SRI CHAITANYA EDUCATIONAL INSTITUTIONS, INDIA

A.P,TELANGANA,KARNATAKA,TAMILNADU,MAHARASHTRA,DELHI,RANCHI

SEC: INCOMING JUNIORS DATE: 17-07-2021 **SUB: BOTANY NEET PART TEST-1** Max. Marks: 720

IMPORTANT INSTRUCTIONS:

- **Pattern of the Entrance Examination:**
 - Paper containing 180 objective type questions, from Biology, Physics and Chemistry
- ❖ Use Blue/Black Ball Point Pen only to darken the appropriate circle. Answers marked with pencil would not be evaluated.
- ❖ Each item carries 4marks. For each correct response the candidate will get 4 marks. For each incorrect response 1mark will be deducted from the total score.
- 1. Many bacteria have small circular DNA outside the genomic DNA. These smaller DNA are called
 - 1) Phasmids
- 2) Plastids
- 3) Plasmids
- 4) Prophage
- 2. Which is not found in prokaryotic cell?
 - 1) Plasma membrane
 - 2) Nuclear membrane
 - 3) Cell wall
 - 4) Ribosomes
- 3. Which layer of the cell envelope determines the shape of the cell provides a strong structural support to prevent the bacterium from bursting or collapsing?
 - 1) Cell wall
- 2) Cell membrane
- 3) Glycocalyx
- 4) Capsule
- 4. Which of the following are incorrect mesosomes?
 - 1) Mesosomes are formed by the extensions of plasma membrane into the cell in the form of vesicles tubules and lamellae
 - 2) They help in respiration, secretion process, to increase the surface area of the plasma membrane and enzymatic content

- 3) They help in the cell wall formation DNA replication and distribution to daughter cells
- 4) Absent in Bacteria
- 5. Omnis cellula-e cellula is generalization given by
 - 1) Lamarck
- 2) Dutrochet
- 3) Leeuwenhock
- 4) Virchow
- 6. The longest portion of the bacterial flagella that extends from the cell surface to the outside is called
 - 1) Filament
- 2) Hook
- 3) Basal body
- 4) Shaft
- Several ribosomes may attach to a single mRNA and form a chain called
 - 1) Polysome
- 2) Polyribosome
- 3) Phagosome
- 4) both 1&2
- 8 Match the columns I and II, and choose the correct combination from the options given

Column-I

Column-II

(Cell)

(Size)

a) Mycoplasma

 $K. 3 to 5 \mu m$

b) RBCs

L. 10 to 20 µm

c) Bacteria

M. 7 µm

d) Typical eukaryotic cell N. 0.3 µm

1) a-N, b-L, c-K, d-M

- 2) a-K, b-M, c-N, d-L
- 3) a-N, b-M, c-K, d-L
- 4) a-K, b-L, c-N, d-M
- 9. Centrioles and centrosomes occur in the cells of
 - 1) Green plants
 - 2) Animals
 - 3) Bacteria and cyanobacteria
 - 4) Both 2 & 3
- 10. An interconnected membranous network of the cell composed of vesicles, flattened sacs and tubules is
 - 1) Mitochondria
 - 2) Endoplasmic reticulum
 - 3) Lysosomes 4) Nucleus
- the ease 11. Depending on of extraction, membrane proteins can be classified as
 - 1) Saturated and unsaturated
 - 2) Hydrophilic and hydrophobic
 - 3) Integral and peripheral
 - 4) Acidic, basic and neutral
- 12. Layer of cell wall holds the nighbouring cells together is
 - 1) Primary cell wall
 - 2) Middle lamellum
 - 3) Secondary cell wall
 - 4) Tertiary cell wall
- Molecules which are transported across the 13. membrane against their concentration gradient, i.e, from the lower to higher concentration. Such a transport is called
 - 1) Active transport, e.g., diffusion
 - 2) Passive transport, e.g., diffusion
 - 3) Active transport, e.g., Na+/K+ pump
 - 4) Osmosis, a type of simple diffusion

- 14. Which is a part of endomembrane system of eukaryotic cells?
 - 1) Mitochondria
- 2) Peroxisomes
- 3) Chloroplasts
- 4) Golgi bodies
- 15. Perinuclear space is around
 - 1) 10 to 20 A
- 2) 10 to 20 nm
- 3) 10 to 50 μm
- 4) 10 to 50 nm
- 16. Organic acid used to grind living tissue is
 - 1) Chloroform
- 2) Trichloro acitic acid
- 3) Oxalo acitic acid 4) Hydrochloric acid
- 17. Match the column I and II, and choose the correct combination from the options given

Column –I

Column-II

- a. Acidic amino acid
- 1. Valine
- b. Basic amino acid
- 2. Glutamic acid
- c. Neutral amino acid
- 3. Phenylalanine
- d. Aromatic amino acid 4. Lysine
 - 1) a-2, b-4, c-1, d-3 2) a-2, b-1, c-4, d-3

 - 3) a-3, b-2, c-1, d-4 4) a-1, b-4, c-3, d-2
- 18. No. of carbon atoms present in palmatic acid is
 - 1) 20
- 2) 16
- 3) 24
- 4) 18
- Molecules having charged groups of opposite 19. polarity are
 - 1) Zwitter ions
- 2) Anions
- 3) Cations
- 4) Negative ions
- 20. Which is not a pyrimidine?
 - 1) Guanine
- 2) Thymine
- 3) Uracil
- 4) Cytosine
- 21. Trihydroxy propane is
 - 1) Palmatic acid
 - 2) Glycerol
 - 3) Arachidonic acid
 - 4) Glycine
- 22. Inulin is a polymer of

- 1) Glucose
 2) Fructose
 3) Galactose
 4) Sucrose
 Read the following statements and find out the incorrect statement.

 1) Glycogen is a branched polymer of glucose
 2) Callyland days not contain complex helicose
- 2) Cellulose does not contain complex helices and hence cannot give iodine test
- 3) Paper made from plant pulp is cellulosic
- 4) Chitin is heteropolymer

23.

- 24. In a polysaccharide like glycogen, the right end and left end are called
 - 1) N terminal and C terminal respectively
 - 2) C terminal and N terminal respectively
 - 3) Reducing end and non-reducing ends respectively
 - 4) Non-reducing end and reducing end respectively
- 25. Peptide bond is formed when the1) Carboxyl group of one amino acid reacts with the carboxyl group of the next amino acid
 - 2) Amino group of one amino acid reacts with the amino group of the next amino acid
 - 3) carboxyl group of one amino acid reacts with amino group of the next amino acid
 - 4) Amino group of one amino acid reacts with carboxyl group of the next amino acid
- 26. In B-DNA, the rise per base pair would be
 - 1) 0.34 nm
- 2) 3.4 nm
- 3) 34 nm
- 4) 34 \dot{A}
- 27. Which factor(s) affects the enzymatic activity?
 - 1) Temperature and PH
 - 2) Change in substance concentration
 - 3) Binding of specific chemicals that regulates its activity
 - 4) all of the above

- 28. Enzymes catalyzing removal of groups and leaving of double bond are
 - 1) Transferases
- 2) Ligases
- 3) Lyases
- 4) Oxidoreductases
- 29. NAD is
 - 1) Nicotinamide adenosine diphosphate
 - 2) Nicotine adenosine diphosphate
 - 3) Nicotinamide adenine dinucleotide
 - 4) None of the above
- 30. Ribose is
 - 1) Monosaccaride 2) Disaccharide
 - 3) Polysaccaride
- 4) Heteropolymer
- 31. Of the total duration of the cycle, the interphase lasts more than
 - 1) 95%
- 2) 5%
- 3) 50%
- 4) 40%
- 32. Which phase corresponds to the interval between mitosis and initiation of DNA replication?
 - 1) Gap 1/G₁ phase
 - 2) Gap 2/G₂ phase
 - 3) Synthesis/S phase
 - 4) M Phase
- 33. Centriole replicates during
 - 1) Interphase
- 2) Prophase
- 3) Metaphase
- 4) Anaphase
- 34. Which of the following cells in an adult animal do not appear to exhibit division?
 - 1) Bone marrow cells
 - 2) Upper layer of epidermis
 - 3) Heart cells
 - 4) All of the above
- 35. Which phase of cell cycle called as resting phase?
 - 1) Interphase
- 2) Metaphase

- 3) Anaphase 4) Prophase
- 36. Which of the following proteinaceous components of the cell cytoplasm help in the initiation of the assembly of mitotic spindle?
 - 1) Microtubules
- 2) Micro bodies
- 3) Centromere
- 4) Kinetochore
- 37. The centriole begins to move towards opposite poles of the cell in
 - 1) Prophase
- 2) Metaphase
- 3) Anaphase
- 4) Telophase
- 38. The key features of metaphase are
 - 1) Spindle fibres attach to kinetochores of chromosomes
 - 2) Chromosomes are moved to spindle equator and get aligned along metaphase plate
 - 3) Splitting of centromere
 - 4) Bothe 1 & 2
- 39. is characterized Anaphase stage
 - 1) Centromeres split and chromatids separate
 - 2) Chromatids move to opposite poles
 - 3) Nucleolus, Golgi complex and ER reform
 - 4) Bothe 1 & 2
- In which stage, the chromosomes that have 40 reached their respective poles decondense and lose their individuality
 - 1) Prophase
- 2) Metaphase
- 3) Anaphase
- 4) Telophase
- Telophase is characterized by 41.
 - 1) Chromosomes cluster at opposite spindle poles and their identify is lost as discrete elements
 - 2) Nuclear envelope assembles around the chromosome clusters
 - 3) Nucleolus, Golgi complex and E.R reform
 - 4) All of the above

- 42. In plant cells, cytokinesis occurs by
 - 1) Cell plate
- 2) Invagination
- 3) Furrowing
- 4) All of the above
- 43. In which stage of cell division, chromosomes are most condensed
 - 1) Prophase
- 2) Anaphase
- 3) Metaphase
- 4) Telophase
- Different shapes likeV,L, J and i chromosomes 44. can be observed in
 - 1) Prophase
- 2) Anaphase
- 3) Metaphase
- 4) Telophase
- In mitosis, centromere divides during 45.
 - 1) Prophase
- 2) Anaphase
- 3) Telophase
- 4) Metaphase
- 46. Incomplete digestive system is found in
 - 1) Aschelminthes
- 2) Annelida
- 3) Arthropoda
- 4) Platy helminthes
- 47. Match the following, and choose the correct sequence.
 - I) Organ level

- p) Pheretima
- II)Cellular aggregate level
- q) Fasciola

- III) Tissue level
- r) Spongilla
- IV) Organ system level
- s) Obelia
- 1) I-q, II-r, III-s, IV-p
- 2) I-q, II-s, III-r, IV-p
- 3) I-s, II-q, III-r, IV-p
- 4) I-s, II-r, III-p, IV-q
- 48. Open circulatory system occurs in
 - 1) Earthworm
- 2) Snail
- 3) Cockroach
- 4) Both 2 & 3
- 49. Which of the following is/are acoelomates?
 - 1) Echinodermata 2) Chordata
 - 3) Platyhelminthes 4) Both 1 & 2

- 50. Which of the following animal is devoid of tissue?
 - 1) Ctenoplana
- 2) Meandrina
- 3) Euspongia
- 4) Taenia
- 51. Triploblastic organization and bilateral symmetry starts from which phylum during evolution
 - 1) Porifera
- 2) Coelenterata
- 3) Platyhelminthes 4) Annelida
- 52. True segmentation or metamerism means
 - 1) Body is externally and internally divided into segments
 - 2) Each segment of body has serial repetition of at least some organs
 - 3) Both 1 & 2
 - 4) Alternation of generation in cnidarians
- 53. When mesoderm is present as scattered pouches in between the ectoderm and endoderm such a body cavity is called
 - 1) Schizo coelom
- 2) Entero coelom
- 3) Pseudo coelom
- 4) A coelom
- 54. Recognize the figure and find out the correct matching:

- 1) a-sexually, b-asexually
- 2) a-asexually, b-sexually
- 3) a-asexually, b-parthenogenetically
- 4) a-sexually, b-parthenogenetically
- 55. Comb plates are found in
 - 1) Pleurobrachia
- 2) Physalia
- 3) Obelia
- 4) Sycon
- 56. Which of the following is a living fossil?

- 1) Laccifer
- 2) Loligo
- 3) Limulus
- 4) Lancelet
- 57. Besides the mammals, viviparity is also found in members of
 - 1) Chandrichthyes
- 2) Osteichthyes
- 3) Amphibians
- 4) Aves
- 58. Match the column-I and II and choose the correct combination from the options given

Column-I

Column-II

- I. Gorgonia
- a. Brain coral
- II. Adamsia
- b. Jelly fish
- III. Meandrina
- c. Portuguese-man-of-war
- IV. Physalia
- d. Sea Anemone
- V. Pennatula
- e. Sea fan
- VI. Aurelia
- f. Sea-pen
- 1) I-f, II-d, III-a, IV-c, V-e, VI-b
- 2) I-e, II-d, III-a, IV-c, V-f, VI-b
- 3) I-e, II-d, III-a, IV-f, V-c, VI-b
- 4) I-a, II-b, III-c, IV-d, V-e, VI-f
- 59. Correct flow of water current in sponges is
 - 1) Ostia Osculum spongocoel outside
 - 2) Osculum spongocoel Ostia outside
 - 3) Ostia spongocoel Osculum outside
 - 4) Osculum Ostia spongocoel outside
- 60. If '1' represents the extracullular digestion, '2' represents the intracellular digestion and '3' represents both type, then for coelentrata, ctenophora, and porifera select the correct option
 - 1) 1, 2, 3 respectively 2) 3, 3, 2 respectively
 - 3) 3, 2, 1 respectively 4) 3, 2, 2 respectively
- 61. Read the following statements, find the incorrect statements.
 - A. Polyp is sessile and cylindrical form like Adamsia

- B. Medusa is umbrella shaped and free-living like Aurelia
- C. Polyp produce medusa sexually and medusae form the polyp asexually (ex: obelia)
- D. Metagenesis is seen in Hydra
- 1) A,D
- 2) A,C
- 3) B,C
- 4) C,D
- 62. Read the following statements carefully,
 - A. Hooks & suckers are present in parasitic forms
 - B. Some of them absorb nutrients from the host directly through their body surface.
 - C. Fertilisation is internal and development is through many larval stages.

Here we are talking about:

- 1) Platyhelminthes
- 2) Aschelminthes
- 3) Annelida
- 4) Molluscs
- Select the incorrect statement about the 63. phylum aschelminthes.
 - 1) Alimentary canal is complete with well developed muscular pharynx
 - Sexes 2) are separate (dioecious)
 - 3) Often females are longer than males
 - 4) Fertilization is external
- 64 Which of the following is not correctly matched?
 - 1) Gregarious pest Locust
 - 2) Living fossil Limulus
 - 3) Economically important insects Apis, Bombyx
 - 4) Vectors anopheles, culex and Lac insect
- 65. Which is associated with pearl formation?
 - 1) Pinctada
- 2) Corallium rubrum
- 3) Aplysia
- 4) Dentalium
- 66. Excretory organs of arthropods are

- 1) Malphigian tubules
- 2) Coxal glands
- 3) Green glands
- 4) All
- 67. In Echinoderms the excretory system is
 - 1) Proboscis gland
- 2) Renette gland
- 3) Antennary gland 4) Absent
- 68. In chondrichthyes, claspers are seen on
 - 1) Pelvic fins of male
 - 2) Pelvic fins of female
 - 3) Pectoral fins of female
 - 4) Pectoral fins of female
- Find out the poikilotherm with 4 chambered 69. heart in the following:
 - 1) Psittacula
- 2) Hemidactylus
- 3) Pteropus
- 4) Crocodilus
- 70. Which of the following is not a Homeotherm?
 - 1) Aptenodytes
- 2) Testudo
- 3) Delphinus
- 4) Neophron
- Match the columns I and II, and choose the correct combination from the options given.

Column-I

Column-II

- I. Cyclostomes
- p. Hemichordata
- II. Aves
- q. Urochordata
- III. Tunicates
- r. Agnatha
- IV. Balanoglossis

- s. Pisces
- V. Osteichthyes
- t. Tetrapoda
- 1) I-p, II-q, III-r, IV-s, V-p
- 2) I-q, II-r, III-s, IV-p, V-t
- 3) I-r, II-p, III-t, IV-q, V-s
- 4) I-r, II-t, III-q, IV-p, V-s
- Identify the aquatic mammals from following 72.
 - i) Balaenoptera
- ii) Equs
- iii) Delphinus
- iv) Pteropus v) Felis
- 1) i and iii only
- 2) v only

- 3) ii and iv only 4) iv and v only
- 73. Ascidia belongs to the phylum
 - 1) Hemichordata 2) Urochordata
 - 3) Cephalochordata 4) Chordata
- 74. Lancelet is the member of
 - 1) Hemichordata
- 2) Urochordata
- 3) cephalochordata
- 4) Cyclostomata
- 75. Match the following:

Column-I

Column-II

- I. Equs
- p. Moist skin (without scales)
- II. Hyla
- q. fore limbs absent
- III. Columba
- r. Poisonous nature
- IV. Bangarus
- s. Mammary glands present
- 1) I-s, II-p, III-q, IV-r
- 2) I-s, II-p, III-r, IV-q
- 3) I-q, II-p, III-s, IV-r
- 4) I-p, II-q, III-r, IV-s
- 76. Which of the following type of epithelium is find in P.C.T of nephron?
 - 1) Simple squamous epithelium
 - 2) Simple cuboidal epithelium
 - 3) simple columnar epithelium
 - 4) stratified columnar epithelium
- 77. Match the columns I and II and choose the correct combination from the options given

Column-I

Column-II

- a. Adhering junctions
- 1. Help to stop substances from leaking across a tissue
- b. Gap junctions
- 2. Perform cementing to keep neighbouring cells together
- c. Tight junctions
- 3. Facilitate the cells to communicate with each other.

- 1) a-3, b-2, c-1
- 2) a-2, b-3, c-1
- 3) a-2, b-1, c-3
- 4) a-1, b-3, c-2
- 78. Which of the following connective tissue has fibre free matrix?
 - 1) Blood
- 2) Bone
- 3) Cartilage
- 4) Areolar connective tissue
- 79. Which of the connective tissue often serves as
 - a support framework for epithelium?
 - 1) Areolar tissue
 - 2) Adipose tissue
 - 3) dense regular connective tissue
 - 4) Dense irregular connective tissue
- 80. The excess of nutrients which are not used immediately are converted into fats and stored in
 - 1) Areolar tissue
 - 2) Adipose tissue
 - 3) dense regular connective tissue
 - 4) Dense irregular connective tissue
- 81. Which of the following connective tissue contains fibroblasts, macrophages and mast cells?
 - 1) Aereolar tissue
 - 2) Adipose tissue
 - 3) dense regular connective tissue
 - 4) Dense irregular connective tissue
- 82. Which of the following tissue exerts the greatest control over the body's responsiveness to changing conditions?
 - 1) Epithelial tissue
- 2) Connective tissue

than

- 3) Muscular tissue
- 4) Neural tissue
- 83. Neuroglial cells makeup more
 - 1) One-third the volume of neural tissue in our
 - body and form and protect the neurons

- 2) One-half the volume of neural tissue in our body
- 3) One-half the volume of muscular tissue in our body
- 4) One-third the volume of neural tissue in our body and protect and support neurons
- 84. Statement-I: Bone is a specialized connective tissue having hard and pliable matrix.

Statement-II: Bone is the main tissue that provides structural frame to the body

- 1) Both statements I & II are correct
- 2) Statement I is correct, but statement II is incorrect
- 3) Statement I is incorrect, but statement II is correct
- 4) Both statements I & II are incorrect
- 85. Ligament connects
 - 1) Muscle to skin 2) Bone to bone
 - 3) Muscle to muscle 4) Muscle to bone
- 86. The type of muscular tissue finds in wall of internal organs such as the blood vessels, stomach etc
 - 1) Skeletal muscle 2) Smooth muscle
 - 3) Cardiac muscle 4) All
- 87. Outer covering of cartilage is called
 - 1) Peri chondrium 2) Peri osteum
 - 3) Endosteum 4) Peritoneum
- 88. Which of the following type of cell junction is not found in Animal tissues?
 - 1) Adhering junctions
 - 2) Tight junctions
 - 3) Gap junctions
 - 4) Plasmodesmata
- 89. In camel, the hump is mainly made up of this tissue

- 1) Aereolar
- 2) Adipose
- 3) Muscular
- 4) Skeleton
- 90. Which of the following tissues perform special function of linking and supporting other tissues organs of the body?
 - 1) Epithelial tissue
- 2) Connective tissue
- 3) Muscular tissue
- 4) Neural tissue
- 91. If displacement of a particle is zero, the distance covered
 - 1) must be zero
 - 2) may or may not be zero
 - 3) cannot be zero
 - 4) depends upon the zero
- 92. The numerical value of the ratio of displacement to distance is:
 - 1) always less than one
 - 2) always equal to one
 - 3) always more than one
 - 4) equal to or less than one
- 93. A body covers first one-third of the distance with a velocity 20ms⁻¹, the second one-third with a velocity of 30ms⁻¹ and last one-third with a velocity of 40ms⁻¹. The average velocity is nearly:
 - 1) 28 m/s
- 2) 38 m/s
- 3) 18 m/s
- 4) 8 m/s
- 94. A particle experiences constant acceleration for 20 seconds after starting from rest. If it travels a distance s₁ in the first 10 seconds and distance s₂ in the next 10 seconds then
 - 1) $S_2 = S_1$
- 2) $S_2 = 2S_1$
- 3) $S_2 = 3S_1$
- 4) $S_2 = 4S_1$
- 95. An engine of a train moving with uniform acceleration passes an electric pole with velocity u and the last compartment with

velocity v. The middle point of the train passes past the same pole with a velocity of

- 1) $\frac{u+v}{2}$
- 2) $\frac{u^2 + v^2}{2}$
- 3) $\sqrt{\frac{u^2+v^2}{2}}$ 4) $\sqrt{\frac{u^2-v^2}{2}}$
- A bullet fired into a fixed target loses half of 96. its velocity in penetrating 15cm. The further distance it will penetrate before coming to rest is
 - 1) 5cm
- 2) 15cm
- 3) 7.5cm
- 4) 10cm
- 97. A particle moves along a straight line such that its displacement at any time t is given by: S = t^3 - $6t^2$ + 3t + 4 metres. The velocity when the acceleration is zero is:
 - 1) 3 ms⁻¹
- $2) 12 \text{ ms}^{-1}$
- 3) 42 ms⁻¹
- $4) 9 \text{ ms}^{-1}$
- If displacement travelled by a body in n^{th} sec 98. is $S_n = 2 + 0$. 4n, then its initial velocity and acceleration respectively are
 - 1) 2units, 0.4 units
 - 2) 0.4 units, 2units
 - 3) 2.2 units, 0.4 units
 - 4) 1 unit, 2 units
- 99. A ball is dropped from the top of a tower 100m high. Simultaneously another ball is thrown upward from the bottom of the tower with a speed of 50ms⁻¹. The time after which they cross each other is
 - 1) 1s
- 2) 2s
- 3) 3s
- 4)4s
- 100. A body travels 200cm in the first two seconds and 220cm in the next 4sec with deceleration.

The velocity of the body at the end of the 7th second is:

- 1) 5cm/s
- 2) 10cm/s
- 3) 15 cm/s
- 4) 20 cm/s
- 101. The ratio of times taken by freely falling body to cover first metre, second metre... is

 - 1) $\sqrt{1}:\sqrt{2}:\sqrt{3}$ 2) $\sqrt{1}:\sqrt{2}-\sqrt{1}:\sqrt{3}-\sqrt{2}$
 - 3) $\sqrt{2} \cdot \sqrt{4} \cdot \sqrt{8}$ 4) 2·3·4
- 102. A car accelerates from rest at a constant rate α for some time, after which it decelerates at a constant rate β and comes to rest. If the total time elapsed is t, the maximum velocity acquired by the car will be:
 - 1) $\frac{\alpha^2 \beta^2}{\alpha \beta} t$ 2) $\frac{\alpha^2 + \beta^2}{\alpha \beta} t$
- - 3) $\frac{\alpha + \beta}{\alpha \beta} t$ 4) $\frac{\alpha \beta}{\alpha + \beta} t$
- 103. One body is dropped while a second body is thrown downwards with an initial velocity of 2m/s simultaneously. The separation between them is 18 metres after a time:
 - 1) 9s
- 2)4.5s
- 3) 18s
- 4)9.8s
- 104. If the velocity of a particle is given by: $V = \sqrt{(180 - 16x)}m/s$ then its acceleration will be:
 - 1) Zero
- 2) 8 m/s^2
- $3) 8 \text{ m/s}^2$
- 4) 4 m/s^2
- 105. Two trains, each 50 m long, are travelling in opposite directions with velocity 10 m/s and 15 m/s. The time of crossing is:
 - 1) 2s
- 2) 4s
- 3) $2\sqrt{3}s$
- 4) $4\sqrt{3}$ s

- 106. A body is dropped from a height 39.2 m. After it crosses half distance, the acceleration due to gravity ceases to act. The body will hit the ground with velocity:
 - 1) 19.6 m/s
- 2) 20 m/s
- 3) 1.96 m/s
- 4) 196 m/s
- 107. A stone is thrown vertically upward with an initial velocity u from the top of a tower, reaches the ground with a velocity 3u. The height of the tower is:
 - $1) \frac{3u^2}{g}$
- $2) \frac{4u^2}{g}$
- $3) \frac{6u^2}{g}$
- $4) \frac{9u^2}{g}$
- 108. A bus starts moving with acceleration 2ms⁻². A cyclist 96m behind the bus starts simultaneously towards the bus at 20 m/s. The minimum time after which he will be able to overtake the bus is
 - 1) 4s
- 2) 8s
- 3) 11s
- 4) 16s
- 109. A body is thrown vertically up with a velocity u. It passes three points A, B and C in its upward journey with velocities $\frac{u}{2}$, $\frac{u}{3}$ and $\frac{u}{4}$ respectively. The ratio of the separations between points A and B and between B and C, i.e., AB/BC is:
 - 1) 1
- 2) 2
- 3) 10/7
- 4) 20/7
- 110. A stone falls freely from rest from a height h and it travels a distance 9h/25 in the last second. The value of h is:
 - 1) 145 m
- 2) 100 m
- 3) 122.5 m
- 4) 200 m
- 111. Velocity-time curve for a body, projected vertically upwards, is:

- 1) Parabola
- 2) Ellipse
- 3) Hyperbola
- 4) Straight line
- 112. The displacement time graphs of two moving particles make angles of 30° and 45° respectively with x-axis. The ratio of the two velocities is

- 1)2:1
- 2) 1:1
- 3) 1:2
- 4) 1: $\sqrt{3}$
- 113. The horizontal component of the weight of a body of mass 'm' is
 - 1) mg
- 2)mg/2
- 3) Zero
- 4) Infinity
- 114. Subtraction of vectors obeys
 - 1) commutative law
 - 2) associative law
 - 3) distributive law
 - 4) All the above
- 115. The minimum number of unequal forces in a plane that can keep a particle in equilibrium is
 - 1)4
- 2) 2
- 3)3
- 4)6
- 116. To go from town A to town B a plane must fly about 1780 km at an angle of 30° west of north. How far west of A is B?
 - 1) 1542km
- 2) 1452km
- 3) 1254 km
- 4) 890 km
- 17. A room has dimensions 3m x 4m x 5m. A fly starting at one corner ends up at the diametrically opposite corner. The magnitude of the displacement of the fly is
 - 1) 12m
- 2) 60m
- 3) 2 $\sqrt{5}$ m
- 4) $5\sqrt{2}$ m

- 118. The unit vector parallel to the resultant of the vectors $\vec{A} = 4\hat{i} + 3\hat{j} + 6\hat{k}$ and $\vec{B} = -\hat{i} + 3\hat{j} - 8\hat{k}$ is
 - 1) $\frac{1}{7} (3\hat{i} + 6\hat{j} 2\hat{k})$ 2) $\frac{1}{7} (3\hat{i} + 6\hat{j} + 2\hat{k})$
 - 3) $\frac{1}{49} \left(3\hat{i} + 6\hat{j} 2\hat{k} \right)$ 4) $\frac{1}{49} \left(3\hat{i} 6\hat{j} + 2\hat{k} \right)$
- 119. Twelve forces each of 5 N act on a body simultaneously. If each force makes an angle of 30° with other their resultant is
 - 1) 5 N
- 2)60N
- 3) 5 N
- 4) Zero
- 120. The resultant of two forces, one double the other in magnitude is perpendicular to the smaller of the two forces. The angle between the two forces is
 - 1) 150°
- 2) 90°
- 3) 60°
- 4) 120°
- 121. A 10 kg wt is suspended as shown below then tension T₁ & T₂ are

- 1) 20 kg wt, 20 kg wt 2) $\frac{20}{\sqrt{3}} kgwt$, $\frac{20}{\sqrt{3}} kgwt$
- 3) $\frac{20}{\sqrt{3}} kgwt$, $\frac{10}{\sqrt{3}} kgwt$ 4) $\frac{20}{\sqrt{3}} kgwt$, $10\sqrt{3} kgwt$
- 122. If 'P' is in equilibrium then, T_1/T_2 is

- 1) $\sqrt{3}$
- 2) 2

- 3) $1/\sqrt{3}$
- 4) 1/2
- 123. The position vector of a particle is given by $\vec{r} = 3t^2\hat{i} + 4t^2\hat{j} + 7\hat{k}m$ at a given time 't'. The net displacement of the particle after 10s is
 - 1) 500 m
- 2) 400m
- 3) 300 m
- 4) 700 m
- 124. A ship 'A' steams down to North at 16kmph, and ship 'B' due west at 12kmph. Relative velocity of B with respect to A is
 - 1) 10kmph
- 2) 25kmph
- 3) 6kmph
- 4) 20kmph
- 125. If $\vec{A} = 2\hat{i} 3\hat{j} + 4\hat{k}$, its component in xy plane
 - 1)4
- 2) $\sqrt{13}$
- 3) $\sqrt{29}$
- 4) 1
- The resultant of two forces at right angles is 13N. The minimum resultant of the two forces is 7N. The forces are
 - 1) 20N, 6N
- 2) 10N, 20N
- 3) 5N, 12N
- 4) 8N, 15N
- 127. If a vector \overrightarrow{A} makes angles 45° and 60° with x and y axes respectively then the angle made by it with z-axis is
 - 1) 30°
- $2)60^{\circ}$
- 3) 90°
- 4) 120°
- 128. A car is moving 40m due east, turns towards north moves 30m, then turns 45° east of north moves $20\sqrt{2}$ m. The net displacement of car is (East is taken positive x-axis, North as positive y-axis)
 - 1) $50 \hat{i} + 60 \hat{j}$ 2) $60\hat{i} + 50 \hat{j}$
- - 3) $30\hat{i} + 40\hat{j}$ 4) $40\hat{i} + 30\hat{j}$

- 129. A 10 kg body is suspended by a rope is pulled by means of a horizontal force to make 60° by rope to vertical. The horizontal force is
 - 1) 10 kgwt
- 2) 30 kgwt
- 3) $10\sqrt{3}$ kgwt
- 4) $30\sqrt{3}$ kgwt
- 130. A particle is moving eastwards with a velocity of 5m/s. In 10s the velocity changes to 5m/s northwards. Find the average acceleration in this time.
 - 1) $\frac{1}{\sqrt{2}}m/s^2NE$ 2) $\sqrt{2}m/s^2NE$
 - 3) $\frac{1}{\sqrt{2}} m / s^2 NW$ 4) $\sqrt{2} m / s^2 NW$
- 131. If $\vec{A} = 3\hat{i} + 4\hat{j}$ and $\vec{B} = 7\hat{i} + 24\hat{j}$, a vector having the same magnitude as \vec{B} and parallel to \vec{A} is

 - 1) $3\hat{i} 4\hat{j}$ 2) $-20\hat{i} + 15\hat{j}$
 - 3) $20\hat{i} + 15\hat{i}$ 4) $15\hat{i} + 20\hat{i}$
- 132. A vector of magnitude 2 units makes an angle 45° with x-axis and 60° with y-axis. Find the vector
 - 1) $\hat{i} + \sqrt{2}\hat{j} + \hat{k}$ 2) $\sqrt{2}\hat{i} \hat{j} + \hat{k}$

 - 3) $\sqrt{2}\hat{i} + \hat{j} + \hat{k}$ 4) $\sqrt{2}\hat{i} + \sqrt{2}\hat{j} + \hat{k}$
- 133. Find the resultant of the vectors shown in figure,

- 1) 12cm at 37° with x-axis
- 2) 10cm at 45° with x-axis
- 3) $7\sqrt{2}$ cm at 45° with x-axis

- 4) 7cm at 45° with x-axis
- Choose the correct statement
 - 1) Scalar + vector = scalar/vector
 - 2) Vector/Vector = scalar
 - 3) Scalar/Vector = Scalar (or) Vector
 - 4) Vector Vector = Vector
- 135. If A and B persons are moving with velocities V_A and V_B in opposite directions. Magnitude of relative velocity of B with respect to A is x and magnitude of relative velocity of A with respect to B is y. Then
 - 1) x > y
- 2) x = y
- 3) x = 2y
- 4) 2x = y
- 136. The highest value of e/m of anode rays has been observed when the discharge tube is filled with:
 - 1) Nitrogen
- 2) Oxygen
- 3) Hydrogen
- 4) Helium
- 137. Which of the following pairs represents isobars?

 - 1) ${}_{3}^{2}He$ and ${}_{2}^{4}He$ 2) ${}_{12}^{24}Mg$ and ${}_{12}^{25}Mg$
 - 3) $_{19}^{40}K$ and $_{20}^{40}Ca$ 4) $_{19}^{40}K$ and $_{19}^{39}K$
- 138. Sodium atoms sodium ions:
 - 1) Are chemically similar
 - 2) Both react vigorously with water
 - 3) Have same number of electrons
 - 4) Have same number of protons
- 139. The wave number which corresponds to electromagnetic radiations of 600 nm is equal to:

 - 1) $1.6 \times 10^4 \text{ cm}^{-1}$ 2) $0.16 \times 10^4 \text{ cm}^{-1}$

 - 3) $16 \times 10^4 \text{ cm}^{-1}$ 4) $160 \times 10^4 \text{ cm}^{-1}$
- 140. The ratio of radii 2nd, 4th and 6th orbits of hydrogen atom is
 - 1) 2:4:6
- 2) 1 : 4 : 9
- 3) 1:4:6
- 4) 1:2:3

141.	A gas absorbs a photon of wavelength 355 nm and emits two wavelengths. If one of the		147.	In Bohr's model,	if the atomic radius of the
				first orbit r ₁ , then radius of fourth orbit will be	
	emission is at 680 nm, the other is at:			1) 4r ₁	2) 6r
	1) 518 nm	2) 1035 nm		3) 16r ₁	4) r ₁ /16
	3) 325 nm	4) 743 nm	148.	The energy of an	electron of 2p _y orbital is:
142.	E = -34.84 Kcal/mol, to which value does 'n' correspond?			1) Greater than $2p$,
				2) Less than $2p_z$ or	
				3) Equal to 2s orbit	tal
	1) 4	2) 3		, <u>-</u>	$2p_x$ and $2p_z$ orbitals
	3) 2	4) 1	140		
143. ′	The De-Broglie wavelength of an electron in the first orbit of He ⁺ ion is (z=2)		149.	The electronic configuration of an atom / ion can be defined by which of the following?	
				•	•
	1) 3.33Å	2) 1.65 Å		Aufbau principle Pauli's avaluaise	
	0	0		2) Pauli's exclusion	
	3) 2.15 A 4) 1.25 A 44. The spectral lines corresponding to the radiation				naximum multiplicity
144.				4) All of the above	
	emitted by an electron jumping 6 th , 5 th and		150.		lowing ion has maximum
	orbits to second orbi	_		number of unpaired	
	1) Lyman series	2) Balmer series		1) Cr ⁺³	2) Ni ⁺²
. 45	3) Paschen series 4) Pfund series			3) Mn ⁺²	4) Zn ⁺²
145	45. In a multi-electron atom, which of the following			Krypton (At. No	o. 36) has the electron
		orbitals described by the three quantum		configuration [Ar]	$4s^2 3d^{10} 4p^6$. The 37th
	numbers will have the same energy in the absence of magnetic and electric fields?			electron will go	into which one of the
				following sub-leve	ls?
		ii) n =1, 1 =0, m=0 iii) n =2, 1 =1, m=1 iv) n =3, 1 =2, m=1		1) 4f	2) 4d
				3) 3p	4) 5s
	v) n =3, 1 =2, m=0		152.	Which of the fol	lowing has highest orbital
	1) (i) and (ii)	2) (ii) and (iii)		angular momentum?	
1.4.6	3) (iii) and (iv)	4) (iv) and (v)		1) 4s	2) 4p
146.	Any p-orbital ca	n accommodate up to:		3) 4d	4) 4f
	1) 4 electrons 2) 2 electrons with parallel spins 3) 6 electrons		153.	The number of waves made by a Bohr electron	
				in an orbit of maximum magnetic quantum	
				number +2 is:	
	4) 2 electrons with (opposite spins		1) 3	2) 4
				3) 2	4) 1

- 154. The difference in angular momentum associated with the electron in the two successive orbits of hydrogen atom is:
 - 1) h/π
- 2) $h/2\pi$
- 3) h/2
- 4) (n-1) $h/2\pi$
- 155. Photoelectric effect can be explained by assuming that light:
 - 1) Is a form of transverse waves
 - 2) Is a form of longitudinal waves
 - 3) Can be polarized
 - 4) Consists of quanta
- 156. The energy of an electron in the first Bohr orbit of H-atom is -13.6 eV. The possible energy value(s) of the excited state(s) for electrons in Bohr orbits of hydrogen is /are:
 - 1) -3.4 eV
- 2) -4.2 eV
- 3) -6.8 eV
- 4) + 6.8 eV
- 157. Ground state electronic configuration of nitrogen atom can be represented by:

- 1) 1 only
- 2) 1,2 only
- 3) 1, 4 only
- 4) 2,3 only
- 158. The electronic configuration of an element is $1s^2 2s^2 2p^6, 3s^2 3p^6 3d^5, 4s^1$. This represents:
 - 1) Excited state
- 2) Ground state
- 3) Cationic state
- d) Anionic state
- 159. The orbital angular momentum of an electron in 2s-orbital is:
 - $1) + \frac{1}{2} \frac{h}{2\pi}$
- 2) Zero
- $3) \frac{h}{2\pi}$
- 4) $\sqrt{2} \frac{h}{2\pi}$

- 160. The number of d-electrons in Ni (At. No.=28) is equal to that of the
 - 1) s and p electrons in F
 - 2) p-electrons in Ar (At. No. =18)
 - 3) d-electrons in Ni^{2+}
 - 4) Total number of electrons in N (At.No.=7)
- 161. The number of radial nodes of 3s- and 2porbitals are respectively:
 - 1) 2, 0
- 2) 0, 2
- 3) 1, 2
- 4) 2, 1
- 162. In ground state, the radius of hydrogen atom is 0.53 \dot{A} . The radius of Li^{2+} ion (z=3) in the same state is:
 - 1) $0.17 \ \dot{A}$
- 2) 1.06 \dot{A}
- 3) $0.53 \dot{A}$
- 4) $0.265 \dot{A}$
- 163. How many d-electrons in Cu^+ (At No. =29) can have the spin quantum number $(-\frac{1}{2})$?
 - 1) 3
- 2) 7
- 3) 5
- 4) 9
- 164. The ionization enthalpy of hydrogen atom is 1.312 x 10⁶ J mol⁻¹. The energy required to excite the electron in the atom from n=1 to n=2 is
 - 1) 9.84 x 10⁵J mol⁻¹
 - 2) 8.51 x 10⁵ J mol⁻¹
 - 3) 6.56 x 10⁵ J mol⁻¹
 - 4) 7.56 x 10⁵ J mol⁻¹
- 165. The wavelengths of electron waves in two orbits is 3 : 5. The ratio of kinetic energy of electrons will be
 - 1) 25:9
- 2) 5:3
- 3) 9:25
- 4) 3:5
- 166. Mendeleeff corrected the atomic mass of:
 - 1) Be
- 2) In

- 3) Au
- 4) All of these
- 167. Eka-aluminium and Eka-silicon are known as:
 - 1) Gallium and germanium
 - 2) Aluminium and Silicon
 - 3) Iron and Sulphur
 - 4) Proton and silicon
- 168. According to Moseley, a straight line graph is obtained on plotting:
 - 1) v vs. Z
- 2) v² vs. Z
- 3) \sqrt{v} vs. Z 4) $\frac{1}{v} vs. Z$
- 169. The maximum number of valence electrons possible for atoms in the second period of the periodic table is
 - 1) 18
- 2) 10

- 3)8
- 4) 2
- 170. Which group contains maximum number of elements?
 - 1)3
- 2) 5
- 3)9
- 4) 18
- 171. Maximum number of electrons in the outermost shell of s, p, d and f-block elements are
 - 1) 2, 6, 10, 14
- 2)2, 8, 10, 2
- 3) 2, 8, 18, 32
- 4) 2, 8, 2, 2
- 172. In the 6th period of periodic table 14 elements are placed in the group-3 of the period. These are known as:
 - 1) Alkali metals
 - 2) Alkaline earth metals
 - 3) Rare gases
 - 4) Rare earths
- 173. Which of the following pairs has both members from the same period of the periodic table?
 - 1) Na Ca
- 2) Na Cl
- 3) Ca Cl
- 4) Cl Br

- 174. Which pair of atomic numbers represents s-block elements?
 - 1) 7, 15
- 2) 6, 12
- 3) 9, 17
- 4) 3, 12
- 175. In the long form of periodic table the nonmetals are placed under:
 - 1) s-block
- 2) p-block
- 3) s & p-block
- 4) d-block
- 176. The element having 18 electrons in its outermost shell is:
 - 1) ₂₈ Ni
- 2) $_{46}Pd$
- 3) $_{29}Cu$
- 4) None
- 177. In the transition elements, the incoming electron occupies (n -1)d sublevel preference to:
 - 1) np
- 2) ns
- 3) (n-1)d
- 4) (n + 1)s
- Most of the man-made or 178. transuranic (artificially prepared) elements occur:
 - 1) In the actinoid series
 - 2) In the lanthanoid series
 - 3) Among the metalloids
 - 4) Among the non-metals
- 179. The outer electronic structure of lawrencium (atomic number 103) is:
 - 1) $\text{Rn } 5f^{13} 7s^27p^2$
 - 2) Rn 5f¹³6d¹7s¹7p²
 - 3) Rn 5f¹⁴7s¹7p²
- 4) Rn 5f¹⁴6d¹7s²
- 180. The element with quantum numbers for last e n = 2, l = 1, m = 1, s = -1/2 may have the following position in the periodic table:

 - 1) Period-II, p-block 2) Period-II, s-block
 - 3) Period-III, p-block 4) Period-III, s-block