1°. Scolar produce.

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \iff \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

$$\vec{a} \perp \vec{b} \iff \theta = 90^{\circ}, \text{ an } \theta = 0 \iff \vec{a} \cdot \vec{b} = 0$$

2°. Vector product.

$$|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$$

 $\vec{a} | \vec{b} \iff \theta = \vec{o} \text{ or } | \vec{b} \hat{a}, \sin \theta = 0 \iff \vec{a} \times \vec{b} = 0$

Some applications orea of parallelogram/triangle.

Some applications

Colineer.

find the ishortest) distance between a point a plane/
two non-intersecting straight line.

Triple scalar product.

volume of parahelepiped: $V = |\vec{a} \cdot (\vec{b} \times \vec{c})|$

 \vec{a} , \vec{b} and \vec{c} coplemar $\iff V = 0$.

4. Tiple Vector product.

Rx(Bxア) ≠ (RxB)xア.

Part D: Linear Independence of vectors

Linear independence of two vectors \vec{a} and \vec{b} : $\iff \vec{a} \parallel \vec{b} \iff \vec{a} \times \vec{b} = 0$

Linear independence of three vectors \vec{a} , \vec{b} and \vec{c} : $(\vec{a}, \vec{b}) = \vec{a}$, \vec{b} and \vec{c} are appearance $(\vec{b}, \vec{c}) \neq 0$

Theorem: (1) \$\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_n \overline{a}

the equation x12, + x2, + x1, an =0 has only trivial solution.

台 オニカニ・ニカーの

(2) ai, ai, ..., an over vinearly dependent

(has other solutions 1, ..., 1,

Problem 22

Find the value of m such that the following sets of vectors are *linearly dependent*.

$$\vec{a} = (1 - m)\vec{i} + 6\vec{j} + 5\vec{k}, \qquad \vec{b} = 2\vec{i} - m\vec{j}, \qquad \vec{c} = -5m\vec{j} + 5\vec{k}.$$

Problem 23

Let \vec{a} , \vec{b} and \vec{c} be three non-zero vectors. Show that

- (a) $(\vec{a} \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b}).$
- (b) If \vec{a} and \vec{b} are perpendicular, then $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$.
- (c) If \vec{a} and \vec{b} are parallel, then the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are also parallel. (Hint: If two vectors are parallel, what is the angle between them? What can you say about the vector product of these two vectors?)
- (d) $\tan\theta = \frac{|\vec{a}\times\vec{b}|}{\vec{a}\cdot\vec{b}}$ where θ is the angle between \vec{a} and \vec{b} . (e) $|\vec{a}\times\vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 (\vec{a}\cdot\vec{b})^2$.

Summary of the important integral of some elementary functions

f(x)	Antiderivative $F(x)$	Integral
	F'(x) = f(x)	$F(x) = \int f(x) dx$
x^a , a is real	$F(x) = \begin{cases} \frac{x^{a+1}}{a+1} & \text{if } a \neq -1\\ \ln x & \text{if } a = -1 \end{cases}$	$\begin{cases} \frac{x^{a+1}}{a+1} + C & \text{if } a \neq -1\\ \ln x + C & \text{if } a = -1 \end{cases}$
e^x	$F(x) = e^x$	$e^x + C$
sin x	$F(x) = -\cos x$	$-\cos x + C$
cos x	$F(x) = \sin x$	$\sin x + C$
tan x	$F(x) = -\ln \cos x $	$-\ln \cos x + C$
	or $F(x) = \ln \sec x $	or $\ln \sec x + C$
$sec^2 x$	$F(x) = \tan x$	$\tan x + C$
1	$F(x) = \tan^{-1} x$	$\tan^{-1}x + C$
$\frac{1+x^2}{1}$		
1	$F(x) = \sin^{-1} x$	$\sin^{-1} x + C$
$\sqrt{1-x^2}$		

Problem 2 (A bit harder) Compute the following indefinite integrals:

$$\int \frac{x^2 - x + 1}{x^2} dx$$

$$\int \frac{2x^2}{x^2 + 1} dx$$

(a)
$$\int \frac{x^2 - x + 1}{x^2} dx$$
(c)
$$\int \frac{e^{2x} + e^{x-3} + 1}{e^{x+1}} dx$$
(e)
$$\int \cos^3 2x \, dx$$
(g)
$$\int \frac{3}{x^2 - 2x + 5} dx$$

(d)
$$\int x^2 + 1 dx$$
$$\int \sin 3x \sin 2x \, dx$$

(e)
$$\int \cos^3 2x \, dx$$

(f)
$$\int \frac{1}{(x-1)(2x-3)} dx$$

$$\int \frac{3}{x^2 - 2x + 5} dx$$

(b)
$$\int \frac{2x^2}{x^2 + 1} dx$$
(d)
$$\int \sin 3x \sin 2x dx$$
(f)
$$\int \frac{1}{(x - 1)(2x - 3)} dx$$
(h)
$$\int \frac{1}{2x^2 - 4x + 9} dx$$