Theoretische Physik 2 (Elektrodynamik)

Klausur

Prof. Dr. Norbert Kaiser

22. Februar	2021
-------------	------

Arbeitszeit: 90 Minuten	Name:
-------------------------	-------

Diese Klausur enthält 3 Seiten (Einschließlich dieses Deckblatts) und 5 Aufgaben. Die Gesamtpunktzahl beträgt 40.

Punkteverteilung

Aufgabe	Punkte	Erreicht
1	8	
2	8	
3	8	
4	7	
5	9	
Gesamt:	40	

- 1. (8 Punkte) Innerhalb einer Kugel vom Radius R_0 fällt die radialsymmetrische Ladungsdichte $\rho(r)$ vom Mittelpunkt bis zum Kugel hin *linear* auf den Wert Null ab. Die Gesamtladung in der Kugel beträgt Q.
 - (a) (2 Punkte) Geben Sie die Ladungsdichte $\rho(r)$ ausgedrückt durch die Parameter Q und R_0 an.
 - (b) (3 Punkte) Berechnen Sie das elektrische $\vec{E}(\vec{r}) = E(r)\vec{e}_r$ im ganzen Raum.
 - (c) (3 Punkte) Welche Arbeit W musste aufgewendet werden, um die Kugel mit der vorgegebenen Ladungsdichte aufzuladen? Benutzen Sie die Substitution $r = sR_0$.
- 2. (8 Punkte) Eine ebene Leiterschleife \mathcal{L}_1 (mit Strom I_1) vom Flächeninhalt A liegt in der xyEbene um den Ursprung zentriert. Eine zweite Leiterschleife \mathcal{L}_2 (mit Strom I_2) gleicher Bauart
 befindet sich:
 - (a) (4 Punkte) längs der z-Achse parallel verschoben in einem sehr großen Abstand $z\gg A$ von \mathcal{L}_1
 - (b) (4 Punkte) längs der y-Achse parallel verschoben in einem sehr großen Abstand $y \gg A$ von \mathcal{L}_1 .

Bestimmen Sie in beiden Fällen die Kraft $\vec{F}_{21} \propto I_1 I_2$, welche die Leiterschleife \mathcal{L}_1 auf \mathcal{L}_2 ausübt. Hinweis: Bei großem Abstand wechselwirken stromdurchflossene Leiterschleifen wie magnetische Dipole.

- 3. (8 Punkte) In einem rechteckigen Plattenkondensator (Plattenabstand d und Fläche $a \cdot b$) um eine Strecke x (mit 0 < x < a) ein Dielektrikum der relativen Dielektrizitätskonstante $\epsilon > 1$ eingeschoben (siehe Abbildung). Der restliche Raum zwischen den Platten ist leer. Die Ladungen auf der unteren und oberen Platte sind Q und -Q. Alle Felder zwischen den Platten können als (stückweise) homogen angenommen werden.
 - (a) (1 Punkt) Welche Beziehung gilt zwischen den elektrischen Feldern E_1 und E_2 ? Welche Beziehung gilt zwischen den dielektrischen Verschiebungen D_1 und D_2 ?
 - (b) (1 Punkt) Welcher Zusammenhang besteht zwischen D_1 , D_2 und den freien Flächenladungsdichten σ_1 , σ_2 ?
 - (c) (3 Punkte) Berechnen Sie in Abhängigkeit von Q und x die elektrischen Felder E_1 , E_2 und die dielektrischen Verschiebungen D_1 , D_2 im Raum zwischen den Platten. Zum Vergleich: $D_2 = Q/[b(a + (\epsilon - 1)x)]$
 - (d) (2 Punkte) Berechnen Sie in Abhängigkeit von Q und x die elektrostatische Feldenergie W(x).
 - (e) (1 Punkt) Mit welcher Kraft $\vec{F} \propto \vec{e}_x$ wird das Dielektrikum in den Kondensator hineingezogen?
- 4. (7 Punkte) Ein (sehr langes) gerades Koaxialkabel besteht aus einem inneren, leitenden Hohlzylinder vom Radius a und konzentrisch dazu einem leitenden Zylindermantel mit Radius b > a, welche als Rückleitung dient.
 - (a) (1 Punkt) Geben Sie die Stromdichte $\vec{j}(\vec{r}) = j(\rho)\vec{e}_x$.

- (b) (4 Punkte) Berechnen Sie das Magnetfeld $\vec{B}(\vec{r}) = B(\rho)\vec{e}_{\varphi}$ und ein zugehöriges (stetiges) Vektorpotential $\vec{A}(\vec{r}) = A(\rho)\vec{e}_z$ im ganzen Raum.
- (c) (2 Punkte) Berechnen Sie die Selbstinduktivität pro Längeneeinheit L/l des Koaxialkabels.
- 5. (9 Punkte) Ein magnetischer Dipol $\vec{m} = (0, 0, m)$ befindet sich am Punkt $\vec{a} = (0, 0, a)$ (mit a > 0) über einer supraleitenden Platte (mit Permeabilitätskonstante = 0), welche die ganze xy-Ebene abdeckt.
 - (a) (1 Punkt) Geben Sie in expliziter Form das Magnetfeld $\vec{B}_{\rm dip}(\vec{r})$ des Dipols \vec{m} in Abwesenheit der supraleitenden Platte an.
 - (b) (4 Punkte) Um die Randbedingung auf der Platte zu erfüllen, wird für das Magnetfeld im Bereich $z \ge 0$ der Ansatz mit einem zusätzlichen Spiegeldipol $\vec{m}' = (0,0,m')$ am Punkt $\vec{a}' = (0,0,-a)$ benutzt. Bestimmen Sie den Wert von m'.
 - (c) (3 Punkte) Berechnen Sie die Flächendichte des Magnetisierungsstroms $\vec{J}_{\text{mag}}(x,y)$ auf der Platte.
 - (d) (3 Punkte) Bestimmen Sie die vom Supraleiter auf den Dipol wirkende Kraft \vec{F} durch Berechnung der entsprechenden Gegenkraft.

Benutzen Sie das Integral
$$\int\limits_0^\infty \mathrm{d}p \frac{\rho^3}{(a^2+\varrho^2)^5} = \frac{1}{24a^6}.$$