

TRANSFORMACIÓN DE CLAVES HASHING DISPERSIÓN

y ALGORITMOS LCC – LSI - TUPW

Objetivos

- ➤ Conocer la Técnica de Hashing.
- Evaluar el costo computacional de las operaciones, para las distintas políticas de manejo de colisiones.
- Construir el TAD Tabla Hash.

Problema

Almacenar y recuperar un elemento particular, identificado por medio de su valor de clave, con el menor *costo* posible.

Buscar - Insertar

Los datos se almacenan en direcciones de memoria, entonces:

¿Cómo determinar la dirección de memoria en la cual almacenar cada elemento?

TABLAS DE ACCESO DIRECTO

TABLAS HASH

TABLAS HASH

Almacenamiento y Recuperación

 $H:K\to D$

transformación -H- de claves -K- en direcciones -D-

Si
$$K = \{ ki / 000 <= ki <= 999 \}$$

 $y |K| = 1000$

$$D = \{ di / 000 <= di <= 999 \}$$

$$y |D| = 1000$$

¿Cuál es la función H: K→D?

Funciones biyectivas

En matemáticas, una función

 $F:X\to Y$

es biyectiva si es al mismo tiempo inyectiva y sobreyectiva

F es **inyectiva** si a elementos distintos del conjunto X (dominio) les corresponden elementos distintos en el conjunto Y (codominio)

$$orall \, a,b \in X, \ \ f(a) = f(b) \Rightarrow a = b$$

que es equivalente a su contrarrecíproco

$$orall \, a,b \in X, \ \ a
eq b \Rightarrow f(a)
eq f(b)^{1}$$

F es **sobreyectiva** si está aplicada sobre todo el codominio, es decir, cuando cada elemento de Y es la imagen de como mínimo un elemento de X

$$orall y \in Y \quad \exists x \in X: \quad f(x) = y$$

HASHING Funciones biyectivas

 $\begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100$

 $H: K \rightarrow D$

¿Inyectiva?

¿Sobreyectiva?

• todas las posiciones de la tabla T están ocupadas

HASHING PERFECTO

 para dos claves distintas k1 y k2, se cumple que h(k1) es distinta de h(k2).

$$k1 \neq k2$$
 ^ $h(k1) \neq h(k2)$

El rango de valores posibles que puede tener **K** (valores distintos de claves) es generalmente mayor que el tamaño de **D**, directamente relacionado con el número de salidas que puede producir **H**.

Problema!!!!

$$k1 \neq k2$$
 y $h(k1) = h(k2) = d$

k1 y k2 son claves **sinónimas** que **colisionan** en la dirección **d** bajo la transformación **h**.

La idea...

 Tener una estructura de datos con una complejidad temporal de O(1) en el acceso a los datos

Tablas Hash

- Insertar
- Buscar
- Borrar
- Las demás operaciones pueden ser O(n)
 - Recorrer
 - Comparar
 - ...

R S

a) Elección de la función de transformación H.

- distribuir las claves uniformemente (todas las direcciones de la tabla tienen la misma probabilidad de ser elegidas)
- ser calculable de modo eficiente (que consigue un propósito empleando los medios idóneos)

Método de la División

Extracción

Plegado

Cuadrado Medio

Funciones aplicables a claves alfanuméricas

b) Política de manejo de colisiones.

Encadenamiento

Uso de Buckets o cubos

Direccionamiento abierto.

HASHING Funciones de transformación

Método de la División

$$h(k) = k \mod M$$

Extracción

Extraer de la clave, los dígitos que varían mas aleatoriamente

Plegado

Si
$$k_i = k_{i1} k_{i2} \mid ... \mid k_{in-1} k_{in}$$

$$h(k_i) = k_{i1} k_{i2} + ... + k_{in-1} k_{in}$$

HASHINGFunciones de transformación

Cuadrado Medio

$$k_i = k_{i1} k_{i2} \dots k_{in-1} k_{in}$$

 $h(k_i) = k_i^2$ y luego se extraen los dígitos centrales

$$d_i = k_{ij} \; k_{ij+1} \; \; k_{ij+l} \qquad 1 < j < j+l < n \qquad y \qquad 0 <= \; kij \; kij+1 \; \; kij+l \; <= \; M-1$$

Funciones aplicables a claves alfanuméricas

Funciones de transformación

Claves = {20810, 21438, 21478, 21755, 21705, 21762, 21444,...} | Claves | = 33

HASHING Funciones de transformación

CLAVES	MOD 33	EXTRACCIÓN	PLEGADO	CUADRADO MEDIO
20810	20	10	20	23
21438	21	5	21	26
21478	28	12	28	7
21755	8	22	8	16
21705	24	5	24	8
21762	15	29	15	23
21444	27	11	27	20
•••	•••			

Funciones de transformación

 $h1(k_i) = ASCII(c_{i1}) + ASCII(c_{i2}) + + ASCII(c_{in})$

k: ROMA

DEC	HEX	OCT	CHAR	DEC	HEX	OCT	СН	DEC	HEX	OCT	СН	DEC	HEX	OCT	СН
0	0	000	NUL	32	20	040		64	40	100	@	96	60	140	`
1	1	001	SOH	33	21	041	ļ	65	41	101	Ă	97	61	141	а
2	2	002	STX	34	22	042	"	66	42	102	В	98	62	142	b
3	3	003	ETX	35	23	043	#	67	43	103	С	99	63	143	С
4	4	004	EOT	36	24	044	\$	68	44	104	D	100	64	144	d
5	5	005	ENQ	37	25	045	%	69	45	105	Е	101	65	145	е
6	6	006	ACK	38	26	046	&	70	46	106	F	102	66	146	f
7	7	007	BEL	39	27	047	1	71	47	107	G	103	67	147	g
8	8	010	BS	40	28	050	(72	48	110	H	104	68	150	h
9	9	011	TAB	41	29	051)	73	49	111		105	69	151	İ
10	Α	012	LF	42	2A	052	*	74	4A	112	J	106	6A	152	j
11	В	013	VT	43	2B	053	+	75	4B	113	K	107	6B	153	k
12	С	014	FF	44	2C	054		76	4C	114	L	108	6C	154	1
13	D	015	CR	45	2D	055	- 4	77	4D	115	M	109	6D	155	m
14	Е	016	SO	46	2E	056	-41	78	4E	116	N	110	6E	156	n
15	F	017	SI	47	2F	057	1	79	4F	117	0	111	6F	157	0
16	10	020	DLE	48	30	060	0	80	50	120	80	112	70	160	р
17	11	021	DC1	49	31	061	1	81	51	121	Q	113	71	161	q
18	12	022	DC2	50	32	062	2	82	52	122	R	114	72	162	r
19	13	023	DC3	51	33	063	3	83	53	123	8	115	73	163	S
20	14	024	DC4	52	34	064	4	84	54	124	Т	116	74	164	t
21	15	025	NAK	53	35	065	5	85	55	125	U	117	75	165	u
22	16	026	SYN	54	36	066	6	86	56	126	٧.	118	76	166	٧
23	17	027	ETB	55	37	067	7	87	57	127	W	119	77	167	W
24	18	030	CAN	56	38	070	8	88	58	130	Х	120	78	170	Х
25	19	031	EM)	57	39	071	9	89	59	131	Y	121	79	171	У
26	1A	032	SUB	58	3A	072	:	90	5A	132	Z	122	7A	172	Z
27	1B	033	ESC	59	3B	073	i,	91	5B	133	[123	7B	173	{
28	1C	034	FS	60	3C	074	<	92	5C	134	1	124	7C	174	[
29	1D	035	GS BB	61	3D	075	=	93	5D	135]	125	7D	175	}
30	1E	036	RS	62	3E	076	> ?	94	5E	136	^	126	7E	176	~
31	1F	037	US	63	3F	077	?	95	5F	137	_	127	7F	177	DEL

Funciones de transformación

$$h1(k_i) = ASCII(c_{i1}) + ASCII(c_{i2}) + + ASCII(c_{in})$$

 k_1 : ROMA k_2 : RAMO

Caracter	ASCII
R	82
0	79
М	77
Α	65

$$h1 (ROMA) = 82 + 79 + 77 + 65 = 303 = 82 + 65 + 77 + 79 = h1(RAMO)$$

$$h2(k_i) = ASCII(c_{i1}) * b^1 + ASCII(c_{i2}) * b^2 + + ASCII(c_{in}) * b^n$$

h2 (ROMA) =
$$82 *10^{1} + 79 * 10^{2} + 77 * 10^{3} + 65 * 10^{4} =$$
 735720
h2 (RAMO) = $82 *10^{1} + 65 * 10^{2} + 77 *10^{3} + 79 *10^{4} =$ 163320

- a) Elección de la función de transformación H.
 - distribuir las claves uniformemente
 - ser calculable de modo eficiente

b) Política de manejo de colisiones.

Método de la División

Extracción

Plegado

Cuadrado Medio

Funciones aplicables a claves alfanuméricas

Encadenamiento

Uso de Buckets o cubos

Direccionamiento abierto.

HASHING Políticas de manejo de colisiones

Encadenamiento o Dispersión Abierta

? M 3

HASHING Políticas de manejo de colisiones

Uso de Buckets o Cubos

HASHING Políticas de manejo de colisiones

Direccionamiento Abierto

Ver Video
Direccionamiento
Abierto.mp4

Políticas de manejo de colisiones

• Secuencia de prueba lineal

h(k), h(k)-1,....,1, 0, M-1, M-2,...., h(k)+1 reducida a módulo tamaño de la tabla

Agrupamientos Primarios!!!

Secuencia de prueba pseudo random

h(k)+0, h(k)+r1, ..., h(k)+rm-1 reducida a módulo tamaño de la tabla

Doble Hashing

$$h(k) - i * h2 (k)$$
 para $0 <= i <= M-1$

En lugar de r1...rm-1, se puede usar un solo nº aleatorio para toda la secuencia

Factor de Carga

Standish define al *factor de carga* α de una tabla como la razón entre el número de entradas N ocupadas en la tabla y el número total de entradas M en la tabla

α =N/M

Este autor expresa que si $\alpha \le 0.7$, la cantidad de comparaciones involucradas en la recuperación de un elemento es adecuada.

Esta propuesta surge al considerar que la performance se deteriora especialmente al aplicar la secuencia de prueba lineal, a medida que la tabla se aproxima a la saturación total – cuando N se aproxima a M.

$$N = 33$$

$$\Rightarrow \alpha = N/M = 1$$

$$M = 33$$

$$\alpha = 0.7$$
 y $0.7 = N/M$

? M 5

Nros primos

47?

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, **47**, 53, 59, 61, 67, 71, 73, 79, 83, 89 y 97

	XXXX	0
	XXXX	1
	XXXX	
		7
	21755	8
	XXXX	9
		19
	20810	20
	21438	21
	XXXX	22
	XXXX	
	20551	30
	XXXX	
×		

M-1

XXXX

T.A.D. Tabla HASH

