

Numerische Darstellung und Codes (üb. NUM)

Übungen Digitales Design

2	Zahlensysteme
_	Lamensysteme

- 2.1 Bestimmen Sie, bis zu welchem Wert man zählen kann, mit Zahlen codiert auf:
 - a) 4 bits

d) 16 bits

b) 8 bits

e) 32 bits

- c) 10 bits
- 2.2 Bestimmen Sie, bis zu welchem Wert man zählen kann, mit Hexadezimalzahlen codiert auf:
 - a) 4 Ziffern

b) 8 Ziffern

3 Umwandlung von Zahlensystemen

3.1 Führen Sie die Umwandlung folgender reiner Binärzahlen im Dezimalformat durch:

a)
$$110_2 = ?_{10}$$

d)
$$1011_2 = ?_{10}$$

b)
$$1111_2 = ?_{10}$$

e)
$$111111111_2 = ?_{10}$$

- c) $01001010_2 = ?_{10}$
- 3.2 Führen Sie die Umwandlung folgender Dezimalzahlen im Binärformat durch:

a)
$$125_{10} = ?_2$$

d)
$$256_{10} = ?_2$$

b)
$$16_{10} = ?_2$$

e)
$$9_{10} = ?_2$$

- c) $65113_{10} = ?_2$
- 3.3 Führen Sie die Umwandlung folgender Hexadezimalzahlen im Binärformat durch:

- a) $E_{16} = ?_2$
- b) $15C_{16} = ?_2$
- c) $AB3D_{16} = ?_2$

- d) $9F7_{16} = ?_2$
- e) $2346_{16} = ?_2$
- 3.4 Führen Sie die Umwandlung folgender Binärzahlen im Hexadezimalformat durch:
 - a) $1010_2 = ?_{16}$
 - b) $110_2 = ?_{16}$
 - c) $11101011_2 = ?_{16}$

- d) $0101111_2 = ?_{16}$
- e) $1100_2 = ?_{16}$
- 3.5 Führen Sie die Umwandlung folgender Hexadezimalzahlen im Dezimalformat durch:
 - a) $D_{16} = ?_{10}$
 - b) $15C_{16} = ?_{10}$
 - c) $234_{16} = ?_{10}$

- d) $FE_{16} = ?_{10}$
- e) $A6B9_{16} = ?_{10}$
- 3.6 Führen Sie die Umwandlung folgender Dezimalzahlen im Hexadezimalformat durch:
 - a) $128_{10} = ?_{16}$
 - b) $16_{10} = ?_{16}$
 - c) $65113_{10} = ?_{16}$

- d) $209_{10} = ?_{16}$
- e) $9_{10} = ?_{16}$

- 4 Operationen auf Logikzahlen
- 4.1 Führen Sie im Binärsystem folgende Additionen durch:
 - a) $0000'1100_2 + 0001'1110_2$

c) $0011'0100_2 + 0111'1111_2$

b) $0000'11111_2 + 0101'1010_2$

- d) $0111'1111_2 + 0000'0001_2$
- 4.2 Führen Sie im Binärsystem folgende Substraktionen durch:
 - a) $0100'0011_2 0000'1001_2$

c) $0011'0100_2 - 0010'1000_2$

b) $1010'0110_2 - 0110'1100_2$

- d) $1000'0000_2 0000'0001_2$
- 4.3 Führen Sie im Binärsystem folgende Multiplikationen durch:
 - a) $1010_2 * 0110_2$

c) $1000_2 * 0110_2$

b) 0110₂ * 1010₂

d) 0111₂ * 1110₂

4.4 Führen Sie im Hexadezimalsystem folgende Additionen durch:

a)
$$1234_{16} + CC_{16}$$

c)
$$1234_{16} + FF_{16}$$

b)
$$8888_{16} + FC_{16}$$

d)
$$89AB_{16} + AB89_{16}$$

4.5 Bestimmen Sie den Binärwert von:

a)
$$(11_2)^2$$

c)
$$(1111_2)^2$$

b)
$$(111_2)^2$$

Durch Analogie, schätzen Sie den Binärwert von $(111111_2)^2$ und prüfen Sie damit die Formel: $(2^n-1)^2=2^{2n}-2*2^n+1$.

- 5 Codes
- 5.1 Führen Sie folgende Additionen auf BCD-codierte Zahlen durch:

a)
$$0001'0010'0011_{BCD} + 0011'0010'0001_{BCD}$$

c)
$$1000'0101_{BCD} + 0000'0111_{BCD}$$

b)
$$0011'0110'1001_{BCD} + 0010'0110'0100_{BCD}$$

d)
$$1001'1001_{BCD} + 0000'0001_{BCD}$$

- 5.2 Führen Sie die Umwandlung des Gray-Codes $1001_{\rm Gray}$ mit Hilfe der Rekursionsformel im Skript durch.
 - 6 Darstellung von Arithmetischen Zahlen
- 6.1 Stellen Sie folgende Dezimal- und reine Binärzahlen mit den Verfahren Vorzeichen-Grösse, Einer-Komplement und Zweierkomplement auf 8 Bits codiert dar:

a)
$$+18_{10}$$

b)
$$-3_{10}$$

c)
$$0_{10}$$

f)
$$-100_{10}$$

6.2 Führen Sie eine Zeichenänderung auf die folgenden, im Zweierkomplement codierten Zahlen durch:

6.3 Gegeben sind die Zahlen 0001_2 und 1001_2 , ausgedrückt als Zweierkomplement auf 4 Bits codiert. Stellen Sie dieselben Zahlen als Zweierkomplement auf 8 Bits codiert dar.