

# Learning Stage 3: Making Better Decisions

- ▶ Chapter 14
  - ▶ Effects of Inflation
- ▶ Chapter 15 \*not covered in this course
  - ▶ Cost Estimation and Indirect Cost Allocation
- ▶ Chapter 16
  - Depreciation Methods
- ▶ Chapter 17
  - ▶ After-Tax Economic Analysis
- ▶ Chapter 18
  - Sensitivity Analysis and Staged Decisions
- ▶ Chapter 19
  - More on Variation and Decision Making under Risk

**Engineering Economics** 



(BT) book 8th edition

#### LEARNING OUTCOMES

- Purpose:
  - ▶ Perform a sensitivity analysis of parameters; use expected values to evaluate staged funding options.
- 1. Explain sensitivity to parameter variation
- 2. Use three estimates for sensitivity analysis
- 3. Calculate expected value E(X)
- 4. Determine E(X) of cash flow series
- 5. Use decision trees for staged decisions

١ 🔻

**Engineering Economics** 

# Parameters and Sensitivity Analysis

- Parameter:
  - ▶ A variable or factor for which an estimated or stated value is necessary.
- Sensitivity analysis
  - An analysis to determine how a measure of worth (e.g., PW, AW, ROR, B/C) changes when one or more parameters vary over a selected range of values.
- Procedure for sensitivity analysis:
  - ▶ Select parameter to analyze. Assume independence with other parameters
  - Select probable range and increment

# Parameters and Sensitivity Analysis

- Procedure for sensitivity analysis (cont'd):
  - ▶ Select measure of worth
  - ▶ Calculate measure of worth values
  - Interpret results. Graph measure vs. parameter for better understanding
- ▶ An Example:
  - Estimates for a new asset are a first cost of \$80,000, zero salvage value, and CFBT<sub>t</sub> = \$27,000 2000t.
    - MARR for the company varies over a wide range from 10% to 25% per year for different types of investments.
    - The economic life of similar machinery varies from 8 to 12 years. Evaluate the sensitivity of PW by varying
      - □ (a) MARR, while assuming a constant n value of 10 years
      - □ (b) n, while MARR is constant at 15% per year.

**Engineering Economics** 





# Three Estimate Sensitivity Analysis

- ▶ Applied when selecting one ME alternative from two or more
- For each parameter that warrants analysis, provide three estimates:
  - ▶ Pessimistic estimate P
  - Most likely estimate ML
  - Optimistic estimate O
- Calculate measure of worth for each alternative and 3 estimates and then select the best alternative

#### Notes

- 1. The pessimistic estimate may be the lowest for some parameters and the highest for others, e.g., low life estimates and high first cost estimates
- When calculating the measure of worth, use ML estimate of a parameter as others varies. This is the independence assumption.

۵

# Example of three estimates sensitivity analysis

An engineer is evaluating 3 alternatives for new equipment as follows.

| Strategy   |     | First Cost, | Salvage Value S, | AOC,<br>\$ per Year | Life n,<br>Years |
|------------|-----|-------------|------------------|---------------------|------------------|
| Alternativ | e A |             |                  |                     |                  |
|            | P   | -20,000     | 0                | -11,000             | 3                |
| Estimates  | ML  | -20,000     | 0                | -9,000              | 5                |
|            | 0   | -20,000     | 0                | -5,000              | 8                |
| Alternativ | e B |             |                  |                     |                  |
|            | P   | -15,000     | 500              | -4,000              | 2                |
| Estimates  | ML  | -15,000     | 1,000            | -3,500              | 4                |
|            | 0   | -15,000     | 2,000            | -2,000              | 7                |
| Alternativ | e C |             |                  |                     |                  |
|            | P   | -30,000     | 3,000            | -8,000              | 3                |
| Estimates  | ML  | -30,000     | 3,000            | -7,000              | 7                |
|            | 0   | -30,000     | 3,000            | -3,500              | 9                |

▶ Perform a sensitivity analysis and determine the most economical alternative, using AW analysis at a MARR of 12% per year.

Engineering Economics

# Example of three estimates sensitivity analysis

- Solution
  - ▶ Calculate AW for each alternative and each estimate then graph it.



# **Expected Value Calculations**

- Expected Value
  - ▶ Long-run average observable if a project or activity is repeated many times
- ▶ Result is a point estimate based on anticipated outcomes and estimated probabilities

$$E(X) = \sum_{i=1}^{m} X_i P(X_i)$$

- Where: X<sub>i</sub> = value of variable X for i = 1, ..., m different values
   P(X<sub>i</sub>) = probability that a specific value of X will occur
- In all probability statements, the sum is:  $\sum_{i=1}^{m} P(X_{i}) = 1.0$

When E(X) < 0, e.g., E(PW) = \$-2550, a cash outflow is expected; the project is not expected to return the MARR used

**Engineering Economics** 

# Example: Probability and Expected Value

- ▶ Monthly M&O cost records over a 4-year period are shown in \$200 ranges.
  - ▶ Determine the expected monthly cost for next year, if conditions remain constant.

| Range,\$, X | Range,\$, X No. of months |           | No. of months |  |
|-------------|---------------------------|-----------|---------------|--|
| 100–300     | 4                         | 700–900   | 6             |  |
| 300–500     | 12                        | 900–1100  | 10            |  |
| 500–700     | 14                        | 1100–1300 | 2             |  |

**Solution:** 

P(X) = number of months/48 months

 $E(X) = 200(4/48) + 400(12/48) + \dots + 1200(2/48)$ 

**Engineering Economics** 

 $= 1/48[200 \times 4 + 400 \times 12 + \dots + 1200 \times 2]$ 

= 1/48[31,200] = \$650/month

ç

# **Expected Value for Alternative Evaluation**

- ▶ Two applications for Expected Value for estimates:
  - 1. Prepare information for use in an economic analysis
  - 2. Evaluate economic viability of fully formulated alternative
- Example: Second use for a complete alternative. Is the investment viable?

$$P = -5000$$
  $n = 3 \text{ years}$   $MARR = 15\%$ 

|      | Economic Condition             |                         |                            |  |  |
|------|--------------------------------|-------------------------|----------------------------|--|--|
|      | Receding<br>(Prob. = 0.4)      | Stable<br>(Prob. = 0.4) | Expanding<br>(Prob. = 0.2) |  |  |
| Year | Annual Cash Flow Estimates, \$ |                         |                            |  |  |
| 0    | -5000                          | -5000                   | -5000                      |  |  |
| 1    | +2500                          | +2500                   | +2000                      |  |  |
| 2    | +2000                          | +2500                   | +3000                      |  |  |
| 3    | +1000                          | +2500                   | +3500                      |  |  |

► 1<sup>™</sup> Engineering Economics

# Example: Expected Value for Alternative Evaluation

|      | <b>Economic Condition</b>      |                         |                            |  |
|------|--------------------------------|-------------------------|----------------------------|--|
| Year | Receding<br>(Prob. = 0.4)      | Stable<br>(Prob. = 0.4) | Expanding<br>(Prob. = 0.2) |  |
|      | Annual Cash Flow Estimates, \$ |                         |                            |  |
| 0    | -5000                          | -5000                   | -5000                      |  |
| 1    | +2500                          | +2500                   | +2000                      |  |
| 2    | +2000                          | +2500                   | +3000                      |  |
| 3    | +1000                          | +2500                   | +3500                      |  |

Solution: Calculate PW value for each economic condition

 $PW_{R} = -5000 + 2500(P/F, 15\%, 1) + 2000(P/F, 15\%, 2) + 1000(P/F, 15\%, 3)$ 

= \$-656 (cash outflow; not viable) PW<sub>S</sub> = \$ + 708 (cash inflow; viable)

 $PW_E = \$ + 1309$  (cash inflow; viable)

Now, calculate expected value of PW estimates

 $E(PW) = PW_R \times P(R) + PW_S \times P(S) + PW_E \times P(E)$ = -656 \times 0.4 + 708 \times 0.4 + 1309 \times 0.2 = \$ + 283

On basis of E(PW) > 0 at 15% over 3 years, investment is viable

Engineering Economics

٨

### **Decision Tree Characteristics**

- Staged Decision
  - ▶ Alternative has multiple stages;
  - decision at one stage is important to next stage;
  - risk is an inherent element of the evaluation
- Decision Tree
  - ▶ Helps to make risk more explicit for staged decisions.



10

Engineering Economics

### **Decision Tree Characteristics**

- ▶ A Decision Tree Includes:
  - More than one stage of selection
  - Selection of an alternative at one stage leads to another stage, e.g., node D
  - ▶ Expected results from a decision at each stage
  - ▶ Probability estimates for each outcome
  - Estimates of economic value (cost or revenue) for each outcome
  - Measure of worth as the selection criterion



### Solving a Decision Tree

- Once the tree is developed, probabilities and economic information are estimated for each outcome branch, and the measure of worth is selected (usually PW),
  - use the following, starting at top right of tree:
- Procedure to solve a decision tree
  - 1. Determine PW for each outcome branch
  - 2. Calculate expected value for each alternative/decision node:  $E(decision) = \sum(outcome\ estimate) \times P(outcome)$
  - 3. At each decision node, select the best E(decision) value
  - 4. Continue moving to left to the tree's root to select the best alternative
  - 5. Trace the best decision path through the tree.

► ۱٧ Engineering Economics





# Summary of Important Points

- Sensitivity analysis
  - evaluates variation in parameters using a specific measure of worth (PW, ROR, B/C, etc.)
- in sensitivity analysis
  - ▶ Independence of parameters is assumed
- If E(PW) < 0,
  - an alternative is not expected to return the stated MARR, given the estimated probabilities
- Decision trees assist in making staged decisions
  - when risk is explicitly considered

Figure Engineering Economics

No. A. Esfahanipour

#### LEARNING OUTCOMES

- Purpose:
  - ▶ Perform a sensitivity analysis of parameters; use expected values to evaluate staged funding options.
- 1. Understand decision making under risk
- Construct probability distributions and cumulative distributions
- 3. Take random sample from a distribution
- 4. Estimate expected value and standard deviation from random sample
- 5. Use Monte Carlo sampling for simulation analysis to evaluate alternatives

71

**Engineering Economics** 

# **Decision Making Classification**

- ▶ Classifications of decision making:
  - certainty, risk, uncertainty
- Certainty
  - ▶ No variation in estimates
    - » also called deterministic; no variation expected in a parameter
    - > all estimates are single-valued
- Risk
  - Two or more values for variables with estimated chances for each
  - can use expected value/ simulation analysis
- Uncertainty
  - ▶ Two or more values for a variable, but chances of occurrence are not known or not estimated
    - > states of nature are identified & approaches are relatively inconclusive

۲.





# Example: Continuous Distribution(1)

- Monthly cash flows were observed over a 3-year period:
  - Low: L = \$20,000

High: H = \$30,000

Most frequent: \$28,000

- ▶ Write and graph probability and cumulative distributions
- **Solution:** 
  - Let  $C_2$  represent monthly cash flow; all amounts in \$1000.
  - Probability follows triangular distribution with
    - mode M (most frequently observed value of  $C_2$ ) and maximum probability at M = \$28.
    - ▶ This is a continuous variable with limits of \$20 and \$30
  - ▶ Probability distribution, probability at mode is

$$P(C_2 = M) = \frac{2}{H - L}$$

• Cumulative distribution, cumulative probability at mode is

$$P(C_2 \le M) = \mathbf{F}(\mathbf{M}) = (M - L)/(H - L)$$

10

Engineering Economics

# Example: Continuous Distribution (2)

• Probability at mode M = \$28 is:

$$P(C_2 = 28) = f(28) = 2/(30 - 20) = 0.2$$

• Cumulative probability at mode M = \$28 is:

$$P(C_2 \le 28) = F(28) = (28 - 20)/(30 - 20) = 0.8$$

The  $f(C_2)$  distribution and  $F(C_2)$  distribution are:



F(C<sub>2</sub>)
1.0 - Mode
0.8
0.6 - 0.4
0.3125
0.2
0 25 28 30
C<sub>2</sub>

11

# Random Sample

- Definition:
  - ▶ Selection in a random fashion of *n* values for a variable from a population with assumed or known probability distribution
- Variable values assumed to have same chance of occurring in sample and population
- ▶ Random numbers (RN) are taken
  - from either discrete or continuous distribution

77

**Engineering Economics** 

### Procedure to develop random sample (discrete or continuous)

- 1. Develop cumulative distribution F(X) from probability distribution
- 2. Assign RN values to F(X) scale in same proportion as probabilities
- 3. Determine scheme for selecting values from RN table for *n* values
- 4. Select the first number from RN table, enter F(X) scale, and record corresponding variable value. Repeat for n values.
- 5. Use *n* sample values for analysis and decision making under risk

**Y** A

numbers

70-99

20-69

00 - 19

### Example: Random Sample, Discrete Variable

▶ Develop a random sample of size n = 15 for the variable N, number of months, as described by the following probability distribution

$$P(N = N_i) = \begin{cases} 0.20 & N_1 = 24 \\ 0.50 & N_2 = 30 \\ 0.30 & N_3 = 36 \end{cases}$$

#### Solution:

This figure shows the cumulative probability distribution F(N<sub>i</sub>) with 20 numbers assigned to N<sub>1</sub> (i.e., 00-19), 20-69 to  $N_2$ , and 70-99 to N<sub>3</sub>

(see next slide)



# Example: Random Sample (1)

- ▶ Select 15 two-digit numbers from random number (RN) table
  - ▶ starting in column 1, row 3 and moving to the right

Random digits clustered into two-digit numbers

```
91 46
                              39 19 28
                                       94 70
        18
            19
               81
                  03 88
                                             76 33 15
                                                      64
                                                          20
                                                             14
73 48 28 59 78 38 54 54 93 32 70 60 78 64 92 40 72 71 77
                                                          56 39 27
10 42 18 31 23 80 80 26 74 71 03 90 55 61 61 28 41 49 00 79 96
45 44 79 29 81 58 66 70 24 82 91 94 42 10 61 80 79 30 01 26 31
   65 26 71 44 37 93 94 93 72 84 39 77 01 97 74 17 19 46 61 49 67
   2 14 99 67 74 06 50 97 46 27 88 10 10 70 66 22
```

RN: 10 42 18 31 23 80 80 26 74 71 03 90 55 61 61

N: 24 30 24 30 30 36 36 30 36 36 24 36 30 30 30

# Example: Random Sample (2)

▶ Use the 15 values to develop sample probabilities

| Months,<br>N | Times in sample | Sample probability | Population probability |
|--------------|-----------------|--------------------|------------------------|
| 24           | 3               | 0.20               | 0.20                   |
| 30           | 7               | 0.47               | 0.50                   |
| 36           | 5               | 0.33               | 0.30                   |
|              | 15              |                    |                        |

▶ There is a Good agreement between sample probabilities and *actual* probabilities

Engineering Economics

# Sample Estimate: Expected Value

The expected value E(X) is the long-run expected average if the variable is sampled many, many times

### Expected Value Measure and Estimate

| True Population | True Population | Sample   | Sample   |  |
|-----------------|-----------------|----------|----------|--|
| Measure         | Measure         | Estimate | Estimate |  |
| Symbol          | Name            | Symbol   | Name     |  |

Expected value  $\mu$  or E(X) Mu or true mean  $\overline{X}$  Sample mean

Population:  $\mu$ Probability distribution:  $E(X) = \sum X_i P(X_i)$ 

Sample:  $\overline{X} = \frac{\text{sum of sample values}}{\text{sample size}}$ 

 $= \frac{\sum X_i}{n} = \frac{\sum f_i X_i}{n}$ 

### Sample Estimate: Standard Deviation

The standard deviation s or s(X) is the dispersion/spred of values about the expected value E(X) or the sample average  $\overline{X}$ 

#### Standard Deviation Measure and Estimate

|   | True Population<br>Measure    | True Population<br>Measure       | Sample<br>Estimate | Sample<br>Estimate        |
|---|-------------------------------|----------------------------------|--------------------|---------------------------|
|   | Symbol                        | Name                             | Symbol             | Name                      |
| ı | $\sigma$ or $\sqrt{\sigma^2}$ | Sigma or true standard deviation | s or $\sqrt{s^2}$  | Sample standard deviation |
|   |                               |                                  |                    |                           |

Standard deviation devi Population:  $\sigma^2 = \operatorname{Var}(X)$  and  $\sigma = \sqrt{\sigma^2} = \sqrt{\operatorname{Var}(X)}$ Probability distribution:  $\operatorname{Var}(X) = \sum [X_i - E(X)]^2 P(X_i)$ Sample:  $s^2 = \frac{\operatorname{sum of (sample value - sample average)}^2}{\operatorname{sample size} - 1}$   $= \frac{\sum (X_i - \overline{X})^2}{n - 1}$   $= \sqrt{s^2}$ Engineering Economics

# Fraction of Sample Values Between Two Limits

- Combine expected value and standard deviation to estimate
  - ▶ probability that a variable is between two limits (or is less than or more than a specified value)
- **Example:**

Standard deviation

٣٣

► Find fraction of values (probability) between ±2s of E(Y) if sample statistics are:

$$E(Y) = 19.5 \text{ km}$$
  $s = 0.8 \text{ km}$ 

- Use sample results to determine fraction of sample values between  $E(Y) \pm 2s = 19.5 2(0.8)$  and 19.5 + 2(0.8)
- ▶ The probability statement is:

$$P(\overline{Y} - 2s \le Y \le \overline{Y} + 2s) = P(17.9 \le Y \le 21.1)$$

۳

### Example: Mean and Standard Deviation (1)

- For the following nine air temperature readings, determine
  - (a) the sample mean, (b) the standard deviation, and (c) the percent of values within ±1 standard deviation of the mean:

**81**, 86, 80, 91, 83, 83, 96, 85, 89

- Solution: (a)  $\overline{X} = E(X) = (81 + 86 + ... + 85 + 89)/9$ = 774/9 = 86 (see next slide)
- Note: Spreadsheet functions for average and standard deviation:
  - $\rightarrow$  =AVERAGE(X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub>) or =AVERAGE(cell\_1:cell\_n)
  - $\rightarrow$  =STDEV(X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub>) or =STDEV(cell\_1:cell\_n)

▶ ™ Engineering Economics

### Example: Mean and Standard Deviation (2)

| (b) | Reading | Mean, ₹ | $X_i - \overline{X}$ | $(X_i - \overline{X})^2$ |
|-----|---------|---------|----------------------|--------------------------|
| (0) | 81      | 86      | -5                   | 25                       |
|     | 86      | 86      | 0                    | 0                        |
|     | 80      | 86      | -6                   | 36                       |
|     | 91      | 86      | 5                    | 25                       |
|     | 83      | 86      | -3                   | 9                        |
|     | 83      | 86      | -3                   | 9                        |
|     | 96      | 86      | 10                   | 100                      |
|     | 85      | 86      | 1                    | 1                        |
|     | 89      | 86      | 3                    | 9                        |
|     | 774     | 86      | 0                    | 214                      |

= 5.17

(c) Range for  $\pm 1s = 86 \pm 5.17 = 80.83$  to 91.17 Number of values in range = 7

or % of values in range = 7/9 = 77.8%

Figure Engineering Economics

### Simulation Analysis

- Simulation analysis uses random samples from the probability distribution of selected variables for alternative evaluation using a measure of worth
- Monte Carlo sampling: a commonly used simulation with the steps:
  - 1. Formulate alternatives: Set up alternatives and select measure of worth, such as PW, AW, ROR, or B/C
  - Identify parameters with variation: Select parameters to be treated as random variables; estimate values for other parameters that are 'certain'
  - 3. Determine probability distributions: Determine discrete and continuous variables; describe probability distribution for each variable
  - 4. Conduct random sampling: Use sampling procedure discussed earlier
  - 5. Calculate measure of worth: Obtain *n* values of measure, i.e., PW
  - 6. Conduct measure of worth analysis: Construct probability distribution and calculate sample statistics, e.g., E(PW), s(PW), and E(PW) ± t × s(PW), where t = 1,2,3
  - 7. Draw conclusions: Decide which alternative is to be selected.

FV

**Engineering Economics** 

# Simulation Analysis and Monte Carlo Sampling

- Independent variables
  - Simulation analysis assumes that all parameters and their distributions are independent of each other.
    - This property is applied in step 5 of the Monte Carlo sampling procedure
- Standard distributions
  - Select relatively simple, standard distributions for spreadsheet (or manual) simulation. Set-up uses parameters such as expected value, standard deviation, and range
- Random number functions
  - ► For spreadsheet simulation, use RAND or RANDBETWEEN function to generate random sample
- ▶ Sample Size Select sample size prior to performing simulation.
  - ► Spreadsheet simulations generate larger samples easily, e.g., n = 500 or 1000; manual simulation will have smaller n values.

A Engineering Economics

- ▶ There is an offer the two following systems.
  - As an incentive, the offer includes a guarantee of annual revenue for one of the systems for the first 5 years.
    - ▶ System 1. First cost is P = \$12,000 for a set period of n = 7 years with no salvage value. No guarantee for annual net revenue is offered.
    - ▶ System 2. First cost is P = \$8000, there is no salvage value, and there is a guaranteed annual net revenue of \$1000 for each of the first 5 years, but after this period, there is no guarantee.
  - ▶ The equipment with updates may be useful up to 15 years, but the exact number is not known.
    - Cancellation anytime after the initial 5 years is allowed, with no penalty.

٣9

**Engineering Economics** 

# Example 19.8 of the book

- ▶ For either system, new versions of the equipment will be installed with no added costs.
  - ▶ If the MARR is 15% per year, use PW analysis to determine if neither, one, or both of the systems should be installed.
- Solution
  - ▶ Step 1. Formulation of alternatives.

$$PW_1 = -P_1 + NCF_1(P/A, 15\%, n_1)$$

$$PW_2 = -P_2 + NCF_G(P/A, 15\%, 5) + NCF_2(P/A, 15\%, n_2 - 5)(P/F, 15\%, 5)$$

 $\,\blacktriangleright\,$  Where NCF: net cash flows (revenues), NCF  $_{G}$ : the guaranteed NCF of \$1000 for system 2

٤٠

**Engineering Economics** 

- ▶ Step 2. Parameters with variation
- ▶ System 1
  - Certainty.  $P_1 = $12,000; n_1 = 7 \text{ years.}$
  - Variable. NCF₁ is a continuous variable, uniformly distributed (L = \$-4000 & H = \$6000) per year, because this is considered a high-risk venture.
- ▶ System 2
  - ▶ Certainty.  $P_2$  = \$8000;  $NCF_G$  = \$1000 for first 5 years.
  - Variable. NCF<sub>2</sub>: a discrete variable, uniformly distributed over L = \$1000 to H = \$6000 only in \$1000 increments, that is, \$1000, \$2000, etc.
  - Variable. n<sub>2</sub>: a continuous variable that is uniformly distributed between L = 6 and H = 15 years.
- Updated relations

```
PW_1 = -12,000 + NCF_1(P/A,15\%,7)
= -12,000 + NCF_1(4.1604)
PW_2 = -8000 + 1000(P/A,15\%,5)
+ NCF_2(P/A,15\%,5) + NCF_3(P/A,15\%,5)
```

+ NCF<sub>2</sub>(P/A,15%, $n_2$ -5)(P/F,15%,5) = -4648 + NCF<sub>2</sub>(P/A,15%, $n_2$ -5)(0.4972)

٤١

**Engineering Economics** 

# Example 19.8 of the book

▶ Step 3. Probability distributions for NCF<sub>1</sub>



٤٢

**Engineering Economics** 





▶ Step 4. Random sampling

| NCF <sub>1</sub> |           | NCF <sub>2</sub> |           | n <sub>2</sub>  |             |          |
|------------------|-----------|------------------|-----------|-----------------|-------------|----------|
| RN*              | Value, \$ | RN <sup>†</sup>  | Value, \$ | RN <sup>‡</sup> | Value, Year | Rounded§ |
| 18               | -2200     | 10               | 1000      | 586             | 11.3        | 12       |
| 59               | +2000     | 10               | 1000      | 379             | 9.4         | 10       |
| 31               | -1100     | 77               | 5000      | 740             | 12.7        | 13       |
| 29               | -900      | 42               | 3000      | 967             | 14.4        | 15       |
| 71               | +3100     | 55               | 4000      | 144             | 7.3         | 8        |

<sup>\*</sup>Randomly start with row 1, column 4 in Table 19–2. (Random numbers table in slides 30)

٤٥

**Engineering Economics** 

# Example 19.8 of the book

- ▶ Step 5. Measure of worth calculation
  - ▶ With the five sample values in previous slide Table, calculate the PW values using relation in step 2

```
1. PW_1 = -12,000 + (-2200)(4.1604)
                                             =$-21,153
2. PW_1 = -12,000 + 2000(4.1604)
                                             = \$-3679
3. PW_1 = -12,000 + (-1100)(4.1604)
                                             = \$-16,576
                                            = \$-15,744
4. PW_1 = -12,000 + (-900)(4.1604)
5. PW_1 = -12,000 + 3100(4.1604)
1. PW_2 = -4648 + 1000(P/A, 15\%, 7)(0.4972)
                                            =$-2579
2. PW_2 = -4648 + 1000(P/A, 15\%, 5)(0.4972)
                                            = \$-2981
3. PW_2 = -4648 + 5000(P/A, 15\%, 8)(0.4972)
                                            =$+6507
4. PW_2 = -4648 + 3000(P/A, 15\%, 10)(0.4972) = \$+2838
   PW_2 = -4648 + 4000(P/A, 15\%, 3)(0.4972)
```

Now, 25 more RNs are selected for each variable from the RN Table, and the PW values are calculated

٤٦

**Engineering Economics** 

<sup>†</sup>Start with row 6, column 14.

<sup>‡</sup>Start with row 4, column 6.

<sup>§</sup>The  $n_2$  value is rounded up.



- ▶ Step 6. Measure of worth description
  - PW<sub>1</sub>. Sample values range from \$-24,481 to \$+12,962. The calculated measures of the 30 values are

 $\overline{X}_1 = \$-7729$  $s_1 = \$10,190$ 

PW<sub>2</sub>. Sample values range from \$-3031 to \$+10,324. The sample measures are

 $\overline{X}_2 = \$2724$  $s_2 = \$4336$ 

- ▶ Step 7. Conclusions
  - Additional sample values will surely make the central tendency of the PW distributions more evident and may reduce the s values, which are quite large.
  - ▶ System 1. Do not accept this alternative since the sample indicates a probability of 0.27 (8 out of 30 values) having a positive PW.
  - System 2. Accept this alternative since it has a positive Mean and a probability of 67% (20 of the 30 PW values) having a positive PW.

▶ ₹A Engineering Economics

# **Summary of Important Points**

- ▶ Three classifications of decision making:
  - certainty, under risk, and uncertainty.
  - Virtually all decisions involve risk
- Decision making under risk uses
  - ▶ random variables (discrete or continuous) and their probability distribution
- ▶ Random sampling involves cumulative probability distributions and the use of a random number table or spreadsheet function
- ▶ Expected value E(X) and standard deviations are used routinely in making computations about risk and probability
- ▶ Simulation analysis using Monte Carlo sampling is a powerful technique to account for risk in economic analyses

٤٩