NATURAL LANGUAGE PROCESSING

LECTURE 9: Transformer

Contents

Transformer (self-attention model)

• Scaled dot-product attention, multi-head attention, ...

Contextual representations

• ELMo, CoVe, ULMFiT, ...

Transformer: High-level view

Attention is all you need, NeurIPS'17

RNN: Long-term dependency

Transformer: Long-term dependency

- Inputs: a query q and a set of key-value (k, v) pairs to an output
- Query, keys, values, and output are all vectors

- Output is weighted sum of values
- Weight of each value is computed by an inner product of query and corresponding key
- Queries and keys have same dimensionality d_k , and dimensionality of value is d_v

$$A(q, K, V) = \sum_{i} \frac{\exp(q \cdot k_i)}{\sum_{j} \exp(q \cdot k_j)} v_i$$

• When we have multiple queries q, we can stack them in a matrix Q:

$$A(q, K, V) = \sum_{i} \frac{\exp(q \cdot k_i)}{\sum_{j} \exp(q \cdot k_i)} v_i$$

• Becomes:

$$A(Q, K, V) = \operatorname{softmax}(QK^T)V$$

$$(|Q| \times d_k) \times (d_k \times |K|) \times (|K| \times d_v) = (|Q| \times d_v)$$

Row-wise softmax

Problem

- As d_k gets large, the variance of $q^T k$ increases
- Some values inside the softmax get large
- The softmax gets very peaked
- Hence its gradient gets smaller

Solution

Scaled by the length of query / key vectors:

$$A(Q, K, V) = softmax \left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

- The input word vectors could be the queries, keys and values
- In other words, the word vectors themselves select each other
- Problem: Only one way for words to interact with one another
- Solution: Multi-head attention maps Q,K,V into the h number of lower-dimensional spaces via W matrices
- Then apply attention, then concatenate outputs and pipe through linear layer

MultiHead
$$(Q, K, V)$$
 = Concat(head₁, ..., head_h) W^O
where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Transformer: Block based model

Each block has two sub-layers

- Multi-head attention
- Two-layer feed-forward NN (with ReLU)

Each of these two steps also has

Residual connection and layer normalization:

LayerNorm(x + sublayer(x))

Layer Normalization

• Layer normalization changes input to have zero mean and unit variance, per layer and per training point (and adds two more parameters)

$$\mu^{l} = \frac{1}{H} \sum_{i=1}^{H} a_{i}^{l}, \qquad \sigma^{l} = \sqrt{\frac{1}{H} \sum_{i=1}^{H} (a_{i}^{l} - \mu^{l})^{2}}, \qquad h_{i} = f(\frac{g_{i}}{\sigma_{i}} (a_{i} - \mu_{i}) + b_{i})$$

Layer Normalization

Layer normalization consists of two steps:

- Normalization of each word vectors to have mean of zero and variance of one.
- Affine transformation of each sequence vector with learnable parameters.

Transformer: Positional Encoding

• Use sinusoidal functions of different frequencies

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$

 $PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$

- Easily learn to attend by relative position, since for any fixed offset k, $PE_{(pos+k)}$ can be represented as linear function of $PE_{(pos)}$
- Another positional encoding is okay to use (e.g., positional encoding in ConvS2S)

Transformer: Warm-up Learning Rate Scheduler

 $lrate = d_{model}^{-0.5} \cdot \min(\#step^{-0.5}, \#step \cdot warmup_steps^{-1.5})$

Transformer: Encoder Self-attention Visualization

• Words start to pay attention to other words in sensible ways

Transformer: Encoder Self-attention Visualization

Transformer: Decoder

- Two sub-layer changes in decoder
- Masked decoder self-attention on previously generated outputs:

Encoder-Decoder attention,
 where queries come from previous decoder layer
 and keys and values come from output of encoder

- Those words not yet generated cannot be accessed during the inference time.
- Renormalization of softmax output prevents the model from accessing ungenerated words.

- Those words not yet generated cannot be accessed during the inference time.
- Renormalization of softmax output prevents the model from accessing ungenerated words.

- Those words not yet generated cannot be accessed during the inference time.
- Renormalization of softmax output prevents the model from accessing ungenerated words.

- Those words not yet generated words cannot be accessed during the inference time.
- Renormalization of softmax output prevents the model from accessing ungenerated words.

Transformer: Experimental Results

Results on English-German/French translation (newstest2014)

Model	BLEU		Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5\cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$	

Recent Trends

- Transformer model and its self-attention block has become a general-purpose sequence (or set) encoder in recent NLP applications as well as in other areas.
- Training deeply stacked Transformer models via a self-supervised learning framework has significantly advanced various NLP tasks through transfer learning, e.g., BERT, GPT-2, XLNet, ALBERT, RoBERTa, Reformer, T5, ...
- Other applications are fast adopting the self-attention architecture and self-supervised learning settings, e.g., recommender systems, drug discovery, computer vision, ...
- As for natural language generation, self-attention models still requires a greedy decoding of words one at a time.

References

- Harvard NLP The Annotated Transformer
- Stanford University CS224n Deep learning for Natural Language Processing
- Fully-parallel text generation for neural machine translation
- Convolution Sequence to Sequence
- The Illustrated Transformer (Eng)
- The Illustrated Transformer (Kor)