Part 4

Ports

I/O Subsystem

- One purpose of OS is to hide peculiarities of hardware devices from the user
- □ I/O subsystem responsible for
 - Memory management of I/O including buffering (storing data temporarily while it is being transferred), caching (storing parts of data in faster storage for performance), spooling (the overlapping of output of one job with input of other jobs)
 - General device-driver interface
 - Drivers for specific hardware devices

Protection and Security

- Protection any mechanism for controlling access of processes or users to resources defined by the OS
- □ Security defense of the system against internal and external attacks
 - Huge range, including denial-of-service, worms, viruses, identity theft, theft of service
- Systems generally first distinguish among users, to determine who can do what
 - User identities (user IDs, security IDs) include name and associated number, one per user
 - User ID then associated with all files, processes of that user to determine access control
 - Group identifier (group ID) allows set of users to be defined and controls managed, then also associated with each process, file
 - Privilege escalation allows user to change to effective ID with more rights

Virtualization

- ☐ Allows operating systems to run applications within other OSes
 - Vast and growing industry
- Emulation used when source CPU type different from target type (i.e. PowerPC to Intel x86)
 - Generally slowest method
 - When computer language not compiled to native code Interpretation
- Virtualization OS natively compiled for CPU, running guest
 OSes also natively compiled
 - Consider VMware running WinXP guests, each running applications, all on native WinXP host OS
 - VMM (virtual machine Manager) provides virtualization services

Virtualization (cont.)

- Use cases involve laptops and desktops running multiple OSes for exploration or compatibility
 - Apple laptop running Mac OS X host, Windows as a guest
 - Developing apps for multiple OSes without having multiple systems
 - QA testing applications without having multiple systems
 - Executing and managing compute environments within data centers
- □ VMM can run natively, in which case they are also the host
 - There is no general purpose host then (VMware ESX and Citrix XenServer)

Computing Environments - Virtualization

Containers let you freeze and restart an exact copy of a system that you plan to deploy, including the operating system and configuration files. This makes debugging easy and testing a snap, and it even changes the way that deploys and rollbacks happen in IT operations.

Container packages are not only complete, but they are also small and efficient enough to download and run in seconds. Cluster managers provide the load balancing and scale to ensure uptime even during a rollout.

Docker

☐ The first and still most popular container technology, Docker's open-source containerization engine works with most of the products that follow, as well as many open-source tools.

Kubernetes

While there is no standard for cluster management, the Kubernetes open-source cluster manager, originally developed by Google, is far and away the most popular. Supported by Amazon's AWS, Google's Cloud Engine (GCE) and Microsoft's Azure Container service, Kubernetes is relatively portable, which helps prevent vendor lock-in.

Distributed Systems

- Distributed computing
 - Collection of separate, possibly heterogeneous, systems networked together
 - Network is a communications path, TCP/IP most common
 - Local Area Network (LAN)
 - Wide Area Network (WAN)
 - Metropolitan Area Network (MAN)
 - Personal Area Network (PAN)
 - Network Operating System provides features between systems across network
 - Communication scheme allows systems to exchange messages
 - Illusion of a single system

OSI Model

The OSI Model

□ All People Seem To Need Data Processing

OSI Model

Layer Data Application Network Process to Application Data Presentation
Data Representation
and Encryption Data Session Data Interhost Communication Transport
End-to-End Connections
and Reliability Segments Network
Path Determination
and IP (Logical Addressing) **Packets** Data Link MAC and LLC Frames (Phyiscal addressing) Physical Media, Signal, and Binary Transmission Bits

Group	#	Layer Name	Common Protocols and Technologies	Common Network Components Associated with this Layer
Upper Layers	7	Application	DNS, NFS, DHCP, SNMP, FTP, TFTP, SMTP, POP3, IMAP, HTTP, Telnet	Network aware applications, Email, Web Browsers and Servers, File Transfer, Name Resolution
	6	Presentation	SSL, Shells and Redirectors, MIME	
	5	Session	NetBIOS, Application Program Interfaces, Remote Procedure Calls	
Lower Layers	4	Transport	TCP and UDP	Video and Voice streaming mechanisms firewall filtering lists
	3	Network	IPv4, IPv6, IP NAT	IP Addressing, Routing
	2	Data Link	Ethernet Family, WLAN, Wi-Fi, ATM, PPP	Network Interface cards and Drivers, Network Switching, WAN connectivity
	1	Physical	Electrical Signaling, Light Wave Patterns, Radio Wave Patterns	Physical Medium (copper twisted pair, fiber optic cable, wireless transmitters), Hubs and Repeaters

Application Layer

Example of Application layer protocol: **HTTP**

Request

content

Web browser Collect and display content **APIs** Return content in required format HTTP

Application layer

Presentation Layer

■ Example protocol: Secure Sockets Layer (SSL)

Session Layer

- Establishing and keeping alive communications link
- Keeping communications secure
- □ Synchronizing dialogue between two nodes
- Identify session participants

Transport Layer

TCP

- Accept data from Session layer
- Manage end-to-end data delivery
- Handle flow control
- Examples
 - Checksum
 - Segmentation
 - MTU (maximum transmission unit)

Network Layer

- Routers /Switches

Data Link Layer

Two Data Link layer sublayers

- 1. LLC (Logical Link Control) sublayer (Error checking methods: CRC (cyclic redundancy check)
- 2. MAC (Media Access Control) sublayer : NIC

Physical Layer

Copper transmission medium

Signals issued as voltage

- Fiber-optic cable transmission medium
- Wireless transmission medium

Signals issued as electromagnetic waves

Signals issued as light pulses

Functions of the OSI layers

OSI model layer	Function		
Application (Layer 7)	Provides interface between software applications and a network for interpreting applications' requests and requirements		
Presentation (Layer 6)	Allows hosts and applications to use a common language; performs data formatting, encryption, and compression		
Session (Layer 5)	Establishes, maintains, and terminates user connections		
Transport (Layer 4)	Ensures accurate delivery of data through flow control, segmentation and reassembly, error correction, and acknowledgment		
Network (Layer 3)	Establishes network connections; translates network addresses into their physical counterparts and determines routing		
Data Link (Layer 2)	Packages data in frames appropriate to network transmission method		
Physical (Layer 1)	Manages signaling to and from physical network connections		