1. 证明:集合函数 $f:2^V\to R$ 是一个子模函数,当且仅当对于所有的 $S\subseteq T\subseteq V,\ C\subseteq V\setminus T,$

$$f(S \cup C) - f(S) \ge f(T \cup C) - f(T).$$

必要性

考虑 $S \cup T$ 和 T , $c \subset V \setminus T$ $f(S \cup C \cup T) + f((S \cup C) \cap T) \leq f(S \cup C) + f(T)$ 又 $f(S \cup C \cup T) = f(T \cup C)$ $f((S \cup C) \cap T) = f(S)$ 有 $f(T \cup C) + f(S) \leq f(S \cup C) + f(T)$ $f(S \cup C) - f(S) \leq f(T \cup C) - f(T)$

充分性

取 C 集合为单元素集合 $v \in V \setminus T$ 给定任意两个集合 S 和 T 令 $T \setminus S = \{v_1, v_2, ..., v_k\}$ $T_j = \{v_1, v_2, ..., v_j\}$ $A_j = (S \cap T) \cup T_j$ $B_j = S \cup T_j$ 易知 $f(A_j \cup \{v_{j+1}\}) - f(A_j) \ge f(B_j \cup \{v_{j+1}\}) - f(B_j)$ j = 0, 1, 2, ..., k-1相加 $f(A_{k-1} \cup \{v_k\}) - f(A_0) \ge f(B_{k-1} \cup \{v_k\}) - f(B_0)$ $f(T) - f(S \cap T) \ge f(S \cup T) - f(S)$ 有 $f(S \cap T) + f(S \cup T) \ge f(S) + f(T)$

- 3. 给定一个集合 V, 当 $A \subseteq V$ 时, f(A) 是一个子模函数。
- a. 证明: $\overline{f}(A) = f(A^c)$ 是一个子模函数。
- b. 证明: 当 $S \subset V$, $g(A) = f(A \cap S)$ 是一个子模函数。

йE.

a. 因为 f(A) 是子模函数, $A\subseteq V$ 所以 $S,T\subseteq V$ 有 $f(S)+f(T)\geq f(S\cap T)+f(S\cup T)$ 所以有 $f(S^c)+f(T^c)\geq f(S^c\cap T^c)+f(S^c\cup T^c)=f((S\cap T)^c)+f((S\cup T)^c)$ 所以 $\overline{f}(S)+\overline{f}(T)\geq \overline{f}(S\cup T)+\overline{f}(S\cap T)$ 证毕

b. $f(A \cap S) + f(B \cap S) \ge f(A \cap S \cap B \cap S) + f((A \cap S) \cup (B \cap S))$ 则 $f(A \cap S) + f(B \cap S) \ge f(A \cap B \cap S) + f((A \cup B) \cap S)$ 则 $g(A) + g(B) \ge g(A \cap B) + g(A \cup B)$ 证毕

5. $\Diamond w: \Omega \to R$, 以及任意 $A \subset \Omega$, 验证

$$F(A) = \begin{cases} \max_{a \in A} w_a, & A \neq \emptyset, \\ c, &$$
 否则.

是一个集合函数。如果 $c \leq \max_{a \in \Omega} w_a$,请证明集合函数 F 是一个子模函数。

证

不存在空集的情况下

对 $S \subset \Omega, T \subset \Omega$ 且 $S \neq \emptyset, T \neq \emptyset$

不妨设 $\max_{c \in S} w_c \leq \max_{c \in T} w_c$

$$F(s \cup T) = \max_{c \in S \cup T} w_c = \max\{\max_{c \in S} w_c, \max_{c \in T} w_c\} = \max_{c \in T} w_c$$

所以
$$F(S) + F(T) - F(s \cup T) - F(s \cap T)$$

$$= \max_{a \in S} w_a + \max_{b \in T} w_b - \max_{c \in T} w_c - \max_{d \in S \cap T} w_d$$

$$= \max_{a \in S} w_a - \max_{d \in S \cap T} w_d$$

≥ 0 证毕

存在空集的情况下

不妨设 $S \subset \Omega, T \subset \Omega$ 且 $S = \emptyset$

$$F(S) + F(T) - F(S \cup T) + F(S \cap T)$$

$$= c + F(T) - F(T) - c$$

= 0

综上有 $F(S) + F(T) \ge F(s \cup T) + F(s \cap T)$ 证毕

12. 假设全集 $U = \{1, 2, 3, 4, 5\}$ 和子集族

$$S = \{\{1,2\}, \{1,2,4\}, \{2,3\}, \{4,5\}, \{3\}, \{1,5\}\}.$$

当 k=2 时,运用登山算法求解最大覆盖问题,可能的解有哪些?

第一轮算法迭代结果为 $S_2 = \{1,2,4\}$.

第二轮迭代结果过程如下:

子集	$f\left(s^{\prime} ight)$	$f\left(s \cup \{s_i\}\right)$	$\Delta\left(s_{i} ight)$
s_1	3	3	0
s_3	3	4	1
s_4	3	4	1
s_5	3	4	1
s_6	3	4	1

 S_3, S_4, S_5, S_6 边际贡献最大。

k=2,可能的解有 $\{s_2, s_3\}, \{s_2, s_4\}, \{s_2, s_5\}, \{s_2, s_6\}.$