Substitution Algorithms Monoalphabetic Cipher Playfair Algorithm poly-alphabetic ciphers Transposition ciphers

Lecture 3 Classical Cryptography

UTAS Sultanate of Oman September 2022

CSSY2201: Introduction to Cryptography

- Substitution Algorithms
- 2 Monoalphabetic Cipher
- Playfair Algorithm
- poly-alphabetic ciphers
- Transposition ciphers

- Substitution Algorithms
- 2 Monoalphabetic Cipher
- 3 Playfair Algorithm
- 4 poly-alphabetic ciphers
- 5 Transposition ciphers

Cesar

- Consists of replacing letters in the plaintext with other letters or symbols or bits.
- the best known is Cesar's alg: replace each letter by the one that follows it after three positions in the alphabet
- The alphabet is wrapped so that the letter following Z is A
- ex: plaintext: meet me after the toga party ciphertext: phhw ph diwhu wkh wrjd sduwb

Cesar

We can describe Cesar by this following substitution :

										,													
a t																							
d e	e f	g	h	i	j	k	m	n	0	р	q	r	S	t	u	٧	w	Х	у	Z	а	b	С

Cesar Encryption can be expressed by :

$$c = E(3, p) = (p+3) mod 26$$

The shifting can be generalised to any number k :

$$c = E(k, p) = (p + k) mod 26$$

• if $k \in [1, 25]$, then Cesar decryption is expressed by :

$$p = D(k, c) = (c - k) \mod 26$$

• where p = 0, 1, 2, ..., 25 corresponding to the alphabet letters a, b, ..., z

ex :

$$E(3,"a") = (0+3) \mod 26 = 3 = "d"$$
 $E(3,"b") = (1+3) \mod 26 = 4 = "e"$
 $E(3,"m") = (12+3) \mod 26 = 15 = "p"$
 $E(3,"x") = (23+3) \mod 26 = 0 = "a"$
 $E(3,"y") = (24+3) \mod 26 = 1 = "b"$
 $E(3,"z") = (25+3) \mod 26 = 2 = "c"$

Substitution Algorithms poly-alphabetic ciphers

Brute force attack on Cesar :try all 26 combinations

	PHHW	PH	DIWHU	WKH	WRJD	SDUWB
KEY						
1	oggv	og	chvgt	vjg	vqic	rctva
2	nffu	nf	bgufs	uif	uphb	qbsuz
3	meet	me	after	the	toga	party
4	ldds	ld	zesdq	sgd	snfz	ozqsx
5	kccr	kc	ydrcp	rfc	rmey	nyprw
6	jbbq	jb	xcqbo	qeb	qldx	mxoqv
7	iaap	ia	wbpan	pda	pkcw	lwnpu
8	hzzo	hz	vaozm	ocz	ojbv	kvmot
9	gyyn	gy	uznyl	nby	niau	julns
10	fxxm	fx	tymxk	max	mhzt	itkmr
11	ewwl	ew	sxlwj	lzw	lgys	hsjlq
12	dvvk	dv	rwkvi	kyv	kfxr	grikp
13	cuuj	cu	qvjuh	jxu	jewq	fqhjo
14	btti	bt	puitq	iwt	idvp	epqin
15	assh	as	othsf	hvs	hcuo	dofhm
16	zrrg	zr	nsgre	gur	gbtn	cnegl
17	yqqf	уq	mrfqd	ftq	fasm	bmdfk
18	xppe	хр	lqepc	esp	ezrl	alcej
19	wood	WO	kpdob	dro	dyqk	zkbdi
20	vnnc	vn	jocna	cqn	схрј	yjach
21	ummb	um	inbmz	bpm	bwoi	xizbg
22	tlla	tl	hmaly	aol	avnh	whyaf
23	skkz	sk	glzkx	znk	zumg	vgxze
24	rjjy	rj	fkyjw	ymj	ytlf	ufwyd

DHHW DH DTWHII WWH WD.TD GDIWR

- 1 Substitution Algorithms
- 2 Monoalphabetic Cipher
- 3 Playfair Algorithm
- 4 poly-alphabetic ciphers
- 5 Transposition ciphers

Monoalphabetic Cipher

 consists of replacing each letter arbitrarily (not a simple shift)

the key is of length 26 :

					,				, -																
а	b	O	d	е	f	g	h	i	j	k	- 1	m	n	0	р	q	r	S	t	u	٧	W	Х	У	Z
d	k	V	q	f	i	b	j	W	р	е	S	С	Х	h	t	m	у	а	u	0	-	r	g	Z	n

example :

Plaintext: if we wish to replace letters

Ciphertext : wi rf rwaj uh yftsdvf sfuufya

Security of monoalphabetic cipher

- We have a total of $26! = 4 \times 10^{26}$ possible keys
- but it can be broken by frequency analysis: Al-Kindy
- human language is very redundant
- ex: in the msg "th Ird s m shphrd shll nt wnt" letters like this are not ordinary in English
- In English the letter "E" is the most used, followed by: "T,R,N,I,O,A,S"
- letters like "Z,J,K,Q,X" are rare in use.
- there are doubles or triples that are answered more than others.

letters frequencies in english

Example of a Cryptanalysis using frequencies

- given a ciphertext:
 UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXU
 DBMETSXAIZVUEPHZHMDZSHZOWSFPAPPDTSV
 PQUZWYMXUZUHSXEPYEPOPDZSZUFPOMBZWPF UPZHMDJUDTMOHMQ
- We count the frequency of each letter in the ciphertext
- We can guess that P and Z are e and t
- We can guess that ZW is th and therefore ZWP is the
- the sequence ZWSZ is replaced by th*t, we can guess that S is a

```
UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ

ta e e te a that e e a a

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
e t ta t ha e ee a e th t a

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
e e e tat e the t
```

we continue with the trial-error-trial technique, we find the plaintext:
"it was disclosed yesterday that several informal but direct contacts have been served made with political representatives of the viet cong in moscow"

Salab Mala.

Salab Mala.

Salab Mala.

- Substitution Algorithms
- 2 Monoalphabetic Cipher
- 3 Playfair Algorithm
- 4 poly-alphabetic ciphers
- 5 Transposition ciphers

Playfair

- The best known alg that encrypts several letters at the same time
- treats diagrams (2 letters) as a unit and converts it to a ciphertext diagram.
- based on matrix 5 × 5 using keyword
- invented by the British Sir Charles Wheatstone in 1854
- used by the British army in W.W.I and by the USA and its allies during the W.W.II war

Playfair Matrix

- copy the letters of the keyword in the matrix (without duplication)
- complete the rest of the matrix with the missing letters
- the letters I and J are treated as a single letter
- ex : using the keyword MONARCHY

M	0	N	A	R	
C	Н	Y	В	D	
E	F	G	I/J	K	
L	Р	Q	s	Т	امعة الت العلوم ا
υ	V	w	Х	Z	echnolog d Science ah alul
U	V	W	X	z	

15/29

Playfair Encryption

- operate on letter diagrams (2 letters) each time
- particular case: if diagram of the same letters, separate by special letters ex: x. for example: balloon is treated as ba lx lo on
- If plaintext in the same line: replace with the letters on the right. Ex1 pq is replaced by qs. Ex2 ar is replaced by RM.
- If plaintext in the same column : replace with the letters below. ex mu is replaced by CM
- otherwise, replace by letter in the same line as it and same column as the other letter of the plaintext. ex1: hs is replaced by BP. ex2: ea becomes IM or JM

Security of Playfair

- \bullet Improved security since there are a total of 26 \times 26 = 676 diagrams
- we need a frequency analysis on 676 units and no longer on 26 like the monoalphabetic
- so the ciphertext alphabet is also huge
- but it can be broken if we know a hundred of plaintext/ciphertext...

letter frequency

- Substitution Algorithms
- Monoalphabetic Cipher
- 3 Playfair Algorithm
- 4 poly-alphabetic ciphers
- 5 Transposition ciphers

Polyalphabetic Ciphers

- poly-alphabetic substitution algorithm
- improves security by combining several mono-alphabetic algs
- makes cryptanalysis more difficult with increased alphabets and a flatter frequency distribution
- uses a key to choose which mono-alphabetic alphabet to use for each letter in the plaintext
- repeat from beginning if end of key is reached

Vigenere

- the simplest polyalphabetic alg : multiple Cesar algs
- the key consists of characters $K = k_1 k_2 \dots k_d$
- the ith letter of the key specifies the ith Cesar alg to use
- repeat from the beginning each d letters of the plaintext

Example VigenÃ"re

- write the plaintext
- write the key and repeat it over the length of the plaintext
- use each letter of the key as Cesar's key
- encrypt each letter independently of the others
- eg : key=deceptive

key:
plaintext:
ciphertext:

deceptivedeceptivedeceptive wearediscoveredsaveyourself ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Autokey cipher

- wanting a key as long as the message
- vigenere offers the autokey
- key is prefixed to the message to generate a new key
- knowing the basic key, we can decipher the first letters
- can be broken by frequency analysis...
- ex : key :deceptive

key: deceptivewearediscoveredsav plaintext: wearediscoveredsaveyourself ciphertext: ZICVTWQNGKZEIIGASXSTSLVVWLA

- Substitution Algorithms
- Monoalphabetic Cipher
- 3 Playfair Algorithm
- 4 poly-alphabetic ciphers
- Transposition ciphers

Transposition

- Transposition= permutation
- Encrypt the message by rearranging the order of the plaintext letters
- plaintext and ciphertext have same occurrence (frequency) of letters

Fail hence cipher

- The simplest transposition
- plaintext is written in sequences of diagonals
- we read it line by line
- to encrypt the message "meet me after the toga party" with "Rail hence" of depth (nb of lines) 2:

ciphertext is : MEMATRHTGPRYETEFETEOAAT

Raw Transposition Cipher

- More complex transposition
- write the plaintext as a rectangle, line by line
- ciphertext : read the message column by column, but swap the order of the columns
- "the order of reading the columns" is the key

Product ciphers

- Substitution or transposition algorithms are not secure because of frequency analysis
- therefore consider using several algs in a row to make cryptanalysis more difficult.
- example repeat the permutation of the previous text with the same key (or even with another key):

```
Key: 4 3 1 2 5 6 7

Input: ttnaapt
mtsuoao
dwcoixk
nlypetz

Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ
```


Product ciphers

- we can see the effect of the double permutation like this :
 - before swapping :

```
01 02 03 04 05 06 07 08 09 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28
```

after the first permutation :

```
03 10 17 24 04 11 18 25 02 09 16 23 01 08 15 22 05 12 19 26 06 13 20 27 07 14 21 28
```

after the second permutation :

```
17 09 05 27 24 16 12 07 10 02 22 20 03 25 15 13 04 23 19 14 11 01 26 21 18 08 06 28
```

- This is the concept of modern encryption algorithms
- Standards like DES, 3-DES and AES are prodcuts ciphers.

