

Page No.: _ 3 $y[n] = \sum_{i=-\infty}^{\infty} n[i]n[n-i]$ x[n] = {4,1,-2,13 h[n] = {3,-1,13 $4507 = \{12, -1, -3, 6, -3, 13\}$

DFT of
$$\chi(n) = 52.1.1.-13$$

length $N = 4$
 $\chi(15) = [00]_{ninh} \times \chi(n)$

$$x(k) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j & 1 \\ 1 & -1 & 1 & -1 & 1 \end{bmatrix}$$

$$\chi(h-p) \leftarrow \frac{p+1}{p+1} \chi(k)$$
 $\chi(h-p) \leftarrow \frac{p+1}{p+1} \frac{p+1}{p+1} \chi(k)$
 $\chi(h-p) \leftarrow \frac{p+1}{p+1} \frac{p+1}{p+1} \chi(k)$

$$x'(k) = 6^{k} x(k)$$

 $x = 0$ $x'(k) = 3$
 $x = 1$ $x'(k) = 3$
 $x'(k) = 3$
 $x'(k) = 3$

$$\chi = 1$$
 $\omega = 1$ $\chi'(1) = 3$ $\chi = 2$ $\chi'(2) = -3$ $\chi'(3) = -1$

$$\chi'(n-1) \rightarrow \chi'(k) = \{3,3,-3,-13\}$$

convulation property of DFT If x,(n) < DFT > x,(k) and x2(n) + TT x2(k) then *(n) () *2(n) + DET > X,(k) . *2(k) x3(10) = x,(10) x2(10) Henre (0) is symbol used for circular we find x3(n) for which DFT is x3(k). also use Symbol @ to dead Proof -From the periodic consulation we know, X3p(n) = { x,p(m) x2p(n-m) p stands for periodic $x_3((n))_N = \sum_{m=0}^{\infty} x_1((m))_N x_2((n-m))_N$ for OSNSN-1 (one period) $x_1((m))_{M} = x_3(n),$ $x_1((m))_{M} = x_1(m)$ $\chi_3(n) = \sum_{m=0}^{N-1} \chi_1(m) \chi_2(n-m))_N$

Page No.: 6

RHS represents circular consulation of $x_1(n)$ and $x_2(n)$ which is represented as (0) $x_1(n) = x_1(n) \otimes x_2(n)$ $x_1(n) = x_1(n) \otimes x_2(n)$

· x (n) * x2(n) < PF+ > x,(k). x2(k)