

Laboratory data supports the use of the Kalai (proportional) solution in bilateral bargaining over prices and quantities traded

Estimating bargaining solutions with laboratory data.

John Duffy, Lucie Lebeau, Daniela Puzzello

http://lucielebeau.com

1 What we do and why

- Generate laboratory data to study the process and outcomes of an unstructured bilateral negotiation over how many units of goods to trade and at what price
 - **►** Estimate bargaining weights
 - ► Compare outcomes to the 2 axiomatic solutions most commonly used in the literature: Nash (1950) and Kalai (1977)
- Preferences and payoffs used are typical of workhorse models of monetary economies and over-the-counter asset trade, e.g. Lagos and Wright (2005), where the bargaining protocol and bargaining weights used have strong implications:
 - ► theoretically, e.g., for the existence of monetary equilibria
 - quantitatively, e.g., to estimate the welfare cost of inflation
 - Our results directly inform how to set up and calibrate those models

Identification strategy

- First-best trade size q*: u'(q*)=c'(q*)
- $m \in \{30, 60\} \Rightarrow m > u(q^*) \Rightarrow "unconstrained"$
 - ► Nash and Kalai predict the same outcome: $y=(1-\theta)u(q^*)+\theta c(q^*)$
 - Use offers close to this prediction to estimate the consumer's bargaining power, θ, using

 $consumer's \ surplus = \theta \bullet total \ surplus + error$ (1)

- m = 315 \Rightarrow m < c(q*) \Rightarrow "constrained"
 - ► Nash and Kalai predict different outcomes
 - Kalai: equal split of surplus; individual surpluses ↑ in m
 - Nash: unequal split of surplus; consumer's surplus non-monotone
 - ► Use outcomes to distinguish between Nash and Kalai, e.g. test for monotonicity of consumer's surplus by estimating

 $consumer's\ surplus = \beta_0 + \beta_1 \bullet (m=30) + \beta_2 \bullet (m=315) + error (2)$

2 Experimental design

Producers. Payoff -c(q)+p

Consumers. Own m tokens per round. Payoff u(q)-p

Setting

- Experiment run at UC Irvine in the Experimental Social Sciences Lab
- 6 sessions as of September 2019

Each session

- 10 participants with **fixed roles**
 - ▶ 5 consumers
 - ► 5 producers
- Endowments and preferences:see figure above
- 30 rounds of bargaining
- Fixed treatmentm ∈ {30, 60, 315}

Each round

- Bilateral bargaining
- Random matching
- Unstructured bargaining
 - ▶ Both players can make any proposals (q,y) at any time as long as trade surpluses are positive and y ≤ m
 - ► Both players can accept any proposal made by the other player at any time
- 2-minute time limit.
 Disagreement payoff (0,0)

Results

- 1. On average, subjects behave optimally
 - ► unconstrained subjects achieve the first best, q=q*=4
 - constrained subjects define to the first best, q=q===
 constrained subjects trade all of the consumers' tokens
- **2.** As m \uparrow , the agreed-upon q \uparrow

- 3. We estimate $\theta = 0.4960$ (see appendix for more details)
- **4.** Ratio of consumer's surplus to producer's surplus constant as m \uparrow , and individual surpluses all increase as m \uparrow (see appendix for more details).

Reject Nash bargaining in favor of Kalai (proportional) bargaining

Appendix

Decision screen

Descriptive statistics

- 4589 proposals
- 18.6% acceptance rate
- 95.5% agreement rate
- 5.1 proposals per round on average
- Consumers made
 - ► 50.3% of all proposals
 - ► 44% of all accepted proposals

Predicted outcomes when $\theta = 0.5$

RE estimation of equation (1) Samples: accepted offers when $m \in \{30,60\}$

(1) all (3) |q-4| < 0.1

(2) 9-4	< 0.5	(4) 9-4	< 0.05	
		Buyer's s	surplus	
	$\overline{(1)}$	(2)	(3)	

RE estimation of equation (2) Samples: accepted offers

(1) all (2) |q-4| < 0.05 and 60-y < 0.5

	Buyer's surplus	
	(1)	(2)
m = 30	-16.4272	-17.5511
	(2.7015)	(2.2973)
m = 315	6.2254	6.8685
	(2.6833)	(2.2624)
Constant $(m = 60)$	44.5435	44.4585
•	(1.9041)	(1.5978)
Observations	854	752