	<u>TP5 Aero - Blanc Touita</u>	Pt		A B C D			Note
	Modélisation						
••	Compléter le schéma TI pour faire apparaître la boucle de régulation.	1	Α				1
_	Placer sur le schéma Tl y1, y2, θ et θc que l'on trouvent sur le schéma fonctionnel.	1	В		H	H	0,75
	Déterminer un modèle du premier ordre (Broïda) de H(p) en utilisant la méthode simple, pour un échelon de commande de 50% à 80%. La commande de ventilation sera fixée à 65%.	1	А				1 Attention, les mesures de temps sont en minutes.
	Donner la fonction de transfert du procédé H(p).	1	С				0,35
	Déterminer un modèle du premier ordre (Broïda) de Hz(p) en utilisant la méthode simple, pour un échelon de commande de 50% à 80%. La commande de chauffage sera fixée à 65%.	1	С				0,35
	Donner la fonction de transfert du procédé Hz(p).	1					0
	Exprimer $\theta(p)$ en fonction de y1, y2, Hz(p) et H(p).	1	В				0,75
	On suppose que y1=A.y2+y. Déterminer A pour que θ(p=0) ne dépende pas de y2.	1					0
II.	Détermination d'un correcteur						
	Exprimer la fonction de transfert C(p) en fonction du gain A.	1	С				0,35 Attention, il manque des parenthèses.
	Exprimer la fonction de transfert en boucle ouverte T(p) en fonction de A.	1	В				0,75
	À l'aide EasyReg, déterminer A pour une réponse en boucle fermée la plus rapide possible sans dépassement.	1					0
	Mesurer les performances de votre correcteur en boucle fermée. On donnera la valeur de l'erreur statique et le temps de réponse à ±5%. (fournir la réponse indicielle)	1					0
III.	Performances						
	Donner la valeur de Xp et de Ti du correcteur déterminé au paragraphe II.	1					0
	Régler votre régulateur avec les valeurs déterminées.	1					0
	Relever la réponse indicielle de votre régulation. La consigne passera de 40 à 50%.	1					0
	Mesurer les performances de votre régulation. On donnera la valeur de l'erreur statique, du premier dépassement et du temps de réponse à ±5%. (fournir la réponse indicielle)	1					0
	Comparer les performances obtenues aux performances attendues.	1					0
	Essayer d'améliorer les performances de votre régulation en ajoutant de l'action dérivée.	1					0
	Relever la réponse indicielle de votre régulation. La consigne passera de 40 à 50%.	1					0
	Mesurer les performances de votre régulation. On donnera la valeur de l'erreur statique, du premier dépassement et du temps de réponse à ±5%. (fournir la réponse indicielle)	1					0
	Conclure sur l'apport de l'action dérivée.	1					0
		Note: 5,3/21					

TOUITA feat BLANC

TP5 Aero

I. Modélisation

1. Compléter le schéma TI pour faire apparaître la boucle de régulation.

2. Placer sur le schéma TI $y_1, y_2, \epsilon, \theta$ et θc que l'on trouvent sur le schéma fonctionnel.

3.Déterminer un modèle du premier ordre (Broïda) de H(p) en utilisant la méthode de simple, pour un échelon de commande de 50% à 80%. La commande de ventilation sera fixée à 65%.

$$K=X/Y=50/80=0,63$$

$$T=t1-t0=9,49,00-9,48,25=0,75$$

constente de temps =
$$t2-t1=9,51,55-9,49,00=2,55$$

4. Donner la fonction de transfert du procédé H(p).

$$H(p)=0.63*exp(0.75)/0.75+2.55$$

5. Déterminer un modèle du premier ordre (Broïda) de Hz(p) en utilisant la méthode de simple, pour un échelon de commande de 50% à 80%. La commande de chauffage sera fixée à 65%.

6.

7.Exprimer $\theta(p)$ en fonction de y_1 , y_2 , Hz(p) et H(p). $\theta(p)=(y1*H(p))-(y2*H(p))$

1 ;Exprimer la fonction de transfert C(p) en fonction du gain A.

$$C(p)=A*1+Ti*p+Ti*Td*p^2/Ti*p$$

2. Exprimer la fonction de transfert en boucle ouverte T(p) en fonction de A.

$$T(p)=C(p)*H(p)$$

 $T(p)=(A*1+Ti*p+Ti*Td*p^2/Ti*p)*H(p)$