アドバンスドコントロール

EKF(拡張カルマンフィルタ)の実習

林原靖男

拡張カルマンフィルタを用いて信念(belief)がどのように変化するかを確かめよ.

条件

- 1)線上を移動するロボット(並進1自由度)の位置の推定.
- 2) 指令速度は 1m/s.
- 3) 実際には最高速度 0.8m/s で移動. 加速度は 2m/s².
- 4) 1mと2m付近にランドマークがあり、0.1m以内で検出(どちらか判別可能. また有無のみ検出)
- 5) 0.1s 周期で計算.
- 6) Qt = 0.1, Rt = 0.02

計算は、表計算ソフト(EXCEL, LibreOffice など)を用いて行う.

■■■■■■■■■ 表計算ソフトを用いたシミュレーション ■■■■■■■■■■

配布したファイル EKF.xls に対して以下を行い、EKF の挙動を確認せよ、

- 1)Qt より右の空欄に式を入力して、位置の平均 μ_t と共分散 Σ を求める. 0s と 0.1s には初期値と計算例があるが、計算例は配布したファイルにはない. なお、ランドマークが観測されない場合の Ht は 0、観測される場合を 1 とする. (入力済)
- 2) 時間に対する『位置』と EKF で求めた『位置の平均 μ_t 』『分散 Σ 』を折れ線グラフ(散布図)で表す.
- 3) Rt, Qt を変更してどのように推定値が変化するかを確認する. (3例程度で構わない)
- 4) 結果に対して簡単なコメントを入れる.
- 5)提出は、3例程度のグラフとコメントが入った PDF ファイル(Excel ファイルではありません.)

時間 t	目標位置	速度	位置	ランド	Gt	Ht	Rt	Qt	μ^{-}	t	Σ	t	Kt	μt	Σt		
0	0	0	0		1	0	0.02	0.1		0		0	(0		
0.1	0.1	0.2	0.01		1	0	0.02	0.1	(0.1	0.	02	(0.1	0.02		
0.2	0.2	0.4	0.04		1	0	0.02	0.1									
0.3	0.3	0.6	0.09		1	0	0.02	0.1									
0.4	0.4	8.0	0.16		1	0	0.02	0.1									
0.5	0.5	8.0	0.24		1	0	0.02	0.1									
0.6	0.6	8.0	0.32		1	0	0.02	0.1									
0.7	0.7	0.8	0.4		1	0		0.1									
0.8	0.8	8.0	0.48		1	0	0.02	0.1									
0.9	0.9	8.0	0.56		1	0	0.02	0.1									
1	1	0.8	0.64		1	0	0.02	0.1									
1.1	1.1	0.8	0.72		1	0	0.02	0.1									
1.2	1.2	8.0	0.8		1	0	0.02	0.1									
1.3	1.3	0.8	0.88		1	0	0.02	0.1									
1.4		0.8	0.96	1	1	1	0.02	0.1									
1.5	1.5	0.8			1	1	0.02										
1.6	1.6	0.8	1.12		_ 1	0	0.02	0.1									
1.7	1.7	0.8			oxdot												
1.8	1.8	0.8	1.28		LI.												
1.9	1.9	0.8	1.36			:	: Algorithm Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):										
2	2	0.8			_ 2	2:	į	$\bar{u}_t = g$	$(u_t,$	μ_{t-}	.1)						
2.1	2.1	8.0			_ .	3:		5 (у <u>Г</u>		CT	ı D	,				
2.2	2.2	8.0			_ `) :											
2.3	2.3	0.8			_ 4	l:	i	$K_t = \dot{\Sigma}$	$\bar{\Sigma}_t H$	$I_t^T(I_t)$	$H_t \bar{\Sigma}_t$	H_t	T+Q	$(t)^{-1}$			
2.4	2.4					5 :	,	$u_t = \bar{\mu}$	+ +	K_{\pm}	z+ —	h(ī	ī+))				
2.5	2.5	8.0	1.84							`			· ())				
2.6	2.6	0.8		2		i :	2	$\Sigma_t = ($	<i>I</i> –	K_t .	$H_t) \bar{\Sigma}$	\mathbb{C}_t					
2.7	2.7	0.8			L 7	·:	1	return	μ_t .	Σ_t							
2.8									, 0)	•							
2.9	2.9	0.8			L												
3	3	8.0	2.24		Ī	U	U.UZ	U. I						ļ	Ļ	[