Noise-Induced Randomization in Regression Discontinuity Designs

Dean Eckles, Nikolaos Ignatiadis, Stefan Wager, Han Wu

Presented by: Sai Zhang

November 18, 2022

Outline

- 1 Introduction
- 2 Key Argument
- 3 Estimation
- 4 Confidence Intervals
- 5 Applications
- 6 Discussion

$$\xrightarrow{W_i=\mathbf{1}(\{Z_i\geq c\})}$$

Introduction

$$W_i=\mathbf{1}(\{Z_i\geq c\})$$

Introduction

test scores

outcomes

RD Identification

Introduction 000000

$$Z_i$$
 $W_i = 1(\{Z_i \geq c\})$ W_i \Rightarrow Y_i outcome

admission

Introduction 000000

$$Z_i$$
 $\xrightarrow{W_i = \mathbf{1}(\{Z_i \geq c\})}$ W_i \Rightarrow Y_i outcome test scarce admission automos

test scores test results

admission medication outcomes outcomes

RD Identification: Continuity Argument

Introduction

For potential outcomes $\{Y_i(0),Y_i(1)\}$: $Y_i=Y_i(W_i)$, a weighted causal effect can be identified as

$$\tau_c = \mathbb{E}\left[Y_i(1) - Y_i(0) \mid Z_i = c\right]$$

RD Identification: Continuity Argument

Introduction

For potential outcomes $\{Y_i(0),Y_i(1)\}$: $Y_i=Y_i(W_i)$, a weighted causal effect can be identified as

$$\tau_c = \mathbb{E}\left[Y_i(1) - Y_i(0) \mid Z_i = c\right]$$
$$= \lim_{z \downarrow c} \mathbb{E}\left[Y \mid Z = z\right] - \lim_{z \uparrow c} \mathbb{E}\left[Y \mid Z = z\right]$$

RD Identification: Continuity Argument

For potential outcomes $\{Y_i(0), Y_i(1)\}$: $Y_i = Y_i(W_i)$, a weighted causal effect can be identified as

$$\tau_c = \mathbb{E}\left[Y_i(1) - Y_i(0) \mid Z_i = c\right]$$
$$= \lim_{z \downarrow c} \mathbb{E}\left[Y \mid Z = z\right] - \lim_{z \uparrow c} \mathbb{E}\left[Y \mid Z = z\right]$$

assuming

Introduction 000000

 \blacksquare the conditional response functions $\mu_w(z) = \mathbb{E}[Y(w) \mid Z=z]$ are continuous

For potential outcomes $\{Y_i(0),Y_i(1)\}$: $Y_i=Y_i(W_i)$, a weighted causal effect can be identified as

$$\tau_c = \mathbb{E}\left[Y_i(1) - Y_i(0) \mid Z_i = c\right]$$
$$= \lim_{z \downarrow c} \mathbb{E}\left[Y \mid Z = z\right] - \lim_{z \uparrow c} \mathbb{E}\left[Y \mid Z = z\right]$$

assuming

Introduction

- lacktriangledown the conditional response functions $\mu_w(z) = \mathbb{E}\left[Y(w) \mid Z=z\right]$ are continuous
- $\blacksquare \mu_w(z)$ to have a uniformly <u>bounded 2nd derivative</u> for CIs (Armstrong and Kolesár, 2018, 2020)

Introduction

RD Identification: Problems of Continuity Argument

Assumption: continuous
$$\mu_w(z) = \mathbb{E}\left[Y(w) \mid Z=z\right]$$

$$\tau_{c} = \lim_{z \downarrow c} \mathbb{E}\left[Y \mid Z = z\right] - \lim_{z \uparrow c} \mathbb{E}\left[Y \mid Z = z\right]$$

Where does this continuity come from?

RD Identification: Problems of Continuity Argument

Assumption: continuous
$$\mu_w(z) = \mathbb{E}\left[Y(w) \mid Z=z\right]$$

$$\tau_{c} = \lim_{z \downarrow c} \mathbb{E}\left[Y \mid Z = z\right] - \lim_{z \uparrow c} \mathbb{E}\left[Y \mid Z = z\right]$$

Where does this continuity come from?

Lee (2008): continuous measurement error in the running variable by units

Eckles et al., 2020

RD Identification: Measurement Error

Introduction

$$Z_i$$
running variable

$$W_i=\mathbf{1}(\{Z_i\geq c\})$$

$$W_i$$
treatment

$$\Rightarrow \underbrace{Y_i}_{\text{outcome}}$$

admission medication

outcomes outcomes

RD Identification: Measurement Error

$$\underbrace{U_i}_{\text{latent variable}} \quad \underbrace{Z_i | U_i \sim p(\cdot|U_i)}_{\text{running variable}} \quad \underbrace{Z_i}_{\text{running variable}} \quad \underbrace{W_i = \mathbf{1}(\{Z_i \geq c\})}_{\text{treatment}} \quad \Rightarrow \quad \underbrace{Y_i}_{\text{outcome}}$$

ability condition

Introduction

test scores test results

admission medication outcomes outcomes

medication

outcomes

RD Identification: Measurement Error

Introduction

condition

$$\underbrace{U_i}_{\text{latent variable}} \xrightarrow{\underline{Z_i|U_i\sim p(\cdot|U_i)}} \underbrace{Z_i}_{\text{running variable}} \xrightarrow{\underline{W_i=1(\{Z_i\geq c\})}} \underbrace{W_i}_{\text{treatment}} \Rightarrow \underbrace{Y_i}_{\text{outcome}}$$

$$\text{ability} \qquad \text{test scores} \qquad \text{admission} \qquad \text{outcomes}$$

Why don't we take advantage of the measurement error itself for inference?

test results

This Paper

Introduction

$$U_i$$
 $\xrightarrow{Z_i | U_i \sim p(\cdot|U_i)}$ Z_i $\xrightarrow{W_i = \mathbf{1}(\{Z_i \geq e\})}$ W_i \Rightarrow Y_i outcome

Weighted treatment effects can be estimated if the measurement error in Z_i

This Paper

Introduction

$$\underbrace{U_i}_{\text{latent variable}} \xrightarrow{\frac{Z_i | U_i \sim p(\cdot|U_i)}{2}} \underbrace{Z_i}_{\text{running variable}} \xrightarrow{\frac{W_i = \mathbf{1}(\{Z_i \geq \mathcal{C}\})}{2}} \underbrace{W_i}_{\text{treatment}} \Rightarrow \underbrace{Y_i}_{\text{outcome}}$$

Weighted treatment effects can be estimated if the measurement error in Z_i

■ has a known distribution

This Paper

Introduction 000000

$$U_i$$
 $\xrightarrow{Z_i | U_i \sim p(\cdot|U_i)}$ Z_i $\xrightarrow{W_i = \mathbf{1}(\{Z_i \geq c\})}$ W_i \Rightarrow Y_i outcom

Weighted treatment effects can be estimated if the measurement error in Z_i

- has a known distribution
- \blacksquare is conditionally (on U_i) independent of potential outcomes

Eckles et al., 2020

Kev Argument 00000000

Sharp RD Design with A Noisy Running Variable

Assumption 1: Sharp RD design

Key Argument

- **I.I.D.** samples $\{Y_i(0), Y_i(1), Z_i\} \in \mathbb{R}^3, i = 1, \dots, n$
- treatment assignment: $W_i = 1$ ($\{Z_i \ge c\}$), where $c \in \mathbb{R}$ is the **cutoff**
- lacksquare observation: $\{Y_i,Z_i\}$ where $Y_i=Y_i(W_i)$

Assumption 2: Noisy running variable

$$Z_i \mid U_i \sim p\left(\cdot \mid U_i\right)$$

where $p(\cdot \mid \cdot)$ is a **known** conditional density w.r.t. to a measure λ , the latent variable U_i has an **unknown** distribution G

Assumption 2: Noisy running variable

$$Z_i \mid U_i \sim \mathcal{N}(U_i, \nu^2), \nu > 0$$

where $p(\cdot \mid \cdot)$ is a **known** conditional density w.r.t. to a measure λ , the latent variable U_i has an **unknown** distribution G

Assumption 2: Noisy running variable

$$Z_i \mid U_i \sim \text{Binomial}(K, U_i), K \in \mathbb{N}$$

where $p(\cdot \mid \cdot)$ is a **known** conditional density w.r.t. to a measure λ , the latent variable U_i has an unknown distribution G

Assumption 3: Exogeneity

Kev Argument 000000000

$$[\{Y_i(0),Y_i(1)\}\perp Z_i]\mid U_i$$

which implies $\mathbb{E}\left[Y_i \mid U_i, Z_i\right] = \alpha_{(W_i)}\left(u\right)$

Assumption 3: Exogeneity

Key Argument

$$[\{Y_i(0), Y_i(1)\} \perp Z_i] \mid U_i$$

which implies $\mathbb{E}\left[Y_i \mid U_i, Z_i\right] = \alpha_{(W_i)}\left(u\right)$, where $\alpha_{(w)}\left(u\right) = \mathbb{E}\left[Y_i\left(w\right) \mid U_i = u\right]$ is the response functions for the potential oucomes conditional on the latent variable u

Key Argument

- A1 Sharp RD
- A2 Noisy Z_i : $Z_i \mid U_i \sim p(\cdot \mid U_i)$
- A3 Exogeneity: $\frac{[\{Y_i(0), Y_i(1)\} \perp Z_i] \mid U_i}{[\{Y_i(0), Y_i(1)\} \perp Z_i] \mid U_i}$

Key Argument

- A1 Sharp RD
- A2 Noisy Z_i : $Z_i \mid U_i \sim p(\cdot \mid U_i)$
- A3 Exogeneity: $\overline{\left[\left\{Y_{i}\left(0\right),Y_{i}\left(1\right)\right\}\perp Z_{i}\right]\mid U_{i}}$

Proposition 1

Let $\gamma_{+}(\cdot), \gamma_{-}(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h\left(u,\gamma\right)\coloneqq\int\gamma\left(z\right)p\left(z\mid u\right)\mathrm{d}\lambda\left(z\right)$$
, $\alpha_{\left(w\right)}\left(u\right)=\mathbb{E}\left[Y_{i}\left(w\right)\mid U_{i}=u\right]$

Proposition 1

Let $\gamma_{+}(\cdot), \gamma_{-}(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h(u, \gamma) := \int \gamma(z) p(z \mid u) d\lambda(z)$$
, $\alpha_{(w)}(u) = \mathbb{E}[Y_i(w) \mid U_i = u]$

Proposition 1

Key Argument

Let $\gamma_{+}(\cdot), \gamma_{-}(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h(u, \gamma) \coloneqq \int \gamma(z) p(z \mid u) d\lambda(z)$$
, $\alpha_{(w)}(u) = \mathbb{E}[Y_i(w) \mid U_i = u]$

$$\blacksquare \ \mathbb{E}\left[Y^2\right], \mathbb{E}\left[\gamma_-\left(Z\right)^2\right], \mathbb{E}\left[\gamma_+\left(Z\right)^2\right] < \infty$$

Proposition 1

Key Argument

Let $\gamma_{+}(\cdot), \gamma_{-}(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h(u, \gamma) \coloneqq \int \gamma(z) p(z \mid u) d\lambda(z)$$
, $\alpha_{(w)}(u) = \mathbb{E}[Y_i(w) \mid U_i = u]$

- $\blacksquare \mathbb{E}\left[Y^2\right], \mathbb{E}\left[\gamma_-\left(Z\right)^2\right], \mathbb{E}\left[\gamma_+\left(Z\right)^2\right] < \infty$
- $\gamma_+(\cdot), \gamma_-(\cdot)$ are weighting functions s.t.

Proposition 1

Key Argument

Let $\gamma_+(\cdot), \gamma_-(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h\left(u,\gamma\right)\coloneqq\int\gamma\left(z\right)p\left(z\mid u\right)\mathrm{d}\lambda\left(z\right),\ \alpha_{\left(w\right)}\left(u\right)=\mathbb{E}\left[Y_{i}\left(w\right)\mid U_{i}=u\right]$$

- $\blacksquare \mathbb{E}\left[Y^2\right], \mathbb{E}\left[\gamma_-\left(Z\right)^2\right], \mathbb{E}\left[\gamma_+\left(Z\right)^2\right] < \infty$
- $= \gamma_+(\cdot), \gamma_-(\cdot)$ are weighting functions s.t.
 - $\gamma_{+}(z) = 0$ for z < c: assign non-zero weights only to treated units

Proposition 1

Kev Argument 000000000

Let $\gamma_{+}(\cdot), \gamma_{-}(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h\left(u,\gamma\right)\coloneqq\int\gamma\left(z\right)p\left(z\mid u\right)\mathrm{d}\lambda\left(z\right),\ \alpha_{\left(w\right)}\left(u\right)=\mathbb{E}\left[Y_{i}\left(w\right)\mid U_{i}=u\right]$$

- $\blacksquare \mathbb{E}\left[Y^2\right], \mathbb{E}\left[\gamma_-\left(Z\right)^2\right], \mathbb{E}\left[\gamma_+\left(Z\right)^2\right] < \infty$
- $> \gamma_+(\cdot), \gamma_-(\cdot)$ are weighting functions s.t.
 - $-\gamma_{+}(z) = 0$ for z < c: assign non-zero weights only to treated units
 - $\gamma_{-}(z) = 0$ for $z \geq c$: assign non-zero weights only to control units

Proposition 1

Let $\gamma_{+}(\cdot), \gamma_{-}(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h\left(u,\gamma\right)\coloneqq\int\gamma\left(z\right)p\left(z\mid u\right)\mathrm{d}\lambda\left(z\right)$$
, $\alpha_{\left(w\right)}\left(u\right)=\mathbb{E}\left[Y_{i}\left(w\right)\mid U_{i}=u\right]$

Proof:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\mid U\right]$$

Key Argument

Proposition 1

Kev Argument 000000000

Let $\gamma_{+}(\cdot), \gamma_{-}(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h\left(u,\gamma\right)\coloneqq\int\gamma\left(z\right)p\left(z\mid u\right)\mathrm{d}\lambda\left(z\right)$$
, $\alpha_{\left(w\right)}\left(u\right)=\mathbb{E}\left[Y_{i}\left(w\right)\mid U_{i}=u\right]$

Proof:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\mid U\right] = \mathbb{E}\left[\gamma_{+}\left(Z\right)Y\cdot 1\left(\left\{Z>c\right\}\right)\mid U\right]$$

Proposition 1

Let $\gamma_{+}(\cdot), \gamma_{-}(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h\left(u,\gamma\right)\coloneqq\int\gamma\left(z\right)p\left(z\mid u\right)\mathrm{d}\lambda\left(z\right)$$
, $\alpha_{\left(w\right)}\left(u\right)=\mathbb{E}\left[Y_{i}\left(w\right)\mid U_{i}=u\right]$

Proof:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\mid U\right] = \mathbb{E}\left[\gamma_{+}\left(Z\right)Y \cdot \mathbf{1}\left(\left\{Z \geq c\right\}\right)\mid U\right]$$
$$= \mathbb{E}\left[\gamma_{+}\left(Z\right)Y\left(1\right) \cdot \mathbf{1}\left(\left\{Z \geq c\right\}\right)\mid U\right]$$

Proposition 1

Key Argument

Let $\gamma_{+}(\cdot), \gamma_{-}(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h(u, \gamma) := \int \gamma(z) p(z \mid u) d\lambda(z)$$
, $\alpha_{(w)}(u) = \mathbb{E}[Y_i(w) \mid U_i = u]$

Proof:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\mid U\right] = \mathbb{E}\left[\gamma_{+}\left(Z\right)Y \cdot \mathbf{1}\left(\left\{Z \geq c\right\}\right)\mid U\right]$$

$$= \mathbb{E}\left[\gamma_{+}\left(Z\right)Y\left(1\right) \cdot \mathbf{1}\left(\left\{Z \geq c\right\}\right)\mid U\right]$$

$$= \mathbb{E}\left[Y\left(1\right)\mid U\right] \cdot \qquad \mathbb{E}\left[\gamma_{+}\left(Z\right)\mathbf{1}\left(\left\{Z \geq c\right\}\right)\mid U\right]$$

$$= \mathbb{E}\left[\gamma_{+}\left(Z\right)\left[U\right] = \int \gamma_{+}\left(Z\right)p\left(z\right]U\right)d\lambda(z) = h\left(U,\gamma_{+}\right)$$

Kev Argument 000000000

A1 Sharp RD

A2 Noisy Z_i : $Z_i \mid U_i \sim p(\cdot \mid U_i)$

A3 Exogeneity: $[\{Y_i(0),Y_i(1)\}\perp Z_i]\mid U_i$

Key Argument

A1 Sharp RD

A2 Noisy Z_i : $Z_i \mid U_i \sim p(\cdot \mid U_i)$

A3 Exogeneity:

$$\overline{\left[\left\{ Y_{i}\left(0\right),Y_{i}\left(1\right)\right\} \perp Z_{i}\right]\mid U_{i}}$$

- No need to know G (distribution of U)
- Need to know $p(z \mid u)$ (conditional distribution of the noise)

Kev Argument 00000000

A1 Sharp RD

A2 Noisy Z_i : $Z_i \mid U_i \sim p(\cdot \mid U_i)$

A3 **Exogeneity**:

$$\left[\left\{Y_{i}\left(0\right),Y_{i}\left(1\right)\right\}\perp Z_{i}\right]\mid U_{i}$$

- \blacksquare No need to know G (distribution of U)
- Need to know $p(z \mid u)$ (conditional distribution of the noise)
 - test-retest data, prior modelling of responses to tests, physical model of the measurement device, biomedical knowledge, etc.

Kev Argument 00000000

A1 Sharp RD

A2 Noisy Z_i : $Z_i \mid U_i \sim p(\cdot \mid U_i)$

A3 **Exogeneity**:

$$\left[\left\{Y_{i}\left(0\right),Y_{i}\left(1\right)\right\}\perp Z_{i}\right]\mid U_{i}$$

- \blacksquare No need to know G (distribution of U)
- Need to know $p(z \mid u)$ (conditional distribution of the noise)
 - test-retest data, prior modelling of responses to tests, physical model of the measurement device, biomedical knowledge, etc.
 - still valid when underestimating the true noise level

Eckles et al., 2020

Proposition: The Key Argument

Let $\gamma_{+}(\cdot), \gamma_{-}(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h\left(u,\gamma\right)\coloneqq\int\gamma\left(z\right)p\left(z\mid u\right)\mathrm{d}\lambda\left(z\right)$$
, $\alpha_{\left(w\right)}\left(u\right)=\mathbb{E}\left[Y_{i}\left(w\right)\mid U_{i}=u\right]$

ratio-form estimators:

$$\hat{\tau}_{\gamma} = \hat{\mu}_{\gamma,+} - \hat{\mu}_{\gamma,-} \\
= \frac{\sum_{i} \gamma_{+} (Z_{i}) Y_{i}}{\sum_{i} \gamma_{+} (Z_{i})} - \frac{\sum_{i} \gamma_{-} (Z_{i}) Y_{i}}{\sum_{i} \gamma_{-} (Z_{i})}$$

Proposition: The Key Argument

Let $\gamma_{+}(\cdot), \gamma_{-}(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where
$$h\left(u,\gamma\right)\coloneqq\int\gamma\left(z\right)p\left(z\mid u\right)\mathrm{d}\lambda\left(z\right)$$
, $\alpha_{\left(w\right)}\left(u\right)=\mathbb{E}\left[Y_{i}\left(w\right)\mid U_{i}=u\right]$

ratio-form estimators:

$$\hat{\tau}_{\gamma} = \hat{\mu}_{\gamma,+} - \hat{\mu}_{\gamma,-} \\
= \frac{\sum_{i} \gamma_{+} (Z_{i}) Y_{i}}{\sum_{i} \underbrace{\gamma_{+} (Z_{i})}_{\gamma_{+}(z)=0, z < c}} - \frac{\sum_{i} \gamma_{-} (Z_{i}) Y_{i}}{\sum_{i} \underbrace{\gamma_{-} (Z_{i})}_{\gamma_{-}(z)=0, z < c}}$$

Ratio-form estimators:

$$\hat{\tau}_{\gamma} = \hat{\mu}_{\gamma,+} - \hat{\mu}_{\gamma,-} = \frac{\sum_{i} \gamma_{+} \left(Z_{i}\right) Y_{i}}{\sum_{i} \gamma_{+} \left(Z_{i}\right)} - \frac{\sum_{i} \gamma_{-} \left(Z_{i}\right) Y_{i}}{\sum_{i} \gamma_{-} \left(Z_{i}\right)}$$

What's the weighted treatment effects to conduct inference for?

Ratio-form estimators:

$$\hat{\tau}_{\gamma} = \hat{\mu}_{\gamma,+} - \hat{\mu}_{\gamma,-} = \frac{\sum_{i} \gamma_{+} \left(Z_{i}\right) Y_{i}}{\sum_{i} \gamma_{+} \left(Z_{i}\right)} - \frac{\sum_{i} \gamma_{-} \left(Z_{i}\right) Y_{i}}{\sum_{i} \gamma_{-} \left(Z_{i}\right)}$$

What's the weighted treatment effects to conduct inference for?

$$\tau_{w} = \int \frac{w(u)}{\mathbb{E}_{G}\left[w(U)\right]} \tau(u) dG(u), w(\cdot) \ge 0$$

Ratio-form estimators:

$$\hat{\tau}_{\gamma} = \hat{\mu}_{\gamma,+} - \hat{\mu}_{\gamma,-} = \frac{\sum_{i} \gamma_{+} \left(Z_{i}\right) Y_{i}}{\sum_{i} \gamma_{+} \left(Z_{i}\right)} - \frac{\sum_{i} \gamma_{-} \left(Z_{i}\right) Y_{i}}{\sum_{i} \gamma_{-} \left(Z_{i}\right)}$$

What's the weighted treatment effects to conduct inference for?

$$\tau_{w} = \int \frac{w(u)}{\mathbb{E}_{G}\left[w(U)\right]} \tau(u) dG(u), w(\cdot) \ge 0$$

where $\tau(u)$ (Conditional Average Treatment Effects) is

$$\tau\left(u\right) = \mathbb{E}\left[Y_{i}\left(1\right) - Y_{i}\left(0\right) \mid U_{i} = u\right] = \alpha_{(1)}\left(u\right) - \alpha_{(0)}\left(u\right)$$

Weighted Treatment Effects: Example

$$\tau_{w} = \int \frac{w(u)}{\mathbb{E}_{G}\left[w(U)\right]} \tau(u) dG(u), w(\cdot) \ge 0$$

where $\tau(u)$ (CATE) is $\tau(u) = \mathbb{E}[Y_i(1) - Y_i(0) | U_i = u] = \alpha_{(1)}(u) - \alpha_{(0)}(u)$

RD paramater:

$$\tau_{c} = \mathbb{E}\left[Y_{i}\left(1\right) - Y_{i}\left(0\right) \mid Z_{i} = c\right] = \mathbb{E}\left[\tau(U_{i}) \mid Z_{i} = c\right]$$

$$= \int \frac{p\left(c \mid u\right)}{\int p\left(c \mid u\right) dG\left(u\right)} \tau\left(u\right) dG\left(u\right)$$

Weighted Treatment Effects: Example

$$\tau_{w} = \int \frac{w(u)}{\mathbb{E}_{G}\left[w(U)\right]} \tau(u) dG(u), w(\cdot) \ge 0$$

where au(u) (CATE) is $au(u) = \mathbb{E}\left[Y_i\left(1\right) - Y_i\left(0\right) \mid U_i = u\right] = lpha_{(1)}\left(u\right) - lpha_{(0)}\left(u\right)$

RD paramater:

$$\tau_{c} = \mathbb{E}\left[Y_{i}\left(1\right) - Y_{i}\left(0\right) \mid Z_{i} = c\right] = \mathbb{E}\left[\tau(U_{i}) \mid Z_{i} = c\right]$$

$$= \int \frac{p\left(c \mid u\right)}{\int p\left(c \mid u\right) dG\left(u\right)} \tau\left(u\right) dG\left(u\right)$$

Theorem: Asymptotic Limit of $\hat{\tau}_{\gamma}$

$$\hat{\tau}_{\gamma} = \hat{\mu}_{\gamma,+} - \hat{\mu}_{\gamma,-} =$$

$$\frac{\sum_{i} \gamma_{+} \left(Z_{i} \right) Y_{i}}{\sum_{i} \gamma_{+} \left(Z_{i} \right)}$$

$$\frac{\sum_{i} \gamma_{-}\left(Z_{i}\right) Y_{i}}{\sum_{i} \gamma_{-}\left(Z_{i}\right)}$$

Theorem: Asymptotic Limit of $\hat{\tau}_{\gamma}$

$$\hat{\tau}_{\gamma} = \hat{\mu}_{\gamma,+} - \hat{\mu}_{\gamma,-} =$$

$$\frac{p}{}$$

$$\frac{\sum_{i} \gamma_{+}\left(Z_{i}\right) Y_{i}}{\sum_{i} \gamma_{+}\left(Z_{i}\right)} \quad \cdot$$

$$\frac{\mathbb{E}\left[\gamma_{+}(Z)Y\right]}{\mathbb{E}\left[\gamma_{+}(Z)\right]}$$

$$\frac{\sum_{i} \gamma_{-}(Z_{i}) Y_{i}}{\sum_{i} \gamma_{-}(Z_{i})}$$

$$\frac{\mathbb{E}\left[\gamma_{-}(Z)Y\right]}{\mathbb{E}\left[\gamma_{-}(Z)\right]}$$

Theorem: Asymptotic Limit of $\hat{\tau}_{\gamma}$

$$\begin{split} \hat{\tau}_{\gamma} &= \hat{\mu}_{\gamma,+} - \hat{\mu}_{\gamma,-} = & \frac{\sum_{i} \gamma_{+} \left(Z_{i}\right) Y_{i}}{\sum_{i} \gamma_{+} \left(Z_{i}\right)} &- \frac{\sum_{i} \gamma_{-} \left(Z_{i}\right) Y_{i}}{\sum_{i} \gamma_{-} \left(Z_{i}\right)} \\ &\stackrel{P}{\Rightarrow} & \frac{\mathbb{E}\left[\gamma_{+}(Z)Y\right]}{\mathbb{E}\left[\gamma_{+}(Z)\right]} &- \frac{\mathbb{E}\left[\gamma_{-}(Z)Y\right]}{\mathbb{E}\left[\gamma_{-}(Z)\right]} \\ \textbf{(Prop.1)} &= & \frac{\mathbb{E}\left[\alpha_{(1)} \left(U\right) h \left(U, \gamma_{+}\right)\right]}{\mathbb{E}\left[h \left(U, \gamma_{+}\right)\right]} &- \frac{\mathbb{E}\left[\alpha_{(0)} \left(U\right) h \left(U, \gamma_{-}\right)\right]}{\mathbb{E}\left[h \left(U, \gamma_{-}\right)\right]} &= \mu_{\gamma,+} - \mu_{\gamma,-} \equiv \theta_{\gamma} \end{split}$$

where

$$h\left(u,\gamma\right)\coloneqq\int\gamma\left(z\right)p\left(z\mid u\right)\mathrm{d}\lambda\left(z\right),\;\;lpha_{\left(w\right)}\left(u\right)=\mathbb{E}\left[Y_{i}\left(w\right)\mid U_{i}=u\right]$$

Theorem: Asymptotic Limit of $\hat{ au}_{\gamma}$

$$\begin{split} \hat{\tau}_{\gamma} &= \hat{\mu}_{\gamma,+} - \hat{\mu}_{\gamma,-} = & \frac{\sum_{i} \gamma_{+} \left(Z_{i} \right) Y_{i}}{\sum_{i} \gamma_{+} \left(Z_{i} \right)} &- \frac{\sum_{i} \gamma_{-} \left(Z_{i} \right) Y_{i}}{\sum_{i} \gamma_{-} \left(Z_{i} \right)} \\ &\stackrel{p}{\rightarrow} & \frac{\mathbb{E} \left[\alpha_{(1)} \left(U \right) h \left(U, \gamma_{+} \right) \right]}{\mathbb{E} \left[h \left(U, \gamma_{+} \right) \right]} &- \frac{\mathbb{E} \left[\alpha_{(0)} \left(U \right) h \left(U, \gamma_{-} \right) \right]}{\mathbb{E} \left[h \left(U, \gamma_{-} \right) \right]} = \mu_{\gamma,+} - \mu_{\gamma,-} \equiv \theta_{\gamma} \end{split}$$

How biased is this asymptotic limit? Comparing to

$$\tau_{w} = \int \frac{w(u)}{\mathbb{E}_{G}\left[w(U)\right]} \tau(u) dG(u), w(\cdot) \ge 0$$

aBias
$$\left[\gamma_{\pm}, \tau_{w}; \alpha_{(0)}(\cdot), \tau(\cdot), G\right] = \theta_{\gamma} - \tau_{w}$$

Sai Zhang

$$a \operatorname{Bias}\left[\gamma_{\pm}, \tau_{w}; \alpha_{(0)}\left(\cdot\right), \tau\left(\cdot\right), G\right] = \theta_{\gamma} - \tau_{w}$$

$$= \frac{\mathbb{E}\left[\alpha_{(1)}\left(U\right) h\left(U, \gamma_{+}\right)\right]}{\mathbb{E}\left[h\left(U, \gamma_{+}\right)\right]} - \frac{\mathbb{E}\left[\alpha_{(0)}\left(U\right) h\left(U, \gamma_{-}\right)\right]}{\mathbb{E}\left[h\left(U, \gamma_{-}\right)\right]} - \int \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]} \tau\left(u\right) dG\left(u\right)$$

$$a \operatorname{Bias}\left[\gamma_{\pm}, \tau_{w}; \alpha_{(0)}(\cdot), \tau(\cdot), G\right] = \theta_{\gamma} - \tau_{w}$$

$$= \frac{\mathbb{E}\left[\alpha_{(1)}(U) h(U, \gamma_{+})\right]}{\mathbb{E}\left[h(U, \gamma_{+})\right]} - \frac{\mathbb{E}\left[\alpha_{(0)}(U) h(U, \gamma_{-})\right]}{\mathbb{E}\left[h(U, \gamma_{-})\right]} - \int \frac{w(u)}{\mathbb{E}_{G}\left[w(U)\right]} \tau(u) \, \mathrm{d}G(u)$$

$$= \int \left(\frac{h(u, \gamma_{+})}{\mathbb{E}_{G}\left[h(U, \gamma_{+})\right]}\right) \alpha_{(1)}(u) \, \mathrm{d}G(u) - \int \left(\frac{h(u, \gamma_{-})}{\mathbb{E}_{G}\left[h(U, \gamma_{-})\right]}\right) \alpha_{(0)}(u) \, \mathrm{d}G(u)$$

$$- \int \frac{w(u)}{\mathbb{E}_{G}\left[w(U)\right]} \tau(u) \, \mathrm{d}G(u)$$

$$a \operatorname{Bias}\left[\gamma_{\pm}, \tau_{w}; \alpha_{(0)}(\cdot), \tau(\cdot), G\right] = \theta_{\gamma} - \tau_{w}$$

$$= \frac{\mathbb{E}\left[\alpha_{(1)}(U) h(U, \gamma_{+})\right]}{\mathbb{E}\left[h(U, \gamma_{+})\right]} - \frac{\mathbb{E}\left[\alpha_{(0)}(U) h(U, \gamma_{-})\right]}{\mathbb{E}\left[h(U, \gamma_{-})\right]} - \int \frac{w(u)}{\mathbb{E}_{G}\left[w(U)\right]} \tau(u) \, \mathrm{d}G(u)$$

$$= \int \left(\frac{h(u, \gamma_{+})}{\mathbb{E}_{G}\left[h(U, \gamma_{+})\right]}\right) \alpha_{(1)}(u) \, \mathrm{d}G(u) - \int \left(\frac{h(u, \gamma_{-})}{\mathbb{E}_{G}\left[h(U, \gamma_{-})\right]}\right) \alpha_{(0)}(u) \, \mathrm{d}G(u)$$

$$- \int \frac{w(u)}{\mathbb{E}_{G}\left[w(U)\right]} \tau(u) \, \mathrm{d}G(u)$$

Remember? $\tau(u)$ (Conditional Average Treatment Effects) is

$$au\left(u
ight)=\mathbb{E}\left[Y_{i}\left(1
ight)-Y_{i}\left(0
ight)\mid U_{i}=u
ight]=lpha_{\left(1
ight)}\left(u
ight)-lpha_{\left(0
ight)}\left(u
ight)\Rightarrow \boxed{lpha_{\left(1
ight)}\left(u
ight)= au\left(u
ight)+lpha_{\left(0
ight)}\left(u
ight)}$$

$$a \operatorname{Bias}\left[\gamma_{\pm}, \tau_{w}; \alpha_{(0)}(\cdot), \tau(\cdot), G\right] = \theta_{\gamma} - \tau_{w}$$

$$= \int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]}\right) \underbrace{\alpha_{(1)}\left(u\right)}_{=\tau\left(u\right) + \alpha_{(0)}\left(u\right)} dG\left(u\right)$$

$$- \int \left(\frac{h\left(u, \gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{-}\right)\right]}\right) \alpha_{(0)}\left(u\right) dG\left(u\right) - \int \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]} \tau\left(u\right) dG\left(u\right)$$

Eckles et al., 2020

$$a \operatorname{Bias}\left[\gamma_{\pm}, \tau_{w}; \alpha_{(0)}(\cdot), \tau(\cdot), G\right] = \theta_{\gamma} - \tau_{w}$$

$$= \int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]}\right) \underbrace{\alpha_{(1)}\left(u\right)}_{=\tau\left(u\right) + \alpha_{(0)}\left(u\right)} dG\left(u\right)$$

$$- \int \left(\frac{h\left(u, \gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{-}\right)\right]}\right) \alpha_{(0)}\left(u\right) dG\left(u\right) - \int \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]} \tau\left(u\right) dG\left(u\right)$$

$$= \int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]} - \frac{h\left(u, \gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{-}\right)\right]}\right) \alpha_{(0)}\left(u\right) dG\left(u\right)$$

$$+ \int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]} - \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]}\right) \tau\left(u\right) dG\left(u\right)$$

$$a \operatorname{Bias}\left[\gamma_{\pm}, \tau_{w}; \alpha_{(0)}(\cdot), \tau(\cdot), G\right] = \theta_{\gamma} - \tau_{w}$$

$$= \int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]}\right) \underbrace{\alpha_{(1)}\left(u\right)}_{=\tau\left(u\right) + \alpha_{(0)}\left(u\right)} dG\left(u\right)$$

$$- \int \left(\frac{h\left(u, \gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{-}\right)\right]}\right) \alpha_{(0)}\left(u\right) dG\left(u\right) - \int \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]} \tau\left(u\right) dG\left(u\right)$$

$$= \int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]} - \frac{h\left(u, \gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{-}\right)\right]}\right) \alpha_{(0)}\left(u\right) dG\left(u\right)$$

$$+ \int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]} - \frac{w\left(u\right)}{\mathbb{E}_{G}\left[u\right)\left(U\right)}\right) \tau\left(u\right) dG\left(u\right)$$

Confounding bias

$$a \operatorname{Bias}\left[\gamma_{\pm}, \tau_{w}; \alpha_{(0)}(\cdot), \tau(\cdot), G\right] = \theta_{\gamma} - \tau_{w}$$

$$= \int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]}\right) \underbrace{\alpha_{(1)}\left(u\right)}_{=\tau\left(u\right) + \alpha_{(0)}\left(u\right)} dG\left(u\right)$$

$$- \int \left(\frac{h\left(u, \gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{-}\right)\right]}\right) \alpha_{(0)}\left(u\right) dG\left(u\right) - \int \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]} \tau\left(u\right) dG\left(u\right)$$

 $= \int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{C}\left[h\left(U, \gamma_{+}\right)\right]} - \frac{h\left(u, \gamma_{-}\right)}{\mathbb{E}_{C}\left[h\left(U, \gamma_{-}\right)\right]} \right) \alpha_{(0)}\left(u\right) dG\left(u\right)$

 $+ \int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}\left[h\left(H, \gamma_{+}\right)\right]} - \frac{w\left(u\right)}{\mathbb{E}\left[a\left(H\right)\right]} \right) \tau\left(u\right) dG\left(u\right)$

Confounding bias

CATE heterogeneity bias

$$\begin{split} \int \left(\frac{h\left(u,\gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{h\left(u,\gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{-}\right)\right]}\right) \alpha_{(0)}\left(u\right) \, \mathrm{d}G\left(u\right) & \qquad \qquad \text{Confounding bias} \\ \int \left(\frac{h\left(u,\gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]}\right) \tau\left(u\right) \, \mathrm{d}G\left(u\right) & \qquad \qquad \text{CATE heterogeneity bias} \end{split}$$

Confounding bias

How to minimize them?

$$\int \left(\frac{h(u,\gamma_{+})}{\mathbb{E}_{G}\left[h(U,\gamma_{+})\right]} - \frac{h(u,\gamma_{-})}{\mathbb{E}_{G}\left[h(U,\gamma_{-})\right]}\right) \alpha_{(0)}(u) \, dG(u)$$

$$\int \left(\frac{h(u,\gamma_{+})}{\mathbb{E}_{G}\left[h(U,\gamma_{+})\right]} - \frac{w(u)}{\mathbb{E}_{G}\left[w(U)\right]}\right) \tau(u) \, dG(u)$$

Confounding bias

CATE heterogeneity bias

How to minimize them?

■ Confounding bias: $h(\cdot, \gamma_+) \approx h(\cdot, \gamma_-)$

Eckles et al., 2020

$$\int \left(\frac{h\left(u,\gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{h\left(u,\gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{-}\right)\right]}\right) \alpha_{(0)}\left(u\right) \, \mathrm{d}G\left(u\right) \qquad \qquad \text{Confounding bias}$$

$$\int \left(\frac{h\left(u,\gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]}\right) \tau\left(u\right) \, \mathrm{d}G\left(u\right) \qquad \text{CATE heterogeneity bias}$$

How to minimize them?

■ Confounding bias: $h(\cdot, \gamma_+) \approx h(\cdot, \gamma_-)$ where $h(u, \gamma) := \int \gamma(z) p(z \mid u) d\lambda(z)$ How well the units are balanced via the latent variable u

Eckles et al., 2020

$$\int \left(\frac{h\left(u,\gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{h\left(u,\gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{-}\right)\right]}\right) \alpha_{(0)}\left(u\right) \, \mathrm{d}G\left(u\right) \qquad \qquad \text{Confounding bias}$$

$$\int \left(\frac{h\left(u,\gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]}\right) \tau\left(u\right) \, \mathrm{d}G\left(u\right) \qquad \text{CATE heterogeneity bias}$$

How to minimize them?

- Confounding bias: $h(\cdot, \gamma_+) \approx h(\cdot, \gamma_-)$ where $h(u, \gamma) := \int \gamma(z) p(z \mid u) d\lambda(z)$ How well the units are balanced via the latent variable u
- **CATE** heterogeneity bias:

$$\int \left(\frac{h\left(u,\gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{h\left(u,\gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{-}\right)\right]}\right) \alpha_{(0)}\left(u\right) \, \mathrm{d}G\left(u\right) \qquad \qquad \text{Confounding bias}$$

$$\int \left(\frac{h\left(u,\gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]}\right) \tau\left(u\right) \, \mathrm{d}G\left(u\right) \qquad \text{CATE heterogeneity bias}$$

How to minimize them?

- Confounding bias: $h(\cdot, \gamma_+) \approx h(\cdot, \gamma_-)$ where $h(u, \gamma) := \int \gamma(z) p(z \mid u) d\lambda(z)$ How well the units are balanced via the latent variable u
- **CATE** heterogeneity bias:

$$\int \left(\frac{h\left(u,\gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{h\left(u,\gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{-}\right)\right]}\right) \alpha_{(0)}\left(u\right) \, \mathrm{d}G\left(u\right) \qquad \qquad \text{Confounding bias}$$

$$\int \left(\frac{h\left(u,\gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]}\right) \tau\left(u\right) \, \mathrm{d}G\left(u\right) \qquad \text{CATE heterogeneity bias}$$

How to minimize them?

- Confounding bias: $h(\cdot, \gamma_+) \approx h(\cdot, \gamma_-)$ where $h(u, \gamma) := \int \gamma(z) p(z \mid u) d\lambda(z)$ How well the units are balanced via the latent variable u
- **CATE** heterogeneity bias:
 - $\tau(u)$ being constant w.r.t. u, a constant conditional treatment effect

Eckles et al., 2020

$$\int \left(\frac{h\left(u,\gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{h\left(u,\gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{-}\right)\right]}\right) \alpha_{(0)}\left(u\right) \, \mathrm{d}G\left(u\right) \qquad \qquad \text{Confounding bias}$$

$$\int \left(\frac{h\left(u,\gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]}\right) \tau\left(u\right) \, \mathrm{d}G\left(u\right) \qquad \text{CATE heterogeneity bias}$$

How to minimize them?

- Confounding bias: $h(\cdot, \gamma_+) \approx h(\cdot, \gamma_-)$ where $h(u, \gamma) := \int \gamma(z) p(z \mid u) d\lambda(z)$ How well the units are balanced via the latent variable u
- **CATE** heterogeneity bias:
 - $\tau(u)$ being constant w.r.t. u, a constant conditional treatment effect
 - $h(u, \gamma_{+}) = w(u), \forall u$, an absolutely "correct" weighting function

$$\begin{split} \hat{\tau} = & \frac{\sum_{i} \gamma_{+} \left(Z_{i}\right) Y_{i}}{\sum_{i} \gamma_{+} \left(Z_{i}\right)} - \frac{\sum_{i} \gamma_{-} \left(Z_{i}\right) Y_{i}}{\sum_{i} \gamma_{-} \left(Z_{i}\right)} \\ \hat{\tau}_{\gamma} \stackrel{p}{\rightarrow} \theta_{\gamma} = & \frac{\mathbb{E}\left[\alpha_{(1)} \left(U\right) h\left(U, \gamma_{+}\right)\right]}{\mathbb{E}\left[h\left(U, \gamma_{+}\right)\right]} - \frac{\mathbb{E}\left[\alpha_{(0)} \left(U\right) h\left(U, \gamma_{-}\right)\right]}{\mathbb{E}\left[h\left(U, \gamma_{-}\right)\right]} \end{split}$$

Asymptotic Normality

Theorem: Asymptotic Normality of $\hat{\tau}$

Suppose the sequence of weighting kernels $\gamma_+^{(n)}$ and $\gamma_-^{(n)}$ is deterministic, and $\exists \beta \in (0, \frac{1}{2}), C, C' > 0$ s.t. $\forall n$ large enough:

$$\sup_{z}\left|\gamma_{\diamond}^{\left(n\right)}\left(z\right)\right|< Cn^{\beta}\mathbb{E}\left[\gamma_{\diamond}^{\left(n\right)}\left(Z_{i}\right)\right] \qquad \sup_{u}\left|h\left(u,\gamma_{\diamond}^{\left(n\right)}\right)\right|< C'\mathbb{E}\left[\gamma_{\diamond}^{\left(n\right)}\left(Z_{i}\right)\right], \qquad \diamond = \{+,-\}$$

Then

$$\frac{\sqrt{n}\left(\hat{\tau}_{\gamma} - \theta_{\gamma}\right)}{\sqrt{V_{\gamma}}} \xrightarrow{d} \mathcal{N}\left(0, 1\right)$$

where

$$V_{\gamma} = \frac{\mathbb{E}\left[\gamma_{+}^{2}\left(Z_{i}\right)\left(Y_{i} - \mu_{\gamma,+}\right)^{2}\right]}{\mathbb{E}\left[\gamma_{+}\left(Z_{i}\right)\right]^{2}} + \frac{\mathbb{E}\left[\gamma_{-}^{2}\left(Z_{i}\right)\left(Y_{i} - \mu_{\gamma,-}\right)^{2}\right]}{\mathbb{E}\left[\gamma_{-}\left(Z_{i}\right)\right]^{2}}$$

Theorem: Asymptotic Normality of $\hat{\tau}$

Suppose the sequence of weighting kernels
$$\gamma_{+}^{(n)}$$
 and $\gamma_{-}^{(n)}$ is deterministic, and $\exists \beta \in \left(0, \frac{1}{2}\right), C, C' > 0$ s.t. $\forall n$ large enough: $\sup_{z} \left|\gamma_{\diamond}^{(n)}\left(z\right)\right| < Cn^{\beta}\mathbb{E}\left[\gamma_{\diamond}^{(n)}\left(Z_{i}\right)\right]$, $\sup_{u} \left|h\left(u,\gamma_{\diamond}^{(n)}\right)\right| < C'\mathbb{E}\left[\gamma_{\diamond}^{(n)}\left(Z_{i}\right)\right]$ where $\diamond = \{+,-\}$. Then

$$\diamond = \{+, -\}$$
 Then

$$\frac{\sqrt{n}\left(\hat{\tau}_{\gamma} - \theta_{\gamma}\right)}{\sqrt{V_{\gamma}}} \xrightarrow{d} \mathcal{N}\left(0, 1\right)$$

where
$$V_{\gamma} = \frac{\mathbb{E}\left[\gamma_{+}^{2}(Z_{i})(Y_{i}-\mu_{\gamma,+})^{2}\right]}{\mathbb{E}\left[\gamma_{+}(Z_{i})\right]^{2}} + \frac{\mathbb{E}\left[\gamma_{-}^{2}(Z_{i})(Y_{i}-\mu_{\gamma,-})^{2}\right]}{\mathbb{E}\left[\gamma_{-}(Z_{i})\right]^{2}}$$

Assumption:

- The repsonse Y_i is bounded: $Y_i \in [0,1]$
- \blacksquare inf_z Var $[Y_i \mid Z_i = z] > 0$

Eckles et al., 2020

$$\frac{\sqrt{n}\left[\left(\hat{\mu}_{\gamma,+} - \hat{\mu}_{\gamma,-}\right) - \left(\mu_{\gamma,+} - \mu_{\gamma,-}\right)\right]}{\sqrt{\frac{\mathbb{E}\left[\gamma_{+}^{2}(Z_{i})(Y_{i} - \mu_{\gamma,+})^{2}\right]}{\mathbb{E}\left[\gamma_{+}(Z_{i})\right]^{2}}} + \frac{\mathbb{E}\left[\gamma_{-}^{2}(Z_{i})(Y_{i} - \mu_{\gamma,-})^{2}\right]}{\mathbb{E}\left[\gamma_{-}(Z_{i})\right]^{2}}} \xrightarrow{d} \mathcal{N}\left(0,1\right)$$

$$\frac{\sqrt{n} \left[(\hat{\mu}_{\gamma,+} - \hat{\mu}_{\gamma,-}) - (\mu_{\gamma,+} - \mu_{\gamma,-}) \right]}{\sqrt{\frac{\mathbb{E}\left[\gamma_{+}^{2}(Z_{i})(Y_{i} - \mu_{\gamma,+})^{2} \right]}{\mathbb{E}\left[\gamma_{+}(Z_{i}) \right]^{2}}}} \xrightarrow{\frac{d}{\mathbb{E}\left[\gamma_{-}^{2}(Z_{i})(Y_{i} - \mu_{\gamma,-})^{2} \right]}} \xrightarrow{\frac{\sqrt{n} \left(\hat{\mu}_{\gamma,+} - \mu_{\gamma,+} \right)}{\sqrt{\frac{\mathbb{E}\left[\gamma_{+}(Z_{i})^{2}(Y_{i}(1) - \mu_{\gamma,+})^{2} \right]}{\mathbb{E}\left[\gamma_{+}(Z_{i}) \right]^{2}}}} \xrightarrow{\frac{d}{\mathbb{E}\left[\gamma_{+}(Z_{i})^{2}(Y_{i}(1) - \mu_{\gamma,+})^{2} \right]}}} \xrightarrow{\frac{d}{\mathbb{E}\left[\gamma_{+}^{2}(Z_{i})^{2}(Y_{i}(1) - \mu_{\gamma,+})^{2} \right]}} \xrightarrow{\frac{d}{\mathbb{E}\left[\gamma_{+}^{2}(Z_{i})^{2}(Y_{i}(1) - \mu_{\gamma,+})^{2} \right]}}} \xrightarrow{\frac{d}{\mathbb{E}\left[\gamma_{+}^{2}(Z_{i})^{2}(Y_{i}(1) - \mu_{\gamma,+})^{2} \right]}}}} \xrightarrow{\frac{d}{\mathbb{E}\left[\gamma_{+}^{2}(Z_{i})^{2}(Y_{i}(1) - \mu_{\gamma,+})^{2} \right]}}}} \xrightarrow{\frac{d}{\mathbb{E}\left[\gamma_{+}^{2}(Z_{i})^{2}(Y_{i}(1) - \mu_{\gamma,+})^{2} \right]}}}$$

$$\frac{\sqrt{n} \left[(\hat{\mu}_{\gamma,+} - \hat{\mu}_{\gamma,-}) - (\mu_{\gamma,+} - \mu_{\gamma,-}) \right]}{\sqrt{\frac{\mathbb{E}\left[\gamma_{+}^{2}(Z_{i})(Y_{i} - \mu_{\gamma,-})^{2}\right]}{\mathbb{E}\left[\gamma_{+}(Z_{i})\right]^{2}}}} \xrightarrow{\mathcal{N}} \mathcal{N} (0,1)$$

$$\frac{\sqrt{\frac{\mathbb{E}\left[\gamma_{+}^{2}(Z_{i})(Y_{i} - \mu_{\gamma,+})^{2}\right]}{\mathbb{E}\left[\gamma_{+}(Z_{i})\right]^{2}}}} \xrightarrow{\mathcal{N}} \mathcal{N} (0,1)$$

$$\frac{\sqrt{n} \left(\hat{\mu}_{\gamma,+} - \mu_{\gamma,+}\right)}{\sqrt{\frac{\mathbb{E}\left[\gamma_{+}(Z_{i})^{2}(Y_{i}(1) - \mu_{\gamma,+})^{2}\right]}{\mathbb{E}\left[\gamma_{+}(Z_{i})\right]^{2}}}} \xrightarrow{\mathcal{N}} \mathcal{N} (0,1)$$

$$\frac{\sqrt{n} \left(\frac{\sum_{i} \gamma_{+}(Z_{i})Y_{i}}{\sum_{i} \gamma_{+}(Z_{i})} - \mu_{\gamma,+}\right)}{\sqrt{\frac{\mathbb{E}\left[\gamma_{+}(Z_{i})^{2}(Y_{i}(1) - \mu_{\gamma,+})^{2}\right]}{\mathbb{E}\left[\gamma_{+}(Z_{i})^{2}\right]^{2}}}} \xrightarrow{\mathcal{N}} \mathcal{N} (0,1)$$

$$\frac{\sqrt{n}\left(\frac{\sum_{i}\gamma_{+}(Z_{i})Y_{i}}{\sum_{i}\gamma_{+}(Z_{i})} - \mu_{\gamma,+}\right)}{\sqrt{\frac{\mathbb{E}\left[\gamma_{+}(Z_{i})^{2}(Y_{i}(1) - \mu_{\gamma,+})^{2}\right]}{\mathbb{E}\left[\gamma_{+}(Z_{i})\right]^{2}}}} \xrightarrow{d} \mathcal{N}\left(0,1\right)$$

$$\frac{\sqrt{n}\left(\frac{\sum_{i}\gamma_{+}(Z_{i})Y_{i}}{\sum_{i}\gamma_{+}(Z_{i})} - \mu_{\gamma,+}\right)}{\sqrt{\frac{\mathbb{E}\left[\gamma_{+}(Z_{i})^{2}(Y_{i}(1) - \mu_{\gamma,+})^{2}\right]}{\mathbb{E}\left[\gamma_{+}(Z_{i})\right]^{2}}}} \xrightarrow{d} \mathcal{N}\left(0,1\right)$$

$$\frac{\sum_{i} \gamma_{+}(Z_{i})(Y_{i}(1) - \mu_{\gamma,+})}{\sum_{i} \gamma_{+}(Z_{i})} = \underbrace{\frac{\sum_{i} \gamma_{+}(Z_{i})(Y_{i}(1) - \mu_{\gamma,+})}{\sqrt{n\mathbb{E}\left[\gamma_{+}(Z_{i})^{2}(Y_{i}(1) - \mu_{\gamma,+})^{2}\right]}}}_{n\mathbb{E}\left[\gamma_{+}(Z_{i})\right]} = \underbrace{\frac{\sum_{i} \gamma_{+}(Z_{i})(Y_{i}(1) - \mu_{\gamma,+})}{\sqrt{n\mathbb{E}\left[\gamma_{+}(Z_{i})^{2}(Y_{i}(1) - \mu_{\gamma,+})^{2}\right]}}}_{\stackrel{d}{\longrightarrow} \mathcal{N}(0,1)}$$

 $\xrightarrow{d} \mathcal{N}(0,1)$ $=1+o_{n}(1)$

$$\frac{\sum_{i} \gamma_{+}\left(Z_{i}\right)\left(Y_{i}\left(1\right) - \mu_{\gamma,+}\right)}{\sqrt{n\mathbb{E}\left[\gamma_{+}\left(Z_{i}\right)^{2}\left(Y_{i}\left(1\right) - \mu_{\gamma,+}\right)^{2}\right]}} \xrightarrow{d} \mathcal{N}(0,1)$$

$$\boxed{\underline{\sigma}^2 = \inf_{z} \operatorname{Var}\left[Y_i \mid Z_i = z\right] > 0} : \operatorname{Var}\left[\gamma_+\left(Z_i\right)\left(Y_i\left(1\right) - \mu_{\gamma,+}\right)\right] \geq \underline{\sigma}^2 \mathbb{E}\left[\gamma_+\left(Z_i\right)^2\right]$$

$$\blacksquare \left[\sup_{u} \left| h\left(u, \gamma_{\diamond}^{(n)}\right) \right| < C' \mathbb{E}\left[\gamma_{\diamond}^{(n)}\left(Z_{i}\right)\right] \right] \text{ and } \left[Y_{i} \in [0, 1]\right] : \left| \mu_{\gamma, +} \right| = \left| \frac{\mathbb{E}\left[\alpha_{(1)}(U)h\left(U, \gamma_{+}\right)\right]}{\mathbb{E}\left[\gamma_{+}(Z_{i})\right]} \right| \leq C'$$

$$\frac{n\mathbb{E}\left[\left|\gamma_{+}\left(Z_{i}\right)\left(Y_{i}\left(1\right)-\mu_{\gamma,+}\right)\right|^{2+q}\right]}{\left(n\operatorname{Var}\left[\gamma_{+}\left(Z_{i}\right)\left(Y_{i}\left(1\right)-\mu_{\gamma,+}\right)\right]\right)^{\frac{2+q}{2}}}\leq\left(\frac{C'+1}{\underline{\sigma}}\right)^{2+q}\left(Cn^{\beta-\frac{1}{2}}\right)^{q}\xrightarrow{0\to\infty}0$$

$$\frac{\frac{1}{n}\sum_{i}\gamma_{+}\left(Z_{i}\right)}{\mathbb{E}\left[\gamma_{+}\left(Z_{i}\right)\right]} \xrightarrow{p} 1$$

$$\mathbf{P}\left\{\left|\mathbb{E}_{n}\left[\gamma_{+}\left(Z_{i}\right)\right] - \mathbb{E}\left[\gamma_{+}\left(Z_{i}\right)\right]\right| \geq \epsilon \mathbb{E}\left[\gamma_{+}\left(Z_{i}\right)\right]\right\} \leq \frac{\operatorname{Var}\left[\gamma_{+}\left(Z_{i}\right)\right]}{n\epsilon^{2}\mathbb{E}\left[\gamma_{+}\left(Z_{i}\right)\right]^{2}}$$

$$\leq \left(\frac{C}{\epsilon} \cdot n^{\beta - \frac{1}{2}}\right)^{2} \xrightarrow{n \to \infty} 0$$

$$\frac{\frac{\sum_{i} \gamma_{+}(Z_{i})(Y_{i}(1) - \mu_{\gamma,+})}{\sum_{i} \gamma_{+}(Z_{i})}}{\frac{\sqrt{n\mathbb{E}\left[\gamma_{+}(Z_{i})^{2}(Y_{i}(1) - \mu_{\gamma,+})^{2}\right]}}{n\mathbb{E}\left[\gamma_{+}(Z_{i})\right]}} = \underbrace{\frac{\sum_{i} \gamma_{+}\left(Z_{i}\right)\left(Y_{i}\left(1\right) - \mu_{\gamma,+}\right)}{\sqrt{n\mathbb{E}\left[\gamma_{+}\left(Z_{i}\right)^{2}\left(Y_{i}\left(1\right) - \mu_{\gamma,+}\right)^{2}\right]}}_{\stackrel{d}{\longrightarrow} \mathcal{N}(0,1)} \cdot \underbrace{\frac{1}{n}\sum_{i} \gamma_{+}\left(Z_{i}\right)}_{=1+o_{p}(1)}}^{d} \xrightarrow{\mathcal{N}(0,1)} \mathcal{N}(0,1)$$

$$\Rightarrow \frac{\sqrt{n} \left(\frac{\sum_{i} \gamma_{+}(Z_{i}) Y_{i}}{\sum_{i} \gamma_{+}(Z_{i})} - \mu_{\gamma,+} \right)}{\sqrt{\frac{\mathbb{E}\left[\gamma_{+}(Z_{i})^{2} (Y_{i}(1) - \mu_{\gamma,+})^{2} \right]}{\mathbb{E}\left[\gamma_{+}(Z_{i}) \right]^{2}}}} \xrightarrow{d} \mathcal{N}\left(0,1\right) \Rightarrow \frac{\sqrt{n} \left(\hat{\tau}_{\gamma} - \theta_{\gamma} \right)}{\sqrt{V_{\gamma}}} \xrightarrow{d} \mathcal{N}\left(0,1\right)$$

$$V_{\gamma} = \frac{\mathbb{E}\left[\gamma_{+}^{2}\left(Z_{i}\right)\left(Y_{i} - \mu_{\gamma,+}\right)^{2}\right]}{\mathbb{E}\left[\gamma_{+}\left(Z_{i}\right)\right]^{2}} + \frac{\mathbb{E}\left[\gamma_{-}^{2}\left(Z_{i}\right)\left(Y_{i} - \mu_{\gamma,-}\right)^{2}\right]}{\mathbb{E}\left[\gamma_{-}\left(Z_{i}\right)\right]^{2}}$$

Plug-in Estimator for V_{\sim}

$$V_{\gamma} = \frac{\mathbb{E}\left[\gamma_{+}^{2}\left(Z_{i}\right)\left(Y_{i} - \mu_{\gamma,+}\right)^{2}\right]}{\mathbb{E}\left[\gamma_{+}\left(Z_{i}\right)\right]^{2}} + \frac{\mathbb{E}\left[\gamma_{-}^{2}\left(Z_{i}\right)\left(Y_{i} - \mu_{\gamma,-}\right)^{2}\right]}{\mathbb{E}\left[\gamma_{-}\left(Z_{i}\right)\right]^{2}}$$

Proposition: Plug-in Estimator \hat{V}_{γ}

Under the same assumptions, we have $rac{\hat{V}_{\gamma}}{V_{\gamma}}=1+o_{p}(1)$ where

$$\hat{V}_{\gamma} = \frac{\frac{1}{n} \sum_{i=1}^{n} \gamma_{+}^{2} (Z_{i}) (Y_{i} - \hat{\mu}_{\gamma,+})^{2}}{\left[\frac{1}{n} \sum_{i=1}^{n} \gamma_{+} (Z_{i})\right]^{2}} + \frac{\frac{1}{n} \sum_{i=1}^{n} \gamma_{-}^{2} (Z_{i}) (Y_{i} - \hat{\mu}_{\gamma,-})^{2}}{\left[\frac{1}{n} \sum_{i=1}^{n} \gamma_{-} (Z_{i})\right]^{2}}$$

Upper Bound for the Potential Bias $|b_{\gamma}| = | heta_{\gamma} - au_w|$

$$a \text{Bias} = \theta_{\gamma} - \tau_{w} = \underbrace{\int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]} - \frac{h\left(u, \gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{-}\right)\right]}\right) \alpha_{(0)}\left(u\right) \, \mathrm{d}G\left(u\right)}_{\text{Confounding bias}} + \underbrace{\int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]} - \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]}\right) \tau\left(u\right) \, \mathrm{d}G\left(u\right)}_{\text{CATE heterogeneity bias}}$$

Upper Bound for the Potential Bias $|b_{\gamma}| = |\theta_{\gamma} - \tau_w|$

$$a \text{Bias} = \theta_{\gamma} - \tau_{w} = \underbrace{\int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]} - \frac{h\left(u, \gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{-}\right)\right]}\right) \alpha_{(0)}\left(u\right) \, \mathrm{d}G\left(u\right)}_{\text{Confounding bias}} + \underbrace{\int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]} - \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]}\right) \tau\left(u\right) \, \mathrm{d}G\left(u\right)}_{\text{CATE heterogeneity bias}}$$

The distribution of $G(\cdot)$ is unknown

Applications 0000000

Discussion DOOOOOOOO

0000

Upper Bound for the Potential Bias $|b_{\gamma}| = | heta_{\gamma} - au_w|$

Bound the worst-case bias:

Upper Bound for the Potential Bias $|b_{\gamma}| = |\theta_{\gamma} - \tau_{w}|$

Bound the worst-case bias:

■ Back out the class of latent variable distribution from $\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(Z_i \leq t)$, the empirical distribution of Z_i (Massart, 1990):

$$\mathcal{G}_{n} = \left\{ G(\cdot) : \sup_{t \in \mathbb{R}} \left| F_{G}\left(t\right) - \hat{F}_{n}\left(t\right) \right| \leq \sqrt{\frac{\log\left(2/\alpha_{n}\right)}{2n}} \right\}, \quad \alpha_{n} = \min\left\{0.05, n^{-1/4}\right\}$$

Eckles et al., 2020

Upper Bound for the Potential Bias $|b_{\gamma}| = |\theta_{\gamma} - \tau_w|$

Bound the worst-case bias:

■ Back out the class of latent variable distribution from $\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(Z_i \leq t)$, the empirical distribution of Z_i (Massart, 1990):

$$\mathcal{G}_{n} = \left\{ G(\cdot) : \sup_{t \in \mathbb{R}} \left| F_{G}(t) - \hat{F}_{n}(t) \right| \leq \sqrt{\frac{\log(2/\alpha_{n})}{2n}} \right\}, \quad \alpha_{n} = \min\left\{ 0.05, n^{-1/4} \right\}$$

■ Take treatment effect heterogeneity into consideration:

$$\mathcal{T}_{M} = \left\{ \tau \left(\cdot \right) \mid \tau \left(u \right) = \bar{\tau} + \Delta \left(u \right), \bar{\tau} \in \mathbb{R}, \left| \Delta \left(u \right) \right| \leq M \right\}, \qquad M \in \left[0, 1 \right]$$

Upper Bound for the Potential Bias $|b_{\gamma}| = |\theta_{\gamma} - \tau_{w}|$

Bound the worst-case bias:

 \blacksquare Back out the class of latent variable distribution from $\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(Z_i \leq t)$, the empirical distribution of Z_i (Massart, 1990):

$$\mathcal{G}_{n} = \left\{ G(\cdot) : \sup_{t \in \mathbb{R}} \left| F_{G}(t) - \hat{F}_{n}(t) \right| \leq \sqrt{\frac{\log(2/\alpha_{n})}{2n}} \right\}, \quad \alpha_{n} = \min\left\{ 0.05, n^{-1/4} \right\}$$

■ Take treatment effect heterogeneity into consideration:

$$\mathcal{T}_{M} = \left\{ \tau \left(\cdot \right) \mid \tau \left(u \right) = \bar{\tau} + \Delta \left(u \right), \bar{\tau} \in \mathbb{R}, \left| \Delta \left(u \right) \right| \leq M \right\}, \qquad M \in \left[0, 1 \right]$$

- \mathcal{T}_0 (M=0): constant CATE
- \mathcal{T}_1 (M=1): no assumptions
- $\mathcal{T}_{1/2}$ (M=0): a conservative choice for a monotonicity restriction

Proposition: Upper Bound for the Potential Bias $\hat{B}_{\gamma,M}$

Under asymptotic normality and all necessary assumptions, for $\tau(\cdot) \in \mathcal{T}_M$, the upper bound of bias is

$$\hat{B}_{\gamma,M} = \sup \left\{ \left| \operatorname{Bias} \left[\gamma_{\pm}, \tau_w; \alpha_0 \left(\cdot \right), \tau \left(\cdot \right), G \right] \right| : G \in \mathcal{G}_n, \alpha_{(0)} \left(\cdot \right) \in \left[0, 1 \right], \tau \left(\cdot \right) \in \mathcal{T}_M \right\} \right.$$

then
$$\mathbf{P}\left(|b_{\gamma}| \leq \hat{B}_{\gamma,M}\right) \xrightarrow{n \to \infty} 1$$

Proposition: Upper Bound for the Potential Bias $\hat{B}_{\gamma,M}$

Under asymptotic normality and all necessary assumptions, for $\tau(\cdot) \in \mathcal{T}_M$, the upper bound of bias is

$$\hat{B}_{\gamma,M} = \sup \left\{ \left| \operatorname{Bias} \left[\gamma_{\pm}, \tau_w; \alpha_0 \left(\cdot \right), \tau \left(\cdot \right), G \right] \right| : G \in \mathcal{G}_n, \alpha_{(0)} \left(\cdot \right) \in \left[0, 1 \right], \tau \left(\cdot \right) \in \mathcal{T}_M \right\} \right.$$

then
$$\mathbf{P}\left(|b_{\gamma}| \leq \hat{B}_{\gamma,M}\right) \xrightarrow{n \to \infty} 1$$

$$\left\{G \in \mathcal{G}_n\right\} \subset \left\{|b_{\gamma}| \leq \hat{B}_{\gamma,M}\right\} \Rightarrow \mathbf{P}\left(|b_{\gamma}| \leq \hat{B}_{\gamma,M}\right) \geq \mathbf{P}\left(G \in \mathcal{G}_n\right)$$

Proposition: Upper Bound for the Potential Bias $\hat{B}_{\gamma,M}$

Under asymptotic normality and all necessary assumptions, for $\tau(\cdot) \in \mathcal{T}_M$, the upper bound of bias is

$$\hat{B}_{\gamma,M} = \sup \left\{ \left| \text{Bias} \left[\gamma_{\pm}, \tau_w; \alpha_0 \left(\cdot \right), \tau \left(\cdot \right), G \right] \right| : G \in \mathcal{G}_n, \alpha_{(0)} \left(\cdot \right) \in \left[0, 1 \right], \tau \left(\cdot \right) \in \mathcal{T}_M \right\} \right\}$$

then $\mathbf{P}\left(|b_{\gamma}| \leq \hat{B}_{\gamma,M}\right) \xrightarrow{n \to \infty} 1$

$$\{G \in \mathcal{G}_n\} \subset \left\{|b_{\gamma}| \leq \hat{B}_{\gamma,M}\right\} \Rightarrow \mathbf{P}\left(|b_{\gamma}| \leq \hat{B}_{\gamma,M}\right) \geq \mathbf{P}\left(G \in \mathcal{G}_n\right)$$

and for $G \in \mathcal{G}_n$, Dvoretzky-Kiefer-Wolfowitz (DKW) inequality gives:

$$\mathbf{P}\left(G \in \mathcal{G}_{n}\right) \geq \mathbf{P}\left[\sup_{t \in \mathbb{R}}\left|F_{G}\left(t\right) - \hat{F}_{n}\left(t\right)\right| \leq \sqrt{\frac{\log\left(2/\alpha_{n}\right)}{2n}}\right] \geq 1 - \alpha_{n} \xrightarrow[n \to \infty]{\alpha_{n} = \min\left\{0.05, n^{-1/4}\right\}} 1$$

 Sai Zhang
 Eckles et al., 2020
 39

■ Asymptotic limit:

$$\hat{\tau}_{\gamma} \xrightarrow{p} \theta_{\gamma} = \frac{\mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right]}{\mathbb{E}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{\mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]}{\mathbb{E}\left[h\left(U,\gamma_{-}\right)\right]}$$

■ Asymptotic limit:

$$\hat{\tau}_{\gamma} \xrightarrow{p} \theta_{\gamma} = \frac{\mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right]}{\mathbb{E}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{\mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]}{\mathbb{E}\left[h\left(U,\gamma_{-}\right)\right]}$$

■ Asymptotic normality:

$$\frac{\sqrt{n}\left(\hat{\tau}_{\gamma} - \theta_{\gamma}\right)}{\sqrt{\hat{V_{\gamma}}}} \xrightarrow{d} \mathcal{N}\left(0, 1\right)$$

Asymptotic limit:

$$\hat{\tau}_{\gamma} \xrightarrow{p} \theta_{\gamma} = \frac{\mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right]}{\mathbb{E}\left[h\left(U,\gamma_{+}\right)\right]} - \frac{\mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]}{\mathbb{E}\left[h\left(U,\gamma_{-}\right)\right]}$$

Asymptotic normality:

$$\frac{\sqrt{n}\left(\hat{\tau}_{\gamma} - \theta_{\gamma}\right)}{\sqrt{\hat{V}_{\gamma}}} \xrightarrow{d} \mathcal{N}\left(0, 1\right)$$

Upper bound of the asymptotic bias:

$$\hat{B}_{\gamma,M} = \sup \left\{ \left| \operatorname{Bias} \left[\gamma_{\pm}, \tau_w; \alpha_0 \left(\cdot \right), \tau \left(\cdot \right), G \right] \right| : G \in \mathcal{G}_n, \alpha_{(0)} \left(\cdot \right) \in \left[0, 1 \right], \tau \left(\cdot \right) \in \mathcal{T}_M \right\} \right.$$

Bias-aware Confidence Intervals

Corollary: Valid Confidence Intervals

Under asymptotic normality and all necessary assumptions, for $\tau(\cdot) \in \mathcal{T}_M$, consider the CIs

$$\hat{\tau}_{\gamma} \pm l_{\alpha}, \qquad \qquad l_{\alpha} = \min \left\{ l : \mathbf{P} \left[\left| b + n^{-\frac{1}{2}} \hat{V}_{\gamma}^{\frac{1}{2}} \tilde{Z} \right| \leq l \right] \geq 1 - \alpha, \forall \, |b| \leq \hat{B}_{\gamma, M} \right\}$$

where

- \blacksquare \tilde{Z} is a standard Guassian random variable
- $\alpha \in (0,1)$ is the significant level
- \hat{V}_{γ} is an estimate of the sampling variance V_{γ}

then

$$\lim\inf_{n\to\infty} \mathbf{P}\left[\tau_w \in \hat{\tau}_\gamma \pm l_\alpha\right] \ge 1 - \alpha$$

Bias-aware Confidence Intervals

CLT (with bias considered) is

$$\frac{\sqrt{n}\left(\hat{\tau}_{\gamma} - \theta_{\gamma}\right)}{\hat{V}_{\gamma}^{1/2}} = \frac{\sqrt{n}\left(\hat{\tau}_{\gamma} - \tau_{w} - b_{\gamma}\right)}{\hat{V}_{\gamma}^{1/2}} \xrightarrow{d} \mathcal{N}\left(0, 1\right)$$

where $b_{\gamma} = \overline{\theta}_{\gamma} - \tau_w$, then let $\tilde{Z} \sim \mathcal{N}(0,1)$ we have

$$\begin{aligned} \mathbf{P} \left[\tau_{w} \in \hat{\tau}_{\gamma} \pm l_{\alpha} \right] = & \mathbf{P} \left[-l_{\alpha} - b_{\gamma} \leq \hat{\tau}_{\gamma} - \tau_{w} - b_{\gamma} \leq l_{\alpha} - b_{\gamma} \right] \\ = & \mathbf{P} \left[-\sqrt{n} \hat{V}_{\gamma}^{-1/2} \left(l_{\alpha} + b_{\gamma} \right) \leq \sqrt{n} \hat{V}_{\gamma}^{-1/2} \left(\hat{\tau}_{\gamma} - \tau_{w} - b_{\gamma} \right) \leq \sqrt{n} \hat{V}_{\gamma}^{-1/2} \left(l_{\alpha} - b_{\gamma} \right) \right] \\ = & \mathbb{E} \left(\mathbf{P} \left[-\sqrt{n} \hat{V}_{\gamma}^{-1/2} \left(l_{\alpha} + b_{\gamma} \right) \leq \tilde{Z} \leq \sqrt{n} \hat{V}_{\gamma}^{-1/2} \left(l_{\alpha} - b_{\gamma} \right) \right] \mid \hat{V}_{\gamma}, \hat{B}_{\gamma, M}, \hat{\tau}_{\gamma} \right) + o \left(1 \right) \\ = & \mathbb{E} \left[\mathbf{P} \left(-l_{\alpha} \leq n^{-1/2} \hat{V}_{\gamma}^{1/2} \tilde{Z} + b_{\gamma} \leq l_{\alpha} \right) \mid \hat{V}_{\gamma}, \hat{B}_{\gamma, M}, \hat{\tau}_{\gamma} \right] + o \left(1 \right) \\ = & 1 - \alpha + o \left(1 \right) \end{aligned}$$

Bias-aware Confidence Intervals

CLT (with bias considered) is

$$\frac{\sqrt{n}\left(\hat{\tau}_{\gamma} - \theta_{\gamma}\right)}{\hat{V}_{\gamma}^{1/2}} = \frac{\sqrt{n}\left(\hat{\tau}_{\gamma} - \tau_{w} - b_{\gamma}\right)}{\hat{V}_{\gamma}^{1/2}} \xrightarrow{d} \mathcal{N}\left(0, 1\right)$$

where $b_{\gamma}=\overline{ heta_{\gamma}- au_{w}}$, then let $ilde{Z}\sim\mathcal{N}\left(0,1
ight)$ we have

$$\begin{aligned} \mathbf{P} \left[\tau_{w} \in \hat{\tau}_{\gamma} \pm l_{\alpha} \right] = & \mathbf{P} \left[-l_{\alpha} - b_{\gamma} \leq \hat{\tau}_{\gamma} - \tau_{w} - b_{\gamma} \leq l_{\alpha} - b_{\gamma} \right] \\ = & \mathbf{P} \left[-\sqrt{n} \hat{V}_{\gamma}^{-1/2} \left(l_{\alpha} + b_{\gamma} \right) \leq \sqrt{n} \hat{V}_{\gamma}^{-1/2} \left(\hat{\tau}_{\gamma} - \tau_{w} - b_{\gamma} \right) \leq \sqrt{n} \hat{V}_{\gamma}^{-1/2} \left(l_{\alpha} - b_{\gamma} \right) \right] \\ = & \mathbb{E} \left(\mathbf{P} \left[-\sqrt{n} \hat{V}_{\gamma}^{-1/2} \left(l_{\alpha} + b_{\gamma} \right) \leq \tilde{Z} \leq \sqrt{n} \hat{V}_{\gamma}^{-1/2} \left(l_{\alpha} - b_{\gamma} \right) \right] \mid \hat{V}_{\gamma}, \hat{B}_{\gamma, M}, \hat{\tau}_{\gamma} \right) + o \left(1 \right) \\ = & \mathbb{E} \left[\mathbf{P} \left(-l_{\alpha} \leq n^{-1/2} \hat{V}_{\gamma}^{1/2} \tilde{Z} + b_{\gamma} \leq l_{\alpha} \right) \mid \hat{V}_{\gamma}, \hat{B}_{\gamma, M}, \hat{\tau}_{\gamma} \right] + o \left(1 \right) \\ = & 1 - \alpha + o \left(1 \right) \end{aligned}$$

Robustness to CATE Heterogeneity Misspecification

$$\hat{\tau}_{\gamma} \pm l_{\alpha}, l_{\alpha} = \min \left\{ l : \mathbf{P} \left[\left| b + n^{-\frac{1}{2}} \hat{V}_{\gamma}^{\frac{1}{2}} \tilde{Z} \right| \le l \right] \ge 1 - \alpha, \forall |b| \le \hat{B}_{\gamma, M} \right\}$$

where

$$\mathcal{T}_{M} = \left\{ \tau\left(\cdot\right) \mid \tau\left(u\right) = \bar{\tau} + \Delta\left(u\right), \bar{\tau} \in \mathbb{R}, \left|\Delta\left(u\right)\right| \leq M \right\}, \ M \in \left[0, 1\right]$$

Consider an extreme misspecification of CATE heterogeneity: M=0, are the CIs robust?

Robustness to CATE Heterogeneity Misspecification

$$\hat{\tau}_{\gamma} \pm l_{\alpha}, l_{\alpha} = \min \left\{ l : \mathbf{P} \left[\left| b + n^{-\frac{1}{2}} \hat{V}_{\gamma}^{\frac{1}{2}} \tilde{Z} \right| \le l \right] \ge 1 - \alpha, \forall |b| \le \hat{B}_{\gamma, M} \right\}$$

where

$$\mathcal{T}_{M} = \left\{ \tau\left(\cdot\right) \mid \tau\left(u\right) = \bar{\tau} + \Delta\left(u\right), \bar{\tau} \in \mathbb{R}, \left|\Delta\left(u\right)\right| \leq M \right\}, \ M \in \left[0, 1\right]$$

Corollary: Robustness to CATE Heterogeneity Misspecification

The CIs under the misspecification of ${\cal M}=0$ is still valid, but only for the convenience-weighted treatment effect:

$$\tau_{h,+} \coloneqq \int \frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]} \tau\left(u\right) dG\left(u\right)$$

Robustness to CATE Heterogeneity Misspecification

Corollary: Robustness to CATE Heterogeneity Misspecification

The CIs under the misspecification of M=0 is still valid, but only for:

$$\tau_{h,+} := \int \frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]} \tau\left(u\right) dG\left(u\right)$$

$$a \operatorname{Bias} = \theta_{\gamma} - \tau_{w} = \int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]} - \frac{h\left(u, \gamma_{-}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{-}\right)\right]} \right) \alpha_{(0)}\left(u\right) dG\left(u\right) + \underbrace{\int \left(\frac{h\left(u, \gamma_{+}\right)}{\mathbb{E}_{G}\left[h\left(U, \gamma_{+}\right)\right]} - \frac{w\left(u\right)}{\mathbb{E}_{G}\left[w\left(U\right)\right]} \right) \tau\left(u\right) dG\left(u\right)}_{\mathsf{CATE} \; \mathsf{heterogeneity \; bias}}$$

Design Estimators

The goal: Make the confidence intervals shorter

$$\hat{\tau}_{\gamma} \pm l_{\alpha}, \qquad l_{\alpha} = \min \left\{ l : \mathbf{P} \left[\left| b + n^{-\frac{1}{2}} \hat{V}_{\gamma}^{\frac{1}{2}} \tilde{Z} \right| \le l \right] \ge 1 - \alpha, \forall |b| \le \hat{B}_{\gamma, M} \right\}$$

by minimizing the worst-case MSE of

$$\hat{\tau} = \hat{\mu}_{\gamma,+} - \hat{\mu}_{\gamma,-} = \frac{\sum_{i} \gamma_{+} (Z_{i}) Y_{i}}{\sum_{i} \gamma_{+} (Z_{i})} - \frac{\sum_{i} \gamma_{-} (Z_{i}) Y_{i}}{\sum_{i} \gamma_{-} (Z_{i})}$$

Design Estimators: Quadratic Programming

Solve

$$\min_{\gamma_{\pm}(\cdot)} \frac{1}{n} \left(\int \gamma_{-}^{2}(z) d\bar{F}(z) + \int \gamma_{+}^{2}(z) d\bar{F}(z) \right) + (t_{1} + t_{2})^{2}$$

s.t.

$$\begin{aligned} |h\left(u,\gamma_{+}\right)-h\left(u,\gamma_{-}\right)| &\leq t_{1}, &\forall u \\ M\left|h\left(u,\gamma_{\diamond}\right)-\bar{w}\left(u\right)\right| &\leq t_{2}, &\forall u,\diamond \in \{\pm\} \end{aligned}$$

$$\int \gamma_{+}\left(z\right) \mathrm{d}\bar{F}\left(z\right) = \int \gamma_{-}\left(z\right) \mathrm{d}\bar{F}\left(z\right) = 1$$

$$\gamma_{-}\left(z\right) = 0, & z \geq c$$

$$\gamma_{+}\left(z\right) = 0, & z < c$$

$$|\gamma_{\diamond}\left(z\right)| &\leq Cn^{\beta}, &\forall z,\diamond \in \{\pm\} \end{aligned}$$

Solve

$$\min_{\gamma_{\pm}(\cdot)} \frac{1}{n} \left(\int \gamma_{-}^{2}(z) d\bar{F}(z) + \int \gamma_{+}^{2}(z) d\bar{F}(z) \right) + (t_{1} + t_{2})^{2}$$

s.t.

$$\begin{aligned} |h\left(u,\gamma_{+}\right)-h\left(u,\gamma_{-}\right)| &\leq t_{1}, &\forall u \\ M\left|h\left(u,\gamma_{\diamond}\right)-\bar{w}\left(u\right)\right| &\leq t_{2}, &\forall u,\diamond \in \{\pm\} \end{aligned}$$

$$\int \gamma_{+}\left(z\right) \mathrm{d}\bar{F}\left(z\right) &= \int \gamma_{-}\left(z\right) \mathrm{d}\bar{F}\left(z\right) = 1$$

$$\gamma_{-}\left(z\right) &= 0, & z \geq c$$

$$\gamma_{+}\left(z\right) &= 0, & z < c$$

$$|\gamma_{\diamond}\left(z\right)| &\leq Cn^{\beta}, &\forall z,\diamond \in \{\pm\} \end{aligned}$$

Solve

$$\min_{\gamma_{\pm}(\cdot)} \frac{1}{n} \left(\int \gamma_{-}^{2}(z) d\bar{F}(z) + \int \gamma_{+}^{2}(z) d\bar{F}(z) \right) + (t_{1} + t_{2})^{2}$$

s.t.

$$\begin{aligned} |h\left(u,\gamma_{+}\right)-h\left(u,\gamma_{-}\right)| &\leq t_{1}, &\forall u \\ M\left|h\left(u,\gamma_{\diamond}\right)-\bar{w}\left(u\right)\right| &\leq t_{2}, &\forall u,\diamond \in \{\pm\} \end{aligned}$$

$$\int \gamma_{+}\left(z\right) \mathrm{d}\bar{F}\left(z\right) &= \int \gamma_{-}\left(z\right) \mathrm{d}\bar{F}\left(z\right) = 1$$

$$\gamma_{-}\left(z\right) &= 0, & z \geq c$$

$$\gamma_{+}\left(z\right) &= 0, & z < c$$

$$|\gamma_{\diamond}\left(z\right)| &\leq Cn^{\beta}, &\forall z,\diamond \in \{\pm\} \end{aligned}$$

confounding bias

CATE-hetrogeneity bias

Sai Zhang Eckles et al., 2020 ______4

Solve

$$\min_{\gamma_{\pm}(\cdot)} \frac{1}{n} \left(\int \gamma_{-}^{2}(z) d\bar{F}(z) + \int \gamma_{+}^{2}(z) d\bar{F}(z) \right) + (t_{1} + t_{2})^{2}$$

s.t.

$$|h(u, \gamma_{+}) - h(u, \gamma_{-})| \le t_{1}, \qquad \forall u$$

$$M |h(u, \gamma_{\diamond}) - \bar{w}(u)| \le t_{2}, \qquad \forall u, \diamond \in \{\pm\}$$

$$\int \gamma_{+}(z) \, d\bar{F}(z) = \int \gamma_{-}(z) \, d\bar{F}(z) = 1$$

$$\gamma_{-}(z) = 0, \qquad z \ge c$$

$$\gamma_{+}(z) = 0, \qquad z < c$$

$$|\gamma_{\diamond}(z)| \le Cn^{\beta}, \quad \forall z, \diamond \in \{\pm\}$$

confounding bias CATE-hetrogeneity bias

normalization constraint

Sharp RD

Solve

$$\min_{\gamma_{\pm}(\cdot)} \frac{1}{n} \left(\int \gamma_{-}^{2}(z) d\bar{F}(z) + \int \gamma_{+}^{2}(z) d\bar{F}(z) \right) + (t_{1} + t_{2})^{2}$$

s.t.

$$\begin{split} |h\left(u,\gamma_{+}\right)-h\left(u,\gamma_{-}\right)| &\leq t_{1}, & \forall u & \text{confounding bias} \\ M\left|h\left(u,\gamma_{\diamond}\right)-\bar{w}\left(u\right)\right| &\leq t_{2}, & \forall u,\diamond \in \{\pm\} & \text{CATE-hetrogeneity bias} \\ \int \gamma_{+}\left(z\right) \mathrm{d}\bar{F}\left(z\right) &= \int \gamma_{-}\left(z\right) \mathrm{d}\bar{F}\left(z\right) &= 1 & \text{normalization constraint} \\ \gamma_{-}\left(z\right) &= 0, & z \geq c & \text{Sharp RD} \\ \gamma_{+}\left(z\right) &= 0, & z < c \\ |\gamma_{\diamond}\left(z\right)| &\leq Cn^{\beta}, & \forall z,\diamond \in \{\pm\} & \text{no observation is given excessive influence} \end{split}$$

Solve

$$\min_{\gamma_{\pm}(\cdot)} \frac{1}{n} \left(\int \gamma_{-}^{2}(z) d\bar{F}(z) + \int \gamma_{+}^{2}(z) d\bar{F}(z) \right) + (t_{1} + t_{2})^{2}$$

s.t.

$$M\left|h\left(u,\gamma_{\diamond}\right)-\bar{w}\left(u\right)\right|\leq t_{2}, \qquad \forall u,\diamond\in\left\{\pm\right\} \qquad \text{CATE-hetrogeneity bias}$$

$$\int\gamma_{+}\left(z\right)\mathrm{d}\bar{F}\left(z\right)=\int\gamma_{-}\left(z\right)\mathrm{d}\bar{F}\left(z\right)=1 \qquad \qquad \text{normalization constraint}$$

Solve

$$\min_{\gamma_{\pm}\left(\cdot
ight)}rac{1}{n}\left(\int\gamma_{-}^{2}\left(z
ight)\mathrm{d}ar{F}\left(z
ight)+\int\gamma_{+}^{2}\left(z
ight)\mathrm{d}ar{F}\left(z
ight)
ight)+\left(t_{1}+t_{2}
ight)^{2}$$

s.t.

$$M\left|h\left(u,\gamma_{\diamond}\right)-\bar{w}\left(u\right)\right|\leq t_{2}, \qquad \forall u,\diamond\in\left\{\pm\right\} \qquad \text{CATE-hetrogeneity bias}$$

$$\int\gamma_{+}\left(z\right)\mathrm{d}\bar{F}\left(z\right)=\int\gamma_{-}\left(z\right)\mathrm{d}\bar{F}\left(z\right)=1 \qquad \qquad \text{normalization constraint}$$

$$\bar{F}(\cdot): \qquad F_G(t) = \int \mathbf{1} \left(\{ z \le t \} \right) \int p(z \mid u) \, \mathrm{d}G(u) \, \mathrm{d}\lambda(z)$$

$$\bar{w}(\cdot): \qquad \tau_w = \int \frac{w(u)}{\mathbb{E}_G[w(U)]} \tau(u) \, \mathrm{d}G(u)$$

$$\bar{F}(\cdot): \qquad F_G(t) = \int \mathbf{1} \left(\{ z \le t \} \right) \int p(z \mid u) \, \mathrm{d}G(u) \, \mathrm{d}\lambda(z)$$

$$\bar{w}(\cdot): \qquad \tau_w = \int \frac{w(u)}{\mathbb{E}_G[w(U)]} \tau(u) \, \mathrm{d}G(u)$$

 $lackbox{$\bar{F}$}(\cdot)$ assigns non-trivial mass to $[c,\infty)$ and $\bar{w}(\cdot)$ is bounded: $\exists k>1$ s.t.

$$\mathbb{P}\left[\frac{1}{k} < \bar{F}\left([c, \infty)\right) < 1 - \frac{1}{k}, \sup_{u} |\bar{w}\left(u\right)| < k\right] \xrightarrow{n \to \infty} 1$$

$$\exists \delta > 0 \text{ s.t. } \mathbb{P}\left[\int \gamma_{\diamond}^{(n)}\left(z\right) \mathrm{d}F\left(z\right) > \delta\right] \xrightarrow{n \to \infty} 1$$

Applications 0000000

Design Estimators: Quadratic Programming

$$\frac{1}{k} < \bar{F}\left(\left[c,\infty\right)\right) < 1 - \frac{1}{k}, \sup_{u} |\bar{w}\left(u\right)| < k \qquad \sup_{z} \left|\gamma_{\diamond}^{(n)}\left(z\right)\right| < Cn^{\beta} \mathbb{E}\left[\gamma_{\diamond}^{(n)}\left(Z_{i}\right)\right] \\ \int \gamma_{\diamond}^{(n)}\left(z\right) dF\left(z\right) > \delta \qquad \sup_{u} \left|h\left(u,\gamma_{\diamond}^{(n)}\right)\right| < C' \mathbb{E}\left[\gamma_{\diamond}^{(n)}\left(Z_{i}\right)\right]$$

$$\frac{1}{k} < \bar{F}\left(\left[c,\infty\right)\right) < 1 - \frac{1}{k}, \sup_{u}\left|\bar{w}\left(u\right)\right| < k \qquad \sup_{z}\left|\gamma_{\diamond}^{(n)}\left(z\right)\right| < Cn^{\beta}\mathbb{E}\left[\gamma_{\diamond}^{(n)}\left(Z_{i}\right)\right] \\ \int \gamma_{\diamond}^{(n)}\left(z\right) \mathrm{d}F\left(z\right) > \delta \qquad \sup_{u}\left|h\left(u,\gamma_{\diamond}^{(n)}\right)\right| < C'\mathbb{E}\left[\gamma_{\diamond}^{(n)}\left(Z_{i}\right)\right] \Rightarrow$$

Theorem: Asymptotic Normality of $\hat{\tau}$

Suppose the sequence of weighting kernels $\gamma_{\perp}^{(n)}$ and $\gamma_{\perp}^{(n)}$ is deterministic, and $\exists \beta \in (0, \frac{1}{2}), C, C' > 0$ s.t. $\forall n \text{ large enough: } \sup_{z} \left| \gamma_{\diamond}^{(n)}(z) \right| < C n^{\beta} \mathbb{E} \left[\gamma_{\diamond}^{(n)}(Z_{i}) \right], \sup_{u} \left| h \left(u, \gamma_{\diamond}^{(n)} \right) \right| < C' \mathbb{E} \left[\gamma_{\diamond}^{(n)}(Z_{i}) \right] \text{ where } 1 \leq C' \mathbb{E} \left[\gamma_{\diamond}^{(n)}(Z_{i}) \right]$ $\diamond = \{+, -\}$ Then $\frac{\sqrt{n}\left(\hat{\tau}_{\gamma}-\theta_{\gamma}\right)}{\sqrt{V_{\gamma}}} \xrightarrow{d} \mathcal{N}\left(0,1\right)$

Design Estimators: Procedure

■ Input:

- samples $\{Z_i,Y_i,W_i\}$ and cutoff c
- sensitivity model \mathcal{T}_M , estimand of interest au_w
- nominal significance level lpha

Design Estimators: Procedure

■ Input:

- samples $\{Z_i,Y_i,W_i\}$ and cutoff c
- sensitivity model \mathcal{T}_M , estimand of interest au_w
- nominal significance level lpha

■ Procedure:

- S1 guess/estimate $\bar{F}\left(\cdot\right)$ and $\bar{w}\left(\cdot\right)$ via nonparametric maximum likelihood
- S2 solve the minimax program, get γ_+, γ_-
- S3 form the point estimate $\hat{\tau}_{\gamma}$ and its variance \hat{V}_{γ}
- S4 estimate the worst-case bias

$$\hat{B}_{\gamma} = \sup \left\{ \left| \operatorname{Bias} \left[\gamma_{\pm}, \tau_{w}; \alpha_{0}\left(\cdot \right), \tau\left(\cdot \right), G \right] \right| : G \in \mathcal{G}_{n}, \alpha_{(0)}\left(\cdot \right) \in \left[0, 1 \right], \tau\left(\cdot \right) \in \mathcal{T}_{M} \right\} \right.$$

S5 form the bias-aware CIs at level α as $\hat{\tau}_{\gamma} \pm l_{\alpha}, l_{\alpha} = \min \left\{ l : \mathbf{P} \left[\left| b + n^{-\frac{1}{2}} \hat{V}_{\gamma}^{\frac{1}{2}} \tilde{Z} \right| \leq l \right] \geq 1 - \alpha, \forall \, |b| \leq \hat{B}_{\gamma, M} \right\}$

Most popular: local linear regression (Hahn et al., 2001; G. W. Imbens and Lemieux, 2008)

$$\hat{\tau}_{c} = \arg\min_{\tau} \left\{ \sum_{i=1}^{n} \underbrace{K}_{\text{weighting}} \left(\frac{|Z_{i} - c|}{\underbrace{h_{n}}_{\text{bandwidth}}} \right) \left(Y_{i} - a - \tau W_{i} - \beta_{-} \left(Z_{i} - c \right)_{-} - \beta_{+} \left(Z_{i} - c \right)_{+} \right)^{2} \right\}$$

Most popular: local linear regression (Hahn et al., 2001; G. W. Imbens and Lemieux, 2008)

$$\hat{\tau}_{c} = \arg\min_{\tau} \left\{ \sum_{i=1}^{n} \underbrace{K}_{\text{weighting}} \left(\frac{|Z_{i} - c|}{\underbrace{h_{n}}_{\text{bandwidth}}} \right) \left(Y_{i} - a - \tau W_{i} - \beta_{-} \left(Z_{i} - c \right)_{-} - \beta_{+} \left(Z_{i} - c \right)_{+} \right)^{2} \right\}$$

Most popular: local linear regression (Hahn et al., 2001; G. W. Imbens and Lemieux, 2008)

$$\hat{\tau}_{c} = \arg\min_{\tau} \left\{ \sum_{i=1}^{n} \underbrace{K}_{\text{weighting}} \left(\frac{|Z_{i} - c|}{\underbrace{h_{n}}_{\text{bandwidth}}} \right) \left(Y_{i} - a - \tau W_{i} - \beta_{-} \left(Z_{i} - c \right)_{-} - \beta_{+} \left(Z_{i} - c \right)_{+} \right)^{2} \right\}$$

- $\mu_{(w)}(z) = \mathbb{E}\left[Y(w) \mid Z=z\right]$ is smooth
- \blacksquare h_n decays at an appropriate rate

Most popular: local linear regression (Hahn et al., 2001; G. W. Imbens and Lemieux, 2008)

$$\hat{\tau}_{c} = \arg\min_{\tau} \left\{ \sum_{i=1}^{n} \underbrace{K}_{\text{weighting}} \left(\frac{|Z_{i} - c|}{\underbrace{h_{n}}_{\text{bandwidth}}} \right) \left(Y_{i} - a - \tau W_{i} - \beta_{-} \left(Z_{i} - c \right)_{-} - \beta_{+} \left(Z_{i} - c \right)_{+} \right)^{2} \right\}$$

- $\mu_{(w)}(z) = \mathbb{E}[Y(w) \mid Z = z]$ is smooth
- \blacksquare h_n decays at an appropriate rate

Robust Cls (Armstrong and Kolesár, 2020; Calonico et al., 2014; Kolesár and Rothe, 2018);

Eckles et al., 2020

Most popular: local linear regression (Hahn et al., 2001; G. W. Imbens and Lemieux, 2008)

$$\hat{\tau}_{c} = \arg\min_{\tau} \left\{ \sum_{i=1}^{n} \underbrace{K}_{\text{weighting}} \left(\frac{|Z_{i} - c|}{\underbrace{h_{n}}_{\text{bandwidth}}} \right) \left(Y_{i} - a - \tau W_{i} - \beta_{-} \left(Z_{i} - c \right)_{-} - \beta_{+} \left(Z_{i} - c \right)_{+} \right)^{2} \right\}$$

- $\mu_{(w)}(z) = \mathbb{E}\left[Y(w) \mid Z=z\right]$ is smooth
- \blacksquare h_n decays at an appropriate rate

Robust Cls (Armstrong and Kolesár, 2020; Calonico et al., 2014; Kolesár and Rothe, 2018); Data-adaptive bandwidths (G. Imbens and Kalyanaraman, 2012)

Literature: Continuity-Based RD extended

$$\mu_{(w)}(z) = \mathbb{E}\left[Y(w) \mid Z = z\right]$$

If further assume convexity of $\mu_{(w)}(z)$, e.g.:

$$\left|\mu_{(w)}''(z)\right| \le B, \forall z \in \mathbb{R}$$

Eckles et al., 2020

Literature: Continuity-Based RD extended

$$\mu_{(w)}(z) = \mathbb{E}\left[Y(w) \mid Z = z\right]$$

If further assume convexity of $\mu_{(w)}(z)$, e.g.:

$$\left|\mu_{(w)}^{"}(z)\right| \le B, \forall z \in \mathbb{R}$$

Optimization-based RD: the treatment effect τ_c can be estimated (minimax linear estimation) via numerical convex optimization (Armstrong and Kolesár, 2018; G. Imbens and Wager, 2019)

$$\mu_{(w)}(z) = \mathbb{E}\left[Y_{i}(w) \mid Z_{i} = z\right]$$

$$= \frac{\int \mathbb{E}\left[Y_{i}(w) \mid U_{i} = u, Z_{i} = z\right] p\left(z \mid u\right) dG\left(u\right)}{f_{G}(z)} = \frac{\int \alpha_{(w)}\left(u\right) p\left(z \mid u\right) dG\left(u\right)}{\int p\left(z \mid u\right) dG\left(u\right)}$$

$$\mu_{(w)}(z) = \mathbb{E}\left[Y_{i}(w) \mid Z_{i} = z\right]$$

$$= \frac{\int \mathbb{E}\left[Y_{i}(w) \mid U_{i} = u, Z_{i} = z\right] p\left(z \mid u\right) dG\left(u\right)}{f_{G}\left(z\right)} = \frac{\int \left[\alpha_{(w)}(u)\right] p\left(z \mid u\right) dG\left(u\right)}{\int p\left(z \mid u\right) dG\left(u\right)}$$

$$\mu_{(w)}(z) = \mathbb{E}\left[Y_{i}(w) \mid Z_{i} = z\right]$$

$$= \frac{\int \mathbb{E}\left[Y_{i}(w) \mid U_{i} = u, Z_{i} = z\right] p\left(z \mid u\right) dG\left(u\right)}{f_{G}(z)} = \frac{\int \left[\alpha_{(w)}(u)\right] p\left(z \mid u\right) dG\left(u\right)}{\int p\left(z \mid u\right) dG\left(u\right)}$$

Convexity assumption on $\mu_{(w)}(z)$:

$$\left|\mu_{(w)}^{\prime\prime}(z)\right| \le B, \forall z \in \mathbb{R}$$

$$\mu_{(w)}(z) = \mathbb{E}\left[Y_{i}\left(w\right) \mid Z_{i} = z\right]$$

$$= \frac{\int \mathbb{E}\left[Y_{i}\left(w\right) \mid U_{i} = u, Z_{i} = z\right] p\left(z \mid u\right) dG\left(u\right)}{f_{G}\left(z\right)} = \frac{\int \left[\alpha_{(w)}\left(u\right)\right] p\left(z \mid u\right) dG\left(u\right)}{\int p\left(z \mid u\right) dG\left(u\right)}$$

Convexity assumption on $\mu_{(w)}(z)$:

$$\left|\mu_{(w)}''(z)\right| \le B, \forall z \in \mathbb{R}$$

Then the worst-case possible curvature is:

$$\operatorname{Curv}\left(z,\rho,p\right)=\sup\left\{ \left|\frac{\mathrm{d}^{2}\mu_{\left(w\right)}\left(z\right)}{\mathrm{d}z^{2}}\right|:f_{G}\left(z\right)=\int p\left(z\mid u\right)\mathrm{d}G\left(u\right)\geq\rho>0,\alpha_{\left(w\right)}\left(\cdot\right)\in\left[0,1\right]\right\}$$

$$\mu_{(w)}(z) = \mathbb{E}\left[Y_{i}\left(w\right) \mid Z_{i} = z\right]$$

$$= \frac{\int \mathbb{E}\left[Y_{i}\left(w\right) \mid U_{i} = u, Z_{i} = z\right] p\left(z \mid u\right) dG\left(u\right)}{f_{G}\left(z\right)} = \frac{\int \boxed{\alpha_{(w)}\left(u\right)} p\left(z \mid u\right) dG\left(u\right)}{\int p\left(z \mid u\right) dG\left(u\right)}$$

Then the worst-case possible curvature is:

$$\operatorname{Curv}\left(z,\rho,p\right) = \sup \left\{ \left| \frac{\mathrm{d}^{2}\mu_{\left(w\right)}\left(z\right)}{\mathrm{d}z^{2}} \right| : f_{G}\left(z\right) = \int p\left(z\mid u\right) \mathrm{d}G\left(u\right) \ge \rho > 0, \alpha_{\left(w\right)}\left(\cdot\right) \in \left[0,1\right] \right\}$$

Armstrong and Kolesár (2020): fit 4th-degree polynomials to $\mu_{(0)}(z)$ and $\mu_{(1)}(z)$, and take the largest estimated curvature obtained anywhere

Literature: Randomization Inference RD

Posit a non-trivial interval \mathcal{I} with $c \in \mathcal{I}$ s.t.

$$\{Y_i(0), Y_i(1)\} \perp Z_i \mid \{Z_i \in \mathcal{I}\}$$

then focus on this interval, perform classical randomized study inference

Literature: Randomization Inference RD

Posit a non-trivial interval \mathcal{I} with $c \in \mathcal{I}$ s.t.

$$\{Y_i(0), Y_i(1)\} \perp Z_i \mid \{Z_i \in \mathcal{I}\}$$

then focus on this interval, perform classical randomized study inference

■ Design-based approach (Rubin, 2008)

Literature: Randomization Inference RD

Posit a non-trivial interval \mathcal{I} with $c \in \mathcal{I}$ s.t.

$$\{Y_i(0), Y_i(1)\} \perp Z_i \mid \{Z_i \in \mathcal{I}\}$$

then focus on this interval, perform classical randomized study inference

- Design-based approach (Rubin, 2008)
- Strong assumption
 No data-driven way of choosing \mathcal{I} If the interval \mathcal{I} is known a-priori, the problem collapses to a RCT

Measurement Error Induced RD

Rokkanen (2015) considers a similar approach, assuming:

Sai Zhang

Measurement Error Induced RD

Rokkanen (2015) considers a similar approach, assuming:

- noisy running variables (A2) and exogeneity of the noise (A3)
- **NOT** assuming prior knowledge of the noise distribution $p(\cdot \mid u)$

Eckles et al., 2020

Measurement Frror Induced RD

Rokkanen (2015) considers a similar approach, assuming:

- noisy running variables (A2) and exogeneity of the noise (A3)
- **NOT** assuming prior knowledge of the noise distribution $p(\cdot \mid u)$
- \blacksquare A stronger assumption: observing at least 3 noisy measurements of the latent variable U_i , $\{Z_i, Z_i', Z_i''\}$

Measurement Error Induced RD

Rokkanen (2015) considers a similar approach, assuming:

- noisy running variables (A2) and exogeneity of the noise (A3)
- \blacksquare NOT assuming prior knowledge of the noise distribution $p(\cdot \mid u)$
- A stronger assumption: observing at least 3 noisy measurements of the latent variable U_i , $\{Z_i, Z_i', Z_i''\}$

Measurement Frror Induced RD

Rokkanen (2015) considers a similar approach, assuming:

- noisy running variables (A2) and exogeneity of the noise (A3)
- **NOT** assuming prior knowledge of the noise distribution $p(\cdot \mid u)$
- \blacksquare A stronger assumption: observing at least 3 noisy measurements of the latent variable U_i , $\{Z_i, Z'_i, Z''_i\}$
 - (U_i, Z_i, Z'_i, Z''_i) is joint normal
 - $|-\alpha_{(w)}(u)=\mathbb{E}\left[Y_i(w)\mid U_i=u
 ight]$ is linear w.r.t. u

Eckles et al., 2020

RD with Ordinal Running Variables

Similarly, ordinal Z_i (bond rating, custody security score, etc.) can be seen as a noisy measurement of a latent variable U_i (Li et al., 2021) Li et al. (2021) assume

$$U_i = \mathbf{X}_i \beta + \epsilon_i$$

then use inverse-propensity weighting with estimated propensities $e(u) = \mathbb{P}\left[Z_i \geq c \mid U_i = u\right]$ for inference.

Eckles et al., 2020

RD with Ordinal Running Variables

Similarly, ordinal Z_i (bond rating, custody security score, etc.) can be seen as a noisy measurement of a latent variable U_i (Li et al., 2021) Li et al. (2021) assume

$$U_i = \mathbf{X}_i \beta + \epsilon_i$$

then use inverse-propensity weighting with estimated propensities $e(u) = \mathbb{P}\left[Z_i \geq c \mid U_i = u\right]$ for inference.

Assuming: U_i can be well predicted by observable \mathbf{X}_i

Measurement Errors

- The running variable is unobserved, only a noisy measurement is observed Bartalotti et al. (2021), Davezies and Le Barbanchon (2017), Dong and Kolesár (2021), and Pei and Shen (2017)
- Measurement error in causal inference beyond RD Jiang and Ding (2020), Kuroki and Pearl (2014), and Pearl (2012)

Eckles et al., 2020

A Comparison

RD designs **Assumptions**

a known distribution of the measurement error $p(\cdot \mid u)$ multiple joint-normal noisy measurements (U_i, Z_i, Z_i', Z_i'') linear $\alpha_{(w)}(u) = \mathbb{E}\left[Y_i(w) \mid U_i = u\right]$

RD with ordinal Z_i

$$\begin{split} \mu_{(w)} &= \mathbb{E}\left[Y(w) \mid Z=z\right] \text{ is smooth} \\ &\text{convexity of } \mu_{(w)}(z) \colon \left|\mu_{(w)}''(z)\right| \leq B, \forall z \in \mathbb{R} \\ &\text{an "RCT" interval } \mathcal{I} \colon \left\{Y_i\left(0\right), Y_i\left(1\right)\right\} \perp Z_i \mid \left\{Z_i \in \mathcal{I}\right\} \\ &U_i \text{ can be observed, and well predicted by } \mathbf{X}_i \end{split}$$

A Comparison

RD designs **Assumptions**

Noise-induced RD Noise-induced RD (Rokkanen, 2015) a known distribution of the measurement error $p(\cdot \mid u)$ multiple joint-normal noisy measurements (U_i, Z_i, Z'_i, Z''_i) linear $\alpha_{(w)}(u) = \mathbb{E}\left[Y_i(w) \mid U_i = u\right]$

Continuity-based RD OPtimization-based RD Randomization inference RD

RD with ordinal Z_i

 $\mu_{(w)} = \mathbb{E}\left[Y(w) \mid Z=z\right]$ is smooth convexity of $\mu_{(w)}(z)$: $\left|\mu_{(w)}''(z)\right| \leq B, \forall z \in \mathbb{R}$ an "RCT" interval \mathcal{I} : $\{Y_i(0), Y_i(1)\} \perp Z_i \mid \{Z_i \in \mathcal{I}\}$ U_i can be observed, and well predicted by \mathbf{X}_i

References I

- Armstrong, T. B., & Kolesár, M. (2018). Optimal inference in a class of regression models. Econometrica,
- Armstrong, T. B., & Kolesár, M. (2020). Simple and honest confidence intervals in nonparametric regression.
- Bartalotti, O., Brummet, Q., & Dieterle, S. (2021). A correction for regression discontinuity designs with group-specific mismeasurement of the running variable. Journal of Business & Economic Statistics,
- Calonico, S., Cattaneo, M. D., & Titiunik, R. (2014). Robust nonparametric confidence intervals for regression-discontinuity designs. Econometrica, 82(6), 2295–2326.
- Davezies, L., & Le Barbanchon, T. (2017). Regression discontinuity design with continuous measurement error in the running variable. Journal of econometrics, 200(2), 260–281
- Dong, Y., & Kolesár, M. (2021). When can we ignore measurement error in the running variable? arXiv preprint

References II

- Eckles, D., Ignatiadis, N., Wager, S., & Wu, H. (2020). Noise-induced randomization in regression discontinuity designs, arXiv preprint arXiv:2004.09458.
- Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and estimation of treatment effects with a regression-discontinuity design. Econometrica, 69(1), 201–209.
- Imbens, G. W., & Lemieux, T. (2008). Regression discontinuity designs: A guide to practice. Journal of
- Imbens, G., & Kalyanaraman, K. (2012). Optimal bandwidth choice for the regression discontinuity estimator.
- Imbens, G., & Wager, S. (2019). Optimized regression discontinuity designs. Review of Economics and
- Jiang, Z., & Ding, P. (2020). Measurement errors in the binary instrumental variable model. Biometrika, 107(1),
- Kolesár, M., & Rothe, C. (2018). Inference in regression discontinuity designs with a discrete running variable.

References III

- Kuroki, M., & Pearl, J. (2014). Measurement bias and effect restoration in causal inference. Biometrika, 101(2),
- Lee, D. S. (2008). Randomized experiments from non-random selection in us house elections. Journal of
- Li. F., Mercatanti, A., Mäkinen, T., & Silvestrini, A. (2021), A regression discontinuity design for ordinal running variables: Evaluating central bank purchases of corporate bonds. The Annals of Applied
- Massart, P. (1990). The tight constant in the dvoretzky-kiefer-wolfowitz inequality. The annals of Probability.
- Pearl, J. (2012). On measurement bias in causal inference. arXiv preprint arXiv:1203.3504.
- Pei, Z., & Shen, Y. (2017). The devil is in the tails: Regression discontinuity design with measurement error in the assignment variable. In Regression discontinuity designs. Emerald Publishing Limited.
- Rokkanen, M. A. (2015). Exam schools, ability, and the effects of affirmative action: Latent factor extrapolation in the regression discontinuity design.

References

References IV

Rubin, D. B. (2008). For objective causal inference, design trumps analysis. The annals of applied statistics, 2(3), 808–840

Thank you!