1. (1)
$$A^{A}(c.k.oy) = (c.0.oy)$$
 $A^{B}(c.k.oy) = (c.k.0.0)$ $A^{Y}(c.k.oy) = (k.0.oy)$

(2) $T = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ $T' = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $A^{A}T' = \begin{pmatrix} 0 & 0 & 0 \\$

2.

(I)
$$dc = (0,1)$$
 $dA = (1,-1)$ $dB = (1,0)$ $P = (0,1)$ $A = (2,1)$

$$P \times dc = 1 \quad R \cdot dc = 1 \quad P \times dA = -1 \quad R \cdot dA = 1 \quad P \times dB = 0 \quad R \cdot dB = 2$$

$$C(\hat{i},\hat{j}-1) \longrightarrow \widehat{H} \longleftarrow \bigotimes \longleftarrow \underbrace{reg} \longleftarrow \alpha(\hat{i}-1,\hat{j}+1)$$

(2)
$$Q(\hat{i},\hat{j}) = A(\hat{i}+\hat{j}-1)$$
 $W = \hat{i}+\hat{j}-1$
 $\begin{pmatrix} \hat{i} \\ \hat{j} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \cdot (\hat{i}+\hat{j}-1) + (\hat{i}-\hat{j}) \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ $\Delta Z = (P \times H) \Delta W - \frac{Z \times H}{Z \cdot Q} \Delta W P \times Q$
 $V = (P \times H) \Delta W - \frac{Z \times H}{Z \cdot Q} \Delta W P \times Q$
 $V = (P \times H) \Delta W - \frac{Z \times H}{Z \cdot Q} \Delta W P \times Q$
 $V = (P \times H) \Delta W - \frac{Z \times H}{Z \cdot Q} \Delta W P \times Q$
 $V = (P \times H) \Delta W - \frac{Z \times H}{Z \cdot Q} \Delta W P \times Q$
 $V = (P \times H) \Delta W - \frac{Z \times H}{Z \cdot Q} \Delta W P \times Q$
 $V = (P \times H) \Delta W - \frac{Z \times H}{Z \cdot Q} \Delta W P \times Q$
 $V = (P \times H) \Delta W - \frac{Z \times H}{Z \cdot Q} \Delta W P \times Q$
 $V = (P \times H) \Delta W - \frac{Z \times H}{Z \cdot Q} \Delta W P \times Q$
 $V = (P \times H) \Delta W - \frac{Z \times H}{Z \cdot Q} \Delta W P \times Q$
 $V = (P \times H) \Delta W - \frac{Z \times H}{Z \cdot Q} \Delta W P \times Q$

$$\sqrt{|x|} \alpha(0,2) = A(1)$$
 $z_0 = 2$ $t_{0} = 2$ $\sqrt{|x|} b(0,1) = B(1)$ $z_0 = 1$ $t_0 = 1$

$$C(1) = C(1,4)$$
 $z_0 = 4$ $t_0 = 4$ $C(2) = C(2,4)$ $z_0' = 4$ $t_0' = 8$

U(1) U(1/1)		10		0-) - 0(0)-	,	10 0	
t PE	١		3	4			
•	B1/滋],在reg1	y				
	101 (11		,A,				
	Bı	B2(-	-)				
Σ		A۱		A2			
	Bi	Bz	B3 (.)			
3	Ą۱		Az				
-	Bi	Bz	B3	By()			
4	_	Az		Az			

S	B ₁ A ₂	Bz	B3 A3 B3	Вч
Ь	Bi	Bz Az Bz	B3	$ \begin{array}{c} $
7	B1 A3		B3 A4 B3	
8	Bı	Br Au	Bz	By Ax +> Cz: Pē=4 t=8

3.
$$Y(\hat{i},\hat{j}) + = A(\hat{i},k) \times B(k,\hat{j})$$
 $T = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $T' = \begin{pmatrix} -1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $A^A(\hat{i},\hat{j},k) = (\hat{i},k)$ $A^A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $A^A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1$

tensor A:Systolic 在义方向传递

$$A^{B}(\hat{l},\hat{j},k) = (k,\hat{j}) \quad A^{B} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad A^{B}T^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad A^{B}T^{-1}\begin{pmatrix} \frac{\partial x}{\partial y} \\ \frac{\partial y}{\partial t} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

tensor B: Stationary

$$A^{\gamma}(i,j,k) = (i,j) \quad A^{\gamma} = \begin{pmatrix} 100 \\ 010 \end{pmatrix} \quad A^{\gamma} T^{-1} = \begin{pmatrix} -1-1 \\ 100 \end{pmatrix} \quad A^{\gamma} T^{-1} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow (0,1,1)$$

tensor Y: systolic 在y方向传递

$$4 \cdot \Upsilon(\hat{i}, \hat{j}) + = A(\hat{i}, k) \times B(k, \hat{j}) \qquad T = \begin{pmatrix} 100 \\ 001 \\ 0 \end{pmatrix} \qquad T^{+} = \begin{pmatrix} 100 \\ 010 \end{pmatrix}$$

$$A^{A}(\hat{i}, \hat{j}, k) = (\hat{i}, k) \qquad A^{A} = \begin{pmatrix} 100 \\ 001 \end{pmatrix} \qquad A^{A} T^{-1} = \begin{pmatrix} 100 \\ 010 \end{pmatrix} \qquad A^{A} T^{-1} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 0, 0, 1 \end{pmatrix}$$

tensor A : Stationary

$$A^{B}(i,j,k) = (k,j) \quad A^{B} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad A^{B}T^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad A^{B}T^{-1}\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

tensor B. multicast 在x方向上含i皮

$$A^{Y}(i,j,k) = (i,j) \quad A^{Y} = \begin{pmatrix} 100 \\ 010 \end{pmatrix} \quad A^{Y} T^{-1} = \begin{pmatrix} 100 \\ 001 \end{pmatrix} \quad A^{Y} T^{-1} \begin{pmatrix} 0x \\ 0x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0$$

tensor Y: Multicast 在y方面上各股

