"可支持人类和 AI 博弈的国际象棋棋盘软件"软件开发课程项目——目标规模说明书

1 项目名称

可支持人类和 AI 博弈的国际象棋棋盘软件。

2 项目背景和意义

2.1 项目背景

本项目的提出者为同济大学计算机系大二学生,同时为课程《人工智能原理》 (赵才荣老师班级)的课程负责人之一董胤含。

《人工智能原理》课程的其中一个环节为"国际象棋人工智能程序设计竞赛",意在让课堂的同学每 4-5 人组为一队,在本学期的第 3 至第 13 周(2018 年 3 月中旬至 5 月下旬)合力完成一个国际象棋人工智能程序(本项目文档的其他部分内简称为 AI)的设计与编写。各组编写完成的 AI 将在第 13 周(6 月初)参与由课程负责人举办的"国际象棋人工智能程序设计竞赛"。

本课程去年举办的上一届比赛为五子棋比赛,走子方式为人工走子。考虑到本届 比赛的内容是国际象棋博弈,与五子棋博弈相比,走子方法稍显复杂,一局的走子步 数也数倍超越于五子棋。因此,课程负责人之间经过初步讨论,达成了这一共识:比 赛举办中不能采用人工走棋,必须采用自动化走棋的方式。

此外,课程的学生在编写 AI 时,需要大量的测试。一个可以接洽人类和 AI 程序、AI 程序和 AI 程序进行博弈的软件无疑将有助于 AI 的测试和调试。

因此, 一个开发"可支持人类和 AI 博弈的国际象棋棋盘软件"的项目便被提出。

2.2 项目意义

- 该项目的成功推进和完成将达到 AI 比赛过程自动化的目的,有助于比赛的顺畅、成功开展以及比赛时间的有效节约。
- 该项目的成果将有助于《人工智能原理》课程的学生对于自己编写的 AI 程序的测试。
- 该项目的成果将有助于国际象棋 AI 的后续研究和教学展示。
- 该项目的成果由于支持人机、机机博弈,也具有一定的游戏性和观赏价值。

3 项目目标

完成一个图形界面国际象棋棋盘软件。它主要具备以下功能:

- 图形界面显示(显示与用户交互的窗体控件、显示棋盘和棋子)
- 游戏参与者加载 AI 程序
- 游戏组织者选择游戏模式(自动、手动)
- 游戏组织者开始游戏、进行游戏
 - 软件与 AI 程序通信,完成自动博弈
 - 游戏参与者/游戏测试者手动走子
 - 软件判断走法符合规则
 - 软件判断游戏结束(局面是否出现将军、欠行等,计时是否结束)
 - 软件对走子计时

一些性能约束:

- 能在时下主流的笔记本电脑(x86_64 架构的多核 CPU,能够支持 Windows 7 及以上操作系统)上运行
- 在 Windows 7 及以上操作系统运行

4 项目规模

4.1 项目进行的任务和成果

该项目的进行,需要完成以下任务,得到以下成果:

编号	任务		成果	预估规模
1	项目立项和启动		《项目目标与规模说明书》	2 人天
2	项目的需求分析与需求的 文档化		《项目需求规格说明书》	4 人天
3	软件的设 计、构 造、测试	软件的体系结构设计(概要设计,总体设计,总体设计)	《项目设计报告说明书》 项目代码与软件的可执行文件	2 人天
4		详细设计		3人天

	软件编码		4 人天
5			预估代码量: 7000 行[1]
6	软件测试		2 人天
7	软件维护	-	-

注:[1]考虑到项目参与者都是学生,受制于平时课业和时间安排,投入到课程项目的时间不可能很多。故在遵循软件开发方法的前提下,有一半代码用等效的已有代码代替。

4.2 成员及分工

成员	分工	
董胤含	需求分析、需求文档化的部分工作、软件测试	
冯舜(组长)	详细设计、软件编码、软件维护	
宇捍钊	需求分析、需求文档化的部分工作、软件体系 结构设计	
马玥	项目立项文档、项目管理、需求文档化的部分 工作	
刘宇	需求文档化、软件体系结构设计、软件测试	

4.3 开发用语言和环境

计划项目的编码用 C#语言写成,图形界面用 WinForm(Windows 窗体 API)实现。

开发环境为 Visual Studio 2017, 框架为.NET Framework 4.6。

4.4 时间计划

注:国际象棋人工智能程序比赛于 13 周举行。因此,软件的编码和测试必须在 12 周或之前完毕。

时间段	任务
第6周(4月8日-4月14日)	初步学习开发用语言 C#以及开发用框架.NET Framework;

	项目立项,评估可行性,完成《项目目 标与规模说明书》
第7周(4月15日-4月21日)	进行需求分析,完成《需求规格说明 书》
第 8-9 周 (4 月 22 日-5 月 5 日)	完善《需求规格说明书》;
# 0 3 /uj (+ / j 22 Li 3 / j 3 Li /	进行总体设计
	进行软件的详细设计;
第 9-11 周(5 月 6 日-5 月 19 日)	进行软件的编码;
	初步完成《设计报告》
	进行软件测试;
第 12 周(5 月 20 日-5 月 26 日)	将软件给同学们进行公共测试;
	软件维护
第 13 周及以后(5 月 27 日起)	软件维护

注:具体工作安排会根据成员实际情况做出调整,但要保证在课程规定时间内完成任务。

4.5 经费成本

● 笔记本电脑+Windows 系统:5 台,约 40000 元

● 通讯费:约 5 个 50Mbps 宽带互联网连接,约每年 480 元

● 开发工具: Visual Studio 2015/2017 Community, 0元

● 文档编写工具: Enterprise Architect、Microsoft Word, 1000元

● 人工费:0元

● 培训费:0元

● 管理费用:0元

● 电费:100元

5.1 前提:我们的项目方案

项目方案已经在上文简要描述。现概括如下:在 Windows 系统上,使用 Visual Studio 和 C#完成一个基于.NET Framework 框架的国际象棋棋盘软件,时间为第 6 周到第 12 周,提供 AI 程序的接入和互相对弈功能,并有可视化的显示。

5.2 预先需求调查

为了探清开发出来的软件是否能满足实际需求,以向《人工智能原理》课程同学 发放问卷的方法作一预先需求调查。共发放问卷 50 份,回收有效问卷 50 份,结果如 下:

问题"偏好于在比赛中采取人工走子的方式还是软件自动走子的方式?"			
人工走子	软件自动走子		
8 (16%)	42 (84%)		
问题"是否愿意为软件适配输入输出走子的格式?"			
愿意	不愿意		
38 (76%)	12 (24%)		

结果表明,支持"软件自动走子"、"愿意适配通信格式"的意见占大多数,说明该软件有一定的需求,可行性满足。

5.3 技术可行性

本软件为一单机软件,实现的功能为窗体的正常显示、处理人类的走子点击、处理 AI 的走子通信,需要掌握的技术较少,技术点和满足情况如下表:

关键技术	要求	现有水平	对比和解决
C#语言的基础	了解	初步了解	可以通过一周的学习达到开发所 需的要求。
C#语言的多线程开 发方法	了解	不了解	鉴于本小组成员的学习能力,可以在项目制作中勤查资料达到要求。

.NET Framework 开 发方法	了解	初步了解	由于.NET Framework 入门方 便,可以在一周的学习中达到要 求。
-------------------------	----	------	--

技术分析后,可以认为可行性较好。

5.4 经济可行性

由于项目成本均与成员的日常工作和学习所需费用相关,故此部分不多做分析,可以认为本项目不需要额外投入经济成本,可行性满足。

5.5 操作可行性

5.5.1 软件项目推进的操作可行性

- 成员均为学生,在 6-12 周的课余时间,可按照时间计划推进项目;
- 组织形式为民主型,在小的开发团队中较为有效。
- 小组成员的合作素质和学习能力良好,可以胜任项目的开发。

5.5.2 软件开发成果的操作可行性

- 用户为比赛的参与方(小组)和裁判方(课程负责人),均为计算机系大二 学生,拥有运行本软件的平台 Windows 操作系统和.NET Framework 框架;
- 比赛的参与方在开发 AI 时多用 Windows 操作系统,故开发后的软件可满足他们在编写 AI 中的需要;
- 比赛的参与方熟悉 Windows 操作系统的基于 WinForm 的界面语言,故他们操作开发出来的软件难度不高,上手容易。

5.6 总结

进行一系列的可行性分析后,我们得出结论:这个项目是有需要且可实行的,应该立项并推进下去。