Teoría de la Computación Sesión 4

Edgar Andrade, Ph.D.

Matemáticas Aplicadas y Ciencias de la computación

Última revisión: Agosto de 2020

Clausura bajo operaciones regulares

Contenido

Equivalencia entre NFAs y DFAs

Clausura bajo operaciones regulares

Teorema

Para cada DFA M existe un NFA N tal que L(N) = L(M).

Teorema

Para cada DFA M existe un NFA N tal que L(N) = L(M).

Ejemplo

	0	1
q_0	q_1	q_1
q_1	q_0	q_0

Teorema

Para cada DFA M existe un NFA N tal que L(N) = L(M).

Ejemplo

	0	1
q_0	$\{q_1\}$	$\{q_1\}$
q_1	$\{q_0\}$	$\{q_0\}$

Teorema

Para cada NFA N existe un DFA M tal que L(M) = L(N).

Demostración (Caso 1/2)

Sea $N=(Q,\Sigma,\delta,q_0,F)$ un NFA para el que no haya ninguna transición ϵ . Definimos $M=(Q',\Sigma,\delta',q_0',F')$ un DFA de la siguiente manera:

Demostración (Caso 1/2)

Sea $N=(Q,\Sigma,\delta,q_0,F)$ un NFA para el que no haya ninguna transición ϵ . Definimos $M=(Q',\Sigma,\delta',q_0',F')$ un DFA de la siguiente manera:

- $\triangleright Q' = \wp(Q)$
- $\Sigma = \Sigma$
- $q_0' = \{q_0\}$
- ▶ $F' = \{R \in Q' : R \text{ contiene un estado final de } N\}$

Demostración (Caso 1/2)

Sea $N=(Q,\Sigma,\delta,q_0,F)$ un NFA para el que no haya ninguna transición ϵ . Definimos $M=(Q',\Sigma,\delta',q_0',F')$ un DFA de la siguiente manera:

- $\triangleright Q' = \wp(Q)$
- $\Sigma = \Sigma$
- $q_0' = \{q_0\}$
- ▶ $F' = \{R \in Q' : R \text{ contiene un estado final de } N\}$
- ▶ Sean $R \in Q' = \wp(Q)$ y $a \in \Sigma$

$$\delta'(R,a) = \bigcup_{r \in R} \delta(r,a)$$

	0	1
q_0	Ø	$\{q_1\}$
q_1	Ø	Ø

	0	1
q_0	Ø	$\{q_1\}$
q_1	Ø	Ø

	0	1
$\{q_0\}$	Ø	$\{q_1\}$
$\{q_1\}$	Ø	Ø
$\{q_0,q_1\}$	Ø	$\{q_1\}$
Ø	Ø	Ø

	0	1
q_0 q_1	Ø	$\{q_1\}$

	0	1
$\{q_0\}$	Ø	$\{q_1\}$
$\{q_1\}$	Ø	Ø
$\{q_0,q_1\}$	Ø	$\{q_1\}$
Ø	Ø	Ø

MACC Matemáticas Aplicadas y Ciencias de la Computación

	0	1
q ₀ q ₁	Ø	$\{q_1\}$

	0	1
$\{q_0\}$	Ø	$\{q_1\}$
$\{q_1\}$	Ø	Ø
$\{q_0,q_1\}$	Ø	$\{q_1\}$
Ø	Ø	Ø

MACC Matemáticas Aplicadas y Ciencias de la Computación

Demostración (Caso 2/2)

Ajustamos ahora esta construcción para el caso donde sí hay transiciones ϵ en N.

Demostración (Caso 2/2)

Ajustamos ahora esta construcción para el caso donde sí hay transiciones ϵ en N. Sea $R \subset Q$. Definimos:

 $E(R) = \{q, \text{ se puede llegar a } q \text{ desde } R \text{ siguiendo 0 o más aristas } \epsilon\}.$

Demostración (Caso 2/2)

Ajustamos ahora esta construcción para el caso donde sí hay transiciones ϵ en N. Sea $R \subset Q$. Definimos:

 $E(R) = \{q, \text{ se puede llegar a } q \text{ desde } R \text{ siguiendo 0 o más aristas } \epsilon\}.$

Finalmente

$$\delta'(R,a) = \bigcup_{r \in R} E(\delta(r,a)),$$

y $E(\{q_0\})$ es el nuevo estado inicial.

$$Q' = \wp(Q) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

- $\triangleright Q' = \wp(Q) =$ $\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$
- ▶ El estado inicial es $E(\{1\}) = \{1, 3\}.$

- $Q' = \wp(Q) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$
- ► El estado inicial es $E(\{1\}) = \{1,3\}.$
- $F = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}.$

	а	b
{1,3}	{1,3}	{2}

	а	Ь
{1,3}	{1,3}	{2}
{1}	∅	{2}

	а	b
{1,3} {1} {3}	{1, 3} ∅ {1, 3}	{2} {2}

	а	Ь
{1,3}	{1,3}	{2}
$\{1\}$	Ø	{2}
{3}	{1,3}	Ø
{2}	{2,3}	{3}

	а	b
{1,3}	{1,3}	{2}
$\{1\}$	Ø	{2}
{3}	{1,3}	Ø
{2}	{2,3}	{3}
$\{1, 2\}$	{2,3}	$\{2, 3\}$

	а	b
{1,3}	{1,3}	{2}
$\{1\}$	Ø	{2}
{3}	{1,3}	Ø
{2}	{2,3}	{3}
$\{1, 2\}$	{2,3}	$\{2, 3\}$
$\{2, 3\}$	{1, 2, 3}	{3}

	а	b
{1,3}	{1,3}	{2}
$\{1\}$	Ø	{2}
{3}	{1,3}	Ø
{2}	{2,3}	{3}
$\{1,2\}$	{2,3}	$\{2, 3\}$
$\{2, 3\}$	{1, 2, 3}	{3}
$\{1, 2, 3\}$	{1, 2, 3}	$\{2, 3\}$

	а	b
{1,3}	{1,3}	{2}
$\{1\}$	Ø	{2}
{3}	{1,3}	Ø
{2}	{2,3}	{3}
$\{1,2\}$	{2,3}	$\{2, 3\}$
$\{2, 3\}$	$\{1,2,3\}$	{3}
$\{1, 2, 3\}$	$\{1,2,3\}$	$\{2, 3\}$
Ø	Ø	Ø

Contenido

Equivalencia entre NFAs y DFAs

Clausura bajo operaciones regulares

Concatenación

Teorema

La clase de los lenguajes regulares es cerrada bajo concatenación.

Concatenación

Teorema

La clase de los lenguajes regulares es cerrada bajo concatenación.

Construcción

Formalmente, sean $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ y $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$. Definimos $N=(Q,\Sigma,\delta,q_1,F_2)$, donde:

- $Q = Q_1 \cup Q_2;$
- ▶ El estado inicial de N es q_1 (el estado inicial de N_1);
- $ightharpoonup F_2$ son los estados finales de N_2

Construcción

Formalmente, sean $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ v $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$. Definimos $N = (Q, \Sigma, \delta, q_1, F_2)$, donde:

- $ightharpoonup Q = Q_1 \cup Q_2;$
- \triangleright El estado inicial de N es q_1 (el estado inicial de N_1);
- \triangleright F_2 son los estados finales de N_2

$$\delta(q,a) = \begin{cases} \delta_1(q,a), & q \in Q_1 \text{ y } q \notin F_1; \\ \delta_1(q,a), & q \in F_1 \text{ y } a \neq \epsilon; \\ \delta_1(q,a) \cup \{q_2\}, & q \in F_1 \text{ y } a = \epsilon; \\ \delta_2(q,a), & q \in Q_2. \end{cases}$$

Estrella de Kleene

Teorema

La clase de los lenguajes regulares es *cerrada* bajo estrella de Kleene.

Estrella de Kleene

Teorema

La clase de los lenguajes regulares es *cerrada* bajo estrella de Kleene.

Construcción

Formalmente, sea $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$. Construimos $N = (Q, \Sigma, \delta, q_0, F)$, donde

- ▶ $Q = \{q_0\} \cup Q_1$;
- q₀ es un nuevo estadio inicial;
- ▶ $F = \{q_0\} \cup F_1$

Construcción

Formalmente, sea $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$. Construimos $N = (Q, \Sigma, \delta, q_0, F)$, donde

- ▶ $Q = \{q_0\} \cup Q_1$;
- q₀ es un nuevo estadio inicial;
- ► $F = \{q_0\} \cup F_1$

$$\delta(q, a) = egin{cases} \delta_1(q, a), & q \in Q_1 \ y \ q \notin F_1; \ \delta_1(q, a), & q \in F_1 \ y \ a \neq \epsilon; \ \delta_1(q, a) \cup \{q_1\}, & q \in F_1 \ y \ a = \epsilon; \ \{q_1\}, & q = q_0 \ y \ a = \epsilon; \ \emptyset, & q = q_0 \ y \ a \neq \epsilon. \end{cases}$$

Take away

En esta sesión usted aprendió:

- Construir un DFA equivalente a un NFA dado
- Construir un NFA que reconozca la unión, concatenación, y estrella de Kleene de lenguajes regulares