STATS 2107 Statistical Modelling and Inference II

Workshop 7: Assumptions in simple linear regression.

Matt Ryan

School of Mathematical Sciences, University of Adelaide

Semester 2 2022

Simple linear regression

The model

Suppose you have data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ where $x_i, y_i \in \mathbb{R}$ for each i.

THE MODEL:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \,,$$

where $\varepsilon_i \sim N(0, \sigma^2)$ independently for each i = 1, 2, ..., n.

What are the assumptions?

- ▶ Linearity: $E[\varepsilon_i] = 0$
- ▶ Homoscedasticity: $Var(\varepsilon_i) = \sigma^2$
- **Normality**: $\varepsilon_i \sim N$
- ▶ Independence: Design assumption

How do we check the assumptions?

We look at the residuals
$$\hat{e}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$
:

- ▶ Use the plot command in R
 - Linearity: The Residuals vs Fitted plot
 - ► Homoscedasticity: The Residuals vs Fitted plot
 - ► Normality: The Normal QQ plot
 - Independence: Check the design/data collection

5-point check

When checking assumptions, answer:

- ► What?
- ▶ Where?
- ▶ What do you expect?
- ► What do you see?
- What do you conclude?

۱۸/	hat	+0	્ત	_
V V	Πaι	. LO	u	U

1. Load the ceddar.csv dataset. Fit the simple linear regression of taste on either acetic, h2s, or lactic.

A linear model

The residual vs fitted plot

The true model

$$y_i = 1 + 2x_i + \varepsilon_i$$

where $\varepsilon_i \sim N(0, 0.5^2)$.

A non-linear model

The residual vs fitted plot

The true model

$$y_i = 1 + 2x_i + 3x_i^2 + \varepsilon_i$$

where $\varepsilon_i \sim N(0, 0.5^2)$.

What	to	do

1. For you model fitted previously, test the linearity assumption.

A homoscedastic model

The residual vs fitted plot

The true model

$$y_i = 1 + 2x_i + \varepsilon_i$$

where $\varepsilon_i \sim N(0, 0.5^2)$.

A heteroscedastic model

The residual vs fitted plot

The true model

$$y_i = 1 + 2x_i + \varepsilon_i$$

where $\varepsilon_i \sim N(0, 0.5^2 x_i^4)$.

What to do

1. For you model fitted previously, test the homoscedasticity assumption.

A normal model

The residual vs fitted plot

The residual QQ plot

The true model

$$y_i = 1 + 2x_i + \varepsilon_i$$

where $\varepsilon_i \sim N(0, 0.5^2)$.

A non-normal model

The residual vs fitted plot

The residual QQ plot

The true model

$$y_i = 1 + 2x_i + \varepsilon_i$$

where $\varepsilon_i \sim \log |N(0, 0.5^2)|$.

What	to	do

 $1. \ \ \mbox{For you model fitted previously, test the normality assumption.}$

One more assumption

The plot

The residual vs fitted plot

The redisual QQ plot

The true model

$$y_i = 1 + 2x_i + y_{i-1} + \varepsilon_i$$

where $\varepsilon_i \sim N(0, 0.5^2)$.

What to do

1. For you model fitted previously, test the independence assumption.