MAT1071 MATHEMATICS I

6.2. APPLICATIONS OF DERIVATIVES

APPLICATIONS OF DERIVATIVES

- 1. Extreme Values of Functions
- 2. Monotonic Functions and the First Derivative Test
- 3. The Mean Value Theorem
- 4. Concavity
- 5. Asymptotes of Graphs
- 6. Curve Sketching

5. Asymptotes of Graphs

- **Horizontal Asymptote**
- Vertical Asymptote
- **☼** Oblique Asymptote

A Horizontal Asymptote

A line y = b is a **horizontal asymptote** of the graph of a func-**DEFINITION** tion y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b.$$

EXAMPLE $f(x) = \frac{3}{3x^2+2}$ So $y = \frac{3}{5}$ is horsoned asymptote for $f(x) = \frac{3}{3}$ So $y = \frac{3}{5}$ is horsoned asymptote for f(x)

Find the horizontal asymptotes of the graph of

$$f(x) = \frac{x^3 - 2}{|x|^3 + 1.}$$

Solution We calculate the limits as $x \to \pm \infty$.

For
$$x \ge 0$$
: $\lim_{x \to \infty} \frac{x^3 - 2}{|x|^3 + 1} = \lim_{x \to \infty} \frac{x^3 - 2}{x^3 + 1} = \lim_{x \to \infty} \frac{1 - (2/x^3)}{1 + (1/x^3)} = 1$.

For
$$x < 0$$
: $\lim_{x \to -\infty} \frac{x^3 - 2}{|x|^3 + 1} = \lim_{x \to -\infty} \frac{x^3 - 2}{(-x)^3 + 1} = \lim_{x \to -\infty} \frac{1 - (2/x^3)}{-1 + (1/x^3)} = -1$.

The horizontal asymptotes are y = -1 and y = 1.

Notice that the graph crosses the horizontal asymptote y = -1 for a positive value of x.

$$\lim_{x \to \infty} \sin(1/x)$$

Solution

We introduce the new variable t = 1/x, we know that $t \to 0^+$ as $x \to \infty$. Therefore,

$$\lim_{x\to\infty}\sin\frac{1}{x}=\lim_{t\to0^+}\sin t=0.$$

we see that the line y = 0 is a horizontal asymptote.

Find
$$\lim_{x \to \pm \infty} x \sin(1/x)$$
.

Solution

We calculate the limits as $x \to \infty$ and $x \to -\infty$:

$$\lim_{x \to \infty} x \sin \frac{1}{x} = \lim_{t \to 0^+} \frac{\sin t}{t} = 1 \quad \text{and} \quad \lim_{x \to -\infty} x \sin \frac{1}{x} = \lim_{t \to 0^-} \frac{\sin t}{t} = 1.$$

we see that the line y = 1 is a horizontal asymptote.

Using the Sandwich Theorem, find the horizontal asymptote of the curve

$$y = 2 + \frac{\sin x}{x}.$$

Solution We are interested in the behavior as $x \to \pm \infty$. Since

$$0 \le \left| \frac{\sin x}{x} \right| \le \left| \frac{1}{x} \right|$$

and $\lim_{x\to\pm\infty} |1/x| = 0$, we have $\lim_{x\to\pm\infty} (\sin x)/x = 0$ by the Sandwich Theorem. Hence,

$$\lim_{x \to \pm \infty} \left(2 + \frac{\sin x}{x} \right) = 2 + 0 = 2,$$

and the line y = 2 is a horizontal asymptote of the curve on both left and right

This example illustrates that a curve may cross one of its horizontal asymptotes many times.

Vertical Asymptotes

DEFINITION A line x = a is a **vertical asymptote** of the graph of a function y = f(x) if either

$$\lim_{x \to a^{+}} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^{-}} f(x) = \pm \infty.$$

Find the horizontal and vertical asymptotes of the curve

$$y = \frac{x+3}{x+2}.$$

Solution We are interested in the behavior as $x \to \pm \infty$ and the behavior as $x \to -2$, where the denominator is zero.

As $x \to \pm \infty$, the curve approaches the horizontal asymptote y = 1;

12

vertical asymptote x = -2.

Find the horizontal and vertical asymptotes of the graph of

$$f(x) = -\frac{8}{x^2 - 4}.$$

Solution

$$y = \frac{-8}{x^2 - 4} = \frac{\sqrt{2} + \sqrt{2}}{\sqrt{2} + \sqrt{2}}$$

$$0 = \frac{-8}{x^2 - 4} = -\infty$$

Find
$$\lim_{x \to 1^+} \frac{1}{x-1}$$
 and $\lim_{x \to 1^-} \frac{1}{x-1}$.

Solution

$$\lim_{x \to 1^+} \frac{1}{x - 1} = \infty \quad \text{vertical asymptote } x = 1$$

$$\lim_{x \to 1^{-}} \frac{1}{x - 1} = -\infty \quad \text{vertical asymptote} \quad x = 1$$

Discuss the behavior of

$$f(x) = \frac{1}{x^2}$$
 as $x \to 0$.

Solution As x approaches zero from either side, the values of $1/x^2$ are positive and become arbitrarily large. This means that

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{1}{x^2} = \infty.$$

x = 0 vertical asymptote

Asst. Prof. Dr. Nurten GÜRSES

The curves

$$y = \sec x = \frac{1}{\cos x}$$
 and $y = \tan x = \frac{\sin x}{\cos x}$

both have vertical asymptotes at odd-integer multiples of $\pi/2$, where $\cos x = 0$

FIGURE asymptotes

The graphs of $\sec x$ and $\tan x$ have infinitely many vertical

infinitely many vertical asymptotes

Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater than the degree of the denominator, the graph has an **oblique** or **slant line asymptote**. We find an equation for the asymptote by dividing numerator by denominator to express f as a linear function plus a remainder that goes to zero as $x \to \pm \infty$.

Note: The oblique asymptote can be

optained ph the Ednations:

$$w = \mu w + \frac{x}{f(x)}$$
 and $v = \mu w + \frac{x}{f(x)} = w$

$$f(x) = \frac{x^2 - 3}{2x - 4}$$

We are interested in the behavior as $x \to \pm \infty$. We divide (2x - 4) into $(x^2 - 3)$:

$$\frac{\frac{x}{2} + 1}{2x - 4\overline{\smash)x^2 - 3}}$$

$$\frac{x^2 - 2x}{2x - 3}$$

$$\frac{2x - 4}{1}$$

This tells us that

20

$$f(x) = \frac{x^2 - 3}{2x - 4} = \left(\frac{x}{2} + 1\right) + \left(\frac{1}{2x - 4}\right).$$
linear g(x)
remainder

As $x \to \pm \infty$, the remainder, whose magnitude gives the vertical distance between the graphs of f and g, goes to zero, making the slanted line

$$g(x) = \frac{x}{2} + 1$$

Oblique asymptote

 $\frac{5econd way}{5econd way} f(x) = x^2 - 3$

$$W = \mu w = \frac{x}{x_3 - 3} = \frac{3}{4}$$

$$u = \lim_{x \to \infty} \left(\frac{5x - 3}{x^2 - 3} - \frac{7}{x^3} \right) = \lim_{x \to \infty} \frac{5x - 3}{x^2 - 4} = T$$

Solution

$$\lim_{x\to\infty} \frac{x}{f(x)} = T \qquad \lim_{x\to\infty} \left(\frac{x_3 - 4x + 5}{x^2 - 4x + 5} - x \right) = -5$$

$$f(x) = \frac{\partial f(x)}{\partial f(x)} = \frac{\partial f(x)}{\partial f(x)}$$

a) that a vertical asym. at the points where Q(x)=0.

b) If m Lr. then y=0 is horizontal asym.

c) It wer than A= T is postaged and. (x+xa)=T)

1 = 0

d) If m=n+1, then I have an oblique aryonp.

A(x) | Oblique augm.

e) It m > 1+4, There is no oblique or horsoital asyn

6. Curve Sketching

Procedure for Graphing y = f(x)

- 1. Identify the domain of f and any symmetries the curve may have.
- **2.** Find the intercepts
- **3.** Identify any asymptotes that may exist
- 4. Find f'.

Find the critical points of f, if any, and identify the function's behavior at each one. Find where the curve is increasing and where it is decreasing.

5. Find f"...

Find the points of inflection, if any occur, and determine the concavity of the curve.

- **6.** Construct the sign table for f' and f".
- 7. Plot key points, such as the intercepts and the points found in Steps 2-5, and sketch the curve together with any asymptotes that exist.

24

Differentiable ⇒ smooth, connected; graph may rise and fall

y = f(x)

 $y' > 0 \Rightarrow$ rises from left to right; may be wavy

 $y' < 0 \Rightarrow$ falls from left to right; may be wavy

or

 $y'' > 0 \Rightarrow$ concave up throughout; no waves; graph may rise or fall or

 $y'' < 0 \Rightarrow$ concave down throughout; no waves; graph may rise or fall

y' changes sign \Rightarrow graph has local maximum or local minimum

y' = 0 and y'' < 0at a point; graph has local maximum

y' = 0 and y'' > 0at a point; graph has local minimum

EXAMPLE Sketch the graph of the factor f(x) = x-1

EXAMPLE Sketch the graph of the factor f(x) = x-1

EXAMPLE Sketch the graph of the factor f(x) = x-1

Solution
$$O$$
 $\frac{D_{cmain}}{D_{f} = R - Si}$ $f(-x) = \frac{-x}{-x} + f(x) \Rightarrow f = 0$

no symmetimes

Homortal asymptote

$$\lim_{x \to 1^+} \frac{x}{x^{-1}} = \infty$$

$$\lim_{x \to 1^+} \frac{x}{x^{-1}} = \infty$$

$$\lim_{x \to 1^+} \frac{x}{x^{-1}} = \infty$$

vertical asymptote

28

$$(x-1)^{2}$$

$$(x-1$$

inflection

concave up on (-0,1) U(1,00)

Concave up on (-0,1)

Concave down on (-0,1)

Asst. Prof. Dr. Nurten GÜRSES

EXAMPLE $f(x) = \frac{x^2 - 4}{8}$ Sketch the graph

EXAMPLE $f(x) = \frac{x^2 - 4}{8}$ Sketch the graph

Solution

- 1 Domain 1 t = 12 2-2,+2}
- (0) intercept points $x=0 \Rightarrow y=-2$ (0)-2) $y=0 \Rightarrow no interaction$ on axis
- 3 Asymptotes

Nottotted arau

1m 8 - 10 - 5/4=01

 $\lim_{x\to 2+} t(x) = -\infty$ $\lim_{x\to 2+} t(x) = +\infty$

 $\lim_{x \to -\infty} f(x) = +\infty$ $\lim_{x \to -\infty} f(x) = -\infty$ $\lim_{x \to -\infty} f(x) = -\infty$

(x3-1)3 3.
$$E_{11}$$
 is ordered $\Rightarrow [X=-5]$
(x) = $1P(3X_5+1)$ $\Rightarrow E_{11}$ is ordered $\Rightarrow [X=5]$
where E_{11} is ordered $\Rightarrow [X=5]$

33

HW:

Horizontal and Vertical Asymptotes

47. Use limits to determine the equations for all vertical asymptotes.

a.
$$y = \frac{x^2 + 4}{x - 3}$$

a.
$$y = \frac{x^2 + 4}{x - 3}$$
 b. $f(x) = \frac{x^2 - x - 2}{x^2 - 2x + 1}$

48. Use limits to determine the equations for all horizontal asymptotes.

a.
$$y = \frac{1 - x^2}{x^2 + 1}$$

a.
$$y = \frac{1 - x^2}{x^2 + 1}$$
 b. $f(x) = \frac{\sqrt{x + 4}}{\sqrt{x + 4}}$

HW:

Oblique Asymptotes

$$31. \ y = \frac{2x^{3/2} + 2x - 3}{\sqrt{x} + 1}$$

99.
$$y = \frac{x^2}{x-1}$$

100.
$$y = \frac{x^2 + 1}{x - 1}$$

HW:

Graphing Equations

Use the steps of the graphing procedure to graph th equations in Exercises 9–48. Include the coordinates of any local ar absolute extreme points and inflection points.

9.
$$y = x^2 - 4x + 3$$

9.
$$y = x^2 - 4x + 3$$

10. $y = 6 - 2x - x^2$
11. $y = x^3 - 3x + 3$
12. $y = x(6 - 2x)^2$

10.
$$v = 6 - 2x - x^2$$

12.
$$y = x(6-2x)^2$$

Graphing Rational Functions

Graph the rational functions in Exercises 75–92.

75.
$$y = \frac{2x^2 + x - 1}{x^2 - 1}$$

77.
$$y = \frac{x^4 + 1}{x^2}$$

79.
$$y = \frac{1}{x^2 - 1}$$

76.
$$y = \frac{x^2 - 49}{x^2 + 5x - 14}$$

78.
$$y = \frac{x^2 + 4}{2x}$$

80.
$$y = \frac{x^2}{x^2 - 1}$$

Reference:

Thomas' Calculus, 12th Edition, G.B Thomas, M.D.Weir, J.Hass and F.R.Giordano, Addison-Wesley, 2012.