

Use K-Nearest Neighbour to perform smoothing deformations

1-Extract the points position of the 3D Shape

2-Fit the Nearest Neighbours Model with all points data and a specific K value.

from sklearn.neighbors import NearestNeighbors
nn_model = NearestNeighbors(n_neighbors=k+1)
nn model.fit(point cloud)

Python

3-For each point find the closest neighbour

```
for i, point in enumerate(point_cloud):
    # Find indices of k nearest neighbors (including the point itself)
    distances, indices = nn_model.kneighbors([point])
    indices = indices.squeeze()

Python
```


4-Calculate the centroid of kinearest neighbors

centroid = np.mean(point_cloud[indices], axis=0)

Python

5-Update the position of the point based on the centroid

smoothed_point_cloud[i] = point * (1 - smoothing_factor) + centroid * smoothing_factor

Python