(Some) Bayesian Clinical Trial, Group Sequential Adaptive Designs

Boyi Guo

March 5th, 2020

Outline

- ► Intro to Adaptive Design (AD)
- ► Intro to Group Sequential Design
- Sampe Size Re-estimation
- Intro to Bayesian Clinical Trial
- Bayesian Clinical Trial for Very Rare Disease
- Reporting AD
- Practical Advice for ADs
- Quiz

Adaptive Design

- ▶ What is adaptive design?
- pre-specified changes can be made based on analyses of accumulating data whilst maintaining the validity and integrity of the trial

Adaptive Design

- Why we want to use adaptive design?
- ► *flexibility* ⇒ efficient trials
- ▶ When to use adaptive design?
 - ▶ used in Phase I Phase III

Adaptive Design

- ► What adaptive design can do?
 - abandoning treatments or doses (CRM, E-WOC, multi-arm multi-stage, adaptive dose-ranging)
 - changing the allocation ratio of patients to trail arms (adaptive randomization)
 - ▶ rapid transitioning between phases (seamless phase I/II, seamless phase II/III)
 - stopping the whole trial at an early stage for success or lack of efficacy (group sequential)
 - refining the sample size (sample size re-estimation)
 - identifying patients most likely to benefit and focusing recruitment efforts on them (population enrichment)

Group Sequential Design

- What is group sequential design
 - recruit participants by pre-planned stages (groups)
 - cumulative assessment after each stage finished using pre-planned significance levels/ critical values
 - possible early stop due to efficacy or futility
 - if not stop early, guaranteed overall type I error and power

Group Sequential Design

Rationale

- Investigation of the trend
 - "Lowering the risk of ignoring trends and the risk of responding too quickly to trends observed in comparisons of treatment groups during the course of an ongoing trial."
- Review of Power/Sample Size Calculation
 - statistical test (fixed)
 - anticipated effect size
 - significance level
 - power
 - sample size

Rationale

Group Seuqential Design

▶ Why do we want to use it

Group Sequential Design

- When to use
- often used in Phase III, when you need a lot of participants/ money
- focus on studying efficacy
- Where is the catch
 - Overall sample size is larger than that of a fixed design controling effect size, type I error and power
 - Useless when observed effect size is smaller than that assumed in the initial study design

Adaptive Sample Size Re-estimation

Modifying the design without inflating type I error or losing power, when if the observed effect size is smaller than anticipated effect size

Adaptive Sample Size Re-estimation

- ► Pandora's Box
- possibly results a substantially larger trial to pursue effect sizes of limited clinical interest.
- Make sure the new effect size you are powering for is still clinically important
- Really know what you are asking for!

Issues of Adaptive Design

- Non-statistical issues
- the possibly of introducing optional bias
- explaining the heterogeneity between the stages of an AD trial
- Statistical issues

Bayesian Clinical Trial

- What is Bayesian Clinical Trial -Personally, it is any clinical trial that relies on Bayesian methods for either the design or the analysis or both
- What about Bayesian statistics
- parameter of interest is a random variable instead of an unknown constant
- How Bayesian statistics is helping
- answer more questions: what is the probability of the parameter is within a interval?
 - sample size is a less restrictive factor in the design
- easier to analyze accumulated data without worrying about inflating type I error
- easier to incorporate prior information
- incorporate decision theory

Bayesian Clinical Trial

- ► What is the catch?
- justification and documentation, specifically the choice of prior

Bayesian Clinical Trial for Rare Disease

- Motivation:
- incident rate is low
- no trial to reference with
- impossible to recruit enough people based on power & sample size calculation

Procedure

- Decide statistical model
- Determine a prior distribution on the bases of expert opinion
- Determine prior distributions combining expert opinion with historical data
- Choice of an allocation ratio and Bayesian decision criterion

Determine a prior distribution on the bases of expert opinion

- ▶ Define the criteria for an "expert" and find some experts (more than 1)
- ► Elicit expert opinion
- Characterize expert prior opinion
- Reach the consensus

Determine prior distributions combining expert opinion with historical data

- Find relevant data, and decide whether to use
- Elicit opinion on the relevance of the data
- Statistically update prior distributions with the relevant data
- Assess the impact of alternative priors

Choice of an allocation ratio and Bayesian decision criterion

- Deciding the decision criterion in terms of probability
- Lots of integrations

Reporting Adaptive Design

Practical Aspects of ADs

- Obtain funding: convince the design is appropriate
- non-technical terms
- show advantages over non-adaptive designs
- recommending reviewer
- Communicating the design to trail stakeholders/participants:
- independent statistical expert to confirm (stakeholders)
- prepare a good information sheet(participants)
- Independent Data Monitoring Committee: Integrity
- keep people with a vested interest strictly blinded to alleviate the possibility of ad hoc decisions

Practical Aspects of ADs

- ► Run the trial: trials are more "variable"
- robust central system,
- budget more time and resource for quality control and validation

Conclusion

Quiz

▶ What is this?

Supplementary

Definitions:

- Integrity: "Integrity means ensuring that trial data and processes have not been compromised, e.g. minimising information leakage at the interim analyses."
- Validity: "Validity implies there is an assurance that the trial answers the original research questions appropriately, e.g. by using methods that provide accurate estimates of treatment effects and correct p values and confidence intervals (CIs) for the treatment comparisons."