Temperature Forecasting

DATS 6313: Time Series and Analysis

Fall 2023

December 11, 2023

Ву

Shubham Jadhav G30570862

Table of Contents

- Objective
- Data Description
- Stationarity
- Time Series Decomposition
- Holt-Winters Method

- Base Models
- Multi Linear Regression
- ARMA Model
- Final Model selection
- h-step ahead Predictions

Objective

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Objective

- The major reason source of energy wastage in building is due to HVAC systems, which often
 operates on fixed schedule. To optimize the HVAC system we should efficiently predict the
 temperature in the room.
- To create a model to forecast temperature based on the features present in the dataset i.e.,
 sensor data.
- To perform Time Series Analysis on the selected dataset.
- To evaluate model performance based on various parameters

Data Description

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Data Description

- The Occupation dataset consists of contains data collected from an office room over a period of
 7 days.
- The dataset was collected by using several sensors.
- 9752 observations and 6 numerical features.
- Features include time, temperature, humidity, light intensity, CO2 levels, humid- ity ratio, and occupancy.

Sample observations from dataset

Occupancy	1	HumidityRatio	1	C02	1	Light	1	Humidity	1	Temperature	1		date
	-+		+		-+-		+-		-+		+		
1	. 1	0.00502101	1	1029.67	1	437.333	1	31.1333	1	21.76	1	11 14:48:00	2015-02-11
1	1	0.00500858	1	1000	1	437.333	1	31	Ĩ	21.79	1	11 14:49:00	2015-02-11
1	1	0.00502157	1	1003.75	1	434	1	31.1225	1	21.7675	1	11 14:50:00	2015-02-11
1	1	0.00502157	1	1009.5	1	439	1	31.1225	1	21.7675	1	11 14:51:00	2015-02-11
1	1	0.0050303	1	1005.67	1	437.333	1	31.1333	1	21.79	E	11 14:52:00	2015-02-11

Temperature over time

ACF/PACF and Correlation plot

Stationarity

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Rolling Mean and Variance

ADF and KPSS Test Results

ADF Statistic: -9.684629

p-value: 0.000000

Critical Values:

1%: -3.431023

5%: -2.861838

10%: -2.566928

Results of KPSS Test:

Test Statistic		0.082141
p-value		0.100000
Lags Used		32.000000
Critical Value	(10%)	0.347000
Critical Value	(5%)	0.463000
Critical Value	(2.5%)	0.574000
Critical Value	(1%)	0.739000

According to ADF test p-value is less than 0.05, hence the time series is Stationary.

According to KPSS Test p-value is greater than 0.05, hence the time series is Stationary.

ACF/PACF plot of Stationary Data

We can observe from the ACF/PACF plot that differenced data is now stationary.

Time Series Decomposition

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Time Series Decomposition

- The strength for trend of this data is 0.0012 or 0.12% which is very low.
- The strength of seasonality of this is 0.4107 or 41.07%

Holt-Winters Method

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Holt-Winters Method

• Q-Value: 957.818 (Critical: 36.19)

Mean of residual error: 0

MSE of residual error: 0.001

• Mean of forecast error: 0.002

MSE of forecast error: 0.001

• Variance of residual errors versus

forecast errors: 1.13

Base Models

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Average Method

• Q-Value: 968.28 (Critical: 36.19)

Mean of residual error: 0

MSE of residual error: 0.001

Mean of forecast error: 0.004

MSE of forecast error: 0.001

• Variance of residual errors versus

forecast errors: 1.14

Naive Method

• Q-Value: 957.818 (Critical: 36.19)

Mean of residual error: 0

MSE of residual error: 0.003

Mean of forecast error: 0.004

MSE of forecast error: 0.001

Variance of residual errors versus

forecast errors: 2.98

Drift Method

• Q-Value: 957.818 (Critical: 36.19)

Mean of residual error: 0

MSE of residual error: 0.003

Mean of forecast error: 0.004

MSE of forecast error: 0.001

• Variance of residual errors versus

forecast errors: 1.72

SES Method

• Q-Value: 957.818 (Critical: 36.19)

Mean of residual error: 0

MSE of residual error: 0.002

• Mean of forecast error: 0.002

MSE of forecast error: 0.010

• Variance of residual errors versus

forecast errors: 1.13

Base Model Comparison

Model		Q-Value	Critical-Value	White-Residual	1	m_res	1	mse_res	var_res	 -	m_pred	1	mse_pred	1	var_pred
Average	1	968.24	36.1909	No	1	-0.0002	1	0.0011	0.0011		0.0004	1	0.001	1	0.001
Naive	1	3282.9	36.1909	No	1	0	1	0.0029	0.0029	I	0.0004	1	0.001	1	0.001
Drift	I	3270.29	36.1909	No	1	0.0002	1	0.0029	0.0029	l	0.0038	1	0.001	1	0.001
SES	1	1854.69	36.1909	l No	1	-0	1	0.0017	0.0017	I	0.0104	1	0.0011	1	0.001

Multiple Linear Regression

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Feature Selection

We performed feature selection in three ways.

- Backward Stepwise Regression: Using this method, the initial OLS model did not have any feature whose p-value is less than 0.05. Therefore, no features were dropped.
- Variance Inflation Factor: Using VIF method the highest VIF score was observed for Humidity feature. But removing Humidity, degrades the OLS performance. Therefore, no features were dropped.
- Principal Component Analysis: Using PCA method, we received 4 components and executed
 OLS model on those 4 components.

Model results from Feature Selection

+		-+		4		-+			+	-+		-+			+			-+
I				_	R2	56.5											oss-val	
		-+		4		-+			+	-+		-+			+			- [
- [0)	All	1	0.9911	-1	0.991	1	-13196.3	1	-13154.5	1		0	I		0.7615	1
-1	1	. 1	BSR	1	0.9911	1	0.991	1	-13196.3	1	-13154.5	-1		0	1		0.7615	1
-1	2	2	VIF	1	0.9911	1	0.991	1	-13196.3	1	-13154.5	1		0	1		0.7615	1
-1	3	1	PCA	1	0.9429	1	0.9429	9	1296.01	1	1330.82	-1		0	1		-5.2516	1
+		-+		4		-+			+	+		-+			+			-+
+		-+-		+			+				+	+		+		+		-+
		1	Model	1	Q-Value		Critical-Value	V	White-Residual		mse_res	I	var_res	1	mse_pred	I	var_pred	1
- 1		-+-		+			+				+	+-		+		+		-
1	0	1	All	1	34490		36.1909	1	lo		0.0108	1	0.0108	1	4.0355	I	0.7771	1
I	1	1	BSR	1	34490		36.1909	١	lo		0.0108	1	0.0108	1	4.0355	I	0.7771	1
1	2	1	VIF	1	34490		36.1909	1	lo		0.0108	1	0.0108	1	4.0355	I	0.7771	1
I	3	l	PCA		74914.9		36.1909	١	lo		0.069	1	0.069	1	1.2287	Ī	1.2287	1
+		-+-		+			+				+	+-		+		+		-+

Plots for results using features from BSR

ARMA

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Order Determination using GPAC

Using GPAC table we can observe four order or AR and MA.

- ARMA (5, 6)
- ARMA (8, 1)
- ARMA (10, 2)
- ARMA (11, 7)

We then perform time series forecasting for the data using these four order.

ARMA order from GPAC

ARMA(8,1)

ARMA order from GPAC (continued)

ARMA(10,2)

ARMA(11,7)

ARMA (5,6)

ARMA (8,1)

ARMA (10,2)

ARMA (11,7)

Model Results

Model	Q-Value	Critical-Value Wh		m_res	mse_res	var_res	m_pred	mse_pred	var_pred
ARIMA(5, 0, 6)	35.3081	36.1909 Ye		-0.0001	0.0009	0.0009	0.0004	0.001	0.001
ARIMA(8, 0, 1)	40.5755	36.1909 No)	-0.0001	0.0009	0.0009	0.0004	0.001	0.001
ARIMA(10, 0, 2)	17.8974	36.1909 Ye	25	-0.0001	0.0009	0.0009	0.0004	0.001	0.001
ARIMA(11, 0, 7)	21.3006	36.1909 Ye	es	-0.0001	0.0009	0.0009	0.0004	0.001	0.001

Final Model Selection

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Model Comparison

Method	Q-Value	Improvement
Naive Method	3282.90	-
Drift Method	3270.29	0.38%
SES Method	1854.69	43.53%
Average Method	968.24	47.72%
Holt-Winter's Method	957.81	1.09%
ARMA (8,0)	40.58	95.76%
ARMA (5,6)	35.31	13.02%
ARMA (11,7)	21.30	39.85%
ARMA (10,2)	17.89	15.92%

ARMA(10, 2) exhibit the lowest Q value amongst all models indicating a comparable goodness of fit, with the residuals following a white noise pattern.

We can consider the Multiple Linear Regression model as the model explains 99% of the variance in the data, suggesting a good fit.

H-step ahead Prediction

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

50-step and 100-step Prediction

150-step and 200-step Prediction

Thank You

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC