Assignment Projecto Example p ISyE 6673: Financial Optimization

Dr. Arhttps://powcoder.com

H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

August Add WeChat powcoder

Problem setup and model https://powcoder.com

Add WeChat powcoder

Dr. Arthur Delarue ISvE 6673: Financial Optimization August 29, 2022

A short-term financing problem

Your company has the following you have coess to the following thousands of dollars):

	Net Cash Flow	Month
WCC	tps://po	J.nt1 Feb
	-100	Feb
	200	Mar
Chat	dd WeC	ApA
Jiiut	50	May
	300	Jun

(+ is revenue, - is payment)

 You can access a line of credit of up to \$100k at 1% interest per

You can issue 90-day commercial paper bearing a total interest of 2% over the 3-month period (can only issue in the first three

ponty issue in the first thr

 Each month you can invest excess funds at an interest rate of 0.3% per month

Optimization model

• **Step 1:** What are the decision variables?

x_i is the amount borrowed from the line of realit in month $i=1,\ldots,1$ SS1 z_{i} is the surplus funds available at the end of month $i=1,\ldots,6$

• **Step 2a:** What are the variable bounds?

$$\mathbf{https}_{z_i \geq 1}^{0.5} \not\mid \mathbf{powcoder.com}$$

• **Step 2b:** What are the constraints?

(surplus = money_in - money_out) **Month 2:** z_1 **W**₁ **C**-hat powcoder

- Month 3: $z_3 = x_3 + y_3 + 1.003z_2 1.01x_2 + 200$
- Month 4: $z_4 = x_4 + 1.003z_3 1.01x_3 1.02y_1 200$
- Month 5: $z_5 = x_5 + 1.003z_4 1.01x_4 1.02y_2 + 50$
- Month 6: $z_6 = 1.003z_5 1.01x_5 1.02y_3 + 300$
- **Step 3:** What is the objective? $\max z_6$

 $0 \quad \forall i = 1, \ldots, 6$

6 23

Optimization model

Assignment Project Exam Help

```
-x_1 - y_1 +z_1 = -150

-x_2 - y_2 +1.01x_1 -1.003z_1 +z_2 = -100

-x_1 + y_2 + y_3 + y_4 + y_4 + y_5 + y_5 + y_6 + y_
```

Dr. Arthur Delarue ISyE 6673: Financial Optimization August 29, 2022

Solving the optimization model in Excel

Assignment Project Exam Help

. https://powcoder.com

Add WeChat powcoder

ISvE 6673: Financial Optimization August 29, 2022

https://powcoder.com

Add WeChat powcoder

Dr. Arthur Delarue ISvE 6673: Financial Optimization August 29, 2022

Optimal solution

- Optimal final surplus is \$92,497 and it's impossible to do better
- Big surplus at the end of March is invested to meet April payment and repay the January 90-day loan.

Dr. Arthur Delarue

Sensitivity analysis

AYou bring the optimal financing par to jour manage x an early of the last of the part of

Curveball.https://powcoder.com

Your manager asks you:

 What if our January payment was \$200k instead of \$150\(\text{Add WeChat powco}\)

- What if our March revenue was \$250k instead of \$200k?
- The negative cash flow in January is because we are purchasing a \$100k imaging device. The vendor just called and offered us to defer payment by 6 months at a 4% interest rate. Should we take the deal?

Your reaction

- Possible solution: maybe I can just re-solve the optimization problem
- for all the possible inputs my manager asks about?

 Yentup Second Dober Configuration better!

Pro tip

There is Alot of white infernation in the sensitivity report of the se

Sensitivity report https://powcoder.com

Add WeChat powcoder

Dr. Arthur Delarue ISvE 6673: Financial Optimization August 29, 2022

Shadow prices of constraints

Constraints

1.5	Sal	gnment	Value 1	Shadow Price	Constraint F.H. Side	Allowable n reas	All (wable Decirease
	\$F\$6	January Net cash flow	-150	1.0373	-150	150	89.1719
	\$F\$7	February Net cash flow	-100	1.0302	-100	50.9804	49.0196
	\$F\$8	March Net cash flow	200	1.02	200	203.4344	90.6833
	\$F\$9	April Net cash flow	-200	1.0169	-200	204.0447	90.9553
	\$F\$10	May Net as tow / 1	101X20C	$\bigcirc \bigcirc $	1 (50	111 52	50
	\$F\$1:	L-June Net ash flow	V 300	Out	3 80	1E+30	92.4969

How to read the report:

- One row per constraint $g(z_i)$, $z_i \leq b_i$ of the value of $g_i(z_i)$ (left-hand ode) when we page in the
 - optimal decision variable values
- Constraint "right-hand side" is b_i
- The "shadow price" tells us the sensitivity of the optimum to a change in the constraint right-hand side!

Shadow prices of constraints

As	nstrair S 1	gnment	Prior	e.c.t	E X		All Walls
	Cell	Name	Value	Price	R.H. Side	Increase	Decrease
	\$F\$6	January Net cash flow	-150	1.0373	-150	150	89.1719
	\$F\$7	February Net cash flow	-100	1.0302	-100	50.9804	49.0196
	\$F\$8	March Net cash flow /	200	102	200	203.4344	90.6833
	\$F\$9	Airi Net ash Row	Ανόα	9 0.	-100	204 0-47	90.9553
	\$F\$10	May Net ash flow	50	1.01	50	52	50
	\$F\$11	June Net cash flow	300	1	300	1E+30	92.4969

If the right-hand side of a constraint with shadow price u changes by an amount Δ , the optimal objective value changes by $u \cdot \Delta$, as long as Δ is within a certain range.

The power of shadow prices

≜ Co	onstrair	nts		4	Dan		-4	T		TT_1	
AS	SI	gi	me	nt	Firal	5ña	ow	Constraint	d li wab e	All v able	p
	Cell	$\overline{}$	Name		Value J	Pri	<u> </u>	R.H. Side	Increase	Degrease	<u>+</u>
	\$F\$6	Janua	ry Net cash flo	w	-150	(1.0373	-150	150	89.1719)
	\$F\$7	Febru	ary Net cash fl	ow	-100	,	1.0302	-100	50.9804	19.0196	3
	\$F\$8 -	Març	h Net cash flov	///	200		4 02	200	203.4344	90.6833	3
	\$F\$9	Alri	Net a h flow	// r	1 200	$\overline{\mathbf{O}}$	1.0 69	1 - 1	1040147	90.9553	3
	\$F\$10	May i	Net ash flow	/ / -	V V ₅₀		1.01	1 • 50		50	ב כ
	\$F\$11	June I	Net cash flow		300		1	300	1E+30	92.4969	•

Q1: What if our January payment was \$200k instead of \$150k?

- · Shadward of White Constitutes 100 WCOCET
- \$50k is less than the allowable decrease (\$89k)
- $50 \cdot 1.0373 = 51.865$
- **Answer:** Our June surplus would *decrease* by \$51,865

The power of shadow prices

▲ Co	onstrair	nts				4 1	D	4	T7		TT_1.	
AS	SI	ខ្នា		ne	Π	IJ	Fir al	The OW	Constraint	<i>c</i> ll wab e	All vable	
	Cell	$\mathcal{Q}_{\underline{}}$		Name			Value J	Price	R.H. Side	Increase	Decrease	
	\$F\$6	Janua	ary N	et cash flo	w		-150	1.0373	-150	150	89.1719	
	\$F\$7	Febr	uary l	Net cash f	ow		-100	1.0302	-100	50.9804	49.0196	
	\$F\$8 •	Mar	ch Ne	t cash flow	v /	,	200	102	200	203.4344	90.6833	
	\$F\$9	A) ri	Net	ash flow	//	11	7 7290	7.0 64	1 1 - 100	1020147	90.9553	
	\$F\$10	May	Net	ash flow	//	יץ	V V ₅₀	\mathcal{L}_{01}	∠⊥ • √	CITH ₅₂	50	
	\$F\$11	June	Net c	ash flow			300	1	300	1E+30	92.4969	

Q2: What if our March revenue was \$250k instead of \$200k?

- Shaward of Worthstan 21. DOWCOOLT
- \$50k is less than the allowable increase
- $50 \cdot 1.02 = 51$
- **Answer:** Our June surplus would *increase* by \$51,000

The power of shadow prices

Constraints **Final** Shadow Constraint **Allowable** Allowable \$F\$7 February Net cash flow -100 -100 50.9804 49.0196 March Net cash flow 200 1.02 200 203.4344 90.6833 \$F\$9 April Net cash flow -200 1.0169 -200 204.0447 90.9553 \$F\$10 May Net cash flow 50 92.4969

Q3: The negative cash flow in January is because we are purchasing a \$100k imaging device. The vendor just called and offered us to defer payment by 6 month at a 4% interest rate. Should we take the deal?

- Shadow price of January constraint is 1 0373
- Reducing cash requirements by \$1 in January increases wealth by \$1.0373 in June
- "Break-even" interest rate is 3.73% (and \$100k is allowable increase)
- Answer: No, we should not accept the deal (net loss \$270).

Your manager's next query

Assignment Project Exam Help

- You answered your manager's questions! Good job!
- However, your manager is still dubious.

 Out the Sproplets of Will eather and out all years in January. Are you sure we aren't better off withdrawing more from the line of credit in January?

Ugh, and the ball the sold the sold were that question as well!

Reduced costs of variables

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$656	Jamary Line of condit	+ Day	-0.0032	0	-0-0032	1E+3
\$97	Feorua y in c c e it	50 9804	UIG		0 0037	
\$C\$8	Merch Line of credit	0	.0071	. 0	0.0071	1E+30
\$C\$9	April Line of credit	0	-0.0032	. 0	0.0032	1E+30
\$C\$10	May Line of credit	0	0	0	0	1E+30
\$D\$6	January Commercial paper,	, 150	0	0	0.0040	0.0032
\$D\$7	February commercial paper	49,0196	T 7 0 0	C O	r OG	0.0032
\$D\$8	Mar h Conner ial ane	2 /3 43 .4	$\mathbf{V} \mathbf{U} \mathbf{U}$		0.0 71	0
\$E\$6	January Excess funds	0	-0.0040	0	0.0040	1E+30
\$E\$7	February Excess funds	0	-0.00714	. 0	0.0071	1E+30
\$E\$8	March Excess funds	351.9442	0	0	0.0039	0.0032
\$E\$9	April Excess funds		-0.0039	0	0.0039	_1E+30
\$E\$10	May excess unds	0	1 .407	100	T 7 9:607	LE/30
	June Elicess unds	92, 969	0		VV 15+30	JUG

- One row per decision variable
- The "reduced cost" of a zero decision variable tells you by how much the objective changes if the decision variable value increases
- Each dollar we borrow from the line of credit in January decreases our final wealth by \$3.2

https://powcoder.com

Add WeChat powcoder

Dr. Arthur Delarue ISyE 6673: Financial Optimization August 29, 2022 22 | 2

. https://powcoder.com

Add WeChat powcoder

Dr. Arthur Delarue ISvE 6673: Financial Optimization