ASSIGNMENT: STRAIGHT LINE (2-DIMENSIONAL COORDINATE GEOMETRY)

Equation in Different forms and Slope of Line

Basic Level

The equation of the line joining the origin to the point (-4, 5) is

10.

The equation of the straight line which passes through the point (1,-2) and cuts off equal intercepts from axes, is [MNR 1978]

	(a) $x + y = 1$	(b) $x - y = 1$	(c) $x+y+1=0$	(d) x - y - 2 = 0	
2.	Equation of the straight	t line making equal intercepts o	on the axes and passing throug	n the point (2, 4) is[Karnataka CET 2004]	
	(a) $4x - y - 4 = 0$	(b) $2x + y - 8 = 0$	(c) $x+y-6=0$	(d) $x + 2y - 10 = 0$	
3.	In the equation $y - y_1 =$	$m(x-x_1)$ if m and x_1 are fixed	and different lines are drawn fo	r different values of y_1 , then[MP PET 19	986]
	(a) The lines will pass	through a single point	(b) There will be a set of	f parallel lines	
	(c) There will be one li	ne only	(d) None of these	*	
4.	The equation of the stra	aight line passing through the I	point (3, 2) and perpendicular t	the line $y = x$ is [MNR 1979; MP PET 200)2]
	(a) $x - y = 5$	(b) $x + y = 5$	(c) $x + y = 1$	(d) $x - y = 1$	
5.	The equation of the line	perpendicular to the line $\frac{x}{a} - \frac{y}{b}$	= 1 and passing through the poin	t at which it cuts <i>x</i> -axis, is [Rajasthan PET	Г 1996
	(a) $\frac{x}{a} + \frac{y}{b} + \frac{a}{b} = 0$	(b) $\frac{x}{b} + \frac{y}{a} = \frac{b}{a}$	(c) $\frac{x}{b} + \frac{y}{a} = 0$	(d) $\frac{x}{b} + \frac{y}{a} = \frac{a}{b}$	
6.	The equation of the line	e passing through the point (1,	2) and perpendicular to the line	x + y + 1 = 0 is [MNR 1981]	
	(a) $y-x+1=0$	(b) $y-x-1=0$	(c) $y-x+2=0$	(d) $y - x - 2 = 0$	
7.	If the equations $y = mx$	$+c$ and $x \cos \alpha + y \sin \alpha = p$ rep	resent the same straight line, t	nen	
	(a) $p = c\sqrt{1 + m^2}$	(b) $c = p \sqrt{1 + m^2}$	(c) $cp = \sqrt{1+m^2}$	(d) $p^2 + c^2 + m^2 = 1$	
8.	A line passes through t	he point of intersection of $2x$ +	-y = 5 and $x + 3y + 8 = 0$ and part	allel to the line $3x + 4y = 7$ is	
				[Rajasthan PET 1984; MP PET 1991]	
	(a) $3x + 4y + 3 = 0$	(b) $3x + 4y = 0$	(c) $4x - 3y + 3 = 0$	(d) $4x - 3y = 3$	
9.	The equation of straigh	t line passing through the inter	rsection of the lines $x - 2y = 1$ a	nd $x + 3y = 2$ and parallel to	
	3x + 4y = 0 is				
				[MP PET 2000]	
	(a) $3x + 4y + 5 = 0$	(b) $3x + 4y - 10 = 0$	(c) $3x + 4y - 5 = 0$	(d) $3x + 4y + 6 = 0$	

Joi	nt Effort By: L	r. Anoop Dixi	t & Dr. Hari	sn Bhardwaj
	(a) $5x + 4y = 0$	(b) $3x + 4y = 2$	(c) $5x - 4y = 0$	(d) 4x - 5y = 0
11.	The equation of the line	which cuts off an intercept 3 un	its on <i>OX</i> and an intercept –	2 unit on <i>OY,</i> is
	(a) $\frac{x}{3} - \frac{y}{2} = 1$	(b) $\frac{x}{3} + \frac{y}{2} = 1$	(c) $\frac{x}{2} + \frac{y}{3} = 1$	(d) $\frac{x}{2} - \frac{y}{3} = 1$
12.	The equation of a line the 1984]	hrough (3, – 4) and perpendicula	to the line $3x + 4y = 5$ is	[Rajasthan PET 1981, 84, 86; MP PET
	(a) $4x + 3y = 24$	(b) $y-4=x+3$	(c) $3y - 4x = 24$	(d) $y+4=\frac{4}{3}(x-3)$
13.	Equation of the line pas	sing through (1, 2) and parallel t	the line $y = 3x - 1$ is	[MP PET 1984]
	(a) $y+2=x+1$	(b) $y+2=3(x+1)$	(c) $y-2=3(x-1)$	(d) $y-2 = x-1$
14.	Equation of the line pas	sing through (–1, 1) and perpend	licular to the line $2x + 3y + 4$	=0 is
	(a) $2(y-1) = 3(x+1)$	(b) $3(y-1) = -2(x+1)$	(c) $y-1=2(x+1)$	(d) $3(y-1) = x+1$
15.	The equation of line pas	ssing through (\emph{c},\emph{d}) and parallel t	0 ax + by + c = 0 is	[Rajasthan PET 1987]
	(a) $a(x+c)+b(y+d) = 0$	(b) $a(x+c)-b(y+d) = 0$	(c) $a(x-c)+b(y-d)=0$	(d) None of these
16.	The equation of a line t	hrough the intersection of lines	x = 0 and $y = 0$ and through	n the point (2, 2) is [MP PET 1984]
	(a) $y = x - 1$	(b) $y = -x$	(c) $y = x$	(d) $y = -x + 2$
17.	Equation of a line throu	gh the origin and perpendicular t	o the line joining $(a,0)$ and $(a,0)$	(-a,0) is
	(a) $y = 0$	(b) $x = 0$	(c) $x = -a$	(d) $y = -a$
18.		d b the intercepts cut off on the secut off by the line $2x-3y+6=$		ax + by + 8 = 0 are equal in length but
	(a) $a = \frac{8}{3}, b = -4$	(b) $a = -\frac{8}{3}, b = -4$	(c) $a = \frac{8}{3}, b = 4$	(d) $a = -\frac{8}{3}, b = 4$
19.	For specifying a straigh	t line how many geometrical para	meters should be known	[MP PET 1982]
	(a) 1	(b) 2	(c) 4	(d) 3
20.	The equation of line pas	ssing through point of intersectio	n of line $3x-2y-1=0$ and .	$x-4y+3=0$ and the point $(\pi,0)$ is
			•	[Rajasthan PET 1987]
	(a) $x-y=\pi$	(b) $x - y = \pi(y + 1)$	(c) $x - y = \pi(1 - y)$	(d) $x + y = \pi(1 - y)$
21.	A line perpendicular to	the line $ax + by + c = 0$ and passe	s through (a,b) . The equation	n of the line is
				[Rajasthan PET 1988; MP PET 1995]
	(a) $bx - ay + (a^2 - b^2) = 0$	(b) $bx - ay - (a^2 - b^2) = 0$	(c) $bx - ay = 0$	(d) None of these
22.	If the line passing throu	gh $(4,3)$ and $(2, k)$ is perpendicu	lar to $y = 2x + 3$, then $k =$	[Rajasthan PET 1985; MP PET 1999]
	(a) -1	(b) 1	(c) -4	(d) 4
23.	The line passes through	n (1,0) and (–2, $\sqrt{3}$) makes an ang	le ofwith <i>x</i> -axis	[Rajasthan PET 1985]
	(a) 60°	(b) 120°	(c) 150°	(d) 135°
24.	If a and b are two arbitr	ary constants, then the straight I	ine $(a-2b)x + (a+3b)y + 3a +$	4b = 0 will pass through
				[Rajasthan PET 1990]

Join Spectrum Live Interactive Classes Harich Bhardwai

	(a) (-1,-2)	(b) (1, 2)	(c) (-2,-3)	(d) (2,3)	
OE.					مع امالمت
25.		passing through the point of inte	ersection of the lines $4x - 3y -$	T = 0 and $5x - 2y - 3 = 0$ and [Rajasthan PET]	
	the line $2y - 3x + 2 = 0$ (a) $x - 3y = 1$	(b) $3x - 2y = 1$	(c) $2x - 3y = 1$	(d) $2x - y = 1$	1305,00, 00]
26.	-	passing through $(4, -6)$ and mak	•		
20.	(a) $x - y - 10 = 0$	(b) $x - 2y - 16 = 0$	(c) $x - 3y - 22 = 0$	(d) None of these	
27.	•	ses through the point of interse			ic [IIT 1092]
21.	(a) $5x - 4y = 0$	(b) $5x + 4y = 0$	(c) $4x-5y=0$	(d) $4x + 5y = 0$	• [III 1303]
28.		traight line passing through the			
20.	$x \sec \theta + y \csc \theta = a$,		s point (a cos 0, a sin 0) and pe	pendicular to the line	
	$x \sec \theta + y \csc \theta = u$,	10			[AMU 1975]
	(a) $x \cos \theta - y \sin \theta = a$	$a\cos 2\theta$	(b) $x \cos \theta + y \sin \theta = a$	$a\cos 2\theta$	
	(c) $x \sin \theta + y \cos \theta =$		(d) None of these		
29.	Equation of the right by	oisector of the line segment joir	ning the points $(7, 4)$ and $(-1, -1)$	-2) is	[AMU 1979]
	(a) $4x - 3y = 15$	(b) $3x + 4y = 15$	(c) $4x + 3y = 15$	(d) None of these	
30.	Equations of lines wh	ich passes through the points o	of intersection of the lines $4x$ -	3y-1=0 and $2x-5y+3=0$	and are
	equally inclined to the				
	(a) $y \pm x = 0$	(b) $y - 1 = \pm 1(x - 1)$	(c) $x-1=\pm 2(y-1)$	(d) None of these	
31.	Equation of line passi	ng through (1, 2) and perpendic	cular to $3x + 4y + 5 = 0$ is	[Rajasth	an PET 1995]
	(a) $3y = 4x - 2$	(b) $3y = 4x + 3$	(c) $3y = 4x + 4$	(d) $3y = 4x + 2$	
32.	The equation of a stra	aight line passing through the p	oints (-5, -6) and (3, 10) is		[MNR 1974]
	(a) $x - 2y = 4$	(b) $2x - y + 4 = 0$	(c) $2x + y = 4$	(d) None of these	
33.	A straight line through	P(1, 2) is such that its interce	pt between the axes is bisecte	d at <i>P</i> . Its equation is [E /	AMCET 1994]
	(a) $x + 2y = 5$	(b) $x-y+1=0$	(c) $x+y-3=0$	(d) $2x + y - 4 = 0$	
34.	The equation to the s	traight line passing through the	point of intersection of the lin	es $5x - 6y - 1 = 0$ and $3x + 2y$	y + 5 = 0 and
	perpendicular to the li	ine $3x - 5y + 11 = 0$ is		[N	MP PET 1994]
	(a) $5x + 3y + 8 = 0$	(b) $3x - 5y + 8 = 0$	(c) $5x + 3y + 11 = 0$	(d) $3x - 5y + 11 = 0$	
35.	The opposite vertices	of a square are (1, 2) and (3, 8)), then the equation of a diago	nal of the square passing thr	rough the
	point (1, 2) is			[R	Roorkee 1981]
	(a) $3x - y - 1 = 0$	(b) $3y - x - 1 = 0$	(c) $3x + y + 1 = 0$	(d) None of these	
36.	If the straight line ax	+by+c=0 always passes throu	ugh $(1, -2)$, then a, b, c , are		[AMU 2000]
	(a) In A.P.	(b) In H.P.	(c) In G.P.	(d) None of these	
37.	The equation of the s	traight line joining the origin to	the point of intersection of y -	x + 7 = 0 and $y + 2x - 2 = 0$ is	[MP PET 200:
	(a) $3x + 4y = 0$	(b) $3x - 4y = 0$	(c) $4x - 3y = 0$	(d) 4x + 3y = 0	

38.	A straight line makes a	an angle of 135° with the <i>x</i> -axis	s and cuts y -axis at a distance	–5 from the origin. The equation of the
				[MP PET 1998]
	(a) $2x + y + 5 = 0$	(b) $x + 2y + 3 = 0$	(c) $x + y + 5 = 0$	(d) $x + y + 3 = 0$
39.	If line $y = mx$ meets th	e lines $x + 2y - 1 = 0$ and $2x - y$	y + 3 = 0 at the same point, then	<i>m</i> equals
	(a) 1	(b) −1	(c) 2	(d) -2
40.	Equation of a line pass	sing through (1, – 2) and perper	ndicular to the line $3x - 5y + 7 =$	0 is [Rajasthan PET 2003]
	(a) $5x + 3y + 1 = 0$	(b) $3x + 5y + 1 = 0$	(c) $5x - 3y - 1 = 0$	(d) $3x - 5y + 1 = 0$
41.	The line $\frac{x}{a} - \frac{y}{b} = 1$ cuts	s the <i>x</i> -axis at P. The equation	of the line through P perpendic	ular to the given line is [Kerala (Engg.) 2002]
	(a) $x + y = ab$	(b) $x + y = a + b$	(c) $ax + by = a^2$	$(d) bx + ay = b^2$
42.	The equation of line pe	erpendicular to $x = c$ is		[Rajasthan PET 2001]
	(a) $y = d$	(b) $x = d$	(c) $x = 0$	(d) None of these
43.	The inclination of the s	straight line passing through th	e point $(-3,6)$ and the midpoint	of the line joining the point (4, -5) and
	(-2,9) is		78//	[Kerala (Engg.) 2002]
	(a) π/4	(b) π/6	(c) $\pi/3$	(d) $3\pi/4$
44.			pisected at the point (5, 2), then	
	(a) $5x + 2y = 20$	(b) $2x + 5y = 20$	(c) $5x - 2y = 20$	(d) $2x - 5y = 20$
45.	The equation of the lin		arallel to the line $2x + 3y - 7 = 0$	is [Rajasthan PET 1993, 96]
	(a) $2x + 3y - 5 = 0$	(b) $3x + 2y - 5 = 0$	(c) $3x - 2y - 7 = 0$	(d) $2x + 3y + 5 = 0$
46.	The equation of a strai		and through the point of inters	ection of lines $x+y-2=0$ and
	2x - y + 1 = 0 is			
				[Rajasthan PET 1993]
	(a) $5x - y = 0$	(b) $5x + y = 0$	(c) x + 5y = 0	(d) x - 5y = 0
47.	The equations $(b-c)x$	$+(c-a)y + a - b = 0$ and $(b^3 - c^3)$	$(x + (c^3 - a^3)y + a^3 - b^3 = 0)$ will re	present the same line, if
	(a) $b + c = 0$		(b) $b = c$ and $c = a$ and	a = b or $a + b + c = 0$
	(c) $a+b=0$		(d) $a+b+c \neq 0$	
48.	The straight line passi	ng through the point of interse	ction of the straight lines $x - 3y$	+1 = 0 and $2x + 5y - 9 = 0$ and having
	infinite slope and at a	distance of 2 units from the or	igin, has the equation	
	(a) $x = 2$	(b) $3x + y - 1 = 0$	(c) $y = 1$	(d) None of these
49.	The equation of the lin	he whose slope is 3 and which α	cuts off an intercept 3 from the	positive <i>x</i> -axis is
	(a) $y = 3x - 9$	(b) $y = 3x + 3$	(c) $y = 3x + 9$	(d) None of these
50.	The equations of the li	nes which cuts off an intercep	t –1 from \emph{y} -axis and are equally	inclined to the axes are

(b) x-y-1=0, x+y-1=0

(d) None of these

(a) x-y+1=0, x+y+1=0

(c) x-y-1=0, x+y+1=0

UUI	in Enore by: E			on Bharaw	u j
51.	If the line segment join	ing (2,3) and (–1, 2) is divided	internally in the ratio 3:4 by the	line $x + 2y = k$, then k is	
	(a) $\frac{41}{7}$	(b) $\frac{5}{7}$	(c) $\frac{36}{7}$	(d) $\frac{31}{7}$	
52.	If $A(1,1)$, $B(\sqrt{3}+1,2)$ and	$C(\sqrt{3}, \sqrt{3} + 2)$ be three vertice	s of a square, then the diagonal	through Bis	
	(a) $y = (\sqrt{3} - 2)x + (3 - x)$	$\sqrt{3}$) (b) $y = 0$	(c) $y = x$	(d) None of these	
53.	In what ratio the line y	-x+2=0 divides the line joini	ng the points $(3,-1)$ and $(8,9)$	[Karnata	ka CET 2002]
	(a) 1:2	(b) 2: 1	(c) 2: 3	(d) 3: 4	
		Aa	Ivance Level	Y. 1	
54.	For the straight lines gi	ven by the equation $(2+k)x+($	(1+k)y = 5 + 7k, for different value	es of k which of the follow	ving
.	statements is true	von sy and equation (2 + N).			
			A Y A		[IIT 1971]
	(a) Lines are parallel		(b) Lines pass through	the point (-2, 9)	
	(c) Lines pass through	h the point (2,–9)	(d) None of these	—	
55.	The line joining two poi	ints $A(2,0)$, $B(3,1)$ is rotated a	oout A in anti-clockwise direction	n through an angle of 15^o	. The
	equation of the line in t			_	
			(c) $\sqrt{3}x + y - 2\sqrt{3} = 0$		
56.			be 3/4, then the points on the I		from A, are[IIT 19
	(a) (5,5),(-1,-1)	(b) (7,5),(-1,-1)	(c) $(5,7),(-1,-1)$	(d) (7,5),(1,1)	
57.			tersection of the lines $x + 5y + 7$		
	to the line $7x + 2y - 5 =$			[Rajasthan PET 1987; N	IP PET 1993]
	(a) $2x - 7y - 20 = 0$	(b) $2x + 7y - 20 = 0$	(c) $-2x + 7y - 20 = 0$	•	_
58.	Equations of diagonals	of square formed by lines $x =$			MP PET 1984]
	(a) $y = x, y + x = 1$	(b) $y = x, x + y = 2$	(c) $2y = x, y + x = \frac{1}{3}$	(d) $y = 2x, y + 2x = 1$	
59.	If the middle points of t	the sides BC , CA and AB of th	e triangle ABC be $(1, 3), (5, 7)$ a	and (–5, 7), then the equat	ion of the
	side AB is				
	(a) $x-y-2=0$	(b) $x - y + 12 = 0$	(c) $x+y-12=0$	(d) None of these	
60.	Given the four lines wit	th equations $x + 2y = 3$, $3x + 4$	y = 7,2x + 3y = 4 and $4x + 5y = 6$, then these lines are	[IIT 1980]
	(a) Concurrent	(b) Perpendicular	(c) The sides of a recta	ngle (d) N	one of these
61.	The equation of straigh	t line passing through $(-a, 0)$ a	and making the triangle with axe	s of area ' <i>T'</i> , is	
	(a) $2Tx + a^2y + 2aT = 0$	(b) $2Tx - a^2y + 2aT = 0$	(c) $2Tx - a^2y - 2aT = 0$	(d) None of these	
62.	The points $A(1,3)$ and C	C(5,1) are the opposite vertices	of rectangle. The equation of lin	e passing through other to	vo vertices
	and of gradient 2, is			[Rajasth	an PET 1991]
	(a) $2x + y - 8 = 0$	(b) $2x - y - 4 = 0$	(c) $2x - y + 4 = 0$	(d) $2x + y + 7 = 0$	

(a)
$$x - y = 5$$

(b)
$$x + y = 5$$

(c)
$$x + y = -5$$

(d)
$$x-y=-1$$

If $P(1+t/\sqrt{2},2+t/\sqrt{2})$ be any point on a line then the range of values of t for which the point P lies between the parallel 75. lines x + 2y = 1 and 2x + 4y = 15 is

(a)
$$-\frac{4\sqrt{2}}{3} < t < \frac{5\sqrt{2}}{6}$$
 (b) $0 < t < \frac{5\sqrt{2}}{6}$

(b)
$$0 < t < \frac{5\sqrt{2}}{6}$$

(c)
$$-\frac{4\sqrt{2}}{3} < t < 0$$

The equations of the sides AB,BC and CA of the $\triangle ABC$ are y-x=2, x+2y=1 and 3x+y+5=0 respectively. The 76. equation of the altitude through B is

(a)
$$x - 3y + 1 = 0$$

(b)
$$x - 3y + 4 = 0$$

(c)
$$3x - y + 2 = 0$$

(d) None of these

One side of a square of length a is inclined to the x-axis at an angle α with one of the vertices of the square at the origin. 77. The equation of a diagonal of the square is

(a)
$$y(\cos \alpha - \sin \alpha) = x(\cos \alpha + \sin \alpha)$$

(b)
$$y(\cos \alpha + \sin \alpha) = x(\cos \alpha - \sin \alpha)$$

(c)
$$y(\sin \alpha + \cos \alpha) - x(\sin \alpha - \cos \alpha) = a$$

(d)
$$y(\sin \alpha + \cos \alpha) + x(\sin \alpha - \cos \alpha) = a$$

Straight lines 3x + 4y = 5 and 4x - 3y = 15 intersect at the point A. Points B and C are chosen on these lines such that 78. AB = AC. Determine the possible equations of the line BC passing through the point (1, 2)

(a)
$$x-7y+13=0$$
 and $7x+y=9$

(b)
$$x+7y+13=0$$
 and $6x-y=9$

(c)
$$x-7y+12=0$$
 and $4x+3y=9$

(d)
$$x-6y+11=0$$
 and $7x-y=9$

The base BC of a triangle ABC is bisected at the point (p, q) and the equations to the sides AB and AC are respectively 79. px + qy = 1 and qx + py = 1. Then the equation to the median through A is

(a)
$$(2pq-1)(px+qy-1) = (p^2+q^2-1)(qx+py-1)$$

(b)
$$(p^2+q^2-1)(px+qy-1) = (2p-1)(qx+py-1)$$

(c)
$$(pq-1)(px+qy-1) = (p^2+q^2-1)(qx+py-1)$$

If a variable line drawn through the point of intersection of straight lines $\frac{x}{\alpha} + \frac{y}{\beta} = 1$ and $\frac{x}{\beta} + \frac{y}{\alpha} = 1$ meets the coordinate axes 80.

in A and B, then the locus of the mid-point of AB is

(a)
$$\alpha \beta(x+y) \equiv xy(\alpha+\beta)$$

(b)
$$\alpha \beta(x+y) = 2xy(\alpha+\beta)$$

(c)
$$(\alpha + \beta)(x + y) = 2\alpha\beta xy$$
 (d) None of these

Equation of the hour hand at 4 O' clock is 81.

(a)
$$x - \sqrt{3}y = 0$$

(b)
$$\sqrt{3}x - y = 0$$

(c)
$$x + \sqrt{3}y = 0$$

$$(d) \quad \sqrt{3}x + y = 0$$

The points (1, 3) and (5, 1) are two opposite vertices of a rectangle. The other two vertices lie on the line y = 2x + c, then 82. the other vertices and c are

(a) (1,1),(2,3) and c=4

(b) (4,4),(2,0) and c=-4

(c) (0,0),(5,4) and c=3

(d) None of these

Angle between two Straight lines

Basic Level

The angle between the lines $y = (2 - \sqrt{3})x + 5$ and $y = (2 + \sqrt{3})x - 7$ is 83.

	(a) 30°	(b) 60°	(c) 45°	(d) 90°	
84.	The angle between t	the lines $x \cos \alpha_1 + y \sin \alpha_1 = p_1$ an	$d x \cos \alpha_2 + y \sin \alpha_2 = p_2 is$		
	(a) $(\alpha_1 + \alpha_2)$	(b) $(\alpha_1 \sim \alpha_2)$	(c) $2\alpha_1$	(d) $2\alpha_2$	
85.	Angle between the li	nes $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{a} - \frac{y}{b} = 1$ is			[MP PET 1995]
	(a) $2 \tan^{-1} \frac{b}{a}$	(b) $\tan^{-1} \frac{2ab}{a^2 + b^2}$	(c) $\tan^{-1} \frac{a^2 - b^2}{a^2 + b^2}$	(d) None of these	
86.		the two lines $y - 2x = 9$ and $x + 2$	y = -7, is	[Raj	asthan PET
	1981, 85, 86; MP PET				
	(a) 60°	(b) 30°	(c) 90°	(d) 45°	
87.	The obtuse angle be	tween the lines $y = -2$ and $y = x$	+2 is	[Rajas	than PET 1984]
	(a) 120°	(b) 135°	(c) 150°	(d) 160°	
88.	The acute angle bet	ween the lines $y = 3$ and $y = \sqrt{3}x$:+9 is	[Rajasthan PI	ET 1984, 87, 88]
	(a) 30°	(b) 60°	(c) 45°	(d) 90°	
89.	Angle between $x = 2$	2 and $x - 3y = 6$ is			[MNR 1988]
	(a) ∞	(b) tan ⁻¹ (3)	(c) $\tan^{-1}\left(\frac{1}{3}\right)$	(d) None of these	
90.	The angle between t	the lines $a_1x + b_1y + c_1 = 0$ and a_2	$x + b_2 y + c_2 = 0 \text{ is}$		[MP PET 1994]
	(a) $\tan^{-1} \frac{a_1b_2 + a_2b_1}{a_1a_2 - b_2b_1}$	(b) $\cot^{-1} \frac{a_1 a_2 + b_1 b_2}{a_1 b_2 - a_2 b_1}$	(c) $\cot^{-1} \frac{a_1b_1 - a_2b_2}{a_1a_2 + b_1b_2}$	(d) $\tan^{-1} \frac{a_1b_1 - a_2b_2}{a_1a_2 + b_1b_2}$	-
91.	If the lines $2x + 3ay$	-1 = 0 and $3x + 4y + 1 = 0$ are mu	tually perpendicular, then the	value of 'a' will be	[MNR 1975]
	(a) $\frac{1}{2}$	(b) 2	(c) $-\frac{1}{2}$	(d) None of these	
92.	The lines $a_1x + b_1y +$	$c_1 = 0$ and $a_2 x + b_2 y + c_2 = 0$ are p	erpendicular to each other if		[MP PET 1996]
	(a) $a_1b_2 - b_1a_2 = 0$	(b) $a_1a_2 + b_1b_2 = 0$	(c) $a_1^2b_2 + b_1^2a_2 = 0$	(d) $a_1b_1 + a_2b_2 = 0$	
93.	The angle between t	the straight lines $x - y\sqrt{3} = 5$ and	$\int \sqrt{3}x + y = 7 \text{ is}$		
	(a) 90°	(b) 60°	(c) 75°	(d) 30°	
94.	The angle between t	the lines $2x - y + 3 = 0$ and $x + 2y$	y + 3 = 0 is		
	(a) 90°	(b) 60°	(c) 45°	(d) 30°	
95.	The lines $y = 2x$ and	x = -2y are			
	(a) Parallel	(b) Perpendicular	(c) Equally inclined	to axes (d) Coincident	
96.	The line which is pa	rallel to <i>x</i> -axis and crosses the co	urve $y = \sqrt{x}$ at an angle of 45	° is	[Roorkee 1993]
	(a) $x = 1/4$	(b) $y = 1/4$	(c) $y = 1/2$	(d) $y = 1$	
		·	•	-	

97.	The angle between the	e lines whose intercepts on the	e axes are $a,\!-\!b$ and $b,\!-\!a$ respec	tively, is	
	(a) $\tan^{-1} \frac{a^2 - b^2}{ab}$	(b) $\tan^{-1} \frac{b^2 - a^2}{2}$	(c) $\tan^{-1} \frac{b^2 - a^2}{2ab}$	(d) None of these	
98.	The line $3x + 2y = 9$ in	tersects the axes in A and B .	If O is the origin, then $\angle OAB$ e	quals	
	(a) $\tan^{-1}(1/3)$	(b) 45°	(c) $\tan^{-1}(2/3)$	(d) $\tan^{-1}(3/2)$	
99.	The angle between two	o lines is $\frac{\pi}{4}$. If the slope of or	ne of them be $\frac{1}{2}$, then the slope	of the other line is	
	(a) $1, -\frac{1}{3}$	(b) $-1, \frac{1}{2}$	(c) $-\frac{1}{3}$,3	(d) None of these	
		A	dvance Level	10/6	
100.	A vertex of equilateral	triangle is (2, 3) and equation	of opposite side is $x + y = 2$, th	en the equation of one s	ide from rest
	two is		5/	11	[IIT 1975]
	(a) $y-3=2(x-2)$	(b) $y-3 = (2-\sqrt{3})(x-2)$	(c) $y-3 = (\sqrt{3}-1)(x-1)$	2) (d) None of these	
101.	Coordinates of the vert	tices of a quadrilateral are (2,	-1), $(0, 2)$, $(2, 3)$ and $(4, 0)$. The	angle between its diagor	nals will be [IIT 19 8
	(a) 90°	(b) 0°	(c) tan ⁻¹ (2)	(d) $\tan^{-1}\left(\frac{1}{2}\right)$	
102.	In what direction a lin	e be drawn through the poin	t (1, 2) so that its point of inte	ersection with the line a	x + y = 4 is at a
	distance $\frac{\sqrt{6}}{3}$ from the	given point			
	3			(1) ==0	
100	(a) 30°	(b) 45°	(c) 60°	(d) 75°	[4441.4074]
103.		gn the points $(3,-4)$ and $(-2,6)$) and a line passing through (–3	,6) and (9,-18), are	[AMU 1974]
	(a) Perpendicular(c) Makes an angle 60	0° with each other	(b) Parallel (d) None of these		
104.			point (3, 2) and making an angle of	of 45^{o} with the line $r = 2x$	- 3 are [AMII 10]
104.	(a) $3x + y + 7 = 0$ and		(b) $3x - y - 7 = 0$ and 3		= 3, are [AWO 137
	(c) $x + 3y - 7 = 0$ and		(d) None of these	, 1 3y - y - 0	
105.			lx + my + n = 0, $lx + my + n' = 0$, r	mx + ly + n = 0 , mx + ly + n	'=0 include an
	angle				
					[EAMCET 1994]
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{2}$	(c) $\tan^{-1} \left(\frac{l^2 - m^2}{l^2 + m^2} \right)$	(d) $\tan^{-1}\left(\frac{2lm}{l^2+m^2}\right)$	
106.	The sides AB, BC, CD	and <i>DA</i> of a quadrilateral are	x + 2y = 3, x = 1, x - 3y = 4, 5x +	y + 12 = 0 respectively. The	ne angle
	between diagonals AC	and <i>BD</i> is			

(d) 30°

107.	One diagonal of a square is along the line $8x - 15y = 0$ and one of its vertex is $(1, 2)$. Then the equation of the sides of the
	square passing through this vertex, are

(a)
$$23x + 7y = 9$$
, $7x + 23y = 53$

(b)
$$23x - 7y + 9 = 0$$
, $7x + 23y + 53 = 0$

(c)
$$23x-7y-9=0$$
, $7x+23y-53=0$

(d) None of these

108. The parallelism condition for two straight lines one of which is specified by the equation ax + by + c = 0 the other being represented parametrically by $x = \alpha t + \beta$, $y = \gamma t + \delta$ is given by

(a)
$$a\gamma - b\alpha = 0$$
, $\beta = \delta = c = 0$ (b) $a\alpha - b\gamma = 0$, $\beta = \delta = 0$

(c)
$$a\alpha + b\gamma = 0$$

(d)
$$a\gamma = b\alpha = 0$$

109. If straight lines ax + by + p = 0 and $x \cos \alpha + y \sin \alpha - p = 0$ include an angle $\frac{\pi}{4}$ between them and meet the straight line $x \sin \alpha - y \cos \alpha = 0$ in the same point, then the value of $a^2 + b^2$ is equal to

110. The ends of the base of an isosceles triangle are at (2a, 0) and (0, a). The equation of one side is x = 2a. The equation of the other side is

(a)
$$x + 2y - a = 0$$

(b)
$$x + 2y = 2a$$

(c)
$$3x + 4y - 4a = 0$$

(d)
$$3x - 4y + 4a = 0$$

111. If a,b,c are in harmonic progression, then straight line $\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0$ always passes through a fixed point, that point is [MP]

PET 1999]

(a)
$$(-1, -2)$$

(b)
$$(-1, 2)$$

(c)
$$(1,-2)$$

(d)
$$(1,-1/2)$$

112. Angles made with the x-axis by two lines drawn through the point (1, 2) and cutting the line x + y = 4 at a distance

 $\frac{1}{3}\sqrt{6}$ from the point (1, 2) are

(a)
$$\frac{\pi}{6}$$
 and $\frac{\pi}{3}$

(b)
$$\frac{\pi}{8}$$
 and $\frac{3\pi}{8}$

(c)
$$\frac{\pi}{12}$$
 and $\frac{5\pi}{12}$

(d) None of these

Bisectors of Angle between two Lines

Basic Level

113. The equation of the line which bisects the obtuse angle between the lines x - 2y + 4 = 0 and 4x - 3y + 2 = 0 is [IIT 1979]

(a)
$$(4 - \sqrt{5})x - (3 - 2\sqrt{5})y + (2 - 4\sqrt{5}) = 0$$

(b)
$$(4 + \sqrt{5})x - (3 + 2\sqrt{5})y + (2 + 4\sqrt{5}) = 0$$

(c)
$$(4 + \sqrt{5})x + (3 + 2\sqrt{5})y + (2 + 4\sqrt{5}) = 0$$

(d) None of these

114. Equation of angle bisectors between x and y-axes are

[MP PET 1984]

(a)
$$y = \pm x$$

(b)
$$y = \pm 2x$$

(c)
$$y = \pm \frac{1}{\sqrt{2}} x$$

(d)
$$y = \pm 3x$$

115. Equation of angle bisector between the lines 3x + 4y - 7 = 0 and 12x + 5y + 17 = 0 are

[Rajasthan PET 1995]

(a)
$$\frac{3x+4y-7}{\sqrt{25}} = \pm \frac{12x+5y+17}{\sqrt{169}}$$

(b)
$$\frac{3x+4y+7}{\sqrt{25}} = \frac{12x+5y+17}{\sqrt{169}}$$

(c)
$$\frac{3x+4y+7}{\sqrt{25}} = \pm \frac{12x+5y+17}{\sqrt{169}}$$

(d) None of these

116. The equation of the bisector of the acute angle between the lines 2x - y + 4 = 0 and x - 2y = 1 is

(b) x - y + 1 = 0

(c) x - y = 5

(d) None of these

117. The vertices of a triangle are A(-1,-7), B(5,1) and C(1,4). The equation of the internal bisector of the angle $\angle ABC$ is

(a) 3x - 7y - 8 = 0

(b) x - 7y + 2 = 0

(c) 3x - 3y - 7 = 0

(d) None of these

118. The equation (s) of the bisector (s) of that angle between the lines x + 2y - 11 = 0, 3x - 6y - 5 = 0, which contains the point (1, -3) is

(a) 3x = 19

(b) 3y = 7

(c) 3x = 19 and 3y = 7

(d) None of these

Advance Level

119. The equations of two equal sides of an isosceles triangle are 7x - y + 3 = 0 and x + y - 3 = 0 and the third side passes through the point (1, -10). The equation of the third side is [IIT 1984]

(a) x-3y-31=0 but not 3x+y+7=0

(b) 3x + y + 7 = 0 but not x - 3y - 31 = 0

(c) 3x + y + 7 = 0 or x - 3y - 31 = 0

- (d) Neither 3x + y + 7 = 0 nor x 3y 31 = 0
- **120.** Given vertices A(1,1); B(4,-2) and C(5,5) of a triangle, then the equation of the perpendicular dropped from C to the interior bisector of the angle A is [Roorkee 1994]

(a) y - 5 = 0

(d) x + 5 = 0

121. The equation of bisectors of the angles between the lines $|x| \neq y$ are

(b) $x = \frac{1}{2}$ and y =

(c) y = 0 and x = 0

(d) None of these

Distance between two lines, Perpendicular length on the Line

Basic Level

122. The distance between the lines 3x + 4y = 9 and 6x + 8y = 15 is

MNR 1982: Rajasthan

PET 1995; MP PET 2002]

(a) 3/2

(b) 3/10

(c) 6

(d) None of these

123. The perpendicular distance of the straight line 12x + 5y = 7 from the origin is given by

[MP PET 1993]

124. The length of perpendicular from (3, 1) on line 4x + 3y + 20 = 0, is

[Rajasthan PET 1989; MP PET

(a) 6

(d) 8

125.	The distance between tw	vo parallel lines $3x + 4y - 8 = 0$ and	d 3x + 4y - 3 = 0, is given by	y [MP PET 1984]
	(a) 4	(b) 5	(c) 3	(d) 1
126.	The equations of two line	es through (0, <i>a</i>) which are at a dis	stance ' <i>a</i> ' from the point (2 <i>a</i> ,	a, 2 <i>a</i>) are
	(a) $y - a = 0$ and $4x - 3$	y - 3a = 0	(b) $y - a = 0$ and $3x - 4y = 0$	+3a=0
	(c) $y-a=0$ and $4x-3y$	y + 3a = 0	(d) None of these	
127.	The vertices of a triangle	e are (2, 1), (5, 2) and (4, 4). The le	ngths of the perpendiculars	from these vertices on the opposite
	sides are			Y. \ / /
				[IIT 1962]
	(a) $\frac{7}{\sqrt{5}}$, $\frac{7}{\sqrt{13}}$, $\frac{7}{\sqrt{6}}$	(b) $\frac{7}{\sqrt{6}}, \frac{7}{\sqrt{8}}, \frac{7}{\sqrt{10}}$	(c) $\frac{7}{\sqrt{5}}, \frac{7}{\sqrt{8}}, \frac{7}{\sqrt{15}}$	(d) $\frac{7}{\sqrt{5}}, \frac{7}{\sqrt{13}}, \frac{7}{\sqrt{10}}$
128.	A point moves such that	its distance from the point (4, 0) is	s half that of its distance fro	om the line $x = 16$. The locus of this
	point is			
			5/	[AMU 1980]
	(a) $3x^2 + 4y^2 = 192$	(b) $4x^2 + 3y^2 = 192$	(c) $x^2 + y^2 = 192$	(d) None of these
129.	The locus of a point so the	hat sum of its distance from two gi		equal to 2 units, is [Bihar CEE 1994]
	(a) $x + y + 2 = 0$	(b) $x + y = 2$	(c) $x - y = 2$	(d) None of these
130.	Distance between the tw	vo parallel lines $y = 2x + 7$ and $y =$	2x + 5 is	•
	(a) $\frac{\sqrt{5}}{2}$	(b) $\frac{2}{5}$	(c) $\frac{2}{\sqrt{5}}$	(d) $\frac{1}{\sqrt{5}}$
131.	The length of the perpen	dicular drawn from origin upon the	e straight line $\frac{x}{3} - \frac{y}{4} = 1$ is	[MP PET 1997]
	(a) $2\frac{2}{5}$	(b) $3\frac{1}{5}$	(c) $4\frac{2}{5}$	(d) $3\frac{2}{5}$
132.	Distance between the pa	erallel lines $3x + 4y + 7 = 0$ and $3x$	+4y-9=0 is	[Rajasthan PET 2003]
	(a) $\frac{2}{5}$	(b) $\frac{12}{5}$	(c) $\frac{5}{12}$	(d) $\frac{3}{5}$
133.			of intersection of the lines 4	4x + y - 1 = 0 and $7x - 3y - 35 = 0$ is
	equidistant from the poin	nts (0,0) and (8,34)		[Roorkee 1984]
	(a) True	(b) False	(c) Nothing can be said	(d) None of these
134.	Distance between the lin	nes $5x + 3y - 7 = 0$ and $15x + 9y + 1$	14 = 0 is	
	(a) $\frac{35}{\sqrt{34}}$	(b) $\frac{1}{3\sqrt{34}}$	(c) $\frac{35}{3\sqrt{34}}$	(d) $\frac{35}{2\sqrt{34}}$
135.	The distance between th	ne lines $3x - 2y = 1$ and $6x + 9 = 4y$	y is	
	(a) $\frac{1}{\sqrt{52}}$	(b) $\frac{11}{\sqrt{52}}$	(c) $\frac{4}{\sqrt{13}}$	(d) $\frac{6}{\sqrt{13}}$
136.	The distance of the line	2x - 3y = 4 from the point (1, 1) m	easured parallel to the line .	x + y = 1 is

	,	•			•
	(a) $\sqrt{2}$	(b) $\frac{5}{\sqrt{2}}$	(c) $\frac{1}{\sqrt{2}}$	(d) 6	
137.	The distance between	een the parallel lines $y = 2x + 4$ a	and $6x = 3y + 5$ is		
	(a) $17/\sqrt{3}$	(b) 1	(c) $3/\sqrt{5}$	(d) $7\sqrt{5}/15$	
138.	The position of the	point (8,-9) with respect to the li	ines $2x + 3y - 4 = 0$ and $6x + 9$	y + 8 = 0 is	
	(a) Point lies on th	e same side of the lines	(b) Point lies on the	different sides of the line	
	(c) Point lies on or	ne of the lines	(d)	None of these	
139.	Consider the lines	2x + 3y = 7, $2x + 3y = 12$ and poir	nt <i>A</i> (3,–5). Then	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	(a) Point 'A' lies be	etween the lines	(b)	Sum of perpendicular dis	stance
from	A to the lines = $5/v$	13			
	(c) Distance between	een lines is $19/\sqrt{13}$	(d) None of these		
			Advance Level		
			5		
140.	A naint mayes so th	nat square of its distance from th	a_{2} noint $(3, -2)$ is numerically a	agual to its distance from the line	9
140.		equation of the locus of the poin			orkee 1974]
	(a) $13x^2 + 13y^2 - 3$		(b) $x^2 + y^2 - 11x + 1$		11.00 137 4]
	(c) $x^2 + y^2 - 11x + $		(d) None of these	0y 1 20 = 0	
141.		the $x + y = 4$ which lie at a unit d		= 10 are	
	(a) (3,1),(-7,11)	(b) (3,1),(7,11)	(c) (-3,1),(-7,11)	(d) (1,3),(-7,11)	
142.		es through a fixed point <i>P</i> . The a			d (1 1)
172.		then the coordinates of the P are		anars arawn from (2, 0),(0, 2) and	[IIT 1991]
	(a) (1, -1)	(b) (1, 1)	(c) (2, 1)	(d) (2, 2)	
143.	A line L passes thro	ough the points $(1,1)$ and $(2,0)$ a	and another line \mathcal{L}' passes thro	ough $\left(\frac{1}{2},0\right)$ and perpendicular to	L. Then
	the area of the trian	ngle formed by the lines \mathcal{L} , \mathcal{L}' and	l <i>y</i> -axis, is		
	(a) $\frac{15}{8}$	(b) $\frac{25}{4}$	(c) $\frac{25}{8}$	(d) $\frac{25}{16}$	
144.	Equation of a straig	tht line on which length of perpe	ndicular from the origin is four	units and the line makes an ang	gle of 120°

145. Locus of the points which are at equal distance from 3x + 4y - 11 = 0 and 12x + 5y + 2 = 0 and which is near the origin is [MNR 1987]

(c) $x\sqrt{3} - y = 8$ (d) $x - \sqrt{3}y + 8 = 0$

[MNR 1986]

(a) 21x - 77y + 153 = 0 (b) 99x + 77y - 133 = 0 (c) 7x - 11y = 19 (d) None of these

with the x-axis, is

(a) $x\sqrt{3} + y + 8 = 0$

146. The equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, -1). The length of the side of the triangle is

				3; MP PET 1995; Rajasthan PET 1999, 2	2000]
	(a) $\sqrt{3/2}$	(b) $\sqrt{2}$	(c) $\sqrt{2/3}$	(d) None of these	
147.	If the straight line th	rough the point $P(3,4)$ makes an	angle $\frac{\pi}{6}$ with the x-axis an	d meets the line $12x + 5y + 10 = 0$ at	Q ,
	then the length PQ is	S			
	(a) $\frac{132}{12\sqrt{3}+5}$	(b) $\frac{132}{12\sqrt{3}-5}$	(c) $\frac{132}{5\sqrt{3}+12}$	(d) $\frac{132}{5\sqrt{3}-12}$	
148.	The equations of the	e lines through the point of inters	section of the lines $x - y + 1$	= 0 and $2x - 3y + 5 = 0$ and whose di	stance
	from the point (3, 2)	is $\frac{7}{5}$, is) 3 / <	
	(a) $3x - 4y - 6 = 0$ a	and $4x + 3y + 1 = 0$	(b) $3x - 4y + 6 = 0$	and $4x - 3y - 1 = 0$.
	(c) $3x - 4y + 6 = 0$ a		(d) None of these		
149.	A point equidistant f	from the lines $4x + 3y + 10 = 0$,	5x - 12y + 26 = 0 and $7x + 24$		T 1994]
	(a) $(1,-1)$	(b) (1, 1)	(c) (0, 0)	(d) (0, 1)	
150.				x-y-5=0 at B,C and D respective	vely. If
	$\left(\frac{15}{AB}\right)^2 + \left(\frac{10}{AC}\right)^2 = \left(\frac{1}{AC}\right)^2 = \left($	$\left(\frac{6}{AD}\right)^2$, then the equation of the		(II	T 1993]
	(a) $2x + 3y + 22 = 0$			(d) None of these	
151.	If the equation of the	e locus of a point equidistant fro	m the points (a_1,b_1) and (a_2,b_3)	(b_1) is $(a_1 - a_2)x + (b_1 - b_2)y + c = 0$, t	then
	the value of 'c' is			[IIT Screenin	g 2003]
	_	$-b_1^2$) (b) $a_1^2 - a_2^2 + b_1^2 - b_2^2$			
152.	If p_1, p_2 and p_3 b	e the perpendiculars from the	points $(m^2,2m),(mm',m+m)$	a') and $(m'^2,2m')$ respectively on the	he line
	$x\cos\alpha + y\sin\alpha + \frac{\sin^2\alpha}{\cos^2\alpha}$	$\frac{a^2}{a} = 0$, then p_1, p_2 and p_3 are	in		
	(a) A.P.	(b) G,P.	(c) H.P	(d) None of these	
153.	If p and p' be perpen	ndiculars from the origin upon th	e straight lines $x \sec \theta + y \cos \theta$	$\sec \theta = a$ and	
	$x\cos\theta - y\sin\theta = a\cos\theta$	$\cos 2 heta$ respectively, then the value	of the expression $4p^2 + p^{12}$	is	
	(a) a^2	(b) 3a ²	(c) $2a^2$	(d) $4a^2$	
154.	A family of lines is gi	iven by $(1+2\lambda)x + (1-\lambda)y + \lambda = 0$	$0,\lambda$ being the parameter. Th	e line belonging to this family at the	
	maximum distance f	rom the point (1, 4) is			
	(a) $4x - y + 1 = 0$	(b) $33x + 12y + 7 = 0$	(c) $12x + 33y = 7$	(d) None of these	
155.	If the point (a, a) fall	Is between the lines $ x + y = 2$,	then		
	(a) $ a = 2$	(b) $ a = 1$	(c) $ a < 1$	(d) $ a = \frac{1}{2}$	

168.	If the	lines	ax + y + 1 = 0 ,	x + by + 1 = 0 and	x + y + c = 0 (a, b, c being	distinct and	different from	1) are	concurrent,	then
			$-+\frac{1}{1-c}=$							

(a) 0

(c) $\frac{1}{a+b+c}$

(d) None of these

169. The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if

[MP PET 2004]

(b) b + c = a

170. The three lines 3x + 4y + 6 = 0; $\sqrt{2}x + \sqrt{3}y + 2\sqrt{2} = 0$ and 4x + 7y + 8 = 0 are

Rajasthan PET 1992

(a) Sides of a triangle

(b) Concurrent

(c) Parallel

(d) None of these

Miscellaneous problems

Basic Level

171. The coordinate of the foot of perpendicular from the point (2, 3) on the line x + y - 11 = 0 are

(a) (-6,5)

(d) (6, 5)

172. The coordinate of the foot of the perpendicular from the point (2,3) on the line y = 3x + 4 are given by [MP PET 1984]

(a) $\left(\frac{37}{10}, \frac{-1}{10}\right)$

(d) $\left(\frac{2}{3}, \frac{-1}{3}\right)$

173. If the coordinates of the middle point of the portion of a line intercepted between coordinate axes (3, 2), then the equation of the line will be

[Rajasthan PET 1985; MP PET 1984]

(a) 2x + 3y = 12

(b) 3x + 2y = 12

(c) 4x - 3y = 6

(d) 5x - 2y = 10

174. Coordinates of the foot of the perpendicular drawn from (0,0) to the line joining $(a\cos\alpha, a\sin\alpha)$ and $(a\cos\beta, a\sin\beta)$, are [IIT 1982]

(b) $\left[\frac{a}{2}(\cos\alpha + \cos\beta), \frac{a}{2}(\sin\alpha + \sin\beta)\right]$

(d) None of these

175. The pedal points of a perpendicular drawn from origin on the line 3x + 4y - 5 = 0, is

[Rajasthan PET 1990]

(c) $\left(-\frac{3}{5}, -\frac{4}{5}\right)$ (d) $\left(\frac{30}{17}, \frac{19}{17}\right)$

176. The coordinates of the foot of the perpendicular from (x_1, y_1) to the line ax + by + c = 0 ar

(a) $\left(\frac{b^2x_1 - aby_1 - ac}{a^2 + b^2}, \frac{a^2y_1 - abx_1 - bc}{a^2 + b^2}\right)$

(b) $\left(\frac{b^2x_1 + aby_1 + ac}{a^2 + b^2}, \frac{a^2y_1 + abx_1 + bc}{a^2 + b^2}\right)$

(d) None of these

177.	The area of the triangle bounded by the straight line $ax + by + c = 0$, $(a, b, c \neq 0)$ and the coordinate axes is [AMU 2000]			
	(a) $\frac{1}{2} \frac{a^2}{ bc }$	(b) $\frac{1}{2} \frac{c^2}{ ab }$	(c) $\frac{1}{2} \frac{b^2}{ ac }$	(d) 0
178.	The image of the point (4,	-3) with respect to the line $y = x$	is	
	(a) $(-4, -3)$	(b) (3,4)	(c) $(-4,3)$	(d) (-3,4)
179.	The triangle formed by the	lines $x + y = 0$, $3x + y = 4$, $x + 3y$	= 4 is	
	(a) Isosceles	(b) Equilateral	(c) Right -angled	(d) None of these
180.	The diagonals of a parallel	ogram PQRS are along the lines	3x + 3y = 4 and $6x - 2y = 7$.	Then <i>PQRS</i> must be a [IIT 1998]
	(a) Rectangle	(b) Square	(c) Cyclic quadrilateral	(d) Rhombus
181.	Two points A and B have	coordinates $(1, 1)$ and $(3, -2)$ res	spectively. The coordinates	of a point distant $\sqrt{85}$ from B on the
	line through <i>B</i> perpendicul	ar to <i>AB</i> are		[AMU 2000]
	(a) (4, 7)	(b) (7, 4)	(c) (5, 7)	(d) (–5,–3)
182.	The line $3x + 2y = 24$ mee	ts y -axis at A and x -axis at B . 1	The perpendicular bisector of	of AB meets the line through $(0, -1)$
	parallel to x -axis at C . The	ne area of the triangle <i>ABC</i> is	5/	1
	(a) 182 <i>sq</i> .units	(b) 91 <i>sq.</i> units	(c) 48 <i>sq</i> . units	(d) None of these
183.	The area of a parallelograr	m formed by the lines $ax \pm by \pm c$	= 0 , is	
	(a) $\frac{c^2}{ab}$	(b) $\frac{2c^2}{ab}$	(c) $\frac{c^2}{2ab}$	(d) None of these
184.	The area of triangle formed	d by the lines $x = 0, y = 0$ and $\frac{x}{a}$	$+\frac{y}{h}=1$, is	[Rajasthan PET 1984]
184.	The area of triangle formed (a) ab	d by the lines $x = 0, y = 0$ and $\frac{x}{a}$. (b) $ab/2$	$+\frac{y}{b} = 1$, is (c) $2ab$	[Rajasthan PET 1984] (d) <i>ab</i> /3
184. 185.	(a) <i>ab</i>	(b) ab/2	(c) 2 <i>ab</i>	(d) <i>ab</i> /3
	(a) <i>ab</i>	(b) ab/2	(c) 2 <i>ab</i>	
	(a) <i>ab</i> A line <i>L</i> is perpendicular to	(b) $ab/2$ the line $5x - y = 1$ and the area	(c) 2 <i>ab</i> of the triangle formed by the	(d) ab/3 e line L and coordinate axes is 5. The [IIT 1980;Rajasthan PET 1997]
	(a) ab A line L is perpendicular to equation of the line L is (a) $x + 5y = 5$	(b) $ab/2$ the line $5x - y = 1$ and the area (b) $x + 5y = \pm 5\sqrt{2}$	(c) $2ab$ of the triangle formed by the	(d) $ab/3$ e line L and coordinate axes is 5. The
185.	(a) ab A line L is perpendicular to equation of the line L is (a) $x + 5y = 5$	(b) $ab/2$ of the line $5x - y = 1$ and the area (b) $x + 5y = \pm 5\sqrt{2}$ The following two successive training the successive training training the successive training train	(c) $2ab$ of the triangle formed by the constraints $(x - 5y = 5)$ onsformations	(d) ab/3 e line L and coordinate axes is 5. The [IIT 1980;Rajasthan PET 1997]
185.	(a) ab A line \mathcal{L} is perpendicular to equation of the line \mathcal{L} is (a) $x + 5y = 5$ The point $(4, 1)$ undergoes	(b) $ab/2$ of the line $5x - y = 1$ and the area (b) $x + 5y = \pm 5\sqrt{2}$ The following two successive training the successive training training the successive training train	(c) $2ab$ of the triangle formed by the constraints $(x - 5y = 5)$ onsformations	(d) $ab/3$ e line \mathcal{L} and coordinate axes is 5. The [IIT 1980;Rajasthan PET 1997] (d) $x-5y=5\sqrt{2}$
185.	(a) ab A line \mathcal{L} is perpendicular to equation of the line \mathcal{L} is (a) $x + 5y = 5$ The point (4, 1) undergoes (i) Reflection about the line	(b) $ab/2$ The line $5x - y = 1$ and the area (b) $x + 5y = \pm 5\sqrt{2}$ The following two successive trace $y = x$	(c) $2ab$ of the triangle formed by the constraints $(x - 5y = 5)$ onsformations	(d) $ab/3$ e line \mathcal{L} and coordinate axes is 5. The [IIT 1980;Rajasthan PET 1997] (d) $x-5y=5\sqrt{2}$
185.	(a) ab A line \mathcal{L} is perpendicular to equation of the line \mathcal{L} is (a) $x + 5y = 5$ The point (4, 1) undergoes (i) Reflection about the line positive x -axis Then the final coordinates	(b) $ab/2$ If the line $5x - y = 1$ and the area (b) $x + 5y = \pm 5\sqrt{2}$ If the following two successive trace $y = x$ of the point are	(c) $2ab$ of the triangle formed by the contract of the	(d) $ab/3$ e line L and coordinate axes is 5. The [IIT 1980;Rajasthan PET 1997] (d) $x-5y=5\sqrt{2}$ h a distance 2 units along the [MNR 1987; UPSEAT 2000]
185.	(a) ab A line L is perpendicular to equation of the line L is (a) $x + 5y = 5$ The point (4, 1) undergoes (i) Reflection about the line positive x -axis	(b) $ab/2$ The line $5x - y = 1$ and the area (b) $x + 5y = \pm 5\sqrt{2}$ The following two successive trace $y = x$	(c) $2ab$ of the triangle formed by the constraints $(x - 5y = 5)$ onsformations	(d) $ab/3$ e line L and coordinate axes is 5. The [IIT 1980;Rajasthan PET 1997] (d) $x-5y=5\sqrt{2}$ h a distance 2 units along the
185.	(a) ab A line \mathcal{L} is perpendicular to equation of the line \mathcal{L} is (a) $x + 5y = 5$ The point (4, 1) undergoes (i) Reflection about the line positive x -axis Then the final coordinates	(b) $ab/2$ If the line $5x - y = 1$ and the area (b) $x + 5y = \pm 5\sqrt{2}$ If the following two successive trace $y = x$ of the point are	(c) $2ab$ of the triangle formed by the control of the control o	(d) $ab/3$ e line L and coordinate axes is 5. The [IIT 1980;Rajasthan PET 1997] (d) $x-5y=5\sqrt{2}$ h a distance 2 units along the [MNR 1987; UPSEAT 2000]
185.	(a) ab A line \mathcal{L} is perpendicular to equation of the line \mathcal{L} is (a) $x + 5y = 5$ The point (4, 1) undergoes (i) Reflection about the line positive x -axis Then the final coordinates	(b) $ab/2$ The line $5x - y = 1$ and the area (b) $x + 5y = \pm 5\sqrt{2}$ The following two successive trace $y = x$ of the point are (b) $(3, 4)$	(c) $2ab$ of the triangle formed by the control of the control o	(d) $ab/3$ e line L and coordinate axes is 5. The [IIT 1980;Rajasthan PET 1997] (d) $x-5y=5\sqrt{2}$ h a distance 2 units along the [MNR 1987; UPSEAT 2000]
185.	(a) ab A line \mathcal{L} is perpendicular to equation of the line \mathcal{L} is (a) $x + 5y = 5$ The point (4, 1) undergoes (i) Reflection about the line positive x -axis Then the final coordinates (a) $(4, 3)$	(b) $ab/2$ of the line $5x - y = 1$ and the area (b) $x + 5y = \pm 5\sqrt{2}$ the following two successive trace $y = x$ of the point are (b) $(3, 4)$	(c) $2ab$ of the triangle formed by the constraints (i) $x-5y=5$ ansformations (ii) Translation through (c) $(1,4)$	(d) $ab/3$ e line L and coordinate axes is 5. The [IIT 1980;Rajasthan PET 1997] (d) $x-5y=5\sqrt{2}$ h a distance 2 units along the [MNR 1987; UPSEAT 2000] (d) $\left(\frac{7}{2},\frac{7}{2}\right)$
185. 186.	(a) ab A line L is perpendicular to equation of the line L is (a) $x + 5y = 5$ The point (4, 1) undergoes (i) Reflection about the line positive x -axis Then the final coordinates (a) $(4, 3)$	(b) $ab/2$ of the line $5x - y = 1$ and the area (b) $x + 5y = \pm 5\sqrt{2}$ the following two successive trace $y = x$ of the point are (b) $(3, 4)$	(c) $2ab$ of the triangle formed by the constraints (i) $x-5y=5$ ansformations (ii) Translation through (c) $(1,4)$	(d) $ab/3$ e line L and coordinate axes is 5. The [IIT 1980;Rajasthan PET 1997] (d) $x-5y=5\sqrt{2}$ h a distance 2 units along the [MNR 1987; UPSEAT 2000] (d) $\left(\frac{7}{2},\frac{7}{2}\right)$ endicular lines is constant, then the
185. 186.	(a) ab A line \mathcal{L} is perpendicular to equation of the line \mathcal{L} is (a) $x + 5y = 5$ The point (4, 1) undergoes (i) Reflection about the line positive x -axis Then the final coordinates (a) $(4, 3)$	(b) $ab/2$ of the line $5x - y = 1$ and the area (b) $x + 5y = \pm 5\sqrt{2}$ the following two successive trace $y = x$ of the point are (b) $(3, 4)$	(c) $2ab$ of the triangle formed by the constraints (i) $x-5y=5$ ansformations (ii) Translation through (c) $(1,4)$	(d) $ab/3$ e line L and coordinate axes is 5. The [IIT 1980;Rajasthan PET 1997] (d) $x-5y=5\sqrt{2}$ h a distance 2 units along the [MNR 1987; UPSEAT 2000] (d) $\left(\frac{7}{2},\frac{7}{2}\right)$

189. The locus of a point P which divides the line joining (1,0) and $(2\cos\theta, 2\sin\theta)$ internally in the ratio 2:3 for all θ , is a

axis and the AB at C, D and E respectively. If O is the origin of coordinates, then the area of OCEB is

(b) $\frac{23}{2}$ sq.units

(a) 23 sq. units

188. The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis, y-

(c) $\frac{23}{3}$ sq. units

(d) None of these

[IIT 1986]

	(a) Straight line	(b) Circle	(c) Pair of straight lines	(d) Parabola	
190.	Line L has intercepts a and	d b on the coordinate axes. When	n the axes are rotated throug	gh a given angle keeping the origin	
	fixed, the same line $\it L$ has	intercepts p and q , then		[IIT 1990; Kurukshetra CEE 1998]	
	(a) $a^2 + b^2 = p^2 + q^2$	(b) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$	(c) $a^2 + p^2 = b^2 + q^2$	(d) $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$	
191.	One side of a rectangle lie	s along the line $4x + 7y + 5 = 0$.	Two of its vertices are (–3, 1) and (1, 1). Then the equations of	
	other sides are				
	(a) $7x - 4y + 25 = 0.4x + 7$	7y = 11 and 7x - 4y - 3 = 0	(b) $7x + 4y + 25 = 0.7y + 4$	4x - 11 = 0 and $7x - 4y - 3 = 0$	
	(c) $4x - 7y + 25 = 0.7x + 4$	4y - 11 = 0 and $4x - 7y - 3 = 0$	(d) None of these	1 X	
192.	Two consecutive sides of a	a parallelogram are $4x + 5y = 0$ a	nd $7x + 2y = 0$. If the equat	ion to one diagonal is	
	11x + 7y = 9, then the equa	ation of the other diagonal is			
	(a) $x + 2y = 0$	(b) $2x + y = 0$	(c) $x - y = 0$	(d) None of these	
193.	If the sum of the distances	s of a point from two perpendicul	ar lines in a plane is 1, then	its locus is	
			[IIT 1992	2; Karnataka CET 1999; DCE 2000, 01]	
	(a) Square	(b) Circle	(c) Straight line	(d) Two intersecting lines	
194.	A pair of straight lines draw	wn through the origin form with t	he line $2x + 3y = 6$ an isosce	eles right angled triangle, then the	
	lines and the area of the tr	riangle thus formed is			
	(a) $y = 5y = 0.5y + y = 0.4$	36	(b) $3x - y = 0, x + 3y = 0, \Delta$	$\lambda = \frac{12}{1}$	
	$(a) x = 3y = 0, 3x + y = 0, \Delta$	13	(0) $3x - y = 0, x + 3y = 0, z$	$1-\frac{1}{17}$	
	(a) $x - 5y = 0, 5x + y = 0, \Delta$ (c) $5x - y = 0, x + 5y = 0, \Delta$	$1 = \frac{13}{5}$	(d) None of these		
195.	P is a point on either of the	e two lines $y - \sqrt{3} x = 2$ at a dis	tance of 5 units from their p	oint of intersection. The coordinates	
	of the foot of the perpendi	icular from <i>P</i> on the bisector of th	ne angle between them are	[Roorkee 1992]	
	(a) $\left(0, \frac{4+5\sqrt{3}}{2}\right)$ or $\left(0, \frac{4+5\sqrt{3}}{2}\right)$	$\left(\frac{-5\sqrt{3}}{2}\right)$ depending on which the p	point <i>P</i> is taken	(b) $\left(0, \frac{4+5\sqrt{3}}{2}\right)$	
	$(c) \left(0, \frac{4-5\sqrt{3}}{2}\right)$			(d) $\left(\frac{5}{2}, \frac{5\sqrt{2}}{2}\right)$	
196.	A ray of light passing thro	ough the point (1, 2) is reflected	on the x -axis at a point P	and passes through the point (5, 3).	
	Then the abscissa of the p	point Pis			
	(a) -3	(b) 13/3	(c) 13/5	(d) 13/4	
	Spectrum Career Institute (The Most Trusted Institute For CBSE/ JEE/ NEET/ FOUNDATION)				

the point is

197. The point moves such that the area of the triangle formed by it with the points (1, 5) and (3, -7) is $21 \, sq$. unit. The locus of

	(a) $6x + y - 32 = 0$	(b) $6x - y + 32 = 0$	(c) $x + 6y - 32 = 0$	(d) $6x - y - 32 = 0$
198.	If for a variable line $\frac{x}{a} + \frac{y}{b}$	= 1 the condition $a^{-2} + b^{-2} = c^{-2}$	(c is a constant) is satisfied	l, then locus of foot of perpendicular
	drawn from origin to the str	raight line is		
	(a) $x^2 + y^2 = c^2 / 2$	(b) $x^2 + y^2 = 2c^2$	(c) $x^2 + y^2 = c^2$	(d) $x^2 - y^2 = c^2$
199.		. If the axes are rotated by 45^{o} ,		
	respectively			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
				[Roorkee 1998]
	(a) $\sqrt{2}$ and 1	(b) 1 and $\sqrt{2}$	(c) $2\sqrt{2}$ and $2\sqrt{2}/3$	(d) $2\sqrt{2}/3$ and $2\sqrt{2}$
200.	The graph of the function of	$\cos x \cos(x+2) - \cos^2(x+1) $ is		[IIT 1997 Re-Exam]
	(a) A straight line passing	through $(0, -\sin^2 1)$ with slope 2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	(b) A straight line passing	through (0,0)	5/	IX
	(c) A parabola with vertex	$(1,-\sin^2 1)$	19/1	
	(d) A straight line passing	through the point $\left(\frac{\pi}{2}, -\sin^2 1\right)$ are	ad parallal to the views	
	(u) A straight line passing	through the point $(\frac{1}{2}, -\sin^2 1)$ at	id paramer to the x-axis	
201.	Two lines are drawn throug	gh (3, 4), each of which makes ar	ngle of 45° with the line x –	y = 2 , then area of the triangle
	formed by these lines is			[Rajasthan PET 2000]
	(a) 9	(b) 9/2	(c) 2	(d) 2/9
202.	A point starts moving from	(1, 2) and its projections on x and	nd y-axes are moving with ve	locities of 3 m/s and 2 m/s
	respectively. Its locus is			[Roorkee 1999]
	(a) $2x - 3y + 4 = 0$	(b) $3x - 2y + 1 = 0$	(c) $3y - 2x + 4 = 0$	(d) $2y - 3x + 1 = 0$
203.	If (-2, 6) is the image of the	e point (4, 2) with respect to line	L=0, then $L=$	[EAMCET 2002]
	(a) $3x - 2y + 5$	(b) $3x - 2y + 10$	(c) $2x + 3y - 5$	(d) $6x - 4y - 7$
204.	The area of the parallelogra	am formed by the lines $y = mx, y$	= mx + 1, y = nx and $y = nx + 1$	-1 equals
	(a) $\frac{ m+n }{(m-n)^2}$	(b) $\frac{2}{ m+n }$	(c) $\frac{1}{ m+n }$	(d) $\frac{1}{ m-n }$
205.		cept on <i>x</i> -axis and <i>y</i> -axis and it is		
	equation of line <i>AB</i> is			[Karnataka CET 2001]
	(a) $y = 4$	(b) $4x - 3y + 8 = 0$	(c) $4x - 3y = 0$	(d) $4x - 3y + 6 = 0$
206.	Area of the parallelogram v	whose sides are $x \cos \alpha + y \sin \alpha =$	$= p, \ x \cos \alpha + y \sin \alpha = q, \ x \cos \alpha$	$s \beta + y \sin \beta = r$ and
	$x\cos\beta + y\sin\beta = s \text{ is}$			
	(a) $\pm (p-q)(r-s)\csc(\alpha - \frac{1}{2})$	β)	(b) $(p+q)(r-s)\csc(\alpha+\beta)$	<i>(</i>)
	(c) $(p+q)(r+s)\csc(\alpha-\beta)$?)	(d) None of these	

207.	. If the transversal $y=m_r x$; $r=1,2,3$ cut off equal intercepts on the transversal $x+y=1$, then $1+m_1,1+m_2,1+m_3$ are in				
	(a) A.P	(b) G.P.	(c) H.P.	(d) None of these	
208.	If the extremities of the bas	se of an isosceles triangle are the	e points (2 <i>a</i> , 0) and (0, <i>a</i>) an	d the equation of one of the sides is	
	x=2a, then the area of the triangle is				
	(a) $5a^2sq$ units	(b) $\frac{5a^2}{2} sq$. units	(c) $\frac{25 a^2}{2} sq$. units	(d) None of these	
209.	The coordinates of the four	r vertices of a quadrilateral are (-	-2, 4), (-1, 2),(1, 2) and (2, 4)	taken in order. The equation of the	
	line passing through the vertex (–1, 2) and dividing the quadrilateral in two equal areas is				
	(a) $x + 1 = 0$	(b) $x + y = 1$	(c) $x-y+3=0$	(d) None of these	
210.	If a ray travelling along the lin	ne $x=1$ gets reflected from the line	x + y = 1, then the equation of	of the line along which the reflected ray	
	travels is				
	(a) $y = 0$	(b) $x - y = 1$	(c) $x = 0$	(d) None of these	
211.	If $bx + cy = a$, where a , b , c a	re of the same sign, be a line such t	that the area enclosed by the l	ine and the axes of reference is	
	$\frac{1}{8}$ unit ² , then		4 4 /		
	8		7,7/-		
	(a) b,a,c are in G.P.	(b) $b,2a,c$ are in G.P.	(c) $b, \frac{a}{2}, c$ are in A.P.	(d) b , $-2a$, c are in G.P.	
212.	Determine all values of	α for which the point (α, α^2)		ormed by the lines $2x + 3y - 1 = 0$,	
	x + 2y - 3 = 0.5x - 6y - 1 = 0			[IIT 1992]	
	(a) $-3/2 < \alpha < -1$ and $1/2$	$2 < \alpha < 1$	(b) $-3/2 < \alpha < 1$ and $-1/2$	$2 < \alpha < 1$	
	(c) $-3 < \alpha < -1$ and $2 < \alpha$	<1	(d) None of these		
213.	The symmetry in curve x^3	$+y^3 = 3axy$ along			
	(a) x-axis	(b) <i>y</i> -axis	(c) Line $y = x$	(d) Opposite quadrants	
214.	If m_1, m_2 are the roots of	the equation $x^2 - ax - a - 1 = 0$,	then the area of the triangl	e formed by the three straight lines	
	$y = m_1 x, y = m_2 x \text{ and } y = a$				
	$a^{2}(q+2)$	(,'/, /</th <th>$(a+2)$ $-a^2(a+2)$:</th> <th></th>	$(a+2)$ $-a^2(a+2)$:		
	(a) $\frac{a^2(a+2)}{2(a+1)}$, if $a > -1$		(b) $\frac{-a^2(a+2)}{2(a+1)}$, if $a < -1$		
	(c) $\frac{-a^2(a+2)}{2(a+1)}$, if $-2 < a < a$	<-1	(d) $\frac{a^2(a+2)}{2(a+1)}$, if $a < -2$		
215.	2(a+1)		2(a+1)	ugh the point $P(3,4)$ to meet the line	
213.	x = 6 at R and $y = 8$ at S , the		Short of A dais is didwir tillo	agn the point $I(3,4)$ to meet the inte	
	(a) $PR = 3 \sec \theta$	116(1	(b) $PS = 4 \csc \theta$		
		$\cos \theta$)			
	(c) $PR + PS = \frac{2(3\sin\theta + 4\cos\theta)}{\sin 2\theta}$	(0.50)	(d) $\frac{9}{(PR)^2} + \frac{16}{(PS)^2} = 1$		
216.	P(m,n) (where m , n are nat	ural numbers) is any point in the	interior of the quadrilateral	formed by the pair of lines	
	xy = 0 and the two lines $2x + y - 2 = 0$ and $4x + 5y = 20$. The possible number of positions of the point P is				
	(a) Six	(b) Five	(c) Four	(d) Eleven	