MPSI 2

Programme des colles de mathématiques.

Semaine 13: du lundi 24 janvier au vendredi 28.

Liste des questions de cours

- 1°) Montrer qu'une intersection quelconque de sous-espaces vectoriels est un sous-espace vectoriel.
- 2°) Si A une partie d'un K-espace vectoriel E, précisez les éléments de Vect(A), en justifiant.
- $\mathbf{3}^{\circ}$) Montrer que L(E,F) est un \mathbb{K} -espace vectoriel.
- $\mathbf{4}^{\circ}$) Décrire les formes linéaires de \mathbb{K}^n .
- $\mathbf{5}^{\circ}$) Si u et v sont deux endomorphismes qui commutent, montrer que Im(u) et Ker(u) sont stables par v.
- **6**°) On considère l'équation suivante en l'inconnue $P \in \mathbb{R}[X]$; (E) : P(X+1) P(X) = 2X + 1. Montrer que (E) est une équation linéaire puis la résoudre.
- 7°) Si E est un \mathbb{K} -espace vectoriel, montrer que L(E) est une \mathbb{K} -algèbre.
- 8°) Soit E un \mathbb{K} -espace vectoriel et $u \in GL(E)$. Montrer que $w \longmapsto uwu^{-1}$ est un automorphisme de l'algèbre L(E).
- 9°) Enoncer et démontrer le théorème de la base incomplète.
- $\mathbf{10}^{\circ}$) dim $(E_1 \times \cdots \times E_n) = ?$: énoncé et démonstration.
- 11°) Si $e = (e_i)_{i \in I}$ est une base de E et $f = (f_i)_{i \in I} \in F^I$, montrer qu'il existe une unique application linéaire $u \in L(E, F)$ telle que $u(e_i) = f_i$ et donner une CNS portant sur (f_i) pour que u soit injective (resp : surjective).
- $\mathbf{12}^{\circ}$) Soit A une \mathbb{K} -algèbre et B une sous-algèbre de A de dimension finie. Soit $b \in B$. Montrer que si b est inversible dans A, alors $b^{-1} \in B$.

Thème de la semaine : les espaces vectoriels

Il s'agit du premier chapitre d'algèbre linéaire. Ainsi, les notions suivantes ne sont pas maîtrisées par les élèves, voire complètement inconnues des élèves :

- Les matrices;
- rang d'une famille de vecteurs, d'une application linéaire;
- théorie des systèmes linéaires (ils savent cependant résoudre des systèmes linéaires simples);
- projecteurs et symétries.
- Trace d'un endomorphisme;
- hyperplans et dualité;
- les déterminants;
- la théorie de la réduction.

1 La structure algébrique d'espace vectoriel

Notation. K désigne un corps quelconque.

1.1 Définition et exemples

Vecteurs et scalaires.

Exemples: \mathbb{K}^n , $\mathbb{K}[X]$, E^I , sur-corps de \mathbb{K} , produit d'espaces vectoriels.

Sous-espaces vectoriels.

1.2 Sous-espace vectoriel engendré par une partie

Une intersection d'une famille de sous-espaces vectoriels est un sous-espace vectoriel.

$$\operatorname{Vect}(A) = \left\{ \sum_{a \in A} \alpha_a a / (\alpha_a)_{a \in A} \in \mathbb{K}^{(A)} \right\}.$$

Droite vectorielle.

Soit $(x_i)_{i\in I}$ une famille de vecteurs d'un \mathbb{K} -espace vectoriel E. Alors $\mathrm{Vect}(x_i)_{i\in I}$ n'est pas modifié si l'on effectue l'une des *opérations élémentaires* suivantes :

- échanger x_{i_0} et x_{i_1} , où $i_0, i_1 \in I$ avec $i_0 \neq i_1$;
- multiplier x_{i_0} par $\alpha \in \mathbb{K}$ avec $\alpha \neq 0$;
- ajouter à l'un des x_i une combinaison linéaire des autres x_j .

Somme de p sous-espaces vectoriels.

Somme directe de p sous-espaces vectoriels (seulement la définition, aucun développement pour le moment).

1.3 Les applications linéaires

Morphisme, isomorphisme, endomorphisme, automorphisme, forme linéaire.

Dual de $E: E^* = L(E, \mathbb{K})$.

Si
$$u$$
 est linéaire, $u\left(\operatorname{Vect}(x_i)_{i\in I}\right) = \operatorname{Vect}(u(x_i))_{i\in I}$.

Composée de deux applications linéaires.

Isomorphisme réciproque.

L(E,F) est un $\mathbb{K}\text{-espace}$ vectoriel.

Sous-espace stable par un endomorphisme, endomorphisme induit.

Images directe et réciproque d'un sous-espace vectoriel par une application linéaire.

Noyau et image d'une application linéaire.

Si u et v sont deux endomorphismes qui commutent, alors Im(u) et Ker(u) sont stables par v.

$$uv = 0 \iff Im(v) \subset Ker(u).$$

Équation linéaire (E): f(x) = y en l'inconnue $x \in E$, où $f \in L(E, F)$ et $y \in F$.

Equation homogène associée : l'ensemble des solutions est Ker(f).

(E) est compatible si et seulement si $y \in \text{Im}(f)$. Dans ce cas, la solution générale de (E) s'obtient en ajoutant à une solution particulière de (E) la solution générale de (H).

1.4 Espaces affines

Si A et B sont deux points d'un \mathbb{K} -espace affine, $\overrightarrow{AB} = B - A$ est l'unique vecteur x tel que A + x = B. Relation de Chasles.

Définition d'un parallélogramme.

Si l'on fixe un point d'un espace affine \mathcal{E} , \mathcal{E} possède naturellement une structure d'espace vectoriel. Réciproquement, tout espace vectoriel possède une structure naturelle d'espace affine.

1.5 La structure d'algèbre

Algèbre commutative ou non commutative, intègre ou non intègre.

Si E est un \mathbb{K} -espace vectoriel, alors $(L(E), +, ., \circ)$ est une \mathbb{K} -algèbre.

Le groupe des inversibles de L(E) est noté $(GL(E), \circ)$.

Sous-algèbres.

morphismes d'algèbres.

Automorphismes intérieurs.

Composition de morphismes d'algèbres, isomorphisme réciproque, images directe et réciproque d'une sous-algèbre.

2 Familles de vecteurs

Notation. E désigne un \mathbb{K} -espace vectoriel, où \mathbb{K} est un corps quelconque.

2.1 Familles libres et génératrices

Familles libres, liées, génératrices, bases.

Coordonnées d'un vecteur dans une base.

2.2 Dimension d'un espace vectoriel

Définition. E est de dimension finie si et seulement si il possède une famille génératrice finie.

Lemme : Toute famille (x_1, \ldots, x_{n+1}) de n+1 vecteurs de $Vect(e_1, \ldots, e_n)$ est liée.

Théorème de la base incomplète.

Famille libre maximale.

Dimension d'un espace vectoriel de dimension finie.

Si $\dim(E) = n$, e est une base de E si et seulement si e est libre et de cardinal n, ou encore si et seulement si e est génératrice et de cardinal n.

Si $F \subset G$, dim $(F) \leq \dim(G)$, avec égalité si et seulement si F = G.

$$\dim(E_1 \times \cdots \times E_n) = \dim(E_1) + \cdots + \dim(E_n).$$

2.3 Exemples

Base canonique de $\mathbb{K}^{(I)}$.

Dans \mathbb{K}^2 , deux vecteurs forment une base si et seulement si leur déterminant est non nul.

Application linéaire associée à une famille de vecteurs

Si
$$x = (x_i) \in E^I$$
, on note
$$\begin{array}{c} \Psi_x: & \mathbb{K}^{(I)} & \longrightarrow & E \\ & (\alpha_i)_{i \in I} & \longmapsto & \sum_{i \in I} \alpha_i x_i \\ & x \text{ est une famille libre (resp: génératrice) si et seulement si } \Psi_x \text{ est injective (resp: surjective)}. \end{array}$$

Si $e = (e_i)_{i \in I}$ est une base de E, alors E est isomorphe à $\mathbb{K}^{(I)}$.

2.5 Image d'une famille par une application linéaire

Notation. Si $u \in L(E, F)$ et $x = (x_i)_{i \in I} \in E^I$, on notera $(u(x_i))_{i \in I} = u(x)$. Alors $\Psi_{u(x)} = u \circ \Psi_x$. Image d'une famille libre (resp : génératrice) par une injection (resp : surjection) linéaire.

Deux espaces de dimensions finies ont la même dimension si et seulement si ils sont isomorphes. $\dim(u(G)) \leq \dim(G)$, avec égalité lorsque u est injective.

Théorème. Si $e = (e_i)_{i \in I}$ est une base de E et $f = (f_i)_{i \in I} \in F^I$, il existe une unique application linéaire $u \in L(E, F)$ telle que $u(e_i) = f_i$. CNS portant sur (f_i) pour que u soit injective (resp: surjective).

Soit $u \in L(E, F)$ avec $\dim(E) = \dim(F)$, alors u injective $\iff u$ surjective $\iff u$ bijective. Si E admet une base $(e_i)_{i\in I}$, alors L(E,F) est isomorphe à F^I . $\dim(L(E,F)) = \dim(E) \times \dim(F).$

Prévisions pour la semaine prochaine :

Équations différentielles linéaires.