PFLOCK Report

Andres Calderon

University of California, Riverside

November 1, 2019

Alternative 1

- ► For each partition:
 - ► Group by Trajectory ID (tid).
 - Find Trajectories ID (*tids*) of the neighbors of *tid* in disks through timestamps (ICPE approach).
 - Find maximal frequent patterns from tids with $minsup = \delta$.

Alternative 1

Demo 1

Flock	Items		
o a	1 2 3		
b	45		
o c	6 7 8		

Partition	Trajectory ID	Neigbours					Pattern
1	6	$\{7,8\}_{t_0}$	$\{7,8\}_{t_1}$	$\{7,8\}_{t_2}$	$\{7,8\}_{t_3}$	$\{7,8\}_{t_4}$	$[7\ 8:\ 5]$
	7	$\{8\}_{t_0}$	$\{8\}_{t_1}$	$\{8\}_{t_2}$	$\{8\}_{t_3}$	$\{8\}_{t_4}$	[8: 5]
	8	$\{\}_{t_0}$					
4	1	$\{2,3\}_{t_0}$	$\{2,3\}_{t_1}$	$\{2,3\}_{t_2}$	$\{2,3\}_{t_3}$	$\{2,3\}_{t_4}$	$[2\ 3:\ 5]$
	2	$\{3\}_{t_0}$	${\{3\}_{t_1}}$	${\{3\}}_{t_2}$	${\{3\}_{t_3}}$	${3}_{t_4}$	[3: 5]
	3	$\{\}_{t_0}$					
	4	$\{5\}_{t_0}$	$\{5\}_{t_1}$	$\{5\}_{t_2}$	$\{5\}_{t_3}$	$\{5\}_{t_4}$	[5: 5]
	5	$\{\}_{t_0}$					

Demo 2

Demo 2

Partition	Trajectory ID	Neigbours			Pattern
0	1	$\{5,6\}_{t_0}$	$\{2,3,4\}_{t_1}$	$\{2,3,4\}_{t_2}$	[5 6: 3]
		$\{3,4\}_{t_0}$	$\{3, 5, 6\}_{t_1}$	$\{5,6\}_{t_2}$	$[3\ 4:\ 3]$
		$\{2,3\}_{t_0}$			$[2\ 3:\ 3]$
	2	$\{3\}_{t_0}$	$\{3,4\}_{t_1}$	$\{3,4\}_{t_2}$	[3: 3]
	3	$\{4\}_{t_0}$	$\{4\}_{t_1}$	$\{4\}_{t_2}$	[4: 3]
			$\{5,6\}_{t_1}$		
	4	$\{\}_{t_0}$			
	5	$\{6\}_{t_0}$	$\{6\}_{t_1}$	$\{6\}_{t_2}$	[6: 3]
	6	$\{\}_{t_0}$			

What is next?

- ▶ Check if patterns are found per row or per partition.
- ▶ Deal with possible redundant among partitions.
- ► Test Alternative 1 with more data.
- Explore Alternative 2.

Alternative 2

Partition (1,1)	Partition (1, 0)	Concat
$a_{t_0-t_2}$	$a_{t_3-t_4}$	$a_{t_0-t_4}\sqrt{}}$
$c_{t_2-t_2}$	$c_{t_0-t_1}$	$c_{t_0-t_4}\sqrt{}$
	$c_{t_3-t_4}$	
$d_{t_3-t_4}$	$a_{t_0-t_1}$	×

Watch out area depends on speed parameter