ZAB0161 – "Álgebra linear com aplicações em geometria analítica"

Prof. Dr. Jorge Lizardo Díaz Calle

Dpto. de Ciências Básicas - FZEA / USP

9 de junho de 2020

Valor próprio de uma matriz:

Dada uma matriz A, um número escalar λ é valor **próprio** de A (autovalor de A), se existe um vetor não nulo X que satisfaz:

$$AX = \lambda X$$

O vetor não nulo X correspondente ao autovalor λ é denominado de **vetor próprio** de A (**autovetor** de A)

Exemplo 1: Seja a matriz

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Observar que

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} X = 3X$$

para $X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, pois

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Assim $\lambda = 3$ é autovalor de A e $X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ é autovetor.

Exemplo 1: Seja a matriz

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Mas, se $X = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ temos

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

e supondo que existe algum escalar α que satisfaz

$$\begin{bmatrix} 5 \\ 4 \end{bmatrix} = \alpha \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

então: $5 = \alpha 2 \Rightarrow \alpha = \frac{5}{2}$, e do outro $4 = \alpha$.

Não pode assumir dois valores diferentes, não existe.

Exemplo 1: Seja a matriz

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Observar, se utilizarmos: $X = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, temos

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix} = \begin{bmatrix} 3 \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Então $\lambda = 3$ é autovalor de A e $X = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ é autovetor.

Cuidado! Não pode fazer $\lambda = 6$ um autovalor de A

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix} = 6 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Exemplo 1: Seja a matriz

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Agora, se utilizarmos: $X = \begin{bmatrix} \alpha \\ \alpha \end{bmatrix}$, temos

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \alpha \\ \alpha \end{bmatrix} = \begin{bmatrix} 3\alpha \\ 3\alpha \end{bmatrix} = 3 \begin{bmatrix} \alpha \\ \alpha \end{bmatrix}$$

Então $\lambda = 3$ é autovalor de A e para qualquer $\alpha \in \mathbb{R}$,

$$X = \begin{bmatrix} \alpha \\ \alpha \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
é um autovetor de A .

Logo, são autovetores todos os paralelos (múltiplos) de um autovetor encontrado.

Exemplo 2: Seja a matriz

$$A = \begin{bmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{bmatrix}$$

Agora, se utilizarmos:
$$X = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$
, temos
$$\begin{bmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix} = -3 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

Então $\lambda = -3$ é autovalor de A e $[-1 1 0]^t$ é autovetor (e todos seus múltiplos).

Exemplo 2: Seja a matriz

$$A = \begin{bmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{bmatrix}$$

Mas se utilizarmos:
$$X = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$
, temos

$$\begin{bmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ -3 \end{bmatrix} = -3 \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

Então $\lambda = -3$ é autovalor de A e $[-2 \ 0 \ 1]^t$ é autovetor (e todos seus múltiplos).

Exemplo 2: Seja a matriz

$$A = \begin{bmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{bmatrix}$$

Também

$$\begin{bmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{bmatrix} \begin{pmatrix} \alpha \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} =$$

$$= \alpha A \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + \beta A \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} = -3 \begin{pmatrix} \alpha \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$$

Exemplo 2: Seja a matriz

$$A = \begin{bmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{bmatrix}$$

Assim, o autovalor $\lambda = -3$ tem dois autovetores não paralelos (LI) (Dizemos que $\lambda = -3$ é um autovalor de multiplicidade dois).

O conjunto de todos os autovetores de $\lambda = -3$ é

$$\left\{ \alpha \begin{bmatrix} -1\\1\\0 \end{bmatrix} + \beta \begin{bmatrix} -2\\0\\1 \end{bmatrix} / \alpha, \beta \in \mathbb{R} \right\}$$

Dada uma matriz $A_{n\times n}$.

Se λ é um autovalor de A, e se $X_1, X_2, ..., X_r$ são autovetores linearmente independentes de λ , então o conjunto de todos os autovetores $\{\alpha_1 X_1 + \alpha_2 X_2 + \cdots + \alpha_r X_r / \alpha_1, \alpha_2, ..., \alpha_r \in \mathbb{R}\}$

é chamado de autoespaço do autovalor λ de A.

Problema: Como determinar os autovalores e os autovetores.

Sabemos que se λ é um autovalor de A, e se X é um autovetor de A, então

$$AX = \lambda X$$

Isso significa: $AX - \lambda X = 0$

$$(A - \lambda I)X = 0$$

onde X é uma solução não trivial ($X \neq 0$) dessa equação matricial (sistema homogêneo).

NOTA: Já sabemos que X = 0 é solução, mas para ser autovetor deve ser não nulo.

Por outro lado, se A é de ordem $n \times n$ então em $AX = \lambda X$ ou $(A - \lambda I)X = 0$

temos um sistema de n equações, mas com (n + 1) incôgnitas (as n componentes de X mais λ).

Precisamos de mais uma equação.

Lembrando que o sistema homogêneo acima tem solução não trivial (propriedades do determinante de um sistema homogêneo) se e somente se o determinante da matriz do sistema é zero:

$$\det(A - \lambda I) = 0$$

Assim temos (n + 1) equações também.

Mais ainda, podemos resolver primeiro a equação

$$\det(A - \lambda I) = 0$$

que considera apenas uma incôgnita.

Depois podemos resolver o sistema

$$(A - \lambda I)X = 0$$

com as n equações para calcular a solução não trivial $(X \neq 0)$, pois λ já foi determinada.

Já temos um processo bem determinado:

- 1. Calcular os autovalores (se existirem) da equação $\det(A \lambda I) = 0$
- 2. Para cada autovalor encontrado, calculamos o(s) autovetor(es) correspondente(s), da equação $(A \lambda I)X = 0$

Nota: No passo 2. pode dar só solução trivial, então o λ não é autovalor. Portanto, os valores obtidos no passo 1., fornece apenas candidatos a autovalores. Só com solução não trivial em 2. temos autovalores

Exemplo 3: Consideremos o exemplo 1.

Para

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

1. Primeiro calculamos os (candidatos a) autovalores:

$$\det \begin{pmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \end{pmatrix} = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \end{pmatrix} = 0$$

Exemplo 3: Calculando o determinante, temos $(2 - \lambda)(2 - \lambda) - 1 = 0$

Observar que o lado esquerdo é um polinômio de grau dois.

Daqui

$$4 - 4\lambda + \lambda^{2} - 1 = 0$$
$$\lambda^{2} - 4\lambda + 3 = 0$$
$$(\lambda - 3)(\lambda - 1) = 0$$

Soluções: $\lambda_1 = 3$ e $\lambda_2 = 1$. (Dois candidatos).

Já sabiamos que 3 é autovalor.

- Exemplo 3: Agora sabemos que A tem outro candidato a autovalor $\lambda_2 = 1$. Qual o autovetor?
- 2. Para calculá-lo utilizamos: $(A \lambda_2 I)X = 0$, isto é, basta resolver

$$(A - I)X = 0$$
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} X = 0$$

Por Gauss Jordan

$$\begin{bmatrix} 1 & 1 & | & 0 \\ 1 & 1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

Portanto
$$x_1 + x_2 = 0 \Rightarrow x_1 = -x_2$$

Exemplo 3: Para o autovalor $\lambda_2 = 1$, o autovetor tem a forma $X_2 = \begin{bmatrix} -x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

Concluimos: A matriz $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ tem o autovalor $\lambda_2 = 1$ com autovetor $X_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, e autoespaço

 $S_2 = \left\{ \alpha \begin{bmatrix} -1 \\ 1 \end{bmatrix} / \alpha \in \mathbb{R} \right\} \text{ com base } \beta_2 = \left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}.$

Autovalor $\lambda_1 = 3$, autovetor $X_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ e autoespaço $S_1 = \left\{ \delta \begin{bmatrix} 1 \\ 1 \end{bmatrix} \middle/ \delta \in \mathbb{R} \right\}$ com base $\beta_1 = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$.

Para a matriz $A_{n\times n}$, el polinômio $\det(A - \lambda I)$

que es de grau n, é chamado de **polinômio** característico da matriz A.

La equação

$$\det(A - \lambda I) = 0$$

é chamada de equação característica.

Assim, a equação característica possibilita determinar os autovalores da matriz *A*.

Autovetores unitários

Dado que para cada autovetor de um autovalor, todo vetor múltiplo dele é também autovetor, então recomendo utilizar o autovetor unitário, como elemento da base do autoespaço.

No exemplo, utilizariamos

$$X_1 = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 e $X_2 = \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Teorema: Todos os autovalores de uma matriz simétrica são números reais.

Teorema: Os autovetores correspondentes a autovalores distintos são ortogonais.

Definição: Uma matriz P, não singular é chamada de **matriz ortogonal** se $P^{-1} = P^t$.

Teorema: Uma matriz P é **ortogonal** se e somente se suas colunas formam um conjunto ortonormal (ortogonais e unitários).

Seja
$$P = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$
 uma matriz ortogonal $(P^{-1} = P^t)$, seus vetores coluna são $\begin{bmatrix} a \\ b \end{bmatrix}$ e $\begin{bmatrix} c \\ d \end{bmatrix}$.

Por ser ortogonal, fazemos: $P^tP = I$

Então
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

Daqui: $a^2 + b^2 = 1$ e $c^2 + d^2 = 1$

então são vetores coluna unitários.

Também $ac + bd = 0 \Rightarrow (a, b) \cdot (c, d) = 0$ então são vetores ortogonais.

Do exemplo: A matriz $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ é simétrica.

Os autovalores são $\lambda_1 = 3$ e $\lambda_2 = 1$ são reais.

Os autovetores são
$$X_1 = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$$
 e $X_2 = \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$ são

ortogonais.

Podemos montar uma matriz ortogonal

$$P = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

Observar: Se além de montar a matriz P (é não singular, pois existe a transposta e $P^{-1} = P^t$), montamos também a matriz

$$D = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}.$$

Multiplicando temos

$$PDP^{t} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$
$$PDP^{t} = \begin{bmatrix} 3\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 3\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} = A.$$

Já sabiamos que:
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 e $D = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$ são congruentes. E agora temos: $A = PDP^t$.

Temos **a técnica** para construir matrizes congruentes entre uma matriz simétrica e uma diagonal.

A diagonalização da matriz A é o processo de encontrar uma matriz diagonal D e outra matriz não singular P, que satisfaz $A = PDP^t$.

Isto é, determinar uma diagonal D congruente com A

- A **técnica** para construir uma matriz diagonal *D* congruente a uma matriz simétrica *A*, considera:
- 1. A matriz diagonal *D* é formada pelos autovalores da matriz *A*.
- 2. A matriz *P* é construida formando suas colunas sendo os autovetores unitários e ortogonais de *A*.

Nota: Os autovetores serão colunas ortogonais desde que os autovalores sejam diferentes. Se os autovalores são iguais, utilizar o processo de Gram-Schmidt.

Algumas observações

Na definição as matrizes A e B são congruentes se existe uma matriz não singular que: $A = P^tBP$.

Observar: Se P é ortogonal, temos

$$A = P^t B P$$

multiplicando pela esquerda vezes P e pela direita vezes P^t

$$PAP^t = PP^tBPP^t$$

Como
$$P^t = P^{-1}$$
, então
$$PAP^t = B.$$

Exemplo 4: Seja
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 9 \end{bmatrix}$$
.

1. Autovalores:

Resolvemos: $det(A - \lambda I) = 0$

$$\begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 4 \\ 0 & 4 & 9 - \lambda \end{vmatrix} = 0$$

polinômio característico:

$$(2 - \lambda)(3 - \lambda)(9 - \lambda) - 16(2 - \lambda) = 0$$
$$(2 - \lambda)[(3 - \lambda)(9 - \lambda) - 16] = 0$$

Exemplo 4:

Fatore (coloque em evidência) sempre que puder

$$(2 - \lambda)[\lambda^2 - 12\lambda + 11] = 0$$

assim, não precisa aplicar Ruffini. Então, temos

$$(2-\lambda)(\lambda-11)(\lambda-1)=0$$

Candidatos a autovalores:

$$\lambda_1 = 2$$
$$\lambda_2 = 11$$

$$n_2 - 1$$

$$\lambda_3 = 1.$$

Exemplo 4: Seja
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 9 \end{bmatrix}$$
.

- 2. Autovetores: Deve ser feito para cada λ . Resolver $(A \lambda I)X = 0$
- 2.1. Para $\lambda_1 = 2$

Resolvemos:

$$\begin{bmatrix} 2 - 2 & 0 & 0 \\ 0 & 3 - 2 & 4 \\ 0 & 4 & 9 - 2 \end{bmatrix} X = 0$$

Exemplo 4: Seja
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 9 \end{bmatrix}$$
.

Resolvendo o sistema homogêneo:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 4 \\ 0 & 4 & 7 \end{bmatrix} X = 0$$

Obtemos a solução não trivial

$$X_1 = \begin{bmatrix} r \\ 0 \\ 0 \end{bmatrix} = r \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

Exemplo 4: Seja
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 9 \end{bmatrix}$$
.

2.2. Para $\lambda_2 = 11$. Obtemos a solução não trivial

$$X_{2} = \begin{bmatrix} 0 \\ s \\ 2s \end{bmatrix} = s \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \sqrt{5}s \begin{vmatrix} 0 \\ \frac{\sqrt{5}}{5} \\ \frac{1}{5} \\ \frac{\sqrt{5}}{5} \end{vmatrix}.$$

2.3. Para $\lambda_3 = 1$

$$X_3 = \begin{bmatrix} 0 \\ 2t \\ -t \end{bmatrix} = t \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} = \sqrt{5}t \begin{vmatrix} 0 \\ 2\frac{\sqrt{5}}{5} \\ -\frac{\sqrt{5}}{5} \end{vmatrix}.$$

Exemplo 4: Seja
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 9 \end{bmatrix}$$
.

3. Montamos as matrizes de autovalores e autovetores unitários:

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 2\frac{\sqrt{5}}{5} & 0 & \frac{\sqrt{5}}{5} \\ -\frac{\sqrt{5}}{5} & 0 & 2\frac{\sqrt{5}}{5} \end{bmatrix}.$$

O trabalho não é apenas para matrizes simétricas.

Exemplo 5: Voltando para a matriz do exemplo 2.

$$A = \begin{bmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & -11 \end{bmatrix}$$

1. Autovalores: Resolver $det(A - \lambda I) = 0$

$$\begin{vmatrix} 5 - \lambda & 8 & 16 \\ 4 & 1 - \lambda & 8 \\ -4 & -4 & -11 - \lambda \end{vmatrix} = 0$$

O determinante dá

$$(\lambda - 1)(\lambda + 3)^2 = 0$$

Obtemos os valores (candidatos a autovalores)

$$\lambda_1 = 1$$
$$\lambda_2 = -3$$

- 2. Autovetores: Resolver $(A \lambda I)X = 0$
- 2.1 Para $\lambda_1 = 1$ encontramos

$$X_1 = \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$$

2.2 Para $\lambda_2 = -3$ encontramos

$$X_2 = \begin{bmatrix} -1\\1\\0 \end{bmatrix} \quad e \quad X_3 = \begin{bmatrix} -2\\0\\1 \end{bmatrix}.$$

No segundo autovalor $\lambda_2 = -3$

O sistema é a resolver $(A - \lambda I)X = 0$ fica:

$$\begin{bmatrix} 5+3 & 8 & 16 \\ 4 & 1+3 & 8 \\ -4 & -4 & -11+3 \end{bmatrix} X = 0$$

Matriz estendida

Percebe-se que duas linhas serão zeradas, dai a probabilidade de se ter dois autovetores.

Exemplo 6.

Calcule os autovalores da matriz
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$

Utilize seus conhecimentos de fatoração da álgebra básica. A solução é

$$\lambda_1 = 1$$
 $\lambda_2 = 2$
 $\lambda_3 = 3$

Sugiro: https://matrixcalc.org/pt/ para o cálculo de autovalores utilize a opção "Decomposição de Jordan"