Dynamic Games

February 2, 2022

 Dynamic (extensive form) games can be represented using game trees

- Dynamic (extensive form) games can be represented using game trees
- How do we look for a Nash Equilibrium of this game?

- Dynamic (extensive form) games can be represented using game trees
- How do we look for a Nash Equilibrium of this game?
- First, turn it into a normal form game:

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

IMPORTANT: A pure strategy is a complete contingent plan

► Two pure-strategy Nash equilibria (blue)

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

- Two pure-strategy Nash equilibria (blue)
- What's the problem with the (Not Enter, Fight) equilibrium?

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

- Two pure-strategy Nash equilibria (blue)
- What's the problem with the (Not Enter, Fight) equilibrium?
- It involves a threat that is **not credible**
- ▶ If entrant opts out, incumbent does not need to make a decision. But if he *did* have to make one, he would never choose Fight

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

As game theorists, we want to rule out the equilibrium that uses a non-credible threat

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

- As game theorists, we want to rule out the equilibrium that uses a non-credible threat
- This motivates the idea of subgame perfection

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

- As game theorists, we want to rule out the equilibrium that uses a non-credible threat
- This motivates the idea of subgame perfection
- A Nash Equilibrium is subgame perfect if it induces a Nash equilibrium for any subgame
- In a complete information game, a subgame is a game beginning at any non-terminal node

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

In our example, the game has two subgames:

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

- In our example, the game has two subgames:
- ► The game beginning at the initial node (EFG is always a subgame of itself)

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

- In our example, the game has two subgames:
- ► The game beginning at the initial node (EFG is always a subgame of itself)
- ► The game beginning at the incumbent's decision node

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

- (In, Accomodate) induces a Nash Equilibrium for both subgames
- ► (Out, Fight) does not
- ► Therefore, (Out, Fight) is not **subgame perfect**
- We succeeded in introducing an equilibrium concept that rules out non-credible threats being played

	Accomodate	Fight
Enter	2, 1	-3, -1
Not enter	0, 2	0, 2

Backward induction

The **backward induction** procedure can be used to find the subgame perfect Nash equilibrium:

- 1. Look at immediate predecessors of the final nodes.
- 2. Each such node has a player controlling it. Choose the action that gives him the largest payoff (break ties arbitrarily).
- Replace the node with a final node having utility for each player equal to the utility induced by the action chosen in Step 2.
- 4. Repeated the procedure in steps 1-3 in the new game until only one node is left.

Empirical evidence?

► Not great (see Goeree and Holt (2001), experiments on ultimatum games)

Evidence of people learning backward induction

Gneezy, Rustichini, and Vostroknutov (2010):

Fig. 1. Average error per round, G(15, 3).

Repeated games

- ► A repeated game consists of a stage game played many times by the same players
- ► The stage game is a normal form game (e.g., prisoner's dilemma)
- Can be finitely or infinitely repeated
- ► The main message of the theory of repeated games is that repetition can be used to help players sustain more cooperation
- But there are some caveats...

Finitely repeated games

- Unraveling in stage games with unique NE
 - ► If a game has a unique NE, the only SPNE is for that NE to be played every period (just apply backward induction!)
 - I.e., repetition does not add anything
 - E.g., prisoner's dilemma
- In practice, though, subjects cooperate in finitely repeated PD
 - Embrey, M., Fréchette, G. R., & Yuksel, S. (2018). Cooperation in the finitely repeated prisoner's dilemma. The Quarterly Journal of Economics, 133(1), 509-551.
- ► If the stage game has **multiple** NE, different equilibria can be used to provide dynamic incentives

Example

		Player 2 b_1 b_2 b_3		
	a_1	10, 10	2, 12	0, 13
Player 1	a_2	12, 2	5, 5	0, 0
	a_3	13, 0	0, 0	1, 1

Example

		b_1	Player 2	b_3
	a_1	10, 10	2, 12	0, 13
Player 1	a_2	12, 2	5, 5	0, 0
	a_3	13, 0	0, 0	1, 1

- ► This shows that outcomes that are non-Nash in one-shot games can be played in SPNE of the finitely repeated game
- ► HW: Find all pure strategy subgame perfect Nash Equilibria in this game

Infinitely Repeated Games

Classic example: infinitely repeated PD

	С	D	
С	2, 2	0, 3	
D	3, 0	1, 1	

- Assume discount factor $\delta \in (0,1)$
- Consider grim trigger strategy:
 - Play C in period 1
 - In period t > 1, play C as long as (C,C) was played in period t 1. Otherwise, play D forever
- \blacktriangleright Expected payoff $2/(1-\delta)$ converges to the fully cooperative payoff as $\delta \to 1$
- lacktriangle See class notes for why GT is a SPNE for high enough δ

