ELEC 343 Electromechanics

Spring 2019

Instructor: Dr. Juri Jatskevich

My Webpage: www.ece.ubc.ca/~jurij

Class Webpage:

http://courses.ece.ubc.ca/elec343/

Credit: 3-lecture-hour/week + 5 labs

1

Major Topics Covered

ELEC 343, S-19, M-1

- Principles of electromagnetics, inductance and reluctance (2 lectures)
- Magnetic circuits & magnetically coupled systems (3 lectures)
- Linear and rotating electromechanical devices (4 lectures)
- Electromechanical energy conversion, concept of co-energy, developed forces and torques (5 lectures)
- Brushed dc motors, operation, equivalent circuit (4 lectures)
- DC motor dynamics and drive circuits, one-, two-, and four-quadrant operation (1 lectures)
- Stepper motors, principle of operation, full-step, micro-stepping, driver circuits (4 lectures)
- Rotating magnetic field, poly-phase systems (1 lectures)
- Synchronous motor, operation, dynamic & steady-state equivalent circuit, modelling (5 lectures)
- Brushless dc motors, operation, steady-state and dynamics, modelling (4 lectures)
- Induction motor, operation, equivalent circuit (5 lectures)
- Single phase AC motors (1 lecture)

Laboratory Experiments

Lab-0: Lab Equipment and Safety Rules

• There will be a safety instruction and a quiz!

Lab-1: Linear Solenoid Actuators

- 24V dc solenoid, principles of electromechanical energy conversion
- inductance and force vs. plunger positions and current values
- · magnetic nonlinearities, hysteresis

Lab-2: Brushed DC Motors

- 1/4 HP 48V Permanent Magnet DC Motor
- resistance, inductance, friction, torque constant, moment of inertia, etc
- performance & efficiency under load

Lab-3: Permanent Magnet Stepper Motors

- torque & inductance vs. position
- full, half, and micro-step operation
- · effect of inductance on speed
- · electromechanical resonance

Lab-4: Permanent Magnet Synchronous and Brushless DC Motors

- 210W 36V permanent magnet synchronous motor
- brushless dc motors, drive circuits, etc.

Lab-5: Induction Motors & Variable Frequency Drives

- industrial ¼ HP 34V Induction Motor,
- · resistance, inductance, developed torque, performance & efficiency under load

3

$$J_{t} \frac{d\omega_{rm}}{dt} = T_{e} - T_{fric} - T_{m}$$

$$\mathbf{v}_{abcs} = \mathbf{r}_{s} \mathbf{i}_{abcs} + \frac{d\lambda_{abcs}}{dt}$$

$$T_{e} = \frac{P}{2} \cdot \frac{\partial W_{c}(\mathbf{i}, \theta_{r})}{\partial \theta}$$

Key Approach

Theoretical fundamentals of electromechanical Actuators and Motors

Modelling as a tool for analysis and predicting the system behavior – modern design approach!

Lab Experiments – interaction with real devices, verification of the theory and models, hands-on engineering

Electromechanics Applications:

• Generation of Electricity - Big Scale

ELEC 343, S-19, M-1

Electromechanical Energy Conversion

Electromechanical Energy Conversion

Transformation of Electrical Energy

9

ELEC 343, S-19, M-1

Electromechanical Energy Conversion

- Electrical Machines
 - Stationary
 - Transformers
 - Rotating
 - · Motors, generators
 - Linear Devices
 - Solenoids, linear motors, other actuators
- Power Electronics (Switched Mode, SMPSs, Motor & Actuator Drivers, ...)
 - Rectifiers
 - AC to DC
 - Converters
 - DC to DC
 - Inverters
 - DC to AC

Very broad & interesting area, requires its own course!

Conversion Device

Module 1, Part 1

Review of AC Circuits, Phasors, 3-Phase (Read Chap. 1.1 and Appendix C)

Most Important Topics and Concepts

- Concept of phasors & notations
- RMS value
- Phasor diagrams for basic RLC circuits
- Balanced 3-phase system, Y / ∆ connections
- Real, reactive, and apparent power in 1-phase and 3phase systems, power factor

11

ELEC 343, S-19, M-1

Review of AC Circuits

· Consider linear inductive circuit

$$v(t) = V_m \cos(\omega t)$$

$$\text{KVL}$$

$$v(t) = ri + e = ri + \frac{d\lambda}{dt}$$

$$= ri + L \frac{di}{dt}$$

Steady-state Solution
$$i(t) = I_m \cos(\omega t + \varphi_i)$$

$$e(t) = E_m \cos(\omega t + \varphi_e)$$

Review of AC Circuits

Consider linear capacitive circuit

$$v(t) = V_m \cos(\omega t)$$

$$\text{KVL} \quad v(t) = ri + v_c$$

$$i = \frac{v - v_c}{L} = C \frac{dv_c}{L}$$

$$i = \frac{v - v_c}{r} = C \frac{dv_c}{dt}$$

$$C \frac{dv_c}{dt} + \frac{1}{r}v_c = \frac{1}{r}v(t)$$

Steady-state Solution

$$v_c(t) = V_{c,m} \cos(\omega t + \varphi_v)$$

$$i(t) = I_m \cos(\omega t + \varphi_i)$$

Note: In both cases we need to know only amplitude & phase!

13

Review of Phasors

ELEC 343, S-19, M-1

$$v(t) = V_m \cos(\omega t) + j \cdot V_m \sin(\omega t)$$

Euler's Identity $e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$ $v(t) = V_m e^{j\omega t}$ $i(t) = I_m e^{j(\omega t - \phi)}$

Note:

- 1. All vectors rotate at the same speed ω !
- 2. Only the amplitudes and their phase differences are important

Phasor Notations

$$i(t) = I_m e^{j(\omega t - \phi)} \equiv I_m \angle - \phi$$

$$v(t) = V_m e^{j\omega t} \equiv V_m \angle 0$$

Time Domain	Phasor Representation
$A\cos(\omega t \pm \theta)$	$A\angle\pm\theta$
$A\sin(\omega t\pm\theta)$	$A\angle\pm\theta-90^{\circ}$

15

Review of Phasors

ELEC 343, S-19, M-1

Linear Passive Elements	Complex Impedance
- R	Z = R
\sim L	$Z = j\omega L = (\omega L) \angle 90^{\circ}$
$\dashv\vdash$ C	$Z = \frac{1}{j\omega C} = \left(\frac{1}{\omega C}\right) \angle -90^{\circ}$

$$Z = \frac{V}{I} = \frac{V_m \angle \theta_v}{I_m \angle \theta_i} = \frac{V_m}{I_m} \angle \theta_v - \theta_i = Z_m \angle \theta_z$$

$$Z = R + jX$$
, $Z_m = \sqrt{R^2 + X^2}$, $\theta_z = \arctan\left(\frac{X}{R}\right)$

Root-Mean-Square (RMS) Value

* Value equivalent to the DC voltage (current) that when applied to a resistor dissipates the same average amount of power as the given AC

$$P(t) = vi = v\frac{v}{r} = \frac{1}{r}v^2$$

$$P(t) = vi = v\frac{v}{r} = \frac{1}{r}v^2$$
 $P_{ave} = \frac{1}{T}\int_0^T P(t)dt = \frac{1}{r} \cdot \frac{1}{T}\int_0^T v^2(t)dt$

$$V_{(rms)} = \sqrt{\frac{1}{T}} \int_{0}^{T} v^{2}(t)dt$$

$$V_{rms} = V_{rms} = V_{rms}$$

Given sinusoidal voltage (current), RMS values are often used with Phasors

$$v(t) = \sqrt{2} \cdot V_{rms} \cos(\omega t + \varphi_{v}) \qquad \qquad \widetilde{V} = V_{rms} \angle \varphi_{v}$$

$$\widetilde{V} = V_{rms} \angle \varphi_{v}$$

$$i(t) = \sqrt{2} \cdot I_{rms} \cos(\omega t + \varphi_i)$$

$$\widetilde{I} = I_{rms} \angle \varphi_i$$

17

ELEC 343, S-19, M-1

Qualitative Phasor Diagrams

Consider RLC Circuit

Power in AC Circuits

Given inductive load

$$v(t) = \sqrt{2} \cdot V \cos(\omega t)$$
 $i(t) = \sqrt{2} \cdot I \cos(\omega t + \varphi)$

Instantiations power is always this

$$p(t) = vi = 2VI \cos(\omega t) \cos(\omega t + \varphi)$$
$$= VI \cos(\varphi) + VI \cos(2\omega t + \varphi)$$

Average (real) power over one cycle $P = VI \cos(\varphi)$ [W], [kW], [MW]

$$P = VI\cos(\varphi)$$

For balanced system we have $v_a + v_b + v_c = 0$

Apparent power
$$S = VI = \sqrt{P^2 + Q^2}$$
 $[VA], [kVA], [MVA]$

$$Q = VI \sin(\varphi)$$

Reactive power
$$Q = VI \sin(\varphi)$$
 $[VAR], [kVAR], [MVAR]$

Power Factor (pf)
$$\cos(\varphi) = \frac{P}{VI}$$

19

ELEC 343, S-19, M-1 Single vs. Three-Phase Systems

 $v(t) = V_m \cos(\omega t)$

Easy to produce!

 $v_a(t) = V_m \cos(\omega t)$

$$v_b(t) = V_m \cos(\omega t - 120^\circ)$$

$$v_c(t) = V_m \cos(\omega t + 120^\circ)$$

Just as easy to produce!

Balanced Three-Phase Systems

Single vs. Three Phases

Efficient transmission of power

- just one more conductor
- = 3 times more power

21

ELEC 343, S-19, M-1

Three-Phase Source

Wye (Y) - Connected

Line Voltages

$$V_{ab} = V_a - V_b$$

Three-Phase Source

Delta (Δ) - Connected

Line Currents

$$I_a = I_{ab} - I_{ca}$$

23

ELEC 343, S-19, M-1

Power in Three-Phase Systems

 $v_a(t) = \sqrt{2}V_{ph}\cos(\omega t)$

$$v_b(t) = \sqrt{2}V_{ph}\cos(\omega t - 120^\circ)$$

$$v_c(t) = \sqrt{2}V_{ph}\cos(\omega t + 120^\circ)$$

$$i_a(t) = \sqrt{2}I_{ph}\cos(\omega t - \varphi)$$

$$i_b(t) = \sqrt{2}I_{ph}\cos(\omega t - 120^\circ - \varphi)$$

$$i_c(t) = \sqrt{2}I_{ph}\cos(\omega t + 120^\circ - \varphi)$$

Instantaneous Power

$$P_{3\phi}(t) = P_a + P_b + P_c$$

= $i_a v_a + i_b v_b + i_c v_c$

Power in Balanced Three-Phase Systems

In terms of phase quantities (Y - connection)

$$P_{3\phi} = 3P_{ph} = 3V_{ph}I_{ph}\cos(\varphi_{ph})$$

$$Q_{3\phi} = 3Q_{ph} = 3V_{ph}I_{ph}\sin(\varphi_{ph})$$

$$S_{3\phi} = 3S_{ph} = 3V_{ph}I_{ph}$$

In terms of line-to-line quantities

Y - connection

 Δ - connection

$$\begin{split} I_{ph} &= I_L, \ V_{ph} = V_L / \sqrt{3} & I_{ph} = I_L / \sqrt{3}, \ V_{ph} = V_L \\ P_{3\phi} &= \sqrt{3} V_L I_L \cos \left(\varphi_{ph} \right) \\ Q_{3\phi} &= \sqrt{3} V_L I_L \sin \left(\varphi_{ph} \right) \\ S_{3\phi} &= \sqrt{3} V_L I_L \end{split}$$

ELEC 343, S-19, M-1

25

Module 1, Part 2

Introduction & Magnetic Circuits (Read Chapter 1.3 – 1.4)

Most Important Topics

- Fundamentals of Electromagnetics, Maxwell's Equations
- Sign & direction conventions
- Basic magnetic circuits, concepts, analogies, calculations
- Flux, flux linkage, inductance
- · Magnetic materials, saturation, hysteresis loop
- Coil under ac excitation, type of core losses

Review of Basic Quantities and Units

E – electric field intensity $\left[\frac{V}{m}\right]$ B – magnetic flux density $\left[Tesla = \frac{Weber}{meter^2}\right] \left[T = \frac{Wb}{m^2}\right]$ H – magnetic field intensity $\left[\frac{A}{m}\right]$ Φ – magnetic flux $\left[Wb = T \cdot m^2\right]$

B-H Relation

- Current produces the H field (see Ampere's law)
- H is related to B

$$B = \mu H = \mu_0 \mu_r H$$

 μ – permeability (characteristic of the medium)
$$\left[\frac{T \cdot m}{A} = \frac{Henry}{meter} = \frac{H}{m}\right]$$
 μ_0 – permeability of vacuum $= 4 \cdot \pi \cdot 10^{-7} [H/m]$

 $\mu_{\rm r}$ – relative permeability of material magnetic materials $\mu_{\rm r}$ = $100\cdots100{,}000$

27

ELEC 343, S-19, M-1

Fundamentals

Summarized in Maxwell's Equations (1870s)

1) Gauss's Law for Electric Field

$$\oint_{S} \mathbf{E} \cdot d\mathbf{a} = \frac{q}{\mathcal{E}_{0}} = \Phi_{e} = \int E \cos \theta da$$

Electric flux out of any closed surface is proportional to the total charge enclosed

Fundamentals

Summarized in Maxwell's Equations (1870s)

2) Gauss's Law for Magnetic Field

$$\oint_{S} \mathbf{B} \cdot d\mathbf{a} = \Phi_{m} = 0$$

Magnetic flux out of any closed surface is zero There are no magnetic charges

29

ELEC 343, S-19, M-1

Fundamentals

Summarized in Maxwell's Equations (1870s)

3) Faraday's Law

$$\oint_C \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_S \mathbf{B} \cdot d\mathbf{a} = -\frac{d\Phi}{dt} = emf$$

ElectroMotive Force (emf)

The line integral of the electric field around a closed loop/contour ${\cal C}$ is equal to the negative of the rate of change of the magnetic flux through that loop/contour

Fundamentals

Summarized in Maxwell's Equations (1870s)

4) Ampere's Law (for static electric field)

$$\oint_C \mathbf{B} \cdot d\mathbf{I} = \mu_0 \int_S J \cdot da = \mu_0 I_{net}$$

The line integral of the magnetic field B around a closed loop C is proportional to the net electric current flowing through that loop/contour C

31

Conventions

ELEC 343, S-19, M-1

Right-screw rule

Dot and cross notations

Magnetic field produced by coil (solenoid)

Flux Lines:

- form a closed loop/path
- Lines do not cut across or merge
- Go from North to South magnetic poles

Magnetic Field of an Infinite Conductor

Apply Ampere's Law

$$\oint_C \mathbf{H} \cdot \mathbf{dl} = I_{enclosed}$$

Incremental length $\mathbf{dl} = Rd\theta$

$$H \cdot 2\pi R = I$$

H and dl have the same direction

$$H = \frac{I}{2\pi R}$$

$$B = \mu H = \frac{\mu I}{2\pi R}$$

33

ELEC 343, S-19, M-1

Magnetic Field of an Infinite Conductor

Apply Ampere's Law

$$\oint_C \mathbf{H} \cdot \mathbf{dl} = I_{enclosed}$$

$$\oint_C \mathbf{H} \cdot \mathbf{dl} = \int_a^b H \cdot dl + \int_b^c H_1 \cdot dl + \int_c^d H \cdot dl + \int_d^a H_2 \cdot dl$$

$$\int_{b}^{c} H_{1} \cdot dl = \int_{-\pi}^{0} \frac{I}{2\pi R_{1}} R_{1} d\theta = \frac{I}{2}$$

$$\int_{d}^{a} H_2 \cdot dl = \int_{0}^{\pi} \frac{I}{2\pi R_2} R_2 d\theta = \frac{I}{2}$$

Some Definitions

$$\Phi = \int_{c} \mathbf{B} \cdot \mathbf{da} = B_{c} A_{c}$$

Flux is always continuous

Recall Faraday's Law - Electromotive Force (emf)

$$\oint_C \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_S \mathbf{B} \cdot d\mathbf{a} = -\frac{d\Phi}{dt}$$

- voltage induced in one turn due to the changing magnetic flux

For coil with *N* turns $e = N \cdot \frac{d\Phi}{dt}$

Flux Linkage $\lambda = N \cdot \Phi$ $[Wb \cdot t]$

$$\lambda = N \cdot \Phi \quad [Wb \cdot t]$$

flux scaled by the number of turns

Total induced emf
$$e = \frac{d\lambda}{dt}$$
 [V]

35

ELEC 343, S-19, M-1

Some Definitions

Inductance

Need a function that relates Flux Linkage to the Current

Consider
$$\lambda = f(i) = L(\cdot) \cdot i$$
 $L = \frac{\lambda}{i} \quad \left[\frac{Wb \cdot t}{A} = H \right]$

$$L = \frac{\lambda}{i} \qquad \left\lceil \frac{Wb \cdot t}{A} = H \right\rceil$$

Recall

$$L = \frac{\lambda}{i} = \frac{N \cdot \Phi}{i}$$

Magnetic Circuits

· Consider basic magnetic circuit

Assume
$$\mu >> \mu_0$$

⇒All magnetic field is concentrated inside the core

Recall Ampere's Law

$$\oint_{I} \mathbf{H}_{c} \cdot \mathbf{dl} = I_{net}$$

$$F = Ni$$

Source of magnetic field is ampere-turn product

Assume uniform core
$$F=Ni=I_{net}=\oint\limits_{l_c}H_c\cdot dl=H_cl_c$$
 [Ampere \cdot turn]

37

ELEC 343, S-19, M-1

Magnetic Circuits

· Consider basic magnetic circuit

Assume all magnetic field is confined inside the core

Define Magnetic Flux

$$\Phi = \int_{S} \mathbf{B} \cdot \mathbf{da} = B_{c} A_{c}$$

Flux is always continuous [Wb]

Consider mmf
$$F=Ni=H_cl_c=\frac{B_cl_c}{\mu}=\Phi\frac{l_c}{\mu A_c}=\Phi\Re_c$$

Define Reluctance (of the given magnetic path) $\Re_c = \frac{l_c}{\mu A_c}$ $\left[\frac{A}{Wb}\right]$

Recall Inductance

$$L = \frac{\lambda}{i} = \frac{N \cdot \Phi}{i} = \frac{N \cdot N \cdot i}{i \cdot \Re_{c}} = \frac{N^{2}}{\Re_{c}}$$

Magnetic Circuits

Magnetic circuit with air gap

Mean core length I_c Air gap length I_g Winding,

N turns

Mean core length I_c Air gap, permeability μ_0 ,

Area A_g Magnetic core permeability μ ,

Area A_c

Consider mmf

$$F = Ni = \oint_{C} \mathbf{H} \cdot \mathbf{dl}$$

$$= H_{c}l_{c} + H_{g}l_{g}$$

$$= \frac{B_{c}l_{c}}{\mu} + \frac{B_{g}l_{g}}{\mu_{0}}$$

Assuming all magnetic flux is confined inside the core

$$B_c = \frac{\Phi}{A_c}$$
 and $B_g = \frac{\Phi}{A_g}$

$$F = \Phi \left(\frac{l_c}{\mu A_c} + \frac{l_g}{\mu_0 A_g} \right) = \Phi \left(\Re_c + \Re_g \right) = \Phi \sum_i \Re_i = \Phi \Re_{total}$$

39

Magnetic and Electric Circuits Analogy

Electric Circuit

$$i = \frac{v}{R_1 + R_2}$$

Magnetic Circuit

$$\Phi = \frac{F}{\Re_1 + \Re_2}$$

Magnetic and Electric Circuits Analogy

Electric Circuit

- V, [Volt]Voltage (emf),
- Current,
- Resistance, $R = \frac{l}{\sigma^A}, [\Omega]$
- Conductance, $G = \frac{1}{R}$, [Siemens]
- Conductivity, $\sigma, \left\lceil \frac{Siemens}{m} \right\rceil$ Permeability, $\mu, \left\lceil \frac{H}{m} \right\rceil$

For loop
$$v = \sum R_n i_n$$

For node
$$\sum_{N} i_n = 0$$

Magnetic Circuit

- $F, [A \cdot t]$ mmf,
- Φ , [Wb] - Flux
- Reluctance, $\Re = \frac{l}{\mu A}, \left\lceil \frac{A}{Wb} \right\rceil$
- Permeance, $\rho = \frac{1}{\Re}, \left\lceil \frac{Wb}{A} \right\rceil$

For loop
$$F = \sum H_n l_n$$

For node
$$\sum_{N} \Phi_{n} = 0$$

41

ELEC 343, S-19, M-1

Inductance: Example 1

Consider the following electromagnetic system (device)

Equivalent Magnetic Circuit

Equivalent Electric Circuit

Inductance: Example 1

Consider the following electromagnetic system

Find inductance
$$L = \frac{N^2}{R_c + R_g}$$

$$R_{c} = \frac{\ell_{c}}{\mu_{r}\mu_{o}A_{c}} = \frac{50e-2}{3000 \cdot 4\pi \cdot le-7 \cdot 15e-4} \approx 88.42e+3 \text{ At}_{us}$$

$$R_{g} = \frac{\ell_{g}}{\mu_{o}A_{g}} = \frac{le-3}{4\pi \cdot le-7 \cdot 15e-4} \approx 530.515e+3 \text{ At}_{us}$$

$$L = \frac{406^{2}}{(88.42 + 530.515) \cdot e+3} = 258.52e-3 \text{ H}$$

$$= 258.52 \text{ mH}$$

43

Magnetic Circuits: Example 2 state 2 s

Consider the following electromagnetic system

Equivalent Magnetic Circuit

Magnetic Circuits: Example 2

Consider the following electromagnetic system

 F_1 Q_1 Q_2 Q_3 Q_4 Q_5 Q_5

Loop equations

$$\Phi_{1}(R_{1} + R_{3} + R_{g}) - \Phi_{2}(R_{3} + R_{g}) = F_{1}$$
 $-\Phi_{1}(R_{3} + R_{g}) + \Phi_{2}(R_{2} + R_{3} + R_{g}) = F_{2}$
 ≤ 2

$$\begin{bmatrix} \mathcal{R}_{1} + \mathcal{R}_{3} + \mathcal{R}_{g} & -(\mathcal{R}_{2} + \mathcal{R}_{g}) \\ -(\mathcal{R}_{3} + \mathcal{R}_{g}) & \mathcal{R}_{2} + \mathcal{R}_{3} + \mathcal{R}_{g} \end{bmatrix} \begin{bmatrix} \varphi_{i} \\ \varphi_{z} \end{bmatrix} = \begin{bmatrix} F_{i} \\ F_{z} \end{bmatrix} = \begin{bmatrix} M_{i} \cdot I_{i} \\ W_{z} \cdot I_{z} \end{bmatrix}$$

$$A \cdot X = b \implies X = A^{-1} \cdot b$$

45

Magnetic Materials

ELEC 343, S-19, M-1

Magnetic moment of an atom

Magnetic Domain Structure

Magnetic Material Domain Model

demagnetized

magnetized

47

ELEC 343, S-19, M-1

Magnetic Saturation

Hysteresis Loop

Hysteresis Loop

ELEC 343, S-19, M-1

Hysteresis loops for different excitation levels

B_r – residual magnetism H_c – coercivity force, external field required to demagnetize the material

ELEC 343, S-19, M-1

Magnetic Materials

Classes of Magnetic Materials

Soft mag. materials

$$H_c \sim 0.1 {\cdots} 100 \left[A/m\right]$$

Hard mag. materials

$$H_c > 100 \left[A/m \right]$$

Permanent magnets (PM)

$$H_c \sim 10^4 \cdots 10^6 \left[A/m \right]$$

Types of PMs

- Neodymium Iron Boron (NdFeB or NIB)
- Samarium Cobalt (SmCo)
- Aluminum Nickel Cobalt (Alnico)
- Ceramic or Ferrite, very popular

Iron-oxide, barium, etc. compressed powder

51

ELEC 343, S-19, M-1

Magnetic Materials

Second quadrant hysteresis curve for M-5 steel and Alnico 5

- 1.0 - 0.5 - 0.5

M-5 Steel

Alnico 5

Magnetic Materials

Second quadrant hysteresis curve for some common PM materials

53

Core Losses

ELEC 343, S-19, M-1

Hysteresis Losses

Consider AC excitation

$$\Delta W_{h,cycle} = \oint i d\lambda = \oint \left(\frac{H_c l_c}{N}\right) (NA_c dB_c) = l_c A_c \oint H_c dB_c$$

Power loss can be approximated as

$$P_h = K_h \cdot f \cdot (B_{c,\text{max}})^n \qquad n \sim 1.5 \cdots 2.5$$

Where the constants $\ensuremath{K_h}$ and \ensuremath{n} determined experimentally

Core Losses

Faraday's law

Eddy Current Losses

 $\oint_C \overline{E} \cdot dl = -\frac{d}{dt} \int_S B \cdot da$

Power loss can be approximated as

$$P_e = K_e \cdot f^2 \cdot (B_{c,\text{max}})^2$$

Where the constant K_{e} depends on lamination thickness and is determined experimentally

Equivalent circuit including core losses?

55

ELEC 343, S-19, M-1

Module 1, Part 3

Stationary Magnetically Coupled Systems (Chap. 1.5)

Most Important Topics and Concepts

- Types and construction of typical transformers
- Terminology, winding polarity
- Ideal transformer, turns ratio, referring quantities
- Non-ideal transformer, equivalent magnetic and electric circuits
- 3-phase transformers, winding connections

Transformer

- Stationary electromagnetic device
 - Is not an energy conversion device
 - It allows to scale voltage/current levels
 - Inverting polarity of signals
 - Galvanic decoupling
 - A transformer may have multiple windings for different voltage levels

57

ELEC 343, S-19, M-1

Transformer Applications

Small power supplies

communication

Basic Transformer Terminology

- Step-down
 - Primary (Source) high voltage and number of turns (low current)
 - Secondary (Load) low voltage and number of turns (high current)
- Step-up
 - Primary (Source) low voltage and number of turns (high current)
 - Secondary (Load) –high voltage and number of turns (low current)

59

ELEC 343, S-19, M-1

Transformer Polarity

- Dot convention (most common) same polarity terminals
- *H-X* convention (*H* high voltage, *X* low voltage)

Ideal Transformer

Assumptions

- Winding resistance is negligible $r_1, r_2 \rightarrow 0$
- Infinite core permeability $\mu_{core} \rightarrow \infty$
- All flux is confined inside the core
- No core losses

61

ELEC 343, S-19, M-1

Properties of Ideal Transformer

Primary Side

$$v_1 = \sqrt{2}V_{1,rms}\cos(\omega t)$$

$$v_1 = e_1 = \frac{d\lambda_1}{dt} = N_1 \frac{d\Phi}{dt}$$

$$\Phi = \frac{\sqrt{2}V_{1,rms}}{N,\omega}\sin(\omega t) = \Phi_{peak}\sin(\omega t)$$

$$v_{1} = e_{1} = \frac{d\lambda_{1}}{dt} = N_{1} \frac{d\Phi}{dt}$$

$$\Phi = \frac{\sqrt{2}V_{1,rms}}{N_{1}\omega} \sin(\omega t) = \Phi_{peak} \sin(\omega t)$$

$$\Phi_{peak} = \frac{\sqrt{2}V_{1,rms}}{N_{1}\omega} = \frac{V_{1,rms}}{\sqrt{2}N_{1}\pi \cdot f}$$

$$v_{2} = e_{2} = \frac{2}{dt} = N_{2} \frac{1}{dt}$$

$$\frac{d\Phi}{dt} = \frac{v_{1}}{N_{1}} = \frac{v_{2}}{N_{2}}$$

$$\frac{v_{1}}{v_{2}} = \frac{N_{1}}{N_{2}} = a \quad \text{Turns ratio}$$

$$v_{2} = e_{2} = \frac{2}{dt} = N_{2} \frac{1}{dt}$$

$$\frac{d\Phi}{dt} = \frac{v_{1}}{N_{1}} = \frac{v_{2}}{N_{2}}$$

$$\frac{v_{1}}{v_{2}} = \frac{N_{1}}{N_{2}} = a \quad \text{Turns ratio}$$

Secondary Side

$$v_2 = e_2 = \frac{d\lambda_2}{dt} = N_2 \frac{d\Phi}{dt}$$

$$\frac{d\Phi}{dt} = \frac{v_1}{N_1} = \frac{v_2}{N_2}$$

$$\frac{v_1}{v_2} = \frac{N_1}{N_2} = a \qquad \text{Turns ratio}$$

$$B_{peak} = \frac{\Phi_{peak}}{A_c} \approx 1...2\,\mathrm{T}$$
 Maximum Flux Density

Properties of Ideal Transformer

$$\begin{split} \text{MMF} \quad F &= N_1 i_1 + N_2 i_2 = \Phi \Re_{total} = 0 \\ &\Rightarrow N_1 i_1 = -N_2 i_2 \quad \Rightarrow \quad \frac{i_1}{i_2} = \frac{-N_2}{N_1} = \frac{-1}{a} \end{split}$$

Power
$$P(t) = i_1 v_1 = -i_2 v_2$$
 $P_1 = -P_2$ $P_{in} = P_{out}$ No losses

$$P_1 = -P_2$$

$$P_{in} = P_{out}$$

Equivalent Electric Circuit

Equivalent Magnetic Circuit

63

Practical (Non-Ideal) Transformer Transformer

Equivalent Magnetic Circuit?

- Φ_m mutual or magnetizing flux (goes inside the core and links both windings)
- Φ_{l1},Φ_{l2} flux leakage (goes in the air and links only one winding)

Transformer

Consider Fluxes

$$\Phi_1 = \Phi_{l1} + \Phi_m = \frac{N_1 i_1}{\Re_{l1}} + \frac{N_1 i_1 + N_2 i_2}{\Re_m}$$

$$\Phi_{2} = \Phi_{l2} + \Phi_{m} = \frac{N_{2}i_{2}}{\Re_{l2}} + \frac{N_{1}i_{1} + N_{2}i_{2}}{\Re_{m}}$$

Voltage Equations

$$v_1 = r_1 i_1 + \frac{d\lambda_1}{dt}$$

$$v_2 = r_2 i_2 + \frac{d\lambda_2}{dt}$$

65

Transformer

ELEC 343, S-19, M-1

Recall inductance $L = \frac{N^2}{2}$

Consider Flux Linkages

$$\lambda_{1} = N_{1}\Phi_{1} = \frac{N_{1}^{2}}{\Re_{11}}i_{1} + \frac{N_{1}^{2}}{\Re_{m}}i_{1} + \frac{N_{1}N_{2}}{\Re_{m}}i_{2} = L_{l1}i_{1} + L_{m1}i_{1} + L_{12}i_{2}$$

$$\lambda_2 = N_2 \Phi_2 = \frac{N_2^2}{\Re_{l2}} i_2 + \frac{N_2^2}{\Re_m} i_2 + \frac{N_2 N_1}{\Re_m} i_1 = L_{l2} i_2 + L_{m2} i_2 + L_{21} i_1$$

Define self-inductances (always positive)

$$L_{11} = L_{l1} + L_{m1}$$

$$L_{22} = L_{12} + L_{m2}$$

Flux Linkages

$$\lambda_1 = L_{11}i_1 + L_{12}i_2$$

$$\lambda_2 = L_{21}i_1 + L_{22}i_2$$

Define mutual inductances

$$L_{12} = \frac{N_1 N_2}{\Re_m} \qquad L_{21} = \frac{N_2 N_1}{\Re_m}$$

$$L_{12} = \frac{N_2}{N_1} L_{m1} = \frac{N_1}{N_2} L_{m2}$$

(could be positive or negative)

Referring Parameters

Re-write Flux Linkages

$$\lambda_1 = L_{l1}i_1 + L_{m1}\left(i_1 + \frac{N_2}{N_1}i_2\right)$$

$$\lambda_2 = L_{l2}i_2 + L_{m2} \left(\frac{N_1}{N_2} i_1 + i_2 \right)$$

Substitute (referred) variables

$$i_2' = \frac{N_2}{N_1} i_2$$

$$p(t) = v_2 i_2 = v_2' i_2'$$
 Power the same

$$v_2' = \frac{N_1}{N_2} v_2 \quad \text{and} \quad \lambda_2' = \frac{N_1}{N_2} \lambda_2$$

Re-write Flux Linkages

$$\lambda_1 = L_{l1}i_1 + L_{m1}(i_1 + i_2')$$

$$\lambda_2' = L_{l2}'i_2' + L_{m1}(i_1 + i_2')$$

$$E'_{l2} = \left(\frac{N_1}{N_2}\right)^2 L_{l2}$$

$$\lambda_1 = L_{11}i_1 + L_{m1}i_2'$$

$$\lambda_2' = L_{m1}i_1 + L_{22}i_2'$$

where

$$E_{22} = \left(\frac{N_1}{N_2}\right)^2 L_{22}$$

67

T – Equivalent Circuit

ELEC 343, S-19, M-1

Voltage Equation

$$\begin{bmatrix} v_1 \\ v_2' \end{bmatrix} = \begin{bmatrix} r_1 & 0 \\ 0 & r_2' \end{bmatrix} \begin{bmatrix} i_1 \\ i_2' \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \lambda_1 \\ \lambda_2' \end{bmatrix}$$

$$\lambda_1 = L_{l1}i_1 + L_{m1}(i_1 + i_2')$$

$$\lambda_2' = L_{12}'i_2' + L_{m1}(i_1 + i_2')$$

where
$$r_2' = \left(\frac{N_1}{N_2}\right)^2 r_2$$

Define Reactances

$$X_{l1} = L_{l1}\omega_e$$

$$X'_{12} = L'_{12}\omega_a$$

$$X_{m1} = L_{m1}\omega_e$$

Transformer Example

Consider a 50kVA, 2400/240V transformer with leakage impedances $Z_1 = 0.72 + j0.92$ and $Z_2 = 0.007 + j0.009$, and the magnetizing shunt impedance $Z_{m2} = j43$.

- a) Draw eq. circuit referred to high voltage side, label impedances
- b) Draw eq. circuit referred to low voltage side, label impedances

69

Tap-Changing Multi-winding Transformers

Additional voltage control / regulation

High voltage loads

Regular voltage loads

Two loads are galvanically decoupled!

Autotransformers

- No electric isolation between primary & secondary
- Safety is a concern 120/110 or 240/120 is OK 12kV/240 or 2.4kV/120 is not safe!
- Smaller than regular transformers
- Economical (material, losses, etc.)

Often used in Labs as a source of variable AC voltage

71

ELEC 343, S-19, M-1 Variable Autotransformer - Variac

Three Phase Transformers

Construction

Use 3 transformers -no magnetic coupling between phases

Use 3-phase core - efficient use of materials

73

Wye-Wye Connections

ELEC 343, S-19, M-1

Phase voltages
Line-to-neutral voltages

$$v_{a1}, v_{b1}, v_{c1}$$

Line-to-line voltages

$$v_{ab1} = v_{a1} - v_{b1}$$

$$v_{bc1} = v_{b1} - v_{c1}$$

$$v_{ca1} = v_{c1} - v_{a1}$$

Line and phase currents are the same

ELEC 343, S-19, M-1

Delta-Delta Connections

Phase currents i_{a1}, i_{b1}, i_{c1}

Line currents $i_{ab1}, i_{bc1}, i_{ca1}$

Line currents

$$i_{ac1} = i_{a1} - i_{c1}$$
 $i_{ba1} = i_{b1} - i_{a1}$
 $i_{cb1} = i_{c1} - i_{b1}$

Line and phase voltages are the same

Wye-Delta (or Delta-Wye) Connections

75

For Ideal Transformer

ELEC 343, S-19, M-1

77

Module 1, Part 4

Basic Magnetic Systems with Motion (Chap. 1.7)

Most Important Topics and Concepts

- Basic linear devices
- Concept of position-dependent reluctances & inductances in linear devices
- Mechanical and electrical inputs/outputs
- Basic rotating devices, windings in relative motion
- Magnetic axes
- Concept of position-dependent reluctances & inductances in rotating devices

Elementary Electromagnet

Flux linkage & inductances

$$\lambda = \left(\frac{N^2}{\Re_l} + \frac{N^2}{\Re_m}\right)i = (L_l + L_m)i$$

Voltage equation (Faraday's law + KVL)
$$v = ri + \frac{d\lambda}{dt}$$

Flux linkage

$$\lambda = N\Phi = N(\Phi_m + \Phi_l)$$

$$\Phi_I = Ni/\mathfrak{R}_I$$
 - Flux leakage

$$\Phi_{\it m} = Ni/\Re_{\it m}\,$$
 - Magnetizing flux

 L_l - Leakage inductance (assume constant)

 L_m - Magnetizing inductance (depends of position x)

79

Elementary Electromagnet

Consider Magnetizing Path

$$\mathfrak{R}_m = \mathfrak{R}_c + 2\mathfrak{R}_g$$

$$\Re_c = \frac{l_c}{\mu_r \mu_0 A_c} \ \ \text{- Reluctance of the} \\ \text{stationary + movable core}$$

$$\mathfrak{R}_{g}\left(x\right)=\frac{x}{\mu_{0}A_{g}}$$
 - Reluctance of the air-gap

Assume
$$A_c = A_g = A$$
 we get

Assume
$$A_c = A_g = A$$
 we get $\Re_m(x) = \frac{1}{\mu_0 A} \left(\frac{l_c}{\mu_c} + 2x \right)$

Magnetizing inductance

$$L_m = \frac{N^2}{\Re_m} = N^2 \mu_0 A \frac{1}{(l_c/\mu_c + 2x)} = \frac{k_1}{k_2 + x}$$

LEC 343, S-19, M-1

Elementary Electromagnet

Magnetizing Inductance

$$L_m = N^2 \mu_0 A \frac{1}{(l_c/\mu_c + 2x)} = \frac{k_1}{k_2 + x}$$

Voltage Equation

where
$$k_1 = \frac{N^2 \mu_0 A}{2}$$
 and $k_2 = \frac{l_c}{2\mu_c}$

$$v = ri + \frac{d\lambda}{dt}$$
 where $\lambda(i, x) = L(x)i = [L_l + L_m(x)]i$

$$\lambda' = L'i + Li' = \frac{dL}{dt}i + L\frac{di}{dt} = \frac{\partial L}{\partial x}\frac{dx}{dt}i + L\frac{di}{dt}$$

And finally we get
$$v = ri + \left[\frac{\partial L_m(x)}{\partial x} \frac{dx}{dt}\right] i + \left[L_l + L_m(x)\right] \frac{di}{dt}$$

81

ELEC 343, S-19, M-1

Elementary Electromagnet

The elementary electromagnet

is very similar to a plunger solenoid (Lab-1)

How do we solve Voltage Equation?

$$v = ri + \left[\frac{dL_m(x)}{dx} \frac{dx}{dt} \right] i + \left[L_l + L_m(x) \right] \frac{di}{dt}$$
 What is $\frac{dx}{dt}$

$$\frac{di}{dt} = \left[L_l + L_m(x)\right]^{-1} \left\{ v - \left[r + \frac{\partial L_m(x)}{\partial x} \frac{dx}{dt}\right] i \right\}$$

Need dynamic equation of mechanical system!

ELEC 343, S-19, M-1

ELEC 343, S-19, M-1

Other Reluctance Devices

Other Reluctance Devices

Other Reluctance Devices

Multi-input/output

85

Rotating Reluctance Devices ELEC 343, S-19, M-1

Rotating Reluctance Devices 343,

 $\mathfrak{R}_m(0)$

- Maximum reluctance

 $\mathfrak{R}_m(\pi/2)$ - Minimum reluctance

Flux linkage & inductances

$$\lambda = \left(\frac{N^2}{\Re_l} + \frac{N^2}{\Re_m}\right)i = (L_l + L_m)i$$

Magnetizing inductance

$$L_m = L_m(\theta_r) = \frac{N^2}{\Re_m(\theta_r)}$$

87

Rotating Reluctance Devices ELEC 343, 8-15

Approximation of Magnetizing Inductance

$$L_m(\theta_r) = L_A - L_B \cos(2\theta_r)$$

Resulted Self-Inductance

$$L_m(0) = L_A - L_B$$

$$L_m(\pi/2) = L_A + L_B$$

Rotating Reluctance Devices Perices Reluctance Devices

Approximation of Magnetizing Inductance

Resulted Self-Inductance

$$L_m(\theta_r) =$$

$$L_m(0) =$$

 L_m

89

Windings in Relative Motion SLEC 343, S-19, M-1

Stator Winding Magnetic Axis

Windings in Relative Motion Selec 343, 8-19, M-1

Stator & Rotor Winding Magnetic Axes

91

Windings in Relative Motion Selec 343, 8-19, M-1

Stator & Rotor Winding Magnetic Axes

Voltage Equations
- similar to transformer

$$v_1 = r_1 i_1 + \frac{d\lambda_1}{dt}$$
$$v_2 = r_2 i_2 + \frac{d\lambda_2}{dt}$$

Flux linkages

$$\lambda_1 = L_{11}i_1 + L_{12}i_2$$
$$\lambda_2 = L_{22}i_2 + L_{21}i_1$$

Windings in Relative Motion Selec 343, 8-19, M-1

Stator & Rotor Inductances

Self-inductances

$$L_{11} = L_{l1} + L_{m1} \ \text{and} \ L_{22} = L_{l2} + L_{m2}$$

Mutual-inductances

$$L_{12} = L_{21} = L_{12}(\theta_r)$$

$$L_{12}(0)$$

$$L_{12}ig(\pi/2ig)$$

93

Example SP1.7-3

ELEC 343, S-19, M-1

Rotor current changed direction

Self-inductances

Mutual-inductances

$$L_{12} = L_{21} = L_{12}(\theta_r)$$

$$L_{12}(0)$$

$$L_{12}(0)$$
 $L_{12}(\pi/2)$

