1) Burbuja vs Inserción

Enunciado: Bubble sort: $5n^2$, Insertion sort: $2n^2 + 20n$. **Idea:** Se cumple $2n^2 + 20n < 5n^2 \blacksquare n > 20/3 \approx 6.7$.

Conclusión: Conclusión: Para $n \ge 7$, insertion sort es más rápido.

2) Merge vs Quick

Enunciado: Merge: 40n log∎n, Quick (peor caso): n². Idea: 40n log∎n < n² ■ 40 log∎n < n, cruce en n ≈ 45. Conclusión: Conclusión: Para n ≥ 45, merge sort es mejor.

3) Lineal vs Logarítmico

Enunciado: Algoritmo A: 200n, Algoritmo B: 500 log \blacksquare n. **Idea:** 500 log \blacksquare n < 200n \blacksquare n/log \blacksquare n > 2.5, cruce en n \approx 20.

Conclusión: Conclusión: Para n > 20, el logarítmico es más rápido.

4) Fuerza bruta vs Divide & Conquer

Enunciado: Bruta: n², Divide&Conquer;: 25n log**■**n.

Idea: 25 log**■**n < n, cruce en n \approx 30.

Conclusión: Conclusión: Para n ≥ 30, divide & conquer es más eficiente.

5) Recursión exponencial vs DP

Enunciado: Recursivo Fibonacci: 2^n, DP: 10n.

Idea: $10n < 2^n$, sucede desde $n \approx 10$.

Conclusión: Conclusión: Para n ≥ 10, DP es mucho mejor.

6) Algoritmo cuadrático vs cúbico

Enunciado: A: n² + 100n, B: n³.

Idea: $n^2 + 100n < n^3$ ■ cruce en $n \approx 11$.

Conclusión: Conclusión: Para n ≥ 11, A es mejor.

7) Búsqueda lineal vs binaria

Enunciado: Lineal: 5n, Binaria: 100 log

■n.

Idea: 100 log**■**n < 5n ■ 20 log**■**n < n, cruce en n ≈ 30. **Conclusión:** Conclusión: Para n ≥ 30, binaria es mejor.

8) Cuadrático vs n log n

Enunciado: A: n^2 , B: 50n $\log n$. Idea: 50 $\log n$ < n, cruce en $n \approx 60$. **Conclusión:** Conclusión: Para n ≥ 60, B es más eficiente.

9) Greedy vs Fuerza bruta

Enunciado: Bruta: 2^n, Greedy: 20n².

Idea: $20n^2$ < 2^n , desde n ≈ 20.

Conclusión: Conclusión: Para n ≥ 20, greedy domina.

10) Lineal vs Cuadrático con constante pequeña

Enunciado: A: 1000n, B: $0.5n^2$. **Idea:** $1000n < 0.5n^2 \blacksquare n > 2000$.

Conclusión: Conclusión: Para n ≥ 2000, A es mejor.