智能中控与网络终端通讯协议

Rev	Date	Author	Comments
V0.1	2020.6.23	Lane	Draft
V0.2	2020.7.20	Lane	使用外部通讯终端与服务器通讯协议
V0.3	2020.7.28	Allen	重新整理协议架构
V0.4	2020.8.14	Allen	增加第 6.2.8 章"SetLocationExtras"
V0.5	2020.9.02	Allen	修改第 6.2.1 章, 第 6.2.2 章, 第 6.2.3 章
			修改第 6.2.4 章,第 6.3.1 章
V0.6	2020.9.02	Allen	修改地 6.2.2 章请求包格式
V0.7	2020.9.07	Lane	1.增加终端 ID 编码规则。2.增加蓝牙广播
			时间和发射功率,蓝牙复位。3.增加电池
			CAN 地址
V0.8	2020.9.10	Allen	修改第 6.3.2 章,增加"蓝牙广播包内容"
V0.9	2020.9.23	Allen	增加第 6.4.3 章, SimCfgChanged Event
V0.10	2020.11.04	Allen	增加第 6.3.2 章,Beacon 设备 UUID 过滤
V0.11	2020.12.03	Allen	增加第 6.2.9 章,GetUserInfo
			增加第 6.2.10 章,SetUserInfo
V0.12	2020.12.04	Allen	增加第 6.2.11 章, 终端控制命令。
V0.13	2021.01.03	Allen	增加第 6.5.3 章,BeaconChanged Event

1. 概述

本协议为智能中控与通讯模组之间的通讯协议。智能中控与通讯模组之间的数据链路层使用 CAN2.0B 通讯,29 位 ID,通信速率采用250 kbit/s。当发送方发送数据,没有收到回复时,需再次发送该帧数据。连续3次没有数据回复,可停止发送该帧数据。

2. 物理层

采用本协议的物理层应符合 ISO 11898-1:2003、SAE J1939-11:2006 中关于物理层的规定。本协议设备间的通信应使用 CAN 接口,通信速率采用 250 kbit/s。

3. 地址分配

地址(Hex)	设备	备注
0x10	智能中控	
0x11	电池	
0x20	通讯模组	

4. 帧格式

4.1. CAN 通信帧格式

采用本协议的设备应使用 CAN 扩展帧的 29 位标识符,具体每个位分配的相应定义应符合 SAE J1939-21:2006 中的相关规定。每个 CAN 数据帧包含一个单一的协议数据单元(PDU)。协议数据单元由七部分组成,分别是优先权、保留位、数据页、PDU 格式、特定 PDU、原地址和数据域。

	D	DP																											
P	IX	DI	PF		PS			SA			DATA																		
3	1	1	8		8			8					0~64																

协议数据单元(PDU)

数据格式要求:

- 1. P 为优先权: 从最高 0 设置到最低 7。所有控制消息的缺省优先级是 3, 其他所有信息、专用、请求和 ACK 消息的缺省优先级是 6。本协议设为 0。
 - 2. R 为保留位: 备今后开发使用, 本协议设为 0。
 - 3. DP 为数据页: 用来选择参数组描述的辅助页, 本协议设为 0。
 - 4. PF 为命令号。
 - 5. PS 值为目标地址, 发送此报文的目的地址。
 - 6. SA 为源地址:发送此报文的源地址。
 - 7. DATA 为数据域, Data 的数据格式参考第 4. 2 章。
 - 8. 本表第三行表示位数。
- 9. 当9字节或以上的数据传输时,可分多包传输。如数据内容长度为20字节,需要前2次数据长度为8字节,第3次数据长度为4字节。

4.2. 串口通信帧格式

在 CAN 上的 DATA 域,走的通信协议为从机和主机串口通信协议,串口通信协议帧格式见表格 1。

表格 1 帧格式

标识位	校验码	版本号	厂商编号	外 设 类型编号	命令码	用户 数据长度	用户数据	标识位
1 byte	byte	byte	2byte	1byte	1 byte	1 byte	n byte	1 byte
0x7E	VAR	0x00	0x00	0x00	VAR		VAR	0x7E

表 A.1 的内容说明如下:

a) 标识位:采用 0x7e 表示,若校验码、消息头以及消息体中出现 0x7e,则要进行转义处理,转义规则定义如下:

0x7e <----> 0x7d 后紧跟一个 0x02;

0x7d <----> 0x7d 后紧跟一个 0x01;

转义处理过程如下:

发送消息时:消息封装——>计算并填充校验码——>转义;

接收消息时:转义还原——>验证校验码——>解析消息;

示例 1: 发送一包内容为 0x30 0x7e 0x08 0x7d 0x55 的数据包,则经过封装如下: 0x7e 0x30 0x7d 0x02 0x08 0x7d 0x01 0x55 0x7e:

b) 校验码:从厂商编号到用户数据依次累加的累加和,然后取累加的低 8 位 作为校验码:

示例 2: 累加和为 0x1388,则校验码为 0x88:

- c) 版本号: 标识通讯协议版本:
- d) 厂商编号: 外设从机的制造厂商代码;
- e) 外设类型编号:每种外设唯一对应的一个类型编号,用于主机的外设接口驱动区别是何种外设发来的数据;外设类型编号见表 A.2:48
- f) 命令类型:外设与主机进行各种数据交互的信息类型,命令类型分为通用协议和专有协议两大类:通用协议主要包括从机与主机基本的、必需的、共有的一些信息交互类型;专有协议则定义各型外设与主机特有的信息交互类型;命令类型见表 A.3:
- g) 用户数据: 指外设与主机交互的数据中除以上几个部分以外的由具体业务 功能定制内容:
- h) 通讯帧的数据采用大端(big-endian)的表示方式。

5. 错误码 Error Code

表格 2 错误码定义

值	描述
0x00	成功。
0x01	操作失败。
0x02	操作超时。
0x03	设备未准备好。
0x04	不支持的命令。
0x05	硬件错误。

0x06	参数错误。
0xFF	未知错误

6. PF 命令号说明

表格 3 命令类型定义

命令号	命令类型	说明
0x10	网络管理消息	NMT message
0x20	命令消息	Command Message
0x30	事件消息	Event Message

6.1. NMT Message (网络管理消息)

心跳帧的周期为 2 秒,如果超过 3 秒没有收到对方的心跳帧,认为对方不在线。 节点工作状态机如图表 1

图表 1

6.1.1. SIM Heartbeat (0x01)

SIM 模组心跳消息。

SIM 模组发送给 MCU, MCU 不需要应答。模组运行起来,必须周期 (2 秒) 向主控 MCU 发送心跳包,心跳包不需要应答。

表格 4 心跳数据包格式定义。

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x01	命令码
1	Data Length	UINT8	0x01	数据长度
2	OperationState	UINT8		模组的操作状态。
				0: 初始化状态。
				1: Sleep State. 休眠状态。
				2: Wakeup,唤醒状态。
				4: PreOperation State. 域操作状态。
				5: Operation State. 操作状态。

表格 5 模组的操作状态定义

Value	Name	Meaning	NMT	CMD	EVENT
0	Init	初始状态,模组复位后,必须运行在该状态下。 1)模组保持最低功耗,GPRS/GPS/BLE 不上电。	√	х	х
1	Sleep	休眠状态,模组进入 Sleep 后,至少要发送一次心跳通知 MCU,才能真正进入 Sleep 状态。如果被唤醒,超时(5S)会再次进入 Sleep 状态。SIM 模组:低功耗或者断电。BLE 模组:低功耗或者断电。	х	x	х
2	Wakeup	唤醒状态,等待 MCU 的状态切换命令,如果 10 秒 内没有 MCU 的指令,再次进入 Sleep 状态。 SIM 模组:低功耗或者断电。 BLE 模组:低功耗或者断电。	√	x	х
4	Pre-Operational	预操作状态,模组能够处理 NMT 消息和 CMD 消息,不处理 EVENT 消息。 SIM 模组:不工作。 BLE 模组:不工作。	√	√	x
5	Operational	操作状态,处理所有消息。当模组第一次从其他状态切换到 Operation 状态,所有的 Changed Event 都必须发送一遍。 SIM 模组:正常工作。 BLE 模组:正常工作。	√	√	√

6.1.2. MCU Heartbeat (0x02)

MCU 心跳消息,发送给模组,模组不需要应答。

主控 MCU 运行后, 必须周期 (默认 2 秒, 可配置) 向模组发送同步帧, 同步帧不需要应答。 表格 6 MCU 心跳数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x02	命令码
1	Data Length	UINT8	0x04	数据长度

2	Interval Ms	UINT32	2000	同步帧的间隔,单位 MS,
				默认值为 2000Ms

6.1.3. SetOperationState (0x03)

设置 SIM 模组操作状态,MCU 发送给 SIM 模组,模组需要应答。

表格 7 SetOperationState 请求数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x03	命令码
1	Data Length	UINT8	0x04	数据长度
2	Operation	UINT8	-	操作状态
	State			
	State	UINT8		操作状态参数:
	Parameter			BIT[0-1]: GPRS 状态,短信可唤醒。
				0: 关闭 GPRS 电源。
				1: GPRS 低功耗,TCP 连接中断,短信可唤醒。
				2: 保留
				3: 全功能正常工作。
				BIT[2-3]: GPS 工作状态。
				0: 关闭 GPS 电源。
				1: GPS 低功耗,不用实时获取定位信息,唤醒后可快速定位。
				2: 保留
				3: 全功能正常工作。
				BIT[4-5]: BLE 模组工作状态。
				0: 关闭 BLE 电源。
				1:BLE 低功耗,可发送广播,可以接收连接。
				2: 保留
				3:全功能正常工作。

表格 8 SetOperationState 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x11	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义

6.2. SIM Command Message (命令消息)

所有的 Command Message, 等待应答的超时事件为 1 秒。

6.2.1. GetSimID (0x11)

读 SIM 模组身份信息。

表格 9 GetSimID 请求数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x11	命令码
1	Data Length	UINT8	0x01	数据长度
2	Protocol Version	UINT8	1-255	MCU 和 SIM 的传输协议版本号,从 1 开始, 每次更改传输协议,必须兼容上一个版本,并 且版本号累加 1.

表格 10 GetSimID 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x11	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义
3	Protocol Version	UINT16		协议版本号
4	终端类型	WORD		终端类型 BIT[0]: 是否有蓝牙模组,0-没蓝牙,1-有蓝牙。 BIT[1]: 是否有 PMS 板,0-没有,1-有。 BIT[2-31]:保留
8	制造商 ID	BYTE[5]		保留,置0。
13	终端型号	BYTE[8]		8 个字节,此终端型号由制造商自行定 义,位数不足时,后补"0X00"。
33	终端 ID	BYTE[12]		12 个字节,由大写字母和数字组成,此 终端 ID 由定义见下表终端 ID 编码规则。
45	终端 SIM 卡 ICCID	BCD[10]		终端 SIM 卡 ICCID 号
55	终端硬件版本号长度	BYTE		n
Var	终端硬件版本号	STRING		例如"1.2"
Var	终端固件版本号长度	BYTE		m
Var	终端固件版本号	STRING		例如"1.2.3.456"

终端 ID 编码规则:

6.2.2. GetSimCfg (0x12)

获取 SIM 模组的终端参数信息

表格 11 GetSimCfg 请求数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x12	命令码
1	Data Length	UINT8	0x01	数据长度
2	ParamIDs	UINT32[N]		终端参数 ID 列表,参考表格 15

表格 12 GetSimCfg 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x11	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义
3	CfgInfo Struct	CfgInfo		终端参数表,参考表格 13

表格 13 CfgInfo 数据格式

起始字节	字段	数据类型	描述及要求
0	参数总数	BYTE	
1	参数项列表		参数项格式见表格 15

表格 14 终端参数项

字段	数据类型	描述及要求
参数 ID	WORD	参数 ID 定义及说明表目
参数长度	BYTE	
参数值		DWORD 或 STRING, 若为多值参数, 则消息中使用多个相同 ID 的参数项, 如调度中心电话号码

表格 15 终端参数设置各参数项定义及说明

参数 ID	类型	值	描述及要求
0x0001	DWORD	60	终端心跳发送间隔,单位为秒(s)
0x0002	DWORD	5	TCP 消息应答超时时间,单位为秒(s)
0x0003	DWORD	3	TCP 消息重传次数
0x0008- 0x000F			保留
0x0011	STRING		主服务器无线通信拨号用户名
0x0012	STRING		主服务器无线通信拨号密码
0x0013	STRING		主服务器地址,IP 或域名
0x0018	DWORD		服务器 TCP 端口
0x001A- 0x001F			保留
0x0020	DWORD	0	位置汇报策略, 0: 定时汇报; 1: 定距汇报; 2: 定时和定距汇报。
0x0021	DWORD	0	位置汇报方案, 0: 根据 ACC 状态; 1: 根据登录状态和 ACC 状态, 先判断登录状态, 若登录再根据 ACC 状态
0x0023- 0x0026	DWORD		保留
0x0027	DWORD	43200	休眠时汇报时间间隔,单位为秒(s),>0
0x0028	DWORD	10	紧急报警时汇报时间间隔,单位为秒(s),>0
0x0029	DWORD	60	缺省时间汇报间隔,单位为秒(s),>0
0x002A- 0x002B	DWORD		保留
0x0030	DWORD		终端类型
0x0031	DWORD		是否出厂默认设置,1-是,0-否
0x0032	BYTE[8]		终端型号

表格 16 GetSimCfg 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x12	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义

6.2.3. SetSimCfg (0x13)

获取 SIM 模组的配置信息。

表格 17 SetSimCfg 请求数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x13	命令码
1	Data Length	UINT8		数据长度
2	CfgInfo	CfgInfo Struct		参数项格式见表格 13

表格 18 SetSimCfg 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x13	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义

6.2.4. GetSms (0x14)

获取 SIM 模组的短消息信息,如果有多条,仅返回最后一条,成功读取后自动删除。

表格 19 GetSms 请求数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x14	命令码
1	Data Length	UINT8		数据长度。

表格 20 GetSms 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x14	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义
3	Sms	UINT8		是否还有剩余短消息没读取, 0-没有
				1-有剩余
4	SmsCount	UINT8		短消息总数
5	SmsArray	SmsArray		短消息列表,参考表格 21

表格 21 短消息项

Index	字段	数据类型	描述及要求
0	短消息时间	UINT32	短消息的接收时间,UNIX 时间戳,
4	短消息长度	BYTE	
5	短消息内容	STRING	短消息内容

6.2.5. SendDataToSvr (0x15)

MCU 发送数据到网络服务器, SIM 模组接收到该命令后, 必须把数据透明转发到服务器,

只有数据成功发送到服务器,才能给 MCU 返回响应码"SUCCESS"。

如果当前没连接到服务器,必须返回一个失败响应码。

如果当前模组无法发送数据,返回错误码"BUSY"。

如果当前模组发送数据,期望的事件内没有接收到 Svr 的响应,返回错误码 "RCV_RSP_TIMEOUT"

表格 22 SendDataToSvr 请求数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x15	命令码
1	Data Length	UINT8	0x00	数据长度
2	Data	UINT8[n]		传输的数据,n <= 128

表格 23 SendDataToSvr 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x15	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义

6.2.6. GetFileInfo(0x16)

读取文件信息。

智能固件更新启动请求,通讯模组接收后必须主动发送固件更新数据(0x15 命令)。固件升级目标不仅要包括智能中控固件,还要包括其他设备。

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x16	命令码
1	Data Length	UINT8	0x00	数据长度
2	File Type	UINT8		文件类型: 1: 智能中控固件。 2: 按键板固件。 其他值: 保留。

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x16	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义
3-6	File Length	UINT32		文件长度
7	Version Desc	UINT8		文件的版本描述符

6.2.7. GetFileContent (0x17)

读取文件内容。

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x17	命令码
1	Data Length	UINT8	0x00	数据长度
2	File Type	UINT8		文件类型: 1: 智能中控固件。 2: 按键板固件。 其他值: 保留。
4	offset	UINT32		偏移

Response 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x17	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义
4	offset	UINT32		偏移
	File Data	UINT8[128]		文件数据

6.2.8. SetLocationExtras (0x18)

设置位置附加信息。

表格 24 SetLocationExtras 请求数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x18	命令码
1	Data Length	UINT8		数据长度
2	Extras	Extras Struct		位置汇报附加信息,参考表格 26

表格 25 SetLocationExtras 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x18	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义

位置附加信息项格式见表格 26。

表格 26 位置附加信息项格式

字段 描述及要求			描述及要求
------------------------------------	--	--	-------

附加信息 ID	BYTE	1-255
附加信息长度	BYTE	
附加信息		附加信息定义见表格 27

表格 27 附加信息定义

附加信息 ID	长度	描述及要求
0x30	1	BYTE, CSQ, 无线通信网络信号强度, 0 到 31 之间(99 表示无信号), 数值越大表明信号质量越好。改变不需要立即上报。
0x31	1	BYTE, SIV, GNSS 定位卫星数,改变不需要立即上报。
0xE1-0xEF	1	GPS 信号强度,信噪比(00 - 99)dbHz,典型值在 0~50 之间。 改变不需要立即上报。
0xF0	4	附加设备状态值参考,发生改变,必须立即上报
0xF1	4	附加报警标志位,发生改变,必须立即上报

表格 28 附加设备状态位定义

位	状态
0	0: ACC 关;1:ACC 开
1	轮毂锁状态; 0:解锁; 1: 加锁
2	座舱锁状态; 0:解锁; 1: 加锁
3	远程断电状态; 0: 不断电; 1: 断电。
4	激活状态,1:未激活;1:已激活。
5	电池身份校验使能; 0: 不使能; 1: 使能。
6-15	保留
16	槽位 1 电池在位状态; 0: 不在位, 1: 在位。
17-18	槽位 1 电池身份校验状态, 0: 没校验; 1: 合法; 2: 非法。
19	槽位2电池在位状态; 0: 不在位, 1: 在位。
20-21	槽位 2 电池身份校验状态, 0: 没校验; 1: 合法; 2: 非法。
22	根据电池电流判定停车状态; 0: 没停车, 1: 停车。
23	蓝牙连接状态; 0: 未连接; 1: 连接。
24-31	保留

注意:附加设备状态位发生改变,必须立即上报位置信息。

表格 29 附加报警标志位定义

位	状态
0: 座舱锁故障。	标志维持至报警条件解除
1-31	保留

注意:报警标志位发生改变,必须立即上报位置信息。

6.2.9. GetUserInfo(0x19)

通信模组必须开辟一块 1K 的 Flash 存取空间,名称为 UserInfo,支持断电永久保存,提供给MCU 使用,MCU 可以读取和写入该空间内容。

读取用户信息区内容位置附加信息。

表格 30 GetUserInfo 请求数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x19	命令码
1	Data Length	UINT8		数据长度
2	addr	Uint16		UserInfo 地址
3	len	Uint8		长度

表格 31 GetUserInfo 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x19	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义
3	UserInfo Content	UINT8[]		UserInfo[addr, len]内容

6.2.10. SetUserInfo(0x1A)

写入 UserInfo 内容。

表格 32 SetUserInfo 请求数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x1A	命令码
1	Data Length	UINT8		数据长度
2	addr	Uint16		UserInfo 地址
3	len	Uint8		长度
4	data	Uint8[len]		数据内容,

UserInfo 数据内容定义如下:

Addr	Name	Туре	Value	Descriptor
0	Ctrl	UINT32	-	控制位。 BIT[0]:是否远程断电; 0:否; 1: 是 BIT[1]:轮毂锁状态; 0:解锁; 1: 加锁 BIT[2-31]:保留

表格 33 SetUserInfo 响应数据包格式定义

Index	Name	Туре	Value	Descriptor			
0	Cmd	UINT8	0x1A	命令码			
1	Data Length	UINT8		数据包长度			
2	Result	UINT8		参见错误码的定义			

6.2.11. SimCtrl(0x1B)

终端控制命令。

表格 34 SimCtrl 请求数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x1B	命令码
1	Data Length	UINT8		数据长度
2	Cmd	Uint8		命令字
4	data	Uint8[len]		命令参数,

命令字定义如下:

命令字	命令参数	描述及要求
1	无	终端关机
2	无	终端复位
3	无	终端恢复出厂设置

表格 35 SimCtrl 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x1B	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义

6.3. BLE Command Message (命令消息)

6.3.1. GetBleID (0x30)

读 BLE 模组身份信息。

表格 36 GetBleID 请求数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x30	命令码
1	Data Length	UINT8	0x01	数据长度

表格 37 GetBleID 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x30	命令码

1	Data Length	UINT8	数据包长度
2	Result	UINT8	参见错误码的定义
3	ВІеТуре	UINT16	BLE 模组类型,定义如下。
			BIT[0]:是否支持信标, 0-不支持, 1-支持。
			BIT[1-15]:保留
5	MAC	BYTE[6]	蓝牙模组 MAC 地址。
11	蓝牙硬件版本号长度	BYTE	
12	蓝牙硬件版本号	STRING	例如"1.2"
VAR	蓝牙固件版本号长度	BYTE	
VAR	蓝牙固件版本号	STRING	例如"1.2.3.456"

6.3.2. GetBleCfg (0x31)

获取 SIM 模组的配置信息

表格 38 GetBleCfg 请求数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x31	命令码
1	Data Length	UINT8	0x01	数据长度

表格 39 GetBleCfg 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x31	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义
3	BleCfg	BleCfg Struct		Ble 模组配置信息

表格 40 BleCfg 数据包格式定义

Index	Name	Туре	Value	Descriptor
0	BleName	CHAR[32]		蓝牙广播名称
32	AdvInterval	UINT32		广播间隔时间(单位 1ms)
36	AdvPower	UINT8		模块蓝牙发射功率等级, 等级范围
				0~8,其中等级:
				0=+4dBm, 1=+3dBm, 2=0dBm,
				3=-4dBm , 4=-8dBm,
				5=-12dBm, 6=-16dBm,
				7=-20dBm, 8=-40dBm
37	广播包自定义内容	UINT8[62]		自定义蓝牙广播内容,格式参考
				LTV Struct,可以多个 TLV 加在一
				起,不足的后面补 0

Index	Name	Туре	Value	Descriptor
0	Len	UINT8	10	数据长度
1	Tag	UINT8	0x01	数据类型
2	Version	UINT8		广播包版本号
	Value	UINT16		蓝牙终端特性
				BIT[0]: 是否支持信标; 0-否; 1-是。
				BIT[1]: 是否按键租车; 0-否; 1-是。
				BIT[2-15]:保留
5	Value	UINT8[6]		蓝牙地址 MAC

租车码 LTV Struct 格式

Index	Name	Туре	Value	Descriptor
0	Len	UINT8	4	数据长度
2	Tag	UINT8	0x02	数据类型
3	Value	UINT8[3]		租车码

Beacon 设备 UUID 过滤 LTV Struct 格式

Index	Name	Туре	Value	Descriptor
0	Len	UINT8	17	数据长度
2	Tag	UINT8	0x03	数据类型
3	UUID	UINT8[16]		Beacon 的过滤 UUID 值,如果过滤功能使能,模
				组必须根据该 UUID 进行扫码过滤

6.3.3. SetBleCfg (0x32)

设置通讯模组配置信息。

表格 41 SetBleCfg 请求数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x32	命令码
1	Data Length	UINT8	0x00	数据长度
	BleCfg Info	BleCfg Struct		蓝牙广播名称

表格 42 SetBleCfg 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x32	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义

6.3.4. GetBleCtrlEn (0x33)

设置蓝牙模组的控制使能。

表格 43 GetBleCtrlEn 请求数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x33	命令码
1	Data Length	UINT8	0x00	数据长度

表格 44 GetBleCtrlEn 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x33	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义
2	Ctrl Enable	UINT16		控制状态码。 BIT[0]:信标扫描使能,0-Disable;1-Enable. BIT[1]:1-蓝牙复位。 BIT[2]:1-蓝牙信标过滤使能。 BIT[3-15]:保留

6.3.5. SetBleCtrlEn (0x34)

设置蓝牙模组的控制使能。

表格 45 SetBleCtrlEn 请求数据包格式定义

Index	Name	Туре	Value	Descriptor		
0	Cmd	UINT8	0x34	命令码		
1	Data Length	UINT8	0x00	数据长度		
2	Ctrl Enable	UINT16		控制状态码。		
				BIT[0]:信标扫描使能,0-Disable;1-Enable.		
				BIT[1]:1-蓝牙复位		
				BIT[2-15]:保留		

表格 46 SetBleCtrlEn 响应数据包格式定义

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x34	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义

6.4. Sim Event Message (事件消息)

2个事件消息的发送最小间隔为100毫秒,

所有的 Event Message,等待应答的超时事件为 1 秒。

6.4.1. DevStateChanged Event(0x80)

连接状态改变事件

智能中控定时查询通讯模组状态。

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x80	命令码
1	Data Length	UINT8		数据长度
3	Connection State	UINT16		设备状态定义:
				BIT[0]: GPRS 连接状态,0-未连接;1-连接。
				BIT[1]: GPS 定位状态,0-未定位;1-已定位。
				BIT[2]: 短信息状态,0-没有,1-有。
				BIT[3-15]:保留。
4	CSQ	UINT8 <		GPRS 信号强度, 0 到 31 之间(99 表示无信
				号),数值越大表明信号质量越好
5	SNR	UINT8		GPS 信号强度,信噪比(00-99)dbHz,典
				型值在 0~50 之间,SNR 虽可达到 99,但极
				罕见,50 已是非常好的情况
6	Satellites In View	UINT8		GPS 可见卫星数(0 – 16)

Response 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x80	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义

6.4.2. LocationChanged Event(0x81)

定位坐标值改变事件。

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x81	命令码
1	Data Length	UINT8		数据长度
2	longitude	Int32		经度,发送方乘(1E7)发送,接收方必须除(1E7)
				0:表示没有获取到定位。
6	latitude	Int32		纬度,发送方乘(1E7)发送,接收方必须除(1E7)
				0:表示没有获取到定位。

Index	Name	Type	Value	Descriptor

0	Cmd	UINT8	0x81	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义

6.4.3. SimCfgInfoChanged Event(0x82)

配置参数改变事件,当服务器更新模组的配置参数时,模组必须发送该事件给 MCU Request 定义:

Index	Name	Туре	Valu	Descriptor
			е	
0	Cmd	UINT8	0x82	命令码
1	Data Length	UINT8		数据长度
2	CfgInfo	CfgInfo Struct		参数项格式见表格 13

Response 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x82	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义

6.4.4. RcvSvrData Event(0xA0)

通讯模组收到服务器数据时,主动向智能中控发送该命令,智能中控收到该命令后,会回复操作结果和需要回复给服务器的数据,通讯模组需回复操作结果,并将回复给服务器的数据 透传给服务器。

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0xA0	命令码
1	Data Length	UINT8		数据长度
3	Data	UINT8[n]		透传数据内容,长度可变,最大为 128 字 节

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0xA0	命令码
1	Data Length	UINT8		数据包长度
3	Result	UINT8		参见错误码的定义
4	Data	UINT8[n]		透传数据内容,长度可变,最大为128字节

6.4.5. RcvFile Event(0xA1)

接收文件事件,当模组接收到一个完整的文件之后,发送改事件通知 MCU。

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0xA1	命令码
1	Data Length	UINT8	0x01	数据长度
2	File Type	UINT8		文件类型: 1: 智能中控固件。 2: 按键板固件。 其他值: 保留。
3	Version Desc	VerDesc Struct		文件的版本描述符

Response 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0xA1	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义

6.5. Ble Event Message (事件消息)

6.5.1. Authentication Event(0x90)

连接身份验证,如果验证通过则允许连接,否则不允许连接。

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x90	命令码
1	Data Length	UINT8		数据长度
3	Data	UINT8[n]		身份验证数据

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x90	命令码
1	Data Length	UINT8		数据包长度
3	Result	UINT8		参见错误码的定义

6.5.2. BleStateChanged Event(0x91)

蓝牙状态改变事件。

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x91	命令码
1	Data Length	UINT8	0x01	数据长度
3	Connect State	UINT8		设备状态定义: BIT[0]: BLE 连接状态,0-未连接; 1-连接。 BIT[1]: Beacon 扫描状态,0-停止; 1-启动。 BIT[2-7]:保留。
	MAC	UINT8[6]		连接 BLE 的终端的设备(手机)MAC。

Response 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x91	命令码
1	Data Length	UINT8		数据包长度
2	Result	UINT8		参见错误码的定义

6.5.3. BeaconChanged Event(0x92)

信标改变事件,每条命令可发送多个信标信息,如果一条命令发不完,必须分开多条命令发 送.

Request 定义:

Index	Name	Туре	Valu	Descriptor
			e	
0	Cmd	UINT8	0x92	命令码
1	Data Length	UINT8	-	数据长度
3	Beacon Info	BeaconInfo [n]	-	BeaconInfo 数据结构数组

BeaconInfo 数据结构说明

Index	Name	Туре	Value	Descriptor
0	RSSI	INT8	-	RSSI
1	ADV	UINT8[62]	-	道钉的广播信息。

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x92	命令码

1	Data Length	UINT8	1	数据包长度
3	Result	UINT8		参见错误码的定义

6.5.4. RcvBleData Event(0x93)

通讯终端收到蓝牙透传数据时,通讯模组需要发送该命令,将透传数据发送给智能中控,智能中控收到该命令时,需要回复操作结果和需要透传的数据。通讯模组需要回复操作结果,并将透传数据发送给蓝牙连接设备。

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x93	命令码
1	Data Length	UINT8		数据长度
3	Data	UINT8[n]		透传数据内容,长度可变,最大为 128 字 节

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x93	命令码
1	Data Length	UINT8		数据包长度
3	Result	UINT8		参见错误码的定义
4	Data	UINT8[n]		透传数据内容, 长度可变, 最大为 128 字节