Generative Models Lab Report # 6

By 312581020 許瀚丰

Deep Learning Spring 2024 Date Submitted: June 13, 2024

Contents

1	Introduction				
	1.1	Proble	em Statement	3	
2	Imp	olemen	tation Details	3	
	2.1	GAN		3	
		2.1.1	DCGAN	3	
		2.1.2	ACGAN	7	
		2.1.3	SAGAN	10	
		2.1.4	Pretrained evaluator Discriminator	13	
	2.2	Diffus	ion Model	15	
		2.2.1	Model Architecture	15	
		2.2.2	Training	16	
		2.2.3	Testing	17	
3	Res	ults ar	nd discussion	18	
	3.1	Show	your synthetic image grids and a denoising process image	18	
		3.1.1	DCGAN	18	
		3.1.2	ACGAN	19	
		3.1.3	SAGAN	19	
		3.1.4	DCGAN with Evaluator Discriminator	20	
		3.1.5	SAGAN with Evaluator Discriminator	20	
		3.1.6	DDPM	21	
		3.1.7	Comparison Result	22	
	3.2	Comp	are the advantages and disadvantages of the GAN and DDPM models	22	
	3.3	Discus	ssion of your extra implementations or experiments	23	
		3.3.1	ACGAN hyperparameter tuning	23	
		3.3.2	DCGAN with eval discriminator hyperparameter tuning	23	

Listings

1	DUGAN Generator	3
2	DCGAN Discriminator	4
3	Hinge Loss	5
4	DCGAN Training	5
5	DCGAN Testing	6
6	ACGAN discriminator	7
7	ACGAN Training	8
8	SAGAN	10
9	Evaluator Discriminator	13
10	DCGAN with Evaluator Discriminator	13
11	DDPM Unet	15
12	DDPM Training	16
13	DDPM Testing	17
List	of Tables	
1	DCGAN testing result	18
2	ACGAN testing result	19
3	SAGAN testing result	19
4	DCGAN with Evaluator Discriminator testing result	20
5	SAGAN with Evaluator Discriminator testing result	20
6	DDPM testing result	21
7	DDPM denoising process	21
8	Result Comparison	22
9	ACGAN Comparision	23
10	DCGAN with eval discriminator Comparision	23

1 Introduction

1.1 Problem Statement

在本次實驗中,我們要嘗試設計Generative Adversarial Network與Diffusion Model,並透過multi-label的condition來完成Image Generation。而在evaluation的部分,會透過一個pretrained在此任務上的resnet18來計算準確率,而本次實驗的目標就是期望讓此準確率越高越好。

2 Implementation Details

在本次作業中,我共嘗試了以下六種不同的Approaches,分別為DCGAN、ACGAN、SAGAN、DCGAN+evaluator discriminator、SAGAN+evaluator discriminator、DDPM。

2.1 GAN

2.1.1 DCGAN

在DCGAN的實作中,我參考了Pytorch所提供的tutorial(https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html),而為了要加上condition進去,我將condition轉換成一組one-hot vector,並透過一個簡單的linear後產生出一組embedding,並跟輸入的noise concatenate後一起送進generator產生圖片,如程式碼1所示。

```
self.model = nn.Sequential(
               *dconv_bn_relu(2 * nz, ngf * 8, 4, 1, 0),
               *dconv_bn_relu(ngf * 8, ngf * 4, 4, 2, 1),
18
               *dconv_bn_relu(ngf * 4, ngf * 2, 4, 2, 1),
               *dconv_bn_relu(ngf * 2, ngf, 4, 2, 1),
20
              nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
              nn.Tanh()
      def forward(self, x, labels):
24
          x = x.view(-1, self.nz, 1, 1)
25
          class_embedding = self.class_embedding(labels).reshape(-1, self.nz, 1, 1)
26
          x = torch.cat((x, class_embedding), dim=1)
          return self.model(x)
```

Listing 1: DCGAN Generator

而對於discriminator,為了將condition加入,我使用了與generator加入condition類似的作法,由於discriminator原始的輸入是一張3*64*64的影像,我透過將condition經過一個linear產生出64*64大小的embedding,並將其沿著channels concatenate,因此輸入就變為4*64*64,如程式碼2所示。

```
class Discriminator(nn.Module):
      def __init__(self, nc, ndf, n_classes):
          super(Discriminator, self).__init__()
          self.class_embedding = nn.Linear(n_classes, 64 * 64)
          self.model = nn.Sequential(
              # input is (nc) x 64 x 64
              nn.Conv2d(nc + 1, ndf, 4, 2, 1, bias=False),
              nn.LeakyReLU(0.2, inplace=True),
              # state size. (ndf) x 32 x 32
              nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
              nn.BatchNorm2d(ndf * 2),
11
              nn.LeakyReLU(0.2, inplace=True),
              # state size. (ndf*2) x 16 x 16
13
              nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
14
              nn.BatchNorm2d(ndf * 4),
              nn.LeakyReLU(0.2, inplace=True),
              # state size. (ndf*4) x 8 x 8
              nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
              nn.BatchNorm2d(ndf * 8),
19
              nn.LeakyReLU(0.2, inplace=True),
```

```
# state size. (ndf*8) x 4 x 4
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),

def forward(self, x, labels):
    labels = labels.float()
    class_embedding = self.class_embedding(labels).view(-1, 1, 64, 64)
    x = torch.cat((x, class_embedding), dim=1)
    return self.model(x)
```

Listing 2: DCGAN Discriminator

Loss Function的部份,我是使用Hinge Loss的作法,其作法是對於discriminator來 説,當送進去的是真實影像,只有D(x) < 1才會更新。而由Generator產生的Fake Image,也只有D(x) > 1才會有更新。而對於generator來說,由於其是希望discriminator給的分數越高越好,因此其目標就是去最大化D(x),此x是由generator產生的Fake Image,由於在Pytorch中對於預設是最小化,因此就將其加上負號,如程式碼3所示。

```
def adversarial_loss_d(r_logit, f_logit):
    r_loss = torch.max(1 - r_logit, torch.zeros_like(r_logit)).mean()
    f_loss = torch.max(1 + f_logit, torch.zeros_like(f_logit)).mean()
    return r_loss, f_loss

def adversarial_loss_g(f_logit):
    f_loss = - f_logit.mean()
    return f_loss
```

Listing 3: Hinge Loss

在training時,首先會先sample一組noise,並將其與condition一起輸入generator產生Fake Image。接著會先訓練discriminator,希望能夠判斷影像是真實的還是由generator產生的。最後再去訓練generator,希望能夠讓discriminator預測的分數越高越好。如程式碼4所示。

```
for i, (imgs, labels) in trange:
    batch_size = imgs.shape[0]
    imgs = imgs.to(device)
    labels = labels.to(device)

# generate fake images
z = torch.randn(batch_size, opt.latent_dim).to(device)
```

```
gen_imgs = generator(z, labels)
9
        Train Discriminator
12
13
      real_pred = discriminator(imgs, labels)
14
      fake_pred = discriminator(gen_imgs.detach(), labels)
      d_real_loss, d_fake_loss = adversarial_loss_d(real_pred, fake_pred)
      d_loss = d_real_loss + d_fake_loss
18
      optimizer_D.zero_grad()
19
      d_loss.backward()
20
      optimizer_D.step()
22
23
24
      # -----
      # Train Generator
25
      # -----
26
27
      validity = discriminator(gen_imgs, labels)
2.8
      g_loss = adversarial_loss_g(validity)
29
30
31
      optimizer_G.zero_grad()
      g_loss.backward()
      optimizer_G.step()
33
      gloss += (g_loss.item())
35
      dloss += d_real_loss.item() + d_fake_loss.item()
36
      acc += eval_model.eval(gen_imgs.detach(), labels.detach())
38
      trange.set_postfix({"epoch":"{}".format(epoch),"g_loss":"{0:.5f}".format(gloss / (
      i + 1)), "d_loss":"{0:.5f}".format(dloss / (i + 1)), "acc":"{0:.5f}".format(acc / (
      i + 1))))
```

Listing 4: DCGAN Training

而在testing時,只需要保留generator,而實際要做的是就是將noise與condition一起輸入generator並產生影像即可。如程式碼5所示。

```
def test(generator, epoch, eval_model):
    generator.eval()

test_dataset = iclevrDataset(opt.data_dir, "test")

new_test_dataset = iclevrDataset(opt.data_dir, "new_test")
```

```
test_dataloader = DataLoader(test_dataset, batch_size=32, num_workers=opt.n_cpu)
      new_test_dataloader = DataLoader(new_test_dataset, batch_size=32, num_workers=opt.
      test_acc, new_test_acc = 0, 0
      with torch.no_grad():
          labels = next(iter(test_dataloader))
          z = torch.randn(32, opt.latent_dim).to(device)
          labels = labels.to(device)
11
          gen_imgs = generator(z, labels)
          acc = eval_model.eval(gen_imgs, labels)
          test_acc = acc
14
          path = os.path.join(opt.test_dir, '{}_test_{:.4f}.png'.format(epoch, acc))
           gen_imgs = (gen_imgs+1)/2
16
           save_image(gen_imgs, path, nrow=8)
18
          labels = next(iter(new_test_dataloader))
19
          z = torch.randn(32, opt.latent_dim).to(device)
          labels = labels.to(device)
21
2.2
           gen_imgs = generator(z, labels)
          acc = eval_model.eval(gen_imgs, labels)
23
          new_test_acc = acc
24
          path = os.path.join(opt.test_dir, '{}_new_test_{{:.4f}.png'.format(epoch, acc))
           gen_imgs = (gen_imgs+1)/2
26
           save_image(gen_imgs, path, nrow=8)
      return test_acc, new_test_acc
```

Listing 5: DCGAN Testing

2.1.2 ACGAN

對於ACGAN的部分,此方法與DCGAN唯一的差別是在discriminator的部分,不需要將generator產生影像與label結合送入discriminator判斷好壞。而是透過在discriminator上增加一個classifier,嘗試透過同時判斷輸入結果的好壞與預測輸入的condition為何來去引導generator的產生圖片,如程式碼6所示,此discriminator是由SAGAN的discriminator修改而成,其中最後的adv_layer是為了判斷產生結果的好壞,而aux_layer則是前面所提的classifier。

```
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.ndf = 16
```

```
self.ncf = 100
          def discriminator_block(in_dim, out_dim, kernel_size, stride, padding, bn=True
      ):
               block = []
               block.append(spectral_norm(nn.Conv2d(in_dim, out_dim, kernel_size, stride,
       padding, bias=False)))
               if bn: block.append(nn.BatchNorm2d(out_dim))
               block.append(nn.LeakyReLU(0.2, inplace=True))
               block.append(nn.Dropout2d(0.25))
               return block
12
13
           self.conv_blocks = nn.Sequential(
14
               *discriminator_block(3, self.ndf, 3, 2, 1, bn=False),
               *discriminator_block(self.ndf, self.ndf * 2, 3, 1, 0),
               *discriminator_block(self.ndf * 2, self.ndf * 4, 3, 2, 1),
17
               *discriminator_block(self.ndf * 4, self.ndf * 8, 3, 1, 0),
18
               *discriminator_block(self.ndf * 8, self.ndf * 16, 3, 2, 1),
               *discriminator_block(self.ndf * 16, self.ndf * 32, 3, 1, 0),
20
2.1
          )
           self.adv_layer = nn.Sequential(
               nn.Linear(5 * 5 * self.ndf * 32, 1),
24
25
26
           self.aux_layer = nn.Sequential(
               nn.Linear(5 * 5 * self.ndf * 32, 24),
               nn.Sigmoid()
28
          )
30
      def forward(self, x):
31
          out = self.conv_blocks(x)
33
          out = out.view(out.shape[0], -1)
          validity = self.adv_layer(out)
34
          label = self.aux_layer(out)
36
          return validity, label
```

Listing 6: ACGAN discriminator

對於training的部份,由於其多了需要預測生成的影像是何種condition,因此需要多一個auxiloss來計算(此Loss是使用BCE Loss計算而來),而此Loss是可以透過調整其權重來(在此以100為例)來增加condition對於訓練的影響,如程式碼7所示。

```
for i, (imgs, labels) in trange:
    batch_size = imgs.shape[0]
```

```
imgs = imgs.to(device)
          labels = labels.to(device)
          # -----
          # Train Discriminator
          # -----
10
          z = torch.randn(batch_size, opt.latent_dim).to(device)
11
          gen_imgs = generator(z, labels)
12
13
          real_pred, real_label = discriminator(imgs)
14
          real_auxi_loss = auxiliary_loss(real_label, labels)
15
          fake_pred, fake_label = discriminator(gen_imgs.detach())
17
          fake_auxi_loss = auxiliary_loss(fake_label, labels)
18
          d_fake_loss, d_real_loss = adversarial_loss_d(real_pred, fake_pred)
20
21
          d_loss = d_real_loss + d_fake_loss + 100 * (real_auxi_loss + fake_auxi_loss)
22
23
24
          optimizer_D.zero_grad()
          d_loss.backward()
25
26
          optimizer_D.step()
27
28
          # Train Generator
          # -----
30
31
          validity, pred_label = discriminator(gen_imgs)
32
33
          g_loss = adversarial_loss_g(validity) + 100 * auxiliary_loss(pred_label,
      labels)
          optimizer_G.zero_grad()
35
          g_loss.backward()
36
37
          optimizer_G.step()
38
          gloss += (g_loss.item())
          dloss += d_real_loss.item() + d_fake_loss.item()
40
          acc += eval_model.eval(gen_imgs.detach(), labels.detach())
41
42
          {\tt trange.set\_postfix(\{"epoch":"\{\}".format(epoch),"g\_loss":"\{0:.5f\}".format(gloss)\}} \\
43
       / (i + 1)), "d_loss":"{0:.5f}".format(dloss / (i + 1)), "acc":"{0:.5f}".format(acc
```

Listing 7: ACGAN Training

2.1.3 **SAGAN**

在本實驗中,我也嘗試使用Self-Attention GAN(SAGAN)的方式來完成,由於我參考的SAGAN程式碼(https://github.com/heykeetae/Self-Attention-GAN)並沒有提供conditional Image Generation,因此我嘗試類似於DCGAN的作法,在generator與discriminator中透過將condition經過一些Linear後接在輸入的部分,如程式碼8所示。

```
class Generator(nn.Module):
      """Generator."""
3
      def __init__(self, batch_size, image_size=64, z_dim=100, conv_dim=64, class_num
          super(Generator, self).__init__()
5
           self.imsize = image_size
          layer1 = []
          layer2 = []
          layer3 = []
          last = []
10
11
12
          repeat_num = int(np.log2(self.imsize)) - 3
          mult = 2 ** repeat_num # 8
13
          layer1.append(SpectralNorm(nn.ConvTranspose2d(z_dim + z_dim, conv_dim * mult,
      4)))
           layer1.append(nn.BatchNorm2d(conv_dim * mult))
16
          layer1.append(nn.ReLU())
           curr_dim = conv_dim * mult
19
          layer2.append(SpectralNorm(nn.ConvTranspose2d(curr_dim, int(curr_dim / 2), 4,
20
      2, 1)))
          layer2.append(nn.BatchNorm2d(int(curr_dim / 2)))
21
          layer2.append(nn.ReLU())
22
23
          curr_dim = int(curr_dim / 2)
24
25
          layer3.append(SpectralNorm(nn.ConvTranspose2d(curr_dim, int(curr_dim / 2), 4,
26
          layer3.append(nn.BatchNorm2d(int(curr_dim / 2)))
```

```
layer3.append(nn.ReLU())
29
           if self.imsize == 64:
30
               layer4 = []
               curr_dim = int(curr_dim / 2)
32
               layer4.append(SpectralNorm(nn.ConvTranspose2d(curr_dim, int(curr_dim / 2),
33
        4, 2, 1)))
               layer4.append(nn.BatchNorm2d(int(curr_dim / 2)))
34
               layer4.append(nn.ReLU())
               self.14 = nn.Sequential(*layer4)
36
               curr_dim = int(curr_dim / 2)
37
38
           self.l1 = nn.Sequential(*layer1)
39
           self.12 = nn.Sequential(*layer2)
           self.13 = nn.Sequential(*layer3)
41
42
           last.append(nn.ConvTranspose2d(curr_dim, 3, 4, 2, 1))
           self.last = nn.Sequential(*last)
44
45
           self.attn1 = Self_Attn( 128, 'relu')
46
           self.attn2 = Self_Attn( 64, 'relu')
47
           self.class_embed = nn.Sequential(
49
               nn.Linear(class_num, z_dim),
50
51
               nn.ReLU(True),
           )
52
53
      def forward(self, z, label):
54
           z = z.view(z.size(0), z.size(1), 1, 1)
           label = self.class_embed(label).view(z.size(0), z.size(1), 1, 1)
57
           z = torch.cat([z, label], 1)
           out=self.l1(z)
58
           out=self.12(out)
           out=self.13(out)
60
           out,p1 = self.attn1(out)
61
62
           out=self.14(out)
           out,p2 = self.attn2(out)
63
64
           out=self.last(out)
65
           return out, p1, p2
66
68
69 class Discriminator(nn.Module):
```

```
"""Discriminator, Auxiliary Classifier."""
71
       def __init__(self, batch_size=64, image_size=64, conv_dim=64, class_num=24):
72
           super(Discriminator, self).__init__()
           self.imsize = image_size
74
           layer1 = []
75
           layer2 = []
76
           layer3 = []
77
           last = []
79
           layer1.append(SpectralNorm(nn.Conv2d(3 + 1, conv_dim, 4, 2, 1)))
80
           layer1.append(nn.LeakyReLU(0.1))
81
82
           curr_dim = conv_dim
84
           layer2.append(SpectralNorm(nn.Conv2d(curr_dim, curr_dim * 2, 4, 2, 1)))
85
           layer2.append(nn.LeakyReLU(0.1))
           curr_dim = curr_dim * 2
87
88
           layer3.append(SpectralNorm(nn.Conv2d(curr_dim, curr_dim * 2, 4, 2, 1)))
89
           layer3.append(nn.LeakyReLU(0.1))
90
91
           curr_dim = curr_dim * 2
92
           if self.imsize == 64:
93
               layer4 = []
               layer4.append(SpectralNorm(nn.Conv2d(curr_dim, curr_dim * 2, 4, 2, 1)))
95
96
               layer4.append(nn.LeakyReLU(0.1))
               self.14 = nn.Sequential(*layer4)
97
               curr_dim = curr_dim*2
98
           self.l1 = nn.Sequential(*layer1)
100
           self.12 = nn.Sequential(*layer2)
           self.13 = nn.Sequential(*layer3)
           last.append(nn.Conv2d(curr_dim, 1, 4))
           self.last = nn.Sequential(*last)
104
           self.attn1 = Self_Attn(256, 'relu')
106
107
           self.attn2 = Self_Attn(512, 'relu')
           self.label_embed = nn.Linear(class_num, 64 * 64)
108
110
       def forward(self, x, label):
           label = self.label_embed(label).view(x.size(0), 1, x.size(2), x.size(3))
112
           x = torch.cat([x, label], 1)
```

```
out = self.l1(x)
out = self.l2(out)
out = self.l3(out)
out = self.l3(out)

out,p1 = self.attn1(out)
out=self.l4(out)

out,p2 = self.attn2(out)

out1=self.last(out)

return out1.squeeze(), p1, p2
```

Listing 8: SAGAN

2.1.4 Pretrained evaluator Discriminator

由於助教有提供一個用於判斷accuracy的模型,因此我也嘗試直接在DCGAN與SAGAN中嘗試加上Pretrained evaluator作為另一個discriminator,用於幫助模型使其產生的結果能夠有更高的accuracy。而在實作上(以DCGAN為例,SAGAN也是用相同方法),與ACGAN的作法有些類似,只是將判斷影像的好壞與用於預測label的部分分別使用不同的discriminator來產生,evaluator discriminator如程式碼9所示。

```
class aux_discriminator(nn.Module, evaluation_model):
    """Discriminator containing the auxiliary classifier."""

def __init__(self):
    nn.Module.__init__(self)
    evaluation_model.__init__(self)
    self.resnet18.requires_grad_(False)

def forward(self, x):
    out = self.resnet18(x)
    return out
```

Listing 9: Evaluator Discriminator

而在training時,由於此discriminator不需要訓練,因此我直接將其用於訓練generator的部分,計算産生出的影像gen_imgs,將其經過evaluator discriminator,並透過BCE Loss來計算結果(aux_loss),並將此loss用於generator的訓練,如程式碼10所示。

```
1 for i, (imgs, labels) in trange:
2
3  batch_size = imgs.shape[0]
```

```
imgs = imgs.to(device)
      labels = labels.to(device)
5
6
      z = torch.randn(batch_size, opt.latent_dim).to(device)
      gen_imgs = generator(z, labels)
10
       # Train Discriminator
       # -----
12
      real_pred = discriminator(imgs, labels)
14
      fake_pred = discriminator(gen_imgs.detach(), labels)
15
      d_real_loss, d_fake_loss = adversarial_loss_d(real_pred, fake_pred)
16
      d_loss = d_real_loss + d_fake_loss
18
       optimizer_D.zero_grad()
19
20
      d_loss.backward()
      optimizer_D.step()
21
22
23
24
25
       # Train Generator
       # -----
26
27
      validity = discriminator(gen_imgs, labels)
       aux_loss = nn.BCELoss()(a_discriminator(gen_imgs), labels)
29
30
       g_loss = adversarial_loss_g(validity) + aux_loss
31
32
      optimizer_G.zero_grad()
       g_loss.backward()
33
34
      optimizer_G.step()
35
       gloss += (g_loss.item())
36
      dloss += d_real_loss.item() + d_fake_loss.item()
37
       acc += eval_model.eval(gen_imgs.detach(), labels.detach())
38
39
      trange.set\_postfix({\tt "epoch":"{\tt "format(epoch)}", \tt "g\_loss":"{\tt  0:.5f}".format(gloss / (trange.set\_postfix))})
40
      i + 1)), "d_loss":"{0:.5f}".format(dloss / (i + 1)), "acc":"{0:.5f}".format(acc / (
      i + 1))))
```

Listing 10: DCGAN with Evaluator Discriminator

2.2 Diffusion Model

在DDPM的部分,我是使用huggingface所提供的diffusers來實作,此工具能夠快速的建立DDPM的model與denoising所使用的scheduler等。

2.2.1 Model Architecture

在DDPM模型架構的部分,我使用UNet2DModel來建立,而為了將condition加入訓練中,我嘗試使用了一個linear來將condition轉為一個embedding,並在forward時將condition的資訊加入DDPM的訓練中。且由於在Diffusers的實作中,是將class_embedding的shape設定為Unet第一個Block的out_dim的四倍,因此我在實作時,Unet的Downsample的dim是從class_embedding的四分之一開始往上加。而在forward的部分,就是同時將輸入的noise、timesteps、condition一起送進模型中,如程式碼11所示。

```
1 import torch
2 import torch.nn as nn
3 from diffusers import UNet2DModel
5 class conditionalDDPM(nn.Module):
      def __init__(self, num_classes=24, dim=512):
          super().__init__()
          channel = dim // 4
          self.ddpm = UNet2DModel(
9
               sample_size = 64,
               in_channels = 3,
               out_channels = 3,
13
               layers_per_block = 2,
               block_out_channels = [channel, channel, channel*2, channel*2, channel*4,
14
      channel *4],
               down_block_types=["DownBlock2D", "DownBlock2D", "DownBlock2D", "
15
      DownBlock2D", "AttnDownBlock2D", "DownBlock2D"],
               up_block_types=["UpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "
16
      UpBlock2D", "UpBlock2D"],
               class_embed_type="identity",
18
           self.class_embedding = nn.Linear(num_classes, dim)
19
      def forward(self, x, t, label):
21
          class_embed = self.class_embedding(label)
```

```
return self.ddpm(x, t, class_embed).sample
```

Listing 11: DDPM Unet

2.2.2 Training

在DDPM的training中,我所使用的Noise schedule是使用squaredcos_cap_v2,而total timestep是1000。在training loop中,在剛開始會先sample一組與要產生的影像大小的noise與隨機的timesteps,接著就將原始的影像加上noise(noise會依照timesteps的值去調整其大小)。而模型實際要做的是,就是去預測此noise為何,因此loss function的部分就是透過MSE去最小化預測的noise與實際的noise的差距,如程式碼12所示。

```
def get_random_timesteps(batch_size, total_timesteps, device):
      return torch.randint(0, total_timesteps, (batch_size,)).long().to(device)
4 def train_one_epoch(epoch, model, optimizer, train_loader, loss_function,
      noise_scheduler, total_timesteps, device):
      model.train()
      train_loss = []
      progress_bar = tqdm(train_loader, desc=f'Epoch: {epoch}', leave=True)
      for i, (x, label) in enumerate(progress_bar):
          batch_size = x.shape[0]
          x, label = x.to(device), label.to(device)
          noise = torch.randn_like(x)
11
          timesteps = get_random_timesteps(batch_size, total_timesteps, device)
13
          noisy_x = noise_scheduler.add_noise(x, noise, timesteps)
14
          output = model(noisy_x, timesteps, label)
16
          loss = loss_function(output, noise)
18
          optimizer.zero_grad()
19
          loss.backward()
20
          optimizer.step()
21
2.2
           train_loss.append(loss.item())
23
           progress_bar.set_postfix({'Loss': np.mean(train_loss)})
24
25
      return np.mean(train_loss)
```

Listing 12: DDPM Training

2.2.3 Testing

在testing的部分,與training有些類似,首先要先sample一組與要生成的影像大小相同的noise,接著就一步一步(根據timesteps)的去預測根據目前的x與timesteps預測noise為何,再透過noise scheduler的step將影像逐漸去除掉noise。跟Training不同的是,testing是一個step一個step慢慢的去denoise,而Training則是用sample timesteps的方式去預測noise,因此其在testing時產生影像會慢上不少,如程式碼13。

```
1 def inference(dataloader, noise_scheduler, timesteps, model, eval_model, save_prefix='
      test'):
      all_results = []
      acc = []
      progress_bar = tqdm(dataloader)
      for idx, y in enumerate(progress_bar):
          y = y.to(device)
          x = torch.randn(1, 3, 64, 64).to(device)
          denoising_result = []
          for i, t in enumerate(noise_scheduler.timesteps):
               with torch.no_grad():
                   residual = model(x, t, y)
11
              x = noise_scheduler.step(residual, t, x).prev_sample
13
               if i % (timesteps // 10) == 0:
                   denoising_result.append(x.squeeze(0))
15
16
          acc.append(eval_model.eval(x, y))
17
          progress_bar.set_postfix_str(f'image: {idx}, accuracy: {acc[-1]:.4f}')
18
19
          denoising_result.append(x.squeeze(0))
20
          denoising_result = torch.stack(denoising_result)
          row_image = make_grid((denoising_result + 1) / 2, nrow=denoising_result.shape
      [0], pad_value=0)
           save_image(row_image, f'result/{save_prefix}_{idx}.png')
23
24
           all_results.append(x.squeeze(0))
25
26
      all_results = torch.stack(all_results)
      all_results = make_grid(all_results, nrow=8)
27
      save_image((all_results + 1) / 2, f'result/{save_prefix}_result.png')
      return acc
```

Listing 13: DDPM Testing

3 Results and discussion

3.1 Show your synthetic image grids and a denoising process image

3.1.1 DCGAN

DCGAN的實驗結果如1所示,其在test與new_test的準確率分別為0.7361與0.7381。

Table 1: DCGAN testing result

3.1.2 ACGAN

ACGAN實驗結果如2所示,其在test與new_test的準確率分別為0.7639與0.8095。

Table 2: ACGAN testing result

3.1.3 SAGAN

SAGAN實驗結果如3所示,其在test與new_test的準確率分別為0.7083與0.8095。

Table 3: SAGAN testing result

3.1.4 DCGAN with Evaluator Discriminator

DCGAN with Evaluator Discriminator實驗結果如4所示,其在test與new_test的準確率分別為0.8889與0.9048。

Table 4: DCGAN with Evaluator Discriminator testing result

3.1.5 SAGAN with Evaluator Discriminator

DCGAN with Evaluator Discriminator實驗結果如5所示,其在test與new_test的準確率分別為0.9306與0.9167。

Table 5: SAGAN with Evaluator Discriminator testing result

3.1.6 DDPM

DDPM實驗結果如6所示,其在test與new_test的準確率分別為0.9583與0.9375。

Table 6: DDPM testing result

DDPM的denosing process如表7所示,上方為此產生影像所給的condition。

Table 7: DDPM denoising process

3.1.7 Comparison Result

最終每個方法在test與new test產生的結果,經由evaluator預測的準確率如表8所示。 從結果中我們可以觀察到,在GAN的方法中,SAGAN加上evaluator的方法是最好 的,test與new test都可以達到0.91以上的結果。而使用DDPM進行訓練產生的結果則 更加卓越,兩者皆可以達到0.93以上。

Approach	test accuracy	new test accuracy	
DCGAN	0.7361	0.7381	
ACGAN	0.7639	0.8095	
SAGAN	0.7083	0.8095	
DCGAN with evaluator	0.8889	0.9048	
SAGAN with evaluator	0.9306	0.9167	
DDPM	0.9583	0.9375	

Table 8: Result Comparison

3.2 Compare the advantages and disadvantages of the GAN and DDPM models

從這次實驗我發現,雖然GAN與Diffusion的目標都是希望利用condition來生成對應的影像,然而兩者在實作與產生的結果上仍有一些明顯的優缺點。

對於GAN而言,其在訓練上相較於DDPM難訓練許多,不僅有許多超參數需要設定,在訓練時也不太穩定,有時也會遇到train到一半產生的影像就壞掉,並且後續也不會改善。且GAN也較為容易產生mode collapse,同樣的condition生成的影像也都較為類似,缺乏Diversity。然而在inference時,GAN只需要經過Generator就能直接產生,所需花費的時間與DDPM相比少了非常多。

而對於DDPM來說,使用DDPM在訓練上相較於GAN在訓練上更為穩定一些, 且生成的影像多樣性較高。但如上面所提的,DDPM在生成影像需要一步一步的慢 慢denoising,因此生成影像的時間成本非常高。

3.3 Discussion of your extra implementations or experiments

3.3.1 ACGAN hyperparameter tuning

在ACGAN中,由於其Discriminator需要同時判斷生成的好壞與生成影像預測的condition,因此調整兩者的比例也非常影響產生的結果,因此在本次實驗中,我嘗試去調整生成影像預測的condition的權重,來讓產生的影像能夠有更好的accuracy。實驗結果如表9,從結果中我們可以觀察到將weight調高,生成的accuracy確實會有所提升。另外,我也嘗試將weight設成1000,但其直接導致完全生成不出正常的影像,因此未來或許能夠使用類似scheduling的方式,讓其在初期時專注於產生品質好的影像,後其在逐漸將condition的weight逐步調高,或許就能讓結果更好。

Approach	weight	test accuracy	new test accuracy
ACGAN	100	0.6944	0.7738
ACGAN	200	0.7639	0.7381
ACGAN	300	0.7639	0.8095

Table 9: ACGAN Comparision

3.3.2 DCGAN with eval discriminator hyperparameter tuning

在DCGAN with eval Discriminator中,與ACGAN類似,仍需要去調整eval discriminator的權重。但由於在原始的DCGAN的Discriminator就已經有將condition的資訊加入,因此在訓練時eval discriminator的權重不需要設得太大,且此discriminator是不需要訓練的,因此只需要在訓練Generator時加入即可,實驗結果如表10所示,從實驗結果中可以發現,加上eval discriminator可以讓預測的accuracy大幅上升。

Approach	weight	test accuracy	new test accuracy
DCGAN with eval discriminator	1	0.8889	0.9048
DCGAN with eval discriminator	0.5	0.8611	0.8571
DCGAN with eval discriminator	0.25	0.8056	0.8095
DCGAN	0	0.7361	0.7381

Table 10: DCGAN with eval discriminator Comparision