Introdução à teoria de grupos

Gustavo Zambonin

Universidade Federal de Santa Catarina Departamento de Informática e Estatística INE5601 — Fundamentos Matemáticos da Informática

gustavo.zambonin@posgrad.ufsc.br

Contexto

- Reticulados como estruturas algébricas
 - ▶ Duas operações binárias, encontro ∧ e junção ∨
 - ► Reticulados limitados, complementados, distributivos

Contexto

- Reticulados como estruturas algébricas
 - ▶ Duas operações binárias, encontro ∧ e junção ∨
 - Reticulados limitados, complementados, distributivos
- Álgebras Booleanas
 - Reticulado complementado distributivo
 - Encontro, junção, e operação unária de complementação ¹

Contexto

- Reticulados como estruturas algébricas
 - ▶ Duas operações binárias, encontro ∧ e junção ∨
 - ► Reticulados limitados, complementados, distributivos
- Álgebras Booleanas
 - Reticulado complementado distributivo
 - Encontro, junção, e operação unária de complementação ¹
- Estrutura algébrica geral
 - Conjunto equipado com um número finito de operações de aridade finita

Exemplos práticos

- Fundamental em muitas áreas da matemática
 - ► Teoria de números, álgebra linear, geometria, combinatória, criptografia, teoria de códigos etc.

Exemplos práticos

- ► Fundamental em muitas áreas da matemática
 - ► Teoria de números, álgebra linear, geometria, combinatória, criptografia, teoria de códigos etc.
- Física, química, biologia, ciência dos materiais
 - Modelagem de estruturas e leis da natureza, estudo de partículas

Exemplos práticos

- ► Fundamental em muitas áreas da matemática
 - ► Teoria de números, álgebra linear, geometria, combinatória, criptografia, teoria de códigos etc.
- Física, química, biologia, ciência dos materiais
 - Modelagem de estruturas e leis da natureza, estudo de partículas
- Ideia geral: operacionalização de elementos de um conjunto

Teoria de grupos

- Estudo de simetrias de um objeto
- Uma simetria é um estado de um objeto que ocupa o mesmo lugar no espaço após um movimento rígido

Teoria de grupos

- Estudo de simetrias de um objeto
- Uma simetria é um estado de um objeto que ocupa o mesmo lugar no espaço após um movimento rígido
- ▶ Podem ser aplicadas repetidamente, desfeitas, ou simplesmente não mudar o objeto
 - Ou seja, as propriedades de composição, elemento inverso e elemento neutro são satisfeitas

Teoria de grupos

- Um quadrado sobre um plano qualquer tem oito simetrias, que levam de vértice em vértice
- Rotações no sentido horário e reflexões sobre eixos

Teoria de grupos

Rotações no sentido horário de 0°, 90°, 180° e 270°, respectivamente (R_0, R_1, R_2, R_3) .

Reflexões com relação aos eixos x, y, z e w, respectivamente (X, Y, Z, W).

► Tome G como um conjunto qualquer. Uma **operação** binária sobre G é uma função $*: G \times G \rightarrow G$

- ► Tome G como um conjunto qualquer. Uma **operação** binária sobre G é uma função $*: G \times G \rightarrow G$
- * é definida para todo par (a, b) de elementos, e associa-os unicamente
 - ▶ A aplicação *(a, b) será denotada como a * b

- ► Tome G como um conjunto qualquer. Uma **operação** binária sobre G é uma função $*: G \times G \rightarrow G$
- * é definida para todo par (a, b) de elementos, e associa-os unicamente
 - ▶ A aplicação *(a, b) será denotada como a * b
- Definição pode ser estendida para operações *n*-árias
 - ▶ Teoria de grupos trabalha geralmente com operações entre dois elementos

- Definição implica que a operação é fechada
 - ▶ Imagem da função sempre estará no conjunto base
 - Descrição mais genérica pode ignorar essa limitação

- Definição implica que a operação é fechada
 - ▶ Imagem da função sempre estará no conjunto base
 - Descrição mais genérica pode ignorar essa limitação
- ▶ Se existe um elemento neutro para qualquer operação * sobre um conjunto G, ele é único

- Definição implica que a operação é fechada
 - Imagem da função sempre estará no conjunto base
 - Descrição mais genérica pode ignorar essa limitação
- ▶ Se existe um elemento neutro para qualquer operação * sobre um conjunto G, ele é único
- ▶ Pode ser associativa, comutativa, distributiva

Operações binárias

*	R_0	R_1	R_2	R_3	X	Y	Z	W
R_0	R_0	R_1	R ₂ R ₃	R_3	Χ	Y	Ζ	W
R_1	R_1	R_2	R_3	R_0	Ζ	W	Y	X
R_2	R_2	R_3	R_0	R_1	Y	Χ	VV	
R_3	R_3	R_0	R_1	R_2	W	Ζ	X	Y
X	X	Ζ	R ₁ Y X	W	R_0	R_2	R_1	R_3
Y	Y	W	X	Z	R_2	R_0	R_3	R_1
Z	Z	Y	W	X	R_3	R_1	R_0	R_2
W	W	X	Z	Y	R_1	R_3	R_2	R_0

Tabela de operações para as simetrias do quadrado.

Operações binárias

Operações comutativas

Operações não comutativas

Operações binárias

- Operações comutativas
 - ightharpoonup +, a adição usual em $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$

Operações não comutativas

Operações binárias

- Operações comutativas
 - \blacktriangleright +, a adição usual em $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
 - ightharpoonup imes, a multiplicação usual em $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$
- Operações não comutativas

Operações binárias

- Operações comutativas
 - \blacktriangleright +, a adição usual em $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
 - ightharpoonup imes, a multiplicação usual em $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$
- Operações não comutativas
 - ightharpoonup —, subtração usual em $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$

- Operações comutativas
 - \blacktriangleright +, a adição usual em $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
 - ightharpoonup imes, a multiplicação usual em $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$
- Operações não comutativas
 - \triangleright -, subtração usual em $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
 - ×, a multiplicação de matrizes de mesma dimensão
- Operações não associativas e não comutativas

- Operações comutativas
 - \blacktriangleright +, a adição usual em $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
 - ightharpoonup imes, a multiplicação usual em $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$
- Operações não comutativas
 - \triangleright -, subtração usual em $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
 - ×, a multiplicação de matrizes de mesma dimensão
- Operações não associativas e não comutativas
 - \blacktriangleright ÷, a divisão usual em \mathbb{Q}, \mathbb{R}

- Operações comutativas
 - \blacktriangleright +, a adição usual em $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
 - ightharpoonup imes, a multiplicação usual em $\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$
- Operações não comutativas
 - \triangleright -, subtração usual em $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
 - x, a multiplicação de matrizes de mesma dimensão
- Operações não associativas e não comutativas
 - ightharpoonup \div , a divisão usual em \mathbb{Q}, \mathbb{R}
 - \triangleright x, o produto vetorial de dois elementos \mathbb{R}^3

 Conjunto de elementos munido de uma operação binária que satisfaz certas propriedades

- Conjunto de elementos munido de uma operação binária que satisfaz certas propriedades
- ▶ Dado um conjunto G e uma operação binária *, um **grupo** é o par ordenado (G,*) onde, $\forall a,b,c \in G$

- Conjunto de elementos munido de uma operação binária que satisfaz certas propriedades
- ▶ Dado um conjunto G e uma operação binária *, um **grupo** é o par ordenado (G,*) onde, $\forall a,b,c \in G$
 - ▶ * é fechada, ou seja, $a * b \in G$

- Conjunto de elementos munido de uma operação binária que satisfaz certas propriedades
- ▶ Dado um conjunto G e uma operação binária *, um **grupo** é o par ordenado (G,*) onde, $\forall a,b,c \in G$
 - \blacktriangleright * é fechada, ou seja, $a*b \in G$
 - \blacktriangleright * é associativa, ou seja, (a*b)*c = a*(b*c)

- Conjunto de elementos munido de uma operação binária que satisfaz certas propriedades
- ▶ Dado um conjunto G e uma operação binária *, um **grupo** é o par ordenado (G,*) onde, $\forall a,b,c \in G$
 - \blacktriangleright * é fechada, ou seja, $a*b \in G$
 - * é associativa, ou seja, (a*b)*c = a*(b*c)
 - ▶ * possui a identidade única $e \in G$, ou seja, a * e = a

- Conjunto de elementos munido de uma operação binária que satisfaz certas propriedades
- ▶ Dado um conjunto G e uma operação binária *, um **grupo** é o par ordenado (G,*) onde, $\forall a,b,c \in G$
 - ▶ * é fechada, ou seja, $a * b \in G$
 - * é associativa, ou seja, (a*b)*c = a*(b*c)
 - \blacktriangleright * possui a identidade única $e \in G$, ou seja, a * e = a
 - Existe $d \in G$ único tal que a * d = e = d * a, chamado de inverso de a ou a^{-1}

- Conjunto de elementos munido de uma operação binária que satisfaz certas propriedades
- ▶ Dado um conjunto G e uma operação binária *, um **grupo** é o par ordenado (G,*) onde, $\forall a,b,c \in G$
 - ▶ * é fechada, ou seja, $a * b \in G$
 - * é associativa, ou seja, (a*b)*c = a*(b*c)
 - \blacktriangleright * possui a identidade única $e \in G$, ou seja, a * e = a
 - Existe $d \in G$ único tal que a * d = e = d * a, chamado de inverso de a ou a^{-1}
- ▶ Note que $G \neq \emptyset$, visto que $e \in G$

- ▶ Com relação à adição usual, tome e = 0 e $a^{-1} = -a$
 - \blacktriangleright $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$ são todos grupos

- Com relação à adição usual, tome e = 0 e $a^{-1} = -a$
 - \blacktriangleright $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$ são todos grupos
- lacktriangle Com relação à multiplicação usual, tome e=1 e $a^{-1}=rac{1}{a}$
 - $ightharpoonup (\mathbb{Q}^*, \times), (\mathbb{R}^*, \times), (\mathbb{C}^*, \times)$ são todos grupos

- ightharpoonup Com relação à adição usual, tome e=0 e $a^{-1}=-a$
 - \blacktriangleright $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$ são todos grupos
- lacktriangle Com relação à multiplicação usual, tome e=1 e $a^{-1}=rac{1}{a}$
 - $lackbox{(}\mathbb{Q}^*, imes),(\mathbb{R}^*, imes),(\mathbb{C}^*, imes)$ são todos grupos
- Com relação à adição módulo n, tome e=0 e $a+a^{-1}\equiv 0\pmod{n}; \mathbb{Z}_n$ é um grupo

- lacktriangle Com relação à adição usual, tome e=0 e $a^{-1}=-a$
 - \blacktriangleright $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$ são todos grupos
- Com relação à multiplicação usual, tome e=1 e $a^{-1}=\frac{1}{a}$
 - $ightharpoonup (\mathbb{Q}^*, \times), (\mathbb{R}^*, \times), (\mathbb{C}^*, \times)$ são todos grupos
- Com relação à adição módulo n, tome e = 0 e $a + a^{-1} \equiv 0 \pmod{n}$; \mathbb{Z}_n é um grupo
- ► Com relação à multiplicação módulo n, tome e = 1 e $a \times a^{-1} \equiv 1 \pmod{n}$; \mathbb{Z}_n^* é um grupo

► Grupos respeitam várias propriedades intuitivas

- Grupos respeitam várias propriedades intuitivas
 - A inversa da identidade é ela mesma, ou seja, $e^{-1} = e$

- Grupos respeitam várias propriedades intuitivas
 - A inversa da identidade é ela mesma, ou seja, $e^{-1} = e$
 - A inversa da inversa de um elemento é ele mesmo, ou seja, $(a^{-1})^{-1} = a$

- Grupos respeitam várias propriedades intuitivas
 - A inversa da identidade é ela mesma, ou seja, $e^{-1} = e$
 - A inversa da inversa de um elemento é ele mesmo, ou seja, $(a^{-1})^{-1} = a$
 - $(a*b)^{-1} = b^{-1}*a^{-1}$

- Grupos respeitam várias propriedades intuitivas
 - A inversa da identidade é ela mesma, ou seja, $e^{-1} = e$
 - A inversa da inversa de um elemento é ele mesmo, ou seja, $(a^{-1})^{-1} = a$
 - $(a*b)^{-1} = b^{-1}*a^{-1}$
 - Leis do cancelamento à direita e à esquerda, ou seja, $a*c=b*c \Leftrightarrow a=b$ e $c*a=c*b \Leftrightarrow a=b$

- Grupos respeitam várias propriedades intuitivas
 - A inversa da identidade é ela mesma, ou seja, $e^{-1} = e$
 - A inversa da inversa de um elemento é ele mesmo, ou seja, $(a^{-1})^{-1} = a$
 - $(a*b)^{-1} = b^{-1}*a^{-1}$
 - Leis do cancelamento à direita e à esquerda, ou seja, $a*c=b*c \Leftrightarrow a=b \text{ e } c*a=c*b \Leftrightarrow a=b$
- \rightarrow $x^n = x * x * \cdots * x$, n vezes; $x^0 = e$

- A ordem de um grupo (G, *), denotada |G|, é o número de elementos de G
- ▶ A ordem de um elemento $g \in G$, denotada |g|, é o menor $n \in \mathbb{N}^*$ tal que $g^n = e$

- A ordem de um grupo (G, *), denotada |G|, é o número de elementos de G
- A ordem de um elemento $g \in G$, denotada |g|, é o menor $n \in \mathbb{N}^*$ tal que $g^n = e$
- Se a operação do grupo é comutativa, então este é chamado de grupo abeliano

- ▶ Um subconjunto $H \subseteq G$ que é fechado sob * e cujas inversas estão em H é chamado de **subgrupo**
 - Os inteiros pares munidos da adição usual são um subgrupo de $(\mathbb{Z},+)$

- ▶ Um subconjunto $H \subseteq G$ que é fechado sob * e cujas inversas estão em H é chamado de **subgrupo**
 - Os inteiros pares munidos da adição usual são um subgrupo de $(\mathbb{Z},+)$
- ▶ Uma função φ entre dois grupos que preserva * é chamada de **homomorfismo**
 - Ou seja, dados $(G_1,*), (G_2,*), \ \varphi: G_1 \to G_2$, então $\forall g_{11}, g_{12} \in G_1, \ g_{11} * g_{12} = \varphi(g_{11}) * \varphi(g_{12})$

- ▶ Um subconjunto $H \subseteq G$ que é fechado sob * e cujas inversas estão em H é chamado de **subgrupo**
 - Os inteiros pares munidos da adição usual são um subgrupo de $(\mathbb{Z},+)$
- ▶ Uma função φ entre dois grupos que preserva * é chamada de **homomorfismo**
 - Ou seja, dados $(G_1,*), (G_2,*), \ \varphi: G_1 \to G_2$, então $\forall g_{11}, g_{12} \in G_1, \ g_{11} * g_{12} = \varphi(g_{11}) * \varphi(g_{12})$
 - Se esta correspondência é bijetora, a função é chamada de isomorfismo

 O conjunto gerador de um grupo é um subconjunto cujos elementos, suas potências e inversas geram todos os elementos do grupo

- O conjunto gerador de um grupo é um subconjunto cujos elementos, suas potências e inversas geram todos os elementos do grupo
- Um grupo abeliano que é gerado por apenas um elemento é chamado de cíclico

- O conjunto gerador de um grupo é um subconjunto cujos elementos, suas potências e inversas geram todos os elementos do grupo
- Um grupo abeliano que é gerado por apenas um elemento é chamado de cíclico
- ► Todos os grupos de ordem prima são cíclicos

- O conjunto gerador de um grupo é um subconjunto cujos elementos, suas potências e inversas geram todos os elementos do grupo
- Um grupo abeliano que é gerado por apenas um elemento é chamado de cíclico
- ► Todos os grupos de ordem prima são cíclicos
- ightharpoonup O grupo \mathbb{Z}_n é cíclico, bem como o grupo das simetrias do quadrado

- As simetrias do quadrado são definidas como um grupo
- Note que essas funções admitem uma forma de descrição matricial

- As simetrias do quadrado são definidas como um grupo
- Note que essas funções admitem uma forma de descrição matricial

Represente-as como
$$R_0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \ldots$$

- As simetrias do quadrado são definidas como um grupo
- Note que essas funções admitem uma forma de descrição matricial
 - $\qquad \qquad \mathsf{Represente-as\ como}\ R_0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \ \ldots$
- ► Então, $G = \{R_0, R_1, R_2, R_3, X, Y, Z, W\}$, munido da operação de composição de funções \circ , é um grupo

- As simetrias do quadrado são definidas como um grupo
- Note que essas funções admitem uma forma de descrição matricial
 - $\blacktriangleright \text{ Represente-as como } R_0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \dots$
- ► Então, $G = \{R_0, R_1, R_2, R_3, X, Y, Z, W\}$, munido da operação de composição de funções \circ , é um grupo
 - Não é abeliano, pois por exemplo, $X \circ R_3 = W \neq Z = R_3 \circ X$

- Este conceito pode ser generalizado para qualquer polígono regular
 - For Grupos dessa forma são chamados de **diedrais** ou D_n , onde n é o número de vértices do polígono

- Este conceito pode ser generalizado para qualquer polígono regular
 - ► Grupos dessa forma são chamados de **diedrais** ou D_n , onde n é o número de vértices do polígono
- ► Ordem do grupo é sempre 2*n*

- Este conceito pode ser generalizado para qualquer polígono regular
 - ► Grupos dessa forma são chamados de **diedrais** ou D_n , onde n é o número de vértices do polígono
- ► Ordem do grupo é sempre 2*n*
- Exemplo gráfico: o grupo D₈

Material de estudo

- Dummit, D. S. and Foote, R. M. (2003). Abstract Algebra.

 3rd edition.
- ► Leitura das páginas 16-32 e resolução dos exercícios 1-10 de cada subseção