

Dr. Seemab latif
Lecture 7
24th Oct 2024

Al: Representation and Problem Solving Local Search

Slide credits: Pat Virtue, http://ai.berkeley.edu

Hill climbing

Hill climbing

Simulated Annealing

Annealing

- Annealing is a thermal process for obtaining low energy states of a solid in a heat bath.
- The process contains two steps:
 - Increase the temperature of the heat bath to a maximum value at which the solid melts.
 - Decrease carefully the temperature of the heat bath until the particles arrange themselves in the ground state of the solid. Ground state is a minimum energy state of the solid.
- The ground state of the solid is obtained only if the maximum temperature is high enough and the cooling is done slowly.

https://www.youtube.com/watch?v=9kWWKgiBh-Q

Simulated Annealing

- To apply simulated annealing with optimization purposes we require the following:
 - A successor function that returns a "close" neighboring solution given the actual one. This will work as the "disturbance" for the particles of the system.
 - A target function to optimize that depends on the current state of the system. This function will work as the energy of the system.
- The search is started with a randomized state. In a polling loop we will move to neighboring states always accepting the moves that decrease the energy while only accepting bad moves accordingly to a probability distribution dependent on the "temperature" of the system.

Simulated Annealing

- Decrease the temperature slowly, accepting less bad moves at each temperature level until at very low temperatures the algorithm becomes a greedy hill-climbing algorithm.
- The distribution used to decide if we accept a bad movement is know as Boltzman distribution.
- This distribution is very well known is in solid physics and plays a central role in simulated annealing. Where γ is the current configuration of the system, E γ is the energy related with it, and Z is a normalization constant.

$$P(\gamma) = \frac{e^{-E_{\gamma}/T}}{Z(T)},$$

:
$$Z(T) = \sum_{\gamma'} e^{-E_{\gamma'}/T}$$
,

Annealing Process

- Raising the temperature up to a very high level (melting temperature, for example), the atoms have a higher energy state and a high possibility to re-arrange the crystalline structure.
- Cooling down slowly, the atoms have a lower and lower energy state and a smaller and smaller possibility to re-arrange the crystalline structure.

Annealing - Analogy

Physical System

Optimization Problem

State (configuration) ——— Solution

Energy Cost function

Ground State ——— Optimal solution

Rapid Quenching ——— Iteration improvement

Careful Annealing ——— Simulated annealing

Simulated Annealing - Analogy

- Metal ←→ Problem
- Energy State ←→ Cost Function
- Temperature ←→ Control Parameter
- A completely ordered crystalline structure

 → the optimal solution for the problem

Global optimal solution can be achieved as long as the cooling process is slow enough.

Simulate d Annealin g Flow Chart

How SA explores the solution space

Conclusion

SA is a global optimization technique.

- SA distinguishes between different local optima.
- SA is a memory less algorithm, the algorithm does not use any information gathered during the search
- SA is motivated by an analogy to annealing in solids.
- Simulated Annealing an iterative improvement algorithm

Solving Sudku using SA

3			8		1			2
2		1		3		6		4
			2		4			
8		9				1		6
	6						5	
7		2				4		9
			5		9			
9		4		8		7		5
6			1		7			3

1- Generating random states

5	2	4	4	3	7	6	8	9
6	7	9	1	5	9	2	7	3
8	1	3	6	8	2	4	1	5
4	3	1	6	7	5	4	8	1
5	8	6	1	8	9	9	3	2
7	9	2	2	3	4	7	6	5
2	8	9	7	1	5	8	4	2
6	4	5	2	9	3	9	1	3
3	1	7	8	6	4	7	5	6

- 1- Generating random states
- 2- Writing a cost function

$\begin{bmatrix} 2 & 0 \\ 2 & 3 \end{bmatrix}$		ı						
3	2	2	2	2	1	2	2	1
	6	2	7	5	4	8	6	5
1 3	4	8	9	8	3	1	9	2
7 1	5	9	2	6	1	3	7	4
8	2	7	2	1	6	6	1	4
6	9	1	3	8	7	8	5	3
3 3	3	5	4	9	5	2	9	7
7 3	9	8	7	9	4	4	2	6
5	1	4	6	3	8	1	7	8
6 3	3	2	5	2	1	5	3	9

- 1- Generating random states
- 2- Writing a cost function
- 3- Selecting starting temperature

- 1- Generating random states
- 2- Writing a cost function
- 3- Selecting starting temperature
- 4- Calculating iterations per T

/									
1	5	2	4	4	3	7	6	8	9
2	6	9	7	1	5	9	2	7	3
2	8	1	3	6	8	2	4	1	5
1	4	3	1	6	7	5	4	8	1
2	5	8	6	1	8	9	9	3	2
2	7	9	2	2	3	4	7	6	5
2	2	8	9	7	1	5	8	4	2
2	6	4	5	2	9	3	9	1	3
2	3	1	7	8	6	4	7	5	6
	2	3	1	3	2	3	3	2	3

- 1- Generating random states
- 2- Writing a cost function
- 3- Selecting starting temperature
- 4- Calculating iterations per T
- 5- Choosing a cooling rate

