Densité des états d'énergie:

$$D(E) = 0 dans \ laB.I$$

$$D_n(E) = 4\pi \left(\frac{2m_n}{h^2}\right)^{\frac{3}{2}} (E - E_C)^{\frac{1}{2}} dans \ la \ BdC$$

$$D_p(E) = 4\pi \left(\frac{2m_p}{h^2}\right)^{3/2} (E_V - E)^{1/2} dans \ la \ BdV$$

Extrait du tableau périodique :

AIIVAIVA VA VIAVIIA

			• / \	V 1/ \	v	• • • • • • •
Période						He
1	В	С	Ν	0	F	Ne
2	ΑI	Si	Р	S	CI	Ar
3	Ga	Ge	As	Se	Br	Kr
4	In	Sn	Sb	Те	I	Хе
5	Ti	Pb	Bi	Po	At	Rn
6						
7						

Constantes:

Masse de l'électron libre : m_0 =9,11.10⁻³¹kg ; Constante de Planck : h=6,625.10⁻³⁴J.s Constante de Boltzman : k=1,38.10⁻²³ J/K kT = 0,0259 eV à 300K

Charge de l'électron : $q=1,6.10^{-19}C$. Permittivité du vide : $\epsilon_0=8,854.10^{-12}$ F/m

Fonction de distribution de Fermi-Dirac:

$$F_n(E) = \frac{1}{1 + exp \left[\frac{E - E_F}{kT}\right]}$$
; $\int_0^\infty x^{1/2} e^{-x} dx = \frac{\sqrt{\pi}}{2}$

Semiconducteur intrinsèque :

$$n = N_C \exp - \frac{(E_C - E_F)}{kT}$$

$$N_C = \frac{2}{h^3} (2\pi m_n kT)^{3/2}$$

$$p = N_V \exp - \frac{(E_F - E_V)}{kT}$$

Loi d'action de masse: np=n_i² n=p=n_i

$$E_{F} = \frac{E_{C} + E_{V}}{2} + \frac{kT}{2} Log(\frac{N_{V}}{N_{C}}) ;$$

$$n_{i} = \sqrt{N_{C}N_{V}} exp - \frac{E_{g}}{2kT}$$

Semiconducteur extrinsèque :

Cas usuel!

Type N:
$$n_n \approx N_D$$
; $p_n \approx \frac{n_i^2}{N_D}$
Type P: $p_p \approx N_A$; $n_p \approx \frac{n_i^2}{N_A}$

Conduction dans les semiconducteurs :

$$\langle E_{c_n} \rangle = \frac{3}{2} kT \; ; \; l_n = \tau_n v_{th_n} \; ; \; l_p = \tau_p v_{th_p}$$

$$\vec{v}_{d_n} = -\mu_n \vec{E} \; ; \; \mu_n = \frac{q\tau_n}{m_n} \; ;$$

$$\stackrel{\rightarrow}{v_{d_p}} = \mu_p \stackrel{\rightarrow}{E} \; ; \; \mu_p = \frac{q \tau_p}{m_p} \; ; \;$$

Loi d'Ohm microscopique :

$$\overrightarrow{J}_{c} = q(n\mu_{n} + p\mu_{p})\overrightarrow{E} ;$$

Courant de diffusion pour les électrons:

$$\overrightarrow{J}_{n}(x) = qD_{n} \operatorname{grad}(n)$$

Loi d'Einstein :
$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_n} = \frac{kT}{q}$$

Cas général pour les trous :

$$\overrightarrow{J}_{p}(x) = \mu_{p}\left(qp\overrightarrow{E} - kT \overrightarrow{grad}(p)\right)$$

Génération-recombinaison des porteurs :

Régime de faible injection

 \Rightarrow Δn = Δp << N_D pour un sc de type N pour un sc de type N (cas de recombinaison directe),

on a:
$$\frac{dp_n}{dt} = G - R = G_L + G_{th} - R = G_L - U; U = R - G_{th}$$

U : taux net de recombinaison

En régime stationnaire et de faible injection :

$$G_L = U = \frac{p_n - p_{n0}}{\tau_p}$$

Equation de continuité :

$$\frac{\partial n_p}{\partial t} = \mu_n \, \frac{\partial n_p}{\partial x} \, E + \mu_n n_p \, \frac{\partial E}{\partial x} + D_n \, \frac{\partial^2 n_p}{\partial x^2} + G_n - \frac{n_p - n_{p_0}}{\tau_n} \label{eq:delta_p}$$

JONCTION PN

Equation de Poisson:

$$\begin{split} E &= -\frac{d\psi}{dx}; \ div \ \vec{E} = \frac{\rho}{\varepsilon} \\ p &= n_i \exp[(E_i - E_F)/kT]; n = n_i \exp[(E_F - E_i)/kT]; \\ E_i)/kT]; \\ \frac{dE_F}{dx} &= 0; V_b = \frac{kT}{q} Ln \frac{N_A N_D}{n_i^2}; \end{split}$$

Hypothèses: Dans la RCE on a : n« et p« ; Dans les régions neutres, on a E=0 ;