

Training Deep Neural Networks

Maziar Raissi

Assistant Professor

Department of Applied Mathematics

University of Colorado Boulder

maziar.raissi@colorado.edu

Tabular Data

Iris Versicolor

Iris Setosa

Iris Virginica

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.5	2.5	4.0	1.3	versicolor
5.0	2.0	3.5	1.0	versicolor
6.7	2.5	5.8	1.8	virginica
5.6	3.0	4.5	1.5	versicolor
5.2	2.7	3.9	1.4	versicolor
5.0	3.5	1.3	0.3	setosa
6.4	2.7	5.3	1.9	virginica
6.4	2.8	5.6	2.2	virginica
5.1	3.8	1.6	0.2	setosa
5.1	3.7	1.5	0.4	setosa

The goal of statistics is to come up with a "model" that "explains" the data. The goal of machine (deep) learning is to come up with an "algorithm" that "performs" well on some "test" data.

 $x_i \in \mathbb{R}^d, y_i \in \{1, 2, \dots, k\}, i = 1, \dots, N \to \text{training data}$ $x_i' \in \mathbb{R}^d, y_i' \in \{1, 2, \dots, k\}, i = 1, \dots, N' \to \text{validation data}$ $x_i'' \in \mathbb{R}^d, y_i'' \in \{1, 2, \dots, k\}, i = 1, \dots, N'' \to \text{test data}$

Performance metric (e.g., accuracy)

 $\hat{y} = f_{\alpha,\beta}(x) \to \text{prediction of model } f_{\alpha,\beta} \text{ at input } x$ $\alpha \to \text{hyper-parameters of the model}$ $\beta \to \text{parameters of the model}$

$$\frac{\sum_{i=1}^{N''} \mathbb{1}(\hat{y}_i'' = y_i'')}{N''} \to \text{accuracy}$$

 $\hat{y}_i'' = f_{\alpha^*,\beta^*}(x_i'') \to \text{predictions of the "optimal" model on the test data}$

Model/Algorithm

$$f_{\alpha,\beta}(x) = \arg \max_{j=1,\dots,k} p_{\alpha,\beta}^{(j)}(x)$$

 $p_{\alpha,\beta}^{(j)}(x) \to j$ -th element of the probability vector $p_{\alpha,\beta}(x) \in \mathbb{R}^k$

$$\sum_{j=1}^{k} p_{\alpha,\beta}^{(j)}(x) = 1 \text{ and } p_{\alpha,\beta}^{(j)}(x) \ge 0, \forall j = 1, \dots, k.$$

Training N

$$\mathcal{L}_{\alpha}(\beta) = -\sum_{i=1}^{\infty} \log p_{\alpha,\beta}^{(y_i)}(x_i) \to \text{loss function (negative log likelihood)}$$

$$\beta^* = \arg\min_{\beta} \mathcal{L}_{\alpha}(\beta) \to \text{given } \alpha \text{ (i.e., } \beta^* \text{ is a function of } \alpha)$$

Validation

 $\hat{y}'_i = f_{\alpha,\beta^*(\alpha)}(x'_i) \to \text{predictions of the model on the validation data}$

$$\alpha^* = \arg\max_{\alpha} \frac{\sum_{i=1}^{N'} \mathbb{1}(\hat{y}_i' = y_i')}{N'}$$

Multi-Layer Perceptron (MLP)

$$p_{\alpha,\beta}(x) = \operatorname{softmax}(W \operatorname{ReLU}(Vx + a) + b)$$

An overview of gradient descent optimization algorithms

Deep Learning: An algorithm that writes an algorithm

Source Code: Data (examples/experiences)

Compiler: Deep Learning

Executable Code: Deployable Model

Deep: Function Compositions $f_L \circ f_{L-1} \circ \dots f_2 \circ f_1$

Learning: Loss Function, Back-propagation,

and Gradient Descent

$$\min_{\theta} L(\theta)$$

 $L(\theta) \approx J(\theta) \rightarrow \text{noisy estimate of the objective function}$ (e.g., due to mini-batching)

Stochastic Gradient Descent

$$\theta_{t+1} = \theta_t - \gamma \nabla_{\theta} J(\theta_t)$$

$$J: \mathbb{R}^d \to \mathbb{R}$$
 one back-propagation (fast) $\nabla_{\theta} J: \mathbb{R}^d \to \mathbb{R}^d$

Questions?

