KOSHA GUIDE

D - 67 - 2020

안전밸브와 파열판 직렬설치에 관한 기술지침

2020. 12.

한국산업안전보건공단

안전보건기술지침의 개요

- O 작성자: 전남대학교 장 희
- O 제·개정 경과
 - 2020년 12월 화학안전분야 제정위원회 심의(제정)
- O 관련 규격 및 자료
 - KOSHA GUIDE D-18-2017, 안전밸브 등의 배출용량 산정 및 설치 등에 관한 기술지침
 - KOSHA GUIDE D-26-2012, 공정용 안전밸브의 기술지침
 - KOSHA GUIDE D-18-2017, 안전밸브 등의 배출용량 산정 및 설치 등에 관한 기술지침
 - KS B 6750 "압력용기 설계 및 제조일반 ", 2012 (2017확인)
 - ISO 4126-3, "Safety devices for protection against excessive pressure Part 3: Safety valves and bursting disc safety", 2006
 - ASME Section VIII, Division 1. 2019 Edition
- O 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지(www.kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자: 2020년 12월

제 정 자: 한국산업안전보건공단 이사장

안전밸브와 파열판 직렬설치에 관한 기술지침

1. 목 적

안전밸브와 파열판 직렬설치에 관한 필요한 사항을 제시하는데 그 목적이 있다.

2. 적용범위

- 이 지침은 화학설비 및 그 부속설비(이하 "용기"라 한다)를 과압으로부터 보호하기 위하여 용기에 안전밸브와 파열판을 직렬로 설치하는 장치로써 다음과 같이 설치되는 경우에 적용한다.
- (1) 파열판의 토출 측이 직접 대기로 방출되는 경우
- (2) 파열판이 용기 노즐로부터 연결 배관지름의 8배 이내에 설치되는 경우
- (3) 파열판의 토출면적이 인입 배관면적의 50% 이상인 경우
- (4) 단상 흐름인 경우
- (5) 파열판 토출 측 배관의 길이가 토출배관 지름의 5배 이내인 경우
- (6) 파열판 인입 및 토출 측 배관의 공칭지름이 파열판의 공칭지름 이상인 경우

3. 용어의 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다.
 - (가) "안전밸브 (Safety valve)"이라 함은 입구쪽의 압력이 일정 압력에 도달하면 자동적으로 스프링이 작동하면서 유체가 분출되고 일정압력 이하가 되면 다시 정상대로 복원되어 유체가 새어나오지 않도록 만들어진 밸브를 말한다.
 - (나) "설정압력 (Set pressure)"이라 함은 운전 중에 안전밸브가 열리도록 설정한 안 전밸브 입구 측에서의 압력을 말한다.

- D 67 2020
 - (다) "파열판 (Rupture/bursting disc)"이라 함은 입구 측의 압력이 설정압력에 도달하면 판이 파열하면서 유체가 분출하도록 용기 등에 설치된 얇은 판으로 다시 닫히지 않는 압력방출 안전장치를 말한다.
 - (라) "조합 (Combination)"이라 함은 다음 <그림 1>과 같이 안전밸브와 배관 공칭 지름의 5배 이내의 거리에 설치된 파열판으로 구성되는 시설의 조합 (Combination)을 말한다.

<그림 1> 상대적 거리를 나타내는 시설조합

- (마) "파열압력 (Bursting pressure)"이라 함은 파열판이 파열시 파열판 전·후단에 걸리는 차압으로 명판에 표시된 압력을 말한다.
- (바) "파열판 조립체 (Bursting disc assembly)"라 함은 파열판 홀더 내에 요구되는 기능을 수행하도록 설치된 구성부품의 완전한 조립체를 말한다.
- (사) "파열판 홀더 (Bursting disc holder)"라 함은 파열판 조립체를 제자리에 유지시키는 파열판 안전장치의 일부분을 말한다.
- (아) "배출압력 (Relieving pressure)"이라 함은 가압된 시스템 내의 방출조건하에서 의 최고압력을 말하며, 파열판의 파열압력과 다를 수도 있다.
- (자) "배압 (Back pressure)"이라 함은 토출 측에 연결된 배출물 처리설비 등으로부터 안전밸브의 토출 측에 걸리는 압력을 말한다.

(2) 기타 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 주요 물질의 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업 안전보건기준에 관한 규칙」에서 정의하는 바에 의한다.

4. 압력용기와 안전밸브 사이에 파열판 설치

- (1) 파열판과 안전밸브를 직렬로 설치할 때 그 사이에는 압력지시계, 시험용 콕크, 자동경보장치 등을 설치하여 파열판의 파손 또는 누출을 감지할 수 있어야 한다.
- (2) 만약 파열판이 누설되어 파열판과 안전밸브 사이에 배압이 형성되면 파열판의 파열압력은 배압만큼 상승하여 위험을 초래할 수 있으므로 배압이 형성되면 즉시 교체하여야 한다.
- (3) 파열판 홀더의 형식은 다음과 같이 파열판의 형식 및 그 사용용도에 따라 적절히 선택하여야 한다.
 - (가) 삽입/캡슐형 파열판 홀더는 조임기(Fastener)를 이용하거나 조임기 없이 입구 및 출구 부재(Member)를 가져야 하며, 설치용 플랜지 볼트 내부에 장착(<그림 2> 참조) 하여야 한다.

<그림 2> 대표적인 삽입/캡슐형 파열판 홀더 사례

(나) 조임기를 이용하거나 조임기 없이 입구 및 출구 부재를 가져야 하며, 플랜지 볼 트 장착이 용이하도록 구멍/홈이 있는 전면 플랜지형(<그림 3> 참조)이어야 한다.

<그림 3> 대표적인 전면 플랜지형 파열판 홀더 사례

(다) 유니언 너트에 의해 연결된 입구 및 출구부재로 구성된 유니언형(<그림 4> 참조)이어야 한다.

<그림 4> 대표적인 유니언형 파열판 홀더 사례

(라) 입구 및 출구 부재가 나사로 결합되어 있는 플러그/나사형(<그림 5> 참조)이어 야 한다.

<그림 5> 대표적인 플러그/나사형 파열판 홀더 사례

(마) 기타 형식의 파열판 홀더는 파열판이 정상적인 작동에 적합하여야 한다.

- (4) 파열판 안전장치와 안전밸브는 상호 조합하기 위해서 추가적인 구성부품(예를 들면, 단관)을 사용하는 경우에 자세한 사항은 KOSHA GUIDE D-63 등을 참조한다.
- (5) 파열판의 파열조각이 안전밸브의 용량과 성능에 미치는 영향이 평가되고, 파열 후 파열조각이 밸브입구로 튀어나오면 안 된다.
- (6) 파열판 안전장치의 설계는 파열로 인한 파열판 재료의 방출이 안전밸브의 성능을 저하시키지 않아야 한다.
- (7) 파열판 안전장치의 배관 공칭지름은 안전밸브 입구의 공칭크기보다 작아서는 안된다.
- (8) 파열판과 안전밸브 사이 거리는 배관 지름의 5배 이내로 설치(<그림 1> 참조)하여야 하다.
- (9) 파열판과 안전밸브 사이 거리가 배관 지름의 5배를 넘는 경우에는 제조자와 협의 하여야 한다.

5. 안전밸브의 배출구 쪽에 파열판 설치

(1) 밸브를 통해 고가이거나 급성 독성 또는 다른 유해한 물질의 누출로 인한 손실을 최소화하기 위해 설치한다.

D - 67 - 2020

- (2) 파열판 단독 설치 또는 안전밸브 입구 쪽에 파열판을 설치하는 것이 현실적이지 않을 경우에 설치한다.
- (3) 배출설비로부터 부식성 가스의 밸브 내부 침입을 방지하기 위해 다음의 조건을 추가로 만족시킬 경우에는 안전밸브의 배출구 쪽에 설치할 수 있다.
 - (가) 파열판 안전장치와 분출배관은 안전밸브의 작동특성에 영향을 미치지 않도록 설계하여야 한다.
 - (나) 파열판과 안전밸브 사이의 공간에는 허용할 수 없는 압력축적을 감시하거나 방 지할 수 있는 적절한 수단이 제공하여야 하다.
 - (다) 파열판과 안전장치 사이의 공간은 파열판이 정확하게 작동하도록 보증할 수 있는 충분한 크기이어야 한다. 다만, 스프링식 안전밸브는 안전밸브와 파열판 사이의 공간에서 배압이 발생한 경우에는 설정된 압력에서 열리지 않을 수 있어 반드시 배압에 관계없이 작동이 가능한 벨로우즈형(Balanced) 안전밸브를 설치하여야 한다.
 - (라) 파열된 후 파열판 장치에 생긴 구멍이 허용 과압을 초과하지 않고, 부착된 압력 방출 밸브의 정격 용량과 같은 유량을 충분히 배출시켜야 한다.
 - (마) 파열판 이후의 배관은 파열판 또는 그 파편에 의해 유로가 방해받지 않아야 한다.
 - (바) 설정온도에서 파열판의 최대 파열압력에 분출배관의 압력을 더한 것이 다음을 초과해서는 안 된다.
 - ① 안전밸브의 배압 제한값
 - ② 안전밸브와 열판 사이의 어떠한 배관이나 피팅의 설계압력
 - ③ 관련 표준에서의 허용하는 압력
- (4) 위의 모든 조건을 만족하는 경우에는 안전밸브 전·후단 모든 곳에 파열판을 설치할 수 있다.

6. 파열판과 안전밸브의 직렬설치

(1) 압축성 유체 방출용 압력방출장치는 저장된 액체 위쪽의 증기 공간 내 압력용기에 연결하거나, 보호해야 할 압력용기 내 증기 공간에 연결된 배관에 연결하여야 한다.

- (2) 압력용기와 압력방출밸브 사이의 모든 관, 관이음쇠 및 되닫힘되지 않는 압력방출 장치(설치한 경우)의 구멍은 최소한 압력방출밸브의 입구 면적을 가져야 한다. 이 때, 이 상류 계통의 특성들은 압력 강하로 인해 방출 용량이 요구값 이하로 감소되 지 않거나, 압력방출밸브의 적절한 작동에 악영향을 미치지 않아야 한다.
- (3) 압력용기 노즐은 압력용기와 압력방출장치 사이의 유동에 지장이 없도록 설계하여야 한다.
- (4) 한 개의 연결부에 2개 이상의 압력방출장치를 설치할 경우 연결부의 입구 쪽 내부 단면적은 압력방출장치의 흐름을 제한하지 않는 크기이거나, 여기에 연결된 안전 장치의 조합 입구 면적과 같아야 한다.
- (5) 보호를 받는 기기로부터 안전밸브의 입구까지의 연결은 파열판 안전장치의 영향을 포함한 안전밸브 입구까지의 압력강하가 그 안전밸브의 설정압력의 3%를 초과하지 않도록 가능한 짧아야 한다. 이때, 3 % 압력강하는 그 안전밸브의 최고방출압력에서 배관 등을 포함하여 그 조합장치를 통과하는 흐름 상태에서 산정한다.
- (6) 파열판과 안전밸브로부터의 분출은 안전하게 처리하여야 하고, 의도하지 않았는데 도 불구하고 다른 기기(예를 들어 사용 중이 아니거나 정비 중인 기기)로 흘러들어가 위험을 야기하는 것을 방지하여야 한다.
- (7) 조합장치의 출구와 대기 또는 방산장치 사이의 분출배관은 항상 적절하게 드레인 하여야 한다.
- (8) 배출물질의 분출 중에 예상되는 반력을 흡수하도록 조치를 하여야 한다. 배플 플 레이트(Baffle plate)가 압력방출장치의 요구분출용량을 감소시키지 않는다면, 분출 유체의 방향전환과 반동의 감소를 위하여 파열판 안전장치의 배출구에 장착될수도 있다.
- (9) 밀폐된 처리시스템에서는 드레인 포인트를 설치하기 어려울 수 있으나, 이런 경우 배관의 경로는 액체가 고일 수 있는 낮은 곳을 피해야 한다.
- (10) 조합형 안전장치의 공급자는 파열판 안전장치와 안전밸브의 제조자가 제공하는 지침서에 추가하여 위험성평가의 결과를 감안한 조립 및 설치 지침서를 제공하여 야 한다.

7. 안전장치 성능 및 표시

7.1 안전장치 성능

- (1) 파열판과 안전밸브를 직렬로 조합하여 설치하는 압력방출장치는 압력용기의 설계 압력 또는 최고허용운전압력(MAWP) 보다 10 % 또는 20 km 중에서 큰 값을 초과 하여 압력이 상승하지 않도록 하여야 한다. 다만, 다음의 경우에는 예외로 할 수 있다.
 - (가) 여러 개의 압력방출장치를 설치하고 압력을 설정하는 경우 하나를 제외한 나머지는 최고허용운전압력 보다 16 % 또는 30 kPa 중에서 큰 값을 초과하여 압력이상승하지 않도록 하여야 한다.
 - (나) 압력용기가 화염 또는 예상하지 못한 다른 외부 열원에 노출될 수 있을 경우, 압력 방출 장치는 최고허용운전압력의 21 %를 초과하여 압력이 상승하지 않도 록 하여야 한다.
- (2) 파열판과 안전밸브를 직렬로 조합하여 설치하는 압력방출장치의 배출용량은 안전 밸브의 표시 용량에 정격배출용량 계수 0.9를 곱하거나, 제조자가 조합된 압력방출 장치의 용량을 적용할 수 있다.
- (3) 조합형 안전장치가 액체용일 경우에는 파열판 안전장치와 안전밸브 제조자와 상 의하여야 한다. 안전밸브를 열기에 불충분한 매체의 흐름을 초래할 수 있는 특수 한 상황(예를 들어, 열팽창 릴리프 시스템이나 유압 용도)에 사용하고자 할 경우에 는 특별한 주의가 필요하며, 파열판 안전장치와 안전밸브 제조자의 요구사항을 따 라야 한다.
- (4) 안전밸브 분출량시험은 KS B 6750 부속서11(규정) 안전밸브 용량환산 또는 이와 동등 이상의 규격을 따라야 한다.
- (5) 파열판의 분출용량시험기준은 KS B 6750(압력용기-설계 및 제조일반) 및 KS B ISO 4126-6(과압 방지 안전장치-제6부: 파열판식 안전장치의 적용, 선택 및 설치) 또는 이와 등등 이상의 규격을 따라야 한다.
- (6) 조합형 안전장치의 배출용량은 제조자가 제시하는 인증용량을 적용하여야 한다.

7.2 안전장치 표시

(1) 조합형 안전장치는 파열판 명판에 다음의 내용을 표시하여야 한다.

- (가) 조합형 안전장치를 식별하는 고유의 참조번호
- (나) 제조자의 명칭과 형식구분
- (다) 관련 표준의 번호
- (라) 조합형 안전장치가 설계된 최고허용압력 및 온도
- (마) 조합형 안전장치에 대한 공칭크기(예 DN, NPS 등)
- (바) 조합형 안전장치의 재질
- (사) 조합형 안전장치의 제조연월
- (2) 조합형 안전장치는 관련법에 따라 안전인증을 받은 사항을 표시하여야 한다.