CS5110: Complexity Theory

Shreyas Havaldar CS18BTECH11042

October 23, 2020

1 Exercise Set 11

1.1 Assuming I have a SAT Oracle, constructing an algorithm that takes input ϕ and outputs a satisfying assignment if $\phi \in SAT$, in poly n time, where n is the input size.

Showing our algorithm running in m steps where m is the number of variables in our CNF. The entire algorithm is poly in n.

- 1. Query the oracle on the formula ϕ .
- 2. If the oracle rejected, we can't have a satisfying assignment obviously and so we simply terminate and return false.
- 3. If the oracle accepted, we're good to go and have a satisfying assignment to be found.
- 4. We basically run a loop m times and by checking whether a particular assignment to some variable to ϕ still maintains its satisfiability, if it does, we replace the variable with the assignment for further evaluations.
 - (a) Let i = 1, and $\phi_0 = \phi$. ϕ_i are just the different iterations of the same CNF formula with i variables assigned a value TRUE or FALSE successively in each ϕ_i .
 - (b) For i from 1 to m:
 - i. $x_i = 1$, $\phi_i = \phi_{i-1}$ with x_i replaced with value 1 throughout the formula. (x_i is assigned TRUE.)
 - ii. Query the oracle on the formula ϕ_i .
 - iii. If the oracle accepts, our assignment is one of the possible correct ones, so we note the value of x_i as 1 for further runs of the loop and replace it in the subsequent ϕ_i 's, so ϕ_i stays as it is. (As we modified it in step 4.b.i)

Else if the oracle rejected, our assignment cannot be satisfiable with $x_i = 1$ and thus it has to be satisfiable for $x_i = 0$, as the formula is indeed satisfiable and each variable can take only two values, so we note the value of x_i as 0 (x_i is assigned FALSE) for further runs of the loop and replace it in the subsequent ϕ_i 's and thus $\phi_i = \phi_{i-1}$ with x_i replaced with 0 throughout the formula.

- iv. We also write down the value of x_i (that we replaced throughout the formula above and was thus the assignment for some satisfying assignment), on the i^{th} cell of an output tape.
- v. Increment the value of i.
- (c) Output the values stored on i^{th} cell of the input tape as the value assigned to the i^{th} variable in some satisfying assignment of the input formula ϕ . At the end of the loop each variable would have been assigned and replaced by a value 0 or 1 in the formula and we would have a satisfying assignment by our algorithm.
- 5. The time take for the algorithm to run is the substitution of value of every x_i in the formula at most twice, which requires time to traverse the formula and replace the variable with the value so we take at most 2*|Inp| time per variable, where |Inp| is the size of the input.
- 6. Querying the oracle with a ϕ_i takes constant time per variable.
- 7. Where m is the number of input variables we take O(m * |Inp|) time for the algorithm, and as m can be at most k*C where k is the number of literals in the CNF formula, and C the number of clauses in our CNF, our m is thus O(|Inp|), thus the total algorithm is $O(|Inp|^2)$.
- 8. Hence we have a satisfying assignment found in poly of input time using just a SAT Oracle!

Hence Constructed!