Vp140 Recitation IV

Haomeng ZHANG

SJTU Joint Institute zhanghaomeng@sjtu.edu.cn

June 20, 2019

Overview

Forced Oscillations

2 Dynamics in Non-Inertial Frames of Reference

3 Earth as a Frame of Reference

Forced Oscillations

Graph

Forced Oscillations

Equations

$$x_s(t) = A\cos\left(\omega_{dr}t + \phi\right)$$
 $A\left(\omega_{dr}\right) = rac{F_0}{m\sqrt{\left(\omega_0^2 - \omega_{dr}^2\right)^2 + \left(rac{b\omega_{dr}}{m}
ight)^2}}$
 $an \phi = rac{b\omega_{dr}}{m\left(\omega_{dr}^2 - \omega_0^2\right)}$

Observation

Peak in the curve $A = A(\omega_{dr})$ at the resonance frequency:

$$\omega_{dr} = \omega_{res} = \sqrt{\omega_0^2 - b^2/2m^2}$$

Phase shift

Equation

$$\tan\phi = \frac{b\omega_{dr}}{m\left(\omega_{dr}^2 - \omega_0^2\right)}$$

Graph

Exercise I

Forced Oscillation

A sinusoidally varying driving force is applied to a damped harmonic oscillator of force constant k and mass m. If the damping constant has a value b_1 , the amplitude is A_1 when the driving angular frequency equals $\sqrt{k/m}$. In terms of A_1 , what is the amplitude for the same driving frequency and the same driving force amplitude Fmax, if the damping constant is (a) $3b_1$ and (b) $b_1/2$?

Figure

Position relation

$$\overline{r} = \overline{r}_{O'} + \overline{r'}$$

Velocity relation

$$\overline{\mathbf{v}} = \overline{\mathbf{v}}_{O'} + \overline{\mathbf{v}}' + \left(\overline{\omega} \times \overline{\mathbf{r}}'\right)$$

Comment

The arbitrary motion of x'y'z' can be decomposed into a translational motion and a rotational motion about an instantaneous axis of rotation; the last term is due to the latter.

Acceleration relation

$$\overline{a} = \overline{a}_{O'} + \overline{a}' + 2\overline{\omega} \times \overline{v}' + \frac{\mathrm{d}\overline{\omega}}{\mathrm{d}t} \times \overline{r}' + \overline{\omega} \times (\overline{\omega} \times \overline{r}')$$

$$m\overline{a}' = \overline{F} - m\overline{a}_{o'} - m\frac{\mathrm{d}\overline{\omega}}{\mathrm{d}t} \times \overline{r'} - 2m(\overline{\omega} \times \overline{v'}) - m\overline{\omega} \times (\overline{\omega} \times \overline{r'})$$

Comment

Pseudo forces (also called fictitious forces or forces of inertia) — kinematic corrections (have units of [N]) that are due to the fact that we describe dynamics in a non-inertial FoR.

Fictitious Forces

$$- m\bar{a}_{o'} \qquad \qquad \text{d'Alembert "force"}$$

$$- m\frac{\text{d}\omega}{\text{d}t} \times \bar{r'} \qquad \text{Euler "force"}$$

$$- 2m\bar{\omega} \times \bar{v'} \qquad \text{Coriolis "force"}$$

$$- m\bar{\omega} \times (\bar{\omega} \times \bar{r'}) \qquad \text{centrifugal "force"}$$

Comment

These "forces" must never appear in inertial FoRs!

Examples

Kinematic Equation

$$m\overline{a}' = \overline{F} - m\overline{a}_{o'} - m\frac{\mathrm{d}\overline{\omega}}{\mathrm{d}t} \times \overline{r'} - 2m\left(\overline{\omega} \times \overline{v'}\right) - m\overline{\omega} \times \left(\overline{\omega} \times \overline{r'}\right)$$

Accelerating Car Moving along a Straight Line

Assume $\bar{a}_{o'} \neq 0$, $\bar{\omega} = 0$, $\bar{v'} = 0$; e.g. acclerating car moving along a straight line.

$$ma_{o'} = N$$

$$0 = N - ma_{\alpha'}$$

Examples

Kinematic Equation

$$m\overline{a}' = \overline{F} - m\overline{a}_{o'} - m\frac{\mathrm{d}\overline{\omega}}{\mathrm{d}t} \times \overline{r'} - 2m\left(\overline{\omega} \times \overline{v'}\right) - m\overline{\omega} \times \left(\overline{\omega} \times \overline{r'}\right)$$

Uniform Circular Motion

non - inertial observer

Exercise II

Centripetal Force

A plane, inclined at an angle α to the horizontal, rotates with constant angular speed ω about a vertical axis (see the figure). Where on the inclined plane should we place a particle, so that it remains at rest? The plane is frictionless.

Exercise III

Shape of surface (Credit to Jiadi)

A bucket of water is rotating about its central vertical axis at constant angular velocity ω . Try to prove that when the water is static relative to the bucket, the upper surface of the water is paraboloid.

Centrifugal Force

Figure

Corioli Force

Figure

Corioli Force

Erosion of bank

Corioli Force

Free fall

The End

- Office hour: Wed 8:00-10:00 (Discussion Room 326I)
- Email: zhanghaomeng@sjtu.edu.cn