Universidade de São Paulo Instituto de Matemática e Estatística Bacharelado em Ciência da Computação

A IA Generativa na Engenharia de Software

Um estudo de caso

Cássio Azevedo Cancio

Monografia Final

MAC 499 — TRABALHO DE FORMATURA SUPERVISIONADO

Supervisor: Prof. Dr. Paulo Roberto Miranda Meirelles

Cossupervisor: Arthur Pilone Maia da Silva

Cossupervisor: Carlos Eduardo Santos

O conteúdo deste trabalho é publicado sob a licença CC BY 4.0 (Creative Commons Attribution 4.0 International License)

Aos meus pais, que sempre incentivaram meus estudos. Aos meus professores, que tornaram este trabalho possível.

Resumo

Cássio Azevedo Cancio. A IA Generativa na Engenharia de Software: *Um estudo de caso*. Monografia (Bacharelado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2025.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave). Deve ser precedido da referência do documento. Texto texto

Palavras-chave: Palavra-chave1. Palavra-chave2. Palavra-chave3.

Abstract

Cássio Azevedo Cancio. **Generative AI in Software Engineering:** *A case study*. Capstone Project Report (Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2025.

Keywords: Keyword1. Keyword2. Keyword3.

Lista de abreviaturas

- IA Inteligência Artificial (Artificial Intelligence)
- IME Instituto de Matemática e Estatística
- LLM Modelo de Linguagem de Grande Escala (Large Language Model)
- USP Universidade de São Paulo

Lista de figuras

Lista de tabelas

Lista de programas

Sumário

In	trodu	ção		1				
	Cont	exto .		1				
	Motivação							
	Obje	tivos .		2				
1	Refe	rencia	l Teórico	3				
	1.1	Engenl	haria de Software	3				
		1.1.1	Processos de Desenvolvimento de Software	3				
		1.1.2	Metodologias Ágeis	3				
		1.1.3	Práticas de Desenvolvimento	3				
	1.2	Intelig	ência Artificial	3				
		1.2.1	Conceitos Básicos	3				
		1.2.2	Redes Neurais	3				
		1.2.3	Aprendizado de Máquina	3				
	1.3	IA Ger	nerativa	3				
		1.3.1	Modelos de Linguagem	3				
		1.3.2	Transformers	3				
		1.3.3	LLMs (Large Language Models)	3				
2	Mete	odologi	ia	5				
	2.1	•	agem de Pesquisa	5				
		2.1.1	Tipo de Pesquisa	5				
		2.1.2	Procedimentos Metodológicos	5				
	2.2	Coleta	de Dados	5				
		2.2.1	Fontes de Dados	5				
		2.2.2	Instrumentos de Coleta	5				
		2.2.3	Processo de Coleta	5				
	2.3		e de Dados	5				

		2.3.1	Métodos de Análise	5
		2.3.2	Ferramentas Utilizadas	5
		2.3.3	Critérios de Avaliação	5
3	Resu	ıltados		7
	3.1	Análise	e dos Dados	7
	3.2	Avalia	ção do Sistema	7
		3.2.1	Desempenho	7
		3.2.2	Eficiência	7
		3.2.3	Usabilidade	7
	3.3	Discus	são	7
		3.3.1	Limitações Identificadas	7
		3.3.2	Melhorias Propostas	7
4	Con	clusão		9
	4.1	Resum	o dos Resultados	9
		4.1.1	Principais Descobertas	9
		4.1.2	Objetivos Alcançados	9
		4.1.3	Contribuições	9
	4.2	Traball	hos Futuros	9
		4.2.1	Direções de Pesquisa	9
		4.2.2	Melhorias Propostas	9
		4.2.3	Desafios Identificados	9
	4.3	Consid	lerações Finais	9
Aj	pênd	lices		
Aı	nexo	os		
Re	eferêr	ncias		11

13

Índice remissivo

Introdução

Contexto

A engenharia de *software* é um campo da computação que surgiu e se desenvolveu através da crescente demanda da sociedade do fim do século XX até a atualidade por sistemas computacionais cada vez mais complexos. Neste contexto, ferramentas, métodos e processos foram criados para possibilitar o atendimento dessa demanda.

Nas últimas décadas, os estudos em inteligência artificial (IA) avançaram rapidamente, de modo que um novo paradigma em IA surgiu, a IA generativa. Diferentemente da IA tradicional, a IA generativa tem a capacidade de criar conteúdos novos e originais baseados no que aprendeu, em vez de apenas copiar, imitar e reproduzir algo que já existe.

Dada a flexibilidade e a abertura de diversas possibilidades com essa nova tecnologia, é natural que uma de suas aplicações fosse a engenharia de *software*. Nos últimos anos, diversos estudos foram publicados a fim de analisar essas aplicações, suas consequências e propor diferentes abordagens para tais aplicações. (JOHNSON e MENZIES, 2024 e TERRAGNI *et al.*, 2025)

Desta forma, este projeto se propõe a levantar os resultados observados em diversos artigos que tratam do estudo do impacto da IA generativa na engenharia de *software*. Além de realizar um estudo de caso sobre a aplicação da IA generativa ao longo das fases do desenvolvimento de *software*, avaliando sua utilidade, limitações e impacto na qualidade e produtividade.

Como estudo de caso, foi realizado o desenvolvimento de uma aplicação web na área de investimentos, com banco de dados, *backend* em *Java Spring Boot* e *frontend* em *Angular*, utilizando ferramentas de IA generativa nas diferentes fases do desenvolvimento de um sistema. As fases analisadas foram: coleta e análise de requisitos, estudo de viabilidade, *design* de *software*, codificação e testes.

Motivação

Este trabalho se faz relevante no contexto em que o uso de ferramentas de IA generativa vem crescendo com o passar dos anos, desde o surgimento de ferramentas como ChatGPT e GitHub Copilot. Segundo dados da *Stack Overflow 2024 Developer Survey* (Stack Overflow, 2024), 63,2% dos desenvolvedores profissionais já utilizam ferramentas de IA no

seu processo de desenvolvimento, enquanto que 13.5% desse mesmo grupo planeja utilizálas em breve. Além disso, entre os desenvolvedores que responderam usar inteligência artificial, 82% a utiliza para escrever código.

Desta maneira, é evidente que uma nova tecnologia com amplo uso no mercado de *software* e que abre possibilidade para diversas aplicações, terá impactos sobre como os desenvolvedores escrevem seus códigos. Assim, é de suma importância buscar avaliar e compreender melhor de que maneira esses impactos vêm ocorrendo nas bases de código, inclusive através de um estudo de caso.

Objetivos

Os principais objetivos do trabalho são:

- Compreender de que maneira a IA generativa tem impactado na produção de código das empresas de software, através de um levantamento de dados disponíveis em outros artigos;
- Desenvolver um sistema com todo seu processo voltado ao uso de ferramentas de IA generativa ao longo das suas diferentes fases;
- Documentar os resultados gerados pela IA durante o processo de desenvolvimento do sistema, incluindo os prompts utilizados;
- Analisar os resultados obtidos, a fim de mensurar a qualidade das respostas geradas.

Referencial Teórico

4 4	T . 1	• 1	0 0	
1.1	Engenh	aria de	Softw	7 2 re
.	Liigeiiii	arra ac	DOLLN	ui c

- 1.1.1 Processos de Desenvolvimento de Software
- 1.1.2 Metodologias Ágeis
- 1.1.3 Práticas de Desenvolvimento
- 1.2 Inteligência Artificial
- 1.2.1 Conceitos Básicos
- 1.2.2 Redes Neurais
- 1.2.3 Aprendizado de Máquina
- 1.3 IA Generativa
- 1.3.1 Modelos de Linguagem
- 1.3.2 Transformers
- 1.3.3 LLMs (Large Language Models)

Metodologia

- 2.1 Abordagem de Pesquisa
- 2.1.1 Tipo de Pesquisa
- 2.1.2 Procedimentos Metodológicos
- 2.2 Coleta de Dados
- 2.2.1 Fontes de Dados
- 2.2.2 Instrumentos de Coleta
- 2.2.3 Processo de Coleta
- 2.3 Análise de Dados
- 2.3.1 Métodos de Análise
- 2.3.2 Ferramentas Utilizadas
- 2.3.3 Critérios de Avaliação

Resultados

- 3.1 Análise dos Dados
- 3.2 Avaliação do Sistema
- 3.2.1 Desempenho
- 3.2.2 Eficiência
- 3.2.3 Usabilidade
- 3.3 Discussão
- 3.3.1 Limitações Identificadas
- 3.3.2 Melhorias Propostas

Conclusão

4.1 Resumo dos Resultados

- 4.1.1 Principais Descobertas
- 4.1.2 Objetivos Alcançados
- 4.1.3 Contribuições
- 4.2 Trabalhos Futuros
- 4.2.1 Direções de Pesquisa
- 4.2.2 Melhorias Propostas
- 4.2.3 Desafios Identificados
- 4.3 Considerações Finais

Referências

- [Johnson e Menzies 2024] Brittany Johnson e Tim Menzies. "AI Over-Hype: A Dangerous Threat (and How to Fix It)". *IEEE Software* 41.06 (nov. de 2024), pp. 131–138. ISSN: 1937-4194. DOI: 10.1109/MS.2024.3439138. URL: https://doi.ieeecomputersociety.org/10.1109/MS.2024.3439138 (citado na pg. 1).
- [STACK OVERFLOW 2024] STACK OVERFLOW. Stack Overflow Developer Survey 2024. 2024. URL: https://survey.stackoverflow.co/2024/ (acesso em 19/08/2025) (citado na pg. 1).
- [Terragni *et al.* 2025] Valerio Terragni, Annie Vella, Partha Roop e Kelly Blincoe. "The future of ai-driven software engineering". *ACM Trans. Softw. Eng. Methodol.* 34.5 (mai. de 2025). ISSN: 1049-331X. DOI: 10.1145/3715003. URL: https://doi.org/10. 1145/3715003 (citado na pg. 1).

Índice remissivo

C

Captions, *veja* Legendas Código-fonte, *veja* Floats

 \mathbf{E}

Equações, veja Modo matemático

F

Figuras, *veja* Floats Floats

Algoritmo, *veja* Floats, ordem Fórmulas, *veja* Modo matemático

]

Inglês, veja Língua estrangeira

p

Palavras estrangeiras, veja Língua es-

trangeira

R

Rodapé, notas, veja Notas de rodapé

S

Subcaptions, *veja* Subfiguras Sublegendas, *veja* Subfiguras

Т

Tabelas, veja Floats

 \mathbf{v}

Versão corrigida, *veja* Tese/Dissertação, versões

Versão original, *veja* Tese/Dissertação, versões