Machine Learning

Human Learn

Learn from experience

Machine

Learn from past data

Machine Learning

How Machine Learning?

Why Machine Learning?

- Rapid increment in the production of data
- Solving complex problems, which are difficult for a human
- Decision making in various sector including finance
- Finding hidden patterns and extracting useful information from data

Definition:

Field of Study that gives computers the ability to learn without being explicitly programmed.

Formal Defn:

A computer Program is said to learn from experience E w.r.t some task T and some performance measures P , if its performance on T as measured by P improves with experience E

Machine Learning Algorithms:

- Supervised Learning
- Unsupervised learning

Others: Reinforcement Learning, Recommender Systems

Supervised Learning

Training Data

New Data

Supervised Learning

pear apple

New Data

Unsupervised Learning in ML

Supervised Learning:

- Learns an Input and O/P map.
 - Classification: categorical
 O/P
 - Regression: Continuous O/P

Regression:

Given huge dataset, when the machine is given several inputs it finds the right answer accordingly.

This terminology is also Known as Regression

Regression: Predict Continuous valued output (price)

Housing price prediction.

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

• • •

Classification:

Breast cancer (malignant, benign)

Identify:

```
For infinite feature vectors we need some mathematical tool for access.(e.g in vector machine)

#identical - Regression problem

#unique - Classification
```


Unsupervised Learning:

The goal is not really to discover some O/P but here the goal is to discover some patterns in data.

- Discover patterns in the data.
 - Clustering: Cohesive Grouping Categories of customers in a shop
 - College student
 - IT professionals etc.
 - Association: Frequent Co-occurrence [finding frequent co-occurrence of items in the dataset given to me. If I see 'A' then it is very likely to see B in my shop.]

Unsupervised Learning

Reinforcement Learning:

Learning to control behaviour of a system.

How did you learn to cycle?

- Neither of SV nor USV.
- Some trial or error.
- Falling down Hurts.

This type of learning is a method to learn to control the system through the trial and error and minimal feedback is essential.

Dimensionality Reduction

- PCA
- Encoders

Regression -

- Linear Regression
- Multiple Regression
- Polynomial Regression
- Support Vector Regression
- Decision Tree Regression
- Random Forest Regression

Linear regression -

Algorithm shows a linear relationship between a dependent (y) and one or more independent (y) variables.

Linear regression makes predictions for continuous/real or numeric variables

House Pricing Prediction -

Training set

Size in feet^2 (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	m - 17
852	178	m = 47

Notation:

- m = Number of training examples
- x =Input variable / features
- y = Output variable / target variable
- (x, y) = One training example
- $(x^{(i)}, y^{(i)}) = i^{th}$ training example

Examples:

$$x^{(1)} = 2104$$

 $x^{(2)} = 1416$
 $y^{(1)} = 460$

Model representation

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

Shorthand h(x)

 θ_0, θ_1 : parameters/weights

How to choose θ_i 's?

House pricing prediction

Cost function (Root Mean Squared Error (RMSE))

Idea: Choose θ_0 , θ_1 so that $h_{\theta}(x)$ is close to y for our training example (x, y)

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

minimize
$$J(\theta_0, \theta_1)$$
 Cost function

Simplified

 $\theta_0 = 0$

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
 \longrightarrow $h_{\theta}(x) = \theta_1 x$

Parameters:

Hypothesis:

$$\theta_0, \theta_1 \longrightarrow \theta_1$$

Cost function:

Cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 \longrightarrow J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:

minimize
$$J(\theta_0, \theta_1)$$
 θ_0, θ_1

Goal:

minimize $I(\theta_1)$ θ_0, θ_1

• Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

• Parameters:
$$\theta_0$$
, θ_1

• Cost function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

•Goal: minimize
$$J(\theta_0, \theta_1)$$
 ?

Gradient descent

```
Have some function J(\theta_0, \theta_1)
Want argmin J(\theta_0, \theta_1)
\theta_0, \theta_1
```

Outline:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at minimum

Data Preprocessing -

- Getting the dataset
- Importing libraries
- Importing datasets
- Finding Missing Data
- Encoding Categorical Data
- Splitting dataset into training and test set
- Feature scaling

Multiple Linear Regression -

Regression algorithms which models the linear relationship between a single dependent continuous variable and more than one independent variable.

Hypothesis

Now:
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

 $h_{\theta}(x) = \theta_0 + \theta_1 x$

Multiple features (input variables)

Size in feet^2 (x_1)	Number of bedrooms (x_2)	Number of floors (x_3)	Age of home (years) (x_4)	Price (\$) in 1000's (y)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••				***

Notation:

n = Number of features $x^{(i)} = \text{Input features of } i^{th} \text{ training example}$ $x_i^{(i)} = \text{Value of feature } j \text{ in } i^{th} \text{ training example}$

$$x_3^{(2)} = ?$$
 $x_3^{(4)} = ?$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

• For convenience of notation, define $x_0 = 1$ $(x_0^{(i)} = 1 \text{ for all examples})$

•
$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1}$$
 $\boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$

$$\bullet h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$= \boldsymbol{\theta}^{\top} \boldsymbol{x}$$

House prices prediction

- $h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$
- Area $x = \text{frontage} \times \text{depth}$
- $h_{\theta}(x) = \theta_0 + \theta_1 x$

Polynomial Regression -

Regression algorithm that models the relationship between a dependent(y) and independent variable(x) as nth degree polynomial

Coding content:

- 1. Linear Regression with two datasets
- 2. Linear Regression with data preprocessing.

