Question

- Merge sort and Quick sort
 - worst-case running time is $O(n \lg n)$ and $O(n^2)$, respectively
- Are there better algorithms?
 - Can we do better (linear time algorithm) if the input has special structure (e.g., uniformly distributed, every number can be represented by d digits?)

CPT108 Data Structures and Algorithms

Lecture 13
Sorting
Counting Sort and Radix Sort

Counting sort and Radix sort

- Non-comparison-based sorting algorithms
- Work well when there is limited range of "input values"

 A sorting algorithm that sorts the elements by counting the number of occurrences of *unique* element, known as *keys*, in the array.

Algorithm

```
COUNTING-SORT(A, n, k)
     let B[1:n] and C[0:k] be new arrays
  2 for i = 0 to k
          C[i] = 0
    for i = 0 to n
          C[A[j]] = C[A[j]] + 1
    // C[i] now contains the number of elements equal to i
     for i = 1 to k
          C[i] = C[i] + C[i-1]
     // C[i] now contains the number of elements less than or equal to i
     // Copy A to B, starting from the end of A
     for i = n downto 1
          B[C[A[j]]] = A[j]
          C[A[j]] = C[A[j]] - 1 // to handle duplicate values
     return B
```

```
COUNTING-SORT(A, n, k)
      let B[1:n] and C[0:k] be new arrays
      for i = 0 to k
           C[i] = 0
     for i = 0 to n
           C[A[j]] = C[A[j]] +
      // Cf/I now contains the number of elements equal to i
      for i = 1 to k
           C[i] = C[i] + C[i-1]
      // C[i] now contains the number of elements less than or equal to i
      // Copy A to B, starting from the end of A
      for i = n downto 1
           B[C[A[j]]] = A[j]
  12
           C[A[j]] = C[A[j]] - 1 // to handle duplicate values
      return B
```


Example

COUNTING-SORT(A, n, k)let B[1:n] and C[0:k] be new arrays for i = 0 to kC[i] = 0for i = 0 to nC[A[j]] = C[A[j]] + 1// C[i] now contains the number of elements equal to ifor i = 1 to kC[i] = C[i] + C[i - 1]8 // C[/] now contains the number of elements less than or equal to i // Copy A to B, starting from the end of A for i = n downto 1 B[C[A[j]]] = A[j]12 C[A[j]] = C[A[j]] - 1 // to handle duplicate values return B

Example (cont.)

В

```
COUNTING-SORT(A, n, k)
      let B[1:n] and C[0:k] be new arrays
      for i = 0 to k
           C[i] = 0
      for i = 0 to n
           C[A[j]] = C[A[j]] + 1
      // C[i] now contains the number of elements equal to i
      for i = 1 to k
           C[i] = C[i] + C[i - 1]
      // C[i] now contains the number of elements less than or equal to i
      // Copy A to B, starting from the end of A
     for i = n downto 1
           B[C[A[j]]] = A[j]
  12
           C[A[j]] = C[A[j]] - 1 // to handle duplicate values
  13
      return B
```


decrement counter value by 1 afterwards

```
COUNTING-SORT(A, n, k)
      let B[1:n] and C[0:k] be new arrays
      for i = 0 to k
           C[i] = 0
      for i = 0 to n
           C[A[j]] = C[A[j]] + 1
      // C[i] now contains the number of elements equal to i
      for i = 1 to k
           C[i] = C[i] + C[i - 1]
      // C[i] now contains the number of elements less than or equal to i
      // Copy A to B, starting from the end of A
     for i = n downto 1
           B[C[A[j]]] = A[j]
  12
           C[A[j]] = C[A[j]] - 1 // to handle duplicate values
  13
      reiurn 8
```


$$A[9] = 2$$

$$C[2] = 5$$

```
COUNTING-SORT(A, n, k)
      let B[1:n] and C[0:k] be new arrays
      for i = 0 to k
           C[i] = 0
      for i = 0 to n
           C[A[j]] = C[A[j]] + 1
      // C[i] now contains the number of elements equal to i
      for i = 1 to k
           C[i] = C[i] + C[i-1]
      // C[i] now contains the number of elements less than or equal to i
      // Copy A to B, starting from the end of A
     for i = n downto 1
           B[C[A[j]]] = A[j]
  12
           C[A[j]] = C[A[j]] - 1 // to handle duplicate values
  13
      reiurn 8
```



```
COUNTING-SORT(A, n, k)
      let B[1:n] and C[0:k] be new arrays
      for i = 0 to k
           C[i] = 0
      for i = 0 to n
           C[A[j]] = C[A[j]] + 1
      // C[i] now contains the number of elements equal to i
      for i = 1 to k
           C[i] = C[i] + C[i-1]
      // C[i] now contains the number of elements less than or equal to i
      // Copy A to B, starting from the end of A
     for i = n downto 1
           B[C[A[j]]] = A[j]
  12
           C[A[j]] = C[A[j]] - 1 // to handle duplicate values
  13
      reiurn 8
```


$$A[7] = 0$$

$$C[0] = 2$$

```
COUNTING-SORT(A, n, k)
      let B[1:n] and C[0:k] be new arrays
      for i = 0 to k
           C[i] = 0
      for i = 0 to n
           C[A[j]] = C[A[j]] + 1
      // C[i] now contains the number of elements equal to i
      for i = 1 to k
           C[i] = C[i] + C[i-1]
      // C[i] now contains the number of elements less than or equal to i
      // Copy A to B, starting from the end of A
     for i = n downto 1
           B[C[A[j]]] = A[j]
  12
           C[A[j]] = C[A[j]] - 1 // to handle duplicate values
  13
      reiurn 8
```


$$C[2] = 4$$

```
COUNTING-SORT(A, n, k)
      let B[1:n] and C[0:k] be new arrays
      for i = 0 to k
           C[i] = 0
      for i = 0 to n
           C[A[j]] = C[A[j]] + 1
      // C[i] now contains the number of elements equal to i
      for i = 1 to k
           C[i] = C[i] + C[i-1]
      // C[i] now contains the number of elements less than or equal to i
      // Copy A to B, starting from the end of A
     for i = n downto 1
           B[C[A[i]]] = A[i]
  12
           C[A[j]] = C[A[j]] - 1 // to handle duplicate values
  13
      reiurn 8
```



```
COUNTING-SORT(A, n, k)
      let B[1:n] and C[0:k] be new arrays
      for i = 0 to k
           C[i] = 0
      for i = 0 to n
           C[A[j]] = C[A[j]] + 1
      // C[i] now contains the number of elements equal to i
      for i = 1 to k
           C[i] = C[i] + C[i-1]
      // C[i] now contains the number of elements less than or equal to i
      // Copy A to B, starting from the end of A
     for i = n downto 1
           B[C[A[j]]] = A[j]
  12
           C[A[j]] = C[A[j]] - 1 // to handle duplicate values
  13
      reiurn 8
```


$$A[4] = 3$$

$$C[3] = 7$$

Set
$$B[7] = 3$$

```
COUNTING-SORT(A, n, k)
      let B[1:n] and C[0:k] be new arrays
      for i = 0 to k
           C[i] = 0
      for i = 0 to n
           C[A[j]] = C[A[j]] + 1
      // C[i] now contains the number of elements equal to i
      for i = 1 to k
           C[i] = C[i] + C[i-1]
      // C[i] now contains the number of elements less than or equal to i
      // Copy A to B, starting from the end of A
     for i = n downto 1
           B[C[A[i]]] = A[i]
  12
           C[A[j]] = C[A[j]] - 1 // to handle duplicate values
  13
      reiurn 8
```


$$A[3] = 0$$

$$C[0] = 1$$

```
COUNTING-SORT(A, n, k)
      let B[1:n] and C[0:k] be new arrays
      for i = 0 to k
           C[i] = 0
      for i = 0 to n
           C[A[j]] = C[A[j]] + 1
      // C[i] now contains the number of elements equal to i
      for i = 1 to k
           C[i] = C[i] + C[i-1]
      // C[i] now contains the number of elements less than or equal to i
      // Copy A to B, starting from the end of A
     for i = n downto 1
           B[C[A[j]]] = A[j]
  12
           C[A[j]] = C[A[j]] - 1 // to handle duplicate values
  13
      reiurn 8
```


$$A[2] = 2$$

$$C[2] = 3$$

```
COUNTING-SORT(A, n, k)
      let B[1:n] and C[0:k] be new arrays
      for i = 0 to k
           C[i] = 0
      for i = 0 to n
           C[A[j]] = C[A[j]] + 1
      // C[i] now contains the number of elements equal to i
      for i = 1 to k
           C[i] = C[i] + C[i-1]
      // C[i] now contains the number of elements less than or equal to i
      // Copy A to B, starting from the end of A
     for i = n downto 1
           B[C[A[i]]] = A[i]
  12
           C[A[j]] = C[A[j]] - 1 // to handle duplicate values
  13
      reiurn 8
```


$$C[3] = 6$$

```
COUNTING-SORT(A, n, k)
      let B[1:n] and C[0:k] be new arrays
      for i = 0 to k
           C[i] = 0
      for i = 0 to n
           C[A[j]] = C[A[j]] + 1
      // C[i] now contains the number of elements equal to i
      for i = 1 to k
           C[i] = C[i] + C[i-1]
      // C[i] now contains the number of elements less than or equal to i
      // Copy A to B, starting from the end of A
      for i = n downto 1
           B[C[A[j]]] = A[j]
  12
           C[A[j]] = C[A[j]] - 1 // to handle duplicate values
     return B
```


Some observations

- Assumes that each element of the n input is, or can be mapped to, an non-negative integer, i.e., the key, in the range from 0 to k
- It uses the input elements as the indices of the auxiliary array — not for the use of comparisons

Complexity

```
COUNTING-SORT(A, n, k)
      let B[1:n] and C[0:k] be new arrays
     for i = 0 to k
                      array initiation \Theta(k)
     for i = 0 to n
                                     pass over the array to inspect each input element,
           C[A[i]] = C[A[i]] + 1  C[i] holds each element each to i
      // C[i] now contains the number of elements equal to i
     for i = 1 to k
                                       determine the number of elements
                                                                       \Theta(k)
           C[i] = C[i] + C[i-1] that are less than or equal to i
      // C[i] now contains the number of elements less than or equal to i
      // Copy A to B, starting from the end of A
                                                                  place each element into
      for i = n downto 1
 11
           B[C[A[i]]] = A[i]
 12
                                                                  its correct position in the \Theta(n)
           C[A[j]] = C[A[j]] - 1 // to handle duplicate values output array
 13
     return B
```

 \Rightarrow the overall time complexity is $\Theta(n+k)$

Question

For sorting an array of the 100 largest cities by population, which sort do you think has a better worst-case execution time?

- Quick sort
- Insertion sort
- Counting sort

City	Population	
Ahmedabad	7 681 000	
Alexandria	5 086 000	
Atlanta	5 572 000	
Baghdad	6812000	
Bangalore	11 440 000	
:	:	

Question (cont.)

In counting sort, it requires building of an array that is equal to the maximum value of the key, ie:

• In practice, we use counting sort when we have k = O(n). In such case, the running time is $\Theta(n)$

Summary (Geeksforgeeks.org, 2024a)

Advantages

- It has running time complexity of O(n+k)
- Generally performs faster than all comparison-based sorting algorithms, such as merge sort and quick sort, when the *range* of input values is small compare to the number of elements to be sorted
- Easy to code
- It is stable meaning that it preserve the relative order of elements with equal value

Disadvantages

- It does not work on decimal values
- Inefficient if the range of input values is very large
- It is not an in-place sorting algorithm, and requires an auxiliary space of O(n + k) (i.e., k for counting, and n for outputs) for sorting the array elements

Commonly use as a way to sort punch cards as early as 1923.

- Exploits the concepts of place value by sorting numbers digit by digit
- Assumes that the "data" must be between a range of elements
- A procedure that uses a another stable sort (e.g., merge sort, quick sort, counting sort) as a subroutine
- Can be implemented to start with
 - Least significant digit (LSD)
 - Most significant digit (MSD)

<u>Pseudocode</u>

Find the maximum element *max* in the array
Find the number of digits *k* in *max*For each *i* from 1 to *k*Sort the *i*th least-significant digit of each element using a stable sort algorithm

Sort the $i^{(i)}$ least-significant digit of each element using a stable sort algorithm (If any element has less than i digits consider 0 at its place)

Algorithm

```
RADIX-SORT(A, n)

// d: maximum number of digits (or length) of elements in the array

1 for i = 1 to d

2 use a stable sort to sort array A[1:n] on digit i
```

 Commonly used stable sorting algorithms include: insertion sort, merge sort, and counting sort

Example (cont.)

End of 2^{nd} iteration:

421 027 541 643 045 049 161 562 273 478 498

Exercise

Exercise (cont.)

Exercise (cont.)

Question

How to sort string with radix sort?

 We can map each character into an integer and use the technique described above to do the sorting.

$$\begin{array}{c} \text{} \to 0 \\ \text{A} \to 1 \\ \text{B} \to 2 \\ \text{C} \to 3 \\ \vdots \end{array}$$

• Can we do the same for counting sort?

Complexity

```
RADIX-SORT(A, n)

// d: maximum number of digits (or length) of elements in the array

for i = 1 to d

use a stable sort to sort array A[1:n] on digit i

\Theta(n+k)

repeat d

times

(if counting sort is used)

\Rightarrow the overall time complexity is \Theta(d(n+k))
```

Summary (Geeksforgeeks.org, 2024b)

Advantages

 In practice, radix sort is often faster than other comparison-based sorting algorithms, such as quick sort and merge sort, for large datasets, especially when the keys have many digits

Drawbacks

- Its time complexity grows linearly with the number of digits, and so it is not as efficient for small datasets
- It requires fixed size keys to operate, which may not be the case for some types of data
- It is not an in-place algorithm as it uses a temporary count array
- It requires an auxiliary space of O(n+k) for creating the buckets for each digit value and to copy the elements back to the original array after each digit has been sorted.

Counting sort and Radix sort

	<u>Worst</u>	<u>Best</u>
Selection sort	$O(n^2)$	$O(n^2)$
Insertion sort	$O(n^2)$	<i>O</i> (<i>n</i>)
Bubble sort	$O(n^2)$	$O(n^2)$
Improved bubble sort	$O(n^2)$	<i>O</i> (<i>n</i>)
Merge sort	$O(n \lg n)$	$O(n \lg n)$
Quick sort	$O(n^2)$	$O(n \lg n)$
Heap sort	$O(n \lg n)$	$O(n \lg n)$
Counting sort	O(n+k)	O(n+k)
Radix sort	O(d(n+k))	O(d(n+k))

Reading

- Chapter 8.2-8.3, Cormen (2022)
- "Lower bounds for sorting" Section 8.1, Cormen (2022) (Optional)
- "Bucket sort" Section 8.4, Cormen (2022) (Optional)

References I

Geeksforgeeks.org (2024a). Counting Sort — Data Structure and Algorithm Tutorials. Online:

https://www.geeksforgeeks.org/counting-sort/.[last accessed: 20 Mar 2024].

— (2024b). Radix Sort — Data Structure and Algorithm Tutorials. Online: https://www.geeksforgeeks.org/radix-sort/. [last accessed: 20 Mar 2024].