Lesson 3

Performing Security Assessments

Topic 3A

Assess Organizational Security with Network Reconnaissance Tools

Syllabus Objectives Covered

 4.1 Given a scenario, use the appropriate tool to assess organizational security

ipconfig, ping, and arp

- Footprinting the network layout and rogue system detection
- ipconfig /ifconfig /ip
 - Report the local IP configuration
- ping
 - Test connectivity with a host
 - Use a ping sweep to detect live hosts on a subnet
- arp
 - Address Resolution Protocol (ARP) cache
 - Shows IP to Media Access Control (MAC) address mapping
 - Detect spoofing (validate MAC of default gateway)

```
C:\Users\Admin>for /l zi in (1,1,255) do @ping -n 1 -w 100 10.1.0.zi | find /i "reply"

Reply from 10.1.0.1: bytes=32 time<1ms TTL=128

Reply from 10.1.0.128: bytes=32 time<1ms TTL=128

Reply from 10.1.0.129: bytes=32 time<1ms TTL=128

Reply from 10.1.0.131: bytes=32 time<1ms TTL=128

Reply from 10.1.0.131: bytes=32 time<1ms TTL=128

Reply from 10.1.0.132: bytes=32 time=1ms TTL=128

Reply from 10.1.0.134: bytes=32 time<1ms TTL=128

C:\Users\Admin>_
```

Screenshot used with permission from Microsoft.

route and traceroute

- route
 - Show the local routing table
 - Identify default route and local subnet
 - Check for suspicious entries
- tracert/traceroute
 - Test the path to a remote host
- pat hpi ng/mt r
 - Measure latency

```
[centos@lx1 ~]$ route -n
Kernel IP routing table
Destination
                Gateway
                                Genmask
                                                 Flags Metric Ref
                                                                     Use Iface
0.0.0.0
                10.1.0.254
                                0.0.0.0
                                                 UG
                                                       100
                                                                        0 eth0
10.1.0.0
                0.0.0.0
                                 255.255.255.0
                                                       100
                                                                        0 eth0
```

IP Scanners and Nmap

- Host discovery
 - Test whether host in IP range responds to probes
- Port scan
 - Test whether TCP or UDP port allows connections

```
C:\Program Files (x86)\Nmap>nmap 10.1.0.0/24
Starting Nmap 7.70 ( https://nmap.org ) at 2020-01-06 10:13 Pacific Standard Time
Nmap scan report for DC1.corp.515support.com (10.1.0.1)
Host is up (0.00s latency).
Not shown: 986 filtered ports
PORT
        STATE SERVICE
        open domain
53/tcp
80/tcp
        open http
88/tcp
        open kerberos-sec
135/tcp
        open msrpc
        open netbios-ssn
139/tcp
389/tcp
        open ldap
443/tcp open https
445/tcp open microsoft-ds
464/tcp open kpasswd5
593/tcp open http-rpc-epmap
636/tcp open ldapssl
3268/tcp open globalcatLDAP
3269/tcp open globalcatLDAPssl
3389/tcp open ms-wbt-server
MAC Address: 00:15:5D:01:CA:AB (Microsoft)
```

Screenshot used with permission from nmap.org.

Service Discovery and Nmap

- Service discovery
 - Scan custom TCP/UDP port ranges
- Service and version detection
 - Fingerprinting each port
 - Protocol
 - Application/version
 - OS type
 - Device type

```
C:\Program Files (x86)\Nmap>nmap 10.1.0.1 -A
Starting Nmap 7.70 ( https://nmap.org ) at 2020-01-06 10:41 Pacific Standard Time
Nmap scan report for DC1.corp.515support.com (10.1.0.1)
Host is up (0.000083s latency).
Not shown: 986 filtered ports
PORT
         STATE SERVICE
                             VERSION
53/tcp open domain?
| fingerprint-strings:
   DNSVersionBindRegTCP:
      version
      bind
80/tcp open http
                             Microsoft IIS httpd 10.0
| http-methods:
   Potentially risky methods: TRACE
http-server-header: Microsoft-IIS/10.0
| http-title: IIS Windows Server
1 service unrecognized despite returning data. If you know the service/version, please sub-
SF-Port53-TCP:V=7.70%I=7%D=1/6%Time=5E137F54%P=i686-pc-windows-windows%r(D
SF:NSVersionBindRegTCP,20,"\0\x1e\0\x06\x81\x04\0\x01\0\0\0\0\0\0\x07versi
SF:on\x04bind\0\0\x10\0\x03"):
MAC Address: 00:15:5D:01:CA:AB (Microsoft)
Warning: OSScan results may be unreliable because we could not find at least 1 open and 1
Device type: general purpose
Running (JUST GUESSING): Microsoft Windows 2016|2012 (98%)
OS CPE: cpe:/o:microsoft:windows server 2016 cpe:/o:microsoft:windows server 2012:r2
Aggressive OS guesses: Microsoft Windows Server 2016 (98%), Microsoft Windows Server 2012
No exact OS matches for host (test conditions non-ideal).
Network Distance: 1 hop
Service Info: Host: DCl; OS: Windows; CPE: cpe:/o:microsoft:windows
```

Screenshot used with permission from nmap.org.

netstat and nslookup

- netstat
 - Report port status on local machine
 - Switches to filter by protocol
 - Display process name or PID that opened port
- nslookup and dig
 - Query name servers
 - Zone transfers

Screenshot used with permission from Microsoft.

```
∷\Users\Administrator>netstat
 TCP
         10.1.0.1:80
                                  ROGUE: 1415
 TCP
 TCP
 TCP
 TCP
 TCP
 TCP
 TCP
 TCP
 TCP
         10.1.0.1:49163
                                  ROGUE: 1471
C:\Users\Administrator}_
```

Other Reconnaissance and Discovery Tools

- theHarvester
 - Collate open source intelligence (OSINT)
- dnsenum
 - Collate DNS hosting information, name records, and IP schemas
- scanless
 - Collate results from third-party port scanning sites
- curl
 - Craft and submit protocol requests
- Nessus
 - Perform automated vulnerability scanning

Packet Capture and tcpdump

- Packet analysis versus protocol analysis
- Sniffer—tool for capturing network frames
 - Use software to interact with host network driver (libpcap/winpcap)
 - Mirrored ports/switched port analyzer (SPAN)
 - Use a test access port (TAP) device to read frames from network media
 - Placement of sensors
- tcpdump
 - Write to pcap
 - Read from pcap
 - Filters

tcpdump - i eth0 "src host 10.1.0.100 and (dst port 53 or dst port 80)"

Packet Analysis and Wireshark

- Output panes
 - Packet list
 - Packet details (headers and fields)
 - Packet bytes (hex and ASCII)
- Capture and display filters
- Coloring rules
- Follow TCP Stream

Screenshot used with permission from wireshark.org.

Packet Injection and Replay

- Packet injection
 - Crafting spoofed packets
 - Dsniff, Ettercap, Scapy
- hping
 - Host/port detection and firewall testing
 - Traceroute
 - Denial of service (DoS)
- tcpreplay
 - Stream a packet capture through an interface
 - Sandbox analysis and intrusion detection testing

Exploitation Frameworks

- Simulate adversary tools for exploitation and backdoor access
- Metasploit
 - Modules to exploit known code vulnerabilities
 - Couple exploit module with payload
 - Obfuscate code to evade detection
- Sn1Per
 - Penetration test reporting and evidence gathering
 - Run automated suites of tests
- Other frameworks
 - Linux, embedded, browser, web/mobile app, cloud,

```
http://metasploit.com
Easy phishing: Set up email templates, landing pages and listeners
in Metasploit Pro -- learn more on http://rapid7.com/metasploit
       =[ metasploit v4.13.12-dev
     --=[ 1611 exploits - 914 auxiliary - 279 post
     --=[ 471 payloads - 39 encoders - 9 nops
    --=[ Free Metasploit Pro trial: http://r-7.co/trymsp
```

Screenshot used with permission from metasploit.com

Netcat

- Simple tool capable of very wide range of network tasks
- Port scanning and fingerprinting
- Command prompt listener over arbitrary port
- File transfer over arbitrary port

```
echo "head" | nc 10.1.0.1 - v 80
```

```
nc - I - p 666 - e cmd.exe
```

```
type accounts.sql | nc
10.1.0.192 6666
```

Topic 3B

Explain Security Concerns with General Vulnerability Types

Syllabus Objectives Covered

 1.6 Explain the security concerns associated with various types of vulnerabilities

Software Vulnerabilities and Patch Management

- Exploits for faults in software code
- Applications
 - Different impacts and exploit scenarios
 - Client versus server apps
- Operating system (OS)
 - Obtain high level privileges
- Firmware
 - PC firmware
 - Network appliances and Internet of Things devices
- Improper or weak patch management
 - Undocumented assets
 - Failed updates and removed patches

Zero-day and Legacy Platform Vulnerabilities

- Zero-day
 - Vulnerability is unknown to the vendor
 - Threat actor develops an exploit for which there is no patch
 - Likely to be used against high value targets
- Legacy platform
 - Vendor no longer releases security patches

Weak Host Configurations

- Default settings
 - Vendor may not release product in a default-secure configuration
- Unsecured root accounts
 - Threat actor will gain complete control
 - Limit ability to login as superuser
- Open permissions
 - Configuration errors allowing unauthenticated access
 - Allowing write access when only read access is appropriate

Weak Network Configurations

- Open ports and services
 - Restrict using an access control list
 - Disable unnecessary services or block ports
 - Block at network perimeter
- Unsecure protocols
 - Cleartext data transmissions are vulnerable to snooping and eavesdropping
- Weak encryption
 - Storage and transport encryption
 - Key is generated from a weak password
 - Cipher has weaknesses
 - Key distribution is not secure
- Errors
 - Error messages that reveal too much information

Impacts from Vulnerabilities

- Data breaches and data exfiltration impacts
 - Data breach is where confidential data is read or transferred without authorization
 - Data exfiltration is the methods and tools by which an attacker transfers data without authorization
- Identity theft
 - Abuse of data from privacy breaches
- Data loss and availability loss impacts
 - Availability is also a critical security property
- Financial and reputation impacts

Third-Party Risks

- Supply chains
 - Due diligence
 - Weak links
- Vendor management
 - Process for selecting suppliers and evaluating risks
 - System integration
 - Lack of vendor support
- Outsourced code development
- Data storage
- Cloud-based versus on-premises risks

Topic 3C

Summarize Vulnerability Scanning Techniques

Syllabus Objectives Covered

1.7 Summarize the techniques used in security assessments

Security Assessment Frameworks

- Methodology and scope for security assessments
- NIST SP 800-115
 - Testing
 - Examining
 - Interviewing
- Vulnerability assessment versus threat hunting and penetration testing
- Vulnerability assessments can use a mix of manual procedures and automated scanning tools

Vulnerability Scan Types

- Automated scanners configured with list of known vulnerabilities
- Network vulnerability scanner
 - Configured with tests for most types of network hosts
 - Focused on scanning OS plus some desktop and server applications
- Application and web application scanners
 - Configured with applicationspecific tests

Screenshot used with permission from Greenbone Networks (openvas.org).

Common Vulnerabilities and Exposures

- Vulnerability feed/plug-in/test
- Security Content Automation Protocol (SCAP)
 - Mechanism for updating scanner via feed
 - Common identifiers
- Common Vulnerabilities and Exposures (CVE)
- Common Vulnerability Scoring System (CVSS)

Score	Description
0.1+	Low
4.0+	Medium
7.0+	High
9.0+	Critical

Intrusive versus Non-intrusive Scanning

- Remote scanning versus agent-based scanning
- Non-intrusive scanning
 - Passively test security controls
 - Scanners attach to network and only sniff traffic
 - Possibly some low-interaction with hosts (port scanning/banner grabbing)
- Intrusive/active scanning
 - Establish network session
 - Agent-based scan
- Exploitation frameworks
 - Highly intrusive/risk of system crash
 - Used with penetration testing

Credentialed versus Non-credentialed Scanning

- Non-credentialed
 - Anonymous or guest access to host only
 - Might test default passwords

- Credentialed
 - Scan configured with logon
 - Can allow privileged access to configuration settings/logs/registry
 - Use dedicated account for scanning

Greenbone Security Assistant (GSA) Copyright 2009-2016 by Greenbone Networks GmbH, www.greenbone.net Screenshot used with permission from Greenbone Networks (openvas.org).

False Positives, False Negatives, and Log Review

Information	Results (135 of 1148)	Hosts (1 of 254)	Ports (17 of 30)	Applications (19 of 44)	Operating Systems (1 of 6)		CVEs (48 of 48)	Closed CVEs (56 of 56)	TLS Certificates (3 of 5)	Error Message (2 of 2)	User Tags
							_		k	◯ < 1 - 10 o	f 135 ⊳ 🖂
Vulnerability			Á	Severity ▼	QoD -	IP Name			Location	Created	
Microsoft Windov (KB4457131)	vs Multiple Vi	ulnerabiliti	es 聋	10.0 (High)	80 %		.1.0.1		5support.com	general/tcp	Fri, Jan 3, 2020 9:58 PM UTC
Microsoft Windov (KB4467691)	vs Multiple Vi	ulnerabiliti	es 🏮	10.0 (High)	80 %	10.	.1.0.1	DC1.corp.51	5support.com	general/tcp	Fri, Jan 3, 2020 10:20 PM UTC
Microsoft Windov (KB4471321)	vs Multiple V	ulnerabiliti	es 蘃	10.0 (High)	80 %	10.	.1.0.1	DC1.corp.51	5support.com	general/tcp	Fri, Jan 3, 2020 10:40 PM UTC
Microsoft Windov (KB4512517)	vs Multiple V	ulnerabiliti	es 🙇	10.0 (High)	80 %	10.	.1.0.1	DC1.corp.51	5support.com	general/tcp	Fri, Jan 3, 2020 10:27 PM UTC
Microsoft Malwar Windows Defend Execution Vulner	er Multiple R		le 🗳	9.3 (High)	97 %	10.	.1.0.1	DC1.corp.51	5support.com	general/tcp	Fri, Jan 3, 2020 10:19 PM UTC
Microsoft Malwar Windows Defend			es 💆	9.3 (High)	■ 80 %	10.	.1.0.1	DC1.corp.51	5support.com	general/tcp	Fri, Jan 3, 2020 10:09 PM UTC

Screenshot used with permission from Greenbone Networks (openvas.org).

- Analyzing and validating scan report contents
- False positives
 - Scanner identifies a vulnerability that is not actually present
- False negatives
 - Scanner fails to identify a vulnerability
- Review logs to confirm results

Configuration Review

- Lack of controls
 - Security controls that should be present but are not (or are not functioning)
- Misconfiguration
 - Settings deviate from template configuration
- Driven by templates of configuration settings
 - Open Vulnerability and Assessment Language (OVAL)
 - Extensible Configuration Checklist Description Format (XCCDF)
- Compliance-based templates available in many products

Screenshot used with permission from Microsoft.

Threat Hunting

- Use log and threat data to search for IoCs
- Advisories and bulletins
 - Plan threat hunting project in response to newly discovered threat
- Intelligence fusion and threat data
 - Use security information and event management (SIEM) and threat data feed to automate searches
- Maneuver
 - Consider possibility of alerting adversary to the search
 - Use techniques that will give positional advantage

Topic 3D

Explain Penetration Testing Concepts

Syllabus Objectives Covered

1.8 Explain the techniques used in penetration testing

Penetration Testing

- Pen test or ethical hacking
- Verify threat
 - Identify vulnerability and the vector by which it could be exploited
- Bypass security controls
 - Identify lack of controls or ways to circumvent existing controls
- Actively test security controls
 - Examine weaknesses that render controls ineffective
- Exploit vulnerabilities to prove threat exists ("pwned")
- Active and highly intrusive techniques, compared to vulnerability assessment

Rules of Engagement

- Agreement for objectives and scope
- Authorization to proceed from system owner and affected third-parties
- Attack profile
 - Black box (unknown environment)
 - White box (known environment)
 - Gray box (partially known environment—to model insider threat agents, for instance)
- Bug bounty programs

Exercise Types

- Red team
 - Performs the offensive role
- Blue team
 - Performs the defensive role
- White team
 - Sets the rules of engagement and monitors the exercise
- Purple team
 - Exercise set up to encourage collaboration
 - Red and blue teams share information and debrief regularly
 - Might be assisted by a facilitator

Passive and Active Reconnaissance

- Pen testing and kill chain attack life cycle
- Reconnaissance phase
 - Passive techniques unlikely to alert target
 - Active techniques are detectable
- Open Source Intelligence (OSINT)
- Social engineering
- Footprinting
- War driving
- Drones/unmanned aerial vehicle (UAV) and war flying

Pen Test Attack Life Cycle

- Initial exploitation
 - Obtain a foothold via an exploit
- Persistence
 - Establish a command & control backdoor
 - Reconnect across host shut down/user log off events
- Privilege escalation
 - Internal reconnaissance
 - Gain additional credentials and compromise higher privilege accounts
- Lateral movement
 - Compromise other hosts
- Pivoting
 - Access hosts with no direct remote connection via a pivot host
- Actions on objectives
- Cleanup

Lesson 3

Summary

