Obsah

1	Nelineární rezistory	2
2	Feroelektrické kondenzátory	6
3	Vlastnosti kondenzátorů a rezistorů při kmitočtech do 1 MHz	11
4	Vlastnosti kondenzátorů a rezistorů při kmitočtech nad 1 MHz	15
5	Osazování DPS	10

1 Nelineární rezistory

1.1 Úvod

V praxi se nejčastěji setkáváme s lineárními rezistory, tj. součástkami, u nichž předpokládáme konstantní velikost odporu nezávislou na vnějších podmínkách aplikace, tj. nezávislost na teplotě, frekvenci, mechanických vlivech apod. Odlišují se výkonovou zatížitelností, teplotní a frekvenční závislostí podle použitých materiálů a technologií výroby, tolerancí jmenovité hodnoty a provedením. Předpoklad konstantní velikosti odporu vyhovuje obvykle při aplikacích do frekvencí 50 kHz až 1 MHz (podle provedení). Pro vyšší frekvence je nutné uvažovat úplné náhradní schéma rezistoru s jeho reaktančními prvky.

Nelineární rezistory jsou na rozdíl od lineárních konstruovány tak, aby velikost odporu byla výrazně závislá na vnějších podmínkách, např. teplotě (termistory NTC, PTC) nebo přiloženému napětí (varistory) a pokud možno nezávisela na dalších vlivech aplikace. Vzhledem k těmto vlastnostem se využívají k měření teploty, v obvodech pro tepelnou ochranu přístrojů, strojů a zařízení, jako přepěťové ochrany atd.

1.1.1 Teplotní závislost odporu

Hodnota odporu je u všech rezistorů teplotně závislá. Tuto závislost v případě drátových, metalizovaných, metaloxidových a uhlíkových rezistorů můžeme pro malé změny teplot považovat za lineární. Zpravidla jí popisujeme teplotním koeficientem odporu, který udává poměrnou změnu odporu dR/R_0 v závislosti na změně teploty $d\vartheta$:

$$\alpha = \frac{dR}{R_0 \cdot d\theta} \tag{1}$$

Úpravou tohoto vztahu získáme často používanou aproximace závislosti odporu:

$$R_{\vartheta} = R_0 \cdot (1 + \alpha \cdot (\vartheta - \vartheta_0)) \tag{2}$$

Výsledný vztah lze s malou chybou využít především v případě kovových materiálů. Všimněte si, že se jedná o lineární závislost. Kovové odporové teploměry tedy lze využít pro měření teploty tam, kde je nutný lineární vztah mezi teplotou a odporem.

1.1.2 Termistory

Termistory jsou polovodivé prvky s velkou závislostí odporu součástky na teplotě. Rozlišujeme dva typy, NTC a PTC. NTC rezistory mají záporný teplotní koeficient, tj. jejich odpor s teplotou klesá. Závislost lze modelovat pomocí exponenciální funkce:

$$R = R_{\infty} \cdot e^{B/T} \tag{3}$$

V rovnici (3) jsou R_{∞} , B parametry rovnice a T je absolutní teplota v K. Hodnoty odporu R_{∞} dosáhne rezistor při pomyslné nekonečné teplotě. NTC rezistory lze mimo měření teploty využít i jako ochranné prvky při startu elektrických obvodů. Po přivedení napětí je termistor studený a jeho odpor je vysoký, v důsledku čehož nepropustí velký nárazový proud. Průchodem proudu se postupně ohřívá a jeho odpor klesá a dochází k postupnému zvyšování proudu.

PTC rezistory mají kladný teplotní koeficient. Jejich odpor s teplotou roste a podobně jako u NTC rezistorů je tato závislost na teplotě exponenciální (parametr B je záporný). Opět se používají jako ochranné prvky, např. jako vratná pojistka.

1.1.3 Varistory

Varistor je odporový prvek, jehož odpor je závislý na přiloženém napětí. Jedná se o VA charakteristiku s lichou mocninou typu:

$$I = k \cdot U^{\alpha} \tag{4}$$

V rovnici (4) je k koeficient mocninné funkce a α je mocnina popisující tvar VA charakteristiky. Pokles odporu po přiložení napětí je velmi prudký (řádově desítky nanosekund), což tento prvek předurčuje pro použití v přepěťových ochranách.

1.2 Měření teplotní závislosti termistorů

1.2.1 Úkol měření

Změřte závislost odporu 6 vzorků rezistorů a termistorů pro změnu teploty 20 °C až 120 °C. Naměřené závislosti $R = f(\vartheta)$ vyneste do grafu! Ověřte, zda dané charakteristiky odpovídají teoretickým vztahům (lineární závislost, exponenciální závislost apod.)

1.2.2 Schéma zapojení

1.2.3 Postup měření

Měřené vzorky jsou umístěny na destičce v pícce a vyvedeny na přepínač měřicích míst. K měření teploty slouží orientačně teploměr, který je součástí konstrukce pece. Pro přesné měření využijeme Pt odporový teploměr s lineární závislostí odporu na teplotě. Pro odpor Pt teploměru uvažujte následující vztah:

$$R_{\vartheta} = R_0 \cdot (1 + \alpha \cdot (\vartheta - \vartheta_0)) \tag{5}$$

 R_0 ... je odpor v Ω při 0 °C,

 α ... je teplotní koeficient odporu, pro platinový teploměr je $\alpha = 4, 5 \cdot 10^{-3} \text{ K}^{-1}$,

 ϑ ... je teplota okolí ve °C nebo K,

 ϑ_0 ... je teplota ve °C nebo K, při které byl měřen odpor R_0 , zde 0 °C.

1.2.4 Měřené vzorky

1. odporový Pt teploměr 100 Ω při 0 °C 4. rezistor uhlíkový TR 212 4,7 k Ω

2. termistor NTC 100 Ω 5. termistor NTC 6,8 k Ω

3. rezistor metaloxidový TR154 6,8 k Ω 6. termistor PTC 60 Ω

1.3 Měření VA charakteristiky varistorů

1.3.1 Úkol měření

Změřte voltampérovou charakteristiku 5 vzorků varistorů pomocí osciloskopu, který pracuje v režimu x/y (souřadnicový zapisovač). Ověřte, zda údaje uvedené k jednotlivým vzorkům odpovídají měření.

1.3.2 Schéma zapojení

1.3.3 Postup měření

Měřený vzorek umístíme do přípravku. Pro měření použijeme zdroj krátkých napěťových pulzů nastavitelné velikosti. Pozor při výměně vzorků - před manipulací snižte napětí na 0 V! Napětí na vzorku snímáme sondou s děličem 1:100 (nastaveno na osciloskopu – zkontrolovat!), proud je snímán jako úbytek napětí na odporu $0.5~\Omega$ nebo pomocí proudové sondy. Sejmuté charakteristiky zaznamenejte na disketu v osciloskopu, přeneste do PC a uložte na vhodné paměťové medium pro vytisknutí do referátu z měření.

1.3.4 Měřené vzorky

- 1. 15D201K, 200 V, zelený
- 4. S20K20, 40 V, velký modrý
- 2. 14D220K, 22 V, modrý
- 5. TR 152, 100 Ohmů, lineární rezistor
- 3. 14D101K, 100 V, světle modrý

2 Feroelektrické kondenzátory

2.1 Úvod

Kondenzátor je součástka, pomocí níž v elektrickém obvodu realizujeme kapacitu. Podobně jako ostatní součástky vykazuje řadu vedlejších závislostí (indukčnost, sériový a paralelní odpor, teplotní a napěťovou závislost). Hodnota kapacity C závisí, jak známo, na ploše elektrod (S), dielektrické konstantě (ϵ) a nepřímo na vzdálenosti elektrod (d). Z toho vycházejí odlišné konstrukce kondenzátorů (plošné - např. slídové, svitkové, keramické, elektrolytické). Požadavek na minimální rozměry předpokládá použití materiálů dielektrika s vysokou poměrnou dielektrickou konstantou (tzv. feroelektrika). Tyto materiály jsou však při vyšších teplotách značně teplotně závislé a jejich ϵ_r při vyšší teplotě rychle klesá.

2.1.1 Teplotní závislost kapacity

Teplotní závislost kapacity kondenzátoru závisí především na typu dielektrika (na teplotní závislosti relativní permitivity). Nejmenší závislost tak lze očekávat od vzduchových nebo vakuových kondenzátorů. Velmi dobře jsou na tom i foliové kondenzátory. Teplotní závislost keramických kondenzátorů je naproti tomu velmi rozdílná. Kapacita může s teplotou růst i klesat a to navíc různě v různých teplotních intervalech. Konkrétní typ teplotní závislosti popisují výrobci písmenným a číselným označením např. X7R, Z5U, NP0 atd. K těmto značením následně existují tepelné charakteristiky relativní změny kapacity. Nejstabilnější keramické kondenzátory nesou označení NP0, nicméně tyto mají obvykle jen malou kapacitu.

Teplotní závislost pro malé změny teploty se linearizuje a vyjadřuje pomocí teplotního koeficientu kapacity:

$$\alpha = \frac{dC}{C_0 \cdot d\theta} \tag{6}$$

Konkrétní hodnotu kapacity tak můžeme přibližně určit pomocí vztahu:

$$C_{\vartheta} = C_0 \cdot (1 + \alpha \cdot (\vartheta - \vartheta_0)) \tag{7}$$

Při měření teplotní závislosti je vhodné následně do grafu vynášet relativní změnu kapacity dC/C_0 .

2.1.2 Napěťová závislost kapacity

Napěťová závislost kapacity je nejvýznamnější u polárních nebo feroelektrických dielektrik. Do této skupiny patří velkou měrou opět keramiky. Závislost na napětí nebývá lineární. Závislost lze podobně jako u teploty popsat napěťovým koeficientem závislosti kapacity a po částech linearizovat:

$$\beta = \frac{dC}{C_0 \cdot dU} \approx \frac{C - C_0}{C_0 \cdot (U - U_0)} \tag{8}$$

2.1.3 Ztrátový činitel

Ztrátový činitel udává poměr ztrátového výkonu kondenzátoru k jeho jalovému výkonu. Jako náhradní obvod kondenzátoru obvykle v tomto případě uvažujeme paralelní spojení kapacitoru a rezistoru, viz obrázek 1. Pro ztrátový činitel D (nebo také $tg\delta$) lze pomocí činného P a jalového výkonu Q odvodit:

$$D = \frac{P}{Q} = \frac{U_C^2/R}{U_C^2 \cdot \omega C} = \frac{I_R}{I_C} = \frac{1}{\omega RC} = tg\delta \tag{9}$$

Paralelní odpor modeluje převážně ztráty v dielektriku a podobně jako kapacita obvykle je teplotně závislý.

Obrázek 1: Náhradní schéma kondenzátoru pro určení ztrátového činitele

2.2 Měření teplotní závislosti kapacity a ztrátového činitele vybraných vzorků kondenzátorů

2.2.1 Úkol měření

Změřte závislost kapacity C a ztrátového činitele D u tří vzorků keramických kondenzátorů s odlišným dielektrikem na teplotě T pro teploty 20 °C až 120 °C. Závislosti C = f(T), D = g(T) vyneste do grafu.

2.2.2 Schéma zapojení

2.2.3 Postup měření

Měřené vzorky jsou umístěny na destičce v pícce a vyvedeny na přepínač měřicích míst. K měření teploty slouží orientačně dotykový teploměr zasazený do měrné jímky na tělese pícky. Kapacitu vzorků a ztrátový činitel měříme RLC metrem. K přesnému změření teploty slouží odporový teploměr (čidlo Pt1000, $R_0 = 1008 \,\Omega$ při 0 °C, $\alpha = 4, 5 \cdot 10^{-3} \,\mathrm{K}^{-1}$), jehož odpor měříme pomocí multimetru. Teplotu vypočteme z údajů uvedených výše v návodu a za předpokladu linearní závislosti mezi hodnotou odporu a teplotou:

$$R_{\vartheta} = R_0 \cdot (1 + \alpha \cdot (\vartheta - \vartheta_0)) \tag{10}$$

 R_0 ...je odpor v Ω při 0 °C,

 α ... je teplotní koeficient odporu, pro platinový teploměr je $\alpha = 4, 5 \cdot 10^{-3} \text{ K}^{-1}$,

 ϑ ... je teplota okolí ve °C nebo K,

 ϑ_0 ... je teplota ve °C nebo K, při které byl měřen odpor R_0 , zde 0 °C.

2.2.4 Měřené vzorky

- 1. keramický kondenzátor 100 nF, hmota Supermit
- 2. keramický kondenzátor 1 nF, hmota N1500
- 3. keramický kondenzátor 1 nF, hmota SQM
- 4. slídový kondenzátor 1 nF, hmota slída
- 5. foliový kondenzátor 100 nF, dielektrikum PP
- 6. MP kondenzátor 150 nF, dielektrikum papír

2.3 Měření napěťové závislosti kapacity vybraných vzorků kondenzátorů

2.3.1 Úkol měření

Změřte závislost kapacity tří vzorků keramických kondenzátorů na velikosti přiloženého stejnosměrného napětí. Závislost C = f(U) vyneste do grafu.

2.3.2 Schéma zapojení

2.3.3 Postup měření

Měřené vzorky postupně zapojujeme na svorky " C_X " měřicího přípravku, který umožňuje oddělení přiloženého napětí (z bateriového DC zdroje) a měřicího malého střídavého napětí, které využíváme pro měření kapacity. Při měření dbáme na to, aby nebylo překročeno jmenovité provozní napětí vzorku.

2.3.4 Měřené vzorky

- 1. keramický kondenzátor TK666, 40 V,100 nF, hmota Supermit (kotoučový, hnědý)
- 2. keramický kondenzátor 4H30, 40 V, 33 nF (zelený)
- 3. svitkový kondenzátor CF2, 63 V, 100 nF, tereftalátový (žlutý)

2.4 Měření uvolnění náboje feroelektrického kondenzátoru

V objemu dielektrika feroelektrického kondenzátoru je obecně vždy vázán malý zbytkový náboj Q_1 . Jemu odpovídá nízké napětí U_1 na svorkách kondenzátoru, které je dáno rovnicí:

$$U_1 = \frac{Q_1}{C_1} \tag{11}$$

Při zvýšení teploty dochází u feroelektrik k výraznému zmenšení jejich kapacity (z C_1 na C_2) díky zmenšení relativní permitivity z ϵ_{r1} na ϵ_{r2} . Aby zůstal zachován zbytkový náboj ($Q_1 = Q_2$), musí na kondenzátoru výrazně vzrůst napětí (U_2). V ideálním případě platí, že vzrůst napětí (U_2/U_1) je roven změně permitivity ($\epsilon_{r1}/\epsilon_{r2}$).

2.4.1 Úkol měření

Ověřte uvolnění elektrického náboje u předloženého vzorku kondenzátoru z feroelektrického materiálu.

2.4.2 Postup měření

Kondenzátor připojený k elektrostatickému voltmetru nabijte na plné napětí bateriového zdroje (asi 120 V). Kondenzátor vybijte a po chvíli ohřejte v olejové lázni na cca 150 °C. Odečtěte maximální napětí kondenzátoru.

3 Vlastnosti kondenzátorů a rezistorů při kmitočtech do 1 MHz

3.1 Úvod

Reálné součástky (obvodové prvky) vykazují kromě svého hlavního parametru také parametry parazitní. V případě rezistorů je to při frekvencích do 1 MHz paralelní kapacita nebo sériová indukčnost, v případě kondenzátorů především parazitní odpor. Na těchto frekvencích zpravidla ještě u většiny součástek nedochází k vlastní rezonanci. Přesto identifikování hodnoty parazitního parametru má svůj význam. Parazitní kapacita odporu například může způsobit frekvenční závislost výstupního napětí napěťového děliče, nebo v případě kondenzátorů působí parazitní odpor přídavné ztráty v obvodu, se kterými je třeba počítat. Cvičení se zaměřuje na identifikaci jednotlivých parazitních parametrů v závislosti na technologii součástky a hodnotě jejího hlavního parametru. Vliv parazit na součástku budeme posuzovat pomocí frekvenční závislosti její impedance.

3.1.1 Náhradní schémata pasivních prvků

Vlastnosti skutečných součástek lze přiblížit náhradními obvody na obrázku 2. Na frekvencích do 1 MHz se v náhradním obvodu kondenzátorů zpravidla neuplatní parazitní sériová indukčnost. Výjimku tvoří elektrolytické kondenzátory, které mimojiné kvůli své vysoké kapacitě často rezonují již v tomto pásmu. Podobně lze obvykle zanedbat i sériový odpor, jelikož jeho hodnota je relativně malá v porovnání s reaktancí kondenzátoru a vliv jeho ztrát se projeví až při větších proudech. Náhradní obvod kondenzátoru lze tedy pro dané frekvenční pásmo obvykle zjednodušit na paralelní spojení odporu a kapacity. Hodnoty parametrů náhradního schéma závisejí především na technologii konstrukce kondenzátorů.

Náhradní obvod rezistoru je na frekvencích do 1 MHz závislý na hodnotě odporu. Pro jeho nízké hodnoty (méně než 330 Ω) převažuje vliv indukčnosti. Pro vysoké hodnoty odporu (více než 330 Ω) převažuje vliv kapacity. Pro hodnoty kolem 330 Ω se oba vlivy dokonce kompenzují a součástka jeví jen malou frekvenční závislost. Pochopitelně frekvenční vlastnosti ovlivňuje také konstrukce rezistoru. Drátové (vinuté) výkonové rezistory mají obvykle vyšší indukčnost než vrstvové rezistory se stejným odporem, ale na nižší výkony.

Obrázek 2: a) Náhradní schéma rezistoru, b) náhradní schéma kondenzátoru

3.1.2 Frekvenční závislost RL a RC prvku

Po zjednodušení náhradních schémat pro frekvence do 1 MHz lze rezistory i kondenzátory modelovat buď sériovým spojení odporu a indukčnosti nebo paralelním spojením odporu a kapacity. Pro impedanci sériového RL obvodu platí vztah:

$$Z_{RL} = R + j\omega L \tag{12}$$

a pro impedanci paralelního RC obvodu platí vztah:

$$Z_{RC} = \frac{R}{1 + j\omega RC} \tag{13}$$

Frekvenční charakteristiky těchto obvodů jsou vyneseny na obrázku 3. Podobné výsledky očekáváme i při měření konkrétních součástek. Všimněte si, že v obvodu s dominantní sériovou indukčností impedance roste a fáze je kladná, zatímco u paralelní kapacity je to naopak. Pokud by tyto charakteristiky patřily například rezistoru, pak by jeho použití mělo smysl zhruba do frekvencí 1 kHz. Zde si stále ještě uchovává přibližně počáteční hodnotu impedance a nedochází k velkému fázovému posunu mezi napětím a proudem.

Obrázek 3: Frekvenční charakteristika impedance a fáze pro sériový RL a paralelní RC obvod.

3.2 Kmitočtová závislost rezistorů

3.2.1 Úkol měření

Pro zadané vzorky rezistorů změřte závislost impedance (absolutní hodnoty |Z|, fáze φ) nebo jiných ekvivalentních složek (R, X) vyjadřujících komplexní impedanci rezistoru na kmitočtu. Naměřené hodnoty vyneste do grafu, volte vhodné (logaritmické) měřítko na kmitočtové ose!

3.2.2 Schéma zapojení

3.2.3 Postup měření

Měření proveďte v rozsahu kmitočtů od cca 50 Hz až do 1 MHz s použitím přístroje HP 4284A. Volte vhodný krok, abyste pokryli rovnoměrně všechny měřené řády (Hz, kHz, MHz). Pro vynášení v logaritmické měřítku je vhodný krok 1-2-5-10 nebo 1-3-10. Přístroj umožňuje nastavení kmitočtu jen s určitým krokem z předvolené řady hodnot. Dbejte, aby při upnutí součástek byl minimalizován vliv jejich přívodů (tj. připojovat krátkými přívody).

U odporů tzv. malých hodnot (řádově jednotky až desítky Ω) vyhodnoť te sériovou indukčnost L_S (z měření impedance), u odporů tzv. velkých hodnot (řádově od k Ω výše) paralelní kapacitu C_P . Povšimněte si též chování vykompenzovaných odporů s hodnotami rezistivity kolem 330 Ω . Při závěrečném hodnocení se věnujte i vlivu konstrukce rezistorů na jejich chování.

3.2.4 Měřené vzorky

- 1. $10 \Omega/330 \Omega/10 k\Omega$ rezistor metalizovaný, 0,6 W, velikost 0207
- 2. $10 \Omega/330 \Omega/10 k\Omega$ rezistor metalizovaný, 2 W, velikost 0414
- 3. $10 \Omega/330 \Omega/10 k\Omega$ rezistor drátový, 5 W, keramické pouzdro

3.3 Kmitočtová závislost kondenzátorů

3.3.1 Úkol měření

Pro zadané vzorky kondenzátorů změřte závislost impedance (absolutní hodnoty |Z|, fáze φ) nebo kapacity C a ztrátového činitele D na kmitočtu. Naměřené hodnoty vyneste do grafu, volte vhodné (logaritmické) měřítko na kmitočtové ose!

3.3.2 Postup měření

Měření proveď te v rozsahu kmitočtů od cca 50 Hz až do 1 MHz s použitím přístroje HP 4284A. Volte vhodný krok, abyste pokryli rovnoměrně všechny měřené řády (Hz, kHz, MHz). Pro vynášení v logaritmické měřítku je vhodný krok 1-2-5-10 nebo 1-3-10. Přístroj umožňuje nastavení kmitočtu jen s určitým krokem z předvolené řady hodnot. Dbejte, aby při upnutí součástek

byl minimalizován vliv jejich přívodů (tj. připojovat krátkými přívody). Pokuste se porovnat jednotlivé technologie kondenzátorů mezi sebou z pohledu jejich frekvenční charakteristiky.

POZN.: Během měření kapacity a ztrátového činitele se může stát, že kapacita i ztrátový činitel budou indikovány záporné. V takovém případě se nemusí jednat o chybu. Pokud k danému jevu došlo na vyšších frekvencích, prošla pravděpodobně součástka rezonancí a nadále se chová jako cívka.

3.3.3 Měřené vzorky

1. 1 nF/10 nF/68 nF miniaturní keramické

2. 10 nF plastový s radiálními vývody WIMA

3. 10 nF plastový s axiálními vývody

4. 330 μ F/25 V elektrolytický hliníkový

5. $22 \mu F/10 V$ elektrolytický tantalový

3.4 Obrázková příloha

4 Vlastnosti kondenzátorů a rezistorů při kmitočtech nad 1 MHz

4.1 Úvod

Rezistory a kapacitory nejsou ideální součástky, takže mimo svou dominantní vlastnost (odpor, kapacita) vykazují ještě parazitní vlastnosti (indukčnost, kapacitu, sériový a paralelní odpor). Při frekvencích nad 1 MHz způsobují parazitní parametry vlastní rezonanci. Jelikož se po rezonanci mění charakter součástky, může dojít k chybné funkci obvodu v daném pásmu frekvencí. Problém je významný především u pasivních filtrů, kde se významně mění předpokládaná frekvenční charakteristika. Pro příklad jednoduchý RC filtr 1. řádu typu dolní propust se změní po vlastní rezonanci kondenzátoru na RL filtr 1. řádu typu horní propust. Výsledná frekvenční charakteristika odpovídá ve své podstatě pásmové zádrži. Obecně konstrukce obvodů nad 1 MHz je nesnadný úkol, který klade velké nároky na výběr součástek.

4.1.1 Vlastní rezonance součástek

Náhradní modely reálných rezistorů a kondenzátorů jsou na obrázku 2. Pro frekvence nad 1 MHz již nelze tyto obvody dále zjednodušit. Zřejmě v případě rezistoru se jedná o zapojení paralelního rezonančního obvodu a v případě kondenzátoru o zapojení sériového rezonančního obvodu. Impedance náhradních obvodů vyjadřují vztahy:

$$Z_R = \frac{R + j\omega L_S}{1 - \omega^2 L_S C_P + j\omega R C_P} \tag{14}$$

$$Z_C = \frac{R_P}{1 + j\omega R_P C} + R_S + j\omega L_S \tag{15}$$

Oba vztahy dosahují extrému v blízkosti frekvence dané podmínkou:

$$\omega^2 LC = 1 \tag{16}$$

Jde vlastně o vyjádření Thomsonova vztahu. Ve skutečnosti je rezonanční frekvence nižší, než by odpovídalo vztahu (16). Její přesná hodnota navíc závisí na útlumu, který je úměrný poměru odporu k indukčnosti. Posun lze vidět na ilustračních obrázku 5, kde jsou vyneseny impedanční a fázové charakteristiky náhradního schéma rezistoru a kondenzátoru. Zřejmě pro zkoumané hodnoty prvků by podle vztahu (16) mělo dojít u obou součástek k rezonanci ve stejném místě (přibližně při 5 MHz). Nicméně u rezistoru, kde je poměr odporu k indukčnosti a tím i útlumu vyšší je maximální impedance posunuta mírně doleva. Všimněte si, že při rezonanci obě součástky vykazují výhradně odporový charakter. Ve fázové charakteristice je na rezonanční frekvenci fáze vždy 0°.

4.1.2 Smithův diagram

Měřící přístroj Agilent E5062A zobrazuje naměřené frekvenční charakteristiky pomocí Smithova diagramu. Smithův diagram graficky znázorňuje hodnotu činitele odrazu ρ v závislosti na zakončovací impedanci měřícího vedení Z.

$$\rho = \frac{Z - Z_0}{Z + Z_0} = \frac{Z/Z_0 - 1}{Z/Z_0 + 1} \tag{17}$$

Při změřeném činiteli odrazu ρ lze při známé charakteristické impedanci vedení Z_0 dopočítat určovanou impedanci Z. Charakteristická impedance je v tomto případě čistě reálná (odporová) $Z_0 = 50~\Omega$. Odtud plyne, že horizontální osa Smithova diagramu zobrazuje činitele odrazu pro

čistě odporové zakončení. Výchylky nad touto osou odpovídají přítomnosti indukčnosti a pod osou přítomnosti kapacity.

Obrázek 4: Smithův diagram

Obrázek 5: Frekvenční charakteristika impedance a fáze pro náhradní obvod rezistoru a kondenzátoru

4.2 Kmitočtová závislost rezistorů

4.2.1 Úkol měření

Pro zadané vzorky rezistorů změřte závislost absolutní hodnoty impedance a fáze (|Z|, φ) na kmitočtu. Naměřené hodnoty vyneste do grafu. V závěru diskutujte vliv hodnoty a technologie rezistoru na naměřené frekvenční charakteristiky.

4.2.2 Postup měření

Měření proveďte v rozsahu frekvencí 1 MHz až 100 MHz s použitím přístroje Agilent E5062A. Vyhodnoťte, jak se jednotlivé vzorky projevují v závislosti na jejich hodnotě a technologii. Zaznamenejte rezonanční frekvence jednotlivých součástek.

4.2.3 Měřené vzorky

- 1. $10 \Omega / 330 \Omega / 10 k\Omega$ rezistor metalizovaný, 0,6 W, velikost 0207
- 2. $10~\Omega/~330~\Omega/~10~\mathrm{k}\Omega$ rezistor metalizovaný, 2 W, velikost 0414
- 3. $10~\Omega/~330~\Omega/~10~\mathrm{k}\Omega~$ rezistor drátový, 5 W, keramické pouzdro

4.3 Kmitočtová závislost kondenzátorů

4.3.1 Úkol měření

Pro zadané vzorky kondenzátorů změřte závislost kapacity a ztrátového činitele $(C, tg\delta)$ na kmitočtu. Naměřené hodnoty vyneste do grafu. V závěru diskutujte vliv technologie kondenzátoru na naměřené frekvenční charakteristiky.

4.3.2 Postup měření

Měření proveď te v rozsahu frekvencí 1 MHz až 100 MHz s použitím přístroje Agilent E5062A. Vyhodnoť te, jak se jednotlivé vzorky projevují v závislosti na jejich technologii. Zaznamenejte rezonanční frekvence jednotlivých součástek.

4.3.3 Měřené vzorky

- 1. Elektrolytický kondenzátor hliníkový, 330 $\mu F/25 \text{ V}$ 5. Keram. kondenzátor, 1 nF
- 2. Elektrolytický kondenzátor tantalový, 22 μF/ 10 V 6. Keram. kondenzátor, 10 nF
- 3. Foliový kondenzátor radiální, 10 nF/ 100 V 7. Keram. kondenzátor, 68 nF
- 4. Foliový kondenzátor axiální, 10 nF/ 100 V

4.4 Měření přístrojem Agilent E5062A

4.4.1 Schéma zapojení

4.4.2 Postup měření

Bez založeného vzorku na začátku měření zkontrolujeme kalibraci přístroje – kurzor ukazuje na pravý okraj kružnice na displeji (poloha 3 hodiny). Pokud ne, je třeba kalibrovat:

"Save/Recall" / "Recall/State" / "File Dialog" / "Lab.sta" / "Open" Založíme vzorek do čelistí. Tlačítky START a STOP lze zadat z klávesnice počáteční a konečnou frekvenci měření. Body křivky můžeme číst manuálně nebo zaznamenat celou křivku automaticky na paměťové medium.

Manuální nastavení frekvence:

Aktuální frekvenci můžeme nastavit při nastavení volby Marker /Marker1. Frekvenci nastavujeme otáčením voliče nebo z klávesnice. Na displeji je možné odečíst údaje v následujícím pořadí: frekvence (f), odpor (R), reaktance (X), indukčnost (L) nebo kapacita (C) podle znaménka reaktance.

Automatické měření:

Měření probíhá kontinuálně. Data zapisujeme na flash disk. Postupně volíme:

"Save/Recall" / "Save Trace Data"

Nezapomeňte zvolit vhodné uložiště!!!. Jméno souboru je nutné zadat z klávesnice. Stiskem "Save" se data uloží ve formátu CSV. Formát ukládání je CSV. Tento formát souborů lze běžně editovat softwary Excel, Matlab apod.

5 Osazování DPS

5.1 Úvod

Pájení je způsob spojování dvou kovových materiálů pomocí jiného roztaveného kovového materiálu, tzv. pájky. Teplota tání pájky je obvykle mnohem nižší, než je tomu u pájených materiálů, proto při pájení nedochází k tavení spojovaných součástí. V elektrotechnice se pro vytváření vodivých spojů používají téměř výhradně tzv. měkké pájky. To jsou materiály, u nichž je teplota tání nižší než 400 °C. Lze se setkat se dvěma skupinami používaných slitin: Pájky obsahující olovo – jsou založeny na slitině Sn-Pb. Jejich výhodou je nízký bod tání, který je pouze 183 °C. Nevýhodou je obsah olova, které je toxické. Používání těchto pájek je omezeno směrnicí RoHS pouze pro speciální účely. Pájky bez olova – jde o slitiny cínu a dalších kovů, jako například Ag, Zn, Cu a další. Teplota tání je vyšší než u pájek s olovem a její obvyklá hodnota je 217 °C. Tavidla jsou nekovové materiály usnadňující pájení. Zlepšují smáčivost daných materiálů pájkou a brání oxidaci roztavené pájky. Nejčastěji se pro tento účel používá kalafuna.

5.2 Osazování desky plošného spoje

5.2.1 Úkol měření

Osaď te připravený plošný spoj a pomocí přípravku ověřte jeho funkčnost.

- Pomocí tabulky zkuste určit hodnotu odporu jednoho rezistoru. Zbývající rezistory měřte pomocí ohmmetru.
- Polaritu diod ověřujte pomocí multimetru.
- U LED s průhledným pouzdrem najděte způsob jak ověřit polaritu i barvu světla.

5.2.2 Popis zapojení

Schéma zapojení osazovaného obvodu je na obrázku 6. Jedná se o generátor tónů. Nejnižší je tón "a" na 440 Hz. Další tři tóny jsou generovány při různém propojení kolíků 1 a 2 konektoru SL1 se zemí. Oba kolíky jsou určeny pro připojení tlačítka proti zemi. Odstupňování frekvencí odpovídá velmi zhruba půltónu. Napájecími svorkami jsou kolíky 3 (kladná polarita zdroje) a 4 (záporná polarita zdroje) na stejném konektoru. Obvod je možné napájet napětím v rozmezí 5 V až 15 V.

Funkce obvodu je založena na integrovaném časovači NE555 (lze použít i TS555 nebo 7555). Ten generuje obdélníkový signál, jehož frekvence je určena jednak časovou konstantou prvků R6 a C1 a pak napěťovým posunem komparační úrovně na pinu CV obvodu IC1. Akustický piezoměnič se připojuje na svorky LSP1 a LSP2 a kvůli možnému stejnosměrnému předpětí je od výstupu časovače oddělen elektrolytickým kondenzátorem C3. Komparační úrovně půltónů jsou nastavovány děličem realizovaným rezistory R1, R2, R3 a R4. Vyřazováním rezistorů R3, R4 nebo dochází ke snižování komparační úrovně na pinu CV integrovaného obvodu IC1 a tím ke generování vyšších tónů. R3 a R4 zároveň realizují předřadný odpor pro LED. Proto by měla být zelená dioda, která je na vyšší napětí připojena k nižší hodnotě předřadného rezistoru a červená k vyšší hodnotě. Obecně však lze vzájemné pozice rezistorů R3 a R4 nebo vzájemné pozice led LED1 a LED2 zaměnit.

5.2.3 Postup pájeni

Desku plošného spoje osazujeme dle obrázku 7, který ukazuje pozice součástek ze strany součástek (druhá strana se nazývá strana plošného spoje a jsou na ní vyleptané vodivé trasy). Dbáme na polaritu diod a elektrolytických kondenzátorů a také na správné natočení pouzdra integrovaného obvodu, které je vyznačeno klíčem (symbol na pouzdře – tečka, výřez apod.). Při osazování je vhodné začít součástkami s nízkým profilem (výškou). Pájení bude jednodušší, pokud si desku plošného spoje upevníme do držáku. Spoje pájíme následujícím postupem:

- 1. Páječku držíme v jedné ruce, trubičkovou pájku ve druhé.
- 2. Přiložíme páječku ke spoji a začneme jej prohřívat (případně ještě předtím namočíme páječku do kalafuny).
- 3. Dotkneme se pájkou prohřívaného spoje trocha pájky se roztaví a zůstane na páječce a spoji. Páječkou stále prohříváme spoj!!!
- 4. Poté co se pájka rozteče po spoji, páječku odejmeme. Vždy se snažíme, zkrátit dobu pájení na minimum.

Výsledný pájený spoj by měl mít vzhled sopky.

5.2.4 Schéma zapojení

Obrázek 6: Schéma zapojení generátoru tónů

Obrázek 7: Pokládací (osazovací) schéma

5.2.5 Značení rezistorů

Barva	1. pruh	2. pruh	3. pruh	Násobitel	Tolerance
černá	0	0	0	1	
hnědá	1	1	1	10	1%
červená	2	2	2	100	2%
oranžová	3	3	3	10^{3}	
žlutá	4	4	4	10^{4}	
zelená	5	5	5	10^{5}	0,5%
modrá	6	6	6	10^{6}	0,25%
fialová	7	7	7	10^{7}	0,1%
šedá	8	8	8	10^{8}	0,05%
bílá	9	9	9	10^{9}	
zlatá				0,1	5%
stříbrná				0,01	10%