

Given the measures of l and θ ; AC is an arc; find Δx and Δy

The measures of l and θ and AC is an arc because they are given

c is a radius by the definition of a radius

 $c \cong r$ by the reflexive property

c=r by the definition of \cong segments

 $l=r\theta$ by the arc length formula in radians

 $l = c\theta$ by substitution

 $\frac{l}{\theta} = c$ by division

 $\sin(heta) = rac{ ext{opposite}}{ ext{hypotenuse}}$ by the definition of sine in right angle trigonometry

 $\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}}$ by the definition of cosine in right angle trigonometry

 $\overline{AB} \cong c$ because radii \cong

 $\Delta x \cong \overline{MA}$ by the reflexive property

AB = c and $MA = \Delta x$ by the definition of \cong segments

AB = BM + MA by the sement addition postulate

AB - MA = BM by subtraction

 $c - \Delta x = BM$ by substitution

 $\frac{l}{\theta} - \Delta x = BM$ by substitution

 Δy is an opposite side to $\angle \theta$ by the definition of an opposite side.

 \overline{BM} is an adjacent side to $\angle \theta$ by the definition of an adjacent side

c is the hypotenuse of \triangle BMC by as the side opposite to the right \angle of a \triangle is the hypotenuse

$$\Delta y \cong \Delta y$$
, $\overline{BM} \cong \overline{BM}$, and $c \cong c$ by the reflexive property

$$\Delta y = \Delta y, BM = BM$$
, and $c = c$ by the definition of congurent segments

$$\Delta y = \text{opposite}, BM = \text{adjacent}, \text{ and } c = \text{hypotenuse}$$
 by substitution

$$\sin(\theta) = \frac{\Delta y}{c}, \cos(\theta) = \frac{BM}{c}$$
 by substitution

$$\sin(\theta) = \frac{\Delta y}{\frac{l}{\theta}}, \cos(\theta) = \frac{c - \Delta x}{c}$$
 by substitution

$$\left(\frac{l}{\theta}\right)\sin(\theta) = \Delta y, c\cos(\theta) = c - \Delta x$$
 by multiplication

$$c\cos(\theta)-c=-\Delta x$$
 by substraction

$$-c\cos(\theta) + c = \Delta x$$
 by division

$$-c(\cos(\theta) + 1) = \Delta x$$
 by substitution

$$-\left(\frac{l}{\theta}\right)(\cos(\theta)+1) = \Delta x$$
 by substitution

$$(\frac{l}{\theta})(\cos(\theta)+1)=\Delta x$$
 by the magnitude of \overline{BA}