6. Hausaufgabe im Modul "Berechenbarkeit & Komplexität"

Gruppe HA-EH-Fr-10-12-MA544-3

Aufgabe 1: **AKZEPTANZPROBLEM**

Wir zeigen die Unentscheidbarkeit von A_0 , indem wir das allgemeine Halteproblem $H = \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$ darauf reduzieren. Konstruktion einer Reduktion f:

Aus Kapitel 8, Folie 17 kennen wir $H_0 := \{w | w \# \in H\}$ wobei $H \leq H_0$. Ähnlich wie Kapitel 8, Folie 14: bei Eingabe w berechnet f das Codewort einer Maschine M', die wie M_w arbeitet, aber in einen Endzustand übergeht, sobald M_w hält (egal ob akzeptierend oder ablehnend). Also $H_0 \leq A_0$. Somit ist A_0 unentscheidbar.

Aufgabe 2: PCP

(a) Bei I_1 handelt es sich um ein unäres PCP und wir können die Lösung wie folgt finden:

$$a(|x_1| - |y_1|) + b(|x_2| - |y_2|) = 60a - 66b = 0$$

lässt sich lösen mit a = 11; b = 10 also:

$$x_1^{11} \cdot x_2^{10} = a^{671} \cdot a^{10} = a^{681}$$

$$y_1^{11} \cdot y_2^{10} = a^{11} \cdot a^{670} = a^{681}$$

Bei I_2 existiert keine lösung denn das einzige Paar was den gleichen Suffix hat ist das Paar i=1: (b,ab), also müsste die Sequenz auf den Paar enden.

Dies heißt, dass auch das obere wort auf ab enden muss.

Da es kein $i \in \{1, 2, 3, 4\}$ gibt wobei x_i auf a endet, kann keine Wort existieren $x_i \cdot x_1$ was auf ab endet und somit y_1 als Suffix übereinstimmen kann.

(b) Unter dieser Beschränkung gilt:

$$x_{i_1}\cdots x_{i_n}=0^{a_{i_1}}1^{b_{i_1}}\cdots 0^{a_{i_n}}1^{b_{i_n}}$$

$$y_{i_1} \cdots y_{i_n} = 0^{a'_{i_1}} 1^{b'_{i_1}} \cdots 0^{a'_{i_n}} 1^{b'_{i_n}}$$

Da $a_{i_1}, b_{i_1}, a'_{i_1}, b'_{i_1} \ge 1$ können die Sequenzen nur gleich sein falls $a_i = a'_i$ und $b_i = b'_i$ und somit $x_i = y_i$ für alle $i \in \{i_1, ..., i_n\}$. Es existiert also eine Lösung genau dann, wenn mindestens ein Paar (x_i, y_i) existiert mit $x_i = y_i$. Somit kann man das PCP entscheiden, indem eine Turingmaschine durch alle Paare des PCPs geht und 1 ausgibt falls $x_i = y_i$ und 0 falls keiner der Paare die Bedingung erfüllt.

(c) Wir zeigen $PCP \leq H_0$ durch Konstruktion einer Reduktion f von PCP auf H_0 .

Bei Eingabe eines Wortes w aus PCP, berechnet f das Codewort einer Maschine M', die zunächst das Wort w auf dem Band erzeugt und dann wie M_{PCP} arbeitet (also M_{PCP} hält auf $w \Leftrightarrow M'$ hält auf ϵ). Bei allen anderen Eingaben gibt f eine ungültige Kodierung aus, z.B. 0.

Es gilt für alle Wörter $w \in (\Sigma^* \times \Sigma^*)^*$ eines endliches Alphabets Σ

$$w \in PCP \Leftrightarrow M_{PCP}$$
 hält auf w
 $\Leftrightarrow M'$ hält auf $\epsilon \Leftrightarrow f(w) \in H_0$