Table of Contents

Question 1:	
(a)	
(b)	
(c)	
(d)	
Question 2:	
Question 3:	
(a)	
(b)	
(c)	
(d)	
Question 4:	

Question 1.

(a)

Let \mathcal{L}_k be a Gauss Transform. Then it has the form

Let
$$\mathcal{L}_k$$
 be a Gauss Transform. Then it has
$$\mathcal{L}_k = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & a_{k+1} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & a_n & 0 & \cdots & 1 \end{bmatrix}$$

Then let
$$m_k = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ -a_{k+1} \\ \vdots \\ -a_n \end{bmatrix}$$

$$Now -m_k e_k^T = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & a_{k+1} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & a_n & 0 & \cdots & 0 \end{bmatrix}$$

So
$$\mathcal{L}_k = I - m_k e_k^T$$

(b)

By definition, the inverse of a Gauss Transform is simply flipping the signs of the non-identity values. So if we invert the signs of $-m_k$, we have

$$m_k = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ a_{k+1} \\ \vdots \\ a_n \end{bmatrix}$$

Then

$$I + m_k e_k^T = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & -a_{k+1} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & -a_n & 0 & \cdots & 1 \end{bmatrix} = \mathcal{L}_k^{-1}$$

(c)
WTS:
$$(L_k L_j)^{-1} = (I + m_k e_k^T) + (m_j e_j^T) - I$$

$$LHS = (L_k L_j)^{-1}$$
 [given]

$$= L_j^{-1} L_k^{-1}$$
 [by inverse laws]

$$= (I + m_j e_j^T)(I + m_k e_k^T)$$
 [by (b)]

$$= I + m_j e_j^T + m_k e_k^T + m_j e_j^T m_k e_k^T$$
 [expanding]

$$= I + m_j e_j^T + m_k e_k^T + 0$$
 [since $j < k$ and $e_j^T m_k = 0$]

$$= I + m_j e_j^T + m_k e_k^T + I - I$$
 [$I - I = 0$]

$$= (I + m_k e_k^T) + (I + m_j e_j^T) - I$$
 [rearranging]

$$= RHS$$
 [given]

as wanted

(d)

WTS: $\widetilde{\mathcal{L}_k} = \mathcal{L}_k$ with multipliers i and j swapped

$$LHS = \widetilde{\mathcal{L}}_{k}$$
 [given]
$$= P_{i}\mathcal{L}_{k}P_{i}$$
 [given]
$$= P_{i}(I - m_{k}e_{k}^{T})P_{i}$$
 [by (a)]
$$= (P_{i} - P_{i}m_{k}e_{k}^{T})P_{i}$$
 [expanding]
$$= P_{i}P_{i} - P_{i}m_{k}e_{k}^{T}P_{i}$$
 [expanding]
$$= I - P_{i}m_{k}e_{k}^{T}P_{i}$$
 [since $P_{i}P_{i} = I$]
$$= \mathcal{L}_{k}$$
 with multipliers i and j swapped [since $m_{k}e_{k}^{T}$ multiplers got swapped]
$$= RHS$$
 [given]

as wanted

Question 2.

$$PA = LU \iff \det(PA) = \det(LU)$$
 [det both sides]
 $\iff \det(P) \det(A) = \det(L) \det(U)$ [by det laws]
 $\iff \det(A) = \det(L) \det(U)$ [since $\det(P) = 1$]
 $\iff \det(A) = 1 \times \det(U)$ [since L is a unit lower triangle]
 $\iff \det(A) = \prod_{i=1}^{n} a_{ii}$ [since U is an upper triangle]

This is much more efficient than just finding the determinant of A since the determinant of a triangular matrix is just the product of the diagonal.

Question 3.

(a)

$$A = \begin{bmatrix} 3 & 3 & 9 & 6 \\ 4 & 4 & 4 & 4 \\ 1 & 1 & 5 & 5 \\ 2 & 2 & 4 & 6 \end{bmatrix}, \qquad b = \begin{bmatrix} 21 \\ 24 \\ 10 \\ 16 \end{bmatrix}$$

Eliminate 1st column:

$$P_{1} = P_{12} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P_{1}A = \begin{bmatrix} 4 & 4 & 4 & 4 \\ 3 & 3 & 9 & 6 \\ 1 & 1 & 5 & 5 \\ 2 & 2 & 4 & 6 \end{bmatrix}$$

$$L_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3/4 & 1 & 0 & 0 \\ -1/4 & 0 & 1 & 0 \\ -1/2 & 0 & 0 & 1 \end{bmatrix}$$

$$L_{1}P_{1}A = \begin{bmatrix} 4 & 4 & 4 & 4 \\ 0 & 0 & 6 & 3 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 2 & 5 \end{bmatrix}$$

Eliminate 3rd column:

$$P_{3} = I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P_{3}L_{1}P_{1}A = \begin{bmatrix} 4 & 4 & 4 & 4 \\ 0 & 0 & 6 & 3 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 2 & 5 \end{bmatrix}$$

$$L_{3}P_{3}1L_{1}P_{1}A = \begin{bmatrix} 4 & 4 & 4 & 4 \\ 0 & 0 & 6 & 3 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

(b)

$$\det(A) = \prod_{i=1}^{n} a_{ii} = 0$$

So there's either infinite, or no solutions to $A\vec{x} = \vec{b}$

- (c)
- (d)

It's much more efficient to factor first if we have multiple $A\vec{x} = \vec{b_i}$ equations to solve

Question 4.