Databázové modely – stručný přehled na začátek

- 3 úrovně pohledu na data
- integritní omezení
- konceptuální a logický model ? souvislost s SI
- konceptuální modelování (ER, UML Class Diagram)
- logické (databázové) modely (popis, příklad)
 - síťový
 - hierarchický
 - relační
 - objektový
 - XML

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS – Databázové modely

30. září 2009

1 / 38

Různé úrovně pohledu na data

Konceptuální, logická, fyzická úroveň

Konceptuální

- Zabývá se modelováním reality.
- Snaží se nebýt ovlivněna budoucími prostředky řešení. Používá se grafická notace (obvykle ER model nebo UML Class Diagram), případně další IO.
- Logická (databázová)
 - Vztahuje se ke konkrétnímu databázovému modelu a používá jeho konstrukční dotazovací a manipulační prostředky (relační objektová, síťová, hierarchická, XML, ...).

Fyzická

Jde o fyzické uložení dat (sekvenční soubor, indexy, clustery, ...). Uživatelé (programátoři aplikací, příležitostní uživatelé) je od ní odstínen logickou vrstvou SŘBD.

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS – Databázové modely

30. září 2009

4/38

Integritní omezení (IO)

- IO jsou tvrzení vymezující konkretnost DB.
- Definují se na konceptuálni úrovni, promítají se do úrovně logické.
- Na databázové (logické) úrovni se definují pomocí JDD (DDL).
 Někdy DDL není dost silný, proto další prostředky (triggery, uložené procedury), nebo až na úrovni aplikace.
- DDL prostředky datových modelů jsou různě silné (realční objektová, sítová, hierarchická, XML, ...)
- Příklady IO (Uvažujeme půjčovnu filmů, která půjčuje filmy do kin.):
 - Kino je jednoznačně určené názvem.
 - Film si lze v půjčovne rezervovat jen tehdy, jsou-li všechny jeho kopie vypůjčeny
 - Zákazník si může vypůjčit nejvýše 6 filmů (kopií)
 - Vypůjčující si osoba musí být v seznamu zákazníků půjčovny.

Konceptuální modelování databází

- V polovině 70. let 20. století.
- Nejdůležitější přínosy:
 - společné chápání objektů aplikace uživateli a projektanty,
 - integrace různých uživatelských pohledů,
 - výsledek je vstupem pro realizaci databáze,
 - slouží jako dokumentace.
- Důsledky vypuštění konceptuální úrovně :
 - Příliš nízká úroveň pohledu na data:
 - ⇒ obtížná komunikace se zadavatelem (zákazníkem),
 - ⇒ neumožní realizaci větší databáze.
 - V rozsáhlejší databázi je velmi těžké se zorientovat.

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS – Databázové modely

30. září 2009

7 / 38

Konceptuální modelování

- E-R diagramy (1976)
 - de facto standart (pro relační databáze)
 - chenova notace
 - binární ER (Oracle)
 - mnoho dalších ...

Konstrukty ER:

- entitní množiny (entity)
 - atributy entit
- vztahové typy (vztahy)
 - účast ve vztahu
 - atributy vztahů
- integritní omezení
 - identifikátory
 - násobnost účasti (kardinalita a parcialita vztahu)

UML Class Diagram

- součást UML
 - ⇒ implementace v mnoha návrhových nástrojích,
 - ⇒ včetně automatických generátorů databázového modelu (DDL),
 - ⇒ Enterprise Architekt, UML Star, Rational Rose,
- UML (a Class Diagram) je objektově orientovaná notace
 - ⇒ výhodné pro objektově orientovanou implementaci
 - ⇒ většina (současných) databází je však relační (resp. OR)
 - ⇒ pro návrh databáze se často nevyužívají všechny výrazové prostředky (jednodušší Class Diagram má přímočarý překlad do zvoleného JDD na databázové úrovni, převod složitějbších konstrukcí nemusí být jednoznačný nebo úplný a může působit problémy, viz například ISA hierarchie v dalších přednáškách).

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS - Databázové modely

30. září 2009

9/38

Databázové modelování v kontextu SI

 The future of development of UML will be increasingly affected by Model Driven Architecture (MDA)

15

Nástroje – ER modelář

UML Class Diagram

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS – Databázové modely

30. září 2009

11/38

Logické (databázové) modely

- síťový 60. léta 20. století
- hierarchický konec 60.let; lze chápat jako specializaci síťového modelu
- relační 70.leta
- objektový 80.léta; lze chápat jako rozšíření síťového modelu
- objektově-ralační 90-léta; komerčne úspěšný kříženec relačního a objektového modelu; podpora ve standartech sql (SQL99, SQL2003)
- XML konec 90 let, mnoho prvků hierarchicko modelu; aplikační doména?; zpracování XML dat také proniká do standardu SQL

Logické (databázové) modely

- Volba databázového modelu určuje prostředky pro vytváření struktury databáze (DDL) a prostředky pro tvorbu aplikací (DML, dotazovací jazyk, TCL, DCL)
- Příklady:
 - relační model SQL
 - Objektový model OQL
 - XML model Xpath, XQuery

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS - Databázové modely

30. září 2009

14 / 38

Síťový model – příklad – schéma výskytů

Sítový model – datové typy

- datový typ Record (záznam), který se podobá pascalskému datovému typu File of record
- datový typ Set (C-množina); dvojice různých datových typů
 Record, který se podobá datovému typu Seznam)

Poznámka:

- Snadná konverze mezi ER a síťovým modelem:
 - Každému entitnímu typu odpovídá jeden typ Record
 - Každému vztahovému typu 1:N odpovídá jeden typ Set

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS – Databázové modely

30. září 2009

17/38

Sítový model – operace

- vytvoř nový záznam daného typu, zruš záznam, změn záznam
- zařaď členský záznam do c-množiny daného vlastníka
- vyřaď daný člen z c-množiny
- najdi první člen v c-množině daného vlastníka
- najdi následovníka v c-množině daného vlastníka
- najdi vlastníka daného člena c-množiny

Síťový model – Bachmanův diagram – návrh 1

typ Záznam typ SET (C-množina) typ Záznam

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS – Databázové modely

30. září 2009

19 / 38

Síťový model – Bachmanův diagram – návrh 2

Blíže realitě než předchozí návrh.

Síťový model, příklad navigace

Dotaz: Vypiš program kina Blaník.

```
Begin
  Najdi KINO záznam (NAZEV='Blaník');
  Get KINO;
  Najdi prvního člena v MÁ_NA_PROGRAMU;
  While Not EOF MÁ_NA_PROGRAMU Do
        Get MÁ_NA_PROGRAMU into A;
        Print (A.Datum);
        Najdi vlastníka k A ve FILM;
        Get FILM into B;
        Print (B.Nazev);
        Najdi následovníka v MA_NA_PROGRAMU;
        End;
        End;
```

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS – Databázové modely

30. září 2009

21 / 38

Hierarchický model

- specializace modelu síťového
- siťový = orientovaný graf, hierarchický = strom
- omezené použití (nevhodné pro náš příklad!)
- vhodné pro modelování typu část/celek
- aplikace evidence součástek v projektu Apolo

Relační model – charakteristika

Jediný konstrukt – relace

Michal Valenta (michal.valenta@fit.cvut.cz)

- schéma relace: jméno relace, jména atributů, specifikace domén atributů
- prvky domén jsou atomické hodnoty (1.normální forma)
- formální zápis R(A1:D1,...,An:Dn)
- příklad: KINO (NAZEV_K:CHAR(15), ADRESA:CHAR(25))
- Integritní ozemení: primární klíč, cizí klíč

30. září 2009

23 / 38

Relační model – příklad – schéma

KINO(NAZEV_K, ADRESA)
FILM(JMENO_F, HEREC, ROK)

MA_NA_PROGRAMU(NAZEV_K, JMENO_F, DATUM)

Integritní omezení:

- primární klíče:
 - NAZEV K
 - JMENO F
 - ► {NAZEV K, JMENO F}
- cizí klíče
 - MA NA PROGRAMU.NAZEV K
 - MA NA PROGRAMU.JMENO F

IO relace MA_NA_PROGRAMU jsou příliš silná. Proč?

Nelze aby jedno kino hrálo jeden film víckrát (v jiný den a/nebo čas).

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS – Databázové modely

30. září 2009

25 / 38

ROK

Relační model – příklad – data

KINO

NÁZEV_K	ADRESA
Blaník	Václ. n. 4
Vesna	Olšiny 3
Mír	Strašnická 3
Domovina	V dvorcích 7

FILM

JMENO_F

Cerní baroni	Vetchý	1994
Černí baroni	Landovský	1994
Top gun	Cruise	1986
Top gun	McGillis	1986
Kmotr	Brando	1972
Nováček	Brando	1990
Vzorec	Brando	1980

HEREC

MA NA PROGRAMU

NÁZEV_K	JMENO_F	DATUM
Blaník	Tog gun	29.3. 1994
Blaník	Kmotr	8.3. 1994
Mír	Nováček	10.3. 1994
Mír	Top gun	9.3. 1994
Mír	Kmotr	8.3. 1994

Relační model – operace

- vytvoř novou relaci (tabulku)
- přidej novou n-tici (řádek) do dané relace (tabulky)
- vymaž n-tice (řádky) zadaných vlastností
- ve vybraných n-ticích (řádcích) zadané relace (tabulky) změn hodnoty zadaných prvků (polí)
- vytvoř **novou relaci** (tabulku) ze zadané relace:
 - výberem n-tic (řádků) zadaných vlastností selekce
 - výberem zadaných atributů (sloupců) projekce
- vytvoř novou relaci (tabulku) ze zadaných relací (tabulek) pomocí množinových operací sjednocení, průnik,rozdíl, kartézský součin
- vytvoř novou relaci (tabulku) ze zadaných relací pomocí operace spojení

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS – Databázové modely

30. září 2009

27 / 38

Relační model – dotazování – příklad

Dotaz: Vypiš program kina Blaník.

relační algebra

```
(KINO (NAZEV_K = 'Blaník') *
MA_NA_PROGRAMU * FILM) [jmeno_f, datum]
```

SQL

```
Select Jmeno_F, Datum
From KINO K JOIN MA_NA_PROGRAMU MNP
        ON (K.NAZEV_K= 'Blaník'
            and K.NAZEV_K= MNP.NAZEV_K)
        JOIN FILM USING (Jmeno_F);
```

Objektový model – charakteristika

- Objekty = data + metody. Mezi objekty existuje skládání, dědění, závislost, klasifikace podle tříd, ... Strukturované informace není třeba rozdělovat jako v RDM.
- Protokol objektu je dán množinou přístupných zpráv (ne atributů jako v RMD).
- Jedna množnima (objektů) může s využitím polymorfismu obsahovat objekty s různou strukturou dat i metod.
- Je rozdíl mezi množinou objektů a třídou.
- Identita objektu je dána nejen vnitřními, ale i vnějšími vazbami.
 Klíče jsou interní záležitostí.

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS – Databázové modely

30. září 2009

29 / 38

Objektový model – konstrukty

- základní konstrukt objekt
 - generován jako instance dané třídy (která nese infomace o jménech atributů, specifikaci domén atributů, názvech metod, ...)
 - má stav (hodnoty atributů)
- množinové konstrukce kolekce:
 - set, bag, list, array, dictionary, ...
- množinové operace
 - ▶ so:, select:, collect:, detect:, inject:, reject:, intersect:, union:, ...

Objektový model – příklad

Metody objektu Kino:

```
programNa: datum
    ^predstaveni select: [:p | p datum = datum]
vsechnyFilmy
    ^(predstaveni collect: [:p | p film]) asSet
```

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS - Databázové modely

30. září 2009

31 / 38

XML model – chrakteristika

- Podobá se hierarchickému XML dokument je obvykle chápán jako strom; DOM API pro přístup.
- Aplikační doména?
- Datový model : elementy, atributy, PCDATA, zachovává pořadí (document oder). Někdy je bohatší.
- Silné a standardizované dotazovací jazyky (XPath,XQuery)
- Mnoho implementací a mnoho věcí stále ve vývoji (indexování, zamykání, ...)

XML model – příklad schématu – DTD

```
<!ELEMENT program (kino*)>
<!ELEMENT kino (nazev_k, adresa, hraje*)>
<!ELEMENT hraje (film, datum)>
<!ELEMENT film (nazev_f, herec, rok)>
<!ELEMENT nazev_k (#PCDATA)>
<!ELEMENT adresa (#PCDATA)>
<!ELEMENT datum (#PCDATA)>
<!ELEMENT nazev_f (#PCDATA)>
<!ELEMENT nazev_f (#PCDATA)>
<!ELEMENT nazev_f (#PCDATA)>
<!ELEMENT rok (#PCDATA)>
```

Poznámka

Toto schéma bude jistě obsahovat množství opakujících se hodnot. Zřejmě by bylo nevhodné i pro DML operace (aktualizační anomálie). Naopak by bylo vhodné pro přímé vygenerování reportu (html, pdf, ...) s programem jednotlivých kin.

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS – Databázové modely

30. září 2009

33 / 38

XML model – příklad – data

```
cprogram>
  <kino>
    <nazev_k> MAT </nazev_k>
    <adresa> Karlovo nám. 18, Praha 2 </adresa>
    <hraje>
      <film>
        <nazev_f> Forest Gump </nazev_f>
        <herec> Tom Hanks </herec> <rok> 1998 </rok>
      </film>
      <datum> 3.1. 2007 </datum>
      <film>
        <nazev_f> Vratné láhve </nazev_f>
        <herec> Zdeněk Svěrák </herec> <rok> 2006 </rok>
      </film>
      <datum> 17. 5. 2007 </datum>
    </hraje>
  </kino>
  <kino> ... </kino>
</program>
```

XML model – příklad – XPath

- Názvy kin v databázi :
 - /program/kino/nazev_k
- Všichni herci:
 - //herec
- Kina, která mají na programu aspoň 2 filmy:
 - //kino[count(./hraje/film)>2]/nazev_k
- Filmy, které hrají v kině Blaník:
 - //kino[nazev_k="Blanik"]//nazev_f

Michal Valenta (michal.valenta@fit.cvut.cz)

DBS - Databázové modely

30. září 2009

35 / 38

XML model – příklad – XQuery

Dotaz: Názvy filmů se seznamem kin, kde se hrají

Jedná se vlastně o inverzní výpis databáze.

Shrnutí

V tomto předmětu se budeme dále věnovat **relačnímu databázovému modelu.**

- Je však dobré si uvědomit, že:
 - Relační model není jediný, ze kterého si můžeme vybírat.
 - Pro určitý typ aplikace nebo aplikační doménu můžeme výběrem vhodného DB modelu mnoho ušetřit.
 - Volbu DB modelu je třeba dobře uvážit a zdůvodnit.