```
1 import pandas as pd
2 df = pd.read_csv('http://wolfpack.hnu.ac.kr/Stat_Notes/example_data/baseball.csv')
```

▶ 11.07

↳ 숨겨진 셀 23개

- 11.12

▼ 과업1

연봉값을 하는 선수 구하기

```
1 import seaborn as sns
2 import matplotlib.pyplot as plt
3
4 sns.scatterplot(x=df1['Salary'], y=df1['RBIs'])
5 plt.axvline(x=df1['Salary'].mean() , linestyle= '-', color = 'g')
6 plt.axhline(y=df1['RBIs'].mean() , linestyle= '-', color = 'r')
7 ax = sns.regplot(x=df1['Salary'], y=df1['RBIs'])
```


1 df1[['Salary', 'RBIs']].corr()

Salary RBIs

Salary 1.00000 0.51724

RBIS 0.51724 1.00000

1 df1.head(5)

	Player_Name	Team	TimesatBat	Hits	HomeRuns	Runs	RBIs	Walks	YearsinMLB
1	Ashby, Alan	Houston	315	81	7	24	38	39	14
2	Trevino, Alex	Los Angeles	202	53	4	31	26	27	9
3	Bochy, Bruce	San Diego	127	32	8	16	22	14	8
5	Brenly, Bob	San Francisco	472	116	16	60	62	74	6
6	Diaz, Bo	Cincinnati	474	129	10	50	56	40	10

/usr/local/lib/python3.6/dist-packages/numpy/core/fromnumeric.py:2495: FutureWarning: Method return ptp(axis=axis, out=out, **kwargs)

OLS Regression Results

Dep. Variable:	Salary	R-squared:	0.334
Model:	OLS	Adj. R-squared:	0.327
Method:	Least Squares	F-statistic:	43.39
Date:	Tue, 12 Nov 2019	Prob (F-statistic):	9.41e-23
Time:	05:04:57	Log-Likelihood:	-1926.5
No. Observations:	263	AIC:	3861.
Df Residuals:	259	BIC:	3875.

Df Model: 3

Covariance Type: nonrobust

 const
 std err
 t
 P>|t|
 [0.025
 0.975]

 const
 -55.8817
 70.143
 -0.797
 0.426
 -194.006
 82.242

 RBIs
 5.8777
 1.458
 4.032
 0.000
 3.007
 8.748

 Walks
 6.5073
 1.359
 4.788
 0.000
 3.831
 9.184

 TimesatBat
 0.0319
 0.274
 0.116
 0.907
 -0.507
 0.571

 Omnibus:
 36.802
 Durbin-Watson:
 1.821

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 60.937

 Skew:
 0.799
 Prob(JB):
 5.86e-14

 Kurtosis:
 4.735
 Cond. No.
 1.35e+03

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

유의확률이 0.05보다 작으므로 유의함.

¹ import statsmodels.api as sm

² y=df1['Salary']

³ X=sm.add_constant(df1[['RBIs', 'Walks', 'TimesatBat']])

⁴ model=sm.OLS(y, X).fit()

⁵ model.summary()

^[2] The condition number is large, 1.35e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Salary가 만불이 증가하면 RBIsrk 0.0295 약 3단위만큼 커져야함.

- Salary 만 보면 됨. P>|t|가 0.00 이므로 매우 유의함.
- 걸음 1단위에 6만5천불 타점 1단위당 5만9천불 정도 오른다.

Salary 만 보면 됨. P>|t|가 0.00 이므로 매우 유의함.

```
1 import math
2 math.sqrt(0.268) #결정 계수 min70%
```

0.5176871642217914

▶ 자료 불러오기

```
. 숨겨진 셐 9 개
```

- 2016

1 bat16.corr()

	yearID	salary	birthYear	birthMonth	birthDay	deathYear	deathMont
yearID	NaN	NaN	NaN	NaN	NaN	NaN	Nal
salary	NaN	1.000000	-0.221827	-0.023874	-0.066686	-1.0	1.
birthYear	NaN	-0.221827	1.000000	-0.120074	-0.141645	-1.0	1.
birthMonth	n NaN	-0.023874	-0.120074	1.000000	0.035979	-1.0	1.
birthDay	NaN	-0.066686	-0.141645	0.035979	1.000000	-1.0	1.
deathYear	NaN	-1.000000	-1.000000	-1.000000	-1.000000	1.0	-1.
deathMont	h NaN	1.000000	1.000000	1.000000	1.000000	-1.0	1.
deathDay	NaN	1.000000	1.000000	1.000000	1.000000	-1.0	1.
weight	NaN	0.116491	-0.149995	-0.049184	0.110609	-1.0	1.
height	NaN	-0.004337	-0.062646	-0.039868	0.011677	-1.0	1.
stint	NaN	NaN	NaN	NaN	NaN	NaN	Nai
G	NaN	0.121730	0.181103	0.097180	-0.069707	1.0	-1.
AB	NaN	0.103596	0.254445	0.071894	-0.089635	-1.0	1.
R	NaN	0.095104	0.262388	0.087132	-0.108881	-1.0	1.
Н	NaN	0.110980	0.259310	0.070682	-0.110759	-1.0	1.
2B	NaN	0.113721	0.249404	0.054872	-0.133383	-1.0	1.
3B	NaN	0.039705	0.191217	0.099558	-0.032754	NaN	Nai
HR	NaN	0.087291	0.251468	0.079391	-0.088794	NaN	Nai
RBI	NaN	0.111421	0.261070	0.081403	-0.108784	-1.0	1.
SB	NaN	0.070735	0.184227	0.100162	-0.084441	NaN	Nal
CS	NaN	0.049199	0.234491	0.035896	-0.118747	NaN	Nal
ВВ	NaN	0.127744	0.212559	0.086061	-0.062223	-1.0	1.
SO	NaN	0.061562	0.245830	0.064506	-0.035000	-1.0	1.
IBB	NaN	0.151623	0.170041	0.041156	0.026272	NaN	Nai
HBP	NaN	0.070628	0.133461	-0.009050	-0.063349	NaN	Nal
SH	NaN	0.016802	0.104744	0.025801	0.015702	-1.0	1.
SF	NaN	0.119720	0.204643	0.065376	-0.077117	NaN	Nai
GIDP	NaN	0.132085	0.174469	0.118080	-0.082233	-1.0	1.
B23	NaN	0.107482	0.252042	0.064462	-0.123900	-1.0	1.
RR	NaN	0.104416	0.265266	0.085483	-0.110297	-1.0	1.

```
1 \text{ bat } 16['B23'] = \text{bat } 16['2B'] + \text{bat } 16['3B']
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: <a href="http://pandas.pydata.org/pandas-docs/stable/user_guide/i""Entry point for launching an IPython kernel.

```
1 import statsmodels.api as sm
2 y=bat16['salary']
3 X=sm.add_constant(bat16[['GIDP','SF','BB','B23','G','AB','SH','IBB']])
4 model=sm.OLS(y, X).fit()
5 model.summary()
```

/usr/local/lib/python3.6/dist-packages/numpy/core/fromnumeric.py:2495: FutureWarning: Method return ptp(axis=axis, out=out, **kwargs)

OLS Regression Results

Dep. Variable: salary R-squared: 0.037 Model: OLS Adj. R-squared: 0.015 Method: F-statistic: Least Squares 1.705 Date: Tue, 12 Nov 2019 Prob (F-statistic): 0.0957 Time: 05:51:39 Log-Likelihood: -5792.1 No. Observations: 369 AIC: 1.160e+04 **Df Residuals:** 360 BIC: 1.164e+04

Df Model: 8

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 const
 1.738e+06
 2.04e+05
 8.526
 0.000
 1.34e+06
 2.14e+06

 GIDP
 6.083e+04
 3.81e+04
 1.598
 0.111
 -1.4e+04
 1.36e+05

 SF
 1.713e+04
 6.83e+04
 0.251
 0.802
 -1.17e+05
 1.52e+05

 BB
 5145.6040
 1.03e+04
 0.499
 0.618
 -1.51e+04
 2.54e+04

 B23
 2.063e+04
 2.62e+04
 0.786
 0.432
 -3.1e+04
 7.22e+04

 G
 4752.2447
 4405.726
 1.079
 0.281
 -3911.949
 1.34e+04

 AB
 -3801.7945
 2298.408
 -1.654
 0.099
 -8321.788
 718.199

 SH
 1.743e+04
 4.57e+04
 0.382
 0.703
 -7.24e+04
 1.07e+05

 IBB
 7.867e+04
 5.07e+04
 1.551
 0.122
 -2.11e+04
 1.78e+05

 Omnibus:
 36.828
 Durbin-Watson:
 2.105

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 42.475

 Skew:
 0.801
 Prob(JB):
 5.98e-10

 Kurtosis:
 2.557
 Cond. No.
 699.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.