Processamento de Imagens

Processamento de Imagens

Visão Computacional

Computação Gráfica

Processamento de Imagens

- Objetivos
 - Melhoria da informação visual para interpretação humana/máquina
 - Armazenamento/Transmissão
 - Efeitos Digitais

Processamento Digital de Imagens

Melhoria da Informação Visual

- Exemplo:
 - Observe a imagem a seguir... O que está escrito nela ?

 O fato do olho humano não perceber a diferença entre tons próximos não quer dizer que eles não existam...

Processamento Digital de Imagens

Melhoria da Informação Visual

 Mesma imagem com aumento de brilho (143%) e contraste (79%)....

TESTE

 A mensagem já estava presente; apenas intensificamos as diferenças entre os tons....

Processamento de Imagens Software

- MatLab
- SciLab
- Wolfram Alpha
- Octave
- Ferramentas Comerciais
 - Photoshop
 - PaintShop Pro
- Python, Java, OpenCV

Imagens Espaciais: superfície de Marte

Imagens Espaciais: Filtragem reduz ruídos de transmissão

Imagens Médicas: Raio-X de tórax

Imagens Médicas: contraste e contorno melhorados

Imagens Médicas: imagem tomográfica monocromática

Imagens Médicas: imagem tomográfica colorizada

Imagem sobreposta e deslocada

Imagem filtrada

Processamento de Imagens – Prof. Carlos Alexandre – cabm@cin.ufpe.br

Image Denoising

Image Denoising and Super-Resolution

Fonte: "Stochastic Frequency Masking to Improve Super-Resolution and Denoising Networks" ECCV 2020, https://link.springer.com/chapter/10.1007/978-3-030-58517-4_44

Contrast Enhancement

Fonte: "Underwater scene prior inspired deep underwater image and video enhancement" Pattern Recognition, 2020 https://doi.org/10.1016/j.patcog.2019.107038

Centro

Edge Detection by Saliency Map

Fonte: "Saliency-Driven Active Contour Model for Image Segmentation" IEEE Access, 2020

http://dx.doi.org/10.1109/ACCESS.2020.3038945

Saliency Map for Image Segmentation

Fonte: Michael W. Spratling, "Image Segmentation Using a Sparse Coding Model of Cortical Area V1", IEEE Trans.on Image Processing, V.22, No.4, Abril 2013

Representação da Informação

Sinal Original

Quantização

Cuidados na Amostragem

 Em termos de imagem, a amostragem cria a matriz referente à imagem (define as dimensões da matriz – medido em dpi) e a quantização define resolução de cor da imagem

Circuito sample-and-hold no MatLab

Source Block Parameters: Chirp Signal X Entrada -chirp (mask) (link) Scope Output a linear chirp signal (sine wave, whose frequency vari-**#** 🔠 🖺 🗿 🛅 \mid 🔎 👂 🔊 📗 linearly with time). Parameters: Initial frequency (Hz): 0.7Target time (secs): 100 Frequency at target time (Hz): Time offset: 0 ✓ Interpret vectors parameters as 1-D

Help

Cancel

<u>o</u>k

Circuito sample-and-hold no MatLab

Saída

Circuito sample-and-hold no MatLab

Saída

Circuito sample-and-hold no MatLab

Saída

O Pixel

- Elementos da Imagem Digital
 - Coordenadas dos Pixels
 - Cor de cada pixel

Imagem Digital

Imagem Digital

- O número de bits utilizado para representar a cor do pixel é chamado resolução de cor da imagem
 - 1, 4, 8, 24 bits
- O número de componentes do pixel é a dimensão do espaço de cor utilizado
 - 2, 16, 256, 16 milhões de cores
- O gamute de uma imagem digital é o conjunto de todas as cores presentes em uma imagem
 - Uma imagem pode estar armazenada em 16 milhões de cores, mas só usar 3 cores (gamute = 3)....

Topologia Digital e Representação Matricial

- Uma topologia para o domínio da imagem é definida de acordo com 2 tipos de vizinhança discreta
 - vizinhança 4-conectada
 - vizinhança 8-conectada

Topologia Digital e Representação Matricial

- Relacionamento entre Pixels
 - Vizinhos de um Pixel
 - o Dado o pixel p(x,y):
 - Vizinhos verticais e horizontais

•
$$(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)$$

Vizinhos diagonais

•
$$(x + 1, y + 1), (x + 1, y - 1), (x - 1, y + 1), (x - 1, y - 1)$$

- Em separado, temos cada conjunto acima formando uma vizinhança 4-conectada
- Juntos, temos a vizinhança 8-conectada

Pixel

- A resolução espacial de uma imagem é medida pelo número de pixels necessário para representar uma polegada
 - dpi dots per inch (pontos por polegada)
- Há também a resolução de cor
 - Define o número máximo de cores que uma imagem pode ter

Pixel

- Grande dificuldade:
 - Balanceamento da equação:

Qualidade da Imagem

X

Tempo de Processamento

X

Espaço de Armazenamento

Resolução Espacial da Imagem

- Definida na Digitalização da Imagem
 - Scanner, por exemplo....
- Normalmente, não pode ser alterada após a digitalização
- Mudança de resolução não é mudança de dimensões da imagem
 - Embora a mudança de resolução provoque uma mudança em dimensões

Resolução Espacial da Imagem

• Exemplo:

Resolução Espacial da Imagem

original image (taken from flickr commons)

subsampled image

Processamento de Imagens – Prof. Carlos Alexandre – cabm@cin.ufpe.br

420 x 348 pixels 16 M cores 856 Kb

Tamanho Original

210 x 174 pixels 16M cores 214 Kb (apresentada em zoom)

Tamanho Original

105 x 87 pixels 16M cores 53 Kb (apresentada em zoom)

Tamanho Original

57 x 47 pixels 16M cores 15 Kb (apresentada em zoom)

Tamanho Original

Quantização: Variação do Número de Cores

420 x 348 pixels 16 M cores 856 Kb

Quantização : Variação do Número de Cores

420 x 348 pixels 256 cores 285 Kb

Quantização : Variação do Número de Cores

420 x 348 pixels 16 cores 145 Kb

Quantização: Variação do Número de Cores

420 x 348 pixels 2 cores 38 Kb

Quantização: Variação do Número de Tons de Cinza

420 x 348 pixels 256 níveis 285 Kb

Quantização: Variação do Número de Tons de Cinza

420 x 348 pixels 16 níveis 145 Kb

Quantização: Variação do Número de Tons de Cinza

420 x 348 pixels 2 níveis (P&B) 38 Kb

Sistema Visual Humano

Sistema Visual Humano

- Como vemos?
- O sistema visual humano é apenas o olho?
- Como a imagem é formada?
 - Questões relacionadas
- Problemas

Estrutura (versão simplificada)

Estrutura (versão completa)

Estrutura (versão completa)

Estrutura (versão completa)

A Retina

Estrutura

- Lentes
 - Suspensas por músculos cuja contração permite que a lente mude o foco
 - o São convexas;
 - Sua cor é amarelada, e se acentua com a idade;
 - Absorve 8% da luz visível do espectro
 - É composta de 60% a 70% de água, 6% de gordura e proteínas (que absorve luz ultravioleta e infravermelho)

Estrutura

Retina

- Membrana que reveste a parede mais interna do olho;
- É responsável por perceber a imagem projetada e decodificar as informações em sinais neurais para transmiti-las para o cérebro;
- A imagem de um objeto sendo observado é projetada na parte central da retina onde fica a fóvea

Formação da imagem na retina

- O sistema visual humano usa lentes convexas para produzir uma imagem no fundo do olho
- Se um objeto é colocado longe de uma lente convexa, esta produzirá a imagem do objeto do lado oposto da lente, de tamanho inversamente proporcional à distância entre o objeto e o olho e de forma invertida

Estrutura

- Retina
 - Receptores de luz distribuídos pela superfície da retina:
 - Cones: de 6 a 7 milhões, estão localizados na fóvea, sensíveis a luz, cada cone está conectado ao seu nervo final (discriminação de detalhes finos).
 - Bastonetes: de 75 a 150 milhões, distribuídas sobre a superfície da retina, vários bastonetes são conectados a um único nervo (reduz discriminação de detalhes).
 Serve para dar uma visão geral da imagem, são sensíveis a baixos níveis de iluminação.

- Estrutura
 - Distribuição dos cones e bastonetes na retina

Faixa Visível do Espectro

- Sobre as cores preto e branco:
 - https://www.adobe.com/creativecloud/design/ discover/is-black-a-color.html

- O olho humano é mais sensível ao verde, depois ao vermelho e por último ao azul
- Pode-se representar a imagem em outros padrões que explorem essas características, como em termos de luminância e crominância
 - Luminância está relacionada ao brilho da imagem e é proporcional à energia emitida pela fonte
 - Crominância está associada à percepção de saturação e matiz

- Como percebemos profundidade?
 - Visão Estereoscópica

- Visão Tridimensional
 - Exemplo:

- Visão Tridimensional
 - Exemplo:

- Como percebemos profundidade?
 - Outras pistas

- Modelagem do que nosso sistema visual percebe
 - Visão Computacional

- Percepção de cores
 - A identificação de uma cor está associada à comparação daquela cor percebida com um referencial em nosso cérebro
 - Geralmente a cor branca é o "padrão"
 - Temos na mente uma expectativa de "constância de cor"
 - o Funciona sempre??

- Percepção de cores
 - Exemplo: observe essa imagem...

Você acha que as paredes dessa casa são da mesma cor? Por quê?

- Percepção de cores
 - Exemplo: observe essa imagem...

Na verdade, o lado mais "escuro" é pintado com tinta mais clara do que a tinta da frente (que aparenta ser mais clara).

Questões....

Referências

- Processamento de Imagens em Colab:
 - https://colab.research.google.com/drive/16Rt UqYRNKelL4ySDKQFysmuZM0nViarj#scroll To=wXoOISLWBoYf&uniqifier=1

