Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica e Eletrônica

Eletrônica Básica – EEL 5346 Recuperação – 2014/1 (23/07/2014)

Questão 1: [3,0 pontos] Determine o valor da corrente I_o em função da tensão V_i e dos parâmetros do circuito. Assuma que os amplificadores operacionais são reais.

Questão 2: [3,0 pontos] Determine a tensão V_o do circuito a seguir, assumindo que todos os transistores operam na região de saturação. Dados: V_{Tn} =1V, V_{Tp} =-1V, k_n '=40 μ , k_p '=10 μ , (W/L)_{Q1}=(W/L)_{Q2}=(W/L)_{Q3}=100, (W/L)_{Q4}=50, V_A →∞.

Questão 3: [4,0 pontos] Dado o circuito a seguir, determine literalmente $A_v=v_o/v_i$. Assuma que: $V_A \rightarrow \infty$; os parâmetros de pequenos sinais dos transistores são conhecidos; por simplicidade $g_{m1}=g_{m2}=g_{m3}$ e $r_{\pi 1}=r_{\pi 2}$; as fontes V_{bb} , V_{cc} e V_{ee} são contínuas e o sinal no circuito indica respectiva a polaridade; V_i é uma fonte de tensão alternada com tensão de pico muito menor que as demais fontes contínuas. Obs.: para evitar que as equações intermediárias fiquem grandes utilize variáveis auxiliares que sejam função apenas dos parâmetros do circuito.

FORMULÁRIO

• MOSFET reforço (enriquecimento, acumulação, intensificação):

NMOS	Equações	PMOS
$V_T > 0 V_{DS} > 0$	$K = k_n \left(\frac{W}{L}\right)$ $k_n = \mu_n C_{ox} , \lambda = 1/V_A$	$V_T < 0 V_{DS} \le 0$
$V_{GS} < V_T$	(a) Região de Corte I _D =0	$V_{GS} \ge V_T$
$\begin{cases} V_{GS} \ge V_T \\ V_{DS} < V_{GS} - V_T \\ V_{GD} \ge V_T \end{cases}$	(b) Região de Triodo $I_D = K \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$	$\begin{cases} V_{GS} \leq V_T \\ V_{DS} > V_{GS} - V_T \\ V_{GD} \leq V_T \end{cases}$
$\begin{cases} V_{GS} \ge V_T \\ V_{DS} \ge V_{GS} - V_T \\ V_{GD} \le V_T \end{cases}$	(c) Região de Saturação $I_D = \frac{K}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$	$\begin{cases} V_{GS} \leq V_T \\ V_{DS} \leq V_{GS} - V_T \\ V_{GD} \geq V_T \end{cases}$
(b) (c) V _{0S} V _{OS} V _{OS}		V ₀₅₀ (c) (b) V ₀₅₁ (a)

• Modelo de pequenos sinais do MOSFET reforço: $r_d=|V_A|/I_D$; $g_m=K\cdot(V_{GS}-V_T)$

• Modelo de pequenos sinais para o transistor NPN:

$$g_m \!\!=\!\! I_{CQ} \! / v_T; \, r_\pi \!\!=\!\! \beta / g_m; \, r_o \!\!=\!\! V_A \! / I_C; \, v_T \!\!=\!\! 25 mV$$

