1 SVD and PCA [35 Points]

Problem A [3 points]:

Solution A: The principal components of X are the vectors u_1, u_2, \ldots, u_n such that $XX^T = U\Lambda U^T$, where $U = [u_1 \ u_2 \ \cdots \ u_n]$ and Λ is a diagonal matrix with the eigenvalues of XX^T along the diagonal. Given the singular value decomposition (SVD) decomposition $X = U\Sigma V^T, XX^T = (U\Sigma V^T)(U\Sigma V^T)^T = U\Sigma V^T V\Sigma^T U^T$. Since V is orthogonal, $U\Sigma V^T V\Sigma^T U^T = U\Sigma \Sigma^T U^T = U\Sigma^2 U^T = U\Lambda U^T$. Thus, the columns of U are the principal components of U, where $U = UU \cup UU$ and thus the singular values of U are the square roots of the eigenvalues of U are the square roots of U and U are the square roots of U and U are the eigenvalues of U and U are the eigenvalues of U are the eigenvalues of U and U are the eigenvalues of U and U are the eigenvalues of U and U are the eigenvalues of U are the eigenvalues of U are the eigenvalues of U are the eigenva

Problem B [4 points]:

Solution B: Intuitive explanation: Since the feature covariance matrix Σ is expressed as $\Sigma = XX^T = U\Lambda U^T$, the diagonal terms of Σ , Σ_{dd} , correspond to the covariances of feature d with itself in the training data, which are non-negative for all features d. Therefore, all the diagonal terms of Λ , which are the eigenvalues of the PCA of X, are non-negative.

Mathematical explanation: Since the eigenvalues of the PCA of X are the squares of the singular values of the SVD of X, the eigenvalues of the PCA of X must be non-negative.

Problem C [5 points]:

Solution C: Using the definition of matrix multiplication, C = AB where $c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$ where m is the number of columns of A and the number of rows of B, $\text{Tr}(AB) = \sum_{i=1}^{N} (AB)_{ii} = \sum_{i=1}^{N} (\sum_{j=1}^{N} a_{ij} b_{ji}) = \sum_{i=1}^{N} (\sum_{j=1}^{N} b_{ji} a_{ij}) = \sum_{j=1}^{N} (\sum_{i=1}^{N} b_{ji} a_{ij}) = \sum_{i=1}^{N} (BA)_{ii} = \text{Tr}(BA).$

Generalizing to square matrices A, B, and C,

$$\operatorname{Tr}(ABC) = \sum_{i=1}^{N} (ABC)_{ii} = \sum_{i=1}^{N} \sum_{k=1}^{N} (AB)_{ik} C_{ki} = \sum_{i=1}^{N} (\sum_{k=1}^{N} \sum_{j=1}^{N} a_{ij} b_{jk}) c_{ki}) = \sum_{i=1}^{N} \sum_{k=1}^{N} \sum_{j=1}^{N} a_{ij} b_{jk} c_{ki}$$

$$= \sum_{i=1}^{N} \sum_{k=1}^{N} \sum_{j=1}^{N} a_{ij} (b_{jk} c_{ki}) = \sum_{i=1}^{N} \sum_{k=1}^{N} \sum_{j=1}^{N} (b_{jk} c_{ki}) a_{ij} = \sum_{j=1}^{N} (\sum_{k=1}^{N} \sum_{j=1}^{N} b_{jk} c_{ki}) a_{ij}) = \sum_{j=1}^{N} \sum_{i=1}^{N} (BC)_{ji} A_{ij}$$

$$= \sum_{j=1}^{N} (BCA)_{jj} = \operatorname{Tr}(BCA).$$

Furthermore,

$$\operatorname{Tr}(BCA) = \sum_{i=1}^{N} (BCA)_{ii} = \sum_{i=1}^{N} \sum_{k=1}^{N} (BC)_{ik} A_{ki} = \sum_{i=1}^{N} (\sum_{k=1}^{N} \sum_{j=1}^{N} b_{ij} c_{jk}) a_{ki} = \sum_{i=1}^{N} \sum_{k=1}^{N} \sum_{j=1}^{N} b_{ij} c_{jk} a_{ki}$$

$$= \sum_{i=1}^{N} \sum_{k=1}^{N} \sum_{j=1}^{N} b_{ij} (c_{jk} a_{ki}) = \sum_{i=1}^{N} \sum_{k=1}^{N} \sum_{j=1}^{N} (c_{jk} a_{ki}) b_{ij} = \sum_{j=1}^{N} (\sum_{k=1}^{N} \sum_{j=1}^{N} c_{jk} a_{ki}) b_{ij} = \sum_{j=1}^{N} \sum_{i=1}^{N} (CA)_{ji} B_{ij}$$

$$= \sum_{j=1}^{N} (CAB)_{jj} = \operatorname{Tr}(CAB).$$

Therefore, Tr(ABC) = Tr(BCA) = Tr(CAB) holds for any square matrices A, B, and C.

Problem D [3 points]:

Solution D: To store a truncated SVD with k singular values, the first k columns of U, the first k singular values in Σ are needed, and the first k rows of V^T are needed. Therefore, To store a truncated SVD with k singular values of an $N \times N$ matrix X, Nk + k + Nk = (2N + 1)k values are needed.

Problem E [3 points]: .

Solution E: Since X has rank N < D, the values along the diagonal in Σ are 0. Therefore, the only nonzero entries of Σ are Σ_{ii} where $i \leq N$. Using the definition of matrix multiplication (see problem 1C),

$$(U\Sigma)_{ij} = \sum_{k=1}^{D} U_{ik} \Sigma_{kj} = \sum_{k=1}^{N} U_{ik} \Sigma_{kj} + \sum_{k=N+1}^{D} U_{ik} \Sigma_{kj} = \sum_{k=1}^{N} U_{ik} \Sigma_{kj} + \sum_{k=N+1}^{D} U_{ik} (0) = \sum_{k=1}^{N} U_{ik} \Sigma_{kj} = (U'\Sigma')_{ij},$$

where U' is the $D \times N$ matrix consisting of the first N columns of U, and where Σ' is the $N \times N$ matrix consisting of the first N rows of Σ . Therefore, $U\Sigma = U'\Sigma'$.

Problem F [3 points]:

Solution F: Since U' is not square, $U'U'^T$ has different dimensions from U'^TU' , so $U'U'^T \neq U'^TU'$. Since a matrix A is orthogonal if $AA^T = A^TA = I$, because U' is not square, U' is not orthogonal.

Problem G [4 points]:

Solution G: The ij-th entry of U'^TU' is the dot product of vectors u_i and u_j , where u_i^T is the ith row of U'^T , and u_j is the jth column of U'. If i=j, since U' has orthonormal columns, then $u_i \cdot u_j = u_i \cdot u_i = 1$, so every ii-th entry of U'^TU' is 1. If $i \neq j$, $u_i \cdot u_j = 0$, so so every ij-th entry of U'^TU' where $i \neq j$ is 0. Since U'^TU' has dimensions $N \times N$, $U'^TU' = I_{N \times N}$.

Assume $U'U'^T=I_{D\times D}$. Thus, the ij-th entry of $U'U'^T$ must be 1 if i=j or 0 if $i\neq j$. This means that, similar to above, U' must have orthonormal rows. However, since U' is only guaranteed to have orthonormal columns, a contradiction is reached, so $U'U'^T=I_{D\times D}$ does not hold for any U' as given. Therefore, it is not true that $U'U'^T=I_{D\times D}$ for U' as given.

Caltech CS/CNS/EE 155
Set 5

Caltech CS/CNS/EE 155 Set 5	Philip Carr February 2019
Problem H [4 points]: Solution H:	

Problem I [4 points]:

Solution I: Using the SVD of X, $X = U\Sigma V^T$ and assuming that Σ is invertible,

$$\begin{split} X^{+'} &= (X^T X)^{-1} X^T = ((U \Sigma V^T)^T U \Sigma V^T)^{-1} (U \Sigma V^T)^T = (V \Sigma^T U^T U \Sigma V^T)^{-1} V \Sigma^T U^T \\ &= (V \Sigma^2 V^T)^{-1} V \Sigma^T U^T = V^{T^{-1}} \Sigma^{2^{-1}} V^{-1} V \Sigma^T U^T = V^{T^{-1}} \Sigma^{2^{-1}} \Sigma^T U^T = V^{T^{-1}} \Sigma^{2^{-1}} \Sigma^T U^T. \end{split}$$

Since V is orthogonal, $V^T = V^{-1}$, $V^{T^{-1}} = V^{-1^{-1}} = V$. Since Σ is diagonal and invertible, $\Sigma^T = \Sigma$ and $\Sigma^{2^{-1}} = \Sigma^{-1^2}$. Therefore,

$$\boldsymbol{V}^{T^{-1}}\boldsymbol{\Sigma}^{2^{-1}}\boldsymbol{\Sigma}^T\boldsymbol{U}^T = \boldsymbol{V}\boldsymbol{\Sigma}^{2^{-1}}\boldsymbol{\Sigma}\boldsymbol{U}^T = \boldsymbol{V}\boldsymbol{\Sigma}^{-1^2}\boldsymbol{\Sigma}\boldsymbol{U}^T = \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{\Sigma}^{-1}\boldsymbol{\Sigma}\boldsymbol{U}^T = \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^T.$$

Thus, assuming that Σ is invertible, $X^{+'} = (X^T X)^{-1} X^T$ is equivalent to $V \Sigma^{-1} U^T$.

Problem J [2 points]:

Solution J: The least squares psuedoinverse is more prone to numerical error than the pseudoinverse of Problem H, since the condition number of X^TX is greater than that of Σ , since Σ is diagonal.

2 Matrix Factorization [30 Points]

Problem A [5 points]:

Solution A:

$$2A. L = \frac{1}{2} \left(\|U\|_{F}^{2} + \|V\|_{F}^{2} \right) + \frac{1}{2} \sum_{i,j} \left(y_{i,j} - U_{i}^{T} v_{j} \right)^{2}$$

$$\partial_{v_{i}} L = \frac{1}{2} \partial_{v_{i}} \left(\|U\|_{F}^{2} + \|V\|_{F}^{2} \right) + \frac{1}{2} \partial_{v_{i}} \left(\sum_{i,j} \left(y_{i,j} - U_{i}^{T} v_{j} \right)^{2} \right)$$

$$= \frac{1}{2} \partial_{v_{i}} \left(\|U_{i}\|_{2}^{2} \right) + \frac{1}{2} \partial_{v_{i}} \left(\sum_{j} \left(y_{i,j} - U_{i}^{T} v_{j} \right)^{T} \right) = \lambda U_{i} - \sum_{j} \left(v_{j} \left(y_{i,j} - U_{i}^{T} v_{j} \right)^{T} \right).$$

$$\partial_{v_{j}} L = \frac{1}{2} \partial_{v_{j}} \left(\|U\|_{F}^{2} + \|V\|_{F}^{2} \right) + \frac{1}{2} \partial_{v_{j}} \left(\sum_{i,j} \left(y_{i,j} - U_{i}^{T} v_{j} \right)^{2} \right) = \frac{1}{2} \partial_{v_{j}} \left(\|v_{j}\|_{2}^{2} \right)$$

$$+ \frac{1}{2} \partial_{v_{j}} \left(\sum_{j} \left(y_{i,j} - U_{i}^{T} v_{j} \right)^{2} \right) = \lambda v_{j} - \sum_{i} \left(U_{i} \left(y_{i,j} - U_{i}^{T} v_{j} \right)^{2} \right).$$

Problem B [5 points]:

Solution B:

$$2B. \lambda \partial u_{i} L = 0 \Rightarrow \lambda u_{i} - \sum_{j} (v_{j}(y_{ij} - u_{j}^{T}v_{j})^{T}) = 0$$

$$\Rightarrow \lambda u_{i} - \sum_{j} (v_{j}(y_{ij} - v_{j}^{T}u_{i})) = 0 \Rightarrow \lambda u_{i} + \sum_{j} v_{j}v_{j}^{T}u_{i} = \sum_{j} v_{j}y_{ij}$$

$$(I\lambda + \sum_{j} v_{j}v_{j}^{T})u_{i} = \sum_{j} v_{j}y_{ij} \Rightarrow u_{i} = (I\lambda + \sum_{j} v_{j}v_{j}^{T})^{-1} \sum_{j} v_{j}y_{ij}.$$

$$For \quad v_{j},$$

$$\exists v_{j} L = 0 \Rightarrow \lambda v_{j} + \sum_{i} (v_{i}(y_{ij} - v_{i}^{T}v_{j})) = 0$$

$$\Rightarrow \lambda v_{j} + \sum_{i} (v_{i}v_{i}^{T}v_{j}) = \sum_{i} v_{i}y_{ij} \Rightarrow (I\lambda + \sum_{i} (v_{i}v_{i}^{T}))v_{j} = \sum_{i} v_{i}y_{ij}.$$

$$\Rightarrow v_{j} = (I\lambda + \sum_{i} (v_{i}v_{i}^{T}))^{-1} \sum_{i} v_{i}y_{ij}.$$

Caltech CS/CNS/EE 155 Set 5

Philip Carr February 2019

Problem C [10 points]:

Solution C: *See* 2*D.py and prob2utils.py for the solution code.*

Caltech CS/CNS/EE 155	
Set 5	

Philip Carr February 2019

Problem	D	[5]	points]:	:
---------	---	-----	----------	---

Solution D:

Caltech CS/CNS/EE 155	Philip Carr
Set 5	February 2019
Problem E [5 points]:	
Solution E:	

3 Word2Vec Principles [35 Points]

Problem A [5 points]:

Solution A: Computing these gradients scales as $O(W^3)$, since gradients must be computed for every possible pair of w vectors (this is $O(W^2)$), and since gradients must be computed for every word in the word list (this is O(W)).

Since increasing D increases the length of each w vector, computing these gradients scales as O(D), since if d more dimensions are added to each w vector, there are d more pairs terms to multiply together with each gradient.

In total, computing these gradients scales with $O(W^3D)$.

Problem B [10 points]:

Solution B:

The complete Huffman Tree is above.

Caltech CS/CNS/EE 155	Philip Carr	
Set 5	February 2019	
Problem C [3 points]:		
Solution C:		

Caltech CS/CNS/EE 155 Set 5

Philip Carr February 2019

Problem D [10 points]:

Solution D: *See solution code in P3C.py*

Caltech CS/CNS/EE 155 Set 5	Philip Carr	
	February 2019	
Problem E [2 points]:		
Solution E:		

Caltech CS/CNS/EE 155	Philip Carr	
Set 5	February 2019	
Problem F [2 points]:		
Solution F:		

Caltech CS/CNS/EE 155 Set 5	Philip Carı	
	February 2019	
Problem G [1 points]:		
Solution G:		

Caltech CS/CNS/EE 155 Set 5	Philip Carr	
	February 2019	
Problem H [2 points]:		
Solution H:		