Zadania z kombinatoryki, lista nr 2

- 1. Napisz funkcje tworzące dla ciągów
 - (a) a_n liczba podziałów n na składniki niewiększe niż k.
 - (b) b_n liczba podziałów n na co najwyżej k składników.
 - (c) c_n liczba podziałów n na dokładnie k składników.
- 2. Pokaż, że
 - (a) jeśli q(n,k) jest liczbą podziałów n na k różnych składników, to

$$\sum_{n,k} q(n,k)x^n y^k = \prod_i (1+x^i y)$$

(b) jeśli p(n,k) jest liczbą podziałów n na k składników, to

$$\sum_{n,k} p(n,k)x^{n}y^{k} = \prod_{i} \frac{1}{1 - x^{i}y}$$

(c) jeśli $\sigma(n,k)$ jest liczbą przedstawień n w postaci sumy k dodatnich składników (przedstawienia różniące się kolejnością uważamy za różne), to

$$\sum_{n} \sigma(n, k) x^{n} = \left(\frac{x}{1 - x}\right)^{k}$$

- 3. Pokaż, że
 - (a) p(2n, n) = p(n),
 - (b) p(n,k) = p(n-1,k-1) + p(n-k,k).
 - (c) $p(n,k) = \sum_{i=1}^{k} p(n-k,i)$
- 4. Pokaż wzory

(a)
$$\binom{n}{2} = 2^{n-1} - 1$$
, (b) $\binom{n}{n-1} = \binom{n}{2}$.

Pokaż wzory

(a)
$$\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)!,$$
 (b) $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)!H_{n-1},$ (c) $\begin{bmatrix} n \\ n-1 \end{bmatrix} = \binom{n}{2}.$

6. Wykorzystując wzory z wykładu pokaż równości:

(a)
$$x^n = \sum_{k} {n \brace k} (-1)^{n-k} x^{\overline{k}}$$

(b)
$$x^{\underline{n}} = \sum_{k} {n \brack k} (-1)^{n-k} x^k$$

(c)
$$x^n = \sum_{k,m} {n \brace k} {m \brack m} (-1)^{n-k} x^m$$

(d)
$$\sum_{k} {n \brace k} {k \brack m} (-1)^{n-k} = {1 \atop 0} \quad \text{gdy } m = n \atop \text{gdy } m \neq n$$

7. Pokaż wzory

(a)
$${n+1 \brace m+1} = \sum_{k} {n \choose k} {k \brace m}$$

(b)
$$\begin{bmatrix} n+1\\m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n\\k \end{bmatrix} \binom{k}{m}$$

(c)
$$\binom{i+j}{i} \begin{bmatrix} n \\ i+j \end{bmatrix} = \sum_{k} \binom{n}{k} \begin{bmatrix} k \\ i \end{bmatrix} \begin{bmatrix} n-k \\ j \end{bmatrix}$$

$$(\mathbf{d}) \ \binom{i+j}{i} \binom{n}{i+j} = \sum_{k} \binom{n}{k} \binom{k}{i} \binom{n-k}{j}$$