Formulário MDIO 2020/2021

1 Relax4

1.1 Formato do input

n
m
org dst custo cap (m vezes)
vert (n vezes)

• n: número de vértices

• m: número de arcos do grafo

org: vértice de origem do arco

• **dst**: vértice de destino

• custo: custo de transporte

• cap: capacidade do arco

• vert: oferta/procura no vértice, + e – respetivamente

2 Transportes: Introdução

2.1 Modelo geral

• Dado um grafo G = (V, A), pretende-se:

min
$$\sum_{(i,j)\in A} c_{ij}x_{ij}$$
suj. a
$$-\sum_{(i,j)\in A} x_{ij} + \sum_{(j,i)\in A} x_{ji} = b_j, \ \forall j \in V$$

$$0 \le x_{ii} \le u_{ii}, \ \forall (i,j) \in A$$
(2)

Variáveis de decisão:

• x_{ij} : fluxo de *um único tipo de entidades* no arco orientado (i,j);

Dados

ullet $c_{ij:}$ custo unitário de transporte no arco orientado (i,j);

• $u_{ij:}$ capacidade do arco orientado (i,j).

• Restrições (1) designam-se por *restrições de conservação de fluxo*.

• Restrições (2) designam-se por restrições de capacidade.

2.2 Caracterização das soluções básicas

A uma base podemos associar uma árvore (grafo com vértices não orientados) que suporta todos os vértices.

2.2.1 Propriedades da árvore de suporte de um grafo G = (V, A)

 é um grafo ligado (existe um caminho entre cada par de vértices)

· sem ciclos

• $\operatorname{com} |A| = |V| - 1$ (nº de $\operatorname{arcos} = \operatorname{n}^{\circ} \operatorname{de} \operatorname{v\'{e}rtices} - 1$)

2.3 Método dos multiplicadores

1. Fixar o valor de qualquer multiplicador em 0

2. Arcos básicos: $c_{ij} = u_i - u_j$

3. Arcos não-básicos: $\delta_{ij} = c_{ij} - (u_i - u_j)$

2.4 Pivô

Qual o valor máximo de θ ? $\theta_{max} = min\{10, 40\} = 10$

3 Transportes: Grafos Bipartidos

Um grafo G = (V,A) é bipartido se o conjunto de vértices V puder ser dividido em dois conjuntos disjuntos, V_1 e V_2 (i.e., $V_1 \cup V_2 = V, V_1 \cap V_2 = \emptyset$), de tal modo que todos os arcos $(i,j) \in A$ tenham origem num vértice $i \in V_1$ e destino num vértice $j \in V_2$.

3.1 Solução inicial

3.1.1 Método do canto NW

- 1. Colocar a maior quantidade possível na casa mais a NW \Longrightarrow
 - ou a procura de um destino (coluna) é totalmente satisfeita.
 - ou a oferta de uma origem (linha) é totalmente usada,
 - · ou ambas.
- 2. Cortar a linha ou a coluna (ou ambas)
- 3. Repetir se ainda houver uma casa

3.1.2 Método do canto NW

- Colocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - · ou ambas.
- 2. Cortar a linha ou a coluna (ou ambas)
- 3. Repetir se ainda houver uma casa

3.1.3 Seleção da variável básica com valor 0 (quando faltar uma var. básica)

- Nem todas as variáveis podem ser escolhidas!
- No seguinte exemplo, escolher a variável x_{AE} dá origem a um grafo que não é uma árvore.

 Os arcos associados às variáveis formam um ciclo (i.e., as colunas do modelo de PL são linearmente dependentes, e portanto não formam uma base)

3.2 Pivô

ullet A variável x_{AF} entra na base e x_{AE} sai da base

4 Transportes: Redes c/ capacidades

4.1 Caracterização das soluções básicas

Iguais às referidas no 2.2, mas agora as variáveis no limite superior são também consideradas como não-básicas, para além das iguais a 0.

Uma variável não-básica é atrativa quando:

- $x_{ij} = 0$ (variável aumenta de valor) e $\delta_{ij} < 0$
- $x_{ij} = u_{ij}$ (variável decrementa de valor) e $\delta_{ij} > 0$

4.2 Transformações

4.2.1 Capacidade num vértice

4.2.2 Limite inferior num arco

5 Programação Inteira: Modelos

5.1 Expressões lógicas

Expressão lógica	Restrição binária
$a \Rightarrow b$	a ≤ b
$\overline{b} \Rightarrow \overline{a}$	$(1-b) \leq (1-a)$
$\overline{b} \Rightarrow \overline{a}$	$a \leq b$
$a \Rightarrow \overline{b}$	$a+b \leq 1$
$b \Rightarrow \overline{a}$	$a+b \leq 1$
$\stackrel{\bullet}{a} {\vee} b$ (ou exclusivo)	a + b = 1
seleccionar <i>exactamente</i> uma das opções	$a+b+\ldots+z=1$
seleccionar, <i>no máximo</i> . uma das opções	$a+b+\ldots+z\leq 1$
$a.b \Rightarrow c$	$a+b-1 \le c$

6 PI: Planos de corte

Estratégia do método dos planos de corte:

- 1. determinar a solução óptima do problema de PL
- 2. cortar partes do domínio em que não há sol. inteiras e reoptimizar, até obter uma sol. inteira (que é óptima!)

Algoritmo de planos de corte:

- 1. Optimizar relaxação linear
- 2. Enquanto a solução não for inteira:
 - identificar um plano de corte
 - adicionar plano de corte ao conjunto de restrições
 - reoptimizar (usando o método simplex dual)

7 PI: Partição e avaliação

7.1 Partição do domínio

Dado um pai com uma solução fraccionária:

- 1. selecionar variável x_i fraccionária
- 2. criar 2 nós filhos, $x_i \leq |x_i| e x_i \geq |x_i|$

7.2 Solução incumbente

É a melhor solução inteira encontrada até um dado passo da pesquisa (x_{SI}) com valor de função objectivo z_{SI} .

7.3 Avaliação do nó (prob. maximização)

7.3.1 [Início] Determinar sol. ótima PL $(x_{PL} \rightarrow z_{PL})$

- se for inteira, é a melhor sol. inteira no domínio do nó
- se não, pode haver na subárvore uma sol. inteira $\leq z_{\rm Pl}$

7.3.2 [Opção 1] Abandonar o nó (podar a subárvore) se:

- o problema for impossível (domínio vazio)
- a solução x_{PL} for inteira (atualizar incumbente se $z_{PL} > z_{SL}$)
- a solução x_{PL} for fraccionária e não puder haver na subárvore uma solução inteira melhor do que a solução incumbente $z_{PL} \le z_{SL}$

7.3.3 [Opção 2] Fazer partição (explorar a subárvore):

 se a solução x_{PL} for fraccionária e ainda puder haver na subárvore uma solução inteira melhor do que a solução incumbente z_{PL} > z_{SI}

7.4 Limites para o valor do ótimo

 $z_I^* \in [LI, LS], z_I^* \rightarrow \text{solução ótima inteira}$

7.5 Limite superior

Num problema de maximização o LS é apenas um valor de referência, não está associado a nenhuma solução inteira admissível. O valor do ótimo da relaxação linear $(z_{\rm RL})$ é um limite superior para o valor do ótimo inteiro z_t^* :

$$z_I^* \leq z_{RL}$$

Para problemas de minimização é o oposto (lim. inferior).

7.6 Limite inferior

O valor de qualquer solução inteira admissível é um limite inferior para z_i^* .

Para problemas de minimização é o oposto (lim. superior).