מערכת הנשימה והנשמה בסיסית ומתקדמת

קורם חובשים בכירים

ית"מ

מבת תשפ"ד

ינואר 2024

איתן שמשוביץ

תפקידי המערכת

- חמצון
- יצירת אנרגיה בתאים בתהליך שריפת הסוכר
- ללא החמצן תהליך אנאירובי פחות יעיל ומופרשת חומצה
 - לתאי המוח אין אפשרות אנאירובית
 - אוורור
 - סילוק פחמן דו חמצני
 - הפחמן הדו חמצני רעיל ולכן הגירוי הראשוני לנשימה היא עלייה בכמותו.

אנטומיה של מערכת הנשימה בית החזה

מיקום אנטומי בבית החזה.

שימוש בגובה הצלע ובקו המתאר מבנים ברורים

אנטומיה של מערכת הנשימה בית החזה

מיקום אנטומי בבית החזה.

שימוש בגובה הצלע ובקו המתאר מבנים ברורים

Midaxilary line Anterior axilar line

Midaxilary line

Posterior axilar line

אנמומיה של מערכת הנשימה בית החזה

גבולות בית החזה:

בית החזה תחום בצלעות, שכמות,עצמות בריח, סטרנום, עמוד שדרה, וסרעפת

אנמומיה של מערכת הנשימה בית החזה

Sternum - הסטרנום

אנטומיה של מערכת הנשימה דופן בית החזה

הצלעות מחוברות לשרירים בין-צלעיים המסייעים בנשימה

VAN – Vein Artery Nerve

מצויים בצמוד לצלעות בניהם.

Vein

וריד

Artery

עורק

Nerve

נצב

אנטומיה של מערכת הנשימה בית החזה

צלעות Ribs - פעילות:

כך יש התרחקות של הצלעות, עליית הסטרנום וכדהתרחבות של החלל

אנטומיה של מערכת הנשימה דופן בית החזה

סרעפת - Diaphragm

איבר שרירי המסייע בנשימה ותוחם את בית החזה בחלקו התחתון.

אנטומיה של מערכת הנשימה

ניתן לחלק את דרכי האוויר:

חמצון ויצירת אנרגיה

- תא שלא מקבל חמצן נאלץ ליצור אנרגיה בתהליך של שריפה כימית. נשימה זו נקראת **נשימה אנארובית**.
 - נשימה אירובית יעילה יותר ביצירת אנרגיה.
 - נשימה **אנאירובית** יוצרת חומצה לקטית (חומצת חלב).

גען עסדיקוע	אַיבר
4-6 דקות	לב, מוח, ריאה
45-90 דקות	כליות, כבד, מערכת עיכול
4-6 שעות	שריר, עצם, עור

פחמן דו חמצני ואוורור

- . פחמן דו חמצני (CO₂) תוצר הלוואי של תהליכים בתאים.
- רמות גבוהות של פחמן דו חמצני רעילות (למה? בהמשך..)
- לכן, הגוף מוטרד יותר דווקא מרמות גבוהות של פחמן דו חמצני מאשר רמות נמוכות של חמצן.

המכניקה של הנשימה

בית החזה בעת שאיפה (אינספיריום)

בית החזה בעת נשיפה (אקספיריום)

Muscles of Respiration - שרירי הנשימה

נפחי ריאה

V_D Anatomic V_{D} V_A Physiolgic Airwavs blogNon-perfused Perfusedlood **Alveolus** Alveolus Perfusion without entilation without ventilation Alveolus (dead space) (shunt) V/Q=0V/Q=∞ Normal V/O = 0.8

נפח מת

חמישית מנפח כל נשימה. דרכי אויר עליונות ובברונכוסים הגדולים אשר אינם פעילים בחילוף הגזים. במבוגר בריא: 150 סמ"ק איזור זה נקרא:

ANATOMICAL <u>DEAD SPACE</u> PHYSIOLOGICAL <u>DEAD SPACE</u>

אוורור ריאה מול אוורור אלוואולרי

- י היות ו- TV הוא 500 סמ"ק, וקצב נשימה ממוצע 15 נשימות TV היות ו- TV הוא בדקה, אוורור הריאה $-\frac{1}{2}$ היות ו- אוורור הריאה היטר/דקה 7.5 = 15 x 500.
- אוורור אלוואולרי כמה גז בפועל בא במגע עם הדם במשך דקה:

$$15 \times (500 - 150) = 5_{יטר/ דקה}$$

- <u>• זהו הפסד של 2.5 ליטר כל דקה.</u>
- חולה אסטמה שנושם 32 נשימות שטחיות ה- TV שלו פחות מ-500 סמ"ק.
 - חמור יותר הנפח המת שלו גדל.

$$32 X 150 = 4.8$$
 ליטר/בדקה

דיפוזיה של הגזים דרך מחסום אויר-דם

יחס אלוואולרי קפילארי

• ממברנה דקה – עובי של 0.5 מיקרון

Thickness ~ 0.5um

יחס אלוואולרי קפילארי

• ובעלות שטח אדיר יחסית של 100 מטר רבוע (שטח של דירה קטנה).

Surface area = $100m^2$

קצב מעבר גזים מהריאה לדם

- :השטח הענק והעובי הדק מאפשרי מעבר גזים מהיר
 - עניות. 0.75 0.5 0.5 שניות.
 - כל הגזים עוברים מהדם לריאה תוך 0.5 שניות:
 - חמצן עובר תוך 0.25 שניה
 - פחמן דו חמצני מעט פחות מחצי שניה.
 - הכל טוב ויפה עד שמתחילים הבעיות אצל חולים:
- הרחבה של עובי דופן הנאדית נוזלים בריאה, זפת עקב עישון.
 - פגיעה בשטח הריאה אמפיזמה בחולי COPD.

?ריאות מעשנים – מה הבעיות

Normal

*ADAM.

מה מונע את תמט הנאדיות (כיווץ/ריקון מה מונע את תמט הנאדיות (מוחלט) בסוף הנשיפה?

• סורפקטנט

- חומר המיוצר מחודש שביעי לחיי העובר בכל נאדית
 - מוריד את מתח הפנים של הנוזל בנאדית.
 - בפגיעה בו תעבור הנאדית אטלאקטזיס •
 - Positive End Expiratory Pressure (PEEP)
 - גם בסוף הנשיפה יש לחץ חיובי המונע תמט
 - בזכות מיתרי הקול שנאטמים
 - ??ואם שמתי שם צינור?

?חילוף גזים בריאות – מה מחזיק את הנאדיות פתוחות?

התכונות הפיזיקליות של האויר

ריכוזי הגזים באויר

- הרכב האויר:
- . מצן. 11% •
- . 78% חנקן
- .(0% פחמן דו חמצני (נהוג להחשיבו כ- 0.003% •
- למרות שהרכב האוויר זהה בכל העולם, כמות הגזים לא זהה:
 - כמות החמצן במישור החוף אינה זהה לכמות החמצן בפסגת הרי האלפים.

ריכוזי הגזים באוויר

: Percentage •

- דרך מקובלת להציג את כמות הגז.
 - . מיוצג באות הלועזית **p** קטנה •
- מסמל את הלחץ החלקי של הגז מכלל האויר:
- p(O2) = 760 mmHg * 0.21 = 160 mmHg
- כאשר מעניקים 95% חמצן במסיכה הלחץ החלקי משתנה:
 - p(O2) = 760 mmHg * 0.95 = 720 mmHg

לחץ הגזים בנאדית

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

	Inspired air	Alveolar air
H ₂ O	Variable	47 mmHg
CO ₂	000.3 mmHg	40 mmHg
O ₂	159 mmHg	105 mmHg
N_2	601 mmHg	568 mmHg
Total pressure	760 mmHg	760 mmHg

הובלת הגזים בדם

ריווי החמצן ומדידת הסטורציה

תנועת גזים בדם

- גז יכול לנוע במחזור הדם באחד משני דרכים:
 - מומס בדם.
 - קשור למולקולת <u>המוגלובין</u> בכדורית דם אדומה
- בגוף האדם לחמצן ולפחמן דו חמצני דרך תנועה מועדף.
- החמצן והפחמן הדו חמצני נעים באמצעי תחבורה שונים ואינם מפריעים אחד לשני

מעבר חמצן במחזור הדם

- צריכת החמצן בגוף:
- במנוחה 200 מ"ל לדקה.
- במאמץ 3000 מ"ל לדקה.
- חמצן נע ברובו קשור למולקולת ההמוגלובין שבכדורית הדם האדומה.
 - 1000 מ"ל דם קושרים 20 מ"ל חמצן. בכל הדם יש 1000 מ"ל של חמצן.
 - פלס אוקסימטר מודד את רווית ההמוגלובין.

הקשר בין החמצן להמוגלובין – עקומת הדיסוציאציה

הקשר בין החמצן להמוגלובין – תחרות

השפעת PO_2 על ריווי ההמוגלובין

- הגורם העיקרי אשר יקבע את אחוז קשירת ההמוגלובין הוא <u>הלחץ</u> <u>החלק</u> של החמצן בעורק!!!
- יתקשר לחמצן PO $_2$ במצבים בהם PO $_2$ לפחות 60% לפחות 90% מההמוגלובין יתקשר לחמצן
 - יהיה כ 40, הסטורציה תרד ל 75% בממוצע PO, במצבים בהם $^{\circ}$
 - יהיה כ 25, הסטורציה תרד ל PO_2 בממוצע •
- יהיה לפחות 40, כ 75% מההמוגלובין יהיה עדיין P $_{
 m v}$ O $_2$ יהיה עדיין רווי בחמצן.
- י האפיניות של ההמוגלובין יורדת עם עליית הטמפרטורה, ירידה ב pH ועליה ב PCO_{2.}

סיכום

- בתנאים בהם צריך *לקלוט יותר חמצן* (מחסור בחמצן באוויר וכדומה) העקומה מוסטת <u>שמאלה</u> ומפאשרת קשירה של חמצן להמוגלובין גם בלחץ נמוך
- בתנאים בהם <u>הרקמות זקוקות יותר לחמצן</u> העקומה מוסטת <u>ימינה,</u> הקשר בין החמצן להמוגלובין יורד וחמצן משתחרר לרקמות

? Pulse-oximeter כיצד פועל ה

• מד הריווי בנוי מאטב בעל מקור אור וחיישן המחובר ליחידה ממוחשבת.

כמות האור הנבלעת תלויה במידת החמצון של ההמוגלובין.

סוגי ההמוגלובין

- + אוקסיהמוגלובין 14bO₂ אוקסיהמוגלובין
 - המוגלובין מחוזר Hb
- metHb מטהמוגלובין
- קרבוקסיהמוגלובין COHb

שימושי מכשיר PulseOxymeter

1. זיהוי היפוקסמיה

2. הערכת מחזור הדם

3. ניטור בזמן העברה

חשוב לדעת

- מגבלות מדידה:
- כיווץ כלי דם היפותרמיה
 - לחץ דם נמוך
 - רעד ותנועות •
 - חשיפה למקור אור חיצוני
 - מיקום הגלאי
 - סוגי המוגלובין פתולוגיים
 - צבע ציפורניים •

מעבר פחמן דו חמצני בדם

- פחמן דו חמצני נע ב**רובו** כמומס ב**פלסמה**:
- רק 5% מהגזים הקשורים להמוגלובין הם פחמן דו חמצני
- הפחמן הדו חמצני מתקשר עם המים והופך לביקרבונט. 97% מהפחמן הדו חמצני נע כביקרבונט
 - נדנדה

$$CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow HCO_3^- + H^+$$

מאזן חומצה – בסים

- ? קודם כל מאיפה מגיעה חומציות לדם
 - בתהליך הנשימה התאית נפלט פד"ח
 - כאשר הפד"ח מומס במים:
- H_2CO_3 מגיב ליצירה של חומצה פחמתית •
- חומצה זו מתפרקת ליון מימן ויון ביקרבונט ולכן:
- הוצאת הפד"ח (אוורור) וייצור יוני ביקרבונט בכליה מאזנים את רמת החומציות בדם (7.35-7.45)

$$CO_2 + H_2O \Leftrightarrow H^+ + HCO_3^-$$

מאזן חומצה – בסים

- סולם Hq.
- ריכוז יוני המימן החופשי בדם
- . עווח צר = 7.35-7.45 (בדם) תקין
 - חומצה = יון מימן חופשי.
- בסיס = "מנטרלי מימן" זרחן, אמוניה,
 ביקרבונט- תגובה כימית היוצרת עם החומצה
 מלח ומים ובכך מנטרלת אותה
 - בכליה:
 - ייצור ביקרבונט •
 - סילוק מימן (נתרן)

Capnography

Respiration—The BIG Picture

1

 Cellular Metabolism of food into energy: O₂ consumption and CO₂ Production

2

 Transport of O₂ and CO₂ between cells and pulmonary capillaries, & diffusion from/into alveoli.

3

 Ventilation between alveoli & atmosphere

רמה נורמלית של גזים בדם

עורקי

Po₂: 100 mm/Hg •

PCo₂: 40 mm/Hg •

pH: 7.4 •

• ורידי

Po₂: 40 mm/Hg

PCo₂: 46 mm/Hg •

pH: 7.36

26 TCCO₂ -1

ETCO₂ –ניטור

- קפנומטר / קפנוגרף
- מדידה רציפה של ריכוז הפד"ח הננשף לאורך כל מחזור הנשימה
 - גם מודד את קצב הנשימה (RR)
 - $\frac{CO_2}{2}$ •
 - <u>תהליך הנשימה התאית</u>:
 - אורגני + חמצן ← אנרגיה + מים + פד"ח
 - הפד"ח מועבר לדם ומשם לריאות
 - מעיד על תהליך <u>האוורור</u> של הריאה

מבנה הגל התקין

- מבחינה אנטומית − היעדר CO2 בנשימה (Dead Space) נפח מת A-B •
- שליה מהירה בריכוז ה- CO₂ החלק הראשון והאמצעי של הנשיפה B-C
 - (plateau) ישורת של הנאדיות- CO₂ בקצב קבוע C-D
 - סוף הנשיפה או סוף הנשימה (EtCO₂) סוף הנשיפה או
 - שאיפה D-E 🌘

הטווח הנורמלי עבור 25 הוא 35 עד 45 מילימטר כספית (mmHg) הטווח הנורמלי עבור 2.5 mmHg = 1 (1 kpa נפח או 7.5 mmHg = 1 %)

באדיבות חברת מיקרוסטרים

שימושים

• זיהוי מהיר של דום נשימה (לסטורציה ייקח יותר זמן לרדת – יש עדיין חמצן בדם)

• מעקב אחר מטופל נושם

מיקום הטובוס

הצינור התוך קני נמצא בוושט esophagus

הצינור התוך קני נמצא בתת לוע Hypopharynx

שמירה על רמת פד"ח נכונה בחדש לעלייה ב- ICP

- כאשר יורדת כמות הפד"ח ירידה בזרימת הדם למוח
- כאשר עולה כמות הפד"ח עלייה בזרימת הדם למוח

:ICP -<u>במצב של חשש לעלייה ב</u>

- המנע מהיפוונטילציה
- השימוש בקפנו' על ידי מדד RR ומדד הפד"ח
 - שמירה על רמה גבוהה מ- 50 ממ"כ

מעקב אחר מטופל נושם

- צריך שיהיה מתקן מתאים (קיים בקורפולס)
 - : גל וערכים תקינים מעידים על
 - נתיב אוויר פתוח
 - תהליך נשימה תקין
 - פרפוזיה תקינה

- לשים לב לשינויים במהלך הטיפול:
 - השפעה חיובית / שלילית
 - ביקרבונט ואדרנלין / דופמין •

מעקב אחר מטופל נושם

- **דום נשימה** ערך צונח לאפס, גל מתיישר
 - ברונכוספזם שינוי מבנה הגל
 - :COPD / אסטמה •
 - יציב מבנה וערך נורמלי
 - התקף קל ירידה בערך, שינוי המבנה
 - התקף בינוני עלייה לערך נורמלי
 - התקף חריף עלייה בערך, ירידה ב- RR
 - מעקב אחר השינוי תוך כדי טיפול

טובוס בקיבה

- קריאה טובה של קפנומטר היא אחת השיטות הטובות לווידוא כי הטובוס במקום
 - כאשר הוא בקיבה הקריאה תהיה נמוכה עם גל נמוך, בעל צורה לא תקינה

דליפה מהטובוס

י סיבות אפשריות

∕דליפה מהטובוס או מהבלונית

עובוס קטן מדי √

היפוונטילציה (צולה ETCO $_2$)

• סיבות

- √ירידה בקצב נשימה
- √ירידה בנפח נשימה
 - עלייה במטבוליזם √
- עלייה מהירה בטמפ'√

היפרוונטילציה (decrease in $ETCO_2$)

• סיבות אפשריות

- עלייה בקצב √
- עלייה בנפח√
- ירידה במטבוליזה√
 - ∕צניחת טמפ'

איבוד פתאומי של הגל

ניטור– פאלס אוקימטר

<u>עיקרון פעולה:</u>

- המוגלובין מחומצן קולט קודם תדר אחד של אור (IR) והמוגלובין לא מחומצן קולט קודם תדר אחר (R)
 - המכשיר מעביר אור אדום בשני התדרים
 - מה שלא נקלט בהמוגלובין נקלט במכשיר והמכשיר מחשב את היחס
 - -+3% במצב רגיל ואם הסטורציה מעל 70% הדיוק של המכשיר הוא

פאלס אוקימטר – בעיות שיש לשים לב

י <u>תנאים לחמצון הפריפריה:</u>

- נוכחות חמצן אטמוספרי
 - מספיק המוגלובין
 - תפוקת לב
- <u>הרעלת CO וציאניד</u> ההמוגלובין הקשור למולקו*י* אינו "נספר" במכשיר

בהעדר תנאים אלו – סטורציה

טובה אינה מדד מספיק טוב

- <u>משפיעים נוספים</u> עובי אצבע, צבע עור, טמפרט פטרייה בציפורן
 - במהלך החייאה לא יעיל
 - מלמד על יעילות החמצון ROSC אחרי

בקרה ופיקוח על נשימה

הכימורצפטורים

- השליטה בנשימה היא גם רצונית וגם לא רצונית.
- הגוף מבקר את הצורך בנשימה באמצעות כימורצפטורים.
- כימורצפטורים חיישן כימי בודק ריכוזי כימיקלים בדם.
 - <u>כימורצפטורים הקשורים לנשימה:</u>
 - CO_2 כימורצפטור שמודד רמות •
 - כימורצפטור שמודד רמות חמצן.
 - כימורצפטור המודד יוני מימן (+H)/רמת pH בדם.

כימורצפטורים

שינוי בקצב הנשימה

- נשיפה מול שאיפה פראסימפתטית / סימפתטית
- שינויים אלה מפעילים את המערכת סימפטטית ומראים את סימני
 הסטרס:
 - הגברת קצב נשימה.
 - הגברת דופק.
 - עור חיוור קר ולח.
 - אישונים מורחבים.

מה יפריע להליך השאיפה התקין?

- חסימת דרכי אויר
- Central depression (head inj.drugs.anesthetic)
 - אובדן הואקום בין קרומי הפלאורה
 - לחץ גדול בחלל ביהח"ז
 - PARALYSIS OF RESP. MUSC.
 - שברים מרובים בצלעות
 - תרופות/חומרים...