CBSE NCERT Solutions for Class 8 Mathematics Chapter 12

Back of Chapter Questions

Exercise: 12.1

- 1. Evaluate:

 - (ii) $(-4)^{-2}$
 - (iii) $\left(\frac{1}{2}\right)^{-5}$

Solution:

(i)
$$3^{-2} = \frac{1}{3^2}$$
 $\left[\because a^{-m} = \frac{1}{a^m}\right]$

$$\left[\because a^{-m} = \frac{1}{a^m}\right]$$

$$=\frac{1}{9}$$

Hence,
$$3^{-2} = \frac{1}{9}$$

(ii)
$$(-4)^{-2} = \frac{1}{(-4)^2}$$
 $\left[\because a^{-m} = \frac{1}{a^m}\right]$

$$\left[\because a^{-m} = \frac{1}{a^m}\right]$$

$$=\frac{1}{16}$$

Hence,
$$(-4)^{-2} = \frac{1}{16}$$

(iii)
$$\left(\frac{1}{2}\right)^{-5} = \left(\frac{2}{1}\right)^5$$
 $\left[\because a^{-m} = \frac{1}{a^m}\right]$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$

$$=(2)^5=32$$

Hence,
$$\left(\frac{1}{2}\right)^{-5} = 32$$

- Simplify and express the result in power notation with positive exponent:
 - $(-4)^5 \div (-4)^8$ (i)

 - (iii) $(-3)^4 \times \left(\frac{5}{3}\right)^4$
 - (iv) $(3^{-7} \div 3^{-10}) \times 3^{-5}$
 - (v) $2^{-3} \times (-7)^{-3}$

Solution:

(i)
$$(-4)^5 \div (-4)^8 = (-4)^{5-8}$$

$$[\because a^m \div a^n = a^{m-n}]$$

$$=(-4)^{-3}=\frac{1}{(-4)^3}$$

$$\left[\because a^{-m} = \frac{1}{a^m}\right]$$

Hence, $(-4)^5 \div (-4)^8 = \frac{1}{(-4)^3}$

(ii)
$$\left(\frac{1}{2^2}\right)^2 = \frac{1^2}{(2^3)^2}$$

$$\left[\because \left(\frac{a}{b}\right)^m = \frac{a^m}{a^n}\right]$$

$$=\frac{1}{2^{3\times 2}}=\frac{1}{2^6}$$

$$[\because (a^m)^n = a^{m \times n}]$$

Hence,
$$\left(\frac{1}{2^2}\right)^2 = \frac{1}{2^6}$$

(iii)
$$(-3)^4 \times \left(\frac{5}{3}\right)^4 = (-3)^4 \times \frac{5^4}{3^4}$$

$$\left[\because \left(\frac{a}{b}\right)^m = \frac{a^m}{a^n}\right]$$

$$= \{(-1)^4 \times 3^4\} \times \frac{5^4}{3^4}$$

$$[\because (ab)^m = a^m b^m]$$

$$= 3^{4-4} \times 5^4$$

$$[\because a^m \div a^n = a^{m-n}]$$

$$= 3^0 \times 5^4 = 5^4$$

$$[\because a^0 = 1]$$

Hence,
$$(-3)^4 \times \left(\frac{5}{3}\right)^4 = 5^4$$

(iv)
$$(3^{-7} \div 3^{-10}) \times 3^{-5} = 3^{-7 - (-10)} \times 3^{-5}$$
 $[\because a^m \div a^n = a^{m-n}]$

$$[\because a^m \div a^n = a^{m-n}]$$

$$= 3^{-7+10} \times 3^{-5} = 3^3 \times 3^{-5} = 3^{3+(-5)}$$
 [: $a^m \times a^n = a^{m+n}$]

$$[\because a^m \times a^n = a^{m+n}]$$

$$=3^{-2}=\frac{1}{3^2}$$

$$\left[\because a^{-m} = \frac{1}{a^m}\right]$$

Hence,
$$(3^{-7} \div 3^{-10}) \times 3^{-5} = \frac{1}{3^2}$$

(v)
$$2^{-3} \times (-7)^{-3} = \frac{1}{2^3} \times \frac{1}{(-7)^3}$$

$$\left[\because a^{-m} = \frac{1}{a^m}\right]$$

$$= \frac{1}{\{2 \times (-7)\}^3} = \frac{1}{(-14)^3}$$

$$[\because (ab)^m = a^m b^m]$$

Hence,
$$2^{-3} \times (-7)^{-3} = \frac{1}{(-14)^3}$$

3. Find the value of:

(i)
$$(3^0 + 4^{-1}) \times 2^2$$

(ii)
$$(2^{-1} \times 4^{-1}) \div 2^{-2}$$

(iii)
$$\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}$$

(iv)
$$(3^{-1} + 4^{-1} + 5^{-1})^0$$

$$(v) \qquad \left\{ \left(-\frac{2}{3}\right)^{-2} \right\}^2$$

(i)
$$(3^{0} + 4^{-1}) \times 2^{2} = \left(1 + \frac{1}{4}\right) \times 2^{2}$$
 $\left[\because a^{-m} = \frac{1}{a^{m}} \text{ and } a^{0} = 1\right]$

$$= \left(\frac{4+1}{4}\right) \times 2^{2} = \frac{5}{4} \times 2^{2} = \frac{5}{2^{2}} \times 2^{2}$$

$$= 5 \times 2^{2-2} \qquad \left[\because a^{m} \div a^{n} = a^{m-n}\right]$$

$$= 5 \times 2^{0} = 5 \times 1 = 5 \qquad \left[\because a^{0} = 1\right]$$
Hence, $(3^{0} + 4^{-1}) \times 2^{2} = 5$

(ii)
$$(2^{-1} \times 4^{-1}) \div 2^{-2} = \left(\frac{1}{2^{1}} \times \frac{1}{4^{1}}\right) \div 2^{-2} \qquad \left[\because a^{-m} = \frac{1}{a^{m}}\right]$$

$$= \left(\frac{1}{2} \times \frac{1}{2^{2}}\right) \div 2^{-2} = \frac{1}{2^{3}} \div 2^{-2} \qquad \left[\because a^{m} \times a^{n} = a^{m+n}\right]$$

$$= 2^{-3} \div 2^{-2} = 2^{-3-(-2)} = 2^{-3+2} = 2^{-1} \qquad \left[\because a^{m} \div a^{n} = a^{m-n}\right]$$

$$= \frac{1}{2} \qquad \left[\because a^{-m} = \frac{1}{a^{m}}\right]$$

Hence,
$$(2^{-1} \times 4^{-1}) \div 2^{-2} = \frac{1}{2}$$

(iii)
$$\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2} = (2^{-1})^{-2} + (3^{-1})^{-2} + (4^{-1})^{-2} \quad \left[\because a^{-m} = \frac{1}{a^m}\right]$$

$$= 2^{-1 \times (-3)} + 3^{-1 \times (-2)} + 4^{-1 \times (-2)} \qquad \left[\because (a^m)^n = a^{m \times n}\right]$$

$$= 2^2 + 3^2 + 4^2 = 4 + 9 + 16 = 29$$
Hence,
$$\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2} = 29$$

(iv)
$$(3^{-1} + 4^{-1} + 5^{-1})^0 = \left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5}\right)^0$$
 $\left[\because a^{-m} = \frac{1}{a^m}\right]$

$$= \left(\frac{20 + 15 + 12}{60}\right)^0 = \left(\frac{47}{60}\right)^0 = 1$$
 $\left[\because a^0 = 1\right]$
Hence, $(3^{-1} + 4^{-1} + 5^{-1})^0 = 1$

(v)
$$\left\{ \left(-\frac{2}{3} \right)^{-2} \right\}^2 = \left(\frac{-2}{3} \right)^{-2 \times 2}$$

$$\left[\because (a^m)^n = a^{m \times n} \right]$$
$$= \left(\frac{-2}{3} \right)^{-4} = \left(\frac{-3}{2} \right)^4$$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$
$$= \frac{81}{16}$$

Hence,
$$\left\{ \left(-\frac{2}{3} \right)^{-2} \right\}^2 = \frac{81}{16}$$

- **4.** Evaluate:
 - (i) $\frac{8^{-1} \times 5^3}{2^{-4}}$
 - (ii) $(5^{-1} \times 2^{-1}) \times 6^{-1}$

(i)
$$\frac{8^{-1} \times 5^{3}}{2^{-4}} = \frac{(2^{3})^{-1} \times 5^{3}}{2^{-4}} = \frac{2^{-3} \times 5^{3}}{2^{-4}} \qquad [\because (a^{m})^{n} = a^{m \times n}]$$
$$= 2^{-3 - (-4)} \times 5^{3} = 2^{-3 + 4} \times 5^{3} \qquad [\because a^{m} \div a^{n} = a^{m - n}]$$
$$= 2 \times 125 = 250$$
Hence,
$$\frac{8^{-1} \times 5^{3}}{2^{-4}} = 250$$

(ii)
$$(5^{-1} \times 2^{-1}) \times 6^{-1} = \left(\frac{1}{5} \times \frac{1}{2}\right) \times \frac{1}{6}$$
 $\left[\because a^{-m} = \frac{1}{a^m}\right]$
 $= \frac{1}{10} \times \frac{1}{6} = \frac{1}{60}$
Hence, $(5^{-1} \times 2^{-1}) \times 6^{-1} = \frac{1}{60}$

5. Find the value of m for which $5^m \div 5^{-3} = 5^5$.

Solution:

Given
$$5^m \div 5^{-3} = 5^5$$

 $\Rightarrow 5^{m-(-3)} = 5^5$ [: $a^m \div a^n = a^{m-n}$]
 $\Rightarrow 5^{m+3} = 5^5$

Comparing exponents both sides, we get

$$\Rightarrow$$
 $m+3=5$

$$\Rightarrow$$
 $m = 5 - 3$

$$\Rightarrow$$
 $m=2$

Therefore, the value of m is 2

6. Evaluate:

(i)
$$\left\{ \left(\frac{1}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right\}^{-1}$$

(ii)
$$\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-4}$$

(i)
$$\left\{ \left(\frac{1}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right\}^{-1} = \left\{ \left(\frac{3}{1} \right)^{1} - \left(\frac{4}{1} \right)^{1} \right\}^{-1}$$

$$\left[\because a^{-m} = \frac{1}{a^{m}} \right]$$

$$= \{3 - 4\}^{-1} = -1$$
Hence,
$$\left\{ \left(\frac{1}{3} \right)^{-1} - \left(\frac{1}{4} \right)^{-1} \right\}^{-1} = -1$$

(ii)
$$\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-4} = \frac{5^{-7}}{8^{-7}} \times \frac{8^{-4}}{5^{-4}}$$
 $\left[\because \left(\frac{a}{b}\right)^m = \frac{a^m}{a^n}\right]$
 $= 5^{-7 - (-4)} \times 8^{-4 - (-7)}$ $\left[\because a^m \div a^n = a^{m-n}\right]$
 $= 5^{-7 + 4} \times 8^{-4 + 7} = 5^{-3} \times 8^3 = \frac{8^3}{5^3}$ $\left[\because a^{-m} = \frac{1}{a^m}\right]$
 $= \frac{512}{125}$
Hence, $\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-4} = \frac{512}{125}$

7. Simplify:

(i)
$$\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}} (t \neq 0)$$

(ii)
$$\frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}}$$

Solution:

(i)
$$\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}} = \frac{5^{2} \times t^{-4}}{5^{-3} \times 5 \times 2 \times t^{-8}} = \frac{5^{2-(-3)-1} \times t^{-4-(-8)}}{2} \qquad [\because a^{m} \div a^{n} = a^{m-n}]$$
$$= \frac{5^{2+3-1} \times t^{-4+8}}{2} = \frac{5^{4} \times t^{4}}{2} = \frac{625}{2} t^{4}$$

(ii)
$$\frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}} = \frac{3^{-5} \times (2 \times 5)^{-5} \times 5^{3}}{5^{-7} \times (2 \times 3)^{-5}} = \frac{3^{-5} \times 2^{-5} \times 5^{-5} \times 5^{3}}{5^{-7} \times 2^{-5} \times 3^{-5}} \quad [\because (ab)^{m} = a^{m}b^{m}]$$

$$= \frac{3^{-5} \times 2^{-5} \times 5^{-5+3}}{5^{-7} \times 2^{-5} \times 3^{-5}} = \frac{3^{-5} \times 2^{-5} \times 5^{-2}}{5^{-7} \times 2^{-5} \times 3^{-5}} \quad [\because a^{m} \times a^{n} = a^{m+n}]$$

$$= 3^{-5-(-5)} \times 2^{-5-(-5)} \times 5^{-2-(-7)} \quad [\because a^{m} \div a^{n} = a^{m-n}]$$

$$= 3^{-5+5} \times 2^{-5+5} \times 5^{-2+7} = 3^{0} \times 2^{0} \times 5^{5}$$

$$= 1 \times 1 \times 3125 \quad [\because a^{0} = 1]$$

$$= 3125$$

Exercise 12.2

1. Express the following numbers in standard from:

- (i) 0.000000000085
- (ii) 0.0000000000942
- (iii) 602000000000000
- (iv) 0.0000000837
- (v) 31860000000

(i)
$$0.0000000000085 = 0.000000000085 \times \frac{10^{12}}{10^{12}} = 8.5 \times 10^{-12}$$

(ii)
$$0.00000000000942 = 0.0000000000942 \times \frac{10^{12}}{10^{12}} = 9.42 \times 10^{-12}$$

(iii)
$$6020000000000000 = 602000000000000 \times \frac{10^{15}}{10^{15}} = 6.02 \times 10^{15}$$

(iv)
$$0.00000000837 = 0.00000000837 \times \frac{10^9}{10^9} = 8.37 \times 10^{-9}$$

(v)
$$31860000000 = 31860000000 \times \frac{10^{10}}{10^{10}} = 3.186 \times 10^{10}$$

- **2.** Express the following numbers in usual form:
 - (i) 3.02×10^{-6}
 - (ii) 4.5×10^4
 - (iii) 3×10^{-8}
 - (iv) 1.0001×10^9
 - (v) 5.8×10^{12}
 - (vi) 3.61492×10^6

Solution:

(i)
$$3.02 \times 10^{-6} = \frac{3.02}{10^6} = 0.00000302$$

(ii)
$$4.5 \times 10^4 = 4.5 \times 10000 = 45000$$

(iii)
$$3 \times 10^{-8} = \frac{3}{10^8} = 0.00000003$$

(iv)
$$1.0001 \times 10^9 = 1000100000$$

(v)
$$5.8 \times 10^{12} = 5.8 \times 1000000000000 = 5800000000000$$

(vi)
$$3.61492 \times 10^6 = 3.61492 \times 1000000 = 3614920$$

- **3.** Express the number appearing in the following statements in standard form:
 - (i) 1 micron is equal to $\frac{1}{1000000}$ m.

- (ii) Charge of an electron is 0.000,000,000,000,000,000,16 coulomb
- (iii) Size of a bacteria is 0.0000005 m.
- (iv) Size of a plant cell is 0.00001275 m.
- (v) Thickness if a thick paper is 0.07 mm.

- (i) 1 micron = $\frac{1}{1000000} = \frac{1}{10^6} = 1 \times 10^{-6}$ m.
- (ii) Charge of an electron is 0.000,000,000,000,000,000,16 coulomb = $0.000,000,000,000,000,000,000,16 \times \frac{10^{19}}{10^{19}} = 1.6 \times 10^{-19}$ coulomb
- (iii) Size of a bacteria = $0.0000005 = \frac{5}{10000000} = \frac{5}{10^7} = 5 \times 10^{-7} \text{m}.$
- (iv) Size of a plant cell is $0.00001275 \text{ m} = 0.00001275 \times \frac{10^5}{10^5} = 1.275 \times 10^{-5} \text{ m}$
- (v) Thickness if a thick paper = 0.07 mm = $\frac{7}{100}$ mm = $\frac{7}{10^2}$ = 7 × 10⁻² mm.
- **4.** In a stack there are 5 books each of thickness 20 mm and 5 paper sheets each of thickness 0.016 mm. What is the total thickness of the stack?

Solution:

Thickness of one book = 20 mm

Thickness of 5 books = $20 \times 5 = 100 \text{ mm}$

Thickness of one paper = 0.016 mm

Thickness of 5 papers = $0.016 \times 5 = 0.08 \text{ mm}$

Total thickness of stack = 100 + 0.08

= 100.08mm

$$= 100.08 \times \frac{10^2}{10^2} = 1.0008 \times 10^2 \text{ mm}$$

