HDU编程营:936217564

杭州电子科技大学学生考试卷(A)卷

考试课程	数排	居结构	考试日期	年	月	日	成绩			
课程号	A1002170	教 师 号		任课教师姓名						
考生姓名		学号(8位)		年级		专业		座位号		

一. 是非题 (每题 2 分共 20 分)

- 1. 线性表的链式存储结构优于顺序存储结构。
- 2. 栈和队列也是线性表。如果需要,可对它们中的任一元素进行操作。
- 3. 字符串是数据对象特定的线性表。
- 4. 在单链表 P 指针所指结点之后插入 S 结点的操作是: P--->next= S; S---> next = P---> next;
- 5. 一个无向图的连通分量是其极大的连通子图。
- 6. 邻接表可以表示有向图,也可以表示无向图。
- 7. 假设 B 是一棵树,B' 是对应的二叉树。则 B 的后根遍历相当于 B' 的中序遍历。
- 8. 通常,二叉树的第i 层上有 2^{i-1} 个结点。
- 9. 对于一棵 m 阶的 B.树.树中每个结点至多有 m 个关键字. 除根之外的所有非终端结点至少有 rm/27 个关键字.
- 10. 对于任何待排序序列来说,快速排序均快于起泡排序。

二. 选择题(每题2分共28分)

- 1. 在下列排序方法中,()方法平均时间复杂度为 0 (nlogn), 最坏情况下时间复杂度为 $0(n^2)$; () 方法所有情况下时间复杂度均为 $0(n\log n)$ 。 a. 插入排序 b. 希尔排序 c. 快速排序 d. 堆排序
- 2. 在有 n 个结点的二叉树的二叉链表表示中, 空指针数 ()。 d. n−1 a. 不定 b. n+1 c.n
- 3. 下列二叉树中,()可用于实现符号不等长高效编码。
- - a. 最优二叉树 b. 次优查找树 c. 二叉平衡树 d. 二叉排序树
- 4. 下列查找方法中,()适用于查找有序单链表。
 - a. 顺序查找 b. 二分查找 c. 分块查找 d. 哈希查找
- 5. 在顺序表查找中,为避免查找过程中每一步都检测整个表是否查找完毕, 可采用()方法。
 - a. 设置监视哨 b. 链表存贮 c. 二分查找 d. 快速查找

6.	在下列数据结构中,() 具有先进先出(FIFO)特性, () 具有先进后出(FILO)特性。
7.	a. 线性表 b. 栈 c. 队列 d. 广义表 具有 m 个结点的二叉排序树,其最大深度为 (),最小深度为 ()。 a. log 2 m b. Llog2 m J +1 c. m/2 d. 「 m/2 ¬ -1 e. 「 m/2 ¬ f. m
	已知一组待排序的记录关键字初始排列如下: 56,34,58,26,79,52,64,37,28,84,57。 下列选择中()是快速排序一趟排序的结果。 ()是希尔排序(初始步长为 4)一趟排序的结果。 ()是基数排序一趟排序的结果。
	() 是初始堆 (大堆顶)。 a) 84, 79, 64, 37, 57, 52, 58, 26, 28, 34, 56。
	b) 28, 34, 57, 26, 56, 52, 58, 37, 79, 84, 64。
	c) 28, 34, 37, 26, 52, 56, 64, 79, 58, 84, 57。
	d) 52, 34, 64, 84, 56, 26, 37, 57, 58, 28, 79。 e) 34, 56, 26, 58, 52, 64, 37, 28, 79, 57, 84。
	f) 34, 56, 26, 58, 52, 79, 37, 64, 28, 84, 57。
三. 填	[空题 (每题 2 分共 20 分)
	对于有向图的存储结构有 ()、 ()、 () 等方法。
	已知某二叉树的先序遍历次序为 afbcdeg,中序遍历次序为 cedbgfa。
٠.	其后序遍历次序为()。层次遍历次序为()。
3.	设有二维数组 A 5 x 7 ,每一元素用相邻的 4 个字节存储,存储器按字节编址.
	已知 A 的起始地址为 100。则按行存储时,元素 A ₁₄ 的第一个字节的地址是()
	按列存储时,元素 A14 的第一个字节的地址是()。
4.	请在下划线上填入适当的语句,完成以下法算。
Sta	atus Preordertraverse(Bitree T,Status(*Visit)(Telemtype e)){
	//先序非递归遍历二叉树。
	Initstack (S); Push (S,T);
	While (!stackempty(S))
	{ While (gettop(S, p)&& p) { visit (p->data);;}
	Pop (S , p);
	If (
	}
	return ok;

共 2 页 第 1 页

四. 结构问答题 (每题6分共24分)

1. 将图示森林转换为二叉树,并对该二叉树中序全序线索化。

2. 已知 Hash 函数为 H (K) = K mod 13 , 散列地址为 0 --14, 用二次探测再散列处理冲突, 给出关键字(23, 34, 56, 24, 75, 12, 49, 52, 36, 92, 06, 55) 在散列地址的分布。

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

3. 右图为一棵 3 阶 B_树。

(20, 25)

a. 画出在该树上插入元素 15

/ | \

后的 B_树。

(10, 14) (21) (35)

- b. 接着,再删除元素 35,画出删除后的 B 树。
- 4. 已知某无向图的邻接表存储结构如图所示。
 - a. 请画出该图。
- b. 根据存储结构给出其深度优先遍历序列及广度优先遍历序列。
- c. 画出其深度优先生成树及广度优先生成树。

五. 算法设计题(共8分)

1. 单链表结点的类型定义如下:

typedef struct LNode {

int data;

struct LNode *next;

} LNode, *Linklist;

写一算法,将带头结点的有序单链表 A 和 B 合并成一新的有序表 C。

(注:不破坏 A 和 B 的原有结构.)

Merge(Linklist A, Linklist B, Linklist &C)

第 2 页 共 2 页