Point Estimation

CSE 446: Machine Learning Emily Fox University of Washington January 6, 2017

©2017 Emily Fo

Maximum likelihood estimation for a binomial distribution

Your first consulting job

- A bored Seattle billionaire asks you a question:
 - He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
 - You say: Please flip it a few times:

- You say: The probability is:
- He says: Why??? - You say: Because...

Thumbtack — Binomial distribution

- $P(Heads) = \theta$, $P(Tails) = 1-\theta$
- Flips are i.i.d.:
 - Independent events
 - Identically distributed according to a binomial distribution
- Sequence D of α_H heads (H) and α_T tails (T) p(T)• $P(D \mid \theta) = p(HHTTH\mid \theta) = 0.\theta. (1-\theta). (1-\theta). \theta = \theta^3 (1-\theta)$ cond.

 or given generically... = $\theta^{\alpha_H} (1-\theta)^{\alpha_T} = \frac{1}{2} \frac{1}{1} \frac{1$

The learning task binomial dist.

- Want to learn a model of thumbtack flips from experience

 data
- Example 1: Maximum likelihood estimation What value of θ maximizes the likelihood of having seen the observed sequence (according to my model)?
- What is a likelihood function?

Maximum likelihood estimation

- Learning θ is an optimization problem
 - What's the objective function?

• MLE: Choose θ that maximizes the likelihood of observed data

Your first learning algorithm

$$\begin{split} \hat{\theta} &= \arg\max_{\theta} \ln P(D \mid \theta) \\ &= \arg\max_{\theta} \ln \theta^{\alpha_H} (1-\theta)^{\alpha_T} = \theta \\ \bullet &\quad \text{Set derivative to zero: } \frac{d}{d\theta} \ln P(D \mid \theta) = 0 \end{split}$$

$$\frac{d\theta}{d\theta} = \frac{1}{\theta} \qquad \frac{d}{d\theta} \ln P(D|\theta) = \frac{d}{d\theta} \left(\alpha_H \ln \theta + \alpha_T \ln (1-\theta) \right)$$

$$= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{(1-\theta)} = 0 \qquad \Rightarrow \qquad \hat{\theta} = \frac{\alpha_H}{\alpha_H + \alpha_T} = \frac{3}{3+2}$$

$$= \frac{3}{5}$$

How many flips do I need?

$$\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

- Billionaire says: I flipped 3 heads and 2 tails.
- You say: $\theta = 3/5$, I can prove it!
- He says: What if I flipped 30 heads and 20 tails?
- You say: Same answer, I can prove it!
- He says: What's better?
- You say: Humm... The more the merrier???
- He says: Is this why I am paying you the big bucks???

Simple bound (based on Hoeffding's Inequality)

• For N =
$$\alpha_{\rm H}$$
 + $\alpha_{\rm T}$ and $\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$

• Let θ^* be the true parameter. For any $\epsilon > 0$:

PAC learning

- PAC: Probably Approximate Correct
- Billionaire says: I want to know the thumbtack parameter θ within $\varepsilon = 0.1$, with probability at least $1-\delta = 0.95$. How many flips do I need?

$$P(|\hat{\theta}_{MLE} - \theta^*| \ge \epsilon) \le 2e^{-2N\epsilon^2} \le \delta \qquad \underset{\text{formed protection}}{\text{my tolerance}}$$

$$|n\delta| \ge |n2 - 2N\epsilon^2 \qquad \qquad |f| \delta = 0.05 \quad \epsilon = 0.1$$

$$|N| \ge \frac{|n|^2/\delta}{2\epsilon^2} \qquad \qquad |N| \ge \frac{|n|^2/\delta}{$$

10

What about continuous-valued data?

What about continuous variables?

- Billionaire says: If I am measuring a continuous variable, what can you do for me? salary of employees
- You say: Let me tell you about Gaussians...

12

©2017 Emily Fox

CSE 446: Machine Learning

Some properties of Gaussians

- Affine transformation (multiplying by scalar and adding a constant) "distributed as"

 - $X \sim N(\mu, \sigma^2)$ - $Y = aX + b \rightarrow Y \sim N(a\mu + b, a^2\sigma^2)$ Ynown (deterministic) scalars
- Sum of Gaussians
 - $X \sim N(\mu_x, \sigma^2_x)$
 - Y ~ $N(\mu_{Y}, \sigma^{2}_{Y})$
 - Z = X + Y \rightarrow $Z \sim N(\mu_X + \mu_{Y}, \sigma^2_X + \sigma^2_Y)$

Learning a Gaussian

- Collect a bunch of data
 - Hopefully, i.i.d. samples
 - e.g., heights of students in class
- Learn parameters
- Mean $\hat{\mathcal{H}} = \frac{1}{N} \sum_{i=1}^{N} X_i$ Variance $\hat{\mathcal{G}}_2$

$$p(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

MLE for Gaussian

• Prob. of i.i.d. samples D= $\{x_1,\dots,x_N\}$: $p(D\mid\mu,\sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N\prod_{i=1}^N e^{-\frac{(x_i^2-\mu)^2}{2\sigma^2}}$

$$p(D \mid \mu, \sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{i=1}^{N} e^{-\frac{(x_{i-\mu}^{i})^{2}}{2\sigma^{2}}}$$

• Log-likelihood of data. $P(D|M, \sigma) = argmax ln P(D|M, \sigma)$

$$\ln p(D \mid \mu, \sigma) = \ln \left[\left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} \right]$$
$$= -N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^N \frac{(x_i - \mu)^2}{2\sigma^2}$$

Your second learning algorithm: MLE for mean of a Gaussian

• What's MLE for the mean?
$$\frac{d}{d\mu} \ln p(D \mid \mu, \sigma) = \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right] = 0$$

$$\int_{M} \ln p(D|m,\sigma) = -\sum_{i=1}^{N} \int_{M} \frac{(x_{i}-m)^{2}}{2\sigma^{2}} = \sum_{i=1}^{N} \frac{x_{i}-m}{\sigma^{2}} = 0$$

MLE for variance

Again, set derivative to zero:

Learning Gaussian parameters

• MLE:
$$\hat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu}_{MLE})^2$$

- FYI, MLE for the variance of a Gaussian is biased
 - Expected value of estimator is **not** true parameter!
 - Unbiased variance estimator:

$$\hat{\sigma}_{unbiased}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu}_{MLE})^2$$

.0

©2017 Emily Fox

CSE 446: Machine Learning

Recap of concepts

What you need to know...

- Learning is...
 - Collect some data
 - E.g., thumbtack flips
 - Choose a hypothesis class or model
 - E.g., binomial
 - Choose a loss function
 - E.g., data likelihood
 - Choose an optimization procedure
 - E.g., set derivative to zero to obtain MLE
 - Collect the big bucks
- Like everything in life, there is a lot more to learn...
 - Many more facets... Many more nuances...
 - The fun will continue...

22

CSE 446: Machine Learning