Introducción a la Analítica de Negocios Taller - Seguimiento 3

Santiago Restrepo Olarte Estudiante de Ingeniería Industrial Universidad de Antioquia, Colombia

A partir del archivo de precios del Taller 2 realizar el preprocesamiento del conjunto de datos.

Descripción general del dataframe

Inicialmente el dataframe posee 9240 filas y 7 columnas, donde las filas están ordenadas por producto (alfabéticamente) y fecha (ver *Ilustración 1*). Además, en primera instancia, el dataframe posee algunas observaciones repetidas y datos faltantes en algunas columnas.

	producto	ciudad	precio	variabilidad	fecha	LATITUD	LONGITUD
0	Arveja verde en vaina	armenia	7200	0.1	01ago2023	6.163684	-75.809955
1	Arveja verde en vaina	armenia	7200	0.1	01ago2023	4.499501	-75.724900
2	Arveja verde en vaina	bogotá	7925	0.11	01ago2023	NaN	NaN
3	Arveja verde en vaina	bucaramanga	6860	0.08	01ago2023	7.155834	-73.111570
4	Arveja verde en vaina	cali	7733	-0.03	01ago2023	3.399044	-76.576493

Ilustración 1. Visualización cabeza del dataframe

1. Redefinición de variables

Gracias al .info() del dataframe es posible observar (ver *Ilustración 2*) que los tipos de datos que existen son 'object' y 'float'. Sin embargo, para el caso del precio y la variabildad es pertinente realizar una redefinición del tipo de dato, dado que más adelante se realiza la manipulación de dichos datos y no es posible realizarlo si se mantienen en formato 'object', por ende, se procede a redefinir 'precio' como tipo 'int' y 'variabilidad como tipo 'float'.

```
0 producto
                9240 non-null
1 ciudad 9240 non-null
2 precio 9240 non-
                                  object
   precio
                 9240 non-null
                                  object
3 variabilidad 9240 non-null
                                  object
4 fecha 9240 non-null
5 LATITUD 7105 non-null
                                  object
                                  float64
               7105 non-null float64
6 LONGITUD
dtypes: float64(2), object(5)
                .info()
```

Ilustración 2. Tipos de datos del dataframe

2. Categorización de variables

En este caso, no se encuentra la necesidad de realizar categorización de variables para el análisis que se realiza, dado que solo se hace tratamiento de datos faltantes y duplicados acompañado de análisis exploratorio de los datos. En caso de que los datos fueran a ser utilizados para calibrar un modelo predicción o realizar análisis mucho más detallados si se pudiesen realizar categorizaciones, por ejemplo, por tipo de producto (frutas, verduras u hortalizas) o por rango de precios (bajo, medio, alto).

3. Datos faltantes

Dentro del dataframe se evidencian los datos faltantes como 'NaN', sin embargo, parece que algunos datos faltantes fueron registrados de forma manual como 'n.d.', por ende, es necesario convertir todos los datos faltantes en 'NaN'. Para ello se hace uso de un .replace('n.d.', np. nan) que reemplaza los faltantes 'n.d.' por datos faltantes de numpy ('NaN').

Una vez realizado el reemplazo, se identifican datos faltantes en las columnas 'precio', 'variabilidad', 'LATITUD' y 'LONGITUD' (ver *Ilustración 3*).

```
False
False
producto
                     producto
                                      0
                     ciudad
                                      0
ciudad
            True
precio
                     precio
                                   2236
variabilidad
              True
                     variabilidad
                                   2384
fecha
            False fecha
                     LATITUD
LATITUD
                                   2135
              True
LONGITUD
              True
                     LONGTTUD
                                   2135
                     dtype: int64
dtype: bool
                     .isnull().sum()
.isnull().any()
Ilustración 3. Datos faltantes del dataframe
```

Para la imputación de duchos datos faltantes se procede de la siguiente forma:

- Para la columna 'LATITUD' Y 'LONGITUD', gracias a un filtrado se identificó que las ciudades que no poseían el dato de latitud y longitud eran Bogotá, Cúcuta, Santa Marta y Cartagena. Dichos datos se imputaron con el dato de longitud y latitud correspondiente por medio de un . at [] para modificar el valor específico de esas columnas a través de un ciclo.
- En cuanto a la columna 'precio' se decide utilizar un . *dropna*() para eliminar todas las observaciones que tengan dato faltante en dicha columna, dado que si dicho dato está vacío quiere decir que ese producto no obtuvo registro en ese día especifico.
- Para el caso de la columna 'variabilidad' se identificaron inicialmente 2384 datos faltantes, sin embargo, al eliminar las observaciones con datos faltantes en la columna 'precio' observamos que quedan solo 148 datos faltantes y se decide imputarlos por medio de un . fillna() con el valor de 0. Además, cabe mencionar que no sería adecuado eliminar dichas observaciones dado que sí poseen dato en su precio, por ende, sí se obtuvo registro para ese producto en ese día.

Después de realizar el tratamiento de estos datos se obtiene un dataframe con 0 datos faltantes (ver *Ilustración 4*).

```
producto 0
ciudad 0
precio 0
variabilidad 6
fecha 0
LATITUD 0
LONGITUD 0
dtype: int64
```

.isnull().sum()

Ilustración 4. Datos faltantes del dataframe después de tratamiento

4. Datos duplicados

Inicialmente, gracias a la exploración a través de un . duplicated(), se identificaron 13 observaciones duplicadas (ver *Ilustración 5*).

	producto	ciudad	precio	variabilidad	fecha	LATITUD	LONGITUD
897	Chócolo mazorca	pereira	n.d.	n.d.	03ago2023	4.803663	-75.795791
1017	Zanahoria	pereira	n.d.	n.d.	03ago2023	4.803663	-75.795791
1332	Plátano guineo	pereira	n.d.	n.d.	03ago2023	4.803663	-75.795791
2857	Chócolo mazorca	pereira	n.d.	n.d.	10ago2023	4.803663	-75.795791
2977	Zanahoria	pereira	n.d.	n.d.	10ago2023	4.803663	-75.795791
3022	Coco	pereira	n.d.	n.d.	10ago2023	4.803663	-75.795791
3292	Plátano guineo	pereira	n.d.	n.d.	10ago2023	4.803663	-75.795791
5307	Chócolo mazorca	pereira	n.d.	n.d.	17ago2023	4.803663	-75.795791
5427	Zanahoria	pereira	n.d.	n.d.	17ago2023	4.803663	-75.795791
5742	Plátano guineo	pereira	n.d.	n.d.	17ago2023	4.803663	-75.795791
7267	Chócolo mazorca	pereira	n.d.	n.d.	24ago2023	4.803663	-75.795791
7387	Zanahoria	pereira	n.d.	n.d.	24ago2023	4.803663	-75.795791
7702	Plátano guineo	pereira	n.d.	n.d.	24ago2023	4.803663	-75.795791

Ilustración 5. Datos duplicados en el dataframe inicial

Sin embargo, al realizar la eliminación de las filas que poseen el precio y la variabilidad del precio como dato faltante se eliminan 12 de ellas, y la única observación duplicada que queda es eliminada.

5. Datos outliers

Haciendo el análisis de outliers (una vez preprocesado el dataframe) para las variables numéricas 'precio' y 'variabilidad' a través de un . *describe*() (ver *Ilustración 6*) nos damos cuenta de que las dos variables poseen su media alejada de sus valores máximos.

count	7003.000000	count	7003.000000	
mean	3155.019849	mean	0.002519	
std	1932.068856	std	0.092890	
min	339.000000	min	-0.460000	
25%	1700.000000	25%	-0.030000	
50%	2775.000000	50%	0.000000	
75%	3942.000000	75%	0.020000	
max	10000.000000	max	1.060000	
Name: p	orecio, dtype: float64	Name: \	/ariabilidad, dtype:	float64

.describe()

Ilustración 6. Descripción de variables 'precio' y 'variabilidad'

Sin embargo, no se decide realizar tratamiento dado que, a pesar de que los valores máximos no son cercanos a la media, tampoco son datos atípicos derivados de errores de codificación o cálculo. Además, se presentan gráficos (ver *Ilustración 7 y* 8) que permiten apreciar la distribución de los datos 'precio' y 'variabilidad'.

Ilustración 7. Histogramas de variables 'precio' y 'variabilidad'

Ilustración 8. Boxplots de variables 'precio' y 'variabilidad'

6. Normalización o estandarización de datos

Dado que, en este momento el interés no se basa en calibrar o entrenar modelos predictivos ni realizar comparaciones directas entre las variables, entonces no se realiza normalización o estandarización de las mismas.

7. Preguntas a partir del filtrado

Las preguntas formuladas y solucionadas a partir del filtrado de columnas se observan en la Tabla 1.

Pregunta		Respuesta		
	¿Cuáles son los productos que	Manzana royal gala con un precio		
	alcanzaron un precio superior a	máximo de \$9397		
1	\$9.000 en algún momento de agosto	Mango tommy con un precio máximo de		
	en la ciudad de Bogotá y cuál fue su	\$9010		
	precio máximo?			
	¿Cuáles son los productos que			
	alcanzaron un precio inferior a \$500	Zanahoria		
2	en algún momento de agosto en la	Precio promedio: \$396		
	ciudad de Medellín y cuál fue su			
	precio promedio?			

3	¿En qué ciudades del país el aguacate alcanzó un precio inferior a \$3.500 en algún momento de agosto?	Armenia	
		Pimentón: con una variabilidad de 1.06 en	
		la ciudad de Neiva	
		Cebolla cabezona blanca: con una	
	¿Qué productos obtuvieron la	variabilidad de 0.88 en la ciudad de Pereira	
4	variabilidad de precio más alta durante	Cebolla cabezona blanca: con una	
	el mes de agosto y en qué ciudades?	variabilidad de 0.83 en la ciudad de	
		Popayán	
		Habichuela: con una variabilidad de 0.87	
		en la ciudad de Cali	
	¿El precio de la papa fue inferior en la	Sí; obteniendo un precio promedio de los	
	ciudad de Pasto (territorio papero)	diferentes tipos de papa:	
5	comparado con la ciudad de Cartagena	Pasto: \$2000	
	(territorio no papero) durante el mes	Cartagena: \$3416	
	de agosto?		

Tabla 1. Preguntas formuladas y solucionadas a partir del filtrado de datos

Cabe mencionar que las preguntas formuladas se pueden realizar para diferentes productos, ciudades y valores, pero en este caso se realizan de manera que lleguen a preguntas y conclusiones específicas.

8. Gráficos de interés

- i. En primer lugar, se podría realizar un 'barplot' que relaciones variables categóricas con variables numéricas. En este caso podríamos usar como variable categórica un producto en específico (eje X) y el precio promedio durante el mes de ese producto (eje Y).
- ii. Se puede realizar un 'line chart' como una serie de tiempo sobre el precio de un producto especifico o la variabilidad de un producto a través del tiempo. Donde el eje Y sería el precio o variabilidad del producto y el eje X es el tiempo en días (en este caso el mes de agosto). Así mismo, si se realiza la normalización o estandarización de los datos numéricos se podría realizar un análisis comparativo entre ellos mismos.
- iii. Teniendo en cuenta que contamos con datos como la ciudad y sus coordenadas geoespaciales se podría realizar un 'bubble map' para determinar geográficamente el estado de una variable en específico. Por ejemplo, se podrían ubicar las burbujas en las ciudades que contiene el dataset y dicha burbuja será más grande o tendrá otro color donde el precio de algún producto en particular sea mayor.
- iv. Para relacionar el precio y la variabilidad de un producto se puede hacer uso de un 'scatterplot', donde precio puede ser el eje X y variabilidad puede ser el eje Y.
- v. Se podría hacer uso de un 'density plot' para identificar la distribución de las variables númericas como precio y variabailidad, y así identificar tendencias o patrones del precio o variabilidad de un producto en específico.

Gracias al preprocesamiento de datos realizado se obtiene un dataframe con 7003 filas y 7 columnas, sin datos faltantes ni datos duplicados.

