Optimization for Machine Learning 机器学习中的优化方法

陈程

华东师范大学 软件工程学院

chchen@sei.ecnu.edu.cn

Matrix Calculus

Convex Set

2/28

Lecture 02 OptML October 8, 2024

Matrix Calculus

2 Convex Set

Lecture 02 OptML

2/28

Matrix Calculus

Lecture 02 OptML 3/28

- A subset \mathcal{S} of \mathbb{R}^n is called **open**, if for every $\mathbf{x} \in \mathcal{S}$ there exists $\delta > 0$ such that the ball $\mathcal{B}_{\delta}(\mathbf{x}) = \{\mathbf{y} : \|\mathbf{y} \mathbf{x}\|_2 \le \delta\}$ is included in \mathcal{S} . **Example:** $\{x | a < x < b\}, \{\mathbf{x} | \mathbf{x} > 0\}, \{\mathbf{x} | \|\mathbf{x} \mathbf{a}\| < 1\}.$
- A subset C of \mathbb{R}^n is called **closed**, if its complement $C^c = \mathbb{R}^n \backslash C$ is open.
 - **Example:** $\{x | a \le x \le b\}, \{x | x \ge 0\}, \{x | \|x a\| \le 1\}.$
- A subset C of \mathbb{R}^n is called **bounded**, if there exists r > 0 such that $\|\mathbf{x}\|_2 < r$ for all $\mathbf{x} \in C$.
 - **Example:** $\{x | a \le x < b\}, \{x | 1 > x \ge 0\}, \{x | \|x a\| < 1\}.$
- A subset C of \mathbb{R}^n is called **compact**, if it is both bounded and closed. **Example:** $\{x | a \le x \le b\}, \{x | 1 \ge x \ge 0\}, \{x | \|x a\| \le 1\}.$

- A subset \mathcal{S} of \mathbb{R}^n is called **open**, if for every $\mathbf{x} \in \mathcal{S}$ there exists $\delta > 0$ such that the ball $\mathcal{B}_{\delta}(\mathbf{x}) = \{\mathbf{y} : \|\mathbf{y} \mathbf{x}\|_2 \leq \delta\}$ is included in \mathcal{S} . **Example:** $\{x | a < x < b\}, \{\mathbf{x} | \mathbf{x} > 0\}, \{\mathbf{x} | \|\mathbf{x} \mathbf{a}\| < 1\}.$
- A subset C of \mathbb{R}^n is called **closed**, if its complement $C^c = \mathbb{R}^n \backslash C$ is open.

Example: $\{x | a \le x \le b\}, \{x | x \ge 0\}, \{x | \|x - a\| \le 1\}.$

- A subset C of \mathbb{R}^n is called **bounded**, if there exists r > 0 such that $\|\mathbf{x}\|_2 < r$ for all $\mathbf{x} \in C$.
 - **Example:** $\{x | a \le x < b\}, \{x | 1 > x \ge 0\}, \{x | \|x a\| < 1\}.$
- A subset \mathcal{C} of \mathbb{R}^n is called **compact**, if it is both bounded and closed. **Example:** $\{x|a \leq x \leq b\}, \{\mathbf{x}|1 \geq \mathbf{x} \geq 0\}, \{\mathbf{x}|\|\mathbf{x} \mathbf{a}\| \leq 1\}.$

Lecture 02

- A subset S of \mathbb{R}^n is called **open**, if for every $\mathbf{x} \in \mathcal{S}$ there exists $\delta > 0$ such that the ball $\mathcal{B}_{\delta}(\mathbf{x}) = \{\mathbf{y} : \|\mathbf{y} - \mathbf{x}\|_2 < \delta\}$ is included in \mathcal{S} . **Example:** $\{x | a < x < b\}, \{x | x > 0\}, \{x | ||x - a|| < 1\}.$
- A subset C of \mathbb{R}^n is called **closed**, if its complement $C^c = \mathbb{R}^n \setminus C$ is open.

Example: $\{x | a \le x \le b\}, \{x | x \ge 0\}, \{x | \|x - a\| \le 1\}.$

- A subset \mathcal{C} of \mathbb{R}^n is called **bounded**, if there exists r>0 such that $\|\mathbf{x}\|_2 < r$ for all $\mathbf{x} \in \mathcal{C}$.
 - **Example:** $\{x | a \le x < b\}, \{x | 1 > x \ge 0\}, \{x | ||x a|| < 1\}.$
- A subset \mathcal{C} of \mathbb{R}^n is called **compact**, if it is both bounded and closed. **Example:** $\{x | a \le x \le b\}, \{x | 1 \ge x \ge 0\}, \{x | \|x - a\| \le 1\}.$

OptML

3/28

- A subset \mathcal{S} of \mathbb{R}^n is called **open**, if for every $\mathbf{x} \in \mathcal{S}$ there exists $\delta > 0$ such that the ball $\mathcal{B}_{\delta}(\mathbf{x}) = \{\mathbf{y} : \|\mathbf{y} \mathbf{x}\|_2 \le \delta\}$ is included in \mathcal{S} . **Example:** $\{x | a < x < b\}, \{\mathbf{x} | \mathbf{x} > 0\}, \{\mathbf{x} | \|\mathbf{x} \mathbf{a}\| < 1\}.$
- A subset C of \mathbb{R}^n is called **closed**, if its complement $C^c = \mathbb{R}^n \backslash C$ is open.

Example: $\{x | a \le x \le b\}, \{x | x \ge 0\}, \{x | \|x - a\| \le 1\}.$

• A subset $\mathcal C$ of $\mathbb R^n$ is called **bounded**, if there exists r>0 such that $\|\mathbf x\|_2 < r$ for all $\mathbf x \in \mathcal C$.

Example: $\{x | a \le x < b\}$, $\{x | 1 > x \ge 0\}$, $\{x | \|x - a\| < 1\}$.

• A subset C of \mathbb{R}^n is called **compact**, if it is both bounded and closed. **Example:** $\{x|a \le x \le b\}, \{\mathbf{x}|1 \ge \mathbf{x} \ge 0\}, \{\mathbf{x}|\|\mathbf{x} - \mathbf{a}\| \le 1\}.$

4□ > 4□ > 4 = > 4 = > = 90

3/28

1 The **interior** of $C \in \mathbb{R}^n$ is defined as

$$\mathcal{C}^{\circ} = \{\mathbf{y} : \text{there exist } \varepsilon > 0 \text{ such that } \mathcal{B}_{\varepsilon}(\mathbf{y}) \subset \mathcal{C}\}$$

2 The **closure** of $C \in \mathbb{R}^n$ is defined as

$$\overline{\mathcal{C}} = \mathbb{R}^n \backslash (\mathbb{R}^n \backslash \mathcal{C})^{\circ}.$$

1 The **boundary** of $C \in \mathbb{R}^n$ is defined as $\overline{C} \setminus C^{\circ}$.

Lecture 02

Derivative (导数)

Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{x} \in (\text{dom } f)^{\circ}$. The derivative at \mathbf{x} is

$$\mathrm{D}f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

This matrix is also called Jacobian matrix.

5 / 28

Lecture 02 OptML October 8, 2024

Gradient (梯度)

When f is real-valued, i.e., $f: \mathbb{R}^n \to \mathbb{R}$, the gradient of f is:

$$abla f(\mathbf{x}) = \mathrm{D} f(\mathbf{x})^{\top} = \begin{bmatrix} \dfrac{\partial f(\mathbf{x})}{\partial x_1} \\ \vdots \\ \dfrac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{n \times 1}.$$

 Lecture 02
 OptML
 October 8, 2024
 6 / 28

Gradient of matrix functions

Suppose that $f: \mathbb{R}^{m \times n} \to \mathbb{R}$. Then the gradient of f with respect to **X** is

$$\nabla f(\mathbf{X}) = \frac{\partial f}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{11}} & \cdots & \frac{\partial f(\mathbf{X})}{\partial x_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X})}{\partial x_{m1}} & \cdots & \frac{\partial f(\mathbf{X})}{\partial x_{mn}} \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

Example:

$$f(\mathbf{X}) = \|\mathbf{X}\|_F^2$$

7 / 28

Lecture 02 OptML October 8, 2024

- For $\mathbf{a}, \mathbf{x} \in \mathbb{R}^n$, we have $\frac{\partial \mathbf{a}^\top \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$.
- ② For $\mathbf{A}, \mathbf{X} \in \mathbb{R}^{m \times n}$, we have $\frac{\partial \operatorname{tr}(\mathbf{A}^{\top} \mathbf{X})}{\partial \mathbf{X}} = \mathbf{A}$.
- For A ∈ ℝ^{n×n} and x ∈ ℝⁿ, we have
 $\frac{\partial x^\top Ax}{\partial x} = (A + A^\top)x.$ If A is symmetric, we have
 $\frac{\partial x^\top Ax}{\partial x} = 2Ax.$

We can find more results in the matrix cookbook:

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Lecture 02

- For $\mathbf{a}, \mathbf{x} \in \mathbb{R}^n$, we have $\frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$.
- ② For $\mathbf{A}, \mathbf{X} \in \mathbb{R}^{m \times n}$, we have $\frac{\partial \operatorname{tr}(\mathbf{A}^{\top}\mathbf{X})}{\partial \mathbf{X}} = \mathbf{A}$.
- For A ∈ ℝ^{n×n} and x ∈ ℝⁿ, we have $\frac{\partial x^\top Ax}{\partial x} = (A + A^\top)x$.

 If A is symmetric, we have $\frac{\partial x^\top Ax}{\partial x} = 2Ax$.

We can find more results in the matrix cookbook: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

8 / 28

Lecture 02 OptML October 8, 2024

- For $\mathbf{a}, \mathbf{x} \in \mathbb{R}^n$, we have $\frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{v}} = \mathbf{a}$.
- ② For $\mathbf{A}, \mathbf{X} \in \mathbb{R}^{m \times n}$, we have $\frac{\partial \operatorname{tr}(\mathbf{A}^{\top} \mathbf{X})}{\partial \mathbf{Y}} = \mathbf{A}$.
- **3** For $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^n$, we have $\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{x}$. If **A** is symmetric, we have $\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{A} \mathbf{x}$.

8 / 28

Lecture 02 OptML

- For $\mathbf{a}, \mathbf{x} \in \mathbb{R}^n$, we have $\frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{v}} = \mathbf{a}$.
- ② For $\mathbf{A}, \mathbf{X} \in \mathbb{R}^{m \times n}$, we have $\frac{\partial \operatorname{tr}(\mathbf{A}^{\top} \mathbf{X})}{\partial \mathbf{Y}} = \mathbf{A}$.
- **3** For $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^n$, we have $\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{x}$. If **A** is symmetric, we have $\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{A} \mathbf{x}$.

8 / 28

Lecture 02 OptML

- For $\mathbf{a}, \mathbf{x} \in \mathbb{R}^n$, we have $\frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$.
- ② For $\mathbf{A}, \mathbf{X} \in \mathbb{R}^{m \times n}$, we have $\frac{\partial \operatorname{tr}(\mathbf{A}^{\top} \mathbf{X})}{\partial \mathbf{Y}} = \mathbf{A}$.
- **3** For $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^n$, we have $\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{x}$. If **A** is symmetric, we have $\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{A} \mathbf{x}$.

We can find more results in the matrix cookbook:

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Chain rules

Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\mathbf{x} \in \text{dom } f$ and $g: \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at $f(\mathbf{x}) \in (\text{dom } g)^\circ$. Define the composition $h: \mathbb{R}^n \to \mathbb{R}^p$ by $h(\mathbf{z}) = g(f(\mathbf{z}))$. Then h is is differentiable at \mathbf{x} and

$$\mathrm{D}h(\mathbf{x})=\mathrm{D}(g(f(\mathbf{x})))\mathrm{D}(f(\mathbf{x})).$$

Examples:

• Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$ and $h(\mathbf{x}) = g(f(\mathbf{x}))$. Then

$$\nabla h(\mathbf{x}) = g'(f(\mathbf{x}))\nabla f(\mathbf{x}).$$

• Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $b \in \mathbb{R}^n$. Define $h: \mathbb{R}^p \to \mathbb{R}$ as $h(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$. Then,

$$\nabla h(\mathbf{x}) = \mathbf{A}^{\top} \nabla f(\mathbf{A}\mathbf{x} + \mathbf{b}).$$

9/28

Lecture 02 OptML October 8, 2024

Gradient of logistic regression

What is the gradient of the following loss function?

$$f(\mathbf{x}) = \log \sum_{i=1}^{m} \exp(\mathbf{a}_{i}^{\mathsf{T}} \mathbf{x} + b_{i})$$
 (1)

 Lecture 02
 OptML
 October 8, 2024
 10 / 28

The Hessian matrix

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is a smooth function that takes as input a matrix $\mathbf{x} \in \mathbb{R}^n$ and returns a real value. Then the Hessian matrix with respect to \mathbf{x} , written as $\nabla^2 f(\mathbf{x})$, which is defined as

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_n} \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

Taylor's expansion for multivariable function $f : \mathbb{R}^n \to \mathbb{R}$

$$f(\mathbf{x}) \approx f(\mathbf{a}) + \nabla f(\mathbf{a})^{\top} (\mathbf{x} - \mathbf{a}) + \frac{1}{2} (\mathbf{x} - \mathbf{a})^{\top} \nabla^2 f(\mathbf{a}) (\mathbf{x} - \mathbf{a})$$

Lecture 02 OptML October 8, 2024 11 / 28

Chain rules for second derivative

• Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$ and $h(\mathbf{x}) = g(f(\mathbf{x}))$. Then

$$\nabla^2 h(\mathbf{x}) = g'(f(\mathbf{x})) \nabla^2 f(\mathbf{x}) + g''(f(\mathbf{x})) \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^{\top}.$$

• Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $b \in \mathbb{R}^n$. Define $h: \mathbb{R}^p \to \mathbb{R}$ as $h(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$. Then,

$$\nabla^2 h(\mathbf{x}) = \mathbf{A}^{\top} \nabla^2 f(\mathbf{A}\mathbf{x} + \mathbf{b}) \mathbf{A}.$$

Bonus homework: Compute the Hessian matrix of loss function (1).

4□ > 4□ > 4 = > 4 = > = 90

 Lecture 02
 OptML
 October 8, 2024
 12 / 28

Matrix Calculus

2 Convex Set

Lecture 02 OptML October 8, 2024 13 / 28

Lines and Line Segments (直线与线段)

line through x_1 and x_2 : all points

$$\mathbf{x} = \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2, \quad \theta \in \mathbb{R}.$$

line segment between x_1 and x_2 : all points

$$\mathbf{x} = \theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2, \quad 0 \le \theta \le 1.$$

Convex Sets (凸集)

A set $S \subseteq \mathbb{R}^n$ is **convex** if the line segment between any two points of S lies in S, i.e., if for any $\mathbf{x}, \mathbf{y} \in S$ and $\theta \in [0,1]$, we have

$$\theta \mathbf{x} + (1 - \theta) \mathbf{y} \in \mathcal{S}$$
.

Every two points can see each other.

Lecture 02

Properties of Convex Sets

- If S is a convex set, then $kS = \{k\mathbf{s} | k \in \mathbb{R}, \mathbf{s} \in S\}$ is convex.
- If S and T are convex sets, then $S + T = \{s + t | s \in S, t \in T\}$ is convex.
- If S and T are convex sets, then $S \times T = \{(s, t) | s \in S, t \in T\}$ is convex.
- If S and T are convex sets, then $S \cap T$ is convex.

Lecture 02 OptML October 8, 2024 15 / 28

Convex Combination (凸组合)

Convex combination of x_1, \ldots, x_k : any point x of the form

$$\mathbf{x} = \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_k \mathbf{x}_k$$

with $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \geq 0$.

If $\mathbf{x}_1, \dots, \mathbf{x}_k$ belong to a convex set \mathcal{S} , then their convex combination \mathbf{x} also belongs to \mathcal{S} .

□ > < □ > < □ > < □ > < □ >
 ○

Lecture 02 OptML October 8, 2024 16 / 28

Convex Hull (凸包)

Convex hull convS: set of all convex combinations of points in S.

$$\operatorname{conv} \mathcal{S} = \{\theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k | \mathbf{x}_i \in \mathcal{S}, \theta_i \geq 0, i = 1, \dots, k, \theta_1 + \dots + \theta_k = 1\}.$$

Example: convex hull of $\{0,1\}$ is [0,1].

Affine Sets (仿射集)

A set is called **affine set** if it contains the line through any two distinct points in the set.

Example: solution set of linear equations $\{x | Ax = b\}$.

18 / 28

Lecture 02 OptML October 8, 2024

Cones (锥)

A set $\mathcal C$ is called a **cone** if for every $\mathbf x \in \mathcal C$ and $\theta > 0$ we have $\theta \mathbf x \in \mathcal C$. A set $\mathcal C$ is called a **convex cone** if it is convex and a cone, which means that for any $\mathbf x_1, \mathbf x_2 \in \mathcal C$ and $\theta_1, \theta_2 > 0$, we have

$$\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in \mathcal{C}.$$

Lecture 02

Hyperplanes and Halfspaces (超平面与半平面)

Hyperplane: set of the form $\{\mathbf{x}|\mathbf{a}^{\top}\mathbf{x}=\mathbf{b}\}\ (a\neq 0)$.

Halfplane: set of the form $\{\mathbf{x}|\mathbf{a}^{\top}\mathbf{x} \leq \mathbf{b}\}\ (a \neq 0)$.

Hyperplane is affine set.

Norm Balls (范数球)

Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | ||\mathbf{x} - \mathbf{x}_c|| \le r\}$.

Norm Cones (范数锥)

Norm cone: $\{(x, t) | ||x|| \le t\}$.

Operations that preserve convexity (保凸运算)

Affine functions (仿射函数).

Suppose S is convex and $f: \mathbb{R}^n \to \mathbb{R}^m$ is an affine function:

$$f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}.$$

Then the image of S under f:

$$f(\mathcal{S}) = \{ f(\mathbf{x}) | \mathbf{x} \in \mathcal{S} \}$$

is convex. The inverse image:

$$f^{-1}(\mathcal{S}) = \{ \mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) \in \mathcal{S} \}$$

is convex.

Operations that preserve convexity (保凸运算)

Intersection (取交集).

The intersection of (any number of) convex sets is convex, i.e., if S_{α} is convex for any $\alpha \in A$, then $\cap_{\alpha \in A} S_{\alpha}$ is convex.

A closed convex set ${\cal S}$ is the intersection of all halfspaces contain it:

$$\mathcal{S} = \bigcap \{\mathcal{H} | \mathcal{H} \text{ is halfspace}, \mathcal{S} \subseteq \mathcal{H}\}$$

Hyperplane Separation Theorem

If C and D are nonempty disjoint convex sets, there exists $\mathbf{a} \neq 0$ and b s.t.

 $\mathbf{a}^{\top}\mathbf{x} \leq b \text{ for } \mathbf{x} \in \mathcal{C}, \ \mathbf{a}^{\top}\mathbf{x} \geq b \text{ for } \mathbf{x} \in \mathcal{D}.$

Hyperplane Separation Theorem

Strict Separation Theorem

Suppose $\mathcal C$ and $\mathcal D$ are nonempty disjoint convex sets. If $\mathcal C$ is closed and $\mathcal D$ is compact, there exists $\mathbf a \neq 0$ and b s.t.

$$\mathbf{a}^{\top}\mathbf{x} < b \text{ for } \mathbf{x} \in \mathcal{C}, \ \mathbf{a}^{\top}\mathbf{x} > b \text{ for } \mathbf{x} \in \mathcal{D}.$$

Example: a point and a closed convex set.

Lecture 02

Supporting Hyperplane Theorem

supporting hyperplane to set C at boundary point \mathbf{x}_0 :

$$\{\boldsymbol{a}^{\top}\boldsymbol{x}=\boldsymbol{a}^{\top}\boldsymbol{x}_{0}\}$$

where $\mathbf{a} \neq \mathbf{0}$ and $\mathbf{a}^{\top} \mathbf{x} \leq \mathbf{a}^{\top} \mathbf{x}_{\mathbf{0}}$ for all $\mathbf{x} \in \mathcal{C}$.

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C.