Lecture 03

컴퓨팅사고 적용 문제해결

학습목표

- 1. 컴퓨팅사고로 문제 해결 과정을 이해한다.
- 2. 컴퓨팅사고기반의 다양한 문제 해결 예시를 경험한다.
- 3. 전공분야의 컴퓨팅사고 적용 예를 활용할 수 있다.

■ 문제해결의 예

어떤 사람이 운전 연수를 마치고 몇 일 후 차를 가지고 나간 날 저녁 반가운 친구들을 만나 저녁을 먹고 의사가식후 30분에 복용하라는 감기 약을 먹은 후 집에 돌아가기 위해 차를 몰았다.

집에 가는 도중 갑자기 폭설이 내려 길이 미끄러워 졌고, 때마침 나타난 도로의 움푹 패인 구덩이를 피하려다 그만 사고를 내고 병원에 실려 가야 했다.

무엇이 문제일까?

- 핵심 원인 (문제점)에 대한 검토
 - ▶ 감기약
 - ▶ 감기 기운이 있어 약을 먹은 후
 - ▶ 도로 결빙
 - ▶ 폭설이 내려 길이 미끄러워 졌고
 - ▶ 운전 미숙
 - ▶ 운전 연수를 마치고 몇 일 후
 - ▶ 도로 불량
 - ▶ 도로의 움푹 패인 구덩이

■ 해결 방안 제시

감기 약

- 감기 약을 집에 도착한 후 복용
- •약 기운으로 어지러우면 차를 두고 택시 또는 대리기사 이용

도로결빙

- •도로 결빙 시 지하철 이용
- 집에 전화로 알린 후 가까운 곳에서 잠

운전 미숙

- •도로 주행연습을 충분히 한 후 운전
- •돌발사태에 따른 위기상황에서의 충분히 연습

도로 불량

- 즉각 도로공사에 통보하여 공사토록 독촉
- 우회도로 상태를 확인하여 이용 가능한 우회도로로 돌아감

- 문제란?
 - ▶ 기대한 목표 상태와 현재 상태와의 차이 (Gap)

- 문제 해결이란?
 - ▶ 문제 해결은 주어진 현재상황에서 목표 상태에 도달하기 위해 행하는 인지적 처리
 - ▶ 문제 해결 과정
 - ▶ 문제 인식
 - ▶ 문제를 해결 가능한 형태로 재정의
 - ▶ 해결책 또는 해결을 위한 방법 제시
 - ▶ 결과 검토

⇒ 주어진 **처음 상태와 목표 상태의 차이를 줄이기 위해 여러 가지 시도를 하는 과정 혹은 탐색하는 과정**을 말함

컴퓨팅 사고력을 적용한 문제 해결 단계

컴퓨팅 사고를 적용한 문제 해결 과정_문제 인식

■ 문제 해결 과정은 정확한 문제 인식에서 시작

월요일 아침에 초등학생인 철수가 침대에서 일어나지 않으려고 한다. 철수는 신음소리를 내며 배가 아프다고 하면서 학교를 갈 수 없을 것 같다고 말한다. 철수의 배가 아픈 것도 문제이고, 철수가 학교를 갈 수 없는 것도 문제이다. 여러분은 이들 문제를 해결하기 위하여 다음과 같은 행동을 할 수 있을 것이다.

일반적인 문제 인식 : 철수가 학교에 못 갈 정도로 배가 아프다

위장 장애 때문에 배가 아프다(문제를 정의하는 순간 벌써 복통이 위장장애로

인한 것이라고 단정하고 해결책까지 결정한 상태에서 문제를 정의한다.

인식된 문제의 해결책 : 병원에 가서 위장장애에 대한 치료를 한다

컴퓨팅 사고를 적용한 문제 해결 과정_문제 인식

하지만 이 철수가 학교에서 아이들에게 집단 따돌림이나 괴롭힘을 당하고 있기 때문에 학교에 가기 싫어서 꾀병을 부리거나, 또는 심리적인 스트레스에 의해서 실제로 배가 아픈 것이라면 앞의 문제인식은 올바른 해결책이 될 수 없다. 올바른 해결책으로 가기 위해선 학교에서의 집단 따돌림 문제를 해결해야 될 것이다.

진짜 문제인식 : 철수가 학교에서 집단 따돌림 당한다.

진짜 문제의 해결책: 학교에서의 집단 따돌림 문제를 해결한다. 배 아픈 것이 해결된다.

즉, **표면에 드러난 문제의 진짜 문제를 정확하게 인식**해야만 한다.

이것이 문제 해결의 첫걸음이며 진짜 문제를 찾아내지 못하면 문제는 결코 해결될 수 없다.

컴퓨팅 사고를 적용한 문제 해결 과정_문제 분석

- 문제 분석
 - ▶ 문제의 요구 사항 : 해결하고자 하는 것은 무엇인가?
 - ▶ 문제에서 제시하는 <u>정보(자료)</u>는 무엇인가?
 - ▶ 문제를 해결하기 위해 <u>필요한 자료나 정보</u>는 무엇인가?
 - ▶ 문제에서 제시한 <u>조건</u>은 무엇인가?
 - ▶ 제시된 <u>조건은 만족</u>될 수 있는가?
 - ▶ 제시된 <u>조건</u>이 미지의 것을 결정하기에 <u>충분한가</u> 또는 불충분한가?

컴퓨팅 사고를 적용한 문제 해결 과정_컴퓨팅사고적용

■ 컴퓨팅사고의 9가지 핵심요소

	설 명		
자료 수집 Data Collection 문제의 이해요	문제의 이해와 분석을 토대로 문제를 해결하기 위한 자료 수집 단계		
문제 이해 자료 분석 Data Analysis 수집된 자료의	수집된 자료와 문제에 주어진 자료를 세심히 분류하고 분석하는 단계		
자료 표현 Data Representation 문제의 자료	내용을 그대로 그래프, 차트, 단어, 이미지 등으로 표현하는 단계		
문제 분해 Problem Decomposition 문제를 해결하	해 나가기 위하여 문제를 나누어 분석하는 단계		
문제구조화 추상화 Abstraction 문제의 복잡되	문제의 복잡도를 줄이기 위해 기본 주요 개념의 정의를 설정하는 단계		
	제를 해결하기 위한 과정을 순서적 단계로 표현하는 단계		
자동화 Automation 순서적으로 나	나열하고 표현한 내용을 컴퓨팅 기기를 이용하여 해결과정의 최선책을 선택하는 단계		
문제 해결 시뮬레이션 Simulation 복잡하고 어려	려운 해결책이나 현실적으로 실행이 불가능한 해결책을 선택하기 위한 모의 실험 단계		
	하기 위한 공동의 목표를 달성하기 위한 작업을 수행하는 단계		

컴퓨팅 사고를 적용한 문제 해결 과정_평가

■ 평가

- ▶ 문제의 요구사항 : 해결하고자 하는 것을 정확하게 해결했는가?
- ▶ 문제에서 제시한 조건을 만족시켰는가?
- **▶ 입력에 대해 결과가 명확**한가?
- ▶ 누가 봐도 쉽게 **이해할 수 있는 해결과정**인가?
- ▶ **시간과 공간면에서 효율적**인가?
- ▶ 문제 해결이 수행되고 난 후에 **반드시 끝나는가**?
- ▶ 혹시 오류를 범할 가능성은 없는가?

컴퓨팅 사고를 적용한 문제 해결 과정

■ 문제 상황

▶ 숫자로 흑백 이미지 표현하기

▶ 흑과 백으로 글자를 이미지화

▶ 주어진 이미지의 흰색과 검은색을 구별하여 표시

▶ 이미지 대신 숫자로 자료 표현

▶ 예] 'a'의 숫자표현

컴퓨팅 사고를 적용한 문제 해결 과정

■ 숫자로 흑백 이미지 표현하기

	컴퓨팅사고단계	단계별 내용		
문제 이해	자료 수집	주어진 이미지 획득		
	자료 분석	흰색으로 시작하여 몇 개가 연속하여 나타난 후 검은색이 나타났는지 분석		
	자료 표현	White-Black-White-Black… 순으로 칸의 개수를 기록		
문제구조화	문제 분해	한 줄씩 분해하여 작업		
	추상화	흰색과 검은색 칸수를 번갈아 기록하여 이미지를 숫자 리스트로 변환		
	알고리즘과 절차	주어진 이미지의 첫 번째 줄의 흰 칸 개수를 기록한다. 그 다음 검은 칸의 개수를 기록한다. 한 줄의 값을 다 볼 때까지 반복한다. 다음 줄로 넘어가 같은 작업을 반복한다. 주어진 이미지의 마지막 줄까지 검토되면 끝낸다. 기록된 숫자 리스트를 결과물로 제공한다.		
문제 해결	자동화	문제 해결 과정이 적절하였나 검증을 통해 자동화하는 단계		

0	1	1	1	0
0	0	0	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	0	1
0	1	1	1	1

컴퓨팅 사고를 적용한 문제 해결 과정

- 숫자로 흑백 이미지 표현하기
 - ▶ 알고리즘 절차에 따라 숫자로 이미지 표현

첫 번째 줄 : 백 흑 흑 흑 백 ⇒ 1, 3, 1

두 번째 줄 : 백 백 백 백 흑 ⇒ 4, 1

계속하여 마지막 줄까지 반복

일상 생활 속 컴퓨팅사고 적용 문제해결

- 일상 생활의 컴퓨팅 사고력
 - ▶ 가나다 순으로 정렬된 합격자 명단에서 이름 이름 찿기
 - ✓ 총 2,500명의 이름 포함
 - ✓ 최악의 경우
 - ❖ 가장 뒤에 있을 때 맨 앞에서부터 순서대로 찿기
 - ❖ 가장 앞에 있을 때 맨 뒤에서부터 순서대로 찾기
 - ✓ 중간적 접근
 - ❖ 중간정도부터 해당 이름과의 관계를 적용
 - ✓ 경험적 방법
 - ❖ 경험적으로 추측하여 위치를 선정한 후 검색

▶ 우리는 유재석을 찾기 위해 위쪽을 대충 넘기고 중간부터 살펴보는 것 **경험적 추론으로 패턴인식**

일상 생활 속 컴퓨팅사고 적용 문제해결

- 일상 생활의 컴퓨팅 사고력
 - ▶ 레고 조립하기
 - ▶ 레고 블록을 바닥에 자신 있게 펼침
 - ▶ 성공적으로 조립할 수 있을까?
 - ▶ **알고리즘 및 절차** 적용
 - ▶ 절차적으로 조립
 - ▶ 단계별로 확인하며 조립

일상 생활 속 컴퓨팅사고 적용 문제해결

- 일상 생활의 컴퓨팅 사고력
 - ▶ 스테이크 굽기
 - ✓ 오븐에다 스테이크를 굽는다
 - ✓ 그 사이 야채를 썰고, 프라이팬에서 요리를 한다.
 - ✓ 음료수를 준비한다.
 - ▶ 병렬 상황 이해
 - ✓ 미리 요리해 놓은 후 다른 음식을 요리하면 식어서 곤란
 - ✓ 몇가지 음식을 동시에 요리
 - ✓ 결정 요인을 종합적으로 분석한 후 내가 판단 할 수 있는 능력을 동원하여 최단 시간에 요리가 완성될 수 있도록 함

- 영어 및 수학 분야
 - ▶ 콤마, 문맥, 그리고 주요 단어들을 중심으로 문장을 **분해**
 - ▶ 영어 문장을 전체적인 관점에서 이해하고 해석

"To be, or not to be, that is the question"

- 경영·경제학 분야
 - 특정 기업 관련 경영지표의 오르내리는 사이클 발견과 같은 패턴인식을 통하여 경영에 유용하게 활용
 - 주식거래에서 오르고 내리는 **패턴인식**을 통하여 실제 투자에 반영

■ 미술분야

- ▶ 미술 작품의 경향을 분석한 후 '특징추출'
- ▶ 미술 사조의 흐름을 분석
- ▶ 분석 단계를 통해 가능하며 **패턴인식**과도 관련이 큼

이 작품은 비교적 단순한 형태의 직선과 블록 단위의 색으로 이루어져 있다. 따라서 몬드리안의 화풍으로 추정된다.

고대건축

바로크 건축

- 생명공학과 의학분야
 - 인간게놈프로젝트에 샷건 시퀸싱(Shotgun Sequencing)이라는 새로운 방법 도입
 - 인간이 가지고 있는 게놈의 모든 염기 서열을 해석하는데
 상상할 수 없던 수준으로 분석속도를 향상시켜 인간게놈
 지도를 완성하는데 큰 기여를 함
 - 알고리즘과 절차, 문제분해등이 적용

컴퓨팅사고력 적용 문제해결

Computational Thinking for Educators

Computational Thinking?

컴퓨팅사고 적용 문제해결

- 문제해결의 개념
- 컴퓨팅사고를 활용한 문제해결 과정
- 일상 생활 속 컴퓨팅사고 기반 문제해결
- 우리가 전공하는 분야의 컴퓨팅사고의

