Московский физико-технический институт Физтех-школа прикладной математики и информатики

БОЛЬШОЕ НАЗВАНИЕ КУРСА

V CEMECTP

Лектор: Иван Иванович Иванов

Автор: Павел Дуров Репозиторий на Github

Содержание

1	Her	приводимые многочлены	2
	1.1	Корни многочленов	2
	1.2	Основная Теорема Алгебры	3
	1.3	Следствия из основной теоремы алгебры	4
	1 4	Формальная произволная	4

1 Неприводимые многочлены

Определение 1.1. Пусть F — поле, F[x] — кольцо многочленов над F. Многочлен $P \in F[x]$, $\deg P > 0$ называется наприводимым, если $AB = P \Rightarrow \deg A = 0 \lor \deg B = 0$. Иначе говоря, многочлен неприводим над полем F, если он не раскладывается в произведение многолченов более низких степеней.

Пример. $x^2 + 1 \in \mathbb{R}[x]$ — неприводим. Очев, т.к. не имеет корней.

Пример. $x^2 + 1 = (x - i)(x + i) \in \mathbb{C}[x]$

Утверждение 1.1.
$$P$$
 — $неприводимый, тогда $\forall A: (A,P) = \left[\begin{array}{c} \sim 1 \\ \sim P \end{array} \right]$$

Доказательство. По-другому быть не может, т.к. у P нет делителей, кроме 1 и самого себя.

Лемма 1.1 (Евклида). Пусть P — неприводиный многочлен, $AB:P \Rightarrow A:P \lor B:P$.

Доказательство. От противного, тогда $A \not P, B \not P$. Тогда по теореме о представлении НОДа в виде линейной комбинации:

$$(A, P) = u_1 A + u_2 P = 1$$

$$u_1AB + u_2PB = B:P$$

Противоречие

Теорема 1.1 (Основная Теорема Арифметики). Пусть A — ненулевой многочлен из F[x], F — поле. Тогда $\exists ! P_1, P_2 \dots P_n$ с точностью до перестановки множителей и домножения на константу, где P_i — неприводим и $A = \prod_{i=1}^n P_i$.

Доказательство.

Существование. По индукции: либо он неприводим и очев, либо нет, тогда разложим и для каждого множителя разложим его.

Единственность. Пусть не единственно, будем тогда сокращать на P_1, P_2, \dots Получим, что в разложении должны содержаться многочлены, пропорциональные $P_1, \dots P_n$ соответственно

Следствие. Если A:P, то разложение A является подмножеством разложения P

1.1 Корни многочленов

Определение 1.2. Многолчен P имеет корень c кратности k, если P: $(x-c)^k$, P $\not/(x-c)^{k+1}$

Определение 1.3. Если многочлен раскладывается в произведение линейных множителей над полем F, то он называется линейно факторизуемым над ним.

Замечание. Основная Теорема Арифметики неверна (разложение может быть не единственным) для случаев, когда F — коммутативное кольцо.

1.2 Основная Теорема Алгебры

На лекции было миллион лемм и вспомогательных утвеждений, но я просто вставлю доказательство из лекции по матану, потому что я так могу (и потому что доказательство идейно не отличается от него).

Теорема 1.2 (Больцано-вейерштрасса). Пусть $\{z_n\}$ ограничена, то есть $\exists C > 0 : \forall n(|z_n| \leq C)$. Тогда у нее существует сходящаяся подпоследовательность

Доказательство. По обычной теореме Больцано-Вейерштрасса, ищем подпоследовательность, действительная часть которой имеет предел. В ней выбираем последовательность, мнимая часть которой имеет предел. Получили. □

Определение 1.4. Функция $f: E \subset \mathbb{C} \to \mathbb{C}$ непрерывна в точке z_0 , если $\forall \{z_n\} \subset E(z_n \to z_0 \Rightarrow f(z_n) \to f(z_0))$.

Утверждение 1.2. Пусть $f:\{|z|\leqslant R\}\to\mathbb{R}$ непрерывна на \mathbb{C} . Тогда $\exists z_0,|z_0|\leqslant R,\inf_{|z|\leqslant R}f(z)=f(z_0).$

Доказательство.

$$m = \inf_{|z| \leqslant R} f(z)$$

Рассмотрим $r_n \to m, r_n > m$. $\exists z_n, |z_n| \leqslant R, m \leqslant f(z_n) \leqslant r_n$ В частности, $f(z_n) \to m$. При этом, $\{z_n\}$ — ограничена, $\Rightarrow \exists z_{n_k} \to z_0 \Rightarrow |z_0| \leqslant R$. В частности $||z| - |z_0|| \leqslant |z - z_0|$. В силу непрерывности f в z_0 : $f(z_{n_k}) \to f(z_0), f(z_{n_k}) \to m \Rightarrow m = f(z_0)$.

Теорема 1.3. Пусть $f \in \mathbb{C}[z], \deg f > 0$. Тогда f имеет корень.

Доказательство. 1. Покажем, что $\exists z_0 \in \mathbb{C} \inf_{z \in \mathbb{C}} |P(z)| = |P(z_0)|$. Для начала возьмем $R \geqslant 1$.

$$\left| \sum_{k=0}^{n-1} a_k z^k \right| \leqslant \sum_{k=0}^{n-1} |a_k| |z|^k \leqslant |z|^n \sum_{k=0}^{n-1} |a_k| = A$$

Теперь рассмотрим $|z|\geqslant \frac{2A}{|a_n|}\Rightarrow A|z|^{n-1}\leqslant \frac{1}{2}|a_n||z|^n$. Тогда $|P(z)|\geqslant |a_nz^n|-\left|\sum_{k=0}^{n-1}a_kz^k\right|=\frac{1}{2}|a_n|z^n$. Возьем радиус $R=\max\left\{1,\frac{2A}{|a_n|},\sqrt[n]{\frac{2|a_0|}{|a_n|}}\right\}$. Тогда при $|z|\geqslant R$ выполнено $|P(z)|\geqslant |P(0)|$, поэтому $\inf_{\mathbb{C}}|P(z)|=\inf_{|z|\leqslant R}|P(z)|$. Но тогда найдется такое $|z_0|\leqslant R$, что у нас $\inf_{\mathbb{C}}|P(z)|=|P(z_0)|$

2. Докажем, что если $P(z_0) \neq 0$, то $\exists z_* \in \mathbb{C}|P(z_*)| < |P(z_0)|$. Рассмотрим многочлен $Q(z) = \frac{P(z+z_0)}{P(z_0)}$. Тогда Q(0) = 1. Обозначим через α_k — наименьший коэффициент Q, отличный от 0 и $k \geqslant 1$. $Q(z) = 1 + \alpha_k z^k + \ldots$ Возьмем $z_1 \in \mathbb{C}$, $\alpha_k z_1^k = -1$, пусть $t \in (0,1)$. $Q(tz_1) = 1 - t^k + t^{k+1} \varphi(t)$, $\varphi(t)$ — многочлен степени n-k-1. C — наибольший из модулей коэффициентов $\varphi(t)$, тогда $|\varphi(t)| \leqslant C(n-k)$. Тогда

$$Q(tz_1) < 1 - t^k |\varphi(t)| \le 1 - t^k (1 - tC(n - k))$$

Рассмотрим произвольное $t \in \left(0, \frac{1}{C(n-k)}\right)$. Тогда $|Q(tz_1)| < 1$. Но тогда при $z_* = tz_1$ верно, что $|P(z_*)| < |P(z_0)|$

Но тогда, точка z_0 (из первого пункта) такова, что $P(z_0)=0$.

ФПМИ МФТИ, осень 2022

1.3 Следствия из основной теоремы алгебры

Определение 1.5. Поле F называется алгебраически замкнутым, если $\forall f \in F[x], \deg f > 0$ он имеет хотя бы один корень.

Следствие. Поле \mathbb{C} — алгебраически замкнуто

Следствие. Любой многолчен из \mathbb{C} — линейно факторизуем.

Следствие. Любой многолчен из \mathbb{R} раскладывается в произведение многочленов 1 и 2 степени

Доказательство. Пусть $c \notin \mathbb{R}$ — корень f. Тогда \bar{c} — тоже. Но тогда $f : (x-c)(x-\bar{c})$ \square

1.4 Формальная производная

Определение 1.6.

$$(a_n x^n + \dots + a_1 x + a_0)' = n a_n x^{n-1} + \dots + 2a_2 x + a_1$$

Замечание. Все свойства обычной производной верны

1.
$$(\alpha P + \beta Q)' = \alpha P' + \beta Q'$$

2.
$$(PQ)' = P'Q + PQ'$$

3.
$$(P_1P_2P_3...P_{n-1}P_n)' = P_1'P_2P_3...P_{n-1}P_n + P_1P_2'P_3...P_{n-1}P_n + ...P_1P_2P_3...P_{n-1}P_n'$$

4.
$$(P^n)' = nP^{n-1}$$

Доказательство. 1. Доказательство по определению:

$$\left(\sum_{i=1}^{k} \alpha_i x^i\right)' + \left(\sum_{i=1}^{i} \beta_k x^{i-1}\right)' = \left(\sum_{i=1}^{k} i \alpha_i x^{i-1}\right) + \left(\sum_{i=1}^{i} i \beta_i x^{i-1}\right)' =$$

$$= \sum_{i=0}^{k} (\alpha_i + \beta_i) \cdot i x^{i-1} = \left(\sum_{i=0}^{k} (\alpha_i + \beta_i) x^i\right)'$$

2. Раскроем скобки:
$$\left(\sum_{i=0}^k \alpha_i x^i \cdot Q(x)\right)' = \left(\sum_{i=0}^k \sum_{j=0}^l \alpha_i \beta_j x^{i+j}\right)' =$$

= $\sum_{i=0}^k \sum_{j=0}^l (i+j)\alpha_i \beta_j x^{i+j-1} = \sum_{i=0}^k \sum_{j=0}^l i\alpha_i \beta_j x^{i+j-1} + \sum_{i=0}^k \sum_{j=0}^l j\alpha_i \beta_j x^{i+j-1} =$
= $P'Q + PQ'$

3. Индукция: $\mathit{Fasa}\ n=2 \to \mathsf{cm}\ \mathsf{n}.$ 2. $\mathit{\Piepexod}$: Объединим $P_{n-1}P_n$ в $Q \to 2$ раза $\mathsf{n}.$ 2.

4. Применяем п. 4 для
$$P_1 = P_2 = \cdots = P_{n-1} = P_n = P$$