Relationship between Hardware and Software & Analog Electronics

Nahin Ul Sadad Lecturer CSE, RUET

Relationship between Hardware and Software

Question: Can high level language program (Software) be run on computer processor (Hardware) directly?

Ans: Computer understands only program written in 0/1. It is called Machine Code/Program.

So, High level language program must be converted to Machine Language Program.

Compiler

Assembler

High Level Language Program \rightarrow Assembly Language Program \rightarrow Machine Language Program

```
int main()
    int a=10;
    a=a+5;
    return 0;
```

```
call
        main
              c7 44 24 0c 0a 00 00
mov DWORD PTR [esp+12], 10 83 44 24 0c 05
add DWORD PTR [esp+12], 5 b8 00 00 00
mov eax, 0
```

Question: What kind of machine code does computer processor understand?

Ans: Every computer processor has something called **Instruction Set Architecture (ISA)** which defines machine code for specific instruction.

Compiler/Assembler must generate machine code based on ISA. ISA is the one that connects Hardware and Software together.

Question: How does computer processor itself run machine code?

Ans: Every modern processor is based on Von Neumann Model.

Figure: Von Neumann Model

- 1. Computer will fetch instruction from Main Memory (RAM).
- 2. Instruction will be decoded by control unit and will select registers and/or immediate values.
- 3. Data within registers and/or immediate values will be sent to Arithmetic and Logic Unit (ALU) to perform operations.
- 4. ALU will perform operation and result will be sent to the register to be written.
- 5. Control unit can send data from registers to Main memory.

Question: How are computer building blocks like ALU, CU, Register Set, Main Memory etc. made of?

Ans: They are made of digital electronics building block like AND/OR etc.

Question: How are digital electronics building block like AND/OR etc. made of?

Ans: They are made of analog electronics building block called transistor.

Question: How does a high level language program run on transistor inside of computer processor?

Answer: Connection between High Level Language Program and Transistor

Analog Electronics I

Question: What is the role of transistor?

Answer: Transistor works as

1. Switch and

2. Amplifier

Question: Explain the role of transistor in computer processor.

Answer: Transistor works as switch inside computer processor.

Question: How does BJT transistor work as switch? **Answer:**

Transistor Circuit Diagram

2-input Transistor AND Gate

Link: https://www.electronics-tutorials.ws/logic/logic_2.html

2-input Transistor OR Gate

Link: https://www.electronics-tutorials.ws/logic/logic 3.html

1-input Transistor NOT Gate (Inverter)

Link: https://www.electronics-tutorials.ws/logic/logic_4.html

Question: Implement NOR $(\overline{A} + \overline{B})$ logic gate by using BJT transistor.

Ans: 2-input NOR Gate

Ans: Equivalent 2-input NOR Gate

Link: https://www.electronics-tutorials.ws/logic/logic-6.html

Question: What type of transistor is used in real life modern processor?

Answer:

CMOS = Complementary Metal–Oxide– Semiconductor Field Effect Transistor

Example: BJT

Question: Implement $(\overline{A+B})(\overline{B+C})$ by using BJT transistor.

Answer:

Exercises

1. Implement NOR ($\overline{A+B}$)/ $\overline{A+B+C}$ /($\overline{A+B}$)($\overline{B+C}$)/any Boolean expression by using BJT transistor.

Thank You ©