8. Reglerentwurf 1

Inhalt

- 1. Ziele des Reglerentwurfs
 - ► Regelkreis mit Störeinkopplung
 - Stabilität und Stabilitätskriterien
- 2. Reglerentwurf mit Wurzelortskurve (WOK)
 - Konstruktion der WOK
 - Reglerentwurf mit WOK
- 3. Reglerentwurf mit Nyquist- und Bodediagramm
 - Vereinfachtes Nyquistkriterium
 - Phasenreserve und Amplitudenreserve

Allgemeine Entwurfsgesichtspunkte

Der Reglerentwurf gliedert sich typischerweise in drei Schritte, nämlich:

- 1. Regelkreisspezifikation und Erstellung eines Wirkplans
- 2. Einfügen von Korrekturgliedern und einstellen (Tuning)
- 3. Simulation

Allgemeine Entwurfsgesichtspunkte

Parameteroptimierung:

- ► Kompromisse sind bei der Erfüllung von Regelungsaufgaben unvermeidlich.
- ▶ Die optimale Erfüllung von Regelungsanforderungen erfordert das Herantasten an Lösungen.
- ▶ Regleroptimierung beinhaltet das schrittweise Auffinden der besten Reglereinstellung.
- Optimierungsstrategien nutzen numerische Suchverfahren im Parameterraum.
- Nach jedem Schritt der Optimierung wird anhand eines Kriteriums die Verbesserung geprüft.
- Es werden Optimierungen im **Zeit-** oder im **Bildbereich** durchgeführt.

Allgemeine Entwurfsgesichtspunkte

Parameteroptimierung im Zeitbereich:

Einfache Optimierungen der Reglerparameter versuchen jeweils einen der Parameter Anregelzeit T_{An} , Ausregelzeit T_{Aus} bzw. Überschwingweite $\widehat{\mathbf{x}}_U$ auf einen möglichst kleinen Wert einzustellen.

Ziele des Reglerentwurfs (Kriterien)

- 1. Stabilität
- 2. Geschwindigkeit, d.h. schnelles Ausregeln von Störungen
- 3. Geringe Regelabweichung, d.h. soll möglichst schnell die Führungsgröße folgen

Ziele des Reglerentwurfs - Stabilität

Warum ist Stabilität für die Regelungstechnik so relevant?

- Wichtigste Anforderung an ein geregeltes System, noch vor der Regelgüte.
- Ein instabiles System kann zu katastrophalem Versagen eines technischen Systems führen.
- Ein für sich asymptotisch stabiles System kann durch den Eingriff einer Regelung instabil gemacht werden!

Regelkreis mit Störeinkopplung

1. Ausgang des Regelkreises

$$X(s) = R(s)G_1(s)G_2(s)\underbrace{(W(s) - X(s))}_{E(s)} + G_2(s)Z(s)$$

2. Offner Kreis (engl. Open loop) $G_0(s) = R(s)G_1(s)G_2(s)$

Regelkreis mit Störeinkopplung

daraus folgt:

$$X(s) = G_o(s)(W(s) - X(s)) + G_2(s)Z(s)$$

$$(1 + G_o(s))X(s) = G_o(s)W(s) + G_2(s)Z(s)$$

$$X(s) = \frac{G_o(s)}{1 + G_o(s)}W(s) + \frac{G_2(s)}{1 + G_o(s)}Z(s)$$

▶ Der Regelkreis hat eine Führungs- und eine Störübertragungsfunktion:

$$G_w(s) = \frac{G_o(s)}{1 + G_o(s)}$$
 und $G_z(s) = \frac{G_2(s)}{1 + G_o(s)}$

Regelkreis mit Störeinkopplung

Führungs- und Störverhalten wird durch die beiden Übertragungsfunktionen bestimmt

Stabilität von Regelkreisen

Definition: Eingangs-Ausgangs-Stabilität eines Regelkreises (BIBO-Stabilität)

Ein Regelkreis gilt dann als stabil, wenn jede beschränkte Eingangsgröße w(t) bzw. z(t) zu einer beschränkten Regelgröße x(t) führt

Formen der Stabilität

- 1. Asymptotische Stabilität
- 2. Stabilität und Grenzstabilität
- 3. Instabilität

Asymptotische Stabilität

Wird die Kugel durch eine Störung $x(t = 0) = x_0$ aus ihrer Gleichgewichtslage bzw. Ruhelage ausgelenkt, kehrt sie in ihre ursprüngliche Position in endlicher Zeit zurück

Technology Arts Sciences TH Köln

Stabilität und Grenzstabilität

Nimmt die Kugel infolge einer Auslenkung x_0 eine neue Gleichgewichtslage ein, nennt man das System **stabil** bzw. **grenzstabil**, wenn sie zwischen zwei endlichen Werten oszilliert

Instabilität

Bewegt sich die Kugel bei einer Auslenkung x_0 aus ihrer Gleichgewichtslage wird dieser Vorgang als instabil bezeichnet

Stabilitätskriterien

Numerische Stabilitätskriterien

- 1. Das Hurwitz-Kriterium
- 2. Stabilitätskriterium von Cremer und Leonhard

Graphische Stabilitätskriterien

- 1. Nyquist-Kriterium
- 2. Wurzelortskurve (WOK)
- 3. Das Bode-Diagramm

Hurwitz-Kriterium (Hurwitz-Routh-Kriterium)

Gegeben – geschlossener Kreis mit der Übertragungsfunktion

$$G_w(s) = \frac{G_o(s)}{1 + G_o(s)} = \frac{Z(s)}{N(s)}$$

- ▶ mit dem charakteristischen Polynom: $N(s) = a_n s^n + a_{n-1} s^{n-1} + ... + a_1 s + a_0$
- Das Kriterium verwendet die (n,n)-Matrix, in der die Koeffizienten des charakteristischen Polynoms folgendermaßen angeordnet sind:

$$\boldsymbol{H} = \begin{pmatrix} a_1 & a_3 & a_5 & a_7 & \dots \\ a_0 & a_2 & a_4 & a_6 & \dots \\ 0 & a_1 & a_3 & a_5 & \dots \\ 0 & a_0 & a_2 & a_4 & \dots \\ \vdots & \vdots & \vdots & \ddots & \ddots \\ & & & & & a_n \end{pmatrix}$$

Hurwitz-Kriterium

Sämtliche Nullstellen (Pole) des charakteristischen Polynoms haben genau dann einen **negativen Realteil**, wenn die beiden folgenden Bedingungen erfüllt sind:

1. Alle Koeffizienten a_i sind positiv:

$$a_i > 0, \quad i = 0, 1, 2, \dots, n$$

2. Die n führenden Hauptabschnittsdeterminanten D_i der Matrix H sind positiv:

$$D_i > 0, \quad i = 0, 1, 2, \dots, n$$

Übungsaufgabe: Hurwitz-Kriterium

► Charakteristisches Polynom

Regelungstechnik • 8. Reglerentwurf 1 • 8.2. Tiele des Reglerentwurfs

$$N(s) = 0.1 + s + 2s^2 + 3s^3$$

Erste Bedingung?

$$a_i > 0$$
, $i = 0,1,2,3$

Übungsaufgabe: Hurwitz-Kriterium

► Hurwitz-Matrix:

$$\mathbf{H}_3 = \left(\begin{array}{ccc} 1 & 3 & 0 \\ 0,1 & 2 & 0 \\ 0 & 1 & 3 \end{array} \right)$$

Zweite Bedingung?

$$D_1 = \det(1) = 1$$

$$D_2 = (1 \cdot 2) - (0, 1 \cdot 3) = 1,7$$

$$D_3 = (1 \cdot 2 \cdot 3) + (3 \cdot 0 \cdot 0) + (0 \cdot 0.1 \cdot 1) - (0 \cdot 2 \cdot 0) - (1 \cdot 0 \cdot 1) - (3 \cdot 0.1 \cdot 3) = 5,1$$

Beziehung zwischen Polen und Zeitverhalten

Viele Entwurfsverfahren geben eine Wunschlage für die Pole des geschlossenen Regelkreises vor. Welche **Polvorgabe** ist sinnvoll? Zunächst einige quantitative Überlegungen:

- ► Alle Pole müssen stabil sein, also einen negativen Realteil aufweisen.
- Pole sehr nahe der imaginären Achse führen auf (zu) langsames Verhalten.
- Pole sehr weit entfernt von der imaginären Achse führen auf (zu) aggressives Stellverhalten und eine (zu) geringe Robustheit gegenüber Modellfehlern wegen der Anregung hoher Frequenzen.
- ▶ Pole mit großem Imaginärteil (im Vergleich zu ihrem Realteil) führen auf schwach gedämpftes Verhalten, d.h. starkes Überschwingen bzw. Oszillationen.

Beziehung zwischen Polen und Zeitverhalten

Diese Überlegungen legen folgendes Zielgebiet für die Wunschpole nahe:

- ▶ Nicht zu langsam. → Links von der roten (weiter rechts liegenden senkrechten) Linie.
- ▶ Nicht zu schnell. → Rechts von der grünen (weiter links liegenden senkrechten) Linie.
- lacktriangle Keine zu niedrige Dämpfung. ightarrow Zwischen den blauen schrägen Linien.

Beispiel: Polverteilung eines stabilen Systems

Dieses Gebiet wird durch die beiden Halbstrahlen $s=R\cdot e^{\pm\mathbf{j}(\pi-\zeta)}, 0< R<\infty$ und die Parallele zur Ordinate $s=\sigma_0$ begrenzt

Wir wissen jetzt, wo wir die Pole des geschlossenen Regelkreises haben wollen. Aber **wie** wählen wir einen Regler und dessen Parameter aus, um diese Pole zu erzeugen?

1. Möglichkeit 1: Kompensationsregler (mehr dazu später) oder Polvorgabe

- Liefert schnell und bequem Reglerstruktur und -parameter.
- ► Keine Information über Robustheit oder Abstand zur Stabilitätsgrenze.
- ► Keine Einsichten oder *Gefühl* für Zusammenhänge.

2. Möglichkeit 2: Wurzelortskurve (WOK)

- Meist wird zunächst die Struktur und die dynamischen Parameter (Pole und Nullstellen) des Reglers anhand qualitativer Überlegungen festgelegt; dann wird die WOK in Abhängigkeit der Reglerverstärkung gezeichnet.
- Die Pole des geschlossenen Regelkreises sind die Wurzeln des charakteristischen Polynoms. Daher kommt der Name Wurzelortskurve.

Definition: Wurzelortskurve

Die Wurzelortskurve ist der geometrische Ort aller Lösungen der charakteristischen Gleichung des Regelkreises $P(s)=1+G_0(s)=0$ in der Bildebene, wobei die Reglerverstärkung K_r im Bereich $0 \le K_r \le \infty$ variiert.

- Die Wurzelortskurve wird graphisch in der Bildebene dargestellt
- Die Anzahl der Polstellen eines Systems bestimmt die Anzahl der Wurzelortskurvenäste im WOK-Diagramm
- ► Nützlich für die qualitative Beschreibung des Regelkreises, wenn **ein Systemparameter**, normalerweise die **Verstärkung**, geändert wird

Typische Wurzelortskurven

Übersicht über die wichtigsten Eigenschaften der WOK

- 1. WOK im negativ reellen Bildbereich ⇒ liegt ein stabiler Regelkreis vor
- 2. Der Übergang der WOK vom negativ reellen in den positiv reellen Bildbereich markiert den kritischen Verstärkungsfaktor K_r des Reglers.
- 3. Die Pole des Regelkreises wandern in Abhängigkeit des Verstärkungsfaktors K_r auf Kurven,
 - b die für $K_r = 0$ in den Polstellen des offenen Regelkreises beginnen, und
 - für $K_r \to \infty$ in dessen Nullstellen bzw. im Unendlichen enden.
- 4. Bei der Anzahl von N Nullstellen und P Polstellen enden (P-N) Kurven im Unendlichen.
- 5. Die Polstellen des offenen Regelkreises wirken als Quellen, dessen Nullstellen als Senken.
- 6. Die WOK zeigt sich immer symmetrisch zur reellen Re-Achse.

Reglerentwurf mittels WOK

- ► Ist die Reglerstruktur inkl. der dynamischen Parameter (Lage der Pole und Nullstellen) erst einmal festgelegt, kann man mittels WOK-Analyse leicht einen geeigneten Wert für die Reglerverstärkung finden.
- Dazu orientiert man sich an den (vorher definierten) Wunschregionen für die Pole des geschlossenen Regelkreises

Übungsaufgabe: Reglerentwurf mittels WOK

Reglerentwurf 1 • 8.3, Reglerentwurf mit Wurzelortskurve (WOK)

► IT₁-Strecke und P-Regler:

$$G_S(s) = \frac{1}{s(s+4)} \qquad G_R(s) = K_R$$

Charakteristische Gleichung:

$$1 + G_0(s) = 1 + \frac{K_R}{s^2 + 4s} = 0 \longrightarrow$$

Pole (Wurzeln):

$$s_{1/2} = -2 \pm \sqrt{4 - K_R}$$

Übungsaufgabe: Reglerentwurf mittels WOK

► Pole des geschlossenen und WOK Regelkreises

			Pole des offenen
			Regelkreises
K_R	s_1	s_2	
0	0	-4	K_R K_R
2	-0,6	-3,4	-4 -3,4 -2 -0
4	-2	-2	WOK mit 2 Ästen:
8	-2+i2	-2-i2	: Lage des 1. Pols
13	-2+i3	-2-i3	-: Lage des 2. Pols

D-1- 1-- -00----

Reglerentwurf mittels WOK in Matlab

► Geschlossener Regelkreis: $\frac{G(s)}{1+KG(s)} = \frac{K}{s+K+3}$

```
% WOK
zaehler = 1;
nenner = [1 3];
sys=tf(zaehler, nenner);
[R,K]=rlocus(sys); % Pole des geschlossenen Regelkreises
r=rlocus(sys,[0,3,9]); % Pole für K = 0, 3, 9
rlocus(sys) % Wurzelortskurve
```


Reglerentwurf mittels WOK in Matlab

► Sisotool - komfortables GUI-Tool zur interaktiven Reglersynthese

Nyquist-Verfahren

- Stabilitätsuntersuchungen erfordern mathematische Modelle der Regelstrecke, die für komplexe Strecken oft schwer zu beschaffen sind.
- Experimentelle Methoden könnten eine erhebliche Erleichterung bieten, insbesondere für Regelstrecken ohne vorliegende Polynomgleichungen.
- Bei Regelstrecken mit Totzeiten und ähnlichen Typen werden experimentelle Untersuchungsmethoden im Frequenzbereich eingesetzt, basierend auf Ortskurven und Bode-Diagrammen.
- Das Nyquist-Verfahren beschreibt eine solche Untersuchungsmethode.

Vorgehen beim Regelkreis-Experiment

- Ausgehend von der Übertragungsfunktion ($G_o = G_r \cdot G_s \cdot G_m$) eines **aufgetrennten** Regelungskreises (offener Kreis):
- Frequenzgang messen (berechnen) und Nyquist-Ortskurve erstellen

Stabilitätskriterium von Nyquist

Instabilität ist dann gegeben, wenn die Ortskurve des offenen Regelkreises $G_0(\mathbf{j}\omega)$ bei einer beliebigen Frequenz ω folgende Forderungen erfüllt

Amplitudenbedingung:

$$\left| G_0(j\omega) \right| \ge 1$$

Phasenbedingung:

$$\angle G(j\omega) = -180^{\circ}$$

Stabilitätskriterium von Nyquist

Das vereinfachte Nyquist-Kriterium

Ein geschlossener Regelungskreis ist stabil, wenn beim Durchlaufen der Ortskurve des aufgetrennten Regelungskreises $G_0(j\omega)$ im Sinne zunehmender Frequenzen $(0 \le \omega \le \infty)$ der Punkt (-1,0j), der sogenannte kritische Punkt, stets links von der Ortskurve liegt

Übungsaufgabe: Stabilitätskriterium von Nyquist

▶ Welche dieser Ortskurven führen zu stabilem oder instabilem Regelkreisverhalten?

Qualitative Stabilitätskriterient

- ▶ In der Regel wird eine Aussage darüber getroffen, wie stabil ein Regelkreis ist, d.h. wie weit er von der Stabilitätsgrenze entfernt ist.
- ▶ Da es verschiedene Möglichkeiten gibt, die Entfernung von der Stabilitätsgrenze zu messen. gibt es mehrere solcher quantitativen Stabilitätskriterien.
- Aus der Ortskurve lassen sich folgende quantitative Stabilitätskriterien ablesen

Phasenreserve (engl. phase margin)

Phasenreserve φ_R : Der kleinste Winkelabstand des Schnittpunktes der Ortskurve mit dem Einheitskreis zum Punkt (-1|0) (Maß für die Stabilitätsgüte)

Amplitudenreserve (engl. gain margin)

► Amplitudenreserve $a_R = \frac{1}{A_R}$: Der Abstand der Ortskurve zum Punkt (-1|0) auf der reellen Achse - bei $\varphi = -180^\circ$ (Maß für die Stabilitätsgüte)

Durchtrittsfrequenz und Amplitudenrand

▶ Durchtrittsfrequenz ω_D : Maß für die dynamische Güte des Regelkreises dar. Je größer ω_D ist, desto größer ist die Grenzfrequenz des geschlossenen Regelkreises, und d.h.: desto schneller ist die Reaktion auf Sollwert- und Störgrößenänderungen

Stabilität aus einem Bode Diagramm Ablesen

Phasenreserve φ_R : ist der Abstand der Phasenkennlinie von der -180° -Geraden bei der Durchtrittsfrequenz ω_D , d.h. beim Durchgang der Amplitudenkennlinie durch die 0-dB-Linie

Stabilität aus einem Bode Diagramm Ablesen

▶ **Amplitudenreserve** a_R : der Abstand der Amplitudenkennlinie von der 0–dB-Linie beim Phasenwinkel $\varphi_0 = -180^\circ$ bezeichnet

Reglereinstellung gemäß Phasen- und Amplitudenreserve

Die Dynamik bzw. der Einschwingvorgang des Regelkreises werden durch beide Werte gemäß der folgenden Tabelle bestimmt.

	Schwache Dämpfung (schnell)		Starke Dämpfung (langsam)
Phasenreserve φ_R	30°	bis	60°
Amplitudenreserve a_R	2,5	bis	10
Amplitudenreserve $a_{\scriptscriptstyle R} \mid_{dB}$	8 dB	bis	20 dB

Robuste Stabilität

- ► Amplituden- und Phasenreserve geben Auskunft darüber, wie weit er von der Stabilitätsgrenze entfernt ist. Aber wie können wir Stabilität für die reale Strecke garantieren?
- Dazu ist eine Beschreibung der maximal möglichen Modellfehler notwendig, d.h. Abweichungen zwischen Modell und realer Strecke:
 - Parameterunsicherheiten: Das Modell enthält Parameter, die nur in einem Intervall bekannt sind, z.B.: Masse eines Autos $[m_{\text{leer}}, m_{\text{voll beladen}}]$; Dämpfung eines Stoßdämpfers (abgelesen aus dessen Kennlinie) $[d_{\text{min}}, d_{\text{max}}]$; ...
 - Bereich des Arbeitspunkts: Die Linearisierung eines nichtlinearen Modells liefert arbeitspunktabhängige Parameter und daraus ergeben sich Parameterschwankungen, z.B.: Fahrzeuggeschwindigkeit [0 km/h,250 km/h])
 - Unmodellierte Dynamik: Vernachlässigte kleine Totzeiten; höherfrequente dynamische Eigenschaften, usw.

Robuste Stabilität

Wenn ein Regelkreis für alle möglichen G(s) stabil ist, dann nennt man ihn robust stabil.

- Wichtig ist hierfür, dass für absolute und relative Modellunsicherheiten eine maximale Modellunsicherheit definiert wird
- ▶ In der Praxis sind maximale Modellunsicherheiten teilweise schwer abzuschätzen.
- Zu große Modellunsicherheiten führen dazu, dass der Regler sehr konservativ (langsam) eingestellt werden muss, um robuste Stabilität zu garantieren. Deshalb sollte die Unsicherheitsabschätzung (Ortskurven-Schlauch) nicht zu großzügig sein.

Lernziele dieser Vorlesung

Nach dem Studium dieses Abschnitts können Sie ...

- 1. Die Stabilität von Reglern analysieren
- 2. Regelkreise entwerfen und optimieren
- 3. Zusammenhang zwischen Systemparameter und die Stabilität eines Regelkreises beschreiben

Fragen zur Selbstkontrolle

- 1. Was versteht man unter Amplitudenreserve?
- 2. Wie erkennt man einen grenzstabilen Regelkreis anhand der WOK?
- 3. Welche Stabilitätskriterien kennen Sie?
- 4. Wie lautet das einfache Nyquist-Kriterium?
- 5. Wodurch wird die Anzahl der WOK-Zweige festgelegt?
- 6. Welche wichtigen Eigenschaften besitzen Wurzelortskurven?
- 7. Gibt es im Bildbereich Gebiete für Polstellen, die ein optimales Regelverhalten ergeben?

Übungsaufgabe 8.1.1

Gegeben ist ein Regelkreis mit folgenden Übertragungsfunktionen, wobei G_r die Übertragungsfunktion des Reglers. G_{\circ} der Strecke und G_{\circ} des Messglieds ist.

$$G_r = K_p$$
 $G_s = \frac{0.3}{s^2 + s + 1}$ $G_m = \frac{1}{0.2s + 1}$

 Beurteilen Sie anhand des vereinfachten Nyquist-Kriteriums, ob der Regelkreis für die folgenden Werte stabil ist: $K_p = 1,10,100$

Übungsaufgabe 8.1.2

Gegeben ist ein Regelkreis mit folgenden Übertragungsfunktionen, wobei G_r die Übertragungsfunktion des Reglers, G_s der Strecke und G_m des Messglieds ist.

$$G_r = K_p$$
 $G_s = \frac{0.3}{s^2 + s + 1}$ $G_m = \frac{1}{0.2s + 1}$

▶ Bestimmen Sie die Amplituden- und Phasenreserve

Übungsaufgabe 8.2.1

Im Folgenden soll die Stabilität eines Systems, dessen charakteristisches Polynom die folgende Form aufweist, mittels des Hurwitz-Kriteriums untersucht werden.

$$A(s) = 5 + 4s + 3s^2 + 2s^3 + s^4$$

Regelungstechnik •

Übungsaufgabe 8.2.2

Im Folgenden soll die Stabilität eines Systems, dessen charakteristisches Polynom die folgende Form aufweist, mittels des Hurwitz-Kriteriums untersucht werden.

$$A(s) = 0.1 + 2s + 6s^2 + 3s^3 + s^4 + 0.3s^5$$

Übungsaufgabe 8.3

Bitte geben Sie an, wie die beiden Größen X und Y bezeichnet werden und erläutern Sie, welche Informationen über die Stabilität eines Systems sich daraus ableiten lassen.

