(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 28 August 2003 (28.08.2003)

PCT

(10) International Publication Number WO 03/071139 A1

(51) International Patent Classification7:

F04D 29/10

(74) Agents: JOHNSTONE, Douglas, Ian et al.; Baron &

(21) International Application Number: PCT/GB03/00779

(22) International Filing Date: 21 February 2003 (21.02.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0204139.0

21 February 2002 (21.02.2002)

(71) Applicant (for all designated States except US): ALPHA THAMES LTD [GB/GB]; Essex House, Station Road, Upminster, Essex RM14 2SU (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): APPLEFORD, David, Eric [GB/GB]; 5 Greenview Cottages, Theydon Bois, Epping, Essex CM16 7JD (GB). LANE, Brian, William [GB/GB]; 41 Rattwick Drive, Canvey Island, Essex SS8 8NF (GB).

- Warren, 18 South End, Kensington, London W8 5BU (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI,SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH,

[Continued on next page]

(54) Title: GAS SEAL SYSTEM FOR THE SHAFT OF AN ELECTRIC COMPRESSOR MOTOR

(57) Abstract: An electric motor (30) is accommodated in a first portion (42) of a housing (40) and is arranged to drive a compressor (32) accommodated in a second portion (44) of the housing separated from the first housing portion (42) by a wall (46). An umbilical (48) introduces dry motor protection gas into the first housing portion (42) and a passage (54) between the first and second housing portions (42,44) allows a leakage of the motor protection gas from the first housing portion (42) into the second housing portion (44) at a higher pressure than gas supplied to the compressor (32) via an inlet pipe (58) thereby preventing moisture laden gas from the compressor (32) entering the first housing portion accommodating the electric motor (30).

WO 03/071139 A1

CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

— of inventorship (Rule 4.17(iv)) for US only

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

GAS SEAL SYSTEM FOR THE SHAFT OF AN ELECTRIC COMPRESSOR MOTOR

The present invention relates to the provision of a secure environment for an electric motor of the type in which a single housing accommodates both the motor and rotating machinery driven by the motor.

5

10

15

20

25

30

The invention will be described with reference to a motor used to drive a compressor. The invention is however applicable to other sorts of rotating machinery such as centrifugal pumps. For ease of installation and retrieval, a single housing accommodating an electric motor and a compressor is sometimes employed. Such an arrangement is particularly useful for sub-sea applications in which easy installation and retrieval are important. Figure 1 shows a schematic representation of a typical prior art arrangement including a motor 2 linked to a compressor unit 4 by means of a shaft 6 mounted in bearings 8 and 10. All of these components are mounted in a single housing 12. Inlet pipe 14 and outlet pipe 16 lead gas respectively into and out of the compressor 12. Since a certain amount of gas being compressed will pass through the bearing 8 into the area surrounding the motor 2, the arrangement is only suitable for pumping dry gas because the motor will be damaged if exposed to moisture. Such a restriction makes the arrangement unsuitable for use in the pumping of gas from a hydrocarbon reservoir which will generally have a high water vapour content and contain droplets of water.

When such moisture laden gas is to be compressed, one solution is to use a more conventional arrangement such as that shown in Figure 2 in which the motor 2 is accommodated within a first housing 20 and the compressor unit 4 is accommodated within a separate second housing 22. Particularly when used in a sub-sea environment, it will be necessary to incorporate seals 18 where the shaft 6 passes through the walls of the housings 20 and 22. There is a further requirement in sub-sea applications for the apparatus to be compact which in turn means that high operating

2

speeds are necessary to achieve the required volumetric throughput and Such high operating speeds however lead to rapid pressure increase. deterioration of the seals 18. In sub-sea applications, where replacement is difficult and may involve stopping production from all or part of the oil field, this is a severe disadvantage. The object of the invention is to overcome at of existing disadvantages described of the above some least motor/compressor assemblies.

5

10

15

20

25

30

Thus according to the invention there is provided an assembly comprising a housing, an electric motor accommodated within a first portion of the housing, rotating machinery accommodated within a second portion of the housing and driven by the electric motor, separation means in the housing between the first and second portions thereof for separating fluid acted upon by the rotating machinery from the electric motor, gas introduction means for introducing at least substantially dry motor protection gas into the first housing portion and restricted gas flow means for permitting a leakage of the motor protection gas from the first housing portion into the second housing portion.

With such an arrangement, it is possible to provide a motor and compressor in the same housing which can be operated to compress gas regardless of its moisture content. Furthermore, seals around a drive shaft connecting the motor and compressor are not required.

Preferably the gas introduction means includes means for supplying the at least substantially dry gas. This may comprise a gas drying and supply unit on a remote host facility linked to the first housing portion by an umbilical.

The invention is particularly applicable to the driving of machinery for raising the pressure of fluid such as compressors or centrifugal pumps.

When the rotating machinery comprises a compressor, preferably the second housing portion includes a compressor inlet for receiving gas at a first pressure and a compressor outlet for delivering gas at a second pressure

3

higher than the first pressure and the gas flow means allows leakage of the motor protection gas into the second housing portion adjacent to the compressor inlet. In order to accommodate variations in pressure within the second housing portion, the assembly preferably also includes means for automatically maintaining the motor protection gas at a pressure above that of fluid in a part of the second housing portion adjacent to the gas flow means.

5

10

15

20

25

30

If this pressure differential is maintained at a low value, then the leakage of motor protection gas into the second housing portion can be kept to a minimum which will reduce the cost of running the assembly.

When the fluid being acted upon by the rotating machinery is a gas, the apparatus preferably includes circulating apparatus for diverting a portion of the acted upon gas to the first housing portion, the circulating apparatus including drying means for reducing the moisture content of the acted upon gas diverted back to the first housing portion. Such an arrangement will still further reduce the amount of motor protection gas which needs to be supplied and will still further reduce the cost of running the assembly. Furthermore, if the motor can tolerate wet gas for a short start up period without damage to its components, then the requirement for an external supply of motor protection gas can be obviated if such circulating apparatus is provided.

Conveniently the drying means separates the extracted portion of the acted upon gas into an at least substantially moisture-free first outlet flow and the circulating apparatus includes first routing means for routing the first outlet flow from a first outlet of the drying means to the housing first portion.

In order to facilitate removal of the extracted moisture, preferably the drying means incorporates moisture extracted from the first outlet flow into a second outlet flow.

The second outlet flow from the drying means can conveniently be

4

transported away from the assembly by means of the gas being acted upon by the compressor. Accordingly, the circulating apparatus preferably also includes second routing means for routing the second outlet flow containing the extracted moisture from a second outlet of the drying means and for incorporating it into the flow of gas acted upon by the compressor.

5

10

15

20

25

30

In order that the second outlet flow from the drying means can be incorporated into a relatively low pressure gas flow, preferably the second routing means incorporates the second outlet flow containing the extracted moisture into the acted upon gas at least substantially prior to it being acted upon by the compressor.

Alternatively, in order to avoid introducing additional moisture into gas entering the compressor, the second routing means incorporates the second outlet flow containing the extracted moisture into the acted upon gas at least substantially after it has been acted upon by the compressor.

So as to avoid the necessity of raising the pressure of the second outlet flow from the drying means to that of the gas leaving the compressor, preferably the second routing means includes a pressure equalising device such as an ejector for incorporating the second outlet flow containing the extracted moisture into acted upon gas downstream of the compressor.

Preferably one or more gas outlet flows from the drying means pass through non-return valves configured to prevent such flow or flows returning directly to outlets of the drying means.

The invention also provides a method of operating an electric motor accommodated in a first portion of a housing and arranged to drive a rotating machine accommodated in a second portion of the housing in which fluid in the second housing portion which is acted upon by the rotating machine is separated from the first housing portion by separation means, the method including the steps of:

(i) providing gas introduction means for introducing at least substantially

5

dry motor protection gas into the first housing portion;

5

10

15

20

25

30

(ii) providing restricted gas flow means between the first and second housing portions; and

(iii) establishing a leakage of the motor protection gas from the first housing portion to the second housing portion via the gas flow means.

In order to reduce the amount of motor protection gas consumed by the assembly, preferably the method involves providing circulating apparatus and diverting a portion of the acted upon gas to the first housing portion via the circulating apparatus, incorporating drying means in the circulating apparatus and reducing the moisture content of the acted upon gas diverted back to the first housing portion by means of the drying means.

The invention will now be described by way of example only with reference to the accompanying Figures in which:

Figure 1 shows in schematic form a prior art arrangement;

Figure 2 shows in schematic form a further prior art arrangement;

Figure 3 shows in schematic form a first embodiment of the invention; and

Figure 4 shows in schematic form a second embodiment of the invention.

The prior art arrangements shown in Figs. 1 and 2 have been described above.

In the first embodiment of the invention shown in Figure 3, an electric motor 30 is linked to a compressor 32 by a shaft 34 which is supported by a first bearing 36 and a second bearing 38. These components are accommodated in a housing 40 having first and second portions 42 and 44 respectively accommodating the motor 30 and the compressor 32. Separation means, in the form of a wall 46, separates the housing portions 42 and 44 from each other.

Gas introduction means, in the form of an umbilical 48 leads to an inlet 50 of the first housing portion 42 for supplying at least substantially

6

dry, and more preferably completely dry, motor protection gas 52 thereinto.

Gas flow means 54, comprising one or more passages between the first and second housing portions 42 and 44, are provided to allow a leakage of the motor protection gas 52 from the first housing portion 42 into the second housing portion 44. This leakage is indicated by arrows A.

5

10

15

20

25

30

The compressor 32 includes an inlet 56 connected to an inlet pipe 58 (at pressure p1) and an outlet 60 connected to an outlet pipe 62 (at a higher pressure p2).

The first housing portion 42 containing the motor is maintained at a pressure p3 by the supply of motor protection gas 52. p3 is maintained higher than p1 in order that motor protection gas 52 steadily leaks through the gas flow means 54 in the direction of arrows A into the second housing portion. This pressure differential prevents any of the gas supplied to the compressor via inlet pipe 58, which may contain moisture, from entering the first housing portion 42. Control means (not shown) are preferably provided to maintain p3 only slightly above p1 in order that only a low volumetric flow of motor protection gas through the gas flow means 54 occurs. This will reduce the amount of motor protection gas required and thereby minimise running costs.

The so-called integrated oil-free motor compressor manufactured by Man Turbo Maschinen AG would be the type of motor compressor assembly to which the invention could be applied.

The second embodiment of the invention will now be described with reference to Figure 4 in which parts which correspond in form and function to those shown in Figure 3 are indicated with like numerals prefixed with 1 and will not be described again in detail.

The embodiment shown in Figure 4 includes circulating apparatus shown generally as 170. An extraction pipe 172 is arranged to extract a portion, for example 10%, of the gas leaving the compressor via the outlet pipe 162 and route it to a gas drying unit 174. The gas drying unit 174 may

7

suitably be of the type manufactured under the name TWISTER by Shell and its partner Stork Product Engineering. This drying unit uses a Laval nozzle to expand gas to supersonic velocities leading to low temperature and pressure resulting in nucleation and condensation of water. Droplets of water formed come into contact with a wing member and are centrifuged onto walls of the device. A first flow 176 of at least substantially dry gas (at pressure P3) leaves the gas drying unit via a first gas outlet 178 and is routed by dry gas conduit 182 via a non-return valve 180 to the umbilical 148 immediately upstream of the housing first portion 142 and downstream of a further non-return valve 184 in the umbilical 148. The pressure P3 is arranged to be greater than the pressure P5 of gas entering the compressor.

5

10

15

20

25

30

Since the motor 130 may be able to tolerate wet gas for a short start up period without damage to its components, the umbilical 148 for supplying dry gas may not be necessary in which case the dry gas conduit 182 would lead directly into the housing first portion 142.

A second flow 186 of wet gas (at pressure P4) containing all, or substantially all, of the water contained in the gas extracted from the compressor outlet pipe leaves the gas drying unit 174 via a second outlet 188 and is routed by a wet gas conduit 190 to the inlet pipe 158 through a further non-return valve 192. The pressure P4 is arranged to be greater than P1, the pressure of gas approaching the compressor through the inlet pipe 158. This flow of wet gas 186 will assist the flow of new gas entering the compressor from the inlet pipe 158.

Alternatively, the second outlet 188 of the gas drying unit 174 may be connected by a high pressure wet gas conduit 193 which routes the wet gas 186 through a non-return valve 194 to an ejector 196 which acts to entrain the wet gas 186 into the flow of pressurised gas leaving the compressor via the outlet 160. The ejector 196 is necessary because the pressure P4 of the wet gas will be lower than the pressure P2 of the gas at the compressor outlet 160. Downstream of the ejector 196 the pressure P6

8

of the combined gas streams will be less than P2 but high enough to ensure satisfactory conveyance of the gas to the host facility. The alternative route for the wet gas 186 avoids reintroducing the moisture extracted by the gas drying unit 174 back into the compressor.

As in the first embodiment, the pressure of gas in the housing first portion 142 will be arranged to be slightly higher than the pressure P5 of gas entering the compressor so as to ensure that a steady leakage (A) of at least substantially dry gas from the first housing portion to the second is maintained and flow in the reverse direction is prevented.

10

PCT/GB03/00779

CLAIMS

5

10

20

- 1. An assembly comprises a housing (40), an electric motor (30) accommodated within a first portion (42) of the housing, rotating machinery (32) accommodated within a second portion (44) of the housing and driven by the electric motor, separation means (46) in the housing between the first and second portions thereof for separating fluid acted upon by the rotating machinery (32) from the electric motor (30), gas introduction means (48) for introducing at least substantially dry motor protection gas into the first housing portion (42) and restricted gas flow means (54) for permitting a leakage of the motor protection gas from the first housing portion (42) into the second housing portion (44).
- 2. The assembly as claimed in claim 1, wherein the gas introduction means (48) includes means for supplying the at least substantially dry gas (52).
 - 3. The assembly as claimed in claim 2, wherein the means for supplying the at least substantially dry gas comprises a gas drying and supply unit on a remote host facility linked to the first housing portion by an umbilical (48).
 - 4. The assembly as claimed in claim 1, 2 or 3, including circulating apparatus (170) for diverting a portion of the fluid acted upon by the rotating machinery (132) to the first housing portion (142).
 - 5. The assembly as claimed in claim 4, wherein the circulating apparatus includes drying means (174) for reducing the moisture content of the acted upon gas diverted back to the first housing portion (142).
- 30 6. The assembly as claimed in claim 5, wherein the drying means (174) separates the diverted portion of the acted upon gas into an at least

10

substantially moisture-free first outlet flow (176) and the circulating apparatus includes first routing means (182) for routing the first outlet flow from a first outlet (178) of the drying means (174) to the housing first portion (142).

- 7. The assembly as claimed in claim 5 or 6, wherein the drying means (174) incorporates moisture extracted from the acted upon gas into a second outlet flow (186) from the drying means (174).
- 10 8. The assembly as claimed in claim 7, wherein the second outlet flow (186) from the drying means (174) is transported away from the assembly by means of the gas being acted upon by the rotating machinery (132).
- 9. The assembly as claimed in claim 7 or 8, including second routing means (190,193) for routing the second outlet flow (186) containing the extracted moisture from a second outlet (188) of the drying means (174) and for incorporating it into the flow of gas acted upon by the rotating machinery (132).
- 10. The assembly as claimed in claim 9, wherein the second routing means (190) incorporates the second outlet flow (186) containing the extracted moisture into the acted upon gas at least substantially prior to it being acted upon by the rotating machinery (132).
- 11. The assembly as claimed in claim 9, wherein the second routing means (193) incorporates the second outlet flow (186) containing the extracted moisture into the acted upon gas at least substantially after it has been acted upon by the rotating machinery (132).
- 30 12. The assembly as claimed in claim 11, wherein the second routing

11

means includes a pressure equalising device (196) for incorporating the second outlet flow (186) containing the extracted moisture into acted upon gas downstream of the rotating machinery (132).

13. The assembly as claimed in any one of claims 5 to 12, wherein one or more gas outlet flows (176,186) from the drying means (174) pass through one or more non-return valves (180,192,194) configured to prevent such flow or flows returning directly to said one or more outlets (178,188) of the drying means (174).

14. The assembly as claimed in any preceding claim, wherein the rotating machinery comprises a compressor (32) or a centrifugal pump.

10

25

- 15. The assembly as claimed in claim 14, wherein the second housing portion (44) includes a compressor inlet (58) for receiving gas at a first pressure and a compressor outlet (62) for delivering gas at a second pressure higher than the first pressure and the gas flow means (54) enables leakage of the motor protection gas into the second housing portion (44).
- 16. The assembly as claimed in claim 15, wherein the gas flow means (54) is adjacent the compressor inlet (58).
 - 17. The assembly as claimed in any preceding claim, including means for automatically maintaining the motor protection gas at a pressure above that of fluid in a part of the second housing portion adjacent the gas flow means (54).
 - 18. A method of operating an electric motor (30) accommodated in a first portion (42) of a housing (40) and arranged to drive a rotating machine (32) accommodated in a second portion (44) of the housing in which fluid in the

12

second housing portion (44) which is acted upon by the rotating machine (32) is separated from the first housing portion (42) by separation means (46), the method including the steps of:

- (i) providing gas introduction means (48) for introducing at least substantially dry motor protection gas into the first housing portion (42);
- (ii) providing restricted gas flow means (54) between the first and second housing portions (42,44); and
- (iii) establishing a leakage of the motor protection gas from the first housing portion (42) to the second housing portion (44) via the gas flow means (54).
- 19. The method as claimed in claim 18, including providing circulating apparatus (170) and diverting a portion of the acted upon gas to the first housing portion (142) via the circulating apparatus.

20. The method as claimed in claim 19, including incorporating drying means (174) in the circulating apparatus (170) and reducing the moisture content of the acted upon gas diverted back to the first housing portion (142) by means of the drying means (174).

20

5

10

FIG 1

1/3

FIG 2

FIG 3

INTERNATIONAL SEARCH REPORT

PCT/GB 03/00779

		PCIA	GB 03/00//9		
A. CLASSII IPC 7	FICATION OF SUBJECT MATTER F04D29/10				
According to	International Patent Classification (IPC) or to both national classification	tion and IPC			
	SEARCHED				
Minimum do IPC 7	cumentation searched (classification system followed by classification FO4D FO4C HO2K	n symbols)			
Documentat	ion searched other than minimum documentation to the extent that s	uch documents are included in t	the fields searched		
Electronic d	ata base consulted during the International search (name of data base	se and, where practical, search	terms used)		
EPO-In	ternal, WPI Data, PAJ				
	ENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.		
Category °	Citation of document, with Indication, where appropriate, of the reli	evant passages	nejevalit to dalili No.		
E	US 2003/053907 A1 (LIPPERT ET AL. 20 March 2003 (2003-03-20) abstract; figure 1)	1-20		
P,X	US 6 390 789 B1 (GROB ET AL.) 21 May 2002 (2002-05-21)		1,2,4, 14-16, 18,19		
X	abstract column 5, line 29 -column 6, line figures 1,2 & EP 1 069 313 A (SULZER TURBO AG		1,2,4,		
	17 January 2001 (2001-01-17)		14-16, 18,19		
X	US 5 478 222 A (HEIDELBERG ET AL. 26 December 1995 (1995-12-26) abstract	.)	1,2,14, 15,17,18		
	column 3, line 10-59; figure 1				
X Furt	ther documents are listed in the continuation of box C.	X Patent family membe	rs are listed in annex.		
"A" docum	ategories of died documents : ent defining the general state of the art which is not dered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
filing • L• docum	ent which may throw doubts on priority claim(s) or	*X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone			
O docum other	is cited to establish the publication date of another in or other special reason (as specified) lent referring to an oral disclosure, use, exhibition or means	Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled			
	ent published prior to the international filing date but han the priority date claimed	in the art. *&* document member of the same patent family			
Date of the	actual completion of the International search	Date of mailing of the international search report			
2	26 May 2003	04/06/2003			
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer			
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Beitner, M	_		

INTERNATIONAL SEARCH REPORT

PCT/GB 03/00779

MIAN DOCUMENTS CONSIDERED TO BE RELEVANT	1017 45 057 00775		
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
US 5 382 141 A (STINESSEN) 17 January 1995 (1995-01-17) abstract column 6, line 4 -column 8, line 14;	1-3,14, 15,18		
US 3 532 444 A (R. STRUB) 6 October 1970 (1970-10-06) column 1, line 14-23 column 2, line 42 -column 3, line 38; figure 1	1,14,15, 18		
US 4 311 004 A (DU PONT) 19 January 1982 (1982-01-19) abstract column 4, line 19 -column 6, line 41; figure 2	1-4,14, 15,17-19		
PATENT ABSTRACTS OF JAPAN vol. 4, no. 111 (M-25), 9 August 1980 (1980-08-09) -& JP 55 069793 A (MITSUBISHI HEAVY IND LTD), 26 May 1980 (1980-05-26) abstract; figure 1	1,14,17		
	US 5 382 141 A (STINESSEN) 17 January 1995 (1995-01-17) abstract column 6, line 4 -column 8, line 14; figures 1,2 US 3 532 444 A (R. STRUB) 6 October 1970 (1970-10-06) column 1, line 14-23 column 2, line 42 -column 3, line 38; figure 1 US 4 311 004 A (DU PONT) 19 January 1982 (1982-01-19) abstract column 4, line 19 -column 6, line 41; figure 2 PATENT ABSTRACTS OF JAPAN vol. 4, no. 111 (M-25), 9 August 1980 (1980-08-09) -& JP 55 069793 A (MITSUBISHI HEAVY IND LTD), 26 May 1980 (1980-05-26)		

INTERNATIONAL SEARCH, REPORT

PCT/GB 03/00779

	ent document n search report		Publication date		Patent family member(s)		Publication date
US 2	2003053907	A1	20-03-2003	MO	03025401	A1	27-03-2003
US 6	5390789	B1	21-05-2002	EP	0990798	A1	05-04-2000
				ΕP	1069313	A2	17-01-2001
				CA	2312081	A1	16-01-2001
				CA	2312085	A1	16-01-2001
				CN	1281100		24-01-2001
				CN	1281101		24-01-2001
				DE	20011217		07-09-2000
				DE	20011219	U1	05-10-2000
				EP	1074746		07-02-2001
				JP	2001041191		13-02-2001
				JP	2001041199		13-02-2001
				US	6464469	B1	15-10-2002
US!		A	26-12-1995	DE	4111713		14-01-1993
				AT	140062		15-07-1996
				DE	59206712		08-08-1996
				WO	9218774		29-10-1992
				EP			02-02-1994
				JP			27-10-1994
				NO	933544	A 	25-11-1993
US	5382141	Α	17-01-1995	NO	910499		10-08-1992
				AU	1265192		07-09-1992
				BR	9205601		26-07-1994
				EP	0670965		13-09-1995
				NO	912710	Α,Β,	10-08-1992
				WO	9214061	A1 	20-08-1992
US	3532444	Α	06-10-1970	CH	480543		31-10-1969
				BE	719562		17-02-1969
				DE	1628391		16-06-1971
				ES	357219		01-03-1970
				FR	1569447		30-05-1969
				GB	1180006		04-02-1970
				NL	6712422	. A	20-02-1969
US	4311004	A	19-01-1982	NONE			
JP	55069793	Α	26-05-1980	NONE			