English skills and labor market outcomes in Mexico

Oscar Gálvez-Soriano

University of Houston Department of Economics

April, 2023

Motivation: Returns to English language abilities

- Language skills are a form of human capital
- English is valuable in the world economy
 - Globalization: trade, technology and information
 - Mobility and better occupations
- In English-speaking countries, English language is needed for communication
- How valuable is English for non-English speaking countries?

Related Literature

- English speaking countries
 - Immigrants: Bleakley and Chin (2004); Chiswick and Miller (2015)
 - Former British colonies: Azam, Chin and Prakash (2013); Eriksson (2014); Chakraborty and Bakshi (2016)
- Non-English-speaking countries: Lang and Siniver (2009)
- English language skills in Mexico: McConnell and Leclere (2002); Flores-Yeffal (2019); Delgado-Helleseter (2020)

This paper in a nutshell

Research Question

• What are the returns to English language skills in a non-English speaking country?

Strategy

- Describe the prevalence of English skills in Mexico
 - Take advantage of an unusual data set that measures English skills in Mexico
- Quantify the relationship between English skills and labor market outcomes in Mexico
 - Exploit state policy changes that give state-by-cohort variation in exposure to English instruction

Background

- Importance of English language for Mexico
 - Neighboring country with the US
 - Investment, trade and migration
- Very little is known about English language skills in Mexico
 - Who speaks English?
 - I use the 2014 Subjective Well-being Survey (BIARE) to describe English skills in Mexico
- Very little is known about returns to English skills
 - Public schools spend money on English instruction
 - Some industries and occupations demand workers who speak English

English speaking ability: a rare skill in Mexico

- BIARE is a nationally representative survey with adult respondents 18 and older (ENIGH supplemental survey)
- I use the response to the following question to form a measure of English ability
 - Do you speak English?
 - I code it as one if the respondent says yes, and zero otherwise
- \bullet 2.75% of Mexicans speak English

Where are the English speakers?

English abilities, wages and education by occupations

(a) Proportion of female and English speakers

(b) Wages and education

English instruction in Mexican states

English instruction in Mexican states

Empirical framework

We want to estimate the effect of English skills, Eng_i , on wages, ω_i , which can be approximated with the following equation:

$$\omega_i = \alpha + \beta \cdot Eng_i + \mathbf{X}_i \mathbf{\Pi} + \epsilon_i$$

where X_i is a vector of controls including: education, experience, gender, marital status, ethnicity, student status, cohort FE and geographical context (rural/urban)

Empirical challenges

- Concern that English skills, Eng_i , are endogenous in the wage equation
 - Omitted variables: abilities may be correlated with both English skills and wages
 - Measurement error of English skills variable
- OLS estimation would lead to a biased estimate of β
- Take advantage of state policy changes in English instruction to form an instrument for English skills to obtain a consistent estimate of β
- Since the early 90's some Mexican states implemented English programs to offer English instruction in public primary schools

Policy changes in Mexican states

Table A.3: Policy changes in Mexican states

	Year of	Policy	Cohorts	Hrs of	English		Comparison
State	impl.	change	affected	Before	After	Policy details	state
				policy	policy		
Nuevo Leon	1993	1998	1981-1996	0.97	2.75	Only sixth grades	SLP
Sonora	1993	2004	1989-1996	1.64	5.52	Only 1st and 2nd grades	$_{\mathrm{BC}}$
Coahuila	1995	1999	1979-1996	2.73	9.09	Started w/trial stage	Chihuahua
Tamaulipas	2001	2001	1983-1996	1.21	2.89	Only fourth grades	$_{ m BC}$
Aguascalientes	2001	2001	1986-1995	2.36	8.13	No info. available	Zacatecas
Durango	2002	2002	1985-1996	0.33	1.00	Started w/trial stage	SLP
Sinaloa	2004	2004	1989-1996	0.70	1.86	No info. available	Nayarit

Note: These summary statistics consist of Mexicans ages 18-65 who self-reported their ability to speak English.

Source: I computed the hours of English instruction using the Mexican school census (Statistics 911). Policy details from Nuevo Leon, Sonora, Coahila and Tamaulipas were obtained from their respective websites (see section 2 for the original sources). Details from Durango were obtained from an unofficial source. There are not information available for the state English programs of Aguascalientes and Sinaloa. However, for all states, the information provided from the data in the school census coincides with official and unofficial sources in terms of the release year of each state English program.

Estimating the effect of policy changes

- Use Difference in Differences to estimate the effect of these policies
- Simple illustration with one policy change:

$$y_{isc} = \phi + \gamma \cdot (treatment_s \times after_c) + \delta \cdot treatment_s + \kappa_c + X_{isc}\Gamma + \varepsilon_{isc}$$

- where y_{isc} is the outcome variable; in first stage equation $y_{isc} = Eng_{isc}$; in second stage $y_{isc} = \omega_{isc}$
- $after_c$: takes the value of one if the individual i belongs to one of the cohorts that had exposure to the policy
- $treatment_s$ takes the value of one if individual i lives in a treated state and zero otherwise

Parallel Trend Assumption (one policy change)

- Interpreting γ as the effect of the policy requires that the PTA holds
- I offer suggestive evidence on the validity of my identifying assumption using the following event study type specification:

$$y_{isc} = \phi + \sum_{c} \gamma_{c} \cdot I_{(treatment_{sc} = c)} + \delta \cdot treatment_{s} + \kappa_{c} + \boldsymbol{X_{isc}} \boldsymbol{\Gamma} + \varepsilon_{isc}$$

where $I_{(treatment_{sc}=c)}$ is an indicator function, which identifies if individual i potentially had exposure, depending on the cohort and state he/she was born. The reference cohort is the one that just missed the policy

Combining the policy changes (Staggered Difference in Differences)

Combining the policy changes (Staggered Difference in Differences)

Instead of looking at policies one by one, use all these policies at once

$$y_{isc} = \theta + \psi \cdot HadPolicy_{sc} + \delta_s + \kappa_c + X_{isc}\Psi + \varepsilon_{isc}$$

where $HadPolicy_{sc}$ takes the value of one if individual i lives in a treated state and he/she belongs to one of the affected cohorts (zero otherwise)

Parallel Trend Assumption (combining all policies)

I use an event study specification to examine if pre-trends are present

$$y_{isc} = \theta + \sum_{c} \psi_{c} \cdot I_{(treatment_{sc} = c - c_{s}^{*})} + \delta_{s} + \kappa_{c} + X_{isc} \Psi + \varepsilon_{isc}$$

where c_s^* denotes the first cohort affected by the intervention in state s, so $c - c_s^*$ is the time relative to c_s^* with negative values reflecting older cohorts not exposed to the policy. The omitted category is -1. Before cohorts with zero effect suggest parallel trends

→ PTA

IV estimation

Equation of interest (structural equation):

$$\omega_{isc} = \alpha + \beta \cdot Eng_{isc} + \boldsymbol{X_{isc}}\boldsymbol{\Pi} + \epsilon_{isc}$$

Use $HadPolicy_{sc}$ to instrument for Eng_{isc} . First stage equation:

$$Eng_{isc} = \theta^{fs} + \psi^{fs} \cdot HadPolicy_{sc} + \delta_s^{fs} + \kappa_c^{fs} + \boldsymbol{X_{isc}} \boldsymbol{\Psi^{fs}} + \varepsilon_{isc}^{fs}$$

Reduced form equation:

$$\omega_{isc} = \theta^{rf} + \psi^{rf} \cdot HadPolicy_{sc} + \delta_s^{rf} + \kappa_c^{rf} + \boldsymbol{X_{isc}} \boldsymbol{\Psi^{rf}} + \varepsilon_{isc}^{rf}$$

The proposed instrument, $HadPolicy_{sc}$, fulfills two conditions:

- Relevance condition
- Exclusion restriction

Data

Household survey (2014 BIARE)

- Individual level data
- BIARE surveyed 44,518 households
 - Representative at national and state level
- Very rich questionnaire

School data on exposure to Eng instruction in primary school

- Mexican School Census (1997-2007)
- Weekly hours of English instruction (exposure)
 - By school-cohort, average over primary school
 - By cohort, take locality average
- Merge English instruction measure to individual-level data (in BIARE) by locality and cohort

English speakers different from non-Eng speakers

Table : Descriptive statistics

		1		
	Full	$_{ m Speak}$	Don't spk	Diff.
Variable	Sample	English	English	
		(a)	(b)	(a-b)
Dependent variable				
Wages (monthly pesos)	6,222.40	15,032.45	5,939.54	9,092.91***
$Independent\ variables$				
English (speaking ability)	0.03	1.00	0.00	-
Hrs English	0.08	0.12	0.07	0.05^{***}
Age (years)	39.05	38.31	39.08	-0.76**
Education (years)	9.67	14.02	9.53	4.49***
Female (%)	0.38	0.33	0.38	-0.05***
Indigenous (%)	0.06	0.02	0.06	-0.04***
Married (%)	0.66	0.58	0.66	-0.08***
Rural (%)	0.20	0.08	0.20	-0.12***
Observations	49,884	1,664	48,220	49,884

Results: OLS estimation of structural equation

Table : Returns to English abilities in Mexico

	Full sample		Low-education		High-education	
	ln(wage)	ln(wage)	ln(wage)	ln(wage)	ln(wage)	ln(wage)
Speak Eng	0.985***	-0.048	0.004	-0.364	0.586***	0.079
	(0.094)	(0.077)	(0.282)	(0.290)	(0.079)	(0.065)
Observations	49,884	49,884	29,043	29,043	20,841	20,841
Adjusted \mathbb{R}^2	0.005	0.248	0.000	0.253	0.005	0.194
Basic controls	NO	YES	NO	YES	NO	YES
Education	NO	YES	NO	YES	NO	YES
Other controls	NO	YES	NO	YES	NO	YES
Locality FE	NO	YES	NO	YES	NO	YES

Results: Effect of state policy changes (DD)

Table : Intention to treat effect of offering English instruction at school (SDD estimate)

	(1)	(2)	(3)	(4)	(5)
	$_{ m Hrs}$	Speak	ln(wage)	Paid	Student
	Eng	Eng		work	
Panel A: Full samp	ple				
Had Policy	0.308***	0.015**	0.019	-0.020	0.038***
	(0.046)	(0.008)	(0.080)	(0.013)	(0.014)
Observations	13,131	13,131	13,131	22,517	22,517
Adjusted \mathbb{R}^2	0.596	0.075	0.153	0.219	0.370

 $\begin{tabular}{ll} \textbf{Table} &: \textbf{Intention to treat effect of offering English instruction at school} \\ & (SDD \ estimate) \end{tabular}$

	(1)	(2)	(3)	(4)	(5)
	$_{ m Hrs}$	Speak	ln(wage)	Paid	Student
	Eng	Eng		work	
Panel A: Full san	nple				
Had Policy	0.308***	0.015**	0.019	-0.020	0.038***
	(0.046)	(0.008)	(0.080)	(0.013)	(0.014)
Observations	13,131	13,131	13,131	22,517	22,517
Adjusted \mathbb{R}^2	0.596	0.075	0.153	0.219	0.370

Table : Intention to treat effect of offering English instruction at school (SDD estimate)

	(1)	(2)	(3)	(4)	(5)
	$_{ m Hrs}$	Speak	ln(wage)	Paid	Student
	Eng	Eng		work	
Panel A: Full sam	ple				
Had Policy	0.308***	0.015**	0.019	-0.020	0.038***
	(0.046)	(0.008)	(0.080)	(0.013)	(0.014)
Observations	13,131	13,131	13,131	22,517	22,517
Adjusted \mathbb{R}^2	0.596	0.075	0.153	0.219	0.370

Table : Intention to treat effect of offering English instruction at school (SDD estimate)

	(1)	(2)	(3)	(4)	(5)
	Hrs	Speak	ln(wage)	Paid	Student
	Eng	Eng		work	
Panel A: Full san	nple				
Had Policy	0.308***	0.015**	0.019	-0.020	0.038***
	(0.046)	(0.008)	(0.080)	(0.013)	(0.014)
Observations	13,131	13,131	13,131	22,517	22,517
Adjusted \mathbb{R}^2	0.596	0.075	0.153	0.219	0.370

Results: Gender heterogeneous effects (SDD)

Table : Intention to treat effect of offering English instruction at school (SDD estimate)

	`		,		
	(1)	(2)	(3)	(4)	(5)
	$_{\mathrm{Hrs}}$	Speak	ln(wage)	Paid	Student
	Eng	Eng		work	
Panel B: Men (β^M)					
Had Policy	0.295***	0.016	-0.044	-0.023	0.044***
	(0.046)	(0.011)	(0.069)	(0.018)	(0.017)
Observations	8,008	8,008	8,008	11,021	11,021
Adjusted \mathbb{R}^2	0.581	0.069	0.186	0.313	0.408
Panel C: Women (β	W_{j}				
Had Policy	0.331***	0.014	0.152	-0.003	0.031*
	(0.057)	(0.014)	(0.152)	(0.023)	(0.017)
Observations	5,123	5,123	5,123	11,496	11,496
Adjusted \mathbb{R}^2	0.604	0.056	0.150	0.158	0.326
$\beta^M = \beta^W$ [p-value]	[0.208]	[0.870]	[0.182]	[0.443]	[0.445]

Results: Educational heterogeneous effects (SDD)

Table: Intention to treat effect of offering English instruction at school
(SDD estimate)

			,		
	(1)	(2)	(3)	(4)	(5)
	$_{ m Hrs}$	Speak	ln(wage)	Paid	Student
	Eng	Eng		work	
Panel D: Low educ	cation sam	$ple (\beta^L)$			
Had Policy	0.305^{***}	0.010	-0.169	0.016	0.005
	(0.062)	(0.007)	(0.123)	(0.021)	(0.014)
Observations	6,624	6,624	6,624	10,898	10,898
Adjusted \mathbb{R}^2	0.522	0.016	0.162	0.225	0.043
Panel E: High edu	cation sam	$ple (\beta^H)$			
Had Policy	0.304***	0.019	0.227**	-0.025	0.031*
	(0.040)	(0.014)	(0.099)	(0.018)	(0.017)
Observations	6,507	6,507	6,507	11,619	11,619
Adjusted \mathbb{R}^2	0.659	0.070	0.146	0.263	0.432
$\beta^L = \beta^H$ [p-value]	[0.973]	[0.590]	[0.005]	[0.119]	[0.224]

➤ Ethnicity

⇒ Geographical context

Results: IV estimate on wages

Table : Returns to English abilities (IV estimate)

	(1)	(2)	(3)	(4)
	Structural-OLS	First Stage	Reduced Form	Structural-IV
Speak Eng	0.142			1.252
	(0.102)			(5.084)
Had Policy		0.015**	0.019	
		(0.008)	(0.080)	
Observations	13,131	13,131	13,131	13,131
Adjusted \mathbb{R}^2	0.153	0.075	0.153	

Mechanisms

- Cognitive skills
 - Acquisition of English skills
 - No effect on other skills: Language and Mathematics (Galvez-Soriano, 2023)
- Occupational choices
 - Move into occupations that require English skills
 - Better working conditions

Mechanisms: Occupational choices (SDD)

Robustness checks

- Concern about SDD estimator in the presence of heterogeneous treatment effects SDD
- Different comparison group (all neighboring states) DD
- Narrower cohorts PDD

Discussion

- No returns to English skills in Mexico
 - Young adults (18-24) are still enrolled in school
 - Potentially high-earners
- However, exposure to English instruction...
 - Leads to the acquisition of English abilities
 - Increases school enrollment
 - Improves working conditions

Results: Ethnicity heterogeneous effects

Table: Heterogeneous effects of offering English instruction at school

	(SDD estin	nate)		
	(1)	(2)	(3)	(4)	(5)
	$_{ m Hrs}$	Speak	ln(wage)	Paid	Student
	Eng	Eng		work	
Panel A: By ethn	icity				
Indigenous (β^I)					
Had Policy	0.110	-0.034	0.309	0.076	0.286**
	(0.160)	(0.091)	(1.202)	(0.187)	(0.126)
Observations	188	188	188	340	340
Adjusted \mathbb{R}^2	0.929	0.410	0.193	0.380	0.329
Non-Indigenous	(β^N)				
Had Policy	0.306***	0.015^{*}	0.030	-0.020	0.036***
	(0.046)	(0.008)	(0.081)	(0.013)	(0.014)
Observations	12,943	12,943	12,943	22,177	22,177
Adjusted \mathbb{R}^2	0.593	0.076	0.148	0.219	0.371
$\beta^I = \beta^N$ [p-value]	[0.348]	[0.208]	[0.212]	[0.819]	[0.011]

Results: Geographical context heterogeneous effects

Table: Heterogeneous effects of offering English instruction at school

	(5	SDD estin	nate)		
	(1)	(2)	(3)	(4)	(5)
	$_{ m Hrs}$	Speak	ln(wage)	Paid	Student
	Eng	Eng		work	
Panel B: By geog	raphical co	ntext			
Rural (β^R)					
Had Policy	-0.025	-0.004	-0.394	0.008	0.034
	(0.024)	(0.013)	(0.240)	(0.035)	(0.026)
Observations	2,171	2,171	2,171	4,208	4,208
Adjusted \mathbb{R}^2	0.003	0.062	0.227	0.262	0.310
Urban (β^U)					
Had Policy	0.338***	0.018**	0.078	-0.016	0.030**
	(0.050)	(0.009)	(0.084)	(0.014)	(0.014)
Observations	10,960	10,960	10,960	18,309	18,309
Adjusted \mathbb{R}^2	0.623	0.088	0.131	0.219	0.385
$\beta^R = \beta^U$ [p-value]	[0.000]	[0.235]	[0.072]	[0.514]	[0.779]

Mechanisms: Occupational choices (SDD) • Back

SDD correction: Sun, Liyang and Sarah Abraham (2021) • Back

Table: Intention to Treat effect of offering English instruction at school (SDD estimate)

	(1)	(2)	(3)	(4)	(5)
	Hrs	Speak	ln(wage)	Paid	Student
	Eng	Eng	(0 /	work	
Had Policy	0.323***	0.015**	0.021	-0.015	0.035***
	(0.045)	(0.007)	(0.081)	(0.012)	(0.013)
Observations	13,063	13,063	13,063	22,493	$22,\!493$
Adjusted \mathbb{R}^2	0.616	0.073	0.148	0.219	0.371

Robustness check: Narrower cohort window Back

Robustness check: Narrower cohort window Back

 $\begin{array}{c} \textbf{Table} & : \mbox{ Returns to English abilities} \\ (IV \mbox{ estimate with narrower comparison group}) \end{array}$

	(1)	(2)	(3)	(4)
	Structural-OLS	First Stage	Reduced Form	Structural-IV
Speak Eng	0.086			-4.081
	(0.156)			(6.348)
Had Policy		0.018*	-0.073	
		(0.010)	(0.111)	
Observations	5,926	5,926	5,926	5,926
Adjusted \mathbb{R}^2	0.159	0.050	0.159	

Robustness check: Different control groups Back

(b) English skills

Parallel Trend Assumption (Aguascalientes)

Parallel Trend Assumption (Coahuila)

Parallel Trend Assumption (Durango)

Parallel Trend Assumption (Nuevo Leon)

(c) Paid work

(d) Ln(wage)

Parallel Trend Assumption (Sinaloa)

Parallel Trend Assumption (Sonora)

Eng program

Parallel Trend Assumption (Tamaulipas) • Back

PTA Staggered DiD: All states Back

