Chapter 2 Section 3

Andrew Taylor

April 11 2022

Problem 1. Calculate the matrix product

$$\begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$$

Solution.

$$\begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 6*1+7*3 & 6*2+7*5 \\ 8*1+9*3 & 8*2+9*5 \end{bmatrix}$$
$$= \begin{bmatrix} 27 & 47 \\ 35 & 61 \end{bmatrix}$$

Problem 2. Compute the products BA and AB for

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Interpret your answers geometrically, as composites of linear transformation.

Solution. Let $T_A(\vec{x}) = A\vec{x}$ and $T_B(\vec{y}) = B\vec{y}$. We can write

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} T_A(e_1) & T_A(e_2) \end{bmatrix}$$
$$B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} T_B(e_1) & T_B(e_2) \end{bmatrix}$$

Thus

$$T_A(\vec{e_1}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, T_A(\vec{e_2}) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$T_B(\vec{e_1}) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, T_B(\vec{e_2}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

We see that T_A is a reflection about the line y = x. In other words, T_A is a reflection about the line spanned by the vector $\vec{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

We see that T_B is a reflection about the line x = 0. In other words, T_B is a reflection about the line spanned by the vector $\vec{w} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Now let's compute the products BA and AB.

$$BA = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

The product BA is a rotation matrix that rotates a vector ninety degrees counterclockwise.

$$AB = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

The product AB is a rotation matrix that rotates a vector ninety degrees clockwise.

Problem 3. Multiply the block matrices

$$\begin{pmatrix}
0 & 1 & | & -1 \\
1 & 0 & | & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & | & 3 \\
4 & 5 & | & 6 \\
7 & 8 & | & 9
\end{pmatrix}$$

$$= \begin{pmatrix}
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 2 \\
4 & 5
\end{bmatrix} + \begin{bmatrix}
-1 \\
1
\end{bmatrix}
\begin{bmatrix}
7 & 8
\end{bmatrix}
\begin{vmatrix}
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
3 \\
6
\end{bmatrix} + \begin{bmatrix}
-1 \\
1
\end{bmatrix}
\begin{bmatrix}
9
\end{bmatrix}
\end{pmatrix}$$

$$= \begin{pmatrix}
\begin{bmatrix}
4 & 5 \\
1 & 2
\end{bmatrix} + \begin{bmatrix}
-7 & -8 \\
7 & 8
\end{bmatrix}
\begin{vmatrix}
\begin{bmatrix}
6 \\
3
\end{bmatrix} + \begin{bmatrix}
-9 \\
9
\end{bmatrix}
\end{pmatrix}$$

$$= \begin{pmatrix}
\begin{bmatrix}
-3 & -3 \\
8 & 10
\end{bmatrix}
\begin{vmatrix}
\begin{bmatrix}
-3 \\
12
\end{bmatrix}
\end{pmatrix}$$

$$= \begin{pmatrix}
-3 & -3 \\
8 & 10
\end{vmatrix}
\begin{vmatrix}
2
\end{bmatrix}$$