

Lessons in this Module

- A. A Dataset to Illustrate Indicator Variables
- B. Creating and Using Indicator (Dummy) Variables
- C. Interpreting the Coefficients of Indicator Variables
- D. Interaction Terms and Interpreting Their Coefficients
- E. Another Example of Using Indicator Variables

GTx

A Synthetic Dataset

```
Read the file "EDSAL.csv" into a dataframe called edsal edsal <- read_csv("EDSAL.csv", col_types = list(
 Education = col_factor(c("HS", "UG", "GRAD")),
 Experience = col_integer(),
 Salary = col_double()))
```

> str(edsal)

Classes 'tbl_df', 'tbl' and 'data.frame': 300 obs. of 6 variables:

\$ Education: Factor w/ 3 levels "HS", "UG", "GRAD" ... (highest educational level)

\$ Experience: int 2 14 36 16 36 33 36 8 3 21 ... (in years of work experience)

\$ Salary: num 34.4 59.2 113.3 69.1 106 ... (in thousands of \$)

First 10 Rows of the edsal Dataframe

Education	Experience	Salary
HS	2	34.432
HS	14	59.157
HS	36	113.270
HS	16	69.147
HS	36	106.016
HS	33	58.634
HS	36	101.081
HS	8	51.329
HS	3	58.197
HS	21	77.964

Exploring the edsal Dataset

- We would like to understand better the reasons why some individuals have larger salaries than others.
- In particular, we would like to investigate whether work experience has an influence on salaries.
- There is the *education* variable in this dataset.
- So, how do we get started?
- To keep matters clear, we start with Salary, Experience

GTx

RS: Simple Regression

	Estimate	S.E.	t Value	Pr>ltl
Intercept	29.4679	2.5673	11.48 ***	<.001
Experience	3.0959	0.1113	27.81 ***	<.001

R-squared	Adjusted R-squared
0.722	0.721

• Salary = $b_0 + b_1$ *Experience

GTx

What to do About the Categorical Variable Education?

- Is this categorical variable important?
- Does having an undergraduate or graduate degree potentially have an effect on Salary compared to only studying through high school?
- How do we include this variable in a regression model that requires numeric values?

Education	Experience	Salary
HS	2	34.432
HS	14	59.157
HS	36	113.270
HS	16	69.147
HS	36	106.016
HS	33	58.634
HS	36	101.081
HS	8	51.329
HS	3	58.197
HS	21	77.964

Doing Regression with Qualitative Predictor Variable

- Consider the variable Education
- We want to investigate the effect of Education on Salary. Note that Education is a qualitative (or categorical) variable with three possible values: HS, UG, or GRAD
- · We need to quantify this variable

Education
HS
UG
GRAD
UG
UG
GRAD
GRAD
HS
HS
GRAD

Creating Indicator (Dummy) variables

- Since we have three possible value for Education, we need to create two indicator variables.
- The base (or reference) case, with both dummy variables set to 0, is Education = UG. This is the reference group to compare for the other values of the dummy variable. It is up to the modeler to determine which value of the categorical variable is used as the base case
- The two dummy variables that we have created are:

$$HS = \begin{cases} 1, & if \ Education = HS \\ 0, & otherwise \end{cases}$$

$$Graduate = \begin{cases} 1, & \textit{if Education} = \textit{GRAD} \\ 0, & \textit{otherwise} \end{cases}$$

Assigning Values (O or 1) to the New Indicator (Dummy) Variables

$$HS = \begin{cases} 1, & if \ Education = HS \\ 0, & otherwise \end{cases}$$

$$Graduate = \begin{cases} 1, & \textit{if Education} = \textit{GRAD} \\ 0, & \textit{otherwise} \end{cases}$$

We, then run the regression, Salary = $b_0 + b_1*HS + b_2*Graduate$

Education	HS	Graduate
HS	1	0
UG	0	0
GRAD	0	1
UG	0	0
UG	0	0
GRAD	0	1
GRAD	0	1
HS	1	0
HS	1	0
GRAD	0	1

Quiz

With this Indicator variables coding scheme,

$$\mathsf{HS} = \begin{cases} 1, & \textit{if Education} = \mathit{HS} \\ 0, & \textit{otherwise} \end{cases} \qquad \mathsf{Graduate} = \begin{cases} 1, & \textit{if Education} = \mathit{GRAD} \\ 0, & \textit{otherwise} \end{cases}$$

- Can a record in the edsal dataframe have this value (HS = 0, Graduate = 0)?
 Answer: YES, because this record is for someone with an UG degree, i.e., the base case.
- Can a record in the edsal dataframe have this value (HS = 1, Graduate = 1)?
 Answer: NO, no individual can have their highest level of education be both HS and graduate degree!

A Linear Model With Indicator Variables

$$\mathsf{HS} = \begin{cases} 1, & \textit{if Education} = \mathit{HS} \\ 0, & \textit{otherwise} \end{cases} \qquad \mathsf{Graduate} = \begin{cases} 1, & \textit{if Education} = \mathit{GRAD} \\ 0, & \textit{otherwise} \end{cases}$$

With this Indicator variables coding scheme, we build an initial linear regression model:

Salary =
$$b_0 + b_1*HS + b_2*Graduate$$

We then fit it using the data in edsal.

DR1: 1st Regression with Dummy Variable

	Estimate	S.E.	t Value	Pr>ltl
Intercept	87.923	4.062	21.645***	<.001
HS	-22.487	5.759	-3.905 ***	<.001
Graduate	27.518	5.774	4.766 ***	<.001

- Salary = $b_0 + b_1*HS + b_2*Graduate$
- Which group's Average Salary is \$87,923: High School, Undergraduate, or Graduate?
- Correct Answer: With HS = 0 and Graduate = 0, b_0 captures the average salary of UG (base case)

Salary = $b_0 + b_1$ *HS + b_2 *Graduate

	Estimate	S.E.	t Value	Pr>ltl
Intercept	87.923	4.062	21.645***	<.001
HS	-22.487	5.759	-3.905 ***	<.001
Graduate	27.518	5.774	4.766 ***	<.001

- What is the Average Salary for someone with only a HS diploma?
- This individual has HS = 1 and Graduate = 0, so $b_0 + b_1$ captures the average Salary for folks with a HS diploma.
- \$87,923 \$22,487 = \$65,436
- So, \$22,487 is the decrease in salary (on average) for HS compared to UG.

Salary = $b_0 + b_1^*HS + b_2^*Graduate$

	Estimate	S.E.	t Value	Pr>ltl
Intercept	87.923	4.062	21.645***	<.001
HS	-22.487	5.759	-3.905 ***	<.001
Graduate	27.518	5.774	4.766 ***	<.001

- What is the Average Salary for someone with a <u>Graduate degree</u>?
- This individual has HS = 0 and Graduate = 1, so $b_0 + b_2$ captures the average Graduate Salary.
- \$87,923 + \$27,518 = \$115,441
- So, \$27,518 is the additional salary (on average) for GRAD over UG education.

Graphically

Let's take a look at this graphically...

Important Note

You can directly use a Factor Variable in regression in R instead of creating & using Dummy variables

Im(Salary ~ Education, data=edsal)

	Estimate	Std. Error	t value	Pr(>ItI)
(Intercept)	65.436	4.082	16.029	< 2e-16 ***
EducationUG	22.487	5.759	3.905	0.000117 ***
EducationGRAD	50.006	5.788	8.640	3.54e-16 ***

- What is the base case? What is the average salary for the base case?
 The Base Case is HS with Average Salary = \$65,436
- What is the Average Salary of UG? \$65,436 + 22,487 = \$87,923
- What is the Average Salary of GRAD? \$65,436 + 50,006 = \$115,442
- All three groups have the same answers as our coding scheme where UG was the base case!!!

R's Indicator variable coding

R's indicator variable coding scheme can be found by using

contrasts(edsal\$Education)

UG GRAD

HS 0 0 (HS is the base case in this coding scheme).

UG 1 0 GRAD 0 1

- In this case R uses a different coding scheme for dummy variables.
- I find it more useful to use my own coding scheme!

DR2: 2nd Regression with **EXPERIENCE** and Dummy Variables

	Estimate	S.E.	t Value	Pr>ltl
Intercept	28.359	2.348	12.079	<.001
Experience	2.971	0.080	37.084	<.001
HS	-15.062	2.436	-6.183	<.001
Graduate	25.925	2.434	10.650	<.001

- Salary = $b_0 + b_1$ *Experience + b_2 *HS + b_3 *Graduate
- What is the (average) increase in Salary for a one year increase in Experience?
- Answer: \$2,971

Graphically

Graphically, $SALARY = b_0 + b_1*EXPERIENCE + b_2*HS + b_3*Graduate would look like this...$

GTx

Quiz

	Estimate	S.E.	t Value	Pr> t
Intercept	28.359	2.348	12.079	<.001
Experience	2.971	0.080	37.084	<.001
HS	-15.062	2.436	-6.183	<.001
Graduate	25.925	2.434	10.650	<.001

Salary = $b_0 + b_1$ *Experience + b_2 *HS + b_3 *Graduate

What is the Base case in this Model?

Answer: The base case has HS = 0, Graduate = 0, i.e., individuals with an Undergrad degree

What is the salary (on average) for an individual with an Undergraduate
 Degree and has NO work experience (Experience = 0, HS = 0, Graduate = 0)

Answer: \$28,359

Salary = b₀ + b₁*Experience + b₂*HS + b₃*Graduate

In this model, we had the same slope for all three values of Education, the Categorical Variable,

GTx

Interaction Terms

• But, do we really know that the salary for HS and GRAD increase with experience at the same rate as for UG (the base case)?

GTx

Interaction Terms

- Construct two new variables:
 - H_Exp = HS*Experience
 - G_Exp = Graduate*Experience
- H_Exp and G_Exp are the Interaction terms.
- The new regression is:
 Salary = b₀ + b₁*Experience + b₂*HS + b₃*Graduate + b₄*H_Exp + b₅*G_Exp

DR3: 3rd Regression with Experience, Dummy Variables, and Interaction Terms

	Estimate	S.E.	t Value	Pr>ltl
Intercept	27.34	1.92	14.27 ***	<.001
Experience	3.022	0.08	37.38 ***	<.001
HS	11.48	2.64	4.35***	<.001
Graduate	0.30	2.76	0.11	0.912
H_Exp	-1.51	0.12	-12.80 ***	<.001
G_Exp	1.24	0.12	10.78 ***	<.001

Salary = $b_0 + b_1$ *Experience + b_2 *HS + b_3 *Graduate + b_4 *H_Exp + b_5 *G_Exp

- How would you interpret b₄ and b₅, the coefficients of H_Exp and G_Exp?
- b_4 is the amount to add to b_1 to get the slope for individuals with a HS diploma
- b_5 is the amount to add to b_1 to get the slope for individuals with a Graduate degree

Graphically

Salary = $b_0 + b_1$ *Experience + b_2 *HS + b_3 *Graduate + b_4 *H_Exp + b_5 *G_Exp

	Estimate	S.E.	t Value	Pr> t
Intercept	27.34	1.92	14.27 ***	<.001
Experience	3.022	0.08	37.38 ***	<.001
HS	11.48	2.64	4.35***	<.001
Graduate	0.30	2.76	0.11	0.912
H_Exp	-1.51	0.12	-12.80 ***	<.001
Э_Ехр	1.24	0.12	10.78 ***	<.001

Experience

Test Your Understanding

Salary = $b_0 + b_1$ *Experience + b_2 *HS + b_3 *Graduate + b_4 *H_Exp + b_5 *G_Exp

If the experience of an individual with an UG education increases by 10 years, what is the predicted <u>increase</u> in Salary for that individual?

- For this individual (i.e., the baseline case) HS=0, Graduate = 0, thus the relevant slope is $b_1 = 3.02$.
- Hence, the increase in Salary (on average) for this individual = \$3.02K*10 = \$30.2K

If the experience of an individual with a HS education increases by 10 years, what is the predicted <u>increase</u> in Salary for that individual?

- For the HS case, HS = 1, Graduate = 0, hence the relevant slope is $b_1 + b_4 = 3.02 1.51 = 1.51
- Hence, the increase in Salary (on average) for this individual = \$1.51K*10 = \$15.1K

Categorical Variable with M Values

- If a categorical (factor) variable has M possible values, then you will need to construct and use M-1 indicator (dummy) variables.
- Be careful when using and interpreting the value of the coefficients of the dummy variable and the value of the coefficients for any interaction terms.
- Remember the base case applies to the group where all indicator variables are set to 0.
- All other cases have to be interpreted with reference to the base case.

Quiz

Salary =
$$b_0 + b_1$$
*Experience + b_2 *HS + b_3 *Graduate + b_4 *H_Exp + b_5 *G_Exp

• If the experience of an individual with an Graduate education increases by 10 years, what is the predicted <u>increase</u> in Salary for that individual?

Answer:

- For this case, Graduate = 1, HS= 0, hence the relevant slope is $b_1 + b_5 = 3.02 + 1.24 = 4.26
- Hence, the increase in Salary (on average) for this individual = \$4.26K*10 = \$42.6K

AirBnB - Los Angeles Rental Market

• Listing data on AirBnB is publicly available at http://insideairbnb.com/los-angeles/ and http://insideairbnb.com/los-angeles/ and http://insideairbnb.com/los-angeles/ and http://insideairbnb.com/los-angeles/ and http://insideairbnb.com/los-angeles/ and http://insideairbnb.com/get-the-data.html .

GTx

About the Data

- Listing data collected on May 2, 2017.
- We discarded listings with price greater than \$1000 and missing values for beds, baths, and rating.

\$ Price : num 50 55 150 30 45 80 120 55 50 50 ...

\$ Reviews : int 33 14 22 3 38 42 15 58 19 1 ... \$ Beds : int 1 1 3 1 1 2 1 2 1 1 ...

\$ Baths : num 1111151202... \$ Capacity : int 2261222312...

\$ Monthly_Reviews : num 1.91 1.72 2.12 0.18 7.92 1.89 1.96 2.98 0.53 0.04 ... \$ Room_Type : Factor w/ 3 levels "Shared room",..: 2 2 3 2 2 2 3 2 2 2 ...

\$ Rating : int 93 100 100 93 98 99 99 92 89 NA ...

Research Questions

If a property owner aims to get a higher price for his or her property, then it is essential to understand the key factors that influence price.

- What variables influence listing price?
 - Is there a relationship between capacity and price?
 - Does the type of rental (shared, private or full house) change this relationship?

Data Wrangling

```
la_listing <- la_listing %>%
      mutate(Price = str_replace(Price, "[$]", """)) %>% mutate(Price = str_replace(Price, "[,]", "")) %>%
                                                                       Convert price to numeric and room type to factor
       mutate(Price = as.numeric(Price)) %
       mutate(Room_Type = factor(Room_Type, levels = c("Shared room", "Private room", "Entire home/apt"))) %>%
       mutate(Capacity_Sqr = Capacity * Capacity) %>%
       mutate(Beds_Sqr = Beds * Beds) %>%
                                                                       Create squared terms for testing non-linear relations
       mutate(Baths_Sqr = Baths * Baths) %>%
      mutate(In_Reviews = log(1+Reviews)) %>%
       mutate(In_Monthly_Reviews = log(1+Monthly_Reviews))
       mutate(In_Price = log(1+Price)) %>%
       mutate(In_Beds = log(1+Beds)) %>%
                                                                       Create log terms for testing non-linear relations
       mutate(In_Baths = log(1+Baths)) %>%
       mutate(In_Capacity = log(1+Capacity)) %>%
       mutate(In_Rating = log(1+Rating)) %>%
       mutate(Shared_ind = ifelse(Room_Type == "Shared room",1,0)) %>% mutate(House_ind = ifelse(Room_Type == "Entire home/apt",1,0)) %>%
                                                                                        Create dummy variables for room_type
       mutate(Private_ind = ifelse(Room_Type == "Private room",1,0)) %>%
       mutate(Capacity_x_Shared_ind = Shared_ind * Capacity) %>9
       mutate(Capacity_x_House_ind = House_ind * Capacity) %>%
       mutate(Capacity_x_Private_ind = Private_ind * Capacity) %>%
                                                                                        Create interaction terms
       mutate(In_Capacity_x_Shared_ind = Shared_ind * In_Capacity) %>%
       mutate(In_Capacity_x_House_ind = House_ind * In_Capacity) %>% mutate(In_Capacity_x_Private_ind = Private_ind * In_Capacity)
      filter(Price < 1000, !is.na(Beds), !is.na(Baths), !is.na(Price), !is.na(Rating))
                                                                                        Filter unwanted data
```

2RS: Simple Regression – How Does Price Vary by Room Capacity?

• Price = $b_0 + b_1$ *Capacity

	Estimate	S.E.	t Value	Pr>Itl
Intercept	15.039	1.141	13.19***	<.001
Capacity	38.272	0.316	114.72***	<.001

R-squared	Adjusted R-squared	
0.367	0.367	

GT

Creating Indicator (Dummy) variables

We define two dummy variables:

$$Private_ind = \begin{cases} 1, & \textit{if Room type} = "Private room" \\ 0, & \textit{otherwise} \end{cases}$$

House_ind =
$$\begin{cases} 1, & if \ Room \ type = "Entire \ home/apt" \\ 0, & otherwise \end{cases}$$

 The base (or reference) case, with both dummy variables set to 0, is Room type = "Shared." This is the reference group to compare for the other values of the dummy variable.

2DR1: How Does Price Vary by Room Type?

 $Price = b_0 + b_1*Private_ind + b_2*House_ind$ (only dummies)

	Estimate	S.E.	t Value	Pr>ltl
Intercept	37.149	2.954	12.58***	<.001
Private_ind	35.666	3.123	11.42***	<.001
House-ind	133.442	3.058	43.64***	<.001

- Which room type's Average Price is \$37.149? Shared room
- What is the Average Price of a Private Room? \$37.149 + \$35.666
- What is the Average Price of an Entire House? \$37.149 + \$133.442

Graphically

Let's take a look at this graphically...

2DR2: 2nd Regression with <u>Capacity</u> and Dummy Variables

	Estimate	S.E.	t Value	Pr>Itl
Intercept	-19.017	2.678	-7.101	<.001
Capacity	29.292	0.355	82.605	<.001
Private_ind	30.339	2.739	11.076	<.001
House-ind	75.776	2.771	27.346	<.001

- Price = $b_0 + b_1$ *Capacity + b_2 *Private_ind + b_3 *House_ind
- What is the (average) increase in Price for each additional individual?
 Answer: \$29.292

Graphically

Let's take a look at $Price = b_0 + b_1*Capacity + b_2*Private_ind + b_3*House_ind$ graphically...

Interaction Term

- Construct two new variables:
- P_Cap = Private-ind*Capacity
- H_Cap = House_ind*Capacity
- P_Cap and H_Cap are the Interaction terms.
- The new regression is: $Price = b_0 + b_1 * Capacity + b_2 * Private_ind + b_3 * House_ind + b_4 * P_Cap + b_5 * H_Cap$

DR3: 3rd Regression with Experience, Dummy Variables, and Interaction Terms

	Estimate	S.E.	t Value	Pr>ltl
Intercept	35.885	4.111	8.728***	<.001
Capacity	0.659	1.687	0.391	0.695980
Private_ind	20.684	4.672	4.427***	<.001
House_ind	2.293	4.423	0.518	0.604147
P_Cap	7.080	1.947	3.636***	<.001
H_Cap	33.414	1.729	19.323***	<.001

- Price = $b_0 + b_1$ *Capacity + b_2 *Private_ind + b_3 *House_ind + b_4 *P_Cap + b_5 *H_Cap
- How would you interpret b_4 and b_5 the coefficients of P_Cap and H_Cap?
- b₄ is the amount to add to b₁ to get the slope for a Private room
- b_5 is the amount to add to b_1 to get the slope for a House room
- Statistically, Capacity (slope) and House_ind (bump in intercept) are not very different from 0

Graphically

Let's take a look at

 $Price = b_0 + b_1*Capacity + b_2*Private_ind + b_3*House_ind + b_4*P_Cap + b_5*H_Cap$ graphically...

Recap of this Module

- A. A Dataset to Illustrate Indicator Variables
- B. Creating and Using Indicator (Dummy) Variables
- C. Interpreting the Coefficients of Indicator Variables
- D. Interaction Terms and Interpreting Their Coefficients
- E. Another Example of Using Indicator Variables

