Week 13

Jinxi Xiao

December 19, 2023

E-mail: xiaojx@shanghaitech.edu.cn

Maps

Similarity

Eigei

Equivalence Theoren

Definitions

Definition. Let $f: V \to W$ be a map from a set V to a set W.

- \diamond We say that f is injective (one-to-one),
 - if it maps distinct elements in V into distinct elements in W.
- \diamond We say that f is surjective (onto),
 - if every element in V is in the range of f.
- \diamond We say that f is bijective, if it is both injective and surjective.

Definition. A bijective linear transformation from V to W is called an isomorphism. In such case, we say that the two vector spaces V and W are isomorphic.

Remark: They have "same" linear properties!

Equivalence Theorem

Theorem. Suppose that V and W are vector spaces with $\dim(V) = n$, $\dim(W) = m$. Let $T: V \to W$ be a linear transformation.

The following three statements are equivalent:

- (1) T is injective;
- (2) $Ker(T) = \{\mathbf{0}\}$; or nullity(T) = 0;
- (3) $\operatorname{rank}(T) = n$.

The following three statements are equivalent:

- (1) T is surjective;
- (2) Ran(T) = W; or rank(T) = m;
- (3) $\operatorname{nullity}(T) = n m$.

When m = n, the following three statements are equivalent:

- (1) T is bijective (isomorphic);
- (2) T is surjective (onto);
- (3) T is injective (one-to one).

Remark: If n > m, then T cannot be injective. If n < m, then T cannot be surjective.

Transformations

- Composition of Transformations
- Inverse of transformations
- Properties of an Inverse

Мар

Similarity

Eigei

Equivalence Theorem

Similarity

Definition

Let $A, B \in M_n$. We say that A and B are similar, if there's an invertible matrix $P \in M_n$ such that

$$P^{-1}AP = B$$

Remark: Similarity means the same linear transformation under distinct bases.

Similar Invariants

- ightharpoonup tr(A) = tr(B)
- ightharpoonup det(A) = det(B)
- ightharpoonup rank(A) = rank(B)

The transition graph

Мар

Similarity

Eigen

Equivalence Theorem

Eigen

Definition

For $A \in M_n(\mathbb{F})$, if

$$Ax = \lambda x$$

for some non-zero vector $\mathbf{x} \in \mathbb{F}^n$ and some scalar $\lambda \in \mathbb{F}$, then λ is called an eigenvalue of A, and x is called an eigenvector of A corresponding to λ

Compute eigenvalues

Characteristic polynomial

Let $A \in M_n(\mathbb{F})$. Then $\lambda \in \mathbb{F}$ is an eigenvalue of A, if and only if

$$det(\lambda I_n - A) = 0$$

Do not forget about **Eigenspace**!

Мар

Similarity

Eigei

Equivalence Theorem

Part 1

Maps

Theorem

If A is an $n \times n$ matrix, then the following statements are equivalent:

- A is invertible
- ightharpoonup Ax = 0 has only the trivial solution
- \triangleright The reduced row echelon form of A is I_n
- A is expressible as a product of elementary matrices
- ightharpoonup Ax = b is consistent for every b, and x is unique
- $ightharpoonup det(A) \neq 0$
- ightharpoonup rank(A) = n, nullity(A) = 0

Part 2

Maps

Continue ...

- ► Column(row) vectors of A are linearly independent
- ightharpoonup Column(row) vectors of A span \mathbb{R}^n
- ightharpoonup Column(row) vectors of A form a basis of \mathbb{R}^n
- $ightharpoonup Null(A)^{\perp} = \mathbb{R}^n$, $Row(A)^{\perp} = \mathbf{0}$
- $\lambda = 0$ is not an eigenvalue of A