

Спецкурс: системы и средства параллельного программирования.

Отчёт № 2.

Анализ зависимости производительности алгоритма блочного матричного перемножения от выбора порядка индексов и размера блока

Работу выполнил **Васильев С.М. гр. 323**

Постановка задачи и формат данных.

Задача: Реализовать последовательный алгоритм блочного матричного умножения и измерить следующие величины: время выполнения, количество тактов, промахи кэша L1, промахи кэша L2, TLB, FLOPs

Формат командной строки: <имя файла матрицы A> <имя файла матрицы B>. **Формат файла-матрицы:** Матрица представляются в виде бинарного файла следующего

формата:

Тип	Значение	Описание
Число типа char	T – f (float) или d (double)	Тип элементов
Число типа size_t	N – натуральное число	Число строк матрицы
Число типа size_t	М – натуральное число	Число столбцов матрицы
Массив чисел типа Т	NxM элементов	Массив элементов матрицы

Описание алгоритма.

Математическая постановка: Алгоритм матричного умножения (C = A x B) можно представить в следующем виде: $c_{ij} = \sum_k \left(a_{ik} \cdot b_{kj} \right)$ для каждого элемента матрицы C.

Матрицы А, В, С можно разбить на блоки и выполнять умножение последовательно по блокам.

Анализ искомых величин: Для оценки времени выполнения программы использовалась функция: clock(), остальные величины вычислялись средствами PAPI.

Верификация: Для проверки корректности работы программы использовалась функция test(), сравнивающая результат алгоритма блочного перемножения со стандартным алгоритмом перемножения матриц, реализованным и проверенным ранее.

Примечание: Система не поддерживает сбор данных о величинах: TLB.

Результаты выполнения.

Проводилось перемножение двух матриц размерами 500×500 , 1000×1000 , 1500×1500 , 2000×2000 , 2500×2500 . Зависимость искомых величин от порядка индексов и размера блоков представлена на графиках.

Исследования показывают, что изменения порядка индексов суммирование и размера блоков оказывает влияние исследуемые величины. Алгоритм показывает наилучшую производительность при порядке индексов ikj и оптимальном размере блоков (70).