Post
Part-A.
Submerged sould surface, the bosting trious stagnant. Stagnant.
the all as as surface the a liquid from
Stand above holling. To holling
Steponed to as pool hoding. In this case Stagnant - And Surface is ussentially.
position of the area of the plate is di
Exposed the area of the carge
position of the area of the plate is directly The neat to
Condensation near transfer state is
Condensation is 10 times higher than in film
(h) film
3.
Jollons, The types of heat exchangers are as
(91.0)
(?) Disect contact heat exchanges.
confect confact heart exchanges.
(iii) Surface heart exchangers.
(iv) Parallel flow heat exchanges.
(v) Counter flow theat exchanges.
(w) Bross flow head exchangers.
(vii) Shell and tube heat exchangers
CVIII) STIKE CAYICE ACCORDANCE ACCITATIONS
(viii) (ompact heat exchangers.
. 사람이 사용하는 100명 전에 가장 보다 되었다. 이 전에 되었습니다. 이 전에 가는 사람이 되었다. 그렇게 되었습니다. 그렇게 되었습니다. 그렇게 되었습니다. 그렇게 되었습니다. 그렇게 되었습니다.

The omissine pours of a black body is peropositional to the fourth pourer of absolute stemporatione Fb 00 T4 Eb = Emissine pourer W/m2 6 = Stefan Bottzmann constant = 5-67 x 108 W/m2 T = Temperature, K. given length per unit time por unit area in al disections! The total amount of encodiation emitted by a body per unit time and uni area is called emissive poures.

Part - B. 13. 8) II A) Given data: Boiling cualtos - copper d=0.28m. Tw= 1150c. To find: (i) Pouces (Q) (ii) orate of evaporation (m) (His) Courtical flux Solution: from HMTDB. 30 gast Tlat = 100°C. Pel = 961 kg/m3 P1 = 0,293 × 106 m2/s. Pre = 17740 (Pl = 42/6 J/kg-12 Kl = 0,6804 W/m-K UI = PlxPl Ul - 961 X 0,293 X10

St. 2014 C

NI = 2:31 × 10-4 N-3 form stourn table for Text = 10000. hty= 2056.9 kil/ky. - 2256.9 ×103 5/18 48 = 1.6+20 m2/kg, To tind Pr Pr = 1/vg RV = 1/1.6730 er = 0.5977 kg/m². to find AT AT = Tw- Trat AT= 115-100 AT = 150C. AT 250°C. So, This is nucleate boiling. power siguired to boil the walter (0) 0 = Menta [8 (PR-PV)0,5 [CPR AT]3

A = Menta [8 (PR-PV)0,5 [CPR AT]3

GH MG Pring) 6 = 00588 (St = 0013 N=1

A = 71/4 d2 = 71/4 (028) = 01/34.5. Q = 28/×15 x3256.9×16 3-9.8 (961-057-5) 0.1124 10.015 ×3256 9 ×103 ×1.740 =634.1889 9421.54 70.5 62240 73 0.0588 5/051 =634.1889 (400.28)(190) (0.1134) 0 = 54.7 X103N 2. Rate of evaporation (m) Q = mxhq 51.77103 = mx 2256.9x103 m = 0:02x Kg/5-3. confical flux

a/A = 0.18 Mg Pv [69 (PD - Pv)] 0.25 Q/A = 0.18 x2256,9x103 x0,5977 x $\frac{\left[0.0588 \times 9.81 \times (961 - 0.5977)^{0.25}\right]}{\left(0.5977\right)^{2}}$

0,25 = 242810,8 [0,57 (960,4) 0,35 = 042810.8 [547.4287 0.25 $= 242810.8(1564.08)^{0.25}$ $0/9 = 1.52 \times 10^6 \text{ W/m}^2,$ 12.A) Given, Surface Temperature T = Borole Solution. Monochoronatic emissive pouls. from planck's distribution law, forom HMT databook , pg. 71 where (1 = 0,374 × 10-15 Wm2 (2 = 14.4 × 10-3 m/K d = 1×10 6m

EM = 0.3711 × 10,2 (1×10,0)-2 $1 \times 10^{-6} \times 3000$ Ebl = 3.10 × 102 W/m. Marinum www.lengto (aman): from Wien's law,

I may T = 2.9 ×10-3 mx Amax = 2,9 × 70-3 1 man = 0,966 ×10-6m Maximum emissine power (Fbs) over:

(Fbs) max = 1.307 × 10-5 + 5 =1,307 × 10 × (3600) (Eba) max = 3-17 × 10/2 (W) m. Total enissing pomes (Es): Jarom Stefan-Boltzmann law, E6 = 674 forom LIMTOB- 71 6: = Stefan - Boltzmann constant where,

 $= 5.6 + \times 10^{8} \text{ w/m²} \times 4$ $= 5.6 + \times 10^{8} \text{ (3000)}$ Eb = 4.5 9 x106 W/m2 5. Total amissive pouce of Great surguess (E6) Deal = E6 74 E = emissivity =0.85 (Fb) 91eal = 0.85 × 5.67×158 × (3000)4 (Eb) great = 3.90 ×10 8 W/m². Part-C. Griven: Ti = 900/2 T2=500K $A=6m^2$ To find: (i) (Q12) not both plates coro black &=1 (ii) (Q12) not plates have an emissimly of E =0,5

Solution:

$$Cose(f) = E_1 = E_2 = 1$$

$$(012) \text{ hod} = A \times 5.67 [(-11/100)^4 - (72/100)^4]$$

$$(Q_{12}) ne-1 = 6 \times 5.67 \left[\frac{900/100}{4 - (500/100)} 4 - (500/100) 4 \right]$$

$$(O_{12})_{not} = 6 \times 5.67 (1909/100)^{4} - (509/100)^{4}$$

$$\frac{1}{6.5} + \frac{1}{0.5} - 1$$

(Q_{12}) net = 67 300 W,