Applied Linear Algebra in Data Analysis

Tutorial

Sivakumar Balasubramanian

CONTENTS

- 1. Which of the following sets forms a vector space?
 - a) $\{\mathbf{x} \mid x_1, x_2 \in \mathbb{R} \text{ and } a_1x_1 + a_2x_2 = 0\}$, where $a_1, a_2 \in \mathbb{R}$ are fixed constants.
 - b) $\{x \mid x \in \mathbb{R}^n \text{ and } \mathbf{a}^\top x = b\}$, where $\mathbf{a} \in \mathbb{R}^n$ and $\mathbf{b} \in \mathbb{R}$ are fixed constants.
 - c) $\{x \mid x \in \mathbb{R}^n \text{ and } x^\top x = 1\}.$
 - d) $\{(x[0], x[1], x[2], \dots x[N-1]) \mid x[i] \in \mathbb{R}, 0 \le i < N\}.$

(The set of all real-valued time-domain signals of length N. x[i] is the value of the signal at time instant i.)

2. Consider the vector space of polynomials of order n or less.

$$\mathcal{P} = \left\{ \sum_{k=0}^{n} a_k x^k \, \middle| \, a_k \in \mathbb{R} \right\}, \text{ where, } x \in [0, 1]$$

Show that polynomails of order strictly lower than n form subspaces of \mathcal{P} .

3. Is the following function a valid norm of the vector space \mathfrak{P} ?

$$\|\mathbf{p}\left(\mathbf{x}\right)\| = \sqrt{\sum_{k=0}^{n} \alpha_{k}^{2}}, \ \mathbf{p} = \sum_{k=0}^{n} \alpha_{k} \mathbf{x}^{k} \in \mathcal{P}$$

4. Consider the following function, which is often called the *zero-norm* of a vector $\mathbf{x} \in \mathbb{R}^n$.

$$\|\mathbf{x}\|_{0} = \sum_{i=1}^{n} \mathbb{I}(x_{i} \neq 0)$$
, where, $\mathbb{I}(A) = \begin{cases} 1 & A \text{ is true.} \\ 0 & A \text{ is false.} \end{cases}$

Is the *zero-norm*, which is often used for quantifying the *sparsity* of a vector, a proper norm?

5. Is the following set of vectors linear independent?

$$\left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix} \right\}$$

What is the span of this set? Does this set form the basis for its span? Does it form an orthonormal basis?

6. Consider the following function,

$$f(\mathbf{x}) = \sum_{i=1}^{n} w_i |x_i|, \ \mathbf{x} \in \mathbb{R}^n, w_i > 0$$

Is f a norm? If not, what properties does it lack?

7. Find the norm of the following vectors using the the 1-norm, 2-norm and the ∞ -norm.

a)
$$\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^{\top}$$

b)
$$\mathbf{x} = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^{\top}$$

c)
$$e_i$$
, where $1 \leqslant i \leqslant n$

d)
$$\mathbf{o} \in \mathbb{R}^n$$

e)
$$\mathbf{1} \in \mathbb{R}^n$$

8. For any given $\mathbf{x} \in \mathbb{R}^n$, show that,

$$\|\mathbf{x}\|_{1} \geqslant \|\mathbf{x}\|_{2} \geqslant \|\mathbf{x}\|_{3} \cdots \geqslant \|\mathbf{x}\|_{\infty}$$

9. Consider the linear function $f: \mathbb{R}^3 \to \mathbb{R}$. We know the output of the function for the following inputs,

$$f\left(\begin{bmatrix}1 & 1 & 1\end{bmatrix}^{\top}\right) = -2$$
, $f\left(\begin{bmatrix}-1 & 2 & -1\end{bmatrix}^{\top}\right) = 1$, $f\left(\begin{bmatrix}-1 & 1 & 2\end{bmatrix}^{\top}\right) = 0$

Find an input input $\mathbf{x} \in \mathbb{R}^3$ such that $f(\mathbf{x}) = 0$.

10. Find the representation of $\mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}^{\mathsf{T}}$ in the following bases.

a)
$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$

b)
$$\frac{1}{\sqrt{2}} \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$$

c)
$$\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$$

11. Consider the function $f_i:\mathbb{R}^n\mapsto\mathbb{R}$ that selects the i^{th} element of a given vector $\mathbf{x} \in \mathbb{R}^n$.

$$f(\mathbf{x}) = x_i$$
, where $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \cdots & x_n \end{bmatrix}^T$

Is this function linear? If so, what is the vector w associated with this function, such that $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$?

12. Given a set of real numbers $x_1, x_2, \dots x_n \in \mathbb{R}$ which are used to the n-vector x. Can you express the mean \bar{x} and variance σ_x^2 of this set of data using the the standard inner product in \mathbb{R}^n ? Note the following,

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\sigma_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$

2 MATRICES

1. Conisder the following matrices:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 2 & -2 & 1 \\ -3 & 1 & 1 & 3 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 1 \\ 3 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

- a) Find the product of the two matrices $\mathbf{C} = \mathbf{A}\mathbf{B}$ using the four views of matrix muliplication.
- b) If we change $b_{23} = 0$. Can you compute the new matrix **C** without performing the entire matrix muliplication again?
- c) If we increase the value of the elements of the 3rd column of **A** by 1, how can we compute the new **C** without performing the entire matrix multiplication again?
- d) If we insert a new row $\mathbf{1}^{\top}$ in \mathbf{A} after the $\mathbf{2}^{nd}$ row of \mathbf{A} , how can we compute the new \mathbf{C} without performing the entire matrix multiplication again?
- 2. Consider a matrix $\mathbf{A} \in \mathbb{R}^{10^6 \times 5}$, and we are interested in computing the product $\mathbf{A}^{\top} \mathbf{A} \mathbf{A}^{\top}$. Should you compute the product as $(\mathbf{A}^{\top} \mathbf{A}) \mathbf{A}^{\top}$ or $\mathbf{A}^{\top} (\mathbf{A} \mathbf{A}^{\top})$? Why?
- 3. Consider an orthogonal, square matrix $A \in \mathbb{R}^{n \times n}$. We generate a new matrix C = AB. What can we say about the following questions about this product?
 - a) How are the columns of C related to the columns of A
 - b) How is the 2-norm of the i^{th} column of C related that of the columns of B?
- 4. Show that the matrix product **ABC** can be written as a weighted sum of the outer products of the columns of $\mathbf{A} \in \mathbb{R}^{n \times p}$ and rows of $\mathbf{C} \in \mathbb{R}^{q \times n}$, with the weights coming from the matrix $\mathbf{B} \in \mathbb{R}^{p \times q}$.

$$\mathbf{ABC} = \sum_{i=1}^{p} \sum_{j=1}^{q} b_{ij} \mathbf{a}_{i} \tilde{\mathbf{c}}_{j}^{\mathsf{T}}$$

5. Prove the following for the matrices $A_1, A_2, A_3, \dots A_n$.

$$\left(\mathbf{A}_{1},\mathbf{A}_{2}\mathbf{A}_{3}\ldots\mathbf{A}_{n}\right)^{\top}=\mathbf{A}_{n}^{\top}\mathbf{A}_{n-1}^{\top}\ldots\mathbf{A}_{2}^{\top}\mathbf{A}_{1}^{\top}$$

6. **Matrix Inversion Lemma**. Consider an invertible matrix **A**. The matrix $\mathbf{A} + \mathbf{u}\mathbf{v}^{\top}$ is invertible if and only if the two vectors $\mathbf{u}, \mathbf{v} \neq \mathbf{o}$, and $\mathbf{v}^{\top} \mathbf{A}^{-1} \mathbf{u} \neq -1$. Then, the inverse is given by,

$$\left(\mathbf{A} + \mathbf{u}\mathbf{v}^{\top}\right)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^{\top}\mathbf{A}^{-1}}{1 + \mathbf{v}^{\top}\mathbf{A}^{-1}\mathbf{u}}$$

- 7. Prove that $tr(\mathbf{AB}) = tr(\mathbf{BA})$, where $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{B} \in \mathbb{R}^{d \times n}$.
- 8. Show that the diagonal elements of a square matrix \mathbf{A} , such that $\mathbf{A}^{\top} = -\mathbf{A}$ are zero. These are *skew-symmetric* matrices.
- 9. Show that $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 0$ if $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a skew-symmetric matrix.

1. Consider the following 5×4 matrix:

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 & 2 & 2 \\ 1 & -2 & 1 & 3 & 9 \\ -2 & 0 & 2 & -1 & -2 \\ 3 & 1 & 1 & -5 & 0 \end{bmatrix}$$

Compute the following:

- a) **a**₃
- b) $\mathbf{a}_1^{\mathsf{T}}$
- c) $\tilde{\mathbf{a}}_2^{\top}$
- d) ã₄
- e) $\mathbf{a}_1 \mathbf{a}_2^{\top}$
- f) $\tilde{\mathbf{a}}_3 \mathbf{a}_2^{\mathsf{T}}$
- g) $\tilde{\mathbf{a}}_1 \tilde{\mathbf{a}}_2^{\mathsf{T}}$
- h) $\tilde{\mathbf{a}}_1^{\mathsf{T}} \tilde{\mathbf{a}}_2$
- $i)~\tilde{\boldsymbol{a}}_{1}\tilde{\boldsymbol{a}}_{1}^{\top}+\tilde{\boldsymbol{a}}_{2}\tilde{\boldsymbol{a}}_{2}^{\top}$
- j) $a_3^{\top} a_1 + a_2^{\top} a_4$
- 2. Which of the following statements true about a matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$?
 - a) $\sum_{i=1}^{m} \|\mathbf{a}_i\|_2^2 = \sum_{i=1}^{n} \|\tilde{\mathbf{a}}_i\|_2^2$
 - b) $\sum_{i=1}^{m} \|\mathbf{a}_i\|_2^2 = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{A})$
 - c) If the matrix $\mathbf{A}=\mathbf{V}\begin{bmatrix}d_1&0\\0&d_2\end{bmatrix}\mathbf{V}^{-1}$, Then

$$\mathbf{A}^{\mathbf{n}} = \mathbf{V} \begin{bmatrix} d_1^{\mathbf{n}} & 0 \\ 0 & d_2^{\mathbf{n}} \end{bmatrix} \mathbf{V}^{-1}$$

- 3. Consider the matrix $P = \begin{bmatrix} e_1 & e_3 & e_2 \end{bmatrix}$. What does this P matrix do to a matrix $A \in \mathbb{R}^{3 \times 3}$ in the following operations? Try to compute these without performing the matrix multiplication and by using you understaning of the row and column views of matrix multiplication.
 - a) PA
 - b) AP
 - c) P^2A
 - d) AP^2
 - e) PAP

SOLUTION TO LINEAR EQUATIONS 3

- 1. Consider a matrix $\mathbf{A} \in R^{n \times m}$ with n > m. Consider a linearly independent set of vectors x_1, x_2 . Is the set of Ax_1, Ax_2 linearly independent?
- 2. Find the bases for the four fundamental subspaces of the following matrices

a)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{bmatrix}$$
.

b)
$$A = [1 \ 1 \ 1].$$

c)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$
.

d)
$$\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
.

e)
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

- 3. Show that the rank (AB) = rank(A), when **B** is square and full rank.
- 4. Let A is a full rank matrix. Show that the Gram matrix of the column space, $\mathbf{A}^{\top}\mathbf{A}$ is invertible.
- 5. Draw the four fundamental subspaces of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$.
- 6. Find the complete set of solutions for the following system of equations,

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix}$$

where
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & -1 \\ 3 & 3 & 1 \end{bmatrix}$$
.

7. Is the following set of equations solvable? If yes, then find the complete set of solutions.

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

where
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & -1 \\ 3 & 3 & 1 \end{bmatrix}$$
.

ORTHOGONALITY 4

- 1. If **A** is an orthogonal matrix, show that $\mathbf{A}^{-1} = \mathbf{A}^{\top}$.
- 2. If P_S is the orthogonal projection matrix onto the subspace S, then what is the corresponding orthogonal projection matrix onto S^{\perp} – the orthogonal complement of S?
- 3. Let $x, y \in \mathbb{R}^n$. Let $\{u_1, u_2, \dots u_n\}$ be an orthonormal basis for \mathbb{R}^n . Show that the following holds,

$$\mathbf{x}^{\top}\mathbf{y} = \sum_{i=1}^{n} \left(\mathbf{x}^{\top}\mathbf{u_i}\right) \cdot \left(\mathbf{u_i}^{\top}\mathbf{y}\right)$$

- 4. Consider the following set of vectors, $S = \{a_1, a_2, a_3, \dots a_n\}$, where $a_i \in \mathbb{R}^n$. The set S is linearly independent. Find the orthogonal components of a vector $\mathbf{b} \in \mathbb{R}^n$ in the subspace spanned by the sets of vectors $\mathcal{S}_1 = \{\mathbf{a}_i\}_{i=1}^m$ and \mathcal{S}_1^{\perp} .
- 5. Consider the set of $n \times n$ orthogonal matrices,

$$\mathbf{Q} = \left\{ \mathbf{Q} \, \middle| \, \mathbf{Q} \in \mathbb{R}^{n \times n} \text{, } \mathbf{Q}^\top \mathbf{Q} = \mathbf{Q} \mathbf{Q}^\top = \mathbf{I}_n \right\}$$

Is this set a subspace of $\mathbb{R}^{n \times n}$? Show that the set is closed under matrx multiplication.

- 6. Consider the linear map, y = Ax, such that $x, y \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$. Let us assume that A is full rank. What conditions must A satisfy for the following statements to be true,
 - a) $\|y\|_2 = \|x\|_2$, for all **x**, **y** such that **y** = **Ax**.
 - b) $y_1^T y_2 = x_1^T x_2$, for all x_1, x_2, y_1, y_2 such that $y_1 = Ax_1$ and $y_2 = Ax_2$.

Note: A linear map A with the aforementioned properties preserves lengths and angle between vectors. Such maps are encountered in rigid body mechanics.

7. Find the QR demcomposition of the following matrices.

a)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

b)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

c)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 0 & -1 \\ 1 & 1 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 & -1 \end{bmatrix}$$

$$\mathbf{d}) \ \mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

e)
$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

- 1. Find a left inverse for the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$. Find the set of all possible left inverses.
- 2. Consider an upper triangular matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$. We are interested in solving the following set of n linear equations,

$$\mathbf{R}\mathbf{x} = \mathbf{e}_{i}$$

 $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_n \end{bmatrix}^{\top}$ is the solution to the above equation. Show that $x_{i+1} = x_{i+2} = \dots = x_n = 0$.

3. Find the pseudo-inverse of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$. Show that the matrix

 $\mathbf{A}\mathbf{A}^{\dagger}$ is the orthogonal projection matrix onto the column space of \mathbf{A} .

- 1. Find the eigenvalues and eigenvectors of the following matrices.
 - a) $\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$
 - b) $\mathbf{A} = \frac{1}{2} \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$
 - c) $\mathbf{A} = \frac{1}{2} \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$
 - d) $\mathbf{A} = \begin{bmatrix} 5 & 3 \\ -3 & -1 \end{bmatrix}$
- 2. Let $\mathbf{A} = \begin{bmatrix} 0.6 & 0.2 \\ 0.4 & 0.8 \end{bmatrix}$. What is the value of the following?
 - a) A^2
 - b) A¹⁰⁰
 - c) A^{∞}
- 3. For a matrix \mathbf{A} with eigenvalues $\{\lambda_i\}_{i=1}^n$, verify for the following matrices that $\prod_{i=1}^n \lambda_i = \det{(\mathbf{A})}$ and $\sum_{i=1}^n \lambda_i = \operatorname{trace}{(\mathbf{A})}$.
 - a) $\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$
 - b) $\frac{1}{5} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$
- 4. Let $\{\lambda_i, v_i\}_{i=1}^n$ are the eignepairs of a matrix **A**. What are the eigenpairs of the following?
 - a) 2**A**
 - b) A 2I
 - c) I A

POSITIVE DEFINITE MATRICES AND MATRIX NORMS 7

- 1. Prove that A^TA is positive semi-definite for any matrix A. When is A^TA guaranteed to be positive definite?
- 2. If **A** is positive definite, then prove that A^{-1} is also positive definite.
- 3. Is the function $f(x_1, x_2, x_3) = 12x_1^2 + x_2^2 + 6x_3^2 + x_1x_2 2x_2x_3 + 4x_3x_1$ positive
- 4. Prove the following for $A \in \mathbb{R}^{m \times n}$:

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{a}_1^T} \\ \tilde{\mathbf{a}_1^T} \\ \vdots \\ \tilde{\mathbf{a}_m^T} \end{bmatrix}$$

a)
$$\|\mathbf{A}\|_{\mathsf{F}} = \mathsf{trace}\left(\mathbf{A}^{\mathsf{T}}\mathbf{A}\right)$$

- 5. Verify the following inequalities on vector and matrix norms ($\mathbf{x} \in \mathbb{R}^m$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$):
 - a) $\|x\|_{\infty} \le \|x\|_{2}$
 - b) $\|\mathbf{x}\|_{2} \leq \sqrt{m} \|\mathbf{x}\|_{\infty}$