A Reading Project on Algebraic Structures

Vikranth Pulamathi January 20, 2021

Contents

1	Intr	roduction	
2	Gro	oup Like	
	2.1	Groups	
		2.1.1 Properties of Groups	
		2.1.2 Group Homomorphism	
		2.1.3 Subgroup	
		2.1.4 Cosets	
		2.1.5 Normal Subgroups	
		2.1.6 Quotient Groups	
	2.2	Semigroups and Monoids	
	2.3	Quasigroup and Loops	
	2.4	Abelian Group	
	2.5	Magma	
	2.6	Lie Group	
	2.7	Group Theory	
3	Rin	g Like	
	3.1	Ring	
	3.2	Semiring	
	3.3	Commutative Ring	
	3.4	Integral Domain	
	3.5	Fields	
	3.6	Ring Theory	
4	Lattice Like		
	4.1	Lattices	
	4.2	Semilattice	
	4.3	Boolean Algebra	
	4.4	Lattice Theory	
_			
5		dule Like	
	5.1	Modules	
	5.2	Vector Space	
	5.3	Linear Algebra	
6	Algebra Like 6.1 Algebra		
	6.1	Algebra	
	6.2	Associative and Non-Associative	
	6.3	Composition Algebra	
	6.4	Lie Algebra	
	6.5	Bialgebra	

Algebraic Structures

A Summary by Vikranth Pulamathi

Started: January 20, 2021

Completed: 2021

1 Introduction

A collection of family of things that share similar properties is simply called a *Set*, and the things in the set are called *elements* of that set. A Cartesian Product of two sets A and B is defined as

$$A \times B = \{(a,b)|a \in A, b \in B\} \tag{1.1}$$

The *cardinality* of a set A is the number of elements of A, denoted as |A|. The cardinality of the empty set ϕ is zero. The set of natural numbers \mathbb{N} has inifinite cardinality.

For two sets A and B and their complements A' and B', the principle of Inclusion-Exclusion says

$$|A \cup B| = |A| + |B| - |A \cap B| \tag{1.2}$$

and De-Morgan's Laws state

$$(A \cup B)' = A' \cap B' \tag{1.3a}$$

$$(A \cap B)' = A' \cup B' \tag{1.3b}$$

Any subset R of the Cartesian Product $A \times B$ defines a relation from A to B. Then, for $(a,b) \in R$, the relation is denotes as aRb. There are several kinds of relations as follows:

- 1. Empty Relation is when $R = \phi$
- 2. Universal Relation is when every element of A is related to every element in B
- 3. **Identity Relation** is when every element of A is related to itself, $I = \{(a, a) | a \in A\}$
- 4. **Inverse Relation** is when if $R = \{(a,b)\} \in A \times B$ is a relation, then the inverse is $R^{-1} = \{(b,a)|a,b \in R\}$
- 5. Reflexive Relation iff every element of A maps to itself, i.e.,

$$\forall a \in A, \quad aRa \in R \tag{1.4}$$

6. Symmetric Relation iff

$$\forall a, b \in R, \quad aRb = bRa \tag{1.5}$$

7. Transitive Relation iff

$$\forall a, b, c \in R, \quad aRb \quad \& \quad bRc \Rightarrow aRc \tag{1.6}$$

8. Equivalence Relation when a given relation R is all Reflexive, Symmetric and Transitive.

A function, or a mapping is a relation between some input(called Domain) and output(called Range). Let $f: A \to B$ and $g: B \to C$. Then, the composition $\phi \psi$ is a mapping from A to C defined as

$$(f \circ g)(x) = f(g(x)), \quad \forall x \in A \tag{1.7}$$

Functions are of the following types:

1. One to One or Injective Function: A function $f:A\to B$ (or f(a)=b, $a\in A,b\in B$) is one-to-one if

$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2, \quad \forall a_1, a_2 \in A$$
 (1.8)

- 2. Many to One Function: when one or more elements of A maps to the same element in B
- 3. Onto or Surjective Function: A function in which every element of B has preimage in A.
- 4. One-One Correspondence or Bijective Function: If a function is both injective and surjective, i.e., if every element in A has a unique element in B AND every element of B has a pre-image in A.

A partition of a set S is defined as a collection of non-empty and disjoint subsets of S, whose union is the whole set S. The equivalence classes of an equivalence relation on a set S constitute a partition of S. Conversely, for any partition P of S, there is an equivalence relation on S whose equivalence classes are the elements of P.

2 Group Like

2.1 Groups

Definition: A Binary Operation on a set G is a function that assigns each ordered pair of G an element of G.

So, if the members of the ordered pair of G undergo a binary operation to produce another element of the same set G, then the corresponding binary operation is said to be closed, and this is called the closure property of a binary operation.

Definition: Consider a set G with a binary operation *(usually multiplication). Then, the set G is called a Group if it satisfies the following:

1. **Associativity**: The binary operation must be associative, i.e.,

$$(a*b)*c = a*(b*c), \quad \forall a, b, c \in G$$
 (2.1)

2. Existence of Identities:

$$\exists e \in G \ni a * e = e * a = a, \forall a \in G \tag{2.2}$$

3. Existence of Inverse

$$\forall a \in G, \exists b \in G \ni a * b = b * a = e \tag{2.3}$$

2.1.1 Properties of Groups

Theorem 2.1: In a group (G, *), there is only one identity element

Proof: Suppose there are two identities e and e'. Then,

(a)
$$a * e = e * a = a$$
, $\forall a \in G$

(b)
$$a * e' = e' * a = a$$
, $\forall a \in G$

These two give us $e' * e = e * e' \Rightarrow e' = e$

NOTE: The notation of binary operation * will now be dropped, but it is always implied that

$$ab \equiv a * b \tag{2.4}$$

Theorem 2.2: In a group G, the Left and Right Cancellation Laws hold good.

Proof: Suppose ba = ca and let a' be the inverse of a. Then on multiplying on the right side, we get

$$(ba)a' = (ca)a'$$

 $b(aa') = c(aa')$ (Associativity)
 $b = c$ (Since $aa' = e = 1$)

This leads to another theorem that tells that the inverse of each element of a group is unique.

Theorem 2.3: For each element $a \in G$, where G is a group, there exists a unique inverse b such that ab = ba = e

Proof: Suppose b and c are inverses of $a \in G$. Then,

$$ab = e, \quad ac = e$$

 $ab = ac$
 $\Rightarrow b = c$ (By Cancellation Laws)

A rather interesting result about the products and inverses of elements of a group is the **Socks-Shoes Property**:

Theorem 2.4: For group elements $a, b \in G$, $(ab)^{-1} = b^{-1}a^{-1}$

Proof: Consider

$$(ab)(ab)^{-1} = e$$

$$(ab)(b^{-1}a^{-1}) = e$$

$$a(bb^{-1})a^{-1} = e$$

$$aa^{-1} = e \Rightarrow e = e$$

This result can be generalized as

$$(abc \dots k)^{-1} = k^{-1} \dots c^{-1}b^{-1}a^{-1}$$
(2.5)

Definition: The *order* of a group G is the number of elements it has(finite or infinite), and is denoted as |G|

Definition: The order of an element g in a group G is the smallest integer n such that $g^n = e \in G$. If there is no such n, then the order of that element |g| is said to be infinite.

2.1.2 Group Homomorphism

Definition: A homomorphism from a group (G, \cdot) to another group (G', *) is defined as

$$f(a \cdot b) = f(a) * f(b) \tag{2.6}$$

A homomorphism has several kinds:

- 1. Monomorphism is a group homomorphism that is injective (one-to-one)
- 2. **Epimorphism** is a group homomorphism that is surjective(onto)
- 3. **Isomorphism** is a group homomorphism that is bijective(both one-to-one and onto). If this condition is satisfied, then for a homomorphism $f: G \to G'$, G and G' are said to be *isomorphic groups*.
- 4. **Endomorphism** is a group homomorphism defined as $f: G \to G$, i.e., the same group G is both codomain and range.
- 5. **Automorphism** is an endomorphism that is bijective, and hence an isomorphism.

Definition: The *kernel* of a homomorphism $h: G \to G'$ is defined as the set of elements of G that map to the identity of G'

$$\ker(h) = \{ k \in G \, | \, h(k) = e' \in G' \} \tag{2.7}$$

Definition: The *image* of the same homomorphism as above is defined as

$$im(h) = h(G) = \{h(k) \mid k \in G\}$$
 (2.8)

Fundamental Theorem of Homomorphism

Given two groups G and G' and a group homomorphism defined as $f: G \to G'$, let K be a normal subgroup in G, and $\phi: G \to G/K$. If K is a subset of $\ker(f)$, then there exists a unique homomorphism $h: G/K \to G'$ such that $f = h\phi$.

2.1.3 Subgroup

Definition: If a subset H of a group G is itself a group under the same binary operation of G, then H is called a *subgroup* of G. The identity of a subgroup is the same as the identity of the group, i.e. $e_H = e_G$. The inverse of an element of a subgroup is the same inverse of that element in that group. i.e. if $ab = ba = e_H$, then $ab = ba = e_G$

Theorem 2.5 - The One-Step Subgroup Test: Let G be a group and H be a non-empty subset of G. Then, $\forall a, b \in H$, if $ab^{-1} \in H$, then H is a subgroup of G. **Proof**: Let a = x, b = x where $x \in H$. Then,

$$ab^{-1} = xx^{-1} = e \in H$$

And if we choose a = e and b = x, then

$$ab^{-1} \in H \Rightarrow ex^{-1} \in H \Rightarrow x^{-1} \in H$$

If some arbitrary $x, y \in H$, then $xy \in H$ since it is a subset of G. So, there is an identity element, inverse exists and since it is a subset of a group, associativity is satisfied. Therefore, H is a subgroup of G.

Theorem 2.6 - Two-Step Subgroup Test: Let G be a group and H be a non-empty subset of G. We say H is a subgroup of G if

1.
$$ab \in H, \forall a, b \in H$$
 2. $a^{-1} \in H, \forall a \in H$ (2.9)

The proof to Theorem 2.6 is left as an exercise to the reader. Note that if H is closed under the same binary operation of G, even then, H can be called a subgroup, since by default, $e \in H \Rightarrow a^{-1} \in H$. This is the Finite Subgroup Test.

Definition: The center Z(G) of a group G is a set of those elements that commutes with every other element of the group

$$Z(G) = \{ a \in G | ax = xa, \forall x \in G \}$$

$$(2.10)$$

Theorem 2.7: The center Z(G) of a group G is a subgroup.

Proof: Clearly, $e \in Z(G) \Rightarrow Z(G) \neq \phi$. Take two elements $a, b \in Z(G)$. Then,

$$(ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab) \Rightarrow ab \in Z(G) \quad \dots (1)$$

Now consider,

$$ax = xa$$

$$a^{-1}(ax)a^{-1} = a^{-1}(xa)a^{-1}$$

$$(a^{-1}a)xa^{-1} = a^{-1}x(aa^{-1})$$

$$xa^{-1} = a^{-1}x \Rightarrow a^{-1} \in Z(G) \dots (2)$$

From (1) and (2) and Theorem 2.6, we can conclude that Z(G) is a subgroup of G. From the definition of a center, the set of all such x for a fixed $a \in G$ is called the *centralizer* of a in G

$$C(a) = \{ x \in G \mid ga = ag, \forall a \in G \}$$

$$(2.11)$$

It can be proven similar to Theorem 2.7, that C(a) is also a subgroup of G.

The intersection of any two subgroups A and B of a group G is again a subgroup of G. The union of A and B is a subgroup iff either A or B contains the other.

2.1.4 Cosets

Let H be a subgroup of a group G. Given $a \in G$, the **Left** and **Right** Cosets are obtained by multiplying each element of H with a fixed element a where a is the left and the right factor respectively, i.e.,

Left Coset:
$$aH = \{ah \mid a \in G, h \in H\}$$
 (2.12a)

Right Coset:
$$Ha = \{ha \mid h \in H, a \in G\}$$
 (2.12b)

If the group G is Abelian, then the notation changes to g + H and H + g respectively. Properties of Cosets are as follows:

1. $a \in aH$

Proof: $a = ae \in aH$

2. $aH = H \text{ iff } a \in H$

Proof: Assume $a \in H$ and let $h \in H$. Then, since $a \in G$ and $h \in H$, we know $a^{-1}h \in H$. Then, $h = eh = (aa^{-1})h = a(a^{-1}h) \in H$ and therefore $H \subset aH$ By direct observation, $aH \subset H$. Hence, aH = H iff $a \in H$

3. aH = bH iff $a \in bH$

Proof: If aH = bH, then $a = ae \in aH = bH$. Conversely, if $a \in bH \Rightarrow a = bh$, $h \in H$ and therefore aH = b(hH) = bH.

4. aH = bH or $aH \cap bH = \phi$

Proof: It follows from the previous property that if $\exists c \in (aH \cap bH)$, then cH = aH and cH = bH

5. aH = bH iff $a^{-1}b \in H$

Proof: Notice that aH = bH if and only if $H = a^{-1}bH$. From the second property, this property is fairly obvious.

6. |aH| = |bH|

Proof: The correspondence $ah \to bh$ maps $aH \to bH$, and hence by cancellation laws, the one-to-one property follows.

7. $aH = Ha \text{ iff } H = aHa^{-1}$

Proof: Notice that aH = Ha iff $(aH)a^{-1} = (Ha)a^{-1} \Rightarrow H = aHa^{-1}$

8. aH is subgroup of G iff $a \in H$

Proof: If aH is a subgroup, then $e \in aH \Rightarrow aH \neq \phi$ and we have aH = eH = H. Thus from property 2, we have $a \in H$ and from its converse, we have that if $a \in H$, then again aH = H.

Lagrange's Theorem

If G is a finite group and H is a subgroup of G, then |H| divides |G| and the number of disctinct left(or right) cosets of H in G is $\frac{|G|}{|H|}$

Proof: Let a_1H, a_2H, \ldots, a_rH be distinct left cosets of a subgroup H in a group G. Then, $a \in G$, we have $aH = a_iH$ for some i. Then, the group is given as

$$G = a_1 H \cup a_2 H \cup \ldots \cup a_r H$$

and the order can then be written as

$$|a_iH| = |H| \Rightarrow |G| = r|H|$$

Some Corollaries:

- 1. |G:H| = |G|/|H|
- 2. |a| divides |G|
- 3. Groups whose order is a prime number are cyclic
- $4. \ a^{|G|} = e \in G$
- 5. Fermat's Little Theorem

$$a^p \mod p = a \mod p, \quad a \in \mathbb{Z}, \quad p = \text{prime number}$$

2.1.5 Normal Subgroups

Definition: \triangleleft

- 2.1.6 Quotient Groups
- 2.2 Semigroups and Monoids
- 2.3 Quasigroup and Loops
- 2.4 Abelian Group
- 2.5 Magma
- 2.6 Lie Group
- 2.7 Group Theory

- 3 Ring Like
- 3.1 Ring
- 3.2 Semiring
- 3.3 Commutative Ring
- 3.4 Integral Domain
- 3.5 Fields
- 3.6 Ring Theory

- 4 Lattice Like
- 4.1 Lattices
- 4.2 Semilattice
- 4.3 Boolean Algebra
- 4.4 Lattice Theory

- 5 Module Like
- 5.1 Modules
- 5.2 Vector Space
- 5.3 Linear Algebra

6 Algebra Like

- 6.1 Algebra
- 6.2 Associative and Non-Associative
- 6.3 Composition Algebra
- 6.4 Lie Algebra
- 6.5 Bialgebra