Lecture 1: Euclidean Space

Math 247 Winter Term 2019 Monday, January 7th, David Duan

Contents

- 1.1 \mathbb{R}^n , Inner Products, and Norms
- 1.2 Inequalities
- 1.3 Angles Between Vectors

1.1 \mathbb{R}^n , Inner Products, and Norms

Core Definitions

• We work with the *n*-dimensional real vector space

$$\mathbb{R}^n := \{ \vec{x} = (x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}, i \leq i \leq n \}$$

equipped with usual vector addition and scalar multiplication operations.

• Euclidean inner product (also called the dot product or scalar product):

$$\langle ec{x}, ec{y}
angle := \sum_{i=1}^n x_i y_i$$

• Euclidean norm of $\vec{x} \in \mathbb{R}^n$:

$$\|ec{x}\| := \langle ec{x}, ec{x}
angle^{1/2} = \left(\sum_{i=1}^n x_i^2
ight)^{1/2}$$

The Euclidean norm corresponds to the usual notion of *length* for vectors; $\|\vec{x} - \vec{y}\|$ is interpreted as the *distance* between points \vec{x} and \vec{y} .

• By Euclidean space, we mean \mathbb{R}^n with the structure of space imposed by the Euclidean inner product and norm.

Proposition 1.1.1: Properties of the Euclidean inner product Let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$. The Euclidean inner product satisfies the following properties:

- 1. Positive definite: $\langle \vec{x}, \vec{x} \rangle \geq 0$ with equality if and only if $\vec{x} = \vec{0}$
- 2. Symmetry: $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$
- 3. Bilinearity: $\langle \alpha \vec{x} + \beta \vec{y}, \vec{z} \rangle = \alpha \langle \vec{x}, \vec{z} \rangle + \beta \langle \vec{y}, \vec{z} \rangle$

Proof. Trivial.

Proposition 1.1.2: Properties of the Euclidean norm Let $\vec{x}, \vec{y} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$. The Euclidean norm satisfies the following properties:

- 1. Positive definite: $\|\vec{x}\| \ge 0$ with equality if and only if $\vec{x} = \vec{0}$
- 2. Homogeneous: $\|\alpha \vec{x}\| = |\alpha| \|\vec{x}\|$
- 3. Triangle Inequality: $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$

Proof. Trivial, or see **Theorem 1.2.2**.

1.2 Inequalities

 $\textbf{Theorem 1.2.1: Cauchy-Schwarz Inequality} \ \ \text{For any} \ \vec{x}, \vec{y} \in \mathbb{R}^n, \ |\langle \vec{x}, \vec{y} \rangle| \leq \|\vec{x}\| \|\vec{y}\|.$

Proof. The statement is trivial if $\vec{x} = \vec{0}$ or $\vec{y} = \vec{0}$. Suppose $\vec{x} \neq \vec{0}$ and $\vec{y} \neq \vec{0}$ and define the unit vectors

$$ec{u} = (u_1, u_2, \dots, u_n) := rac{ec{x}}{\|ec{x}\|}, \quad ec{v} = (v_1, v_2, \dots, v_n) := rac{ec{y}}{\|ec{y}\|},$$

For each $i = 1, 2, \ldots, n$,

$$0 \leq (u_i - v_i)^2 = u_i^2 - 2u_i v_i + v_i^2 \implies u_i v_i \leq rac{1}{2} (u_i^2 + v_i^2).$$

Adding together the inequalities for all i's gives us

$$\sum_{i=1}^n u_i v_i \leq rac{1}{2} \Biggl(\sum_{i=1}^n u_i^2 + \sum_{i=1}^n v_i^2 \Biggr) \implies \langle ec{u}, ec{v}
angle \leq rac{1}{2} (\|ec{u}\|^2 + \|ec{v}\|^2) = 1,$$

since $\|\vec{u}\| = \|\vec{v}\| = 1$ by construction.

Repeat this with the component-wise inequality, we get

$$0 \leq (u_i + v_i)^2 = u_i^2 + 2u_i v_i + v_i^2 \implies u_i v_i \geq -rac{1}{2}(u_i^2 + v_i^2)$$

and

$$\sum_{i=1}^n u_i v_i \geq -rac{1}{2} \Biggl(\sum_{i=1}^n u_i^2 + \sum_{i=1}^n v_i^2 \Biggr) \implies \langle ec{u}, ec{v}
angle \geq -rac{1}{2} (\|ec{u}\|^2 + \|ec{v}\|^2) = -1.$$

Hence, we have shown that $|\langle \vec{u}, \vec{v} \rangle| \leq 1$, which is the Cauchy-Schwarz Inequality applied to the unit vectors \vec{u} and \vec{v} .

Next, observe

$$\|\vec{x}\|\|\vec{y}\||\langle\vec{u},\vec{v}\rangle| = \|\vec{y}\||\langle\|\vec{x}\|\vec{u},\vec{v}\rangle| = \|\vec{y}\||\langle\vec{v},\|\vec{x}\|\vec{u}\rangle| = |\langle\|\vec{y}\|\vec{v},\|\vec{x}\|\vec{u}\rangle| = |\langle\|\vec{x}\|\vec{u},\|\vec{y}\|\vec{v}\rangle| = |\langle\vec{x},\vec{y}\rangle|.$$

Thus, we have

$$|\left\langle \vec{u}, \vec{v} \right\rangle| \leq 1 \implies \|\vec{x}\| \|\vec{y}\| \left\langle \vec{u}, \vec{v} \right\rangle| \leq \|\vec{x}\| \|\vec{y}\| \implies |\left\langle \vec{x}, \vec{y} \right\rangle| \leq \|\vec{x}\| \|\vec{y}\|$$

as desired. \square

Theorem 1.2.2: Triangle Inequality For any two vectors $\vec{x}, \vec{y} \in \mathbb{R}^n$,

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$$

$$\begin{split} \|\vec{x} + \vec{y}\|^2 &= \langle \vec{x} + \vec{y}, \vec{x} + \vec{y} \rangle \\ &= \langle \vec{x}, \vec{x} \rangle + \langle \vec{x}, \vec{y} \rangle + \langle \vec{y}, \vec{x} \rangle + \langle \vec{y}, \vec{y} \rangle & \text{By Bilinearity} \\ &\leq \langle \vec{x}, \vec{x} \rangle + |\langle \vec{x}, \vec{y} \rangle| + |\langle \vec{y}, \vec{x} \rangle| + \langle \vec{y}, \vec{y} \rangle & \text{Absolute Values} \\ &\leq \|\vec{x}\|^2 + \|\vec{x}\| \|\vec{y}\| + \|\vec{y}\| \|\vec{x}\| + \|\vec{y}\|^2 & \text{Cauchy-Schwarz} \\ &= (\|\vec{x}\| + \|\vec{y}\|)^2 \\ \Longrightarrow \|\vec{x} + \vec{y}\| \leq \|\vec{x}\| + \|\vec{y}\| & \Box \end{split}$$

1.3 Angles Between Vectors

The Cauchy-Schwarz Inequality can be written as

$$-\|ec{x}\|\|ec{y}\| \leq \langle ec{x}, ec{y}
angle \leq \|x\|\|ec{y}\| \quad ext{or} \quad -1 \leq rac{\langle ec{x}, ec{y}
angle}{\|ec{x}\|\|ec{y}\|} \leq 1.$$

We can define $\theta \in \mathbb{R}$ by the relation

$$\cos heta = rac{\langle ec{x}, ec{y}
angle}{\|ec{x}\| \|ec{y}\|}.$$

Observe that

$$egin{aligned} \|ec{y} - ec{x}\|^2 &= \langle ec{y} - ec{x}, ec{y} - ec{x}
angle \ &= \|ec{y}\|^2 - 2 \, \langle ec{y}, ec{x}
angle + \|ec{x}\|^2 \ &= \|ec{y}\|^2 + \|ec{x}\|^2 - 2 \|ec{y}\| \|ec{x}\| \cos heta, \end{aligned}$$

which is the familiar Law of Cosines. Hence, θ is the angle between the two vectors.

This gives us an alternative formula to create the inner product:

$$\langle \vec{x}, \vec{y} \rangle = ||\vec{x}|| ||\vec{y}|| \cos \theta$$