2. Parte 2

2.1. Estimación bajo modelo exponencial: $\mathcal{E}(\lambda)$

Distribución exponencial de parámetro $\lambda > 0, X_i \sim \mathcal{E}(\lambda)$.

$$f(x) = \lambda e^{-\lambda x} \mathcal{I}_{\{x>0\}}, \quad F(t) = 1 - \exp\{-\lambda t\}, \quad \text{para } t \ge 0.$$

En tal caso, $\mathbb{E}(X) = 1/\lambda$ y $\mathbb{V}(X) = 1/\lambda^2$. Notar que la verosimilitud, cuando $x_i \geq 0 \ \forall i$, resulta

$$L(\lambda; \mathbf{x}) = \prod_{i=1}^{n} f(x_i, \lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda \sum_{i=1}^{n} x_i}.$$

Por lo tanto, la log-verosimilitud es:

$$\ell(\lambda; \mathbf{x}) = n \log(\lambda) - \lambda \sum_{i=1}^{n} x_i, \tag{1}$$

de donde se deduce que el estimador de máxima verosimilitud está dado por $\hat{\lambda}_n = 1/\bar{X}_n$. Utilizando el modelo propuesto, el estimador de máxima verosimilitud obtenido y el método plug–in, es decir reemplazando el parámetro por su valor estimado, resolver los siguientes items.

- 7. Estimar por el método de Máxima Verosimilitud $P(X \le 40)$. Comparar con la estimación obtenida en la Sección 1.
- 8. Graficar la empírica asociada a los datos **flux** y superponer la función de distribución acumulada exponencial con el parámetro que considere pertinente.
- 9. Realizar un histograma para los datos de **flux** y superponer la función de densidad exponencial con el parámetro que considere pertinente.
- 10. Estimar por el método de Máxima Verosimilitud el flux medio a partir de los datos.
- 11. Si $X \sim \mathcal{E}(\lambda)$, entonces su mediana resuelve la ecuación $1-e^{-\lambda t}=0.5$, y por consiguiente vale $-\log(0.5)/\lambda = \log(2)/\lambda$. Estimar por el método de Máxima Verosimilitud la mediana de flux.
- 12. Estimar por el método de Máxima Verosimilitud la varianza de flux.