CONVEX HULLS

Convex sets are good, but good things are rare. When ugliness is inevitable, people usually wrap them by a layer of nicety. The same applies here, and our wrapping is named convex hull.

the convex hull of a given set $S \subseteq \mathbb{R}^d$, denoted Conv(S), is the smallest (in the sense of set inclusion) Convex set that contains S. In otherwords:

e.g.

Conv(s)

Pictorially, finding a Convex hull of S is like shrinking a balloon that Contains S. One may naturally wonder the other way round: what if we "expand" or "grow" a Convex set from S?

def convex expansion.

The convex expansion of a set $S \subseteq \mathbb{R}^d$, denoted $\exp(S)$, is the set of all possible convex combinations of points in S. In other words:

 $\exp(S) := \left\{ \sum_{i=1}^{n} \lambda_i x_i \mid n \in \mathbb{N}, x_i, \dots x_n \in S, \sum_{i=1}^{n} \lambda_i = 1, \lambda_i, \dots \lambda_n \geq 0 \right\}$

Note that $\exp(s)$ is indeed convex: Take any two points, say $\sum_{i=1}^n \alpha_i x_i$ and $\sum_{i=1}^n \beta_i y_i$ from $\exp(s)$, it's easy to see that $\lambda \cdot (\sum_{i=1}^n \alpha_i x_i) + (1-\lambda)(\sum_{i=1}^n \beta_i y_i)$ is again in $\exp(s)$, provided $\lambda \in [0,1]$. The original ris left as exercise.

We could regard exp(s) as the "most economic" way to make S Convex:
Recall def" require that a convex set Should be closed under Convex Combination and that's exactly what exp(s) tries to fulfill.

So maybe not so surprisingly, the "shrink" and "growth" Coincide:

Lemma 10. Conv(s) = exp(s).

Proof. (⊆): exp(s) is a convex set, which "participates in" the intersection that defined conv(s). So of course conv(s) ⊆ exp(s).

(2): $\forall (\sum_{i=1}^{n} \lambda_i x_i) \in \exp(s)$ must be in Conv(s) as well because

① Conv(S) $\supseteq S \supseteq \{x_1,...,x_n\}$

② Conv(s) is convex; by def" it must contain Convex Combination!
of X1,..., Xn.

■

Below we give yet another characterisation of convex hulls. It simplifies the Convex sets that participate in the intersection.

Lemma 11. For SSRd, we have $Conv(S) = \bigcap_{\substack{H: half space of R' \\ H \supseteq S}} \mathcal{H}.$ In addition, if S is finite, then Conv(S) = (H: halfspace H .

Proof. (1) General case: Obviously we have conv(s) = RHs, so it remains to show Conv(s) ⊇ RHS.

Take a point x ∈ RHS. Suppose to the contrary that x & conv(s). Then the two program convex sets fat and Conv(s) are disjoint, thus separated (not necessarily strictly) by a hyperplane K.

But then there is a Bhalf space (exactly the one side of K) that contains

conv(s) ≥ S but not containing x, Contradicting that XERHS.

(a) Finite case: the argument is very simple; observe that any Halfspace H≥S: [Hns] < d Blazza shall contain (HINHa) for some HI, H228: HINS!

= |Hans| ≥ d.

Remark. Actually the proof of (1) is tricky: We use a stronger version of separation theorem than the one stated in Theorem t. The technical issue is: Conv(S) might not be compact even if S is compact, so Theorem 7 is too weak. The stronger version is not too hard to prove, but has some technical details that we want to omit.

Lemma 11 tells us much about the shape of a convex hull when S is finite:

Finite:

Corollary 12. For any $S \subseteq \mathbb{R}^2$,

Conv(S) is a convex polygon whose

Vertices are from S.

Proof. Exercise.

In higher dimensions, we could also see that conv(S) (SERd) is bounded by finitely many hyperplanes. These shapes are "flat" in most parts and exhibits "edges" or "corners" somewhere. They are natural generalisations of convex polygons ared are entitled "polytopes".

After the understanding the basic shapes of convex hulls for finite sets, let's move on to present several more attendant properties of convex hulls. We start with a rather geometric and intuitive

theorem by Caratheodory.

Theorem 13 (Caratheodory)

Suppose $S \subseteq \mathbb{R}^d$ with n := |S|. For any point $y \in \text{Conv}(S)$, there exist lixer than $\leq al+1$ points from S, say x_1, \dots, x_{d+1} , that $y \in \text{Conv}(\{x_1, \dots, x_{d+1}\})$.

In otherwords, only a few points are sufficient to "enclose" y.

Before proving it, We gain some intuition in the plane case d=2. As we already seen, conv(s) is a convex

seen, Conv(s) is a Convex polygon in this Ease.

X3 So we could triangulate it and y lies in triangulate it triangles. Then we could choose x_1, x_2, x_3 to be the vertices of that triangle so that $Conv(\{x_1, x_2, x_3\})$.

So the basic idea of the proof is really to "triangulate" a Convex polytope. Of course, there is no "triangle"

in higher dimension. The analogue is simplex. In the induction step of the proof below, we cut off a simplex from the polytope the smaller polytope.

Let us do induction on n. The base case $n \le d+1$ is vacuously true. Now we do induction step $n \to n+1 \ge d+2$ Since $y \in Conv(S) = exp(S)$, we could write it as

sold write it as
$$y = \sum_{i=1}^{n+1} \lambda_i x_i \qquad \cdots \quad \bullet$$

Our goal is to move the weight of some his onto other hi's (i.e. remove is a simplex whose top is the Xi)

To this end, we consider the system of linear equations

$$\begin{cases} \sum_{i=1}^{n+1} \beta_i \, \chi_i = 0 & \text{(a)} \\ \beta_i = 0 & \text{(a)} \end{cases}$$

where \$i's one unknowns. There are (n+1) unknowns and (oH)equations (note that IB; Xi=0 is a vector equation).
But n+1≥ d+2>d+1, So the system has a non-secon solution \$1,..., \$n+1.

Now we man to and yield

$$y = \sum_{i=1}^{n+1} (\mathbf{t}\beta_i + \lambda_i) \chi_i$$

for arbitrary $t \in \mathbb{R}$. The remaining task is easy: Choose $t := \min_{i \in \mathbb{R}^n} \frac{\lambda_i}{\beta_i}$, so that at least one Coefficient $(t\beta_i + \lambda)$ becomes zero, while others remain non-negative, so the number of xi's involved in expressing y is reduced by one. Finally, check that $\sum_{i=1}^{n+1} (t\beta_i + \lambda_i) = \sum_{i=1}^{n+1} \lambda_i = 1$, so I.H. applies.

Remark. Just to justify the intuition of (1):

S @: express some B; by Combinations of other Bis

(1): ensure that the weight of B; is safely transferred to the weights of others, ho more and no less.

Next we proceed to a theorem by Radon Whose proof is short but involves clever algebraic tricks.

Theorem 14 (Radon)

Suppose $S \subseteq \mathbb{R}^d$ with $n := |S| \ge d + 2$. Then we could partition S into $S^+ \cup S^$ such that $Conv(S^+) \cap Conv(S^-) \ne \emptyset$.

Proof. Let $S = \{x_1, \dots, x_n\}$. We extend each vector X_i by appending an extra Coordinate:

$$\hat{\chi}_i := \left[\frac{\chi_i}{4}\right] \in \mathbb{R}^{d+1}$$

Now consider the linear system $\sum_{i=1}^{n} \mathbf{x}_{i} \lambda_{i} \hat{x}_{i} = 0$

Where we have n unknowns $(\lambda_1, \dots, \lambda_n)$ and $d+1 < d+2 \le n$ equations. So there exists a nontrivial solution of $\lambda_1, \dots, \lambda_n$. Then we could split them according to signs; formally,

 $I^{+} := \left\{ i \in [n] : \lambda_{i} \geq 0 \right\} \neq \emptyset,$ $I^{-} := \left\{ i \in [n] : \lambda_{i} < 0 \right\} \neq \emptyset.$

And we would derive

$$\begin{cases} \sum_{i \in I^+} \lambda_i \ \chi_i = \sum_{i \in I^-} (-\lambda_i) \chi_i & \dots \\ \sum_{i \in I^+} \lambda_i = \sum_{i \in I^-} (\lambda_i) & \text{due to the appended Coordinate} \end{cases}$$

This is almost done; note that O gives us a Vector that could be expressed both by { x; i \in I+} and y \in x; i \in I-}. The only issue is that its not necessary a <u>Convex</u> Combination. But if we use D to scale both sides, then the problem is resolved. Writing the idea down:

Divide 1) by 3, we have

$$\frac{\sum_{i \in I^{+}} \lambda_{i} \chi_{i}}{\sum_{i \in I^{+}} \lambda_{i}} = \frac{\sum_{j \in I^{-}} (-\lambda_{j}) \chi_{j}}{\sum_{i \in I^{-}} (\lambda_{i})} =: y$$

and at the same time $y \in \exp(\{x_i : i \in I^+\})$. Hence from Lemma 10 we see $y \in \operatorname{Conv}(\{x_i : i \in I^+\}) \cap \operatorname{Conv}(\{x_j : j \in I^-\})$.

Remark. The proof immediately reminds us of the algebraic proof of a theorem about set systems: "If a set system $A \subseteq 2^{\text{CD}}$ has $n \ge d+2$ Sets, then we could find disjoint subsystems A^- , $A^+ \subseteq A$ such that

 $\bigcup_{A \in A} A = \bigcup_{A \in A^+} A \text{ and } \bigcap_{A \in A^-} A = \bigcap_{A \in A^+} A ...$

Actually we could regard it as a corollary of Radon's theorem.

Radon's theorem has a generalised version, namely Tverberg's theorem:

Theorem 15 (Tverberg)

Suppose $S \subseteq \mathbb{R}^d$ with $n := |S| \ge (r-1)(d+1)+1$ Then we could partition S into disjoint S_1, \dots, S_r Such that $\bigcap Conv(S_i) \ne \emptyset$

The proof is still based on algebraic techniques, but we shall not expose it here.

Radon's theorem has some surprising Consequences, for example the theorem below by Helly. It states that (641) wise intersections of n convex sets in Rd is enough to enforce n-wise intersection.

Theorem (Helly)

Given n Convex sets C1, ..., Cn SRd such that any (d+1) of them intersed.

Then all of them intersect.

Proof. We proceed by induction on n. The base case n = d+1 is trivial. Now we step from n to n+1 ≥ d+2. We will later use the key fact below: If we take multiple points from an intersection of convex sets, then the convex hull of these points still lie in the intersection. (why?)

Let us take n+1 points x_1, \dots, x_{n+1} : $x_i \in \bigcap_{j \neq i} C_j$ (which is non-empty by I.H.)

By Radon's theorem, we could partition $[n+1] = I^+ \cup I^-$ such that $[conv(X_{I^+}) \cap Conv(X_{I^+}) \neq \emptyset$. We take $y \in Conv(X_{I^-}) \cap Conv(X_{I^+})$ and observe what happens.

By definition of the X_i 's, we know $X_{I^+} \in \bigcap_{j \in I^+} C_j$ and $X_{I^+} \in \bigcap_{j \in I^-} C_j$.

• So of course $Conv(X_{I-}) \subseteq \bigcap_{j \in I^+} C_j$ (by the fact $Conv(X_{I+}) \subseteq \bigcap_{j \in I^-} C_j$ on the left)

· Hence y ∈ ∩ Cj

To conclude this section, we give a nice application of Helly's theorem."
In one-dimension we have the notion of medians", i.e. a point that could observe half of the point set from both sides. We naturally wonder if there is a similar notion in higher dimensions.

The generalised term is the "centerpoint".

def Centerpoint.

A centerpoint for a given point set $S \subseteq \mathbb{R}^d$ is any point $x \in \mathbb{R}^d$ such that

The sides of the plane contains $\geq \frac{1}{014} |S|$ Points from S.

Note that we could not lift the constant 1 to something like at; otherwise centerpoints clearly don't exist in many cases (for instance the top-right picture).

But even so. It is unclear whether centerpoints always exist. Proving existence would need judicious use of Helly's theorem.

Theorem 17 (Centerpoint theorem)
For any given finite point set SSRd, there alway exists a centerpoint for S.

Proof. First we need a slightly different characterisation of centerpoints:

Claim & is centerpoint for S Whalfspace H: [Hns] > d+1 |s|

(=) If there is some halfspace H: |Hns| > dist

that doesn't Contain x, then the Complement halfspace It has HOS | < III and x∈H, which is a contradiction to the definition of Centerpoints.

Now, we filter out the subsets of S Market de de de la contracte d

of := { Hos : | Hos | > It Is |,

H is a halfspace }

It suffices to show that ∩com(A) ≠ Ø.

To this end, we use Helly's theorem and reduce the proof to showing $\bigcap_{i=1}^{n} \operatorname{Conv}(A_i) \neq \emptyset$

for any A. ... Adm € A. But this is easy: By definition [Ail ..., [Ad+1] > 181, so [[Ail > d. 18].

