Preliminary Amendment - Wilson

Page 3

Amendments to the Claims:

Before claim 1 on page 59 insert -- I claim:--

This listing of claims will replace all prior versions, and listings, of claims in the

application:

Listing of Claims:

(Original) A method for the preparation of nanoparticle conjugates comprising: 1.

a) providing a first reagent comprising a flexible hydrophilic polymer;

b) providing a second reagent comprising at least one functional molecule capable of

being substituted into the flexible hydrophilic polymer;

c) providing a third reagent comprising if nanoparticles;

d) contacting the first reagent with the second reagent for a period of time and under

conditions effective to allow substitution of the at least one functional molecule into the flexible

hydrophilic polymer;

e) before, during and/or after step d) providing the flexible hydrophilic polymer with a

plurality of substituents capable, optionally after deprotection, of binding to the nanoparticles to

provide an intermediate product comprising the flexible hydrophilic polymer substituted with the

at least one functional molecule and a plurality of substituents capable, optionally after

deprotection, of binding to the nanoparticles;

f) if necessary, deprotecting the plurality of substituents capable of binding to the

nanoparticles; and

Preliminary Amendment – Wilson Page 4

g) contacting the, if necessary deprotected, intermediate product of step e) with the third

reagent for a period of time and under conditions effective to allow binding of the, if necessary

deprotected, intermediate product with the nanoparticles to provide the nanoparticle conjugates

wherein the number of functional molecules conjugated per nanoparticle in the final step is

controlled by at least one of:

• controlling, by means of suitable selection of reagents and reaction conditions, the

number of functional molecules substituted into the flexible hydrophilic polymer

in step d);

• controlling, by means of suitable selection of reagents and reaction conditions, the

number of optionally protected substituents capable of binding to the

nanoparticles substituted into the flexible hydrophilic polymer in step e); and

• controlling, by means of suitable selection of reagents and reaction conditions, the

number of intermediate product molecules binding to the nanoparticles in step g).

2. (Original) A method according to claim 1 wherein control of the number of functional

molecules per nanoparticle is achieved by at least one of:

• selecting the relative sizes of the flexible hydrophilic polymer and the

nanoparticle to control the number of molecules of flexible hydrophilic polymer,

and therefore of optionally deprotected intermediate products, which can be

٠٠.

accommodated on the surface of the nanoparticle;

{00078925.DOC/}

Your Ref.: TLB/JD/P408485US

Our Ref.: 833.010

Preliminary Amendment – Wilson Page 5

• selecting the relative concentrations of the first and second reagents in step d) to

control the number of functional molecule (s) substituted into each molecule of

flexible hydrophilic polymer; and

• selecting the number per molecule of flexible hydrophilic polymer of substituent

molecules capable, optionally after deprotection, of binding to the nanoparticles.

3. (Currently Amended) A method according to claim 1-or-claim 2 further comprising

determining at least approximately the desired number of, if necessary deprotected, intermediate

product molecules to be bound to each nanoparticle in step g) and selecting the relative size of

the flexible hydrophilic polymer and the nanoparticle such that the number of, if necessary

deprotected, intermediate product molecules which can be accommodated on the surface of each

nanoparticle at least approximately matches the desired number.

4. (Currently Amended) A method according to any one of claims 1-to-3 further comprising

determining at least approximately the desired number of functional molecule (s) to be

substituted into each molecule of flexible hydrophilic polymer in step d) and selecting

accordingly the reagent concentrations and reaction conditions in step d).

5. (Currently Amended) A method according to any one of claims 1-to 4 further comprising

determining at least approximately the desired number of substituent molecules capable,

optionally after deprotection, of binding to the nanoparticles to be substituted into each molecule

{00078925.DOC/}

Your Ref.: TLB/JD/P408485US

Our Ref.: 833.010

Preliminary Amendment - Wilson

Page 6

of flexible hydrophilic polymer in step e) and selecting accordingly the reagent concentrations

and reaction conditions in step e).

(Currently Amended) A method according to any one of claims 1-to 5 wherein the 6.

relative size of the flexible hydrophilic polymer and the nanoparticle are selected to be effective

to allow binding in step g) of a controlled number of the, if necessary deprotected, intermediate

product molecules with the nanoparticles.

(Original) A method for the preparation of a nanoparticle conjugates comprising: 7.

i) providing a first reagent comprising a flexible hydrophilic polymer having a plurality

of substituents capable, optionally after deprotection, of binding to a nanoparticle;

ii) providing a second reagent comprising one or more functional molecules suitable for

binding to target molecules, optionally in a biomolecular assay, and capable of being substituted

into the flexible hydrophilic polymer;

iii) providing a third reagent comprising nanoparticles capable of binding to the plurality

of substituents of the flexible hydrophilic polymer;

iv) contacting the first reagent with the second reagent for a period of time and under

conditions effective to allow the substitution of the at least one 'functional molecule into the

Preliminary Amendment – Wilson

Page 7

flexible hydrophilic polymer and provide an intermediate product comprising the flexible

hydrophilic polymer substituted with the at least one functional molecule; and

v) contacting the intermediate product of step iv) with the third reagent for a period of

time and under conditions effective to allow binding of the intermediate product with the

nanoparticles to provide the nanoparticle conjugate.

8. (Currently Amended) A method according to any one of claims 1-to-7 wherein the

number of functional molecules substituted into the flexible hydrophilic polymer in the

intermediate product is determined before the step of contacting the intermediate product with

the third reagent.

9. (Currently Amended) A method according to any one of claims 1-to 8 wherein the

number of functional molecules per molecule of the flexible hydrophilic polymer in the

intermediate product is determined before the step of contacting the intermediate product with

the third reagent.

10. (Currently Amended) A method according to any one of claims 1 to 9 including further

comprising the step of determining the number of intermediate product molecules bound to the

nanoparticles in the nanoparticle conjugates.

{00078925.DOC/}

Your Ref.: TLB/JD/P408485US

Our Ref.: 833.010

Preliminary Amendment – Wilson

Page 8

11. (Currently Amended) A method according to any one of claims 1 to 10 including further

comprising the step of determining the number of intermediate product molecules bound per

nanoparticle in the nanoparticle conjugates.

12. (Currently Amended) A method according to any one of claims 1-to 11 including further

comprising the step of determining at least approximately the average size of the nanoparticles

and selecting the hydrophilic flexible polymer to be of an overall size (considering at least one or

more of molecular weight, chain length and degree of chain branching) such that the nanoparticle

conjugate is able to accommodate a mean number z of flexible hydrophilic polymer molecules

around its surface.

13. (Original) A method according to claim 12 wherein z is selected according to the

intended application of the nanoparticle conjugate.

14. (Original) A method for producing a nanoparticle conjugate comprising:

I) providing a nanoparticle having a surface area x;

II) providing a flexible hydrophilic polymer having a chain length and degree of

branching such that a molecule of the polymer has the capacity, when suitably conformed, to

envelop a surface area x/y;

III) substituting the polymer with a plurality of conjugation substituents capable of

binding to the nanoparticle and with at least one functional molecule capable of imparting a

Preliminary Amendment - Wilson

Page 9

function in a biomolecular assay or other application to the nanoparticle conjugate; and

IV) conjugating approximately y molecules of the polymer to the nanoparticle via the

said

plurality of conjugation substituents; wherein the flexible hydrophilic polymer is selected

with regard to the variable y to provide a nanoparticle conjugate having an at least approximately

predetermined number of flexible hydrophilic polymer molecules per nanoparticle.

(Currently Amended) A nanopartcile conjugate obtained by a method according to any 15.

one of claims 1 to 14.

(Currently Amended) A nanoparticle conjugate derivable from a method according to 16.

any one of claims 1 to 14 which comprises[,] on average[,] a single molecule of intermediate

product conjugated to each nanoparticle.

(Currently Amended) A nanoparticle conjugate derivable from a method according to 17.

any one of claims 1 to 14 wherein the nanoparticles are metallic and are produced from Au, Ag,

Cu, Pd or composites thereof.

(Currently Amended) A nanoparticle conjugate derivable from a method according to 18.

any one of claims 1-to 14 wherein the nanoparticles are semiconductors.

Preliminary Amendment - Wilson Page 10

(Original) A nanoparticle conjugate as claimed in claim 18, wherein the nanoparticles 19.

are core-shell quantum dots comprising a core having a selected band gap energy and a shell

having a greater band gap energy than the core.

1920. (Currently Amended) A semiconductor nanoparticle conjugate as in claim 19[,] wherein

the core of the quantum dot has the formula YX, where Y is selected from Zn, Cd, Hg and

combinations thereof, and X is selected from S, Se, Te and combinations thereof, and the shell of

the quantum dots has the formula AB, where A is selected from Zn, Cd and mixtures thereof, and

B is selected from S, Se, Te and mixtures thereof, such that AB is not identical to YX and

wherein AB has a higher band gap energy than the core of the quantum dot.

2021. (Currently Amended) A nanoparticle conjugate derivable from a method according to any

one of claims 1, further comprising to 14 which comprises a nanoparticle conjugated to a

flexible hydrophilic polymer having at least one functional molecule thereon, the conjugation

being provided by multiple mercapto groups.

2122. (Currently Amended) A nanoparticle conjugate comprising a nanoparticle conjugated to

afunctionalised flexible hydrophilic polymer via a plurality of mercapto groups.