2. [Maximum mark: 7]

The following diagram shows the parallelogram ABCD.

Let $\overrightarrow{AB} = p$ and $\overrightarrow{AC} = q$. Find each of the following vectors in terms of p and/or q.

- (a) \overrightarrow{CB} [2]
- (b) \overrightarrow{CD} [2]
- (c) \overrightarrow{DB} [3]

7. [Maximum mark: 7]

Let u = -3i + j + k and v = mj + nk, where $m, n \in \mathbb{R}$. Given that v is a unit vector perpendicular to u, find the possible values of m and of n.

******	*****			

		• • • • • • • • • • • • • • • • • • • •	*************	
• • • • • • • • • • • •				
*********		************		

Turn over

7. [Maximum mark: 6]

The following diagram shows triangle ABC.

diagram not to scale

Let $\overrightarrow{AB} \cdot \overrightarrow{AC} = -5\sqrt{3}$ and $|\overrightarrow{AB}| |\overrightarrow{AC}| = 10$. Find the area of triangle ABC.

. '																																																																	•			٠.	
	•			•	•	•				٠				•			•	٠		•		•	•	•	•		•	•	•		•		•			•				•	•	4			•	•	•					•	•			•		•	•	٠.			٠	•		•			
	٠	٠.		٠	•	٠	•		٠	•	•	•		•	•	•	•	٠		٠	•	٠	•				•	•	,	•	•			٠.	•			•	*	*	•		*		٠	٠			•			•	4				•		•			٠	•	•			•		
	•	• -	•	•	•	•	. ,		٠	.•	•	٠			•	•	•			•		•		•	•			•	•						•			•	p.		•							•									•				•								
	•		•			•		•		٠							•					•	•	•	•	•						٠.	•	•	٠	٠	•			•	•	*				•	•		•		•	•	•	٠.	٠		•		•			•	•		•	٠.			
	٠		•	•	•	•		•	•	•	•	٠	•	•	٠	•	•	•		•	•	٠	•	٠	•		•							•	•	٠	•	•	٠	•	•	•		٠.•	•	•	•	•		٠,	•	٠	•		•	•	٠	•			•	•	•	•					
	٠		٠	,	•	•		•	٠	•	•	٠	•	•	•	٠	•		•	•	•	٠	•	•	• •	٠.					•				•	٠	٠	•	•	•	•			•	•	•					•	•	•		٠	٠	•	٠			٠	•	٠	٠					
	•		٠	•	٠	•		٠	٠	٠	٠	•	٠	•	•	•	•			٠	•	٠	•	•		٠.									٠	•	٠	•	•			•		•	•	•	•			•	•	•	•		•	•	•			, ,		•	,	•	•				
	٠	٠,	•	,	•	٠	•	•	•	٠	•	٠	•	•		•	•			•	•	•	•	•		•	. ,			•			•	•	•	•	•	•	٠		•	•		•	•	•	•	•		•	•	•	• .	•	•	٠	•	•			•	•	•	•		٠.			
	٠		•	•		•		,	•	•	•	•	•	•		•	•		•	•	•	٠	٠	•	٠.			٠.	•	•			•	•	•	•	•	•	•	•	•	•		•	•	*		•	• •	•	•	•	• .		•	•	•	•	٠.		٠		•	•					
	٠		٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	•		٠	•	•	•				•			•	•	•		•	•	•	•	•	٠		•	•		•			•		•		•	•	•		•			•		٠.	•	٠	•	•	•	•				
	•		•	•	•		•	•	٠	٠	•	•	•		•	•	•		٠	•	٠	•	•	• 1		•			•		•	•	٠	٠	•	٠	•	•	•	•	•		•	•	٠	٠	٠			٠	•	•			٠	٠	• •	•	٠.	•	٠	•		•	•				
																						٠																																															

Do **not** write solutions on this page.

Section B

Answer all questions in the answer booklet provided. Please start each question on a new page.

8. [Maximum mark: 16]

A line L passes through points A(-2, 4, 3) and B(-1, 3, 1).

- (a) (i) Show that $\overrightarrow{AB} = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$.
 - (ii) Find $\begin{vmatrix} \overrightarrow{AB} \end{vmatrix}$. [3]
- (b) Find a vector equation for L. [2]

The following diagram shows the line L and the origin O. The point C also lies on L.

Point C has position vector $\begin{pmatrix} 0 \\ y \\ -1 \end{pmatrix}$.

- (c) Show that y = 2. [4]
- (d) (i) Find $\overrightarrow{OC} \cdot \overrightarrow{AB}$.
 - (ii) Hence, write down the size of the angle between OC and L. [3]
- (e) Hence or otherwise, find the area of triangle OAB. [4]

[3]

Do **not** write solutions on this page.

9. [Maximum mark: 15]

A line L_1 passes through the points A(0, -3, 1) and B(-2, 5, 3).

- (a) (i) Show that $\overrightarrow{AB} = \begin{pmatrix} -2 \\ 8 \\ 2 \end{pmatrix}$.
 - (ii) Write down a vector equation for L_1 .

A line L_2 has equation $\mathbf{r} = \begin{pmatrix} -1 \\ 7 \\ -4 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$. The lines L_1 and L_2 intersect at a point C.

- (b) Show that the coordinates of C are (-1, 1, 2). [5]
- (c) A point D lies on line L_2 so that $|\overrightarrow{CD}| = \sqrt{18}$ and $\overrightarrow{CA} \cdot \overrightarrow{CD} = -9$. Find $\angle ACD$. [7]

Do **not** write solutions on this page.

9. [Maximum mark: 15]

Let P and Q have coordinates (1, 0, 2) and (-11, 8, m) respectively.

(a) Express \overrightarrow{PQ} in terms of m.

[2]

Let \mathbf{a} and \mathbf{b} be perpendicular vectors, where $\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ n \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}$.

(b) Find n.

[4]

- (c) Given that \overrightarrow{PQ} is parallel to \boldsymbol{b} ,
 - (i) express \overrightarrow{PQ} in terms of \boldsymbol{b} ;
 - (ii) hence find m.

[5]

In part (d), distance is in metres, time is in seconds.

- (d) A particle moves along a straight line through Q so that its position is given by r = c + ta.
 - (i) Write down a possible vector c.
 - (ii) Find the speed of the particle.

[4]

Do NOT write solutions on this page.

10. [Maximum mark: 17]

Let L_x be a family of lines with equation given by $F = \begin{pmatrix} x \\ 2 \\ x \end{pmatrix} + t \begin{pmatrix} x^2 \\ -2 \end{pmatrix}$, where x > 0.

(a) Write down the equation of L_1 .

[2]

A line L_{σ} crosses the y-axis at a point P.

(b) Show that P has coordinates $\left(0, \frac{4}{a}\right)$.

[6]

The line L_a crosses the x-axis at Q(2a, 0). Let $d = PQ^2$.

(c) Show that $d = 4a^2 + \frac{16}{a^2}$.

. [2

(d) There is a minimum value for d. Find the value of a that gives this minimum value.

[7]