Patent number:

JP6163958

Publication date:

Inventor:

1994-06-10

TAKENOUCHI AKEMI; HOSOKAWA MAKOTO; ARAI

YASUYUKI; NAKAJIMA SETSUO SEMICONDUCTOR ENERGY LAB

Applicant: Classification:

- international:

H01L31/04

- european:

H01L23/498J; H01L31/0392B; H01L31/075

Application number: JP19920072491 19920221 Priority number(s): JP19920072491 19920221

Report a data error here

Also published as:

関 US5427961 (A1)

Abstract of JP6163958

PURPOSE:To obtain the manufacturing method of a semiconductor device wherein oligomers which inevitably precipitate on the substrate surface when a semiconductor device is formed on an organic resin film substrate are not generated. CONSTITUTION: The surface of an organic resin film substrate 10 is previously coated with acrylic resin 11. Thereby generation of precipitate which has been inevitably generated during the conventional manufacturing process of a semiconductor device is prevented, and the quality and the productivity of a semiconductor device are improved.

BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平6-163958

(43)公開日 平成6年(1994)6月10日

(51) Int. Cl. s

識別記号

FΙ

H01L 31/04

7376-4M

H01L 31/04

M

審査請求 有 請求項の数6 (全5頁)

(21)出願番号

特願平4-72491

(22)出願日

平成4年(1992)2月21日

(71)出願人 000153878

株式会社半導体エネルギー研究所

神奈川県厚木市長谷398番地

(72)発明者 竹之内 朱美

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

(72)発明者 細川 誠

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

(72)発明者 荒井 康行

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

最終頁に続く

(54) 【発明の名称】半導体装置およびその作製方法

(57)【要約】

(修正有)

【目的】 有機樹脂フィルム基板上に半導体装置を形成 しようとする際に、基板表面に不可避に析出してしまう オリゴマーが発生しないような、半導体装置の作製方法 を提供する。

【構成】 有機樹脂フィルム基板10表面に予めアクリル樹脂11を塗布することにより、半導体装置作製工程に中に不可避に発生しまっていた析出物の発生を防止し、それにより半導体装置の性能を向上して、生産性を高める。

(2)

40

特開平6-163958

2

【特許請求の範囲】

【請求項1】 有機樹脂フィルム基板を用いた半導体装置であって、前記有機樹脂フィルム基板表面にアクリル 樹脂が塗布されていることを特徴とする半導体装置。

1

【請求項2】 請求項1において、有機樹脂フィルム基板としてポリエチレンテレフタレートを主成分とする材料を用いることを特徴とする半導体装置。

【請求項3】 有機樹脂フィルム基板を用いた半導体装置の作製方法であって、前記有機樹脂フィルム基板上に半導体装置を作製する工程に先立って、前記有機樹脂フ 10 ィルム基板の表面にアクリル樹脂を塗布する工程を有することを特徴とする半導体装置作製方法。

【請求項4】 請求項3において、有機樹脂フィルム基板としてポリエチレンテレフタレートを主成分とする材料を用いることを特徴とする半導体装置作製方法。

【請求項5】 透光性を有する絶縁性基板と、該絶縁性 基板上に設けられたアクリル樹脂の層と、該アクリル樹 脂の層上に設けられた第1の電極と、該第1の電極上に 設けられた光電変換層と、該光電変換層上に設けられた 第2の電極とを有する半導体装置であって、

前記絶縁性基板としてポリエチレンテレフタレートを主 成分とする有機樹脂フィルムを用いることを特徴とする 半導体装置。

【請求項6】 請求項5において、光電変換層として基板側からPIN型と構成されたアモルファスシリコン半導体を用いたことを特徴とする半導体装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、フレキシブル性(柔軟性)を有する基板である有機樹脂フィルム基板を用いた 30半導体装置に関するものである。

[0002]

【従来の技術】従来、フレキシブル性を有する有機樹脂 フィルム(プラスチックフィルムともいう)を基板とし て使用した薄膜太陽電池が知られている。

【0003】上記フレキシブル性を有した基板を用いた 薄膜太陽電池は、ガラス基板等のハード基板(硬い基 板)を用いた薄膜太陽電池に対して、使用用途が広く、 取り扱いやすいという特徴を有する。

【0004】上記フレキシブル性を有した基板としては、ポリイミド、通称PETフィルムと呼ばれるポリエチレンテレフタレートのフィルム等が知られている。PETフィルムは、汎用のため安くて入手しやすく、線膨張係数が約3×10°/℃と他の有機樹脂フィルムに比較して比較的小さいという特徴を有している。また、透明であるので、ガラス基板を用いる場合と同様に、基板側から光入射をさせる形式の薄膜太陽を構成できるという特徴を有している。

【0005】PETフィルムを基板として用いた薄膜太 陽電池を作製する方法としては、ガラス基板を用いる場 50

合と同様に、アモルファスシリコン半導体(一般に a - Siと記載される)を気相化学反応法で成膜させる方法が知られている。また、PETフィルムに限らず有機樹脂フィルムは、耐熱性が乏しいので、成膜に際して基板が高温にならないようにすることが重要である。

[0006]

【従来技術の問題点】上記のごとく、耐熱性の問題から PETフィルムに代表される有機樹脂フィルムを基板と して薄膜太陽電池を作製しようとする場合、基板温度が 10 高くならないようにしていた。しかし、例えば基板とし てPETフィルムを用い、このPETフィルム上に透明 導電膜であるITOを、基板加熱無しの成膜条件でスパッタ法によって成膜した場合、基板の加熱を行わないの にもかかわらず、フィルム基板表面がスパッタ粒子にい ってたたかれ発熱してしまう。この結果、PETフィル ム中からPETフィルム中の未反応原料、充填材、紫外 線吸収剤等がオリゴマーとして析出し、フィルム表面に 凹凸を形成してしまっていた。オリゴマーとは、低い 自度の重合体をさすものであり、この場合はPETフィ ルムを構成するポリエチレンテレフタレートよりも融点 あるは軟化点が低いという性質を有する。

【0007】また、光電変換層を構成するアモルファスシリコン半導体をプラズマCVD法によって成膜する際に、基板を加熱するので、上記のITOを成膜する際に析出したオリゴマーがこの加熱よって多少成長し、結果としてフィルム上の凹凸が1μm程度の大きさになってしまっていた。

【0008】周知のように、光電変換層を構成するアモルファスシリコン半導体層(一般にPIN型と構成される)の厚さは $0.2 \sim 1 \mu m$ 程度であるので、アモルファスシリコン半導体層はオリゴマーの発生による凹凸の影響を大きく受けてしまう。この結果、光電変換層の厚さが一定でなくなり光電変換効率が大きく低下してしまっていた。

【0009】このオリゴマーの析出によって、薄膜太陽電池の構成がどの様な影響を受けるかについて、その一例を図2を用いて説明する。なお、図2はSEM写真並びにSIMS(2次イオン質量分析法)による分析に基づいて作製した模式図面である。

【0010】図2において、20が有機樹脂フィルム基板であるPETフィルム(厚さ100 μ m)であり、21がオリゴマー(直径1 μ m程度の球形形状を有している)であり、22がITO電極(厚さ4000Å)であり、23が基板側からPIN型と構成されたアモルファスシリコンよりなる光電変換層(厚さ4500Å)であり、24がアルミにより構成された裏面電極(厚さ300Å)である。図2をみると明らかなように、直径が1 μ mにも達するオリゴマーの存在によって、一対の電極並びに光電変換層が大きく圧迫される。その結果、光電変換層23の厚さは一定せず、光電変換効率の低下を

きたしてしまう。また、基板上に設けられている第1の 電極を突き抜けてオリゴマーは析出成長するので、多数 のオリゴマーの存在によって第1の導電膜の抵抗が高く なってしまうという問題も生じる。さらに、集積化構成 をとる場合に必要な電極間の接続や分断のための構成が 困難になるという問題も生じてしまう。

【0011】以上のように透明導電膜の成膜時に析出し、アモルファスシリコンの成膜時に成長するオリゴマーのために、完成された薄膜太陽電池の特性は、ガラス基板上に設けられた光電変換装置に比較して低いものと 10なってしまっていた。

【0012】一方、一般に有機樹脂基板上にアモルファスシリコン薄膜をプラズマCVD法によって成膜しようとする際には、その成膜温度が問題となる。 ガラス基板上にアモルファスシリコンをプラズマCVD法によって成膜しようとする場合には、100~300度程度の基板温度が最適であることが知られている。このことから類推して、PETフィルム上においても100度以上の温度でアモルファスシリコンを成膜することがよいと考えられるが、成膜温度が高いとPETフィルムの熱膨 20 張が問題となる。

【0013】このPETフィルムの熱膨張の問題というのは、基板が熱膨張してしまうことによって、基板からアモルファスシリコンが剥がれたり、アモルファスシリコンにクラックが発生したりする問題である。なお、この基板熱膨張の問題は、PETフィルムに限った問題ではなく、有機樹脂フィルムを基板として半導体装置を作製しようとする際に生じる共通の問題である。このことは、前述したようにPETフィルムが有機樹脂フィルムの中では比較的小さい熱膨張係数を有することを考えて30も明らかである。

【0014】また、前述の透明導電膜の成膜時において 析出したオリゴマーがアモルファスシリコンの成膜時に おける加熱によって成長するので、何らかの方法で基板 の熱膨張の問題を解決したとしても、成長するオリゴマ ーの問題を解決する必要があった。

【0015】以上のように、従来PETフィルム上にアモルファスシリコンをプラズマCVD法によって成膜しようとする際には、不可避にPETフィルム中から析出してしまうオリゴマーの成長の問題と、PETフィルム 40の熱膨張の問題があり、この2つの問題の兼ね合いで成膜温度を決定していた。

[0016]

【発明の目的】本発明は、有機樹脂フィルム基板上に半 導体装置を形成しようとする際に、基板表面に不可避に 析出してしまうオリゴマーが発生しないような、半導体 装置の構成及びその作製方法を提供することを目的とす る。

[0017]

【課題を解決するための手段】本発明は、有機樹脂フィ 50 する半導体の種類も何ら限定されるものではなく、基板

ルム基板上に形成される半導体装置の作製工程において、有機樹脂フィルム基板表面にアクリル樹脂を塗布することによって、有機樹脂フィルム基板からの析出物であるオリゴマーが発生しないようにしたことを特徴とするものである。本発明は、PETフィム上にアクリル酸エステルを主成分とするアクリル樹脂を塗布し、このPETフィルムを基板として光電変換装置を作製すると、従来と同じ工程を施してもオリゴマーが発生しなかったという実験事実に基づくものである。

【0018】本発明の有機樹脂フィルムとして、PET (ポリエチレンテレフタレート)以外に、PES(ポリ エーテルサルフォン)、PSF(ポリスルフォン)等を 用いることができる。

【0019】しかしながら、PETがもっともガラス転移温度が低く、熱によってオリゴマーが発生しやすいので、本発明の効果が顕著に現れるのは、PETフィルムを基板として用いた場合である。

【0020】アクリル樹脂としては、プラスチックの耐磨耗性、耐薬品性、耐汚染性を高めるためのハードコート材を用いることができる。

[0021]

【作用】有機樹脂基板上にアクリル樹脂を塗布することによって、スパッタ時における有機樹脂フィルムからのオリゴマーの析出をほとんど抑えることができる。

[0022]

【実施例】以下、本発明の構成を利用した実施例を示し、本発明の構成を実施例に則して説明する。

【0023】本実施例は、基板としてポリエチレンテレフタレートを主成分とする有機樹脂フィルムであるPE Tフィルム(厚さ 100μ m)を用い、薄膜太陽電池を構成した例である。PETフィルムとしては、東レT 5 6またはT60を用いた。このPETフィルムは通常〇HPのシートに用いられるものである。PETフィルムとしては、本実施例のものに限らず、必要に応じて選択できることはいうまでもない。また、他の有機樹脂フィルムを用いた場合でも程度の差はあれ、本発明の構成が有効であることはいうまでもない。

【0024】図1に本実施例の薄膜太陽電池の構成を示す。図1において、10は有機樹脂フィルム基板であるPETフィルム(100μm厚)であり、11がアクリル樹脂の層であり、12がITOよりなる透明導電膜であり、13が基板側よりPINと構成されたアモルファスシリコンよりなる光電変換層であり、14がアルミの電極である。本実施例に示す薄膜太陽電池は、基板側から光が入射する形式である。

【0025】図1には、薄膜太陽電池の最小限度の構成しか示されていないが、集積化の方法や光電変換層の構成について、本発明は何ら限定するものでないので、ここにでは詳しく記載しない。よって、光電変換層を構成する半導体の種類も何ら限定されるものではなく、基板

10

特開平6-163958

の耐熱性を考慮して適当なものを選択すればよい。以 下、本実施例の作製工程を示す。まず、基板として用い られる有機樹脂フィルム基板であるPETフィルム (1 00μm厚) 10上にアクリル酸エステルを主成分とす るアクリル樹脂11を 7μ mの厚さにコートした。ここ では、アクリル樹脂として、富士化学産業のアロニック スUV-3700を使用した。このアクリル樹脂は、プ ラスチックの表面保護用に用いられるものである。コー トの方法としては、スピナーにより塗布を行い、UV光 によって硬化を行った。なお、アクリル樹脂の厚さは、 0.05~10μm の厚さの範囲で決めればよいが、あまり薄 いと効果が小さくなってしまう。

【0026】さらに透明導電膜12としてITOを40 00Åの厚さに公知のRFスパッタ法によって成膜を行 った。なお、この際基板の加熱を行わないでスパッタを 行った。この状態でオリゴマーの発生は殆どなく、アク リル樹脂塗布の効果が現れていた。

【0027】さらにこの透明導電膜12上に光電変換層 として基板側(光入射側)よりPINと構成されたアモ ルファスシリコン半導体層を形成した。このアモルファ 20 スシリコン半導体層の形成方法は、周知のプラズマCV D法によって行った。その厚さは、P型半導体層が10 0 Å、 I 型半導体層が4000 Å、 N型半導体層が40 0 Åである。なお、成膜中の基板温度は、基板の耐熱性 を考慮して100度で行ったが、必要に応じて室温~1

80度の範囲で選択することが可能である。

【0028】この光電変換層の構成並びに作製方法は、 本実施例の記載例に限定されることはなく、必要に応じ て可能な構成をとることができることはいうまでもな

【0029】その後、裏面電極14としてアルミを真空 蒸着法によって3000Aの厚さに成膜した。他の裏面 電極の種類としては、アルミの他にAg、Cr、Ni、 Mo、SUS等を用いることができる。

【0030】また、図示されていないが、実際にはさら に樹脂等によって保護膜が形成される。さらに、本実施 例においては触れなかったが、太陽電池システムとして 構成する場合には、複数の光電変換素子(最小単位の太 陽電池)を集積化するのが普通であり、そのための構成 が数々知られているが、本発明の構成には直接関係しな いのでここでは省略する。

【0031】下記表1に、図1に示す本実施例と比較例 との特性を比較した表を示す。この表における比較例 は、本実施例の作製工程において、PETフィルム上に アクリル樹脂を塗布する工程を省くことによって作製し た光電変換装置である。従ってPETフィルム上にアク リル樹脂を塗布されていることを除く他の構成は本実施 例と比較例とは全く同一の構成を有している。

[0032]

【表1】

	Jsc	Voc	FF	EFF
本実施例	12.11	0, 680	0. 449	3. 70
比較例	11. 28	0. 763	0. 513	4. 34

【0033】上記表1を見るとわかるように、本発明の 構成であるアクリル樹脂を塗布したPETフィルムを基 板として用いた光電変換装置は、アクリル樹脂を塗布し ないPETフィルムを基板として用いた光電変換装置 (比較例) に比較して、高い歩留りと変換効率を有して いることがわかる。

【0034】なお、図3において、J., は短絡電流(m **A) であり、V。。は開放電圧(V) であり、FFは曲性因** 子であり、E_{FF}は変換効率である。また、表 1 に示す特 40 性は、AM-1.0 100mW/cm' の測定条件で計測した値の サンプルの平均デーダである。

[0035]

【効果】本発明の構成である有機樹脂基フィルム板上に アクリル樹脂を塗布する構成をとることにより、この有 機樹脂基板を用いた光電変換装置の作製の際に発生する オリゴマーの発生を抑えることができ、光電変換装置の 歩留り並びに変換効率を大きく高めることができた。

【0036】また、本発明の構成をとると、オリゴマー の発生を抑えることができるので、基板の加熱に従うオ 50 12 透明導電膜

リゴマーの発生を考慮する必要がなく、加熱による基板 の熱膨張の問題のみを考えて成膜等の工程をおこなうこ とができるという特徴を得ることができた。

【0037】また、有機樹脂基板上に半導体装置を形成 する際に問題となる要素を一つ排除することができたの で、作製条件(特に成膜温度)の幅を広くとることがで きるようになった。

【0038】本発明の構成が適用される半導体装置とし ては、光電変換装置に限られたものではなく、有機樹脂 基板上に形成される発光素子、スイッチング素子、セン サー等が含まれることはいうまでもない。

【図面の簡単な説明】

【図1】 本発明を利用した実施例の光電変換装置の断 面図を示す。

【図2】 従来の光電変換装置の断面図を示す。 【符号の説明】

10 有機樹脂フィルム基板

11 アクリル樹脂

BEST AVAILABLE COPY

7

13 アモルファスシリコン半導体層

14 裏面電極

20 有機樹脂フィルム基板

21 オリゴマー

(5)

特開平6-163958

8

22 透明導電膜

23 アモルファスシリコン半導体層

24 裏面電極

【図1】

1 2

フロントページの続き

(72)発明者 中嶋 節男

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内