INTERVALOS DE CONFIANÇA Estimativa de Médias

ESTIMATIVA de MÉDIAS	População Infinita	População Finita		
Média intervalar σ desvio padrão da população	$\overline{X} \pm z \frac{\sigma}{\sqrt{n}}$	$\overline{X} \pm z \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$		
Média intervalar s desvio padrão da amostra	$\overline{X} \pm t \frac{s}{\sqrt{n}}$	$\overline{X} \pm t \frac{s}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$		
Tamanho da amostra σ desvio padrão da população	$n = \left(\frac{z \cdot \sigma}{e}\right)^2$	$n = \frac{z^2 \cdot \sigma^2 \cdot N}{z^2 \cdot \sigma^2 + e^2 \cdot (N - 1)}$		
Tamanho da amostra s desvio padrão da amostra	$n = \left(\frac{t \cdot s}{e}\right)^2$	$n = \frac{t^2 \cdot s^2 \cdot N}{t^2 \cdot s^2 + e^2 \cdot (N - 1)}$		
Erro σ desvio padrão da população	$e=rac{\mathbf{z}\cdot\mathbf{\sigma}}{\sqrt{\mathbf{n}}}$	$e = rac{\mathbf{z} \cdot \mathbf{\sigma}}{\sqrt{\mathbf{n}}} \sqrt{rac{\mathbf{N} - \mathbf{n}}{\mathbf{N} - 1}}$		
Erro s desvio padrão da amostra	$e = \frac{\mathbf{t} \cdot \mathbf{s}}{\sqrt{\mathbf{n}}}$	$e = \frac{\mathbf{t} \cdot \mathbf{s}}{\sqrt{\mathbf{n}}} \sqrt{\frac{N-n}{N-1}}$		

Alguns valores de z da tabela de distribuição normal:

Confiança desejada	90%	92%	95%	96%	98%	99%
Valor de z	1,65	1,75	1,96	2,05	2,33	2,58

Para utilizar a **tabela t de student**, achar o **grau de liberdade** fazendo **n-1** (n = tamanho da amostra) e **localizar o valor de t** conforme o grau ou nível de confiança.

INTERVALOS DE CONFIANÇA Estimativa de Proporções

ESTIMATIVA de PROPORÇÕES	População Infinita	População Finita		
Proporção Pontual	$p=\frac{x}{n}$	$p=\frac{x}{n}$		
Proporção intervalar	$\frac{x}{n} \pm z \cdot \sqrt{\frac{\left(\frac{x}{n}\right) \cdot \left(1 - \frac{x}{n}\right)}{n}}$	$\frac{x}{n} \pm z \cdot \sqrt{\frac{\left(\frac{x}{n}\right) \cdot \left(1 - \frac{x}{n}\right)}{n}} \cdot \sqrt{\frac{N - n}{N - 1}}$		
Tamanho da amostra	$n = z^2 \cdot \frac{\left(\frac{x}{n}\right) \cdot \left(1 - \frac{x}{n}\right)}{e^2}$	$n = \frac{z^{2} \cdot \left(\frac{x}{n}\right) \cdot \left(1 - \frac{x}{n}\right) \cdot N}{(N - 1) \cdot e^{2} + z^{2} \cdot \left(\frac{x}{n}\right) \cdot \left(1 - \frac{x}{n}\right)}$		
Erro	$\mathbf{e} = \mathbf{z} \cdot \sqrt{\frac{\left(\frac{\mathbf{x}}{n}\right) \cdot \left(1 - \frac{\mathbf{x}}{n}\right)}{n}}$	$\mathbf{e} = \mathbf{z} \cdot \sqrt{\frac{\left(\frac{\mathbf{x}}{\mathbf{n}}\right) \cdot \left(1 - \frac{\mathbf{x}}{\mathbf{n}}\right)}{\mathbf{n}}} \cdot \sqrt{\frac{\mathbf{N} - \mathbf{n}}{\mathbf{N} - 1}}$		