Assignment 2

Dec. 4, 2022

Q1

(a) The range and number are listed below.

Interface	Range	Number
0	11100100 - 11101111	24
1	11100000 - 11100011	4
2	111111100 - 111111111	4
3	00000000 - 11011111	224

- (b) 11001000 matches no prefix in forwarding table, thus its out interface is 3.
 - 11100001 matches longest prefix 111000 in forwarding table, thus its out interface is 1.
 - 11110000 matches longest prefix 111 in forwarding table, thus its out interface is 0.

Q_2

The prefixes of four subnets are listed blelow.

• $\lceil \log_2 200 \rceil = 8$

10000000 01110111 0010100<mark>0</mark> 00000000

Prefix: 128.119.40.0/24

• $\lceil \log_2 96 \rceil = 7$

10000000 01110111 00101001 00000000

Prefix: 128.119.41.0/25

• $\lceil \log_2 62 \rceil = 6$

10000000 01110111 00101001 10000000

Prefix: 128.119.41.128/26

• $[\log_2 60] = 6$

10000000 01110111 00101001 11000000

Prefix: 128.119.41.192/26

Q3

- (a) Addresses of three hosts in the home network are **192.168.2.128**, **192.168.2.129**, **192.168.2.130** respectively.
- (b) The four entries in NAT translation table are listed below.

WAN side addr	LAN side addr		
24.34.114.232, 1145	192.168.2.200, 3000		
24.34.114.232, 1146	192.168.2.200, 3001		
24.34.114.232, 1147	192.168.2.201, 3000		
24.34.114.232, 1148	192.168.2.201, 3001		

$\mathbf{Q4}$

Step	N'	D(t), $p(t)$	D(u), p(u)	D(v), p(v)	D(w), p(w)	D(y), p(y)	D(z), $p(z)$
0	X	∞	∞	3, x	6, x	6, x	8, x
1	XV	7, v	6, v	3, x	6, x	6, x	8, x
2	xvu	7, v	6, v	3, x	6, x	6, x	8, x
3	xvuw	7, v	6, v	3, x	6, x	6, x	8, x
4	xvuwy	7, v	6, v	3, x	6, x	6, x	8, x
5	xvuwyt	7, v	6, v	3, x	6, x	6, x	8, x
6	xvuwytz	7, v	6, v	3, x	6, x	6, x	8, x

The shortest path from node x to all other nodes are,

Destination	Path	Path length	
t	$x \rightarrow v \rightarrow t$	7	
u	$x \rightarrow v \rightarrow u$	6	
V	$x \rightarrow v$	3	
W	$x \rightarrow w$	6	
y	$x \rightarrow y$	6	
Z	$x \rightarrow z$	8	

Q5

(a) The process is listed below

(b) The messages are listed below

- 1. y [60, 0, 1]
- 2. x [0, 51, 50]
- 3. $x[0, \infty, 50]$
- 4. y [60, 0, 1]
- 5. z [50, 1, 0]
- 6. z [50, 1, 0]
- 7. y [51, 0, 1]
- 8. $y [\infty, 0, 1]$