# CHAPTER 4

# Stime di Parametri

# 4.1 La statistica

La statistica studia il problema di inferire da un campione i parametri e/o i modelli che descrivono la popolazione dalla quale il campione è stato estratto. In particolare possiamo dividerla in due categorie:

- Stima dei parametri, misura di una quantità fisica;
- Test d'ipotesi, ovvero la prova della validità di un modello.

Una funzione dipendente da N misure di un campione  $f(x_1, ..., x_n)$  si chiama **statistica**, essa è una **variabile aleatoria**. Quindi segue una sua distribuzione di probabilità  $pdf_f$  derivabile dalla joint-pdf dei campionamenti e dalla forma della funzione f.

Complessivamente si hanno 3 pdf:

- la  $pdf_x(\mathbf{x}, \theta)$  delle singole misure campionate;
- la  $pdf_{set}(x_1,...,x_n,\theta)$  dei campionamenti (che è multidimensionale);
- la  $pdf_f$  della statistica dei campionamenti (dipende dalla forma funzionale di f).

## 4.2 Stimatori

Sia data una p.d.f. (probability distribution function),  $f(x,\theta)$  di una variabile x aleatoria continua e dipendente da un parametro  $\theta$ , di cui non conos-

ciamo il vero valore  $\theta_{true}$ .

Se si possiede un insieme  $\{x_i\}_i^N$  di N misure della variabile x, possiamo chiederci se sia possibile determinare una stima del parametro  $\theta_{true}$  in funzione di tali misure,  $\hat{\theta} = \hat{\theta}(x_1, ...., x_N)$ , le funzioni di questo tipo prendono il nome di **stimatori**. Uno stimatore è una statistica opportunamente scelta. Con **stima** s'intende il valore assunto  $\hat{\theta}^*$  dallo stimatore per uno specifico campione.



Figure 4.1: N misure

Poichè lo stimatore  $\hat{\theta}$  è dipende da variabili aleatorie è anch'esso una variabile aleatoria e dunque si può parlare di valore medio  $E[\hat{\theta}]$  e varianza  $V[\hat{\theta}]$  di una particolare stima, oltre ad avere una sua  $pdf(\hat{\theta})$ .

$$\hat{\theta} \pm \sigma_{\theta} \tag{4.1}$$

Di conseguenza un insieme di misure restituirà un solo valore appartenente ad una popolazione ottenuta da campione fatto di misure della variabile aleatoria presa in considerazione.

# 4.3 Proprietà degli stimatori

Consideriamo un campione di N misure  $\{x_i\}_i^N$  vengono definite IID (Independent Identically Distributed) quando sono:

- indipendenti: l'esito di una misura non è influenzato dalle misure precedenti;
- identiche: Delle misure vengono definite identiche quando tutte quante seguono la stessa distribuzione di probabilità

Nella statistica alle stime si possono associare diverse caratteristiche :

3

 Consistenza: una stima si dice consistente quando all'aumentare del numero di misure (convergenza probabilistica) si converge al valore vero del parametro. Ossia quando:

$$\lim_{N \to \infty} \hat{\theta}(x_1, \dots, x_N) = \theta_{true} \tag{4.2}$$



Figure 4.2: Proprietà di consistenza di uno stimatore

#### 2. Biased:

(a) una stima si dice unbiased o imparziale, se mediamente coincide con il valore vero del parametro, ovvero

$$b_n(\hat{\theta}) = E(\hat{\theta}_n - \theta_{true}) = E(\hat{\theta}_n) - E(\theta_{true}) = 0 \iff E(\hat{\theta}_n) = \theta_{true}$$
(4.3)

(b) Una stima si dice as intoticamente unibiased se  $b_n(\hat{\theta}) \to 0$  per  $n \to \infty$ .

Si osserva che  $b_n(\hat{\theta})$  è uno stimatore lineare, dunque se  $\hat{\theta}$  è stimatore di  $\theta_{true}$  questo non vuol dire che  $\hat{\theta}^2$  è stimatore di  $\theta_{true}^2$ .

3. Efficienza: si dice che una stima è più efficiente di un'altra se la sua



Figure 4.3: Consistenza e Bias di uno stimatore

varianza è inferiore, quindi se mediamente essa è più vicina al valore centrale  $E(\hat{\theta})$ , che coincide con  $\theta_{true}$  se la stima è anche imparziale (ubiased).

4. Varianza: desideriamo che ripetendo i campionamenti le stime ottenute siano tutte vicine tra loro, ovvero la varianza della  $pdf(\hat{\theta})$  sia il più piccola possibile.

#### 4.3.1 Precisione e Accuratezza

Per uno stesso parametro si possono in generale definire tanti stimatori diversi tra loro, ma non tutti hanno le proprietà desiderate. Da notare che non è detto che esista (o sia possibile trovare) uno stimatore che soddisfi contemporaneamente tutte le proprietà richieste.

5

#### Esempio

La media delle misure è uno stimatore non distorto.

Dim.

Definito come stimatore la media aritmetica delle misure di un campione IID:

$$\hat{\mu} = \frac{1}{N} \sum x_i$$

si ha che il valore di aspettazione dello stimatore è:

$$E(\hat{\mu}) = E(\frac{1}{N} \sum x_i) = \frac{1}{N} \sum E(x_i) = \frac{1}{N} \cdot N \cdot \mu_t = \mu_t$$

quindi la media aritmetica è uno stimatore non distorto poichè:

$$b_n(\hat{\mu}) = E(\hat{\mu}) - \mu_t = \mu_t - \mu_t = 0$$

Se la pdf(x) delle misure soddisfa le ipotesi del TCL, la pdf( $\hat{\mu}$ ) per  $N \to \infty$  tende a una **gaussiana** con media  $\mu$  e varianza  $\frac{\sigma^2}{N}$  si ha che  $\hat{\mu}$  è uno stimatore **consistente**. Poichè  $V[\hat{\mu}] = \frac{\sigma^2}{N}$  al crescere del numero di campionamenti la varianza si riduce e dunque le stime ottenute con diversi set di dati sono tutte vicine tra loro.

### 4.3.2 Incertezze sulle stime

Uno stimatore come ogni altra variabile aleatoria è soggetto a due tipi d'incertezze:

- 1. Incertezza sistematica: nel caso di misure biased esiste una differenza sistematica fra la misura sperimentale ottenuta e il valor vero, ed è uguale per tutte le misure e non è possibile determinarlo essendo una proprietà intrinseca.
- 2. Incertezza statistica: è associata alla precisione, e la si può ridurre aumentando il numero di misure o cambiando l'apparato sperimentale.

$$MSE = E[(\hat{\theta} - \theta_t)^2] = Var(\hat{\theta}) + b_n^2(\hat{\theta})$$

$$(4.4)$$

Definisce l'errore quadratico medio e tiene conto sia dell'errore statistico misurato dalla varianza che dell'errore sistematico misurato dal bias.

#### 4.3.3 La Varianza come stimatore

Consideriamo di avere un insieme di N misure,  $\{x_i\}_i^N$  di cui conosciamo il valore medio  $\mu$  della popolazione e di volerne determinare la varianza, poichè essa dipende dalle misure del campione è una variabile aleatoria a sua volta e dunque da un campione definiamo una stima del valore reale del parametro  $\sigma_t$ . Di conseguenza possiamo domandarci le proprietà che tale stimatore possiede.

Definiamo lo stimatore varianza come:

$$\hat{\sigma}_{\mu}^{2}(x) = \frac{1}{N} \sum_{i} (x_{i} - \mu)^{2}$$
 oppure  $\hat{\sigma}^{2}(x) = E(x^{2}) - E(x)^{2}$ 

Verifichiamo che la varianza sia uno stimatore non distorto ovvero che:

$$E(\hat{\sigma}^2) = \sigma_t$$

Per farlo sfruttiamo la porprietà di linearità del valore atteso. Dim.

$$E(\hat{\sigma}_{\mu}^2) = E(\frac{1}{N}\sum_i (x_i - \mu)^2) = \frac{1}{N}\sum_i (E(x_i^2) - 2\mu E(x_i) + \mu^2) =$$

$$= \frac{1}{N} \sum (E(x_i^2) - 2\mu E(x_i) + \mu^2) = \frac{1}{N} \sum (E(x_i^2) - \mu^2) = \frac{1}{N} \cdot N \cdot \sigma_t = \sigma_t$$

Dunque la varianza è uno stimatore non distorto nel caso in cui si conosca il valore medio della popolazione. Raramente si conosce  $\mu$  della popolazione, dunque consideriamo come stimatore la varianza per un campione di N misure IID.

$$\hat{\sigma}_{\overline{x}}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

Sappiamo che la varianza determina la dispersione di un campione di mis-

ure attorno alla sua media. Ipotizziamo di conoscere il valore medio del campione  $\overline{x}$ , per costruzione risulta essere il valore più vicino alle misure dell'insieme. La media della popolazione  $\mu$  non necessariamente coincide con  $\overline{x}$  del campione, e dunque può non essere il valore attorno al quale si distribuiscono le misure del campione; infatti nel caso in cui non lo sia al crescere del numero di misure questo può diventare il valore più distante rispetto a  $\overline{x}$  stimato dal campione iniziale. Le distanze quadratiche da  $\overline{x}$  saranno quindi una sottostima di  $\mu$  e quindi anche  $\hat{\sigma}$  sarà uno sottostima di  $\sigma_t$ .

$$E[\hat{\sigma}_{\overline{x}}^2] = \frac{1}{N} \sum E(x_i^2) - E([\frac{1}{N} \sum x_i]^2) = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i) + E(\sum x_i)^2] = \sigma_t(x)^2 + \frac{1}{N^2} [\sigma_t^2(\sum x_i) + E(\sum x_i)$$

$$= \sigma_t(x)^2 + \mu^2 - \frac{1}{N^2} [N\sigma_t^2(x) + N^2\mu^2] = \sigma_t^2(x) \left[ \frac{N-1}{N} \right]$$

Di conseguenza la varianza di un campione  $\hat{\sigma}_{\overline{x}}$  è uno stimatore distorto, infatti:

$$b_n[\hat{\sigma}_{\overline{x}}^2] = E[\hat{\sigma}_{\overline{x}}^2] - \sigma_t^2 = \sigma_t^2(x) \left[ \frac{N-1}{N} \right] - \sigma_t^2$$

ma asintoticamente non distorto poichè per  $N \to \infty$  si ha  $b_n[\hat{\sigma}_{\overline{x}}^2] \to 0$ .

Notare che quest'ultima definizione è quella operativa per verficiare che la varianza sia uno stimatore non ubiased in quanto difficilmente si conosce il valore medio  $\mu$  della popolazione.

#### 4.3.4 Correzione di Bessel

Si può definire un terzo stimatore, che introduca una correzione a  $\hat{\sigma}_{\overline{x}}^2$  tale da cancellare il bias. La correzione del bias è applicabile tutte le colte in cui il bias è precisamente noto. Il nuovo stimatore della varianza sarà dato da:

$$s^{2} \equiv \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$$
 (4.5)

e prende il nome di correzione di Bessel.

Lo stimatore è unbiased  $E[s^2] = \sigma_t^2$ , ma la varianza di tale stimare non può

essere determinata per il caso generale

$$V[s^{2}] = V\left[\frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}\right] = \frac{1}{(N-1)^{2}} \sum_{i=1}^{N} V\left[(x_{i} - \overline{x})^{2}\right]$$

ma è possibile farlo solo nel caso in cui il campione di misura segue una pdf(x) Gaussiana.



Figure 4.4: Misure casuali che seguono una pdf di Gauss tra -1 e 1 in cui  $\overline{x}$  del campione iniziale non coincide con il valore medio  $\mu=0$  della popolazione. Dunque  $\overline{x}$  non è più il centro del campione al crescere delle misure.

Se riscriviamo lo stimatore  $s^2$  nel seguente modo:

$$s^{2} \equiv \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2} = \frac{\sigma_{t}^{2}}{N-1} \sum_{i=1}^{N} \frac{(x_{i} - \overline{x})^{2}}{\sigma_{t}^{2}}$$

possiamo introdurre una variabile aleatoria ausiliaria definita come  $\chi^2$  e

riscrivere  $s^2$  come:

$$s^2 \equiv \frac{\sigma_t^2}{N-1} \chi^2$$

di conseguenza  $V[s^2]$  è legata alla  $V[\chi^2]$ . Nell'ipotesi in cui le misure raccolte seguano una distribuzione di probabilità Gaussiana la variabile  $\chi^2$  segue la distribuzione del chi-quadro. Tale pdf è descritta da un solo parametro definito gradi di libertà e nel nostro caso tale parametro vale N-1.

Di conseguenza con questa nuova distribuzione possiamo dimostrare che  $s^2$  è uno stimatore non distorto.

Dim.

$$E[s^2] = E\left[\frac{\sigma_t^2}{N-1}\chi^2\right] = \frac{\sigma_t^2}{N-1}E[\chi^2] = \frac{\sigma_t^2}{N-1}(N-1) = \sigma_t^2$$

La sua varianza è data da:

$$V[s^2] = V\left[\frac{\sigma_t^4}{(N-1)^2}\chi^2\right] = \frac{\sigma_t^4}{(N-1)^2}V[\chi^2] = \frac{2\sigma_t^4}{(N-1)^2}$$