2.35. 440 zł. 2.34. Końcowa cena stanowi 96% ceny początkowej. 2.33. $\frac{100a}{100-p}$ zł, 0 .2.36. 2100 zł.

2.41. b) 23750 zł b) x = 3.474,03. c) 15,37%. c) 27750 zł d) 16,84%

2.38. a) Średnie kolejnych cen są 3,26; 3,37; 3,34; 3,32; 3,44; 3,46; 3,69; 3,66; 3,06; 3,63;

2

2.43. 2.42. b) 9,4%. 246

2.44. i. 143

2.45. a) $64a^{16}b^{26}c^{14}d^4$; 2a"b"c: b) $4x^2y^{13}z^{12}$; d) $-2x^2y^{n-2}z^4$.

246. a) $4x^2 + 10x$; C

b) -0.4x + 0.8xy - 14.2y;

c) 6.8x - 1.4y;

e) $4.8x^4 - 0.96x^3y - 1.944x^2y^2 - 2.688xy^3 - 2.88y^4$; f) $6x^2 - 61xy - 35y^2 + 42x + 48y$. 2.47. a) $7x^2 - 16x - 7$; b) $50m^2 + 41n^2$; d) $144y^2 - 85xy - 21x^2$;

c) $13d^2 + 180cd - 79c^2$;

2.48. a) 13; a) $a^6 - 10a^4 + 27a^2 - 11$; b) -30. d) $16x^3y - 16xy^3$. c) $3x^4 - 3x^2$.

2.49. $-8a^3-32a^2+78a-18;$

						2.50.
נה	रम	D	С	В	A	Zbior
nie istnieje	0	0	jugun	0	nie istnieje	Kres dolny
ne istnieje	· breek		istnieje		nie istnieje	Kres górny

2	0	[7]	
ω	-3	D	_
nie istnieje	4	C	_
nie istnieje	Lus	В	
	3	A	
Kres górny	Kres dolny	Zbiór	

							2.52	
ຈ	لتر	(T)	D	C	В	V	Zbiór	
nie istnieje	-2	nie istnieje	2	1	ــا اس	0	Kres dolny	
0	2	nie istnieje	nie istnieje	0		-	Kres górny	

2.53. a) Kres dolny nie istnieje, kres górny -1;

b) kres dolny 0, kres górny nie istnieje;

c) kres dolny 2, kres górny 10.

256. Zadanie ma nieskończenie wiele rozwiązań, np.

a)
$$k = 3,001$$
; b) $k = \frac{11}{30}$; c) $k = 1,49$; d) $k = 3,1401$.

2.57. Ponieważ m < n, więc "odległość" między tymi liczbami jest n-m. Między liczbami m i n zawarta jest każda liczba postaci $m+a \cdot (n-m)$, gdzie $a \in (0; 1)$.

a)
$$2\frac{1}{2} + a(2,75-2,5) = 2,5 + a \cdot 0,25$$
, gdzie $a \in (0; 1)$.

Gdy $a_1 = 0.25$ i $a_2 = 0.5$ i $a_3 = 0.75$, to $k_1 = 2.5625$ i $k_2 = 2.625$ i $k_3 = 2.6875$.

2.59. a) Dla $x \ge 0$; b) dla każdej pary liczb rzeczywistych; c) dla x = y lub x = -y; d) dla x = 0 lub x = -1; e) dla x = -1 lub x = 7; f) dla x = 1 lub x = -2.

2.60. a) 3; b) -3x+1; c) 1.

2.65. b) Wykażemy najpierw, że $|x| \le c \Leftrightarrow -c \le x \le c(*)$.

więc x = |x| lub x = -|x| oraz $-|x| \le |x|$ Ponieważ |x| = x lub |x| = -x, Zatem $-|x| \le x \le |x|$.

 $-c \le -|x| \le x \le |x| \le c$ czyli $-c \le x \le c$. Jeśli $|x| \le c$, to $-|x| \ge -c$ co pociąga za sobą nierówności

Aby wykazać b) zauważmy, że Jeśli $-c \le x \le c$ to również $-c \le -x \le c$, czyli $-c \le |x| \le c$.

 $-|x| \leqslant x \leqslant |x|$ $-|y| \leqslant y \leqslant |y|.$

Dodając te nierówności stronami otrzymujemy nierówności

które na mocy (*) dają nierówność $|x+y| \le |x|+|y|$ $-(|x|+|y|) \leqslant x+y \leqslant |x|+|y|$

c) Wynika z b) bo $|x-y| = |x+(-y)| \le |x|+|-y| = |x|+|y|$

a) i d) są wnioskami z równości $\sqrt{x^2} = |x|$ (zad. 2.61)

2.67. a) $13\sqrt{5}$; b) $6.5\sqrt{2}$; c) $2x\sqrt{x}$; d) $4\sqrt{10-7}\sqrt{6}$.