

Handling Outliers: From K-Means to K-Medoids

- ☐ The K-Means algorithm is sensitive to outliers!—since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster
- ☐ The *K-Medoids* clustering algorithm:
 - □ Select K points as the initial representative objects (i.e., as initial K medoids)
 - Repeat
 - Assigning each point to the cluster with the closest medoid
 - □ Randomly select a non-representative object o_i
 - \square Compute the total cost S of swapping the medoid m with o_i
 - \square If S < 0, then swap m with o_i to form the new set of medoids
 - Until convergence criterion is satisfied

2

PAM: A Typical *K-Medoids* Algorithm

Discussion on K-Medoids Clustering

- □ K-Medoids Clustering: Find representative objects (medoids) in clusters
- □ PAM (Partitioning Around Medoids: Kaufmann & Rousseeuw 1987)
 - Starts from an initial set of medoids, and
 - Iteratively replaces one of the medoids by one of the non-medoids if it improves the total sum of the squared errors (SSE) of the resulting clustering
 - PAM works effectively for small data sets but does not scale well for large data sets (due to the computational complexity)
 - Computational complexity: PAM: O(K(n K)²) (quite expensive!)
- Efficiency improvements on PAM
 - CLARA (Kaufmann & Rousseeuw, 1990):
 - \square PAM on samples; O(Ks² + K(n K)), s is the sample size
 - CLARANS (Ng & Han, 1994): Randomized re-sampling, ensuring efficiency + quality

1