Pt

I.	Modélisation							
1	À l'aide d'un essai, déterminer le modèle de Broïda de H(p). On expliquera la méthode précisément et on donnera tous les calculs et tracés nécessaires à la détermination du modèle.	3	Α				3	
	Même question avec Hz(p).	2	С				0,7	
3	Déterminer un correcteur PI qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel EASYREG. On donnera la réponse théorique obtenue.	2	С				0,7	
4	Donner pour ce réglage les valeurs théoriques du temps de réponse à ±5%, ainsi que la valeur du premier dépassement.	1	Α				1	
5	Déduire de la question 3 les valeurs de Xp, Ti et Td du régulateur mixte.	1	Α				1	
6	Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q.	2	D				0,1	La courbe qui est fourni ne correspond à rien.
II.	Tendance							
1	Compléter le schéma fonctionnel, pour faire apparaître la correction de tendance.	2	В				1,5	
2	Déduire des questions 1 et 2 la valeur du gain de tendance.	2	D				0,1	Avec la question 2, vous ne pouvez rien déduire.
3	Procéder au réglage de votre régulateur. Donner le nom et la valeur des paramètres modifiés.	2	D				0,1	
II.	Performances de la boucle de tendance							
1	Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q.	2	D				0,1	
2	Comparer vos résultats à ceux obtenus en boucle simple.	1	D				0,05	
		Note: 8,35/20						

I. Modélisation (11 pts)

Q = 97%

 $\Theta = 24^{\circ}C$

1. À l'aide d'un essai, déterminer le modèle de Broïda de H(p). On expliquera la méthode précisément et on donnera tous les calculs et tracés nécessaires à la détermination du modèle.

T= 2,8(80)-1,8*100=44 t=5,5(20)=110 K=deltaX/deltaY=5,6/10=0,56 H(p)=(Ke^-Tp)/(1+tp)=(0,56e^-44p)/(1+110p)

2. Même question avec $H_z(p)$. on passe Q de 97% à 32%

bug durant la prise de mesure (arret du ventilateur) on a augmenté la commande du ventilateur pour palier a ceci

3. Déterminer un correcteur PI qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel <u>EASYREG</u>. On donnera la réponse théorique obtenue.

4. Donner pour ce réglage les valeurs théoriques du temps de réponse à $\pm 5\%$, ainsi que la valeur du premier dépassement.

Temps de réponse +/-5% entre 190s et 200s dépassement =0

5. Déduire de la question 3 les valeurs de Xp, Ti et Td du régulateur mixte.

c(p)=A(1+Ti*p)/Ti*p))(1+Td*p)

$$Td=0$$

ti = t = 110

$$A=2$$

Xp = 100/A = 50

6. Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q. augmentation de 30 à 60%

Erreur statique

II. Tendance (6 pts)

1. Compléter le schéma fonctionnel, pour faire apparaître la correction de tendance.

- 2. Déduire des questions 1 et 2 la valeur du gain de tendance. $H(0)=(0.56e^{-44*0})/(1+110*0)=0.56$
- 3. Procéder au réglage de votre régulateur. Donner le nom et la valeur des paramètres modifiés. Je ne sais pas

III. Performances de la boucle de tendance (3 pts)

- 1. Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q. je ne sais pas
 - 2. Comparer vos résultats à ceux obtenus en boucle simple.

En régulation mixte le debit n'agit plus sur la valeur statique de température donc elle est meilleur que la regulation en boucle simple