{\beta} d\sigma_{\epsilon}^2 d\sigma_{w}^2 d\phi$$

• What is the distribution of $f\{Y(s_0)|Y,\beta,\sigma_{\epsilon}^2,\sigma_w^2,\phi\}$?

• We don't have to predict only at a single location

- We don't have to predict only at a single location
- Can predict for multiple locations simultaneously

- We don't have to predict only at a single location
- Can predict for multiple locations simultaneously
- Presented results are easily extended to the multivariate setting

- We don't have to predict only at a single location
- Can predict for multiple locations simultaneously
- Presented results are easily extended to the multivariate setting
- Interest in $f(\mathbf{Y}_0|\mathbf{Y})$ where $\mathbf{Y}_0 = \left\{Y(\mathbf{s}_{0,1}), \dots, Y(\mathbf{s}_{0,m})\right\}^T$