Transformers for Vision

Computer Vision (SJK02)

Universitat Jaume I

Understanding Deep Learning (MIT, 2023)

Chapter 12: Transformers

Luis Serrano

Attention mechanisms
Attention with maths
Transformers
Transformer models

Probabilistic Machine Learning (MIT 2022)

Chapter 15: NN for sequences

Jay Alammar
The Illustrated Transformer

Peter Bloem
Transformers from scratch

Why are they called "transformers"?

Hypothesis 1: Just marketing

Hypothesis 2: Paradigm shift

Hypothesis 3: Inputs are transformed

Other?

A bottom-up explanation

Attention mechanism

Standard layer: fixed operation

$$Z = G(Wv)$$

fixed

What about something more **flexible**, input-dependent?

Self-attention as "routing" of values

$$Sa_i = \sum_{j=1}^{N} \alpha_{ij} \cdot V_j$$

How many attention weights needed for input sequence of *N* elements?

Attention = soft dictionary lookup

If q is most similar to key i, then use more value i

Attn
$$(q, \{(\kappa_i, \sigma_i)\}) = \sum_{A \in \mathcal{N}_i} A_i \cdot V_i$$

Attention weight

 $0 \le \alpha_i \le 1$ $\ge \alpha_i = 1$

attention Score

 $\alpha(q, \kappa_i)$ $\alpha(i) = \frac{e}{2e^{\alpha(q, \kappa_j)}}$

Differentiable lookup

Scaled dot-product attention

$$q, K \in \mathbb{R}^d$$
 $\alpha(q, K) = \frac{q^r k}{\sqrt{d}}$

Attn
$$(a, k, v) = Softmax \left(\frac{Qk^T}{VaT}\right)V$$

 $Q \in \mathbb{R}^{n \times d}$ $K \in \mathbb{R}^{m \times d}$ $V \in \mathbb{R}^{m \times d}$

Block diagram

Visual explanation

Sentence 1: The bank of the river.

Sentence 2: Money in the bank.

Attention:

Telling context in words

Modified sentence 1: The **bank1** of the river.

Modified sentence 2: Money in the **bank2**.

Bank1 = 0.9*Bank + 0.1*RiverBank2 = 0.8*Bank + 0.2*Money We find these "weights" through mechanisms such as similarity and attention

Similarity matrices

The bank of the river

	the	bank	of	river
the	1	0	0	0
bank	0	1	0	0.11
of	0	0	1	0
river	0	0.11	0	1

Money in the bank

	money	in	the	bank
money	1	0	0	0.25
in	0	1	0	0
the	0	0	1	0
bank	0.25	0	0	1

Seq2Seq model

Context vector **c** encodes the *whole* input sequence **x**Output has no access to input tokens

If we had access, which token should we "pay attention to"?

Seq2Seq with attention

Are transformers better than RNNs?

- Transformers deal better with long-range dependencies
- Transformers process the input at same time (not step-by-step)

Example: NLP translation

y = It is very cold here.

Transformer

Transformers

Transformer = Seq2Seq model with attention at both E and D

Do we really need both *encoder* and decoder?

"Any architecture designed to process a connected set of units—such as the tokens in a sequence or the pixels in an image—where the only interaction between units is through self-attention."

Don't we need also cross-attention?

Self attention (at encoder)

Input attends to itself!

$$y_{i} = Attn (x_{i}, \{(x_{j}, x_{j})\})$$

$$y_{i} = X_{i}$$

$$X_{j} = X_{j}$$

$$y_{j} = X_{j}$$

At decoder: masked self-attention

$$y_{i} = A + t \ln \left(y_{i-1}, \{ (y_{1}, y_{1}), \dots (y_{i-1}, y_{i-1}) \} \right)$$
 $y_{i} = W_{i} \cup W_{i}$

Example: Translation English-French

x = The animal didn't cross the street because it was too tired

Multi-head attention

Enrich the representation: having several notions of similarity

$$h_{i} = Attn (W_{i}^{(q)}q, \{W_{i}^{(k)}k_{j}, W_{i}^{(w)}v_{j}\})$$
 $h = MHA(q, \{(k_{j}, v_{j})\}) = W_{o} \begin{bmatrix} h_{1} \\ h_{2} \\ h_{N} \end{bmatrix}$

Multihead block diagram

Positional encoding

Sequences have order, but self-attention is permutation invariant!

$$X_1, X_2, \dots, X_n$$
 $X_i \in \mathbb{R}^d$
 $P_{i,j} = \sin\left(\frac{i}{C^{2j/d}}\right)$ if j is even

 $P_{i,j} = \cos\left(\frac{i}{C^{2j/d}}\right)$ if j is old

 $C = \max Seq \text{ length}$

New embedditgs: X+P

Transformer: MH SA + something else

Encoder [+ decoder] transformers

Self-attention:

input tokens attend to one another

Masked self-attention

output tokens attend to previous output tokens

Cross-attention

output tokens attend to input tokens

Let's identify the (q,k,v) at the three different attention blocks

Pseudocode

Encoder = series of *M* encoder blocks

```
def EncoderBlock(X):
   Z = LayerNorm(MHA(Q=X, K=X, V=X) + X) # note the residual connection
   E = LayerNorm(FeedForward(Z) + Z)
   return E
def Encoder(X, M): \# M = number of layers
   E = POS(Embed(X))
   for in range (M):
      E = EncoderBlock(E)
   return E
```

Decoder has access to:

- encoder (via another MHA)
- Previously generated output

```
def DecoderBlock(X, E):
   Z = LayerNorm(MHA(Q=X, K=X, V=X) + X)
   Z' = LayerNorm(MHA(Q=Z, K=E, V=E) + Z)
   D = LayerNorm(FeedForward(Z') + Z')
   return D
def Decoder(X, E, N):
   D = POS(Embed(X))
   for in range (N):
      E = DecoderBlock(D, E)
   return D
```

Attention is not explanation

Or is it?

Many variations proposed

Conformer (conv layers inside Transformer)

Reformer

Linformer

Performer

• • •

A top-down explanation

Encoder, Decoder and how they relate

Output

At training...

Loss:

compares output sequence with target sequence (known because it's in the training data)

Teacher Forcing

At inference...

Last word of output sequence added at the end of the decoder input

Repeat 3, 4, 5, 6 until "end of sequence"

We don't alwyas have a decoder...

Encoder as a building block for different applications

https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34

Words (sequence items) go through a series of transformations

Transformations are learnable!

Role of Q, K, V

The **Query** word: word **for which** we are calculating Attention

The **Key** and **Value** word: word **to which** we are paying attention (how relevant is that word to the Query word)

And how is "relevance" learned?

The more "aligned" (similar embeddings) two words are, the higher their attention score

So, the transformer learns to produce low or high scores

And how are such scores found?

From the training instances

Vision Transformers

CNNs vs Transformers for images

CNNs have built-in **inductive bias**:

- locality (small kernel)
- equivariance (weight sharing)
- location invariance (pooling)

Transformers don't seem a good fit for 2D data...

ViT: transformer encoder

SWin (shifted-window): multi-scale transformer

Efficiency:

Limiting self-attention to non-overlapping local windows

Hierarchical architecture:

- Flexibility to model at various scales
- Linear computational complexity with respect to image size

Window partitioning is shifted in alternate layers
--> this changes the interacting patches (and connect windows)

Ablation study (SWin)

	ImageNet		COCO		ADE20k
	top-1	top-5	AP ^{box}	AP ^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

Findings

Transformers also work well (despite the lack of inductive bias!)

• If trained with enough data (to compensate this lack)

Expensive training: 30 days on ImageNet-21k on Google Clout TPUx3 with 8 cores

Video Transformers

Video Transformers: A Survey (PAMI 2023)

