

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC1005 – Computación: Ciencia y Tecnología del Mundo Digital

Arquitectura de Computadores

De qué trata esta clase

- Empezaremos con algunas definiciones y conceptos básicos sobre los computadores.
- A continuación seguiremos con un poco de historia de los computadores modernos.
- Luego veremos el interior de un computador y como funciona.
- Finalmente discutiremos sobre el futuro y por qué es y será esencial saber cómo funciona un computador.

¿DE QUÉ ME SIRVE APRENDER ESTO?

Tengo que tomar decisiones sobre la arquitectura de TI de mi empresa, y me ofrecen muchas opciones.

¿DE QUÉ ME SIRVE APRENDER ESTO?

Tengo que tomar decisiones sobre la arquitectura de TI de mi empresa, y me ofrecen muchas opciones.

Mi código falla o corre muy lento, a pesar de que lo he revisado y corregido muchas veces.

¿DE QUÉ ME SIRVE APRENDER ESTO?

Tengo que tomar decisiones sobre la arquitectura de TI de mi empresa, y me ofrecen muchas opciones.

Mi código falla o corre muy lento, a pesar de que lo he revisado y corregido muchas veces.

Si nuestra especialidad se centra en los computadores, es fundamental entonces comprender como funcionan.

Desde el punto de vista de la arquitectura de computadores, la respuesta es clara

- Lo más importante: es una máquina programable.
- Permite escribir programas (secuencias de instrucciones) para ella y ejecutarlos.
- Cómo se construye una máquina de este tipo es la pregunta central del curso de arquitectura de computadores.
- Sin embargo, la arquitectura de computadores cubre bastante más...

¿Cómo se estructura un sistema computacional (software+hardware)?

¿Cómo se estructura un sistema computacional (software+hardware)?

¿Cómo se estructura un sistema computacional (software+hardware)?

Veamos un poco de historia

Durante los 30s, las máquinas analógicas dominaban la computación

- Claude Shannon (padre de la teoría de la información) estaba convencido que esta no era la mejor solución.
- Planteó una estrategia de tres pasos para diseñar un computador más eficiente, que finalmente resultaría siendo el computador digital.
- Desarrolló estas ideas en su tesis de magister, a los 19 años.

Una fórmula de lógica booleana tiene 2 componentes principales

 Proposiciones lógicas o variables: verdadero o falso

A = la luz está prendida

B = está nublado

Conectivos lógicos

Permiten unir las variables, análogo a operadores (+,-,...).

Se definen usando tablas de verdad.

A	В	A and B	
F	F	F	
F	V	${ m F}$	
V	\mathbf{F}	F	
V	V	V	

A	В	A or B	
F	F	F	
\mathbf{F}	V	V	
V	\mathbf{F}	V	
V	V	V	

A	$not(A)$
F	V
V	\mathbf{F}

Álgebra booleana permite definir sentencia lógicas complejas

- Bastan AND, OR y NOT para representar cualquier tabla de verdad de conectivos binarios.
- Para definir sentencias complejas, basta con conectar múltiples variables y operadores.
- Por ejemplo:

$$A \oplus B = (\neg A \land B) \lor (A \land \neg B)$$

Lógica booleana permite representar operaciones aritméticas

A	В	\mathbf{C}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A \oplus B$$

 $C = A \wedge B$

Relé (Relay en inglés)

Z3 (1941)

Relé (Relay en inglés)

Tubo de vacío

ENIAC (1945)

Circuito integrado o chip (1958,1959)

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

Veamos ahora que tiene por dentro un computador

Muy bien por el hardware, pero ¿qué pasa con las instrucciones (programas)?

- Las instrucciones son almacenadas en la memoria (RAM).
- Luego, una instrucción es una secuencia de 0s y 1s.
- Esta secuencia es recibida en la CPU para ser ejecutada.
- Cada posible instrucción del computador está asociada a sólo una secuencia de 0s y 1s.

Un ejemplo muy simple

- Supongamos que tenemos la instrucción 01010011, que corresponde a sumar el contenido de los regs. A y B, para luego almacenarlo nuevamente en A.
- Llamaremos a esta instrucción ADD A, B.
- La unidad de control, al recibir 01010011, chequea si es una instrucción válida y luego la decodifica, enviando a cada elemento la orden correspondiente.
- En este caso, le dice a la ALU que sume sus dos entradas, y le dice al reg. A, que almacene el resultado de la ALU.

El flujo completo de una instrucción puede describirse de la siguiente manera

- 1. Lectura de instrucción desde memoria (Fetch)
- 2. Decode (Unidad de Control)
- 3. Obtener dato de memoria o registros (Mem)
- 4. Execute (ALU)
- 5. Escribir resultado en memoria o registros (Write Back)

El futuro y la importancia de las arquitecturas avanzadas

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND 2012 REPRESENT BCA ESTIMATES.

Procesadores *multicore* entregan un mecanismo para tener multiprocesamiento en un solo chip

Multiprocesador con memoria compartida necesita mecanismos para mantener coherencia en memoria

Multiprocesador por paso de mensajes puede ser un cluster o un sistema distribuido

GPUs contienen cientos de pequeños procesadores

FPGA son tarjetas con compuertas lógicas programables, que permiten construir arquitecturas nuevas fácilmente.

La mejor solución es justamente construir la arquitectura adecuada al problema

16.7 billones de USD

La mejor solución es justamente construir la arquitectura adecuada al problema

400 millones de USD (45 personas)

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC1005 – Computación: Ciencia y Tecnología del Mundo Digital

Arquitectura de Computadores