

# Optimizing deep learning

### My research



**Graph Transformers** 



Pretraining of Molecule encoders



Predict target network output

# The EuroCC National EuroHPC Competence Center Sweden (ENCCS)



The EuroCC National EuroHPC Competence Center Sweden (ENCCS) is a joint initiative between the ten main Swedish research universities and RISE Research Institutes of Sweden. The center is hosted by Uppsala University (UU) on behalf of the consortium and will include the relevant competences at the other nodes. The initiative is funded by the EuroHPC JU, Swedish Research Council (Vetenskapsrådet) and the Swedish Innovation Agency (Vinnova). It is designed to prioritize support based on

- Needs of academic users with large scale allocations such as PRACE allocations in EU and SNIC allocations in Sweden
- The current industrial usage of HPC and their future HPC and Artificial Intelligence (Al) needs
- Needs for training and support to enable a wide range of Swedish users to use the ▶ new hardware deployed in pre-exascale systems, in particular Euro HPC JU (pre)exascale system LUMI



#### **Profilers**

- nvprof deprecated profiler for CUDA
  - Nsight Systems should be used instead
- py-spy sampling profiler for python code
- line\_profiler profile each line of a function



#### Logging GPU usage

- nvidia-smi --querygpu=timestamp,pci.bus\_id,utilization.gpu,utilization.memory -format=csv -l 1
- Small script for online logging: https://github.com/eryl/gpulog



#### **CUDA semantics in PyTorch**

- Cuda calls from our frameworks are generally asynchronous
- This might make profiling information at the python-level misleading, the time spent at one location in python code might be due to waiting for a previous call to finish



## **NVprof (deprecated)**

- Used to profile CUDA API calls
- As a deep learning researcher, this is typically below the level of abstraction we work at
- I've mainly used it to understand if memory copy from host to device is an issue



## **Installing nyprof**

- If using ubuntu package manager to install NVIDIA software, available as nvidia-profiler
  - apt install nvidia-profiler
- By default requires privileged access
- On the AIDA DGX-2, it seems to work out of the box



# profiling with nvprof

- For the use case of analyzing memory copies, default invocation works fine
- nvprof --log-file nvprof\_log.txt python script.py
- This will dump profiling output to the text file nvprof\_log.txt



#### nvprof output

- The output shows what cuda kernels have been run on the GPU(s) how much % of time they have used
- Here I typically look to [CUDA memcpy HtoD], how much time was spent copying data from the host to the device
- For deep learning programs, this is typically quite low (0.12% in this case)

| ==40242== Profiling result:             |         |          |         |          |           |          |                                |
|-----------------------------------------|---------|----------|---------|----------|-----------|----------|--------------------------------|
| Туре                                    | Time(%) | Time     | Calls   | Avg      | Min       | Max      | Name                           |
| GPU activities:                         | 11.36%  | 19.0811s | 1180113 | 16.168us | 736ns     | 9.2059ms | void at::native::ve            |
| 100000000000000000000000000000000000000 | 9.08%   | 15.24825 | 57720   | 264.18us | 221.13us  | 6.3191ms | void cudnn::cnn::wg            |
|                                         | 6.57%   | 11.02695 | 39000   | 282.74us | 168.87us  | 7.4494ms | void cudnn::detail:            |
|                                         | 6.28%   | 10.5512s | 61390   | 171.87us | 151.21us  | 7.4208ms | maxwell scudnn wino            |
|                                         | 5.66%   | 9.504465 | 265156  | 35.844us | 1.6640us  | 9.3531ms | ZN2at6native29vect             |
|                                         | 4.95%   | 8.314295 | 36136   | 230.08us | 110.79us  | 8.1986ms | void precomputed_co            |
|                                         | 4.52%   | 7.59856s | 111540  | 68.124us | 29.346us  | 5.8234ms | void cudnn::bn_bw_1            |
|                                         | 4.51%   | 7.57257s | 1092780 | 6.9290us | 736ns     | 6.4271ms | void at::native::ve            |
|                                         | 4.08%   | 6.86087s | 41884   | 163.81us | 130.63us  | 5.5894ms | maxwell scudnn 128x            |
|                                         | 3.88%   | 6.51599s | 111540  | 58.418us | 24.257us  | 9.1865ms | void cudnn::bn fw t            |
|                                         | 3.01%   | 5.06350s | 36660   | 138.12us | 82.243us  | 9.0224ms | maxwell_sgemm_128x6            |
|                                         | 2.93%   | 4.92540s | 364260  | 13.521us | 960ns     | 2.3991ms | ZN2at6native29vect             |
|                                         | 2.52%   | 4.239465 | 13260   | 319.72us | 153.10us  | 10.500ms | void cudnn::cnn::wg            |
|                                         |         |          |         |          |           |          |                                |
|                                         | 2.48%   | 4.160635 | 27300   | 152.40us | 137.41us  | 4.3984ms | maxwell_scudnn_128x            |
|                                         | 2.39%   | 4.01173s | 77264   | 51.922us | 12.192us  | 4.3108ms | void cudnn::winogra            |
|                                         | 2.30%   | 3.85825s | 36660   | 105.24us | 9.3440us  | 4.7192ms | void cudnn::winogra            |
|                                         | 2.14%   | 3.59595s | 364260  | 9.8710us | 768ns     | 4.4021ms | _ZN2at6native29vect            |
|                                         | 1.46%   | 2.451225 | 4680    | 523.77us | 465.24us  | 619.26us | void cudnn::cnn::wg            |
|                                         | 1.36%   | 2.27590s | 364260  | 6.2480us | 896ns     | 2.8016ms | _ZN2at6native29vect            |
|                                         | 1.26%   | 2.114185 | 12362   | 171.02us | 84.004us  | 12.024ms | maxwell_scudnn_wino            |
|                                         | 1.25%   | 2.100785 | 7866    | 267.07us | 133.64us  | 4.8152ms | void precomputed_co            |
|                                         | 1.20%   | 2.021465 | 364260  | 5.5490us | 736ns     | 1.0458ms | void at::native::ve            |
|                                         | 1.09%   | 1.82651s | 5460    | 334.53us | 238.00us  | 621.82us | void cudnn::cnn::wg            |
|                                         | 0.96%   | 1.61851s | 8580    | 188.64us | 82.148us  | 5.0181ms | <pre>void cudnn::bn_bw_1</pre> |
|                                         | 0.95%   | 1.59084s | 6240    | 254.94us | 162.41us  | 10.394ms | maxwell_scudnn_128x            |
|                                         | 0.87%   | 1.462135 | 8792    | 166.30us | 84.163us  | 7.2406ms | maxwell_scudnn_128x            |
|                                         | 0.82%   | 1.38390s | 366287  | 3.7780us | 608ns     | 2.1559ms | <pre>void at::native::ve</pre> |
|                                         | 0.73%   | 1.21785s | 3896    | 312.59us | 222.22us  | 4.7840ms | <pre>void precomputed_co</pre> |
|                                         | 0.67%   | 1.12980s | 8580    | 131.68us | 58.371us  | 2.2757ms | <pre>void cudnn::bn_fw_t</pre> |
|                                         | 0.67%   | 1.11785s | 36660   | 30.492us | 13.249us  | 2.0194ms | void cudnn::winogra            |
|                                         | 0.63%   | 1.06592s | 30380   | 35.086us | 4.4480us  | 5.5235ms | <pre>void cudnn::bn_fw_i</pre> |
|                                         | 0.63%   | 1.05865s | 36660   | 28.877us | 11.457us  | 2.3371ms | void cudnn::winogra            |
|                                         | 0.61%   | 1.032865 | 5268    | 196.06us | 99.076us  | 5.1863ms | maxwell_scudnn_wino            |
|                                         | 0.55%   | 924.02ms | 5460    | 169.23us | 157.22us  | 4.2721ms | maxwell_scudnn_128x            |
|                                         | 0.49%   | 819.03ms | 1560    | 525.02us | 434.16us  | 724.67us | <pre>void cudnn::detail:</pre> |
|                                         | 0.42%   | 699.09ms | 2340    | 298.76us | 250.95us  | 4.2314ms | <pre>void cudnn::detail:</pre> |
|                                         | 0.37%   | 623.92ms | 978     | 637.95us | 242.00us  | 11.460ms | void explicit_convo            |
|                                         | 0.37%   | 620.00ms | 1560    | 397.44us | 355.54us  | 462.61us | maxwell_scudnn_128x            |
|                                         | 0.32%   | 539.48ms | 780     | 691.64us | 674.24us  | 731.81us | maxwell_scudnn_128x            |
|                                         | 0.30%   | 511.08ms | 97092   | 5.2630us | 1.9200us  | 8.3843ms | cask_cudnn::compute            |
|                                         | 0.30%   | 498.11ms | 1952    | 255.18us | 123.46us  | 4.8029ms | maxwell_scudnn_wino            |
|                                         | 0.29%   | 493.52ms | 1948    | 253.35us | 230.89us  | 1.5981ms | maxwell_scudnn_128x            |
|                                         | 0.27%   | 458.24ms | 780     | 587.49us | 564.44us  | 680.09us | void at::native:: G            |
|                                         | 0.24%   | 396.89ms | 42900   | 9.2510us | 2.6560us  | 631.07us | void cudnn::ops::sc            |
|                                         | 0.21%   | 353.43ms | 1560    | 226.56us | 218.09us  | 239.50us | maxwell scudnn wino            |
|                                         | 0.21%   | 351.23ms | 1952    | 179.94us | 37.218us  | 1.1780ms | maxwell_scudnn_128x            |
|                                         | 0.20%   | 331.22ms | 780     | 424.64us | 418.51us  | 451.28us | void cudnn::bn bw 1            |
|                                         | 0.19%   | 315.51ms | 976     | 323.26us | 172.58us  | 748.32us | maxwell scudnn 128x            |
|                                         | 0.18%   | 299.01ms | 976     | 306.36us | 161.90us  | 624.06us | maxwell_scudnn_128x            |
|                                         | 0.15%   | 252.80ms | 780     | 324.11us | 316.72us  | 387.54us | maxwell scudnn 128x            |
|                                         | 0.15%   | 249.31ms | 120900  | 2.0620us | 1.3120us  | 131.91us | void at::native::ve            |
|                                         | 0.14%   | 236.76ms | 780     | 303.54us | 297.10us  | 313.52us | void cudnn::bn fw t            |
|                                         | 0.12%   | 204.61ms | 2888    | 70.846us | 672ns     | 869.67us | [CUDA memcpy HtoD]             |
|                                         | 0.12%   | 198.07ms | 780     | 253.94us | 249.04us  | 303.21us | maxwell_scudnn_128x            |
|                                         |         | 198.07HS | 47898   |          | 1 8240115 |          | void cudon::con::ke            |



### Nsight

- The recommended system for profiling with a lot more bells and whistles
  - Command line utility similar to nvprof: nsys
- nsys profile --trace=cuda,cudnn,cublas,osrt,nvtx python simply\_resnet.py /raid/erik/datasets/imagenet\_subset/ --device cuda:4
- Doesn't require priviliged access. Produces reports by default which can be analyzed in GUI tool





#### py-spy

- Profile the python-part of code
- Install with pip: pip install py-spy
- Can produce multiple different outputs: flame-graphs, speedscope and raw outputs



12

#### py-spy

- py-spy record --output py-spy-profile.svg -- python
   simply\_resnet.py /data/datasets/imagenet\_subset/ --device cuda:0
   --pin-memory --num-workers 12
- By default this creates a flamegraph, here written to py-spyprofile.svg
- Can also produce speedscope files and raw data dumps



#### **Flamegraph**

- Gives a quick overview of what function has been most active
- X-axis shows percentage of use at a certain stack depth (order is typically alphapetical, not time)
- Y-axis shows call stack depth, so a "flame" is essentially a branch of the call tree





#### Speedscope

- Alternative to flame graph, interactive with more ways to view profiles
- View profiles with web app: https://www.speedscope.a pp/
- Install locally from https://github.com/jlfwong /speedscope





#### Line\_profiler

- Tool to do fine grained and targeted profiling
- Needs to modify the script to profile
- Install with pip:
  - pip install line\_profiler
- The first hit on Google is the deprecated repo, this is the correct one: https://github.com/pyutils/line\_profiler



#### Modifying script for line\_profiler

- The line profiler program looks for functions decorated with the @profile decorator
- Add this to the functions you wish to line-profile
- To profile you script, call kernprof -l instead of python
  - kernprof -l script.py
- This dumps profiling information to a file as the script, with an .lprof extension



#### Inspect line\_profiler dumps

- use the line\_profiler module to read the .lprof files produced by kernprof -l
  - python -m
    line\_profiler
    script.py.lprof

```
50763.0 50763.0
                                                           if not torch.cuda.is available():
36
37
     124
                                                              raise RuntimeError(f"CUDA not available and device set to {args.device}")
     125
38
                          252.0
                                  252.0
                                                              device = torch.device(args.device)
                                             0.0
                           12.0
                                    12.0
                                             0.0
                                                              torch.backends.cudnn.benchmark = True
                           36.0
                                                      print(f"Device is set to {device}")
42
                        40725.0 40725.0
                                                      train set, dev set, test set = make datasets(args.images, rng=rng)
                           1.0
                                    1.0
                           1.0
                                    1.0
                                                      max epochs = 1
                           1.0
                                    1.0
                                                       dataloader_kwargs = dict()
                           1.0
                                    1.0
                                                       if args.pin memory:
                                                           dataloader_kwargs['pin_memory'] = True
     139
                           1.0
                                    1.0
                                                       if args.num workers:
     140
                                                           dataloader kwargs['num workers'] = args.num workers
53
     141
                                                       if args.prefetch factor:
                           1.0
                                    1.0
     142
                                                           dataloader_kwargs['prefetch_factor'] = args.num_workers
55
     143
                                                       training_loader = DataLoader(train_set, batch_size=batch_size, **dataloader_kwargs)
                           68.0
                                    68.0
56
     144
                           39.0
                                    39.0
                                             0.0
                                                       dev loader = DataLoader(dev set, batch size=batch size, **dataloader kwargs)
57
     145
                                    37 A
                                                      test_loader = DataLoader(test_set, batch_size=batch_size, **dataloader_kwargs)
                           37.0
                                             0.0
59
     147
                       657171.0 657171.0
                                                       model = resnet152(pretrained=False, num_classes=train_set.num_classes)
     148
                                                       #model = resnet18(pretrained=False, num_classes=train_set.num_classes)
61
     149
                                                      #model = LogisticRegression(train set[0][0].shape, train set.num classes)
                                                       #model = alexnet(pretrained=False. num classes=train set.num classes)
     151
                 1 19973237.0 19973237.0
                                                        model.to(device)
     152
65
     153
                                    97.0
                                                       loss_fn = nn.CrossEntropyLoss()
                         9452.0
                                 9452.0
                                                       optimizer = Adam(model.parameters(), lr=1e-3, weight_decay=3e-7)
                                             0.0
                                                       for epoch in range(max_epochs):
                            7.0
                                    3.5
                                             0.0
     157
                            2.0
                                    2.0
                                             0.0
                                                          training losses = []
     158
               781
                     12159874.0 15569.6
                                             5.7
                                                           for x, y in tqdm(training_loader, desc='training progress'):
                      9967371.0 12778.7
                                             4.7
                                                              optimizer.zero_grad()
                                                              prediction = model(x.to(device))
                     26537897.0
                                34022.9
                                             12.4
73
                     17518033.0 22459.0
                                                               loss = loss fn(prediction, v.to(device))
74
                     32254884 B
                                41351.3
                                                              loss backward(
                     71446672.0 91598.3
76
     164
                      8935548.0 11455.8
                                             4.2
                                                              training_losses.append(loss.item())
77
     165
                        72525.0
                                72525.0
                                                           print(f'Training loss: {np.mean(training_losses)}')
78
     166
                                                           val losses = []
80
     168
                         5515.0
                                 5515.0
                                             0 0
                                                          model.eval()
                                                          with torch.no grad():
                           18.0
                                    18.0
                                             0.0
82
    170
                      2383925.0 24080.1
                99
                                             1.1
                                                              for x,y in dev_loader:
                      2640635.0 26945.3
                                                                  prediction = model(x,to(device))
                      2339464.0 23872.1
                                                                  loss = loss fn(prediction, y.to(device))
```



#### line\_profiler tip

- The @profile decorator gets defined in the global scope of your script when you invoke it using kernprof. It will not be available otherwise
- To quickly go between supporting line profiler and running normally, add this snippet to your script
  - It defines a dummy @profile decorator if there isn't one

```
try:
    @profile
    def foo():
         pass
    del foo
except
NameError:
    def
profile(f):
         return f
```



19

# QnA on profiling





# Efficient PyTorch with DeepSpeed

#### **Data loaders**

- Data loaders are essential to good performance
- PyTorch torch.util.data.DataLoader has two important settings
  - num\_workers, setting this to a positive integer handles data loading in separate processes. Set this to as many CPU threads as you have. Each process will load and collate one batch, making sure that the data loading does not block the main training loop. This hides latency of processing even if it's relatively costly.
  - pin\_memory, set this to True to make the returned tensors be placed in main memory pinned by CUDA, which makes transfer to the GPU faster



# DataParalell vs DistributedDataParallel vs Deepspeed

- The recommended way of doing data parallel workloads in pytorch is the Distributed Data Parallel framework
- There is the more easy to use DataParallel, but this has performance issues since a single process handles all synchronization across GPUs (see this excellent write-up: https://www.telesens.co/2019/04/04/distributed-data-parallel-training-usingpytorch-on-aws/)
- Distributed Data Parallel is relatively easy to use, but documentation is a bit scattered
- There's another framework which does the same thing, and a lot more: Deepspeed from Microsoft, https://github.com/microsoft/DeepSpeed, deepspeed.ai



#### Deepspeed

- Relatively new framework (there are definitely rough edges)
- Designed to take away as much of the hustle of writing efficient deep learning programs as possible
- Distributed learning, same code works as well for single-node+single-gpu/single-node+multiple-gpu/multiple-nodes+multiple-gpus
- Efficient ways of synchronizing gradients with custom optimizers
- Built in support for fp16 and mixed precision training (AMP) using NVIDIA's Apex package as well as automatically handling of loss scaling and correct gradient clipping
- Ways of easily doing model parallel training with pipelining, and combining it with data parallel training



#### Deepspeed

- Optimization framework Zero, for sharding optimizer state/gradients/parameters over multiple GPUs.
  - Can drastically reduce memory usage with minor impact on performance
  - The first stage of this optimization shards the optimizer states (e.g. ADAMSs moving averages) so that each worker only has parts of the state
- One driver for deepspeed are huge Language Models, so framework also contains custom efficient kernels for Transformers
- Also has some support for one-cycle style LR policies, including learning rate range finders. There seems to be gathering evidence that this is a good idea for large batch training.





[Hands-on Tutorials] DeepSpeed 01, KDD2020 https://youtu.be/CaseqC45DNc



#### Deepspeed gotchas

- Includes many custom PyTorch extensions (e.g. optimizers) which will be JIT-compiled when running
  - Needs full build environment (so full CUDA-install and C++ compiler and standard libraries)
  - This shouldn't be a problem at AIDA where you have full control over your VM



#### **Deepspeed install**

- First install CUDA of desired version
- Install pytorch (recommended through anaconda) to match the installed cuda version
- Install deepspeed with pip:
  - pip install deepspeed



#### Modifying a script to use deepspeed

- The script will be launched through deepspeeds launcher script.
   Certain command line arguments are assumed to be available so run the following on your argparse. Argument Parser object:
  - parser = deepspeed.add\_config\_arguments(parser)
- I had to add the following explicitly:
  - parser.add\_argument('--local\_rank', type=int, default=-1, help='local rank passed from distributed launcher')



#### Deepspeed configuration

- Deepspeed is configured using a JSON file with a particular set of values
- Most parameters for training is changed here, such as batch size, gradient accumulation steps, optimizer, scheduler, 16bit precision training, model parallelism and Zero configuration

```
"lr": 0.001.
     0.8.
    "warmup num steps": 1000
"wall clock breakdown": false
```



#### Modifying a script to use deepspeed

- Deepspeed provides a wrapper around any torch.nn.Module object
- To use deepspeed, wrap your model in the deepspeed.initialize function:

```
- model_engine, optimizer, _, __ =
  deepspeed.initialize(args=args, model=model,
  model_parameters=model.parameters())
```

- The args is your command line arguments which deepspeed will go through to find its configuration
- The model\_engine object is now our wrapped model and will behave



#### Deepspeed dataloaders

- Deepspeed will work with PyTorchs dataloader, but to handle parallels sampling without extra steps use:
  - training\_loader = model\_engine.deepspeed\_io(train\_set)
- This wrapper also accept some of the same arguments as PyTorch dataloaders, in particular collate\_fn and pin\_memory
  - Other arguments like batch size or sampler can be left to the wrapper



#### Modifying script to use deepspeed

- Since we assume data parallel, we need to let deepsped determine where to place tensors
- When we move a tensor to device, use model\_engine.local\_rank
  - prediction = model\_engine(x.to(model\_engine.local\_rank)
- This takes care of placing the tensor on the correct GPU based on the process running the code



#### Modifying a script to use deepspeed

- Deepspeed handles the optimizer steps, as well has the backpropagation
- We need to replace our typical calls to the optimizer with specific calls from the model engine
  - Don't call the backward of the loss node (loss.backward()), instead use model\_engine.backward(loss)
  - Don't call optimizer.zero\_grads() or optimizer.step(), instead call model\_engine.step(). It will take care of zeroing gradients when appropriate.



34

## Running the new script

- We need to run the script using deepspeeds launcher:
  - deepspeed simply\_resnet\_deepspeed.py
     /data/datasets/imagenet\_subset/ --deepspeed\_config
     ds\_config.json
- This takes care of setting up the runtime environment and inject the correct information in all processes



# Training large batches

- Training with large batches has historically generated worse models than with small batches
- Normalizations (such as BatchNorm) seems to help with this
- Learning rate schedule also seems to be important (LAMB and One-Cycle policy seems to be gaining momentum)

#### ABSTRACT

Training large deep neural networks on massive datasets is computationally very challenging. There has been recent surge in interest in using large batch stochastic optimization methods to tackle this issue. The most prominent algorithm in this line of research is LARS, which by employing layerwise adaptive learning rates trains RESNET on ImageNet in a few minutes. However, LARS performs poorly for attention models like BERT, indicating that its performance gains are not consistent across tasks. In this paper, we first study a principled layerwise adaptation strategy to accelerate training of deep neural networks using large mini-batches. Using this strategy, we develop a new layerwise adaptive large batch optimization technique called LAMB; we then provide convergence analysis of LAMB as well as LARS, showing convergence to a stationary point in general nonconvex settings. Our empirical results demonstrate the superior performance of LAMB across various tasks such as BERT and RESNET-50 training with very little hyperparameter tuning. In particular, for BERT training, our optimizer enables use of very large batch sizes of 32868 without any degradation of performance. By increasing the batch size to the memory limit of a TPUv3 Pod, BERT training time can be reduced from 3 days to just 76 minutes (Table 1). The LAMB implementation is available online.

You, Yang, et al. "Large batch optimization for deep learning: Training bert in 76 minutes." ICLR 2020



# **QnA** on deepspeed



#### Erik Ylipää

erik.ylipaa@ri.se



#### **One-hot-encodings**

- Never use one-hot-encodings as inputs to neural networks
  - Instead use an Embedding layer with integer encoded categorical values
- There are two issues, 1) inefficiency and 2) optimization:
  - 1. Multiplying a one-hot-vector with a matrix is mostly wasted computation, multiplying all rows of the matrix except one with 0
  - 2. If the vocabulary is large, or the frequency distribution is very skewed, optimizers which accumulates gradient statistics (i.e ADAM, RMSProp, SGD+momentum) have no chance of applying sparse updates to those statistics



# Regression targets

- If we model regression with a linear output layer and Mean Squared Error loss the implicit assumption is that the conditional distribution is Gaussian
- In particular, we will predict the conditional mean



Bishop, Christopher M. 'Mixture density networks.' (1994).



#### Non-Gaussian P(Y|X)

- Often the conditional distribution is not Gaussian
- If the real distribution is multimodal or skewed, the conditional mean will often be a poor prediction
- A mixture of Gaussian can theoretically model any continous distribution, but in practice can underperform



Four different conditional distributions on autoregressive tasks



#### Discretizing trick

- Model continuous variables as dicrete
- Essentially predict histogram bins
- Determining bins (hinkar) becomes an issue
- One strategy is to look at the marginal emperical CDF of Y
- How many bins to use? Look at the data, what granularity makes sense?





