March 24, 2020

Optimization

```
# Create the function
f <- function(x) {</pre>
  return ((1 + x)^2)
}
# Create derivative
fp <- function(x) {</pre>
  return(2 * (1 + x))
par(mfrow = c(1, 1))
# Plot function and derivative
x \leftarrow seq(-5, 5, 0.1)
plot(x, f(x), type = 'l', lwd = 2,
     main = f(x) and f'(x),
     cex.main = 0.8,
     cex.lab = 0.8,
     cex.axis = 0.8)
grid()
lines(x, fp(x), lty = 3, lwd = 2)
abline(h = 0)
abline(v = 0)
```

f(x) and f(x)

Newton's Method

```
f <- function(x) {</pre>
    return(x^2 - 4 * x + 1)
}
uniroot(f, c(-8, 1))
$root
[1] 0.2679509
$f.root
[1] -6.068318e-06
$iter
[1] 10
$init.it
[1] NA
$estim.prec
[1] 6.103516e-05
uniroot(f, c(-1, 2))
$root
[1] 0.2679363
$f.root
[1] 4.455014e-05
$iter
[1] 6
$init.it
[1] NA
$estim.prec
[1] 6.103516e-05
# Newton's method with first order approximation
newton <- function(f, tol = 1E-12, x0 = 1, N = 20) {
  # N = total number of iterations
 # x0 = initial guess
 \# tol = abs(xn+1 - xn)
```

```
# f = function to be evaluated for a root
  h < -0.001
  i <- 1; x1 <- x0
  p <- numeric(N)</pre>
  while( i <= N ) {</pre>
    df_dx \leftarrow (f(x0 + h) - f(x0)) / h
    x1 \leftarrow (x0 - (f(x0) / df dx))
    p[i] <- x1
    i <- i + 1
    if( abs(x1 - x0 < tol)) {
      break
    }
    x0 <- x1
  }
  return(p[1:(i-1)])
}
newton(f, x0 = -10)
[1] -4.1247552 -1.3070553 -0.1069219 0.2346811 0.2676451 0.2679493 0.2679492
newton(f, x0 = 10)
[1] 6.187738
newton(f, x0 = 0.25)
[1] 0.2678622 0.2679492 0.2679492
```

Symbolic Math

```
# Create an expression
e <- expression(sin(x))

D(e, "x")

cos(x)

f_expr <- expression(x ^ 2 + 4 * x - 1)

eval(f_expr, list(x = 2))

[1] 11

newton_alternate <- function(f, tol = 1E-12, x0 = 1, N = 20) {
    # N = total number of iterations</pre>
```

```
# x0 = initial guess
  \# tol = abs(xn+1 - xn)
  # f = expression to be evaluated for a root
  # Compute the symbolic derivative
  df_dx = D(f, "x")
  i <- 1; x1 <- x0
  p <- numeric(N)</pre>
  while (i \le N) {
    x1 \leftarrow (x0 - eval(f, list(x = x0)) /
      eval(df_dx, list(x = x0)))
    p[i] <- x1
    i <- i + 1
    if (abs(x1 - x0) < tol) {
      break
    x0 <- x1
  return(p[1:(i-1)])
newton_alternate(f_expr, x0 = 10)
```

[1] 4.2083333 1.5068512 0.4663159 0.2468156 0.2360937 0.2360680 0.2360680 [8] 0.2360680

Brute Force

```
# Create a set of random ponits x
set.seed(123)

x <- rnorm(100, 0, 1)

# Make y a function of x
y <- 3.2 + 2.9 * x + rnorm(100, 0, 0.1)

plot(x, y)</pre>
```



```
objective_function <- function(y, x, a, b) {
  value <- sum((y - (a * x + b)) ^ 2)
  return(value)
}
# Create a range of a and b values and loop through all of them
a \leftarrow seq(-10, 10, 0.25)
b \leftarrow seq(-10, 10, 0.25)
output <- list()</pre>
z < -1
for(i in 1:length(a)) {
  for(j in 1:length(b)) {
    output[[z]] <- c(objective_function(y, x, a[i], b[j]),</pre>
                       a[i], b[j])
    z < -z + 1
  }
}
# Create a matridx out of the list and find the minimum value
mat <- do.call(rbind, output)</pre>
colnames(mat) <- c("obj", "a", "b")</pre>
smallest <- which(mat[, "obj"] == min(mat[, "obj"]))</pre>
mat[smallest, ]
                           b
     obj
                 а
```

```
2.324319 3.000000 3.250000
a \leftarrow seq(-5, 5, 0.1)
b \leftarrow seq(-5, 5, 0.1)
output <- list()</pre>
z <- 1
for(i in 1:length(a)) {
  for(j in 1:length(b)) {
    output[[z]] <- c(objective_function(y, x, a[i], b[j]),</pre>
                       a[i], b[j])
    z < -z + 1
  }
}
# Create a matridx out of the list and find the minimum value
mat <- do.call(rbind, output)</pre>
colnames(mat) <- c("obj", "a", "b")</pre>
smallest <- which(mat[, "obj"] == min(mat[, "obj"]))</pre>
mat[smallest, ]
      obj
0.9372788 2.9000000 3.2000000
```

R Optimization

```
args(optim)

function (par, fn, gr = NULL, ..., method = c("Nelder-Mead",
    "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"), lower = -Inf,
    upper = Inf, control = list(), hessian = FALSE)

NULL
```

Curve-fitting

```
plot(maturities, rates,
     xlab = "years",
     main = "Yields",
     cex.main = 0.8,
     cex.lab = 0.8,
     cex.axis = 0.8)
grid()
poly_5 <- function(x, p) {</pre>
  f \leftarrow p[1] + p[2] * x + p[3] * x^2 +
    p[4] * x^3 + p[5] * x^4 + p[6] * x^5
  return(f)
}
obj_5 <- function(x, y, p) {
  error \leftarrow ( y - poly_5(x, p))^2
 return(sum(error))
}
# Fit the paramters. Assume 0 for all inital values
out_5 \leftarrow optim(obj_5, par = c(0, 0, 0, 0, 0),
               x = maturities, y = rates)
out_5
$par
[1] 2.430124e-02 1.313895e-03 5.522933e-04 7.568574e-07 -4.211948e-06
[6] 1.533096e-07
$value
[1] 0.0001731166
$counts
function gradient
     501
               NA
$convergence
[1] 1
$message
NULL
lines(poly_5(maturities, out_5$par), lwd = 1.5, lty = 2, col = "darkblue")
```



```
plot(maturities, rates,
     xlab = "years",
     main = "Yields",
     cex.main = 0.8,
     cex.lab = 0.8,
     cex.axis = 0.8)
grid()
poly_7 <- function(x, p) {</pre>
  f \leftarrow p[1] + p[2] * x +
    p[3] * x^2 + p[4] * x^3 +
    p[5] * x^4 + p[6] * x^5 +
    p[7] * x^7
  return(f)
}
obj_7 <- function(x, y, p) {
  error \leftarrow (y - poly_7(x, p))^2
  return(sum(error))
}
# Fit the parameters. Assume 0 for all initial values.
out_7 \leftarrow optim(obj_7, par = c(0, 0, 0, 0, 0, 0, 0),
                x = maturities, y = rates)
lines(poly_7(maturities, out_7$par), lwd = 1.5, lty = 3, col = "darkred")
```

9


```
# Specify two polynomials to be used for fitting purposes.
poly 5 <- function(x, a) {</pre>
  f \leftarrow a[1] + a[2] * x + a[3] * x^2 +
    a[4] * x^3 + a[5] * x^4 +
    a[6] * x^5
  return(f)
}
poly_3 <- function(x, offset, intercept, b) {</pre>
  f \leftarrow intercept + b[1] * (x - offset) +
    b[2] * (x - offset)^2 +
    b[3] * (x - offset)^3
}
obj_3_5 <- function(x, y, offset, p) {
  # All points are at infinity initially
  fit <- rep(Inf, length(x))</pre>
  ind_5 \leftarrow x \leftarrow offset
  ind_3 \leftarrow x > offset
  fit[ind_5] <- poly_5(x[ind_5], p[1:6])
  fit[ind_3] <- poly_3(x[ind_3], offset,</pre>
    poly_5(offset, p[1:6]), p[7:9])
  error <- (y - fit) ^ 2
  return(sum(error))
}
```

```
# Fit the parameters. Assume 0 for all initial values
offset <- 9
out_3_5 \leftarrow optim(obj_3_5, par = rep(0, 9),
  x = maturities, y = rates, offset = offset)
plot(maturities, rates, xlab = "years",
  main = "Yields",
  cex.main = 0.8,
  cex.lab = 0.8,
  cex.axis = 0.8)
grid()
lines(poly_5(maturities[maturities <= offset],</pre>
  out_3_5par[1:6]), lwd = 2)
lines(c(rep(NA, offset),
  poly_3(maturities[maturities > offset], offset,
  poly_5(offset, out_3_5$par[1:6]),
  out_3_5par[7:9])), lwd = 2)
abline(v = offset)
```



```
# Fit loess to the data
obj <- loess(rates ~ maturities, span = 0.5)

# Plot the data and the fit
plot(maturities, rates, main = "Rates", cex.main = 0.8)
lines(predict(obj), lty = 2)</pre>
```

```
# Drawdown function
compute drawdown <- function(x, returns default = TRUE,</pre>
  geometric = TRUE) {
  \# x = Vector \ of \ raw \ pnl \ or \ returns
  # If returns_default = FALSE, the geometric
  # argument is ignored and the pnl is used.
  # Output = the maximum drawdown
  if(returns default) {
    # Cumulative return calculation
    if(geometric) {
      cumulative_return <- cumprod(1 + x)</pre>
    } else {
      cumulative return <- 1 + cumsum(x)</pre>
    }
    max_cumulative_return <- cummax(c(1, cumulative_return))[-1]</pre>
    drawdown <- -(cumulative_return / max_cumulative_return - 1)</pre>
 } else {
    # PnL vector is used
    cumulative_pnl <- c(0, cumsum(x))</pre>
    drawdown <- cummax(cumulative_pnl) - cumulative_pnl</pre>
    drawdown <- drawdown[-1]
  }
  # Drawdown vector for either pnl or returns
  return(drawdown)
}
obj_max_drawdown <- function(w, r_matrix, small_weight) {</pre>
  # w is the weight of every stock
  # r_matrix is the returns matrix of all stocks
```

```
# Portfolio return
 portfolio_return <- r_matrix %*% w</pre>
  # Max drawdown
  drawdown penalty <- max(compute_drawdown(portfolio return))</pre>
  # Create penalty component for sum of weights
  weight_penalty \leftarrow 100 * (1 - sum(w)) ^ 2
  # Create a penalty component for negative weights
  negative_penalty <- -sum(w[w < 0])</pre>
  # Create penalty component for small weights
  small_weight_penalty <- 100 * sum(w[w < small_weight])</pre>
  # Objective function to minimize
  obj <- drawdown penalty + weight penalty +
    negative_penalty + small_weight_penalty
  return(obj)
}
# Calculate a returns matrix for multiple stocks
symbol_names <- c("AXP", "BA", "CAT", "CVX",</pre>
  "DD", "DIS", "GE", "HD", "IBM",
  "INTC", "KO", "MMM", "MRK",
  "PG", "T", "UTX", "VZ")
getSymbols(symbol names, from = "2010-12-31", to = "2014-12-31")
```

'getSymbols' currently uses auto.assign=TRUE by default, but will use auto.assign=FALSE in 0.5-0. You will still be able to use 'loadSymbols' to automatically load data. getOption("getSymbols.env") and getOption("getSymbols.auto.assign") will still be checked for alternate defaults.

This message is shown once per session and may be disabled by setting options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.

```
pausing 1 second between requests for more than 5 symbols pausing 1 second between requests for more than 5 symbols pausing 1 second between requests for more than 5 symbols pausing 1 second between requests for more than 5 symbols pausing 1 second between requests for more than 5 symbols pausing 1 second between requests for more than 5 symbols
```

```
pausing 1 second between requests for more than 5 symbols
pausing 1 second between requests for more than 5 symbols
pausing 1 second between requests for more than 5 symbols
pausing 1 second between requests for more than 5 symbols
pausing 1 second between requests for more than 5 symbols
pausing 1 second between requests for more than 5 symbols
pausing 1 second between requests for more than 5 symbols
 [1] "AXP"
            "BA"
                    "CAT"
                           "CVX"
                                  "DD"
                                         "DIS"
                                                "GE"
                                                        "HD"
                                                               "IBM"
                                                                       "INTC"
                   "MRK"
                           "PG"
                                  "T"
                                         "UTX"
[11] "KO"
            "MMM"
                                                 "V7."
# Load these prices into memory
price_matrix <- NULL</pre>
for(name in symbol names) {
  # Extract the adjusted close price vector
  price_matrix <- cbind(price_matrix, get(name)[, 6])</pre>
}
colnames(price matrix) <- symbol names</pre>
# Compute returns
returns_matrix <- apply(price_matrix, 2, function(x) diff(log(x)))</pre>
# Specify a small weight below which the allocation should be 0%
small_weight_value <- 0.02</pre>
# Specify lower and upper bounds for the weights
lower <- rep(0, ncol(returns_matrix))</pre>
upper <- rep(1, ncol(returns_matrix))</pre>
optim_result <- DEoptim(obj_max_drawdown, lower, upper,
  control = list(NP = 400, itermax = 300, F = 0.25, CR = 0.75),
  returns matrix, small weight value)
Iteration: 1 bestvalit: 1007.555978 bestmemit:
                                                    0.049364
                                                                0.072632
                                                                             0.331117
                                                                                         0.017377
Iteration: 2 bestvalit: 1007.555978 bestmemit:
                                                    0.049364
                                                                0.072632
                                                                             0.331117
                                                                                         0.017377
Iteration: 3 bestvalit: 977.235934 bestmemit:
                                                   0.049364
                                                               0.072632
                                                                            0.331117
                                                                                        0.017377
Iteration: 4 bestvalit: 977.235934 bestmemit:
                                                   0.049364
                                                               0.072632
                                                                            0.331117
                                                                                        0.017377
Iteration: 5 bestvalit: 977.235934 bestmemit:
                                                   0.049364
                                                               0.072632
                                                                            0.331117
                                                                                        0.017377
Iteration: 6 bestvalit: 967.236083 bestmemit:
                                                   0.049364
                                                               0.072632
                                                                            0.331117
                                                                                        0.017377
Iteration: 7 bestvalit: 920.540270 bestmemit:
                                                   0.049364
                                                               0.072632
                                                                            0.331117
                                                                                        0.017377
Iteration: 8 bestvalit: 920.540270 bestmemit:
                                                               0.072632
                                                   0.049364
                                                                            0.331117
                                                                                        0.017377
Iteration: 9 bestvalit: 914.160062 bestmemit:
                                                   0.049364
                                                               0.072632
                                                                            0.331117
                                                                                        0.017377
Iteration: 10 bestvalit: 865.127033 bestmemit:
                                                    0.192919
                                                                0.350608
                                                                             0.110167
                                                                                         0.253413
Iteration: 11 bestvalit: 846.878038 bestmemit:
                                                    0.192919
                                                                0.350608
                                                                             0.110167
                                                                                         0.253413
Iteration: 12 bestvalit: 749.461572 bestmemit:
                                                    0.192919
                                                                0.350608
                                                                             0.110167
                                                                                         0.253413
```

Iteration:	13 bestvalit:	705.115055	bestmemit:	0.192919	0.350608	0.110167	0.253413
Iteration:	14 bestvalit:	705.115055	bestmemit:	0.192919	0.350608	0.110167	0.253413
Iteration:	15 bestvalit:	705.115055	bestmemit:	0.192919	0.350608	0.110167	0.253413
Iteration:	16 bestvalit:	705.115055	bestmemit:	0.192919	0.350608	0.110167	0.253413
Iteration:	17 bestvalit:	705.115055	bestmemit:	0.192919	0.350608	0.110167	0.253413
Iteration:	18 bestvalit:	650.526641	bestmemit:	0.192919	0.376964	0.062290	0.228816
Iteration:	19 bestvalit:	650.526641	bestmemit:	0.192919	0.376964	0.062290	0.228816
Iteration:	20 bestvalit:	629.878602	bestmemit:	0.247533	0.262076	0.056284	0.118840
Iteration:	21 bestvalit:	621.495957	bestmemit:	0.283592	0.134343	0.071410	0.045854
Iteration:	22 bestvalit:	578.101421	bestmemit:	0.345019	0.380309	0.159426	0.099805
Iteration:	23 bestvalit:	543.621953	bestmemit:	0.192919	0.376964	0.000738	0.228816
Iteration:	24 bestvalit:	520.473477	bestmemit:	0.192919	0.270117	0.057458	0.228816
Iteration:	25 bestvalit:	514.048004	bestmemit:	0.345019	0.380309	0.159426	0.099805
Iteration:	26 bestvalit:	514.048004	bestmemit:	0.345019	0.380309	0.159426	0.099805
Iteration:	27 bestvalit:	514.048004	bestmemit:	0.345019	0.380309	0.159426	0.099805
Iteration:	28 bestvalit:	462.755776	bestmemit:	0.258154	0.237097	0.274182	0.353164
Iteration:	29 bestvalit:	445.636738	bestmemit:	0.244059	0.226129	0.015148	0.069122
Iteration:	30 bestvalit:	424.491459	bestmemit:	0.368875	0.271234	0.146875	0.162155
Iteration:	31 bestvalit:	385.787142	bestmemit:	0.258154	0.314877	0.246640	0.175446
Iteration:	32 bestvalit:	362.863866	bestmemit:	0.405948	0.238053	0.108594	0.280348
Iteration:	33 bestvalit:	345.441675	bestmemit:	0.125508	0.255596	0.067563	0.197917
Iteration:	34 bestvalit:	275.362501	bestmemit:	0.328747	0.183639	0.108594	0.280348
Iteration:	35 bestvalit:	275.362501	bestmemit:	0.328747	0.183639	0.108594	0.280348
Iteration:	36 bestvalit:	275.362501	bestmemit:	0.328747	0.183639	0.108594	0.280348
Iteration:	37 bestvalit:	274.955498	bestmemit:	0.328747	0.183639	0.108594	0.280348
Iteration:	38 bestvalit:	244.397948	bestmemit:	0.227003	0.091115	0.193014	0.204493
Iteration:	39 bestvalit:	244.397948	bestmemit:	0.227003	0.091115	0.193014	0.204493
Iteration:	40 bestvalit:	213.604990	bestmemit:	0.183308	0.032627	0.193014	0.204493
Iteration:	41 bestvalit:	202.724836	bestmemit:	0.183308	0.032627	0.193014	0.204493
Iteration:	42 bestvalit:	202.455485	bestmemit:	0.183308	0.032627	0.193014	0.204493
Iteration:	43 bestvalit:	174.251209	bestmemit:	0.086601	0.053898	0.177028	0.317305
Iteration:	44 bestvalit:	172.355236	bestmemit:	0.086601	0.053898	0.177028	0.317305
Iteration:	45 bestvalit:	149.816221	bestmemit:	0.086601	0.053898	0.177028	0.317305
Iteration:	46 bestvalit:	136.310761	bestmemit:	0.086601	0.053898	0.177028	0.317305
Iteration:	47 bestvalit:	136.310761	bestmemit:	0.086601	0.053898	0.177028	0.317305
Iteration:	48 bestvalit:	136.310761	bestmemit:	0.086601	0.053898	0.177028	0.317305
Iteration:	49 bestvalit:	136.310761	bestmemit:	0.086601	0.053898	0.177028	0.317305
Iteration:	50 bestvalit:	135.535671	bestmemit:	0.086601	0.053898	0.177028	0.317305
Iteration:	51 bestvalit:	122.201291	bestmemit:	0.047002	0.053898	0.177028	0.317305
Iteration:	52 bestvalit:	105.110603	bestmemit:	0.035052	0.101880	0.126616	0.239715
Iteration:	53 bestvalit:	99.097719 k	estmemit:	0.009671	0.112835	0.149656	0.261549
Iteration:	54 bestvalit:	99.097719 k	estmemit:	0.009671	0.112835	0.149656	0.261549
Iteration:	55 bestvalit:	94.494036 k	estmemit:	0.009671	0.089295	0.149656	0.261549
Iteration:	56 bestvalit:	94.494036 k	estmemit:	0.009671	0.089295	0.149656	0.261549
Iteration:	57 bestvalit:	89.970486 k	estmemit:	0.009671	0.089295	0.149656	0.261549

T++:	FO 1+1:+.	00 070406	1	0 000671	0 000005	0 140656	0 001540
	58 bestvalit:			0.009671	0.089295	0.149656	0.261549
	59 bestvalit:			0.034723	0.116886	0.174321	0.271535
	60 bestvalit:			0.058253	0.088467	0.154155	0.230291
	61 bestvalit:			0.058253	0.088467	0.154155	0.230291
	62 bestvalit:			0.034723	0.116886	0.174321	0.271535
	63 bestvalit:			0.058253	0.088467	0.154155	0.230291
	64 bestvalit:			0.179219	0.092570	0.103734	0.192268
	65 bestvalit:			0.179219	0.092570	0.103734	0.192268
	66 bestvalit:			0.061634	0.121516	0.143536	0.190512
	67 bestvalit:			0.061634	0.121516	0.143536	0.190512
	68 bestvalit:			0.061634	0.121516	0.143536	0.178047
	69 bestvalit:			0.082659	0.242125	0.046473	0.008860
	70 bestvalit:			0.145411	0.091830	0.111033	0.137647
	71 bestvalit:			0.145411	0.091830	0.111033	0.137647
	72 bestvalit:			0.145411	0.091830	0.111033	0.137647
	73 bestvalit:			0.145411	0.091830	0.111033	0.137647
	74 bestvalit:			0.124495	0.074443	0.109657	0.128895
Iteration:	75 bestvalit:	24.641393	bestmemit:	0.124495	0.074443	0.109657	0.128895
Iteration:	76 bestvalit:	21.352671	bestmemit:	0.124495	0.074443	0.123563	0.123897
Iteration:	77 bestvalit:	21.352671	bestmemit:	0.124495	0.074443	0.123563	0.123897
Iteration:	78 bestvalit:	21.352671	bestmemit:	0.124495	0.074443	0.123563	0.123897
Iteration:	79 bestvalit:	21.352671	bestmemit:	0.124495	0.074443	0.123563	0.123897
Iteration:	80 bestvalit:	21.352671	bestmemit:	0.124495	0.074443	0.123563	0.123897
Iteration:	81 bestvalit:	18.896688	bestmemit:	0.082659	0.242125	0.046473	0.008860
Iteration:	82 bestvalit:	16.311111	bestmemit:	0.124495	0.074443	0.115184	0.098525
Iteration:	83 bestvalit:	16.311111	bestmemit:	0.124495	0.074443	0.115184	0.098525
Iteration:	84 bestvalit:	16.201430	bestmemit:	0.124495	0.074443	0.115184	0.098525
Iteration:	85 bestvalit:	14.662095	bestmemit:	0.090094	0.065424	0.096383	0.110919
Iteration:	86 bestvalit:	14.662095	bestmemit:	0.090094	0.065424	0.096383	0.110919
Iteration:	87 bestvalit:	10.322132	bestmemit:	0.073564	0.093780	0.113179	0.095526
Iteration:	88 bestvalit:	9.020106 b	pestmemit:	0.073564	0.093780	0.113179	0.095526
Iteration:	89 bestvalit:	8.258545 b	pestmemit:	0.073564	0.093780	0.113179	0.095526
Iteration:	90 bestvalit:	7.453538 b	pestmemit:	0.073564	0.089337	0.108825	0.077529
Iteration:	91 bestvalit:	7.353135 b	pestmemit:	0.069904	0.089337	0.108825	0.077529
Iteration:	92 bestvalit:	7.172975 b	pestmemit:	0.069904	0.089337	0.108825	0.077529
Iteration:	93 bestvalit:	7.172975 b	pestmemit:	0.069904	0.089337	0.108825	0.077529
Iteration:	94 bestvalit:	6.459164 b	pestmemit:	0.082342	0.109040	0.116559	0.143140
Iteration:	95 bestvalit:	5.273129 b	pestmemit:	0.082342	0.109040	0.116559	0.143140
Iteration:	96 bestvalit:	4.179123 b	estmemit:	0.081202	0.122667	0.122781	0.135294
Iteration:	97 bestvalit:	4.179123 b	estmemit:	0.081202	0.122667	0.122781	0.135294
Iteration:	98 bestvalit:	3.940177 b	pestmemit:	0.081202	0.122667	0.122781	0.135294
	99 bestvalit:			0.100055	0.079066	0.100288	0.078997
	100 bestvalit			0.100055	0.079066	0.100288	0.078997
	101 bestvalit			0.100055	0.079066	0.100288	0.078997
	102 bestvalit			0.100055	0.079066	0.100288	0.078997
		•					

Ttoration	103	bestvalit:	1 //0727	hogtmomit:	0.100055	0.079066	0.100288	0.068639
		bestvalit:			0.100055	0.079066	0.100288	0.068639
		bestvalit:			0.076892	0.090643	0.097815	0.101456
		bestvalit:			0.076892	0.090643	0.097815	0.101456
		bestvalit:			0.076892	0.090643	0.097815	0.101456
		bestvalit:			0.076892	0.090643	0.097815	0.101456
		bestvalit:			0.076892	0.090643	0.097815	0.101436
		bestvalit:			0.070892	0.090043	0.106540	0.101940
							0.106540	
		bestvalit:			0.085949	0.074523		0.082881
		bestvalit:			0.085949	0.074523	0.112448	0.082881
		bestvalit:			0.068853	0.080248	0.094666	0.101946
		bestvalit:			0.068853	0.080248	0.094666	0.101946
		bestvalit:			0.074774	0.061281	0.093123	0.081290
		bestvalit:			0.075111	0.062020	0.088048	0.073505
		bestvalit:			0.075111	0.062020	0.088048	0.073505
		bestvalit:			0.075111	0.062020	0.088048	0.073505
		bestvalit:			0.066703	0.075399	0.083340	0.074334
		bestvalit:			0.066703	0.075399	0.083340	0.074334
		bestvalit:			0.066703	0.075399	0.083340	0.074334
		bestvalit:			0.066703	0.075399	0.083340	0.074334
		bestvalit:			0.066703	0.075399	0.083340	0.074334
Iteration:	124	bestvalit:	0.219955	bestmemit:	0.081217	0.058277	0.098744	0.072789
Iteration:	125	bestvalit:	0.219955	bestmemit:	0.081217	0.058277	0.098744	0.072789
Iteration:	126	bestvalit:	0.219955	bestmemit:	0.081217	0.058277	0.098744	0.072789
Iteration:	127	bestvalit:	0.213170	bestmemit:	0.081217	0.058277	0.098744	0.072789
Iteration:	128	bestvalit:	0.212147	bestmemit:	0.081217	0.052361	0.098744	0.072789
Iteration:	129	bestvalit:	0.212147	bestmemit:	0.081217	0.052361	0.098744	0.072789
Iteration:	130	bestvalit:	0.212147	bestmemit:	0.081217	0.052361	0.098744	0.072789
Iteration:	131	bestvalit:	0.211633	bestmemit:	0.081217	0.052361	0.098744	0.072789
Iteration:	132	bestvalit:	0.211447	bestmemit:	0.081217	0.052361	0.098744	0.072789
Iteration:	133	bestvalit:	0.211447	bestmemit:	0.081217	0.052361	0.098744	0.072789
Iteration:	134	bestvalit:	0.211447	bestmemit:	0.081217	0.052361	0.098744	0.072789
Iteration:	135	bestvalit:	0.211447	bestmemit:	0.081217	0.052361	0.098744	0.072789
Iteration:	136	bestvalit:	0.211447	bestmemit:	0.081217	0.052361	0.098744	0.072789
Iteration:	137	bestvalit:	0.211108	bestmemit:	0.071507	0.052510	0.097875	0.077082
Iteration:	138	bestvalit:	0.209455	bestmemit:	0.082982	0.042813	0.096147	0.079438
Iteration:	139	bestvalit:	0.208581	bestmemit:	0.073851	0.052530	0.093913	0.076342
Iteration:	140	bestvalit:	0.208531	bestmemit:	0.073851	0.052370	0.093913	0.076342
Iteration:	141	bestvalit:	0.208531	bestmemit:	0.073851	0.052370	0.093913	0.076342
Iteration:	142	bestvalit:	0.208137	bestmemit:	0.082360	0.051261	0.096600	0.072763
		bestvalit:			0.082360	0.051261	0.096600	0.072763
		bestvalit:			0.082360	0.051261	0.096600	0.072763
		bestvalit:			0.080151	0.059574	0.091676	0.072060
		bestvalit:			0.080151	0.059574	0.091676	0.072060
		bestvalit:			0.077346	0.059479	0.091895	0.076504
1001001011.	1	SOSOVALIO.	3.20000	SSS SIMOINT U.	0.011010	0.000110	0.001000	0.01000±

T	440		0.000747		0.000454	0.050574	0 000005	0.074000
		bestvalit:			0.080151	0.059574	0.090625	0.074220
		bestvalit:			0.080151	0.059574	0.090625	0.074220
		bestvalit:			0.075629	0.058976	0.089977	0.069138
		bestvalit:			0.075604	0.057366	0.089105	0.073385
		bestvalit:			0.075604	0.057366	0.089105	0.073385
		bestvalit:			0.079216	0.051944	0.089236	0.075846
		bestvalit:			0.079216	0.051944	0.089236	0.075846
		bestvalit:			0.077103	0.050728	0.091793	0.078587
		bestvalit:			0.077103	0.050728	0.091793	0.078587
		bestvalit:			0.077103	0.050728	0.091793	0.078587
		bestvalit:			0.077103	0.050728	0.091793	0.078587
		bestvalit:			0.077103	0.050728	0.091793	0.078587
Iteration:	160	bestvalit:	0.199569	bestmemit:	0.077103	0.050728	0.091793	0.078587
Iteration:	161	bestvalit:	0.199569	bestmemit:	0.077103	0.050728	0.091793	0.078587
		bestvalit:			0.077103	0.050728	0.091793	0.078587
Iteration:	163	bestvalit:	0.199358	bestmemit:	0.077103	0.050728	0.091793	0.078587
Iteration:	164	bestvalit:	0.199358	bestmemit:	0.077103	0.050728	0.091793	0.078587
Iteration:	165	bestvalit:	0.199358	bestmemit:	0.077103	0.050728	0.091793	0.078587
Iteration:	166	bestvalit:	0.199332	bestmemit:	0.077103	0.050728	0.091793	0.078587
Iteration:	167	bestvalit:	0.199332	bestmemit:	0.077103	0.050728	0.091793	0.078587
Iteration:	168	bestvalit:	0.199332	bestmemit:	0.077103	0.050728	0.091793	0.078587
Iteration:	169	bestvalit:	0.198308	bestmemit:	0.078580	0.053412	0.090098	0.079460
Iteration:	170	bestvalit:	0.198308	bestmemit:	0.078580	0.053412	0.090098	0.079460
Iteration:	171	bestvalit:	0.197858	bestmemit:	0.078068	0.053412	0.090098	0.079460
Iteration:	172	bestvalit:	0.197858	bestmemit:	0.078068	0.053412	0.090098	0.079460
Iteration:	173	bestvalit:	0.197834	bestmemit:	0.078678	0.051929	0.090579	0.081844
Iteration:	174	bestvalit:	0.197834	bestmemit:	0.078678	0.051929	0.090579	0.081844
Iteration:	175	bestvalit:	0.196713	bestmemit:	0.078678	0.051929	0.090579	0.081844
Iteration:	176	bestvalit:	0.196713	bestmemit:	0.078678	0.051929	0.090579	0.081844
Iteration:	177	bestvalit:	0.196713	bestmemit:	0.078678	0.051929	0.090579	0.081844
Iteration:	178	bestvalit:	0.196713	bestmemit:	0.078678	0.051929	0.090579	0.081844
Iteration:	179	bestvalit:	0.196713	bestmemit:	0.078678	0.051929	0.090579	0.081844
Iteration:	180	bestvalit:	0.196713	bestmemit:	0.078678	0.051929	0.090579	0.081844
Iteration:	181	bestvalit:	0.196713	bestmemit:	0.078678	0.051929	0.090579	0.081844
Iteration:	182	bestvalit:	0.196161	bestmemit:	0.080318	0.055575	0.089687	0.078663
Iteration:	183	bestvalit:	0.196161	bestmemit:	0.080318	0.055575	0.089687	0.078663
Iteration:	184	bestvalit:	0.196161	bestmemit:	0.080318	0.055575	0.089687	0.078663
Iteration:	185	bestvalit:	0.195679	bestmemit:	0.081488	0.049854	0.087843	0.080520
Iteration:	186	bestvalit:	0.195331	bestmemit:	0.081488	0.049854	0.087843	0.080520
Iteration:	187	bestvalit:	0.195330	bestmemit:	0.081488	0.049854	0.087843	0.080520
		bestvalit:			0.081488	0.049854	0.087843	0.080520
		bestvalit:			0.081488	0.049854	0.087843	0.080520
		bestvalit:			0.081042	0.050225	0.090846	0.081356
		bestvalit:			0.080567	0.049854	0.087843	0.080520
		bestvalit:			0.080567	0.049854	0.087843	0.080520
_ = = = = = = = = = = = = = = = = = = =			3.230000			3.0.0001	0.00.010	5.550020

T	400		0 405050		0 000507	0.040054	0.007040	0 000500
		bestvalit:			0.080567	0.049854	0.087843	0.080520
		bestvalit:			0.080567	0.049854	0.085867	0.081114
		bestvalit:			0.080567	0.049854	0.085867	0.081114
		bestvalit:			0.080567	0.049854	0.085867	0.081114
		bestvalit:			0.080567	0.049854	0.085867	0.081114
		bestvalit:			0.080567	0.049854	0.085867	0.081114
		bestvalit:			0.080567	0.049854	0.085867	0.081114
		bestvalit:			0.080567	0.049854	0.085867	0.081114
		bestvalit:			0.079903	0.057727	0.086214	0.080404
		bestvalit:			0.079903	0.057727	0.086214	0.080404
		bestvalit:			0.079903	0.057727	0.086214	0.080404
		bestvalit:			0.079903	0.057727	0.086214	0.080404
Iteration:	205	bestvalit:	0.194100	bestmemit:	0.079903	0.057727	0.086214	0.080404
Iteration:	206	bestvalit:	0.194100	bestmemit:	0.079903	0.057727	0.086214	0.080404
Iteration:	207	bestvalit:	0.194100	bestmemit:	0.079903	0.057727	0.086214	0.080404
Iteration:	208	bestvalit:	0.194100	bestmemit:	0.079903	0.057727	0.086214	0.080404
Iteration:	209	bestvalit:	0.194009	bestmemit:	0.079903	0.057727	0.086214	0.080404
Iteration:	210	bestvalit:	0.193792	bestmemit:	0.079819	0.057845	0.087073	0.079512
Iteration:	211	bestvalit:	0.192815	bestmemit:	0.073419	0.055464	0.089351	0.080706
Iteration:	212	bestvalit:	0.192815	bestmemit:	0.073419	0.055464	0.089351	0.080706
Iteration:	213	bestvalit:	0.192815	bestmemit:	0.073419	0.055464	0.089351	0.080706
Iteration:	214	bestvalit:	0.192815	bestmemit:	0.073419	0.055464	0.089351	0.080706
Iteration:	215	bestvalit:	0.192797	bestmemit:	0.073419	0.055464	0.089351	0.080706
Iteration:	216	bestvalit:	0.192797	bestmemit:	0.073419	0.055464	0.089351	0.080706
Iteration:	217	bestvalit:	0.192669	bestmemit:	0.073419	0.055464	0.089351	0.080706
Iteration:	218	bestvalit:	0.192025	bestmemit:	0.076158	0.048437	0.088312	0.073768
Iteration:	219	bestvalit:	0.192025	bestmemit:	0.076158	0.048437	0.088312	0.073768
Iteration:	220	bestvalit:	0.192025	bestmemit:	0.076158	0.048437	0.088312	0.073768
Iteration:	221	bestvalit:	0.192025	bestmemit:	0.076158	0.048437	0.088312	0.073768
Iteration:	222	bestvalit:	0.191851	bestmemit:	0.076158	0.047506	0.088156	0.074541
Iteration:	223	bestvalit:	0.191605	bestmemit:	0.076158	0.047506	0.087957	0.075149
Iteration:	224	bestvalit:	0.191551	bestmemit:	0.076158	0.047506	0.087957	0.075149
Iteration:	225	bestvalit:	0.191551	bestmemit:	0.076158	0.047506	0.087957	0.075149
Iteration:	226	bestvalit:	0.191551	bestmemit:	0.076158	0.047506	0.087957	0.075149
Iteration:	227	bestvalit:	0.191551	bestmemit:	0.076158	0.047506	0.087957	0.075149
Iteration:	228	bestvalit:	0.191551	bestmemit:	0.076158	0.047506	0.087957	0.075149
Iteration:	229	bestvalit:	0.191551	bestmemit:	0.076158	0.047506	0.087957	0.075149
Iteration:	230	bestvalit:	0.191551	bestmemit:	0.076158	0.047506	0.087957	0.075149
Iteration:	231	bestvalit:	0.191551	bestmemit:	0.076158	0.047506	0.087957	0.075149
Iteration:	232	bestvalit:	0.191455	bestmemit:	0.075459	0.044492	0.088193	0.076617
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		~ OD O . ULT 1 0 .	3.130010	~ 00 0m0m1 0 .	0.0.0011	3.310110	0.000100	0.0.0100

Ttomotion	വാഠ	hogtunlit.	0 100212	hoatmomit.	0 072077	0 040140	0 000102	0 076405
		<pre>bestvalit: bestvalit:</pre>			0.073977 0.073977	0.040140 0.040140	0.088193 0.088193	0.076405 0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073977	0.040140	0.088193	0.076405
		bestvalit:			0.073128	0.040859	0.088140	0.076405
		bestvalit:			0.077352	0.047823	0.089816	0.078870
		bestvalit:			0.073128	0.040859	0.088140	0.076405
		bestvalit:			0.073128	0.040859	0.088140	0.076405
		bestvalit:			0.073128	0.040859	0.088140	0.076405
Iteration:	256	bestvalit:	0.189470	bestmemit:	0.073128	0.040859	0.088140	0.076405
Iteration:	257	bestvalit:	0.189470	bestmemit:	0.073128	0.040859	0.088140	0.076405
Iteration:	258	bestvalit:	0.189470	bestmemit:	0.073128	0.040859	0.088140	0.076405
Iteration:	259	bestvalit:	0.189470	bestmemit:	0.073128	0.040859	0.088140	0.076405
Iteration:	260	bestvalit:	0.189470	bestmemit:	0.073128	0.040859	0.088140	0.076405
Iteration:	261	bestvalit:	0.189470	bestmemit:	0.073128	0.040859	0.088140	0.076405
Iteration:	262	bestvalit:	0.189075	bestmemit:	0.072986	0.044398	0.087539	0.079250
Iteration:	263	bestvalit:	0.189075	bestmemit:	0.072986	0.044398	0.087539	0.079250
Iteration:	264	bestvalit:	0.189075	bestmemit:	0.072986	0.044398	0.087539	0.079250
Iteration:	265	bestvalit:	0.188832	bestmemit:	0.075417	0.043638	0.087031	0.075720
Iteration:	266	bestvalit:	0.188832	bestmemit:	0.075417	0.043638	0.087031	0.075720
Iteration:	267	bestvalit:	0.188765	bestmemit:	0.075417	0.043638	0.087031	0.075720
Iteration:	268	bestvalit:	0.188442	bestmemit:	0.076098	0.044344	0.084216	0.079900
Iteration:	269	bestvalit:	0.188442	bestmemit:	0.076098	0.044344	0.084216	0.079900
Iteration:	270	bestvalit:	0.188442	bestmemit:	0.076098	0.044344	0.084216	0.079900
Iteration:	271	bestvalit:	0.188301	bestmemit:	0.076098	0.044344	0.084216	0.079900
Iteration:	272	bestvalit:	0.188301	bestmemit:	0.076098	0.044344	0.084216	0.079900
Iteration:	273	bestvalit:	0.187996	bestmemit:	0.074459	0.039840	0.088140	0.077321
Iteration:	274	bestvalit:	0.187910	bestmemit:	0.074459	0.039840	0.088140	0.077321
Iteration:	275	bestvalit:	0.187885	bestmemit:	0.074459	0.039840	0.088140	0.077321
Iteration:	276	bestvalit:	0.187885	bestmemit:	0.074459	0.039840	0.088140	0.077321
		bestvalit:			0.074459	0.039840	0.088140	0.077321
		bestvalit:			0.074459	0.039840	0.088140	0.077321
		bestvalit:			0.074459	0.039840	0.088140	0.077321
		bestvalit:			0.074459	0.039840	0.088140	0.077321
		bestvalit:			0.074459	0.039840	0.088140	0.077321
		bestvalit:			0.073221	0.041160	0.086549	0.076631
1001001011.	202	SOSOVALIO.	3.101011	SSS SIMORITO.	0.0.0221	0.011100	0.000010	0.0.0001

```
Iteration: 283 bestvalit: 0.187347 bestmemit:
                                                                           0.086549
                                                                                       0.076631
                                                  0.073221
                                                              0.041160
Iteration: 284 bestvalit: 0.187310 bestmemit:
                                                  0.073221
                                                              0.041160
                                                                           0.086549
                                                                                       0.076631
Iteration: 285 bestvalit: 0.187238 bestmemit:
                                                  0.076065
                                                              0.041688
                                                                           0.086512
                                                                                       0.078046
Iteration: 286 bestvalit: 0.187205 bestmemit:
                                                  0.073221
                                                              0.041160
                                                                           0.086549
                                                                                       0.076631
Iteration: 287 bestvalit: 0.187181 bestmemit:
                                                  0.073221
                                                              0.041160
                                                                           0.086549
                                                                                       0.076631
Iteration: 288 bestvalit: 0.187181 bestmemit:
                                                  0.073221
                                                              0.041160
                                                                           0.086549
                                                                                       0.076631
Iteration: 289 bestvalit: 0.187181 bestmemit:
                                                  0.073221
                                                              0.041160
                                                                           0.086549
                                                                                       0.076631
Iteration: 290 bestvalit: 0.187181 bestmemit:
                                                  0.073221
                                                              0.041160
                                                                           0.086549
                                                                                       0.076631
Iteration: 291 bestvalit: 0.187181 bestmemit:
                                                  0.073221
                                                              0.041160
                                                                           0.086549
                                                                                       0.076631
Iteration: 292 bestvalit: 0.186885 bestmemit:
                                                  0.073049
                                                              0.038779
                                                                           0.086075
                                                                                       0.077693
Iteration: 293 bestvalit: 0.186806 bestmemit:
                                                  0.073049
                                                              0.038779
                                                                           0.086075
                                                                                       0.077693
Iteration: 294 bestvalit: 0.186760 bestmemit:
                                                  0.076659
                                                                           0.084435
                                                                                       0.076555
                                                              0.038176
Iteration: 295 bestvalit: 0.186760 bestmemit:
                                                  0.076659
                                                              0.038176
                                                                           0.084435
                                                                                       0.076555
Iteration: 296 bestvalit: 0.186760 bestmemit:
                                                  0.076659
                                                              0.038176
                                                                           0.084435
                                                                                       0.076555
Iteration: 297 bestvalit: 0.186760 bestmemit:
                                                  0.076659
                                                              0.038176
                                                                           0.084435
                                                                                       0.076555
Iteration: 298 bestvalit: 0.186760 bestmemit:
                                                  0.076659
                                                              0.038176
                                                                           0.084435
                                                                                       0.076555
Iteration: 299 bestvalit: 0.186636 bestmemit:
                                                                           0.085463
                                                  0.074332
                                                              0.037670
                                                                                       0.079272
Iteration: 300 bestvalit: 0.186636 bestmemit:
                                                  0.074332
                                                              0.037670
                                                                           0.085463
                                                                                       0.079272
weights <- optim result$optim$bestmem</pre>
```

[1] 0.9983104

sum(weights)

```
## 0.9978
weights <- weights / sum(weights)</pre>
# Equally weighted portfolio
equal_weights <- rep(1 / 17, 17)
equal_portfolio <- returns_matrix %*% equal_weights
equal_portfolio_cumprod <- cumprod(1 + equal_portfolio)</pre>
# Optimal max drawdown portfolio
optimized portfolio <- returns matrix ** weights
drawdown_portfolio_cumprod <- cumprod(1 + optimized_portfolio)</pre>
main title <- "Equal vs. Optimized Weights"
plot(drawdown_portfolio_cumprod, type = 'l', xaxt = 'n',
  main = main_title, xlab = "", ylab = "cumprod(1 + r)")
lines(equal_portfolio_cumprod, lty = 3)
grid(col = 'black')
# Set x-axis labels
label_location <- seq(1, length(drawdown_portfolio_cumprod),</pre>
```

```
by = 90)
labels <- rownames(returns_matrix)[label_location]
axis(side = 1, at = label_location, labels = labels,
    las = 2, cex.axis= 0.8)</pre>
```

Equal vs. Optimized Weights

Equal weighted
max(compute_drawdown(equal_portfolio))

[1] 0.1972771

[1] 0.597

Optimized for the smallest max drawdown
max(compute_drawdown(optimized_portfolio))

[1] 0.1866453

[1] 0.515