1.- Introducción a la fisica computacional

Agosto-Diciembre 2020

Dr. Servando López Aguayo

Antes de empezar...

Recuerden: valoren lo que tienen.

Me quejaba de no tener zapatos hasta que vi a un hombre que no tenia pies.

¿Qué momentos estamos viviendo verdad?

¡Empecemos!

¿Qué es la ciencia?

La ciencia

Según la RAE:

Un conjunto de conocimientos obtenidos mediante la observación y el razonamiento, sistemáticamente estructurados y de los que se deducen principios y leyes generales con capacidad predictiva y comprobables experimentalmen te.

2020: nuestra ciencia

Cuatro colores.

► En 1970, Kenneth Appel y Wolfgang Haken "resuelven" el problema de los 4 colores... usando una computadora!

Actividad 1

- Discutir en equipos, si realmente es 100% válido utilizar computadoras para resolver cuestiones científicas. Contestar:
- 1) ¿Crees que realmente pueden las computadoras demostrar todos los teoremas o leyes físicas? ¿Por qué si o por qué no?
- ▶ 2) ¿Son la intuición y la creatividad algo exclusivamente humano, o se podrá replicar computacionalmente algún día? Reportar las conclusiones obtenidas.

Sistema numérico binario

- ¿No sería más útil que las futuras computadoras utilizaran sistemas numéricos que no fueran binarios? Nosotros usamos el sistema decimal!
- ¿Porqué usar sistema binario?

Computadoras en base 2

- Motivo: en esencia, es porque nuestra tecnología actual nos permite crear dispositivos "on", "off" de manera sencilla.
- Futuro: computación cuántica, que contará con múltiples estados.

La terrible verdad de las computadoras

- No importa lo poderosas que sean, su sistema de representación es finito.
- Por ende, la representación numérica es finita.
- Por tal motivo, en la mayoría de las ocasiones habrá un error en la respuesta obtenida.

Los números que usan las computadoras

¿Por qué no usar la representación binaria "normal"?

$$I_{fix} = \pm (\alpha_n 2^n + \alpha_{n-1} 2^{n-1} + \dots + \alpha_0 2^0 + \dots + \alpha_{-m} 2^{-m})$$

Los números que usan las computadoras

- Respuesta: en general, hay "desperdicio de espacio".
- Solución: versión binaria, de la notación científica.
 Dicha solución se encuentra en estándar IEEE 754.

IEEE: números

Name	Туре	Bits	Range	
boolean	logical	1	true or false	
char	string	16	'\u0000′ ↔ '\uFFFF'	
byte	integer	8	-128 ↔ +127	
short	integer	16	-32,768 ↔ +32,767	
int	integer	32	-2,147,483,648 ↔ +2,147,483,647	
long	integer	64		
-9,223,372,036,854,775,808 ↔ +9,223,372,036,854,775,807				
float	floating point	32	1.401298 X 10 ⁻⁴⁵ ↔ 3.402923 X 10 ⁺³⁸	
double	floating point	64		
4.94065645841246544 X 10 ⁻³²⁴ ↔ 1.7976931348623157 X 10 ⁺³⁰⁸				

Los números de tu computadora

```
IEEE 754 Floating Point Standard

s e=exponent m=mantissa

1 bit 8 bits 23 bits

number = (-1)<sup>S</sup> * (1.m) * 2<sup>e-127</sup>
```

```
Single precision (32-bit) form: (Bias = 127)
(1)sign (8) exponent (23) fraction
```

```
Double precision (64-bit) form: (Bias = 1023)
```

Algunos casos especiales

Number Name	Values of s, e & f	Value of Single
Normal	0< e< 255	$(-1)^s \times 2^{e-127} \times 1.f$
Subnormal	$e=0,\;f eq0$	$(-1)^s \times 2^{-126} \times 0.f$
Signed Zero	e=0, f=0	$(-1)^s imes 0.0$
$+\infty$ (\neq math)	$s=0,\ e=255,\ f=0$	+INF
$-\infty$ (\neq math)	$s=1, \ e=255, \ f=0$	-INF
Not a Number	$s=u,~e=255,~f\neq 0$	NaN
3		

Repercusiones

- > 32 bits Precisión de 6 -7 decimales
- ► 64 bits Precisión de 15-16 decimales

Precisión de la computadora

$$1_c + \varepsilon_m = 1_c$$

```
\epsilon_{m} \approx 10^{-7} (single), \epsilon_{m} \approx 10^{-16} (double)
```

Actividad 2

- Determinar el valor de precisión o eps, (conocido también como el épsilon de la máquina) de alguna calculadora o celular.
- Dibuja un diagrama de flujo del algoritmo utilizado para obtener dicho épsilon.
- Reportar el diagrama y el valor obtenido.

Conclusiones

- Hoy en día hay ciencia experimental, teórica... y computacional!
- Las computadoras está delimitadas por su representación numérica.
- Aún así, hay problemas en los que las computadores se han vuelto indispensables para resolver!

Y eso es todo por hoy!

- Nos vemos el siguiente miércoles!
- No olviden traer -por lo menos uno de los integrantes-Matlab ya instalado! RETO!
- Y bienvenidos a Física Computacional 1! ©

