Euclydes Vieira Neto (ISECENSA) euclydes@censanet.com.br

André Soares Velasco (IFF) asvelasco@iff.edu.br

Geraldo Galdino de Paula Junior (UENF) galdino@uenf.br

XLV SBPO - SETEMBRO DE 2013

O PROBLEMA UNIDIMENSIONAL

FORMULAÇÃO

A formulação para os dois problemas poderia ser então:

Minimizar
$$Z = \sum_{j=1}^{n} x_{j}$$

Sujeito a:
$$\sum_{j=1}^{n} a_{ij} x_{j} = d_{i}$$
 (i = 1, 2, ..., m)

$$x_j \ge 0$$
 e inteiro para $\forall j (j = 1, 2, ..., n)$

Sendo:

 x_j = número de vezes que o esquema de corte j é executado a_{ij} = número de vezes que o item i será cortado no esquema de corte j d_i = demanda do item i n = número de esquemas viáveis

METAHEURÍSTICA GRASP

Início

Ler (instância)

Processo

Enquanto (critério de parada não for satisfeito) fazer Início

- Procedimento construir solução
- Procedimento melhorar solução

Fim

Saída

Escrever (melhor solução)

ALGORITMO GRASP

Procedimento de Construção da Solução Inicial

```
Início
      Ler (I_1, I_2, ..., I_n, d_1, d_2, ..., d_n, \alpha, L); sendo (0 < \alpha < 1)
     Faça N := \{1, 2, ..., n\};
      Faça S:= \emptyset;
   Processo
      Enquanto (N \neq \emptyset) fazer
         Início
            \beta := \{ \text{maior } I_i \text{ onde } i \in \mathbb{N} \}
            R := \{ i \in N : I_i \ge \alpha\beta \}
            K := Randon(R)
            Se (S∪{K} é viável) então
               Início
                 S := S \cup \{K\};
                 N = N - \{K\};
               Fim
         Fim;
Escrever (S);
```

CONSTRUÇÃO DE SOLUÇÕES PELO GRASP-1D

Comprimento	70	41	33	26	15	7	6	2
Demanda	1	1	1	1	1	1	1	1

Barra Padrão = 100 α = 0,7

$$\beta = 70$$

$$R = \{ I_i \ge 49 \} = \{ 70 \}$$

Escolha = 70
$$esq_1 = (1, 0, 0, 0, 0, 0, 0, 0)$$

perda = 30 T1

$$\beta = 26$$

$$R = \{ I_i \ge 18,2 \} = \{ 26 \}$$

Escolha = 26 T2
$$esq_1 = (1, 0, 0, 1, 0, 0, 0, 0)$$

perda = 4 T1

$$\beta = 2$$

$$R = \{ I_i \ge 1,4 \} = \{ 2 \}$$

Escolha = 2 T2
$$esq_1 = (1, 0, 0, 1, 0, 0, 0, 1)$$

perda = 2 T1

Executar 1 vezes

atualizar demanda

Comprimento	70	41	33	26	15	7	6	2
Demanda	0	1	1	0	1	1	1	0

Barra Padrão = $100 \alpha = 0.5$

$$\beta = 70$$

$$R = \{ I_i \ge 35 \} = \{ 70, 41 \}$$

Escolha = 41
$$esq_1 = (0, 1, 0, 0, 0, 0, 0, 0)$$

perda = 59 T1

$$\beta = 33$$

$$R = \{ I_i \ge 16,5 \} = \{ 33, 26 \}$$

Escolha = 26 T2
$$esq_1 = (0, 1, 0, 1, 0, 0, 0, 0)$$

perda = 33 T1

$$\beta = 33$$

$$R = \{ I_i \ge 16,5 \} = \{ 33 \}$$

Escolha = 33 T2
$$esq_1 = (0, 1, 1, 1, 0, 0, 0, 0)$$

perda = 0 T1

Executar 1 vezes

atualizar demanda

Comprimento	70	41	33	26	15	7	6	2
Demanda	1	0	0	0	1	1	1	1

$$70 + 15 + 7 + 6 + 2 = 100$$

BUSCA LOCAL – MELHORIA DA SOLUÇÃO INICIAL

PASSO 1

<u>Selecionar</u> alguns esquemas de corte, particionando a solução inicial;

PASSO 2

Transformar os esquemas de corte selecionados em um subproblema;

PASSO 3

Resolver o subproblema gerado no passo 2 utilizando um algoritmo exato, relaxando a integridade das variáveis;

PASSO 4 Anexar parte da solução gerada no passo 3 à solução inicial particionada do passo 1;

PASSO 5

Construir esquemas para atender a demanda não atendida, anexando à solução inicial particionada do passo 1;

ALGORITMO PARA SELEÇÃO DOS ESQUEMAS (GRASP-1D)

- ightharpoonup Selecionar quatro esquemas da solução inicial $S_{inicial}$ da seguinte forma:
 - a) o esquema com a maior comprimento de perda;
- b) o esquema que gera o maior comprimento de perda pelo seu uso (comprimento da perda x nº execuções);
 - c) o esquema que contém o maior número de peças;
- d) o esquema que gera o maior número de peças pelo uso (número de peças x nº execuções);
- → Criar grupo de esquemas G₁ formado pelos esquemas selecionados.

ALGORITMOS ALG HB1 E ALG HB2

ESCOLHER AS MELHORES SOLUÇÕES INICIAIS QUE SEJAM DIFERENTES

nº de soluções definido arbitrariamente

CARACTERÍSTICAS ALG HB1 E ALG HB2

ALGORITMO PARA SELEÇÃO DOS ESQUEMAS (ALG HB1)

- \rightarrow Selecionar quatro esquemas da solução inicial $S_{inicial}$ da seguinte forma:
 - a) o esquema com a maior comprimento de perda;
- b) o esquema que gera o maior comprimento de perda pelo seu uso (comprimento da perda x nº repetições);
 - c) o esquema que contém o maior número de peças;
- d) o esquema que gera o maior número de peças pelo uso (número de peças x nº repetições).
- → Criar grupo de esquemas G₁ formado pelos esquemas selecionados.

ALGORITMO PARA SELEÇÃO DOS ESQUEMAS (ALG HB2)

- → Calcular o comprimento equivalente (C_e) da Perda Total Percentual em uma barra padrão e selecionar:
- a) os esquemas de corte da Solução Inicial onde o comprimento da perda no esquema é maior que o comprimento equivalente (C_a);
- b) o esquema que gera o maior número de peças quando usado;
 - c) o esquema que contém o maior número de peças;
- → Criar grupo de esquemas G₁ formado pelos esquemas selecionados.

TESTES COMPUTACIONAIS (GRASP-1D)

TESTES COMPUTACIONAIS (ALG HB1/ALG HB2)

	Comparativo das perdas percentuais das instâncias do grupo BG 1															
		simplex	FF	-D		GRAS	1	-	ALGOL	НВ	1	ALGOL HB2				
Código	m	total	total	perda	total	perda	t	red	total	perda	t	red	total	perda	t	red
		barras	barra	(%)	barra	(%)	(s)	(%)	barra	(%)	(s)	(%)	barra	(%)	(s)	(%)
Bg 1001	8	185.99	192	3.51	188	1.45	7	58.69	187	0.93	8	73.50	187	0.93	6	73.50
Bg 1002	14	209.70	216	4.34	212	2.54	8	41.47	212	2.54	5	41.47	210	1.61	6	62.90
Bg 1003	15	206.97	213	2.83	210	1.44	7	49.12	209	0.97	6	65.72	209	0.97	4	65.72
Bg 1004	9	54.95	57	5.00	55	1.55	8	69.00	55	1.55	4	69.00	55	1.55	4	69.00
Bg 1005	18	181.05	186	3.43	184	2.38	7	30.61	184	2.38	6	30.61	182	1.31	3	61.81
Bg 1006	8	145.50	147	3.86	147	3.86	7	0.00	147	3.86	3	0.00	146	3.20	3	17.10
Bg 1008	12	77.85	81	4.56	80	3.37	7	26.10	79	2.15	5	52.85	79	2.15	3	52.85
Bg 1009	10	30.00	32	9.80	31	6.89	7	29.69	31	6.89	4	29.69	30	3.78	6	61.43
Bg 1010	21	291.78	301	3.11	296	1.47	7	52.73	295	1.14	8	63.34	295	1.14	6	63.34

	Comparativo das perdas percentuais das instâncias do grupo BG 2															
		Simplex	FF	-D		GRAS	Р		-	ALGOL	НВ	1	ALGOL HB2			
Código	m	total	total	perda	total	perda	t	red	total	perda	t	red	total	perda	t	red
		barras	barra	(%)	barra	(%)	(s)	(%)	barra	(%)	(s)	(%)	barra	(%)	(s)	(%)
Bg 2001	28	1522.81	1608	8.12	1575	6.20	7	23.65	1550	4.68	11	42.36	1528	3.31	13	59.24
Bg 2002	46	1458.69	1562	7.01	1525	4.76	7	32.10	1509	3.75	11	46.50	1485	2.19	15	68.76
Bg 2003	23	671.85	680	1.37	679	1.23	8	10.22	679	1.23	4	10.22	679	1.23	4	10.22
Bg 2004	23	349.67	365	4.71	362	3.92	8	16.77	359	3.11	6	33.97	355	2.02	9	57.11
Bg 2005	23	340.29	346	4.78	344	4.22	7	11.72	344	4.22	5	11.72	342	3.66	7	23.43
Bg 2006	23	695.25	715	4.55	710	3.88	7	14.73	710	3.88	7	14.73	699	2.37	9	47.91
Bg 2007	23	365.57	371	2.49	368	1.69	7	32.13	367	1.43	5	42.57	367	1.43	6	42.57
Bg 2009	46	1905.97	1954	2.49	1940	1.78	8	28.51	1939	1.73	6	30.52	1934	1.48	7	40.56
Bg 2010	23	731.13	736	2.16	734	1.89	8	12.50	734	1.89	5	12.50	732	1.63	6	24.54

	Comparativo das perdas percentuais das instâncias do grupo BG 3															
		Simplex	FF	D	GRASP				-	ALGOL	1	ALGOL HB2				
Código	m	total	total	perda	total	perda	t	red	total	perda	t	red	total	perda	t	red
		barras	barra	(%)	barra	(%)	(s)	(%)	barra	(%)	(s)	(%)	barra	(%)	(s)	(%)
Bg 3001	49	2023.46	2113	4.49	2107	4.22	7	6.01	2103	4.04	10	10.02	2050	1.56	16	65.26
Bg 3002	68	1987.01	2088	5.03	2075	4.43	8	11.93	2066	4.02	11	20.08	2020	1.83	40	63.62
Bg 3004	37	529.92	551	4.05	547	3.35	8	17.28	547	3.35	6	17.28	544	2.81	6	30.62
Bg 3005	34	510.63	534	4.43	531	3.89	7	12.19	526	2.97	11	32.96	523	2.42	9	45.37
Bg 3007	34	551.53	563	7.21	560	6.71	8	6.93	560	6.71	6	6.93	555	5.87	5	18.59
Bg 3009	68	2842.92	2882	1.34	2880	1.27	9	5.22	2880	1.27	6	5.22	2874	1.07	8	20.15
Bg 3010	37	1084.52	1112	2.71	1111	2.62	8	3.32	1108	2.36	6	12.92	1106	2.18	5	19.56
Bg 3011	14	92.69	95	4.8	94	3.79	7	21.04	94	3.79	4	21.04	94	3.79	3	21.04

	Comparativo das perdas percentuais das instâncias do grupo BG 4															
		Simplex	FF	-D		GRAS	P		-	ALGOL	НВ	1	ALGOL HB2			
Código	m	total	total	perda	total	perda	t	red	total	perda	t	red	total	perda	t	red
		barras	barra	(%)	barra	(%)	(s)	(%)	barra	(%)	(s)	(%)	barra	(%)	(s)	(%)
Bg 4001	67	2165.31	2273	4.89	2268	4.68	8	4.29	2060	4.34	11	11.25	2194	1.47	25	69.94
Bg 4002	79	2124.62	2236	5.04	2230	4.78	8	5.16	2216	4.18	14	17.06	2168	2.06	25	59.13
Bg 4003	43	1004.77	1018	1.33	1014	0.95	11	28.57	1014	0.95	5	28.57	1012	0.75	20	43.61
Bg 4004	47	594.13	617	3.75	614	3.28	8	12.53	612	2.96	6	21.07	606	2.00	6	46.67
Bg 4005	44	575.54	601	4.24	597	3.60	7	15.09	594	3.11	12	26.65	589	2.29	10	45.99
Bg 4006	44	941.68	980	3.96	977	3.66	7	7.58	965	2.46	13	37.88	953	1.24	16	68.69
Bg 4007	44	559.32	565	1.73	565	1.73	8	0.00	565	1.73	6	0.00	563	1.38	8	20.23
Bg 4010	47	1212.92	1245	2.63	1244	2.55	8	3.04	1241	2.32	6	11.79	1240	2.24	5	14.83
Bg 4011	24	126.02	129	4.63	128	3.88	8	16.20	127	3.13	4	32.40	127	3.13	4	32.40

CONCLUSÕES E SUGESTÕES

- As respectivas estratégias da busca local, utilizada nos três algoritmos híbridos apresentados, mostraram-se de grande eficiência para o tratamento de soluções iniciais e isto fica evidente quando se observa o percentual de redução que cada método alcançou com relação à heurística FFD.
- O algoritmo ALG HB2 mostrou um desempenho bastante satisfatório, conseguindo alcançar a solução ótima para algumas instâncias.

• Outros estudos podem ser realizados, explorando ainda mais procedimentos de melhoria, modificando a seleção dos esquemas para compor o subproblema, bem como desenvolver outros algoritmos para o reagrupamento dos itens do subproblema.

FIV