Formulario

Métodos Numéricos

- Bisección: c = (b+a)/2, $E_n = \frac{b-a}{2^n}$.
- Newton: $x_{n+1} = x_n f(x_n)/f'(x_n)$, $E_{n+1} = \frac{f''(\xi)}{2f'(x_n)}E_n^2$. Secante: $x_{n+2} = \frac{f(x_{n+1})x_n f(x_n)x_{n+1}}{f(x_{n+1}) f(x_n)}$
- Punto fijo: $x_n = F(x_{n-1}), E_{n+1} \le K^n \frac{|x_1 x_0|}{1 K}$
- \blacksquare Jacobi: $Dx_{k+1} = -(L+U)x_k + b.$ Gauss-Seidel: $(D+L)x_{k+1} = -Ux_k + b.$
- Sistemas no lineales (Newton): $\mathbf{J}(\mathbf{x_n})(\mathbf{x}_{n+1} \mathbf{x}_n) = -F(\mathbf{x}_n)$
- Error de interpolación: $f(x) P_n(x) = \frac{f^{(n+1)}}{(n+1)!}(x-x_0)(x-x_1)\dots(x-x_n)$
- Lagrange: $L_i(x) = \frac{\prod_{j \neq i} (x x_j)}{\prod_{j \neq i} (x_i x_j)}$
- Diferencias divididas: $f[x_k] = f(x_k), f[x_i, x_{i+1}, \dots, x_j] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_j] f[x_i, x_{i+1}, \dots, x_{j-1}]}{x_j x_i}$
- Trapecio: $\int_a^b f(x) dx \approx \frac{h}{2} (f(a) + f(b))$. Error $-\frac{(b-a)^3}{12} f''(\xi)$.
- Simpson: $\int_a^b f(x) dx \approx \frac{h}{3} (f(a) + 4f(x_1) + f(b))$. Error $-\frac{(b-a)^5}{720} f^{(4)}(\xi)$.

Teoría de Números

• Solución de $ax \equiv_m b$:

$$x \equiv_m x_0 + (m/d)k$$
, $k = 0, 1, \dots, d - 1$, (equiv. $x \equiv_{m/d} x_0$),

donde $x_0 = (a/d)^{-1}(b/d)$.

• Solución de $x \equiv_{m_1} b_1$, $x \equiv_{m_2} b_2$:

$$x \equiv_{m_1 m_2/d} b_1 + \bar{b} \bar{m}_1^{-1} m_1,$$

donde $\bar{b} = ((b_2 - b_1)/d)$ y \bar{m}_1^{-1} es el inverso de m_1/d en $\mathbb{Z}/m_2\mathbb{Z}$.