Государственный Комитет Республики Узбекистан по	Строительные нормы и правила	KMK 3.05.06-97
архитектуре и строительству	Электротехнические	Взамен СНиП
("Госкомархитектстрой")	устройства	3.05.06-85

Настоящие правила распространяются на производство работ при строительстве новых, а также при реконструкции, расширении и техническом перевооружении действующих предприятий по монтажу и наладке электротехнических устройств, в том числе: электрических подстанций, распределительных пунктов и воздушных линий электропередачи напряжением до 750 кВ, кабельных линий напряжением до 220 кВ, релейной защиты, силового электрооборудования, внутреннего электрического освещения, заземляющих устройств.

Правила не распространяются на производство и приемку работ по монтажу и наладке электротехнических устройств метрополитена, шахты рудников, контактных сетей электрифицированного транспорта, систем СЦБ железнодорожного транспорта, а также помещений строгого режима атомных электростанций, которые должны выполняться в соответствии с ведомственными строительными нормами, утвержденными в порядке, установленном КМК 1.01.01-96.

Правила должны соблюдаться всеми организациями и предприятиями, участвующими в проектировании и строительстве новых, расширении, реконструкции и техническом перевооружении действующих предприятий.

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 При организации и производстве работ по монтажу и наладке электротехнических устройств следует соблюдать требования СНиП 3.01.01-85°, СНиП III-4-80°, государственных стандартов, технических условий, Правил устройства электроустановок, утвержденных Минэнерго СССР, и ведомственных нормативных документов, утвержденных в порядке, установленном КМК 1.01.01-96.

Внесены	Утверждены приказом Государственного Комитета	Срок введения в действия с
АО "Средазэнергосетьпроект"	Республики Узбекистан по архи-	1 октября 1997 г.
	тектуре и строительству от 27	
	мая 1997 г. № 39	

стр. 2 КМК 3.05.06-97

- 1.2 Работы по монтажу и наладке электротехнических устройств следует производить в соответствии с рабочими чертежами основных комплектов чертежей электротехнических марок; по рабочей документации электроприводов; по рабочей документации нестандартизированного оборудования, выполненной проектной организацией; по рабочей документации предприятий-изготовителей технологического оборудования, поставляющих вместе с ним шкафы питания и управления.
- 1.3 Монтаж электротехнических устройств следует осуществлять на основе применения узлового и комплектно-блочного методов строительства, с установкой оборудования, поставляемого укрупненными узлами, не требующими при установке правки, резки, сверления или других подгоночных операций и регулировки. При приемке рабочей документации к производству работ надлежит проверять учет в ней требований индустриализации монтажа электротехнических устройств, а также механизации работ по прокладке кабелей, такелажу и установке технологического оборудования.
- 1.4 Электромонтажные работы следует выполнять, как правило, в две стадии.

В первой стадии внутри зданий и сооружений производятся работы по монтажу опорных конструкций для установки электрооборудования и шинопроводов, для прокладки кабелей и проводов, монтажу троллеев для электрических мостовых кранов, монтажу стальных и пластмассовых труб для электропроводок, прокладке проводов скрытой проводки до штукатурных и отделочных работ, а также работы по монтажу наружных кабельных сетей и сетей заземления. Работы первой стадии следует выполнять в зданиях и сооружениях по совмещенному графику одновременно с производством основных строительных работ, при этом должны быть приняты меры по защите установленных конструкций и проложенных труб от поломок и загрязнение.

Во второй стадии выполняются работы по монтажу электрооборудования, прокладке кабелей и проводов, шинопроводов и подключению кабелей и проводов к выводам электрооборудования. В электротехнических помещениях объектов работы второй стадии следует выполнять после завершения комплекса общестроительных и отделочных работ и по окончании работ по монтажу сантехнических устройств, а в других помещениях и зонах - после установки технологического оборудования, электродвигателей и других электроприемни-

ков, монтаж технологических, санитарно-технических трубопроводов и вентиляционных коробов.

На небольших объектах, удаленных от мест расположения электромонтажных организаций, работы следует производить выездными комплексными бригадами с совмещением двух стадий их выполнения в одну.

- 1.5 Электрооборудование, изделия и материалы следует поставлять по согласованному с электромонтажной организацией графику, который должен предусматривать первоочередную поставку материалов и изделий, включенных в спецификации на блоки, подлежащие изготовлению на сборочно-комплектовочных предприятиях электромонтажных организаций.
- 1.6 Окончанием монтажа электротехнических устройств является завершение индивидуальных испытаний смонтированного электрооборудования и подписание рабочей комиссией акта о приемке электрооборудования после индивидуального испытания. Началом индивидуальных испытаний электрооборудования является момент введения эксплуатационного режима на данной электроустановке, объявляемого заказчиком на основании извещения пусконаладочной и электромонтажной организаций.
- 1.7 На каждом объекте строительства в процессе монтажа электротехнических устройств следует вести специальные журналы производства электромонтажных работ согласно СНиП 3.01.01-85*, а при завершении работ электромонтажная организация обязана передать генеральному подрядчику документацию, предъявляемую рабочей комиссии согласно КМК 3.01.04-99. Перечень актов и протоколов проверок и испытаний определяется ВСП, утвержденными в установленном КМК 1.01.01-96 порядке.

2 ПОДГОТОВКА К ПРОИЗВОДСТВУ ЭЛЕКТРОМОНТАЖНЫХ РАБОТ

- 2.1 Монтажу электротехнических устройств должна предшествовать подготовка в соответствии со СНиП 3.01.01-85° и настоящими правилами.
- 2.2 До начала производства работ на объекте должны быть выполнены следующие мероприятия:
- а) получена рабочая документация в количестве и в сроки, определенные Правилами о договорах подряда на капитальное строитель-

стр. 4 КМК 3.05.06-97

ство, утвержденными постановлением Совета Министров Республики Узбекистан, и Положением о взаимоотношениях организаций - генеральных подрядчиков с субподрядными организациями, утвержденным Госкомархитектстроем Республики Узбекистан и Госпланом Республики Узбекистан;

- б) согласованы графики поставки оборудования, изделий и материалов с учетом технологической последовательности производства работ, перечень электрооборудования, монтируемого с привлечением шефмонтажного персонала предприятий -поставщиков, условия транспортирования к месту монтажа тяжелого и крупногабаритного электрооборудования;
- в) приняты необходимые помещения для размещения бригад рабочих, инженерно-технических работников, производственной базы, а также для складирования материалов и инструмента с обеспечением мероприятий по охране труда, противопожарной безопасности и охране окружающей среды в соответствии со СНиП 3.01.01-85°;
- г) разработан проект работ, проведено ознакомление инженернотехнических работников и бригадиров с рабочей документацией и сметами, организационными и техническими решениями проекта производства работ;
- д) осуществлена приемка по акту строительной части объекта под монтаж электротехнических устройств в соответствии с требованиями настоящих правил и выполнены предусмотренные нормами и правилами мероприятия по охране труда, противопожарной безопасности и охране окружающей среды при производстве работ;
- е) выполнены генподрядчиком общестроительные и вспомогательные работы, предусмотренные Положением о взаимоотношениях организаций генеральных подрядчиков с субподрядными организациями.
- 2.3 Оборудование, изделия, материалы и техническая документация должны передаваться в монтаж в соответствии с Правилами о договорах подряда на капитальное строительство и Положением о взаимоотношениях организаций генеральных подрядчиков с субподрядными организациями.
- При ка комплектности (без разборки), проверка наличия и срока действия гарантий предприятий-изготовителей.

- 2.5 Состояние кабелей на барабанах должно быть проверено в присутствии заказчика путем наружного осмотра. Результаты осмотра оформляются актом.
- 2.6 При приемке сборных железобетонных конструкций воздушных линий (ВЛ) следует проверять:

размеры элементов, положение стальных закладных деталей, а также качество поверхностей и внешний вид элементов.

Указанные параметры должны соответствовать ГОСТ 13015.0-83*, РСТ Уз 909-98, а также ПУЭ;

наличие на поверхности железобетонных конструкций, предназначенных для установки в агрессивную среду, гидроизоляции, выполненной на предприятии -изготовителе.

2.7 Изоляторы и линейная арматура должны отвечать требованиям соответствующих государственных стандартов и технических условий. При их приемке следует проверять:

наличие паспорта предприятия-изготовителя на каждую партию изоляторов и линейной арматуры, удостоверяющего их качество;

отсутствие на поверхности изоляторов трещин, деформаций, раковин, сколов, повреждений глазури, а также покачивания и поворота стальной арматуры относительно цементной заделки или фарфора;

отсутствие у линейной арматуры трещин, деформаций, раковин и повреждений оцинковки и резьбы.

Мелкие повреждения оцинковки допускается закрашивать.

- 2.8 Устранение дефектов и повреждений, обнаруженных при передаче электрооборудования, осуществляется в соответствии с Правилами о договорах подряда на капитальное строительство.
- 2.9 Электрооборудование, на которое истек нормативный срок хранения, указанный в государственных стандартах или технических условиях, принимается в монтаж только после проведения пред монтажной ревизии, исправления дефектов и испытаний. Результаты проведенных работ должны быть занесены в формуляры, паспорта и другую сопроводительную документацию или должен быть составлен акт о проведении указанных работ.

стр. 6 КМК 3.05.06-97

- 2.10 Электрооборудование, изделия и материалы, принятые в монтаж, следует хранить в соответствии с требованиями государственных стандартов или технических условий.
- 2.11 Для крупных и сложных объектов с большим объемом кабельных линий в тоннелях, каналах и кабельных полуэтажах ,а также электрооборудования в электропомещениях в проекте организации строительства должны быть определены меры по опережающему монтажу (против монтажа кабельных сетей) систем внутреннего противопожарного водопровода, автоматического пожаротушения и автоматической пожарной сигнализации, предусмотренных рабочими чертежами.
- 2.12 В электропомещениях (щитовые, пультовые, подстанции и распределительные устройства, машинные залы, аккумуляторные, кабельные тоннели и каналы, кабельные полуэтажи и т.п.) должны быть выполнены чистовые полы с дренажными каналами, необходимым уклоном и гидроизоляцией и отделочные работы (штукатурные и окрасочные), установлены закладные детали и оставлены монтажные проемы, смонтированы предусмотренные проектом грузоподъемные и грузоперемещающие механизмы и устройства, подготовлены в соответствии с архитектурно-строительными чертежами и проектом производства работ блоки труб, отверстия и проемы для прохода труб и кабелей, борозды, ниши и гнезда, выполнен подвод питания для временного электроосвещения во всех помещениях.
- 2.13 В зданиях и сооружениях должны быть введены в действие системы отопления и вентиляции, смонтированы и испытаны мостики, площадки и конструкции подвесных потолков, предусмотренные проектом для монтажа и обслуживания электроосветительных установок, расположенных на высоте, а также конструкции крепления многоламповых светильников (люстр) массой свыше 100 кг; проложены снаружи и внутри зданий и сооружений предусмотренные рабочими строительными чертежами асбест цементные трубы и патрубки и трубные блоки для прохода кабелей.
- 2.14 Фундаменты под электрические машины следует сдавать под монтаж с полностью законченными строительными и отделочными работами, установленными воздухоохладителями и вентиляционными коробами, с реперами и осевыми планками (марками) в соответствии с требованиями КМК 3.02.01-97 и настоящих правил.
- 2.15 На опорных (черновых) поверхностях фундаментов допускаются впадины не более 10 мм и уклоны до 1:100. Отклонения в строи-

тельных размерах должны быть не более: по осевым размерам в плане - плюс 30 мм, по высотным отметкам поверхности фундаментов (без учета высоты подливки) - минус 30 мм, по размерам уступов в плане - минус 20 мм, по размерам колодцев - плюс 20 мм, по отметкам уступов в выемках и колодцах - минус 20 мм, по осям анкерных болтов в плане- ±5 мм, по осям закладных анкерных устройств в плане - ±10 мм, по отметкам верхних торцов анкерных болтов -±20 мм.

- 2.16 Сдача-приемка фундаментов для установки электрооборудования, монтаж которого производится с привлечением шефмонтажного персонала, производится совместно с представителями организации, осуществляющий шефмонтаж.
- 2.17 По окончании отделочных работ в аккумуляторных помещениях должны быть выполнены кислого-или щелочестойкие покрытия стен, потолков и пола, смонтированы и опробованы системы отопления, вентиляции, водопровода и канализации.
- 2.18 До начала электромонтажных работ на открытых распределительных устройствах напряжением 35 кВ и выше строительной организацией должно быть закончено сооружение подъездных путей, подходов и подъездов, установлены шинные и линейные порталы, сооружены фундаменты под электрооборудование, кабельные каналы с перекрытиями, ограждениями вокруг ОРУ, резервуары для аварийного сброса масла, подземные коммуникации и закончена планировка территории. В конструкциях порталов и фундаментов под оборудование должны быть установлены проектом закладные части и крепежные детали, необходимые для крепления гирлянд изоляторов и оборудования. В кабельных каналах и тоннелях должны быть установлены закладные детали для крепления кабельных конструкций и воздухопроводов. Должно быть также закончено сооружение водопровода и других предусмотренных проектом противопожарных устройств.
- 2.19 Строительную часть ОРУ и подстанций напряжением 330-750 кВ следует принимать в монтаж на полное их развитие, предусмотренное проектом на расчетный период.
- 2.20 До начала электромонтажных работ по сооружению воздушных линий электропередачи напряжением до 1000 В и выше должны быть выполнены подготовительные работы согласно СниП 3.01.01-85*, в том числе:

стр. 8 КМК 3.05.06-97

подготовлены инвентарные сооружения в местах размещения прорабских участков и временные базы для складирования материалов и оборудования;

сооружены временные подъездные дороги, мосты и монтажные площадки;

устроены просеки;

осуществлены предусмотренный проектом снос строений и реконструкция пересекаемых инженерных сооружений, находящихся на трассе ВЛ или вблизи нее и препятствующих производству работ.

2.21 Трассы для прокладки кабеля в земле должны быть подготовлены к началу его прокладки в объеме:

из траншеи откачена вода и удалены камни, комья земли, строительный мусор;

на дне траншеи устроена подушка из разрыхленной земли;

выполнены проколы грунта в местах пересечения трассы с дорогами и другими инженерными сооружениями, заложены трубы.

После прокладки кабелей в траншею и представления электромонтажной организацией акта на скрытые работы по прокладке кабелей траншею следует засыпать.

2.22 Трассы блочной канализации для прокладки кабелей должны быть подготовлены с учетом следующих требований:

выдержана проектная глубина заложения блоков от планировочной отметки;

обеспечены правильность укладки и гидроизоляция стыков железобетонных блоков и труб;

обеспечена чистота и сносность каналов;

выполнены двойные крышки (нижняя с запором) люков колодцев, металлические лестницы или скобы для спуска в колодец.

2.23 При сооружении эстакад для прокладки кабелей на их опорных конструкциях (колоннах) и на пролетных строениях должны быть выполнены предусмотренные проектом закладные элементы для установки кабельных роликов, обводных устройств и других приспособлений.

2.24 Генподрядчик должен предъявить к приемке под монтаж строительную готовность в жилых домах - посекционно, в общественных зданиях - поэтажно (или по помещениям).

Железобетонные, гипсобетонные, керамзитовые панели перекрытия, внутренние стеновые панели и перегородки, железобетонные колонны и ригели заводского изготовления должны иметь каналы (трубы) для прокладки проводов, ниши, гнезда с закладными деталями для установки штепсельных розеток, выключателей, звонков и звонковых кнопок в соответствии с рабочими чертежами. Проходные сечения каналов и замоноличенных неметаллических труб не должны отличаться более чем на 15% от указанных в рабочих чертежах.

Смещение гнезд и ниш в местах сопряжений смежных строительных конструкций не должно быть более 40 мм.

2.25 В зданиях и сооружениях, сдаваемых под монтаж электрооборудования, генподрядчиком должны быть выполнены предусмотренные архитектурно-строительными чертежами отверстия, борозды, ниши и гнезда в фундаментах, стенах, перегородках, перекрытиях и покрытиях, необходимые для монтажа электрооборудования и установочных изделий, прокладки труб для электропроводок и электрических сетей.

Указанные отверстия, борозды, ниши и гнезда, не оставленные в строительных конструкциях при их возведении, выполняются генподрядчиком в соответствии с архитектурно-строительными чертежами.

Отверстия диаметром менее 30 мм, не поддающиеся учету при разработке чертежей и которые не могут быть предусмотрены в строительных конструкциях по условиям технологии их изготовления (отверстия в стенах, перегородках, перекрытиях только для установки дюбелей, шпилек и штырей различных опорно - поддерживающих конструкций), должны выполняться электромонтажной организацией на месте производства работ.

После выполнения электромонтажных работ генподрядчик обязан осуществить заделку отверстий, борозд, ниш и гнезд.

2.26 При приемке фундаментов под трансформаторы должны быть проверены наличие и правильность установки анкеров для крепления тяговых устройств при перекатке трансформаторов и фундаментов под домкраты для разворота катков.

3 ПРОИЗВОДСТВО ЭЛЕКТРОМОНТАЖНЫХ РАБОТ ОБЩИЕ ТРЕБОВАНИЯ

- 3.1 При погрузке, разгрузке, перемещении, подъеме и установке электрооборудования должны быть приняты меры по его защите от повреждений, при этом тяжеловесное электрооборудование необходимо надежно строить за предусмотренные для этой цели детали или в местах, указанных предприятием-изготовителем.
- 3.2 Электрооборудование при монтаже разборке и ревизии не подлежит, за исключением случаев, когда это предусмотрено государственными и отраслевыми стандартами или техническими условиями, согласованными в установленном порядке.

Разборка оборудования, поступившего опломбированным с предприятия -изготовителя, запрещается.

- 3.3 Электрооборудование и кабельная продукция деформированные или с повреждениями защитных покрытий монтажу не подлежат до устранения повреждений и дефектов в установленном порядке.
- 3.4 При производстве электромонтажных работ следует применять нормокомплекты специальных инструментов по видам электромонтажных работ, а также механизмы и приспособления, предназначенные для этой цели.
- 3.5 В качестве опорных конструкций и крепежных изделий для установки троллеев, шинопроводов, лотков, коробов, навесных щитков и постов управления, защитно-пусковой аппаратуры и светильников следует применять изделия заводского изготовления, имеющие повышенную монтажную готовность (с защитным покрытием, приспособленные для скрепления без сварки и не требующие больших трудозатрат на м деталям, предусмотренным в строительных элементах, или крепежными изделиями (дюбелями, штырями, шпильками и т.п.). Способ крепления должен быть указан в рабочих чертежах.
- 3.6 Цветовое обозначение токоведущих шин распределительных устройств, троллеев, шин заземления, проводов ВЛ следует выполнять в соответствии с указаниями, приведенными в проекте.
- 3.7 При производстве работ электромонтажная организация должна выполнять требования ГОСТ 12.1.004-91 и Правил пожарной безопасности при производстве строительно-монтажных работ. При введении на объекте эксплуатационного режима обеспечение пожарной безопасности является обязанностью заказчика.

КОНТАКТНЫЕ СОЕДИНЕНИЯ

- 3.8 Разборные присоединения шин и жил проводов и кабелей к контактным выводам электрооборудования, установочным изделиям и шинопроводам должны удовлетворять требованиям ГОСТ 10434-82.
- 3.9 В местах присоединения жил проводов и кабелей следует предусматривать запас провода или кабеля, обеспечивающий возможность повторного присоединения.
- 3.10 Места соединений и ответвлений должны быть доступны для осмотра и ремонта. Изоляция соединений и ответвлений должна быть равноценна изоляции жил соединяемых проводов и кабелей.

В местах соединений и ответвлений провода и кабели не должны испытывать механических усилий.

- 3.11 Оконцевание жилы кабеля с бумажной пропитанной изоляцией следует выполнять уплотненной токоведущей арматурой (наконечниками), не допускающей вытекания кабельного пропиточного состава.
- 3.12 Соединения и ответвления шин следует выполнять, как правило, неразборными (при помощи сварки).
- В местах, где требуется наличие разборных стыков, соединения шин должны быть выполнены болтами или сжимными плитами. Число разборных стыков должно быть минимальным.
- 3.13 Соединения проводов ВЛ напряжением до 20 кВ следует выполнять:
 - а) в петлях опор анкерно-углового типа:

зажимами - анкерными и ответвительными клиновыми; соединительными овальными, монтируемыми методом обжатия; петлевыми плошечными, при помощи термитных патронов, а проводов разных марок и сечений - аппаратными прессуемыми зажимами;

б) в пролетах: соединительными овальными зажимами, монтируемыми методом скручивания.

Однопроволочные провода допускается соединять путем скрутки. Сварка встык однопроволочных проводов не допускается.

- 3.14 Соединение проводов ВЛ напряжением выше 20 кВ необходимо выполнять:
 - а) в шлейфах опор анкерно-углового типа:

стр. 12 КМК 3.05.06-97

сталеалюминевых проводов сечением 240 мм² и выше - при помощи термитных патронов и опрессовкой с помощью энергии взрыва;

сталеалюминевых проводов сечением 500 мм² и выше - при помощи прессуемых соединителей;

проводов разных марок- болтовыми зажимами;

проводов из алюминиевого сплава- зажимами петлевыми плошечными или соединителями овальными, монтируемыми методом обжатия;

б) в пролетах:

сталеалюминевых проводов сечением до 185 мм² и стальных канатов сечением до 50 мм² овальными соединителями, монтируемыми методом скручивания;

стальных канатов сечением 70-95 мм²-овальными соединителями, монтируемыми методом обжатия или опрессования с дополнительной термитной сваркой концов;

сталеалюминевых проводов сечением 240-400 мм²- соединительными зажимами, монтируемыми методом сплошного опрессования и опрессования с помощью энергии взрыва:

сталеалюминевых проводов сечением 500 мм² и более - соединительными зажимами, монтируемыми методом сплошного опрессования.

3.15 Соединение медных и сталемедных канатов сечением 35-120 мм², а также алюминиевых проводов сечением 120-185 мм² при монтаже контактных сетей следует выполнять овальными соединителями, стальных канатов - зажимами с соединительной планкой между ними. Сталемедные канаты сечением 50-95 мм² допускается стыковать клиновыми зажимами с соединительной планкой между ними.

ЭЛЕКТРОПРОВОДКИ

ОБШИЕ ТРЕБОВАНИЯ

3.16 Правила настоящего подраздела распространяются на монтаж электропроводок силовых, осветительных и вторичных цепей напряжением до 1000 В переменного и постоянного тока, прокладываемых внутри и вне зданий и сооружений изолированными установочными проводами всех сечений и небронированными кабелями с резиновой или пластмассовой изоляцией сечением до 16 мм²

- 3.17 Монтаж контрольных кабелей следует выполнять с учетом требований пп. 3.56-3.104.
- 3.18 Проходы небронированных кабелей, защищенных и незащищенных проводов через несгораемые стены (перегородки) и междуэтажные перекрытия должны быть выполнены в отрезках труб, или в коробах, или проемах, а через сгораемые - в отрезках стальных труб.

Проемы в стенах и перекрытиях должны иметь обрамление, исключающее их разрушение в процессе эксплуатации. В местах прохода проводов и кабелей через стены, перекрытия или их выхода наружу следует заделывать зазоры между проводами, кабелями и трубой (коробом, проемом) легко удаляемой массой из несгораемого материала.

Уплотнение следует выполнять с каждой стороны трубы (короба и т.п.).

При открытой прокладке неметаллических труб заделка мест их прохода через противопожарные преграды должна быть произведена несгораемыми материалами непосредственно после прокладки кабелей или проводов в трубы. Заделка зазоров между трубами (коробом, проемом) и строительной конструкцией. (см.2.25), а также между проводами и кабелями, проложенными в трубах, коробах, проемах), легко удаляемой массой из несгораемого материала должна обеспечивать огнестойкость, соответствующую огнестойкости строительной конструкции.

ПРОКЛАДКА ПРОВОДОВ И КАБЕЛЕЙ НА ЛОТКАХ И В КОРОБАХ

- 3.19 Конструкция и степень защиты лотков и коробов, а также способ прокладки проводов и кабелей на лотках и в коробах (россыпью, пучками, многослойно и т.п.) должны быть указаны в проекте.
- 3.20 Способ установки коробов не должен допускать скопления в них влаги. Применяемые короба для открытых электропроводок должны иметь, как правило, съемные или открывающиеся крышки.
 - 3.21 При скрытых прокладках следует применять глухие короба.
- 3.22 Провода и кабели, прокладываемые в коробах и на лотках, должны иметь маркировку в начале и конце лотков и коробов, а также в местах подключения их к электрооборудованию, а кабели, кроме того, также на поворотах трассы и на ответвлениях.
- 3.23 Крепления незащищенных проводов и кабелей с металлической оболочкой металлическими скобами или бандажами должны

стр. 14 КМК 3.05.06-97

быть выполнены с прокладками из эластичных изоляционных материалов.

ПРОКЛАДКА ПРОВОДОВ НА ИЗОЛИРУЮЩИХ ОПОРАХ

- 3.24 При прокладке на изолирующих опорах соединение или ответвление проводов следует выполнять непосредственно у изолятора, клицы, ролика или на них.
- 3.25 Расстояния между точками крепления вдоль трассы и между осями параллельно проложенных незащищенных изолированных проводов на изолирующих опорах должны быть указаны в проекте.
- 3.26 Крюки и кронштейны с изоляторами должны быть закреплены только в основном материале стен, а ролики и клицы для проводов сечением до 4 мм² в ключ. могут быть закреплены на штукатурке или на обшивке деревянных зданий. Изоляторы на крюках должны быть надежно закреплены.
- 3.27 При креплении роликов глухарями под головки глухарей должны быть подложены металлические и эластичные шайбы, а при креплении роликов на металле под их основания должны быть подложены эластичные шайбы.

ПРОКЛАДКА ПРОВОДОВ И КАБЕЛЕЙ НА СТАЛЬНОМ КАНАТЕ

- 3.28 Провода и кабели (в поливинилхлоридной, найритовой, свинцовой или алюминиевой оболочках с резиновой или поливинилхлоридной изоляцией) надлежит закреплять к несущему стальному канату или к проволоке бандажами или кличами, устанавливаемыми на расстояниях не более 0,5 м друг от друга.
- 3.29 Кабели и провода, проложенные на канатах, в местах перехода их с каната на конструкции зданий должны быть разгружены от механических усилий.

Вертикальные подвески проводки на стальном канате должны быть расположены, как правило, в местах установки ответвительных коробок, штепсельных разъемов, светильников и т.п. Стрела провеса каната в пролетах между креплениями должна быть в пределах 1/40 - 1/60 длины пролета. Сращивание канатов в пролете между концевыми креплениями не допускается.

3.30 Для предотвращения раскачивания осветительных электропроводок на стальном канате должны быть установлены растяжки. Число растяжек должно быть определено в рабочих чертежах. 3.31 Для ответвлений от специальных тросовых проводов надлежит использовать специальные коробки, обеспечивающие создание петли троса, а также запаса жил, необходимого для подсоединения отходящей линии с помощью ответвительных сжимов без разрезания магистрали.

ПРОКЛАДКА УСТАНОВОЧНЫХ ПРОВОДОВ ПО СТРОИТЕЛЬНЫМ ОСНОВАНИЯМ И ВНУТРИ ОСНОВНЫХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

- 3.32 Открытая и скрытая прокладка установочных проводов не допускается при температуре ниже минус 15°C.
- 3.33 При скрытой прокладке проводов под слоем штукатурки или в тонкостенных (до 80 мм) перегородках провода должны быть проложены параллельно архитектурно-строительным линиям. Расстояние горизонтально проложенных проводов от плит перекрытия не должно превышать 150 мм. В строительных конструкциях толщиной свыше 80 мм провода должны быть проложены по кратчайшим трассам.
- 3.34 Все соединения и ответвления установочных проводов должны быть выполнены сваркой, опрессовкой в гильзах или с помощью зажимов в ответвительных коробках.

Металлические ответвительные коробки в местах ввода в них проводов должны иметь втулки из изолирующих материалов. Допускается вместо втулок применять отрезки поливинилхлоридной трубки. В сухих помещениях допускается размещать ответвления проводов в гнездах и нишах стен и перекрытий, а также в пустотах перекрытий. Стенки гнезд и ниш должны быть гладкими, ответвления проводов, расположенные в гнездах и нишах, должны быть закрыты крышками из несгораемого материала.

- 3.35 Крепление плоских проводов при скрытой прокладке должно обеспечивать плотное прилегание их к строительным основаниям. При этом расстояния между точками крепления должны составлять:
- а) при прокладке на горизонтальных и вертикальных участках заштукатуриваемых пучков проводов не более 0,5 м; одиночных проводов 0,9 м;
 - б)при покрытии проводов сухой штукатуркой -до 1,2 м.
- 3.36 Устройство плинтусной проводки должно обеспечивать раздельную прокладку силовых и слаботочных проводов.
- 3.37 Крепление плинтуса должно обеспечивать плотное его прилегание к строительным основаниям, при этом усилие на отрыв

стр. 16 КМК 3.05.06-97

должно быть не менее190 H, а зазор между плинтусом, стеной и полом - не более 2 мм. Плинтусы следует выполнять из несгораемых и трудносгораемых материалов, обладающих электроизоляционными свойствами.

- 3.38 В соответствии с РСТ Уз 702-96, и РСТ Уз 12767-94 в панелях должны быть предусмотрены внутренние каналы или замоноличенные пластмассовые трубы и закладные элементы для скрытой сменяемой элетропроводки, гнезда и отверстия для установки распаечных коробок, выключателей и штепсельных розеток. Отверстия, предназначенные для электроустановочных изделий, и протяжные ниши в стеновых панелях смежных квартир не должны быть сквозными. Если по условиям технологии изготовления отверстия не представляется возможным выполнить несквозными, то в них должны быть заложены звукоизолирующие прокладки из винипора или другого несгораемого звукоизолирующего материала.
- 3.39 Установку труб и коробок в арматурных каркасах следует выполнять на кондукторах по рабочим чертежам, определяющим места крепления установочных, ответвительных и потолочных коробок. Для обеспечения расположения коробок после формования заподлицо с поверхностью панелей их следует крепить к арматурному каркасу таким образом, чтобы при блочной установке коробок высота блока соответствовала толщине панели, а при раздельной установке коробок для исключения их смещения внутрь панелей лицевая поверхность коробок должна выступать за плоскость арматурного каркаса на 30-35 мм.
- 3.40 Каналы должны на всем протяжении иметь гладкую поверхность без натеков и острых углов.

Толщина защитного слоя над каналом (трубой) должна быть не менее 10 мм.

Длина каналов между протяжными нишами или коробками должна быть не более 8 м.

ПРОКЛАДКА ПРОВОДОВ И КАБЕЛЕЙ В СТАЛЬНЫХ ТРУБАХ

- 3.41 Стальные трубы допускается применять для электропроводок только в специально обоснованных в проекте случаях в соответствии с требованиями нормативных документов, утвержденных в порядке, установленном КМК 1.01.01-96.
- 3.42 Применяемые для электропроводок стальные трубы должны иметь внутреннюю поверхность, исключающую повреждение изоляции

проводов при их затягивании в трубу и антикоррозионное покрытие наружной поверхности. Для труб, замоноличиваемых в строительные конструкции, наружное антикоррозионное покрытие не требуется. Трубы, прокладываемые в помещениях с химически активной средой, внутри и снаружи должны иметь антикоррозионное покрытие, стойкое в условиях данной среды. В местах выхода проводов из стальных труб следует устанавливать изоляционные втулки.

- 3.43 Стальные трубы для электропроводки, укладываемые в фундаментах под технологическое оборудование, до бетонирования фундаментов должны быть закреплены на опорных конструкциях или на арматуре. В местах выхода труб из фундамента в грунт должны быть осуществлены мероприятия, предусматриваемые в рабочих чертежах, против среза труб при осадках грунта или фундамента.
- 3.44 В местах пересечения трубами температурных и осадочных швов должны быть выполнены компенсирующие устройства в соответствии с указаниями в рабочих чертежах.
- 3.45 Расстояния между точками крепления открыто проложенных стальных труб не должны превышать величин, указанных в табл.1. Крепление стальных труб электропроводки непосредственно к технологическим трубопроводам, а также их приварка непосредственно к различным конструкциям не допускаются.

Таблица 1

Наибольшие допустимые расстояния между	Условный проход
точками крепления	труб,мм
2,5 3,0 3,5-4 6	5-20 25-32 40.80 100

- 3.46 При изгибании труб следует, как правило, применять нормализованные углы поворота 90, 120 и 135° и нормализованные радиусы изгиба 400, 800 и 1000 мм. Радиус изгиба 400 мм следует применять для труб, прокладываемых в перекрытиях, и дня вертикальных выходов; 800 и 1000мм при прокладке труб в монолитных фундаментах и при прокладке в них кабелей с однопроволочными жилами. При заготовке пакетов и блоков труб следует также придерживаться указанных нормализованных углов и радиусов изгиба.
- 3.47 При прокладке проводов в вертикально проложенных трубах (стояках) должно быть предусмотрено их закрепление, причем точки закрепления должны отстоять друг от друга на расстоянии, не превышающем, м:

стр. 18 КМК 3.05.06-97

для проводов до 50 мм ² включ 30
тоже, от 70 до 150 мм 2 включ 20
то же, от 185 до 240 мм ² включ 15

Закрепление проводов или зажимов в следует выполнять с помощью клиц или зажимов в протяжных или ответвительных коробках либо на концах труб.

- 3.48 Трубы при скрытой прокладке в полу должны быть заглублены не менее чем на 20 мм и защищены слоем цементного раствора. В полу разрешается устанавливать ответвительные и протяжные коробки, например для модульных проводок.
- 3.49 Расстояния между протяжными коробками (ящиками) не должны превышать, м: на прямых участках 75, при одном изгибе трубы 50, при двух 40, при трех 20. Провода и кабели в трубах должны лежать свободно, без натяжения. Диаметр труб следует принимать в соответствии с указаниями в рабочих чертежах.

ПРОКЛАДКА ПРОВОДОВ И КАБЕЛЕЙ В НЕМЕТАЛЛИЧЕСКИХ ТРУБАХ

3.50 Прокладку неметаллических (пластмассовых) труб для затяжки в них проводов и кабелей производить в соответствии с рабочими чертежами при температуре воздуха не ниже минус 20 и не выше плюс 60°C.

В фундаментах пластмассовые трубы (как правило, полиэтиленовые) должны быть уложены только на горизонтально утрамбованный грунт или слой бетона.

- В фундаментах глубиной до 2 м допускается прокладка поливинилхлоридных труб. При этом должны быть приняты меры против механических повреждений их при бетонировании и обратной засыпке грунта.
- 3.51 Крепление прокладываемых открыто неметаллических труб должно допускать их свободное перемещение (подвижное крепление) при линейном расширении или сжатии от изменения температуры окружающей среды. Расстояния между точками установки подвижных креплений должны соответствовать указанным в табл.2

Таблица 2.

Наружный диаметр трубы, мм	Расстояния между точками крепления при горизонтальной и вертикальной прокладке, мм
20	1000
25	1100
32	1400
40	1600
50	1700
63	2000
75	2300
90	2500

- 3.52 Толщина бетонного раствора над трубами (одиночными и блоками) при их замоноличивании в подготовках полов должна быть не менее 20 мм. В местах пересечения трубных трасс защитный слой бетонного раствора между трубами не требуется. При этом глубина заложения верхнего ряда должна соответствовать приведенным выше требованиям. Если при пересечении труб невозможно обеспечить необходимую глубину заложения труб, следует предусмотреть их защиту от установки металлических гильз, кожухов или иных средств в соответствии с указаниями в рабочих чертежах.
- 3.53 Выполнение защиты от механических повреждений в местах пересечения проложенных в полу электропроводок в пластмассовых трубах с трассами внутрицехового транспорта при слое бетона 100 мм и более не требуется. Выход пластмассовых труб из фундаментов, подливок полов и других строительных конструкций должен быть выполнен отрезками или коленами поливинилхлоридных труб, а при возможности механических повреждений отрезками из тонкостенных стальных труб.
- 3.54 При выходе поливинилхлоридных труб на стены в местах возможного механического повреждения их следует защищать стальными конструкциями на высоту до 1,5 м или выполнять выход из стены отрезками тонкостенных стальных труб.
 - 3.55 Соединение пластмассовых труб должно быть выполнено:

полиэтиленовых - плотной посадкой с помощью муфт, горячей обсадкой в раструб, муфтами из термоусаживаемых материалов, сваркой;

поливинилхлоридных - плотной посадкой в раструб или с помощью муфт. Допускается соединение склеиванием.

КАБЕЛЬНЫЕ ЛИНИИ ОБЩИЕ ТРЕБОВАНИЯ

3.56 Настоящие правила следует соблюдать при монтаже силовых кабельных линий напряжением до 220 кВ.

Монтаж кабельных линий метрополитена, шахт, рудников следует выполнять с учетом требований ВСН, утвержденных в порядке, установленном КМК 1.01.01-96.

- 3.57. Наименьшие допустимые радиусы изгиба кабелей и допустимая разность уровней между высшей и низшей точками расположения кабелей с бумажной пропитанной изоляцией на трассе должны соответствовать требованиям ГОСТ 16441-78, ГОСТ 24334-80, ГОСТ 1508-78-Е и утвержденным техническим условиям.
- 3.58. При прокладке кабелей следует принимать меры по защите их от механического повреждения. Усилия тяжения кабелей до 35 кВ должны быть в пределах величин, приведенных в табл.3. Лебедки и другие тяговые средства необходимо оборудовать регулируемыми ограничивающими устройствами для отключения тяжения при появлении усилий выше допустимых. Протяжные устройства, обжимающие кабель (приводные ролики), а также поворотные устройства должны исключать возможность деформации кабеля. Для кабелей напряжением 110-220 кВ допустимые усилия тяжения приведены в п.3.98

Таблица 3

Сечение Усилия тяжения за алюминиевую оболочку, кН, кабе-		Усилия тяжения за жилы, кН, кабеля до 35, кВ				
кабеля, мм²	-	оолочку, кн, каое- пряжением, кВ		Медные	Алюминиевые много проволоч-	Алюминие- вые ОДНО
	1	6	10		ные	проводочные
3x25	1,7	2,8	3,7	3,4	2,9	2,9
3x35	1,8	2,9	3,9	4,9	3,9	3,9
3x50	2,3	3,4	4,4	7,0	5,9	5,9
3x70	2,9	3,9	4,9	10,0	8,2	3,9*
3x95	3,4	4,4	5,7	13,7	10,8	5,4*
3x120	3,9	4,9	6,4	17,6	13,7	6,4*
3x150	5,9	6,4	7,4	22,0	17,6	8,8*
3x185	6,4	7,4	8,3	26,0	21,6	10.8*
3x240	7,4	9,3	9.8	35,0	27.4	13,7*

* Из мягкого алюминия соотносительным удлинением не более 30%.

Примечания: 1. Тяжение кабеля с пластмассовой или свинцовой оболочкой допускается только за жилы.

- 2 Усилия тяжения кабеля при протягивании его через блочную канализацию приведены в табл.4
- 3 Кабели, бронированные круглой проволокой, следует тянуть за проволоки. Допустимое напряжение 70-100 H/ мм²-
- 4. Контрольные кабели и бронированные и небронированные силовые кабели сенением 3616 мм² в отличие от приведенных в настоящей таблицы кабелей больших речений, допускается прокладывать механизировано тяжением за броню или за оболочку с помощью проволочного чулка, усилия тяжения при этом не должны превышать 1 кН.
- 3.59 Кабели следует укладывать с запасом по длине 1-2%. В траншеях и на сплошных поверхностях внутри зданий и сооружений запас достигается путем укладки кабеля "змейкой", а по кабельным конструкциям (кронштейнам) этот запас используют для образования стрелы провеса.

Укладывать запас кабеля в виде колец (витков) не допускается.

- 3.60 Кабели, прокладываемые горизонтально по конструкциям, стенам, перекрытиям, фермам и т.п., следует жестко закреплять в конечных точках, непосредственно у концевых муфт, на поворотах трассы, с обеих сторон изгибов и у соединительных и стопорных муфт.
- 3.61 Кабели, прокладываемые вертикально по конструкциям и стенам, должны быть закреплены на каждой кабельной конструкции.
- 3.62 Расстояния между опорными конструкциями принимаются в соответствии с рабочими чертежами. При прокладке силовых и контрольных кабелей с алюминиевой оболочкой на опорных конструкциях с расстоянием 6000 мм должен быть обеспечен остаточный прогиб в середине пролета: 250-300 мм при прокладке на эстакадах и галереях, не менее 100-150 мм в остальных кабельных сооружениях.

Конструкции, на которые укладывают небронированные кабели, должны иметь исполнение, исключающее возможность механического повреждения оболочек кабелей.

В местах жесткого крепления небронированных кабелей со свинцовой или алюминиевой оболочкой на конструкциях должны быть проложены прокладки из эластичного материала (например, листовая резина, листовой поливинилхлорид); небронированные кабели с пластмассовой оболочкой или пластмассовым шлангом, а также бронированные кабели допускается крепить к конструкциям скобами (хомутами) без прокладок.

стр. 22 КМК 3.05.06-97

- 3.63 Бронированные и небронированные кабели внутри помещений и снаружи в местах, где возможны механические повреждения (передвижение автотранспорта, грузов и механизмов, доступность для неквалифицированного персонала), должны быть защищены до безопасной высоты, но не менее 2 м от уровня земли или пола и на глубине 0,3 м в земле.
- 3.64 Концы всех кабелей, у которых в процессе прокладки нарушена герметизация, должны быть временно загерметизированы до монтажа соединительных и концевых муфт.
- 3.65 Проходы кабелей через стены, перегородки и перекрытия в производственных помещениях и кабельных сооружениях должны быть осуществлены через отрезки неметаллических труб (асбестовых безнапорных, пластмассовых и т.п.), отфактурованные отверстия в железобетонных конструкциях или открытые проемы. Зазоры в отрезках труб, отверстиях и проемы после прокладки кабелей должны быть заделаны несгораемым материалом, например цементом с песком по объему 1:10, глиной с песком 1:3, глиной с цементом и песком 1,5:1:11, перлитом вспученным со строительным гипсом -1:2 и т.п., по всей толщине стены или перегородки.

Зазоры в проходах через стены допускается не заделывать, если эти стены не являются противопожарными преградами.

- 3.66 Траншея перед прокладкой кабеля должна быть осмотрена для выявления мест на трассе, содержащих вещества, разрушительно действующие на металлический покров и оболочку кабеля (солончаки, известь, вода, насыпной грунт, содержащий шлак или строительный мусор, участки, расположенные ближе 2 м от выгребных и мусорных ям, и т.п.). При невозможности обхода этих мест кабель должен быть проложен в чистом нейтральном грунте в безнапорных асбестоцементных трубах, покрытых снаружи и внутри битумным составом, и т.п. При засыпке кабеля нейтральным грунтом траншея должна быть дополнительно расширена с обеих сторон на 0,5-0,6 м и углублена на 0,3-0,4 м
- 3.67 Вводы кабелей в здания, кабельные сооружения и другие помещения должны быть выполнены в асбестоцементных безнапорных трубах в отфактурованных отверстиях железобетонных конструкций. Концы труб должны выступать из стены здания в траншею, а при наличии отмостки- за линию последней не менее чем на 0,6 м и иметь уклон в сторону траншеи.

- 3.68 При прокладке нескольких кабелей в траншее концы кабелей, предназначенные для последующего монтажа соединительных и стопорных муфт, следует располагать со сдвигом мест соединения не менее чем на 2 м. При этом должен быть оставлен запас кабеля длиной, необходимой для проверки изоляции на влажность и монтажа муфты, а также укладки дуги компенсатора (длиной на каждом конце не менее 350 мм для кабелей напряжением до 10 кВ и не менее 400 мм для кабелей напряжением 20 и 35 кВ).
- 3.69 В стесненных условиях при больших потоках кабелей допускается располагать компенсаторы в вертикальной плоскости ниже уровня прокладки кабелей. Муфта при этом остается на уровне прокладки кабелей.
- 3.70 Проложенный в траншее кабель должен быть присыпан первым слоем земли, уложена механическая защита или сигнальная лента, после чего представителями электромонтажной и строительной организаций совместно с представителем заказчика должен быть произведен осмотр трассы с составлением акта на скрытые работы.
- 3.71 Траншея должна быть окончательно засыпана и утрамбована после монтажа соединительных муфт и испытания линии повышенным напряжением.
- 3.72 Засыпка траншеи комьями мерзлой земли, грунтом, содержащим камни, куски металла и т.п., не допускается.
- 3.73 Бестраншейная прокладка с самоходного или передвигаемого тяговыми механизмами ножевого кабелеукладчика допускается для 1-2 бронированных кабелей напряжением до 10 кВ со свинцовой или алюминиевой оболочкой на кабельных трассах, удаленных от инженерных сооружений. В городских электросетях и на промышленных предприятиях бестраншейная прокладка допускается только на протяженных участках при отсутствии на трассе подземных коммуникаций, пересечений с инженерными сооружениями, естественных препятствий и твердых покрытий.
- 3.74 При прокладке трассы кабельной линии в незастроенной местности по всей трассе должны быть установлены опознавательные знаки на столбиках из бетона или на специальных табличках указателях, которые размещаются на поворотах трассы, в местах расположения соединительных муфт, с обеих сторон пересечений с дорогами и подземными сооружениями, у входов в здания и через каждые 100 м на прямых участках.

На пахотных землях опознавательные знаки должны устанавливаться не реже чем через 500 м.

стр. 24 КМК 3.05.06-97

ПРОКЛАДКА В БЛОЧНОЙ КАНАЛИЗАЦИИ

3.75. Общая длина канала блока по условиям предельно допустимых усилий тяжения для небронированных кабелей со свинцовой оболочкой и медными жилами не должна превышать следующих значений:

Сечение кабеля, мм² до 3x50 3x70 3x95 и выше; Предельная длина,м. 145 115 108.

Для небронированных кабелей с алюминиевыми жилами сечением $95~{\rm mm}^2$ и выше в свинцовой или пластмассовой оболочке длина канала не должна превышать $150~{\rm m}$.

- 3.76 Предельно допустимые усилия тяжения небронированных кабелей со свинцовой оболочкой и с медными или алюминиевыми жилами при креплении тягового каната за жилы, а также требуемые усилия на протягивание 100 м кабеля через блочную канализацию приведены в табл.4.
- 3.77 Для небронированных кабелей с пластмассовой оболочкой предельно допустимые усилия тяжения следует принимать по табл. 4 с поправочными коэффициентами для жил:

медных	0,7
из твердого алюминия	0,5
мягкого	0.25

Таблица 4

Жилы небро- нированного кабеля со свинцовой	Сечение кабе- ля, мм²	Допустимое усилие тяжения.кН	т кареня ко напряжением ко		
оболочкой			1	6	10
	3x50	6,4	1,7	2,3	2,7
	3x70	8,9	2,2	2.8	3,2
Медные	3x95	12,0	2,8	3,5	4,0
	3x120	15,3	3,4	4,2	4,6
	3x150	19,0	4,2	5,3	5,5
	3x185	23,5	5,1	5,7	6,3
	3x95	7,45	1,8	2,4	2,9
A	3x120	9,4	2,1	2,9	3,3
Алюминиевые	3x150	11.8	2,6	3,6	3,8
	3x185	14.5	3,1	3,7	4,3
Поштопо	П==		= =		

Примечание. Для уменьшения усилий тяжения при протягивании кабеля его следует покрыть смазкой, не содержащей веществ, вредно действующих на оболочку кабеля (тавот, салидол).

ПРОКЛАДКА В КАБЕЛЬНЫХ СООРУЖЕНИЯХ И ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЯХ

- 3.78 При прокладке в кабельных сооружениях, коллекторах и производственных помещениях кабели не должны иметь наружных защитных покровов из горючих материалов. Металлические оболочки и броня кабеля, имеющие несгораемое антикоррозионное (например гальваническое) покрытие, выполненное на предприятииизготовителе, не подлежат окраске после монтажа.
- 3.79 Кабели в кабельных сооружениях и коллекторах жилых кварталов следует прокладывать, как правило, целыми строительными длинами, избегая по возможности, применения в них соединительных муфт.

Кабели, проложенные горизонтально по конструкциям на открытых эстакадах (кабельных и технологических), кроме крепления в местах согласно п.3.60, должны быть закреплены во избежание смещения под действием ветровых нагрузок на прямых горизонтальных участках трассы в соответствие с указаниями, приведенными в проекте.

3.80 Кабели в алюминиевой оболочке без наружного покрова при прокладке их по оштукатуренным и бетонным стенам, фермам и колоннам должны отстоять от поверхности строительных конструкций не менее чем на 25 мм. По окрашенным поверхностям указанных конструкций допускается прокладка таких кабелей без зазора.

ПРОКЛАДКА НА СТАЛЬНОМ КАНАТЕ

- 3.81 Диаметр и марка каната, а также расстояние между анкерными и промежуточными креплениями каната определяются в рабочих чертежах. Стрела провеса каната после подвески кабелей должны быть в пределах 1/40 -1/60 длины пролета. Расстояния между подвесками кабелей должны быть не более 800 -1000 мм.
- 3.82 Анкерные концевые конструкции должны быть закреплены к колоннам или стенам здания. Крепления их к балкам и фермам не допускается.
- 3.83 Стальной канат и другие металлические части для прокладки кабелей на канате вне помещений независимо от наличия гальванического покрытия должны быть покрыты смазкой (например, солидолом). Внутри помещений стальной канат, имеющий гальваническое покрытие, должен быть покрыт смазкой только в тех случаях, когда он

может подвергаться коррозии под действием агрессивной окружающей среды.

ПРОКЛАДКА ПРИ НИЗКИХ ТЕМПЕРАТУРАХ

- 3.84 Прокладка кабелей в холодное время года без предварительного подогрева допускается только в тех случаях, когда температура воздуха в течении 24 ч до начала работ не снижалась, хотя бы временно, ниже:
- О °С для силовых бронированных и небронированных кабелей с бумажной изоляцией (вязкой, не стекающей и обедненно пропитанной) в свинцовой или алюминиевой оболочке;
- минус 5 °C для маслонаполненных кабелей низкого и высокого давления;
- минус 7 °C для контрольных и силовых кабелей напряжением до 35 кВ с пластмассовой или резиновой изоляцией и оболочкой с волокнистыми материалами в защитном покрове, а также с броней из стальных лент или проволоки;
- минус 15 °C для контрольных и силовых кабелей напряжением до 10 кВ с поливинилхлоридной или резиновой изоляцией и оболочкой без волокнистых материалов в защитном покрове, а также с броней из профилированной стальной оцинкованной ленты;
- минус 20 °C для небронированных контрольных и силовых кабелей с полиэтиленовой изоляцией и оболочкой без волокнистых материалов в защитном покрове, а также с резиновой изоляцией в свинцовой облочке.
- 3.85 Кратковременные в течение 2-3 ч понижения температуры (ночные заморозки) не должны приниматься во внимание при условии положительной температуры в предыдущий период времени.
- 3.86. При температуре воздуха ниже указанной в п.3.84 кабели должны предварительно подогреваться в следующие сроки:

3.87 Небронированные кабели с алюминиевой оболочкой в поливинилхлоридном шланге даже предварительно подогретые не допус-

кается прокладывать при температуре окружающего воздуха ниже минус 20° С.

- 3.88 При температуре окружающего воздуха ниже минус 40 °C прокладка кабелей всех марок не допускается.
- 3.89 Подогретый кабель при прокладке не должен подвергаться изгибу по радиусу меньше допустимого. Укладывать его в траншее змейкой необходимо с запасом по длине согласно п.3.59. Немедленно после прокладки кабель должен быть засыпан первым слоем разрыхленного грунта. Окончательно засыпать траншею грунтом и уплотнять засыпку следует после охлаждения кабеля.

МОНТАЖ МУФТ КАБЕЛЕЙ НАПРЯЖЕНИЕМ ДО 35 кВ

- 3.90 Монтаж муфт силовых кабелей напряжением до 35 кВ и контрольных кабелей должен выполняться в соответствии с ведомственными технологическими инструкциями, утвержденными в установленном порядке.
- 3.91 Типы муфт и концевых заделок для силовых кабелей напряжением до 35 кВ с бумажной и пластмассовой изоляцией и контрольных кабелей, а также способы соединения и оконцевания жил кабелей должны быть указаны в проекте.
- 3.92 Расстояние в свету между корпусом муфты и ближайшим кабелем, проложенным в земле, должно быть не менее 250 мм. На крутонаклонных трассах (свыше 20° к горизонтали) устанавливать соединительные муфты, как правило, не следует. При необходимости установки на таких участках соединительных муфт они должны располагаться на горизонтальных площадках. Для обеспечения возможности повторного монтажа муфт в случае их повреждения с обеих сторон муфты должен быть оставлен запас кабеля в виде компенсатора (см.п.3.68).
- 3.93 Кабели в кабельных сооружениях следует прокладывать, как правило, без выполнения на них соединительных муфт, каждая из них должна быть уложена на отдельной опорной конструкции и заключена в противопожарный защитный кожух для локализации пожара (изготовленный в соответствии с утвержденной нормативно-технической документацией). Кроме того, соединительная муфта должна быть отделена от верхних и нижних кабелей несгораемыми защитными перегородками со степенью огнестойкости не менее 0,25 ч.

стр. 28 КМК 3.05.06-97

- 3.94 Соединительные муфты кабелей, прокладываемых в блоках, должны быть расположены в колодцах.
- 3.95 На трассе, состоящей из проходного туннеля, переходящего в полупроходной туннель или непроходной канал, соединительные муфты должны быть расположены в проходном туннеле.

ОСОБЕННОСТИ МОНТАЖА КАБЕЛЬНЫХ ЛИНИЙ НАПРЯЖЕНИЕМ 110-220 кВ

- 3.96 Рабочие чертежи кабельных линий с маслонаполненными кабелями на напряжение 110-220 кВ и кабелями с пластмассовой (вулканизированного полиэтилена) изоляцией напряжением 110 кВ и ППР на их монтаж должны быть согласованы с предприятиемизготовителем кабеля.
- 3.97 Температура кабеля и окружающего воздуха при прокладке должна быть не ниже: минус 5 °C -для маслонаполненного кабеля и минус 10 °C для кабеля с пластмассовой изоляцией. При меньших температурах прокладка может быть допущена лишь в соответствии с ППР.
- 3.98 Кабели с круглой проволочной броней при механизированной прокладке следует тянуть за проволоки с помощью специального захвата, обеспечивающего равномерное распределение нагрузки между проволоками брони. При этом во избежание деформации свинцовой оболочки общее усилие тяжения не должно превышать 25 кН. Небронированные кабели допускается тянуть только за жилы с помощью захвата, смонтированного на верхнем конце кабеля на барабане. Наибольшее допустимое усилие тяжения при этом определяется из расчета: 50 МПа (H/мм²) для медных , 40 МПа (H/мм²) для жил из твердого алюминия и 20 МПа (H/мм²)- для жил из мягкого алюминия.
- 3.99 Тяговая лебедка должна быть снабжена регистрирующим устройством и устройством автоматического отключения при превышении максимально допустимой величины тяжения. Регистрирующее устройство должно быть оборудовано самопишущим прибором. Надежная телефонная или УКВ связь должна быть установлена на время прокладки между местами расположения барабана с кабелем, лебедки, поворотами трассы, переходами и пересечениями с другими коммуникациями.
- 3.100 Кабели, проложенные на кабельных конструкциях с пролетом между ними 0,8-1 м, должны быть закреплены на всех опорах алюминиевыми скобами с прокладкой двух слоев резины, толщиной 2 мм, если нет иных указаний в рабочей документации.

МАРКИРОВКА КАБЕЛЬНЫХ ЛИНИЙ

- 3.101 Каждая кабельная линия должна быть промаркирована и иметь свой номер или наименование.
- 3.102 На открыто проложенных кабелях и на кабельных муфтах должны быть установлены бирки.

На кабелях, проложенных в кабельных сооружениях бирки должны быть установлены не реже чем через каждые 50-70 м, а также в местах изменения направления трассы, с обеих сторон прохода через междуэтажные перекрытия, стены и перегородки, в местах ввода (вывода) кабеля в траншеи и кабельные сооружения.

На скрыто проложенных кабелях в трубах или блоках бирки следует устанавливать на конечных пунктах у концевых муфт, в колодцах и камерах блочной канализации, а также у каждой соединительной муфты.

3.103. Бирки следует применять: в сухих помещениях - из пластмассы, стали или алюминия; в сырых помещениях, вне зданий и в земле - из пластмассы.

Обозначения на бирках для подземных кабелей и кабелей, проложенных в помещениях с химически активной средой, следует выполнять штамповкой, кернением или выжиганием. Для кабелей, проложенных в других условиях, обозначения допускается наносить несмываемой краской.

3.104 Бирки должны быть закреплены на кабелях капроновой нитью или оцинкованной стальной проволокой диаметром 1-2 мм, или пластмассовой лентой с кнопкой. Место крепления бирки на кабеле проволокой и сама проволока в сырых помещениях, вне зданий и в земле должны быть покрыты битумом для защиты от действия влаги.

ТОКОПРОВОДЫ НАПРЯЖЕНИЕМ ДО 35 кВ

ТОКОПРОВОДЫ НАПРЯЖЕНИЕМ ДО 1 КВ ШИНОПРОВОДЫ

3.105 Секции с компенсаторами и гибкие секции магистральных шинопроводов должны быть закреплены на двух опорных конструкциях, устанавливаемых симметрично по обе стороны гибкой части секции шинопровода. Крепление шинопровода к опорным конструкциям на горизонтальных участках следует выполнять прижимами, обеспечивающими возможность смещения шинопровода при изменениях температуры. Шинопровод, проложенный на вертикальных участках, должен быть жестко закреплен на конструкциях болтами.

стр. 30 КМК 3.05.06-97

Для удобства съема крышек (деталей кожуха), а также для обеспечения охлаждения шинопровод следует устанавливать с зазором 50 мм от стен или других строительных конструкций здания.

Трубы или металлические рукава с проводами должны вводиться в ответвительные секции через отверстия, выполненные в кожухах шинопроводов. Трубы следует оконцовывать втулками.

3.106 Неразъемное соединение шин секций магистрального шинопровода должно быть выполнено сваркой, соединения распределительного и осветительного шинопроводов должны быть разборными (болтовыми).

Соединение секций троллейного шинопровода должно выполняться с помощью специальных соединительных деталей. Токосъемная каретка должна свободно перемещаться по направляющим вдоль щели короба смонтированного троллейного шинопровода.

ТОКОПРОВОДЫ ОТКРЫТЫЕ НАПРЯЖЕНИЕМ 6-35 кВ

- 3.107 Настоящие правила должны соблюдаться при монтаже жестких и гибких токопроводов напряжением 6-35 кВ.
- 3.108 Как правило, все работы по монтажу токопроводов должны производиться с предварительной заготовкой узлов и секций блоков на заготовительно-сборочных полигонах, мастерских или заводах.
- 3.109 Все соединения и ответвления шин и проводов выполняются в соответствии с требованиями пп.3.8; 3.13; 3.14.
- 3.110 В местах болтовых и шарнирных соединений должны быть обеспечены меры по предотвращению самоотвинчивания (шплинты, контргайки- стопорные, тарельчатые или пружинные шайбы). Все крепежные изделия должны иметь антикоррозионное покрытие (цинкование, пассивирование).
- 3.111 Монтаж опор открытых токопроводов производится в соответствии с пп. 3.127-3.144.
- 3.112 При регулировке подвеса гибкого токопровода должно быть обеспечено равномерное натяжение всех его звеньев.
- 3.113 Соединения проводов гибких токопроводов следует выполнять в середине пролета раскатки проводов до их вытяжки.

ВОЗДУШНЫЕ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ РУБКА ПРОСЕК

3.114 Просека по трассе ВЛ должна быть очищена от вырубленных деревьев и кустарников. Деловая древесина и дрова должны быть сложены вне просеки в штабеля.

Расстояния от проводов до зеленых насаждений и от оси трассы до штабелей сгораемых материалов должны быть указаны в проекте. Вырубка кустарника на рыхлых почвах, крутых склонах и местах, заливаемых во время половодья, не допускается.

- 3.115 Сжигание сучьев и других порубочных остатков следует производить в разрешенный для этого период времени.
- 3.116 Древесина, оставленная в штабелях на трассе ВЛ на пожароопасный период, а также оставшиеся на этот период "валы" порубочных остатков должны быть окаймлены минерализированной полосой шириной 1 м, с которой полностью следует удалить травяную растительность, лесную подстилку и прочие горючие материалы до минерального слоя почвы.

УСТРОЙСТВО КОТЛОВАНОВ И ФУНДАМЕНТОВ ПОД ОПОРЫ

- 3.117 Устройство котлованов под фундаменты следует выполнять согласно правилам производства работ, изложенным в КМК 3.02.01-97.
- 3.118. Котлованы под стойки опор следует разрабатывать, как правило, буровыми машинами. Разработку котлованов необходимо производить до проектной отметки.
- 3.119. Разработку котлованов в скальных, и мерзлых грунтах допускается производить взрывами на "выброс" или "рыхление" в соответствии с Едиными правилами безопасности при ведении взрывных работ, утвержденными Узгортехнадзором Республики Узбекистан.

При этом должна производиться недоработка котлованов до проектной отметки на 100-200 мм с последующей доработкой отбойными молотками.

- 3.120 Котлованы следует осушать откачиванием воды перед устройством фундаментов.
- 3.121 В зимнее время разработку котлованов, а также устройство в них фундаментов следует выполнять в предельно сжатые сроки, исключающие промерзание дна котлованов.

стр. 32 КМК 3.05.06-97

3.122 В нескальных грунтах, расположенных выше уровня грунтовых вод и при отсутствии вблизи подземных сооружений:

рытье котлованов и траншей с вертикальными стенками без крепления может осуществляться на глубину: м

не более:

- 3.123 Сборные железобетонные фундаменты и сваи должны отвечать требованиям КМК 2.02.01-98, КМК 2.02.03-98, КМК 2.03.01-96, КМК 2.03.11-96 и проекта типовых конструкций.

При монтаже сборных железобетонных фундаментов и погружении свай следует руководствоваться правилами производства работ, изложенными в КМК 3.02.01-97 и КМК 3.03.01-98.

При устройстве монолитных железобетонных фундаментов следует руководствоваться КМК 3.03.01-98.

Сварные или болтовые стыки стоек с плитами фундаментов должны быть защищены от коррозии. Перед сваркой детали стыков должны быть очищены от ржавчины. Железобетонные фундаменты с толщиной защитного слоя бетона менее 30 мм, а также фундаменты, устанавливаемые в агрессивных грунтах, должны быть защищены гидроизоляцией.

Пикеты с агрессивной средой должны быть указаны в проекте.

- 3.124 Обратную засыпку котлованов грунтом надлежит выполнять непосредственно после устройства и выверки фундаментов. Грунт должен быть тщательно уплотнен путем послойного трамбования.
- 3.125 Шаблоны, используемые для устройства фундаментов, следует снимать после засыпки не менее чем на половину глубины котлованов.

Высота засыпки котлованов должна приниматься с учетом возможной осадки грунта. При устройстве обвалования фундаментов откос должен иметь крутизну не более 1:1,5 (отношение высоты откоса к основанию) в зависимости от вида грунта.

Грунт для обратной засыпки котлованов следует предохранять от промерзания.

3.126 Допуски при монтаже сборных железобетонных фундаментов даны в табл.5.

Таблица 5

Отклонения	Допуски для опор		
Отклонения	свободно стоящих	с оттяжками	
Уровней для котлованов	10мм	10мм	
Расстояние между осями фундаментов в плане	±20 мм	±50 мм	
Отметок верха фундаментов* Угла наклона продольной оси стойки	20мм	20 мм	
фундамента	0°30'	±1°30'	
Угла наклона оси "У-образного анкерного болта	-	±2° 30'	
Смещение центра фундамента в плане	-	50 мм	

^{*}Разность отметок должна быть компенсирована при монтаже опоры с помощью стальных прокладок.

СБОРКА И УСТАНОВКА ОПОР

- 3.127 Размер площадки для сборки и установки опоры должен приниматься в соответствии с технологической картой или схемой сборки опоры, указанной с ППР.
- 3.128 При изготовлении, монтаже и приемке стальных конструкций опор ВЛ следует руководствоваться требованиями КМК 3.03.01-98.
- 3.129 Тросовые оттяжки для опор должны иметь антикоррозионное покрытие. Они должны быть изготовлены и замаркированы до вывозки опор на трассу и доставлены на пикеты в комплекте с опорами.
- 3.130 Установка опор на фундаменты, не законченные сооружением и не полностью засыпанные грунтом, запрещается.
- 3.131 Перед установкой опор методом поворота с помощью шарнира необходимо предусматривать предохранение фундаментов от сдвигающих усилий. В направлении, обратном подъему, следует применять тормозное устройство.
- 3.132. Гайки, крепящие опоры, должны быть завернуты до отказа и закреплены от самоотвинчивания закерниванием резьбы болта на глубину не менее 3 мм. На болтах фундаментов угловых, переходных, концевых и специальных опор надлежит устанавливать две гайки, а промежуточных опор по одной гайке на болт.

При креплении опоры на фундаменте допускается устанавливать между пятой опоры и верхней плоскостью фундамента не более четы-

стр. 34 КМК 3.05.06-97

рех стальных прокладок общей толщиной до 40 мм. Геометрические размеры, прокладок в плане должны быть не менее размеров пяты опоры. Прокладки должны быть соединены между собой и пятой опоры сваркой.

- 3.133 При монтаже железобетонных конструкций следует руководствоваться правилами производства работ, изложенными в КМК 3.03.01-98.
- 3.134 Перед установкой железобетонных конструкций, поступивших на пикет, надлежит еще раз проверить наличие на поверхности опор трещин, раковин и выбоин и других дефектов согласно указанным в п.2.7.

При частичном повреждении заводской гидроизоляции покрытие должно быть восстановлено на трассе путем окраски поврежденных мест расплавленным битумом (марки 4) в два слоя.

- 3.135 Надежность закрепления в грунте опор, устанавливаемых в пробуренные или открытые котлованы, обеспечивается соблюдением предусмотренной проектом глубины заделки опор, ригелями, анкерными плитами и тщательным послойным уплотнением грунта обратной засыпки пазух котлована.
- 3.136. Деревянные опоры и их детали должны отвечать требованиям КМК 2.03.08-98 и проекта типовых конструкций.

При изготовлении и монтаже деревянных опор ВЛ следует руководствоваться правилами производства работ, изложенными в КМК 3.03.01-98.

3.137 Для изготовления деталей деревянных опор следует применять лесоматериалы хвойных пород по ГОСТ 9463-72*, пропитанные антисептиками заводским способом.

Качество пропитки деталей опор должно соответствовать нормам, установленным ГОСТ 20022.0-82*, ГОСТ 20022.2-80*, ГОСТ 20022.5-75*, ГОСТ 20022.7-82, ГОСТ 20022.11-89*.

3.138 При сборке деревянных опор все детали должны быть пригнаны друг к другу. Зазор в местах врубок и стыков не должен превышать 4 мм. Древесина в местах соединений должна быть без суков и трещин. Зарубы, затесы и отколы должны быть выполнены на глубину не более 20% диаметра бревна. Правильность врубок и затесов должна быть проверена шаблонами. Сквозные щели в стыках рабочих по-

верхностей не допускаются. Заполнение клиньями щелей или других неплотностей между рабочими поверхностями не допускается.

Отклонение от проектных размеров всех деталей собранной деревянной опоры допускается в пределах: по диаметру - минус 1 плюс 2 см, по длине - 1 см на 1 м. Минусовый допуск при изготовлении траверс из пиленых лесоматериалов запрещается.

3.139 Отверстия в деревянных элементах опор должны быть сверлеными. Отверстие для крюка, высверленное в опоре, должно иметь диаметр, равный внутреннему диаметру нарезной части хвостовика крюка, и глубину, равную 0,75 длины нарезанной части. Крюк должен быть ввернут в тело опоры всей нарезанной частью плюс 10-15 мм.

Диаметр отверстия под штырь должен быть равен наружному диаметру хвостовика штыря.

- 3.140 Бандажи для сопряжения приставок с деревянной стойкой опоры должны выполняться из мягкой стальной оцинкованной проволоки диаметром 4 мм. Допускается применение для бандажей неоцинкованной проволоки диаметром 5-6 мм при условии покрытия ее асфальтовым лаком. Число витков бандажа должно приниматься в соответствии с проектом опор. При разрыве одного витка весь бандаж следует заменить новым. Концы проволок бандажа надлежит забивать в дерево на глубину 20-25 мм. Допускается взамен проволочных бандажей применять специальные стяжные (на болтах) хомуты. Каждый бандаж (хомут) должен сопрягать не более двух деталей опоры.
- 3.141 Деревянные сваи должны быть прямыми, прямослойными, без гнили, трещин и прочих дефектов и повреждений. Верхний конец деревянной сваи должен быть срезан перпендикулярно к ее оси во избежание отклонения сваи от заданного направления в процессе ее погружения.
- 3.142 Допуски при монтаже деревянных и железобетонных одностоечных опор даны в табл.6.

Таблица 6

Отклонения	Допуск	Допуски для опор		
Отклонения	деревянных	железобетонных		
Опоры от	1/100	1/150		
вертикальной оси	высоты	высоты		
вдоль и поперек оси линии (отношение	опоры	опоры		
отклонения верхне го конца стойки опоры к ее высоте) Опоры из				
створа линии при длине пролета, м: до 200 св.200 Траверсы от гори- зонтальной оси	100 мм 200 мм 1/50 длины траверсы	100 мм 200 мм 1/100 длины		
Траверсы относи тельно линии, пер- пендикулярной оси и ВЛ (для угловой опоры относитель- но биссектрисы угла поворота ВЛ)	1/50 длины траверсы	траверсы 1/100 длины траверсы		

3.143 Допуски при монтаже железобетонных портальных опор даны в табл.7

Таблица 7

Отклонения	Допуски
Опоры от вертикальной оси (отношение отклонения верхнего конца стойки опоры к ее высоте)	·
Расстояние между стойками опоры	±100 мм
Выход опоры из створа Отметок траверс в местах крепления их к стойкам опоры Отметок между местами сопряжения траверс (стыков) и осями болтов, слу- жащих дня крепления траверс к стойке	50 мм
опоры Стоек опоры от оси трассы Травесы от горизонтальной оси при длине траверсы, м: до 15 св. 15	±50мм 1/150 длины траверсы 1/250 длины траверсы

3.144 Допуски в размерах стальных конструкций опор даны в табл.8.

Таблица 8

Отклонения	Допуски
Опоры от вертикальной оси	1/200 высоты опоры
вдоль и поперек оси линии	
Траверсы от линии, перпен-	100 мм
дикулярной оси трассы	
Траверсы от горизонтальной	
оси (линии) при длине	
Траверсы, м:	
до 15	1/150 длины траверсы
св.15	1/250
Опоры из створа линии при	
длине пролета, м:	
до 200	100 мм
от 200 до 300	200 мм
свыше 300	300 мм
Стрелы прогиба (кривизны) траверсы	1/300 длины траверсы
Стрелы прогиба (кривизны) стоек и подкосов	1/750 длины: но не более 20мм
Поясных уголков и элементов решетки (в любой плоскости) в пределах панели	1/750 длины

МОНТАЖ ИЗОЛЯТОРОВ И ЛИНЕЙНОЙ АРМАТУРЫ

3.145 На трассе перед монтажом изоляторы должны быть осмотрены и отбракованы.

Сопротивление фарфоровых изоляторов ВЛ напряжением выше 1000 В должно проверяться перед монтажом мегомметром напряжением 2500 В; при этом сопротивление изоляции каждого подвесного изолятора или каждого элемента многоэлементного штыревого изолятора должно быть не менее 300 МОм.

Чистка изоляторов стальным инструментом не допускается.

Электрические испытания стеклянных изоляторов не производятся.

3.146 На ВЛ со штыревыми изоляторами установку траверс, кронштейнов и изоляторов следует, как правило, производить до подъема опоры. Крюки и штыри должны быть прочно установлены в стойке или траверсе опоры; их штыревая часть должна быть строго вертикальной. Крюки и штыри для предохранения от ржавчины следует покрывать асфальтовым лаком.

стр. 38 КМК 3.05.06-97

Штыревые изоляторы должны быть прочно навернуты строго вертикально на крюки или штыри при помощи полиэтиленовых колпачков.

Допускается крепление штыревых изоляторов на крюках или штырях с применением раствора, состоящего из 40% портландцемента марки не ниже М 400 или М 500 и 60% тщательно промытого речного песка. Применение ускорителей схватывания раствора не допускается.

При армировании верхушка штыря или крюка должна быть покрыта тонким слоем битума.

Установка штыревых изоляторов с наклоном до 45° к вертикали допускается при креплении спусков к аппаратам и шлейфам опор.

На ВЛ с подвесными изоляторами детали сцепной арматуры изолирующих подвесок должны быть зашплинтованы, а в гнездах каждого элемента изолирующей подвески поставлены замки. Все замки в изоляторах должны быть расположены на одной прямой. Замки в изоляторах поддерживающих изолирующих подвесок следует располагать входными концами в сторону стойки опоры, а в изоляторах натяжных и арматуре изолирующих подвесок - входными концами вниз. Вертикальные и наклонные пальцы должны располагаться головкой вверх, а гайкой или шплинтом вниз.

МОНТАЖ ПРОВОДОВ И ГРОЗОЗАЩИТНЫХ ТРОСОВ (КАНАТОВ)

3.147 Алюминиевые, сталеалюминевые провода и провода из алюминиевого сплава при монтаже их в стальных поддерживающих и натяжных (болтовых, клиновых) зажимах должны быть защищены алюминиевыми прокладками, медные провода - медными прокладками. Крепление проводов на штыревых изоляторах следует выполнять проволочными вязками, специальными зажимами или хомутами; при этом провод должен быть уложен на шейку штыревого изолятора. Проволочная вязка должна быть выполнена проволокой из такого же металла, что и провод. При выполнении вязки не допускается изгибание провода вязальной проволокой.

Провода ответвлений от ВЛ напряжением до 1000 В должны иметь анкерное крепление.

3.148 В каждом пролете ВЛ напряжением выше 1000 В допускается не более одного соединения на каждый провод или канат.

Соединение проводов (канатов) в пролете должно отвечать требованием пп. 3.13-3.14.

- 3.149 Опрессовку соединительных, натяжных и ремонтных зажимов следует выполнять и контролировать согласно требованиям ведомственных технологических карт, утвержденных в установленном порядке. Прессуемые зажимы, а также матрицы для опрессовки зажимов должны соответствовать маркам монтируемых проводов и канатов. Не допускается превышать номинальный диаметр более чем на 0,2мм, а диаметр зажима после опрессовки не должен превышать диаметра матрицы более чем на 0,3 мм. При получении после опрессовки диаметра зажима, превышающего допустимую величину, зажим подлежит вторичной опрессовке с новыми матрицами. При невозможности получения требуемого диаметра, а т акже при наличии трещин зажим следует вырезать и вместо него смонтировать новый.
- 3.150 Геометрические размеры соединительных и натяжных зажимов проводов ВЛ должны соответствовать требованиям ведомственных технологических карт, утвержденных в установленном порядке. На их поверхности не должно быть трещин, следов коррозии и механических повреждений, кривизна спрессованного зажима должна быть не более 3% его длины, стальной сердечник спрессованного соединителя должен быть расположен симметрично относительно алюминиевого корпуса зажима по его длине. Смещение сердечника относительно симметричного положения не должно превышать 15% длины прессуемой части провода. Зажимы, не удовлетворяющие указанным требованиям, должны быть забракованы.
- 3.151 Термитную сварку проводов, а также соединение проводов с использованием энергии взрыва следует выполнять и контролировать согласно требованиям ведомственных технологических карт, утвержденных в установленном порядке.
- 3.152 При механическом повреждении многопроволочного провода (обрыв отдельных проволок) следует устанавливать бандаж, ремонтный или соединительный зажим.

Ремонт поврежденных проводов следует выполнять в соответствии с требованиям ведомственных технологических карт, утвержденных в установленном порядке.

3.153 Раскатку проводов (канатов) по земле следует, как правило, производить с помощью движущихся тележек. Для опор, конструкция которых полностью или частично не позволяет применять движущиеся раскаточные тележки, допускается производить раскатку проводов (канатов) по земле с неподвижных раскаточных устройств с обязательным подъемом проводов (канатов) на опоры по мере раскатки и

стр. 40 КМК 3.05.06-97

принятием мер против повреждения их в результате трения о землю, скальные, каменистые и другие грунты.

Раскатка и натяжение проводов и канатов непосредственно по стальным траверсам и крюкам не допускаются.

Раскатка проводов и канатов при отрицательных температурах должна производится с учетом мероприятии, предотвращающих вмерзание провода или каната в грунт.

Перекладку проводов и канатов из раскаточных роликов в постоянные зажимы и установку распорок на проводах с расщепленной фазой следует производить непосредственно после окончания визирования проводов и канатов в анкерном участке. При этом должна быть исключена возможность повреждения верхних повивав проводов и канатов.

- 3.154 Монтаж проводов и канатов на переходах через инженерные сооружения следует производить в соответствии с Правилами охраны электрических сетей напряжением свыше 1000 В с разрешения организации владельца пересекаемого сооружения, в согласованные с этой организацией сроки. Раскатанные через автодороги провода и канаты надлежит защищать от повреждений путем подъема их над дорогой, закапывания в грунт или закрытия щитами. В случае необходимости в местах, где возможны повреждения проводов, должна быть выставлена охрана.
- 3.155 При визировании проводов и канатов стрелы провеса должны быть установлены согласно рабочим чертежам по монтажным таблицам или кривым в соответствии с температурой провода или каната во время монтажа. При этом фактическая стрела провеса провода или каната не должна отличаться от проектной величины более чем на ±5% при условии соблюдения требуемых габаритов до земли и пересекаемых объектов.

Разрегулировка проводов различных фаз и канатов относительно друг друга должна составлять не более 10% проектной величины стрелы провеса провода или каната. Разрегулировка проводов в расщепленной фазе должна быть не более 20% для ВЛ 330-500 кВ и 10% для ВЛ 750 кВ. Угол разворота проводов в фазе должен быть не более 10 градусов.

Визирование проводов и канатов ВЛ напряжением выше 1000 В до 750 кВ включ. следует производить в пролетах, расположенных в каждой трети анкерного участка при его длине более 3 км. При длине

анкерного участка менее 3 км визирование разрешается производить в двух пролетах: наиболее отдаленном и наиболее близком от тягового механизма.

Отклонение поддерживающих гирлянд вдоль ВЛ от вертикали не должно превышать, мм: 50 - для ВЛ 35 кВ, 100- для ВЛ 110 кВ, 150 - для ВЛ 150 кВ и 200 - для ВЛ 220-750 кВ.

МОНТАЖ ТРУБЧАТЫХ РАЗРЯДНИКОВ

- 3.156 Разрядники должны быть установлены таким образом, чтобы указатели действия были отчетливо видны с земли. Установка разрядников должна обеспечивать стабильность внешнего искрового промежутка и исключать возможность перекрытия его струёй воды, которая может стекать с верхнего электрода. Разрядник должен быть надежно закреплен на опоре иметь хороший контакт с заземлением.
- 3.157 Разрядники перед установкой на опору должны быть осмотрены и отбракованы. Наружная поверхность разрядника не должна иметь трещин и отслоений.
- 3.158 После установки трубчатых разрядников на опоре следует отрегулировать величину внешнего искрового промежутка в соответствии с рабочими чертежами, а также проверить их установку с тем, чтобы зоны выхлопа газов не пересекались между собой и не охватывали элементов конструкций и проводов.

РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА И ПОДСТАНЦИИ ОБЩИЕ ТРЕБОВАНИЯ

- 3.159 Требования настоящих правил следует соблюдать при монтаже открытых и закрытых распределительных устройств и подстанций напряжением до 750 кВ.
- 3.160 До начала монтажа электрооборудования распределительных устройств и подстанций заказчиком должны быть поставлены:

трансформаторное масло в количестве, необходимом для заливки полностью смонтированного маслонаполненного оборудования, с учетом дополнительного количества масла на технологические нужды;

чистые герметичные металлические емкости для временного хранения масла:

оборудование и приспособления для обработки и заливки масла;

стр. 42 КМК 3.05.06-97

специальный инструмент и приспособления, поступающие в комплекте с оборудованием в соответствии с технической документацией предприятия-изготовителя, необходимые для ревизии и регулировки (передаются на период монтажа).

ОШИНОВКА ЗАКРЫТЫХ И ОТКРЫТЫХ РАСПРЕДЕЛИТЕЛЬНЫХ УСТЮЙСТВ

3.161 Внутренний радиус изгиба шин прямоугольного сечения должен быть: в изгибах на плоскость - не менее двойной толщины шины, в изгибах на ребро - не менее ее ширины. Длина шин на изгибе штопором должна быть не менее двукратной их ширины.

Взамен изгибания на ребро допускается стыкование шин сваркой.

Изгиб шин у мест присоединения должен начинаться на расстоянии не менее 10 мм от края контактной поверхности. Стыки сборных шин при болтовом соединении должны отстоять от головок изоляторов мест ответвлений на расстоянии не менее чем 50 мм.

Для обеспечения продольного перемещения шин при изменении температуры следует выполнять жесткое крепление шин к изоляторам лишь в середине общей длины шин, а при наличии шинных компенсаторов - в середине участка между компенсаторами.

Отверстия проходных шинных изоляторов после монтажа шин должны быть закрыты специальными планками, а шины в пакетах в местах входа в изоляторы и выхода из них должны быть скреплены между собой.

Шинодержатели и сжимы при переменном токе более 600 А не должны создавать замкнутого магнитного контура вокруг шин. Для этого одна из накладок или все стяжные болты, расположенные по одной из сторон шины, должны быть выполнены из немагнитного материала (бронзы, алюминия и его сплавов и т.п.) либо должна быть применена конструкция шинодержателя, не образующая замкнутого магнитного контура.

- 3.162. Гибкие шины на всем протяжении не должны иметь перекруток, расплеток, лопнувших проволок. Стрелы провеса не должны отличаться от проектных более чем на ±5%. Все провода в расщепленной фазе ошиновки должны иметь одинаковое тяжение и должны быть раскреплены дистанционными распорками.
- 3.163 Соединения между смежными аппаратами должны быть выполнены одним отрезком шины (без разрезания).
- 3.164 Трубчатые шины должны иметь устройства для гашения вибрации и компенсации температурных изменений их длины. На

участках подсоединения к аппаратам шины должны быть расположены горизонтально.

3.165 Соединения и ответвления гибких проводов должны быть выполнены сваркой или опрессовкой.

Присоединения ответвлений в пролете должно быть выполнено без разрезания проводов пролета. Болтовое соединение допускается только на зажимах аппаратов и на ответвлениях к разрядникам, конденсаторам связи и трансформаторам напряжения, а также для временных установок, для которых применение неразъемных соединений требует большого объема работ по перемонтажу шин. Присоединения гибких проводов и шин к выводам электрооборудования следует выполнять с учетом компенсации температурных изменений их длины.

изоляторы

- 3.166 Изоляторы перед монтажом должны быть проверены на целостность фарфора (быть без трещин и сколов). Подкладки под фланцы изоляторов не должны выступать за пределы фланцев.
- 3.167 Поверхность колпачков опорных изоляторов при их установке в закрытых распределительных устройствах должна находиться в одной плоскости. Отклонение не должно составлять более 2 мм.
- 3.168 Оси всех стоящих в ряду опорных и проходных изоляторов не должны отклоняться в сторону более чем на 5 мм.
- 3.169 При установке проходных изоляторов на 1000 А и более в стальных плитах должна быть исключена возможность образования замкнутых магнитных контуров.
- 3.170 Монтаж гирлянд подвесных изоляторов открытых распределительных устройств должен удовлетворять следующим требованиям:

соединительные ушки, скобы, промежуточные звенья и др. должны быть зашплинтованы:

арматура гирлянд должна соответствовать размерам изоляторов и проводов.

Сопротивление изоляции фарфоровых подвесных изоляторов должно быть проверено мегомметром напряжением 2,5 кВ до подъема гирлянд на опору.

ВЫКЛЮЧАТЕЛИ НАПРЯЖЕНИЕМ ВЫШЕ 1000 В

3.171 Установку, сборку и регулировку выключателей следует производить в соответствии с монтажными инструкциями предприятий-изготовителей;

при сборке следует строго придерживаться маркировки элементов выключателей, приведенной в указанных инструкциях.

3.172 При сборке и монтаже воздушных выключателей должны быть обеспечены:

горизонтальность установки опорных рам и резервуаров для воздуха, вертикальность опорных колонок, равенство размеров по высоте колонок изоляторов треноги (растяжек), соосность установки изоляторов. Отклонение осей центральных опорных колонок от вертикали не должно превышать норм, указанных в инструкциях предприятий-изготовителей.

- 3.173 Внутренние поверхности воздушных выключателей, с которыми соприкасается сжатый воздух, должны быть очищены; болты, стягивающие разборные фланцевые соединения изоляторов, должны быть равномерно затянуты ключом с регулируемым моментом затяжки.
- 3.174 После окончания монтажа воздушных выключателей следует проверить величину утечки сжатого воздуха, которая не должна превышать норм, указанных в заводских инструкциях. Перед включением необходимо проветрить внутренние полости воздушного выключателя.
- 3.175 Распределительные шкафы управления выключателями должны быть проверены, в том числе на правильность положения блокконтактов и бойков электромагнитов. Все клапаны должны иметь легкий ход, хорошее прилегание конусов к седлам. Сигнально- блокировочные контакты должны быть правильно установлены, электроконтактные манометры должны быть проверены в лаборатории.

РАЗЪЕДИНИТЕЛИ. ОТДЕЛИТЕЛИ И КОРОТКОЗАМЫКАТЕЛИ НАПРЯЖЕНИЕМ ВЫШЕ 1000 В

- 3.176 Установку, сборку и регулировку разъединителей, отделителей и короткозамыкателей следует производить в соответствии с инструкциями предприятий-изготовителей.
- 3.177 При сборке и монтаже разъединителей, отделителей, короткозамыкателей должны быть обеспечены:

горизонтальность установки опорных рам, вертикальность и равенство по высоте колонок опорных изоляторов, сносность контактных ножей. Отклонение опорной рамы от горизонтали и осей собранных колонок изоляторов от вертикали, а также смещение осей контактных ножей в горизонтальной и вертикальной плоскости и зазор между торцами контактных ножей не должны превышать норм, указанных в инструкциях предприятий-изготовителей. Выравнивание колонок допускается в помощью металлических подкладок.

3.178 Штурвал или рукоятка рычажного привода должна иметь (при включении и отключении) направление движения, указанное в табл.9.

Таблица 9

Операции	Направление движения	
Операции	штурвала	рукоятки
Включение Отключение	По часовой стрелке Против часовой стрелки	Вверх или направо Вниз или налево

Холостой ход рукоятки привода не должен превышать 5 градусов.

- 3.179 Ножи аппаратов должны правильно (по центру) попадать в неподвижные контакты, входить в них без ударов и перекосов и при включении не доходить до упора на 3-5 мм.
- 3.180 При положениях ножа заземления "Включено" и "Отключено" тяги и рычаги должны находиться в положении "Мертвая точка", обеспечивая фиксацию ножа в крайних положениях.
- 3.181 Блок-контакты привода разъединителя должны быть установлены так, чтобы механизм управления блок контактами срабатывал в конце каждой операции за 4-10 градусов до конца хода.
- 3.182 Блокировка разъединителей с выключателями, а также главных ножей разъединителей с заземляющими ножами не должна допускать оперирования приводом разъединителя при включенном положении выключателя, а также заземляющими ножами при включенном положении главных ножей и главными ножами при включенном положении заземляющих ножей.

РАЗРЯДНИКИ

3.183 До начала монтажа все элементы разрядников следует подвергнуть осмотру на отсутствие трещин сколов в фарфоре и на отсутствие раковин и трещин в цементных швах. Должны быть изме-

рены токи утечки и сопротивления рабочих элементов разрядников, согласно требованиям инструкции предприятия-изготовителя.

- 3.184 При сборке разрядников на общей раме должна быть обеспечена сносность и вертикальность изоляторов.
- 3.185 После окончания монтажа кольцевые просветы в колоннах между рабочими элементами и изоляторами должны быть зашпаклеваны и закрашены.

ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ

- 3.186 При монтаже трансформаторов должна быть обеспечена вертикальность их установки. Регулировку вертикальности допускается производить с помощью стальных прокладок.
- 3.187 Неиспользуемые вторичные обмотки трансформаторов тока должны быть закорочены на их зажимах. Один из полюсов вторичных обмоток трансформаторов тока и трансформаторов напряжения должен быть заземлен во всех случаях (кроме специально оговоренных в рабочих чертежах).
- 3.188 Высоковольтные вводы смонтированных измерительных трансформаторов напряжения должны быть закорочены до их включения под напряжение. Корпус трансформатора должен быть заземлен.

РЕАКТОРЫ И КАТУШКИ ИНДУКТИВНОСТИ

- 3.189 Фазы реакторов, установленные одна под другой, должны быть расположены согласно маркировке (Н-нижняя фаза, С-средняя, В-верхняя), причем направление обмоток средней фазы должно быть противоположно направлению обмоток крайних фаз.
- 3.190 Стальные конструкции, расположенные в непосредственной близости от реакторов, не должны иметь замкнутых контуров.

КОМПЛЕКТНЫЕ И СБОРНЫЕ РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА И КОМПЛЕКСНЫЕ ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ

3.191 При приемке в монтаж шкафов комплектных распределительных устройств и комплектных трансформаторных подстанций должны быть проверны - комплектность технической документации предприятия-изготовителя (паспорт, техническое описание и инструкция по эксплуатации, электрические схемы главных и вспомогательных цепей, эксплуатационная документация на комплектующую аппаратуру, ведомость ЗИП).

3.192 При монтаже КРУ и КТП должна быть обеспечена их вертикальность. Допускается разность уровней несущей поверхности под распределительные комплектные устройства 1 мм на 1 м поверхности, но не более 5 мм на всю длину несущей поверхности.

ТРАНСФОРМАТОРЫ

- 3.193 Все трансформаторы должны допускать включение их в эксплуатацию без осмотра активной части при условии транспортирования и хранения трансформаторов в соответствии с требованиями ГОСТ 11677-85.
- 3.194 Трансформаторы, доставляемые заказчиком на территорию подстанции, должны быть при транспортировке ориентированы относительно фундаментов в соответствии с рабочими чертежами. Скорость перемещения трансформатора в пределах подстанции на собственных катках не должна превышать 8 м/мин.
- 3.195 Вопрос о монтаже трансформаторов без ревизии активной части и подъема колокола должен решать представитель шефмонтажа предприятия-изготовителя, а в случае отсутствия договора на шефмонтаж монтирующая организация на основании требований документа, указанного в п.3.193, и данных следующих актов и протоколов:

осмотра трансформатора и демонтированных узлов после транспортирования трансформатора с предприятия-изготовителя к месту назначения;

выгрузки трансформатора;

перевозки трансформатора к месту монтажа;

хранения трансформатора до передачи в монтаж.

3.196 Вопрос о допустимости включения трансформатора без сушки должен решаться на основании комплексного рассмотрения условий и состояния трансформатора во время транспортировки, хранения, монтажа и с учетом результатов проверки и испытаний в соответствии с требованиями документа, указанного в п.3.193.

СТАТИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ

3.197 Разборка полупроводниковых приборов не допускается. При монтаже их следует:

не допускать резких толчков и ударов;

стр. 48 КМК 3.05.06-97

удалять консервирующую смазку и очищать контактные поверхности растворителем;

устанавливать приборы с естественным охлаждением так, чтобы ребра охладителей находились в плоскости, обеспечивающей свободный проход воздуха снизу вверх, а приборы с принудительным воздушным охлаждением так, чтобы направление потока охлаждающего воздуха было вдоль ребер охладителя;

устанавливать приборы с водяным охлаждением горизонтально;

располагать штуцера охладителя в вертикальной плоскости так, чтобы входной штуцер был нижним;

смазывать контактные поверхности охладителей перед ввинчиванием в них полупроводниковых приборов тонким слоем технического вазелина; закручивающий момент при сборке должен соответствовать указанному предприятием-изготовителем.

КОМПРЕССОРЫ И ВОЗДУХОПРОВОДЫ

- 3.198 Компрессоры, опломбированные заводом-изготовителем, разборке и ревизии на месте монтажа не подлежат. Компрессоры, не имеющие пломбы и поступающие на строительную площадку в собранном виде, перед монтажом подвергаются частичной разборке и ревизии в объеме необходимом для снятия консервирующих покрытий, а также для проверки состояния подшипников, клапанов, сальников, систем масло смазки и водяного охлаждения.
- 3.199 Смонтированные компрессорные агрегаты должны быть испытаны в соответствии с требованиями инструкции предприятияизготовителя совместно с системами автоматического управления, контроля, сигнализации и защиты.
- 3.200 Внутренняя поверхность воздухопроводов должна быть протерта трансформаторным маслом. Допустимые отклонения линейных размеров каждого узла воздухопровода от проектных размеров не должны быть более ±3 мм на каждый метр, но не более ±10 мм на всю длину. Отклонения угловых размеров и неплоскостность осей в узле не должны превышать ±2,5 мм на 1 м, но не более ±8 мм на весь последующий прямой участок.
- 3.201 Смонтированные воздухопроводы должны быть подвергнуты продувке при скорости воздуха 10-15 м/с и давлении, равном рабочему (но не более 4,0 МПа), в течение не менее 10 мин и испытаны на прочность и плотность. Давление при пневматическом испытании на

прочность для воздухопроводов с рабочим давлением 0,5 МПа и выше должно составлять 1,25 Рраб, но не менее Рраб + 0,3 МПа. При испытании воздухопроводов на плотность испытательное давление должно быть равно рабочему. В процессе подъема давления производится осмотр воздухопровода при достижении 30 и 60% испытательного давления. На время осмотра воздухопровода подъем давления прекращается. Испытательное давление на прочность должно выдерживаться в течение 5 мин, после чего снижается до рабочего, при котором в течение 12 ч воздухопровод испытывается на плотность.

КОНДЕНСАТОРЫ И ЗАГРАДИТЕЛИ ВЫСОКОЧАСТОТНОЙ СВЯЗИ

- 3.202 При сборке и монтаже конденсаторов связи должна быть обеспечена горизонтальность установки подставок и вертикальность установки конденсаторов.
- 3.203 Высокочастотные заградители до начала монтажа должны пройти настройку в лаборатории.
- 3.204 При монтаже высокочастотных заградителей должна быть обеспечена вертикальность их подвески и надежность контактов в местах присоединения элементов настройки.

РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ ДО 1000 В. ЩИТЫ УПРАВЛЕНИЯ. ЗАЩИТЫ И АВТОМАТИКИ

- 3.205 Щиты и шкафы должны поставляться предприятиями изготовителями полностью смонтированными, прошедшими ревизию, регулировку и испытание в соответствии с требованиями ПУЭ, государственных стандартов или технических условий предприятий изготовителей.
- 3.206 Распределительные щиты, станции управления, щиты защиты и автоматики, а также пульты управления должны быть выверены по отношению к основным осям помещений, в которых они устанавливаются. Панели при установке должны быть выверены по уровню и отвесу. Крепление к закладным деталям должно выполняться сваркой или разъемными соединениями. Допускается установка панелей без крепления к полу, если это предусмотрено рабочими чертежами. Панели должны быть скреплены между собой болтами.

АККУМУЛЯТОРНЫЕ УСТАНОВКИ

3.207 Приемка под монтаж стационарных кислотных и щелочных) аккумуляторных батарей закрытого исполнения и деталей аккумуляторов открытого исполнения должна производиться в объеме требований, приведенных в государственных стандартах, ТУ и других доку-

стр. 50 КМК 3.05.06-97

ментах, определяющих комплектность поставки, их технические характеристики и качество.

3.208 Аккумуляторы должны быть установлены в соответствии с рабочими чертежами на деревянных, стальных или бетонных стеллажах или на полках вытяжных шкафов. Конструкция, размеры, покрытие и качество деревянных и стальных стеллажей должны соответствовать требованиям государственных стандартов.

Внутренняя поверхность вытяжных шкафов для размещения аккумуляторов должна быть окрашена краской, стойкой к воздействию электролита.

- 3.209 Аккумуляторы в батарее должны быть пронумерованы крупными цифрами на лицевой стенке сосуда либо на продольном бруске стеллажа. Краска должна быть кислотостойкой для кислотных и щелочестойкой для щелочных аккумуляторов. Первый номер в батарее, как правило, наносится на аккумуляторе, к которому подсоединена положительная шина.
- 3.210 При монтаже ошиновки в помещении аккумуляторной батареи должны выполняться следующие требования:

шины должны быть проложены на изоляторах и закреплены в них шинодержателями; соединения и ответвления медных шин должны быть выполнены сваркой или пайкой, алюминиевых - только сваркой; сварные швы в контактных соединениях не должны иметь наплывов, углублений, а также трещин, короблении и прожогов; из мест сварки должны быть удалены остатки флюса и шлаков;

концы шин, присоединяемые к кислотным аккумуляторам, должны быть предварительно облужены и затем впаяны в кабельные наконечники соединительных полос;

к щелочным аккумуляторам шины должны быть присоединены с помощью наконечников, которые должны быть приварены или припаены к шинам и зажаты гайками на выводах аккумуляторов;

неизолированные шины по всей длине должны быть окрашены в два слоя краской, стойкой к длительному воздействию электролита.

- 3.211 Конструкция плиты для вывода шин из аккумуляторного помещения должна быть приведена в проекте.
- 3.212 Сосуды кислотных аккумуляторов должны быть установлены по уровню на конусных изоляторах, широкие основания которых

должны быть уложены на выравнивающие прокладки из свинца или винипласта. Стенки сосудов, обращенные к проходу, должны находиться в одной плоскости.

При применении бетонных стеллажей аккумуляторные сосуды должны быть установлены на изоляторах.

3.213 Пластины в кислотных аккумуляторах открытого исполнения должны быть расположены параллельно друг к другу. Перекос всей группы пластин или наличие кривопаяных пластин не допускается. В местах припайки хвостовиков пластин к соединительным полосам не должно быть раковин, слоистости, выступов и подтеков свинца.

На кислотные аккумуляторы открытого исполнения должны быть уложены покровные стекла, опирающиеся на выступы (приливы) пластин. Размеры этих стекол должны быть на 5-7 мм меньше внутренних размеров сосуда. Для аккумуляторов с размерами бака свыше 400 х 200 мм можно применять покровные стекла из двух или более частей.

3.214 При заготовке сернокислого электролита надлежит:

применять серную кислоту, удовлетворяющую требованиям ГОСТ 667-73;

для разбавления кислоты применять воду, удовлетворяющую требованиям ГОСТ 6709-72.

Качество воды и кислоты должно быть удостоверено заводским сертификатом либо протоколом химического анализа кислоты и воды, проведенного в соответствии с требованиями соответствующих государственных стандартов. Химический анализ производит заказчик.

- 3.215 Аккумуляторы закрытого исполнения должны быть установлены на стеллажах на изоляторах или изолирующих прокладках, стойких к воздействию электролита. Расстояние между аккумуляторами в ряду должно быть не менее 20 мм.
- 3.216 Щелочные аккумуляторы должны быть соединены в последовательную цепь с помощью стальных никелированных межэлементных перемычек сечением, указанным в проекте.

Аккумуляторные щелочные батареи должны быть соединены в последовательную цепь с помощью перемычек из медного кабеля (провода) сечением, указанным в проекте.

3.217 Для приготовления щелочного электролита должна применяться готовая смесь гидрата окиси калия и гидрата окиси лития или

едкого натра и гидрата окиси лития заводского изготовления и дистиллированная вода. Содержание примесей в воде не нормируется.

Допускается применение отдельно гидрата окиси калия по ГОСТ 9285-78 или едкого натра по ГОСТ 2263-79 и гидрата окиси лития по ГОСТ 8595 - 83 дозируемых в соответствии с инструкцией предприятия-изготовителя по уходу за аккумуляторами.

Поверх щелочного электролита в аккумуляторы должно быть залито вазелиновое масло или керосин.

3.218. Плотность электролита заряженных щелочных аккумуляторов должна быть 1,205±0,005 г/см³ при температуре 293 К (20°С). Уровень электролита кислотных аккумуляторов должен быть не менее чем на 10 мм выше верхней кромки пластин.

Плотность калиево - литиевого электролита щелочных аккумуляторов должна составлять 1,20 \pm 0,01 г/см³ при температуре 288-308 К (15-35°C).

ЭЛЕКТРОСИЛОВЫЕ УСТАНОВКИ

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

3.219 До начала монтажа электрических машин и многомашинных агрегатов общего назначения должны быть:

проверены наличие и готовность к работе подъемнотранспортных средств в зоне монтажа электрических машин (готовность подъемно-транспортных средств должна быть подвержена актами на их испытание и приемку в эксплуатацию);

подобран и испытан такелаж (лебедки, тали, блоки, домкраты);

подобран комплект механизмов, приспособлений, а также монтажных клиньев и подкладок, клиновых домкратов и винтовых устройств (при бес подкладочном способе установки).

- 3.220 Монтаж электрических машин следует выполнять в соответствии с инструкциями предприятий-изготовителей.
- 3.221 Электрические машины, прибывшие с предприятия изготовителя в собранном виде, на месте монтажа перед установкой не должны разбираться. При отсутствии уверенности в том, что во время транспортирования и хранения машина после заводской сборки осталась неповрежденной и незагрязненной, необходимость и степень разборки машины должна быть определена актом, составленным ком-

петентными представителями заказчика и электромонтажной организации. Работа по разборке машины и последующей сборке ее должна выполняться в соответствии с инструкцией предприятия-изготовителя.

- 3.222 При проведении испытаний по окончании монтажа прибывших в разобранном виде или подвергавшихся разборке электрических машин постоянного тока и электродвигателей переменного тока зазоры между сталью ротора и статора, зазоры в подшипниках скольжения и вибрация подшипников электродвигателя, разбег ротора в осевом направлении должны соответствовать указанным в технической документации предприятий-изготовителей.
- 3.223 Определение возможности включения машин постоянного тока и электродвигателей переменного тока напряжением выше 1000 В без сушки следует производить в соответствии с указаниями предприятия-изготовителя.

КОММУТАЦИОННЫЕ АППАРАТЫ

- 3.224 Коммутационные аппараты следует устанавливать в местах, указанных в рабочих чертежах и в соответствии с инструкциями предприятий-изготовителей.
- 3.225 Аппараты или опорные конструкции, на которых они должны быть установлены, следует закреплять к строительным основаниям способом, указанным в рабочих чертежах (дюбелями, болтами, винтами, с помощью штырей, опорные конструкции сваркой к закладным элементам строительных оснований и т.п.). Строительные основания должны обеспечивать крепление аппаратов без перекосов и исключать возникновение недопустимых вибраций.
- 3.226 Ввод проводов, кабелей или труб в аппараты не должен нарушать степень защиты оболочки аппаратов и создавать механических воздействий, деформирующих их.
- 3.227 При установке нескольких аппаратов в блоке должен быть обеспечен доступ для обслуживания каждого из них.

ЭЛЕКТРООБОРУДОВАНИЕ КРАНОВ

3.228 При подготовке и производстве работ по монтажу кранов на объекте строительства должна учитываться степень заводской электромонтажной готовности кранового оборудования, которая регламентируется ГОСТ 24378-80 Е. Предприятием-изготовителем в соответствии с указанным ГОСТ должны быть выполнены следующие работы на кранах общего назначения:

стр. 54 КМК 3.05.06-97

электромонтаж крановых кабин и грузовых тележек;

изготовление токопровода к грузовой тележке;

изготовление узлов (жгутов) электропроводов с наконечниками и маркировкой концов для мостов;

установка на мосту крана подставок и кронштейнов под электрооборудование, протяжных ящиков, коробов или труб для прокладки электропроводов;

сборка электроаппаратуры, устанавливаемой на мосту (сопротивления, магнитные станции), в блоке с монтажом внутренних электросхем.

- 3.229 Работы по монтажу электрической части мостовых кранов следует выполнять на нулевой отметке до подъема моста, кабины крановщика и тележки в проектное положение.
- 3.230 До начала электромонтажных работ должна быть осуществлена приемка крана под монтаж от механомонтажной организации, оформляемая актом. В акте должно быть оговорено разрешение на производство электромонтажных работ на кране, в том числе и на нулевой отметке.
- 3.231 На нулевой отметке необходимо выполнять максимально возможный объем электромонтажных работ, приступать к которым следует после надежной установки моста на выкладках и оформления разрешения механомонтажной организации. Оставшийся объем электромонтажных работ необходимо выполнять после подъема крана в проектное положение и установки его в непосредственной близости от переходной галереи, лестницы или ремонтной площадки, с которых должен быть обеспечен надежный и безопасный переход на кран. Кроме того, до производства электромонтажных работ на кране, установленном в проектное положение, должны быть:

полностью закончены сборка и установка моста, тележки, кабины, ограждений и перил;

главные троллеи ограждены или расположены на расстоянии, исключающем доступ к ним с любого места на кране, где могут находиться люди.

КОНДЕНСАТОРНЫЕ УСТАНОВКИ

3.232 При монтаже конденсаторных установок должна быть обеспечена горизонтальная установка каркасов и вертикальная установка конденсаторов;

расстояние между дном конденсаторов нижнего яруса и полом помещения или дном маслоприемника должно быть не менее 100 мм;

паспорта конденсаторов (таблички с техническими данными) должны быть обращены в сторону прохода, из которого производится их обслуживание;

инвентарный (порядковый) номер конденсатора должен быть написан маслостойкой краской на стенке бака каждого конденсатора, обращенной к проходу обслуживания;

расположение токоведущих шин и способы присоединения их к конденсаторам должны обеспечивать удобство смены конденсаторов во время эксплуатации;

ошиновка не должна создавать изгибающих усилий в выводных изоляторах конденсаторов;

заземляющая проводка должна быть расположена так, чтобы она не препятствовала смене конденсаторов во время эксплуатации.

ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ

- 3.233 Светильники с люминесцентными лампами должны быть переданы заказчиком в монтаж в исправном состоянии и проверены на световой эффект.
- 3.234 Крепление светильника к опорной поверхности (конструкции) должно быть разборным.
- 3.235 Светильники, применяемые в установках, подверженных вибрации и сотрясениям, должны быть установлены с применением амортизирующих устройств.
- 3.236 Крюки и шпильки для подвеса светильников в жилых зданиях, должны иметь устройства, изолирующие их от светильника.
- 3.237 Присоединение светильников к групповой сети должно быть выполнено с помощью клеммных колодок, обеспечивающих присоединение как медных, так и алюминиевых (алюмомедных) проводов сечением до 4 мм 2 .

стр. 56 КМК 3.05.06-97

- 3.238 В жилых зданиях одиночные патроны (например, в кухнях и передних) должны быть присоединены к проводам групповой сети с помощью клеммных колодок.
- 3.239 Концы проводов, присоединяемых к светильникам, счетчикам, автоматам, щиткам и электроустановочным аппаратам, должны иметь запас по длине, достаточной для повторного подсоединения в случае их обрыва.
- 3.240 При подсоединении автоматов и предохранителей ввертного типа защитный (нулевой) провод должен быть присоединен к винтовой гильзе основания.
- 3.241 Вводы проводов и кабелей в светильники и электроустановочные аппараты при наружной их установке должны быть уплотнены для защиты от проникновения пыли и влаги.
- 3.242 Электроустановочные аппараты при открытой установке в производственных помещениях должны быть заключены в специальные кожухи или коробки.

ЭЛЕКТРООБОРУДОВАНИЕ УСТАНОВОК ВО ВЗРЫВООПАСНЫХ И ПОЖАРООПАСНЫХ ЗОНАХ

3.243 Монтаж электроустановок во взрывоопасных и пожароопасных зонах следует выполнять в соответствии с требованиями настоящих правил и ведомственных строительных норм, согласованных Госкомархитектстроем Республики Узбекистан в порядке, установленном КМК 1.01.01-96.

ЗАЗЕМЛЯЮЩИЕ УСТРОЙСТВА

- 3.244 При монтаже заземляющих устройств следует соблюдать настоящие правила и требования ГОСТ 12.1.030-81.
- 3.245 Каждая часть электроустановки, подлежащая заземлению или занулению, должна быть присоединена к сети заземления или зануления при помощи отдельного ответвления. Последовательное включение в заземляющий или защитный проводник заземляемых или зануляемых частей электроустановки не допускается.
- 3.246 Соединение заземляющих и нулевых защитных проводников должно быть выполнено: сваркой на магистралях, выполненных из строительных профилей; болтовыми соединениями - на магистралях, выполненных электромонтажными конструкциями; болтовыми соединениями или сваркой - при подсоединения к электрооборудованию;

пайкой или опрессовкой - в концевых заделках и соединительных муфтах на кабелях. Места соединения стыков после сварки должны быть окрашены.

- 3.247 Контактные соединения в цепи заземления или зануления должны соответствовать классу 2 по ГОСТ 10434-82.
- 3.248 Места и способы подсоединении заземляющих и нулевых защитных проводников к естественным заземлителям должны быть указаны в рабочих чертежах.
- 3.249 Заземляющие и нулевые защитные проводники должны быть защищены от химических воздействий и механических повреждений в соответствии с указаниями, приведенными в рабочих чертежах.
- 3.250 Магистрали заземления или зануления и ответвления от них в закрытых помещениях и в наружных установках должны быть доступны для осмотра. Это требование не распространяется на нулевые жилы и оболочки кабелей, на арматуру железобетонных конструкций, а также на заземляющие и нулевые проводники, проложенные в трубах, коробах или замоноличенные в строительные конструкции.
- 3.251 Монтаж шунтирующих перемычек на трубопроводах, аппаратах, подкрановых путях, между фланцами воздуховодов и присоединения сетей заземления и зануления к ним выполняется организациями, монтирующими трубопроводы, аппараты, подкрановые пути и воздуховоды.
- 3.252. Заземление канатов, катанки или стальной проволоки, используемых в качестве несущего троса, должно быть выполнено с двух противоположных концов присоединением к магистрали заземления или зануления сваркой. Для оцинкованных канатов допускается болтовое соединение с защитой места соединения от коррозии.
- 3.253. При использовании в качестве заземляющих устройств металлических и железобетонных конструкций (фундаментов, колонн, ферм, стропильных, подстропильных и подкрановых балок), все металлические элементы этих конструкций должны быть соединены между собой, образуя непрерывную электрическую цепь, железобетонные элементы (колонны), кроме этого должны иметь металлические выпуски (закладные изделия) для присоединения к ним сваркой заземляющих или нулевых защитных проводников.

стр. 58 КМК 3.05.06-97

- 3.254 Болтовые, заклепочные и сварные соединения металлических колонн, ферм и балок, используемых при возведении зданий или сооружений (в том числе эстакад всех назначений) создают непрерывную электрическую цепь. При возведении зданий и сооружений (в том числе эстакад всех назначений) из железобетонных элементов непрерывная электрическая цепь должна быть создана с помощью сварки арматуры прилегающих элементов конструкции между собой, либо приваркой к арматуре соответствующих закладных деталей. Эти сварные соединения должны быть выполнены строительной организацией в соответствии с указаниями, приведенными в рабочих чертежах.
- 3.255 При креплении электродвигателей с помощью болтов к заземленным (зануленным) металлическим основаниям перемычку между ними выполнять не следует.
- 3.256 Металлические оболочки и броня силовых и контрольных кабелей должны быть соединены между собой гибким медным проводом, а также с металлическими корпусами муфт и металлическими опорными конструкциями. Сечение заземляющих проводников для силовых кабелей (при отсутствии других указаний в рабочих чертежах) должно быть, мм²:

```
не менее 6 . . . . . для кабелей сечением до 10 мм²

10 . . . . " " от 16 до 35 мм²

16 . . . . " " от 50 до120 мм²

25 . . . . " " от 150 до 240 мм²
```

- 3.257 Сечения заземляющих проводников для контрольных кабелей должно быть не менее 4 мм².
- 3.258 При использовании строительных или технологических конструкций в качестве заземляющих и нулевых защитных проводников на перемычках между ними, а также в местах присоединений и ответвлений проводников должно быть нанесено не менее двух полос желтого цвета по зеленому фону.
- 3.259 В электроустановках напряжением до 1000 В и выше с изолированной нейтралью заземляющие проводники разрешается прокладывать в общей оболочке с фазными или отдельно от них.
- 3.260 Непрерывность цепи заземления стальных водогазопроводных труб в местах соединения их между собой следует обеспечивать муфтами, наворачиваемыми до конца резьбы на конец

трубы с короткой резьбой и установкой контргаек на трубе с длинной резьбой.

4 ПУСКОНАЛАДОЧНЫЕ РАБОТЫ

- 4.1 Настоящие правила устанавливают требования к пусконаладочным работам по электротехническим устройствам.
- 4.2 Пусконаладочные работы должны выполняться в соответствии с обязательным приложением 1 к КМК 3.05.05-98 и настоящими правилами.
- 4.3 Пусконаладочными работами является комплекс работ, включающий проверку, настройку и испытания электрооборудования с целью обеспечения электрических параметров и режимов, заданных проектом.
- 4.4 При выполнении пусконаладочных работ следует руководствоваться требованиями Правил устройства электроустановок, утвержденных в порядке, установленном КМК 1.01.02-96, проектом, эксплуатационной документацией предприятий-изготовителей.

Общие условия безопасности труда и производственной санитарии при выполнении пусконаладочных работ обеспечивает заказчик.

- 4.5 Пусконаладочные работы по электротехническим устройствам осуществляются в четыре этапа (стадии).
- 4.6. На первом (подготовительном) этапе пусконаладочная организация должна:

разработать (на основе проектной и эксплуатационной документации предприятий-изготовителей) рабочую программу и проект производства пусконаладочных работ, включающий мероприятия по технике безопасности;

передать заказчику замечания по проекту, выявленные в процессе разработки рабочей программы и проекта производства работ;

подготовить парк измерительной аппаратуры, испытательного оборудования и приспособлений.

4.7 На первом (подготовительном) этапе пусконаладочных работ заказчик должен обеспечить следующее:

выдать пусконаладочной организации два комплекта электротехнической и технологической части проекта, утвержденного к производству работ, комплект эксплуатационной документации предприятий-

стр. 60 КМК 3.05.06-97

изготовителей, уставки релейной защиты, блокировок и автоматики, в необходимых случаях согласованные с энергосистемой;

подать напряжение на рабочие места наладочного персонала от временных или постоянных сетей электроснабжения;

назначить ответственных представителей по приемке пусконаладочных работ;

согласовать с пусконаладочной организацией сроки выполнения работ, учтенные в общем графике строительства;

выделить на объекте помещения для наладочного персонала и обеспечить охрану этих помещений.

4.8 На втором этапе должны быть произведены пусконаладочные работы, совмещенные с электромонтажными работами, с подачей напряжения по временной схеме. Совмещенные работы должны выполняться в соответствии с действующими правилами техники безопасности. Начало пусконаладочных работ на этом этапе определяется степенью готовности строительно-монтажных работ: в электротехнических помещениях должны быть закончены все строительные работы, включая и отделочные, закрыты все проемы, колодцы и кабельные каналы, выполнено освещение, отопление и вентиляция, закончена установка электрооборудования и выполнено его заземление.

На этом этапе пусконаладочная организация выполняет проверку смонтированного электрооборудования с подачей напряжения от испытательных схем на отдельные устройства и функциональные группы. Подача напряжения на налаживаемое электрооборудование должно осуществляться только при отсутствии электромонтажного персонала в зоне наладки и при условии соблюдения мер безопасности в соответствии с требованиями действующих правил техники безопасности.

4.9 На втором этапе пусконаладочных работ заказчик должен:

обеспечить временное электроснабжение в зоне производства пусконаладочных работ;

обеспечить расконсервацию и при необходимости предмонтажную ревизию электрооборудования;

согласовать с проектными организациями вопросы по замечаниям пусконаладочной организации, выявленным в процессе изучения про-

екта, а также обеспечить авторский надзор со стороны проектных организаций;

обеспечить замену отбракованного и поставку недостающего электрооборудования;

обеспечить поверку и ремонт электроизмерительных приборов;

обеспечить устранение дефектов электрооборудования и монтажа, выявленных в процессе производства пусконаладочных работ.

- 4.10 По окончании второго этапа пусконаладочных работ до начала индивидуальных испытаний пусконаладочная организация должна передать заказчику в одном экземпляре протоколы испытания электрооборудования повышенным напряжением, заземления и настройки защит, а также внести изменения в один экземпляр принципиальных электрических схем объектов электроснабжения, включаемых под напряжение.
- 4.11 Вопрос о целесообразности предварительной проверки и настройки отдельных устройств электрооборудования, функциональных групп и систем управления вне зоны монтажа с целью сокращения сроков ввода объекта в эксплуатацию должен решаться пусконаладочной организацией совместно с заказчиком, при этом заказчик должен обеспечить доставку электрооборудования к месту наладки и по окончании пусконаладочных работ к месту его установки в монтажной зоне.
- 4.12 На третьем этапе пусконаладочных работ выполняются индивидуальные испытания электрооборудования. Началом данного этапа считается введение эксплуатационного режима на данной электроустановке, после чего пусконаладочные работы должны относится к работам, производимым в действующих электроустановках.

На этом этапе пусконаладочная организация производит настройку параметров, уставок защиты и сигнализации, а также электрооборудования на холостом ходу для подготовки к индивидуальным испытаниям технологического оборудования.

4.13 Общие требования безопасности при совмещенном производстве электромонтажных и пусконаладочных работ в соответствии с действующими Правилами техники безопасности обеспечивает руководитель электромонтажных работ на объекте. Ответственность за обеспечение необходимых мер безопасности, за их выполнение непо-

средственно в зоне производимых пусконаладочных работ несет руководитель наладочного персонала.

4.14 При производстве пусконаладочных работ по совмещенному графику на отдельных устройствах и функциональных группах электроустановки должна быть точно определена и согласована с руководителем электромонтажных работ рабочая зона производства работ. Рабочей зоной следует считать пространство, где находится испытательная схема и электрооборудование, на которое может быть подано напряжение от испытательной схемы. Лицам, не имеющим отношение к производству пусконаладочных работ, запрещается доступ в рабочую зону.

В случае выполнения совмещенных работ электромонтажная и пусконаладочная организации совместно разрабатывают план мероприятий и график совмещенного производства работ.

- 4.15 На третьем этапе пусконаладочных работ обслуживание электрооборудования должно осуществляться заказчиком, который обеспечивает расстановку эксплуатационного персонала, сборку и разборку электрических схем, а также осуществляет технический надзор за состоянием электротехнического и технологического оборудования.
- 4.16 С введением эксплуатационного режима обеспечение требований безопасности, оформление нарядов и допуска к производству пусконаладочных работ должны осуществляться заказчиком.
- 4.17 После окончания индивидуальных испытаний электрооборудования производятся индивидуальные испытания технологического оборудования. Пусконаладочная организация в этот период уточняет параметры, характеристики и уставки защит электроустановок.
- 4.18 После проведения индивидуальных испытаний электрооборудование считается принятым в эксплуатацию. При этом пусконаладочная организация передает заказчику протоколы испытаний электрооборудования повышенным напряжением, проверки устройств заземления и зануления, а также исполнительные принципиальные электрические схемы, необходимые для эксплуатации электрооборудования. Остальные протоколы наладки электрооборудования передаются в одном экземпляре заказчику в двух месячный срок, а по техническим сложным объектам в срок до четырех месяцев после приемки объекта в эксплуатацию.

Окончание пусконаладочных работ на третьем этапе оформляется актом технической готовности электрооборудования для комплексного опробования.

4.19 На четвертом этапе пусконаладочных работ производится комплексное опробования электрооборудования по утвержденным программам.

На этом этапе должны выполняться пусконаладочные работы по настройке взаимодействия электрических схем и систем электрооборудования в различных режимах. В состав указанных работ входят:

обеспечение взаимных связей, регулировка и настройка характеристик и параметров отдельных устройств и функциональных групп электроустановки с целью обеспечения на ней заданных режимов работы;

опробование электроустановки по полной схеме на холостом ходу и под нагрузкой во всех режимах работы для подготовки к комплексному опробованию технологического оборудования.

- 4.20 В период комплексного опробования обслуживание электрооборудования осуществляется заказчиком.
- 4.21 Пусконаладочные работы на четвертом этапе считаются законченными после получения на электрооборудовании предусмотренных проектом электрических параметров и режимов, обеспечивающих устойчивый технологический процесс выпуска первой партии продукции в объеме, установленным на начальный период освоения проектной мощности объекта.
- 4.22 Работа пусконаладочной организации считается выполненной при условии подписания акта приемки пусконаладочных работ.

ОГЛАВЛЕНИЕ

1 ОБЩИЕ ПОЛОЖЕНИЯ	1
2 ПОДГОТОВКА К ПРОИЗВОДСТВУ	
ЭЛЕКТРОМОНТАЖНЫХ РАБОТ	
3 ПРОИЗВОДСТВО ЭЛЕКТРОМОНТАЖНЫХ РАБОТ	
ОБЩИЕ ТРЕБОВАНИЯ	10
КОНТАКТНЫЕ СОЕДИНЕНИЯ	11
ЭЛЕКТРОПРОВОДКИ	12
ОБШИЕ ТРЕБОВАНИЯ	12
ПРОКЛАДКА ПРОВОДОВ И КАБЕЛЕЙ НА ЛОТКАХ И В КОРОБАХ	13
ПРОКЛАДКА ПРОВОДОВ НА ИЗОЛИРУЮЩИХ ОПОРАХ	
ПРОКЛАДКА ПРОВОДОВ И КАБЕЛЕЙ НА СТАЛЬНОМ КАНАТЕ	14
ПРОКЛАДКА УСТАНОВОЧНЫХ ПРОВОДОВ ПО СТРОИТЕЛЬНЫМ	
ОСНОВАНИЯМ И ВНУТРИ ОСНОВНЫХ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ	
ПРОКЛАДКА ПРОВОДОВ И КАБЕЛЕЙ В СТАЛЬНЫХ ТРУБАХ	
ПРОКЛАДКА ПРОВОДОВ И КАБЕЛЕЙ В НЕМЕТАЛЛИЧЕСКИХ ТРУБАХ	
КАБЕЛЬНЫЕ ЛИНИИ	
ОбЩИЕ ТРЕБОВАНИЯ	
ПРОКЛАДКА В БЛОЧНОЙ КАНАЛИЗАЦИИ	24
ПРОКЛАДКА В КАБЕЛЬНЫХ СООРУЖЕНИЯХ И ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЯХ	
ПРОКЛАДКА НА СТАЛЬНОМ КАНАТЕ	
ПРОКЛАДКА ПРИ НИЗКИХ ТЕМПЕРАТУРАХ	
МОНТАЖ МУФТ КАБЕЛЕЙ НАПРЯЖЕНИЕМ ДО 35 кВ	
ОСОБЕННОСТИ МОНТАЖА КАБЕЛЬНЫХ ЛИНИЙ НАПРЯЖЕНИЕМ 110-220	
МАРКИРОВКА КАБЕЛЬНЫХ ЛИНИЙ	
ТОКОПРОВОДЫ НАПРЯЖЕНИЕМ ДО 35 кВ	
ТОКОПРОВОДЫ НАПРЯЖЕНИЕМ ДО 1 КВ ШИНОПРОВОДЫ	
ТОКОПРОВОДЫ ОТКРЫТЫЕ НАПРЯЖЕНИЕМ 6-35 кв	
ВОЗДУШНЫЕ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ	
РУБКА ПРОСЕК	
УСТРОЙСТВО КОТЛОВАНОВ И ФУНДАМЕНТОВ ПОД ОПОРЫ	
СБОРКА И УСТАНОВКА ОПОР	
МОНТАЖ ИЗОЛЯТОРОВ И ЛИНЕЙНОЙ АРМАТУРЫ	
МОНТАЖ ПРОВОДОВ И ГРОЗОЗАЩИТНЫХ ТРОСОВ (КАНАТОВ)	
МОНТАЖ ТРУБЧАТЫХ РАЗРЯДНИКОВ	
РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА И ПОДСТАНЦИИ	
ОБЩИЕ ТРЕБОВАНИЯ	
ОШИНОВКА ЗАКРЫТЫХ И ОТКРЫТЫХ РАСПРЕДЕЛИТЕЛЬНЫХ Устюйств	
изоляторы	43

КМК 3.05.06-97 стр. 65

	ВЫКЛЮЧАТЕЛИ НАПРЯЖЕНИЕМ ВЫШЕ 1000 В	44
	РАЗЪЕДИНИТЕЛИ. ОТДЕЛИТЕЛИ И КОРОТКОЗАМЫКАТЕЛИ НАПРЯЖЕНИЕМ ВЫШЕ 1000 В	44
	РАЗРЯДНИКИ	45
	ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ	46
	РЕАКТОРЫ И КАТУШКИ ИНДУКТИВНОСТИ	46
	КОМПЛЕКТНЫЕ И СБОРНЫЕ РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА И КОМПЛЕКСНЫЕ ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ	46
	ТРАНСФОРМАТОРЫ	47
	СТАТИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ	47
	КОМПРЕССОРЫ И ВОЗДУХОПРОВОДЫ	
	КОНДЕНСАТОРЫ И ЗАГРАДИТЕЛИ ВЫСОКОЧАСТОТНОЙ СВЯЗИ	49
	РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ ДО 1000 В.	
	ШИТЫ УПРАВЛЕНИЯ. ЗАШИТЫ И АВТОМАТИКИ	
	АККУМУЛЯТОРНЫЕ УСТАНОВКИ	
	ЭЛЕКТРОСИЛОВЫЕ УСТАНОВКИ	52
	ЭЛЕКТРИЧЕСКИЕ МАШИНЫ	_
	КОММУТАЦИОННЫЕ АППАРАТЫ	
	ЭЛЕКТРООБОРУДОВАНИЕ КРАНОВ	
	КОНДЕНСАТОРНЫЕ УСТАНОВКИ	
	ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ	55
	ЭЛЕКТРООБОРУДОВАНИЕ УСТАНОВОК ВО ВЗРЫВООПАСН	ЫΧ
	И ПОЖАРООПАСНЫХ ЗОНАХ	56
	ЗАЗЕМЛЯЮЩИЕ УСТРОЙСТВА	56
	ПУСКОНАЛАДОЧНЫЕ РАБОТЫ	
/ I	: I/ VIVI I/VI/AUV II IDIL I ADV I DI	33

Отзывы и предложения просим направлять в Госкомархитектстрой Республики Узбекистан (700011, г. Ташкент, ул.Абая, 6)

Подготовлено к изданию ИВЦ «АКАТМ»