Universita' La Sapienza

DIPARTIMENTO DI INFORMATICA AUTONOMOUS NETWORKING

Report Secondo Homework

Author:
Giordano DIONISI
1834919
Mattia LISI 1709782
Michele SPINA 1711821

Supervisor:
Prof. Andrea COLETTA
Prof.ssa Gaia MASELLI

6 dicembre 2021

Indice

1	Assunzioni	2
2	Starting Point 2.1 Approccio Epsilon-Greedy	
3	Cosa fare? Migliorare l'Esistente 3.1 Da AISG ad AISG_Updated	
4	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
5	Svolta: 3A_TMGEO 5.1 Novità: Grid Algorithm	5 7
6	Sviluppi Futuri sullo Score/Batteria	8
7	Sezioni Implementate per Componenti	9
8	Conclusioni/Appendice	9

1 Assunzioni

Si presuppone la lettura/comprensione del primo report.

2 Starting Point

Partiamo dal miglior algoritmo precedente: $AISG^1$.

Competitor: $\mathbf{MGEO} \to \mathbf{Lavora}$ come il Geographical Algorithm, ma se non ci sono vicini per un drone, allora si ritornerà al depot $\to \mathbf{E}$ ' energy-consuming, ma ottiene ottimi risultati.

2.1 Approccio Epsilon-Greedy

Tutti gli algoritmi utilizzano l'approccio Epsilon-Greedy, perchè precedentemente ha portato risultati eccellenti \rightarrow L'**Epsilon-Greedy** con probabilità:

- 1- ϵ sfrutta il Reinforcement-Learning;
- ϵ sfrutta l'MGEO modificato per aggiornare i valori del Reinforcement-Learning 2 .

2.1.1 Ritorno dell'OIV

Precedentemente l'OIV³ aveva pessimi risultati \rightarrow Si è risperimentato perchè il problema è diverso, vista la nuova azione.

OIV = 10 comporta una successiva migliore decisione sub-ottimale, sperimentalmente: c'è un' esplorazione iniziale maggiore $^4 \rightarrow$ Il learning per K-Armed Bandit/Q-Learning è migliore.

Ciò non avveniva precedentemente vista l'assenza del ritorno al depot.

¹AI Simple Geo.

²Non si sfrutta l'approccio randomico, perchè precedentemente è stato scadente.

³Optimistic Initial Value

 $^{^4}$ Come la funzione *epsilon*, anche la funzione di **Reward** è la stessa del primo Homework \to Il valore massimo ottenibile è pari a 2

3 Cosa fare? Migliorare l'Esistente

3.1 Da AISG ad AISG Updated

L'AISG non considera il rientro al depot, quindi lo si è modificato → Quando non ci sono vicini si torna al depot.

Così si ha:

- 1. **Battery-Consuming:** maggiore → Più frequentemente si torna al depot: ciò è Energy-Consuming;
- 2. Score: abbastanza concorrente ad MGEO \rightarrow E' un ottimo segnale, visto che si sta sfruttando un semplice K-Armed Bandit e non Q-Learning.

E' un'ottima partenza per i successivi algoritmi.

Figura 1: AISG vs AISG_UPDATED vs MGEO vs GEO

Si ha anche il **Geographical Routing** per capire le sue prestazioni \rightarrow Come AISG, anche il GEO non considera il ritorno al depot: questo lo esclude da molte possibili scelte \rightarrow Ha un andamento inferiore rispetto all'MGEO ed all'**AISG Updated.**

3.2 Problemi..?

Anche l'AISG_Updated è lontano dall'MGEO, sopratutto per lo score \rightarrow Il K-Armed Bandit⁵ ha K azioni ed un solo stato per il sistema, quindi non sono conosciuti i precedenti avvenimenti \rightarrow Ciò crea problemi, perchè si ha un learning molto limitato $^6 \rightarrow$ Se i droni non tornano neppure al depot, le prestazioni peggiorano.

4 Primi Approcci al Q-Learning

Quindi si passa al **Q-Learning**: è un' estensione del K-Armed Bandit → Sfrutta gli stati e la storia passata e si adatta benissimo, portando risultati sensibilmente migliori.

4.1 Che decisioni prendere? \rightarrow 2 Actions

Come implementare una base Q-Learning?

Supponiamo di avere μ droni \rightarrow Banalmente si hanno μ stati. Per ogni stato isi hanno due possibili azioni:

- 1. Tenere il pacchetto per sè;
- 2. Passare il pacchetto ad un qualsiasi vicino.

Problema: non sfrutta il ritorno al depot \rightarrow L'*Energy-Consuming* è bassissimo, ma tantissimi pacchetti scadono, sopratutto con pochi droni.

Ricorda: l'obiettivo principale è lo score piuttosto che il consumo energetivo \rightarrow Si devono consegnare più pacchetti possibili e perciò 2 Actions non è soddisfacente.

4.2 3 Actions \rightarrow Torniamo al Depot

Consideriamo una nuova azione: Tornare al Depot.

Il consumo energetico aumenta, ma le prestazioni migliorano \to Si è ancora distanti rispetto alle prestazioni dell'MGEO

⁵Tipologia di **Reinforcement Learning** utilizzata in AISG Updated

⁶Anche se una **convergenza** più veloce

⁷Ovvero drone, come detto

4.2.1 Esperimento Fallito: N+1 Actions

Tentativo: Usare N+1 azioni, ovvero:

- Tenere il pacchetto;
- Andare al Depot;
- Passare il pacchetto ad uno degli N-1 vicini 8...

Problema: mancata convergenza \rightarrow Non riesce ad imparare abbastanza: a fine simulazione ancora non si è arrivati ad avere scelte significative: l'algoritmo sta ancora in esplorazione \rightarrow Le prestazioni sono disastrose, rispetto agli altri algoritmi.

4.2.2 Esperimento Fallito: Se Conviene Torno al Depot

Tentativo: Se si è entro un range dal depot, si ha almeno un pacchetto e non esistono altre possibilità, allora si va al depot

Idea: Rientrare al depot se non c'è eccessivo consumo \rightarrow Se si sta dall'altra parte dello scenario, si consuma troppa energia e si evita. In tal caso si:

- Aspetta un drone vicino;
- Mantiene il pacchetto.

Nessun buon risultato \rightarrow Se un drone è lontano dal depot e non ha vicini, tutti i suoi pacchetti scadono. Essendo lo score l'obiettivo, si ha un tentativo fallito.

5 Svolta: 3A TMGEO

Definiamo ξ un drone, ζ il suo buffer, η i pacchetti ed α un suo vicino. Le seguenti migliorie generano ottimi risultati:

⁸Non obbligatoriamente tutti contemporaneamente visibili in un certo istante.

- Se in ζ vi è almeno un η in scadenza, allora ξ torna al depot, per evitare che η venga perso e che la **Delivery-Ratio** aumenti (come lo **Score**);
- Se ξ ha η ed α sta andando al depot, allora ξ gli passa η , perchè arriverà velocemente, rispetto a cercare altre trasmissioni eventuali.
- Se ξ ha η ed α è nello stato GoMustBack, allora ξ gli passa η \to Con molta probabilità η arriverà velocemente, rispetto a cercare altre trasmissioni eventuali.

Spiegazione GoMustBack: ξ deve ritornare al depot, quindi entra nello stato GoMustBack⁹.

Un drone:

- Va in GoMustBack. Per esso:
 - * Prosegue lungo la propria traiettoria finchè si sta avvicinando al depot. ¹⁰.
 - * Contrariamente torna al depot.
- Effettua la scelta migliore secondo il Q-learning.

Così si massimizzano gli spostamenti utili del drone, minimizzando la lunghezza dei percorsi da e verso il depot.

Si generano ottimi risultati:

 $^{^9\}mathrm{Non}$ è uno stato del sistema, quindi per il Q-Learning, ma uno stato personale del drone

¹⁰Possibile osservarlo calcolando l'angolo tra traiettoria del drone e traiettoria che dovrebbe percorrere per tornare al depot.

Figura 2: 3A TMGEO vs 3A MGEO vs MGEO

5.1 Novità: Grid Algorithm

Considerare i droni come stati comporta una difficile convergenza \rightarrow Troppi stati.

Non si tiene in considerazione la **posizione** del drone ed il passaggio di stato dipende dal passaggio del pacchetto da un drone all'altro \rightarrow Ma non è importante il drone come soggetto: è importante la sua posizione \rightarrow Se due droni si trovano nella stessa posizione, essi sono equivalenti.

Nel Grid Algorithm si divide lo scenario in β celle \rightarrow Ogni cella è uno stato. Un drone prende scelte diverse a seconda della sua posizione.

5.1.1 Miglioria: GRID_W_NEXT_UP

Il Grid Algorithm utilizza come chiave per il Q-SET 11 l'indice della cella \rightarrow **Approccio debole:** non considera la direzione dei droni.

Il **GRID_W_NEXT_UP** sfrutta sia l'informazione della propria cella e sia l'informazione della cella che verrà attraversata dalla sua traiettoria. Ciò porta migliorie, perchè si considera anche la direzione: non si considera il $Next_Target$ per evitare una mancata convergenza $^{12} \rightarrow La$ **convergenza** è abbastanza veloce, poiché ogni cella ha dai 2 ai 4 vicini 13 . Al contempo adotta i principi del 3A TMGEO.

¹¹Quindi come stati.

¹²Si è provato anche tale approccio ma è stato fallimentare.

¹³Ciò non genera troppi stati.

Figura 3: GRID W NEXT UP vs MGEO vs 3A TMGEO

• Score: L'andamento è vicino all'MGEO, con pochi droni → MGEO rientra spesso al depot, mentre GRID_W_NEXT_UP e 3A_TMGEO sfruttano il Q-Learning;

Considerare come stati le celle e non i droni comporta un miglioramento, perchè due droni nella stessa posizione sono equivalenti → Converge prima e quindi impara più velocemente e più precisamente;

• Energia: GRID_W_NEXT_UP ha risultati migliori del 3A_TMGEO, visto il diverso concetto di *stato* e perchè si impara più velocemente considerando meno frequentemente il ritorno al depot.

E' ancora lineare con il numero dei droni rispetto all'MGEO → Si torna frequentemente al depot anche se ci sono molti vicini, solo perchè il Q-Learning dice che è l'azione ottimale, quando è sub-ottimale.

6 Sviluppi Futuri sullo Score/Batteria

Si è svolta anche un'indagine per ridurre al minimo l'**Energy-Consuming** senza perdita di score, o addirittura migliorandolo.

Si sono ridoti i ritorni convogliando i pacchetti su un unico drone quando due o più droni con almeno un pacchetto si incontrano *rightarrow* Approcci usati:

• Convogliare i pacchetti sul drone più vicino al depot;

• Scegliere il drone a seconda del Q-Learning.

Sono approcci interessanti, che abbassano notevolemente l'Energy-Consuming, ottenendo però uno **Score** simile agli altri algoritmi \rightarrow Sarebbe interessante approfondire questa ricerca in futuro.

7 Sezioni Implementate per Componenti

- **Giordano:** E' il principale responsabile della costruzione e realizzazione dei seguenti algoritmi:
 - AISG Updated;
 - 3A MGEO;
 - 2 Actions;
 - N+1 Actions;
 - Grid Algorithm.

Ha inoltre provveduto in maniera principale alla stesura e realizzazione del **Report.**

- Mattia: Ha collaborato nelle attività di ricerca sugli sviluppi futuri.
- Michele: Ha ideato e realizzato i seguenti algoritmi:
 - GRID W NEXT UP;
 - 3A TMGEO.

Ha collaborato nella realizzazione degli altri algoritmi e del **Report**, realizzato i plot e svolto le attività di **ricerca** sugli **sviluppi futuri**.

8 Conclusioni/Appendice

Il miglior algoritmo realizzato è: $\mathbf{GRID}_{-}\mathbf{W}_{-}\mathbf{NEXT}_{-}\mathbf{UP}.$

Di seguito un riassunto degli gli algoritmi proposti con le varie performance (Score/Energia)

Figura 4: PLOT TOTALE