Rings of Invariants

Chenyang Zhao

December 26, 2024

Contents

1	Def	inition and Examples 2	
	1.1	Assumptions	
	1.2	Definition: Ring of Invariants	
	1.3	Example 1: Symmetric Group S_n	
	1.4	Example 2: Cyclic Group μ_n	
	1.5	Example 3: Dihedral Group D_n	
2	Algebraic Structure		
	2.1	Finitely Generated Invariant Rings	
	2.2	Graded Rings and Homogeneous Components	
	2.3	Reynolds Operator	
	2.4	Additional Examples	
3	Cor	nputational Techniques 4	
	3.1	Methods for Finding Generators	
	3.2	Gröbner Bases for Invariants	
	3.3	Software Tools	
	3.4	Explicit Computations	
4	Cla	ssical Results 5	
	4.1	Emmy Noether's Theorem	
	4.2	Proofs of Noether's Theorem	
	4.3	Applications to Specific Groups	
5	Connections to Algebraic Geometry		
	5.1	Invariant Rings as Coordinate Rings of Quotient Varieties	
	5.2	Geometry of Quotient Spaces	
	5.3	Singularities from Group Actions	
6	Advanced Topics		
	6.1	Symmetric Polynomials and Universality	
	6.2	Modular Invariant Theory	
	6.3	Invariant Theory for Non-Finite Groups	
	6.4	Applications in Modern Fields	

1 Definition and Examples

1.1 Assumptions

- All rings considered are commutative.
- The base field k is \mathbb{C} (any k with characteristic 0 and sufficient roots of unity also works).

1.2 Definition: Ring of Invariants

Let $G \subset GL_n(\mathbb{C})$ be a group acting on $\mathbb{C}[x_1, \ldots, x_n]$, the ring of polynomial functions on \mathbb{C}^n . The action of G on $\mathbb{C}[x_1, \ldots, x_n]$ is induced by the action of G on \mathbb{C}^n , defined as:

$$\gamma \cdot f(x) = f(\gamma^{-1}x), \quad \forall \gamma \in G.$$

The **ring of invariants** under this action is defined as:

$$\mathbb{C}[x_1,\ldots,x_n]^G = \{ f \in \mathbb{C}[x_1,\ldots,x_n] \mid \forall \gamma \in G, \gamma \cdot f = f \}.$$

1.3 Example 1: Symmetric Group S_n

• Group Action: The symmetric group S_n acts on $\mathbb{C}[x_1,\ldots,x_n]$ by permuting the variables:

$$\sigma \cdot f(x_1, \dots, x_n) = f(x_{\sigma(1)}, \dots, x_{\sigma(n)}), \quad \sigma \in S_n.$$

• Ring of Invariants: The elementary symmetric polynomials generate the ring of invariants:

$$\sigma_1 = x_1 + x_2 + \dots + x_n$$
, $\sigma_2 = \sum_{i < j} x_i x_j$, ..., $\sigma_n = x_1 x_2 \cdots x_n$.

Theorem:

$$\mathbb{C}[x_1,\ldots,x_n]^{S_n}=\mathbb{C}[\sigma_1,\sigma_2,\ldots,\sigma_n].$$

The map:

$$\phi: \mathbb{C}[y_1, \dots, y_n] \to \mathbb{C}[x_1, \dots, x_n]^{S_n}, \quad y_i \mapsto \sigma_i,$$

is an isomorphism with no algebraic relations between the σ_i .

1.4 Example 2: Cyclic Group μ_n

• Group Definition: The cyclic group of *n*-th roots of unity, $\mu_n = \{ \xi \in \mathbb{C} \mid \xi^n = 1 \}$, acts on $\mathbb{C}[x,y]$ as:

$$\xi \cdot (x,y) = (\xi x, \xi^{-1}y).$$

• Invariants: Invariant polynomials include:

$$u = x^n$$
, $v = y^n$, $w = xy$.

The ring of invariants is:

$$\mathbb{C}[x,y]^{\mu_n} = \mathbb{C}[u,v,w]/(uv-w^n),$$

where the relation $uv = w^n$ defines the ideal of relations.

1.5 Example 3: Dihedral Group D_n

• Group Definition: The dihedral group D_n acts on $\mathbb{C}[x,y]$ by combining rotations and reflections. For instance:

$$r \cdot (x, y) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta), \quad s \cdot (x, y) = (x, -y).$$

• Invariants: These actions generate more complex invariant rings, often involving higher-degree polynomials. Detailed computations depend on n.

2 Algebraic Structure

2.1 Finitely Generated Invariant Rings

- Noether's Theorem: If $G \subset GL_n(\mathbb{C})$ is a finite group acting on $\mathbb{C}[x_1,\ldots,x_n]$, then the invariant ring $\mathbb{C}[x_1,\ldots,x_n]^G$ is a finitely generated \mathbb{C} -algebra.
- This result follows from the fact that $\mathbb{C}[x_1,\ldots,x_n]$ is Noetherian (Hilbert Basis Theorem).
- Connection to the Hilbert Basis Theorem: The invariants form an ideal that is finitely generated, ensuring the entire invariant ring is finitely generated.

2.2 Graded Rings and Homogeneous Components

 \bullet A ring R is called graded if it can be written as a direct sum of abelian groups:

$$R = \bigoplus_{n \ge 0} R_n,$$

where $R_n \cdot R_m \subseteq R_{n+m}$.

- Homogeneous Elements: Elements in R_n are called homogeneous of degree n.
- Preservation by Group Actions: If G acts on R, the grading is preserved, and R^G inherits the grading:

$$R^G = \bigoplus_{n \ge 0} (R^G)_n.$$

2.3 Reynolds Operator

• The Reynolds operator is defined as:

$$\rho(f) = \frac{1}{|G|} \sum_{\gamma \in G} \gamma \cdot f.$$

- Properties:
 - 1. $\rho(f) = f$ if and only if $f \in \mathbb{R}^G$.
 - 2. ρ is linear but not multiplicative.
 - 3. ρ preserves degrees: if $f \in R_n$, then $\rho(f) \in R_n$.

2.4 Additional Examples

- 1. Symmetric Group S_n : Invariants are generated by elementary symmetric polynomials.
- 2. Cyclic Group μ_n : Invariants involve monomials in x^n, y^n , and xy, subject to a single relation.
- 3. **Dihedral Group** D_n : Reflection invariants and rotational invariants combine to form the generators.

3 Computational Techniques

3.1 Methods for Finding Generators

Definition 3.1. The **Reynolds operator** is a fundamental tool in constructing invariant polynomials. For a finite group G acting on a polynomial ring $\mathbb{C}[x_1,\ldots,x_n]$, it is defined as:

$$\rho(f) = \frac{1}{|G|} \sum_{\gamma \in G} \gamma \cdot f, \quad \forall f \in \mathbb{C}[x_1, \dots, x_n].$$

Remark 3.1. The Reynolds operator ensures any polynomial f is projected to its invariant component. Specifically:

- $\rho(f) \in \mathbb{C}[x_1, \dots, x_n]^G$.
- $\rho(f) = f$ if and only if $f \in \mathbb{C}[x_1, \dots, x_n]^G$.

3.2 Gröbner Bases for Invariants

Definition 3.2. A **Gröbner basis** is a set of polynomials that provides a canonical representation of an ideal. For an invariant ring $\mathbb{C}[x_1,\ldots,x_n]^G$, a Gröbner basis can simplify computations by systematically generating relations among invariants.

Theorem 3.1. Let G be a finite group acting on $\mathbb{C}[x_1,\ldots,x_n]$. The ideal of relations among generators of $\mathbb{C}[x_1,\ldots,x_n]^G$ can be computed using a Gröbner basis.

3.3 Software Tools

- Macaulay2: A computational algebra system ideal for computing Gröbner bases, invariant rings, and polynomial relations.
- **Singular:** Specialized for polynomial computations, including manipulation of ideals and invariant computations.

Example 3.1. For the cyclic group μ_3 acting on $\mathbb{C}[x,y]$ as $\xi \cdot (x,y) = (\xi x, \xi^{-1}y)$ with $\xi^3 = 1$:

- Compute the invariants $u = x^3, v = y^3, w = xy$.
- The ring of invariants is:

$$\mathbb{C}[x,y]^{\mu_3} = \mathbb{C}[u,v,w]/(uv-w^3).$$

Using Macaulay2 or Singular, you can verify the relation $uv = w^3$.

3.4 Explicit Computations

For specific groups:

- Cyclic Group μ_n : Compute monomials x^n, y^n, xy and identify relations.
- Dihedral Group D_n : Handle both rotational and reflective symmetries.

4 Classical Results

4.1 Emmy Noether's Theorem

Theorem 4.1. Let $G \subset GL_n(\mathbb{C})$ be a finite group. The invariant ring $\mathbb{C}[x_1,\ldots,x_n]^G$ is a finitely generated \mathbb{C} -algebra.

Proof Outline. • Use the fact that $\mathbb{C}[x_1,\ldots,x_n]$ is Noetherian (Hilbert Basis Theorem).

- Construct generators for the invariant ideal.
- The generators form a finite set, ensuring the invariant ring is finitely generated.

4.2 Proofs of Noether's Theorem

- Hilbert Basis Theorem Argument:
 - 1. The ideal of invariants is finitely generated since $\mathbb{C}[x_1,\ldots,x_n]$ is Noetherian.
 - 2. Use the Reynolds operator to construct explicit generators.
- Original Construction by Emmy Noether:
 - 1. Use $\mathbb{C}[T]$ and group actions to derive invariant polynomials.
 - 2. Bound the degree of generators by the group order.

4.3 Applications to Specific Groups

Example 4.1. For the symmetric group S_n :

- Invariants are generated by elementary symmetric polynomials $\sigma_1, \ldots, \sigma_n$.
- The invariant ring is:

$$\mathbb{C}[x_1,\ldots,x_n]^{S_n}=\mathbb{C}[\sigma_1,\ldots,\sigma_n].$$

Example 4.2. For the cyclic group μ_n :

- Invariants include x^n, y^n, xy .
- Relations such as $uv = w^n$ define the structure of the invariant ring.

Example 4.3. For the dihedral group D_n :

- Combine reflection and rotational symmetries.
- Explicit computations depend on the value of n.

5 Connections to Algebraic Geometry

5.1 Invariant Rings as Coordinate Rings of Quotient Varieties

Definition 5.1. Let G be a finite group acting linearly on \mathbb{C}^n . The ring of invariants $\mathbb{C}[x_1,\ldots,x_n]^G$ is the coordinate ring of the quotient variety \mathbb{C}^n/G . This quotient reflects the geometric orbits of the action of G on \mathbb{C}^n .

Example 5.1. The action of the cyclic group μ_n on \mathbb{C}^2 is defined as:

$$\xi \cdot (x, y) = (\xi x, \xi^{-1} y), \quad \xi^n = 1.$$

The invariants $u = x^n, v = y^n, w = xy$ generate the ring:

$$\mathbb{C}[x,y]^{\mu_n} = \mathbb{C}[u,v,w]/(uv-w^n),$$

which describes the quotient variety \mathbb{C}^2/μ_n . The equation $uv = w^n$ defines a singular surface known as an A_{n-1} -type singularity.

Remark 5.1. The quotient \mathbb{C}^n/G may not be smooth, and its singularities encode the symmetries of G. These singularities are central to understanding the geometry of the quotient.

5.2 Geometry of Quotient Spaces

- Quotient spaces defined by invariant rings often exhibit singularities at points where the group action is not free (e.g., fixed points of G).
- The quotient variety \mathbb{C}^n/G is generally not a manifold but a singular space. Singularities arise at orbits with higher symmetry.
- Techniques from algebraic geometry, such as resolution of singularities, are used to study and smooth these quotient spaces.

Example 5.2. The binary dihedral group BD_{4n} acts on \mathbb{C}^2 by combining rotations and reflections. The invariant ring defines a quotient space with D_{n+2} -type singularities. These singularities reflect the fixed points of the reflections and the geometry of the group action.

5.3 Singularities from Group Actions

Definition 5.2. Singularities in quotient varieties correspond to the loci where the stabilizer subgroup of G is non-trivial. These singular points are critical for understanding the geometry of the invariant ring.

Remark 5.2. Resolving singularities in quotient varieties often involves techniques such as blow-ups, weighted projective spaces, or toric geometry. The study of these singularities bridges invariant theory and the resolution of singularities in algebraic geometry.

6 Advanced Topics

6.1 Symmetric Polynomials and Universality

- Symmetric polynomials are foundational in invariant theory and arise naturally in the action of symmetric groups S_n .
- The ring of invariants $\mathbb{C}[x_1,\ldots,x_n]^{S_n}$ is generated by the elementary symmetric polynomials:

$$\sigma_1 = x_1 + \dots + x_n, \quad \sigma_2 = \sum_{i < j} x_i x_j, \quad \dots, \quad \sigma_n = x_1 x_2 \cdots x_n.$$

• Universality: Symmetric polynomials appear in diverse areas such as Schur functions, symmetric functions, and representation theory of GL_n .

6.2 Modular Invariant Theory

Definition 6.1. Modular invariant theory studies invariants of group actions over fields with positive characteristic char(k) > 0, especially when $char(k) \mid |G|$. The invariants differ significantly from those in characteristic 0 due to new algebraic and combinatorial phenomena.

Example 6.1. For \mathbb{Z}_p acting on $\mathbb{F}_p[x_1,\ldots,x_n]$, the invariants include polynomials symmetric under \mathbb{Z}_p -rotations. The structure of the ring often requires modular techniques and insights from finite field theory.

Remark 6.1. Modular invariant theory introduces new challenges, such as non-finite generation of invariant rings and the presence of inseparable morphisms.

6.3 Invariant Theory for Non-Finite Groups

- For continuous groups like $GL_n(\mathbb{C})$ or $SL_n(\mathbb{C})$, invariant theory involves differential invariants, algebraic varieties, and representation theory.
- The rings of invariants for non-finite groups often require tools from algebraic geometry, differential equations, and topology.

Example 6.2. Invariant theory for $SL_2(\mathbb{C})$ acting on binary forms $\mathbb{C}[x,y]_n$ relates to classical geometry and the construction of discriminants.

6.4 Applications in Modern Fields

- **Physics:** Noether's theorem connects invariants to conserved quantities in classical mechanics, quantum mechanics, and field theory.
- Statistics: Algebraic statistics utilizes invariant theory in maximum likelihood estimation and model selection, especially for exponential families and toric models.

Remark 6.2. These advanced topics demonstrate the versatility of invariant theory, connecting algebra, geometry, and applied sciences.