Proximity Measure for Binary Attributes

A contingency table for binary data

	Object j				
		1	0	sum	
Object i	1	q	r	q+r	
	0	s	t	s+t	
	sum	q + s	r+t	p	

Distance measure for symmetric binary variables
$$d(i,j) = \frac{r+s}{q+r+s+t}$$

- Distance measure for asymmetric binary variables: $d(i,j) = \frac{r+s}{q+r+s}$
- Jaccard coefficient (similarity measure for asymmetric binary variables): $sim_{Jaccard}(i,j) = \frac{q}{q+r+s}$
- Note: Jaccard coefficient is the same as

(a concept discussed in Pattern Discovery)

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Example: Dissimilarity between Asymmetric Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is a symmetric attribute (not counted in)
- The remaining attributes are asymmetric binary
- ☐ Let the values Y and P be 1, and the value N be 0
- Distance: $d(i, j) = \frac{r+s}{q+r+s}$

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

			\sum_{col}	3		Ø	(
		Ji	m				
		1	0		\sum_{r}	ow	
	1	X	1		2	3	
Jack	0	1	3		4		
	\sum_{col}	23	4		6	J	
					•		

Mary

 Jack
 1
 2
 Ø 1
 2

 0
 1
 3
 4

		M	ary	
		1	0	\sum_{row}
	1	1	1	2
Jim	0	2	2	4
	\sum_{col}	3	3	6

Proximity Measure for Categorical Attributes

- Categorical data, also called nominal attributes → เป็นผมาดนมู่
 - Example: Color (red, yellow, blue, green), profession, etc.
- Method 1: Simple matching
 - \square m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$
 — $\frac{n_{1}}{n_{1}}$

- Method 2: Use a large number of binary attributes
 - Creating a new binary attribute for each of the M nominal states

Ordinal Variables

- 🔲 An ordinal variable can be discrete or continuous 🛶 เรียร์เดีย
- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- Can be treated like interval-scaled

65

- lacktriangle Replace an ordinal variable value by its rank: $r_{if} \in \{1,...,M_f\}$
- Map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by $z_{if} = \frac{r_{if} 1}{M_c 1} \longrightarrow \frac{1 1}{4 1} = \frac{9}{3} = 0$
 - Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
 - Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
- Compute the dissimilarity using methods for interval-scaled variables $(1-0) = (\frac{2}{3} \frac{3}{5}) = \frac{1}{3}$