WHAT IS CLAIMED IS:

1. A compound I having the formula:

$$Sig - B < OR OR$$

I

wherein Sig comprises an aromatic or heteroaromatic ring
group and is capable of being detected by a detectable
property when the group B(OR)₂ is replaced by a hydroxyl
group (-OH) or its anion (-O⁻), B is a boron atom, each R
is independently selected from hydrogen and lower alkyl
groups and can be joined together as a straight or branched
alkylene chain forming a five or six-membered ring or an
arylene ring, wherein the compound of formula I itself does
not possess the detectable property or does so only to a
very weak degree and the detectable property is selected
from chemiluminescence or bioluminescence.

- 2. The compound of claim 1 wherein the detectable property is chemiluminescence.
- 3. The compound of claim 1 wherein the detectable property is bioluminescence.
- 4. The compound of claim 1 wherein the group Sig further comprises a dioxetane ring attached to the aromatic or heteroaromatic ring group.

5. The compound of claim 4 having the formula:

$$A^{1} \xrightarrow{O-O} A^{3} \xrightarrow{OR^{5}} OR^{6}$$

wherein A¹ - A³ represent organic groups having from 1-20 carbon atoms and can optionally contain heteroatoms selected from N, O and S atoms, and Ar is an aromatic or heteroaromatic ring group, and wherein A¹-A³, and Ar can be substituted with non-hydrogen atoms, and R⁵ and R⁶ are independently selected from hydrogen and lower alkyl groups and can be joined together as a straight or branched alkylene chain forming a five or six-membered ring or an arylene ring.

6. The compound of claim 4 wherein A^1 and A^2 or A^1 and A^3 or A^3 and A^3 are combined to form a ring.

7. The compound of claim 4 wherein the dioxetane has the formula:

$$R^3$$
 $O - O$ OR^1 OR^5 R^2 OR^6

wherein R¹ is is an organic group having from 1-20 carbon atoms which can be combined with R² or R³, R² is an aromatic or heteroaromatic ring group which can include additional substituents selected from halogens, alkyl, substituted alkyl, alkoxy, substituted alkoxy, carbonyl, carboxyl, amino and alkylamino groups, and R³ and R⁴ are independently selected from acyclic and cyclic organic groups containing from 3-20 carbon atoms and which can be

substituted with heteroatoms.

- 8. The compound of claim 7 wherein R³ and R⁴ are combined together in a cyclic or polycyclic alkyl or a cyclic or polycyclic alkenyl group which is spiro-fused to the dioxetane ring and contains 6 to 20 carbon atoms and which can include additional non-hydrogen substituents.
- 9. The compound of claim 7 wherein R^3 and R^4 are combined together to form an adamantyl group which can be substituted with one or more substituent groups selected from halogens, alkyl, substituted alkyl, alkoxy,
- 5 substituted alkoxy, carbonyl, carboxyl, phenyl, substituted phenyl, amino and alkylamino groups.

- 10. The compound of claim 7 wherein ${\bf R}^3$ and ${\bf R}^4$ are each branched alkyl or cycloalkyl groups having from 3-20 carbon atoms.
- 11. The compound of claim 7 having the formula:

- wherein Y is a substituent group selected from hydrogen, halogens, alkyl, substituted alkyl, alkoxy, substituted alkoxy, carbonyl, carboxyl, phenyl, substituted phenyl, amino and alkylamino groups.
 - 12. The compound of claim 9 having the formula:

13. The compound of claim 11 having the formula:

14. The compound of claim 9 having the formula:

5

15. The compound of claim 9 having the formula:

5

16. The compound of claim 9 having the formula:

5

17. The compound of claim 9 having the formula:

18. The compound of claim 9 having the formula:

5

19. The compound of claim 8 having the formula:

5

20. The compound of claim 9 having the formula:

21. The compound of claim 5 wherein the dioxetane has the formula:

$$R^3$$
 $O - O$ SR^1 OR^5 R^2 OR^6

- wherein R¹ is an organic group having from 1-20 carbon atoms which can be combined with R² or R³, R² is an aromatic or heteroaromatic ring group which can include additional substituents selected from halogens, alkyl, substituted alkyl, alkoxy, substituted alkoxy, carbonyl, carboxyl,
- amino and alkylamino groups, and R³ and R⁴ are independently selected from acyclic and cyclic organic groups containing from 3-20 carbon atoms and which can be substituted with heteroatoms.
 - 22. The compound of claim 5 wherein \mathbb{R}^5 and \mathbb{R}^6 are each hydrogen atoms.
 - 23. The compound of claim 5 wherein R⁵ and R⁶ are combined to form a ring selected from:

$$-\xi - \mathbb{R}$$
 and
$$-\xi - \mathbb{R}$$

24. The compound of claim 1 having the formula:

- wherein Z is selected from O, S and NR^8 , wherein R^8 is H or $Si(R^9)_3$, R^9 is C_1 - C_6 alkyl or phenyl, and X represents one or two iodine, bromine or chlorine atoms, and R^5 and R^6 are independently selected from hydrogen and lower alkyl groups and can be joined together as a straight or branched
- 10 alkylene chain forming a five or six-membered ring or an arylene ring.

25. The compound of claim 1 having the formula:

5

wherein R^5 and R^6 are independently selected from hydrogen and lower alkyl groups and can be joined together as a straight or branched alkylene chain forming a five or six-membered ring or an arylene ring.

26. The compound of claim 1 having the formula:

$$R^{5}Q$$
 or $R^{5}Q$ $R^{6}Q$

5

wherein R^5 and R^6 are independently selected from hydrogen and lower alkyl groups and can be joined together as a straight or branched alkylene chain forming a five or sixmembered ring or an arylene ring.

27. The compound of claim 1 having the formula:

$$R^{5}O$$
 or $R^{5}O$ $R^{6}O$

- wherein R⁵ and R⁶ are independently selected from hydrogen and lower alkyl groups and can be joined together as a straight or branched alkylene chain forming a five or sixmembered ring or an arylene ring.
 - 28. The compound of claim 1 having the formula:

5

wherein R⁵ and R⁶ are independently selected from hydrogen and lower alkyl groups and can be joined together as a straight or branched alkylene chain forming a five or six-membered ring or an arylene ring.

29. The compound of claim 1 wherein the R groups are combined to form a ring selected from:

$$-\frac{1}{2} \cdot \mathbb{R}$$

$$-\frac{1}{2} \cdot \mathbb{R}$$

$$-\frac{1}{2} \cdot \mathbb{R}$$

$$-\frac{1}{2} \cdot \mathbb{R}$$
and
$$-\frac{1}{2} \cdot \mathbb{R}$$

30. The compound of claim 1 wherein the R groups are both hydrogen atoms.

31. A compound having the formula:

which is capable of being detected by a detectable property selected from fluorescence, chemiluminescence or bioluminescence when the group B(OR⁵)(OR⁶) is replaced by a hydroxyl group (-OH) or its anion (-O⁻), wherein B is a boron atom, R⁵ and R⁶ are independently selected from hydrogen and lower alkyl groups and can be joined together as a straight or branched alkylene chain forming a five or six-membered ring or an arylene ring, and R¹³ is independently selected from cyano, imine, carbonyl, thiazole, carbonyl-substituted thiazole and benzothiazole groups or a group

$$z_n$$

wherein Z is C-C double or triple bond or aromatic ring and n is 1 or 2, wherein the compound itself does not possess

the detectable property or does so only to a very weak degree.

32. The compound of claim 31 having the formula:

- wherein LG is a leaving group and R^{10} and R^{11} are hydrogen or C_1 - C_4 alkyl, and R^5 and R^6 are independently selected from hydrogen and lower alkyl groups and can be joined together as a straight or branched alkylene chain forming a five or six-membered ring or an arylene ring.
 - 33. The compound of claim 32 wherein the leaving group is selected from OH, OR^{12} , SR^{12} and O-AMP groups, R^{12} is a substituted of unsubstituted alkyl or aryl group, and AMP is adenosine monophosphate.
 - 34. The compound of claim 32 selected from the group:

and

10

35. The compound of claim 31 selected from the group:

and
$$CO_2CH_3$$

36. The compound of claim 31 selected from the group: