Project 2

By: Farris, Hassan, Zain H., Zain M.

Objective

- Build an autonomous robot that performs the 4 tasks.
 - a. Manual control of the robot,
 - b. autonomous navigation,
 - c. autonomous navigation with obstacle avoidance, and
 - d. autonomous navigation of a square.

Problem Definition

Product Charatestic	Functional Requirement	Constraints	Performance Metric
Cost Effective	Must use readily available items	\$15 budget	$P = \frac{15 - cost}{15} * 100\%$
Quick/Responsive	Must use a actuator	Have least amount of travel time	$P = \frac{1}{\# of \ actuators} * 100\%$
Reliability	Must have repeatable path	Complete all tasks effectively	$P = \frac{\# tasks completed - \# failed}{4} * 100$
User Friendly	Must be easy to assembly	Number of Parts is Less than 15	$P = \frac{10 - \#Parts used}{10} * 100\%$
Resourceful	Must be able to do obstacle detection and navigation	Use ELEGOO kit & pre-owned for electronic parts	$P = \frac{i_{total} - i_{bought}}{i_{total}} * 100$
	Must be able to manual control	Only use household items for mechanical system	
	Must be able to autonomous square path	Three-week timeline	

Mind Map

Black Box Diagrams

Task 1

Task 4

Task 3

List of Materials

Items	Cost	
Arduino Uno	\$0 (Arduino Kit)	
H Bridge (L298N)	\$0 (Arduino Kit)	
Gear Motor and Wheels (2x)	\$0 (Arduino Kit)	
Rotary Encoder	\$0 (pre-owned)	
HC-05 Bluetooth Module	\$0 (pre-owned)	
18650 Li-on Battery (2x)	\$0 (borrowed from SLC department)	
18650 Battery Holder	\$0 (Arduino Kit)	
Jumper wire	\$0 (Arduino Kit)	
Foamboard	\$0 (home stationary)	
Simscape and MATLAB software	\$0 (software)	
SolidWorks	\$0 (software)	
Arduino	\$0 (software)	

Prototype

CAD Model Assembled

Components

KiCAD Model

Simulation Software

Block Diagram

Simulated Tasks 1/2

https://shorturl.at/kxLV8

Simulated Task 3

https://shorturl.at/pqQ12

Simulated Task 4

https://shorturl.at/jorO8

Distance:

- Length of Robot
 - L ≈ 24 cm
- Path =6(24 cm)=104 cm

Team Repository

Team Github repository: https://github.com/farrismh/Project-2---Autonomous-Robot-Car/

- Bluetooth Module
- Mobile Application:
 - RC Bluetooth interfacing application.

- Ultrasonic Sensor
- Servo Motor
- Encoder

- Ultrasonic Sensor
- Encoder
 - Distance travelled is 6L

Demo

Task 1: https://shorturl.at/itF16

Task 2: https://shorturl.at/dehO4

Task 3: https://shorturl.at/nxFL0

Task 4: https://shorturl.at/cptCU

Recommendations

- Battery Mitigation / Power Management
- Articulated Actuation Using 3D Printed Parts