Assignment 5 DFT: Question 6

We read the given paper 'An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration'. Equation 3 from the paper was implemented in Python 3 code to register 2 sets of images as described in the paper.

Implementation

The following function implements the algorithm.

```
def register_translation(a, b):
assert a.shape == b.shape
h, w = a.shape
A = F.fft2(a)
B = F.fft2(b)
x_spec = np.abs(F.ifft2((A * B.conjugate())/abs(A*B)))
t_y, t_x = np.unravel_index(np.argmax(x_spec), (h, w))
t_y = t_y-h if t_y > h//2 else t_y
t_x = t_x-w if t_x > w//2 else t_x
return t_x, t_y, x_spec
```

Registraion without noise

The results without noise was $t_x = -30, t_y = 70$ which is correct.

Figure 1: Result 1

Registraion with noise

The results obtained for the case with N(0,20) noise were $t_x=-30, t_y=70$ which is correct.

Figure 2: Result 2

Time Complexity

1D Discrete Time Fourier Transform on an array of length n takes $\mathcal{O}(n \log n)$ time with the FFT algorithm. For 2D FFT, we will first take DTFT row-wise and then column-wise (or vice versa), this will take $n \times \mathcal{O}(n \log n) + n \times \mathcal{O}(n \log n)$ time, which is ultimately $\mathcal{O}(n^2 \log n)$.

On the other hand, for brute-force pixel wise comparison, it would take $\mathcal{O}(n^4)$ time for comparison in each possible translation. There are n^2 possible translations. Therefore, the time taken for this would be $\mathcal{O}(n^4)$