EE263 Autumn 2015 S. Boyd and S. Lall

Multi-objective least-squares

- ▶ multi-objective least-squares
- ▶ regularized least-squares

Multi-objective least-squares

in many problems we have two (or more) objectives

- ightharpoonup we want $J_1 = ||Ax y||^2$ small
- ▶ and also $J_2 = ||Fx g||^2$ small

 $(x \in \mathbb{R}^n \text{ is the variable})$

- usually the objectives are competing
- ▶ we can make one smaller, at the expense of making the other larger

common example: F = I, g = 0; we want ||Ax - y|| small, with small x

Plot of achievable objective pairs

- ▶ plot (J_2, J_1) for every x
- $ightharpoonup x \in \mathbb{R}^n$, but this plot is in \mathbb{R}^2
- ightharpoonup point labeled $x^{(1)}$ is really $\left(J_2(x^{(1)}),J_1(x^{(1)})\right)$

Optimal trade-off curve

- ▶ shaded area shows (J_2, J_1) achieved by some $x \in \mathbb{R}^n$
- $lackbox{ clear area shows } (J_2,J_1) \ {
 m not achieved} \ {
 m by any} \ x\in \mathbb{R}^n$
- boundary of region is called *optimal* trade-off curve
- ► corresponding x are called *Pareto* optimal for the two objectives $||Ax y||^2$, $||Fx g||^2$

- $ightharpoonup x^{(3)}$ is worse than $x^{(2)}$ on both counts $(J_2 \text{ and } J_1)$
- $ightharpoonup x^{(1)}$ is better than $x^{(2)}$ in J_2 , but worse in J_1

Weighted-sum objective

to find Pareto optimal points, i.e., x's on optimal trade-off curve, we minimize weighted-sum objective

$$J_1 + \mu J_2 = ||Ax - y||^2 + \mu ||Fx - g||^2$$

- lacktriangle parameter $\mu \geq 0$ gives relative weight between J_1 and J_2
- ▶ points where weighted sum is constant, $J_1 + \mu J_2 = \alpha$, correspond to line with slope $-\mu$ on (J_2,J_1) plot
- $lackbox{} x^{(2)}$ minimizes weighted-sum objective for μ shown
- \blacktriangleright by varying μ from 0 to $+\infty$, can sweep out entire *optimal tradeoff curve*

Minimizing weighted-sum objective

can express weighted-sum objective as ordinary least-squares objective:

$$||Ax - y||^2 + \mu ||Fx - g||^2 = \left\| \begin{bmatrix} A \\ \sqrt{\mu}F \end{bmatrix} x - \begin{bmatrix} y \\ \sqrt{\mu}g \end{bmatrix} \right\|^2$$
$$= ||\tilde{A}x - \tilde{y}||^2$$

where

$$\tilde{A} = \begin{bmatrix} A \\ \sqrt{\mu}F \end{bmatrix}, \qquad \tilde{y} = \begin{bmatrix} y \\ \sqrt{\mu}g \end{bmatrix}$$

hence solution is (assuming \tilde{A} full rank)

$$x = (\tilde{A}^{\mathsf{T}} \tilde{A})^{-1} \tilde{A}^{\mathsf{T}} \tilde{y}$$
$$= (A^{\mathsf{T}} A + \mu F^{\mathsf{T}} F)^{-1} (A^{\mathsf{T}} y + \mu F^{\mathsf{T}} g)$$

Example

- lacktriangle unit mass at rest subject to forces x_i for $i-1 < t \le i$, $i=1,\ldots,10$
- $lacksquare y \in \mathbb{R}$ is position at t=10; $y=a^\mathsf{T} x$ where $a \in \mathbb{R}^{10}$
- ▶ $J_1 = (y-1)^2$ (final position error squared)
- ▶ $J_2 = ||x||^2$ (sum of squares of forces)

weighted-sum objective: $(a^{\mathsf{T}}x-1)^2 + \mu \|x\|^2$ optimal x:

$$x = \left(aa^{\mathsf{T}} + \mu I\right)^{-1} a$$

Optimal trade-off curve

- $\,\blacktriangleright\,$ upper left corner of optimal trade-off curve corresponds to x=0
- lacktriangle bottom right corresponds to input that yields y=1, i.e., $J_1=0$

Regularized least-squares

when F=I, g=0 the objectives are

$$J_1 = ||Ax - y||^2, \qquad J_2 = ||x||^2$$

minimizer of weighted-sum objective,

$$x = \left(A^{\mathsf{T}}A + \mu I\right)^{-1}A^{\mathsf{T}}y,$$

is called *regularized* least-squares (approximate) solution of $Ax \approx y$

- ▶ also called *Tychonov regularization*
- ightharpoonup for $\mu>0$, works for any A (no restrictions on shape, rank ...)

estimation/inversion application:

- ightharpoonup Ax y is sensor residual
- prior information: x small
- ightharpoonup regularized solution trades off sensor fit, size of x