CMPEN 431 - HW 2 - Quang Nguyen

Thursday, September 17, 2015 7:41 PM

#1

A) @ 4 ps per bit, an add would take 64 ps = T_{add}

Using RCA, it would take at least 1.024 ns

B) @ 4 ps per bit, an add would take 0.16 ps = T_{add}

Using CLA, it would take at least 0.256 ns

#2

A) -2.25 X 2⁺¹⁶

$$0.25 = \frac{1}{4} = \frac{1}{2^2} = 0.01$$
 therefore $2.25 \times 2^{+16} \rightarrow 10.01_2 \times 2^{16}$

 $normalize(10.01_2x 2^{16}) = 1.001 x 2^{17}$

 $Fractional = 0.001_2$ Exponential = 17 + 127 = 144

B) 0.50 X 2⁻¹⁰

$$0.5_{10} = \frac{1}{2_{10}} = \frac{1}{2_{10}^1} = 0.1_2$$

 $normalize(0.1_2\:x\:2^{10}) = 1.0\:x\:2^{-11}$

 $Fractional = 1.0000_2$ Exponential = -11 + 127 = 116

C) The smallest negative number

D) The largest negative number

D) +∞

#3

An additional JAR bit needs to be added to the control unit inorder to make the JAR instruction possible.

#4

A)

B)

LW	\$4, -100(\$3)	Load use data hazard
NOP		
SW	\$2, 8(\$4)	
ADD	\$2, \$4, \$4	

#5

#6

Set 1: cache 2 lat = 5.		bzip2	hmmer	mcf	sjeng	milc	equake	
Clock = 1 GHz					, ,			
	# of instructions	2500000	2500000	2500000	2500000	2500000	2500000	
	CPI	4.0102	2.3681	2.568	2.8592	2.5335	2.7813	
	II1 cache miss rate	0.0002	0.0002	0.0412	0.0001	0.0031	0.0595	
	D11 cache miss rate	0.4186	0.0832	0.0874	0.0798	0.12	0.0209	
	UL2 cache miss rate	0.2959	0.1677	0.158	0.2538	0.25	0.0139	
Int Mean	2.889691006	Float Mean	2.65451004	Performance (int)	173.0288806	Performance (int)	188.3586773	
Set 1: cache 2 lat = 10. Clock = 1.5 GHz		bzip2	hmmer	mcf	sjeng	milc	equake	
CIOCK = 1.5 GHZ	# of instructions	2500000	2500000	2500000	2500000	2500000	2500000	
	CPI	4.3233	2.4082	2.7908	2.8963	2.5474	3.125	
	I11 cache miss rate	0.0002	0.0002	0.0411	0.0001	0.0031	0.0595	
	D11 cache miss rate	0.4186	0.0833	0.0874	0.0798	0.12	0.0209	
	UL2 cache miss rate	0.2959	0.1676	0.158	0.2538	0.25	0.0139	
Int Mean	3.028796159	Float Mean	2.821457956	Performance (int)	247.6231349	Performance (int)	265.8200163	
Set 1: cache 2 lat = 15. Clock = 2 GHz		bzip2	hmmer	mcf	sjeng	milc	equake	
	# of instructions	2500000	2500000	2500000		2500000	2500000	
	CPI	4.6364	2.4488	3.0137	2.9339	2.5613	3.4694	
	I11 cache miss rate	0.0002	0.0002	0.0411	0.0001	0.0031	0.0595	
	D11 cache miss rate	0.4183	0.0834	0.0874	0.0798	0.12	0.0209	
	UL2 cache miss rate	0.2959	0.1675	0.158	0.2538	0.25	0.0139	
	Mean	2.349518537	1.933220036	2.030571963	2.055874485	1.969727431	2.108634142	
Int Mean	3.165336493	Float Mean	2.980968671	Performance (int)	315.9221783	Performance (int)	335.4614255	

Conclusion: Whenever a designer increase the clock rate, this often introduces latency to the system. This latency is often acceptable as the increase in the clock rate will provide an overall performance increase. Also, changing the L2 cache Latency has little to no effect on the caches miss rate.

For both interger and floating point benchmarks, set 3 has the best performance $\,$