1 Setup

The problem being solved is the rotated anisotropic diffusion equation in 2D,

$$-\left(\operatorname{div} \mathbf{Q} \mathbf{A} \mathbf{Q}^{T}\right) \nabla^{2} \mathbf{u} = 0, \tag{1}$$

where Q is a rotation matrix encoding some rotation by θ , and A is a diagonal scaling matrix given by

 $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & \epsilon \end{bmatrix}. \tag{2}$

A basic training set of 100 structured 15×15 grids was constructed using a finite-element discretization. Values of θ and ϵ were uniformly chosen within the ranges [1, 5) and [0, π), respectively. For rough testing, all figures and tables below are evaluted on a mesh with coefficients $\theta = \frac{\pi}{4}, \epsilon = 3$.

A TagConv network consisting of 5 convolutional layers was trained to predict optimal C/F partitioning. The unsupervised loss used consisted of a linear combination of the spectral radius of the multigrid error propagation operator and the 1 norm of the C/F partitioning that was output,

$$\ell(\mathbf{c}) := \rho(\mathbf{E}(\mathbf{c})) + \alpha \|\mathbf{c}\|_{1}, \tag{3}$$

where E is defined as the error propagation for a two-level V-cycle multigrid method with using weighted Jacobi ($\omega = \frac{2}{3}$) relaxation,

$$E := (I - \omega D^{-1} A) \left(I - P \left(P^{T} A P \right)^{-1} P^{T} A \right) \left(I - \omega D^{-1} A \right), \tag{4}$$

and P is the operator obtained by Ruge-Stüben style interpolation on the C/F partitioning.

2 Results

Figure 1: L-curve of $\rho\left(\boldsymbol{E}\right)$ vs $\|\boldsymbol{c}\|_{1}$. This is using a sweep of α values between 10^{-6} and 10^{6} .

α	$ ho\left(m{E} ight)$	$\ oldsymbol{c}\ _1$	f-fraction
1.000e - 06	-3.223e - 16	225	0.000
1.000e - 05	-3.223e - 16	225	0.000
1.000e - 04	-3.223e - 16	225	0.000
1.000e - 03	-3.223e - 16	225	0.000
1.000e - 02	-3.223e - 16	225	0.000
2.783e - 02	9.641e - 01	12	0.947
7.743e - 02	9.641e - 01	12	0.947
1.000e - 01	9.642e - 01	6	0.973
2.154e - 01	9.512e - 01	9	0.960
5.995e - 01		0	1.000
1.000e + 00		0	1.000
1.668e + 00	9.525e - 01	7	0.969
4.642e + 00	9.600e - 01	1	0.996
1.000e + 01	9.642e - 01	2	0.991
1.292e + 01	9.642e - 01	2	0.991
3.594e + 01		0	1.000
1.000e + 02		0	1.000
1.000e + 03		0	1.000
1.000e + 04		0	1.000
1.000e + 05		0	1.000
1.000e + 06		0	1.000

Table 1: Spectral radius of error propagator, norm of C/F partitioning, and f-fraction for various values of α .

