Data Prediction Model and Machine Learning

Online course #4

Classification: Random Forest

Power of collective intelligence

- 1. Each individual has a certain degree of knowledge of the problem
- 2. Judges independently
- 3. Participate seriously
 - → The more the better

Collective intelligence >>>> One great individual

Why? How?

Decision Tree Random Forest

E.g.) Titanic dataset

Surv.	Sex	Age	Pclass	#.sib	#.par
1	F	14	1	2	2
1	F	28	2	3	0
1	М	10	1	0	2
0	М	45	3	3	1
0	М	23	2	3	0
0	М	14	1	0	0
0	F	70	2	1	0
0	М	60	2	1	0

E.g.) Titanic dataset

Surv.	Sex	Age	Pclass	#.sib	#.par
1	F	14	1	2	2
1	F	28	2	3	0
1	М	10	1	0	2
0	М	45	3	3	1
0	М	23	2	3	0
0	М	14	1	0	0
0	F	70	2	1	0
0	М	60	2	1	0

Surv. Sex	Age Pc	lass #.sib	#.par
-----------	--------	------------	-------

- To create a bootstrap data set that is the same size as the original. We just randomly select samples from the original data set.
- The important detail is that we're allowed to pick the same sample more than once

E.g.) Titanic dataset

Surv.	Sex	Age	Pclass	#.sib	#.par
1	F	14	1	2	2
1	F	28	2	3	0
1	М	10	1	0	2
0	M	45	3	3	1
0	М	23	2	3	0
0	М	14	1	0	0
0	F	70	2	1	0
0	М	60	2	1	0

Bootstrapped Dataset

Surv. Sex Age	Pclass	#.sib	#.par
---------------	--------	-------	-------

first sample randomly selected.

E.g.) Titanic dataset

Surv.	Sex	Age	Pclass	#.sib	#.par
1	F	14	1	2	2
1	F	28	2	3	0
1	М	10	1	0	2
0	M	45	3	3	1
0	М	23	2	3	0
0	М	14	1	0	0
0	F	70	2	1	0
0	М	60	2	1	0

Surv.	Sex	Age	Pclass	#.sib	#.par
1	М	10	1	0	2

E.g.) Titanic dataset

Surv.	Sex	Age	Pclass	#.sib	#.par
1	F	14	1	2	2
1	F	28	2	3	0
1	М	10	1	0	2
0	М	45	3	3	1
0	М	23	2	3	0
0	М	14	1	0	0
0	F	70	2	1	0
0	М	60	2	1	0

Surv.	Sex	Age	Pclass	#.sib	#.par
1	М	10	1	0	2
0	М	23	2	3	0

E.g.) Titanic dataset

Surv.	Sex	Age	Pclass	#.sib	#.par
1	F	14	1	2	2
1	F	28	2	3	0
1	М	10	1	0	2
0	М	45	3	3	1
0	М	23	2	3	0
0	М	14	1	0	0
0	F	70	2	1	0
0	М	60	2	1	0

	Surv.	Sex	Age	Pclass	#.sib	#.par
	1	М	10	1	0	2
	0	М	23	2	3	0
,	0	М	14	1	0	0
*	1	F	28	2	3	0
×	1	F	14	1	2	2
×	1	F	28	2	3	0
*	0	М	14	1	0	0
→	0	М	60	2	1	0

Step 2. Create a decision tree using the bootstrapped dataset, but only use a random subset of variables (or columns) at each step

 Consider two variables or columns at each step!

Surv.	Sex	Age	Pclass	#.sib	#.par
1	М	10	1	0	2
0	М	23	2	3	0
0	М	14	1	0	0
1	F	28	2	3	0
1	F	14	1	2	2
1	F	28	2	3	0
0	М	14	1	0	0
0	М	60	2	1	0

Step 2. Create a decision tree using the bootstrapped dataset, but only use a random subset of variables (or columns) at each step

#.par Sex #.sib Surv. Age **Pclass** Instead of M considering all 5 M variables M F F F M M

Step 2. Create a decision tree using the bootstrapped dataset, but only use a random subset of variables (or columns) at each step

Step 2. Create a decision tree using the bootstrapped dataset, but only use a random subset of variables (or columns) at each step

Randomly select two

Surv.	Sex	Age	Pclass	#.sib	#.par
1	М	10	1	0	2
0	М	23	2	3	0
0	М	14	1	0	0
1	F	28	2	3	0
1	F	14	1	2	2
1	F	28	2	3	0
0	М	14	1	0	0
0	М	60	2	1	0

Step 2. Create a decision tree using the bootstrapped dataset, but only use a random subset of variables (or columns) at each step

Surv.	Sex	Age	Pclass	#.sib	#.par
1	М	10	1	0	2
0	М	23	2	3	0
0	М	14	1	0	0
1	F	28	2	3	0
1	F	14	1	2	2
1	F	28	2	3	0
0	М	14	1	0	0
0	М	60	2	1	0

Step 2. Create a decision tree using the bootstrapped dataset, but only use a random subset of variables (or columns) at each step

- Using a bootstrap data set
- Only considering a random subset of variables at each step

Surv.	Sex	Age	Pclass	#.sib	#.par
1	М	10	1	0	2
0	М	23	2	3	0
0	М	14	1	0	0
1	F	28	2	3	0
1	F	14	1	2	2
1	F	28	2	3	0
0	М	14	1	0	0
0	М	60	2	1	0

Step 3. Go back to the step 1 and repeat

Step 3. Go back to the step 1 and repeat

Surv.	Sex	Age	Pclass	#.sib	#.par
	F	14	1	2	2

Surv.	Sex	Age	Pclass	#.sib	#.par
	F	14	1	2	2

Surv.	Sex	Age	Pclass	#.sib	#.par
	F	14	1	2	2

Trees vs. Random Forest

Trees	Random Forest
Yield insight into decision rules	Has smaller prediction variance and therefore usually a better general performance
Rather fast	Easy to tune parameters
Easy to tune parameters	(Cons) Rather slow
(Cons) Prediction of trees tend to have a high variance	(Cons) Black box: rather difficult to get insights into decision rules