Package 'longROC'

October 13, 2022

Type Package		
Fitle Time-Dependent Prognostic Accuracy with Multiply Evaluated Bio Markers or Scores		
Version 1.0		
Date 2017-11-18		
Author Alessio Farcomeni		
Maintainer Alessio Farcomeni <alessio.farcomeni@uniroma1.it></alessio.farcomeni@uniroma1.it>		
Description Time-dependent Receiver Operating Characteristic curves, Area Under the Curve, and Net Reclassification Indexes for repeated measures. It is based on methods in Barbati and Farcomeni (2017) <doi:10.1007 s10260-017-0410-2="">.</doi:10.1007>		
License GPL (>= 2)		
Depends R (>= $3.1.2$)		
Imports survival		
Encoding UTF-8		
LazyData true		
NeedsCompilation no		
Repository CRAN		
Date/Publication 2017-11-20 12:17:47 UTC		
Date/1 tibilication 2017-11-20 12.17.47 01C		
R topics documented:		
auc 2 butstrap 4 butstrap.nri 6 butstrap.s 8 maxauc 10 maxauc.s 12 nri 14 plotAUC 16 plotAUC.s 18 plotROC 20		

auc AUC

Description

Compute area under the ROC curve

Usage

auc(ss)

Arguments

SS

Matrix with two columns (1-specificities, sensitivities). It can be simply the output of roc function

Details

Area under the ROC curve.

Value

A scalar with the AUC.

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>

References

Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, *Statistical Methods & Applications*, in press

See Also

roc, butstrap, maxauc

auc 3

```
# parameters
n=100
tt=3
Tmax=10
u = 1.5
s=2
vtimes=c(0,1,2,5)
# generate data
ngrid=5000
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]}
cens=runif(n)
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
}
cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]</pre>
## an important marker
ro=roc(S2,Ti,delta,u,tt,s,vtimes)
auc(ro)
## an unrelated marker
ro=roc(S1,Ti,delta,u,tt,s,vtimes)
```

4 butstrap

auc(ro)

trap Bootstrapping AUC

Description

Boostrap the AUC for significance testing and confidence interval calculation

Usage

```
butstrap(X,etime,status,u=NULL,tt,s,vtimes,auc1,B=50,fc=NULL)\\
```

Arguments

X	n by S matrix of longitudinal score/biomarker for i-th subject at j-th occasion (NA if unmeasured)
etime	n vector with follow-up times
status	n vector with event indicators
u	Lower limit for evaluation of sensitivity and specificity. Defaults to vtimes[s] (see below)
tt	Upper limit (time-horizon) for evaluation of sensitivity and specificity.
S	Scalar number of measurements/visits to use for each subject. s<=S
vtimes	S vector with visit times
auc1	AUC for the original data set
В	Number of bootstrap replicates. Defaults to 50
fc	Events are defined as $fc = 1$. Defaults to $I(\sup X(t_j)> \cot f)$

Details

This function can be used to resample the AUC. The resulting p-value is obtained after assumption that the resampled AUC is Gaussian. Non-parametric confidence interval is obtained as the 2.5 and 97.5 confidence interval is simply given by a Gaussian approximation.

Value

A list with the following elements:

p.value	(Parametric) p-value for H0: AUC=0.5
se	Standard deviation of the AUC replicates
ci.np	Non-parametric 95% confidence interval for AUC
ci.par	Parametric 95% confidence interval for AUC

butstrap 5

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>

References

Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, *Statistical Methods* \& *Applications*, in press

See Also

roc, auc, maxauc

```
# parameters
n=100
tt=3
Tmax=10
u = 1.5
vtimes=c(0,1,2,5)
# generate data
ngrid=5000
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]}
cens=runif(n)
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
}
```

6 butstrap.nri

```
cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]

## an unimportant marker

ro=roc(S1,Ti,delta,u,tt,s,vtimes)
but=butstrap(S1,Ti,delta,u,tt,s,vtimes,ro)</pre>
```

butstrap.nri

Bootstrapping NRI

Description

Boostrap the AUC for significance testing and confidence interval calculation

Usage

```
butstrap.nri(risk1,risk2,etime,status,u,tt,nri1,wh,B=1000)
```

Arguments

risk1	Baseline risk measurements
risk2	Enhanced risk measurements
etime	n vector with follow-up times
status	n vector with event indicators
u	Lower limit for evaluation of sensitivity and specificity
tt	Upper limit (time-horizon) for evaluation of sensitivity and specificity.
nri1	NRI for the original data set
wh	Which NRI to boostrap? wh=1 $1/2NRI$, wh=2 NRI for events, wh=3 NRI for non-events
В	Number of bootstrap replicates. Defaults to 1000

Details

This function can be used to resample the NRI. The resulting p-value is obtained after assumption that the resampled NRI is Gaussian. Non-parametric confidence interval is obtained as the 2.5 and 97.5 confidence interval is simply given by a Gaussian approximation.

Value

A list with the following elements:

p.value	(Parametric) p-value for H0: NRI=0
se	Standard deviation of the NRI replicates
ci.np	Non-parametric 95% confidence interval for NRI
ci par	Parametric 95% confidence interval for NRI

butstrap.nri 7

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>

References

Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, *Statistical Methods* \& *Applications*, in press

See Also

nri

```
# parameters
n=25
tt=3
Tmax=10
u = 1.5
vtimes=c(0,1,2,5)
# generate data
ngrid=1000
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]}
cens=runif(n)
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
}
```

8 butstrap.s

```
cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]

risk1=apply(S1[,1:s],1,sum)
risk1=(risk1-min(risk1))/(max(risk1)-min(risk1))
risk2=apply(S2[,1:s],1,sum)
risk2=(risk2-min(risk2))/(max(risk2)-min(risk2))
butstrap.nri(risk1,risk2,Ti,delta,u,tt,nri(risk1,risk2,Ti,delta,u,tt)$nri,wh=1,B=500)</pre>
```

butstrap.s

Bootstrapping AUC

Description

Boostrap the AUC for significance testing and confidence interval calculation

Usage

```
butstrap.s(X,etime,status,u=NULL,tt,s,vtimes,auc1,B=50,fc=NULL)
```

Arguments

Х	n by S matrix of longitudinal score/biomarker for i-th subject at j-th occasion (NA if unmeasured)
etime	n vector with follow-up times
status	n vector with event indicators
u	Lower limit for evaluation of sensitivity and specificity. Defaults to max(vtimes[s]) (see below)
tt	Upper limit (time-horizon) for evaluation of sensitivity and specificity.
S	n vector of number of measurements/visits to use for each subject. all(s<=S)
vtimes	S vector with visit times
auc1	AUC for the original data set
В	Number of bootstrap replicates. Defaults to 50
fc	Events are defined as $fc = 1$. Defaults to $I(\sup X(t_j)> cutoff)$

Details

This function can be used to resample the AUC. The resulting p-value is obtained after assumption that the resampled AUC is Gaussian. Non-parametric confidence interval is obtained as the 2.5 and 97.5 confidence interval is simply given by a Gaussian approximation.

Value

A list with the following elements:

butstrap.s 9

p.value	(Parametric) p-value for H0: AUC=0.5
se	Standard deviation of the AUC replicates
ci.np	Non-parametric 95% confidence interval for AUC
ci.par	Parametric 95% confidence interval for AUC

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>

References

Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, *Statistical Methods* \& *Applications*, in press

See Also

roc, auc, maxauc

```
# parameters
n=100
tt=3
Tmax=10
u = 1.5
s=sample(3,n,replace=TRUE)
vtimes=c(0,1,2,5)
# generate data
ngrid=5000
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]}
cens=runif(n)
```

10 maxauc

```
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
    Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
}

cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]
## an unimportant marker

ro=roc.s(S1,Ti,delta,u,tt,s,vtimes)
but=butstrap.s(S1,Ti,delta,u,tt,s,vtimes,ro)</pre>
```

maxauc

Optimal Score

Description

Compute optimal score for AUC

Usage

```
maxauc(X,etime,status,u=NULL,tt,s,vtimes,fc=NULL)
```

Arguments

X	p by n by S array of longitudinal scores/biomarkers for i-th subject at j-th occasion (NA if unmeasured)
etime	n vector with follow-up times
status	n vector with event indicators
u	Lower limit for evaluation of sensitivity and specificity. Defaults to vtimes[s] (see below)
tt	Upper limit (time-horizon) for evaluation of sensitivity and specificity.
S	Scalar number of measurements/visits to use for each subject. s<=S
vtimes	S vector with visit times
fc	Events are defined as $fc = 1$. Defaults to $I(\sup X(t_j)> cutoff)$

Details

This function can be used to find an optimal linear combination of p scores/biomarkers repeatedly measured over time. The resulting score is optimal as it maximizes the AUC among all possible linear combinations. The first biomarker in array X plays a special role, as by default its coefficient is unitary.

maxauc 11

Value

A list with the following elements:

beta Beta coefficients for the optimal score score Optimal score

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>

References

Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, *Statistical Methods* \& *Applications*, in press

See Also

auc, butstrap, maxauc

```
# parameters
n=25
tt=3
Tmax=10
u = 1.5
s=2
vtimes=c(0,1,2,5)
# generate data
ngrid=500
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]}
```

12 maxauc.s

```
cens=runif(n)
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]</pre>
##
X=array(NA,c(2,nrow(S1),ncol(S1)))
X[1,,]=round(S2) #fewer different values, quicker computation
X[2,,]=S1
sc=maxauc(X,Ti,delta,u,tt,s,vtimes)
# beta coefficients
sc$beta
# final score (X[1,,]+X[2,,]*sc$beta[1]+...+X[p,,]*sc$beta[p-1])
sc$score
```

maxauc.s

Optimal Score

Description

Compute optimal score for AUC

Usage

```
maxauc.s(X,etime,status,u=NULL,tt,s,vtimes,fc=NULL)
```

Arguments

X	n by S matrix of longitudinal score/biomarker for i-th subject at j-th occasion (NA if unmeasured)
etime	n vector with follow-up times
status	n vector with event indicators
u	Lower limit for evaluation of sensitivity and specificity. Defaults to max(vtimes[s]) (see below)

maxauc.s 13

tt	Upper limit (time-horizon) for evaluation of sensitivity and specificity.
S	n vector of number of measurements/visits to use for each subject. all(s<=S)
vtimes	S vector with visit times
fc	Events are defined as $fc = 1$. Defaults to $I(\sup X(t_i) > \inf)$

Details

This function can be used to find an optimal linear combination of p scores/biomarkers repeatedly measured over time. The resulting score is optimal as it maximizes the AUC among all possible linear combinations. The first biomarker in array X plays a special role, as by default its coefficient is unitary.

Value

A list with the following elements:

```
beta Beta coefficients for the optimal score score Optimal score
```

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>

References

Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, *Statistical Methods* \& *Applications*, in press

See Also

```
auc, butstrap, maxauc
```

```
# parameters
n=20
tt=3
Tmax=10
u=1.5
s=sample(3,n,replace=TRUE)
vtimes=c(0,1,2,5)
# generate data
ngrid=500
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
```

14 nri

```
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]}
cens=runif(n)
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
}
cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]
##
X=array(NA,c(2,nrow(S1),ncol(S1)))
X[1,,]=round(S2) #fewer different values, quicker computation
X[2,,]=S1
sc=maxauc.s(X,Ti,delta,u,tt,s,vtimes)
# beta coefficients
sc$beta
# final score (X[1,,]+X[2,,]*sc$beta[1]+...+X[p,,]*sc$beta[p-1])
sc$score
```

nri

NRI

Description

Compute NRI

nri 15

Usage

```
nri(risk1, risk2, etime, status, u, tt)
```

Arguments

risk1	Baseline risk measures
risk2	Enhanced risk measures
etime	n vector with follow-up times
status	n vector with event indicators
u	Lower limit for evaluation of sensitivity and specificity.
tt	Upper limit (time-horizon) for evaluation of sensitivity and specificity.

Details

This function gives the continuous NRI to compare two risk measures.

Value

A list with the following elements:

nri 1/2 NRI
nri.events NRI for events
nri.nonevents NRI for non-events

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>

References

Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, *Statistical Methods* \& *Applications*, in press

See Also

```
butstrap.nri
```

```
# parameters
n=100
tt=3
Tmax=10
u=1.5
s=2
vtimes=c(0,1,2,5)
```

16 plotAUC

```
# generate data
ngrid=5000
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]}
cens=runif(n)
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]
risk1=apply(S1[,1:s],1,sum)
risk1=(risk1-min(risk1))/(max(risk1)-min(risk1))
risk2=apply(S2[,1:s],1,sum)
risk2=(risk2-min(risk2))/(max(risk2)-min(risk2))
nri(risk1,risk2,Ti,delta,u,tt)
```

plotAUC

AUC as a function of time

Description

Compute area under the ROC curve for several values of time horizon

Usage

```
plotAUC(X,etime,status,u=NULL,tt,s,vtimes,fc=NULL,plot=TRUE)
```

plotAUC 17

Arguments

X	n by S matrix of longitudinal score/biomarker for i-th subject at j-th occasion (NA if unmeasured)
etime	n vector with follow-up times
status	n vector with event indicators
u	Lower limit for evaluation of sensitivity and specificity. Defaults to vtimes[s] (see below)
tt	A vector of upper limits (time-horizons) for evaluation of sensitivity and specificity.
S	Scalar number of measurements/visits to use for each subject. s<=S
vtimes	S vector with visit times
fc	Events are defined as $fc = 1$. Defaults to $I(\sup X(t_j)> cutoff)$
plot	Do we plot the AUCs? Defaults to TRUE

Details

Area under the ROC curve is computed for each value of the vector tt. The resulting vector is returned. If plot=TRUE (which is the default) also a plot of tt vs AUC is displayed.

Value

A vector with AUCs

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>

References

Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, *Statistical Methods & Applications*, in press

See Also

roc, butstrap, auc

```
# parameters
n=25
tt=3
Tmax=10
u=1.5
s=2
vtimes=c(0,1,2,5)
```

18 plotAUC.s

```
# generate data
ngrid=1000
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
}
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]
cens=runif(n)
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
}
cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]
##
## an important marker
aucs=plotAUC(S2,Ti,delta,u,seq(2,5,length=5),s,vtimes)
```

plotAUC.s

AUC as a function of time

Description

Compute area under the ROC curve for several values of the time horizon

Usage

```
plotAUC.s(X,etime,status,u=NULL,tt,s,vtimes,fc=NULL,plot=TRUE)
```

plotAUC.s

Arguments

X	n by S matrix of longitudinal score/biomarker for i-th subject at j-th occasion (NA if unmeasured)
etime	n vector with follow-up times
status	n vector with event indicators
u	Lower limit for evaluation of sensitivity and specificity. Defaults to vtimes[s] (see below)
tt	A vector of upper limits (time-horizons) for evaluation of sensitivity and specificity.
S	n vector of measurements/visits to use for each subject. all(s<=S)
vtimes	S vector with visit times
fc	Events are defined as $fc = 1$. Defaults to $I(\sup X(t_j)> \cot f)$
plot	Do we plot the AUCs? Defaults to TRUE

Details

Area under the ROC curve is computed for each value of the vector tt. The resulting vector is returned. If plot=TRUE (which is the default) also a plot of tt vs AUC is displayed.

Value

A vector with AUCs

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>

References

Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, *Statistical Methods & Applications*, in press

See Also

```
roc.s, butstrap.s, auc
```

```
# parameters
n=25
tt=3
Tmax=10
u=1.5
s=sample(3,n,replace=TRUE)
vtimes=c(0,1,2,5)
```

20 plotROC

```
# generate data
ngrid=1000
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
}
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]
cens=runif(n)
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
}
cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]
##
## an important marker
aucs=plotAUC.s(S2,Ti,delta,u,seq(2,5,length=5),s,vtimes)
```

plotROC

Plot ROC

Description

Plot the ROC curve

Usage

```
plotROC(ro, add=FALSE, col=NULL)
```

plotROC 21

Arguments

ro	Matrix with two columns (1-specificities, sensitivities). It can be simply the output of roc function
add	If FALSE (default) creates a new plot, otherwise adds to the existing one
col	Colour for the ROC curve (defaults to red)

Details

Plots the area under the ROC curve.

Value

A plot or a new line in an open plot.

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>

References

Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, *Statistical Methods & Applications*, in press

See Also

```
roc, roc.s, auc
```

```
# parameters
n=100
tt=3
Tmax=10
u = 1.5
s=2
vtimes=c(0,1,2,5)
# generate data
ngrid=5000
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
}
```

22 roc

```
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]}
cens=runif(n)
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]</pre>
## an important marker
ro=roc(S2,Ti,delta,u,tt,s,vtimes)
plotROC(ro)
## an unrelated marker
ro=roc(S1,Ti,delta,u,tt,s,vtimes)
plotROC(ro)
```

roc

ROC curve

Description

Compute ROC curve

Usage

```
roc(X,etime,status,u=NULL,tt,s,vtimes,fc=NULL)
```

Arguments

X n by S matrix of longitudinal score/biomarker for i-th subject at j-th occasion

(NA if unmeasured)

etime n vector with follow-up times

roc 23

status	n vector with event indicators
u	Lower limit for evaluation of sensitivity and specificity. Defaults to vtimes[s] (see below)
tt	Upper limit (time-horizon) for evaluation of sensitivity and specificity.
S	Scalar number of measurements/visits to use for each subject. s<=S
vtimes	S vector with visit times
fc	Events are defined as $fc = 1$. Defaults to $I(\sup X(t_j)> \cot f)$

Details

ROC curve is defined as the curve given by (1-specificities, sensitivities). Here these are obtained for a time-dependent multiply-measured marker are defined as

```
\begin{split} Se(t,c,s,u) &= Pr(f\_c(X(t\_1),\!X(t\_2),\!...,\!X(t\_s\_i)) | \ u <= T <= t), \\ and \\ Sp(t,c,s,u) &= 1 - Pr(f\_c(X(t\_1),\!X(t\_2),\!...,\!X(t\_s\_i)) | \ T > t) \end{split}
```

for some fixed f_c, where c is a cutoff. The default for f_c is that a positive diagnosis is given as soon as any measurement among the s considered is above the threshold.

Value

A matrix with the following columns:

1-spec 1-Specificities sens Sensitivities

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>

References

Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, *Statistical Methods* \& *Applications*, in press

See Also

auc, butstrap, maxauc

```
# parameters
n=100
tt=3
Tmax=10
u=1.5
```

24 roc

```
vtimes=c(0,1,2,5)
# generate data
ngrid=5000
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]}
cens=runif(n)
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]</pre>
##
## an important marker
ro=roc(S2,Ti,delta,u,tt,s,vtimes)
plot(ro,type="1",col="red")
abline(a=0,b=1)
## an unrelated marker
ro=roc(S1,Ti,delta,u,tt,s,vtimes)
plot(ro,type="l",col="red")
abline(a=0,b=1)
```

roc. 25

roc. ROC curve	roc.	ROC curve	
----------------	------	-----------	--

Description

Compute ROC curve

Usage

```
roc.s(X,etime,status,u=NULL,tt,s,vtimes,fc=NULL)
```

Arguments

X	n by S matrix of longitudinal score/biomarker for i-th subject at j-th occasion (NA if unmeasured)
etime	n vector with follow-up times
status	n vector with event indicators
u	Lower limit for evaluation of sensitivity and specificity. Defaults to $\max(\texttt{vtimes[s]})$ (see below)
tt	Upper limit (time-horizon) for evaluation of sensitivity and specificity.
S	n vector of measurements/visits to use for each subject. all(s<=S)
vtimes	S vector with visit times
fc	Events are defined as $fc = 1$. Defaults to $I(\sup X(t_j)> \text{cutoff})$

Details

ROC curve is defined as the curve given by (1-specificities, sensitivities). Here these are obtained for a time-dependent multiply-measured marker are defined as

$$\begin{split} Se(t,c,s,u) &= Pr(f_c(X(t_1),X(t_2),...,X(t_s_i)) | \ u <= T <= t), \\ and \\ Sp(t,c,s,u) &= 1 - Pr(f_c(X(t_1),X(t_2),...,X(t_s_i)) | \ T > t) \end{split}$$

for some fixed f_c, where c is a cutoff. The default for f_c is that a positive diagnosis is given as soon as any measurement among the s considered is above the threshold.

Value

A matrix with the following columns:

1-spec 1-Specificities sens Sensitivities

26 roc.

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>

References

Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, *Statistical Methods* \& *Applications*, in press

See Also

auc, butstrap, maxauc

```
# parameters
n=100
tt=3
Tmax=10
u = 1.5
s=sample(3,n,replace=TRUE)
vtimes=c(0,1,2,5)
# generate data
ngrid=5000
ts=seq(0,Tmax,length=ngrid)
X2=matrix(rnorm(n*ngrid,0,0.1),n,ngrid)
for(i in 1:n) {
sa=sample(ngrid/6,1)
vals=sample(3,1)-1
X2[i,1:sa[1]]=vals[1]+X2[i,1:sa[1]]
X2[i,(sa[1]+1):ngrid]=vals[1]+sample(c(-2,2),1)+X2[i,(sa[1]+1):ngrid]
S1=matrix(sample(4,n,replace=TRUE),n,length(vtimes))
S2=matrix(NA,n,length(vtimes))
S2[,1]=X2[,1]
for(j in 2:length(vtimes)) {
tm=which.min(abs(ts-vtimes[j]))
S2[,j]=X2[,tm]}
cens=runif(n)
ripart=1-exp(-0.01*apply(exp(X2),1,cumsum)*ts/1:ngrid)
Ti=rep(NA,n)
for(i in 1:n) {
Ti[i]=ts[which.min(abs(ripart[,i]-cens[i]))]
}
```

sensspec 27

```
cens=runif(n,0,Tmax*2)
delta=ifelse(cens>Ti,1,0)
Ti[cens<Ti]=cens[cens<Ti]

##

## an important marker

ro=roc.s(S2,Ti,delta,u,tt,s,vtimes)
plot(ro,type="1",col="red")
abline(a=0,b=1)

## an unrelated marker

ro=roc.s(S1,Ti,delta,u,tt,s,vtimes)
plot(ro,type="1",col="red")
abline(a=0,b=1)</pre>
```

sensspec

Sensitivity and Specificity

Description

Compute sensitivity and specificity

Usage

```
sensspec(X,etime,status,u=NULL,tt,s,vtimes,cutoff=0,fc=NULL)
```

Arguments

X	n by S matrix of longitudinal score/biomarker for i-th subject at j-th occasion (NA if unmeasured)
etime	n vector with follow-up times
status	n vector with event indicators
u	Lower limit for evaluation of sensitivity and specificity. Defaults to vtimes[s] (see below)
tt	Upper limit (time-horizon) for evaluation of sensitivity and specificity.
S	Scalar number of measurements/visits to use for each subject. s<=S
vtimes	S vector with visit times
cutoff	cutoff for definining events. Defaults to 0
fc	Events are defined as $fc = 1$. Defaults to $I(\sup X(t_j)> \cot f)$

28 sensspec.s

Details

Sensitivity and specificities for a time-dependent multiply-measured marker are defined as

$$Se(t,c,s,u) = Pr(f_c(X(t_1),X(t_2),...,X(t_s_i))| u \le T \le t),$$

and

$$Sp(t,c,s,u) = 1-Pr(f_c(X(t_1),X(t_2),...,X(t_s_i)) \mid T > t)$$

for some fixed f_c, where c is a cutoff. The default for f_c is that a positive diagnosis is given as soon as any measurement among the s considered is above the threshold.

Value

A vector with the following elements:

sens Sensitivity at the cutoff spec Specificity at the cutoff

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>

References

Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, *Statistical Methods* \& *Applications*, in press

See Also

roc, auc, butstrap, maxauc

sensspec.s

Sensitivity and Specificity

Description

Compute sensitivity and specificity

Usage

```
sensspec.s(X,etime,status,u=NULL,tt,s,vtimes,cutoff=0,fc=NULL)
```

sensspec.s 29

Arguments

X	n by S matrix of longitudinal score/biomarker for i-th subject at j-th occasion (NA if unmeasured)
etime	n vector with follow-up times
status	n vector with event indicators
u	Lower limit for evaluation of sensitivity and specificity. Defaults to max(vtimes[s]) (see below)
tt	Upper limit (time-horizon) for evaluation of sensitivity and specificity.
S	n vector of measurements/visits to use for each subject. all(s<=S)
vtimes	S vector with visit times
cutoff	cutoff for definining events. Defaults to 0
fc	Events are defined as $fc = 1$. Defaults to $I(\sup X(t_j)> cutoff)$

Details

Sensitivity and specificities for a time-dependent multiply-measured marker are defined as

$$Se(t,c,s,u) = \Pr(f_c(X(t_1),\!X(t_2),\!...,\!X(t_s_i))|\ u <= T <= t),$$

and

$$Sp(t,c,s,u) = 1-Pr(f_c(X(t_1),X(t_2),...,X(t_s_i)) | T > t)$$

for some fixed f_c, where c is a cutoff. The default for f_c is that a positive diagnosis is given as soon as any measurement among the s considered is above the threshold.

Value

A vector with the following elements:

sens Sensitivity at the cutoff spec Specificity at the cutoff

Author(s)

Alessio Farcomeni <alessio.farcomeni@uniroma1.it>

References

Barbati, G. and Farcomeni, A. (2017) Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomuopathy, $Statistical\ Methods\ \&\ Applications$, in press

See Also

roc, auc, butstrap, maxauc

Index

```
auc, 2, 5, 9, 11, 13, 17, 19, 21, 23, 26, 28, 29
butstrap, 2, 4, 11, 13, 17, 23, 26, 28, 29
\texttt{butstrap.nri}, 6, 15
\texttt{butstrap.s}, 8, \textcolor{red}{19}
maxauc, 2, 5, 9, 10, 11, 13, 23, 26, 28, 29
maxauc.s, 12
nri, 7, 14
plotAUC, 16
plotAUC.s, 18
{\tt plotROC}, {\color{red} 20}
roc, 2, 5, 9, 17, 21, 22, 28, 29
roc., 25
roc.s, 19, 21
roc.s (roc.), 25
sensspec, 27
{\tt sensspec.s}, {\tt 28}
```