

SUMÁRIO

- Introdução
- Tipos de dados
- Comparação com o SQL
- Casos de usos

INTRODUÇÃO AO BANCO DE DADOS

Criado pela Empresa InfluxData, o InfluxDB é um time series Database (Banco de Dados de série temporal), sendo uma plataforma de base opensource que permite a coleta, armazenamento, monitoramento e visualização dos dados.

Um *time series Database* refere-se a um banco de dados criado para lidar com métricas e eventos ou medições com registro de data e hora.

https://www.influxdata.com/ time-series-database/#use-cases

- Registro temporal em segundos, milissegundos ou micro segundos;
- Organização em formato de coluna para definições de medições, conjunto de tags e campos;
- Não apresenta limitação de tags, visto que seu design é voltado para séries temporais;
- É adequado para lidar com fluxo de dados com carimbo de tempo.

https://www.influxdata.com/time-series-database/#use-cases

TIPOS DE DADOS

Tipos de Dados

A Anatomia de um Dado no InfluxDB

- Medição
- Etiquetas
- Campos
- Data/Hora

Integração com o Grafana:

Preços das ações da Apple Inc. (AAPL) e Intel Inc. (INTC)

Os Tipos de Fields(campos)

- Float
- Intenger
- Boolean
- String

Inferência de tipo

InfluxDB pode inferir o tipo de dados com base no valor inserido. Por exemplo, se você inserir "10", ele pode ser tratado como um inteiro. Se você inserir "10.5", ele pode ser tratado como um float.

COMPARAÇÃO COM O SQL

Comparação com o SQL Geral

INFLUXDB

- mais read/write por segundo
- voltado para time series
- otimizado para tempo

SQL

- consultas mais complexas
- grande ecossistema
- ótimo em operações acid

Comparação com o SQL Estrutura

INFLUXDB

MEASUREMENTS

- TIMESTAMP
- TAGS
- FIELDS

(LINE PROTOCOL)

SQL

TABELAS

- COLUNAS
- TIPOS
- CHAVES PRIMÁRIAS

data_hora	cidade	sensor_id	temperatura
2025-07-21 10:00:00	Recife	s1	29.5
2025-07-21 10:01:00	Recife	s1	29.7
2025-07-21 10:00:00	Salvador	s2	28.1
2025-07-21 10:01:00	Salvador	s2	28.3
2025-07-21 10:02:00	Recife	s3	30.0

Comparação com o SQL **Inserção de dados**

INFLUXDB

LINE PROTOCOL

SQL INSERT INTO

```
CREATE TABLE temperatura (
    id SERIAL PRIMARY KEY,
    data_hora TIMESTAMP,
    cidade VARCHAR(50),
    sensor_id VARCHAR(10),
    temperatura FLOAT
);

INSERT INTO temperatura (data_hora, cidade, sensor_id, temperatura) VALUES
('2025-07-21 10:00:00', 'Recife', 's1', 29.5),
('2025-07-21 10:01:00', 'Recife', 's1', 29.7),
('2025-07-21 10:00:00', 'Salvador', 's2', 28.1),
('2025-07-21 10:01:00', 'Salvador', 's2', 28.3),
('2025-07-21 10:02:00', 'Recife', 's3', 30.0);
```

Comparação com o SQLConsulta com Filtro Temporal

INFLUXQL

```
SELECT MEAN(temperatura) AS media_temperatura
FROM temperatura
WHERE cidade = 'Recife'
AND time > now() - 10m;
```

FLUX

```
from(bucket: "meu_bucket")
|> range(start: -10m)
|> filter(fn: (r) =>
    r._measurement == "temperatura" and
    r.cidade == "Recife" and
    r._field == "temperatura"
)
|> mean()
```

SQL

```
SELECT AVG(temperatura) AS media_temperatura
FROM temperatura
WHERE cidade = 'Recife'
AND data_hora > NOW() - INTERVAL '10 minutes';
```

Comparação com o SQL **Agrupamento por Tempo**

INFLUXQL

```
SELECT MEAN(temperatura) AS media_temperatura
FROM temperatura
WHERE cidade = 'Recife'
  AND time > now() - 5m
GROUP BY time(1m)
```

FLUX

```
from(bucket: "meu_bucket")
    |> range(start: -5m)
    |> filter(fn: (r) =>
        r._measurement == "temperatura" and
        r.cidade == "Recife" and
        r._field == "temperatura"
    )
    |> aggregateWindow(every: 1m, fn: mean, createEmpty: false)
    |> yield(name: "mean")
```

SQL

```
SELECT
  date_trunc('minute', data_hora) AS intervalo,
  AVG(temperatura) AS media_temperatura
FROM temperatura
WHERE cidade = 'Recife'
  AND data_hora > NOW() - INTERVAL '5 minutes'
GROUP BY intervalo
ORDER BY intervalo;
```

CASOS DE USO

CASOS DE USO

DELL TECHNOLOGIES

- MONITORAMENTO DE PLATAFORMA ECS
- GERAÇÃO DE ALERTAS
- · VISUALIZAÇÃO DE ESTADO DO SISTEMA

SAP

- CLOUD FOUNDRY MONITORAMENTO MULTICLOUD
- TESTES DE PERFORMANCE

IBM

- IBM TRUSTEER PREVENÇÃO DE FRAUDES
- POWER SYSTEMS BENCHMARKING DE SERVIDORES

OBRIGADO!

docker-compose.yml

version: '3.8'

```
services:
influxdb:
 image: influxdb:2.7
 container_name: influxdb
  ports:
  - "8086:8086"
 volumes:
  - influxdb-data:/var/lib/influxdb2
  environment:
  - DOCKER_INFLUXDB_INIT_MODE=setup
   - DOCKER_INFLUXDB_INIT_USERNAME=admin
  - DOCKER_INFLUXDB_INIT_PASSWORD=admin123
   - DOCKER_INFLUXDB_INIT_ORG=MinhaOrganizacao
  - DOCKER_INFLUXDB_INIT_BUCKET=meu_bucket
   - DOCKER_INFLUXDB_INIT_ADMIN_TOKEN=meu_token_superseguro
 restart: unless-stopped
```

volumes:

influxdb-data: