Particle-in-cell simulations

Kirit Makwana

Dept. of Physics

IIT Hyderabad

Fluid treatment

- Consider matter made up of many particles colliding with each other
- If the mean free path of these particles is much smaller compared to the length scale of the system this is the regime of very low Knudsen number, $K_n = \lambda/L$ where λ is the mean free path and L is the typical size of the system
- In this regime it is possible to construct an infinitesimal volume which contains very many matter particles such an infinitesimal volume can be thought of as a fluid element with smooth, continuous physical properties likes density, velocity, pressure, temperature, etc.

Particle treatment

- When the length scale of interest is comparable or smaller than the mean free path, the fluid (continuum) approximation is not a good approximation
- Motion of dust particles in a rarified medium, like in upper atmosphere, has a large mean free path, ex. volcanic ash
- In biological systems, flow of water molecules through small channels and pores follows molecular dynamics, it does not look like a smooth flow in a pipe
- Electrical discharge consists of flow of electrons which shows disruptions not typically expected in a fluid flow
- Electrical discharge is an example of a plasma

Rayleigh-Taylor instability variation with Kn

- A particle code run with a varying mean free path – i.e. varying Knudsen number
- For high Kn, there is no Rayleigh-Taylor instability, simply diffusion of the particles
- As collisionality increases, RT instability sets in like we see in typical fluids

Rodman, et al., Phys. Rev. E, 105, 065209 (2022)

Plasmas

- Particle treatment is very useful in simulating hot ionized gases known as plasmas
- In this state the matter is made up of positively charged ions and negatively charged electrons
- In many cases, plasmas are "collisionless" meaning that the Knudsen number is very high, or the mean free path is much larger than system length scale
- One more complication is the fact that plasma interact by electromagnetic interactions which are long-range interactions
- This gives rise to collective wave-particle interactions these cannot be captured by fluid models

Examples of plasmas

The Sun credit:NASA

Interstellar Medium credit: HST, SST, Chandra

Solar Corona credit:APOD

Aurora credit:APOD

Tokamak plasma credit:MAST UK

Laser plasma acceleration credit:U Liverpool

Fusion plasmas

- Plasmas have a potential application of energy generation through the process of nuclear fusion – fusion of hydrogen isotopes into helium, along with release of energy
- In order for this energy production process to occur, we require to keep this plasma confined for a long enough time so that it can overcome the repulsion between the positively charged hydrogen ions
- However, many particle-scale instabilities spoil this confinement faster than simple fluid analysis predicts

Gene Simulation

of

ITG Turbulence

www.ipp.mpg.de/~fsj/gene gene@ipp.mpg.de

Credit: M. J. Pueschel & GENE team, IPP, Germany

Equations of motion of charged particles

- ullet Consider a set of N charged parties, with charge q and position x_i
- The equation of motion of these particles is then (assuming only electric fields)

$$m\frac{d^2\boldsymbol{x}_i}{dt^2} = \boldsymbol{F}_i = q\boldsymbol{E}_i$$

$$\boldsymbol{E}_i = \sum_{j \neq i} \frac{kq^2(\boldsymbol{x}_i - \boldsymbol{x}_j)}{|\boldsymbol{x}_i - \boldsymbol{x}_j|^3}$$

- To solve for each particle, the force has to be calculated from every other particle
- The order of operations is $\mathcal{O}(N^2)$ computationally improbable for something like 10^10 particles

Phase space

• In order to make this computationally feasible, we need to introduce some form of averaging of the force

 This can be done in phase space which is a 6N dimensional space – there are N particles and each particle has 3 position co-ordinates and 3 velocity co-ordinates

- At any given point of time, the system of N particles is located at a single point in this phase space
- As time advances, the system moves along in this phase space

Single particle equation of motion

 The general equation of motion of a charged particle in electromagnetic force field is

$$rac{doldsymbol{x}_i}{dt} = oldsymbol{v}_i$$
 $rac{doldsymbol{v}_i}{dt} = rac{q_i}{m_i} [oldsymbol{E}(oldsymbol{x}_i) + oldsymbol{v}_i imes oldsymbol{B}(oldsymbol{x}_i)] \equiv oldsymbol{a}_i$

- Here E_i and B_i are the values of the electric and magnetic fields at the location of the i-th particle
- Rigorously, they are the fields produced by all the other particles at that location, but if somehow we can find a smooth field due to all the particles once, then it will be easy to calculate it for all the particles

Equation of motion of system in phase space

- Instead of a point in phase space, lets represent the system as a fuzzy ball centered at some point in phase-space, with a probability density surrounding that point
- The change in probability of finding the system at a given point in phase space is then denoted as

$$df = \frac{\partial f}{\partial t}dt + \sum_{i=1}^{N} \left[\frac{\partial f}{\partial x_i} \cdot dx_i + \frac{\partial f}{\partial v_i} \cdot dv_i \right] = 0$$
$$\frac{\partial f}{\partial t} + \sum_{i=1}^{N} \left[v_i \cdot \frac{\partial f}{\partial x_i} + a_i \cdot \frac{\partial f}{\partial v_i} \right] = 0$$

$$\frac{Df}{Dt} = 0$$
 -> convective derivative in phase space showing conservation of probability density

Single particle probability density

- Instead of talking about all particles, we can instead define a singleparticle phase space, of just 6 dimensions
- We then define a probability density f, which is the probability of finding a particle in some region of this phase space
- The probability of finding a particle in this shaded region of phase space is

 This averaging is over scales smaller than collisional length scale

Vlasov-Maxwell equations

- It can be shown that this single particle distribution function satisfies the so-called Vlasov-Maxwell equations given below in the absence of two-particle interactions
- This nicely does the job of making a smooth electromagnetic field from particle distribution

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \frac{\partial f_s}{\partial \mathbf{v}} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \mathbf{j}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\rho(\mathbf{x}, t) = \sum_s q_s \int_{\mathbb{V}} f_s(\mathbf{x}, \mathbf{v}, t) d\mathbf{v}$$

$$\mathbf{j}(\mathbf{x}, t) = \sum_s q_s \int_{\mathbb{V}} \mathbf{v} f_s(\mathbf{x}, \mathbf{v}, t) d\mathbf{v}$$

G. Lapenta/Journal of Computational Physics 231 (2012) 795–821

Solving Vlasov-Maxwell equations

- The Vlasov-Maxwell equations are integro-differential equations in 7 dimensions (3 position, 3 velocity, and 1 time)
- They are complicated by the fact that the integrals are often times not well-defined, they need to be handled properly by means of complex integration techniques
- Solving 3D PDE's also requires significant computing power
- Adding 3 more dimensions makes the computing much more challenging
- A way to make this simpler is to sample the velocity space by particles, rather than solving the velocity space with some Eulerian grid
- This is the Particle-in-Cell method

Discretization of distribution function

The distribution function is thought to be made up of pseudo (quasi) particles

$$f_s(\mathbf{x}, \mathbf{v}, t) = \sum_p f_p(\mathbf{x}, \mathbf{v}, t)$$
$$f_p(\mathbf{x}, \mathbf{v}, t) = N_p S_{\mathbf{x}}(\mathbf{x} - \mathbf{x}_p(t)) S_{\mathbf{v}}(\mathbf{v} - \mathbf{v}_p(t))$$

- S_x and S_v are the shapes of the quasi-particle in position and velocity space
- N_p is the number of real particles that one quasi-particle corresponds to
- x_p and v_p are the position and velocity of the quasi-particle in phase space

Shape functions

• In velocity space, just choose a Dirac-delta function

$$S_{\mathbf{v}}(\mathbf{v} - \mathbf{v}_p) = \delta(v_x - v_{xp})\delta(v_y - v_{yp})\delta(v_z - v_{zp})$$

$$S_{\mathbf{x}}(\mathbf{x} - \mathbf{x}_p) = \frac{1}{\Delta x_p \Delta y_p \Delta z_p} b_l \left(\frac{x - x_p}{\Delta x_p} \right) b_l \left(\frac{y - y_p}{\Delta y_p} \right) b_l \left(\frac{z - z_p}{\Delta z_p} \right)$$

- B_l are some spline functions that define the shape of the super-particle in real space
- x_p is the central position of this particle shape and v_xp is its velocity
- Integrating out this shape function over velocity and position space should return unity, i.e., probability is unity of finding the particle somewhere

Cloud-in-cell

• Typically codes use the zeroth spline – that means its density is constant inside the shape, and zero outside

Equations of motion

Substituting the distribution function into Vlasov equation gives

$$\frac{\partial f_p}{\partial t} + \mathbf{v} \cdot \frac{\partial f_p}{\partial \mathbf{x}} + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \frac{\partial f_p}{\partial \mathbf{v}} = 0$$

 Further calculation simply gives the equation of motion of a normal particle

$$\frac{d\mathbf{x}_p}{dt} = \mathbf{v}_p$$

$$\frac{d\mathbf{v}_p}{dt} = \frac{q_s}{m_s} (\mathbf{E}_p + \mathbf{v}_p \times \mathbf{B}_p)$$

Ep and Bp is found from the shape function

$$\mathbf{E}_p = \int S_{\mathbf{x}}(\mathbf{x} - \mathbf{x}_p)\mathbf{E}(\mathbf{x})d\mathbf{x}$$

$$\mathbf{B}_p = \int S_{\mathbf{x}}(\mathbf{x} - \mathbf{x}_p)\mathbf{B}(\mathbf{x})d\mathbf{x}$$

Calculating charge density

- The main computational simplification of particle-in-cell method is that the fields are solved on a grid instead of all particles
- For ex., if we need to solve the electric field, we can solve the Poisson equation

$$m{E} = -\nabla \phi; \qquad \qquad \nabla \cdot m{E} = rac{
ho}{\epsilon_0}$$

$$\nabla^2 \phi = -rac{
ho}{\epsilon_0}$$

• In order to solve this, we need to get the charge density ρ on the grid points

Calculating charge density

 The charge density at a grid point is the volume average of the charge in the controlling volume of that grid point

$$\rho_g = \sum_s \frac{q_s}{V_g} \int_{\mathbb{V}} \int_{V_g} f_s \, d\mathbf{v} \, d\mathbf{x} \implies \rho_g = \sum_p \frac{1q_s}{V_g} \int_{V_g} S_{\mathbf{x}}(\mathbf{x} - \mathbf{x}_p) d\mathbf{x}$$

- Consider the cloud-in-cell method where the particle shape is zeroth order b-spline
- Let the grid spacing be Δx , then typically the size of the particle is also taken as Δx
- The control volume of the grid point x_j extends from $x_j (\Delta x/2)$ to $x_j + (\Delta x/2)$
- Let the position of the i-th particle be x_i

Particle weighting

• The contribution of this particle to the charge density on the grids is

$$\rho_j = \frac{q_s}{\Delta x} [\Delta x - (x_i - x_j)] \qquad \rho_{j+1} = \frac{q_s}{\Delta x} [x_i - x_j]$$

What will be the charge density if first order b-spline is used?

Current density calculation

The magnetic field can be calculated by using the following equation

$$\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J} + \mu_0 \epsilon_0 \frac{\partial \boldsymbol{E}}{\partial t}$$

For this we need to calculate the current density

$$\mathbf{j}_{g} = \sum_{s} \frac{q_{s}}{V_{g}} \int_{\mathbb{V}} \int_{V_{g}} \mathbf{v} f_{s} \, d\mathbf{v} \, d\mathbf{x} \qquad \Longrightarrow \qquad \mathbf{j}_{g} = \sum_{p} \mathbf{v}_{p} \frac{1q_{s}}{V_{g}} \int_{V_{g}} S_{\mathbf{x}}(\mathbf{x} - \mathbf{x}_{p}) d\mathbf{x}$$

 This is same as the charge density calculation except that the velocity of the particle has to be multiplied

Motion of particle in electric field

 To get the acceleration of the particle, we need to calculate the total force on it

$$\frac{d\mathbf{v}_p}{dt} = \frac{q_s}{m_s} (\mathbf{E}_p + \mathbf{v}_p \times \mathbf{B}_p) \qquad \mathbf{E}_p = \int S_{\mathbf{x}} (\mathbf{x} - \mathbf{x}_p) \mathbf{E}(\mathbf{x}) d\mathbf{x}$$

- But we know the value of E only on the grid points. How to get E_p?
- We assume that if particle i is between grid points j and j+1, then the electric field varies linearly in this region
- So the electric field becomes

$$E(x) = \frac{(E_{j+1} - E_j)}{\Delta x} (x - x_j) + E_j$$

Electric field interpolation

Now we can get the E_p by doing the integration

$$E_p(x_i) = \frac{1}{\Delta x} \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} E(x) dx$$

Substituting the expression for the electric field gives

$$E_p(x_i) = E_{j+1} \frac{(x_i - x_j)}{\Delta x} + E_j \frac{(\Delta x - (x_i - x_j))}{\Delta x}$$

 This is simply the linear interpolation of the electric field at the grid points to the position of the particle. This is the case for the cloud-incell particles

Solving Maxwell's equations

The electric and magnetic fields are located on the grid points

- To solve for the electric field, we need to calculate the charge density
- This is done by taking into account the cloud of the particle

Solving for electric field

 In electrostatic case, electric field can be calculated by solving the Poisson equation

$$\nabla^2 \phi = -\frac{\rho}{\epsilon_0}$$
 or $\frac{\partial^2 \phi}{\partial x^2} = -\frac{\rho}{\epsilon_0}$

It can solved by finite difference method

$$\frac{\phi_{j-1}-2\phi_j+\phi_{j+1}}{(\Delta x)^2}=-\frac{\rho_j}{\epsilon_0}$$

Or by doing Fourier transform

$$\rho(x) \xrightarrow{} \rho(k) \xrightarrow{} \phi(k) \xrightarrow{} \phi(x) \xrightarrow{} E(x)$$
FFT k^2 IFFT $\nabla \phi$

Euler method

- Now all these parts can be put together to solve for the full particle distribution function f(x, v, t)
- Given a set of initial conditions with particle positions, we can first calculate the charge and current densities
- These can then be used to solve for the electric and magnetic fields
- Using these fields the particles can be moved to their next position in phase space

$$\frac{x_i^{n+1} - x_i^n}{\Delta t} = v_i^n \qquad \frac{v_i^{n+1} - v_i^n}{\Delta t} = \frac{q_i}{m_i} [E_i^n + v_i^n \times B_i^n]$$

- Variable at time step n are used to advance to time step n+1
- What is the order of accuracy of this method?

Leap-Frog method

The particles are advanced by this method

$$\frac{\mathbf{x}_p^{n+1} - \mathbf{x}_p^n}{\Delta t} = \mathbf{v}_p^{n+1/2} \\
\frac{\mathbf{v}_p^{n+1/2} - \mathbf{v}_p^{n-1/2}}{\Delta t} = \frac{q_s}{m_s} \mathbf{E}_p(\mathbf{x}_p^n) + \frac{q_s}{m_s} \left(\frac{\mathbf{v}_p^{n+1/2} + \mathbf{v}_p^{n-1/2}}{2} \right) \times \mathbf{B}_p(\mathbf{x}_p^n)$$

- This involves the same number of steps as the Euler method
- Only difference is that the velocity variable is evaluated at half-integer steps
- This makes the accuracy second-order

Leap-frog method

 The first velocity step is taken by an explicit Euler method of half time-step

$$\frac{\mathbf{v}_{p}^{1/2} - \mathbf{v}_{p}^{0}}{\Delta t/2} = \frac{q_{s}}{m_{s}} \mathbf{E}_{p}(x_{p}^{0}) + \frac{q_{s}}{m_{s}} \left(\frac{\mathbf{v}_{p}^{1/2} + \mathbf{v}_{p}^{0}}{2} \right) \times \mathbf{B}_{p}(x_{p}^{0})$$

- This is an implicit equation, but it can be solved algebraically
- The initial electric and magnetic fields can be given as an input
- The full velocity step is also an implicit equation

Boris method

There is a geometric way to solve the velocity equation by considering

$$\mathbf{v}'_{\text{old}} = \mathbf{v}_{t-\Delta t/2} - \frac{\mathbf{E} \times \mathbf{B}}{B^2}$$

$$\mathbf{v}'_{\text{new}} = \mathbf{v}_{t+\Delta t/2} - \frac{\mathbf{E} \times \mathbf{B}}{B^2}$$

Then we get the relation

$$\frac{\mathbf{v}'_{\text{new}} - \mathbf{v}'_{\text{old}}}{\Delta t} = \frac{q}{m} \left[\mathbf{E}_{\parallel} + \frac{\mathbf{v}'_{\text{new}} + \mathbf{v}'_{\text{old}}}{2} \times \mathbf{B} \right]$$

Split the velocity in perpendicular and parallel components w.r.t. B vector

$$oldsymbol{v}_{new} = oldsymbol{v}_{new}^{\parallel} + oldsymbol{v}_{new}^{\perp}; \qquad oldsymbol{v}_{old} = oldsymbol{v}_{old}^{\parallel} + oldsymbol{v}_{old}^{\perp}$$

Boris method

The parallel velocity simply becomes

$$oldsymbol{v}_{new}^{\parallel} = oldsymbol{v}_{old}^{\parallel} + rac{q}{m} \Delta t E_{\parallel}$$

 The perpendicular velocity simply becomes rotated by an angle

$$2\Delta\theta \approx \frac{qB\Delta t}{m}$$

 These operations are easier and faster with built-in vector and matric multiplication operations, rather than direct matrix inversion method

Periodic boundary conditions

 We can assume periodic boundary conditions for both fields and particles

Time loop

General outline of the hands-on code

- Initialize particles of both positive and negative charges
- Calculate initial charge density and then calculate the electric field (ignore magnetic field this assignment)
- Take the half step for particle velocity (n=1/2)
- Start time loop
 - Advance particles to next position (n+1)
 - Get the new charge density (n+1)
 - Get the new electric field (n+1)
 - Get the next half velocity (n+3/2)
 - Output data if we are at output interval
 - Redo the loop
- End

Code compilation and running

- Get starter code from Github
- module load gcc
- module load fftw/3.3.5
- module load Anaconda3
- Create directory "output" which will store the output files
- g++ -o run.exe pic_code.cpp -lfftw3
- srun --nodes=1 --ntasks-per-node=1 --time=01:00:00 --pty bash --l
- ./run.exe
- Analyze data by using "python analysis.py"

Step 1 – function init

- First step is to code up the initial conditions
- Initialize the code with box size of 1 unit, 100 particles per cell (nppc), total 100 cells (nc), mass of proton as 1 and mass of electron as 1/50 (i.e., mass ratio is $\frac{m_i}{m_o} = 50$)
- Distribute the particles uniformly throughout the box
- Take output interval as every 10 steps
- Initialize ParArray with position, charge, and mass. Velocity of each particle is in velocity_x array—normalize charge and mass of particle with nppc
- Give a sinusoidal perturbation to the charge of electrons

$$q = q_e + \delta q \sin\left(\frac{2\pi x}{L}\right)$$

Check by printing out a few particles position and charge

Step 2 – calculate charge density (calc_chargre_density)

- Loop over all the particles
- Locate their nearest neighbor grid points
- Deposit charge on the grid points using the formulae shown before
- Convert to charge density (divide by Δx)
- Arrays "pcharge" and "echarge" store the positive and negative charge densities respectively
- The last part is required due to the periodic boundary conditions
- Verify by plotting the charge density

Step 3 — Electric field calculation (E_cal)

- Forward transform of charge density is already given in the code
- Calculate the array of 'k' values
- Using the 'k' values and the FT of charge density, calculate the electric field in k-space
- Do inverse Fourier transform of E-field in k-space to get E-field in real space
- Last part contains some normalization of the Fourier transform to get the physical values and storing in array
- Verify by plotting the electric field. It is analytically solvable for our initial charge density setup

Step 4 — Particle update (half_velocity, particle_push)

- Function half_velocity
 - Interpolate electric field to particle position
 - Update the velocity_x array to the ½ time step
 - This function will be called only once before start of the time loop
- Function particle_pusher
 - Update the particle position and particle velocity (pay careful attention to the order in which they are updated)
 - Apply periodic boundary conditions to particles which leave the box
- This can be tested for a simple particle moving in zero electric field with constant velocity

Plasma oscillation test

- All these functions are put together in the function 'main'
- Look carefully and understand the way the time advance works
- Given these initial conditions, check how the electron density evolves
- It should show a well known feature known as plasma oscillations
- The theoretically expected angular frequency of these oscillations is

$$\omega_{pe} = \sqrt{\frac{n_0 e^2}{m_e}}; \qquad T = \frac{2\pi}{\omega_{pe}}$$

- n_0 is the number density of electrons, e is the charge, and m_e is mass of electrons, T is the time period of oscillation
- Validate whether your simulation produces the expected time period?

Further investigations

- How does the behaviour change if you change nppc, nc, mass ratio?
- How does the error behave with these changes?
- Can you parallelize the particle loops with OpenMP?