① $X = ABD + aDd + a\overline{c} + bc + \overline{c}\overline{d}$ $Y = \overline{a}\overline{c} + ac + \overline{c}\overline{d}$ $Z = cd + \overline{a}\overline{c} + a\overline{b}d$

sub bactor (2) Full D: A OBOC B= A. (BOC) + BC F= (V +W+X) (V+X+Y) (V+Z) = ((+ x)+(W-Y)]. (V+Z)] = V+ Z (x+w'Y) x = abd + ac + bc+od = 21002, 20022, 0110, 01110, 0111, 1111, 0000, 91 PROM 0001, wo mo 1100 Floxed ML ma mis MIL

 $X = Mot M_{4} + m_{4} + m_{5} + m_{6} + m_{6} + m_{9} + m_{11} + m_{12} + m_{14} + m_{15}$ $Y = Mot M_{1} + m_{4} + m_{5} + m_{10}, m_{11} + m_{14} + m_{15} + m_{8} + m_{4}$ $Y = Mot M_{1} + m_{4} + m_{5} + m_{10}, m_{11} + m_{14} + m_{15} + m_{5} + m_{7}$ $Z = Mot M_{1} + m_{4} + m_{5} + m_{8} + m_{11} + m_{6} + m_{14} + m_{3} + m_{7} + m_{7}$

(B) (Magnitude Comparator) 7) a) Late Done in lab

 $X = X_4 X_3 X_2 X_1 X_0$

8)
$$X = \frac{x_4 x_3 x_2 x_1 x_0}{4}$$

a) X is odd X : $X = \frac{x_4 x_3 x_2 x_1 x_1}{3}$ (8) $\frac{1 - 00001}{3 - 00011}$

X is even

$$y_0 = \overline{x_0}$$

b) X is even.

$$X = x_4 x_3 x_2 x_1 0$$

 $Y = x_4 x_3 x_2 x_1 1$
 $Y = x_4 x_3 x_2 x_1 1$
 $Y = x_4 x_3 x_2 x_1 1$

c) if
$$M > N$$
, $V = M$, else $V = M$.

00 84 73 82

7, 70 Ty 75 12

+ int (R/4)

g) if M = N, G = M else G = N.

if force G = M = N, G = N.

else G = N. M = N = N.

10) a) Y = 2N. — $N \not= 10 \ 2^N$ decoder N - 4 bit no. $4 + 0 \ 16$ decoder circuit. Y - 16 ofps.

b) $P = 2^{N+1} = 2^{N} \times 2^{1}$

$$Q = 2^{N-1} = 2^{N} \div 2$$

$$0 \quad y_{2} \stackrel{}{\longrightarrow} 1 \stackrel{}{\longrightarrow} y_{2}$$

$$0 \quad y_{2} \stackrel{}{\longrightarrow} 1 \stackrel{}{\longrightarrow} y_{2}$$

$$0 \quad Q_{N-1} \stackrel{}{\longrightarrow} Q_{N} \stackrel{}{\longrightarrow} Q_{N}$$

Suppose N=3, $Y=2^3=8$, R=Y-1

n ₂ n ₁ n ₀	47	y 6	45	y4 '	43 4	12	41	yo	87	~6	75 74 73 727170
000	0	0	O	0	0	0	6	1	0	0	0 0 0 0 0 0
001	0	0	0	0	0	0	l	O	0	0	000001
010	0	0	0	0	0	(0	D	0	0	000011
011	0	0	0	0	1	0	0	0	0	0	0 0 0 1 1 1
100	0	0	0	1	O	0	0	O			
101	0	0	F	0	0	0	0	D	0	0	0 0 1 9 1 1 1 1
110	0	10 [0	0	0	0	0	0	0	0	11111
111	l	0	0	0	.0	0	0	0	0	1	. 4
							,			٠	
							į	1			

(9) 2 to 4 decoder

yo = EI, Io

y1 = EI, Io

y4 = EI, Io

EIIIO	y ₃	y ₂	71	yo	
1 × ×	×	×	X	×	7
0 0 0	0	0	0	, 1	
0 0 1	0	O	1	0	
0 10	0	1	Ö	D'	
0 1 1	1	0	0	0	

22) a)
$$y = \chi - 1$$
. eg $\chi_{3}\chi_{2}\chi_{1}\chi_{0}$ $y_{3}y_{2}y_{1}y_{0}$
 $y_{0} = \chi_{0}$ 0 1 0 0 0 0 1 1
 $y_{1} = \chi_{1} \oplus \chi_{0}$

b)
$$y = [x_1/4]$$
 $y_0 = x_2$
 $y_1 = x_3$
 $x_2 x_1 x_0$
 $x_2 x_1 x_0$

21, 20

+ 21, 20.

d)
$$y = \infty \mod 8$$

 $y_0 = \infty$
 $y_1 = \infty$

Do the rest

(3)
$$f = a\bar{b} cd\bar{e} + b\bar{c}d\bar{e} + \bar{a}c\bar{d}e + a\bar{c}d\bar{e}$$

$$\bar{b}(f(b=0)) + b(f(b=1))$$

$$\bar{b}(acd\bar{e} + \bar{a}c\bar{d}e + a\bar{c}d\bar{e}) + b(\bar{c}d\bar{e} + \bar{a}c\bar{d}e + a\bar{c}d\bar{e})$$

$$f = \bar{b}(acd\bar{e} + \bar{a}c\bar{d}e) + b(\bar{d}e(\bar{c} + \bar{a}) + a\bar{c}d\bar{e})$$

$$= \bar{b}(ad\bar{e} + \bar{a}c\bar{d}e) + b(\bar{c}d\bar{e} + \bar{a}d\bar{e} + a\bar{c}d\bar{e})$$

$$= \bar{b}(ad\bar{e} + \bar{a}c\bar{d}e) + b(\bar{c}d\bar{e} + \bar{a}d\bar{e} + a\bar{c}d\bar{e})$$