Clarke and Wright Algorithm

Laboratorio di Simulazione e Ottimizzazione L

M.Battarra, R.Baldacci, D. Vigo

Dipartimento di Elettronica, Informatica e Sistemistica

II Facoltà di Ingegneria Università di Bologna

rev 2.0, 5/2007

Outline

- The input data
- The output data
- The Clarke and Wright algorithm
 - The merge concept
 - The algorithm schema
 - Data structure
 - Algorithm: the example
 - Pseudocode
 - Solution Data structure
 - Improvement

Capacitated Vehicle Routing problem (CVRP): Input Data

Input Data:

- n = 4 customers
- 0 depot
- $d_i = (0, 5, 13, 12, 8)$ demands
- Cost Matrix= $\{c_{i,i}\}$ =

(i,j)	0	1	2	3	4
0	0	2	3	2	2
1	2	0	2	4	4
1 2 3	3	2	0	4.5	5
3	2	4	4.5	0	3
4	2	4	3 2 0 4.5 5	3	0

1) 5

4) 8

Q = 20 vehicle capacity

Capacitated Vehicle Routing problem (CVRP): Output Data

Output Data:

Solution cost: 14

- Routes:
 - i) Cost: 7; Demand: 18; #cust: 2;
 - Sequence: 0 1 2 0
 - ii) Cost: 7; Demand: 20; #cust: 2;

Sequence: 0 3 4 0

The project goal

The Clarke and Wright Algorithm (1964)

- Clarke and Wright [1964]: Scheduling of vehicles form a central depot to a number of delivery points
- Constructive and greedy heuristic algorithm
- Sequential and Parallel versions (Parallel version performs better, Toth and Vigo [2002])
- Pro :
 - Fast: Complexity: $O(n^2 \log n)$
 - Easy to implement
- Cons : Accuracy
 - Experimental result: +5% respect the best known solutions on benchmark problems
 - Worst case analysis: $CW(I)/OPT(I) \le \lceil \log 2n \rceil + 1$ where:
 - I problem instance
 - CW(I) Clarke and Wright solution value on instance I
 - OPT(I) Optimal solution of instance I

The merge key concept

- Initial solution: each vehicle serves exactly one customer
- The connection (or merge) of two distinct routes can determine a better solution (in terms of routing cost)
- Example:
 We merge routes servicing customers
 i = 1 and i = 2. How much do we save?

$$s_{i,j} = c_{i,0} + c_{0,j} - c_{i,j}$$

 If s_{i,j} > 0 the merging operation is convenient.

Merge feasibility (1/3)

Overload of the vehicle

The merge operation referred to the customers 2 and 3 in the example is not feasible, in fact:

•
$$D_{route} = d(2) + d(3) = 25$$

The route $0 \rightarrow 2 \rightarrow 3 \rightarrow 0$ is not feasible.

⇒ This merge operation cannot be performed!

Merge feasibility (2/3)

Internal customers

A customer which is neither the first nor the last at a route cannot be involved in merge operations.

Example: the customer 2 cannot be involved in any merge operation, because no arc exists connecting 2 to the depot 0.

 \Rightarrow The merge operations suggested by the s_{2j} values cannot be performed!

Merge feasibility (3/3)

Customers both in the same route

If the customers suggested by the saving $s_{i,j}$ are the extremes of the same route (the first or the last) the merge operation cannot be performed (no subtour are allowed)

Example: The customer 1 and 3 cannot be involved in any merge operation, because they are in the same route.

 \Rightarrow The merge operation suggested by the $s_{1,3}$ value cannot be performed!

Clarke and Wright

The Clarke and Wright algorithm starts as follows:

- The solution is initialized with a route for each customer (Iteration 0).
- All the saving values $s_{i,j}, \forall i,j \in 1, \dots, n$ and j > i are stored in a half-square matrix M.
- The saving values are ordered in not-increasing fashion in the list L (the highest saving value the most appealing the merge operation is!).

Data structure

- We compute for each couple of customers the saving value and we fill the matrix M of saving objects.
- Each saving object is composed by the triplet (s_{i,j}, i, j)
- The matrix **M** is sorted respect the $s_{i,j}$ value to create the list **L**, as shown in the example:

Ma	atrix			
	2	3	4	
1	3	0	0	
2	_	0.5	0	
3	_	-	1	\Rightarrow

List	L	
Sij	İ	j
3	1	2
1	3	4
0.5	2	3
0	1	3
0	1	4
0	2	4

 The saving objects in the list are now sequentially considered: if the associated merge operations are feasible, let's implement them.

Algorithm: iteration 1

List L

Sij	i	j
3	1	2
1	3	4
0.5	2	4 3 3
0	1	3
0	1	4
0	2	4

- ① $D_{route} = d(1) + d(2) = 18 < 20 = Q.$ OK!
- Both the customers are extern. OK!
- The customers 1,2 are not in the same route. OK!
- ⇒ The merge can be performed: operation feasible.

New solution:

- Solution cost: 11
- Routes:
 - i) Cost: 7; Demand: 18; #cust: 2; Sequence: 0 1 2 0
 - ii) Cost: 4; Demand: 12; #cust: 1; Sequence: 0 3 0
 - iii) Cost: 4; Demand: 8; #cust: 1; Sequence: 0 4 0

Algorithm: iteration 2

List L

S _{ij}	i	j				
3	1	2				
1	3	4				
0.5	2	3				
0	1	3				
0	1	4				
0	2	4				

- $D_{route} = d(3) + d(4) = 20 = 20 = Q.$ OK!
- Both the customers are extern. OK!
- The customers 3,4 are not in the same route. OK!
- ⇒ The merge can be performed: operation feasible.

New solution:

Solution cost: 10

Routes:

 Cost: 7; Demand: 18; #cust: 2; Sequence: 0 1 2 0

ii) Cost: 7; Demand: 20; #cust: 2; Sequence: 0 3 4 0

Algorithm: iteration 3

List L

i	j
1	2
3	4
2	3
1	3 3 4
1	4
2	4
	2 1 1

- ① $D_{route} = d(3) + d(2) = 38 > 20 = Q.$ **NO!**
- Both the customers are extern. OK!
- The customers 3,2 are not in the same route. OK!
- ⇒ The merge cannot be performed: operation infeasible.

The solution is not updated!!

Solution cost: 10

Routes:

i) Cost: 7; Demand: 18; #cust: 2; Sequence: 0 1 2 0

ii) Cost: 7; Demand: 20;

#cust: 2; Sequence: 0 3 4 0

Algorithm: next iterations

- The next $s_{i,j}$ values in the list **L** are all 0.
- These values correspond to merge operations without a save in the solution routing cost.
- Anyway in the example no more merge operations are feasible, so the algorithm is terminated.

Algorithm: Pseudocode

Algorithm 3.1: CLARKE AND WRIGHT(InputData)

```
\begin{cases} \textbf{for } i,j,(j>i) \leftarrow (i=1,j=2) \textbf{ to } (i=n-1,j=n) \\ \textbf{do } s_{i,j} \leftarrow c_{0,i} + c_{j,0} - c_{i,j} & ! \textit{ Fill Matrix M} \\ \textit{Sort Matrix M, filling list L} \\ s_{h,k} \leftarrow \textit{First saving in L} \\ N_{routes} \leftarrow n \\ \textbf{while } ((\textit{List L not void}) \textbf{ and } (s_{h,k} > 0)) \\ \textbf{do} \begin{cases} s_{h,k} \leftarrow \textit{First } s_{i,j} \in \textit{L not yet considered} \\ \textbf{if } (\textit{MergeFeasibility}(h,k) == \textit{YES}) \begin{cases} \textit{Merge}(\textit{Route}_h, \textit{Route}_k) \\ N_{routes} - - \end{cases} \end{cases}
```

Solution Data structure

- Let's introduce a data structure R to keep in memory partial solutions during algorithm iterations:
 - This data structure **R** has to contain routes information.
 - This data structure has to be useful to implement easily the MergeFeasibility and Merge functions.

Figure: Iteration 0

‡route	cost	load	‡cust	extreme ₁	extreme ₂	Customer sequence
1	4	5	1	1	1	1
2	6	13	1	2	2	2
3	4	12	1	3	3	3
4	4	8	1	4	4	4 4 ₱ ▶ 4 ≣ ▶ 4 ≣ ▶ ■ ■ ∽ 9 0

Solution Data structure: first iteration

- Is the merge feasible?
 - i) $d(2) + d(1) \le 20$? YES
 - ii) 2, 1 are both in the extreme list? YES
 - iii) 2, 1 are extremes for distinct #route ? YES

Figure: Iteration 1

‡route	cost	load	‡cust	extreme ₁	extreme ₂	Customer sequence
1	4	5	1	1	1	1
2	6	13	1	2	2	2
3	4	12	1	3	3	3
4	4	8	1	4	4	4 4 🗗 > 4 ₹ > 4 ₹ > ₹ 9 9 0

Solution Data structure: implement the merge

R update:

- A route has to be deleted.
- In the remaining one, these values have to be updated:
 - i) ‡cust
 - ii) demand
 - iii) sequence (check if a route sequence has to be inverted!!)
 - iv) extremes

Figure: Iteration 1

‡route	cost	load	♯ <i>cust</i>	extreme ₁	extreme ₂	Customer sequence
1	7	18	2	1	2	1 2
3	4	12	1	3	3	3
4	4	8	1	4	4	4

Solution Data structure: second iteration

- Is the merge feasible?
 - i) $d(4) + d(3) \le 20$? YES
 - ii) 4, 3 are both in the extreme list? YES
 - iii) 4, 3 are extremes for distinct #route ? YES

Figure: Iteration 2

‡route	cost	load	‡cust	extreme ₁	extreme ₂	Customer sequence
1	7	18	2	1	2	1 2
3	4	12	1	3	3	3
4	4	8	1	4	4	4

Solution Data structure: implement the merge

R update:

- A route has to be deleted.
- In the remaining one, these values have to be updated:
 - i) ‡cust
 - ii) demand
 - iii) sequence (check if a route sequence has to be inverted!!)
 - iv) extremes

Figure: Iteration 2

‡route	cost	load	#cust	extreme ₁	$extreme_2$	Cu	ıstomer sequei	nc
1	7	18	2	1	2	1	2	
2	7	20	2	3	4	3	4	

Merge operation

How can we join the sequence of customers in a merge operation?

Hp:

- Two routes A = (1, 2), B = (3, 4)
- A and B have to be merged in the final route C, according to the saving criterion
- The capacity of the vehicle is ∞ .

Four merge situations can occur to obtain the final route C:

- **2** $s_{4,1} \Rightarrow$ Simple Union deleting route A C = (3, 4, 1, 2)
- S_{4,2} \Rightarrow Route *B* has to be inverted $B^* = (4,3)$, merged to *A* and then deleted C=(1,2,4,3)
- S_{3,1} \Rightarrow Route *A* has to be inverted $A^* = (2,1)$, route *B* has to be merged to A^* and then deleted C=(2,1,3,4)

Algorithm Improvement

How can we improve the algorithm performance?

- Accuracy:
 - Multistart approach
 - A parametric saving formula
 - Post-optimization
- Speed:
 - Heap sorting procedure (one or few distinct heaps)
 - Early stop in the saving list L
 - Subset of savings (grid structure)

Improvement