import libraries

- 1 # Import necessary libraries
- 2 import pandas as pd
- 3 from sklearn.model_selection import train_test_split
- 4 from sklearn.ensemble import RandomForestClassifier
- 5 from sklearn.metrics import accuracy_score, classification_report
- 6 import warnings
- 7 from sklearn.ensemble import RandomForestRegressor
- 8 warnings.filterwarnings('ignore')
- 9 from sklearn.metrics import mean_squared_error, r2_score

Load the Titanic Dataset

- 1 url = "https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv"
- 2 titanic_data = pd.read_csv(url)
- 3 titanic_data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fi
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9:
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0

Drop rows and missing values

Drop rows with missing target values

select relevant features and target variable

```
1
   # Select relevant features and target variable
2
   X = titanic_data[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare']]
3
   y = titanic_data['Survived']
   print(X,y)
        Pclass
                   Sex
                         Age SibSp Parch
                   male 22.0
                                               7.2500
                                   1
                                      0 71.2833
0 7.9250
0 53.1000
0 8 05
              1 female 38.0
   1
                                    1
             3 female 26.0
                                    0
             1 female 35.0
                                   1
                                  0
             3
                 male 35.0
                               0 0 13.0000
0 0 30.0000
1 2 23.4500
0 0 30.0000
0 0 7.7500
   886
            2
                   male 27.0
   887
            1 female 19.0
            3 female
   888
                         NaN
                  male 26.0
   889
             1
                   male 32.0
              3
   890
   [891 rows x 6 columns] 0
          1
   2
   3
          1
          0
   886
   887
          1
   888
          0
   889
          1
   890
   Name: Survived, Length: 891, dtype: int64
```

Categorical variable sex to numerical using.loc

```
1 # Convert categorical variable 'Sex' to numerical using .loc
2
3 X.loc[:, 'Sex'] = X['Sex'].map({'female': 0, 'male': 1})
```

Handle missing values

```
1 # Handle missing values in the 'Age' column using .loc
2
3 X.loc[:, 'Age'].fillna(X['Age'].median(), inplace=True)
```

Split dataset training and testing set

R-squared Score: 0.17

```
1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
1 # Create a Random Forest Classifier
3 rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
1 # Train the classifier
2 rf_classifier.fit(X_train, y_train)
             RandomForestClassifier
   RandomForestClassifier(random_state=42)
1 # Make predictions on the test set
2 y_pred = rf_classifier.predict(X_test)
1 # Evaluate the model
3 accuracy = accuracy_score(y_test, y_pred)
5 classification_rep = classification_report(y_test, y_pred)
1 # Print the results
3 print(f"Accuracy: {accuracy:.2f}")
5 print("\nClassification Report:\n", classification_rep)
   Accuracy: 0.80
   Classification Report:
                  precision
                                recall f1-score
                                                   support
              0
                      0.82
                                 0.85
                                           0.83
                                                      105
              1
                      0.77
                                 0.73
                                           0.75
                                                       74
       accuracy
                                           0.80
                                                      179
                      0.79
                                 0.79
                                           0.79
                                                      179
      macro avg
   weighted avg
                      0.80
                                 0.80
                                           0.80
                                                      179
1 # Evaluate the model
2 mse = mean_squared_error(y_test, y_pred)
3 r2 = r2_score(y_test, y_pred)
1 # Print the results
2 print(f"Mean Squared Error: {mse:.2f}")
3 print(f"R-squared Score: {r2:.2f}")
   Mean Squared Error: 0.20
```