先読み付き正規表現の決定性有限オートマトンによるマッ チングの実装

横浜国立大学大学院 千田忠賢 倉光君郎 http://regex-and-pe-to-dfa.com

背景

- 先読み付き正規表現 (perl準拠)
 - 例:(?=a). や(?!a).
- 既存の正規表現の処理系では先読 みをバックトラックによって実装して いる
- 先読み付き正規表現をBoolean有限 オートマトン(BFA)に変換し、これを 決定性有限オートマトン(DFA)に変 換する研究(森畑'12)
- 非終端記号を除く解析表現文法 (PEG)と先読み付き正規表現を形式 的に対応つけDFAに変換
- 変換例:((?!ab).)*b
 - 1. 先読み付き正規表現からBFA 2. BFA から DFA へ変換

DFA

へ変換

- 論理式の等価判定 : Binary Decision Diagram (BDD)
- BDDを用いて部分集合構成 法を行う

目的

- 森畑の研究に基づき先読み付き正規表現をBFA に変換し、DFAによるマッチングを実装
- PEGベースのパーサーライブラリを高速化
 - 非終端記号を除く解析表現をDFA化
 - PEGと正規表現の違い
 - 非終端記号
 - $A \leftarrow 'abc'$
 - 優先度付き選択
 - 'a' / 'aa' と a | aa
 - 繰り返し
 - 'a'*'a' \(\sigma \) a*a
 - PEGと先読み付き正規表現の対応関係
 - 優先度付き選択 e₁ / e₂ => e₁ | (?!e₁) e₂
 - 繰り返し e* = e*(?!e)

3. DFAを最小化

- Brzozowski's algorithm
- Table-filling algorithm

最小のDFA

◆ コンパイル・実行速度

- (1) ((?!(the|and|of|to|I)).)*(the|and|of|to|I)((?!(the|and|of|to|I)).)* Partial matchの実装
- (2) ((?!(Sherlock|Homes)).)*(Sherlock|Holmes).*
- (3) .*.*(?=the).*.*(?=.*Project.*).*(?=Gutenberg).*

pcregrep	nez	regex->BFA	BFA->DFA	Minimize
0.06sec	0.022sec	0.004sec	0.114sec	0.310sec
				0.053sec
0.14sec	0.010sec	0.004sec	0.075sec	0.543sec
				0.069sec
1.50sec	0.007sec	0.005sec	8.890sec	2.17sec
				0.116sec

今後の課題

- - 計算量の問題について
 - 完全にDFA化すると先読みの情報が消える場合 がある
 - 例:a(?=a)
 - (a(?=a)).* から得られるDFAを元に計算で きるか
 - そこから得られたDFAにAho-Corasickを用 いることができるか
- PEGベースのパーサーライブラリへの応用
 - DFA化する箇所の決定方法