Übungsblatt 8 Ana

Computational and Data Science FS2025

Lösungen Mathematik 2

Lernziele:

- Sie kennen die Begriffe Skalarfeld, Vektorfeld, Kurve, eindimensionale Schnittkurve, Höhenlinie, Niveaufläche, Niveaumenge und deren wichtigste Eigenschaften.
- > Sie können die natürliche Definitionsmenge und Wertemenge einer Funktion mehrerer Variabler bestimmen.
- Sie können Höhenlinien und Niveauflächen von Funktionen von zwei bzw. drei Variablen bestimmen und skizzieren.

1. Aussagen über Funktionen mehrerer reeller Variabler

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Für $n > 1$ ist eine Funktion des Typs $f: \mathbb{R}^n \to \mathbb{R}$ niemals injektiv.	X	
b) Für $n > 1$ ist eine Funktion des Typs $f: \mathbb{R}^n \to \mathbb{R}$ niemals surjektiv.		Х
c) Jede Ebene in 3D ist der Graph einer Funktion in zwei reellen Variablen.	Х	
d) Jede Sphäre in 3D ist der Graph einer Funktion in zwei reellen Variablen.		Х

2. Definitionsmengen von Funktionen von zwei Variablen

Bestimmen und skizzieren Sie für die nachfolgenden Funktionen $f: \mathbb{R}^n \to \mathbb{R}$ jeweils die maximale Definitionsmenge.

a)
$$f(x,y) = \sqrt{y-2x}$$

b)
$$f(x,y) = \sqrt{x^2 + y^2 - 1}$$
 c) $f(x,y) = \frac{\sqrt{x+y}}{x-y}$

c)
$$f(x,y) = \frac{\sqrt{x+y}}{x-y}$$

a)

Der Radikand darf nicht negativ sein, d. h.

$$y - 2x \ge 0 \qquad | + 2x$$

$$\Rightarrow \qquad y \ge 2x.$$

Die $nat \ddot{u}rliche$ Definitionsmenge von f ist daher das Gebiet

$$\underline{A = \mathbb{R}^2 \setminus \{ y < 2x \}}.$$

b)

Der Radikand darf nicht negativ sein, d. h.

$$x^{2} + y^{2} - 1 \ge 0 \qquad |+1$$

$$\Leftrightarrow \qquad x^{2} + y^{2} \ge 1.$$

Die $nat \ddot{u}rliche$ Definitionsmenge von f ist daher das Gebiet

$$A = \mathbb{R}^2 \setminus \{ x^2 + y^2 < 1 \}.$$

c)

Der Radikand im Zähler darf nicht negativ werden und der Nenner darf nicht 0 werden. Es muss sowohl

$$x - y \neq 0 \qquad | + y$$

$$\Leftrightarrow \qquad y \neq x$$

als auch

$$x + y \ge 0 \qquad |-x|$$

$$\Leftrightarrow \qquad y \ge -x.$$

Die $nat \ddot{u}rliche$ Definitionsmenge von f ist daher das Gebiet

3. Definitions- und Wertemengen von Funktionen von zwei Variablen

Bestimmen Sie für die nachfolgenden Funktionen $f: \mathbb{R}^2 \to \mathbb{R}$ jeweils die maximale Definitonsmenge und die Wertemenge.

$$a) f(x, y) = \sin(xy)$$

$$b) f(x,y) = x + y + \cos(xy)$$

c)
$$f(x,y) = \sqrt{1-y} + e^{-x^2}$$

a)
$$f(x,y) = \sin(xy)$$

b) $f(x,y) = x + y + \cos(xy)$
c) $f(x,y) = \sqrt{1-y} + e^{-x^2}$
d) $f(x,y) = \sqrt{x^2 - y} + \sqrt{y - x^2}$

$$D' = \mathbb{R}^2, W = [-1; 1]$$

$$D = \mathbb{R}^2, W = \mathbb{R}$$

c)

Der Radikand darf nicht negativ werden:

$$1 - y \ge 0 \to D = \{(x, y) \in \mathbb{R}^2 | y \le 1\}, W =]0; \infty[$$

d)

$$x^2 - y \ge 0 \text{ und } y - x^2 \ge 0$$

$$y \le x^2 \text{ und } y \ge x^2$$

Die beiden Radikanden dürfen nicht negativ werden, d. h. $x^2 - y \ge 0 \text{ und } y - x^2 \ge 0$ $y \le x^2 \text{ und } y \ge x^2$ Es ergibt sich: $D = \{(x,y) \in \mathbb{R}^2 | y = x^2\}, W = \{0\}.$

4. Höhenlinien

Berechnen und skizzieren Sie für die gegebene Funktion jeweils die Höhenlinien.

$$a) f(x, y) = 3x + 6y$$

b)
$$f(x, y) = \sqrt{y - x^2}$$

c)
$$f(x, y) = x^2 + y^2 - 2y$$

d)
$$f(x,y) = \frac{x^2 + y^2}{2y}$$

a)

Für die Höhenlinie zur Höhe L ergibt sich

$$L = f(x; y) = 3x + 6y$$

$$-3x$$

$$L - 3x = 6y$$

$$5x = 6y$$

$$y = \frac{L - 3x}{6} = \frac{L}{6} - \frac{x}{2} \,.$$

Man erhält somit als Höhenlinien

$$y = -\frac{x}{2} + \frac{L}{6} \quad \text{mit } L \in \mathbb{R}.$$

b)

Für die Höhenlinie zur Höhe L ergibt sich

$$L = f(x; y) = \sqrt{y - x^2}$$

$$\left| \left(\ldots \right) \right|$$

$$L^2 = y - x^2$$

$$| + x^2 |$$

4

$$y = x^2 + L^2 \quad \text{mit } L \in \mathbb{R}_0^+$$

c)
Für die Höhenlinie zur Höhe L ergibt sich

$$L = f(x; y) = x^{2} + (y - 1)^{2} - 1$$
 | + 1

$$x^2 + (y-1)^2 = L+1.$$

Die Höhenlinien sind folglich Kreise in der xy-Ebene mit Mittelpunkt M und Radius r: $M=\left(0\,;\,1\right),\;r=\sqrt{L+1}\quad \mathrm{mit}\;L\in\left[-1,\infty\right[.$

d) Der Nenner darf nicht 0 werden. Somit ergibt sich $D = \{(x, y) \in \mathbb{R}^2 | y \neq 0\}, W = \mathbb{R}.$

Bestimmung der Höhenlinien zur Höhe c:

$$f(x,y) = \frac{x^2 + y^2}{2y} \stackrel{!}{=} c \neq 0$$

führt auf die Darstellung

$$x^{2} + y^{2} = 2cy \iff x^{2} + (y - c)^{2} = c^{2}.$$

Dies sind Kreise um die Punkte (0,c) mit Radius |c|. Die Punkte auf der x-Achse werden somit nicht mit einbezogen.

5. Niveauflächen

Berechnen und beschreiben Sie für die gegebene Funktion jeweils die Niveauflächen.

a)
$$f(x, y, z) = x + 2y + 3z$$

a)
$$f(x, y, z) = x + 2y + 3z$$
 b) $f(x, y, z) = x^2 + y^2 + z^2$ c) $f(x, y, z) = x^2 + y^2$

c)
$$f(x, y, z) = x^2 + y^2$$

a)

Die Niveaufläche zum Niveau L ergibt sich zu

$$L = f(x, y, z) = x + 2y + 3z.$$

Die Niveauflächen sind also Ebenen mit der Gleichung

$$z = \frac{1}{3}(L - x - 2y).$$

Die Niveaufläche zum Niveau L ergibt sich zu

$$L = f(x, y, z) = x^2 + y^2 + z^2$$
.

Die Niveauflächen sind also Sphären in 3D um den Mittelpunkt (0;0;0) mit Radius \sqrt{L} mit der Gleichung

$$z = \sqrt{L - x^2 - y^2}.$$

Die Niveaufläche zum Niveau L ergibt sich zu

$$L = f(x, y, z) = x^2 + y^2$$
.

Für die Variable z gibt es keine Einschränkung, somit entsprechen die Niveauflächen von f dem Mantel von Zylindern in 3D, wobei die Symmetrieachse des Zylinders die z-Achse ist. Für den Radius des Zylinders ergibt sich \sqrt{L} .

6. Funktionsgraphen und Höhenlinien mit Python/Numpy

Plotten Sie sowohl die Funktion als auch die Höhenlinien der angegebenen Funktionen mit Python/Numpy.

a)
$$f(x, y) = \frac{x}{2}$$

b)
$$f(x, y) = \frac{y}{2}$$

c)
$$f(x,y) = \frac{x+y}{2}$$

d)
$$f(x,y) = \frac{x \cdot y}{4}$$

e)
$$f(x, y) = \frac{x^2 + y^2}{2}$$

b)
$$f(x,y) = \frac{y}{2}$$
 c) $f(x,y) = \frac{x+y}{2}$
e) $f(x,y) = \frac{x^2+y^2}{2}$ f) $f(x,y) = \frac{6 \cdot \sin(xy)}{1+x^2+y^2}$

a)

Python initialisieren

import matplotlib.pyplot as pl;

import numpy as np;

Parameter

$$x_0=-2; x_E=2; y_0=-2; y_E=2;$$

N x=401; N y=401; # Anzahl Intervalle für x- bzw y-Achse

N q=10; N l=31; # Schrittweite

az=60; el=25; # Drehwinkel gegenüber z-Achse (azimuth) und gegenüber xy-Ebene

fiq=1;

```
# Funktionen
def f(x,y): z=x/2; return z;
# Daten
x data=np.linspace(x 0,x E,N x); # Punkte auf x-Achse
erzeugen
y data=np.linspace(y 0, y E, N y);  # Punkte auf y-Achse
erzeugen
[x grid, y grid] = np.meshgrid(x data, y data); # Pärchen mit
allen x- und y-Werten
z grid=f(x grid,y grid); # Funktionswerte der Pärchen
# Graph-Plot
pl.figure(fig); ax=pl.axes(projection='3d');
ax.plot surface(x grid, y grid, z grid, rstride=N g, cstride=N g,
cmap='rainbow'); ax.view init(el,az);
ax.set xlabel('x'); ax.set ylabel('y'); ax.set zlabel('z');
ax.set box aspect((np.ptp(x grid), np.ptp(y grid),
np.ptp(z grid)));
pl.title('3D Darstellung');
# Höhenlinien-Plot
fig=fig+1; fh=pl.figure(fig);
pl.contour(x grid, y grid, z grid, N l);
pl.xlabel('x'); pl.ylabel('y');
pl.grid(False); pl.axis('image');
pl.title('Höhenlinien');
```


b)
Parameter:
x_0=-2; x_E=2; y_0=-2; y_E=2;
N_x=401; N_y=401; N_g=10; N_l=31; az=-35; el=30; fig=1;
Funktionen:
def f(x,y): z=y/2; return z;

c)
Parameter:
x_0=-2; x_E=2; y_0=-2; y_E=2;
N_x=401; N_y=401; N_g=10; N_l=31; az=-35; el=30; fig=1;
Funktionen:
def f(x,y): z=(x+y)/2; return z;
3D Darstellung


```
d)
# Parameter:
x_0=-3; x_E=3; y_0=-3; y_E=3;
N_x=401; N_y=401; N_g=10; N_l=31; az=-35-70; el=15; fig=1;
# Funktionen:
def f(x,y): z=(x*y)/4; return z;
```



```
e)
# Parameter:
x_0=-2; x_E=2; y_0=-2; y_E=2;
N_x=401; N_y=401; N_g=10; N_l=31; az=-35; el=20; fig=1;
# Funktionen:
def f(x,y): z=(x**2+y**2)/2; return z;
```



```
f)
# Parameter:
x_0=-2; x_E=2; y_0=-2; y_E=2;
N_x=401; N_y=401; N_g=10; N_l=31; az=-35; el=40; fig=1;
# Funktionen:
def f(x,y): z=(6*np.sin(x*y))/(1+x**2+y**2); return z;
```


7. Aussagen über eine Funktion → Gegeben sei die Funktion

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$

 $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}.$ Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Es gilt: $f(3; 0; 4) = 5$.	X	
b) <i>f</i> ist eine Funktion in 3 Variablen.	Х	
c) Die x-Achse ist eine Höhenlinie von <i>f</i> .		Χ
d) Die Einheitssphäre in 3D ist der Graph von f .		X
e) Die Einheitssphäre in 3D ist eine Niveaufläche von f.	X	
f) Die Sphäre um den Ursprung mit Radius 7 ist eine Niveaufläche	_	
von f .	^	