

Pre-Foundation-Model-Era:

What can we study from the paradigm of self-supervised learning?

Yun Gu

Department of Automation Institute of Medical Robotics Shanghai Jiao Tong University

Tuning a foundation model is popular!

☆ Save 55 Cite Cited by 34 Related articles All 3 versions >>>

Foundation Models in Medical Imaging

S. Zhang et.al, ON THE CHALLENGES AND PERSPECTIVES OF FOUNDATION MODELS FOR MEDICAL IMAGE ANALYSIS, 2023

- Pretraining allows good initialization of model/feature representations via:
 - Fully-supervised Pretraining
 - Partially-supervised Pretraining
 - Unsupervised/Self-Supervised Pretraining

- Finetuning aligns the knowledge of pretrained models and down-stream tasks by considering:
 - Data Domain Gap
 - Task Domain Gap
 - ...

Key problems

- How to pretrain a model?
- How to pick the best pretrained model?
- How to fine-tune the pretrained model?

Guidance

Dive into the Details of Self-supervised Learning

Pretraining

• Partially-Supervised Pretraining via ST-UNet, arxiv, 2023

Transferability

Class-Consistency and Feature Variety, MICCAI, 2023

Finetuning

These are open opportunities to you again!

- Empirical Analysis:
 - Is Self-supervised Learning (SSL) good for medical image analysis?

Chuyan Zhang et.al, Dive into the Details of Self-supervised Learning for Medical Image Analysis, *Medical Image Analysis*, 2023

We have seen dozens of works on SSL for Medical Image Analysis

•	•
Research topic	Literature
	Li et al. (2021), Zhu et al. (2020), Bai et al. (2019), Tan et al. (2021)
Predictive SSL	Blendowski et al. (2019), Zhuang et al. (2019), Taleb et al. (2020) Nguyen et al. (2020), Tajbakhsh et al. (2019), Ouyang et al. (2020)
Generative SSL	Tajbakhsh et al. (2019), Chen et al. (2019), Zhou et al. (2021b) Tao et al. (2020), Zhao et al. (2021), Xu and Adalsteinsson (2021)
Contrastive SSL	Sowrirajan et al. (2021), Sriram et al. (2021), Vu et al. (2021) Azizi et al. (2021), Chaitanya et al. (2020), Zhou et al. (2020)
Multi-SSL	Haghighi et al. (2020), Zhang et al. (2021), Dong et al. (2021) Zhou et al. (2021a), Taher et al. (2022), Haghighi et al. (2022)
-	Xu (2021), Chowdhury et al. (2021) Shurrab and Duwairi (2022), Chen et al. (2022)

Fair comparisons with our benchmark:

https://github.com/EndoluminalSurgicalVision-IMR/Medical-SSL

(a) 3D tasks: pretra	aining on LUNA 2016							
Pretraining	Method	NCC		NCS			LCS	
		AUC (%)	ACC (%)	DSC (%)	mIoU (%)	mIoU+ (%)	DSC (%)	IoU (%)
From scratch	Random init (He et al., 2015)	98.53	97.00	73.79	80.86	62.58	93.83	88.50
Predictive SSL	ROT (Taleb et al., 2020) RPL (Taleb et al., 2020) Jigsaw (Taleb et al., 2020) RKB (Zhuang et al., 2019) RKB+ (Zhu et al., 2020)	99.32 99.29 98.64 <u>99.41</u> 98.88	99.09 97.87 98.81 99.03 98.48	73.25 <u>76.10</u> 75.23 74.22 74.31	80.64 81.36 81.90 80.88 80.82	62.15 63.51 64.66 62.61 62.51	94.49 94.86 94.36 <u>94.93</u> 95.46	89.65 90.18 89.42 90.43 91.41
Generative SSL	AE MG (Zhou et al., 2021b) PCRL (Zhou et al., 2021a)	97.76 98.01 98.97	97.62 96.72 97.88	74.26 75.69 75.60	81.15 <u>82.13</u> 81.97	63.17 65.08 64.55	93.77 94.24 93.87	88.92 89.17 88.56
Contrastive SSL	SimCLR (Chen et al., 2020b) BYOL (Grill et al., 2020)	99.29 99.52	97.91 97.65	75.96 76.13	82.00 82.27	64.82 65.37	94.56 94.43	89.74 89.56
					·			/ \

Fair comparisons with our benchmark:

https://github.com/EndoluminalSurgicalVision-IMR/Medical-SSL

Pretraining	Method	EPC		DVS		
		Kappa (%)	ACC (%)	DSC (%)	SEN(%)	
From scratch	Random init (He et al., 2015)	76.32	77.33	78.57	75.45	
Predictive SSL	ROT (Taleb et al., 2020) RPL (Taleb et al., 2020) Jigsaw (Taleb et al., 2020)	77.85 77.47 78.29	77.16 77.63 76.76	77.56 79.21 78.72	75.67 <u>79.05</u> 77.89	
Generative SSL	AE MG (Zhou et al., 2021b) PCRL (Zhou et al., 2021a)	70.28 78.66 77.92	74.33 78.41 <u>78.34</u>	79.28 <u>80.00</u> 79.49	77.23 78.63 76.93	
Contrastive SSL	SimCLR (Chen et al., 2020b) BYOL (Grill et al., 2020)	78.46 76.55	77.91 77.58	80.75 78.42	79.81 77.33	

Detail ONE: Imbalanced DATA in medical imaging

Example: Nodule Classification with LUNA16 (Normal v.s. Malignant: 1:100)

Question: How does SSL pretraining affect class-imbalanced learning?

Takeaway 1

 The prior probability ratio related to both upstream and downstream data affects the target performance, namely the inherent data imbalance of pretraining data would impair downstream learning.

Takeaway 2

SSL methods improve the rare class more than the frequent class

Detail ONE: Imbalanced DATA in medical imaging

Example: Nodule Classification with LUNA16 (Normal v.s. Malignant: 100:1)

Question: How does SSL pretraining affect class-imbalanced learning?

With that said,, we can assume that Z conditioned on Y=+1 and Y=-1 follows different Gaussian distributions. Formally, $Z|Y=+1\sim N(\mu_1,\sigma^2)$ and $Z|Y=-1\sim N(\mu_2,\sigma^2)$. Note that we ignore the variance difference between the two classes for simplicity. Assuming $\mu_1>\mu_2$, the optimal Bayesian classifier can be expressed as $f(Z)=sign(Z-\frac{\mu_1+\mu_2}{2}+\frac{\sigma^2\ln(\lambda)}{\mu_1-\mu_2})$, i.e. X is classified as Y=+1 when $f(\phi(X))>0$. Our estimation of f is composed of two terms: $\theta_1=\frac{\mu_1+\mu_2}{2}$ and $\theta_2=\frac{\sigma^2\ln(\lambda)}{\mu_1-\mu_2}$. For the former term, the estimation is naturally constructed as $\hat{\theta}_1=\frac{\sum_{k=1}^{N^+}Z_k^+/N^++\sum_{k=1}^{N^-}Z_k^-/N^-}{2}$, where N^+ and N^- are the number of positive class and negative class in D_{down} respectively. According to the Gaussian concentration inequality, we have:

Theorem 1. Consider the above setup. For any t > 0, with probability at least $1 - e^{\frac{-2t^2}{\sigma^2} \frac{N^+N^-}{N^++N^-}}$ our estimated $\hat{\theta}_1$ satisfies:

$$|\hat{\theta}_1 - \frac{\mu_1 + \mu_2}{2}| \le t \tag{13}$$

 Imbalance degree of labelled training data affects the chance of obtaining a good estimate. We then consider a large λ , i.e. there is less class imbalance in upstream and downstream data. Based on the understanding in Interpretation 1, it still have a high probability to get an accurate estimate of the optimal classifier. We further seek the error rate of such a good classifier. Suppose that the Bayesian decision boundary splits the whole feature space into two parts: Γ_+ and Γ_- , the error probability of each class can be computed as: $\epsilon_+ = \int_{\Gamma_-} p(Z|Y=+1)dZ$, $\epsilon_- = \int_{\Gamma_+} p(Z|Y=-1)dZ$. Then, we can derive the *Chernoff* error upper bound according to Fukunaga (2013):

Theorem 2. Consider the above setup. Given the ratio of prior probabilities λ and the Bhattacharyya distance of two classes $D_B = \frac{1}{8} \frac{(\mu_2 - \mu_1)^2}{\sigma^2}$, the error probability of each class of Bayes's classifier satisfies:

$$\begin{cases} \epsilon_{+} \leq \frac{1}{\sqrt{\lambda}} e^{-D_{B}} \\ \epsilon_{-} \leq \sqrt{\lambda} e^{-D_{B}} \end{cases}$$
 (11)

 SSL methods improve the rare class more than the major class.

Detail ONE: Imbalanced DATA in medical imaging

Nodule Classification Task (NCC) Based on *Model Genesis* (MedIA 21) and *PCRL* (TPAMI23)

Detail ONE: Imbalanced DATA in medical imaging

Node Segmentation/Liver Segmentation Tasks

Detail TWO: Network Modules and Designs

Detail TWO: Network Modules and Designs

Question: The impacts of modules in U-Shape Neural Networks

Takeaway 1

• The decoder risks overfitting to the reconstruction task, thus offering little benefits for downstream tasks. To mitigate this issue, removing the skip connections in pretraining could lead to better representations.

Takeaway 2

 The benefit of SSL pretraining may come from an alleviation of overparameterization.

Takeaway 3

Recollect the target BN statistics for inference.

Takeaway 4

Full fine-tuning is more advantageous than warm-up finetuning.

Detail TWO: Network Modules and Designs

Question: The impacts of modules in U-Shape Neural Networks

Model		Pretext task	Target task				
	w/o encoder	w/o decoder	w/o skip	MAE	NCS	LCS	NCC
Model Genesis	√	✓		0.0053	75.69 75.70 74.77	94.24 94.08 93.60	98.01
	•		✓	0.0095	77.09	94.72	99.00
PCRL	√	✓		0.0402	75.60 74.02 74.43	93.87 93.25 93.56	98.97 —
	*		✓	0.0431	74.30	93.18	98.34

• The decoder risks overfitting to the reconstruction task, thus offering little benefits for downstream tasks. To mitigate this issue, removing the skip connections in pretraining could lead to better representations. The benefit of SSL pretraining may come from an alleviation of overparameterization.

Detail TWO: Network Modules and Designs

Question: The impacts of modules in U-Shape Neural Networks

Detail TWO: Network Modules and Designs

Question: The impacts of modules in U-Shape Neural Networks

Mixed BN statistics usually induce performance degeneration at a large distribution distance so that recollecting the target BN statistics for inference is necessary

Detail TWO: Network Modules and Designs

Question: The impacts of modules in U-Shape Neural Networks

Full fine-tuning is more advantageous than warm-up finetuning due to the essential gap between self-training and downstream semantic tasks.

Chuyan Zhang et.al, Dive into the Details of Self-supervised Learning for Medical Image Analysis, *Medical Image Analysis*, 2023

• Detail THREE: Pretext-Target Task

(a) 3D tasks: pretr	aining on LUNA 2016							
Pretraining	Method	NCC		NCS		LCS		
		AUC (%)	ACC (%)	DSC (%)	mIoU (%)	mIoU+ (%)	DSC (%)	IoU (%)
From scratch	Random init (He et al., 2015)	98.53	97.00	73.79	80.86	62.58	93.83	88.50
Predictive SSL	ROT (Taleb et al., 2020)	99.32	99.09	73.25	80.64	62.15	94.49	89.65
	RPL (Taleb et al., 2020)	99.29	97.87	76.10	81.36	63.51	94.86	90.18
	Jigsaw (Taleb et al., 2020)	98.64	98.81	75.23	81.90	64.66	94.36	89.42
	RKB (Zhuang et al., 2019)	99.41	99.03	74.22	80.88	62.61	94.93	90.43
	RKB+ (Zhu et al., 2020)	98.88	98.48	74.31	80.82	62.51	95.46	91.41
Generative SSL	AE	97.76	97.62	74.26	81.15	63.17	93.77	88.92
	MG (Zhou et al., 2021b)	98.01	96.72	75.69	82.13	65.08	94.24	89.17
	PCRL (Zhou et al., 2021a)	98.97	97.88	75.60	81.97	64.55	93.87	88.56
Contrastive SSL	SimCLR (Chen et al., 2020b)	99.29	97.91	75.96	82.00	64.82	94.56	89.74
	BYOL (Grill et al., 2020)	99.52	97.65	76.13	82.27	65.37	94.43	89.56

Chuyan Zhang et.al, Dive into the Details of Self-supervised Learning for Medical Image Analysis, *Medical Image Analysis*, 2023

Detail THREE: Pretext-Target Task

Takeaway 1

The generative SSL underperforms in the classification task.

Takeaway 2

• Take into account properties of the target task when selecting the pretext task for pretraining.

Takeaway 3

 For the adaptation under a large domain shift between upstream and downstream data (e.g. LCS), it is important to prevent potential overfitting to the upstream data in predictive or generative SSL.

Takeaway 4

Contrastive SSL and RPL could be the go-to solutions for researchers.

Detail THREE: Pretext-Target Task

Chuyan Zhang et.al, Dive into the Details of Self-supervised Learning for Medical Image Analysis, *Medical Image Analysis*, 2023

Detail THREE: Pretext-Target Task-Input Size Matters

Chuyan Zhang et.al, Dive into the Details of Self-supervised Learning for Medical Image Analysis, *Medical Image Analysis*, 2023

• Detail THREE: Pretext-Target Task

Chuyan Zhang et.al, Dive into the Details of Self-supervised Learning for Medical Image Analysis, *Medical Image Analysis*, 2023

Detail FOUR: Common Training Policies

Takeaway 1

• The combination of resampling and SSL techniques is preferred in severe class imbalance and low-data regimes, whereas solely resampling is preferred in slight class imbalance.

Takeaway 2

Strong augmentation diminishes the value of SSL pretraining.

Detail FOUR: Common Training Policies

Imbalance Ratio	N	Mean-	Resampling +MG				+PCRL
	- '	Δ_{AUC}	Δ_{Recall}	Δ_{AUC}	Δ_{Recall}	Δ_{AUC}	Δ_{Recall}
	5k	-4.21	19.10	(+6.10) 1.89	9 (+13.28) 32.38	(+2.77) -1.44	(+24.24) 43.34
r=0.01	10k	9.96	37.00	(+12.57) 22.5	3 (+17.31) 54.31	(+4.93) 14.89	(+22.53) 59.53
	15k	17.21	52.66	(+1.96) 19.1	7 (+17.75) 70.41	(+4.01) 21.22	47.52
	5k	4.14	45.16	(+10.20) 14.3	4 (+3.93) 49.09	(+2.33) 6.47	38.38
r=0.05	10k	22.94	47.25	22.9	8 47.01	21.39	41.78
	15k	21.05	44.13	21.2	5 (+8.09) 52.22	19.04	44.91
	5k	-6.20	40.21	(+4.68) -1.5	2 34.99	(+2.94) -3.26	26.37
r=0.1	10k	16.42	47.78	16.1	2 47.51	16.45	43.08
	15k	11.26	47.51	11.5	3 46.21	9.98	(+2.10) 49.61

Key problems

- How to pretrain a model?
- How to pick the best pretrained model?
- How to fine-tune the pretrained model?

Guidance

Dive into the Details of SSL, Medical Image Analysis, 2023

Pretraining

sooooooo Many Works! My Ads here: ST-UNet

Transferability

Class-Consistency and Feature Variety, MICCAI, 2023

Finetuning

These are open opportunities to you again!

Scalable and Transferable Medical Image Segmentation Models

Better Designs of UNet

Settings	nnU-Net	3D U-Net	STU-Net (ours)
number of resolution stages	4-7	5	6
convolution kernels	$3\times3\times3$ or $3\times3\times1$	3×3×3	3×3×3
up(down)-sample ratios	(2,2,2) or (2,2,1)	(2,2,2)	(2,2,2) or (2,2,1)
input patch size	task-specific	fixed	task-specific
input spacing	task-specific	fixed	task-specific
up-sample operation	transpose convolution	transpose convolution	interpolation with (1,1,1) convolution

Ziyan Huang et.al, STU-Net: Scalable and Transferable Medical Image Segmentation Models Empowered by Large-Scale Supervised Pre-training 2023

Key problems

- How to pretrain a model?
- How to pick the best pretrained model?
- How to fine-tune the pretrained model?

Guidance

Dive into the Details of SSL, Medical Image Analysis, 2023

Pretraining

Partially-Supervised Pretraining via ST-UNet, arxiv, 2023

Transferability

Class-Consistency and Feature Variety, MICCAI, 2023

Finetuning

These are open opportunities to you again!

- Given a model zoo, how to pick the best model for finetuning
 - Effectively (Accurate)
 - Efficiently (Fast)

Criteria

Given pretrained models, If **Model A** performs better than **Model B** <u>after the fine-tuning</u> on target task, the transferability metric of **Model A** is larger than **Model B** without fine-tuning.

https://sketchfab.com/3d-models/rapid-punching-animation-898c066dc84b4fe7b19fa2f40f4fd145

Segmentation Tasks

Criteria

Given pretrained models, If **Model A** performs better than **Model B after the fine-tuning** on target task, the transferability metric of **Model A** is larger than **Model B without fine-tuning**.

Foreground:

Are they similar in the feature space of pretrained model?

Segmentation Tasks

Criteria

Given pretrained models, If **Model A** performs better than **Model B after the fine-tuning** on target task, the transferability metric of **Model A** is larger than **Model B without fine-tuning**.

Background:

Should we also follow the idea of foreground regions?

Segmentation Tasks

Criteria

Given pretrained models, If **Model A** performs better than **Model B** <u>after the fine-tuning</u> on target task, the transferability metric of **Model A** is larger than **Model B** without fine-tuning.

If all of them are similar?

Criteria

Given pretrained models, If Model A performs better than Model B <u>after the fine-tuning</u> on target task, the transferability metric of Model A is larger than Model B <u>without fine-tuning</u>.

Class-Consistency (CC) only for foreground classes

$$\mathcal{W}_{2}^{2}(F_{j}^{k}, F_{j'}^{k}) = \left\| \boldsymbol{\mu}_{F_{j}^{k}} - \boldsymbol{\mu}_{F_{j'}^{k}} \right\|^{2} + \operatorname{Tr}\left(\boldsymbol{\Sigma}_{F_{j}^{k}}\right) + \operatorname{Tr}\left(\boldsymbol{\Sigma}_{F_{j'}^{k}}\right) - 2\operatorname{Tr}\left(\left(\boldsymbol{\Sigma}_{F_{j}^{k}}\boldsymbol{\Sigma}_{F_{j'}^{k}}\right)^{1/2}\right)$$

$$(1) \quad \boldsymbol{C_{cons}} = \frac{1}{N(N-1)} \sum_{k=1}^{C} \sum_{i \neq j} \mathcal{W}_{2}(\boldsymbol{F_{i}^{k}}, \boldsymbol{F_{j}^{k}})$$

$$(2)$$

Feature-Variety (FV) for background classes

$$E_{s}(v) = \sum_{i=1}^{L} \sum_{j=1, j \neq i}^{L} e_{s}(\|v_{i} - v_{j}\|)$$

$$= \begin{cases} \sum_{i \neq j} \|v_{i} - v_{j}\|^{-s}, & s > 0 \\ \sum_{i \neq j} \log(\|v_{i} - v_{j}\|^{-1}), & s = 0 \end{cases}$$
(3)
$$F_{v} = \frac{1}{N} \sum_{i=1}^{N} E_{s}^{-1}(v)$$

Yuncheng Yang et.al, Transferability Estimation For Medical Image Segmentation: Method and Observations, *MICCAI 2023 (Early Accepted)*

Criteria

Given pretrained models, If **Model A** performs better than **Model B after the fine-tuning** on target task, the transferability metric of **Model A** is larger than **Model B without fine-tuning**.

Class-Consistency (CC) and Feature-Variety (FV)

$$\mathcal{T}_{i} = \frac{1}{D} \sum_{i=1}^{D} \log \frac{F_{v}^{i}}{C_{cons}^{i}}$$

https://github.com/EndoluminalSurgicalVision-IMR/CCFV

Liver Tumours

Target: Liver and tumour

Modality: Portal venous phase CT

Size: 201 3D volumes (131 Training + 70 Testing)

Source: IRCAD Hôpitaux Universitaires

Challenge: Label unbalance with a large (liver) and small (tumour) target

Lung Tumours

Target: Lung and tumours

Modality: CT

Size: 96 3D volumes (64 Training + 32 Testing)

Source: The Cancer Imaging Archive

Challenge: Segmentation of a small target (cancer) in a large image

Colon Cancer

Target: Colon Cancer Primaries

Modality: CT

Size: 190 3D volumes (126 Training + 64 Testing) Source: Memorial Sloan Kettering Cancer Center

Challenge: Heterogeneous appearance

Spleen

Target: Spleen Modality: CT

Size: 61 3D volumes (41 Training + 20 Testing)
Source: Memorial Sloan Kettering Cancer Center

Challenge: Large ranging foreground size

Pancreas Tumour

Target: Liver and tumour

Modality: Portal venous phase CT

Size: 420 3D volumes (282 Training +139 Testing) **Source:** Memorial Sloan Kettering Cancer Center

Challenge: Label unbalance with large (background), medium (pancreas) and

small (tumour) structures.

Yuncheng Yang et.al, Transferability Estimation For Medical Image Segmentation: Method and Observations, *MICCAI 2023 (Early Accepted)*

Pick the Best Pretrained Model via CCFV

https://github.com/EndoluminalSurgicalVision-IMR/CCFV

Data/Method	Metrics	Task03	Task06	Task07	Task09	Task10	Avg
LogME	au	-0.0887	0.2895	-0.1219	-0.0152	-0.0938	-0.0060
	pearson	-0.0927	0.3541	-0.1101	-0.0102	0.0042	0.0290
Transrate	τ	0.3168	0.4635	0.2654	0.6085	0.0961	0.3507
	pearson	0.4440	0.4134	0.3237	0.5857	0.0927	0.3719
Loop	τ	0.5310	0.5231	0.3294	0.0490	0.5499	0.3964
Leep	pearson	0.5134	0.5423	0.1306	0.0378	0.7407	0.3929
GBC	τ	0.1465	0.3320	0.3891	0.6251	0.1503	0.3286
GDC	pearson	-0.0081	0.3064	0.7460	0.5600	0.7139	0.1847
Ours CC-FV	τ	0.6234	0.6508	0.6569	0.5700	0.5550	0.6112
	pearson	0.7665	0.8174	0.7703	0.5220	0.7766	0.7305

CCFV is a powerful tool

https://github.com/EndoluminalSurgicalVision-IMR/CCFV

- Supervised Pretraining
- Self-supervised Pretraining

• ...

Key problems

- How to pretrain a model?
- How to pick the best pretrained model?
- How to fine-tune the pretrained model?

Guidance

Dive into the Details of SSL, Medical Image Analysis, 2023

Pretraining

Partially-Supervised Pretraining via ST-UNet, arxiv, 2023

Transferability

Class-Consistency and Feature Variety, MICCAI, 2023

Finetuning

These are open opportunities to you again!

Tuning a foundation model is popular!

☆ Save 55 Cite Cited by 34 Related articles All 3 versions >>>

Key problems

- How to pretrain a model?
- How to pick the best pretrained model?
- How to fine-tune the pretrained model?

Guidance

• Dive into the Details of SSL, *Medical Image Analysis*, 2023

Pretraining

• Partially-Supervised Pretraining via ST-UNet, arxiv, 2023

Transferability

Class-Consistency and Feature Variety, MICCAI, 2023

Finetuning

These are open opportunities to you again!

Many Thanks!