

INSTITUT FÜR INFORMATIK

Prof. Dr. Christoph Scholl Dipl. Inf. Tobias Nopper 8. Juni 2004

Testat

Technische Informatik 2

Name:	Matrikel-Nr.:
Umfang: 6 Blätter	Bearbeitungszeit: 60 Minuten
Erlaubte Hilfsmittel: Keine	
Bitte tragen Sie auf allen verwendeten nummer ein.	Blättern Ihren Namen und Ihre Matrikel-

Aufgabe	mögliche Punktzahl	erreichte Punktzahl
1	8	
2	6	
3	10	
4	8	
5	8	
Summe	40	

Name:	Matrikel-Nr.:	2

Aufgabe 1

Punkte (2, 3, 3)

In der Vorlesung wurde mit dem Wallace-Tree-Multiplizierer ein effektiver Schaltkreis zum Multiplizieren zweier Binärzahlen vorgestellt.

- a) Angenommen, Sie wollen zwei *n*-Bit Binärzahlen miteinander multiplizieren. Wieviele Bit benötigen Sie mindestens für das Ergebnis? Begründen Sie Ihre Angabe.
- b) Skizzieren Sie einen Carry-Save-Adder (CSavA) für n Bit, beschriften Sie Ein- und Ausgänge und erläutern Sie kurz die Funktion des Schaltkreises. Welche Rolle spielen Carry-Save-Addierer beim Wallace-Tree-Multiplizierer?
- c) In welcher Größenordnung liegen die Kosten und die Tiefe des Wallace-Tree-Multiplizierers, wenn Sie für die abschließende Addition einen Carry-Lookahead-Addierer verwenden können? Geben Sie dabei die Tiefe und die Kosten der einzelnen Teile des Multiplizierers (Multiplikationsmatrix aus AND-Gattern, CSavA-Baum, Carry-Lookahead-Addierer) an.

Name:	Matrikel-Nr.:
-------	---------------

3

Aufgabe 2

Punkte (6)

Zu einer Funktion $f: \mathbb{B}^k \to \mathbb{B}$, die von den Variablen x_0, \dots, x_{k-1} abhänge, sei die Supportmenge supp(f) die Untermenge der Menge $\{x_0, \dots, x_{k-1}\}$ mit folgender Eigenschaft:

$$x_i \in supp(f) : \iff f|_{x_i=0} \neq f|_{x_i=1} \qquad (0 \le i < k)$$

Beispiel: Für die Funktion $f: \mathbb{B}^3 \to \mathbb{B}$ mit $f(a,b,c) = a \cdot c$ gilt: $supp(f) = \{a,c\}$. Die Variable b ist also für die Funktion f "nicht wesentlich". Die Additionsfunktion $+_n$ kann man als n+1 Funktionen

$$\begin{array}{cccc} s_n \colon \mathbb{B}^{2n+1} & \to & \mathbb{B} \\ s_{n-1} \colon \mathbb{B}^{2n+1} & \to & \mathbb{B} \\ & \vdots & & \vdots \\ s_1 \colon \mathbb{B}^{2n+1} & \to & \mathbb{B} \\ s_0 \colon \mathbb{B}^{2n+1} & \to & \mathbb{B} \end{array}$$

auffassen. Berechnen Sie für jede Funktion s_i die Supportmenge als Untermenge von $\{a_{n-1},\ldots,a_0,b_{n-1},\ldots,b_0,c\}$ und beweisen Sie Ihre Antwort.

Name:	Matrikel-Nr.: 4

Aufgabe 3

Punkte (2, 2, 5, 1)

Binary Decision Diagrams (BDDs):

- a) Erklären Sie die Eigenschaften "frei", "geordnet" und "reduziert". Welche dieser Eigenschaften muß ein BDD besitzen, um eine kanonische Darstellung einer booleschen Funktion zu sein?
- b) Welche weiteren Normalformen von booleschen Funktionen kennen Sie?
- c) Betrachten Sie folgendes BDD:

Reduzieren Sie das BDD, bis Sie ein vollständig reduziertes BDD erhalten haben; geben Sie dabei die einzelnen angewandten Reduktionsregeln an.

d) Geben Sie einen booleschen Ausdruck an, der die gleiche boolesche Funktion wie das BDD repräsentiert.

Name:	Matrikel-Nr.:	-
· · · · · · · · · · · · · · · · · · ·	TYTACTINCT TYTE	_

Aufgabe 4 Punkte (2, 2, 4)

- a) Was ist ein Spike und wie kann man Spikes vermeiden?
- b) Kann man alle Gatter aus der Biblithek {AND, OR, NAND, NOR, XOR} spikefrei von der Eingangsbelegung (0,1) nach (1,0) umschalten? Begründen Sie Ihre Antwort.
- c) Berechnen Sie die minimale Verzögerungszeit für das spikefreie Umschalten eines OR-Gatters mit zwei Eingängen für den Übergang $(0,1) \to (1,0)$, wobei $\delta = 2.5 ns$. Geben Sie dabei an, wie Sie zu ihren Ergebnissen kommen.

	1000	R F32
	min	max
t_{PLH}	3.0	6.6
t_{PHL}	3.0	6.3

Name:	Matrikel-Nr.:	6
тчине.	Widther-Ni.:	

Aufgabe 5

Punkte (2, 2, 2, 2)

- a) Skizzieren Sie ein D-Latch auf Gatterebene wie es in der Vorlesung vorgestellt wurde. Vergessen Sie dabei nicht, die Leitungen zu beschriften.
- b) Beschreiben Sie kurz das Verhalten der Schaltung bei einem Schreibvorgang.
- c) Was ist der wesentliche Unterschied zwischen dem Schreibvorgang eines D-Latches und dem eines D-Flipflops?
- d) Was unterscheidet Schaltkreise, Schaltpläne und Schaltwerke? Welche der drei Mengen beinhaltet die beiden anderen?