1) Time Complenity 4 Space Complenity.
2) Asymptotic analysis (Big D notation)
3) Big O meaning
4) TLE (Time Limit Enceeded)

No. of iterations.

Quiz-1 No. et times me need to divide N by 2 to make it 1.

$$N \to \frac{N}{2} \to \frac{N}{4} \to \frac{N}{8} \to \frac{N}{16} \to - \cdots \qquad (1)$$

 $\hat{g}_{\text{wiz-2}}$ [3,10] => 3,4,5,6,7,8,9,10

Arithmetic Progressien (AP)

$$Sum = \frac{N}{2} \left(2a + (N-1) d \right)$$

$$a = 1$$
 $d = 1$
 $Sum = \frac{N}{3}(2.1 + (N-1).1)$

$$N = N$$

$$= \frac{N(N+1)}{2} = \frac{N(N+1)}{2}$$

$$5, 10, 20, 40, 80, 160, \dots$$

$$\frac{10}{5} = \frac{20}{10} = \frac{40}{20} = \frac{80}{40} = \frac{160}{80}$$

Sum =
$$\frac{a(x^{N}-1)}{(x-1)}$$
, $\frac{xy+1}{(x-1)}$

Logarithmic Basics (Log)

by No. et times me need to divide N by 2
to make it !

 $\log N \Rightarrow No.$ et times me need to divide N by ne to make it $\underline{\perp}$

 $\log_2 2^5 = 5$, $\log_{10} 10 = 4$

log ax = n

Calculate the No. of iterations.

Qui2-3

S= D for(i= 1; i<= N; i++){ S= S+i;

3 Neturn 8;

ie [1, N]

of iterations = N-1+1= N

→ O(N)

Those many odd note are there from $1 \pm 6 \times 1$, 3, $5 \Rightarrow 3$ $N = 6 \Rightarrow 1$, 3, $5 \Rightarrow 3$ $N = 4 \Rightarrow 1$, 3, 5, $7 \Rightarrow 4$ $N = 8 \Rightarrow 1$, 3, 5, $7 \Rightarrow 4$ $N = 8 \Rightarrow 1$, 3, 5, $7 \Rightarrow 4$ $N = 8 \Rightarrow 1$, 3, 5, $7 \Rightarrow 4$ $N = 8 \Rightarrow 1$, 3, 5, $7 \Rightarrow 4$ $N = 8 \Rightarrow 1$, 3, 5, $7 \Rightarrow 4$ $N = 8 \Rightarrow 1$, 3, 5, $7 \Rightarrow 4$

Suiz-b
$$8=0$$
 $for(i=0; i=0); i=0);$
 $i=0; i=0; i=0);$
 $i=0; i=0; i=0);$
 $i=0; i=0; i=0;$
 $i=0; i=0;$

Quiz-
$$\frac{1}{3}$$

for ($i = 1$; $i * i (= N)$; $i + +)$ ($i = 1$)

 $\frac{3}{2}$
 $\frac{3}{2}$
 $\frac{3}{4}$
 $\frac{3}{4}$

$$=) \quad (2 < = N =) \quad (4 = \sqrt{N})$$

 $(\sqrt{N}) 0 \Leftarrow (N) \text{ tr} pe \Leftrightarrow$

gviz-8	
i= N	
mhile	$2(i7 \perp) \langle$
	1=1 2;
7]	, ,

lByfore	lagten	iteration
N	<u>N</u>	7
<u>N</u>	N (22)	2
<u>N</u>	$\frac{N}{8} \left(\frac{N}{2^3}\right)$	3
<u>N</u>	<u>N</u>	4
	,	(
!	(1) N/2 ×	K

$$\frac{N}{2^{K}} = 1 \Rightarrow N = 2^{K}$$

$$\log N = \log 2^{K}$$

$$\log N = K$$

$$\log N = K$$

Quiz-9

<u>ع</u>

Îbefore	lagren	iteration
1	2'	1
<u>.</u>	4:2 ² 8:2 ³	2_ 3
8	6 : 2 ⁴	4
16	32	5
	1	(
	!	10
	2 h	,

$$\frac{2^{K} = N}{2^{K}} = \log N$$

$$\log 2^{K} = \log N \Rightarrow O(\log N)$$

Quiz-10
$$for(i=1; i(=10; i++))$$
 $for(j=1; j(=N; j++))$
 $\frac{3}{3}$

	j	iterations
T	[1, N]	<u>N</u>
2	[1,N]	N
3	[0, 0]	N
•		y TON Herations
(
,		$\Rightarrow O(N)$
10	[1, N]	

```
for ( i = 1; i <= N; i++) <
           for (j= 1; j<= N; j++) {
         > NXN iterations
         \Rightarrow N^2 iterations \Rightarrow O(N^2)
Quiz-12 for (i=1; i(=N; i++) {
           for (j=1;j<=N;j=j*2){
          i=N, log N Herations
Qui2-13 for (i=1; i <= 2"; i++) {
```

,	j	iterations
1	[1,21]	2
2	$[1, 2^2]$	22
3	$[1, 2^3]$	28
4	[1, 24]	24
	1	C
	(,	i i
2	$[1,2^N]$	2"

y iterations =
$$2^1 + 2^2 + 2^3 + 2^4 + \dots + 2^N$$

$$a \rightarrow 2$$

 $r \rightarrow 2$
terms $\rightarrow N$

$$\frac{2(2^{N}-1)}{2-1}$$

$$2 (2^{N}-1)$$

$$= 2 -2 \Rightarrow 0(2^N)$$

How to find the Big O notation:

- 1) No. of iterations.
- 2) Neglect all the lower order terms.
- 3) Neglect all constant terms.

 $\frac{\xi_n}{\xi_n}$ # of iterations = $4N^2 + 3N + 1$ $= O(N^2)$

Quiz-16 # of iterations = $4N^2 + 3N + 10^6$ = $O(N^2)$

Quiz-16 # ef iterations = N/N + 4 log N+ 31 N log N

 $N\sqrt{N} = 2^{32} \cdot \sqrt{2^{32}} = 2^{32} \cdot 2^{16} = 2^{48}$

 $N \log N = 2^{32} \cdot \log 2^{32} = 2^{32} \cdot 32 = 2^{32} \cdot 2^{5}$ $= 2^{34}$

N TO Y N LOG N

 $\Rightarrow 0(N)$

#

 $O(L) \langle log N \langle IN \langle N \langle N log N \langle N IN \langle N^2 \langle N^2 \langle N^2 \langle N \rangle \rangle \langle N^2 \langle N^2 \rangle \langle N^2$

N=32

1) Ajai

2) Porveen

3) Garran Pandey