BCI*

Π . А. Северилов¹, В. В. Стрижов²

Аннотация: В работе исследуется задача

Ключевые слова:

1 Введение

В данной работе решается задача

2 Постановка задачи

Пусть дана выборка (\mathbf{X}, \mathbf{Y}) , где $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\mathsf{T} \in \mathbb{R}^{n \times m}$ — матрица независимых переменных, $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_n]^\mathsf{T} \in \mathbb{R}^{n \times k}$ — матрица целевых переменных.

2.1 Метод частичных наименьших квадратов

2.2 Канонический анализ корреляций

Канонический анализ корреляций

2.3 Нелинейный канонический анализ корреляций

Нелинейный канонический анализ корреляций— нелинейная модификация ССА. Метод Deep CCA преобразует исходные данные с помощью нейронной сети таким

^{*}no

 $^{^1 \}rm Mocковский физико-технический институт, severilov.pa@phystech.edu$

 $^{^2}$ Вычислительный центр имени А. А. Дородницына Федерального исследовательского центра «Информатика и управление» Российской академии наук, Московский физико-технический институт, strijov@phystech.edu

3 Вычислительный эксперимент

Целью вычислительного эксперимента является В рамках вычислительного эксперимента написан программный комплекс для решения поставленных задач [1].

4 Заключение

В работе рассмотрена задача

Список литературы

[1] Severilov. Project source code is available at: https://github.com/severilov/BCI-thesis, 2021.