CONCUR 2024 - CALGARY CANADA

Thomas A. Henzinger [‡]
Nicolas Mazzocchi ^{† ‡}
N. Ege Saraç [‡]

- † Slovak University of Technology, Slovakia
- ‡ Institute of Science and Technology, Austria

This talk is supported by the ERC-2020-AdG 101020093

Strategic Dominance:

A New Preorder for

Nondeterministic

Processes

3

$$\forall w \in \Sigma^{\omega} : \exists f \in R(A) : \bigcirc$$

True

▶
$$\exists f \in R(A)$$
: $\forall w \in \Sigma^{\omega}$:

False

 $\forall w \in \Sigma^{\omega} : \exists f \in R(A) : \bigcirc$

True

 $\rightarrow \exists f \in R(A) : \forall w \in \Sigma^{\omega} : \mathbf{C}$

False

 $\exists f : \forall w : \bigcirc \Longrightarrow \forall w : \exists f : \bigcirc$

Motivating Problems

Trace Inclusion and Simulation

Inclusion of linear-time properties and branching-time properties respectively

History Determinism

Can the non-determinism of a given automaton be expressed by a single resolver?

Inclusion of Hyperproperties

For two set of properties given by non-deterministic automata, is one subset of the another?

Safety

Is the properties given by an automaton safe?

Motivating Problems

Trace Inclusion and Simulation

Inclusion of linear-time properties and branching-time properties respectively

History Determinism

Can the non-determinism of a given automaton be expressed by a single resolver?

Inclusion of Hyperproperties

For two set of properties given by non-deterministic automata, is one subset of the another?

Safety

Is the properties given by an automaton safe?

Contribution

One algorithm that solves them all

Value function Val

- Inf (safety)
- Sup (reachability)
- LimInf (co-Büchi)
- LimSup (Büchi)

Value function Val

- Inf (safety)
- Sup (reachability)
- LimInf (co-Büchi)
- LimSup (Büchi)

9

Runs $\xrightarrow{a_1|x_1} \xrightarrow{a_2|x_2} \xrightarrow{a_2|x_2}$ Input: $w = a_1 a_2 \dots$ Output: $x = \text{Val}(x_1 x_2 \dots)$

Resolvers

- $f: \mathsf{Edges}^*(\mathcal{A}) \times \Sigma \to \mathsf{State}(\mathcal{A})$
- $\forall w \in \Sigma^{\omega} : \forall f \in R(A) : A^f(w) \in Edges^{\omega}(A)$

Value function Val

- Inf (safety)
- Sup (reachability)
- ▶ LimInf (co-Büchi)
- ► LimSup (Büchi)

Runs

$$\longrightarrow \bigcirc \xrightarrow{a_1|x_1} \bigcirc \xrightarrow{a_2|x_2} \bigcirc \xrightarrow{a_1|x_1} \bigcirc \xrightarrow{a_2|x_2} \bigcirc \xrightarrow{a_1|x_1} \bigcirc \xrightarrow{a_2|x_2} \bigcirc$$

Input: $w = a_1 a_2 \dots$ Output: $x = Val(x_1 x_2 \dots)$

Resolvers

- $f: \mathsf{Edges}^*(\mathcal{A}) \times \Sigma \to \mathsf{State}(\mathcal{A})$
- $\forall w \in \Sigma^{\omega} : \forall f \in R(A) : A^f(w) \in Edges^{\omega}(A)$

Trace Inclusion

$$\forall w \in \Sigma^{\omega} \colon \mathcal{A}^{\mathsf{sup}}(w) \leq \mathcal{B}^{\mathsf{sup}}(w)$$

Value function Val

- Inf (safety)
- Sup (reachability)
- ▶ LimInf (co-Büchi)
- LimSup (Büchi)

Non-determinism

sup {values of runs over w}

Trace Inclusion

Resolver Expressiblity

 $\forall w \in \Sigma^{\omega} : \mathcal{A}^{\mathsf{sup}}(w) \leq \mathcal{B}^{\mathsf{sup}}(w)$

- $\mathcal{A}\subseteq\mathcal{B}$
- $\forall w \in \Sigma^{\omega} \quad \exists f \in R(\mathcal{A}) \colon \forall f' \in R(\mathcal{A}) \colon \mathcal{A}^{f}(w) \geq \mathcal{A}^{f'}(w) \\ \exists g \in R(\mathcal{B}) \colon \forall g' \in R(\mathcal{B}) \colon \mathcal{B}^{g}(w) \geq \mathcal{B}^{g'}(w) \quad \mathcal{A}^{f}(w) \leq \mathcal{B}^{g}(w)$

Trace Inclusion

Resolver Expressiblity

 $\forall w \in \Sigma^{\omega} : \mathcal{A}^{sup}(w) \leq \mathcal{B}^{sup}(w)$

- $\mathcal{A}\subseteq\mathcal{B}$
- $\forall w \in \Sigma^{\omega} \quad \exists f \in R(\mathcal{A}) \colon \forall f' \in R(\mathcal{A}) \colon \mathcal{A}^{f}(w) \geq \mathcal{A}^{f'}(w) \\ \exists g \in R(\mathcal{B}) \colon \forall g' \in R(\mathcal{B}) \colon \mathcal{B}^{g}(w) > \mathcal{B}^{g'}(w) \quad \mathcal{A}^{f}(w) \leq \mathcal{B}^{g}(w)$

Thm: Deciding Trace Inclusion

$$\mathcal{A} \subseteq \mathcal{B} \iff \forall w \in \Sigma^{\omega} \colon \forall f \in R(\mathcal{A}) \colon \exists g \in R(\mathcal{B}) \colon \mathcal{A}^{f}(w) \leq \mathcal{B}^{g}(w)$$
$$\iff \forall w \in \Sigma^{\omega} \colon \exists g \in R(\mathcal{B}) \colon \forall f \in R(\mathcal{A}) \colon \mathcal{A}^{f}(w) \leq \mathcal{B}^{g}(w)$$

13

Word Blindness

- $\forall f \in R(A) : \exists g \in R(B) : \forall w \in \Sigma^{\omega} : A^f(w) \leq B^g(w)$
 - $\iff \mathcal{A} \triangleleft \mathcal{B}$ True
- ▶ $\exists g \in R(\mathcal{B}) : \forall f \in R(\mathcal{A}) : \forall w \in \Sigma^{\omega} : \mathcal{A}^f(w) \leq \mathcal{B}^g(w)$ $\iff \mathcal{A} \triangleleft \mathcal{B}$

False

Word Blindness

- $\forall f \in R(A) : \exists g \in R(B) : \forall w \in \Sigma^{\omega} : A^f(w) \leq B^g(w)$
 - $\iff \mathcal{A} \triangleleft \mathcal{B}$
- ▶ $\exists g \in R(\mathcal{B}): \forall f \in R(\mathcal{A}): \forall w \in \Sigma^{\omega}: \mathcal{A}^f(w) \leq \mathcal{B}^g(w)$ $\iff \mathcal{A} \blacktriangleleft \mathcal{B}$

True **False**

Word Blindness

- $\forall f \in R(A) : \exists g \in R(B) : \forall w \in \Sigma^{\omega} : A^f(w) \leq B^g(w)$
 - $\iff \mathcal{A} \triangleleft \mathcal{B}$

True

- ▶ $\exists g \in R(\mathcal{B})$: $\forall f \in R(\mathcal{A})$: $\forall w \in \Sigma^{\omega}$: $\mathcal{A}^f(w) \leq \mathcal{B}^g(w)$ $\iff \mathcal{A} \triangleleft \mathcal{B}$

False

 $\mathcal{A} \triangleleft \mathcal{A} \iff \mathcal{A}$ is history deterministic

- 1. a configuration is $(p,q) \in \text{State}(A) \times \text{State}(B)$, the game starts with initial states
- 2. the antagonist chooses a transition $(p, a, p') \in \mathsf{Edge}(\mathcal{A})$
- 3. the protagonist chooses a transition $(q,a,q') \in \mathsf{Edge}(\mathcal{B})$
- **4**. the new configuration is $(p', q') \in \text{State}(A) \times \text{State}(B)$
- ▶ The winner is the player with highest run value

- 1. a configuration is $(p,q) \in \text{State}(A) \times \text{State}(B)$, the game starts with initial states
- 2. the antagonist chooses a transition $(p, a, p') \in Edge(A)$
- 3. the protagonist chooses a transition $(q, a, q') \in \mathsf{Edge}(\mathcal{B})$
- **4**. the new configuration is $(p', q') \in \text{State}(A) \times \text{State}(B)$
- ▶ The winner is the player with highest run value

- 1. a configuration is $(p,q) \in \mathsf{State}(\mathcal{A}) \times \mathsf{State}(\mathcal{B})$, the game starts with initial states
- 2. the antagonist chooses a transition $(p, a, p') \in Edge(A)$
- 3. the protagonist chooses a transition $(q, a, q') \in Edge(\mathcal{B})$
- **4**. the new configuration is $(p', q') \in \text{State}(A) \times \text{State}(B)$
- ▶ The winner is the player with highest run value

- 1. a configuration is $(p,q) \in \text{State}(A) \times \text{State}(B)$, the game starts with initial states
- 2. the antagonist chooses a transition $(p, a, p') \in Edge(A)$
- 3. the protagonist chooses a transition $(q, a, q') \in Edge(\mathcal{B})$
- **4**. the new configuration is $(p', q') \in \text{State}(A) \times \text{State}(B)$
- ▶ The winner is the player with highest run value

- $f: \mathsf{Edges}^*(\mathcal{A} \times \mathcal{B}) \times \Sigma \to \mathsf{State}(\mathcal{A})$
- $g: \mathsf{Edges}^*(\mathcal{A} \times \mathcal{B}) \times \Sigma \to \mathsf{State}(\mathcal{B})$
- $[\mathcal{A} \times_1 \mathcal{B}]^{\{f,g\}}$ has weights of \mathcal{A}
- $[\mathcal{A} \times_2 \mathcal{B}]^{\{f,g\}}$ has weights of \mathcal{B}

- $f: \mathsf{Edges}^*(\mathcal{A} \times \mathcal{B}) \times \Sigma \to \mathsf{State}(\mathcal{A})$
- $g: \mathsf{Edges}^*(\mathcal{A} \times \mathcal{B}) \times \Sigma \to \mathsf{State}(\mathcal{B})$
- $[\mathcal{A} \times_1 \mathcal{B}]^{\{f,g\}}$ has weights of \mathcal{A}
- $[\mathcal{A} \times_2 \mathcal{B}]^{\{f,g\}}$ has weights of \mathcal{B}

- $\forall f \in R_1(\mathcal{A}, \mathcal{B}) \colon \exists g \in R_2(\mathcal{A}, \mathcal{B}) \colon \forall w \in \Sigma^{\omega} \colon [\mathcal{A} \times_1 \mathcal{B}]^{\{f,g\}}(w) \leq [\mathcal{A} \times_2 \mathcal{B}]^{\{f,g\}}(w)$
- $\bullet \ \exists g \in R_2(\mathcal{A}, \mathcal{B}): \forall f \in R_1(\mathcal{A}, \mathcal{B}): \forall w \in \Sigma^{\omega}: [\mathcal{A} \times_1 \mathcal{B}]^{\{f,g\}}(w) \leq [\mathcal{A} \times_2 \mathcal{B}]^{\{f,g\}}(w) \qquad \blacktriangleleft_{\times}$

- $f: \mathsf{Edges}^*(\mathcal{A} \times \mathcal{B}) \times \Sigma \to \mathsf{State}(\mathcal{A})$
- $g: \mathsf{Edges}^*(\mathcal{A} \times \mathcal{B}) \times \Sigma \to \mathsf{State}(\mathcal{B})$
- $[\mathcal{A} \times_1 \mathcal{B}]^{\{f,g\}}$ has weights of \mathcal{A}
- $[\mathcal{A} \times_2 \mathcal{B}]^{\{f,g\}}$ has weights of \mathcal{B}

- $\forall f \in R_1(\mathcal{A}, \mathcal{B}) \colon \exists g \in R_2(\mathcal{A}, \mathcal{B}) \colon \forall w \in \Sigma^{\omega} \colon [\mathcal{A} \times_1 \mathcal{B}]^{\{f,g\}}(w) \leq [\mathcal{A} \times_2 \mathcal{B}]^{\{f,g\}}(w)$
- $\blacksquare \exists g \in R_2(\mathcal{A}, \mathcal{B}) : \forall f \in R_1(\mathcal{A}, \mathcal{B}) : \forall w \in \Sigma^{\omega} : [\mathcal{A} \times_1 \mathcal{B}]^{\{f,g\}}(w) \leq [\mathcal{A} \times_2 \mathcal{B}]^{\{f,g\}}(w)$

- $f: \mathsf{Edges}^*(\mathcal{A} \times \mathcal{B}) \times \Sigma \to \mathsf{State}(\mathcal{A})$
- $g: \mathsf{Edges}^*(\mathcal{A} \times \mathcal{B}) \times \Sigma \to \mathsf{State}(\mathcal{B})$
- $[\mathcal{A} \times_1 \mathcal{B}]^{\{f,g\}}$ has weights of \mathcal{A}
- $[\mathcal{A} \times_2 \mathcal{B}]^{\{f,g\}}$ has weights of \mathcal{B}

- $\forall f \in R_1(\mathcal{A}, \mathcal{B}) \colon \exists g \in R_2(\mathcal{A}, \mathcal{B}) \colon \forall w \in \Sigma^{\omega} \colon [\mathcal{A} \times_1 \mathcal{B}]^{\{f,g\}}(w) \leq [\mathcal{A} \times_2 \mathcal{B}]^{\{f,g\}}(w)$
- $\qquad \exists g \in R_2(\mathcal{A}, \mathcal{B}) \colon \forall f \in R_1(\mathcal{A}, \mathcal{B}) \colon \forall w \in \Sigma^{\omega} \colon [\mathcal{A} \times_1 \mathcal{B}]^{\{f,g\}}(w) \leq [\mathcal{A} \times_2 \mathcal{B}]^{\{f,g\}}(w)$
 - Thm: $\prec \iff \vartriangleleft_{\checkmark}$

Definition

- ▶ Hyperproperty = Set of properties
- $H_{\mathcal{A}} = \{ \mathcal{A}^f \mid f \in R(\mathcal{A}) \}$
- Incomparable with HyperLTL

Definition

- Hyperproperty = Set of properties
- $H_{\mathcal{A}} = \{ \mathcal{A}^f \mid f \in R(\mathcal{A}) \}$
- ▶ Incomparable with HyperLTL

Thm: Deciding Hyper-Inclusion

$$H_{\mathcal{A}} \subseteq H_{\mathcal{B}} \iff \forall f \in R(\mathcal{A}) \colon \exists g \in R(\mathcal{B}) \colon \forall w \in \Sigma^{\omega} \colon \mathcal{A}^f(w) = \mathcal{B}^g(w)$$

Definition

- ▶ Hyperproperty = Set of properties
- $H_{\mathcal{A}} = \{ \mathcal{A}^f \mid f \in R(\mathcal{A}) \}$
- Incomparable with HyperLTL

Thm: Deciding Hyper-Inclusion

$$H_{\mathcal{A}} \subseteq H_{\mathcal{B}} \iff \forall f \in R(\mathcal{A}) \colon \exists g \in R(\mathcal{B}) \colon \forall w \in \Sigma^{\omega} \colon \mathcal{A}^f(w) = \mathcal{B}^g(w)$$

Definition

- Hyperproperty = Set of properties
- $H_{\mathcal{A}} = \{ \mathcal{A}^f \mid f \in R(\mathcal{A}) \}$
- Incomparable with HyperLTL

Thm: Deciding Hyper-Inclusion

$$H_{\mathcal{A}} \subseteq H_{\mathcal{B}} \iff \forall f \in R(\mathcal{A}) \colon \exists g \in R(\mathcal{B}) \colon \forall w \in \Sigma^{\omega} \colon \mathcal{A}^f(w) = \mathcal{B}^g(w)$$

Thm: Deciding Safety

$$\mathcal{A}$$
 safe $\Leftrightarrow \exists g \in R(\mathcal{S}): \forall w \in \Sigma^{\omega}: \exists f \in R(\mathcal{A}): \forall f' \in R(\mathcal{A}): \mathcal{A}^f(w) \geq \mathcal{A}^{f'}(w) \land \mathcal{A}^f(w) = \mathcal{S}^g(w)$

Definition

- Hyperproperty = Set of properties
- $H_{\mathcal{A}} = \{ \mathcal{A}^f \mid f \in R(\mathcal{A}) \}$
- Incomparable with HyperLTL

Thm: Deciding Hyper-Inclusion

$$H_{\mathcal{A}} \subseteq H_{\mathcal{B}} \iff \forall f \in R(\mathcal{A}) \colon \exists g \in R(\mathcal{B}) \colon \forall w \in \Sigma^{\omega} \colon \mathcal{A}^f(w) = \mathcal{B}^g(w)$$

Thm: Deciding Safety

$$\mathcal{A}$$
 safe $\Leftrightarrow \exists g \in R(\mathcal{S}): \forall w \in \Sigma^{\omega}: \exists f \in R(\mathcal{A}): \forall f' \in R(\mathcal{A}): \mathcal{A}^f(w) \geq \mathcal{A}^{f'}(w) \land \mathcal{A}^f(w) = \mathcal{S}^g(w)$

Resolver Logic

Definition

$$\Psi = \exists w \in \Sigma^\omega \colon \Psi' \mid \forall w \in \Sigma^\omega \colon \Psi' \mid \exists f \in R(\mathcal{A}) \colon \Psi' \mid \forall f \in R(\mathcal{A}) \colon \Psi' \mid \varphi$$

```
Word variables w \in W is interpreted over \Sigma^{\omega}

Resolver variables f \in F_i is interpreted over R(A_i)

Integer variables x \in X is interpreted over \{A_i^f(w) \mid f \in F_i, w \in W\}
```

- A range over non-deterministic automata of a finite domain $\{A_1, A_2, \dots, A_n\}$
- φ range over existential Presburger formulas, i.e., $\exists FO(\mathbb{Z}, \leq, +, 1)$

Resolver Logic

Definition

$$\Psi = \exists w \in \Sigma^\omega \colon \Psi' \; \Big| \; orall w \in \Sigma^\omega \colon \Psi' \; \Big| \; \exists f \in R(\mathcal{A}) \colon \Psi' \; \Big| \; orall f \in R(\mathcal{A}) \colon \Psi' \; \Big| \; arphi$$

```
Word variables w \in W is interpreted over \Sigma^{\omega}

Resolver variables f \in F_i is interpreted over R(A_i)

Integer variables x \in X is interpreted over \{A_i^f(w) \mid f \in F_i, w \in W\}
```

- \mathcal{A} range over non-deterministic automata of a finite domain $\{\mathcal{A}_1,\mathcal{A}_2,\ldots,\mathcal{A}_n\}$
- φ range over existential Presburger formulas, i.e., $\exists FO(\mathbb{Z},\leq,+,1)$

Thm: Model-checking a fixed formula Ψ over $\{A_1, A_2, \dots, A_n\}$ is

- d-EXPTIME with d > 0 quantifier alternations,
- $\,\blacktriangleright\,$ $\mathrm{PT}_{\mathrm{IME}}$ with no quantifier alternation

Summary

Summary

Motivating Problems

- Trace Inclusion
- Strategic Dominance
- Simulation
- History Determinism
- Hyperproperty Inclusion
- Safety
- Emptiness
- Universality

Provided Complexity

- ▶ 2 ExpTime
- 2 ExpTime
- ▶ 2 ExpTime
- ► EXPTIME
- 2 ExpTime
- 3 ExpTime
- ► PTIME
- 2 ExpTime

Best Known

- ► PSPACE
- ► PSPACE
- ► PTIME
- ► EXPTIME (for LimInf)
- ► PSPACE
- ▶ PSPACE
- ► PTIME
- ► PSPACE

Summary

Motivating Problems

- Trace Inclusion
- Strategic Dominance
- Simulation
- History Determinism
- Hyperproperty Inclusion
- Safety
- Emptiness
- Universality

Provided Complexity

- ▶ 2 ExpTime
- 2 ExpTime
- 2 ExpTime
- ► EXPTIME
- ▶ 2 ExpTime
- 3 ExpTime
- ► PTIME
- 2 ExpTime

Best Known

- ► PSPACE
- ▶ PSPACE
- ► PTIME
- ► EXPTIME (for LimInf)
- ► PSPACE
- PSPACE
- ► PTIME
- ► PSPACE

Thank You