CHEME 3770

samovi Farnush Bint E Naser

Reaction scheme!

$$G_{P}+R_{X} = \frac{k_{+}}{k_{-}} (G_{P}:R_{X})_{C}$$
 (1)

$$(Gip: R_{\times})_{O} \xrightarrow{K_{A}} Gip + R_{\times}$$
 (3)

$$(G_1p:R_X)_0 \xrightarrow{K_E} G_1p + R_X + m_P$$
 (4)

where, Gip = Giene concentration = 2500 copies/cell

Rx = RNAP concentration (Table 1)

 $K_{+}/K_{-} = On/off$ rate constant for RNAP at the promoter for gene p = Table 1

KE = elongation rate constant for gene p (Table 1)

ka = rate constant for abortive initiation (negigible)

Specific rate of transcription, ?x,p=rx,p'u(1)

where, $r_{x,p}$ = Kinetic rate of transcription = $k_E (G_J:R_X)_O$ u(1) = control term.

(3) Total abundance of RNAP, Rx,T = Rx+(Gp:Rx)C+CGp:Rx)0

$$\frac{d}{dt}(G\rho;R_{\times})_{\mathcal{C}} = K_{+}(G\rho)(R_{\times}) - K_{-}(G\rho;R_{\times})_{\mathcal{C}} - K_{1}(G\rho;R_{\times})_{\mathcal{C}}$$
 (5)

At steady state,

$$(G_{P}:R)_{C} = \frac{K_{+}}{K_{-} + K_{I}} (G_{P})(R_{X}) = \frac{1}{K_{X,P}} (G_{P})(R_{X})$$

$$(G_{P}:R_{X})_{0} = \frac{K_{I}}{K_{A} + K_{E}} (G_{F}:R_{X})_{C} = \frac{1}{C_{X,P}} \frac{1}{K_{X,P}} (G_{P})(R_{X})$$

where, $K_{x,p}$ = saturation constant for gene P. $T_{x,p}$ = time constant for gene P.

Therefore

$$R_{X} = \frac{R_{X,T} (t_{X,p} k_{Y,p})}{T_{X,p} k_{X,p} + (t_{X,p+1})G_{1p}}$$

$$(G_{1p})R_{X})_{O} = \frac{R_{X,T} G_{1p}}{R_{X,p} k_{X,p} + (t_{X,p+1})G_{1p}}$$

$$G_{1p}$$

Determination of u(I)!

In this case, expressed configurations RNAP binding w/ promoter (weight factor W1) and RNAP binding w/ promoter along w/ another molecule (weight factor W2).

Cases	weight	Expression	
	3 7 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	an i dhu <u>nd</u> ay ya ya	
RNAP	Wı	+	
RNAP	W ₂	+	
$u(I) = \frac{W_1 + W_2 f_I}{1 + W_1 + W_2 f_I}$	w here	Binding function.	$t^{I} = \frac{K_{U} + I_{U}}{I_{U}}$

$$\int_{X,p} = K_{E} R_{x,T} \left[K_{x,p} R_{x,p} + (T_{x,p} + 1) G_{1p} \right] \qquad \frac{I^{n}}{(K^{n} + I^{n})}$$

$$\frac{MI + W_{2} \left(K^{n} + I^{n}\right)}{(K^{n} + I^{n})}$$

$$\frac{MI + W_{2} I^{n}}{(K^{n} + I^{n})}$$
Dimensionless.

a unknown parameter values: creference included in table 1).

• Cx,
$$\rho = \frac{KE}{KI} = 0.544$$
 (kg negliglible)

• Given, $G_{1}\rho = 2500$ copies $\frac{(2500 \times 3075)}{6.02 \times 10^{23}} \frac{\text{molecule}}{\text{mol}} \times \frac{(09 \mu \text{M})}{100}$

* Table 1. $\frac{(09 \mu \text{M})}{100} \times \frac{(09 \mu \text{M})}{100} \times \frac{$

(b) since he and hi are of the same order of magnitude (4x,p~1) both initiation and elongation impact overall rate of reaction

Rate of change of MRNA conco.

$$\frac{dmp}{dt} = r_{x,p} u(I) - (kd_{x,p} + \mu) mp$$

At steady state, mp = [x,pu(I)] (LMM) = (x,pu(I)) x 1.17x10 umol

•
$$\mu = 6$$
 pecific growth rate = $\frac{\ln 2}{t_d} = \frac{\ln 2}{30 \text{ min}} = 3.85 \times 10^4 \text{ s}^{-1}$.

To convert
$$\mu M$$
 to $\frac{\mu m \sigma l}{gDW}$:

$$\frac{1 \mu m \sigma l}{L} = 1 \frac{\mu m \sigma l}{L} \times \frac{10^{3} L}{1m^{3}} \times \frac{10^{6} \mu m^{3}}{10^{6} \mu m^{3}} \times \frac{0.75 \ \mu m^{3}}{Cell} \times \frac{Cell}{641 \times 10^{15} gDW} = 1.17 \times 10^{9} \frac{\mu m \sigma l}{gDW}$$

Table 1 (reference)

Property (symbol)	Value (unit)	Source	Reference
Elongation constant (e _X)	42 nt/s	BIONUMBERS	PubMed ID 20413502
Rate constant for initiation (k _I)	0.025 s^{-1}		(McClure) PubMed ID6160577
Saturation constant (K _{X,P})	0.0445 μΜ		(McClure) PubMed ID6160577
RNAP concentration in $E.\ coli\ (R_{X,P})$	4600 copies/cell	BIONUMBERS	PubMed ID 22624875
E. coli cell volume	$0.75 \; \mu m^3$		https://doi.org/10.1006/jmbi.1999.3056
Median half-life of E. coli mRNA	~4 min	BIONUMBERS	PubMed ID 14981237
(t _{1/2})			
Dry mass of E. coli	641 fg/cell	BIONUMBERS (103892)	Bremer, H., Dennis, P. P. (1987)
			Modulation of chemical composition
			and other parameters of the cell by
			growth rate. Neidhardt, et al. eds.
			Escherichia coli and Salmonella
			typhimurium: Cellular and Molecular
			Biology, 1st ed. chapter 96, Table 2
			pp.1530-1

