INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT356 8-input multiplexer/register; 3-state

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT356

FEATURES

- Non-transparent data latches
- · Transparent address latch
- · Easily expanding
- · Complementary outputs
- · Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT356 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL

(LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT356 data selectors/multiplexers contain full on-chip binary decoding, to select one-of-eight data sources. The data select address is stored in transparent latches that are enabled by a LOW on the latch enable input $\overline{\text{LE}}$.

Data on the 8 input lines (D_0 to D_7) is clocked into a edge-triggered data register by a LOW-to-HIGH transition of the clock (CP).

When the output enable input $\overline{OE}_1 = HIGH$, $\overline{OE}_2 = HIGH$ or $OE_3 = LOW$, the outputs go to the high impedance OFF-state.

Operation of these output enable inputs does not affect the state of the latches and register.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STWIDOL	PARAMETER	CONDITIONS	нс	нст	UNII
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
	S_n , \overline{LE} to Y, \overline{Y}		24	25	ns
	CP to Y, \overline{Y}		20	22	ns
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	123	125	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT356

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
8, 7, 6, 5, 4, 3, 2, 1	D ₀ to D ₇	data inputs
9	СР	clock input data (LOW-to-HIGH, edge-triggered)
10	GND	ground (0 V)
11	<u>LE</u>	address latch enable input (active LOW)
14, 13, 12	S ₀ , S ₁ , S ₂	select inputs
15, 16	\overline{OE}_1 , \overline{OE}_2	output enable inputs (active LOW)
17	OE ₃	output enable input (active HIGH)
18	Y	3-state multiplexer output (active LOW)
19	Υ	3-state multiplexer output (active HIGH)
20	V _{CC}	positive supply voltage

8-input multiplexer/register; 3-state

74HC/HCT356

FUNCTION TABLE

INPUTS						OUT	PUTS		
Al	DDRESS	(1)		OU ⁻	OUTPUT ENABLE				DESCRIPTION
S ₂	S ₁	S ₀	СР	ŌE ₁	OE ₂	OE ₃	Y	Ŧ	
X	Х	Х	Х	Н	Х	Х	Z	Z	outputs in
X	X	X	X	X	H	X	Z	Z	high impedance
Х	Х	Х	Х	Х	Х	L	Z	Z	OFF-state
L	L	L	1	L	L	Н	D _{0n}	\overline{D}_{0n}	
L	L	H	1	L	L	Н	D _{1n}	<u>D</u> _{1n}	
L	H	L 	 ↑	L	L	H	D _{2n}	$\underline{\underline{D}}_{2n}$	
L	Н	H	ļ	L	L	Н	D _{3n}	D _{3n}	data is clocked
Н	L	L	1	L	L	Н	D _{4n}	$\overline{\underline{D}}_{4n}$	into latch
H	L	H	↑	L	L	H	D _{5n}	$\underline{\underline{D}}_{5n}$	
H	H	L		L	L	H	D _{6n}	\overline{D}_{6n}	
Н	Н	Н	1	L	L	Н	D _{7n}	D _{7n}	
L	L	L	(2)	L	L	Н	D _{0p}	$\overline{\underline{D}}_{0p}$	
L	L	H	(2)	L	L	H	D _{1p}	$\overline{\underline{D}}_{1p}$	
<u> </u>	H	<u>L</u>	(2)	L	L	H	D _{2p}	$\overline{\underline{D}}_{2p}$	
L	Н	H	1	L	L	Н	D _{3p}	D _{3p}	outputs do not
Н	L	L	(2)	L	L	Н	D_{4p}	\overline{D}_{4p}	change states
H	L	H	(2)	L	L	H	D _{5p}	$\overline{\underline{D}}_{5p}$	
H	H	L	(2)	L	L	H	D _{6p}	$\overline{\underline{D}}_{6p}$	
Н	Н	Н	(2)	L	L	Н	D _{7p}	D _{7p}	

Notes

- 1. This column shows the input address set-up with $\overline{LE} = LOW$ (address latch is transparent).
- 2. CP is HIGH, LOW or \downarrow .
- 3. D_{0n} to D_{7n} = data present at inputs D_0 to D_7 when the data latch clock made the transition from LOW-to-HIGH D_{0p} to D_{7p} = data previously latched into the data latch by the LOW-to-HIGH transition of the data latch clock H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - ↑ = LOW-to-HIGH CP transition
 - \downarrow = HIGH-to-LOW CP transition
 - Z = high impedance OFF-state

8-input multiplexer/register; 3-state

74HC/HCT356

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (TEST CONDITIONS				
0.415.01	PARAMETER	74HC									
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(•,	
t _{PHL} / t _{PLH}	propagation delay CP to Y, Y		66 24 19	240 48 41		300 60 51		360 72 61	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay S_n to Y, \overline{Y}		77 28 22	260 52 44		325 65 55		390 78 66	ns	2.0 4.5 6.0	Fig.7
t _{PHL} / t _{PLH}	propagation delay LE to Y, Y		77 28 22	270 54 46		340 68 58		405 81 69	ns	2.0 4.5 6.0	Fig.8
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE}_n to Y, \overline{Y}		41 15 12	125 25 21		155 31 26		190 38 32	ns	2.0 4.5 6.0	Fig.11
t _{PZH} / t _{PZL}	3-state output enable time OE_3 to Y, \overline{Y}		47 17 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.11
t _{PHZ} / t _{PLZ}	3-state output disable time \overline{OE}_n to Y, \overline{Y}		50 18 14	155 31 26		195 39 33		235 47 40	ns	2.0 4.5 6.0	Fig.11
t _{PHZ} / t _{PLZ}	3-state output disable time OE_3 to Y, \overline{Y}		58 21 17	155 31 26		195 39 33		235 47 40	ns	2.0 4.5 6.0	Fig.11
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Figs 6, 7 and 8
t _W	clock pulse width CP HIGH or LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6
t _W	latch enable pulse width LE LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8
t _{su}	set-up time D _n to CP	50 10 9	11 4 3		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.10

8-input multiplexer/register; 3-state

SYMBOL	PARAMETER				T _{amb} (TEST CONDITIONS				
					74H	UNIT					
			+25			-40 to +85		-40 to +125		V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{su}	set-up time S _n to LE	50 10 9	14 5 4		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.9
t _h	hold time D _n to CP	5 5 5	-6 -2 -2		5 5 5		5 5 5		ns	2.0 4.5 6.0	Fig.10
t _h	hold time S _n to LE	5 5 5	-8 -3 -2		5 5 5		5 5 5		ns	2.0 4.5 6.0	Fig.9

8-input multiplexer/register; 3-state

74HC/HCT356

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
D _n , S _n	0.2
D _n , S _n OE ₃	0.25
LE	0.5
ŌE _n , CP	1.0

8-input multiplexer/register; 3-state

74HC/HCT356

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TEST CONDITIONS		
SYMBOL	PARAMETER	74HCT									WAVEFORMO	
STIMBUL	PARAIVIETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(,,		
t _{PHL} / t _{PLH}	propagation delay CP to Y, \overline{Y}		26	51		64		77	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay S _n to Y, Y		28	59		74		89	ns	4.5	Fig.7	
t _{PHL} / t _{PLH}	propagation delay LE to Y, Y		29	63		79		95	ns	4.5	Fig.8	
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE}_n to Y, \overline{Y}		17	34		43		51	ns	4.5	Fig.11	
t _{PZH} / t _{PZL}	3-state output enable time OE_3 to Y, \overline{Y}		18	34		43		51	ns	4.5	Fig.11	
t _{PHZ} / t _{PLZ}	3-state output disable time \overline{OE}_n to Y, \overline{Y}		17	33		41		50	ns	4.5	Fig.11	
t _{PHZ} / t _{PLZ}	3-state output disable time OE_3 to Y, \overline{Y}		20	33		41		50	ns	4.5	Fig.11	
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Figs 6, 7 and 8	
t _W	clock pulse width CP HIGH or LOW	16	8		20		24		ns	4.5	Fig.6	
t _W	latch enable pulse width LE LOW	16	6		20		24		ns	4.5	Fig.8	
t _{su}	set-up time D _n to CP	10	4		13		15		ns	4.5	Fig.10	
t _{su}	set-up time S _n to LE	10	5		13		15		ns	4.5	Fig.9	
t _h	hold time D _n to CP	5	0		5		5		ns	4.5	Fig.10	
t _h	hold time S _n to LE	5	-2		5		5		ns	4.5	Fig.9	

74HC/HCT356

AC WAVEFORMS

Fig.6 Waveforms showing the clock (CP) to the output (Y, \overline{Y}) propagation delays, the clock pulse width and the output transition times.

Fig.8 Waveforms showing the address latch enable input (\overline{LE}) pulse width, the latch enable input to output (Y, \overline{Y}) propagation delays and the output transition times.

Fig.9 Waveforms showing the set-up and hold times for the select input (S_n) to the address latch enable input (\overline{LE}) .

8-input multiplexer/register; 3-state

74HC/HCT356

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".