Secure canonical identification schemes yield Fiat-Shamir signature schemes secure in the random oracle model

Victor Glazer

March 8, 2005

Background

• An identification scheme ID = (G, P, V) is said to be *canonical* if it is a three-round, public-coin scheme. The prover P goes first; his move is called the *commitment*, denoted by CMT. The verifier V replies with a random *challenge* CH, consisting of his random bits. P then sends a *response* RSP to V, who either accepts or rejects the transcript (CMT, CH, RSP).

Remark. To streamline the presentation, we assume throughout that $n \leq |pub| \leq |pri|$ and |CH| = n, where n is the security parameter.

• The Fiat-Shamir transform takes a canonical identification scheme ID = (G, P, V) and a hash function $h: \{0, 1\}^* \to \{0, 1\}^n$, and outputs the following signature scheme $SIG_h(ID) = (GEN, SIGN, VER)$.

The key generation algorithm, GEN, is identical to G^1 .

To sign a message $m \in \{0,1\}^*$, $SIGN_{pri}$ obtains a commitment CMT by running P on pri, computes y = h(CMT, m) and gives y to P as the challenge CH. P responds with RSP (recall that the *completeness* property of ID ensures that P can correctly answer any challenge CH). $SIGN_{pri}$ then outputs $\sigma = (\text{CMT}, \text{RSP})$ as the signature of m.

To determine whether $\sigma = (CMT, RSP)$ is a legitimate signature of m, VER_{pub} computes y = h(CMT, m) and runs V_{pub} on (CMT, y, RSP).

• The random oracle model is a popular approach to analyzing the security of cryptographic protocols involving hash functions. Let $h: \{0,1\}^* \to \{0,1\}^n$ be a hash function and $\pi(h)$ be a protocol which utilizes h. To prove that $\pi(h)$ is secure in the random oracle model, we proceed as follows. All parties — including the adversary — are equipped with a random oracle $\mathcal{R}: \{0,1\}^* \to \{0,1\}^n$, and evaluations of h are replaced with queries to \mathcal{R} . The adversary's success probability, now also taken over the randomness of \mathcal{R} , is then shown to be negligible in n under plausible hardness assumptions.

¹Strictly speaking, the Fiat-Shamir transform should be defined with respect to an ensemble $\{\mathcal{H}_n\}_{n\in\mathbb{N}}$ rather than an individual function h. This is because, for any fixed h, it's easy to come up with (contrived) secure canonical id schemes which yield insecure Fiat-Shamir signature schemes. In this setting, GEN randomly chooses a key $k \in \mathcal{H}_n$ and appends it to pub to form the public key PK. The private key SK is simply set to pri.

Results

Theorem. Let ID = (G, P, V) be a secure canonical identification scheme and $h : \{0, 1\}^* \to \{0, 1\}^n$ be a hash function. Then the signature scheme $SIG_h(ID) = (GEN, SIGN, VER)$ is secure in the random oracle model.

Proof. Let F be a forger that breaks the security of $SIG_h(ID)$ in the random oracle model. F has access to a random oracle $\mathcal{R}: \{0,1\}^* \to \{0,1\}^n$ and a signature oracle \mathcal{S} .

When queried on a string s for the first time, \mathcal{R} chooses $r \in \{0,1\}^n$ uniformly at random and sets $\mathcal{R}(s) = r$. Subsequently, \mathcal{R} responds with r whenever queried on s. To produce a signature $\sigma = (\text{CMT}, \text{RSP})$ of message m, \mathcal{S} first obtains a commitment CMT from P_{pri} and then gives him a challenge $\mathcal{R}(\text{CMT}, m)$, to which P_{pri} responds with RSP. Observe that \mathcal{R} 's replies must be consistent with those of \mathcal{S} . For instance, if $\mathcal{S}(m) = (\text{CMT}, \text{RSP})$ it should be the case that $V_{pub}(\text{CMT}, \mathcal{R}(\text{CMT}, m), \text{RSP}) = 1$.

Let $\varnothing \subset \mathcal{C} \subset \{0,1\}^*$ be the space P draws his commitments from. We make no additional assumptions about \mathcal{C} , so that $\mathcal{C} = \{0,1\}^n$ and $\mathcal{C} = \{\lambda\}$ are equally legitimate choices. Also, denote the message whose signature F tries to forge by m^* , and its supposed signature by $\sigma^* = (CMT^*, RSP^*)$.

We make a few simplifying assumptions about F, insisting that he have the following "normal form":

- (i) F never queries \mathcal{R} on the same string more than once.
- (ii) All of F's random oracle queries are of the form $\mathcal{R}(CMT, m)$, where $CMT \in \mathcal{C}$ and $m \in \{0, 1\}^*$.
- (iii) F queries \mathcal{R} on (CMT^*, m^*) at some point. This special query is called the "crucial query".

It isn't too hard to show that if a successful forger exists, then there exists one satisfying the above three properties.

Suppose that F fails to have property (i), so that he queries \mathcal{R} on some string s multiple times. Let F' be the same as F, except that F' writes $ans = \mathcal{R}(s)$ down on an unused portion of his working tape the first time \mathcal{R} is queried on s, and all subsequent random oracle queries about s are answered by looking ans up. Since \mathcal{R} is a function, F''s success probability is unchanged, yet he only queries \mathcal{R} on s once. If there is another string s' on which F' queries \mathcal{R} multiple times, we can repeat the above process to get a new forger F'' which queries \mathcal{R} on s' once. Proceeding in this fashion, we eventually obtain a forger who doesn't query \mathcal{R} on any string more than once, and whose success probability is identical to that of F. This assumption guarantees that F doesn't repeat random oracle queries, so that \mathcal{R} 's answers are always random.

Now suppose that F fails to have property (ii), so that at least one of his random oracle queries is not of the form $\mathcal{R}(CMT, m)$. Let F' be the same as F, except that all malformed \mathcal{R} queries are answered randomly. Since \mathcal{R} 's replies are also random, these answers have exactly the right distribution. Notice that there is no interplay between answers to \mathcal{S} queries and malformed \mathcal{R} queries, so no inconsistencies are introduced. The new forger's success probability is therefore identical to that of F, and all of his \mathcal{R} queries are well-formed.

Finally, suppose that F fails to have property (iii), namely that he never queries \mathcal{R} on (CMT*, m*). Let F' be the same as F, except that instead of outputting (m*, σ *) right away, F' first queries \mathcal{R}

on (CMT^*, m^*) . F''s success probability is identical to that of F, since the extra \mathcal{R} query does not affect his output. It is also worth noting that the new forger doesn't violate assumptions (i) and (ii), because the extra \mathcal{R} query is both new and well-formed.

We are now ready to describe an impersonator I which breaks the security of ID. Recall that I's goal is to get the verifier V to accept by interacting with him in the role of the prover P. I is allowed to first interact with P in the role of V polynomially many times. Since I is trying to break the *active* security of ID, he can send P whatever messages he likes.

Consider the experiment where a pair of keys (pub, pri) is generated by running G on 1^n , and I is given the public key pub.

Let $q_{\mathcal{R}}(n)$ and $q_{\mathcal{S}}(n)$ denote the number of times F queries \mathcal{R} and \mathcal{S} , respectively, and set $q(n) = q_{\mathcal{R}}(n) + q_{\mathcal{S}}(n)$. I first interacts with $P_{pri} \ q(n) \cdot q_{\mathcal{S}}(n)$ times in order to construct "transcript blocks" $\mathcal{B}_1, \ldots, \mathcal{B}_{q(n)}$. Each block is made up of $q_{\mathcal{S}}(n)$ transcripts of the form (CMT, r, RSP), obtained as follows. I first receives a commitment CMT $\in \mathcal{C}$ from P_{pri} . Next, I sends a challenge $r \in \{0,1\}^n$ to P_{pri} . If CMT does not appear in any of the transcripts added to the block so far, r is chosen randomly. Otherwise, r is set to the challenge associated with CMT. P_{pri} responds with RSP, and the transcript (CMT, r, RSP) is added to the block.

I next guesses the index of F's "crucial query" by randomly choosing $k \in \{1, \dots, q_{\mathcal{R}}(n)\}$.

I now begins to simulate F. Note that assumption (ii) above enables us to associate a unique message with every \mathcal{R} query F makes. Since \mathcal{S} queries explicitly reference a message, every oracle query made by F therefore has a message unambiguously associated with it.

Let m_1, m_2, m_3, \ldots be the distinct messages associated with F's oracle queries. There are at most q(n) of these, since in the worst case every query concerns a different message. I answers queries associated with m_i using transcripts stored in block \mathcal{B}_i . The answer to the j^{th} $S(m_i)$ query is (CMT, RSP), where (CMT, r, RSP) is the j^{th} transcript in \mathcal{B}_i . If CMT appears in any of the transcripts stored in \mathcal{B}_i , then the answer to $\mathcal{R}(\text{CMT}, m_i)$ is r, the challenge associated with CMT. Otherwise, $\mathcal{R}(\text{CMT}, m_i)$ is answered randomly.

The k^{th} random oracle query, $\mathcal{R}(CMT', m')$, is handled specially. I sends CMT' to V_{pub} , receives a challenge CH in reply and gives CH to F as the answer to $\mathcal{R}(CMT', m')$. Let k^* denote the true index of the "crucial query". Observe that if $k \neq k^*$, then I's simulation of F may break down. What if F requests to see some signatures of m'? One of these could well involve CMT'. In that case, the correct answer to $\mathcal{R}(CMT', m')$ is the corresponding challenge, r, which almost certainly differs from CH. On the other hand, if $k = k^*$ then $m' = m^*$ and $CMT' = CMT^*$. F won't query S on m^* since that is the message whose signature he is trying to forge, and I's simulation of F is perfect.

Eventually, F outputs a message m^* together with an alleged signature $\sigma^* = (CMT^*, RSP^*)$ of m^* . I then sends RSP^* to V_{pub} , who either accepts or rejects the transcript (CMT', CH, RSP^*) .

Let $p_F(n)$ and $p_I(n)$ denote the success probabilities of F and I, respectively. Note that $q_R(n) \le q(n) \le t_F(n) \le n^c$ for some c, where $t_F(n)$ is the running time of F. Also observe that $p_F(n) \ge \frac{1}{n^d}$ for some d and infinitely many n, because F breaks the security of $SIG_h(ID)$ in the random oracle model.

Since I's simulation of F is perfect provided he correctly guesses the index of the "crucial query",

we have:

$$\begin{split} p_I(n) &= \Pr[V_{pub}(\text{CMT}', \text{CH}, \text{RSP}^*) = 1] \\ &= \Pr[V_{pub}(\text{CMT}', \text{CH}, \text{RSP}^*) = 1 \land k' = k^*] + \Pr[V_{pub}(\text{CMT}', \text{CH}, \text{RSP}^*) = 1 \land k' \neq k^*] \\ &\geq \Pr[V_{pub}(\text{CMT}', \text{CH}, \text{RSP}^*) = 1 \land k' = k^*] \\ &= \Pr[V_{pub}(\text{CMT}', \text{CH}, \text{RSP}^*) = 1 | k = k^*] \cdot \Pr[k' = k^*] \\ &= p_F(n) \cdot \frac{1}{q_{\mathcal{R}}(n)} \geq \frac{p_F(n)}{n^c} \geq \frac{1}{n^{c+d}} \text{ for infinitely many } n. \end{split}$$

This shows that $p_I(n)$ is non-negligible in n, so I breaks the security of ID.