

Telecommunication Networks

Sándor Laki

ELTE-Ericsson Communication Networks Laboratory

ELTE FI – Department Of Information Systems

lakis@elte.hu

http://lakis.web.elte.hu

Megvalósítások

Előre foglalással

Áramkörkapcsolt hálózat

Pl. vezetékes telefon

Igény szerinti

Csomagkapcsolt hálózat

Pl. Internet

Az áramkörkapcsolt hálózat alapja a Resource Reservation Protocol

Erőforrás-foglaló protokoll

- 1. A forrás foglalási kérést küld 10 Mbps igényről a célállomásnak
- 2. A switchek kialakítják az "áramkört"
- 3. A forrás megkezdi az adatküldést
- 4. A forrás áramkör-lebontó üzenetet küld a cél felé (teardown)

Adatátvitel áramkörkapcsolt hálózaton

Löketszerű forgalom - Rossz teljesítmény

Rövid üzenetváltás – Rossz teljesítmény

További probléma a meghibásodott switch kikerülése (reroute)

Érvek/Ellenérvek

Előnyök

Kiszámítható teljesítmény

Egyszerű és gyors kapcsolás Miután kiépült az áramkör

Hátrányok

Alacsony hatékonyság Löketszerű forgalom Rövid folyamok

Bonyolult áramkör felépítés/lebontás Megnövekedett késleltetés

Hiba esetén új áramkör szükséges

Megvalósítások

Előre foglalással

Áramkörkapcsolt hálózat

Pl. vezetékes telefon

Igény szerinti

Csomagkapcsolt hálózat

Pl. Internet

Csomagkapcsolt hálózatok

Az adatátvitel egyedi csomagokban történik.

Minden csomag tartamazza a cél címét/azonosítóját (most C).

Nincs globális koordináció, azaz a csomagok zavarhatják egymást. (ld. egyszerre érkeznek be a switchhez)

Pufferelés szükséges a löketek kezeléséhez.

Csomagkapcsolt hálózatok

Pufferelés az átmeneti túlterhelések kezeléséhez

Csomagkapcsolt hálózatok

Pufferelés az átmeneti túlterhelések kezeléséhez

Hiba tolerancia

Érvek ellenérvek

Előnyök

Hátrányok

Hatékony erőforrásgazdálkodás

Kiszámíthatatlan teljesítmény

Egyszerű megvalósítás

Szükséges puffer-kezelés és torlódásvezérlés

Hibatolerancia

Az Internet csomagkapcsolt

Rugalmasság és hatékonyság

Áttekintés

Hogyan szervezzük a hálózatot?

Mi az internet?

- Hálózatok hálózata
- A világra kiterjedő nyitott WAN
- Jellemzői
 - rendszerfüggetlenség;
 - nincs központi felügyelet;
 - építőelemei a LAN-ok;
 - globális;
 - olyan szolgáltatásokat nyújt, mint a World Wide Web, email vagy fájlátvitel.

ISP – Internet szolgáltató

Az Internet hierarchikus struktúrája

szolgáltató-vásárló (provider-customer) viszonyok

Tier-1

Nincs szolgáltatója

nemzetközi

Tier-2

nemzeti

Tier-3

helyi

Tier-3 szolgáltatóknak nyújt átjárást

Legalább egy szolgáltatója van

Nem nyújt átjárást más szolgáltatóknak

Legalább egy szolgáltatója van

Hálózatok eloszlása a Tier-ekben

~50.000 hálózat összesen

Tier-1

nemzetközi

Nincs szolgáltatója

pár tucat

több ezer

Tier-2

nemzeti

Tier-3 szolgáltatóknak nyújt átjárást

Legalább egy szolgáltatója van

Tier-3

helyi

Nem nyújt átjárást más szolgáltatóknak

Legalább egy szolgáltatója van

85-90%

Némely hálózat között közvetlen kapcsolat is létezik – csökkenti a szolgáltatónak fizetendő számlát

Ezt hívjuk "peering"-nek – ez egyfajta kölcsönös kapcsolat...

A szomszédos hálózatok egyesével való összekapcsolása túl költséges lenne

Infrastruktúra költségek

Fizikai linkek kiépítése vagy bérlése

Sávszélesség költségek

A linkek nem feltétlenül lesznek teljesen kihasználva

Humán költségek

Minden kapcsolatot egyedi módon kell kezelni

A problémát az úgynevezett Internet eXchage Pontok (IXP) oldják meg

Az IXP-k lehetővé teszik több hálózat összekapcsolását egy fizikai (földrajzi/topológiai) helyen.

Egy IXP két napja – DE-CIX Frankfurt

□ average traffic in bits per second Current 4898.6 G Averaged 3732.6 G Graph Peak 5601.3 G DE-CIX All-Time Peak 6441.14 Created at 2018-09-12 14:40 UTC Copyright 2018 DE-CIX Management GmbH

This week

How does communication happen?

How do we characterize it?

Briefly...

The Internet should allow

processes on different hosts to exchange data

everything else is just commentary...

Ok, but how to do that in a complex system like the Internet?

To exchange data, Alice and Bob use a set of network protocols

A protocol is like a conversational convention

The protocol defines the order and rules the parties should follow Who should talk next and how to respond...

There are other kind of implementations...

Gimme, gimme, gimme a web site after Midnight

Alice Bob hello Give me http://elte.hu Give me http://elte.hu

Each protocol is governed by a specific API

In practice, many existing protocols...

How does the Internet organize this???

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

500N:

SITUATION: THERE ARE 15 COMPETING STANDARDS.

Modularity is a key component of any good system

Problem

can't build large systems out of spaghetti code

hard (if not, impossible) to understand, debug, update

need to bound the scope of changes

evolve the system without rewriting it from scratch

Solution

Modularity is how we do it

...and understand the system at a higher-level

"Modularity, based on abstraction, is **the way** things get done" Barbara Liskov, MIT To provide structure to the design of network protocols, network designers organize **protocols** in layers

and the network hardware/software that implement them

Hálózatok modelljei

- Internet rétegmodelljei
 - TCP/IP modell: 4 réteget különböztet meg. 1982 márciusában az amerikai hadászati célú számítógépes hálózatok standardja lett. 1985-től népszerűsítették kereskedelmi felhasználásra. (*Interop*)
 - Hibrid TCP/IP modell: 5 réteget különböztet meg (Tanenbaum, Stallings, Kurose, Forouzan)
- Nyílt rendszerek hálózatának standard modellje
 - Open System Interconnection Reference Model: Röviden OSI referencia modell, amely egy 7-rétegű standard, koncepcionális modellt definiál kommunikációs hálózatok belső funkcionalitásaihoz. (ISO/IEC 7498-1)

TCP/IP modell (RFC 1122)

ALKALMAZÁSI RÉTEG

(angolul Application layer)

SZÁLLÍTÓI RÉTEG

(angolul *Transport layer*)

Hálózati réteg

(angolul *Internet layer*)

Kapcsolati réteg

(angolul Link layer)

TCP/IP modell rétegei ("bottom-up")

- Kapcsolati réteg / Host-to-network or Link layer
 - nem specifikált
 - a LAN-tól függ
- Internet réteg / Internet or Network layer
 - speciális csomagformátum
 - útvonal meghatározás (routing)
 - csomag továbbítás (angolul packet forwarding)
- Szállítói réteg / Transport layer
 - Transport Control Protocol
 - megbízható, kétirányú bájt-folyam átviteli szolgáltatás
 - szegmentálás, folyamfelügyelet, multiplexálás
 - User Datagram Protocol
 - nem megbízható átviteli szolgáltatás
 - nincs folyamfelügyelet
- Alkalmazási réteg / Application layer
 - Szolgáltatások nyújtása: Telnet, FTP, SMTP, HTTP, NNTP, DNS, SSH, etc.

Rétegek jellemzése

- Szolgáltatás
 - Mit csinál az adott réteg?
- Interfész
 - Hogyan férhetünk hozzá a réteghez?
- Protokoll
 - Hogyan implementáljuk a réteget?

Fizikai réteg

Alkalmazási

Megjelenítési

Ülés

Szállítói

Hálózati

Adatkapcsolati

- Szolgáltatás
 - Információt visz át két fizikailag összekötött eszköz között
 - definiálja az eszköz és a fizikai átviteli közeg kapcsolatát
- Interfész
 - Specifikálja egy bit átvitelét
- Protokoll
 - Egy bit kódolásának sémája
 - Feszültség szintek
 - Jelek időzítése
- Példák: koaxiális kábel, optikai kábel, rádió frekvenciás adó

Adatkapcsolati réteg

Alkalmazási

Megjelenítési

Ülés

Szállítói

Hálózati

Adatkapcsolati

- Szolgáltatás
 - Adatok keretekre tördelésezés: határok a csomagok között
 - Közeghozzáférés vezérlés (MAC)
 - Per-hop megbízhatóság és folyamvezérlés
- Interfész
 - Keret küldése két közös médiumra kötött eszköz között
- Protokoll
 - Fizikai címzés (pl. MAC address, IB address)
- Példák: Ethernet, Wifi, InfiniBand

Hálózati réteg

Alkalmazási

Megjelenítési

Ülés

Szállítói

Hálózati

Adatkapcsolati

- Szolgáltatás
 - Csomagtovábbítás
 - Útvonalválasztás
 - Csomag fragmentálás kezelése
 - Csomag ütemezés
 - Puffer kezelés
- Interfész
 - Csomag küldése egy adott végpontnak
- Protokoll
 - Globálisan egyedi címeket definiálása
 - Routing táblák karbantartása
- Példák: Internet Protocol (IPv4), IPv6

Szállítói réteg

Alkalmazási

Megjelenítési

Ülés

Szállítói

Hálózati

Adatkapcsolati

- Szolgáltatás
 - Multiplexálás/demultiplexálás
 - Torlódásvezérlés
 - Megbízható, sorrendhelyes továbbítás
- Interfész
 - Üzenet küldése egy célállomásnak
- Protokoll
 - Port szám
 - Megbízhatóság/Hiba javítás
 - Folyamfelügyelet
- Példa: UDP, TCP

Ülés v. Munkamenet réteg

Alkalmazási Megjelenítési Ülés Szállítói Hálózati Adatkapcsolati Fizikai

- Szolgáltatás
 - kapcsolat menedzsment: felépítés, fenntarás és bontás
 - munkamenet típusának meghatározása
 - szinkronizációs pont menedzsment (checkpoint)
- Interfész
 - Attól függ...
- Protokoll
 - Token menedzsment
 - Szinkronizációs checkpoints beszúrás
- Példa: nincs

Megjelenítési réteg

Alkalmazási Megjelenítési Ülés Szállítói Hálózati Adatkapcsolati Fizikai

- Szolgáltatás
 - Adatkonverzió különböző reprezentációk között
 - Pl. big endian to little endian
 - Pl. Ascii to Unicode
- Interfész
 - Attól függ...
- Protokoll
 - Adatformátumokat definiál
 - Transzformációs szabályokat alkalmaz
- Példa: nincs

Alkalmazási réteg

Alkalmazási Megjelenítési Ülés Szállítói Hálózati Adatkapcsolati Fizikai

- Szolgáltatás
 - Bármi...
- Interfész
 - Bármi...
- Protokoll
 - Bármi...
- Példa: kapcsold be a mobilod és nézd meg milyen appok vannak rajta...

ISO OSI modell

OSI: Open Systems Interconnect Model

Hybrid model – 5 layers

Each layer provides a service to the layer above

	layer	service provided
L5	Application	high level network access
L4	Transport	end-to-end delivery (reliable or not)
L3	Network	global best-effort delivery
L2	Link	local best-effort delivery
L1	Physical	physical transfer of bits

Each layer provides a service to the layer above by using the services of the layer directly below it

Each layer has a unit of data (aka protocol data unit)

	layer	role (PDU)
L5	Application	exchanges messages between processes
L4	Transport	transports segments between end-systems
L3	Network	moves packets around the network
L2	Link	moves frames across a link
L1	Physical	moves bits across a physical medium

Each layer (except for L3) is implemented with different protocols

	layer	protocols
L5	Application	HTTP, SMTP, FTP, SIP,
L4	Transport	TCP, UDP, SCTP
L3	Network	IP
L2	Link	Ethernet, Wifi, ADSL, WiMAX, LTE,
L1	Physical	Twisted pair, fiber, coaxial cable,

The Internet Protocol (IP) is the **glue** acting as a unifying network layer

	layer	protocols
L5	Application	HTTP, SMTP, FTP, SIP,
L4	Transport	TCP, UDP, SCTP
L3	Network	IP
L2	Link	Ethernet, Wifi, ADSL, WiMAX, LTE,
L1	Physical	Twisted pair, fiber, coaxial cable,

Each layer is implemented with different protocols and technologies

	layer	technology	
L5	Application	Software	
L4	Transport	Hardware	
L3	Network		
L2	Link		
L1	Physical		

Software and hardware advancements

Each layer takes messages from the layer above, and *encapsulates* with its own header and/or trailer

In practice, layers are distributed on every network device

Since when bits arrive they must make it to the application, all the layers exist on a host

Routers act as L3 gateway as such they implement L2 and L3

Switches act as L2 gateway as such they only implement L2

Overview

How do we characterize the network?

A network *connection* is characterized by its delay, loss rate and throughput

How long does it take for a packet to reach the destination

What fraction of packets sent to a destination are dropped?

At what rate is the destination receiving data from the source?

Delay

Each packet suffers from several types of delays at each node along the path

total delay

Each packet suffers from several types of delays at *each node* along the path

- transmission delay
- + **propagation** delay
- + processing delay

tend to be tiny

+ queueing delay

= total delay

The transmission delay is the amount of time required to push all of the bits onto the link

The propagation delay is the amount of time required for a bit to travel to the end of the link

How long does it take to exchange 100 Bytes packet?

If we have a 1 Gbps link, the total time decreases to 1.0008 ms

If we now exchange a 1GB file split in 100B packets

Different transmission characteristics imply different tradeoffs in terms of which delay dominates

10 ⁷ x100B pkts	1Gbps link	transmission delay dominates
1x100B pkt	1Gbps link	propagation delay dominates

1Mbps link

1x100B pkt

In the Internet, we cannot know in advance which one matter!

both matter

The queuing delay is the amount of time a packet waits (in a buffer) to be transmitted on a link

Queuing delay is the hardest to evaluate

as it varies from packet to packet

It is characterized with statistical measures

e.g., average delay & variance, probability of exceeding x

Queuing delay depends on the traffic pattern

Queues absorb transient bursts, but introduce queueing delays

The time a packet has to sit in a buffer before being processed depends on the traffic pattern

Queueing delay depends on:

arrival rate at the queue

transmission rate of the outgoing link

traffic **burstiness**

average packet arrival rate

J

[packet/sec]

transmission rate of outgoing link

R

[bit/sec]

fixed packets length

L

[bit]

average bits arrival rate

La

[bit/sec]

traffic intensity

La/R

When the traffic intensity is >1, the queue will increase without bound, and so does the queuing delay

Golden rule

Design your queuing system,
so that it operates far from that point

When the traffic intensity is <=1, queueing delay depends on the burst size

Loss

In practice, queues are not infinite.
There is an upper bound on queuing delay.

queuing delay upper bound: N*L/R

If the queue is persistently overloaded, it will eventually drop packets (loss)

Throughput

throughput (

The throughput is the instantaneous rate at which a host receives data

To compute throughput, one has to consider the bottleneck link

Average throughput $min(R_S, R_L)$ = transmission rate of the bottleneck link

To compute throughput, one has to consider the bottleneck link... and the intervening traffic

if $4*min(R_S,R_L) > R$

the bottleneck is now in the core, providing each download R/4 of throughput

As technology improves, throughput increase & delays are getting lower except for propagation (speed of light)

Because of propagation delays, Content Delivery Networks move content closer to you

^{*} http://wwwnui.akamai.com/gnet/globe/index.html

To be continued...