WE CLAIM:

1. Anionic, hydrophobic polysaccharide which is a graft copolymer of a polysaccharide having anionic substituents with an ethylenically unsaturated monomer, the copolymer having a polysaccharide backbone carrying grafted hydrophobic vinyl polymeric groups derived from the ethylenically unsaturated monomer, and anionic substituents.

10

5

2. Anionic, hydrophobic polysaccharide according to claim 1, wherein the anionic substituents are selected from groups which possess a carboxylate or a sulphonate head group.

15

3. Anionic, hydrophobic polysaccharide having the general formula I:

20

25

30

wherein R is a hydrophobic vinyl polymer, R' and R'', which may or may not be the same, represent a group which possesses a carboxylic acid or a sulphonic acid head group or salts thereof and G is a monosaccharide or substituted monosaccharide.

10

15

20

- 4. Anionic, hydrophobic polysaccharide according to claim 3, wherein R' and R'', which may or may not be the same, are selected from $-(CH_2-CHSO_3H)_n$ and $-(CH_2-CHSO_3^-M^+)_n$, wherein M is an alkali or alkaline earth metal and n has a value of from 5 to 100.
- 5. Anionic, hydrophobic polysaccharide according to claim 3, wherein R' and R'', which may or may not be the same, are selected from $-R_3$ -COOH and $-R_3$ -COO $^{-}$ M $^{+}$, wherein R_3 is a C_1 to C_4 alkylene group and M is an alkali or alkaline earth metal.
- 6. Anionic, hydrophobic polysaccharide according to claim 5, wherein $R'=R''=-CH_2-COOH$ or its metal salt.
- 7. Anionic, hydrophobic polysaccharide according to claim 3, wherein the amount of the hydrophobic vinyl polymer is 0.1-10% by weight of the polysaccharide.
- 8. Anionic, hydrophobic polysaccharides according to claim 7, wherein the amount of the hydrophobic vinyl polymer is 1-5% by weight of the polysaccharide.
- 25 9. Anionic, hydrophobic polysaccharide according to claim 3, wherein the amount of anionic substituent is 0.1-10% by weight of the polysaccharide.

- 10. Anionic, hydrophobic polysaccharide according to claim 9, wherein the amount of anionic substituent is 0.1-5% by weight of the polysaccharide.
- 5 11. Anionic, hydrophobic polysaccharide according to claim 3, wherein the hydrophobic vinyl polymer has a molecular weight from 500 to 5,000,000.
- 12. Anionic, hydrophobic polysaccharide according to

 10 claim 11, wherein the hydrophobic vinyl polymer has a

 molecular weight from 2000 to 500,000.
 - 13. Anionic, hydrophobic polysaccharide according to claim 12, wherein the hydrophobic vinyl polymer has a molecular weight from 5000 to 100,000.
 - 14. Anionic, hydrophobic polysaccharide according to claim 3, wherein R is an acrylic polymer, having the general formula II

15

$$R_1$$
 R_1' $|$ $|$ $-CH_2 - C-(-CH_2 - C-)_n - |$ $|$ R_2 R_2'

25

wherein R_1 and $R_1\prime$ may or may not be the same and represent -H, -CH₃, -C₂H₅.

and wherein R_2 and $R_2{'}$ may or may not be the same and represent $-\text{COOC}_{13}$, $-\text{COOC}_{2}\text{H}_{5}$, $-\text{COOC}_{3}\text{H}_{7}$.

- 15. Anionic, hydrophobic polysaccharide according to claim 14, wherein $R_1=R_1'=H$ and $R_2=R_2'=-\text{COOCH}_3$.
 - 16. Anionic, hydrophobic polysaccharide according to claim 3, wherein the polysaccharide is selected from starch, modified starches, cellulose, guar gum, and tamarind gum.
 - 17. Anionic, hydrophobic polysaccharide according to claim 16, wherein the polysaccharide is starch.
- 15 18. A process for the preparation of an anionic, hydrophobic polysaccharide according to claim 3, comprising graft copolymerisation and anionic modification of a polysaccharide.
- 20 19. A process according to claim 18, comprising graft copolymerisation of the polysaccharide or the anionically modified polysaccharide using a redox initiator.
- 25 20. A process according to claim 19, comprising graft copolymerisation of the polysaccharide or the anionically modified polysaccharide using ferrous ammonium sulphate and hydrogen peroxide as the redox initiator.

21. A process according to claim 18, comprising anionic modification of the polysaccharide or the graft copolymerised polysaccharide using halocarboxylic acid or its salt or mixtures thereof.

5

- 22. A process according to claim 21, wherein the halocarboxylic acid is chloroacetic acid.
- 23. A process according to claim 18, comprising anionic

 modification of the polysaccharide or the graft
 copolymerised polysaccharide using a vinyl sulphonic
 acid or its salt or mixtures thereof.
 - 24. A fabric treatment composition comprising a fabric treatment agent and from 0.01 to 10 wt% of an anionic, hydrophobic polysaccharide according to claim 3.
- 25. A detergent composition comprising from 5 to 60 wt% of a detersive surfactant and from 0.01 to 10 wt% of an anionic, hydrophobic polysaccharide according to claim 3.
- 26. A detergent composition according to claim 25, which is a built laundry detergent composition comprising from 5 to 40 wt% of detersive surfactant, from 5 to 80 wt% of detergency builder, and from 0.01 to 10 wt% of an anionic, hydrophobic polysaccharide according to claim 3.

27. A detergent compositions according to claim 25, which comprises from 0.5 to 5 wt% of the anionic, hydrophobic polysaccharide according to claim 3.