Appl. No. 09/525,185 Doc. Ref. **AM21**

⑪ 日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭61-30821

@int_Ci_*

識別記号

庁内整理番号

❷公開 昭和61年(1986)2月13日

H 04 B 1/10

B-7459-5K

審査請求 未請求 発明の数 1 (全 6頁)

❷発明の名称 スケルチ装置

到特 顧 昭59-153528

❷出 顧 昭59(1984)7月24日

砂発明者 飯塚

海 基 構造

横浜市港北区網島東4丁目3番1号 松下通信工業株式会

社内

砂発明者 苫米地 明孝

横浜市港北区網島東4丁目3番1号 松下通信工業株式会

社内

砂発明者 山 田

純

横浜市港北区網島東4丁目3番1号 松下通信工業株式会 社内

⑪出 闡 人 松下電器產業株式会社

門真市大字門真1006番地

砂代 理 人 弁理士 中尾 敏男

外1名

昭 細 奪

1. 発明の名称 スケルチ装置

2. 特許請求の範囲

復調信号の帯域外成分を抽出して基準値以下の場合にスケルチを解除するノイズスケルチ回路と、ビット同期信号から作られたウインドウ信号によって、上記復調信号のディジタル信号が正しい様式になっているかを検出するディジタルスケルチ回路と、上記ノイズスケルチ回路およびディジタルスケルチ回路の出力が所定の条件を満たしたときに、復調信号およびビット同期信号を復号器へ送出する付属回路とを具備するスケルチ装置。

3. 発明の詳細な説明

産業上の利用分野

本発明は、ディジタル信号を変調した電放を、 復調するときに使用するスケルチ装置に関する。 従来例の構成とその問題点

第1図は従来のスケルチ装置を含むディジタル 佰号のFM送受信装置のプロック図である。第1 図において、1は符号器であり、音声等のアナログ入力信号はこの符号器1でPCM、デルタ変器であり、上にの符号器1でPCM、デルタ変器を見てなり、10元のではなりで変換される。2は変調できたように信号によりでででは、20元のでは、20元のでは、20元のででででは、20元のでは、20元

次に上記従来のスケルチ装置の動作について説明する。第1図において、無線回線の状態が悪化し、無線装置の入力端電界強度が弱くなると、スケルチ回路8の入力端つまり、復調器5中の周波数検波回路の出力信号の帯域外成分(例えば5~

20 KHz)が増加する。そのために高域フィルタ 9 の出力は増加し、それを検放した振幅検放回路 1 0 の出力も増加する。そのため、比較回路 1 1 の一方の基準値(これはスケルチレベル設定ポリューム 1 2 によって決する)よりも上配の値が大きくなると、比較回路 1 1 の出力は元の 0 FFの状態から 0 Nの状態に変わる。この比較回路 1 1 の出力(スケルチ出力信号)によって再生された 劣悪な音声信号は切断される。

しかしながら、上配従来例においては電界検出 時定数は振幅検波回路10で決定され、その時定 数は0d8μVの入力で10~20mSと非常に速い が、受信信号が何であっても、ある電界強度以上 になるとスケルチが0FFになってしまう。それ 次のようなスケルチ回路では、単に 次のようなスケルチ回路では、単に 次のである。スケルチの である。第1図のようなスケルチ回路では、単に 次位号の帯域外成分の量のみで、スケルチ出力信 号の0N、0FFを定めているので、他の一般の FM送信機から発生された電波を混信すると、復 号器でディジタル信号として検波され、入力信号 レベルは十分であるにもかかわらず、複音状の信

ジタル信号の様式を満足しなければ、スケルチを かけるというディジタルスケルチを効果的にでき る利点を有する。

実施例の説明

以下に本発明の一実施例の構成について、図面とともに説明する。第2回は本発明の一実施例におけるスケルチ装置を含むディジタル信号のFM送受信装置のブロック図、第3回はディジタルスケルチ回路の信号波形図である。

第2回において、従来例と同一番号1~11は 実施例でも同一のものである。本発明の一実施例 によるスケルチ装置12は、従来のノイズスケル チ回路8, ディジタルスケルチ回路13, および その他の付属回路14とから構成されている。

ディジタルスケルチ回路13代かいて、15は 復調信号 a から、「0→1」、「1→0」に変化 する変化点のみを抽出して出力するトランジェン ト検知回路、16はピット同期信号 b を入力して 所定のデュティー比のペルス c を得るウインドウ 回路である。 号がアナログ出力信号として出力されるという問題点があった。

整明の目的

本発明は上記従来例の問題点を解決するため、 一般のFM送信機から発生された電波を入力して も、所定のディッタル信号の模式を満足しなけれ ばスケルチをかけるという優れたスケルチ装置を 提供することを目的とする。

発明の構成

本発明は上記実施例の説明から明らかなように、 復調信号の帯域外成分を抽出して、基準値以下の 場合にスケルチを解除するノイズスケルチ回路と、 ビット同期信号から作られたウインドウ信号によって、復調信号のディジタル信号が正しい様式に なっているかを検出するディジタルスケルチ回路 と、ノイズスケルチ回路かよびディジタルスケル チ回路の出力が所定の条件を満たしたときに、復 関信号かよびピット同期信号を復号器へ放したものであり、一般のFM送 信機から発生された電波を入力しても所定のディ

17はトランジェント検知回路15の出力信号 を通過,切断するゲート回路であり、このゲート 回路17はアップダウンカウンタ18の信号によ り、ウインドウ回路16のτ*の時間のみトランジ ェント検知回路15の出力信号を通過させるもの であるo アップダウンカウント回路18はウイン ドゥ回路16の出力信号の「0」または「1」どとに、 所定回数だけゲート回路17のパルスを計数し、 所定の値以上のときは、カウントアップし、所定 の値以下のときはカウントダウンするものである。 そして、とのアップダウンカウント回路18は、 一旦所定の段数以上カウントアップしたら、ゲー ト何略17のち、で計数を中止し、これ以上カウン トアップするのを中止し、代わりにウインドウ回 路16からで。部分のみ通過させるようにし、アッ プダウンカウンタ18はカウントダウンだけする ものである。

付属回路14において、19はアップダウンカウント回路18、および比較回路11の出力信号を入力するAND回路、20は比較回路11の出

カ信号により、一定幅のバルス(約250m sec)を出力するモノステーブルマルチ,21はAND回路19, かよびモノステーブルマルチ20の出力信号を人力するOR回路である。22は復脳器5からの復調信号aかよびビット同期信号bを入力して、OR回路21の出力により出力信号を制御するスケルチゲートである。

復号器6 はスケルチゲート2 2 からの復調信号 a, およびピット同期信号 b を入力してナナログ 信号に復分するものである。増幅器7 はこのアナ ログ信号を増幅してアナログ出力信号を出力する ものである。

次に、上記実施例の動作について説明する。第 4 図は本実施例のディジタルスケルチ国路の判定 時間を示す図、第 5 図は本実施例のスケルチ装置 の信号波形図である。

第2図~第5図において、送信装置では従来例 と同様にアナログ入力信号が符号器1でディンタ ル信号に変換され、変調器2で変調され、送信器 3から電波として送出される。

17 K送出する。また、復調器5の復調信号aは トランジェント回路15 で複数周期(第3図で7 回)連続して入力し、その変化点(「0→1」、 「1→0 |)のみを抽出し、トランジェント信号 はまたはcとして送出する。なむ、このトランジェント信号 はまたはcとして送出する。なむ、このトランジェント信号は、所定以上の入力レベル、所定の 信号様式の場合であり、トランジェント信号cは、 所定以下の入力レベルや所定以外の信号様式の場合である。

トランジェント信号はは最初、ゲート回路してをそのまま通過し、アップダウン回路18でウインドゥ信号にので、の中化トランジェント信号はのパルスが全て含まれているので、パルス7個とも全てアップカウントする。とこで、アップダウンカウントの上限になるので、「1]の信号をAND回路19に送出する。また、アップダウンカウント回路18はゲート回路17の通過を禁止し、カウントダウンの要素となるでの時間のみのトランジェント信号はまたはeの通

受信装置ではこの電波を受信器4で受信し、復 調器5で復調される。この復調器5はディジタル の復調信号aかよびこの復調信号aから自動的に 作成されるビット両期信号がスケルチ装置12に 送出される。

ノイズスケルチ回路8は復調信号 a 中の帯域外 成分 (例えば 5 ~ 2 0 KHz) を高坡フィルタ 9 で 抽出し、そのレベルを振幅検波回路 1 0 で検出して、比較回路 1 1 がスケルチレベル設定ポリューム 1 2 により設定された基準値と比較することにより、スケルチの 0 N , O F F を出力する。ここで、受信器 4 の入力電界が弱いと、ノイズ成分が多くなるので高域フィルタ 9 を通過する信号が多くなり、スケルチは 0 N ([1]) となる。また、反対に受信器 4 の入力電界が強いと、ノイズ成分は少なくなり、スケルチは 0 F F ([0]) となる。

一方、ディンタルスケルチ回路13では、復調器5のビット同期信号bを第3図のようにウイントゥ回路16でデューティー比を変更して、アップダウンカウント回路18、およびゲート回路

適させる。とのようにして、アップダウンカウント回路18がカウントの下限になると、アップダウン回路18の出力が「0」となり、最初からカウントし直すものである。

また、ゲート回路17亿、弱電界入力の場合や 混信した場合に発生するトランジェント信号をが 入力されたときには、アップダウンカウント回路 18は、ウインドウ信号 c の ri の時間にペルスを カウントアップし、 ri の時間にペルスをカウント ダウンするので、カウントの上限にならず、出力 は「0」のままである。

なか、とのディジタルフィルタ13の判定時間 は、受信器4への入力電界に左右され、第4図の よりに変化する。

このように、ディジタルスケルチ回路13かよびノイズスケルチ回路8の出力は付属回路14に入力される。ここで、第4図のように、受信器4に妨害被と希望被が入力した場合の付属回路14の動作を説明する。

ととで、一定値以上の受信入力電界強度の電波

が受信されると、ノイズスケルチ8の出力 g は 「1」となり、モノステーブルマルチ回路 2 0 の出力をディジタルスケルチの判定に必要な時間(約 2 5 0 mS)「1」の状態とし、O R 回路 2 1 の出力 j も [1]の状態となり、スケルチゲート 2 2 は接となる。この間にディジタルスケルチ回路 1 3 の出力 f は [0]の状態であり、AND回路 1 9 の出力 f は [0]となり、モノステーブルマルチ回路 2 0 の出力 f が [0]となり、エクスチード 2 2 は断となる。

次に、人力波が希望する電波(希望波)の場合には、ディジタルスケルチ回路13の出力では「1jとなり、ノイズスケルチ回路8の出力をも「1jであるため、AND回路19の出力をは「1」となり、モノステーブルマルチ回路20の出力をが「0」となってもOR回路21の出力」は「1」の状態を保ち続け、スケルチゲート回路22は接の

ままとなって復調信号 a およびビット 同期信号 b を復号器 6 に送出し続けることができる。

受信入力の低下時には、ノイズスケルチ回路 8 の出力 g は急速に「0」となり、AND回路 1 9 の出力 i は「0」となる。また、モノステーブルマルチ回路 2 0 の出力 h も「0」となっているため、スケルチゲート回路 2 2 は断となり、復調信号 a をよびピット同期信号 b は切断される。

本実施例においては、受信入力の変化に迅速に 応動できるノイズスケルチ回路8によってスケル チゲート22を接続、切断するので、音声の話頭 切断、または受信入力の低下による維音を迅速に 切断できるとともに、ディジタルスケルチ回路 13で妨害故と希望故を繰別して、妨害故信号の 復号を防止できる利点がある。

本実施例では、ディジタル信号の再生品質の判定手段としてビットの再生品質を用いているが、ディジタル信号幅に特定パターンの信号を挿入しておき、その特定パターン信号の再生確率を測定して、ディジタル信号の再生品質の判定手段とし

てもよく、とのような手段もディジタルスケルチ の一種である。

発明の効果

本発明は、上記実施例の説明から明らかをよう に、復調信号の帯域外成分を抽出して、基準値以 での場合にスケルチを解除するノイズスケルチの協 時と、ピット同期信号から作られたウインドウ倍 号によって仮るかを検出するディジタルを号が正しいが 大になっているかを検出するディジタルルチ 回路と、ノイズスケルチ回路かよびスケルチ の出力が所定の条件を満たしたときに、復調信号 かよびピット同期信号を復号器へ送出機から発生 かよびピットの関係号を復のFM送信機から発生 された電波を人力しても、所定のディジタル信い の様式を満足しなければ、スケルチをかけるとい う効果を有する。

4. 図面の簡単な説明

第1図は従来のスケルチ装置を含むディジタル 信号のFM送受信装置のプロック図、第2図は本 発明の一実施例によるスケルチ装置を含むディジ タル信号のFM送受信装置のブロック図、第3図 は本実施例のディジタルスケルチ回路の信号放形 図、第4図は本実施例のディジタルスケルチ回路 の判定時間を示す図、第5図は本実施例のスケル チ装閣の信号放形図である。

8 …ノイズスケルチ回路、9 …高級フィルタ、
1 0 …振幅検波回路、1 1 …比較回路、1 3 …ディジタルスケルチ回路、1 4 …付属回路、1 5 … トランジェント校知回路、1 6 …ウインドウ回路、1 7 …ゲート回路、1 8 … アップダウンカウント回路、1 9 … A N D 回路、2 0 …モノステーブルマルチ、21 … O R 回路、2 2 … スケルチゲート、a …復測信号、b … ビット同期信号。

代理人の氏名 弁理士 中 尾 敏 男 ほか1名

第 2 図

第 3 図

第 4 図

第 5 図

