Case Study - Stuxnet Worm

CPSC 4970 Applied Cyber Security

Stuxnet Worm Target

- The STUXNET worm is computer malware released in 2010
 - Designed to target Siemens industrial control systems
 - Designed to affect Siemens SCADA systems and PLC controllers centrifuges
 - Very specific targeting only aimed at Siemens controllers for this type of equipment
 - It can spread to but does not damage other control systems
- Systems specifically used in Iran for uranium enrichment with the potential to make nuclear bombs
- Objective to damage or destroy controlled equipment
- Stuxnet was a malware type attack
 - Can infect a computer- based system and autonomously spread to other systems without user intervention
 - Unlike a virus, no need for a carrier or explicit user actions to spread the worm

Stuxnet Infection

Sept 29, 2010 - Infected Hosts by country

Centrifuges

Stuxnet in Operation

- Takes over operation of the centrifuge from the SCADA controller
- Sends control signals to PLCs managing the equipment
- Causes the spin speed of the centrifuges to vary wildly, very quickly, causing extreme vibrations and consequent damage
 - Shaking occurs as they passes through naturally resonant frequencies
 - Youtube video demonstration
- Blocks signals and alarms to control centre from local PLCs

AUBURN

Stuxnet Attack

- Initially targets Windows systems used to configure the SCADA system
- Uses four different vulnerabilities to affect systems
 - Three of these were previously unknown "Zero Day"
 - So if it encounters some systems where some vulnerabilities have been fixed, it still has the potential to infect them.
 - Spread can't be stopped by fixing a single vulnerability
- Uses a vulnerability in the print system to spread from one machine to another
- Uses peer-to-peer transfer there is no need for systems to be connected to the Internet
- Centrifuge control systems were not connected to the internet
 - Initial infection thought to be through infected USB drives taken into plant by unwitting system operators
 - USB sticks dropped on ground around buildings
 - Beware of freebies!
 - Exploited windows auto run feature on USB sticks or specific types of files.

Stuxnet Damage

- It is thought that between 900 and 1000 centrifuges were destroyed by the actions of Stuxnet
- This is about 10% of the total so, if the intention was to destroy all centrifuges, then it was not successful
- Significant slowdown in nuclear enrichment programme because of
 - Damage to centrifuges as a result of spinning too fast for to long
 - Enrichment shutdown while the worms were cleared from equipment

How did Stuxnet get by Windows software protection?

- Used a legitimate digital certificate, which cryptographically vouched for the trustworthiness of the software's publisher
- Created using a compromised digital certificate from a Taiwanese semiconductor company
 - Someone stole the digital keys from the company
- Digitally signed software is often able to bypass User Account Control and other Windows measures designed to prevent malicious code from being installed.
- Digital certificates are a "Secret" that needs to be protected.
- Results was Windows did not detect malware software being installed.

Code Signing with Digital Certificates

Certificate Authority

Code Signing

- Hash Software Code
- Encrypt Digest with private key
- 3. Create digital certificate with public key
- Signed Software can be verified by hashing software and comparing digital signature block

AUBURN UNIVERSITY