数值代数实验报告3

Chase Young

2023年11月5日

问题要求:将 QR 分解算法编写成通用的子程序,并编写求解线性方程组和线性最小二乘问题的子程序,然后用编写的程序完成以下上机习题 1、2、3:

1 上机习题 1

1.1 问题描述

求解第一章上机习题的三个方程组,并比较计算结果,并评述各方法的优劣。要求输出计算结果和准确解的误差以及运行时间。

1.2 程序介绍

本题要求用 QR 方法求解线性方程组. 一般地,设 $A \in \mathbb{R}^{n \times n}$ 可逆, $x \in \mathbb{R}^n, b \in \mathbb{R}^n$,对于线性方程组

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 (LE)

可以采用如下的 QR 方法求解:

- (1) 计算矩阵 A 的 QR 分解 A = QR,其中 Q 是 n 阶正交阵,R 是对角元非负的上三角阵;其中 QR 分解可以根据算法 3.3.1,借助 Householder 变换实现.
- (2) 原方程转化为 QRx = b, 两边左乘 Q^{T} , 将原方程转化为 $Rx = Q^{T}b$.
- (3) 计算 $c = Q^{T}b$,用回代法求解上三角方程 Rx = c,得到计算解 \tilde{x} .

将计算解 \tilde{x} 和精确解 x_0 比较,根据

$$error = \|\boldsymbol{x_0} - \tilde{\boldsymbol{x}}\|_2$$

可以得出计算解和精确解之间的二范数误差 error.

具体实现的函数有:

- double householder(vector<double> x, vector<double>& v);
 计算向量 x 的 Householder 变换,记录用于表示 Householder 变换的向量 v,返回 beta 值
- vector<double> mat_slice_vec(vector<vector<double> > A, int i, int j, int k);
 将矩阵 A 切片, 返回向量 A(i: j, k)

• vector<vector<double> > mat_slice_mat(vector<vector<double> > A, int i1, int i2, int j1, int j2);

将矩阵 A 切片,返回子矩阵 A(i1:i2,j2:j2)

vector<vector<double> > mat_sub(vector<vector<double> > A, vector<vector<double> > B);

计算矩阵减法 A-B, 返回计算结果

- vector<vector<double> > mat_I_sub_beta_vvT(double beta, vector<double> v);
 在算法 3.3.1 中, 计算矩阵 I βvv^T 并返回
- vector<vector<double>> mat_mul_mat(vector<vector<double>> A, vector<vector<double>> B);

计算矩阵乘法 AB,返回计算结果 (这里要求矩阵 A 的列数和矩阵 B 的行数相同)

- vector<double> QR_decomp_householder(vector<vector<double> >& A); 计算矩阵 *A* 的 QR 分解,按照教材 P94~P95 中的方式存储计算结果;要求矩阵 *A* 列满秩
- void QR_solver(vector<vector<double>> A, vector<double>& b);
 用 QR 方法求解线性方程组(LE), 计算解保存在向量 b 中

1.3 实验结果

1.3.1 1.1 中的方程组

为了便于展示结果,我们取方程组的维数 N=50. 用列主元 Gauss 消去法求解和用 QR 方法求解的结果如图 1、图 2 所示.

图 1: 列主元 Gauss 消去法求解 1.1 中的方程组

图 2: QR 方法求解 1.1 中的方程组

列主元 Gauss 消去法求解的二范数误差为 0,用时 0.001s. QR 方法求解的二范数误差为 0.88998,用时 0.075s.

1.3.2 1.2(1) 中的方程组

对于 1.2(1) 中的方程组,将改进平方根法和 QR 方法的求解结果进行对比,如图 3、图 4 所示.

图 3: 改进平方根法求解 1.2(1) 中的方程组

图 4: QR 方法求解 1.2(1) 中的方程组

改进平方根法求解的二范数误差为 0, 用时 0.0030s.

QR 方法求解的二范数误差为 1.87754×10^{-14} ,用时 0.757s.

1.3.3 1.2(2) 中的方程组

对于 1.2(2) 中的方程组,分别采用改进平方根法和 QR 方法求解,结果如图 5、图 6 所示. 改进平方根法求解的二范数误差为 17234.2828,用时 0.008s.

QR 方法求解的二范数误差为 456.562, 用时 0.051s.

```
図 Microsoft Visual Studio 調试 × + ∨
Please choose the solving method:
1-Cholesky decomposition 2-modified Cholesky decomposition
1.0000 0.9949 1.2002 -2.2584 27.1908 -104,4194 147.9846 396.6089 -804.5170 174.3342 -2800.912 1201.7032 -6837.176
                                                                                              2621.0348
3240.1666
-856.2116
-1525.8589
-1051.1372
                                                                       -1891.0789
                                                                       937.8118
4279.3248
                                               -2800.9137
-6837.1780
 7574.2449
411.3671
                       -4346.3180
1415.3080
                                               -2330.1762
-3264.2418
                                                                       1450.9201
5006.0238
 -4128.5010
-486.2368
                       3052.7916
1820.3468
                                               3279.7740
2397.9051
                                                                       -3579.8147
-3053.4641
                                                                                               -1404.7850
792.2994
Error: 17234.2828
Time consumed: 8.0000 ms
E:\大三课程学习\2023秋 数值代数\Homework\Numerical_Algebra\x64\Debug\Numerical_Algebra.exe (进程 24240)已退出, 代码为 0
。
按任意键关闭此窗口...
```

图 5: 改进平方根法求解 1.2(2) 中的方程组

图 6: QR 方法求解 1.2(2) 中的方程组

1.4 结果分析

将上述结果总结如表 1、表 2、表 3 所示.

	二范数误差	运行时间
列主元 Gauss 消去法	0	0.001s
QR 方法	0.88998	0.075s

表 1: 问题 1.1

	二范数误差	运行时间
改进平方根法	0	0.0030s
QR 方法	1.87754×10^{-14}	0.757s

表 2: 问题 1.2(1)

	二范数误差	运行时间
改进平方根法	17234.2828	0.008s
QR 方法	456.562	0.051s

表 3: 问题 1.2(2)

可以看出,对于一般的线性方程组,列主元 Gauss 消去法和改进的平方根法无论在求解精度还是运行效率上都优于 QR 方法;但是对于一些病态的方程组,比如 1.2(2)中的方程组,QR 方法可能在求解精度上更高.

2 上机习题 2

2.1 问题描述

求二次多项式 $y = at^2 + bt + c$,使得残向量在二范数最小的意义下拟合第二题数据 (见教材 P99 表 3.2)。要求输出计算结果,残向量的二范数以及运行时间。

2.2 程序介绍

对于最小二乘问题 $\min \|Ax - b\|_2$, 可以采用如下的 QR 方法求解:

- (1) 计算矩阵 A 的 QR 分解 A = QR.
- (2) 计算 $\boldsymbol{c} = \boldsymbol{Q}^{\mathrm{T}} \boldsymbol{b} = (\boldsymbol{c_1}^{\mathrm{T}}, \boldsymbol{c_2}^{\mathrm{T}})^{\mathrm{T}}$.
- (3) 用回代法求解上三角方程 $\mathbf{R}\mathbf{x}=\mathbf{c_1}$,得到最小二乘解 \mathbf{x} ,计算最小二乘的值 $\|\mathbf{c_2}\|_2$. 具体实现的函数有
 - double vec_2_norm(vector<double> x);
 计算向量 x 的二范数
 - double QR_LS(vector<vector<double>> A, vector<double> b, vector<double>& x);
 用 QR 方法求解最小二乘问题 min || Ax b||₂,将最小二乘解保存在向量 x 中,返回最小二乘的值.

2.3 实验结果

实验结果如图 7 所示.

图 7: QR 方法求解最小二乘问题 2

也即所求的二次多项式为

$$y = t^2 + t + 1$$
.

二范数意义下的误差为 2.7894×10^{-16} , 运行时间少于 1 ms.

2.4 结果分析

事实上,本问题中,由系数矩阵 A 决定的线性方程组

$$Ax = b$$

恰好有唯一解 $x = (1,1,1)^{\mathrm{T}}$,这也印证了上述计算结果.

3 上机习题 3

3.1 问题描述

采用线性模型 $y = x_0 + a_1x_1 + a_2x_2 + \cdots + a_{11}x_{11}$ 拟合第三题数据 (见教材 P99 表 3.3、表 3.4)。求出模型中参数的最小二乘结果。要求输出计算结果,残向量的二范数以及运行时间。

3.2 程序介绍

和上机习题 2 类似,仍然采用 QR 方法求解最小二乘问题 $\min \|Ax - b\|_2$.

3.3 实验结果

实验结果如图 8 所示.

图 8: QR 方法求解最小二乘问题 3

最小二乘解如图所示. 残量的二范数为 16.3404, 运行时间为 0.0070s.

3.4 结果分析

计算得到的残量的二范数为 16.3404, 是一个较小的值, 这印证了求解的正确性.