Section 16.1 Vector Fields.

Examples.

FIGURE 1 Velocity vector fields showing San Francisco Bay wind patterns

Map took from http://www.pacioos.hawaii.edu/currents/model-oahu/

(b) Airflow past an inclined airfoil

my notation. 名をはり

1 Definition Let *D* be a set in \mathbb{R}^2 (a plane region). A **vector field on** \mathbb{R}^2 is a function **F** that assigns to each point (x, y) in D a two-dimensional vector $\mathbf{F}(x, y)$.

Representation.

Drawing. Draw a vector representing Flairy) at the point (214).

Component Functions.

P: 2-component of F 6: y-component of F

Remark:

PA à one called <u>scalar fields</u>. Props a point to a number.

Vector Fields in 3D.

Representation.

Component Functions.

P: x-coord. of F Q: y-coord. of F R: Z-coord. OFF

Remark:

7 is a continuous vector field it and only if DIQ & R are continuous.

EXAMPLE 1 A vector field on \mathbb{R}^2 is defined by $\mathbf{F}(x, y) = -y \mathbf{i} + x \mathbf{j}$. Describe \mathbf{F} by sketching some of the vectors $\mathbf{F}(x, y)$. <-4,x>

Notation. of = (x1 41 2) デクスリンシュー辛して)

1) Draw a Table.

(214)	子(2·3)	(24)	まなら
(110)	(011)	(-1,0)	(01-1)
(2,2)	(-2,2>	(-2,-2)	(2,-2)
(3,0)	Lo 13>	(-3,0)	(0,-3)
(6,1)	(-1, 0>	(01-1)	< 1, 0>
(-212)	<-2+2>	(2,-2)	< 21-5>
`(013) '	4-310>	(61-3)	∠3,0>
•			

$$\vec{F}(1,0) = 0\vec{t} + \vec{j}$$
 $\vec{F}(1,0) = 0\vec{t} + 2\vec{j}$
 $\vec{F}(3,0) = 0\vec{t} + 3\vec{j}$

EXAMPLE 2 Sketch the vector field on \mathbb{R}^3 given by $\mathbf{F}(x, y, z) = z \mathbf{k}$.

$$P(x_1, y_1, z) = 0$$

 $A(x_1, y_1, z) = 0$
 $R(y_1, z) = Z$

See python script.

EXAMPLE 4 Newton's Law of Gravitation.

$$faw$$
 fells your $||\dot{F}|| = \frac{m H G}{r^2}$

r: distance between two objects. G: gravitational constant.

Suppose that M is at the origin.

Then
$$r = ||\overrightarrow{x}|| \Rightarrow r^2 = ||\overrightarrow{x}||^2$$

Since M>m, the mass m will be attracted to M. The direction of the force is

50,

$$\dot{\vec{F}}(a_1y, \dot{\vec{z}}) = ||\vec{F}|| \cdot \left(-\frac{\vec{z}}{||\vec{z}||}\right)$$

$$\Rightarrow \vec{F}(\pi, y, z) = -\frac{m H G_1}{\|\vec{x}\|^3} \Rightarrow \text{Freed}$$
Franklahianal

Nec. Field

Mire examples.

- . For a field around an electric change Q $\vec{F}(\vec{x}) = \underbrace{\epsilon_{0} Q}_{1|\vec{x}||^{3}} \vec{x}.$
- Electric fied enound Q $\vec{E}(\vec{x}) = \vec{E}(\vec{x}) = \frac{\vec{E}(\vec{x})}{9} = \frac{\vec{E}_0 \cdot \vec{Q} \cdot \vec{x}}{|\vec{k}|^{13}}.$

Gradient Fields.

Gradient.

If
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, then $\forall f(x,y) = (f_x, f_y) = f_x + f_y f$
If $f: \mathbb{R}^3 \to \mathbb{R}$, then $\forall f(x,y,z) = (f_x, f_y, f_z) = f_x + f_y + f_z = f_x + f_z = f_z + f_z$

Called Gradient Vector Fidds.

EXAMPLE 6 Find the gradient vector field of $f(x, y) = x^2y - y^3$. Plot the gradient vector field together with a contour map of f. How are they related?

(1) Gradrent.

$$\int_{\infty}^{\infty} = 2\pi y \qquad fy = \pi^2 - 3y^2$$

(2) Plut the gradient field.

Conservative Vector Fields.

- Vector field \vec{F} is conservative if there is a scalar function f such that \vec{F} is the gradient of f, that is $\vec{F} = \vec{\nabla} f$.
- . The function f is called the potential function of ?.

For example, if

then f is a potential function for the gratical field $\frac{1}{F} = -\frac{m \, \text{M Gr}}{11 + 2 \, \text{H}} \hat{x}$ (x2+y2+z2)3/2

5/5