15.7 习题

张志聪

2025年4月18日

15.7.1

• (a)

利用引理 15.6.6 和习题 15.6.16 中的 $\exp(z+w) = \exp(z) \exp(w)$ 。

$$\sin(x)^{2} + \cos(x)^{2} = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^{2} + \left(\frac{e^{ix} + e^{-ix}}{2}\right)^{2}$$

$$= \frac{e^{2ix} + e^{-2ix} - 2e^{ix - ix}}{-4} + \frac{e^{2ix} + e^{-2ix} + 2e^{ix - ix}}{4}$$

$$= \frac{e^{2ix} + e^{-2ix}}{-4} + \frac{-2}{-4} + \frac{e^{2ix} + e^{-2ix}}{4} + \frac{2}{4}$$

$$= 1$$

• (b)

$$sin'(x) = \left(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}\right)'$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n (2n+1) x^{2n}}{(2n+1)!}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

$$= cos(x)$$

$$cos'(x) = \left(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}\right)'$$
$$= \sum_{n=1}^{\infty} \frac{2n(-1)^n x^{2n-1}}{(2n)!}$$
$$= \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n-1}}{(2n-1)!}$$

令 m = n - 1, 即 n = m + 1, 利用命题 7.4.3 (级数的重排序),

$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n-1}}{(2n-1)!}$$

$$= \sum_{m=0}^{\infty} \frac{(-1)^{m+1} x^{2(m+1)-1}}{(2(m+1)-1)!}$$

$$= \sum_{m=0}^{\infty} \frac{(-1)^{m+1} x^{2m+1}}{(2m+1)!}$$

$$= -\sum_{m=0}^{\infty} \frac{(-1)^m x^{2m+1}}{(2m+1)!}$$

$$= -\sin(x)$$

• (c)

$$sin(-x) = \frac{e^{-ix} - e^{ix}}{2i}$$
$$= -\frac{e^{ix} - e^{-ix}}{2i}$$
$$= -sin(x)$$

$$cos(-x) = \frac{e^{i(-x)} + e^{-i(-x)}}{2}$$
$$= \frac{e^{-ix} + e^{ix}}{2}$$
$$= cos(x)$$

• (d)

$$\begin{split} \cos(x)\cos(y) - \sin(x)\sin(y) &= \frac{e^{ix} + e^{-ix}}{2} \frac{e^{iy} + e^{-iy}}{2} \\ &- \frac{e^{ix} - e^{-ix}}{2i} \frac{e^{iy} - e^{-iy}}{2i} \\ &= \frac{e^{ix}e^{iy} + e^{ix}e^{-iy} + e^{-ix}e^{iy} + e^{-ix}e^{-iy}}{4} \\ &- \frac{e^{ix}e^{iy} - e^{ix}e^{-iy} - e^{-ix}e^{iy} + e^{-ix}e^{-iy}}{-4} \\ &= \frac{2e^{ix}e^{iy} + 2e^{-ix}e^{-iy}}{4} \\ &= \frac{e^{ix}e^{iy} + e^{-ix}e^{-iy}}{2} \\ &= \frac{e^{i(x+y)} + e^{-i(x+y)}}{2} \\ &= \cos(x+y) \end{split}$$

$$\begin{split} sin(x)cos(y) + cos(x)sin(y) &= \frac{e^{ix} - e^{-ix}}{2i} \frac{e^{iy} + e^{-iy}}{2} \\ &+ \frac{e^{ix} + e^{-ix}}{2} \frac{e^{iy} - e^{-iy}}{2i} \\ &= \frac{e^{ix}e^{iy} + e^{ix}e^{-iy} - e^{-ix}e^{iy} - e^{-ix}e^{-iy}}{4i} \\ &+ \frac{e^{ix}e^{iy} - e^{ix}e^{-iy} + e^{-ix}e^{iy} - e^{-ix}e^{-iy}}{4i} \\ &= \frac{2e^{ix}e^{iy} - 2e^{-ix}e^{-iy}}{4i} \\ &= \frac{e^{i(x+y)} - e^{-i(x+y)}}{2i} \\ &= sin(x+y) \end{split}$$

• (e)

$$cos(0) = \frac{e^{i \times 0} + e^{-i \times 0}}{2i}$$
$$= \frac{1+1}{2}$$
$$= 1$$

由 (a) 可知,
$$sin(0) = 1 - cos(0)^2 = 1 - 1 = 0$$

• (f)

$$\begin{split} \cos(x) + i sin(x) &= \frac{e^{ix} + e^{-ix}}{2} + i \frac{e^{ix} - e^{-ix}}{2i} \\ &= \frac{e^{ix} + e^{-ix}}{2} + i^2 \frac{e^{ix} - e^{-ix}}{2i^2} \\ &= \frac{e^{ix} + e^{-ix}}{2} + \frac{e^{ix} - e^{-ix}}{2} \\ &= \frac{2e^{ix}}{2} \\ &= e^{ix} \end{split}$$

同理可得,

$$\begin{split} \cos(x) - i sin(x) &= \frac{e^{ix} + e^{-ix}}{2} - i \frac{e^{ix} - e^{-ix}}{2i} \\ &= \frac{e^{ix} + e^{-ix}}{2} - i^2 \frac{e^{ix} - e^{-ix}}{2i^2} \\ &= \frac{e^{ix} + e^{-ix}}{2} - \frac{e^{ix} - e^{-ix}}{2} \\ &= \frac{2e^{-ix}}{2} \\ &= e^{-ix} \end{split}$$