Les variables booléennes

.....

Capacités attendues

- Valeurs booléennes : 0, 1 / Opérateurs booléens : and, or, not / Expressions booléennes
- Dresser la table d'une expression booléenne
- Le ou exclusif (xor) est évoqué
- Les circuits combinatoires réalisent des fonctions booléennes.

1 La logique booléenne

	,,,	iitio	
112	מחב	NITIO	'n
175			,,,,

.... Un booléen est représenté en machine par un bit, qui vaut :

•

A	B	A or B
0	0	• •
0	1	• •
1	0	• •
1	1	• •

• La **conjonction (ET/AND)** de *A* et *B* est notée

A and B vaut vrai si et seulement si A vaut vrai et B vaut vrai.

A	B	${\cal A}$ and ${\cal B}$
0	0	• •
0	1	• •
1	0	• •
1	1	• •

• La **négation (NON/NOT)** de A est notée ou encore \overline{A} vaut vrai si et seulement si A vaut faux.

A	$\mathtt{not}\ A$
0	• •
1	0 0

Attention, convention à respecter pour la suite et dans les évaluations!

Nous choisissons d'écrire les tables de vérité dans l'« ordre numérique » (voir toutes les tables du cours)! Soit, pour deux vaiables A et B, d'abord la ligne avec 00, puis 01, puis 10 et 11. On ajoute 1 pour passer d'une ligne à l'autre, en considérant les valeurs $(AB)_2$.

Définition

Une expression booléenne est une combinaison d'opérations élémentaires (or, and, not) portant sur une ou plusieurs variables booléennes.

Les opérateurs booléens sont utiles :

- en programmation ;
- dans la conception de circuits électroniques ;
- dans la résolution de problèmes de logique.

Attention

Les parenthèses ont de l'importance ! Elles permettent de prioriser certaines opérations.

Exemple: A est vrai et B est faux. Comparons les expressions not A and B et not (A and B):

- not A and B=0: on évalue d'abord not A qui est faux puisque A est vrai, puis on applique and B à ce résultat, ce qui donne faux ;
- not (A and B) = 1: on évalue d'abord A and B qui est faux puis on applique le not à ce résultat, ce qui donne **vrai**.

En raison des parenthèses, les résultats de ces deux expressions sont différents.

Exercice 1 – (Vrai ou faux)

- 1. Si A est vrai et B est faux, not (A or B) est vrai.
- 2. L'expression not (A or B) a la même valeur que l'expression (not A) or (not B).
- 3. Si A est vrai et B est vrai, not (A and B) est vrai.
- 4. L'expression not (A and B) a la même valeur que l'expression not (A) or not (B).

Exercice 2

Sélectionner la(les) bonne(s) réponse(s) parmi les différentes propositions.

- 1. L'expression booléenne A or not (B) est vraie. Quelles peuvent être les valeurs de A et de B?

 - A est vrai et B est vrai ... A est vrai et B est faux ...
 - A est faux et B est vrai
- A est faux et B est faux ...
- 2. Parmi les expressions suivantes, lesquelles sont vraies?
 - 1 and (0 and 1) 1 or (0 and 1) ... • 0 and (0 and 1) • 0 or (0 and 1)

Exercice 3

Compléter les égalités suivantes.

$$A \text{ or } A = \dots A \text{ and } A = \dots \text{ not } (\text{not } A) = \dots A \text{ or } (\text{not } A) = \dots A \text{ and } (\text{not } A) = \dots$$

Exercice 4 – (Formules de Morgan)

1. Compléter les tables de vérité ci-dessous.

A	В	$A ext{ or } B$	\overline{A} or \overline{B}	A	В	\overline{A}	\overline{B}	\overline{A} and \overline{B}
0	0			0	0	• •	• •	• •
0	1			0	1	• •		
1	0		• • •	1	0		• •	
1	1		• • •	1	1			

- 2. Observer que \overline{A} or $\overline{B} = \overline{A}$ and \overline{B} .
- 3. Montrer de même que \overline{A} and $\overline{B} = \overline{A}$ or \overline{B} .

Exercice 5

1. Dresser la table de vérité de l'expression $S=(A \text{ or } B) \text{ and } (\overline{A} \text{ or } B)$.

A	В	$A \; {\tt or} \; B$	\overline{A}	$(\overline{A} \text{ or } B)$	S
0	0		• •	• •	• • •
0	1	• •	• •	• •	• •
1	0	• •			• • •
1	1	• •		• •	• •

2. Quelle égalité booléenne peut en déduire ?

Exercice 6

Dresser la table de vérité de l'expression S = (A and B) or (A and not C) or (not B and C).

A	В	C	${\cal A}$ and ${\cal B}$	A and not C	$\mathtt{not}\ B\ \mathtt{and}\ C$	S
0	0	0				
0	0	1			0 0	• •
0	1	0				0 0 0
0	1	1	• • •			
1	0	0	• • •	• •		• •
1	0	1			• •	• •
1	1	0	• •	• •		• •
1	1	1	• •			• •

Exercice 7

On donne ci-dessous les tables de vérité de différentes expressions booléennes U, V et W.

Retrouver les expressions de U, V et W en fonction de A et B.

A	B	U
0	0	0
0	1	0
1	0	1
1	1	0

A	B	V
0	0	1
0	1	0
1	0	0
1	1	0

A	B	W
0	0	1
0	1	0
1	0	1
1	1	0

Déterminer des expressions booléennes depuis des tables de vérité

Soient trois vaiables booléennes A, B et C.

Soit S le résultat d'une expression inconnue.

On cherche à déterminer S.

Pour faire ceci, on ne considère que les lignes où S vaut 1 et on associe à chaque variable sa négation si elle vaut 0 ou elle-même si elle vaut 1, puis on les relie avec des and .

A	В	C	S	Expression déduite
0	0	0	1	$\hbox{ not A and not B and not C}$
0	0	1	0	-
0	1	0	0	-
0	1	1	1	$\mathtt{not}\ A\ \mathtt{and}\ B\ \mathtt{and}\ C$
1	0	0	0	-
1	0	1	0	-
1	1	0	0	-
1	1	1	1	A and B and C

On relie les expressions trouvées par des or et on en déduit l'expression générale :

S = (not A and not B and not C) or (not A and B and C) or (A and B and C)

Exercice 8

On donne ci-dessous les tables de vérité de différentes expressions booléennes U, V et W.

Retrouver les expressions de U, V et W en fonction de A et B et C.

A	В	C	U
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

A	В	C	V
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

A	В	C	W
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Point histoire

Le terme "booléen" tire son nom du mathématicien Georges Boole qui a défini, entre autre, une représentation des opérations logiques à l'aide d'opérations mathématiques.

Cette modélisation s'appelle l'algèbre de Boole et elle est à la base du fonctionnement de tous les circuits électroniques, et donc des ordinateurs.

Le OU EXCLUSIF, (xor)

Le XOR est un opérateur dont le résultat est vrai si, et seulement si, une seule de ses deux entrées est vraie.

Il est appelé *OU EXCLUSIF*, par opposition au *OU*, qui est le *OU INCLUSIF* : il inclut le cas dans lequel les deux entrées sont vraies.

Exercice 9 - (XOR)

Compléter la table de vérité du XOR.

A	В	$A ext{ xor } B$
0	0	
0	1	
1	0	
1	1	0 0

Exercice 10 - (QCM)

Si A et B sont des variables booléennes, quelle est l'expression booléenne équivalente à (not A) or B?

- (A and B) or (not A and B) or (not A and not B) ...
- (A and B) or (not A and B)
- (not A and B) or (not A and not B)
- (A and B) or (not A and not B)

2 Les circuits logiques (ou circuits combinatoires)

Le transistor

Le transistor est un composant électronique à semi-conducteur permettant de contrôler ou d'amplifier des tensions et des courants électriques. [...]

Il permet, assemblé avec d'autres, d'effectuer des opérations logiques pour des programmes informatiques. [...]

Les transistors revêtent une importance particulière — le plus souvent en tant qu'interrupteurs marche/arrêt — dans les circuits intégrés, ce qui rend possible la microélectronique.

(in https://fr.wikipedia.org/wiki/Transistor)

Repère historique

Le **transistor** est le composant électronique à la base de toute l'électronique moderne. Il a été découvert en 1947 aux laboratoires Bell par les physiciens américains John Bardeen, Walter Brattain, qui étudiaient les propriétés de matériaux semi-conducteurs. Ils reçurent avec leur directeur William Shockley le prix Nobel en 1956.

Définition

Toutes les expressions booléennes peuvent être représentées par des circuits logiques, aussi appelés circuits combinatoires.

Les opérations élémentaires sur les booléens sont représentées par des , qui sont des circuits électroniques réalisant des opérations logiques (booléennes) sur une séquence de bits.

• La porte ET (and)

$$A \bullet B \bullet S = A \text{ and } B$$

• La porte OU (or)

$$A \bullet B \bullet S = A \text{ or } B$$

• La porte NON (not)

$$A \longleftarrow S = \text{not } A$$

Exercice 11

On considère le circuit logique suivant.

- 1. Donner l'expression booléenne de S en fonction des variables A et B.
- 2. Compléter la table de vérité ci-dessous.

A	B	S
0	0	• •
0	1	• •
1	0	• •
1	1	• •

- 3. Par quel circuit comprenant seulement deux portes peut-on remplacer le circuit étudié ?
 -

Exercice 12

On considère le circuit logique ci-dessous.

- 1. Donner l'expression booléenne de S en fonction des variables A, B et C.
- 2. Compléter la table de vérité ci-dessous.

A	B	C	S
0	0	0	
0	0	1	
0	1	0	• •
0	1	1	• •
1	0	0	
1	0	1	• •
1	1	0	• •
1	1	1	• •

3. En déduire une formule pour S qui ne dépend que des variables A et B.

Exercice 13

On considère les circuits logiques ci-dessous.

- 1. Donner les expressions booléennes de U et V en fonction des variables A, B et C.
- 2. Compléter les tables de vérité ci-dessous.

A	B	C	U
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	• •

A	В	C	V
0	0	0	• •
0	0	1	• •
0	1	0	
0	1	1	• •
1	0	0	
1	0	1	
1	1	0	• • •
1	1	1	• •

3. Les expressions booléennes U et V sont-elles équivalentes ?