Metody numeryczne i symulacja – Lab. 1

Magdalena Szymkowiak

(magdalena.szymkowiak@put.poznan.pl)

1. Środowisko Matlab/Octave – przypomnienie (link do strony z instalacją Matlaba

https://ch.mathworks.com/campaigns/products/trials.html
- po wypełnieniu formularza można korzystać z *Matlaba* przez 30 dni)
(instalacja *Octave* https://www.gnu.org/software/octave)

- (a) Oznaczenia
 - potęgi

1e+2
$$v=5e-2$$
 $t=2/100000$ ans = $v=$ $t=$ 100 0.0500 2.0000e-05

• liczby zespolone

Zobacz help i

• inne znaki i funkcje specjalne

NaN – not a number Inf – nieskończoność

ans – zmienna robocza

 $pi - liczba \pi$

load ('nazwa pliku') - wczytuje zmienne z pliku save('nazwa pliku', 'zmienna') - zapisuje zmienne z przestrzeni roboczej

(b) Macierze

• Generowanie wektora

```
x=[0:0.1:1]
x =
Columns 1 through 7
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
Columns 8 through 11
0.7000 0.8000 0.9000 1.0000
y=[7:11]
y =
7 8 9 10 11
```

• Generowanie macierzy

Przy ręcznym wpisywaniu elementów macierzy

- poszczególne elementy wiersza macierzy oddziela się spacjami lub przecinkami
- wiersze macierzy oddziela się średnikami

Macierz można generować za pomocą istniejących macierzy.

Uwaga 1. Należy pamiętać o zgodności wymiarów macierzy! Można generować macierze jednostkowe, macierze wypełnione jedynkami, zerami lub z zadaną przekątną.

Uwaga 2. W macierzy dwuwymiarowej macierz(wiersz, kolumna)

Można generować macierze trójwymiarowe.

A =	E=eye(3)	p=[2 3 4]	T(:,:,1)=A;
1 2 3	E =	P=diag(p)	T(:,:,2)=E;
4 5 6	1 0 0	P =	T(:,:,3)=P;
7 8 9	0 1 0	2 0 0	T
	0 0 1	0 3 0	T(2,3,2)
		0 0 4	
			ans =
			0

Uwaga 3. W macierzy trójwymiarowej macierz(wiersz, kolumna, warstwa)

Uwaga 4. Z pamięci Matlaba można usuwać

- poszczególne zmienne i funkcje przy pomocy polecenia clear nazwa
- wszystkie zmienne i funkcje przy pomocy polecenia clear all
- zawartość Command Window przy pomocy polecenia
 clc

• Odwołanie do elementów macierzy

```
A = [1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 9]
                               A(3,:)
A =
                               ans=
1 2 3
                               7 8 9
4 5 6
                               A(2:3, 1:2)
7 8 9
                               ans=
                               4 5
A(2,3)
                               7 8
                               A(1:2:3, :)
ans=
6
                               ans=
                               1 2 3
A(:,2)
                               7 8 9
ans=
                               A(1:2:end, :)
2
                               ans=
5
                               1 2 3
8
                               7 8 9
```

• Informacje o macierzach size(macierz)

[liczba_wierszy, liczba_kolumn]

```
Największy wymiar macierzy
length(macierz)
B=[1, 2, 3; 4, 5, 6]
B =
1 2 3
4 5 6
length(B)
ans=
3
```

 $\bullet\,$ Suma elementów macierzy

sum(macierz)

sum(macierz,2)

sum(sum(macierz))

sum(B)
ans=
sum(sum(B))
ans=

5 7 9 21

• Niektóre operacje macierzowe

+ - * ^ /
$$\setminus$$
 inv sum det

1.0000 -0.0000

0 1.0000

• Niektóre operacje blokowe

• Dzielenie

Rozróżniamy dzielenie "dwustronne"

- prawostronne (/)
- lewostronne (\)

$$2/10$$
 $2/10$ ans = ans = 0.2000 5

Uwaga 5. Dzielenie lewostronne (\) ma szczególne zastosowanie przy rozwiązywaniu układu równań.

Rozwiąż układ równań liniowych:

$$\begin{cases} 2x_1 - 5x_2 = 9 \\ x_1 + 3x_2 = -1 \end{cases}$$

Układ ten można zapisać w postaci macierzowej AX=B gdzie $A=\begin{bmatrix}2&-5\\1&3\end{bmatrix}$ $X=\begin{bmatrix}x_1\\x_2\end{bmatrix}$ $B=\begin{bmatrix}9\\-1\end{bmatrix}$

gdzie
$$A = \begin{bmatrix} 2 & -5 \\ 1 & 3 \end{bmatrix}$$
 $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $B = \begin{bmatrix} 9 \\ -1 \end{bmatrix}$
Wtedy $X = A^{-1}B$

Działania w Matlabie

$$A=[2 -5; 1 3];$$
 $X=inv(A)*B$ 2
 $B=[9; -1];$ $X=A \setminus B$ -1
 $X=A^{(-1)}*B$ $X =$

(c) Operatory

Relacyjne Logiczne (dla macierzy zero-A<B jedynkowych)

A > B A & B A < = B A | B

A==B xor(A,B)

A \sim =B \sim A

Zobacz help relop

 $A = [1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 9]$

A= G=A>=5 A(G)=-2 1 2 3 G= A= 4 5 6 0 0 0 1 2 3 7 8 9 0 1 1 4 -2 -2 1 1 1 1 -2 -2 -2

 $H=(A<5)\&(A\sim=2)$ K=(A<=2)|(A>=8)

H= K=
1 0 1 1 1 0
1 0 0 0 0 0 0 1 1

(d) m-pliki

Matlab rozgranicza dwa typy m-plików:

- skrypty
 - w momencie wywołania nie pobierają żadnych argumentów wejściowych oraz nie zwracają danych wyjściowych
 - stosuje się je aby uprościć lub zautomatyzować czynności wykonywane wielokrotnie
- funkcje
 - operują na określonych argumentach i po zakończeniu swego działania zwracają wynik
 - pozwalają na rozszerzenie możliwości Matlaba o te procedury i algorytmy, które nie zostały wcześniej zdefiniowane
 - występujące wewnątrz funkcji zmienne lokalne nie są widoczne poza nią

```
(e) Skrypty – przykłady
   Skrypt zapisany jako m-plik ZAJ_srgeomszcz.m
   szczp1=[1 2 3 4 5 6 7 8 9];
   np1=length(szczp1);
   srgeomp1=(prod(szczp1))^(1 / np1)
   Skrypt zapisany jako m-plik ZAJ_hitogram_szroz.m
   k=6;
   h=0.1;
   xd1=1.5;
   ni=[7 11 25 33 19 5];
   xdi = [xd1:h:xd1+(k-1)*h];
   xgi=[xd1+h:h:xd1+k*h];
   xi=(xdi+xgi)/2;
   figure
   bar(xi,ni,1,'m')
   xlim([xdi(1)-0.1, xgi(length(xgi))+0.1])
   xlabel('przedziały')
   ylabel('liczności przedziałów')
   title('histogram liczności szeregu rozdzielczego')
```

- (f) Podstawowe instrukcje w Matlabie
 - pętla FOR ("dla"):
 for zmienna_iterowana = macierz_wartości
 ciąg_instrukcji
 end
 - pętla WHILE ("dopóki"):
 while wyrażenie_warunkowe
 ciąg_instrukcji
 end
 - instrukcja warunkowa IF ("jeżeli"):
 if wyrażenie_warunkowe1
 ciąg_instrukcji1
 elseif wyrażenie_warunkowe2
 ciąg_instrukcji2
 elseif wyrażenie_warunkowe3
 ciąg_instrukcji3
 else
 ciąg_instrukcji4
 end

Uwaga 6. Jeżeli polecenie zapisywane w jakimś oknie Matlaba jest zbyt długie, można je przełamać wykorzystując operator ...

Uwaga 7. Wykonywanie każdej funkcji w Matlabie można zatrzymać naciskając kombinacje klawiszy CTRL+C.

2. Format liczby– może to być np. short, long, bank, rat np. exp(1)

format short 2.7183

fixed-decimal format with 4 digits after the decimal point

format long 2.718281828459046

fixed-decimal format with 15 digits after the decimal point

format bank 2.72

currency format with 2 digits after the decimal point

format rat $\frac{1457}{536}$

ratio of small integers

format shortE 2.7183e + 00

short scientific notation with 4 digits after the decimal point

format short 2.718281828459046e + 00

long scientific notation with 15 digits after the decimal point

3. Zapis liczby – system dwójkowy w arytmetyce zmiennoprzecinkowej (Floating-Point Numbers)

Wyróżniamy dwa rodzaje liczb zmiennoprzecinkowych:

32-bitowe (pojedynczej precyzji - ang. single precision)

64-bitowe (podwójnej precyzji - ang. double precision)

Matlab wykorzystuje podwójną precyzję

$$x = \pm q \cdot 2^n$$

 \pm - znak liczby

n – cecha liczby (wykładnik całkowity)

 $q \in \left[\frac{1}{2},1\right)$ – mantysa (rozwinięcie dwójkowe tej liczby jest takie, że pierwsza cyfra po przecinku jest różna od zera)

64 bity - (1 bit - znak) (11 bit'ow - cecha) (52 bity - mantysa)

dokładność $\varepsilon = 2.2204e - 16$

największa liczba dodatnia realmax = 1.7977e + 308

najmniejsza liczba dodatnia realmin=2.2251e-308

Liczby w systemie dwójkowym z mantysą o długości 52 bity

– liczby o 16 cyfrach w systemie dziesiętnym

4. Elementy statystki

dla próby n elementowej o wyrazach x_i (dla $i=1,2,\ldots,n$) średnia arytmetyczna

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

średnia potęgowa rzędu 2 (wartość skuteczna)

$$\overline{x}_2 = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i)^2}$$

wariancja

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i})^{2} - (\overline{x})^{2} = (\overline{x}_{2})^{2} - (\overline{x})^{2}$$

odchylenie standardowe

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

5. Błędy

wartość rzeczywista x

wartość obliczeniow \hat{x}

błąd bezwględny

$$E_x = |x - \hat{x}|$$

błąd względny (gdy $x \neq 0$)

$$R_x = \frac{|x - \hat{x}|}{|x|}$$

dla próby n elementowej o wyrazach x_i (dla $i=1,2,\ldots,n$) średni błąd bezwylędny

$$\overline{E} = \frac{1}{n} \sum_{i=1}^{n} E_{x_i} = \frac{1}{n} \sum_{i=1}^{n} |x_i - \hat{x}_i|$$

średni błąd wględny

$$\overline{R} = \frac{1}{n} \sum_{i=1}^{n} R_{x_i} = \frac{1}{n} \sum_{i=1}^{n} \frac{|x_i - \hat{x}_i|}{|x_i|}$$

średni błąd kwadratowy

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{x}_i)^2}$$

średni błąd kwadratowy średniej arytmetycznej

$$\sigma_{\overline{x}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

ZADANIA

- 1. Utwórz skrypt w *Matlabie*, przy pomocy którego można zapisać w systemie dwójkowym i ósemkowym następujące liczby systemu dziesiętnego
 - (a) 25
 - (b) 1066
 - (c) 125,625
 - (d) 0,333
 - (e) 0.1
- 2. Utwórz skrypt w *Matlabie*, przy pomocy którego możesz dokonać konwersji
 - (a) $(101101110110)_2 \rightarrow (?)_8$
 - (b) $((111101, 101)_2 \rightarrow (?)_{10}$
 - (c) $(2716)_8 \rightarrow (?)_{10}$
- 3. Utwórz skrypt w Matlabie, który na podstawie plików:
 - arguments_of_sine.txt sygnał wejściowy wymuszenia
 - sine.txt odpowiedź w formie funkcji sinusoidalnej
 - sine_with_noise.txt zaszumiony sygnał wyjściowy

może obliczyć i wykreślić

- (a) wartości błędów bezwględnych między sygnałem zaszumionym i wzorcowym dla każdego sygnału wejściowego
- (b) wartości błędów wględnych między sygnałem zaszumionym i wzorcowym dla każdego sygnału wejściowego
- (c) średni błąd bezwzględny między sygnałami zaszumionymi \hat{x}_i i wzorcowymi x_i
- (d) średni błąd względny między sygnałami zaszumionymi \hat{x}_i i wzorcowymi x_i
- (e) wartość skuteczną sygnałów sine.txt oraz sine_with_noise.txt

4. Dokonaj korekty sygnałów zaszumionych z uwzględnieniem średniego błędu bezwzględnego

$$\hat{y}_i = \begin{cases} \hat{x}_i - \overline{E}, & \text{gdy } \hat{x}_i > x_i \\ \hat{x}_i + \overline{E}, & \text{gdy } \hat{x}_i < x_i. \end{cases}$$

Utwórz skrypt w *Matlabie*, który na podstawie podanych plików oraz pliku po korekcie może obliczyć

- (a) odchylenie standardowe sygnału zaszumionego oraz sygnalu po wprowadzonej korekcie
- (b) średni błąd kwadratowy średniej arytmetycznej sygnału zaszumionego oraz sygnalu po wprowadzonej korekcie