Théories et C-H classique

1 Théories Mathématiques

1.1 Groupes

Question 1. Axiomatiser la théorie des groupes avec trois symboles de fonction seulement et l'égalité.

Question 2. Montrez les formules suivantes :

- 1. annulation à gauche : $\forall x \ y \ a, a \cdot x = a \cdot y \Rightarrow x = y$,
- 2. unicité de l'inverse : $\forall x \ y, x \cdot y = e \Rightarrow x^{-1} = y$,
- 3. inverse du produit : $\forall x \ y, (x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$,
- 4. les groupes d'ordre deux sont commutatifs : $\forall x, x \cdot x = e \Rightarrow \forall x \ y, x \cdot y = y \cdot x$.

1.2 Peano

Question 3. Axiomatiser la théorie de l'arithmétique de Peano (PA) dans le langage $(=, 0, S, +, \times)$.

Question 4. Prouver que :

- 1. 0 est neutre pour +, S(0) est neutre pour \times .
- 2. $+ et \times sont \ associatives \ et \ commutatives$.
- 3. \leq est une relation d'ordre (où $t_1 \leq t_2$ est une notation pour $\exists k, t_1 + k = t_2$).

Question 5. (difficile) Trouver une formule avec trois variables libres E[x, y, z] qui montre que l'exponentielle est représentable dans l'arithmétique, c'est-à-dire telle que

- $PA \vdash \forall x \ y, \exists z, E[x, y, z],$
- $PA \vdash \forall x \ y \ zz', E[x, y, z] \Rightarrow E[x, y, z'] \Rightarrow z = z',$
- $PA \vdash \forall x, E[x, 0, 1],$
- $PA \vdash \forall x \ y, E[x, y, z] \rightarrow E[x, S(y), x \times z].$

1.3 Théorie des ensembles

Question 6. Formaliser dans le langage $(=, \in)$ les axiomes suivants :

- Axiome d'extensionnalité : Deux ensembles qui ont les mêmes éléments sont égaux.
- Axiome de la paire : Étant donné deux ensembles il existe un ensemble qui les contient et qui n'en contient pas d'autres.
- Axiome de la réunion : Étant donné un ensemble E, on peut construire l'ensemble contenant exactement la réunion des éléments de E.
- Axiome des parties : Étant donné un ensemble, on peut construire l'ensemble de ses parties.
- Schéma de compréhension : Étant donné un ensemble E et une formule F, on peut construire le plus grand sous-ensemble de E dont les éléments x satisfont F.
- Axiome de l'infini : il existe un ensemble infini.

Ces axiomes forment la théorie des ensembles de Zermelo. On notera Z cette théorie.

Question 7. Formaliser puis montrer les énoncés suivants :

- Il existe un ensemble vide.
- L'intersection de deux ensembles existe.
- Il n'existe pas d'ensemble de tous les ensembles.