BUNDESREPUBLIK
 DEUTSCHLAND

[®] Off nl gungsschrift[®] DE 198 31 269 A 1

(5) Int. Cl.⁶: F 16 B 25/02

DEUTSCHES
PATENT- UND
MARKENAMT

(7) Aktenzeichen:

198 31 269.5

② Anmeldetag:

13. 7.98

43 Offenlegungstag:

11. 2.99

Mit Einverständnis des Anmelders offengelegte Anmeldung gemäß § 31 Abs. 2 Ziffer 1 PatG

(7) Anmelder:

Heicko Schraubenvertriebs GmbH, 51588 Nümbrecht, DE

(74) Vertreter:

Patentanwälte Lippert, Stachow, Schmidt & Partner, 51427 Bergisch Gladbach

② Erfinder:

Pottgießer, Michael, Dipl.-Kfm., 51588 Nümbrecht, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- § Fensterbauschraube
- **⑤** Die Erfindung betrifft eine Fensterbauschraube zur Befestigung von Beschlägen oder dergleichen an PVC-Hohlprofilen mit einem Kopf (1) und einem zumindest teilweise mit selbstschneidendem Gewinde versehenen Schaft (2), wobei ein oder mehrere Gewindegänge jeweils durch eine im Querschnitt spitzwinklig dreieckige Gewinderaupe (4) gebildet werden und der Schaft (2) an seinem vom Kopf abliegenden Ende eine Nadelspitze (3) ausbildet. Damit die Schraube sich gleichermaßen zum Einschrauben in Kunststoff als auch in Kunststoff mit vorgebohrten Metall-Verstärkungsprofilen eignet, ist gemäß der Erfindung vorgesehen, daß die Gewinderaupe (4) über eine sich an d n Kopf (1) anschließende erste Teillänge (5) des Schafts (2) ein asymmetrisches Gewindeprofil aufweist und über eine zweite Teillänge (7) des Schafts (2) ein symmetrisches Gewindeprofil aufweist. Vorzugsweise ist der Flankenwinkel der lästaufnehmenden Oberflanke der Gewinderaupe (4) mit einer Senkrechten auf dem Schaftumfang auf der ersten Teillänge des Schafts (2) kleiner als der Flankenwinkel der Unterflanke (8).

Beschreibung

Die Erfindung betrifft eine Schraube, insbesondere Fensterbauschraube zur Befestigung von Beschlägen oder dergleichen an Kunststoff-Hohlprofilen, mit einem Kopf und 5 einem zumindest teilweise mit selbstschneidendem Gewinde versehenen Schaft, wobei ein oder mehrere Gewindegänge jeweils durch eine im Querschnitt spitzwinklig dreieckige Gewinderaupe gebildet werden und der Schaft an seinem von dem Kopf abliegenden Ende eine Nadelspitze 10 ausbildet.

Solche Schrauben finden Anwendung zur Verschraubung von Beschlägen an Blendrahmen und Flügelrahmen von Fenstern aus PVC-Profilen. Diese PVC-Profile sind in der Regel in mehrere Kammern unterteilt, wobei die Hauptkammern sowohl der Flügelrahmen als auch der Blendrahmen häufig Stahlverstärkungsprofile aufweisen. Diese Stahlverstärkungsprofile müssen beim Befestigen von Beschlägen durchbohrt werden. Hierzu sind Schrauben mit Bohrspitze bekannt, die ein Eindringen der Schraube in das Metallprofil ohne Vorbohren ermöglichen. Diese Schrauben finden bevorzugt im Eck- und Scherenlagerbereich sowie bei der Befestigung von Schließteilen Anwendung.

Es werden jedoch auch Beschlagschrauben der eingangs genannten Art mit Nadelspitze verwendet, die entweder nur 25 in den Kunststoff des Profils oder in Kunststoff und vorgebohrte Metallprofile eingeschraubt werden. Diese Schrauben sind eigentlich nur für die Verschraubung in Kunststoff, und zwar in verhältnismäßig dünnwandigen Profilen mit ca. 3 mm Stärke ausgelegt. Hierbei spielt die Gewindegeome- 30 trie der verwendeten Schrauben eine herausragende Rolle. Früher wurden Verschraubungen von Kunststoffteilen mit Blechschrauben durchgeführt. Nach und nach wurden dann Gewindegeometrien mit der Eignung zur Verschraubung in Kunststoff entwickelt. Solche Gewinde sollen geringe Ra- 35 dialkräfte erzeugen, ein niedriges Eindrehmoment und ein hohes Überdrehmoment aufweisen sowie hohen axialen Auszugskräften standhalten. Auch ist eine hohe Selbsthemmung beim Lösen der Schrauben wünschenswert.

Selbstschneidende Blechschrauben zur Verschraubung in 40 vollem Material haben in der Regel verhältnismäßig stumpfe Flankenwinkel und eine im Verhältnis zum Gewindeaußendurchmesser großen Kerndurchmesser. Der stumpfe Flankenwinkel bewirkt eine hohe Radialkomponente der Normalkraft, woraus eine geringe Auszugsfestigkeit und ein erhöhtes Verdrängervolumen resultieren, so daß hohe Spannungen im Muttergewinde entstehen und keine dünnwandigen Bauteile verschraubt werden können.

Zur Verschraubung dünnwandiger Bauteile, insbesondere zur Verschraubung von Kunststoffprofilen sind Gewindegeometrien mit spitzen Flankenwinkeln und verhältnismäßig kleinen Kerndurchmessern vorteilhafter. Ein kleiner Kerndurchmesser bedeutet jedoch auch einen Verlust an Torsionsfestigkeit des Schraubenschafts, so daß solche Schrauben nicht unbedingt zur Verschraubung in Holz oder 55 vollem Material geeignet sind.

Aus dem Gebrauchsmuster DE 296 03 866 ist beispielsweise eine Schraube der eingangs genannten Art bekannt, die sowohl für die Verschraubung in Holzspanplatten als auch in Kunststoffen gleichermaßen geeignet sein soll. 60 Diese Eignung wird dadurch erreicht, daß die Gewinderaupe der Schraube ein asymmetrisches Gewindeprofil aufweist, d. h. daß der Flankenwinkel der lastaufnehmenden Oberflanke kleiner als der Flankenwinkel der Unterflanke des betreffenden Gewindegangs bzw. der Gewinderaupe ausgebildet ist. Durch diese unterschiedliche asymmetrische Ausbildung der Flankensteigung soll für die Eindrehphase der Schraube ein reduziertes Eindrehmoment bewirkt werden.

Der kleinere Flankenwinkel der lastaufnehmenden Oberflanke hingegen soll selbsthemmend in der Rückdrehphase wirken.

Diese Schraube wäre vermutlich auch zur Verschraubung 5 in Kunststoff-Hohlprofilen geeignet. Besondere Anforderungen an die Schraube sind jedoch zu stellen, wenn die Schraube auch vorgebohrte Metallprofile durchdringen soll. Beispielsweise im Bereich der Verbindungsstöße zweier aneinandergrenzender Blendrahmenprofile werden Beschläge oftmals unter Zuhilfenahme von Schraubautomaten sowohl nur durch den Kunststoff als auch durch den Kunststoff und ein vorgebohrtes Metallprofil eingesetzt. Es kommt dabei vor, daß beispielsweise ein Beschlag mit vier Schrauben befestigt wird, von denen jeweils zwei Schrauben nur im Kunststoff verankert sind, wohingegen die zwei anderen Schrauben Kunststoff und Metall durchsetzen. Aus fertigungstechnischen Gründen wird für die Verschraubung des Beschlags nur ein Schraubentyp verwendet, nämlich eine Kunststoffschraube. Nicht selten kommt es vor, daß diese Schraube aufgrund der engen Tolerierung der Vorbohrung im Metallprofil abreißt. Es ist insbesondere dann zu befürchten, wenn der Kerndurchmesser der Schraube im Verhältnis zum Gewindeaußendurchmesser verhältnismäßig klein ist. Außerdem kommt es häufig vor, daß das Gewinde im Bereich der Vorbohrung zerstört wird, wodurch die Auszugsfestigkeit reduziert wird.

Aufgabe der Erfindung ist es daher, eine Schraube der eingangs genannten Art bereitzustellen, die sowohl für den Einsatz in Kunststoff-Hohlprofile ohne Metallverstärkung als auch für den Einsatz in Kunststoffhohlprofilen mit vorgebohrter Metallverstärkung geeignet ist.

Die Aufgabe wird gemäß der Erfindung dadurch gelöst, daß die Gewinderaupe über eine sich an den Kopf anschließende erste Teillänge des Schafts ein asymmetrisches Gewindeprofil aufweist und über eine zweite Teillänge des Schafts ein symmetrisches Gewindeprofil aufweist.

Das asymmetrische Gewindeprofil gewährleistet eine hohe Auszugsfestigkeit in dem Kunststoffprofil, das synmetrische Gewindeprofil hingegen ist hinreichend stabil, um ein Gewindeformen in einer Metall-Vorbohrung mit geringfügig kleinerer Nennweite als der Gewindenenndurchmesser bzw. der Gewindeaußendurchmesser zu ermöglichen, wobei gewährleistet ist, daß die Gewindeflanken beim Einformen des Muttergewindes nicht zerstört werden. Das an und für sich bekannte asymmetrische Gewindeprofil würde jedenfalls in einer Vorbohrung in Metall zerstört werden, so daß bei durchgängiger Ausführung des Gewindes mit asymmetrischem Querschnitt zwar die gewollt hohe Auszugsfestigkeit der Schraube in Kunststoff erreicht wäre, diese jedoch keinesfalls zur Verschraubung in einem vorgebohrten Metallprofil geeignet wäre.

Die Erfindung vereinigt den Vorteil einer hohen Auszugsfestigkeit in Kunststoff mit dem Vorzug einer erhöhten Abschersicherheit und hoher Auszugsfestigkeit in einem vorgebohrten Metallprofil. Die erfindungsgemäße Schraube ist gleichermaßen nur für die Verschraubung in Kunststoff als auch für die Verschraubung in Kunststoff und Metall geeignet.

Zweckmäßigerweise ist bei dem Gewinde auf der ersten Teillänge des Schafts der Flankenwinkel, den die lastaufnehmende Oberflanke der Gewinderaupe mit einer Senkrechten auf den Schaftumfang bildet, kleiner als der Flankenwinkel, den die Unterflanke der Gewinderaupe mit einer Senkrechten auf den Schaftumfang bildet.

In bevorzugter Weiterbildung der Erfindung ist vorgeschen, daß das Gewinde der ersten Teillänge des Schafts einen größeren Gewindeaußendurchmesser als das Gewinde der zweiten Teillänge des Schafts aufweist. Hierdurch werden in

mehrfacher Hinsicht Vorteile erzielt. Einerseits wird gewährleistet, daß beim Taumeln der Schraube während des Einschraubvorgangs das Kernloch im Kunststoffprofil nicht unnotig ausgeweitet wird, wodurch die Auszugsfestigkeit verringert wird. Andererseits wird der Eindrehwiderstand in das Metallprofil verringert. Die Gewindeflanken mit geringerem Gewindeaußendurchmesser haben ein geringeres Verdrangungsvolumen, so daß der Gewindeschaft beim Einschrauben in die Vorbohrung im Metall einer geringeren Torsionsbelastung ausgesetzt ist.

Zweckmäßigerweise ist auf der ersten Teillänge des Schatts das Verhältnis Gewindeaußendurchmesser des Schalts zu Kerndurchmesser größer als auf der zweiten Teillange des Schafts, was zu der zuvor erwähnten Torsionsfestigkeit des Schafts beiträgt. Fertigungstechnisch bedingt 15 kann der Kerndurchmesser des Schafts über dessen Länge geringtugig abnehmen, hierbei sollte jedoch nach wie vor d.s Verhaltnis Kerndurchmesser des Schafts zu Gewindeaubendurchmesser auf der ersten Teillänge des Schafts kleiner sem als aut der zweiten Teillänge des Schafts.

Verzugsweise sind die Ganghöhe und der Gewindesteigungswinkel des Gewindes über die gesamte Länge des Schatts gleichbleibend, hierdurch wird eine gleichbleibende Einstringgeschwindigkeit der Schraube in unterschiedlichen Materialien gewährleistet.

Gemati der bevorzugten Ausführungsform der Erfindung ist das Gewinde bis in die sich konisch verjüngende Nadelspitze des Schatts geführt, und dessen Außendurchmesser in der Spitze ist entsprechend der Verjüngung reduziert.

Beispielsweise kann bei dem Gewinde auf der ersten Teil- 30 lange des Schatts der Flankenwinkel der Oberflanke 6 10° ± 2 betragen und der Flankenwinkel der Unterflanke 8 kann 35" ± 2" betragen. Bei dem Gewinde der zweiten Teillänge des Schatts kann der Flankenwinkel 40° + 2° betragen.

Die Erfindung wird nachstehend anhand eines in der 35 au Flankenwinkel der Oberflanke Zeichnung dargestellten Ausführungsbeispiels erläutert.

Die Figur zeigt eine als Fensterbauschraube ausgebildete Schraube zur Verschraubung in Kunststoff-Hohlprofilen, die gemati der Erfindung sowohl zur Verschraubung nur in Kansistoff als auch zur Verschraubung in Kunststoff-Hohl- 40 problen mit vorgebohrten Verstärkungseinlagen oder Verstarkungsprotilen aus Metall geeignet ist. Die Schraube besitzt einen Kopf 1. der in an sich bekannter Art und Weise als Senkkopf mit Phillipskreuz ausgebildet ist. Der Kopf 1, der nicht Gegenstand der Erfindung ist, kann auch als 45 Kreuzschlitz ausgebildet sein, wie er unter der Marke Pozidriv bekannt ist. Ebenso ist eine Ausbildung mit Innenvielkant ixler mit einfachem Schlitz denkbar.

Der Kopt 1 sitzt auf einem in etwa zylindrischen Schaft 2 mit einer sich von dem Kopf 1 abliegendem Ende konisch 50 verjüngenden Nadelspitze 3. Der Schaft 2 ist mit einem eingängigen selbstschneidenden Gewinde versehen, wobei das Gewinde durch eine im Querschnitt spitzwinklig dreieckige Gewinderaupe 4 gebildet wird. Das Gewinde kann selbstverständlich auch mehrgängig ausgeführt sein.

Über eine erste Teillänge 5 des Schafts 2 ist das Gewindeprofil asymmetrisch ausgebildet, d. h. der Flankenwinkel α1 der lastragenden Oberflanke 6 ist kleiner als der Flankenwinkel \are der Unterflanke 8. Bei dem dargestellten Ausführungsbeispiel beträgt der Flankenwinkel $\alpha_1 10^{\circ} \pm 2^{\circ}$ und der 60 Flankenwinkel α_2 35° \pm 2°. Auf der sich an die erste Teillänge 5 anschließenden zweiten Teillänge 7 des Schafts 2 ist das Gewindeprofil symmetrisch ausgebildet, bei dem bevorzugten Ausführungsbeispiel beträgt der Flankenwinkel ß $40^{\circ} \pm 2^{\circ}$.

Weiterhin ist der Gewindeaußendurchmesser D1 der Gewinderaupe 4 auf der ersten Teillänge 5 des Schafts 2 größer als der Gewindeaußendurchmesser D2 der Gewinderaupe 4

auf der zweiten Teillänge 7 des Schafts 2. Der Kerndurchmesser D_{K2} des Schafts 4 ist bei dem beschriebenen Ausführungsbeispiel fertigungstechnisch bedingt auf der zweiten Teillänge 7 des Schafts 2 geringfügig kleiner als der Kerndurchmesser D_{K1} des Schafts 2 auf der ersten Teillänge 5. Der Kerndurchmesser des Schafts kann jedoch auch über dessen gesamte Länge gleichbleibend ausgebildet sein, wichtig ist, daß das Verhältnis Kerndurchmesser zu Gewindeaußendurchmesser auf der zweiten Teillänge 7 des Schafts 2 kleiner ist als auf der ersten Teillänge 5 des Schafts 2. damit der Schaft 2 beim Einschrauben in ein vorgebohrtes Metallprofil nicht übermäßig auf Torsion beansprucht wird.

Wie der Figur zu entnehmen ist, ist die Gewinderaupe 4 bis in die konische Nadelspitze 3 des Schafts 2 geführt.

Mit 9 sind an der Unterseite des Kopfs 1 angeordnete Brems- oder Fräsrippen bezeichnet, die das Überdrehmoment der Schraube bei Anlage auf einem Beschlag erhöhen. Die Funktion und Ausbildung der Bremsrippen ist ausführlich in dem Gebrauchsmuster 296 09 008 beschrieben.

Die Ganghöhe h und der Gewindesteigungswinkel des Gewindes sind über die gesamte Länge des Schafts 2 gleichbleibend.

Bezugszeichenliste

- 1 Kopf
- 2 Schaft
- 3 Nadelspitze
- 4 Gewinderaupe
- 5 erste Teillänge des Schafts
- 6 Oberflanke des Gewindeprofils
- 7 zweite Teillänge des Schafts 8 Unterflanke des Gewindeprofils
- 9 Bremsrippen
- α₂ Flankenwinkel der Unterflanke
- β Flankenwinkel des symmetrischen Gewindeprofils
- D₁ Gewindeaußendurchmesser auf der ersten Teillänge des Schafts
- D₂ Gewindeaußendurchmesser auf der zweiten Teillänge des Schafts
 - D_{K1} Kerndurchmesser des Schafts auf der ersten Teillänge D_{K2} Kerndurchmesser des Schafts auf der zweiten Teillänge h Ganghöhe

Patentansprüche

- 1. Schraube, insbesondere Fensierbauschrauben zur Befestigung von Beschlägen oder dergleichen an Kunststoff-Hohlprofilen, mit einem Kopf und einem zumindest teilweise mit selbstschneidendem Gewinde versehenen Schaft, wobei ein oder mehrere Gewindegänge jeweils durch eine im Querschnitt spitzwinklig dreieckige Gewinderaupe gebildet werden und der Schaft an seinem vom Kopf abliegenden Ende eine Nadelspitze ausbildet, dadurch gekennzeichnet, daß die Gewinderaupe (4) über eine sich an den Kopf (1) anschließende erste Teillänge (5) des Schafts (2) ein asymmetrisches Gewindeprofil aufweist und über eine zweite Teillänge (7) des Schafts ein symmetrisches Gewindeprofil aufweist.
- Schraube nach Anspruch 1, dadurch gekennzeichnet, daß bei dem Gewinde auf der ersten Teillänge (5) des Schafts (2) der Flankenwinkel, den die lastaufnehmende Oberflanke (6) der Gewinderaupe (4) mit einer Senkrechten auf den Schaftumfang bildet, kleiner ist als der Flankenwinkel, den die Unterflanke (8) der Gewinderaupe (4) mit einer Senkrechten auf den Schaft-

			-	
	4	_		
- 1	ı	1	1	

fang	

3. Schraube nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Gewinde der ersten Teillänge (5) des Schafts (2) einen größeren Gewindeaußendurchmesser als das Gewinde der zweiten Teillänge (7) des Schafts (2) aufweist.

4. Schraube nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß auf der ersten Teillänge (5) des Schafts (2) das Verhältnis Gewindeaußendurchmesser des Schafts (2) zu Kerndurchmesser größer ist 10 als auf der zweiten Teillänge (7) des Schafts (2).

5. Schraube nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Ganghöhe und der Gewindesteigungswinkel des Gewindes über die gesamte Länge des Schafts (2) gleichbleibend sind.

6. Schraube nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Gewinde bis in die sich konisch verjüngende Nadelspitze (3) des Schafts (2) geführt ist und dessen Außendurchmesser in der Spitze entsprechend der Verjüngung reduziert ist.

7. Schraube nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß bei dem Gewinde auf der ersten Teillänge (5) des Schafts (2) der Flankenwinkel der Oberflanke (6) $10^{\circ} \pm 2^{\circ}$ beträgt und der Flankenwinkel der Unterflanke (8) $35^{\circ} \pm 2^{\circ}$ beträgt.

8. Schraube nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß bei dem Gewinde auf der zweiten Teillänge (7) des Schafts (2) der Flankenwinkel $40^{\circ} \pm 2^{\circ}$ beträgt.

Hierzu 1 Seite(n) Zeichnungen

35

30

40

45

50

55

60

65

- Leerseite -

