On va utiliser la méthode d'Euler pour approximer la courbe d'une fonction f (si elle existe) telle que f est définie et dérivable sur $\mathbb R$ et :

$$\begin{cases} f'(x) = f(x), & \forall x \in \mathbb{R} \\ f(0) = 1 \end{cases}$$

Cette méthode utilise l'approximation affine d'une fonction dérivable. Graphiquement cela revient à confondre la courbe de la fonction avec sa tangente sur un petit intervalle. La longueur de cet intervalle est le pas de la méthode, on le note h. On fera ensuite tendre le pas vers zéro. On va construire une suite de points A_0, A_1, A_2, \ldots dont on notera les coordonnées $A_n(x_n; y_n)$ et telle que la ligne polygonale joignant ces points approxime la courbe de la fonction f cherchée.

– Méthode -

- ① Point de départ : Comme f(0) = 1 on place le premier point A_0 de coordonnées $A_0(0; 1)$. Comme f'(0) = f(0), on trace sur l'intervalle [0; h] la droite passant par A_0 et de coefficient directeur : $y_0 = 1$.
- ② **Récurrence**: À chaque fois on trace la droite passant par A_n de coefficient directeur y_n (car $f'(x_n) = f(x_n) = y_n$) sur un intervalle de longueur h. Alors A_{n+1} est le point de cette droite d'abscisse : $x_{n+1} = x_n + h$
- 1. Commençons avec un pas assez grossier : h = 1.
 - **a.** Placer A_0 et tracer sur l'intervalle [0;1] la droite passant par A_0 et de coefficient directeur $y_0 = 1$.
 - **b.** Le point A_1 est l'autre extrémité de ce segment. Donner les coordonnées de A_1 (ce sont donc x_1 et y_1 qui vous relevez graphiquement)
 - c. On recommence, en partant de A_1 : Tracer sur l'intervalle [1;2] la droite passant par A_1 et de coefficient directeur y_1 . Le point d'abscisse 2 sur cette droite est A_2 .
 - **d.** Selon la même méthode, placer A_3 .
 - e. Prouver que la suite des ordonnées est définie par :

$$\forall n \in \mathbb{N} , y_{n+1} = 2y_n \text{ et } y_0 = 1$$

- **f.** En déduire que pour n dans \mathbb{N} : $f(n) \simeq 2^n$.
- 2. Reprendre la même procédure pour h=0,5. On complètera aussi « dans l'autre sens » vers les réels négatifs, en utilisant un pas de -0,5 (toujours en partant de A_0).
- 3. Prouver de manière générale que :

$$\forall n \in \mathbb{N} , \frac{y_{n+1} - y_n}{h} = y_n$$

- 4. En déduire l'expression du terme général de la suite y_n .
- 5. Comme la suite des abscisses vérifie :

$$\forall n \in \mathbb{N} \ x_{n+1} = x_n + h \quad \text{et} \quad x_0 = 0$$

Déterminer l'expression du terme général x_n pour n dans \mathbb{N} .

- **6.** Par cette méthode, y_n est censé donner une valeur approchée de $f(x_n)$. Soit un réel x. On veut obtenir une valeur approchée de f(x), alors on pose pour $n \in \mathbb{N}^*$: $h = \frac{x}{n}$.
 - **a.** Déterminer l'expression de x_n dans ce cas, et jusftier que le pas h tend vers zéro lorsque n tend vers plus l'infini.
 - **b.** Prouver que :

$$y_n = \left(1 + \frac{x}{n}\right)^n$$

- Bilan -

On n'a pas prouvé que la méthode d'Euler était une « bonne méthode » c'est à dire qu'on obtient bien ainsi une approximation de la fonction cherchée. Mais si la méthode converge bien, alors notre fonction f existe et elle vérifie :

$$\forall x \in \mathbb{R}, \ f(x) = \lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n$$