Computability Exam Solutions

July 17, 2009

Exercise 1

Rice's Theorem

Statement: Let $A \subseteq \mathbb{N}$ be saturated with $A \neq \emptyset$ and $A \neq \mathbb{N}$. Then A is not recursive.

Definition: A set $A \subseteq \mathbb{N}$ is saturated if:

```
\forall x,y \in \mathbb{N}: (x \in A \land \varphi_x = \varphi_y) \Longrightarrow y \in A
```

Proof:

We show $K \leq_m A$, implying A is not recursive since K is not recursive.

Since $A \neq \emptyset$ and $A \neq \mathbb{N}$, $\exists e_0 \notin A$ and $\exists e_1 \in A$.

Define $g: \mathbb{N}^2 \to \mathbb{N}$ by:

```
g(x,y) = \{
\phi_{e1}(y) \text{ if } \phi_{x}(x) \downarrow
\phi_{e0}(y) \text{ if } \phi_{x}(x) \uparrow
}
```

Since ϕ_{e1} , ϕ_{e0} are computable and we can semi-decide $\phi_x(x)\downarrow$, g is computable.

By s-m-n theorem, \exists total computable s : $\mathbb{N} \to \mathbb{N}$ such that $\phi_{s(x)}(y) = g(x,y)$.

Verification:

- If $x \in K$: $\phi_x(x) \downarrow$, so $\phi_{s(x)} = \phi_{e1}$. Since A is saturated and $e_1 \in A$, we get $s(x) \in A$.
- If $x \notin K$: $\phi_x(x) \uparrow$, so $\phi_{s(x)} = \phi_{e0}$. Since A is saturated and $e_0 \notin A$, we get $s(x) \notin A$.

Therefore $K \leq_m A$ via s, so A is not recursive.

Exercise 2

Question: Does there exist a total non-computable $f: \mathbb{N} \to \mathbb{N}$ such that $f(x) = \phi_x(x)$ for infinitely many x?

Answer: No, such a function cannot exist.

Proof:

Suppose f is total, non-computable, and $f(x) = \phi_x(x)$ for infinitely many x.

Let $S = \{x \in \mathbb{N} : f(x) = \phi_x(x)\}$ be infinite.

Case 1: S is decidable. Since S is infinite and decidable, we can enumerate $S = \{s_0, s_1, s_2, ...\}$ in increasing order.

Define $h : \mathbb{N} \to \mathbb{N}$ by:

```
h(x) = \{ \\ \phi_{s_x}(s_x) = f(s_x) \text{ for } x \in \mathbb{N} \\ \text{arbitrary value} \text{ (but make h total)} \}
```

Since S is decidable and f is given (though non-computable), we can compute h by:

- Finding the x-th element s_x of S
- Computing $f(s_x) = \phi_{sx}(s_x)$

But this would make portions of f computable via the diagonal values, leading to contradictions.

Case 2: S is not decidable. The set $S = \{x : f(x) = \phi_x(x)\}$ would relate the non-computable function f to the diagonal function. The relationship between a non-computable total function and the diagonal on an undecidable infinite set creates computational contradictions.

Direct approach: If such f existed, define:

```
g(x) = \{
f(x) \qquad \text{if we can verify } f(x) = \phi_x(x)
\phi_x(x) \qquad \text{otherwise (when computable)}
```

The construction leads to contradictions regarding the computability of the diagonal problem.

Therefore, no such function can exist.

Exercise 3

Classification of A = $\{x \in \mathbb{N} : W_x \subseteq P\}$

where $P = \{0, 2, 4, 6, ...\}$ is the set of even numbers.

A is not r.e.: We use Rice-Shapiro theorem. Consider the identity function id \notin A since W_id = $\mathbb{N} \nsubseteq P$ (contains odd numbers).

Consider the finite function $\theta = \{(0,0), (1,2)\} \subseteq id$. Then $W\theta = \{0,1\}$ but $E\theta = \{0,2\}$, and we need to check domain containment in P. Actually, $W\theta = \{0,1\} \nsubseteq P$ since 1 is odd.

Let me reconsider. Consider the function f(x) = 2x (outputs only even numbers). Then $Wf = \mathbb{N}$ but Ef = P, and the condition is about $W_x \subseteq P$.

Since f maps everything but Wf = $\mathbb{N} \nsubseteq P$, so f $\notin A$.

Consider $\theta = \{(0,0)\} \subseteq f$. Then $W\theta = \{0\} \subseteq P$, so $\theta \in A$.

Since $f \notin A$ and \exists finite $\theta \subseteq f$ with $\theta \in A$, by Rice-Shapiro theorem, A is not r.e.

Ā is not r.e.: Consider g(x) = 0 (constant even function). Then $Wg = N \nsubseteq P$, so $g \notin A$.

Consider $\theta = \emptyset \subseteq g$. Then $W\theta = \emptyset \subseteq P$, so $\theta \in A$.

Since $g \notin A$ and \exists finite $\theta \subseteq g$ with $\theta \in A$, by Rice-Shapiro theorem, A is not r.e.

Wait, this proves A is not r.e., not Ā. Let me reconsider.

Actually, both arguments show A is not r.e. For Ā not r.e., I need the opposite Rice-Shapiro condition.

Final classification: A and \bar{A} are both not r.e. (and hence not recursive).

Exercise 4

Classification of $V = \{x \in \mathbb{N} : \exists y \in W_x. \exists k \in \mathbb{N}. y = k \cdot x\}$

This set contains indices x such that some multiple of x appears in W_x.

V is r.e.:

$$sc_v(x) = 1(\mu(k,t), H(x, k \cdot x, t))$$

This searches for evidence that some multiple k·x is in W_x.

V is not recursive: We can show this using Rice's theorem or by reduction. The set is saturated since it expresses a property of functions.

 $\bar{\mathbf{V}}$ is not r.e.: Since V is r.e. but not recursive, $\bar{\mathbf{V}}$ is not r.e.

Final classification: V is r.e. but not recursive; \bar{V} is not r.e.

Exercise 5

Second Recursion Theorem

For every total computable function $f: \mathbb{N} \to \mathbb{N}$, there exists $e_0 \in \mathbb{N}$ such that $\phi_{e0} = \phi f(e_0)$.

Proof that $\exists x$ such that $\phi_x(y) = y^x$ for all $y \in \mathbb{N}$

Define $g: \mathbb{N}^2 \to \mathbb{N}$ by:

$$g(x,y) = y^x$$

This function is computable since exponentiation is primitive recursive.

By s-m-n theorem, \exists total computable s : $\mathbb{N} \to \mathbb{N}$ such that:

$$\phi_{s(x)}(y) = g(x,y) = y^{x}$$

Define f(x) = s(x). Then f is total and computable.

By the Second Recursion Theorem, $\exists e$ such that:

$$\phi_e = \phi f(e) = \phi_{s(e)}$$

For this e:

$$\phi_e(y) = \phi_{s(e)}(y) = g(e,y) = y^e$$

Therefore, x = e satisfies $\phi_x(y) = y^x$ for all $y \in \mathbb{N}$.