Engineering Design Process

Lecture 1
Spring 2018
Rabi Mahapatra

Slides adopted from R. Gutierrez

Plan

- Engineering science vs. design
- What is an engineer?
- Engineering design
- Elements of the design process

Engineering science vs. design

- Engineering <u>science problems</u>
- Problem statement is compact and well-posed
- Problem uses specialized knowledge
- Problem has a readily identifiable closure
- Solution is unique and compact

Engineering <u>science problems</u>

- Problem statement is compact and well-posed
- Problem uses specialized knowledge
- Problem has a readily identifiable closure
- Solution is unique and compact

How much current is flowing through the circuit 0.1 sec after the switch is closed?

Engineering design problems

- Problem statement is incomplete, ambiguous, and self-contradictory
- Problem requires integration of knowledge from many fields
- Problem does not have a readily identifiable closure
- Solutions are neither unique nor compact

Engineering <u>design problems</u>

- Problem statement is incomplete, ambiguous, and self-contradictory
- Problem requires integration of knowledge from many fields
- Problem does not have a readily identifiable closure
- Solutions are neither unique nor compact

Design a system for lifting and moving loads of up to 5000 lb in a manufacturing facility. The facility has an unobstructed span of 50 ft. The lifting system should be inexpensive and satisfy all relevant safety standards.

What is an Engineer?

En-gi-neer (n) One who employs the innovative and methodical application of scientific knowledge and technology to produce a device, system or process, which is intended to satisfy human needs—American College Dictionary

What is an Engineer?

En-gi-neer (n) One who employs the innovative and methodical application of scientific knowledge and technology to produce a device, system or process, which is intended to satisfy human needs—American College Dictionary

- Methodical application of scientific knowledge and technology
 - In contrast with other design/creative endeavors, e.g., creative writing
- Innovative vs. methodical
 - Both terms are in competition
 - A good engineer is aware of this and uses both effectively
- Satisfy human needs
 - You must determine the user's needs and apply technology ethically

What is engineering design?

Engineering design is the process of devising a system, component, or process to meet desired needs. It is a decision-making process (often iterative), in which the basic sciences, mathematics, and engineering sciences are applied to convert resources optimally to meet a stated objective. Among the fundamental elements of the design process are the establishment of objectives and criteria, synthesis, analysis, construction, testing, and evaluation. [ABET]

Engineering design is the <u>process</u> of devising a system, component, or process to meet desired needs. It is a decision-making process (often <u>iterative</u>), in which the basic sciences, mathematics, and engineering sciences are applied to convert resources optimally to <u>meet a stated</u> <u>objective</u>. Among the fundamental elements of the design process are the establishment of objectives and criteria, synthesis, analysis, construction, testing, and evaluation. [ABET]

The design process

 Problem-solving methodologies that aim to develop a system that best meets the customer's needs within given constraints

Iterative

 In recognition that early in the process you don't know all the answers (or sometimes even the questions)

Meeting an objective

- There is always one (or multiple) —engineering design is not aimless

Types of design processes

Prescriptive

- They set down an exact process or recipe for realizing a system
- Often algorithmic and expressed on flow charts with decision logic

Descriptive

- Describe typical activities involved in realizing designs
- Less formal, less emphasis on exact sequencing

Why follow a design process?

- It formalizes thought processes to ensure good practices are followed,
 which leads to better and more innovative solutions
- It keeps all members of the team synchronized in terms of understanding where they are in the process

A prescriptive design process

 This model is unrealistic, and ignores the iterative nature of design, where the team alternates between different phases as needed

A descriptive design process

A descriptive design process

- Allows transitions between the different phases
- The engineer may alternate between nearby phases
 - e.g., between problem ID, research, requirements specs, concept generation
- However, transitions between remote phases can be costly
 - e.g., the customer needs may change, which requires reevaluation of needs, requirements specifications

Elements of the design process

[1] Problem identification

- What is the problem being solved or the customer need to be met?
- Could result from someone conceiving <u>a new idea</u> or from a client approaching you with <u>a need</u>

[2] Research

- Immersion in basic engineering, scientific principles and technologies
- You must become a domain expert to avoid reinventing the wheel

[3] Requirements specification

- Articulates what the system must do for it to be successful and be accepted by the customer
- Very challenging for engineers since we are trained to solve problems instead of specifying them

[4] Concept generation

- The design is open-ended, so you must generate multiple solutions
- Alternates creative thought and critical evaluation (<u>not</u> simultaneously)

[5] Design

- Iteratively develop a technical solution, leading to a <u>detailed</u> design
- Upon completion, all major systems and subsystems are identified and described using an appropriate <u>model</u> (e.g., functional, behavior)

[6] Prototyping/construction

- Different elements of the system are constructed and tested
- In prototyping, the goal is to experiment, establish proof-of-concept, and improve understanding

[7] System integration

- All the subsystems are brought together to produce a working system
- Requires clear communication of functionality and interfaces during the design phase

[8] Testing

- Unit tests, regression test, integration test, acceptance test
- The final objective is to demonstrate that the overall system meets the client's needs

[9] Maintenance

 After deployment: maintain, upgrade, add new functionality, correct design problems

Technology-specific design processes

Technology-specific design processes

Topography of engineering science and design

Course objectives

Lecture summary

- Design problems are open-ended with many potential solutions
- Design processes represent best practices for realizing a system
- Engineering design is an iterative process
- Design processes may be prescriptive or descriptive