Line Bundles and Divisors

1 Cartier Divisors

2 Line Bundles and Picard Group

Definition 1. Let X be a scheme. The *Picard group* of X is defined to be $Pic(X) = H^1(X, \mathcal{O}_X^*)$. The group operation is given by the tensor product of line bundles.

Definition 2. Let X be a scheme over a field \mathbf{k} and $\mathcal{L}, \mathcal{L}'$ two line bundles on X. We say that \mathcal{L} and \mathcal{L}' are algebraically equivalent if there exists a Yang: non-singular variety T over \mathbf{k} , two points $t_0, t_1 \in T(\mathbb{k})$ and a line bundle \mathcal{M} on $X \times T$ such that

$$\mathcal{M}|_{X \times \{t_0\}} \cong \mathcal{L}, \quad \mathcal{M}|_{X \times \{t_1\}} \cong \mathcal{L}'.$$

We denote it by $\mathcal{L} \sim_{\text{alg}} \mathcal{L}'$. Yang: To be checked.

3 Weil Divisors and Reflexive Sheaves

