

**date** 07/07/2014

page 1 of 6

# **SERIES:** PQMC3-S | **DESCRIPTION:** DC-DC CONVERTER

#### **FEATURES**

- 3 W isolated output
- smaller package
- single/dual regulated output
- 1,500 Vdc isolation
- continuous short circuit
- temperature range (-40~105°C)
- high efficiency at light load
- efficiency up to 84%





| MODEL           |              | nput<br>oltage | output<br>voltage |             | tput<br>rrent | output<br>power | ripple<br>and noise <sup>1</sup> | efficiency        |
|-----------------|--------------|----------------|-------------------|-------------|---------------|-----------------|----------------------------------|-------------------|
|                 | typ<br>(Vdc) | range<br>(Vdc) | (Vdc)             | min<br>(mA) | max<br>(mA)   | max<br>(W)      | max<br>(mVp-p)                   | <b>typ</b><br>(%) |
| PQMC3-D5-S5-S   | 5            | 4.5~9          | 5                 | 25          | 500           | 2.5             | 75                               | 73                |
| PQMC3-D5-S9-S   | 5            | 4.5~9          | 9                 | 14          | 278           | 2.5             | 75                               | 74                |
| PQMC3-D5-S12-S  | 5            | 4.5~9          | 12                | 10          | 208           | 2.5             | 75                               | 77                |
| PQMC3-D5-S15-S  | 5            | 4.5~9          | 15                | 8           | 167           | 2.5             | 75                               | 74                |
| PQMC3-D5-D5-S   | 5            | 4.5~9          | ±5                | ±13         | ±250          | 2.5             | 75                               | 74                |
| PQMC3-D5-D12-S  | 5            | 4.5~9          | ±12               | ±5          | ±104          | 2.5             | 75                               | 77                |
| PQMC3-D5-D15-S  | 5            | 4.5~9          | ±15               | ±4          | ±83           | 2.5             | 75                               | 77                |
| PQMC3-D12-S3-S  | 12           | 9~18           | 3.3               | 38          | 758           | 2.5             | 75                               | 75                |
| PQMC3-D12-S5-S  | 12           | 9~18           | 5                 | 30          | 600           | 3               | 75                               | 76                |
| PQMC3-D12-S9-S  | 12           | 9~18           | 9                 | 17          | 333           | 3               | 75                               | 79                |
| PQMC3-D12-S12-S | 12           | 9~18           | 12                | 13          | 250           | 3               | 75                               | 82                |
| PQMC3-D12-S15-S | 12           | 9~18           | 15                | 10          | 200           | 3               | 75                               | 83                |
| PQMC3-D12-S24-S | 12           | 9~18           | 24                | 6           | 125           | 3               | 75                               | 81                |
| PQMC3-D12-D5-S  | 12           | 9~18           | ±5                | ±15         | ±300          | 3               | 75                               | 78                |
| PQMC3-D12-D12-S | 12           | 9~18           | ±12               | ±6          | ±125          | 3               | 75                               | 79                |
| PQMC3-D12-D15-S | 12           | 9~18           | ±15               | ±5          | ±100          | 3               | 75                               | 80                |
| PQMC3-D24-S3-S  | 24           | 18~36          | 3.3               | 38          | 758           | 2.5             | 75                               | 74                |
| PQMC3-D24-S5-S  | 24           | 18~36          | 5                 | 30          | 600           | 3               | 75                               | 81                |
| PQMC3-D24-S9-S  | 24           | 18~36          | 9                 | 17          | 333           | 3               | 75                               | 83                |
| PQMC3-D24-S12-S | 24           | 18~36          | 12                | 13          | 250           | 3               | 75                               | 83                |
| PQMC3-D24-S15-S | 24           | 18~36          | 15                | 10          | 200           | 3               | 75                               | 83                |
| PQMC3-D24-S24-S | 24           | 18~36          | 24                | 6           | 125           | 3               | 75                               | 83                |
| PQMC3-D24-D5-S  | 24           | 18~36          | ±5                | ±15         | ±300          | 3               | 75                               | 79                |
| PQMC3-D24-D9-S  | 24           | 18~36          | ±9                | ±8          | ±167          | 3               | 75                               | 81                |
| PQMC3-D24-D12-S | 24           | 18~36          | ±12               | ±6          | ±125          | 3               | 75                               | 83                |
| PQMC3-D24-D15-S | 24           | 18~36          | ±15               | ±5          | ±100          | 3               | 75                               | 83                |
| PQMC3-D48-S3-S  | 48           | 36~75          | 3.3               | 38          | 758           | 2.5             | 75                               | 75                |
| PQMC3-D48-S5-S  | 48           | 36~75          | 5                 | 30          | 600           | 3               | 75                               | 76                |

| MODEL           |                     | nput<br>oltage | output<br>voltage |             | tput<br>rrent | output<br>power | ripple<br>and noise¹  | efficiency        |
|-----------------|---------------------|----------------|-------------------|-------------|---------------|-----------------|-----------------------|-------------------|
| (CONTINUED)     | <b>typ</b><br>(Vdc) | range<br>(Vdc) | (Vdc)             | min<br>(mA) | max<br>(mA)   | max<br>(W)      | <b>typ</b><br>(mVp-p) | <b>typ</b><br>(%) |
| PQMC3-D48-S12-S | 48                  | 36~75          | 12                | 13          | 250           | 3               | 75                    | 80                |
| PQMC3-D48-S15-S | 48                  | 36~75          | 15                | 10          | 200           | 3               | 75                    | 84                |
| PQMC3-D48-S24-S | 48                  | 36~75          | 24                | 6           | 125           | 3               | 75                    | 82                |
| PQMC3-D48-D5-S  | 48                  | 36~75          | ±5                | ±15         | ±300          | 3               | 75                    | 79                |
| PQMC3-D48-D12-S | 48                  | 36~75          | ±12               | ±6          | ±125          | 3               | 75                    | 82                |
| PQMC3-D48-D15-S | 48                  | 36~75          | ±15               | ±5          | ±100          | 3               | 75                    | 82                |

1. ripple and noise are measured at 20 MHz BW by "parallel cable" method with 1  $\mu$ F ceramic and 10  $\mu$ F electrolytic capacitors on the output. Notes:

## **PART NUMBER KEY**



## **INPUT**

| parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | conditions/description                                    | min  | typ | max | units |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------|-----|-----|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 Vdc input models                                        | 4.5  | 5   | 9   | Vdc   |
| and the state of t | 12 Vdc input models                                       | 9    | 12  | 18  | Vdc   |
| operating input voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 Vdc input models                                       | 18   | 24  | 36  | Vdc   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48 Vdc input models                                       | 36   | 48  | 75  | Vdc   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 Vdc input models                                        | 3.5  | 4   | 4.5 | Vdc   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 Vdc input models                                       | 4.5  | 8   | 9   | Vdc   |
| start-up voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24 Vdc input models                                       | 11   | 16  | 18  | Vdc   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48 Vdc input models                                       | 24   | 33  | 36  | Vdc   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for maximum of 1 second                                   |      |     |     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 Vdc input models                                        | -0.7 |     | 12  | Vdc   |
| surge voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12 Vdc input models                                       | -0.7 |     | 25  | Vdc   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 Vdc input models                                       | -0.7 |     | 50  | Vdc   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48 Vdc input models                                       | -0.7 |     | 100 | Vdc   |
| filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | capacitance filter                                        |      |     |     |       |
| CTRL <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | models ON (CTRL open or insulated)                        |      |     |     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | models OFF (connect voltage, current into CTRL is 5~10mA) |      |     |     |       |

Notes: 2. See application notes on page 6.

## **OUTPUT**

| parameter                    | conditions/description                           | min | typ   | max      | units  |
|------------------------------|--------------------------------------------------|-----|-------|----------|--------|
| line regulation              | full load, input voltage from low to high        |     | ±0.2  | ±0.5     | %      |
| load regulation              | 5% to 100% load                                  |     | ±0.6  | ±1       | %      |
| voltage accuracy             | 5% to 100% load                                  |     | ±1    | ±3       | %      |
| no-load voltage accuracy     | PQMC3-D12-S3-S & PQMC3-D48-S3-S all other models |     | ±1.5  | ±8<br>±5 | %<br>% |
| voltage balance <sup>3</sup> | dual output, balanced loads                      |     | ±0.5  | ±1       | %      |
| switching frequency          | 100% load, nominal input voltage, PFM mode       |     | 250   |          | kHz    |
| transient recovery time      | 25% load step change                             |     | 0.5   | 3        | ms     |
| transient response deviation | 25% load step change                             |     | ±2.5  | ±5       | %      |
| temperature coeffecient      | 100% load                                        |     | ±0.02 | ±0.03    | %/°C   |

Notes: 3. For dual output models, unbalanced loads should not exceed  $\pm 5\%$ . If  $\pm 5\%$  is exceeded, it may not meet all specifications.

# **PROTECTIONS**

| parameter                | conditions/description         | min | typ | max | units |
|--------------------------|--------------------------------|-----|-----|-----|-------|
| short circuit protection | continuous, automatic recovery |     |     |     |       |

## **SAFETY AND COMPLIANCE**

| parameter                    | conditions/description                         | min                                                                  | typ        | max | units |  |  |
|------------------------------|------------------------------------------------|----------------------------------------------------------------------|------------|-----|-------|--|--|
| isolation voltage            | input to output for 1 minute at 1 mA max.      | 1,500                                                                |            |     | Vdc   |  |  |
| isolation resistance         | input to output at 500 Vdc                     | 1,000                                                                |            |     | МΩ    |  |  |
| conducted emissions          | CISPR22/EN55022, class B (external circuit req | CISPR22/EN55022, class B (external circuit required, see Figure 1-b) |            |     |       |  |  |
| radiated emissions           | CISPR22/EN55022, class B (external circuit req | CISPR22/EN55022, class B (external circuit required, see Figure 1-b) |            |     |       |  |  |
| ESD                          | IEC/EN61000-4-2, class B, contact ± 4kV        |                                                                      |            |     |       |  |  |
| radiated immunity            | IEC/EN61000-4-3, class A, 10V/m                | IEC/EN61000-4-3, class A, 10V/m                                      |            |     |       |  |  |
| EFT/burst                    | IEC/EN61000-4-4, class B, ± 2kV (external circ | uit required, see F                                                  | igure 1-a) |     |       |  |  |
| surge                        | IEC/EN61000-4-5, class B, ± 2kV (external circ | uit required, see F                                                  | igure 1-a) |     |       |  |  |
| conducted immunity           | IEC/EN61000-4-6, class A, 3 Vr.m.s             |                                                                      |            |     |       |  |  |
| voltage dips & interruptions | IEC/EN61000-4-29, class B, 0%-70%              |                                                                      |            |     |       |  |  |
| MTBF                         | as per MIL-HDBK-217F @ 25°C                    | 1,000,000                                                            |            |     | hours |  |  |
| RoHS                         | 2011/65/EU                                     |                                                                      |            |     |       |  |  |

# **ENVIRONMENTAL**

| parameter             | conditions/description | min | typ | max | units |
|-----------------------|------------------------|-----|-----|-----|-------|
| operating temperature | see derating curve     | -40 |     | 105 | °C    |
| storage temperature   |                        | -55 |     | 125 | °C    |
| storage humidity      | non-condensing         |     |     | 95  | %     |
| temperature rise      | at full load, Ta=25°C  |     | 25  |     | °C    |

## **SOLDERABILITY**

| parameter      | conditions/description          | min | typ | max | units |
|----------------|---------------------------------|-----|-----|-----|-------|
| hand soldering | 1.5 mm from case for 10 seconds |     |     | 300 | °C    |
| wave soldering | see wave soldering profile      |     |     | 260 | °C    |

## **MECHANICAL**

| parameter     | conditions/description                            | min | typ | max | units |
|---------------|---------------------------------------------------|-----|-----|-----|-------|
| dimensions    | 22.00 x 9.50 x 12.00 (0.866 x 0.374 x 0.472 inch) |     |     |     | mm    |
| case material | plastic (UL94-V0)                                 |     |     |     |       |
| weight        |                                                   |     | 4.9 |     | g     |

# **DERATING CURVES**





### **MECHANICAL DRAWING**

units: mm[inch]

tolerance:  $\pm 0.25[\pm 0.010]$ 

pin section tolerance:  $\pm 0.10[\pm 0.004]$ 

|     | PIN CONNECTIONS |             |  |  |  |
|-----|-----------------|-------------|--|--|--|
| PIN | Single Output   | Dual Output |  |  |  |
| 1   | GND             | GND         |  |  |  |
| 2   | Vin             | Vin         |  |  |  |
| 3   | Ctrl            | Ctrl        |  |  |  |
| 5   | NC              | NC          |  |  |  |
| 6   | +Vo             | +Vo         |  |  |  |
| 7   | 0V              | 0V          |  |  |  |
| 8   | CS              | -Vo         |  |  |  |





# NC: No Connection

# **EMC RECOMMENDED CIRCUIT**

Figure 1



Recommended external circuit components

|           | Recommended external circuit components          |                    |                     |              |  |
|-----------|--------------------------------------------------|--------------------|---------------------|--------------|--|
| Vin (Vdc) | 5                                                | 12                 | 24                  | 48           |  |
| FUSE      | choo                                             | ose according to p | oractical input cur | rent         |  |
| MOV       |                                                  |                    | S14K35              | S14K60       |  |
| LDM1      |                                                  |                    | 56µH                | 56µH         |  |
| TVS       | SMCJ13A                                          | SMCJ28A            | SMCJ48A             | SMCJ90A      |  |
| C0        | 680µF/16V                                        | 680µF/25V          | 330µF/50V           | 330µF/100V   |  |
| C1        | 4.7μF/50V                                        | 4.7μF/50V          | 4.7μF/50V           | 4.7µF/100V   |  |
| LDM2      | 12µH                                             | 12µH               | 12µH                | 12µH         |  |
| C2        | 4.7μF/50V                                        | 4.7μF/50V          | 4.7μF/50V           | 4.7µF/100V   |  |
| CY        | 1nF/2kV                                          | 1nF/2kV            | 1nF/2kV             | 1nF/2kV      |  |
| D1        | RB160M-60/1A                                     | RB160M-60/1A       | RB160M-60/1A        | RB160M-60/1A |  |
| R         | Follows: $R = \frac{V_C - V_D - 1.0}{I_C} - 300$ |                    |                     |              |  |
| Cd        | 47nF/100V                                        | 47nF/100V          | 47nF/100V           | 47nF/100V    |  |

Table 1

Note: Figure 1-c is on/off control circuit. See page 6 for details.

#### **TEST CONFIGURATION**



Table 2

| External components |                                              |  |
|---------------------|----------------------------------------------|--|
| Lin 4.7µH           |                                              |  |
| Cin                 | $220\mu\text{F, ESR} < 1.0\Omega$ at 100 KHz |  |

Note: Input reflected-ripple current is measured with an inductor Lin and Capacitor Cin to simulate source impedance.

#### APPLICATION NOTES

#### **Output load requirement**

To ensure this module can operate efficiently and reliably, the minimum output load may not be less than 5% of the full load during operation. If the actual output power is low, connect a resistor at the output end in parallel to increase the load.

#### **Recommended circuit**

This series has been tested according to the following recommended testing circuit before leaving the factory. This series should be tested under load (see Figure 3 and Table 3). If you want to further decrease the input/output ripple, you can increase the capacitance accordingly or choose capacitors with low ESR. However, the capacitance of the output filter capacitor must be appropriate. If the capacitance is too high, a startup problem might arise. For every channel of the output, to ensure safe and reliable operation, the maximum capacitance must be less than the maximum capacitive load (see Table 4).



Figure 3

Table 3

Cin<sub>2</sub> Cd Vin Cin1 Lin  $Cs^1$ Cout Lout<sup>2</sup> (Vdc)  $(\mu F)$  $(\mu F)$ (µH) (µF)  $(\mu F)$  $(\mu H)$ (nF/V) 5 100 47 4.7~12 10~22 100 2.2~10 47/100 4.7~12 47/100 12 100 47 10~22 100 2.2~10 100 24 10 1 4.7~12 10~22 2.2~10 47/100 48 10 4.7~12 10~22 100 2.2~10 47/100

Note:

- 1. For single output only
- 2. For dual output only

Table 4

| Single<br>Vout<br>(Vdc) | Max. Capacitive<br>Load<br>(μF) | Dual<br>Vout<br>(Vdc) | Max. Capacitive<br>Load¹<br>(μF) |
|-------------------------|---------------------------------|-----------------------|----------------------------------|
| 3.3                     | 2700                            |                       |                                  |
| 5                       | 2200                            | 5                     | 1000                             |
| 9                       | 1000                            | 9                     | 680                              |
| 12                      | 680                             | 12                    | 470                              |
| 15                      | 470                             | 15                    | 330                              |
| 24                      | 330                             |                       |                                  |

1. For each output.

#### **CTRL Terminal**

When open or applied high impedance, the converter will turn on. When it's pulled high, the converter will shutdown. The input current should between 5~10mA. Exceeding the maximum 20mA will cause permanent damage to the converter. The value for R can be derived as follows:

$$R = \frac{V_C - V_D - 1.0}{I_C} - 300$$

V<sub>s</sub>: Control pin input voltage

 $V_D$ : Forward voltage drop of diode D1

I.: Input current to control pin

R: Resistor of control circuit



#### **Input Current**

When it is used in an unregulated condition, make sure that the input fluctuations and ripple voltage do not exceed the module standard. Refer to Figure 5 and Table 5 for the startup current of this dc-dc module.



Note:

- 1. Minimum load shouldn't be less than 5%, otherwise ripple may increase dramatically. Operation under minimum load will not damage the converter, however, they may not meet all specifications listed.
- 2. Maximum capacitive load is tested at input voltage range and full load.
- 3. All specifications are measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.

Figure 4

**date** 07/07/2014 | **page** 6 of 6

### **REVISION HISTORY**

| rev. | description                | date       |
|------|----------------------------|------------|
| 1.0  | initial release            | 03/19/2013 |
| 1.01 | added models, updated spec | 07/07/2014 |

The revision history provided is for informational purposes only and is believed to be accurate.



Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.