2D-Mesh of trees

NXN me sh of processors

leaf processors

o o o -- o

binary trees on each

row & each whum.

N: 2^k

nodes in an NXN MoT $= N^2 + 2N(N-1)$ $-3N^2-2N$ Sum of degrees = 2(N+2N)+ $3(2N^2-4N)$ = 8N2-8N # edges = 4N2-4N

Diameter 4 log N a node in the ith column tree & a node in jth now tree One Common < 4 log N

Bisection Width

is $\theta(N)$

Ronting of tackets

N² packets one with each processor with a unique destination $\Omega(N)$

(a) (b) (b) (c) (c) (d) (d) (d)

N packets

one with each now not

destined to a unique

Column noot

packet i goes from it now not

to pith column noot

A KN, N Can be transformed into a NXN MOT So that a Step on KN, N Can simulated on MoT in 2 log N sleps

(d) (b) (d) (e) (e) (f)

A KN, N algorithm of T

Steps runs in O(NT)

O(Tlog N) Steps on

NXN MoTs

Cost of the algo is

O(N3 log N)

(4) (b) Ø(9) (9) (9)

Hyper cube

0 1 Hz

(1) (b) (2) (9) (9)

every vertex of Hr has
r neighbours.

101 0100

Diameter of a Hypercube Hr isr $u \rightarrow u' \rightarrow u'^2 \rightarrow u'^{23} \rightarrow - u'^{123...r}$ distance r

Hlogn has N vortices

diameter, log N

cut the red edges

edges of any one dim. form a perfect matching

Brisection Width of a hypercube is N/2

A hypercube is Hamiltonian A graph G: (V, E) is Hamiltonian if G has a cycle of IVI vortices

27): H2 Basis

Pagele!

Hr Hypothesis: Ar-1 is Hamiltonian

(a) (b) (b) (c) (c) (d) (d) (d) (d)

(a) (b) (b) (c) (c) (c) (d)

