

Diskrete Strukturen Tutorium

Jay Zhou Technische Universität München Garching b. München, 30. Oktober 2023

Relationen

Relationen — Relationales Produkt

Sei $R \subseteq A \times B$ und $S \subseteq C \times D$,

man bezeichnet $RS = \{(a,d) \text{ es gibt } x \in B \cap C \text{ mit } (a,x) \in R \text{ und } (x,d) \in S \}$ als relationales Produkt (Verkettung).

Induktive Definition:

$$R^0 = Id_A := \{(a, a) \mid a \in A\}$$

$$R^1 := R$$

$$R^2 := RR$$

$$R^{k+1} := R^k R$$

Relationen — Relationales Produkt

Transitive Hülle

$$R^+ := \bigcup_{k \in \mathbb{N}} R^k$$

(Alle Pfade, die mindestens einen Schritt machen)

Reflexiv-Transitive Hülle

$$R^* := \bigcup_{k \in \mathbb{N}_0} R^k = R^0 \cup R^+$$

Wichtige Eigenschaften

$$-(R^*)^* = (R^+)^* = (R^*)^+ = R^*$$
$$-(R^+)^+ = R^+$$

Relationen — Eigenschaften

Reflexiv

- Falls Id_A ⊆ R

Symmetrisch

– Wann immer $(s, t) \in R$, dann auch $(t, s) \in R$

Asymmetrisch

- Wann immer $(s, t) \in R$, dann auch $(t, s) \notin R$

Antisymmetrisch

- Wann immer $(s, t) \in R$ und $(t, s) \notin R$, dann gilt immer s = t

Tipp: Id erlaubt - Wann immer $(s,t)\in R$ und $(t,u)\in R$, dann auch $(s,u)\in R$ Man betracktet hier nur

Jay Zhou (TUM) | Diskrete Strukturen

Alle Folien werden hier hochgeladen :)

https://discord.gg/v44bAsfmdK

Fragen?