Problem 1

Consider the Bernoulli regression model,

$$P(y_i = 1) = p_i = \frac{e^{x_i \beta}}{1 + e^{x_i \beta}}, \quad y_i \in \{0, 1\}, \quad i = 1, ..., n,$$

with β a one dimensional unknown parameter. The log-likelihood function is given by

$$L(\beta) = \beta \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} \log (1 + e^{x_i \beta}).$$

(1) (10 pts) By finding $dL/d\beta$ and $d^2L/d\beta^2$, show that the Newton–Raphson algorithm for finding the maximum likelihood estimator $\widehat{\beta}$ is given by

$$\beta^{(t+1)} = \beta^{(t)} + \frac{\sum_{i=1}^{n} x_i (y_i - p_i^{(t)})}{\sum_{i=1}^{n} x_i^2 p_i^{(t)} (1 - p_i^{(t)})},$$

where

$$p_i^{(t)} = \frac{e^{x_i \beta^{(t)}}}{1 + e^{x_i \beta^{(t)}}}.$$

(2) (10 pts) If n = 10 and W is the $n \times n$ diagonal matrix with ith element $\widehat{p}_i(1 - \widehat{p}_i)$, where \widehat{p}_i is p_i estimated at $\widehat{\beta}$, and assuming that approximately

$$\widehat{\beta} = N\left(\beta, (X'WX)^{-1}\right),\,$$

where X is the $n \times 1$ vector of predictor variables $(x_i = i/10)$, find the approximate variance of $\widehat{\beta}$ when its observed value is $\widehat{\beta} = -0.34$.

- (3) (10 pts) What is the value of the test statistic for testing the hypothesis $\beta = 0$.
- (4) (10 pts) What is the outcome of the test if the level of significance is chosen to be 0.1.
- (5) (10 pts) Write down an expresson for the deviance of the model and what is the approximate distribution of it if the model is correct.

Problem 2

The Bernoulli regression model, as given in Problem 1, is analyzed using a Bayesian approach and the prior for β , i.e. $\pi(\beta)$, is chosen to be normal with mean 0 and variance σ^2 .

(1) (10 pts) Write down the posterior density (proportional to) for β in terms of the (x_i, y_i) .

- (2) (10 pts) A way to sample from a density directly is available if the logarithm of the density is concave. Show that the log of the posterior density is concave.
- (3) (10 pts) If the prior is taken to be improper, i.e. $\pi(\beta) = 1$, what is the relationship between the mode of the posterior and the MLE estimator.
- (4) (10 pts) With this improper prior, the posterior is sampled using a Metropolis algorithm with proposal density $N(\beta^* \mid \beta_0, v^2)$, where β_0 is the current value of β in the chain. If β^* has been sampled from the proposal, what is the probability that $\beta_1 = \beta^*$; i.e. accept β^* as the next value of the chain.
- (5) (10 pts) Explain the problem with running a chain with v too small and v too big.