Tracce di calcolo numerico

Prof. Marco Vianello - Dipartimento di Matematica, Università di Padova aggiornamento: 18 ottobre 2019

1 Sistema floating-point e propagazione degli errori

1.1 Rappresentazione dei numeri reali, errore di troncamento e di arrotondamento

1. si ricordi che, fissata una base (un numero naturale $\beta > 1$), ogni numero $x \in \mathbb{R}$ si può scrivere (rappresentazione a virgola fissa) come

$$x = \operatorname{sign}(x) (c_m \dots c_1 c_0 \cdot c - 1 \dots c_{-n} \dots)_{\beta}$$

$$= \operatorname{sign}(x) \left(\sum_{j=0}^{m} c_j \beta^j + \sum_{j=1}^{\infty} c_{-j} \beta^{-j} \right)$$

dove $c_j, c_{-j} \in \{0, 1, \dots, \beta - 1\}$ sono le cifre della rappresentazione in base β (ad esempio $\{0, 1\}$ in base $2, \{0, \dots, 9\}$ in base 10); chiamiamo $\sum_{j=0}^{n} c_j \beta^j$ parte intera del numero e $\sum_{j=1}^{\infty} c_{-j} \beta^{-j}$ parte frazionaria del numero

- 2. si ricordino le principali proprietà della somma geometrica e della serie geometrica di ragione $a \neq 1$, ovvero $S_n = \sum_{j=0}^n a^j$ e $S = \sum_{j=0}^\infty a^j$ traccia: $aS_n Sn = (a-1)S_n = a^{n+1} 1$, ...
- 3. perché la serie che rappresenta la parte frazionaria converge? traccia: si utilizzi il confronto con la serie geometrica di ragione $a=1/\beta$, osservando che $c_{-j} \leq \beta 1$ (si tratta del criterio di confronto tra serie a termini non negativi); si osservi che la parte frazionaria sta in [0,1], controllando ad esempio che $(0.999...)_{10} = (0.111...)_2 = 1$
- 4. la parte frazionaria di un numero irrazionale è infinita (perché?); la parte frazionaria di un numero razionale può essere finita o infinita a seconda della base: $1/3 = (0.333...)_{10}$ (verificarlo) ma $1/3 = (0.1)_3$
- 5. si dimostri, usando le serie, che l'errore di troncamento ad n cifre della parte frazionaria in base β è $\leq \beta^{-n}$ traccia: l'errore di troncamento non è altro che il resto della serie corrispondente alla parte frazionaria, ...
- 6. si dia un'interpretazione geometrica (con un disegno, ad esempio nel caso di 2 cifre decimali) del fatto che il massimo errore di arrotondamento ad n cifre è la metà del massimo errore di troncamento (con l'usuale regola di arrotondamento, base pari: si tiene la cifra com'è se la prima trascurata è minore di $\beta/2$, si aumenta la cifra di una unità se la prima trascurata è maggiore o uguale di $\beta/2$)

¹argomenti e quesiti contrassegnati da * sono più impegnativi, se non si è in grado di fare la dimostrazione bisogna comunque sapere (e saper usare) gli enunciati e capire di cosa si sta parlando

1.2 Sistema floating-point

1. si mostri (con qualche esempio) che ogni numero reale si può anche scrivere (rappresentazione normalizzata a virgola mobile in base β) come

$$x = \operatorname{sign}(x)\beta^{p}(0.d_{1}...d_{t}...)_{\beta} = \operatorname{sign}(x)\beta^{p}\sum_{j=1}^{\infty}d_{j}\beta^{-j}$$

 $d_j \in \{0, 1, \dots \beta - 1\}, d_1 \neq 0$, dove chiamiamo $\sum_{j=1}^{\infty} d_j \beta^{-j}$ mantissa e $p \in \mathbb{Z}$ esponente della rappresentazione; a cosa serve la normalizzazione $d_1 \neq 0$?

- 2. la mantissa di un numero reale sta in [0,1], ma non è la sua parte frazionaria
- 3. i numeri irrazionali hanno parte frazionaria (e mantissa) infinita
- 4. si studi l'insieme dei numeri floating-point

$$\mathbb{F}(\beta, t, L, U) = \{ \mu = \pm (0.\mu_1 \mu_2 \dots \mu_t) \beta^p, \ \mu_j \in \{0, 1, \dots, \beta - 1\}, \ \mu_1 \neq 0, p \in [L, U] \subset \mathbb{Z} \}$$
traccia:

- $\operatorname{card}(\mathbb{F}) = 1 + 2(\beta 1)\beta^{t-1}(U L + 1)$ (sugg.: \mathbb{F} è simmetrico, $\mathbb{F}^- = -\mathbb{F}^+$; si contino le possibili mantisse e i possibili esponenti)
- $\min \mathbb{F}^+ = \beta^{L-1}$ (sugg.: chi è la minima mantissa?)
- $\max \mathbb{F}^+ = \beta^U (1 \beta^{-t})$ (sugg.: utilizzare la somma geometrica per calcolare la massima mantissa)
- i numeri floating-point sono razionali
- si rifletta sul fatto che la densità è variabile calcolando la distanza tra numeri macchina consecutivi; dove e come cambia tale densità?
- si rifletta sul concetto di raggio assoluto e relativo dell'intorno di approssimazione corrispondente ad ogni numero macchina, calcolando la precisione di macchina ε_M che è il massimo errore relativo di arrotondamento a t cifre di mantissa
- quando l'intorno associato ad un numero floating-point non è simmetrico?
- quali sono i numeri reali rappresentabili (ovvero approssimabili per arrotondamento a t cifre di mantissa) tramite questi numeri floating-point?
- 5. si disegnino $\mathbb{F}(10,1,-1,1)$ e $\mathbb{F}(10,2,-2,2)$; perché i numeri floating-point contigui ad 1 sono (in notazione posizionale classica) nel primo caso 0.9 e 2 (non 1.1) e nel secondo caso 0.99 e 1.1 (non 1.01)?
- 6. i numeri floating-point "grandi" (in modulo) sono interi e hanno moltissime cifre nulle; in un sistema floating-point con t cifre di mantissa in base β , i numeri interi con più di t cifre vengono arrotondati (se rappresentabili)
- 7. la precisione di macchina, $\varepsilon_M = \beta^{1-t}/2$, non è il più piccolo numero floating-point positivo (che invece è ...)

8. si discuta un modello di codifica dei reali in base 2 con una sequenza di 64 bit, la cosiddetta "precisione doppia"

(traccia: riservando un bit per i segno, 52 (+1) bit per la mantissa che è come avere 53 bit perché la prima cifra di mantissa deve essere 1, e 11 bit per l'esponente di cui 1 per il segno e 10 per il valore assoluto, si calcolino la precisione di macchina e gli estremi L ed U dell'intervallo degli esponenti; quali sono gli ordini di grandezza di ε_M , max \mathbb{F}^+ e min \mathbb{F}^+ in base 10?)

1.3 Propagazione degli errori

- 1. in un'aritmetica a base 10 con 16 cifre di mantissa, $1 + 10^{-15}$ viene calcolato correttamente ma $1 + 10^{-16} = 1$; perché? (si osservi che questo è un esempio di non unicità dell'elemento neutro)
- 2. * si può dimostrare che vale anche $\varepsilon_M = \min \{ \mu \in \mathbb{F}_+ : 1 + \mu > 1 \}$
- 3. detti $\varepsilon_x = |x \tilde{x}|/|x|$ e $\varepsilon_y = |y \tilde{y}|/|y|$, $x, y \neq 0$, gli errori relativi sui dati si studi la stabilità delle operazioni aritmetiche con numeri approssimati, mostrando che per ciascuna operazione aritmetica \star si ha una stima del tipo "somma pesata degli errori"

$$\varepsilon_{x\star y} = \frac{|(x\star y) - (\tilde{x}\star \tilde{y})|}{|x\star y|} \le w_1(x,y)\varepsilon_x + w_2(x,y)\varepsilon_y, \ , \ x\star y \ne 0 \ ,$$

calcolando w_1, w_2 nei vari casi (moltiplicazione, divisione, addizione, sottrazione; traccia: si utilizzi la disuguaglianza triangolare); quali operazioni si possono considerare "stabili"? in quali situazioni la sottrazione fa perdere precisione? si facciano esempi

4. detto ε_f l'errore relativo su una funzione (derivabile) con variabile approssimata, $\varepsilon_x = |x - \tilde{x}|/|x|$, $x \neq 0$, utilizzando la formula di Taylor si ricavi la "formula degli errori"

$$\varepsilon_{f(x)} \approx \operatorname{cond} f(x) \varepsilon_x$$
, $\operatorname{cond} f(x) = |xf'(x)/f(x)|$, $f(x) \neq 0$

 $(\operatorname{cond} f(x))$ viene detto "indice di condizionamento" di f in x)

- 5. si consideri f(x) = ((1+x)-1)/x, $x \neq 0$; in Matlab viene calcolato $f(10^{-15}) = 1.110223024625157$, invece $((1+2^{-50})-1)/2^{-50} = 1$, dove $2^{-50} \approx 10^{-15}$; perché? (traccia: $10^{-15} \notin \mathbb{F}$ (* si può dimostrare in generale che 1/m, $m \in \mathbb{N}$, ha una rappresentazione finita in base 2 se e solo se m è una potenza di 2), quindi va arrotondato e analizzando la sottrazione ...; invece 2^{-50} , $1+2^{-50} \in \mathbb{F}$ (perché?), quindi ...)
- 6. si consideri $f(x) = 1 \sqrt{1 x^2}$, $|x| \le 1$, e si calcoli $\operatorname{cond} f(x)$; in Matlab si ha che $f(10^{-4}) = 5.000000080634948$ e-09 ma il valore esatto (alla precisione di macchina) è 5.000000012500000e-09; la perdita di precisione (quantificarla) è compatibile con la formula degli errori? in caso contrario, qual'è il problema e come si può superarlo?
- 7. si facciano esempi in cui la proprietà associativa non è valida in aritmetica di macchina per overflow oppure per effetto dell'arrotondamento
- 8. la formula risolutiva classica per le equazioni di secondo grado $ax^2 + bx + c = 0$, $a \neq 0$, $\Delta = b^2 4ac > 0$, perde precisione in aritmetica di macchina se $b^2 \gg 4|ac|$; si quantifichi la perdita di precisione calcolando i pesi della sottrazione corrispondente e si ricavi una formula "stabilizzata" (traccia: per la stabilizzazione, si osservi ad esempio che per b > 0, $\sqrt{\Delta} b = (\sqrt{\Delta} b)(\sqrt{\Delta} + b)/(\sqrt{\Delta} + b) = ...)$

9. si riscrivano, se necessario, le seguenti espressioni per ovviare a possibili instabilità in aritmetica di macchina:

$$E_1(x) = x^5/(2 + x^4 + 0.1|x|) - x + 100(x^4 + 5)^{1/4}$$

$$E_2(x) = \sqrt{x^2 + 1} - |x| + 100x$$

$$E_3(x) = 3\sqrt{x^4 + 2} - (10x^7 + 1)/(x^5 + 1) + 10x^2$$

- 10. la successione definita da $x_2=2,\ x_{n+1}=2^{n-1/2}\sqrt{1-\sqrt{1-4^{1-n}x_n^2}},\ n=2,3,\ldots$ ("successione di Archimede"), soddisfa $\lim_{n\to\infty}x_n=\pi$, ma se usata per approssimare π diventa instabile in aritmetica di macchina (qual'è la sottrazione che fa perdere precisione? si calcolino i fattori di amplificazione dell'errore in funzione di n); come può essere stabilizzata?
- 11. in figura gli errori relativi (in scala logaritmica) nell'approssimazione di π con la successione $S_n = \sqrt{6\sum_{j=1}^n \frac{1}{j^2}}$, $n=1,2,3,\ldots$ (triangolini; stabile ma a convergenza lentissima, si stimi l'errore assoluto tramite il resto della serie $\sum_{j=1}^{\infty} \frac{1}{j^2} = \pi^2/6$), con la successione di Archimede del punto (10) (pallini, convergente ma instabile) e con la corrispondente versione stabilizzata (asterischi); perchè con entrambe le versioni della successione di Archimede l'errore diventa ad un certo punto praticamente costante?

1.4 Costo computazionale degli algoritmi numerici

- 1. si discuta il costo computazionale dell'algoritmo di Hörner per il calcolo dei valori di un polinomio; esempio per un polinomio cubico: $p_3(x) = a_0 + a_1x + a_2x^2 + a_3x^3 = ((a_3x + a_2)x + a_1)x + a_0$
- 2. esiste un algoritmo veloce per il calcolo di una potenza tramite codifica binaria dell'esponente, basato sulla proprietà

$$a^n = a^{\sum_{j=0}^m c_j 2^j} = \prod_{j=0}^m a^{c_j 2^j}$$
,

- dove $\{c_j\}$ sono le cifre della codifica binaria di $n \in \mathbb{N}$ e m è la parte intera di $\log_2(n)$; qual'è il costo computazionale (come numero di operazioni aritmetiche floating-point) in funzione di n? qual'è il costo nel caso l'algoritmo venga applicato al calcolo di una potenza di matrice?
- 3. * perché il calcolo di $\exp(x)$ (per x > 1) usando la formula $\exp(x) = (\exp(x/m))^m$, m > [x] e la formula di Taylor per $\exp(x/m)$, è più efficiente dell'utilizzo diretto della formula di Taylor? (traccia: si stimi il modulo del resto n-esimo della formula di Taylor di $\exp(x)$ per $|x| \le 1$ e per |x| > 1; qual' è il comportamento per $n \to \infty$?)
- 4. si dimostri che il costo computazionale della regola di Laplace per il determinante è > n! flops (si conti il numero di moltiplicazioni)
- 5. il metodo di eliminazione gaussiana può essere usato per calcolare il determinante di una matrice quadrata (come?), con costo computazionale $\mathcal{O}(n^3)$ flops (da confrontare con il costo $\mathcal{O}(n!)$ flops della regola di Laplace, che la rende inutilizzabile già per valori relativamente piccoli di n)
- 6. * si dimostri che il costo computazionale asintotico del metodo di eliminazione gaussiana è $2n^3/3$ flops (traccia: si incastri il costo tra due integrali)