Exercices sur les vecteurs

Exercice 1

ABCD est un parallélogramme et ses diagonales se coupent en O.

(1) Compléter par un vecteur égal :

a)
$$\overrightarrow{AB} = \dots$$

b)
$$\overrightarrow{BC} = \dots$$

c)
$$\overrightarrow{DO} = \dots$$

d)
$$\overrightarrow{OA} = \dots$$

e)
$$\overrightarrow{CD} = \dots$$

(2) Dire si les affirmations suivantes sont vraies ou fausses et justifier :

a)
$$\overrightarrow{OB} = \overrightarrow{OC}$$

b)
$$[AB] = [DC]$$

c)
$$\overrightarrow{OA} = \overrightarrow{OC}$$

d)
$$\overline{OA} = \overline{OC}$$

e)
$$AB = DC$$

f)
$$O = \min \overrightarrow{AC}$$

g)
$$\operatorname{mil} \overrightarrow{BD} = \operatorname{mil} \overrightarrow{AC}$$

h)
$$\overrightarrow{AA} = \overrightarrow{BB}$$

Exercice 2

En utilisant le quadrillage, dire pour chaque égalité si elle est vraie ou fausse :

$$(2) \quad \overrightarrow{CD} = -\overrightarrow{AB}$$

$$(3) \quad \overrightarrow{DA} = \overrightarrow{DB}$$

$$(4) \quad \overrightarrow{ED} = \overrightarrow{BD}$$

(5)
$$\overrightarrow{AE} = \overrightarrow{BF}$$

$$(6) \quad \overrightarrow{EF} = -\overrightarrow{DC}$$

Exercice 3

Soit ABC un triangle quelconque.

(1) Construire:

- le point N tel que $\overrightarrow{AN} = \overrightarrow{BC}$;
- le point P tel que $\overrightarrow{PA} = \overrightarrow{BC}$;
- le point M tel que $\overrightarrow{BM} = \overrightarrow{AC}$.
- (2) Montrer que $A = \min[NP]$, $B = \min[PM]$ et $C = \min[MN]$.
- (3) Quel est le rapport des aires des triangles ABC et MNP? Justifier!

Sur la figure ci-contre, formée de parallélogrammes juxtaposés, déterminer :

- (1) un représentant de \overrightarrow{DB}
- (2) trois représentants de \overrightarrow{AE}
- (3) un représentant de \overrightarrow{FG} d'origine B
- (4) un représentant de \overrightarrow{CF} d'extrémité E
- (5) un représentant de $\vec{0}$
- (6) un représentant de $-\overrightarrow{AF}$

Exercice 5

(1) Reproduire le parallélogramme ABCD ci-dessus dans votre cahier puis construire les points $E,\,F,\,G,\,H$ et I définis par :

$$\overrightarrow{CE} = \overrightarrow{AC} \; ; \; \overrightarrow{BF} = \overrightarrow{AC} \; ; \; \overrightarrow{DG} = \overrightarrow{AC} \; ;$$

$$\overrightarrow{AH} = -\overrightarrow{BC} \; ; \; \overrightarrow{IA} = \overrightarrow{AC} \; .$$

- (2) Quelle est la nature des quadrilatères BCEF et DGEC.
- (3) Que représente le point A pour le segment [IC]?

Exercice 6

Calculer les sommes vectorielles indiquées en utilisant la figure ci-contre :

(2)
$$\overrightarrow{AE} + \overrightarrow{DF}$$

(3)
$$\overrightarrow{BD} - \overrightarrow{BA} - \overrightarrow{AO}$$

$$(4) \quad \overrightarrow{OC} - \overrightarrow{FC}$$

$$(5) \quad \overrightarrow{DO} + \overrightarrow{BC} + \overrightarrow{AE}$$

(6)
$$\overrightarrow{AB} + \overrightarrow{AD}$$

Exercice résolu 7

Déterminer la somme des vecteurs sur chacune des figures suivantes et expliquer votre démarche.

(1)

(2)

(3)

(5)

(6)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

- Sur les figures (1) à (8) de l'exercice 7, construire $\vec{u} \vec{v}$.
- Sur les figures (9) et (10) de l'exercice 7, construire $\vec{u} \vec{v} \vec{w}$. (2)
- Sur les figures (11) et (12) de l'exercice 7, construire $\vec{u} = \vec{a} \vec{b}$, (3) $\vec{v} = \vec{b} - \vec{c}$ et $\vec{w} = \vec{a} - \vec{c}$. Quelle est la relation entre \vec{u} , \vec{v} et \vec{w} ?

Exercice résolu 9

Sur la figure ci-dessus, formée de parallélogrammes juxtaposés, déterminer un représentant de

(1)
$$\overrightarrow{AD} + \overrightarrow{CF}$$

$$(2)$$
 $\overrightarrow{GC} + \overrightarrow{AC}$

(3)
$$\overrightarrow{HE} + \overrightarrow{BC}$$

$$(4) \quad \overrightarrow{DE} - \overrightarrow{DH}$$

(5)
$$\overrightarrow{GJ} + \overrightarrow{BF}$$

(6)
$$\overrightarrow{DI} + \overrightarrow{JI}$$

(7)
$$\overrightarrow{FG} - \overrightarrow{AI}$$

(8)
$$\overrightarrow{IF} - \overrightarrow{FJ}$$

(8)
$$\overrightarrow{IF} - \overrightarrow{FJ}$$

(9) $\overrightarrow{AI} + \overrightarrow{AE} + \overrightarrow{FJ}$

(10)
$$\overrightarrow{AF} + \overrightarrow{HD} + \overrightarrow{BD}$$

$$(11)$$
 $\overrightarrow{JE} + \overrightarrow{FG} - \overrightarrow{ID}$

(11)
$$\overrightarrow{GJ} + \overrightarrow{IG} + \overrightarrow{BI}$$

(12) $\overrightarrow{GJ} - \overrightarrow{DA} + \overrightarrow{BI}$

(13)
$$\overrightarrow{FD} + \overrightarrow{IA} + \overrightarrow{CG} - \overrightarrow{FH}$$

$$(14) \ \overrightarrow{ED} + \overrightarrow{AH} + \overrightarrow{CF} - \overrightarrow{FH}$$

Déterminer le point O sur la figure tel que : $\overrightarrow{AO} = \overrightarrow{CF} + \frac{1}{2}\overrightarrow{FG} - \overrightarrow{IA}$. Déterminer le point P sur la figure tel que : $\overrightarrow{EP} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{GC} + \overrightarrow{AB}$

Exercice 10

Démontrer les propriétés vectorielles suivantes à l'aide d'une figure.

$$(1) \quad -(-\vec{a}\,) = \vec{a}$$

(5)
$$2 \cdot (\vec{a} - \vec{b}) = 2\vec{a} - 2\vec{b}$$

$$(2) \quad \vec{v} - \vec{u} = -(\vec{u} - \vec{v})$$

(6)
$$\vec{u} + \vec{v} + \vec{u} = 2\vec{u} + \vec{v}$$

(3)
$$\vec{u} - (\vec{v} + \vec{w}) = \vec{u} - \vec{v} - \vec{w}$$
 (7) $-3 \cdot (2\vec{u}) = -6\vec{u}$
(4) $\vec{a} - (\vec{e} - \vec{r}) = \vec{a} - \vec{e} + \vec{r}$ (8) $2 \cdot (-\frac{5}{3}\vec{z}) = -\frac{10}{3}\vec{z}$

$$(7) \quad -3 \cdot (2\vec{u}) = -6\vec{u}$$

(4)
$$\vec{a} - (\vec{e} - \vec{r}) = \vec{a} - \vec{e} + \vec{r}$$

$$(8) \quad 2 \cdot \left(-\frac{5}{3}\vec{z}\right) = -\frac{10}{3}\bar{z}$$

Exercice résolu 11

Sur la figure ci-dessus, construire le point

(1)
$$I$$
 tel que $\overrightarrow{EI} = 2\overrightarrow{AB}$

(5)
$$M$$
 tel que $\overrightarrow{MA} = \frac{3}{2}\overrightarrow{EF}$

(2)
$$J$$
 tel que $\overrightarrow{GJ} = -\overline{AB}$

(6)
$$N$$
 tel que $\overrightarrow{NH} = -\frac{2}{3}\overrightarrow{DC}$

(3)
$$K$$
 tel que $\overrightarrow{CK} = -\frac{5}{2} \overrightarrow{AB}$

(7)
$$P$$
 tel que $\overrightarrow{EP} = 2\overrightarrow{EF} + \overrightarrow{CD}$

(4)
$$L$$
 tel que $\overrightarrow{LC} = \frac{1}{2}\overrightarrow{CL}$

(1)
$$I$$
 tel que $\overrightarrow{EI} = 2\overrightarrow{AB}$ (5) M tel que $\overrightarrow{MA} = \frac{3}{2}\overrightarrow{EF}$
(2) J tel que $\overrightarrow{GJ} = -\overrightarrow{AB}$ (6) N tel que $\overrightarrow{NH} = -\frac{2}{3}\overrightarrow{DC}$
(3) K tel que $\overrightarrow{CK} = -\frac{5}{2}\overrightarrow{AB}$ (7) P tel que $\overrightarrow{EP} = 2\overrightarrow{EF} + \overrightarrow{CD}$
(4) L tel que $\overrightarrow{LC} = \frac{1}{2}\overrightarrow{CD}$ (8) Q tel que $\overrightarrow{HQ} = 2\left(\overrightarrow{AB} - \overrightarrow{CD}\right)$

Exercice 12

Soit ABCD un parallélogramme. Construire les points M, N, P, Q définis par :

Exercice 13

A et B étant deux points distincts donnés, construire si possible les points inconnus Q, R, S, T, U, V, W, X, Y et Z en résolvant les équations vectorielles correspondantes:

$$(1) \quad \overrightarrow{AQ} = \overrightarrow{AB} + \overrightarrow{QB}$$

$$(4) \quad \overrightarrow{BT} - 3\overrightarrow{AT} = 2\overrightarrow{AB}$$

$$(2) \quad \overrightarrow{AR} = \overrightarrow{RB}$$

$$(5) \quad \overrightarrow{AU} + \overrightarrow{BU} = \overrightarrow{0}$$

$$(3) \quad \overrightarrow{AS} = 5\overrightarrow{BS}$$

$$(6) \quad \overrightarrow{AV} + \overrightarrow{VB} = \overrightarrow{0}$$

 $(7) \quad 2\overrightarrow{AW} = -\overrightarrow{WB}$

 $(9) \quad 2\overrightarrow{AY} - 3\overrightarrow{BY} = \frac{1}{2}\overrightarrow{AB}$

 $(8) \quad \overrightarrow{XA} + \overrightarrow{XB} = 2\overrightarrow{AB}$

 $(10) \quad -2\overrightarrow{AZ} + \overrightarrow{BZ} = 2\overrightarrow{BA}$

Exercice 14

A et B étant deux points distincts donnés, construire les points M et P tels que : $2\overrightarrow{AM} - 3\overrightarrow{AB} = \vec{0}$ et $\overrightarrow{PA} - 5\overrightarrow{BP} = \vec{0}$

Exercice 15

 $A,\ B$ et C étant trois points non alignés donnés, construire si possible les points inconnus $U,\ V,\ W,\ X,\ Y$ et Z en résolvant les équations vectorielles correspondantes :

$$(1) \quad \overrightarrow{UA} + \overrightarrow{UB} + \overrightarrow{UC} = \overrightarrow{BC}$$

$$(4) \quad -3\overrightarrow{XA} + \overrightarrow{XB} + \overrightarrow{XC} = \vec{0}$$

$$(2) \quad \overrightarrow{AV} - \overrightarrow{VB} - \overrightarrow{VC} = \overrightarrow{0}$$

(5)
$$\overrightarrow{AY} - 2\overrightarrow{BY} + 3\overrightarrow{CY} = 2\overrightarrow{AB}$$

$$(3) \quad 2\overrightarrow{AW} - \overrightarrow{BW} - \overrightarrow{CW} = \overrightarrow{AB}$$

(6)
$$\overrightarrow{AZ} - 3\overrightarrow{ZB} = 2(\overrightarrow{CZ} + \overrightarrow{AZ} - \overrightarrow{BC})$$

Exercice résolu 16

En observant la figure ci-dessus, compléter les relations de colinéarité suivantes :

(1)
$$\overrightarrow{AB} = ... \overrightarrow{AB}$$
 et $\overrightarrow{AB} = ... \overrightarrow{AE}$

(10)
$$\overrightarrow{MK} = ... \overrightarrow{KG}$$
 et $\overrightarrow{GK} = ... \overrightarrow{MK}$

(2)
$$\overrightarrow{GD} = ... \overrightarrow{JP}$$
 et $\overrightarrow{JP} = ... \overrightarrow{GD}$

(11)
$$\overrightarrow{DN} = \dots \overrightarrow{HR}$$
 et $\overrightarrow{HR} = \dots \overrightarrow{ND}$

(3)
$$\overrightarrow{CL} = ... \overrightarrow{QN}$$
 et $\overrightarrow{NQ} = ... \overrightarrow{CL}$

(12)
$$\overrightarrow{LA} = \dots \overrightarrow{RB}$$
 et $\overrightarrow{RB} = \dots \overrightarrow{AL}$

(4)
$$\overrightarrow{DH} = ... \overrightarrow{AF}$$
 et $\overrightarrow{FA} = ... \overrightarrow{HD}$

(13)
$$\overrightarrow{FL} = ... \overrightarrow{NE}$$
 et $\overrightarrow{NE} = ... \overrightarrow{LF}$

(5)
$$\overrightarrow{GR} = ... \overrightarrow{IQ}$$
 et $\overrightarrow{IQ} = ... \overrightarrow{GR}$

(14)
$$\overrightarrow{KJ} = ... \overrightarrow{BP}$$
 et $\overrightarrow{PB} = ... \overrightarrow{JK}$

(6)
$$\overrightarrow{OH} = ... \overrightarrow{OE} \text{ et } \overrightarrow{OE} = ... \overrightarrow{OH}$$

(15)
$$\overrightarrow{AA} = \dots \overrightarrow{AM}$$
 et $\overrightarrow{BB} = \dots \overrightarrow{IJ}$

(7)
$$\overrightarrow{BP} = ... \overrightarrow{LG}$$
 et $\overrightarrow{PB} = ... \overrightarrow{LG}$

(16)
$$\overrightarrow{IO} = ... \overrightarrow{AR}$$
 et $\overrightarrow{RA} = ... \overrightarrow{OI}$

(8)
$$\overrightarrow{QI} = ... \overrightarrow{IE} \text{ et } \overrightarrow{IQ} = ... \overrightarrow{EI}$$

(17)
$$\overrightarrow{BK} = ... \overrightarrow{CL}$$
 et $\overrightarrow{BK} = ... \overrightarrow{LC}$

(9)
$$\overrightarrow{JE} = ... \overrightarrow{JQ}$$
 et $\overrightarrow{JQ} = ... \overrightarrow{JE}$

(18)
$$\overrightarrow{GG} = ... \overrightarrow{AD}$$
 et $\overrightarrow{AD} = ... \overrightarrow{GG}$

Dans chacun des cas suivants, déterminer une relation de colinéarité entre \overrightarrow{AB} et \overrightarrow{AC} , puis faire une figure :

$$(1) \quad \overrightarrow{AB} = 2\overrightarrow{BC}$$

$$(4) \quad 2\overrightarrow{BA} = 3\overrightarrow{CB} - \overrightarrow{AC}$$

(2)
$$\overrightarrow{CB} = \overrightarrow{AB}$$

$$(5) \quad \overrightarrow{AC} = -\frac{3}{4}\overrightarrow{BC}$$

$$(3) \quad \overrightarrow{AC} = -\overrightarrow{BC}$$

$$(6) \quad \frac{1}{3}\overrightarrow{AB} = \frac{5}{6}\overrightarrow{CB} + \overrightarrow{AC}$$

Exercice résolu 18

Soit A et B deux points distants de 1,5 cm.

- (1) Construire le point C tel que $\overrightarrow{BC} = \frac{5}{2}\overrightarrow{AB}$.
- (2) Construire le point D tel que $\overrightarrow{AD} = -\frac{4}{3}\overrightarrow{AB}$.
- (3) Compléter et démontrer la relation de colinéarité : $\overrightarrow{CD} = ...\overrightarrow{AB}$.
- (4) En déduire la longueur du vecteur \overrightarrow{CD} en cm.

Exercice 19

Soit ABC un triangle quelconque et D le point défini par :

$$\overrightarrow{AD} = \overrightarrow{AB} - 3\overrightarrow{AC}.$$

- (1) Construire le point D.
- (2) Exprimer \overrightarrow{AB} en fonction de \overrightarrow{AD} et \overrightarrow{AC} .
- (3) Exprimer \overrightarrow{AC} en fonction de \overrightarrow{AB} et \overrightarrow{AD} .
- (4) Exprimer \overrightarrow{AD} en fonction de \overrightarrow{AC} et \overrightarrow{BC} .

Exercice 20

Soit ABCD quadrilatère quelconque, M le milieu de [AB], N le milieu de [BC], P le milieu de [CD] et Q le milieu de [AD].

- (1) Montrer que $\overrightarrow{MN} = \frac{1}{2}\overrightarrow{AC}$ et $\overrightarrow{QP} = \frac{1}{2}\overrightarrow{AC}$.
- (2) En déduire la nature du quadrilatère MNPQ.

Exercice 21

Soit G le centre de gravité d'un triangle ABC et $A' = \min[BC]$, $B' = \min[CA]$, $C' = \min[AB]$. Montrer que $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = \overrightarrow{0}$.

Exercice 22

Soit G le centre de gravité d'un triangle \overrightarrow{ABC} . Montrer que $\overrightarrow{AG} = \frac{1}{3} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)$, $\overrightarrow{BG} = \frac{1}{3} \left(\overrightarrow{BA} + \overrightarrow{BC} \right)$ et $\overrightarrow{CG} = \frac{1}{3} \left(\overrightarrow{CA} + \overrightarrow{CB} \right)$.

11

Soit G le centre de gravité d'un triangle ABC et $A' = \min[BC]$, $B' = \min[CA]$, $C' = \min[AB]$.

(1) Compléter les relations de colinéarité suivantes :

$$\overrightarrow{GA} = ...\overrightarrow{GA'}$$
; $\overrightarrow{GB} = ...\overrightarrow{GB'}$; $\overrightarrow{GC} = ...\overrightarrow{GC'}$.

(2) En déduire que G est le centre de gravité du triangle A'B'C'.

Exercice 24

Soit G le centre de gravité d'un triangle ABC et $A' = \min[BC]$, $B' = \min[CA]$, $C' = \min[AB]$.

(1) Construire les points P,Q et R tels que :

a)
$$\overrightarrow{GP} = \overrightarrow{GB} + \overrightarrow{GC}$$
, b) $\overrightarrow{GQ} = \overrightarrow{GC} + \overrightarrow{GA}$ et c) $\overrightarrow{GR} = \overrightarrow{GA} + \overrightarrow{GB}$.

- (2) Montrer que : $\overrightarrow{GP} = -\overrightarrow{GA}$, $\overrightarrow{GQ} = -\overrightarrow{GB}$ et $\overrightarrow{GR} = -\overrightarrow{GC}$.
- (3) Quelle est l'isométrie qui transforme le triangle ABC en le triangle PQR?

Exercice 25

Soit G et G' les centres de gravité de deux triangles ABC et DEF respectivement.

- (1) Montrer que : $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = 3\overrightarrow{GG'}$.
- (2) En déduire une condition nécessaire et suffisante pour que deux triangles aient le même centre de gravité.

Exercice 26

Soit G le centre de gravité d'un triangle ABC.

- (1) Montrer qu'il existe un point unique D tel que $\overrightarrow{DA} + \overrightarrow{DB} + \overrightarrow{DC} = 3\overrightarrow{AB}$.
- (2) Quelle est la nature du quadrilatère ABGD?

Exercice 27

Soit ABC un triangle.

- (1) Construire les points I, J et K tels que :
 - $\bullet \quad \overrightarrow{AI} = \overrightarrow{AB} + \overrightarrow{AC}$
 - $\bullet \quad \overrightarrow{BJ} = 2\overrightarrow{BA} + \overrightarrow{AC}$
 - $\bullet \quad \overrightarrow{CK} = \overrightarrow{CA} + \overrightarrow{CB}$
- (2) Démontrer que les droites AI, BJ et CK sont concourantes en G, centre de gravité du triangle ABC.

12

Soit G le **centre de gravité** d'un quadrilatère quelconque ABCD, c.-à-d. G est l'**unique point** vérifiant l'égalité :

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0}.$$

(1) Construire le point G après avoir démontré que :

$$\overrightarrow{AG} = \frac{1}{4} (\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}).$$

- (2) Soit M le milieu de [AB] et P le milieu de [CD]. Donner une construction plus simple du point G après avoir démontré que $\overrightarrow{GM} + \overrightarrow{GP} = \overrightarrow{0}$.
- (3) Soit N le milieu de [BC] et Q le milieu de [AD]. Donner une construction encore plus simple du point G après avoir démontré que $\overrightarrow{GN} + \overrightarrow{GQ} = \overrightarrow{0}$.
- (4) Quelle est la nature du quadrilatère MNPQ?

Exercice 29

Soit ABC un triangle quelconque, O le centre du cercle circonscrit C à ABC et A' le milieu de [BC]. On définit le point H par la relation vectorielle :

$$\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$
.

- (1) a) Démontrer que : $\overrightarrow{AH} = 2\overrightarrow{OA}$.
 - b) En déduire que H appartient à la hauteur issue de A dans le triangle ABC.
- (2) a) Démontrer de même que H appartient aux deux hauteurs issues de B et de C respectivement dans le triangle ABC.
 - b) Quel théorème vient-on de démontrer de cette façon? Rappeler comment on appelle le point H dans le triangle ABC.
- (3) Soit G le centre de gravité du triangle ABC. En utilisant une caractérisation vectorielle de G, démontrer que : $\overrightarrow{OH} = 3\overrightarrow{OG}$. Que peuton en déduire pour les points O, G et H? Enoncer le théorème démontré ainsi.

 ${\it Remarque}$: La droite passant par les points O,~G et H est appelé ${\it droite}$ d'Euler.

(4) Montrer que les symétriques de l'orthocentre par rapport aux milieux des côtés du triangle sont situés sur le cercle circonscrit \mathcal{C} au triangle.

(5) Montrer que les symétriques de l'orthocentre par rapport aux côtés du triangle sont situés sur le cercle circonscrit \mathcal{C} au triangle.

Exercice 30

La figure ci-contre représente le **pentagone** régulier ABCDE de centre O, c.-à-d. O est le centre du cercle circonscrit à ce pentagone.

- (1) Montrer que $\overrightarrow{OA} + \overrightarrow{OB} // \overrightarrow{OD}$. *Indication* : OD est un axe de symétrie du pentagone ABCDE.
- (2) Montrer de même que $\overrightarrow{OE} + \overrightarrow{OC} / / \overrightarrow{OD}$.
- (3) En déduire que $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} + \overrightarrow{OE} //\overrightarrow{OD}$
- (4) Montrer qu'on a également :

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} + \overrightarrow{OE} / / \overrightarrow{OE} \; .$$

- (5) En déduire que $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} + \overrightarrow{OE} = \vec{0}$. (O est donc le centre de gravité du pentagone ABCDE.)
- (6) Utiliser le résultat précédent pour prouver que :

a)
$$\overrightarrow{AC} + \overrightarrow{BD} + \overrightarrow{CE} + \overrightarrow{DA} + \overrightarrow{EB} = \overrightarrow{0}$$
 et

b)
$$\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CA} + \overrightarrow{DB} + \overrightarrow{EC} = \overrightarrow{0}$$

Exercice 31

Soit ABC un triangle. On définit les points D, F et G par

$$\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB}$$
, $\overrightarrow{AF} = \frac{1}{4}\overrightarrow{BA}$ et $\overrightarrow{GC} = 5\overrightarrow{GA}$.

- (1) Par D on trace la parallèle à BC qui coupe AC en E. Donner les relations de colinéarité entre a) les vecteurs \overrightarrow{CE} et \overrightarrow{AC} b) \overrightarrow{DE} et \overrightarrow{CB} . Justifier.
- (2) Démontrer que GF et DE sont parallèles. Justifier !

Exercice 32

Soit un parallélogramme ABCD de centre O.

- (1) Construire les points E et F tels que : $\overrightarrow{AE} = \frac{1}{4}\overrightarrow{AC}$ et $\overrightarrow{AF} = 3\overrightarrow{FC}$.
- (2) Montrer que $\overrightarrow{AE} = \overrightarrow{EO} = \overrightarrow{OF} = \overrightarrow{FC}$.
- (3) Montrer que BEFD est un parallélogramme.
- (4) Soit $I = \min[AD]$ et $J = \min[BC]$. Montrer que IEJF est un parallélogramme.
- (5) La droite BE coupe respectivement AD en G et CD en H. Montrer que :

$$\bullet \quad \overrightarrow{AG} = \frac{2}{3}\overrightarrow{AI}$$

$$\bullet \quad \overrightarrow{BE} = \frac{1}{4} \overrightarrow{BH}$$

$$\bullet \quad \overrightarrow{HD} = 2\overrightarrow{DC}$$

Soit ABCD un rectangle, $I = \min[AB]$ et $J = \min[DC]$. Les droites DI et BC sont sécantes en K et les droites KJ et DB sont sécantes en G.

- (1) Démontrer que $\overrightarrow{KG}=2\overrightarrow{GJ}$. Que représente G pour le triangle DCK ?
- (2) Démontrer que GC//AJ.
- (3) AJ coupe DB en H. Démontrer que IGJH est un parallélogramme.

(1)

$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{BB'} = \overrightarrow{AB'}$$

(2)

$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{DB} + \overrightarrow{DC} = \overrightarrow{DB} + \overrightarrow{BC}^{\dagger} = \overrightarrow{DC}^{\dagger}$$

(3)

$$\vec{u} + \vec{v} = \overrightarrow{RS} + \overrightarrow{RT} = \overrightarrow{RS} + \overrightarrow{ST'} = \overrightarrow{RT'}$$

(4)

 $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{BB'} = \overrightarrow{AB'}$

(5)

 $\vec{u} + \vec{v} = \overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{BB'} = \overrightarrow{AB'}$

(6)

$$\vec{u} + \vec{v} = \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}^{\dagger} = \overrightarrow{AC}^{\dagger}$$

(7)

 $\vec{u} + \vec{v} = \overrightarrow{AB} + \overrightarrow{CB} = \overrightarrow{AB} + \overrightarrow{BB'} = \overrightarrow{AB'}$

(8)

$$\vec{u} + \vec{v} = \overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{BB'} = \overrightarrow{AB'} = \overrightarrow{A'A''}$$

(9)

$$\vec{u} + \vec{v} + \vec{w} = \overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EF} = \overrightarrow{AB} + \overrightarrow{BB'} + \overrightarrow{B'B''} = \overrightarrow{AB''}$$

(10)

$$\vec{u} + \vec{v} + \vec{w} = (\vec{u} + \vec{w}) + \vec{v} = (\overrightarrow{IJ} + \overrightarrow{JK}) + \overrightarrow{MN} = \overrightarrow{IK} + \overrightarrow{KL} = \overrightarrow{IL}$$

(On a utilisé la commutativité et l'associativité de l'addition des vecteurs.)

(11)

$$\vec{a} + \vec{b} + \vec{c} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AA'} + \overrightarrow{A'A''} = \overrightarrow{OA''}$$

(12)

(13)

$$\vec{a} + \vec{b} + \vec{c} = \left(\overrightarrow{OA} + \overrightarrow{AC}\right) + \overrightarrow{OC} = \overrightarrow{OC} + \overrightarrow{OC} = \overrightarrow{OC} + \overrightarrow{CC'} = \overrightarrow{OC'} \left(= 2\vec{c}\right)$$

(14)
$$\vec{a} + \vec{b} + \vec{c} = \overrightarrow{OA} + \overrightarrow{AC} + \overrightarrow{CO} = \overrightarrow{OO} = \vec{0}$$
 (vecteur nul)

(15)

$$\begin{split} \vec{a} + \vec{b} + \vec{c} + \vec{d} + \vec{u} + \vec{v} \\ &= \left(\vec{a} + \vec{b} + \vec{u} \right) + \left(\vec{c} + \vec{d} \right) + \vec{v} \\ &= \vec{0} + \vec{w} + \vec{v} = \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{CA} \end{split}$$

- \overrightarrow{AE} (2) \overrightarrow{EC} (1)
- $(3) \quad \vec{0} \qquad (4) \quad \overrightarrow{HE} \qquad (5) \quad \overrightarrow{CJ}$
- (6) \overrightarrow{JB}

- \overrightarrow{FJ} (7)
- \overrightarrow{DF} (8)
- $(9) \quad \overrightarrow{AH} \qquad (10) \quad \overrightarrow{AD} \qquad (11) \quad \vec{0}$
- (12) \overrightarrow{BD}

$$(13) \ \left(\overrightarrow{FD} + \overrightarrow{CG}\right) + \overrightarrow{IA} - \overrightarrow{FH} = \overrightarrow{FH} + \overrightarrow{IA} - \overrightarrow{FH} = \overrightarrow{IA}$$

(14)
$$\overrightarrow{AF}$$

$$\overrightarrow{AO} = \overrightarrow{CF} + \frac{1}{2}\overrightarrow{FG} - \overrightarrow{IA} \Leftrightarrow O = \min[EF]$$

$$\overrightarrow{EP} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{GC} + \overrightarrow{AB} \Leftrightarrow P = \operatorname{mil}[GC]$$

Solution de l'exercice 16

En observant la figure ci-dessus, compléter les relations de colinéarité suivantes :

(1)
$$\overrightarrow{AB} = 4\overrightarrow{AB}$$
 et $\overrightarrow{AB} = \frac{1}{4}\overrightarrow{AE}$

(2)
$$\overrightarrow{GD} = -\frac{1}{2}\overrightarrow{JP}$$
 et $\overrightarrow{JP} = -2\overrightarrow{GD}$

(3)
$$\overrightarrow{CL} = -3\overrightarrow{QN}$$
 et $\overrightarrow{NQ} = \frac{1}{3}\overrightarrow{CL}$

(4)
$$\overrightarrow{DH} = \frac{4}{5}\overrightarrow{AF}$$
 et $\overrightarrow{FA} = \frac{5}{4}\overrightarrow{HD}$

(5)
$$\overrightarrow{GR} = \frac{11}{8} \overrightarrow{IQ}$$
 et $\overrightarrow{IQ} = \frac{8}{11} \overrightarrow{GR}$

(6)
$$\overrightarrow{OH} = \frac{7}{10}\overrightarrow{OE}$$
 et $\overrightarrow{OE} = \frac{10}{7}\overrightarrow{OH}$

(7)
$$\overrightarrow{BP} = -\frac{14}{5}\overrightarrow{LG}$$
 et $\overrightarrow{PB} = \frac{14}{5}\overrightarrow{LG}$

(8)
$$\overrightarrow{QI} = 2\overrightarrow{IE} \text{ et } \overrightarrow{IQ} = 2\overrightarrow{EI}$$

(9)
$$\overrightarrow{JE} = -\frac{5}{7}\overrightarrow{JQ}$$
 et $\overrightarrow{JQ} = -\frac{7}{5}\overrightarrow{JE}$

(10)
$$\overrightarrow{MK} = \frac{1}{2}\overrightarrow{KG}$$
 et $\overrightarrow{GK} = -2\overrightarrow{MK}$

(11)
$$\overrightarrow{DN} = \overrightarrow{HR}$$
 et $\overrightarrow{HR} = -\overrightarrow{ND}$

(12)
$$\overrightarrow{LA} = \frac{11}{16} \overrightarrow{RB}$$
 et $\overrightarrow{RB} = -\frac{16}{11} \overrightarrow{AL}$

(13)
$$\overrightarrow{FL} = -\frac{2}{3} \overrightarrow{NE}$$
 et $\overrightarrow{NE} = \frac{3}{2} \overrightarrow{LF}$

(14)
$$\overrightarrow{KJ} = -\frac{1}{14}\overrightarrow{BP}$$
 et $\overrightarrow{PB} = -14\overrightarrow{JK}$

(15)
$$\overrightarrow{AA} = 0 \overrightarrow{AM}$$
 et $\overrightarrow{BB} = 0 \overrightarrow{IJ}$

(16)
$$\overrightarrow{IO} = \frac{6}{17} \overrightarrow{AR}$$
 et $\overrightarrow{RA} = \frac{17}{6} \overrightarrow{OI}$

(17)
$$\overrightarrow{BK} = \overrightarrow{CL}$$
 et $\overrightarrow{BK} = -\overrightarrow{LC}$

(18)
$$\overrightarrow{GG} = 0 \overrightarrow{AD}$$
 et $\overrightarrow{AD} = ... \overrightarrow{GG}$

impossible!

(1) et (2):

 $= \frac{29}{6} \cdot \frac{3}{2}$

 $=\frac{29}{4}=7,25$ cm

(3)
$$\overrightarrow{CD} = \overrightarrow{CB} + \overrightarrow{BA} + \overrightarrow{AD} \qquad (4)$$

$$= -\frac{5}{2} \overrightarrow{AB} - \overrightarrow{AB} - \frac{4}{3} \overrightarrow{AB} \qquad = \frac{29}{6} \cdot \frac{3}{2}$$

$$= (-\frac{5}{2} - 1 - \frac{4}{3}) \overrightarrow{AB} \qquad = \frac{29}{4} = 7$$

$$= -\frac{29}{6} \overrightarrow{AB}$$