Математические объекты и их представления

Презентацию подготовила Елкина Галина, студентка 2 курса ИВТ

Целые числа

В математике

- **...**, -3, -2, -1, 0, 1, 2, 3, ... множество целых чисел
- Все числа между собой различаются на единицу
- ▶ Множество целых чисел может быть конечным или бесконечным

От математики представление целых чисел в компьютерных системах ничем не отличается. Отличается только то, как целые числа задаются в них.

Целые числа в компьютерных системах

B CKA

Целые числа представляются как и в математике, задаются в разных системах по разному. Например, в Maxima целое число можно задать, как x:1, в Scilab - x=1.

В программировании

Также задаются по разному в зависимости от языка программирования. В типизированных языках, таких как Си, задание переменной для целого числа может выглядеть, как int x = 1;. А на Python запись будет без типа, такой же, как в Scilab - x = 1.

B Excel

Есть несколько представлений ячеек, от чего и зависит представление целого числа. В ячейке общего формата число 1 будет выглядеть так:

1

А в числовой ячейке нужно задавать количество знаков после запятой, поэтому представление может варьироваться. Например, то же число 1 может выглядеть так:

В итоге, представление целых чисел в разных системах почти ничем не отличается

Рациональные и иррациональные числа

В математике

Рациональные числа:

- ightharpoonup Обыкновенные дроби $\frac{1}{2}$
- ▶ Десятичные дроби 1,2

Иррациональные числа:

- ► Корни $\sqrt{2}$
- ▶ Тригонометрические числа arcsin2
- ▶ Константы π, е

B CKA

Рациональные числа представляются по разному, в зависимости от возможностей СКА. Но обычно представляются также, как и в математике. Например, представление в Maxima является идентичным математике:

```
1/2; 1.2;

1/2

1.2
```

Иррациональные числа также представляются по-разному, но, в основном, также как и в математике (пример для Maxima):

```
sqrt(2); arcsin(2); \sqrt{2} arcsin(2)
```

Отличие может быть только в представлении констант:

```
%pi; %e;
π
%e
```

В программировании

Обыкновенные дроби в программировании вычисляются с машинной точностью и записываются в виде десятичной дроби. Тоже самое происходит с иррациональными числами. Они вычисляются с машинной точностью.

Для типизированных языков программирования есть несколько типов переменных, поддерживающих данные числа:

- float
- double

Например, ввод на языке Си:

float
$$x = 1/2$$
;

будет записан, как x = 0.5.

Также отличается запись констант. Математические константы, такие как число Пи или экспонента, обычно записываются в виде функций. Например, экспонента на языке Си записывается, как $\exp(x)$, где x - это степень экспоненты.

В электронных таблицах

Электронные таблицы работают примерно также, как языки программирования, так как это ПО. Поэтому все рациональные и иррациональные дроби также вычисляются с машинной точностью и выводятся с нужной нам точностью.

С такими числами лучше всего работать в числовых ячейках, а не в ячейках общего формата. Например, ввод квадратного корня от 2 в Excel будет выглядеть следующим образом:

=КОРЕНЬ(2)

А вывод результата будет таким:

1,41

Также в электронных таблицах есть специальные записи и для констант. Например, число Пи записывается в Excel как ПИ(). Представление рациональных и иррациональных чисел в компьютерных системах значительно отличается от математического представления.

Если в СКА представление максимально приближено к математическому, то в языках программирования и электронных таблицах этому уделяют гораздо меньше внимания, что сказывается на точности вычислений.

Полиномы от одной и нескольких переменных

В математике

Полиномы могут быть представлены разными формами, но смысл полиномов в сумме произведений функций от одной или нескольких переменных.

Примеры полиномов:

$$1 + x + x^2 + x^3$$

$$x^3 + x^2y + xy^2 + y^3$$

$$ax^2 + bx + c$$

B CKA

Полиномы в СКА представляются таким же образом, как и в математике. Но существует «алфавитная» сортировка введенных данных для каждой СКА своя (это видно в примерах).

Примеры (Махіта):

$$(\%i41)$$
 $x^3+x^2\cdot y+x\cdot y^2+y^3;$

(%o41)
$$y^3 + x y^2 + x^2 y + x^3$$

$$(\%i42)$$
 a+x+x²+x³;

$$(\%042)$$
 $x^3 + x^2 + x + a$

В программировании

Полиномы в программировании обычно используются в создании и вычислении функций с одним или несколькими параметрами. Поэтому задание полиномов может выглядеть следующим образом:

```
    на языке Python:
        def f(x):
            return x^3+x^2+x+1
    на языке Си:
        float f(float x) {
            return x^3+x^2+x+1
        }
```

В электронных таблицах

Представляются, в основном, в виде множества ячеек для подставления в формулу.

Примеры (Excel):

1	4
_	
2	15
3	40
4	85
5	156
6	259

X		У		$z = x^3 + x^2y + xy^2$	2+y^3
	1		2		15
	2		3		65
	3		4		175
	4		5		369
	5		6		671
	6		7		1105
x	у	,	z =	x^3+x^2y+xy^2+y^3	
	1			5^3+E5^2*F5+E5*F5^	2+F5^3

Как мы увидели, полиномы используются в разных системах для разных целей, поэтому их представления сильно отличаются.

Рациональные функции

К рациональным функциям в компьютерной математике относятся любые функции в виде дроби, поэтому далее будем рассматривать их.

В математике

Подобные функции в математике бывают нескольких видов, которые определяются по знаменателю дроби:

знаменатель выражен одной переменной:

$$\frac{x^2 + x + 1}{x^3}$$

знаменатель - функция от одной или нескольких переменных:

$$\frac{x^3 + 3x^2 - 4x - 5}{x^5 - 1}$$

$$\frac{x^2 + xy + y^2}{2xy}$$

знаменатель - функция с корнями:

$$\frac{x + \sqrt{y} + 3}{\sqrt{x - y}}$$

B CKA

Рассматривая те же примеры, можно понять, что представление рациональной функции остается тем же, изменяется только форма записи:

$$(\%043)$$
 $\frac{x^2 + x + 1}{x^3}$

$$(\%i44)$$
 $(x^3+3\cdot x^2-4\cdot x-5)/(x^5-1);$

$$\frac{(\%044) \qquad \frac{x^3 + 3x^2 - 4x - 5}{x^5 - 1}$$

$$(\%i45)$$
 $(x^2+x\cdot y+y^2)/(2\cdot x\cdot y)$;

(%045)
$$\frac{y^2 + x \ y + x^2}{2 \ x \ y}$$

$$(\%i46)$$
 (x+sqrt(y)+3)/sqrt(x-y);

$$(\%046) \qquad \frac{\sqrt{y} + x + 3}{\sqrt{x - y}}$$

В программировании

Представление рациональных функций сводится к частному двух выражений с одной или несколькими переменными и может быть записано в следующем виде (предыдущие примеры):

- $y = (x^2+x+1)/x^3$
- $f = (x^3+3*x^2-4*x-5)/(x^5-1)$
- $z = (x^2+x^*y+y^2)/(2^*x^*y)$

В электронных таблицах

Представление будет похоже на представление в программировании, так как, по сути, выражение является местом для подстановки каких либо значений.

Предыдущие примеры, записанные в Excel:

X	$y = (x^2+x+1)/x^3$
1	3
2	0,875
3	0,481481481
4	0,328125
5	0,248
6	0,199074074
x	y = (x^2+x+1)/x^3
1	=(B5^2+B5+1)/B5^3

X		у	$z = (x^2+x^*y+y^2)/(2^*x^*y$
	1	2	1,75
	2	3	1,583333333
	3	4	1,541666667
	4	5	1,525
	5	6	1,516666667
	6	7	1,511904762

х		y = (x^3+3*x^2-4*x-5)/(x^5-1)
	2	0,225806452
	3	0,152892562
	4	0,088954057
	5	0,056017926
	6	0,037942122
	7	0,027192669
x		y = (x^3+3*x^2-4*x-5)/(x^5-1)
	2	=(B5^3+3*B5^2-4*B5-5)/(B5^5-1)

X		у	z = (x+sqrt(y)+3)/sqrt(x-y)
	3	2	7,414213562
	4	3	8,732050808
	5	4	10
	6	5	11,23606798
	7	6	12,44948974
	8	7	13,64575131
X		у	z = (x+sqrt(y)+3)/sqrt(x-y
	3	2	=(E5+КОРЕНЬ(F5)+3)/КО

Таким образом, представление рациональных функций в разных системах почти не отличается - это частное двух выражений, записанное в разных формах, понятных данной системе.

Матрицы

В математике

Существует множество видов матриц, представление которых отличается друг от друга. Но мы выделим 3 основных:

▶ «числовая»:

$$\begin{pmatrix} 2 & 4 \\ 0 & -1 \end{pmatrix}$$

• «буквенная»:

$$\begin{pmatrix} a & -b \\ 6c & d \end{pmatrix}$$

• единичная:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

B CKA

Матрица задается с помощью специальной функции, как, например, в Maxima - matrix(). Этой функцией определяются дальнейшие возможные операции над данным объектом.

«Числовую» или «буквенную» матрицы можно задать просто (Maxima):

(%i48) A: matrix([2,-1],[0,5]);
(A)
$$\begin{bmatrix} 2 & -1 \\ 0 & 5 \end{bmatrix}$$

(%i49) B: matrix([a,-b],[6·c,d]);
(B) $\begin{bmatrix} a & -b \\ 6c & d \end{bmatrix}$

А для единичной матрицы обычно существует специальная функция (вот почему мы выделили ее в отдельный тип), например, как в Maxima - ident(n):

В программировании

Матрица представляется как список списков, или массив массивов. Обращение к элементам матрицы происходит через двойные индексы. Но все виды матриц записываются вручную.

Пример (на языке Python):

$$A = [[2, -1], [0, 5]]$$

B = [[a, -b], [6*c, d]] # оговорка: a, b, c, d - переменные, содержащие какие-либо числовые значения

$$E = [[1, 0], [0, 1]]$$

В электронных таблицах

Матрицы представляются как диапазон ячеек, с которыми можно совершать те же действия, что и в математике.

Только «буквенные» матрицы будут представляться в виде ссылок на какую либо числовую ячейку.

Примеры (Excel):

a	b	С	d
2	-1	4	0
В	2	1	
	24	=M8	

Е	1	0
	0	1

Представление матриц в разных системах немногим отличается друг от друга. Но есть существенные различия в способах задания матриц, что зависит от конкретной системы.

Спасибо за внимание!