

- 1. MÉTRICAS & AVALIAÇÃO DE MODELOS
- 2. CONSTRUINDO UM DETECTOR DE FAKE NEWS ACERCA DO COVID-19
- 3. HANDS-ON
- 4. BIBLIOGRAFIA

1. REVIEW

2. MÉTRICAS & AVALIAÇÃO DE MODELOS

COMO EU SEI QUE UM MODELO É MELHOR QUE OUTRO?

HOJE IREMOS CONHECER ALGUMAS MÉTRICAS!

REGRESSÃO

MÉTRICAS PARA REGRESSÃO

- Variações básicas sobre a diferença entre o que você previu e os valores reais.
- Erro médio absoluto (MAE)
 - Erro médio

MÉTRICAS PARA REGRESSÃO

Erro quadrático médio (RMSE)

- Média das diferenças entre as predições e observações reais ao quadrado
- Pense na distância Euclidiana entre o vetor de valores corretos e o vetor de valores previstos mediados por 'n', onde n é o número de pontos.

$$\text{RMSE} = \sqrt{\frac{\sum_{i}(y_i - \hat{y}_i)^2}{n}}$$

MÉTRICAS PARA REGRESSÃO

Erro quadrático médio (RMSE)

- Média das diferenças entre as predições e observações reais ao quadrado
- Pense na distância Euclidiana entre o vetor de valores corretos e o vetor de valores previstos mediados por 'n', onde n é o número de pontos.

CLASSIFICAÇÃO

MATRIZ DE CONFUSÃO

MATRIZ DE CONFUSÃO

- Verdadeiros Positivos (TP)
 - Classificação correta da classe Positivo.
- Verdadeiros Negativos (TN)
 - Classificação correta da classe Negativo.
- Falsos Positivos (Erro Tipo I) (FP)
 - Erro em que o modelo previu a classe Positivo quando o valor real era classe Negativo.
- Falsos Negativos (Erro Tipo II) (FN)
 - Erro em que o modelo previu a classe Negativo quando o valor real era classe Positivo.

A common metric in classification. Fails when we have highly imbalanced classes. In those cases F1 is more appropriate. ChrisAlbon

Precision is the ability a classifier to not label a true negative observation as positive.

True Positive + False Positive

ChrisAlbon

True Positives

True Positives + False Negatives

Recall is the ability of the classifier to find positive examples. If we wanted to be centain to find all positive examples, we could maximize recall.

Chris Albon

relevant elements

How many selected items are relevant?

How many relevant items are selected?

selected elements

$$F_1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

F1 score is the harmonic mean of precision and recall. Values range from 0 (bad) to 1 (good).

ChrisAlbon

Recall= TP+FN Actual Precision= TP+FP TP+TN Neg Pos Accuracy = Total Pos Predioteel peg

3. CONSTRUINDO UM DETECTOR DE FAKE NEWS ACERCA DO COVID-19.

INTRODUÇÃO

A popularização das **redes sociais** emponderou o cidadão, trazendo consequências positivas e negativas.

Uma das consequências negativas trazidas pelo mal uso das redes sociais é a difusão de notícias falsas ou tendenciosas.

A atual **pandemia por COVID-19** tornou-se um dos **temas mais utilizados para produção de notícias** que geram desinformação.

OBJETIVOS

Objetivo geral

Criar um detector de fake news relacionados à COVID-19.

Objetivos Específicos

- Formar uma base de dados de fake-news de COVID-19;
- Gerar modelos capazes de classificar notícias acerca do COVID-19 extraídas de redes sociais como falsas ou verdadeiras;
- Comparar o desempenho dos modelos criados na busca do THE BEST.

PROPOSIÇÃO DE VALOR

- Ajudar no combate da propagação de fake news;
- Ter uma aceitável taxa de erro na classificação correta das notícias verdadeiras ou falsas relacionadas ao COVID-19;
- Ajudar a população quanto ao esclarecimento sobre uma notícia acerca do COVID-19 e sua veracidade, visto ser um assunto novo e ainda com bastante incertezas.

FONTE DE DADOS

- Dados utilizados de notícias falsas brasileiras sobre o COVID-19, dispostos no Chequeado;
- Notícias verdadeiras obtidas através de um *web crawler* dos links das notícias utilizadas para comprovar que a notícia é falsa no Chequeado (Aos Fatos, Piauí Folha, Estadão Verifica, Agência Lupa);
- ▶ Fato Ou Fake do G1*.

INTRODUÇÃO

AFIRMAÇÃO	CLASSIFICAÇÃO
Medicamento ivermectina cura a Covid-19.	Falso
É falso que número de mortes por Covid-19 caiu após Moro anunciar investigação	Verdadeiro

Tabela 1. Amostras do dataset.

FUNDAMENTAÇÃO TEÓRICA

FAKE NEWS

"Quaisquer notícias e informações falsas que são compartilhadas como se fossem reais e verdadeiras, divulgadas em contextos virtuais, especialmente em redes sociais ou em aplicativos."

Mas como representar notícias em modelos de aprendizado de máquina?

FUNDAMENTAÇÃO TEÓRICA

BAG OF WORDS (BOW)

- Representação simplificada e esparsa
- ▶ Iremos ter a bolsa de palavras (vocabulário) como colunas do dado
- 1 representa as palavras que ocorrem no texto. O pras demais colunas

TF-IDF

- Term Frequency Inverse Document Frequency.
- Indica a importância de uma palavra em um documento.
- Enquanto TF está relacionada à frequência do termo, IDF busca balancear a frequência de termos mais comuns/frequentes que outros.

FUNDAMENTAÇÃO TEÓRICA

OUT OF VOCABULARY

Consiste nas palavras presentes no dataset que não estão presentes no vocabulário da word embedding, logo elas não possuem representação vetorial.

EDIT DISTANCE

Maneira de quantificar a diferença entre duas palavras, contando o número mínimo de operações necessárias para transformar uma palavra na outra.

FUNDAMENTAÇÃO TEÓRICA - MODELOS

REGRESSÃO LOGÍSTICA (*)

Classificador linear

K-NN (*)

Modelo não-paramétrico

ANÁLISE DISCRIMINANTE GAUSSIANO (*)

Modelo que não possui hiperparâmetros

SVM

Encontra ótimo global

ÁRVORE DE DECISÃO

Abordagem heurística gulosa

RANDOM FOREST

 Ensemble Bagging de Árvores de Decisão

XGBOOST

 Amplamente utilizado em competições do Kaggle, Ensemble

Encode-LSTM-Dense

Exemplo de técnica de deep learning

FUNDAMENTAÇÃO TEÓRICA - MÉTRICAS

- Acurácia
- Precision
- Recall
- ▶ F1-Score
- Curva ROC
- Matriz de Confusão

5. RESULTADOS

EXPERIMENTOS - DATASET

- Colunas utilizadas: Text e classification
- 1.753 padrões
 - ▶ 808 fake news
 - ▶ 945 true news
- Tamanho do vocabulário do dataset: 3.698
 - ► True: 2.328
 - False: 2.663
- ▶ 80% Treino e 20% Teste

EXPERIMENTOS - DATASET

- OOVs: 32 palavras
 - Observação: palavras chaves do nosso contexto são mapeadas para palavras que não tem muita conexão.

```
'friston': 'frisson',
{'adhanom': 'phanom',
                                                       'ghebreyesus': 'hebreus',
 'alquingel': 'alquil',
                                                       'incint': 'incine',
 'arpen': 'aspen',
                                                       'invermectina': 'ivermectina',
                                                       'kathlenn': 'kathleen',
 'autocontaminação': 'autocontemplação',
                                                       'ncov': 'nov',
 'autodiagnosticar': 'autodiagnóstico',
                                                       'ozonioterapia': 'ozonoterapia',
 'bolsonarista': 'bolsonaro'.
                                                       'paracovid': 'paranoid',
 'bolsonaristas': 'bolsistas'.
                                                       'pisoetada': 'pilotada',
                                                       'radarbox': 'radar',
 'certillamado': 'certificado',
                                                       'reinfectadas': 'reinjectadas',
 'chadox': 'chador'.
                                                       'reinfectam': 'reinfectar',
 'coronavac': 'coroava',
                                                       'remdesivir': 'redefinir',
 'covid': 'covil'.
                                                       'ruilan': 'ruslan'.
                                                       'sinovac': 'inovar',
 'cracolância': 'cracolândia',
                                                       'subnotificam': 'subnotificado',
 'espancadoem': 'espancado',
                                                       'supernotificam': 'supernotificação',
                                                       'tedros': 'cedros',
                                                       'zelenko': 'elenko'}
```

EXPERIMENTOS - Fonte de Dados

Frequência das fake news por rede social

- Há repetição de redes sociais
- Maiores veículos de propagação de fake news
 - Facebook
 - Whatsapp.

EXPERIMENTOS - Série temporal

Quantidade de fake news ao longo dos meses

- Maior número de Fake News ocorreu em Abril
- Doença começou a se espalhar com maior velocidade no território
 Brasileiro.

EXPERIMENTOS - Série temporal

Quantidade de fake news ao longo dos meses

- De acordo com o <u>G1</u>, em 28 de abril, o Brasil possuía **73.235 casos** do novo coronavírus (Sars-CoV-2), com **5.083 mortes**.
- Começaram a surgir os boatos de combate do Coronavírus via Cloroquina, além de remédios caseiros.

EXPERIMENTOS - Nuvem de palavras

Nuvem de palavras nas notícias falsas.

EXPERIMENTOS - Nuvem de palavras

Nuvem de palavras nas notícias verdadeiras.

EXPERIMENTOS

- Regressão Logística
 - Valores testados
 - alpha: [0.01, 0.001, 0.0001, 0.00001, 5, 3, 10]
- ▶ k-NN
 - Valores testados
 - **k:** [3, 5, 7, 9, 11]
 - distâncias: ['euclidean', 'manhattan']
- Árvore de Decisão
 - Valores testados
 - Máx. de nós: [1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60]
 - Critério de pureza: ['gini', 'entropy']
- Random Forest
 - Valores testados
 - **Quantidade de árvores**: [100, 110, 120, 130, 140, 150]

RESULTADOS - MELHORES REPRESENTAÇÕES POR ALGORITMO

MODELOS	PRECISION	RECALL	F1-SCORE	ACCURACY	ROC
XGBoost BOW e TF-IDF*	1	1	1	1	1
SVM BOW E TF-IDF*	1	1	1	1	1
Regressão Logística BOW	0.7560	0.7549	0.7539	0.7549	0.7521
LSTM FASTTEXT	0.7496	0.7492	0.7493	0.7492	0.7492
Random Forest TF-IDF	0.7407	0.7407	0.7402	0.7407	0.7388
Árvore de Decisão TF-IDF	0.7120	0.7122	0.7121	0.7122	0.7111
Análise Discriminante Gaussiano Word2Vec	0.7132	0.7122	0.7106	0.7122	0.7089
k-NN FastText	0.6831	0.6809	0.6775	0.6638	0.6550

RESULTADOS - PIORES REPRESENTAÇÕES POR ALGORITMO

MODELOS	PRECISION	RECALL	F1-SCORE	ACCURACY	ROC
XGBoost Word2Vec	0.7238	0.7236	0.7227	0.7236	0.7211
SVM Word2Vec	0.7211	0.7179	0.7151	0.7179	0.7135
Árvore de Decisão Word2Vec	0.6391	0.6353	0.6351	0.6353	0.6372
Random Forest Word2Vec	0.6231	0.6210	0.6212	0.6210	0.62198
Regressão Logística FastText	0.6158	0.5982	0.5688	0.59829	0.5858
Análise Discriminante Gaussiano TF-IDF	0.5802	0.5811	0.5801	0.5811	0.5786
k-NN BOW	0.5140	0.5099	0.5087	0.5042	0.5127
LSTM WORD2VEC (*)	0.4660	0.4615	0.4367	0.4615	0.4717

DISCUSSÃO

- ▶ **THE BEST (?)**: SVM & XGBOOST com TF-IDF e BOW
 - Fecharam no 100%
 - Suspeita de overfitting

DISCUSSÃO

▶ THE BEST: Regressão Logística BOW ~75.49

DISCUSSÃO

Exemplos de classificações da Regressão Logística

- True Positive (corretamente classificada)
 - Texto que diz que vitamina C e limão combatem o coronavírus
- True Negative (corretamente classificada)
 - Notícia divulgada em 2015 pela TV italiana RAI comprova que o novo coronavírus foi criado em laboratório pelo governo chinês.
- False Positive (erroneamente classificada)
 - Vitamina C com zinco previne e trata a infecção por coronavírus
- False Negative (erroneamente classificada)
 - Que neurocientista britânico publicou estudo mostrando que 80% da população é imune ao novo coronavírus

FastText PCA (Semelhante ao Word2Vec)

FastText T-SNE

Word2Vec T-SNE

BOW PCA (Semelhante ao TF-IDF)

TF-IDF T-SNE

8. CONCLUSÃO

CONCLUSÃO

- Melhores modelos: XGBoost(*) e SVM(*) e Regressão Logística.
- Melhores Representações: TF-IDF e BOW
- Pior representação: Word2Vec
- ▶ Pior modelo: LSTM (**) e kNN.
- Possibilidade de dados linearmente separáveis com BOW e TD-IDF.

10. BIBLIOGRAFIA

REFERÊNCIAS

- Aldwairi, Monther, and Ali Alwahedi. "Detecting fake news in social media networks." Procedia Computer Science 141 (2018): 215-222.
- Buntain, Cody, and Jennifer Golbeck. "Automatically identifying fake news in popular Twitter threads." In 2017 IEEE International Conference on Smart Cloud (SmartCloud), pp. 208-215. IEEE, 2017.
- Filho, Manuel; Oliveira, Andreza and Mattos, César. "Detectando Fake News em Manchetes Uma Comparação de Modelos de Aprendizagem de Máquina" WTAG 2019.

HANDS-ON!

