Równoważność cykliczna ciągów

Definicja problemu i przedstawienie rozwiązań

Mikołaj Juda

2023

W referacie przedstawiono problem równoważności cyklicznej ciągów oraz różne algorytmy do jego rozwiązania razem z implementacją w języku Python. Pokrótce omówiono algorytm naiwny oraz algorytm korzystający z wyszukiwania wzorca. Przedstawiono również szybki algorytmie sprawdzania równoważności list cyklicznych Shiloacha(1979)[1] oraz szczegółowo opisano dowód jego poprawności i analizę złożoności obliczeniowej.

Spis treści

		inicja problemu orytm naiwny	3	
4	Aig	ory till marwify	3	
	2.1	Opis	3	
	2.2	Implementacja	3	
Bi	bliog	grafia	4	

1 Definicja problemu

Dane są dwa ciągi $A = (a_0, \ldots, a_{n-1})$ oraz $B = (b_0, \ldots, b_{n-1})$ długości n. A i B są $r\'ownoważne cyklicznie <math>(A \equiv B)$, gdy są równe w sensie list cyklicznych tzn.

Definicja 1.1.

$$A \equiv B \iff \exists_{k_0 \in \mathbb{Z}} \forall_{k \in \{0,\dots,n-1\}} \ a_{(k_0+k) \pmod{n}} = b_k$$

Dla wygody dalszego zapisu oznaczmy:

$$a_k \coloneqq a_k \pmod{n}, \ b_k \coloneqq b_k \pmod{n}$$
dla wszystkich $k \ge n$

Zdefiniujmy A_k jako listę powstałą z przesunięcia cyklicznego ciągu A takiego, że a_k jest pierwszym elementem ciągu A_k . Analogicznie dla B_k .

$$A_k = [a_k, \dots, a_n, a_0, \dots, a_{k-1}]$$

 $B_k = [b_k, \dots, b_n, b_0, \dots, b_{k-1}]$

Definicje Definicja 1.1 można przedstawić równoważnie jako:

Definicja 1.2.

$$A \equiv B \iff \exists_{k_0 \in \mathbb{Z}} \ A_{k_0} = B_0$$

Podsumowując, problem brzmi: "Czy istnieje takie przesunięcie cykliczne jednego ciągu, że jest po nim równy drugiemu ciagowi?"

 $A_0 = [a_0, \dots, a_{n-1}], \text{ oraz } B_0 = [b_0, \dots, b_{n-1}]$

2 Algorytm naiwny

2.1 Opis

Z Definicji 1.1 można łatwo zauważyć, że

Lemat 2.1. Jeżeli nie istnieje $k_0 \in \{0, \ldots, n-1\}$ spełniające warunek:

$$\forall_{k \in \{0,\dots,n-1\}} \ a_{k_0+k} = b_k$$

to nie istnieje $k_0 \in \mathbb{Z}$ spełniające ten warunek.

Dowód. Oczywiste.

Wniosek 2.2. Żeby ustalić istnienie k_0 z Definicji 1.1 wystarczy sprawdzić czy

$$\exists_{k_0 \in \{0,\dots,n-1\}} \forall_{k \in \{0,\dots,n-1\}} \ a_{k_0+k} = b_k$$

Algorytm naiwny sprawdza dla każdego $l \in \{\,0, \dots, n-1\,\}$ czy

$$\forall_{k \in \{0,...,n-1\}} \ a_{l+k} = b_k$$

Jeśli trafi na l spełniające warunek to mamy $k_0 = l$ i algorytm zwraca True, w przeciwnym wypadku zwraca False. Algorytm ma złożoność kwadratową.[2]

2.2 Implementacja

Bibliografia

- [1] Yossi Shiloach. "A fast equivalence-checking algorithm for circular lists". W: Information Processing Letters 8.5 (1979), s. 236-238. ISSN: 0020-0190. DOI: https://doi.org/10.1016/0020-0190(79)90114-5. URL: https://www.sciencedirect.com/science/article/pii/0020019079901145.
- [2] Algorytmy i struktury danych/Wstęp: poprawność i złożoność algorytmu. 2020. URL: https://wazniak.mimuw.edu.pl/index.php?title=Algorytmy_i_struktury_danych/Wst%C4% 99p:_poprawno%C5%9B%C4%87_i_z%C5%82o%C5%BCono%C5%9B%C4%87_algorytmu.