

Софийски университет "Св. Кл. Охридски"

Факултет по математика и информатика

Курсов Проект

на тема: "Система за генериране на емотикони"

Студенти:

Божидар Павлов Димитров Ф.Н.: 7МІЗ400437

Маргарита Стефанова Моллова Ф.Н.: 0МІ3400436

Курс: "ИИОЗ", Учебна година: 2023/24

Преподавател: проф. Иван Койчев

Декларация за липса плагиатство:

- Плагиатство е да използваш, идеи, мнение или работа на друг, като претендираш, че са твои. Това е форма на преписване.
- Тази курсова работа е моя, като всички изречения, илюстрации и програми от други хора са изрично цитирани.
- Тази курсова работа или нейна версия не са представени в друг университет или друга учебна институция.
- Разбирам, че ако се установи плагиатство в работата ми ще получа оценка "Слаб".

10.2.24 г. Подпис на студентите:

/Б. Димитров/

/М. Моллова/

СЪДЪРЖАНИЕ

1	УE	вод	3
2	ПР	РЕГЛЕД НА ОБЛАСТА	3
3	ПР	ОЕКТИРАНЕ	4
	3.1	Обща архитектура	4
	3.2	Модел на данните	4
4	PE	АЛИЗАЦИЯ, ТЕСТВАНЕ/ЕКСПЕРИМЕНТИ	5
	4.1	Използвани технологии, платформи и библиотеки	5
	4.2	Реализация/Провеждане на експерименти	5
5	3A	ключение	8
6	И3	ПОЛЗВАНА ЛИТЕРАТУРА	9

1 Увод

В днешно време голяма част от комуникацията между хората се осъществява онлайн чрез социалните мрежи. Благодарение на тях са се изменили и видовете общуване – то вече не е само директно между група от хора, но може да бъде и индиректно – чрез публикации, чието съдържание не е насочено към конкретен човек или група от хора, а към всички, до които то би достигнало (в това число и напълно непознати). В много от случаите това се случва чрез текст, но по този начин за голяма част от хората може да бъде трудно да се предадат правилно емоциите, както и тяхната сила и експресивност. За да се улесни това, в текста се добавят емотикони – графични символи, които могат да представляват знаци за лице или символи за предмети и животни, които се тълкуват като израз на емоция или настроение. С развитието на технологиите се появяват много видове емотикони, които затрудняват избора на подходящ такъв за конкретния тект, защото смесват няколко емоции в себе си или често се използват в небуквален смисъл (например емотикона на клоун).

Целта на нашия проект е да улесни избора на емотикон към даден текст, предлагайки подходящ такъв за него. Целевата социална мрежа, която сме избрали е X (доскоро Twitter), тъй като тя е достъпна по цял свят, популярна е и в нея хората лесно могат да изразят своето мнение по дадена тема, както и да реагират на чуждото.

Задачата, която сме определили за курсовия проект, е по даден от потребител текст (бъдещ *tweet*) да бъде предложен подходящ емотикон, който обобщава цялостното настроение и емоцияга, която трябва да се предаде чрез текста.

2 Преглед на областа

За решаване на проблема има няколко етапа ^[1], през които трбява да се премине:

- Намиране на подходящи набори от данни;
- Обработка на данните разделяне на тренировъчни и тестови данни, трансформиране на отделните документи (*tweets*) в списъци от токени (*tonenization*) и последваща обработка на токените редуциране до ниво лема (лематизация);
- Създаване на вектори, съответстващи на всеки документ (tweet) реализирано чрез Bag of Words (BoW) и Term Frequency-Inverse Document Frequency (TF-IDF);
- Обучаване на модел за класификация реализирано чрез Naïve Bayes, K-Nearest Neighbours (kNN), Support Vector Machines (SVM) и Random Forest;

• Оценяване на получения модел чрез прилагането му върху тестовите данни.

Подобни подходи са избрани и в досега същестуващите решения на тази задача. Тъй като емотиконите са сравнително ново явление, няма много разработки на тази тема. През 2018 година такава задача е дадена на международния семинар по обработка на естествен език SemEval. Тогава са предложени редица решения [2], най-добрите от които използват Bi-LSTM с предварително тренирани word2vec вектори и SVM с Bag of Words. Тези и други различни подходи достигат до точност 40-47%. За обучение на моделите са използвани 500 000 данни, съдържащи 20 различни емотикона.

3 Проектиране

3.1 Обща архитектура

Системата за генериране на емотикони се състои от няколко основни модула:

- Модул за обработка на данните включва зареждане на данните; разделяне на тренировъчни и тестови; сформиране на списъци от токени; лематизацията на получените токени;
- Модул на класификаторите включва обучаване на избран модел с избран метод за векторизация върху подадени тренировъчни данни; намиране точността на обучения модел чрез прилагане върху тестовите данни и сравнение на получените резултати с очакваните; методи за използване на модела чрез подаване на текст, за който той връща емотикон.
- Модул на интерфейс с команден ред (command line interface CLI) включва разработен CLI за потребителско взаимодействие с предварително обучени модели, т.е. потребителят може да избере кой метод за векторизиция и кой предварително обучен модел, който го използва, да се приложи за предлагането на подходящ емотикон при подаден от потребителя текст.

3.2 Модел на данните

Избраните данни могат да се намерят свободно в онлайн платформата за наука от данни $Kaggle^{[3]}$. Те се състоят от 20 файла, като всеки файл съответства на емотикон, който задължително се съжържа във всеки един от документите него (но може да има и други емотикони).

За обучаване и тестване на моделите сме използвали данни с избрани съответно 5 или 10 емотикони от наличните. Тъй като всеки *tweet* може да

съдържа няколко емотикона, които могат да бъдат различни, сме използвали два подхода за предварителна филтрация на данните:

- Избрани са само тези tweets, които съдържат единствено емотикона, който съответства на файла, в който се намират, но се премахват всички негови повторения;
- Всички *tweets* от съответния файл се включват, като за всеки един от тях се оставя единствено емотикона, съответстващ на файла, в който се намират.

И при двата подхода 5 000 от данните са отделени за тестови. Всички данни се преобразуват в списъци от токени, на които се прилага лематизация, преди да бъдат подадени за обучаване/трениране на модел.

4 Реализация, тестване/експерименти

4.1 Използвани технологии, платформи и библиотеки

Избраният програмен език за реализация на проекта е *Python*. Той е подходящ за целта, защото е лесен за използване и има богата екосистема от библиотеки, свързани с обработката на данни, обработката на текст и машинно самообучение. За различните части от разработката на проекта сме избрали различни библиотеки:

- $gensim^{[4]}$ за превръщане на данните в списък от токени и създаването на речник от тях;
- $nltk^{[5]}$ за премахване на стоп-думите и лематизация;
- *sklearn* ^[6] за различните методи за създаване на вектори от документите, различните модели, използвани за обучаване и оценяването на модела с тестовите данни.

4.2 Реализация/Провеждане на експерименти

Реалицията на проекта е разделена на описаните в точка 3.1 модули, връзките, между които могат да се видят на приложената Фигура 1. Потребителите могат да си взаимодействат както с интерфейса с командния ред за използване на някой вече съществуващ модел, така и с модула на класификаторите, за да изберат да обучат и запазят имплементиран модел със собствени данни. Всички данни минават през процес на обработка, след който данните могат да се запишат за по-бърз и лесен достъп до тях в бъдещето.

Фигура 1 – Диаграма на модулите

Реализираните типове векторизация на данните са:

- *Bag of Words* [1], [7]
- *TF-IDF* [1], [8]

Реализираните видове класификатори за обучаване на модел са:

- *Naïve Bayes* [1], [6]
- $kNN^{[1],[6]}$
- Suport Vector Machine (SVM) [1], [6]
- Random Forest [6], [9]

Всеки от класификаторите е обучаван заедно с всеки от типовете векторизация.

Тестването на разбработената система се осъществява чрез обучаване на различни модели и намиране на точността им, когато са пуснати с тестовите данни, т.е. моделът предлага за всеки *tweet* подходящ емотикон, той се сравнява с истинския емотикон, който е бил използван, и се намира колко пъти двата емотикона съвпадат.

Използвани са модели, обучени както с използването на *Bag of Words* като метод за векторизация на данните, така и с *TF-IDF*. Моделите са обучавани и тествани както с данни, съдържащи общо 5 различни емотикона в тях, така и с такива с 10. Тестовите данни винаги са 5 000 на брой. Получените резултати могат да бъдат видени в приложените Фигура 2 и Фигура 3.

Практичестки бе установено, че за трениране на някои модели или за тренирането им върху голям набор от данни, е необходима по-добра техника от наличната при провеждането на експериментите. Това е причината резултати от тях да липсват.

Моделите, които използват kNN за класификатор са тествани с различен параметър за брой съседи (от 1 до 5), като в таблицата с резултати са записани само най-добрите постижения и съответно с колко на брой съседи са достигнати.

Наблюдава се, че при използваните тренировъчни и тестови данни моделите се справят значително по-добре, когато използват само 5 емотикона, а не 10. Това е така, защото данните са много разнообразни, не са свързани с някава обща тема и е трудно да се намерят общи връзки между различните *tweets*, за които е било използван един и същ емотикон. Забелязва се също, че разликата в резулататите при различна филтрацията на данните не е особено голяма, отново поради голямото различие в контекста на отделните *tweets*.

Dateset with 5 emojis

Overall 63 119 tweets - 58 119 train and 5 000 test

Vectorizer	Classifier	Accuracy
Bag of Words	Naïve Bayes	47,82%
TF-IDF	Naïve Bayes	46,24%
Bag of Words	kNN (k=5)	31,56%
TF-IDF	kNN (k=2)	30,68%
Bag of Words	Random Forest	27,72%
TF-IDF	Random Forest	29,00%

Overall 100 000 tweets - 95 000 train and 5 000 test

Vectorizer	Classifier	Accuracy
Bag of Words	Naïve Bayes	47,08%
TF-IDF	Naïve Bayes	47,02%
Bag of Words	kNN (k=5)	31,42%
TF-IDF	kNN (k=3)	28,26%

Фигура 2 – Резултати от тестването на различните модели, обучени върху данни с 5 различни емотикони

Dataset with 10 emojis

Overall 121 813 tweets - 116 813 train and 5 000 test

Vectorizer	Classifier	Accuracy
Bag of Words	Naïve Bayes	35,04%
TF-IDF	Naïve Bayes	34,84%

Overall 200 000 tweets - 195 000 train and 5 000 test

Vectorizer	Classifier	Accuracy
Bag of Words	Naïve Bayes	35,12%
TF-IDF	Naïve Bayes	35,34%

Фигура 3 - Резултати от тестването на различните модели, обучени върху данни с 10 различни емотикони

Можем също да изведем като извод, че $Na\"ive\ Bayes$ се представя значително по-добре от kNN. Това може да се дължи на редица фактори, първият от които е, че той третира думите в подадените му текстове като независими една от друга. В случая с конкретните данни думите в повечето случаи наистина са независими една от друга, което прави използването на този класификатор подходящо. Други причини, които биха могли да водят до по-добро представяне на $Na\"ive\ Bayes$ сравнено с kNN, са свързани с недостатъците на алгоритъма, който kNN използва — при малък брой данни има голяма възможност да се получи overfitting или underfitting, освен това този подход е силно чувствителен към "шумни характеристики" (такива, които не носят полезна информация и могат да бъдат объркващи за модела).

5 Заключение

Получените резултати са добри, но показват, че за получаване на по-добра точност са необходими повече данни, които да обхващат различни теми и настроения. Създадените класификатори се справят поне частично с голямото разнообразие на данните, но по-сложни и задълбочени модели най-вероятно биха се представили по-добре.

За бъдещо развитие могат да се имплементират решения, използващи рекурентни невронни мрежи и да се сравнят получените резултати. Също така могат да се обучат вече създадените модели върху по-голям и пълен набор от данни и да се анализират разликите при тестване с тестовите данни.

6 Използвана литература

- [1] Койчев, Иван. Извличане на информация към курса "Извличане на информация" воден в СУ "Св. Климент Охридски"
- [2] Barbieri, Francesco, et al. "SemEval 2018 Task 2: Multilingual Emoji Prediction", *SemEval*, 2018, pp. 24-30, www.aclanthology.org/S18-1003.pdf
- [3] "Tweets With Emoji", *Kaggle*, www.kaggle.com/datasets/ericwang1011/tweets-with-emoji
- [4] "Gensim Topic modeling for humans", *Radim Rehurek*, radimrehurek.com/gensim/
- [5] "Natural Language Toolkit", NLTK, www.nltk.org/
- [6] "Machine Learning in Python Supervised Learning", *scikit-learn*, www.scikit-learn.org/stable/supervised_learning.html#supervised-learning
- [7] "Introduction to Natural Language Processing Apply a Simple Bag-of-Words Approach", *OpenClassrooms*, www.openclassrooms.com/en/courses/6532301-introduction-to-natural-language-processing/8081284-apply-a-simple-bag-of-words-approach
- [8] "Multi-Class Text Classification with Scikit-Learn using TF-IDF model", Medium, www.medium.com/@rohit_batra/multi-class-text-classificationwith-scikit-learn-using-tf-idf-model-161d395ce374
- [9] "Understanding Random Forest Algorithms With Examples", *Analytics Vidhya*, 2024, www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/