

FACULTY OF COMPUTING

SEMESTER 1 2023/2024

SECI1013 – DISCRETE STRUCTURE

SECTION 3

ASSIGNMENT 1 – CHAPTER 1

LECTURER: DR. NOR HAIZAN BT MOHAMED RADZI

STUDENT NAME	MATRIC NO
CHUA JIA LIN	A23CS0069
CHERYL CHEONG KAH VOON	A23CS0060
CHERYL CHEONG KAH VOON	A23CS0060

(ii) Student does not have an account in any three sosial networks.

- = 30 students
- (iii) Student have exactly two social networks

= 40 students

(iv) Student have social media account other than facebook

: 55

1A1= 4

(iii)
$$(x \beta = \{(3,2), (3,3), (3,5), (3,7), (6,2), (6,3), (6,5), (6,5), (6,7), (6,7), (6,9), (9,2), (9,3), (9,5), (9,7)\}$$

2a. Using truth table:

P	2	~p	(pVq)	~(pvq)	(~p1q)	~(pvq)v(~pnq)
Ť	T	4	T	F	F	F
T	F	F	T	F	F	F
F	T	Т	T	F	T	T
F	F	T	F	T	F	T

: ~(pvq)v(~pnq) =~p(venfied)

Using logic. property law:

$$\sim (\rho \vee q) \vee (\sim \rho \wedge q) = (\sim \rho \wedge \sim q) \vee (\sim \rho \wedge q)$$

$$= \sim \rho \wedge (\sim q \vee q)$$

$$= \sim \rho \wedge \cup$$

$$= \sim \rho$$

$$= \sim \rho$$

$$\therefore \sim (\rho \vee q) \vee (\sim \rho \wedge q) = \sim \rho \text{ (verified)}$$

[De Morgan's laws] [Pistulbutive laws]

bi. (r12) → p 11. (~1(2-9) →~P \$\langle V

111. ~p-> (~rn~a)

C. Negation of $\forall x (x^2 + 2x - 3 = 0) : \sim (\forall x (x^2 + 2x - 3 = 0)) = \exists x (\sim (x^2 + 2x - 3 = 0))$ Ix (~(x2+2x-3=0)) where the domain of discourse is integer. When x=2, x2+2x-3=(2)2+2(2)3 $= 5(\neq 0)$

-. The proposition Fx (~(x2+2x-3=0)) (s TRUE.

2d. Let P(x): x is student who can speak Russian. Q(x): x is student who know C++. where the domain of discourse consist of all students at school.

:. 3x(p(x) / ~ Q(x))

:. 4x(p(x) / Q(x))

:.. 4x(~p(x) / ~ Q(x))

3a. Let P(X): a2-3b is even Q(X): a is even and b is even YX (P(X) -> Q(X)) $p(x) \rightarrow Q(x) = \sim Q(x) \rightarrow \sim p(x)$ ~Q(X) is true: - Case 1: a is odd and b is even - Case 2: a is even and b is odd - Case 3: a is odd and b is odd Case 1: if a is odd and b is even, let a=2m+1, b=2n $a^2-3b=(2mt1)^2-3(2n)$ = 4m2+4m+1-6n = 2(2m2+2m-3n)+/ t= 2m2+2m-3n : a2-3b=2t+1 (odd) - ~Q(X) is true, ~ P(X) is true, ~Q(X) → ~P(X) is true. Care 2: if a is even and b is odd, let a = 2k, b = 2l+1 $a^2-3b=(2k)^2-3(2l+1)$ $=4k^2-61-3$ = 4k2-61-4+1 = 2(262-31-2)+1 5= 2k2-31-2 1. a2-3b = 2s+1 (odd) .: ~ Q(X) is true, ~ P(X) is true, ~ Q(X) -> ~ P(X) is true. Case 3: a is odd and b is odd, let a = 2v+1, b = 2w+1 $a^2-3b=(2v+1)^2-3(2w+1)$ = 4v2+4v+1-6w-3 =2(2v2+2v-3w-1) r= 22+2v-3w-1 : a2-3b = 2r (even) - ~ Q(X) is true, ~ P(X) is false, ~ Q(X) → ~ P(X) is false. .. The statement is talse because ~Q(X) -> ~P(X) is false in case 3.