Construyendo Redes Convolucionales (CNN) con TensorFlow y Keras

Moisés Martínez

About me

PhD in Computer Science and Al

Big Data & Al Architect

Researcher on different universities

T3chFest and GDG Cloud Madrid Organizer

GDE in Machine Learning

Moisés Martínez

Herramientas

Despliegue

Desarrollo

Tecnologías ML

Definición de Aprendizaje RAE

Adquirir el conocimiento de algo por medio del estudio o de la experiencia.

Definición de Aprendizaje RAE

Adquirir el conocimiento de algo por medio del estudio o de la experiencia.

Definición de Aprendizaje Automático

Proceso de adquisición de conocimiento de manera automática mediante la utilización de ejemplos (experiencia) de entrenamiento

Identificar Patrones

Por Refuerzo

Acciones Refuerzo + Estados

Definir políticas

Identificar Patrones

Por Refuerzo

Acciones Refuerzo + Estados

Definir políticas

Ejemplos de aprendizaje etiquetados previamente (Conocemos la clases)

Entrenamiento

Datos en bruto

Instancia: Estructura básica para representar la información. Está compuesta por una secuencia de **atributos** que describen cada uno de los ejemplos.

Entrenamiento

Datos en bruto

Atributo: Unidad básica para almacenar y describir la información. Suele almacenarse de dos formas:

Continuo: Son valores numéricos de tipo continuo

Entrenamiento

Datos en bruto

Atributo: Unidad básica para almacenar y describir la información. Suele almacenarse de dos formas:

- Continuo: Son valores numéricos de tipo continuo
- Discreto: Son valores de cualquier estructura (Cadenas de caracteres, números, etc)

Entrenamiento

Datos en bruto

Objetivo: Es el valor esperado para cada una de la instancias. Tiene múltiples denominaciones:

- Clase
- Etiqueta
- Valor a predecir (Numérico)

Conjunto de entrenamiento: Es un conjunto de instancias que son utilizadas para el proceso de entrenamiento con el objetivo de construir un modelo.

Conjunto de validación: Es un conjunto de instancias que son utilizadas para comprobar la calidad del modelo construido durante el proceso de entrenamiento

Conjunto de test: Es un conjunto de instancias que son utilizadas para comprobar la calidad del modelo final que ha sido generado.

Algoritmo: Es el método de aprendizaje que se utilizar para construir el modelo de razonamiento.

Épocas (epochs): Son el conjunto de iteraciones en las que se realiza el proceso de entrenamiento con el objetivo de construir el mejor modelo.

Épocas (epochs): Son el conjunto de iteraciones en las que se realiza el proceso de entrenamiento con el objetivo de construir el mejor modelo.

Modelo: Conjunto de reglas o patrones inferidos a partir del conjunto de entrenamiento con el objetivo de predecir, inferir o definir la agrupación de una instancia.

Shallow Neural Network Deep Neural Network

Las **diferencia** que existe entre una red "shallow" y una red "profunda" es el número de capas ocultas (amarillo). Es decir, una red de neuronas profundas es aquellas que tiene múltiples capas ocultas

Pesos

	0.01	0.92	0.03	0.04
ihWeights[][]	0.05	0.06	0.07	0.08
	0.09	0.10	0.11	0.12

	0.13	0.14
	0.15	0.16
hoWeights[][]	0.17	0.18
	0.19	0.20

Pesos

	0.01	0.02	0.03	0.04
ihWeights[][]	0.05	0.06	0.07	0.08
	0.09	0.10	0.11	0.12

	0.13	0.14
	0.15	0.16
Weights[][]	0.17	0.18
	0.19	0.20

ho

Bias: Parámetro adicional utilizado en las redes de neuronas para ajustar el bias (Ayuda al entrenamiento)

Pesos

	0.01	0.02	0.03	0.04
ihWeights[][]	0.05	0.06	0.07	0.08
	0.09	0.10	0.11	0.12

	0.13	0.14
	0.15	0.16
hoWeights[][]	0.17	0.18
	0.19	0.20

Las redes de neuronas **prealimentadas** son redes donde la información se mueve en una única dirección.

Información

Las redes de neuronas **prealimentadas** son redes donde la información se mueve en una única dirección.

Información

Las redes de neuronas **prealimentadas** son redes donde la información se mueve en una única dirección.

Información

1. Comparación de la salida esperada con la salida obtenida => salida esperada - salida obtenida = error

Back propagation

Las redes de neuronas **prealimentadas** son redes donde la información se mueve en una única dirección.

Información

- 1. Comparación de la salida esperada con la salida obtenida => salida esperada salida obtenida = error
- 2. Error se propaga hacia atrás mediante (retroalimentación) para recalcular los pesos de las conexiones

Back propagation

Las redes de neuronas **prealimentadas** son redes donde la información se mueve en una única dirección.

Información

- 1. Comparación de la salida esperada con la salida obtenida => salida esperada salida obtenida = error
- 2. Error se propaga hacia atrás mediante (retroalimentación) para recalcular los pesos de las conexiones
- 3. <u>Descenso de gradiente</u> (optimización): Derivada de la función de error con respeto a los pesos

Back propagation

Las redes de neuronas **prealimentadas** son redes donde la información se mueve en una única dirección.

Información

- 1. Comparación de la salida esperada con la salida obtenida => salida esperada salida obtenida = error
- 2. Error se propaga hacia atrás mediante (retroalimentación) para recalcular los pesos de las conexiones
- 3. <u>Descenso de gradiente</u> (optimización): Derivada de la función de error con respeto a los pesos

Back propagation

	Red Feed Forward (FFNN)	Red Convolucional (CNN)
Capa Entrada	Secuencia de características	Píxeles de una imagen
Capa Profunda	Una capa totalmente conectada	Diferentes tipos de capas:
Capa Salida	Elementos a predecir	Elementos a predecir precedidos de un capa SoftMax
Aprendizaje	Supervisado	Supervisado
Interconexiones	Total entre capas	Parcial entre capas
Backpropagation	Aprendizaje de los pesos	Aprendizaje de los filtros

3. TensorFlow

3. Redes de neuronas - TensorFlow

Flow

Conjunto de operaciones

3. Redes de neuronas - TensorFlow

La información se representa mediante tres tipos de **contenedores de información**, que deben ser definidos a priori, con el objetivo de que sean incluidos en el grafo de operaciones

Tipo	Formato	Función	Ejemplo
Constante	Constante	tf.constant	tf.constant([None, 800, 460, 4])
Variable	Variable	tf.variable	tf.placeholder('float32', input, name='train_X')
PlaceHolder	Variable (in/out)	tf.placeholder	tf.Variable(tf.random_normal([size, size, channels, filters], stddev=0.01), name='Layer_1_weights')

4. Capas y funciones

Las capas convolucionales se utilizan para la extracción de características mediante la aplicación de operaciones (productos y sumas) entre matrices. Estas operaciones se realizan mediante un filtro (kernel) cuadrado.

conv = tf.nn.conv2d(input, weights, strides=[1, stride, stride, 1], padding='VALID', name='layer_1_conv')

Convolución + Bias + Función de activación

Convolución + Bias + Función de activación

conv_out = tf.nn.conv2d(input, weights, strides=[1, stride, stride, 1], padding='VALID', name='layer_1_conv')

Convolución Bias Función de activación Modo de aplicación del filtro Capa anterior conv_out = tf.nn.conv2d(input, weights, strides=[1, stride, stride, 1], padding='VALID', name='layer_1_conv') Pesos

> Distancia entre la que se aplican los filtros

Convolución

+

Bias

⊦ Fı

Función de activación

Capa anterior

Modo de aplicación del filtro

conv_out = tf.nn.conv2d(input, weights, strides=[1, stride, stride, 1], padding='VALID', name='layer_1_conv')

Pesos

Distancia entre la que se aplican los filtros

bias_out= tf.add(conv_out, bias)

Convolución Bias Función de activación Modo de aplicación del filtro Capa anterior conv_out = tf.nn.conv2d(input, weights, strides=[1, stride, stride, 1], padding='VALID', name='layer_1_conv') Pesos Distancia entre la que

se aplican los filtros

bias_out= tf.add(conv_out, bias)

bias

Convolución + Bias + Función de activación

Capa anterior

Modo de aplicación del filtro

conv_out = tf.nn.conv2d(input, weights, strides=[1, stride, stride, 1], padding='VALID', name='layer_1_conv')

Pesos

Distancia entre la que se aplican los filtros

bias_out= tf.add(conv_out, bias)

bias

output = tf.nn.relu(bias_out, name='Layer_1_activation_fun')

4. Capas y funciones - Funciones de activación

Sigmoid

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Hyperbolic Tangent

$$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Rectified Linear

$$\phi(z) = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{if } z \ge 0 \end{cases}$$

Radial Basis Function

$$\phi(z,c) = e^{-(\epsilon ||z-c||)^2}$$

La función de activación se encarga de generar una salida a partir de un valor de entrada, normalmente el conjunto de valores de salida está determinado mediante un rango como (0,1) o (-1,1).

Función ReLU

La función ReLU (Rectified Linear Unit) transforma los valores de entrada anulando los valores negativos y manteniendo los positivos tal y como entran.

- Función de tipo Sparse, es decir sólo se activan los positivos.
- No está acotada.
- Buen comportamiento con valores positivos (imágenes).
- Mal comportamiento con valores negativos (muerte de neuronas).

4. Capas y funciones - Capa Pooling

Las capas pooling se utilizan para la realización de una reducción de información con el objetivo de centrarse en cierta información dependiendo de la operación a realizar. Esta reducción se realiza mediante la utilización de funciones como el promedio, el máximo o el mínimo.

1	0	2	3				
4	6	6	8	Max-Pooling	6	8	
3	1	1	0		7	4	
1	2	2	4				Filtro:

pool_out = tf.nn.max_pool(input, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')

4. Capas y funciones - Fully Connected

La capa completamente conectada (fully-connected) es uno de los componentes esenciales de las redes convolucionales.

Su funcionamiento consiste en realizar una operación de "flattens" que es utilizada como salida de la red o entrada de la siguiente capa. La operación de "flatten" consiste en realizar un **aplanamiento** convirtiendo la información obtenida en un vector de **una dimensión**.

El taller tiene un conjunto de 6 ejercicios cuya realización depende de la tecnología que utilice el existente para la realización del taller.

El itinerario de la dockerización

El itinerario de la colaboración en el cloud

Itinerario recomendado

¡Muchas Gracias!

¿Preguntas?

@moisipm