

Amendments to the Claims:

Claims 1-22 are pending in this application. Please cancel claims 12 and 22. Please amend claims 1-6, 10, 11, 13-16, 20 and 21 as indicated below.

1	1. (currently amended) A method for inhibiting wireless
2	telecommunications within a limited region of the telecommunications coverage
3	comprising:
4	generating a plurality of noise signals, each signal within a different
5	portion of the frequency range of the wireless telecommunication; and
6	broadcasting the plurality of noise signals from different locations into
7	the region such that telecommunications is inhibited in the overlap of the broadcasted
8	noise signals generating a noise signal within a frequency range of the wireless
9	telecommunications and broadcasting the noise signal into the region.
1	2. (currently amended) A method for inhibiting wireless
2	telecommunications as in claim 1 wherein generating the plurality of noise signals a
3	noise signal comprises generating at least one a wide band noise signal and band pass
4	filtering the wide band noise signal.
1	3. (currently amended) A method for inhibiting wireless
2	telecommunications as in claim 1 wherein broadcasting the plurality of noise signals
3	noise signal comprises broadcasting using at least one directional antenna to achieve
4	the limited region.
1	4. (currently amended) A method for inhibiting wireless
2	telecommunications as in claim 1 wherein the wireless telecommunications is through
3	spread spectrum, the plurality of noise signals noise signal generated substantially
4	across the spread spectrum.

S/N: 09/770,551 Reply to Office Action of October 27, 2004

1

1 5. (currently amended) A method for inhibiting wireless 2 telecommunications as in claim 1 further comprising controlling broadcasting the 3 plurality of noise signals noise signal based on a public event. 1 6. (currently amended) A method for inhibiting wireless 2 telecommunications as in claim 5 wherein the broadcast of the plurality of noise 3 signals noise signal is automatically based on at least one condition of the public 4 event. 1 7. (original) A method for inhibiting wireless telecommunications as 2 in claim 1 wherein the region is the inside of a vehicle. 1 8. (original) A method for inhibiting wireless telecommunications as 2 in claim 7 wherein the vehicle is an aircraft. 1 9. (original) A method for inhibiting wireless telecommunications as 2 in claim 7 wherein the vehicle is an automotive vehicle. 1 10. (currently amended) A method for inhibiting wireless 2 telecommunications as in claim 9 further comprising controlling broadcasting the plurality of noise signals noise signal based on detecting the presence of a telephone 3 4 in a cradle. 1 A method for inhibiting wireless 11. (currently amended) 2 telecommunications as in claim 9 further comprising controlling broadcasting the 3 plurality of noise signals noise signal based on detecting at least one condition of the 4 automotive vehicle.

12. (cancelled).

(currently amended) A system for inhibiting wireless

13.

1

1

2

16.

2	telecommunications within a limited region of the telecommunications coverage
3	comprising:
4	a plurality of radio frequency noise generators, each generator
5	generating a noise signal within a different portion of the frequency range of the
6	wireless telecommunications;
7	a plurality of antennas, each antenna in communication with one of the
8	generators, each antenna having an antenna coverage area, the limited region of the
9	telecommunications coverage formed by overlapping antenna coverage areas
10	a radio frequency noise generator generating a noise signal covering
11	at least one frequency range of the wireless telecommunication;
12	at least one antenna in communication with the noise generator, the at
13	least one antenna broadcasting the noise signal into the region; and
14	control logic operative to initiate or suspend broadcasting of each the
15	noise signal based on at least one control input.
1	14. (currently amended) A system for inhibiting wireless
2	telecommunications as in claim 13 wherein at least one of the plurality of radio
3	frequency noise generators the radio frequency noise generator comprises:
4	a wide band noise source generating a wide band noise signal; and
5	a band pass filter accepting the wide band noise signal and producing
6	the noise signal within the frequency range of the wireless telecommunication.
1	15. (currently amended) A system for inhibiting wireless
2	telecommunications as in claim 13 wherein the wireless telecommunications is
3	through spread spectrum, the noise signal generated by the plurality of radio
4	frequency noise generators extends substantially across the spread spectrum

telecommunications as in claim 13 wherein the region encompasses a public event,

A system for inhibiting wireless

(currently amended)

1

Reply to Office Action of October 27, 2004

3 the at least one control input signal based on a condition occurring at the public 4 event. 1 17. A system for inhibiting wireless telecommunications as in claim 2 13 wherein the region is the inside of a vehicle. 1 18. A system for inhibiting wireless telecommunications as in claim 2 17 wherein the vehicle is an aircraft. 1 19. A system for inhibiting wireless telecommunications as in claim 2 17 wherein the vehicle is an automotive vehicle. 1 20. (currently amended) A system for inhibiting wireless 2 telecommunications as in claim 17 wherein the at least one control input signal is 3 based on detecting the presence of a telephone in a cradle. 21. 1 (currently amended) A system for inhibiting wireless 2 telecommunications as in claim 17 wherein the at least one control input signal is 3 based on detecting at least one condition of the vehicle.

22. (cancelled).