# Introduction to computational linguistics

Exercise session 1: "Algorithms for matching"

Thursday May 7 2009

- a. Show how to compute  $Z_i$  stepwise for i > 1 (using the notion of Z-boxes) for the following strings:
  - i. AABCAABXAAZ
  - ii. ABCDXABCYABDXY
- Apply the Knuth-Morris-Pratt algorithm to find occurrences of ABXYABXZ in XABXYABXYABXZABXZABXYABXZA

#### S = AABCAABXAAZ

#### Step 0)

Compute  $Z_2(S)$  by comparing left-to-right S[2..ISI] and S[1..ISI] until a mismatch is found;  $Z_2(S)$  is the length of that string. If  $Z_2(S) > 0$  then  $r=r2=Z_2(S)+1$  and l=2, else l=r=0

| S          | Α | Α | В | С | Α | Α | В | Х | Α | Α  | Z |  |
|------------|---|---|---|---|---|---|---|---|---|----|---|--|
|            | Ι | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П |  |
| $Z_{i}(S)$ |   | I |   |   |   |   |   |   |   |    |   |  |

$$Z_2(S)=1: \{ A A B ... \} \text{ so } I=2, r=Z_2(S)+1=1+1=2$$

k > r: 3 > (r=2) so find  $Z_3(S)$  by comparing S[3...ISI] to S[1..ISI] until a mismatch is found; if  $Z_3(S) > 0$  then I=3, r=3+ $Z_3(S)$ -1

k > r: 3 > (r=2) so find  $Z_3(S)$  by comparing S[3...ISI] to S[1..ISI] until a mismatch is found; if  $Z_3(S) > 0$  then I=3, r=3+ $Z_3(S)$ -1

 $S(3)='B' \neq S(1)='A'$ , hence  $Z_3(S)=0$ , I and r remain as they are: I=r=2

k > r: 3 > (r=2) so find  $Z_3(S)$  by comparing S[3...ISI] to S[1..ISI] until a mismatch is found; if  $Z_3(S) > 0$  then I=3, r=3+ $Z_3(S)$ -1

 $S(3)='B' \neq S(1)='A'$ , hence  $Z_3(S)=0$ , I and r remain as they are: I=r=2

| S          | Α | Α | В | С | Α | Α | В | Х | Α | Α  | Z |  |
|------------|---|---|---|---|---|---|---|---|---|----|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П |  |
| $Z_{i}(S)$ |   | I | 0 |   |   |   |   |   |   |    |   |  |

$$Z_3(S)=0$$
 so  $l=2$ ,  $r=2$ 

k > r: 4 > (r=2) so find  $Z_4(S)$  by comparing S[4...ISI] to S[1..ISI] until a mismatch is found; if  $Z_4(S) > 0$  then I=4,  $r=4+Z_4(S)-1$ 

k > r: 4 > (r=2) so find  $Z_4(S)$  by comparing S[4...ISI] to S[1..ISI] until a mismatch is found; if  $Z_4(S) > 0$  then I=4,  $r=4+Z_4(S)-1$ 

 $S(4)='C' \neq S(1)='A'$ , hence  $Z_4(S)=0$ , I and r remain as they are: I=r=2

k > r: 4 > (r=2) so find  $Z_4(S)$  by comparing S[4...ISI] to S[1..ISI] until a mismatch is found; if  $Z_4(S) > 0$  then I=4,  $r=4+Z_4(S)-1$ 

 $S(4)='C' \neq S(1)='A'$ , hence  $Z_4(S)=0$ , I and r remain as they are: I=r=2

| S          | Α | Α | В | С | Α | Α | В | X | Α | Α  | Z |  |
|------------|---|---|---|---|---|---|---|---|---|----|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Π |  |
| $Z_{i}(S)$ |   | I | 0 | 0 |   |   |   |   |   |    |   |  |

$$Z_4(S)=0$$
 so  $I=2$ ,  $r=2$ 

k > r: 5 > (r=2) so find  $Z_5(S)$  by comparing S[5...ISI] to S[1..ISI] until a mismatch is found; if  $Z_5(S) > 0$  then I=5, r=5+ $Z_5(S)$ -1

k > r: 5 > (r=2) so find  $Z_5(S)$  by comparing S[5...ISI] to S[1..ISI] until a mismatch is found; if  $Z_5(S) > 0$  then I=5, r=5+ $Z_5(S)$ -1

S[5..7]="A A B" matches S[1..3]="A A B", hence  $Z_5(S)$ =3, and I and r are set as follows: I=5, r=5+ $Z_5(S)$ -1=5+3-1=7

k > r: 5 > (r=2) so find  $Z_5(S)$  by comparing S[5...ISI] to S[1..ISI] until a mismatch is found; if  $Z_5(S) > 0$  then I=5, r=5+ $Z_5(S)$ -1

S[5..7]="A A B" matches S[1..3]="A A B", hence  $Z_5(S)$ =3, and I and r are set as follows: I=5, r=5+ $Z_5(S)$ -1=5+3-1=7

| S          | Α | Α | В | С | Α | Α | В | X | Α | Α  | Z |  |
|------------|---|---|---|---|---|---|---|---|---|----|---|--|
|            | — | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П |  |
| $Z_{i}(S)$ |   | Ι | 0 | 0 | 3 |   |   |   |   |    |   |  |

$$Z_5(S)=3$$
 so  $l=5$ ,  $r=7$ 

 $6 \le (r=7)$ : position k=6 is contained in a Z-box (namely, "AAB"=S[5..7], with S(6)='A').

 $6 \le (r=7)$ : position k=6 is contained in a Z-box (namely, "AAB"=S[5..7], with S(6)='A').

Hence S(6) also appears in k'=k-l=6-5+1=2: S(6)=S(2)='A'

 $6 \le (r=7)$ : position k=6 is contained in a Z-box (namely, "AAB"=S[5..7], with S(6)='A').

Hence S(6) also appears in k'=k-l=6-5+1=2: S(6)=S(2)='A'

Therefore, S[6..7] must match S[2..3], which it does

 $6 \le (r=7)$ : position k=6 is contained in a Z-box (namely, "AAB"=S[5..7], with S(6)='A').

Hence S(6) also appears in k'=k-l=6-5+1=2: S(6)=S(2)='A'

Therefore, S[6..7] must match S[2..3], which it does

Furthermore, there must be a match to a prefix of S of length minimum  $[Z_2(S), IS[2..3]I]$ , i.e. minimum [1,r-k+1=2] = 2

 $6 \le (r=7)$ : position k=6 is contained in a Z-box (namely, "AAB"=S[5..7], with S(6)='A').

Hence S(6) also appears in k'=k-l=6-5+1=2: S(6)=S(2)='A'

Therefore, S[6..7] must match S[2..3], which it does

Furthermore, there must be a match to a prefix of S of length minimum  $[Z_2(S), IS[2..3]I]$ , i.e. minimum [1,r-k+1=2] = 2

Step 2a)

 $6 \le (r=7)$ : position k=6 is contained in a Z-box (namely, "AAB"=S[5..7], with S(6)='A').

Hence S(6) also appears in k'=k-l=6-5+1=2: S(6)=S(2)='A'

Therefore, S[6..7] must match S[2..3], which it does

Furthermore, there must be a match to a prefix of S of length minimum  $[Z_2(S), IS[2..3]]$ , i.e. minimum [1,r-k+1=2] = 2

#### Step 2a)

 $Z_6(S)=Z_2(S)=1$  which is smaller than the length of S[2..3], hence I and r stay the same

 $6 \le (r=7)$ : position k=6 is contained in a Z-box (namely, "AAB"=S[5..7], with S(6)='A').

Hence S(6) also appears in k'=k-l=6-5+1=2: S(6)=S(2)='A'

Therefore, S[6..7] must match S[2..3], which it does

Furthermore, there must be a match to a prefix of S of length minimum  $[Z_2(S), IS[2..3]]$ , i.e. minimum [1,r-k+1=2] = 2

#### Step 2a)

 $Z_6(S)=Z_2(S)=1$  which is smaller than the length of S[2..3], hence I and r stay the same

| S          | Α | Α | В | С | Α | Α | В | Х | Α | Α  | Z |  |
|------------|---|---|---|---|---|---|---|---|---|----|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П |  |
| $Z_{i}(S)$ |   | I | 0 | 0 | 3 | I |   |   |   |    |   |  |

 $Z_6(S)=Z_2(S)=1$  so I and r remain the same: I=5, r=7

 $7 \le (r=7)$ : position k=7 is contained in S[5..7], with S(7)='B'.

 $7 \le (r=7)$ : position k=7 is contained in S[5..7], with S(7)='B'.

Hence S(7) also appears in k'=k-l=7-5+1=3: S(7)=S(3)='B'

 $7 \le (r=7)$ : position k=7 is contained in S[5..7], with S(7)='B'.

Hence S(7) also appears in k'=k-l=7-5+1=3: S(7)=S(3)='B'

Therefore, S[7..7] must match S[3..3], i.e. S(7)=S(3), which it does

 $7 \le (r=7)$ : position k=7 is contained in S[5..7], with S(7)='B'.

Hence S(7) also appears in k'=k-l=7-5+1=3: S(7)=S(3)='B'

Therefore, S[7..7] must match S[3..3], i.e. S(7)=S(3), which it does

Furthermore, there must be a match to a prefix of S of length minimum  $[Z_3(S), IS[3..3]I]$ , i.e. minimum [0,r-k+1=1] = 1



 $7 \le (r=7)$ : position k=7 is contained in S[5..7], with S(7)='B'.

Hence S(7) also appears in k'=k-l=7-5+1=3: S(7)=S(3)='B'

Therefore, S[7..7] must match S[3..3], i.e. S(7)=S(3), which it does

Furthermore, there must be a match to a prefix of S of length minimum  $[Z_3(S), IS[3..3]I]$ , i.e. minimum [0,r-k+1=1] = 1

Step 2a)

 $7 \le (r=7)$ : position k=7 is contained in S[5..7], with S(7)='B'.

Hence S(7) also appears in k'=k-l=7-5+1=3: S(7)=S(3)='B'

Therefore, S[7..7] must match S[3..3], i.e. S(7)=S(3), which it does

Furthermore, there must be a match to a prefix of S of length minimum  $[Z_3(S), IS[3..3]]$ , i.e. minimum [0,r-k+1=1] = 1

#### Step 2a)

 $Z_7(S)=Z_3(S)=0$  which is smaller than the length of S[3..3], hence I and r stay the same

 $7 \le (r=7)$ : position k=7 is contained in S[5..7], with S(7)='B'.

Hence S(7) also appears in k'=k-l=7-5+1=3: S(7)=S(3)='B'

Therefore, S[7..7] must match S[3..3], i.e. S(7)=S(3), which it does

Furthermore, there must be a match to a prefix of S of length minimum  $[Z_3(S), IS[3..3]]$ , i.e. minimum [0,r-k+1=1] = 1

#### Step 2a)

 $Z_7(S)=Z_3(S)=0$  which is smaller than the length of S[3..3], hence I and r stay the same

| S          | Α | Α | В | С | Α | Α | В | Х | Α | Α  | Z |  |
|------------|---|---|---|---|---|---|---|---|---|----|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П |  |
| $Z_{i}(S)$ |   | I | 0 | 0 | 3 | ı | 0 |   |   |    |   |  |

 $Z_7(S)=Z_3(S)=0$  so I and r remain the same: I=5, r=7

$$k=8 > (r=7)$$
 so step 1:

match S[8..ISI] to S[1..ISI]: mismatch, so  $Z_8(S)=0$ , I and r remain the same

| S          | Α | Α | В | С | Α | Α | В | X | Α | Α  | Z | 7 <sub>0</sub> (9 | S)=0 so l=5, r=7 |
|------------|---|---|---|---|---|---|---|---|---|----|---|-------------------|------------------|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | -8/               |                  |
| $Z_{i}(S)$ |   | I | 0 | 0 | 3 | I | 0 | 0 |   |    |   |                   |                  |

$$k=9 > (r=7)$$
 so step 1:

match S[9..ISI] to S[1..ISI]: match S[9..10]=S[1..2], so  $Z_9(S)=2$ , I=9 and r=10

 $k=10 \le (r=10)$  so step 2:

S(10) contained in S[9..10]; S(10) matches S(10-9+1)=S(2)='A';  $Z_2(S)=1 \ge I$ S[10..10]I=10-10+1=1, hence **Step 2b)** but mismatch

| S          | Α | Α | В | С | Α | Α | В | Х | Α | Α  | Z | $Z_{10}(S)=1$      |
|------------|---|---|---|---|---|---|---|---|---|----|---|--------------------|
|            | ı | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | -10 <sup>(3)</sup> |
| $Z_{i}(S)$ |   | I | 0 | 0 | 3 | I | 0 | 0 | 2 | ı  |   |                    |

k=11 > (r=10) so step 1:

match S[11..ISI] to S[1..ISI]: mismatch so  $Z_{11}(S)=0$ 





| _ | S                | Α | В | С | D | Х | Α | В | С | Υ | Α  | В | D  | X  | Υ  | $Z_{2}(S)=0$ |
|---|------------------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|--------------|
|   |                  | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 |              |
| Z | <sub>i</sub> (S) |   | 0 |   |   |   |   |   |   |   |    |   |    |    |    |              |

$$Z_2(S)$$
: S(2)  $\neq$  S(1) so  $Z_2(S)$ =0, r=l=0

| _ | S   | Α | В | С | D | Х | Α | В | С | Υ | Α  | В | D  | Х  | Υ  | $Z_2(S)=0$ |
|---|-----|---|---|---|---|---|---|---|---|---|----|---|----|----|----|------------|
|   |     | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | 2/3/3      |
| Z | (S) |   | 0 |   |   |   |   |   |   |   |    |   |    |    |    |            |

i=3..5: 
$$Z_i(S)$$
:  $S(i) \neq S(1)$  so  $Z_i(S)$ =0, r=l=0



|   | S    | Α | В | С | D | X | Α | В | C | Υ | Α  | В | D  | X  | Y  | $Z_2(S)=0$ |
|---|------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|------------|
|   |      | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 |            |
| Z | i(S) |   | 0 |   |   |   |   |   |   |   |    |   |    |    |    |            |

i=3..5:  $Z_i(S)$ :  $S(i) \neq S(1)$  so  $Z_i(S)$ =0, r=l=0

|                  | S  | Α | В | С | D | X | Α | В | С | Υ | Α  | В | D  | Χ  | Y  | $Z_{i=35}(S)=0$     |
|------------------|----|---|---|---|---|---|---|---|---|---|----|---|----|----|----|---------------------|
|                  |    | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | ==35 <sup>(3)</sup> |
| Z <sub>i</sub> ( | S) | I | 0 | 0 | 0 | 0 |   |   |   |   |    |   |    |    |    |                     |



| _ | S    | Α | В | С | D | X | Α | В | С | Υ | Α  | В | D  | X  | Υ  | $Z_{2}(S)=0$ |
|---|------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|--------------|
|   |      | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 |              |
| Z | i(S) | 1 | 0 |   |   |   |   |   |   |   |    |   |    |    |    |              |

i=3..5:  $Z_i(S)$ :  $S(i) \neq S(1)$  so  $Z_i(S)$ =0, r=l=0

|         | S   | Α | В | U | D | Х | Α | В | С | Υ | Α  | В | D  | X  | Υ  | $Z_{i=35}(S)=0$       |
|---------|-----|---|---|---|---|---|---|---|---|---|----|---|----|----|----|-----------------------|
|         |     | Ι | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | Z <sub>1=35</sub> (3) |
| $Z_{i}$ | (S) |   | 0 | 0 | 0 | 0 |   |   |   |   |    |   |    |    |    |                       |

 $Z_6(S)$ : S(6) = S(1): S[6..8] matches S[1..3], so  $Z_6(S)$ =3, l=6 and r=8

## a.ii) Z<sub>i</sub> for ABCDXABCYABDXY

 $Z_{2}(S)$ : S(2)  $\neq$  S(1) so  $Z_{2}(S)$ =0, r=l=0

| _ | S    | Α | В | С | D | Х | Α | В | С | Υ | Α  | В | D  | Х  | Υ  | $Z_2(S)=0$ |
|---|------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|------------|
|   |      | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 |            |
| Z | i(S) |   | 0 |   |   |   |   |   |   |   |    |   |    |    |    |            |

i=3..5:  $Z_i(S)$ :  $S(i) \neq S(1)$  so  $Z_i(S)$ =0, r=l=0

|                  | S  | Α | В | С | D | X | Α | В | С | Υ | Α  | В | D  | X  | Y  | $Z_{i=35}(S)=0$       |
|------------------|----|---|---|---|---|---|---|---|---|---|----|---|----|----|----|-----------------------|
|                  |    | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | Z <sub>1=35</sub> (3) |
| Z <sub>i</sub> ( | S) | I | 0 | 0 | 0 | 0 |   |   |   |   |    |   |    |    |    |                       |

 $Z_6(S)$ : S(6) = S(1): S[6..8] matches S[1..3], so  $Z_6(S)$ =3, l=6 and r=8

| S          | Α | В | U | Δ | X | Α | В | С | Υ | Α  | В | D  | X  | Y  | $Z_{6}(S)=3$ |
|------------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|--------------|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | 6(3)         |
| $Z_{i}(S)$ |   | 0 | 0 | 0 | 0 | 3 |   |   |   |    |   |    |    |    |              |









| _ | S                | Α | В | С | D | Х | Α | В | С | Υ | Α  | В | D  | X  | Υ  | Z <sub>7</sub> (S)=0 |
|---|------------------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----------------------|
|   |                  | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 |                      |
| Z | <sub>i</sub> (S) | - | 0 | 0 | 0 | 0 | 3 | 0 |   |   |    |   |    |    |    |                      |



| _ | S                | Α | В | С | D | Х | Α | В | С | Υ | Α  | В | D  | X  | Υ  | Z <sub>7</sub> (S)=0 |
|---|------------------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----------------------|
|   |                  | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | 2/(3)                |
| Z | <sub>i</sub> (S) |   | 0 | 0 | 0 | 0 | 3 | 0 |   |   |    |   |    |    |    |                      |

 $Z_8(S)$ : 8  $\leq$  (r=8) hence S(8)=S(8-6+1)=S(3)='C',  $Z_3(S)$ =0 whereas IS[8..8]I=1, hence  $Z_8(S)$ = $Z_3(S)$ =0 and I and remain as they are: I=6 and r=8



| S                  | Α | В | С | D | X | Α | В | С | Υ | Α  | В | D  | X  | Υ  | Z <sub>7</sub> (S)=0 |
|--------------------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----------------------|
|                    | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 |                      |
| Z <sub>i</sub> (S) |   | 0 | 0 | 0 | 0 | 3 | 0 |   |   |    |   |    |    |    |                      |

 $Z_8(S)$ : 8  $\leq$  (r=8) hence S(8)=S(8-6+1)=S(3)='C',  $Z_3(S)$ =0 whereas IS[8..8]I=1, hence  $Z_8(S)$ = $Z_3(S)$ =0 and I and remain as they are: I=6 and r=8

| _ | S    | Α | В | С | D | X | Α | В | С | Υ | Α  | В | D  | X  | Υ  | $Z_{8}(S)=0$ |
|---|------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|--------------|
|   |      | — | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | _8(0)        |
| Z | i(S) | I | 0 | 0 | 0 | 0 | 3 | 0 | 0 |   |    |   |    |    |    |              |



| _ | S                | Α | В | С | D | Х | Α | В | С | Υ | Α  | В | D  | X  | Υ  | Z <sub>7</sub> (S)=0 |
|---|------------------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----------------------|
|   |                  | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 |                      |
| Z | <sub>i</sub> (S) | - | 0 | 0 | 0 | 0 | 3 | 0 |   |   |    |   |    |    |    |                      |

 $Z_8(S)$ : 8  $\leq$  (r=8) hence S(8)=S(8-6+1)=S(3)='C',  $Z_3(S)$ =0 whereas IS[8..8]I=1, hence  $Z_8(S)$ = $Z_3(S)$ =0 and I and remain as they are: I=6 and r=8

|         | S   | Α | В | С | D | X | Α | В | С | Υ | Α  | В | D  | X  | Υ  | Z <sub>8</sub> (S)=0 |
|---------|-----|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----------------------|
|         |     | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |   | 12 | 13 | 14 | _8(3)                |
| $Z_{i}$ | (S) |   | 0 | 0 | 0 | 0 | 3 | 0 | 0 |   |    |   |    |    |    |                      |

 $Z_9(S)$ : 9 > (r=8) but S(9)  $\neq$  S(1) hence  $Z_9(S)$ =0 and I and remain as they are: I=6 and r=8

## a.ii) Z<sub>i</sub> for ABCDXABCYABDXY

 $Z_7(S)$ : 7  $\leq$  (r=8) hence S(7)=S(7-6+1)=S(2)='B',  $Z_2(S)$ =0 whereas IS[7..8]I=2, hence  $Z_7(S)$ = $Z_2(S)$ =0 and I and remain as they are: I=6 and r=8

| 5                 | 3  | Α | В | U | D | X | Α | В | С | Υ | Α  | В | D  | X  | Υ  | $Z_7(S)=0$ |
|-------------------|----|---|---|---|---|---|---|---|---|---|----|---|----|----|----|------------|
|                   |    | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 |            |
| Z <sub>i</sub> (S | 3) |   | 0 | 0 | 0 | 0 | 3 | 0 |   |   |    |   |    |    |    |            |

 $Z_8(S)$ : 8  $\leq$  (r=8) hence S(8)=S(8-6+1)=S(3)='C',  $Z_3(S)$ =0 whereas IS[8..8]I=1, hence  $Z_8(S)$ = $Z_3(S)$ =0 and I and remain as they are: I=6 and r=8

| _ | S   | Α | В | С | D | X | Α | В | С | Υ | Α  | В | D  | Χ  | Υ  | Z <sub>8</sub> (S)=0 |
|---|-----|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----------------------|
|   |     | - | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | _8(3)                |
| Z | (S) | I | 0 | 0 | 0 | 0 | 3 | 0 | 0 |   |    |   |    |    |    |                      |

 $Z_{9}(S)$ : 9 > (r=8) but S(9)  $\neq$  S(1) hence  $Z_{9}(S)$ =0 and I and remain as they are: I=6 and r=8

| _  | S   | Α | В | С | D | X | Α | В | С | Υ | Α  | В | D  | Χ  | Υ  | $Z_{9}(S)=0$ |
|----|-----|---|---|---|---|---|---|---|---|---|----|---|----|----|----|--------------|
|    |     | Ι | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | <u> </u>     |
| Zi | (S) |   | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |    |   |    |    |    |              |



 $Z_{10}(S)$ : 10 > (r=8), S(10)=S(1), match S[10..1] with S[1..2], hence  $Z_{10}(S)$ =2 and I=10 and r=11

 $Z_{10}(S)$ : 10 > (r=8), S(10)=S(1), match S[10..1] with S[1..2], hence  $Z_{10}(S)$ =2 and l=10 and r=11

| _ | S                | Α | В | С | D | Х | Α | В | С | Υ | Α  | В | D  | X  | Υ  | $Z_{10}(S)=0$      |
|---|------------------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|--------------------|
|   |                  | _ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | -10 <sup>(3)</sup> |
| Z | <sub>i</sub> (S) |   | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 2  |   |    |    |    |                    |

 $Z_{10}(S)$ : 10 > (r=8), S(10)=S(1), match S[10..1] with S[1..2], hence  $Z_{10}(S)$ =2 and l=10 and r=11

| _ | S                | Α | В | С | D | Х | Α | В | С | Υ | Α  | В | D  | X  | Υ  | $Z_{10}(S)=0$      |
|---|------------------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|--------------------|
|   |                  | _ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | -10 <sup>(3)</sup> |
| Z | <sub>i</sub> (S) |   | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 2  |   |    |    |    |                    |

 $Z_{11}(S)$ : 11  $\leq$  (r=11) hence S(11)=S(11-10+1)=S(2)='B',  $Z_2(S)$ =0 whereas IS[11..11]I=1, hence  $Z_{11}(S)$ = $Z_2(S)$ =0 and I and remain as they are: I=10 and r=11

 $Z_{10}(S)$ : 10 > (r=8), S(10)=S(1), match S[10..1] with S[1..2], hence  $Z_{10}(S)$ =2 and I=10 and r=11

| _ | S    | Α | В | С | D | Х | Α | В | С | Υ | Α  | В | D  | Х  | Υ  | $Z_{10}(S)=0$      |
|---|------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|--------------------|
|   |      | _ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | -10 <sup>(3)</sup> |
| Z | i(S) |   | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 2  |   |    |    |    |                    |

 $Z_{11}(S)$ : 11  $\leq$  (r=11) hence S(11)=S(11-10+1)=S(2)='B',  $Z_2(S)$ =0 whereas IS[11..11]I=1, hence  $Z_{11}(S)$ = $Z_2(S)$ =0 and I and remain as they are: I=10 and r=11

| _       | S   | Α | В | U | D | X | Α | В | U | Υ | Α  | В | D  | X  | Y  | Z <sub>11</sub> (S)=0 |
|---------|-----|---|---|---|---|---|---|---|---|---|----|---|----|----|----|-----------------------|
|         |     | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | -11 <sup>(3)</sup>    |
| $Z_{i}$ | (S) |   | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 2  | 0 |    |    |    |                       |

# a.ii) Z<sub>i</sub> for ABCDXABCYABDXY

 $Z_{10}(S)$ : 10 > (r=8), S(10)=S(1), match S[10..1] with S[1..2], hence  $Z_{10}(S)$ =2 and l=10 and r=11

|   | S                | Α | В | С | D | Х | Α | В | C | Υ | Α  | В | D  | X  | Υ  | $Z_{10}(S)=0$      |
|---|------------------|---|---|---|---|---|---|---|---|---|----|---|----|----|----|--------------------|
|   |                  | _ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | -10 <sup>(3)</sup> |
| Z | <sub>i</sub> (S) | I | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 2  |   |    |    |    |                    |

 $Z_{11}(S)$ : 11  $\leq$  (r=11) hence S(11)=S(11-10+1)=S(2)='B',  $Z_2(S)$ =0 whereas IS[11..11]I=1, hence  $Z_{11}(S)$ = $Z_2(S)$ =0 and I and remain as they are: I=10 and r=11

|                  | s  | Α | В | С | D | Х | Α | В | С | Υ | Α  | В | D  | Х  | Υ  | Z <sub>11</sub> (S)=0 |
|------------------|----|---|---|---|---|---|---|---|---|---|----|---|----|----|----|-----------------------|
|                  |    | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | 711(9)                |
| Z <sub>i</sub> ( | S) |   | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 2  | 0 |    |    |    |                       |

 $i=12..14: Z_i(S)=0$ 

# a.ii) Z<sub>i</sub> for ABCDXABCYABDXY

 $Z_{10}(S)$ : 10 > (r=8), S(10)=S(1), match S[10..1] with S[1..2], hence  $Z_{10}(S)$ =2 and I=10 and r=11

| _       | S   | Α | В | С | D | Х | Α | В | С | Υ | Α  | В | D  | Х  | Υ  | $Z_{10}(S)=0$ |
|---------|-----|---|---|---|---|---|---|---|---|---|----|---|----|----|----|---------------|
|         |     | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | 710(0)        |
| $Z_{i}$ | (S) |   | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 2  |   |    |    |    |               |

 $Z_{11}(S)$ : 11  $\leq$  (r=11) hence S(11)=S(11-10+1)=S(2)='B',  $Z_2(S)$ =0 whereas IS[11..11]I=1, hence  $Z_{11}(S)$ = $Z_2(S)$ =0 and I and remain as they are: I=10 and r=11

| _       | S   | Α | В | U | D | X | Α | В | С | Υ | Α  | В | D  | X  | Υ  | Z <sub>11</sub> (S)= | :0 |
|---------|-----|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----------------------|----|
|         |     | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | -11(9)               |    |
| $Z_{i}$ | (S) |   | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 2  | 0 |    |    |    |                      |    |

 $i=12..14: Z_i(S)=0$ 

|                  | S   | Α | В | С | D | X | Α | В | С | Υ | Α  | В  | D  | Х  | Υ  | i=1214: Z <sub>i</sub> (S)=0 |
|------------------|-----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|------------------------------|
|                  |     | Ι | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |                              |
| Z <sub>i</sub> ( | (S) |   | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 2  | 0  | 0  | 0  | 0  |                              |

## b) Knuth-Morris-Pratt



- "Apply the Knuth-Morris-Pratt algorithm to find occurrences of ABXYABXZ in XABXYABXYABXZABXZABXYABXZA"
- Pre-processing
  - For each position i in the pattern we need to define sp<sub>i</sub>(P) to be the length of the longest proper suffix of P[1..i] that matches a prefix of P.
  - Optimization: let sp'<sub>i</sub>(P) be sp<sub>i</sub>(P) with the added condition that characters P(i+1) and P(sp'<sub>i</sub>+1) are unequal
  - Compute sp'<sub>i</sub>(P) on the basis of the Z-values for the pattern;
     compute the failure function on the basis of the sp'<sub>i</sub>(P) values

- Basic idea
  - Shift smarter than the naive method does

- A mismatch with P(8) means we can shift 4 places
- Deduction on P alone: no need to know T, or how P and T are aligned
- Complexity of the algorithm
  - The algorithm is linear, not -possibly- sublinear like Boyer-Moore
  - Extension: the Aho-Corasick algorithm for matching sets of patterns

- Basic idea
  - Shift smarter than the naive method does

- A mismatch with P(8) means we can shift 4 places
- Deduction on P alone: no need to know T, or how P and T are aligned
- Complexity of the algorithm
  - The algorithm is linear, not -possibly- sublinear like Boyer-Moore
  - Extension: the Aho-Corasick algorithm for matching sets of patterns

- Basic idea
  - Shift smarter than the naive method does

- A mismatch with P(8) means we can shift 4 places
- Deduction on P alone: no need to know T, or how P and T are aligned
- Complexity of the algorithm
  - The algorithm is linear, not -possibly- sublinear like Boyer-Moore
  - Extension: the Aho-Corasick algorithm for matching sets of patterns

- Basic idea
  - Shift smarter than the naive method does

- A mismatch with P(8) means we can shift 4 places
- Deduction on P alone: no need to know T, or how P and T are aligned
- Complexity of the algorithm
  - The algorithm is linear, not -possibly- sublinear like Boyer-Moore
  - Extension: the Aho-Corasick algorithm for matching sets of patterns



- Basic idea
  - Shift smarter than the naive method does

- A mismatch with P(8) means we can shift 4 places
- Deduction on P alone: no need to know T, or how P and T are aligned
- Complexity of the algorithm
  - The algorithm is linear, not -possibly- sublinear like Boyer-Moore
  - Extension: the Aho-Corasick algorithm for matching sets of patterns

- Basic idea
  - Shift smarter than the naive method does

- A mismatch with P(8) means we can shift 4 places
- Deduction on P alone: no need to know T, or how P and T are aligned
- Complexity of the algorithm
  - The algorithm is linear, not -possibly- sublinear like Boyer-Moore
  - Extension: the Aho-Corasick algorithm for matching sets of patterns

- Basic idea
  - Shift smarter than the naive method does

- A mismatch with P(8) means we can shift 4 places (like good suffix rule!)
- Deduction on P alone: no need to know T, or how P and T are aligned
- Complexity of the algorithm
  - The algorithm is linear, not -possibly- sublinear like Boyer-Moore
  - Extension: the Aho-Corasick algorithm for matching sets of patterns



#### Definition

For each position i in P, define  $sp_i(P)$  to be the length of the longest proper suffix of P[1...i] that matches a prefix of P.

### Optimization

For each position i in P, define  $sp'_i(P)$  to be the length of the longest proper suffix of P[1...i] that matches a prefix of P, with the added condition that characters P(i+1) and P( $sp'_i+1$ ) are unequal.



#### Definition

For each position i in P, define  $sp_i(P)$  to be the length of the longest proper suffix of P[1...i] that matches a prefix of P.

### Optimization

For each position i in P, define  $sp'_i(P)$  to be the length of the longest proper suffix of P[1...i] that matches a prefix of P, with the added condition that characters P(i+1) and P( $sp'_i+1$ ) are unequal.

- Alignment of P and T, left-to-right matching
- The shift rule:

For any alignment of P and T, if the first mismatch (comparing from left to right) occurs in position i+1 of P and position k of T, then shift P to the right (relative to T) so that P[1..sp<sub>i</sub>'] aligns with T[k-sp<sub>i</sub>'..k-1]. In other words, shift P exactly i+1-(sp<sub>i</sub>'+1)=i-sp<sub>i</sub>' places to the right, so that character sp<sub>i</sub>'+1 of P will align with character k in T. In the case that an occurrence of P has been found (no mismatch), shift P by n-sp<sub>i</sub>' places.

## Preprocessing using the Z values

Position j > 1 maps to i if  $i=j+Z_j(P)-1$ . That is, j maps to i if i is the right end of a Z-box starting at j.

### Z-based Knuth-Morris-Pratt

```
for i := 1 to n do

sp_i' := 0;

for j := n downto 2 do

i := j + Z_j(P) - 1;

sp_i' := Z_j
```

## Preprocessing using the Z values

Position j > 1 maps to i if  $i=j+Z_j(P)-1$ . That is, j maps to i if i is the right end of a Z-box starting at j.

### Z-based Knuth-Morris-Pratt

for i := 1 to n do  

$$sp_i' := 0;$$
  
for j := n downto 2 do  
 $i := j + Z_j(P) - 1;$   
 $sp_i' := Z_j$ 

Position j > 1 maps to i if  $i=j+Z_j(P)-1$ . That is, j maps to i if i is the right end of a Z-box starting at j.

$$S = \begin{bmatrix} \alpha & & & & \\ & \alpha & & \\ & & Z_{l_k} & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

for i := 1 to n do  

$$sp_i' := 0;$$
  
for j := n downto 2 do  
 $i := j + Z_j(P) - 1;$   
 $sp_i' := Z_j$ 

Position j > 1 maps to i if  $i=j+Z_j(P)-1$ . That is, j maps to i if i is the right end of a Z-box starting at j.

$$S = \begin{bmatrix} \alpha & & & & \\ & \alpha & & \\ & & Z_{l_k} & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

for i := 1 to n do  

$$sp_i' := 0;$$
  
for j := n downto 2 do  
 $i := j + Z_j(P) - 1;$   
 $sp_i' := Z_j$ 

Position j > 1 maps to i if  $i=j+Z_j(P)-1$ . That is, j maps to i if i is the right end of a Z-box starting at j.



#### Z-based Knuth-Morris-Pratt

 $sp_i' := 0;$ 

$$i := j + Z_{j}(P) -1;$$

$$sp_i' := Z_j$$

sp'<sub>i</sub>(P) is the length of the longest proper suffix of P[1...i] i.e. the length of the Z-box that starts at j (the suffix)

Position j > 1 maps to i if  $i=j+Z_j(P)-1$ . That is, j maps to i if i is the right end of a Z-box starting at j.



#### Z-based Knuth-Morris-Pratt

for 
$$i := 1$$
 to n do

$$sp_i' := 0;$$

for j := n downto 2 do

$$i := j + Z_j(P) -1;$$

$$sp_i' := Z_j$$

sp'<sub>i</sub>(P) is the length of the longest proper suffix of P[1...i] i.e. the length of the Z-box that starts at j (the suffix)

#### Preliminaries

- Shifts through pointers: p points into P, c points into T
- For each position i from 1 to n+1, define the failure function F'(i) to be sp'<sub>i-1</sub> + 1 (and define F(i)=sp<sub>i-1</sub> +1); let sp<sub>0</sub>' and sp<sub>0</sub> be 0.

#### The algorithm

```
preprocess P to find F'(k)=sp'_{k-1}+1 for k from 1 to n+1

c:=1;

p:=1;

while c+(n-p) \le m do

while P(p)=T(c) and p \le n

p:=p+1;

c:=c+1;

if p=n+1 then

report an occurrence of P starting at position c-n of T if p=1 then c:=c+1

p:=F'(p)
```

| S          | Α | В | Х | Υ | Α | В | X | Z |  |
|------------|---|---|---|---|---|---|---|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| $Z_{i}(S)$ |   | 0 | 0 | 0 | 3 | 0 | 0 | 0 |  |

| S          | Α | В | Х | Υ | Α | В | X | Z |  |
|------------|---|---|---|---|---|---|---|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| $Z_{i}(S)$ |   | 0 | 0 | 0 | 3 | 0 | 0 | 0 |  |

for i := 1 to n do  

$$sp_i' := 0;$$
  
for j := n downto 2 do  
 $i := j + Z_j(P) -1;$   
 $sp_i' := Z_j$ 

| S          | Α | В | Х | Υ | Α | В | Х | Z |  |
|------------|---|---|---|---|---|---|---|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| $Z_{i}(S)$ |   | 0 | 0 | 0 | 3 | 0 | 0 | 0 |  |

for i := 1 to n do  

$$sp_i' := 0;$$
  
for j := n downto 2 do  
 $i := j + Z_j(P) -1;$   
 $sp_i' := Z_i$ 

The Z-values are as follows, we only have a Z-box starting at I=5:  $Z_5(S)=3$ 

| S          | Α | В | Х | Υ | Α | В | X | Z |  |
|------------|---|---|---|---|---|---|---|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| $Z_{i}(S)$ |   | 0 | 0 | 0 | 3 | 0 | 0 | 0 |  |

for i := 1 to n do  

$$sp_i' := 0;$$
  
for j := n downto 2 do  
 $i := j + Z_j(P) -1;$   
 $sp_i' := Z_i$ 

| i                  |  |  |  |  |
|--------------------|--|--|--|--|
| J                  |  |  |  |  |
| 7 (0)              |  |  |  |  |
| Z <sub>j</sub> (S) |  |  |  |  |
| ,                  |  |  |  |  |
| i                  |  |  |  |  |
| •                  |  |  |  |  |
| sn'                |  |  |  |  |
| sp <sub>i</sub> '  |  |  |  |  |
|                    |  |  |  |  |

The Z-values are as follows, we only have a Z-box starting at I=5:  $Z_5(S)=3$ 

| S          | Α | В | Х | Υ | Α | В | X | Z |  |
|------------|---|---|---|---|---|---|---|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| $Z_{i}(S)$ |   | 0 | 0 | 0 | 3 | 0 | 0 | 0 |  |

for i := 1 to n do  

$$sp_i' := 0;$$
  
for j := n downto 2 do  
 $i := j + Z_j(P) -1;$   
 $sp_i' := Z_i$ 

| j                  | 8         |  |  |  |  |
|--------------------|-----------|--|--|--|--|
| Z <sub>j</sub> (S) | 0         |  |  |  |  |
| i                  | 8+0-<br>I |  |  |  |  |
| sp <sub>i</sub> '  | 0         |  |  |  |  |

The Z-values are as follows, we only have a Z-box starting at l=5:  $Z_5(S)=3$ 

| S          | Α | В | Х | Υ | Α | В | X | Z |  |
|------------|---|---|---|---|---|---|---|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| $Z_{i}(S)$ |   | 0 | 0 | 0 | 3 | 0 | 0 | 0 |  |

for i := 1 to n do  

$$sp_i' := 0;$$
  
for j := n downto 2 do  
 $i := j + Z_j(P) -1;$   
 $sp_i' := Z_i$ 

| j                  | 8         | 7         |  |  |  |
|--------------------|-----------|-----------|--|--|--|
| Z <sub>j</sub> (S) | 0         | 0         |  |  |  |
| i                  | 8+0-<br>I | 7+0-<br>I |  |  |  |
| sp <sub>i</sub> '  | 0         | 3         |  |  |  |

The Z-values are as follows, we only have a Z-box starting at I=5:  $Z_5(S)=3$ 

| S          | Α | В | Х | Υ | Α | В | X | Z |  |
|------------|---|---|---|---|---|---|---|---|--|
|            | Ι | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| $Z_{i}(S)$ | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |  |

for i := 1 to n do  

$$sp_i' := 0;$$
  
for j := n downto 2 do  
 $i := j + Z_j(P) -1;$   
 $sp_i' := Z_i$ 

| i                  | 8         | 7         | 6         |  |  |  |
|--------------------|-----------|-----------|-----------|--|--|--|
| Z <sub>j</sub> (S) | 0         | 0         | 0         |  |  |  |
| i                  | 8+0-<br>I | 7+0-<br>I | 6+0-<br>I |  |  |  |
| sp <sub>i</sub> '  | 0         | 3         | 0         |  |  |  |

The Z-values are as follows, we only have a Z-box starting at l=5:  $Z_5(S)=3$ 

| S          | Α | В | Х | Υ | Α | В | X | Z |  |
|------------|---|---|---|---|---|---|---|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| $Z_{i}(S)$ |   | 0 | 0 | 0 | 3 | 0 | 0 | 0 |  |

for i := 1 to n do  

$$sp_i$$
' := 0;  
for j := n downto 2 do  
 $i := j + Z_j(P) -1$ ;  
 $sp_i$ ' :=  $Z_i$ 

| j                  | 8         | 7         | 6         | 5         |  |  |
|--------------------|-----------|-----------|-----------|-----------|--|--|
| Z <sub>j</sub> (S) | 0         | 0         | 0         | 3         |  |  |
| i                  | 8+0-<br>I | 7+0-<br>I | 6+0-<br>I | 5+3-<br>I |  |  |
| sp <sub>i</sub> '  | 0         | 3         | 0         | 0         |  |  |

The Z-values are as follows, we only have a Z-box starting at I=5:  $Z_5(S)=3$ 

| S          | Α | В | Х | Υ | Α | В | X | Z |  |
|------------|---|---|---|---|---|---|---|---|--|
|            | Ι | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| $Z_{i}(S)$ |   | 0 | 0 | 0 | 3 | 0 | 0 | 0 |  |

for i := 1 to n do  

$$sp_i' := 0;$$
  
for j := n downto 2 do  
 $i := j + Z_j(P) -1;$   
 $sp_i' := Z_i$ 

| j                  | 8         | 7         | 6         | 5         | 4         |  |  |
|--------------------|-----------|-----------|-----------|-----------|-----------|--|--|
| Z <sub>j</sub> (S) | 0         | 0         | 0         | 3         | 0         |  |  |
| i                  | 8+0-<br>I | 7+0-<br>I | 6+0-<br>I | 5+3-<br>I | 4+0-<br>I |  |  |
| sp <sub>i</sub> '  | 0         | 3         | 0         | 0         | 0         |  |  |

The Z-values are as follows, we only have a Z-box starting at I=5:  $Z_5(S)=3$ 

| S          | Α | В | Х | Υ | Α | В | X | Z |  |
|------------|---|---|---|---|---|---|---|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| $Z_{i}(S)$ |   | 0 | 0 | 0 | 3 | 0 | 0 | 0 |  |

for i := 1 to n do  

$$sp_i' := 0;$$
  
for j := n downto 2 do  
 $i := j + Z_j(P) -1;$   
 $sp_i' := Z_i$ 

| j                  | 8         | 7         | 6         | 5         | 4         | 3         |  |
|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| Z <sub>j</sub> (S) | 0         | 0         | 0         | 3         | 0         | 0         |  |
| i                  | 8+0-<br>I | 7+0-<br>I | 6+0-<br>I | 5+3-<br>I | 4+0-<br>I | 3+0-<br>I |  |
| sp <sub>i</sub> '  | 0         | 3         | 0         | 0         | 0         | 0         |  |

| S          | Α | В | Х | Υ | Α | В | X | Z |  |
|------------|---|---|---|---|---|---|---|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| $Z_{i}(S)$ | - | 0 | 0 | 0 | 3 | 0 | 0 | 0 |  |

for i := 1 to n do  

$$sp_i' := 0;$$
  
for j := n downto 2 do  
 $i := j + Z_j(P) -1;$   
 $sp_i' := Z_i$ 

| j                  | 8         | 7         | 6         | 5         | 4         | 3         | 2         |  |
|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| Z <sub>j</sub> (S) | 0         | 0         | 0         | 3         | 0         | 0         | 0         |  |
| i                  | 8+0-<br>I | 7+0-<br>I | 6+0-<br>I | 5+3-<br>I | 4+0-<br>I | 3+0-<br>I | 2+0-<br>I |  |
| sp <sub>i</sub> '  | 0         | 3         | 0         | 0         | 0         | 0         | 0         |  |

The Z-values are as follows, we only have a Z-box starting at I=5:  $Z_5(S)=3$ 

| S          | Α | В | Х | Υ | Α | В | X | Z |  |
|------------|---|---|---|---|---|---|---|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| $Z_{i}(S)$ |   | 0 | 0 | 0 | 3 | 0 | 0 | 0 |  |

for i := 1 to n do  

$$sp_i$$
' := 0;  
for j := n downto 2 do  
 $i := j + Z_j(P) -1$ ;  
 $sp_i$ ' :=  $Z_i$ 

| j                  | 8         | 7         | 6         | 5         | 4         | 3         | 2         | - |
|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---|
| Z <sub>j</sub> (S) | 0         | 0         | 0         | 3         | 0         | 0         | 0         | 0 |
| i                  | 8+0-<br>I | 7+0-<br>I | 6+0-<br>I | 5+3-<br>I | 4+0-<br>I | 3+0-<br>I | 2+0-<br>I |   |
| sp <sub>i</sub> '  | 0         | 3         | 0         | 0         | 0         | 0         | 0         | 0 |

The Z-values are as follows, we only have a Z-box starting at I=5:  $Z_5(S)=3$ 

| S          | Α | В | Х | Υ | Α | В | X | Z |  |
|------------|---|---|---|---|---|---|---|---|--|
|            | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| $Z_{i}(S)$ |   | 0 | 0 | 0 | 3 | 0 | 0 | 0 |  |

for i := 1 to n do  

$$sp_i' := 0;$$
  
for j := n downto 2 do  
 $i := j + Z_j(P) -1;$   
 $sp_i' := Z_i$ 

$$sp_7'=Z_8(P)=0; sp_6'=Z_7(P)=0;$$
  
 $sp_5'=Z_6(P)=0; sp_7'=Z_5(P)=3;$   
 $sp_3'=Z_4(P)=0;...; sp_1'=Z_2(P)=0$ 

Failure function F'(k)=sp'<sub>k-1</sub>+1 for k from 1 to n+1

| k                 |   | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-------------------|---|---|---|---|---|---|---|---|---|---|
| sp <sub>i</sub> ' | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 |   |
| F'(k)             |   | I | I | I | I | I | I | I | 4 | I |

```
preprocess P to find F'(k)=sp'_{k-1}+1 for k from 1 to n+1
   c := 1;
   p := 1;
   while c + (n-p) \le m do
       while P(p) = T(c) and p \le n
          p := p+1;
          c := c+1;
       if p = n+1 then
          report an occurrence of P starting at position c-n of T
       if p = 1 then c := c+1
       p := F'(p)
```

```
preprocess P to find F'(k)=sp'_{k-1}+1 for k from 1 to n+1
   c := 1;
   p := 1;
   while c + (n-p) \le m do
                                                      MatchChar (MC)
       while P(p) = T(c) and p \le n
          p := p+1;
          c := c+1;
       if p = n+1 then
          report an occurrence of P starting at position c-n of T
       if p = 1 then c := c+1
       p := F'(p)
```

```
preprocess P to find F'(k)=sp'_{k-1}+1 for k from 1 to n+1
   c := 1;
   p := 1;
   while c + (n-p) \le m do
                                                      MatchChar (MC)
       while P(p) = T(c) and p \le n
          p := p+1;
          c := c+1;
                                                    MatchPattern (MP)
       if p = n+1 then
          report an occurrence of P starting at position c-n of T
       if p = 1 then c := c+1
       p := F'(p)
```

```
preprocess P to find F'(k)=sp'_{k-1}+1 for k from 1 to n+1
   c := 1;
   p := 1;
   while c + (n-p) \le m do
                                                       MatchChar (MC)
       while P(p) = T(c) and p \le n
          p := p+1;
          c := c+1;
                                                    MatchPattern (MP)
       if p = n+1 then
          report an occurrence of P starting at position c-n of T
       if p = 1 then c := c+1
                                                    MismatchStart (F0)
       p := F'(p)
```

```
preprocess P to find F'(k)=sp'<sub>k-1</sub> + 1 for k from 1 to n+1 c := 1; p := 1; while c + (n-p) \le m do
```

```
while P(p) = T(c) and p \le n
p := p+1;
c := c+1;
if p = n+1 then
report \text{ an occurrence of P starting at position c-n of T}
if p = 1 then c := c+1
p := F'(p)
MismatchInternal (Fi)
```

$$c=1, p=1:F0$$

c=9, p=8: Fi: F'(8)=4 
$$\Rightarrow$$
 p=4

$$c=10, p=5: MC$$

$$c=12, p=7: MC$$

$$c=13, p=8: MC$$

$$c=14, p=9: MP$$



| X | Α | В | X | Υ | Α | В | X | Υ | Α | В | X | Z | Α | В | X | Z | Α | В | X | Υ | Α | В | X | Z |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

| c=1, p=1: F0                            |
|-----------------------------------------|
| c=2, p=1: MC                            |
| c=3, p=2: MC                            |
| c=4, p=3: MC                            |
| c=5, p=4: MC                            |
| c=6, p=5: MC                            |
| c=7, p=6: MC                            |
| c=8, p=7: MC                            |
| c=9, p=8: Fi: F'(8)=4 $\Rightarrow$ p=4 |
| c=9, p=4: MC                            |
| c=10, p=5: MC                           |
| c=11, p=6: MC                           |
| c=12, p=7: MC                           |
| c=13, p=8: MC                           |
| c=14, p=9: MP                           |

| X | Α | В | X | Υ | Α | В | Х | Υ | Α  | В | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |



| c=1, p=1: F0                            |
|-----------------------------------------|
| c=2, p=1: MC                            |
| c=3, p=2: MC                            |
| c=4, p=3: MC                            |
| c=5, p=4: MC                            |
| c=6, p=5: MC                            |
| c=7, p=6: MC                            |
| c=8, p=7: MC                            |
| c=9, p=8: Fi: F'(8)=4 $\Rightarrow$ p=4 |
| c=9, p=4: MC                            |
| c=10, p=5: MC                           |
| c=11, p=6: MC                           |
| c=12, p=7: MC                           |
| c=13, p=8: MC                           |

| X | Α | В | X | Υ | Α | В | X | Υ | Α  | В | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | Х  | Z  |
|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Ι | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | X | Υ | Α | В | Х | Z |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

c=14, p=9: MP



$$c=1, p=1:F0$$

c=9, p=8: Fi: F'(8)=4 
$$\Rightarrow$$
 p=4

$$c=10, p=5: MC$$

$$c=12, p=7: MC$$

$$c=13, p=8: MC$$

$$c=14, p=9: MP$$

| X | Α    | В | X | Υ | Α | В | X | Υ | Α        | В | X | Z  | Α | В  | X | Z  | Α | В | X | Υ | Α  | В | X | Z |
|---|------|---|---|---|---|---|---|---|----------|---|---|----|---|----|---|----|---|---|---|---|----|---|---|---|
| ı | <br> |   |   |   |   |   |   |   | <u> </u> |   |   | 13 |   | 15 |   | 17 |   |   |   |   | 22 |   |   |   |
| A | В    | Х | Υ | Α | В | Х | Z |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   | A    | В | X | Υ | Α | В | X | Z |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |
|   |      |   |   |   |   |   |   |   |          |   |   |    |   |    |   |    |   |   |   |   |    |   |   |   |



| c=1, p=1:F0                             |
|-----------------------------------------|
| c=2, p=1: MC                            |
| c=3, p=2: MC                            |
| c=4, p=3: MC                            |
| c=5, p=4: MC                            |
| c=6, p=5: MC                            |
| c=7, p=6: MC                            |
| c=8, p=7: MC                            |
| c=9, p=8: Fi: F'(8)=4 $\Rightarrow$ p=4 |
| c=9, p=4: MC                            |
| c=10, p=5: MC                           |
| c=11, p=6: MC                           |
| c=12, p=7: MC                           |
| c=13, p=8: MC                           |
|                                         |

|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    | -  |    |
|---|---|---|---|---|---|---|---|----------|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| X | Α | В | Х | Υ | Α | В | Х | Υ        | Α  | В | Х  | Z  | Α  | В  | Х  | Z  | Α  | В  | X  | Υ  | Α  | В  | Х  | Z  |
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9        | 10 | П | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | X | Υ | Α | В | Х | Z |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | Х | Υ | Α | В | X | Z        |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | Х | Υ | Α | В | Х | Z        |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |          |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   | L | <u> </u> | L  |   |    |    | L  |    |    | L  |    |    |    | L  |    |    |    |    |

c=14, p=9: MP



| X | Α | В | X | Υ | Α | В | X | Υ | Α  | В | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | X | Υ | Α | В | Х | Z |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | X | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |



| c=1, p=1: F0                            |
|-----------------------------------------|
| c=2, p=1: MC                            |
| c=3, p=2: MC                            |
| c=4, p=3: MC                            |
| c=5, p=4: MC                            |
| c=6, p=5: MC                            |
| c=7, p=6: MC                            |
| c=8, p=7: MC                            |
| c=9, p=8: Fi: F'(8)=4 $\Rightarrow$ p=4 |
| c=9, p=4: MC                            |
| c=10, p=5: MC                           |
| c=11, p=6: MC                           |
| c=12, p=7: MC                           |
| c=13, p=8: MC                           |
| c=14, p=9: MP                           |

| X | Α | В | X | Υ | Α | В | X | Υ | Α  | В  | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | Х | Υ | Α | В | Х | Z |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | Х | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Y | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |



| X | Α | В | Х | Υ | Α | В | Х | Υ | Α  | В  | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | X | Υ | Α | В | Х | Z |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | X | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Y | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | Х | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

c=13, p=8: MC

c=14, p=9: MP



| X | Α | В | X | Υ | Α | В | X | Υ | Α  | В | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | X | Υ | Α | В | Х | Z |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | Х | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | Х | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Y | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |



| c=1, p=1: F0                            |
|-----------------------------------------|
| c=2, p=1: MC                            |
| c=3, p=2: MC                            |
| c=4, p=3: MC                            |
| c=5, p=4: MC                            |
| c=6, p=5: MC                            |
| c=7, p=6: MC                            |
| c=8, p=7: MC                            |
| c=9, p=8: Fi: F'(8)=4 $\Rightarrow$ p=4 |
| c=9, p=4: MC                            |
| c=10, p=5: MC                           |
| c=11, p=6: MC                           |
| c=12, p=7: MC                           |
| c=13, p=8: MC                           |
| c=14, p=9: MP                           |

| X | Α | В | X | Υ | Α | В | X | Υ | Α  | В  | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | X | Υ | Α | В | Х | Z |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | X | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Y | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |



| X | Α | В | X | Υ | Α | В | Х | Υ | Α  | В | X  | Z  | Α  | В  | Х  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | X | Υ | Α | В | Х | Z |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | X | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Y | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |



c=1, p=1: F0  
c=2, p=1: MC  
c=3, p=2: MC  
c=4, p=3: MC  
c=5, p=4: MC  
c=6, p=5: MC  
c=7, p=6: MC  
c=8, p=7: MC  
c=9, p=8: Fi: F'(8)=4 
$$\Rightarrow$$
 p=4  
c=9, p=4: MC  
c=10, p=5: MC  
c=11, p=6: MC

| X | Α | В | X | Υ | Α | В | X | Υ | Α  | В  | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z             |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---------------|
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25            |
| A | В | Х | Υ | Α | В | X | Z |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   | A | В | X | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   | Α | В | Х | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   | Α | В | X | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   | Α | В | Х | Y | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   | Α | В | Х | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   | Α | В | Х | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   | Α | В | Х | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   | Α | В | Х | Υ | Α | В | Х | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   |   |   |   |   | Α | В | Х | Y | Α  | В  | Х  | Z  |    |    |    |    |    |    |    |    |    |    |    |               |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |               |
|   |   |   | - |   |   |   | - |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | $\overline{}$ |

c=12, p=7: MC

c=13, p=8: MC

c=14, p=9: MP



| c=1, p=1:F0                             |
|-----------------------------------------|
| c=2, p=1: MC                            |
| c=3, p=2: MC                            |
| c=4, p=3: MC                            |
| c=5, p=4: MC                            |
| c=6, p=5: MC                            |
| c=7, p=6: MC                            |
| c=8, p=7: MC                            |
| c=9, p=8: Fi: F'(8)=4 $\Rightarrow$ p=4 |
| c=9, p=4: MC                            |
| c=10, p=5: MC                           |
| c=11, p=6: MC                           |
| c=12, p=7: MC                           |
| c=13, p=8: MC                           |
| c=14, p=9: MP                           |

| X | Α | В | X | Υ | Α | В | X | Υ | Α  | В | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| ı | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | X | Υ | Α | В | X | Z |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | X | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Y | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | A | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | Х | Y | Α  | В | Х  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | A  | В | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |



| X | Α | В | X | Υ | Α | В | X | Υ | Α  | В  | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| ı | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | X | Υ | Α | В | Х | Z |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Y | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | A | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Y | Α  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | A  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |



| X | Α | В | X | Υ | Α | В | X | Υ | Α  | В | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | X | Υ | Α | В | X | Z |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | Х | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Y | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | A | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Y | Α  | В | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | A  | В | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | Х | Υ | Α  | В | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |



| X | Α | В | X | Υ | Α | В | X | Υ | Α  | В  | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | X | Υ | Α | В | X | Z |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | X | Y | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Y | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | A | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Y | Α  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | A  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

c=13, p=8: MC

c=14, p=9: MP



| c=1, p=1:F0                             |
|-----------------------------------------|
| c=2, p=1: MC                            |
| c=3, p=2: MC                            |
| c=4, p=3: MC                            |
| c=5, p=4: MC                            |
| c=6, p=5: MC                            |
| c=7, p=6: MC                            |
| c=8, p=7: MC                            |
| c=9, p=8: Fi: F'(8)=4 $\Rightarrow$ p=4 |
| c=9, p=4: MC                            |
| c=10, p=5: MC                           |
| c=11, p=6: MC                           |
| c=12, p=7: MC                           |
| c=13, p=8: MC                           |
| c=14, p=9: MP                           |

| X | Α | В | X | Υ | Α | В | X | Υ | Α  | В  | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | X | Υ | Α | В | X | Z |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | X | Y | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Y | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | A | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Y | Α  | В  | Х  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | A  | В  | Х  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В  | Х  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | A | В | X | Y | A  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |



| c=1, p=1:F0                             |
|-----------------------------------------|
| c=2, p=1: MC                            |
| c=3, p=2: MC                            |
| c=4, p=3: MC                            |
| c=5, p=4: MC                            |
| c=6, p=5: MC                            |
| c=7, p=6: MC                            |
| c=8, p=7: MC                            |
| c=9, p=8: Fi: F'(8)=4 $\Rightarrow$ p=4 |
| c=9, p=4: MC                            |
| c=10, p=5: MC                           |
| c=11, p=6: MC                           |
| c=12, p=7: MC                           |
| c=13, p=8: MC                           |
| c=14, p=9: MP                           |

| X | Α | В | X | Υ | Α | В | X | Υ | Α  | В  | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | X | Υ | Α | В | X | Z |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | X | Y | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Y | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | A | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Y | Α  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | A  | В  | Х  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В  | Х  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | A | В | X | Y | A  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |



| c=1, p=1:F0                             |
|-----------------------------------------|
| c=2, p=1: MC                            |
| c=3, p=2: MC                            |
| c=4, p=3: MC                            |
| c=5, p=4: MC                            |
| c=6, p=5: MC                            |
| c=7, p=6: MC                            |
| c=8, p=7: MC                            |
| c=9, p=8: Fi: F'(8)=4 $\Rightarrow$ p=4 |
| c=9, p=4: MC                            |
| c=10, p=5: MC                           |
| c=11, p=6: MC                           |
| c=12, p=7: MC                           |
| c=13, p=8: MC                           |
| c=14, p=9: MP                           |

| X | Α | В | X | Υ | Α | В | X | Υ | Α  | В  | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| A | В | X | Υ | Α | В | X | Z |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | X | Y | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Y | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | A | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Y | Α  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | A  | В  | Х  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В  | Х  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | A | В | X | Y | A  | В  | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |



|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    | A  | В  | X  | Y  | A  | В  | X  | Z  |
|---|---|---|---|---|---|---|---|---|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | A | В | X | Y | A  | В | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | Х | Υ | Α  | В | Х  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | X | Υ | Α  | В | X  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | Х | Υ | Α  | В | Х  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | Х | Υ | A  | В | Х  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   |   |   |   |   | Α | В | Х | Y | Α  | В | Х  | Z  |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | Х | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | Х | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | Х | Υ | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | Х | Υ | A | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | Х | Y | Α | В | Х | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | Α | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|   | A | В | X | Υ | Α | В | X | Z |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| A | В | X | Υ | Α | В | X | Z |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | П | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| X | Α | В | X | Υ | Α | В | X | Υ | Α  | В | X  | Z  | Α  | В  | X  | Z  | Α  | В  | X  | Υ  | Α  | В  | X  | Z  |

```
public int match (String pattern, String text) {
  int p = 0;
  int s = 0;
  int t = 0;
  int matches = 0; // number of matches, return value
  while (t < text.length()) {
     if (p < pattern.length()) System.out.println("pattern("+p+") \t"+pattern.charAt(p));
     System.out.println("text("+t+") \t"+text.charAt(t));
     if (pattern.charAt(p) == text.charAt(t)) {
       // make sure to check against length-1 else OutOfRange exception!
       if (p < pattern.length()-1) {
          p = p+1;
          t = t+1;
       } else {
          System.out.println("Match found at position "+(s+1));
          p = 0;
          s = s+1;
          t = s;
          matches = matches+1;
       } // end if..else check for full occurrence of P
    } else {
       p = 1;
       s = s+1;
       t = s;
    } // end if..else check for character match
  } // end while over the text
  return matches;
} // end match
```

```
public int match (String pattern, String text) {
  // -----
  // Initialization
  int p = 0;
  int s = 0;
  int t = 0;
  int matches = 0; // number of matches, return value
  Vector patternVec = new Vector();
  Vector textVec = new Vector ();
  // Represent the pattern as a sequence of words
  StringTokenizer pst = new StringTokenizer(pattern);
  while (pst.hasMoreTokens()) {
    String word = (String)pst.nextToken();
    patternVec.addElement(word);
  } // end while
  // Represent the text as a sequence of words
  StringTokenizer tst = new StringTokenizer(text);
  while (tst.hasMoreTokens()) {
    String word = (String)tst.nextToken();
    textVec.addElement(word);
  } // end
```

```
// Loop
  // Note that the conditions now refer to the vectors, not to the original strings.
  while (t < textVec.size()) {
     if (p < patternVec.size()) System.out.println("pattern("+p+") \t<"+(String)patternVec.elementAt(p)+">");
     System.out.println("text("+t+") \t<"+(String)textVec.elementAt(t)+">");
     if (((String)patternVec.elementAt(p)).equals((String)textVec.elementAt(t))) {
       // make sure to check against length-1 else OutOfRange exception!
       if (p < patternVec.size()-1) {
          p = p+1;
          t = t+1;
       } else {
          System.out.println("Match found at position "+(s+1));
          p = 0;
          s = s+1;
          t = s:
          matches = matches+1;
       } // end if..else check for full occurrence of P
     } else {
       p = 0;
       s = s+1;
       t = s:
     } // end if..else check for character match
  } // end while over the text
  return matches:
} // end match
```

## KeywordTreeNode.java

- records:
  - the label on the edge to the vertex *v*
  - the path, i.e. the concatenation of the words on the path to v: L(v)
  - the parent of the vertex
  - the children of a vertex i
- basic accessor methods for adding, getting and setting

```
public KeywordTreeNode buildBranch (Vector pvec) {
  KeywordTreeNode broot = new KeywordTreeNode ();
  KeywordTreeNode parent = broot;
  boolean rootSet = false;
  String path = "";
  Iterator pvlter = pvec.iterator();
  while (pvlter.hasNext()) {
     String word = (String)pvlter.next();
     // check whether the root has been set; if not, initialize
     // the root, otherwise create a new node, and add it to
     // the current parent.
     if (!rootSet) {
       broot.setEdge(word);
       rootSet = true;
       broot.setPath(word);
       path = word;
     } else {
       KeywordTreeNode node = new KeywordTreeNode(word);
       path = path+" "+word;
       node.setPath(path);
       node.setParent(parent);
       parent.addChild(node);
       // Set the parent to be the current node
       parent = node;
     } // end if..else check for root or child
  } // end while
  return broot;
} // end
```

```
KeywordTreeNode branch = this.buildBranch(patternVec);
  // Next, go down the tree as far as possible to find the lowest attachment point for this branch. From the root
  // of the branch we go down tree, until we get to a point where none of the children on the branch would be
  // matched; that is where we insert the (remainder of the) branch.
  KeywordTreeNode branchnode = branch; // the current branch node
  KeywordTreeNode attachment = treeroot; // the node where to attach
  boolean golower = (treeroot.isLeaf())?false:true;
  while (golower) {
    // cycle over the children of the current attachment node
    boolean matchfound = false:
     Iterator chlter = attachment.getChildren();
    while (chlter.hasNext() && !matchfound) {
       KeywordTreeNode child = (KeywordTreeNode) chlter.next();
       // if this child has the same edge, and the same
       // path, as the current node in the branch, then
       // decend one node down the branch and set the
       // current node as the attachment point for the
       // remainder of the branch.
       if (child.getEdge().equals(branchnode.getEdge()) && child.getPath().equals(branchnode.getPath())) {
          matchfound = true;
          attachment = child:
          branchnode = branchnode.getFirstChild();
       } // end if.. check whether match found
    } // end while over children
    // continue if we found a matching child, and descended accordingly
    golower = matchfound;
  } // end while
  attachment.addChild(branchnode);
} // end for
```