Shirpur Education Society's

R. C. PATEL INSTITUTE OF TECHNOLOGY, SHIRPUR

आर. सी. पटेल इन्स्टिट्यूट ऑफ टेक्नॉलॉजी, शिरपूर (स्वायत्त महाविद्यालय)

Programme: B.TECH (AIML)/B.TECH (COMP/B.TECH (CSEDS)/ (MECH)

Year: I/Semester I (Exam Year: 2023-2024)

Subject: Basic Electrical Engineering and Digital

Electronics Max Marks: 60

Date: 16 Jan 2024 **Time:** 02:30 pm - 04:30 pm (02:00 Hrs.)

END SEMESTER EXAMINATION ODD SEM I (Acad. Year: 2023-2024)

Instructions:

- 1. This question paper contains 3 pages
- 2. Answer to each new question to be started on a fresh page.
- 3. Figure in right hand side indicates full marks
- 4. All questions are compulsory.

1. 1

a.i. What is the potential difference between points x and y in the network?

----- OR -----

ii. Find the value of current flowing through the 2 Ω resistor using Mesh analysis.

5

5

5

I. Calculate the current through 100 Ω resistor for the network shown using Nodal analysis.

----- OR -----

II. Find the current through 5 Ω Ω resistor of the network shown using Mesh analysis.

5

5

5

10

10

c. Find the resultant of the three voltages.

a.

$$e_1 = 20 \text{ Sin } \omega t$$
, $e_2 = 30 \text{ Sin } (\omega t - \pi/4)$, $e_3 = 40 \text{ Cos } (\omega t + \pi/6)$

2. 2

i. Derive the expression to convert a Delta network into its equivalent Star network. Also find the equivalent resistance between the terminals A and B in the network shown below.

State and prove the Maximum Power Transfer theorem. Also find the value of the resistor R_L for the maximum power transfer in the circuit and calculate the maximum power.

Page 2 of 3

15

a. Find the average and RMS value of the waveform. Also, find the dissipated power if the voltage is applied to a 10 Ω resistance.

10

b.

3.3

5

1. A voltage $v(t) = 177 \sin (314t + 10^{\circ})$ is applied to a circuit. It causes a steady-state current to flow, 5 which is described by $i(t) = 14.14 \sin (314t - 20^{\circ})$. Determine the power factor and active power of the circuit.

----- OR -----

2. A resistance of 10 Ω and a pure coil of inductance 31.8 mH are connected in parallel across 200 V, 50 Hz supply. Find the total current and power factor.

15

5

4.4 a.

5

i. Implement the given Boolean expression using logic gates.

5

i.
$$F_1 = AB + BC + AC$$

i.
$$F_1 = AB + BC + AC$$
 ii. $F_2 = (A+B) \cdot (B+C) \cdot (A+C)$

----- OR -----

ii. What do you mean by the Universal gates? Implement the basic gates using only NAND gates.

5 5

b. Simplify the given Boolean expression. After simplification, implement it using basic gates.

$$F = AB + A (B + C) + B (B + C)$$

c. Draw SR Flip-flop. Write its truth table & explain.