# CS310M: Automata Theory (Minor)

Topic 3: Nondeterministic Finite Finite State Automata

#### Paritosh Pandya

Indian Institute of Technology, Bombay Course URL: https://cse.iitb.ac.in/~pandya58/CS310M/automata.html

Autumn, 2021

# Today's Topics:

- Nondeterminism in automata
- Syntax, Semantics of NFA, Examples
- Extended Transition Function
- Determinization: Subset Construction

Source: Kozen, Lectures 5 and 6.

### Automata with silent transitions

$$(\xi^{n}) = \{P, k, y, h\}$$

$$\Rightarrow x \in (c(x))$$

$$\Rightarrow b \xrightarrow{\epsilon} b \xrightarrow{\epsilon} u \cdot x \in y$$

$$\downarrow b \xrightarrow{\epsilon} b \xrightarrow{\epsilon} (c(x)) \in (\xi)$$

An  $\epsilon$ -NFA is like an NFA  $M = (Q, \Sigma \cup {\epsilon}, \Delta, S, F)$ .

- Let  $p \stackrel{\epsilon^*}{\Longrightarrow} q$  denote a finite sequence of epsilon moves from p to q. E.g.  $s \stackrel{\epsilon^*}{\Longrightarrow} u$ .
- Epsilon-closure: For  $A \subseteq Q$ , let  $C_{\epsilon}(A) = \{q \mid \exists p \in A. \ p \stackrel{\epsilon^*}{\Longrightarrow} q \}$ . It denotes all states reachable by epsilon paths from states in A. E.g.  $C_{\epsilon}(\{p,r\}) = \{p,t,u,r\}$ .





### Equivalence

# NFA -> DFA Q -> {X = Q} = 29

#### Theorem

For every  $\epsilon$ -NFA  $N = (Q, \Sigma \cup \{\epsilon\}, \Delta, S, F)$  we can construct a DFA  $M = (Q_M, \Sigma, \Delta_M, s_M, F_M)$  such that L(M) = L(N).

#### Modified Subset Construction of M

- $Q_M = \{X \subseteq Q \mid C_{\epsilon}(X) = X\}$  epsilon closed subsets.
- $s_M = C_{\epsilon}(S)$ .
- $F_M = \{X \in Q_M \mid X \cap F \neq \emptyset\}$
- $\bullet \ \Delta_M(X,a) = C_{\epsilon}(\hat{\Delta}(X,a)).$





# Equivalent NFA construction Example





Deterministic FA DFA Nondet FA with siknftrm. FA NFA C-NFA

# Example: Decimal numbers



### Constructed DFA for Decimal NFA



• Size of  $\epsilon$ -NFA with set of states Q is |Q|, the number of states.

Use |M| to denote size of automaton M.

- Size of  $\epsilon$ -NFA with set of states Q is |Q|, the number of states.
  - Use |M| to denote size of automaton M.
- Given  $\epsilon$ -NFA with size n, the size of DFA using subset construction is at most  $2^n$ .
  - Is there a better construction giving smaller size DFA?

• Size of  $\epsilon$ -NFA with set of states Q is |Q|, the number of states.

Use |M| to denote size of automaton M.

• Given  $\epsilon$ -NEA with size n, the size of DEA.

• Given  $\epsilon$ -NFA with size n, the size of DFA using subset construction is at most  $2^n$ .

Is there a better construction giving smaller size DFA?

Answer No. Consider the following automaton.



Thinking Question: can we have DFA of size less than 2<sup>5</sup>?



Claim: There is no DFA M with IM \ 2 and Proy. Assure to Convery. M.... exist

# Language Operations

Let  $A, A_1, A_2 \subseteq \Sigma^*$ . Define

- Union  $A_1 \cup A_2$
- Intersection  $A_1 \cap A_2$
- Complementation  $\sim A = \Sigma^* A$ .
- Catenation  $A_1 \cdot A_2$ .
- Kleene Closure A\*
- Reverse rev(A)

#### Closure of Regular languages under operations

Theorem If  $A_1, A_2$  are regular then  $A_1 \cap A_2$  is regular.

We showed that regular languages are closed under  $\cap$ ,  $\sim$ ,  $\cup$ .



# Language Operations

Let  $A, A_1, A_2 \subseteq \Sigma^*$ . Define

- Union  $A_1 \cup A_2$
- Intersection  $A_1 \cap A_2$
- Complementation  $\sim A = \Sigma^* A$ .
- Catenation  $A_1 \cdot A_2$ .
- Kleene Closure A\*
- Reverse rev(A)

· Pay attention to size of outomatorn!

[M3]=[M1 x1M2]

### Closure of Regular languages under operations

Theorem If  $A_1$ ,  $A_2$  are regular then  $A_1 \cap A_2$  is regular. Proof Method: Given DFA  $M_1$ ,  $M_2$  s.t.  $A_1 = L(M_1)$  and  $A_2 = L(M_2)$  we construct DFA  $M_3$  s.t.  $L(M_3) = A_1 \cap A_2$ .

We showed that regular languages are closed under  $\cap$ ,  $\sim$ ,  $\cup$ .



#### Normalized $\epsilon$ -NFA

#### An $\epsilon$ -NFA is normalized if

- It has a single start state and a single final state.
- There are no incoming transitions into start state.
- There are no outgoing transitions from the final state.

#### Normalized $\epsilon$ -NFA

An  $\epsilon$ -NFA is normalized if

- It has a single start state and a single final state.
- There are no incoming transitions into start state.
- There are no outgoing transitions from the final state.

#### Theorem

Given any  $\epsilon$ -NFA  $N_1 = (Q, \Sigma, \Delta, S, F)$  we can construct a normalized  $\epsilon$ -NFA  $N_2 = (Q \cup \{s, f\}, \Sigma, \Delta_2, s, f)$  s.t.L $(N_1) = L(N_2)$ .

#### Theorem



#### Theorem

Given normalized  $\epsilon$ -NFA  $N_1 = (Q_1, \Sigma, \Delta_1, s_1, f_1)$  and  $N_2 = (Q_2, \Sigma, \Delta_1, s_2, f_2)$  we can construct normalized  $\epsilon$ -NFA  $N_3 = (Q_3, \Sigma, \Delta_3, s_3, f_3)$  s.t.  $L(N_3) = L(N_1) \cup L(N_2)$ .

•  $Q_3 = Q_1 \cup Q_2 \cup \{s_3, f_3\}$  fresh states  $s_3, f_3$ .

#### Theorem

- $Q_3 = Q_1 \cup Q_2 \cup \{s_3, f_3\}$  fresh states  $s_3, f_3$ .
- $\Delta_3(s_3, \epsilon) = \{s_1, s_2\}$ , and  $\forall a \in \Sigma$ .  $\Delta_3(s_3, a) = \emptyset$ .

#### Theorem

- $Q_3 = Q_1 \cup Q_2 \cup \{s_3, f_3\}$  fresh states  $s_3, f_3$ .
- $\Delta_3(s_3, \epsilon) = \{s_1, s_2\}$ , and  $\forall a \in \Sigma$ .  $\Delta_3(s_3, a) = \emptyset$ .
- $\forall s \in Q_1$ .  $\Delta_3(s, a) = \Delta_1(s, a)$  and  $\forall s \in Q_2$ .  $\Delta_3(s, a) = \Delta_2(s, a)$ .

#### $\mathsf{Theorem}$

- $Q_3 = Q_1 \cup Q_2 \cup \{s_3, f_3\}$  fresh states  $s_3, f_3$ .
- $\Delta_3(s_3, \epsilon) = \{s_1, s_2\}$ , and  $\forall a \in \Sigma$ .  $\Delta_3(s_3, a) = \emptyset$ .
- $\forall s \in Q_1$ .  $\Delta_3(s,a) = \Delta_1(s,a)$  and  $\forall s \in Q_2$ .  $\Delta_3(s,a) = \Delta_2(s,a)$ .
- $\forall s \in Q_1 \{f_1\}$ .  $\Delta_3(s, \epsilon) = \Delta_1(s, \epsilon)$ , and  $\forall s \in Q_2 \{f_2\}$ .  $\Delta_3(s, \epsilon) = \Delta_2(s, \epsilon)$ .



#### $\mathsf{Theorem}$

- $Q_3 = Q_1 \cup Q_2 \cup \{s_3, f_3\}$  fresh states  $s_3, f_3$ .
- $\Delta_3(s_3, \epsilon) = \{s_1, s_2\}$ , and  $\forall a \in \Sigma$ .  $\Delta_3(s_3, a) = \emptyset$ .
- $\forall s \in Q_1$ .  $\Delta_3(s,a) = \Delta_1(s,a)$  and  $\forall s \in Q_2$ .  $\Delta_3(s,a) = \Delta_2(s,a)$ .
- $\forall s \in Q_1 \{f_1\}$ .  $\Delta_3(s, \epsilon) = \Delta_1(s, \epsilon)$ , and  $\forall s \in Q_2 \{f_2\}$ .  $\Delta_3(s, \epsilon) = \Delta_2(s, \epsilon)$ .
- $\Delta_3(f_1,\epsilon) = \Delta_1(f_1,\epsilon) \cup \{f_3\}$  and  $\Delta_3(f_2,\epsilon) = \Delta_2(f_2,\epsilon) \cup \{f_3\}$









