King Saud University College of Computer and Information Sciences Information Systems Department

Course Code/Title: IS 466 (Decision Support System)

TOTAL MARKS: 40

Exam: FINAL Semester / Year: Spring 2016-17

Exam date: May 11, 2017 **Time Allowed**: 90 minutes

Student ID:	Name:	
Judent ID.	i tailie.	

EXAM POLICYÐICS:

- Read the paper carefully, should have any query be asked within first 15 minutes.
- Closed-book exam, no course-related papers are allowed.
- During examination, any form of communications with peer students is strictly forbidden.
- Students will not be allowed to attend the exam if arrived 20 minutes after the exam starts.
- Mobile phones should strictly be off.

QUESTIONS/ STUDENT OUTCOMES: This exam covers the following student outcomes (SOs):

Outcomes Covered	Questions	TOTAL
	Question 1	/10
	Question 2	/6
	Question 3	/4
	Question 4	/6
	Question 5	/6
	Question 6	/8
	Total	/40

Ųι	iestion No.	1. (10 marks) Select the correct answers from the f	lonown	ing MCQs.
1.	Which of (i) (ii) (iii)	the following statements is true? The EVPI can be determined without using probal A decision tree usually begins with a decision n Payoff tables will always contain positive number	ode.	
2.	A bad dec (i) (ii) (iii) (iv)	ision is: does not employ appropriate decision modeling te does not use all available information does not consider all alternatives all the above	chniqu	es
3.		orecast is close to the actual values and considered ror called MAPE is: close to 1 close -1	ed as a (iii) (iv)	'good' forecast then the measure of close to 0 close to 0.5
4.	The weight (i) (ii) (iii) (iv)	at values used in the weighted moving average are: each weight is assigned an equal value determined by a formula. assigned some arbitrarily chosen values, where assigned so that the sum of the weights is equal to		ecent has high weighted.
5.	The maxir (i) (ii)	nin criterion is a feature of which of the following? Decision-making under certainty Optimization	(iii) (iv)	Decisio n-making under uncertainty Deterministic model
6.	In ord following: (i) (ii)	der to use Bayes' Theorem to calculate the P(A P(B) and P(B/A) P(A), P(B), and P(B/A)	/B), it (iii) (iv)	is necessary to know which of the $P(A) \text{ and } P(B/A) \\ P(A) \text{ and } P(B)$
7.	The EVSI (i) (ii) (iii)	is always: smaller than the expected value of the best decision greater than the EVPI non-negative	on with	nout sample information
8.	When mak (i) (ii)	king a decision under risk, which of the following is Minimize expected opportunity loss Maximin	s a valio (iii) (iv)	d decision-making criterion? Minimax regret Maximax
9.	Which of (i) (ii) (iii) (iv)	the following occurs in decision making under unce Conditional probabilities. Equally likely probabilities for all states of nature. A payoff table for each possible combination of Exactly one state of nature.		
10	The e (i) (ii) (iii)	xpected value of perfect information is calculated by the maximum EV from the expected return with EVSI from the expected return with perfect inform the maximum EV from the minimum expected op	th perfonation.	ect information.

the minimum expected opportunity loss from the expected opportunity loss with perfect

(iv)

information.

11.	Which of the following statements is true? (i) The maximax criterion is a conservative approximate (ii) Someone who is indifferent to risk would have approximate in the state of the sta	ave a utility function that is a straight line. ter a test market.
12.	A joint probability is: (i) P(B). (ii) P(B/A).	(iii)P(A/B). (iv) P(A and B).
13.	The minimax criteria finds the alternative that: (i) minimize the maximize the opportunity loss (ii) minimize the maximize the profit of all the alt	
14.	Annual time series data of air conditioner sales wi (i) Cycles, Random (ii) Trend, Cycles	ll consist of what time series components? (iii)Seasonality, Random (iv) Trend, Cycles, Random
15.	Which of the following statements is true? (i) MAD penalizes a forecasting technique more (ii) Trend always measures the linear increase in a (iii) Cyclical variations cover longer periods of (iv) Business cycles are seasonal variations.	certain variable over time.
16.	A forecasting model with $\alpha = 0.4$ will respond measuring model with $\alpha = $? (i) 0.5 (ii) 0.8	ore quickly to past changes in the data than a (iii)0.2 (iv)0.4
(i) (ii) (iii	One way to increase the probability of identiculation is to: use a discrete instead of continuous random varial change the assignment of the random numbers. increase the number of iterations of the simulation.	ple.
18.	What kind of probabilities is found by summing a dom variable value?	all the previous probabilities up to the current
` '	Cumulative Marginal	(iii)Conditional (iv)Joint
(i) (ii) (iii	Given a and a set of ween them. Classification , database, classes Database, classes, classification problem Classes, classification problem, database Database, classification problem, classes	, the defines a mapping
	type of modeling system which does not Analytical Simulation	interfere with the real-world system. (iii)Hybrid (iv)All of above

Question No. 2. Consider the following payoff table with three state, three decision problem and two decision makers with corresponding utility values. Find the optimal decision for decision maker I and decision maker II under the "Expected Utility Criterion"? (6 points)

Decision	The Payoff Table				
Alternative	S1	S2	S3		
Currency	100,000	40,000	-60,000		
Holding	50,000	20,000	-30,000		
Gold	20,000	20,000	-10,000		
Prob.	0.1	0.3	0.6		

Decision	Utility			
Amount	Decision Maker I	Decision Maker II		
100,000	100	100		
50,000	94	58		
40,000	90	50		
20,000	70	40		
-10,000	50	16		
-30,000	40	10		
-60,000	30	5		

	Decision Maker I					Decisio	n Maker I	I
Alternative	S 1	S2	S3	Expected Utility	S1	S2	S 3	Expected Utility
Currency	100	90	0	37	100	50	0	25
Holding	94	70	40	54.4	58	40	10	23.8
Gold	70	70	50	58	40	40	16	25.6
Probability								

Question No. 3. Consider the payoff table for decision making under risk, find the optimal decision under the "Expected value Criterion"? (4 points)

Decision	The Expected value Criteria						
Alternative	Large	Small	No	Small	Large	Expected	
	Rise	Rise	Change	Fall	Fall	value	
Gold	-100	100	200	300	0	100	
Stock	200	150	150	-200	-150	95	
Bond	250	200	150	-100	-150	130	
C/D account	60	60	60	60	60	60	
Prior Prob.	0.2	0.3	0.3	0.1	0.1		

Question No. 4. (6 marks) The daily demand of with probabilities are given in the following table.

a) Calculate the cumulative probability and random interval, simulate the demand for the given random numbers.

No.	Daily Demand	Probability	Cumulative Probability	Random # Interval
1	10	0.1	0.1	01-10
2	15	0.15	0.25	11-25
3	20	0.2	0.45	26-45
4	25	0.15	0.6	46-60
5	30	0.05	0.65	61-65
6	35	0.2	0.85	66-85
7	40	0.05	0.9	86-90
8	45	0.1	1.0	91-100

Random	Simulate Daily
Number	Demand
52	25
37	20
82	35
69	35
98	45
96	45
33	20
50	25
88	40
90	40

330

b) Calculate the average simulated daily demand = 330/10 = 33.0

c) Calculate the expected daily demand without simulation?

Expected demand = \sum ((i demand value) × (Probability of i demand value))

$$= (10 \times 0.10) + (15 \times 0.15) + (20 \times 0.20) + (25 \times 0.15) + (30 \times 0.05) + (35 \times 0.20) + (40 \times 0.05) + (45 \times 0.10) = 26$$

Question No. 5. (6 marks) Suppose we have five symbols A B C D E with probabilities:

$$P_A = 1/4$$
 $P_B = 1/8$ $P_C = 1/8$ $P_D = 1/4$ $P_E = 1/4$

Calculate (i) entropy (H) and (ii) information quantity (I)?

$$H(A) = log_2(P_A) = 2 bits$$

$$H(B) = log_2(P_B) = 3 bits$$

$$H(C) = log_2(P_C) = 3 bits$$

$$H(D) = log_2(P_D) = 2 bits$$

$$H(E) = log_2(P_E) = 2 bits$$

Information Quantity (I) =
$$\frac{1}{4}(2) + \frac{1}{8}(3) + \frac{1}{8}(3) + \frac{1}{4}(2) + \frac{1}{4}(2) = 2.5$$

So string of 5 symbols **ADDCBE** is _0110101010111 (14 bits)

For **ADDCBE** symbols we need ___14___ bits, the average bits per symbol is _2.33____

Question No. 6. (8 marks)Let S is the sample of training data, in which s is element from S

p element of class P: buys_computer = "yes"

n element of class N: buys_computer = "no"

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

age	pi	ni	I(pi,ni)
<=30	3	1	0.81
31 - 40	4	2	0.918
>40	2	2	0.971

a. Calculate the information quantity $\{I(p,n)\}$ needed to decide whether s belongs to P or N?

$$I(p,n) = -9/14\{\log 2(9/14)\} - 5/14\{\log 2(5/14)\} = 0.940$$

b. Find (i) Entropy (E) and (ii) gain (G) for attribute age E(age) = 0.694 and Gain (age) = 0.246?

$$E(age) = 4/14(0.971) + 6/14(0) + 4/14(0.971) = 0.910$$

Gain (age) =
$$I(p,n) - E(age) = 0.940 - 0.910 = 0.03$$