

Gestão/Management

Management of Local and Global Networks Concepts and Protocols

1

Junive Thy Networks and Systems Management?

- Lower Cost Manual management is costly
- More efficient Automatic systems allow an efficient planning, and mechanisms to predict the utilization trends: lower errors and faster actuation
- Better service The manager is informed at the same time the (client) is, and can make an automatic check of the situation
- Greater knowledge more information exists about the network, allowing better decisions and planning
- Why not human intervention?
 - Difficult to describe responsabilities
 - Technology rapidly evolves
 - Mangement systems rapidly evolve
 - Lack of technical resources

7

- Problems need to be quickly solved
- Management systems simplify the work of multi-functional networks (e.g. VoIP in multiple networks)
- Persons better used they do not need to perform repetitive tasks
- Companies need to optimze their structures, and network management allow resources optimization

Aspects of Network Management

- What to manage?
 - Network, equipment, systems, users, services, applications
- How to manage?
 - Interfaces, actions, abstractions
- What protocol(s) format(s)?
 - Protocol abstraction, formats, messages
- What information format(s)?
 - Information type

Standards for all this – including global frameworks

19

2

Management protocols

- · Methods to monitor and configure network equipments
- Do not describe how to achieve management objectives

<u>Simple protocols</u> ² common data and parameters formats allowing easy information transfer

Complex protocols ² add flexibility and security capacity

Advanced protocols ² remotely execute network

management tasks, without depending on specific protocol
layers

Tools for network management

- WAN/LAN monitoring and analyzers
- Software monitors
- Security managers
- Documents, presentations and administrative instruments
- Tools for cross-analysis
- · Databases, tools for information management
- Console emulator
- Tools for systems modelling
- Toolkits for development

21

Huniversidade Network management standardization global models

- Internet Engineering Task Force (IETF)
 - **Simple Network Management Protocol**
 - · SNMP, disman
 - Operations and Management Area
- International Telecommunications Union (ITU-T)
 - Telecommunications Management Network
 - SG IV
- International Standard Organization (ISO)
 - OSI, CMIP-CSIS
 - ISO-IEC/JTC 1/WG 4
- Others
 - DMTF, TM FORUM, OMG, IEEE, ...

Early discussions across bodies. Now cooperation is the normal across bodies.

What is TMN?

• Objective

-Support the management of the telecommunication networks and services

Concept

 Create an organized structure to allow the interconnection of several operating systems and telecommunications equipments, using a well-defined architecture, with normalized protocols and interfaces

25

TMN

- TMN is the telecommunications management network.
 - Relies on other management protocols and concepts.
 - Operations systems are where the main management functionality resides
 - Now also known as OSS operational support systems
 - The data communications network is where the management information flows
 - The TMN boundary intersects NEs (network elements) as they include some CM functionality.
 - Workstations provides user access to management functionality.
 - The workstation glass interface is outside the bounds of standardisation.

27

CMIS/CMIP

Common Management Information Services/Protocol

40

OSI CMIP

- Common
 Management
 Information Protocol
- Designed in 1980's: the unifying protocol ("advanced") to network management
- Implemented very slowly

SNMP: Simple Network Management Protocol

- Internet based (SGMP)
- Information Protocol Very simple in the beginning
 - Rapidly spreaded
 - It grew in largeness and complexity
 - actual: SNMPv3
 - Management protocol de facto

4.

CMIS/CMIP

- Approach object-oriented objects
 - Have attributes
 - Generate events/notifications (reliably)
 - Execute operations
- Objects with same attributes, notifications and operations belong to the same class
- Objects inserted in multiples hierarchies, with different inherits and containers
- · Intelligent agents
 - Can use rules or policies defined by the manager
 - Can be changed on-line
- Actions (verbs)
 - GET, SET, CREATE, DELETE, ACTION, NOTIFICATION, CANCEL GET
- Capacity of CMIP actions is related to scoping and filtering capacities - through GDMOs

CMIP - GDMOs

- Guideline for the Definition of Managed Objects
 - The equipment through which the agent operates
- Model objects inside the equipment
 - Instantiation of GDMOs is called MIB
- Do not have well-defined behaviors, with large implementation freedom
 - Flexibility
 - Problem (complexity)
- CMIP is not polling oriented
 - Better scalability is achieved
- There are not so many defined GDMOs as MIBs

44

TMN and OSI

4

- TMN adds-on to OSI management
- Information model new network
- Organization model extension through the concept of functional block
- Communication model Correspondence between interface protocol
- Functional model new management functions (network)
 - Interworking TMN with other OSI systems
- Atenuate differences between protocols
- Services functionalities and complementaring functions
- Increase the OSI management potentialities or restrict the TMN management potentialities

49

PBM and COPS

Concept: Policy Based Management Protocol: Common Open Policy Service

Policies - Example

- Network with multiple services support
 - Differentiated QoS
 - Additional requirements in AAA functions
 - · Different levels
 - User
 - Service
 - QoS
- Service authorized
 - only to some users
 - between authorized network points
 - with specific QoS requirements
 - between specific time intervals
- User also needs to be charged according to the service characteristics being received

51

52

Management based on Policies

- Objective: globally manage the network and not its elements.
- Mechanism:
 - Define policies (rules) to inform the network of what to do – e.g:
 - Operation center should have access to all routers
 - Charging department has priority in the last 3 months of each year
 - In the maximum, only 10% of each link can transport video.
 - The policy rules are translated in equipment configuration changes

de aveil lements of systems based on policies

Conceptual parts:

- Management policy tools:
 - Used to create the policy rules
- Policies repository
 - Store the policy rules
- Policy consumers policy decision points, PDP
 - Make decisions and transfer the policy rules (eventually translated) to the policy targets.
- Policy targets, policy enforcement points, PEP
 - Functional elements affected by the policy rules.

53

Processing rules - sequence

- Rules definition
 - Verify internal conflicts
 - Include in a repository (e.g. with LDAP)
- Get policies from policy consumers
 - Take decisions based on policies
 - Processed to create configurations in policy targets
 - May use temporal restrictions
- Send policies to policy targets
 - Can be "pushed" or "pulled" (e.g. by COPS or SNMP)
- Policy targets
 - Instal configurations

COPS – Common Open Policy **Service**

- Question/answer protocol to PDP-PEP interaction
- Based on TCP
- Maintains state synchronization
 - Recovers from fault
 - State maintenance with keep-alive
- PDP can send notifications to PEP
 - Default concept was for QoS support/control
- PDP can receive policies through LDAP and SNMP
- Supports two types of clients
 - RSVP, outsourcing model
 - Diff-serv, configuration model

57

PDP-PEP Interactions

- Outsourcing (RSVP)
 - PEP contacts PDP when a decision is needed
 - Request contains relevant elements for the policy, and admission control information (e.g. flowspec)
 - Best match for RSVP-based QoS systems
- Configuration requests (Diffserv)
 - PDP configures PEP with specific equipment information
 - Considers a PIB (policy information base) that maintains provisioning information
 - Best match for DiffServ-based QoS systems

COPS Session

60

- PEP opens a COPS session (specifying a client type: RSVP, DiffServ)
- PEP sends requests and receives answers
- PEP can also send non-solicited commands
- PDP can change commands previously sent
- PEP sends messages related to resources utilization (charging)
- KeepAlives are sent if there is no activity

60

SNMP: Objectives and definition

- Ubiquity
 - All equipments
- SNMP inclusion in the network should be cheap
 - Small code with limited functionalities
- New extensions should be possible
 - "New MIBs"
- Management should be robust
 - Transport mechanism not connection oriented
- A set of rules for describing management information
- An initial set of managed objects
- A protocol used to exchange management information

- SMI (RFC 1155)
- Structure of the information management
 - MIB-II (RFC 1213)
 - MANAGEMENT INFORMATION BASE
 - Many other MIBs exist
 - SNMP (RFC 1157)

• SIMPLE NETWORK MANAGEMENT PROTOCOL

- Name refers to both the transport protocol and the reference architecture
 - Other SNMP versions
 - SNMPv2 e SNMPv3

66

67

immediate" SNMP evolutions

- SNMPv2 extensions
 - Structure of management information (SMI)
 - Manager-Manager capacity
 - New protocol operations
- SNMPv3 extensions
 - New message format
 - Message security
 - Access control

SNMP System Management

- · de facto standard for fault management
- Consists on an SNMP manager and a set of **MIBs (Management Information Bases)**
- Supports
 - Self-discovery of IP equipments in the network
 - Uses polling to recover from faults
 - Supports traps and events management
 - Can be implemented as proxy or gateway agents to support non-IP equipments
 - Integrates multiple applications

68

de aveir Manager/Agent Paradigm

- Manager/agent: common in all NMS (especially in SNMP/CMIP)
- Idea of a client/server, but many clients and only some servers
 - (manager ° client; agent ° server)
- The agent operates with the equipment
 - Reports problems to the manager, to control all the equipment information
- The manager contains the intelligence to decide what the agents should do, and gives instructions to them
 - It controls the agents and manages their interworking

- Management information base (MIB):
 - Distributed storage of network information
- Structure of Management Information (SMI):
 - Data definition language for MIB objects
- SNMP protocol
 - Establishes relationships manager× managed to allow the exchange of information and commands
- · Security and administration
 - Later developed, in versions SNMPv2 and SNMPv3

70

SNMP services for managers

- There are 3 SNMP services related with the managers control
 - Authentication service
 - MIB access is limited to authorized managers
 - Access policy
 - MIB access can change according to the manager accessing
 - Proxy service
 - The agent can be proxy of other agents, which implies the support of authentication and policy services

72

SNMP: Polling

- Manager periodically asks the agent for new information
- © <u>Advantage</u>: Manager completely controls the equipment, and knows all network details
- **Disadvantage:** delay between event and its entry in the system, and unnecessary communication overhead:
 - Slow polling, slow answer to the events
 - Quick polling, quick reaction, but large bandwidth wastage

83

SNMP: Traps

- There is an event 2 trap is sent
- Trap contains appropriate information equipment name, time instant of event, type of event
- © Advantage: information only generated when required
- **⊗** Disadvantage:
 - **⊗** More resources required in the managed equipment
 - **⊗** Traps can be useless
 - If many events occur, bandwitdh can be wasted with all traps (thresholds can solve)
 - Since the agent has only a limited scope of the network, NMS may already know about the events.
- Traps&Polling
 - Event occurs 2 trap is sent
 - Manager performs polling to obtain the rest of information
 - Manager also performs periodic polling, as backup

84

SNMP Protocol: types of messages		
Types of messages	<u>Function</u>	
GetRequest GetNextRequest GetBulkRequest	Mgr \pm agent: "get me data" (instantiates, next on the list, block of information)	
InformRequest	Agent 1 Mgr: informs the Manager of exception in a reliable	
SetRequest	Mgr ½ agent: defines MIB value way	
Response	Agent 1 mgr: answer value to Request	
Trap	Agent 1 mgr: informs the manager of an exception event	

- In its initial version, the authorization and authentication were based in the notion of "SNMP community string"
- The "community words" identifying the permissions of the machine that access the agente: read-only ou read-write
- By default, all systems come configured with the strings:
 - public (read-only)
 - private (read-write)
- These strings are case sensitive.

SNMP: security and administration

- Larger security in new versions
- Notion of "access control dependent on the user"
 - The agent mantains access rights information (policies) to different users in a data base
 - This data base is accessible as an object that can be managed
- Cipher support: SNMP message transported in DES
- Authentication: shared secret key
- Protection against replays: resort to nounces

88

89

MIBs and SNMP access

	SNMP Access Mode	
MIB Access Category	Read-Only	Read-Write
Read-Only	get,trap	get,trap
Read-Write	get,trap	get, trap e set
Write-only	get, trap depends on implementation	get, trap e set depends on implementation
Not accessible	Not accessible	

ASN.1

- ISO X.680 standard
 - Formal language to describe SMI
 - Frequent in Internet
 - "Heavy", but essential for heterogenous environments.
- Data types, object constructors
 - As in SMI
- BER: Basic Encoding Rules
 - Specified the format as ASN.1 data should be transmitted.
 - Each transmitted object has a coding Type, Length,
 Value (TLV) encoding

RMON

- Remote monitoring MIB measure network traffic
 - Agents management interface
 - Probes equipment for network analysis (promiscuous);
 usually configured to specific data types.
- Off-line operation (separated from the network)
- Preemptive monitoring, providing multiple information in the network.
- Support multiple managers and probes
- Detection and report of problems
- RMON has 9 groups:

Statistics, History, Alarm, Host, HostTopN, Matrix, Filter, Packet Capture, and Event

RMON 2

90

- RMON is not enough!
- RMON 2 shows:
 - High level packets (applications)
 - Details of traffic flows

RMON ≠ RMON2

- RMON: used to analyse segments
- RMON 2: used in backbones

96

de aveiro **SNMP: Pros and Cons** Agents widely Very simple: does not scale used/known Specifc semantics make its • Simple to implement integration with other approaches difficult Robust e extensible Large communication Polling approach overhead due to polling adequate to LAN Many specific objects implementations (private MIBs) **Critical requirement** In several management satisfied: available systems, small agents may to be developed in be inadequate the right time Note that SNMP became a misnomer, referring both to the management protocol and the management framework. These are different things

SNMP

- Static MIBs
- Concepts of limited models
- Non-connection oriented protocol
- Polling model
- Implementation-oriented
- Limited functionalities
- Bulk capcacity only in new versions
- · Completely dominating the market
- Many SNMP-based products

CMIS

- Dynamic MIBs
- Object-oriented models
- Connection-oriented protocol
- Event-oriented model
- Specification-oriented
- HeavyFunctionalities until the
- system management level
 Bulk capacity with scope and
- · Some relevance in the telecommunications market
- Some CMIP-based products in the market