

Text Mining 3 Text Similarity

Madrid Summer School on Advanced Statistics and Data Mining

Florian Leitner Data Catalytics, S.L. leitner@datacatytics.com

Practical: Floats and defaultdicts

Incentive and applications

- Goals of string similarity matching:
- Detecting syntactically or semantically similar words
- Grouping/clustering similar items
- Content-based recommender systems; plagiarism detection
- Information retrieval
- Ranking/searching for [query-specific] documents
- Entity grounding
- Recognizing entities from a collection of strings (a "gazetteer" or dictionary)

String matching

- Finding similarly spelled or misspelled words
- Finding "similar" texts/documents
- ▶ N.B.: no semantics (yet...)
- Detecting entries in a gazetteer
- a list of domain-specific words
- Detecting entities in a dictionary
- a list of words, each mapped to some URI
- N.B.: "entities", not "concepts" (no semantics...)

Jaccard's set similarity (Jaccard's sim. coeff.)

"words" vs "woody"

ABC vs. ABCABCABC

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{3}{7} = 0.43$$

String similarity measures

- Edit Distance Measures
- ▶ Hamming Distance [1950]
- ▶ Levenshtein-Damerau Distance [1964/5]
- Needelman-Wunsch [1970] and Smith-Waterman [1981] Distance
- also align the strings ("sequence alignment")
- use dynamic programming
- Modern approaches: BLAST [1990], BWT [1994]
- Other Similarity Metrics
- Jaro-Winkler Similarity [1989/90]
- coefficient of matching characters within a dynamic window minus transpositions
- → Soundex (→ homophones; spelling!)
- **)** ...

- Basic Operations: "indels"
- Insertions
- ac → abc
- Deletions
- abc → ac
- "Advanced" Operations
- ▶ Require two "indels"
- Substitutions
- abc → aBc
- Transpositions
- ab → ba

String distance measures

- Hamming Distance
- only counts substitutions
- requires equal string lengths
- karolin ↔ kathrin = 3
- \rightarrow karlo \leftrightarrow carol = 3
- karlos ↔ carol = undef
- Levenshtein Distance
- counts all but transpositions
- \rightarrow karlo \leftrightarrow carol = 3
- karlos ↔ carol = 4
- Damerau-Levenshtein D.
- also allows transpositions

- has quadratic complexity
- \rightarrow karlo \leftrightarrow carol = 2
- \rightarrow karlos \leftrightarrow carol = 3
- Jaro Similarity (a, b)
- calculates (m/|a| + m/|b| + (m-t)/m) / 3
- ightharpoonup m ightharpoonup the # of matching chars in...
- ▶ $t \rightarrow the \# of transpositions in...$
- ...window: [max(|a|, |b|) / 2] 1 chars
- ► karlos \leftrightarrow carol = 0.74 [0,1] range ► $(4 \div 6 + 4 \div 5 + 3 \div 4) \div 3$
- Jaro-Winkler Similarity
- adds a bonus for matching prefixes

Practical: Jaccard word similarity

Gazetteers: Dictionary matching

- Finding all tokens that match the entries
- ▶ hash table lookups: constant complexity O(1)
- Exact, single token matches
- regular hash table lookup (e.g., MURMUR3)
- Exact, multiple tokens
- prefix tree of hash tables (each node being a token)
- Approximate, single tokens → LSH (next)
- use some string metric but do not compare all n-to-m cases...
- default/traditional approach: character Approximate, multiple tokens
- a prefix tree of whatever the single token lookup strategy...

n-gram similarity (e.g. databases)

Locality Sensitive Hashing (LSH) 1/2

- A hashing approach to group near neighbors.
- Map similar items into the same [hash] buckets.
- LSH "maximizes" (instead of minimizing) hash collisions.
- It is another dimensionality reduction technique.
- For <u>documents</u>, texts or words, <u>minhashing</u> can be used.
- Approach from Rajaraman & Ullman, Mining of Massive Datasets, 2010
- http://infolab.stanford.edu/~ullman/mmds/ch3a.pdf

Locality Sensitive Hashing (LSH) 2/2

M Vogiatzis. micvog.com 2013.

Locality Sensitive Hashing (LSH) 2/2

M Vogiatzis. micvog.com 2013.

Minhash signatures (1/2)

	A							
	X	T ₁	T ₂	T ₃	T ₄	h ₁	h ₂	
<u> </u>	0	Т	F	F	T	1	1	$h_1(x) = (x+1)%n$
ing	1	F	F	Т	F	2	4	b (y) (2y 1)9/ p
/sh	2	F	Т	F	Т	3	2	$h_2(x) = (3x+1)%n$
gram/shingle	3	Т	F	Т	Т	4	0	n=5
D-U	4	F	F	T	F	0	3	"permuted" row IDS
		•						permuced row LUS

Create character n-gram × token or word k-shingle × document matrix (likely **very** sparse!)

T: shingle/n-gram in Ti
F: shingle/n-gram not in Ti

Lemma: Two texts will have the same first "true" shingle/n-gram when looking from top to bottom with a probability equal to their Jaccard (Set) Similarity.

a family of hash functions hi

Idea: Create sufficient permutations of the row (shingle/n-gram) ordering so that the Jaccard Similarity can be approximated by comparing the number of coinciding vs. differing rows.

Practical: Implementing minhashing

Locality Sensitive Hashing (LSH) 2/2

M Vogiatzis. micvog.com 2013.

Minhash signatures (2/2)

$$h_1(x) = (x+1)\%n$$
 $h_2(x) = (3x+1)\%n$
 $n=5$

perfectly map-reduce-able and embarrassingly parallel!

M	T ₁	T ₂	T ₃	T ₄
h ₁	1	3	0	1
h ₂	0	2	0	0

Practical: Implementing LSH with UF

Locality Sensitive Hashing (LSH) 2/2

M Vogiatzis. micvog.com 2013.

Banded locality sensitive minhashing

Bands		T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	T ₇	T ₈	
	h ₁	1	0	2	1	7	1	4	5	
1	h ₂	1	2	4	1	6	5	5	6	
	h ₃	0	5	6	0	6	4	7	9	
	h ₅	4	0	8	8	7	6	5	7	
2	h ₁	7	7	0	8	3	8	7	3	
_	h ₄	8	9	0	7	2	4	8	2	
	h ₂	8	5	4	0	9	8	4	7	
3	h ₆	9	4	3	9	0	8	3	9	
	h ₇	8	5	8	0	0	6	8	0	

Bands b \propto pagreement Hashes/Band r \propto 1/pagreement

pagreement $p_{agreement}$ $p_{agreement} = 1 - (1 - s^r)^b$ s = Jaccard(A,B)

Practical: Banded LSH

Document similarity

- Similarity measures
- √ Cosine similarity (of document/text vectors)
- Correlation coefficients
- Word vector normalization
- **→ TF-IDF**
- Dimensionality Reduction/Clustering
- √ Locality Sensitivity Hashing
- Latent semantic indexing
- ▶ Latent Dirichlet allocation (tomorrow)

Cosine similarity

- Define a similarity score between two document vectors (or the query vector in Information Retrieval)
- Euclidian vector distance is length dependent
- The cosine [angle] between two vectors is not

$$sim(\vec{x}, \vec{y}) = cos(\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|} = \frac{\sum x_i y_i}{\sqrt{\sum x_i^2} \sqrt{\sum y_i^2}}$$

can be dropped if using unit vectors

("length-normalized" a.k.a. "cosine normalization")

only dot-product is now left:

extremely efficient ways to compute

Alternative similarity coefficients

- Spearman's rank correlation coefficient ρ (r[ho])
- Ranking is done by term frequency (TF; count)
- Critique: sensitive to ranking differences that are likely to occur with high-frequency words (e.g., "the", "a", ...) → use the log of the term count, rounded to two significant digits
- NB that this is not relevant when only short documents (e.g. titles) with low TF counts are compared
- Pearson's chi-square test χ^2
- Directly on the TFs (counts) intuition:
 Are the TFs "random samples" from the same base distribution?
- Usually, χ^2 should be preferred over ρ (Kilgarriff & Rose, 1998)
- NB that both measures have no inherent normalization of document size
- preprocessing might be necessary!

Term Frequency times Inverse Document Frequency (TF-IDF)

- Motivation and background
- The problem
- Frequent terms contribute most to a document vector's direction, but **not all** terms are **relevant** ("the", "a", ...).
- The goal
- Separate important terms from frequent, but irrelevant terms in the collection.
- The idea
- Frequent **terms** appearing **in all documents** tend to be less important **versus** frequent terms in just a **few documents**. → Zipf's Law!
- Also dampens the effect of topic-specific noun phrases or an author's bias for a specific set of adjectives

Term Frequency times Inverse Document Frequency (TF-IDF)

$$\rightarrow$$
 tf.idf(w) := tf(w) × idf(w)

- tf: (document-specific) term frequency
- idf: inverse (global) document frequency

$$\blacktriangleright tf_{natural}(w) := count(w)$$

• tf_{natural}: n. of times term w occurs in a document

$$\bullet \mathbf{tf_{log}}(w) := \log(\mathrm{count}(w) + 1)$$

• tf_{log}: the TF is smoothed by taking its log

$$idf_{natural}(w) := N / \sum^{N} \{w_i > 0\}$$

• idf_{natural}: n. documents divided by n. documents in which term w occurs

•
$$idf_{log}(w) := log(N / \sum^{N} \{w_i > 0\})$$

- idf_{log}: the IDF is smoothed by taking its log
- where N is the number of documents,
 w_i the count of word w in document i, and
 {w_i>0} is 1 if document i has word w or 0 otherwise

TF-IDF in information retrieval

- Document vectors = tf_{log}
- Query vector = tf_{log} idf_{log}
- → i.e. the DVs do not use any IDF weighting (simply for efficiency: QV already has IDF that gets multiplied with DV values)
- ▶ Terms are counted on each individual document & the query
- Cosine vector length normalization for TF-IDF scores:
- Document W normalization

Query Q normalization

$$\sqrt{\sum_{w \in W} t f_{log}(w)^2}$$

$$\sqrt{\sum_{q \in Q} (t f_{log}(q) \times i d f_{log}(q))^2}$$

IDF is calculated over the indexed collection of all documents

TF-IDF query score: An example

					×					×
					1					
	Collec	tion		Query Q			D	ocument	D	Similarity
Term	df	idf _{log}	tf	tf _{log}	tf.idf	norm	tf	tf _{log}	tf.1	cos(Q,D)
best	3,5E+05	1,46	1	0,30	0,44	0,21	0	0,00	0,00	0,00
text	2,4E+03	3,62	1	0,30	1,09	0,53	10	1,04	0,06	0,03
mining	2,8E+02	4,55	1	0,30	1,37	0,67	8	0,95	0,06	0,04
tutorial	5,5E+03	3,26	1	0,30	0,98	0,48	3	0,60	0,04	0,02
data	9,2E+05	1,04	0	0,00	0,00	0,00	10	1,04	0,06	0,00
					0,00	0,00		16,00		0,00
Sums	1,0E+07		4		2,05	†	~355	16,11	†	0,09
				$\sqrt{of \Sigma}$	of ²	÷	\sqrt{of}	of 2	ر ÷	
•										

3 out of hundreds of unique words match (Jaccard < 0.03)

Example idea from: Manning et al. Introduction to Information Retrieval. 2009 Free PDF?

From syntactic to semantic similarity

Cosine Similarity, χ^2 , Spearman's ρ , LSH, etc. all compare equal tokens.

But what if you are talking about "automobiles" and I am lazy, calling it a "car"?

We can solve this with Latent Semantic Indexing!

Latent Semantic Analysis (LSI 1/3)

- a.k.a. Latent Semantic Indexing (in Text Mining): feature extraction for semantic inference
- Linear algebra background orthonormal factors of $Q(QQ^T)$ and Q^TQ
- Singular value decomposition of a matrix $Q: Q = U \Sigma V^T$ the factors "predict" Q in terms of similarity (Frobenius Singular values:

 norm) using as many factors as the lower dimension of Q scaling factor

MSS/ASDM: Text Mining

- SVD in text mining
- \blacktriangleright Inverted index = doc. eigenvectors \times singular values \times term eigenvectors

Latent Semantic Analysis (LSI 2/3)

 $C = \hat{F}eat$. extraction by selecting only the largest n eigenvalues

• Image taken from: Manning et al. An Introduction to IR. 2009

Latent Semantic Analysis (LSI 3/3)

[Spearman's] rho(human, user) = -0.38rho(human, minors) = -0.29

c1:	Human machine interface for ABC computer applications
c2:	A survey of user opinion of computer system response time
c3:	The EPS user interface management system
c4:	System and human system engineering testing of EPS

c5: Relation of *user* perceived *response time* to error measurement

The generation of random, binary, ordered *trees* m1:

m2: The intersection *graph* of paths in *trees*

m3: Graph minors IV: Widths of trees and well-quasi-ordering

m4: Graph minors: A survey

	c1	c 2	c3	c4	c5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	0.16	0.40	0.38	0.47	0.18	-0.05	-0.12	-0.16	-0.09
interface	0.14	0.37	0.33	0.40	0.16	-0.03	-0.07	-0.10	-0.04
computer	0.15	0.51	0.36	0.41	0.24	0.02	0.06	0.09	0.12
user	0.26	0.84	0.61	0.70	0.39	0.03	0.08	0.12	0.19
system	0.45	1.23	1.05	1.27	0.56	-0.07	-0.15	-0.21	-0.05
response	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
time	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
EPS	0.22	0.55	0.51	0.63	0.24	-0.07	-0.14	-0.20	-0.11
survey	0.10	0.53	0.23	0.21	0.27	0.14	0.31	0.44	0.42
trees	-0.06	0.23	-0.14	-0.27	0.14	0.24	0.55	0.77	0.66
graph	-0.06	0.34	-0.15	-0.30	0.20	0.31	0.69	0.98	0.85
minors	-0.04	0.25	-0.10	-0.21	0.15	0.22	0.50	0.71	0.62

From: Landauer et al. An Introduction to LSA. 1998

rho(human, user) = 0.94

rho(human, minors) = -0.83

top 2 dim

test # dim

to use via

Synonyms

or missing

words

Principal Component vs. Latent Semantic Analysis

best Frobenius norm: minimize "std. dev." of matrix best affine subspace: minimize dimensions while maintaing the form

- LSA seeks for the best linear subspace in Frobenius norm, while PCA aims for the best affine linear subspace.
- LSA (can) use TF-IDF weighting as preprocessing step.
- PCA requires the (square) covariance matrix of the original matrix as its first step and therefore can only compute term-term or doc-doc similarities.
- PCA matrices are more dense (zeros occur only when true independence is detected).

From similarity to labels

 So far, we have seen how to establish if two documents are syntactically (kNN/LSH) and even semantically (LSI) similar.

- But how do we now assign a label (a "class") to a document?
- E.g., **relevant**/not relevant; **polarity** (positive, neutral, negative); a **topic** (politics, sport, people, science, healthcare, ...)
- We could use the distances (e.g., from LSI) to cluster the documents
- Instead, let's look at supervised methods next.

Text classification approaches

- **Multinomial naïve Bayes***
- Nearest neighbor classification (ASDM Course)
- incl. locality sensitivity hashing* (already seen)
- Latent semantic indexing* (already seen)
- Cluster analysis (ASDM Course)
- Maximum entropy classification*
- **Latent Dirichlet allocation***
- **Random forests**
- Support vector machines (ASDM Course)
- Artificial neural networks (ASDM Course)

* this course

Florian Leitner <florian.leitner@upm.es>

MSS/ASDM: Text Mining

Three text classifiers

- Multinomial naïve Bayes
- Maximum entropy (multinomial logistic regression)
- Latent Dirichlet allocation unsupervised!

Maximum A Posterior (MAP) estimator

- Issue: Predict the class $c \in C$ for a given document $d \in D$
- Solution: MAP, a "perfect" Bayesian estimator:

$$C_{MAP}(d) = \underset{c \in C}{argmax} \ P(c|d) = \underset{c \in C}{argmax} \ \frac{P(d|c)P(c)}{P(d)}$$

- Problem: d is really the set $\{w_1, ..., w_n\}$ of dependent words W
- \blacktriangleright exponential parameterization: one for each possible combination of W and C

MSS/ASDM: Text Mining

102

Multinomial naïve Bayes classification

- A simplification of the MAP Estimator
- count(w) is a discrete, multinomial variable (unigrams, bigrams, etc.)
- ▶ Reduce space by making a strong independence assumption ("naïve")

independence assumption: "each word is on its own"
$$C_{MAP}(d) = \underset{c \in C}{argmax} \ P(d|c)P(c) \approx \underset{c \in C}{argmax} \ P(c) \prod_{w \in W} P(w|c)$$
 sy parameter estimation "bag of words/features"

Easy parameter estimation

$$\hat{P}(w_i|c) = \frac{count(w_i,c) + 1}{|V| + \sum_{w \in V} count(w,c)}$$
 count(w_i, c): the total count of word i in all documents of class c [in our training set]

count(w_i, c): the total count of word i in all

- \blacktriangleright V is the entire **vocabulary** (collection of unique words/n-grams/...) in D
- uses Laplacian/add-one smoothing

Multinomial naïve Bayes: Practical aspects

- Can gracefully handle unseen words
- Has low space requirements: |V| + |C| floats $\rightarrow sum \prod using logs!$
- Irrelevant ("stop") words cancel each other out
- Opposed to SVM or Nearest Neighbor, it is very fast
- ▶ (Locality Sensitivity Hashing was another very efficient approach we saw)
- ▶ But fast approaches tend to result in lower accuracies (⇒ good "baselines")
- Each class has its own n-gram language model
- Logarithmic damping (log(count)) might improve classification $\hat{P}(w_i|c) = \frac{log(count(w_i,c)+1)}{log(|V|+\sum_{w\in V}count(w,c))}$

MSS/ASDM: Text Mining

Practical: Probabilities and underflows

