A RIXS and DFT study of the novel Titanium Oxonitridophosphate

$Ti_5P_{12}N_{24}O_2$

Peter Ufondu¹, Teak Boyko², Monika Pointner³, Lucien Eisenburger³, Schnick Wolfgang³, Alexander Moewes ¹

1. University of Saskatchewan 2. Canadian Light Source, 3. University of Munich

Introduction

Titanium Oxonitridophosphate (Ti₅P₁₂N₂₄O₂) is relatively new class of multinary materials obtained at high temperature (HT) and high pressure (HP) from binary TiN and P₃N₅ upon the addition of NH₄F as a mineralizer [1]. Ti₅P₁₂N₂₄O₂ is experimentally confirmed to have an optical band gap of 1.6 eV [1]. Regarding the reduced bandgap, Ti₅P₁₂N₂₄O₂ shows promising properties for solar power harvesting and photocatalysis. In this study, we employ resonant inelastic X-ray scattering (RIXS). This technique directly probes electron dynamics and energy landscape to reveal the effect of symmetry distortion in the electronic structure of $Ti_5P_{12}N_{24}O_2$

RIXS: Photon In Photon Out Experiment

RIXS: Theory

A higher order equation called **Krammers-Heisenberg** is used to account for the RIXS process [2]:

$$F(\Omega,\omega) = \sum_{f} \left| \sum_{i} \frac{\langle f | T_2 | i \rangle \langle i | T_1 | g \rangle}{E_g - E_i + \omega - i\Gamma_i / 2} \right|^2 * \frac{\Gamma_f / 2\pi}{(E_g - E_f + \Omega - \omega)^2 + \Gamma^2_f / 4}.$$

Quanty is a scripting language that enables users to program and solve quantum mechanical problems in second quantization. [3-4].

Results

Figure 1: 3d orbital splitting for an Octahedral and distorted Octahedral

Figure 2: Crystal Structure of Ti₅P₁₂N₂₄O₂

Figure 3: Measured and calculated XAS and RIXS spectra (Left): Titanium Nitride (TiN) at the Titanium $L_{2,3}$ -edges; (Right): $Ti_5P_{12}N_{24}O_2$ at the Titanium $L_{2,3}$ -edges.

Figure 4: Calculated RIXS spectra of Ti₅P₁₂N₂₄O₂ at the Titanium $L_{2,3}$ -edges, showing the effect of distortion on the electronic structure.

	Ti ⁴⁺	Ti^{3+}	Ti ³⁺
10_{Dq}	0.51	0.50	0.56
Ds	0.19	0.25	-0.95
Dt	0.13	0.05	0.05
ζ_{2p}	1.01	0.92	0.90
ζ_{3d}	1.01	0.90	0.96
\mathbf{F}_{dd}	0.91	0.99	0.98
\mathbf{F}_{nd}	0.99	0.91	0.99
G_{pd}	0.84	0.90	0.83
U_{dd}	4.83	4.51	3.36
U_{pd-dd}	1.15	4.99	4.99
10_{DqL}	0.53	0.47	0.99
Δ	2.77	1.87	2.57
Δ_1	1.49	1.30	1.76
Δ_2	0.50	0.03	0.92

 $\mathrm{Ti_5P_{12}N_{24}O_2}$

Table 1: The optimized electronic structure parameters used in this calculations for Ti³⁺ and Ti^{4+} ions in the $Ti_5P_{12}N_{24}O_2$ and TiNsamples. The spin orbit coupling ζ_{2p} , ζ_{3d} , and Slater integral parameters F_{dd} , F_{pd} and G_{pd} are scaled by this dimensionless factors. The other parameters are in eV.

Discussion

- 1. Our study presents the results of Ti $L_{2,3}$ -edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) analysis of the novel Titanium Oxonitridophosphate $Ti_5P_{12}N_{24}O_2$.
- 2. There is good agreement between our calculations and the measured XAS and RIXS spectra.
- The Ligand Field Multiplet Theory (LFMT) calculations employed to analyze the $2p^63d^n \rightarrow 2p^53d^{n+1} \rightarrow 2p^6(3d^{n*})$ transition in a tetragonal symmetry (D4h) shows that Ti₅P₁₂N₂₄O₂ contains two valence states of Titanium, (Ti³⁺ and Ti⁴⁺), in the ratio of 0.9:0.1. This outcome is due to the Jahn-Teller distortion that arises from the overlapping wavefunctions of 2p electrons in the Nitrogen-doped ligand Oxygen and 3d electrons in the transition metal (Titanium).
- The measured XAS spectrum looks like the Ti³⁺ TiN XAS but with an additional peak at 460 eV between the two prominent peaks.
- 5. Our calculations show that the peak at 460 eV is due to Ti⁴⁺ Titanium site present in the $Ti_5P_{12}N_{24}O_2$.
- The RIXS spectra are dominated by d-d excitations with energy between 0.4 and 2.5 eV from the Ti³⁺ Titanium site.
- '. Our calculations indicated that the first energy loss feature present in the RIXS spectra is not due to local spin flip but rather a distortion in the symmetry of the crystal resulting in the splitting of the e_a orbitals by an energy of approximately 1.3 eV.
- 8. The calculated values for Ds and Dt suggest that Ti⁴⁺ has a more distorted symmetry than Ti³⁺ in the crystal.

References

- 1. Eisenburger, L.; Weippert, V.; Oeckler, O.; Schnick, W. Chemistry – A European Journal 2021, 27, 14184–14188.4.
- 2. W. Kramers, H. A.and Heisenberg, Zeitschrift für Physik, vol. 122, pp. 681–708, 1925. English translation published in van der Waerden, sources of quantum Mechanics, 1967, op.cit., 223-252.
- 3. Y. Lu, M. Hoeppner, O. Gunnarsson, and M.W. Haverkort, Phys. Rev. B 90, 085102 (2014).
- 4. M.W. Haverkort, G. Sangiovanni, P. Hansmann, A. Toschi, Y. Lu, and S. Macke, Bands, resonances, Euro. Phys. Lett. 108, 57004 (2014).

Acknowledgement

We gratefully acknowledge the support and assistance from:

- 1. The department of Physics and Engineering Physics.
- 2. The Beamteam group.
- 3. The NSERC CREATE to INSPIRE.
- 4. The REIXS beamline at Canadian Light Source.
- 5. The Department of Chemistry University of Munich.

INSPIRE

2nd Place Award Winning Poster at the 4th **Engineering Graduate Research Conference.**