Video Assignment #1

November 26, 2022

1. Draw each of the following vectors on the grid below. You may redefine the origin for each example.

 $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$

 $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$

 $\begin{bmatrix} -5 \\ 2 \end{bmatrix}$

2. For each example below, draw both vectors and the resulting vector of the sum/difference.

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

 $\begin{bmatrix} 4 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ -3 \end{bmatrix}$

 $\begin{bmatrix} -5\\2 \end{bmatrix} + \begin{bmatrix} 2\\-4 \end{bmatrix}$

3. Consider the vectors below:

$$\vec{u} = \begin{bmatrix} 2 \\ -3 \end{bmatrix} \quad \vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \vec{w} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

Draw Each Linear combination of the vectors using the grid below:

 $2\vec{u} + \vec{v}$

$$-\vec{u} + 2\vec{v}$$

$$-\vec{u} - \vec{v} + \vec{w}$$

4. Consider the vectors below:

$$\vec{u} = \begin{bmatrix} 2 \\ -3 \end{bmatrix} \quad \vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- (a) Can the vector $\begin{bmatrix} 1 & 0 \end{bmatrix}^T$ be written as a linear combination of \vec{u} and \vec{v} ?
- (b) Can the vector $\begin{bmatrix} 4 & 1 \end{bmatrix}^T$ be written as a linear combination of \vec{u} and \vec{v} ?
- (c) Can the vector $\begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$, $x_i \in \mathbb{R}$ for i = 1, 2, be written as a linear combination of \vec{u} and \vec{v} ? Written more simply does the span of \vec{u} and \vec{v} equal \mathbb{R}^2 ?

Video Assignment #2

November 26, 2022

1. Draw the vector \vec{a} and, transformed version \vec{b} corresponding with matrix product $\vec{b} = A\vec{a}$

$$\vec{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$$

Is the transformation linear? Linearly independent?

2. Draw the vector \vec{a} and, transformed version \vec{b} corresponding with matrix product $\vec{b} = A\vec{a}$

$$\vec{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

Is the transformation linear? Linearly indepedent?

Con	sider the matrices A_1 , and A_2 corresponding to the following transformations:
•	Rotation by angle θ . Stretch about the y-axis by a factor of 2, and about x-axis by a factor of 3. Find A_1 and A_2
(b)	What effect does the product $A_1A_2\vec{x}$ have on the vector \vec{x} ?
(c)	What effect does the product $A_2A_1\vec{x}$ have on the vector \vec{x} ?
(d)	For what values of θ is $A_1A_2=A_2A_1$? Describe what this means in the context of a transformation.
(e)	For what values of θ is the matrix $B=A_1A_2$ invertible?
(f)	What effect does the matrix $B^{-1}\vec{x}$ have on the matrix \vec{x} ?
	(a) (b) (c) (d)

Video Assignment #3

November 26, 2022

1. Draw the parallelogram created by the basis vectors \hat{i} and \hat{j} after they undergo the transformation corresponding with the following matrix

$$A = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix}$$

What is the area of the parallelogram?

2. Draw the parallelogram created by the basis vectors \hat{i} and \hat{j} after they undergo the transformation corresponding with the following matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Show that the area of the parallelogram is ad - bc