PHYS 234 Assignment 2

Brandon Tsang

May 29, 2020

2. Spin Operator in an Arbitrary Direction

Find the representation of the spin operator $S_n := \vec{S} \cdot \hat{n}$ that measures the projection of the spin- $\frac{1}{2}$ particle along the \hat{n} direction. Calculate its representation in the S_z -basis. Here, \hat{n} is the unit vector in spherical-polar coordinates.

 $\hat{\mathbf{n}} = \sin(\theta)\cos(\phi)\hat{\mathbf{x}} + \sin(\theta)\sin(\phi)\hat{\mathbf{y}} + \cos(\theta)\hat{\mathbf{z}}$

and

$$\vec{S} = S_x \hat{\mathbf{x}} + S_y \hat{\mathbf{y}} + S_z \hat{\mathbf{z}}$$

where S_x , S_y , and S_z are the three components of the spin- $\frac{1}{2}$ operator.

(a) Show that

$$S_n = \frac{\hbar}{2} \begin{bmatrix} \cos \theta & \sin(\theta)e^{-i\phi} \\ \sin(\theta)e^{i\phi} & -\cos \theta \end{bmatrix}.$$

$$S_n = \mathbf{S} \cdot \hat{\mathbf{n}}$$

= $S_x \sin(\theta) \cos(\phi) + S_y \sin(\theta) \sin(\phi) + S_z \cos(\theta)$

$$S_x = \frac{\hbar}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad S_y = \frac{\hbar}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \qquad S_z = \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{split} S_n &= \frac{\hbar}{2} \left(\begin{bmatrix} 0 & \sin\theta\cos\phi \\ \sin\theta\cos\phi & 0 \end{bmatrix} + \begin{bmatrix} 0 & -i\sin\theta\sin\phi \\ i\sin\theta\sin\phi & 0 \end{bmatrix} + \begin{bmatrix} \cos\theta & 0 \\ 0 & -\cos\theta \end{bmatrix} \right) \\ &= \frac{\hbar}{2} \begin{bmatrix} \cos\theta & \sin\theta\cos\phi - i\sin\theta\sin\phi \\ \sin\theta\cos\phi + i\sin\theta\sin\phi & -\cos\theta \end{bmatrix} \\ &= \frac{\hbar}{2} \begin{bmatrix} \cos\theta & \sin\theta(\cos\phi - i\sin\phi) \\ \sin\theta(\cos\phi + i\sin\phi) & -\cos\theta \end{bmatrix} \\ &= \frac{\hbar}{2} \begin{bmatrix} \cos\theta & \sin(\theta)e^{-i\phi} \\ \sin(\theta)e^{i\phi} & -\cos\theta \end{bmatrix} \end{split}$$

(b) Show that the eigenvalues of S_n are $\pm \frac{\hbar}{2}$, as expected from the S-G experiment.

$$(S_n - \lambda I) |\psi\rangle = \mathbf{0}$$

$$\left(\frac{\hbar}{2} \begin{bmatrix} \cos \theta & \sin(\theta)e^{-i\phi} \\ \sin(\theta)e^{i\phi} & -\cos \theta \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \right) |\psi\rangle = \mathbf{0}$$

$$\begin{vmatrix} \frac{\hbar}{2} \cos \theta - \lambda & \frac{\hbar}{2} \sin(\theta)e^{-i\phi} \\ \frac{\hbar}{2} \sin(\theta)e^{i\phi} & -\frac{\hbar}{2} \cos \theta - \lambda \end{bmatrix} = 0$$

$$-\left(\frac{\hbar}{2} \cos \theta - \lambda\right) \left(\frac{\hbar}{2} \cos \theta + \lambda\right) - \left(\frac{\hbar}{2} \sin \theta\right)^2 \left(e^{i\phi - i\phi}\right) = 0$$

$$-\left(\frac{\hbar}{2} \cos \theta\right)^2 + \lambda^2 - \left(\frac{\hbar}{2} \sin \theta\right)^2 = 0$$

$$\lambda^2 = \left(\frac{\hbar}{2} \cos \theta\right)^2 + \left(\frac{\hbar}{2} \sin \theta\right)^2$$

$$= \left(\frac{\hbar}{2}\right)^2$$

$$\lambda = \pm \frac{\hbar}{2}$$

(c) Show that the eigenvectors of S_n can be represented as

$$|+\rangle_n = \cos\left(\frac{\theta}{2}\right)|+\rangle + \sin\left(\frac{\theta}{2}\right)e^{i\phi}|-\rangle$$

 $|-\rangle_n = \sin\left(\frac{\theta}{2}\right)|+\rangle - \cos\left(\frac{\theta}{2}\right)e^{i\phi}|-\rangle$

The eigenvector $|\psi\rangle$ corresponding to the eigenvalue $\lambda=\pm\frac{\hbar}{2}$ is $|\pm\rangle_n$, and the eigenvector $|\psi\rangle$ corresponding to the eigenvalue $\lambda=-\frac{\hbar}{2}$ is $|-\rangle_n$.

$$(S_n - \lambda I) |\psi\rangle = \mathbf{0}$$

$$\left(\frac{\hbar}{2} \begin{bmatrix} \cos \theta & \sin(\theta)e^{-i\phi} \\ \sin(\theta)e^{i\phi} & -\cos \theta \end{bmatrix} - \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) |+\rangle_n = \mathbf{0}$$

$$\begin{bmatrix} \cos \theta - 1 & \sin(\theta)e^{-i\phi} \\ \sin(\theta)e^{i\phi} & -\cos \theta - 1 \end{bmatrix} |+\rangle_n = \mathbf{0}$$

$$\begin{bmatrix} \cos \theta - 1 & \sin(\theta)e^{-i\phi} & | & 0 \\ \sin(\theta)e^{i\phi} & -\cos \theta - 1 & | & 0 \end{bmatrix} \xrightarrow{R_2 - \frac{\sin(\theta)e^{i\phi}}{\cos \theta - 1}} \begin{bmatrix} \cos \theta - 1 & \sin(\theta)e^{-i\phi} & | & 0 \\ 0 & -\cos \theta - 1 - \frac{(\sin(\theta)e^{-i\phi})(\sin(\theta)e^{i\phi})}{\cos \theta - 1} & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} \cos \theta - 1 & \sin(\theta)e^{-i\phi} & | & 0 \\ 0 & -\frac{(\cos \theta + 1)(\cos \theta - 1)}{\cos \theta - 1} - \frac{\sin^2(\theta)}{\cos \theta - 1} & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} \cos \theta - 1 & \sin(\theta)e^{-i\phi} & | & 0 \\ 0 & -\frac{\cos^2(\theta) - 1 + \sin^2(\theta)}{\cos \theta - 1} & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} \cos \theta - 1 & \sin(\theta)e^{-i\phi} & | & 0 \\ 0 & 0 & -\frac{\cos^2(\theta) - 1 + \sin^2(\theta)}{\cos \theta - 1} & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} \cos \theta - 1 & \sin(\theta)e^{-i\phi} & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

If $|+\rangle_n = a |+\rangle + b |-\rangle$, then the above matrix corresponds to the equation

$$(\cos \theta - 1)a + \sin(\theta)e^{-i\phi}b = 0$$

$$(1 - \cos \theta)a = \sin(\theta)e^{-i\phi}b$$

$$\sin^2\left(\frac{\theta}{2}\right)a = \frac{1}{2}\sin(\theta)e^{-i\phi}b$$

$$\sin^2\left(\frac{\theta}{2}\right)e^{i\phi}a = \sin(\theta)\cos^2\left(\frac{\theta}{2}\right)b$$

So
$$|+\rangle_n = \sin^2\left(\frac{\theta}{2}\right)e^{i\phi}|+\rangle + \sin(\theta)\cos^2\left(\frac{\theta}{2}\right)|-\rangle$$
.

(I couldn't get the equation to match the form above.)

(d) For which values of θ and ϕ does the state $|+\rangle_n$ reduce to $|+\rangle_x$ and $|+\rangle_y$? $|+\rangle_x$ was $\frac{1}{\sqrt{2}}(|+\rangle + |-\rangle)$, so for $|+\rangle_n$ to equal $|+\rangle_x$, we must set

$$\cos\frac{\theta}{2} = \frac{1}{\sqrt{2}}$$

and

$$\sin\left(\frac{\theta}{2}\right)e^{i\phi} = \frac{1}{\sqrt{2}}.$$

Starting with the first equation:

$$\cos \frac{\theta}{2} = \frac{1}{\sqrt{2}}$$
$$\frac{\theta}{2} = \frac{\pi}{4}$$
$$\theta = \frac{\pi}{2}$$

Then the second equation:

$$\sin\left(\frac{\theta}{2}\right)e^{i\phi} = \frac{1}{\sqrt{2}}$$
$$\frac{1}{\sqrt{2}}e^{i\phi} = \frac{1}{\sqrt{2}}$$
$$e^{i\phi} = 1$$
$$\phi = 0$$

So for $|+\rangle_n$ to reduce to $|+\rangle_x$, θ must be $\frac{\pi}{2}$, and ϕ must be 0. Next, $|+\rangle_y$ was $\frac{1}{\sqrt{2}}(|+\rangle + i|-\rangle)$, so for $|+\rangle_n$ to equal $|+\rangle_y$, we must set

$$\cos\frac{\theta}{2} = \frac{1}{\sqrt{2}}$$

and

$$\sin\left(\frac{\theta}{2}\right)e^{i\phi} = i\frac{1}{\sqrt{2}}.$$

The solution to the first equation we found earlier to be $\theta = \frac{\pi}{2}$. We then only have to solve the second equation:

$$\sin\left(\frac{\theta}{2}\right)e^{i\phi} = i\frac{1}{\sqrt{2}}$$
$$\frac{1}{\sqrt{2}}e^{i\phi} = i\frac{1}{\sqrt{2}}$$
$$e^{i\phi} = i$$
$$\phi = \frac{\pi}{2}$$

So for $|+\rangle_n$ to reduce to $|+\rangle_y$, both θ and ϕ must be $\frac{\pi}{2}$.

- (e) Suppose that a measurement of S_z is carried out on a particle in the $|-\rangle_n$ state. What is the probability that the measurement yields:
 - (i) $\frac{\hbar}{2}$? The probability is:

$$\begin{aligned} |\langle +|-\rangle_n|^2 &= \left| \langle +|\left(\sin\left(\frac{\theta}{2}\right)|+\right) - \cos\left(\frac{\theta}{2}\right)e^{i\phi} |-\rangle \right) \right|^2 \\ &= \left| \sin\left(\frac{\theta}{2}\right) \right|^2 \\ &= \sin^2\left(\frac{\theta}{2}\right) \end{aligned}$$

(ii) $-\frac{\hbar}{2}$? The probability is:

$$\begin{aligned} \left| \langle -|-\rangle_n \right|^2 &= \left| \langle -|\left(\sin\left(\frac{\theta}{2}\right)| + \right) - \cos\left(\frac{\theta}{2}\right) e^{i\phi} \left| - \right\rangle \right) \right|^2 \\ &= \left| -\cos\left(\frac{\theta}{2}\right) e^{i\phi} \right|^2 \\ &= \cos^2\left(\frac{\theta}{2}\right) \end{aligned}$$