Biegung elastischer Stäbe

Clara Rittmann Anja Beck

Durchführung: 03.11.15

Inhaltsverzeichnis

2 Aufbau und Ablauf des Experiments		
Aus	swertung	
3.1	Statistische Formeln	
	3.1.1 Fehlerrechnung	
	3.1.2 Regression	
3.2	Auswertung der Messdaten	
3.3	Bestimmung der Flächenträgheitsmomente	
3.4	Bestimmung der Dichte	
	Aus 3.1 3.2 3.3	

1 Theorie

¹ Eine Reckstange verbiegt sich, wenn ein Turner daran hängt. Wird an den Enden eines länglichen Stücks Gummi gezogen, wird dieses länger und dünner. Derartige Verformungen werden durch Kräfte verursacht, die an der Körperoberfläche angreifen. Die Spannung

 $\sigma = \frac{dF}{dA}^{2} \tag{1}$

beschreibt hierbei die angreifende Kraft pro Fläche. Für hinreichend kleine relative Änderungen einer Größe $\frac{\Delta x}{x}$ kann die Spannung auch mit dem Hookeschen Gesetz

 $\sigma = E \frac{\Delta x}{x} \tag{2}$

beschrieben werden. Der Elastizitätsmodul E ist dabei eine Materialkonstante. Soll allerdings der Elastizitätsmodul einer Metallstange, wie der des Turners, bestimmt werden, kann die Änderung der Länge oder des Durchmessers nur sehr mühsam bestimmt werden. In diesem Fall bietet sich die Verwendung des Zusammenhangs

$$D(x) = \frac{F}{48 \cdot EI} \left(3L^2 x - 4x^3 \right) \tag{3}$$

an. F ist die wirkende Kraft, also die Gewichtskraft des Turners. Sie übt einen Drehmoment auf die Stange aus. Das Flächenträgheitsmoment

$$I = \int_{O} y^2 dq \quad , \tag{4}$$

mit der Querschnittsfläche Q und dem dazugehörigen Flächenelement dq, verursacht im Inneren des Körpers ein entgegengesetzt gerichtetes, gleich großes Drehmoment, sodass sich ein Gleichgewicht einstellt. Bei diesem Gleichgewicht kann dann an einer beliebigen Stelle mit Abstand x zur nähergelegenen Aufhängung, die Auslenkung D vom entspannten Zustand gemessen werden. L ist der Abstand zwischen den beiden Aufhängungen.

Bei Betrachtung eines Systems, das nur an einer Seite befestigt ist, wie einen Ast, an dem eine Schaukel hängt, verändert sich Gleichung 3 zu

$$D(x) = \frac{F}{2 \cdot EI} \left(Lx^2 - \frac{x^3}{3} \right) \quad . \tag{5}$$

L ist jetzt der Abstand von der Einspannung bis zum Ende des Stabes und x der Abstand zwischen Einspannung und Messpunkt.

¹nach: Anleitung zu V103: Biegung elastischer Stäbe, Anfängerpraktikum TU Dortmund WS 2015/16, http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V103.pdf

²D. Meschede: "Gerthsen Physik", Kapitel 3.1.4

2 Aufbau und Ablauf des Experiments

Wie Abbildung 2 zeigt, bestand der Versuchsaufbau im Wesentlichen aus einem Gestell, in das Metallstäbe verschiedener Querschnittsflächen sowohl einseitig, als auch zweiseitig eingespannt werden konnten.

Zunächst wurden die verwendeten Stäbe, ein runder und ein eckiger, in Länge und Durchmesser vermessen und gewogen.

Danach wurden die Stäbe einzeln und einseitige in die Vorrichtung eingespannt und bei verschiedenen Abständen x zur Einspannung wurde die Auslenkung D(x) je einmal mit einem Gewicht am Ende der Stange und einmal ohne gemessen.

Zuletzt wurde der eckige Stab beidseitig eingespannt und ein Gewicht in der Mitte eingehängt. Hier wurde die Auslenkung D bei verschiedenen Abständen zum Gewicht je links und rechts davon gemessen.

3 Auswertung

3.1 Statistische Formeln

3.1.1 Fehlerrechnung

Im folgenden wurden Mittelwerte von N Messungen der Größe x berechnet

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{6}$$

sowie die Varianz

$$V(x) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
 (7)

woraus die Standartabweichung folgt

$$\sigma_x = \sqrt{V(x)}. (8)$$

Die Standartabweichung des Mittelwertes, kürzer auch Fehler des Mittelwertes genannt, bezieht noch die Anzahl der Messungen mit ein. Mehr Messungen führen zu einem kleineren Fehler

$$\Delta_x = \frac{\sigma_x}{\sqrt{N}}. (9)$$

3.1.2 Regression

Nachfolgend wird eine lineare Regression für Wertepaare (x_i, y_i) durchgeführt. Dafür müssen die Steigung

$$m = \frac{n \cdot \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i}{n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$
(10)

und der y-Achsenabschnitt

$$b = \frac{\sum_{i=1}^{n} x_i^2 \cdot \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} x_i y_i}{n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$
(11)

berechnet werden. Den jeweiligen Fehler erhält man mit

$$s_m^2 = s_y^2 \cdot \frac{n}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$
 (12)

$$s_b^2 = s_y^2 \cdot \frac{\sum_{i=1}^n x_i^2}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} . \tag{13}$$

 s_y ist hierbei die Abweichung der Regressionsgeraden in y-Richtung.

$$s_y^2 = \frac{\sum_{i=1}^n (\Delta y_i)^2}{n-2} = \frac{\sum_{i=1}^n (y_i - b - mx_i)^2}{n-2}$$
 (14)

3.2 Auswertung der Messdaten

3.3 Bestimmung der Flächenträgheitsmomente

Das Flächenträgheitsmoment ist eine Größe, die im weiteren Verlauf wichtig ist, um den Elastizitätsmodul der Stäbe zu ermitteln. Er hängt vom Querschnitt des Stabes, genauer vom Abstand y der Flächenelemente dq zur neutralen Faser, ab

$$I = \int_{Q} y^2 \, \mathrm{d}q \quad . \tag{15}$$

Für den eckigen Stab benötigt man eine Formel für quadratische Querschnitte. Die Kantenlänge sei h. Für I_E gilt:

$$I_{\rm E} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \int_{-\frac{h}{2}}^{\frac{h}{2}} y^2 \, \mathrm{d}x \, \mathrm{d}y = \frac{1}{12} \cdot h^4 \quad . \tag{16}$$

Um das Flächenträgheitsmoment für runde Querschnitte mit Radius r zu berechnen, bietet sich die Verwendung von Polarkoordinaten an. Der Abstand zur y-Achse ist dann $r^2 \cdot \sin^2(x)$. Mit der Jakobideterminante r ist I_R

$$I_{R} = \int_{0}^{r} \int_{0}^{2\pi} r^{2} \cdot \sin^{2}(x) \cdot r \,d\phi dr = \frac{1}{12} \cdot \pi \cdot r^{4} \quad . \tag{17}$$

Sowohl h als auch der Durchmesser $2 \cdot r$ wurden sehr genau mit einer Schieblehre gemessen. Zum Fehler des Mittelwertes kommt ein Ablesefehler von $0,05\,\mathrm{mm}$ dazu.

Tabelle 1: Breite h des eckigen Stabes und Durchmesser $2 \cdot r$ des Runden

Breite h in mm	Durchmesser $2 \cdot r$ in mm
10.00	10.00
10.00	10.00
10.00	10.00
10.00	9.90
10.00	9.90
10.00	9.95
10.00	10.00
10.00	9.90
10.00	9.90
10.00	9.95

Für den eckigen Stab folgt mit dem Mittelwert der Breite

$$h = (0.01000 \pm 0.00005) \,\mathrm{m} \tag{18}$$

ein Flächenträgheitsmoment von

$$I_{\rm E} = (3.88 \pm 0.17) \cdot 10^{-10} \,\mathrm{m}$$
 (19)

Für den runden Stab folgt mit einem Radius von

$$r = (0.004975 \pm 0.000032) \,\mathrm{m}$$
 (20)

das Flächenträgheitsmoment

$$I_{\rm R} = (4.81 \pm 0.12) \cdot 10^{-10} \,\mathrm{m}$$
 (21)

3.4 Bestimmung der Dichte

Zur Bestimmung der Dichte wurden beide Stäbe vermessen und gewogen. Das Gewicht und die Länge sind keine fehlerbehafteten Größen. Der Durchmesser hingegen wurde mit einer Schieblehre mehrfach gemessen. Ein Ablesefehler von 0,05 mm kommt zu dem Fehler des Mittelwertes hinzu.

4 Diskussion