Stat 551 Final Formulas

ACGF

Definition. Suppose $\{X_t\}$ is WS with ACVF $\gamma(\cdot)$. Then its autocovariance generating function is $G(z) = \sum_{h=1}^{\infty} \gamma(h)z^h$, provided this converges for all $z \in \mathbb{C}$ with $r^{-1} < |z| < 1$ for some |z| > 1.

Result (Linear Processes). For $\{Z_t\} \sim WN(0, \sigma^2)$ and real-coefficients ψ_j with $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$, consider the linear

process (WS) $X_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j} = \psi(B) Z_t$, where $\psi(z) = \sum_{j=-\infty}^{\infty} \psi_j z^j$. Then, the ACGF of $\{X_t\}$ is given by $G(z) = \sigma^2 \psi(z) \psi(z^{-1})$.

Result (Filtered Processes). For WS $\{X_t\}$ with ACGF $G_X(z)$, and real-coefficients ψ_j with $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$, consider the filtered process (WS) $Y_t = \sum_{j=-\infty}^{\infty} \psi_j X_{t-j} = \psi(B) X_t$, where $\psi(z) = \sum_{j=-\infty}^{\infty} \psi_j z^j$. Then, the ACGF of $\{Y_t\}$ is given by $G_Y(z) = G_X(z)\psi(z)\psi(z^{-1}).$

Example. For $\{Z_t\} \sim WN(0, \sigma^2)$, $Y_t - \mu = Z_t + \theta_1 Z_{t-1} + \theta_{12} Z_{t-12}$, $G_Y(z) = \sigma^2 \left[(1 + \theta_1^2 + \theta_{12}^2) z^0 + \theta_1 (z^1 + z^{-1}) + \theta_1 \theta_{12} (z^{11} + z^{-11}) + \theta_{12} (z^{12} + z^{-12}) \right]^2$. f is even: $f(\omega) = f(-\omega)$.

Example. For $\{X_t\}$ WS ARMA (not necessarily causal or invertible), $G_X(z) = \sigma^2 \frac{\theta(z)\theta(z^{-1})}{\phi(z)\phi(z^{-1})}$

Example. For $\{X_{1,t}\}$, $\{X_{2,t}\}$ uncorrelated WS ARMA, and $X_t=X_{1,t}+X_{2,t},$ $G_X(z)=G_{X_1}(z)+G_{X_2}(z),$ thus $X_t \sim \text{ARMA}(p, q) \text{ with } p \leq p_1 + p_2, q \leq \max(q_1 + p_2, q_2 + p_1)$

Frequency Domain

Definition (Fourier Frequencies). Defined as $\omega_j = 2\pi j/n, j \in \mathcal{F}_n$ where $\mathcal{F}_n = \{ |(n-1)/2|, \ldots, -1, 0, 1, \ldots, |n/2| \}$. For $j \in \mathcal{F}_n, -\pi < w_j \leq \pi.$

Definition. For $j \in \mathcal{F}_n$, define $e_j = \frac{1}{\sqrt{n}} \left(e^{i\omega_j}, \dots, e^{in\omega_j} \right) \in \mathcal{C}^n$.

Result. $\left\{\underline{e}_j: j \in \mathcal{F}_n\right\}$ is an orthonormal basis for \mathcal{C}^2 , meaning for any $y \in \mathcal{C}^n$, there exist complex numbers a_j 's depending on ysuch that $\underline{y} = \sum_{j \in \mathcal{F}_n} a_j \underline{e}_j$

and with respect to the inner product $(\langle \underline{x}, \underline{y} \rangle = \sum_{i=1}^{n} x_i \overline{y_i})$, it holds

$$\langle \underline{e}_j, \underline{e}_k \rangle = \begin{cases} 0 & \text{if } j \neq k \in \mathcal{F}_n \\ 1 & \text{if } j = k \in \mathcal{F}_n \end{cases}$$

Result. For time series data $X = (X_1, \dots, X_n) \in \mathbb{R}^n$, it holds that $X = \sum_{j \in \mathcal{F}_n} d_j \underbrace{e_j}$ where $d_j = \{X, \underbrace{e_j}\} \in \mathbb{C}, j \in \mathcal{F}_n$.

DFT & Periodogram

Definition. The collection $\left\{d_j = \{\underline{X}, \underline{e}_j\} : j \in \mathcal{F}_n\right\}$ is called the discrete Fourier transform of time series data $X = (X_1, \ldots, X_n)$.

Definition. The periodogram of $X = (X_1, \dots, X_n)$ at frequency ω_j is $I_n(\omega_j) = d_j \overline{d_j} = |d_j|^2 = \frac{1}{n} |\sum_{t=1}^n X_t e^{-it\omega_j}|^2$.

Properties of $I_n(\omega_i), i \in \mathcal{F}_n$

- 1. At j = 0 or $\omega_i = \omega_0 = 0$, $I_n(0) = n(\overline{X}_n)^2$.
- 2. If the sample mean is subtracted and the DFT is computed for $X - \overline{X}_n = X - \overline{X}_n \sqrt{n} e_0$, then $d_i^* = d_i - n \overline{X}_n \mathbb{I}(i = 0)$, i.e. $d_i, I_n(\omega_i)$ are unaffected by mean correction with frequencies $i \neq 0$.
- 3. The periodogram is symmetric: $I_n(\omega_i) = I_n(\omega_{-i})$.
- 4. Sum of squares total property: $\sum_{t=1}^n X_t^2 = \sum_{j \in \mathcal{F}_n} I_n(\omega_j)$. This implies that we can explain sources of variability in time series data by the size of periodogram values at different
- 5. $I_n(\omega_j) = \sum_{k=-(n-1)}^{n-1} \gamma(\hat{k}) e^{-ik\omega_j}$

Spectral Densities

Definition. For a WS process $\{X_t\}$ with ACVF $\gamma(\cdot)$, the spectral density of $\{X_t\}$ is defined as $f(\omega) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \gamma(k) e^{-ik\omega}, \omega \in [-\pi, \pi] = \frac{1}{2\pi} G(e^{-i\omega}).$

Properties of f

- 1. $f(\omega) > 0, \omega \in [-\pi, \pi]$
- - 3. for any integer k, $\int_{-\pi}^{\pi} e^{ik\omega} f(\omega) d\omega = \gamma(k)$.

Example. $\{Z_t\} \sim WN(0, \sigma^2), f(\omega) = \sigma^2/[2\pi].$

Result (Filtered Processes). For WS $\{X_t\}$ with ACGF $G_X(z)$ and spectral density $f_X(\cdot)$, and real-coefficients ψ_j with

 $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty, \text{ consider the filtered process (WS)}$ $Y_t = \sum_{j=-\infty}^{\infty} \psi_j X_{t-j} = \psi(B) X_t, \text{ where } \psi(z) = \sum_{j=-\infty}^{\infty} \psi_j z^j. \text{ Then,}$ the ACGF of $\{Y_t\}$ is given by $G_Y(z) = G_X(z)\psi(z)\psi(z^{-1})$ and the spectral density of $\{Y_t\}$ is $f_Y(\omega) = f_X(\omega)|\psi(e^{i\omega})|^2, \omega \in [-\pi, \pi].$

Example. WS ARMA

 $\phi(B)X_t = \theta(B)Z_t, \{Z_t\} \sim WN(0, \sigma^2), \phi(z) \neq 0 \text{ for } |z| = 1. \text{ Then } f_X(\omega) = \frac{|\theta(e^{i\omega})|^2}{|\phi(e^{i\omega})|^2} \frac{\sigma^2}{2\pi}, \omega \in [-\pi, \pi].$

Power Transfer Function

Definition. For WS $\{X_t\}$ and real-coefficients ψ_i with $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$, consider the WS filtered process $Y_t = \sum_{j=-\infty}^{\infty} \psi_j X_{t-j} = \psi(B) X_t$, where $\psi(z) = \sum_{j=-\infty}^{\infty} \psi_j z^j$. The power transfer function of the filter $\{\psi_i\}$ is given by $|\psi(e^{i\omega})|^2, \omega \in [-\pi, \pi].$

Estimating Spectral Densities

Result. For $\omega = 0$ and $EX_t = \mu$, it holds that $\lim_{n \to \infty} \mathbf{E}\left[I_n(0) - n\mu^2\right] = 2\pi f(0) = \sum_{k=-\infty}^{\infty} \gamma(k).$

Under mild conditions, it also holds, for large $n \ \overline{X}_n \overset{\bullet}{\sim} N\left(\mu, \frac{2\pi f(0)}{n}\right)$ or $\overline{X}_n \stackrel{\bullet}{\sim} N\left(\mu, \frac{1}{n} \sum_{k=-\infty}^{\infty} \gamma(k)\right)$.

Result. Define the periodogram $I_n(\omega) = \frac{1}{n} |\sum_{t=1}^n X_t e^{-it\omega}|^2$ at any frequency $\omega \in [-\pi,\pi]$. For fixed $\omega \in [-\pi,\pi]$, $\omega \neq 0$, it holds that $\lim_{n \to \infty} \mathbb{E}\left[\frac{I_n(\omega)}{2\pi}\right] = f(\omega).$

Result. For $\{Z_t\} \sim IID(0, \sigma^2)$ and real-coefficients ψ_i with $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$, consider the linear process (WS)

 $X_t = \sum_{i=-\infty}^{\infty} \psi_j Z_{t-j}$ with spectral density f. If $f(\omega) > 0$ for all $\omega \in [-\pi, \pi]$ and $0 < \lambda_1 < \cdots < \lambda_m < \pi$ denote a given set of fixed frequencies, then $\frac{1}{2\pi}\left[I_n(\lambda_1),\ldots,I_n(\lambda_m)\right]\overset{d}{\to}(A_1,\ldots,A_m)$ as $n \to \infty$, where A_1, \ldots, A_m are independent random variables and A_i has an exponential distribution with mean $f(\lambda_i)$. Equivalently, $\frac{2A_i}{f(\lambda_i)} \sim \hat{\chi}_2^2, i = 1, \dots, m.$

Result. For $\{X_t\} \sim IIDN(0, \sigma^2)$, the periodogram values $\left\{\frac{I_n(\omega_j)}{2\pi}: \omega_j \in \mathcal{F}_n, \omega_j \not\in \{0,\pi\}\right\}$ are IID Exponential[$\sigma^2/[2\pi]$]

Note. The periodogram is not a consistent estimator of the spectral density: for a fixed $0 < \lambda < \pi$ as $n \to \infty$, $I_n(\lambda)/[2\pi] \stackrel{d}{\to} \text{Exp}[f(\lambda)]$, but $I_n(\lambda)/[2\pi] \not\stackrel{p}{\leftrightarrow} f(\lambda)$.

Window estimator

- Let $W_n(\cdot)$ denote a weight function, m_n denote a bandwidth, $\omega_i \in \mathcal{F}_n$ be closest to λ
- Given $\lambda \in [0, \infty]$, define a window estimator of $f(\lambda)$ as $\hat{f}(\lambda) = \sum_{|k| < m_n} W_n(k) \frac{I_n(w_j + k)}{2\pi}$ where the following hold:
 - 1. $m_n \to \infty$ as $n \to \infty$
 - 2. $m_n/n \to 0$ as $n \to \infty$
 - 3. $W_n(k) = W_n(-k)$
 - 4. $\sum_{|k| \le m_n} W_n(k) = 1$
 - 5. $\sum_{|k| \le m_n} [W_n(k)]^2 \to 0 \text{ as } n \to \infty$
- the estimator $\hat{f}(\lambda)$ is MSE-consistent for $f(\lambda)$.
- Approximate $f \stackrel{d}{=} cY$ where $Y \sim \chi^2_{\nu}$. Then choose $c \& \nu$ to get ok distributional approximation by equating the first two moments to get $\nu = \frac{2}{\sum_{|k| \leq m_n} [W_n(k)]^2}$ and $c = f/\nu$.
 An approximate $100(1-\alpha)\%$ confidence interval for f is
- An approximate $100(1-\alpha)\%$ confidence interval for $\ln f$ is $\left[\ln \hat{f} + \ln \nu - \ln \chi_{\nu}^2 (1 - \alpha/2), \ln \hat{f} + \ln \nu - \ln \chi_{\nu}^2 (\alpha/2)\right]$ give intervals with same lengths each λ .

Result (Consistency). Define $X_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j}$ for $\{Z_t\} \sim IID(0, \sigma^2)$ with $\mathbb{E}|Z_t|^4 < \infty$ and $\sum_{j=-\infty}^{\infty} |\psi_j| \sqrt{|j|} < \infty$. Then, as $n \to \infty$, $E\hat{f}(\lambda) \to f(\lambda)$ and $\frac{\sum_{\substack{\text{Cov}[\hat{f}(\lambda),\hat{f}(\omega)]\\ \sum |k| \leq m_n} [W_n(k)]^2}}{\sum_{\substack{k \leq m_n}} [W_n(k)]^2} \to \begin{cases} 2[f(\lambda)]^2 & \lambda = \omega \in \{0,\pi\}\\ [f(\lambda)]^2 & \lambda = \omega \not\in \{0,\pi\}\\ 0 & \lambda \neq \omega \end{cases}.$

Hypothesis Testing

Test for hidden periodicity.

 $H_0: \{X_t\}IIDN(0, \sigma^2)$ so that $f(\omega) = \sigma^2/[2\pi]$ is constant H_1 :some periodic component at an unspecified frequency

Compare largest periodogram ordinate to the average periodogram ordinate

$$K = \frac{\max_{1 \le j \le q} I_n(\omega_j)}{\frac{1}{q} \sum_{k=1}^{q} I_n(\omega_k)} = q \max_{1 \le j \le q} (y_j - y_{j-1})$$

where $y_0 = 0$ and $y_i = \sum_{k=1}^{j} I_n(\omega_k) / \sum_{k=1}^{q} I_n(\omega_k)$. If $u_1, \ldots, u_{q-1} \sim IIDUnif(0, 1)$, then $y_1, \ldots, y_{q-1} \stackrel{d}{=} u_{(1)}, \ldots, u_{(q-1)}$. Reject H_0 for large values of K and use the following to compute a p-value: $P(K \le x) = 1 - \sum_{j=0}^{q} (-1)^j {q \choose j} \left[\left(1 - \frac{jx}{q}\right)_+ \right]^{q-1}$

Model Fitting for ARMA

Yule-Walker Estimation in AR(p)

- Substitute sample ACVF values $\gamma(\hat{0}), \ldots, \gamma(\hat{p})$ for $\gamma(0), \ldots, \gamma(p)$ in $\phi_p = \Gamma_p^{-1} \gamma_p$ then $\phi_{YW} = \hat{\Gamma}_p^{-1} \hat{\gamma}_p$ of $\phi_p = (\phi_1, \dots, \phi_p)'$ and $\hat{\sigma}^2 = \hat{\gamma}(0) - \hat{\phi}' \hat{\gamma}_p$.
- For data X_1, \ldots, X_n from AR(p) process, it holds that as $n \to \infty, \sqrt{n} \left(\hat{\phi}_{YW} - \phi_p \right) \stackrel{d}{\to} N \left(0_p, \sigma^2 \Gamma_p^{-1} \right)$
- · Special cases:

$$\begin{split} & \text{AR}(1) \ \hat{\phi}_{YW} \stackrel{\bullet}{\sim} N \left(\phi, \frac{1-\phi^2}{n} \right) \\ & \text{AR}(2) \ \begin{pmatrix} \hat{\phi_1} \\ \hat{\phi_2} \end{pmatrix} \stackrel{\bullet}{\sim} N \left[\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, \frac{1}{n} \begin{pmatrix} 1-\phi_2^2 & -\phi_1(1+\phi_2) \\ -\phi_1(1+\phi_2) & 1-\phi_2^2 \end{pmatrix} \right] \end{split}$$

- YW estimator is the MoM estimator for AR(p).
- matches sample and theoretical ACVF, ACF, PACF at lags $h=0,\ldots,p.$
- fitted model will be causal.

Hannan-Rissanen Estimation for preliminary estimates

- 1. Pick m < n and run D-L algorithm with sample ACVF $\hat{\gamma}(\cdot)$ to get estimates $\hat{\phi}_{m,1}, \ldots, \hat{\phi}_{m,m}$. Then, obtain estimates of $\hat{Z}_t = X_t - \hat{\phi}_{m,1} X_{t-1} - \dots - \hat{\phi}_{m,m} X_{t-m}, t = m+1,\dots,n.$
- 2. Regress X_t on $X_{t-1}, \ldots, X_{t-p}, \ldots, \hat{Z}_{t-1}, \ldots, \hat{Z}_{t-q}$ to produce parameter estimates for $\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$

Maximum Likelihood Estimation

Definition. Write ARMA model parameters as $\Psi = (\sigma^2, \phi, \theta)$. The likelihood of the data X_n is given by $L(\Psi|X_n) \equiv \text{joint distribution}$ of X_1, \ldots, X_n regarded as a function of $\widetilde{\Psi}$.

Note the "chain rule":

$$L(\underline{\Psi}|\underline{X}_n) = P_{\underline{\Psi}}(X_n|\underline{X}_{n-1})P_{\underline{\Psi}}(X_{n-1}|\underline{X}_{n-2})\cdots P_{\underline{\Psi}}(X_2|\underline{X}_1)P_{\underline{\Psi}}(X_1).$$

To concentrate or profile σ^2 out of the log-likelihood, we want to maximize over σ^2 given the other parameter values ϕ , θ .

Definition. Equivalently, we can minimize the reduced likelihood: $\updownarrow(\phi, \theta | X_n) = \log(\hat{\sigma}^2) + \frac{1}{n} \sum_{t=1}^n \log(r_{t-1}) \text{ where }$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{t=1}^n \frac{(X_t - \hat{X}_t)^2}{r_{t-1}}$$
 and $r_{t-1} = \frac{\mathbb{E}(X_t - \hat{X}_t)^2)}{\sigma^2}$

We minimize the reduced likelihood numerically to obtain MLEs

Then compute
$$\hat{X}_t(\hat{\phi}_{MLE}, \hat{\theta}_{MLE}), r_{t-1}^2(\hat{\phi}_{MLE}, \hat{\theta}_{MLE}), t = 1, \dots, n$$
 and obtain $\hat{\sigma}_{MLE}^2$.

Asymptotic Distribution of $\hat{\phi}_{_{MLE}}, \hat{\theta}_{_{MLE}}$ in ARMA

ARMA process $\phi(B)X_t = \theta(B)Z_t, Z_t \sim WN(0, \sigma^2)$.

• Let $Z_t^* \sim WN(0, \sigma^2)$ and define two new AR processes U_t and V_t :

$$U_t = \frac{Z_t^*}{\phi(B)} \sim AR(p), \qquad V_t = \frac{Z_t^*}{\theta(B)} \sim AR(q)$$

• Then, for large n,

$$\begin{pmatrix} \hat{\underline{\psi}}_{MLE} \\ \hat{\underline{\theta}}_{MLE} \end{pmatrix} \stackrel{\bullet}{\sim} MVN \left[\begin{pmatrix} \underline{\psi} \\ \underline{\theta} \end{pmatrix}, \frac{\sigma^2}{n} \begin{pmatrix} \mathrm{E} U_p U_p' & \mathrm{E} U_p V_p' \\ \mathrm{E} V_p U_p' & \mathrm{E} V_p V_p' \end{pmatrix} \right]$$

Order Selection & Diagnostics

Rough rule of thumb: if sample ACF ≈ 0 for lags > q, try MA(q), if sample PACF ≈ 0 for lags > p, try AR(p). Doesn't work for ARMA(p,q).

Definition. Final Prediction Error (FPE) for selecting AR(p): $\text{FPE}(p) = \left[\frac{\hat{\sigma}^2 n}{n-p} \left(1 + \frac{p}{n}\right)\right] \text{ where } signa^2 \text{ is the MLE for AR}(p). \text{ Try}$ to minimize FPE as a function of p, or minimize $\log(\text{FPE}(p)) \approx \log(\hat{\sigma}^2) + \frac{2p}{n}$. The FPE estimates

$$\mathbf{E}_{\theta_{p_0}} \left[\left\{ Y_{n+1} - \hat{Y}_{n+1} (\hat{\phi}_p) \right\}^2 \right]$$

Definition. Select model by minimizing Akaike's Information Criterion AIC = $-2 \log L(\psi_m | X_n)$) + 2m is approximately unbiased estimator of expected out-of-sample likelihood $\mathbb{E}_{\psi_{m_0}}\left[-2\log L(\hat{\psi}_m|\tilde{X}_n))\right]$

For pure ARMA(p, q), log[criterion] $\approx \log(\hat{\sigma}^2)$ + penalty

Criterion	Penalty
FPE (AR only)	$\frac{2p}{n}$
AIC	2(p+q+1)
BIC	(p+q+1)log(n)
AICC	$\frac{2n(p+q+1)}{n-p-q-2}$

Models within AIC/AICC of 2 are equivalent.

Diagnostics

Get MLEs $\hat{\psi}_{MLE}$, $\hat{\theta}_{MLE}$

Form predictions $\hat{X}_t \equiv \hat{X}_t(\hat{\psi}_{MLE}, \hat{\theta}_{MLE}), r_t \equiv r_t(\hat{\psi}_{MLE}, \hat{\theta}_{MLE}).$

Get residuals $W_t = \frac{X_t - \hat{X}_t}{\sqrt{r_{t-1}}} \approx Z_t$

Residuals $\{W_t\}$ should look like WN. Can conduct tests for WN: sample ACF (Bartlett bounds), PACF, Portmanteau, rank-based. Comments

1. $\{W_t\}$ are not iid/WN, they depend on the MLEs.

2. sample ACF/PACF of residuals $\{W_t\}$ can suggest model improvement. ACF - increase MA order if see residual outside Bartlett bounds, PACF for AR order.

State Space Models

Models in state space allow unified treatment, recursive prediction (Kalman Filter), likelihood via prediction error/innovation decomp, missing values, extensions to non-linear/non-Gaussian models. State Space Form Observation Equation: $Y_t = G_t X_t + W_t$ (wx1,

State Equation: $X_{t+1} = F_t X_t + V_t$ (vx1, (vxv)(vx1), vx1) Assume for the error terms W_t, V_t , uncorrelated random vectors, expected values 0, and

$$\operatorname{Var} egin{pmatrix} oldsymbol{W}_t \ oldsymbol{V}_t \end{pmatrix} = egin{pmatrix} oldsymbol{Q}_t & oldsymbol{S}_t \ oldsymbol{S}_t' & oldsymbol{R}_t \end{pmatrix}$$

For each t, W_t & V_t uncorrelated with $\{X_s : s < t\}$.

Example (Random Walk + Noise).

obs eqn :
$$Y_t = X_t + W_t$$

state eqn : $X_{t+1} = X_t + V_t$

for $\{W_t\} \sim WN(0,\sigma_w^2, \{V_t\} \sim WN(0,\sigma_v^2,$ uncorrelated. Here $F_t=1, G_t=1, Q_t=\sigma_v^2, R_t=\sigma_w^2, S_t=0$ time invariant, but NOT

Example (Co-integration). Real-values $\{Y_t\} \sim I(d)$ if $\{(1-B)^d Y_t\}$ is WS, but $\{(1-B)^{d-1}Y_t\}$ is NOT WS. Random vector is I(d) if each component is. $\{Y_t\} \sim I(d)$ is cointegrated with cointegrating factor α if $\{\alpha' Y_t\} \sim I(k)$ for some k < d

obs eqn :
$$\mathbf{Y}_t = \begin{pmatrix} 1 \\ \gamma \end{pmatrix} d_t + \begin{pmatrix} 0 \\ w_t \end{pmatrix}$$

state eqn $:d_{t+1} = d_t + v_t$

Example (AR(p)). $X_t = \hat{\phi}_1 X_{t-1} + \cdots + \phi_p X_{t-p} + Z_t, \{Z_t\} \sim WN(0, sigma^2)$

state eqn :
$$\begin{pmatrix} X_{t+1} \\ X_t \\ \vdots \\ X_{t+2-p} \end{pmatrix} = \begin{pmatrix} \phi_1 & \phi_2 & \cdots & \phi_p \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & 1 & 0 \end{pmatrix} \begin{pmatrix} X_t \\ X_{t-1} \\ \vdots \\ X_{t+1-p} \end{pmatrix} + \begin{pmatrix} Z_{t+1} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Example (MA(1)). $X_t = \phi_1 Z_t + \phi Z_{t-1}, \{Z_t\} \sim WN(0, sigma^2)$ Let (2×1) $\boldsymbol{X}_t = \begin{pmatrix} X_{1,t} \\ X_{2,t} \end{pmatrix}$ and write

state eqn :
$$\mathbf{X}_{t+1} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{X}_t + \begin{pmatrix} Z_{t+1} \\ \theta Z_{t+1} \end{pmatrix}$$

obs eqn : $Y_t = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{X}_t + 0 = X_{1,t} = \theta Z_{t-1} + Z_t$

obs eqn : $Y_t = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \boldsymbol{X}_t + 0 = X_t$

Example (Linear Model). $Y_t = \mathbf{Z}_t' \boldsymbol{\beta} + W_t$ with regressors \mathbf{Z}_t & $\{W_t\} \sim WN(0, \sigma^2)$

obs eqn :
$$Y_t = \mathbf{Z}_t' \boldsymbol{\beta} + W_t$$

state eqn : $\mathbf{X}_{t+1} = \boldsymbol{\beta} = \mathbf{X}_t + \mathbf{0}$

Kalman Filter

- 1. Startup $\hat{\boldsymbol{X}}_1 = \boldsymbol{X}_{1|0} = \text{projection of } \boldsymbol{X}_1 \text{ onto } \boldsymbol{Y}_0$ (some startup values) often $\hat{X}_1 = E(X_1)$, $\mathbf{\Omega}_1 = \mathrm{E}\left[(\boldsymbol{X}_1 - \hat{\boldsymbol{X}}_1)(\boldsymbol{X}_1 - \hat{\boldsymbol{X}}_1)' \right]$
- 2. Innovation at $t \ge 1$ (new \mathbf{Y}_t becomes available in addition to Y_0, \ldots, Y_{t-1}):

$$egin{aligned} I_t &= G_t(oldsymbol{X}_t - \hat{oldsymbol{X}}_t) + oldsymbol{W}_t \ oldsymbol{\Delta}_t &= ext{Var}(oldsymbol{I}_t) = G_t\Omega_tG_t' + R_t \end{aligned}$$

3. Filter or Update at $t \geq 1$

$$egin{aligned} oldsymbol{X}_{t|t} &= \hat{oldsymbol{X}} + \Omega_t oldsymbol{G}_t' oldsymbol{\Delta}_t^{-1} oldsymbol{I}_t \ \Omega_{t|t} &= \Omega_t - \Omega_t oldsymbol{G}_t' oldsymbol{\Delta}_t^{-1} oldsymbol{G}_t \Omega_t \end{aligned}$$

Note $X_{t|t}$ is $E(X_t|Y_0,\ldots,Y_t)$ assuming Gausian processes, or the best linear predictor of X_t given Y_0, \ldots, Y_t .

4. Predict at t > 1

$$egin{aligned} \hat{oldsymbol{X}}_{t+1} &= oldsymbol{F}_t oldsymbol{X}_{t|t} \ oldsymbol{\Omega}_{t+1} &= oldsymbol{F}_t oldsymbol{\Omega}_{t|t} oldsymbol{F}_t' + oldsymbol{Q}_t \end{aligned}$$