Homework One Solution—CSE 355

Due: 31 January 2011

Please note that there is more than one way to answer most of these questions. The following only represents a sample solution.

Problem 1: Linz 2.1.7(b)(c)(g), 2.2.7. and 2.2.11

2.1.7: Find dfa's for the following languages on $\Sigma = \{a, b\}$

(b):
$$L = \{w : |w| \bmod 5 \neq 0\}$$

A dfa for L is given by the following transition graph:

(c):
$$L = \{w : n_a(w) \bmod 3 > 1\}$$

A dfa for L is given by the following transition graph:

(g): $L = \{w : |w| \bmod 3 = 0, |w| \neq 6\}$

A dfa for L is given by the following transition graph:

2.2.7: Design an nfa with no more than five states for the set $\{abab^n: n \geq 0\} \cup \{aba^n: n \geq 0\}$.

An nfa for the set is given by the following transition graph:

2.2.11: Find an nfa with foour states for $L = \{a^n : n \ge 0\} \cup \{b^n a : n \ge 1\}$.

An nfa for L is given by the following transition graph:

Problem 2: Linz 2.39 and 2.3.12

2.39: Let L be a regular language that does not contain λ . Show that there exists an nfa without λ -transitions and with a single final state that accept L.

Since L is regular there exists a dfa, $D = (Q, \Sigma, \delta, q_0, F)$, with an associated transition graph, G_D , such that L(D) = L. We will construct an nfa $N = (Q \cup \{q_f\}, \Sigma, \delta', q_0, \{q_f\})$ where $q_f \notin Q$ by giving its transition graph G_N as follows:

- 1. From G_D , remove the final label from every final state (making them nonfinal states).
- 2. Add a new state q_f and label it as a final state.
- 3. For every state q_i , if there is a transition from q_i to a state in F on input $a \in \Sigma$, then add a transition from q_i to q_f on input a.

Clearly, N has a single accept state, q_f , and no λ -transitions (since D is a dfa and we did not add any λ -transitions in our construction of N). We will now show that L(N) = L. First note that since $\lambda \notin L$, every $w \in L$ can be written as w = va for some $v \in \Sigma^*$ and an $a \in \Sigma$.

Now, $w = va \in L$ iff there is a walk on G_D labeled with w from q_0 to q_i with $q_i \in F$ iff there is a walk on G_D labeled with v from q_0 to q_j and a transition from q_j to q_i on input a iff there is a walk on G_N labeled with v from q_0 to q_j and a transition from q_j to q_f on input a (since every transition in G_D is a transition in G_N and from step (3) in the construction of G_N)

iff there is a walk on G_N labeled with w from q_0 to q_f iff $w \in L(N)$.

Thus, $w \in L$ iff $w \in L(N)$. Therefore we conclude that L(N) = L and that for any regular language that does not contain λ , there exists an nfa without λ -transitions and with a single final state that accept L.

2.3.12: Show that if L is regular, so is L^R .

Since L is a regular language, we can construct a corresponding dfa, N, such that L(N) = L (For every regular language, there is a corresponding dfa, by definition, and for every dfa, there is an equivalent nfa).

By definition, L^R consists of all strings in language L in reverse order. We will construct a nfa, N_R , representing L^R such that $L(N_R) = L^R$. N_R will contain an additional start state with λ -transitions to the final states of N. The direction of every transition in N is reversed. Also, the start state of N will be the final state of N_R . The construction of nfa N_R is as follows:

```
Let N = (Q, \Sigma, \delta, q_n, F)

N_R = (Q \cup \{q_0\}, \Sigma, \delta_r, q_r, \{q_n\})

Set of states of N_R = set of states of N along with q_0 = Q \cup \{q_r\}

\Sigma = alphabet of N_R = same as N

q_r = start state of N_R

\{q_n\} = set of final states of N_R = start state of N

Transition function:

\delta_r(q, a) = \{q_1 : \delta(q_1, a) = q\}

\delta_r(q_r, \lambda) = F
```

$$\delta_r(q_r, a) = \emptyset$$
, if $a \neq \lambda$

Now we will show that $L^R = L(N_R)$. $w \in L^R$ iff $w^R \in L$ iff there is a walk on the transition graph of N with label w^R from q_n to some $q_i \in F$ iff there is a walk on the transition graph of N_R from q_r to q_i with label λ and a walk from q_i to q_n with label w (Following the reverse of every transition in the original graph) iff $w \in L(N_R)$.

Since L_R can be represented by a nfa, it is regular (by equivalence of nfa to dfa, and dfa to regular language).

Problem 3: Linz 2.1.8

2.1.8: A run in a string is a substring of length at least two, as long as possible and consisting entirely of the same symbol. For instance, the string abbbaab contains a run of b's of length three and a run of a's of length two. Find dfa's for the following languages on $\{a, b\}$.

(a): $L = \{w : w \text{ contains no runs of length less than four}\}.$

(b): $L = \{w : \text{every run of } a'\text{s has length either two or three}\}.$

(c): $L = \{w : \text{there are at most two runs of } a'\text{s of length three}\}.$

(d): $L = \{w : \text{there are exactly two runs of } a'\text{s of length } 3\}.$

Problem 4: Linz 2.2.22

2.2.22: Let L be a regular language on some alphabet Σ , and let $\Sigma_1 \subset \Sigma$ be a smaller alphabet. Consider L_1 , the subset of L whose elements are made up only of symbols from Σ_1 , that is,

$$L_1 = L \cap \Sigma_1^*$$
.

Show that L_1 is also regular.

Since L is a regular language, there should be a dfa, N, representing L such that L(N) = L, where $N = (Q, \Sigma, \delta, q_0, F)$.

Since L_1 is made up of strings with alphabets from Σ_1 , $\Sigma_1 \subset \Sigma$, and L_1 is a subset of L, L_1 contains only strings that are accepted by L as well. We can construct a dfa, M, for L_1 as follows:

1. From the transition graph of N, remove every transition that is labeled with some $a \notin \Sigma_1$.

Now we will show that $L(M) = L_1$. $w = a_1 a_2 \dots a_n \in L_1$ iff there is a walk on the transition graph of N with label w from q_0 to some $q_i \in F$ and every $a_i \in \Sigma_1$ iff there is a walk on the transition graph of M from q_0 to q_i with label w (it will be the exact same path as it was in N) iff $w \in L(M)$.

Since L_1 can be represented by a dfa, it is regular.

Problem 5: Linz 2.3.3 and 2.3.8

2.3.3: Convert the following nfa into an equivalent dfa (see textbook for the diagram).

2.3.8: Find an nfa without λ -transitions and with a single final state that accepts $L=\{a\}\cup\{b^n:n\geq 1\}$.

Noting that $\lambda \notin L$, we can use the technique given in 2.3.9 (Problem 2) and we get the nfa given by the following transition graph:

