

由感性认识到理性认识

——透析一类搏弈游戏的解答过程

认识事物的过程

事物的本质

认识的感性阶段

认识的理性阶段

人们认识事物,总是从简单入手。

并不是人人都能从简单的事物中得到一般性的规律。

究竟如何才能由浅入深呢?

游戏

- □每一排石子的数目可以任意确定。
- □ 两人轮流按下列规则取走一些石子:
 - ▶ 每一步必须从某一排中取走两枚石子;
 - ▶ 这两枚石子必须是紧紧挨着的;
 - ▶ 如果谁无法按规则取子,谁就是输家。

 - $a_2=3$
 - $a_3=5$

规则分析

- 如果一排有7枚石子
- □而你取了3、4这两枚石子,
- □可以看作是将这一排分成了两排,
- □其中一排有2枚石子,另一排有3枚石子。
- ⇨局面的排数可能会随着游戏的进行而增加。

•

从简单入手

用一个无序多元组 $(a_1, a_2, ..., a_n)$, 来描述游戏过程中的一个局面。

若先行者有必胜策略,则称为"胜局面"。

- □若后行者有必胜策略,则称为"负局面"。
- □ 若初始局面可以分成两个相同的"子局面",则乙有必胜策略。

局面的分解

局面与集合

认我们只关心局面的胜负。

四一个局面可以用一个集合来描述。

我这实质上是简化了局面的表示。

能不能进一步简化一个局面的表示呢?

$$(2, 2, 2, 7, 9, 9) = (2, 2, 2, 7) + (9) + (9) \rightarrow (2, 2, 2, 7)$$

用集合 $\{2, 7\}$ 来表示 (2, 7)

类比

- ▶ 胜 + 负 = 胜;
- ▶ 负 + 胜 = 胜;
- ▶ 负 + 负 = 负;
- ▶ 胜+胜=不定
- □ 二进制数的不进位加法:对二进制数的每一位,采用 01 加法。

常 二进制的 01 加法 VS 局面的加法

✓
$$1+0=1$$
; 胜+负=胜;

$$\checkmark$$
 0+0=0; \uphi + \uphi = \uphi ;

×
$$1+1=0$$
: 胜+胜=不定。

$$(5)+(5)=(5)(0)+(0)=(0)$$

□局面的加法,与二进制数的加法,性质完全相同。

上联想

能否用一个二进制数,来表示一个局面呢?

用符号#S,表示局面S所对应的二进制数,简称局面S的值。

紧关键就在于函数 f(x) 的构造。

构造

集合 g(x):表示局面(x),下一步可能局面的值的集合。

□可以证明,令函数 f(x) 为 g(x) 中没有出现的最小非负整数,满足要求。 如果 g(x)={0, 1, 2, 5, 7, 8, 9} ,则 f(x)=3 。

令 G(x) 为 g(x) 在非负整数集下的补集。

X	0	1	2	3	4	5	6	7
f(x)	0	0	1	1	2	0	3	?

$$(7) \qquad (5) \qquad \#(5)=f(5)=0$$

$$(7) \qquad (7) \qquad (7$$

$$g(7)=\{0,2\}$$
, $G(7)=\{1,3,4,5,$
 $f(7)=\min\{G(7)\}=\min\{1,3,4,5,...\}=1$

$$a_1=7$$
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $\#(7,3,5)=f(7)+f(3)+f(5)=1+1+0=0$

推广

游把游戏规则改变一下

- ▶ 一次取紧紧相邻的两枚石子;
- ▶ 一次取紧紧相邻的三枚石子;
- ▶ 一次取紧紧相邻的任意多枚石子;
- ▶ 一次取某一排中的任意两枚石子,不要求紧紧相邻;
- ▶一次取某一排中的任意多枚石子,不要求紧紧相邻;

□此类博弈游戏的特点

- ▶甲乙两人取石子;
- ▶每一步只能对某一排石子进行操作;
- ▶每一步操作的约束,只与这排石子的数目或一些常数有关·
- ▶操作在有限步内终止,并不会出现循环;
- ▶谁无法继续操作,谁就是输家。

•

此类博弈游戏的一般性解法

- 多判断一个局面, 究竟谁有必胜策略
 - ➤ 设局面 S=(a₁, a₂, ..., a_n);
 - > S 的值 #S= $f(a_1)+...+f(a_n)$ (二进制数的加法);
 - ▶如果#S≠0,则先行者有必胜策略;
 - ▶如果#S=0,则后行者有必胜策略。
- □ 函数 f(x) 的求法
 - > f(0) = 0;
 - ▶g(x)表示局面(x),下一步可能局面的值的集合;
 - ▶ 令 G(x) 为 g(x) 在非负整数集下的补集;
 - $\triangleright \iiint f(x)=\min\{G(x)\}$.

小结(一)优点 & 缺点

- > 优点
 - >适用范围广,可以直接用于大多数此类游戏
 - >与穷举相比,速度快,时空复杂度低
- > 缺点
 - > 另一个游戏
 - > 有若干堆石子,两人互取。无法取子者输。
 - > 一次只能在一堆中取,至少一枚,至多不限。
 - ▶ 对于这个游戏,可以证明令 f(x)=x,就满足要求。
 - ▶ 有些游戏可以直接推导出函数 f(x) 的表达式

小结(二)如何优化算法

- 可以看作是对搜索算法的优化。
- ▶ 优化算法的过程,可以看作是对局面的表示进行了简化。
- ▶ 本质: 避免了对相同局面的穷举, 即避免重复搜索。

- 无序组: (2,5,5) (5,2,5) (2,3,3) (2,3,4,6) (3,5)

- 4) 集合:
- {2}

- $\{2\}$ $\{2\}$ $\{2, 3, 4, 6\}$ $\{3, 4, 6\}$

- 4} 二进制数:

01

01

01

小结(三)如何由浅入深

由感性认识到理性认识的途径

- ▶去伪存真
- > 去粗取精
- ▶由此及彼
- ▶由表及里

总结

- ◆此类游戏的一般性解法
 - $F(x)=\min\{G(x)\}\$
- ◆算法优化的本质
 - 产避免重复搜索
- ◆如何由浅入深
 - >去伪存真,去粗取精
 - ▶由此及彼,由表及里