Fire Simulations in OpenFOAM

RAS simulations

József Nagy

eulerian-solutions e.U.

Motivation

- Fire safety is an important issue for building engineers
- No experimental "fire test" of the building possible
- Simulations are only possible way to evaluate the behaviour of fires
- OpenFOAM offers solvers e.g. fireFoam
- Possibility to test the accuracy by comparing to experimental data [1]

- compressible
- transient
- laminar and turbulent
- non-isothermal
- multi species incl.
 chemical reactions
- combustion model

Continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{u} = 0$$

Navier-Stokes equations:

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot (2S) + F_{buoyant} + F_T$$

$$\frac{\partial \rho h}{\partial t} + \nabla \cdot (\rho \mathbf{u} h) + \frac{\partial \rho \left(\frac{\mathbf{u}^2}{2}\right)}{\partial t} + \nabla \cdot \left(\frac{\mathbf{u}^2}{2}\right) =$$

$$-p\nabla \cdot \mathbf{u} + \nabla \cdot \frac{k}{c_v}\nabla h + \rho \mathbf{u} \cdot \mathbf{g} + H_T + \dot{Q}_{rad} + \dot{Q}_{HRR}$$

- compressible
- transient
- laminar and turbulent
- non-isothermal
- multi species incl.
 chemical reactions
- combustion model

Continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{u} = 0$$

Navier-Stokes equations:

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot (2S) + F_{buoyant} + F_{T}$$

$$\frac{\partial \rho h}{\partial t} + \nabla \cdot (\rho \mathbf{u} h) + \frac{\partial \rho \left(\frac{\mathbf{u}^2}{2}\right)}{\partial t} + \nabla \cdot \left(\frac{\mathbf{u}^2}{2}\right) =$$

$$-p\nabla \cdot \mathbf{u} + \nabla \cdot \frac{k}{c_v}\nabla h + \rho \mathbf{u} \cdot \mathbf{g} + H_T + \dot{Q}_{rad} + \dot{Q}_{HRR}$$

- compressible
- transient
- laminar and turbulent
- non-isothermal
- multi species incl.
 chemical reactions
- combustion model

Continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{u} = 0$$

Navier-Stokes equations:

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot (2S) + F_{buoyant} + F_T$$

$$\frac{\partial \rho h}{\partial t} + \nabla \cdot (\rho \mathbf{u} h) + \frac{\partial \rho \left(\frac{\mathbf{u}^2}{2}\right)}{\partial t} + \nabla \cdot \left(\frac{\mathbf{u}^2}{2}\right) =$$

$$-p\nabla \cdot \mathbf{u} + \nabla \cdot \frac{k}{c_v} \nabla h + \rho \mathbf{u} \cdot \mathbf{g} + H_T + \dot{Q}_{rad} + \dot{Q}_{HRR}$$

- compressible
- transient
- laminar and turbulent
- non-isothermal
- multi species incl.
 chemical reactions
- combustion model

Continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{u} = 0$$

Navier-Stokes equations:

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot (2S) + F_{buoyant} + F_T$$

$$\frac{\partial \rho h}{\partial t} + \nabla \cdot (\rho \mathbf{u} h) + \frac{\partial \rho \left(\frac{\mathbf{u}^2}{2}\right)}{\partial t} + \nabla \cdot \left(\frac{\mathbf{u}^2}{2}\right) =$$

$$-p\nabla \cdot \mathbf{u} + \nabla \cdot \frac{k}{c_v}\nabla h + \rho \mathbf{u} \cdot \mathbf{g} + H_T + \dot{Q}_{rad} + \dot{Q}_{HRR}$$

- compressible
- transient
- laminar and turbulent
- non-isothermal
- multi species incl.
 chemical reactions
- combustion model

Continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{u} = 0$$

Navier-Stokes equations:

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot (2S) + F_{buoyant} + F_T$$

Transport of species:

$$\frac{\partial \rho Y_i}{\partial t} + \nabla \cdot (\rho \mathbf{u} Y_i) = \Delta \mu_{eff} Y_i + \dot{Y}_{reaction} + \dot{Y}_{source}$$

- compressible
- transient
- laminar and turbulent
- non-isothermal
- multi species incl.
 chemical reactions
- combustion model

Combustion - infinitelyFastChemistry:

fuel (better: species) consumption rate [kg/(m³s)]:

$$wFuel = \frac{\rho}{\Delta t C} \cdot min(Y_{fuel}, Y_{O_2}/s)$$

s - Stoichiometric oxygen-fuel mass ratio; C - model constant

Species source term [kg/(m³s)]:

$$\dot{Y}_{reaction} = c_{stoch} w Fuel$$

Heat release rate [J/(m³s);W/m³]:

$$\dot{Q}_{HRR} = qFuel \cdot \dot{Y}_{reaction} \cdot Y_{fuel}$$

gFuel - heat of combustion [J/Kg]

- compressible
- transient
- laminar and turbulent
- non-isothermal
- multi species incl. chemical reactions
- combustion model

Combustion - infinitelyFastChemistry:

fuel (better: species) consumption rate [kg/(m³s)]: Navier-St.,

$$wFuel = \frac{\rho}{\Delta t \, C} \cdot min(Y_{fuel}, Y_{O_2}/s)$$

s - Stoichiometric oxygen fuel mass ratio; C - model constant

Species source term [kg/(m³s)]:

$$\dot{Y}_{reaction} = c_{stoch} \, w Fuel$$

Heat release rate []/(m³s);W/m³]:
$$\dot{Q}_{HRR} = qFuel \cdot \dot{Y}_{reaction} \cdot Y_{fuel}$$

gFuel - heat of combustion []/Kg]

Combustion models

- Lots of combustion models exists
- Four most important implemented in OpenFOAM
 - infinitelyFastChemistry (mixed is burnt perfectly stirred reactor)
 - EDM Eddy Dissipation Method (mixed is burnt perfectly stirred reactor)
 - EDC Eddy Dissipation Concept ("well stirred" reactor)
 - PaSR Partially Stirred Reactor

infinitelyFastChemistry

fuel (better: species) consumption rate [kg/(m³s)]:

Navier-St., Energy eq. $wFuel = \frac{\rho'}{\Delta t C} \cdot min(Y_{fuel}, Y_{O_2}/s)$

s - Stoichiometric oxygen-fuel mass ratio; C - model constant

Species source term [kg/(m³s)]: $\dot{Y}_{reaction} = c_{stoch} w Fuel$

$$\dot{Y}_{reaction} = c_{stoch} \, w Fuel$$

Heat release rate []/(m³s);W/m³]:
$$\dot{Q}_{HRR} = qFuel \cdot \dot{Y}_{reaction} \cdot Y_{fuel}$$

EDM

fuel (better: species) consumption rate [kg/(m³s)]:

$$wFuel = \rho \cdot min(Y_{fuel}, Y_{O_2}/s) \cdot max(\frac{1}{t_{turb}}, \frac{1}{t_{diff}})$$

$$\frac{1}{t_{diff}} = \frac{C_d}{\sqrt[3]{V_{cell}}^2} \cdot (\nu + \nu_t) \quad \frac{1}{t_{turb}} = \frac{C_{EDC} \cdot \epsilon}{k} = C_{EDC} \cdot \omega$$

s - Stoichiometric oxygen-fuel mass ratio; C_{σ} , C_{FDC} - model constants

Species source term [kg/(m³s)]:

$$\dot{Y}_{reaction} = c_{stoch} \, wFuel$$

Heat release rate [J/(m³s);W/m³]:

$$\dot{Q}_{HRR} = qFuel \cdot \dot{Y}_{reaction} \cdot Y_{fuel}$$

qFuel - heat of combustion [J/Kg]

EDC

- Most complicated model
- Conference papers by Magnussen and others
 - v1981: B. Magnussen: On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow, in 19th Aerospace Sciences Meeting (p. 42), January 1981
 - v1996: I. R. Gran, B. Magnussen: A numerical study of a bluff-body stabilized diffusion flame. Part 2.
 Influence of combustion modeling and finite-rate chemistry. Combustion Science and Technology,
 119(1-6), p. 191-217. 1996
 - v2005: B. Magnussen: The Eddy Dissipation Concept A Bridge Between Science and Technology. In ECCOMAS thematic conference on computational combustion, p. 21-24, June 2005.
 - v2016: A. Parente et al.: Extension of the Eddy Dissipation Concept for turbulence/chemistry interactions to MILD combustion. Fuel, 163, p. 98-111, 2016.
- Mostly change in model constants
- Infinitely fast limit is intinitelyFastChemistry models

EDC

Species source term [kg/(m³s)]:

$$\dot{Y}_{reaction} = \kappa \cdot \dot{Y}_{reaction, laminar}$$

Heat release rate [J/(m³s);W/m³]:

$$\dot{Q}_{HRR} = \kappa \cdot \dot{Q}_{HRR,laminar}$$

between 0 and 1 —
$$\kappa = \frac{\gamma_l^2}{1 - \gamma_l^2}$$
 v2005
$$\gamma_l = 2.1377 \cdot \left(\frac{\nu \cdot \epsilon}{k}\right)^{0.25}$$

PaSR

- Partially Stirred Reactor
- Each cell is divided into
 - perfectly stirred part (reacting)
 - unstirred part (non-reacting)
- Stirring limited by turbulence

PaSR

Species source term [kg/(m³s)]:

$$\dot{Y}_{reaction} = \kappa \cdot \dot{Y}_{reaction, laminar}$$

Heat release rate [J/(m³s);W/m³]:

$$\dot{Q}_{HRR} = \kappa \cdot \dot{Q}_{HRR,laminar}$$

between 0 and 1 —
$$\kappa = \frac{t_c}{t_c + t_k}$$
 — chemical time scale: src/thermophysicalModels/chemistryModel/Chemi

turbulent time scale

$$t_k = c_{mix} \sqrt{\frac{\nu}{\epsilon}}$$

Steckler room

- Steckler room with opened door
 - o small room
 - o walls open geometry
- Surroundings
 - o bottom wall
 - outlets

Steckler room

- Background mesh with blockMesh
 - o cell size 0.2m
 - o length 7 m
 - o width 5.2 m
 - o height 4.4 m
- Refinement region level 3 around fire
 - o cell length 0.025 m (RAS simulations!)
- Refinement region level 2 in room
 - o cell length 0.05 m
- Refinement region level 0 in surroundings
 - o cell length 0.2 m
- 297144 cells

Steckler room

- Simulation time of 150 s.
- 105.3 kW fire experiment [1]
 - measured temperature values in the door
 - comparison with simulations in "steady-state"
- P1 radiation model
- kEpsilon turbulence model
- Single equation reaction model
- GRI 3.0 thermophysical models
- Combustion models with standard set of model constants

Temperature at t = 150s

Temperature profile at door infinitelyFastCh.

Temperature profile at door EDM

Temperature profile at door EDC

Temperature profile at door PaSR

Temperature profile at door

Temperature profile at door

Temperature profile at door

Summary

- Fire simulations in OpenFOAM
 - fireFoam
- fireFoam overpredicts temperatures
 - although heat release approximately correct
- Next step
 - test heat release via fvOptions
 - test heat release via fvOptions + conjugate heat transfer
 - conjugate heat transfer + combustion

Contact

DI DR József Nagy

jozsef.nagy@eulerian-solutions.com

