Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

catena-Poly[diimidazolium [bis(μ -pyridine-2,5-dicarboxylato)bis[diaqua-praseodymate(III)]]-bis(μ -pyridine-2,5-dicarboxylato)]

Wenjun Zhang,^a Yanmei Chen,^a Tao Lei,^a Yahong Li^{a,b*} and Wu Li^a

^aQinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, People's Republic of China, and ^bKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou 215123, People's Republic of China Correspondence e-mail: liyahong@suda.edu.cn

Received 24 March 2011; accepted 3 April 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.015; wR factor = 0.043; data-to-parameter ratio = 11.7.

The title compound $\{(C_3H_5N_2)_2[Pr_2(C_7H_3NO_4)_4(H_2O)_4]\}_n$, has a chain structure featuring a dimeric unit consisting of two Pr^{III} atoms within a dodecahedral environment. Each of the metal cations is coordinated by two N atoms and two O atoms from two pyridine-2,5-dicarboxylate ligands, two O atoms from another two pyridine-2,5-dicarboxylate ligands and two water O atoms. The Pr^{III} ions are bridged by two ligands along the c axis, forming the dimeric unit, and these are connected by four ligands along the b axis, forming a chain. $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds are found in the structure.

Related literature

For praseodymium complexes with pyridine-dicarboxylate ligands, see: Chen *et al.* (2011); Zhao *et al.* (2009); Song *et al.* (2006); Chi *et al.* (2009). For complexes with similar structures, see: Li, Zhang *et al.* (2009); Li, Chen *et al.* (2009); Huang *et al.* (2009); Zhang *et al.* (2005, 2007).

Experimental

Crystal data

 $(C_3H_5N_2)_2[Pr_2(C_7H_3NO_4)_4(H_2O)_4]$ $M_r = 1152.48$ Triclinic, $P\overline{1}$ a = 9.5444 (19) Å

$$\begin{array}{lll} b = 10.667 \ (2) \ \text{Å} & Z = 1 \\ c = 11.222 \ (2) \ \text{Å} & \text{Mo } K\alpha \text{ radiation} \\ \alpha = 64.63 \ (3)^\circ & \mu = 2.47 \text{ mm}^{-1} \\ \beta = 79.50 \ (3)^\circ & T = 293 \text{ K} \\ \gamma = 87.50 \ (3)^\circ & 0.19 \times 0.16 \times 0.09 \text{ mm} \\ V = 1014.3 \ (3) \ \text{Å}^3 & \end{array}$$

Data collection

Bruker SMART CCD area-detector diffractometer 3561 independent reflections 3561 independent reflections 3468 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.020$ $R_{\rm int} = 0.020$

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.015 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.043 & \text{independent and constrained} \\ S=1.04 & \text{refinement} \\ 3561 \text{ reflections} & \Delta\rho_{\max}=0.33 \text{ e Å}^{-3} \\ 305 \text{ parameters} & \Delta\rho_{\min}=-0.45 \text{ e Å}^{-3} \end{array}$

Table 1 Selected geometric parameters $(\mathring{A}, °)$.

Pr1-O5	2.3835 (17)	Pr1-O10	2.4643 (18)
$Pr1-O4^{i}$	2.4193 (16)	Pr1-O9	2.459 (2)
$Pr1-O7^{ii}$	2.4366 (16)	Pr1-N1	2.6484 (18)
Pr1-O1	2.4407 (15)	Pr1-N2	2.677 (2)

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y, -z + 1.

Table 2 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
N4—H4···O2 ^{iv}	0.86	1.85	2.679 (3)	160
$N3-H3A\cdots O6^{v}$	0.86	1.88	2.735 (3)	172
$N3-H3A\cdots O5^{v}$	0.86	2.59	3.063 (3)	115
$O9-H9A\cdots O1^{vi}$	0.77(3)	1.98 (3)	2.743 (3)	172 (3)
$O10-H10A\cdots O3^{i}$	0.88 (4)	1.77 (4)	2.645 (3)	173 (3)
$O10-H10A\cdots O4^{i}$	0.88 (4)	2.44 (3)	2.894(3)	113 (3)
$O10-H10B\cdots O3^{ii}$	0.73 (4)	2.10(4)	2.789 (3)	157 (4)
$O9-H9B\cdotsO8^{ii}$	0.73(3)	1.96 (4)	2.644 (3)	157 (3)

Symmetry codes: (i) x-1,y,z; (ii) -x+1,-y,-z+1; (iv) x,y,z-1; (v) -x,-y+1,-z+1; (vi) -x,-y,-z+2.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of China (20872105), the Qinglan Project of Jiangsu Province (Bu109805) and the Natural Science Foundation of Qinghai Province (2006-G-105).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2277).

metal-organic compounds

References

- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y., She, S., Zheng, L., Hu, B., Chen, W., Xu, B., Chen, Z., Zhou, F. & Li, Y. (2011). *Polyhedron*. doi:10.1016/j.poly.2011.02.017.
- Chi, Y.-X., Niu, S.-Y. & Jin, J. (2009). *Inorg. Chim. Acta*, **362**, 3821–3828.
- Huang, Y.-G., Jiang, F.-L., Yuan, D.-Q., Wu, M.-Y., Gao, Q., Wei, W. & Hong, M.-C. (2009). J. Solid State Chem. 182, 215–222.
- Li, S., Chen, Y., He, H.-M. & Ma, Y.-F. (2009). Acta Cryst. E65, m411.
- Li, S., Zhang, F.-L., Wang, S.-B. & Bai, H.-L. (2009). *Acta Cryst.* E**65**, m410. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.
- Song, Y.-S., Yan, B. & Weng, L.-H. (2006). *Inorg. Chem. Commun.* 9, 567–570.
 Zhang, X., Huang, D., Chen, C., Liu, Q., Liao, D. & Li, L. (2005). *Inorg. Chem. Commun.* 8, 22–26.
- Zhang, F., Yu, B., Wang, X.-Q., Shen, G.-Q. & Shen, D.-Z. (2007). *Acta Cryst*. E63, m2069–m2070.
- Zhao, X.-Q., Zuo, Y., Gao, D.-L., Zhao, B., Shi, W. & Cheng, P. (2009). Cryst. Growth Des. 9, 3948–3957.

supplementary m	aterials	

Acta Cryst. (2011). E67, m569-m570 [doi:10.1107/S1600536811012360]

catena-Poly[diimidazolium [bis(μ -pyridine-2,5-dicarboxylato)bis[diaquapraseodymate(III)]]-bis(μ -pyridine-2,5-dicarboxylato)]

W. Zhang, Y. Chen, T. Lei, Y. Li and W. Li

Comment

Pyridine-dicarboxylic acids as multidentate ligands containing N– and O– donors, have been widely used in preparing many kinds of coordination complexes especially in complexes containing rare earth metals (Chen *et al.* 2011, Zhao *et al.* 2009). Many complexes based on pyridine-2,5-dicarboxylic acid have been prepared (Li, Zhang *et al.* 2009, Li, Chen *et al.* 2009, Huang *et al.* 2009, Zhang *et al.* 2007, Zhang *et al.* 2005), but no complex containing Pr element, except two 3 d-4f complexes (Song *et al.* 2006, Chi *et al.* 2009) was reported. The reaction of pyridine-2,5-dicarboxylic acid with praseodymium salt under hydrothermal conditions results in the formation of a complex formulated as {(C₃N₂H₅)[(C₇H₃NO₄)₂Pr(H₂O)₂]}_n, and the complex has been structurally characterized by elemental analysis and X-ray diffraction. The structure of 1 viewed down the *b*-axis was presented in Fig. 2. Hydrogen banding packing diagram of 1 view down the *b*-axis was shown in Fig. 3. Selected band lengthes and angles were summarized in Table 1. The distances of the hydrogen bands were listed in Table 2.

Experimental

The compound 1 was synthesized by solvothermal reaction. A mixture of pyridine-2,5-dicarboxylic acid (0.0334 g, 0.2 mmol), $Pr(NO_3)_3.6H_2O$ (0.0230 g, 0.05 mmol), imidazole (0.0361 g, 0.53 mmol) and water (3 ml) was sealed in a 7 ml glass tube and heated to 120 o C for 96 h. After cooling to room temperature, light green crystals were obtained.

Refinement

Hydroxy H atoms were placed in calculated positions with O—H = 0.85 Å, and torsion angles were refined, Water H atoms were placed through fourier electronic density, $U_{iso}(H) = 1.5 U_{eq}(O)$. Other H atoms were placed in calculated positions with C—H = 0.93 (aromatic and imidazole), N—H = 0.86 (imidazole) and refined in riding mode, with $U_{iso}(H) = 1.2 U_{eq}(C \text{ or N})$.

Figures

Fig. 1. Molecular structure of 1 showing 50% probability displacement ellipsoids.

Fig. 2. One-dimensional chain structure of 1 viewed down the b-axis

Fig. 3. Hydrogen bonding packing diagram of 1 viewed down the b-axis.

catena-Poly[diimidazolium [bis(µ-pyridine-2,5-dicarboxylato)bis[diaquapraseodymate(III)]]-bis(µ-pyridine-2,5dicarboxylato)]

Crystal data

 $(C_3H_5N_2)_2[Pr_2(C_7H_3NO_4)_4(H_2O)_4]$ Z = 1

 $M_r = 1152.48$ F(000) = 568

Triclinic, $P\overline{1}$ char

 $D_{\rm x} = 1.887 \; {\rm Mg \; m}^{-3}$ Hall symbol: -p 1

a = 9.5444 (19) ÅMo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ b = 10.667 (2) ÅCell parameters from 3561 reflections

 $\theta = 2.6-25.5^{\circ}$ c = 11.222 (2) Å $\alpha = 64.63 (3)^{\circ}$ $\mu = 2.47 \text{ mm}^{-1}$ $\beta = 79.50 (3)^{\circ}$ T = 293 K

 $\gamma = 87.50 (3)^{\circ}$ Block, light green $0.19\times0.16\times0.09~mm$ $V = 1014.3 (3) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector 3561 independent reflections

diffractometer

Radiation source: fine-focus sealed tube 3468 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.020$ graphite

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$ ω scans

Absorption correction: multi-scan $h = -11 \rightarrow 11$ (SADABS; Bruker, 2001)

 $k = -12 \rightarrow 12$

 $T_{\min} = 0.652, T_{\max} = 0.809$ 14917 measured reflections $l = -13 \rightarrow 13$

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2

methods

Least-squares matrix: full Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring $R[F^2 > 2\sigma(F^2)] = 0.015$

H atoms treated by a mixture of independent and $wR(F^2) = 0.043$

constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.0271P)^2 + 0.5143P]$ S = 1.04

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.068$ 3561 reflections

305 parameters $\Delta \rho_{\text{max}} = 0.33 \text{ e Å}^{-3}$

 $\Delta \rho_{min} = -0.45 \text{ e Å}^{-3}$ 0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

		1 1	1 1	1
	x	y	z	$U_{\rm iso}$ */ $U_{\rm eq}$
Pr1	0.194718 (10)	0.107410 (10)	0.725374 (9)	0.01889 (5)
O1	0.17790 (15)	0.14537 (16)	0.92701 (14)	0.0277(3)
N1	0.43859 (18)	0.13489 (18)	0.79437 (16)	0.0228 (4)
O4	0.94311 (15)	0.15185 (18)	0.73503 (16)	0.0337 (4)
N2	0.36969 (19)	0.25158 (18)	0.49260 (17)	0.0250(4)
C5	0.5686 (2)	0.1198 (2)	0.7350(2)	0.0252 (4)
H5	0.5761	0.0949	0.6642	0.030*
O9	0.0720(2)	-0.1109 (2)	0.89507 (19)	0.0386 (4)
O5	0.19850 (19)	0.35430 (16)	0.63801 (16)	0.0379 (4)
O10	0.1175 (2)	0.0591 (2)	0.5508 (2)	0.0473 (5)
C7	0.8356 (2)	0.1232 (2)	0.7005 (2)	0.0263 (5)
O3	0.83952 (17)	0.0841 (2)	0.60974 (18)	0.0429 (4)
C1	0.4287 (2)	0.1698 (2)	0.89743 (19)	0.0205 (4)
C6	0.2795 (2)	0.1837 (2)	0.9634(2)	0.0248 (4)
O6	0.2580(2)	0.57179 (18)	0.49073 (19)	0.0560(6)
C2	0.5464 (2)	0.1908 (2)	0.9421 (2)	0.0269 (5)
H2	0.5361	0.2152	1.0133	0.032*
C4	0.6928 (2)	0.1394(2)	0.7731 (2)	0.0223 (4)
C8	0.3728 (2)	0.3897 (2)	0.4479 (2)	0.0291 (5)
O2	0.26769 (19)	0.2280(2)	1.0488 (2)	0.0498 (5)
C13	0.2689(3)	0.4449 (2)	0.5310(2)	0.0325 (5)
C3	0.6802(2)	0.1750(2)	0.8796 (2)	0.0264 (4)
Н3	0.7611	0.1882	0.9088	0.032*
C12	0.4576 (2)	0.1982 (2)	0.4206 (2)	0.0263 (4)
H12	0.4542	0.1025	0.4494	0.032*
N4	0.0958 (3)	0.3420(3)	0.1892 (2)	0.0493 (6)
H4	0.1334	0.2930	0.1485	0.059*
C15	-0.0147 (3)	0.3044 (3)	0.2871 (3)	0.0434 (6)
H15	-0.0651	0.2196	0.3246	0.052*
C17	0.0534 (4)	0.5118 (3)	0.2475 (4)	0.0757 (12)
H17	0.0578	0.5961	0.2529	0.091*
N3	-0.0426 (3)	0.4050(2)	0.3233 (2)	0.0471 (6)
Н3А	-0.1110	0.4039	0.3854	0.056*

C16	0.1408 (4)	0.4721 (3)	0.1631 (4)	0.0760 (12)
H16	0.2177	0.5237	0.0987	0.091*
C11	0.5533 (2)	0.2772 (2)	0.3059 (2)	0.0262 (5)
C14	0.6545 (2)	0.2095 (2)	0.2339 (2)	0.0259 (4)
C10	0.5552 (3)	0.4201 (3)	0.2616 (3)	0.0439 (7)
H10	0.6176	0.4769	0.1845	0.053*
C9	0.4634 (3)	0.4765 (2)	0.3334 (3)	0.0460(7)
Н9	0.4624	0.5722	0.3051	0.055*
O8	0.7309(2)	0.28565 (18)	0.12655 (17)	0.0446 (5)
O7	0.65553 (16)	0.07807 (15)	0.28965 (15)	0.0308(3)
H9A	0.002 (4)	-0.129 (3)	0.946 (3)	0.041 (8)*
H10A	0.025 (4)	0.069(3)	0.564(3)	0.062 (10)*
H10B	0.149 (4)	0.034 (4)	0.501 (4)	0.066 (12)*
Н9В	0.111 (4)	-0.174 (3)	0.904(3)	0.047 (10)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pr1	0.01230 (7)	0.02507 (7)	0.02203 (7)	0.00136 (5)	0.00114 (5)	-0.01435 (5)
O1	0.0164 (7)	0.0434 (9)	0.0278 (7)	-0.0005 (6)	0.0028 (6)	-0.0218 (7)
N1	0.0155 (8)	0.0325 (9)	0.0258 (8)	0.0028 (7)	-0.0017 (7)	-0.0184 (7)
O4	0.0152 (8)	0.0515 (10)	0.0452 (9)	0.0058 (7)	-0.0054 (7)	-0.0313 (8)
N2	0.0237 (9)	0.0243 (9)	0.0255 (8)	0.0045 (7)	0.0023 (7)	-0.0122 (7)
C5	0.0183 (11)	0.0369 (12)	0.0272 (10)	0.0040 (9)	-0.0011 (8)	-0.0213 (9)
O9	0.0263 (9)	0.0326 (10)	0.0447 (10)	0.0001 (8)	0.0163 (8)	-0.0139 (8)
O5	0.0420 (10)	0.0259 (8)	0.0365 (9)	0.0040 (7)	0.0156 (7)	-0.0139 (7)
O10	0.0226 (10)	0.0907 (16)	0.0575 (12)	0.0071 (9)	-0.0061 (8)	-0.0598 (12)
C7	0.0170 (11)	0.0327 (11)	0.0320 (11)	0.0055 (9)	-0.0022 (9)	-0.0178 (9)
O3	0.0201 (8)	0.0775 (13)	0.0533 (10)	0.0061 (8)	-0.0017 (7)	-0.0512 (10)
C1	0.0184 (10)	0.0224 (9)	0.0210 (9)	0.0024 (8)	0.0003 (8)	-0.0113 (8)
C6	0.0210 (11)	0.0292 (11)	0.0259 (10)	0.0025 (9)	0.0015 (8)	-0.0157 (9)
O6	0.0734 (14)	0.0263 (9)	0.0484 (11)	0.0104 (9)	0.0250 (10)	-0.0122 (8)
C2	0.0255 (11)	0.0359 (12)	0.0248 (10)	0.0018 (9)	-0.0016 (9)	-0.0192 (9)
C4	0.0166 (10)	0.0255 (10)	0.0240 (10)	0.0028 (8)	-0.0013 (8)	-0.0111 (8)
C8	0.0301 (12)	0.0260 (11)	0.0286 (11)	0.0062 (9)	0.0020 (9)	-0.0126 (9)
O2	0.0279 (9)	0.0867 (14)	0.0640 (12)	0.0029 (9)	0.0032 (8)	-0.0643 (12)
C13	0.0342 (13)	0.0275 (12)	0.0332 (11)	0.0086 (10)	0.0041 (10)	-0.0155 (10)
C3	0.0187 (10)	0.0351 (11)	0.0300 (10)	0.0024 (9)	-0.0059(8)	-0.0177 (9)
C12	0.0277 (11)	0.0218 (10)	0.0274 (10)	0.0045 (9)	0.0025 (9)	-0.0117 (9)
N4	0.0505 (14)	0.0556 (14)	0.0455 (13)	0.0149 (12)	0.0073 (11)	-0.0326 (11)
C15	0.0455 (16)	0.0406 (14)	0.0449 (14)	0.0077 (12)	0.0026 (12)	-0.0239 (12)
C17	0.080(3)	0.0472 (18)	0.089(3)	-0.0075 (17)	0.039(2)	-0.0394 (18)
N3	0.0485 (14)	0.0444 (12)	0.0450 (12)	0.0069 (11)	0.0155 (11)	-0.0259 (10)
C16	0.074(2)	0.0543 (19)	0.078 (2)	-0.0050 (17)	0.0407 (19)	-0.0288 (17)
C11	0.0247 (11)	0.0277 (11)	0.0249 (10)	0.0054 (9)	0.0004 (9)	-0.0122 (9)
C14	0.0209 (11)	0.0324 (11)	0.0271 (10)	0.0040 (9)	0.0000 (9)	-0.0172 (9)
C10	0.0512 (16)	0.0282 (12)	0.0367 (13)	0.0020 (11)	0.0191 (12)	-0.0099 (10)
C9	0.0570 (18)	0.0217 (11)	0.0423 (14)	0.0075 (11)	0.0175 (13)	-0.0089 (10)

O8 O7	0.0481 (11) 0.0261 (8)	0.0357 (9) 0.0275 (8)	0.0361 (9) 0.0378 (8)	0.0047 (8) 0.0042 (6)	0.0184 (8) 0.0054 (7)	-0.0128 (7) -0.0176 (7)
Geometric par	rameters (Å, °)					
•	uniciers (21,)	2 2025 (15)	06	C12	1 /	226 (2)
Pr1—O5		2.3835 (17)	06—			236 (3)
Pr1—O4 ⁱ		2.4193 (16)	C2—			380 (3)
Pr1—O7 ⁱⁱ		2.4366 (16)	C2—		0.9	9300
Pr1—O1		2.4407 (15)	C4—		1.3	385 (3)
Pr1—O10		2.4643 (18)	C8—			379 (3)
Pr1—O9		2.459 (2)	C8—			511 (3)
Pr1—N1		2.6484 (18)	C3—			9300
Pr1—N2		2.677 (2)		–C11		382 (3)
O1—C6		1.263 (3)		—H12		9300
N1—C5		1.335 (3)	N4—			310 (4)
N1—C1		1.346 (3)	N4—			361 (4)
O4—C7		1.253 (3)	N4—			8600
O4—Pr1 ⁱⁱⁱ		2.4193 (16)	C15-			303 (3)
N2—C8		1.337 (3)		—H15		9300
N2—C12		1.336 (3)		C16		341 (4)
C5—C4		1.384 (3)	C17-			355 (4)
C5—H5		0.9300		—H17		9300
O9—H9A		0.77 (3)		-Н3А		8600
O9—H9B		0.73 (3)		–H16		9300
O5—C13		1.263 (3)		-C10		386 (3)
O10—H10A		0.88 (4)		-C14		504 (3)
O10—H10B		0.73 (4)	C14-			240 (3)
C7—O3		1.249 (3)	C14-			267 (3)
C7—C4		1.499 (3)	C10-			376 (3)
C1—C2		1.373 (3)		—H10		9300
C1—C6		1.513 (3)	C9—			9300
C6—O2		1.224 (3)	O7—	-Pr1"	2.4	4366 (16)
O5—Pr1—O4 ⁱ		78.67 (7)	C2—	-C1—C6	12	1.25 (18)
O5—Pr1—O7 ⁱ	i	139.99 (6)	O2—	-C6—O1	12	5.8 (2)
O4 ⁱ —Pr1—O7	ii	135.10 (6)	O2—	-C6—C1	11	7.6 (2)
O5—Pr1—O1		77.58 (6)	01—	-C6—C1	11	6.62 (17)
O4 ⁱ —Pr1—O1		87.46 (6)	C1—	-C2—C3	11	9.03 (19)
O7 ⁱⁱ —Pr1—O1		117.28 (6)	C1—	-C2—H2	12	0.5
O5—Pr1—O10		104.04 (8)		-C2—H2		0.5
O4 ⁱ —Pr1—O1		72.69 (6)		-C4—C5		7.72 (19)
07 ⁱⁱ —Pr1—01		75.16 (7)		-C4—C7		1.57 (19)
O1—Pr1—O10	,	159.11 (6) 145.52 (6)		-C4—C7		0.71 (18)
O5—Pr1—O9		145.52 (6)		-C8—C9		2.7 (2)
O4 ⁱ —Pr1—O9		74.82 (7)		-C8—C13		5.37 (19)
O7 ⁱⁱ —Pr1—O9)	73.98 (6)		-C8—C13		1.9 (2)
O1—Pr1—O9		79.59 (6)	O6—	-C13—O5	12	5.2 (2)

O10—Pr1—O9	88.76 (8)	O6—C13—C8		119.1 (2)
O5—Pr1—N1	83.59 (7)	O5—C13—C8		115.67 (19)
O4 ⁱ —Pr1—N1	148.64 (5)	C2—C3—C4		119.4 (2)
O7 ⁱⁱ —Pr1—N1	73.00 (6)	C2—C3—H3		120.3
O1—Pr1—N1	63.42 (5)	C4—C3—H3		120.3
O10—Pr1—N1	137.32 (6)	N2—C12—C11		123.74 (19)
O9—Pr1—N1	108.60 (7)	N2—C12—H12		118.1
O5—Pr1—N2	62.40 (6)	C11—C12—H12		118.1
O4 ⁱ —Pr1—N2	117.33 (6)	C15—N4—C16		108.2 (2)
O7 ⁱⁱ —Pr1—N2	80.22 (6)	C15—N4—H4		125.9
O1—Pr1—N2	124.85 (5)	C16—N4—H4		125.9
O10—Pr1—N2	71.92 (7)	N3—C15—N4		109.0 (3)
O9—Pr1—N2	151.07 (6)	N3—C15—H15		125.5
N1—Pr1—N2	75.27 (6)	N4—C15—H15		125.5
C6—O1—Pr1	125.79 (12)	C16—C17—N3		106.5 (3)
C5—N1—C1	117.88 (18)	C16—C17—H17		126.8
C5—N1—Pr1	126.03 (13)	N3—C17—H17		126.8
C1—N1—Pr1	116.08 (13)	C15—N3—C17		109.1 (2)
C7—O4—Pr1 ⁱⁱⁱ	140.65 (14)	C15—N3—H3A		125.4
C8—N2—C12	117.46 (18)	C17—N3—H3A		125.4
C8—N2—Pr1	116.34 (13)	C17—C16—N4		107.2 (3)
C12—N2—Pr1	126.14 (13)	C17—C16—H16		126.4
N1—C5—C4	123.45 (19)	N4—C16—H16		126.4
N1—C5—H5	118.3	C12—C11—C10		117.9 (2)
C4—C5—H5	118.3	C12—C11—C14		120.9 (2)
Pr1—O9—H9A	134 (2)	C10—C11—C14		121.2 (2)
Pr1—O9—H9B	115 (3)	O8—C14—O7		125.3 (2)
H9A—O9—H9B	111 (3)	O8—C14—C11		118.0 (2)
C13—O5—Pr1	130.05 (14)	O7—C14—C11		116.74 (18)
Pr1—O10—H10A	103 (2)	C9—C10—C11		119.0 (2)
Pr1—O10—H10B	137 (3)	C9—C10—H10		120.5
H10A—O10—H10B	119 (4)	C11—C10—H10		120.5
O3—C7—O4	124.8 (2)	C10—C9—C8		119.3 (2)
O3—C7—C4	118.38 (19)	C10—C9—H9		120.4
O4—C7—C4	116.84 (19)	C8—C9—H9		120.4
N1—C1—C2	122.48 (18)	C14—O7—Pr1 ⁱⁱ		138.92 (13)
N1—C1—C6	116.26 (18)			
Symmetry codes: (i) $x-1$, y , z ; (ii) $-x+$	1, -y, -z+1; (iii) x+1, y,	z.		
Hydrogen-bond geometry (Å, °)				
<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	$H\cdots A$	D··· A	D— H ··· A
N4—H4···O2 ^{iv}	0.86	1.85	2.679 (3)	160
N3—H3A···O6 ^v	0.86	1.88	2.735 (3)	172
N3—H3A···O5 ^v	0.86	2.59	3.063 (3)	115
O9—H9A···O1 ^{vi}	0.77 (3)	1.98 (3)	2.743 (3)	172 (3)

0.88 (4) 1.77 (4) 2.645 (3)

173 (3)

O10—H10A···O3ⁱ

O10—H10A···O4 ⁱ	0.88 (4)	2.44 (3)	2.894 (3)	113 (3)
O10—H10B···O3 ⁱⁱ	0.73 (4)	2.10 (4)	2.789 (3)	157 (4)
O9—H9B···O8 ⁱⁱ	0.73 (3)	1.96 (4)	2.644 (3)	157 (3)

Symmetry codes: (iv) x, y, z-1; (v) -x, -y+1, -z+1; (vi) -x, -y, -z+2; (i) x-1, y, z; (ii) -x+1, -y, -z+1.

Fig. 1

Fig. 2

Fig. 3

