臺北市立松山高級中學 104 學年度第二學期 第二次期中考 二年級自然組 數學科試題卷

一、多重選擇題

說明:第1題至第4題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項填寫在答案卷上。各題之 選項獨立判定,所有選項均答對者,得8分;答錯1個選項者,得5分;答錯2個選項者,得2分;答錯多於2個 選項或所有選項均未作答者,該題以零分計算。

-) 1. 有五位同學互相討論如何求得點 P(3,2,6) 到直線 $L:\frac{x-1}{2}=\frac{y-2}{2}=\frac{z+1}{-3}$ 距離,並提出自己想法,請選出 對話中提及之解題步驟與列式皆正確者。
 - (1) 小紅:「設P在L上的投影點為Q,Q的坐標可以L的參數式表示,算 \overrightarrow{PQ} ,利用 \overrightarrow{PQ} 垂直於L可以知道 \overrightarrow{PQ} 和L的方向向量(2,2,-3)内積等於0,可解出Q的坐標,再計算 \overrightarrow{PQ} 長即為所求。」
 - (2) 小藍:「設L上一動點為R,R的坐標可以L的參數式表示。以t為參數,可以發現 \overline{PR}^2 是 t的二次函數,接著以配方法可以求出 \overline{PR}^2 的最小值, \overline{PR}^2 的最小值再開根號即為所求。」
 - (3) 小綠:「在L上取一點S(1,2,-1),可以算出 \overrightarrow{SP} ,運用正射影長公式得到L的方向向量(2,2,-3)在 \overrightarrow{SP} 上的正射影長為 $\frac{(2,2,-3)\cdot \overrightarrow{SP}}{|\overrightarrow{SP}|}$,此即為點P到直線L的距離。」
 - (4) 小黃:「作一平面 E 過 P 且和 L 垂直,(2,2,-3) 為 E 的法向量,故可設平面 E: 2x + 2y 3z = d,其中 d 為實數,又 P 在 E 上,代入方程式可求得 d = -8,而後再將 L 以參數式表示,t 為參數,代入平面 E 可解 出 $t = t_0$,再將 t_0 代回 L 的參數式找到 P 在 L 上的投影點 Q 的坐標,再計算 \overline{PQ} 長即為所求。」
 - (5) <u>小白</u>:「在L上取一點為S(1,2,-1),則可以計算出 \overrightarrow{SP} ,計算 $|\overrightarrow{SP} \times (2,2,-3)|$,這是 \overrightarrow{SP} 和 L的方向 向量 (2,2,-3) 所張的平行四邊形面積,將該面積除以 $|\overrightarrow{SP}|$,此可得點P到直線L的距離。」
- () 2. 下列關於直線 L: $\frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{2}$ 與平面、直線的關係,請選出正確的選項。
 - (1) $\vec{v} = (1, 1, 2)$ 為 L 的方向向量
 - (2) 與平面 x+y+2z=3 平行
 - (3) 與平面 3x-y-z=2 只有交於一點,交點為 (1,0,1)
 - (4) 與直線 $\frac{x-2}{2} = \frac{1-y}{-2} = \frac{z-5}{4}$ 平行
 - (5) 與直線 $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{6}$ 歪斜

()3. 設空間中有三平面 E_1 : $a_1x + b_1y + c_1z = d_1 \cdot E_2$: $a_2x + b_2y + c_2z = d_2 \cdot E_3$: $a_3x + b_3y + c_3z = d_3$,令

 $\vec{n}_1 = (a_1, b_1, c_1), \ \vec{n}_2 = (a_2, b_2, c_2), \ \vec{n}_3 = (a_3, b_3, c_3)$ 分別為此三平面的法向量,考慮聯立方程組

(*)
$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$

並假設

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}, \Delta_x = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}, \Delta_y = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}, \Delta_z = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$$

則下列關於平面關係與聯立方程組的敘述,請選出正確的選項。

- (1) 若 $\Delta \neq 0$,則三法向量 \vec{n}_1 , \vec{n}_2 , \vec{n}_3 不共面
- (2) 若 Δ≠0,則聯立方程組(*) 恰有一解
- (3) 若 $\Delta = \Delta_x = \Delta_y = \Delta_z = 0$, 則聯立方程組 (*) 有無限多組解
- (4) 若 \vec{n}_1 , \vec{n}_2 , \vec{n}_3 雨雨不平行且 $\Delta=0$ 但 $\Delta_y\neq 0$,此時三平面雨雨交於一線,且三線雨雨平行
- (5) 若 \vec{n}_1 , \vec{n}_2 , \vec{n}_3 兩兩不平行且聯立方程組 (*) 有無限多組解,則三平面 E_1, E_2, E_3 交於一線。
- ()4. 設 A, B 為二階方陣, I 為二階單位方陣, 下列敘述中請選出正確的選項。
 - (1) 對於任意實數 k,有 det(kA) = |k| det(A)
 - (2) 若 A, B 皆有反方陣,則 A^2B 也有反方陣且它的反方陣為 $B^{-1}(A^{-1})^2$
 - (3) 若 AB = I, 則 BA = I
 - (4) 若 $A = [a_{ij}]_{2\times 2}$, 其中的每一個元 $a_{ij} = i + 2j$, 則第 (2, 1) 元為 4

二、填充題

說明:第A題至第I題,答對題數3題以內者,每題8分,之後每多答對1題,每題5分,答錯不倒扣,未完全答對不給分。請將答案填寫至答案卷上。

A. 設
$$a, b, c$$
 為實數, 若兩直線 L_1 : $\frac{x}{b+3c} = \frac{y}{-8} = \frac{z-2c}{-6}$ 及 L_2 : $\frac{x}{-1} = \frac{y}{3a-b+7c} = \frac{z-6}{3}$ 重合, 則數對 $(a, b, c) = ?$

B. 設
$$A, B, C$$
 皆為二階方陣, $A = \begin{bmatrix} 6 & 2 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & -2 \\ -2 & 5 \end{bmatrix}$,若 $ACA + BCA = 12\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$,則矩陣 $C = ?$

- C. 設兩直線 L_1 : $\frac{x-3}{1} = \frac{y-3}{2} = \frac{z}{2}$ 、 L_2 : $\frac{x-4}{2} = \frac{y+1}{-2} = \frac{z+1}{1}$ 。空間中一質點從 L_1 和平面 z=0 的交點 P 出發,在 L_1 上沿著固定方向直線前進,2 秒後剛好抵達 L_1 和 L_2 的交點 Q,隨後立即轉向依同樣速率在 L_2 上直線前進,再經 k 秒後回到平面 z=0,若在 L_1 、 L_2 上行走時皆有相同速率,則實數 k=?
- D. 已知雨平面 E_1 : x+3y+z=3, E_2 : 2x+y+z=0 的交線為 L: $\begin{cases} x=x_0+2t\\ y=2+bt \text{ , } t\in \mathbb{R} \text{ , } 則數對 \ (x_0,z_0,b,c)=?\\ z=z_0+ct \end{cases}$
- E. 設三元一次聯立方程組所含未知數的順序依次為x,y,z,且其增廣矩陣為 $\begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 5 & -2 & 5 \\ 1 & 4 & -7 & k \end{bmatrix}$,已知該方程組有無限多組解,試求實數k=?
- F. 設 a, b 為正整數且 $4 \le a \le 25$,若 $\begin{bmatrix} a & b \\ b & 3 \end{bmatrix}$ 沒有反方陣,則數對 (a, b) = ?
- G. 兩直線 L_1 : $\frac{x-2}{1} = \frac{y-4}{2} = \frac{z-1}{-2}$ 和 L_2 : $\frac{x+1}{-2} = \frac{y+2}{2} = \frac{z+2}{1}$ 的公垂線方程式為 $\begin{cases} x = x_0 + at \\ y = 1 + t \end{cases}$, $t \in \mathbb{R}$, 試求數對 $(x_0, z_0, a, c) = ?$
- H. 設 $A = \begin{bmatrix} 21 & 39 \\ 18 & 12 \end{bmatrix}$,若矩陣X為二階方陣,滿足 $A^2 + AX = 40A$,則矩陣X = ?
- I. 設空間中有一直線 L: $\frac{x}{2} = \frac{y}{1} = \frac{z}{2}$ 與兩點 $P(5,4,2) \times Q(a,b,c)$,b>0,若 P 在 L 上的投影點與 Q 在 L 上的投影點 皆為點 R,且 $\overline{PR} = \overline{QR} \times \angle PRQ = 120^{\circ}$,求 Q 點坐標 (a,b,c) = ?

三、計算證明題

說明:本部分共有甲、乙二大題,每題7分,答案必須寫在答案卷上指定格內,超出格外不予計分,同時必須寫出 演算過程或理由,依步驟給分,演算過程或理由不清楚將酌予扣分。

甲、有 A、B 雨支大瓶子,開始時將 A 瓶裝有 1 公升的水、B 瓶不裝水,每一輪的操作都是先將 A 瓶的水倒出一半 到 B 瓶,然後再將 B 瓶的水倒出一半回 A 瓶。設 n 輪操作後,A 瓶有 a_n 公升的水、B 瓶有 b_n 公升的水。

已知二階方陣
$$P = \begin{bmatrix} x & u \\ y & v \end{bmatrix}$$
 满足 $\begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} x & u \\ y & v \end{bmatrix}^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}$,

- (1)(2分)請寫出此二階轉移矩陣 P
- (2) (2) (2) (2) 經過兩輪操作後,水量分布矩陣 $\begin{bmatrix} a_2 \\ b_2 \end{bmatrix}$ 為何?
- (3)(3分)一直持續操作下去,A瓶內的水量會趨近於多少公升?

乙、設
$$A = \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix}$$
、 $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$,

- (1)(2分) 試驗證 $A^2 = -A$
- (2)(2分) 試證明:

$$\sum_{k=0}^{100} C_k^{100} (-1)^k = 0$$

提示:(二項式定理) 設m為自然數,x,y為任意實數,則

$$(x+y)^m = \sum_{k=0}^m C_k^m x^{m-k} y^k = C_0^m x^m y^0 + C_1^m x^{m-1} y^1 + C_2^m x^{m-2} y^2 + \dots + C_{m-1}^m x^1 y^{m-1} + C_m^m x^0 y^m$$

(3)(3分)從(1)可以推論得出 對任意自然數k,有 $A^k = (-1)^{k-1}A$

又由二項式定理知道 $(A+I)^{100} = C_{100}^{100}A^{100} + C_{99}^{100}A^{99} + ... + C_2^{100}A^2 + C_1^{100}A + C_0^{100}I$,

若 $(A+I)^{100} = sA+tI$, 運用上面討論的結果, 求出實數數對 (s,t)。

(若前面子題沒做出來,亦可直接運用前面子題的結果)