INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C12N 15/61, 15/29, 15/62, 15/63, 1/21, C07K 14/415, C12N 9/90, G01N 33/53, C12Q 1/533, A61K 38/52

A2

(11) Internationale Veröffentlichungsnummer:

WO 97/05258

(43) Internationales Veröffentlichungsdatum:

13. Februar 1997 (13.02.97)

(21) Internationales Aktenzeichen:

PCT/AT96/00141

(22) Internationales Anmeldedatum: 2. August 1996 (02.08.96)

(30) Prioritätsdaten:

A 1320/95

2. August 1995 (02.08.95)

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BIOMAY PRODUKTIONS- UND HANDELSGESELLSCHAFT MBH [AT/AT]; Herrenstrasse 2, A-4020 Linz (AT).

(72) Erfinder: und

(75) Erfinder/Anmelder (nur für US): FERREIRA, Fatima [BR/AT]; Würzenberg 35, A-5102 Anthering (AT). RICHTER, Klaus [AT/AT]; Huberbergstrasse 18, A-5162 Obertrum (AT). ENGEL, Edwin [AT/AT]; Karl im Hof Weg 6, A-8773 Kammern (AT). EBNER, Christof [AT/AT]; St. Elisabethplatz 4/13, A-1040 Wien (AT). JILEK, Alexander [AT/AT]; Gruberstrasse 51, A-4020 Linz (AT). RHEINBERGER, Hans-Jörg [LI/AT]; Mascagnigasse 20, A-5020 Salzburg (AT). KRAFT, Dietrich [AT/AT]; Montigasse 1, A-1170 Wien (AT). BREITENBACH, Michael [AT/AT]; Alfred Kubinstrasse 11/11, A-5020 Salzburg (AT).

(74) Anwälte: CASATI, Wilhelm usw.; Amerlingstrasse 8, A-1061 Wien (AT).

(81) Bestimmungsstaaten: AU, CA, JP, NO, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(54) Title: RECOMBINANT 60KDA VEGETABLE PANALLERGEN (CO-FACTOR-INDEPENDENT PHOSPHOGLYCERATE MU-TASE; E.C. 5.4.2.1.)

(54) Bezeichnung: REKOMBINANTES 60 KDA PFLANZLICHES PANALLERGEN (KOFAKTOR-UNABHÄNGIGE PHOSPHO-GLYCERATMUTASE; E.C. 5.4.2.1.)

(57) Abstract

The description relates to a recombinant DNA molecule which codes a polypeptide antigen property of the co-factor-independent phosphoglycerate mutase (E.C. 5.4.2.1.) of birch, mugwort or timothy grass pollen. This allergen in birch pollen is highly preserved on sequence and antigen property in all plants (but not in animal organisms). The amino acid sequence and the most important B and T-cell epitopes of the molecule are derived and demonstrated. The recombinant allergen was expressed in E. coli and binds the IgE serum of patients who are allergic to tree, grass and weed pollens and various foodstuffs. A monoclonal antibody (BIP 3) specifically bonds to said highly conserved protein from all plants tested. The significance of the co-factorindependent phosphoglycerate mutase (E.C. 5.4.2.1.) derives from the fact that it results in the cross-sensitisation of patients. The recombinant molecule and its partial peptides can be used in diagnostic and therapeutic methods based, for example, on antigen-antibody interaction, mediator release or T-cell reactivity.

(57) Zusammenfassung

Wir zeigen ein rekombinantes DNA Molekül, das für ein Polypeptid mit der Antigenität der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) des Birken-, Beifußoder Lieschgraspollen kodiert. Dieses Allergen des Birkenpollens ist in Sequenz und Antigenität in allen Pflanzen (aber nicht in tierischen Organismen) hoch konserviert. Die Aminosäuresequenz und die wichtigsten B-Zell- und T-Zell-Epitope des Moleküls werden abgeleitet und gezeigt. Das rekombinante Allergen wurde in Escherichia coli exprimiert und bindet Serum IgE von Patienten, die gegen Pollen von Bäumen, Gräsem und Unkräutern sowie gegen verschiedene Nahrungsmittel allergisch sind. Ein monoklonaler Antikörper (BIP 3) bindet spezifisch an dieses hochkonservierte Protein aus allen untersuchten Pflanzen. Die Bedeutung der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) liegt darin, daß sie zur Kreuzsensibilisierung von Patienten führt. Das rekombinante Molekül und seine

Plaque-lifts getestet mit Patientensers und BIP 3 PLAQUE LIPTS TESTED WITH PATIENT SERA AND BLP I

Teilpeptide kann zu diagnostischen und therapeutischen Verfahren herangezogen werden, die z.B. auf Antigen-Antikörper Wechselwirkung, Mediatorfreisetzung, oder T-Zell-Reaktivität beruhen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger
ΑÜ	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungam	NZ	Neuseeland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumānien
BR	Brasilien	KE	Келуа	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Категия	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lenland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI	Finnland	MN	Mongolei	UZ.	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		

WO 97/05258 PCT/AT96/00141

Rekombinantes 60 kDa pflanzliches Panallergen (Kofaktor-unabhängige Phosphoglyceratmutase; E.C. 5.4.2.1.)

BIP3 ist ein gegen ein Birkenpollenprotein gerichteter monoklonaler Antikörper, der, 5 wie bereits früher gezeigt (1), ein Nebenallergen mit einem Molekulargewicht von 60 kDa erkennt. Eine Birkenpollen-cDNA-Expressionsbank wurde mit BIP3 als Probe gescreent und dabei eine cDNA kodierend für ein Pollenallergen mit dem Molekulargewicht 60 kDa isoliert. Dieses Allergen zeigt hohe Sequenzhomologie mit pflanzlichen Kofaktor-unabhängigen Phosphoglyceratmutasen. In weiterer Folge wurden cDNAs die 10 für das gleiche Protein kodieren sowohl aus einer cDNA-Bank von Lieschgraspollen sowie von Beifußpollen isoliert.

Phosphoglyceratmutasen (PGM) katalysieren in der Glykolyse und Glukoneogenese die Umwandlung von 3-Phosphoglycerat zu 2-Phosphoglycerat. Diese Reaktion findet ubi-15 quitär in prokaryotischen und eukaryotischen Organismen statt (2). Es gibt zwei Arten von PGM: Kofaktor-abhängige PGM (PGM-d), die 2,3-Bisphosphoglycerat als Kofaktor brauchen, und Kofaktor-unabhängige PGM (PGM-i), die 2,3-Bisphosphoglycerat nicht benötigen. PGM-d wurden in allen Vertebraten nachgewiesen, während Pflanzen PGM-i verwenden. In Prokaryoten und niederen Eukaryoten ist die Situation wesentlich 20 komplizierter. PGM aus Hefe wurde als PGM-d charakterisiert, während PGM aus Neurospora crassa, die ebenso wie Hefe zu den Pilzen, und damit zu den niederen Eukaryoten zählt, zu der PGM-i Gruppe gehört. PGM von gram-positiven Bakterien (z.B. Bacillus) ist Kofaktor-unabhängig, gram-negative Bakterien (z.B. Escherichia coli) haben Kofaktor-abhängige PGM. PGM von Säugern ist ein Dimer, wobei die Unterein-25 heiten ein Molekulargewicht von 30 kDa haben (2). Das Pflanzenenzym PGM-i ist ein Monomer mit einem Molekulargewicht von etwa 60 kDa (3). Bis jetzt wurden nur PGM-i Sequenzen von Mais (3), Rhizinus und Tabak (4) veröffentlicht. Es wurden keinerlei Sequenzhomologien zwischen PGM-i und PGM-d festgestellt, was den Schluß zuläßt, daß beide Enzyme - obwohl sie die gleiche Reaktion katalysieren - evolutionär 30 unabhängig entstanden sind.

Häufig sind atopische Patienten empfindlich gegen verschiedene Allergene unterschiedlicher Herkunft. In früheren klinischen Studien wurden Allergiesyndrome beschrieben, bei denen die Kreuzreaktivität der Patienten gegen Allergene verschiedener Herkunft (Pollenallergene von Bäumen, Gräsern und Unkräutern, sowie Nahrungsmittelallergene) eine charakteristische Rolle spielt (5,6,7).

Einige bestimmte Kombinationen der Allergenkreuzreaktivität scheinen häufiger aufzu5 treten. Zum Beispiel haben Patienten mit Birkenpollenallergie oft auch eine Intoleranz
gegen eine Vielzahl von Früchten und Gemüsen, wie Apfel, Birne, Nüsse, Karotten,
Kartoffel, Sellerie und viele andere pflanzliche Nahrungsmittel. Typische Symptome
sind lokale Reaktionen der Schleimhäute des oberen respiratorischen bzw. Verdauungstrakts (Jucken, Entzündung, Angioödem), bei vielen Patienten treten aber auch
10 systemische Symptome auf (Urticaria, Asthma, anaphylaktischer Schock).

In den letzten Jahren konnten durch cDNA Klonieren die abgeleiteten Aminosäuresequenzen vieler atopischer Allergene bestimmt werden. Mit Hilfe rekombinanter Allergene konnte in einigen Fällen gezeigt werden, welche allergenen Verbindungen für die Kreuzsensibilisierung verantwortlich sind. In einigen Fällen wurde die Kreuzsensibili-15 sierung durch IgE Antikörper, die homologe Proteine in unterschiedlichen Allergenquellen erkennen, verursacht. Zum Beispiel scheint Bet v 2, das zu der Profilinfamilie gehört und ein Nebenallergen aus Birkenpollen ist (8), in pollenallergischen Patienten eine solche kreuzreaktive Verbindung zu sein. Profiline sind ubiquitäre, aktinbindende Proteine, die in allen eukaryotischen Zellen gefunden werden. Pflanzliche Profiline 20 haben eine hohe Sequenzhomologie, wodurch die hochgradige Kreuzreaktivität mit Patienten-IgE verursacht wird. Als Folge sind Patienten, die gegen Profilin allergisch sind, empfindlich gegen viele pflanzliche Stoffe, wie z.B. Pollen, Früchte, Nüsse, Gemüse etc. Aus diesem Grund wird Profilin als Pflanzen Panallergen bezeichnet (9). Bet v 1, ein Hauptallergen aus Birkenpollen, ist ein anderes für Kreuzreaktionen verant-25 wortliches Pollenallergen. Bet v 1 gehört zu der Familie der Pflanzen PR (pathogenesis related) Proteine (10), die in vielen Pflanzen vorkommen. Mit Bet v 1 homologe Proteine kommen in Pollen von verwandten Bäumen vor (Erle, Hasel, Hainbuche) (11,12,13) vor, was die Kreuzsensibilität von Baumpollen-allergischen Patienten erklärt. Mit Bet v 1 verwandte Proteine wurden auch in Früchten, Gemüse und Nüssen 30 nachgewiesen (14). Das erklärt die klinische Beobachtung, warum pollenallergische Patienten häufig Symptome nach Einnahme bestimmter Früchte und Gemüse zeigen (7). Die Hauptallergene von Graspollen sind in vielen Grasfamilien konserviert (15), aber bis jetzt wurden nur Profiline als kreuzreaktive Moleküle in Graspollen und pflanzlichen Nahrungsmitteln beschrieben (16). Kreuzreaktivitäten zwischen Katze, Hund und anderen tierischen Allergenquellen werden hauptsächlich dem Albumin zugeschrieben (17). Aus diesen Beobachtungen kann allgemein geschlossen werden, daß kreuzreagierende 5 Allergene hochkonservierte Proteine sind. Diese Beobachtungen führen dazu, daß das Konzept der Allergie gegen eine bestimmte Pflanzenspezies erweitert werden muß durch das Konzept der Allergie gegen ein bestimmtes hochkonserviertes Protein, das in vielen Pflanzenspecies vorkommt. Die genaue Identifizierung und Charakterisierung von kreuzreagierenden Allergenen ist von größter Wichtigkeit für die Diagnose und 10 mögliche Therapie von Typ I-Allergien.

In der folgenden Patentanmeldung wird gezeigt, daß die pflanzlichen Phosphoglyceratmutasen (E.C.5.4.2.1.) hochkonservierte Pflanzenallergene (d.h. ein Panallergen) sind, die zu einer hochgradigen Kreuzreaktivität von Patienten führen, die gegen Baum-, Gras- und Unkrautpollen bzw. pflanzliche Nahrungsmittel, wie Sellerie und Apfel aller-15 gisch sind.

Materialen und Methoden:

1. Herstellung der cDNA Banken:

20

Gesamt RNA wurde aus Birken-, Beifuß- sowie Lieschgraspollen (Allergon AB, Engelholm) mit der Guanidinium-Phenol-Extraktionsmethode isoliert. Poly(A)+ mRNA wurde mit oligo-dT magnetisierbaren Zellulosepartikeln (Serotec) nach Angaben des Herstellers isoliert. Die cDNA Synthese wurde mit dem Lambda-ZAP cDNA Synthese 25 Kit von Stratagene durchgeführt. Die Synthese des ersten Stranges wurde mit einem oligo(dT) Linker-primer, der eine XhoI Schnittstelle enthielt, gestartet. Nach der Synthese des zweiten Stranges wurden EcoRI Adaptoren an die cDNA ligiert. Die mit XhoI verdaute cDNA wurde dann an die vorverdauten Uni-ZAP XR Vektorarme ligiert und in vitro verpackt. In allen 3 Fällen wurden 1,0-1,5 x 106 rekombinante Plaques erhalten.

2. Screening der cDNA Bank mit dem monoklonalen Antikörper BIP 3, in vitro Excision und DNA Sequenzanalyse.

Die cDNA Banken von Birken- und Lieschgraspollen wurden mit dem monoklonalen 5 Antikörper BIP 3 gescreent (1). Positive Plaques wurden auf nachfolgende Art sichtbar gemacht: Inkubation mit Kaninchen Antimaus IgG, dann mit ¹²⁵J-Esel Antikaninchen IgG. Abschließend wurde Autoradiographie durchgeführt. Positive Plaques wurden isoliert und durch neuerliches Screening isoliert. Nachfolgend wurden mit den gereinigten Phagen die *in vitro* Excision wie im Stratagene Handbuch beschrieben durchgeführt, 10 um sie in den pBluescript SK+ Vektor (Stratagene) subklonieren zu können. Plasmide mit rekombinanten cDNA Inserts wurden isoliert, und die Inserts wurden nach der Sanger Methode (18) unter Verwendung des T7 Sequenzierkits (Pharmacia) sequenziert. Es wurden beide Stränge sequenziert.

15 3. Screening der cDNA-Bank mit radioaktiv markierter DNA

Aufgrund der großen Ähnlichkeit der isolierten cDNAs aus der Birken- und Lieschgrasbank wurde das Insert eines Lieschgrasklones (Phl1) isoliert und mittels der "random priming method" (19) radioaktiv markiert. Mit dieser radioaktiv markierten Sonde wurde ein Screening der Beifuß cDNA-Bank durchgeführt (20). Die Hybridisierung der Nitrocellulosefilter erfolgte in 1M Salzlösung bei 60°C für 15-20 Stunden. Anschließend wurden die Filter 2x 30 min mit 5xSSPE 0,1% SDS bei 50°C gewaschen, dann getrocknet und exponiert (1xSSPE= 150mM NaCl, 10 mM Na-phosphat pH 7,0, 1mM EDTA). Nach der Autoradiographie wurden positive Phagen isoliert und durch mehrmaliges Ausplattieren bei geringer Plaquedichte und wiederholtem Screening gereinigt. Die in vitro Excision und Sequenzierung wurde wie unter Punkt 2 beschrieben durchgeführt.

- 4. Herstellung der Nitrocellulosefilter mit rekombinanten Birken-, Beifuß- sowie Lieschgraspollen PGM-i Allergene und IgE Detektion.
- Rekombinante Lambda ZAP Phagen, die PGM-i Allergen cDNA exprimieren, wurden verwendet, um E. coli, Stamm XL-1 Blue, zu infizieren. Inkubation von E. coli

erfolgte in LB Medium mit 10 mM MgSO. Zur Expression des rekombinanten PGM-i Allergens wurden die Phagen induziert, indem auf die Platten in 10 mM Isopropyl-betathiogalaktosid (IPTG) getränkte Nitrozellulosefilter gelegt wurden. Die Nitrozellulosefilter wurden dann in Sektoren geschnitten und mit Sera von Patienten mit allergischen 5 Symptomen gegen Pollen von Birke, Gras, Unkraut oder gegen pflanzliche Nahrung inkubiert. Gebundenes IgE wurde mit 125J-Kaninchen Antihuman IgE (Pharmacia) nachgewiesen.

Ergebnisse

10

In diesem Teil wird gezeigt, daß es sich bei dem neu klonierten Allergen tatsächlich um ein hochkonserviertes Panallergen handelt, und daß es für eine verbesserte Diagnose und Therapie von Patienten mit einer Allergie gegen dieses Protein aus Pollen und pflanzlichen Nahrungsmitteln verwendet werden kann.

15

DNA- und Aminosäuresequenzen:

Fig. 1 zeigt die cDNA Sequenz und die abgeleitete Aminosäure Sequenz von Birkenpollen PGM-i. Fig. 7a,7b zeigen die cDNA Sequenz und abgeleitete Aminosäure Sequenz von Lieschgraspollen PGM-i (Isoformen Phl1 und Phl5), die gleich Ergebnisse für Beifußpollen PGM-i (Isoformen Art6 und Art17) zeigen die Fig. 10a,10b.

Wie weiter unten gezeigt, binden diese Moleküle den monoklonalen Antikörper BIP 3 (Ref.1, Fig. 5a, Fig. 14a, Fig. 15a, Fig. 16a) und IgE von Patienten, die gegen Pollen und pflanzliche Nahrungsmittel empfindlich sind (Fig. 5b, Fig.6, Fig. 14b, Fig. 15b, Fig. 16b).

25 Sequenzvergleich:

Fig. 2 zeigt die hohe Sequenzhomologie aller bisher bekannten pflanzlichen PGM-i (81% bis 87% Identität in allen paarweisen Kombinationen). Die drei bis jetzt bekannten pflanzlichen PGM-i wurden von den Autoren nicht als Allergene erkannt (3,4). Da die Sequenzhomologien so hoch sind, können wir aus dem Sequenzvergleich (Fig.2) schließen, daß in unserer cDNA-Sequenz der Birke die Kodons für die ersten 29 Aminosäuren (inklusive dem Start-Methionin) fehlen. Allerdings beeinflußt diese kurze N-terminale Deletion nicht die Antikörperbindung (Fig.6).

WO 97/05258 PCT/AT96/00141

-6-

Fig. 13 zeigt die hohe Sequenzhomologie der von uns klonierten PGM-i aus Lieschgras (Phl1 und Phl5) und Beifuß (Art6 und Art17) sowie aus Birke (bvmut). Da die Sequenzhomologien sehr hoch sind konnte aus dem Sequenzvergleich geschlossen werden daß die gezeigten Sequenzen von Lieschgras und Beifuß vollständig sind. Die daraus berechneten paarweisen Distanzen sind: Birke/Beifuß 84% identische Aminosäuren, Birke/Lieschgras 83% und Lieschgras/Beifuß 82% identische Aminosäuren. Diese Zahlen zeigen, daß eine direkte immunologische Kreuzreaktion zwischen diesen Allergenen sehr wahrscheinlich ist. Um diese Kreuzreaktion direkt zu zeigen, sind Inhibitionsexperimente notwendig, die zur Zeit in unserem Laboratorium durchgeführt werden.

Die äußerst hohe Sequenzidentität der drei Phosphoglyceratmutasen (Birke, Beifuß und Lieschgras), und die dominante Bedeutung beim Beifuß und Lieschgras deuten auf die besondere Wichtigkeit dieser neuen Allergenfamilie hin. Hinsichtlich konventioneller Immuntherapie wäre hier zu sagen, daß dieses Allergen in seiner vollen Sequenzlänge nicht zur Immuntherapie verwendet werden sollte, weil die Gefahr der Induktion von allergischen Reaktionen besteht, die vorher beim Patienten nicht vorhanden waren. Sehr wohl können aber Teile oder Varianten dieses Moleküls zur Therapie benützt werden. Der Grund, warum Phosphoglyceratmutase trotz seiner extrem hohen Konservierung in der Evolution keinen Anlaß zu Autoimmunreaktionen beim Menschen gibt (wie dies zB. für die Superoxiddismutase, ein Hauptallergen von Aspergillus, gefunden wurde), besteht darin, daß es zwei Klassen von Phosphoglyceratmutasen gibt und die menschliche Phospho-

Berechnung der B- und T-Zell Epitope:

Die B-Zell Epitope (Fig.3) von Birkenpollen PGM-i wurden mit "PepStructure", einem Teil des GCG Programmpakets berechnet. T-Zell Epitope (Fig.4) von Birkenpollen PGM-i wurden mit einem Programm von Margalit et al. (21) berechnet. Die B-Zell Epitope von Lieschgras- und Beifußpollen PGM-i (Fig.8a,8b; Fig. 11a,11b) sowie die T-Zell Epitope (Fig. 9a,9b; Fig. 12a,12b) von PGM-i aus beiden Pollen wurden in gleicher Weise berechnet.

<u>Immunreaktivität</u>

Fig.5A zeigt einen Immunoblot mit Pollenextrakten von Birke, Beifuß und Lieschgras, und Extrakten von Sellerie (Knollen- und Stangensellerie) und Apfel. Gezeigt ist das Autoradiogramm des mit BIP3 inkubierten Blots. Es ist bemerkenswert, daß der mono- klonale Antikörper BIP 3 in allen diesen Materialien ein 60 kDa Protein erkennt, was auf eine hohe Konservierung der antigenen Epitope hinweist. Weiters werden (Fig.5B) Immunoblots von BIP 3 -immunaffinitätsgereinigtem PGM-i aus Birkenpollen mit Birkenpollenextrakt als Kontrolle, geprobt mit zwei Patientensera (HP, HL) und nichtallergischem Normalhumanserum (NHS) gezeigt. Die beiden Patienten sind typische Graspollenallergiker, die jedoch das gereinigte Panallergen und im Birkenpollenextrakt ausschließlich PGM-i erkennen. Auch dieses Experiment zeigt die hohe Konservierung von pflanzlichem PGM-i Allergen und seine Bedeutung für die Kreuzreaktivität der Patientenseren.

Fig. 6 zeigt, daß Plaques, die das rekombinante Fusionsprotein bestehend aus der PGM15 i Sequenz (Fig.1) und 36 Aminosäuren der beta-Galaktosidase enthalten, tatsächlich
BIP 3 binden. Die gleichen Plaquelifts wurden mit den Seren von 11 ausgewählten
Patienten, die allergisch sind gegen Pollen von Bäumen (SS), Gräsern (CM, HL, HP,
SE, MR, CF, BG, GP) oder Unkraut (KG,CW) bzw. Apfel (KG,CW) oder Sellerie
(KG,CW), inkubiert. Als Kontrolle wurde Serum eines gesunden, nicht allergischen
20 Patienten verwendet (NHS). In gleicher Weiser zeigen Fig. 14a, 15a, 16a die Bindung von
BIP3 Antikörper an rekombinante Fusionsproteine die die PGM-i Sequenz aus Lieschgras
(Fig. 14a,15a) und Beifuß (Fig.16a) enthalten. Die Fig. 14b, 15b, und 16b zeigen daß
Plaquelifts der gleichen rekombinanten Fusionsproteine aus Lieschgras (Fig. 14b, 15b) sowie aus Beifuß (Fig. 16b) ebenso IgE Antikörper aus Seren von allergischen Patienten (SS,
25 HP, KG) binden.

Fig. 5, Fig. 6, Fig. 14, Fig. 15 und Fig. 16 zusammen zeigen, daß wir tatsächlich ein hochkonserviertes Pflanzen Panallergen kloniert haben. Wir nehmen an, daß eine solch hohe
Konservierung einer allergenen Sequenz bzw. Struktur große Bedeutung für die Diagnose
und Therapie hat. Patienten, die dieses Molekül erkennen, sind wahrscheinlich kreuzreaktiv
mit vielen Pollen und pflanzlichen Nahrungsmitteln. Sie können aber andererseits durch
konventionelle Immuntherapie gut behandelt werden, weil PGM-i aus Pflanzen hochkonserviert sind, aber gleichzeit mit humanem oder tierischem PGM nicht verwandt sind.

SEQUENZ 1: Kofaktor-unabhängiger Phosphoglyceratmutase (E.C.5.4.2.1.)

NGABEN	ZU	SEO	ID	NO:	1
--------	----	------------	----	-----	---

_	٠.,	000					-
5 ((1)	SEO	UENZ	K EN	NZE	CHE	V٠

- (A) LÄNGE:1593 Basenpaare / 531 Aminosäurereste
- (B) ART: Nukleinsäure / protein
- (C) STRANGFORM:ds
- (D) TOPOLOGIE: linear
- 10 (ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein
 - (iii) HYPOTHETISCH: nein
 - (iv) ANTISENSE: nein
 - (v) ART DES FRAGMENTS: Teilsequenz
 - (vi) URSPÜNGLICHE HERKUNFT:
- 15 (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 1:
- 1 GGG GGC GAG GCC AAG CCC GAT CAG TAC AAC TGC ATC CAT GTG 42
 Gly Gly Glu Ala Lys Pro Asp Gln Tyr Asn Cys Ile His Val
 - 43 GCC GAG ACT CCC ACC ATG GAT TCC CTC AAA CAG GGT GCT CCT 84
 Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Gln Gly Ala Pro
- 85 GAG AAG TGG AGG TTG GTT AGG GCT CAT GGT AAG GCC GTA GGC 126
 Glu Lys Trp Arg Leu Val Arg Ala His Gly Lys Ala Val Gly
 25
 - 127 CTT CCA ACA GAG GAT GAC ATG GGC AAC AGT GAA GTT GGT CAC

 Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His
 - Asn Ala Leu Gly Ala Gly Arg Ile Phe Ala Gln Gly Ala Lys
 - 211 CTT GTT GAC TCT GCT CTT GCC TCT GGA AAA ATT TAT GAA GGA 252 Leu Val Asp Ser Ala Leu Ala Ser Gly Lys Ile Tyr Glu Gly

30

	253	GAA	GGT	TTT	AAG	TAC	ATA	AAG	GAA	TGT	TTT	GAA	AAT	GGC	ACA	294
		Glu	Gly	Phe	Lys	Tyr	Пe	Lys	Glu	Cys	Phe	Glu	Asn	Gly	Thr	
	205															
_	295										GGT					336
5		Leu	His	Leu	Ile	Gly	Leu	Leu	Ser	Asp	Gly	Gly	Val	His	Ser	
	337	AGG	СТТ	GAT	·CAG	TTG	CAG	TTA	TTG	CTT	AAA	GGA	GCT	AGT	GAG	378
		Arg	Leu	Asp	Gln	Leu	Gln	Leu	Leu	Leu	Lys	Gly	Ala	Ser	Glu	
	379	CGT	GGT	GCA	AAA	AGA	ATC	CGT	GTT	CAT	ATT	CTT	ACC	GAT	GGC	420
10		Arg	Gly	Ala	Lys	Arg	Ile	Arg	۷a٦	His	lle	Leu	Thr	Asp	Gly	
	421	CGT	GAT	GTT	TTG	GAT	GGT	TCA	AGT	GTA	GGA	TTT	GTT	GAA	ACT	462
											Gly					
		. 3					J.,			•••	0.7		• • •	u.u		
	463	CTT	GAG	AAT	GAC	CTT	GCA	AAA	CTA	CGT	GAG	AAG	GGT	GTT	GAT	504
15		Leu	Glu	Asn	Asp	Leu	Ala	Lys	Leu	Arg	Glu	Lys	Gly	Val	Asp	
	505	GCA	CAG	ATT	GCA	TCT	GGT	GGT	GGT	CGC	ATG	TAT	GTC	ACA	ATG	546
		Ala	Gln	Ile	Ala	Ser	Gly	Gly	Gly	Arg	Met	Tyr	Val	Thr	Met	
	E 47	CAT	CCT	TAT	C 4 C	A A T	CAC	TCC	C A A	CTC	A.T.C		CC 4	004	TCC	
20	547	UAI	CGI	IAI	GAG	AAI	GAL	166	GAA	616	ATC	AAA	CGA	GGA	166	588
20		Asp	Ara	Tvr	61 ս	Asn	Asn	Trn	Glu	Val	Ile	lvs	Ara	G1 v	Trn	
			3	,,,	0.0	,,,,,,,			0.0	•••		c) J	9	U , y	Þ	
	589	GAT	GCC	CAT	GTT	CTT	GGT	GAA	GCC	ССТ	TAC	AAA	TTT	AAA	AGT	630
		Asp	Ala	His	Val	Leu	Gly	G1 u	Ala	Pro	Tyr	Lys	Phe	Lys	Ser	
25	621	0.07			007	0.7.0										670
25	631										GAG		_	_		672
		АІа	vai	Glu	АІа	Vai	Lys	Lys	Leu	Arg	Glu	Glu	Leu	Lys	Val	
	673	AGT	GAC	CAG	TAC	TTG	ССТ	CCA	TTC	GTC	ATT	GTT	GAT	GAC	AAT	714
		Ser	Asp	Gln	Tyr	Leu	Pro	Pro	Phe	Val	Пe	۷a٦	Asp	Asp	Asn	
20																
30	715										GGT					756
		Gly	Lys	Pro	٧a٦	Gly	Pro	Ile	Val	Asp	Gly	Asp	Ala	۷al	Val	

	757	ACA	ATC	AAC	TTC	CGA	GCA	GAT	CGT	ATG	GTT	ATG	ATT	GCT	AAG	798
		Thr	Ile	Asn	Phe	Arg	Ala	Asp	Arg	Met	Val	Met	He	Ala	Lys	
	799	GCA	CTT	GAA	TAT	GAA	AAT	TTT	GAC	AAG	ATT	GAT	CGA	GTT	CGA	840
_		Ala	Leu	Glu	Tyr	G1 u	Asn	Phe	Asp	Lys	Пe	Asp	Arg	Val	Arg	
5	841	TTC	CCT	AAA	ATC	CGT	TAT	GCT	GGA	ATG	CTT	CAA	TAT	GAT	GGC	882
					Ile											
	883	GAG	TTG	ΔAG	CTC	cce	۸۵۲	CAT	TAC	СТТ	GTT	GΔΔ	CCT	۲Λ	GΔG	924
	003				Leu											J 2 -
10																
	925	ATA			ACG Thr											966
		116	Giu	Alg	1111	261	ury	010	, ,,	Leu	V a 1	111.3	7311	ury	*61	
	967	CGT	ACT	TTT	GCT	TGC	AGT	GAG	ACT	GTC	AAA	TTT	GGT	CAT	GTC	1008
15		Arg	Thr	Phe	Ala	Cys	Ser	Glu	Thr	Val	Lys	Phe	Gly	His	Val	
	1009	ACT	TTC	TTC	TGG	AAT	GGA	AAC	CGC	TCT	GGA	TAT	TTC	AAT	TCA	1050
		Thr	Phe	Phe	Trp	Asn	Gly	Asn	Arg	Ser	Gly	Tyr	Phe	Asn	Ser	
	1051	GΔΔ	CTG	GAG	GAA	TAC	GTG	GΔΔ	ΔΤΤ	۲۲۵	ΔGT	GAT	ΔGT	GGA	ΔΤΤ	1092
	1031				Glu											1032
20																
	1093				GTC Val											1134
		1111	riie	ASII	Vai	וווט	FIO	Lys	met	Lys	Ala	Leu	Giu	116	Ala	
	1135	GAA	AAA	ACG	AGA	GAT	GCT	ATA	CTT	AGC	GGA	AAA	TTT	GAC	CAG	1176
25		Glu	Lys	Thr	Arg	Asp	Ala	Пe	Leu	Ser	Gly	Lys	Phe	Asp	Gln	
رے	1177	GTG	CGT	GTT	AAC	CTG	CCA	AAT	GGT	GAC	ATG	GTG	GGG	CAT	ACA	1218
		Val	Arg	Val	Asn	Leu	Pro	Asn	Gly	Asp	Met	Val	Gly	His	Thr	
	1219	CCT	CAT	ATT	CVC	CVC	۸۲۸	CTT	CTC	CCT	TGC	۸۸۵	CCT	CCT	CAT	1260
	1713				Glu											1200
30		-														
	1261															1302
		וטוע	wid	MSD	Lys	me t	116	LEU	MSD	WIG	116	ווט	וווט	val	עונט	

	1303															1344
		Gly	lle	Tyr	Val	Val	Thr	Ala	Asp	His	Gly	Asn	Ala	Glu	Asp	
	1345	ATG	GTG	AAG	AGG	AAC	AAG	TCC	GTG	CAA	ССТ	стт	CTT	GAC	AAG	1386
5		Met	Val	Lys	Arg	Asn	Lys	Ser	Val	Gln	Pro	Leu	Leu	Asp	Lys	
	1387															1428
		Asn	Gly	Asn	Leu	Gln	Val	Leu	Thr	Ser	His	Thr	Leu	Gln	Pro	
	1429	GTG	CCA	ATT	GCA	ATT	GGA	GGT	CCT	GCA	TTG	GCA	AGT	GGT	GTC	1470
10		Val	Pro	Пe	Ala	Ile	Gly	Gly	Pro	Ala	Leu	Ala	Ser	Gly	Val	
	1471	AGG	TTC	TGC	AAG	GAT	СТТ	ССТ	GAT	GGT	GGG	СТТ	GCC	AAT	GTT	1512
		Arg	Phe	Cys	Lys	Asp	Leu	Pro	Asp	Gly	Gly	Leu	Ala	Asn	Val	
	1513	GCT	GCA	ACT	GTG	ATC	AAT	СТА	CAT	GGG	TTT	GAG	GCT	ССТ	AGT	1554
15		Ala	Ala	Thr	Val	Ile	Asn	Leu	His	G1 y	Phe	Glu	Ala	Pro	Ser	
	1555	GAC	TAT	GAG	CCA	ACC	СТС	ATT	GAA	СТС	GTT	GAT	AAC	TAG		1593
		Asp	Tyr	Glu	Pro	Thr	Leu	Ile	Glu	Leu	Val	Asp	Asn	*		
20	ANG	ABE	n zu	J SE	Q ID	NO:	2									
20	(i) SE	QUE	ENZF	KENI	NZEI	CHE	N:									
		(A) I	LÄN	GE:	12											
		(B) A	ART:	prot	ein											
	(ii) A	RT I	DES I	MOL	EKÜ	LS:	pepti	de								
25	(iii) F	HYPO	тнт	ETIS	CH:	nein										
23	(v) A	RT I	DES 1	FRAC	GME	NTS	: N-T	[ermi	inus t	ois C	-Тегг	ninus	;			
	(vi) U	JRSP	ÜNC	GLIC	HE F	IERK	CUNI	FT:								
		(A)	ORG	ANIS	SMU	S: Be	tula	vern	icosa							

(C) ENTWICKLUNGSSTADIUM: Pollen

Gly Gly Glu Ala Lys Pro Asp Gln Tyr Asn Cys Ile

10

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

5

1

ANGABEN ZU SEQ ID NO:3 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 26 (B) ART: protein 5 (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: 10 (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 3: Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Gln Gly Ala Pro Glu Lys Trp 1 5 10 15 Arg Leu Val Arg Ala His Gly Lys Ala 25 20 ANGABEN ZU SEQ ID NO:4 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 14 20 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: 25 (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His 5 10 30

ANGABEN ZU SEQ ID NO:5
(i) SEQUENZKENNZEICHEN:

		(A) LÄN	GE: 18						
		(B) ART:	protein						
	(ii)	ART DES 1	MOLEK	ÜLS: peptide					
	(iii)	НҮРОТНЕ	TISCH:	nein					
5	i (v) A	ART DES F	RAGMI	ENTS: N-Ter	minus bis C	C-Terminus			
	(vi)	URSPÜNG	LICHE	HERKUNFT	:				
		(A) ORGA	ANISMU	JS: Betula ver	Tucosa				
		(C) ENTY	VICKLU	NGSSTADIU	JM: Pollen				
	(vii)	SEQUENZ	BESCH	REIBUNG:S	EQ ID NO:	5:			
10	_	Lys Ile T		Gly Glu Gly		Tyr Ile Ly:		Phe	Glu
	l Asn		5		10		15		
	18								
		GABEN ZU	SEQ ID	NO:6					
15	(i) S	EQUENZK	ENNZE	ICHEN:					
		(A) LÄNC	GE: 13						
		(B) ART:	protein						
	(ii) A	art des a	IOLEK Ü	JLS: peptide					
20		НҮРОТНЕ	TISCH:	nein					
20	(v) A	ART DES F	RAGME	ENTS: N-Teri	minus bis C	C-Terminus			
	(vi) 1	URSPÜNG	LICHE	HERKUNFT:					
		(A) ORGA	ANISMU	IS: Betula ver	rucosa				
		(C) ENTV	VICKLU	NGSSTADIU	JM: Pollen				
25				REIBUNG:SI	-				
23	Leu 1	Ser Asp G		Val His Ser		Asp Gln Lei	1		
	1		5		10				
	ANC	GABEN ZU	SEQ ID	NO:7	٠				
	(i) S	EQUENZK	ENNZE	ICHEN:					
30	ı	(A) LÄNC	GE: 12						
		(B) ART:	protein						
	(ii) <i>A</i>	ART DES N	IOLEK Ü	JLS: peptide					

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
- 5 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:
 - Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Val 1 5 10

10 ANGABEN ZU SEQ ID NO:8

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 20 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 8:

 Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val

 1 5 10

ANGABEN ZU SEQ ID NO:9

- ²⁵ (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 16
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 30 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

-15-

```
(A) ORGANISMUS: Betula verrucosa
       (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:
  Glu Thr Leu Glu Asn Asp Leu Ala Lys Leu Arg Glu Lys Gly Val Asp
5 <sup>1</sup>
                   5
                                       10
                                                           15
  ANGABEN ZU SEQ ID NO:10
  (i) SEQUENZKENNZEICHEN:
       (A) LÄNGE: 20
       (B) ART: protein
10
   (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
       (A) ORGANISMUS: Betula verrucosa
15
       (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:
  Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Glu Val Ile Lys Arg Gly
                                       10
  Trp Asp Ala
20
           20
  ANGABEN ZU SEQ ID NO:11
  (i) SEQUENZKENNZEICHEN:
       (A) LÄNGE: 16
25
       (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
30
       (A) ORGANISMUS: Betula verrucosa
       (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:
```

PCT/AT96/00141

-16-

											•						
	Val 1	Lys	Lys	Leu	Arg 5	Glu	Glu	Leu	Lys	Val 10	Ser	Asp	Gln	Tyr	Leu 15	Pro	
	ANC	GABI	EN Z	U SE	Q II	NO	:12										
5	(i) S	EQU	ENZ	KEN	NZE	ICHI	EN:										
5			LÄN														
		(B)	ART	e pro	tein												
	(ii)	ART	DES	МО	LEK	ÜLS	: pep	tide									
	(iii)	HYP	отн	ETIS	CH:	nein											
10	(v) A	ART	DES	FRA	GMI	ENTS	S: N-	Term	ninus	bis C	C-Ter	minu	ıs				
		URS	PÜN	GLIC	CHE	HER	KUN	IFT:									
		(A)	ORC	GANI	SMU	JS: B	etula	verr	ucosa	a .							
		(C)	ENT	WIC	KLU	INGS	STA	DIU:	M: P	ollen							
	(vii)	SEQ	UEN	IZBE	SCH	REIE	BUNG	G:SE	Q ID	NO:	12:						
15	Ala	Leu	Glu	Tyr		Asn	Phe	Asp	Lys		Asp	Arg	Val	Arg		Pro	Lys
	1	۸۵۵	Tyr	۸۱۰	5					10					15		
	116	Aig	20	Ala													
	ANG	GABI	en z	U SE	EQ II	ON C	:13										
20	(i) S	EQU	IENZ	KEN	INZE	ICH	EN:										
		(A)	LÄN	NGE:	35												
		(B)	ART	: pro	otein												
	(ii) <i>i</i>	ART	DES	MO	LEK	ÜLS:	pep	tide									
	(iii)	HYP	OTH	ETIS	SCH:	nein											
25	(v) A	ART	DES	FRA	GM	ENTS	S: N-	Tern	ninus	bis (C-Ter	minu	15				
	(vi)	URS	PÜN	GLIC	CHE	HER	KUN	IFT:									
		(A)	ORO	GAN	ISMU	JS: B	etula	ven	ucos	a							
		(C)	ENT	CWIC	CKLU	JNGS	STA	DIU	M: P	ollen	ı						
	(vii)	SEC	QUEN	NZBE	ESCH	REI	BUN	G:SE	Q ID	NO	: 13:						
30	Met	Leu	Gln	Tyr		Gly	Glu	Leu	Lys		Pro	Ser	His	Tyr		Val	G1 u
	l	Des	C3	11-	5	Arg	Th.	San	C1 v	10	Tvs	Lou	V = 1	Hic	15 Asn	G1 v	Val
	L 1.0	F 1.0	uiu	116	GIU	Arg	1111	Jei	ury	ulu	' y '	Leu	*01	1113	7311	U 1 y	

PCT/AT96/00141

-17-20 25 30 Arg 35 **ANGABEN ZU SEQ ID NO:14** (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 25 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 14: Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu Leu Glu Glu Tyr Val 10 15 Glu Ile Pro Ser Asp Ser Gly Ile 20 20 ANGABEN ZU SEQ ID NO:15 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 24 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide 25 (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen 30 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 15: Ser Gly Lys Phe Asp Gln Val Arg Val Asn Leu Pro Asn Gly Asp Met Val 10 15

-18-

Gly His Thr Gly Asp Ile Glu 20

ANGABEN ZU SEQ ID NO:16

- 5 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 17
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen

ANGABEN ZU SEQ ID NO:17

- 20 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:
- 30 His Gly Phe Glu Ala Pro Ser Asp Tyr Glu Pro Thr Leu 1 5 10

-19-

ANGABEN ZU SEQ ID NO:18

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
- 10 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:

Tyr Asn Cys Ile His Val Ala Glu Thr Pro Thr Met Asp 1 5 10

15 ANGABEN ZU SEQ ID NO:19

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 06
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 20 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 25 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 19:

Glu Lys Trp Arg Leu Val

ANGABEN ZU SEQ ID NO:20

- (i) SEQUENZKENNZEICHEN:
- 30 (A) LÄNGE: 10
 - (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: 5 (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 20: Phe Ala Gln Gly Ala Lys Leu Val Asp Ser 10 ANGABEN ZU SEQ ID NO:21 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 11 (B) ART: protein 15 (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Betula verrucosa (C) ENTWICKLUNGSSTADIUM: Pollen 20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 21: Glu Gly Glu Gly Phe Lys Tyr Ile Lys Glu Cys 10 ANGABEN ZU SEQ ID NO:22 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 04 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Betula verrucosa
 (C) ENTWICKLUNGSSTADIUM: Pollen
 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 22:
- Thr Leu Glu Asn

51

ANGABEN ZU SEQ ID NO:23

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11
- 10 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- 15 (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 23:

Asn Asp Trp Glu Val Ile Lys Arg Gly Trp Asp 1 5 10

- ²⁰ ANGABEN ZU SEO ID NO:24
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 09
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- ²⁵ (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 24:
 - Val Glu Ala Val Lys Lys Leu Arg Glu

ANGABEN ZU SEQ ID NO:25

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11
- (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- 10 (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 25:

Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val 1 5 10

- 15 ANGABEN ZU SEQ ID NO:26
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- ²⁰ (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- ²⁵ (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 26:

Arg Thr Phe Ala Cys Ser Glu Thr Val Lys
1 5 10

ANGABEN ZU SEQ ID NO:27

- 30 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11
 - (B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
- 5 (A) ORGANISMUS: Betula verrucosa
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 27:

Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser 1 5 10

10

'n

ANGABEN ZU SEQ ID NO:28

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 08
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa
- (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 28:

His Thr Gly Asp Ile Glu Asp Thr
1 . 5

ANGABEN ZU SEQ ID NO:29

- 25 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 30 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Betula verrucosa

-24-

```
(C) ENTWICKLUNGSSTADIUM: Pollen
   (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 29:
   Met Ile Leu Asp Ala Ile Glu Gln Val Gly Gly Ile
   1
                   5
                                       10
   ANGABEN ZU SEQ ID NO:30
   (i) SEQUENZKENNZEICHEN:
       (A) LÄNGE: 12
       (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
       (A) ORGANISMUS: Betula verrucosa
       (C) ENTWICKLUNGSSTADIUM: Pollen
15
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 30:
  Ser Gly Val Arg Phe Cys Lys Asp Leu Pro Asp Gly Gly Leu Ala Asn Val
                   5
                                       10
                                                          15
  Ala Ala
  18
20
  ANGABEN ZU SEQ ID NO:31
  (i) SEQUENZKENNZEICHEN:
       (A) LÄNGE: 09
       (B) ART: protein
25 (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
       (A) ORGANISMUS: Betula verrucosa
       (C) ENTWICKLUNGSSTADIUM: Pollen
30
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 31:
  Asn Leu His Gly Phe Glu Ala Pro Ser
```

WO 97/05258 PCT/AT96/00141

-25-

1

A١	1G	٩B	EN	ZU	SEC	(ID	NO:	32
			_					

- (i) SEQUENZKENNZEICHEN:
- 5 (A) LÄNGE: 1671 Basenpaare / 556 Aminosäurereste
 - (B) ART: Nukleinsäure / protein
 - (C) STRANGFORM:ds
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein
 - (iii) HYPOTHETISCH: nein
- (iv) ANTISENSE: nein
 - (v) ART DES FRAGMENTS: Gesamtsequenz
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- ¹⁵ (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 32:

	1	AIG	GCG	ACC	TCA	TGG	ACG	CTG	CCC	GAC	CAT	CCC	ACG	CTC	CCC	42
		Met	Ala	Thr	Ser	Trp	Thr	Leu	Pro	Asp	His	Pro	Thr	Leu	Pro	
20																
20	43	AAG	GGC	AAG	ACG	GTG	GCC	GTC	ATC	GTG	CTC	GAC	GGA	TGG	GGC	84
		Lys	Gly	Lys	Thr	Val	Ala	V a 1	Ile	Val	Leu	Asp	Gly	Trp	Gly	
	85	GAG	GCC	AGC	GCT	GAC	CAG	TAC	AAC	TGC	ATC	CAT	CGT	GCC	GAG	126
		Glu	Ala	Ser	Ala	Asp	Gln	Tyr	Asn	Cys	ĮТе	His	Arg	Ala	G1 u	
25																
23	127	ACG	CCC	GTC	ATG	GAT	TCG	CTC	AAG	AAT	GGT	GCT	CCT	GAG	AAG	168
		Thr	Pro	Val	Met	Asp	Ser	Leu	Lys	Asn	Gly	Ala	Pro	Glu	Lys	•
	169	TGG	ACA	CTA	GTG	AAG	GCT	CAT	GGA	ACT	GCT	GTT	GGT	CTC	CCT	210
		Trp	Thr	Leu	Val	Lys	Ala	His	Gly	Thr	Ala	Val	Gly	Leu	Pro	
20																
30	211	AGT	GAT	GAC	GAC	ATG	GGC	AAC	AGT	GAA	GTT	GGC	CAC	TAA	GCT	252
		Ser	Asp	Asp	Asp	Met	Gly	Asn	Ser	Glu	Val	Gly	His	Asn	Ala	

-26-

	253	CTT	GGC	GCT	GGT	CGG	ATT	TTT	GCT	CAA	GGG	GCG	AAG	TTG	TTT	294
		Leu	Gly	Ala	Gly	Arg	Ile	Phe	Ala	Gln	Gly	Ala	Lys	Leu	Phe	
	295	GAT	GCT	GCT	CTT	GCA	TCT	GGG	AAG	ATT	TGG	GAA	GAC	GAG	GGT	336
5		Asp	Ala	Ala	Leu	Ala	Ser	Gly	Lys	Ilе	Trp	G1 u	Asp	G1 u	Gly	
	337	TTC	AAT	TAC	ATC	AAA	GAA	TCT	TTT	GCC	GAA	GGT	ACT	CTG	CAC	378
		Phe	Asn	Tyr	Пе	Lys	Glu	Ser	Phe	Ala	Glu	Gly	Thr	Leu	His	
	379	СТТ	ATT	GGT	CTG	TTG	AGT	GAT	GGA	GGC	GTC	CAC	TCC	CGG	CTA	420
10		Leu	Ile	Gly	Leu	Leu	Ser	Asp	Gly	Gly	Val	His	Ser	Arg	Leu	
	421	GAC	CAA	GTG	CAG	TTG	CTT	GTG	AAA	GGT	GCC	AGT	GAG	AGG	GGA	462
		Asp	Gln	Val	Gln	Leu	Leu	Val	Lys	Gly	Ala	Ser	Glu	Arg	Gly	
	463	GCA	AAA	AGA	ATT	CGG	CTT	CAC	ATT	CTT	ACC	GAT	GGG	CGT	GAT	504
15		Ala	Lys	Arg	Ile	Arg	Leu	His	Ile	Leu	Thr	Asp	Gly	Arg	Asp	
	505	GTC	TTG	GAT	GGA	AGC	AGT	GTT	GGT	TTC	GTA	GAG	ACA	CTA	GAG	546
		Val	Leu	Asp	Gly	Ser	Ser	Val	Gly	Phe	Val	Glu	Thr	Leu	Glu	
	547	AAT	GAT	CTT	GCT	CAG	стт	CGT	GAG	AAG	GGT	GTT	GAT	GCA	CAG	588
20		Asn	Asp	Leu	Ala	Gln	Leu	Arg	G1 u	Lys	Gly	Val	Asp	Ala	Gln	
	589	GTT	GCA	TCT	GGT	GGT	GGA	AGG	ATG	TAT	GTT	ACC	ATG	GAC	CGC	630
		Val	Ala	Ser	Gly	Gly	G1 y	Arg	Met	Tyr	Val	Thr	Met	Asp	Arg	
	631	TAT	GAG	AAT	GAC	TGG	GAT	GTG	GTC	AAG	CGT	GGG	TGG	GAT	GCC	672
25		Tyr	G1 u	Asn	Asp	Trp	Asp	Val	Val	Lys	Arg	Gly	Trp	Asp	Ala	
	673	CAG	GTG	CTT	GGA	GAA	GCA	CCA	TAC	AAA	TTC	AAA	AGT	GCA	CTT	714
		Gln	Val	Leu	Gly	Glu	Ala	Pro	Tyr	Lys	Phe	Lys	Ser	Ala	Leu	
	715	GAA	GCT	GTG	AAA	ACG	CTA	AGA	GCA	GAG	CCC	AAG	GCC	AAT	GAT	756
30		Glu	Ala	Val	Lys	Thr	Leu	Arg	Ala	Glu	Pro	Lys	Ala	Asn	Asp	
	757	CAG	TAC	TTG	CCT	GCG	TTT	GTG	ATA	GTT	GAT	GAA	AGT	GGC	AAA	798
		Gln	Tyr	Leu	Pro	A l a	Phe	۷al	Пe	۷al	Asp	Glu	Ser	Gly	Lys	

	799	166	. 611	G G 1	CCI	AIA	ЫΑ	GAI	666	GAI	GCA	GII	GTG	ATT	TIC	840
	•	Ser	· Val	Gly	Pro	Ile	Val	Asp	Gly	Asp	Ala	Val	Val	Ile	Phe	
	841	AAT	ттс	AGA	GCT	GAT	CGC	ATG	GTT	ATG	CTT	GCA	AAG	GCT	CTT	882
5		Asn	Phe	Arg	Ala	Asp	Arg	Met	۷a٦	Met	Leu	Ala	Lys	Ala	Leu	
	883	GAG	TTT	GCT	GAT	TTT	GAT	AAA	TTT	GAC	CGT	GTT	CGT	GTA	CCA	924
											Arg					
	925	AAA	ATT	AAG	TAT	GCT	GGG	ATG	СТС	CAG	TAT	GAT	GGT	GAG	TTG	966
10											Tyr					500
	067	A A C	СТТ	CC 4	A A C		TT.C	CTT	CTT	TCC						
	907										CCA Pro					1008
15	1009										AAT Asn					1050
•		5		5 c.	0.5	u.u	, ,	Leu	V G 1	Lys	ASII	Giy	Vai	Arg	inr	
	1051															1092
		Phe	Ala	Cys	Ser	Glu	Thr	Val	Lys	Phe	Gly	His	Val	Thr	Phe	
	1093	TTC	TGG	AAT	GGA	AAC	CGT	TCT	GGA	TAC	TTC	GAT	GAA	ACC	AAG	1134
20		Phe	Trp	Asn	Gly	Asn	Arg	Ser	Gly	Tyr	Phe	Asp	Glu	Thr	Lys	
	1135	GAA	GAG	TAC	ATA	GAA	ATT	ССТ	AGT	GAT	AGT	GGT	ATC	ACA	TTC	1176
		Glu	Glu	Tyr	IJе	Glu	lle	Pro	Ser	Asp	Ser	Gly	IJе	Thr	Phe	
•	1177	AAT	GAG	CAG	CCC	AAA	ATG	AAG	GCA	СТТ	GAA.	ATT	GCT	GAG	AAA	1218
25											Glu					
	1219	ACC	cee	GAT	GCT	ΔΤΩ	CTC	ΔΩΤ	GGA	۸۸۵	TTT	GAC	CVC	CTA	CGT	1260
	1213										Phe					1200
	1261	A T T		67.0											1.1	
30	1261										GGT Gly					1302
•							,					•	•	- · J		
	1303	ATT	GAA	GCC	ACA	GTC	GTT	GCC	TGC	AAG	GCT	GCT	GAT	GAA	GCA	1344

		-28-														
		Ile	Glu	Ala	Thr	Val	Val	Ala	Cys	Lys	Ala	Ala	Asp	Glu	Ala	
	1345	GTC	AAG	ATT	GTT	TTG	GAT	GCA	GTG	GAG	CAA	GTT	GGT	GGT	ATT	1386
		Val	Lys	Ile	Val	Leu	Asp	Ala	Val	61 u	Gln	Val	Gly	Gly	Ile	
5																
	1387	TAT	CTT	GTC	ACT	GCT	GAT	CAT	GGA	AAC	GCA	GAG	GAT	ATG	GTG	1428
		Tyr	Leu	Val	Thr	Ala	Asp	His	Gly	Asn	Ala	Glu	Asp	Met	Val	
	1429	AAA	AGA	AAC	AAA	TCT	GGC	CAG	ССТ	GCT	CTT	GAC	AAG	AGC	GGT	1470
										Ala						
10																
	1471															1512
		5er	i i e	GIN	116	Leu	Inr	2er	HIS	Thr	Leu	GIN	Pro	vai	Pro	
	1513	GTT	GCG	ATC	GGA	GGC	CCT	GGT	стс	CAC	ССА	GGA	GTG	AAG	TTC	1554
1.5		Val	Ala	Ile	Gly	Gly	Pro	Gly	Leu	His	Pro	Gly	Val	Lys	Phe	
15		4.00	TOT	C 4 T	470		464	CCT	004	CT.C	000		077	000	000	1500
	1555									Leu						1596
		A1 9	361	Ash	116	ASII	1111	FIO	ыу	Leu	Ala	ASII	Vai	Ala	Ala	
	1597	ACC	GTG	ATG	AAC	СТС	CAT	GGC	TTC	CAG	GCC	CCT	GAT	GAT	TAT	1638
20		Thr	Val	Met	Asn	Leu	His	Gly	Phe	Gln	Ala	Pro	Asp	Asp	Tyr	
20	1639	CAC	۸۲۲	۸۲۲	CTC	ATT	C A A	CTT	ССТ	C 4 C	A A C	T A A				1671
	1033									Asp		1 AA *				1671
									7 1 1 W							

ANGABEN ZU SEQ ID NO: 33

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 15

(B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 30 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

-29-

(A) ORGANISMUS: Phleum pratense (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 33: Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys Gly Lys Thr 10 15 ANGABEN ZU SEQ ID NO: 34 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 35 10 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense 15 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 34: Asp Gly Trp Gly Glu Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg 10 15 20 Ala Glu Thr Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys 20 25 30 Trp Thr Leu 35 25 ANGABEN ZU SEQ ID NO: 35 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 19 30 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

-30-

	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus															
	(vi) URSPÜNGLICHE HERKUNFT:															
	(A) ORGANISMUS: Phleum pratense															
	(C) ENTWICKLUNGSSTADIUM: Pollen															
5	5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 35:															
	Leu	Pro	Ser	Asp	Asp	Asp	Met	Gly	Asn	Ser	Glu	Val	Gly	His	Asn	Ala
	1				5					10					15	
	l au	Gly	۸٦,													
10		uiy	Ald													
•																
	ANC	GABE	en z	U SE	Q ID	NO:	: 36									
	(i) S	EQU	ENZ	KEN	NZE	ICHI	EN:									
	(A) LÄNGE: 18															
15	(B) ART: protein															
13	(ii) ART DES MOLEKÜLS: peptide															
	(iii) HYPOTHETISCH: nein															
	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus															
	(vi) URSPÜNGLICHE HERKUNFT:															
	(A) ORGANISMUS: Phleum pratense															
20	(C) ENTWICKLUNGSSTADIUM: Pollen															
	(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 36:															
	Gly	Lys	Пe	Trp		Asp	Glu	Gly	Phe		Tyr	Ile	Lys	Glu		Phe
	1				5					10					15	
25	Ala Glu															
	ANG	ABE	N ZI	J SE	Q ID	NO:	37									
30	(i) SEQUENZKENNZEICHEN:															
		(A) LÄ	NGE	: 13											
		(B) AR	T : pr	otein											
	(ii) A	RT I	DES I	MOL	EKÜ	πs: ₁	pepti	de								

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 5 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 37:

Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val
1 5 10

10

ANGABEN ZU SEQ ID NO: 38

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
- 15 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 38:

Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu 1 5 10

25

ANGABEN ZU SEQ ID NO: 39

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
- 30 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 41:

-33-

Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp 1 5 10 15

Trp Asp Val Val Lys Arg Gly Trp Asp Ala
5 20 25

ANGABEN ZU SEQ ID NO: 42

- (i) SEQUENZKENNZEICHEN:
- 10 (A) LÄNGE: 9
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 42:

Glu Ala Pro Tyr Lys Phe Lys Ser Ala 20 1 5

ANGABEN ZU SEQ ID NO: 43

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 14

(B) ART: protein

- 25 (A) LANGE. 14
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- 30 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen

WO 97/05258 PCT/AT96/00141

-34-

```
(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 43:
  Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu Pro
                                        10
 5
  ANGABEN ZU SEQ ID NO: 44
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 7
        (B) ART: protein
10 (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Phleum pratense
        (C) ENTWICKLUNGSSTADIUM: Pollen
15
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 44:
  Asp Glu Ser Gly Lys Ser Val
20
  ANGABEN ZU SEQ ID NO: 45
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 6
        (B) ART: protein
25 (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Phleum pratense
```

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 45:

-35-

Phe Arg Ala Asp Arg Met

1 . 5

ANGABEN ZU SEQ ID NO: 46

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 31
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 46:

15

Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys Ile Lys Tyr

1 10 15

Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Asn Lys
20 25 30

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 18
- 25 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 47:

-36-

	Pro 1	Leu	Ile	Glu	Arg 5	Thr	Ser	Gly	Glu	Tyr 10	Leu	Val	Lys	Asn	Gly 15	Val
5	Arg	Thr														
	ANC	GABI	EN Z	U SE	Q ID	NO:	48									
	(i) S	EQU	ENZ	KEN	NZE	ICHI	EN:									
		(A	A) LÄ	NGE	36											
0		(E	3) AR	T: pi	rotein	1										
	(ii) A	(ii) ART DES MOLEKÜLS: peptide														
	(iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus															
	(v) A	ART I	DES	FRA	GME	ENTS	: N-	[erm	inus t	ois C-	Tem	ninus				
	(vi) ¹	URS	PÜN	GLIC	HE I	HERI	KUN	FT:								
15		•	A) OR					•								
		•	C) EN													
	(vii)	SEQ	UEN	ZBE	SCH	REIE	UNO	G:SE	Q ID	NO:	48:					
	Phe	Trn	Asn	G1 v	Asn	Ara	Ser	Glv	Tvr	Phe	Asp	Glu	Thr	1 vs	Glu	61 u
	1		,,,,,,,	u .,	5	, 3		٠.,		10	М	•		-3 -	15	
20																
	Tyr	He	Glu	Пe	Pro	Ser	Asp	Ser	Gly	IJе	Thr	Phe	Asn	Glu	Gln	Pro
				20					25					30		
	luc	Mat	Lys	۸۱.												
	Lys	met	35	A10												
25																
رے																
	ANG	GABI	EN Z	U SE	Q ID	NO	: 49									
	(i) S	EQU	ENZ	KEN	NZE	ICHI	EN:									
		(/	A) LÄ	NGI	E: 8											
30		(E	3) AR	CT: p	roteir	1										
υ	(ii) A	ART	DES	MOI	LEKÜ	ĴLS:	pepti	ide								
	(iii)	HYP	отн	ETIS	CH:	nein										

-37-

- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 49:

Ile Ala Glu Lys Thr Arg Asp Ala
1

- 10 ANGABEN ZU SEQ ID NO: 50
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 24
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 15 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 50:

Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn Gly Asp Met

1 10 15

Val Gly His Thr Gly Asp 11e Glu 25

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 26
- 30 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein

- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 51:

Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Gly

1 10 15

Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile 10 20 25

ANGABEN ZU SEQ ID NO: 52

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8

15

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

20

- (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 52:

Leu Thr Ser His Thr Leu Gln Pro 5

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 19
 - (B) ART: protein
- 30 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein

-39-(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense (C) ENTWICKLUNGSSTADIUM: Pollen 5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 53: Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp Ile Asn Thr 1 5 10 15 Pro Gly Leu 10 ANGABEN ZU SEQ ID NO: 54 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 14 (B) ART: protein 15 (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense (C) ENTWICKLUNGSSTADIUM: Pollen ²⁰ (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 54: Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr Leu 5 10 25 ANGABEN ZU SEQ ID NO: 55 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 5 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 55:

5 Trp Gly Glu Ala Ser 1 5

- 10 ANGABEN ZU SEQ ID NO: 56
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 15 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 20 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 56:

Met Asp Ser Leu Lys Asn Gly Ala 1 5

- 25 ANGABEN ZU SEQ ID NO: 57
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 30 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

-41-

- (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 57:

ANGABEN ZU SEQ ID NO: 58

- (i) SEQUENZKENNZEICHEN:
- 10 (A) LÄNGE: 5
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 15 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 58:

- (i) SEQUENZKENNZEICHEN:
- 25
- (A) LÄNGE: 4
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 30 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 59:

Thr Leu Glu Asn
1 4

5

ANGABEN ZU SEQ ID NO: 60

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 15 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 60:

Asn Asp Trp Asp Val Val
1 5

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- 25 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 30 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 61:

-43-

Leu Glu Ala Val Lys Thr Leu 1 5

ANGABEN ZU SEQ ID NO: 62

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 62:

15
Leu Ala Lys Ala Leu Glu
1 5

ANGABEN ZU SEQ ID NO: 63

- 20 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 63:

Phe Ala Cys Ser Glu Thr Val Lys
1 5

-44-

ANGABEN ZU SEQ ID NO: 64 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 11 (B) ART: protein 5 (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense 10 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 64: Leu Asp Ala Val Glu Gln Val Gly Gly Ile Tyr 10 15 ANGABEN ZU SEQ ID NO: 65 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 8 (B) ART: protein 20 (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense 25 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 65: Pro Gly Leu Ala Asn Val Ala Ala 30

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 66:

Asn Leu His Gly Phe Gln Ala Pro Asp Asp 1 5 10

- 15 ANGABEN ZU SEQ ID NO: 67
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1668 Basenpaare / 555 Aminosäurereste
 - (B) ART: Nukleinsäure / protein
 - (C) STRANGFORM:ds
- (D) TOPOLOGIE:linear
- (ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein
 - (iii) HYPOTHETISCH: nein
 - (iv) ANTISENSE: nein
 - (v) ART DES FRAGMENTS: Gesamtsequenz
 - (vi) URSPÜNGLICHE HERKUNFT:
- 25 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 67:
- 1 ATG ACC TCA TGG ACG CTG CCC GAC CAC CCC ACG CTC CCC AAG

 Met Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys

85 GCC AGC GCT GAC CAG TAC AAC TGC ATC CAT CGC GCC GATA Ser Ala Asp Gln Tyr Asn Cys Ile His Arg Ala G 127 CCC GTC ATG GAT TCG CTC AAG AAT GGT GCT CCT GAG AAR Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys Ala His Gly Thr Ala Val Gly Leu Pro Glu GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GGAS ASP Asp Met Gly Asn Ser Glu Val Gly His Asn Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Asp	GC GAG 84
Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg Ala G 127 CCC GTC ATG GAT TCG CTC AAG AAT GGT GCT CCT GAG AA Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu L 169 ACA CTA GTG AAG GCT CAT GGA ACT GCT GTT GGT CTC CG Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu Pa 10 211 GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GG	ly Glu
Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg Ala G 127 CCC GTC ATG GAT TCG CTC AAG AAT GGT GCT CCT GAG AA Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu L 169 ACA CTA GTG AAG GCT CAT GGA ACT GCT GTT GGT CTC CG Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu Pa 10 211 GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GG	
127 CCC GTC ATG GAT TCG CTC AAG AAT GGT GCT CCT GAG AA Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Ly 169 ACA CTA GTG AAG GCT CAT GGA ACT GCT GTT GGT CTC CG Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu Pa 10 211 GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GG	
127 CCC GTC ATG GAT TCG CTC AAG AAT GGT GCT CCT GAG AAP Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Line 169 ACA CTA GTG AAG GCT CAT GGA ACT GCT GTT GGT CTC COUNTY Leu Val Lys Ala His Gly Thr Ala Val Gly Leu Pro 100 211 GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GG	lu Thr
Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu L 169 ACA CTA GTG AAG GCT CAT GGA ACT GCT GTT GGT CTC CO Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu P 10 211 GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GO	
169 ACA CTA GTG AAG GCT CAT GGA ACT GCT GTT GGT CTC CO Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu Po 10 211 GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GO	
Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu P 10 211 GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GG	ys Trp
Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu P 10 211 GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GG	
10 211 GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GG	
Asp Asp Asp Met Gly Asn Ser Glu Val Glv His Asn A	
	la Leu
253 GGC GCT GGT CGG ATT TTC GCT CAA GGG GCG AAG TTG T	
Gly Ala Gly Arg Ile Phe Ala Gln Gly Ala Lys Leu Ph	ne Asp
15 005 007 007 077 00. 707	
15 295 GCT GCT CTT GCA TCT GGG AAG ATT TGG GAA GAT GAG GG	
Ala Ala Leu Ala Ser Gly Lys Ile Trp Glu Asp Glu G	ly Phe
227 AAT TAG ATG AAA GAA TGT TTT 000 044 007 407 070 0	
337 AAT TAC ATC AAA GAA TCT TTT GCC GAA GGT ACT CTG CA	
Asn Tyr Ile Lys Glu Ser Phe Ala Glu Gly Thr Leu Hi	s Leu
20 379 ATT GGT CTG TTG AGT GAT GGA GGC GTC CAC TCC CGG CT	TA GAC 420
Ile Gly Leu Leu Ser Asp Gly Gly Val His Ser Arg Le	
The dry Led Led Ser Asp dry dry Var his Ser Arg Le	eu Asp
421 CAA GTG CAG TTG CTT GTG AAA GGT GCC AGT GAG AGG GG	SA GCA 462
Gln Val Gln Leu Leu Val Lys Gly Ala Ser Glu Arg Gl	
The second of th	<i>y</i>
25 463 AAA AGA ATT CGG CTT CAC ATT CTT ACC GAT GGG CGT GA	T GTC 504
Lys Arg Ile Arg Leu His Ile Leu Thr Asp Gly Arg As	
505 TTG GAT GGA AGC AGT GTT GGT TTC GTA GAG ACA CTA GA	G AAT 546
Leu Asp Gly Ser Ser Val Gly Phe Val Glu Thr Leu Gl	
30 547 GAT CTT GCT CAG CTT CGT GAG AAG GGT GTT GAT GCA CA	
Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp Ala Gl	G GTT 588

	589	9 GC	A TC	r GG1	r GG7	GGA	AGG	ATG	TAT	GT1	ACC	ATG	GAG	CGC	TAT	630
		Ala	a Sei	· Gly	/ G1)	/ G1 ₎	Arg	Met	Tyr	· Val	Thr	Met	Asp	Arg	Tyr	
	63	L GA	AA1	GAC	TGG	GAT	GTG	GTC	: AAG	G CGT	GGG	TGG	GAT	GCC	CAG	672
														Ala		0, 2
5	5				·	•			-, -	3	, .,		,,,,,	, ,,,,,	4,,,	
	673	GT6	СТТ	GGA	GAA	GCA	CCA	TAC	۸ ۸ ۸	TTC		ACT	CC 4	CTT	C A A	714
														Leu		714
					Uiu	710	710	ıyı	Lys	rne	Lys	5er	АТа	Leu	Glu	
	715	GCT	CTC		۸۲۲	CTA	A C A	CC 4	C 4 C							
	, 10													GAT		756
10	757													Asp		
10	, /5/													AAA		798
		lyr	Leu	Pro	Ala	Phe	Va1	He	Val	Asp	Glu	Ser	Gly	Lys	Ser	
													•			
	799													TTC		840
		Va1	Gly	Pro	Ile	۷a٦	Asp	Gly	Asp	Ala	Val	Va1	Thr	Phe	Asn	
15	841	TTC	AGA	GCT	GAT	CGC	ATG	GTT	ATG	CTT	GCA	AAG	GCT	CTT	GAG	882
		Phe	Arg	Ala	Asp	Arg	Met	۷a٦	Met	Leu	Ala	Lys	Ala	Leu	Glu	
	883	TTT	GCT	GAT	TTT	GAT	AAA	TTT	GAC	CGT	GTT	CGT	GTA	CCA	AAA	924
		Phe	Ala	Asp	Phe	Asp	Lys	Phe	Asp	Arg	۷al	Arg	Val	Pro	Lys	
20	925	ATT	AAG	TAT	GCT	GGG	ATG	СТС	CAG	TAT	GAT	GGT	GAG	TTG	AAG	966
														Leu		
										J					_, 0	
	967	CTT	CCA	AAC	AAA	TTC	СТТ	GTT	TCC	CCA	CCC	TTG	ΔΤΔ	GAG	AGG.	1008
														Glu		1000
					Ū				•				1.0	a . a	~ı y	
25	1009	ACA	TCT	GGT	GAA	TAC	TTG	GTA	AAG	ΔΔΤ	GGC	GTT	cec	۸۲۸	TTT	1050
														Thr		1050
			•	٠.,	•••		LCu	•••	Lys	7311	ury	Vai	Arg	1 11 1	rne	
	1051	GCT	TGC	AGC	GAG	Δ۲۲	GTC	ΔAC	ттт	CCT	$\Gamma \Lambda T$	CTC	A C A	****	TTC	1000
																1092
			Cy 3	JEI	uiu	1 111	401	r y S	rne	чυ	m i S	val	ınr	Phe	rne	
30	1003	TGG	A A T	GG A	A A C	CCT	TCT	CC 4	T 4 C	TT 0	047	^ • •				
20	1093															1134
		1 L.D	ASN	ыу	ASN	Arg	5er	Gly	ıyr	Phe	Asp	Glu	Thr	Lys	Glu	

	1135	GAG	TAC	ATA	GAA	TTA	CCT	AGT	GAT	AGT	GGT	ATC	ACA	TTC	AAT	1176
		Glu	Tyr	IJе	Glu	Пe	Pro	Ser	Asp	Ser	Gly	Пe	Thr	Phe	Asn	
	1177	GAG	CAG	CCC	AAA	ATG	AAG	GCA	CTT	GAA	ATT	GCT	GAG	AAA	ACC	1218
		Glu	Gln	Pro	Lys	Met	Lys	Ala	Leu	Glu	Пe	Ala	Glu	Lys	Thr	
5																
	1219															1260
		Arg	Asp	Ala	Ile	Leu	Ser	G1 y	Lys	Phe	Asp	Gln	Val	Arg	Ile	
	1261															1302
						•				Gly						1044
10	1303															1344
		Glu	Ala	Thr	Val	Val	Ala	Cys	Lys	Ala	Ala	Asp	Glu	Ala	Val	
	1245	446		CTT	TT C	CAT	004	CTC	C 4 C	C 1 1	CTT	CCT	CCT	ATT	TAT	1386
	1345									Gln						1360
		Lys	116	Vai	Leu	АЅР	АТА	vai	Giu	GIN	vai	ыу	ыу	116	ıyı	
15	1387	СТТ	GTC	ΔCΤ	GCT	GAT	СДТ	GGA	ΔΔΓ	GCA	GAG	GAT	ATG	GTG	ΔΔΔ	1428
•	1307									Ala						1120
		ccu	• • •	• • • • •	A14	ASP		u.,	7.511	,,,,	0.0	7139			_, _	
	1429	AGA	AAC	AAA	TCT	GGC	CAG	ССТ	GCT	CTT	GAC	AAG	AGC	GGT	AGC	1470
										Leu						
				•		•										
20	1471	ATC	CAG	ATT	CTT	ACC	TCG	CAT	ACG	CTT	CAG	CCA	GTC	CCT	GTT	1512
		Пe	Gln	Пe	Leu	Thr	Ser	His	Thr	Leu	Gln	Pro	V a 1	Pro	Val	
	1513	GCG	ATC	GGA	GGC	CCT	GGT	CTC	CAC	CCA	GGA	GTG	AAG	TTC	AGG	1554
		Ala	Ile	G1 y	G1 y	Pro	Gly	Leu	His	Pro	Gly	Val	Lys	Phe	Arg	
25	1555	TCT	GAT	ATC	AAC	ACA	CCT	GGA	CTC	GCC	AAT	GTT	GCC	GCC	ACC	1596
		Ser	Asp	IJе	Asn	Thr	Pro	Gly	Leu	Ala	Asn	Val	Ala	Ala	Thr	
	1597															1638
		Val	Met	Asn	Leu	His	Gly	Phe	Gln	Ala	Pro	Asp	Asp	Tyr	Glu	
•								_ 0								
30	1639															1668
		Thr	Thr	Leu	He	Glu	Val	Ala	Asp	Lvs	*					

-49-

ANGABEN ZU SEQ ID NO: 68 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 16 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense 10 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 68: Met Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys Gly Lys 5 10 15 15 ANGABEN ZU SEQ ID NO: 69 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 35 (B) ART: protein ²⁰ (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Phleum pratense 25 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 69: Asp Gly Trp Gly Glu Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg 10 15 $30\ {
m Ala}\ {
m Glu}\ {
m Thr}\ {
m Pro}\ {
m Val}\ {
m Met}\ {
m Asp}\ {
m Ser}\ {
m Leu}\ {
m Lys}\ {
m Asn}\ {
m Gly}\ {
m Ala}\ {
m Pro}\ {
m Glu}\ {
m Lys}$ 20 25 30

Trp Thr Leu 35

ANGABEN ZU SEQ ID NO: 70

- ⁵ (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 19
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 70:

15
Leu Pro Ser Asp Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala
1 5 10 15

Leu Gly Ala

20

ANGABEN ZU SEQ ID NO: 71

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 17
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 30 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 71:

Gly Lys Ile Trp Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe

WO 97/05258 PCT/AT96/00141

-51-

1 5 10 15

Ala

- 5 ANGABEN ZU SEQ ID NO: 72
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 13
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 10 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 15 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 72:

Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val
1 5 10

- 20 ANGABEN ZU SEQ ID NO: 73
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 25 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 73:

Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu 1 5 10

```
ANGABEN ZU SEQ ID NO: 74
   (i) SEQUENZKENNZEICHEN:
         (A) LÄNGE: 13
 5
         (B) ART: protein
   (ii) ART DES MOLEKÜLS: peptide
   (iii) HYPOTHETISCH: nein
   (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
10
        (A) ORGANISMUS: Phleum pratense
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 74:
  Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
15 1
                   5
                                        10
  ANGABEN ZU SEQ ID NO: 75
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 17
20
        (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
25
        (A) ORGANISMUS: Phleum pratense
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 75:
  Glu Thr Leu Glu Asn Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp
                   5
                                       10
                                                            15
30
  Ala
```

ANGABEN ZU SEQ ID NO: 76

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 26
- 5 (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 76:

15

10

Trp Asp Val Val Lys Arg Gly Trp Asp Ala
20 25

- 20 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 9
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 77:
- 30 Glu Ala Pro Tyr Lys Phe Lys Ser Ala

```
ANGABEN ZU SEQ ID NO: 78
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 14
        (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Phleum pratense
10
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 78:
  Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu Pro
                                       10
15
  ANGABEN ZU SEQ ID NO: 79
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 7
        (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Phleum pratense
25
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 79:
  Asp Glu Ser Gly Lys Ser Val
  1
                   5
```

30

	-55-
	(i) SEQUENZKENNZEICHEN:
	(A) LÄNGE: 7
	(B) ART: protein
	(ii) ART DES MOLEKÜLS: peptide
C.	5 (iii) HYPOTHETISCH: nein
	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
	(vi) URSPÜNGLICHE HERKUNFT:
	(A) ORGANISMUS: Phleum pratense
	(C) ENTWICKLUNGSSTADIUM: Pollen
10	(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 80:
10	
	Asn Phe Arg Ala Asp Arg Met
	1 5
. 14	E ANCARENIZUERO ID NO. 01
12	5 ANGABEN ZU SEQ ID NO: 81
	(i) SEQUENZKENNZEICHEN:
	(A) LÄNGE: 31
	(B) ART: protein (ii) ART DES MOLEKÜLS: peptide
	• •
20	(iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
	(vi) URSPÜNGLICHE HERKUNFT:
	(A) ORGANISMUS: Phleum pratense
	(C) ENTWICKLUNGSSTADIUM: Pollen
	(vii) SEOUENZDESCUDEIDUNG, SEO ID NO. 81.
25	(vii) SEQUENCEDESCINCEDONG.SEQ ID NO. 81.
	Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys Ile Lys Tyr
	1 5 10 15
	Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Asn Lys

25

30

20

30

-56-

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 18
 - (B) ART: protein
- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 82:

Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val 15 5 10 1

15 Arg Thr

ANGABEN ZU SEQ ID NO: 83

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 36
- 20 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- 25 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 83:

Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr Lys Glu Glu 30 1 10 15

Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile Thr Phe Asn Glu Gln Pro

-57-

20

25

30

Lys Met Lys Ala 35

5

ANGABEN ZU SEQ ID NO: 84

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 84:

Ile Ala Glu Lys Thr Arg Asp Ala
1

20

ANGABEN ZU SEQ ID NO: 85

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 24
 - (B) ART: protein
- 25 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 30 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 85:

Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn Gly Asp Met

-58-

1 5 10 15

Val Gly His Thr Gly Asp Ile Glu
20

5

ANGABEN ZU SEQ ID NO: 86

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 26
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 86:

Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Gly

1 10 15

20 Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile 20 25

- (i) SEQUENZKENNZEICHEN:
- 25 (A) LÄNGE: 8
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 30 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen

-59-

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 87:

Leu Thr Ser His Thr Leu Gln Pro 1 5

5

ANGABEN ZU SEQ ID NO: 88

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 19
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- 15 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 88:

Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp Ile Asn Thr

1 10 15

20 Pro Gly Leu

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 14
- 25 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- 30 (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 89:

-60-

Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr Leu
1 5 10

- ⁵ ANGABEN ZU SEQ ID NO: 90
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 5
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 10 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 15 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 90:

Trp Gly Glu Ala Ser 1 5

- 20 ANGABEN ZU SEQ ID NO: 91
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 25 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 30 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 91:

Met Asp Ser Leu Lys Asn Gly Ala

-61-

1

5

ANGABEN ZU SEQ ID NO: 92

5 (i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 10
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein .
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 10 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 92:

ANGABEN ZU SEQ ID NO: 93

(i) SEQUENZKENNZEICHEN:

20

- (A) LÄNGE: 5
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 25 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 93:

$$30 \frac{\text{Tyr Ile Lys. Glu Ser}}{1} 5$$

```
ANGABEN ZU SEQ ID NO: 94
```

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 4
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 94:

Thr Leu Glu Asn
1 4

15

10

ANGABEN ZU SEQ ID NO: 95

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
- 20 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 95:

Asn Asp Trp Asp Val Val

30

-63-

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 7

(B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 96:

Leu Glu Ala Val Lys Thr Leu 1 5

- 15 ANGABEN ZU SEQ ID NO: 97
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 97:

25

Leu Ala Lys Ala Leu Glu Phe 1 5

ANGABEN ZU SEQ ID NO: 98

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 8

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 5 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 98:

Phe Ala Cys Ser Glu Thr Val Lys 10 1

ANGABEN ZU SEQ ID NO: 99

- (i) SEQUENZKENNZEICHEN:
- (A) LÄNGE: 9 15
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 99:

Leu Asp Ala Val Glu Gln Val Gly Gly 25 1

ANGABEN ZU SEQ ID NO: 100

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8

30

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
- (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 100:

Pro Gly Leu Ala Asn Val Ala Ala 1 5

10

ANGABEN ZU SEO ID NO: 101

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 10
 - (B) ART: protein
- 15 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Phleum pratense
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 101:

Asn Leu His Gly Phe Gln Ala Pro Asp Asp 1 5 10

25

ANGABEN ZU SEQ ID NO: 102

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1674 Basenpaare / 557 Aminosäurereste
 - (B) ART: Nukleinsäure / protein
 - (C) STRANGFORM:ds

30 (D) TOPOLOGIE:linear

(ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein

(iii) HYPOTHETISCH: nein

	(iv) A	ITM	SEN	SE: n	ein											
•	(v) ART DES FRAGMENTS: Gesamtsequenz															
	(vi) URSPÜNGLICHE HERKUNFT:															
-	5 (A) ORGANISMUS: Artemisia vulgaris															
3		•		TWI(_							
	(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 102:															
	(*,	J_ (, , , ,				0110	.520	, LD .	10.	. 02.					
	1	ATG	GGA	AGC	TCA	GGA	TTT	TCA	TGG	AAG	СТА	GCG	GAC	CAC	CCA	42
		Met	Gly	Ser	Ser	Gly	Phe	Ser	Trp	Lys	Leu	Ala	Asp	His	Pro	
10																
	43	AAG	CTG	CCA	AAG	AAC	AAG	CTG	GTA	GCG	ATG	ATT	GTG	TTG	GAC	84
		Lys	Leu	Pro	Lys	Asn	Lys	Leu	Val	Ala	Met	Ile	Val	Leu	Asp	
												T			•	• • •
	85			GGT												126
15	107			Gly					•	-	-		-			1.66
13	127			G1 u												168
		V (3 1	Ala	uiu	1111	FFO	1111	met	АЅР	3er	Leu	Lys	ASII	ыу	Ald	
	169	ССТ	GAT	CAC	TGG	AGA	TTG	GTG	AGG	GCT	CAT	GGA	ACT	GCT	GTT	210
		Pro	Asp	His	Trp	Arg	Leu	Va1	Arg	Ala	His	Gly	Thr	Ala	Val	
20	211	GGG	CTT	CCC	ACT	GAA	GAT	GAC	ATG	GGA	AAC	AGT	GAA	GTC	GGA	252
		G1 y	Leu	Pro	Thr	Glu	Asp	Asp	Met	Gly	Asn	Ser	Glu	Val	Gly	
	253			GCT												294
		HIS	Asn	Ala	Leu	Gly	Ala	Gly	Arg	lie	Phe	Ala	GIN	Gly	Ala	
25	295	ΔΔΔ	۲TC	GTT	GAT	$C\Delta\Delta$	GCA	CTT	ccc	тст	CCC	ΔGΔ	ΔΤΤ	TAC	GΔΔ	336
	233			Val												330
		L) U		,	7.50	J	,,,,		7,1.0	50.	U .,	, g		.,,		
	337	GAT	GAA	GGT	TTC	AAT	TAC	ATC	AAG	GAA	TCA	TTT	GCC	ACC	AAC	378
		Asp	Glu	Gly	Phe	Asn	Tyr	Ile	Lys	Glu	Ser	Phe	Ala	Thr	Asn	
30	379	ACC	TTG	CAT	CTT	ATT	GGA	TTG	ATG	AGT	GAT	GGT	GGT	GTT	CAC	420
		Thr	Leu	His	Leu	Пe	Gly	Leu	Met	Ser	Asp	Gly	Gly	۷al	His	

	421	TCA	CGT	CTT	GAT	CAG	TTO	CAG	TT6	TTG	CTT	AAC	GGA	GCT	AGT	462
		Ser	Arg	Leu	Asp	Gln	Lei	Gln	Lei	Leu	leu	Asn	Gl	Ala	Ser	
	•															
	463	GAG	CGT	GGT	GCC	AAG	AAG	ATC	CGT	GTT	CAC	GTG	СТТ	ACT	GAT	504
															Asp	
5																
	505	GGT	CGT	GAT	GTT	TTG	GAT	GGT	TCA	AGT	GTC	GGT	TTT	GCT	GAA	546
						Leu										340
		•					7.07	U .,	J C.	30.	***	uiy	1116	710	GIU	
	547	ACA	CIT	GAA	GCA	GAA	CTT	GCA	ΔΩΤ	CTC	rer	۸CC	^ ^ ^ C	ccc	ATT	588
						Glu										200
10			200	0.0	A10	uiu	Leu	МІВ	261	ren	Arg	Ser	Lys	ыу	116	
	· E 0 0	CAT	CCT	C 4 C	CTT	CCT										
	209					GCT										630
		Asp	Ala	Gin	Val	Ala	Ser	Gly	Gly	Gly	Arg	Met	Tyr	Val	Thr	
	631					GAG										672
1.5						Glu										
15	673					GTT										714
		Trp	Asp	Ala	Gln	Val	Leu	Gly	Glu	Ala	Pro	His	Lys	Phe	Lys	
	715	AAT	GTT	GTT	GAG	GCT	ATT	AAG	ACA	CTC	AGA	CAA	GCT	CCT	GGT	756
		Asn	۷al	Val	Glu	Ala	Ιle	Lys	Thr	Leu	Arg	Gln	Ala	Pro	Gly	
20	757	GCT	AAT	GAC	CAA	TAC	TTG	CCT	CCA	TTT	GTT	ATC	GTC	GAT	GAT	798
		Ala	Asn	Asp	Gln	Tyr	Leu	Pro	Pro	Phe	Val	Пe	Val	Asp	Asp	
														·		
	799	AGC	GGC	ACG	CCT	GTT	GGT	CCA	GTT	GTG	GAT	GGC	GAT	GCT	GTT	840
						V a 1										
												G.,	С р			
25	841	GTC	ACT	GTT	AAC	TTC	CGT	GCT	GAT	CGT	ΔTG	ΔΩΤ	ATG	СТТ	ccc	882
	_					Phe										002
					,,,,,,	•	rı g	A 1 G	АЗР	~1 Y	mec	, ,,,,	net	Leu	Ald	
	883	$C\Delta\Delta$	GCT	СТТ	GAA	TAC	GAG	A A G	TTT	GAT	A A C	TT T	C 4 C	A C A	CTC	024
	000															924
		J 1 11	710	Leu	Jiu	Tyr	a i u	Lys	rne	ASP	Lys	rne	ASP	Arg	vai.	
30	Q2E	CGT	TTC	C C A	A A A	٨٣٥	CCT	T 4 T	CCT	CCT	4.7.0		0	-	0	0.00
20						ATC										966
		arg	rne	Pro	Lys	Пe	Arg	lyr	Ala	Gly	Met	Leu	Gln	Tyr	Asp	

	967	GGA	GAG	TTG	AAG	CTT	CCA	AAC	CAT	TAC	CTT	GTT	TCT	CCC	CCA	1008
		Gly	Glu	Leu	Lys	Leu	Pro	Asn	His	Tyr	Leu	Val	Ser	Pro	Pro	
	1009	TTG	ATT	GAC	AGG	ACA	тст	GGC	GAA	TAT	TTG	GTG	CAT	AAT	GGT	1050
5		Leu	lle	Asp	Arg	Thr	Ser	Gly	Glu	Tyr	Leu	Val	His	Asn	Gly	
J	1051	GTC	CGC	ACT	TTT	GCT	TGC	AGT	GAG	ACT	GTC	AAA	TTC	GGT	CAT	1092
		Val	Arg	Thr	Phe	Ala	Cys	Ser	Glu	Thr	Val	Lys	Phe	Gly	His	
	1093	GTC	ACA	TTT	TTC	TGG	AAT	GGA	AAC	CGC	TCT	GGT	TAC	TTC	AAC	1134
		Val	Thr	Phe	Phe	Trp	Asn	Gly	Asn	Arg	Ser	Gly	Tyr	Phe	Asn	
10		TCA	C 4 C	TTC	C	C A A	T A T	CTT	C A A	A T T	CC 4	A C T	CAT	ACT	CCT	1176
	1135				GAA											117 <i>E</i>
							·						•		•	
	1177															1218
15	1219				Acc		-		-		_					1260
	1213				Thr											1200
	1261															1302
		GIN	vai	Arg	Val	ASII	116	PIO	ASII	ыу	АЅР	met	Vai	ыу	піз	
20	1303	ACC	GGT	GAT	GTT	GAG	GCT	ACT	GTC	GTG	GCC	TGC	AAG	GCT	GCT	1344
		Thr	Gly	Asp	Val	Glu	Ala	Thr	Val	۷a٦	Ala	Cys	Lys	Ala	Ala	
	1345	GAT	GAA	GCT	GTT	AAG	ATG	ATC	СТТ	GAT	GCC	GTA	GAG	CAA	GTG	1386
		Asp	Glu	Ala	Val	Lys	Met	Ile	Leu	Asp	Ala	Val	Glu	Gln	Val	
25	1387	GGT	GGG	ATA	TAC	GTT	GTG	ACT	GCC	GAT	CAC	GGT	AAT	GCT	GAG	1428
					Tyr											
	1429				AAG Lys											1470
		ЛЭР	1100	* 3 1	Lys	719	дэн	Lys	Lys	U 1 y	Giu	. , 0	Leu	Leu	-, -	
30	1471	GAC	GGC	GAG	GTC	CAG	ATT	СТА	ACA	TCA	CAC	ACT	CTT	CAG	CCG	1512
		Asp	Glv	Glu	Val	Gln	He	Leu	Thr	Ser	His	Thr	Leu	Gln	Pro	

-69-

1513 GTG CCA ATT GCA ATT GGA GGT CCT GGG TTA TCC GCT GGT GTG 1554 Val Pro Ile Ala Ile Gly Gly Pro Gly Leu Ser Ala Gly Val

1555 AGG TTC CGC AAG GAT GTA CCA AGT GGA GGA CTT GCA AAC GTA 1596 Arg Phe Arg Lys Asp Val Pro Ser Gly Gly Leu Ala Asn Val

5

1597 GCA GCA ACT GTG ATG AAT CTT CAT GGG TTT GTG GCT CCT GAG 1638 Ala Ala Thr Val Met Asn Leu His Gly Phe Val Ala Pro Glu

1639 GAC TAC GAG ACT ACT CTG ATC GAA GTT GTT GAG TAA

Asp Tyr Glu Thr Thr Leu Ile Glu Val Val Glu *

10

ANGABEN ZU SEQ ID NO: 103

- (i) SEQUENZKENNZEICHEN:
- 15 (A) LÄNGE: 21
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 103:

Met Gly Ser Ser Gly Phe Ser Trp Lys Leu Ala Asp His Pro Lys Leu 25 1 5 10 15

Pro Lys Asn Lys Leu 20

30 ANGABEN ZU SEQ ID NO: 104

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 14

	-70-
	(B) ART: protein
	(ii) ART DES MOLEKÜLS: peptide
	(iii) HYPOTHETISCH: nein
	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
5	(vi) URSPÜNGLICHE HERKUNFT:
	(A) ORGANISMUS: Artemisia vulgaris
	(C) ENTWICKLUNGSSTADIUM: Pollen
	(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 104:
10	Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile 1 5 10
	ANGABEN ZU SEQ ID NO: 105 (i) SEQUENZKENNZEICHEN:
15	(A) I ÄNGE OG
13	(B) ART: protein
	(ii) ART DES MOLEKÜLS: peptide
	(iii) HYPOTHETISCH: nein
	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
20	(vi) URSPÜNGLICHE HERKUNFT:
20	(A) ORGANISMUS: Artemisia vulgaris
	(C) ENTWICKLUNGSSTADIUM: Pollen
	(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 105:
	Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Asn Gly Ala Pro Asp His
25	I 10 10

Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Asn Gly Ala Pro Asp His

25 1

5

10

15

Trp Arg Leu Val Arg Ala His Gly Thr 20 25

30 ANGABEN ZU SEQ ID NO: 106

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 19

15

- -71-(B) ART: protein (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus 5 (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 106: Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala 10 1 10 Leu Gly Ala ANGABEN ZU SEO ID NO: 107 (i) SEQUENZKENNZEICHEN:
- - (A) LÄNGE: 20
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 20 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 25 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 107:

Gly Arg Ile Tyr Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe 1 10 15

Ala Thr Asn Thr 30 20

-72-ANGABEN ZU SEQ ID NO: 108 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 12 (B) ART: protein 5 (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 108: Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln 5 10 15 ANGABEN ZU SEQ ID NO: 109 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 12 (B) ART: protein 20 (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris (C) ENTWICKLUNGSSTADIUM: Pollen ²⁵ (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 109: Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val 10

ANGABEN ZU SEQ ID NO: 110
(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 13

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 5 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 110:

Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
$$10_{\ 1}$$
 5 10

ANGABEN ZU SEQ ID NO: 111

- (i) SEQUENZKENNZEICHEN:
- 15 (A) LÄNGE: 10
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 111:

Ala Ser Leu Arg Ser Lys Gly Ile Asp Ala 25 1 5 10

- (i) SEQUENZKENNZEICHEN:
- (A) LÄNGE: 19
- 30 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide

-74-

- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 5 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 112:

10 Trp Glu Val

ANGABEN ZU SEQ ID NO: 113

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 9

15

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

20

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 113:

ANGABEN ZU SEQ ID NO: 114

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 16

30

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide

-75-

(iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris (C) ENTWICKLUNGSSTADIUM: Pollen 5 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 114: Ile Lys Thr Leu Arg Gln Ala Pro Gly Ala Asn Asp Gln Tyr Leu Pro 1 5 10 15 10 ANGABEN ZU SEQ ID NO: 115 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 7 (B) ART: protein 15 (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 115: Asp Asp Ser Gly Thr Pro Val 1 5 25 ANGABEN ZU SEQ ID NO: 116 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 7 (B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(iii) HYPOTHETISCH: nein

- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 116:

5 Asn Phe Arg Ala Asp Arg Met 1 5

ANGABEN ZU SEQ ID NO: 117

- 10 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 39
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 15 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 117:
- 20 Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val Arg Phe Pro 1 5 10 15

Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu 20 25 30

25 Pro Asn His Tyr Leu Val Ser
35

ANGABEN ZU SEQ ID NO: 118

30 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 18

(B) ART: protein

WO 97/05258

-77-

	(ii)	ART	DES	MO	LEK	ÜLS:	pep	tide								
	(iii)	HYI	OTF	ŒΤΙ	SCH:	nein										
	(v)	ART	DES	FRA	\GM	ENT:	S: N-	Term	inus	bis C	-Terr	ninus	;			
	(vi)	URS	PÜN	IGLI	CHE	HER	KUN	IFT:	•							
5		(A) O	RGA	NISN	AUS:	Arte	misia	vulg	aris						
		(C) Ei	WTV	ICĶI	LUNG	3SS7	ADI	UM:	Polle	n					
	(vii)	SEC	(UE)	\ZBE	ESCH	REII	BUN	G:SE	QID	NO:	118	:				
	0	1	11.	A = =		 .	•	0.1	0.1							
	1	Leu	Ile	ASP	Arg 5	ınr	5er	ыу	Glu	lyr 10	Leu	Val	His	Asn	Gly 15	Val
10	-				J					10					15	
	Arg	Thr														
												•				
			EN Z		-											
15	(1) S		ENZ			ICH	EN:									
		•	A) LĀ													
	(::\ .	•	3) AF	_												
			DES				pept	ide								
			OTH				. X T *	т	. ,		~					
20			DES PÜN						inus t	ois C-	l em	nnus				
	(11)		A) OF							i-						
			c) en						_							
	(vii)		UEN					•								
		<i>52</i>	OLIV				0111	J.JL	Q ID	140.	117.					
25	Phe	Trp	Asn	Gly	Asn	Arg	Ser	Gly	Tyr	Phe	Asn	Ser	Glu	Leu	Glu	Glu
	1				5					10					15	
	_															
	Tyr	Val	Glu		Pro	Ser	Asp	Ser		lle	Thr	Phe	Asn		Lys	Pro
				20					25					30		
30	Lys	Met	Lys	Ala	Leu	Glu	Пe	Gly	Glu	Lys	Thr	Arg	Asp	Ala		
JU			35					•		•		J	45			

-78-ANGABEN ZU SEQ ID NO: 120 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 24 (B) ART: protein 5 (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 120: Ser Gly Lys Phe Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met 1 10 15 Val Gly His Thr Gly Asp Val Glu 20 ANGABEN ZU SEQ ID NO: 121 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 7 (B) ART: protein ²⁰ (ii) ART DES MOLEKÜLS: peptide (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris 25 (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 121:

Lys Ala Ala Asp Glu Ala Val 5

30

-79-

```
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 25
(B) ART: protein
```

- (ii) ART DES MOLEKÜLS: peptide
- 5 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 122:

Glu Pro Leu Leu Lys Asp Gly Glu Val
20 25

ANGABEN ZU SEQ ID NO: 123

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
- 20 (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
- 25 (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 123:

Leu Thr Ser His Thr Leu Gln Pro 5 30

	-80-	
	ANGABEN ZU SEQ ID NO: 124	
	(i) SEQUENZKENNZEICHEN:	
	(A) LÄNGE: 13	
	(B) ART: protein	
5	(ii) ART DES MOLEKÜLS: peptide	
_	(iii) HYPOTHETISCH: nein	
	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus	
	(vi) URSPÜNGLICHE HERKUNFT:	
	(A) ORGANISMUS: Artemisia vulgaris	
10	(C) ENTWICKLUNGSSTADIUM: Pollen	
10	(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 124:	
	Gly Val Arg Phe Arg Lys Asp Val Pro Ser Gly Gly L	eu
	1 5 10	
15		
15	ANGABEN ZU SEQ ID NO: 125	
	(i) SEQUENZKENNZEICHEN:	
	(A) LÄNGE: 10	
	(B) ART: protein	
	(ii) ART DES MOLEKÜLS: peptide	
20	(iii) HYPOTHETISCH: nein	
	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus	
	vi) URSPÜNGLICHE HERKUNFT:	
	(A) ORGANISMUS: Artemisia vulgaris	
	(C) ENTWICKLUNGSSTADIUM: Pollen	
25	(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 125:	
	/al Ala Pro Glu Asp Tyr Glu Thr Thr Leu	
	5 10	

30 ANGABEN ZU SEQ ID NO: 126

(i) SEQUENZKENNZEICHEN:

-81-

- (A) LÄNGE: 5
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 126:

ANGABEN ZU SEQ ID NO: 127

- 15 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 16
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 127:

ANGABEN ZU SEQ ID NO: 128

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 7

(B) ART: protein

```
-82-
   (ii) ART DES MOLEKÜLS: peptide
   (iii) HYPOTHETISCH: nein
   (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
   (vi) URSPÜNGLICHE HERKUNFT:
         (A) ORGANISMUS: Artemisia vulgaris
 5
         (C) ENTWICKLUNGSSTADIUM: Pollen
   (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 128:
   Asp His Trp Arg Leu Val Arg
                    5
10
   ANGABEN ZU SEQ ID NO: 129
  (i) SEQUENZKENNZEICHEN:
         (A) LÄNGE: 10
         (B) ART: protein
15
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Artemisia vulgaris
20
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 129:
  Phe Ala Gln Gly Ala Lys Leu Val Asp Gln
                   5
                                       10
  ANGABEN ZU SEQ ID NO: 130
  (i) SEQUENZKENNZEICHEN:
```

(A) LÄNGE: 19

(B) ART: protein

(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

25

	-83-
	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
	(vi) URSPÜNGLICHE HERKUNFT:
	(A) ORGANISMUS: Artemisia vulgaris
	(C) ENTWICKLUNGSSTADIUM: Pollen
5	(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 130:
	Glu Ala Pro His Lys Phe Lys Asn Val Val Glu Ala Ile Lys Thr Leu
	1 5 10 15
	Arg Gln Ala
10	
	ANGABEN ZU SEQ ID NO: 131
	(i) SEQUENZKENNZEICHEN:
	(A) LÄNGE: 10
15	(B) ART: protein
13	(ii) ART DES MOLEKÜLS: peptide
	(iii) HYPOTHETISCH: nein
	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
	(vi) URSPÜNGLICHE HERKUNFT:
	(A) ORGANISMUS: Artemisia vulgaris
20	(C) ENTWICKLUNGSSTADIUM: Pollen
	(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 131:
	Arg Thr Phe Ala Cys Ser Glu Thr Val Lys
	1 5 10
25	
	ANGABEN ZU SEQ ID NO: 132
	(i) SEQUENZKENNZEICHEN:
	(A) LÄNGE: 8
	(B) ART: protein
30	(ii) ART DES MOLEKÜLS: peptide

(iii) HYPOTHETISCH: nein

WO 97/05258 PCT/AT96/00141

-84-

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- 5 (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 132:

Ser Glu Leu Glu Glu Tyr Val Glu

- 10 ANGABEN ZU SEQ ID NO: 133
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 14
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 15 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 133:

Val Lys Met Ile Leu Asp Ala Val Glu Gln Val Gly Gly Ile 1 5 10

- 25 ANGABEN ZU SEQ ID NO: 134
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 134:

5 Gly Gly Leu Ala Asn Val Ala Ala 1 5

ANGABEN ZU SEQ ID NO: 135

- (i) SEQUENZKENNZEICHEN:
- 10 (A) LÄNGE: 9
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 15 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 135:

As n Leu His Gly Phe Val Ala Pro Glu 20_1

- (i) SEQUENZKENNZEICHEN:
- 25 (A) LÄNGE: 1683 Basenpaare / 560 Aminosäurereste
 - (B) ART: Nukleinsäure / protein
 - (C) STRANGFORM:ds
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: cDNA zu mRNA / protein
 - (iii) HYPOTHETISCH: nein
- (iv) ANTISENSE: nein
 - (v) ART DES FRAGMENTS: Gesamtsequenz

(v	i)	UR	SPU	N	GL1	ICHE	HER	KU	JN	IFT	•
----	----	----	-----	---	-----	------	-----	----	----	-----	---

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 136:

5

	1	ATG	GGA	AGC	TCA	GGA	GAC	AAA	ACG	ACA	TGG	AAA	TTG	GCA	GAT	42
		Met	Gly	Ser	Ser	Gly	Asp	Lys	Thr	Thr	Trp	Lys	Leu	Ala	Asp	
	43	CAC	CCA	AAA	СТА	CCA	AAA	GGA	AAA	ATG	ATC	GCG	GTT	GTT	GTT	84
10		His	Pro	Lys	Leu	Pro	Lys	Gly	Lys	Met	Пe	Ala	Val	V a 1	Val	
	٥r	TTC	C A C	CCT	TCC	CCT	C A A	CCT	тст		GAC		T 4 T	A A T	TCT	126
	03										Asp					120
				G .,		U .,	٠.٠		50.		Пор	<i>- - - - - - - - - -</i>	. , .	,,,,,,	0,0	
	127	ATC	CAT	GTT	GCC	CAA	ACA	ccc	GTC	ATG	TAT	TCT	CTT	AAA	AAC	168
15		Ile	His	Val	Ala	Gln	Thr	Pro	Val	Met	Tyr	Ser	Leu	Lys	Asn	
	169	ΔGT	GCA	ССТ	GAT	CAC	TGG	۸G۸	TTG	стс	AGG	CC V	CAT	GGT	۸۲	210
	103										Arg					210
					·		,							-		
	211										ATG					252
20		Ala	Val	Gly	Leu	Pro	Thr	Asp	Asp	Asp	Met	Gly	Asn	Ser	Glu	
	253	GTT	GGA	CAT	ΑΑΤ	GCT	CTT	GGA	GCT	GGT	CGA	ATT	TAT	GCC	CAA	294
											Arg					
	295										GCC					336
25		Gly	Ala	Lys	Leu	Val	Asp	Leu	Ala	Leu	Ala	Ser	Gly	Lys	Ile	
	337	TAT	GAC	GAT	GAA	GGT	TTT	AAT	TAC	ATT	AAG	GAA	тст	TTT	GCA	378
											Lys					
	379										ATG					420
30		Asn	Asn	Ihr	Leu	His	Leu	ile	ыу	Leu	Met	5er	Asp	Gly	Gly	
	421	GTG	CAC	TCT	CGC	CTT	GAT	CAG	ATT	CAG	CTG	TTG	CTC	ΔΔΔ	GGT	462

		Vai	ш12	Ser	Arg	reu	ASP	ווט	Leu	Gin	Leu	Leu	Leu	Lys	ыу	
	463	GCT	AGT	GAA	CGT	GGT	GCC	AAG	AAG	ATC	CGT	GTC	CAC	GTA	CTT	504
		Ala	Ser	Glu	Arg	Gly	Ala	Lys	Lys	Ile	Arg	Val	His	Val	Leu	
_									•							
5	505							TTG								546
		Ihr	Asp	Gly	Arg	Asp	Val	Leu	Asp	Gly	Ser	Ser	Val	Gly	Phe	
	547	GCA	GAA	ACA	СТТ	GAA	AAG	GAC	СТТ	GCA	GAC	СТА	CGT	AGC	AAA	588
								Asp								
10	589	GGT	ATA	GAT	GCT	CAG	GTT	GCT	TCT	GGT	GGA	GGT	CGC	ATG	TAT	630
		Gly	Ile	Asp	Ala	Gln	Val	Ala	Ser	Gly	Gly	Gly	Arg	Met	Tyr	
	C21	CTC	466	4.7.0												
	031							GAG Glu								672
		***	, , , , ,	MEC	Ash	Ai y	ı yı	Giu	WZII	АЗР	1170	АЅР	Vai	Vai	Lys	•
15	673	CGT	GGT	TGG	GAT	GCT	CAG	GTG	CTT	GGT	GAA	GCC	CCA	CAC	AAA	714
		Arg	Gly	Trp	Asp	Ala	Gln	Val	Leu	Gly	Glu	Ala	Pro	His	Lys	
	715							GCT								756
	757							Ala								
20	/5/							TAC								798
20		FFO	W 2 II	на	ASII	АЅР	GIN	Tyr	Leu	Pro	Pro	rne	vai	116	vai	
	799	GAT	GAG	AGT	GGG	AAG	ССТ	GTG	GGT	ССС	ATA	ATG	GAC	GGT	GAT	840
								۷al								
25	841							TTC								882
25		Ala	Val	Val	Thr	Phe	Asn	Phe	Arg	Ala	Asp	Arg	Met	Thr	Пe	
	BB3	CTT	ecc	CAG	GCT	СТТ	CVC	TAT	CVC	۸۸۵	ттт	CAT	A A A	TTT	CAC	924
	505							Tyr								324
													- , 5		ЛОР	
	925	AGG	GTG	CGG	TTC	CCT	AAA	ATC	CGC	TAT	GCT	GGA	ATG	CTT	CAA	966
30		Arg	Val	Arg	Phe	Pro	Lys	Ile	Arg	Tyr	Ala	Gly	Met	Leu	Gln	
	967	TAT	GAT	GGG	GAG	TTG	AAG	CTA	CCA	AGT	CGT	TAC	CTG	GTT	TCT	1008

		Tyr	Asp	Gly	Glu	Leu	Lys	Leu	Pro	Ser	Arg	Tyr	Leu	۷al	Ser	
	1009	ССТ	CCA	TTG	ATA	GAG	AGG	ACA	тст	GGT	GAA	TAT	СТА	GTC	TAA	1050
		Pro	Pro	Leu	IÌе	Glu	Arg	Thr	Ser	Gly	Glu	Tyr	Leu	Val	Asn	
5	1051	AAT	GGT	ATC	CGC	ACC	ттт	GCT	TGT	AGT	GAA	ACA	GTA	AAA	TTT	1092
		Asn	Gly	Ile	Arg	Thr	Phe	Ala	Cys	Ser	Glu	Thr	Val	Lys	Phe	
	1093	GGT	CAT	GTT	ACC	TTC	TTT	TGG	AAT	GGG	AAC	CGC	тст	GGA	TAT	1134
		Gly	His	Val	Thr	Phe	Phe	Trp	Asn	G1 y	Asn	Arg	Ser	Gly	Tyr	
10	1135	TTT	AAT	TCA	GAG	TTG	GAG	GAA	TAT	GTA	GAA	ATT	CCA	AGT	GAT	1176
		Phe	Asn	Ser	Glu	Leu	Glu	Glu	Tyr	Val	Glu	Пe	Pro	Ser	Asp	
	1177	AAT	GGA	ATT	TCC	TTC	AAT	GTC	CAA	CCA	AAG	ATG	AAG	GCT	TTG	1218
		Asn	Gly	Ile	Ser	Phe	Asn	Val	Gln	Pro	Lys	Met	Lys	Ala	Leu	
15	1219	GAG	ATT	GGT	GAG	AAG	GCC	CGT	GAT	GCA	ATT	СТС	AGT	CGC	AAA	1260
		Glu	Ile	Gly	61 u	Lys	Ala	Arg	Asp	Ala	Пe	Leu	Ser	Arg	Lys	
	1261	TTT	GAC	CAG	GTA	AGG	GTG	AAT	ATA	CCA	AAT	GGT	GAC	ATG	GTT	1302
		Phe	Asp	Gln	۷al	Arg	Val	Asn	Ile	Pro	Asn	Gly	Asp	Met	Val	
	1303	GGG	CAT	ACC	GGT	GAC	ATT	GAG	GCA	ACA	GTT	GTG	GCA	TGC	AAG	1344
20		Gly	His	Thr	Gly	Asp	lle	Glu	Ala	Thr	Val	Val	Ala	Cys	Lys	
	1345	GCT	GCT	GAT	GAT	GCT	GTT	AAG	ATG	ATC	СТТ	GAT	GCA	ATA	AAG	1386
		Ala	Ala	Asp	Asp	Ala	Val	Lys	Met	Пe	Leu	Asp	Ala	Пe	Lys	
25	1387	GAA	GTA	GGT	GGA	ATA	TAT	GTG	GTG	ACT	GCG	GAT	CAT	GGT	AAT	1428
		Glu	Val	Gly	Gly	Пe	Tyr	Val	Val	Thr	Ala	Asp	His	Gly	Asn	
	1429	GCA	GAG	GAC	ATG	GTG	AAG	AGA	AAC	AAG	GAG	GGA	GAG	ССС	стт	1470
		Ala	Glu	Asp	Met	Val	Lys	Arg	Asn	Lys	Glu	Gly	Glu	Pro	Leu	
30	1471	СТТ	GAT	AAG	GAT	GGC	AAA	GTT	CAG	ATC	СТА	ACC	TCG	CAC	ACT	1512
		Leu	Asn	Lvs	Asp	G1 v	Lvs	Val	Gln	Πe	Leu	Thr	Ser	His	Thr	

WO 97/05258 PCT/AT96/00141

-89-

	1513	CTG	CAG	CCA	GTA	CCG	GTT	GCA	ATT	GGA	GGT	CCT	GGG	TTA	GCA	1554
		Leu	Gln	Pro	۷al	Pro	۷al	Ala	Пe	Gly	Gly	Pro	Gly	Leu	Ala	
•																
	1555	GCA	GGT	GTG	AAA	TTC	CGC	AAG	GAT	GTG	CCA	AAT	GGT	GGA	CTA	1596
		Ala	Gly	۷a٦	Lys	Phe	Arg	Lys	Asp	Val	Pro	Asn	Gly	Gly	Leu	
5			•													
	1597	GCA	AAT	GTA	GCA	GCA	ACA	GTG	ATG	AAT	CTG	CAT	GGT	TTT	GTG	1638
		Ala	Asn	Val	Ala	Αla	Thr	V a 1	Met	Asn	Leu	His	Gly	Phe	Val	
	1639	GCT	CCT	GAT	GAC	TAT	GAG	ACA	ACC	CTT	ATT	GAA	GTT	GTT	GAT	1680
		Ala	Pro	Asp	Asp	Tyr	Glu	Thr	Thr	Leu	Ile	Glu	۷al	Val	Asp	
10																
	1681	TAA														1683

ANGABEN ZU SEQ ID NO: 137

- 15 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 23
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 20 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 137:

25
Met Gly Ser Ser Gly Asp Lys Thr Thr Trp Lys Leu Ala Asp His Pro
1 5 10 15

Lys Leu Pro Lys Gly Lys Met 20

30

-90-

	(i) SEQUENZKENNZEICHEN:
	(A) LÄNGE: 14
	(B) ART: protein
	(ii) ART DES MOLEKÜLS: peptide
5	(iii) HYPOTHETISCH: nein
_	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
	(vi) URSPÜNGLICHE HERKUNFT:
	(A) ORGANISMUS: Artemisia vulgaris
	(C) ENTWICKLUNGSSTADIUM: Pollen
10	(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 138:
	Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile 1 5 10
15	ANGABEN ZU SEQ ID NO: 139 (i) SEQUENZKENNZEICHEN:
	(A) LÄNGE: 18
	(B) ART: protein
	(ii) ART DES MOLEKÜLS: peptide
20	(iii) HYPOTHETISCH: nein
20	(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
	(vi) URSPÜNGLICHE HERKUNFT:
	(A) ORGANISMUS: Artemisia vulgaris
	(C) ENTWICKLUNGSSTADIUM: Pollen
25	(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 139:
	Ser Leu Lys Asn Ser Ala Pro Asp His Trp Arg Leu Val Arg Ala His 1 10 15
	Gly Thr
30	
	ANGABEN ZU SEQ ID NO: 140

PCT/AT96/00141

			-91-		•					
	(i) SEQUENZKENNZEICHEN:									
	(A) LÄNGE: 19									
	(B) ART: protein									
	(ii) ART DES MOLEKÜLS: pep	tide								
	5 (iii) HYPOTHETISCH: nein									
	(v) ART DES FRAGMENTS: N	-Term	inus l	bis C-	-Tern	ninus				
	(vi) URSPÜNGLICHE HERKU	VFT:								
	(A) ORGANISMUS: Arte	emisia	vulg	aris						
-	(C) ENTWICKLUNGSS	radi	UM:	Polle	n					
10	(vii) SEQUENZBESCHREIBUN	G:SE	Q ID	NO:	140:					
	Leu Pro Thr Asp Asp Asp Met	· Glv	Asn	Sar	Glu	V = 1	Gly	шic	۸۶۶	۸1-
	1 5	. ury	WZII	10	Giu	Vai	uly	піз	15	АТ
	Leu Gly Ala									
15	5									
	ANGABEN ZU SEQ ID NO: 14	l								
	(i) SEQUENZKENNZEICHEN:									
	(A) LÄNGE: 21									
	(B) ART: protein									
20	(ii) ART DES MOLEKÜLS: pept	ide								
	(iii) HYPOTHETISCH: nein									
	(v) ART DES FRAGMENTS: N-	Тегт	inus t	ois C-	Term	inus				
	(vi) URSPÜNGLICHE HERKUN	VFT:								
	(A) ORGANISMUS: Arte	misia	vulga	aris						
25	(C) ENTWICKLUNGSS	ΓADI	UM: 1	Poller	n					
	(vii) SEQUENZBESCHREIBUN	G:SE	Q ID	NO:	141:				•	
	Gly Lys Ile Tyr Asp Asp Glu	Gly	Phe		Tyr	Пe	Lys	Glu		Phe
	1 5			10					15	

30 Ala Asn Asn Thr Leu

20

```
ANGABEN ZU SEQ ID NO: 142
   (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 13
        (B) ART: protein
   (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Artemisia vulgaris
10
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 142:
  Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Leu
  1
                                       10
15
  ANGABEN ZU SEQ ID NO: 143
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 12
        (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Artemisia vulgaris
25
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 143:
  Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val
                   5
                                       10
30
  ANGABEN ZU SEQ ID NO: 144
```

-93-

```
(i) SEQUENZKENNZEICHEN:
         (A) LÄNGE: 13
         (B) ART: protein
   (ii) ART DES MOLEKÜLS: peptide
 5 (iii) HYPOTHETISCH: nein
   (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
   (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Artemisia vulgaris
         (C) ENTWICKLUNGSSTADIUM: Pollen
(vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 144:
   Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val
   1
                                        10
15 ANGABEN ZU SEQ ID NO: 145
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 17
        (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Artemisia vulgaris
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 145:
25
  Glu Thr Leu Glu Lys Asp Leu Ala Asp Leu Arg Ser Lys Gly Ile Asp
  1
                                       10
                                                           15
  Ala
30
  ANGABEN ZU SEQ ID NO: 146
  (i) SEQUENZKENNZEICHEN:
```

WO 97/05258 PCT/AT96/00141

-94-

(A) LÄNGE: 26

(B) ART: protein

- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 146:

10
 Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp 1 5 10 15

15

ANGABEN ZU SEQ ID NO: 147

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 9
 - (B) ART: protein
- 20 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 25 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 147:

30

ANGABEN ZU SEQ ID NO: 148

(i) SEQUENZKENNZEICHEN:

-95-

- (A) LÄNGE: 16
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 148:

ANGABEN ZU SEQ ID NO: 149

- 15 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 20 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 149:

- 30 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein

```
(ii) ART DES MOLEKÜLS: peptide
   (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
         (A) ORGANISMUS: Artemisia vulgaris
         (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 150:
  Asn Phe Arg Ala Asp Arg Met
10
  ANGABEN ZU SEQ ID NO: 151
  (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 39
        (B) ART: protein
15
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
  (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Artemisia vulgaris
20
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 151:
  Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val Arg Phe Pro
  1
                   5
                                        10
                                                            15
25
  Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu
               20
                                    25
                                                        30
  Pro Ser Arg Tyr Leu Val Ser
           35
30
```

-97-

(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 17 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide 5 (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris (C) ENTWICKLUNGSSTADIUM: Pollen (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 152: Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Asn Asn Gly Ile 1 10 15 Arq ANGABEN ZU SEQ ID NO: 153 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 6 (B) ART: protein (ii) ART DES MOLEKÜLS: peptide 20 (iii) HYPOTHETISCH: nein (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus (vi) URSPÜNGLICHE HERKUNFT: (A) ORGANISMUS: Artemisia vulgaris (C) ENTWICKLUNGSSTADIUM: Pollen 25 (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 153:

Ser Glu Thr Val Lys Phe 1

30

-98-

	(i) S	EQU	JENZ	KEN	NZE	ICH	EN:									
		(/	A) LÄ	NGI	E: 7 2											
		(1	3) AF	RT: p	roteii	n										
	(ii) .	ART	DES	MOI	LEKT	تراS:	pepti	ide								
5	(iii)	HYP	ОТН	ETIS	CH:	nein										
	(v)	ART	DES	FRA	GMI	ENTS	S: N-	Termi	inus t	ois C-	Tem	uinus				
	(vi)	URS	PÜN	GLIC	CHE !	HER	KUN	FT:								
		(4	A) OF	RGAI	NISM	IUS:	Arte	misia	vulg	aris						
		((C) EN	ITW1	ICKL	UNC	SSST	ADII	UM: 1	Polle	n					
10	(vii)	SEQ	UEN	IZBE	SCH	REIE	BUNG	G:SE	QD	NO:	154:					
	Phe	Trp	Asn	Gly	Asn	Arg	Ser	Gly	Tyr	Phe	Asn	Ser	Glu	Leu	Glu	Glu
	1				5					10					15	
	Tvr	V = 1	Glu	פוז	Pro	Sar	Δsn	Acn	Glv	I la	Sar	Pho	Asn	Val	Gln	Pro
		• • • •	uiu	20	1.0	JC.	дзр	ASII	25	110	361	1116	7311	30	U 111	
15																
	Lys	Met	Lys	Ala	Leu	Glu	Пe	Gly	Glu	Lys	Ala	Arg	Asp	Ala	Πe	Leu
			35					40					45			
	Ser	Ara	Lys	Phe	Asp	Gln	Val	Ara	Val	Asn	He	Pro	Asn	G1 v	Asp	Met
20		50	-7 -				55					60		- 3	•	
20																
		Gly	His	Thr	Gly	Asp	Ιle	Glu								
	65					70										
25	ANG	GABI	EN Z	U SE	Q ID	NO	: 155									
	(i) S	EQU	ENZ	KEN	NZE	ICH	EN:									
		(/	A) LÄ	NGI	E: 2 6											
		(F	3) AR	tT: p	roteir	1										
	(ii) <i>i</i>	ART	DES	MOI	LEKÜ	JLS:	pepti	de								
30	(iii)	HYP	отн	ETIS	CH:	nein										

(v) ART DES FRAGMENTS: N-Terminus bis C-Terminus

(vi) URSPÜNGLICHE HERKUNFT:

-99-

(A) ORGANISMUS: Artemisia vulgaris

(C) ENTWICKLUNGSSTADIUM: Pollen

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 155:

5 Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Glu Gly
1 5 10 15

Glu Pro Leu Leu Asp Lys Asp Gly Lys Val 20 25

10

ANGABEN ZU SEQ ID NO: 156

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- ²⁰ (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 156:

Leu Thr Ser His Thr Leu Gln Pro 1 5

- ²⁵ ANGABEN ZU SEQ ID NO: 157
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
- 30 (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 157:

ANGABEN ZU SEQ ID NO: 158

- (i) SEQUENZKENNZEICHEN:
- 10 (A) LÄNGE: 10
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- 15 (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 158:

Val Ala Pro Asp Asp Tyr Glu Thr Thr Leu
$$20_{\,1}$$
 5 10

- (i) SEQUENZKENNZEICHEN:
- 25
- (A) LÄNGE: 6
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen

-101-

(vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 159:

Leu Ala Asp His Pro Lys 1 . 5

5

ANGABEN ZU SEQ ID NO: 160

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 11
 - (B) ART: protein
- 10 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- 15 (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 160:

Val Val Leu Asp Gly Trp Gly Glu Ala Ser 1 5 10

20

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 7
 - (B) ART: protein
- 25 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 161:

-102-

Asp His Trp Arg Leu Val Arg 1 5

ANGABEN ZU SEQ ID NO: 162

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 10
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 10 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 162:

Phe Ala Glu Thr Leu Glu Lys Asp Leu Ala
1 5 10

ANGABEN ZU SEQ ID NO: 163

- 20 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 6
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
- 25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 163:

30 Asn Asp Trp Asp Val Val 1 5 WO 97/05258 PCT/AT96/00141

-103-

```
.ANGABEN ZU SEQ ID NO: 164
   (i) SEQUENZKENNZEICHEN:
         (A) LÄNGE: 21
         (B) ART: protein
   (ii) ART DES MOLEKÜLS: peptide
   (iii) HYPOTHETISCH: nein
   (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
   (vi) URSPÜNGLICHE HERKUNFT:
         (A) ORGANISMUS: Artemisia vulgaris
10
         (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG:SEQ ID NO: 164:
  Glu Ala Pro His Lys Phe Lys Ser Ala Val Glu Ala Ile Lys Lys Leu
  1
                    5
                                        10
                                                             15
15
  Arg Glu Ala Pro Asn
                20
  ANGABEN ZU SEQ ID NO: 165
<sup>20</sup> (i) SEQUENZKENNZEICHEN:
        (A) LÄNGE: 5
        (B) ART: protein
  (ii) ART DES MOLEKÜLS: peptide
  (iii) HYPOTHETISCH: nein
25 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
  (vi) URSPÜNGLICHE HERKUNFT:
        (A) ORGANISMUS: Artemisia vulgaris
        (C) ENTWICKLUNGSSTADIUM: Pollen
  (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 165:
  Lys Phe Asp Arg Val
```

-104-

ANGABEN ZU SEQ ID NO: 166
(i) SEQUENZKENNZEICHEN:

- 5 (A) LÄNGE: 14
 - (B) ART: protein
 - (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Artemisia vulgaris

- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 166:

Asn Asn Gly Ile Arg Thr Phe Ala Cys Ser Glu Thr Val Lys
15 1 5 10

ANGABEN ZU SEQ ID NO: 167

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8

20

- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
- (vi) URSPÜNGLICHE HERKUNFT:

25

- (A) ORGANISMUS: Artemisia vulgaris
- (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 167:

Ser Glu Leu Glu Glu Tyr Val Glu 30 ¹

-105-

ANGABEN ZU SEQ ID NO: 168

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 16
 - (B) ART: protein
- 5 (ii) ART DES MOLEKÜLS: peptide
 - (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 168:

15

ANGABEN ZU SEQ ID NO: 169

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 8
 - (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
 - (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
- ²⁵ (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 169:

30

ANGABEN ZU SEQ ID NO: 170

(i) SEQUENZKENNZEICHEN:

PCT/AT96/00141

-106-

- (A) LÄNGE: 9
- (B) ART: protein
- (ii) ART DES MOLEKÜLS: peptide
- (iii) HYPOTHETISCH: nein
- 5 (v) ART DES FRAGMENTS: N-Terminus bis C-Terminus
 - (vi) URSPÜNGLICHE HERKUNFT:
 - (A) ORGANISMUS: Artemisia vulgaris
 - (C) ENTWICKLUNGSSTADIUM: Pollen
 - (vii) SEQUENZBESCHREIBUNG: SEQ ID NO: 170:

15

20

25

30

Literaturzitate:

- 5 1. Jarolim, E., Tejkl, M., Rohac, M., Schlerka, G., Scheiner, O., Kraft, D., Breitenbach, M., Rumpold, H. (1989) Monoclonal antibodies against birch pollen allergens: Characterization by immunoblotting and use for single-step affinity purification of the major allergen Bet v 1. Int. Arch. Allergy Appl. Immunol. 90: 54-60.
- 10 2. Fothergill-Gilmore, L., Watson, H. (1989) Adv. Enzymol. 62: 227-313.
- Graña, X., de Lecea, L., El-Maghrabi, M.R., Ureña, J.M., Caellas, C., Carreras, J., Puigdomenech, P., Pilkis, S.J., Climent, F. (1992) Cloning and sequencing of a cDNA encoding 2,3-bisphosphoglycerate-independent phosphoglycerate mutase from 15 maize. Possible relationship to the alkaline phosphatase family. J. Biol. Chem. 267: 12797-12803.
- Huang, Y., Blakeley, S.D., McAleese, S.M., Fothergill-Gilmore, L.A., Dennis,
 D.T. (1993) Higher-plant cofactor-independent phosphoglyceromutase: purification,
 molecular characterization and expression. Plant Mol. Biol. 23: 1039-1053.
 - 5. Aalberse, R.C., Kosthe, V., Clemens, J.G.J. (1981) Immunoglobulin E antibodies that crossreact with vegetable foods, pollen, and hymenoptera venom. J. Allergy Clin. Immunol 68: 356-364.

25

- 6. Eriksson, N.E., Formgren, H., Svenonius, E. (1982) Food hypersensitivity in patients with pollen allergy. Allergy 37: 437-443.
- 7. Halmepuro, L., Vuontela, K., Kalimo, K., Björksten, F. (1984) Cross-reactivity of 30 IgE antibodies with allergens in birch pollen, fruits and vegetables. Int. Arch. Allergy Appl. Immunol. 74: 235-240.

8. Valenta, R., Duchene, M., Pettenburger, K., Sillaber, C., Valent, P., Bettelheim, P., Breitenbach, M., Rumpold, H., Kraft, D., Scheiner, O. (1991) Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science 253:557-560.

5

- 9. Valenta, R., Duchene, M., Ebner, C., Valent, P., Sillaber, C., Deviller, P., Ferreira, F., Tejkl, M., Edelmann, H., Kraft, D., Scheiner, O. (1993) Profilins constitute a novel family of functional plant pan-allergens. J. Exp. Med. 175:377-385.
- 10 10. Breiteneder, H., Pettenburger, K., Bito, A., Valenta, R., Kraft, D., Rumpold, H., Scheiner, O., Breitenbach, M. (1989) The gene coding for the major birch pollen allergen, Bet v I, is highly homologous to a pea disease resistance response gene. EMBO J. 8:1935-1938.
- 15 11. Breiteneder, H., Ferreira, F., Reikerstorfer, A., Duchene, M., Valenta, R., Hoffmann-Sommergruber, K., Ebner, C., Breitenbach, M., Kraft, D., Scheiner, O. (1992) Complementary DNA cloning and expression in Escherichia coli of Aln g I, the major allergen in pollen of alder (Alnus glutinosa). J. Allergy Clin. Immunol. 90:909-917.
- 20 12. Breiteneder, H., Ferreira, F., Hoffmann-Sommergruber, K., Ebner, C., Breitenbach, M., Rumpold, H., Kraft, D., Scheiner, O. (1993) Four recombinant isoforms of Cor a I, the major allergen of hazel pollen, show different IgE-binding properties. Eur. J. Biochem. 212:355-362.
- 25 13. Larsen, J.N., Stroman, P., Ipsen, H. (1992) PCR based cloning and sequencing of isogenes encoding the tree pollen major allergen Car b I from Carpinus betulus, hornbeam. Mol. Immunol. 29:703-711.
- 14. Ebner, C., Hirschwehr, R., Bauer, L., Breiteneder, H., Valenta, R., Ebner, H., 30 Kraft, D., Scheiner, O. (1995) Identification of allergens in fruits and vegetables: IgE cross-reactivities with the important birch pollen allergens Bet v 1 and Bet v 2 (birch profilin). J. Allergy Clin. Immunol. 95: 962-969.

15. Valenta, R., Vrtala, S., Ebner, C., Kraft, D., Scheiner, O. (1992) Diagnosis of grass pollen allergy with recombinant timothy grass (Phleum pratense) pollen allergens. Int. Arch. Allergy Immunol. 97: 287-294.

5

- 16. Van Ree, R., Voitenko, V., Van Leeuwen, W.A., Aalberse, R.C. (1992) Profilin is a crss-reactive allergen in pollen and vegetable food. Int. Arch. Allergy Immunol. 98: 97-104.
- 10 17. Spitzauer, S., Schweiger, C., Sperr, W.R., Pandjaitan, B., Valent, P., Mühl, S., Ebner, C., Scheiner, O., Kraft, D., Rumpold, H., Valenta, R. (1993) Molecular characterization of dog albumin as a cross-reactive allergen. J. Allergy Clin Immunol. 93: 614-627.
- 15 18. Sanger, F., Nicklen, S., Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5468.
 - 19. Feinberg, A.P. and Vogelstein, B. (1984) A technique for radiolabeling DNA restriction Endonuclease fragments to high specific activity. Anal. Biochem. 137:266-267.

20

- 20. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular Cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York, 2nd ed.
- Margalit, H., Spogue, J.L., Cornette, J.L., Cease, K.B., Delisi, C., Berzofsky,
 J.A. (1987) Prediction of immunodominant helper T cell antigenic sites from the primary sequence. (1987) J. Immunol. 138: 2213.

Patentansprüche:

- 1. Rekombinante DNA Moleküle, dadurch gekennzeichnet, daß sie eine Nukleinsäurese-5 quenz aufweisen, die mit den in Fig. 1, Fig. 7a,7b, Fig. 10a,10b dargestellten gesamten Sequenzen oder Teilbereichen derselben in homologer Weise übereinstimmen oder die durch Degeneration aus der in Fig. 1, Fig. 7a,7b, Fig. 10a,10b dargestellten Sequenzen ableitbar sind und für ein Polypeptid kodieren, das die Antigenität des Allergens "Kofaktor-unabhängige Phosphoglyceratmutase (E.C. 5.4.2.1.)" aus Birken-, Beifuß- oder Lieschgraspollen besitzt oder für ein Peptid, das mindestens ein Epitop dieser Allergene aufweist, sowie eine Nukleinsäuresequenz, die mit den genannten Nukleinsäuresequenzen unter den stringenten Bedingungen hybridisert, beispielsweise 1M Salz, 60°C und das Hybrid unter stringenten Waschbedingungen beispielsweise 2x 30min, 5x SSPE, 0,1% SDS bei 50°C stabil bleibt, insbesondere für die Kofaktor-unabhängige Phosphoglyceratmutase (E.C. 5.4.2.1.) des Pollens von Birke, Hasel, Erle, Eiche, Buche, Hainbuche und Olive, von Gräser, wie Phleum pratense, Lolium perenne, Poa pratensis, Secale cereale, von Unkräutern wie Beifuß sowie von pflanzlichen Nahrungsmitteln wie Apfel, Kartoffel, Banane, Kiwi, Sellerie, Karrotte, Birne, Kirsche, Pfirsich, Pflaume, Marille, Walnuß, Haselnuß, Erdnuß, Mandel, Pistazien, Pfeffer, Kümmel und Koriander.
- 20 2. Rekombinante DNA-Moleküle nach Anspruch 1, dadurch gekennzeichnet, daß sie eine Nukleinsäuresequenz aufweisen, die für ein Polypeptid kodiert, das als Antigen kreuzreaktiv mit der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Birken-, Lieschgras- oder Beifußpollen ist, insbesondere mit allen pflanzlichen Kofaktor-unabhängigen Phosphoglyzeratmutasen (E.C. 5.4.2.1.), die zu den in Fig. 1, Fig. 7a,7b, Fig. 10a, 25 10b gezeigten Sequenzen eine hohe Homologie aufweisen.
 - 3. Rekombinante DNA-Moleküle nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie funktionell mit einer Expressions-Kontrollsequenz zu einem Expressionskonstrukt verbunden sind.
- Wirtssystem, dadurch gekennzeichnet, daß es mit einem rekombinanten Expressions konstrukt nach Patentanspruch 3 transformiert ist.

- 5. Aus einem DNA-Molekül nach Anspruch 1 oder 2 abgeleitetes rekombinantes oder synthetisches Protein oder Polypeptid, dadurch gekennzeichnet, daß es die Antigenität von Kofaktor-unabhängiger Phosphoglyzeratmutase (E.C. 5.4.2.1.) aus Birken-, Lieschgrasoder Beifußpollen oder zumindestens eines Epitops davon aufweist und eine Aminosäuresequenz besitz, die einer der in Fig. 1, Fig. 7a,7b, Fig. 10a,10b gezeigten Sequenzen im Ganzen oder in Teilen entspricht.
- 6. Rekombinantes oder synthetisches Protein oder ein Polypeptid nach Patentanspruch 4
 oder 5, dadurch gekennzeichnet, daß es ein Fusionsprodukt darstellt, das die Antigenität
 der Kofaktor-unabhängigen Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Birken-,
 Lieschgras- oder Beifußpollen oder zumindestens eines Epitops davon aufweist und einen
 zusätzlichen Polypeptidanteil aufweist, wobei das gesamte Fusionsprodukt von der DNA
 eines Expressionskonstrukts gemäß Anspruch 5 kodiert wird.
- 7. Rekombinantes oder synthetisches Protein oder Polypeptid nach Patentanspruch 6, dadurch gekennzeichnet, daß der besagte zusätzliche Polypeptidanteil beta-Galaktosidase, eine Teilsequenz der beta-Galaktosidase oder ein anderes zur Fusion geeignetes Polypeptid ist.
- 20 8. Diagnostisches oder therapeutisches Reagens, dadurch gekennzeichnet, daß es ein synthetisches Protein oder Polypeptid gemäß einem der Patentansprüche 5 bis 7 enthält.
- 9. Verfahren zum in vitro Nachweis der Allergie eines Patienten gegen Kofaktor-unabhängige Phosphoglyzeratmutase (E.C. 5.4.2.1.), dadurch gekennzeichnet, daß die Reaktion der IgE Antikörper im Serum des Patienten mit einem rekombinanten oder synthetischen Protein oder Polypeptid nach einem der Patentansprüche 7 bis 10 gemessen wird.
- 10. Verfahren zum in vitro Nachweis der zellulären Reaktion auf Kofaktor-unabhängige Phosphoglyceratmutase (E.C. 5.4.2.1.), dadurch gekennzeichnet, daß ein rekombinantes oder synthetisches Protein oder Polypeptid nach einem der Patentansprüche 5 bis 7 zur Stimulierung oder Hemmung der zellulären Reaktion eingesetzt wird.

Fig. 1:

cDNA Sequenz und abgeleitete Aminosāuresequenz von Kofaktor-unabhāngiger Phosphoglyceratmutase 5 (E.C. 5.4.2.1.)

1	GGG	GGC	GAG	GCC	AAG	CCC	GAT	CAG	TAC	AAC	TGC	ATC	CAT	GTG	42
	Gly	Gly	Glu	Ala	Lys	Pro	Asp	Gln	Tyr	Asn	Cys	IJе	His	Val	
43	GCC	GAG	ACT	ССС	ACC	ATG	GAT	TCC	СТС	AAA	CAG	GGT	GCT	ССТ	84
	Ala	Glu	Thr	Pro	Thr	Met	Asp	Ser	Leu	Lys	Gln	Gly	Ala	Pro	
85	GAG	AAG	TGG	AGG	TTG	GTT	AGG	GCT	CAT	GGT	AAG	GCC	GTA	GGC	126
	Glu	Lys	Trp	Arg	Leu	Val	Arg	Ala	His	Gly	Lys	Ala	Val	Gly	
127					GAT										168
	Leu	Pro	Thr	Glu	Asp	Asp	Met	Gly	Asn	Ser	Glu	Val	Gly	His	
169					GCT										210
	Asn	Ala	Leu	Gly	Ala	Gly	Arg	Ile	Phe	Ala	Gln	Gly	Ala	Lys	
211	CTT	GTT	GAC	TCT	GCT	СТТ	GCC	TCT	GGA	AAA	ATT	TAT	GAA	GGA	252
	Leu	Val	Asp	Ser	Ala	Leu	Ala	Ser	Gly	Lys	He	Tyr	G1 u	Gly	
253	GAA	GGT	TTT	AAG	TAC	ATA	AAG	GAA	TGT	TTT	GAA	AAT	GGC	ACA	294
	Glu	Gly	Phe	Lys	Tyr	Пe	Lys	Glu	Cys	Phe	Glu	Asn	Gly	Thr	
295	TTG	CAT	СТС	ATT	GGC	TTA	TTG	AGT	GAT	GGT	GGA	GTC	CAC	TCC	336
	Leu	His	Leu	Ile	Gly	Leu	Leu	Ser	Asp	Gly	Gly	Val	His	Ser	
337	AGG	CTT	GAT	CAG	TTG	CAG	TTA	TTG	CTT	AAA	GGA	GCT	AGT	GAG	378
	Arg	Leu	Asp	Gln	Leu	Gln	Leu	Leu	Leu	Lys	Gly	Ala	Ser	Glu	
379	CGT	GGT	GCA	AAA	AGA	ATC	CGT	GTT	CAT	ATT	CTT	ACC	GAT	GGC	420
	Arg	Gly	Ala	Lys	Arg	IÌе	Arg	Val	His	Пe	Leu	Thr	Asp	Gly	

Fig. 1: Fortsetzung

421	CGT	GAT	GTT	TTG	GAT	GGT	TCA	AGT	GTA	GGA	TTT	GTT	GAA	ACT	462
	Arg	Asp	۷al	Leu	Asp	Gly	Ser	Ser	V a 1	Gly	Phe	Val	Glu	Thr	
463	CTT	GAG	AAT	GAC	CTT	GCA	AAA	CTA	CGT	GAG	AAG	GGT	GTT	GAT	504
	Leu	Glu	Asn	Asp	Leu	Αla	Lys	Leu	Arg	Glu	Lys	Gly	Val	Asp	
505	GCA	CAG	ATT	GCA	TCT	GGT	GGT	GGT	CGC	ATG	TAT	GTC	ACA	ATG	546
	Ala	Gln	Пe	Ala	Ser	Gly	Gly	Gly	Arg	Met	Tyr	۷a٦	Thr	Met	
547	GAT	CGT	TAT	GAG	AAT	GAC	TGG	GAA	GTC	ATC	AAA	CGA	GGA	TGG	588
	Asp	Arg	Tyr	Glu	Asn	Asp	Trp	Glu	۷al	Ile	Lys	Arg	Gly	Trp	
589	GAT	GCC	CAT	GTT	CTT	GGT	GAA	GCC	CCT	TAC	AAA	TTT	AAA	AGT	630
	Asp	Ala	His	Val	Leu	Gly	Glu	Ala	Pro	Tyr	Lys	Phe	Lys	Ser	
631	GCT	GTT	GAA	GCT	GTC	AAG	AAA	CTG	AGG	GAG	GAG	CTA	AAG	GTC	672
	Ala	Val	Glu	Ala	Val	Lys	Lys	Leu	Arg.	Glu	Glu	Leu	Lys	Val	
673	AGT	GAC	CAG	TAC	TTG	CCT	CCA	TTC	GTC	ATT	GTT	GAT	GAC	AAT	714
	Ser	Asp	Gln	Tyr	Leu	Pro	Pro	Phe	Va1	Пe	Val	Asp	Asp	Asn	
715													GTG		756
	Gly	Lys	Pro	Val	Gly	Pro	IJe	Val	Asp	Gly	Asp	Ala	Val	Val	
757											•		GCT		798
	Thr	Пe	Asn	Phe	Arg	Ala	Asp	Arg	Met	Val	Met	Ile	Ala	Lys	
799									_				GTT		840
	Ala	Leu	Glu	lyr	Glu	Asn	Phe	Asp	Lys	He	Asp	Arg	Val	Arg	
0.41	TT.														
841													GAT		882
	rne	rro	Lys	116	Arg	ıyr	Ala	ыу	Met	Leu	GIn	lyr	Asp	61y	
883	CAC	TTC	۸۸۲	CTC	ccc	۸۲۲	САТ	T 4.0	CTT	CTT	C A A	CCT	CC 4	C A C	004
oos													CCA		924
	3 i u	Leu	Lys	Leu	110	Set.	nıs.	ıyr	Leu	vai	ចាម	rro	Pro	ษาน	

Fig. 1: Fortsetzung

	925	ATA	GAG	AGA	ACG	TCT	GGT	GAA	TAT	CTA	GTG	CAC	AAT	GGC	GTC	966
		Ile	Glu	Arg	Thr	Ser	Gly	Glu	Tyr	Leu	Val	His	Asn	Gly	Val	
•																
	967	CGT	ACT	TTT	GCT	TGC	AGT	GAG	ACT	GTC	AAA	TTT	GGT	CAT	GTC	1008
		Arg	Thr	Phe	Ala	Cys	Ser	Glu	Thr	Val	Lys	Phe	Gly	His	Val	
	1009	ACT	TTC	TTC	TGG	AAT	GGA	AAC	CGC	TCT	GGA	TAT	TTC	AAT	TCA	1050
										Ser						
					•		•		•		J	•				
	1051	GAA	CTG	GAG	GAA	TAC	GTG	GAA	ΔΤΤ	CCA	AGT	GAT	AGT	GGA	ΔΤΤ	1092
										Pro						1032
		u, u	200	u.u	u·u	, , ,	• • •	uru	1,6	, , ,	Jei	дзр	261	013	116	
	1093	ACA	TTC	AAC	GTC	CAG	A))	AAG	ΔTG	AAG	GCA	TTG	GAG	ΔΤΤ	GCT	1134
										Lys						1104
				,,,,,,	• • •	3		_, _		L) J	,,,,	LCu	0.0	110	A10	
	1135	GAA	AAA	ACG	AGA	GAT	GCT	ΑΤΑ	CTT	AGC	GGA	ΔΔΔ	TTT	GAC	CAG	1176
										Ser						1170
		0.0	_, _		, g	7135	,,,,	1.0	CCu	501	u.,	Lys	1110	ДЗР	41	
	1177	GTG	CGT	CTT	۸۸۲	CTG	CC V	ΛΛΤ	сст	CVC	ATC.	CTC	ccc	CAT	۸۲۸	1218
	11//									Asp						1210
		V G 1	Al 9	V 6 1	ASII	Leu	110	ASII	огу	мэр	met	Vai	Giy	1115	1111	
	1219	GGT	GAT	ΔΤΤ	GAG	GAC	۸۲۸	GTT	GTG	CCT	TGC	۸ ۸ G	CCT	CCT	GAT	1260
	1215									Ala						1200
		uiy	vsh	116	alu	ASP	1 111	A G 1	V a 1	на	Cys	Lys	ΑΙσ	Ald	ASP	
	1261	CVC	CCT	CAC	A A C	٨٣٥	ATC	CTT	$C\Lambda T$	CCA	A T A	CAC	C A A	CTC	ССТ	1302
	1201															1302
		Giu	АТа	ASP	Lys	Met	116	Leu	АЅР	Ala	116	Giu	Gin	Vai	ыу	
	1303	CCA	A T T	TAT	СТТ	СТТ	ACT	ccc	CAT	CAT	ccc	A A T	ССТ	CAC	CAC	1244
	1303									His						1344
		ч	116	ı yı	Vai	Val	Inr	Ald	АЅР	п15	GIY	ASII	АГа	GIU	ASP	
	1245	A T.C	CTC	A A C	A C C	A A C		TCC	CT.C	C A A	CCT	CTT	CTT	~ ~ ~	440	1206
	1345															1386
		Met	vai	Lys	яrg	ASN	Lys	5er	val	Gln	rro	Leu	Leu	Asp	Lys	
	1207	A A T	000	A A T	CTT		OT 0	CT ^	4.00	T 0 T		4.00				1 400
	1387															1428
		Asn	ыју	Asn	Leu	Gin	Val	Leu	Ihr	Ser	His	lhr	Leu	GIn	Pro	

PCT/AT96/00141

	_		4/48
Fig.	1:	Fortsetzung	17

1429						AGT Ser		1470
1471						GCC Ala		1512
1513						GCT Ala		1554
1555						AAC Asn		1593

WO 97/05258 PCT/AT96/00141

Fig.2:

5/48

Sequenzvergleich von PGM-i aus Birkenpollen (bvmut), Rhizinus (rcmut), Mais (zmmut) und Tabak (ntmut)

Plurality: 2.00 Threshold: 1.00 AveWeight 1.00 AveMatch 0.54 AvMisMatch -0.40

PRETTY of: mut.msf{*} July 22, 1995 19:13 ...

```
50
mut.msf{bvmut}
               .....g GEAKPDOYNC IHVAETPtMD
               ...geftwkl aDHPKLPKGK TIAmvvLDGW GEAKPDQYNC IHVAETPtMD
mut.msf{rcmut}
mut.msf{zmmut} MGSSGFsWtL pDHPKLPKGK sVAVVVLDGW GEAnPDQYNC IHVAqTPvMD
mut.msf{ntmut} MGSSGdaWKL kDHPKLPKGK TVAVIVLDGW GEAKPneFNa IHVAETPvMy
    Consensus ------ GEA-P---N- IHVA-TP-M-
               51
                                                                100
mut.msf{bvmut} SLKqGAPEKW RLVrAHGkAV GLPTEDDMGN SEVGHNALGA GRIFAQGAKL
mut.msf{rcmut} SFKktAPErW RLIKAHGTAV GLPTEDDMGN SEVGHNALGA GRIYAQGAKL
mut.msf{zmmut} SLKNGAPEKW RLVKAHGTAV GLPsDDDMGN SEVGHNALGA GRIFAQGAKL
mut.msf{ntmut} SLKNGAPEKW RLIKAHGnAV GLPTEDDMGN SEVGHNALGA GRIFAQGAKL
    Consensus S-K--APE-W RL--AHG-AV GLP--DDMGN SEVGHNALGA GRI-ADGAKL
               101
                                                                150
mut.msf{bvmut} VDsALASGKI YEGEGFKYIK ECFEnGTLHL IGLLSDGGVH SRLDQLQLLL
mut.msf{rcmut}
               VDLALASGKI YEGEGFKYVK ECFDKGTLHL IGLLSDGGVH SRLDQLQLLL
mut.msf{zmmut}
               VDgALASGKI YDGDGFnYIK ESFESGTLHL IGLLSDGGVH SRLDQLQLLL
mut.msf{ntmut} VDLALASGKI YEGEGFKYVK ECFEKGTLHL IGLLSDGGVH SRLDQVQLLL
    Consensus VD-ALASGKI Y-G-GF-Y-K E-F--GTLHL IGLLSDGGVH SRLDQ-QLLL
               151
                                                                200
mut.msf{bvmut}
               KGASErGAKR IRVHILTDGR DVLDGSSVGF VETLENDLAK LREKGVDAQI
               KGAaEhGAKR IRVHVLTDGR DViDGtSVGF aETLEKDLen LREKGVDAQV
mut.msf{rcmut}
mut.msf{zmmut}
               KGvsErGAKk IRVHILTDGR DVLDGSSIGF VETLENDLIe LRaKGVDAQI
mut.msf{ntmut} KGAakhGAKR IRVHaLTDGR DVLDGSSVGF mETLENsLAg LREKGIDAQV
     Consensus KG----GAK- IRVH-LTDGR DV-DG-S-GF -ETLE--L-- LR-KG-DAQ-
```

Fig. 2: Fortsetzung

	201				250
<pre>mut.msf{bvmut}</pre>	ASGGGRMYVT	MDRYENDWEV	IKRGWDAhVL	GEAPYKFKSA	VEAVKKLREE
mut.msf{rcmut}	ASGGGRMYVT	MDRYENDWnV	VKRGWDAQVL	GEAPYKFKSA	VEAIKKLREE
<pre>mut.msf{zmmut}</pre>	ASGGGRMYVT	MDRYENDWDV	VKRGWDAQVL	GEAPYKFKSA	1EAVKtLRaq
<pre>mut.msf{ntmut}</pre>	ASGGGRMYVT	MDRYENDWDV	VKRGWDAQVL	GEAPhKFKdp	VEAVKKLRqE
Consensus	ASGGGRMYVT	MDRYENDW-V	- KRGWDA - VL	GEAP-KFK	-EA-K-LR
	251				300
mut.msf{bvmut}	1KvsDQYLPP	FVIVDDNGKP	VGP I v DGDAV	VTINFRADRM	VMIAKALEYE
mut.msf{rcmut}	PKANDQYLPP	FVIVDENGKP	VGPIvDGDAV	VTINFRADRM	VMLAKALEYE
mut.msf{zmmut}	PKANDQYLPP	FVIVDDsGna	VGPVIDGDAV	VTINFRADRM	VMLAKALEYa
<pre>mut.msf{ntmut}</pre>	PnANDQYLaP	FVIVDDNGKP	.Vaa I 1 DGDAV	VTfNFRADRM	VMLAKALEYE
Consensus	DQYL - P	FVIVDG	V DGDAV	VT-NFRADRM	VM-AKALEY-
•	301				350
mut.msf{bvmut}	NFDKiDRVRf	PKIRYAGMLQ	YDGELKLPSH	YLVePPEIER	TSGEYLVHNG
<pre>mut.msf(rcmut)</pre>	NFDtFDRVRf	PKIhYAGMLQ	YDGELKLPSH	YLVSPPEIER	TSGEYLVHNG
<pre>mut.msf{zmmut}</pre>	dFDnFDRVRv	PKIRYAGMLQ	YDGELKLPSr	YLVSPPEIDR	TSGEYLVKNG
mut.msf{ntmut}	NFDKFDRVRv	PKIRYAGMLQ	YhGELqLPSH	YLVSPPEIaR	hSGEYLVrNG
Consensus	-FDDRVR-	PKI-YAGMLQ	Y-GEL-LPS-	YLV-PPEI-R	-SGEYLV-NG
	351				400
mut.msf{bvmut}				LEEYVEIPSD	
mut.msf{rcmut}	VHTFACSETV	KFGHVTFFWN	GNRSGYFNPE	MEEYVEIPSD	vGITFNVQPK
<pre>mut.msf{zmmut}</pre>	IRTFACSETV	KFGHVTFFWN	GNRSGYFdat	KEEYVEVPSD	SGITFNVaPn
<pre>mut.msf{ntmut}</pre>				LEEYVEIPSD	
Consensus	TFACSETV	KFGHVTFFWN	GNRSGYF	- EEYVE-PSD	-GITFNV-P-
			•		
	401				450
mut.msf{bvmut}				MVGHTGDIEd	
mut.msf{rcmut}		•		MVGHTGDVEA	_
mut.msf{zmmut}				MVGHTGDIEA	_
mut.msf{ntmut}			·	MVGHTGDIkA	
Consensus	MKA-EIAE	RDA-LSGKF-	QVRVN-PNGD	MVGHTGD	TCK-ADE

Fig. 2: Fortsetzung

7/48

```
451
                                                                   500
mut.msf{bvmut} AdKMILDAIE QVGGIYvVTA DHGNAEDMVK RNKSvqPLLD KNGN1QVLTS
mut.msf{rcmut} AVKMIiDAIE QVGGIYvVTA DHGNAEDMVK RdKSGKPMaD KsGklQILTS
mut.msf{zmmut} AVKillDAVE QVGGIY1VTA DHGNAEDMVK RNKSGKPLLD KNdrlQILTS
mut.msf{ntmut} AVKMILEAIE QVGGIYIVTA DHGNAEDMVK RNKkGePaLD KNGNIQILTS
     Consensus A-K-I--A-E QVGGIY-VTA DHGNAEDMVK R-K---P--D K----Q-LTS
                501
                                                                   550
mut.msf{bvmut} HTLQPVPIAI GGPaLAsGVR FckDlPdGGL ANVAATViNL HGFEAPSDYE
mut.msf{rcmut} HTLQPVPIAI GGPGLtPGVR FRSDiPTGGL ANVAATVMNL HGFEAPSDYE
mut.msf{zmmut} HTLQPVPVAI GGPGLhPGVk FRnDiqTpGL ANVAATVMNL HGFEAPaDYE
mut.msf{ntmut} HTcePVPIAI GGPGLAPGVR FRqD1PTGGL ANVAATfMNL HGsEAPSDYE
     Consensus HT--PVP-AI GGP-L--GV- F--D----GL ANVAAT--NL HG-EAP-DYE
               551
                      560
mut.msf{bvmut} PTLIE1VDN.
mut.msf{rcmut} PTLIEaVDN.
mut.msf{zmmut} qTLIEVaDN.
mut.msf{ntmut} PsLIEVVDNm
    Consensus -- LIE-- DN-
```

WO 97/05258 PCT/AT96/00141

Fig.3:

8/48

B-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus

Birkenpollen

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Gly Glu Ala Lys Pro Asp Gln Tyr Asn Cys Ile (AS 1-12)
- Epitop 2: Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Gln Gly Ala Pro Glu Lys Trp Arg Leu Val Arg Ala His Gly Lys Ala (AS 15-40)
- Epitop 3: Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His (AS 43-56)
- Epitop 4: Gly Lys Ile Tyr Glu Gly Glu Gly Phe Lys Tyr Ile Lys Glu Cys Phe Glu Asn (AS 79-96)
- Epitop 5: Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Leu (AS 105-117)
- Epitop 6: Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Val (AS 123-134)
- Epitop 7: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val (AS 137-149)
- Epitop 8: Glu Thr Leu Glu Asn Asp Leu Ala Lys Leu Arg Glu Lys Gly Val Asp (AS 153-168)
- Epitop 9: Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Glu Val Ile Lys Arg Gly Trp Asp Ala (AS 179-198)

Fig. 3: Fortsetzung

9/48

- Epitop 10: Val Lys Lys Leu Arg Glu Glu Leu Lys Val Ser Asp Gln
 Tyr Leu Pro (AS 215-230)
 - Epitop 11: Ala Leu Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val Arg Phe Pro Lys Ile Arg Tyr Ala (AS 267-287)
 - Epitop 12: Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Ser His

 Tyr Leu Val Glu Pro Pro Glu Ile Glu Arg Thr Ser Gly Glu Tyr

 Leu Val His Asn Gly Val Arg (AS 289-323)
 - Epitop 13: Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Ser Gly Ile (AS 340-364)
 - Epitop 14: Ser Gly Lys Phe Asp Gln Val Arg Val Asn Leu Pro Asn Gly Asp Met Val Gly His Thr Gly Asp Ile Glu (AS 387-410)
 - Epitop 15: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Val Gln (AS 441-457)
 - Epitop 16: His Gly Phe Glu Ala Pro Ser Asp Tyr Glu Pro Thr Leu (AS 512-524)

Fig.4:

10/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglycera tmutase (E.C. 5.4.2.1.) aus Birkenpollen

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Tyr Asn Cys Ile His Val Ala Glu Thr Pro Thr Met Asp (AS 9-21)

Epitop 2: Glu Lys Trp Arg Leu Val (AS 29-34)

Epitop 3: Phe Ala Gln Gly Ala Lys Leu Val Asp Ser (AS 65-74)

Epitop 4: Glu Gly Glu Gly Phe Lys Tyr Ile Lys Glu Cys (AS 83-93)

Epitop 5: Thr Leu Glu Asn (AS 154-157)

Epitop 6: Asn Asp Trp Glu Val Ile Lys Arg Gly Trp Asp (AS 187-197)

Epitop 7: Val Glu Ala Val Lys Lys Leu Arg Glu (AS 212-220)

Epitop 8: Glu Tyr Glu Asn Phe Asp Lys Ile Asp Arg Val (AS 269-279)

Epitop 9: Arg Thr Phe Ala Cys Ser Glu Thr Val Lys (AS 323-332)

Epitop 10: Ser Glu Leu Glu Glu Tyr Val Glu Ile Pro Ser (AS 350-360)

Epitop 11: His Thr Gly Asp Ile Glu Asp Thr (AS 405-412)

Epitop 12: Met Ile Leu Asp Ala Ile Glu Gln Val Gly Gly Ile (AS 425-436)

WO 97/05258 PCT/AT96/00141

Fig.4: Fortsetzung

11/48

Epitop 13: Ser Gly Val Arg Phe Cys Lys Asp Leu Pro Asp Gly Gly Leu Ala Asn Val Ala Ala (AS 488-506)

Epitop 14: Asn Leu His Gly Phe Glu Ala Pro Ser (AS 510-518)

WO 97/05258 PCT/AT96/00141

Fig.5A: BIP 3 Immunblot mit Pollenextrakten von Birke, Beifuß und Lieschgras, und Extrakten von Sellerie und Apfel.

Fig.5B: IgE Immunblots von BIP 3-immunaffinitätsgereinigtem PGM-i aus Birkenpollen (MU), Birkenpollenextrakt (BPEX). Sera von graspollenallergischen Patienten (HP, HL), Normalhumanserum (NHS).

WO 97/05258 PCT/AT96/00141

13/48
Fig.6: Plaque-lifts getestet mit Patientensera und BIP 3

Fig.7a:

14/48

cDNA Sequenz und abgeleitete Aminosäuresequenz
von Kofaktor-unabhängiger Phosphoglyceratmutase
(E.C. 5.4.2.1.) aus Lieschgraspollen
(Isoform Phl1)

Sequence: a:\phllcod.dna, Length: 1671, Range for analysis: 1-1671

1 ATG GCG ACC TCA TGG ACG CTG CCC GAC CAT CCC ACG CTC CCC 42 Met Ala Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro 43 AAG GGC AAG ACG GTG GCC GTC ATC GTG CTC GAC GGA TGG GGC 84 Lys Gly Lys Thr Val Ala Val Ile Val Leu Asp Gly Trp Gly 85 GAG GCC AGC GCT GAC CAG TAC AAC TGC ATC CAT CGT GCC GAG 126 Glu Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg Ala Glu 127 ACG CCC GTC ATG GAT TCG CTC AAG AAT GGT GCT CCT GAG AAG 168 Thr Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys 169 TGG ACA CTA GTG AAG GCT CAT GGA ACT GCT GTT GGT CTC CCT 210 Trp Thr Leu Val Lys Ala His Gly Thr Ala Val Gly Leu Pro 211 AGT GAT GAC GAC ATG GGC AAC AGT GAA GTT GGC CAC AAT GCT 252 Ser Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala 253 CTT GGC GCT GGT CGG ATT TTT GCT CAA GGG GCG AAG TTG TTT 294 Leu Gly Ala Gly Arg Ile Phe Ala Gln Gly Ala Lys Leu Phe 295 GAT GCT GCT CTT GCA TCT GGG AAG ATT TGG GAA GAC GAG GGT 336 Asp Ala Ala Leu Ala Ser Gly Lys Ile Trp Glu Asp Glu Gly 337 TTC AAT TAC ATC AAA GAA TCT TTT GCC GAA GGT ACT CTG CAC 378 Phe Asn Tyr Ile Lys Glu Ser Phe Ala Glu Gly Thr Leu His

Fig.7a: Fortsetzung

3/9										GTC					420
	Leu	Ile	Gly	Leu	Leu	Ser	Asp	Gly	Gly	Val	His	Ser	Arg	Leu	
421	GAC	CAA	GTG	CAG	TTG	CTT	GTG	AAA	GGT	GCC	AGT	GAG	AGG	GGA	462
										Ala					
463										ACC					504
	Ala	Lys	Arg	Пe	Arg	Leu	His	Ile	Leu	Thr	Asp	Gly	Arg	Asp	
505	GTC	TTG	GAT	GGA	AGC	AGT	GTT	GGT	TTC	GTA	GAG	۸۲۸	CTA	GAG	546
										Val					340
											٠.٠			4.4	
547	AAT	GAT	CTT	GCT	CAG	CTT	CGT	GAG	AAG	GGT	GTT	GAT	GCA	CAG	588
	Asn	Asp	Leu	Ala	Gln	Leu	Arg	Glu	Lys	Gly	Val	Asp	Ala	Gln	
580	CTT	GC A	тст	CCT	ССТ	CCA	۸۲۲	ATC	TAT	GTT	۸۵۵	ATC	CAC	ccc	620
309										Val		_			630
	, , ,		50,	u .,	413	u , y	A. g	1100	, , ,	V 0 1	1117	HEC	vsh	Ai y	
631	TAT	GAG	AAT	GAC	TGG	GAT	GTG	GTC	AAG	CGT	GGG	TGG	GAT	GCC	672
	Tyr	Glu	Asn	Asp	Trp	Asp	۷al	Val	Lys	Arg	Gly	Trp	Asp	Ala	
C 7 2	C 4 C	CTC		004		004		T.0							
6/3										TTC Phe					714
	U 111	• • •	Leu	u. y	uiu	710	110	191	Lys	1116	Lys	361	Ala	Leu	
715	GAA	GCT	GTG	AAA	ACG	СТА	AGA	GCA	GAG	ССС	AAG	GCC	AAT	GAT	756
	Glu	Ala	Val	Lys	Thr	Leu	Arg	Ala	G1 u	Pro	Lys	Αla	Asn	Asp	
757										GAT					798
	Gin	ıyr	Leu	Pro	АІА	Pne	vai	116	vai	Asp	GIU	5er	ыу	Lys	
799	TCC	GTT	GGT	CCT	АТА	GTA	GAT	GGC	GAT	GCA	GTT	GTG	ATT	TTC	840
	Ser	Val	Gly	Pro	Пе	Val	Asp	Gly	Asp	Ala	Val	Val	Пe	Phe	
841										CTT					882
	Asn	Phe	Arg	Ala	Asp	Arg	Met	Val	Met	Leu	Ala	Ly s	Ala	Leu	

Fig.7a: Fortsetzung

883	GAG	TTT	GCT	GAT	TTT	GAT	AAA	TTT	GAC	CGT	GTT	CGT	GTA	CCA	924
	Glu	Phe	Ala	Asp	Phe	Asp	Lys	Phe	Asp	Arg	Val	Arg	Val	Pro	
925	AAA	ATT	AAG	TAT	GCT	GGG	ATG	СТС	CAG	TAT	GAT	GGT	GAG	TTG	966
	Lys	Ile	Lys	Tyr	Ala	Gly	Met	Leu	Gln	Tyr	Asp	Gly	Glu	Leu	
967										CCA					1008
	Lys	Leu	Pro	Asn	Lys	Phe	Leu	Val	Ser	Pro	Pro	Leu	Ile	Glu	
1009	AGG	ACA	TCT	GGT	GAA	TAC	TTG	GTA	AAG	AAT	GGC	GTT	CGC	ACA	1050
	Arg	Thr	Ser	Gly	Glu	Tyr	Leu	Val	Lys	Asn	Gly	Val	Arg	Thr	
1051	TTT	GCT	TGC	AGC	GAG	ACC	GTG	AAG	TTT	GGT	CAT	GTC	ACA	TTT	1092
	Phe	Ala	Cys	Ser	Glu	Thr	Val	Lys	Phe	Gly	His	Val	Thr	Phe	
1093	TTC	TGG	AAT	GGA	AAC	CGT	тст	GGA	TAC	ттс	GAT	GAA	ACC	AAG	1134
	Phe	Trp	Asn	Gly	Asn	Arg	Ser	Gly	Tyr	Phe	Asp	Glu	Thr	Lys	
1135	GAA	GAG	TAC	ATA	GAA	ATT	ССТ	AGT	GAT	AGT	GGT	ATC	ACA	TTC	1176
	Glu	Glu	Tyr	Пе	Glu	Ile	Pro	Ser	Asp	Ser	Gly	Ile	Thr	Phe	
1177	AAT	GAG	CAG	ССС	AAA	ATG	AAG	GCA	СТТ	GAA	ATT	GCT	GAG	AAA	1218
	Asn	Glu	Gln	Pro	Lys	Met	Lys	Ala	Leu	Glu	IJе	Ala	Glu	Lys	
1219	ACC	CGG	GAT	GCT	ATC	стс	AGT	GGA	AAG	TTT	GAC	CAG	GTA	CGT	1260
	Thr	Arg	Asp	Ala	Ile	Leu	Ser	Gly	Lys	Phe	Asp	Gln	Val	Arg	
1261	ATT	AAC	CTG	CCA	AAT	GGT	GAT	ATG	GTG	GGT	CAC	ACC	GGT	GAT	1302
	Пе	Asn	Leu	Pro	Asn	Gly	Asp	Met	Val	Gly	His	Thr	Gly	Asp	
1303	ATT	GAA	GCC	ACA	GTC	GTT	GCC	TGC	AAG	GCT	GCT	GAT	GAA	GCA	1344
	Ile	Glu	Ala	Thr	Val	Val	Ala	Cys	Lys	Ala	Ala	Asp	Glu	Ala	-
1345	GTC	AAG	ATT	GTT	TTG	GAT	GCA	GTG	GAG	CAA	GTT	GGT	GGT	ATT	1386
	Val	Lys	Пe	Val	Leu	Asp	Ala	Val	Głu	Gln	Val	Gly	Gly	He	

Fig.7a: Fortsetzung

1387	TAT	CTT	GTC	ACT	GCT	GAT	CAT	GGA	AAC	GCA	GAG	GAT	ATG	GTG	1428
	Tyr	Leu	Val	Thr	Ala	Asp	His	Gly	Asn	Ala	Glu	Asp	Met	Val	
1429	AAA	AGA	AAC	AAA	TCT	GGC	CAG	CCT	GCT	CTT	GAC	AAG	AGC	GGT	1470
	Lys	Arg	Asn	Lys	Ser	Gly	Gln	Pro	Ala	Leu	Asp	Lys	Ser	Gly	
1471	AGC	ATC	CAG	ATT	CTT	ACC	TCG	CAT	ACG	CTT	CAG	CCA	GTC	CCT	1512
	Ser	Пe	Gln	Пe	Leu	Thr	Ser	His	Thr	Leu	Gln	Pro	Val	Pro	
1513	GTT	GCG	ATC	GGA	GGC	CCT	GGT	CTC	CAC	CCA	GGA	GTG	AAG	TTC	1554
	Val	Ala	Пe	Gly	Gly	Pro	Gly	Leu	His	Pro	Gly	Val	Lys	Phe	
1555	AGG	TCT	GAT	ATC	AAC	ACA	CCT	GGA	CTC	GCC	AAT	GTT	GCC	GCC	1596
	Arg	Ser	Asp	Пe	Asn	Thr	Pro	Gly	Leu	Ala	Asn	Val	Ala	Ala	
1597	ACC	GTG	ATG	AAC	CTC	CAT	GGC	TTC	CAG	GCC	CCT	GAT	GAT	TAT	1638
	Thr	۷al	Met	Asn	Leu	His	Gly	Phe	Gln	Ala	Pro	Asp	Asp	Tyr	
1639	GAG	ACG	ACG	CTC	ATT	GAA	GTT	GCT	GAC	AAG	TAA				1671
	Glu	Thr	Thr	Leu	Ile	Glu	Val	Δla	Asn	Lvs	*				

17/48

Fig.7b:

18/48

cDNA Sequenz und abgeleitete Aminosäuresequenz von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus 5 Lieschgraspollen (Isoform Phl5)

Sequ	ence	: a:	\ph1	5cod	.dna	, Le	ngth	: 16	68,	Rang	e fo	r an	alys	is:	1-1668
1				TGG Trp											
43				GTG Val											84
85				GAC Asp											126
127				GAT Asp											168
169				AAG Lys											210
211				ATG Met											252
253				CGG Arg											294
295				GCA Ala											336
				AAA Lys											378

Fig.7b:Fortsetzung 1	9/48
-----------------------------	------

379	ATT	GGT	CTG	TTG	AGT	GAT	GGA	GGC	GTC	CAC	TCC	CGG	CTA	GAC	420
	Ile	Gly	Leu	Leu	Ser	Asp	Gly	Gly	۷a٦	His	Ser	Arg	Leu	Asp	
421	CAA	GTG	CAG	TTG	CTT	GTG	AAA	GGT	GCC	AGT	GAG	AGG	GGA	GCA	462
	Gln	Val	Gln	Leu	Leu	Val	Lys	Gly	Ala	Ser	Glu	Arg	Gly	Ala	
463	AAA	AGA	ATT	CGG	CTT	CAC	ATT	CTT	ACC	GAT	GGG	CGT	GAT	GTC	504
	Lys	Arg	Пe	Arg	Leu	His	IJе	Leu	Thr	Asp	Gly	Arg	Asp	Val	
505	TTG	GAT	GGA	AGC	AGT	GTT	GGT	TTC	GTA	GAG	ACA	CTA	GAG	AAT	546
	Leu	Asp	Gly	Ser	Ser	Val	Gly	Phe	Val	Glu	Thr	Leu	Glu	Asn	
547	GAT	CTT	GCT	CAG	CTT	CGT	GAG	AAG	GGT	GTT	GAT	GCA	CAG	GTT	588
	Asp	Leu	Ala	Gln	Leu	Arg	Glu	Lys	Gly	Val	Asp	Ala	Gln	Val	
589								TAT							630
	Ala	Ser	Gly	Gly	Gly	Arg	Met	Tyr	Vaì	Thr	Met	Asp	Arg	Tyr	
631								AAG							672
	Glu	Asn	Asp	Trp	Asp	Val	Val	Lys	Arg	Gly	Trp	Asp	Ala	Gln	
673								AAA							714
	Val	Leu	Gly	Glu	Ala	Pro	Tyr	Lys	Phe	Lys	Ser	Ala	Leu	Glu	
								GAG							756
	Ala	Val	Lys	Thr	Leu	Arg	Ala	Glu	Pro	Lys	Ala	Asn	Asp	Gln	
								GTT							798
	Tyr	Leu	Pro	Ala	Phe	Val	Пe	Val	Asp	Glu	Ser	Gly	Lys	Ser	
								GAT							840
	Val	Gly	Pro	Ile	Val	Asp	Gly	Asp	Ala	Val	Val	Thr	Phe	Asn	
								ATG							882
	Phe	Arg	Ala	Asp	Arg	Met	Val	Met	Leu	Ala	Lys	Ala	Leu	Glu	

Fig.7b:Fortsetzung

924		CCA													883
	Lys	Pro	Val	Arg	Val	Arg	Asp	Phe	Lys	Asp	Phe	Asp	Ala	Phe	
966	AAG	TTG	GAG	GGT	GAT	TAT	CAG	СТС	ATG	GGG	GCT	TAT	AAG	ATT	925
	Lys	Leu	Glu	Gly	Asp	Tyr	Gln	Leu	Met	Gly	Ala	Tyr	Lys	Ile	
1008	AGG	GAG	ATA	TTG	ССС	CCA	тсс	GTT	СТТ	ттс	AAA	AAC	CCA	CTT	967
	Arg	Glu	Ile	Leu	Pro	Pro	Ser	Val	Leu	Phe	Lys	Asn	Pro	Leu	
1050	TTT	ACA	CGC	GTT	GGC	AAT	AAG	GTA	TTG	TAC	GAA	GGT	тст	ACA	1009
	Phe	Thr	Arg	Val	Gly	Asn	Lys	Val	Leu	Tyr	G۱u	Gly	Ser	Thr	
1092	TTC	TTT	ACA	GTC	CAT	GGT	TTT	AAG	GTG	ACC	GAG	AGC	TGC	GCT	1051
	Phe	Phe	Thr	Va1	His	Gly	Phe	Lys	Val	Thr	Glu	Ser	Cys	Ala	
1134	GAA	AAG	ACC	GAA	GAT	TTC	TAC	GGA	TCT	CGT	AAC	GGA	AAT	TGG	1093
		Lys													
1176	AAT	TTC	ACA	ATC	GGT	AGT	GAT	AGT	ССТ	ATT	GAA	АТА	TAC	GAG	1135
		Phe													
1218	ACC	AAA	GAG	GCT	ATT	GAA	CTT	GCA	AAG	ATG	AAA	CCC	CAG	GAG	1177
		Lys													
1260	ΑΤΤ	CGT	GTA	CAG	GAC	TTT	AAG	GGA	AGT	СТС	ATC	GCT	GAT	CGG	1219
1200		Arg													
1302	ΔΤΤ	GAT	GGT	Δ۲۲	۲۵۲	GGT	GTG	ATG	GAT	GGT	ΤΔΑ	CCA	CTG	AAC	1261
1302		Asp													
1344	GT C	GCA	GΛΛ	GAT	GCT	CCT	۸۸۵	TCC	ecc	GTT	GTC	ΔΓΔ	ecc	GAA	1303
1544		Ala													. 505
1386	TAT	ATT	CCT	сст	CTT	C	CVC	стс	CC v	GAT	TTC	GTT	ΔΤΤ	ΔΔΩ	1345
1500		Ile.													

20/48

Fig.7b:Fortsetzung 21/48

1387	CTT	GTC	ACT	GCT	GAT	CAT	GGA	AAC	GCA	GAG	GAT	ATG	GTG	AAA	1428
	Leu	Val	Thr	Ala	Asp	His	Gly	Asn	Ala	Glu	Asp	Met	Val	Lys	
1429	AGA	AAC	AAA	TCT	GGC	CAG	ССТ	GCT	CTT	GAC	AAG	AGC	GGT	AGC	1470
	Arg	Asn	Lys	Ser	Gly	Gln	Pro	Ala	Leu	Asp	Lys	Ser	Gly	Ser	
1471	ATC	CAG	ATT	СТТ	ACC	TCG	CAT	ACG	CTT	CAG	CCA	GTC	CCT	GTT	1512
	Ile	Gln	Ile	Leu	Thr	Ser	His	Thr	Leu	Gln	Pro	Val	Pro	Val	
1513	GCG	ATC	GGA	GGC	ССТ	GGT	СТС	CAC	CCA	GGA	GTG	AAG	TTC	AGG	1554
										Gly					
1555	тст	GAT	ATC	AAC	ACA	ССТ	GGA	СТС	GCC	AAT	GTT	GCC	GCC	ACC	1596
										Asn					
1597	GTG	ATG	AAC	СТС	CAT	GGC	TTC	CAG	GCC	ССТ	GAT	GAT	TAT	GAG	1638
										Pro					
1639	ACG	ACG	СТС	ATT	GAA	GTT	GCT	GAC	AAG	TAA					1668
	_			Ile											1000

Fig. 8a:

22/48

B-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Lieschgraspollen (Isoform Phl1)

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys Gly Lys Thr (AS 4-18)
- Epitop 2: Asp Gly Trp Gly Glu Ala Ser Ala Asp Gln Tyr Asn Cys
 Ile His Arg Ala Glu Thr Pro Val Met Asp Ser Leu Lys
 Asn Gly Ala Pro Glu Lys Trp Thr Leu (AS 25-59)
- Epitop 3: Leu Pro Ser Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu Gly Ala (AS 69-87)
- Epitop 4: Gly Lys Ile Trp Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala Glu (AS 105-122)
- Epitop 5: Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val (AS 131-143)
- Epitop 6: Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu (AS 148-160)
- Epitop 7: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val

 (AS 163-175)
- Epitop 8: Glu Thr Leu Glu Asn Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp Ala (AS 179-195)
- Epitop 9: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala (AS 199-224)

WO 97/05258 PCT/AT96/00141

Fig. 8a: Fortsetzung 23/48

- Epitop 10: Glu Ala Pro Tyr Lys Phe Lys Ser Ala (AS 229-237)
- Epitop 11: Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu Pro (AS 243-256)
- Epitop 12: Asp Glu Ser Gly Lys Ser Val (AS 262-268)
- Epitop 13: Phe Arg Ala Asp Arg Met (AS 282-287)
- Epitop 14: Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys
 Ile Lys Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu
 Lys Leu Pro Asn Lys (AS 297-327)
- Epitop 15: Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val Arg Thr (AS 333-350)
- Epitop 16: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr
 Lys Glu Glu Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile
 Thr Phe Asn Glu Gln Pro Lys Met Lys Ala (AS 365-400)
- Epitop 17: Ile Ala Glu Lys Thr Arg Asp Ala (AS 403-410)
- Epitop 18: Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn Gly Asp Met Val Gly His Thr Gly Asp Ile Glu (AS 413-436)
- Epitop 19: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile (AS 467-492)
- Epitop 20: Leu Thr Ser His Thr Leu Gln Pro (AS 495-502)
- Epitop 21: Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp Ile Asn Thr Pro Gly Leu (AS 509-527)
- Epitop 22: Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr Leu (AS 537-550)

Fig. 8b:

24/48

B-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Lieschgraspollen (Isoform Phl5)

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Met Thr Ser Trp Thr Leu Pro Asp His Pro Thr Leu Pro Lys Gly Lys (AS 1-16)
- Epitop 2: Asp Gly Trp Gly Glu Ala Ser Ala Asp Gln Tyr Asn Cys Ile His Arg Ala Glu Thr Pro Val Met Asp Ser Leu Lys Asn Gly Ala Pro Glu Lys Trp Thr Leu (AS 24-58)
- Epitop 3: Leu Pro Ser Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu Gly Ala (AS 68-86)
- Epitop 4: Gly Lys Ile Trp Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala (AS 104-121)
- Epitop 5: Leu Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Val
 (AS 130-142)
- Epitop 6: Gly Ala Ser Glu Arg Gly Ala Lys Arg Ile Arg Leu (AS 148-159)
- Epitop 7: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val (AS 162-174)
- Epitop 8: Glu Thr Leu Glu Asn Asp Leu Ala Gln Leu Arg Glu Lys Gly Val Asp Ala (AS 178-194)
- Epitop 9: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala (AS 198-223)

Fig. 8b:Fortsetzung

- 25/48
- Epitop 10: Glu Ala Pro Tyr Lys Phe Lys Ser Ala (AS 228-236)
 - Epitop 11: Thr Leu Arg Ala Glu Pro Lys Ala Asn Asp Gln Tyr Leu Pro (AS 242-255)
 - Epitop 12: Asp Glu Ser Gly Lys Ser Val (AS 261-267)
 - Epitop 13: Asn Phe Arg Ala Asp Arg Met (AS 280-286)
 - Epitop 14: Ala Asp Phe Asp Lys Phe Asp Arg Val Arg Val Pro Lys
 Ile Lys Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu
 Lys Leu Pro Asn Lys (AS 296-326)
 - Epitop 15: Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Lys Asn Gly Val Arg Thr (AS 332-349)
 - Epitop 16: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asp Glu Thr
 Lys Glu Glu Tyr Ile Glu Ile Pro Ser Asp Ser Gly Ile
 Thr Phe Asn Glu Gln Pro Lys Met Lys Ala (AS 364-399)
 - Epitop 17: Ile Ala Glu Lys Thr Arg Asp Ala (AS 402-409)
 - Epitop 18: Ser Gly Lys Phe Asp Gln Val Arg Ile Asn Leu Pro Asn Gly Asp Met Val Gly His Thr Gly Asp Ile Glu (AS 412-435)
 - Epitop 19: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Ser Gly Gln Pro Ala Leu Asp Lys Ser Gly Ser Ile (AS 466-491)
 - Epitop 20: Leu Thr Ser His Thr Leu Gln Pro (AS 494-501)
 - Epitop 21: Gly Pro Gly Leu His Pro Gly Val Lys Phe Arg Ser Asp Ile Asn Thr Pro Gly Leu (AS 508-526)
 - Epitop 22: Leu His Gly Phe Gln Ala Pro Asp Asp Tyr Glu Thr Thr Leu (AS 536-549)

WO 97/05258 PCT/AT96/00141

Fig. 9a:

26/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Lieschgraspollen (Isoform Phl1)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Trp Gly Glu Ala Ser (AS 27-31)

Epitop 2: Met Asp Ser Leu Lys Asn Gly Ala (AS 46-53)

Epitop 3: Phe Ala Gln Gly Ala Lys Leu Phe Asp Ala (AS 91-100)

Epitop 4: Gly Lys Ile Trp Glu (AS 115-119)

Epitop 5: Thr Leu Glu Asn (AS 180-183)

Epitop 6: Asn Asp Trp Asp Val Val (AS 213-218)

Epitop 7: Leu Glu Ala Val Lys Thr Leu (AS 238-244)

Epitop 8: Leu Ala Lys Ala Leu Glu (AS 290-295)

Epitop 9: Phe Ala Cys Ser Glu Thr Val Lys (AS 351-358)

Epitop 10: Leu Asp Ala Val Glu Gln Val Gly Gly Ile Tyr (AS 453-461)

Epitop 11: Pro Gly Leu Ala Asn Val Ala Ala (AS 525-532)

Epitop 12: Asn Leu His Gly Phe Gln Ala Pro Asp Asp (AS 536-545)

Fig. 9b:

27/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Lieschgraspollen (Isoform Ph15)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Trp Gly Glu Ala Ser (AS 26-30)

Epitop 2: Met Asp Ser Leu Lys Asn Gly Ala (AS 45-52)

Epitop 3: Phe Ala Gln Gly Ala Lys Leu Phe Asp Ala (AS 90-99)

Epitop 4: Tyr Ile Lys Glu Ser (AS 114-118)

Epitop 5: Thr Leu Glu Asn (AS 179-182)

Epitop 6: Asn Asp Trp Asp Val Val (AS 212-217)

Epitop 7: Leu Glu Ala Val Lys Thr Leu (AS 237-243)

Epitop 8: Leu Ala Lys Ala Leu Glu Phe (AS 289-295)

Epitop 9: Phe Ala Cys Ser Glu Thr Val Lys (AS 350-357)

Epitop 10: Leu Asp Ala Val Glu Gln Val Gly Gly (AS 452-460)

Epitop 11: Pro Gly Leu Ala Asn Val Ala Ala (AS 524-531)

Epitop 12: Asn Leu His Gly Phe Gln Ala Pro Asp Asp (AS 535-544)

Fig.10a:

28/48

cDNA Sequenz und abgeleitete Aminosäure-sequenz von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus 5 Beifußpollen (Isoform Art6))

Sequence: a:\art6cod.dna, Length: 1674, Range for analysis: 1-1674

1	ATG	GGA	AGC	TCA	GGA	TTT	TCA	TGG	AAG	CTA	GCG	GAC	CAC	CCA	42
	Met	Gly	Ser	Ser	Gly	Phe	Ser	Trp	Lys	Leu	Ala	Asp	His	Pro	
43	AAG	CTG	CCA	AAG	AAC	AAG	CTG	GTA	GCG	ATG	ATT	GTG	TTG	GAC	84
				Lys											
85	GGA	TGG	GGT	GAA	GCT	TCT	CCT	GAT	AAA	TAT	AAC	TGT	ATC	CAC	126
				Glu											
127	GTG	GCC	GAG	ACT	ССТ	ACC	ATG	GAT	тст	CTC	AAA	AAC	GGC	GCC	168
				Thr											100
169	ССТ	GAT	CAC	TGG	AGA	TTG	GTG	∆ GG	GCT	СДТ	GGA	۸CT	GCT	GTT	210
				Trp											210
211	GGG	CTT	ררר	ACT	GAA	GAT	CVC	ATG	GGA	۸۸۲	ACT	C A A	CTC	CCV	252
				Thr											232
257	$\Gamma \Delta \Gamma$	ΔΛΤ	CCT	СТТ	CCT	CCT	CC 4	۸۵۲	ATC	TTT	CCT	C A A	CCT	CCT	204
233				Leu											294
205	^^^	CTC	СТТ	CAT	C A A	004	CTT	000	T.C.T	000			T. 0		226
233				GAT Asp											336
227															
33 /				TTC											378
	wah	GIU	עונט	Phe	M 2 II	ıyr	116	Lys	6 I U	5er	rne	Ala	Ihr	Asn	

Fig.10a: Fortsetzung 29/48

379	ACC	TTG	CAT	CTT .	ATT	GGA	TTG	ATG .	AGT	GAT	GGT	GGT	GTT	CAC	420
	Thr	Leu	His	Leu	Пe	Gly	Leu	Met	Ser	Asp	Gly	Gly	۷a٦	His	
421	TCA	CGT	СТТ	GAT	CAG	TTG	CAG	TTG	TTG	СТТ	AAC	GGA	GCT	AGT	-462
												Gly			
		-		•											
463	GAG	CGT	GGT	GCC	AAG	AAG	ATC	CGT	GTT	CAC	GTG	CTT	ACT	GAT	504
	Glu	Arg	G1 y	Ala	Lys	Lys	Пe	Arg	Val	His	Val	Leu	Thr	Asp	
505	GGT														546
	Gly	Arg	Asp	Val	Leu	Asp	Gly	Ser	Ser	Val	Gly	Phe	Ala	Glu	
r 4 7		^					•								
54/	ACA														588
	ınr	Leu	ыu	АТА	GIU	Leu	АТА	5er	Leu	Arg	Ser	Lys	GIY	He	
589	GAT	GCT	CAG	GTT	GCT	TCT	GGT	GGA	GGA	CGT	ATG	TAT	GTC	ACC	630
												Tyr			000
	•					-				3					
631	ATG	GAT	CGT	TAC	GAG	AAT	GAC	TGG	GAA	GTT	GTG	AAA	СТТ	GGA	672
	Met	Asp	Arg	Tyr	Glu	Asn	Asp	Trp	Glu	Val	Val	Lys	Leu	Gly	
673	TGG	GAT	GCT	CAG	GTT	CTT	GGT	GAA	GCT	CCA	CAC	AAG	TTT	AAA	714
	Trp	Asp	Ala	Gln	Val	Leu	Gly	Glu	Ala	Pro	His	Lys	Phe	Lys	
715	AAT														756
	Asn	Val	Val	Glu	Ala	He	Lys	Ihr	Leu	Arg	Gin	Ala	Pro	Gly	
757	GCT	ΔΔΤ	GAC	۲۵۵	TAC	TTG	CCT	Δ٦٦	TTT	GTT	ΔΤΩ	GTC	GAT	GAT	798
, , ,												Val			750
799	AGC	GGC	ACG	ССТ	GTT	GGT	CCA	GTT	GTG	GAT	GGC	GAT	GCT	GTT	840
	Ser	Gly	Thr	Pro	Val	Gly	Pro	Val	Val	Asp	Gly	Asp	Ala	۷al	
841	GTC	ACT	GTT	AAC	TTC	CGT	GCT	GAT	CGT	ATG	ACT	ATG	CTT	GCC	882
	۷al	Thr	۷a٦	Asn	Phe	Arg	Ala	Asp	Arg	Met	Thr	Met	Leu	Ala	

Fig. 10a: Fortsetzung

						•									
924	GTG	AGA	GAC	TTT	AAG	GAT	TTT	AAG	GAG	TAC	GAA	CTT	GCT	CAA	883
	Val	Arg	Asp	Phe	Lys	Asp	Phe	Lys	Glu	Tyr	Glu	Leu	Ala	Gln	
966	GAT	TAT	CAG	СТС	ATG	GGT	GCT	TAT	CGT	ATC	AAA	CCA	TTC	CGT	925
		Tyr													
						740	0.4.7		664	CTT	A A C	TTC	C 4 C	CC 4	067
1008		CCC Pro													907
	FIU	710	361	V & I	Leu	, y,	1113	7311	110	200	L) 3		0.0	G .,	
1050	GGT	AAT	CAT	GTG	TTG	TAT	GAA	GGC	TCT	ACA	AGG	GAC	ATT	TTG	1009
	Gly	Asn	His	Val	Leu	Tyr	Glu	Gly	Ser	Thr	Arg	Asp	IÌе	Leu	
1092	CAT	GGT	TTC	ΔΔΔ	GTC	ACT	GAG	AGT	TGC	GCT	TTT	ACT	CGC	GTC	1051
1032		Gly													
1134		TTC													1093
	Asn	Phe	Tyr	Gly	Ser	Arg	Asn	Gly	Asn	Trp	Phe	Phe	Thr	Val	
1176	GGT	AGT	GAT	AGT	CCA	ATT	GAA	GTT	TAT	GAA	GAA	TTG	GAG	TCA	1135
		Ser													
1218		GAG													11//
	116	G1 u	Leu	АТА	Lys	met	Lys	Pro	Lys	vai	ASII	rne	107	116	
1260	GAC	TTT	AAG	GGA	AGC	СТС	ATC	GCT	GAT	CGT	ACC	AAG	GAG	GGT	219
	Asp	Phe	Lys	Gly	Ser	Leu	Ile	Ala	Asp	Arg	Thr	Lys	Glu	Gly	
1200	C 4 C	000	0.7.7	4.7.0	0.10	CCT	446	CC 4	A T A	440	CTC	CCT	CT A	C A C	261
1302		GGG Gly													1201
		uiy	V 0 1	1160	лэр	uly	7311		.,.		• • •	9		•	
1344	GCT	GCT	AAG	TGC	GCC	GTG	GTC	ACT	GCT	GAG	GTT	GAT	GGT	ACC	303
	Ala	Ala	Lys	Cys	Ala	Val	۷a٦	Thr	Ala	Glu	Val	Asp	Gly	Thr	
1386	GTG	CAA	CVC	GT^	פרר	CAT	CTT	ΔΤΩ	ΔΤΩ	ΔΔΩ	GTT	GCT	GAA	GAT	345
1300		Gln													
		-	-							-				•	

30/48

Fig.10a:Fortsetzung

31/48

1387	GGT	GGG	ATA	TAC	GTT	GTG	ACT	GCC	GAT	CAC	GGT	AAT	GCT	GAG	1428
	Gly	Gly	Ile	Tyr	Val	Val	Thr	Ala	Asp	His	Gly	Asn	Ala	Glu	
1429	GAC	ATG	GTA	AAG	AGA	AAC	AAG	AAG	GGT	GAG	ССТ	СТТ	СТС	AAG	1470
	Asp	Met	Val	Lys	Arg	Asn	Lys	Lys	Gly	Glu	Pro	Leu	Leu	Lys	
1471	GAC	GGC	GAG	GTC	CAG	ATT	СТА	ACA	TCA	CAC	ACT	CTT	CAG	CCG	1512
									Ser						
1513	GTG	CCA	ATT	GCA	ATT	GGA	GGT	CCT	GGG	TTA	TCC	GCT	GGT	GTG	1554
	Val	Pro	Пe	Ala	Ile	Gly	Gly	Pro	Gly	Leu	Ser	Ala	Gly	Val	
1555	AGG	TTC	CGC	AAG	GAT	GTA	CCA	AGT	GGA	GGA	CTT	GCA	AAC	GTA	1596
	Arg	Phe	Arg	Lys	Asp	Val	Pro	Ser	Gly	Gly	Leu	Ala	Asn	Va1	
1597	GCA	GCA	ACT	GTG	ATG	AAT	CTT	CAT	GGG	TTT	GTG	GCT	CCT	GAG	1638
	Ala	Ala	Thr	۷al	Met	Asn	Leu	His	Gly	Phe	V a 1	Ala	Pro	Glu	
1639	GAC	TAC	GAG	ACT	ACT	CTG	ATC	GAA	GTT	GTT	GAG	ΔΔΤ			1674
												*			
	ASD	ıyr	GIU	inr	inr	Leu	Tie	ษาน	Val	Vdl	นเน	_			

Fig. 10b:

32/48

cDNA Sequenz und abgeleitete Aminosäure-sequenz von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus 5 Beifußpollen (Isoform Art17)

Sequence: a:\art17cod.dna, Length: 1683, Range for analysis: 1-1683

1	ATG	GGA	AGC	TCA	GGA	GAC	AAA	ACG	ACA	TGG	AAA	TTG	GCA	GAT	42
	Met	Gly	Ser	Ser	Gly	Asp	Lys	Thr	Thr	Trp	Lys	Leu	Ala	Asp	
43	CAC	CCA	AAA	CTA	CCA	AAA	GGA	AAA	ATG	ATC	GCG	GTT	GTT	GTT	84
	His	Pro	Lys	Leu	Pro	Lys	Gly	Lys	Met	Пe	Ala	Val	Val	Val	
85	TTG	GAC	GGT	TGG	GGT	GAA	GCT	TCT	CCC	GAC	AAA	TAT	AAT	TGT	126
	Leu	Asp	Gly	Trp	Gly	Glu	Ala	Ser	Pro	Asp	Lys	Tyr	Asn	Cys	
127	ATC	CAT	GTT	GCC	CAA	ACA	CCC	GTC	ATG	TAT	TCT	CTT	AAA	AAC	168
	IÌе	His	Val	Ala	Gln	Thr	Pro	Val	Met	Tyr	Ser	Leu	Lys	Asn	
169	AGT	GCA	CCT	GAT	CAC	TGG	AGA	TTG	GTG	AGG-	GCA	CAT	GGT	ACT	210
	Ser	Ala	Pro	Asp	His	Trp	Arg	Leu	Val	Arg	Ala	His	61 y	Thr	
						•									
211	GCT	GTG	GGG	CTT	CCC	ACA	GAC	GAT	GAC	ATG	GGA	AAC	AGC	GAA	252
	Ala	Val	Gly	Leu	Pro	Thr	Asp	Asp	Asp	Met	Gly	Asn	Ser	Glu	
253	GTT	GGA	CAT	AAT	GCT	CTT	GGA	GCT	GGT	CGA	ATT	TAT	GCC	CAA	294
	Val	Gly	His	Asn	Ala	Leu	Gly	Ala	Gly	Arg	Пe	Tyr	Ala	Gln	
295									CTT						336
	Gly	Ala	Lys	Leu	Val	Asp	Leu	Ala	Leu	Ala	Ser	Gly	Lys	Пe	
337	TAT	GAC	GAT	GAA	GGT	TTT	AAT	TAC	ATT	AAG	GAA	TCT	TTT	GCA	378
	Tyr	Asp	Asp	Glu	Gly	Phe	Asn	Tyr	Пe	Lys	Glu	Ser	Phe	Ala	

Fig.10b: Fortsetzung

33/48

420	GT	GGG G	SAT (AGT (ATG A	TTG A	GGA 1	ATT (CTC A	CAC	TTG (ACA 7	AAT A	AAT A	379
	Gly	Gly	Asp	Ser	Met	Leu	Gly	Пe	Leu	His	Leu	Thr	Asn	Asn	
462	GGT	AAA	CTC	TTG	CTG	CAG	TTA	CAG	GAT	СТТ	CGC	тст	CAC	GTG	421
	Gly	Lys	Leu	Leu	Leu	Gln	Leu	Gln	Asp	Leu	Arg	Ser	His	Val	
504	СТТ	GTA	CAC	GTC	CGT	ATC	AAG	AAG	GCC	GGT	CGT	GAA	AGT	GCT	463
	Leu	Val	His	Val	Arg	Ile	Lys	Lys	Ala	Gly	Arg	Glu	Ser	Ala	
546	TTT	GGC	GTA	AGT	TCA	GGT	GAT	TTG	GTT	GAT	CGT	GGC	GAT	ACT	505
	Phe	Gly	Val	Ser	Ser	Gly	Asp	Leu	Val	Asp	Arg	G1 y	Asp	Thr	
588	AAA	AGC	CGT	CTA	GAC	GCA	CTT	GAC	AAG	GAA	CTT	ACA	GAA	GCA	547
	Lys	Ser	Arg	Leu	Asp	Ala	Leu	Asp	Lys	Glu	Leu	Thr	Glu	Ala	
630	TAT	ATG	CGC	GGT	GGA	GGT	тст	GCT	GTT	CAG	GCT	GAT	ATA	GGT	589
	Tyr	Met	Arg	Gly	Gly	Gly	Ser	Ala	Va1	Gln	Ala	Asp	Ile	Gly	
672	AAA	GTG	GTT	GAT	TGG	GAT	AAT	GAG	TAT	CGT	GAT	ATG	ACC	GTC	631
	Lys	۷a٦	Val	Asp	Trp	Asp	Asn	Glu	Tyr	Arg	Asp	Met	Thr	۷al	
714	AAA	CAC	CCA	GCC	GAA	GGT	CTT	GTG	CAG	GCT	GAT	TGG	GGT	CGT	673
	Lys	His	Pro	Ala	Glu	Gly	Leu	Val	Gln	Ala	Asp	Trp	Gly	Arg	
756	GCT	GAA	AGG	CTA	AAG	AAG	ATC	GCT	GAG	GTT	GCT	AGT	AAG	TTC	715
	Ala	Glu	Arg	Leu	Lys	Lys	Ile	Ala	Glu	Val	Ala	Ser	Lys	Phe	
798	GTT	ATT	GTG	TTT	CCA	ССС	TTA	TAC	CAG	GAT	AAT	GCT	AAT	CCA	757
	Val	Ile	Val	Phe	Pro	Pro	Leu	Tyr	Gln	Asp	Asn	Ala	Asn	Pro	
840	GAT	GGT	GAC	ATG	ATA	ССС	GGT	GTG	ССТ	AAG	GGG	AGT	GAG	GAT	799
	Asp	Gly	Asp	Met	Пe	Pro	Gly	Val	Pro	Lys	Gly	Ser	Glu	Asp	
882	ATC	ACA	ATG	CGA	GAT	GCA	CGA	TTC	AAC	TTC	ACA	GTC	GTT	GCT	841
	Ile	Thr	Met	Ara	Asp	Ala	Ara	Phe	Asn	Phe	Thr	Val	Val	Δla	

DEICHOOLD SINO OTHEREDAY I

Fig. 10b: Fortsetzung 34/48

883	CTT	GCC	CAG	GCT	CTT	GAG	TAT	GAG	AAG	TTT	GAT	AAA	TTT	GAC	924
	Leu	Ala	Gln	Ala	Leu	Glu	Tyr	Glu	Lys	Phe	Asp	Lys	Phe	Asp	
925	AGG	GTG	CGG	TTC	CCT	AAA	ATC	CGC	TAT	GCT	GGA	ATG	CTT	CAA	966
	Arg	Val	Arg	Phe	Pro	Lys	Ile	Arg	Tyr	Ala	Gly	Met	Leu	Gln	
967	TAT	GAT	GGG	GAG	TTG	AAG	CTA	CCA	AGT	CGT	TAC	CTG	GTT	TCT	1008
	Tyr	Asp	Gly	Glu	Leu	Lys	Leu	Pro	Ser	Arg	Tyr	Leu	Val	Ser	
1009	CCT	CCA	TTG	ATA	GAG	AGG	ACA	TCT	GGT	GAA	TAT	CTA	GTC	AAT	1050
	Pro	Pro	Leu	Пe	Glu	Arg	Thr	Ser	Gly	Glu	Tyr	Leu	Val	Asn	
1051	AAT	GGT	ATC	CGC	ACC	TTT	GCT	TGT	AGT	GAA	ACA	GTA	AAA	TTT	1092
	Asn	Gly	Ile	Arg	Thr	Phe	Ala	Cys	Ser	Glu	Thr	Val	Lys	Phe	
1093	GGT	CAT	GTT	ACC	TTC	TTT	TGG	AAT	GGG	AAC	CGC	TCT	GGA	TAT	1134
	Gly	His	۷al	Thr	Phe	Phe	Trp	Asn	Gly	Asn	Arg	Ser	Gly	Tyr	
						•									
1135	TTT	AAT	TCA	GAG	TTG	GAG	GAA	TAT	GTA	GAA	ATT	CCA	AGT	GAT	1176
	Phe	Asn	Ser	Glu	Leu	Glu	Glu	Tyr	Val	Glu	Пe	Pro	Ser	Asp	
							•								
1177	AAT	GGA	ATT	TCC	TTC	AAT	GTC	CAA	CCA	AAG	ATG	AAG	GCT	TTG	1218
	Asn	Gly	IJе	Ser	Phe	Asn	Val	Gln	Pro	Lys	Met	Lys	Ala	Leu	
1219	GAG	ATT	GGT	GAG	AAG	GCC	CGT	GAT	GCA	ATT	CTC	AGT	CGC	AAA	1260
	Glu	Пe	Gly	Glu	Lys	Ala	Arg	Asp	Αla	IJе	Leu	Ser	Arg	Lys	•
1261	TTT	GAC	CAG	GTA	AGG	GTG	AAT	ATA	CCA	AAT	GGT	GAC	ATG	GTT	1302
	Phe	Asp	Gln	Val	Arg	Val	Asn	IJе	Pro	Asn	Gly	Asp	Met	Val	
1303	GGG	CAT	ACC	GGT	GAC	ATT	GAG	GCA	ACA	GTT	GTG	GCA	TGC	AAG	1344
	Gly	His	Thr	Gly	Asp	Ile	Glu	Ala	Thr	Val	۷al	Ala	Cys	Lys	
1345	GCT	GCT	GAT	GAT	GCT	GTT	AAG	ATG	ATC	CTT	GAT	GCA	ATA	AAG	1386
	Ala	Ala	Asp	Asp	Ala	Val	Lys	Met	He	Leu	Asp	Ala	Ile	Lvs	

WO 97/05258 PCT/AT96/00141

Fig. 10b: Fortsetzung 35/48

1387	GAA	GTA	GGT	GGA	ATA	TAT	GTG	GTG	ACT	GCG	GAT	CAT	GGT	AAT	1428
	Glu	Val	Gly	Gly	Ile	Tyr	Val	Val	Thr	Ala	Asp	His	Gly	Asn	
1429	GCA	GAG	GAC	ATG	GTG	AAG	AGA	AAC	AAG	GAG	GGA	GAG	CCC	CTT	1470
	Ala	Glu	Asp	Met	Val	Lys	Arg	Asn	Lys	Glu	Gly	Glu	Pro	Leu	
1471	CTT	GAT	AAG	GAT	GGC	AAA	GTT	CAG	ATC	СТА	ACC	TCG	CAC	ACT	1512
	Leu	Asp	Lys	Asp	Gly	Lys	Val	Gln	IÌе	Leu	Thr	Ser	His	Thr	
1513	CTG	CAG	CCA	GTA	CCG	GTT	GCA	TTA	GGA	GGT	CCT	GGG	TTA	GCA	1554
	Leu	Gln	Pro	Val	Pro	Val	Ala	Iје	Gly	Gly	Pro	Gly	Leu	Ala	
1555	GCA	GGT	GTG	AAA	TTC	CGC	AAG	GAT	GTG	CCA	AAT	GGT	GGA	CTA	1596
	Ala	Gly	Val	Lys	Phe	Arg	Lys	Asp	Val	Pro	Asn	Gly	Gly	Leu	
1597	GÇA	AAT	GTA	GCA	GCA	ACA	GTG	ATG	AAT	CTG	CAT	GGT	TTT	GTG	1638
	Ala	Asn	Val	Ala	Ala	Thr	Val	Met	Asn	Leu	His	Gly	Phe	Vaì	
1639	GCT	CCT	GAT	GAC	TAT	GAG	ACA	ACC	CTT	ATT	GAA	GTT	GTT	GAT	1680
	Ala	Pro	Asp	Asp	Tyr	Glu	Thr	Thr	Leu	Пe	Glu	Val	Val	Asp	
1681	TAA														1683

Fig.11a:

36/48

B-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Beifußpollen (Isoform Art6)

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Met Gly Ser Ser Gly Phe Ser Trp Lys Leu Ala Asp His Pro Lys Leu Pro Lys Asn Lys Leu (AS 1-21)
- Epitop 2: Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile (AS 28-41)
- Epitop 3: Ala Glu Thr Pro Thr Met Asp Ser Leu Lys Asn Gly Ala Pro Asp His Trp Arg Leu Val Arg Ala His Gly Thr (AS 44-68)
- Epitop 4: Leu Pro Thr Glu Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu Gly Ala (AS 72-90)
- Epitop 5: Gly Arg Ile Tyr Glu Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala Thr Asn Thr (AS 108-127)
- Epitop 6: Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln (AS 134-146)
- Epitop 7: Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val (AS 152-163)
- Epitop 8: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val

 (AS 166-178)
- Epitop 9: Ala Ser Leu Arg Ser Lys Gly Ile Asp Ala (AS 189-198)
- Epitop 10: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Glu Val (AS 202-220)

DESCRIPTION OF STREET

37/48

Fig.11a: Fortsetzung

- Epitop 11: Glu Ala Pro His Lys Phe Lys Asn Val (AS 232-240)
- Epitop 12: Ile Lys Thr Leu Arg Gln Ala Pro Gly Ala Asn Asp Gln Tyr Leu Pro (AS 244-259)
- Epitop 13: Asp Asp Ser Gly Thr Pro Val (AS 265-271)
- Epitop 14: Asn Phe Arg Ala Asp Arg Met (AS 284-290)
- Epitop 15: Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val Arg Phe Pro Lys Ile Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Asn His Tyr Leu Val Ser (AS 296-334)
- Epitop 16: Pro Leu Ile Asp Arg Thr Ser Gly Glu Tyr Leu Val His Asn Gly Val Arg Thr (AS 336-353)
- Epitop 17: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu
 Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Ser Gly Ile
 Thr Phe Asn Val Lys Pro Lys Met Lys Ala Leu Glu Ile
 Gly Glu Lys Thr Arg Asp Ala (AS 368-413)
- Epitop 18: Ser Gly Lys Phe Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met Val Gly His Thr Gly Asp Val Glu (AS 416-439)
- Epitop 19: Lys Ala Ala Asp Glu Ala Val (AS 446-452)
- Epitop 20: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Lys Gly Glu Pro Leu Leu Lys Asp Gly Glu Val (AS 470-494)
- Epitop 21: Leu Thr Ser His Thr Leu Gln Pro (AS 497-504)
- Epitop 22: Gly Val Arg Phe Arg Lys Asp Val Pro Ser Gly Gly Leu (AS 517-529)

WO 97/05258 PCT/AT96/00141

Fig.11a: Fortsetzung 38/48

Epitop 23: Val Ala Pro Glu Asp Tyr Glu Thr Thr Leu (AS 543-552)

Fig. 11b:

39/48

B-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Beifußpollen (Isoform Art17)

Folgende B-Zell Epitope wurden bestimmt:

- Epitop 1: Met Gly Ser Ser Gly Asp Lys Thr Thr Trp Lys Leu Ala Asp His Pro Lys Leu Pro Lys Gly Lys Met (AS 1-23)
- Epitop 2: Asp Gly Trp Gly Glu Ala Ser Pro Asp Lys Tyr Asn Cys Ile (AS 30-43)
- Epitop 3: Ser Leu Lys Asn Ser Ala Pro Asp His Trp Arg Leu Val Arg Ala His Gly Thr (AS 53-70)
- Epitop 4: Leu Pro Thr Asp Asp Met Gly Asn Ser Glu Val Gly His Asn Ala Leu Gly Ala (AS 74-92)
- Epitop 5: Gly Lys Ile Tyr Asp Asp Glu Gly Phe Asn Tyr Ile Lys Glu Ser Phe Ala Asn Asn Thr Leu (AS 110-130)
- Epitop 6: Met Ser Asp Gly Gly Val His Ser Arg Leu Asp Gln Leu (AS 136-148)
- Epitop 7: Gly Ala Ser Glu Arg Gly Ala Lys Lys Ile Arg Val (AS 154-165)
- Epitop 8: Leu Thr Asp Gly Arg Asp Val Leu Asp Gly Ser Ser Val (AS 168-180)
- Epitop 9: Glu Thr Leu Glu Lys Asp Leu Ala Asp Leu Arg Ser Lys Gly Ile Asp Ala (AS 184-200)
- Epitop 10: Ser Gly Gly Gly Arg Met Tyr Val Thr Met Asp Arg Tyr Glu Asn Asp Trp Asp Val Val Lys Arg Gly Trp Asp Ala (AS 204-229)

Fig.11b:Fortsetzung

40/48

- Epitop 11: Glu Ala Pro His Lys Phe Lys Ser Ala (AS 234-242)
- Epitop 12: Ile Lys Lys Leu Arg Glu Ala Pro Asn Ala Asn Asp Gln Tyr Leu Pro (AS 246-261)
- Epitop 13: Asp Glu Ser Gly Lys Pro Val (AS 267-273)
- Epitop 14: Asn Phe Arg Ala Asp Arg Met (AS 286-292)
- Epitop 15: Ala Leu Glu Tyr Glu Lys Phe Asp Lys Phe Asp Arg Val Arg Phe Pro Lys 1le Arg Tyr Ala Gly Met Leu Gln Tyr Asp Gly Glu Leu Lys Leu Pro Ser Arg Tyr Leu Val Ser (AS 298-336)
- Epitop 16: Pro Leu Ile Glu Arg Thr Ser Gly Glu Tyr Leu Val Asn Asn Gly Ile Arg (AS 338-354)
- Epitop 17: Ser Glu Thr Val Lys Phe (AS 359-364)
- Epitop 18: Phe Trp Asn Gly Asn Arg Ser Gly Tyr Phe Asn Ser Glu
 Leu Glu Glu Tyr Val Glu Ile Pro Ser Asp Asn Gly Ile
 Ser Phe Asn Val Gln Pro Lys Met Lys Ala Leu Glu Ile
 Gly Glu Lys Ala Arg Asp Ala Ile Leu Ser Arg Lys Phe
 Asp Gln Val Arg Val Asn Ile Pro Asn Gly Asp Met Val
 Gly His Thr Gly Asp Ile Glu (AS 370-441)
- Epitop 19: Ala Asp His Gly Asn Ala Glu Asp Met Val Lys Arg Asn Lys Glu Gly Glu Pro Leu Leu Asp Lys Asp Gly Lys Val (AS 472-497)
- Epitop 20: Leu Thr Ser His Thr Leu Gln Pro (AS 500-507)
- Epitop 21: Val Lys Phe Arg Lys Asp Val Pro Asn Gly Gly Leu (AS 521-532)
- Epitop 22: Val Ala Pro Asp Asp Tyr Glu Thr Thr Leu (AS 546-555)

Fig. 12a:

41/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Beifußpollen (Isoform Art6)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Ala Asp His Pro Lys (AS 11-15)

Epitop 2: Tyr Asn Cys Ile His Val Ala Glu Thr Pro Thr Met Asp Ser Leu Lys (AS 38-53)

Epitop 3: Asp His Trp Arg Leu Val Arg (AS 58-64)

Epitop 4: Phe Ala Gln Gly Ala Lys Leu Val Asp Gln (AS 94-103)

Epitop 5: Glu Ala Pro His Lys Phe Lys Asn Val Val Glu Ala Ile Lys Thr Leu Arg Gln Ala (AS 232-250)

Epitop 6: Arg Thr Phe Ala Cys Ser Glu Thr Val Lys (AS 352-361)

Epitop 7: Ser Glu Leu Glu Glu Tyr Val Glu (AS 379-389)

Epitop 8: Val Lys Met Ile Leu Asp Ala Val Glu Gln Val Gly Gly Ile (AS 452-465)

Epitop 9: Gly Gly Leu Ala Asn Val Ala Ala (AS 527-534)

Epitop 10: Asn Leu His Gly Phe Val Ala Pro Glu (AS 538-546)

Fig. 12b:

42/48

T-Zell Epitope von Kofaktor-unabhängiger Phosphoglyceratmutase (E.C. 5.4.2.1.) aus Beifußpollen (Isoform Art17)

Folgende T-Zell Epitope wurden bestimmt:

Epitop 1: Leu Ala Asp His Pro Lys (AS 12-17)

Epitop 2: Val Val Leu Asp Gly Trp Gly Glu Ala Ser (AS 26-36)

Epitop 3: Asp His Trp Arg Leu Val Arg (AS 60-66)

Epitop 4: Phe Ala Glu Thr Leu Glu Lys Asp Leu Ala (AS 182-191)

Epitop 5: Asn Asp Trp Asp Val Val (AS 218-223)

Epitop 6: Glu Ala Pro His Lys Phe Lys Ser Ala Val Glu Ala Ile Lys Lys Leu Arg Glu Ala Pro Asn (AS 234-254)

Epitop 7: Lys Phe Asp Arg Val (AS 306-310)

Epitop 8: -Asn Asn Gly Ile Arg Thr Phe-Ala Cys Ser Glu Thr Val Lys (AS 350-363)

Epitop 9: Ser Glu Leu Glu Glu Tyr Val Glu (AS 381-388)

Epitop 10: Asp Asp Ala Val Lys Met Ile Leu Asp Ala Ile Lys Glu Val Gly Gly (AS 451-466)

Epitop 11: Gly Gly Leu Ala Asn Val Ala Ala (AS 530-537)

Epitop 12: Asn Leu His Gly Phe Val Ala Pro Asp (AS 541-549)

7

Fig.13:

43/48

Sequenzvergleich von PGM-i aus Lieschgraspollen (Phl5, Phl1), Beifußpollen (Art6, Art17) und 5 Birkenpollen (bvmut)

Plurality: 2.00 Threshold: 1.00 AveWeight 1.00 AveMatch 0.54 AvMis-Match -0.40

PRETTY of: pat.msf(*) July 28, 1996 22:24 ..

```
1
                                                                  50
 pat.msf{Ph15}
               .....mTSW tlpDHPtLPK GKtVAVIVLD GWGEASaDQY NCIHrAETPV
 pat.msf{phll} .....maTSW tLpDHPtLPK GKtVAVIVLD GWGEASaDQY NCIHrAETPV
 pat.msf{Art6} MGSSG..fSW kLaDHPkLPK nKlVAmIVLD GWGEASPDkY NCIHVAETPt
pat.msf{Art17} MGSSGdkTtW kLaDHPkLPK GKmIAVVVLD GWGEASPDkY NCIHVAqTPV
               ......gGEAkPDQY NCIHVAETPt
pat.msf{bvmut}
    Consensus MGSSG--TSW -L-DHP-LPK GK-VAVIVLD GWGEASPDQY NCIHVAETPV
                                                                 100
               51
 pat.msf{Ph15} MDSLKNGAPE KWtLVkAHGT AVGLPsDDDM GNSEVGHNAL GAGRIFAQGA
 pat.msf{phll} MDSLKNGAPE KWtLVkAHGT AVGLPsDDDM GNSEVGHNAL GAGRIFAQGA
 pat.msf{Art6} MDSLKNGAPD hWRLVRAHGT AVGLPTEDDM GNSEVGHNAL GAGRIFAQGA
pat.msf{Art17} MySLKNsAPD hWRLVRAHGT AVGLPTDDDM GNSEVGHNAL GAGRIYAQGA
pat.msf{bvmut} MDSLKgGAPE KWRLVRAHGK AVGLPTEDDM GNSEVGHNAL GAGRIFAQGA
    Consensus MDSLKNGAPE KWRLVRAHGT AVGLPTDDDM GNSEVGHNAL GAGRIFAQGA
                                                                 150
               101
 pat.msf{Ph15} KLfDAALASG KIWEDEGFNY IKESFAeGTL HLIGLLSDGG VHSRLDQvQL
               KLFDAALASG KIWEDEGFNY IKESFAeGTL HLIGLLSDGG VHSRLDQvQL
 pat.msf{phl1}
               KLVDgALASG rIYEDEGFNY IKESFAtnTL HLIGLMSDGG VHSRLDQLQL
 pat.msf{Art6}
pat.msf{Art17}
               KLVDIALASG KIYDDEGFNY IKESFANNTL HLIGLMSDGG VHSRLDQLQL
pat.msf{bvmut} KLVDsALASG KIYEgEGFkY IKEcFenGTL HLIGLLSDGG VHSRLDQLQL
    Consensus KLVDAALASG KIYEDEGFNY IKESFA-GTL HLIGLLSDGG VHSRLDQLQL
                                                                 200
               151
 pat.msf{Ph15} LvKGASERGA KRIR1HILTD GRDVLDGSSV GFVETLENDL AQLREKGVDA
```

BNSDOCID -WO 070525842 1

Fig. 13: Fortsetzung

44/48

```
LVKGASERGA KRIRIHILTD GRDVLDGSSV GFVETLENDL AQLREKGVDA
pat.msf{phll}
 pat.msf{Art6}
                LLnGASERGA KKIRVHVLTD GRDVLDGSSV GFaETLEaEL ASLRSKGIDA
pat.msf{Art17}
               LLKGASERGA KKIRVHVLTD GRDVLDGSSV GFaETLEKDL AdLRSKGIDA
pat.msf{bvmut}
               LLKGASERGA KRIRVHILTD GRDVLDGSSV GFVETLENDL AKLREKGVDA
     Consensus
                LLKGASERGA KRIRVHILTD GRDVLDGSSV GFVETLENDL AOLREKGVDA
                201
                                                                    250
 pat.msf{Phl5}
                QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPYKFK SAIEAVKTLR
 pat.msf{phll}
                QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPYKFK SA1EAVKTLR
 pat.msf{Art6}
                QVASGGGRMY VTMDRYENDW EVVKIGWDAQ VLGEAPHKFK nvVEAIKTLR
pat.msf{Art17}
                QVASGGGRMY VTMDRYENDW DVVKRGWDAQ VLGEAPhKFK SAVEAIKKLR
pat.msf{bvmut}
                QIASGGGRMY VTMDRYENDW EVIKRGWDAH VLGEAPYKFK SAVEAVKKLR
     Consensus
                OVASGGGRMY VTMDRYENDW DVVKRGWDAO VLGEAPYKFK SAVEAVKTLR
                251
                                                                    300
 pat.msf{Ph15}
                aEPKANDOYL PaFVIVDESG KSVGPIVDGD AVVTFNFRAD RMVMLAKALE
 pat.msf{phll}
                aEPKANDQYL PaFVIVDESG KsVGPIVDGD AVViFNFRAD RMVMLAKALE
 pat.msf{Art6}
                qaPqANDQYL PPFVIVDDSG tPVGPVVDGD AVVTVNFRAD RMtMLAqALE
                eaPnANDOYL PPFVIVDESG KPVGPImDGD AVVTFNFRAD RMtiLAgALE
pat.msf{Art17}
                eElkvsDOYL PPFVIVDDnG KPVGPIVDGD AVVTinFRAD RMVMiAKALE
pat.msf{bvmut}
                -EPKANDOYL PPFVIVDESG KPVGPIVDGD AVVTFNFRAD RMVMLAKALE
     Consensus
                301
                                                                    350
 pat.msf{Ph15}
                FadFDKFDRV RVPKIKYAGM LQYDGELKLP NKFLVSPPLI ERTSGEYLVK
                FadFDKFDRV RVPKIKYAGM LOYDGELKLP NKFLVSPPLI ERTSGEYLVK
 pat.msf{phll}
                YEKFDKFDRV RFPKIRYAGM LQYDGELKLP NhYLVSPPLI DRTSGEYLVh
 pat.msf{Art6}
                YEKFDKFDRV RFPKIRYAGM LOYDGELKLP STYLVSPPLI ERTSGEYLVn
pat.msf{Art17}
                YENFDKIDRV RFPKIRYAGM LQYDGELKLP SHYLVePPeI ERTSGEYLVh
pat.msf{bvmut}
                YE-FDKFDRV RFPKIRYAGM LQYDGELKLP N-YLVSPPLI ERTSGEYLV-
     Consensus
                                                                    400
                351
 pat.msf{Phl5}
                NGVRTFACSE TVKFGHVTFF WNGNRSGYFD etkEEYIEIP SDSGITFNeQ
                NGVRTFACSE TVKFGHVTFF WNGNRSGYFd etkEEYIEIP SDSGITFNeQ
 pat.msf{phll}
                NGVRTFACSE TVKFGHVTFF WNGNRSGYFN SELEEYVEIP SDSGITFNVK
 pat.msf(Art6)
pat.msf{Art17}
                NGIRTFACSE TVKFGHVTFF WNGNRSGYFN SELEEYVEIP SDnGIsFNVQ
pat.msf{bvmut}
                NGVRTFACSE TVKFGHVTFF WNGNRSGYFN SELEEYVEIP SDSGITFNVQ
```

Fig.13:Fortsetzung

45/48

Consensus NGVRTFACSE TVKFGHVTFF WNGNRSGYFN SELEEYVEIP SDSGITFNVQ

	401				450
pat.msf{Phl5}	PKMKALEIAE	KTRDAILSGK	FDQVRINLPN	GDMVGHTGDI	EATVVACKAA
pat.msf{phll}	PKMKALEIAE	KTRDAILSGK	FDQVRINLPN	GDMVGHTGDI	EATVVACKAA
pat.msf{Art6}	PKMKALEIgE	KTRDAILSGK	FDQVRVNiPN	GDMVGHTGDV	EATVVACKAA
pat.msf{Art17}	PKMKALEIgE	KaRDAILSrK	FDQVRVNiPN	GDMVGHTGDI	EATVVACKAA
<pre>pat.msf{bvmut}</pre>		KTRDAILSGK			
Consensus	PKMKALEIAE	KTRDAILSGK	FDQVRVNLPN	GDMVGHTGDI	EATVVACKAA
	451				500
<pre>pat.msf{Ph15}</pre>	DEAVKIVLDA	VEQVGGIYIV	TADHGNAEDM	VKRNKSGQPa	LDKsGSIQIL
<pre>pat.msf{phll}</pre>	DEAVKIVLDA	VEQVGGIYIV	TADHGNAEDM	VKRNKSGQPa	LDKsGSIQIL
<pre>pat.msf{Art6}</pre>	DEAVKMILDA	VEQVGGIYVV	TADHGNAEDM	VKRNKkGePL	L.KdGeVQIL
pat.msf{Art17}		IkeVGGIYVV			
<pre>pat.msf{bvmut}</pre>	DEAdKMILDA	IEQVGGIYVV	TADHGNAEDM	VKRNKSVQPL	LDKnGn1QVL
Consensus	DEAVKMILDA	VEQVGGIYVV	TADHGNAEDM	VKRNKSGQPL	LDK-GS-QIL
	501				550
<pre>pat.msf{Ph15}</pre>		AIGGPGLhpG			
<pre>pat.msf{phll}</pre>		AIGGPGLhpG			
<pre>pat.msf{Art6}</pre>		AIGGPGLsaG			
<pre>pat.msf{Art17}</pre>		AIGGPGLaaG			
<pre>pat.msf{bvmut}</pre>		AIGGPaLasG			
Consensus	TSHTLQPVPV	AIGGPGLG	VKFRKD-PTG	GLANVAATVM	NLHGF-APDD
		61			
<pre>pat.msf{Ph15}</pre>	YETTLIEVaD) K			
<pre>pat.msf{phl1}</pre>	YETTLIEVaC) К			
<pre>pat.msf{Art6}</pre>	YETTLIEVVE				
<pre>pat.msf{Art17}</pre>	YETTLIEVVO				
<pre>pat.msf{bvmut}</pre>	YEpTLIEIV) n			
Consensus	YETTLIEVVO	K			

WO 97/05258 PCT/AT96/00141

46/48
Fig. 14: Plaquelifts von Klon Phl1 codierend für Lieschgras PGM-i getestet mit Patientensera (A) und BIP3 (B).

Sera von allergischen Patienten (SS, HP, KG) Serum eines nicht-allergischen Donors (NHS) Kontrollfilter ohne BIP3 (C)

 \mathbf{A}

B

BIP3

47/48

Fig. 15: Plaquelifts von Klon Phl5 codierend für Lieschgras PGM-i getestet mit Patientensera (A) und BIP3 (B).

Sera von allergischen Patienten (SS, HP, KG) Serum eines nicht-allergischen Donors (NHS) Kontrollfilter ohne BIP3 (C)

 \mathbf{A}

B

BIP3

WO 97/05258 PCT/AT96/00141

48/48

Fig. 16: Plaquelifts von Klon Art17 codierend für Beifuß PGM-i getestet mit Patientensera (A) und BIP3 (B).

Sera von allergischen Patienten (SS, HP, KG)

Sera von allergischen Patienten (SS, HP, KG) Serum eines nicht-allergischen Donors (NHS) Kontrollfilter ohne BIP3 (C)

A

 \mathbf{B}

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

fects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)