Recipe Naming Using Text Analysis

Elliot Lehman

UCLA Extension

March 17, 2020

Concept and data source

Concept: Given a recipe (consisting of a list of ingredients and a set of corresponding instruction set), produce an accurate title for the recipe.

Main data source:

- 250,000 recipes scraped from various websites (foodnetwork.com, epicurious.com, allrecipes.com). The program that created this set is MIT lisenced and was created by Ryan T. Lee (github: rtlee9), and the dataset used is ODC lisenced.
- Dataset is a json file with recipe key and corresponding title, ingredient list, and instruction set.

Basic concept: vectorizing text

- The typical starting point for text-based machine learning is to look at the words in a text, and how those words correspond to features that you are trying to predict.
- In order to do any form of efficient computational analysis, the text that you want to analyze must be turned into a vector.
- There exist many different ways to vectorize text. Methods to vectorize text based on letters, words, relationships between words, proximity between words, etc.
- The goal is to input a recipe vector and output a title vector.
 Note: We will treat these as different vector spaces so, in general, a recipe vector does not equal a title vector.

A toy example of text vectorization

Given the below dataset, what would our recipe vector and title vector look like?

Recipe		Title
bread	avocado	avocado toast
lettuce	avocado	salad

- Define your basis vectors.
 - There are 3 unique words in the Recipe section, meaning that any recipe using ingredients in this data set can be represented by a vector of size 3.
 - ► The word "avocado" would be represented by the vector $(1,0,0)_r$, "bread" by $(0,1,0)_r$, and lettuce by $(0,0,1)_r$
- Vectors of recipes.
 - ▶ Now that basis vectors are defined, we can add them to get recipes.
 - ▶ The phrase "avocado lettuce" is therefore represented by $(1,0,1)_r$.
 - ▶ The phrase "avocado bread lettuce" is the vector $(1,1,1)_r$.

We have vectors... now what?

EDA!!!

Now that we have transformed a word based data set into a set of vectors and numbers, we can start to really see what our data looks like.

- highest frequency words in recipes - highest frequency words in titles (good to know so we can normalize) - highest frequency nouns, verbs, adjectives, etc. - most related words - perhaps the most important.

5/7

eda continued

Ingredient word	Title word
cup	and
cup	with
teaspoon	with
chopped	and
tablespoons	and
tablespoons	with
cups	and
teaspoon	and
fresh	and
chopped	with

Future improvements

- Expand vocabulary, the program can only currently title recipes using words seen in other titles
- •
- •
- 0