A RATIO TEST

ORRIN FRINK

The d'Alembert ratio test has numerous extensions that are effective in some cases where the d'Alembert test fails; that is, when the limit of the ratio a_n/a_{n-1} is 1. Examples are Raabe's test and Gauss' test. The following test is simpler than any of these, and is easy to prove and to remember.

THEOREM. A series of positive terms (1) $\sum a_n$ converges if $\lim_{n\to\infty} (a_n/a_{n-1})^n < 1/e$, and diverges if $\lim_{n\to\infty} (a_n/a_{n-1})^n > 1/e$.

More generally, (1) converges if $\limsup (a_n/a_{n-1})^n < 1/e$. It diverges if $(a_n/a_{n-1})^n \ge 1/e$ for all n sufficiently large. In particular (1) diverges if $\lim \inf (a_n/a_{n-1})^n > 1/e$.

COROLLARY. A series of real or complex terms $\sum a_n$ converges absolutely if $\limsup |a_n/a_{n-1}|^n < 1/e$.

The proof is by the comparison ratio test with $\sum n^{-s}$ as the comparison series. To prove the convergence part of the test, suppose $\limsup (a_n/a_{n-1})^n = e^{-d} < e^{-1}$. Then d > 1. Consider the series (2) $\sum b_n = \sum n^{-s}$ with 1 < s < d. Then we have $\lim (b_n/b_{n-1})^n = \lim (1-1/n)^{ns} = e^{-s}$. Since $e^{-d} < e^{-s}$, then ultimately $(a_n/a_{n-1})^n < (b_n/b_{n-1})^n$, and therefore $a_n/a_{n-1} < b_n/b_{n-1}$. It follows that (1) converges, since (2) does.

To prove the divergence part of the test, suppose $(a_n/a_{n-1})^n \ge 1/e$ for n sufficiently large. For the harmonic series (3) $\sum c_n = \sum n^{-1}$, we have $(c_n/c_{n-1})^n = (1-1/n)^n < e^{-1}$ for all n. Hence ultimately $(a_n/a_{n-1})^n > (c_n/c_{n-1})^n$, and therefore $a_n/a_{n-1} > c_n/c_{n-1}$. Since (3) diverges, so does (1). This completes the proof. In the same manner one can prove the following generalization.

THEOREM. A series of positive terms (1) $\sum a_n$ converges if $\lim \sup (a_n/a_{n-k})^n < 1/e^k$, and diverges if $(a_n/a_{n-k})^n \ge 1/e^k$ for all n sufficiently large.

As an application, consider the Dirichlet series (4) $\sum a_n n^{-\epsilon}$, where $s = \sigma + i\tau$. Suppose $\lim |a_n/a_{n-1}|^n = e^{-d}$. Then it follows from the test that the series (4) converges absolutely at every point of the halfplane $\sigma > 1 - d$, and converges absolutely at no point of the halfplane $\sigma < 1 - d$.

THE PENNSYLVANIA STATE COLLEGE

Presented to the Society, April 17, 1948; received by the editors December 24, 1947.