Maninder Singh

101703325

Coe 15

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
os.chdir("D:/Desktop")
dataset=pd.read_csv("50_Startups.csv")

X=dataset.iloc[:,:-1].values
Y=dataset.iloc[:,4].values
```

• Dataset:

Index	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349	136898	471784	New York	192262
1	162598	151378	443899	California	191792
2	153442	101146	407935	Florida	191050
3	144372	118672	383200	New York	182902
4	142107	91391.8	366168	Florida	166188
5	131877	99814.7	362861	New York	156991
6	134615	147199	127717	California	156123
7	130298	145530	323877	Florida	155753

• X:

Index	R&D Spend	Administration	Marketing Spend	State
0	165349	136898	471784	New York
1	162598	151378	443899	California
2	153442	101146	407935	Florida
3	144372	118672	383200	New York
4	142107	91391.8	366168	Florida
5	131877	99814.7	362861	New York
c	12/615	147100	127717	California

• Y:

	0
0	192262
1	191792
2	191050
3	182902
4	166188
5	156991
6	156123
7	155753

• Third Column in X needs to be pre-processed .

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
X[: , 3]=labelencoder_X_1.fit_transform(X[:,3])
onehotencoder = OneHotEncoder(categorical_features =[3])
X=onehotencoder.fit_transform(X).toarray()
```

• To Avoid Dummy Variable Trap

```
X = X[ : ,1:]
```

• To Split dataset into Training and Test sets

```
from sklearn.model_selection import train_test_split
X_train , X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state = 0)
```

• Applying Multiple Linear Regression

```
from sklearn.linear_model import LinearRegression
Reg = LinearRegression()

Reg.fit(X_train , Y_train);
Y_predict = Reg.predict(X_test)
```

• Adding a Column of 1's in the beginning of X

```
import statsmodels.formula.api as sm
X=np.append(arr=np.ones((50,1)).astype(int) , values = X , axis = 1);
X:
```

	0	1	2	3	4	5
0	1	0	1	165349	136898	471784
1	1	0	0	162598	151378	443899
2	1	1	0	153442	101146	407935
3	1	0	1	144372	118672	383200
4	1	1	0	142107	91391.8	366168

	coef	std err	t	P> t	[0.025	0.975]
const	5.013e+04	6884.820	7.281	0.000	3.62e+04	6.4e+04
x1	198.7888	3371.007	0.059	0.953	-6595.030	6992.607
x2	-41.8870	3256.039	-0.013	0.990	-6604.003	6520.229
x 3	0.8060	0.046	17.369	0.000	0.712	0.900
x4	-0.0270	0.052	-0.517	0.608	-0.132	0.078
x5	0.0270	0.017	1.574	0.123	-0.008	0.062
=======					========	========

 X2 has highest p Value and it is greater than Significant Level (0. 05), So NULL hypothesis is Accepted and X2 has been eliminated in the next Step.

 X2 has highest p Value and it is greater than Significant Level (0. 05), So NULL hypothesis is Accepted and X2 has been eliminated in the next Step.

 X2 has highest p Value and it is greater than Significant Level (0. 05), So NULL hypothesis is Accepted and X2 has been eliminated in the next Step.

=======						
	coef	std err	t	P> t	[0.025	0.975]
const x1 x2	4.698e+04 0.7966 0.0299	2689.933 0.041 0.016	17.464 19.266 1.927	0.000 0.000 0.060	4.16e+04 0.713 -0.001	5.24e+04 0.880 0.061

 X2 has highest p Value and it is greater than Significant Level (0. 05), So NULL hypothesis is Accepted and X2 has been eliminated in the next Step.

• Since X1 is the only attribute and it has p Value less than Significant Level(0.05). So NULL hypothesis is Rejected and only X1 remains.