Digital Communication II – EADOM2B – Test 4 – 09/05/2015 – 08h00

A 16 QAM differential transmitter use 0101 as default value. The tables and data for the system is as follows: 0101, 1100, 1010, 0011, 1100. Find the output.

0011	0111	1011		Ala	C/c	Phase	
•	•	1011	1111	0	0	±180°	9
0010	0110	1010	1110	0	1	+90°	
•	•	•	•	1	0	-90°	
				1	1	00	
•	•	•		B/b [D/d	b/B d/	D
0001	0101	1001	1101	0	0	0 1	
0000	0100	•	•	0	0	1 1	_
0000	0100	1000	1100	1	1	î ô	

(6)

(8)

- In a document containing only 7 characters the character count was as follows: B-90; D-66, E-102; G-96; M-90, P-72 and X-84.
- 2.1 Determine the Huffman code for each character and the Huffman average for the coding system.
- 2.2 Calculate the compression ratio of the code.
- 3 Insert Hamming bits in the standard positions for the letter P. (4)
- 4 Use ODD parity, 1 as start bit an 11 as a stop bits. Code the word **Milk** for RS232 transmission. (6)
- The RS232 code 59B65B739459_H contains 2 start bits and 1 stop bit.

 Determine the start bits, stop bit, type of parity used and the word transmitted.

TOTAL: /30/

0100 0001	A	0110 0001	a	0100 0010	В	0110 0010	b	0100 0011	C	0110 0011	c	0100 0100	D	0110 0100	d
0100 0101	Е	0110 0101	e	0100 0110	F	0110 0110	f	0100 0111	G	0110 0111	g	0100 1000	Н	0110 1000	h
0100 1001	I	0110 1001	i	0100 1010	J	0110 1010	j	0100 1011	K	0110 1011	k	0100 1100	L	0110 1100	1
0100 1101	M	0110 1101	m	0100 1110	N	0110 1110	n	0100 1111	О	0110 1111	О	0101 0000	P	0111 0000	p
0101 0001	Q	0111 0001	q	0101 0010	R	0111 0010	r	0101 0011	S	0111 0011	S	0101 0100	T	0111 0100	t
0101 0101	U	0111 0101	u	0101 0110	V	0111 0110	V	0101 0111	W	0111 0111	W	0101 1000	X	0111 1000	X

Digital Communication II – EADOM2B – Test 3 Memorandum

Present	Next	Phase	AC	BD	Output
0101 (2)	0101 (2)	0°	11	11 - 10	1110
1110(1)	1100 (4)	-90°	10	10 - 11	1101
1101 (4)	1010(1)	+90°	01	00 - 01	0011
0011 (2)	0011 (2)	0°	11	01 - 00	1010
1010 (1)	1100 (4)	-90°	10	10 - 11	1101

(6)

Char	Count	P(x)	Diagram			Code	n	nP(x)
В	102	0,17		0,40 WFB		11	2	0,34
G	96	0,16	0,31 GK	0,60 GKQL	1,00	110	3	0.48
K	90	0,15				010	3	0,45
Q	90	0,15	0,29 QL			100	3	0,45
L	84	0,14				000	3	0,42
W	72	0,12	0,23 WF			101	3	0,36
F	66	0,11				001	3	0,33
	600	1,00						2,83

- 2.1 Determine the Huffman code for each character and the Huffman average for the coding system.
- 2.2 Calculate the compression ratio of the code. = 3/2,83 = 1,06

3 Insert Hamming bits in the standard positions for the letter P.

				Н				Н		Н	Н
12	11	10	9	8	7	6	5	4	3	2	1
0	1	0	1	1	0	0	0	1	0	0	1

11 1011 9 0110 H 1101 (4)

4 $M = 0100 \ 1101 \rightarrow 1 \ 1011 \ 0010 \ 1 \ 11 \rightarrow D97$

 $i = 0110\ 1001 \rightarrow 1\ 1001\ 0110\ 1\ 11 \rightarrow CB7$

 $1 = 0110 \ 1100 \rightarrow 1 \ 0011 \ 1110 \ 0 \ 11 \rightarrow 9F3$

 $k = 0110\ 1011 \rightarrow 1\ 1101\ 0110\ 0\ 11 \rightarrow EB3$ Milk = D97CB79F3EB3_H

(6)

(8)

5 Group size = 8+1+1+2=12

1

2

5 9 B 6 5 B 7 3 9 4 5 9 01 0110 0110 1 1, 01 1001 0110 1 1, 01 1100 1110 0 1, 01 0001 0110 0 1

5 5 5 3 0110 0110 0110 0110 1001 0111 0011 0110 1000

start bits = 01, stop bits = 1, type of parity = ODD and the word = fish

(6) **TOTAL:** /30/