2002 - CCP PSI - Maths 2

corrigé – par Michel Staïner, le 07/05/02

PARTIE I

I.1.1. Sur $]-\infty, 0[$ et $]0, +\infty[, (E_0)$ s'écrit y'' - y = 0 et donc :

La solution générale de
$$(E_0)$$
 sur $]-\infty,0[$ et $]0,+\infty[$ est $y=A\operatorname{ch} x+B\operatorname{sh} x,\ (A,B)\in\mathbf{R}^2.$

I.1.2. Par conséquent, si f est solution de (E_0) sur \mathbf{R} , il existe (A, B, C, D) dans \mathbf{R}^4 tel que

$$f(x) = \begin{cases} A \operatorname{ch} x + B \operatorname{sh} x & \text{si } x < 0 \\ C \operatorname{ch} x + D \operatorname{sh} x & \text{si } x > 0 \end{cases}$$

et la continuité de f en 0 nécessite A=C et f(0)=A, sa dérivabilité en 0 nécessite B=D. Réciproquement, $f:x\mapsto A\operatorname{ch} x+B\operatorname{sh} x$ est solution sur $\mathbf R$:

La solution générale de
$$(E_0)$$
 sur \mathbf{R} est $y = A \operatorname{ch} x + B \operatorname{sh} x$, $(A, B) \in \mathbf{R}^2$.

I.2.1. En tant que somme d'une série entière, y est de classe C^{∞} sur]-R,R[avec :

$$\forall x \in]-R, R[\quad x^2y''(x) = \sum_{k=2}^{\infty} k(k-1)u_k x^k \quad \text{et} \quad x^2y(x) = \sum_{k=2}^{\infty} u_{k-2} x^k.$$

d'où les relations — traduisant le fait que y est solution de (E_n) :

$$(n-n^2) u_0 = (n-n^2) u_1 = 0$$
 et $\forall k \ge 2$ $(k(k-1) + (n-n^2)) u_k - u_{k-2} = 0$.

Puisqu'ici $n \ge 2$, $n - n^2$ est non nul et j'en déduis :

$$u_0 = u_1 = 0.$$

I.2.2. D'après ce qui précède :

$$\forall k \ge 2 \quad (k-n)(k+n-1)u_k = u_{k-2}.$$

I.2.3. Pour $k \in [2, n-1]$, j'ai $(k-n)(k+n-1) \neq 0$ et donc

$$u_k = \frac{u_{k-2}}{(k-n)(k+n-1)}.$$

Comme $u_0=u_1=0$ d'après **I.2.1.**, une récurrence immédiate fournit :

$$\forall k \in [0, n-1] \quad u_k = 0.$$

I.2.4. En particulier, $u_{n-1}=0$; or, en remplaçant k par n+2p+1 dans la relation précédente, j'obtiens

$$\forall p \in \mathbf{N} \quad u_{n+2p+1} = \frac{u_{n+2p-1}}{(2p+1)(2p+2n)}$$

d'où, toujours par récurrence,

$$\forall p \in \mathbf{N} \quad u_{n+2p+1} = 0.$$

I.2.5. De même, en remplaçant k par n+2p, j'obtiens

$$\forall p \in \mathbf{N}^* \quad u_{n+2p} = \frac{u_{n+2p-2}}{2p(2p+2n-1)}.$$

Je montrerais cette fois par récurrence l'existence d'une suite $(q_{p,n})_{p\in\mathbb{N}}$ de nombres rationnels tels que

$$\forall p \in \mathbf{N}^* \quad u_{n+2p} = q_{p,n} \cdot u_n$$

mais la valeur de u_n reste arbitraire (on a exploité toutes les relations du **I.2.2.**, celle obtenue pour k=n ne donnant rien, si ce n'est $0=u_{n-2}$ que l'on a déjà prouvé...). Ainsi

On ne peut pas "calculer"
$$u_n$$
.

N.B. La formulation est discutable... Cela traduit le fait que l'ensemble des solutions développables en série entière de (E_n) est une droite vectorielle (puisqu'on obtient un rayon de convergence non nul, cf. la question suivante). On vérifie — ce qui n'est pas demandé dans l'énoncé — que

$$\forall p \in \mathbf{N}^* \quad u_{n+2p} = \frac{(2n)!}{n!} \cdot \frac{(p+n)!}{p!(2p+2n)!} \cdot u_n.$$

I.2.6. Compte tenu des résultats précédents, y(x) est de la forme :

$$y(x) = u_n x^n \sum_{p=0}^{\infty} q_{p,n} (x^2)^p$$
 où $\frac{q_{p+1,n}}{q_{p,n}} = \frac{1}{(2p+2)(2p+2n+1)} \underset{p \to \infty}{\longrightarrow} 0.$

Par conséquent, la série entière $\sum q_{p,n}z^p$ a un rayon de convergence infini et donc la série définissant y(x) converge pour tout réel x. Autrement dit :

$$R = +\infty$$
.

I.3.1. Par définition,

$$\forall k \in \mathbf{N} \quad C_{k,0} = \frac{1}{(2k)!} \quad \text{et} \quad C_{k,1} = \frac{2(k+1)}{(2k+2)!} = \frac{1}{(2k+1)!}.$$

Je reconnais alors des développements en série entière usuels :

$$\varphi_0(x) = \operatorname{ch} x \quad \text{et} \quad \varphi_1(x) = \operatorname{sh} x.$$

I.3.2. Je procède comme au I.2.6. :

$$\varphi_n(x) = x^n \sum_{k=0}^{\infty} C_{k,n} (x^2)^k \quad \text{et} \quad \frac{C_{k+1,n}}{C_{k,n}} \underset{k \to \infty}{\longrightarrow} 0 ;$$

il en résulte que la série entière $\sum C_{k,n}z^k$ a un rayon de convergence infini et donc φ_n est la somme d'une série entière de rayon de convergence infini également, cela pour tout n; en particulier,

Les
$$\varphi_n$$
 sont de classe C^{∞} sur **R**.

I.4.1. Après simplifications :

$$\frac{C_{k,n+1}}{C_{k,n}} = \frac{1}{2k+2n+1}.$$

I.4.2. Il en découle immédiatement :

$$C_{k,n} - (2n+1)C_{k,n+1} = 2kC_{k,n+1}.$$

I.4.3. Soit $x \neq 0$; à l'aide du résultat précédent et d'une réindexation, j'obtiens

$$\varphi_n(x) - \frac{2n+1}{x}\varphi_{n+1}(x) = \sum_{k=1}^{\infty} 2kC_{k,n+1}x^{2k+n} = \sum_{k=0}^{\infty} 2(k+1)C_{k+1,n+1}x^{2k+n+2}.$$

Or

$$2(k+1)C_{k+1,n+1} = \frac{2^{n+2}(k+1+n+1)!}{k!(2(k+1)+2(n+1))!} = C_{k,n+2},$$

d'où:

$$\varphi_n(x) - \frac{2n+1}{x}\varphi_{n+1}(x) = \varphi_{n+2}(x).$$

I.4.4. Ici :

$$u_n = C_{0,n} = 2^n \frac{(2n)!}{n!}.$$

(Voir la remarque du I.2.5.)

I.5.1. Je reprends l'expression ci-dessus :

$$\varphi_n(x) = x^n \sum_{k=0}^{\infty} C_{k,n} x^{2k}.$$

Pour $x \neq 0$, x^n est non nul et tous les termes de la somme sont strictement positifs, d'où :

Pour
$$x \neq 0$$
 et $n \in \mathbb{N}$, $\varphi_n(x) \neq 0$.

I.5.2. Soient $n \in \mathbb{N}$ et $x \in]0,1]$; l'expression ci-dessus montre que $\varphi_n(x) > 0$, cela pour tout n. Je déduis alors du **I.4.3.** que

$$\frac{\varphi_n(x)}{\varphi_{n+1}(x)} > \frac{2n+1}{x} \ge 1$$

d'où:

Pour
$$x \in [0, 1], \gamma_n(x) > 1$$
.

I.5.3. Pour $x \neq 0$, d'après **I.5.1.**, je peux diviser la relation du **I.4.3.** par $\varphi_{n+1}(x)$ et j'obtiens :

$$\gamma_n(x) = \frac{2n+1}{x} + \frac{1}{\gamma_{n+1}(x)}.$$

PARTIE II

II.1. Par définition, $q_0 = 1 \ge 0$ et a_1, a_2 sont dans \mathbf{N}^* , donc $q_1 = a_1 \ge 1$ et $q_2 = a_2q_1 + q_0 \ge 2$; alors, si je suppose $n \ge 3$ tel que $q_k \ge k$, pour tout k de [0, n-1], j'obtiens

$$q_n = a_n \cdot q_{n-1} + q_{n-2} \ge 1 \cdot (n-1) + (n-2) \ge n \text{ car } n \ge 3.$$

J'ai ainsi prouvé, par récurrence forte, que :

$$\forall n \in \mathbf{N} \quad q_n \ge n.$$

II.2.1. Pour n = 1, $p_1q_0 - q_1p_0 = (a_0a_1 + 1) - a_1a_0 = 1$ et, pour $n \ge 2$:

$$p_n q_{n-1} - q_n p_{n-1} = (a_n p_{n-1} + p_{n-2}) q_{n-1} - (a_n q_n + q_{n-2}) p_{n-1} = -(p_{n-1} q_{n-2} - q_{n-1} p_{n-2}).$$

Par conséquent et par une récurrence immédiate :

$$\forall n \in \mathbf{N}^* \quad p_n q_{n-1} - q_n p_{n-1} = (-1)^{n-1}.$$

II.2.2. Ici, pour $n \ge 2$:

$$p_n q_{n-2} - q_n p_{n-2} = (a_n p_{n-1} + p_{n-2}) q_{n-2} - (a_n q_n + q_{n-2}) p_{n-2} = a_n (p_{n-1} q_{n-2} - q_{n-1} p_{n-2}).$$

Soit, d'après le résultat précédent :

$$\forall n \geq 2 \quad p_n q_{n-2} - q_n p_{n-2} = (-1)^n a_n.$$

II.3.1. Grâce au II.2., il vient immédiatement, par réduction au même dénominateur :

Pour
$$n \ge 1$$
, $x_n - x_{n-1} = \frac{(-1)^{n-1}}{q_{n-1}q_n}$ et, pour $n \ge 2$, $x_n - x_{n-2} = \frac{(-1)^n a_n}{q_{n-2}q_n}$.

II.3.2. Je viens de voir que $x_n - x_{n-2}$ est du signe de $(-1)^n$, donc la suite (x_{2n}) est croissante et la suite (x_{2n+1}) est décroissante. De plus, d'après **II.1.**, $q_{n-1}q_n \xrightarrow[n \to \infty]{} +\infty$, donc $x_n - x_{n-1} \xrightarrow[n \to \infty]{} 0$, d'après le résultat précédent; en particulier, la suite $(x_{2n} - x_{2n+1})$ converge vers 0. En conclusion:

Les suites
$$(x_{2n})_{n\in\mathbb{N}}$$
 et $(x_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.

II.3.3. Il apparaît plus précisément ci-dessus que la suite (x_{2n}) croît strictement vers α et que (x_{2n+1}) décroît strictement vers α ; j'ai donc :

$$\forall n \in \mathbb{N} \quad x_{2n} < \alpha < x_{2n+1} \quad \text{d'où} \quad 0 < \alpha - x_{2n} < x_{2n+1} - x_{2n},$$

c'est-à-dire, d'après II.3.1., comme on a supposé $\alpha = \frac{c}{d}$

$$0 < \frac{cq_{2n} - dp_{2n}}{dq_{2n}} < \frac{1}{q_{2n}q_{2n+1}}.$$

D'où, en multipliant par dq_{2n} (strictement positif!) :

$$k_n = cq_{2n} - dp_{2n}$$
 est entier et vérifie $0 < k_n < \frac{d}{q_{2n+1}}$.

Il en résulte que $\frac{d}{q_{2n+1}} > 1$ pour tout n, ce qui contredit le **II.1.**, d étant fixé. En conclusion,

α n'est pas rationnel.

- II.4.1. Le graphe demandé est un morceau de parabole... $f(-1) = f(\lambda + 1) = \lambda > 0$ et f atteint son minimum en $\lambda/2$, milieu du segment $[-1, \lambda + 1]$, ce minimum $-\lambda^2/4 1$ étant strictement négatif.
- II.4.2. Aux remarques précédentes, j'ajoute que $f(0) = f(\lambda) = -1 < 0$; il en résulte que

$$-1 < r_1 < 0$$
 et $\lambda < r_2 < \lambda + 1$.

En particulier, puisque λ est entier :

$$r_1 < 0; r_2 > 0; E(r_1) = -1; E(r_2) = \lambda.$$

II.5.1. Il vient, par définition des suites (p_n) et (q_n) :

n	0	1	2	$\frac{3}{\lambda^4 + 3\lambda^2 + 1}$	
p_n	λ	$\lambda^2 + 1$	$\lambda^3 + 2\lambda$		
q_n	1	λ	$\lambda^2 + 1$	$\lambda^3 + 2\lambda$	

II.5.2. Comme la suite (a_n) est constante, une récurrence forte et néanmoins immédiate fournit

$$\forall n \geq 1 \quad q_n = p_{n-1} \quad \text{et donc } \forall n \in \mathbf{N} \quad x_n = \frac{q_{n+1}}{q_n}.$$

II.5.3. La suite (q_n) est définie par $q_0 = 1, q_1 = \lambda = r_1 + r_2$ et la relation de récurrence linéaire double

$$\forall n \geq 2 \quad q_n = \lambda q_{n-1} + q_{n-2},$$

dont l'équation caractéristique n'est autre que f(x)=0. q_n est donc de la forme $A_1r_1^n+A_2r_2^n$, où les scalaires A_1,A_2 sont déterminés par

$$\left\{ \begin{array}{l} q_0 = A_1 + A_2 = 1 \\ q_1 = A_1 r_1 + A_2 r_2 = r_1 + r_2 \end{array} \right. \quad \text{d'où} \quad A_1 = \frac{r_1}{r_1 - r_2} \quad \text{et} \quad A_2 = \frac{r_2}{r_2 - r_1},$$

soit finalement :

$$\forall n \in \mathbf{N} \quad q_n = \frac{r_2^{n+1} - r_1^{n+1}}{r_2 - r_1}.$$

II.5.4. En vertu des deux questions précédentes :

$$\forall n \in \mathbf{N} \quad x_n = \frac{r_2^{n+2} - r_1^{n+2}}{r_2^{n+1} - r_1^{n+1}}.$$

II.5.5. Puisque $|r_1| < 1$ et $r_2 > 1$, il en résulte :

$$\lim_{n\to\infty} x_n = r_2.$$

II.5.6. Ici, $q_0 = 1, q_1 = 3$ et : $\forall n \ge 2 \quad q_n = 3q_{n-1} + q_{n-2}$, d'où les valeurs :

1	n	0	1	2	3	4	5	6
	q_n	1	3	10	33	109	360	1189

J'ai
$$\frac{1}{q_4q_5} < 10^{-4}$$
, or d'après **II.3.** $x_4 = \frac{q_5}{q_4} < \alpha < x_5 = \frac{q_6}{q_5}$ et $x_5 - x_4 = \frac{1}{q_4q_5}$, d'où

$$\frac{360}{109} < \alpha < \frac{1189}{360}$$
.

N.B. Je constate que
$$\frac{360}{109} \approx 3,30275, \frac{1189}{360} \approx 3,30278$$
 et $\alpha = r_2 = \frac{3 + \sqrt{13}}{2} \approx 3,30278$.

PARTIE III

III.1.1. En appliquant la définition :

$$\boxed{ [a_0, a_1] = \frac{a_0 a_1 + 1}{a_1} = \frac{p_1}{q_1} \text{ et } [a_0, a_1, a_2] = \frac{a_0 a_1 a_2 + a_0 + a_2}{a_1 a_2 + 1} = \frac{p_2}{q_2}.}$$

III.1.2. On suppose ici $[a_0, \ldots, a_n] = \frac{p_n}{q_n} = \frac{a_n p_{n-1} + p_{n-2}}{a_n q_{n-1} + q_{n-2}}$, où $p_{n-1}, p_{n-2}, q_{n-1}, q_{n-2}$ ne dépendent que de a_0, \ldots, a_{n-1} ; remplacer a_n par $a_n + \frac{1}{a_{n+1}}$ conduira donc à

$$\left[a_0, \dots, a_{n-1}, a_n + \frac{1}{a_{n+1}}\right] = \frac{\left(a_n + \frac{1}{a_{n+1}}\right)p_{n-1} + p_{n-2}}{\left(a_n + \frac{1}{a_{n+1}}\right)q_{n-1} + q_{n-2}} = \frac{a_{n+1}\left(a_n p_{n-1} + p_{n-2}\right) + p_{n-1}}{a_{n+1}\left(a_n q_{n-1} + q_{n-2}\right) + q_{n-1}},$$

soit, par définition des suites (p_n) et (q_n) :

Si
$$[a_0, \dots, a_n] = \frac{p_n}{q_n}$$
, alors $\left[a_0, \dots, a_{n-1}, a_n + \frac{1}{a_{n+1}}\right] = \frac{p_{n+1}}{q_{n+1}}$.

III.1.3. Les deux questions précédentes constituent la preuve — par récurrence sur n — que

$$\forall n \in \mathbf{N} \quad [a_0, \dots, a_n] = \frac{p_n}{q_n} = x_n.$$

III.1.4. Je montre là encore le résultat par récurrence : soit T l'ensemble des suites $b = (b_n)$ de réels telles que, pour tout $n \ge 1$, $b_n > 0$; je définis, pour tout $n \ge 1$, de \mathbf{N}^* , le prédicat :

$$\mathcal{P}_n$$
: " $\forall b \in T$ $[b_0, \dots, b_n] = b_0 + \frac{1}{[b_1, \dots, b_n]}$ ".

 \mathcal{P}_1 est vrai, puisque j'ai bien par définition, pour tout b de T :

$$[b_0, b_1] = b_0 + \frac{1}{b_1} = b_0 + \frac{1}{[b_1]}.$$

Je suppose alors $n \ge 1$ tel que \mathcal{P}_n soit vrai et je considre $b \in T$; j'ai, grâce à \mathcal{P}_n appliqu la suite de T obtenue partir de b en remplaant b_n par $b_n + \frac{1}{b_{n+1}}$

$$[b_0, \dots, b_n, b_{n+1}] = \left[b_0, \dots, b_{n-1}, b_n + \frac{1}{b_{n+1}}\right] = b_0 + \frac{1}{\left[b_1, \dots, b_n + \frac{1}{b_{n+1}}\right]} = b_0 + \frac{1}{\left[b_1, \dots, b_{n+1}\right]};$$

ainsi \mathcal{P}_{n+1} est vrai, ce qui achève la preuve. Donc, en particulier pour une suite a de S:

$$\forall n \in \mathbf{N}^* \quad [a_0, \dots, a_n] = a_0 + \frac{1}{[a_1, \dots, a_n]}.$$

III.2.1. D'après **II.**, $x_0 = a_0 < \alpha < x_1 = a_0 + \frac{1}{a_1}$, or $a_1 \ge 1$, donc $a_0 \in \mathbf{Z}$ et $a_0 \le \alpha < a_0 + 1$:

$$x_0 < \alpha < x_1$$
 et $a_0 = E(\alpha)$.

III.2.2. D'après les résultats du III.1.,

$$\forall n \in \mathbf{N}^* \quad x_n = [a_0, \dots, a_n] = a_0 + \frac{1}{[a_1, \dots, a_n]},$$

d'où, par unicité de la limite, pour n tendant vers l'infini : $\alpha = a_0 + \frac{1}{\alpha_1}$. En appliquant, pour k fixé dans \mathbf{N} , ce même résultat à la suite $(a_{k+n})_{n \in \mathbf{N}}$, qui est aussi dans S, j'obtiens :

$$\forall k \in \mathbf{N} \quad \alpha_k = a_k + \frac{1}{\alpha_{k+1}}.$$

III.2.3. J'en déduis comme au III.2.1. que $a_k = E(\alpha_k)$ pour tout k. Ainsi, à partir de la valeur de α , la suite (a_n) se construit par récurrence, parallèlement à la suite (α_n) , grâce aux relations suivantes :

$$\alpha_0 = \alpha \; , \; a_0 = E(\alpha) \quad \text{et} \quad \forall k \in \mathbf{N} \quad \alpha_{k+1} = \frac{1}{\alpha_k - a_k} \; , \; a_{k+1} = E(\alpha_{k+1}).$$

Cela montre, pour α donné, l'unicité de la suite a telle $\alpha = F(a)$ (dont on a admis l'existence). Par conséquent :

III.3.1. Reprenant les notations du I.5., avec $x = \frac{1}{\mu}$, je pose :

$$\forall k \in \mathbf{N} \quad \alpha_k = \gamma_k \left(\frac{1}{\mu}\right)$$

et, d'après les résultats du I.3. et du I.5., j'ai :

$$\alpha_0 = \frac{1}{\operatorname{th}(1/\mu)}$$
 ; $\forall n \in \mathbf{N}$ $\alpha_n > 1$ et $\alpha_n = (2n+1)\mu + \frac{1}{\alpha_{n+1}}$.

Soit alors la suite $a = ((2n+1)\mu)_{n \in \mathbb{N}}$. D'apris II.3. et III.1., la suite de terme gnral $x_n = [a_0, \dots, a_n]$ converge vers le nombre irrationnel $\alpha = F(a)$.

Pour montrer que α n'est autre que α_0 , j'établis d'abord par récurrence sur n que

$$\forall n \in \mathbf{N}^* \quad \alpha_0 = [a_0, a_1, \dots, a_{n-1}, \alpha_n].$$

Ayant : $\forall n \in \mathbf{N} \quad \alpha_n = a_n + \frac{1}{\alpha_{n+1}}$, j'ai bien, pour n = 1, $\alpha_0 = a_0 + \frac{1}{\alpha_1} = [a_0, \alpha_1]$; de plus, si je suppose $n \ge 1$ tel que $\alpha_0 = [a_0, a_1, \dots, a_{n-1}, \alpha_n]$, j'en déduis, d'après les définitions du début du **III.** :

$$\alpha_0 = \left[a_0, a_1, \dots, a_{n-1}, a_n + \frac{1}{\alpha_{n+1}}\right] = \left[a_0, a_1, \dots, a_n, \alpha_{n+1}\right],$$

ce qui achève la preuve. J'en déduis, en notant (p_n) et (q_n) les suites associées à a comme au II., et par le même raisonnement qu'au III.1.2., que

$$\forall n \geq 2 \quad \alpha_0 = [a_0, a_1, \dots, a_{n-1}, \alpha_n] = \frac{\alpha_n p_{n-1} + p_{n-2}}{\alpha_n q_{n-1} + q_{n-2}}$$

Il vient alors, tous calculs faits:

$$\forall n \ge 2 \quad \alpha_0 - x_n = \frac{\alpha_n p_{n-1} + p_{n-2}}{\alpha_n q_{n-1} + q_{n-2}} - \frac{a_n p_{n-1} + p_{n-2}}{a_n q_{n-1} + q_{n-2}} = \frac{(\alpha_n - a_n) (p_{n-1} q_{n-2} - p_{n-2} q_{n-1})}{(\alpha_n q_{n-1} + q_{n-2}) (a_n q_{n-1} + q_{n-2})}$$

Or les q_k sont dans \mathbf{N}^* , a_n et α_n sont au moins égaux à 1, $\alpha_n - a_n = \frac{1}{\alpha_{n+1}} \in]0,1[$ et, d'après les résultats du $\mathbf{II.}$, $|p_{n-1}q_{n-2} - p_{n-2}q_{n-1}| = 1$ et $q_{n-1} + q_{n-2} \xrightarrow[n \to \infty]{} +\infty$, d'où

$$\forall n \ge 2 \quad |\alpha_0 - x_n| \le \frac{1}{(q_{n-1} + q_{n-2})^2} \xrightarrow[n \to \infty]{} 0.$$

Il en résulte, par unicité de la limite de la suite (x_n) , que $\alpha_0 = \alpha = F(a)$ d'où finalement

$$a = ((2n+1)\mu)_{n \in \mathbb{N}}$$
 est la suite de S telle que $F(a) = \frac{1}{\operatorname{th}(1/\mu)}$.

III.3.2. J'applique les définitions :

n	0	1	2	3	4
a_n	1	3	5	7	9
p_n	1	4	21	151	1380
q_n	1	3	16	115	1051

$$\boxed{\frac{1380}{1051} < \frac{1}{th(1)} < \frac{151}{115}}.$$

N.B. Ces trois nombres admettent pour valeur approchée arrondie à 10^{-5} près 1, 31304.