Домашнее задание по физике для студентов II курса IV семестра всех факультетов

(2019)

Варианты домашнего задания по физике для студентов II курса IV семестра всех факультетов

Вариант	Номера задач			
	Модуль 5		Модуль 6	
1	5.1.01	5.2.01	6.1.01	6.2.01
2	5.1.02	5.2.02	6.1.02	6.2.02
3	5.1.03	5.2.03	6.1.03	6.2.03
4	5.1.04	5.2.04	6.1.04	6.2.04
5	5.1.05	5.2.05	6.1.05	6.2.05
6	5.1.06	5.2.06	6.1.06	6.2.06
7	5.1.07	5.2.07	6.1.07	6.2.07
8	5.1.08	5.2.08	6.1.08	6.2.08
9	5.1.09	5.2.09	6.1.09	6.2.09
10	5.1.10	5.2.10	6.1.10	6.2.10
11	5.1.11	5.2.11	6.1.11	6.2.11
12	5.1.12	5.2.12	6.1.12	6.2.12
13	5.1.13	5.2.13	6.1.13	6.2.13
14	5.1.14	5.2.14	6.1.14	6.2.14
15	5.1.15	5.2.15	6.1.15	6.2.15
16	5.1.16	5.2.16	6.1.16	6.2.16
17	5.1.17	5.2.17	6.1.17	6.2.17
18	5.1.18	5.2.18	6.1.18	6.2.18
19	5.1.19	5.2.19	6.1.19	6.2.19
20	5.1.20	5.2.20	6.1.20	6.2.20

При выполнении домашнего задания рекомендуется пользоваться методическими указаниями к решению задач по курсу общей физики: **Л.К. Мартинсон, Е.В. Смирнов.** Разделы: "Волновые свойства частиц. Гипотеза де Бройля", "Уравнение Шредингера. Стационарные задачи квантовой механики", "Квантовые свойства атомов", "Измерение физических величин в квантовых системах", а также методическими указаниями к домашнему заданию по курсу общей физики (раздел "Элементы квантовой механики"). **Константинов М.Ю.** Методические

указания к решению задач по курсу общей физики, раздел "Принцип суперпозиции в квантовой механике" – М.: МГТУ, 2009. Эти пособия можно найти на сайте кафедры физики МГТУ.

ЗАДАЧИ

5.1.01. В 1999г. в Венском университете был осуществлен эксперимент по дифракции очень массивных частиц – фуллеренов – молекул углерода $C_{\rm 60}$. Пучок молекул направлялся на

дифракционную решетку с периодом $d=100\,\mathrm{hm}$, а затем на расстоянии $l=1,25\,\mathrm{m}$ от решетки измерялось пространственное распределение прошедших частиц. Как видно из графика, приведенного на рисунке, в опыте кроме прямого пучка наблюдалось еще два симметрично расположенных максимума на расстояниях \pm 25мкм. Какова была скорость фуллеренов в пучке?

- 5.1.02. На какую кинетическую энергию должен быть рассчитан ускоритель заряженных частиц с массой покоя $m_{\scriptscriptstyle 0}$, чтобы с их помощью можно было исследовать структуры с линейными размерами l? Решите задачу для электронов и протонов в случае $l=10^{-18}$ м, что соответствует радиусу слабого взаимодействия.
- 5.1.03. Поток нейтронов проходит через узкие радиальные щели в двух дисках из кадмия, поглощающего нейтроны. Диски насажены на общую ось так, что щели повернуты друг относительно друга на угол $\,\,lpha$. Диски вращаются с угловой скоростью $\,\,\omega = 400\,$ рад/с, расстояние между ними $\,\,L=1\,$ м. Найти угол $\,\,lpha$, если длина волны де Бройля пропускаемых таким устройством нейтронов равна $\,\,\lambda = 0,1\,$ нм.
- 5.1.04. Условие Брэгга-Вульфа с учетом преломления электронных волн в кристалле имеет вид $2d\sqrt{n_e^2-\cos^2\vartheta}=k\lambda$, где d межплоскостное расстояние, n_e показатель преломления, θ угол скольжения, k порядок отражения. Найдите с помощью этого условия угол $\mathcal G$, если пучок электронов, ускоренный разностью потенциалов U=85 В, образует максимум 2-го порядка при брэгговском отражении от кристаллических плоскостей с d=0,204 нм. Внутренний потенциал монокристалла серебра $\phi=15$ В.
- 5.1.05. Коллимированный пучок электронов, прошедших ускоряющую разность потенциалов $U=30\,\mathrm{kB}$, падает нормально на тонкую поликристаллическую фольгу золота. Постоянная кристаллической решетки золота $d=0.41\,\mathrm{km}$ на фотопластинке, расположенной за фольгой на расстоянии $l=20\,\mathrm{cm}$ от нее, получена дифракционная картина, состоящая из ряда концентрических окружностей. Определите: а) длину волны де Бройля электронов λ ; б) брэгговский угол $\mathcal{G}_{\!\scriptscriptstyle A}$, соответствующий первой окружности; в) радиус r первой окружности.
- 5.1.06. Покажите, что в атоме водорода и водородоподобных атомах на круговой стационарной боровской орбите укладывается целое число длин волн де Бройля электрона. Определите длину волны де Бройля электрона на круговой орбите с главным квантовым числом n.

- 5.1.07. Узкий пучок электронов, прошедших ускоряющую разность потенциалов U, падает нормально на поверхность некоторого монокристалла. Под углом $\mathcal{G}=55^{\circ}$ к нормали к поверхности кристалла наблюдается максимум отражения электронов первого порядка. Определите U, если расстояние между отражающими атомными плоскостями кристалла составляет d=0.2 нм.
- 5.1.08. Получите приближенное выражение для длины волны де Бройля ультрарелятивистской частицы, т.е. такой частицы, кинетическая энергия E которой много больше ее энергии покоя mc^2 . При каких значениях E можно пользоваться этим выражением, чтобы ошибка не превосходила 5%? Вычислить длину волны де Бройля λ для ультрарелятивистских протонов с энергией $E=76\,\Gamma$ эВ, ускоряющихся на Серпуховском протонном синхротроне.
- 5.1.09. При дифракции атомов гелия на дифракционной нанорешетке с периодом d=200нм максимум первого порядка наблюдался под углом $\,\varphi_1=1,7\,\,\mathrm{Mpag}$. В пучке наряду с атомами гелия присутствовали кластеры $\,He_2$ (димеры) и $\,He_3$ (тримеры), обладавшие той же скоростью, что и атомы гелия. Найдите угловое положение дифракционных максимумов первого порядка $\,\varphi_2$ и $\,\varphi_3$ для этих кластеров.
- 5.1.10. При пропускании пучка нейтронов от ядерного реактора через блок прессованного графита все нейтроны с длинами волн де Бройля короче $\lambda_0=0,67$ нм испытывают дифракционное отражение Брэгга-Вульфа. Проходят через блок только медленные, так называемые холодные нейтроны. Определите максимальную температуру, соответствующую самым коротким волнам де Бройля нейтронов, пропускаемых графитом, а также вычислите постоянную d решетки графита.
- 5.1.11. Считая, что минимальная энергия E нуклона (протона или нейтрона) в ядре равна 10 МэВ, оцените, исходя из соотношения неопределенностей, линейные размеры ядра.
- 5.1.12. Исходя из предположения, что заряд атомного ядра равномерно распределен по его объему, покажите, используя соотношение неопределенностей, что электроны не могут входить в состав ядра. Линейные размеры ядра считать равными $5 \cdot 10^{-15}$ м.
- 5.1.13. Используя соотношение неопределенностей энергии и времени, определите среднее время жизни атома в возбужденном состоянии τ , если естественная ширина спектральной линии излучения атома при переходе его из возбужденного состояния в основное $\Delta\lambda=20\,$ фм, а длина волны излучения $\lambda=600\,$ нм.
- 5.1.14. Покажите с помощью отношения неопределенностей, что для движущейся частицы, неопределенность координаты которой равна длине волны де Бройля, неопределенность скорости равна по порядку величины самой скорости частицы.
- 5.1.15. Оцените с помощью соотношения неопределенностей Гейзенберга неопределенность скорости электрона в атоме водорода, полагая размер атома $a=10^{-10}\,\mathrm{m}$. Сравните полученную величину со скоростью электрона на первой боровской орбите.
- 5.1.16. Среднее время жизни атома в возбужденном состоянии составляет величину $\Delta t \sim 10^{-8} \, \mathrm{c}$. При переходе атома в основное состояние испускается фотон, средняя длина волны которого

- равна $\lambda = 500$ нм. Оцените ширину $\Delta\lambda$ и относительную ширину $\frac{\Delta\lambda}{\lambda}$ излучаемой спектральной линии, если не происходит ее уширения за счет других процессов. (Такая ширина называется естественной шириной спектральной линии).
- 5.1.17. Длина волны λ излучаемого атомом фотона составляет 0,6 мкм. Принимая время жизни возбужденного состояния $\Delta t = 10^{-8}$ с, определите отношение естественной ширины ΔE возбужденного энергетического уровня к энергии E, излученной атомом.
- 5.1.18. С помощью соотношения неопределенностей оцените минимальную энергию $E_{_1}$, которой может обладать частица массы m, находящаяся в бесконечно глубокой одномерной потенциальной яме шириной a.
- 5.1.19. Нейтрон, летящий со скоростью $V=0.1\,\mathrm{m/c}$, попадает в щель с абсолютно отражающими стенками, параллельными направлению его движения. Длина щели в этом направлении $l=0.01\,\mathrm{m}$, ширина $d=10^{-6}\,\mathrm{m}$. Пользуясь соотношением неопределенностей, оцените время, в течение которого нейтрон пройдет через щель.
- 5.1.20. Используя соотношение неопределенностей энергии и времени, определите длину волны излучения λ , если среднее время жизни атома в возбужденном состоянии $\tau = 10^{-8}\,\mathrm{c}$, а естественная ширина спектральной линии излучения атома при переходе его из возбужденного состояния в основное $\Delta\lambda = 20\,\mathrm{фм}$.
- 5.2.01. Частица находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Найдите массу частицы, если ширина ямы a и разность энергий второго и первого возбужденных состояний равна ΔE .
- 5.2.02. Частица находится в двумерной прямоугольной потенциальной яме с бесконечно высокими стенками. Координаты x и y частицы лежат в пределах 0 < x < a, 0 < y < b, где a и b стороны ямы. Определите вероятность нахождения частицы с наименьшей энергией в области: a) $0 < x < \frac{a}{4} \left(P_1 \right)$; б) $0 < y < \frac{b}{4} \left(P_2 \right)$; в) $0 < x < \frac{a}{4}$, $0 < y < \frac{b}{4} \left(P_3 \right)$. Убедитесь, что $P_1 \cdot P_2 = P_3$.
- 5.2.03. Частица массой m_0 находится в основном состоянии в двумерной квадратной потенциальной яме с бесконечно высокими стенками. Найдите энергию частицы, если максимальное значение плотности вероятности местонахождения частицы равно w_m .
- 5.2.04. Частица находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками, имеющей ширину a. В каких точках интервала 0 < x < a плотность вероятности обнаружения частицы одинакова для основного и второго возбужденного состояний?
- 5.2.05. Частица массой m_0 находится в одномерном потенциальном поле U(x) в стационарном состоянии, описываемом волновой функцией $\psi(x) = A \exp\left(-\alpha x^2\right)$,

- где A и α заданные постоянные ($\alpha > 0$). Найдите энергию частицы и вид функции U(x), если U(0) = 0.
- 5.2.06. Частица находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Найдите отношение вероятностей нахождения частицы в средней трети ямы для первого и второго возбужденных состояний.
- 5.2.07. Частица массы m находится в одномерной прямоугольной потенциальной яме ширины a с бесконечно высокими стенками. Найдите число dN энергетических уровней в интервале энергий (E, E+dE), если уровни расположены весьма густо.
- 5.2.08. Однократно ионизованную молекулу органического красителя, в которой электрон может двигаться от одного конца цепочки к другому, в некотором приближении можно считать одномерной бесконечно глубокой потенциальной ямой с шириной a=0.84 нм. Цвет красителя в данном случае определяется переходом $4 \rightarrow 3$. Какой цвет имеет краситель?
- 5.2.09. Частица массы m локализована в трехмерной сферически симметричной потенциальной яме радиуса a с непроницаемыми стенками. Для состояния, в котором волновая функция частицы зависит только от r, максимальное значение плотности вероятности местонахождения частицы равно $P_{\scriptscriptstyle m}$. Найдите радиус ямы r и энергию частицы E в данном состоянии.

<u>Указание:</u> Волновую функцию частицы следует искать в виде $\psi(r) = \frac{u(r)}{r}$.

- 5.2.10. Покажите, что среди сферически симметричных решений уравнения Шредингера для водородоподобного атома, конечных при r=0 и обращающихся в нуль при $r\to\infty$, имеется экспоненциальное решение $\exp(-\alpha r)$. Найдите постоянную α , волновую функцию $\psi(r)$ и энергию атома в рассматриваемом состоянии.
- 5.2.11. Электрон с энергией E=4,9 эВ налетает на прямоугольный потенциальный барьер высотой U=5 эВ. Оцените, при какой ширине барьера d коэффициент прохождения электрона через барьер D будет равен 0,2?
- 5.2.12. Электрон, обладающий энергией $E=50\,$ эВ, встречает на своем пути потенциальный порог высотой $U=20\,$ эВ. Определите вероятность отражения электрона от этого порога.
- 5.2.13. Микрочастица налетает на прямоугольный потенциальный порог высотой $\,U_{_0}\,.\,$ Энергия частицы равна $\,E$, причем $\,E>U_{_0}\,.\,$ Найдите коэффициент отражения $\,R\,$ и коэффициент прозрачности $\,D\,$ этого барьера. Убедитесь, что значения этих коэффициентов не зависят от направления движения падающей частицы (слева направо или справа налево).
- 5.2.14. Найдите коэффициент прохождения частицы массой $m_{\scriptscriptstyle 0}$ через треугольный потенциальный барьер вида

$$U(x) = \begin{cases} 0, & x < 0 \\ U_0 \left(1 - \frac{x}{d} \right), & 0 < x < d \\ 0, & x > d \end{cases}$$

в зависимости от энергии частицы E при $E < U_{\scriptscriptstyle 0}$. Такой вид потенциального барьера соответствует барьеру, преодолеваемому электронами при холодной (полевой) эмиссии из металла.

5.2.15. Найдите коэффициент прохождения частицы массой $m_{\scriptscriptstyle 0}$ через потенциальный барьер вида

$$U(x) = \begin{cases} 0, & x < 0 \\ U_0 \left(1 - \frac{x^2}{d^2} \right), & 0 < x < d \\ 0, & x > d \end{cases}$$

в зависимости от энергии частицы $\ E$ при $\ E < U_o$

- 5.2.16. Частица с энергией E налетает на прямоугольный потенциальный порог высотой $U_{_0}$. Найдите приближенное выражение для коэффициента отражения R для случая $\frac{U_{_0}}{E}$ << 1 .
- 5.2.17. Электрон с энергией E движется над прямоугольной потенциальной ямой шириной a и глубиной $U_{\scriptscriptstyle 0}$. Найдите значения энергии E, при которых электрон будет беспрепятственно проходить над ямой. Убедитесь, что это будет происходить при условии, что ширина ямы a равна целому числу дебройлевских полуволн частицы внутри ямы. Вычислите минимальную энергию электрона $E_{\scriptscriptstyle min}$ при $U_{\scriptscriptstyle 0}=10$ эВ и a=0,25 нм.
- 5.2.18. Частица массы $m_{\scriptscriptstyle 0}$, обладающая энергией E, налетает на прямоугольный потенциальный барьер высотой $U_{\scriptscriptstyle 0}$ и шириной a. Энергия частицы $E>U_{\scriptscriptstyle 0}$. Найдите коэффициент "надбарьерного" отражения R и коэффициент прозрачности барьера D для этой частицы.
- 5.2.19. Частица с энергией E налетает на прямоугольный потенциальный порог высотой $U_{_0}$ ($E>U_{_0}$). Найдите приближенное выражение для коэффициента отражения R для случая $\frac{E-U_{_0}}{U_{_0}}$ << 1 .
- 5.2.20. В 1921 г. немецкий физик К. Рамзауэр обнаружил аномальную "прозрачность" атомов криптона для электронов с энергией E=0,6 эВ. Этот эффект обусловлен волновыми свойствами электронов. Моделируя поле атома с помощью одномерной прямоугольной потенциальной ямы глубиной $U_0=2,5$ эВ, оцените радиус атома криптона.
- 6.1.01. Волновая функция основного состояния электрона в атоме водорода имеет вид $\psi(r) = A \exp \biggl(-\frac{r}{a_{\scriptscriptstyle 0}} \biggr), \; \text{где} \quad r \text{- расстояние электрона от ядра,} \quad a_{\scriptscriptstyle 0} \text{- радиус первой боровской}$

- орбиты ($a_0=4\pi\!\epsilon_0\hbar^2/me^2$), m масса электрона, e заряд электрона, A нормировочная константа. Потенциальная энергия взаимодействия электрона с ядром $U(r)=-e^2/4\pi\!\epsilon_0 r$. Определите A и среднее значение потенциальной энергии < U >.
- 6.1.02. Частица находится в двумерной квадратной потенциальной яме с непроницаемыми стенками во втором возбужденном состоянии. Найдите среднее значение квадрата импульса частицы $< p^2 >$, если сторона ямы равна a.
- 6.1.03. Частица массой $m_{\scriptscriptstyle 0}$ находится в одномерной потенциальной яме с непроницаемыми стенками во втором возбужденном состоянии. Найдите среднее значение кинетической энергии частицы $<\!E_{\scriptscriptstyle K}\!>$, если ширина ямы равна a .
- 6.1.04. Рассчитайте < x >, $< x^2 >$, , $< p^2 >$ для уровня n бесконечно глубокой прямоугольной потенциальной ямы. Выполняется ли в этом случае принцип неопределенности? Для какого уровня результат ближе всего к теоретическому пределу?
- 6.1.05. В некоторый момент времени координатная часть волновой функции частицы, находящейся в одномерной прямоугольной потенциальной яме с абсолютно непроницаемыми стенками (0 < x < a), имеет вид $\psi(x) = Ax(a-x)$. Найдите среднюю кинетическую энергию частицы в этом состоянии, если масса частицы равна m_0 .
- 6.1.06. Волновая функция, описывающая состояние частицы, имеет вид $\varPsi(x,t) = A \exp\left(-\lambda |x| i \omega t\right), \text{ где } A \,, \, \lambda \,\text{ и } \omega \,\text{- положительные действительные константы.}$ Определите $A \,,\, < x > , < x^2 > ,$ а также среднее квадратичное отклонение (дисперсию) $\sigma_x = \sqrt{< x^2 > < x >^2} \,.$ При решении обратите внимание на четность подынтегральных функций.
- 6.1.07. В некоторый момент времени координатная часть волновой функции частицы, находящейся в одномерной прямоугольной потенциальной яме с абсолютно непроницаемыми стенками (0 < x < a), имеет вид $\psi(x) = A \sin^2 \frac{\pi x}{a}$. Найдите вероятность пребывания частицы в основном состоянии.
- 6.1.08. Найдите средние значения кинетической и потенциальной энергий квантового осциллятора с частотой $\omega_{\scriptscriptstyle 0}$ в основном состоянии, описываемом волновой функцией $\psi(x) = A \exp\left(-\frac{m_{\scriptscriptstyle 0} \omega_{\scriptscriptstyle 0} x^2}{2\hbar}\right), \; \text{где} \;\; A\text{- некоторая постоянная, а} \;\; m_{\scriptscriptstyle 0}\text{- масса осциллятора}.$
- 6.1.09. Докажите, что квадрат момента импульса частицы L^2 может быть одновременно измерим с кинетической энергией частицы $E_{\scriptscriptstyle K}$. Указание: Рассмотрите коммутатор операторов \hat{L}^2 и $\hat{E}_{\scriptscriptstyle K}$.
- 6.1.10. В момент времени t=0 волновая функция частицы в одномерной потенциальной яме шириной a с бесконечно высокими стенками имеет вид

$$\psi(x) = A \sin \frac{3\pi x}{2a} \cos \frac{\pi x}{2a}$$
.

Считая, что масса частицы равна m_0 , найдите среднюю кинетическую энергию частицы в данном состоянии. Укажите, суперпозицией каких состояний частицы в потенциальной яме является данное состояние. Найдите волновую функцию $\Psi(x,t)$.

6.1.11. В момент времени t=0 волновая функция частицы в одномерной потенциальной яме шириной a с бесконечно высокими стенками имеет вид

$$\psi(x) = A \sin \frac{2\pi x}{a} \cos \frac{\pi x}{a}$$
.

Считая, что масса частицы равна m_0 , найдите среднее значение импульса частицы в данном состоянии. Укажите, суперпозицией каких состояний частицы в потенциальной яме является данное состояние. Найдите волновую функцию $\Psi(x,t)$.

- 6.1.12. Определите среднее значение кинетической энергии $<\!E_{_{\!\scriptscriptstyle K\!M\!H}}\!>$ и средней квадратичной скорости электрона $\nu_{_{\!\scriptscriptstyle K\!R\!R}}$ в основном состоянии атома водорода.
- 6.1.13. В момент времени t=0 волновая функция частицы в одномерной потенциальной яме с бесконечно высокими стенками имеет вид

$$\psi(x) = A \sin \frac{5\pi x}{2a} \cos \frac{\pi x}{2a}.$$

Считая, что масса частицы равна m_0 , найдите среднюю кинетическую энергию частицы в данном состоянии. Укажите, суперпозицией каких состояний частицы в потенциальной яме является данное состояние. Найдите волновую функцию $\Psi(x,t)$.

- 6.1.14. В момент времени t=0 волновая функция частицы в одномерной потенциальной яме шириной a с непроницаемыми стенками является равновероятной суперпозицией второго и четвертого возбужденных состояний. Считая, что масса частицы равна $m_{\scriptscriptstyle 0}$, найдите среднее значение импульса частицы в данном состоянии.
- 6.1.15. Найдите среднее значение кинетической и потенциальной энергии квантового гармонического осциллятора с частотой ω_0 , находящегося в первом возбужденном состоянии, описываемом волновой функцией

$$\psi(x) = Ax \exp\left(-\frac{m_0 \omega_0 x^2}{2\hbar}\right), \quad -\infty < x < +\infty.$$

Здесь A - некоторая нормировочная постоянная, $m_{\scriptscriptstyle 0}$ - масса частицы.

6.1.16. В некоторый момент времени координатная часть волновой функции частицы, находящейся в одномерной потенциальной яме шириной a с бесконечно высокими стенками, имеет вид

$$\psi(x) = A \sin^3 \frac{\pi x}{a}$$
.

Найдите вероятность пребывания частицы в первом возбужденном состоянии.

6.1.17. В некоторый момент времени координатная часть волновой функции частицы, находящейся в одномерной потенциальной яме шириной a с бесконечно высокими стенками, имеет вид

$$\psi(x) = A \sin^3 \frac{\pi x}{a}.$$

Найдите среднее значение кинетической энергии частицы в этом состоянии.

6.1.18. В некоторый момент времени координатная часть волновой функции частицы, находящейся в одномерной потенциальной яме шириной a с бесконечно высокими стенками, имеет вид

$$\psi(x) = A \left(\sin \frac{\pi x}{a} + \sin^2 \frac{\pi x}{a} \right).$$

Найдите вероятность пребывания частицы в первом возбужденном состоянии. Укажите, суперпозицией каких состояний частицы в потенциальной яме является данное состояние. Найдите волновую функцию $\Psi(x,t)$.

6.1.19. Определите результаты измерения проекции импульса L_z и их вероятности для системы, находящейся в состоянии, описываемом волновой функцией $\psi(\phi) = A(1 + \sin 2\phi),$

где ϕ - азимутальный угол.

6.1.20. Определите результаты измерения проекции импульса L_z и их вероятности для системы, находящейся в состоянии, описываемом волновой функцией $\psi(\phi) = A(1 + cos \phi)$,

где ϕ - азимутальный угол.

- 6.2.01. Оцените минимальную дебройлевскую длину волны свободных электронов в металле при температуре T=0, считая, что металл содержит по одному свободному электрону на атом, а его кристаллическая решетка является простой кубической с периодом a.
- 6.2.02. Чему равна энергия Ферми $E_{_F}$ натрия при температуре T=0, если число свободных электронов, приходящихся на один атом натрия, составляет $\eta=0.96$? Плотность натрия $\rho=0.97$ кг/м³.
- 6.2.03. Найдите интервал между соседними энергетическими уровнями свободных электронов в металле при температуре T=0 вблизи уровня Ферми. Считайте, что концентрация свободных электронов $n=3\cdot 10^{28}\,\mathrm{m}^{-3}$.
- 6.2.04. Найдите среднюю скорость свободных электронов в рубидии при температуре T=0 , если энергия Ферми рубидия $E_{\scriptscriptstyle F}=1{,}82\,$ эВ.
- 6.2.05. Для того, чтобы средняя энергия электронов классического (невырожденного) электронного газа была равна средней энергии свободных электронов в меди при

- температуре T=0 , классический газ электронов нужно нагреть до температуры $T=3\cdot 10^4$ К. Найдите энергию Ферми $E_{\scriptscriptstyle E}$ для меди.
- 6.2.06. Найдите энергию Ферми $E_{\scriptscriptstyle F}$ для алюминия при температуре T=0 . Считайте, что на каждый атом алюминия приходится $\eta=3$ свободных электрона, а плотность алюминия $\rho=2,7\cdot 10^3\,{\rm kr/m^3}.$
- 6.2.07. При какой температуре металла T вероятность найти в нем электрон с энергией E , превосходящей энергию Ферми $E_{\scriptscriptstyle F}$ на $\Delta E=0.5$ эВ, составляет P=0.02 ?
- 6.2.08. Найдите при температуре T=0 плотность состояний электронов в серебре $\frac{dn}{dE}$ вблизи уровня Ферми, если энергия Ферми серебра составляет $E_{\scriptscriptstyle F}=5,5\,$ эВ.
- 6.2.09. Определите, во сколько раз изменится вероятность заполнения электронами в металле энергетического уровня, расположенного на $\Delta E = 0.1$ эВ выше уровня Ферми, если температуру металла повысить от $T_1 = 300\,\mathrm{K}$ до $T_2 = 400\,\mathrm{K}$.
- 6.2.10. Найдите положение уровня Ферми и суммарную кинетическую энергию свободных электронов в объеме $\Delta V=1\,\mathrm{cm^3}$ серебра при температуре T=0, полагая, что число свободных электронов равно количеству атомов серебра.
- 6.2.11. Получите выражение для постоянной Холла $R_{_H}$ в примесном полупроводнике, в котором концентрации электронов и дырок равны, соответственно, n и p, а их подвижности μ_n и μ_p . При каком соотношении между этими величинами эффект Холла будет отсутствовать?
- 6.2.12. Тонкая металлическая лента шириной d и толщиной a помещена в однородное магнитное поле с индукцией B, перпендикулярное плоскости ленты. По ленте пропускают ток I. Найдите разность потенциалов, возникающую между краями ленты (на расстоянии d), если концентрация свободных электронов в металле равна n.
- 6.2.13. По металлической трубе с внутренним и внешним радиусами, равными, соответственно, R_1 и R_2 , течет равномерно распределенный ток I. Определите разность потенциалов, установившуюся между внутренней и наружной поверхностями трубы. Концентрация свободных электронов в металле равна n.
- 6.2.14. Температурный коэффициент сопротивления $\alpha = \frac{1}{\rho} \frac{d\rho}{dT}$ чистого беспримесного германия при комнатной температуре равен $\alpha = -0.05 K^{-1}$. Найдите красную границу фотопроводимости λ_{ε} для этого полупроводника при низких температурах.
- 6.2.15. Собственный полупроводник с шириной запрещенной зоны $\Delta E_{_g} = 0.67$ эВ находится при температуре $T_{_1} = 300\,\mathrm{K}$. До какой температуры $T_{_2}$ нужно нагреть полупроводник, чтобы

его проводимость увеличилась в $\eta = 2$ раза?

- 6.2.16. Удельное сопротивление некоторого чистого беспримесного полупроводника при комнатной температуре $\rho=50\,\mathrm{Om\cdot cm}$. После включения источника света оно стало $\rho_1=40\,\mathrm{Om\cdot cm}$, а через $t=8\,\mathrm{mc}$ после выключения источника света удельное сопротивление оказалось $\rho_2=45\,\mathrm{Om\cdot cm}$. Найдите среднее время жизни электронов проводимости и дырок.
- 6.2.17. Ширина запрещенной зоны полупроводника $\Delta E_{_g}=1,0$ эВ. Какова вероятность заполнения электроном вблизи дна зоны проводимости при температуре T=300 К ? Увеличится ли эта вероятность, если на полупроводник действует электромагнитное излучение с длиной волны $\lambda_{_1}=1$ мкм; $\lambda_{_2}=2$ мкм?
- 6.2.18. Удельное сопротивление чистого кремния при комнатной температуре равно $ho=1000\,{\rm Om}\cdot{\rm M}$, ширина запрещенной зоны $\Delta E_{_g}=1,\!12\,{\rm эB}$. Предполагая, что эффективные плотности состояний и подвижности электронов и дырок не зависят от температуры, найдите величину удельного сопротивления кремния при температуре $T=320\,{\rm K}$.
- 6.2.19. Определите ток через образец кремния, имеющий форму прямоугольного параллелепипеда с размерами $a \times b \times c = 50 \times 5 \times 1$ мм, если вдоль образца приложено напряжение U = 10 В. Известно, что концентрация электронов в полупроводнике $n = 10^{21}$ м-3, а их подвижность $\mu_n = 0.14$ м²/(В·с).
- 6.2.20. Найдите отношение полного тока через полупроводник к току, обусловленному только дырочной составляющей: а) в собственном германии; б) в германии p-типа с удельным сопротивлением $\rho=0.05\,\mathrm{Om}\cdot\mathrm{m}$. Принять собственную концентрацию носителей заряда при комнатной температуре $n_{\scriptscriptstyle n}=n_{\scriptscriptstyle p}=2.1\cdot10^{19}\,\mathrm{m}\cdot^3$, подвижность электронов $\mu_{\scriptscriptstyle n}=0.39\,\mathrm{m}^2/(\,\mathrm{B\cdot c})$, подвижность дырок $\mu_{\scriptscriptstyle o}=0.19\,\mathrm{m}^2/(\,\mathrm{B\cdot c})$.