

Sri Chaitanya IIT Academy, India A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A.P., TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr. IPLCO
 Date: 05-12-15

 Time: 9:00 AM to 12:00 Noon
 RPTM-13
 Max.Marks: 360

KEY SHEET

PHYSICS		CHEMISTRY		MATHS	
Q.NO	ANSWER	Q.NO	ANSWER	Q.NO	ANSWER
1	2	31	4	61	3
2	3	32	2	62	2
3	4	33	2	63	3
4	3	34	2	64	4
5	1	35	3	65	3
6	2	36	2	66	2
7	2	37	3	67	4
8	3	38	4	68	4
9	2	39	2	69	3
10	4	40	4	70	2
11	1	41	4	71	2
12	4	42	1	72	1
13	1	43	1	73	4
14	3	44	4	74	2
15	1	45	4	75	2
16	2	46	2	76	2
17	4	47	4	77	1
18	3	48	3	78	1
19	1	49	4	79	2
20	3	50	3	80	3
21	2	51	4	81	3
22	2	52	4	82	3
23	4	53	2	83	3
24	3	54	3	84	1
25	3	55	1	85	1
26	1	56	3	86	3
27	4	57	1	87	2
28	2	58	2	88	4
29	4	59	2	89	3
30	1	60	1	90	2

MATHS

let $a = \tan^2 \alpha, b = \tan^2 \beta$ 61.

$$Q = \frac{\left(a+1\right)^2}{b} + \frac{\left(b+1\right)^2}{a} = \left(\frac{a^2}{b} + \frac{b^2}{a} + \frac{1}{a} + \frac{1}{b}\right) + 2\left(\frac{a}{b} + \frac{b}{a}\right) \rightarrow \text{Requirement}$$

Using [AM≥GM]

$$\Rightarrow \frac{a^2}{b} + \frac{b^2}{a} + \frac{1}{a} + \frac{1}{b} \ge 4 \qquad \dots (1)$$
$$\Rightarrow 2\left(\frac{a}{b} + \frac{b}{a}\right) \ge 4 \qquad \dots (2)$$

62. $\beta = \frac{\sin \theta}{\cos 3\theta} + \frac{\sin 3\theta}{\cos 9\theta} + \frac{\sin 9\theta}{\cos 27\theta}$

$$\beta = \frac{\sin\theta\cos\theta}{\cos3\theta\cos\theta} + \frac{\sin3\theta\cos3\theta}{\cos9\theta\cos3\theta} + \frac{\sin9\theta\cos9\theta}{\cos27\theta\cos9\theta}$$

$$\therefore 2\beta = \frac{\sin 2\theta}{\cos 3\theta \cos \theta} + \frac{\sin 6\theta}{\cos 9\theta \cos 3\theta} + \frac{\sin 18\theta}{\cos 27\theta \cos 9\theta}$$
$$= \frac{\sin (3\theta - \theta)}{\cos 3\theta \cos \theta} + \frac{\sin (9\theta - 3\theta)}{\cos 9\theta \cos 3\theta} + \frac{\sin (27\theta - 9\theta)}{\cos 27\theta \cos 9\theta}$$

$$\alpha = 2B$$

The maximum value exist if 63.

$$2a^2 - 1 - \cos^2 x = 0$$
 or $\cos^2 x = 2a^2 - 1$ or $\sin^2 x = 2 - 2a^2$ or $2a^2 + \sin^2 x = 2$

or
$$\sin^2 x = 2 - 2a^2$$

or
$$2a^2 + \sin^2 x = 2$$

Now

$$\left| \sqrt{2a^2 + \sin^2 x} - \sqrt{2a^2 - 1 - \cos^2 x} \right| = \left| \sqrt{2} - 0 \right| \le A$$

$$\therefore A = \sqrt{2}$$

64. $8x^3 + 4x^2 - 4x - 7 = 8\left(x - \cos\frac{2\pi}{7}\right)\left(x - \cos\frac{4\pi}{7}\right)\left(x - \cos\frac{6\pi}{7}\right)$

Differentiate w.r.t x on both sides and put x = 1

(1,0)(-1,0)(0,1)(0,-1)65.

$$\left(\frac{-1}{2},\frac{1}{2}\right)\left(\frac{1}{2},\frac{-1}{2}\right)$$

66.

$$a = \sin x, b = \cos x$$
 and $c = \sin x + \cos x$

$$c\in \left\lceil -\sqrt{2},\sqrt{2}\,\right\rceil$$

$$E = \left| a + b + \frac{a}{b} + \frac{b}{a} + \frac{1}{a} + \frac{1}{b} \right|$$
 note that $c^2 = 2ab + 1$

$$\therefore E = \left| c - 1 + \frac{2}{c - 1} + 1 \right|$$

$$E_{min} = \left| -2\sqrt{2} + 1 \right| = 2\sqrt{2} - 1$$
 when $c = 1 - 2\sqrt{2}$

67.

Let $\bar{a}, \bar{b}, \bar{c}$ be unit vectors in a plane such that

$$\overline{a}.\overline{b} = \cos x; \overline{b}.\overline{c} = \cos y; \overline{a}.\overline{c} = \cos \left(x + y\right)$$

$$\left|\overline{a} + \overline{b} + \overline{c}\right|^2 \ge 0$$

$$\Rightarrow \cos x + \cos y + \cos(x + y) \ge -\frac{3}{2}$$

68.
$$\left(\sqrt{p} + \sqrt{q} + \sqrt{r}\right)^2 = p + q + r + 2\sqrt{pq} + 2\sqrt{qr} + 2\sqrt{rp}$$

$$\leq p + q + r + p + q + q + r + r + p$$

$$\sqrt{p} + \sqrt{q} + \sqrt{r} \leq \sqrt{3}\sqrt{p + q + r} \leq 4\sqrt{3}$$
(AM – GM Inequality)

69.
$$\tan^4 x + \cot^4 x = 3\sin^2 y - 1$$

$$LHS \ge 2; RHS \le 2$$

Each must be 2

$$\tan^2 x = 1 \Rightarrow x = \pm \frac{\pi}{4}; \sin^2 y = 1 \Rightarrow y = \pm \frac{\pi}{2}$$

Points are
$$\left(\frac{\pi}{4}; \frac{\pi}{2}\right)$$
; $\left(\frac{\pi}{4}; \frac{-\pi}{2}\right)$; $\left(\frac{-\pi}{4}; \frac{\pi}{2}\right)$; $\left(\frac{-\pi}{4}; \frac{-\pi}{2}\right)$

70. The given equation is
$$(\sqrt{3}\sin x + \cos x)^{\sqrt{3}\sin 2x - \cos 2x + 2} = 4$$

$$\Rightarrow \left[2\sin\left(x+\frac{\pi}{6}\right)\right]^{2\sin\left(x+\frac{\pi}{6}\right)} = 4$$

$$\Rightarrow \left[2\sin\left(x+\frac{\pi}{6}\right)\right] = \pm 2 \Rightarrow x + \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{2}; x = 2n\pi \pm \frac{\pi}{2} - \frac{\pi}{6}$$

71. we have
$$1 + 2\cos 2a_k = 1 + 2(1 - 2\sin^2 a_k) = 3 - 4\sin^2 a_k = \frac{\sin 3a_k}{\sin a_k}$$

Put
$$a_k = \frac{3^k \pi}{3^n + 1} \Rightarrow a_{k+1} = 3a_k$$

Given product =
$$\frac{\sin 3a_n}{\sin a_1} = \frac{\sin \left(\frac{3^{n+1}\pi}{3^n+1}\right)}{\sin \left(\frac{3\pi}{3^n+1}\right)} = 1$$

72. Conceptual

Sri Chaitanya IIT Academy

05-12-15_Sr.IPLCO_JEE-MAIN_RPTM-13_Key&Sol's

73.

$$\left(\alpha, \sin^2 \alpha\right) = \frac{B\left(\frac{\pi}{6}, \sin^2 \frac{\pi}{6}\right)}{\frac{\pi}{6}}$$

Slope of OA > slope of OB

- 74. $\frac{\cos(A+B+C)}{\cos A\cos B\cos C} = 1 \sum \tan A \tan B$
- 75. $x \sin a + y \sin 2a + z \sin 3a = \sin 4a$ $\Rightarrow x + 2y \cos a - 4z \sin^2 A + 3z = 4 \cos A \cos 2A$

Put $t = \cos A$

Then equation reduces to $8t^3 - 4zt^2 - (2y + x)t + z - x = 0$

⇒ roots are cosa, cosb, cosc

- 76. Difference of the roots of both the equations are same.
- 77.

Clearly,
$$\angle A = \frac{\alpha}{2}, \angle B = \frac{\beta}{2}, \angle C = \frac{\gamma}{2}$$

$$\therefore \alpha + \beta + \gamma = 2\pi$$

$$A.M = \frac{1}{3} \left[\cos \left(\alpha + \frac{\pi}{2} \right); \cos \left(\beta + \frac{\pi}{2} \right); \cos \left(\gamma + \frac{\pi}{2} \right) \right]$$

$$= -\frac{4}{3}\sin A \sin B \sin C$$

$$\therefore A = B = C = \frac{\pi}{3}$$

Least A.M. =
$$-\frac{4}{3} \left(\frac{\sqrt{3}}{2} \right)^3 = -\frac{\sqrt{3}}{2}$$

78.
$$16(\sin^5 x + \cos^5 x) - 11(\sin x + \cos x) = 0$$

$$\Rightarrow (\sin x + \cos x)(4\sin x \cos x - 1)(4\sin x \cos x + 5) = 0$$

We have $\sin x + \cos x = 0, 4\sin x \cos - 1 = 0$

There are 6 solutions in $[0,2\pi]$

79.
$$\operatorname{Tan}\left(\frac{\pi}{4} + \frac{y}{2}\right) = \operatorname{Tan}^{3}\left(\frac{\pi}{4} + \frac{x}{2}\right)$$

$$\frac{1+\tan\frac{y}{2}}{1-\tan\frac{y}{2}} = \left(\frac{1+\tan\frac{x}{2}}{1-\tan\frac{x}{2}}\right)^3$$

Square both sides, we get $\frac{1+\sin y}{1-\sin y} = \left(\frac{1+\sin x}{1-\sin x}\right)^3$

Using componendo and dividend

$$\frac{2\sin y}{2} = \frac{\left(3 + \sin^2 x\right)}{1 + 3\sin^2 x}\sin x$$

80.
$$1 - \cos x = \frac{\sqrt{3}}{2} |x| + a$$

Both sides of the equations are even functions

i.e., $y = 1 - \cos x$ and $y = \frac{\sqrt{3}}{2}|x| + a$ should not meet any where for $x \in \mathbb{R}^+$ at the point

$$P = \left(\frac{2\pi}{3}, \frac{3}{2}\right)$$

They touch each other

$$\Rightarrow \frac{3}{2} = \frac{\sqrt{3}}{2} \cdot \frac{2\pi}{3} + a \Rightarrow a = \frac{3}{2} - \frac{\pi}{\sqrt{3}}$$

$$\therefore a \in \left(\frac{3}{2} - \frac{\pi}{\sqrt{3}}, \infty\right)$$

81. Draw graph

82.
$$0 < \alpha < \beta < \gamma < \frac{\pi}{2} \Rightarrow \sin \alpha < \sin \beta < \sin \gamma$$

$$f\left(x\right)\!=\!\left(x-\sin\beta\right)\!\left(x-\sin\gamma\right)\!+\!\left(x-\sin\gamma\right)\!\left(x-\sin\alpha\right)\!+\!\left(x-\sin\alpha\right)\!\left(x-\sin\beta\right)$$

$$f(\sin \alpha) > 0, f(\sin \beta) < 0; f(\sin \gamma) > 0$$

By intermediate value property. It has real and unequal roots.

83.
$$(\sin^2 x - 1)^2 + (\cos^2 y - 1)^2 + (\sin x - \cos y)^2 = 0$$

$$\Rightarrow$$
 sin² x = 1; cos² y = 1; sin x = cos y

84.
$$y = \frac{1}{3} \left[\sin x + \left[\sin x + \left(\sin x \right) \right] \right]$$

$$\Rightarrow$$
 y = $\begin{bmatrix} \sin x \end{bmatrix}$ and $\begin{bmatrix} y \end{bmatrix} + \begin{bmatrix} y \end{bmatrix} = 2\cos x \Rightarrow \begin{bmatrix} y \end{bmatrix} = \cos x$

Use three case

Case (i):
$$-1 \le \sin x \le 0$$

Case (ii):
$$0 \le \sin x < 1$$

Case (ii) :
$$sinx = 1$$

85.

Arc (BC) =
$$3 \Rightarrow \frac{\ell}{r} = \alpha \Rightarrow 3 = r\alpha$$

Similarly $4 = r\beta$; $5 = r\gamma$

$$\Rightarrow$$
 3 + 4 + 5 = $r(\alpha + \beta + \gamma) \Rightarrow r = \frac{6}{\pi}$

Area $(\Delta ABC) = \Delta OAB + \Delta OBC + \Delta OCA$

86.

Let PQ be the pole that stands in the triangular park ABC Then,

$$\angle PAQ = \angle PBQ = \angle PCQ = \theta$$
 (say).

In rt.
$$\triangle APQ$$
, we have $\frac{PQ}{AQ} = \tan \theta \Rightarrow AQ = PQ \cot \theta$(1)

In rt.
$$\triangle BPQ$$
, we have $\frac{PQ}{BQ} = \tan \theta \Rightarrow BQ = PQ \cot \theta(2)$

In rt.
$$\triangle CPQ$$
, we have $\frac{PQ}{CQ} = \tan \theta \Rightarrow CQ = PQ \cot \theta(3)$

From (1), (2) & (3), we get AQ = BQ = CQ = R(say)

∴ Q is the circumcentre of ∆ABC

87.

Let the height of the pole be h metres. i.e. AB = h metres. Let BC = x metres.

We have $\angle ACB = 60^{\circ}$, $\angle ADB = 45^{\circ}$ and CD = 7m.

In rt.
$$\triangle ABC$$
, we have $\frac{AB}{BC} = \tan 60^{\circ} \Rightarrow \frac{h}{x} = \sqrt{3} \Rightarrow x = \frac{h}{\sqrt{3}}$ (1)

In rt. $\triangle ABD$, we have x = h - 7 ...(2)

From (1) & (2) we have
$$h = \frac{7\sqrt{3}}{\sqrt{3}-1} = \frac{7\sqrt{3}}{2} (\sqrt{3}+1) m$$

88.

Let the height of the tower be h metres i.e. PQ = h metres.

In equilateral $\triangle PAM$ we have:

 $PN \perp AM$.

 $\therefore AN = NM = 20 \text{ m. i.e. } AM = 40 \text{ m}$

and

so PA = PM = AM = 40 m.

Now, in rt. ΔPAN we have:

$$PN = \sqrt{PA^2 - AN^2}$$

$$=\sqrt{40^2-20^2}=\sqrt{1200}=20\sqrt{3} \text{ m}$$

Let the angle of elevation of the top of the tower at N be θ . Then, $\theta = \tan^{-1} 2$ (given)

 $\angle PNQ = \theta = \tan^{-1} 2.$

In rt. APNQ we have:

$$\frac{PQ}{PN} = \tan \theta \Rightarrow \frac{h}{20\sqrt{3}} = \tan (\tan^{-1} 2) \Rightarrow \frac{h}{20\sqrt{3}} = 2$$

$$\Rightarrow h = 40\sqrt{3} \text{ m}.$$

i.e. The height of the tower = $h = 40 \sqrt{3}$ m.

89. we have $\sum_{m=1}^{6} \csc \left(\theta + \frac{(m-1)\pi}{4}\right) \csc \left(\theta + \frac{m\pi}{4}\right) = 4\sqrt{2}$

$$\sum_{m=1}^{6} \frac{\sin\left(\theta + \frac{m\pi}{4}\right) - \left(\theta + \frac{(m-1)\pi}{4}\right)}{\sin\left(\theta + \frac{(m-1)\pi}{4}\right)\sin\left(\theta + \frac{m\pi}{4}\right)} = 4$$

$$\sum_{m=1}^{6} \left[\cot \left(\theta + \frac{(m-1)\pi}{4} \right) - \cot \left(\theta + \frac{m\pi}{4} \right) \right] = 4$$

By telescopic, we get $\theta = \frac{\pi}{12}$ or $\frac{5\pi}{12}$

90.

On squaring both sides, we get

$$1 + \sin \pi (1 - x) = |\log |x||^3 + 1$$

$$\Rightarrow \sin \pi x = (|\ln x||)^3$$

There are 6 solutions 3 right side of y – axis and 3 left side of y – axis.

