

Non-linear control system Ma Yan

Control Science and Engineering Department

Jilin University

mayan_maria@163.com

Tel: 13944003569

Review

- What is the nonlinearity, nonlinear control system?
- The typical nonlinearity.
- □ The characteristics of the nonlinear control system.
- □ The analysis methods of the nonlinear control system:

10.1 Describing function of nonlinear system

Four items:

- 1. What is the describing function? (modeling)
- 2. How to get the describing function?
- 3. How to analyze a nonlinear system ——(analysis by describing function? ——and design)
- 4. Attentions and development
- 1 What is the describing function?

(Put forwarded by P.J.Daniel, In 1940)

■ 1. Basic idea

For the nonlinear system

Describing function

· Assumptions

- -No input, r(t) = 0
- -Linear part acts as a low-pass filter, that is, higher order harmonic components are damped
- -Nonlinearity does not generate sub-harmonics
- -Nonlinearity is symmetric
- -Nonlinearity does not depend on frequency
- -Assume that at point A, $e(t) = A \sin(wt)$

Fig.1 Typical structure of the nonlinear systems

 $x(t) = A \sin wt$ — a sinusoidal input, y(t), maybe it is not a sinusoidal but a periodic function, can be expressed as a Fourier series:

$$y(t) = A_0 + \sum_{n=1}^{\infty} (A_n \cos n\omega t + B_n \sin n\omega t)$$
$$= A_0 + \sum_{n=1}^{\infty} Y_n \sin(n\omega t + \varphi_n)$$

$$y(t) = A_0 + \sum_{n=1}^{\infty} (A_n \cos n\omega t + B_n \sin n\omega t) \qquad A_0 = \frac{1}{2\pi} \int_0^{2\pi} y(t)d(\omega t)$$

$$= A_0 + \sum_{n=1}^{\infty} Y_n \sin(n\omega t + \varphi_n) \qquad A_n = \frac{1}{\pi} \int_0^{2\pi} y(t)\cos n\omega t d(\omega t)$$

$$Y_n = \sqrt{A_n^2 + B_n^2}, \quad \varphi_n = \operatorname{arctg} \frac{A_n}{B_n} \qquad B_n = \frac{1}{\pi} \int_0^{2\pi} y(t)\sin n\omega t d(\omega t)$$
Discuss:

- **Discuss:**
 - i) For the symmetry nonlinearity: $A_0 = 0$, and
- ii) the high-order harmonic of y(t) are neglected, then:

$$y(t) \approx Y_1 \sin(\omega t + \varphi_1)$$
 output frequency is equal to input frequency approximately.

It means:

We can describe the nonlinear components by frequency response.

□ Definition of the describing function

The describing function N(A) of the nonlinear element is: the complex ratio of the fundamental component of the output y(t) and the sinusoidal input x(t), that is:

For
$$x(t) = A \sin wt$$

$$y(t) \approx A_1 \cos wt + B_1 \sin wt$$

$$= Y_1 \sin(wt + \varphi_1)$$

$$N(A) = \frac{Y_1 e^{j\varphi_1}}{A}$$

Here:

$$Y_{1} = \sqrt{A_{1}^{2} + B_{1}^{2}}$$

$$\varphi_{1} = \operatorname{arctg} \frac{A_{1}}{B_{1}}$$

$$A_{1} = \frac{1}{\pi} \int_{0}^{2\pi} y(t) \cos \omega t d(\omega t)$$

$$B_{1} = \frac{1}{\pi} \int_{0}^{2\pi} y(t) \sin \omega t d(\omega t)$$

- □ Because the describing function actually is the linearized "frequency response" → "harmonic linearization".
- ☐ The nonlinear systems is analyzed did by Frequency Response.

10.2 How to get the describing function?

1. Steps

(1) Input a sinusoid signal x(t) to the nonlinear elements:

$$x(t) = A \sin wt$$

(2) Solve
$$y(t)$$
 and obtain the fundamental component of $y(t)$.

(3) Calculate describing function
$$N(A)$$

A₁ =
$$\frac{1}{2\pi} \int y(t) \cos \omega t d(\omega t)$$
 . $(2\pi)^2$

$$A_{1} = \frac{1}{\pi} \int_{0}^{2\pi} y(t) \cos \omega t d(\omega t)$$

$$B_{1} = \frac{1}{\pi} \int_{0}^{2\pi} y(t) \sin \omega t d(\omega t)$$

$$P_{1} = \sqrt{A_{1}^{2} + B_{1}^{2}}$$

$$\varphi_{1} = \operatorname{arctg} \frac{A_{1}}{B_{1}}$$

$$y(t) \approx Y_{1} \sin (\omega t + \varphi_{1})$$

$$N(A) = \frac{Y_1}{A} e^{j\varphi_1}$$

$$A = \frac{Y_2}{A} + \frac{1}{2} \frac{1}{2}$$

Example 1

The mathematical description of a nonlinear device is:

$$y = \frac{1}{2}x + \frac{1}{4}x^3$$

Determine the describing function of the device.

$$y(t) = \frac{1}{2}x + \frac{1}{4}x^{3}\Big|_{x=A\sin wt}$$

$$= (\frac{1}{2}A + \frac{3}{16}A^{3})\sin wt - \frac{1}{16}A^{3}\sin 3wt$$

$$y_1(t) = (\frac{1}{2}A + \frac{3}{16}A^3)\sin wt \longrightarrow N(A) = \frac{\dot{y}_1}{\dot{x}} = \frac{1}{2} + \frac{3}{16}A^2$$

Example 2 Determine the describing function of the saturation nonlinearity.

$$A_1 = 0$$

$$B_1 = \frac{1}{\pi} \int_0^{2\pi} y(t) \sin wt d(wt) = \frac{2kA}{\pi} \left[\arcsin \frac{a}{A} + \frac{a}{A} \sqrt{1 - \left(\frac{a}{A}\right)^2} \right]$$

$$N(A) = \frac{B_1}{A} = \frac{2k}{\pi} \left| \arcsin \frac{a}{A} + \frac{a}{A} \sqrt{1 - (\frac{a}{A})^2} \right| \qquad A > a$$

Example 3 Determine the describing function of the dead zone nonlinearity.

$$\varphi_{\rm l} = \arcsin \frac{\Delta}{A}$$

$$\mathbf{y}(t) = \begin{cases} 0 & 0 \le wt \le \varphi_1 \\ k(A\sin wt - \Delta) & \varphi_1 < wt \le \frac{\pi}{2} \end{cases}$$

$$\begin{array}{c|c}
 & y \\
 & \pi - \varphi_1 \\
\hline
 & 0 & \varphi_1
\end{array}$$

$$A_1 = 0$$

$$B_1 = \frac{1}{\pi} \int_0^{2\pi} y(t) \sin wt d(wt) = \frac{2kA}{\pi} \left| \frac{\pi}{2} - \arcsin \frac{\Delta}{A} - \frac{\Delta}{A} \sqrt{1 - (\frac{\Delta}{A})^2} \right| \qquad A \ge \Delta$$

$$N(A) = \frac{B_1}{A} = \frac{2k}{\pi} \left[\frac{\pi}{2} - \arcsin \frac{\Delta}{A} - \frac{\Delta}{A} \sqrt{1 - (\frac{\Delta}{A})^2} \right] \qquad A \ge \Delta$$

3. The describing function of some typical nonlinearity

$$N(A) = \frac{4M}{\pi A}$$
Relay

$$N(A) = \frac{4M}{\pi A}$$

$$N(A) = \frac{4M}{\pi A} \sqrt{1 - (\frac{h}{A})^2}$$
Relay

$$N(A) = \frac{2k}{\pi} \left[\arcsin \frac{a}{A} + \frac{a}{A} \sqrt{1 - (\frac{a}{A})^2} \right]$$
saturation

$$N(A) = \frac{2k}{\pi} \left[\frac{\pi}{2} - \arcsin \frac{\Delta}{A} - \frac{\Delta}{A} \sqrt{1 - (\frac{\Delta}{A})^2} \right] \qquad A \ge \Delta$$
dead zone

$$A \ge \Delta$$

10.2 describing function of typical nonlinearity

$$N(A) = \frac{4M}{\pi A} \sqrt{1 - (\frac{h}{A})^2} - j \frac{4M}{\pi A^2}$$

backlash hysteresis

$$N(A) = \frac{k}{\pi} \left[\frac{\pi}{2} + \arcsin(1 - \frac{2h}{A}) + 2(1 - \frac{2h}{A}) \sqrt{\frac{h}{A}(1 - \frac{h}{A})} \right] + j \frac{4kh}{\pi A} (\frac{h}{A} - 1)$$

4. characters

(1) For the "single value" nonlinearity, the describing function is a "real number".

such as the dead zone, saturation and the ideal relay nonlinearity etc.

(2) The describing function satisfy the superposition principle (nonlinearity not).

10.2 Stability of the nonlinear system

1. Review of Nyquist criterion

For the linear system:

Fig.1

The characteristic equation of the system:

$$1 + G(j\omega) = 0$$

$$\Rightarrow G(j\omega) = -1 + j0$$

If G(s) is a minimum phase transfer function, the necessary and sufficient condition of the stable system is:

 $G(j\omega)$ does not circle the point $(-1, j\omega)$

10.2 Stability of the nonlinear system

2. Compare the nonlinear system with the linear system

nonlinear system

Transfer function of the system:

$$T(s) = \frac{C(s)}{R(s)} \Rightarrow T(jw) = \frac{C(jw)}{R(jw)} = \frac{G(jw)}{1 + G(jw)} \qquad T(jw) = \frac{C(jw)}{R(jw)} = \frac{N(A)G(jw)}{1 + N(A)G(jw)}$$

Characteristic equation:

$$1 + G(j\omega) = 0$$

$$\Rightarrow G(j\omega) = -1$$
In the $G(j\omega)$ plane A point

$$T(jw) = \frac{C(jw)}{R(jw)} = \frac{N(A)G(jw)}{1 + N(A)G(jw)}$$

$$1 + N(A)G(jw) = 0$$

$$G(jw) = -\frac{1}{N(A)}$$

Because Describing function N(A) is a linearized frequency response, we can expand Nyquist Criterion to the nonlinear system.

10.2 Stability of the nonlinear system

(For example the minimum phase system)

compare with linear system

- (1)G(jw) don't circle the $\frac{1}{N(A)}$ curve, the nonlinear system is stable
- (2)G(jw) circle the $\overline{N(A)}$ curve, the nonlinear ststem is unstable.
- (3)G(jw) intesect with the $-\frac{1}{N(A)}$ curve, There is a self-oscillation in the nonlinear system.

- (1) $G(j\omega)$ don't circle the point $(-1, j\omega)$, the system is stable;
- (2) $G(j\omega)$ circle the point $(-1, j\omega)$, the system is unstable;
- (3) $G(j\omega)$ intersect with the point $(-1, j\omega)$, the system is in the critical stability.

10.2 Stability of the nonlinear system

(For example the minimum phase system)

$$-\frac{1}{N(A)}$$
: Negative inverse Describing function

Graphical explanation is shown as following:

10.2 Stability of the nonlinear system

4. Self-oscillation of the nonlinear system

A special motion of the nonlinear system:

System will be at a continuous oscillation, which has a constant amplitude and frequency, when the system come under a light disturbance.

Corresponding to the intersection point of G(jw) with $\frac{1}{N(A)}$

Self-oscillation

B: unstable self-oscillation point $\rightarrow -1/N(A)$ enter unstable zone from stable zone.

A: stable self-oscillation point $\rightarrow -1/N(A)$ enter stable zone from unstable zone.

22

Example (gain)

Example (relay)

E.g the system is shown as follows

the non-linearity is

$$N(A) = \frac{4M}{\pi A} \sqrt{1 - (\frac{h}{A})^2} \qquad A \ge h , \quad M = 1$$

$$\frac{-1}{N(A)} = \frac{-\pi A}{4M\sqrt{1 - (\frac{h}{A})^2}} \qquad A \ge h$$

$$Let \frac{h}{A} = u \quad \frac{-1}{N(A)} = \frac{-\pi h}{4Mu\sqrt{1 - u^2}} \qquad A \ge h$$

E.g the system is shown as follows

the non-linearity is

$$N(A) = \frac{4M}{\pi A} \sqrt{1 - (\frac{h}{A})^2} \qquad A \ge h , \quad M = 1$$

$$\frac{-1}{N(A)} = \frac{-\pi A}{4M\sqrt{1 - (\frac{h}{A})^2}} \qquad A \ge h$$

$$Let \frac{h}{A} = u \quad \frac{-1}{N(A)} = \frac{-\pi h}{4Mu\sqrt{1 - u^2}} \qquad A \ge h$$

E.g the system is shown as follows the non-linearity is

$$G(s) = \frac{460}{s(0.01s+1)(0.0025s+1)}$$

$$G(jw) = \frac{460}{jw(j0.01w+1)(j0.0025w+1)}$$

$$|G(jw)| = \frac{460}{w\sqrt{1 + \frac{w^2}{100^2}}\sqrt{1 + \frac{w^2}{400^2}}}$$

$$\angle G(jw) = -90 - \arctan 0.01w - \arctan 0.0025w$$

$$\angle G(jw) = -180^{\circ}$$

$$\arctan 0.01w + \arctan 0.0025w = 90^{\circ} \quad 0.01w = \frac{1}{0.0025w} \quad w = 200$$

E.g the system is shown as follows the non-linearity is

$$G(jw) = \frac{460}{jw(j0.01w+1)(j0.0025w+1)}$$

$$M = 2, h = 1$$

$$\frac{-1}{N(A)} = \frac{-\pi h}{4Mu\sqrt{1-u^2}} = \frac{-\pi h}{4Mu\sqrt{1-u^2}} \quad A \ge h$$

$$\frac{-1}{N(A)} = -|G(jw)|_{w=200} = \frac{23}{25}$$

$$\frac{-1}{N(A)} = \frac{-\pi h}{4Mu\sqrt{1 - u^2}} = \frac{-\pi A}{8\sqrt{1 - \frac{1}{A^2}}} = \frac{-23}{25}$$

 $A_1 = 2.04(self - oscillation)$ $A_2 = 1.15$

·Linear part

$$G(jw) = \frac{e^{-jw}}{1 + jw}$$

·Nonlinear part - relay

Example

Nonlinear part- replace it with describing function

$$N(A) = \frac{4M}{\pi A}$$

·Criterion

$$G = -\frac{1}{N} \Longrightarrow \frac{e^{-jw}}{1+jw} = -\frac{\pi A}{4}$$

$$G = -\frac{1}{N} \Rightarrow \frac{e^{-jw}}{1 + jw} = -\frac{\pi A}{4}$$

Two equations to solve unknowns A and w

$$\frac{1}{\sqrt{1+w^2}} \angle -w - \tan^{-1} w = -\frac{\pi A}{4}$$

$$\frac{1}{\sqrt{1+w^2}} = \frac{\pi A}{4}$$

$$\angle -w - \tan^{-1} w = -\pi$$

The solution is

$$w = 2.1$$

$$A = 0.57$$

Example:

The nonlinear system is in Fig. 1. The describing function of Relay nonlinearity is $\frac{4M}{\pi A}$, $G(s) = \frac{K}{s(5s+1)(10s+1)}$

- 1. Determin the stability of the nonlinear system
- 2. Determin *K* and oscillation frequency when the amplitude of the self-oscillation is $A = \frac{1}{L}$

Solution:

The system is equivalent to $r = \emptyset$ N(A) G(s) C $N(A) = 1 + \frac{4M}{\pi A} \Rightarrow -\frac{1}{N(A)} = -\frac{\pi A}{\pi A + 4M}$

Graphical explanation is shown as Fig. 1

$$G(jw) = \frac{k}{jw(j5w+1)(j10w+1)}$$

$$|G(jw)| = \frac{k}{w\sqrt{1+25w^2}\sqrt{1+100w^2}}$$

$$G(jw) = \frac{00}{\sqrt{1+25w^2}\sqrt{1+100w^2}}$$

$$\angle G(jw) = -90$$
 - arctan $5w$ - arctan $10w$
 $\angle G(jw) = -90$ - arctan $5w$ - arctan $10w$ =-180

 $\arctan 5w + \arctan 10w = 90 \Rightarrow 5w = 1/10w$

$$|G(jw)| = \frac{k}{w\sqrt{1+25w^2}\sqrt{1+100w^2}}\Big|_{w=0.14} = \frac{10k}{3}$$

$$-\frac{1}{N(A)} = -\frac{\pi A}{\pi A + 4} \bigg|_{A = \frac{1}{\pi}} = -\begin{cases} 0 & A = 0 \\ 1 & A = \infty \end{cases}$$

$$\omega = \sqrt{\frac{1}{50}} \approx 0.14 \qquad G(j\omega)$$

$$G(j\omega) = -\frac{10}{3}K$$
Re
$$\frac{1}{1} = \frac{\pi A}{1}$$

(1) Stability analysis $\begin{cases} K > \frac{3}{10}, \text{ unstable.} \\ K \le \frac{3}{10}, \text{ self-oscillation} \end{cases}$

$$\left| -\frac{1}{N(A)} = -\frac{\pi A}{\pi A + 4} \right|_{A = \frac{1}{5}} = -\frac{1}{5} \quad |G(jw)| = -\frac{1}{N(A)} \Rightarrow \frac{10k}{3} = \frac{1}{5} \quad k = 0.06$$

Fig.1

- Eg1, A control system shows as follows, where a=3,b=1,
- 1. Determine if these system have self-excitation? If it has, solve amplitude and frequency.
- 2. In case system doesn't have self-excitation, determine the parameters of the relay.

$$N(A) = \frac{4a}{\pi A} \sqrt{1 - (\frac{b}{A})^2}, \quad A \ge b$$

Fig. System with relay

Solve: we know the description function

$$-\frac{1}{N(A)} = -\frac{\pi A}{4a\sqrt{1-(\frac{b}{A})^2}}, \quad A \ge b \quad -\frac{1}{N(A)} = \begin{cases} -\infty & A = b \\ -\infty & A \to \infty \end{cases}$$

$$\text{Let } \frac{b}{A} = u \quad -\frac{1}{N(A)} = -\frac{\pi a}{4u\sqrt{1-u^2}}, \quad u \le 1 \quad \text{Alterial stable in the cycle}$$

$$\frac{d}{N(A)} = 0 \quad \Rightarrow \sqrt{1-u^2} = u \quad u \le 1 \quad \text{Alterial stable in the cycle}$$

$$\Rightarrow u_{\text{max}} = \frac{\sqrt{2}}{2} \Rightarrow A_{\text{max}} = \sqrt{2}b \quad \text{Alterial stable in the cycle}$$

$$h \le A < A_{\text{max}} \Rightarrow \frac{d\left[-\frac{1}{N(A)}\right]}{dA} > 0 \quad \text{In the cycle}$$

$$A \ge A_{\text{max}} \Rightarrow \frac{d\left[-\frac{1}{N(A)}\right]}{dA} < 0 \quad -\frac{1}{N(A)} = -\frac{\pi b}{2a} = -\frac{\pi}{6} \approx -0.5236$$

$$|G(j\omega)| = \frac{2}{w\sqrt{0.25w^2 + 1}\sqrt{w^2 + 1}} \qquad \text{Im}G(j\omega) = 0 \Rightarrow \frac{2(1 - 0.5\omega^2)}{\omega(0.25\omega^4 + 1.25\omega^2 + 1)} = 0$$

 $\angle G(j\omega) = -90$ - arctan 0.5w - arctan w

Phase angle is zero

$$\angle G(j\omega) = -90$$
 - arctan 0.5w - arctan $w = -180 \implies \omega = \sqrt{2}$

Take $\omega = \sqrt{2}$ into the real part

$$\operatorname{Re}G(j\omega)\big|_{\omega=\sqrt{2}} = -\frac{1}{1.5} \approx -0.66$$

$$\operatorname{Re}G(j\omega)\big|_{\omega=\sqrt{2}} = \left|-\frac{1}{N(A)}\right| \Rightarrow \frac{\pi A}{12\sqrt{1-\left(\frac{1}{A}\right)^2}} = \frac{1}{1.5}$$

We have A1 = 1.11, A2 = 2.3

So amplitude and frequency of self-exciting is 2.3 and $\omega = \sqrt{2}$ respectively.

2. If there isn't self-oscillation in the system, let

$$-\frac{1}{N(A)}\Big|_{A=\sqrt{2}a} \le -\frac{1}{1.5} \qquad \Longrightarrow \frac{\pi b}{2a} > \frac{1}{1.5}$$

We have $\frac{a}{b} < 2.36$

10.2 Attentions and development

1.Attentions

- Using the describing function to analyze the nonlinear system, Linear parts of the system must be provided with a good charact-eristic of the low-pass filter→so that the harmonics produced by the nonlinear element can be neglected.
- ☐ Generally, the describing function method can only be used for analyzing the stability and self-oscillation of the nonlinear systems, not the stead-state error and transient specifications.

2. Development

Modern analysis and design method of the nonlinear systems: Computer simulation and intelligent design.

Purpose

- Describing function method for nonlinear systems is prediction of limit cycles.
- It is also used to design controllers that eliminate limit cycles and as a controller design tool.
- □ to predict sub harmonics, jump phenomena and response of nonlinear systems to sinusoidal inputs.