Homework #2

EE 242 Spring 2025

Yehoshua Luna 2322458

Problem #1

 $\mathcal{F}(sinc(x)) = rect\left(\frac{\omega}{2\pi}\right)$, and multiplying by $2\cos(4\pi t)$ modulates this lowpass signal to be centered at $\pm 4\pi$ on the frequency scale. Therefore, $H(\omega)$ should look like the graph below.

- (a) $\mathcal{F}(x(t)) = \pi(2\delta(\omega) + \delta(\omega \pi) + \delta(\omega + \pi) + \delta(\omega 4\pi)/j \delta(\omega + 4\pi)/j)$ Multiplying $H(\omega)$ and $X(\omega)$ gives $Y(\omega) = \frac{\pi}{j}(\delta(\omega - 4\pi) - \delta(\omega + 4\pi))$ Taking the inverse Fourier Transform them yields $y(t) = \sin(4\pi t)$
- (b) x(t) is simply an impulse train with sample period $T_s=1$, so $\omega_s=2\pi$ and $X(\omega)=2\pi\sum_k\delta(\omega-2\pi k)$. Multiplying by $H(\omega)$ gives $Y(\omega)=2\pi\big(\delta(\omega-4\pi)+\delta(\omega+4\pi)\big)$. Taking the inverse Fourier Transform then yields $y(t)=2\cos(4\pi t)$.

Problem #2

- i. This is a low-pass filter with $h(t)=\frac{1}{2\pi}\int_{-3\pi}^{3\pi}j\omega e^{j\omega t}d\omega=\frac{6\pi t\cdot\cos(3\pi t)-2\sin(3\pi t)}{2\pi t^2}$. ii.
 - 1. For signals with $\omega_{max} \leq 3\pi$, this filter simply calculates the derivative of the input, so $y(t) = \frac{d}{dt} X(t) = \frac{d}{dt} A \cdot \cos(2\pi t + \theta) = -2\pi A \cdot \sin(2\pi t + \theta)$. This is verified by looking at $X(\omega) = \frac{A}{2} \left[e^{j\theta} \delta(\omega 2\pi) + e^{-j\theta} \delta(\omega + 2\pi) \right]$, which represents a single tone at $\pm 2\pi$. This is inside the range of our low-pass filter, so the signal is not attenuated.
 - 2. $X(\omega) = \frac{A}{2} \left[e^{j\theta} \delta(\omega 4\pi) + e^{-j\theta} \delta(\omega + 4\pi) \right]$, which is completely outside the range of the low-pass filter, so this signal is completely attenuated, and y(t) = 0.

Problem #3

Problem #4

The rectangular pulse train has period T and $\omega_0=2\pi/T$. It has Fourier coefficients $c_k=\frac{A}{k\pi}\sin(k\pi\frac{\tau}{T})$, so we have $C(\omega)=\sum_{k=-\infty}^{\infty}\frac{A}{k\pi}\sin(k\pi\frac{\tau}{T})\cdot\delta(\omega-2\pi k/T)$.

- (a) Multiplying by a rectangular pulse train with period T and width τ in the time domain is equivalent to convolving with a sampled sinc function in the frequency domain with sample period $\frac{2\pi}{T}$. To recover x(t) from y(t), we must not have any overlap between each distorted replica of x(t) in the frequency domain. Therefore $X(\omega)$ cannot contain any frequencies greater than $\frac{\omega_0}{2} = \frac{\pi}{T}$.
- (b) The cutoff frequency should be $\omega_c = \frac{\pi}{T}$ and the gain should be $\frac{T}{\tau}$ because $\mathcal{C}(0) = A \cdot \frac{\tau}{T}$.

Problem #5

$$y(t) \cdot \cos(\omega_c t + \phi) = x(t) \cdot \cos(\omega_c t) \cdot \cos(\omega_c t + \phi) = x(t) \cdot \frac{\cos(2\omega_c t + \phi) + \cos(\phi)}{2}$$

The ideal low-pass filter then removes the $\cos(2\omega_c t + \phi)$ modulator because $\omega_c > \omega_m$ and amplifies the resulting signal by 2, giving $z(t) = x(t) \cdot \cos{(\phi)}$. This shows how phase offset impacts the retrieved signal. When $\phi = 0$, there is no phase offset, and the resulting signal is an exact replica of x(t). If $\frac{\pi}{2} > \phi > 0$, then the recovered signal is attenuated by $\cos{(\phi)}$.

When $\phi=\frac{\pi}{2}$, the original signal is totally lost because $\cos\left(\frac{\pi}{2}\right)=0$. Once $\phi>\frac{\pi}{2}$, the signal becomes inverted, eventually peaking at $\phi=\pi$ and then begins oscillating back towards the initial condition when $\phi=0$. This cycle repeats indefinitely.

Problem #6

(b) $Y_2(\omega)$ is a low-pass filter with a single-sided bandwidth of 1000π , and $Y_1(\omega)$ has a max frequency of 2000π . Multiplication in the time domain is convolution in the frequency domain, so the bandwidths of $Y_1(\omega)$ and $Y_2(\omega)$ are added, giving a y(t) a maximum bandwidth of 3000π .

Problem #7

i.

- (a) $x(t) \cdot x(t) \Leftrightarrow X(\omega) * X(\omega)$. This process effectively doubles the bandwidth of x(t) to $(-2\omega_B, 2\omega_B)$, so we must have a Nyquist sampling rate that follows $\omega_S \ge 4\omega_B$.
- (b) $\frac{d}{dt}x(t) \Leftrightarrow j\omega X(\omega)$. This doesn't change the bandwidth of x(t), so $\omega_s \geq 2\omega_B$.
- ii. $x_1(t) \cdot x_2(t) \Leftrightarrow X_1(\omega) * X_2(\omega)$. This sums their bandwidths, creating a signal with new frequency range $(-\omega_1 \omega_2, \omega_1 + \omega_2)$, so we must have sample rate $\omega_s \ge 2(\omega_1 + \omega_2)$.
- iii. Some cursory analysis shows that $\omega_0=1000\pi$ produces the desired sequence with a sampling rate of $T_s=10^{-3}sec$. This is because $1000\pi\cdot 10^{-3}sec=\pi\ rad/s$. Adding or subtracting multiples of 2000π from ω_0 shifts this angular frequency by $2\pi\ rad/s$, so other distinct values of ω_0 that work are $\omega_0=3000\pi$ and $\omega_0=5000\pi$.

Problem #8

(a)
$$r(t) + RC \frac{d}{dt} r(t) = x(t) \Leftrightarrow R(j\omega) + j\omega \cdot RC \cdot R(j\omega) = X(j\omega)$$

 $H_{RC}(\omega) = \frac{R(j\omega)}{X(j\omega)} = \frac{1}{1 + j\omega \cdot RC}$

(b) The rectangular pulse train has T=2 and $\omega_0=2\pi/T=\pi$. It has Fourier coefficients $c_k=\frac{1}{k\pi}\sin(\frac{k\pi}{2})$, so we have $X(\omega)=\sum_{k=-\infty}^{\infty}\frac{1}{k\pi}\sin(\frac{k\pi}{2})\cdot\delta(\omega-k\pi)$. $H(\omega)$ limits this to frequencies less than 2 and multiplies it by π , so $X(\omega)=\begin{cases}1/2,\ \omega=0\\1,\ \omega=\pm\pi\end{cases}$. If RC>0.05, then $\omega_c<\pi$, so only the case where $\omega=0$ is left unattenuated by $H_{RC}(\omega)$. This means that the output would be $z(t)=\frac{1}{2}\delta(t)$. But if RC>0.05, then $X(\omega)$ is completely left alone by $H_{RC}(\omega)$, so $z(t)=\frac{1}{2}\delta(t)+\frac{1}{\pi}\cos(\pi t)$. (Please be merciful, this was the best that I could do. *cry*)

Problem #9

- (a) $\frac{\sin(1000\pi t)}{\pi t}$ has a maximum of 1000 at t=0. Therefore, over modulation occurs for any values of A<1000. So, in order to use envelope detection, we must have $A\geq 1000$, with a minimum of A=1000.
- (b) $m = \frac{max|m(t)|}{A} = \frac{1000}{1000} = 1 = 100\%$