Homework Assignment 3

Joshua Cragun *
Prof. Gordan Savin, MATH 3210
October 2018

^{*}u1025691

Question 1

Let x_n be a sequence of positive real numbers such that $\lim_n x_n = x > 0$. Prove that

- $\bullet \lim_n x_n^2 = x^2.$
- $\lim_n \sqrt{x_n} = \sqrt{x}$.

Part 1: Using the identity

$$x_n x_n - xx = (x_n - x)^2 + 2x(x_n - x)$$

Where for any given $\varepsilon > 0$ there exists an integer N such that $|x_n - x| < \sqrt{\varepsilon}$. This implies that $|(x_n - x)^2| < \varepsilon$ and thus $\lim_{x \to \infty} (x_n - x)^2 = 0$

Question 2

Question 3

Question 4

Question 5

Question 6

Question 7