Type Inference for Datalog with Complex Type Hierarchies

Max Schäfer Oege de Moor

```
reports_to(x,y) \leftarrow \exists g.(in_group(x,g) \land manages(y,g))
 \lor \exists g,d.(manages(x,g) \land part_of(g,d)
 \land leads(y,d))
 \lor senior_mgr(x) \land x\stackrel{.}{=}y.
```

```
bonus(x,y) \leftarrow \exists s,f.(\neg parttime(x) \land salary(x,s) \land factor(x,f) \land y = f*s) \\ \lor parttime(x) \land y = 50.0.
factor(x,f) \leftarrow senior\_mgr(x) \land f = 0.5 \\ \lor \neg senior\_mgr(x) \land f = 0.2.
query(x,y) \leftarrow bonus(x,y) \land manager(x).
```

```
reports_to(x,y) \leftarrow \exists g.(in_group(x,g) \land manages(y,g)) \lor \exists g,d.(manages(x,g) \land part_of(g,d) \land leads(y,d)) \lor senior_mgr(x) \land x\doteqy.
```

```
bonus(x,y) \leftarrow \exists s,f.(\negparttime(x) \land salary(x,s) \land factor(x,f) \land y\doteqf*s) \lor parttime(x) \land y\doteq50.0.

factor(x,f) \leftarrow senior_mgr(x) \land f\doteq0.5 \lor ¬senior_mgr(x) \land f\doteq0.2.

query(x,y) \leftarrow bonus(x,y) \land manager(x).
```

```
reports_to(x,y) \leftarrow \exists g.(in_group(x,g) \land manages(y,g)) \lor \exists g,d.(manages(x,g) \land part_of(g,d) \land leads(y,d)) \lor senior_mgr(x) \land x\doteqy.
```

semmle/

ullet Schema ${\mathscr S}$ assigns entity types to columns of extensionals

```
(\forall x, g.\mathtt{in\_group}(x, g) \to \mathtt{developer}(x) \land \mathtt{group}(g))

(\forall x, g.\mathtt{manages}(x, g) \to \mathtt{junior\_mgr}(x) \land \mathtt{group}(g))

(\forall x, s.\mathtt{salary}(x, s) \to \mathtt{employee}(x) \land \mathtt{float}(s))
```

Type Hierarchy and Schema (II)

semmle/

Type Hierarchy \(\mathcal{H} \) relates entity types

```
 \forall x. \quad (\mathtt{parttime}(x) \to \mathtt{developer}(x)) \\ \land \quad (\mathtt{developer}(x) \to \mathtt{employee}(x)) \\ \land \quad (\mathtt{manager}(x) \to \mathtt{employee}(x)) \\ \land \quad (\mathtt{junior\_mgr}(x) \lor \mathtt{senior\_mgr}(x) \leftrightarrow \mathtt{manager}(x)) \\ \land \quad \neg (\mathtt{developer}(x) \land \mathtt{manager}(x)) \\ \land \quad \neg (\mathtt{junior\_mgr}(x) \land \mathtt{senior\_mgr}(x))
```


Example query:

```
bonus(x, y) \land manager(x)
```

Unfolding definitions:

```
(∃ s,f.(¬parttime(x) ∧ salary(x, s)
	∧ factor(x,f) ∧ y=f*s)
	∨ parttime(x) ∧ y=50.0)
	∧ manager(x)
```

Example query:

```
bonus(x, y) \land manager(x)
```

Unfolding definitions:

Type specialisation:

```
parttime(x) \land manager(x) \models_{\mathscr{H}} \bot
```

want to know whether

$$\mathcal{H}, \mathcal{S}, \varphi \models \bot$$

- undecidable for arbitrary programs
- classic approach: find upper envelope

Cartesian Types


```
reports_to(x,y) \leftarrow
\exists g.(in_group(x,g) \land manages(y,g))
\lor \exists g,d.(manages(x,g) \land part_of(g,d)
\land leads(y,d))
\lor senior_mgr(x) \land x\doteqy.
```

Cartesian Types

one type per variable

$$\lceil \text{reports_to}(x, y) \rceil$$
= $employee(x) \land manager(y)$

erroneous query:

```
parttime(y) \land reports\_to(x, y)
```

Disjunctive Types

semmle/

disjunctive form

```
[reports_to(x,y)]
= developer(x) ∧ junior_mgr(y)
∨ manager(x) ∧ senior_mgr(y)
```

erroneous query:

```
parttime(x) \land
reports_to(x, y) \land senior_mgr(y)
```

Disjunctive Types with Equality

semmle/

disjunctive form

```
[reports_to(x,y)]
= developer(x) ∧ junior_mgr(y)
∨ junior_mgr(x) ∧ senior_mgr(y)
∨ senior_mgr(x) ∧ senior_mgr(y)
∧ x = y
```

Types are Programs

```
reports_to(x,y) \leftarrow \exists g.(in\_group(x,g) \land manages(y,g))

\lor \exists g,d.(manages(x,g) \land part\_of(g,d)

\land leads(y,d))

\lor senior\_mgr(x) \land x = y.
```

```
reports_to(x,y) \leftarrow \exists g.(in_group(x,g) \land manages(y,g)) \lor \exists g,d.(manages(x,g) \land part_of(g,d) \land leads(y,d)) \lor senior_mgr(x) \land x\doteqy.

[reports_to(x,y)] \leftarrow \exists g.(developer(x) \land group(g) \land junior mgr(y))
```

 \vee senior_mqr(x) \wedge x $\stackrel{.}{=}$ y.

 $\vee \exists q, d. (junior_mgr(x) \land group(q)$

∧ department(d) ∧ senior_mgr(y))


```
\vee \exists q,d. (manages(x,q) \land part_of(q,d)
                                                             \wedge leads(\forall, d))
                           \vee senior_mgr(x) \wedge x\stackrel{.}{=}y.
[reports\_to(x,y)] \leftarrow developer(x) \land junior\_mgr(y)
                               \land \exists q. (qroup(q))
                           ∀ junior_mgr(x) ∧ senior_mgr(y)
                               \land \exists g. (group(g)) \land \exists d. (department(d))
                           \vee senior_mgr(x) \wedge x\stackrel{.}{=}y.
```

reports_to(x,y) $\leftarrow \exists$ g.(in_group(x,g) \land manages(y,g))

- type inference: $\lceil \cdot \rceil : P \to T$ where
 - T ⊂ P
 - containment, emptiness decidable on T
 - $\mathcal{H}, \mathcal{S}, \varphi \models \lceil \varphi \rceil$

- types are existential programs with monadic extensionals
 - polyadic intensionals
 - recursion, existentials, equality
 - no negation
- $\lceil e \rceil := \mathscr{S}(e)$ for extensionals
- $\bullet \ \lceil \neg \varphi \rceil := \top$

Soundness and Optimality

• for any $\varphi \in P$:

$$\mathscr{S}, \varphi \models [\varphi]$$

• for negation-free $\varphi \in P$ and $\vartheta \in T$:

if
$$\mathscr{S}, \mathscr{H}, \varphi \models \vartheta$$
 then $\mathscr{S}, \mathscr{H}, \lceil \varphi \rceil \models \vartheta$

Representing Type Programs

- intensional relations in *T* can always be eliminated:
- can be written as disjunction of conjunctions
- every conjunct of the form t(x), $x \doteq y$ or $\exists z.t(z)$ for propositional t
 - ⇒ compact representation using BDDs
- containment and emptiness decidable

Conclusions

- natural, expressive language of types for Datalog
- support for complex type hierarchies
- simple, sound, optimal type inference
- compact representation of types

- S <: T if every disjunct of S implies some disjunct of T
- obviously sound, S <: T implies $S \models T$
- but incomplete!

Geometric Analysis

semmle/

yet $\sigma_1 \not\models \tau_1$ and $\sigma_1 \not\models \tau_2$

Prime Implicants

$$y \models x \land y \lor \neg x$$

- prime implicants of $x \land y \lor \neg x$: $\{y, \neg x\}$
- obtained by consensus formation: $(x \land y) \oplus_x \neg x = y$

new interpretation of consensus:

$$(x \wedge y) \oplus_{x} (\neg x \wedge (y \vee \neg y)) = (x \vee \neg x) \wedge y = y$$

"disjunction on x, conjunction on y"

- can be generalised to types, need to do consensus on <u>sets</u> of variables
- sat(T): all prime implicants of T

Complete Containment Check

If $S \models_{\mathscr{H}} T$, then S <: sat(T).

