ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики Им. А.Н.Тихонова НИУ ВШЭ

Департамент компьютерной инженерии

Практическая работа №6
«Исследование временных характеристик транзисторного фильтра»
по курсу «Автоматизация проектных работ»

Выполнил:

Студент группы БИВ174

Солодянкин Андрей Александрович

Проверил:

Новиков Константин Викторович

Содержание

1	Задание	3
2	Краткие теоретические сведения	3
3	Выполнение работы	3
4	Выводы по работе	5
5	Контрольные вопросы	5

1 Задание

Определить динамический диапазон схем транзисторного фильтра на частоте 1 кГц, т.е. определить максимальную амплитуду входного синусоидального сигнала, при которой выходной сигнал остается без изменений.

2 Краткие теоретические сведения

Временная область.

Временная область удобна при изображении изменений сигнала во времени. Мы все знаем, что такое синусоиды. Каждая синусоида характеризуется тремя параметрами: амплитудой, начальной фазой и частотой. Одна синусоида имеет одну частоту. Частота — это параметр, показывающий как часто сигнал повторяет сам себя. Обратным частоте является период. Он соответствует продолжительности, которую занимает во времени один период периодического сигнала. На графиках показаны две синусоиды с различными частотами и, следовательно, различными периодами.

3 Выполнение работы

Схема фильтра представлена на рис. 1, неискаженный сигнал на рис. 2. При $V_{in}=3.5V$ начинают появляться искажения (рис. 3). Таким образом, динамический диапазон фильтра 3.5В.

Рис. 1: Схема фильтра

Рис. 2: Временная характеристика при $V_{in}=0.5V$

Рис. 3: Временная характеристика при $V_{in}=3.5V$

4 Выводы по работе

В ходе выполнения работы были изучены методы математического моделирования транзисторного фильтра во временной области. Экспериментальным путем получен динамический диапазон транзисторного фильтра на частоте 1 кГц с напряжением питания 12 В, равный 3.5 В.

5 Контрольные вопросы

1. Математическая модель схемы во временной области.

$$I(V', V, t) = 0 (1)$$

где I - нелинейная вектор-функция, представляющая собой алгебраическую сумму токов в узле; V' - вектор производных узловых потенциалов по времени; V - вектор узловых потенциалов; t - время.

2. Методы решения систем дифференциальных уравнений.

Существует несколько методов решения систем дифференциальных уравнений. Некоторые из них: метод исключения, метод характеристического уравнения

(метод Эйлера), усовершенствованный метод Эйлера, метод Рунге-Кутты 4-го порядка.