Домашнее задание по курсу "Математическая логика - 2"

1 Язык и аксиоматика теории множеств

§ 1.3

Условие Доказать, что $\emptyset \neq \{\emptyset\}$.

Доказательство По определению

$$x = y \Rightarrow \forall t (t \in x \Leftrightarrow t \in y).$$
 Пусть $\emptyset = \{\emptyset\}, \Rightarrow \forall t (t \in \{\emptyset\} \Leftrightarrow t \in \emptyset)$ Противоречие для $t = \emptyset$

§ 1.4

Условие Доказать, что $\{\{1,2\},\{2,3\}\} \neq \{1,2,3\}$.

Доказательство По определению

$$x=y\Longrightarrow \forall t(t\in x\Leftrightarrow t\in y).$$
 Пусть $\{\{1,2\},\{2,3\}\}=\{1,2,3\},\Rightarrow \forall t(t\in\{1,2,3\}\Leftrightarrow t\in\{\{1,2\},\{2,3\}\})$ Противоречие для $\mathbf{t}=1$

§ 1.6

Условие Доказать, что \exists лишь одно множество, не имеющее элементов.

Доказательство Пусть \exists два множества X и X_0 , не имеющих элементов и такие, что $X \neq X_0$ $\Rightarrow \exists t (t \in X \Rightarrow t \notin X_0)$ Противоречие так как $\nexists t \in X$.

§ 1.8

Условие Доказать, что множество всех корней многочлена $\alpha(x) = \beta(x)\gamma(x)$ есть объединение множеств корней $\beta(x)$ и $\gamma(x)$.

Доказательство Чтобы докаказать, что множество корней = объединения множеств, надо доказать, что любой корень является либо корнем $\beta(x)$ либо $\gamma(x)$ и что других корней не существует.

1) Пусть существует корень x_0 , который не является корнем ни $\beta(x)$, ни корнем $\gamma(x)$

$$\Rightarrow \alpha(x_0) = 0, \beta(x_0) \neq 0, \gamma(x_0) \neq 0$$
. Противоречие 2) Пусть x_0 корень $\beta(x)$ или $\gamma(x)$, тогда $\beta(x_0) = 0$ или $\gamma(x_0) = 0 \Rightarrow \alpha(x_0) = 0$

§ 1.9

Условие Доказать, что персечение множеств действительных корней многочленов $\alpha(x)\beta(x)$ с действительными коэффицентами совпадает с множеством всех действительных корней $\gamma(x) = \alpha^2(x) + \beta^2(x)$.

Доказательство Чтобы доказать, что множество корней = персечение множеств, надо доказать, что любой корень из пересейчения является корнем и что других корней не существует.

1) Если x_0 корень $\alpha(x)\beta(x) \Rightarrow \gamma(x_0) = 0$ 2) Пусть существует корень $\gamma(x)x_0$, который не является корнем ни $\alpha(x)$, ни корнем $\beta(x)$

Тогда
$$\gamma(x_0) = 0 \Rightarrow \alpha^2(x_0) + \beta^2(x_0) = 0 \Rightarrow \alpha(x_0) = 0 \& \beta(x_0) = 0$$

§ 1.11 (а, г, ж)

Условие Доказать следующие тождества $a)A \cup A = A \cap A = A$

Доказательство Распишем по определению $\{Z \mid (Z \in A \vee Z \in A)\} = \{Z \in A \cup A \mid Z \in A \wedge Z \in A\} = A$ Упростим $\{Z \mid (Z \in A)\} = \{Z \in A \cup A \mid Z \in A\} = A \Leftrightarrow A = \{Z \in A \mid Z \in A\} = A \Leftrightarrow A = A = A$

Условие $\Gamma A \cap (B \cap C) = (A \cap B) \cap C$

Доказательство

Условие ж) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Доказательство

§ 1.12(в, д, ж, п, т)

§ 1.13(а, д, к)

§ 1.14(в, к)

§ 1.15

Условие Доказать, что

a) $(A_1 \cup ... \cup A_n) \triangle (B_1 \cup ... \cup B_n) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_n \triangle B_n)$

Доказательство Докажем по индукции:

База индукции

n=1) $(A_1) \triangle (B_1) \subseteq (A_1 \triangle B_1)$ (очевидно)

n=2) $(A_1 \cup A_2) \triangle (B_1 \cup B_2) \subseteq (A_1 \triangle B_1) \cup (A_2 \triangle B_2)$ (Доказывалось на уроке)

Преположение индукции

Пусть верно для $\forall n < k$

Шаг индукции

Докажем для k+1

$$(A_1 \cup ... \cup A_k + 1) \triangle (B_1 \cup ... \cup B_k + 1) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k + 1 \triangle B_k + 1)$$
 пусть $A_0 = A_1 \cup ... \cup A_k B_0 = B_1 \cup ... \cup B_k$ $(A_1 \cup ... \cup A_{k+1}) \triangle (B_1 \cup ... \cup B_{k+1}) \Leftrightarrow (A_0 \cup A_{k+1}) \triangle (B_0 \cup B_{k+1}) \subseteq \subseteq (A_0 \triangle B_0) \cup (A_k \triangle B_k)$

$$(A_0 \triangle B_0) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k \triangle B_k)$$

$$\Rightarrow (A_1 \cup ... \cup A_k + 1) \triangle (B_1 \cup ... \cup B_k + 1) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k + 1 \triangle B_k + 1)$$

Условие б)
$$(A_1 \cap ... \cap A_n) \triangle (B_1 \cap ... \cap B_n) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_n \triangle B_n)$$

Доказательство Докажем по индукции:

База индукции

$$n=1) (A_1) \triangle (B_1) \subseteq (A_1 \triangle B_1)$$
 (очевидно)

n=2)
$$(A_1 \cap A_2) \triangle (B_1 \cap B_2) \subseteq (A_1 \triangle B_1) \cup (A_2 \triangle B_2)$$
 (Доказывалось на уроке)

Преположение индукции

Пусть верно для $\forall n < k$

Шаг индукции

Докажем для k+1

$$(A_1 \cap ... \cap A_k + 1) \triangle (B_1 \cap ... \cap B_k + 1) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k + 1 \triangle B_k + 1)$$
 пусть $A_0 = A_1 \cap ... \cap A_k B_0 = B_1 \cap ... \cap B_k$ $(A_1 \cap ... \cap A_{k+1}) \triangle (B_1 \cap ... \cap B_{k+1}) \Leftrightarrow (A_0 \cap A_{k+1}) \triangle (B_0 \cap B_{k+1}) \subseteq$

$$(A_1 \cap ... \cap A_{k+1}) \triangle (B_1 \cap ... \cap B_{k+1}) \Leftrightarrow (A_0 \cap A_{k+1}) \triangle (B_0 \cap B_{k+1}) \subseteq (A_0 \triangle B_0) \cup (A_k \triangle B_k)$$

$$(A_0 \triangle B_0) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k \triangle B_k)$$

$$\Rightarrow (A_1 \cap ... \cap A_k + 1) \triangle (B_1 \cap ... \cap B_k + 1) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k + 1 \triangle B_k + 1)$$

§ 1.17

Условие Определить операции \cup , \cap , \setminus , через:

$$a)\triangle,\cap$$

Доказательство

Условие б)△, ∪

Доказательство

Условие $и)\setminus, \triangle$

Доказательство

$$A \cup B = (A \setminus B) \triangle$$
$$A \cap B = (B \setminus (A \setminus B))$$
$$\setminus = \setminus$$

§ 1.18

Условие Доказать, что нельзя определить:

- а) \ через ∩ и ∪
- б) ∪ через \cap и \setminus

§ 1.20

Условие Найти все подмножества множеств: \varnothing , $\{\varnothing\}$, $\{x\}$, $\{1,2\}$.

Ответ

$$\varnothing$$
 - HeT
$$\{\varnothing\}-\varnothing \\ \{x\}-\varnothing, \{x\} \\ \{1,2\}-\varnothing, \{1\}, \{2\}, \{1,2\}$$

§ 2.1

Условие Доказать, что существуют A, B и C такие, что: а) $A \times B \neq B \times A$

Решение

$$A=1$$
 и $B=2$

Условие б) $A \times (B \times) \neq (A \times B) \times C$

Решение

§ 2.3

Условие Доказать, что если A, B, C и D не пусты, то: а) $A \subseteq B$ и $C \subseteq D \Leftrightarrow A \times C \subseteq B \times D$ б) A = B и $C = D \Leftrightarrow A \times C = B \times D$

Решение

Очеивдно доказывается методом от противного.

§ 2.6(а, б, г)

Условие Доказать, что: а) $(A \cup B) \times C = (A \times B) \cup (B \times C)$ б) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ г) $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$

Решение

2 Отношения и функции

§ 2.8(a, в)

Условие

Решение

§ 2.9(а, в)

Условие

Решение

§ 2.12 (б, г)

Условие

Решение

§ **2.13**

Условие

Решение

§ **2.14**

Условие

Решение

§ **2.22**

Условие

Решение

§ 2.25(а-д)

Условие

Решение

§ 2.31(a)

Условие

Решение

§ 2.32(a)

Условие

Решение

§ 2.34

Условие

Решение

§ 2.35

Условие

Решение

§ 2.38(а, в, д)

Условие

Решение

3 Мощности множеств

§ 4.1

Условие Доказать, что: $A\backsim A$ (рефлексивность) Если $A\backsim B$, то $B\backsim A$ (симметричность) Если $A\backsim B$ и $B\backsim$, то $A\backsim$ (транзетивность)

Решение

§ **4.5**

Условие Доказать, что:

- а) Всякое подмножество конечного множества конечно
- б) Объединение конечного числа конечных множест кончено
- в) Прямое произведение конечного числа конечных множеств конечно

Решение Доказательство от противного