# Machine Learning Homework5 Report

學號: B02901124 系級: 電機四 姓名: 黃柏翔

1. (1%)請問 softmax 適不適合作為本次作業的 output layer? 寫出你最後選擇的 output layer 並說明理由。

Softmax 在本次作業中不適合作為 output layer。因為 softmax 是要讓所有的 output 的值加起來等於 1,通常是用在只要預測一種類別的 classification,使該 label 的值越趨近 1 而剩下的 label 的值越趨近 0。而在這次的作業中,由於所要預測的為 multi-label,若是選擇 softmax 去作為輸出層,會使得最後分數的值分散掉,很難去設定一個 threshold 判定哪些 label 是對的。

而我所使用的 output layer 是 sigmoid,會個別的將每個 label 的值變到[0,1]之間,不會與其他 label 有關,因此較為合適。

#### 2. (1%)請設計實驗驗證上述推論。

我利用同樣架構的 model ,只代換最後的 output layer,分別為 softmax 級 sigmoid 去作 training,測試出來的結果如下表。

| Activation | Threshold = $0.2$ | Threshold = $0.3$ | Threshold = $0.35$ | Threshold = 0.4 |
|------------|-------------------|-------------------|--------------------|-----------------|
| Softmax    | 0.3768            | 0.3957            | 0.4222             | 0.4453          |
| Sigmoid    | 0.4394            | 0.4688            | 0.4802             | 0.4809          |

由實驗數據可以明顯看出 sigmoid 的效果較 softmax 突出許多。

而丟到 kaggle 上的結果差異更大但在此沒有多作分析。

### 3. (1%)請試著分析 tags 的分布情況(數量)。



| SCIENCE-FICTION       | 959  |
|-----------------------|------|
| SPECULATIVE-FICTION   | 1448 |
| FICTION               | 1672 |
| NOVEL                 | 992  |
| FANTASY               | 773  |
| CHILDREN'S-LITERATURE | 777  |
| HUMOUR                | 18   |
| SATIRE                | 35   |
| HISTORICAL-FICTION    | 137  |
| HISTORY               | 40   |
| MYSTERY               | 642  |
| SUSPENSE              | 318  |
| ADVENTURE-NOVEL       | 109  |
| SPY-FICTION           | 75   |
| AUTOBIOGRAPHY         | 51   |
| HORROR                | 192  |
| THRILLER              | 243  |
| ROMANCE-NOVEL         | 157  |

| COMEDY                            | 59  |
|-----------------------------------|-----|
| NOVELLA                           | 29  |
| WAR-NOVEL                         | 31  |
| DYSTOPIA                          | 30  |
| COMIC-NOVEL                       | 37  |
| DETECTIVE-FICTION                 | 178 |
| HISTORICAL-NOVEL                  | 222 |
| BIOGRAPHY                         | 42  |
| MEMOIR                            | 35  |
| NON-FICTION                       | 102 |
| CRIME-FICTION                     | 368 |
| AUTOBIOGRAPHICAL-NOVEL            | 31  |
| ALTERNATE-HISTORY                 | 72  |
| TECHNO-THRILLER                   | 18  |
| UTOPIAN-AND-DYSTOPIAN-FICTION     | 11  |
| YOUNG-ADULT-LITERATURE            | 288 |
| SHORT-STORY                       | 41  |
| GOTHIC-FICTION                    | 12  |
| APOCALYPTIC-AND-POST-APOCALYPTIC- | 14  |
| FICTION                           |     |
| HIGH-FANTASY                      | 15  |

總共 38 個 tags, 其分布狀況是 fiction 最多, Utopian-And-Post-Apocalyptic-Fiction 是最少的

## 4. (1%)本次作業中使用何種方式得到 word embedding?請簡單描述做法。

讀取 test 與 train data 後利用 keras 的 tokenizer 統計出現過的字並給予 index ,再利用 GloVe pre-train 好,100 維的 word vector 去表示這些單字。換言之就是講每個單字用 一個 100×1 的陣列表示。此過程即為 word embedding。

#### 5. (1%)試比較 bag of word 和 RNN 何者在本次作業中效果較好。

我在本次作業中利用 bag of word 所得到的效果比較好。主要的原因可能是在於這次作業的目的只在餘分類這些字句的段落,可能只需要看到那些單字的出現跟 label 的相關性,並不用去考慮整個文章的意義。又或者太簡單架構的 RNN 並沒有辦法輕易利用字句的意義去判斷文章的分類,但單就比較簡單的架構而言,bag of word 所得到的效果是比 RNN 來的好的。