

最优化方法

东南大学 计算机&人工智能学院 宋沫飞 songmf@seu.edu.cn

凸优化问题

- □优化问题的标准形式
- □凸优化问题
- □拟凸优化
- □线性优化
- □二次优化
- □广义不等式约束
- □半定规划
- □向量优化

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

$$x \in \mathbb{R}^n$$
 优化变量

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

- $x \in \mathbf{R}^n$ 优化变量

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

- $x \in \mathbf{R}^n$ 优化变量
- $f_0: \mathbf{R}^n \to \mathbf{R}$ 目标函数或代价函数
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$ 不等式约束函数

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

- $x \in \mathbf{R}^n$ 优化变量
- $f_0: \mathbf{R}^n \to \mathbf{R}$ 目标函数或代价函数
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$ 不等式约束函数
- $h_i: \mathbf{R}^n \to \mathbf{R}$ 等式约束函数

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

- $x \in \mathbf{R}^n$ 优化变量
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$ 不等式约束函数
- $h_i: \mathbf{R}^n \to \mathbf{R}$ 等式约束函数
- ❖m = p = 0: 无约束

□优化问题的域

□优化问题的域

$$\mathcal{D} = \bigcap_{i=0}^{m} \mathbf{dom} \, f_i \, \cap \, \bigcap_{i=1}^{p} \mathbf{dom} \, h_i$$

□优化问题的域

$$\mathcal{D} = \bigcap_{i=0}^{m} \mathbf{dom} \, f_i \, \cap \, \bigcap_{i=1}^{p} \mathbf{dom} \, h_i$$

□ 可行解集: $x \in \mathcal{D}$ 为可行解,若其满足

□优化问题的域

$$\mathcal{D} = \bigcap_{i=0}^{m} \mathbf{dom} \, f_i \, \cap \, \bigcap_{i=1}^{p} \mathbf{dom} \, h_i$$

可行解集: $x \in \mathcal{D}$ 为可行解,若其满足 $f_i(x) \leq 0, i = 1, ..., m,$

□优化问题的域

$$\mathcal{D} = \bigcap_{i=0}^{m} \mathbf{dom} \, f_i \, \cap \, \bigcap_{i=1}^{p} \mathbf{dom} \, h_i$$

可行解集: $x \in \mathcal{D}$ 为可行解,若其满足 $f_i(x) \leq 0, i = 1, ..., m,$ $h_i(x) = 0, i = 1, ..., p$

□优化问题的域

$$\mathcal{D} = \bigcap_{i=0}^{m} \mathbf{dom} \, f_i \, \cap \, \bigcap_{i=1}^{p} \mathbf{dom} \, h_i$$

- 可行解集: $x \in \mathcal{D}$ 为可行解,若其满足 $f_i(x) \leq 0, i = 1, ..., m,$ $h_i(x) = 0, i = 1, ..., p$
- □ 最优值:

□优化问题的域

$$\mathcal{D} = \bigcap_{i=0}^{m} \mathbf{dom} \, f_i \, \cap \, \bigcap_{i=1}^{p} \mathbf{dom} \, h_i$$

- 可行解集: $x \in \mathcal{D}$ 为可行解,若其满足 $f_i(x) \leq 0, i = 1, ..., m,$ $h_i(x) = 0, i = 1, ..., p.$
- □ 最优值:

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

□优化问题的域

$$\mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i}$$

- 可行解集: $x \in \mathcal{D}$ 为可行解,若其满足 $f_i(x) \leq 0, i = 1, ..., m,$ $h_i(x) = 0, i = 1, ..., p.$
- □ 最优值:

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

若问题无可行解(无x满足约束),则 $p^ = \infty$

□优化问题的域

$$\mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i}$$

- 可行解集: $x \in \mathcal{D}$ 为可行解,若其满足 $f_i(x) \leq 0, i = 1, ..., m,$ $h_i(x) = 0, i = 1, ..., p.$
- □ 最优值:

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- *若问题无可行解(无x满足约束),则 $p^* = \infty$
- ❖若问题无下界,则 $p^* = -\infty$

□ 最优解 x^* : $若x^*$ 可行,且 $f_0(x^*) = p^*$

- □ 最优解 x^* : 若 x^* 可行,且 $f_0(x^*) = p^*$
- □最优解集

- □ 最优解 x^* : $若x^*$ 可行,且 $f_0(x^*) = p^*$
- □最优解集

$$X_{\text{opt}} = \{x \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0,$$

 $i = 1, \dots, p, \ f_0(x) = p^*\}$

- □ 最优解 x^* : $若x^*$ 可行,且 $f_0(x^*) = p^*$
- 量能解集 $X_{\text{opt}} = \{x \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \\ i = 1, \dots, p, \ f_0(x) = p^* \}$

- □ 最优解 x^* : $若x^*$ 可行,且 $f_0(x^*) = p^*$
- □最优解集

$$X_{\text{opt}} = \{x \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0,$$

 $i = 1, \dots, p, \ f_0(x) = p^*\}$

 $\Box \epsilon$ -次优解集 $\epsilon > 0$

$$f_0(x) \leq p^* + \epsilon$$

 $\square x$ 为局部最优点,若存在一个正实数R,使得

□ x为局部最优点,若存在一个正实数R,使得minimize $f_0(z)$ subject to $f_i(z) \leq 0$, i = 1, ..., m $h_i(z) = 0$, i = 1, ..., p $||z - x||_2 \leq R$

□ x为局部最优点,若存在一个正实数R,使得minimize $f_0(z)$ subject to $f_i(z) \le 0$, i = 1, ..., m $h_i(z) = 0$, i = 1, ..., p $||z - x||_2 \le R$

(with n = 1, m = p = 0)

□ x为局部最优点,若存在一个正实数R,使得minimize $f_0(z)$ subject to $f_i(z) \leq 0$, i = 1, ..., m $h_i(z) = 0$, i = 1, ..., p $||z - x||_2 \leq R$

(with
$$n = 1$$
, $m = p = 0$)

$$f_0(x) = 1/x$$
, dom $f_0 = \mathbf{R}_{++}$: $p^* = 0$, 无最优点

$$f_0(x) = -\log x$$
, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -\infty$

$$f_0(x) = x \log x$$
, dom $f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, $x = 1/e$ 为最优点

$$f_0(x) = x^3 - 3x$$
, $p^* = -\infty$, 局部最优点: $x = 1$

 \Box $f_i(x) \leq 0$ 活动约束

- \Box $f_i(x) \leq 0$ 活动约束
- \Box $f_i(x) < 0$ 不活动约束

- \Box $f_i(x) \leq 0$ 活动约束
- \Box $f_i(x) < 0$ 不活动约束

```
minimize f_0(x) subject to f_i(x) \leq 0, \quad i=1,\ldots,m h_i(x)=0, \quad i=1,\ldots,p
```


- \Box $f_i(x) \leq 0$ 活动约束
- \Box $f_i(x) < 0$ 不活动约束

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0$, $i=1,\ldots,m$ $f_i(x) < 0$ $f_i(x) = 0$, $i=1,\ldots,p$

- \Box $f_i(x) \leq 0$ 活动约束
- \Box $f_i(x) < 0$ 不活动约束

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0$, $i=1,\ldots,m$ $f_i(x) < 0$ $h_i(x) = 0, \quad i=1,\ldots,p$

不等式约束

- \Box $f_i(x) < 0$ 不活动约束

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0$, $i = 1, \dots, m$ $h_i(x) = 0, \quad i = 1, \dots, p$

$$f_i(x) < 0$$

$$f(x) < 100$$

$$f(x) \le 100$$

不等式约束

- \Box $f_i(x) \leq 0$ 活动约束
- \Box $f_i(x) < 0$ 不活动约束

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0$, $i=1,\ldots,m$ $f_i(x) < 0$ $h_i(x) = 0, \quad i=1,\ldots,p$

$$f(x) \le 100 \\ -|\log(100 - x)| \le 0$$

可行性优化问题

可行性优化问题

find
$$x$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p.$

□例: 盒子约束

□例: 盒子约束

minimize $f_0(x)$ subject to $l_i \le x_i \le u_i, \quad i = 1, \dots, n,$

□例: 盒子约束

minimize $f_0(x)$ subject to $l_i \le x_i \le u_i, \quad i = 1, \dots, n,$

minimize $f_0(x)$ subject to $l_i - x_i \leq 0, \quad i = 1, \dots, n$ $x_i - u_i \leq 0, \quad i = 1, \dots, n.$

□缩放

```
minimize f_0(x)
subject to f_i(x) \leq 0, \quad i = 1, \dots, m
h_i(x) = 0, \quad i = 1, \dots, p
```


□缩放

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

minimize
$$\tilde{f}(x) = \alpha_0 f_0(x)$$

subject to $\tilde{f}_i(x) = \alpha_i f_i(x) \leq 0, \quad i = 1, \dots, m$
 $\tilde{h}_i(x) = \beta_i h_i(x) = 0, \quad i = 1, \dots, p,$

 \mathbf{Q} $\psi_0: \mathbf{R} \to \mathbf{R}$ 单调递增

 $\psi_0: \mathbf{R} \to \mathbf{R}$ 単调递增 $\psi_1, \dots, \psi_m: \mathbf{R} \to \mathbf{R}$

 $\psi_0: \mathbf{R} \to \mathbf{R}$ 単调递增 $\psi_1, \dots, \psi_m: \mathbf{R} \to \mathbf{R}$

$$\psi_i(u) \le 0 \leftrightarrow u \le 0$$

$$\psi_0: \mathbf{R} \to \mathbf{R}$$
单调递增

$$\psi_1, \dots, \psi_m: \mathbf{R} \to \mathbf{R} \qquad \psi_i(u) \leq 0 \leftrightarrow u \leq 0$$

$$\psi_{m+1}, \dots, \psi_{m+p}: \mathbf{R} \to \mathbf{R}$$

 $\psi_0: \mathbf{R} \to \mathbf{R}$ 単调递增 $\psi_1, \dots, \psi_m: \mathbf{R} \to \mathbf{R}$ $\psi_i(u) \leq 0 \leftrightarrow u \leq 0$ $\psi_{m+1}, \dots, \psi_{m+p}: \mathbf{R} \to \mathbf{R}$ $\psi_i(u) = 0 \leftrightarrow u = 0$

 $\psi_0: \mathbf{R} \to \mathbf{R}$ 単调递增 $\psi_1, \dots, \psi_m: \mathbf{R} \to \mathbf{R}$ $\psi_i(u) \leq 0 \leftrightarrow u \leq 0$ $\psi_{m+1}, \dots, \psi_{m+p}: \mathbf{R} \to \mathbf{R}$ $\psi_i(u) = 0 \leftrightarrow u = 0$

$$\tilde{f}_i(x) = \psi_i(f_i(x)), \quad i = 0, \dots, m,$$

 $\psi_0: \mathbf{R} \to \mathbf{R}$ 単调递增 $\psi_1, \dots, \psi_m: \mathbf{R} \to \mathbf{R}$ $\psi_i(u) \leq 0 \leftrightarrow u \leq 0$ $\psi_{m+1}, \dots, \psi_{m+p}: \mathbf{R} \to \mathbf{R}$ $\psi_i(u) = 0 \leftrightarrow u = 0$

$$\tilde{f}_i(x) = \psi_i(f_i(x)), \quad i = 0, \dots, m,$$

$$\tilde{h}_i(x) = \psi_{m+i}(h_i(x)), \quad i = 1, \dots, p.$$

$$\psi_0: \mathbf{R} \to \mathbf{R}$$
 单调递增

$$\psi_1, \dots, \psi_m: \mathbf{R} \to \mathbf{R}$$

$$\psi_i(u) \leq 0 \leftrightarrow u \leq 0$$

$$\psi_{m+1}, \dots, \psi_{m+p}: \mathbf{R} \to \mathbf{R}$$

$$\psi_i(u) = 0 \leftrightarrow u = 0$$

$$\tilde{f}_i(x) = \psi_i(f_i(x)), \quad i = 0, \dots, m,$$

$$\tilde{h}_i(x) = \psi_{m+i}(h_i(x)), \quad i = 1, \dots, p.$$

minimize
$$f_0(x)$$
 minimize $\tilde{f}_0(x)$ subject to $f_i(x) \leq 0$, $i=1,\ldots,m$ subject to $\tilde{f}_i(x) \leq 0$, $i=1,\ldots,m$ $h_i(x)=0$, $i=1,\ldots,p$ $\tilde{h}_i(x)=0$, $i=1,\ldots,p$

□ 例:

回例: minimize $||Ax - b||_2$

回例: minimize $||Ax - b||_2$

minimize $||Ax - b||_2^2$

- 回例: minimize $||Ax b||_2$
 - minimize $||Ax b||_2^2$
- □消除等式约束

- 回例: minimize $||Ax b||_2$
 - minimize $||Ax b||_2^2$
- □消除等式约束

$$h_i(x) = 0, \quad i = 1, \dots, p,$$

- 回例: minimize $||Ax b||_2$ minimize $||Ax b||_2$
- □消除等式约束

$$h_i(x) = 0, \quad i = 1, \dots, p,$$

 $z \in \mathbf{R}^k \ \phi : \mathbf{R}^k \to \mathbf{R}^n \ x = \phi(z)$

- 回例: minimize $||Ax b||_2$ minimize $||Ax b||_2$
- □消除等式约束

$$h_i(x) = 0, \quad i = 1, \dots, p,$$

 $z \in \mathbf{R}^k \ \phi : \mathbf{R}^k \to \mathbf{R}^n \ x = \phi(z)$

minimize $\tilde{f}_0(z) = f_0(\phi(z))$ subject to $\tilde{f}_i(z) = f_i(\phi(z)) \le 0, \quad i = 1, \dots, m$

 \Box 消除线性等式约束 Ax = b

□ 消除线性等式约束 Ax = b $\mathcal{R}(F) = \mathcal{N}(A)$

□ 消除线性等式约束 Ax = b $\mathcal{R}(F) = \mathcal{N}(A)$ $x = Fz + x_0$

消除线性等式约束 Ax = b $\mathcal{R}(F) = \mathcal{N}(A)$ $x = Fz + x_0$ minimize $f_0(x)$ subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $h_i(x) = 0, \quad i = 1, \dots, p$

消除线性等式约束 Ax = b $\mathcal{R}(F) = \mathcal{N}(A)$ $x = Fz + x_0$ minimize $f_0(x)$ subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $h_i(x) = 0, \quad i = 1, \dots, p$

minimize $f_0(Fz + x_0)$ subject to $f_i(Fz + x_0) \le 0$, i = 1, ..., m,

凸优化问题

凸优化问题

□凸优化问题的标准形式


```
\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & a_i^T x = b_i, \quad i=1,\ldots,p \end{array}
```


□凸优化问题的标准形式

```
minimize f_0(x) subject to f_i(x) \leq 0, \quad i = 1, \dots, m a_i^T x = b_i, \quad i = 1, \dots, p
```

 \bullet f_0, f_1, \ldots, f_m 为凸函数; 等式约束为仿射函数


```
minimize f_0(x)
subject to f_i(x) \leq 0, \quad i = 1, \dots, m
a_i^T x = b_i, \quad i = 1, \dots, p
```

- \bullet f_0, f_1, \ldots, f_m 为凸函数; 等式约束为仿射函数
- □通常,该问题可简写为


```
minimize f_0(x) subject to f_i(x) \leq 0, \quad i = 1, \dots, m a_i^T x = b_i, \quad i = 1, \dots, p
```

- $\bullet f_0, f_1, \ldots, f_m$ 为凸函数; 等式约束为仿射函数
- □通常,该问题可简写为

```
minimize f_0(x) subject to f_i(x) \leq 0, \quad i=1,\ldots,m Ax=b
```


minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $a_i^T x = b_i, \quad i=1,\ldots,p$

- $\bullet f_0, f_1, \ldots, f_m$ 为凸函数; 等式约束为仿射函数
- 山通常,该问题可简写为 minimize $f_0(x)$ subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ Ax=b
- □重要的性质: 凸优化问题的可行解集为凸集

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1+x_2^2) \le 0$
 $h_1(x) = (x_1+x_2)^2 = 0$

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1+x_2^2) \le 0$
 $h_1(x) = (x_1+x_2)^2 = 0$

□ f_0 为凸函数,可行解集 $\{(x_1,x_2) \mid x_1 = -x_2 \le 0\}$ 为凸集

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1+x_2^2) \le 0$
 $h_1(x) = (x_1+x_2)^2 = 0$

- □ f_0 为凸函数,可行解集 $\{(x_1,x_2) \mid x_1 = -x_2 \le 0\}$ 为凸集
- □狭义上不是凸优化问题: f_1 不是凸函数, h_1 不是仿射函数

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1+x_2^2) \le 0$
 $h_1(x) = (x_1+x_2)^2 = 0$

- □ f_0 为凸函数,可行解集 $\{(x_1,x_2) \mid x_1 = -x_2 \le 0\}$ 为凸集
- □狭义上不是凸优化问题: f_1 不是凸函数, h_1 不是仿射函数
- □广义上是凸优化问题

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1+x_2^2) \le 0$
 $h_1(x) = (x_1+x_2)^2 = 0$

- □ f_0 为凸函数,可行解集 $\{(x_1,x_2) \mid x_1 = -x_2 \le 0\}$ 为凸集
- □狭义上不是凸优化问题: f_1 不是凸函数, h_1 不是仿射函数
- □广义上是凸优化问题

minimize
$$x_1^2 + x_2^2$$
 subject to $x_1 \le 0$ $x_1 + x_2 = 0$

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $Ax = b$

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $Ax = b$
minimize $f_0(Fz + x_0)$
subject to $f_i(Fz + x_0) \leq 0, \quad i = 1, \dots, m,$

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $Ax = b$
minimize $f_0(Fz + x_0)$
subject to $f_i(Fz + x_0) \leq 0, \quad i = 1, \dots, m,$
 $Ax = b \iff x = Fz + x_0 \text{ for some } z$

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0$, $i = 1, \ldots, m$
 $Ax = b$
minimize $f_0(Fz + x_0)$
subject to $f_i(Fz + x_0) \leq 0$, $i = 1, \ldots, m$,
 $Ax = b \iff x = Fz + x_0 \text{ for some } z$

□实际过程中,并不能减少问题求解难度

松弛变量

松弛变量

minimize $f_0(x)$ subject to $a_i^T x \leq b_i, \quad i=1,\ldots,m$

松弛变量

minimize $f_0(x)$ subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

minimize (over x, s) $f_0(x)$ subject to $a_i^T x + s_i = b_i, \quad i = 1, \dots, m$ $s_i \geq 0, \quad i = 1, \dots m$

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $a_i^T x = b_i, \quad i=1,\ldots,p$

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $a_i^T x = b_i, \quad i = 1, \dots, p$

□目标函数为拟凸函数

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $a_i^T x = b_i, \quad i = 1, \dots, p$

- □目标函数为拟凸函数
- ■其他和凸问题一致
 - ❖若目标函数为拟凹函数?

□凸优化问题的任意局部最优解也是全局最优解

- □凸优化问题的任意局部最优解也是全局最优解
- □证明: 假设x是局部最优解,且存在一个可行的 y满足x是局部最优解,则存在 R > 0 使得 $f_0(y) < f_0(x)$

- □凸优化问题的任意局部最优解也是全局最优解
- □ 证明: 假设x是局部最优解,且存在一个可行的 y满足x是局部最优解,则存在 R > 0 使得 $f_0(y) < f_0(x)$
- □ 考虑 z 为可行 $||z-x||_2 \le R$ \Longrightarrow $f_0(z) \ge f_0(x)$

- □凸优化问题的任意局部最优解也是全局最优解
- □证明: 假设x是局部最优解,且存在一个可行的 y满足x是局部最优解,则存在 R > 0 使得 $f_0(y) < f_0(x)$
- □ 考虑 z 为可行 $||z-x||_2 \le R$ \Longrightarrow $f_0(z) \ge f_0(x)$
- U 列有 $z = \theta y + (1 \theta)x$ with $\theta = R/(2\|y x\|_2)$

- □凸优化问题的任意局部最优解也是全局最优解
- □证明: 假设x是局部最优解,且存在一个可行的 y满足x是局部最优解,则存在 R > 0 使得 $f_0(y) < f_0(x)$
- \square 考虑 z 为可行 $||z-x||_2 \leq R \implies f_0(z) \geq f_0(x)$
- U 列有 $z = \theta y + (1 \theta)x$ with $\theta = R/(2\|y x\|_2)$
- $||y-x||_2 > R$, 因此 $0 < \theta < 1/2$

- □凸优化问题的任意局部最优解也是全局最优解
- □证明: 假设x是局部最优解,且存在一个可行的 y满足x是局部最优解,则存在 R > 0 使得 $f_0(y) < f_0(x)$
- \square 考虑 z 为可行 $||z-x||_2 \leq R \implies f_0(z) \geq f_0(x)$
- U 列有 $z = \theta y + (1 \theta)x$ with $\theta = R/(2\|y x\|_2)$
- $||y-x||_2 > R$, 因此 $0 < \theta < 1/2$
- z 为两个可行点的凸组合,因此 $\|z-x\|_2 = R/2$ 且

$$f_0(z) \le \theta f_0(y) + (1 - \theta) f_0(x) < f_0(x)$$

- ┛凸优化问题的任意局部最优解也是全局最优解
- \Box 证明:假设x是局部最优解,且存在一个可行的 v满足x是局部最优解,则存在 R > 0 使得 $f_0(y) < f_0(x)$
- □ 考虑 z 为可行 $||z-x||_2 \le R$ \Longrightarrow $f_0(z) \ge f_0(x)$
- **山** 则有 $z = \theta y + (1 \theta)x$ with $\theta = R/(2\|y x\|_2)$
- $||y-x||_2 > R$, $||y-x||_2 > R$
- - $f_0(z) \le \theta f_0(y) + (1 \theta) f_0(x) < f_0(x)$
- →和x是局部最优解相矛盾

A
<u> </u>

局部和全局最优

局部和全局最优

 $\square x$ 为最优解,当且仅当x是可行的,且

□ x为最优解,当且仅当x是可行的,且 $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible y

- $\Box x$ 为最优解,当且仅当x是可行的,且 $\nabla f_0(x)^T(y-x) \geq 0$ for all feasible y
- □凸函数的一阶条件

- □ x为最优解,当且仅当x是可行的,且 $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible y
- □凸函数的一阶条件

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{dom} f$

- □ x为最优解,当且仅当x是可行的,且 $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible y
- □凸函数的一阶条件

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{dom} f$

□ 非约束问题: *x*为最优解, 当且仅当

□ 非约束问题: x为最优解,当且仅当 $x \in \mathbf{dom} f_0$, $\nabla f_0(x) = 0$

- → 非约束问题: x为最优解, 当且仅当
 - $x \in \mathbf{dom}\, f_0, \qquad \nabla f_0(x) = 0$

$$\nabla f_0(x) = 0$$

□等式约束问题:

minimize $f_0(x)$ subject to Ax = b

- □ 非约束问题: x为最优解,当且仅当 $x \in \mathbf{dom} f_0$, $\nabla f_0(x) = 0$
- 事式约束问题: minimize $f_0(x)$ subject to Ax = b
- $\Box x$ 是最优解,则对所有 Ay = b, $\nabla f_0(x)^T (y x) \ge 0$

- □ 非约束问题: x为最优解,当且仅当 $x \in \mathbf{dom} f_0$, $\nabla f_0(x) = 0$
- 事式约束问题: minimize $f_0(x)$ subject to Ax = b
- $\square x$ 是最优解,则对所有 Ay = b, $\nabla f_0(x)^T (y x) \ge 0$ Ax = b Ay = b

- □ 非约束问题: x为最优解,当且仅当 $x \in \mathbf{dom} f_0$, $\nabla f_0(x) = 0$
- → 等式约束问题: minimize $f_0(x)$ subject to Ax = b
- □ x是最优解,则对所有 Ay = b, $\nabla f_0(x)^T (y x) \ge 0$ $Ax = b \ Ay = b \Longrightarrow y = x + v \ v \in \mathcal{N}(A)$

- □ 非约束问题: x为最优解,当且仅当 $x \in \mathbf{dom} f_0$, $\nabla f_0(x) = 0$
- 等式约束问题:
 minimize $f_0(x)$ subject to Ax = b
- □ x是最优解,则对所有 Ay = b, $\nabla f_0(x)^T(y x) \ge 0$ $Ax = b \ Ay = b \Longrightarrow y = x + v \ v \in \mathcal{N}(A)$ $\nabla f_0(x)^T v \ge 0 \text{ for all } v \in \mathcal{N}(A)$

- □ 非约束问题: x为最优解,当且仅当 $x \in \mathbf{dom} f_0$, $\nabla f_0(x) = 0$
- 等式约束问题:
 minimize $f_0(x)$ subject to Ax = b
- □ x是最优解,则对所有 Ay = b, $\nabla f_0(x)^T(y x) \ge 0$ Ax = b $Ay = b \Longrightarrow y = x + v$ $v \in \mathcal{N}(A)$ $\nabla f_0(x)^T v \ge 0$ for all $v \in \mathcal{N}(A)$ $\nabla f_0(x) \perp \mathcal{N}(A)$

$$\nabla f_0(x) \perp \mathcal{N}(A)$$

$$\nabla f_0(x) \perp \mathcal{N}(A)$$

$$\nabla f_0(x) \perp \mathcal{N}(A)$$

$$\nabla f_0(x) \perp \mathcal{N}(A)$$

$$\nabla f_0(x) \perp \mathcal{N}(A)$$

$$\nabla f_0(x) \perp \mathcal{N}(A)$$

$$\nabla f_0(x) \perp \mathcal{N}(A)$$

□非负象限中的极小化

□ 非负象限中的极小化 minimize $f_0(x)$ subject to $x \succeq 0$

- □非负象限中的极小化
 - minimize $f_0(x)$ subject to $x \succeq 0$
- □ x是最优解,当且仅当所有 $y \ge 0$, $\nabla f_0(x)^T(y-x) \ge 0$

- □非负象限中的极小化
 - minimize $f_0(x)$ subject to $x \succeq 0$
- □ x是最优解,当且仅当所有 $y \ge 0$, $\nabla f_0(x)^T(y-x) \ge 0$
 - ❖ 若 $\nabla f_0(x) \leq 0$,则 $\nabla f_0(x)^T y$ 必可取无穷小

- □非负象限中的极小化
 - minimize $f_0(x)$ subject to $x \succeq 0$
- □ x是最优解,当且仅当所有 $y \ge 0$, $\nabla f_0(x)^T(y-x) \ge 0$
 - *若 $\nabla f_0(x) \leq 0$,则 $\nabla f_0(x)^T$ y必可取无穷小
 - * 则 $\nabla f_0(x) \geq 0$

- □非负象限中的极小化
 - minimize $f_0(x)$ subject to $x \succeq 0$
- □ x是最优解,当且仅当所有 $y \ge 0$, $\nabla f_0(x)^T(y-x) \ge 0$
 - ❖若 $\nabla f_0(x) \leq 0$,则 $\nabla f_0(x)^T$ y必可取无穷小
 - *****则 $\nabla f_0(x) \geq 0$
 - $\diamondsuit \diamondsuit y = 0, \quad \text{in} \nabla f_0(x)^T x \ge 0$

- □非负象限中的极小化
 - minimize $f_0(x)$ subject to $x \succeq 0$
- □ x是最优解,当且仅当所有 $y \ge 0$, $\nabla f_0(x)^T(y-x) \ge 0$
 - *若 $\nabla f_0(x) \leq 0$,则 $\nabla f_0(x)^T y$ 必可取无穷小
 - * 则 $\nabla f_0(x) \geq 0$
 - $\diamondsuit \diamondsuit y = 0, \quad \text{in} \nabla f_0(x)^T x \ge 0$
 - $\nabla f_0(x) \geq 0$, $x \geq 0$, $\nabla f_0(x)^T x \geq 0$

- □非负象限中的极小化
 - minimize $f_0(x)$ subject to $x \succeq 0$
- □ x是最优解,当且仅当所有 $y \ge 0$, $\nabla f_0(x)^T(y-x) \ge 0$
 - *若 $\nabla f_0(x) \leq 0$,则 $\nabla f_0(x)^T y$ 必可取无穷小
 - * 则 $\nabla f_0(x) \geq 0$
 - $\Rightarrow \Rightarrow y = 0, \quad \text{III} \nabla f_0(x)^T x \ge 0$
 - $\bullet \nabla f_0(x) \geq 0, \quad x \geq 0, \quad \text{If } \nabla f_0(x)^T x \geq 0$
 - **◇** 则 $\nabla f_0(x)^T x = 0$

- □非负象限中的极小化
 - minimize $f_0(x)$ subject to $x \succeq 0$
- □ x是最优解,当且仅当所有 $y \ge 0$, $\nabla f_0(x)^T(y-x) \ge 0$
 - *若 $\nabla f_0(x) \leq 0$,则 $\nabla f_0(x)^T$ y必可取无穷小
 - *****则 $\nabla f_0(x) \geq 0$
 - $\diamondsuit \diamondsuit y = 0, \quad \text{in} \nabla f_0(x)^T x \ge 0$
 - $\bullet \nabla f_0(x) \geq 0, \quad x \geq 0, \quad \text{If } \nabla f_0(x)^T x \geq 0$
 - **◇** 则 $\nabla f_0(x)^T x = 0$
 - $x \ge 0$, $\nabla f_0(x) \ge 0$, $x_i(\nabla f_0(x))_i = 0, i = 1,...,n$

minimize
$$c^T x + d$$

subject to $Gx \leq h$
 $Ax = b$

$$\begin{array}{ll} \text{minimize} & c^Tx+d\\ \text{subject to} & Gx \preceq h\\ & Ax=b \end{array}$$

□目标函数和约束函数均为仿射函数

minimize
$$c^Tx + d$$

subject to $Gx \leq h$
 $Ax = b$

- □目标函数和约束函数均为仿射函数
- □可行解为多边形

minimize
$$c^Tx + d$$

subject to $Gx \leq h$
 $Ax = b$

- □目标函数和约束函数均为仿射函数
- □可行解为多边形

minimize
$$c^T x + d$$

subject to $Gx + s = h$
 $Ax = b$
 $s \succeq 0$.

minimize
$$c^T x + d$$

subject to $Gx + s = h$
 $Ax = b$
 $s \succeq 0$.

$$x = x^{+} - x^{-}, x^{+}, x^{-} \succeq 0$$

minimize
$$c^T x + d$$

subject to $Gx + s = h$
 $Ax = b$
 $s \succeq 0$.

$$x = x^{+} - x^{-}, x^{+}, x^{-} \succeq 0$$

minimize $c^{T}x^{+} - c^{T}x^{-} + d$
subject to $Gx^{+} - Gx^{-} + s = h$
 $Ax^{+} - Ax^{-} = b$
 $x^{+} \succeq 0, x^{-} \succeq 0, s \succeq 0,$

minimize
$$c^T x + d$$

subject to $Gx + s = h$
 $Ax = b$
 $s \succeq 0$.

$$x = x^{+} - x^{-}, x^{+}, x^{-} \succeq 0$$

minimize $c^{T}x^{+} - c^{T}x^{-} + d$ minimize $c^{T}x$
subject to $Gx^{+} - Gx^{-} + s = h$ subject to $Ax = b$
 $Ax^{+} - Ax^{-} = b$ $x \succeq 0$.
 $x^{+} \succeq 0, x^{-} \succeq 0, s \succeq 0$,

□为满足营养需求,营养*i*的量至少为*b_i*

- □为满足营养需求,营养*i*的量至少为*b_i*
- \Box 单位第j中食品含有营养i的量为 a_{ij} ,价格为 c_j

- \square 为满足营养需求,营养i的量至少为 b_i
- \Box 单位第j中食品含有营养i的量为 a_{ij} ,价格为 c_j
- \square 从n种食物中,选择 x_1,\ldots,x_n 量的食物构成食谱

- \square 为满足营养需求,营养i的量至少为 b_i
- \Box 单位第j中食品含有营养i的量为 a_{ij} ,价格为 c_j
- \square 从n种食物中,选择 x_1,\ldots,x_n 量的食物构成食谱
- □ 为找到最便宜的食谱,求解线性规划问题:

- \Box 为满足营养需求,营养i的量至少为 b_i
- \Box 单位第j中食品含有营养i的量为 a_{ij} ,价格为 c_j
- \square 从n种食物中,选择 x_1,\ldots,x_n 量的食物构成食谱
- □ 为找到最便宜的食谱,求解线性规划问题:

minimize $c^T x$

- \square 为满足营养需求,营养i的量至少为 b_i
- \Box 单位第j中食品含有营养i的量为 a_{ij} ,价格为 c_j
- \square 从n种食物中,选择 x_1,\ldots,x_n 量的食物构成食谱
- □ 为找到最便宜的食谱,求解线性规划问题:

minimize $c^T x$ subject to $Ax \succeq b$,

- \square 为满足营养需求,营养i的量至少为 b_i
- \Box 单位第j中食品含有营养i的量为 a_{ij} ,价格为 c_j
- \square 从n种食物中,选择 x_1,\ldots,x_n 量的食物构成食谱
- □ 为找到最便宜的食谱,求解线性规划问题:

minimize $c^T x$ subject to $Ax \succeq b$, $x \succeq 0$

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

minimize
$$f_0(x)$$
 subject to $Gx \leq h$

$$f_0(x)$$

$$Gx \leq h$$

$$Ax = b$$

$$\mathbf{dom}\, f_0(x) = \{ x \mid e^T x + f > 0 \}$$

minimize subject to $Gx \leq h$

$$f_0(x)$$

$$Gx \leq h$$

$$Ax = b$$

$$\mathbf{dom}\, f_0(x) = \{x \mid e^T x + f > 0\}$$

□为拟凸优化问题

minimize subject to $Gx \leq h$

$$f_0(x)$$

$$Gx \leq h$$

$$Ax = b$$

$$\mathbf{dom}\, f_0(x) = \{x \mid e^T x + f > 0\}$$

- □为拟凸优化问题
- ■等价于线性规划

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

minimize
$$c^Ty+dz$$
 subject to $Gy \leq hz$
$$Ay = bz$$

$$e^Ty+fz = 1$$
 $z \geq 0$

 $\operatorname{dom} f_0(x) = \{x \mid e^T x + f > 0\}$

□证明:

❖若x在原问题可行,令

□证明:

*若
$$x$$
在原问题可行,令 $y = \frac{x}{e^T x + f}$ $z = \frac{1}{e^T x + f}$

□证明:

*若x在原问题可行,令 $y = \frac{x}{e^T x + f}$ $z = \frac{1}{e^T x + f}$

minimize
$$f_0(x)$$
 subject to $Gx \preceq h$ $Ax = b$ $f_0(x) = rac{c^Tx + d}{e^Tx + f}, \quad \mathbf{dom}\, f_0(x) = \{x \mid e^Tx + f > 0\}$

□证明:

*若x在原问题可行,令 $y = \frac{x}{e^T x + f}$ $z = \frac{1}{e^T x + f}$ $Gx \leq h$ Ax = b $e^T x + f > 0$

minimize
$$f_0(x)$$
 subject to $Gx \preceq h$ $Ax = b$ $f_0(x) = rac{c^Tx + d}{e^Tx + f}, \quad \mathbf{dom}\, f_0(x) = \{x \mid e^Tx + f > 0\}$

□证明:

*若x在原问题可行,令
$$y = \frac{x}{e^T x + f}$$
 $z = \frac{1}{e^T x + f}$ $Gx \leq h$ $Ax = b$ $e^T x + f > 0$

□证明:

*若x在原问题可行,令 $y = \frac{x}{e^T x + f}$ $z = \frac{1}{e^T x + f}$ Ax = b $e^T x + f > 0$

minimize
$$c^Ty+dz$$
 subject to $Gy \preceq hz$
$$Ay = bz$$

$$e^Ty+fz=1$$
 $z > 0$

□证明:

*若x在原问题可行,令 $y = \frac{x}{e^T x + f}$ $z = \frac{1}{e^T x + f}$ $Gx \leq h$ Ax = b $Gy - hz = \frac{Gx - h}{e^Tx + f} \le 0$

minimize
$$c^Ty+dz$$
 subject to $Gy \preceq hz$
$$Ay = bz$$

$$e^Ty+fz = 1$$
 $z > 0$

 $e^T x + f > 0$

□证明:

*若x在原问题可行,令 $y = \frac{x}{e^T x + f}$ $z = \frac{1}{e^T x + f}$

$$Ax = b$$

$$e^T x + f > 0$$

$$Gy - hz = \frac{Gx - h}{e^{T}x + f} \le 0$$
$$Ay - bz = \frac{Ax - b}{e^{T}x + f} = 0$$

minimize c^Ty+dz subject to $Gy \leq hz$ Ay = bz $e^Ty+fz=1$ $z \geq 0$

┛证明:

*若x在原问题可行,令 $y = \frac{x}{e^T x + f}$ $z = \frac{1}{e^T x + f}$ $Gx \leq h$

$$Ax = b$$

$$e^{T}x + f > 0$$

 $Gy - hz = \frac{Gx - h}{e^Tx + f} \le 0$ $e^T x + f > 0$ $Ay - bz = \frac{Ax - b}{e^T x + f} = 0$

minimize
$$c^Ty+dz$$
 subject to $Gy \preceq hz$
$$Ay = bz$$

$$e^Ty+fz=1$$
 $z > 0$

$$e^T y + f z = \frac{e^T x + f}{e^T x + f} = 1$$

□证明:

*若x在原问题可行,令 $y = \frac{x}{e^T x + f}$ $z = \frac{1}{e^T x + f}$

$$Ax = b$$

$$e^T x + f > 0$$

$$Gy - hz = \frac{Gx - h}{e^Tx + f} \le 0$$

$$Ay - bz = \frac{Ax - b}{e^T x + f} = 0$$

minimize $c^T y + dz$ subject to $Gy \leq hz$

$$Ay = bz$$

$$e^{T}y + fz = 1$$

$$z > 0$$

$$e^T y + f z = \frac{e^T x + f}{e^T x + f} = 1$$

$$z \ge 0$$

┛证明:

*若x在原问题可行,令 $y = \frac{x}{e^T x + f}$ $z = \frac{1}{e^T x + f}$

$$Gx \leq h$$

$$Ax = b$$

$$e^T x + f > 0$$

$$Gy - hz = \frac{Gx - h}{e^Tx + f} \le 0$$

$$Ay - bz = \frac{Ax - b}{e^T x + f} = 0$$

minimize $c^T y + dz$ subject to $Gy \leq hz$

$$Gy \leq hz$$

$$Ay = bz$$
$$e^T u + fz$$

z > 0

$$e^T y + f z = \frac{e^T x + f}{e^T x + f} = 1$$

$$Ay = bz z \ge 0$$

$$e^{T}y + fz = 1 c^{T}y + dz = \frac{c^{T}x + d}{e^{T}x + f} = f_{0}(x)$$

□ 若y, z在变换后的问题可行

- □ 若y, z在变换后的问题可行
- $\Box z > 0$, $\diamondsuit x = y/z$

- □ 若y, z在变换后的问题可行
- $\Box z > 0$, $\diamondsuit x = y/z$
 - ❖则x在原问题可行,且两问题目标函数值相同

- □ 若y, z在变换后的问题可行
- $\Box z > 0$, $\Leftrightarrow x = y/z$
 - ❖则x在原问题可行,且两问题目标函数值相同
- $\Box z = 0$,设 x_0 为原问题的可行解

- □ 若y, z在变换后的问题可行
- $\Box z > 0$, $\diamondsuit x = y/z$
 - ❖则x在原问题可行,且两问题目标函数值相同
- $\Box z = 0$,设 x_0 为原问题的可行解
 - ❖ $x=x_0+ty(t ≥ 0)$ 也为可行解

- □ 若y, z在变换后的问题可行
- $\Box z > 0$, $\diamondsuit x = y/z$
 - ❖则x在原问题可行,且两问题目标函数值相同
- $\Box z = 0$,设 x_0 为原问题的可行解
 - ❖ $x=x_0+ty(t ≥ 0)$ 也为可行解

minimize c^Ty+dz subject to $Gy \preceq hz$ Ay = bz $e^Ty+fz=1$ z > 0

- □ 若y, z在变换后的问题可行
- $\Box z > 0$, $\Leftrightarrow x = y/z$
 - ❖则x在原问题可行,且两问题目标函数值相同
- $\Box z = 0$,设 x_0 为原问题的可行解
 - ❖ $x=x_0+ty(t ≥ 0)$ 也为可行解
 - $\bullet Gy \leq 0$, Ay = 0, $e^Ty = 1$

minimize
$$c^Ty+dz$$
 subject to $Gy \leq hz$
$$Ay = bz$$

$$e^Ty+fz = 1$$
 $z > 0$

- □ 若y, z在变换后的问题可行
- $\Box z > 0$, $\Leftrightarrow x = y/z$
 - ❖则x在原问题可行,且两问题目标函数值相同
- $\Box z = 0$,设 x_0 为原问题的可行解
 - ❖ $x=x_0+ty(t ≥ 0)$ 也为可行解
 - $\bullet Gy \le 0$, Ay = 0, $e^Ty = 1$

- □ 若y, z在变换后的问题可行
- $\Box z > 0$, $\Leftrightarrow x = y/z$
 - ❖则x在原问题可行,且两问题目标函数值相同
- $\Box z = 0$,设 x_0 为原问题的可行解
 - ❖ $x=x_0+ty(t \ge 0)$ 也为可行解
 - $\bullet Gy \leq 0$, Ay = 0, $e^Ty = 1$

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

$$f_0(x) = \frac{c^T x + d}{e^T x + f},$$
 $\mathbf{dom} \, f_0(x) = \{x \mid e^T x + f > 0\}$

- □ 若y, z在变换后的问题可行
- $\Box z > 0$, $\diamondsuit x = y/z$
 - ❖则x在原问题可行,且两问题目标函数值相同
- $\Box z = 0$,设 x_0 为原问题的可行解
 - ❖ $x=x_0+ty(t \ge 0)$ 也为可行解
 - $\bullet Gy \le 0$, Ay = 0, $e^Ty = 1$
 - $Gx = Gx_0 + tGy \le h$

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

$$f_0(x) = \frac{c^T x + d}{e^T x + f},$$

$$\mathbf{dom}\, f_0(x) = \{x \mid e^T x + f > 0\}$$

- □ 若y, z在变换后的问题可行
- $\Box z > 0$, $\diamondsuit x = y/z$
 - ❖则x在原问题可行,且两问题目标函数值相同
- $\Box z = 0$,设 x_0 为原问题的可行解
 - ❖ $x=x_0+ty(t \ge 0)$ 也为可行解
 - $\bullet Gy \le 0$, Ay = 0, $e^Ty = 1$
 - $Gx = Gx_0 + tGy \le h$
 - $Ax = Ax_0 + tAy = b$

$$f_0(x) = \frac{c^T x + d}{e^T x + f},$$

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

$$\mathbf{dom}\, f_0(x) = \{x \mid e^T x + f > 0\}$$

- □ 若y, z在变换后的问题可行
- $\Box z > 0$, $\diamondsuit x = y/z$
 - ❖则x在原问题可行,且两问题目标函数值相同
- $\Box z = 0$,设 x_0 为原问题的可行解
 - ❖ $x=x_0+ty(t \ge 0)$ 也为可行解
 - $\bullet Gy \le 0$, Ay = 0, $e^Ty = 1$
 - $Gx = Gx_0 + tGy \le h$
 - $Ax = Ax_0 + tAy = b$
 - $e^{T}x + f = e^{T}x_0 + f + te^{T}y > 0$

$$f_0(x) = \frac{c^T x + d}{e^T x + f},$$

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

$$\mathbf{dom}\, f_0(x) = \{x \mid e^T x + f > 0\}$$

- □ 若y, z在变换后的问题可行
- $\Box z > 0$, $\Leftrightarrow x = y/z$
 - ❖则x在原问题可行,且两问题目标函数值相同
- $\Box z = 0$,设 x_0 为原问题的可行解
 - ❖ $x=x_0+ty(t \ge 0)$ 也为可行解
 - $\bullet Gy \leq 0$, Ay = 0, $e^Ty = 1$
 - $Gx = Gx_0 + tGy \le h$
 - $Ax = Ax_0 + tAy = b$
 - $e^{T}x + f = e^{T}x_0 + f + te^{T}y > 0$

- □ 若y, z在变换后的问题可行
- $\Box z > 0$, $\diamondsuit x = y/z$
 - ❖则x在原问题可行,且两问题目标函数值相同
- $\Box z = 0$,设 x_0 为原问题的可行解
 - ❖ $x=x_0+ty(t \ge 0)$ 也为可行解
 - $\bullet Gy \le 0$, Ay = 0, $e^Ty = 1$
 - $Gx = Gx_0 + tGy \le h$
 - $Ax = Ax_0 + tAy = b$
 - $e^{T}x + f = e^{T}x_0 + f + te^{T}y > 0$

- □ 若y, z在变换后的问题可行
- $\Box z > 0$, $\diamondsuit x = y/z$
 - ❖则x在原问题可行,且两问题目标函数值相同
- $\Box z = 0$,设 x_0 为原问题的可行解
 - ❖ $x=x_0+ty(t \ge 0)$ 也为可行解
 - $\bullet Gy \le 0$, Ay = 0, $e^Ty = 1$
 - $Gx = Gx_0 + tGy \le h$
 - $Ax = Ax_0 + tAy = b$
 - $e^{T}x + f = e^{T}x_0 + f + te^{T}y > 0$

minimize
$$(1/2)x^TPx + q^Tx + r$$
 subject to $Gx \leq h$ $Ax = b$

minimize
$$(1/2)x^TPx + q^Tx + r$$
 $P \in \mathbf{S}^n_+$, subject to $Gx \preceq h$ $Ax = b$

minimize
$$(1/2)x^TPx + q^Tx + r \quad P \in \mathbf{S}^n_+,$$
 subject to
$$Gx \preceq h$$

$$Ax = b$$

□在多面体上极小化一个凸二次函数

minimize
$$(1/2)x^TPx + q^Tx + r$$
 $P \in \mathbf{S}^n_+$, subject to $Gx \preceq h$ $Ax = b$

□在多面体上极小化一个凸二次函数

minimize
$$(1/2)x^TP_0x+q_0^Tx+r_0$$
 subject to
$$(1/2)x^TP_ix+q_i^Tx+r_i\leq 0,\quad i=1,\ldots,m$$

$$Ax=b$$

minimize
$$(1/2)x^TP_0x+q_0^Tx+r_0 \qquad P_i\in \mathbf{S}^n_+$$
 subject to
$$(1/2)x^TP_ix+q_i^Tx+r_i\leq 0,\quad i=1,\ldots,m$$

$$Ax=b$$

minimize
$$(1/2)x^TP_0x+q_0^Tx+r_0 \qquad P_i\in \mathbf{S}^n_+$$
 subject to
$$(1/2)x^TP_ix+q_i^Tx+r_i\leq 0,\quad i=1,\ldots,m$$

$$Ax=b$$

□ 若 $P_1, \dots, P_m \in \mathbf{S}_{++}^n$,可行区域为m个椭球和一个仿射集合的交集

minimize
$$(1/2)x^TP_0x+q_0^Tx+r_0 \qquad P_i\in \mathbf{S}^n_+$$
 subject to
$$(1/2)x^TP_ix+q_i^Tx+r_i\leq 0,\quad i=1,\ldots,m$$

$$Ax=b$$

□ 若 $P_1, \dots, P_m \in \mathbf{S}_{++}^n$,可行区域为m个椭球和一个仿射集合的交集

minimize
$$(1/2)x^TP_0x+q_0^Tx+r_0 \qquad P_i\in \mathbf{S}^n_+$$
 subject to
$$(1/2)x^TP_ix+q_i^Tx+r_i\leq 0,\quad i=1,\ldots,m$$

$$Ax=b$$

□ 若 $P_1, \dots, P_m \in \mathbf{S}_{++}^n$,可行区域为m个椭球和一个仿射集合的交集

例

$$b = Ax + e$$

$$b = Ax + e$$

$$x^* = \arg\min_{x} \|b - Ax\|_2$$

$$b = Ax + e$$

$$x^* = \arg\min_{x} \|b - Ax\|_2$$

$$\Rightarrow = \arg\min_{x} ||b - Ax||_2^2$$

$$b = Ax + e$$

$$x^* = \arg\min_{x} \|b - Ax\|_2$$

$$\Rightarrow = \arg\min_{x} \|b - Ax\|_2^2$$

$$= \arg\min_{x} x^{T} A^{T} A x - 2b^{T} A x + b^{T} b$$

$$b = Ax + e$$

$$x^* = \arg\min_{x} \|b - Ax\|_2$$

$$\Rightarrow = \arg\min_{x} ||b - Ax||_2^2$$

$$\Rightarrow = \arg\min_{x} x^{T} A^{T} A x - 2b^{T} A x + b^{T} b$$

$$= (A^T A)^{-1} A^T b$$

- □带噪音的测量系统
 - **⋄**b = Ax + b,且x稀疏

- □带噪音的测量系统
 - ❖*b* = Ax + b,且x稀疏
 - $x^* = \arg\min_{x} \|b Ax\|_2^2 + \lambda_0 \|x\|_0$

$$❖$$
b = $Ax + b$,且 x 稀疏

$$x^* = \arg\min_{x} \|b - Ax\|_2^2 + \lambda_0 \|x\|_0$$

$$\Rightarrow \arg\min_{x} \|b - Ax\|_{2}^{2} + \lambda_{1} \|x\|_{1}$$

$$❖$$
b = $Ax + b$,且 x 稀疏

$$x^* = \arg\min_{x} \|b - Ax\|_2^2 + \lambda_0 \|x\|_0$$

$$\approx \arg\min_{x} \|b - Ax\|_{2}^{2} + \lambda_{1} \|x\|_{1}$$

$$*L_1$$
-规范化的最小二乘问题

$$❖$$
b = $Ax + b$,且 x 稀疏

$$x^* = \arg\min_{x} \|b - Ax\|_2^2 + \lambda_0 \|x\|_0$$

$$\approx \arg\min_{x} \|b - Ax\|_{2}^{2} + \lambda_{1} \|x\|_{1}$$

$$*L_1$$
-规范化的最小二乘问题

⋄
$$\exists | \lambda x = x^+ - x^-, x^+, x^- \ge 0$$

$$❖$$
b = $Ax + b$,且 x 稀疏

$$x^* = \arg\min_{x} \|b - Ax\|_2^2 + \lambda_0 \|x\|_0$$

$$\Rightarrow \arg\min_{x} \|b - Ax\|_{2}^{2} + \lambda_{1} \|x\|_{1}$$

$$*L_1$$
-规范化的最小二乘问题

⋄
$$\exists [] x = x^+ - x^-, x^+, x^- \ge 0$$

$$\Rightarrow \arg\min_{x^+, x^-} ||b - Ax^+ + Ax^-||_2^2 + \lambda_1 ||x^+ - x^-||_1$$

$$❖$$
b = $Ax + b$,且 x 稀疏

$$x^* = \arg\min_{x} \|b - Ax\|_2^2 + \lambda_0 \|x\|_0$$

$$\Rightarrow \arg\min_{x} \|b - Ax\|_{2}^{2} + \lambda_{1} \|x\|_{1}$$

$$*L_1$$
-规范化的最小二乘问题

⋄
$$\exists | \lambda x = x^+ - x^-, x^+, x^- \ge 0$$

$$\Rightarrow \arg\min_{x^+, x^-} ||b - Ax^+ + Ax^-||_2^2 + \lambda_1 ||x^+ - x^-||_1$$

$$\Rightarrow \arg\min_{x^+, x^-} ||b - Ax^+ + Ax^-||_2^2 + \lambda_1 1^T x^+ + \lambda_1 1^T x^-$$

 $\Box L_2$ -规范化的最小二乘问题(岭回归)

- $\Box L_2$ -规范化的最小二乘问题(岭回归)
 - **※**x中元素幅度类似

- $\Box L_2$ -规范化的最小二乘问题(岭回归)
 - **※**x中元素幅度类似
 - $x^* = \arg\min_{x} \|b Ax\|_2^2 + \lambda_2 \|x\|_2^2$

- $\Box L_2$ -规范化的最小二乘问题(岭回归)
 - **※**x中元素幅度类似
 - $x^* = \arg\min_{x} \|b Ax\|_2^2 + \lambda_2 \|x\|_2^2$
 - $A^TA + \lambda_2 I$ 半正定

- $\Box L_2$ -规范化的最小二乘问题(岭回归)
 - **❖**x中元素幅度类似
 - $x^* = \arg\min_{x} \|b Ax\|_2^2 + \lambda_2 \|x\|_2^2$
 - $A^TA + \lambda_2 I$ 半正定
 - $\Rightarrow \quad \arg\min_{x} \|b Ax\|_{2}^{2}$

- $\Box L_2$ -规范化的最小二乘问题(岭回归)
 - **❖**x中元素幅度类似
 - $x^* = \arg\min_{x} ||b Ax||_2^2 + \lambda_2 ||x||_2^2$
 - $A^TA + \lambda_2 I$ 半正定
 - $\underset{x}{\Leftrightarrow} \quad \arg\min_{x} \|b Ax\|_{2}^{2}$ $\mathbf{s.t.} \ \|x\|_{2}^{2} \le \theta$

	投入	回报
1	X_1	P_1X_1
2	X_2	P_2X_2
•••	•••	•••
N	X_n	P_nX_n

	投入	回报
1	X_1	P_1X_1
2	X_2	P_2X_2
•••	•••	•••
N	X_n	P_nX_n

$$\max P_1 X_1 + \ldots + P_n X_n$$

$$\mathbf{s.t} \quad X_1 + \ldots + X_n \le B$$
$$X_1, \ldots, X_n \ge 0$$

- □投资组合问题
- $\Box \bar{P} = [1.1 \ 1.2 \ 1.0]$

$$\Box \bar{P} = [1.1 \ 1.2 \ 1.0]$$

$$\Sigma = \begin{bmatrix} 1.5 & 0 & 0 \\ 0 & 2.0 & 0 \\ 0 & 0 & 1.0 \end{bmatrix}$$

□投资组合问题

$$\Box \bar{P} = [1.1 \ 1.2 \ 1.0]$$

$$\Sigma = \begin{bmatrix} 1.5 & 0 & 0 \\ 0 & 2.0 & 0 \\ 0 & 0 & 1.0 \end{bmatrix}$$

min $X^T \Sigma X$

$$s.t. \ \bar{P}^T X \ge r_{min}$$

$$1^T X = B$$
$$X \ge 0$$

□ 广义不等式约束下的凸优化问题

□广义不等式约束下的凸优化问题

```
minimize f_0(x) subject to f_i(x) \leq_{K_i} 0, \quad i = 1, \dots, m Ax = b
```


□广义不等式约束下的凸优化问题

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \preceq_{K_i} 0, \quad i=1,\ldots,m \\ & Ax = b \end{array}$

■ 函数 $f_0: \mathbf{R}^n \to \mathbf{R}$ 为凸函数; $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$ 为 K_i -凸函数

□广义不等式约束下的凸优化问题

```
minimize f_0(x) subject to f_i(x) \preceq_{K_i} 0, i = 1, \ldots, m Ax = b
```

- □ 函数 $f_0: \mathbb{R}^n \to \mathbb{R}$ 为凸函数; $f_i: \mathbb{R}^n \to \mathbb{R}^{k_i}$ 为 K_i -凸函数
- □ 具有标准凸优化问题的性质(凸可行集,局部最优为全局最优,等)

广义不等式约束

□广义不等式约束下的凸优化问题

```
minimize f_0(x) subject to f_i(x) \preceq_{K_i} 0, i = 1, \ldots, m Ax = b
```

- □ 函数 $f_0: \mathbb{R}^n \to \mathbb{R}$ 为凸函数; $f_i: \mathbb{R}^n \to \mathbb{R}^{k_i}$ 为 K_i -凸函数
- □ 具有标准凸优化问题的性质(凸可行集,局部最优为全局最优,等)
- □ 锥形式问题: 目标和约束函数为仿射函数的特殊形式

广义不等式约束

- □广义不等式约束下的凸优化问题
 - minimize $f_0(x)$ subject to $f_i(x) \preceq_{K_i} 0$, $i=1,\ldots,m$ Ax=b
- □ 函数 $f_0: \mathbf{R}^n \to \mathbf{R}$ 为凸函数; $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$ 为 K_i -凸函数
- □ 具有标准凸优化问题的性质(凸可行集,局部最优为全局最优,等)
- 量 锥形式问题: 目标和约束函数为仿射函数的特殊形式 minimize c^Tx subject to $Fx+g\preceq_K 0$ Ax=b

广义不等式约束

- □广义不等式约束下的凸优化问题
 - minimize $f_0(x)$ subject to $f_i(x) \preceq_{K_i} 0$, $i = 1, \ldots, m$ Ax = b
- □ 函数 $f_0: \mathbf{R}^n \to \mathbf{R}$ 为凸函数; $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$ 为 K_i -凸函数
- □ 具有标准凸优化问题的性质(凸可行集,局部最优为全局最优,等)
- 量 锥形式问题: 目标和约束函数为仿射函数的特殊形式 minimize c^Tx subject to $Fx+g\preceq_K 0$ Ax=b
 - *将线性规划扩展到非负象限锥

minimize c^Tx subject to $x_1F_1+x_2F_2+\cdots+x_nF_n+G\preceq 0$

Ax = b

40

minimize
$$c^Tx$$
 subject to $x_1F_1+x_2F_2+\cdots+x_nF_n+G\preceq 0$ $Ax=b$

$$\Box$$
 $\not \perp + , F_i, G \in \mathbf{S}^k$

minimize
$$c^Tx$$
 subject to $x_1F_1+x_2F_2+\cdots+x_nF_n+G\preceq 0$ $Ax=b$

- \square $\not \perp + , F_i, G \in \mathbf{S}^k$
- 线性矩阵不等式[linear matrix inequality (LMI)]

minimize
$$c^Tx$$
 subject to $x_1F_1+x_2F_2+\cdots+x_nF_n+G\preceq 0$ $Ax=b$

- 线性矩阵不等式[linear matrix inequality (LMI)]
- □带有多个LMI约束的问题

minimize
$$c^Tx$$
 subject to $x_1F_1+x_2F_2+\cdots+x_nF_n+G\preceq 0$ $Ax=b$

- \Box 其中, F_i , $G \in \mathbf{S}^k$
- 线性矩阵不等式[linear matrix inequality (LMI)]
- □带有多个LMI约束的问题

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

minimize
$$c^Tx$$
 subject to $x_1F_1+x_2F_2+\cdots+x_nF_n+G\preceq 0$ $Ax=b$

- \Box $\not \perp + , F_i, G \in \mathbf{S}^k$
- □ 线性矩阵不等式[linear matrix inequality (LMI)]
- □带有多个LMI约束的问题

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

❖等价于单个LMI

minimize
$$c^Tx$$
 subject to $x_1F_1+x_2F_2+\cdots+x_nF_n+G\preceq 0$ $Ax=b$

- \Box $\not \perp + , F_i, G \in \mathbf{S}^k$
- 线性矩阵不等式[linear matrix inequality (LMI)]
- □带有多个LMI约束的问题

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

❖等价于单个LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \preceq 0$$

minimize
$$\mathbf{tr}(CX)$$

subject to $\mathbf{tr}(A_iX) = b_i, \quad i = 1, \dots, p$
 $X \succeq 0,$

minimize
$$\mathbf{tr}(CX)$$

subject to $\mathbf{tr}(A_iX) = b_i, \quad i = 1, \dots, p$
 $X \succeq 0,$

回例:
$$A(X) = A_0 + x_1 A_1 + \ldots + x_n A_n$$

minimize
$$\mathbf{tr}(CX)$$

subject to $\mathbf{tr}(A_iX) = b_i, \quad i = 1, \dots, p$
 $X \succeq 0,$

- **回例**: $A(X) = A_0 + x_1 A_1 + \ldots + x_n A_n$
 - $\Box A_i \in R^{p^*q}, i = 0,...,n, X \in R^n$

minimize
$$\mathbf{tr}(CX)$$

subject to $\mathbf{tr}(A_iX) = b_i, \quad i = 1, \dots, p$
 $X \succeq 0,$

- **回例**: $A(X) = A_0 + x_1 A_1 + \ldots + x_n A_n$
 - $\Box A_i \in R^{p^*q}, i = 0,...,n, X \in R^n$
 - □ 谱范数 $||A(X)||_2 = A(X)$ 的最大奇异值

minimize
$$\mathbf{tr}(CX)$$

subject to $\mathbf{tr}(A_iX) = b_i, \quad i = 1, \dots, p$
 $X \succeq 0,$

- **回例**: $A(X) = A_0 + x_1 A_1 + \ldots + x_n A_n$
 - $\Box A_i \in R^{p^*q}, i = 0,...,n, X \in R^n$
 - □ 谱范数 $||A(X)||_2 = A(X)$ 的最大奇异值
 - \square min $||A(X)||_2$

minimize
$$\mathbf{tr}(CX)$$

subject to $\mathbf{tr}(A_iX) = b_i, \quad i = 1, \dots, p$
 $X \succeq 0,$

- **回例**: $A(X) = A_0 + x_1 A_1 + \ldots + x_n A_n$
 - $\Box A_i \in R^{p^*q}, i = 0,...,n, X \in R^n$
 - □ 谱范数 $||A(X)||_2 = A(X)$ 的最大奇异值
 - \square min $||A(X)||_2$
 - $||A(X)||_2 \le \sqrt{S} \iff A^T(X)A(X) SI \le 0$

$$\min_{S} \sqrt{S}$$
 等价于 $\min_{S} S$

min
$$\sqrt{S}$$

 $\min_{S} \sqrt{S}$ 等价于 $\min_{S} S$

$$\bigcirc$$
 $\diamondsuit\sqrt{S} = t$,则等价于

min
$$\sqrt{S}$$

等价于min S

- $\min_{S} \sqrt{S}$ $s.t. A^{T}(X)A(X) \leq SI$
- \Box 令 $\sqrt{S} = t$,则等价于 min t
- $s.t. A^{T}(X)A(X) t^{2}I \leq 0$ 等价于 t > 0

min
$$\sqrt{S}$$

- $\min_{S} \sqrt{S}$ 等价于 $\min_{S} S$
- \Box 令 $\sqrt{S} = t$,则等价于 min t
- $s.t. A^{T}(X)A(X) t^{2}I \leq 0$ 等价于 $t \ge 0$ min t

$$\square s.t. \begin{bmatrix} tI A(X) \\ A^T(X) tI \end{bmatrix} \ge 0$$

minimize
$$f^Tx$$
 $(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$ subject to $||A_ix + b_i||_2 \le c_i^Tx + d_i, \quad i = 1, \dots, m$ $Fx = g$

minimize
$$f^Tx$$
 $(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$ subject to $\|A_ix + b_i\|_2 \le c_i^Tx + d_i, \quad i = 1, \dots, m$ $Fx = g$

□不等式称为二阶锥约束(second-order cone) $(A_ix + b_i, c_i^Tx + d_i)$ ∈ second-order cone in \mathbf{R}^{n_i+1}

minimize
$$f^Tx$$
 $(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$ subject to $\|A_ix + b_i\|_2 \le c_i^Tx + d_i, \quad i = 1, \dots, m$ $Fx = g$

- □ 不等式称为二阶锥约束(second-order cone) $(A_i x + b_i, c_i^T x + d_i)$ ∈ second-order cone in \mathbf{R}^{n_i+1}

minimize
$$f^Tx$$
 $(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$ subject to $\|A_ix + b_i\|_2 \le c_i^Tx + d_i, \quad i = 1, \dots, m$ $Fx = g$

- □ 不等式称为二阶锥约束(second-order cone) $(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbf{R}^{n_i+1}$
- \Box 若 n_i =**0**,则该问题退化为线性规划问题;
- □ $\pm c_i$ =**0**,则该问题退化为二次约束二次规划问题;

minimize
$$f^Tx$$
 $(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$ subject to $\|A_ix + b_i\|_2 \le c_i^Tx + d_i, \quad i = 1, \dots, m$ $Fx = g$

- □ 不等式称为二阶锥约束(second-order cone) $(A_ix + b_i, c_i^Tx + d_i)$ ∈ second-order cone in \mathbf{R}^{n_i+1}
- \Box 若 n_i =**0**,则该问题退化为线性规划问题;
- □ $\pm c_i$ =**0**,则该问题退化为二次约束二次规划问题;
- □该问题是线性规划和二次约束二次规划的推广

□线性规划和等价的半定规划

□线性规划和等价的半定规划

LP: minimize c^Tx SDP: minimize c^Tx

subject to $Ax \leq b$ subject to $\operatorname{diag}(Ax - b) \leq 0$

□线性规划和等价的半定规划

LP: minimize c^Tx SDP: minimize c^Tx

subject to $Ax \leq b$ subject to $\operatorname{diag}(Ax - b) \leq 0$

□二阶锥优化和等价的半定规划

□线性规划和等价的半定规划

LP: minimize c^Tx SDP: minimize c^Tx subject to $Ax \leq b$ subject to $\mathbf{diag}(Ax - b) \leq 0$

□二阶锥优化和等价的半定规划

SOCP: minimize f^Tx subject to $||A_ix + b_i||_2 \le c_i^Tx + d_i, \quad i = 1, \dots, m$

SDP: minimize f^Tx subject to $\begin{bmatrix} (c_i^Tx+d_i)I & A_ix+b_i \\ (A_ix+b_i)^T & c_i^Tx+d_i \end{bmatrix} \succeq 0, \quad i=1,\ldots,m$

向量优化

向量优化

■通用的向量优化问题

■通用的向量优化问题

```
minimize (w.r.t. K) f_0(x) subject to f_i(x) \leq 0, \quad i=1,\ldots,m h_i(x)=0, \quad i=1,\ldots,p
```


■通用的向量优化问题

minimize (w.r.t.
$$K$$
) $f_0(x)$ subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

□ 向量目标函数 $f_0: \mathbf{R}^n \to \mathbf{R}^q$, 指在正常锥下最小化

■通用的向量优化问题

```
minimize (w.r.t. K) f_0(x) subject to f_i(x) \leq 0, \quad i=1,\ldots,m h_i(x)=0, \quad i=1,\ldots,p
```

- □ 向量目标函数 $f_0: \mathbf{R}^n \to \mathbf{R}^q$, 指在正常锥下最小化
- □凸向量优化问题

■通用的向量优化问题

```
minimize (w.r.t. K) f_0(x) subject to f_i(x) \leq 0, \quad i=1,\ldots,m h_i(x)=0, \quad i=1,\ldots,p
```

- □ 向量目标函数 $f_0: \mathbf{R}^n \to \mathbf{R}^q$, 指在正常锥下最小化
- □凸向量优化问题

```
minimize (w.r.t. K) f_0(x) subject to f_i(x) \leq 0, \quad i=1,\ldots,m Ax=b
```


■通用的向量优化问题

minimize (w.r.t.
$$K$$
) $f_0(x)$ subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

- □ 向量目标函数 $f_0: \mathbf{R}^n \to \mathbf{R}^q$, 指在正常锥下最小化
- □凸向量优化问题

```
minimize (w.r.t. K) f_0(x) subject to f_i(x) \leq 0, \quad i=1,\ldots,m Ax=b
```

 \bullet 其中,函数 f_0 为K-凸函数, f_1,\ldots,f_m 为凸函数

$$\mathcal{O} = \{ f_0(x) \mid x \text{ feasible} \}$$

□可达目标值集合

$$\mathcal{O} = \{ f_0(x) \mid x \text{ feasible} \}$$

□可行点x为最优解,若 $f_0(x)$ 为O的最小元

$$\mathcal{O} = \{ f_0(x) \mid x \text{ feasible} \}$$

- □可行点x为最优解,若 $f_0(x)$ 为O的最小元
- □可行点x为**Pareto**最优解,若 $f_0(x)$ 为**O**的极小元

$$\mathcal{O} = \{ f_0(x) \mid x \text{ feasible} \}$$

- □可行点x为最优解,若 $f_0(x)$ 为O的最小元
- □可行点x为**Pareto**最优解,若 $f_0(x)$ 为**O**的极小元

$$\mathcal{O} = \{ f_0(x) \mid x \text{ feasible} \}$$

- □可行点x为最优解,若 $f_0(x)$ 为O的最小元
- □可行点x为**Pareto**最优解,若 $f_0(x)$ 为**O**的极小元

 \Box 为求得**Pareto**最优点,选择 $\lambda \succ_{K^*} 0$ 求解标量问题

 \square 为求得**Pareto**最优点,选择 $\lambda \succ_{K^*} 0$ 求解标量问题

minimize
$$\lambda^T f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

□ 为求得**Pareto**最优点,选择 $\lambda \succ_{K^*} 0$ 求解标量问题

minimize
$$\lambda^T f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $h_i(x) = 0, \quad i = 1, \dots, p$

 \square 对于凸向量优化问题,通过变化 $\lambda \succ_{K^*} 0$ 可找到基本所有**Pareto**最优点

 \Box 为求得**Pareto**最优点,选择 $\lambda \succ_{K^*} 0$ 求解标量问题

minimize
$$\lambda^T f_0(x)$$

subject to
$$f_i(x) \leq 0, \quad i = 1, \dots, m$$

$$h_i(x) = 0, \quad i = 1, \dots, p$$

 \square 对于凸向量优化问题,通过变化 $\lambda \succ_{K^*} 0$ 可找到基本所有**Pareto**最优点

若x为标量问题的最优解,则其为向量优化问题的Pareto最优解

minimize (w.r.t. \mathbf{R}_{+}^{2}) $(\|Ax - b\|_{2}^{2}, \|x\|_{2}^{2})$

minimize (w.r.t. \mathbf{R}_{+}^{2}) $(\|Ax - b\|_{2}^{2}, \|x\|_{2}^{2})$

minimize (w.r.t. \mathbf{R}_{+}^{2}) $(\|Ax - b\|_{2}^{2}, \|x\|_{2}^{2})$

 \square 以 $A \in \mathbb{R}^{100 \times 10}$ 为例,粗线由Pareto最优点构成。