Renganathan Subramanian Team: I_need_a_macbook

JPMC Derivative Modelling

Contents

1 Question 1

Question 4

Question 5

Question 1

- 1.1. Method Used
- 1.2. 'Over'-Extrapolation
- 1.3. Other Methods

Introductory Analysis

	Date	Price
0	10/31/2020	520.349403
1	11/30/2020	524.764215
2	12/31/2020	574.740259
3	1/31/2021	602.355246
4	2/28/2021	593.415544
5	3/31/2021	571.447877
6	4/30/2021	569.019001

Key Observations

- Seasonality
- Trend

Extrapolation

Treat group of anchor points as a dataset and extrapolate after 12 months

Interpolation

Use union of data and extrapolation for cubic spline interpolation

'Over'-Extrapolation

Problems

- Assume linear trend (Reality → Saturation)
- Observation \rightarrow Decreasing variance; Prediction \rightarrow Increasing Variance
- Within period pattern (unimodality) not maintained

'Over'-Extrapolation

Limitations

- Non-parametric approach → Not suited for outside distribution uages
- Linear too simple (but higher order overfits)
- Treating each group independently → Reduces data size, misses information present in 'whole'
- Period calculation is visual-based

Time Series-Based Approach

Seasonal Integrating effect present (Not trend) Seasonality with period=12 months (Non visual)

Time Series-Based Approach

SARIMA(0,1,0)(0,1,0)12

- Residuals pass ADF test
- Normal assumption of residuals failed

Time Series-Based Approach

Key Points

- Use all data points together
- Model-based extrapolation
- Statistical tests to verify goodness

What if Idiosyncratic Data?

- Any time series data can be modelled (reasonably) using either multiplicative or additive SARIMA models (under certain assumptions)
- Provides a standard way to identify model parameters based on ACF, PACF,
 Periodograms (thus, easy to tune for new data)
- Even if **seasonality absent**, can model with (p, d, q)(0, 0, 0)s
- Provides measure of goodness (under certain assumptions)

Question 4

- 1.1. Naive Method
- 1.2. Improved Method
- 1.3. Volume Profile Interpretations
- 1.4. Parameter Effect Analysis

Shortcomings and Observations

Time Complexity: **O(3ⁿ)**

Searching naive non-optimal paths

Overlapping searches

Useful Observations

- Future paths depend only on stock at the day and not how we got there
- Maximum possible stock on day i = i*(injection rate)
- Tail sub problems exist: Opti(1 to i+k) = Opti(1 to i) + Opti(i to k)

Improved Algorithm

Dynamic Programming with Tabulation

DP[i, j] holds optimal value of trade which leaves stock G*j on day i

Volume in Storage 250 Maximum Storage 200 Volume 100 50 0 10 8 Price 2

Results

Time Complexity: O(n²)

Retain only promising paths on any day

Overlapping subproblems combined

Final Value from Volume Profile

Effect of Parameters

Parameters

Storage Cost

Injection/Withdraw Rate

Max Volume

Excess Penalty Cost

Intuitive Effect on Value

▼ Negative effect

A Positive effect

A Positive effect

Negative Effect

Penalty, Injection Rate, Max Volume

Effects of Injection Rate

Trade-off between Storage Cost and Injection/Withdraw Rates

Competing effect between

Storage Cost and Injection Rate

Low **Max Volume** offsets the positive effect of **Injection Rate**

Effect of Max Volume and Injection/Withdraw Rates

Effects of Penalty Cost and Storage Cost

Increasing Storage Cost always has a negative effect on **Value**

Conclusion: Effect of Parameters

Parameters

Analyzed Effect on Value

Storage Cost

Negative effect

Injection/Withdraw Rate

Positive effect till a threshold (determined by **Max Volume**), Reduced Positive effect after that, Competing effect with **Storage Cost**

Max Volume

No effect if it is large compared to **Injection Rate.** Reduces **Value** on reduction when comparable to **Injection Rate**

Excess Penalty Cost

No effect for large **Max Volume**/ small **Injection rates**, Negative effect for small **Max Volume**/ large **Injection Rates**

Question 5

- 1.1. Stochastic Evolution
- 1.2. Monte Carlo Solution
- 1.3. Naive Optimization
- 1.4. Improved Optimization

Stochastic Price Evolution

 $\Rightarrow S_T = S_0 * \exp\left(\left(\int_0^T \mu_t dt\right) - \frac{\sigma^2 T}{2} + \sigma W_T\right)$

Drift: Deterministic Movement **Variation:** Random Movement

- Uncertainty increases with time
- Drift piecewise constant

Monte Carlo Solution

Simulate multiple possible paths

- Paths clustered around more likely price values
- Paths spreads out with time (more uncertainty)
- Use sample mean to get best estimate of price on any day

Monte Carlo Solution

Simulating a path

- Gaussian random variables → Characterised by mean and variance only
- $X_1 \sim N(0, \sigma_1^2)$ and $X_2 \sim N(0, \sigma_2^2) \Rightarrow X_1 + X_2 \sim N(0, \sigma_1^2 + \sigma_2^2)$ (if independent)

Expected Price Movement for Test Case: 2.8208, 2.3958, 3.4331, 2.9091

Naive Optimization

Search all combinations of buy and sell dates

Time Complexity: $O(n^2)$

Improved Algorithm

Insights

- Storage cost ramps up linearly with time
- Use dynamic programming with tabulation

DP[i] holds the best point in the past to buy if we need to sell on day i

If we need to sell at day 3, buying on day 1 gives maximum value

The best value for the problem is the max[opt[sell at 0], opt[sell at 1], ... opt[sell at N]

Improved Algorithm

- Storage cost of all points < i-1 increase by the **same amount** when sold at i instead of i-1
- Therefore best buy point is either the best buy point of i-1 or i-1 itself

0	1	2	3	4	5
0	х	у	z	?	

The best buy-point for 4 (?) can either be 3 or the best buy-point of 3 (z)

Time Complexity = **O(n)**

Value of test case = **33.03175**

Thank You!

Any Questions?