F-Distribution

Basics & Properties

Sir R. A. Fisher.

- D Values of F ranges from 0 to ∞
- B It has two parameter, V1 and V2, the no. of two d.f.
- 3 Continuous distribution & never touches x-axis.
- 9 For different pairs of d.f. V1 and V2, there will be different F-distribution.
- D Positively Skewed and as of. increases curves become symmetric.

The ratio
$$\frac{S_1^2}{S_2^2} = \frac{S_1^2}{S_2^2} =$$

F-Distribution

Basics & Properties

Sir R. A. Fisher.

Properties

O Values of Franges from 0 to 00

- B It has two parameter, V1 and V, the no. of two d.f.
- 3 Continuous distribution & never touches x-axis.
- Prov different pairs of d.f. V1 and V2, there will be different F-distribution.
- 5 Positively skewed and as dif. increases curves become symmetric.

mean =
$$\frac{v_2}{v_2-2}$$
; $(v_2>2)$
mean does if $v_2 \le 2$
not exist

F-test [Introduction & Formula]

Population I Population II Variance = 57

Sample I Sample II $Size = n_1$ Size = n_2 $Variance = S^{*}$ Variance = S^{*}

Objective :-

- 1) To test Significance of equality between two population variance
- 2) To test Significance of equality among three or more means.

Null Hypothesis Ho: 51 = 52 Alternative Hypothesis Hz: 51 > 52 F-test Statistics

$$F_{(V_1, V_4)} = \frac{S_1^2}{S_2^2}$$
; $S_1^2 > S_2^2$
Cal. F_{α}, V_1, V_2 > tab. F_{α}, V_1, V_3

Ho reject.

(al. F < tab F

Ho accept.

1/2	5	6	7	8	9	10
12 6 G	5.05	4.95	4.88	4.82	4.77	4.77
7 8 9	3.48	3.37	3.29	3.23	3.18	3.14
1						

F-test [Introduction & Formula]

Population I Population I Variance= 522 Variance= 52

Sample I Size = n1

Varianu = 5,2

Sample II

Size= nz

Variance = 5,

Objective:

- 1) To test Significance of equality between two population Variance
- 2) To test Significance of equality among three or more means.

Null Hypothesis Ho: 5, = 5,2 Alternative Hypothesis Hz: 57 > 5,2 F-test Statistics

$$F_{(V_1, V_4)} = \frac{S_1^2}{S_2^2} ; S_1^2 > S_2^2$$

$$S_1^2 = \underbrace{S(X_1 - \overline{X}_1)^2}_{N_1 - 1}$$

$$S_2^2 = \underbrace{S(X_2 - \overline{X}_2)^2}_{N_2 - 1}$$

$$V_1 = d.f. = N_1 - 1$$

$$V_2 = d.f = n_2 - 1$$

1	5	6	7	8	9	10
375	5.05	4.95	4.88	4.82	4.77	4.72
6		1		-		1
7 8	1	1	1			1
9	3.48	3.37	3.29	3.23		3.14
1						

 In a test given to two groups of students drawn from two normal populations, the marks obtained were as follows:

Group A	18	20	36	50	49	36	34	49	41
Group B	29	28	26	35	30	44	46		

Examine at 5% level of significance, whether two populations have the same variance.

F-test [Numerical Problems

001

Null Hypothesis, Ho: 5,2 = 522

Alternative Hypothesis, H: 522 + 522

Calculation of test Statistic

	Group	А		Group B	
X	(x_1-x_1) (x_1-37)		X ₂	(X2-34)	(x2-x7) 4
18 2 3 6 0 9 3 6 4 9 41	-17-13-21-3-14	361 289 169 144 19 144 19 144	29 26 35 04 46	1-	25661160144
5x1=	3	$\mathcal{E}(X_1 - \overline{X}_1)^4$ = 134		1	(X2-X2) = 386

$$\overline{X}_1 = \frac{2}{N_1} = \frac{333}{9} = 37$$

$$\overline{X}_2 = \frac{2}{N_2} = \frac{238}{7} = 34$$

(Two-tailed) Variance, $S_1^2 = \frac{\Sigma(X_1 - \overline{X}_1)^2}{n_1 - 1} = \frac{1134}{9 - 1}$

Variance, 5, = \((x, -\bar{x}_1)^2 \) 386 $n_{2}-1$ 7-1

$$\frac{F-\text{test}}{F_{(8.6)}} = \frac{S_1^2}{S_2^2} = \frac{141.75}{64.33} = 2.203$$

LOS, 2 = 0.05, Cal. Fo.05(8,6) = 2.203

F-test [Numerical Problems]

Q2 In a laboratory experiment samples gave the following results:

Sample	Size	Sample mean	Sum of square of deviations from mean
7	n=10	X = 15	90 = 5(x,-R,)2
2	n,=13	X = 14	108 = E(X2-82)2

Test equality of sample variance at 5% Level of significance.

$$S_1^2 = \frac{E(X_1 - \overline{X_1})^2}{N_1 - 1} = \frac{90}{10 - 1} = 10$$

$$5x^2 = 2(x_2 - \overline{x_2})^2 = 108 = 9$$

$$13 - 1 = 13 - 1$$

$$15 - 1 = 12$$

$$F-4est$$

$$F_{(9,12)} = \frac{S_1^2}{S_3^2} = \frac{10}{9} = 1.11$$

F-test [Numerical Problems]

Q3 Following results were obtained from two samples, each drawn from two different populations A and B

Population A B Sample I II

Sample size n=16 n=9

Sample S.D S, = 3 S2= ?

Test the hypothesis that variance of Brand A is more than Brand B (Use & = 0.05)

Ho: 5x = 58 one Hi: 5x > 58 (Right tailed)

Variance of sample I

Sit = 3t = 9

d.f. = n_1-1=16-1=15

Variance of sample II

Sit = 2t = 41

d.f. = n_2-1=9+=8

$$\frac{F - \text{test}}{F} = \frac{S_1^2}{S_2^2} = \frac{9}{4} = 2.25$$
(a) $F_{0.05}(15,8) = 2.25$

Tab. Fo.05 (15,8) = 3.22

(a) F tab. F

Ho accept