```
peration == "MIRROR_X":
irror_mod.use_x = True
"Irror_mod.use_y = False
"Irror_mod.use_z = False"
 _operation == "MIRROR_Y"
lrror_mod.use_x = False
irror_mod.use_y = True
irror_mod.use_z = False
 operation == "MIRROR_Z";
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
 melection at the end -add
   ob.select= 1
  er ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modified
  irror ob.select = 0
 bpy.context.selected_obj
  lata.objects[one.name].sel
 int("please select exactle
  -- OPERATOR CLASSES ----
```



# Cálculo Numérico Computacional

Aula 6 - Zero de Função: Isolamento de Raízes

x mirror to the selected
pect.mirror\_mirror\_x"

. ic not

Professor Paulo Flabes

### Sumário:

- 1 Introdução
  - 1.1 Isolamento das raízes
  - 1.2 Refinamento
- 2 Método da Bisseção
  - 2.1 Interpretação Geométrica
  - 2.2 Algoritmo
  - 2.3 Estimativa do Número de Iterações
- 3 Método de Newton Raphson
  - 3.1 Interpretação Geométrica
  - 3.2 Estudo da convergência do MNR
  - 3.3 Algoritmo
- 4 Método Secantes
  - 4.1 Comparação entre os métodos estudados

# 1.1 – Fase I: Isolamento da raiz



# Análise Gráfica

Consiste em esboçar o gráfico da função e, <u>visualmente</u>, determinar o intervalo em que a curva cruza o eixo *x* :

Exemplo:  $f(x) = x^3 - 9x + 3$   $f(x) = [-4 -3] \quad f(x) = [-4 -3]$ 





# Análise Teórica

Consiste em usar o <u>Teorema de Bolzano</u> para determinar o intervalo [a b].

"<u>Seja uma função contínua no intervalo [a b]</u>. Se

f(a)\*f(b)<0, então existe pelo menos uma raiz no intervalo [a b]."







**Exemplo:**  $f(x) = x^3 - 9x + 3$ 

| X    | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 |
|------|----|----|----|----|----|---|---|---|---|
| f(x) |    |    |    |    |    |   |   |   |   |

**Exemplo:** 
$$f(x) = x^3 - 9x + 3$$



|      | <u> </u> |     |    |    | 1 Marie |   |    |      |   |
|------|----------|-----|----|----|---------|---|----|------|---|
|      |          |     |    |    |         |   |    |      |   |
| X    | -5       | -4  | -3 | -2 | -1      | 0 | 1  | 2    | 3 |
| f(x) | -77      | -25 | 3  | 13 | 11      | 3 | -5 | (-7) | 3 |
|      |          |     |    |    |         |   |    |      |   |

$$r_1 \in [-4, -3]$$

$$r_2 \in [0,1]$$

$$r_3 \in [2,3]$$

# Análise Física

Consiste analisar a física o problema e determinar o intervalo [a b] que fisicamente é possível.



Exemplo: A equação



Permite calcular o ângulo de inclinação,  $\alpha$ , em que o lançamento do míssil deve ser feito para atingir um determinado alvo.

Na equação acima,

α: ângulo de inclinação com a superfície da terra com a qual é feita o lançamento do míssil

g: aceleração da gravidade ≈ 9.81 m/s²

R: raio da terra ≈ 6371000 m

v: velocidade de lançamento do míssil (m/s)

θ: ângulo (medido do centro da Terra) entre o ponto de lançamento e o ponto de impacto desejado

Resolva o problema considerando:  $\theta$ =80° e v 8840 m/s.





#### Substituindo as constantes...

$$tg\left(\frac{80}{2}\right) = \frac{sen(\alpha)\cos(\alpha)}{\frac{9,81 \times 6371000}{8840^2} - \cos^2(\alpha)}$$

#### Encontrando o zero de função...

$$\frac{sen(\alpha)\cos(\alpha)}{\frac{9,81\times6371000}{8840^2} - \cos^2(\alpha)} = tg\left(\frac{80}{2}\right) = 0$$





# 1.2 – Fase II: Refinamento da raiz

Consiste em reduzir o intervalo

[a b] até que seja

suficientemente pequeno

(o quanto desejado)



#### Para realizar o refinamento estudaremos 3 métodos:



- Método de Newton-Raphson
- Método da Secante

# COMING SOON