DWS

(Data Warehouse Solution for GDELT dataset)

Artsiom Sinitski

Data Engineering Fellow Insight, New York City

My Motivation

- Is to create a solution for collecting, managing and analysing
 GDELT data set effortlessly
- Target users are business analysts

FROM THAT

TO THIS

Why do we care?

- Time between a question and the answer is much shorter and the business decisions are made faster
- This helps to lower operating expenses and to develop a more effective business strategy faster
- Which contributes to increased profits

Dataset

- Global Database of Events, Language & Tone (GDELT) collection of world's broadcast, print and web news
- Volume: ~2.5 TB per year (CSV format)

Approach

Approach Memo (1 of 2)

- Data Warehouse Solution is hosted in the AWS Cloud
- AWS S3 object store is used for "Staging Area"
- DWS servers are run on AWS EC2 instances
 - Apache Spark cluster nodes
 - Central Storage and Data Mart databases
 - O Web server (Flask)
- The current data is downloaded and combined with the historical data by Apache Airflow which schedules ETLs processes once per day

Approach Memo (2 of 2)

- <u>Central Storage ETL</u> () extracts the raw data from GDELT web site, enforces GDELT schema onto it using Apache Spark engine and lastly, saves the data into Central Storage
- <u>Data Mart ETL</u> () extracts a data subset from Central Storage, breaks it up into appropriate tables (according to the "star" data schema) and loads the tables into Data Marts

Trade Offs

- Retrieving data from multiple large tables is very slow!
 - Create a separate table on subset

- O Also, consider denormalizing data and indexing tables
- Data redundancy vs. time complexity of O(m*n*k)

Trade Offs (contd.)

• Benchmarking results:

	Execution Time	Data set size
Multi-table Join Select	1.5 mins	16.4 mil records (Events table)55 mil records (Mentions table)
Subset Table Select	2 sec	~ 38.6 thousand records (Subset table)

DWS Demo

DWS Demo

Countries where violent protests occurred on January, 10 of 2015

Step 1. Get the data from DWS w/ Tableau

Step 2. Analyze and visualize the data

Artsiom Sinitski

 Has a professional background as software engineer and consultant in the supply chain management field

Is a passionate traveller and photographer

https://www.instagram.com/artsiom_sinitski/

Technology Stack Choices (1 of 2)

- Apache Spark vs. Flink
 - O Fast batch processing
 - O Diverse ecosystem of libraries (ML, GraphX, etc.)
- PostgreSQL vs. MySQL
 - Better SQL standard compliance
 - Large and active development community
 - Supports multiple CPUs and concurrent writes

Technology Stack Choices (2 of 2)

- Flask vs Django
 - Simple and lightweight web framework
 - Automatic API documentation (via Swagger)
- Airflow vs. Luigi
 - Strong and active development community
 - Scheduler support ("set it and forget it")
 - Support for distributed execution
 - Intuitive web UI

Future Project Work

- Implement Service layer (data lineage) to give more visibility into the errors root cause in a data analytics process.
- Scale data warehouse storage automatically, as it grows
- Replace PostgreSQL with a columnar database (?)
 - Citus (PostgreSQL extension)
 - O Presto

References

Gdelt: Global data on events, location, and tone, 1979–2012

By Kalev Leetaru, Philip A. Schrodt

GDELT Data Format Codebook