МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВО «СЫКТЫВКАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ПИТИРИМА СОРОКИНА»

ИНСТИТУТ ТОЧНЫХ НАУК И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Кафедра информационной безопасности

ЛАБОРАТОРНАЯ РАБОТА №6

По дисциплине «Электротехника и схемотехика» **Тиратронный генератор релаксационных колебаний**

Выполнили, студенты 133 группы Ю. Н. Данилова, М. А. Виноградов.

Цель: исследовать тиратронный генератор релаксационных колебаний.

Основные понятия

Тиратрон — газоразрядная лампа с накаленным или холодным катодом, в которой кроме анода и катода имеется один или несколько дополнительных управляющих электродов — сеток. Наполняется тиратрон парами ртути или инертными газами (крипто-ноксеноновые смеси, аргон, ксенон). Среди нейтральных молекул газа всегда имеется некоторое количество свободных электронов.

Тиратроны бываю с горячим и холодным катодом. В тиратроне с холодным катодом сетка располагается гораздо ближе к катоду, чем анод, и поэтому разряд в промежутке катод-сетка начинается при существенно меньшем напряжении, чем в промежутке катод-анод. На этом основано управляющее действие сетки. А существенно большие рабочие анодные токи имеют тиратроны с накаленным катодом, т.к. в них имеется дополнительный источник свободных зарядов - электронов, которые возникают за счет термоэлектронной эмиссии с катода.

У тиратрона есть пусковая характеристика, которая показывает зависимость напряжения на аноде, необходимого для зажигания, от величины сеточного напряжения:

Рис. 1. Пусковая характеристика тиратрона в теории.

- 1 пусковая характеристика тиратрона с редкой сеткой;
- 2 пусковая характеристика тиратрона с густой сеткой.

Используемые формулы:

Периода колебаний:

$$\tau_{\text{teop}} = R_1 C_2 \ln \left(\frac{U_{\text{m}} - U_{\text{min}}}{U_{\text{m}} - U_3} \right)$$

$$U_{\text{min}} = U_3 - A$$

где A — амплитуда колебаний на осциллографе, Umin — минимальное напряжение на конденсаторе.

Схема установки

Рис. 2. Схема установки.

Снятие пусковой характеристики тиратрона.

Nº	1	2	3	4	5	6	7	8	9	10	11
Uc, B	-0,05	-0,1	-0,2	-0,3	-0,4	-0,5	-0.6	-0,7	-0,8	-0,9	-1
U3, B	110	111	112	112	112	114	115	115	118	118	119

Определение теоретического периода колебаний.

A, B	U_3 , B	U_{Π} , B	C_1 , н Φ	<i>R</i> ₁ , кОм	$ au_{ m pean}, \ { m c}$
137	110	130	112	149	0.041

$$au_{\text{Teop}} = R_1 C_2 \ln \left(\frac{U_{\Pi} - (U_3 - A)}{U_{\Pi} - U_3} \right) = 0,034 \ c$$

$$\frac{\tau}{\tau_{\text{pean}}} = 0.83$$

Т.е расхождение между реальным и расчётным значением 17%.

Рис. 3. Пусковая характеристика тиратрона.

Определение времени деионизации.

Рис. 4.

$$\tau_g = 44$$
 мкс.

Вывод: В ходе работы нами был изучен тиратронный генератор релаксационных колебаний.

Была снята пусковая характеристика тиратрона, которая соответствует пусковой характеристикой тиратрона с редкой сеткой. Это видно при сравнении Рис.1 и Рис.2.

Был вычислен теоретический период колебания и проведено сравнение его с реальным значением. Было замечено, что расхождение значений между периодами равно 17%, Такое расхождение объясняется тем, что при вычислении периода не были учтены предразрядные токи тиратрона.

А также было определено время деонизации.