Secure Software Design Project

Course Code: CY321

Submitted by: • Zain Ali Memon. 2022630 • Mohsin Wazir. 2022309 • Ibrahim Imran 2022301 • Sagar Kumar. 2022522

Faculty: CyberSecurity

Threat Modeling & Risk Assessment

1. Identifying Attack Vectors

Attack vectors are potential paths that attackers can exploit to compromise the system. Based on the project's features, here are key attack vectors:

Component	Potential Attack Vectors	
User Authentication	- Credential stuffing	
	- Phishing attacks	
	- MFA bypass	
End-to-End Encryption	- Man-in-the-middle (MITM) attacks	
	- Key compromise	
	- Weak encryption implementation	
Access Control (RBAC)	- Privilege escalation	
	- Broken access control	
File Storage & Transmission	- Data leakage via metadata	
	- Unauthorized access to stored files	
File Integrity & Anti-Tampering	- Digital signature forgery	
	- Checksum collision attacks	
Secure File Deletion	- Data recovery from deleted files	

2. Risk Levels & Security Mitigation Strategies

Attack Vector	Risk Level	Mitigation Strategies
Credential Stuffing &	High	- Enforce strong password
Phishing		policies
		- Implement account
		lockout
		- Use phishing-resistant
		MFA (FIDO2, WebAuthn)
MFA Bypass	Medium	- Implement device
		fingerprinting
		- Use time-based OTPs
		(TOTP) instead of SMS
MITM Attacks	High	- Enforce TLS 1.3
		- Use certificate pinning in
		client applications
Key Compromise	High	- Implement HSM for key
		storage
		- Use periodic key rotation
Weak Encryption	Medium	- Use AES-256 encryption
Implementation		- Conduct security audits
Privilege Escalation	High	- Implement least privilege
		principle
		- Conduct access control
		audits
Broken Access Control	High	- Implement server-side

		access validation - Perform role-based penetration testing
Data Leakage via Metadata	Medium	- Encrypt metadata - Mask metadata from unauthorized users
Unauthorized File Access	High	Apply zero-trust principlesImplement granular access control policies
Digital Signature Forgery	Medium	- Use SHA-3, BLAKE2 - Ensure private keys remain confidential
Checksum Collision Attacks	Low	- Use SHA-256 or SHA-3
Data Recovery from Deleted Files	Medium	- Use secure deletion algorithms (DoD 5220.22- M, Gutmann method)

3. Summary & Security Best Practices

- 1. Zero-Trust Security Model: Continuously verify all access requests.
- 2. Regular Security Audits & Penetration Testing: Identify vulnerabilities proactively.
- 3. Strong Authentication & Authorization: Use MFA, OAuth 2.0, and strict RBAC policies.
- 4. Secure File Handling: Encrypt files at rest and in transit with AES-256 and TLS 1.3.
- 5. Activity Monitoring & Incident Response: Implement real-time anomaly detection.

4. Data Visualization

• Risk Level Distribution:

• Attack Vector Frequency

Attack Vector Frequency

• Mitigation Strategy Effectiveness:

5. References

- Risk Level Distribution: Displays the number of attack vectors categorized as High, Medium, or Low risk.
- Attack Vector Frequency: Illustrates the proportion of different attack vectors in the system.
- Mitigation Strategy Effectiveness: Tracks the effectiveness of implemented security measures over a six-month period, modeled on estimated security improvements based on:
- NIST (National Institute of Standards and Technology) cybersecurity framework
- OWASP (Open Web Application Security Project) guidelines