4 A student measured a metal ring of the type shown below.

- (a) The student measured the diameter d of the hole in the centre of the metal ring with a set of digital calipers.
 - (i) Explain one technique she should use to reduce the uncertainty in the measurement of d.

(2)

(ii) She recorded the following measurements.

Determine the mean value of d and its uncertainty in mm.

(3)

Mean value of $d = mm \pm mm$

(b) The student was given a metal ring of a different size. She measured the distances shown.

She calculated the shaded area A of the metal using the formula

$$A = \frac{\pi}{4}(s^2 - d^2)$$

(i) Show that the uncertainty in d^2 is about 1 mm².

$$d = 10.70 \,\mathrm{mm} \pm 0.06 \,\mathrm{mm}$$

(3)

(ii) Show that the percentage uncertainty in A is about 0.4%.

$$s^2 = 881 \, \text{mm}^2 \pm 2 \, \text{mm}^2$$

(4)

Explain why measuring the total mass of 10 metal rings is better than measuring the mass of one metal ring.	
	(2)
) She measured the total thickness x_{10} of a stack of these 10 metal rings.	
(i) Determine the mean density ρ , in g cm ⁻³ , of the metal the ring is made from	
$m_{10} = 63.0 \mathrm{g} \pm 0.5 \mathrm{g}$ $x_{10} = 14.03 \mathrm{mm} \pm 0.04 \mathrm{mm}$ $A = 602 \mathrm{mm}^2 \pm 0.4 \%$	
71 002 mm ± 0.470	(2)
$ ho = \dots$	g
(ii) The density of stainless steel ranges from $7.48\mathrm{gcm^{-3}}$ to $7.95\mathrm{gcm^{-3}}$.	
Deduce whether the metal rings could be made from stainless steel.	(3)