CS-302 Theory of Computation Assignment 2

	Name:	
1.	(2 points) Suppose Σ is an alphabet. It is obviously possible for two strings x and y over Σ to satisfy the condition $xy=yx$, since this condition is always satisfied if $y=\lambda$. Is it possible under the additional restriction that x and y are both nonempty? Either prove that this cannot occur, or describe precisely the circumstances under which it can.	e
_		
2.	(2 points) Let L be a language. It is clear from the definition that $L^+\subseteq L^*$. Under wha circumstances are they equal?	t
3.	(3 points) For a finite set S , denote by $ S $ the number of elements of S . Is it always true that for finite languages L_1 and L_2 , $ L_1L_2 = L_1 \times L_2 $? (For example, if L_1 has 3 element and L_2 has 4, does the concatenation L_1L_2 always have 12 elements?) Either prove it or fine a counterexample.	S
•		
4.	(6 points) In each of the following cases, give an example of languages L_1 and L_2 that satisfy both the condition $L_1L_2=L_2L_1$ and the given additional condition.	t
	a) Neither language is a subset of the other and neither language is $\{\lambda\}$.	
	b) L_1 is a proper nonempty subset of L_2 and $L_1 \neq \{\lambda\}$.	

	(3 poi langua	nts) Let L_1 and L_2 be two languages over some alphabet Σ . Consider the two ges:
		$L_1^* \cap L_2^* \qquad (L_1 \cap L_2)^*$
		the relationship between the two languages. (Are they always equal? If not, is one a subset of the other?) Give reasons for your answers, including counterexamples if priate.
6.		nts) In each part below, find an example of languages L_1 and L_2 over $\{0,1\}$ that
		the given condition(s).
	a)	
	a)	the given condition(s).
		the given condition(s).
		the given condition(s). $(L_1 \cup L_2)^* \neq {L_1}^* \cup {L_2}^*.$