INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 5.18-5.19] MORE INTEGRALS – FURTHER SUBSTITUTION

Compiled by Christos Nikolaidis

MORE INTEGRALS

O. Practice questions

[Maximum mark: 10] [without GDC]
 Use the differentiation and integration formulas [from the formula booklet!] to find

Integral	Result
$\int 5^x dx$	$\frac{S^{\times}}{l_{N}S}+C$
$\int (x^3 + 3^x) dx$	$\frac{\chi^3 + 3^{\times}}{(\chi (\chi^3 + 3^{\times}))} + C$
$\int \sec^2 x dx$	Sec2× Insecx+C
$\int (\tan^2 x + 1) dx$	$\frac{\tan^2x+1}{(\ln(\tan^2x+1)}+C$
$\int \frac{5}{\cos^2 x} dx = \int \int \frac{1}{1-\sinh^2 x} dx$	$5 \operatorname{arcton}\left(\frac{-\sin x}{1}\right) + C$
$\int \csc^2 x dx \int \frac{1}{1-c x^2} dx$	$(votan(\frac{-cosk}{l})+($
$\int (\cot^2 x + 1) dx \int \frac{1}{+\alpha h^2 \times} dx$	
$\int \frac{5}{\sin^2 x} dx \int \int \frac{1}{1 - \cos^2 x} dx$	
$\int \sec x \tan x dx$	
$\int \csc x \cot x dx$	

2. [Maximum mark: 10] [without GDC]

Use the formula $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C$ to find the integrals

$$\int \frac{7}{16+x^2} dx$$

$$\int \frac{7}{1+16x^2} \, \mathrm{d}x$$

$$\int \frac{7}{25+16x^2} \mathrm{d}x$$

$$\int \frac{7}{2+x^2} \, \mathrm{d}x$$

$$\int \frac{7}{2+3x^2} \, \mathrm{d}x$$

3. [Maximum mark: 10] [without GDC]

Use the formula $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$ to find the integrals

$$\int \frac{7}{\sqrt{16-x^2}} \, \mathrm{d}x$$

$$\int \frac{7}{\sqrt{16-x^2}} \, \mathrm{d}x$$

$$\int \frac{7}{\sqrt{1-16x^2}} \, \mathrm{d}x$$

$$\int \frac{7}{\sqrt{25 - 16x^2}} \, \mathrm{d}x$$

$$\int \frac{7}{\sqrt{2 - x^2}} \, \mathrm{d}x$$

$$\int \frac{7}{\sqrt{2 - 3x^2}} \, \mathrm{d}x$$

$$\int \frac{7}{\sqrt{2-x^2}} \, \mathrm{d}x$$

$$\int \frac{7}{\sqrt{2-3x^2}} \, \mathrm{d}x$$

4.	Mavimum	mark.	1/1	[without	CDCI
4.	[Maximum	mark.	14	without	GDC_{I}

- (a) Factorise $x^2 10x + 24$ and thus express $\frac{2}{x^2 10x + 24}$ in partial fractions. [5]
- (b) Express $x^2 10x + 25$ as a perfect square $(x h)^2$. [1]
- (c) Express $x^2 10x + 26$ in the vertex form $(x h)^2 + k$. [2]
- (d) Hence find the integrals

(i) $\int \frac{2}{x^2 - 10x + 24} dx$	(ii) $\int \frac{2}{x^2 - 10x + 25} dx$	(iii) $\int \frac{2}{x^2 - 10x + 26} dx$	[6]
$x^{2}-10x+24$	$x^{2}-10x+25$	$x^{2}-10x+26$	

.....

.....

.....

A. Exam style questions (SHORT)

5.	[Max	imum mark								
	Find	(i)	$\int \frac{e^{3x}}{}$	$\frac{-2e^x + }{3e^{2x}}$	$\frac{4}{dx}$	(ii) $\int \frac{4^x + 1}{2^x}$	$\frac{2^x+1}{2^x}\mathrm{d}x.$		
6.	_	imum mark	_	_	_					
		appropriate					lify and h	ence calc	ulate the	integrals
	(i)	$\int \tan^2 x dx$		(ii)	$\int \cot^2 x dx$.	•				

7.	[Maximum mark: 5]			
	Find the integrals	$(i) \int \frac{3}{x^2 + 9} \mathrm{d}x$	$(ii) \int \frac{3}{9x^2 + 1} dx$	
8.	[Maximum mark: 5]			
8.	[Maximum mark: 5] Find the integrals	[without GDC] (i) $\int \frac{3}{\sqrt{9-x^2}} dx$	(ii) $\int \frac{3}{\sqrt{1-9x^2}} \mathrm{d}x$	
8.			(ii) $\int \frac{3}{\sqrt{1-9x^2}} \mathrm{d}x$	
8.			(ii) $\int \frac{3}{\sqrt{1-9x^2}} \mathrm{d}x$	
8.		(i) $\int \frac{3}{\sqrt{9-x^2}} \mathrm{d}x$	(ii) $\int \frac{3}{\sqrt{1-9x^2}} \mathrm{d}x$	
8.	Find the integrals	(i) $\int \frac{3}{\sqrt{9-x^2}} \mathrm{d}x$		
8.	Find the integrals	(i) $\int \frac{3}{\sqrt{9-x^2}} \mathrm{d}x$		
8.	Find the integrals	(i) $\int \frac{3}{\sqrt{9-x^2}} dx$		
8.	Find the integrals	(i) $\int \frac{3}{\sqrt{9-x^2}} \mathrm{d}x$		
8.	Find the integrals	(i) $\int \frac{3}{\sqrt{9-x^2}} \mathrm{d}x$		
8.	Find the integrals	(i) $\int \frac{3}{\sqrt{9-x^2}} \mathrm{d}x$		
8.	Find the integrals	(i) $\int \frac{3}{\sqrt{9-x^2}} \mathrm{d}x$		
8.	Find the integrals	(i) $\int \frac{3}{\sqrt{9-x^2}} dx$		

Find	(i) $\int \frac{7}{(x-1)^2 + 4} dx$ (ii) $\int \frac{7}{4(x-1)^2 + 1} dx$
[Maxi	mum mark: 5] <i>[without GDC]</i>
	mum mark: 5] [without GDC] (i) $\int \frac{7}{\sqrt{4-(x-1)^2}} dx$ (ii) $\int \frac{7}{\sqrt{1-4(x-1)^2}} dx$
	(i) $\int \frac{7}{\sqrt{4 - (x - 1)^2}} dx$ (ii) $\int \frac{7}{\sqrt{1 - 4(x - 1)^2}} dx$
	(i) $\int \frac{7}{\sqrt{4 - (x - 1)^2}} dx$ (ii) $\int \frac{7}{\sqrt{1 - 4(x - 1)^2}} dx$
	(i) $\int \frac{7}{\sqrt{4 - (x - 1)^2}} dx$ (ii) $\int \frac{7}{\sqrt{1 - 4(x - 1)^2}} dx$
	(i) $\int \frac{7}{\sqrt{4 - (x - 1)^2}} dx$ (ii) $\int \frac{7}{\sqrt{1 - 4(x - 1)^2}} dx$
	(i) $\int \frac{7}{\sqrt{4 - (x - 1)^2}} dx$ (ii) $\int \frac{7}{\sqrt{1 - 4(x - 1)^2}} dx$
	(i) $\int \frac{7}{\sqrt{4 - (x - 1)^2}} dx$ (ii) $\int \frac{7}{\sqrt{1 - 4(x - 1)^2}} dx$

11.		imum mark: 6]					
	Give	n that $b,c\in\mathbb{R}^{\scriptscriptstyle{+}}$, fi	ind the integra	als (i)	$\int \frac{a}{bx^2 + c} \mathrm{d}x$	(ii) $\int \frac{a}{\sqrt{c - bx^2}} \mathrm{d}x$	
40	ΓN 4 e v		5i4h4 OI		•••••		
12.	_	imum mark: 7]	_	_	E		
	(a)	Show that $\frac{x^2+3}{x(x)}$	$\frac{3x+12}{+2)^2} = \frac{3}{x} - \frac{3}{x}$	$\frac{2}{(x+2)}$	$\frac{3}{(x+2)^2}$		[3]
	(b)	Hence find $\int \frac{x^2}{x}$	$\frac{+3x+12}{(x+2)^2} \mathrm{d}x$				[4]

	culate the integral $\int \frac{6}{x^2 + 6x + 8} dx$
[Maː	ximum mark: 5] <i>[without GDC]</i>
	culate the integral $\int \frac{6}{x^2 + 6x + 13} dx$

	culate the integral $\int \frac{x+6}{x^2-6x+8} dx$
N/-	aximum mark: 5] <i>[without GDC]</i>
Cal	culate the integral $\int \frac{7}{\sqrt{-x^2 - 6x + 7}} dx$
	$\sqrt{-x} = 0x + i$

17.	[Max	imum mark: 9]
	(a)	Using long division, or otherwise, express $\frac{3x^2+4x+2}{x^2-6x+8}$ in the form $a+\frac{bx+c}{x^2-6x+8}$. [3]
	(b)	Hence calculate the integral $\int \frac{3x^2 + 4x + 2}{x^2 - 6x + 8} dx$. [6]

FURTHER SUBSTITUTION

O. Practice questions

18.	[Maximum mark: 12] <i>[without GDC]</i> Use the substitution $u = \tan x$, to find the indefinite integrals	
	(i) $\int \tan^5 x \sec^2 x dx$ (ii) $\int \frac{\sec^2 x}{\sqrt{\tan x}} dx$ (iii) $\int \frac{\sec^2 x}{e^{\tan x}} dx$ (iv) $\int \frac{\sin^5 x}{\cos^7 x} dx$	

19.	[Maximum	mark: 16] [without	GDCI
19.	liviaxilliulli	IIIain. 10	[WILITOUL	GDCJ

Using the fact $\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$, calculate the integrals

	3 (11)
	$\int \tan x dx$
	$\int \cot x dx$
	$\int \frac{2x}{x^2 + 7} \mathrm{d}x$
•	$\int \frac{x}{3x^2 + 7} \mathrm{d}x$
	$\int \frac{x^2}{3x^3 + 7} \mathrm{d}x$
	$\int \frac{6x+5}{3x^2+5x+1} \mathrm{d}x$
	$\int \frac{e^x}{e^x + 5} dx$
	$\int \frac{e^{2x}}{2x-x} dx$

20. [Maximum mark: 5] *[without GDC]*

Find the indefinite integral $\int \frac{e^x}{e^{2x}+1} dx$ by using the substitution $u = e^x$

21.	[Ma	ximum mark: 15]	[without	GDC]				
		ng the substitutior						
	(i)	$\int \frac{3x}{x+5} \mathrm{d}x \qquad ($	ii) $\int \frac{x}{\sqrt{x+5}}$	= dx	(iii) ∫-	$\frac{x^2}{x+5}$ dx		

	ximum mark: 18] <i>[without GDC]</i>	
Find	I the following indefinite integrals by using the substitution $u = x^2 + 5$	
(i)	$\int x^{3} (x^{2} + 5)^{5} dx \qquad (ii) \int \frac{x^{3}}{\sqrt{x^{2} + 5}} dx \qquad (iii) \int \frac{x^{5}}{x^{2} + 5} dx$	

23.	[Max	kimum mark: 15]	[wit	hout GDC]		
	Find	the following inde	finite	integrals by usi	ng the s	$ubstitution u = \sin x$
	(i)	$\int \cos^3 x dx$	(ii)	$\int \cos^5 x dx$	(iii)	$\int \sin^2 x \cos^3 \mathrm{d}x$
			-			

24.	24. [Maximum mark: 6] [without GDC]	
	Calculate $\int \frac{1}{9+x^2} dx$, by using the substitution $x =$	$3 \tan \theta$.
25	25 [Maximum mark: 6] [without GDC]	
25.		$c = 3\sin\theta$.
25.	25. [Maximum mark: 6] [without GDC] Calculate $\int \frac{1}{\sqrt{9-x^2}} dx$, by using the substitution x	$c = 3\sin\theta$.
25.		$c = 3\sin\theta$.
25.		$c = 3\sin\theta$.
25.	Calculate $\int \frac{1}{\sqrt{9-x^2}} dx$, by using the substitution x	$c = 3\sin\theta$.
25.	Calculate $\int \frac{1}{\sqrt{9-x^2}} dx$, by using the substitution x	
25.	Calculate $\int \frac{1}{\sqrt{9-x^2}} dx$, by using the substitution x	
25.	Calculate $\int \frac{1}{\sqrt{9-x^2}} dx$, by using the substitution x	
25.	Calculate $\int \frac{1}{\sqrt{9-x^2}} dx$, by using the substitution x	
25.	Calculate $\int \frac{1}{\sqrt{9-x^2}} dx$, by using the substitution x	
25.	Calculate $\int \frac{1}{\sqrt{9-x^2}} dx$, by using the substitution x	
25.	Calculate $\int \frac{1}{\sqrt{9-x^2}} dx$, by using the substitution x	

26.

[Max	kimum mark: 12] <i>[without GDC]</i>				
Find	Find the indefinite integrals				
(a)	$\int \frac{1}{x^2 + 2} \mathrm{d}x$	[2]			
(b)	$\int \frac{x}{x^2 + 2} \mathrm{d}x$	[2]			
	$\int \frac{x^2}{x^2 + 2} \mathrm{d}x$	[4]			
	$\int \frac{x^3}{x^2 + 2} dx$	[4]			
()	$\int x^2 + 2$				

A. Exam style questions (SHORT)

Вуι	\cdot
	using an appropriate substitution find $\int \frac{\tan(\ln y)}{y} dy$, $y > 0$.
-	ising an appropriate substitution find $1 - \frac{1}{2} - \frac{1}{2} dy$, $y > 0$.
	using an appropriate substitution find $\int \frac{\cot(\ln y)}{y} dy$, $y > 0$.
	Ising an appropriate substitution find $\int \frac{y}{y} dy$, $y > 0$.
	ising an appropriate substitution find $\int \frac{y}{y} dy$, $y > 0$.
	Ising an appropriate substitution find $\int \frac{y}{y} dy$, $y > 0$.
	,
	,
	,
	,

29.	[Maximum mark: 6]	_	
	Using the substitution	$y = 2 - x$, or otherwise, find $\int \left(\frac{x}{2 - x}\right)^2 dx$.	
			•
			••
			••
			••
			•
			••
			•
30.	[Maximum mark: 5]	[without GDC]	
	Using the substitution	$u = \frac{1}{2}x + 1$, or otherwise, find the integral $\int x \sqrt{\frac{1}{2}x + 1} dx$.	
			••
			••
			•
			• •
			• •

1.	[Maximum mark: 6] [without GDC]
	Use the substitution $u = x + 2$ to find $\int \frac{x^3}{(x+2)^2} dx$.

32.	[Maximum mark: 7]	[without GDC]
	Calculate $\int \sqrt{5-x^2} dx$	by using the substitution $x = \sqrt{5} \sin \theta$

33.	[Maximum mark: 8] [without GDC]
	Calculate $\int \sqrt{\frac{x}{4-x}} dx$, by using the substitution $x = 4\sin^2 \theta$
	Express your answer in the form $A \arcsin \frac{\sqrt{x}}{2} + B\sqrt{4x - x^2} + c$

34.	[Maximum mark: 6]	[without GDC]
-----	-------------------	---------------

(a) Show that
$$\frac{2x+4}{(x^2+4)(x-2)} = \frac{1}{x-2} - \frac{x}{x^2+4}$$
 [2]

(b) **Hence** find
$$\int \frac{2x+4}{(x^2+4)(x-2)} dx$$
 [4]

35. [Maximum mark: 5] *[without GDC]*

Find (i)
$$\int \frac{e^x + 1}{e^x} dx$$
 (ii) $\int \frac{e^x}{e^x + 1} dx$

36.	[Maximum mark: 6]	[without GDC]
	Find $\int \frac{e^x}{e^{2x}+4} dx$.	
37.	[Maximum mark: 6]	[without GDC]
37.	[Maximum mark: 6] Find $\int \frac{3^x}{9^x + 9} dx$.	[without GDC]
37.	[Maximum mark: 6] Find $\int \frac{3^x}{9^x + 9} dx$.	[without GDC]
37.	[Maximum mark: 6] Find $\int \frac{3^x}{9^x + 9} dx$.	[without GDC]
37.	Find $\int \frac{3^x}{9^x + 9} dx$.	[without GDC]
37.	Find $\int \frac{3^x}{9^x + 9} dx$.	
37.	Find $\int \frac{3^x}{9^x + 9} dx$.	
37.	Find $\int \frac{3^x}{9^x + 9} dx$.	
37.	Find $\int \frac{3^x}{9^x + 9} dx$.	
37.	Find $\int \frac{3^x}{9^x + 9} \mathrm{d}x$.	
37.	Find $\int \frac{3^x}{9^x + 9} \mathrm{d}x$	
37.	Find $\int \frac{3^x}{9^x + 9} \mathrm{d}x$	
37.	Find $\int \frac{3^x}{9^x + 9} dx$.	

9	the substitution $2x = \sin \theta$, or otherwise, find $\int (\sqrt{1-4x^2}) dx$.
•	

[Max	
Вуι	using an appropriate substitution find the integral $\int \sin^3 x \mathrm{d}x$
Max	
	ximum mark: 5] [without GDC] using the substitution $u = \sin x$, find the integral $\int \sin^3 x \cos^3 x dx$
	ximum mark: 5] <i>[without GDC]</i>
	ximum mark: 5] <i>[without GDC]</i>
	ximum mark: 5] [without GDC] using the substitution $u = \sin x$, find the integral $\int \sin^3 x \cos^3 x dx$
	ximum mark: 5] [without GDC] using the substitution $u = \sin x$, find the integral $\int \sin^3 x \cos^3 x dx$
	ximum mark: 5] [without GDC] using the substitution $u = \sin x$, find the integral $\int \sin^3 x \cos^3 x dx$
	ximum mark: 5] [without GDC] using the substitution $u = \sin x$, find the integral $\int \sin^3 x \cos^3 x dx$
	ximum mark: 5] [without GDC] using the substitution $u = \sin x$, find the integral $\int \sin^3 x \cos^3 x dx$
	ximum mark: 5] [without GDC] using the substitution $u = \sin x$, find the integral $\int \sin^3 x \cos^3 x dx$
	ximum mark: 5] [without GDC] using the substitution $u = \sin x$, find the integral $\int \sin^3 x \cos^3 x dx$
	ximum mark: 5] [without GDC] using the substitution $u = \sin x$, find the integral $\int \sin^3 x \cos^3 x dx$
	ximum mark: 5] <i>[without GDC]</i> Using the substitution $u = \sin x$, find the integral $\int \sin^3 x \cos^3 x dx$
	ximum mark: 5] <i>[without GDC]</i> using the substitution $u = \sin x$, find the integral $\int \sin^3 x \cos^3 x dx$

DEFINITE INTEGRALS

Exam style questions (SHORT) [without GDC] **41.** [Maximum mark: 4] Find $\int_0^2 \frac{1}{4+x^2} dx$ **42.** [Maximum mark: 6] [without GDC] Find k given that $\int_0^k \frac{1}{4+x^2} dx = \frac{\pi}{6}$

43.	[Maximum mark: 4]	
	Find the values of $a >$	0, such that $\int_a^{a^2} \frac{1}{1+x^2} dx = 0.22$.
44.	[Maximum mark: 6]	[without GDC]
		xpressing your answer in exact form.

5.	[Maximum mark: 8]	[without GDC]
	Calculate $\int_{0}^{2} \sqrt{4 - x^2} dx$	dx by using the substitution $x = 2\sin\theta$

6.	[Maximum mark: 8] [without GDC]
	Show that $\int_{0}^{\frac{1}{2}} \sqrt{\frac{x}{1-x}} dx = \frac{\pi}{4} - \frac{1}{2}$ by using the substitution $x = \sin^2 \theta$