الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبه: رياضيات و تقني رياضي دورة: جوان 2014

العلامة		
المجموع		عناصر الإجابة (الموضوع الاختياري الأول)
0,75	3X0,25	(aq) : (3.5) : (3.5) : (3.5) : (1.5
0,50	2X0,25	$n_{H_3O^+} = cV - 2x \rightarrow \left[H_3O^+\right] = \frac{cV - 2x}{V} \rightarrow \left[H_3O^+\right] = c - \frac{2x}{V}$ $x = n_{CO_2} = \frac{V_{CO_2}}{V_m} \rightarrow \left[H_3O^+\right] = c - \frac{2\frac{V_{CO_2}}{V_m}}{V} \rightarrow \left[H_3O^+\right] = c - \frac{2V_{CO_2}}{V.V_m}$ $: c \text{i.e.} c \text{i.e.} c \text{i.e.} \text{i.e.} c$
	0,25	$\left[H_3O^+ ight]=a.V_{CO2}+b$: الدينا بيانيا $\left[H_3O^+ ight]=-rac{2}{V.V_m}V_{CO2}+c$: الدينا نظريا
1	0,25	$c=b=10mmol.L^{-1}$: بالمطابقة نجد : V :
	0,25	$V=1L$: ومنه $V=1L$: X_f فيمة X_f : X_f فيمة X_f : X_f المتفاعل المحد و قيمة $X_f=5\times 10^{-3}mol$ و $X_f=5\times 10^{-3}mol$ المتفاعل المقص في الرسم : $X_f=5\times 10^{-3}mol$ في الرسم : $X_f=5\times 10$
	0,25	$5cm$ ممثلة بــ $1cm ightarrow 2mmol.L^{-1}$

	2X0,25	$v_{VOL_{(80s)}} = rac{1}{V} rac{dx}{dt}_{(80s)} = -rac{1}{2} rac{d \left[H_3 O^+ ight]}{dt}_{(80s)} = 0,015 mmol.L^{-1}.s^{-1}$ نقبل في المجال $v_{VOL_{(80s)}} = 0,015 mmol.L^{-1}$ نصديد زمن نصف الثفاعل $v_{VOL_{(80s)}} = 0,015 mmol.L^{-1}$
1,25		$x(t_{1/2}) = \frac{x_f}{2} \Rightarrow \left[H_3 O^+ \right]_{t/2} = \frac{\left[H_3 O^+ \right]_0}{2} = 5 mmol. L^{-1}.s^{-1}$
	0,25	بإسقاط هذه القيمة على البيان -2 نجد : $56s=t_{1/2}$ تقبل القيم $50ss=50$) أهميته : $-$ المقارنة بين تفاعلين من ناحية السرعة
	0,25	اهمیت . المعاری بین تفاعلین من تاخیه استرعه $-$ تحدید القیمة التقریبیة لمدة التفاعل (من $ 4t_{1/2}$)
		التمرين الثاني: (2,75 نقاط)
0,5	0,25	$^{210}_{83}Bi ightarrow\ ^{A}_{Z}X\ +\ ^{0}_{-1}e\ +\ \gamma$. معادلة التفكك $-\ 1$
	0,25	بتطبيق قوانين الإنحفاظ نجد :
		$ \begin{array}{c} 210 = A + 0 \Rightarrow A = 210 \\ 83 = Z - 1 \Rightarrow Z = 84 \end{array} \right\} \Rightarrow \begin{array}{c} ^{210}_{84} Po \end{array} $
		$^{210}_{83}Bi ightarrow \ ^{210}_{84}Po + \ ^{0}_{-1}e + \ \gamma$
		$^{1}_{0}n ightarrow\ ^{1}_{1}p+\ ^{0}_{-1}e$: مصدر الإلكترون هو تحول نترون إلى بروتون وفق المعادلة $p+\ ^{0}_{-1}e$
		-2 عبارة عدد الأنوية المتفككة عند لحظة $+$.
	0,5	$N_{d} = N_{0} - N(t) = N_{0} - N_{0} e^{-\lambda t}$
		$N_d = N_0 \left(1 - e^{-\lambda t} \right)$
0,5	0,25	3 / أ- تعريف النشاط الإشعاعي : هو عدد التفككات التي تحدث في الثانية الواحدة
	0,25	Bq ويقاس بوحدة البكريل Bq .
		$\cdot \ln A(t)$ ب $-$ عبارة
	0,5	$A(t) = A_0 e^{-\lambda t} \Rightarrow \ln A(t) = \ln A_0 - \lambda t$ $A(t) = A(t) - \lambda t + \ln (2N)$
		$A_0 = \lambda N_0 \Rightarrow \ln A (t) = - \lambda t + \ln \left(\lambda N_0 ight)$. $A_0 = \lambda \lambda \delta_0 = - \delta_0 \delta_0 \delta_0 \delta_0$
		9
1,75	0,25	$\ln A(t) = at + b$. العبارة البيانية : البيان خط مستقيم لا يمر من المبدأ معادلته $a = \frac{\Delta \ln A}{\Delta t} = -0.1388$ و $\ln A(0) = 25 = b$: عند $t = 0$ عند
		$\ln A(t) = -0.1388t + 25$
	0,25	$\hat{\lambda} = 0.1388 f^{-1}$: بمطابقة العلاقة النظرية مع العلاقة البيانية نجد
	0,25	$\ln A_0 = b \Rightarrow A_0 = e^b = e^{25} \Rightarrow A_0 = 7,20 \times 10^{10} Bq$

1	I ·	
		التمرين الثالث: (03 نقطة)
		$u_{\scriptscriptstyle R} + u_{\scriptscriptstyle C} = 0$: المعادلة التقاضلية : بتطبيق قانون جمع التوتر ات فإن $- 1 / { m I}$
	2X0,25	$u_C = \frac{q}{C}$ / $u_R = Ri$; $i = \frac{dq}{dt} \Rightarrow u_R = R\frac{dq}{dt}$
	~	$\frac{q}{C} + R\frac{dq}{dt} = 0 \Rightarrow \frac{dq}{dt} + \frac{q}{RC} = 0 \Rightarrow \frac{dq}{dt} = -\frac{1}{RC}q$ إذن
0,75	0,25	بالمطابقة مع المعادلة المعطاة نجد أن $lpha=rac{1}{RC}$ و المعادلة محققة
		$Q_0 = C u_{C_{(max)}} = C E$: (كمية الشحنة الأعظمية) Q_0 : العبارة الحرفية لـ $Q_0 = C u_{C_{(max)}}$
0,25	0,25	$Q_0 = 470.10^{-9} \times 6 = 2,82.10^{-6} c$
		3 - العبارة الحرفية لشدة التيار الكهربائي:
		$i(t) = \frac{dq}{dt} = \frac{d}{dt} (Q_0 e^{-\alpha t}) = -\alpha Q_0 e^{-\alpha t}$
0,5	0,5	$i(t) = -\frac{CE}{RC}e^{-\alpha t} = -I_0 e^{-\frac{t}{RC}}$
		عند هذه اللحظة t_1 : نحسب أو لا قيمة $u_{\scriptscriptstyle C}$ عند هذه اللحظة.
	0,25	$u_C = 6 \times \frac{36.8}{100} = 2.2V$
		$t_1 = 0.2 \times 4 = 0.8s$ من أجل هذه القيمة نجد من البيان:
		ب – قيمة ثابت الزمن τ : من البيان و من أجل
0,75	0,25	$u_C = 0.37 E = 0.37 \times 6 = 2.22V$
		au = 0.8s (0,75 s – 0,85 s) تقبل في المجال
	0,25	$ au = RC \Rightarrow R = \frac{ au}{C} = \frac{0.8}{470.10^{-9}} = 1,7 \times 10^6 \Omega$: R جــ – استنتاج قیمهٔ
0,25	0,25	$N = \frac{t}{t_1} = \frac{60}{0.8} = 75$: التقلصات القلبية في الدقيقة -2
		$E_{lib} = E_0 - E_r$: حساب الطاقة المحررة من المكثفة -3
		(الطاقة المحررة) ، E_{0} (الطاقة الابتدائية) ، E_{r} (الطاقة المتبقية) E_{th}
0,5	2X0,25	$E_{lib} = \frac{1}{2} C E^2 - \frac{1}{2} C u_C^2 = \frac{1}{2} C (E^2 - u_C^2)$
		$E_{lib} \frac{1}{2}.470 \times 10^{-9} (6^2 - 2, 2^2) = 7,32.10^{-6} J$
1		

3		
		التمرين الرابع: (3،5 نقطة)
		1 - أ- يمثل مركز الأرض إحدى محرقي المدار الاهليليجي. \vec{F}
0,75	0,25	ب- تمثیل القوة في وضع كيفي: في أي وضع \vec{F} متجه \vec{F}
	0,25	نحو مركز الأرض .
	0,25	
	0,23	2- أ- شدة قوة جذب الأرض:
	0,5	$F=G.rac{M_T.m_s}{(R_T+h)^2}$: من قانون الجذب العام
0,75		$ec{F}$ البتة. إذن شدة $ec{F}$ ثابتة.
		$ec{F}$ مساب شدة $ec{F}$:
	0,25	$F = G \cdot \frac{m_s \cdot M_T}{(R_T + h)^2} = 6,67 \times 10^{-11} \cdot \frac{6 \times 10^{24} \times 130}{\left((6400 + 800) \times 10^3 \right)^2} = 1003,5N$
	0,23	$(R_T + h)^2$ $((6400 + 800) \times 10^3)^2$
		3- أ- خصائص القمر الاصطناعي الجيومستقر:
		$T_{S}=T_{T}=24h$ دوره –
1,5	0,5	- يدور في نفس جهة دوران الأرض.
		 مساره يقع في مستوي خط الاستواء.
		$T_{\mathcal{S}}$: $T_{\mathcal{S}}$
	0.5	$\sum_{i} \vec{F}_{ext} = m.\vec{a}$
	0,5	$F = m.a_n = m.\frac{v^2}{r} = m.\frac{v^2}{(R_T + h)}$
		$v = \sqrt{\frac{GM_T}{R_T + h}} \cdot T_s = \frac{2\pi(R + h)}{v}$
		$T_s = 2\pi \sqrt{\frac{(R_T + h)^3}{G.M_T}} = 6064,8s = 1,68h$
	0,25	بما أن: $T_{\scriptscriptstyle S} eq T_{\scriptscriptstyle T}$ فهو غير مستقر.
	0,25	$v_S = 7455, 42m/s$: (S) ج- سرعة
		$T^2 = 4\pi^2 \cdot \frac{(R_T + z)^3}{G.M_T}$: z إيجاد الارتفاع -4
0,5	0,5	$z=35911,8Km$ ومنه $z=\left(rac{G.M_T.T^2}{4\pi^2} ight)^{rac{1}{3}}-R_T=35911825,2m$

7		
1,75		$a_1 = \frac{g}{2} (1 - \sin \alpha) - \frac{f}{2m_1} \implies \frac{dv}{dt} = \frac{g}{2} (1 - \sin \alpha) - \frac{f}{2m_1}$
	2X0,25	د - شدة كل من \overrightarrow{T} ; \overrightarrow{T} : (تقبل كل الطرق الصحيحة)
	2710,23	$a_1 = a - \frac{f}{2m_1} \implies f = 2m_1(a - a_1)$
		$f = 2 \times 0, 4(2, 5 - 1, 6) = 0,72 N$
		$m_1g - T_2 = m_1 a_1 \implies T_2 = m_1 (g - a_1) = 0,4 (10 - 1,6) = 3,36N$ و لدينا:
		التمرين التجريبي: (3,75 نقطة)
		1/أ- البروتوكول التجريبي :
		 نملاً سحاحة بمحلول لحمض كلور الماء ونضبط مستوى المحلول عند التدريجة صفر (0).
		نسحب باستعمال ماصة عيارية حجما V_o من محلول النشادر ونضعه في بيشر الذي $-$
		يوضع بدوره فوق مخلاط مغناطيسي.
		- نعاير الـ pH متر باستعمال محلولين موقيين مختلفين على الأقل لهما pH معلوم.
		- نغسل جيدا مسرى جهاز pH متر بالماء المقطر ونجففه. ثم نغمره بحذر في البيشر
1,25	3X0,25	الذي يحتوى على محلول النشادر (يغمر شاقوليا دون لمس القضيب المغناطيسي)
1,23		- نشغل المخلاط المغناطيسي ونبدأ في إضافة المحلول الحمضي من السحاحة في البيشر
		- نقيس قيمة الـ pH بالنسبة لكل حجم مضاف و النتائج المحصل عليها تدون في
		جدول وتسمح برسم المنحنى $pH=f\left(V_{verse} ight)$.
		محلول كلور الهيدروجين
		جهاز الـ pH مِتِد مِ pH مِتِد مِ pH مِتِد مِ اللهِ
		النشادر
		مخلاط مغناطيسي
		ب- جدول التقدم :
		معادلة التقاعل $NH_{3(aq)} + H_3 O^+_{(aq)} = NH^+_{4(aq)} + H_2 O_{(l)}$
		كمية المادة بـ (mol) التقدم الحالة
	2X0,25	$t=0$ $x=0$ $n_b=c_b.V_b$ $n_a=c_a.V_a$ 0 بزیادهٔ
	13 4075-0063	$t>0 \qquad x > 0 \qquad c_b.V_b - x \qquad c_a.V_a - x \qquad x$
		$t \infty \qquad x_f \qquad c_b \cdot V_b - x_f \qquad c_a \cdot V_a - x_f \qquad x_f$

		2/ أ- إحداثيا نقطة التكافؤ : من البيان و باستعمال طريقة المماسين نجد :
	0,25	$E(V_E = 14, 4mL, pH_E = 5, 8)$
		ب-حساب التركيز الابتدائي للأساس:
0,75	0,25	$c_{_b} imes V_{_b} = c_{_a} imes V_{_{aE}} \Rightarrow c_{_b} = \frac{c_{_a} imes V_{_{aE}}}{V_{_b}} \Rightarrow c_{_b} = 0.0108 mol.L^{-1}$ عند النكافؤ
		$pH=pKa$ يبانيا : عند نقطة نصف التكافؤ $pKa=pKa$ يبانيا : عند نقطة نصف $V_{1/2}^{\ell q}=rac{V_{\ell q}}{2}=7,2mL$ حيث: $V_{1/2}^{\ell q}=rac{V_{\ell q}}{2}=7,2mL$
	0,25	[1 · · · · ·]
0,25	0,25	$K = Q_{rf} = \frac{\left[NH_4^{+}\right]_f}{\left[H_3O^{+}\right]_f \cdot \left[NH_3\right]_f} = \frac{1}{Ka} = 10^{Pka} = 1.58 \times 10^9 : 10^{-9} = 1.58 \times 10^9 = 1.58$
		$K = 1,58 \times 10^9$
	0,25	$pH=9$ من البيان نجد: $V=9$ mL عند إضافة: $\frac{\left[NH_3\right]_f}{\left[NH_4^+\right]_f}$ عند إضافة: $V=9$
	270.25	$pH = pKa + log \frac{\left[NH_{3}\right]_{f}}{\left[NH_{4}^{+}\right]_{f}} \Rightarrow log \frac{\left[NH_{3}\right]_{f}}{\left[NH_{4}^{+}\right]_{f}} = pH - pKa \Rightarrow \frac{\left[NH_{3}\right]_{f}}{\left[NH_{4}^{+}\right]_{f}} = 10^{pH - pKa}$
	2X0,25	$\frac{\left[NH_{3}\right]_{f}}{\left[NH_{4}^{+}\right]_{f}} = 0,63$
		ب- التعبير عن النسبة السابقة بدلالة $c_b = V_b = V_b$ والتقدم الأعظمى x_t (عند التوازن الكيميائي)
1.50		بالاعتماد على جدول التقدم لدينا:
1,50	0,25	$\left[\begin{array}{c} \left[NH_3 \right]_f \\ \left[NH_4^+ \right]_f \end{array} = rac{c_b imes V_b - X_f}{X_f} \qquad$ ومنه نجد و $\left[NH_4^+ \right]_f = rac{X_f}{V_T} \qquad$ و و $\left[NH_3 \right]_f = rac{c_b imes V_b - X_f}{V_T}$
		$ au_{_f} = rac{X_{_f}}{X_{ ext{max}}}$: $ au_{_f}$ النقدم النهائي $ au_{_f}$
		حساب X_{\max} : الإضافة السابقة تدل على أن المتفاعل المحد هو الحمض المضاف وحسب
		$c_a V_a - x_{\max} = 0 \Rightarrow x_{\max} = c_a V_a = 0.135 \times 10^{-3} \ mol$: تعریف النقدم الأعظمي
	2X0,25	$\frac{c_b \times V_b - X_f}{X_f} = 0.63 \Rightarrow X_f = \frac{c_b \times V_b}{1.63} \Rightarrow X_f = 0.1325 \times 10^{-3} mol^{\circ} X_f$ حساب
		$ au_f = 0.98 pprox 1$ ومنه نجد: $ au_f = 0.98 pprox 1$ نستنتج أن التقاعل شبه تام

		عناصر الإجابة (الموضوع الاختياري الثاني)			
		التمرين الأول: (3,5 نقطة)			
	2X0,25	$H_2O_{2(aq)}+2H_2O_{(\ell)}=O_{2(g)}+2H_3O_{(aq)}^++2e^-$ المعادلتان النصفيتان			
		$Cr_2O_{7(aq)}^{2-} + 14 H_3O_{(aq)}^+ + 6e^- = 2Cr_{(aq)}^{3+} + 21H_2O_{(\ell)}$			
	0,25	$H_3O_{(aq)}^+$ لا يمكن اعتبار حمض الكبريت كوسيط لأنه يشارك في التفاعل بالشاردة			
1	0,25	V_E لأن كمية الماء و قطع الجليد لا تؤثر في قيمة V_E لأن كمية الماء الأكسجيني			
		لا تتغير (التكافؤ يتعلق بكمية المادة وليس التركيز). $H_2O_{2(aq)}$			
		. عبارة التركيز المولي $\left[H_2O_2 ight]$ عند نقطة التكافؤ -2			
		جدول التقدم: (يمكن عدم استعماله)			
		المعادلة $3H_2O_{2(aq)} + Cr_2O_{7(aq)}^{2-} + 8H_3O_{(aq)}^+ = 3O_{2(g)} + 2Cr_{(aq)}^{3+} + 15H_2O_{(\ell)}$			
		$t=0$ ابوفرهٔ n_1 ابوفرهٔ n_2 ابوفرهٔ n_2 ابوفرهٔ n_2			
		t n_1-3x n_2-x بوفرة $3x$ $2x$			
		t_E			
0,5		عند نقطة التكافؤ المزيج ستكيومتري .			
0,5	2X0,25	$\frac{n_1}{3} = \frac{n_2}{1} \Rightarrow \frac{[H_2 O_2] \cdot V_0}{3} = c \cdot V_E \Rightarrow [H_2 O_2] = \frac{3cV_E}{V_0}$			
		3 – صحة المعلومات المكتوبة على القارورة .			
		$V_{E0}=6,2 imes4ml=24,8ml$. من البيان : عند $t=0$ عند $[H_2O_2]$ من البيان .			
		$\left[H_2O_2\right]_0 = \frac{3\times0.1\times24.8\times10^{-3}}{10\times10^{-3}} = 0.744\ mol/L$: بالتعويض في العبارة السابقة نجد			
		- حساب التركيز من المعلومات المكتوبة:			
		$\left[H_2O_2 ight]_0=rac{n}{V}$ / V = $1L$. جدول التقدم للتفكك الذاتي للماء الأكسجيني			
		المعادلة $2 H_2 O_{2(aq)} = O_{2(g)} + 2 H_2 O_{(\ell)}$			
0,5	2X0,25	1 0 5			
	,	بوقر ق n			
		n-2x $n-2x$ $n-2x$ $n-2x$ $n-2x$ $n-2x$ $n-2x$			
		بوفرة $x_{ m max}$ بوفرة $n-2x_{ m max}$ بوفرة H_2O_2 متفاعل محد فإن :			
		$n-2x_{\max}=0 \Rightarrow n=2x_{\max}=2n(O_2)_{\max}=2.\frac{V(O_2)}{V}$			
		$n = 2.\frac{10}{22.4} = 0.892 \text{ mol} \Rightarrow [H_2 O_2]_0 = 0.892 \text{ mol/} L \rangle 0.744 \text{ mol/} L$			
c		المحلول غير حديث التحضير.			

		$t_{\frac{1}{2}} \rightarrow x = \frac{x_{\text{max}}}{2} \rightarrow \frac{\left[H_2 O_2\right]_0}{2} \rightarrow \frac{V_{E0}}{2}$: رَمِن نصف النّفاعل / 4
	0,25	$[255s265s]$ من البيان نجد $t_{1/2}=2.6 imes100=260s$ تقبل في المجال
		. $V_{\scriptscriptstyle E}$ بدلالة H_2O_2 بدلالة السرعة الحجمية لاختفاء
	2X0,25	$v = -\frac{1}{V} \frac{dn(H_2O_2)}{dt} = -\frac{d}{dt} \left(\frac{n}{V}\right) = -\frac{d[H_2O_2]}{dt} = -30 \frac{dV_E}{dt}$
1.5		H_2O_2 : السرعة الحجمية لاختفاء الحجمية الختفاء = - قيمة السرعة الحجمية الختفاء
1,5	2X0,25	$[1,1 ightarrow 1,3]$ عند اللحظة v_1 =1,17 $ imes 10^{-3}$ $mol/L.s$. t_1 =200 s عند اللحظة -
	*	$[0,35 ightarrow 0,45]$ عند اللحظة $v_2 = 0,42 imes 10^{-3} \ mol/L.s$. $t_2 = 600 s$ عند اللحظة -
		. $arnothing v_1 angle arnothing v_2$ - نائحظ أن $arnothing v_2$
	0,25	 التعليل: تتناقص السرعة بسبب تناقص التركيز المولي للماء الأكسجيني.
	0,23	
		التمرين الثاني : (3 نقاط)
	4254 5500	1 / أ – تعريف الإنشطار النووي : هو تفاعل نووي مفتعل يحدث بقذف نواة ثقيلة غير
	0,5	مستقرة بنترون فتشطر إلى نواتين أكثر استقرارا و تحرير طاقة .
		V و Z و Z
1,25	2X0,25	$94+0=Z+42 \implies Z=52$: بتطبيق قوانين الإنحفاظ نجد
		$239 + 1 = 135 + 102 + Y \implies Y = 3$
		جـ - عبارة الطاقة المحررة :
	0,25	$E_{\ell ib} = \Delta m C^2 / \Delta m = m_i - m_f$
	0,23	$E_{\ell ib} = \left[m\binom{239}{94}Pu \right] - \left(m\binom{135}{52}Te \right) + m\binom{102}{42}Mo + 2m\binom{1}{0}n \right] \cdot C^2$
		. 239 للبلوتونيوم E_{ℓ} للبلوتونيوم E_{ℓ} للبلوتونيوم البلوتونيوم البلوتونيوم البلوتونيوم البلوتونيوم البلوتونيوم
	2X0,25	$E_{\ell} = \left[Z m \binom{1}{1} p + (A - Z) m \binom{1}{0} n - m \binom{239}{94} P u \right] . C^{2}$
		$E_{\ell} = \left[94 m \binom{1}{1} p \right) + 145 m \binom{1}{0} n \right) - m \binom{239}{94} Pu dt dt dt dt dt dt dt d$
		$E_{\ell} = (22,537 - 22,362).10^4 = 1750 MeV$
		$E_{\ell}=E_2-E_1$ ملاحظة: تقبل مباشرة من العلاقة
		$: \ ^{102}_{92}Mo \ ; \ ^{239}_{94}Pu$ ب $-$ مقارنة استقرار النواتين
	2X0,25	$\frac{E_{\ell}}{A}(^{239}_{94}Pu) = \frac{1750}{239} = 7,32 MeV /nuc$
1,75		بما أن $(\frac{E_\ell}{A}) (\frac{239}{94} Pu)$ فإن النواة $\frac{E_\ell}{A} (\frac{239}{94} Pu)$ الأكثر استقرارا.
		- نعم هذه النتيجة متوافقة مع التعريف حيث تتتج نواة أكثر استقرارا.

1	T						
		Î	$E_T = N \cdot E_{\ell ib}$	من البلوتونيوم.	ن انشطار 1g	الطاقة المحررة م	ı –
					. عينة	عدد الأنوية في ال	№ تھو ۔
	3X0,25		$N = \frac{m}{A} N_A = \frac{1}{239} .6,02 \times 10^{23} = 2,518 \times 10^{21} $ noyaux				
			$E_{\ell ib} = E_3 - E_1 =$	=(22,321-2)	$2,362)\times10^4 =$	-410MeV	
			$E_{T}=2,518$	$\times 10^{21} (-410)$	$=-1,02338\times10$	$O^{24}MeV$	
					\cdot (J)	، إلى وحدة الجوا	التحويل
			1 MeV = 1, 6		**	aa.	
			$E_T = -1,023$		$\times 10^{-13} = -1,68$		
				ة الإشارة	مكن عدم مراعاه	پ	
						781	
0.25	0.25					<u>الث:</u> (3 نقاط)	
0,25	0,25	СН	₃COOH + C ₂ ŀ	H ₅ -OH = CH ₃	COOC₂H₅ + I	لة التفاعل: H ₂ O	
			<u> </u>			التقدم:	2-جدول
		معادلة	CH ₃ C	OOH + C ₂ H	I ₅ - OH = CH	3COO- C2H5	+ H ₂ O
		التقاعل					
		الحالة	(x) الثقدم		ة بــ (mol)	كمية الماد	
0, 5	2X0,25	الابتدائية t=0	x = 0	0,2	0, 2	0	0
		الوسطية	x > 0	0.0	0.0		
		t>0		0,2-x	0, 2 - x	X	X
		توازن t _f		$0,2-x_f$	<i>f</i> ∈	X_f	X_f
			الْتَقَدِم:	ئي ومن جدول	. التوازن الكيميا	$n_{_f}$ ب أستر $n_{_f}$	3–أ–حسا
	2X0,25	$Q_{\rm rf} = K = \frac{1}{100}$	$CH_3COOC_2H_5$	$\frac{\prod_{f} [H_2 O]_f}{H_1 O H_1} =$	$\Rightarrow K = \frac{X_f^2}{\sqrt{2}}$	$\sqrt{(0,1)^2} \Rightarrow \sqrt{4} = \frac{1}{(0,1)^2}$	X_f
	27(0,23	[C	н ₃ соон _{],} [С				
				(υ,	- 11 f J	$= n_{_f} = 0.133mc$	
		ِث:	$r = \frac{X_f}{X_{\text{max}}} \times$	$(100 \Rightarrow r = \frac{0}{0})$	$\frac{133}{1,2} \times 100 = 66,$	ب المردود: %6	ب-حساب
4.05	2X0,25				التسد $r = 66,6\%$		0,2 <i>mol</i>
1,25						صيغة نصف الم	جــ- ال
	0,25		يثانوات الإيثيل	0 // 0			
	0,23		يثانوات الإيتيل	UH3 - U - U	- CH ₂ - CH ₃		
	i _s						

100						
				اتحسین (r):	4-أ- ذكر طريقتين	
	0,25			ي غير متكافئ.	 تحقیق مزیج ابتدائہ 	
		آ جي اُ			 نزع أحد النواتج. 	
	0,25	$Qr_i = \frac{[\text{mut}]}{[\text{حمض}]}$	$\left[\frac{\left[\begin{array}{cc} \text{All } \right]_{i}}{\left[\begin{array}{cc} \text{All } \end{array}\right]_{i}} = 0.9$	ور: 4 > 9	ب- تحديد جهة التطو	
1					$Qr_i < K$	
			**	f	يتطور التفاعل في الا	
					 التركيب المولي 	
	0,25		I	$K = \frac{X}{(0, 4 - X_{\epsilon})}$	$\frac{f}{(0,2-x_{f})} = 4$	
					= 0,17 mol	
	0,25	حمض	كحول	أستر	ماء	
		0,23 <i>mol</i>	0,03 <i>mol</i>	0,17 <i>mol</i>	0,17 mol	
			"	•	,	
		<u>k</u>		6.34	<u>التمرين الرابع:</u> (5/	
0,25	0,25	1			1- عبارة التوتر BA	
		الشكل – 4 E		$\mathbf{U}_{BA}\left(t\right) =$	$L \cdot \frac{di(t)}{dt} + r \cdot i(t)$	
		L r R		. j 2	2- عبارة U _{CB} بدلالا	
0,25	0,25	A MM B	Ç	U _{CB} ($u(t) = u(t) = R \cdot i(t)$	
		أو $u_{ m CB}$ مع التعليل.	$u_{\!\scriptscriptstyle BA}$ بائي الموافق	، بالتوتر الكهرا	3 - إرفاق كل منحن	
0.75	270.25	i (0) و بالتالي فإن:	ي معدومة (0=	ة التيار الكهربائ	عند $t=0$ عند	
0,75	3 X 0,25	رقم -2-	يتو افق مع البيان	U _{CB} (0) و هذا	$= \mathbf{u}_{R} (0) = R.0 = 0$	
			$U_{B_{A}}$	$_{4}$ (t) يمثل -1	وبالتالي البيان رقم -	
			: نتب	مع التوترات نك	4 - بتطبيق قانون ج	
0,75	3X0,25	$U_{CA}(t) = U_{BA}(t) + U_{CB}(t) \Rightarrow E = L \cdot \frac{di}{dt} + r \cdot i + R \cdot i$				
		ىنە:	dt في النظام الدائم يكون: $i(t)=I_0$ و منه:			
			- Ci		$0 + r \cdot I_0 + R \cdot I_0$	

		$I_0 = \frac{6.0}{180 + 20} = 0.03 A : $ ت ع =
		- من المنحنى البياني $U_{CB}\left(t ight)$ نقرأ التوتر بين طرفي الناقل الأومي في النظام الدائم :
		. $U_0 = 5,4V$
		$I_0 = \frac{U_0}{R} = \frac{5.4}{180} = 0.03 \ A$: فيكون
		نلاحظ أن القيمتين متساويتين.
		5 – تحدید ثابت الزمن:(تقبل طرق أخرى)
		$u_{CB}(au)$ الكي نجد قيمة ثابت الزمن $u_{CB}(au)$ $=$ $0,63.$
	2X0,25	au=2ms بإسقاط هذه القيمة في البيان -2 على محور الأزمنة نجد
	2710,23	- استنتاج ذاتية الوشيعة:
0,75		$ au=rac{\mathrm{L}}{R_{total}}=rac{\mathrm{L}}{R+r}$ \Rightarrow $\mathrm{L}= au\left(R+r ight):$ يعطى ثابت الزمن بالعلاقة
		$L = 2 \times 10^{-3}$. $(180 + 20, 0) = 400 \times 10^{-3} = 0, 4 H$
	0,25	
		التمرين الخامس: (3,75 نقطة)
		\overline{x} X
		بتطبيق القانون الثاني لنيوتن في مرجع سطحي أرضي نعتبره غاليليا : \vec{R}
		$\sum \overrightarrow{F}_{ext} = \overrightarrow{ma} \Rightarrow \overrightarrow{P} + \overrightarrow{R} + \overrightarrow{f} = \overrightarrow{ma}$
	2X0,25	$-f = ma \Rightarrow a = \frac{-f}{m} = cte$: $x'x$ بالإسقاط على محور
1		بما أن تسارع الحركة ثابت وجهته عكس جهة السرعة فإن الحركة م. متباطئة بانتظام.
		$v_A^2 = v_B^2 + rac{2.d.\ f}{m}$: ب $-$ اِثْبَات أَن
	2X0,25	$v_A^2 = v_B^2 + rac{2.d.f}{m}$ ومنه $a = rac{-f}{m}$ و لدينا $v_A^2 - v_B^2 = 2.a.d$: من العلاقة
		$E_{C_N}=E_{C_R}+W(\overrightarrow{p}):S$ عبارة $v_N^2:V_N^2$ عبارة الطاقة على $v_N^2:V_N^2$
	2X0,25	$h=r(1-cos\theta)$ و لدينا من الشكل $\frac{1}{2}mv_N^2=\frac{1}{2}mv_N^2+mgh\Rightarrow v_N^2=v_B^2+2gh$
	2 / 10,23	$v_N^2=v_B^2+2gr(1-cos heta)$ ومنه:

1		
		ب- عبارة فعل السطح: بتطبيق القانون الثاني لنيوتن على 3:
		A $\sum \vec{F}_{ext} = m\vec{a} \Rightarrow \vec{P} + \vec{R} = m\vec{a}$
	27/0 27	بالإسقاط على الناظم نجد:
	3 X 0,25	$P_N - R = m \cdot a_N \Rightarrow R = m(g \cdot \cos\theta - a_N)$
		$R = m(gcos\theta - \frac{v_N^2}{r})$ ولدينا $a_N = \frac{v^2}{r}$
		جـ – إيجاد عبارة cosθ :
2,25		لكي يغادر S المستوى الدائري يجب: $R=0$ (لا يوجد تلامس بين S و المستوى الدائري)
		$0 = m.(g.cos\theta - \frac{V_N^2}{r}) \Rightarrow V_N^2 = r.g.cos\theta$: R ومنه تصبح عبارة
	2X0,25	بالمطابقة بين العبارتين -1 و -2 نجد:
		$v_B^2 + 2gr(1 - \cos\theta) = r.g.\cos\theta \Rightarrow \left \cos\theta = \frac{1}{3.r.g}v_B^2 + \frac{2}{3}\right $
		$cos heta=a.v_B^2+b$: لدينا بيانيا $cos heta=a.v_B^2+b$ حيث a يمثل قيمة ميل المستقيم
	2X0,25	$\cos\theta = \frac{1}{3.r.\sigma} v_B^2 + \frac{2}{3}$: الدينا نظريا
		$a = \frac{1}{3 r \sigma} \Rightarrow g = \frac{1}{3 r \sigma}$ بالمطابقة نجد:
		511.Ig
	0.25	من البيان : $a=0.034$ و منه نجد $g=9.80m.s^{-2}$ و منه نجد $a=0.034$ و هذا يوافق $v_B^2=0$ من البيان نجد -3
0,5	0,25	ا بیر قیمه در اویه $v_B=0$ قیمه در اویه $v_B=0$ قیمه در اویه $v_B=0$ من البیان نجد $\cos\theta=0.67\Rightarrow\theta=48^\circ$
	0,25	$v_A^2 = 0 + \frac{2.d.f}{m}$ $\Rightarrow v_A^2 = \frac{2.d.f}{m} = 16$ $\Rightarrow v_A = 4m.s^{-1}$: عندئذ
		m m m

		التمرين التجريبي: (4 نقاط)
		ا – دراسة نتائج المحاكاة.
0,5		0x عطالة الجلة على المحور $0x$: منتظمة .
		التبرير: يظهر البيان v_x ثبات طويلة المركبة الأفقية لشعاع السرعة خلال الحركة،
	2X0,25	$v_{\chi}(t)$ = C^{te} =10 m/s : خيث
		v_{ov} : تعيين قيمة المركبة الشاقولية لشعاع السرعة الابتدائية v_{ov} :
		انطلاقا من البیان v_y و من أجل v_z نستخرج من المنحنى v_y القیمة :
		$v_y(0) = v_{0y} = 9.2 \text{ m/s}$
125 70-070-		تعيين السرعة الابتدائية للقذيفة $ u$:
0,75		$v_{o} = \sqrt{v_{ox}^{2} + v_{oy}^{2}}$: $v_{o} = v_{ox}(t) + v_{ox$
	3X0,25	$v_o = \sqrt{(10)^2 + (9,2)^2} = 13,6 \text{ m.s}^{-1} : 2$
		- التوافق: نعم تتوافق مع المعطيات السابقة مع الأخذ بعين الاعتبار الأخطاء المرتكبة
		V_{OV} في تحديد قيمة V_{OV} . في تحديد قيمة المحديد
		$\cos \alpha = \frac{v_{ox}}{v_o} = \frac{10}{13.6} = 0.74$: من جهة أخرى لاينا : - من جهة أخرى الاينا : - من حمن جهة أخرى الاينا : - من حمن جهة أخرى الاينا : - من حمن الاينا : - من حمن الا
		ومنه : $\alpha = 42,7^\circ$ التي تقارب جدا $\alpha = 42,7^\circ$.
		تعيين خصائص السرعة $ec{v}_{\it S}$ عند الذروة $ec{S}$: يكون شعاع السرعة دوما مماسيا -3
0,5		لمسار حركة القذيفة، ويكون عند الذروة أفقيا لأن المركبة الشاقولية لشعاع السرعة تنعدم
	2X0,25	$v_{s} = \sqrt{v_{sx}^{2} + v_{sy}^{2}} = \sqrt{(10)^{2} + (0)^{2}} = 10 \text{ m.s}^{-1}$: عندها و طویلته
		 الدراسة التحليلية لحركة مركز عطالة الجلة.
		-1 المقارنة بين دافعة أرخميدس و ثقل الجلة :
		- تتساوى شدة دافعة أرخميدس مع ثقل المائع المزاح (في مثالنا) ، وتعطى بالعلاقة :
		. حيث: V حجم الجلة $\pi= ho_{air}$. V
		. $m{m{ ho}}= ho.V$. $m{g}$: قال الجلة $-$
0,75		$rac{ ho}{\pi}=rac{ ho_{}V_{}g}{ ho_{air}.V_{}g}=rac{ ho}{ ho_{air}}$: بالقسمة نجد
0,73		
	3X0,25	$p = 5504.\pi : $ ک ع $\frac{P}{\pi} = \frac{7,10 \times 10^{-3}}{1,29} = 5504 : $ ث ع $\frac{P}{\pi} = \frac{7,10 \times 10^{-3}}{1,29} = 5504 : $
		نستنتج أن دافعة أرخميدس مهملة أمام ثقل الجلة.
		وبالتالي التاميذ الذي اعتبر بأن الجلة لا تتأثر إلا بثقلها على صواب.

		2 - إيجاد عبارة التسارع:
0,5		 الجملة المدروسة: الجلـــة المرجع: سطح الأرض (نعتبره غاليليا).
		 المؤثرات الخارجية: الثقل فقط، المؤثرات الأخرى (مقاومة الهواء ودافعة أرخميدس)
		مهملة أمام الثقل.
		نطبق القانون الثاني لنيوتن:
	2X0,25	$\sum \overrightarrow{F_{ext}} = m.\overrightarrow{a} \Rightarrow \overrightarrow{P} = m.\overrightarrow{a} \Rightarrow m.\overrightarrow{g} = m.\overrightarrow{a}$
		$\vec{a} = \vec{g}$ إذن:
		. $a=g:$ شعاع تسارع حركة الجلة شاقولي ، جهته إلى الأسفل ، قيمته هي
		3 - إيجاد معادلة المسار:
		نحدد في البداية المعادلات الزمنية للحركة وفق المحورين Ox و Oy .
1		: الدينا علم التكامل نجد مركبات شعاع السرعة $\stackrel{\rightarrow}{a} \left\{ \begin{array}{c} a_x = 0 \\ \end{array} \right.$
		: خوننا : التكامل نجد مركبات شعاع السرعة $\stackrel{\rightarrow}{a} \begin{cases} a_x = 0 \\ a_y = -g \end{cases}$ الدينا : $v_x = v_{ox} = v_o.(\cos\alpha)$ $v_y = -g.t + v_o.(\sin\alpha)$
		ليكن \overrightarrow{OG} شعاع موضع مركز عطالة الجلة ، إحداثيات G تستنج بمكاملة عبارة
		$(\mathbf{X} = \mathbf{V}_{o}.(\mathbf{cos}\alpha).t$: فنجد
		\overrightarrow{OG} $\begin{cases} x = v_0.(\cos \alpha).t \\ y = -\frac{1}{2}g.t^2 + v_0.(\sin \alpha).t + h \end{cases}$
	4X0,25	نتحصل على معادلة المسار بحذف الزمن من المعادلتين الزمنيتين :
		$t = \frac{x}{v_o.(\cos a)}$: من عبارة x نجد
		و بالتعويض في عبارة ٧ نجد:
		$y = -\frac{1}{2}g.\left(\frac{x}{v_o.(\cos\alpha)}\right)^2 + v_o.(\sin\alpha).\left(\frac{x}{v_o.(\cos\alpha)}\right) + h$
		$\Rightarrow y = -\frac{g}{2.v_0^2.(\cos \alpha)^2} x^2 + (\tan \alpha).x + h$
		$\Rightarrow y = -0.049 x^2 + 0.933 x + 2.620$