Problema 1 Tenim certs objectes, no sabem quin nombre. Si el dividim per 3, el residu és 2, per 5 el residu és 3 i per 7, el residu es 2. Quin és el nombre?

Solució 1

Aquest problema, traduït a un sistema de congruències es equivalent a

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$

Aquest sistema es pot resoldre utilitzant la definició de congruències.

Comencem amb la primera equació. Sabem que $x \equiv 2 \pmod{3} \iff x-2 = 3 \cdot k : k \in \mathbb{Z}$. Reordenant obtenim que $x+3 \cdot k' = 2$ i el resultat d'aquesta equació diofantina és $x = -1 + 3 \cdot t$ i $k = 1 - t : t \in \mathbb{Z}$.

Treballant ara sobre la segona equació tenim que $x \equiv 3 \pmod{5}$, però acabem de deduïr que $x = -1 + 3 \cdot t$, per tant, $-1 + 3 \cdot t \equiv 3 \pmod{5} \iff 3 \cdot t \equiv 4 \pmod{5} \iff 3 \cdot t - 4 = 5 \cdot p$ i tornem a tenir una equació diofantina que, en aquest cas, té per solució $t = 8 + 5 \cdot i$ i $p = -4 - 3 \cdot i$: $i \in \mathbb{Z}$.

Per útlim, utilizant la tercera equació tenim $x \equiv 2 \pmod{7}$ i fent ús dels resultats anterior tenim que

$$-1 + 3 \cdot t \equiv 2 \pmod{7} \implies -1 + 3 \cdot (8 + 5 \cdot i) \equiv 2 \pmod{7} \implies 15 \cdot i + 23 \equiv 2 \pmod{7}$$

$$\iff 15 \cdot i \equiv -21 \pmod{7}$$

$$\iff i \equiv 0 \pmod{7}$$

$$\iff i \equiv 7 \cdot j$$

Per tant, podem conlcoure que

$$x = -1 + 3 \cdot t$$

$$= -1 + 3 \cdot (8 + 5 \cdot i)$$

$$= 15 \cdot i + 23$$

$$= 15 \cdot (7 \cdot j) + 23$$

$$= 105 \cdot j + 23$$

Conclusió: El nombre x que estavem buscant era $x = 105 \cdot j + 23 : j \in \mathbb{Z}$.

1