1 point

1 point

1 point

- Increases
- **Decreases**
- Stays the same

Recall from the lecture and the earlier assignment, the log likelihood (without the averaging term) is given by

$$\ell\ell(\mathbf{w}) = \sum_{i=1}^{N} \left((\mathbf{1}[y_i = +1] - 1)\mathbf{w}^T h(\mathbf{x}_i) - \ln\left(1 + \exp(-\mathbf{w}^T h(\mathbf{x}_i))\right) \right)$$

whereas the average log likelihood is given by

$$\ell\ell_A(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \left((\mathbf{1}[y_i = +1] - 1) \mathbf{w}^T h(\mathbf{x}_i) - \ln\left(1 + \exp(-\mathbf{w}^T h(\mathbf{x}_i))\right) \right)$$

How are the functions $\ell\ell(\mathbf{w})$ and $\ell\ell_A(\mathbf{w})$ related?

- $\ell \ell_{A}(\mathbf{w}) = (1/N) \cdot \ell \ell(\mathbf{w})$ $\ell \ell_{A}(\mathbf{w}) = N \cdot \ell \ell(\mathbf{w})$
- $\ell\ell_{\mathcal{A}}(\mathbf{w}) = \ell\ell(\mathbf{w}) \|\mathbf{w}\|$
- Refer to the sub-section Computing the gradient for a single data point.

The code block above computed

$$\frac{\partial \ell_i(\mathbf{w})}{\partial w_i}$$

for j = 1 and i = 10. Is this quantity a scalar or a 194-dimensional vector?

- A 194-dimensional vector
- Refer to the sub-section Modifying the derivative for using a batch of data points.

The code block computed

$$\sum_{s=i}^{i+B} \frac{\partial \ell_s(\mathbf{w})}{\partial w_j}$$

for j = 10, i = 10, and B = 10. Is this a scalar or a 194-dimensional vector?

Suppose that we run stochastic gradient ascent with a batch size of 100. How many

50000 data points?

gradient updates are performed at the end of two passes over a dataset consisting of

1 point

A 194-dimensional vector

10.	Refer to the section Stochastic gradient ascent vs gradient ascent.	1 point
	In the first figure, how many passes does batch gradient ascent need to achieve a similar log likelihood as stochastic gradient ascent?	
	☐ It's always better	
	10 passes	
	20 passes	
	150 passes or more	
11.	Questions 11 and 12 refer to the section Plotting the log likelihood as a function of passes for each step size.	1 point
	Which of the following is the worst step size? Pick the step size that results in the lowest log likelihood in the end.	
	O 1e-2	
	O 1e-1	
	1e0	
	1e-1 1e0 1e1	
	○ 1e2	
12.	Questions 11 and 12 refer to the section Plotting the log likelihood as a function of	1 point
	passes for each step size. Which of the following is the best step size? Pick the step size that results in the highest log likelihood in the end.	
	1e-4	
	1e-2	
	1e0	
	1e0 1e1	
	1e2	