COMP9024: Data Structures and Algorithms

Trees and Binary Search Trees

1

Contents

- Trees
- Tree traversals
- Binary search trees

Maps and Dictionaries

- A map (dictionary) is a collection of data items each of which is a pair (key, value), and supports the following major operations:
 - find(item): find item in the collection
 - insert(item): insert item into the collection
 - remove(item): remove item from the collection
- The only difference between a map and a dictionary is that in a map, all keys are distinct while in a dictionary, there may exist duplicate keys.
- For example, given a list of students, we can use a map to model it if student IDs are the keys, and we can use a dictionary to model it if students names are the keys.
- A value can be any data structure such as a student record.

Applications: Google, databases, online trading systems,

Key question: how to make the above three major operations fast?

3

Trees

- In computer science, a tree is an abstract model of a hierarchical structure
- A tree consists of nodes with a parent-child relation
- Applications:
 - Organization charts
 - File systems
 - Programming environments

Trees Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- Leaf node: node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

 Subtree: tree consisting of a node and its descendants

5

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Algorithm preOrder(v)
{ visit(v);
for each child w of v

preorder(w);

Binary Trees

- A binary tree is a tree with the following properties:
 - Each internal node has at most two children
 - A leaf node has no child
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- Applications:
 - arithmetic expressions
 - decision processes
 - searching

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- Example: arithmetic expression tree for the expression $(2 \times (a 1) + (3 \times b))$

9

Decision Trees

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Example: dining decision

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v
 - y(v) = depth of v


```
Algorithm inOrder(v)
{ if v as a left child
    inOrder(v.left);
    visit(v);
    if v has a right child
        inOrder(v.right);
}
```

11

Print Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree


```
Algorithm printExpression(v)
{ if v has a left child
    { print("(");
        printExpression(left(v)); }
    print(v.element ());
    if v has a Right child
        { printExpression(right(v));
        print (")"); }
}
```

$$((2 \times (a - 1)) + (3 \times b))$$

Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees


```
Algorithm evalExpr(v)
{ if v is a leaf node
    return v.element;
else
    { x = evalExpr(leftChild(v));
    y = evalExpr(rightChild(v));
    \diamond = operator stored at v;
    return x \diamond y;
}
}
```

13

Binary search trees

- A binary search tree is a binary tree storing keys (or key-value entries) at its nodes and satisfying the following property:
 - Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v. We have key(u) ≤ key(v) ≤ key(w)
- External nodes (square nodes) denote empty nodes, and they do not store items

 An inorder traversal of a binary search trees visits the keys in nondecreasing order

External Nodes

- Advantage
 - Easier to do insertion
 - > Find the place of insertion. It will be an external node.
 - Replace the external node with an internal node (and 2 external nodes)
- Disadvantage
 - Extra O(n) space (a little more than double the original!)

15

Binary Search Tree Operations

Operations on BSTs:

- insert(Tree,Item) ... add a new item to tree via key
- delete(Tree,Key) ... remove item with specified key from tree
- search(Tree,Key) ... find item containing key in tree
- plus, "bookkeeping" ... new(), free(), show(), ...

Representing BSTs in C

Node structure:

```
typedef struct Node {
  int key; // we ignore value here
  Node *left, *right;
} Node;
```

17

Searching in BSTs

```
TreeSearch(v, k)

Input v (node), k (key)

Output the node containing k or null

if v is null or v.key=k
    return v

if k < v.key
    return TreeSearch(v.left, k) // search left subtree
else
    return TreeSearch(v.right, k) // search right subtree
```

Time complexity: O(n)

Example: TreeSearch(root, 4)

Insertion in BSTs (1/2)

- To insert a new item with key k, we search for key k.
- Let w be the node reached by the search
- · Consider two cases:
 - k<w.key: Insert the new item as the left child of w
 - ➤ K>w.key: Insert the new item as the right child of w

Time complexity: O(n) Example: insert 5

19

Insertion in BSTs (2/2)

Deletion in BSTs (1/3)

- To perform operation delete(k), we search for key
- Assume key k is in the tree, and let let v be the node storing k
- If node v has a leaf child w, we remove v and w from the tree
- Example: delete 4

21

Deletion in BSTs (2/3)

- We consider the case where the key k to be removed is stored at a node v whose children are both internal
 - We find the internal node w that follows v in an inorder traversal.
 - w is called the immediate inorder successor of v.
 - We copy key(w) into node v
 - We remove node w and its left child z (which must be a leaf)
- Example: delete 3

Deletion in BSTs (3/3)

- Alternatively, we find the internal node w that precedes v in an inorder traversal.
 - w is called the immediate inorder predecessor of v.
- We copy key(w) into node v
- We remove node w and its right child z (which must be a leaf)
- Example: delete 3

23

Performance

- Consider a set of n entries stored in a binary search tree of height h
 - the space used is O(n)
 - methods search, insert and delete take O(h) time
- The height h is O(n) in the worst case and O(log n) in the best case

Summary

- Trees
- Tree traversals
- Binary search trees (BSTs)
- BST search, insertion and deletion

Sedgewick, Ch.13.1-13.4