Série 2. Exercices

1. Approcher la fonction $f(x) = \arctan(x)$ par une spline cubique sur l'intervalle [0, 10]. Utiliser les noeuds et les valeurs donnés dans le tableau ci-dessous:

ſ	i	0	1	2	3	4	5
ſ	x_i	0.	2.	4.	6.	8.	10.
	y_i	0.	1.1071	1.3258	1.4056	1.4464	1.4711

- (a) Etablir le systèmes d'équations linéaires pour les dérivées secondes y_i'' .
- (b) Donner le polynômes cubiques $s_i(x)$ pour chacun des sous-intervalles.
- (c) Tracer la spline et la fonction d'erreur $\arctan(x) s(x)$. (Mathematica ou MATLAB)
- (d) Déterminer l'erreur maximale. (Mathematica ou MATLAB)
- 2. Un robot doit parcourir les points de contrôle suivants dans le plan Oxy aux instants t_i :

Trouver une paramétrisation (x(t), y(t)) $(0 \le t \le 4)$ de la trajectoire en déterminant deux splines naturelles x = x(t) et y = y(t) avec les abscisses t_i (i = 0, 1, 2, 3, 4).

3. Considérons une fonction périodique f(x) de période T > 0:

$$f(x+T) = f(x).$$

Nous voulons approcher cette fonction par une spline cubique. Les noeuds sont donnés par

$$x_0 < x_1 < x_2 < \ldots < x_n$$

1

où $x_n=x_0+T$. Il est maintenant raisonnable de remplacer les condition $y_0''=y_n''=0$ d'une spline naturelle par les conditions

$$y_n = y_0, \quad y'_n = y'_0, \quad y''_n = y''_0.$$

Nous cherchons donc les dérivées secondes y_i'' , $(0 \le i \le n-1)$.

- (a) Modifier le système d'équations linéaires à la page 56 du support de cours.
- (b) Nous voulons approcher la fonction périodique de période 2π

$$f(x) = 2\cos x + \sin(2x)$$

par une spline cubique en utilisant les noeuds $x_i = i \cdot 2\pi/5$, $(i = 0, 1, \dots, 5)$.

- i. Etablir le système d'équations linéaires.
- ii. Tracer la spline et la fonction d'erreur. (Mathematica ou MATLAB)