1.Let K=2, show that(b1,b2) in p.29 of slides in CH5 reduces to the formula of (b1,b2) in (2.7)-(2.8)

2.Let K=2, show that cov(b1,b2) in p.30 of slides in CH5 reduces to the formula of (2.14)-(2.16)

$$V_{AY}(L) = \nabla^{2}(X'X)^{-1} = \frac{1}{N \sum_{A=1}^{N} X_{A_{1,2}}^{2} - (\sum_{A=1}^{N} X_{A_{1,2}}^{2})^{2}} \left[\frac{\sum_{A=1}^{N} X_{A_{1,2}}^{2} - \sum_{A=1}^{N} X_{A_{1,2}}^{2}}{\sum_{A=1}^{N} X_{A_{1,2}}^{2} - (\sum_{A=1}^{N} X_{A_{1,2}}^{2})^{2}} \frac{1}{N \sum_{A=1}^{N} X_{A_{1,2}}^{2} - N X} \frac{1}{N \sum_{A=1}^{N} X_{A_{1,2}}^{2}} \frac{1}{N \sum_{A=1}^{N} X_{A_{1,2}}^{2} - N X} \frac{1}{N \sum_{A=1}^{N} X_{A_{1,2}}^{2}} \frac{1}{N \sum_{A=1}^{N} X_{A_{1,2}}^{2} - N X} \frac{1}{N \sum_{A=1}^{N} X_{A_{1,2}}^{2}} \frac{1}{N \sum_{A=1}^{N} X_{A_{1,2}}^{2} - N X} \frac{1}{N \sum_{A=1}^{N} X_{A_{1,2}}^{2}} \frac{1}{N \sum_{A=1}^{N} X_{A_{1,2}}^{2} - N X} \frac{1}{N \sum_{A=1}^{N} X_{A_{1,2}}^{2}} \frac{1}{N \sum_{A=1}^{N} X_{A_{1,2}}^{2} - N X} \frac{1}{N \sum_{A=1}^{N} X_{A_{1,2}}^{2}} \frac{1}{N \sum_{A=1$$

5.3 Consider the following model that relates the percentage of a household's budget spent on alcohol *WALC* to total expenditure *TOTEXP*, age of the household head *AGE*, and the number of children in the household *NK*.

$$WALC = \beta_1 + \beta_2 \ln(TOTEXP) + \beta_3 NK + \beta_4 AGE + e$$

This model was estimated using 1200 observations from London. An incomplete version of this output is provided in Table 5.6.

TABLE 5.6

Output for Exercise 5.3

Dependent Variable: WALC Included observations: 1200				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	1.4515	2.2019	0.6392	0.5099
ln(TOTEXP)	2.7648	0.4842	5.7103	0.0000
NK	-1.4547	0.3695	-3.9376	0.0001
AGE	-0.1503	0.0235	-6.4019	0.0000
R-squared	1.0575	Mean dependent var		6.19434
S.E. of regression	6,2/67	S.D. dependent var		6.39547
Sum squared resid	46221.62			

- a. Fill in the following blank spaces that appear in this table.
 - i. The *t*-statistic for b_1 .
 - ii. The standard error for b_2 .
 - iii. The estimate b_3 .
 - iv. R^2 .
 - v. σ̂.

$$i: t \ statistic \ for \ b_1 = \frac{1.4515}{2.2019} = 0.6592$$

$$ii: std \ error \ for \ b_2 = \frac{2.7648}{5.7103} = 0.4842$$

$$iii: b_3 = 0.3695 \times (-3.9376) = -1.4549$$

$$iv: R^2 = 1 - \frac{46221.62}{1199 \times (6.39547)^2} = 0.0575$$

$$v: \hat{\sigma} = \left(\frac{46221.62}{1196}\right)^{0.5} = 6.2167$$

b. Interpret each of the estimates b_2 , b_3 , and b_4 .

 eta_2 :LN(TOTEXP)每上升 1,WALC 上升 2.7648%

 eta_3 :number of kids 每上升 1 個,WALC 減少 1.4549%

 eta_4 :age 每上升 1 year,WALC 減少 0.1503%

c. Compute a 95% interval estimate for β_4 . What does this interval tell you?

 $\beta_4 \pm t_{1196.0.025} \times std\ error$

- \rightarrow (-0.1503 1.96 × 0.0235, -0.1503 + 1.96 × 0.0235)
- \rightarrow (-0.1964, -0.1042)

95%的信心水準下,age 每上升 1 year,WALC 減少的幅度介於 $0.1042 \cdot 0.1964$ 之間

d. Are each of the coefficient estimates significant at a 5% level? Why?

e. Test the hypothesis that the addition of an extra child decreases the mean budget share of alcohol by 2 percentage points against the alternative that the decrease is not equal to 2 percentage points. Use a 5% significance level.

$$H_0$$
: $\beta_3 = -2$ 、 H_1 : $\beta_3 \neq -2$
$$t = \frac{\beta_3 - (-2)}{std\ error} = \frac{-1.4549 + 2}{0.3695} = 1.4752 < 1.96$$
 不拒絕 H_0

5.23 The file cocaine contains 56 observations on variables related to sales of cocaine powder in northeast-ern California over the period 1984–1991. The data are a subset of those used in the study Caulkins, J. P. and R. Padman (1993), "Quantity Discounts and Quality Premia for Illicit Drugs," *Journal of the American Statistical Association*, 88, 748–757. The variables are

PRICE = price per gram in dollars for a cocaine sale QUANT = number of grams of cocaine in a given sale QUAL = quality of the cocaine expressed as percentage purity TREND = a time variable with 1984 = 1 up to 1991 = 8 Consider the regression model

$$PRICE = \beta_1 + \beta_2 QUANT + \beta_3 QUAL + \beta_4 TREND + e$$

a. What signs would you expect on the coefficients β_2 , β_3 , and β_4 ?

 eta_2 :預期是負的,若量大可能可壓低每克的購買價格 eta_3 :預期是正的,純度越高表示其生產成本越高,因此出售價格亦較高 eta_4 :不確定,一段時間內可能有政策禁令或需求增減狀況,無法推論正負

b. Use your computer software to estimate the equation. Report the results and interpret the coefficient estimates. Have the signs turned out as you expected?

```
call:
lm(formula = price ~ quant + qual + trend, data = cocaine)
Residuals:
   Min
            1Q Median
                            3Q
-43.479 -12.014 -3.743 13.969 43.753
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 90.84669 8.58025 10.588 1.39e-14 ***
                               -5.892 2.85e-07 ***
           -0.05997
quant
                       0.01018
qual
            0.11621
                       0.20326
                                 0.572
                                         0.5700
                       1.38612 -1.699
trend
           -2.35458
                                         0.0954 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 20.06 on 52 degrees of freedom
Multiple R-squared: 0.5097, Adjusted R-squared: 0.4814
F-statistic: 18.02 on 3 and 52 DF, p-value: 3.806e-08
```

 eta_2 :-0.05997 預期為負,符合預期

 β_3 :0.11621 預期為正,符合預期

 β_4 :-2.35458 預期為不確定,不符合預期

c. What proportion of variation in cocaine price is explained jointly by variation in quantity, quality, and time?

```
Residual standard error: 20.06 on 52 degrees of freedom
Multiple R-squared: 0.5097, Adjusted R-squared: 0.4814
F-statistic: 18.02 on 3 and 52 DF, p-value: 3.806e-08
```

Multiple R-squared: 0.5097,表示有約 51%可被 variation in quantity, quality, time 解釋

d. It is claimed that the greater the number of sales, the higher the risk of getting caught. Thus, sellers are willing to accept a lower price if they can make sales in larger quantities. Set up H_0 and H_1 that would be appropriate to test this hypothesis. Carry out the hypothesis test.

$$H_0$$
: $\beta_2 \ge 0$ 、 H_1 : $\beta_2 < 0$
 β_2 : -0.05997 、 $std.Error$: 0.01018 、 $tvalue$: -5.892
 $t_{0.95.52} = 1.675 < 5.892$
 拒絕 H_0

e. Test the hypothesis that the quality of cocaine has no influence on expected price against the alternative that a premium is paid for better-quality cocaine.

$$H_0$$
: $\beta_3 = 0$ 、 H_1 : $\beta_3 > 0$
 β_-3 : 0.11624 、 std . $Error$: 0.20326 、 t $value$: 0.572
 $t_{0.95.52} = 1.675 > 0.572$ 無法拒絕 H_0 表示品質不見得能有較高價格

f. What is the average annual change in the cocaine price? Can you suggest why price might be changing in this direction?

平均年變化為 $\beta_4 = -2.35458$,表示平均價格每過一年下降約 2.35 美元/每克原因可能是 cocaine 的生產技術進步而使產量大幅增加(供給過多)導致價格下跌