OBJECTIVE TYPE QUESTIONS

Choose the correct alternative:

1. The value of
$$\lim_{(x,y)\to(0,0)} (x+y) \sin \frac{1}{(x+y)}, x \neq 0, y \neq 0$$
 is

1. The value of
$$(x,y) \rightarrow (0,0)$$
 $(x+y)$ $(x+y)$ (i) limit does not exist (ii) 0 (iii) 1

(i) limit does not exist (ii) 0 (iii) 1

2. The value of the
$$\lim_{(x,y)\to(0,0)} \frac{x+\sqrt{y}}{\sqrt{(x^2+y)}}$$
, $x\neq 0$, $y\neq 0$ is

(i) limit does not exist (ii) 0 (iii) 1

3. The value of
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$$
 is

(f) 0 (ii)
$$\frac{1}{2}$$
 (iii) 1 (iv) Does not exist Ans. (iv)

4. The value of
$$\lim_{(x,y)\to(0,0)} \frac{x.\sin(x^2+y^2)}{x^2+y^2}$$
 is

(f) 0 (ii) 1 (iii) -1 (iv) Does not exist

$$(i) 0 (ii) 1 (iii) -1$$

(f) 0 (ii) 1 (iii)
$$-1$$

5. The value of limit
$$\lim_{\substack{x \to 1 \\ y \to 1}} \frac{8x^2y}{x^2 + y^2 + 5}$$
 is

(i) $\frac{3}{7}$ (ii) $\frac{8}{5}$

6. The value of
$$\lim_{\substack{x \to 1 \\ y \to 2}} \frac{4xy}{6x^2 + y^2}$$
 is

1. The value of
$$\lim_{\substack{x \to 1 \\ y \to 2}} \frac{1}{6x^2 + y^2}$$
 is

(i) $\frac{4}{5}$ (ii) $\frac{2}{3}$

The value of
$$\lim_{\substack{x \to 1 \\ y \to 2}} \frac{-x_0y}{6x^2 + y^2}$$
 is

(iii)
$$\frac{3}{10}$$
 (iv) None of these Ans. (f)

Ans. (i)

Ans. (í)

(iv) -1

(iv) -1

(AMIETE, Dec. 2007) Ans. (iii)

(iv) None of these Ans. (iii)

163

(iv) None of these Ans. (ii)

(iv) Limit does not exist Ans. (iv)

(iv) None of these Ans. (iv)

7. The value of
$$\lim_{\substack{y \to 0 \\ x \to 1}} \frac{2x^2 + y}{4x - y}$$
 is

(i)
$$\frac{3}{2}$$
 (ii) $\frac{1}{2}$

8. The value of
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{2x^2 + y}{4x^2 - y}$$
 is

(i) -1 (ii)
$$\frac{1}{2}$$

9. The value of
$$\lim_{\substack{y \to 0 \\ x \to 0}} \frac{2x^2 + y}{4x^2 - y}$$
 is

11. If $u = y^x$, then $\frac{\partial u}{\partial x}$ is (i) xy^{x-1}

(2)

(i)
$$\frac{3}{4}$$
 (ii) $\frac{2}{1}$ (iii) $\frac{1}{2}$

10. If
$$u = x^2 + y^2$$
 then the value of $\frac{\partial^2 u}{\partial x \partial y}$ is equal to

(1) 0 (1) 2 (10) 2

(ii) 0

(f) 0 (ii) 2 (iii)
$$2x$$

(ii) 2 (iii)
$$2x + 2y$$

(111)

(111) 1

)
$$2x + 2y$$
 (iv) $y x^{y-1}$ (A.M.I.E.T.E. Dec. 2008) Ans. (i)

12. If
$$u = \log\left(\frac{x^2}{y}\right)$$
, then the value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ is

(i) $2u$

(ii) u

(iii) 0

(iv) 1

(A.M.I.E.T.E. Dec. 2008) Ans. (iv)

13. If $x = r\cos\theta$, $y = r\sin\theta$, then

(i) $\frac{\partial x}{\partial r} = \frac{\partial x}{\partial x}$

(ii) $\frac{\partial x}{\partial \theta} = 0$

(iii) $\frac{\partial x}{\partial r} = 0$

(iv) $\frac{\partial x}{\partial r} = \frac{1}{\partial r/\partial x}$ Ans. (i)

14. If $u = y^2$ then $\frac{\partial u}{\partial y}$ is

(i) $xy^2 = 1$

(ii) $y^2 \log y$

(iii) $y^2 \log y$

(iii) 0

(iv) none of these Ans. (i)

15. If $u = x^2$ then the value of $\frac{\partial u}{\partial y}$ is equal to

(i) 0

(ii) $x^2 \log (x)$

(iii) $xy^2 = 1$

(A.M.I.E.T.E. Dec. 2007) Ans. (ii)

16. If $x = r\cos\theta$, $y = r\sin\theta$, then $\frac{\partial x}{\partial x}$ is equal to

(i) $\cos\theta$

(ii) $\sin\theta$

(iii) $\cos\theta$

(iv) $\cos\theta$

(iv) $\cos\theta$

Ans. (iii)

17. If $u = \tan^{-1}(x + y)$, then $(u_x - u_y)$ equals

(i) 0

(ii) 1

(iii) -1

(iv) $\sin x \cos y$

Ans. (i)

18. If $P = r\tan\theta$, then $\frac{\partial P}{\partial x}$ is equal to

(i) $\cot\theta$

(ii) $\cos\theta$

(iii) $\cos\theta$

(iii) $\cos\theta$

(iii) $\cos\theta$

(iv) $\sin x \cos y$

Ans. (i)

19. If $Q = r\cot\theta$, then $\frac{\partial Q}{\partial x}$ is equal to

(i) $\cot\theta$

(ii) $\cos\theta$

(iii) $\cos\theta$

(iii) $\cos\theta$

(iii) $\cos\theta$

(iv) $\sin\theta$

Ans. (i)

10. If $f(x, y, z) = 0$, then the value of $\frac{\partial x}{\partial y} \cdot \frac{\partial x}{\partial x} \cdot \frac{\partial x}{\partial x}$ is:

(i) 1

(ii) -1

(iii) 0

(iv) None of these Ans. (ij)

$$\frac{\partial}{\partial y} \qquad \frac{\partial}{\partial x} \qquad \frac{\partial}{\partial x}$$
22. If $f(x, y, z) = \frac{x^2}{y^2} + \frac{y^2}{z^2} + \frac{z^2}{x^2}$, then $x f_x + y f_y + z f_z$ is

22. If
$$f(x, y, z) = \frac{1}{y^2} + \frac{1}{z^2} + \frac{1}{x^2}$$
, then $x f_x + y f_y + z f_z$ is

(1) 0 (11) -1 (111) 1

23. If
$$x = r \cos \theta$$
, $y = r \sin \theta$ then $\frac{\partial r}{\partial x}$ is equal to

(i) $\sec \theta$ (ii) $\sin \theta$ (iii) $\cos \theta$

24. If $u = ax^2 + 2hxy + by^2$ then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ is equal to

25. If
$$P = s \tan \theta$$
, $q = s \cot \theta$, then

(a) $\frac{\partial P}{\partial S}$ is equal to

(b)
$$\frac{\partial q}{\partial s}$$
 is equal to

(f)
$$\tan \theta$$
 (ii) $\sec^2 \theta$ (iii) $\tan \theta + s \sec^2 \theta$ (iv) $\frac{1}{2} \tan \theta$ $\frac{\partial q}{\partial s}$ is equal to

(f)
$$\cot \theta$$
 (ii) $-\csc^2 \theta$ (iii) $\cot \theta - s \csc^2 \theta$ (iv) $\frac{1}{2} \cot \theta$

(c)
$$\frac{\partial s}{\partial p}$$
 is equal to

$$\frac{\partial}{\partial p}$$
 is equal to

(f) $\cot \theta$ (ff) $\cos^2 \theta$ (fif) $\frac{1}{\tan \theta + s \sec^2 \theta}$ (fv) $\frac{1}{2} \cot \theta$

(iii) 0

$$\frac{1}{\theta}$$
 (iv) $\frac{1}{2}\cot\theta$

(iv) 2

(iv) cosec 0

(/v) None of these Ans. (/)

Ans. (/)

Ans. (iii)

(d)
$$\frac{\partial s}{\partial a}$$
 is equal to

(d) $\frac{\partial s}{\partial a}$ is equal to

26. If $u = f\left(\frac{x}{y}\right)$ then

Partial Differentiation (Euler's Theorem)

(iii) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$

(1) $x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial x} = 0$

(f) $\tan \theta$ (ff) $-\sin^2 \theta$

27. If $u = x^3 e^{-\frac{x}{y}}$ then $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$ is equal to

28. If $f(x, y) =\begin{cases} \frac{x^2 + xy}{x + y} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$ then $f_x(0, 0)$ equals

(ii) 2

32. If $u = x^2 - y^2$, v = xy then $\frac{\partial x}{\partial u}$ equals

34. If $u = \sin^{-1}\left(\frac{x}{y}\right)$ then $\frac{\partial x}{\partial u}$ equals to

35. If $u = \tan^{-1} \left(\frac{y}{x} \right)$ then $\left(\frac{\partial u}{\partial v} \right)$ equals to

29. If $z = F(x^l y^k)$ satisfies the equation $x \frac{\partial z}{\partial x} - 2y \frac{\partial z}{\partial y} = 0$, then $\frac{l}{k}$ equals

30. If $Z = g(x^a y^b)$ satisfies the equation $2x \frac{\partial z}{\partial x} - 3y \frac{\partial z}{\partial y} = 0$ then $\frac{b}{a}$ satisfies

(i) $3b^2 = 4a^2$ (ii) $3a^2 = 4b^2$ (iii) $4b^2 = 9a^2$ (iv) $9b^2 = 4a^2$ 31. If z = f(x + ct) + g(x - ct), then

(i) z = z (ii) z = z (iii) $z = z^2$

(i) $\frac{x}{2(x^2+y^2)}$ (ii) $\frac{y}{2(x^2+y^2)}$ (iii) $\frac{y}{x^2+v^2}$ (iv) $\frac{x}{x^2+v^2}$

33. If $z = f(x^j y^k)$ satisfies the equation $x \frac{\partial z}{\partial x} - 2y \frac{\partial z}{\partial y} = 0$, then $\frac{j}{k}$ equals

(i) $\frac{1}{\sqrt{v^2 - x^2}}$ (ii) $\frac{1}{\sqrt{x^2 - y^2}}$ (iii) $\sqrt{1 - x^2}$

(1) $\frac{x^2}{x^2 + y^2}$ (ii) $\frac{x}{x^2 + y^2}$ (iii) $\frac{y}{x^2 + y^2}$

36. If $u = \frac{1}{x} \log (x^2 + y^2)$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to

(I)
$$\tan \theta$$
 (II) $\sec^2 \theta$
(b) $\frac{\partial q}{\partial r}$ is equal to

(II) $-\csc^2\theta$

(I) cot
$$\theta$$
 (II) $-\cos^2 \theta$
(c) $\frac{\partial s}{\partial t}$ is equal to

(III) $\tan \theta + s \sec^2 \theta$ (Iv) $\frac{1}{2} \tan \theta$

(III)
$$\cot \theta - s \csc^2 \theta$$
 (Iv) $\frac{1}{2} \cot \theta$

Ans. (/)

Ans. (/)

165

Ans. (ii)

Ans. (ii)

Ans. (iii)

Ans. (ii)

Ans. (iv)

Ans. (iii)

Ans. (1)

Ans. (ii)

(iv) None of these Ans. (i)

(iv) None of these Ans. (ii)

(U.P. 1 Sem. Jan 2011)

(iii)
$$\frac{1}{\cot \theta + s \sec^2 \theta}$$
 (iv) $\frac{1}{2}$ iiii) $\frac{\partial u}{\partial t} + y \frac{\partial u}{\partial v} = 0$

 $(iv) x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$

(iii) 9u

(iii)
$$\frac{1}{\cot \theta + s \sec^2 \theta}$$
 (iv) $\frac{1}{2} \tan \theta$

(iv) -u

(iii) $z_{tt} = c^2 z_{xx}$ (iv) $z_{xx} = c^2 z_{tt}$

(f)
$$\cot \theta$$
 (ii) $\cos^2 \theta$ (iii) $\frac{1}{\tan \theta + s \sec^2 \theta}$ (iv) $\frac{1}{2} \cot \theta$

(
$$\hbar v$$
) $\frac{1}{2}$ cot

(iv) None of these Ans. (i)

36. If $u = \frac{1}{2} \log (x^2 + y^2)$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to

$$g(x^2+y^2)$$
 then $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}$ is equ

(i)
$$2u$$
 (ii) u
37. If $x = r \cos \theta$, $y = r \sin \theta$, the

166

If
$$x = r \cos \theta$$
, $y = r \sin \theta$, used
$$(i) \left(\frac{\partial r}{\partial x}\right)_y = -\left(\frac{\partial x}{\partial r}\right)_{\theta} \qquad (ii) r \left(\frac{\partial x}{\partial r}\right)_{\theta} = -\left(\frac{\partial y}{\partial \theta}\right)_{r}$$

Introduction to Engineering Mathematics - I (M)

(iv) 1

Ans. ()

Ans. (iv)

39.
$$u = \frac{x}{x^2 + v^2}$$
 then $\frac{\partial u}{\partial v}$ is equal to

38. If $v = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$, then $x\frac{\partial v}{\partial x} + y\frac{\partial v}{\partial y} + z\frac{\partial v}{\partial z} =$

(iii) $\left(\frac{\partial x}{\partial \theta}\right) = r^2 \left(\frac{\partial \theta}{\partial x}\right)$

Ans. (iii)

Ans. (ii)

(i)
$$\frac{xy}{(x^2+y^2)^2}$$
 (ii) $\frac{2xy}{(x^2+y^2)^2}$ (iii) $\frac{-2xy}{(x^2+y^2)^2}$ (iv) $\frac{xy}{(x^2-y^2)^2}$

40. If
$$u = x^2 \tan^{-1} \left(\frac{y}{x} \right)$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ at $x = y = 1$ is

(i) $\frac{\pi}{4}$ (ii) $\frac{\pi}{2}$ (iii) π

$$(iv) - \frac{\pi}{4}$$

(iv) 2u

41. If
$$u = \frac{x^2 + y^2 + xy}{x + y}$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ equals

(i) 0 (ii) 1 (iii) u

42. If $z = \log [(x^3 + y^3)/(x + y)]$, then $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ is equal to

43. If
$$z = \frac{x^3 + y^3}{xy}$$
, then the value of $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ equals

$$\frac{\partial z}{\partial y}$$
 equals

(iii)
$$\frac{x^3 + y^3}{xy}$$
 (iv) None of these Ans. (iii)

(i) 1 (ii)
$$2z$$
 (iii) $\frac{x^3}{x^3}$

44. Let
$$u(x, y) = x^2 \tan^{-1} \left(\frac{y}{x}\right) - y^2 \tan^{-1} \left(\frac{x}{y}\right)$$
, $x \neq 0$, $y \neq 0$ then $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$ equals

(i) 0 (ii) $2u$ (iii) u (iv) $3u$ Ans. (ii)

45. If
$$u = \frac{x^2y^2}{x^2 + y^2} \log \frac{y}{x}$$
 and $v = \cos^{-1} \left(\frac{xy}{x^2 - y^2} \right)$ and $z = u + v$ then $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ equals

(i) $4v$ (ii) $4u$ (iii) $2u$ (iv) $4u + v$ An

46. If $u = \frac{x^3 + y^3}{x + y}$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to

(i) 0 (ii) u (iii)
$$2u$$
 (iv) $3u$ Ans.

47. Euler's Theorem on Homogeneous function if z is a Homogeneous of x , y of order n , then:

(i) $x\frac{\partial x}{\partial x} + y\frac{\partial x}{\partial y} = nz$ (ii) $x^2\frac{\partial x}{\partial y} + y^2\frac{\partial x}{\partial x} = nz$

(iii) $x\frac{\partial x}{\partial y} + y\frac{\partial x}{\partial x} = nz$

$$(h) \quad y^2 \frac{\partial x}{\partial x} + x^2 \frac{\partial x}{\partial y} = nx$$

(R.G.P.V., Bhopal, Feb. 2006)

48. If $u = \frac{x^{1/4} + y^{1/4}}{x^{1/5} + y^{1/5}}$, then the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is

(ii) 5u

(iii) 20u (iv) $\frac{1}{20}u$ Aus. (iv) (R.G.P.V., Bhopal, Ist Semester, June 2007)

(iv) Do not know.

Fill in the blanks:

49. If
$$u = xf\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$$
 then $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \dots$ Ans.

Ans.
$$\frac{\partial \theta}{\partial x} = -\frac{\sin^2 \theta}{y}$$
, $\frac{\partial \theta}{\partial y} = \frac{\cos^2 \theta}{x}$

Ans.
$$\frac{\partial u}{\partial x} = \frac{1}{2}$$
, $\frac{\partial v}{\partial y} = -\frac{1}{2}$

Ans.
$$\frac{\partial}{\partial x} = \frac{1}{2}$$
, $\frac{\partial}{\partial y} = \frac{1}{2}$

(f) If
$$u = \frac{x^2 + y^2}{x^2 - y^2} + 4$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 4$
(f) True (ii) False (iii) Could be either (iv) Do not know. Ans. (ii)

(i) True
$$\frac{x^3 - x^2y + xy^2 + y^3}{3} \text{ then } x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial x} = u$$

(fi) If
$$u = \frac{x^3 - x^2y + xy^2 + y^3}{x^2 - xy - y^2}$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$

(f) True (ii) False (iii) Could be class
$$(c) \text{ If } u = \log_e \frac{x^4 - y^4}{x^3 + y^3}, \text{ then } x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{4}{3}$$

(c) If
$$u = \log_{e} \frac{1}{x^{3} + y^{3}}$$
, and $\frac{\partial x}{\partial x} = \frac{\partial y}{\partial y} = \frac{\partial y}{\partial y}$
(i) True (ii) False (iii) Could be either (iv) Do not know. And

(d) If
$$f(x, y) = \frac{1}{x^3} + \frac{1}{x^2y} + \frac{1}{x^3 + 5y^3}$$
, then $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + 3f = 0$
(i) True (ii) False (iii) Could be either (iv) Do not know. Ans. (iii)

+ cz + d = 0 touches the surface $\rho x^2 + qy^2 + 2z = 0$,

if
$$\frac{a^2}{p} + \frac{b^2}{q} + 2 c d = 0$$
.

Choose the correct answer :

OBJECTIVE TYPE QUESTIONS

1. If
$$f = x^2 + y^2$$
, $x = r + 3s$, $y = 2r - s$, then $\frac{\partial f}{\partial r}$ is

(i), $4x + 2y$ (ii) $2x + y$ (iii) $2x + 4y$ (iv) $x + 4y$ Ans. (iii)

2. If
$$f = x + 4y$$
, $x = 2s + t$, $y = s + 2t$, then $\frac{\partial f}{\partial t}$ is

(i) 9 (ii) 8 (iii) 7 (iv) -7 Ans. (i)

3. If
$$z = xy$$
, $x = e^r \cos \theta$, $y = e^{\theta} \sin r$, then $\frac{\partial z}{\partial r}$ is

(i) $xy - x e^{\theta} \cos r$
(ii) $xy + x e^{\theta} \cos r$
(iii) $xy + x e^{\theta} \cos r$
(iv) $xy + y e^{\theta} \cos r$
Ans. (ii)

4. If
$$z = x^2 + y^2$$
 and $x = r + t$, $y = r^2 + t^2$, then $\frac{\partial z}{\partial t}$ is

(iii)
$$xy + x e^{\theta} \sin r$$
 (iv) $xy + y e^{\theta} \cos r$ Ans. (ii)

$$+ x e \sin r$$
 (iv) $xy + y e^{\circ} \cos r$ Ans. (ii)

4. If
$$z = x^2 + y^2$$
 and $x = r + t$, $y = r^2 + t^2$, then $\frac{\partial z}{\partial t}$ is

$$r^2 + y^2$$
 and $x = r + t$, $y = r^2 + t^2$, then $\frac{\partial z}{\partial t}$ is

+
$$y^{\alpha}$$
 and $x = r + t$, $y = r^{2} + t^{2}$, then $\frac{\partial y}{\partial t}$ is
6 yt (ii) $2x + 2yt$ (iii) $x + 4yt$ (iv) $2x + 4yt$ Ans. (iv)

(ii) $2 xy (ys + x \log s)$

(iv) $2xy\left(\frac{ys}{r}-x\log s\right)$

(ii) $\frac{\partial f}{\partial x} \sin \theta + \frac{\partial f}{\partial y} \cos \theta$

(iv) $\frac{\partial f}{\partial x}\sin\theta - \frac{\partial f}{\partial y}\cos\theta$

(ii) $-\frac{\partial f}{\partial x}\sin\theta + \frac{\partial f}{\partial y}\cos\theta$

(iv) $\frac{\partial f}{\partial x}\cos\theta - \frac{\partial f}{\partial y}\sin\theta$

Ans. (iii)

Ans. (i)

Introduction to Engineering Mathematics - I (MTU)

(iv) 2i + 5

Ans. (i)

Ans. (i)

Ans. (6)

Ans. (iii)

Ans. (iv)

(iv) $xy (x^2 + y^2)$ Ans. (i)

(iv) $2r^2$

(ii) $\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}$

(iii) 21 - 2

(iv) None of these

(ii) $3 \sin \theta - 2 \cos \theta$

(iv) $3\cos\theta + 2\sin\theta$

(ii) xy (2x + y)

(iv) 2 xy (2x + y)

(iii) 6xy(x-y)

 $(iii) \frac{z}{4}$

16. If $u = x^2 + y^2 + z^2$, $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$ then $\frac{\partial u}{\partial r}$ is equal to

(i)
$$x + 6yt$$
 (ii) $2x + 2yt$ (iii) $x + 4yt$ (iv) $2x + 4yt$ Ans. (iv)

(i)
$$x + 6yt$$
 (ii) $2x + 2yt$ (iii) $x + 4yt$ (iv) $2x + 4yt$ Ans. (iv)

5. If
$$z = x + y$$
, $x = e^{r \cos \theta}$, $y = e^{r \sin \theta}$, then $\frac{\partial z}{\partial \theta}$ is

5. If
$$z = x + y$$
, $x = e^{r \cos \theta}$. $y = e^{r \sin \theta}$, then $\frac{\partial z}{\partial \theta}$ is

(i) $r (\cos \theta e^{r \cos \theta} - \sin \theta e^{r \sin \theta})$ (ii) $r (\cos \theta e^{r \sin \theta} - \sin \theta e^{r \cos \theta})$ (iii) $r e^{r} (\cos \theta - \sin \theta)$ (iv) $r (\cos \theta e^{r \sin \theta} + \sin \theta e^{r \cos \theta})$ Ans. (ii)

6. If $z = x^2 y^2$, and $x = s \log r$, $y = r \log s$ then $\frac{\partial z}{\partial r}$ is

7. If z = f(x, y), $x = r \cos \theta$, $y = r \sin \theta$, then $\frac{\partial z}{\partial r}$ is

8. If z = f(x, y), $x = r \cos \theta$, $y = r \sin \theta$, then $\frac{1}{r} \frac{\partial z}{\partial \theta} =$

(1) $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$

(iii) $\frac{\partial f}{\partial y} - \frac{\partial f}{\partial x}$

(i) $2 \cos \theta + 3 \sin \theta$

(iii) $2 \cos \theta - 3 \sin \theta$

(i) 2 xy (2x - y)

(iii) 2 xy (x + 2y)

(i) $6xy(x^2+y^2)$

9. If z = f(x, y), x = s + t, y = s - t then $\frac{\partial z}{\partial s}$ is equal to

10. If z = x + y, x = 2t, $y = t^2$ then $\frac{\partial z}{\partial t}$ is equal to

11. If $z = x^2 + y^2$, $x = t^2$ and $y = t^3$ then $\frac{\partial z}{\partial t}$ is equal to

13. If $z = x^2 y^2$, x = t and y = 2 t then $\frac{\partial z}{\partial t}$ is equal to

14. If $z = x^3y^3$ then $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$ is equal to

15. If $z = \sqrt{xy}$ then $\frac{\partial^2 z}{\partial x \partial y}$ is equal to

(ii) 2 - 2i

12. If z = 2x + 3y, $x = \sin \theta$ and $y = \cos \theta$ then $\frac{\partial z}{\partial \theta}$ is equal to

(ii) 6xy(x+y)

(i) $2xy\left(\frac{xs}{r} + y\log s\right)$

(iii) $2xy\left(\frac{ys}{r} + x\log s\right)$

(i) $\frac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta$

(iii) $\frac{\partial f}{\partial r}\cos\theta - \frac{\partial f}{\partial v}\sin\theta$

(i) $\frac{\partial f}{\partial x} \sin \theta + \frac{\partial f}{\partial y} \cos \theta$

(iii) $\frac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta$

(i)
$$x + 6yt$$
 (ii) $2x + 2yt$ (iii) $x + 4yt$ (iv) $2x + 4yt$ Ans. (iv)
5. If $z = x + y$, $x = e^{r \cos \theta}$, $y = e^{r \sin \theta}$, then $\frac{\partial z}{\partial \theta}$ is

(i)
$$x + 6yt$$
 (ii) $2x + 2yt$ (iii) $x + 4yt$ (iv) $2x + 4yt$ Ans. (iv)

(iii) $\frac{z}{4}$

15. If $z = \sqrt{xy}$ then $\frac{\partial^2 z}{\partial x \partial y}$ is equal to (ii) 1

16. If
$$u = x^2 + y^2 + z^2$$
, $x = r$
(1) r (11)

Change of Variables

(1) $\frac{\partial z}{\partial y} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$

21. If f(x, y) = 0, then $\frac{dy}{dx}$ is equal to

(1) $\frac{\partial y}{\partial x}$ (ii) $-\frac{\partial f}{\partial y}$

23. If f(x, y) = 0, then $\frac{d^2y}{dx^2}$ is equal to

 $(i) \quad \frac{q^2r-2pqs+p^2t}{a^3}$

(iii) $\frac{q^2r-2pqs-p^2t}{r^3}$

(i) 2x + 4y + 6z = 14

(1) $\frac{x+1}{2} = \frac{y+2}{-4} = \frac{z+1}{-2}$

(iii) $\frac{x+1}{1} = \frac{y+2}{2} = \frac{z+1}{-1}$

(iii) x + 2y + 3z = 1

(iii) $\frac{\partial z}{\partial x} + \frac{\partial y}{\partial t} \frac{\partial z}{\partial y}$

(i) $\frac{\partial x}{\partial y} \cdot \frac{\partial \phi}{\partial y}$

16. If
$$u = x^2 + y^2 + z^2$$
, $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$ then $\frac{\partial u}{\partial r}$ is equal to

(i) r (ii) $2r$ (iii) r^2 (iv) $2r^2$ Ans. (i)

17. If $y = e^x + \sin x$, then $\frac{d^2y}{dx^2}$ is equal to

(i)
$$e^x + \sin x$$
 (ii) $e^x - \sin x$
18. If $y = \tan x + \sec x$ then $\frac{d^2y}{dx^2}$ is equal

If
$$y = \tan x + \sec x$$
 then $\frac{d^2y}{dx^2}$ is equal
(1) $\sec x (\tan^2 x + \sec^2 x)$

20. If z = f(x, y) where $x = \phi(t)$, $y = \psi(t)$, then $\frac{dz}{dt}$ is equal to

22. If f(x, y) = 0 and $\phi(y, z) = 0$, then $\frac{\partial f}{\partial y} \cdot \frac{\partial \phi}{\partial z} \cdot \frac{\partial z}{\partial x}$ is equal to

(ii) $\frac{\partial f}{\partial x} \frac{\partial y}{\partial b}$

24. The equation of the tangent plane to the surface $x^2 + y^2 + z^2 = 14$ at (1, 2, 3) is

25. The equation of the normal to the tangent plane $x^2 + y^2 + z^2 = 6$ at (-1, -2, -1) is

18. If
$$y = \tan x + \sec x$$
 then $\frac{d^2y}{dx^2}$ is equal to

(i) $\sec x (\tan^2 x + \sec^2 x)$

(iii) $\sec x (2 \sec x \tan x + \tan^2 x + \sec^2 x)$

$$\frac{dx^2}{\sec x (\tan^2 x + \sec^2 x)}$$

$$\sec x (2 \sec x \tan x + \tan^2 x + \sec^2 x)$$

$$\frac{\partial x}{\partial y} \frac{\partial y}{\partial x}$$

(iii)
$$\sec x (2 \sec x \tan x + \tan^2 x + \sec^2 x)$$

19. If $f(x, y, z) = 0$, then $\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}$ is equal to

sec
$$x \tan x + \tan^2 x + \sec^2 x$$
)

0, then $\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x}$ is equal to

+
$$\sec^2 x$$
)
$$x \tan x + \tan^2 x + \sec^2 x$$

$$\tan \frac{\partial x}{\partial y} \frac{\partial y}{\partial z} = \cos x + \cos^2 x$$

(ii) $\frac{\partial z}{\partial x} \frac{\partial x}{\partial t} - \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$

(iii) $-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$ (iv) $\frac{\partial y}{\partial x} \frac{\partial f}{\partial y}$ Ans. (iii)

(iii) $\frac{\partial f}{\partial y} \frac{\partial \phi}{\partial x}$ (iv) $\frac{\partial f}{\partial x} \frac{\partial \phi}{\partial y}$ Ans. (iv)

(ii) $\frac{q^2r-2pqs+p^2t}{q}$.

(iv) $\frac{q^2r-2pqs+p^2t}{a^3}$

(ii) x + 2y + 3z = 0

(iv) x + 2y + 3z = 14

(ii) $\frac{x+1}{1} = \frac{y+2}{2} = \frac{z+1}{1}$

(iv) $\frac{x+1}{1} = \frac{y+2}{-2} = \frac{z+1}{1}$

(iv) $\frac{dx}{dt} + \frac{\partial z}{\partial t} \frac{dx}{dt}$

$$e^x - \cos x$$
 (iv) None o
 $\sec x (\sec x \tan x + \tan^2 x \sec^2 x)$

(iv) None of these Ans.

$$x \tan x + \tan^2 x \sec^2 x$$

 $(iv) \frac{4}{-}$

Ans. (ii)

(iv) $2 \sec x \tan x + \tan^2 x + \sec^2 x$

Ans. (iii) (iv) 0

201

Ans. (i)

Ans. (i)

Ans. (iv)

Ans. (ii)

$$\frac{\partial(u,v)}{\partial(x,y)} \frac{\partial(x,y)}{\partial(u,v)} \text{ is equal to}$$

$$(0) 1 \qquad (0) - 1 \qquad (0) \text{ zero} \qquad (hv) \text{ none of these} \qquad \text{Ans. } (f)$$

$$\frac{\partial(x,v)}{\partial(x,y)} \frac{\partial(x,y)}{\partial(x,y)} \text{ is equal to}$$

$$(1) 1 \qquad (1) - 1 \qquad (0) \frac{\partial(x,y)}{\partial(x,y)} \text{ is equal to}$$

$$(2) 1 \qquad (3) 1 \qquad (1) - 1 \qquad (0) \frac{\partial(x,y)}{\partial(x,y)} \text{ is equal to}$$

$$(3) 1 \qquad (1) - 1 \qquad (0) \frac{1}{r} \qquad (hv) \text{ 0} \qquad \text{Ans. } (1)$$

$$(3) 1 \qquad (1) r \qquad (10) \frac{1}{r} \qquad (hv) \text{ 0} \qquad \text{Ans. } (1)$$

$$(4) 1 \qquad (1) \frac{1}{r} \qquad (10) \frac{1}{r} \qquad (10) r^2 \sin \theta \qquad (v) \text{ none of these} \qquad \text{Ans. } (1)$$

$$(5) 1 \qquad (6) r \qquad (10) \frac{1}{r} \qquad (10) r^2 \sin \theta \qquad (v) \text{ none of these} \qquad \text{Ans. } (1)$$

$$(7) 1 \qquad (10) \frac{1}{r} \qquad (10) r^2 \sin \theta \qquad (v) \text{ none of these} \qquad \text{Ans. } (1)$$

$$(8) 1 \qquad (10) r \qquad (10) \frac{1}{r} \qquad (10) r^2 \sin \theta \qquad (v) \text{ none of these} \qquad \text{Ans. } (10)$$

$$(11) 1 \qquad (11) r \qquad (10) r^2 \sin \theta \qquad (v) \text{ none of these} \qquad \text{Ans. } (10)$$

$$(11) 1 \qquad (11) r \qquad (10) r^2 \sin \theta \qquad (v) \text{ none of these} \qquad \text{Ans. } (10)$$

$$(11) 1 \qquad (11) r \qquad (10) r^2 \sin \theta \qquad (v) \text{ none of these} \qquad \text{Ans. } (10)$$

$$(11) 1 \qquad (11) r \qquad (10) r^2 \sin \theta \qquad (v) \text{ none of these} \qquad \text{Ans. } (10)$$

$$(11) 1 \qquad (11) r \qquad (10) r^2 \sin \theta \qquad (v) \text{ none of these} \qquad \text{Ans. } (10)$$

$$(11) 1 \qquad (11) r \qquad (10) r^2 \sin \theta \qquad (v) \text{ none of these} \qquad \text{Ans. } (10)$$

$$(11) 1 \qquad (11) r \qquad (10) r^2 \sin \theta \qquad (v) \text{ none of these} \qquad \text{Ans. } (10)$$

$$(11) 1 \qquad (11) r \qquad (10) r^2 \sin \theta \qquad (10) r^2 \cos \theta \qquad \text{Ans. } (10)$$

$$(11) 1 \qquad (11) r \qquad (10) r^2 \qquad (10) r^2 \qquad (10) r^2 \qquad (10) r^2 \qquad \text{Ans. } (10)$$

$$(11) 1 \qquad (11) r \qquad (10) r^2 \qquad \text{and } r = r \cos \theta \qquad \text{Ans. } (10)$$

$$(12) 1 \qquad (12) r \qquad (12) r \qquad \text{and } r = r \cos \theta \qquad \text{Ans. } (10)$$

$$(13) 1 \qquad (14) r \qquad (16) r \qquad \text{and } r = r \cos \theta \qquad \text{Ans. } (10)$$

$$(14) 1 \qquad (17) r \qquad \text{and } r = r \cos \theta \qquad \text{Ans. } (10)$$

$$(15) 1 \qquad (17) r \qquad \text{and } r = r \cos \theta \qquad \text{Ans. } (10)$$

$$(17) 1 \qquad (17) r \qquad \text{and } r = r \cos \theta \qquad \text{Ans. } (10)$$

$$(18) 1 \qquad (17) r \qquad \text{and } r = r \cos \theta \qquad \text{Ans. } (10)$$

$$(18) 1 \qquad (17) r \qquad \text{and } r = r \cos \theta \qquad \text{Ans. } (10)$$

$$(18) 1 \qquad (17) r \qquad \text{and } r = r \cos \theta \qquad \text{Ans. } (10)$$

$$(18) 1 \qquad (17) r \qquad \text{and } r = r \cos \theta \qquad \text{Ans. } (10) r^2 \cos \theta \qquad \text{Ans. } (10) r^2 \cos \theta \qquad \text{Ans. } (10) r^2 \cos \theta \qquad \text{$$

(i)
$$x = r \sin \theta$$
, $\cos \phi$, $y = r \cos \theta \sin \phi$, $z = r \sin \theta$
(ii) $x = r \cos \theta$, $y = r \sin \theta$, $z = r \cos \phi$
(iii) $x = r \cos \theta$, $\sin \phi$, $y = r \cos \theta$, $\cos \phi z = r \sin \theta$
(iv) $x = r \sin \theta$, $\cos \phi$, $y = r \sin \theta$, $\sin \theta z = r \cos \theta$
Ans. (ii)

10. If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, then the value of the Jacobian $\frac{\partial (x, y, z)}{\partial (r, \theta, \phi)}$

Ans. (ii)

(iii) $r^2 \cos \theta$ (h) 2 cos 4 Ans. (ii)

(ii) r2 sin 8 (a) r2

Introduction to Engineering Mathematics ~ I (MT_{U_i}

11. If $x = r \cos \theta$, $y = r \sin \theta$, then the value of the Jacobian $\frac{\partial (x, y)}{\partial (r, \theta)}$ is 12. If u = x (1 - y), v = xy, then the value of the Jacobian $\frac{\partial (u, v)}{\partial (x, v)}$ is

13. $\frac{\partial (u,v)}{\partial (r,s)} \times \frac{\partial (r,s)}{\partial (x,y)} = \dots$

Ans. $\frac{\partial (u, v)}{\partial (x, y)}$

Ans. 1

Ans. False

Ans. True

Ans. True

Ans. False

Ans. (i) \rightarrow (d) $(ii) \rightarrow (c)$ $(iii) \rightarrow (0)$ $(iv) \rightarrow (b)$

 $\frac{\partial(x,y)}{\partial(r,\theta)} \times \frac{\partial(r,\theta)}{\partial(x,y)} = \dots$ Indicate True or False for the following:

If u = 2axy, $v = a(x^2 - y^2)$, where $x = r \cos \theta$, $y = r \sin \theta$ then Jacobian $\frac{\partial (x, y)}{\partial (r, \theta)}$ is $-4a^2p$.

If $x = \sqrt{vw}$, $y = \sqrt{wu}$, $z = \sqrt{uv}$ and $u = r \sin \theta \cos \phi$, $v = r \sin \theta \sin \phi$, $w = r \cos \theta$ then the value

of the Jacobian $\frac{\partial (x, y, z)}{\partial (r, \theta, \phi)}$ is $-\frac{1}{4}$.

If u = x + y, y = uv then Jacobian $\frac{\partial (u, v)}{\partial (x, y)}$ is $(x + y)^{-1}$

If $u = \frac{x+y}{1-xy}$, $v = \tan^{-1} x + \tan^{-1} y$ then Jacobian $\frac{\partial (u, v)}{\partial (x, y)}$ is 0.

If x = u (1 - v), y = uv then the value of Jacobian $\frac{\partial (x, y)}{\partial (u, v)}$ is $\frac{1}{u}$

Match the following: (1) $\frac{\partial (r, \theta, z)}{\partial (x, y, z)}$

(ii) $\frac{\partial (r, \theta, \phi)}{\partial (x, y, z)}$

(iii) $\frac{\partial (u, v)}{\partial (x, y)}$

(iv) $\frac{\partial (u,v)}{\partial (x,y)} \times \frac{\partial (x,y)}{\partial (u,v)}$

(a) $\frac{\partial (u,v)}{\partial (r,s)} \times \frac{\partial (r,s)}{\partial (x,y)}$

(b) 1

 $(c) \frac{1}{r^2 \sin \theta}$

(d) $\frac{1}{x}$

21. (i) $u = x^2$, $v = y^2$ (ii) u = x + y, v = xy

> (iii) u = x + y, $v = \frac{y}{x + y}$ (N) u = 3x + 5y, v = 4x - 3y

(a) J(u, v) = x - y(b) J(u, v) = -29

(c) $J(u, v) = \frac{1}{x + y}$ (d) J(u, v) = 4xy

Ans. (1) → (d)