Carro x AWS Hackathon 2022

Secret Garage Group

Lee Hua, Philip, Vibin, Wai Yeong, Yong Hao

License Plate Extraction

Computer Vision: Problem Statement 1

Motivation

Problem: Extract text from images of license plates

- Automated barrier free car park
- Surveillance
- Inventory management

Pipeline

Text Detection

CRAFT: Character-Region Awareness For Text detection

Region Map

Affinity Map

Minimum Bounding Rectangles

Text Recognition

(1) Deep Text (2) Easy OCR (3) Ensemble

DeepText model: TPS-ResNet-BiLSTM-Attn

Source: https://arxiv.org/abs/1904.01906

TPS: thin-plate spline transformation to improve geometric invariance

ResNet : CNN backbone for feature extraction

BiLSTM: sequence modeling, contextual information for robust prediction

Attn : attention-based sequence prediction

Idea

Projective transform: **Document scanner**

Available in market - Eg. Office Lens

Idea

Projective transform: **License plate**

Corners obtained from license plate detector model

HR.26.BR.9044

Exploratory Data Analysis

B2002TON

B2105TG

B2845SOB

B2848PKJ

B2761TBL

B2106WE

B1983BMK

B1343ZKJ

B1027SAC

B1657NYV

B1573EOH

F1620AF

B2973BYK

B1097NBJ

B1507KRP

Challenges

Our focus was on pre-processing! Since the actual text detection and recognition are quite good

Cropped license plate region

Rectangle 'borders' not clear

Image pre-processing - Horizontal image alignment

Also serves as data augmentation

Text Detection

54x71: leftmost=272, upmost=361

129x60: leftmost=59, upmost=219

132x220: leftmost=197, upmost=213

118x154: leftmost=468, upmost=212

Mean Shift Clustering

Unsupervised technique for clustering

- # clusters do not need to be given
- Only 1 parameter: bandwidth
- img_diag → good indicator

Bandwidth selection:

img_diag/20

Text sorting - Mean shift clustering

1-D feature: Upmost y-coordinate

Text filtering - Mean shift clustering

129x60: leftmost=59, upmost=219

Cluster with largest heights

1-D feature: Cropped height

Text Recognition

129x60: leftmost=59, upmost=219

'B' : 0.9932

'14Ub' : 0.3722

'KKL' : 0.7105

Prediction: B14UbKKL

Text cleanup - Capitalisation, Regular Expressions

License plate only has alphanumeric capital characters.

```
re.sub('[^A-Z0-9]', '', text.upper())
```

Eg. B34.52s! → B3452S

Implementation

get_text_preds(img)

RESULTS

Mean Levenshtein distance

lmage	DeepText	EasyOCR	Ensemble: DeepText + EasyOCR
Original	0.8505	0.7712	0.8415
Affine	0.9518	0.8595	0.9422
Rotate	0.9433	0.8403	0.9335
Ensemble: Affine + Rotate	0.9511	0.8620	0.9404

Future Work

Thresholding and dilation to help with faint text (w.r.t background)

Future Work

Resize to fixed size input model

 Optimized for tflite implementation on CPU based server

Amazon Serverless Computing

- Stream images through Amazon API Gateway
- AWS Lambda runs script when triggered by API
- Sends results back to end user

Engine Issue Detection

Acoustic Engineering: Problem Statement 2

Motivation

Problem: Can we detect car engine issues based on only engine sounds?

Task: Build a binary classification model to detect car engine issues

Pipeline

Exploratory Data Analysis

- Time Length
- RMS Amplitude

Feature Extraction

Feature Extraction

• STFT outperforms the MFCC and Mel-spectrogram, based on experimental data

	Model		
Features	LogReg(Baseline)	CNN (DL)	CNN-LSTM
MFCC	0.588	0.4706	0.588
MEL-SPEC	0.588	0.5294	0.588
STFT	0.6275	0.6275	0.588

Paper Reference

M. Lasseck, Audio-based Bird Species Identification with Deep Convolutional Neural Networks., in: CLEF (Working Notes), 2018.

- Concatenate audio signal in time domain by class labels
- Extract audio chunks from file with a duration of ca. 5 seconds
- Apply short-time Fourier transform

Time concatenation of audio signals by label

- Abrupt change in between subsequent audio samples ⇒ Noise injection
- More variation in training dataset

Extract 5-second audio chunks from concatenated signals

- Randomization in audio signals
- Improved test score from 0.63 to 0.72

Divide test audio into 5-second chunks and perform

- Mean-score voting
 - Take mean of all 6 votes
- Threshold voting
 - \circ 2 out of 6 votes \Rightarrow Misfire

	Model
Method	Final Model
Normal	0.7255
Mean-score voting	0.7647
Threshold voting	0.7451

Model

Deployment

RECORD YOUR ENGINE SOUND

Future Work

Preprocessing/Feature extraction

Compare and/or combine different data augmentation techniques

- Image augmentations e.g. reflection of spectrogram
- Audio signal augmentations e.g. pitch shift, addition of random noise

Deep Learning Pipeline

Compare and contrast more advanced models

- Faster R-CNN model
- LSTMs and GRUs

THANK YOU

Q&A Session