

Lesson #05Data Cleaning Basic

Update from repository

git clone https://github.com/ivanovitchm/datascience_one_2019_1

Or

git pull

Dataset - Laptops computers

1	Manufacturer	Model Name	Category	Screen Size	Screen	СРИ	RAM	Storage	GPU	Operating System	Operating System Version	Weight	Price (Euros)
0	Apple	MacBook Pro	Ultrabook	13.3"	IPS Panel Retina Display 2560x1600	Intel Core i5 2.3GHz	8GB	128GB SSD	Intel Iris Plus Graphics 640	macOS	NaN	1.37kg	1339,69
1	Apple	Macbook Air	Ultrabook	13.3"	1440x900	Intel Core i5 1.8GHz	8GB	128GB Flash Storage	Intel HD Graphics 6000	macOS	NaN	1.34kg	898,94
2	НР	250 G6	Notebook	15.6"	Full HD 1920x1080	Intel Core i5 7200U 2.5GHz	8GB	256GB SSD	Intel HD Graphics 620	No OS	NaN	1.86kg	575,00
3	Apple	MacBook Pro	Ultrabook	15.4"	IPS Panel Retina Display 2880x1800	Intel Core i7 2.7GHz	16GB	512GB SSD	AMD Radeon Pro 455	macOS	NaN	1.83kg	2537,45
4	Apple	MacBook Pro	Ultrabook	13.3"	IPS Panel Retina Display 2560x1600	Intel Core i5 3.1GHz	8GB	256GB SSD	Intel Iris Plus Graphics 650	macOS	NaN	1.37kg	1803,60

Reading CSV files with encodings

Character representation of binary in three encodings

Binary Representation	Encoding	Characters
11000100 01000010	Latin-1	ÄB
11000100 01000010	Mac Roman	fB
11000100 01000010	GB18030	腂

Binary representation of characters in three encodings

Characters	Encoding	Binary Representation
Føö	Latin-1	01000110 11111000 11110110
Føö	Mac Roman	01000110 10111111 10011010
Føö	UTF-8	01000110 11000011 10111000 11000011 101101


```
import pandas as pd
```

```
laptops = pd.read csv("laptops.csv")
laptops.head()
           laptops = pd.read csv("laptops.csv",encoding="Latin-1")
pandas/ libs/parsers.pyx in pandas. libs.parsers.TextReader. convert tokens()
pandas/ libs/parsers.pyx in pandas. libs.parsers.TextReader. convert with dtype()
pandas/ libs/parsers.pyx in pandas. libs.parsers.TextReader. string convert()
pandas/ libs/parsers.pyx in pandas. libs.parsers. string box utf8()
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe9 in position 4: invalid continuation byte
```


Cleaning column names

```
['Manufacturer',
 'Model Name',
                       def clean col(col):
 'Category',
                           col = col.strip()
                           col = col.replace("(","")
 'Screen Size',
                           col = col.replace(")","")
 'Screen',
                           col = col.lower()
                           return col
 'CPU',
 'RAM',
                        laptops.columns = [clean_col(c) for c in laptops.columns]
 ' Storage',
                       laptops.columns.tolist()
 'GPU',
 'Operating System',
 'Operating System Version',
 'Weight',
 'Price (Euros)']
```


Converting a string column to numeric

	category	screen_size	screen
0	Ultrabook	13.3"	IPS Panel Retina Display 2560x1600
1	Ultrabook	13.3"	1440x900
2	Notebook	15.6"	Full HD 1920x1080
3	Ultrabook	15.4"	IPS Panel Retina Display 2880x1800
4	Ultrabook	13.3"	IPS Panel Retina Display 2560x1600

Converting a string column to numeric

```
1 laptops["screen size"] = laptops["screen size"].str.replace('"','')
  2 laptops["screen size"].unique()
array(['13.3', '15.6', '15.4', '14.0', '12.0', '11.6', '17.3', '10.1',
       '13.5', '12.5', '13.0', '18.4', '13.9', '12.3', '17.0', '15.0',
       '14.1', '11.3'], dtype=object)
  1 laptops["screen size"] = laptops["screen size"].astype(float)
  2 print(laptops["screen size"].dtype)
  3 laptops["screen size"].unique()
float64
array([13.3, 15.6, 15.4, 14. , 12. , 11.6, 17.3, 10.1, 13.5, 12.5, 13. ,
       18.4, 13.9, 12.3, 17., 15., 14.1, 11.3])
```

#tip

Extracting Values from the start of strings

```
Intel Iris Plus Graphics 640
                                         Intel HD Graphics 6000
laptops["gpu"].head()
                                         Intel HD Graphics 620
                                         AMD Radeon Pro 455
                                       4 Intel Iris Plus Graphics 650
                                       0 [Intel, Iris, Plus, Graphics, 640]
                                        [Intel, HD, Graphics, 6000]
(laptops["gpu"]
                                       2 [Intel, HD, Graphics, 620]
    .head()
    .str.split()
                                       3 [AMD, Radeon, Pro. 455]
                                       4 [Intel, Iris, Plus, Graphics, 650]
```


Extracting Values from the start of strings

```
(laptops["gpu"]
    .head()
    .str.split(n=1)
```

```
(laptops["gpu"]
    .head()
    .str.split(n=1, expand=True)
```

```
[Intel, Iris Plus Graphics 640]
[Intel, HD Graphics 6000]
[Intel, HD Graphics 620]
```

[AMD, Radeon Pro 455]

[Intel, Iris Plus Graphics 650]

```
Intel Iris Plus Graphics 640
Intel HD Graphics 6000
Intel HD Graphics 620
AMD Radeon Pro 455
Intel
      Plus Graphics 650
```


Extracting Values from the end of strings

```
print(laptops["screen"].unique().shape)
print(laptops["screen"].unique()[:10])

(40,)
['IPS Panel Retina Display 2560x1600' '1440x900' 'Full HD 1920x1080'
'IPS Panel Retina Display 2880x1800' '1366x768'
'IPS Panel Full HD 1920x1080' 'IPS Panel Retina Display 2304x1440'
'IPS Panel Full HD / Touchscreen 1920x1080'
'Full HD / Touchscreen 1920x1080' 'Touchscreen / Quad HD+ 3200x1800']
```


Extracting Values from the end of strings

sentences

Joe's favorite color is orange

Lisa's umbrella is purple

Rashid's new shirt is blue

Joanne's new puppy is black

Carrie's soccer team wears red

	*	
)	Joe's favorite color is	orange
	Lisa's umbrella is	purple
	Rashid's new shirt is	blue
	Joanne's new puppy is	black
	Carrie's soccer team wears	red

sentenes.str.rsplit(n=1,expand=True)

Extracting Values from the end of strings

```
laptops.loc[:9, "screen"].str.rsplit(n=1,expand=True)
```

```
0
   IPS Panel Retina Display 2560x1600
1
               1440x900
                               None
2
                 Full HD 1920x1080
  IPS Panel Retina Display 2880x1800
   IPS Panel Retina Display 2560x1600
5
               1366x768
                               None
   IPS Panel Retina Display
                         2880x1800
7
               1440x900
                               None
                  Full HD 1920x1080
8
         IPS Panel Full HD 1920x1080
9
```

```
screen_res = laptops["screen"].str.rsplit(n=1, expand=True)

# giving the columns string labels makes them easier to work with
screen_res.columns = ["A", "B"]

# for rows where the value of column "B" is null, fill in the
# value found in column "A" for that row
screen_res.loc[screen_res["B"].isnull(), "B"] = screen_res["A"]

laptops["screen_resolution"] = screen_res["B"]
```


Correcting bad values

```
s = pd.Series(["pair", "oranje", "bananna", "oranje", "oranje", "oranje"])
```

```
1 corrections = {
      "pair": "pear",
      "oranje": "orange",
45
      "bananna": "banana"
 s = s.map(corrections)
8 print(s)
```

```
0
       pear
     orange
     banana
     orange
     orange
     orange
dtype: object
```

re-run

```
s.map(corrections)
```

```
NaN
     NaN
     NaN
     NaN
     NaN
     NaN
dtype: object
```


Dropping missing values

print(df.dropna())

	Α	В	C	D
W	6.0	3.0	7.0	4.0
У	4.0	3.0	7.0	7.0

print(df.dropna(axis=1))

	Α	В	D
W	6.0	3.0	4.0
Χ	6.0	2.0	7.0
У	4.0	3.0	7.0
Z	2.0	5.0	1.0

225	Α	В	С	D
W	6.0	3.0	7.0	4.0
Χ	6.0	2.0	NaN	7.0
у	4.0	3.0	7.0	7.0
Z	2.0	5.0	NaN	1.0

Challenge: extracting storage information

```
laptops.loc[76:81, "storage"]
76
                    2TB HDD
77
      128GB SSD +
                    1TB HDD
78
                    1TB HDD
79
      128GB SSD +
                    1TB HDD
80
                  256GB SSD
81
                  512GB SSD
Name: storage, dtype: object
```

	storage_1_capacity_gb	storage_1_type	storage_2_capacity_gb	storage_2_type
76	2000.0	HDD	NaN	None
77	128.0	SSD	1000.0	HDD
78	1000.0	HDD	NaN	None
79	128.0	SSD	1000.0	HDD
80	256.0	SSD	NaN	None
81	512.0	SSD	NaN	None

