

P-ţa Victoriei nr. 2 RO 300006 - Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.upt.ro

Logică digitală

-Curs 3-

REPREZENTAREA
DATELOR ÎN SISTEME
DE CALCUL

- 2021-

Reprezentarea numerelor în sistemele de calcul

- Sisteme de numerație poziționale (binar, octal, hexazecimal);
- Reprezentarea numerelor în virgulă fixă (SM, C1, C2);
- Reprezentarea numerelor de virgulă flotantă;
- Coduri binare pentru numere zecimale;

Sisteme de numere poziționale

- ☐ **Sistem pozițional** un număr este reprezentat printr-un şir de cifre, unde pt. fiecare poziție a unei cifre este asociată o anumită greutate.
- Valoarea numărului este o sumă a cifrelor înmulţită cu greutatea aferentă:

Ex1:
$$1734 = 1*10^3 + 7*10^2 + 3*10^1 + 4*10^0$$

Fiecare greutate e o putere a lui 10 corespunzătoare poziției numărului. Pentru numere cu virgulă folosim puteri negative a lui 10.

Ex2: $5186.67 = 5*10^3 + 1*10^2 + 8*10^1 + 6*10^0 + 6*10^{-1} + 7*10^{-2}$

Sisteme de numere poziționale

Sistem pozițional - un număr este reprezentat printrun şir de cifre, unde fiecare poziție a unei cifre este asociată o anumită contributie (pondere).

$$D = d_{m-1} d_{m-2} \dots d_1 d_0 \cdot d_{-1} d_{-2} \dots d_{-n}$$

$$\uparrow \qquad \qquad \uparrow$$

$$MSD$$
Virgula fixă LSD

Sisteme de numere binare

☐ Formă generală a unui număr binar

Valoarea:

$$D = \sum_{i=-n}^{p-1} b_i * r^i \quad , \text{ unde } r = 2 \text{ radix(bază)}$$

Sisteme de numere binare

```
Ex.: N=11001.011_2

N=1*2^4+1*2^3+0*2^2+0*2^1+1*2^0+0*2^1+1*2^2+1*2^3=25.375_{10}
```

- □ Baza 8 corespunde sistemului octal. cifre {0,1,2,3,4,5,6,7}
- Baza 16 corespunde sistemului hexazecimal. cifre {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

Binar, octal, hexazecimal ...

Zecimal	Binar	Octal	Hexazecimal	
0	0000	0	0	
1	0001	1	1	
2	0010	2	2	
3	0011	3	3	
4	0100	4	4	
5	0101	5	5	
6	0110	6	6	
7	0111	7	7	
8	1000	10	8	
9	1001	11	9	
10	1010	12	Α	
11	1011	13	В	
12	1100	14	С	
13	1101	15	D	
14	1110	16	E	
15	1111	17	F	

Conversia din binar în hexazecimal

Ex: 010011110111.101001010

Partiţionarea numărului binar în grupuri de 4 pornind de la virgulă şi inaintand spre dreapta sau stanga :

0100_1111_0111 • 1010_0101_0000

Fiecare grup corespunde unei singure cifre hexazecimale. Folosind Tabelul ant. obţinem:

4F7.A50

Aplicație: Convertiți numărul din binar în hexazecimal:

111 1100 1010.0111 1111

Raspuns: 7CA.7F

Conversia din binar în octal

- Partiţionarea numărului binar în grupuri de 3 pornind de la virgulă şi inaintand spre dreapta sau stanga.
- Fiecare grup corespunde unei singure cifre din octal.
- Aplicaţie: 111010.11

111_010.110

Raspuns: 72.6

- Conversia din zecimal în binar
 - Conversia unui număr întreg din zecimal în binar se face prin algoritmul împărţire succesive ale lui N (nr de convertit) la r (noua bază).
 - Procesul se repetă până se obţine câtul 0.

Conversia din zecimal în binar

Ex: Conversia nr zecimal 119:

```
119: 2 = 59 \text{ rest } 1 \text{ (LSB)}
```

$$59:2=29 \text{ rest } 1$$

$$14:2=7 \text{ rest } 0$$

$$7:2=3 \text{ rest } 1$$

$$3:2=1 \text{ rest } 1$$

$$1:2=0$$
 rest 1 (MSB)

 $119_{10} = 1110111_2$

Condiția de oprire

```
Conversia numărului 73 din baza 10 în baza 2
```

$$N9 = 73_{10} = 1001001_2$$

 $73/2 = 36$ rest 1 b_0
 $36/2 = 18$ rest 0 b_1
 $18/2 = 9$ rest 0 b_2
 $9/2 = 4$ rest 1 b_3
 $4/2 = 2$ rest 0 b_4
 $2/2 = 1$ rest 0 b_5
 $1/2 = 0$ rest 1 b_6

- Conversia din zecimal în binar
 - Pentru conversia numerelor fracţionale, se înmulţeşte numărul cu noua bază în care se converteşte numărul.
 - Partea întreagă a rezultatului devine bit al şirului care reprezintă rezultatul conversiei.
 - Înmulţirea se face până rezultatul devine 0.

Ex: Conversia lui 0.75 în baza 2.

```
0.75*2=1.5 parte întreagă 1 (MSB) si fracţionară 0.5 0.5*2=1.0 parte întreagă 1 si fracţionară 0.0*2=0.0 parte întreaga 0 (LSB)
```

- Sistemele digitale sunt realizate din circuite ce procesează cifrele binare "0" şi "1"
- Numerele fără semn:
 - un şir de "0" şi "1".
 - Fiecare cifră binară poartă denumirea de bit (binary digit).
 - Val. şirului binar $N = b_{n-1}b_{n-2}...b_1b_0.b_{-1}b_{-2}...b_{m-1}$
 - este dată de formula: $N = \sum_{i=1}^{n-1} b_i * 2^i$

- Pentru reprezentarea numerelor cu semn, se alocă bitul cel mai semnificativ (cel mai din stânga most significant bit MSB) semnului:
 - "0" numere pozitive,
 - "1" numere negative.
- ☐ Uzual în sistemele de calcul se operează fie cu numere întregi, fie cu numere fracționare;
- Din acest motiv, poziția virgulei este considerată implicit după cum urmează:
 - numere întregi poziția virgulei este la dreapta bitului cel
 - mai puţin semnificativ: $b_{n-1}b_{n-2}...b_0$. numere fracţionare poziţia virgulei este la dreapta bitului cel mai semnificativ, care este şi bitul de semn:

- Pentru reprezentarea numerelor cu semn există trei formate de reprezentare:
 - semn-mărime SM,
 - complement de 1 C1,
 - complement de 2 C2.

- ☐ Reprezentarea în semn-mărime/sign-magnitude (SM)
 - 1 bit semn, n biţi mărime (valoare absolută)
 - Valoarea bitului de semn determină semnul
 - □ 0 numere pozitive
 - □ 1 numere negative
 - domeniul valoric al reprezentării în formatul semn-mărime acesta este între $-2^{n-1} + 1$ și $2^{n-1} 1$
 - Exemplu:

```
+85= 0 1010101
```

$$-85 = 1 1010101$$

- ☐ Semn-märime/sign-magnitude (SM)
 - Avantaje
 - simplitate
 - negare simpla prin schimbarea bitului de semn
 - implementare facilă a operaţiei de înmulţire
 - Dezavantaje
 - Dublă reprezentare pentru 0 (+0 și -0)
 - Implementare dificilă pentru adunare
 - Exerciţiu: (-19) + (+12)

- Complement de 1/One's complement (C1)
 - 1 bit semn, *n* biţi pentru mărime
 - Numerele pozitive identic cu SM
 - Numerele negative complementarea/ negarea marimii
 - Exemplu:

```
+85= 0 1010101
```

$$-85 = 10101010$$

- Dezavantaje:
 - C1 nu este un format ponderat în conformitate cu notaţia poziţională
 - există două reprezentări pentru numărul zero (pentru un numar reprezentat pe 6 biţi avem 0 00000, respectiv 1 11111), deci testarea pentru zero se va face de două ori
- Avantaje:
 - o implementare mai facilă a operaţiei de adunare comparativ cu SM
- domeniul valoric pentru numere întregi:

$$-(2^{n-1}-1)$$
 și $2^{n-1}-1$

b.

- □ Complement de 2/ Two's complement (C2)
 - Numerele pozitive identic cu SM
 - Numerele negative negarea valorii pozitive la care se adaugă 1
 - Intregi: $1\overline{b_{n-2}}...\overline{b_1}\overline{b_0} + 0.0...01$
 - Fracționare: $1.\overline{b_{-1}}...\overline{b_{-n+1}}\overline{b_{-n}} + 0.0...01$
 - Exemplu:

$$-85 = 10101011$$

- Dezavantaje:
 - □ Mai dificil de obţinut decât SM şi C1;
 - nu este un format ponderat în conformitate cu notaţia poziţională
 - anomalia complementului de doi
- Avantaje:
 - □ O singura reprezentare pentru O!
 - **0000000**
 - Implementarea facilă a operației de adunare
 - Exerciţiu (-19) + (+12)

Număr zecimal	Format SM	Format C1	Format C2
+3	0 11	0 11	0 11
+2	0 10	0 10	0 10
+1	0 01	0 01	0 01
+0	0 00	0 00	0 00
-0	1 00	1 11	
-1	1 01	1 10	1 11
-2	1 10	1 01	1 10
-3	1 11	1 00	1 01
-4			1 00

□ Domeniul valoric pentru numere întregi:

$$-2^{n-1}$$
 și $2^{n-1}-1$

Aplicație:

- □ Se dau următoarele perechi de numere întregi: +23 şi +18, +23 şi -18, -23 şi +18, respectiv -23 şi -18. Se cere:
 - Să se convertească numerele în formatele semn-mărime, complement de 1, respectiv complement de 2.
 - Să se efectueze adunarea celor două numere.