**16.**  $\overline{SR}$  is tangent to  $\bigcirc P$  and  $\bigcirc Q$ . QT = 6; TR = 8; PR = 30.  $PQ = \frac{?}{?}$ ;  $PS = \frac{?}{?}$ ;  $ST = \frac{?}{?}$ .



17.  $\overline{JK}$  is tangent to  $\bigcirc P$  and  $\bigcirc Q$ .  $JK = \underline{?}$  (*Hint*: What kind of quadrilateral is JPQK?)



18. Circles P and Q have radii 6 and 2 and are tangent to each other. Find the length of their common external tangent  $\overline{AB}$ . (Hint: Draw  $\overline{PQ}$ ,  $\overline{PA}$ , and  $\overline{OB}$ .)



19. Given: Two tangent circles;  $\overline{EF}$  is a common external tangent;  $\overline{GH}$  is the common internal tangent.





**20.** Three circles are shown. How many circles tangent to all three



C 21. Suppose the three circles represent three spheres.

of the given circles can be drawn?

- a. How many planes tangent to each of the spheres can be drawn?
- b. How many spheres tangent to all three spheres can be drawn?



- 22. Prove Theorem 9-2. (Hint: Write an indirect proof.)
- 23. Find the radius of the circle inscribed in the triangle.



## **Mixed Review Exercises**

Find AB. In Exercise 3,  $\overline{CB}$  is tangent to  $\bigcirc A$ .





