Def. Пусть $\mathcal{A}:V\to W;\ \mathcal{B}:U\to V,$ тогда \mathcal{AB} - произведение операторов (композиция), причем $(\mathcal{AB})x=\mathcal{A}(\mathcal{B}x);\quad x\in U$

Свойства:

$$1^{\circ} \lambda(\mathcal{AB}) = (\lambda\mathcal{A})\mathcal{B}$$

$$2^{\circ} (\mathcal{A} + \mathcal{B})C = \mathcal{A}C + \mathcal{B}C$$

$$3^{\circ} \mathcal{A}(\mathcal{B}+\mathcal{C}) = \mathcal{A}\mathcal{B} + \mathcal{A}\mathcal{C}$$

$$4^{\circ} \mathcal{A}(\mathcal{B}C) = (\mathcal{A}\mathcal{B})C$$

Lab. доказать

Nota. Можно обобщить 4° на n равных $\mathcal A$

Def.
$$\mathcal{A}^n = \underbrace{\mathcal{A} \cdot \mathcal{A} \cdot \cdots \cdot \mathcal{A}}_{-}$$
 - степень оператора

Свойства: $\mathcal{A}^{m+n} = \mathcal{A}^n \cdot \mathcal{A}^m$

2.3. Обратимость оператора

$$\mathbf{Def.}\ \mathcal{A}: V \to W \ \text{так, что } \mathcal{A}V = W \ \text{и} \ \forall x_1 \neq x_2(x_1, x_2 \in V) \quad \begin{cases} y_1 = \mathcal{A}x_1 \\ y_2 = \mathcal{A}x_2 \end{cases} \implies y_1 \neq y_2$$

Тогда $\mathcal A$ называется взаимно-однозначно действующим

Nota: Проще сказать «линейный изоморфизм»

 $\mathbf{Th.}\ \{x_i\}$ - линейно независима $\stackrel{\mathcal{A}_{x=y}}{\Longrightarrow} \{y_i\}$ - линейно независима

В обратную сторону верно, если $\mathcal A$ - взаимно-однозначен

Пусть $\mathcal{A}:V \to W$ и $\mathsf{O}_V,\mathsf{O}_W$ - нули V и W соответственно

1.
$$\mathcal{A}(O_V) = \mathcal{A}\left(\sum_{i=1}^k 0 \cdot e_i\right) = \sum_{i=1}^k 0 \cdot \mathcal{A}e_i = O_W$$

2. Докажем, что если $x_i \subset V$ - линейно независима, то $y_i \subset W$ - линейно независима Составим $\sum_{i=1}^m \lambda_j y_j = 0_W$

От противного пусть $\{y_i\}$ - линейно зависима, тогда $\exists \lambda_k \neq 0$

При этом $\forall j \ y_j = \mathcal{A}x_j$ (т. к. \mathcal{A} - взаимно-однозначен, то n' = m': кол-во x_i и y_i равно)

$$\sum_{j=1}^{m'} \lambda_j \mathcal{R} x_j \stackrel{\text{линейность}}{=} \mathcal{R}(\sum_{j=1}^{m'} \lambda_j x_j) = \mathbf{0}_W$$

Так как $\mathcal{A}0_V=0_W$, то 0_W - образ $x=0_V$, но так как \mathcal{A} - взаимно-однозначен, то $\nexists x'\neq x\mid \mathcal{A}(x')=0_W$

Значит
$$\sum_{j=1}^{m'} \lambda_j x_j = 0_V$$
, но $\exists \lambda_k \neq 0 \Longrightarrow \{x_j\}$ - линейно зависима - противоречие

3. Пусть теперь $\{y_i\}$ - линейно независима, а $\{x_i\}$ (по предположению от противного) - линейно зависима

$$\sum_{i=1}^{n'} \lambda_i x_i \stackrel{\exists \lambda_k \neq 0}{=} 0_V \quad | \mathcal{A}$$

$$\sum_{i=1}^{n'} \lambda_i \mathcal{A} x_i = 0_W$$

$$\sum_{i=1}^{n'} \lambda_i \mathcal{A} x_i = 0_W$$

При этом $\exists \lambda_k \neq 0 \Longrightarrow \{y_i\}$ - линейно зависима - противоречие

Следствие: $\dim V = \dim W \Longrightarrow \mathcal{A}$ - линейный изоморфизм

Def. $\mathcal{B}:W\to V$ называется обратным оператором для $\mathcal{A}:V\to W$, если $\mathcal{B}\mathcal{A}=\mathcal{A}\mathcal{B}=I$ (обозначается $\mathcal{B} = \mathcal{A}^{-1}$)

Следствие: $\mathcal{A}\mathcal{A}^{-1}x = x$

Th. $\Re x = 0$ и $\exists \Re^{-1}$, тогда x = 0

$$\mathcal{A}^{-1}\mathcal{A}x = \mathcal{A}^{-1}(\mathcal{A}x) = \mathcal{A}^{-1}0_W = 0_V \Longrightarrow x = 0$$

Th. Необходимые и Достаточные условия существования \mathcal{A}^{-1}

 $\exists \mathcal{A}^{-1} \Longleftrightarrow \mathcal{A}$ - взаимно-однозначный

 $\exists \mathcal{A}^{-1}$, но $\exists \mathcal{A}$ - не взаимно-однозначен, то есть $\exists x_1, x_2 \in V(x_1 \neq x_2) \mid \mathcal{A}x_1 = \mathcal{A}x_2 \Longleftrightarrow \mathcal{A}$

$$\mathcal{A}x_1 - \mathcal{A}x_2 = 0 \Longleftrightarrow \mathcal{A}(x_1 - x_2) = 0_W \stackrel{\exists \mathcal{A}^{-1}}{\Longrightarrow} x = 0_V \Longleftrightarrow x_1 = x_2$$
 - противоречие

 \longleftarrow Так как $\mathcal A$ - изоморфизм (не учитывая линейность), то $\exists \mathcal A'$ - обратное отображение (не обязательно линейное)

Докажем, что $\mathcal{A}':W\to V$ - линейный оператор

 \mathcal{A} - взаимно-однозначен $\iff \forall x_i \longleftrightarrow y_i \mid \cdot \lambda_i, \sum_i$

 $\mathcal{A}\left(\sum \lambda_i x_i\right) = \mathcal{A}x = y = \sum \lambda_i y_i$ и y имеет только один прообраз x

Применим \mathcal{A}' к $y = \sum \lambda_i y_i$, получим $\mathcal{A}' y = x = \sum \lambda_i x_i$ - единственный прообраз y

Таким образом, \mathcal{A}' переводит линейную комбинацию в такую же линейную комбинацию прообразов, то есть \mathcal{A}' - линейный: $\mathcal{A}' = \mathcal{A}^{-1}$

2.4. Матрица линейного оператора

Пусть $\mathcal{A}: V^n \to W^m$

Возьмем вектор $x \in V^n$ и разложим по какому-либо базису $\{e_j\}_{j=1}^n$

$$\mathcal{A}x = \mathcal{A}\left(\sum_{j=1}^{n} c_{j}e_{j}\right) = \sum_{j=1}^{n} c_{j}\mathcal{A}e_{j}$$

$$\mathcal{A}e_j$$
 образ базисного вектора y_j $\stackrel{\{f_i\}-}{=}$ базис W^m $\sum_{i=1}^m a_{ij}f_i$

$$\mathcal{A}x = \sum_{j=1}^{n} c_{j} \mathcal{A}e_{j} = \sum_{j=1}^{n} c_{j} \sum_{i=1}^{m} a_{ij} f_{i} = \sum_{j=1}^{n} \sum_{i=1}^{m} c_{j} a_{ij} f_{i} = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{j} a_{ij} f_{i}$$

Иллюстрация:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Def. Матрица $A = \{a_{ij}\}_{i=1..m,j=1..n}$ называется матрицей оператора $\mathcal{A}: V^n \to W^m$ в базисе $\{e_j\}_{j=1}^n$ пространства V^n

- 1. Для каждого ли оператора \mathcal{A} существует матрица A? При выбранном базисе $\{e_i\}$ $\forall \mathcal{A}$ $\exists A$ (алгоритм выше)
- 2. Для каждой ли матрицы A существует оператор \mathcal{A} ? $\forall A_{m\times n} \text{ можно взять пару } \Pi\Pi \ V^n, W^m \text{ и определить } \mathcal{A}: V^n \to W^m \text{ по правилу } \mathcal{A}e_V = e_W'$
- 3. Если существует матрица A для оператора \mathcal{A} , то она единственная? Такая A единственная \Longrightarrow в разных базисах матрицы ЛО \mathcal{A} $A_e \neq A_{e'}$
- 4. Если существует оператор $\mathcal A$ для матрицы A, то он единственный? Lab.

Nota. Далее будем решать две задачи:

- 1. преобразование координат как действие оператора
- 2. поиск наиболее простой матрицы в некотором базисе

2.5. Ядро и образ оператора

Def. Ядро оператора Ker $\mathcal{A} \stackrel{def}{=} \{x \in V \mid \mathcal{A}x = 0_W\}$

Def. Образ оператора Im $\mathcal{A} \stackrel{def}{=} \{y \in W \mid \mathcal{A}x = y\}$