

CLAIM AMENDMENTS

- 1 1. (Currently amended) A method of determining a placement of services of a
2 distributed application onto nodes of a distributed resource infrastructure
3 comprising the steps of:
4 a. forming communication constraints between node pairs which ensure that
5 a sum of transport demands between a particular node pair does not exceed a
6 transport capacity between the particular node pair, each term of the sum
7 comprising a product of a first placement variable, a second placement
8 variable, and the transport demand between the services associated with the
9 first and second placement variables;
10 b. forming an objective; and
11 c. employing a local search solution to solve an integer program comprising
12 the communication constraints and the objective, which determines the
13 placement of the services onto the nodes.
- 1 2. (Currently amended) A method of determining a placement of services of a
2 distributed application onto nodes of a distributed resource infrastructure
3 comprising the steps of:
4 a. establishing an application model of the services comprising transport
5 demands between the services;
6 b. establishing an infrastructure model of the nodes comprising transport
7 capacities between the nodes;
8 c. forming an integer program that comprises:
9 i. a set of placement variables for a combination of the services and the
10 nodes, each of the placement variables indicating whether a particular
11 service is located on a particular node;
12 ii. communication constraints between node pairs which ensure that a
13 sum of the transport demands between a particular node pair does not
14 exceed the transport capacity between the particular node pair, each term
15 of the sum comprising a product of a first placement variable, a second
16 placement variable, and the transport demand between the services
17 associated with the first and second placement variables; and
18 iii. an objective; and

19 d. employing a local search solution to solve the integer program which
20 determines the placement of the services onto the nodes.

1 3. (Original) The method of claim 2 wherein the step of solving the integer
2 program employs a local search solution.

1 4. (Original) The method of claim 2 wherein the objective comprises
2 minimizing communication traffic between the nodes.

1 5. (Original) The method of claim 2 wherein the application model further
2 comprises processing demands for the services.

1 6. (Original) The method of claim 5 wherein the infrastructure model further
2 comprises processing capacities for the nodes.

1 7. (Original) The method of claim 6 wherein the integer program further
2 comprises processing constraints which ensure that a sum of the processing
3 demands for each of the nodes does not exceed the processing capacity for the
4 node.

1 8. (Original) The method of claim 7 wherein the objective comprises
2 minimizing communication traffic between the nodes and balancing the
3 processing demands on the nodes.

1 9. (Original) The method of claim 6 wherein the processing demands and the
2 processing capacities are normalized according to a processing criterion.

1 10. (Original) The method of claim 9 wherein the processing criterion
2 comprises an algorithm speed.

1 11. (Original) The method of claim 9 wherein the processing criterion
2 comprises a transaction speed.

1 12. (Original) The method of claim 9 wherein the processing capacities of the

2 nodes are found according to a look-up table in which different types of nodes
3 have been normalized according to the processing criterion.

1 13. (Original) The method of claim 2 wherein the application model further
2 comprises storage demands for the services.

1 14. (Original) The method of claim 13 wherein the infrastructure model
2 further comprises storage capacities for the nodes.

1 15. (Original) The method of claim 14 wherein the integer program further
2 comprises storage constraints which ensure that a sum of the storage demands for
3 each of the nodes does not exceed the storage capacity for the node.

1 16. (Original) The method of claim 2 wherein the integer program further
2 comprises placement constraints which ensure that each of the services is placed
3 on one and only one of the nodes.

1 17. (Original) The method of claim 2 wherein the services reside on the nodes
2 according to a previous assignment.

1 18. (Original) The method of claim 17 further comprising the step of
2 assessing reassignment penalties for service placements that differs from the
3 previous assignment.

1 19. (Original) The method of claim 18 wherein the integer program further
2 comprises a second objective that seeks to minimize the reassignment penalties.

1 20. (Currently amended) A method of determining a placement of services of a
2 distributed application onto nodes of a distributed resource infrastructure
3 comprising the steps of:
4 a. establishing an application model of the services that comprises processing
5 demands for the services, storage demands for the services, and transport
6 demands between the services;
7 b. establishing an infrastructure model of the nodes that comprises processing

8 capacities for the nodes, storage capacities for the nodes, and transport
9 capacities between the nodes;

10 e. forming an integer program that comprises:

11 i. a set of placement variables for a combination of the services and the
12 nodes, each of the placement variables indicating whether a particular
13 service is located on a particular node;

14 ii. processing constraints which ensure that a sum of the processing
15 demands for each of the nodes does not exceed the processing capacity for
16 the node;

17 iii. storage constraints which ensure that a sum of the storage demands for
18 each of the nodes does not exceed the storage capacity for the node;

19 iv. placement constraints which ensure that each of the services is placed
20 on one and only one node;

21 v. communication constraints between node pairs which ensure that a
22 sum of the transport demands between a particular node pair does not
23 exceed the transport capacity between the particular node pair, each term
24 of the sum comprising a product of a first placement variable, a second
25 placement variable, and the transport demand between the services
26 associated with the first and second placement variables; and

27 vi. an objective of minimizing communication traffic between the nodes
28 and balancing processing loads on the nodes; and

29 d. employing a local search solution to solve the integer program which
30 determines the placement of the services onto the nodes.

1 21. (Currently amended) A computer readable memory comprising computer
2 code for directing a computer to make a determination of a placement of services
3 of a distributed application onto nodes of a distributed resource infrastructure, the
4 determination of the placement of the services onto the nodes comprising the steps
5 of:

6 a. forming communication constraints between node pairs which ensure that
7 a sum of transport demands between a particular node pair does not exceed a
8 transport capacity between the particular node pair, each term of the sum
9 comprising a product of a first placement variable, a second placement
10 variable, and the transport demand between the services associated with the

11 first and second placement variables;
12 **b.** forming an objective; and
13 **c.** employing a local search solution to solve an integer program comprising
14 the communication constraints and the objective, which determines the
15 placement of the services onto the nodes.

1 22. (Currently amended) A computer readable memory comprising computer
2 code for directing a computer to make a determination of a placement of services
3 of a distributed application onto nodes of a distributed resource infrastructure, the
4 determination of the placement of the services onto the nodes comprising the steps
5 of:
6 **a.** establishing an application model of the services comprising transport
7 demands between the services;
8 **b.** establishing an infrastructure model of the nodes comprising transport
9 capacities between the nodes;
10 **c.** forming an integer program that comprises:
11 *i.* a set of placement variables for a combination of the services and the
12 nodes, each of the placement variables indicating whether a particular
13 service is located on a particular node;
14 *ii.* communication constraints between node pairs which ensure that a
15 sum of the transport demands between a particular node pair does not
16 exceed the transport capacity between the particular node pair, each term
17 of the sum comprising a product of a first placement variable, a second
18 placement variable, and the transport demand between the services
19 associated with the first and second placement variables; and
20 *iii.* an objective; and
21 **d.** employing a local search solution to solve the integer program which
22 determines the placement of the services onto the nodes.

1 23. (Original) The computer readable memory of claim 22 wherein the step of
2 solving the integer program employs a local search solution.

1 24. (Original) The computer readable memory of claim 22 wherein the
2 objective comprises minimizing communication traffic between the nodes.

1 25. (Original) The computer readable memory of claim 22 wherein the
2 application model further comprises processing demands for the services.

1 26. (Original) The computer readable memory of claim 25 wherein the
2 infrastructure model further comprises processing capacities for the nodes.

1 27. (Original) The computer readable memory of claim 26 wherein the integer
2 program further comprises processing constraints ensure that a sum of the
3 processing demands for each of the nodes does not exceed the processing capacity
4 for the node.

1 28. (Original) The computer readable memory of claim 27 wherein the
2 objective comprises balancing the processing demands on the nodes.

1 29. (Original) The computer readable memory of claim 26 wherein the
2 processing demands and the processing capacities are normalized according to a
3 processing criterion.

1 30. (Original) The computer readable memory of claim 29 wherein the
2 processing criterion comprises an algorithm speed.

1 31. (Original) The computer readable memory of claim 9 wherein the
2 processing criterion comprises a transaction speed.

1 32. (Original) The computer readable memory of claim 9 wherein the
2 processing capacities of the nodes are found according to a look-up table in which
3 different types of nodes have been normalized according to the processing
4 criterion.

1 33. (Original) The computer readable memory of claim 22 wherein the
2 application model further comprises storage demands for the services.

1 34. (Original) The computer readable memory of claim 33 wherein the

2 infrastructure model further comprises storage capacities for the nodes.

1 35. (Original) The computer readable memory of claim 34 wherein the integer
2 program further comprises storage constraints which ensure that a sum of the
3 storage demands for each of the nodes does not exceed the storage capacity for the
4 node.

1 36. (Original) The computer readable memory of claim 22 wherein the integer
2 program further comprises placement constraints which ensure that each of the
3 services is placed on one and only one of the nodes.

1 37. (Original) The computer readable memory of claim 22 wherein the
2 services reside on the nodes according to a previous assignment.

1 38. (Original) The computer readable memory of claim 37 further comprising
2 the step of assessing reassignment penalties for service placements that differs
3 from the previous assignment.

1 39. (Original) The computer readable memory of claim 38 wherein the integer
2 program further comprises a second objective that seeks to minimize the
3 reassignment penalties.

1 40. (Currently amended) A computer readable memory comprising computer
2 code for directing a computer to make a determination of a placement of services
3 of a distributed application onto nodes of a distributed resource infrastructure, the
4 determination of the placement of the services onto the nodes comprising the steps
5 of:

- 6 a. establishing an application model of the services that comprises
7 processing demands for the services, storage demands for the services, and
8 transport demands between the services;
- 9 b. establishing an infrastructure model of the nodes that comprises processing
10 capacities for the nodes, storage capacities for the nodes, and transport
11 capacities between the nodes;
- 12 e. forming an integer program that comprises:

- 13 i. a set of placement variables for a combination of the services and the
14 nodes, each of the placement variables indicating whether a particular
15 service is located on a particular node;
- 16 ii. processing constraints which ensure that a sum of the processing
17 demands for each of the nodes does not exceed the processing capacity for
18 the node;
- 19 iii. storage constraints which ensure that a sum of the storage demands for
20 each of the nodes does not exceed the storage capacity for the node;
- 21 iv. placement constraints which ensure that each of the services is placed
22 on one and only one node;
- 23 v. communication constraints between node pairs which ensure that a
24 sum of the transport demands between a particular node pair does not
25 exceed the transport capacity between the particular node pair, each term
26 of the sum comprising a product of a first placement variable, a second
27 placement variable, and the transport demand between the services
28 associated with the first and second placement variables; and
- 29 vi. an objective of minimizing communication traffic between the nodes
30 and balancing processing loads on the nodes; and
- 31 d. employing a local search solution to solve the integer program which
32 determines the placement of the services onto the nodes.