

Features

Exceeds Requirements of Full Duplex EIA-485
Standard

 Hot Plug Circuitry - Tx and Rx Outputs Remain Three-State During Power-up/Power-down

Supply voltage: 3.0V ~ 5.5V

Input Common-mode Range: -7V ~ +12 V

Data Rate: 32Mbps

• Up to 256 Nodes on a Bus (1/8 unit load)

• Full Fail-safe Receiver (Open, Short, Terminated)

Bus-Pin Protection:

±20 kV HBM ESD

±12 kV IEC61000-4-2 Contact Discharge

±15 kV IEC61000-4-2 Air Discharge

–40°C to 125°C Operation Temperature Range

Applications

- Home Appliance
- Motor Drives
- Industrial Control
- Grid Infrastructure
- Video Surveillance
- Communication Infrastructure

Description

The TPT480 and TPT482 is IEC61000 ESD protected, which support ± 12 kV IEC contact and ± 15 kV IEC air discharge. $3.0V \sim 5.5V$ transceivers that meet the RS-485 and RS-422 standards for Full Duplex communication.

Transmitters in this family deliver exceptional differential output voltages into the RS-485 required 54Ω load. The devices have very low bus currents so they present a true "1/8 unit load" to the RS-485 bus. This allows up to 256 transceivers on the network without using repeaters.

Receiver (Rx) inputs feature a "Full Fail-Safe" design, which ensures a logic high Rx output if Rx inputs are floating, shorted, or on a terminated but undriven bus.

The TPT480x is designed for full-duplex RS485, and support SOP8, DFN3X3-8 and SOP14 package, which is characterized from -40°C to 125°C.

Device Table

Part	Duplex	Enable	Data Rate	Package
TDT400	Full	Yes	32Mbps	SOP-8
TPT480	Full	162	SZIVIDPS	DFN3X3-8
TPT482	Full	Yes	32Mbps	SOP-14

Simplified Schematic

Rev. A.0

Table of Contents

Features	1
Applications	1
Description	1
Device Table	1
Simplified Schematic	1
Table of Contents	2
Revision History	3
Pin Configuration and Functions – TPT480	4
Pin Configuration and Functions – TPT482	5
Functional Table	6
Absolute Maximum Ratings	6
Thermal Information	7
Electrical Characteristics	8
Test Circuits and Waveforms	11
Test Circuits and Waveforms (continue)	12
Function Block diagram:	13
Theory of Operation	13
Application Information	14
Tape and Reel Information	15
Package Outline Dimensions	16
SO1R (SOP-8)	16
DF6R (DFN3x3-8L)	17
Package Outline Dimensions (Continued)	18
SOP-14	18
Order Information	19

Revision History

Date	Revision	Notes
2021/06/11	Rev. Pre.0	Definition Version Pre.0
2022/05/06	Rev. Pre.1	Add electrical data
2022/05/18	Rev. Pre.2	Update the package information
2022/06/19	Rev. Pre.3	Update the tape and reel information
2022/07/19	Rev. Pre.4	Add TPT482 information
2023/01/31	Rev. A.0	Released version

Pin Configuration and Functions – TPT480

Pin No.	Pin Name	I/O	Description
1	VCC	Power	Power Supply
2	R	Digital output	Receiver Output
3	D	Digital input	Driver Input
4	GND	Ground	Ground
5	Υ	Bus output	Noninverting Driver Output
6	Z	Bus output	Inverting Driver Output
7	В	Bus input	Inverting Receiver Input
8	Α	Bus input	Noninverting Receiver Input

Pin Configuration and Functions – TPT482

Pin No.	Pin Name	I/O	Description
1	NC		
2	R	Digital output	Receiver Output
3	/RE	Digital input	Receiver Output Enable
4	DE	Digital input	Driver Output Enable
5	D	Digital input	Driver Input
6	GND	Ground	Ground
7	GND	Ground	Ground
8	NC		
9	Υ	Bus output	Noninverting Driver Output
10	Z	Bus output	Inverting Driver Output
11	В	Bus input	Inverting Receiver Input
12	A	Bus input	Noninverting Receiver Input
13	VCC	Power	Power Supply
14	VCC	Power	Power Supply

Functional Table

Driver Function Table

Input	Enable	Output	Output	Description	
D	DE	Υ	Z	Description	
Н	Н	Н	L	Actively drives bus High	
L	Н	L	Н	Actively drives bus Low	
Х	L	Z	Z	Driver disabled	
Open	Н	Н	L	Actively drives bus High by default	

X = don't care

Z = high impedance

Receiver Function Table

Input	Input	Output	Description
A-B	/RE	R	Description
>-50mV	L	Н	Receive valid bus High
-200mV <input<-50mv< td=""><td>L</td><td>?</td><td>Indeterminate bus state</td></input<-50mv<>	L	?	Indeterminate bus state
<-200mV	L	L	Receive valid bus Low
X	Н	Z	Receiver disabled
Open	L	Н	Fail-safe high output
Short	L	Н	Fail-safe high output
Idle (Terminated)	L	Н	Fail-safe high output

X = don't care

Z = high impedance

Absolute Maximum Ratings

Parameters	Rating
VCC to GND	-0.3V to +7V
Voltage at Logic pin: D, DE, /RE, R	-0.3V to VCC + 0.3V
Voltage at Bus pin: A, B, Y, Z ⁽¹⁾	-15V to +15V
Operating Temperature Range	-40°C to 125°C
Storage Temperature Range	-65°C to 150°C
Maximum Junction Temperature	150°C
Lead Temperature (Soldering, 10 sec)	260°C

⁽¹⁾ Support $\pm 15V$ in receiver mode, and -8 $\sim +13V$ in driver mode

⁽²⁾ Stresses beyond the *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*.

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
VCC	Supply voltage	3.0	5.5	V
Vı	Input voltage at any bus terminal ⁽¹⁾	-7	12	V
ViH	High-level input voltage (driver, driver enable, and receiver enable inputs)	2	VCC	V
V _{IL}	Low-level input voltage (driver, driver enable, and receiver enable inputs)	0	0.8	V
VID	Differential input voltage	-7	12	V
R _L	Differential load resistance	54		Ω
T _A	Operating ambient temperature	-40	125	°C
T _J	Junction temperature	-40	150	°C

⁽¹⁾ The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

ESD Rating

		Value	Unit
IEC-61000-4-2, Contact Discharge	Bus Pin	±12	kV
IEC-61000-4-2, Air-Gap Discharge	Bus Pin	±15	kV
LIDM TO ANOLIFOR ALIFORD IS 2004 (ANOLIFOR STATE 5.4	Bus Pin	±20	kV
HBM, per ANSI/ESDA/JEDEC JS-001 / ANSI/ESD STM5.5.1	All Pin Except Bus Pin	±4	kV
CDM, per ANSI/ESDA/JEDEC JS-002	All Pin	±1.5	kV

Thermal Information

Package Type	θ_{JA}	θ _{JC}	Unit
8-Pin SOP	120	64	°C/W
8-Pin DFN	65	9	°C/W
14-Pin SOIC	102	39	°C/W

Electrical Characteristics

All test condition is VCC = 3.3V~5.0V, T_A = -40 ~ +125°C, unless otherwise noted.

Symbol	Parameter	Test Co	nditions	Min		MAX	Unit
		R _L = 54 Ω , VCC=3.3V		1.5	2.2		V
	Driver differential output voltage	R _L = 54 Ω , VCC=5.0V			3.3		V
V _{OD}	magnitude	R _L = 100 Ω, VCC = 3.3V			2.6		V
		R _L = 100 Ω, VCC = 5.0V		3.0	3.9		V
Δ V _{OD}	Change in magnitude of driver	$R_L = 54 \Omega$, $C_L = 50 pF$, 375Ω o	on A/B: -7 V to 12V, VCC=3.3V	-50		50	mV
Voc(ss)	Steady-state common-mode output	0		1	VCC/2	3	V
ΔV _{OC}	Change in differential driver output	Center of two 27-Ω load resisto	rs	-200		200	mV
Сор	Differential output capacitance [1]				15		pF
VIT+	Positive-going receiver differential				-110	-50	mV
VIT-	Negative-going receiver differential			-200	-130		mV
VHYS	Receiver differential input voltage threshold hysteresis (VIT+ – VIT-) [1]				50		mV
		VCC = 3.3 V, I _{OH} = -8 mA		2.6	3.0		
Vон	Receiver high-level output voltage	VCC = 5 V, I _{OH} = -8 mA		4.1	4.8		V
	/oL Receiver low-level output voltage	VCC = 3.3 V, I _{OH} = -8 mA			0.19	0.4	V
Vol		VCC = 5 V, I _{OH} = -8 mA			0.02	0.4	
Vih	Input High Logic Leve	D, DE, /RE		2.0			V
VIL	Input Low Logic Leve	D, DE, /RE				0.8	V
I _{IN}	Driver input, driver enable, and	D, DE, /RE		-5		5	μΑ
	D:	V ₀ = -7V		-100		0	•
loz	Driver output high-Z current	V ₀ = 12V		0		125	μA
loz	Receiver high-Z current	V _O = 0 V or VCC		-1		1	μΑ
1		VY, VZ= -7V ~ 12V		-250		250	mA
los	Driver short-circuit output current	VY, VZ =0V or VCC		-180		180	mA
	Due input suggest (dis-lets d dais)	DE - 0.1/ BE-1/00	V _I = 12 V,		55	125	μΑ
IIA/B	Bus input current (disabled driver)	DE = 0 V, RE=VCC	V _I = -7 V,	-100	-50		μΑ
		Driver and Receiver enabled	DE=VCC, RE = GND, No load		1200	2500	μA
loc		Driver enabled, receiver disabled	DE=VCC, RE = VCC, No load		1200	2500	μΑ
Icc Supply current (q	Supply current (quiescent), 32Mpbs	Driver disabled, receiver enabled	DE=GND, RE = GND, No load		1000	2200	μА
		Driver and receiver disabled	DE=GND, RE = VCC, No load	-5		5	μA

Note:

^{[1].} Parameters are provided by lab bench test and design simulation

Switching Characteristics, VCC= 5.0V

Parameter		Conditions		Min	Тур	Max	Units	
Driver								
t _r , t _f	Driver differential-output rise and fall times (1)	RL = 54Ω ,		4	6	10		
t _{PHL} , t _{PLH}	Driver propagation delay	CL=50pF	See Figure 2		19	30	ns	
tsk(P)	Driver pulse skew, tphl - tplh (2)					10		
tphz, tplz	Driver disable time	/RE=0 or VCC			37	50	ns	
		Receiver enabled See Figure 3			21	40		
tpzh, tpzl	Driver enable time	Receiver disabled			1760	2500	ns	
Receiver								
t _r , t _f	Driver differential-output rise and fall times (1)			2	4	6	ns	
tphl, tplh	Receiver propagation delay time				36	45		
tsk(P)	Receiver pulse skew, tphl - tplh (2)					20	ns	
tphz, tplz	Receiver disable time	DE=0 or VCC			15	25	ns	
4	Describer and the first	Driver enabled	See Figure 6		14	25		
tpzh, tpzl	Receiver enable time	Driver disabled			1750	2500	ns	

Note:

- (1) For the typical value of tr, tf, it is provided by lab bench test. The maximum and minimum value is provided by design simulation.
- (2) The maximum value of tSK(P) is provided by design simulation.

Switching Characteristics, VCC=3.3V

Parameter		Conditions	Min	Тур	Max	Units		
Driver	Driver							
t _r , t _f	Driver differential-output rise and fall times (1)	. RL = 54 Ω,		4	6	14		
t _{PHL} , t _{PLH}	Driver propagation delay	CL=50pF	See Figure 2		22	30	ns	
tsk(P)	Driver pulse skew, tphl - tplh (2)					10		
tphz, tplz	Driver disable time	/RE=0 or VCC			40	55	ns	
	B : 11 #	Receiver enabled	See Figure 3		30	50		
tpzh, tpzl	Driver enable time	Receiver disabled			2560	4000	ns	

Parameter	Parameter Conditions			Min	Тур	Max	Units
Receiver	Receiver						
t _r , t _f	Driver differential-output rise and fall times (1)			2	4	8	ns
tphl, tplh	Receiver propagation delay time				47	60	
tsk(P)	Receiver pulse skew, tphl - tplh					20	ns
tphz, tplz	Receiver disable time	DE=0 or VCC			21	30	ns
tpzh, tpzl		Driver enabled	See Figure 6		17	30	
	Receiver enable time	Driver disabled			2550	4000	ns

Note:

- (1) For the typical value of tr, tf, it is provided by lab bench test. The maximum and minimum value is provided by design simulation.
- (2) The maximum value of tSK(P) is provided by design simulation.

3V

3.3V & 5.0V Full Duplex RS-485 Transceivers

Test Circuits and Waveforms

Figure 1A. VOD and VOC

Figure 1B. VOD with Common Mode Load

Figure 1. DC Driver Test Circuits

Figure 2A. Test Circuit

Figure 2B. Measurement Points

Figure 2. Driver Propagation Delay and Differential Transition Times

Figure 3A. Test Circuit

Figure 3B. Measurement Points

PARAMETER	ОИТРИТ	RE	DI	sw	CL (pF)
tPHZ	Y/Z	X	1/0	GND	15
tPLZ	Y/Z	Х	0/1	VCC	15
tPZH	Y/Z	0	1/0	GND	100
tPZL	Y/Z	0	0/1	VCC	100
tPZH(SHDN)	Y/Z	1	1/0	GND	100
tPZL(SHDN)	Y/Z	1	0/1	VCC	100

Figure 3. Driver Enable and Disable Times

Test Circuits and Waveforms (continue)

Figure 4A. Test Circuit

Figure 4B. Measurement Points

Figure 4. Driver Data rate

Figure 5B. Measurement Points

Figure 5. Receiver Propagation Delay and Data rate

PARAMETER	DE	Α	sw
tPHZ	1	+1.5V	GND
tPLZ	1	-1.5V	VCC
tPZH	1	+1.5V	GND
tPZL	1	-1.5V	VCC
tPZH(SHDN)	0	+1.5V	GND
tPZL(SHDN)	0	-1.5V	VCC

Figure 6A. Test Circuit

Figure 6B. Measurement Points

Figure 6. Receiver Enable and Disable Times

Function Block diagram:

Figure 7-A. TPT480 block diagram

Figure 7-B. TPT482 block diagram

Theory of Operation

General description

The TPT480/482 is a Full-Duplex RS-485/RS-422 transceivers with robust HBM and IEC 61000 ESD protection. The device build in fail-safe circuit, when the receiver input is open or shorted, or idle mode, it will generate a logic-high receiver output. The TPT48x supports hot-swap function allowing line insertion to avoid wrong data transmission, and optimizes the drivers slew-rate to minimize EMI and reduce reflections caused by different terminated cables, then TPT48x can support the high communication speed up to 32Mbps.

The TPT48x operates from a single +3.3V to 5.0V power supply, the driver is designed with output short-circuit current limitation, together with thermal-shutdown circuitry to protect drivers in the status of excessive power dissipation. In active mode, the thermal-shutdown circuitry places the driver outputs into a high-impedance state.

In the typical RS485 communication, twisted-pair lines are connected backward in the network.

Application Information

Figure 8. Typical RS485 communication network with enable function

The TPT480 transceiver is designed for bidirectional RS485/422 data communications on multipoint bus transmission lines. Figures 8 shows typical network applications circuit to support up to 256 nodes. To minimize line reflections, terminate the line at both ends in its characteristic impedance, one 1200hm load in master side, and another 1200hm load in the end of slave side, and limit stub lengths off the main line as short as possible.

Tape and Reel Information

Order Number	Package	D1	W1	A0	В0	K0	P0	W0	Pin1 Quadrant
TPT480L1-SO1R	8-Pin SOP	330.0	17.6	6.4	5.4	2.1	8.0	12.0	Q1
TPT480-DF6R	DFN3X3-8L	330.0	17.6	3.3	3.3	1.1	8.0	12.0	Q1
TPT482-SO2R	14-Pin SOP	330.0	21.6	6.5	9.0	2.1	8.0	16.0	Q1

Package Outline Dimensions

SO1R (SOP-8)

Package Outline Dimensions (Continued)

DF6R (DFN3x3-8L)

Package Outline Dimensions (Continued)

SOP-14

SYMBOL	MILLIMETER						
SIMBOL	MIN	NOM	MAX				
A	_	_	1.75				
Al	0.05	_	0.225				
A2	1.30	1.40	1.50				
A3	0.60	0.65	0.70				
b	0.39	_	0.47				
bl	0.38	0.41	0.44				
c	0.20	_	0.24				
cl	0.19	0.20	0.21				
D	8.55	8.65	8.75				
E	5.80	6.00	6.20				
E1	3.80	3.90	4.00				
e	1	1.27BSC					
h	0.25	_	0.50				
L	0.50	_	0.80				
L1	1.05REF						
θ	0	_	8°				

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPT480L1-SO1R	-40 to 125°C	SOP8	T480	1	Tape and Reel, 4000	Green
TPT480-DF6R (1)	-40 to 125°C	DFN3X3-8	T480	3	Tape and Reel, 4000	Green
TPT482-SO2R	-40 to 125°C	SOP14	T482	3	Tape and Reel, 2,500	Green

^{(1).} Future product, contact 3PEAK factory for more information and sample

♣ 3PEAK and the 3PEAK logo are registered trademarks of 3PEAK INCORPORATED. All other trademarks are the property of their respective owners.

^{(2).} Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.