# Eff-UNet: A Novel Architecture for Semantic Segmentation in Unstructured Environment



**Assignment 2 Presentation** 

Alireza Imani M.Sc. Student in Electrical and Computer Engineering Schulich School of Engineering

2021-10-21

### **Semantic Segmentation**





Karunakaran, D. (2018). Semantic segmentation — Udaity's self-driving car engineer nanodegree [Image]. Retrieved 20 October 2021, from https://medium.com/intro-to-artificial-intelligence/semantic-segmentation-udaitys-self-driving-carengineer-nanodegree-c01eb6eaf9d.

 The process of assigning pre-defined label or class to each pixel of an image which is also known as pixel level classification.

# Semantic scene segmentation of unstructured driving environment





- Ambiguous road boundaries
- Unmarked or incompletely delineated lanes
- Wear and tear of road infrastructure
- High within class diversity
- Less adherence to traffic rules, etc.

#### **Dataset: IDD Lite**



- A subsampled version of India Driving Dataset (IDD) for resource constrained training like lack of memory resources and high-end GPU.
- Similar label statistics as IDD and less number of labels
- Less than 50MB in size
- Resolution of 320×227
- 7 classes: Drivable, Non-drivable, Living things, Vehicles, Road-Side Objects, Far objects and Sky.



# **Challenges**



- Ambiguous road boundaries that have muddy terrain, which is also drivable
- The diversity of vehicles and pedestrians and their locations on images
- No strict adherence to traffic rules
- Lightening condition
  - Mid-day
  - Dawn
  - Dusk

#### **Encoder-Decoder Architecture**





- A CNN which extracts the features from original image by progressively down-sampling it.
  - ResNet
  - MobileNet
  - InceptionResNetV2



 A set of layers that up-samples the feature map of encoder to recover spatial information

#### **EfficientNet**



- CNN architectures development depends on the available resources
- Scaling occurs to achieve improved performance
- Traditional Practice: Increasing the CNN width, depth or the input image resolution arbitrarily
- EfficientNet: A Novel compound scaling method which uniformly scales the network depth, width and resolution for improved performance with a fixed set of scaling

#### **EfficientNet Cont.**



- EfficientNetB0 to EfficientNetB7
- Basic building block: Mobile Inverted Bottleneck Convolution (MBConv)



Architecture of EfficientNetB7 with MBConv as basic building blocks
MBConv6 uses RELU6 activation function
MBConv uses RELU activation function
8.4× smaller and 6.1× faster than the best existing CNN

#### **UNet Decoder**



- A symmetric U shaped fully convolutional neural network originally developed for biomedical image segmentation
- Has two paths:
  - Contraction path (encoder): a stack of convolution, activation and pooling layers to capture the context in the input image.
  - Expansion path (decoder): combines the high-level features and spatial information by a sequence of up-convolutions and concatenation with corresponding feature maps from the contracting path.
- Eff-UNet: EfficientNet as an **encoder** in contracting path instead of conventional set of convolution layers.











- Tensorflow 2.0
- Resized images to 320×224 (originally 320x227)
- Batch size of 4 10 epochs
- The pre-trained weights of EfficientNetB7 on ImageNet are used for initialization in encoder (Transfer learning!)
- Augmented the dataset with various transformations like brightness, contrast, saturation, shear, etc.
- Using ADAM optimizer with a learning rate of 0.0001
- (Jaccard + binary cross-entropy) is used as loss function

#### Results



• Evaluated in terms of mean Intersection over Union (mIoU) also called as Jaccard index:

• 
$$IoU = \frac{TP}{TP + FP + FN}$$

| Network Architecture                | etwork Architecture Validation mIoU |        | Test mIoU |
|-------------------------------------|-------------------------------------|--------|-----------|
| Dilated ResNet18 [33]               |                                     | 0.5503 | -         |
| ERFNet [19]                         |                                     | 0.6614 | -         |
| DeepLabV3+ with ResNet18 Encoder    |                                     | 0.6304 | 0.5614    |
| DeepLabV3+ with ResNet50 Encoder    |                                     | 0.6425 | 0.5733    |
| UNet with ResNet34 Encoder          |                                     | 0.6781 | 0.6009    |
| UNet with ResNet50 Encoder          |                                     | 0.6859 | 0.6076    |
| UNet with InceptionResNetV2 Encoder |                                     | 0.7247 | 0.6175    |
| UNet with EfficientNetB5 Encoder    |                                     | 0.7072 | 0.6087    |
| UNet with EfficientNetB7 Encoder    |                                     | 0.7376 | 0.6276    |

Decoders



Baseline Performance





- First Col: Original Photo
- Second Col: Ground truth
- Third Col: Predicted segmentation map





## Thank you for your attention!

All the contents and uncited raw images are referenced to the presented paper.

Alireza Imani alireza.imani@ucalgary.ca