$\begin{array}{c} {\bf School\ of\ Engineering\ and\ Applied\ Science\ (SEAS)}\\ {\bf Ahmedabad\ University} \end{array}$

BTech(ICT) Digital Signal Processing (Section 1)

Laboratory Assignment-8 Question 1

Name: Samarth Shah

Enrollment No: AU1841145

AIM : Design an IIR filter using bilinear transformation using Butterworth Filter design approximations.

- 1. Solution Problem-1
 - (a) Handwritten Analysis:

1) Cut-off frequency = 200 HZ Sampling frequency = 7000 HZ $\Omega_{c} = 1$ Read/see 11(S) = $\Omega_{c} = 1$ 12 2n n 13	pages) Digital Signal Processing	$\frac{1}{1000} = \frac{1}{1000}$
Poles $R = \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, \dots = 2n-1$ Here $n = 4$ cohich is the Order of the Filter $R = \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $R = \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac{\pi}{\pi} \frac{\pi}{\kappa} \right\}, K = 0, 1, 2, 3$ $= \Omega_{c} \times \left\{ \frac{\pi}{\pi} + \frac$	1) Cut-off frequency = 300 Hz	8 - 1601 - 0.8827 - 16.7237]
$= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{1} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_{CX} \left\{ \begin{array}{c} S_{1} + \gamma_{2} \\ \end{array} \right\}$ $= \Omega_$	Poles $\rho = \Omega \in \mathbb{Z} \left\{ \frac{\pi}{2} + \frac{\pi}{n} + \frac{\pi}{n} \right\}, k=0,1,2,\dots = 2n-1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	= Ncx Sn + nk?	$\frac{1}{\left[(S+0.3827)^{2}+(0.9239)^{2}\right]*\left[(S+0.9239)^{2}+(0.3827)^{2}+(0.9239)^{2}+(0.3827)^{2}+(0.9239)^{2}+($
$P_1 = \Omega_c + \frac{1}{8} \frac{571 + 77}{3} = \Omega_c e^{\frac{1}{8}}$ $P_1 = \Omega_c + \frac{1}{8} \frac{571 + 77}{3} = \Omega_c e^{\frac{1}{8}}$ $P_2 = \Omega_c + \frac{1}{8} \frac{571 + 77}{3} = \Omega_c e^{\frac{1}{8}}$ $P_3 = \Omega_c + \frac{1}{8} \frac{571 + 77}{3} = \Omega_c e^{\frac{1}{8}}$	= Dc(-0.3827+j(0.9239))	54+1.84785 ³ +5 ² +0.76458 ³ +1.41268 ² +0.76455+5 ² +1.84785+1
$P_2 = \Omega_c \times \left\{ \frac{5n+n}{8} - \Omega_c e^{\frac{1}{4}(97/8)} \right\}$ $= \Omega_c \left(\frac{-0.9284}{10.3827} + \frac{1}{10.3827} \right)$	$P_{1} = \Omega_{c} + \frac{1}{8} + \frac{1}{8} = \Omega_{c} e^{j(\frac{1}{8})}$ $= \Omega_{c} \left(-0.9239 \right) + j \left(0.3829 \right) \right]$ $P_{2} = \Omega_{c} + \frac{1}{8} \left(\frac{1}{8} + \frac{1}{2} \right) = \Omega_{c} e^{j(\frac{1}{8})}$	$14(S) = \frac{1}{S^4 + 2.6123S^3 + 3.4126S^2 + 2.6123S^3 + 1}$ $\frac{1}{S^4 + 2.6123S^3 + 3.4126S^2 + 2.6123S^3 + 1}{\frac{1}{S^4 + 2.6123S^3 + 3.4126S^3 + 1}{\frac{1}{S^4 + 2.6123S^3 $

Pare 1.3	Page No. Date: You'd	parcel	Page No. Date:
11		1-0	$H(z) = (2000)^4 (1-7^{-1})^4$
H(S)	=		(2000×(1-z ⁻¹))4 + 4924.0695 (1+z ⁻¹) (2000(1-z
	(600m)4, 13 12 12		+ 12125164.3 (1+z-1) 2 (2000[1-z-1]]2
	$\left(\frac{6007}{5}\right)^{4} + 2.6123 \left(\frac{6007}{5}\right)^{3} + 3.4126 \left(\frac{6007}{5}\right)^{2}$		+ 1.7496 x 1010 (1+z-1)3 [2000[1-z-1]]
-			+1.2643×103 (1+z-1]4
100000	+ 2.6123 (6007) +1	-	11.0003 \$ 10 (112)
11.00		-	M(7) = (Geo. 04 1.6×108 (1-z+)2(1-z-1)2
H (S)	$(600\pi)^4 + 2.6123(600\pi)^3 \times S + 3.4126(600\pi)^2 S^2$		(16x1013x (1-2-1)2(1-2-1)2)
	(6007) + 2.6123(6007) ×5 + 3.4126(6007) 3-		+ (3.9392x1/3 1+z-1)(1-z-1)3
100.00	+ 2.6123 (600A) S3 + S4		+ 4.85 x 103 (1+z-1) (1-z-1)
	= 64		+13,499, ×10 ¹³ (1+z ⁻¹) ³ [1-z ⁻¹]
Fishens	54 + 4924.069553 + 12125164.352		+[1.2643 × 1013 [1+z-1]2[1+z-1]2]
Tres possible	+ 1.74965 x1010 + 1.2624 x1013		27 - 27
- 4		100	$(1-z^{-1})^2(1-z^{-1})^2 = [1-2z^{-1}+z^{-2}][1-2z^{-1}+z^{-2}]$
GYEN Appl	ying Bilinear Toursformation, converting	47256	$= \left[1 - 2z^{-1} + z^{-2} - 2z^{-1} + 4z^{-2} - 2z^{-3} + z^{-2}\right]$
	of Domain to Digital Domain.		$-2z^{-3}+z^{-4}$
	0		$= \begin{bmatrix} 1 - 4z^{-1} + 6z^{-2} & -4z^{-3} + z^{-4} \end{bmatrix}$
	S → 2×Wc× (1-z-1)		= [1-42 +62 -42 +2]
11-23	[1+z-1]	-3	$(1+z^{-1})^2(1+z^{-1})^2 = 1+4z^{-1}+6z^{-2}+4z^{-3}+z^{-4}$
		7	$(1+z^{-1})(1-z^{-1})^3 = (1+z^{-1})(1-\overline{z}^3-3z^{-1}(1-z^{-1}))$
	S -> 2000 (1-Z-1)		= 1-7-3-27-1+37-4
	(I+Z')		+ 2 - 2 - 32 + 32
100000000000000000000000000000000000000	3/, -1/4		= 108/05/ 1-22-1+22-3-2-4
:. HC	$(2000)^{3} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)^{7}$	(V)	$(1+z^{-1})^2(1-z^{-1})^2 = [1-2z^{-1}+z^{-2})[1+2z^{-1}+z^{-2}]$
	1 96 -1141 100 01-10 1 -173	1000	= 1+2/2+2
	$\left(2000\left(\frac{1-z^{-1}}{1+z^{-1}}\right)^{4}\right) + 4924.0695\left(2000\left(\frac{1-z^{-1}}{1+z^{-1}}\right)\right)^{3}$		$-2\frac{7^{2}+2^{2}+2\sqrt{3}+2}{2}$ $=0.00000000000000000000000000000000000$
			= 050 1-27 + 79
	+12125164.3 (2000 (1-2-1))2	D	[1+z]3[1-z]=[1-z][1+z3+3z'(1+z')] = 1+z-3+3z'+3z2-z-1-z-1
	+ 1.7496×1010 2000 (1-z-1)		-32 ² -3z ⁻³
	1-7 4-16 X10 (2000) 1-2	100	= 1 + +2 2 - 3 - 7 - 4
	+ 1.2624×183		
		EL STORY OF	

(b) Matlab Script:

```
1 % Name : Samarth Shah
2 % Roll No: AU1841145
3 % Lab8 ( Question_1 ) Design the 4th Order Butterworth high pass filter having cut
      -off frequency 300Hz and sampling frequency 1 KHz using bilinear transformation
4 clc ;
5 clear all;
6 close all;
7 %Designing Filter using in-built functions
8 % Here, 's' designs a lowpass, highpass, bandpass, or bandstop analog
_{9} % Butterworth filter with cutoff angular frequency Wn. 4 and 1 is the order
10 % of the filter and cut-off frequency respectively.
11 [b,a] = butter (4,1,'s');
12 %Transform lowpass analog filters to highpass. Cutoff angular frequency =
13 %2*pi*300
14 [b_highpass, a_highpass] = lp2hp (b,a,2*pi*300);
_{15} %Bilinear transformation method for analog-to-digital filter conversion
16 [numd,dend] = bilinear (b_highpass,a_highpass,1000);
17 %Plotting Frequency Response
18 figure;
19 [numd1,dend1] = freqz(numd,dend);
20 plot(abs(numd1)); %Magnitude of frequency Response
title('Using Inbuilt Function')
22 xlabel('Frequency')
ylabel('Magnitude')
24 %Plotting Zeroes and poles
25 figure;
26 zplane (numd, dend);
28 %From Hand-written Analysis
29 %Transfer Function Co-efficients
b1 = [0.1056, -0.4223, 0.6335, -0.4223, 0.1056];
a1 = [1, -0.1467, 0.4940, -0.0305, -0.0182];
32 %Ploting Frequency Response
33 figure;
34 [numd2,dend2] = freqz(b1,a1);
plot(abs(numd2)); %Magnitude of frequency Response
title('From Hand-Written Analysis')
xlabel('Frequency')
38 ylabel('Magnitude')
```

(c) Simulation Output:

Figure 1: The 4th Order Butterworth high pass filter from Inbuilt Function (Magnitude Response)

Figure 2: Plot of poles and zeros

Figure 3: The 4th Order Butterworth high pass filter from Handwritten Analysis (Magnitude Response)