ECE100 Homework-4

Total Points: 100

Submit your work in a pdf file electronically in the CCLE website before April 25th 11:59 pm. Late homework will not get credit!

1. A network that is implemented with three resistors and a voltage source as shown below. Its terminal characteristics are also given graphically below. (3 \times 4 = 12 points)

- (a) From the graphical data given above, determine numerical values for the parameters of the Thevenin equivalent of the network.
- (b) Determine numerical values for the parameters V_S and R that characterize the implementation of the network shown above.
- (c) The network is connected to an external current source and resistor as shown below. Determine the value of its terminal voltage v given the external connection.

2. Determine the current i in the network below. (8 points)

3. Find the equivalent resistance between terminals a and b in Figure below (5 points)

4. The equivalent resistance between terminals a and b in Figure below is 23 ohms. Determine the value of R. (5 points)

5. Given R1=15 Ω , R2=5 Ω , R3=20 Ω , R4=10 Ω , R5=8 Ω , R6=4 Ω and Is=5 A, solve for the node voltages shown in Figure. (10 points)

- 6. Starting from the Norton equivalent circuit (current source I_n in parallel with R_t) with a resistive load attached (R_L), find an expression for the power delivered to the load in terms of I_n , R_t and R_L . Assuming that I_n , R_t are fixed values and that R_L is variable, show that maximum power is delivered for $R_L = R_t$. Find an expression for maximum power delivered to the load in terms of and I_n , R_t . (10 points)
- 7. A 100 μ F capacitance is initially charged to 1000 V. At t=0 it is connected to a 1-k Ω resistance. At what time t₂ has 50 percent of the initial energy stored in the capacitance been dissipated in the resistance? (10 points)
- 8. Derive an expression for $v_c(t)$ in the circuit below and sketch $v_c(t)$ to scale versus time. (Note that switch was closed before t=0 and becomes an open after t=0) (15 points)

9. Determine the maximum value of I_L (10 points)

10. The circuit shown in Figure has been set up for a long time prior to t=0 with the switch closed. Find the value of v_C prior to t=0. Find the steady-state value of v_C after the switch has been opened for a long time. (15 points)

