Study of NMOS and CMOS Characteristics

Wadhwani Electronics Lab

EE 236: Electronis Devices Lab Department of Electrical Engineering Indian Institute of Technology Bombay

The Problem Statement

In this experiment, we will do the following:

- * Measure NMOS output and transfer characteristics
- st Investigate the effect of body bias on the characteristics of a NMOS transistor
- * Measure voltage transfer characteristics of CMOS inverter
- Measure transient characteristics of CMOS inverter

Part 1- I_D - V_{DS} Characteristics

- 1. Write ngspice netlist to plot the I_D - V_{DS} characteristics of NMOS with the voltage V_{GS} varied from 2.5 V to 4 V in steps of 0.5 V. You may vary V_{DS} from 0 V to 5 V(show all 4 curves on a single plot)
- 2. From these characteristics, obtain r_{DS} (linear region) for each value of V_{GS} . Also, find "Early voltage" and r_0 in saturation region(considering channel length modulation)

Part 2- I_D - V_{GS} Characteristics in different regions

- 1. Estimate the value of threshold voltage and transconductance g_m in **linear** region:
 - Bias the transistor in linear region by keeping $V_{DS}=200 \text{ mV}$
 - ullet Now write ngspice netlist to plot I_D v/s V_{GS} characteristics by varying V_{GS} from 0 to 5 V
 - ullet From this characteristic, obtain V_T and g_m
- 2. Estimate the value of threshold voltage in saturation region:
 - Bias the transistor in saturation region by keeping $V_{DS}=5~{\rm V}$
 - Now write ngspice netlist to plot I_D v/s V_{GS} characteristics by varying V_{GS} from 0 to 5 V
 - From this characteristic, obtain V_T
 - Also, plot $\sqrt{I_D}$ v/s V_{GS} to find parameter K(mention its unit)

Part 3- Effect of Body Bias

- 1. Bias the transistor in linear region by keeping $V_{DS}=200 \text{ mV}$
- 2. Now write ngspice netlist to plot I_D v/s V_{GS} characteristics by varying V_{GS} from 0 to 5 V for V_{SB} = 0 V. (which is already asked in part 2)
- 3. Repeat the above step to get four more sets of I_D v/s V_{GS} characteristics for $V_{SB}=1,\,2,\,3,\,{\rm and}\,4$ V
- 4. Show all five I_D v/s V_{GS} characteristics on the same plot.
- 5. Obtain the value of threshold voltage from each plot
- 6. Plot V_T v/s V_{SB} and Obtain body effect coefficient (γ) using below equation. comment on dependence of V_T on V_{SB}

$$V_T=V_{T0}+\gamma(\sqrt{\phi_s+V_{SB}}-\sqrt{\phi_s})$$
 where ϕ_s is Surface Potential = 0.9 V for ALD1105N NMOS model, Threshold voltage (V_T) = V_{T0} when $V_{SB}=0$ V

CMOS Inverter

- 1. Write ngspice netlist for static CMOS inverter with load capacitance 0.05pF and VDD= 3.3 V. Logic low is 0V, logic High is 3.3V
- 2. specify source and drain capacitance using below information: source/drain area = $2 * W * L_{min}$ source/drain perimeter = $2(W + 2 * L_{min})$

- 3. use the below template for instantiating nmos: mn drain gate source body cmosn L=0.4u W=Wn AS=2*Wn*L PS=2*Wn+4*L AD=2*Wn*L PD=2*Wn+4*L
- 4. Plot Voltage Transfer Characteristics(VTC) i.e V_{out} vs V_{in} for $W_p/W_n=60 um/30 um$, $L=0.4 um (=L_{min})$
- 5. Find out switching threshold from VTC curve

CMOS Inverter: Voltage Transfer Characteristics

- 1. Now take $W_p/W_n=60um/60um$ and $W_p/W_n=30um/60um$ and plot voltage transfer characteristics on a single plot along with the plot for $W_p/W_n=60um/30um$. Comment on VTC curves behaviour and switching threshold.
- 2. Change the supply voltage VDD to 1.5V, 3V for $W_p/W_n=60um/30um$ and obtain all VTC curves on a single plot. Comment on the plots

CMOS Inverter: Transient Characteristics

- 1. Input square wave signal of frequency 125MHZ with rise time and fall time of 20ps to CMOS inverter having load capacitance(C_L =0.05pF) and VDD=3.3V
- 2. Rise delay(t_r): t_r is time to rise output from 10% value to 90% value Fall delay(t_f): t_f is time to fall output from 90%value to 10% value Propagation delay (t_p): Measures speed of output reaction to input change

$$t_p = (t_{pf} + t_{pr})/2$$

- \bullet Fall propagation delay, tpf is time for output to fall by 50% with reference to input change by 50%
- \bullet Rise propagation delay, tpr is time for output to rise by 50% with reference to input change by 50%
- 3. Find rise, fall, propagation delays for $W_p/W_n=60um/30um,W_p/W_n=60um/60um,W_p/W_n=30um/60um$ and comment on each obtained values
- 4. Vary the supply voltage from 2V to 3.3V and plot propagation delay vs. supply voltage(VDD) for $W_p/W_n=60 um/30 um$ and comment on the plot **Note:** While changing supply voltage change input square wave voltage respectively