

CanSat 2021 Preliminary Design Review (PDR)

Team 5 - MapleCan:

Mathieu Udriot
Christopher Hémon
Pierre Groslambert
Filip Slezák
César Toussaint

Presentation Outline

- Team and Mission
- The MapleCan
- Budgets

Presenter: Filip

- CanSat Integration and Test Planning
- Conclusion
- PDR data package

Presenter: Filip

Team and Mission

- Team Organigram
- Mission Statement
- Launch ConOps

Team Organization

Filip Slezák **Mechatronics engineer**

ROB MA1 (SE minor)

Pierre Groslambert **CAD engineer**

ROB MA3 (Space Tech.)

César Toussaint Composite engineer

GM MA1 (Space Tech.)

Christopher Hémon Payload engineer

ROB MA1 (SE minor)

Mathieu Udriot **Electronics engineer**

MT MA3 (Space Tech.)

Presenter: Filip

Mission Statement

- Map the air temperature as a function of the altitude.
- Compare GPS vs barometric altitude measure.
- Learn more about the development of a space project.

Presenter: Filip

Mission Concept of Operations

Presenter: Pierre

The MapleCan

- System Overview
- Subsystems Descriptions
- Concept Design

System Overview

Mission (L1)	Systems (L2)	Subsystems (L3)	Explanation
CSC			CanSat Competition
ALL			All systems
\hookrightarrow	MC		MapleCan Satellite
\hookrightarrow	\hookrightarrow	AV	Avionics
\hookrightarrow	\hookrightarrow	PWS	Power Supply
\hookrightarrow	\hookrightarrow	COM	Telecommunications
\hookrightarrow	\hookrightarrow	PRM	Payload Release Mechanism
\hookrightarrow	\hookrightarrow	RE	Recovery
\hookrightarrow	\hookrightarrow	VID	Video Camera
\hookrightarrow	SP		Science Payloads
\hookrightarrow	\hookrightarrow	PWS	Power Supply
\hookrightarrow	\hookrightarrow	COM	Telecommunications
\hookrightarrow	\hookrightarrow	RE	Recovery
\hookrightarrow	\hookrightarrow	AV	Avionics
\hookrightarrow	GS		Ground Station
\hookrightarrow	\hookrightarrow	GSW	Ground Software
\hookrightarrow	\hookrightarrow	COM	Telecommunications

Concept Design: MapleCan

Mechanical Subsystem Overview

Presenter: Pierre

- PCBs are inserted from the top and screwed in the support rings
- Seeds and Batteries are integrated outside of the Can
- Whole lower
 assembly is then
 screwed in the
 bottom support ring

Presenter: Pierre

Payload Release Mechanism

- Nichrome wire burnt when ordered to by the OBC
- Gravity and inertial forces take care of the separation

Avionics

On Board Computer

Arduino - Micro : with internal homemade voltmeter circuit.

Barometer

Absolute, thin-metal wall pressure sensor → best for vibrations

Memory

 Micro SD card and Arduino adapter → For internal data conservation and video recording.

GPS

COTS "Sparkfun GPS" with integrated receiver, board and arduino compatibility

Switch

"Microrupteur", small button press, same as in payloads

Telecommunication

Telecommunication Board

Digi Xbee 3 telecom board

Antennas

Presenter: Christopher

 Two Low Power Radio Solutions in the Can → redundancy and seeds on different sides

Ground Station

 Uses the same Xbee board and LPRS Private Mobile Radio to communicate with Can.

Concept Design : Zoom on PCBs

Concept Design: MapleSeed

Concept Design: MapleSeed

On Board Computer

- Arduino Nano
- Xbee 3 telecom board
- Digi-Key 3 axis accelerometer IMU

Antenna

Spiral Antenna and arduino compatible chip

Barometer

Absolute, thin-metal wall pressure sensor → Best for vibrations

Thermometer

Thermocoupler → Best resistance to vibrations

Switch

"Microrupteur", small button press, same as in MapleCan

Recovery

Parachute

Fruity Chute CFC-12

Swivel

To isolate parachute and can rotation → limit video rotation

Camera

- 170° Wide angle lense
- 1280x1024 pixels

Audio Beacon

Piezo Buzzer Indicator with max 95dB

Descent Control Overview

Container Descent Control:

- → Fruity Chute CFC-12
- \rightarrow 12" diameter & Cd of 1.50
- \rightarrow 9.60[m/s] descent rate at 605[g]
- \rightarrow 9.02[m/s] descent rate at 535[g]

Payload Descent Control:

 \rightarrow 15m/s max

Presenter: Christopher

→ Extensive test phase with 3D printed prototypes

Fruity Chutes Descent rate calculator

Presenter: Christopher

Ground Station User Interface

Budgets

- Preliminary Mass Budget
- Preliminary Container Energy Budget
- Preliminary Payload Energy Budget
- Preliminary Cost Budget

Mass Budget Mass requirement of 600g

Component	Number	Mass [g]	Contingency [%]	Mass w. Contingency [g]
Structure (Phenolic+Supports)	1	302	10	332
CFC-12 parachute	1	37	20	44
Antenna	2	8	10	18
PCB	3	23	10	77
OBC	1	25	10	28
Seed	2	45	10	100
Camera	1	10	10	11
Screws & Glue	1	20	10	22
TOTAL				632 [g]
Contingency	10 %			
TOTAL w. Contingency				695 [g]
				95 [g]

Container Energy Budget Autonomy of 2 hours required*

Number	Energy [Wh]	Contingency [%]	Energy w. Contingency [Wh]	
1	0,7	10	0,77	
1	1,58	10	1,74	
2	17	10	18,5	
1	1,8	10	1,9	
1	0,58	10	0,64	
1	0,825	10	0,908	
TOTAL				
Contingency				
TOTAL w. Contingency				
VTC6 18650, 3000mAh*3,6V = 10,8 Wh \rightarrow 3 batteries				
	1 1 2 1 1	Number [Wh] 1 0,7 1 1,58 2 17 1 1,8 1 0,58 1 0,825	Number [Wh] [%] 1 0,7 10 1 1,58 10 2 17 10 1 1,8 10 1 0,58 10 1 0,825 10	

* Buzzer needs an autonomy of 10h

Presenter: César

Payload Energy Budget Autonomy of 2 hours required

Component	Number	Energy [Wh]	Contingency [%]	Energy w. Contingency [Wh]
Arduino - Nano	1	0,4	10	0,44
Xbee 3	1	0,16	10	0,18
RS PRO - thermometer	1	-	-	-
BMP388 - barometer	1	-	-	-
LoRa1278 - RF Antenna	1	0,9	10	1
Digi-Key 1041-ND IMU	1	-	-	-
TOTAL	1,62 [Wh]			
Contingency				20 %
TOTAL w. Contingency				1,95 [Wh]
CR3032, 500mAh*3V = 1,5 Wh \rightarrow 2 batteries				1,05 [Wh]

Cost Budget Cost requirement of max 865 CHF

Component	Number	Cost [CHF]	Contingency* [%]	Cost w. Contingency [CHF]
CFC-12 parachute	1	50	50	75
MapleCan Electronics	1	150	50	225
MapleSeed Electronics	2	70	50	210
MapleCan Materials	1	50	50	75
MapleSeed Materials	2	4	50	12
TOTAL	597 [CHF]			
Contingency	10 %			
TOTAL w. Contingency				657 [CHF]
*shipping fees unknown				208 [CHF]

CanSat 2021 PDR: Team 5 MapleCan 24

CanSat Integration and Test Planning

- Schedule
- Tests planning

Presenter: Mathieu

Program Schedule and Tests Overview

CanSat Design Selection Tests

Multi-Attributes Utility Analysis Results

CanSat Design Selection Tests

Tests/Investigations needed to select the last alternatives:

- Can material (3D printed polymer vs phenolic)
- Seed material (Polystyrene vs 3D printed polymer)
- Seed power supply (Solar vs Battery)

First Nichrome tests as proof of concept for release mechanism

Subsystem Level Testing Plan

Tests for different components and interfaces

- Sensors (measurements in lab conditions)
- CDH (measurements in lab conditions)
- EPS (autonomy)
- FSW (simulations to test software behavior)

Integrated Level Functional Test Plan

Test after manufacturing of main components

Integration (fit) tests using a mock PL section

- Release Mechanism activation (on ground)
- Telemetry communication
- Descent rate → drop test from Sauvabelin tower (35m)

Environmental Test Plan

Feb	Mar	Apr	May	Jun
Env. Test	Procedures			
		Drop Test		<u>.</u>
		Thermal Test		date
		Vibration Test		ınch
		Vacuum Test		Lau

- Drop test (30G) to make sure release mechanism holds the parachute opening shock
- **Thermal test** (60C for a period of 2 hours in a thermal chamber)
- Vibrations tests (0 Hz to 233 Hz using an orbit sander, generating about 20 to 29 Gs)
- Vacuum Test (simulates the drop in pressure during the flight using a vacuum cleaner)

Conclusions

- Design phase in progress
- Fulfilled the team charter objectives
 - Team work, communication
 - ENG-421 course theories
 - Strong work ethics
 - Core value : simply have fun

 Applied some learned concepts to our respective interdisciplinary projects (Rocket Team, Spacecraft Team)

Questions Time!

PDR Technical Data Package

- Acronyms
- Stakeholders Analysis
- Driver requirements
- Mind map
- OPD & OPL
- Pugh matrices
- Multi-Attributes Utility Analysis
- Risk Analysis

Acronyms

AV	Avionics	MA	Master Degree
CAD	Computer Aided Design	MC	MapleCan
CDH	Commands and Data Handling	MT	Micro Engineering
COM	TeleCommunication	PCBs	Printed Circuit Boards
CSC	CanSat Competition	PDR	Preliminary Design Review
EPS	Electric Power Supply	PL	Payload
FSW	Flight SoftWare	PRM	Payload Release Mechanism
GM	Mechanical Engineering	RE	Recovery
GS	Ground Segment	SE	System Engineering
GSW	Ground Station SoftWare	VID	Video Camera
CSCG	CanSat Competition Guide		

Stakeholders Analysis Value network

Driver Requirements 1/2

Mission Objectives

- The container shall include a pressure sensor to measure altitude +/- 3 meters.
- The container shall include a GPS sensor to track its position.
- The science payload shall measure altitude +/- 3 meters.
- The science payload shall measure air temperature +/- 1 degrees celsius.

Performance

- The container parachute shall open immediately when deployed from the rocket.
- The descent rate of the cansat shall be 12 meters/second +/- 5m/s.
- The science payload shall descend spinning passively like a maple seed with no propulsion.
- The science payload shall have a descent rate comprised between 18 and 20 m/s.

Structural Constraints

- The container shall be solid and fully enclose the science payloads.
- The cansat shall weight no more than 570 grams.
- The cansat shall fit in a cylindrical envelope of 125 mm diameter x 400 mm length.

Energy

- The cansat shall operate for a minimum of 2h when integrated into the rocket.

Driver Requirements 2/2

Telemetry

- The ground station shall command the cansat to start transmitting telemetry prior to launch.
- The science payloads shall start transmitting telemetry after commanded to do so by the container.
- The science payload telemetry shall be transmitted to the container only.
- The container shall transmit its telemetry and the payload telemetry received once per second in the format described in the CSCG Section 3.3.

Environment

 The cansat must operate during the environmental tests laid out in Section 3.5 of the CSCG.

Recovery

- The container shall include an audio beacon.
- The container shall be colored fluorescent orange.
- The wing of the science payload shall be colored fluorescent, one in pink and the other one in green.

Ground Station

All telemetry shall be displayed in real time during descent on the ground station.

Concept Generation Mind Map

OPD MapleCan

OPL MapleCan 1/2

Release Mechanism can be triggered or closed.

Avionics can be on or off.

Battery can be on or off.

Maple Payloads can be in or out.

Sensors Data is informatical.

Container consists of Avionics, Battery, Camera, Parachute, Phenolic Structure, and Release Mechanism.

Avionics consists of Antenna, Micro-controller, and Sensors.

State Estimation is informatical.

Powers requires Battery.

Powers affects Avionics and Camera.

Releases changes Maple Payloads from in to out.

Releases requires Release Mechanism at state triggered.

Generates consumes Sensors.

Generates yields Sensors Data.

Processing requires Micro-controller.

Processing consumes Sensors Data.

Processing yields State Estimation.

Activates Nichrome Wire changes Release Mechanism from closed to triggered.

Activates Nichrome Wire requires State Estimation.

Activates Nichrome Wire consumes Micro-controller.

OPL MapleCan 2/2

Slows Down requires Parachute.

Slows Down affects Container.

Launches requires Launch Vehicle.

Launches affects Container.

Activates changes Battery from on to off.

Activates requires Maplecan Team Member.

Commands changes Avionics from on to off.

Commands requires Ground Station.

Stabilises requires Swivel.

Stabilises affects Container.

Facilitates Ground Recovery requires Audio Beacon and Camera.

Facilitates Ground Recovery affects Container.

Receives requires Antenna.

Receives affects Science Payload Data.

Generates consumes Maple Payloads.

Generates yields Science Payload Data.

Downlink requires Antenna.

Downlink affects Ground Station.

Downlink consumes Sensors Data.

Processes Data consumes Ground Station.

OPD Seed PL

OPL Seed PL

Maple Payloads can be in or out.

Maple Payloads consists of 3d Printed Wings, Avionics, and Battery.

Avionics consists of Antenna and Sensors.

Sensors Data is informatical.

Releasing changes Maple Payloads from in to out.

Releasing requires Release Mechanism.

Slowing Down requires 3d Printed Wings.

Slowing Down affects Maple Payloads.

Powering requires Battery.

Powering affects Avionics.

Sensing requires Sensors.

Sensing yields Sensors Data.

Transmitting requires Antenna.

Transmitting affects Container's Antenna.

Transmitting consumes Sensors Data.

Subsystem Level Selections 1/8

Eight **Pugh matrices** done to compare subsystems' alternatives and generate system concept architectures

Criteria/alternatives	1	2	3
Seed Deployment	Servo + rack	Servo + string	Nichrome Wire
Cost	-	-	Datum
Mass	2	21	Datum
Development Time	-	-	Datum
Development Simplicity	0	0	Datum
Reliability	0	-	Datum
Testing Ease	+	0	Datum
Sum	-2	-4	Datum

Table 1: Pugh Matrix: Seed Deployment.

Subsystem Level Selections 2/8

Criteria/alternatives	1	2	3	4	5	6
MapleCan Spin sta- bilization	Fins + CM position	Inertial wheel	Fans (drone propellers)	Cold gas Thrusters	Simple swivel	Software stabilization
Cost	+	Datum	+		+	-
Development Time	+	Datum	-	-	+	
Mass	+	Datum	0	0	+	+
Complexity	0	Datum	_	-	+	_
Volume	0	Datum	0	1	+	+
Correction Range	-	Datum	+	+	=	0
Sum	+2	Datum	0	-3	+4	-1

Table 2: Pugh Matrix: MapleCan Spin stabilization.

Subsystem Level Selections 3/8

Criteria/alternatives	1	2	3	4	5	6
MapleCan Materials	Sheet Metal	Composites	Polymers (bulk)	Phenolic Kraft	Wood and aero covers	Polymers (3D printed)
Cost	=01		=	Datum	0	+
Mass	-	0	0	Datum	-	+
Young modulus	+	+	-	Datum	-	-
Resilience	+	+	+	Datum	-	-
Manufacturing Ease	-	-	0	Datum	0	+
Sum	-1	0	-1	Datum	-3	+1

Table 3: Pugh Matrix: MapleCan Materials.

Subsystem Level Selections 4/8

Criteria/alternatives	1	2	3	4
MapleCan Power	Wind Turbine	Battery	Radioisotope Thermoelectric Generator	Solar cells
Cost	0	Datum	-	0
Mass	-	Datum	-	
Volume	-	Datum	-	-
Development Time	-	Datum	-	-
Capacity	-0	Datum	+	-
Sum	-4	Datum	-3	-4

Table 4: Pugh Matrix: MapleCan Power.

Subsystem Level Selections 5/8

Criteria/alternatives	1	2	3
Descent speed control	Parachute	"Helicopter" blades	Propulsive Braking
Cost	Datum	0	-
Mass	Datum	-	-
Development Time	Datum	-	-
Reliability	Datum	0	+
Energy need	Datum	-	-
Testing time	Datum	0	-
Complexity	Datum	-	-
Sum	Datum	-4	-5

Table 5: Pugh Matrix: MapleCan Descent speed control.

Subsystem Level Selections 6/8

${\bf Criteria/alternatives}$	1	2	3	4
MapleCan Ground Recovery	Smoke Generator	r Audio Beacon Helium Balloon Inflator		K-9 and drugs
Cost	-	Datum	-	-
Complexity	-	Datum	-	-
Feasability	-	Datum	-	-
Effectiveness	+	Datum	+	+
Energy need	-	Datum	-	+
Sum	-3	Datum	-3	-1

Table 6: Pugh Matrix: MapleCan Ground Recovery.

Subsystem Level Selections 7/8

Criteria/alternatives	1	2	3	4	5
Seed Material	Molded Polymer	Sheet Metal	Polystyrene	Composites (foam core)	Polymer (3D printed)
Cost	-	(=)	+	Datum	+
Mass	2	21	+	Datum	0
Young Modulus	-	0	:=:	Datum	-
Resilience	+	+	_	Datum	_
Manufacturing Ease	-	0	+	Datum	+
Sum	-3	-1	+1	Datum	0

Table 7: Pugh Matrix: Seed Material.

Subsystem Level Selections 8/8

Criteria/alternatives	1	2	3	4
Seed Power	Solar	Battery	Capacitor	Dynamo
Cost	+	s=	Datum	+
Mass	-	_	Datum	-
Volume	-	0	Datum	-
Development Time	-	+	Datum	-
Capacity	0	+	Datum	0
Sum	-2	0	Datum	-2

Table 8: Pugh Matrix: Seed power.

Multi-Attributes Utility Analysis 1/5

Alternatives

Generated thanks to Pugh matrices, by focusing on one attribute at a time (e.i. best in terms of cost or development time)

		Seed Deployment	Spin stabilization	Materials	Power	Descent control	Ground RE	Seed Material	Seed Power
1	Datum	Nichrome Wire	Inertial wheel	Phenolic	Battery	Parachute	Audio Beacon	Composites (foam core)	Capacitor
2	Pugh best aggregate (the one with the most +)	Nichrome Wire	Simple Swivel	Polymers (3D printed)	Battery	Parachute	Audio Beacon	Polystyrene	Capacitor
3	Pugh cost	Nichrome Wire	Simple Swivel	Polymers (3D printed)	Battery	Parachute	Audio Beacon	Polystyrene	Solar
4	Pugh dev time	Nichrome Wire	Simple Swivel	Phenolic	Battery	Parachute	Audio Beacon	Polymer (3D printed)	Battery
5	Pugh state-of-the-Art (unlimited time and money)	Servo + Rack	Cold gas Thrusters	Composites	RTG	Propulsive Braking	Helium Balloon Inflator	Molded Polymer	Solar

Multi-Attributes Utility Analysis 2/5 Weighted Attributes Averaging Matrix

Weighting of Evaluation Criteria Only change numbers above diagonal line Markings: + 3 = Y is much more important than X + 2 = Y is more important than X + 1 = Y is slightly more important than X + 0 = Y is as important as than X / Not Applicable - 1 = Y is slightly less important than X - 2 = Y is less important than X - 3 = Y is much less important than X	Cost (SIB)	dev time(SIB)	mission safety (LIB)	testing ease (LIB)	innovation (LIB)	complexity (SIB)		SUM	
Cost (SIB)		1	2,5	-0,25	-1,5	-1,5	0	0,25	
dev time(SIB)			2,25	-0,5	-1	-0,5	0	0,25	
mission safety (LIB)				-2,25	-3	-2,75	0	-8	
testing ease (LIB)					-1	0,25	0	-0,75	
innovation (LIB)						1,5	0	1,5	
complexity (SIB)							0	0	
								0	
SUM LINE	0	1	4,75	-3	-6,5	-3	0		
RANK	3	2	1	4	6	5			
Adjusted Importance in %	16%	18%	31%	14%	8%	13%	0%	∑ =	100%

Multi-Attributes Utility Analysis 3/5

Weighted Attributes*

Attribute	Cost	Dev. Time	Mission safety	Testing Ease	Innovation	Complexity
Weights k_i [%]	16	18	31	14	8	13
Rank	3	2	1	4	6	5

Scoring scales for attributes with arbitrary units

mission safety			complexity
	5 : very easy	5 : very innovative	5 : very complex
4:99-100%	4 : easy	4 : innovative	4 : complex
3 : 90-99 %	3 : no problem	3 : recent tech	3 : no problem
2:60-90 %	2 : challenging	2 : old tech	2 : simple
1:0-60 %	1 : very challenging	1 : very old tech	1 : very simple

Multi-Attributes Utility Analysis 4/5

Scoring of the Alternatives

	Cost	dev time	mission safety	testing ease	innovation	complexity
	\$	weeks	a.	a.	a.	a.
	SIB	SIB	LIB	LIB	LIB	SIB
Datum	880	25	3	2	3	4
Pugh best aggregate (the one with the most +)	420	22	3	5	2	3
Pugh cost	390	22	4	5	3	4
Pugh dev time	450	20	4	4	2	2
Pugh state-of-the-Art (unlimited time and money)	1,00E+09	500	4	1	4	5

Multi-Attribute Utility Analysis 5/5 Aggregate Utility Function

Mission Risk analysis 1/3

Risk	Probability %	Consequence max 100	Severity max 100	Mitigation
Readiness for competition	5.00	100	5	Intermediate evaluation milestones set MapleSat to success, make sure to pass them in time.
Funding problem	1.00	100	1	MapleSat cost is limited to \$1000 by requirement. Start saving for the flight tickets.
Materials will fail	2.00	85	1.7	Frequently check for failures and take a 10-15% margin on requirements.
Structure will collapse on take off	8.00	90	7.2	Extensive testing/simulations.
Electronics will short circuit etc.	8.00	90	7.2	Encapsulate the box, plan for redundancy.
Sensors might not work	8.00	90	7.2	Buy reliable components and test for failures.
MapleSat will run out of power	2.00	100	2	Charge batteries before tests and launch, have a battery voltage sensor and a lower consumption mode?
Environmental issues (humidity, temperature etc.)	2.00	70	1.4	Cover all aspects/combos during planning/testing. Worst case scenario, MapleSat has a short flight anyway and launch will be aborted if conditions aren't good. Seal the can.

Mission Risk analysis 2/3

MapleSat will get stuck in rocket	1.00	100	1	Avoid having anything sticky near the MapleSat when possible. Choose low friction/undeformable materials.
MapleCan parachute problem	2.00	100	2	Make a lot of experiments.
MapleCan won't fulfill in-flight requirements e.g. descent rate, video stabilization etc.	8.00	40	3.2	We will be penalized but mission data might still be good. Take some 10-15% margin on requirements. Apply software corrections where possible, maybe even post-mission. Have ideas of how exactly ready/trained.
MapleCan won't release MapleSeeds	6.00	100	6	This will be extensively tested for but maybe have a backup emergency mechanism triggerable from the ground station or when problem is detected to open up the MapleSat entirely and hope.
MapleCan communication will fail	12.00	80	9.6	Ask for advice with this, educate ourselves. Have an ACK signal?
MapleCan won't be recovered	3.00	70	2.1	Play hide and seek to test recovery system efficiency.

Mission Risk analysis 3/3

MapleSeed won't fulfill in-flight requirements e.g. descent rate	12.00	30	3.6	We will be penalized but mission data might still be good, losing one of the two seeds wouldn't be catastrophic. Take some 10-15% margin on requirements.
MapleSeed communication will fail	20.00	80	16	Ask for advice with this, educate ourselves. Have an ACK signal? Evaluate the conditions for the transmission to take place and release seeds to minimise failure probability. Choose to emit in a larger cone.
MapleSeed won't be recovered	12.00	40	4.8	Use camera footage to determine landing sites/flight directions.
Last minute problem won't be located on time	70.00	85	59.5	Have a backup system/components and tools. Have an automated testing procedure.

The risk analysis performed for the project allowed us to highlight the issues that could arise and categorize them with a **severity** score that is the product of the **probability** and the **consequence**. To lower problematic risks (those with the higher scores) we would have to work on lowering either or both the probability and the consequence. We also propose ways to mitigate those risks.