PHYSICS 1

FINAL REVIEW

CHAPTER 3

Work: $W = (F \cos \theta) \Delta x = \vec{F} \cdot \vec{\Delta x}$ (J)

Power:
$$P = \frac{W}{\Delta t} = F \cdot v \, (J/s \, or \, W)$$

ENERGY: E= K + UG + UEL

- Kinetic energy: $K = \frac{1}{2}mv^2(J)$
- Potential energy: $U_g = mgh_{}$ (J)
 - With h is the distance from potential origin to obj position.
- Elastic energy: $U_{el} = \frac{1}{2}kx^2$ (J)
 - k is force constant or spring constant (N/m)
 - x is spring deformation (m)
 - Equilibrium position: x = 0

KINETIC ENERGY THEOREM:

$$W_{net} = \Delta K = K_f - K_f = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_f^2$$

Potential Energy:

$$W_{\mathsf{gravity}} = -\Delta U_g = U_{\mathsf{gi}} - U_{\mathsf{gf}}$$

Work done by spring:

$$W = -\Delta U_{el} = \frac{1}{2}kx_1^2 - \frac{1}{2}kx_2^2$$

CONSERVATIVE VS NONCONSERVATIVE

- Conservative force: gravity, elastic
- Nonconservative force: friction, resistance,...

Note: Work of resistive forces are always negative

Conservation of energy theorem: (Định luật bảo toàn cơ năng) (use for conservative system)

$$E_i = E_f$$

$$=> K_i + U_{gi} + U_{eli} = K_f + U_{gf} + U_{elf}$$

Energy with nonconservative force

$$W_{nc} = \Delta E = (K_f + U_f) - (K_i + U_i)$$

CHAPTER 4

Linear momentum: (động lượng)

$$\vec{p} = m\vec{v}$$

Impulse:

$$\underline{L} = \Delta \vec{p} = \int d\vec{p} = \int_{t_i}^{t_f} \vec{F} \, \Delta t$$

Conservation of linear momentum:

$$\overrightarrow{p_i} = \overrightarrow{p_f}$$

TWO TYPES OF COLLISIONS:

Inelastic collision: Kinetic energy is not conserved

$$E_{lost} = \Delta K$$

Elastic collision: both momentum and kinetic energy are conserved

$$K_i = K_f$$

CHAPTER 5

Notation	Linear	Angular
	Translational	Rotational
Basic	x (m) —>	θ (rad)
quantities	v (m/s)	ω (rad/s)
	a (m/s²) —>	α (rad/s²)
Basic	a const	α const
formula	$v = v_0 + at$	$\omega = \omega_0 + \alpha t$
	$x = x_0 + v_0 t + \frac{1}{2}at^2$	$\theta = \theta + \omega t + \frac{1}{2}\alpha t^2$
	$v^{2} - v_{0}^{2} = 2a\Delta x$	$\omega^2 - \omega_0^2 = 2\alpha\Delta\theta$
Inertia	mass: m (kg)	Moment of inertia
		Rotational inertia
		❖ I =

Notation	Linear Translational	Angular Rotational
Speeding up Slowing down	a·v ā·v	α·ω α· ω
Force vs Torque	Newton's 2 nd law: F = ma (N)	$\vec{t} = \vec{r} \times \overrightarrow{F}$ or $\tau = Fd$ (d: moment/lever arm) Newton's 2^{nd} law: $\vec{\tau} = I \times \vec{\alpha}$ (N·m)
Convention of (+) direction	y up x to the right	Counterclockwise

Notation	Linear Translational	Angular Rotational
Energy E = K + U	$K = \frac{1}{2} \text{mv}^2 (J)(eV)$ $U_g = \text{mgh (y up, 0 at)}$ $U_{el} = \frac{1}{2} kx^2 (J)(eV)$	K = ½Ιω² (J)(eV)
Work	$W = \vec{F} \cdot \Delta \vec{x} \text{ or } \int_{X_{\hat{i}}}^{X_{\hat{f}}} \vec{F}(x) \cdot d\vec{x}$ (J)(eV)	$W=\vec{t}\cdot\Delta\vec{\theta}\;or\int\limits_{ heta_{i}}^{ heta_{f}}\vec{t}(\theta)\cdotd\vec{\theta}$ (J)(eV)
Power	$P = \frac{W}{\Delta t} = \vec{F} \cdot \vec{v}$ (J/s)(W)	$P = \frac{W}{\Delta t} = \vec{\tau} \cdot \vec{\omega}$ (J/s)(W)
Momentum	p=mv (kg·m/s)	$\vec{L} = \vec{r} \times \vec{p}$ $\vec{L} = I \vec{\omega} (kg \cdot m^2/s)$

Notation	Linear Translational	Angular Rotational
Impulse	$\vec{I} = \Delta \vec{p} = \vec{F} \Delta t = \int_{t_i}^{t_f} \vec{F}(t) dt$ $\Leftrightarrow \vec{F}_{net} = \frac{\Delta \vec{p}}{\Delta t} \text{ or } \frac{d\vec{p}}{dt}$	$\vec{l} = \Delta \vec{L} = \vec{\tau} \Delta t = \int_{t_i}^{t_i} \vec{\tau}(t) dt$ $\vec{\tau}_{net} = \frac{\Delta \vec{L}}{\Delta t} \text{ or } \frac{d\vec{L}}{dt}$
Momentum conservation		

Pure rotation relationship:

$$\begin{array}{ccc}
s = R\theta \\
v = R\omega \\
a_T = R\alpha \\
v^2 \\
a_R = \frac{1}{R}
\end{array}$$

$$a = \sqrt{a_T^2 + a_R^2} \\
T = R$$

Rolling motion relationship:

$$\frac{s_{cm}=R\theta}{v_{cm}=R\omega}$$

$$a_{cm}=R\alpha$$

Total kinetic energy (translation + rotation)

$$K = \frac{1}{2} I_{cm} \omega^2 + \frac{1}{2} M v_{cm}^2$$