Recitation Material: Linear Algebra

10-606

September 2025

Linear Operators, Rank, Eigenvalues

Definitions/Basic Properties

- 1. Define a functional and give an example. **Solution:** A functional is a linear map $f: V \to \mathbb{R}$. Example: $f(x) = \langle v, x \rangle$ for some fixed v.
- 2. What does it mean for a function $f: V \to V$ to be linear? Solution: f(ax + by) = af(x) + bf(y) for all scalars a, b and vectors $x, y \in V$.
- 3. Prove that a linear operator maps the origin to the origin. That is, if f is linear, then f(0) = 0. Solution: Since 0 + 0 = 0, f(0 + 0) = f(0). Since f is linear, the left side is equal to 2f(0). Subtract f(0) from both sides.
- 4. Prove that if A is positive semi-definite then its eigenvalues are nonnegative. **Solution:** Suppose A is PSD with eigenvalue λ and corresponding eigenvector v. Then $Av = \lambda v$. Multiplying each side by v^{T} we have $0 \leq v^{\mathsf{T}} Av = v^{\mathsf{T}} \lambda v = \lambda v^{\mathsf{T}} v = \lambda \|v\|_2^2$. Since norms are nonnegative, λ must be nonnegative as well.

Conceptual Understanding

- 4. What's the geometric meaning of having multiple linearly independent eigenvectors corresponding to the same eigenvalue? Solution: Stretches vectors by the same amount in those directions.
- 5. What happens if an eigenvalue of a matrix is equal to zero? Interpret this geometrically. **Solution:** The matrix is singular (not invertible). Geometrically, it squashes vectors along the eigenvector direction to 0, reducing dimension.

Applied Problems

- 7. Let $L = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$.
 - (a) Compute its eigenvalues and eigenvectors.

(b) Is it positive semi-definite?

Solution: Eigenvalues: $\lambda = 2$ (algebraic multiplicity 2). Eigenvectors: any vector of the form $\alpha[1,0]^T$ for $\alpha \in \mathbb{R}$. Not symmetric, so PSD criterion fails.

8. Suppose a linear transformation ℓ has rank 3. What can you say about the dimension of its null space if $\ell: \mathbb{R}^5 \to \mathbb{R}^5$? Solution: By rank-nullity, $\dim(\ker \ell) = 5 - 3 = 2$.

Matrices & Systems of Equations

Definitions/Basic Properties

- 1. Prove that the system Ax = b has a unique solution if A is full rank. **Solution:** Suppose x_1 and x_2 satisfy the system, i.e., $Ax_1 = b$ and $Ax_2 = b$. Then $A(x_1 x_2) = 0$, so $x_1 x_2$ is in the null space. This implies that any two solutions differ only by an element of the null space. But if A is full rank, the null space contains 0 only, hence $x_1 = x_2$.
- 2. What are the three possible outcomes for a system of linear equations depending on the rank of its coefficient matrix relative to the number of unknowns? **Solution:**
 - Rank > unknowns: this is impossible (Rank is at most the minimum number of rows or columns).
 - Rank = unknowns: unique solution.
 - Rank < unknowns: infinite or no solutions.

Conceptual Understanding

- 3. Why do elementary row operations preserve the solution set of a linear system? **Solution:** They correspond to algebraic manipulations of equations (swapping, scaling, adding multiples), which don't change the set of solutions.
- 4. Explain why the number of nonzero rows in REF equals the rank of the matrix. Solution: REF operations preserve linear dependence. Each nonzero row is linearly independent of the others; hence the number of nonzero rows it is the dimension of the row space, which is the rank of the matrix.

Applied Problems

5. Solve the system using Gaussian elimination:

$$\begin{cases} x + y + z = 3 \\ 2x + 3y + z = 7 \\ x + 2y + 2z = 5 \end{cases}$$

Solution: From elimination: x = 1, y = 1, z = 1.

6. Solve the system using Gaussian elimination:

$$\begin{cases} 2x + y - z = 1 \\ 4x - 6y = -2 \\ -2x + 7y + 2z = 9 \end{cases}$$

Solution: Reducing the augmented matrix gives the unique solution x = 1, y = 1, z = 2.