Week -1 Questions - Theory of Computation

January 21, 2023

1.	(1 point)	For a given	language .	A, there	could	be r	multiple	DFA's th	at re	ecognize	A.
	A.	False									

B. True

- 2. (1 point) The minimum number of states in the DFA that is required to recognize the empty Language $L = \emptyset$ is equal to ______1.
- 3. (1 point) The minimum number of states in the DFA that is required to recognize the Language $L = \{\varepsilon\}$ is equal to ______.
- 4. (1 point) The minimum number of states in the DFA that is required to recognize the following Language L is equal to _____5_.

 $L = \{w \in \{0,1\}^* | w \text{ has a number of zeroes that is divisible by 5} \}$

0.1 Flipping and Reversing

For questions 5, 6, 7 we define the following. Let $\Sigma = \{0,1\}$. For every string w in Σ^* , we define Comp(w) to be the string obtained by complementing each bit of w. For instance Comp(00101) = 11010. For a language A, We define $\text{FLIP}(A) = \{\text{Comp}(w) : w \in A\}$.

For every string w in Σ^* , we define Rev(w) to be the string obtained by reversing the string w. For instance Rev(00101) = 10100. For a language A, We define $\text{REV}(A) = \{\text{Rev}(w) : w \in A\}$.

- 5. (2 points) Let A be recognized by a DFA $M = (Q, \Sigma, \delta, q_0, F)$. Suppose our goal is to construct a DFA $M' = (Q', \Sigma', \delta', q'_0, F')$ that recognizes FLIP(A). Which of the following transformations yields such a DFA M'?
 - A. Make the accept states non-accepting, and make the non-accepting states accepting. i.e $F' = Q \setminus F$
 - B. Reverse the direction of every edge in the DFA M, i.e. if $\delta(q_1, a) = q_2$ then $\delta'(q_2, a) = q_1$
 - C. Complement the value on every edge(arrow) of the DFA, i.e. if $\delta(q_1, a) = q_2$ then $\delta'(q_1, \bar{a}) = q_2$ (Here $\bar{0} = 1$ and $\bar{1} = 0$)
 - D. None of the above are true. The language FLIP(A) is not regular.
- 6. (2 points) Let A be recognized by a DFA with a single accept state $M = (Q, \Sigma, \delta, q_0, F)$, where $F = \{q_a\}$. Suppose our goal is to construct a DFA $M' = (Q', \Sigma', \delta', q'_0, F')$ that recognizes REV(A). Which of the following transformations yields such a DFA M'?
 - A. Make the accept states non-accepting, and make the non-accepting states accepting. i.e $F' = Q \setminus F$
 - B. Reverse the direction of every edge in the DFA M, i.e. if $\delta(q_1, a) = q_2$ then $\delta'(q_2, a) = q_1$

- C. Reverse the direction of every edge in the DFA M, i.e. if $\delta(q_1, a) = q_2$ then $\delta'(q_2, a) = q_1$ and $q'_0 = q_a$ (New start state is old accept state) and $F' = \{q_0\}$.
- D. Complement the value on every edge(arrow) of the DFA, i.e. if $\delta(q_1, a) = q_2$ then $\delta'(q_1, \bar{a}) = q_2$ (Here $\bar{0} = 1$ and $\bar{1} = 0$)
- E. Set $q'_0 = q_a$ (New start state is old accept state) and $F' = \{q_0\}$.
- F. None of the above choices create a valid DFA that accept the language REV(A)
- 7. (2 points) Consider two DFA's $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$. Note that both the DFAs operate over the same alphabet $\Sigma = \{0, 1\}$. Consider a new DFA $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$ that is obtained in the following manner.
 - 1. $Q_3 = Q_1 \times Q_2$
 - 2. $\Sigma_3 = \Sigma = \{0, 1\}$
 - 3. For all states $(r_1, r_2) \in Q_3$ and $a \in \Sigma$, we define $\delta_3((r_1, r_2), a) = (\delta_1(r_1, \bar{a}), \delta_2(r_2, \bar{a}))$ where \bar{a} denotes the complement of the bit a.
 - 4. $F_3 = \{(r_1, r_2) | r_1 \in F_1 \text{ and } r_2 \in F_2\}$

Then what is the language that is accepted by this DFA M_3 ?

- A. $FLIP(A \cup B)$
- B. $FLIP(A) \cup FLIP(B)$
- C. FLIP $(A \cap B)$
- D. None, The language is not regular.
- 8. (2 points) The class of regular languages is closed under which of the below operations? Select all that is/are correct.
 - \square subset i.e, subset of a regular language is also regular.
 - union
 - complement
 - concatenation
- 9. (2 points) Which of the following statements is/are true? Select all that is/are correct.
 - \square All regular languages are finite in size.
 - The class of regular languages is closed under intersection.
 - \square If A is a regular language, and $A \subseteq B$, then B is necessarily regular.
 - All finite languages are regular.
- 10. (2 points) What is the language recognized by the below DFA?

- A. All binary strings that begin with a 1.
- B. All binary strings that contain a 1.
- C. All binary strings that end with 1.
- D. All binary strings that have no 0's.
- 11. (2 points) What is the language recognized by the below DFA?

- A. All binary strings that start with 111.
- B. All binary strings that contain 111 as a substring.
- C. All binary strings that contain at least three 1's.
- D. All binary strings that contain exactly three 1's.
- 12. (2 points) What is the language recognized by the below DFA?

- A. All binary strings that start with 011.
- B. All binary strings that contain 011 as a substring.
- C. All binary strings that contain a 0 followed by at least two 1's.
- D. All binary strings that end with 011.