# Model Identification and Data Analysis

Matteo Secco

July 11, 2021

# Contents

| Ι                    | Prediction                                           | 6                          |
|----------------------|------------------------------------------------------|----------------------------|
| 1                    | Probability Recall  1.1 Random Vectors               | 6<br>6<br>6                |
| 2                    | Spectral Analysis2.1 Foundamentals                   | 8<br>8<br>8<br>9           |
| 3                    | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | 10<br>10<br>11<br>11<br>12 |
| <b>4</b><br><b>5</b> | Auto Regressive Processes           4.1 AR(1)        | 13<br>13<br>14<br>16       |
| 6                    | Prediction problem 6.1 Fake problem                  | 17<br>17<br>17<br>18<br>18 |
| 11<br>7              | Identification Prediction Error Minimization         | 19<br>20                   |
| II                   |                                                      | 21                         |
| A                    | State-space models  A.1 State-space representation   | 21<br>21<br>21<br>22       |

| В            | Converting representations one to another                                                                                                    | 23         |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------|
|              | B.1 State space to Transfer function                                                                                                         | 23         |
|              | B.2 Transfer Function to State Space                                                                                                         | 23         |
|              | B.3 Transfer function to Impulse response                                                                                                    | 23         |
|              | B.4 Impulse response to Tranfer function                                                                                                     | 23         |
|              | B.5 State space to Impulse response                                                                                                          | 24         |
| $\mathbf{C}$ | Controllability and Observability                                                                                                            | <b>25</b>  |
| D            | Hankel Matrix                                                                                                                                | 26         |
| $\mathbf{E}$ | Subspace-based State Space System Identification                                                                                             | 27         |
|              | E.1 Obtain $F, G, H$ from a noise-free IR                                                                                                    | 27         |
| $\mathbf{F}$ | Obtain $F, G, H$ from a noisy IR                                                                                                             | 28         |
|              |                                                                                                                                              |            |
| IV           | Parametric black-box system identification using free                                                                                        | quency     |
| do           | omain approach                                                                                                                               | <b>2</b> 9 |
| $\mathbf{G}$ | Experiment design and data pre-processing                                                                                                    | 29         |
| Н            | Model class selection                                                                                                                        | 31         |
| Ι            | Performance index                                                                                                                            | 32         |
| J            | Optimization                                                                                                                                 | 33         |
| <b>.</b> .   |                                                                                                                                              | 0.4        |
| $\mathbf{V}$ | Kalman filter                                                                                                                                | 34         |
| $\mathbf{K}$ | Motivations and Goals                                                                                                                        | <b>35</b>  |
|              | K.1 Kalman on Basic Systems                                                                                                                  | 35         |
|              | K.2 Exogenous input                                                                                                                          | 36         |
|              | K.3 Multi-step prediction                                                                                                                    | 37         |
|              | K.4 Filter $(\hat{x}(t t) \dots \dots$ | 37         |
|              | K.5 Time-varying systems                                                                                                                     | 37         |
|              | K.6 Non linear system                                                                                                                        | 37         |
| ${f L}$      | Asymptotic solution of K.F.                                                                                                                  | 38         |
|              | L.1 Basic idea                                                                                                                               | 38         |
|              | L.2 Existence of $\overline{K}$                                                                                                              | 38         |
|              | L.2.1 First asymptotic theorem                                                                                                               | 38         |
|              | L.2.2 Second asymptotic theorem                                                                                                              | 39         |
| $\mathbf{M}$ | Extension to non-linear systems                                                                                                              | 40         |

| N            | N Optimization of gain $K$                 |       | 41        |
|--------------|--------------------------------------------|-------|-----------|
|              | N.1 Direct solution                        |       | 41        |
|              | N.2 KF theory solution                     | <br>• | 41        |
| $\mathbf{V}$ | /I Software-sensing with Blabk box Methods |       | 43        |
| О            | Linear Time Invariant Systems              |       | 44        |
| P            | Non-linear systems                         |       | 45        |
|              | P.1 Recurrent neural network               |       | 45        |
|              | P.2 FIR architecture                       |       | 45        |
|              | P.3 IRR scheme                             |       | 48        |
|              | P.4 Physical regressors                    | <br>• | 49        |
| $\mathbf{V}$ | /II Grey-box System Identification         |       | <b>50</b> |
| $\mathbf{Q}$ | Using Kalman Filter                        |       | <b>50</b> |
| •            | Q.1 Problem definition                     |       | 50        |
|              | Q.2 State extension                        |       | 50        |
|              | Q.3 Design choice                          |       | 50        |
|              | Q.4 Applicability                          |       | 51        |
| $\mathbf{R}$ | Simulation Error Method                    |       | <b>52</b> |
|              | R.1 Dataset                                |       | 52        |
|              | R.2 Model                                  |       | 52        |
|              | R.3 Performance index                      |       | 52        |
|              | R.4 Optimization                           |       | 52        |
|              | R.5 Limitations                            | <br>• | 52        |
| $\mathbf{V}$ | /III Minimum Variance Control              |       | <b>54</b> |
| $\mathbf{S}$ |                                            |       | <b>55</b> |
|              | S.1 Simplified problem 1                   |       | 56        |
|              | S.2 Simplified problem 2                   |       | 56        |
|              | S.3 General solution                       | <br>• | 57        |
| IX           | X Recursive Identification                 |       | <b>58</b> |
| $\mathbf{T}$ | C Least square                             |       | <b>58</b> |
| -            | T.1 Recursive Least Square                 |       | 58        |
|              | T.2 First form                             |       | 59        |
|              | T.3 Second form                            |       | 59        |
|              | T.4 Third form                             |       | 60        |

|              | T.5 Forgetting factor                 | 60        |
|--------------|---------------------------------------|-----------|
| $\mathbf{X}$ | Cheatsheet                            | 61        |
| U            | Probability Recall                    | 61        |
| $\mathbf{V}$ | Spectral analysis                     | 62        |
| W            | Moving Average MA(n) W.1 $MA(\infty)$ | <b>63</b> |
| X            | Auto Regressive AR(n)                 | 64        |
| Y            | Known predictors                      | 65        |

# Part I

# Prediction

# 1 Probability Recall

# 1.1 Random Vectors

Variance  $Var[v] = E[(v - E[v])^2]$ 

Cross-Variance Var[v, u] = E[(v - E[v])(u - E[u])]

 $\begin{array}{ll} \textbf{Covariance coefficient} & \delta[i,j] = \frac{Var[i,j]}{\sqrt{Var[i]}} \\ \delta[i,j] = 0 \implies \text{i, j uncorrelated} \\ |\delta[i,j]| = 1 \implies i = \alpha j \end{array}$ 

# 1.2 Random processes

v(t,s) t time instant, s expetiment outcome (generally given)

**Mean** m(t) = E[v(t,s)]

 ${\bf Variance} \quad \lambda^2(t) = Var[v(t)]$ 

 $\textbf{Covariance function} \quad \gamma(t_1,t_2) = E[(v(t_1)-m(t_1))(v(t_2)-m(t_2))] = \gamma(t_2,t_1)$ 

Normalized Covariance Function  $\rho(\tau) = \frac{\gamma(\tau)}{\gamma(0)}$  $\forall$  stationary processes:  $|\rho(\tau)| \le 1 \quad \forall \tau$ 

# 1.3 Important process classes

Stationary process

- m(t) = m constant
- $\lambda^2(t) = \lambda^2 \text{ constant}$
- $\gamma(t_1, t_2) = f(t_2 t_1) = \gamma(\tau)$  covariance depends only on time difference  $\tau$   $|\gamma(\tau)| \le \gamma(0) \quad \forall \tau$

White noise  $\eta(t) \sim WN(m, \lambda^2)$ 

- Stationary process
- $\gamma(\tau) = 0 \quad \forall \tau \neq 0$

$$v(t) = \alpha \eta(t) + \beta \quad \eta(t) \sim WN(0, \lambda^2) \qquad \implies \qquad v(t) \sim WN(\beta, \alpha^2 \lambda^2)$$

# 2 Spectral Analysis

# 2.1 Foundamentals

Spectrum

$$\Gamma(\omega) = \overbrace{F(\gamma(\tau))}^{\text{Fourier transform}} = \sum_{\tau = -\infty}^{+\infty} \gamma(\tau) \cdot e^{-j\omega\tau}$$

Euler formula  $\Gamma(\omega) = \gamma(0) + 2cos(\omega)\gamma(1) + 2cos(2\omega)\gamma(2) + \dots$ 

Spectrum properties

- $\Gamma: \mathbb{R} \to \mathbb{R}$
- $\Gamma$  is periodic with  $T=2\pi$
- $\Gamma$  is even  $[\Gamma(-\omega) = \Gamma(\omega)]$
- $\Gamma(\omega) \ge 0 \quad \forall \omega$

$$\eta(t) \sim WN(0, \lambda^2) \implies \Gamma_{\eta}(\omega) = \gamma(0) = Var[\eta(t)] = \lambda^2$$

**Anti-Transform** 

$$\gamma(\tau) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \Gamma(\omega) e^{k\omega\tau} \, dw$$

Complex spectrum

$$\phi(z) = \sum_{\tau = -\infty}^{+\infty} \omega(\tau) z^{-\tau}$$

$$\Gamma(\omega) = \Phi(e^{j\omega})$$

# 2.2 Fundamental theorem of Spectral Analysis

Fundamental theorem of Spectral Analysis allows to derive the (real and/or complex) spectrum of the output from the input and the transfer function of the system

$$\Gamma_{yy}(\omega) = |W(e^{j\omega})|^2 \cdot \Gamma_{uu}(\omega)$$

$$\Phi_{yy}(z) = W(z)W(z^{-1}) \cdot \Phi_{uu}(z)$$

# 2.3 Canonical representation of a Stationary Process

A stationary process can be represented by an infinite number of transfer functions. The canonical representation is the transfer function W(z) such that:

- Numerator and denominator have same degree
- Numerator and denominator are monic (highest grade coefficient is 1)
- Numerator and denominator are coprime (W(z) cannot be simplified)
- numerator and denominator are stable polynomials (all poles and zeros of W(z) are inside the unit disk)

# 3 Moving Average Processes

Given  $\eta(t) \sim WN(0, \lambda^2)$ 

# $3.1 \quad MA(1)$ :

 $\mathbf{Model}$ 

$$v(t) = c_0 \eta(t) + c_1 \eta(t-1)$$

Mean

$$E[v(t)] = c_0 \cdot E[\eta(t)] + c_1 \cdot E[\eta(t)]$$
$$= c_0 \cdot 0 + c_1 \cdot 0$$
$$E[v(t)] = 0$$

#### Variance

$$\begin{split} Var[v(t)] &= E[(v(t) - E[v(t)])^2] \\ &= E[(v(t))^2] \\ &= E[(c_0 \cdot \eta(t)^2 + c_1 \cdot \eta(t-1))^2] \\ &= c_0^2 \cdot E[\eta(t)^2] + c_1^2 \cdot E[\eta(t-1)^2] + \underbrace{2c_0c_1 \cdot E[\eta(t)\eta(t-1)]}_{0} \\ &= c_0^2 \cdot E[\eta(t)^2] + c_1^2 \cdot E[\eta(t-1)^2] \\ &= c_0^2 \lambda^2 + c_1^2 \lambda^2 \\ \hline Var[v(t)] &= (c_0^2 + c_1^2)\lambda^2 \end{split}$$

#### Covariance

$$\begin{split} \gamma(t_1,t_2) &= E[(v(t_1) - E[v(t_1)]) & \cdot (v(t_2) - E[v(t_2)])] \\ &= E[(c_0\eta(t_1) + c_1\eta(t_1 - 1)) \cdot (c_0\eta(t_2) + c_1\eta(t_2 - 1))] \\ &= c_0^2 E[\eta(t_1)\eta(t_2)] & + c_1^2 E[\eta(t_1 - 1)\eta(t_2 - 1) \\ & + c_0 c_1 E[\eta(t_1)\eta(t_2 - 1)] + c_0 c_1 E[\eta(t_1 - 1)\eta(t_2)] \end{split}$$

$$\gamma(\tau) = \begin{cases} c_0^2 \lambda^2 + c_1^2 \lambda^2 & \text{if } \tau = 0\\ c_0 c_1 \lambda^2 & \text{if } \tau = \pm 1\\ 0 & \text{otherwise} \end{cases}$$

# 3.2 MA(n)

Model

$$v(t) = c_0 \eta(t) + c_1 \eta(t-1) + \dots + c_n \eta(t-n)$$
  
=  $(c_0 + c_1 z^{-1} + \dots + c_n z^{-n}) \eta(t)$ 

Transfer function

$$W(z) = c_0 + c_1 z^{-1} + \dots + c_n z^{-n} = \frac{c_0 z^n + c_1 z^{n-1} + \dots + c_n}{z^n}$$

All poles are in the complex origin

Mean

$$E[v(t)] = (c_0 + c_1 + \dots + c_n) \underbrace{E[\eta(t)]}_{0}$$

$$\boxed{E[v(t) = 0]}$$

Covariance function

$$\gamma(\tau) = \begin{cases} \lambda^2 \cdot \sum_{i=0}^{n-\tau} c_i c_{i-\tau} & |\tau| \le n \\ 0 & \text{otherwise} \end{cases}$$

example

$$\begin{split} \gamma(0) &= (c_0^2 + c_1^2 + \ldots + c_n^2) \lambda^2 \\ \gamma(1) &= (c_0 c_1 + c_1 c_2 + \ldots + c_{n-1} c_n) \lambda^2 \\ \gamma(2) &= (c_0 c_2 + c_1 c_3 + \ldots + c_{n-2} c_n) \lambda^2 \\ &\cdots \\ \lambda(n) &= (c_0 c_n) \lambda^2 \\ \lambda(k) &= 0 \ \forall k > n \end{split}$$

# 3.3 $MA(\infty)$

Model

$$v(t) = c_0 \eta(t) + c_1 \eta(t-1) + \dots + c_k \eta(t-k) + \dots = \sum_{i=0}^{\infty} c_i \eta(t-i)$$

Variance

$$\gamma(0) = (c_0^2 + c_1^2 + \dots + c_k^2 + \dots)\lambda^2 = \lambda^2 \sum_{i=0}^{\infty} c_i^2$$

# 3.4 Well definition of an $MA(\infty)$

We need to have  $|\gamma(\tau)| \leq \gamma(0)$ , so we must require that

$$\gamma(0) = \lambda^2 \sum_{i=0}^{\infty} c_i^2 \text{ is finite}$$

# 4 Auto Regressive Processes

# 4.1 AR(1)

Model

$$v(t) = av(t-1) + \eta(t)$$

Mean

$$E[v(t)] = E[av(t-1)] + \overbrace{E[\eta(t)]}^{0}$$

$$= aE[v(t-1)]$$

$$= aE[v(t)]$$

$$(1-a)E[v(t)] = 0$$

$$\boxed{E[v(t)] = 0}$$

#### Covariance

 $\mathbf{MA}(\infty)$  method Observe as an AR(1) can be axpressed as an MA( $\infty$ )

$$\begin{split} v(t) &= av(t-1) &+ \eta(t) \\ &= a[av(t-2) + \eta(t-1)] &+ \eta(t) \\ &= a^2v(t-2) &+ a\eta(t-1) + \eta(t) \\ &= a^2[v(t-3) + \eta(t-2)] &+ a\eta(t-1) + \eta(t) \\ &= \underbrace{a^nv(t-n)}_{\to 0} + \sum_{i=0}^{\infty} a^i\eta(t-i) \\ &\underbrace{MA(\infty)} \end{split}$$

In particular, the result depends on an  $MA(\infty)$  having  $\sum_{i=0}^{\infty} c_i = \sum_{i=0}^{\infty} a^i$ . To check if the variance is finite we check  $\gamma(0) = \lambda^2 \sum_{i=0}^{\infty} a^{2i} < \infty$ . The given is a geometric series, convergent for |a| < 1. Under this hypothesis its value is

$$\gamma(0) = \lambda^2 \sum_{i=0}^{\infty} a^{2i} = \frac{\lambda^2}{1 - a^2}$$

Applying the formula of the variance of MA processes we get

$$\gamma(1) = (c_0c_1 + c_1c_2 + \dots)\lambda^2 = (a + aa^2 + \dots)\lambda^2 = a(1 + a^2 + a^4 + \dots)\lambda^2 = a\lambda^2 \sum_{i=0}^{\infty} a^{2i} = a\frac{\lambda^2}{1 - a^2} = a\gamma(0)$$

$$\gamma(2) = (c_0c_2 + c_1c_3 + \dots)\lambda^2 = (a^2 + aa^3 + \dots)\lambda^2 = a^2(1 + a^2 + a^4 + \dots)\lambda^2 = a^2\lambda^2 \sum_{i=0}^{\infty} a^{2i} = a^2\frac{\lambda^2}{1 - a^2} = a^2\gamma(0)$$

$$\gamma(\tau) = a^{|\tau|} \frac{\lambda^2}{1 - a^2}$$

#### Yule-Walkler Equations

$$\begin{split} Var[v(t)] &= E[v(t)^2] \\ &= E[(av(t) + \eta(t))^2] \\ &= a^2 \underbrace{E[v(t-1)^2]}_{=Var[v(t-1)]} + \underbrace{E[\eta(t)^2]}_{=\lambda^2} + 2a \underbrace{E[v(t-1)\eta(t)]}_{v(t-1) \text{ depends on } \eta(t-2)} \\ &\stackrel{=Var[v(t)]}{=\gamma(0)} \xrightarrow{=\gamma(0)} & \eta(t) \text{ independent of } \eta(t-2) \\ &\stackrel{=(v(t-1)\eta(t)]}{=\gamma(0)} & E[v(t-1)\eta(t)] = 0 \end{split}$$
 
$$\gamma(0) = a^2 \gamma(0) + \lambda^2$$
 
$$\boxed{\gamma(0) = \frac{\lambda^2}{1-a^2}}$$

To find  $\gamma(\tau)$ , we start from the model  $v(t) = av(t-1) + \eta(t)$ .

$$\begin{aligned} v(t) &= av(t-1) &+ \eta(t) \\ v(t)v(t-\tau) &= av(t-1)v(t-\tau) &+ \eta(t)v(t-\tau) \\ \underbrace{E[v(t)v(t-\tau)]}_{\gamma(\tau)} &= a\underbrace{E[v(t-1)v(t-\tau)]}_{\gamma(\tau-1)} + \underbrace{E[\eta(t)v(t-\tau)]}_{0} \\ \boxed{\gamma(\tau) &= a\gamma(\tau-1)} \end{aligned}$$

We can join the two by inductive reasoning, obtaining

$$\gamma(\tau) = a^{|\tau|} \frac{\lambda^2}{1 - a^2}$$

Long Division Leads to same result, but is boring

## $4.2 \quad AR(n)$

Model

$$v(t) = a_1 v(t-1) + a_2 v(t-2) + \dots + a_n v(t-n) + \eta(t)$$

# Transfer function

$$W(z) = \frac{z^n}{z^n - a_1 z_{n-1} - \dots - a_n}$$

Mean

$$E[v(t)] = a_1 E[v(t-1]) + a_2 E[v(t-2)] + \dots + a_n E[v(t-n)] + \underbrace{E[\eta(t)]}_{0}$$
 
$$m = a_1 m + a_2 m + \dots + a_n m$$
 
$$(1 - a_1 - a_2 - \dots - a_n) m = 0$$
 
$$\boxed{E[v(t)] = 0}$$

#### **ARMA Processes** 5

# Model

$$v(t) = a_1 v(t-1) + \ldots + a_{n_a} v(t-n_a) + c_0 \eta(t) + \ldots + c_{n_c} v(t-n_c)$$

Can also be espressed as  $V(t) = \frac{C(z)}{A(z)} \eta(t)$ , where

$$C(z) = c_0 + c_1 z^{-1} + \dots + c_{n_c} z^{-n_c}$$
$$A(z) = 1 - a_1 z^{-1} - \dots - a_{n_a} z^{-n_a}$$

$$A(z) = 1 - a_1 z^{-1} - \dots - a_{n_a} z^{-n_a}$$

Such process is stationary if all the poles of W(z) are inside the unit disk.

# 6 Prediction problem

We want to predict v(t+r) from v(t), v(t-1), ..., where r is called prediction horizon, of the following stationary process:

$$\xrightarrow{\eta} W(z) \xrightarrow{v}$$

# 6.1 Fake problem

Having a process with transfer function W(z), we can compute it in polynomial form using the long division algorithm

$$W(z) = w_0 + w_1 z^{-1} + w_2 z^{-2} + \dots$$

We can calculate

$$v(t+r) = W(z)\eta(t+r) = \underbrace{w_0\eta(t+r) + w_1\eta(t+r-1) + \ldots + w_{r-1}\eta(t+1)}_{\alpha(t) \text{ unpredictable: future of } \eta \text{ involved}} + \underbrace{w_r\eta(t) + w_{r+1}\eta(t-1) + \ldots}_{\beta(t) \text{ predictable}}$$

The optimal fake predictor is then

$$v(t+r|t) = w_r \eta(t) + w_{r+1} \eta(t-1) + \dots = \beta(t)$$

And the prediction error is

$$\epsilon(t) = v(t+r) \qquad -\hat{v}(t+r|t)$$

$$= \alpha(t) + \beta(t) \qquad -\beta(t)$$

$$= \alpha(t)$$

$$\boxed{\epsilon(t) = w_0 \eta(t+r) + w_1 \eta(t+r-1) + \dots + w_{r-1} \eta(t+1)}$$
$$\boxed{Var[\epsilon(t)] = (w_0^2 + w_1^2 + \dots + w_{r-1}^2)\lambda^2}$$

# 6.2 True Problem

We want to estimate v(t+r) form v(t), having transfer function W(z) and  $\hat{W}_r(z)$  the solution to the fake problem. We can calculate the transfer function of the real predictor from the process as

$$W_r(z) = W(z)^{-1} \cdot \hat{W}_r(z)$$

For ARMA processes a shortcut exists:

$$\hat{v}_{\text{ARMA}}(t|t-1) = \frac{C(z)A(z)}{C(z)} \qquad \text{having } W(z) = \frac{C(z)}{A(z)}$$

# 6.3 Prediction with eXogenous variables

An exogenous variable is a <u>deterministic</u> input variable in the system

# 6.3.1 ARX model

$$v(t) = a_1 v(t-1) + \dots + a_{n_a} v(t-n_a) + b_1 u(t-1) + \dots + b_{n_b} u(t-n_b) + \eta(t) A(z) v(t) = B(z) u(t-1) + \dots + a_{n_a} v(t-n_a) + b_1 u(t-1) + \dots + b_{n_b} u(t-n_b) + \eta(t) A(z) v(t) = B(z) u(t-1) + \dots + a_{n_a} v(t-n_a) + b_1 u(t-1) + \dots + b_{n_b} u(t-n_b) + \eta(t) A(z) v(t) = B(z) u(t-1) + \dots + a_{n_a} v(t-n_a) + b_1 u(t-1) + \dots + a_{n_b} u(t-n_b) + \eta(t) A(z) v(t) = B(z) u(t-1) + \dots + a_{n_b} u(t-n_b) + u(t-1) +$$

Transfer functions from u and  $\boldsymbol{\eta}$ 

$$W_u(z) = \frac{B(z)}{A(z)} \qquad W_{\eta}(z) = \frac{1}{A(z)}$$

# 6.3.2 ARMAX model

$$A(z)v(t) = C(z)\eta(t) + B(z)u(t-1)$$
  
$$y(t) = W(z)\eta(t) + G(z)u(t)$$

Predictor

$$\hat{y}(t|t-1) = \frac{C(z) - A(z)}{C(z)}y(t) + \frac{B(z)}{C(z)}u(t-1)$$

# Part II Identification

Consists of estimating a model from data.

# 7 Prediction Error Minimization

Aims to minimize  $\epsilon(t) = v(t) - \hat{v}(t|t-r)$  Steps:

- 1. Data collection: collect  $\vec{u}$  and  $\vec{y}$
- 2. Family selection: choose a family of models  $M(\theta)$

$$\mathbf{MA(1)} \ \theta = [a]$$

$$\mathbf{MA(n)} \ \theta = [a_1, ..., a_n]$$

$$\mathbf{ARMA}(n_a, n_c) \ \theta = [a_1, ..., a_{n_a}, c_1, ..., c_{n_c}]$$

3. Select an optimization criterion

Mean Squared error 
$$J(\theta) = \frac{1}{N} \sum_{t=1}^{N} \epsilon_{\theta}(t)^2$$
  
Mean absolute error  $J(\theta) = \frac{1}{N} \sum_{t=1}^{N} |\epsilon_{\theta}(t)|$ 

- 4. Optimization find  $\hat{\theta} = argmin J(\theta) \implies \frac{dJ(\theta)}{d\theta} = 0$
- 5. Validation verify if the result satisfies the requirements

# Part III

# Black-Box non-parametric I/O systems

# A State-space models



Known (measured) data

$$\{u(1), \dots, u(N)\}\$$
 input  $\{y(1), \dots, y(N)\}\$  output

# A.1 State-space representation

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) & \text{state equations} \\ y(t) = Hx(t) + Du(t) & \text{output equations} \end{cases}$$

Where  $F_{n\times n}$ ,  $G_{n\times 1}$ ,  $H_{1\times n}$  and  $D_{1\times 1}$  are matrices.

**S.S. representation is not unique** Given any invertible matrix T, let  $F_1 = TFT^{-1}$ ,  $G_1 = TG$ ,  $H_1 = HT^{-1}$ ,  $D_1 = D$ . Then the system  $\{F, G, H, D\}$  is equivalent to the system  $\{F_1, G_1, H_1, D_1\}$ .

## A.2 Transfer function representation

$$W(z) = \frac{B(z)}{A(z)}z^{-k} = \frac{b_0 + b_1 z^{-1} + \dots + b_p z^{-p}}{a_0 + a_1 z^{-1} + \dots + a_n z^{-n}}z^{-k}$$

W(z) is a rational function of the z operator  $\rightarrow$  is a digital filter

Infinite impulse response  $W(z) = \frac{z^{-1}}{1 + \frac{1}{3}z^{-1}}$ 

Finite impulse response  $W(z)=z^{-1}+\frac{1}{2}z^{-2}+\frac{1}{4}z^{-3}$ 

# A.3 Convolution of the input with the inpulse response

Let's call  $\omega(1), \omega(2), \ldots$  the values of y(t) when u(t) = impulse(0), and let's measure the values of y at different times: . Then it can be proven that for any u(t)

$$y(t) = \sum_{k=0}^{\infty} \omega(k) u(t-k)$$

# B Converting representations one to another

# B.1 State space to Transfer function

Consider a strictly propter system:

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) \\ y(t+1) = Hx(t) + \mathcal{D}u(t) \end{cases} \Rightarrow \begin{cases} x(t+1) = Fx(t) + Gu(t) \\ y(t) = Hx(t) \end{cases}$$

Applying the z operator we get

$$zx(t) = Fx(t) + Gu(t)$$

$$x(t)(zI - F) = Gu(t)$$

$$x(t) = (zI - F)^{-1}Gu(t)$$

$$y(t) = H(zI - F)^{-1}Gu(t)$$

And we can extract the transfer function:

$$W(z) = H(zI - F)^{-1}G$$

# **B.2** Transfer Function to State Space

We have the transfer function

$$W(z) = \frac{b_0 z^{n-1} + b_1 z^{n-2} + \dots + b_{n-1}}{z^n + a_0 z^{n-1} + \dots + a_n}$$

The formulas for the state space matrices is

$$F = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & 0 & 1 \\ -a_n & -a_{n-1} & \dots & \dots & -a_1 \end{bmatrix} \quad G = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \quad H = \begin{bmatrix} b_{n-1} & b_{n-2} & \dots & b_0 \end{bmatrix} \quad D = 0$$

#### B.3 Transfer function to Impulse response

Obtained by computing the  $\infty$  long division of W(z)

#### B.4 Impulse response to Tranfer function

**Z-transform** Given a discrete-time signal s(t) such that  $\forall t < 0 : s(t) = 0$ , it's Z-transform is

$$\mathcal{Z} = \sum_{t=0}^{\infty} s(t)z^{-t}$$

It can be proven that:

$$W(z) = \mathcal{Z}(\omega(t)) = \sum_{t=0}^{\infty} \omega(t) z^{-1}$$

NB: this works only in theory because of the infinite sum

# B.5 State space to Impulse response

Consider the state space model:

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) \\ y(t) = Hx(t) \end{cases}$$

We have that:

$$x(1) = Ex(0) + Gu(0)$$
 =  $Gu(0)$   
 $y(1) = Hx(1)$  =  $HGu(0)$ 

$$x(2) = Fx(1) + Gu(1)$$
 =  $FGu(0) + Gu(1)$   
 $y(2) = Hx(2)$  =  $HFGu(0) + HG(u1)$ 

$$x(3) = Fx(2) + Gu(2) = F^2Gu(0) + FGu(1) + Gu(2)$$
 
$$y(3) = Hx(3) = HF^2Gu(0) + HFGu(1) + HGu(2)$$
 :

$$y(t) = 0u(t) + HGu(t-1) + HFGu(t-2) + HF^2Gu(t-3) + \dots$$

The IR is:

$$\omega(t) = \begin{cases} 0 & \text{if } t = 0 \\ HF^{t-1}G & \text{if } t > 0 \end{cases}$$

# C Controllability and Observability

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) \\ y(t) = Hx(t) \end{cases}$$

**Fully observable system** The system is fully observable (from the output) ⇔ the observability matrix is full rank:

$$O = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^{n-1} \end{bmatrix} \qquad rank(O) = n$$

Fully controllable system The system is fully controllable (from the input) 

⇔ the controllability (also called reachability) matrix is full rank:

$$R = \begin{bmatrix} G & FG & \dots & F^{n-1}G \end{bmatrix}$$
  $rank(R) = n$ 

# D Hankel Matrix

Starting from  $\omega(1), \omega(2), \ldots, \omega(N)$  where  $N \geq 2n - 1$ , we can build the Hankel Matrix of order n:

$$H_n = \begin{bmatrix} \omega(1) & \omega(2) & \omega(3) & \dots & \omega(n) \\ \omega(2) & \omega(3) & \omega(4) & \dots & \omega(n+1) \\ \omega(3) & \omega(4) & \omega(5) & \dots & \omega(n+2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \omega(n) & \omega(n+1) & \omega(n+2) & \dots & \omega(2n-1) \end{bmatrix}$$

Knowing that

$$\omega(t) = \begin{cases} 0 & \text{if } t = 0\\ HF^{t-1}G & \text{if } t > 0 \end{cases}$$

We can rewrite

$$H_n = \begin{bmatrix} HG & HFG & HF^2G & \dots & HF^{n-1}G \\ \vdots & \ddots & & & \vdots \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & & \vdots \\ HF^{n-1}G & \dots & \dots & \dots & HF^{2n-2}G \end{bmatrix} = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^{n-1} \end{bmatrix} \cdot \begin{bmatrix} G & FG & \dots & F^{n-1}G \end{bmatrix} = O \cdot R$$

# E Subspace-based State Space System Identification

**Impulse experiment** Measure y(t) under the input u(t) = impulse(0)(0) How to derive F, G, H from  $\omega(0), \ldots, \omega(n)$ ?

- Assuming the IR measurement to be noise free  $\rightarrow$  easier, not realistic
- Measure  $\hat{\omega}(t)$  as a noisy signal and compute  $\omega(t) = \eta(t) \hat{\omega}(t)$

# E.1 Obtain F, G, H from a noise-free IR

1. Build the Hankel matrix of increasing order, and conpute the rank until  $rank(H_n) = rank(H_{n+1})$ . Then, n is the order of the IR

$$H_1 = \begin{bmatrix} \omega(1) \end{bmatrix}$$
  $H_2 = \begin{bmatrix} \omega(1) & \omega(2) \\ \omega(2) & \omega(3) \end{bmatrix}$   $H_3 = \dots$   $H_n = \dots$ 

2. Take  $H_{n+1}$  and factorize it in two rectangular matrix of size  $(n+1) \times n$  and  $n \times (n+1)$ :  $H_{n+1} = O_{n+1} \cdot R_{n+1}$ , where

$$O_{n+1} = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^n \end{bmatrix} \qquad R_{n+1} = \begin{bmatrix} G & FG & \dots & F^nG \end{bmatrix}$$

- 3. Estimate H,F,G:
  - Extract F and G from the first element of O and R
  - Define:

$$O_1 = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^{n-1} \end{bmatrix} \qquad O_2 = \begin{bmatrix} HF \\ \vdots \\ HF^n \end{bmatrix}$$

• Observe that  $O_1F = O_2$ , so  $F = O_1^{-1}O_2$ 

# F Obtain F, G, H from a noisy IR

The measurement is of  $\hat{\omega}(t) = \omega(t) + \eta(t)$ . To identify the process:

1. Build the Hankel matrix from data using all the N data available in one shot:

$$\hat{H}_{q \times d} = \begin{bmatrix} \hat{\omega}(1) & \hat{\omega}(2) & \dots & \hat{\omega}(d) \\ \hat{\omega}(2) & \hat{\omega}(3) & \dots & \hat{\omega}(d+1) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\omega}(q) & \hat{\omega}(q+1) & \dots & \hat{\omega}(q+d+1) \end{bmatrix}$$

Where q + d + 1 = N

2. Calculate the Singular Value Decomposition of  $\hat{H}_{q\times d}$ :

$$\hat{H}_{q \times d} = \hat{U}_{q \times q} \cdot \hat{S}_{q \times d} \cdot \hat{V}_{d \times d}^T$$

 $\hat{U}$  and  $\hat{V}$  are unitary matrices: they are invertible and their inverses are equal to their transpose.

$$\hat{S} = egin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & \\ & & & \sigma_d \end{bmatrix}$$

- 3. Plot the singular values  $(\sigma_i)$  and cut-off the three matrices:
  - Ideally, after a certain n (the order of the IR) there would be a jump dividing the signal (before) from the noise (after)
  - In reality no clear distinction exists, but it's possible to identify an interval of possible values of n. A tradeoff between complexity, precision and oferfitting takes place
- 4. Split  $\hat{U}, \hat{S}, \hat{V}^T$  obtaining  $U_{q \times n}, S_{n \times n}, V_{n \times d}^T$  and then recreate  $H_{qd} = USV^T$
- 5. H and G are estimated as for the unnoisy case. To estimate F we can build  $O_1$  and  $O_2$  as before, but then the system  $O_1 \cdot F = O_2$  cannot be solved directly as  $O_1$  is not square. We can instead compute the approximate least-square solution of the system:

$$F = (O_1^T O_1)^{-1} O_1^T O_2$$

# Part IV

# Parametric black-box system identification using frequency-domain approach

# G Experiment design and data pre-processing

- 1. Select a set of excitation frequencies  $\{\omega_1, \ldots, \omega_H\}$ . Usually  $\omega_i \omega_{i-1}$  is constant  $\forall i \in \{2, \ldots, H\}$ .  $\omega_H$  must be selected according to the bandwidth of the system
- 2. Make H independent experiments:



Experiment H

3. Focusing on experiment i, because of noise the real value of the output will be (unknowns are underlined)

$$\hat{y}_i = B_i \sin(\omega_i t + \phi_i) = a_i \sin(\omega_i t) + b_i \cos(\omega_i t)$$

Using the second equation (since it is linear in the unknowns). We want to determine

$$\{\hat{a_i}, \hat{b_i}\} = \arg\min_{\{a_i, b_i\}} J_N(a_i, b_i)$$

$$J_N(a_i, b_i) = \frac{1}{N} \sum_{t=1}^{N} \left( \underbrace{y_i(t)}_{\text{measurement}} \underbrace{-a_i \sin(\omega_i t) - b_i \cos(\omega_i t)}_{\text{model output}} \right)^2$$

This can be solved explicitly

$$\frac{\delta J_N}{\delta a_i} = \frac{2}{N} \sum_{t=1}^N \left( -\sin(\omega_i t) \right) \left( y_i(t) - a_i \sin(\omega_i t) - b_i \cos(\omega_i t) \right) = 0$$

$$\frac{\delta J_N}{\delta b_i} = \frac{2}{N} \sum_{t=1}^N \left( -\cos(\omega_i t) \right) \left( y_i(t) - a_i \sin(\omega_i t) - b_i \cos(\omega_i t) \right) = 0$$

Which results in the following linear system:

$$\begin{bmatrix} \sum_{t=1}^{N} \sin(\omega_i t)^2 & \sum_{t=1}^{N} \sin(\omega_i t) \cos(\omega_i t) \\ \sum_{t=1}^{N} \sin(\omega_i t) \cos(\omega_i t) & \sum_{t=1}^{N} \cos(\omega_i t)^2 \end{bmatrix} \begin{bmatrix} a_i \\ b_i \end{bmatrix} = \begin{bmatrix} \sum_{t=1}^{N} y_i(t) \sin(\omega_i t) \\ \sum_{t=1}^{N} y_i(t) \cos(\omega_i t) \end{bmatrix}$$

4. We want to move back to sin-only form:

$$\hat{\phi_i} = \arctan\left(\frac{\hat{b_i}}{\hat{a_i}}\right)$$

$$\hat{B_i} = \frac{\frac{\hat{a_i}}{\cos \hat{\phi_i}} + \frac{\hat{b_i}}{\sin \hat{\phi_i}}}{2}$$

5. Repeating H experiments we obtain

$$\{\hat{B}_{1}, \hat{\phi_{1}}\} \Rightarrow \frac{\hat{B}_{1}}{A_{1}} e^{j\hat{\phi_{1}}}$$

$$\vdots$$

$$\{\hat{B}_{H}, \hat{\phi_{H}}\} \Rightarrow \frac{\hat{B}_{H}}{A_{H}} e^{j\hat{\phi_{H}}}$$

So we have H complex numbers representing the frequency response of W(z). These numbers are our dataset

# H Model class selection

$$\mathcal{M}(\theta): W(z,\theta) = \frac{b_0 + b_1 z^{-1} + \dots + b_p z^{-p}}{1 + a_1 z^{-1} + \dots + a_n z^{-n}} z^{-1} \qquad \theta = \begin{bmatrix} a_1 \\ \vdots \\ a_n \\ b_0 \\ \vdots \\ b_p \end{bmatrix}$$

# I Performance index

$$J_H(\theta) = \frac{1}{H} \sum_{i=1}^{H} \left( W(e^{j\omega_i}, \theta) - \frac{\hat{B}_i}{A_i} e^{j\hat{\phi}_i} \right)^2$$

# J Optimization

$$\hat{\theta} = \arg\min_{\theta} J_H(\theta)$$

# $egin{array}{ll} & Part \ V \\ & Kalman \ filter \end{array}$

Based on SS representation:

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) + v_1(t) & v_1 \sim WN \\ y(t) = Hx(t) + \mathcal{D}u(t) + v_2(t) & v_2 \sim WN \end{cases}$$

# **K** Motivations and Goals

Given a model and noise variances:

- $\bullet$  find k-steps ahead predictors of the output y
- $\bullet$  find k-steps ahead predictors of the state x
- Find the filter of the state  $\hat{x}(t|t)$  to allow software sensing
- Gray box system identification

Usually a dynamic system has m inputs, n states and p outputs

**Key problem** Usually p << n: pysical sensors are much less than system states because:

- Cost
- Cables, power supply
- Maintenance

But we want full state measurements because:

- Control design (using state feedback)
- Monitoring (fault detection, predictive maintenance)

Software sensing determine the internal state using the values measured from input and output

# K.1 Kalman on Basic Systems

$$S: \begin{cases} x(t+1) = Fx(t) + Gu(t) + v_1(t) & \text{state equation} \\ y(t) = Hx(t) + v_2(t) & \text{output equation} \end{cases}$$

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \qquad u(t) = \begin{bmatrix} u_1(t) \\ \vdots \\ u_m(t) \end{bmatrix} \qquad y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_p(t) \end{bmatrix}$$

 $v_1$  is a vector white noise:

$$v_1 \sim WN(0, V_1)$$
  $v_1(t) = \begin{bmatrix} v_1 1(t) \\ \vdots \\ v_1 n(t) \end{bmatrix}$ 

•  $E[v_1(t)] = \vec{0}$ 

- $E\left[v_1(t)\cdot v_1(t)^T\right]=V_1$ , where  $V_1$  is an  $n\times n$  covariance matrix
- $E\left[v_1(t)\cdot v_1(t-\tau)^T\right] = 0 \quad \forall t, \forall \tau \neq \vec{0}$

 $v_2$  is called output/measurement/sensor noise:

- $E[v_2(t)] = \vec{0}$
- $E\left[v_2(t)\cdot v_2(t)^T\right]=V_2$ , where  $V_1$  is an  $n\times n$  covariance matrix
- $E\left[v_2(t) \cdot v_2(t-\tau)^T\right] = 0 \quad \forall t, \forall \tau \neq \vec{0}$

 $v_1$  and  $v_2$  are assumed to have the following relationships:

$$E\left[v_1(t)\cdot v_2(t-\tau)^T\right] = \underbrace{V_{12}}_{n\times n} = \begin{cases} 0 & \text{if } \tau \neq 0\\ \text{any} & \text{if } \tau = 0 \end{cases}$$

So they can only be correlated in the same time istant. Since the system is dynamic we need to define its initial conditions:

$$E[x(1)] = \underbrace{X_0}_{n \times 1}$$
  $E[(x(1) - x(0))(x(1) - x(0))^T] = \underbrace{P_0}_{n \times n} \ge 0$ 

 $P_0 = 0 \iff$  the initial state is perfectly known.

We finally assume that  $v_1$  and  $v_2$  are uncorrelated with the initial state:

$$x(1) \perp v_1(t)$$
  $x(1) \perp v_2(t)$ 

#### Solution for Basic Systems

$$\hat{x}(t+1|t) = F\hat{x}(t|t-1) + K(t)e(t) \qquad \text{state equation}$$

$$\hat{y}(t|t-1) = H\hat{x}(t|t-1) \qquad \text{output equation}$$

$$e(t) = y(t) - \hat{y}(t|t-1) \qquad \text{prediction error}$$

$$K(t) = \left(FP(t)H^T + V_{12}\right) \left(HP(t)H^T + V_2\right)^{-1} \qquad \text{gain of the KF}$$

$$P(t+1) = \left(FP(t)F^T + V_1\right) \\ - \left(FP(t)H^T + V_{12}\right) \left(HP(t)H^T + V_2\right)^{-1} \left(FP(t)H^T + V_{12}\right)^T \qquad \text{difference Riccati equation}$$

$$\hat{x}(1|0) = E\left[x(1)\right] = X_0 \qquad \qquad \text{Initial state}$$

$$P(1) = var\left[x(1)\right] = P_0 \qquad \qquad \text{initial DRE}$$

# K.2 Exogenous input

$$\hat{x}(t+1|t) = F\hat{x}(t|t-1) + Gu(t) + K(t)e(t) \qquad \text{state equation}$$
 other equations = unchanged

#### K.3 Multi-step prediction

Knowing  $\hat{x}(t+1|T)$  from the basic solution we can derive

$$\hat{x}(t+2|t) = F\hat{x}(t+1|t)$$

$$\hat{x}(t+2|t) = F^{2}\hat{x}(t+1|t)$$

$$\vdots$$

$$\frac{\hat{x}(t+k|t) = F^{k-1}\hat{x}(t+1|t)}{\hat{y}(t+k|t) = H\hat{x}(t+k|t)}$$

#### **K.4** Filter ( $\hat{x}(t|t)$

F invertible

$$\hat{x}(t+1|t) = F\hat{x}(t|t)$$
  $\Longrightarrow$   $\hat{x}(t|t) = F^{-1}\hat{x}(t+1|t)$ 

F not invertible assuming  $V_{12} = 0$ , then we can re-formulate the K.F. solutions:

$$\hat{x}(t|t) = F\hat{x}(t-1|t-1) + Gu(t-1) + K_0(t)e(t)$$

$$\hat{y}(t|t-1) = H\hat{x}(t|t-1)$$

$$e(t) = y(t) - \hat{y}(t|t-1)$$

$$K_0(t) = (P(t)H^T) (HP(t)H^T + V_2)^{-1}$$

$$P(t+1) = \text{unchanged}$$

#### K.5 Time-varying systems

$$S: \begin{cases} x(t+1) = F(t)x(t) + G(t)u(t) + v_1(t) \\ y(t) = H(t)x(t+v_2(t)) \end{cases}$$

K.F. equations are unchanged

#### K.6 Non linear system

Much more complicated extension. Look for Extended Kalman Filter if interested (I'm not)

## L Asymptotic solution of K.F.

KF is time variant, because the gain K(t) is time varying. This causes 2 problems:

- It is difficult to check the stability of the system
- K(t) must be computed at each sampling time, including the inversion of  $(HP(t)H^T)_{v\times v} \Rightarrow$  computationally intensive

Because of this, the asymptotic version of KF is preferred

#### L.1 Basic idea

If P(t) converges to constant  $\overline{P}$ , then also K(t) will converge to some constant  $\overline{K}$ . Using  $\overline{K}$  instead of K(t) the KF becomes time-invariant:

$$\begin{split} \hat{x}(t+1|t) &= F\hat{x}(t|t-1) + Gu(t) + \overline{K}e(t) \\ &= F\hat{x}(t|t-1) + Gu(t) + \overline{K}\left(y(t) - \hat{y}(t|t-1)\right) \\ &= F\hat{x}(t|t-1) + Gu(t) + \overline{K}\left(y(t) - H\hat{x}(t|t-1)\right) \\ &= \underbrace{\left(F - \overline{K}H\right)}_{\text{new state matrix}} \hat{x}(t|t-1) + Gu(t) + \overline{K}y(t) \end{split}$$

If  $\overline{K}$  exists, thesethe KF is asymptotically stable  $\iff$  all the eigenvalues of  $F - \overline{K}H$  are strictly inside the unit circle

#### L.2 Existance of $\overline{K}$

$$\overline{K} = (F\overline{P}H^T + V_{12}) + (H\overline{P}H^T + V_2)^{-1}$$

 $\overline{K}$  exists if  $\overline{P}$  exists. DRE is an autonomous discrete time system x(t+1) = f(x(t)), in equilibrium when  $x(t+1) = x(t) \Rightarrow f(\overline{x}) = \overline{x}$ . Applyed to P this leads to the following Algebraic Riccardi Equation:

$$\overline{P} = f(\overline{P}) \iff \overline{P} = (F\overline{P}F^T + V_1) - (F\overline{P}H^T + V_{12}) (H\overline{P}H^T + V_2)^{-1} (F\overline{P}H^T + V_{12})^T$$

#### L.2.1 First asymptotic theorem

Assuming  $V_{12} = 0$  and the system is asymptotically stable (all eigenvalues of F strictly inside the unit circle), then:

- $\exists$ ! semi-definite positive solution of ARE:  $\overline{P} > 0$
- DRE converges to  $\overline{P} \quad \forall P_0 \ge 0$
- The corresponding  $\overline{K}$  will make the KF asymptotically stable

## L.2.2 Second asymptotic theorem

Assuming  $V_{12}=0,\,(F,H)$  is observable,  $(F,\Gamma)$  is controllable. Then:

- ∃! semi-definite positive solution of ARE:  $\overline{P} \geq 0$
- DRE converges to  $\overline{P} \quad \forall P_0 \geq 0$
- $\bullet$  The corresponding  $\overline{K}$  will make the KF asymptotically stable

## M Extension to non-linear systems

$$S: \begin{cases} x(t+1) = f(x(t), u(t)) + v_1(t) \\ y(t) = h(x(t)) + v_2(t) \end{cases}$$

Where f and h are non-linear functions.

For the gain block of the KF we have 2 types of solutions:

- The gain is a non linear function of e(t)
- The gain is a linear time-varying function

The second solution is preferred, as it allows us to reuse the formulae with just little tweaks. In particular, F and H are computed as follows:

$$F(t) = \left. \frac{\delta f(x(t), u(t))}{\delta x(t)} \right|_{x(t) = \hat{x}(t|t-1)}$$

$$H(t) = \left. \frac{\delta h(x(t))}{\delta x(t)} \right|_{x(t) = \hat{x}(t|t-1)}$$

EKF is the time-verying solution of KF, where F and H are computed around the last available state prediction  $\hat{x}(t|t-1)$ 

#### Algorithm

- 1. Take the last available state prediction  $\hat{x}(t|t-1)$
- 2. Use  $\hat{x}(t|t-1)$  to compute F(t) and H(t)
- 3. Compute K(t) and update the DRE equations
- 4. Compute  $\hat{x}(t+1|t)$

## N Optimization of gain K

$$S: \begin{cases} x(t+1) = 2x(t) \\ y(t) = x(t) + v(t) \quad v \sim WN(0,1) \end{cases}$$

#### N.1 Direct solution

Starting from the standard observer structure:

$$\begin{cases} \hat{x}(t+1|t) = 2\hat{x}(t|t-1) + K(y(t) - \hat{y}(t|t-1)) \\ \hat{y}(t|t-1) = \hat{x}(t|t-1) \end{cases}$$

Minimizing the variance of the prediction error  $var[\eta(t)] \Rightarrow \text{minimizing } var[x(t) - \hat{x}(t|t-1]]$ 

$$\begin{split} \eta(t) &= 2x(t) - \left[2\hat{x}(t|t-1) + K(y(t) - \hat{y}(t|t-1))\right] \\ &= 2x(t) - 2\hat{x}(t|t-1) - K(x(T) + v(t) - \hat{x}(t|t-1)) \\ &= (2 - K)(x(t) - \hat{x}(t|t-1)) - Kv(t) \\ \eta(t+1) &= (2 - K)\eta(t) - Kv(t) \end{split} \qquad v \sim WN(0,1) \end{split}$$

This is an AR(1) process:

$$\eta(t) = \frac{1}{1-(2-K)z^{-1}}e(t) \qquad e(t) = -Kv(t) \qquad e \sim WN(0,K^2) \label{eq:eta}$$

The variance of  $\eta$  is

$$\gamma_{\eta}(0) = \frac{K^2}{1 - (2 - K)^2}$$

Minimizing wrt K:

$$\frac{\delta \gamma_{\eta}(0)}{\delta K} = 0 \qquad \Rightarrow \qquad \begin{cases} K_1 = 0 \\ K_2 = \frac{3}{2} \end{cases}$$

#### N.2 KF theory solution

From S we can derive:

$$\begin{cases} F = 2 \\ H = 1 \\ V_1 = 0 \end{cases} \Rightarrow \begin{cases} \Gamma = 0 \\ V_2 = 1 \\ V_{12} = 0 \end{cases}$$

- F is not asymptotically stable  $\Rightarrow$  cannot use theorem 1
- $(F,\Gamma)$  is not fully reachable  $\Rightarrow$  cannot use theorem 2

$$DRE = 4P(t) - \frac{(2P(t))^2}{P(t) + 1} \dots$$
  
 $P(t+1) = \frac{4P(t)}{P(t) + 1}$ 

Solving ARE:

$$\overline{P} = \frac{4\overline{P}}{\overline{P} + 1}$$
  $\Rightarrow$   $\begin{cases} \overline{P_1} = 1 \\ \overline{P_2} = 3 \end{cases}$   $\Rightarrow$   $\begin{cases} K_1 = 0 \\ K_2 = \frac{3}{2} \end{cases}$ 

# Part VI Software-sensing with Blabk box Methods



#### Features

- A white-box model is required
- No need of a training dataset
- Works by feedback estimation
- Constructive method
- Can be used to estimate unmeasurable states

# O Linear Time Invariant Systems

Known white-box model of the system Draw the block diagram of the system and the KF, then (from the diagram) calculate  $\hat{x}(t) = f(u(t), y(t))$ . Done.

Unknown model for the system A BB estimation is possible iff all the states are measurable.

#### **Dataset**

$$\{u(1),\ldots,u(N)\}$$

$$\{y(1),\ldots,y(N)\}$$

$$\{x(1),\ldots,x(N)\}$$

**Model** to be optimized for  $\theta$ 



#### Performance index

$$J_N(\theta) = \frac{1}{N} \sum_{t=1}^{N} (x(t) - (S_{ux}(z,\theta)u(t) + S_{yx}(z,\theta)y(t)))^2$$

#### Optimization

$$\hat{\theta}_N = \arg\min_{\theta} J_N(\theta)$$

We get  $S_{ux}(z,\hat{\theta}_N)$  and  $S_{yx}(z,\hat{\theta}_N)$ , the transfer functions for our software sensors

# P Non-linear systems



#### Model



## P.1 Recurrent neural network



#### P.2 FIR architecture

split the system into a static non-linear system and linear dynamics



# P.3 IRR scheme



## P.4 Physical regressors

Using the physical knowledge of the system, provide a set of regressors (ie: smaller and more meaningful set of signals) elaborated by a static non-linear system



#### Part VII

# **Grey-box System Identification**

# Q Using Kalman Filter

#### Q.1 Problem definition

• We have a model:

$$S: \begin{cases} x(t+1) = f(x(t), u(t), \theta) + v_1(t) \\ y(t) = h(x(t), \theta) + v_2(t) \end{cases}$$

- f and h are functions (linear or not) depending on some unknown parameter  $\theta$  carrying physical meaning (mass, resistance,...)
- We want to estimate  $\hat{\theta}$
- This is archieved by managing the unknown parameters as extended states

#### Q.2 State extension

$$S: \begin{cases} x(t+1) = f(x(t), u(t), \theta(t)) + v_1(t) \\ \theta(t+1) = \theta(t) + v_{\theta}(t) \\ y(t) = h(x(t), \theta(t)) + v_2(t) \end{cases}$$

And the extended state vector is  $x_E = \begin{bmatrix} x(t) \\ \theta(t) \end{bmatrix}$ 

The noise in the equation of  $\theta$  is added to prevent the KF form getting stuck on the initial conditions.

## Q.3 Design choice

The choice of the covariance matrix of  $v_{\theta} \sim WN(0, V_{\theta})$ 

• Assume  $v_1 \perp v_\theta$  and  $v_2 \perp v_\theta$ :

$$V_{ heta} = egin{bmatrix} \lambda_{1 heta}^2 & & & & & \\ & \lambda_{2 heta}^2 & & & & \\ & & \ddots & & & \\ & & & \lambda_{n_{ heta}\theta}^2 \end{bmatrix}_{n_{ heta} imes n_{ heta}}$$

- Usually, it is assumed that  $\lambda_{i\theta} = \lambda_{j\theta} \quad \forall i \forall j$
- Assume that  $v_{\theta}(t)$  is a set of independent WN all with the same variance  $\lambda_{\theta}^{2}$

- Bigger values of  $\lambda_{\theta}^2$  lead to a quicker convergence, but less stable (stronger obscillations around the steady-state)
- $\bullet$  The selection of  $\lambda_{\theta}^2$  is leaded by application-specific constraints

# Q.4 Applicability

In theory, this trick can work with any number of sensors, states, and parameters. In practice it works well only on a limited number of parameters ( $\sim$ 3 sensors, 5 states, 2 parameters)

## R Simulation Error Method



#### R.1 Dataset

from an experiment, collect:

$$\{\overline{u}(1), \overline{u}(2), \dots, \overline{u}(N) \}$$
  
 $\{\overline{y}(1), \overline{y}(2), \dots, \overline{y}(N)\}$ 

#### R.2 Model

$$y(t) = \mathcal{M}(u(t), \overline{\theta}, \theta)$$

 $\overline{\theta}$  is the set of known parameters,  $\theta$  the set of unknown parameters

#### R.3 Performance index

$$J_N(\theta) = \frac{1}{N} \sum_{t=1}^{N} \left( \overline{y}(t) - \mathcal{M}(\overline{u}(t), \overline{\theta}, \theta) \right)^2$$

#### R.4 Optimization

$$\hat{\theta}_N = \arg\min_{\theta} J_N(\theta)$$

#### R.5 Limitations

- $\bullet$  Usually  $J_N$  has no analytic expression
- Computing the value of  $J_N$  requires an entire simulation from t=1 to t=N
- $\bullet$  Usually  $J_N$  is non-quadratic and non-convex  $\to$  iterative and randomized optimization must be used
- Computationally demanding



# Part VIII Minimum Variance Control

The goal is to design a feedback system

- $\bullet$  Control design is the ain motivation of system identification and software sensing
- MVC is based on prediction theory

# S Setup the problem

Consider a generic ARMAX model:

$$y(t) = \frac{B(z)}{A(z)}u(t-k) + \frac{C(z)}{A(z)}e(t) \qquad e(t) \sim WN(0,\lambda^2)$$

$$B(z) = b_0 + b_1 z^{-1} + \dots + b_p z^{-p}$$

$$A(z) = 1 + a_1 z^{-1} + \dots + a_m z^{-m}$$

$$C(z) = 1 + c_1 z^{-1} + \dots + c_n z^{-n}$$

#### Assumptions

- $\frac{C(z)}{A(z)}$  is in canonical form
- $b_0 \neq 0 \rightarrow k$  is the actual delay
- $\frac{B(z)}{A(z)}$  is minimum phase  $\iff$  all the roots of B(z) are strictly inside the unit circle
- $y^0(t) \perp e(t)$
- $y^0(t)$  is known only up to the present time  $(y^0(t))$  is totally unpredictable)

We want to determine the optimal tracking of the desired output behaviour:



Formally, MVC tries to minimize the following performance index:

$$J = E\left[ (y(t) - y^0(t))^2 \right)$$

Which is the variance of the tracking error

#### S.1 Simplified problem 1

$$S: y(t) = ay(t-1) + b_0 u(t-1) + b_1 u(t-2)$$
  $y(t) = \frac{b_0 + b_1 z^{-1}}{1 - a z^{-1}} u(t-1)$ 

Assuming:

- $y^0(t) = \overline{y}^0$
- no noise
- $b_0 \neq 0$
- Root of numerator inside the unit circle

$$J = (y(t) - y^{0}(y))^{2}$$

$$= (y(t) - \overline{y}^{0})^{2}$$

$$= (ay(t-1) + b_{0}u(t-1) + b_{1}u(t-2) - \overline{y^{0}})^{2}$$

$$= (ay(t) + b_{0}u(t) + b_{1}u(t-1) - \overline{y^{0}})^{2}$$

$$\frac{\delta J}{\delta u(t)} = 2 \left( ay(t) + b_{0}u(t) + b_{1} \underbrace{u(t-1)}_{\text{number}} - \overline{y^{0}} \right) (b_{0})$$

$$\frac{\delta J}{\delta u(t)} = 0 \implies ay(t) + b_{0}u(t) + b_{1}u(t-1) - \overline{y^{0}} = 0 \implies u(t) = (\overline{y}^{0} - ay(t)) \frac{1}{b_{0} + b_{1}z^{-1}}$$

#### S.2 Simplified problem 2

$$S: y(t) = ay(t-1) + b_0u(t-1) + b_1u(t-2) + e(t) \qquad e(t) \sim WN(0, \lambda^2)$$

Reference variable  $y^0(t)$ 

Performance index  $E[(y(t) - y^0(t))^2]$ 

**Trick** rewrite y(t) as

$$\begin{split} y(t) &= \hat{y}(t|t-1) + \epsilon(t) \\ k &= 1 \implies \epsilon(t) = e(t) \implies y(t) = \hat{y}(t|t-1) + e(t) \\ J &= E\left[ \left( \hat{y}(t|t-1) + e(t) - y^0(t) \right)^2 \right] \\ &= E\left[ \left( \left( \hat{y}(t|t-1) - y^0(t) \right) + e(t) \right)^2 \right] \\ &= E\left[ \left( \hat{y}(t|t-1) - y^0(t) \right)^2 \right] + E\left[ e(t)^2 \right] + 2E\left[ e(t)(\hat{y}(t|t-1) - y^0(t)) \right] \end{split}$$

$$\arg \min_{y^{0}(t)} E\left[\left(\hat{y}(t|t-1) - y^{0}(t)\right)^{2}\right] + E\left[e(t)^{2}\right] = \arg \min_{y^{0}(t)} E\left[\left(\hat{y}(t|t-1) - y^{0}(t)\right)^{2}\right]$$

The best result is when  $\hat{y}(t|t-1) = y^0(t)$ . Writing the system in terms of transfer functions we get:

$$S: y(t) = \frac{b_0 + b_1 z^{-1}}{1 - a z^{-1}} u(t - 1) + \frac{1}{1 - a z^{-1}} e(t)$$

Applying the general 1-step predictor for ARMAX:

$$\hat{y}(t|t-1) = \frac{b_0 + b_1 z^{-1}}{1} u(t-1) + \frac{1 - 1 + az^{-1}}{1} y(t) = (b_0 b_1 z^{-1}) u(t-1) + ay(t-1)$$

Imposing the optimality condition we get:

$$b_0 u(t-1) + b_1 u(t-2) + ay(t-1) = y^0(t)$$
  

$$b_0 u(t) + b_1 u(t-1) + ay(t) = y^0(t+1)$$
  

$$u(t) = \left(y^0(t+1) - ay(t)\right) \frac{1}{b_0 b_1 z^{-1}}$$

Since we cannot predict the future we must approximate:

$$u(t) \approx (y^{0}(t) - ay(t)) \frac{1}{b_{0} + b_{1}z^{-1}}$$

#### S.3 General solution

$$S: y(t) = \frac{B(z)}{A(z)}u(t-k) + \frac{C(z)}{A(z)}e(t)$$
  $e(t) \sim WN(0, \lambda^2)$ 

#### Assumptions

- $b_0 \neq 0$
- B(z) has all roots inside the unit circle
- $\frac{C(z)}{A(z)}$  is in canonical form
- $y^0(t) \perp e(t)$
- $y^0(t)$  is unpredictable

**Trick** rewrite  $y(t) = \hat{y}(t|t-k) + \epsilon(t)$ 

$$J = E\left[\left(\hat{y}(t|t-k) + \epsilon(t) - y^{0}(t)\right)^{2}\right]$$

$$= E\left[\left(\left(\hat{y}(t|t-k) - y^{0}(t)\right) + \epsilon(t)\right)^{2}\right]$$

$$= E\left[\left(\hat{y}(t|t-k) - y^{0}(t)\right)^{2}\right] + E\left[\epsilon(t)^{2}\right] + 2E\left[\epsilon(t)\left(\hat{y}(t|t-k) - y^{0}(t)\right)\right]$$

$$= E\left[\left(\hat{y}(t|t-k) - y^{0}(t)\right)^{2}\right] + \mathbf{constant}$$

## Part IX

# Recursive Identification

## T Least square

$$\hat{\theta}_N = \arg\min_{\theta} \left\{ J_N(\theta) = \frac{1}{N} \sum_{t=1}^{N} (y(t) - \hat{y}(t|t-1,\theta))^2 \right\}$$

We want to find the predictor model  $\hat{y}(t|t-1,\theta)$ 

$$y(t) = \phi(t)^T \theta + e(t)$$

Since e(t) is unpredictable, the best possible 1-step predictor is  $\hat{y}(t|t-1,\theta) = \phi(t)^T \theta$ . Substituting in J:

$$J_N(\theta) = \frac{1}{N} \sum_{t=1}^{N} (y(t) - \phi(t)^T \theta)^2$$

Analytically we can find the minimum:

$$\frac{\delta J_N(\theta)}{\delta \theta} = 0$$

$$\hat{\theta}_N = S(N)^{-1} \sum_{t=1}^N \phi(t) y(t)$$

$$S(N) = \sum_{t=1}^N \phi(t) \phi(t)^T$$

But the procedure must be repeated at each t step

#### T.1 Recursive Least Square



#### T.2 First form

$$\hat{\theta}_{N} = S(N)^{-1} \sum_{t=1}^{N} \phi(t)y(t)$$

$$S(N)\hat{\theta}_{N} = \sum_{t=1}^{N} \phi(t)y(t)$$

$$S(N-1)\hat{\theta}_{N-1} = \sum_{t=1}^{N-1} \phi(t)y(t)$$

$$\sum_{t=1}^{N} \phi(t)y(t) = \sum_{t=1}^{N-1} \phi(t)y(t) + \phi(N)y(N)$$

$$\sum_{t=1}^{N} \phi(t)y(t) = S(N-1)\hat{\theta}_{N-1} + \phi(N)y(N)$$

$$\hat{\theta}_{N} = \hat{\theta}_{N-1} + S(N)^{-1}\phi(N) \left[y(N) - \phi(N)^{T}\hat{\theta}_{N-1}\right]$$

$$S(N) = S(N-1) + \phi(N)\phi(N)^{T}$$

However, this way  $S(N) \to \infty$ , so the domputing unit saturates.

#### T.3 Second form

Normalize wrt. N

$$S(N) = S(N-1) + \phi(N)\phi(N)^T$$

$$R(N) = \frac{1}{N}S(N)$$

$$R(N) = \frac{N-1}{N}R(N-1) + \frac{1}{N}\phi(N)\phi(N)^T$$

$$K(N) = \frac{1}{N}R(N)^{-1}\phi(N)$$

$$\epsilon(N) = y(N) - \phi(N)^T\hat{\theta}_{N-1}$$

$$\hat{\theta}_N = \hat{\theta}_{N-1} + K(N)\epsilon(N)$$

This however regires matrix inversion at each iteration, which is expensive

#### T.4 Third form

It can be proven that the following works

$$\epsilon(N) = y(N) - \phi(N)^T \hat{\theta}_{N-1}$$

$$V(N) = V(N-1) - \frac{V(N-1)\phi(N)\phi(N)^T V(N-1)}{1 + \phi(N)^T V(N-1)\phi(N)}$$

$$K(N) = V(N)\phi(N)$$

$$\hat{\theta}_N = \hat{\theta}_{N-1} + K(N)\epsilon(N)$$

This does not require matrix inversion

#### T.5 Forgetting factor

If theta contains some parameter changing over time, the objective function should "forget" old data. The new objective function becomes:

$$J_N(\theta) = \frac{1}{N} \rho^{N-t} \left( \hat{y}(t|t-1,\theta) \right)^2$$

Where  $\rho \in [0, 1]$  is the forgetting factor (the smaller, the more forgetful). The new equations become:

$$\epsilon(N) = y(N) - \phi(N)^T \hat{\theta}_{N-1}$$

$$S(N) = \rho S(N-1) + \phi(N)\phi(N)^T$$

$$K(N) = S(N)^{-1}\phi(N)$$

$$\hat{\theta}_N = \hat{\theta}_{N-1} + K(N)\epsilon(N)$$

## Part X

# Cheatsheet

# U Probability Recall

 $\textbf{Cross-Variance} \quad Var[v,u] = E[(v-E[v])(u-E[u])]$ 

 $\textbf{Variance Matrix} \begin{array}{|c|c|c|c|c|} \hline Var[v_1] & . & . & Var[v_1,v_k] \\ \hline . & . & . & . \\ \hline . & . & . & . \\ \hline Var[v_k,v_1] & . & . & Var[v_k] \\ \hline \end{array}$ 

Covariance coefficient  $\delta[i,j] = \frac{Var[i,j]}{\sqrt{Var[i]}\sqrt{Var[j]}}$ 

#### Stationary process

- m constant
- $\lambda^2$  constant
- covariance  $\gamma(\tau)$  depends only on time difference
- $|\gamma(\tau)| \le \gamma(0) \quad \forall \tau$

White noise  $\eta(t) \sim WN(m, \lambda^2)$ 

- Stationary process
- $\gamma(\tau) = 0 \quad \forall \tau \neq 0$
- $v(t) = \alpha \eta(t) + \beta \implies v(t) \sim WN(\beta, \alpha^2 \lambda^2)$

#### Canonical representation

- Monic
- Same degree
- Coprime
- Poles and zeros in unit disk

# V Spectral analysis

#### Spectrum

- $\Gamma(\omega) = \gamma(0) + 2cos(\omega)\gamma(1) + 2cos(2\omega)\gamma(2) + \dots$
- Periodic  $T=2\pi$
- Even
- $\Gamma_{\eta}(\omega) = \gamma_{\eta}(0) = \lambda^2$

#### Complex spectrum

- $\Phi(z) = \sum_{\tau = -\infty}^{+\infty} \omega(\tau) z^{-\tau}$
- $\Gamma(\omega) = \Phi(e^{j\omega})$

#### Fundamental theorem of spectral analysis

- $\Gamma_{\rm out}(\omega) = |W(e^{j\omega})|^2 \cdot \Gamma_{\rm in}(\omega)$
- $\Phi_{\text{out}}(z) = W(z)W(z^{-1}) \cdot \Phi_{\text{in}}(z)$

# W Moving Average MA(n)

• 
$$W(z) = \frac{c_0 z^n + c_1 z^{n-1} + \dots + c_n}{z_n}$$

 $\bullet$  m=0

• 
$$\gamma(\tau) = \begin{cases} (c_0 c_\tau + c_1 c_{1+\tau} + \dots + c_{n-\tau} c_\tau) \lambda^2 & |\tau| \le n \\ 0 & \text{otherwise} \end{cases}$$

# $W.1 \quad MA(\infty)$

- $\gamma(0) = (c_0^2 + c_1^2 + \dots + c_k^2 + \dots)\lambda^2$
- $\gamma(0)$  must converge to a finite value

# X Auto Regressive AR(n)

- m = 0
- $\bullet \ W(z) = \frac{z^n}{z^n a_1 z_{n-1} \dots a_n}$
- $\bullet$  Covariance calculated by its definition

# Y Known predictors

**AR(1)** 
$$\hat{v}(t|t-r) = a^r v(t-r)$$

**MA(1)** 
$$\hat{v}(t|t-1) = v(t-1) - c\hat{v}(t-1|t-2)$$

$$\mathbf{MA(n)} \ \hat{v}(t|t-\mathbf{k}) = 0 \quad \forall k > n$$

**ARMA**
$$(n_a, n_b)$$
  $\hat{v}(t|t-1) = \frac{C(z) - A(z)}{C(z)} v(t)$ 

**ARMAX**
$$(n_a, n_b)$$
  $\hat{y}(t|t-1) = \frac{C(z) - A(z)}{C(z)} y(t) + \frac{B(z)}{C(z)} u(t-1)$