Physics for Game Programmers

GRANT PALMER

Physics for Game Programmers

Copyright © 2005 by Grant Palmer

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-472-X

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

Lead Editor: Tony Davis

Technical Reviewers: Alan McLeod, Jack Park

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Assistant Publisher: Grace Wong Project Manager: Laura E. Brown Copy Manager: Nicole LeClerc Copy Editor: Ami Knox

Production Manager: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Susan Glinert Proofreader: Liz Welch Indexer: John Collin

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an "as is" basis, without warranty. Although every precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com in the Downloads section.

Contents at a Glance

	xv
	cal Reviewers
	tsxo
Introduction	xxi
CHAPTER 1	Adding Realism to Your Games
CHAPTER 2	Some Basic Concepts
CHAPTER 3	Basic Newtonian Mechanics2
CHAPTER 4	Basic Kinematics4
CHAPTER 5	Projectiles8
CHAPTER 6	Collisions 139
CHAPTER 7	Sports Simulations
CHAPTER 8	Cars and Motorcycles
CHAPTER 9	Boats and Things That Float
CHAPTER 10	Airplanes27
CHAPTER 11	Rockets and Missiles31
CHAPTER 12	The Physics of Solids35
CHAPTER 13	Explosions
CHAPTER 14	Lasers
CHAPTER 15	Probabilistic and Monte Carlo Simulations40
INDEX	

Contents

CHAPTER 1	Adding Realism to Your Games	1
	Physics Will Keep Your Games from Looking Fake	
CHAPTER 2	Some Basic Concepts	
	Systems of Units	6
	Scientific Notation	7
	Summation Notation	
	Greek Letters	
	Coordinate Systems and Frames of Reference	
	Scalars and Vectors	
	Computing the Magnitude of a Vector	
	The Unit Vector	
	Vector Cross Product	
	Matrices	
	Matrix Multiplication	
	Derivatives	
	Differential Equations	
	Summary	

CHAPTER 3	Basic Newtonian Mechanics	. 21
	A Short Biography of Sir Isaac Newton	
	Newton's Second Law of Motion: Force, Mass,	00
	and Acceleration	
	Newton's Third Law of Motion: Equal and Opposite Forces Force Vector	
	Types of Forces	
	Gravitational Force	
	Friction	
	Centripetal Force.	
	Force Balances and Force Diagrams	
	Work	
	Energy	
	Kinetic Energy	
	Potential Energy	
	Other Forms of Energy	
	Conservation of Energy	
	Power	. 45
	Summary	. 46
	Answers to Exercises	. 46
CHAPTER 4	Basic Kinematics	. 49
	Translational Motion	. 49
	The Relationship Between Force, Acceleration, Velocity,	
	and Location	
	Solving the Translational Equations of Motion	
	Beanbag Game	
	Solving Ordinary Differential Equations	
	Torque	
	Torque and Angular Acceleration	
	Rigid Body Motion	
	Center of Mass	
	Rigid Body Motion Coordinate Axes	
	Rolling Motion	
	Bowling Ball Kinematics.	
	Summary	
	Answers to Exercises	

CHAPTER 5	Projectiles83
	Basic Concepts84
	The Gravity-Only Model84
	Force and Acceleration Equations85
	Location Equations
	Finding the Time for a Projectile to Reach the Trajectory Apex 88
	The SimpleProjectile Class88
	The Golf Game91
	Summary: Gravity-Only Projectile Trajectory Model
	Aerodynamic Drag98
	Basic Concepts
	Drag Coefficient99
	Altitude Effects on Density103
	Laminar and Turbulent Flow
	Adding Drag Effects to the Equations of Motion
	Force and Acceleration Equations105
	Velocity Equations106
	Location Equations
	Terminal Velocity108
	Programming Drag Effects into the Projectile
	Trajectory Model
	Golf Game Version 2111
	Summary: Adding Drag to the Projectile
	Trajectory Model
	Wind Effects
	Programming Wind Effects into the Projectile
	Trajectory Model116
	Golf Game Version 3119
	Summary: Adding Wind Effects to the Projectile
	Trajectory Model 122
	Spin Effects
	Magnus Force
	Programming Spin Effects into the Projectile
	Trajectory Model
	Golf Game Version 4129
	Summary: Adding Spin Effects to the Projectile
	Trajectory Model

	Details on Specific Types of Projectiles	. 134
	Bullets	. 134
	Cannonballs	. 135
	Arrows	. 136
	Summary	. 137
	Answers to Exercises	
CHAPTER 6	Collisions	. 139
	Linear Momentum and Impulse	. 140
	Conservation of Linear Momentum	. 141
	Elastic and Inelastic Collisions	. 142
	Two-Body Linear Collisions	. 143
	Collisions with Immovable Objects	. 146
	Linear Collision Simulator	. 146
	General Two-Dimensional Collisions	. 149
	A Paddle Game	. 153
	Three-Dimensional Collisions	. 157
	Determining Whether a Collision Occurs	. 157
	Angular Momentum and Impulse	. 159
	Collisions with Friction	. 160
	Frictional Impulse	. 161
	Modeling Two-Dimensional Oblique Collisions	. 162
	Modeling Three-Dimensional Oblique Collisions	. 164
	Summary	. 165
	Answers to Exercises	. 165
CHAPTER 7	Sports Simulations	. 167
	Golf	. 167
	Equipment Specifications	
	Modeling the Club-Ball Impact	
	Modeling the Golf Ball in Flight	
	A Golf Game	
	Putting	
	Soccer	
	Equipment Specifications	
	Modeling the Impact of Ball and Foot	
	Modeling the Soccer Ball in Flight	
	Free-Kick Game	195

	Basketball	199
	Equipment Specifications	199
	Modeling the Jump Shot	202
	A Free-Throw Game	
	Baseball	
	Equipment Specifications	
	Modeling the Pitch	
	Modeling the Hit	
	Simulating Other Sports	
	Football	
	Hockey	
	Tennis	
	Summary	
	References	209
CHAPTER 8	Cars and Motorcycles	211
	Cars	212
	A Brief History of the Automobile	
	Basic Force Diagram	
	Engine Torque and Power	
	Gears and Wheel Torque	217
	Gear Shifting	219
	Manual and Automatic Transmissions	220
	Aerodynamic Drag	220
	Rolling Friction	221
	Computing Acceleration and Velocity	222
	Braking	226
	A Car Simulator	227
	Wheel Traction	236
	Driving Around Curves	
	Modeling Car Crashes	
	Motorcycles	
	Turning a Motorcycle	
	Adding Sophisticated Effects to the Car or Motorcycle Models	
	Summary	242
	Heteropean	

CHAPTER 9	Boats and Things That Float	45
	Some Nautical Terminology	45
	Boat Hull Types	46
	Basic Force Diagram24	47
	Buoyancy 24	48
	Buoyancy and Density25	50
	Thrust 25	50
	Drive System Types	50
	Propeller Basics	51
	Thrust25	53
	Drag	54
	Skin Friction Drag25	55
	Form Drag25	56
	Wave Drag25	
	Other Hydrodynamic Drag Components29	57
	Determining the Wetted Area25	57
	Aerodynamic Drag25	
	Modeling the Acceleration and Velocity of a Boat	
	Speedboat Simulator	
	Powerboat Turns26	
	Jet Skis	
	Jet Drives	
	Thrust and Drag	
	The Physics of Sailing	
	The Physics of Surfing	
	Buoyancy and Balance27	
	The Physics of a Wave	
	Catching a Wave27	
	Turning27	
	Summary	
	Answers to Exercises	
	References	74
CHAPTER 10	Airplanes27	75
	Historical Stuff	76
	Airplane Terminology	
	Basic Force Diagram	78

	Lift	278
	Airfoils	278
	How Lift Is Created	279
	Evaluating Airfoil Lift	280
	Stall	282
	Flaps	283
	Center of Pressure	284
	Thrust	285
	Propeller Engines	285
	Jet Engines	291
	Drag	292
	Skin Friction and Form Drag	292
	Induced Drag	293
	Total Drag Equation Revisited	294
	Lift over Drag Ratio	295
	Full-Body Aerodynamics	295
	Turning	296
	Aircraft Orientation	297
	Takeoff	299
	Landing	301
	A Basic Flight Simulator	301
	Trim and Stability	310
	Moments	310
	Trim	311
	Stability	313
	Stability and Trim	314
	Dynamic Stability	315
	Summary	
	Answer to Exercise	317
	References	317
CHAPTER 11	Rockets and Missiles	319
	A Brief History of Rockets	310
	Some Rocket Terminology	
	Rocket Engine Types	
	Liquid-Cryogenic Engines	
	Solid-Propellant Engines	
	Liquid-Hypergolic Engines	
	Hybrid Engines	
	Nuclear Engines	
	Exotic Engines	

	General Force Diagram	323
	Thrust	323
	The Rocket Equation	324
	Specific Impulse	325
	Altitude Effects	326
	Computing Atmospheric Pressure, Density, and Temperature .	327
	Gravity	330
	Drag	331
	Lift	333
	Stability	333
	Wind	333
	A Rocket Simulator	334
	Orbits	342
	Circular Orbits	343
	Other Types of Orbits	
	Escape Velocity	
	Using the Earth's Rotation	
	Payload to Orbit	
	Multistage Rockets	
	Missiles	
	Missile Guidance	
	Missile Specifications	
	Summary	
	References	
CH∆PTFR 12	The Physics of Solids	351
	1110 1 11y0100 01 0011110	
	Ballistic Impacts	
	What Happens During a Ballistic Impact	
	Energy Considerations	352
	Steel Armor	353
	Body Armor	354
	Animal Skin Penetration	356
	Momentum	356
	Body Wounds	357
	Heat Conduction	358
	Fourier's Law	359
	The Heat Conduction Equation	360
	Solving the Heat Conduction Equation	361
	The Gas Tank Simulator	364

	Summary	
CHAPTER 13	Explosions	371
	Some Explosion Terminology	372
	Explosion Basics	
	Explosive Types	
	Gunpowder	373
	Nitroglycerine	373
	Dynamite	373
	TNT;	374
	Ammonium Nitrate	374
	C4	374
	Blast Damage	
	TNT Explosion Model	376
	Example: Computing the Blast Damage for a Soldier	
	Standing by a Window	
	Blast Damage from Other Types of Explosives	
	Other Explosion Models	
	TNT Equivalence of Bombs	
	Fragmentation Devices	
	Nuclear Explosions	
	Summary	
	References	383
CHAPTER 14	Lasers	385
	A Brief History of the Laser	385
	An Introduction to Atoms	386
	How Lasers Work	389
	Types of Lasers	391
	Gas Lasers	391
	Dye Lasers	
	Solid-State Lasers	
	Semiconductor Lasers	
	Pulsed and Continuous Wave Lasers	
	Military Lasers	
	ABL	
	SBL	
	HELEX;	395

	Laser Damage	395
	Laser Simulation	397
	Creating Your Own Laser Systems	400
	Laser Visual Effects	401
	Summary	
	References	
CHAPTER 15	Probabilistic and Monte Carlo Simulations	403
	Random Number Generation	404
	Probability Functions	405
	Gaussian Distribution	408
	Other Probability Functions	410
	Monte Carlo Simulations	410
	Using Monte Carlo Methods to Simulate Crowd Behavior	411
	Using Monte Carlo Methods to Estimate Functions	418
	Summary	421
	References	421
INDEX		423

About the Author

GRANT PALMER works for the ELORET Corporation, an engineering consulting company under contract to the NASA Ames Research Center in Moffett Field, CA. Grant develops computer programs to simulate the fluid dynamics, thermodynamics, and gas chemistry of spacecraft reentering planetary atmospheres. Grant has authored or coauthored eight books on computer programming, including *Beginning C# Objects* and *Java Programmer's Reference*.

Grant lives in Bothell, WA, with his wife, Lisa, and sons, Jackson and Zachary. He has a dog, Bailey, and cat, Callie, who recently decided that she should start living in Grant's house.

About the Technical Reviewers

ALAN MCLEOD graduated from MIT with a doctorate in materials engineering, having previously gained bachelor and master's degrees in metallurgical engineering from the University of Toronto. He then worked for Alcan International as a materials scientist. After several years in industry, he decided to follow his true passion and is now teaching programming to first- and second-year engineering students as a professor and professional engineer at Queen's University and the Royal Military College in Kingston, Ontario. He also runs his own contract

programming company, CA Technical Consulting.

JACK PARK gives pretty good google. To do that, he remains very active developing software in the open source arena. His projects have included NexistWiki, an experimental platform that combines topic maps, issuebased information systems, and storytelling, together with wiki behaviors and weblogs. He produced, with technical editorial help from Sam Hunting, and with authors drawn from all over the planet, the book *XML Topic Maps: Creating and Using Topic Maps for the Web* (Addison-Wesley, 2002). In a former life, he built windmills and solar

heaters, and created the book The Wind Power Book (Cheshire-Van Nostrand, 1981). He is presently employed as a research scientist with SRI International.

Acknowledgments

As anyone who writes a book knows, a lot of people have to work very hard to bring a book to print. I would like to thank my lead editor, Tony Davis, for always being in my corner during the writing of this book and for helping to formulate the vision for what this book would become. I would also like to thank the project manager, Laura Brown, for keeping this book on track and on schedule and for making sure that things didn't fall through the cracks. The entire production staff at Apress, Ami Knox, Kelly Winquist, and Glenn Munlawin, did a first-rate job throughout this project and always did their best to make the book the way that I wanted it to be.

I would like to thank the two technical reviewers for the book, Alan McLeod and Jack Park. I put them through quite a lot during the course of this book, and I think they both really earned their money on this project. Their insightful, constructive, and sometimes biting comments greatly improved the quality of the final product. Finally, as always, I would like to thank my wife, Lisa, and my sons, Jackson and Zachary, for being patient with me for "living" in my office the past six months while I was writing this book.

Introduction

Welcome to the wonderful world of physics. You may be thinking that "wonderful" and "physics" don't belong in the same sentence. Once you start to learn a little physics, however, you will find that it is a really interesting and rewarding subject because you will begin to gain an understanding of how things work. You will learn, for example, why a golf ball hooks or slices. You will also learn that physics really isn't as hard as you might have thought it was. Just a few basic concepts are pretty much all you need to start adding realistic physics into your game programs.

I've been a computer programmer and aerospace engineer working for NASA for the past 20 years. I really like my job, but one of the things I don't like is when I have to research the physical model for one of the programs I'm writing. Inevitably the references I find are incomplete. Either they don't fully explain things or they "forget" to include key elements of the model. Then I have to try to find another resource to fill in the missing pieces. This process can be very frustrating and time consuming.

What I have tried to do with this book is to spare you as a game programmer from this torturous process. This book is intended to give you all the information you need to install realistic physics into your game programs. This book will be *the* resource that you will turn to for all of your physics needs. For example, if you want to create a car race game, this book will give you not only the basic acceleration equations for a car, but also the drag coefficient for a sportscar and the equations that govern skidding and turning. You won't have to endlessly search the Internet or dig up another book to fill in the missing pieces.

Who This Book Is For

As you probably guessed from the title, this book is focuses on the physics needed by game programmers in order to add realism to their games. You don't need to have any background in physics to make use of this book. You don't need to have an extensive background in math for that matter either. As long as you know basic high-school-level algebra and trigonometry, you will be able to understand the physical models that are presented. This book might have been titled "Basic Physics for Game Programmers" because it focuses on the big picture. You will learn the fundamental physics concepts needed to incorporate physics-based realism into your games with the least amount of pain and suffering on your part. This book does not get bogged down in hopelessly complicated mathematical formulas that would have only a small effect on your game programs.

What This Book Is Not

This book primarily concerns itself with physics and is not a game programming book per se. There will be nothing in this book on game theory or how to render images on the screen. Many other good books on those elements of game programming are available, including *Advanced Java Game Programming* by David Croft (Apress, 2004). This book also focuses on fundamental physics and generally won't go into really advanced topics. For example, equations are presented that will let you create a realistic flight simulator, but advanced subjects like modeling the dynamic stability of an airplane in flight are not covered.

How the Book Is Divided

This book is organized into two main sections. The first six chapters will cover basic concepts, subjects like Newtonian mechanics, kinematics, and collisions. These topics will be applicable to a wide range of game programming situations. The first six chapters will provide you with the tools for your physics toolbelt. Chapters 7 through 15 take the basic concepts and apply them to specific physics models. You will learn how to model cars, planes, boats, and rockets. You will find chapters on developing sports simulations and on how to model explosions, lasers, and projectile penetrations. The later chapters will give you all the information you need to install physics-based realism into your games.

A Note on the Sample Programs

Just about every chapter contains one or more sample games that demonstrate how to code up the physics models presented in the chapter. Because this book focuses on physics, the graphics in the GUIs for the sample games are pretty basic—usually just two-dimensional figures and cartoons. While the graphics are primitive, the physics built into the sample games is real and will realistically depict whatever the game is intended to model.

Game programs can be written in many different programming languages. To keep things consistent throughout the book, the sample programs shown in this book are all written in Java, but the code that implements the physical models should be easily recognizable to anyone with a C, C++, or C# programming background. There are lots of comments throughout the programs, and the code has been made to be as readable as possible. For those of you who prefer to program in C or C#, you can download versions of all of the sample programs written in those languages from the Apress website at www.apress.com.

A Note on the Exercises

Many of the programs include exercises that test the reader's knowledge of the concepts that are covered in the chapter. Usually, the exercises go a little bit beyond the material that is presented in the chapter and are a good way to test your general understanding of the subject matter. The exercises were intended for students who are using this book as part of their course, but other readers are encouraged to try the exercises as well. Answers for the exercises are always provided at the end of the chapter in which they are presented.

Tidbits

Physics really is an interesting subject, and it is one that has been developing over thousands of years. The history of physics is full of many fascinating and quirky characters. Scattered throughout the book are Tidbit sections that provide historical trivia and other interesting information about the subjects being covered in the chapter. Did you ever wonder what they used to make golf balls out of in the old days? Well, there is a tidbit that will tell you.

Contact Me

If you have any questions or comments about the book, you can send me an e-mail at grantepalmer@msn.com. Tell me what you like about the book, or things that you think I could have done better. Also let me know if there are any subjects that you would like to see in future editions of the book.