Linear Algebra & Geometry - Notes

Dom Hutchinson

September 3, 2018

Contents

1	Euc	elidean Plane, Vectors, Cartesian Co-Ordinates & Complex Numbers		
	1.1 1.2	Vectors		
2	Euc	clidean Space, \mathbb{R}^n		
	2.1	Dot Product		
	2.2	Linear Subspaces		
3	Line	ear Equations & Matrices		
	3.1	Linear Equations		
	3.2	Matrices		
	3.3	Structure of Set of Solutions		
	3.4	Solving Systems of Linear Equations		
	3.5	Elementary Matrices & Inverting Matrices		
4	Line	ear Independence, Bases & Dimensions		
	4.1	Linear Independence & Dependence		
	4.2	Bases & Dimensions		
	4.3	Orthogonal Bases		
5	Linear Maps			
	5.1	Abstract Properties of Linear Maps		
	5.2	Matrices		
	5.3	Rank & Nullity		
6	Det	erminants 15		
	6.1	Definition & Basic Properties		
	6.2	Computing Determinant		
	6.3	Applications of Determinant		
7	Vector Spaces			
	7.1	Groups & Fields		
	7.2	Vector Spaces		
	7.3	Subspace, Linear Combinations & Span		
	7.4	Direct Sums		
	7.5	Rank-Nullity Theorem		
	7.6	Projection		
	7.7	Isomorphisms		

8	Eigenvalues & Eigenvectors 8.1 Characteristic Polynomial	22 22	
	8.2 Roots of Characteristic Polynomial	$\overline{24}$	
9	Inner Product Spaces		
	9.1 Inner Product, Norm & Orthogonality	25	
	9.2 Construction of Orthonormal Basis	26	
10	Linear Operators on Inner Product Spaces	28	
	10.1 Complex Inner Product Spaces	28	
	10.2 Real Matrices	30	
11	Extra	31	

Linear Algebra & Geometry - Notes

September 3, 2018

Dom Hutchinson

1 Euclidean Plane, Vectors, Cartesian Co-Ordinates & Complex Numbers

1.1 Vectors

Definition 1.01 - Vectors

Vectors are ordered sets of real numbers.

Denoted by $\mathbf{v} = (v_1, v_2, v_3, ...)$.

Definition 1.02 - Euclidean Plane

The set of two dimensional vectors, with real componenets, is called the Euclidean Plane. Denoted by \mathbb{R}^2 .

Definition 1.03 - Vector Addition

Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2$ such that $\boldsymbol{v} = (v_1, v_2)$ and $\boldsymbol{w} = (w_1, w_2)$. Then

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2)$$

Definition 1.03 - Scalar Multiplication of Vectors

Let $\mathbf{v} \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}$ such that $\mathbf{v} = (v_1, v_2)$. Then

$$\lambda \mathbf{v} = (\lambda v_1, \lambda v_2)$$

Definition 1.04 - Norm of vectors

The norm of a vector is its length from the origin.

$$\|\boldsymbol{v}\| := \sqrt{v_1^2 + v_2^2}, \quad \boldsymbol{v} \in \mathbb{R}^2$$

Theorem 1.05 - Properties of the Norm

Let $v, w \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}$ such that $v = (v_1, v_2)$ and $w = (w_1, w_2)$. Then

$$||\boldsymbol{v}|| = 0 \text{ iff } \boldsymbol{v} = \boldsymbol{0}$$

$$||\lambda \boldsymbol{v}|| = \sqrt{\lambda^2 v_1^2 + \lambda^2 v_2^2}$$

$$= |\lambda|.||\boldsymbol{v}||$$

$$||\boldsymbol{v} + \boldsymbol{w}|| \le ||\boldsymbol{v}|| + ||\boldsymbol{w}||$$

Definition 1.06 - *Unit Vector*

A vector can be described by its length & direction.

Let $\mathbf{v} \in \mathbb{R}^2 \setminus \{\mathbf{0}\}.$

Then $\boldsymbol{v} = \|\boldsymbol{v}\| . \boldsymbol{u}$ where \boldsymbol{u} is the unit vector, $\boldsymbol{u} = \begin{pmatrix} cos\theta \\ sin\theta \end{pmatrix}$

Thus $\forall \ \boldsymbol{v} \in \mathbb{R}^2, \boldsymbol{v} = \begin{pmatrix} \lambda cos\theta \\ \lambda sin\theta \end{pmatrix}$ for some $\lambda \in \mathbb{R} \ \& \ \boldsymbol{w} = (w_1, w_2)$.

Definition 1.07 - Dot Product

Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}$ where $\boldsymbol{v} = (v_1, v_2) \& \boldsymbol{w} = (w_1, w_2)$.

Then $\mathbf{v} \cdot \mathbf{w} = v_1.w_1 + v_2.w_2$.

Remark 1.08 - Positivity of Dot Product

Let $\boldsymbol{v} \in \mathbb{R}^2$.

Then $\mathbf{v} \cdot \mathbf{v} = v_1^2 + v_2^2 = ||\mathbf{v}||^2 \ge 0.$

Remark 1.09 - Angle between vectors in Euclidean Plane Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2$.

Set θ to be the angle between $\boldsymbol{v} \ \& \ \boldsymbol{w}$.

Then

$$cos(\theta) = \frac{\boldsymbol{v} \cdot \boldsymbol{w}}{\|\boldsymbol{v}\| \|\boldsymbol{w}\|}$$

Theorem 1.10 - Cauchy-Schwarz Inequality

Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2$.

Then

$$|\boldsymbol{v} \cdot \boldsymbol{w}| \le ||\boldsymbol{v}|| \ ||\boldsymbol{w}||$$

Proof

$$\frac{v_{1}w_{1}}{\|\boldsymbol{v}\| \|\boldsymbol{w}\|} + \frac{v_{2}w_{2}}{\|\boldsymbol{v}\| \|\boldsymbol{w}\|} \leq \frac{1}{2} \left(\frac{v_{1}^{2}}{\|\boldsymbol{v}\|^{2}} + \frac{w_{1}^{2}}{\|\boldsymbol{w}\|^{2}} \right) + \frac{1}{2} \left(\frac{v_{2}^{2}}{\|\boldsymbol{v}\|^{2}} + \frac{w_{2}^{2}}{\|\boldsymbol{w}\|^{2}} \right)
\leq \frac{1}{2} \left(\frac{v_{1}^{2} + v_{2}^{2}}{\|\boldsymbol{v}\|^{2}} + \frac{w_{1}^{2} + w_{2}^{2}}{\|\boldsymbol{w}\|^{2}} \right)
\leq \frac{1}{2} (1+1)
\leq 1
=> |v_{1}w_{1} + v_{2}w_{2}| \leq ||\boldsymbol{v}|| \|\boldsymbol{w}||
||\boldsymbol{v} \cdot \boldsymbol{w}| \leq ||\boldsymbol{v}|| \|\boldsymbol{w}\||$$

1.2 Complex Numbers

Definition 1.11 - i

$$i^2 = -1$$
$$i = \sqrt{-1}$$

Definition 1.12 - Complex Number Set

The set of *complex numbers* contains all numbers with an imaginary part.

$$\mathbb{C} := \{ x + iy; x, y \in \mathbb{R} \}$$

Complex numbers are often denoted by

$$z = x + iy$$

and we say x is the real part of z and y the imaginary part.

Definition 1.13 - Complex Conjugate

Let $z \in \mathbb{C}$ st z = x + iy. Then

$$\bar{z} := x - iy$$

Theorem 1.14 - Operations on Complex Numbers

Let $z_1, z_2 \in \mathbb{C}$ st $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$. Then

$$z_1 + z_2 := (x_1 + x_2) + i(y_1 + y_2)$$

$$z_1.z_2 := (x_1 + iy_1)(x_2 + iy_2)$$

$$:= x_1.x_2 - y_1.y_2 + i(x_1.y_2 + x_2.y_1)$$

N.B. When dividing by a complex number, multiply top and bottom by the complex conjugate.

Definition 1.15 - Modulus of Complex Numbers

The modulus of a complex number is the distance of the number, from the origin, on an Argand diagram. Let $z \in \mathbb{C}$ st z = x + iy. Then

$$|z| := \sqrt{x^2 + y^2} = \sqrt{\bar{z}z}$$

N.B. Amplitude is an alternative name for the modulus

Definition 1.16 - Phase of Complex Numbers

The phase of a complex number is the angle between the positive real axis and the line subtended from the origin and the number, on an Argand digram.

$$z = |z|.(\cos\theta + i.\sin\theta), \quad \theta = \text{Phase}$$

N.B. (Phase of \bar{z}) = - (Phase of z)

Theorem 1.17 - de Moivre's Formula

$$z^{n} = (\cos(\theta) + i.\sin(\theta))^{n} = \cos(n\theta) + i.\sin(n\theta)$$

Theorem 1.18 - Euler's Formula

$$e^{i\theta} = cos(\theta) + i.sin(\theta)$$

Remark 1.19

Using Euler's formula we can express all complex numbers in terms of e. Thus many properties of the exponential remain true:

$$z = \lambda e^{i\theta}, \qquad \lambda \in \mathbb{R}, \theta \in [0, 2\pi)$$
$$= > z_1 + z_2 = \lambda_1 . \lambda_2 . e^{i(\theta_1 + \theta_2)}$$
$$\&, \frac{z_1}{z_2} = \frac{\lambda_1}{\lambda_2} . e^{i(\theta_1 = \theta_2)}$$

2 Euclidean Space, \mathbb{R}^n

Definition 2.01 - Euclidean Space

Let $n \in \mathbb{N}$ then $\forall \boldsymbol{x} = (x_1, x_2, ..., x_n)$ with $x_1, x_2, ..., x_n \in \mathbb{R}$ then $\boldsymbol{x} \in \mathbb{R}^n$.

Theorem 2.02 - Operations in Euclidean Space

Let $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Then

$$x + y = (x_1 + y_1, ..., x_n + y_n)$$

And

$$\mathbf{x} + \lambda . \mathbf{y} = (x_1 + \lambda . y_1, ..., x_n + \lambda . y_n)$$

Definition 2.03 - Cartesian Product

Let $A, B \in \mathbb{R}^n$ be non-empty sets.

Then

$$A \times B := \{(a, b); a \in A, b \in B\}$$

2.1 Dot Product

Definition 2.04 - Dot Product

Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^n$. Then

$$\mathbf{v} \cdot \mathbf{w} := v_1.w_1 + \dots + v_n.w_n$$
$$:= \sum_{j=1}^n v_j.w_j$$

Theorem 2.05 - Properties of the Dot Product

Let $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^n$.

Linearity:

$$(\boldsymbol{u} + \lambda \boldsymbol{v}) \cdot \boldsymbol{w} = \boldsymbol{u} \cdot \boldsymbol{w} + \lambda (\boldsymbol{v} \cdot \boldsymbol{w})$$

Symmetry:

$$v \cdot w = w \cdot v$$

Positivity:

$$\mathbf{v} \cdot \mathbf{v} = v_1^2 + v_2^2 + \dots + v_n^2 \ge 0$$

Definition 2.06 - Orthogonality

Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^n$.

It is said that $\boldsymbol{v}, \boldsymbol{w}$ are orthogonal to each other if $\boldsymbol{v} \cdot \boldsymbol{w} = 0$ N.B. Orthogonal vectors are perpendicular to each other.

Definition 2.07 - The Norm

Let $\boldsymbol{x} \in \mathbb{R}^n$. Then

$$\|oldsymbol{x}\| = \sqrt{oldsymbol{x} \cdot oldsymbol{x}} = \sqrt{\sum_{i=1}^n x_i^2}$$

Theorem 2.08 - Properties of the Norm

Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Then

$$||x|| \ge 0$$

$$||x|| = 0 \text{ iff } x = 0$$

$$||\lambda x|| = |\lambda| ||x||$$

$$||x + y|| \le ||x|| + ||y||$$

Theorem 2.09 - Dot Product and Norm

Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$.

$$|x \cdot y| < ||x|| ||y||$$

N.B. $|x \cdot y| = ||x|| \cdot ||y||$ iff x & y are orthogonal.

Theorem 2.10 - Angle between Vectors

Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$. Then

$$cos(\theta) = \frac{\boldsymbol{x} \cdot \boldsymbol{y}}{\|\boldsymbol{x}\|.\|\boldsymbol{y}\|}$$

2.2 Linear Subspaces

Definition 2.11 - Linear Subspace

Let $V \subset \mathbb{R}^n$.

V is a $Linear\ Subspace$ if

- i) $V \neq \emptyset$;
- ii) $\forall v, w \in V$ then $v + w \in V$; and
- iii) $\forall \lambda \in \mathbb{R}, \boldsymbol{v} \in V \text{ then } \lambda \boldsymbol{v} \in V.$

Definition 2.12 - Span

Let $x_1, ..., x_k \in \mathbb{R}^n, k \in \mathbb{N}$. Then

$$span\{x_1, ..., x_k\} := \{\lambda_1 x_1 + ... + \lambda_k x_k; \lambda_i \in \mathbb{R}, 0 \le i \ge k\}$$

Theorem 2.13 - Spans are Subspaces

Let $x_1, ..., x_k \in \mathbb{R}^n$; $k \in \mathbb{N}$. Then span $\{x_1, ..., x_k\}$ is a linear subspace of \mathbb{R}^n .

Theorem 2.14

$$W_{\boldsymbol{a}} := \{ \boldsymbol{x} \in \mathbb{R}^n; \boldsymbol{x} \cdot \boldsymbol{a} = 0 \}$$
 is a subspace.

Definition 2.15 - Orthogonal Complement

Let $V \subset \mathbb{R}^n$. Then

$$V^{\perp} := \{ \boldsymbol{x} \in \mathbb{R}^n; \boldsymbol{x} \cdot \boldsymbol{y} = 0 \forall \ \boldsymbol{y} \in V \}$$

N.B. $V^{\perp} \subset \mathbb{R}^n$.

Theorem 2.16 - Relationship of Subspaces

Let $V, W \subset \mathbb{R}^n$. Then

 $V \cap W$ is a subspace and

$$V + W := \{ \boldsymbol{v} + \boldsymbol{w}; \boldsymbol{v} \in V, \boldsymbol{w} \in W \}$$
 is a subspace.

Definition 2.17 - Direct Sum

Let V_1, V_2, W be subspaces of \mathbb{R} . Then W is said to be a direct sum if

- i) $W = V_1 + V_2$; and,
- ii) $V_1 \cap V_2 = \emptyset$.

3 Linear Equations & Matrices

3.1 Linear Equations

Definition 3.01 - Multi-Variable Linear Equations

Linear equations produce a straight line and can have multiple variables.

Examples x = 3, y = x + 3, z + 5x - 2y

Defintion 3.02 - Systems of Linear Equations

Let $a, x \in \mathbb{R}^n$ & $b \in \mathbb{R}$ such that $a \cdot x = b$.

 $\mathbf{a} \cdot \mathbf{x} = b$ is a linear equation in S with $S(\mathbf{a}, b) = \{\mathbf{x}; \mathbf{a} \cdot \mathbf{x} = b\}$ as the set of solutions.

<u>N.B.</u> If b = 0 then $S(\boldsymbol{a}, 0)$ is a subspace.

3.2 Matrices

Definition 3.03 - *Matrix*

Let $m, n \in \mathbb{N}$, then a $m \times n$ grid of numbers form an 'm by n' matrix. Each element of the matrix can be reference by a_{ij} with i = 1, ..., m and j = 1, ..., n.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

N.B. m & i = rows; n & j = columns

Definition 3.04 - Sets of Matrices

 $M_{m,n}(\mathbb{R})$ is the set of m x n matrices containing only real elements.

 $M_{m,n}(\mathbb{Z})$ is the set of m x n matrices containing only integer elements.

 $M_n(\mathbb{R})$ is the set square matrices, size n, containing only real elements.

Definition 3.05 - Transpose Vectors

Let
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 then $\mathbf{x}^t = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}$

Definition 3.06 - Vector-Matrix Multiplication

Let $A \in \mathbb{R}_{m,n}$ and $\boldsymbol{x} \in \mathbb{R}^n$ then

$$A\boldsymbol{x} := \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix} = \begin{pmatrix} \boldsymbol{a}_1^t \cdot \boldsymbol{x} \\ \boldsymbol{a}_2^t \cdot \boldsymbol{x} \\ \vdots \\ \boldsymbol{a}_m^t \cdot \boldsymbol{x} \end{pmatrix} \in \mathbb{R}^m$$

This can be simplified to

$$y = Ax$$
 with $y_i = \sum_{j=1}^n a_{ij}x_j$

Theorem 3.07 - Operations on Matrices with Vectors

i)
$$A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y}, \quad \forall \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

ii)
$$A(\lambda \boldsymbol{x}) = \lambda(A\boldsymbol{x}), \quad \forall \ \boldsymbol{x} \in \mathbb{R}^n, \lambda \in \mathbb{R}.$$

Theorem 3.08 - Composition of Matrices

Let $A = (a_{ij}) \in M_{m,n}(\mathbb{R})$ and $B = (b_{ij}) \in M_{l,m}(\mathbb{R})$.

Then there exists a $C = (c_{ij}) \in M_{l,n}(\mathbb{R})$ such that

$$C\boldsymbol{x} = B(A\boldsymbol{x}), \quad \forall \ \boldsymbol{x} \in \mathbb{R}^n$$

$$\underline{\text{N.B.}} c_{ij} = \sum_{k=1}^{m} b_{ik} a_{kj}$$

Theorem 3.09 - Operations with Matrices

Let $A, B \in M_{m,n}$ and $C \in M_{l,m}$

- i) C(A + B) = CA + CB;
- ii) (A+B)C = AC + BC; and,
- iii) Let $D \in M_{m,n}, E \in M_{n,l} \& F \in M_{l,k}$ then

$$E(FG) = (EF)G$$

N.B. $AB \neq BA$

Definition 3.10 - Types of Matrix

Upper Triangle -
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$
, $a_{ij} = 0$ if $i > j$.
Lower Triangle - $\begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{pmatrix}$, $a_{ij} = 0$ if $i < j$.

Lower Triangle -
$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{pmatrix}$$
, $a_{ij} = 0$ if $i < j$.

Symmetric Matrix -
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 0 \\ 3 & 0 & 1 \end{pmatrix}$$
, $a_{ij} = a_{ji}$.

Anti-Symmetric -
$$\begin{pmatrix} 1 & -2 & -3 \\ 2 & 0 & -4 \\ 3 & 4 & -1 \end{pmatrix}$$
, $a_{ij} = -a_{ji}$.

Definition 3.11 - Transposed Matrices

Let $A = (a_{ij}) \in M_{m,n}(\mathbb{R})$ then the transponse of A, A^t , is an element of $M_{n,m}(\mathbb{R})$.

$$A^t := (a_{ji})$$

Theorem 3.12 - Transpose Matrix Multiplication

Let $A \in M_{m,n}(\mathbb{R}), \boldsymbol{x} \in \mathbb{R}^n \ \& \ \boldsymbol{y} \in \mathbb{R}^m$. Then

$$\mathbf{y} \cdot A\mathbf{x} = (A_t\mathbf{y}) \cdot \mathbf{x}$$

Theorem 3.10 - Transposing Multiplied Matrices

$$(AB)^t = B^t A^t$$

3.3 Structure of Set of Solutions

Definition 3.13 - Set of Solutions

Let $A \in M_{m,n}(\mathbb{R})$ and $\boldsymbol{b} \in \mathbb{R}^m$. Then

$$S(A, \boldsymbol{b}) := \{ \boldsymbol{x} \in \mathbb{R}^n; A\boldsymbol{x} = b \}$$

Definition 3.14 - Homogenous Solutions

The system of $S(A, \mathbf{0})$ is said to be homogenous.

All other systems are *inhomogenous*. N.B. - $S(A, \mathbf{0})$ is a linear subspace.

Theorem 3.15 - Using Homogenous Solutions

Let $A \in M_{m,n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^n$. Let $\mathbf{x}_0 \in \mathbb{R}^n$ such that $A\mathbf{x}_0 = \mathbf{b}$, then

$$S(A, b) = x_0 + S(A, 0)$$

Remark 3.16 - Systems of Linear Equations as Matrices

The system of linear equations 3x + z = 0, y - z = 1 & 3x + y = 1 can be represented by a matrix and a vector.

$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 1 & -1 \\ 3 & 1 & 0 \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

3.4 Solving Systems of Linear Equations

Systems of linear equations can be displayed as matrices which can be reduced and solved by a technique called *Gaussian Elimination*.

Theorem 3.17 - Operations on Linear Equations

There are certain operations that can be performed on a system of linear equations without changing the result:

- i) Multiply an equaion by a non-zero constant;
- ii) Add a multiple of any equation to another equation; and,
- iii) Swap any two equations.

Definition 3.18 - Augmented Matrices

Let Ax = b be a system of linear equations.

The associated Augmented Matrix is

$$(A \ \boldsymbol{b}) \in M_{m,n+1}(\mathbb{R})$$

Theorem 3.19 - Elementary Row Operations

From *Theorem 3.17* we can deduce ceratin operations that can be performed on an *Augmented Matrix* which do not alter the solutions:

- i) Multiply a row by a non-zero constant, $row i \rightarrow \lambda(row i)$;
- ii) Add a multiple of any row to another row, row $i \to row \ i + \lambda(row \ j)$; and,
- iii) Swap two rows, $row i \leftrightarrow row j$.

Definition 3.20 - Row Echelon Form

A matrix is in Row Echelon Form if:

- i) The left-most non-zero value in each row is 1; And,
- ii) The leading 1 in each row is one place to the right of the leading 1 in the row below.

Example

$$\begin{pmatrix}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{pmatrix}$$

Definition 3.20 - Reduced Row Echelon Form

A matrix is in Reduced Row Echelon Form if:

i) The matrix is in row echelon form; and,

ii) All values in a row, except the leading 1, are 0.

Example

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Theorem 3.21 - Gaussian Elimination

Gaussian Elimination is a technique used to solve systems of linear equations. Example Solve x + y + 2z = 9, 2x + 4y - 3z = 1, 3x + 6y - 5z = 0.

Augmented Matrix
$$-\begin{pmatrix} 1 & 1 & 2 & 9 \\ 2 & 4 & -3 & 1 \\ 3 & 6 & -5 & 0 \end{pmatrix}$$

By EROS $-\begin{pmatrix} 1 & 1 & 2 & 9 \\ 2 & 4 & -3 & 1 \\ 3 & 6 & -5 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 & 9 \\ 0 & 2 & -7 & -17 \\ 0 & 3 & -11 & 27 \end{pmatrix}$

$$=\begin{pmatrix} 1 & 1 & 2 & 9 \\ 0 & 2 & -7 & -17 \\ 0 & 1 & -4 & -10 \end{pmatrix}$$

$$=\begin{pmatrix} 1 & 1 & 2 & 9 \\ 0 & 1 & -4 & -10 \\ 0 & 2 & -7 & -17 \end{pmatrix}$$

$$=\begin{pmatrix} 1 & 1 & 2 & 9 \\ 0 & 1 & -4 & -10 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

$$=\begin{pmatrix} 1 & 0 & 6 & 19 \\ 0 & 1 & -4 & -10 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

$$=\begin{pmatrix} 1 & 0 & 6 & 19 \\ 0 & 1 & -4 & -10 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

$$= >x = 1, y = 2, z = 3$$

5 Elementary Matrices & Inverting Matrices

Definition 3.22 - Invertible Matrices

A matrix, $A \in M_{m,n}(\mathbb{R})$, is said to be *invertible* if there exists $A^{-1} \in M_{n,m}(\mathbb{R})$ such that

$$AA^{-1} = I$$

N.B. - If a matrix is not invertible then it is *singular*.

Definition 3.23 - Elementary Matrices

A matrix, $E \in M_{m,n}(\mathbb{R})$, is said to be an *Elementary Matrix* if it can be obtained by performing Elementary Row Operations on a square identity matrix.

Example
$$\begin{pmatrix} 0 & \lambda \\ \mu & 0 \end{pmatrix}$$

Remark 3.24

3.5

All elementary matrices are invertible.

Remark 3.25

Let A be a matrix, and B be a matrix which can be obtained from A by elementary row operations. Then there exists an elementary matrix, E, such that

$$B = EA$$

Theorem 3.26 - Finding A^{-1}

Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, $B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$, $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Theorem 3.27 - *Inverse of a* 2×2 *Matrix*

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 then

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Linear Independence, Bases & Dimensions 4

Linear Independence & Dependence 4.1

Definition 4.01 - Linear Independence & Dependence

Vectors, $x_1, ..., x_n \in \mathbb{R}^k$, are said to be *linearly dependent* if there exists non-zero real numbers, $\lambda_1, ..., \lambda_n$, such that

$$\lambda_1.\boldsymbol{x}_1 + \dots + \lambda_n.\boldsymbol{x}_n = \boldsymbol{0}$$

<u>N.B.</u> - If this is only true if $\lambda_1 = ... = \lambda_n = 0$ then the vectors are said to be *linearly independent*.

Remark 4.02

Vectors are *linearly dependent* if at least one of them lies in the span of the rest.

4.2 Bases & Dimensions

Definition 4.03 - Basis

A basis is a set of vectors, $v_1, ..., v_n \in V$ such that

- i) $V = \text{span}\{v_1, ..., v_n\}$; and,
- ii) $v_1, ..., v_n$ are linearly independent.

Definition 4.04 - Standard Basis

The standard basis for a vector space is the set fewest unit vectors which span it. Example - $\{e_1, e_2, e_3\}$ are the standard basis for \mathbb{R}^3 .

Theorem 4.05 - Basis of a Linear Subspace

For all elements, v, of a linear subspace, $V \subset \mathbb{R}^n$, there exists a unique set of numbers, $\lambda_1, ..., \lambda_n$, such that

$$\boldsymbol{v} = \lambda_1.\boldsymbol{v}_1 + ... + \lambda_n.\boldsymbol{v}_n$$

Theorem 4.06 - Linear Independence and Bases

Let $V \subset \mathbb{R}^n$ be a linear subspace with basis $v_1, ..., v_n$.

Suppose $w_1, ..., w_k \in V$ are linearly independent, then $k \leq n$.

Definition 4.07 - Dimension

Let $V \subset \mathbb{R}^n$ be a linear subspace then the *dimension* of V, dim(V), is the fewest number vectors required to form a basis for V.

4.3 Orthogonal Bases

Definition 4.08 - Orthogonal

Let $V \subset \mathbb{R}^n$ be a linear subspace with $\{\boldsymbol{v}_1,...,\boldsymbol{v}_k\}$ as its basis.

This basis is an orthogonal basis if it statisfies

- i) $\mathbf{v}_i \cdot \mathbf{v}_i = 0$ if $i \neq j$; and,
- ii) $\mathbf{v}_i \cdot \mathbf{v}_i = 1, i = 1, ..., k.$

<u>N.B.</u> - This can be generalised to $v_i \cdot v_k = \delta_{ij}$ with $\delta_{ij} := \begin{cases} 1, & i = j \\ 0, & \text{otherwise} \end{cases}$

Theorem 4.09

Let $V \subset \mathbb{R}^n$ be a linear subspace with an orthogonal basis $\{v_1, ..., v_k\}$. Then for all $u \in V$

$$\boldsymbol{u} = (\boldsymbol{v}_1 \cdot \boldsymbol{u}) \boldsymbol{v}_1, ..., (\boldsymbol{v}_k \cdot \boldsymbol{u}) \boldsymbol{v}_k$$

5 Linear Maps

Definition 5.01 - Linear Map

A map, $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear map if

i)
$$T(x + y) = T(x) + T(y)$$
, $\forall x, y \in \mathbb{R}^n$; and,

ii)
$$T(\lambda x) = \lambda T(x), \quad \forall \ x \in \mathbb{R}^n, \lambda \in \mathbb{R}.$$

<u>N.B.</u> - If m = n then T is referred to as a linear operator.

Theorem 5.02 - Properties of Linear Maps

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Then $T(\mathbf{0}) = \mathbf{0}$.

Definiton 5.03 - Linear Maps as Matrices

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Then the associated Matrix is defined as

$$M_T := (t_{ij}) \in M_{m,n}(\mathbb{R})$$

with the elements of M_T defined by

$$t_{ij} := \boldsymbol{e}_i \cdot T(\boldsymbol{e}_j) \quad \boldsymbol{e}_i \in \mathbb{R}^m, \boldsymbol{e}_j \in \mathbb{R}^n$$

Theorem 5.04 - Solutions to Linear Maps from Matrices

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and M_T be the associated matrix. Then

$$T(\boldsymbol{x}) = M_T \boldsymbol{x}, \quad \forall \ \boldsymbol{x} \in \mathbb{R}^n$$

5.1 Abstract Properties of Linear Maps

Theorem 5.05 - Relationship between Linear Maps

Let $S: \mathbb{R}^n \to \mathbb{R}^m$, $T: \mathbb{R}^n \to \mathbb{R}^m$ & $U: \mathbb{R}^m \to \mathbb{R}^k$ be a linear maps, $\boldsymbol{x} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Then

- i) $(\lambda T)(\boldsymbol{x}) = \lambda T(\boldsymbol{x});$
- ii) (S+T)(x) = S(x) + T(x); and,
- iii) $(U \circ S)(\boldsymbol{x}) = U(S(\boldsymbol{x})).$

Definition 5.06 - Image & Kernel

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Then

The image of T is defined to be

$$Im(T) := \{ \boldsymbol{y} \in \mathbb{R}^m : \exists \ \boldsymbol{x} \in \mathbb{R}^n st \ T(\boldsymbol{x}) = \boldsymbol{y} \}$$

The kernel of T is defined to be

$$Ker(T) := \{ \boldsymbol{x} \in \mathbb{R}^n : T(\boldsymbol{x}) = \boldsymbol{0} \}$$

Theorem 5.07 - Image & Kernel are Linear Subspaces

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map then Im(T) is a linear subspace of \mathbb{R}^m and Ker(T) is a linear subspaces of \mathbb{R}^n

Remark 5.08

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Then

- i) T is surjective if $Im(T) = \mathbb{R}^m$; and,
- ii) T is injective if $Ker(T) = \{0\}.$

5.2 Matrices

Definition 5.09 - Linear Maps as Matrices

Let $S: \mathbb{R}^n \to \mathbb{R}^m$, $T: \mathbb{R}^n \to \mathbb{R}^m$ & $U: \mathbb{R}^m \to \mathbb{R}^k$ be a linear maps and $\lambda \in \mathbb{R}$ with M_S, M_T & M_U as the corresponding matrices. Then

- i) $M_{\lambda T} = \lambda M_T = (\lambda t_{ij});$
- ii) $M_{S+T} = (s_{ij} + t_{ij}) = M_S + M_T$; and,
- iii) $M_{U \circ S} = (r_{ij})$ where $r_{ij} = \sum_{k=1}^{m} s_{ik} t_{jk}$.

5.3 Rank & Nullity

Defintion 5.10 - Rank & Nullity

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Then we define Rank of T by

$$rank(T) := dim(Ker(T))$$

and we define Nullity of T by

$$nullity(T) := dim(Im(T))$$

N.B. - For all linear maps, $T: \mathbb{R}^n \to \mathbb{R}^m$,

$$nullity(T) + rank(T) = n$$

Remark 5.11

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Then T is invertible if

- i) rank(T) = n, or
- ii) nullity(T) = 0.

Theorem 5.12 - Relationship of Rank & Nullity between Linear Maps Let $S: \mathbb{R}^n \to \mathbb{R}^m$ & $T: \mathbb{R}^k \to \mathbb{R}^n$ be linear maps. Then

- i) $S \circ T = 0$ iff $Im(T) \subset Ker(S)$;
- ii) $rank(S \circ T) \leq rank(T)$ and $rank(S \circ T) \leq rank(S)$;
- iii) $nullity(S \circ T) \geq nullity(T)$ and $nullity(S \circ T) \geq nullity(S) + k n$; and,
- iv) S is invertible then $rank(S \circ T) = rank(S)$ and $nullity(S \circ T) = nullity(T)$.

6 Determinants

6.1 Definition & Basic Properties

Definition 6.01 - Determinant Function

A determinant function $d_n: \mathbb{R}^n \times ... \times \mathbb{R}^n \to \mathbb{R}$ is a function which statisfies three conditions:

- i) Multilinearity $d_2(\lambda \boldsymbol{a}_1 + \mu \boldsymbol{b}, \boldsymbol{a}_2) = \lambda d_2(\boldsymbol{a}_1, \boldsymbol{a}_2) + \mu(\boldsymbol{b}, \boldsymbol{a}_2);$
- ii) Antisymmetry $d_2(a_1, a_2) = -d_2(a_2, a_1)$; and,
- iii) Normalisation $d_2(\mathbf{e}_1, \mathbf{e}_2) = 1$.

N.B. - Determinant functions only exist for square matrices.

Theorem 6.02 - Properties of Determinant

- i) $det[..., \mathbf{a}_i + \lambda \mathbf{a}_i, ...] = det[..., \mathbf{a}_i, ...] + \lambda det[..., \mathbf{a}_i, ...];$
- ii) If A has two identical columns then det(A) = 0;
- iii) If A has an all zero column then det(A) = 0; and,
- iv) $det[...a_i...a_i...] = det[...(a_i + \lambda a_i)...a_i...]$

Theorem 6.03

Let $f_n: \mathbb{R}^n \times ... \times \mathbb{R}^n \to \mathbb{R}$ be a function which is multilinear & Antisymmetric then

$$f_n(A) = C.det(A)$$

where C is a constant such that $C = f_n(e_1, ..., e_n)$.

Theorem 6.04 - Determinant of a Triangle Matrix

Let $A = (a_{ij}) \in M_n(\mathbb{R})$ be a upper triangle matrix, so $a_{ij} = 0$ if i > j. Then

$$det(A) = a_{11}.a_{22}.....a_{nn}$$

N.B. - The same is true for lower triangle matrices.

Theorem 6.05 - Relationship between Determinants

Let $A, B \in M_n(\mathbb{R})$ then

$$det(AB) = det(A).det(B)$$

but usually

$$det(A+B) \neq det(A) + det(B)$$

Theorem 6.06 - Determinant & the Inverse Matrix If det(A) = 0 then A^{-1} does not exist.

Theorem 6.07 - Leibniz Formula

Let $A = (a_{ij}) \in M_n(\mathbb{R})$ then the Leibniz Formula states that

$$det(A) := \sum_{\sigma \in S_n} sign(\sigma) \prod_{j=1}^n a_{\sigma(j),j}$$

Where

- S_n is the group of symmetries for a regular n-sided polygons;
- $sign(\sigma)$ is the sign function which returns +1 for even permutations and -1 for odd permutations.

A permutation is even if a even number of permutations (swaps) are required to change the identity permutation to the given permutation, σ .

Remark 6.08 - Determinant of Transpose

Let A be a square matrix, then

$$det(A) = det(A^t)$$

6.2 Computing Determinant

Theorem 6.09 - Laplace's Rule

Let $A \in M_n$ then

$$det(A) = \sum_{i=1}^{n} a_{ij}.(-1)^{i+j}.det(A_{ij})$$

where A_{ij} is the $(n-1) \times (n-1)$ matrix formed when row i and column j are removed from A.

Example Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ then $A_{11} = \begin{pmatrix} 4 \end{pmatrix}$ and $A_{12} = \begin{pmatrix} 2 \end{pmatrix}$

Definition 6.10 - Adjunct Matrices

Let $A, B \in M_n$ be defined such that $b_{ij} = (-1)^{i+j} . det(A_i j)$ then B is said to be adjunt to A. This means

$$AB = \begin{pmatrix} det(A) & 0 & \dots & 0 \\ 0 & det(A) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & det(A) \end{pmatrix} = det(A)I$$

Remark 6.11 - Determinant of Triangle Matrices

If A is an upper triangle matrix $(a_{ij} = 0 \text{ if } i > j)$ then

$$det(A) = a_{11} \times \cdots \times a_{nn}$$

If A is a lower triangle matrix $(a_{ij} = 0 \text{ if } i < j)$ then

$$det(A) = a_{11} \times \cdots \times a_{nn}$$

6.3 Applications of Determinant

Theorem 6.12 - Linear Equations as Matrices

A system of m linear equations, each with n variables, can be written as

$$Ax = b$$
, $A \in M_{mn}(\mathbb{R}), x \in \mathbb{R}^n, b \in \mathbb{R}^m$

If $det(A) \neq 0$ then we can find an $A^{-1} \in M_{n,m}$ such that

$$\boldsymbol{x} = A^{-1}\boldsymbol{b}$$

Theorem 6.13

Let $A \in M_n(\mathbb{R})$ where $det(A) \neq 0$ then

$$A^{-1} = \frac{1}{\det(A)} adj \ A$$

Theorem 6.14 - Cramer's Rule

Consider Ax = b then

$$x_j = \frac{\det(A_j)}{\det(A)}$$

where A_i is the matrix A, but the j^{th} column has been replaced by **b**.

Definition 6.15 - Cross Product

Let $x, y \in \mathbb{R}^3$ be in the same plane then we define the *cross product* by

$$egin{aligned} m{x} imes m{y} := egin{aligned} m{e_1} & m{e_2} & m{e_3} \ m{x_1} & m{x_2} & m{x_3} \ m{y_1} & m{y_2} & m{y_3} \end{aligned} = m{e_1} egin{aligned} m{x_2} & m{x_3} \ m{y_2} & m{y_3} \end{aligned} + m{e_2} egin{aligned} m{x_1} & m{x_3} \ m{y_1} & m{y_3} \end{aligned} + m{e_3} egin{aligned} m{x_1} & m{x_2} \ m{y_1} & m{y_2} \end{aligned} = egin{aligned} m{x_2} m{y_3} - m{x_3} m{y_2} \ m{x_1} m{y_2} - m{x_2} m{y_1} \end{aligned}$$

Theorem 6.16 - Properties of Cross Product

- i) $x \cdot (y \times z) = z \cdot (x \times y) = y \cdot (z \times x)$;
- ii) $\boldsymbol{x} \times \boldsymbol{y} = -\boldsymbol{y} \times \boldsymbol{x}$:
- iii) $\boldsymbol{x} \times \boldsymbol{x} = 0$:
- iv) $(x + \lambda y) \times z = (x \times z) + (\lambda y \times z)$; and,
- v) $\|x \times y\|^2 = \|x\|^2 \|y\|^2 (x \cdot y)^2$.

Theorem 6.17 - Cross Product and Angle between vectors Let θ be the angle between two vectors then

$$\|\boldsymbol{x} \times \boldsymbol{y}\|^2 = \|\boldsymbol{x}\|^2 \cdot \|\boldsymbol{y}\|^2 \cdot \sin^2(\theta)$$

Theorem 6.18 - Cross Product with Matrices

Let $A \in M_n(\mathbb{R})$ where $det(A) \neq 0$ then

$$(A\boldsymbol{x}) \times (A\boldsymbol{y}) = [det(A)](A^t)^{-1}(\boldsymbol{x} \cdot \boldsymbol{y})$$

7 Vector Spaces

7.1 Groups & Fields

Definition 7.01 - Group

A group, G, is a combination of a set and a map from $G \times G \to G$. The map must obey the following rules:

- i) Associativity f * (g * h) = (f * g) * h;
- ii) Identity Element $\exists e \in G \text{ st } \forall g \in G, eg = ge = g;$ and,
- iii) Inverse $\forall g \in G \exists g^{-1} \in G \text{ st } gg^{-1} = e = g^{-1}g.$

Definition 7.02 - Matrix Groups

The General Linear Group, $GL(n, \mathbb{R})$, is a group defined by

$$GL(n,\mathbb{R}) = \{ A \in M_n(\mathbb{R}) : det(A) \neq 0 \}$$

The *identity element* is $I \in M_n$ and inverse is A^{-1} .

The Special Linear Group, $SL(n,\mathbb{R})$, is a group defined by

$$SL(n,\mathbb{R}) = \{A \in M_n(\mathbb{R}) : det(A) = 1\}$$

The Orthogonal Group, $O(n, \mathbb{R})$, is a group defined by

$$O(n, \mathbb{R}) = \{ A \in M_n(\mathbb{R}) : A^t = A^{-1} \}$$

The Special Orthogonal Group, $SO(n, \mathbb{R})$, is a group defined by

$$SO(n, \mathbb{R}) = \{ A \in O(n, \mathbb{R}) : det(A) = \pm 1 \}$$

The *Borel Matrix*, $B(n, \mathbb{R})$, is the group of upper triangle matrices with non-zero values on the main diagonal.

The *Permutations Group*, $S(n, \mathbb{R})$, is a group of permutations of $\{1, 2, ..., n\}$ defined my $n \times n$ matrix

Example
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

Theorem 7.03 - Abelian Groups

Let G be a group. If $\forall g, h \in G, gh = hg$ then G is commutative and is called an Abelian Group. N.B. e = 0 is the identity element of all Abelian groups.

Definition 7.04 - Direct/Cartesian Product of a Group

Let G, H be groups with the same map. Then

$$G \times H := \{(g, h) : g \in G, h \in H\}$$

Definition 7.05 - Fields, \mathbb{F}

A field, \mathbb{F} , is a set with two binary operations: addition & multiplication.

Theorem 7.06 - Properties of Fields

- i) F is an abelian group w.r.t addition;
- ii) $\mathbb{F}\setminus\{0\}$ is an abeelian group w.r.t multiplication;
- iii) (x + y).z = x.z + y.z; and,
- iv) A field always contains 0 & 1.

7.2 Vector Spaces

Definition 7.07 - Vector Space, V

 \mathbb{V} is a (linear) vector space over a field, \mathbb{F} if:

- i) V is an abelian group w.r.t addition;
- ii) $\forall v \in \mathbb{V} \& \lambda \in \mathbb{F}, \lambda v \in \mathbb{V};$
- iii) $\lambda(\boldsymbol{u} + \boldsymbol{v}) = \lambda \boldsymbol{u} + \lambda \boldsymbol{v}$;
- iv) $\lambda(\mu \mathbf{v}) = (\lambda \mu) \mathbf{v}$; and,
- v) 1.v = v.

Theorem 7.08 - Vector Spaces over Fields

Let W be a vector space over a field, \mathbb{F} , and U be a set. Then define

$$F(U, W) := f : U \to W$$

F(U,W) is a vector space over \mathbb{F} .

This means F(U, W) is linear so $\forall \lambda \in \mathbb{F} \& f, g \in F(U, W)$ then

$$(f+g)(u) = f(u) + g(u), \quad (\lambda f)(u) = \lambda f(u)$$

7.3 Subspace, Linear Combinations & Span

Definition 7.09 - Subspace

Let \mathbb{V} be a vector space over a field \mathbb{F} and $W \subset \mathbb{V}$, W is a subspace if it is a vector space for the operations inherited from \mathbb{V} .

Theorem 7.10 - Properties of Subspaces

Let \mathbb{V} be a vector space and $U \subset \mathbb{V}$ be a subspace, then U has the following properties:

- i) Not empty $U \neq \emptyset$;
- ii) Closed under addition $\forall u, v \in U; (u+v) \in U$; and,
- iii) Closed under multiplication $\forall \lambda \in \mathbb{F}, u \in U; \lambda u \in U.$

Theorem 7.11 - Subsets of Subspaces

Let \mathbb{V} be a vector space over \mathbb{F} and $U, W \subset \mathbb{V}$ be subspaces.

Then $U \cap W$ is a subspace of \mathbb{V} .

Remark 7.12 - Linear Independence and Span

Let \mathbb{V} be a vector space over field, \mathbb{F} , and $S \subset \mathbb{V}$.

S is linearly dependent if there exists $v \in \mathbb{V}$ such that $span(S) = span(S \setminus \{v\})$.

Definition 7.13 - Finite Dimensional

Let V be a vector space over F.

 \mathbb{V} is finitely dimensional if it is a span of a finite set, $S \subset \mathbb{V}$, of vectors.

N.B. - If a vector space is not finite dimensional, then it is infinitely dimensional.

Theorem 7.14

Let \mathbb{V} be a vector space over \mathbb{F} with $\mathbb{B}, U \subset \mathbb{V}$.

If \mathbb{B} is a basis for \mathbb{V} , with $|\mathbb{B}| < \infty$, and U is linearly independent then

$$|U| \le |\mathbb{B}|$$

Theorem 7.15 - Linearly Independent Sets as Bases

Let \mathbb{V} be a vector space over \mathbb{F} with $U \subset \mathbb{V}$ as a linearly independent set.

Then U can be extended to form a basis of \mathbb{V} .

7.4 Direct Sums

Definition 7.16 - Direct Sum

Let \mathbb{V} be a vector space over \mathbb{F} and $U,W\subset V$ be subspaces with $U\cap W=\emptyset$ then

$$U \oplus W := U + W$$

This is the *direct sum* of U and W.

Theorem 7.17 - Dimension of Direct Sum

Let \mathbb{V} be a vector space over \mathbb{F} and $U,W\subset V$ be subspaces with $U\cap W=\emptyset$ then

$$dim(U \oplus W) = dim(U) + dim(W)$$

Theorem 7.18 - Complement

Let \mathbb{V} be a vector space over \mathbb{F} and $U,W\subset V$ be subspaces with $U\cap W=\emptyset$ if

$$U \oplus W = V$$

then W is said to be the complement of U in V.

7.5 Rank-Nullity Theorem

Definition 7.19 - Rank & Nullity

Let \mathbb{V} & \mathbb{W} be vector spaces over \mathbb{F} and $T: \mathbb{V} \to \mathbb{W}$ be a linear map. Then

$$rank(T) := Dim(Im(T)), \quad nullity(T) := Dim(Ker(T))$$

Theorem 7.20 - Rank-Nullity Theorem

Let \mathbb{V} & \mathbb{W} be vector spaces over \mathbb{F} and $T: \mathbb{V} \to \mathbb{W}$ be a linear map, with $\dim(\mathbb{V}) < \infty$ then

$$Rank(T) + Im(T) = Dim(\mathbb{V})$$

7.6 Projection

Defintion 7.21 - Projection

A linear map $P: \mathbb{V} \to \mathbb{V}$ is called a projection if $P^2 = P$.

Theorem 7.22 - Image of Projection

Let $P: V \to V$ be a projection then $v \in Im(P)$ iff P(v) = v.

Theorem 7.23 - Direct Sum of Projection

Let $P: V \to V$ be a projection then

$$V = Ker(P) \oplus Im(P)$$

7.7 Isomorphisms

Definition 7.24 - Isomorphisms

Let V & W be vector spaces over \mathbb{F} .

We say that the map $T: \mathbb{V} \to \mathbb{W}$ is an isomorphism between $\mathbb{V} \& \mathbb{W}$ if

- i) T is linear; and,
- ii) T is bijective.

N.B. - If an isomorphism exists between V & W, then they are said to be isomorphic.

Theorem 7.25 - Dimension of Isomorphic Spaces

Let V be a finitely dimensional vector space over \mathbb{F} .

If W is isomorphic to V then

$$dim(V) = dim(W)$$

This definition can be extended to say

If two vector spaces have the same dimension, then they are isomorphic.

Proposition 7.26 - Multiple Bases

Let $A = \{a_1, \dots, a_n\}$ and $B = \{b_1, \dots, b_n\}$ be different bases for V.

Define $T_A: \mathbb{F}^n \to V$ and $T_B: \mathbb{F}^n \to V$ such that

$$T_A(x_1,\ldots,x_n) = x_1.a_1 + \cdots + x_n.a_n; \quad T_B(x_1,\ldots,x_n) = x_1.b_1 + \cdots + x_n.b_n$$

Then for all $v \in V$ there are two ways of expressing v.

$$x_1.\boldsymbol{a}_1 + \cdots + x_n.\boldsymbol{a}_n = \boldsymbol{v} = x_1.\boldsymbol{b}_1 + \cdots + x_n.\boldsymbol{b}_n$$

Unless A = B then $x_i \neq y_i$ for at least one $i \in \mathbb{N}, i \leq n$.

Theorem 7.27 - Conversion Matrices

Let A & B be different bases for vector space V, with dim(V) = n.

Then an $n \times n$ matrix, C_{AB} , can be used to convert elements given in basis A to now be givin in basis B.

Let $\mathbf{v} \in V$ and $\mathbf{x} = T_A(\mathbf{x}) \& \mathbf{y} = T_B(\mathbf{x})$ then

$$y = C_{AB}x$$

Theorem 7.28 - General Relationship between Bases

Let V be a vector space over \mathbb{F} , with dim(V) = n.

Let A & B be different bases for V with $A = \{a_1, \ldots, a_n\} \& B = \{b_1, \ldots, b_n\}$.

Then $\forall \ \boldsymbol{v} \in V$ we have that

$$\boldsymbol{v} = \sum_{i=1}^{n} v_i.\boldsymbol{a}_i = \sum_{i=1}^{n} v_i.\boldsymbol{b}_i$$

Let $C_{AB} = (c_{ij})$ be the conversion matrix from A to B then

$$v_j = \sum_{i=1}^n c_{ij} \boldsymbol{b_i}$$

Theorem 7.29 - Properties of Transition Matrices

Let $A, B, C \subset V$ all be different bases for V. Then

i)
$$C_{AA} = I$$
;

- ii) $C_{AB}C_{BA} = I$; and,
- iii) $C_{CA}C_{AB} = C_{CB}$.

Theorem 7.30 - Linear Maps between Vector Spaces as Matrices

Let \mathbb{V} & \mathbb{W} both be vector spaces over \mathbb{F} , with $dim(\mathbb{V}) = n$ and dim() = m, and $T : \mathbb{V} \to \mathbb{W}$ be a linear map.

Let $A = \{a_1, \dots, a_n\} \subset \mathbb{V}$ and $B = \{b_1, \dots, b_n\} \subset \mathbb{W}$ be bases for \mathbb{V} & \mathbb{W} respectively. Then we can define an $n \times m$ matrix

$$M_{AB}(T) = (m_{ij}) \in M_{n,m}(\mathbb{F})$$

Where m_{ij} are defined to satisfy

$$T(a_j) = \sum_{i=1}^m m_{ij} b_i$$

Then

$$\boldsymbol{w} = M_{AB}(T)\boldsymbol{v}$$

For $\boldsymbol{v} \in \mathbb{V} \ \& \ \boldsymbol{w} \in \mathbb{W}$.

Theorem 7.31 - Change Basis of Linear Map

Let V be a vector space over F and $U, W \subset V$ be different bases for V.

Define $T: V \to V$ be a linear map and C to be the transition matrix from basis $U \to W$.

Then C^{-1} is the transition matrix from $W \to U$.

Set A to be the matrix representation of T in basis U. Then

$$A' = C^{-1}AC$$

Where A' is the matrix representation of T in basis W.

8 Eigenvalues & Eigenvectors

8.1 Characteristic Polynomial

Definition 8.01 - Eigenvectors \mathcal{C} Eigenvalues

Let $v \in V \setminus \{0\}$ and $T : V \to V$ be a linear operator.

v is called an eigenvector of T if

$$T(\mathbf{v}) = \lambda \mathbf{v}, \quad \lambda \in \mathbb{F}$$

This λ is the associated eigenvalue for \boldsymbol{v} .

Definition 8.02 - Spectrum

The set of eigenvectors of a linear operator $T:V\to V$ is called the *spectrum* of T, generally denoted as

$$Spec(T) := \{ \boldsymbol{v} \in V : T(\boldsymbol{v}) = \lambda \boldsymbol{v}, \lambda \in \mathbb{F} \}$$

Defintion 8.03 - Diagonisable

A linear operator is *diagonisable* if there exists a basis of eigenvectors for it.

Remark 8.04 - Finding Eigenvalues

Let A be the matrix which represents a linear operator T, and \boldsymbol{x} be a general eigenvector for T

$$T(x) = Ax = \lambda x = (A - \lambda I)x = 0$$

Then λ is an eigenvalue if it satisfies

$$det(A - \lambda.I) = 0$$

Definition 8.05 - Characteristic Polynomial

The polynomial which is equivalent to $det(A - \lambda.I)$ is called the *characteristic polynomial* of A.

$$p_A(\lambda) := det(A - \lambda.I)$$

N.B. - λ is an eigenvalue for A if $p_A(\lambda) = 0$

Definition 8.06 - Eigenspace

Let $\lambda \in \mathbb{F}$ be an eigenvalue of T, then the corresponding eigenspace is defined as

$$V_{\lambda} := ker(T - \lambda.I)$$

Remark 8.07 - Finding Eigenvectors

Once we have found all $\lambda_1, \ldots, \lambda_k$ that satisfy $p_A(\lambda_i) = 0$ then we can find the eigenvectors, \boldsymbol{x}_i , of A

$$(A - \lambda . I) \boldsymbol{x}_i = \boldsymbol{0}$$

A good way to start is to produce the linear equations

$$\sum_{j=1}^{n} (A - \lambda . I)_{ij} . x_j = 0$$

For all $i \leq n$. Then solve these, as a series of simultaneous equations, to find the values x_j which produce the eigenvector \boldsymbol{x} .

Repeat this process for all $\lambda_1, \ldots, \lambda_k$ to find all eigenvectors for A.

Theorem 8.08 - Similar Characteristic Polynomial

Let C be an invertible matrix.

Define $A' = C^{-1}AV$ where A & A' are conjugate or similar.

Then $p_A(\lambda) = p_{A'}(\lambda)$.

Theorem 8.09 - Characteristic Polynomial & Basis

The characteristic polynomial for T is the same, regardless of the basis of T.

Definition 8.10 - Trace

Let $A \in M_n(\mathbb{F})$.

Then the trace of A is defined as

$$Tr(A) := \sum_{i=1}^{n} a_{ii}$$

N.B. - Trace is sometimes called Spur.

Remark 8.11

As the terms after the first term of the determinat of a matrix do not contribute to the powers of λ in the characteristic equation then we can ignore them. This means we can deduce that

$$p_T(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} (Tr(A)) + \dots + det(A)$$

Theorem 8.12 - Diagonalised Matrix

Let T be a diagonisable matrix with eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$.

Then T can be represented by

$$\Delta = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \dots & \dots & \lambda_n \end{pmatrix}$$

<u>N.B.</u> - T can also be represented in any basis with, C as the transition matrix, by $C^{-1}\Delta C$.

Theorem 8.13 - Relationship between Matrix and its Diagonalised Form Let T be a matrix and Δ be its diagonalised form, then

$$Det(T) = Det(\Delta) = \prod_{j=1}^{n} \lambda_j$$

And

$$Tr(T) = Tr(\Delta) = \sum_{j=1}^{n} \lambda_j$$

Theorem 8.14 - Distinct Eigenvectors and Diagonisability

Eigenvectors, which correspond to distinct eigen values, are linearly independent.

Thus if a matrix, A, has only distinct eigenvalues then it is diagonisable.

8.2 Roots of Characteristic Polynomial

Remark 8.15 - Degree of Characteristic Equation

Eigenvalues are roots of $p_A(\lambda) = 0$ where p_A is an equation of degree dim(A).

Remark 8.16 - Non-Distinct Roots of Characteristic Equation

If the roots of $P_A(\lambda)$ are not distinct then A may be diagonisable depending on how many eigenvectors are found.

Theorem 8.17 - Vieta's Theorem

If $\lambda_1, \ldots, \lambda_n$ are roots of the Polynomial

$$\lambda_n + a_1 \lambda^{n-1} + \dots + a_n = 0 \equiv p(\lambda) = 0$$

Then $p(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n)$.

So $p(\lambda)$ factorises in the product $\prod_{i=1}^{n} (\lambda - \lambda_i)$ but the λ_i s are not necessarily distinct.

Definition 8.18 - Multiplicity of Roots

Let $\lambda_1 \in \mathbb{C}$ of characteristic polynomial, $p(\lambda)$.

 λ_1 has multiplicity $m_1 \in \mathbb{N}$ if

$$p(\lambda_1) = \frac{dp}{d\lambda}(\lambda_1) = \dots = \frac{d^{m_1 - 1}p}{d\lambda^{m_1 - 1}}(\lambda_1) = 0$$

This means that $(\lambda - \lambda_1)^{m_1}$ is a factor of $p(\lambda)$.

Definition 8.19 - Geometric & Algebraic Multiplicity

Let $\lambda \in spec(T)$ and V_{λ} be the corresponding eigenspace.

i) λ has geometric multiplicity, $m_g(\lambda) \in \mathbb{N}$, if $dim(V_{\lambda}) = m_g(\lambda)$; and,

ii) λ has algebraic multiplicity, $m_a(\lambda) \in \mathbb{N}$, if λ has multiplicity m_a of $p_T(\lambda)$.

Theorem 8.20 - Relationship between Geometric & Algebraic Multiplicity Let $\lambda \in spec(T)$ then

$$m_q(\lambda) \le m_a(\lambda)$$

Theorem 8.21

Let T be a linear operator on an n dimensional space over \mathbb{C} or \mathbb{R} , with eigenvalues $\lambda_1, \ldots, \lambda_n$, which are not necessarily distinct. Then

$$det(T) = \prod_{i=1}^{n} \lambda_i \quad \& \quad tr(T) = \sum_{i=1}^{n} \lambda_i$$

9 Inner Product Spaces

9.1 Inner Product, Norm & Orthogonality

Definition 9.01 - *Inner Product (Complex)*

Let V be a vector space over \mathbb{C} .

An inner product on V is a map, $\langle V, V \rangle : V \times V \to \mathbb{C}$, with the following properties:

- i) $\langle v, v \rangle \geq 0$;
- ii) $\langle v, w \rangle = \overline{\langle v, w \rangle};$
- iii) $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$; and,
- iv) $\langle \lambda.u, v \rangle = \lambda \langle u, v \rangle$.

Where $u, v, w \in V$ and $\lambda \in \mathbb{C}$.

Definition 9.02 - Inner Product (Real)

Let V be a vector space over \mathbb{R} .

An inner product on V is a map, $\langle , \rangle : V \times V \to \mathbb{C}$, with the following properties:

- i) $\langle v, v \rangle > 0$;
- ii) $\langle v, w \rangle = \langle w, v \rangle$;
- iii) $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$; and,
- iv) $\langle \lambda.u, v \rangle = \lambda \langle u, v \rangle$.

Where $u, v, w \in V$ and $\lambda \in \mathbb{C}$.

Definition 9.03 - Inner Product Space

Let \mathbb{V} be a vector space with \langle,\rangle as a defined inner product are called an *inner product space*, denoted by

$$(\mathbb{V},\langle,\rangle)$$

<u>N.B.</u> - If V is over $\mathbb C$ then this is called a *complex inner product space*. If V is over $\mathbb R$ then this is called a *real inner product space*.

Definition 9.04 - *Norm*

Let (V, \langle , \rangle) be an inner product space, then we define the associated norm as

$$||v|| := \sqrt{\langle v, v \rangle}, \quad v \in V$$

Definition 9.05 - Orthogonal

Let (V, \langle, \rangle) be an inner product space, then

- i) $v, w \in V$ are orthogonal, $v \perp w$, if $\langle v, w \rangle = 0$; and,
- ii) $U, W \subset V$ are orthogonal, $U \perp W$, if $u \perp w \ \forall \ u \in U \ \& \ v \in V$.

Definition 9.06 - Orthogonal Complement

Let (V, \langle, \rangle) be an inner product space and $W \subset V$.

The *orthogonal complement* is defined as

$$W^{\perp} := \{ v \in V : v \perp w \ \forall \ w \in W \}$$

Theorem 9.07 - Norm of Orthogonal Elements

Let (V, \langle, \rangle) be an inner product space and $v, w \in V$ with $v \perp w$, then

$$||v + w||^2 = ||v||^2 + ||w||^2$$

Definition 9.08 - Orthonormal Basis

Let (V, \langle, \rangle) be an inner product space.

A basis, $\mathbb{B} = \{v_1, \dots, v_n\}$, is called an *orthonormal basis* if

$$\langle v_i, v_j \rangle = \delta_{ij} := \begin{cases} 1 & i = j; \\ 0 & i \neq j. \end{cases}$$

Theorem 9.09 - Properties of Orthogonal Basis

Let (V, \langle, \rangle) be an inner product space and $\mathbb{B} = \{v_1, \dots, v_n\}$ an orthonormal basis. Then $\forall v, w \in V$,

- i) $v = \sum_{i=1}^{n} \langle v_i, v \rangle v_i;$
- ii) $\langle v, w \rangle = \sum_{i=1}^{n} \overline{\langle v_i, v \rangle} \langle v_i, w \rangle$; and,
- iii) $||v|| = \left[\sum_{i=1}^{n} |\langle v_i, v \rangle|^2\right]^{1/2}$.

9.2 Construction of Orthonormal Basis

Theorem 9.10 - Inner Product of Vectors and Orthonormal Basis Elements Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis.

Define \mathbf{v} such that $\mathbf{v} = \sum_{j=1}^{n} x_j \mathbf{v}_j$. Then

$$\langle \boldsymbol{v}_i, \boldsymbol{v} \rangle = \sum_{j=1}^n x_j \langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle = x_i$$

Theorem 9.11 - Inner Product of Two Vectors Over the Same Orthonormal Basis Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis.

Define \boldsymbol{v} & \boldsymbol{w} such that $\boldsymbol{v} = \sum_{j=1}^n x_j \boldsymbol{v}_j$ & $\boldsymbol{w} = \sum_{j=1}^n y_j \boldsymbol{v}_j$. Then

$$\langle \boldsymbol{v}, \boldsymbol{w} \rangle = \sum_{i,j=1}^{n} \bar{x_j}.y_j.\langle \boldsymbol{v}_j, \boldsymbol{v}_i \rangle = \sum_{i=1}^{n} \bar{x}_i.y_i$$

N.B. - This is the same formula as the dot product of x & y.

Definition 9.12 - Orthogonal Projection

Let (V, \langle, \rangle) be an inner product space & $P: V \to V$ be a linear operation.

P is called an orthogonal projection if

- i) $P^2 = P$; and,
- ii) $\langle Pv, w \rangle = \langle v, PW \rangle \ \forall \ v, w \in V.$

Proposition 9.13 - Common Orthogonal Projection

Let (V, \langle, \rangle) be an inner product space, $W \subset V$ be a subspace and $w_1, \ldots, w_k \in W$ form an orthogonal basis.

Then a common orthogonal projection, $P_W: V \to V$, is defined by

$$P_W(v) := \sum_{i=1}^k \langle w_i, v \rangle w_i$$

Theorem 9.14 - Value of Inner Product

Let (V, \langle, \rangle) be an inner product space. Then

$$|\langle v, w \rangle| \le ||v||.||w||$$

Theorem 9.15 - Forming an Orthogonal Basis

let (V, \langle, \rangle) be an inner product space, dim(V) = n and $u_1, \ldots, u_n \in V$.

Then an orthogonal basis, $\{v_1, \ldots, v_n\}$, can be formed following

$$v_1 = \frac{1}{\|u_1\|} u_1, \quad v_2 = \frac{1}{\|u_2 - \langle v_1, u_2 \rangle v_1\|} (u_2 - \langle v_1, u_2 \rangle v_1)$$

$$v_n = \frac{1}{\|u_n - \left(\sum_{i=1}^{n-1} \langle v_i, u_n \rangle v_i\right)\|} \cdot \left(u_n - \left(\sum_{i=1}^{n-1} \langle v_i, u_n \rangle v_i\right)\right)$$

Defintion 9.16 - Perpendicular Space

Let W be a subspace of V and $v \in V$.

$$W^{\perp} := \{ \boldsymbol{v} : \langle \boldsymbol{v}, \boldsymbol{w} \rangle = 0 \ \forall \ \boldsymbol{w} \in W \}$$

Theorem 9.17

Let W be a subspace of V. Then

$$V = W \oplus W^{\perp}$$

Proposition 9.17 - Decomposition of Vectors

Let W be a subspace of V and $\mathbf{v} \in V$. Define $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ to be an orthonormal basis of W. Then there is a unique decomposition $\mathbf{v} = \mathbf{v}^{\parallel} + \mathbf{v}^{\perp}$ for $\mathbf{v}^{\parallel} \in W$ and $\mathbf{v}^{\perp} \in W^{\perp}$.

Remark 9.18 - Orthogonal Projection

 v^{\parallel} is called the *orthogonal projection* of v on W.

So setting $\mathbf{v}^{\parallel} = P_W(\mathbf{v})$ and P_W is a linear operation since the inner product is linear.

Theorem 9.19 - Properties of Orthogonal Projection

Let P_W be an orthogonal projection. Then

- i) If $v \in W$ and $v = v^{\parallel}$ then $P_W(v) = v$. So v is an eigenvector of P_W with eigenvalue 1;
- ii) If $\mathbf{V} \in W^{\perp}$ and $\mathbf{v} = \mathbf{v}^{\perp}$ with $\mathbf{v}^{\parallel} = 0$ then $P_W(\mathbf{v}) = 0$. So \mathbf{v} is an eigenvector with eigenvalue 0; and,
- iii) $P_W^2 = P_W$.

Theorem 9.20 - Pythagorus Theorem

$$\|\boldsymbol{v}\|^2 = \|\boldsymbol{v}^{\parallel}\|^2 + \|\boldsymbol{v}^{\perp}\|^2$$

Theorem 9.21 - Cauchy-Schwarz

$$|\langle \boldsymbol{v}, \boldsymbol{w} \rangle| \le ||\boldsymbol{v}||.||\boldsymbol{w}||$$

10 Linear Operators on Inner Product Spaces

Theorem 10.01 - Linear Operator Matrix in an Orthonormal Basis

Let $T: V \to V$ be a linear operator over vector space V.

Define $\mathbb{B} = \{v_1, \dots, v_n\}$ to be an orthonormal basis of V.

Then the matrix representation of T, $M_T = (a_{ij})$, is given by

$$a_i j = \langle \boldsymbol{v}_i, T(\boldsymbol{v}_i) \rangle$$

10.1 Complex Inner Product Spaces

Definition 10.02 - Hermitian Matrix

Let $A \in M_n(\mathbb{V})$.

A is Hermitian if $A = \overline{A^t} = A^*$.

Theorem 10.03 - Properties of Hermitian Matrices

- i) Hermitians are diagonalisable;
- ii) Hermitians have real eigenvalues; and,
- iii) Hermitians have mutually orthogonal eigenvectors with respect to the dot product in \mathbb{C}^n .

Definition 10.04 - Adjoint Operator

Let (V, \langle , \rangle) be an inner product space and $T: V \to V$ be a linear operator.

The adjoint operator of $T, T^*: V \to V$, is defined by the relation

$$\langle T^*(v), w \rangle = \langle v, T(w) \rangle, \quad \forall \ v, w \in V$$

Theorem 10.05 - Matrix of Adjoint Operator

Let (V, \langle , \rangle) be an inner product space and $T: V \to V$ be a linear operator.

Let \mathbb{B} be an orthonomal basis and T can be represented by the matrix $M_{\mathbb{BB}}(T) = (a_{ij})$ in this basis. Then

$$M_{\mathbb{BB}}(T^*) = (\overline{a_{ii}})$$

This is called the *adjoint matrix* of T.

<u>N.B.</u> - T^* can be represented by $M_{\mathbb{BB}}(T^*) = \overline{M_{\mathbb{BB}}(T)^t}$.

Proposition 10.06

A Hermitian matrix must have real diagonal elements.

So λA is Hermitian iff $\lambda \in \mathbb{R}$.

Theorem 10.07 - Properties of Adjoint Operators

Let (V, \langle, \rangle) be an inner product space and $S: V \to V \& T: V \to V$ be linear operators. Then

- i) $(S^*)^* = S$;
- ii) If S is invertible, then $(T^{-1})^* = (T^*)^{-1}$;

iii) $(S+T)^* = S^* + T^*$; and,

iv)
$$(ST)^* = T^*S^*$$
.

Definition 10.08 - Classification of Linear Operators

Let (V, \langle , \rangle) be an inner product space and $T: V \to V$ be a linear operator. Then

- i) T is self-adjoint if $T = T^*$;
- ii) T is unitary if $TT^* = I$; and,
- iii) T is normal if $TT^* = T^*T$.

Theorem 10.09 - Properties of Unitary Operators

Let (V, \langle, \rangle) be an inner product space and $T: V \to V \& U: V \to V$ be linear operators. Then

- i) U^{-1} , $UT \& U^*$ are unitary;
- ii) $||U(v)|| = ||v|| \ \forall \ v \in V$; and,
- iii) If λ is an eigenvalue of U, then $|\lambda| = 1$.

Theorem 10.10 - Unitary Matrices

Let $U \in M_n(\mathbb{C})$.

Then U is unitary iff the column vectors of U from an orthonormal basis.

Theorem 10.11 - Eigenvectors, Eigenvalues & Adjoint Operators

Let (V, \langle, \rangle) be an inner-product space and $T: V \to V$ a normal operator.

Then if $v \in V$ is an eigenvector of T with eigenvalue λ , then v is an eigenvector of T^* with eigenvalue $\overline{\lambda}$.

If
$$Tv = \lambda v \implies T^*v = \overline{\lambda}v$$

Theorem 10.12 - Eigenvectors with Different Eigenvalues are Mutually Orthogonal

Let (V, \langle , \rangle) be an inner-product space and $T: V \to V$ a normal operator.

Then if λ_1, λ_2 are eigenvalues of T with $\lambda_1 \neq \lambda_2$ then their associated eigenvectors are mutually orthogonal.

$$\langle \boldsymbol{v}_{\lambda_1}, \boldsymbol{v}_{\lambda_1} \rangle = 0$$

Theorem 10.13 - Unitary Matrix from a Complex Matrix

Let $A \in M_n(\mathbb{C})$ such that A * A = AA*.

Then \exists a unitary matrix, $U \in M_n(\mathbb{C})$ such that

$$U * AU = diag(\lambda_1, \dots, \lambda_n)$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues for A.

N.B. - U has an orthonormal basis of eigenvectors of A as columns.

Theorem 10.14 - Eigenvalues of a Self Adjoint Operation

Let T be self-adjoint.

Then T only has real eigenvalues.

10.2 Real Matrices

Theorem 10.15

Let $A \in M_n(\mathbb{R})$ be a symmetric, real matrix.

Then $\exists O \in M_n(\mathbb{R})$ such that

$$O^tAO = diag(\lambda_1, \dots, \lambda_n)$$

Where $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ are the eigenvalues of A and the columns of O form an orthonormal basis.

Definition 10.16 - Orthogonal Matrix

Let $O \in M_n(\mathbb{R})$.

If $OO^t = I = O^tO$ then O is an orthogonal matrix.

Remark 10.17 - Orthonormal Bases from an Orthogonal Matrix

Let $O \in M_n(\mathbb{R})$ be an orthogonal matrix.

Then the columns & rows of O form orthonormal bases.

 $\underline{\text{N.B.}}$ - This means O^{-1} is an orthogonal matrix.

11 Extra

Parraleofram Rule

$$\|x + y\|^2 = \|x\|^2 + \|y\|^2 + 2x \cdot y$$

 $\|x - y\|^2 = \|x\|^2 + \|y\|^2 - 2x \cdot y$