

Patent Abstracts of Japan

PUBLICATION NUMBER : 11055929
 PUBLICATION DATE : 26-02-99

APPLICATION DATE : 04-08-97
 APPLICATION NUMBER : 09221908

APPLICANT : CANON INC;

INVENTOR : SUZUKI TAKASHI;

INT.CL. : H02K 37/16

TITLE : ELECTROMAGNETIC DRIVE MOTOR
 AND EQUIPMENT THEREOF

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-55929

(43)公開日 平成11年(1999)2月26日

(51)Int.Cl.⁶
H 0 2 K 37/16

識別記号

F I
H 0 2 K 37/16

E

審査請求 未請求 請求項の数6 FD (全 7 頁)

(21)出願番号 特願平9-221908

(22)出願日 平成9年(1997)8月4日

(71)出願人 000001007
キヤノン株式会社
東京都大田区下丸子3丁目30番2号
(72)発明者 鈴木 隆司
東京都大田区下丸子3丁目30番2号 キヤ
ノン株式会社内
(74)代理人 弁理士 田中 増頭 (外1名)

(54)【発明の名称】 電磁駆動モータおよび電磁駆動モータ装置

(57)【要約】

【目的】 電磁駆動モータ(ステッピングモータ)内のロータの外周面着磁部と回転出力伝達ギアを共通化することで電磁駆動モータのスラスト方向、特に回転出力伝達ギア部分のスラスト方向の出っ張りを無くしてコンパクト、かつ高精度な電磁駆動モータを提供する。

【構成】 外周面に所定のピッチで着磁部を有してなるロータと、ロータの外周面着磁部に対して電気角で略90°の開角をもって形成した2つの磁極部を有する第1及び第2のステータと、を設ける。そして、第1及び第2のステータの2つの磁極部を電気角で略180°離間して形成すると共にこれら第1及び第2のステータは電気角で(90+180m)。(ここで、mは0または正の整数である)離間して配置する。また、ロータの外周面着磁部にロータの磁極数に対して整数倍の歯を持つギアを形成する。

【特許請求の範囲】

【請求項1】 外周面に所定のピッチで着磁部を有して
なるロータと、該ロータの外周面着磁部に対して電気角
で略90°の開角をもって形成した2つの磁極部を有す
る第1及び第2のステータと、を備えた電磁駆動モータ
において、

前記第1及び第2のステータの2つの磁極部を電気角で略180°離間して形成すると共にこれらの第1及び第2のステータを電気角で(90+180m)°。(ここで、mは0または正の整数である)離間して配置し、前記ロータの外周面着磁部に該ロータの磁極数に対して整数倍の歯を持つギアを形成したことを特徴とする電磁駆動モータ。

【請求項2】 前記ロータの外周面着磁部の着磁中心を、前記ギアの谷部の中心に一致させて構成したことを特徴とする請求項1記載の電磁駆動モータ。

【請求項3】 前記ロータの外周面着磁部の着磁中心を、前記ギアの谷部の中心に対して所定角度だけずらして構成したことを特徴とする請求項1記載の電磁駆動モータ。

【請求項4】 外周面に所定のピッチで着磁部を有して
なるロータと、該ロータの外周面着磁部に対して電気角
で略90°の開角をもって形成した2つの磁極部を有する
第1及び第2のステータと、前記ロータからの回転出
力を受けて駆動する被駆動部材と、を備えた電磁駆動モ
ータ装置において、

前記第1及び第2のステータの2つの磁極部を電気角で略180°離間して形成すると共にこれらの第1及び第2のステータは電気角で(90+180m)°。(ここで、mは0または正の整数である)離間して配置し、前記ロータの外周面着部に該ロータの磁極数に対して整数倍の歯を持つギアを形成し、該ギアと連結する前記被駆動部材側のギアを非磁性体によって形成することを特徴とする電磁駆動モータ装置。

【請求項5】 前記ロータの外周面着磁部の着磁中心を、前記ギアの谷部の中心に一致させて構成したことを特徴とする請求項4記載の電磁駆動モータ装置。

【請求項6】 前記ロータの外周面着磁部の着磁中心を、前記ギアの谷部の中心に対して所定角度だけずらして構成したことを特徴とする請求項4記載の電磁駆動モータ装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電磁駆動モータおよび電磁駆動モータ装置に関し、特にステッピングモータのスラスト方向での薄型化を図るためのモータ構成に関するものである。

{0002}

【従来の技術】従来、電磁駆動モータとしてのステッピングモータの構成としては、特開平3-207254

号、特許公報第2566031号で示すようにロータの外周面に所定のピッチで着磁部を形成する一方、ロータの回転出力を伝達する為のギアを着磁部に対してスラスト方向にずれた位置に形成するよう構成していた。

【0003】特に、特開平3-207254号には、ロータ外周面着磁部に対してその着磁中心に溝部を設けることで多くのコギングトルクによる安定なロータ停止位置を設けることができる事が開示されている。

【0004】一方、特許公報第2566031号においては、ロータ外周面着磁部に対してその着磁中心から所定量ずれた位置に溝部を設けることで通電を切った時にはコギングによるロータ引き寄せ方向を特定して高精度な停止位置を得る（通電を切った時のコギング力によるロータ回転を時計方向または反時計方向に特定させ、停止位置精度を $1/2$ とする。即ち、通電を切った時に不安定となる停止位置で通電を切ると、コギングトルクによって、時計方向へ1ステップ分ずれるか、反時計方向へ1ステップ分ずれるかを特定できず、結果的に ± 1 ステップの誤差が生じることを防止して1ステップ以内の停止精度とする構成）ことのできる電磁駆動モータが提案されている。

【0005】

【発明が解決しようとする課題】しかしながら、上記従来例では、ロータの回転力を伝達する為のギアをロータ外周面着磁部かつ外周面着磁部に設けた溝部に対してスラスト方向にずれた位置に形成するよう構成している為、ロータとステータ等にて構成される電磁駆動モータとして回転出力伝達の為のギア分だけスラスト方向に飛び出した形となり、即ちスラスト方向大の電磁駆動モータとなっていた。従って、このままの形にてこの電磁駆動モータを製品に搭載すると、製品として大型化してしまう危険性がある。このことは近年の製品コンパクト化に逆行するものであり、製品としての魅力が欠けてしまうという問題点が生じていた。

【0006】したがって、本発明の目的は、電磁駆動モータ（ステッピングモータ）内のロータの外周面着磁部と回転出力伝達ギアを共通化することで電磁駆動モータのスラスト方向、特に回転出力伝達ギア部分のスラスト方向の出っ張りを無くしてコンパクト、かつ高精度な電磁駆動モータを提供することにある。

[0007]

【課題を解決するための手段】上記目的を達成する為、本発明は、第1に、外周面に所定のピッチで着磁部を有してなるロータと、該ロータの外周面着磁部に対して電気角で略90°の開角をもって形成した2つの磁極部を有する第1及び第2のステータと、を備えた電磁駆動モータにおいて、前記第1及び第2のステータの2つの磁極部を電気角で略180°離間して形成すると共にこれらの第1及び第2のステータを電気角で(90+180m)。(ここで、mは0または正の整数である)離間し

て配置し、前記ロータの外周面着磁部に該ロータの磁極数に対して整数倍の歯を持つギアを形成したことにより、該ギアの谷部が特開平3-207254号におけるロータ外周面着磁部に設けた溝部と同様な役目（ギアの谷部が溝部の代用）、即ち、多くのコギングトルクによる安定なロータ停止位置を設けることができる（ロータの磁極数に対して整数倍の歯を持つギアにしたことでロータ磁極に対しての溝の位相、即ちロータ磁極に対してのギアの谷部の位相を一致することが可能）一方、ロータの外周面着磁部と回転出力伝達ギアとを共通化することで、従来での回転出力伝達ギア部のスラスト方向の出っ張りの無いコンパクトな電磁駆動モータを提供できる。

【0008】本発明は、第2に、前述の構成に加えて、前記ロータの外周面着磁部の着磁中心を、前記ギアの谷部の中心に対して所定角度だけずらして構成したことにより、該ギアの谷部が特許公報第2566031号におけるロータ外周面着磁中心から所定量ずれた位置に設けた溝部と同様な役目（ギア谷部が溝部の代用）、即ち、通電を切った時にはコギングによるロータ引き寄せ方向を特定して高精度な停止位置を得る一方、ロータの外周面着磁部と回転出力伝達ギアとを共通化できることで、従来での回転出力伝達ギア部のスラスト方向の出っ張りの無いコンパクトな電磁駆動モータを提供できる。

【0009】本発明は、第3に、外周面に所定のピッチで着磁部を有してなるロータと、該ロータの外周面着磁部に対して電気角で約90°の開角をもって形成した2つの磁極部を有した第1及び第2のステータと、前記ロータからの回転出力を受けて駆動する被駆動部材と、を備えた電磁駆動モータ装置において、前記第1及び第2のステータの2つの磁極部を電気角で約180°離間して形成すると共にこれらの第1及び第2のステータを電気角で(90+180m)。（ここで、mは0または正の整数である）離間して配置し、前記ロータの外周面着磁層に該ロータの磁極数に対して整数倍の歯を持つギアを形成し、該ギアと連結前記被駆動部材側のギアを非磁性体によって形成することにより、該ギアの谷部が特開平3-207254号におけるロータ外周面着磁部に設けた溝部と同様な役目（ギアの谷部が溝部の代用）、即ち、多くのコギングトルクによる安定なロータ停止位置を設けることができる（ロータの磁極数に対して整数倍の歯を持つギアにしたことでロータテ磁極に対して溝の位相、即ちロータ磁極に対してのギアの谷部の位相を一致することが可能）一方、ロータの外周面着磁部と回転出力伝達ギアとを共通化できることで、従来での回転出力伝達ギア部のスラスト方向の出っ張りの無いコンパクトな電磁駆動モータを提供でき、さらにその電磁駆動モータにより駆動される被駆動部材を非磁性体としたことでロータと被駆動部材との間で磁気回路が閉成することによるロータ回転効率ダウンの発生の無い高性能な電磁駆動モータ装置を提供できる。

無い高性能な電磁駆動モータ装置を提供できる。

【0010】本発明は、第4に、前述の構成に加えて、前記ロータの外周面着磁部の着磁中心を、前記ギアの谷部の中心に対して所定角度だけずらして構成したことにより、該ギアの谷部が特許公報第2566031号におけるロータ外周面着磁中心から所定量ずれた位置に設けた溝部と同様な役目（ギア谷部が溝部の代用）、即ち、通電を切った時にはコギングによるロータ引き寄せ方向を特定して高精度な停止位置を得られる電磁駆動モータを提供することができる一方、ロータの外周面着磁部と回転出力伝達ギアとを共通できることで従来での回転出力伝達ギア部のスラスト方向の出っ張りの無いコンパクトな電磁駆動モータが提供でき、さらに電磁駆動モータにより駆動される被駆動部材を非磁性体としたことで、ロータと被駆動部材との間で磁気回路が閉成することによるロータ回転効率ダウンの発生の無い高性能な電磁駆動モータ装置を提供できる。

【0011】

【実施例】

（実施例1）以下、本発明の電磁駆動モータの実施例1としての構成を図1、図2を参照して説明する。図1は本発明の電磁駆動モータ（ステッピングモータ）の斜視図であり、図2は電磁駆動モータ（ステッピングモータ）の正面図である。図において、1は第1のステータであり、第1のステータ1は、例えばケイ素鋼板を積層して作られ、略コの字形状を成す。また、第1のステータ1には第1及び第2の伸長部1a、1bが設けられ、伸長部1a、1bの先端部には、それぞれ後述するロータ5の外周面と所定の空隙を介して対向する第1及び第2の磁極部1c、1dが設けられている。尚、第1のステータ1の第1及び第2の磁極部1c、1dはそれぞれ電気角で約90°の開角を有するとともに、互いに電気角で180°離間されている。さらに、第1のステータ1には位置決め用の穴1eが設けられている。

【0012】2は第1のステータ1の伸長部1aに装着される第1のコイルであり、第1のコイル2は、プラスチックで作られたボビン2aに銅線2bを巻き回し、ボビン2aに圧入された端子2c、2dに銅線2bの両端すなわち巻き始めと巻き終わりを半田付け等の手段により、電気的に接続して成るものである。

【0013】3は第2のステータであり、第2のステータ3も第1のステータ1と同様に例えばケイ素鋼板を積層して作られ、略コの字形状を成す。また、第2のステータ3には第1及び第2の伸長部3a、3bが設けられ、伸長部3a、3bの先端部には、それぞれ後述するロータ5の外周面と所定の空隙を介して対向する第1及び第2の磁極部3c、3dが設けられている。尚、第2のステータ3の第1及び第2の磁極部3c、3dはそれぞれ電気角で約90°の開角を有すると共に、互いに電気角で180°離間されている。さらに、第2のステータ3には位置決め用の穴3eが設けられている。

タ3には位置決め用の穴3eが設けられている。
【0014】4は第2のステータ3の伸長部3aに装着されてる第2のコイルであり、第2のコイル4は、前記第1のコイル2と同様にプラスチックで作られたボビン4aに銅線4bを巻き回し、前記ボビン4aに圧入された端子4c、4dに銅線4bの両端すなわち巻き始めと巻き終わりを半田付け等の手段により、電気的に接続して成るものである。尚、端子2c、2d、4c、4dが図示せぬドライブ回路に接続されることで電磁駆動モータとして駆動可能となる。

【0015】5は電磁駆動モータの駆動源となるロータであり、ロータ5はプラスチックマグネットによって作られ、回転軸5a、5bが一体成形され、外周面に6極の磁極ができる様に着磁されている。また、ロータ5の外周面にはギア5cが形成されており、ギア5cの谷部がロータ5の磁極のそれぞれN極及びS極の中心位置に一致するよう形成されている。また、ギア5cは非磁性体によって構成された被駆動部材に連結している(図2参照)。被駆動部材を非磁性体とした理由としてはロータと被駆動部材との間で磁気回路が閉成することによるロータ回転効率ダウンを発生させないようにする為である。

【0016】6は、例えばプラスチックにより一体成形で作られたモータ固定部材であり、モータ固定部材6には第1のステータ1の穴1eを嵌合して第1のステータ1自体の位置決めを行う為の位置決めピン6aと、第2のステータ3の穴3eを嵌合して第2のステータ3自体の位置決めを行う為の位置決めピン6bとを有している。また、モータ固定部材6にはロータ5の回転軸5bを嵌合する穴6cを有しており、ロータ5を回転自在に軸支している。一方、ロータ5の回転軸5aは、後述する軸受部材7に設けられた穴7aに嵌合されることで回転自在に軸支される。

【0017】7は、例えばプラスチックの一体成形により作られ、ロータ5の回転軸5aを軸支する穴7aと、フック7b、7c、7d、7e、7fが設けられている。これらのフック7b、7c、7d、7e、7fはそれぞれモータ固定部材6に設けられた段差を有する溝6d、6e、6f、6g、6h(6gと6hは図示せず)と係合し、段差フックが係止することにより軸受部材7はモータ固定部材6に固定される。尚、軸受部材7とモータ固定部材6との位置決めは、モータ固定部材6に設けたピン6i、6jに軸受部材7に設けた穴7g、7hが嵌入することで行われる。

【0018】次に、図2を参照して、第1のステータ1の磁極部1c、1d、第2のステータ3の磁極部3c、3dの位相関係について説明する。前述の通り、各磁極部1cと1d、3cと3dは、電気角で約90°の開角を有し、第1のステータ1の磁極部1c、1dは互いに電気角で約180°離間されている。また、第2のステ

タ3の磁極部3c、3dも互いに電気角で約180°離間している。また、第1のステータ1の磁極部1cと第2のステータ3の磁極部3cは互いに電気角で450°離間しており、これは第1のステータ1と第2のステータ3の位相が90°であることと等価であり、周知の2相のステッピングモータの駆動方法、例えば1相励磁、2相励磁、1-2相励磁法等により、時計方向あるいは反時計方向に回転可能とするものである。

【0019】次に、図2、図3を参照して本実施例による電磁駆動モータの駆動源となるステッピングモータのコギングトルクについて説明する。尚、図3は図2におけるロータの着磁中心にギアの谷部を有するステッピングモータにおける各相の出力トルク、コギングトルク及び全体のコギングトルクを表す図である。ここで角度は、着磁のN極、S極一対を360°とする電気角で示し、モータの回転方向は反時計回り方向である。角度0°は図2に示した位置即ち着磁の中心方向が第1のステータ1の磁極の中心と一致する位置を表している。

【0020】図3において、Aは図2の第1のステータ1の磁極1cにS極が発生する様に第1のコイル2に通電を行った際の第1のステータ1とロータ5に作用し合うトルクを示し、CAは第1のステータ1とロータ5に作用し合うコギングトルクを表す。また同様にBは第2のステータ3の磁極3cにN極が発生する様に第2のコイル4に通電を行った際の第2のステータ3とロータ5に作用し合うトルクを示し、CBは第2のステータ3とロータ5に作用し合うコギングトルクを表す。Cは第1のステータ1及び第2のステータ3の双方によって発生するコギングトルクであり、前記CAとCBの和である。

【0021】この図3の特性線図より明らかな様に本実施例による電磁駆動モータ(ステッピングモータ)は、ロータ5の1回転中に着磁極数の2倍の数のコギングトルクによる安定な停止位置を有することができた為(従来ではコギングトルクによる安定な停止位置は着磁極数に等しい数しか無かった)、高精度な電磁駆動モータを得ることができる(その停止位置は1相通電位置に等しい位置である)。

【0022】尚、第1のコイル2に通電した時の安定な停止位置は、第1のステータ1が発生したコギングトルクによる安定な停止位置と一致し、また、第2のコイル4に通電した時の安定な停止位置は、第2のステータ3が発生したコギングトルクによる安定な停止位置と一致する。また、第1のコイル2及び第2のコイル4共に通電を行った場合の停止点S及びS'はコギングトルクによる不安定な停止位置と一致する。

【0023】(実施例2)以下、本発明の電磁駆動モータの実施例2を図4、図5を参照して説明する。尚、実施例2での電磁駆動モータとしの構成は、ロータ51以外は実施例1と同じである為、ロータ51以外の構成の

詳細説明は省略する。この実施例2でのロータ51と第1の実施例でのロータ5と異なる点は、ギアの谷部中心Pがそれぞれ着磁中心Qに対して反時計回り方向にθだけずれた位置に設けられている点である。

【0024】図4は電磁駆動モータ（ステッピングモータ）の正面図であり、図5は図4におけるロータの着磁中心から反時計方向にθだけずれた位置にギアの谷部を有するステッピングモータにおける各相の出力トルク、コギングトルク及び全体のコギングトルクを表す図である。ここで、角度は、着磁のN極、S極一対を360°とする電気角で示し、モータの回転方向は反時計回り方向である。角度0°は図4に示した位置即ち着磁の中心方向が第1のステータ1の磁極の中心と一致する位置を表している。

【0025】図5において、Aは図4の第1のステータ1の磁極1cにS極が発生する様に第1のコイル2に通電を行った際の第1のステータ1とロータ51に作用し合うトルクを示し、CAは第1のステータ1とロータ51に作用し合うコギングトルクを表す。また同様にBは第2のステータ3の磁極3cにN極が発生する様に第2のコイル4に通電を行った際の第2のステータ3とロータ51に作用し合うトルクを示し、CBは第2のステータ3とロータ51に作用し合うコギングトルクを表す。Cは第1のステータ1及び第2のステータ3の双方によって発生するコギングトルクであり、前記CAとCBの和である。

【0026】図4、図5に示される様に、ギアの谷部の中心が着磁の中心に対して反時計回り方向にずらして設けられた場合は、第1のコイル2と第2のコイル4の双方に通電を行う2相通電状態でロータ51が停止する位置S及びS'において、コギングトルクは必ず正の値となる。またコギングトルクによる安定な停止位置は、90°及び180°で示される1相通電によるロータ51の安定な停止位置と一致する。

【0027】即ち、実施例2の電磁駆動モータにおいては、通電状態で安定な停止位置となり、かつその状態での無通電状態では安定な停止位置とはならないロータの位置（2相通電位置）で、ロータ回転を停止させる製品構成においても（停止位置ではモータへの通電を切って省電力を図るような構成）、停止精度は時計方向もしくは反時計方向に1ステップ分しか変化しない為、高精度な電磁駆動モータを得ることができる。尚、実施例では、ロータのマグネットは6極に着磁されているが、当然のことながら、4極以上の着磁極数を有し、かつその着磁極数の整数倍のギアを設ければ実施可能である。

【0028】

【発明の効果】以上説明したように、本発明によれば、第1に、ロータの外周面着磁部にロータの磁極数に対して整数倍の歯を持つギアを形成したことでギアの谷部にて多くのコギングトルクによる安定なロータ停止位置を

設けることができる電磁駆動モータを提供できる一方、ロータの外周面着磁部と回転出力伝達ギアとを共通化できることで従来での回転出力伝達ギア部のスラスト方向の出っ張りの無いコンパクトな電磁駆動モータが提供できるという効果がある。

【0029】また、本発明によれば、第2に、ロータの外周面着磁部の着磁中心を、ギア谷部の中心に対して所定角度だけずらして構成したことで、該ギアの谷部にてモータへの通電を切った時でのコギングによるロータ引き寄せ方向を特定して高精度な停止位置を得る電磁駆動モータを提供することができる一方、ロータの外周面着磁部と回転出力伝達ギアとを共通化できることで従来での回転出力伝達ギア部のスラスト方向の出っ張りの無いコンパクトな電磁駆動モータが提供できるという効果がある。

【0030】また、本発明によれば、第3に、ロータの外周面着磁部に該ロータの磁極数に対して整数倍の歯を持つギアを形成し、ギアと連結する前記被駆動部材側のギアを非磁性体によって形成したことで、ギアの谷部にて多くのコギングトルクによる安定なロータ停止位置を設けることができる電磁駆動モータを提供できる一方、ロータの外周面着磁部と回転出力伝達ギアとを共通化できることで、従来での回転出力伝達ギア部のスラスト方向の出っ張りの無いコンパクトな電磁駆動モータが提供でき、さらにその電磁駆動モータによって駆動される被駆動部材を非磁性体としたことでロータと被駆動部材との間で磁気回路が閉成することによるロータ回転効率ダウンの発生の無い高性能な電磁駆動モータ装置が提供できるという効果がある。

【0031】また、本発明によれば、第4に、ロータの外周面着磁部の着磁中心を、ギアの谷部の中心に対して所定角度だけずらして構成したことで、ギアの谷部にてモータへの通電を切った時でのコギングによるロータ引き寄せ方向を特定して高精度な停止位置を得る電磁駆動モータを提供することができる一方、ロータの外周面着磁部と回転出力伝達ギアとを共通化できることで、従来での回転出力伝達ギア部のスラスト方向の出っ張りの無いコンパクトな電磁駆動モータが提供でき、さらに電磁駆動モータにより駆動される被駆動部材を非磁性体としたことでのロータと被駆動部材との間で磁気回路が閉成することによるロータ回転効率ダウンの発生の無い高性能な電磁駆動モータ装置を提供できるという効果がある。

【図面の簡単な説明】

【図1】図1は、本発明の実施例1における電磁駆動モータの斜視図である。

【図2】図2は、図1の電磁駆動モータの正面図である。

【図3】図3は、図2の電磁駆動モータでの出力トルク、コギングトルク等を示す説明図である。

【図4】図4は、本発明の実施例2における電磁駆動モータの正面図である。

【図5】図5は、図4の電磁駆動モータでの出力トルク、コギングトルク等を示す説明図である。

【符号の説明】

1 第1のステータ

う、51
6
7

第1のコイル
第2のステータ
第2のコイル
ロータ
モータ固定部材
軸受部材

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
997
998
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1

【図5】

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. *** shows the word which can not be translated.
3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] In a drive motor the electromagnetism which equipped the peripheral face with Rota which comes to have the magnetization section in a predetermined pitch, and the 1st and 2nd stators which have the two magnetic pole sections formed with the open angle of 90 degrees of abbreviation to the peripheral face magnetization section of this Rota by the electrical angle — While estranging the two magnetic pole sections of said 1st and 2nd stators 180 degrees of abbreviation and forming them by the electrical angle, they are these 1st and 2nd stators at an electrical angle ** (90+180m) (here) m is 0 or a positive integer — the electromagnetism characterized by forming the gear which estranges, arranges and has the gear tooth of an integral multiple in the peripheral face magnetization section of said Rota to the number of magnetic poles of this Rota — a drive motor.

[Claim 2] the electromagnetism according to claim 1 characterized by having made the magnetization core of the peripheral face magnetization section of said Rota in agreement with the core of the trough of said gear, and constituting it — a drive motor.

[Claim 3] the electromagnetism according to claim 1 characterized by only a predetermined include angle shifting and constituting the magnetization core of the peripheral face magnetization section of said Rota to the core of the trough of said gear — a drive motor.

[Claim 4] The 1st and 2nd stators which have the two magnetic pole sections formed in the peripheral face with the open angle of 90 degrees of abbreviation to the peripheral face magnetization section of Rota which comes to have the magnetization section in a predetermined pitch, and this Rota by the electrical angle, In drive-motor equipment the electromagnetism equipped with the driven member driven in response to the rotation output from said Rota — While estranging the two magnetic pole sections of said 1st and 2nd stators 180 degrees of abbreviation and forming them by the electrical angle, these 1st and 2nd stators are ** (90+180m) (it is here) at an electrical angle. m is 0 or a positive integer — the electromagnetism characterized by estranging and arranging, forming the gear which has the gear tooth of an integral multiple in the peripheral face arrival section of said Rota to the number of magnetic poles of this Rota, and forming the gear by the side of said driven member connected with this gear with non-magnetic material — drive-motor equipment.

[Claim 5] the electromagnetism according to claim 4 characterized by having made the magnetization core of the peripheral face magnetization section of said Rota in agreement with the core of the trough of said gear, and constituting it — drive-motor equipment.

[Claim 6] the electromagnetism according to claim 4 characterized by only a predetermined include angle shifting and constituting the magnetization core of the peripheral face magnetization section of said Rota to the core of the trough of said gear — drive-motor equipment.

Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. *** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] this invention — electromagnetism — a drive motor and electromagnetism — it is related with the motor configuration for attaining thin shape-ization in the thrust direction of a stepping motor especially about drive-motor equipment.

[0002]

[Description of the Prior Art] the former and electromagnetism — as JP,3-207254,A and the patent official report No. 2566031 showed, while forming the magnetization section in the peripheral face of Rota in the predetermined pitch as a configuration of the stepping motor as a drive motor, it constituted so that the gear for transmitting the rotation output of Rota might be formed in the location which shifted in the thrust direction to the magnetization section.

[0003] Especially, it is indicated by JP,3-207254,A that the stable Rota halt location by much cogging torque can be prepared by preparing a slot to the Rota peripheral face magnetization section focusing on the magnetization.

[0004] On the other hand, when energization is cut with establishing a slot in specified quantity gap ***** from the magnetization core to the Rota peripheral face magnetization section in the patent official report No. 2566031, the Rota length **** direction by cogging is specified, and a highly precise halt location is obtained (the Rota rotation by the cogging force in the time of cutting energization is made to specify it as a clockwise rotation or a counterclockwise rotation, and halt location precision is set to one half.). namely, the configuration which will prevent that cannot specify whether it shifts to a clockwise rotation by one step, or it shifts to a counterclockwise rotation by one step, but the error of **1 step arises as a result, and will make it the stopping accuracy of less than one step by cogging torque if energization is cut in the halt location which becomes unstable when energization is cut — the electromagnetism which can do things — the drive motor is proposed.

[0005]

[Problem(s) to be Solved by the Invention] however, the electromagnetism which consists of Rota, a stator, etc. since it constitutes from an above-mentioned conventional example so that it may form in the location which shifted in the thrust direction to the slot which prepared the gear for transmitting the turning effort of Rota in the Rota peripheral face magnetization section and the peripheral face magnetization section — the form which jumped out in the thrust direction by the gear for rotation output transfer as a drive motor — becoming — namely, the electromagnetism of thrust direction size — it had become a drive motor. therefore, the form of this as — this electromagnetism — when a drive motor is carried in a product, there is a danger of enlarging as a product. This moves against product miniaturization in recent years, and the trouble that the charm as a product will be missing had produced it.

[0006] therefore, the purpose of this invention — electromagnetism — communalizing the peripheral face magnetization section of Rota in a drive motor (stepping motor), and a rotation output transfer gear — electromagnetism — the lug of the thrust direction of a drive motor, especially the thrust direction of a rotation output transfer gear part — losing — a compact and highly precise electromagnetism — it is in offering a drive motor.

[0007]

[Means for Solving the Problem] Rota where this invention comes [1st] to have the

magnetization section in a predetermined pitch in a peripheral face in order to attain the above-mentioned purpose. In a drive motor the electromagnetism equipped with the 1st and 2nd stators which have the two magnetic pole sections formed with the open angle of 90 degrees of abbreviation to the peripheral face magnetization section of this Rota by the electrical angle -- While estranging the two magnetic pole sections of said 1st and 2nd stators 180 degrees of abbreviation and forming them by the electrical angle, they are these 1st and 2nd stators at an electrical angle ** (90+180m) (here) m is 0 or a positive integer -- by having estranged and arranged and having formed the gear which has the gear tooth of an integral multiple in the peripheral face magnetization section of said Rota to the number of magnetic poles of this Rota The same duty as the slot which the trough of this gear established in the Rota peripheral face magnetization section in JP,3-207254,A (substitution for a trough fang furrow of a gear), that is, the stable Rota halt location by much cogging torque can be prepared (the phase of a slot [as opposed to the Rota magnetic pole by having made it the gear which has the gear tooth of an integral multiple to the number of magnetic poles of Rota] --) that is, it is possible for it to be in agreement in the phase of the trough of a gear to the Rota magnetic pole -- the compact electromagnetism which, on the other hand, does not have the lug of the thrust direction of the rotation output transfer gear section in the former by the ability of the peripheral face magnetization section of Rota, and a rotation output transfer gear to be communalized -- a drive motor can be offered.

[0008] This invention in the above-mentioned configuration the 2nd in addition, when only the predetermined include angle shifted and constituted the magnetization core of the peripheral face magnetization section of said Rota to the core of the trough of said gear The same duty as the slot which the trough of this gear established in specified quantity gap ***** from the Rota peripheral face magnetization core in the patent official report registration No. 2566031 (substitution of the gear trough fang furrow section), When energization is cut, while the Rota length **** direction by cogging is specified and a highly precise halt location is obtained, by namely, the thing for which the peripheral face magnetization section of Rota and a rotation output transfer gear can be communalized compact electromagnetism without the lug of the thrust direction of the rotation output transfer gear section in the former -- a drive motor can be offered.

[0009] Rota where this invention comes [3rd] to have the magnetization section in a predetermined pitch in a peripheral face, The 1st and 2nd stators with the two magnetic pole sections formed with the open angle of 90 degrees of abbreviation to the peripheral face magnetization section of this Rota by the electrical angle, In drive-motor equipment the electromagnetism equipped with the driven member driven in response to the rotation output from said Rota -- While estranging the two magnetic pole sections of said 1st and 2nd stators 180 degrees of abbreviation and forming them by the electrical angle, they are these 1st and 2nd stators at an electrical angle ** (90+180m) (here) m is 0 or a positive integer -- by estranging and arranging, forming the gear which has the gear tooth of an integral multiple in the peripheral face magnetization layer of said Rota to the number of magnetic poles of this Rota, and forming this gear and the gear by the side of the connection aforementioned driven member with non-magnetic material The same duty as the slot which the trough of this gear established in the Rota peripheral face magnetization section in JP,3-207254,A (substitution of the trough fang furrow section of a gear), that is, it can ** preparing the stable Rota halt location by much cogging torque (having made it the gear which has the gear tooth of an integral multiple to the number of magnetic poles of Rota -- a low length magnetic pole -- receiving -- the phase of a slot --) By namely, the thing for which that it is in agreement in the phase of the trough of a gear to the Rota magnetic pole can communalize the peripheral face magnetization section of possible one side and Rota, and a rotation output transfer gear A drive motor can be offered compact electromagnetism without the lug of the thrust direction of the rotation output transfer gear section in the former -- further -- the electromagnetism -- highly efficient electromagnetism without generating of the Rota rotation effectiveness down by a magnetic encoder means circuit closing the driven member driven with a drive motor between Rota and a driven member by having considered as non-magnetic

material -- drive-motor equipment can be offered.

[0010] This invention in the above-mentioned configuration the 4th in addition, when only the predetermined include angle shifted and constituted the magnetization core of the peripheral face magnetization section of said Rota to the core of the trough of said gear The same duty as the slot which the trough of this gear established in specified quantity gap ***** from the Rota peripheral face magnetization core in the patent official report No. 2566031 (substitution of the gear trough fang furrow section), namely, the electromagnetism which specifies the Rota length **** direction by cogging, and can obtain a highly precise halt location when energization is cut, while a drive motor can be offered A drive motor can be offered. the compact electromagnetism which does not have the lug of the thrust direction of the rotation output transfer gear section in the former because it can be common in the peripheral face magnetization section of Rota, and a rotation output transfer gear -- further -- electromagnetism -- highly efficient electromagnetism without generating of the Rota rotation effectiveness down by a magnetic circuit closing the driven member driven with a drive motor between Rota and a driven member by having considered as non-magnetic material -- drive-motor equipment can be offered.

[0011]

[Example]

(Example 1) the electromagnetism of the following and this invention -- the configuration as an example 1 of a drive motor is explained with reference to drawing 1 and drawing 2 . drawing 1 -- the electromagnetism of this invention -- the perspective view of a drive motor (stepping motor) -- it is -- drawing 2 -- electromagnetism -- it is the front view of a drive motor (stepping motor). In drawing, 1 is the 1st stator, and the 1st stator 1 carries out the laminating for example, of the silicon steel plate, is made, and constitutes the shape of a typeface of abbreviation KO. Moreover, the 1st and 2nd expanding sections 1a and 1b are formed in the 1st stator 1, and the 1st and 2nd magnetic pole sections 1c and 1d which counter the point of the expanding sections 1a and 1b through the peripheral face of Rota 5 mentioned later, respectively and a predetermined opening are formed. In addition, the 1st of the 1st stator 1 and the 2nd magnetic pole section 1c and 1d are mutually estranged 180 degrees by the electrical angle while they have the open angle of 90 degrees of abbreviation by the electrical angle, respectively. Furthermore, hole 1e for positioning is prepared in the 1st stator 1.

[0012] 2 is the 1st coil with which expanding section 1a of the 1st stator 1 is equipped, and the 1st coil 2 winds copper-wire 2b about around bobbin 2a made with plastics, winds it around the terminals 2c and 2d pressed fit in bobbin 2a with the both ends of copper-wire 2b, i.e., a cut water, with means, such as soldering, it connects electrically and changes an end.

[0013] 3 is the 2nd stator, like [the 2nd stator 3] the 1st stator 1, the laminating of the silicon steel plate is carried out, and is made, and constitutes the shape of a typeface of abbreviation KO. Moreover, the 1st and 2nd expanding sections 3a and 3b are formed in the 2nd stator 3, and the 1st and 2nd magnetic pole sections 3c and 3d which counter the point of the expanding sections 3a and 3b through the peripheral face of Rota 5 mentioned later, respectively and a predetermined opening are formed. In addition, the 1st of the 2nd stator 3 and the 2nd magnetic pole section 3c and 3d are mutually estranged 180 degrees by the electrical angle while they have the open angle of 90 degrees of abbreviation by the electrical angle, respectively. Furthermore, hole 3e for positioning is prepared in the 2nd stator 3.

[0014] 4 is the 2nd coil with which expanding section 3a of the 2nd stator 3 is equipped. The 2nd coil 4 Steel-wire 4b is wound about around bobbin 4a made with plastics like said 1st coil 2, and it winds around the terminals 4c and 4d pressed fit in said bobbin 4a with the both ends of copper-wire 4b, i.e., a cut water, and with means, such as soldering, it connects electrically and an end is changed. in addition, the thing connected to the drive circuit which Terminals 2c, 2d, 4c, and 4d do not illustrate -- electromagnetism -- a drive becomes possible as a drive motor.

[0015] 5 -- electromagnetism -- it is Rota used as the driving source of a drive motor, and it is made with a plastics magnet and revolving shafts 5a and 5b are really fabricated, and Rota

5 is magnetized so that the magnetic pole of six poles may be made at a peripheral face. moreover, gear 5c forms in the peripheral face of Rota 5 -- having -- **** -- the trough of gear 5c -- each of the magnetic pole of Rota 5 -- it is formed so that it may be in agreement with the center position of N pole and the south pole. Moreover, gear 5c is connected with the driven member constituted with non-magnetic material (refer to drawing 2). It is for carrying out for not generating the Rota rotation effectiveness down by a magnetic circuit closing a driven member between Rota and a driven member as a reason used as non-magnetic material.

[0016] It is the motor holddown member really made by plastics with shaping, and 6 has gage pin 6a for fitting hole 1e of the 1st stator 1 into the motor holddown member 6, and positioning the 1st stator 1 the very thing, and gage pin 6b for fitting in hole 3e of the 2nd stator 3, and positioning the 2nd stator 3 the very thing. Moreover, in the motor holddown member 6, it has hole 6c which fits in revolving-shaft 5b of Rota 5, and Rota 5 is supported to revolve free [rotation]. On the other hand, revolving-shaft 5a of Rota 5 is supported to revolve with fitting being carried out to hole 7a prepared in the bearing member 7 mentioned later free [rotation].

[0017] It is made by one shaping of plastics and, as for 7, hole 7a which supports revolving-shaft 5a of Rota 5 to revolve, and Hooks 7b, 7c, 7d, 7e, and 7f are formed. These hooks 7b, 7c, 7d, 7e, and 7f engage with the slots 6d, 6e, 6f, 6g, and 6h (not shown 6g and 6h) which have the level difference prepared in the motor holddown member 6, respectively, and when a level difference hook stops, the bearing member 7 is fixed to the motor holddown member 6. In addition, positioning with the bearing member 7 and the motor holddown member 6 is performed because the holes 7g and 7h established in the bearing member 7 insert in the pins 6i and 6j prepared in the motor holddown member 6.

[0018] Next, with reference to drawing 2, the magnetic pole sections 1c and 1d of the 1st stator 1 and magnetic pole sections [of the 2nd stator 3 / 3c and 3d] phase relation is explained. As above-mentioned, it has the open angle of 90 degrees of abbreviation by the electrical angle each magnetic pole section 1c and 1d, 3c, and 3d, and the magnetic pole sections 1c and 1d of the 1st stator 1 are mutually estranged 180 degrees of abbreviation by the electrical angle. Moreover, the magnetic pole sections 3c and 3d of the 2nd stator 3 are also mutually estranged 180 degrees of abbreviation by the electrical angle. Moreover, magnetic pole section 1c of the 1st stator 1 and 450 degrees magnetic pole section 3c of the 2nd stator 3 are mutually estranged by the electrical angle, and this is equivalent to the phase of the 1st stator 1 and the 2nd stator 3 being 90 degrees, and presupposes at a clockwise rotation or a counterclockwise rotation that it is pivotable by the drive approach of the stepping motor of two well-known phases, for example, plane 1 excitation, 2 phase excitation, the 1-2 phase exciting method, etc.

[0019] next, the electromagnetism according to this example with reference to drawing 2 and drawing 3 -- the cogging torque of the stepping motor used as the driving source of a drive motor is explained. In addition, drawing 3 is drawing showing the output torque of each phase in the stepping motor which has the trough of a gear focusing on magnetization of Rota in drawing 2, cogging torque, and the whole cogging torque. The electrical angle which makes 360 degrees N pole of magnetization and a south pole pair shows an include angle here, and a motor rotation direction is the direction of a counterclockwise rotation. The include angle of 0 degree expresses the location whose location of a core, i.e., the direction of magnetization, shown in drawing 2 corresponds with the core of the magnetic pole of the 1st stator 1.

[0020] In drawing 3, A shows the torque which acts each other on the 1st stator 1 at the time of energizing in the 1st coil 2, and Rota 5 so that the south pole may occur in magnetic pole 1c of the 1st stator 1 of drawing 2, and CA expresses the cogging torque which acts each other on the 1st stator 1 and Rota 5. Moreover, similarly, B shows the torque which acts each other on the 2nd stator 3 at the time of energizing in the 2nd coil 4, and Rota 5 so that N pole may occur in magnetic pole 3c of the 2nd stator 3, and CB expresses the cogging torque which acts each other on the 2nd stator 3 and Rota 5. C is cogging torque generated with the both sides of the 1st stator 1 and the 2nd stator 3, and is said sum of CA and CB.

[0021] the electromagnetism according to this example so that more clearly than the characteristic ray Fig. of this drawing 3 -- since the drive motor (stepping motor) was able to have the stable halt location by cogging torque twice the number of a magnetization pole during 1 rotation of Rota 5 (the stable halt location by cogging torque had only the number equal to a magnetization pole at the former) -- highly precise electromagnetism -- a drive motor can obtain (that halt location is a location equal to a plane 1 energization location).

[0022] In addition, the stable halt location when energizing the stable halt location when energizing in the 1st coil 2 in the 2nd coil 4 in accordance with the stable halt location by the cogging torque which the 1st stator 1 generated is in agreement with the stable halt location by the cogging torque which the 2nd stator 3 generated. Moreover, the halting point S when the 1st coil 2 and 2nd coil 4 energize, and S' are in agreement with the unstable halt location by cogging torque.

[0023] (Example 2) the electromagnetism of the following and this invention -- the example 2 of a drive motor is explained with reference to drawing 4 and drawing 5. in addition, the electromagnetism in an example 2 -- since the configuration of ** is the same as an example 1 except Rota 51, detail explanation of the configuration of those other than Rota 51 is abbreviated to a drive motor. A different point from Rota 51 in this example 2 and Rota 5 in the 1st example is a point that the trough core P of a gear is established in the location where only theta shifted in the direction of a counterclockwise rotation to the magnetization core Q, respectively.

[0024] drawing 4 -- electromagnetism -- it is the front view of a drive motor (stepping motor), and drawing 5 is drawing showing the output torque of each phase in the stepping motor which has the trough of a gear in the location where only theta shifted from the magnetization core of Rota in drawing 4 to the counterclockwise rotation, cogging torque, and the whole cogging torque. The electrical angle which makes 360 degrees N pole of magnetization and a south pole pair shows an include angle here, and a motor rotation direction is the direction of a counterclockwise rotation. The include angle of 0 degree expresses the location whose location of a core, i.e., the direction of magnetization, shown in drawing 4 corresponds with the core of the magnetic pole of the 1st stator 1.

[0025] In drawing 5 , A shows the torque which acts each other on the 1st stator 1 at the time of energizing in the 1st coil 2, and Rota 51 so that the south pole may occur in magnetic pole 1c of the 1st stator 1 of drawing 4 , and CA expresses the cogging torque which acts each other on the 1st stator 1 and Rota 51. Moreover, similarly, B shows the torque which acts each other on the 2nd stator 3 at the time of energizing in the 2nd coil 4, and Rota 51 so that N pole may occur in magnetic pole 3c of the 2nd stator 3, and CB expresses the cogging torque which acts each other on the 2nd stator 3 and Rota 51. C is cogging torque generated with the both sides of the 1st stator 1 and the 2nd stator 3, and is said sum of CA and CB.

[0026] Like, when [which is shown in drawing 4 and drawing 5] the core of the trough of a gear is shifted and established in the direction of a counterclockwise rotation to the core of magnetization, in the location S which Rota 51 stops in the state of 2 phase energization which energizes to the both sides of the 1st coil 2 and the 2nd coil 4, and S', cogging torque surely serves as a forward value. Moreover, the stable halt location by cogging torque is in agreement with the stable halt location of Rota 51 by the plane 1 energization shown at 90 degrees and 180 degrees.

[0027] In a drive motor namely, the electromagnetism of an example 2 -- It becomes a stable halt location in the state of energization, and a halt location stable in the state of no energizing in the condition is a location (2 phase energization location) of Rota not becoming, in order, as for stopping accuracy, only for the amount of one step to change to a clockwise rotation or a counterclockwise rotation also in the product structure which stops the Rota rotation (configuration which cuts the energization to a motor in a halt location, and plans power saving) -- highly precise electromagnetism -- a drive motor can be obtained. In addition, in the example, although magnetized by six poles, if the magnet of Rota has the magnetization pole of four or more poles with a natural thing and the gear of the integral multiple of the magnetization pole is prepared, it can be carried out.

[0028]

[Effect of the Invention] the electromagnetism which can prepare the stable Rota halt location by much cogging torque in the trough of a gear by having formed the gear which has [1st] the gear tooth of an integral multiple in the peripheral face magnetization section of Rota to the number of magnetic poles of Rota according to this invention as explained above, while a drive motor can be offered the compact electromagnetism which does not have the lug of the thrust direction of the rotation output transfer gear section in the former by the ability of the peripheral face magnetization section of Rota, and a rotation output transfer gear to be communalized -- it is effective in the ability to offer a drive motor.

[0029] By moreover, the thing for which only the predetermined include angle shifted and constituted [2nd] the magnetization core of the peripheral face magnetization section of Rota to the core of a gear trough according to this invention the electromagnetism which specifies the Rota length **** direction by cogging in the time of cutting the energization to a motor with the trough of this gear, and obtains a highly precise halt location, while a drive motor can be offered the compact electromagnetism which does not have the lug of the thrust direction of the rotation output transfer gear section in the former by the ability of the peripheral face magnetization section of Rota, and a rotation output transfer gear to be communalized -- it is effective in the ability to offer a drive motor.

[0030] By moreover, the thing for which according to this invention the gear which has [3rd] the gear tooth of an integral multiple in the peripheral face magnetization section of Rota to the number of magnetic poles of this Rota was formed, and the gear by the side of said driven member connected with a gear was formed with non-magnetic material the electromagnetism which can prepare the stable Rota halt location by much cogging torque in the trough of a gear -- by the ability of the peripheral face magnetization section of Rota, and a rotation output transfer gear being communalized, while a drive motor can be offered A drive motor can be offered. compact electromagnetism without the lug of the thrust direction of the rotation output transfer gear section in the former -- further -- the electromagnetism -- highly efficient electromagnetism without generating of the Rota rotation effectiveness down by a magnetic circuit closing the driven member driven with a drive motor between Rota and a driven member by having considered as non-magnetic material -- it is effective in the ability to offer drive-motor equipment.

[0031] By moreover, the thing for which only the predetermined include angle shifted and constituted [4th] the magnetization core of the peripheral face magnetization section of Rota to the core of the trough of a gear according to this invention the electromagnetism which specifies the Rota length **** direction by cogging in the time of cutting the energization to a motor with the trough of a gear, and obtains a highly precise halt location, while a drive motor can be offered By the ability of the peripheral face magnetization section of Rota, and a rotation output transfer gear to be communalized A drive motor can be offered. compact electromagnetism without the lug of the thrust direction of the rotation output transfer gear section in the former -- further -- electromagnetism -- highly efficient electromagnetism without generating of the Rota rotation effectiveness down by a magnetic circuit closing the driven member driven with a drive motor between Rota of having considered as non-magnetic material, and a driven member -- it is effective in the ability to offer drive-motor equipment.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.