

Some Approximation Properties of the Generalized Baskakov operators

Prashantkumar Patel^{a,b,1}, Vishnu Narayan Mishra^{a,d}, Mediha Örkcü^c

^aDepartment of Applied Mathematics & Humanities, S. V. National Institute of Technology, Surat-395 007 (Gujarat), India

^bDepartment of Mathematics, St. Xavier's College(Autonomous), Ahmedabad-380 009 (Gujarat), India

^cDepartment of Mathematics, Faculty of Sciences, Gazi University, Teknikokullar, 06500 Ankara, Turkey

^dL. 1627 Awadh Puri Colony Beniganj, Phase-III, Opposite - Industrial Training Institute (ITI), Ayodhya Main Road, Faizabad, Uttar Pradesh 224 001, India

Abstract

The present paper deals with a generalization of the Baskakov operators. Some direct theorems, asymptotic formula and A -statistical convergence are established. Our results are based on a ρ function. These results include the preservation properties of the classical Baskakov operators.

Keywords: asymptotic analysis, convergence analysis, convergence rate, The Baskakov operators, A -statistical convergence

2000 Mathematics Subject Classification: 41A25, 41A36, Secondary 47B33, 47B38.

1. Introduction

In [2], Baskakov discussed the following positive linear operators on the unbounded interval $[0, \infty)$,

$$V_n(f; x) = \sum_{k=0}^{\infty} v_{k,n}(x) f\left(\frac{k}{n}\right), \quad x \in [0, \infty), n \in \mathbf{N}, \quad (1.1)$$

where f is an appropriate function defined on the unbounded interval $[0, \infty)$, for which the above series is convergent and $v_{n,k}(x) = \binom{n+k-1}{k} \frac{x^k}{(1+x)^{n+k}}$.

In 2011, Cárdenas-Morales *et al.* [3] introduced a generalized Bernstein operators by fixing e_0 and e_1 , given by

$$L_n(f; x) = \sum_{k=0}^n \binom{n}{k} x^{2k} (1-x^2)^{n-k} f\left(\sqrt{\frac{k}{n}}\right), \quad x \in [0, 1], n \in \mathbf{N}, \quad (1.2)$$

where $f \in C[0, 1]$. This is a special case of the operators $B_n^\tau f = B_n(f \circ \tau^{-1}) \circ \tau$, for $\tau = e_2$, where B_n is the classical Bernstein operators.

Consider a real valued function ρ on $[0, \infty)$ satisfied following two conditions:

1. ρ is a continuously differentiable function on $[0, \infty)$,
2. $\rho(0) = 0$ and $\inf_{x \in [0, \infty)} \rho'(x) \geq 1$.

Email addresses: prashant225@gmail.com (Prashantkumar Patel), vishnu_narayananmishra@yahoo.co.in; vishnunarayananmishra@gmail.com (Vishnu Narayan Mishra), medihaakcay@gazi.edu.tr (Mediha Örkcü)

¹Corresponding authors

Throughout the manuscript, we denote the above two conditions as c_1 and c_2 . Recently, In [1] the following generalization of Szász–Mirakyan operators are constructed,

$$S_n^\rho(f; x) = \exp(-n\rho(x)) \sum_{k=0}^{\infty} (f \circ \rho^{-1}) \left(\frac{k}{n} \right) \frac{(n\rho(x))^k}{k!}, \quad x \in [0, 1], n \in \mathbf{N}. \quad (1.3)$$

Notice that if $\rho = e_1$ then the operators (1.3) reduces to the well known Szász–Mirakyan operators. Aral *et al.* [1], gave quantitative type theorems in order to obtain the degree of weighted convergence with the help of a weighted modulus of continuity constructed using the function ρ of the operators (1.3). Very recently, some researchers have discussed shape preserving properties of the generalized Bernstein, Baskakov and Szász–Mirakjan operators in [17–20].

2. Construction of the Operators

This motivated us to generalize the Baskakov operators (1.1) as

$$\begin{aligned} V_n^\rho(f; x) &= \sum_{k=0}^{\infty} (f \circ \rho^{-1}) \left(\frac{k}{n} \right) \binom{n+k-1}{k} \frac{(\rho(x))^k}{(1+\rho(x))^{n+k}} \\ &= (V_n^\rho((f \circ \rho^{-1}) \circ \rho))(x) \\ &= \sum_{k=0}^{\infty} f\left(\rho^{-1}\left(\frac{k}{n}\right)\right) v_{\rho,n,k}(x), \end{aligned} \quad (2.1)$$

where $n \in \mathbf{N}$, $x \in [0, \infty)$ and ρ is a function defined as in conditions c_1 and c_2 .

Observe that, $V_n^\rho(f; x) = V_n(f; x)$ if $\rho = e_1$. In fact, direct calculation gives that

$$V_n^\rho(e_0; x) = 1; \quad (2.2)$$

$$V_n^\rho(\rho; x) = \rho(x); \quad (2.3)$$

$$V_n^\rho(\rho^2; x) = \rho^2(x) + \frac{\rho^2(x) + \rho(x)}{n}. \quad (2.4)$$

In this manuscript, we are dealing with approximation properties the operators (2.1). In the next section, we establish some direct results using generalized modulus of continuity. The Voronovskaya Asymptotic formula and A-Statistical convergence of the operators V_n^ρ are discuss in Section 4 and 5.

3. Direct Theorems

Consider $\phi^2(x) = 1 + \rho^2(x)$. Notice that, $\lim_{x \rightarrow \infty} \rho(x) = \infty$ because the condition c_2 . Denote $B_\phi([0, \infty))$ as set of all real valued function on $[0, \infty)$ such that $|f(x)| \leq M_f \phi(x)$, for all $x \in [0, \infty)$, where M_f is a constant depending on f . Observe that, $B_\phi([0, \infty))$ is norm linear space with the norm $\|f\|_\phi = \sup \left\{ \frac{|f(x)|}{\phi(x)} : x \in [0, \infty) \right\}$. Also, $C_\phi([0, \infty))$ as the set all continuous function in $B_\phi([0, \infty))$ and

$$C_\phi^k([0, \infty)) = \{f \in C_\phi([0, \infty)) : \lim_{x \rightarrow \infty} \frac{f(x)}{\phi(x)} = k_f, k_f \text{ is constant depaned on } f\}.$$

Let $U_\phi([0, \infty))$ be the space of functions $f \in C_\phi([0, \infty))$, such that $\frac{f(x)}{\phi(x)}$ is uniformly continuous. Also, $C_\phi^k([0, \infty)) \subset U_\phi([0, \infty)) \subset C_\phi([0, \infty)) \subset B_\phi([0, \infty))$.

Lemma 1. [11] *The positive linear operators $L_n : C_\phi([0, \infty)) \rightarrow B_\phi([0, \infty))$ for all $n \geq 1$ if and only if the inequality*

$$|L_n(\phi; x)| \leq K_n \phi(x), \quad x \in [0, \infty), \quad n \geq 1,$$

holds, where K_n is a positive constant.

Theorem 1. [11] *Let the sequence of linear positive operators $(L_n)_{n \geq 1}$, $L_n : C_\phi([0, \infty)) \rightarrow B_\phi([0, \infty))$ satisfy the three conditions*

$$\lim_{n \rightarrow \infty} \|L_n \rho^i - \rho^i\| = 0, \quad i = 0, 1, 2.$$

Then

$$\lim_{n \rightarrow \infty} \|L_n f - f\| = 0,$$

for any $f \in C_\phi^k([0, \infty))$.

By (2.2), (2.4) and Lemma 1, V_n^ρ is linear positive operators from $C_\phi([0, \infty))$ to $B_\phi([0, \infty))$.

Theorem 2. *For each function $f \in C_\phi^k([0, \infty))$, we have*

$$\lim_{n \rightarrow \infty} \|V_n^\rho(f; \cdot) - f\|_\phi = 0. \quad (3.1)$$

Proof: From (2.2) and (2.3), we write

$$\|V_n^\rho(1; \cdot) - 1\|_\phi = 0 \text{ and } \|V_n^\rho(\rho; \cdot) - \rho\|_\phi = 0.$$

Also,

$$\|V_n^\rho(\rho^2; \cdot) - \rho^2\|_\phi = \sup_{x \in [0, \infty)} \frac{\rho^2(x) + \rho(x)}{n(1 + \rho^2(x))} \leq \frac{2}{n}. \quad (3.2)$$

Therefore, we have

$$\|V_n^\rho(\rho^i; \cdot) - \rho^i\|_\phi \rightarrow 0 \text{ as } n \rightarrow \infty, \text{ for } i = 0, 1, 2.$$

Hence by Theorem 1, the equation (3.1) is also true.

In [13] the following weighted modulus of continuity is defined

$$\omega_\rho(f; \delta) := \omega(f; \delta)_{[0, \infty)} = \sup_{\substack{x, t \in [0, \infty) \\ |\rho(x) - \rho(t)| \leq \delta}} \frac{|f(t) - f(x)|}{|\phi(t) - \phi(x)|} \quad (3.3)$$

for each $f \in C_\phi([0, \infty))$ and for every $\delta > 0$.

We call the function $\omega_\rho(f; \delta)$ weighted modulus of continuity. We observe that $\omega_\rho(f; 0) = 0$ for every $f \in C_\phi([0, \infty))$ and that the function $\omega_\rho(f; \delta)$ is nonnegative and nondecreasing with respect to δ for $f \in C_\phi([0, \infty))$. Here, we

consider the spaces $C_\phi^k([0, \infty))$, $U_\phi([0, \infty))$, $C_\phi([0, \infty))$ and $B_\phi([0, \infty))$ having the conditions c_1 and c_2 . Under these conditions, $|x - t| \leq |\rho(x) - \rho(t)|$, for every $x, t \in [0, \infty)$ is true.

Lemma 2. [13] $\lim_{\delta \rightarrow 0} \omega_\rho(f; \delta) = 0$, for every $f \in U_\phi([0, \infty))$.

Theorem 3. [13] Let $L_n : C_\phi([0, \infty)) \rightarrow B_\phi([0, \infty))$ be a sequence of positive linear operators with

$$\|L_n(\rho^0) - \rho^0\|_{\phi^0} = a_n, \quad (3.4)$$

$$\|L_n(\rho) - \rho\|_{\phi^{\frac{1}{2}}} = b_n, \quad (3.5)$$

$$\|L_n(\rho^2) - \rho^2\|_\phi = c_n, \quad (3.6)$$

$$\|L_n(\rho^3) - \rho^3\|_{\phi^{\frac{3}{2}}} = d_n, \quad (3.7)$$

where a_n , b_n , c_n and d_n tends to zero as $n \rightarrow \infty$. Then

$$\|L_n(f) - f\|_{\phi^{\frac{3}{2}}} = (7 + 4a_n + 2c_n)\omega_\rho(f; \delta_n) + a_n\|f\|_\phi,$$

for all $f \in C_\phi([0, \infty))$, where

$$\delta_n = 2\sqrt{(a_n + 2b_n + c_n)(1 + a_n)} + a_n + 3b_n + 3c_n + d_n.$$

Theorem 4. For all $f \in C_\phi([0, \infty))$, we have

$$\|V_n^\rho(f; \cdot) - f\|_{\phi^{\frac{3}{2}}} \leq \left(7 + \frac{4}{n}\right)\omega_\rho\left(f, \frac{2\sqrt{2}}{\sqrt{n}} + \frac{16}{n}\right).$$

Proof: Notice that

$$\|V_n^\rho(\rho^0; \cdot) - \rho^0\|_{\phi^0} = 0 = a_n \quad (3.8)$$

and

$$\|V_n^\rho(\rho; \cdot) - \rho\|_{\phi^{\frac{1}{2}}} = 0 = b_n. \quad (3.9)$$

From equation (3.2), we have

$$c_n = \|V_n^\rho(\rho^2; \cdot) - \rho^2\|_\phi \leq \frac{2}{n}. \quad (3.10)$$

Now,

$$V_n^\rho(\rho^3; x) = \frac{\rho(x)}{n^2} + \frac{3(1+n)\rho(x)^2}{n^2} + \frac{(2+3n+n^2)\rho(x)^3}{n^2}. \quad (3.11)$$

We can write

$$\begin{aligned}
d_n = \|V_n^\rho(\rho^3; \cdot) - \rho^3\|_{\phi^{\frac{3}{2}}} &= \sup_{x \in [0, \infty)} \left\{ \frac{\rho(x)}{n^2 (1 + \rho^2(x))^{\frac{3}{2}}} \right. \\
&\quad \left. + \frac{3(1+n)\rho(x)^2}{n^2 (1 + \rho^2(x))^{\frac{3}{2}}} + \frac{(2+3n)\rho(x)^3}{n^2 (1 + \rho^2(x))^{\frac{3}{2}}} \right\} \\
&\leq \frac{1}{n} + \frac{4}{n} + \frac{5}{n} = \frac{10}{n}.
\end{aligned}$$

Observe that, the condition (3.4)-(3.7) are satisfied, therefore by theorem 3, we have

$$\|V_n^\rho(f; \cdot) - f\|_{\phi^{\frac{3}{2}}} \leq \left(7 + \frac{4}{n} \right) \omega_\rho \left(f, \frac{2\sqrt{2}}{\sqrt{n}} + \frac{16}{n} \right).$$

This completes the proof of Theorem 4.

Theorem 5. For all $f \in U_\phi^k([0, \infty))$, we have $\lim_{n \rightarrow \infty} \|V_n^\rho(f; \cdot) - f\|_{\phi^{\frac{3}{2}}} = 0$.

The proof follows from the Theorem 4 and Lemma 2.

4. Voronovskaya Asymptotic formula

Now we give the following Voronovskaya type theorem. We use the technique developed in [1, 3].

Theorem 6. Let $f \in C[0, \infty)$, $x \in [0, \infty)$ and suppose that the first and second derivatives of $f \circ \rho^{-1}$ exist at $\rho(x)$. If the second derivative of $f \circ \rho^{-1}$ is bounded on $[0, \infty)$ then we have

$$\lim_{n \rightarrow \infty} n(V_n^\rho(f; x) - f(x)) = \frac{1}{2} \rho(x)(1 + \rho(x)) (f \circ \rho^{-1})''(\rho(x)). \quad (4.1)$$

Proof: By the Taylor expansion of $f \circ \rho^{-1}$ at the point $\rho(x) \in [0, \infty)$, there exists ξ lying between x and t such that

$$\begin{aligned}
f(t) &= (f \circ \rho^{-1})(\rho(t)) = (f \circ \rho^{-1})(\rho(x)) + (f \circ \rho^{-1})'(\rho(x))(\rho(t) - \rho(x)) \\
&\quad + \frac{1}{2} (f \circ \rho^{-1})''(\rho(x))(\rho(t) - \rho(x))^2 + \lambda_x(t)(\rho(t) - \rho(x))^2,
\end{aligned} \quad (4.2)$$

where

$$\lambda_x(t) = \frac{(f \circ \rho^{-1})'(\rho(\xi)) - (f \circ \rho^{-1})''(\rho(x))}{2}. \quad (4.3)$$

Note that, the assumptions on f together with definition (4.3) ensure that $|\lambda_x(t)| \leq M$ for all t and converges to zero as $t \rightarrow x$.

Applying the operators (2.1) to the above equation (4.2) equality, we get

$$\begin{aligned}
V_n^\rho(f; x) - f(x) &= (f \circ \rho^{-1})'(\rho(x)) V_n^\rho((\rho(t) - \rho(x)); x) \\
&\quad + \frac{1}{2} (f \circ \rho^{-1})''(\rho(x)) V_n^\rho((\rho(t) - \rho(x))^2; x) \\
&\quad + V_n^\rho(\lambda_x(t)(\rho(t) - \rho(x))^2; x),
\end{aligned} \quad (4.4)$$

by equations (2.2), (2.3) and (2.4), we have

$$\begin{aligned}\lim_{n \rightarrow \infty} nV_n^\rho((\rho(t) - \rho(x)); x) &= 0; \\ \lim_{n \rightarrow \infty} nV_n^\rho((\rho(t) - \rho(x))^2; x) &= \rho(x)(1 + \rho(x)).\end{aligned}$$

Therefore,

$$\begin{aligned}\lim_{n \rightarrow \infty} n(V_n^\rho(f; x) - f(x)) &= \frac{1}{2}\rho(x)(1 + \rho(x)) (f \circ \rho^{-1})''(\rho(x)) \\ &\quad + \lim_{n \rightarrow \infty} n \left(V_n^\rho \left(\lambda_x(t) (\rho(t) - \rho(x))^2; x \right) \right).\end{aligned}\tag{4.5}$$

Now we estimate the last term on the right hand side of the above equality. Let $\epsilon > 0$ and choose $\delta > 0$ such that $|\lambda_x(t)| < \epsilon$ for $|t - x| < \delta$. Also it is easily seen that by condition c_2 , $|\rho(t) - \rho(x)| = \rho(\eta)|t - x| \geq |t - x|$. Therefore, if $|\rho(t) - \rho(x)| < \delta$, then $|\lambda_x(t)(\rho(t) - \rho(x))^2| < \epsilon(\rho(t) - \rho(x))^2$, while if $|\rho(t) - \rho(x)| \geq \delta$, then since $|\lambda_x(t)| \leq M$ we have $|\lambda_x(t)(\rho(t) - \rho(x))^2| \leq \frac{M}{\delta^2}(\rho(t) - \rho(x))^4$. So we can write

$$\begin{aligned}V_n^\rho \left(\lambda_x(t) (\rho(t) - \rho(x))^2; x \right) &< \epsilon \left(V_n^\rho \left((\rho(t) - \rho(x))^2; x \right) \right) \\ &\quad + \frac{M}{\delta^2} \left(V_n^\rho \left((\rho(t) - \rho(x))^4; x \right) \right).\end{aligned}\tag{4.6}$$

Direct calculations show that

$$V_n^\rho \left((\rho(t) - \rho(x))^4; x \right) = O \left(\frac{1}{n^2} \right).$$

Hence

$$\lim_{n \rightarrow \infty} nV_n^\rho \left(\lambda_x(t) (\rho(t) - \rho(x))^2; x \right) = 0,$$

which completes the proof of the Theorem 8.

5. A-Statistical Convergence

Now, we introduce some notation and the basic definitions, which used in this section. Let $A = (a_{ij})$ be an infinite summability matrix. For given sequence $x = (x_n)$, the A -transform to x , denoted by $Ax = ((Ax)_j)$, is given by $(Ax)_j = \sum_{n=1}^{\infty} a_{jn}x_n$, provided the series converges for each j . We say that A is regular, if $\lim_j (Ax)_j = L$ whenever $\lim_j x_j = L$ [12].

Now, we assume that A is a nonnegative regular summability matrix and K is a subset of \mathbf{N} , the set of all natural numbers. The A -density of K is defined by $\delta_A(K) = \lim_j \sum_{n=1}^{\infty} a_{jn}\chi_K(n)$ provided the limit exists, where χ_K is the characteristic function of K . Then the sequence $x = (x_n)$ is said to be A -statistically convergent to the number L if, for every $\epsilon > 0$, $\delta_A\{n \in \mathbf{N} : |x_n - L| \geq \epsilon\} = 0$; or equivalently $\lim_j \sum_{n:|x_n-L|\geq\epsilon} a_{jn} = 0$. We denote this limit by $st_A - \lim x = L$ [4, 5, 8, 16].

For the case in which $A = C_1$, the Cesàro matrix, A -statistical convergence reduces to statistical convergence [7, 9, 10]. Also, taking $A = I$, the identity matrix, A -statistical convergence coincides with the ordinary convergence.

We also note that if $A = (a_{jn})$ is a nonnegative regular summability matrix for which $\lim_j \max_n \{a_{jn}\} = 0$, then A -statistical convergence is stronger than convergence [15]. A sequence $x = (x_n)$ is said to be A -statistically bounded provided that there exists a positive number M such that $\delta_A\{n \in \mathbf{N} : |x_n| \leq M\} = 1$. Recall that $x = (x_n)$ is A -statistically convergent to L if and only if there exists a subsequence $x_{n(k)}$ of x such that $\delta_A\{n(k) : k \in \mathbf{N}\} = 1$ and $\lim_k x_{n(k)} = L$ (see [15, 16]). Note that, the concept of A -statistical convergence is also given in normed spaces [14].

In this section, we denote $B_\phi([0, \infty))$ by B_ϕ and $C_\phi([0, \infty))$ by C_ϕ . Assume $\phi_1(x)$ and $\phi_2(x)$ be weight functions satisfying $\lim_{|x| \rightarrow \infty} \frac{\phi_1(x)}{\phi_2(x)} = 0$. If T is a positive operators such that $T : C_{\phi_1} \rightarrow B_{\phi_2}$, then the operators norm $\|T\|_{C_{\phi_1} \rightarrow B_{\phi_2}}$ is given by $\|T\|_{C_{\phi_1} \rightarrow B_{\phi_2}} := \sup_{\|f\|_{\phi_1}=1} \|Tf\|_{\phi_2}$.

Theorem 7. [6, Thorem 6] Let $A = (a_{jn})$ be a non-negative regular summability matrix, let $\{T_n\}$ be a sequence of positive linear operators from C_{ϕ_1} into B_{ϕ_2} and assume that $\phi_1(x)$ and $\phi_2(x)$ be weight functions satisfying $\lim_{|x| \rightarrow \infty} \frac{\phi_1(x)}{\phi_2(x)} = 0$. Then

$$st_A - \lim_n \|T_n f - f\|_{\phi_2} = 0, \text{ for all } f \in C_{\phi_1} \quad (5.1)$$

if and only if

$$st_A - \lim_n \|T_n \rho^v - \rho^v\|_{\phi_1} = 0, \quad v = 0, 1, 2. \quad (5.2)$$

With the help of Theorem 7 we write the following Korovkin type theorem.

Theorem 8. Let $A = (a_{jn})$ be a non-negative regular summability matrix, let $\{V_n\}$ be a sequence of positive linear operators from C_{ϕ_1} into B_{ϕ_2} as defined in (2.1) and assume that $\phi_1(x)$ and $\phi_2(x)$ be weight functions satisfying $\lim_{|x| \rightarrow \infty} \frac{\phi_1(x)}{\phi_2(x)} = 0$. Then

$$st_A - \lim_n \|V_n(f, \cdot) - f\|_{\phi_2} = 0, \text{ for all } f \in C_{\phi_1}. \quad (5.3)$$

Proof: By theorem 7 it is sufficient to prove that,

$$st_A - \lim_n \|V_n(\rho^v, \cdot) - \rho^v\|_{\phi_1} = 0, \quad v = 0, 1, 2. \quad (5.4)$$

It clear that

$$\|V_n(\rho^0, \cdot) - \rho^0\|_{\phi_1} = 0 \text{ and } \|V_n(\rho, \cdot) - \rho\|_{\phi_1} = 0.$$

Hence, equation (5.4) is true for $v = 0, 1$.

Now, for $v = 2$

$$\|V_n(\rho^2, \cdot) - \rho^2\|_{\phi_1} \leq \frac{2}{n}. \quad (5.5)$$

Due to the equality $st_A - \lim_n \frac{1}{n} = 0$, the above inequality implies that

$$st_A - \lim_n \|V_n(\rho^2, \cdot) - \rho^2\|_{\phi_1} = 0, \quad (5.6)$$

which completes the proof the Theorem 8.

Conclusions

We constructed sequences of the Baskakov operators which are based on a function ρ . This function not only characterizes the operators but also characterizes the Korovkin set $\{1, \rho, \rho^2\}$ in a weighted function space.

Our results include the following: The rate of convergence of these operators to the identity operator on weighted spaces which are constructed using the function ρ and which are subspaces of the space of continuous functions on $[0, \infty)$. We gave quantitative type theorems in order to obtain the degree of weighted convergence with the help of a weighted modulus of continuity constructed using the function ρ and the study of A -statistical convergence of the sequence.

References

- [1] A Aral, D Inoan and I Raşa. On the generalized Szász–Mirakyan operators. *Results in Mathematics*, **65**(3–4):441–452, 2014.
- [2] VA Baskakov. An instance of a sequence of linear positive operators in the space of continuous functions. *Doklady Akademii Nauk SSSR*, **113**(2):249–251, 1957.
- [3] D Cárdenas-Morales, P Garrancho and I Raşa. Bernstein-type operators which preserve polynomials. *Computers & Mathematics with Applications*, **62**(1):158–163, 2011.
- [4] J Connor. On strong matrix summability with respect to a modulus and statistical convergence. *Canad. Math. Bull.*, **32**(2):194–198, 1989.
- [5] J Connor and J Kline. On statistical limit points and the consistency of statistical convergence. *Journal of mathematical analysis and applications*, **197**(2):392–399, 1996.
- [6] O Duman and C Orhan. Statistical approximation by positive linear operators. *Studia Mathematica*, **161**(2):187–197, 2004.
- [7] H Fast. Sur la convergence statistique. In *Colloquium Mathematicae*, volume 2, pp. 241–244. Institute of Mathematics Polish Academy of Sciences, 1951.
- [8] A Freedman and J Sember. Densities and summability. *Pacific Journal of Mathematics*, **95**(2):293–305, 1981.
- [9] J Fridy and C Orhan. Statistical limit superior and limit inferior. *Proceedings of the American Mathematical Society*, **125**(12):3625–3631, 1997.
- [10] John A Fridy. On statistical convergence. *Analysis*, **5**(4):301–314, 1985.
- [11] A. D. Gadžiev. The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of P. P. Korovkin. *Dokl. Akad. Nauk SSSR*, **218**:1001–1004, 1974. Also in Soviet Math Dokl. 15, 14331436 (1974) (in English)

- [12] G H Hardy. *Divergent Series*. Oxford Univ. Press, London, 1949.
- [13] A. Holhoş. Quantitative estimates for positive linear operators in weighted space. *General Math.*, **16**(4):99–110, 2008.
- [14] E Kolk. The statistical convergence in banach spaces. *Acta Comm. Univ. Tartuensis*, **928**:41–52, 1991.
- [15] Enno Kolk. Matrix summability of statistically convergent sequences. *Analysis*, **13**(1-2):77–84, 1993.
- [16] H I Miller. A measure theoretical subsequence characterization of statistical convergence. *Transactions of the American Mathematical Society*, **347**(5):1811–1819, 1995.
- [17] V N Mishra, K Khatri and L N Mishra. Statistical approximation by Kantorovich-type discrete q -Beta operators. *Advances in Difference Equations*, **2013**(1):345, 2013.
- [18] H Wang, Pu Fagui and Wang K. Shape-preserving and convergence properties for the q -Szász-Mirakjan operators for fixed $q \in (0, 1)$. *Abstract and Applied Analysis*, **Volume 2014**:8 pages, 2014. Article ID 563613
- [19] Y Wang and Y Zhou. Shape preserving properties for Bernstein-Stancu operators. *Journal of Mathematics*, **Volume 2014**:5 pages, 2014. Article ID 603694
- [20] C Zhang and Z Zhu. Preservation properties of the Baskakov–Kantorovich operators. *Computers & Mathematics with Applications*, **57**(9):1450–1455, 2009.