

தொ**ண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்** மூன்நாம் தவணைப் பரீட்சை - 2022

Conducted by Field Work Centre, Thondaimanaru. 3rd Term Examination - 2022

இரசாயனவியல் II B Chemistry II B

Gr -12 (2022)

02

T

II B

பகுதி – II B

- 5) A)
 - 1. டால்ரனின் பகுதியமுக்க விதியை குறிப்பிடுக.
 - 2. $400~{\rm K}$ இல் $2~{\rm dm}^3$ கனவளவுடைய கொள்கலனில் ${\rm H_2}$ வாயு காண்பிக்கும் அமுக்கம் $4~{\rm x}~10^5{\rm Nm}^{-2}$, $500~{\rm K}$ இல் $3~{\rm dm}^3$ கொள்கலனில் He வாயு காண்பிக்கும் அமுக்கம் $10~{\rm x}~10^5{\rm Nm}^{-2}$ ஆகும். சிறிது நேரத்தின் பின் இவ்விரு கொள்கலன்களும் இணைக்கப்பட்டு வாயுக்கள் ஒன்றோடு ஒன்று முற்றாகக் கலக்கவிடப்பட்டன. வாயுக்கள் இலட்சிய நடத்தை உடையது எனக்கொண்டு பின்வருவனவற்றை கணிக்குக. $({\rm H}-1~,{\rm He}-4)$
 - (i) ஆரம்பத்திலுள்ள வாயுக்களின் மூல் எண்ணிக்கையை தனித்தனியே காண்க.
 - (ii) $H_{2(g)}$ இன் மூல்ப்பின்னம்.
 - (iii) இணைக்கப்பட்ட பின் கொள்கலனின் பொதுஅமுக்கம்.
 - (iv) இணைக்கப்பட்ட கொள்கலனின் வெப்பநிலை 600 K இற்கு உயர்த்தப்பட்ட போது தற்போது மொத்த அமுக்கம் யாது?
 - B) எரிபொருட்களின் வினைத்திறனை துணிவதற்காக கீழே தரப்பட்டுள்ள தரவுகளை கருதுக.

	நியம தோன்றல் வெப்பவுள்ளுறை
	$\Delta H_f^{ heta}$ KJ/mol
CH _{4(g)}	- 75
$C_2H_{6(g)}$	- 84
$C_4H_{10(g)}$	- 126
CO _{2(g)}	- 394
$H_{2}O_{(l)}$	- 286

1 g எரிபொருளை எரிப்பதன் மூலம் இவற்றின் வினைத்திறனை ஏறுவரிசைப்படுத்துக.

- C) 1. நியம சாலகவெப்பவுள்ளுறை வரையறுக்க.
 - 2. கீழே தரப்பட்டுள்ள வெப்ப இரசாயனத் தரவுகளை கருதுக.

 $\mathrm{Ba}_{(\mathrm{g})}$ இன் நியம தோன்றல் வெப்பவுள்ளுறை = $130\ \mathrm{kJmol^{-1}}$

 $I_{2(s)}$ இன் நியம அணுவாதல் வெப்பவுள்ளுறை $= 106 \ {
m kJmol}^{-1}$

 $Ba_{(g)}$ இன் I_1 , I_2 கூட்டுத்தொகை = 1145 kJ mol^{-1}

 $\mathrm{Ba}_{\mathrm{(g)}}^{2+}$ இன் நியம நீரேற்றல் வெப்பவுள்ளுறை $= -1309~\mathrm{kJmol^{-1}}$

 $m I_{(g)}^-$ இன் நியம நீரேற்றல் வெப்பவுள்ளுறை $= -308~{
m kJmol^{-1}}$

 $I_{(g)}$ இன் நியம 1ம் இலத்திரன் ஏற்றல் வெப்பவுள்ளுறை = $-295~{
m kJmol}^{-1}$

 $BaI_{2(s)}$ இன் நியம கரைசலாதல் வெப்பவுள்ளுறை = $+252 \text{ kJmol}^{-1}$ (i) மேலே தரப்பட்ட தரவுகளை சமன்பாடுகளில் எழுதுக.

(ii) பொருத்தமான முறையில் BaI_{2(s)} இன் நியம தோன்றல் வெப்பவுள்ளுறையை கணிக்குக.

6) A) ஒரே சேதன ஆரம்பிக்கும் பொருளாக C₂H₂ ஐயும் பட்டியலில் தரப்பட்டுள்ளவற்றையும் மாத்திரம் தாக்கு பொருளாக பயன்படுத்தி எட்டு (8) இற்கு மேற்படாத, பொருளாக படிமுறைகளில் பின்வரும் சேர்வையை எங்ஙனம் தொகுப்பீர் எனக்காட்டுக.

$$\mathrm{CH} \equiv \mathrm{CH} \longrightarrow \mathrm{CH}_3\mathrm{CH} = \mathrm{CHCH}_3$$

சேதனப் பொருட்களின் பட்டியல்

செறி
$$\rm H_2SO_4$$
 , $\rm H_2O$, $\rm H_2$, $\rm BaSO_4$, $\rm Pd$, $\rm PCC$, quinoline, $\rm PCl_5$, $\rm Zn~(Hg)$, செறி $\rm HCl$, ஐதான $\rm NaOH$, $\rm KOH$, அற்ககோல்

B) பின்வரும் தாக்கத்திட்டத்தை பூரணப்படுத்தி, A, B, C, D, E, F, P, Q, R, S, T மற்றும் U என்பவற்றை இனம் கண்டு குறிப்பிடுக.

C) பின்வரும் தாக்கத்திற்குரிய பொறிமுறையை தருக.

$$CH_3CH_2CH_2OH + HBr \rightarrow CH_3CH_2CH_2Br + H_2O$$

7) A) (1) பின்வரும் பாய்ச்சற்கோட்டுப்படத்தில் A – O இல் தரப்பட்டுள்ள பதார்த்தங்களின் இரசாயனச் சூத்திரங்களை எழுதுக.

> திண்மங்கள், வீழ்படிவுகள், கரைசல்கள், வாயுக்கள் ஆகியவற்றைக் குறிப்பதற்குப் பெட்டியில் உள்ள குறியீடுகள் பயன்படுத்தப்படுகின்றன.

- (2) I இல் காணப்படும் தாண்டல் மூலக கற்றயனின் இலத்திரன் நிலையமைப்பை எழுதுக?
- (3) I இல் காணப்படும் கற்றயனிற்கும் I^- அயனிற்குமிடையேயான தாக்கத்திற்கான முழுஅயன் சமன்பாடு தருக. அவதானம் தருக.
- (4) மேற்படி தாக்கத்தில் கற்றயனின் தொழிற்பாடு (ஒட்சியேற்றியா / தாழ்த்தியா) எனக்கூறுக.

- B) ஒரு கரைசல் Cu^{2+} , H^+ ஆகியவற்றை மாத்திரம் கொண்டுள்ளது. அவற்றின் செறிவுகளைத் துணிவதற்கு பின்வரும் நடைமுறைகள் (1-2) பயன்படுத்தப்பட்டன.
 - 1. $\mathrm{Cu^{2+}}$ ஐ CuS ஆக படிவு வீழ்த்துவதற்கு $25~\mathrm{cm^3}$ கரைசலின் ஊடாக மிகையான $\mathrm{H_2S}$ செலுத்தப்பட்டது. உருவாகிய வீழ்படிவு வடிக்கப்பட்டு நீரினால் கழுவப்பட்டு வடிதிரவம் நடைமுறை (2) இல் பயன்படுத்தப்பட்டது.
 - ${
 m Cu}^{2+}$, ${
 m Mn}^{2+}$, ${
 m SO}_4^{2-}$ ஆகியவற்றை உண்டாக்குவதற்கு இவ் வீழ்படிவு $0.2\ {
 m moldm}^{-3}$ அமிலக் ${
 m KMnO}_4$ இன் $20\ {
 m cm}^3$ ஐக் கொண்ட ஒரு நியமிப்புக் குடுவைக்கு மாற்றப்பட்டது. (குறிப்பு ${
 m CuS}$ இலுள்ள ${
 m S}^{2-}$ அயன் முற்றுமுழுதாக ${
 m SO}_4^{2-}$ அயனாக மாற்றப்படுகின்றது எனக்கொள்க.) மேலதிக ${
 m KMnO}_4$ ஐ நியமிக்க $0.2\ {
 m moldm}^{-3}$ ${
 m Fe}^{2+}$ கரைசலில் $25\ {
 m cm}^3$ தேவைப்பட்டது எனின் ${
 m Cu}^{2+}$ இன் செறிவை ${
 m moldm}^{-3}$ இல் துணிக.
 - 2. மேலே நடைமுறை (1) இருந்து பெற்ற வடிதிரவம் நியமிப்புக்குடுவையில் இடப்பட்டு கொதிக்கச்செய்யப்பட்டு H_2S அகற்றப்பட்டு கரைசல் குளிர்ச்சியடைய விடப்பட்டது. இதற்கு KI, KIO_3 என்பன மிகையாக சேர்க்கப்பட்டன. விடுவிக்கப்பட்ட I_2 ஐ நியமிக்க $0.2 \, \mathrm{moldm^{-3}}$ $Na_2S_2O_3$ கரைசலின் $30 \, \mathrm{cm^3}$ தேவைப்பட்டது. கரைசலில் H^+ இன் செறிவைத்துணிக?