Consider the matrices $\mathbf{X}_1,...,\mathbf{X}_m$, where \mathbf{X}_j is an $n_j \times p$ matrix of rank q_j . Let $\mathbf{X} = (\mathbf{X}_1',\mathbf{X}_2',...,\mathbf{X}_m')'$ and assume that \mathbf{X} has full column rank p. Denote $N = \sum_{j=1}^m n_j$. Let $\mathbf{W}_1,...,\mathbf{W}_m$ be symmetric matrices of full rank, with \mathbf{W}_j having dimension $n_j \times n_j$. Let \mathbf{W} be the block-diagonal matrix with components $\mathbf{W}_1,...,\mathbf{W}_m$, i.e., $\mathbf{W} = \bigoplus_{j=1}^m \mathbf{W}_j$. Let \mathbf{J}_j be an $n_j \times N$ matrix consisting of the rows of the identity matrix that correspond to \mathbf{X}_j , so that $\mathbf{J}_j \mathbf{X} = \mathbf{X}_j$. Define the $n_j \times N$ matrix

$$\mathbf{K}_{j} = \mathbf{J}_{j} \left(\mathbf{I}_{N} - \mathbf{X} \left(\mathbf{X}' \mathbf{W} \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{W} \right).$$

Question: Under what conditions is \mathbf{X}_j in the span of \mathbf{K}_j , i.e., when does there exist a $N \times p$ matrix \mathbf{Z} such that $\mathbf{K}_j \mathbf{Z} = \mathbf{X}_j$?

My conjecture (or perhaps its more accurate to call it wishful thinking...) is that it is sufficient for $\mathbf{X}_{(j)}$ to have full rank, where $\mathbf{X}_{(j)}$ is the $(N-n_j)\times p$ matrix formed by stacking all of the \mathbf{X}_k where $k\neq j$, i.e., $\mathbf{X}_{(j)}=\left(\mathbf{X}_1',...\mathbf{X}_{j-1}',\mathbf{X}_{j+1}',...,\mathbf{X}_m\right)'$.