(19) World Intellectual Property Organization International Bureau

A CARLO REGISTRO DE ESCRIPERAN PROTE EN LA COLO COMO COMO COMO COMO CARLO CARLO CARLO CARLO CARLO CARLO CARLO

(43) International Publication Date 1 August 2002 (01.08.2002)

PCT

(10) International Publication Number WO 02/059456 A1

(51) International Patent Classification7:

·----

E21B 43/10

(21) International Application Number: PCT/GB02/00356

(22) International Filing Date: 28 January 2002 (28.01.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0102021.3

26 January 2001 (26.01.2001) GF

(71) Applicant (for all designated States except US): E2 TECH LIMITED [GB/GB]; Shell International B.V., PO Box 384, NL-2501 CJ The Hague (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): OOSTERLING, Peter [NL/NL]; Noordeindseweg 128, NL-2651 CX Berkel

en Roderijs (NL). MACKENZIE, Alan [GB/GB]; 2 Contlaw Place, Milltimber, Aberdeen AB13 0DS (GB).

(74) Agent: MURGITROYD & COMPANY; 165-169 Scotland Street, Glasgow G5 8PL (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent

[Continued on next page]

(54) Title: EXPANDER DEVICE

(57) Abstract: Apparatus (9) for radially expanding an expandable member, the apparatus including a plurality of radially moveable fingers (22). The radially moveable fingers (22) can move between two positions; in a first position, the moveable fingers (22) are radially extended to a form a cone to facilitate radial expansion of the expandable member; in the second position, one or more of the radially movable fingers (22) can move radially inward so that restrictions in the path of the apparatus can be by-passed.

VO 02/059456 A1

(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

- with international search report

EXPANDER DEVICE

1 2 The present invention relates to apparatus that is 3 particularly suited for radially expanding expandable 4 members, such as liners, casings, tubulars and the 5 6 like. 7 8 It is known to use an expander device to expand at least a portion of an expandable member. Expandable 9 10 members are typically of a ductile material so that they can undergo plastic and/or elastic deformation 11 using an expander device. Expandable members can 12 13 include liner, casing, drill pipe and other tubulars. Use of the term "expandable member" herein will be 14 understood as being a reference to any one of these 15 and other variants that are capable of being radially 16 17 expanded by application of a radial expansion force, generally applied by the expander device, such as a 18 cone. An expandable member is typically used within 19 a borehole either to complete an uncased portion of a 20 21 borehole, or to repair a damaged portion of a pre-22 installed liner or casing, for example.

PCT/GB02/00356

1 2 The initial outer diameter (OD) of the expandable member is typically less than the inner diameter (ID) 3 of the borehole, or a pre-installed portion of liner, 4 5 so that the expandable member can be run into the 6 borehole. An expander device can then be forced 7 through the expandable member, and at least a portion 8 of the expander device has an OD that is typically 9 the same as, or slightly less than, the ID of the 10 uncased borehole or previously installed liner. 11 Thus, as the expander device passes through the expandable member, the OD of the expandable member is 12 increased so that an outer surface of the expandable 13 14 member is pressed against an inner wall of the 15 uncased borehole, or the inner surface of the pre-16 installed liner. 17 18 Prior art expander devices are typically of a hard material, such as tungsten carbide, and are typically 19 20 of a solid construction, for example a solid cone. 21 As the expander device (e.g. a cone) is pushed or pulled through the expandable member, it can become 22 stuck due to, for example, immovable portions of the 23 inner wall of the uncased borehole that protrude 24 25 inwards into the path of the expander device. 26 27 In such a case, the travel of the expander device may 28 be restricted by the inward protrusion, and as a 29 result, the expansion process cannot be completed, as

the device becomes stuck at the protrusion.

30

31

When the expander device becomes stuck, it is 1 necessary to retrieve the device from the borehole, 2 typically by a fishing operation. Fishing operations 3 generally require the expander device to be detached 4 from a drill string or the like that is used to push 5 or pull the expander device through the expandable member. Once the expander device has been detached, 7 the drill string can be removed from the borehole, 8 thus leaving the expander device therein. Clearly, 9 the expander device must also be removed from the 10 borehole to allow the recovery of hydrocarbons 11 12 therefrom. 13 A typical fishing operation may involve the use of a 14 tungsten carbide wash over-mill that is attached to 15 an end of a drill string. The wash over-mill is 16 17 rotated with the drill string, and the mill is inserted into the borehole to engage the obstruction 18 19 and cut it away at its outer edges. However, as the wash over-mill cutters are generally made from the 20 same material as the expander cone, they wear quickly 21 and so this type of fishing operation is problematic. 22 23 Although other types of conventional fishing 24 operations may be used, they all have a number of 25 disadvantages. If the expander device does become 26 stuck, the drill string used to push or pull it must 27 be fully removed from the borehole, once the expander 28 device has been detached. Boreholes can be many 29 kilometres in length, and removal of the string in 30 such cases is a very time consuming operation. 31

1	Thereafter, the stuck expander device must be
2	retrieved using a conventional fishing operation.
3	Having retrieved the expander device, a new device is
4	attached to the end of the drill string, which is
5	then lowered into the borehole to allow the expansion
6	of the expandable member to continue. It may also be
7	necessary to remove the obstruction (e.g. by using a
8	wash over-mill) before the expansion process can
9	continue.
.0	
.1	This process results in a long rig downtime which can
.2	be very expensive due to the high costs involved,
L3	particularly on offshore rigs.
L 4	
L5	According to a first aspect of the present invention,
L6	there is provided apparatus for expanding an
L7	expandable member, the apparatus comprising a first
18	member, one or more radially movable portions, a
19	second member, and force isolating means acting
20	between the first and second members.
21	
22	The first member typically comprises a housing. The
23	housing may comprise a cylindrical member with a
24	blind bore. The isolating means is typically coupled
25	between a first end of the second member and the
26	blind end of the bore. Alternatively, the isolating
27	means is coupled between a lower face of the first
28	member, and a face provided on the second member.
29	
30	The second member typically comprises a shaft having
31	a cone that bears against the radially movable

1	portions (typically fingers pivotally mounted on the
2	first member). The shaft and cone typically move
.3	axially with respect to the first member in and out
4	of engagement with the radially movable portions
5	(e.g. the fingers).
6	
7	A second end of the second member is typically
8	provided with attachment means for attaching the
9	apparatus to a drill string or the like. The
10	attachment means may comprise any conventional means
11	such as screw threads (e.g. box and/or pin
12	connections) or the like.
13	
14	The fingers are typically coupled to the first member
15	so that they can move in a radial and/or axial
16	direction. Thus, the fingers can expand or contract
17	to adjust an outer diameter of the apparatus.
18	Typically, the fingers are held in a radially
19	expanded position by the cone on the second member
20	moving axially with respect to the first member to a
21	first position in which the spring is contracted. In
22	that first position, an outer surface of the cone
23	abuts against an inner surface of the fingers and
24	prevents them from moving radially inward. However,
25	solid protrusions in the path of the fingers cause
26	the force in the axial direction applied to the
27	second member to extend the spring where the axial
28	force exceeds the force of the spring. As the spring
29	extends, the second member moves axially under the
30	axial pulling force, and the cone moves to a second
31	position that allows the fingers to move radially

6

inward to bypass the restriction. As the restriction 1 2 is passed, the axial pulling force drops below the 3 biasing force of the spring as the force that is 4 retarding the apparatus is overcome, the spring contracts and the second member moves into engagement 5 with the fingers causing them to move radially 6 7 outward to the radially expanded position. Additionally, the engagement of the fingers with the 8 9 restriction can cause them to move inwards against the cone thereby moving it to the second position in 10 which the spring is extended. In this way, if the 11 12 apparatus encounters a restriction or the like, the 13 fingers can retract until the apparatus has passed the restriction and then expand once passed. 14 15 16 By selecting the strength of the spring, the apparatus can be programmed to move the fingers at a 17 given axial force that is typically greater than the 18 19 force used to push or pull the apparatus. The given axial force can take into account the retarding force 20 applied to the second member due to the obstruction. 21 22 The fingers are typically pivotally coupled to the 23 first member using a pivot, such as a pivot pin, 24 25 hinge or the like. Optionally, a biasing means may be provided to bias the fingers radially outward. 26 The biasing means may comprise a torsion spring that 27 is positioned at the pivot. 28 29 An outer face of the fingers typically defines a 30 cone. The outer faces of the fingers are typically 31

1	angled so that the cone formed thereby faces in the
2	direction of travel of the apparatus. Thus, as the
3	apparatus is moved in the direction of travel, the
4	outer faces engage an inner wall of the expandable
5	member or the like to expand the expandable member.
6	
7	Optionally, the outer faces may include a second
8	sloping face that is angled so that the apparatus can
9	expand the inner diameter of the tubular when moved
10	in the opposite direction to the normal direction of
11	travel. In this embodiment, there is provided a
12	double-sided cone that can be used in either
13	direction of travel to expand the expandable member.
14	•
15	The cone of the second member typically comprises an
16	enlarged diameter portion. The enlarged diameter
17	portion is preferably located so that it is aligned
18	on the axis of the apparatus with the fingers. The
19	enlarged diameter portion is provided with an outer
20	profile that allows the fingers to move inwards when
21	the second member is moved axially within the first
22	member. Thus, the fingers can contract to allow the
23	apparatus to pass restrictions or obstructions. An
24	inner face of the fingers is typically provided with
25	a corresponding profile.
26	
27	The outer profile typically comprises a flat portion
28	extending in the axial direction, and a sloping
29	portion. The profile on the inner face of the
30	fingers typically comprises a flat portion extending
31	in the axial direction, and a sloping portion. The

1	sloping portion is preferably set at a shallow angle.
2	In use, the flat portion and the sloping portion
3	provided on the enlarged diameter portion engage
4	respectively with the flat portion and the sloping
5	portion provided on the inner face of the fingers.
6	Thus, the second member supports the fingers in the
7	radially expanded position during the expansion
8	process. When the apparatus encounters a restriction
9	or obstruction, the second member (and the enlarged
10	diameter portion thereof) moves in the direction of
11	travel or load. As the enlarged diameter portion
12	moves axially out of engagement with the inner face
L3	of the fingers, at least the sloping portions of the
14	respective profiles on the enlarged diameter portion
15	and the inner face of the fingers disengage. This
16	allows the fingers to contract as they can move
17	radially inward into the space created by axial
18	movement of the enlarged diameter portion.
19	
20	According to a second aspect of the present
21	invention, there is provided apparatus for expanding
22	an expandable member, the apparatus comprising a
23	body, one or more radially movable portions, and
24	force isolating means acting between the body and the
25	or each radially moveable portion.
26	
27	The force isolating means typically provides a
28	biasing force to the or each radially moveable
29	portion. The force required to move the or each
30	radially moveable portion inwards is typically

1 greater than the biasing force of the force isolating 2 means. 3 Force applied to the body is typically transmitted to 4 the or each radially moveable portion through the 5 6 isolating means, and the radial position of the or 7 each radially movable portion is typically at least partially controlled by the biasing force of the 8 force isolating means. Force applied to the body can 9 10 be isolated from the or each radially moveable 11 portion by the force isolating means. 12 13 The isolating means typically comprises a resilient member that allows relative movement between the body 14 15 and the or each radially moveable portion, preferably 16 in an axial direction. The resilient member may 17 comprise a spring. The resilient member typically 18 has a biasing force that is greater than a maximum load that will be applied to the apparatus. Thus, 19 when the maximum load is reached and exceeded, the 20 biasing force of the resilient member is overcome, 21 22 and the resilient member deforms (e.g. extends or 23 contracts) in the direction of the load. 24 25 Alternatively, the isolating means comprises a fluid chamber that is in communication with the or each 26 27 radially moveable portion. The fluid chamber is preferably in fluid communication with a spring 28 29 means. The spring means typically comprises a first 30 chamber, a floating piston in communication with the first chamber, and a second chamber in communication 31

1	with the piston. The first chamber typically
2	contains fluid and is in fluid communication with the
3	fluid chamber that is in communication with the or
4	each radially moveable portion. The second chamber
5	typically includes a spring. The spring may be
6	mechanical, hydraulic, pneumatic or the like.
7	•
8	In this embodiment, as the radially moveable portions
9	are forced inward due to a restriction, they act on
LO	the fluid in the fluid chamber, forcing the fluid
L1	into the first chamber. The displacement of fluid
12	causes the piston to compress the spring in the
13	second chamber and this allows the radially moveable
14	portions to move inwards, thus passing the
15	restriction. Once the restriction has been passed,
16	the spring extends forcing fluid in the first chamber
17	to be transferred to the fluid chambers, thus forcing
18	the radially moveable portions outwards.
19	
20	The biasing force of the force isolating means is
21	typically provided by the spring. Optionally, the
22	biasing force of the spring may be varied.
23	
24	In an alternative embodiment, the isolating means
25	comprises a hydraulic spring. The hydraulic spring
26	typically comprises an inflatable element that is in
27	fluid communication with a fluid chamber. The fluid
28	chamber is typically filled with a fluid (e.g. oil)
29	that is typically incompressible. The fluid in the
30	fluid chamber acts on a floating piston that is

1. located in a second chamber. The second chamber is typically filled with a fluid, preferably gas. 2 3 In this embodiment, as the radially moveable portions are forced inwards due to a restriction, they act on 5 the fluid in the inflatable element, forcing fluid 7 into the fluid chamber. The displacement of fluid into the fluid chamber acts on the piston, causing it 8 9 to compress the fluid in the second chamber. allows the radially moveable portions to move 10 inwards, thus passing the restriction. Once the 11 restriction has been passed, the fluid in the second chamber expands, forcing the piston to act on the 13 fluid in the fluid chamber, the fluid typically being 14 15 transferred to the inflatable element, thus forcing 16 the radially moveable portions outwards. 17 The biasing force of the force isolating means is 18 typically provided by the fluid in the second 20 chamber. Optionally, the biasing force can be varied, typically by varying the amount of fluid in 21 22 the second chamber. 23 24 The body may comprise a cylindrical member, and the or each radially moveable portion is typically 25 26 pivotably mounted to the body. 27 The apparatus optionally includes a second member 28 that typically comprises a shaft. The shaft 29 typically houses at least a portion of the isolating 30 In one embodiment, the shaft houses the fluid 31

12

1 chamber that is in communication with the or each 2 radially moveable portion, and the spring means. an alternative embodiment, the shaft houses a 3 4 hydraulic spring. 5 6 A second end of the shaft is typically provided with 7 attachment means for attaching the apparatus to a drill string or the like, although the attachment 8 9 means may be provided on the body. The attachment means may comprise any conventional means such as 10 screw threads (e.g. box and/or pin connections) or 11 12 the like. 13 The or each radially moveable portion typically 14 comprises one or more fingers. The or each finger is 15 16 typically coupled to the body so that they can move in a radial and/or axial direction. Thus, the or 17 18 each finger can expand or contract to adjust an outer 19 diameter of the apparatus. Typically, the or each finger is held in a radially expanded position by the 20 fluid in the fluid chamber or the inflatable element. 21 22 In this position, the fluid in the inflatable element or the fluid chamber abuts against an inner surface 23 24 of the or each finger and prevents them from moving radially inward. However, the fingers can move 25 radially inward against the biasing force of the 26 27 hydraulic spring or the spring means, provided that 28 the force acting on the fingers produced by 29 engagement with the restriction is sufficient to 30 overcome the biasing force. 31

1 The or each finger is typically pivotally coupled to the housing using a pivot, such as a pivot pin, hinge 2 or the like. Optionally, a biasing means may be 3 provided to bias the fingers radially outward. The 4 biasing means may comprise a torsion spring that is 5 positioned at the pivot. 6 7 An outer face of the or each finger typically defines 8 9 a cone. The outer faces of the or each finger are 10 typically angled so that the cone formed thereby 11 faces in the direction of travel of the apparatus. 12 Thus, as the apparatus is moved in the direction of travel, the outer faces engage an inner wall of the 13 expandable member or the like to expand the 14 15 expandable member. 16 17 Optionally, the outer faces may include a second sloping face that is angled so that the apparatus can 18 19 expand the inner diameter of the tubular when moved in the opposite direction to the normal direction of 20 21 In this embodiment, there is provided a travel. double-sided cone that can be used in either 22 23 direction of travel to expand the expandable member. 24 The expandable member can be any tubular member, such 25 26 as casing, liner, drill pipe etc, and other such 27 downhole tubulars. 28 Embodiments of the present invention shall now be 29 described, by way of example only, with reference to 30 31 the accompanying drawings, in which:-

1	Fig. 1 is a cross-sectional elevation of a first
2	embodiment of apparatus for radially expanding
3	an expandable member;
4	Fig. 2 is a view of the apparatus of Fig. 1 in a
5	contracted configuration;
6	Fig. 3 is a cross-sectional elevation of a
7	second embodiment of apparatus for radially
8	expanding an expandable member;
9	Fig. 4 is a view of the apparatus of Fig. 3 in a
10	contracted configuration;
11	Fig. 5 is a graph showing a typical relationship
12	between an expanding diameter of the apparatus
13	of Figs 1 and 2 with the pulling force applied
14	to the apparatus;
15	Fig. 6 is a graph showing a typical relationship
16	between an expanding diameter of the apparatus
17	of Figs 3 and 4 with the pulling force applied
18	to the apparatus and/or where the apparatus of
19	Figs 1 and 2 is provided with a pre-tensioning
20	means;
21	Fig. 7a is a cross-sectional view of a third
22	embodiment of apparatus for radially expanding
23	an expandable member;
24	Fig. 7b is an enlarged view of a portion of the
25	apparatus of Fig. 7a;
26	Fig. 7c is a graph showing a relationship
27	between an expanding diameter of the apparatus
28	of Figs 7a and 7b with the pulling force applied
29	to the apparatus; and

1	Fig. 8a is a cross-sectional elevation of part
2	of a fourth embodiment of apparatus for radially
3	expanding an expandable member; and
4	Fig. 8b is an enlarged view of a portion of the
5	apparatus of Fig. 8a.
6	
7	Referring to the drawings, Fig. 1 shows a part cross-
8	sectional elevation of an exemplary embodiment of
9	apparatus, generally designated 10, for expanding an
10	expandable member such as liners, casings, drill pipe
11	and other such downhole tubulars. It should be noted
12	that the terms "upper" and "lower" will be used
13	herein with reference to the orientation of the
14	apparatus 10 as shown in Fig. 1, but this is
15	arbitrary.
16	
17	The expandable member may comprise any tubular, such
18	as drill pipe, liner, casing or the like and is
19	typically of a ductile material so that it can be
20	radially expanded. The radial expansion of the
21	expandable member typically causes the member to
22	undergo plastic and/or elastic deformation to
23	increase its inner and outer diameters.
24	•
25	Apparatus 10 includes a housing 12 that is typically
26	cylindrical, although other shapes and configurations
27	are also contemplated. Housing 12 is provided with a
28	blind bore 14.
29	
30	A shaft 16 is located within the bore 14 and attached
31	to the housing 12 via a resilient member, which in

30

31

this embodiment comprises a spring 18, provided at 1 the (blind) lower end of the bore 14. Any member 2 that has resilient properties, i.e. it can regain its 3 original shape and configuration after being stretched, compressed or otherwise deformed, can be 5 used. The purpose of the resilient member 18 is to 6 absorb an axial pulling force (represented by arrows 7 20 in Fig. 1) applied to the shaft 16 during 8 expansion, and to isolate that axial force from a 9 radial expansion force that is applied to a plurality 10 11 of cone segments or fingers 22, as will be described. 12 The biasing force of the resilient member 18 (e.g. 13 the spring) is preferably rated at a higher level 14 than the anticipated maximum pulling force or load 20 15 applied to the apparatus 10 in the axial direction. 16 Thus, in normal use, the resilient member 18 will not 17 be fully extended, provided that the maximum load 20 18 does not exceed the biasing force of the spring 18. 19 However, when the axial load 20 exceeds the biasing 20 force of the spring 18 (i.e. the anticipated maximum 21 pulling force in the axial direction overcomes the 22 23 biasing force of spring 18), the spring 18 extends 24 (Fig. 2), as will be described. 25 Shaft 16 is provided with attachment means (not 26 shown) at an upper portion 16u that is used to couple 27 the apparatus 10 to a drill string or the like. 28 attachment means may comprise any conventional 29 coupling, such as screw threads (e.g. a pin and/or

box connection) or the like.

1 Shaft 16 is also provided with a central bore 16b for 2 the passage of fluids therethrough. Similarly, 3 housing 12 is provided with a bore 12b at the lower 4 end thereof so that fluid can pass from above to 5 6 below the apparatus 10, or vice versa. facilitates the circulation of fluids within the 7 borehole, both when the apparatus 10 is being run in, 8 and also whilst it is in use. Optionally, fluid 9 10 pressure may be used to propel the apparatus 10, as 11 will be described. 12 The shaft 16 is further provided with a reduced 13 diameter portion 16r that facilitates inward movement 14 of the fingers 22, as will be described. 15 16 17 The plurality of cone segments or fingers 22 (only 18 two shown in Fig. 1) are pivotally coupled to the housing 12 around its circumference, using, for 19 example, a pivot pin 24 or the like. It is preferred 20 that the fingers 22 are capable of movement in a 21 radial direction so that they can assume either a 22 radially expanded configuration (shown in Fig. 1), or 23 a retracted configuration (shown in Fig. 2). 24 Optionally, the fingers 22 may also be capable of 25 movement in an axial direction. 26 27 In the radially expanded configuration, as shown in 28 Fig. 1, the fingers 22 are extended so that they form 29 30 an outer diameter that approximates the final (expanded) inner diameter of the expandable member, 31

18

1 to effect radial expansion thereof. In the retracted 2 configuration shown in Fig. 2, the fingers 22 assume an outer diameter that is less than the nominal 3 (unexpanded) inner diameter of the expandable member, 4 5 and typically less than an outer diameter of the housing 12, although this is not essential. 6 when in the expanded configuration, the fingers 22 7 expand the expandable member. In the retracted 8 configuration, the fingers 22 can bypass restrictions 9 within the expandable member or restrictions that 10 protrude into the path of the apparatus 10 from, for 11 example, the surrounding formation, that would arrest 12 13 the travel of the apparatus 10. 14 A plurality of windows or slots 25 are provided in 15 the housing 12 to accommodate the radial movement of 16 the fingers 22. The windows 25 may also be 17 18 dimensioned to allow for movement of the fingers 22 in the axial direction also. 19 20 The shaft 16 is provided with an enlarged diameter 21 portion 16e that has an outer profile corresponding 22 23 to an inner profile of the fingers 22. 24 particular, the outer profile of the enlarged portion 16e has a flat portion 16f, and a sloping portion, 25 16s. Correspondingly, the inner surface of the 26 fingers 22 has a flat portion 22f, and a sloping 27 portion 22s. 28 29 In normal use, the respective portions 16f, 22f, 16s, 30 22s engage so that the shaft 16 prevents the fingers 31

19

1	22 from moving radially inward, and can also provide
2	support to the fingers 22 during the expansion
3	process. It is preferred, but not essential, that
4	the angle of the sloping portions 16s, 22s is
5	relatively shallow. The shallow angle provides a
6	larger contact area for the compressive force applied
7	through the fingers 22 to the shaft 16 at an angle
8	perpendicular to the sloping portion 22s, as movement
9	of the fingers 22 past the obstruction will push the
LO	fingers 22 radially inward. To overcome this
11	compressive force, a torsion spring or any other
12	biasing means can be used, for example at the pivots
13	24, to bias the fingers radially outward. The
14	biasing force of the torsion spring would be at least
15	equal to the normal compressive force applied to the
16	fingers 22 when an obstruction is encountered.
17	
18	It should be noted that the angle of the face 16s to
19	the axis of the apparatus 10 can be adjusted to
20	provide a gearing effect. With the surface 16s at a
21	shallow angle that is close to parallel to the axis
22	of the shaft 16, the force required to move the shaft
23	16 and extend the spring 18 is high; whereas with the
24	surface 16s at a steep angle near perpendicular to
25	the axis, the shaft 16 can be induced to move and
26	extend the spring 18 under a fairly small force
27	applied through the fingers 22.
28	
29	The expandable member is expanded by an outer face 26
30	of the fingers 22 that together with an upper portion
31	26u form an expansion cone made up from the

20

individual fingers 22, each tapering towards the 1 direction of travel from a widest point 28. When the 2 fingers 22 are in the radially extended position, as 3 shown in Fig. 1, the upper portions 26u of the faces 26 form a first expansion cone, the apex of which 5 6 points in the direction of travel of the apparatus 10. It is preferred, but not essential, that the 7 upper portions 26u of the outer faces 26 form a 8 continuous surface to expand the expandable member or 9 the like across the entire inner circumference 10 thereof. 11 12 In the Fig. 1 embodiment, each finger 22 has a lower 13 portion 261 that tapers from the widest point 28 14 radially inwards towards the other end of the 15 fingers. Thus, faces 27 on the lower portion 261 16 form a second expansion cone that can be used to 17 expand the expandable member in the reverse direction 18 19 (that is the direction opposite to the normal direction of travel). It should be noted that the 20 provision of the second expansion cone formed by the 21 faces 27 on the lower portion 261 is optional. 22 23 The widest point 28 is created at the junction 24 25 between the upper and lower outer faces 26, 27. 26 In use, the apparatus 10 is attached to a drill 27 string or the like using the attachment means 28 typically located at the upper end 16u of the shaft 29 16. 30

31

An expandable member that is to be located in the 1 borehole and then expanded can be positioned on top 2 of the apparatus 10. That is, the expandable member 3 can be rested on the upper face 26u of the fingers 22 4 whilst the drill string is inserted into the 5 borehole. The expandable member is then anchored 6 7 into place, for example using an anchoring device 8 (e.g. a packer) at the top or bottom of the 9 expandable member, depending on the direction of 10 propulsion of the apparatus 10. 11 12 The apparatus 10 is generally pulled up through the expandable member using the drill string so that the 13 14 upper faces 26u on the fingers 22 radially expands 15 the inner surface of the expandable member. case, the expandable member would typically be 16 anchored at a lower end thereof. The expandable 17 member is preferably expanded sufficiently so that 18 the outer surface thereof presses against the 19 20 formation of the borehole, or the pre-installed 21 portion of expandable member, casing etc. 22 23 Referring to Fig. 2, if during the expansion process, the apparatus 10 becomes stuck, for example due to a 24 solid protrusion on or in the expandable member into 25 26 the path of the apparatus 10, or a solid protrusion 27 in the surrounding formation that extends into the 28 path of the apparatus 10, the spring 18 extends in the axial direction because the force that is used to 29 pull the apparatus 10 through the expandable member 30 increases, the apparatus 10 stops moving at the 31

1 protrusion, and the increased force will be greater 2 than the force required to overcome the biasing force of the spring 18. As the spring 18 expands, the 3 shaft 16 and in particular the enlarged portion 16e 4 is moved upwardly in the axial direction as shown in 5 6 Fig. 2. 7 8 As shaft 16 moves upwards and the housing 12 is arrested at the protrusion, the fingers 22 are no 9 10 longer supported by the enlarged diameter portion 16e 11 and can move radially inward. This inward movement of at least one of the fingers 22 can allow the 12 apparatus 10 to bypass the restriction. This process 13 14 can be aided if the fingers 22 are capable of some 15 axial movement in the opposite direction to the 16 movement of the shaft 16. The axial movement can be 17 aided by providing elongated slots that extend in the 18 axial direction at the pivots 24. When the fingers 22 encounter a restriction at the expansion point 28, 19 20 the axial pulling force 20 will tend to pull the 21 apparatus 10 upwardly. If the pivot pins 24 are located in axial slots, the fingers 22 can move 22 axially downwards in the slots relative to the 23 24 housing 12, further separating the enlarged diameter 25 portion 16e and the fingers 22 and allowing the 26 fingers 22 to move radially inward. 27 28 As the protrusion is passed, the spring 18 contracts 29 because it has a higher biasing force than the normal 30 pulling force 20 applied to the apparatus 10, and the fingers 22 move radially outward to the position 31

31

shown in Fig. 1 due to the engagement of the enlarged 1 diameter portion 16e with the fingers 22, and/or the 2 3 biasing force applied to the fingers 22 (e.g. at the pivot pins 24). 4 5 Thus, as the fingers 22 can contract by moving 6 7 radially inwards (and optionally axially), the 8 apparatus 10 does not become permanently stuck, 9 thereby obviating having to retrieve the apparatus 10 from the borehole. This provides an advantage in 10 that no rig time is lost in having to perform a 11 12 fishing operation to retrieve the stuck expander device. Also, the apparatus 10 resets itself back 13 14 into expansion mode due to the biasing force of the spring 18. Thus, it can bypass any number of 15 restrictions within the borehole without having to be 16 17 retrieved therefrom and manually reset. 18 It should be noted that reversing the direction of 19 travel of the apparatus 10 could aid in freeing it, 20 as the fingers 22 will be pushed radially inward due 21 22 to contact with the restriction. 23 Hydraulic or other types of fluid pressure may be 24 used to propel the apparatus 10. In this particular 25 embodiment, the apparatus 10 would be turned upside 26 down with respect to the orientation shown in Figs 1 27 and 2. Fluid pressure can then be applied to the 28 apparatus 10, at least a portion of which preferably 29 acts directly on the end of shaft 16, typically via a 30

throughbore 12b in housing 12. The bore 16b through

24

1 the shaft 16 is generally not required for this 2 particular embodiment. However, the bore 16b can be 3 provided with a restriction (e.g. a blind bore) so that fluid pressure in the bore 16b can be contained to aid movement of the shaft 16. 5 6 It will be appreciated that bore 12b can be made 7 larger or smaller to adjust the pressure that is 8 applied to the end of the shaft 16. The end of the 9 shaft 16 could be provided with a flared end 10 (optionally with seals) that engages bore 14 of the 11 housing 12. 12 13 Fluid pressure would be applied to housing 12, and a 14 15 portion of this pressure would act directly on the shaft 16 via bore 12b. The contact between the upper 16 17 faces 26u (which would be lower faces with the 18 apparatus 10 turned upside down) with the expandable member that is to be expanded would create a seal for 19 the fluid pressure. The apparatus 10 could thus be 20 used to expand the expandable member from the top 21 This is advantageous, as no rig would be 22 23 required to push or pull the apparatus 10 (only fluid pressure), but the apparatus 10 would generally need 24 to be retrieved from the borehole once the expandable 25 member has been expanded. 26 27 As the apparatus 10 is propelled through the 28 expandable member using fluid pressure, the upper 29 30 faces 26u of the fingers 22 form an expansion cone that will radially expand the expandable member. 31

1	with the previous embodiment, if during the expansion
2	process the apparatus 10 becomes stuck, the spring 18
3	extends in the axial direction because the fluid
4	pressure applied to the shaft 16 increases, but the
5	apparatus 10 stops moving at the protrusion, and the
6	increased force will be greater than the force
7	required to overcome the biasing force of the spring
8	18. The spring 18 expands, and the shaft 16, in
9	particular the enlarged diameter portion 16e, is
10	moved downwardly in the axial direction. The
11	downward movement of shaft 16 allows the fingers 22
12	to move inward as they are no longer supported by the
13	enlarged diameter portion 16e. This inward movement
14	of at least one of the fingers 22 can allow the
15	apparatus 10 to bypass the restriction.
16	
17	Where the bore 16b is provided with a restriction,
18	the build up of fluid pressure caused by the arrest
19	in the travel of the apparatus 10 will aid in moving
20	the shaft 16 against the bias force of spring 18, so
21	that the enlarged portion 16e moves out of contact
22	with the fingers 22, allowing one or more fingers 22
23	to move radially inward.
24	
25	As the protrusion is passed, the spring 18 contracts
26	because it has a higher biasing force than the force
27	of the fluid pressure applied to the apparatus 10,
28	and the fingers 22 move radially outward due to the
29	engagement of the enlarged diameter portion 16e with
30	the fingers 22, and/or the biasing force applied to
31	the fingers 22 (e.g. at the pivot pins 24).

26

1 Alternatively, the shaft 16 in this embodiment could 2 be attached to the housing 12 above the level of the 3 fingers 22, for example using a spring. The spring 4 would typically be a compressive spring where in its 5 normal state the spring is extended, but can be 6 7 compressed. 8 As fluid pressure is applied to the bottom of shaft 9 16 and/or the housing 12, the apparatus is moved 10 through the expandable member to radially expand the 11 expandable member (typically using upper faces 26u). 12 When the apparatus meets a restriction in its path, 13 the travel of the apparatus is arrested at which 14 point the fluid pressure acts on shaft 16 thereby 15 compressing the spring. The compression of the 16 spring allows the shaft 16 to move axially and thus 17 the enlarged portion 16e moves out of contact with 18 the fingers 22 allowing them to move radially inwards 19 and thus by-pass the restriction. Once the 20 restriction is passed, the spring extends to its 21 normal configuration and expansion of the expandable 22 23 member continues. 24 It will be appreciated that the force that normally 25 biases the spring to move the shaft 16 away from the 26 housing can be selected to provide a pre-tensioning 27 means, as described below. 28 29 It should be noted that as the fingers 22 are 30 independently attached to the housing 12, partial 31

30

31

1 collapse of the cone formed thereby is possible. 2 This may result in, for example, an elliptical shape 3 at the widest point 28. 4 Figs 3 and 4 show an alternative embodiment of 5 apparatus according to the present invention, 6 7 generally designated 100. Apparatus 100 is similar to apparatus 10 (Figs 1 and 2) and includes a housing 8 112 (shown in part cross-section) that is typically 9 cylindrical, although other shapes and configurations 10 are also contemplated. The housing 112 is provided 11 with an internal cavity or bore 114 in which a shaft 12 116 is partially located. 13 14 15 An upper portion 116u of the shaft 116 is typically provided with conventional coupling means (e.g. screw 16 threads) so that the apparatus 100 can be coupled to 17 a drill string, coiled tubing string, wireline or the 18 like. Thus, the apparatus 100 can be pulled through 19 an expandable member 150 that is to be expanded. 20 21 22 Shaft 116 is capable of longitudinal movement within 23 the cavity 114 relative to housing 112 and is biased to the position shown in Fig. 3 by a resilient 24 member, which in this embodiment comprises a spring 25 Spring 118 is located below the housing 112, 26 typically between a lower face 1121 of the housing 27 112 and a lower face 1161 of the shaft 116. 28 29 should be noted that spring 118 is merely exemplary,

and any member that has resilient properties, i.e. it can regain its original shape and configuration after

1 being stretched, compressed or otherwise deformed, 2 can be used. In the embodiment shown in Figs 3 and 4, the spring 118 is typically normally extended. 3 4 5 As with the previous embodiment, the purpose of the 6 spring 118 is to absorb an axial pulling or 7 propulsive force applied to the shaft 116 during the 8 radial expansion process (as described below), and to 9 isolate that axial pulling or propulsive force from a 10 radial expansion force that is applied to a plurality of cone segments or fingers 122, as will be 11 described. 12 13 14 The biasing force of the spring 118 is preferably rated at a higher level than the anticipated maximum 15 16 pulling or propulsive force applied to the apparatus 100 in the axial direction. Thus, in normal use, the 17 18 spring 118 is typically fully extended, provided that 19 the maximum pulling or propulsive force does not exceed the biasing force of the spring 118. However, 20 21 when the axial pulling or propulsive force exceeds 22 the biasing force of the spring 118 (i.e. the anticipated maximum pulling or pushing force in the 23 24 axial direction overcomes the biasing force of spring 118), the spring 118 contracts (Fig. 4), as will be 25 described. 26 27 28 The embodiment shown in Figs 3 and 4 can be propelled 29 through the casing using hydraulic or other fluid 30 pressure. An optional stop 120 is provided that is 31 engageable with a lower end of the shaft 116. Fluid

acts on a lower surface 1201 of the stop 120 and thus 1 2 propels the apparatus 100 upwardly, providing that the force of fluid pressure is sufficient. The stop 3 4 120 can be provided with sealing means that seal 5 between outer surfaces 1200 of the stop 120 and the 6 inner surface of the expandable member 150 that is to 7 be radially expanded. 8 9 . In this particular embodiment, the shaft 116 and the 10 optional stop 120 are not provided with throughbores 11 (unlike the previous embodiment) although they may be 12 if required. The throughbores could facilitate the circulation of fluids within the borehole, both when 13 14 the apparatus 100 is being run in, and also whilst it 15 is in use. 16 The plurality of cone segments or fingers 122 (only 17 18 one shown in Fig. 1) are pivotally coupled to the housing 112 around its circumference, using, for 19 example, a pivot pin 124 or the like. 20 preferred that the fingers 122 are capable of 21 22 movement in a radial direction so that they can 23 assume either a radially expanded configuration 24 (shown in Fig. 3), or a retracted configuration 25 (shown in Fig. 4). Optionally, the fingers 122 may also be capable of movement in an axial direction. 26 27 In the radially expanded configuration, as shown in 28 Fig. 3, the fingers 122 are extended so that they 29 30 form an outer diameter that approximates the final 31 (expanded) inner diameter of the expandable member

30

150, casing etc to effect radial expansion thereof. 1 In the retracted configuration shown in Fig. 4, the 2 fingers 122 assume an outer diameter that is less 3 than the nominal (unexpanded) inner diameter of the 4 5 expandable member 150, and typically less than an 6 outer diameter of the housing 112, although this is 7 not essential. Thus, when in the expanded 8 configuration, the fingers 122 expand the expandable member 150. In the retracted configuration, the 9 fingers 122 can bypass restrictions within the 10 11 expandable member 150 or restrictions that protrude into the path of the apparatus 100 from, for example, 12 13 the surrounding formation, that would arrest the 14 travel of the apparatus 100. 15 A plurality of windows or slots 125 are provided in 16 the housing 112 to accommodate the radial movement of 17 18 the fingers 122. The windows 125 may also be dimensioned to allow for movement of the fingers 122 19 in the axial direction. 20 21 As with the previous embodiment, shaft 116 is 22 provided with an enlarged diameter portion 116e. 23 enlarged diameter portion 116e has a flat portion 24 116f, and a sloping portion 116s. In this 25 embodiment, the fingers 122 are provided with a 26 rounded inner surface 122r that typically engages the 27 flat surface 116f of the enlarged portion 116e during 28 normal use (as shown in Fig. 3). Fingers 122 may 29

have a similar inner profile to fingers 22.

30 31

In normal use, the rounded inner surface 122r engages 1 2 the flat surface 116f so that the shaft 116 prevents the fingers 122 from moving radially inward, and can 3 also provide support to the fingers 122 during the 4 expansion process. As with the previous embodiment, 5 a torsion spring or any other biasing means can be 6 7 used, for example at the pivots 124, to bias the 8 fingers 122 radially outward. The biasing force of 9 the torsion spring would be at least equal to the 10 normal compressive force applied to the fingers 122 when an obstruction is encountered. 11 12 The expandable member 150 is expanded by an outer 13 face 126 of the fingers 122 that together with an 14 upper portion 126u form an expansion cone made up 15 from the individual fingers 122, each tapering 16 towards the direction of travel from a widest point 17 128. When the fingers 122 are in the radially 18 extended position, as shown in Fig. 3, the upper 19 20 portions 126u of the faces 126 form a first expansion cone, the apex of which points in the direction of 21 22 travel of the apparatus 100. It is preferred, but 23 not essential, that the upper portions 126u of the outer faces 126 form a continuous surface to expand 24 the expandable member 150 or the like across the 25 26 entire inner circumference thereof. 27 In the Fig. 3 embodiment, each finger 122 has a lower 28 29 portion 1261 that tapers from the widest point 128 radially inwards towards the other end of the 30 Thus, faces 127 on the lower portion 1261 31 fingers.

form a second expansion cone that can be used to 1 expand the expandable member 150 in the reverse 2 direction (that is the direction opposite to the 3 normal direction of travel). 4 It should be noted that 5 the provision of the second expansion cone formed by the faces 127 on the lower portion 1261 is optional. 6 7 The widest point 128 is created at the junction 8 9 between the upper and lower outer faces 126, 127. 10 In use, the apparatus 100 may be attached to a drill 11 12 string, coiled tubing string, wireline or the like. The expandable member 150 that is to be located in 13 14 the borehole and then expanded can be positioned on top of the apparatus 100. That is, the expandable 15 16 member 150 can be rested on the upper face 126u of 17 the fingers 122 whilst the expandable member 150 or 18 the like is inserted into the borehole. The 19 expandable member 150 is then anchored into place, for example using an anchoring device (e.g. a packer) 20 21 at the top or bottom of the expandable member 150, 22 depending on the direction of motion of the apparatus 23 100. 24 The apparatus 100 is pulled or propelled upwardly 25 26 through the expandable member 150 ("upwardly" being 27 arbitrary and with respect to the orientation of the apparatus 100 in Figs 3 and 4) using a drill string 28 or the like to pull the apparatus 100, or by applying 29 30 fluid pressure to the lower surface 1201 of the stop 31 The upper portions 126u on the fingers 122

radially expand the inner surface of the expandable 1 2 member 150 as the apparatus 100 is pulled or propelled through the casing. In this case, the 3 expandable member 150 would typically be anchored at 4 or near a lower end thereof. The expandable member 5 150 is preferably expanded sufficiently so that the 6 7 outer surface of the expandable member 150 presses 8 against the formation of the borehole, or the pre-9 installed portion of liner, casing etc. 10 Referring to Fig. 4, if during the expansion process, 11 12 the apparatus 100 becomes stuck, for example due to a 13 solid protrusion on or in the expandable member 150 in the path of the apparatus 100, or a solid 14 15 protrusion in the surrounding formation that extends 16 into the path of the apparatus 100, the spring 118 17 contracts in the axial direction because the pulling 18 or fluid force that is used to pull or propel the 19 apparatus 100 through the expandable member 150 increases, the apparatus 100 stops moving at the 20 21 protrusion, and the increased force will be greater 22 than the force required to overcome the biasing force of the spring 118. As the spring 118 contracts, the 23 24 shaft 116 and in particular the enlarged portion 116e 25 is moved upwardly in the axial direction as shown in 26 Fig. 4. 27 28 As shaft 116 moves upwards and the housing 112 is 29 arrested at the protrusion, the fingers 122 are no 30 longer supported by the enlarged diameter portion 31 116e and can move radially inward. This inward

34

movement of at least one of the fingers 122 can allow 1 2 the apparatus 100 to bypass the restriction. process can be aided if the fingers 122 are capable 4 of some axial movement in the opposite direction to 5 the movement of the shaft 116. The axial movement 6 can be aided by providing elongated slots that extend 7 in the axial direction at the pivots 124. When the fingers 122 encounter a restriction at the widest 8 9 point 128, the fluid propulsion will tend to push the 10 apparatus 100 upwardly. If the pivot pins 124 are 11 located in axial slots, the fingers 122 can move 12 axially downwards in the slots relative to the 13 housing 112, further separating the enlarged diameter portion 116e and the fingers 122 and allowing the 14 15 fingers 122 to move radially inward. 16 17 As the protrusion is passed, the spring 118 expands 18 because it has a higher biasing force than the normal 19 pulling or propulsive force applied to the apparatus 20 100, and the fingers 122 move radially outward to the 21 position shown in Fig. 3 due to the engagement of the 22 enlarged diameter portion 116e with the fingers 122, 23 and/or the biasing force applied to the fingers 122 24 (e.g. at the pivot pins 124). 25 Thus, as the fingers 122 can contract by moving 26 radially inwards (and optionally axially), the 27 apparatus 100 does not become permanently stuck, 28 thereby obviating having to retrieve the apparatus 29 30 100 from the borehole. This provides an advantage in 31 that no rig time is lost in having to perform a

WO 02/059456

31

fishing operation to retrieve the stuck expander 1 2 device. Also, the apparatus 100 resets itself back into expansion mode due to the biasing force of the 3 4 spring 118. Thus, it can bypass any number of 5 restrictions within the borehole without having to be 6 retrieved therefrom and manually reset. 7 8 It should be noted that as the fingers 122 are independently attached to the housing 112, partial 9 10 collapse of the cone formed thereby is possible. This may result in, for example, an elliptical shape 11 12 at the widest point 128. 13 In this particular embodiment, setting weight on the 14 15 shaft 116 from the drill string, coiled tubing string 16 etc from above can aid in resetting the apparatus 100 and thus open up the fingers 122 to form the 17 expansion cone. 18 19 The axial pulling force, represented by Fe in Figs 3 20 to 6, is typically directly related to the diameter 21 22 of the apparatus 100 at the widest point 128 of the 23 fingers 122. Referring to Fig. 5, there is shown the 24 general relationship between the diameter at the widest point (represented in Figs 5 and 6 as ϕ 3) and 25 the axial pulling force Fe. As can be seen from Fig. 26 5, the diameter at the widest point reduces linearly 27 28 as the pulling force Fe increases. 29 30 However, it is preferred that the apparatus 100 is

provided with a means that prevents the fingers 122

from moving inward until a given value of pulling 1 force Fe is achieved or preferably exceeded. 2 3 Fig. 6 shows a pre-tensioning force F_c that can be 4 applied to the apparatus 100, where F_c is typically 5 greater than or equal to $F_{\rm e}$. Thus, the pre-6 7 tensioning allows for a certain amount of travel of the shaft 116 in the axial direction before the 8 9 fingers 122 can move inwards. 10 With the embodiment shown in Figs 3 and 4, a distance 11 a is provided between the nominal engagement point of 12 the rounded face 122r with the enlarged diameter 13 portion 116e and the point where the enlarged 14 diameter begins to reduce down to the nominal 15 16 diameter of the shaft 116. The distance a 17 facilitates normal force variations so that the fingers 122 do not collapse unless the pulling force 18 or build-up of fluid pressure on the stop 120 is 19 sufficient to move the shaft 116 upwards by a 20 distance that exceeds distance a. Thus, the distance 21 a effectively provides a pre-tensioning force as the 22 shaft 116 can tolerate force variations until it is 23 pulled upwards by a distance that exceeds distance a. 24 25 26 It will be noted that there is a relationship between the slope β and the length c (Figs 3 and 4) and these 27 are connected by the change in outer diameter of the 28 upper expansion cone formed by faces 126. The force 29 required to restore the expansion cone to its 30 original configuration where it expands the 31

expandable member 150 decreases as the slope $\boldsymbol{\beta}$ 1 increases. This is similar to the gearing effect of 2 3 Figs 1 and 2. 4 Fig. 7 shows a further alternative embodiment of 5 apparatus according to the present invention. In the 6 embodiment shown in Fig. 7, each finger 222 has a 7 fixed piston 280 associated with it. The fixed 8 piston 280 has an internal bore 280b that allows 9 pressurised fluid from a reservoir, generally 10 designated 282, located within the shaft 216 to flow 11 through the piston 280 and collect in a chamber 284 12 behind the finger 222. 13 14 The reservoir 282 includes a fluid-filled chamber 286 15 that has a piston 288 located above the chamber 286, 16 and a damping spring 290 above the piston 288. 17 chamber 286 communicates with the chambers 284 behind 18 the fingers 222 via connecting channels 292. 19 20 In the Fig. 7 embodiment, the apparatus 200 is moved 21 upwards by applying a pulling force $\boldsymbol{F}_{\boldsymbol{e}}$ to the shaft .25 216 as before. If the apparatus 200 encounters a 23 24 restriction or resistance to upward movement, the fingers 222 that are mounted on pivots 224 move . 25 inwards. The inward movement of the fingers 222 acts 26 on the fluid chamber 284 causing the fluid therein to 27 be pushed inwardly into the channels 292, thus 28 forming a radial piston. This inward movement causes 29 the fluid pressure in the channels 292 and chamber 30 286 to increase and the damping spring 290 absorbs 31

WO 02/059456 PCT/GB02/00356

38

1 the increase in pressure, allowing the fingers 222 to move inwards so that the restriction can be passed. 2 The damping spring 290 can be any conventional 3 spring, such as gas, mechanical etc. Once the 4 5 restriction has passed, the fluid pressure reduces 6 and the bias force of the damping spring 290 causes 7 the fingers 222 to expand to their nominal expansion 8 diameter by forcing fluid out of the chamber 288 into the channels 292 and into the chamber 284 behind the 9 10 fingers 222. 11 It is possible with the embodiment shown in Fig. 7 to 12 13 control the fluid pressure in the chambers 286 and 14 284 from the surface. Thus, the apparatus 200 can be run into an expandable member that is to be expanded 15 16 in an unexpanded configuration. Once the apparatus 200 has reached its intended location within the pre-17 installed casing, liner etc., fluid pressure in the 18 19 apparatus 200 can be increased causing the fingers 222 to assume their expanded position and the 20 21 apparatus 200 can be pulled upwards to radially 22 expand the expandable member. 23 As with the previous embodiment, the biasing force 24 25 (f_{spring}) of the spring 290 can be chosen so that the fingers 222 remain extended until a predetermined 26 27 pulling force F_e is exceeded (see Figs 7b and 7c). Thus, the fingers 222 will not fully collapse until 28 the biasing force f_{spring} provided by the spring 290 is 29 overcome. This will allow for small variations in 30

27

28

31

1 the movement of the fingers 222 during normal use 2 without the fingers collapsing. 3 4 Fig. 8 shows a further alternative embodiment of 5 apparatus according to the present invention. The 6 apparatus, generally designated 300, includes a 7 plurality of blades 302 that are pivotally connected 8 to a body 301, typically via pins 306. Referring to Fig. 8b, each blade 302a overlaps the previous blade 9 10 302b and an outer surface of the blades 302 typically forms an expansion cone in use. It is preferred that 11 each blade 302 is pivotally mounted independently of 12 13 one another. The blades 302 may be restrained in the 14 amount of outward pivotal movement by a restrainer 303 that limits the outward movement of the blade 302 15 16 by engaging one end thereof. The pivot pins 306 are typically provided at or near a leading edge of the 17 18 apparatus 300. 19 20 An inflatable element 304, such as a packer, is 21 located under the blades 302, as shown in Fig. 8a. The inflatable element 304 is coupled to a hydraulic 22 23 absorber, generally designated 308. The hydraulic 24 absorber 308 includes an oil reservoir 310 that is in 25 fluid communication with the inflatable element 304.

A floating piston 312 is located beside the oil

reservoir 310, the piston 312 being capable of axial

movement within the hydraulic absorber 308. A gas

accumulator 314 is located beside the floating piston 30 312 and is typically filed with a gas. WO 02/059456

In use, the inflatable element 304 is pressurised to 1 a constant pressure that is required to move the 2 blades 302 outwards to expand the expandable member 3 4 The compressibility of the gas in the gas accumulator 314 and the incompressibility of the oil 5 in the oil reservoir 310 gives a spring effect where 6 the radial or reactive force applied to the blades 7 302 from the expansion process applies a collapsing 8 9 force to the inflatable element 304. The increase in pressure in the inflatable element 304 causes an 10 increase in pressure in the oil reservoir 310 and the 11 12 oil acts against the floating piston 312, forcing it into the gas accumulator 314 (as the gas therein is 13 14 compressible). The movement of the piston 312 allows 15 the blade(s) 302 to move inward(s) and thus the 16 restriction can be passed. 17 The pressure within the system is typically kept 18 19 constant, and thus when the restriction has been 20 passed, the pressure in the inflatable element 304 returns to its original value, as the pressure in the 21 oil reservoir 310 reduces, allowing the gas in the 22 23 accumulator 314 to expand and the piston 312 moves back to its original position, forcing oil into the 24 inflatable element 304. 25 26 The gas accumulator 314 could be pressurised at the 27 surface using a gas line for example, or downhole 28 using a system that is similar to the Baker Model E-4 29 Wireline Pressure Setting Assembly (Product Number 30 31 437-02). In this embodiment, an electric current is

WO 02/059456

1	used and transmitted through electric wireline, to
2	ignite a power charge in a setting assembly. The
3	setting assembly is slow-burning charge that releases
4	a gas as it burns, thus building up pressure in the
5	gas accumulator 314. Thus, the apparatus 300 can be
6	inserted through the expandable member that is to be
7	expanded in an unexpanded configuration, and then the
8	inflatable element 304 expanded downhole by igniting
9	the first charge that in turn ignites the power
10	charge to build up the pressure in the gas
11	accumulator 314. The gas pressure would then act on
12	the piston 312, compressing the oil in the reservoir
13	310 causing some of the oil to be transferred to the
14	inflatable element 304 thus pivoting the blades 302
15	outwardly, as shown in Fig. 8a to radially expand the
16	expandable member etc.
17	
1.8	Embodiments of the present invention provide numerous
19	advantages over prior art expander devices, such as
20	the ability to bypass restrictions without becoming
21	arrested. In certain embodiments, the fingers or
22	blades that make up the expansion cone are capable of
23	collapsing inwards so that the restriction can be
24	passed. Thereafter, the fingers or blades are moved
25	back to their expanded configuration so that the
26	expansion process can continue.
27	
28	Modifications and improvements may be made to the
29	foregoing without departing from the scope of the
30	present invention.

1 <u>CLAIMS</u>

2

- Apparatus for expanding an expandable member,
- 4 the apparatus comprising a first member, one or more
- 5 radially movable portions, a second member, and
- force isolating means acting between the first and
- 7 second members.

8

- 9 2. Apparatus according to claim 1, wherein the
- 10 first member comprises a housing with a blind bore.

11

- 12 3. Apparatus according to either preceding claim,
- wherein the second member comprises a shaft having a
- 14 cone that bears against the radially movable
- 15 portions.

16

- 17 4. Apparatus according to claim 3, wherein the
- shaft and cone can move axially with respect to the
- 19 first member in and out of engagement with the
- 20 radially movable portions.

21

- 22 5. Apparatus according to any preceding claim,
- 23 wherein the radially movable portions are coupled to
- 24 the first member so that they can move in a radial
- 25 and/or axial direction.

26

- 27 6. Apparatus according to any one of claims 3 to
- 28 5, wherein the force isolating means comprises a
- 29 spring.

- 31 7. Apparatus according to claim 6, wherein the
- 32 radially movable portions are held in a radially

WO 02/059456 PCT/GB02/00356

43 expanded position by the cone on the second member 1 moving axially with respect to the first member to a 2 first position in which the spring is contracted. 3 4 5 Apparatus according to claim 7, wherein the 8. second member can move axially under an axial 6 7 pulling force, and the cone can move to a second position that allows the radially movable portions 8 to move radially inward to bypass a restriction. 9 10 11 9. Apparatus according to claim 7 or claim 8, wherein as the restriction is passed, the axial 12 13 pulling force drops below a biasing force of the spring so that the spring contracts, and the cone 14 15 moves into engagement with the radially movable 16 portions causing them to move radially outward to 17 the radially expanded position. 18 19 10. Apparatus according to any one of claims 7 to 20 9, wherein the engagement of the radially movable 21 portions with the restriction can cause them to move inwards against the cone thereby moving it to the 22 23 second position in which the spring is extended. 24

25 Apparatus according to any preceding claim, 26 wherein the radially movable portions are pivotally coupled to the first member. 27

28

Apparatus according to any preceding claim, 29 wherein an outer face of the radially movable 30 31 portions defines a cone.

WO 02/059456 PCT/GB02/00356

44

- 1 13. Apparatus for expanding an expandable member,
- 2 the apparatus comprising a body, one or more
- 3 radially movable portions, and force isolating means
- 4 acting between the body and the or each radially
- 5 moveable portion.

6

- 7 14. Apparatus according to claim 13, wherein the
- 8 force isolating means provides a biasing force to
- 9 the or each radially moveable portion.

10

- 11 15. Apparatus according to claim 14, wherein a
- force required to move the or each radially moveable
- 13 portion inwards is greater than the biasing force of
- 14 the force isolating means.

15

- 16. Apparatus according to claim 14 or claim 15,
- wherein a radial position of the or each radially
- 18 movable portion is at least partially controlled by
- 19 the biasing force of the force isolating means.

20

- 21 17. Apparatus according to any one of claims 14 to
- 22 16, wherein force applied to the body can be
- 23 isolated from the or each radially moveable portion
- 24 by the force isolating means.

25

- 26 18. Apparatus according to any one of claims 13 to
- 27 17, wherein the force isolating means comprises a
- 28 resilient member that allows relative movement
- 29 between the body and the or each radially moveable
- 30 portion.

- 1 19. Apparatus according to claim 18, wherein the
- 2 relative movement between the body and the or each
- 3 radially moveable portion is in an axial direction.

- 5 20. Apparatus according to claim 18 or claim 19,
- 6 wherein the resilient member has a biasing force
- 7 that is greater than a maximum load that will be
- 8 applied to the apparatus.

9

- 10 21. Apparatus according to any one of claims 13 to
- 11 17, wherein the force isolating means includes a
- 12 fluid chamber that is in communication with the or
- each radially moveable portion, the fluid chamber
- 14 being in fluid communication with a spring means.

15

- 16 22. Apparatus according to claim 21, wherein the
- spring means comprises a first chamber, a floating
- 18 piston in communication with the first chamber, and
- a second chamber in communication with the piston.

20

- 21 23. Apparatus according to claim 22, wherein the
- 22 first chamber contains fluid and is in fluid
- 23 communication with the fluid chamber that is in
- 24 communication with the or each radially moveable
- portion, and the second chamber includes a spring.

- 27 24. Apparatus according to claim 23, wherein as the
- 28 radially moveable portions are forced inward due to
- 29 a restriction, they act on the fluid in the fluid
- 30 chamber, forcing the fluid into the first chamber,
- 31 wherein the displacement of fluid causes the
- 32 floating piston to compress the spring in the second

- chamber and this allows the radially moveable
- 2 portions to move inwards, thus passing the
- 3 restriction.

- 5 25. Apparatus according to claim 24, wherein once
- 6 the restriction has been passed, the spring extends
- 7 forcing fluid in the first chamber to be transferred
- 8 to the fluid chambers, thus forcing the radially
- 9 moveable portions outwards.

10

- 11 26. Apparatus according to any one of claims 13 to
- 12 17, wherein the force isolating means comprises a
- 13 hydraulic spring.

14

- 15 27. Apparatus according to claim 26, wherein the
- 16 hydraulic spring includes an inflatable element that
- is in fluid communication with a fluid chamber.

18

- 19 28. Apparatus according to claim 27, wherein the
- 20 fluid chamber is filled with a fluid that is
- 21 incompressible.

22

- 29. Apparatus according to claim 27 or claim 28,
- 24 wherein the fluid in the fluid chamber acts on a
- 25 floating piston that is located in a second chamber.

26

- 27 30. Apparatus according to claim 29, wherein the
- 28 second chamber is filled with a gas.

- 30 31. Apparatus according to claim 29 or claim 30,
- 31 wherein as the radially moveable portions are forced
- inwards due to a restriction, they act on the fluid

- in the inflatable element, forcing fluid into the
- 2 fluid chamber, and the displacement of fluid into
- 3 the fluid chamber acts on the piston, causing it to
- 4 compress the fluid in the second chamber.

- 6 32. Apparatus according to claim 31, wherein once
- 7 the restriction has been passed, the fluid in the
- 8 second chamber expands, forcing the piston to act on
- 9 the fluid in the fluid chamber, the fluid being
- 10 transferred to the inflatable element, thus forcing
- the radially moveable portions outwards.

12

- 13 33. Apparatus according to any one of claims 13 to
- 32, wherein the or each radially moveable portion is
- 15 pivotably mounted to the body.

16

- 17 34. Apparatus according to any one of claims 13 to
- 18 33, wherein the or each radially moveable portion
- 19 comprises one or more fingers.

- 21 35. Apparatus according to claim 34, wherein an
- outer face of the or each finger defines a cone.

Fig. 1

SUBSTITUTE SHEET (RULE 26)

Fig. 2

SUBSTITUTE SHEET (RULE 26)

Fig. 3
SUBSTITUTE SHEET (RULE 26)

Fig. 4
SUBSTITUTE SHEET (RULE 26)

Fig. 5

Fig. 6

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 E21B43/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 E21B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

Category •	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 3 785 193 A (KINLEY M ET AL) 15 January 1974 (1974-01-15) column 4, line 29 - line 42 column 5, line 21 - line 37 column 6, line 45 -column 7, line 42;	1-11, 13-20, 33,34
Υ	figures 4-6	12,35
Y	US 2 627 891 A (CLARK PAUL B) 10 February 1953 (1953-02-10) column 3, line 39 - line 57; figures 1,4	12,35
Α	US 4 319 393 A (POGONOWSKI IVO C) 16 March 1982 (1982-03-16) figures	1,13,21, 26

X Further documents are listed in the continuation of box C.	Y Patent family members are listed in annex.
Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the International filling date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but tater than the priority date claimed	 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family
Date of the actual completion of the international search 19 April 2002	Date of mailing of the international search report 02/05/2002
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Giorgini, G

INTERNATIONAL SEARCH REPORT

PCT/GB02/00356

	·	PCT/GB02/00356
C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category •	Citation of document, with indication, where appropriate, of the relevant passages	Retevant to ctaim No.
A	FR 2 595 439 A (THOME PAUL) 11 September 1987 (1987-09-11) page 5, line 30 -page 6, line 7; figures 6,7	1-5,13
A	US 3 245 471 A (HOWARD GEORGE C) 12 April 1966 (1966-04-12) figures 1,2	1,13
Α	WO 00 37773 A (PETROLINE WELLSYSTEMS LTD; ASTEC DEV LTD (GB)) 29 June 2000 (2000-06-29) figures	1,13
•		
	·	
}		

					
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 3785193	Α	15-01-1974	NONE		
US 2627891	A	10-02-1953	NONE		
US 4319393	Α	16-03-1982	US	4220034 A	02-09-1980
			US	4309891 A	12-01-1982
FR 2595439	Α	11-09-1987	FR	2595439 A1	11-09-1987
US 3245471	Α	12-04-1966	NONE		
WO 0037773	Α	29-06-2000	AU	1867900 A	12-07-2000
			AU	1868700 A	12-07-2000
			AU	1868800 A	12-07-2000
			AU	1868900 A	12-07-2000
			AU	1876600 A	12-07-2000
			AU	1876800 A	12-07-2000
			EP	1147287 A2	24-10-2001
			EP	1141517 A1	10-10-2001
			EP	1141515 A1	10-10-2001
			EP	1144802 A2	17-10-2001
			EP	1151180 A1	07-11-2001
			EP	1141518 A1	10-10-2001
			WO	0037766 A2	29-06-2000
			WO	0037771 A1	29-06-2000
			WO	0037768 A1	29-06-2000
			WO	0037767 A2	29-06-2000
			WO	0037772 A1	29 -0 6-2000
			MO	0037773 A1	29-06-2000
			GB	2345308 A	05-07-2000
			GB	2346632 A	16-08-2000
			GB	2346400 A	09-08-200
			GB	2346909 A	23-08-2000
			GB	2347445 A	06-09-200
			NO	20012596 A	27-07-200
			NO	20012597 A	27-07-200
			NO	20012598 A	30-07-200
			NO	20012599 A	30-07-200
			NO	20012600 A	30-07-200
			NO	20012865 A	07-08-200