

SOLUTION OF EXERCISESHEET 9

Exercise 9-1

(a) Proof by reduction: Lets assume efficient adversary, A, against f, i.e, it breaks one wayness of the function i.e., A could invert the f(x) with a non negligible probability. So A could find x' such that f(x') = f(x). Because f is a PRP, f is bijective and therefore x = x'.

Now construct an adversary, A', against hardcore bit, h, using A. A' forwards any y he gets to A. With the recieved x' he then computes hc(x') which he outputs.

A' invokes A and A is efficient. Therefore the message length of the messages must be poly. Forwarding the messages and computing hc(x') can also be done in polynomial time. So A' is efficient.

A' simulates f perfectly to A, so the output of A is x' = x with non negligible probability. A' then computes hc(x') which is the same like hc(x), because x = x', so A' wins with the same non negligible probability.

But this is contradiction to our assumption, as for the hardcore bit it is not possible to find a value h which is equal to hc(x) with a non negligible probability. Hence such A does not exist. Hence this contrunction is secure.

(b) Let f be a constant function and h be most significant bit, msb(x). For this function it is hard for an Adversary to compute h(x) from f(x). Because $f(x) = c \forall x$ and this makes it impossible to know/compute x which is necessary to compute hc(x). Constant function is not a one way function. Because for constant function any value from domain as input to f will be same as the recieved f(x). Hence the above conclusion from (a) is not true for a OWF.

Exercise 9-2

We assume for the sake of contradiction an efficient inverter \mathcal{A} for G that breaks G with non-negligible probability $\epsilon(\lambda)$ and then build a distinguisher \mathcal{D} for G. This distinguisher gets a value y from an oracle which either outputs G(s) $(G:\{0,1\}^k \to \{0,1\}^{2k})$ or a random value r of length 2k. He forwards this value to the inner adversary \mathcal{A} , which outputs a value x', for which G(x') = y holds, if the input is in the output space of G otherwise \mathcal{A} outputs (nothing/ a fixed value)???. \mathcal{D} can then distinguish, if the input y to \mathcal{A} was in the output space of G, then he returns 0, otherwise the input y was a random message, then he returns 1.

 \mathcal{D} is efficient, because he invokes \mathcal{A} and \mathcal{A} is efficient. It also follows, that the message length of the messages \mathcal{D} forwards has to be poly and forwarding is in poly time too.

If the oracle outputs a pseudorandom string G(s), \mathcal{D} perfectly simulates G to \mathcal{A} . It follows, that $Pr[\mathcal{D}(G(s))=1]=Pr[Invert_{\mathcal{A},G}(\lambda)=1]=\epsilon(\lambda).$

For the case where the oracle outputs a random string r, the probability that one message is in the output space of G is $\frac{2^k}{2^{2k}}=2^{-k}$. (Here we need that the output length of G is 2k and not k+1.)

For q messages the probability is $\frac{q}{2^{-k}}$, but since q is poly (because \mathcal{A} has to be efficient), this is still negligible.

So $|Pr[\mathcal{D}(G(s)) = 1] - Pr[\mathcal{D}(r) = 1]| = \epsilon(\lambda) - \frac{q}{2^{-k}} > negl(\lambda)$. This is a contradiction to the pseudorandomness of G, so such an adversary \mathcal{A} cannot exist. It follows that G(s) is a OWF by

Introduction to Modern Cryptography

Theresa, Celine, Prisca, Saibaba December 21, 2022

SOLUTION OF EXERCISESHEET 9

itself.

Exercise 9-3

(a) **To show:** Prove that regular CPA security implies λ -CPA security.

We do this by a reduction. We assume there is an efficient adversary $\mathcal A$ against the λ -CPA-security of Π which is successful with non-negligible probability. From this we construct our adversary $\mathcal B$ against the CPA-security of Π which invokes $\mathcal A$. $\mathcal B$ has to provide an encryption oracle for $\mathcal A$. To do this, he forwards any message m $\mathcal A$ sends to his oracle to his own oracle and recieves the ciphertext c. He then makes a vector $\vec C$, which contains λ -times the ciphertext c, and forwards it to $\mathcal A$.

 \mathcal{A} eventually outputs two messages $(\widetilde{m_0},\widetilde{m_1})$, which \mathcal{B} forwards to his challenger. Then he sends an vector $\vec{C_b}$ to \mathcal{A} , which contains λ -times the recieved ciphertext c_b . Then \mathcal{B} outputs the same bit b like \mathcal{A} does.

 \mathcal{B} invokes \mathcal{A} and \mathcal{A} is efficient. Because of that, the message length have to be poly. Furthermore forwarding messages is in poly time too. So \mathcal{B} is efficient.

To analyse the success, we ascertain, that \mathcal{B} simulates the λ -CPA-game perfectly to \mathcal{A} . So the success probability of \mathcal{B} is the same as \mathcal{A} , which is non-negligible. This is a contradiction to the CPA security of \mathcal{B} , so such an adversary \mathcal{A} cannot exit.

It follows that the scheme is λ -CPA secure, if it CPA secure. In other words, regular CPA security implies λ -CPA security.

(b) **To show:** Prove that λ -CPA security implies normal CPA security.

We do this by a reduction. We assume there is an efficient adversary $\mathcal A$ against the CPA-security of Π which is successful with non-negligible probability. From this we construct our adversary $\mathcal B$ against the λ -CPA-security of Π which invokes $\mathcal A$. $\mathcal B$ has to provide an encryption oracle for $\mathcal A$. To do this, he forwards any message m $\mathcal A$ sends to his oracle to his own oracle and recieves the ciphertextvector $\vec C=(c_1,...,c_\lambda)$. He then forwards only the first ciphertext c_1 to $\mathcal A$.

 \mathcal{A} eventually outputs two messages $(\widetilde{m_0},\widetilde{m_1})$, which \mathcal{B} forwards to his challenger. From the recieved ciphertextvector $\vec{C_b}$ he again forwards only the first ciphertext to \mathcal{A} . Then \mathcal{B} outputs the same bit b like \mathcal{A} does.

 \mathcal{B} invokes \mathcal{A} and \mathcal{A} is efficient. Because of that, the message length have to be poly. Furthermore forwarding messages is in poly time too. So \mathcal{B} is efficient.

To analyse the success, we ascertain, that \mathcal{B} simulates the CPA-game perfectly to \mathcal{A} . So the success probability of \mathcal{B} is the same as \mathcal{A} , which is non-negligible. This is a contradiction to the λ -CPA security of \mathcal{B} , so such an adversary \mathcal{A} cannot exit.

It follows that the scheme is CPA secure, if it λ -CPA secure. In other words, λ -CPA security implies normal CPA security.

Exercise 9-4

(a) Prove that any PRF is also a (t-keys) PRF for all choices of $t=\mathsf{poly}(\lambda)$ We assume there is an efficient adversary $\mathcal A$ against a (t-keys) PRF which manages to dis-

SOLUTION OF EXERCISESHEET 9

tinguish a PRF against a random function with non-negligible probability. We construct the distinguisher \mathcal{D} against a PRF which invokes \mathcal{A} .

 $\mathcal D$ answers queries from $\mathcal A$ to either the PRF or a random function and recieves the result $y=F(k,\cdot)$ or $f(\cdot)$. For each result $\mathcal D$ creates a vector $\vec V$, which contains t-times y and forwards it to $\mathcal A$.

 $\mathcal A$ has to decide whether the recieved vector $\vec V$ contains $(y_1=F(k_1,\cdot),\ldots,y_\lambda=F(k_\lambda,\cdot))$ or $(y_1=f_1(\cdot),\ldots,y_\lambda=f_\lambda(\cdot))$. $\mathcal A$ displays its decision with bit b. b=0 means PRF and b=1 means the vector contains results of a truly random function. $\mathcal D$ outputs the same bit b as $\mathcal A$. $\mathcal D$ invokes $\mathcal A$ and $\mathcal A$ is efficient. Therefore the message length of the messages to the query must be poly. Forwarding these queries is efficient and creating a vector of t-times the result of the queries y is poly since $t=\operatorname{poly}(\lambda)$. So $\mathcal D$ is efficient.

To analyse the success, \mathcal{D} simulates a (t-keys) PRF perfectly to \mathcal{A} . So the success probability of \mathcal{D} is the same as \mathcal{A} , which is non-negligible. This is a contradiction to the PRF security of \mathcal{B} , so such an adversary \mathcal{A} cannot exit.

(b) Prove that for all choices of $t=\operatorname{poly}(\lambda)$ and any (t-keys) PRF is also a PRF We assume there is an efficient adversary $\mathcal A$ against a PRF manages to distinguish a (t-keys) PRF against a random function with non-negligible probability. We construct the distinguisher $\mathcal D$ against a (t-keys) PRF which invokes $\mathcal A$.

 $\mathcal D$ answers queries from $\mathcal A$ to either the (t-keys) PRF or a random function and recieves the result vector $\vec V=(y_1=F(k_1,\cdot),\ \dots\ ,\ y_\lambda=F(k_\lambda,\cdot))$ or $(y_1=f_1(\cdot),\ \dots\ ,\ y_\lambda=f_\lambda(\cdot))$. $\mathcal D$ forwards the first result of $\vec V$ y_1 to $\mathcal A$.

 $\mathcal A$ has to decide whether the recieved vector y_1 is the result of $F(k_1,\cdot)$ or $f_1(\cdot)$. $\mathcal A$ displays its decision with bit b. b=0 means PRF and b=1 means the vector contains results of a truly random function. $\mathcal D$ outputs the same bit b as $\mathcal A$.

 \mathcal{D} invokes \mathcal{A} and \mathcal{A} is efficient. Therefore the message length of the messages to the query must be poly. Forwarding these queries is efficient making \mathcal{D} also efficient.

To analyse the success, \mathcal{D} simulates a PRF perfectly to \mathcal{A} . So the success probability of \mathcal{D} is the same as \mathcal{A} , which is non-negligible. This is a contradiction to the PRF security of \mathcal{B} , so such an adversary \mathcal{A} cannot exit.

