Learning for Integrated Task and Motion Planning 2025 AAAI Bridge Program

Guy Azran & Yuval Goshen & Sarah Keren

Our github links

https://github.com/CLAIR-LAB-TECHNION/AAAI_25_Bridge_TMP

https://github.com/CLAIR-LAB-TECHNION/CLAIR-TMP-Tutorials

Technical Details

- The tutorials are provided in the form of Jupyter notebooks, suitable for running online via Google Colab.
- Basic knowledge of Python and PDDL is required.
- At the beginning of each notebook, there is a link to run it on Colab.
- If you would like to run the notebooks locally on your machine, you can download them, but some installations may be required (e.g., numpy).

Technical Details

Activating GPU Runtime in Colab

Example

"I am hungry"

Lab 1 - Task Planning

Lab 1 - Objectives

- Getting to know the complexities of task planning for robotic settings
- Understanding the limitations of PDDL in representing complex settings
- Understanding the need to integrate task and motion planning


```
function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure node \leftarrow \text{Node}(\text{STate=}problem.\text{INITIAL}) frontier \leftarrow a priority queue ordered by f, with node as an element reached \leftarrow a lookup table, with one entry with key problem.\text{INITIAL} and value node while not IS-EMPTY(frontier) do node \leftarrow \text{POP}(frontier) if problem.\text{IS-GOAL}(node.\text{STate}) then return node for each child in EXPAND(problem, node) do s \leftarrow child.\text{STate} if s is not in reached or child.\text{Path-Cost} < reached[s].\text{Path-Cost} then reached[s] \leftarrow child add child to frontier return failure
```

N-table Blocks World

Lab 2 - Motion Planning

(c)

(e)

(f)

Motion Planning Example

How to get from one position to another?

Lab 3 - Integration

