LES MODÈLES NUMÉRIQUES 3D

BD ALTI®

Version 2.0

Descriptif de contenu

ign.fr

Date du document : Juillet 2011

Révision: Janvier 2017

SOMMAIRE

SOMMAIRE	2
1. GÉNÉRALITÉS	4
1.1 Ce que contient ce document	4
1.2 Ce qu'il ne contient pas	4
1.3 Les composantes du RGE [®]	4
1.4 Termes et définitions	6
2. CARACTÉRISTIQUES TECHNIQUES	7
2.1 Description générale	7
2.1.1 Contenu	7
2.1.2 Résolutions (ou « pas »)	7
2.1.3 Conditions d'utilisation	7
2.1.4 Structure générale	7
2.1.5 Extension géographique	8
2.1.5.1 Couverture géographique	8
2.1.5.2 Zones non couvertes	8
2.1.5.3 Limite en zone frontalière terrestre	8
2.1.5.4 Limite en zone littorale	8
2.1.6 Emprise de livraison	9
2.1.7 Références géodésiques	9
2.1.8 Actualité et mise à jour	10
2.1.9 Limites d'utilisation sur les zones contrôlées	10
2.1.10 Déclinaison et produits dérivés de la BD ALTI® version 2.0	10
2.2 Qualité des données	11
2.2.1 Exactitude altimétrique de la BD ALTI [®] version 2.0	11
2.2.2 Améliorations du MNT par corrections interactives	11
2.2.2.1 Processus corrélation	11
2.2.2.2 Processus LiDAR	12
2.2.3 Masques de qualité	12
2.2.4 Traitement des surfaces d'eau	12
2.2.4.1 Cas des fleuves et rivières	12
2.2.4.2 Cas des étendues d'eau de type lacustre	12
2.2.4.3 Cas des surfaces d'eau maritime	12

3. STRUCTURATION DES DONNÉES	13
3.1 Définitions générales	13
3.2 La classe de données MNT	13
3.3 Les métadonnées RASTER associées au MNT	14
3.3.1 Couche SOURCE	14
3.3.2 Couche DISTANCE	14
3.3.3 Cas particuliers	15
3.3.3.1 Cas de nœuds sans altitude	15
3.3.3.2 Cas de nœuds en raccord	15
3.3.3.3 Cas des zones contrôlées	15
ANNEXES	16
Annexe A : Tableau des précisions du RGE ALTI®	16
A.1 Mesures effectuées en 2011 sur les zones RADAR	17
A.2 Mesures effectuées en 2009 sur les zones RADAR	18
Annexe B : Liste complète des valeurs de l'attribut « SOURCE »	19
B.1 Source « Autre »	19
B.2 Source « BD ALTI [®] »	19
B.3 Source « LiDAR IGN & SHOM »	19
B.4 Source « Corrélation IGN »	20
B.5 Source « MNT externe »	21
Annexe C : Détail des Systèmes de Référence	22
Annexe D1 : Représentation colorimétrique du masque des sources	26
Annexe D2 : Représentation colorimétrique du masque des distances	27
Annexe E : Contrôle de la conformité	28
E.1 LiDAR	28
E.1.1 Contrôle des acquisitions	28
E.1.2 Contrôle des livrables	28
E.1.3 Contrôle de la qualité géométrique	28
E.2 CORRÉLATION	29
E.2.1 Contrôle des acquisitions	29
E.2.2 Contrôle des livrables	29
E.2.3 Contrôle de la qualité géométrique	29
E.3 RADAR	29

1. GÉNÉRALITÉS

1.1 Ce que contient ce document

Ce document décrit en termes de contenu, de précision géométrique et de qualité sémantique, les caractéristiques du produit BD $ALTI^{\otimes}$ Version 2.0.

Le terme BD ALTI[®] fait référence au produit BD ALTI[®] version 2.0 dans l'ensemble de ce document.

1.2 Ce qu'il ne contient pas

Ce document ne décrit pas le produit BD ALTI[®] Version 2.0 en termes de structure de livraison qui est traitée dans le document appelé « Descriptif de livraison » (*DL BDALTI 2-0.pdf*).

Ce document ne présente pas les évolutions du produit ni celles de la documentation ; ces informations sont diffusées dans un document spécifique associé au produit et nommé « Suivi des évolutions » (SE BDALTI.pdf).

L'ensemble de ces documents est disponible sur le site Espace professionnel de l'IGN (onglet DOCUMENTATION) :

professionnels.ign.fr/bdalti

Ce document n'est pas un manuel d'utilisation du produit BD ALTI[®] Version 2.0.

1.3 Les composantes du RGE®

L'Institut national de l'information géographique et forestière (IGN) a pour mission de constituer le Référentiel Géographique à Grande Échelle (RGE®) de précision métrique, en intégrant des données de référence, issues de ses propres bases ou provenant d'autres producteurs.

Ce référentiel contient quatre composantes cohérentes entre elles, déclinées en produits par l'IGN :

Composante du RGE	Produits commercialisés
Image	BD ORTHO [®]
Topographique	BD TOPO [®] RGE ALTI [®]
Parcellaire	BD PARCELLAIRE®
	BD ADRESSE®
Adresse	POINT ADRESSE® ROUTE ADRESSE®
	ADRESSE PREMIUM

La composante topographique du RGE $^{\otimes}$ est composée de la BD TOPO $^{\otimes}$, modélisation 3D du territoire et de ses infrastructures, et du RGE ALTI $^{\otimes}$, description du relief.

Le RGE ALTI[®] est un modèle numérique de terrain maillé au pas de 1 ou 5 mètres qui a pour vocation la description du relief français à grande échelle. Il décrit la forme et l'altitude de la surface du sol à grande échelle.

Représentation hypsométrique du relief métropolitain

1.4 Termes et définitions

Altitude: Distance verticale d'un point à une surface de référence. La surface de référence usuelle est le géoïde qui est une surface équipotentielle du champ de pesanteur proche du niveau moyen de la mer. Pratiquement, chaque pays définit sa propre référence (par exemple, à l'aide d'un marégraphe national - en France le marégraphe de Marseille).

Altitude normale: Altitude obtenue en divisant la cote géopotentielle d'un point par la valeur moyenne de la pesanteur normale à mi-altitude, comptée le long de la ligne de force du champ normal du point considéré. L'altitude normale dépend du choix d'un ellipsoïde de référence mais pas de la répartition des masses dans la croute terrestre.

Altitude orthométrique: Altitude obtenue en divisant la cote géopotentielle d'un point par la valeur moyenne de la pesanteur réelle entre le géoïde et le point considéré, comptée le long de la ligne de force du champ de pesanteur. L'altitude orthométrique d'un point s'interprète comme la longueur de la ligne de force reliant ce point au géoïde. La surface de référence des altitudes orthométriques est donc, en théorie, le géoïde. Mais comme la variation de l'intensité de la pesanteur à l'intérieur de la croûte terrestre n'est pas mesurable en pratique, on la modélise et les altitudes orthométriques ne peuvent pas être exactement calculées.

BD ALTI[®]: Base de données altimétrique se présentant sous la forme d'une grille régulière qui décrit à différentes résolutions le relief du territoire national. La BD ALTI[®] version 1.0 est la description historique du relief. La BD ALTI[®] version 2.0 est la version sous-échantillonnée du RGE ALTI[®] qui est le nouveau référentiel altimétrique.

EMQ ou Erreur Moyenne Quadratique: Calcul statistique utilisé généralement, s'agissant de données géographiques, pour qualifier la précision d'un positionnement. Il s'agit de la mesure de la dispersion des observations autour de la valeur vraie (correspond à l'anglais Root Mean Square ou RMS). L'EMQ est le plus souvent exprimée en unité terrain.

Géoïde : Surface équipotentielle du champ de pesanteur terrestre voisine du niveau moyen de la mer au repos.

LiDAR ou Light Detection And Ranging : Système de mesure de terrain par balayage laser. Il est pris ici systématiquement au sens de LiDAR aéroporté : système permettant de mesurer la distance entre un point d'un avion et des points au sol.

Litto3D[®]: Base de données altimétrique unique et continue terre-mer donnant une représentation tridimensionnelle de la forme et de la position du sol sur la frange littorale du territoire français.

MNT ou Modèle Numérique de Terrain : Ensemble de points référencés en planimétrie et en altimétrie doté d'une méthode d'interpolation modélisant le relief du sol sous forme numérique. Les données du MNT peuvent être structurées de différentes façons : grille de points, réseau de triangles, polylignes matérialisant des courbes de niveaux. Note : Les MNT dont il est fait mention dans ce document sont exclusivement des données exprimées sous forme d'une grille régulière de points.

RIG ou Références Interopérabilité Géodésiques: Ensemble de codes propres à l'IGN qui décrivent les systèmes de références de coordonnées utilisés par les produits de l'IGN (exemple : LAMB93 pour Lambert-93).

TCH ou Trait de Côte HistoLitt®: Le trait de côte correspond à la laisse des plus hautes mers dans le cas d'une marée astronomique de coefficient 120 et dans des conditions météorologiques normales (pas de vent du large, pas de dépression atmosphérique susceptible d'élever le niveau de la mer). Le produit TCH modélise cette entité théorique par un ensemble de polylignes 2D.

2. CARACTÉRISTIQUES TECHNIQUES

2.1 Description générale

2.1.1 Contenu

Le produit BD ALTI[®] version 2.0 est un modèle numérique de terrain maillé qui a pour vocation la description du relief français.

Il décrit la forme et l'altitude de la surface du sol à grande et moyenne échelle.

Le produit BD ALTI[®] version 2.0 remplace la BD ALTI[®] version 1.0 ; il est obtenu grâce à des procédés assurant une meilleure qualité.

Le produit BD ALTI[®] version 2.0 « modèle maillé » est une représentation interpolée de la surface du sol. Il n'est pas toujours strictement conforme à la réalité, en particulier dans les zones où les données initiales sont peu denses ou absentes, et dans les zones de surplombs. Il est conçu pour une utilisation à des échelles comprises entre le 1 : 70 000 et le 1 : 700 000.

2.1.2 Résolutions (ou « pas »)

Le produit BD ALTI[®] version 2.0 est la version sous-échantillonnée du RGE ALTI[®].

Il est disponible aux pas suivants :

- 25 m,
- 75 m.
- 250 m,

2.1.3 Conditions d'utilisation

Les pas de 75 m et 250 m sont téléchargeables et utilisables gratuitement sous licence Etalab¹. Pour plus d'informations, consulter L'IGN ET L'OPEN DATA.

2.1.4 Structure générale

La BD ALTI[®] version 2.0 est une modélisation du relief sous la forme d'une grille régulière et rectangulaire, appelée aussi « matrice d'altitudes ».

L'altitude de chacun des nœuds de cette grille correspond à l'altitude du terrain nominal² au point défini par le nœud de la grille. Le pas de cette grille est identique en X et en Y.

¹ Etalab a conçu la « Licence Ouverte / Open Licence », élaborée en concertation avec l'ensemble des acteurs concernés, pour faciliter et encourager la réutilisation des données publiques mises à disposition gratuitement.

Cette licence ouverte, libre et gratuite, apporte la sécurité juridique nécessaire aux producteurs et aux réutilisateurs des données publiques.

² Le terrain nominal est le terrain réel dans le cadre des spécifications de la base de données.

La BD ALTI[®] version 2.0 est diffusée sous la forme de dalles définies par :

- un point origine (angle Nord-Ouest);
- un nombre de lignes et un nombre de colonnes, tous deux identiques ;
- un pas.

L'orientation des lignes et colonnes du modèle numérique de terrain (MNT) est celle des axes de coordonnées de la projection utilisée.

Notions pratiques

- Les nœuds de la grille ne coïncident pas exactement avec les points caractéristiques du terrain (sommet, col...) car ils sont issus d'un calcul.
- Plus le pas du MNT est grand, plus les formes du terrain sont molles et généralisées. Une « érosion » des sommets et des lignes de crête est observée et les microreliefs disparaissent.

2.1.5 Extension géographique

2.1.5.1 Couverture géographique

Le produit BD ALTI[®] version 2.0 couvre l'ensemble des départements français métropolitains, les départements et régions d'Outre-mer (Guadeloupe, Martinique, Réunion, Mayotte, la Guyane n'est que partiellement couverte) et les collectivités d'Outre-mer de Saint-Pierre-et-Miquelon, Saint-Barthélemy et Saint-Martin.

2.1.5.2 Zones non couvertes

Certains nœuds de la grille du MNT peuvent ne pas avoir d'information altimétrique comme les zones non encore acquises. Dans ce cas, une valeur spécifique *nodata*³ est utilisée.

2.1.5.3 Limite en zone frontalière terrestre

Le produit BD ALTI[®] version 2.0 couvre une zone buffer de 500 m au-delà des frontières.

2.1.5.4 Limite en zone littorale

Le produit BD ALTI[®] version 2.0 couvre a minima la totalité de la partie terrestre jusqu'au trait de côte HistoLitt[®] (TCH).

Il couvre en partie l'estran jusqu'à la limite des acquisitions topographiques (LiDAR, prises de vue aériennes, ...). Cette limite ne peut être définie précisément à priori : elle est établie au cas par cas en fonction de la topographie locale et du régime de marée.

Le produit Litto3D[®], lorsqu'il est disponible, permet de compléter les dalles du produit BD ALTI[®] version 2.0 au-delà de la limite des acquisitions topographiques : ainsi lorsqu'une dalle en bord de mer comporte des données Litto3D[®], ces dernières sont fusionnées dans la BD ALTI[®] version 2.0.

³ nodata : absence de données (voir paragraphe 3.3.3.1 Cas de nœuds sans altitude).

Exemple:

dalle BD ALTI® topographique

Au-delà des acquisitions topographiques les nœuds de la grille reçoivent la valeur spécifique nodata.

dalle BD ALTI[®] après prise en compte des données Litto3D[®]

Les données issues de Litto3D[®] ont été intégrées et mises en cohérence avec les données topographiques IGN.

2.1.6 Emprise de livraison

Le produit BD ALTI[®] version 2.0 est livré selon un découpage en dalles jointives dont les dimensions dépendent du pas :

Pas Dimension de la dalle		Nombre de nœuds	
25 m	25 km sur 25 km	1000 our 1000	
75 m	75 km sur 75 km	1000 sur 1000	
250 m	1 seule dalle France	4641 sur 4321	

2.1.7 Références géodésiques

Les systèmes de coordonnées planimétrique et altimétrique employés pour générer les grilles d'altitude sont fixés légalement par le décret n° 2000-1276 modifié du 26 décembre 2000 portant application de la loi n° 95-115 du 4 février 1995.

Les données sont proposées de façon standard dans les systèmes légaux de référence suivants :

Zone	Systèsme géodésique	Ellipsoïde associé	Projection	Système altimétrique	Type d'altitudes
France continentale	RGF93	IAG GRS 1980	Lambert 93	IGN 1969	Normale
Corse	RGF93	IAG GRS 1980	Lambert 93	IGN 1978	Normale

Zone		Systèsme géodésique	Ellipsoïde associé	Projection	Système altimétrique	Type d'altitudes
	Grande Terre - Basse Terre	WGS84	IAG GRS 1980	UTM Nord fuseau 20	IGN 1988	Orthométrique
Our deleases	Marie-Galante	WGS84	IAG GRS 1980	UTM Nord fuseau 20	IGN 1988 MG	Orthométrique
Guadeloupe	La Désirade	WGS84	IAG GRS 1980	UTM Nord fuseau 20	IGN 1992 LD	Orthométrique
	Les Saintes	WGS84	IAG GRS 1980	UTM Nord fuseau 20	IGN 1988 LS	Orthométrique
Martinique		WGS84	IAG GRS 1980	UTM Nord fuseau 20	IGN 1987	Orthométrique
Guyane		RGFG95	IAG GRS 1980	UTM Nord fuseau 22	NGG 1977	Orthométrique
Réunion		RGR92	IAG GRS 1980	UTM Sud fuseau 40	IGN 1989	Orthométrique
Mayotte		RGM04	IAG GRS 1980	UTM Sud fuseau 38	SHOM 1953	Orthométrique
Saint-Pierre-et- Miquelon		RGSPM06	IAG GRS 1980	UTM Nord fuseau 21	DANGER 1950	Orthométrique
St-Barthélemy		WGS84	IAG GRS 1980	UTM Nord fuseau 20	IGN 1988 SB	Orthométrique
St-Martin		WGS84	IAG GRS 1980	UTM Nord fuseau 20	IGN 1988 SM	Orthométrique

Les autres projections et systèmes altimétriques peuvent éventuellement être mis à disposition sur demande, dans le cadre de prestations à façons facturées.

Nota Bene:

Pour obtenir des informations plus détaillées sur les systèmes de référence se reporter au site de la géodésie de l'IGN : http://geodesie.ign.fr.

2.1.8 Actualité et mise à jour

Pendant la période de constitution de la BD ALTI[®] version 2.0, les éditions sont actualisées au fil des nouvelles acquisitions, soit plusieurs fois dans l'année. Sur les zones où l'acquisition n'a pas encore été réalisée, la BD ALTI[®] version 2.0 est complétée par des données BD ALTI[®] version 1.0. Des masques de qualité sont livrés pour informer sur les emprises correspondantes.

A l'issue de cette période le RGE ALTI[®] sera mis à jour en fonction des évolutions importantes du relief ou d'acquisitions plus précises.

2.1.9 Limites d'utilisation sur les zones contrôlées

Le produit BD ALTI[®] version 2.0 fait l'objet de restrictions sur certaines zones contrôlées (zones militaires par exemple) pour lesquelles l'information est confidentielle. Les données fournies sur ces zones sont dégradées conformément à la réglementation en vigueur ou aux spécifications de l'autorité gestionnaire.

2.1.10 Déclinaison et produits dérivés de la BD ALTI[®] version 2.0

Les produits dérivés altimétriques tels les semis de points, les courbes de niveau (isohypses), l'estompage, les coupes d'inter-visibilité, etc., font quant à eux l'objet de prestations à façon facturées.

2.2 Qualité des données

2.2.1 Exactitude altimétrique de la BD ALTI® version 2.0

Le MNT du produit BD ALTI[®] version 2.0 se présente sous la forme d'une grille régulière.

Plusieurs techniques d'acquisition des données sont mises en œuvre par l'IGN selon le type de paysage et les besoins des utilisateurs :

- la technologie LiDAR est déployée pour les zones inondables et littorales, et sur les grands massifs forestiers. L'exactitude altimétrique du MNT sur ces zones est comprise entre 0,2 m et 0,5 m (voir détails en Annexe A)
- la technologie Radar est utilisée sur les zones de montagne (Alpes, Pyrénées, Cévennes et Corse).
 - <u>ATTENTION</u>: en zones de fortes pentes, l'exactitude altimétrique moyenne est de l'ordre de 7 mètres. L'exactitude de ces zones a été contrôlée par comparaison à diverses sources: les réseaux routier et hydrographique de la BD TOPO®, les bornes géodésiques et des points calculés sur le terrain. Ces résultats montrent que le MNT calculé à partir de données Radar est plus bas que le terrain sur les sommets et au-dessus de l'hydrographie. Ce MNT n'est pas conseillé pour une utilisation de haute précision (voir détails en <u>Annexe A</u>)
- les techniques de corrélation de photographies aériennes sont utilisées sur le reste du territoire (avec l'utilisation de recouvrement stéréoscopique plus important en zone urbaine). Sur certaines zones traitées par corrélation, en cas d'absence de mesure au sol sur de larges étendues en raison de la présence de sursol (massifs boisés par exemple), des données altimétriques anciennes sont utilisées pour combler ces manques. L'exactitude altimétrique du MNT sur ces zones est comprise entre 0,5 m et 0,7 m (voir détails en Annexe A)

L'exactitude altimétrique du MNT dépend de la méthode d'acquisition des données et des traitements effectués selon les caractéristiques des zones traitées : littorales, inondables, forestières, urbaines, rurales... Les valeurs d'exactitude qui en résultent sont fournies dans le tableau de l'Annexe A.

Pendant la phase de constitution du RGE ALTI[®] et de la BD ALTI[®] version 2.0, l'IGN peut être amené à utiliser des sources de données hétérogènes. Par exemple, les données BD ALTI[®] version 1.0 sont intégrées dans le RGE ALTI[®], et par voie de conséquence dans la BD ALTI[®] version 2.0, quand de nouvelles acquisitions ne sont pas encore disponibles.

2.2.2 Améliorations du MNT par corrections interactives

Des corrections localisées sont mises en œuvre pour atténuer ou éliminer les défauts liés à certains éléments artificiels du sursol qui ne seraient pas modélisés ; un nettoyage du sursol (y compris les ponts) est effectué.

Ces corrections sont adaptées au type de saisie de la manière suivante :

2.2.2.1 Processus corrélation

Les éléments caractéristiques du relief tels que sommets, voies ferrées, autoroutes en zone rurale, murets en zone urbaine, font l'objet d'une saisie interactive. Les vecteurs ainsi acquis sont utilisés en tant que lignes de contraintes lors du calcul du MNT.

2.2.2.2 Processus LiDAR

Lorsque la source est constituée de points LiDAR, seuls les passages inférieurs des ponts font l'objet d'une saisie vecteur pour permettre de contraindre la triangulation en ce point.

2.2.3 Masques de qualité

Le MNT est accompagné de métadonnées particulières :

- deux couches raster fournissant des métadonnées localisées (voir paragraphe
 3.3 Les métadonnées RASTER associées au MNT) dénommées « masques de qualité » :
 - o le masque de source
 - o le masque de distance

Chaque couche s'appuie sur la même grille régulière que le MNT, et fournit pour chaque nœud de la grille une valeur codant l'information associée.

Ces métadonnées sont décrites uniquement dans le format GeoTIFF 8 bits couleurs indexées.

• un tableau d'assemblage des dalles kilométriques (couche vecteur) avec plusieurs attributs renseignant la dalle (voir Descriptif de livraison).

2.2.4 Traitement des surfaces d'eau

2.2.4.1 Cas des fleuves et rivières

La triangulation berge à berge des rivières et des fleuves peut parfois générer des artefacts sur la surface de l'eau. Rien n'est mis en œuvre pour garantir le sens de l'écoulement.

2.2.4.2 Cas des étendues d'eau de type lacustre (étangs, lacs, marais, etc.)

Les plans d'eau sont des surfaces planes et horizontales.

La planéité des plans d'eau de plus de 1 hectare présents dans la BD TOPO[®] est assurée, soit grâce à la géométrie des objets de la BD TOPO[®] dans le cas de la corrélation, soit grâce aux semis de points LiDAR.

2.2.4.3 Cas des surfaces d'eau maritime

Quel que soit le mode d'acquisition (LiDAR topographique, LiDAR bathymétrique ou sonde multifaisceaux), les données décrivent l'estran (et les fonds marins dans le cas où le produit Litto3D[®] existe) jusqu'à la limite de l'acquisition; au-delà les altitudes sont codées par la valeur spécifique nodata⁴.

(voir paragraphe

4

3. STRUCTURATION DES DONNÉES

3.1 Définitions générales

Une classe regroupe des objets de même genre (linéaire, ponctuel ou surfacique), de même dimension (bidimensionnel ou tridimensionnel) et définis par les mêmes attributs.

Chaque classe est présentée sous forme de fiche contenant les informations suivantes :

<u>Définition</u>: Définition de la classe. Cette définition s'applique à tous les objets de cette classe.

Topologie : Description de la topologie des données : simple, complexe, grille...

Genre: Spécification de la géométrie des objets de la classe (exemple: ponctuel, linéaire 3D).

<u>Attributs</u>: Des attributs sont associés à chaque objet d'une classe et permettent de lui associer des informations à caractère quantitatif (valeurs d'attribut numériques) ou qualitatif (énumération de valeurs).

<u>Sélection</u>: Précision sur le caractère exhaustif ou non des objets de cette classe.

<u>Modélisation géométrique</u> : Précision sur la façon dont la structure géométrique traduit la réalité de l'objet topologique.

3.2 La classe de données MNT

Définition	Modèle numérique de terrain.	
Topologie	rille	
Genre	Ponctuel 3D	
Attributs	Sans objet	

Sélection : Sans objet (les nœuds de la grille ne correspondent pas à des objets du terrain)

Modélisation géométrique : Grille ou matrice d'altitudes.

Le produit BD ALTI[®] version 2.0 est composé d'une grille rectangulaire dont chaque nœud est doté d'une altitude (arrondie à deux décimales).

La base de données est répartie en dalles dont la dimension dépend du pas.

A un nœud de la grille correspond un numéro de colonne et un numéro de ligne (c,l), des coordonnées bidimensionnelles (X,Y) et une altitude Z exprimées en mètres.

Les coordonnées X et Y associées aux nœuds du MNT sont des valeurs métriques entières.

Les informations qualitatives complémentaires sont fournies sous forme raster. Chaque pixel est parfaitement superposable à la grille : les coordonnées du centre des pixels coïncident avec les nœuds de la grille et sont donc des valeurs métriques entières.

Les coordonnées du nœud ou du centre-pixel du coin Nord-Ouest d'une dalle sont des kilomètres ronds dans le système de référence légal.

3.3 Les métadonnées RASTER associées au MNT

3.3.1 Couche SOURCE

Définition	Métadonnées
Topologie	Grille
Genre	Raster ⁵
Attributs	SOURCE

Sélection : Sans objet (les nœuds de la grille ne correspondent pas à des objets du terrain).

Modélisation géométrique : Grille.

Description de l'attribut :

• SOURCE

Définition : fournit pour chaque nœud la source majoritaire des données ayant servi à calculer l'altitude du nœud.

Type: Caractères

Valeurs de l'attribut :

La liste complète des valeurs est fournie en Annexe B : Valeurs source

3.3.2 Couche DISTANCE

Définition	Métadonnées
Topologie	Grille
Genre	Raster ⁶
Attributs	DISTANCE

Sélection : Sans objet (les nœuds de la grille ne correspondent pas à des objets du terrain).

Modélisation géométrique : Grille.

⁵ Voir Annexe D1 : Représentation colorimétrique du masque des sources

⁶ Voir Annexe D2 : Représentation colorimétrique du masque des distances

Description de l'attribut :

• DISTANCE

Définition: fournit pour chaque nœud une évaluation de la distance entre le nœud considéré et les différents points connus ayant servi à calculer son altitude. Cette distance est exprimée en mètres.

Type: Entier (de 0 à 255)

Valeurs particulières de l'attribut :

Distance D	Définition
0	Distance d'interpolation inférieure à 1 m
1 à 249	Distance d'interpolation en mètres
250	Distance d'interpolation supérieure ou égale à 250 m
253	Sans objet (BD ALTI [®] , MNT externes,)
254	Nœud en raccord
255	Nœud sans altitude

Les valeurs 251 et 252 ne sont pas utilisées.

3.3.3 Cas particuliers

3.3.3.1 Cas de nœuds sans altitude

Il peut arriver que la grille couvre des zones pour lesquelles l'altitude n'est pas connue (absence de données ou *nodata*, zone en dehors de l'emprise). Dans ce cas, les nœuds concernés sont identifiés de la manière suivante :

MNT	SOURCE	DISTANCE
-99999.00	0	255

3.3.3.2 Cas de nœuds en raccord

Lorsque la grille recouvre des zones issues d'acquisitions différentes, un calcul spécifique prenant en compte les valeurs des différentes sources est appliqué aux nœuds concernés. Ils sont identifiés de la manière suivante :

MNT	SOURCE	DISTANCE	
Valeur calculée	1 à 4	254	

3.3.3 Cas des zones contrôlées

Lorsque la grille couvre des zones pour lesquelles l'information est confidentielle, les nœuds concernés sont traités de la manière suivante :

- L'autorité gestionnaire de la zone a spécifié un niveau de dégradation. Dans ce cas le traitement est effectué conformément à la demande.
- L'autorité gestionnaire n'a pas d'exigence particulière : la règlementation en vigueur liée au type d'acquisition s'applique.

Annexe A : Tableau des précisions du RGE ALTI®

L'estimation de la précision altimétrique de l'altitude d'un nœud du MNT se fait à l'aide de l'écart moyen quadratique (EMQ), en fonction du processus de constitution et de l'équidistance des courbes de niveau. Pour la colonne *Précision Altimétrique* du tableau ci-dessous, « Contrôlée » signifie que la valeur est le résultat de mesures de contrôle qualité faite par l'IGN.

Mode de saisie	Maille initiale	Domaine	Thématique	Source	Précision Altimétrique (EMQ sauf mention contraire)				Précision Planimétrique (EMQ sauf mention contraire)		
Laser aéroporté zones inondables IGN & Externe	1 m	France Métropolitaine & Outre-Mer	Zones à enjeux	LiDAR densité Souhaitée => 1 pts/m²	cor	contrôlée 0.2 m ⁷ cor			contrôlée 0.6 m ⁸		
Laser aéroporté zones bathymétriques	1 m	France Métropolitaine & Outre-Mer	Zones à enjeux	LiDAR densité Souhaitée => 0.5 pts/m²		0.5 m, précision à 95% (cf. spécifications Litto3D [®])		2.8 m précision à 95% (cf. spécifications Litto3D®)			
Extrapolation MNE (translation en Z)	1 m	France Métropolitaine & Outre-Mer	Zones à enjeux	LiDAR	N	on con	trôlée		Non contrôlée		
Laser aéroporté zones forêts	1 m	France Métropolitaine	Zones de forêts	LiDAR densité Souhaitée => 0.5 pts/m²				0.6 m (contrôle à mettre en œuvre)			
			Zone SIAL	Pixel > 30 cm		2.5 ו					
Corrélation automatique	1 m		Zones rurales	PVA HR (Pixel >=20 cm)	Contrôl	ée 0.7ı	Non contrôlée				
IGN & Externe		France Métropolitaine	Zones urbaines	PVA HR (Pixel >=20 cm)	Contrôl	ée 0.7	Non contrôlée				
			Zones urbaines	Pixel 10 cm	Contrôlée 0.5 m			Non contrôlée			
Zone BD ALTI [®] Recalée	25 m ->1 m		Zones urbaines & rurales	BD ALTI [®] incorporée au RGE ALTI [®]	2 à 8 m				Non contrôlée		
					Equidistance des courbes						
					5 m	10 m	20 m	40 m			
Numérisation manuelle	25 m			Carte 1:25000 ^e	1.9 m	2.5 m					
ou vectorisation de courbes de niveau	25 m	France	®	Carte 1:50000 ^e		2.6 m	4.1 m				
Restitution photogrammétrique	17 m	Métropolitaine	Zone BD ALTI [®]	PVA 1:30 000 ^e	1.9 m	2.5 m	4.0 m		Non contrôlée		
de courbes de niveau	17 m			PVA 1:60 000 ^e		4.1 m	5.2 m	8.2 m			
	5 m	France Métropolitaine	France Zones à forte RADAR contrôlée						Non contrôlée		
Données Externes	5 m	France Métropolitaine	Zones à enjeux	RADAR	contrôlée 2m ¹⁰				Non contrôlée		

⁷ Contrôle réalisé sur des tronçons de réseau routier ainsi que sur des terrains de sport. La méthodologie de contrôle est explicitée dans l'Annexe B.

_

⁸ Contrôle réalisé sur des lignes caractéristiques du terrain (comparaison de levés terrain et de vecteurs saisis sur le MNT). Voir Annexe B.

⁹ Contrôle réalisé à partir des données des réseaux routier et hydrographique de la BD topographique interne IGN ainsi que des BD Géodésique et Points d'appui.

¹⁰ Idem

A.1 Mesures effectuées en 2011 sur les zones RADAR

La précision a été mesurée en comparant des mesures de référence de l'altitude du terrain et les valeurs de l'altitude sur le MNT en N points.

Les mesures de référence de l'altitude du terrain sont issues :

- 1. De données photogrammétriques : réseau routier et réseau hydro BD TOPO[®].
- 2. De points mesurés sur le terrain et de bornes géodésiques.

Les lots sont déclarés conformes si l'écart moyen quadratique est inférieur à 7 mètres.

Les chiffres en gras sont les écarts moyens quadratiques.

Lot	Bornes	Points terrain	Réseau Routier	Réseau Hydro		
1. Une partie des Pyrénées-Atlantiques (64)	5.84 m	4.19 m	3,46 m	6.92 m		
nombre de mesures	144	243	560 696	418 144		
répartition des écarts	78,7%	70,8%	62,8%	53,4%		
moyenne des écarts	entre -6m et 0m -3.94 m	entre -3m et +3m -1,19 m	entre -3m et +3m 0,54 m	entre 0m et +6m 4,68 m		
Hautes-Pyrénées		·				
(65) et une partie du	7,35 m	5,93 m	3,74 m	7,21 m		
département de la Haute-Garonne (31)	points géodésiques hors crêtes : 6,90m					
	(nb mesures : 167)					
nombre de mesures	169	161	610 662	327 991		
répartition des écarts	61,6%	70,2%	69,2%	51,9%		
moyenne des écarts	entre -3m et +3m -4,78 m	entre -3m et +3m -1,61 m	entre -3m et +3m -0,30 m	entre 0m et +6m 4,34 m		
3. Ariège (09) et une						
partie du département de l'Aude (11)	7,24 m	5.46 m	3.69 m	6.04 m		
nombre de mesures	195	223	622 194	496 515		
répartition des écarts	62,0%	74,0%	69,3%	56,7%		
moyenne des écarts	entre -6m et 0m -5,01 m	entre -3m et +3m -0,11 m	entre -3m et +3m 0,48 m	entre 0m et +6m 3,78 m		
4. Pyrénées-Orientales (66)	5.53 m	4.39 m	3,68 m	6.07 m		
nombre de mesures	197	172	270 824	204 739		
répartition des écarts	72,6%	76,8%	65,2%	56,5%		
	entre -6m et +0m	entre -3m et +3m	entre 0m et +6m	entre 0m et +6m		
<i>moyenne des écarts</i> 5. Départements	-3,78 m	-1,41 m	1,69 m	4,31 m		
corses (2A et 2B)	4,80 m	Pointés photogrammétriques	3,06 m	8,42 m		
		6,49 m				
nombre de mesures	415	324	1 045 244	654 642		
répartition des écarts	74,0% entre -6m et +0m	64,7% entre -3m et +3m	74,4% entre -3m et +3m	69,8% entre 0m et +6m		
moyenne des écarts	-3,02 m	-1,93 m	0,58 m	4,43 m		
6. Cévennes	4,72 m	4,59 m	4,00 m	5,78 m		
nombre de mesures	421	273	1 041 949	912 375		
répartition des écarts	63,7%	67,1%	62,9%	58,7%		
moyenne des écarts	entre -6m et +0m	entre -3m et +3m	entre -3m et +3m	entre 0m et +6m		
moyerme des ecarts	3,75 m médiane = -4,48m	-1,59 m	-0,87 m	4,15 m		

A.2 Mesures effectuées en 2009 sur les zones RADAR

La précision a été mesurée en comparant des mesures de référence de l'altitude du terrain et les valeurs de l'altitude sur le MNT en N points.

Les mesures de référence de l'altitude du terrain ont été faites par photogrammétrie sur des prises de vues départementales de l'IGN. La précision de cette méthode a été évaluée.

Les points de mesure de référence ont été choisis en fonction de 2 critères:

- les points sont bien répartis, ils couvrent toute l'emprise du MNT.
- les points sont sur un terrain plat ou sur une pente régulière.

Les chiffres en gras sont les écarts moyens quadratiques

Départements	Bornes	Pointés sur les nœuds de la grille	Réseau Routier	Réseau Hydro
04 – Alpes-de-Haute- Provence	2,55 m	3,05 m	3,98 m	5,04 m
nombre de mesures	65	164	4 580	9 890
moyenne des écarts	-1,53 m	0,34 m	1,14 m	-2,64 m
05 – Hautes-Alpes	4,27 m	3,45 m	3,85 m	5,34 m
nombre de mesures	43	140	5 696	11 273
moyenne des écarts	-2,50 m	-0,29 m	-0,63 m	2,85 m
26 - Drôme	3,35 m	2,67 m	4,36 m	4,49 m
nombre de mesures	30	121	6 339	7 475
moyenne des écarts	-2,14 m	0,00 m	-2,03 m	2,19 m
38 - Isère	4,62 m	3,21 m	5,01 m	7,40 m
nombre de mesures	52	71	3 994	3 043
moyenne des écarts	-3,32 m	-0,84 m	0,97 m	-3,90 m
73 - Savoie	5,50 m	3,06 m	4,50 m	6,36 m
nombre de mesures	233	279	6 106	8 295
moyenne des écarts	-3,66 m	0,59 m	0,47 m	-2,88 m

Annexe B : Liste complète des valeurs de l'attribut « SOURCE »

L'attribut SOURCE fournit pour chaque nœud la source majoritaire des données ayant servi à calculer l'altitude du nœud, Les valeurs possibles sont :

B.1 Source « Autre »

Valeur	Définition
0	Pas de données
1	Raccord aux dépends de la BD ALTI® version 1 (le raccord se réalise aux dépends de la source de moindre qualité)
2	Raccord aux dépends du LiDAR (le raccord se réalise aux dépends de la source de moindre qualité)
3	Raccord aux dépends de la Corrélation (le raccord se réalise aux dépends de la source de moindre qualité)
4	Raccord aux dépends du Radar (le raccord se réalise aux dépends de la source de moindre qualité)

B.2 Source « BD ALTI® »

Valeur	Définition
10	Numérisation manuelle ou vectorisation 1 : 25000 ^e equid. 5 m
11	Numérisation manuelle ou vectorisation 1 : 25000 ^e equid. 10 m
12	Numérisation manuelle ou vectorisation 1 : 50000 ^e equid. 10 m
13	Numérisation manuelle ou vectorisation 1 : 50000 ^e equid. 20 m
14	Numérisation manuelle ou vectorisation 1 : 50000 ^e equid. 40 m
20	Restitution photogrammétrique PVA 1 : 30 000 ^e equid. 5m
21	Restitution photogrammétrique PVA 1 : 30 000 ^e equid. 10 m
22	Restitution photogrammétrique PVA 1 : 30 000 ^e equid. 20 m
23	Restitution photogrammétrique PVA 1 : 60 000 ^e equid. 10 m
24	Restitution photogrammétrique PVA 1 : 60 000 ^e equid. 20 m
25	Restitution photogrammétrique PVA 1 : 60 000 ^e equid. 40 m

B.3 Source « LiDAR IGN & SHOM »

Les nœuds du MNT sont qualifiés par la source ayant majoritairement servi au calcul, la densité d'acquisition peut être précisée. (De 60 à 70 on trouve les sources les moins fiables, au-delà de 170 les acquisitions en zone de forêt).

Valeur	Définition
30	LiDAR Bathy SHOM
39	LiDAR Bathy SHOM interpolation > 10m
40	SMF SHOM
49	SMF SHOM interpolation > 10 m
50	LiDAR Topo IGN densité d'acquisition théorique non renseignée ou inférieure à 1 pt / m²
5n	LiDAR Topo IGN densité d'acquisition théorique n points au m². (de 51 à 57)
58	LiDAR Topo IGN densité d'acquisition théorique 8 points ou plus au m².
59	LiDAR Topo IGN interpolation > 10m
60	Translation en Z à partir du MNE LiDAR Topo IGN densité acquisition théorique non renseignée ou inférieure à 1 pt / m²
6n	Translation en Z à partir du MNE LiDAR Topo IGN densité d'acquisition théorique n points au m² (de 61 à 66)
67	Translation en Z à partir du MNE LiDAR Topo IGN densité d'acquisition théorique 7 points ou plus au m².
68	LiDAR Topo IGN sans corrections interactives
69	LiDAR Topo IGN Point Fictif
70	Origines multiples produit Litto3D [®]
170	LiDAR Topo IGN en forêt densité d'acquisition théorique non renseignée ou inférieure à 1 pt / m²
17n	LiDAR Topo IGN en forêt densité d'acquisition théorique n points au m² (de 171 à 177)
178	LiDAR Topo IGN en forêt densité d'acquisition théorique 8 points ou plus au m².
179	LiDAR Topo IGN en forêt interpolation > 10m
188	LiDAR Topo IGN en forêt sans corrections interactives
189	LiDAR Topo IGN en forêt Point Fictif

B.4 Source « Corrélation IGN »

Les nœuds du MNT sont qualifiés en fonction de la précision de la PVA de la source de donnée et du type de recouvrement.

- Zone Rurale : recouvrement latéral inférieur à 50% (ex : 60/20, 60/30, 60/40)
- Zone Urbaine : recouvrement latéral supérieur à 50 % (ex : 60/60, 60/70)

Valeur	Définition
100	Corrélation automatique PVA HR 30 cm >= pixel => 20 cm Zone Rurale
101	Corrélation automatique PVA HR 30 cm >= pixel => 20 cm Zone Urbaine
102	Corrélation automatique PVA HR 30 cm >= pixel => 20 cm BD ALTI [®] recalée
103	Corrélation automatique PVA HR 30 cm >= pixel => 20 cm BD ALTI [®] non recalée
104	Reprise interactive sur Corrélation automatique de PVA HR 30 >= pixel =>20 cm Zone Rurale
105	Reprise interactive sur Corrélation automatique de PVA HR 30 >= pixel =>20 cm Zone Urbaine
110	Corrélation automatique PVA HR 20 cm > pixel => 10 cm Zone Rurale
111	Corrélation automatique PVA HR 20 cm > pixel => 10 cm Zone Urbaine
112	Corrélation automatique PVA HR 20 cm > pixel => 10 cm BD ALTI [®] non recalée
113	Corrélation automatique PVA HR 20 cm > pixel => 10 cm BD ALTI® recalée
114	Reprise interactive sur Corrélation automatique de PVA HR 20 cm > pixel => 10 cm Zone Rurale

Valeur	Définition
115	Reprise interactive sur Corrélation automatique de PVA HR 20 cm > pixel => 10 cm Zone Urbaine
120	Corrélation automatique PVA HR pixel < 10 cm Zone Rurale
121	Corrélation automatique PVA HR pixel < 10 cm Zone Urbaine
123	Corrélation automatique PVA HR pixel < 10 cm BD ALTI® recalée
124	Corrélation automatique PVA HR pixel < 10 cm BD ALTI® non recalée
125	Reprise interactive sur Corrélation automatique de PVA HR pixel < 10 cm Zone Rurale
126	Reprise interactive sur Corrélation automatique de PVA HR pixel < 10 cm Zone Urbaine
150	Corrélation automatique PVA non HR pixel > 30 cm

B.5 Source « MNT externe »

Les nœuds du MNT sont qualifiés pour la corrélation en fonction de la précision de la PVA, pour les zones Radar par la source ayant majoritairement servi au calcul, pour le LiDAR par la densité d'acquisition.

Valeur	Définition									
	LiDAR									
80	LiDAR Topo externe densité acquisition théorique non renseignée ou inférieure à 1 pt / m²									
8n	LiDAR Topo externe densité d'acquisition théorique n points au m². (de 81 à 87)									
88	LiDAR Topo densité d'acquisition théorique 8 points ou plus au m²									
89	LiDAR Topo externe interpolation > 10m									
98	LiDAR Topo externe sans corrections interactives									
99	LiDAR Topo externe Point Fictif									
	Corrélation									
135	Corrélation automatique acquisition externe PVA HR 30 cm >= pixel => 20 cm Zone Rurale									
136	Corrélation automatique acquisition externe PVA HR 30 cm >= pixel => 20 cm Zone Urbaine									
140	Corrélation automatique acquisition externe PVA HR 20 cm > pixel => 10 cm Zone Rurale									
141	Corrélation automatique acquisition externe PVA HR 20 cm > pixel => 10 cm Zone Urbaine									
145	Corrélation automatique acquisition externe PVA HR pixel < 10 cm Zone Rurale									
146	Corrélation automatique acquisition externe PVA HR pixel < 10 cm Zone Urbaine									
151	Corrélation automatique acquisition externe PVA non HR pixel > 30 cm									
	Radar									
160	Données interpolées à partir de données existantes (radar ou ancillaires) EMQ<7m									
161	Données Radar EMQ<7m									
162	Données ancillaire (BD ALTI [®]) EMQ<7m									
163	Données interpolées sur des surfaces d'eau EMQ<7m									
164	Données interpolées sur des zones sans données disponibles EMQ<7m									

Annexe C : Détail des Systèmes de Référence

France Continentale:

Système de référence de coordonnées

spatial:

Code RIG: LAMB93 (RGF93LAMB93)

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité : Institut national de l'information

géographique et forestière - France

Version : 1.1 Code EPSG : 2154

Autorité : European Petroleum Survey Group

Version: 8.5.1

Identifiant du Champ d'application : franceCont

Système de référence d'altitudes :

Code RIG : IGN69 CodeSpace :

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité : Institut national de l'information

géographique et forestière-France

Version: 1.1 Code EPSG: 5720

Autorité : European Petroleum Survey Group

Version: 8.5.1

Identifiant du Champ d'application : franceCont

Corse:

Système de référence de coordonnées

spatial:

Code RIG: LAMB93 (RGF93LAMB93)

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité : Institut national de l'information

géographique et forestière-France

Version : 1.1 Code EPSG : 2154

Autorité : European Petroleum Survey Group

Version: 8.5.1

Identifiant du Champ d'application : corse

Système de référence d'altitudes :

Code: IGN78C CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml
Autorité: Institut national de l'information

géographique et forestière-France

Version : 1.1 Code EPSG : 5721

Autorité : European Petroleum Survey Group

Version: 8.5.1

Identifiant du Champ d'application : corse

Guadeloupe:

Système de référence de coordonnées

spatial:

Code RIG: UTM20W84GUAD

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité : Institut national de l'information

géographique et forestière- France

Version: 1.1

Code EPSG: 32620

Autorité: European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Guadeloupe

Système de référence d'altitudes :

Code RIG : GUAD88

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité : Institut national de l'information

géographique et forestière-France

Version : 1.1 Code EPSG : 5757

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Guadeloupe (Grande Terre /

Basse Terre)

Système de référence d'altitudes :

Code RIG: GUAD88MG

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml
Autorité: Institut national de l'information

géographique et forestière-France

Version : 1.1 Code EPSG : 5617

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Guadeloupe (Marie

Galante)

Système de référence d'altitudes :

Code RIG: GUAD92LD

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml
Autorité: Institut national de l'information

géographique et forestière-France

Version : 1.1 Code EPSG : 5618

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Guadeloupe (La Désirade)

Système de référence d'altitudes :

Code RIG: GUAD88LS

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml
Autorité: Institut national de l'information

géographique et forestière- France

Version: 1.1 Code EPSG: 5616

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Guadeloupe (Les Saintes)

Martinique:

Système de référence de coordonnées

spatial:

Code RIG: UTM20W84MART

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité : Institut national de l'information

géographique et forestière-France

Version: 1.1

Code EPSG: 32620

Autorité: European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Martinique

Système de référence d'altitudes :

Code RIG: MART87

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml
Autorité: Institut national de l'information

géographique et forestière-France

Version: 1.1 Code EPSG: 5756

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Martinique

Guyane:

Système de référence de coordonnées

spatial:

Code RIG: RGFG95UTM22

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité : Institut national de l'information

géographique et forestière-France

Version : 1.1 Code EPSG : 2972

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Guyane

Système de référence d'altitudes :

Code RIG : GUYA77

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité : Institut national de l'information

géographique et forestière-France

Version : 1.1 Code EPSG : 5755

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Guyane

Réunion:

Système de référence de coordonnées

spatial:

Code RIG: RGR92UTM40S

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité : Institut national de l'information

géographique et forestière- France

Version: 1.1 Code EPSG: 2975

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Réunion

Système de référence d'altitudes :

Code RIG : REUN89

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml
Autorité: Institut national de l'information

géographique et forestière– France

Version: 1.1 Code EPSG: 5758

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Réunion

Mayotte:

Système de référence de coordonnées

spatial:

Code RIG: RGM04UTM38S

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité: Institut national de l'information

géographique et forestière- France

Version: 1.1 Code EPSG: 4471

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Mayotte

Système de référence d'altitudes :

Code RIG: MAYO53

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité : Institut national de l'information

géographique et forestière-France

Version : 1.1 Code EPSG : 5793

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Mayotte

Saint-Pierre-et-Miquelon:

Système de référence de coordonnées

spatial :

Code RIG: RGSPM06U21

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité : Institut national de l'information

géographique et forestière-France

Version: 1.1 Code EPSG: 4467

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Saint-Pierre-et-Miquelon

Système de référence d'altitudes :

Code RIG : STPM50

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml
Autorité: Institut national de l'information

géographique et forestière-France

Version: 1.1 Code EPSG: 5792

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Saint-Pierre-et-Miquelon

Saint-Barthélemy:

Système de référence de coordonnées

spatial:

Code RIG: UTM20W84GUAD

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité : Institut national de l'information

géographique et forestière- France

Version : 1.1

Code EPSG: 32620

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Saint-Barthélemy

Système de référence d'altitudes :

Code RIG: GUAD88SB

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité : Institut national de l'information

géographique et forestière-France

Version: 1.1 Code EPSG: 5619

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Saint Barthélemy

Saint-Martin:

Système de référence de coordonnées

spatial:

Code RIG: UTM20W84GUAD

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml

Autorité : Institut national de l'information

géographique et forestière- France

Version: 1.1

Code EPSG: 32620

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : Saint-Martin

Système de référence d'altitudes :

Code RIG: GUAD88SM

CodeSpace:

http://librairies.ign.fr/geoportail/resources/IGNF.xml
Autorité: Institut national de l'information

géographique et forestière-France

Version : 1.1 Code EPSG : 5620

Autorité : European Petroleum Survey Group

Version: 8.5.1

Champ d'application : St-Martin

Annexe D1 : Représentation colorimétrique du masque des sources

				R	v	В	
S	=	0	pas de données	0	0	0	
s	=	1	Raccord sacrifiant la BD ALTI® version 1.0 (le raccord se réalise aux dépends de la source de moindre qualité)	255	255	0	
S	=	2	Raccord sacrifiant le LiDAR	250	250	5	
S	=	3	Raccord sacrifiant la Corrélation	245	245	10	
S	=	4	Raccord sacrifiant le Radar	240	240	15	
S	=	10	Numérisation manuelle ou vectorisation 1 : 25 000 equid 5 m	225	0	90	
S	=	11	Numérisation manuelle ou vectorisation 1 : 25 000 equid 10 m	225	0	80	
S	=	12 13	Numérisation manuelle ou vectorisation 1 : 50 000 equid 10 m Numérisation manuelle ou vectorisation 1 : 50 000 equid 20 m	225 225	0	70 60	
S	=	14	Numérisation manuelle ou vectorisation 1 : 50 000 equid 20 m	225	0	50	
S	=	20	Restitution photogrammétrique PVA 1 : 30 000 equid 5m	225	130	200	
S	=	21	Restitution photogrammétrique PVA 1 : 30 000 equid 10 m	225	120	200	
S	=	22	Restitution photogrammétrique PVA 1 : 30 000 equid 20 m	225	110	200	
S	=	23	Restitution photogrammétrique PVA 1 : 60 000 equid 10 m	225	100	200	
S	=	24	Restitution photogrammétrique PVA 1 : 60 000 equid 20 m	225	90	200	
S	=	25 30	Restitution photogrammétrique PVA 1 : 60 000 equid 40 m LiDAR Bathy SHOM	225 20	80 200	200 150	
S	=	39	LiDAR Bathy SHOM interpolation > 10m	10	120	90	
S	=	40	SMF SHOM	0	90	90	
S	=		SMF SHOM interpolation > 10 m	0	80	80	
S	=	50	LiDAR Topo IGN densité d'acquisition théorique non renseignée ou inférieure à 1 pt / m²	0	255	0	
S	=	5n	LiDAR Topo IGN densité d'acquisition théorique n points au m². (de 51 à 57)	20*n	255	20*n	
S	=	58	LiDAR Topo IGN densité d'acquisition théorique 8 points ou plus au m².	160	255	160	
S	=	59	LiDAR Topo IGN interpolation > 10m	0	150	0	
S	=	60	Translation en Z à partir du MNE LiDAR Topo IGN densité acquisition théorique non renseignée ou inférieure à 1 pt / m²	150	230	40	
S	=	6n	Translation en Z à partir du MNE LiDAR Topo IGN densité d'acquisition théorique n points au m². (de 61 à 66)	150+10 *n	230+2*n	40+10*n	
S	=	67	Translation en Z à partir du MNE LIDAR Topo IGN densité d'acquisition théorique 7 points ou plus au m².	220	244	110	
S	=	68	LiDAR Topo IGN sans corrections interactives	130	180	130	
S	=	69	LiDAR Topo IGN Point Fictif	190	190	190	
S	=	70	Origines multiples produit Litto3D®	90	130	0	
S	=	80	LiDAR Topo externe densité acquisition théorique non renseignée ou inférieure à 1 pt / m²	0	200	0	
S	=	8n 88	LiDAR Topo externe densité d'acquisition théorique n points au m².(de 81 à 87) LiDAR Topo densité d'acquisition théorique 8 points ou plus au m².	10*n 80	200 200	10*n 80	
S	=	89	LiDAR Topo densite d acquisition theorique o points ou plus au m . LiDAR Topo externe interpolation > 10m	0	100	0	
S	=		LiDAR Topo externe sans corrections interactives	90	150	90	
S	=	99	LiDAR Topo externe Point Fictif	100	100	100	
S	=	100	Corrélation automatique PVA HR 30 cm >= pixel => 20 cm Zone Rurale	0	0	210	
S	=	101	Corrélation automatique PVA HR 30 cm >= pixel => 20 cm Zone Urbaine	0	0	215	
S	=	102	Corrélation automatique PVA HR 30 cm >= pixel => 20 cm BD ALTI® recalée	0	0	220	
S	=	103	Corrélation automatique PVA HR 30 cm >= pixel => 20 cm BD ALTI® non recalée	0	0	225	
S	=	104	Reprise interactive sur Corrélation automatique de PVA HR 30 >= pixel =>20 cm Zone Rurale	0	0	230	
S	=	105	Reprise interactive sur Corrélation automatique de PVA HR 30 >= pixel =>20 cm Zone Urbaine	0	0	235	
S	=	110 111	Corrélation automatique PVA HR 20 cm > pixel => 10 cm Zone Rurale Corrélation automatique PVA HR 20 cm > pixel => 10 cm Zone Urbaine	100 100	200 200	210 215	
S	=	112	Corrélation automatique PVA HR 20 cm > pixel => 10 cm BD ALTI® non recalée	100	200	220	
S	=	113	Corrélation automatique PVA HR 20 cm > pixel => 10 cm BD ALTI® recalée	100	200	225	
	=		Reprise interactive sur Corrélation automatique de PVA HR 20 cm > pixel => 10 cm Zone				
S		114	Rurale Reprise interactive sur Corrélation automatique de PVA HR 20 cm > pixel => 10 cm Zone	100	200	230	
S	=	115	Urbaine	100	200	235	
S	=	120	Corrélation automatique PVA HR pixel < 10 cm Zone Rurale	100	0	210	
S	=	121	Corrélation automatique PVA HR pixel < 10 cm Zone Urbaine	100	0	215	
S	=	123	Corrélation automatique PVA HR pixel < 10 cm BD ALTI [®] recalée Corrélation automatique PVA HR pixel < 10 cm BD ALTI [®] non recalée	100 100	0	220 225	
S	=	125	Reprise interactive sur Corrélation automatique de PVA HR pixel < 10 cm Zone Rurale	100	0	230	
S	=	126	Reprise interactive sur Corrélation automatique de PVA HR pixel < 10 cm Zone Urbaine	100	0	235	
S	=	135	Corrélation automatique acquisition externe PVA HR 30 cm >= pixel => 20 cm Zone Rurale	150	0	215	
S	=	136	Corrélation automatique acquisition externe PVA HR 30 cm >= pixel => 20 cm Zone Urbaine	150	0	220	
S	=	140	Corrélation automatique acquisition externe PVA HR 20 cm > pixel => 10 cm Zone Rurale	150	0	225	
S	=	141	Corrélation automatique acquisition externe PVA HR 20 cm > pixel => 10 cm Zone Urbaine	150	0	230	
S	=	145	Corrélation automatique acquisition externe PVA HR pixel < 10 cm Zone Rurale	150	0	235	
S	=	146	Corrélation automatique acquisition externe PVA HR pixel < 10 cm Zone Urbaine Corrélation automatique PVA non HR pixel > 30 cm	150	150	240	
S	=	150 151	Correlation automatique PVA non HR pixel > 30 cm Corrélation automatique acquisition externe PVA non HR pixel > 30 cm	255 255	150 150	0 50	
S	=	160	Données interpolées à partir de données existantes (radar ou ancillaires) EMQ<7m	255	100	0	
S	=	161	Données Radar EMQ<7m	255	100	20	
S	=	162	Données ancillaire (BD ALTI®) EMQ<7m	255	100	40	
S	=	163	Données interpolées sur des surfaces d'eau EMQ<7m	255	100	60	
S	=	164	Données interpolées sur des zones sans données disponibles EMQ<7m	255	100	80	
S	=	170	LiDAR Topo IGN en forêt densité d'acquisition théorique non renseignée ou inférieure à 1 pt / m²	0	220	0	
S	=	17n	LiDAR Topo IGN en forêt densité d'acquisition théorique n points au m². (de 171 à 177)	10*n	220	10*n	
S	=	178	LiDAR Topo IGN en forêt densité d'acquisition théorique 8 points ou plus au m².	80	220	80	
S	=	179	LiDAR Topo IGN en forêt interpolation > 10m	105	50	105	
S	=	188 189	LiDAR Topo IGN en forêt sans corrections interactives LiDAR Topo IGN en forêt Point Fictif	105 50	140 50	105 50	
			specific enterest enterest				_

Annexe D2 : Représentation colorimétrique du masque des distances

Code	В	G	В	1	Code	R	G	В	1	Code	R	G	В	Code	R	G	В		Code	В	G	В	1	Co
0	210	250	100		49	229	155	97		98	182	52	21	147	145	36	15		196	108	19	8		24
1	181	234	93		50	228	151	95		99	181	52	21	148	144	35	14		197	107	19	8	П	24
2	153	218	86		51	227	148	92		100	181	51	21	149	144	35	14		198	107	19	7	П	24
3	125	202	80		52	226	144	89		101	180	51	21	150	143	35	14		199	106	18	7	П	24
4	96	186	73		53	225	140	87		102	179	51	21	151	142	34	14		200	105	18	7	П	24
5	68	170	66		54	224	137	84		103	178	50	21	152	141	34	14		201	104	18	7	П	25
6	40	155	60		55	223	133	81		104	178	50	20	153	141	34	14		202	104	17	7		25
7	58	158	58		56	222	130	79		105	177	50	20	154	140	33	14		203	103	17	7		25
8	76	160	56		57	220	126	76		106	176	49	20	155	139	33	13		204	102	17	7		25
9	94	163	54		58	219	123	73		107	175	49	20	156	138	33	13		205	101	16	6		25
10	112	165	52		59	218	119	70		108	175	49	20	157	138	32	13		206	101	16	6		25
11	130	168	50		60	217	116	68		109	174	48	20	158	137	32	13		207	100	16	6		Г
12	148	170	48		61	216	112	65		110	173	48	20	159	136	32	13		208	99	15	6		
13	166	173	46		62	215	109	62		111	172	48	20	160	135	31	13		209	98	15	6		
14	184	175	44		63	214	105	60		112	172	47	19	161	135	31	13		210	98	15	6		
15	202	178	42		64	213	102	57		113	171	47	19	162	134	31	12		211	97	14	6		
16	220	180	40		65	212	98	54		114	170	47	19	163	133	30	12		212	96	14	5		
17	224	186	52		66	211	95	52		115	169	46	19	164	132	30	12		213	95	14	5		
18	227	192	64		67	209	91	49		116	169	46	19	165	132	30	12		214	94	13	5	Ш	
19	231	197	76		68	208	88	46		117	168	46	19	166	131	29	12		215	94	13	5	Ш	
20	234	203	88		69	207	84	43		118	167	45	19	167	130	29	12		216	93	13	5	Ш	
21	238	208	100		70	206	81	41		119	166	45	18	168	129	29	12		217	92	12	5	Ш	
22	241	214	112		71	205	77	38		120	166	45	18	169	128	28	11		218	91	12	5	Ш	
23	245	220	124		72	204	74	35		121	165	44	18	170	128	28	11		219	91	12	5	Ш	
24	248	225	136		73	2 0 3	70	33		122	164	44	18	171	127	28	11		220	90	11	4	Ш	
25	252	231	148		74	202	67	30		123	163	44	18	172	126	27	11		221	89	11	4	Ш	
26	255	236	160		75	201	63	27		124	162	43	18	173	125	27	11		222	88	11	4	Ш	
27	253	232	157		76	199	59	24		125	162	43	18	174	125	27	11		223	88	10	4	ш	
28	252	228	154		77	198	59	24		126	161	43	17	175	124	26	11		224	87	10	4	ш	
29	251	225	151		78	197	59	24		127	160	42	17	176	123	26	10		225	86	10	4	Ш	
30	250	221	149		79	196	58	24		128	159	42	17	177	122	26	10		226	85	9	4	Ш	
31	249	218	146		80	196	58	24		129	159	42	17	178	122	25	10	Ш	227	85	9	3	ш	
32	248	214	143		81	195	58	24		130	158	41	17	179	121	25	10	Ш	228	84	9	3	ш	
33	247	211	141		82	194	57	24		131	157	41	17	180	120	25	10	ш	229	83	8	3	ш	
34	246	207	138		83	193	57	23		132	156	41	17	181	119	24	10	Н	230	82	8	3	Н	
35	245	204	135		84	193	57	23		133	156	40	16	182	119	24	10	Н	231	82	8	3	Н	
36	244	200	133		85	192	56	23		134	155	40	16	183	118	24	10	Н	232	81	7	3	Н	
37	242	197	130		86	191	56	23		135	154	40	16	184	117	23	9	Н	233	80	7	3	Н	
38	241	193	127		87	190	56	23		136	153	39	16	185	116	23	9	Н	234	79	7	2	Н	
39	240	190	124		88	190	55	23		137	153	39	16	186	116	23	9	Н	235	79	6	2	Н	
40	239	186	122		89	189	55	23		138	152	39	16	187	115	22	9	Н	236	78	6	2		
41	238	183	119		90	188	55	22		139	151	38	16	188	114	22	9	Н	237	77	6	2		
42	237	179	116		91	187	54	22		140	150	38	15	189	113	22	9		238	76	5	2		
43			114		92	187	54	22		141	150	38	15	190		21	9		239	76	5	2		
44		172	111		93	186	54	22		142	149	37	15	191	112	21	8		240	75	5	2		
45	234	169	108		94	185	53	22		143	148	37	15	192	111	21	8		241	74	4	1		
46		165	106		95	184	53	22		144	147	37	15	193	110	20	8		242	73	4	1		
47	231	162	103		96	184	53	22		145	147	36	15	194	110	20	8		243	73	4	1		
48	230	158	100		97	183	52	21		146	146	36	15	195	109	20	8		244	72	3	1		

Annexe E : Contrôle de la conformité

E.1 LIDAR

E.1.1 Contrôle des acquisitions

Cette étape valide :

- 1. La présence de l'ensemble de fichiers requis et la conformité de leur contenu.
- 2. La densité des points acquis qui doit être à minima de 2 pts au m².
- 3. La cohérence des nuages de points.
- 4. Le contrôle que les données couvrant des zones contrôlées respectent les spécifications particulières à ces zones.

E.1.2 Contrôle des livrables

La cohérence et la conformité du contenu et de l'emprise des MNT et masques associés sont contrôlés informatiquement puis visuellement.

E.1.3 Contrôle de la qualité géométrique

L'exactitude géométrique du MNT est estimée en altimétrie et en planimétrie. Pour ce faire, des levés terrain de haute précision sont réalisés. Puis un EMQ est calculé par rapport au MNT. Les levés ne concernent que certains éléments de la surface topographique : les routes en zone dégagée ainsi que les terrains de football.

- la précision de positionnement altimétrique du MNT est contrôlée à partir de levés terrain dont la précision de positionnement altimétrique est au moins deux fois supérieure à celle du MNT.
 - Le contrôle consiste à lever des points GPS en mode RTK. Ces points sont collectés soit depuis un véhicule en mouvement (récepteur GPS posé sur le toit du véhicule) soit en statique (canne GPS posée au sol). Dans les deux cas, le mode RTK permet de déterminer la position du point mesuré par rapport à une station fixe de référence située dans le voisinage (moins de 40 km). Les coordonnées de la station de base sont transmises en temps réel au récepteur GPS. Les points sont référencés dans le système altimétrique légal de la zone (IGN69 pour la métropole). La précision altimétrique globale des points mesurés est de 0,1m.
- La trajectographie GPS permet d'acquérir en terrain découvert des milliers de points sur le réseau routier (revêtu essentiellement). L'itinéraire suivi permet de couper le plus possible à angle droit les axes de vol LiDAR de façon à pouvoir mettre en évidence d'éventuelles marches entre les différentes bandes d'acquisition.
 - Le chantier est validé dès lors que l'EMQ entre les valeurs d'altitude données par le MNT et celles des points GPS est meilleur que **0.2m**. Par ailleurs, tous les points pour lesquels l'écart mesuré est supérieur à 0.6m font l'objet d'une investigation et d'une reprise éventuelle dans le MNT.
- Les points GPS statiques sont levés sur des zones planes, parfaitement dégagées et accessibles pour des stations GPS. Il s'agit le plus souvent de terrain de football. Par terrain, une dizaine de points sont ainsi levés, toujours en mode RTK.
 - Le chantier n'est validé que si l'EMQ de l'ensemble de ces points par rapport au MNT est meilleur que **0.2m**. En pratique, l'EMQ calculé est de l'ordre de 0.1m.

2. la précision de positionnement planimétrique du MNT est contrôlé à partir de levés terrain.

Le contrôle consiste à lever avec un récepteur GPS RTK des lignes caractéristiques du terrain observables sur le MNT RGE ALTI[®] (haut et bas de talus, mur, quai, digue, fossé). On enregistre un point tous les deux mètres.

Les lignes caractéristiques sont numérisées (SIG) à partir du MNT puis les écarts entre le MNT et le terrain sont calculés.

Le chantier est validé dès lors que l'EMQ calculé est meilleur que 0.6m.

De plus des repères de nivellement sont levés en GPS RTK afin de vérifier la fiabilité des mesures GPS.

A noter que cette méthode de contrôle ne permet pas de qualifier le terrain dans son ensemble : on ne réalise pas de levé terrain en zones pentues (ex : berges de cours d'eau), dans les zones naturelles ou cultivées (bois, prés, friches, champs).

E.2 CORRÉLATION

E.2.1 Contrôle des acquisitions

L'aérotriangulation est réalisée en conformité avec le cahier des charges qui garantit une précision géométrique (alti et plani) de 0.5m pour une PVA rurale (taille du pixel sol comprise entre 20 et 30cm) et 0.3m pour une PVA urbaine (taille du pixel sol comprise entre 10 et 20cm).

E.2.2 Contrôle des livrables

La cohérence et la conformité du contenu et de l'emprise des MNT et masques associés sont contrôlés informatiquement puis visuellement.

E.2.3 Contrôle de la qualité géométrique

L'exactitude du positionnement est contrôlée.

Deux types de contrôle sont effectués :

- des contrôles de qualité géométrique relative par pointés stéréoscopiques aléatoires
- des contrôles de qualité géométrique absolue par comparaison du MNT avec des données plus précises.

Les contrôles relatifs permettent d'estimer la qualité du MNT par rapport à la prise de vue orientée. Sur la base d'un échantillon d'une centaine de pointés, on estime l'écart par rapport à la PVA orientée et on corrige localement le MNT lorsque l'écart mesuré est supérieur à 2m.

Les contrôles absolus consistent à comparer le MNT (hors zone BD ALTI® recalée) :

- d'une part au(x) MNT LiDAR disponible(s) dans l'emprise du chantier.
- d'autre part aux points Z des bases de données géodésiques et de points d'appui.

Dans les deux cas, la précision intrinsèque des données de contrôle est bien deux fois supérieure à celle du MNT.

Le chantier est validé lorsque l'EMQ calculée est meilleure que 0.7 m.

E.3 RADAR

Les données Radar ont fait l'objet d'une acquisition externe, leur conformité au CCTP a fait l'objet de Vérification d'Aptitude et de Vérification de Service Rendu. Ces données ont été qualifiées par rapport à des données telles que réseaux routier et hydrographique ainsi que par rapport aux points Z des bases de données géodésiques et de points d'appui.