令 情報メディア学 20191102

td 材料科学分野のための総合的記述言語 松田朝彦 鈴木晃; 坂本浩一 鈴木伸崇 材料研究機構:天野晃;筑池水学: 物質・

構成

治 配

目的

言語紹介開発状況

光 配 证

材料科学基盤はマルチスケール・マルチフィジクス

主な力	強い力	級河	級河	電磁気力	級河	寂河	電磁気力/重力	電磁気力/重力
論(例)	个	量子力学	1	串	複心	極 心	複 心	複合/流体/粉体
技術(例)	格子ゲージショコレーション	量子化学計算	密度汎関数法	分子動力学	FEM/CA/CALPHAD	FEM	FEM	FEM/ナビエ・ストークスEq
スケール	核子	上巡	分子	分子の集団	組織	部村	構造物	構造物+環境

結晶、準結晶もある

.. 細 知

マルチスケールの例

高温超伝導開発は、ミクロ (原子レベル) な特性がマクロな特性 (組織レベル) に影響を及ぼす現象を研究する。

→ 電子の振る舞い(が、フェルミ-ディラック統計かボーズ-アインシュタイン統計か)というミクロな性質が、マクロな抵抗という性質の起因となる。

··· 知 知 第

マルチフィジクスの例

固体電池開発は、電磁気特性だけでなく、固体の相を保つという、別の側面におい ても開発要素がある。

情報学の視点から

MI(マテリアルズインテグレーション/マテリアルズインフォマティクス)を加速させるためには、マルチスケール・マルチフィジクス(つまり異なる科学分野)の知識/データ形式を同じ枠組で取り扱う必要がある

すでに行われているチャレンジである

サービスや実装もある

- modelica

- Wolfram Data Repository

従来はデータを直接的に統一形式に統合する方式を用いていたのに対して「データ形式」と「データ形式定義」を分離する 「知識」を統一せず、「知識の記述形式」を統一する 「知識の記述形式」を統一する 従来とは異なる手法を用いる しかし、我々は、〜、徐米はデータを「データ形式」と「データ形式」と

それによるデーク形 あらゆる科学分野の知識を統一的/形式的に記述可能な言語、

式定義記述の実現 ナーチ」は、どちらかといえば垂直展開を意味する → 「トランスレーショナルリサーチ」は、どちらかといえば垂直展開を意味するが、我々は「垂直水平同時展開」を可能とするトランスレーショナルリサーチの「形式的」な枠組みを必要としている、とも言える。

木構造とグラフ構造を同じ構文で記述する → データ形式 (テンソル) と辞書 (グラフ)を同じシンタックスで記述する必 要がある。

パーサームソルバーを分離する

→ 知識は不整合や矛盾を含むものである。ソルバーがあると成功しない。→ その代わり、既存ソルバーと接続できるようにする。 →その代わり、 知識は抽象度を高くし、即値を含ませない(例:円周率は"円周率"であり3.14… ではない。ただし、言語としての量指定子は必要。 → その代わり、即値(実データ)をバインドできるようにする。

辞書を解析し単位変換等の項目間関係性を取り出したい 川溪溪

あらゆる目的において、「同等」なデータを「同等でない形式」のデータから抽出/統合し、機械学習用データとして再構成する → 機械のためのデータフェデレーション

- ▶ 入出力関係、報酬関係も記述可能
- ,データ次元も記述可能
- 「同等」かどうかを判定する根拠(辞書)も記述可能
- 必要ならば学習用ネットワークも記述可能

(本日の話 知識とデータ構造を形式的に記述できる言語の開発 1) 項参照と、2 データバインドにより、4 知識はトリプルに断片化。4 全体でグラフ構造を構成。4 十(テンソル)のノードにデータをバインドして

にデータをバインドしてデータ構造を表現。

辞書形式の開発 (本日の話) → 当該言語を用いて辞書を記述する。

辞書のグラフ構造を解析する。 辞書アナライザの開発

9

td:

e.g. #1\$#2\$Op\$Name(#2Name2[2]) #1\$#2\$Op\$Name@#2Name2@#2Name2(#2Name2,[2]@(Length,Weight))

被参照部バインド表現	\$#1f	(\$#1@#1,#1)	\$#1@#1g(#1g)	#1f(\$#1g@#1f)
被参照部		#1	#19	#1f
参照部	\$#1	\$#1	\$#1	\$#1
表現	\$#1f	(\$#1,#1)	\$#1f(#1g)	#1f(\$#1g)

tq: データバインド

データバインド表現	[1]@(L) [2]@(L,W) [2]([2]@(L,W,22,3)) H1[2](H2[2]@(L,W,22,3))
データ	L, W, 22, 3, 21, 5 L, W, 22, 3, 21, 5 L, W, 22, 3, 21, 5 L, W, 22, 3, 21, 5
表現	[1] [2] [2]([2]) H1[2](H2[2])

tq: 頂参照とデータバインドを使ったデータの再構成

```
(Length, Quantity(1,mm)), (Weight, Quantity(2,kg))), (Length, Quantity(322,mm)), (Weight, Quantity(4,kg))), (Length, Quantity(5,mm)), (Weight, Quantity(68,kg)))
データ: Length,Weight,mm,kg,1,2 322,4,5,68
                                                                                                                  出力形式定義: $PI$($#1,Quantity($#4,$#2))
                                                      入力形式定義: (#1[2],#2[2],[3](#4[2]))
```

tq: トリプル表現

	P(Arrow)	S(Dom)	O(Cod)
P(S,O)	a	S	0
(S(\$#1P),#1O)	۵	S	0
S(\$#1P) / (S(\$#1P),)	۵	S	/無仇>
S()		S	0
	/ 無仇 /	〈無仇〉	〈 誰 か 〉

tq: トリプルと頃参照を使ったグラフ表現

\$G\$((<オブジェクトリスト>),(<トリプルリスト>))

表現	グラフ構造	
((#1A,#2B,#3C), (f(\$#1,\$#2), g(\$#2,\$#3)))	A B C	,,2,3,,,[:f:6],7,8,,,, ,,,,,,,[6->:\$#1:7->2],,,,, ,,,,,,,,[6->:\$#2:8->3],,,, ,,,3,4,,,,,[:g:9],10,11, ,,,,,,,,,,[9->:\$#2:10->3],,
((#1A,#2B,#3C), ((\$#1,\$#2), (\$#1,\$#3), (\$#2,\$#1), (\$#2,\$#3), (\$#3,\$#1), (\$#3,\$#1),		<pre>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</pre>

的: 群書群 :D:

グラフ: \$G\$((<オブジェクトリスト>),(<トリプルリスト>)) ↓そのまま!! ただし、辞書トリプルのSとOには木構造を許す 辞書: \$D\$((<オブジェクトリスト>),(<トリプルリスト>))

e.g. ((#1A,#2B,#3C),(f(\$#1,\$#2),\$X\$near(\$#2,\$#3), \$def\$(<u>f</u>,(<u>(a,b),</u>\$eq\$(a,b)),...)) (#1A,#2B,#3C),(f(\$#1,\$#2),\$X\$near(\$#2,\$#3), \$def\$(f,((a,b),\$eq\$(a,\$pow\$(b,2)))),...))

開発状況: 実装済み部分

・木構造パーサー
 ・ ラベルによる頃参照
 ・ データバインド
 ・ データリストの内積化
 ・ アンパック(木構造の平坦化)
 ・ クオーティング
 ・ リテラライズ(オペレーション回避)