

Skoltech Kantorovich Strikes Back! Wasserstein GANs are not Optimal Transport? (*) 🔨 🗎

Korotin Alexander *,1,2 , Kolesov Alexander *,2 & Burnaev Evgeny 1,2

¹ Skolkovo Institute of Science and Technology , ² Artificial Intelligence Research Institute (AIRI) ,

* Equal contribution

Question: How precisely do WGANs solve the OT problem?

Background on Optimal Transport.

For distributions \mathbb{P},\mathbb{Q} on \mathbb{R}^D the Monge's form of the Wasserstein-1 distance is

$$\mathbb{W}_1(\mathbb{P}, \mathbb{Q}) = \min_{T \sharp \mathbb{P} = \mathbb{Q}} \int ||x - T(x)||_2 d\mathbb{P}(x).$$

The Kantorovich's relaxation is given by

$$\mathbb{W}_{1}(\mathbb{P}, \mathbb{Q}) = \min_{\pi \in \Pi(\mathbb{P}, \mathbb{Q})} \int_{\mathbb{R}^{D} \times \mathbb{R}^{D}} ||x - y||_{2} d\pi(x, y).$$

Figure 1. Monge's and Kantorovich's OT formulations.

Dual formulation of \mathbb{W}_1 .

For distributions \mathbb{P}, \mathbb{Q} , the dual formulation of \mathbb{W}_1 is given by

Conventional (|LS]):

$$W_1(\mathbb{P}, \mathbb{Q}) = \max_{f \oplus g \le ||\cdot||_2} \int f(x) d\mathbb{P}(x) + \int g(y) d\mathbb{Q}(y);$$

c-transform (|MM:B], |MM:Bv2], |MM], |MM:R]):

$$\mathbb{W}_1(\mathbb{P}, \mathbb{Q}) = \max_f \int f(x) d\mathbb{P}(x) + \int \min_{x \in \mathbb{R}^D} \{||x - y||_2 - f(x)\} d\mathbb{Q}(y);$$

1-Lipschitz constraint ([WC], [GP], [LP], [SN], [SO]):

$$\mathbb{W}_1(\mathbb{P}, \mathbb{Q}) = \max_{\|f\|_I \le 1} \int f(x) d\mathbb{P}(x) - \int f(y) d\mathbb{Q}(y).$$

Typically, the dual potential is recovered with neural nets which are trained with SGD.

Optimal Transport in GANs.

Let $\mathbb{P}=\mathbb{P}_{\alpha}$ is a parametric distribution and \mathbb{Q} is the data distribution. Typically, $\mathbb{P}_{\alpha}=\mathbb{P}_{\alpha}$ $G_{\alpha}\sharp\mathbb{S}$ obtained by a generator network G_{α} from a fixed latent \mathbb{S} .

The **loss** function for the generator G_{α} is

$$\mathbb{W}_1(\mathbb{P}_\alpha, \mathbb{Q}) = \int_z f^*(G_\alpha(z)) d\mathbb{S}(z) - \int f^*(y) d\mathbb{Q}(y).$$

The derivative of the loss is

$$\frac{\partial \mathbb{W}_1(\mathbb{P}_\alpha, \mathbb{Q})}{\partial \alpha} = \int_{\gamma} J_\alpha G_\alpha(z)^T \nabla f^*(G_\alpha(z)) d\mathbb{S}(z).$$

Figure 2. The anti-gradient $-\nabla f^*(x)$ shows where to move the mass of each $x = G_{\alpha}(z)$ to make the generated \mathbb{P}_{α} closer to \mathbb{Q} in \mathbb{W}_1 .

Problem: There are no non-trivial pairs \mathbb{P}, \mathbb{Q} with known OT gradient ∇f^* .

Constructing benchmark pairs.

We propose a way to construct pairs of \mathbb{P} , \mathbb{Q} with a known OT map, cost, gradient.

1: Definition

For a 1-Lipschitz function $u: \mathbb{R}^D \to \mathbb{R}$, we say that a transport plan $\pi \in \Pi(\mathbb{P}, \mathbb{Q})$ is uray monotone (decreasing) if u(x) - u(y) = $||x-y||_2$ holds π -almost surely for $x,y \in \mathbb{R}^D$.

2: Proposition

Let $\pi \in \Pi(\mathbb{P}, \mathbb{Q})$ be a u-ray monotone transport plan for a 1-Lipschitz function u. Then it is an optimal plan between \mathbb{P}, \mathbb{Q} .

Figure 3. Truncated transport rays of a random MinFunnel N = 16, D = 2.

Parameterizing 1-Lipschitz functions:

 $u:\mathbb{R}^D\to\mathbb{R}$, we employ the following 1-Lipschitz MinFunnel functions

$$u(x) = \min_{n} \{ ||x - a_n||_2 + b_n \}.$$

Figure 4. The pipeline of constructing of benchmark pairs.

The construction pipeline:

- Pick absolutely continuous distribution \mathbb{P} .
- Take 1-Lipschitz MinFunnel function u(x).
- Find u's transport rays, u-forward map.
- Move samples from \mathbb{P} to \mathbb{Q} by the map.

High-dimensional and images benchmark pairs.

Figure 8. Samples of CIFRA-10 from the pair with Figure 7. Samples of CelebA from the pair with (N,p) = (1,10).

Figure 9. Samples of CelebA from the pair with (N, p) = (16, 100).

Figure 10. Samples of CIFAR-10 from the pair with (N, p) = (16, 100).

(N,p) = (1,10).

Evaluating dual surfaces in 2D.

Figure 11. Surfaces of potentials f_{θ} learned by OT solvers on the pair with D=2, N=4. The ground truth optimal potential is in Figure 4.

Qualitative comparison of dual solvers.

• \mathcal{L}^2 - metric:

$$\mathcal{L}^2(\nabla \hat{f}, \nabla f^*) = ||\nabla \hat{f} - \nabla f^*||_2^2;$$

Cosine similarity:

$$\cos(\nabla \hat{f}, \nabla f^*) = \frac{\langle \nabla \hat{f}, \nabla f^* \rangle}{||\nabla \hat{f}||_2 ||\nabla f^*||_2};$$

• Deviation of $\hat{\mathbb{W}}_1$ from \mathbb{W}_1 :

$$\mathsf{dev} = 100\% \cdot \frac{|\mathbb{W}_1 - \widehat{\mathbb{W}}_1|}{\mathbb{W}_1}.$$

Results.											
	WC]	GP	LP]	SN	SO	LS]	MM:B	MM:Bv2	MM]	MM:R┐	
HD	0.11	<u> </u>	<u> </u>	<u> </u>	'	<u> </u>	<u> </u>	0.45	0.53	0.31	
Img	0.33	0.92	0.92	0.35	_	0.36	0.38	0.09	0.46	0.91	

Table 1. The top row demonstrates cos for dual solvers for pairs with N=256, D=128, while the bottom row shows cos for image pairs N = 16, p = 100

		[GP]				[LS]	[MM:B]	[MM:Bv2]		[MM:R]
HD	≫10	0.89	0.9	1.57	0.77	2.07	1.98	≫10	0.73	1.38
Img	≫10	1.34	1.12	3.32	-	1.87	1.28	≫10	0.16	0.95

Table 2. The top row demonstrates L^2 metric for dual solvers for pairs with N=256, D=128, while the bottom row shows \mathcal{L}^2 metric for image pairs N=16, p=100

	[WC]	[GP]	[LP]	[SN]		[LS]	[MM:B]	[MM:Bv2]	[MM]	[MM:R]
								2.61	0.79	1.02
lmg	≫100	36.16	36.75	13.26	-	5.24	4.21	24.36	≫100	23.46

Table 3. The top row demonstrates dev metric for dual solvers for pairs with N=64, D=128, while the bottom row shows dev for image pairs N = 16, p = 100

Conclusion.

- All the solvers should **not** be considered as **meaningful estimators of** \mathbb{W}_1 .
- The gradient $\nabla \hat{f}$ recovered by some solvers shows **positive** cos with the ground-truth gradient ∇f^* , but mostly they provide **poor** \mathcal{L}^2 metric.

More details and code are represented in GitHub page.

