Motivation for Fisher Information, Continued Again

Seedlings (Poisson Model)

Ecologists divided a region of the forest floor into n quadrats and counted the number of seedlings that sprouted in each quadrat as part of a study on climate change.

- Observe X_1, \ldots, X_n ; X_i is the number of seedlings in quadrat number i.
- Data Model: $X_i | \Lambda = \lambda$ $\stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda)$ We have seen that the maximum likelihood estimate is $\hat{\lambda}^{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Connection between Observed Fisher Information and Taylor series approximation to log-likelihood

• Consider just the subset with 56 observations. The MLE is:

seedlings\new_1993[subset_inds]

[36] 2 1 0 1 0 3 1 0 0 0 1 1 1 0 1 3 1 2 3 0 1

mean(seedlings\$new_1993[subset_inds])

[1] 0.75

- There are n = 56 observations
- The observed Fisher information is $J(\theta^*) = \frac{n}{\bar{x}} = \frac{56}{0.75} = 74.667$.

 This is the negative second derivative of the log likelihood function.
- The Taylor series approximation about the maximum likelihood estimate $\hat{\lambda}^{MLE}$ is:
 - $-\ell(\lambda|x_1,\ldots,x_n) \approx \ell(0.75|x_1,\ldots,x_{56}) \frac{1}{2}74.667(\lambda 0.75)^2$
- Here is the log-likelihood function with an orange line at the MLE and the Taylor approximation in blue:

Log-likelihood Function and Taylor Approximation

What if we took other samples?

- Suppose for the sake of the example that the true parameter value is $\lambda = 0.75$.
- Each random sample of size n = 56 has:
 - Different observed values
 - A different log-likelihood function
 - A different second derivative of the log-likelihood function at the maximum
 - A different observed Fisher information

Log-likelihood Function and Taylor Approximation

Suppose now I simulate 1000 different samples and calculate the observed Fisher information from each:

```
Fisher_informations <- data.frame(
    J = rep(NA, 1000)
)

for(i in 1:1000) {
    x <- rpois(n = 56, lambda = 0.75)
      Fisher_informations$J[i] <- 56 / mean(x)
}
head(Fisher_informations$J)

## [1] 65.33333 71.27273 78.40000 104.53333 69.68889 82.52632
length(Fisher_informations$J)

## [1] 1000
ggplot(data = Fisher_informations, mapping = aes(x = J)) +
    geom_density()</pre>
```


The Fisher information is the expected value (average) of the observed Fisher information across different samples: mean(Fisher_informations\$J)

[1] 76.76499