

Haptic Perception for Surface Geometry, Texture and Friction

Jason Ryan Ah Chuen, Akram Sbaith, Charles Pan, Kenneth Salisbury

Salisbury Robotics Lab, Stanford Artificial Intelligence Laboratory, Stanford University

Introduction

One of the primary ways of identifying a surface is by stroking it to see how rough or smooth or coarse it is (*texture*), whether it is flat or wavy or has another pattern (*geometry*), and how slippery it is (*friction*). We made a model that can, within one stroke, discriminate between each of those 3 overlapping features, and then identify them separately.

Friction analysis

Calculating friction coefficient

Geometry Analysis

Separating geometry from texture to analyze them separately

Discussion

Geometry can be considered high amplitude texture

Range of all possible combinations of texture and geometry in a surface

Texture Analysis

Comparing standard deviations of torque readings obtained during stroking

Fig 1A (s.d1 = 6.79, s.d2 = 0.89, s.d3 = 0)

Fig 1B (s.d1 = 8.81, s.d2 = 0.64, s.d3 = 0)

Conclusion

- Machine learning models (KNN and multinomial logistic regression) can accurately classify surfaces using amplitude and frequency of their characteristic waves, and standard deviations of the torque readings as predictors.
- Future models could be made to predict the exact geometry using the position scan obtained already from stroking.
- It is also worth investigating how friction affects texture, or vice versa.