Worksheet #24; Date: 11/13/2018 MATH 10A Methods of Mathematics with Professor Stankova

November 12, 2018

1 Eigenvalue and Eigenvector

1. Find eigenvalue of each matrix.

(a)
$$\begin{bmatrix} 2 & 0 \\ 3 & 0 \end{bmatrix}$$

(a)
$$\det \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 3 & 0 \end{bmatrix} - \lambda I \end{pmatrix} = \det \begin{bmatrix} 2 - \lambda & 0 \\ 3 & -\lambda \end{bmatrix} = 0 \implies (2 - \lambda)(-\lambda) - (0)(3) = 0 \implies \lambda(\lambda - 2) = 0$$

The eigenvalues are therefore $\lambda = 0$ and $\lambda = 2$.

(b)
$$\begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix}$$

(c)
$$\det \begin{pmatrix} \begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix} - \lambda I \end{pmatrix} = \det \begin{bmatrix} 3 - \lambda & -1 \\ 0 & 2 - \lambda \end{bmatrix} = 0 \implies (3 - \lambda)(2 - \lambda) = 0$$

The eigenvalues are therefore $\lambda=2$ and $\lambda=3$.

2. In general, the eigenvalues of an upper triangular matrix are given by the entries on the diagonal. The same is true for a lower triangular matrix. Verify this for 2 by 2 matrix.

We determine the eigenvalues of 2×2 upper and lower triangular matrices U and L by calculating the characteristic polynomials

$$\begin{split} \det \begin{bmatrix} u_{11} - \lambda & u_{12} \\ 0 & u_{22} - \lambda \end{bmatrix} &= \left(u_{11} - \lambda \right) \left(u_{22} - \lambda \right) = 0 \quad \Rightarrow \quad \lambda = u_{11} \quad \text{and} \quad \lambda = u_{22} \\ \det \begin{bmatrix} l_{11} - \lambda & 0 \\ l_{21} & l_{22} - \lambda \end{bmatrix} &= \left(l_{11} - \lambda \right) \left(l_{22} - \lambda \right) = 0 \quad \Rightarrow \quad \lambda = l_{11} \quad \text{and} \quad \lambda = l_{22} \end{split}$$

- 3. Suppose that an eigenvalue of matrix A is zero. Prove that A must therefore be singular.
 - 20. If matrix A has an eigenvalue of zero then $\det(A 0I) = 0 \implies \det(A) = 0 \implies A$ is singular.
- 5. Find the eigenvalues and eigenvectors of the matrix.

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

(a) Eigenvalues:
$$\det \begin{bmatrix} 1-\lambda & 0 \\ 0 & -1-\lambda \end{bmatrix} = (1-\lambda) (-1-\lambda) = -(1-\lambda) (1+\lambda) = 0$$

The eigenvalues are therefore $\lambda=1$ and $\lambda=-1$.

Eigenvectors: Starting with the eigenvalue $\lambda = 1$ we have

$$\begin{bmatrix} 1-\lambda & 0 \\ 0 & -1-\lambda \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Rightarrow \quad \left\{ \begin{array}{c} 0=0 \\ -2v_2=0 \end{array} \right\}$$

The two equations are satisfied when $v_2 = 0$ and v_1 can be any value. Choosing $v_1 = 1$ gives the eigenvector $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

For the second eigenvalue $\lambda = -1$ we have

$$\begin{bmatrix} 1-\lambda & 0 \\ 0 & -1-\lambda \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Rightarrow \quad \left\{ \begin{aligned} 2v_1 &= 0 \\ 0 &= 0 \end{aligned} \right\}$$

The two equations are satisfied when $v_1=0$ and v_2 can be any value. Choosing $v_2=1$ gives the eigenvector $\mathbf{v}=\begin{bmatrix}0\\1\end{bmatrix}$

(b)
$$\begin{bmatrix} 1 & 2 \\ 3 & -3 \end{bmatrix}$$

Eigenvalues:
$$\det \begin{bmatrix} 1-\lambda & 2 \\ 3 & -3-\lambda \end{bmatrix} = (1-\lambda)(-3-\lambda)-6 = \lambda^2+2\lambda-9=0 \implies$$

$$\lambda = \frac{-2 \pm \sqrt{\left(2\right)^2 - 4\left(1\right)\left(-9\right)}}{2(1)} = -1 \pm \frac{\sqrt{40}}{2} = -1 \pm \sqrt{10}$$

The eigenvalues are therefore $\lambda=-1+\sqrt{10}$ and $\lambda=-1-\sqrt{10}$.

Eigenvectors: Starting with the eigenvalue $\lambda = -1 + \sqrt{10}$ we have

$$\begin{bmatrix} 1 - \lambda & 2 \\ 3 & -3 - \lambda \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 2 - \sqrt{10} & 2 \\ 3 & -2 - \sqrt{10} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} \left(2 - \sqrt{10}\right)v_1 + 2v_2 = 0 \\ 3v_1 - \left(2 + \sqrt{10}\right)v_2 = 0 \end{cases}$$

[continued]

engage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

470 CHAPTER 8 VECTORS AND MATRIX MODELS

Both equations specify that $v_2=-\left(\frac{2-\sqrt{10}}{2}\right)v_1$ (try multiplying the second equation by the appropriate radical conjugate if this is unclear). Choosing $v_1=-2$ gives the eigenvector $\mathbf{v}=\begin{bmatrix} -2\\ 2-\sqrt{10} \end{bmatrix}$.

For the second eigenvalue $\lambda = -1 - \sqrt{10}$ we have

$$\begin{bmatrix} 1-\lambda & 2 \\ 3 & -3-\lambda \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 2+\sqrt{10} & 2 \\ 3 & -2+\sqrt{10} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} \left(2+\sqrt{10}\right)v_1+2v_2=0 \\ 3v_1-\left(2-\sqrt{10}\right)v_2=0 \end{cases}$$

Both equations specify that $v_2=-\left(\frac{2+\sqrt{10}}{2}\right)v_1$ (try multiplying the second equation by the appropriate radical conjugate if this is unclear). Choosing $v_1=-2$ gives the eigenvector $\mathbf{v}=\begin{bmatrix} -2\\2+\sqrt{10}\end{bmatrix}$.

2 Fibonacci

1. given the vector to be $\begin{bmatrix} x_{n+1} \\ x_n \end{bmatrix}$ and $\begin{bmatrix} x_n \\ x_{n-1} \end{bmatrix}$ find the matrix for Fibonacci sequence.

We know $\begin{bmatrix} x_{n+1} \\ x_n \end{bmatrix} = A \begin{bmatrix} x_n \\ x_{n-1} \end{bmatrix}$ and $x_{n+1} = x_n + x_{n-1}$. Let A be a 2 by 2 matrix with $\begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$ then $x_{n+1} = a_1x_n + a_2x_{n-1}$ and $x_n = a_3x_n + a_4x_{n-1}$. Therefore we have $a_1 = 1, a_2 = 1, a_3 = 1, a_4 = 0$. The matrix A is then $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.

2. Find the eigenvalues of the matrix you found above.

 $det\begin{bmatrix} 1-\lambda,\ 1\\ 1,\ -\lambda \end{bmatrix}=0$. then $\lambda^2-\lambda-1=0$. solve the equation we get:

$$\lambda = \frac{1 \pm \sqrt{5}}{2}$$

3. Suppose that λ is an eigenvalue of A. Show that λ^2 is then an eigenvalue

 $A\mathbf{v} = \lambda \mathbf{v} \Rightarrow A^2 \mathbf{v} = \lambda A \mathbf{v} \Rightarrow A^2 \mathbf{v} = \lambda (\lambda \mathbf{v}) \Rightarrow A^2 \mathbf{v} = \lambda^2 \mathbf{v}$

Therefore, by Definition (2) λ^2 is an eigenvalue of the matrix A^2 .

4. find the eigenvalues for generalized fibonacci sequences' matrix

By 2 we know that $\begin{bmatrix} x_{n+1} \\ x_n \end{bmatrix} = A \begin{bmatrix} x_n \\ x_{n-1} \end{bmatrix}$ where $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. Then $\begin{bmatrix} x_3 \\ x_2 \end{bmatrix} = A \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$, $\begin{bmatrix} x_4 \\ x_3 \end{bmatrix} = A \begin{bmatrix} x_3 \\ x_2 \end{bmatrix} == A^2 \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$. We can conclude that

 $\begin{bmatrix} x_{n+1} \\ x_n \end{bmatrix} = A^n \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}.$

Then by 3 we can see that if we know the eigenvalue for A is $\lambda = \frac{1 \pm \sqrt{5}}{2}$, then the eigenvalue for A^n is $\lambda^n=(\frac{1\pm\sqrt{5}}{2})^n$