МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

Отчёт о выполнении лабораторной работы 3.4.2

Закон Кюри-Вейсса

Автор: Макаров Лев Евгеньевич Б04-306

1 Введение

Цель работы:

1. изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри

В работе используются:

- катушка самоиндукции с образцом из гадолиния
- термостат
- частотомер
- цифровой вольтметр
- LC-автогенератор
- термопара медь-константан

2 Теоретические сведения

В данной лабораторной работе предлагается проверить закон Кюри-Вейсса: при температуре выше температуры Кюри:

$$\chi \sim \frac{1}{T - \theta_P}$$

 θ_P - парамагнитная точка Кюри.

Исследуемый материал будет помещен в катушку индуктивности, из-за чего её индуктивность будет меняться с температурой:

$$L-L_0 \sim \mu-1=\chi$$

Изменение индуктивности будем наблюдать с помощью изменения периода колебаний: $\tau=2\pi\sqrt{LC}$, поэтому

$$L - L_0 \sim \tau^2 - \tau_0^2 \rightarrow \chi \sim \tau^2 - \tau_0^2 \rightarrow \frac{1}{\tau^2 - \tau_0^2} \sim T - \theta_P$$

Здесь L_0 и τ_0 - индуктивность и период колебаний без образца в катушке соответственно.

3 Эксперементальная установка

Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC -автогенератора.

Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и рабочей жидкостью 3 в термостате. Ртутный термометр 4 используется для приближённой оценки температуры.

При изменении температуры меняется магнитная восприимчивость образца χ , а следовательно, самоиндукция катушки и период колебаний τ автогенератора. Для измерения периода используется частотомер.

Измерения проводятся в интервале температур от 14°C до 40°C.

Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. Эта разность температур фиксируется термопарой, чувствительность которой $K=24\frac{\mathrm{град}}{\mathrm{MB}}$. ЭДС термопары измеряется цифровым вольтметром.

4 Результаты измерений и обработка данных

4.1 подготовка приборов

Включим все приборы и выберем необходимые режимы измерения. Включим термостат и выставим нужную температуру.

4.2 Оценка ЭДС

В работе допустимая разность температур образца и воды в термостате $\Delta T = 0.5~C^{\circ}$. Температурный коэффициент термопары K = 24град/мВ. Тогда допустимая ЭДС:

$$\Delta U = 0.02 \text{ B}$$

4.3 Зависимость периода от температуры

Измерим зависимость периода колебаний от температуры образца. Будем выставлять температуру термостата и ждать пока ЭДС не будет меньше ΔU . После чего измерять период при этой температуре. Результаты запишем в таблицу 2.

Здесь:
$$\sigma_{\tau} = 0.003$$
 мкс, а $\sigma_{T} = 0.03, C^{\circ}$

4.4 Период без образца

Период колебаний без образца:

$$\tau_0 = (9.045 \pm 0.003)$$
 MKC

N	t, C°	U, MB	τ , MKC
1	14,02	-0,011	10,7929
2	16,01	-0,019	10,693
3	18,04	-0,016	10,528
4	20,07	-0,0154	10,21502
5	22,05	-0,018	9,878
6	24,01	-0,132	9,545
7	26,01	-0,147	9,4184
8	28,07	-0,0182	9,34852
9	30,06	-0,0178	9,3002
10	32,05	-0,0184	9,267
11	34,03	-0,0185	9,244
12	36,03	-0,0155	9,2253
13	38,02	-0,0158	9,21023
14	40,00	-0,0169	9,198824
9 10 11 12 13	30,06 32,05 34,03 36,03 38,02	-0,0178 -0,0184 -0,0185 -0,0155 -0,0158	9,3002 9,267 9,244 9,2253 9,21023

Таблица 1: Зависимость периода колебаний от температуры

4.5 Завершение измерений

После измерений отключим термостат и все приборы.

4.6 Определение парамагнитной точки Кюри

Используя показания термопары, вычислим температуру образца. Все вычисления запишем в таблицу ??.

N	t, C°	T, K	$1/(\tau^2-\tau_0^2)$, mkc ⁻²
1	14,02	286,8	0,0288
2	16,01	288,6	0,0307
3	18,04	290,7	0,0345
4	20,07	292,7	0,0444
5	22,05	294,6	0,0634
6	24,01	293,8	0,1076
7	26,01	295,5	0,1450
8	28,07	300,6	0,1791
9	30,06	302,6	0,2136
10	32,05	304,6	0,2460
11	34,03	306,6	0,2748
12	36,03	308,7	0,3036
13	38,02	310,6	0,3315
14	40,00	312,6	0,3563

Таблица 2: Зависимость периода колебаний от температуры

Построим график зависимости $1/(\tau^2 - \tau_0^2) = f(T)$. Для построения графика используем точки, лежащие на прямой. График изобразим на рисунке 1.

Часть точек было решено выбросить, так как они явно вносят большую ошибку.

Параметры полученной прямой:

$$k = (0.0171 \pm 0.0005) \text{ K}^{-1} \cdot \text{mkc}^{-2}$$
 $b = (-4.968 \pm 0.002) \text{ mkc}^{-2}$

Теперь находим точку Кюри:

Рис. 1: Зависимость силы от квадрата индукции для всех измерений

$$\theta_p = -\frac{b}{k} = (290 \pm 9) \text{ K}$$

4.7 Определение ферромагнитной точки Кюри

Часть точек не лежащую на прямой аппроксимируем экспонентой. Тогда температура Кюри:

$$\theta_K = (276 \pm 9) \text{ K}$$

4.8 Сравнение результатов

Полученные значения в пределах погрешности совпали с табличными.