

Embeddings applied to information retrieval

Fernando PaisData Scientist

Agenda

Motivation

Talkdesk context

Embeddings

Representation and Models

Sentence Classification

Approach and Results

Moment Classification

Approach and Results

MOTIVATION

TALKDESK CONTEXT

Company

talkdesk

Empower companies to continuously improve customer experience.

Mission

1.800+

30.000+

+008

Context

Talkdesk handles a lot of calls.

Each call has information that can be used.

Calls are transformed into text, called transcripts.

Motivation

Why do we want to explore those transcripts?

Transcripts contain information that can provide value to clients.

Human agents time can be saved by automating some of their tasks.

Embeddings

REPRESENTATION & MODELS

What are embeddings?

	Male	Noble	Transport
Man	1	0	0
Women	0	0	0
King	1	1	0
Queen	0	1	0
Horse	0.6	0	0.6
Mare	1	0	0.6
Car	0	0	1

What are embeddings?

Models: Word2Vec

Source: https://becominghuman.ai/

Models: Universal Sentence Encoder

"How old are you?"

"What is your age?"

"My phone is good."

Embed

[0.3, 0.2, ...]

[0.2, 0.1, ...]

[0.9, 0.6, ...]

Models: Universal Sentence Encoder

Models: Universal Sentence Encoder

Models: BERT

Input	[CLS] my dog is cute [SEP] he likes play ##ing [SEP]
Token Embeddings	
Segment Embeddings	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Position Embeddings	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Sentence Classification

APPROACH & RESULTS

Goal

What do we have?

- Call transcriptions.
- Transcripts separated by agent and caller.
- Intents we want to detect.

Approach: Dataset

MultiWOZ Dataset:

- Fully-labeled collection of written conversation.
- Conversations between a tourist and an agent from a touristic information center.
- Spanning over multiple domains and topics.

Approach: Dataset by intent

Approach: Intents

Each sentence we classify it with an intent:

GREETING FAREWELL

INFORMATION_REQUEST
INFORMATION_RELAY
INFORMATION_ACKNOWLEDGEMENT

MOMENT_SHIFT

Example: Conversation With Intents

Transcript

Hil

I am currently planning to come to Cambridge, and I was looking for a relatively inexpensive place to eat in the centre.

What would you suggest?

The Gardenia is an excellent and cheap place in the center of town, serving Mediterranean cuisine.

Yes, please book a table for 1 people at 19:15 on monday.

Reference number is: IU63HAEN.

Is there anything else I can help you with today?

I need a place to stay in the same part of town. I must have free parking.

We have two guesthouses and two hotels that meet your needs.

. . .

Intents

Greeting

Information Relay
Information Request

Information Relay
Information Relay
Information Relay
Moment Shift
Information Relay
Information Relay
Information Relay
Information Relay

Approach: Architecture

Results: MultiWOZ

Results: Real Transcripts

MOMENT CLASSIFICATION

APPROACH & RESULTS

Recap

Goal

Approach: Moment Change Detection

Use the **Sentence Classification** to detect the intent of each sentence, and splits the conversations by the **Moment Shift intents**.

Example: Moment Change Detection

Intents

Greeting

Information Relay
Information Request

Information Relay Information Relay Information Relay

Moment Shift

Information Relay Information Relay Information Relay

Approach: Moment Classification

Calculate embeddings of moments.

Store pre-calculated embeddings for **predefined classes** of moments.

For each **moment**, calculate the **embedding** and **classify** it by comparing with the pre-calculated embeddings for different classes.

Approach: Models

Using pre-trained embeddings:

BERT

https://github.com/UKPLab/sentence-transformers

InferSent

https://github.com/facebookresearch/InferSent

Universal Sentence Encoder

https://tfhub.dev/google/universal-sentence-encoder-large/3

Example - Moment Classification

Moment transcript

Hil

I am currently planning to come to Cambridge, and I was looking for a relatively inexpensive place to eat in the centre.

What would you suggest?

The Gardenia is an excellent and cheap place in the center of town, serving Mediterranean cuisine.

Yes, please book a table for 1 people at 19:15 on monday.

Reference number is: IU63HAEN.

Reference moment embeddings

Moment Embedding	Topic
[0.24, 0.86, 0.12, -0.84,]	1
[0.21, -0.32, -0.53, 0.43,]	2
[-0.42, 0.32, 0.32, 0.54,]	1
[0.54, -0.68, 0.96, -0.12,]	4
[-0.67, 0.94, -0.76, -0.42,]	3
[-0.21, 0.41, 0.78, 0.53,]	2

Results

	Accuracy	Prediction time (s)
BERT	83.76%	1.5076
InferSent	70.06%	0.869
Universal Sentence Encoder	82.48%	4.6024
TF-IDF	79.62%	0.22

Using moment embeddings.

Recap

Special Thanks

Diogo Soares Ferreira

diogo.soares@talkdesk.com

Pedro Verruma

pedro.verruma@talkdesk.com

You don't understand embeddings! [0.23, 0.74, 0.12]

Thank You!

Fernando PaisData Scientist

(in) fernando-jose-pais

