Appendix

Q1. Point-to-point motion planning

Q1(a) Move a single joint robot from $\theta = 20$ to 60 in 3 secs using the cubic polynomial.

Q1(b) Move the robot from θ = 5 to 95 in 1 sec and compare with Q1(a) using the cubic polynomial.

Q1(c) Using the linear function with parabolic blends approach, 40 deg/s2 and 100 deg/s2 as the two different accelerations to generate the trajectories and compare with (a).

Q1(d) Repeat (a) with the linear function with parabolic blends approach, choose acceleration as 20 \deg/s^2 .

Q2(c) Plot the normalized transmission ratio r^* against the normalized acceleration a^* .

Q2(c) Plot the normalized transmission ratio r^* against the normalized acceleration a^* with $M_{new} = kM$, where k = 1.25, 1.5, 1.75.

Q3(b) The step response of the system is critically damped (Without a disturbance input).

Q3(c) The step response of the closed loop system with a "step" disturbance $au_{dist}=0.12$ Nm.

So we can see that the steady error $e_s = 0.01 rad$.