Water-Well-Classification-PT2

Raw df1: (35303, 18)

Part 2: Exploring a Few Different Approaches

Loading libraries and data

```
In [1]: # Import the relevant libraries
         import numpy as np
         import pandas as pd
         from matplotlib import pyplot as plt
         import seaborn as sns
         from sklearn.linear_model import LinearRegression
         from sklearn.linear_model import LogisticRegression
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.model_selection import train_test_split
         from sklearn.metrics import r2 score, explained variance score, confusion matrix,
         accuracy score, classification report, log loss
         from math import sqrt
         %matplotlib inline
         # Increase column width to display df
         pd.set_option('display.max_columns', None)
         # Increases the size of sns plots
         sns.set(rc={'figure.figsize':(12,10)})
In [10]: # Load the data
         raw df1 = pd.read csv('dfA.csv')
         # print the shape
         print("Raw_df1:", raw_df1.shape)
```

```
In [11]: raw_dfl.head()
```

Out[11]:

	Unnamed: 0	amount_tsh	gps_height	longitude	latitude	basin	region	population	permit	construc
0	1	0.0	1399	34.698766	-2.147466	Lake Victoria	Mara	280	1.0	
1	2	25.0	686	37.460664	-3.821329	Pangani	Manyara	250	1.0	
2	3	0.0	263	38.486161	-11.155298	Ruvuma / Southern Coast	Mtwara	58	1.0	
3	5	20.0	0	39.172796	-4.765587	Pangani	Tanga	1	1.0	
4	10	0.0	62	39.209518	-7.034139	Wami / Ruvu	Pwani	345	0.0	

In [107]: # raw_df1 = raw_df1.drop(columns=['Unnamed: 0'], axis=1)
 raw_df1.head(2)

Out[107]:

	amount_tsh	gps_height	longitude	latitude	basin	region	population	permit	construction_year	ext
0	0.0	1399	34.698766	-2.147466	Lake Victoria	Mara	280	1.0	2010	
1	25.0	686	37.460664	-3.821329	Pangani	Manyara	250	1.0	2009	

Data preperation

```
In [14]: # The BIG SWITCHEROO - making the 3 class target into a 2 class target
# raw_df1['status_group'] = raw_df1['status_group'].map({0:0, 1:1, 2:1})
raw_df1.head(2)
```

Out[14]:

	amount_tsh	gps_height	longitude	latitude	basin	region	population	permit	construction_year	ext
0	0.0	1399	34.698766	-2.147466	Lake Victoria	Mara	280	1.0	2010	
1	25.0	686	37.460664	-3.821329	Pangani	Manyara	250	1.0	2009	

```
In [17]: # Checking the new distribuiton of Target variable
    print (raw_df1['status_group'].value_counts())
    print (raw_df1['status_group'].value_counts(normalize=True))
    sns.countplot(x = 'status_group', data = raw_df1)
```

0 194391 15864

Name: status_group, dtype: int64

0 0.550633 1 0.449367

Name: status group, dtype: float64

Out[17]: <AxesSubplot:xlabel='status_group', ylabel='count'>

In [18]: # Time to split take categorical variables and do some one-hot encoding. Not "drop
 first" this time.
 categorical_variables = raw_dfl[['basin', 'region', 'management', 'payment', 'quan
 tity','quality_group', 'source_type', 'extraction_type_class', 'waterpoint_type_gr
 oup']]
 categorical_dummies = pd.get_dummies(categorical_variables)
 categorical_dummies.head()

Out[18]:

	basin_Internal	basin_Lake Nyasa	basin_Lake Rukwa	basin_Lake Tanganyika	basin_Lake Victoria	basin_Pangani	basin_Rufiji	basin_Ruvuma / Southern Coast
0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0
2	0	0	0	0	0	0	0	1
3	0	0	0	0	0	1	0	0
4	0	0	0	0	0	0	0	0

```
In [19]: categorical_dummies.shape
```

Out[19]: (35303, 76)

```
In [20]: categorical_dummies.columns = categorical_dummies.columns.str.replace('/','_')
```

In [21]: categorical_dummies.columns = categorical_dummies.columns.str.replace('-','_')

```
In [22]: categorical_dummies.columns = categorical_dummies.columns.str.replace(' ','')
```

In [23]: categorical_dummies.head()

Out[23]:

	basin_Internal	basin_LakeNyasa	basin_LakeRukwa	basin_LakeTanganyika	basin_LakeVictoria	basin_Pangan
0	0	0	0	0	1	(
1	0	0	0	0	0	1
2	0	0	0	0	0	(
3	0	0	0	0	0	1
4	0	0	0	0	0	(

```
In [24]:
    raw_df2 = raw_df1.drop(['basin', 'region', 'management', 'payment', 'quantity','qu
    ality_group', 'source_type', 'extraction_type_class', 'waterpoint_type_group'], ax
    is=1)
    print(raw_df2.shape)
    raw_df2.head()
```

(35303, 8)

Out[24]:

	amount_tsh	gps_height	longitude	latitude	population	permit	construction_year	status_group
0	0.0	1399	34.698766	-2.147466	280	1.0	2010	0
1	25.0	686	37.460664	-3.821329	250	1.0	2009	0
2	0.0	263	38.486161	-11.155298	58	1.0	1986	1
3	20.0	0	39.172796	-4.765587	1	1.0	2009	0
4	0.0	62	39.209518	-7.034139	345	0.0	2011	0

```
In [25]: data_redux = pd.concat([raw_df2, categorical_dummies], axis=1)
    print(data_redux.shape)
    data_redux.head()
```

(35303, 84)

Out[25]:

	amount_tsh	gps_height	longitude	latitude	population	permit	construction_year	status_group	basin_l
0	0.0	1399	34.698766	-2.147466	280	1.0	2010	0	
1	25.0	686	37.460664	-3.821329	250	1.0	2009	0	
2	0.0	263	38.486161	-11.155298	58	1.0	1986	1	
3	20.0	0	39.172796	-4.765587	1	1.0	2009	0	
4	0.0	62	39.209518	-7.034139	345	0.0	2011	0	

```
In [26]: # Need to split data into X and y dataframes.
    y = data_redux['status_group']
    X = data_redux.drop(columns=['status_group'], axis=1)
    print(y.shape)
    print(X.shape)
```

(35303,) (35303, 83)

```
In [27]: # Create train and test sets.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_s
tate=42)
print(X_train.shape)
print(Y_train.shape)
print(y_test.shape)

(26477, 83)
(8826, 83)
(26477,)
(8826,)
In []:
```

Modelling

Decision Tree Model: B1

This is using the same columns but with 2 classes only and with No SMOTE.

```
In [28]: # Loading relevant libraries and packages
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.metrics import accuracy_score, roc_curve, auc
         from sklearn.preprocessing import OneHotEncoder
         from sklearn import tree
         import sklearn.datasets as datasets
         # from sklearn.externals.six import StringIO
         from IPython.display import Image
         from sklearn.tree import export graphviz
         from sklearn.model_selection import cross_val_score
         from sklearn.model_selection import GridSearchCV
In [29]: # Train a DT classifier
         treeb1 = DecisionTreeClassifier(max depth=3, random state=10)
         treeb1.fit(X_train, y_train)
Out[29]: DecisionTreeClassifier(max depth=3, random state=10)
In [30]: # Predict on training and test sets
         training_preds = treeb1.predict(X_train)
         test_preds = treeb1.predict(X_test)
In [31]: # Get results
         training accuracy = accuracy score(y train, training preds)
         test accuracy = accuracy score(y test, test preds)
         print('Training Accuracy: {:.4}%'.format(training_accuracy * 100))
         print('Test Accuracy: {:.4}%'.format(test accuracy * 100))
         Training Accuracy: 70.7%
         Test Accuracy: 71.14%
```

```
In [32]: # Get detailed results (Train and Test)
     # Classification Report
     print('-----
     print('MODEL - Decision Trees B1')
     print('Classification Report - TRAIN')
     )
     print(classification_report(y_train, training_preds))
     # Confusion Matrix
     print('-----
     print('Confusion Matrix - TRAIN')
     print('-----'
     print(pd.crosstab(y_train, training_preds, rownames=['True'], colnames=['Predicte
     d'], margins=True))
     print('\n-----
     -')
     # Classification Report
     print('-----
     print('Classification Report - TEST')
     print('------
     print(classification_report(y_test, test_preds))
     # Confusion Matrix
     print('-----
     print('Confusion Matrix - TEST')
     print('-----'
     print(pd.crosstab(y_test, test_preds, rownames=['True'], colnames=['Predicted'], m
     argins=True))
     print('-----'
```

MODEL - Decision	on Trees	В1
Classification	Report -	- TRAIN

Classifica						
			recall			
	0	0.70	0.82	0.75	14600	
	1	0.72	0.57	0.64		
	1	0.72	. 0.57	0.04	110//	
accura	су			0.71	26477	
macro a	īvq	0.71	0.69	0.70	26477	
	ıvq	0.71	0.71	0.70		
Confusion	Matrix	- TRAI				
Predicted						
True						
0	11940	2660	14600			
1	5097	6780	11877			
All	17037	9440	26477			
Classifica		eport -				
			n recall			
	-				11	
	0	0.70	0.82	0.76	4839	
	1	0.73	0.58	0.64	3987	
accura				0.71	8826	
macro a	ıvg	0.71	0.70	0.70	8826	
weighted a	ıvg	0.71	0.71	0.71	8826	
Confusion	Matrix	- TEST				
Predicted		 1	 Δ11			
True	J	1	VII			
0	3072	867	4839			
	1680					
All		3174				
HTT						

```
In [33]: # Take a look at some feature importance and see if any differnt.
    importance = pd.DataFrame(data={'features': X_train.columns, 'importance': treeb1.
    feature_importances_})
    importance = importance.sort_values('importance', ascending=False)
    importance = importance.reset_index()
    importance.drop('index', axis=1, inplace=True)
    importance.head(20)
```

Out[33]:

	features	importance
0	quantity_dry	0.449725
1	waterpoint_type_group_other	0.379526
2	construction_year	0.168176
3	latitude	0.002335
4	region_Morogoro	0.000238
5	quantity_insufficient	0.000000
6	quality_group_salty	0.000000
7	quality_group_milky	0.000000
8	quality_group_good	0.000000
9	quality_group_fluoride	0.000000
10	quality_group_colored	0.000000
11	quantity_unknown	0.000000
12	quantity_seasonal	0.000000
13	payment_neverpay	0.000000
14	quality_group_unknown	0.000000
15	payment_unknown	0.000000
16	payment_paywhenschemefails	0.000000
17	payment_payperbucket	0.000000
18	payment_paymonthly	0.000000
19	payment_payannually	0.000000

```
In [34]: # cross validation to test tree depth values.
    score = cross_val_score(treeb1, X, y, cv = 10)
    score.mean()
    depth_range = range(1,20)
    val = []
    for depth in depth_range:
        treeb1 = DecisionTreeClassifier(max_depth = depth)
        depth_score = cross_val_score(treeb1, X, y, cv = 10)
        val.append(depth_score.mean())
    print(val)
    plt.figure(figsize = (10,10))
    plt.plot(depth_range, val)
    plt.xlabel('range of depth')
    plt.ylabel('cross validated values')
    plt.show()
```

 $\begin{bmatrix} 0.6287285820530902, \ 0.691386425211582, \ 0.7041042871595411, \ 0.7286631077393831, \ 0.7296827532426271, \ 0.7338467944382534, \ 0.743590930351408, \ 0.7488877549956156, \ 0.7575839248164578, \ 0.7637588802696954, \ 0.7667900658112725, \ 0.774466509900573, \ 0.7794235596814295, \ 0.7836722657995592, \ 0.7867595549896786, \ 0.7871845724192763, \ 0.787794812919644, \ 0.7874678104012779, \ 0.7882325786257375]$

Observations on Model B1: Decision Tree with 2 class

Suprised to see that the accuracy score was not any better really, at 0.71. No overfiting as train was also at 0.71. The recall for class 1 was at 0.58. The feature importance only show 3 features contributing much, the top one being new to the mix, but one that makes sense: qty_dry. And similar to the other model, the optimal tree depth is reported to be pretty high - around 15, to get a score up to about 0.78.

```
In [38]: # Get detailed results (Train and Test)
     # Classification Report
     print('-----
     print('MODEL - Decision Trees B1')
     print('Classification Report - TRAIN')
     )
     print(classification_report(y_train, training_preds))
     # Confusion Matrix
     print('-----
     print('Confusion Matrix - TRAIN')
     print(pd.crosstab(y_train, training_preds, rownames=['True'], colnames=['Predicte
     d'], margins=True))
     print('\n-----
     -')
     # Classification Report
     print('-----
     print('Classification Report - TEST')
     print('------
     print(classification_report(y_test, test_preds))
     # Confusion Matrix
     print('-----
     print('Confusion Matrix - TEST')
     print('-----'
     print(pd.crosstab(y_test, test_preds, rownames=['True'], colnames=['Predicted'], m
     argins=True))
     print('-----'
```

MODEL -	Decisio	n Trees	s B1
Classifi	cation	Report	- TRAIN

			- TRAIN			
			recall			
	0	0.86	0.93	0.89	14600	
	1	0.90		0.85		
accurac	_			0.87		
macro av		0.88	0.87	0.87		
weighted av	g	0.88	0.87	0.87	26477	
Confusion M	atrix	- TRA				
Predicted True						
	13514	1086	14600			
			11877			
All	15776	10701	26477			
Classificat	ion R	eport -				
	pr	ecision	recall	C1	aunnort	
			· ICCUII	II-score	support	
	0	0.78	3 0.83			
	0 1			0.81	4839	
accurac	1 :y	0.78	0.83 0.71	0.81 0.75 0.78	4839 3987	
accurac macro av	1 Sy	0.78	3 0.83 0.71	0.81 0.75 0.78 0.78	4839 3987 8826 8826	
accurac	1 Sy	0.78	3 0.83 0.71	0.81 0.75 0.78 0.78	4839 3987 8826 8826	
accurac macro av	1 g g	0.78 0.78 0.78	0.83 0.71 3 0.77 0.78	0.81 0.75 0.78 0.78	4839 3987 8826 8826	
accurac macro av weighted av 	y g g datrix	0.78 0.78 0.78	0.83 0.71 0.77 0.78	0.81 0.75 0.78 0.78 0.78	4839 3987 8826 8826 8826	
accurac macro av weighted av 	y g g datrix	0.78 0.78 0.78	0.83 0.71 0.77 0.78	0.81 0.75 0.78 0.78 0.78	4839 3987 8826 8826 8826	
accurace macro aveighted aveighted aveconfusion Merconfusion Merconfus	1 Ty Tg Tg (atrix 0	0.78 0.78 0.78	0.83 0.71 3 0.77 0.78	0.81 0.75 0.78 0.78 0.78	4839 3987 8826 8826 8826	
accurace macro aveighted aveighted aveconfusion Merconfusion Merconfusion True 0	1 Ty Tg Tg Tatrix 0 4035	0.78 0.78 0.78 - TEST	0.83 0.71 3 0.77 0.78 	0.81 0.75 0.78 0.78 0.78	4839 3987 8826 8826 8826	
accurac macro av weighted av Confusion M Predicted True 0	1 Yy Tg Tg Tatrix 0 4035 1141	0.78 0.78 0.78 - TEST	0.83 0.71 3 0.77 0.78 	0.81 0.75 0.78 0.78 0.78	4839 3987 8826 8826 8826	

```
In [39]: # Take a look at some feature importance and see if any differnt.
    importance = pd.DataFrame(data={'features': X_train.columns, 'importance': treeb2.
    feature_importances_})
    importance = importance.sort_values('importance', ascending=False)
    importance = importance.reset_index()
    importance.drop('index', axis=1, inplace=True)
    importance.head(20)
```

Out[39]:

	features	importance
0	quantity_dry	0.154350
1	longitude	0.137392
2	waterpoint_type_group_other	0.130257
3	latitude	0.107340
4	construction_year	0.102898
5	gps_height	0.072590
6	population	0.039401
7	amount_tsh	0.039079
8	quantity_enough	0.025860
9	payment_payperbucket	0.012536
10	source_type_borehole	0.011701
11	extraction_type_class_gravity	0.009556
12	basin_Internal	0.008711
13	extraction_type_class_handpump	0.008529
14	region_Iringa	0.008004
15	extraction_type_class_submersible	0.007753
16	permit	0.006853
17	management_privateoperator	0.006076
18	source_type_river_lake	0.005820
19	region_Tanga	0.005353

Observations on Model B2: Decision Tree with 2 class AND depth of 15

As expected, the deeper tree yielded a better accuracy (0.78), but also overfitting (train accuracy of 0.87). Recall also increased to 0.71. By having a deeper tree, we also see more features being used and helps us see another view of feature importance. The top ones are similar to the shallower tree, but also figuring in the top are gps_height, amount_tsh, and some source and extraction type features show up here as well.

APPROACH TO CONSIDER:

Wonder if cut out the 3rd class entirely, if it would have an impact on our models? On the one hand it could be muddying up the current class one (by being added to it), but on the other hand it is only 4K observations and may not have much impact? However, if it is cut, it also will increase class imbalance between clas 0 and 1.

```
In [ ]:
```

Some EDA on the 2 class approach

Taking a look at differences between the 2 target classes and some of the top variables for feature importance.

```
In [40]: pd.crosstab(data_redux['status_group'],data_redux['waterpoint_type_group_other']).
    plot.bar()
```

Out[40]: <AxesSubplot:xlabel='status_group'>


```
In [47]: pd.crosstab(raw_df1['status_group'],raw_df1['waterpoint_type_group']).plot.bar()
```

Out[47]: <AxesSubplot:xlabel='status_group'>


```
In [41]: pd.crosstab(data_redux['status_group'],data_redux['quantity_dry']).plot.bar()
```

Out[41]: <AxesSubplot:xlabel='status_group'>

In [48]: pd.crosstab(raw_df1['status_group'],raw_df1['quantity']).plot.bar()

Out[48]: <AxesSubplot:xlabel='status_group'>

In [42]: pd.crosstab(data_redux['status_group'],data_redux['quantity_enough']).plot.bar()

Out[42]: <AxesSubplot:xlabel='status_group'>


```
In [43]: pd.crosstab(data_redux['status_group'],data_redux['payment_payperbucket']).plot.ba
r()
```

Out[43]: <AxesSubplot:xlabel='status_group'>

In [44]: pd.crosstab(data_redux['status_group'],data_redux['source_type_borehole']).plot.ba
r()

Out[44]: <AxesSubplot:xlabel='status_group'>

In [50]: pd.crosstab(raw_df1['status_group'],raw_df1['source_type']).plot.bar()

Out[50]: <AxesSubplot:xlabel='status_group'>


```
In [45]: pd.crosstab(data_redux['status_group'],data_redux['extraction_type_class_gravity'
]).plot.bar()
```

Out[45]: <AxesSubplot:xlabel='status_group'>

In [49]: pd.crosstab(raw_df1['status_group'],raw_df1['extraction_type_class']).plot.bar()

Out[49]: <AxesSubplot:xlabel='status_group'>

In [46]: pd.crosstab(data_redux['status_group'],data_redux['extraction_type_class_handpump'
]).plot.bar()

Out[46]: <AxesSubplot:xlabel='status_group'>


```
In [51]: pd.crosstab(raw_df1['status_group'],raw_df1['quality_group']).plot.bar()
```

Out[51]: <AxesSubplot:xlabel='status_group'>

In [52]: pd.crosstab(raw_df1['status_group'],raw_df1['payment']).plot.bar()

Out[52]: <AxesSubplot:xlabel='status_group'>


```
In [53]: pd.crosstab(raw_df1['status_group'],raw_df1['management']).plot.bar()
```

Out[53]: <AxesSubplot:xlabel='status_group'>


```
In [54]: pd.crosstab(raw_df1['status_group'],raw_df1['basin']).plot.bar()
Out[54]: <AxesSubplot:xlabel='status_group'>
             5000
                                                    basin
                                               Internal
                                               Lake Nyasa
             4000
                                               Lake Rukwa
                                               Lake Tanganyika
                                               Lake Victoria
             3000
                                               Pangani
                                               Rufiji
             2000
                                               Ruvuma / Southern Coast
                                               Wami / Ruvu
             1000
               0
                                     status_group
 In [ ]:
```

Simplify data based on feauture importance

This will be an intermediate approach to simplify the dataset. First we will try and make the data more interpretible by eliminating the "other" and "unknown" classes from the remainign categorical features. Then I will cut out the columns that proved less important according to "feature importance" calculations. I will also cut 2 redundant location features (region abd basin).

```
In [56]: print(data_redux.shape)
  data_redux.head()

(35303, 84)
```

Out[56]:

	amount_tsh	gps_height	longitude	latitude	population	permit	construction_year	status_group	basin_I
0	0.0	1399	34.698766	-2.147466	280	1.0	2010	0	
1	25.0	686	37.460664	-3.821329	250	1.0	2009	0	
2	0.0	263	38.486161	-11.155298	58	1.0	1986	1	
3	20.0	0	39.172796	-4.765587	1	1.0	2009	0	
4	0.0	62	39.209518	-7.034139	345	0.0	2011	0	

```
In [58]: data redux.columns
Out[58]: Index(['amount tsh', 'gps height', 'longitude', 'latitude', 'population',
                 'permit', 'construction_year', 'status_group', 'basin Internal',
                 'basin_LakeNyasa', 'basin_LakeRukwa', 'basin_LakeTanganyika',
                 'basin LakeVictoria', 'basin Pangani', 'basin Rufiji',
                 'basin_Ruvuma_SouthernCoast', 'basin_Wami_Ruvu', 'region_Arusha',
                 'region_DaresSalaam', 'region_Iringa', 'region_Kigoma',
                 'region_Kilimanjaro', 'region_Lindi', 'region_Manyara', 'region_Mara',
                'region_Morogoro', 'region_Mtwara', 'region_Mwanza', 'region_Pwani',
                'region_Rukwa', 'region_Ruvuma', 'region_Shinyanga', 'region_Singida',
                 'region_Tanga', 'management_company', 'management_other',
                 'management_other_school', 'management_parastatal',
                 'management privateoperator', 'management trust', 'management unknown',
                 'management_vwc', 'management_waterauthority', 'management_waterboard',
                'management_wua', 'management_wug', 'payment_neverpay', 'payment_other',
                 'payment payannually', 'payment paymonthly', 'payment payperbucket',
                 'payment paywhenschemefails', 'payment unknown', 'quantity dry',
                 'quantity_enough', 'quantity_insufficient', 'quantity_seasonal',
                 'quantity_unknown', 'quality_group_colored', 'quality_group_fluoride',
                'quality_group_good', 'quality_group_milky', 'quality_group_salty',
                'quality_group_unknown', 'source_type_borehole', 'source_type_dam',
                'source_type_other', 'source_type_rainwaterharvesting',
                'source_type_river_lake', 'source_type_shallowwell',
                'source_type_spring', 'extraction_type_class_gravity',
                 'extraction_type_class_handpump', 'extraction_type_class_motorpump',
                'extraction type class other', 'extraction type class ropepump',
                'extraction type class submersible',
                'extraction_type_class_wind_powered',
                'waterpoint type group cattletrough',
                'waterpoint type group communalstandpipe', 'waterpoint type group dam',
                 'waterpoint_type_group_handpump',
                 'waterpoint_type_group_improvedspring', 'waterpoint_type_group_other'],
               dtype='object')
In [59]: df11 = data redux.drop(['extraction type class other', 'waterpoint type group othe
         r', 'source type other', 'quantity unknown', 'quality group unknown', 'payment unkno
         wn', 'payment_other', 'management_unknown', 'management_other'], axis=1)
         print(df11.shape)
         (35303, 75)
In [60]: df12 = df11.drop(['permit', 'basin Internal',
                 'basin_LakeNyasa', 'basin_LakeRukwa', 'basin_LakeTanganyika',
                 'basin LakeVictoria', 'basin Pangani', 'basin Rufiji',
                 'basin_Ruvuma_SouthernCoast', 'basin_Wami_Ruvu', 'region_Arusha',
                 'region_DaresSalaam', 'region_Iringa', 'region_Kigoma',
                 'region_Kilimanjaro', 'region_Lindi', 'region_Manyara', 'region Mara',
                 'region_Morogoro', 'region_Mtwara', 'region_Mwanza', 'region_Pwani',
                 'region_Rukwa', 'region_Ruvuma', 'region_Shinyanga', 'region_Singida',
                 'region_Tanga', 'management_company',
                 'management other school', 'management parastatal',
                 'management_privateoperator', 'management_trust',
                 'management vwc', 'management waterauthority', 'management waterboard',
                 'management wua', 'management wug'], axis=1)
         print(df12.shape)
```

```
In [61]:
          df12.head(2)
Out[61]:
             amount_tsh gps_height longitude
                                            latitude population construction_year status_group payment_neverpa
           0
                    0.0
                            1399 34.698766
                                          -2.147466
                                                         280
                                                                       2010
                                                                                     0
                   25.0
                                                                                     0
           1
                             686 37.460664 -3.821329
                                                         250
                                                                       2009
In [62]: # Need to split data into X and y dataframes.
          y = df12['status group']
          X = df12.drop(columns=['status_group'], axis=1)
          print(y.shape)
          print(X.shape)
          (35303,)
          (35303, 37)
In [63]: # Create train and test sets.
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_s
          tate=42)
          print(X_train.shape)
          print(X test.shape)
          print(y train.shape)
          print(y_test.shape)
          (26477, 37)
          (8826, 37)
          (26477,)
          (8826,)
```

Decision Tree Model: C1

This is using the 2 class target, with simplified data-set of 37 features.

```
In [87]: # Train a DT classifier
    treec1 = DecisionTreeClassifier(max_depth=3, random_state=10)
    treec1.fit(X_train, y_train)

Out[87]: DecisionTreeClassifier(max_depth=3, random_state=10)

In [88]: # Predict on training and test sets
    training_preds = treec1.predict(X_train)
    test_preds = treec1.predict(X_test)

In [89]: # Get results
    training_accuracy = accuracy_score(y_train, training_preds)
    test_accuracy = accuracy_score(y_test, test_preds)

    print('Training Accuracy: {:.4}%'.format(training_accuracy * 100))
    print('Test Accuracy: {:.4}%'.format(test_accuracy * 100))

Training Accuracy: 70.3%
    Test Accuracy: 70.64%
```

```
In [90]: # Get detailed results (Train and Test)
      # Classification Report
      print('-----
      print('MODEL - Decision Trees C1')
      print('Classification Report - TRAIN')
      )
      print(classification_report(y_train, training_preds))
      # Confusion Matrix
      print('-----
      print('Confusion Matrix - TRAIN')
      print(pd.crosstab(y_train, training_preds, rownames=['True'], colnames=['Predicte
      d'], margins=True))
      print('\n-----
      -')
      # Classification Report
      print('-----
      print('Classification Report - TEST')
      print('------
      print(classification_report(y_test, test_preds))
      # Confusion Matrix
      print('-----
      print('Confusion Matrix - TEST')
      print(pd.crosstab(y_test, test_preds, rownames=['True'], colnames=['Predicted'], m
      argins=True))
      print('-----'
```

MODEL -	Decisio	n Trees	s C1
Classifi	cation	Report	- TRAIN

Classifica		_							
					f1-score				
	0	0.6	8	0.87	0.76	14600			
	1			0.50					
accura					0.70	26477			
macro a	avg	0.7	2	0.68	0.68				
weighted a	avg	0.7	1	0.70	0.69	26477			
Confusion Matrix - TRAIN									
Predicted									
True									
0	12631	1969	1460	0					
1		5983							
All	18525	7952	2647	17					
Classifica		_							
					f1-score				
	0	0.6	8	0.86	0.76	4839			
	1				0.61				
0.000					0.71	8826			
accura		0.7	2	0.60	0.71				
					0.09				
werghtea	. v g	0.7	_	0.71	0.70	0020			
Confusion									
Predicted									
True	U	1	VII						
	4172	667	4839						
	1924								
All	6096								

```
In [109]: # Take a look at some feature importance and see if any differnt.
    importance = pd.DataFrame(data={'features': X_train.columns, 'importance': treec1.
        feature_importances_})
    importance = importance.sort_values('importance', ascending=False)
    importance = importance.reset_index()
    importance.drop('index', axis=1, inplace=True)
    importance.head(7)
```

Out[109]:

	features	importance
0	quantity_dry	0.498694
1	construction_year	0.263405
2	amount_tsh	0.166462
3	quantity_enough	0.068612
4	latitude	0.002827
5	source_type_river_lake	0.000000
6	source_type_shallowwell	0.000000

Observations on Model C1

The simplification of the data did not seem to have an effect on Accuracy or Recall of the model. At max_depth 3 the accuracy was 0.71 and recall for class 1 is 0.52. I tried various values for max_depth and got some improvement, as sfollows: @ 6 Ac=0.72; @12 Ac=0.78; @18 Ac=0.78 and Recaal for class 1 was 0.75. But lots of overtaining when max-depth at 18. Feature Importance was examined at max depth of 12 and not too many suproses. One thought is that the continuous variables seem to be playing a larger role - perhaps just in terms of the variety of data within?

XGBoost Model: C1

Just curios to see if another type of model will react differently to the refined dataset... This is using the 2 class target, with simplified data-set of 37 features.

```
In [93]: # Import libraries needed
    from xgboost import XGBClassifier
    from sklearn.model_selection import GridSearchCV
```

```
In [94]: # Instantiate XGBClassifier
    xgc1 = XGBClassifier
    xgc1.fit(X_train, y_train)

# Predict on training and test sets
    training_preds = xgc1.predict(X_train)
    test_preds = xgc1.predict(X_test)
```

```
In [95]: # Get results
    training_accuracy = accuracy_score(y_train, training_preds)
    test_accuracy = accuracy_score(y_test, test_preds)

print('Training Accuracy: {:.4}%'.format(training_accuracy * 100))
print('Test Accuracy: {:.4}%'.format(test_accuracy * 100))
```

Training Accuracy: 77.23% Test Accuracy: 76.59%

```
In [96]: # Get detailed results for train and test
    # Classification Report
    print('-----
    print('MODEL = XGBoost-C1')
    print('\nClassification Report - TRAIN')
    print('-----
    print(classification report(y train, training preds))
    print('-----
    # Confusion Matrix
    print('-----'
    print('Confusion Matrix - TRAIN')
    print('-----
    print(pd.crosstab(y train, training preds, rownames=['True'], colnames=['Predicte
    d'], margins=True))
    print('-----'
    print('------
    # Classification Report
    print('------
    print('Classification Report - TEST')
    print('------
    print(classification_report(y_test, test_preds))
    print('-----
    # Confusion Matrix
    print('-----
    print('Confusion Matrix - TEST')
    print(pd.crosstab(y_test, test_preds, rownames=['True'], colnames=['Predicted'], m
    argins=True))
    print('-----'
    )
```

MODEL = XGBoost-C1

0

1 All 4116 723 4839 1343 2644 3987

5459 3367 8826

	pı	ecision	recall	f1-score	support
	0	0.76	0.86	0.81	14600
	1		0.67		
	1	0.79	0.07	0.72	110//
accur	acy			0.77	26477
macro	avg	0.78			26477
weighted	avg	0.77	0.77	0.77	26477
 Confusion	Matris	, mp.a.t.			
Predicted True	(1	All		
0	12543	2057	14600		
1	3971	7906	11877		
All	16514	9963	26477		
					
Classific	ation F	Report -			
	pı	recision	recall	il-score	support
	0	0.75	0.85	0.80	4839
	1	0.79	0.66	0.72	3987
accur	acv			0.77	8826
macro	_	0.77	0.76		
weighted	-			0.76	
girccu	~ · · ·	0.77	0.77	0.70	3020
Confusion	Matrix	TEST			
Predicted		1	 All		
True					

```
In [97]: # Try some optimization w/ GridSearchCV
param_grid = {
    'learning_rate': [0.2, 0.4],
    'max_depth': [5, 7, 9],
    'min_child_weight': [2, 4],
    'subsample': [0.5, 0.7],
    'n_estimators': [100],
}
```

```
In [98]: # Code to run it

grid_xgc1 = GridSearchCV(xgc1, param_grid, scoring='accuracy', cv=None, n_jobs=1)
grid_xgc1.fit(X_train, y_train)

best_parameters = grid_xgc1.best_params_

print('Grid Search found the following optimal parameters: ')
for param_name in sorted(best_parameters.keys()):
    print('%s: %r' % (param_name, best_parameters[param_name]))

training_preds = grid_xgc1.predict(X_train)
test_preds = grid_xgc1.predict(X_test)
training_accuracy = accuracy_score(y_train, training_preds)
test_accuracy = accuracy_score(y_test, test_preds)

print('')
print('Training Accuracy: {:.4}%'.format(training_accuracy * 100))
print('Validation accuracy: {:.4}%'.format(test_accuracy * 100))
Grid Search found the following optimal parameters:
```

Grid Search found the following optimal parameters:
learning_rate: 0.2
max_depth: 9
min_child_weight: 4
n_estimators: 100
subsample: 0.7

Training Accuracy: 89.78%
Validation accuracy: 81.69%

```
In [99]: # Get detailed results (Train and Test)
     # Classification Report
     print('-----
     print('MODEL = XGBoost-C1-Optimized1')
     print('\nClassification Report - TRAIN')
     )
     print(classification_report(y_train, training_preds))
     # Confusion Matrix
     print('-----
     print('Confusion Matrix - TRAIN')
     print('-----'
     )
     print(pd.crosstab(y_train, training_preds, rownames=['True'], colnames=['Predicte
     d'], margins=True))
     print('\n-----
     -')
     # Classification Report
     print('-----
     print('Classification Report - TEST')
     print('------
     print(classification_report(y_test, test_preds))
     # Confusion Matrix
     print('------
     )
     print('Confusion Matrix - TEST')
     print('-----'
     print(pd.crosstab(y test, test preds, rownames=['True'], colnames=['Predicted'], m
     argins=True))
     print('-----'
     )
```

```
MODEL = XGBoost-C1-Optimized1
```

	precision	recall	f1-score	support	
0	0.88	0.94	0.91	14600	
1	0.92	0.85	0.88	11877	
agguragy			0.90	26477	
accuracy			0.90	204//	
macro avg	0.90	0.89	0.90	26477	
weighted avg	0.90	0.90	0.90	26477	

Confusion Matrix - TRAIN

Predicted	0	1	All
True			
0	13674	926	14600
1	1781	10096	11877
A11	15455	11022	26477

Classification Report - TEST

	precision	recall	f1-score	support	
0	0.81	0.87	0.84	4839	
1	0.82	0.76	0.79	3987	
accuracy			0.82	8826	
macro avg	0.82	0.81	0.81	8826	
weighted avg	0.82	0.82	0.82	8826	

Confusion Matrix - TEST

______ Predicted 0 1 All True 4193 646 4839 1 970 3017 3987 All 5163 3663 8826

```
In [100]: #try second round of GSCV
          # Try some optimization w/ GridSearchCV
          param grid = {
              'learning rate': [0.2, 0.3],
              'max_depth': [8, 9, 11],
              'min_child_weight': [4, 5],
              'subsample': [0.7, 0.8],
              'n_estimators': [100],
```

```
In [101]: # Code to run it

grid2_xgc1 = GridSearchCV(xgc1, param_grid, scoring='accuracy', cv=3, n_jobs=1)
grid2_xgc1.fit(X_train, y_train)

best_parameters = grid2_xgc1.best_params_

print('Grid Search found the following optimal parameters: ')
for param_name in sorted(best_parameters.keys()):
    print('%s: %r' % (param_name, best_parameters[param_name]))

training_preds = grid2_xgc1.predict(X_train)
test_preds = grid2_xgc1.predict(X_test)
training_accuracy = accuracy_score(y_train, training_preds)
test_accuracy = accuracy_score(y_test, test_preds)

print('')
print('Training Accuracy: {:.4}%'.format(training_accuracy * 100))
print('Validation accuracy: {:.4}%'.format(test_accuracy * 100))
```

```
Grid Search found the following optimal parameters:
learning_rate: 0.2
max_depth: 11
min_child_weight: 4
n_estimators: 100
subsample: 0.7

Training Accuracy: 92.58%
Validation accuracy: 82.11%
```

```
In [108]: # Get detailed results (Train and Test)
      # Classification Report
     print('-----
                          _____
      print('MODEL = XGBoost-C1-Optimized1')
      print('\nClassification Report - TRAIN')
      )
     print(classification_report(y_train, training_preds))
      # Confusion Matrix
     print('-----
     print('Confusion Matrix - TRAIN')
     print('-----'
      print(pd.crosstab(y_train, training_preds, rownames=['True'], colnames=['Predicte
      d'], margins=True))
      print('\n-----
      -')
      # Classification Report
      print('-----
      print('Classification Report - TEST - XGBoost-C-Optimized2')
      print('------
     print(classification_report(y_test, test_preds))
      # Confusion Matrix
      print('-----'
      )
     print('Confusion Matrix - TEST - XGBoost-C-Optimized2')
     print('-----'
      print(pd.crosstab(y test, test preds, rownames=['True'], colnames=['Predicted'], m
      argins=True))
     print('-----'
      )
```

MODEL =	XGBoost-C1-Optimized1	L
---------	-----------------------	---

Classification	Report	-	TRAIN

Classificati						
	pre	ecision	recal	11	f1-score	support
,	0	0 01	0 () E	0.00	14600
					0.93	
-	1	0.94	. 0.8	39	0.92	11877
accuracy					0.93	26477
macro avo			0.9			26477
weighted avo	g	0.93	0.9	93	0.93	26477
Confusion Ma	atrix	- TRAI	N			
Predicted						
True	U		. AII			
0 1	13942	658	14600			
			11877			
All i						
Classificati						
	pre	ecision	recal	 11	f1-score	support
(pre	ecision	recal	 11 37	f1-score 0.84	support
(pre	ecision	recal	 11 37	f1-score	support
(pre	ecision	recal	 11 37	f1-score 0.84	support 4839 3987
(pre 0 1	0.82 0.82	n recal	 11 37 77	f1-score 0.84 0.79 0.82 0.82	support 4839 3987 8826
(accuracy	pre pre	0.82 0.82	n recal	 11 37 77	f1-score 0.84 0.79 0.82 0.82	support 4839 3987 8826
accuracy macro avo weighted avo	pre	0.82 0.82	n recal	37 77 32 32	f1-score 0.84 0.79 0.82 0.82 0.82	support 4839 3987 8826 8826 8826
accuracy macro avo	pre	0.82 0.82 0.82 0.82	0.8 0.7 0.8 0.8	37 77 32 32	f1-score 0.84 0.79 0.82 0.82 0.82	support 4839 3987 8826 8826
accuracy macro ave weighted ave Confusion Ma	pre	0.82 0.82 0.82 0.82	0.8 0.7 0.8 0.8	37 77 32 32	f1-score 0.84 0.79 0.82 0.82 0.82	support 4839 3987 8826 8826
accuracy macro avo	pre	0.82 0.82 0.82 0.82	0.8 0.7 0.8 0.8 0.8	37 77 32 32	f1-score 0.84 0.79 0.82 0.82 0.82	support 4839 3987 8826 8826
accuracy macro ave weighted ave Confusion Ma Predicted True 0	pre	0.82 0.82 0.82 0.82	0.8 0.7 0.8 0.8 0.8 7 - XGBoos All	37 77 32 32	f1-score 0.84 0.79 0.82 0.82 0.82	support 4839 3987 8826 8826

```
In [105]: # Take a look at some feature importance for the original XGBoost model above...
importance = pd.DataFrame(data={'features': X_train.columns, 'importance': xgc1.fe
    ature_importances_})
importance = importance.sort_values('importance', ascending=False)
importance = importance.reset_index()
importance.drop('index', axis=1, inplace=True)
importance.head(20)
```

Out[105]:

	features	importance
0	quantity_dry	0.201595
1	extraction_type_class_gravity	0.129216
2	amount_tsh	0.101596
3	$waterpoint_type_group_communal standpipe$	0.063385
4	quantity_enough	0.059830
5	extraction_type_class_handpump	0.054976
6	construction_year	0.045690
7	waterpoint_type_group_handpump	0.042052
8	source_type_shallowwell	0.036609
9	source_type_spring	0.032746
10	waterpoint_type_group_improvedspring	0.028645
11	longitude	0.025695
12	source_type_river_lake	0.022085
13	quality_group_good	0.021056
14	payment_paywhenschemefails	0.020574
15	gps_height	0.019244
16	quantity_seasonal	0.019124
17	source_type_borehole	0.016783
18	population	0.015459
19	extraction_type_class_motorpump	0.011583

Observations on XGBoost Model C1: with 2 classes and simplified dataset.

As expected, XGBoost did perform better than decision trees. The plain default model had an accuracy of 0.77 and recall of 0.66. I tried 2 rounds of tuning with GridSearchCV. Yes, some noticable overtraining but ended up with a model having max_depth = 11 and min_child = 4 and obtained an accuracy of 0.82 and recall of 0.77. In this model, the feature importances showed up differently with quantity, extraction_type, and waterpoint_type havign the most importance and location (longittude) falling down the list to number 11 (0.026).

```
In [ ]:
```

APPENDIX

```
In [ ]: # Different format of confusion matrix
        pd.DataFrame(confusion_matrix(y_test, yhat), columns=['Pred +', 'Pred Fix', 'Pred
         -'], index=['Act +', 'Pred Fix', 'Act -'])
In [ ]: | # Confusion matrix plot
        # Compute confusion matrix
        cnf_matrix = confusion_matrix(y_test, yhatGS)
        np.set_printoptions(precision=2)
        print (classification_report(y_test, yhatGS))
        \# Plot non-normalized confusion matrix
        plt.figure()
        plot_confusion_matrix(cnf_matrix, classes=['Functional',
                                                    'Functional needs repair',
                                                    'Non functional'],
                                                    normalize= False,
                                                    title='Confusion matrix')
In [ ]:
```