Affine Springer fibers and the Delta and Shuffle Theorems

AMS Central Sectional Meeting St. Louis

Sean Griffin
University of North Texas

Joint work with Maria Gillespie and Eugene Gorsky

$$\operatorname{Fl}_n = \{ V_{\bullet} = (V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{C}^n) \}$$

$$\operatorname{Fl}_n = \{ V_{\bullet} = (V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{C}^n) \}$$

$$\operatorname{Fl}_x = \{ V_{\bullet} \in \operatorname{Fl}_n : xV_i \subset V_i \}.$$

$$\operatorname{Fl}_n = \{ V_{\bullet} = (V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{C}^n) \}$$

Given a nilpotent $x \in \mathfrak{gl}_n$ of Jordan type λ ,

$$\operatorname{Fl}_x = \{V_{\bullet} \in \operatorname{Fl}_n : xV_i \subset V_i\}.$$

• S_n acts on $H^*(\mathrm{Fl}_x;\mathbb{Q})$

$$\operatorname{Fl}_n = \{ V_{\bullet} = (V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{C}^n) \}$$

$$\operatorname{Fl}_x = \{ V_{\bullet} \in \operatorname{Fl}_n : xV_i \subset V_i \}.$$

- S_n acts on $H^*(\mathrm{Fl}_x;\mathbb{Q})$
- $H^*(\mathrm{Fl}_x; \mathbb{Q}) \cong_{S_n} \mathrm{Ind}_{S_{\lambda_1} \times \cdots \times S_{\lambda_\ell}}^{S_n} \mathbb{Q}$

$$\operatorname{Fl}_n = \{ V_{\bullet} = (V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{C}^n) \}$$

$$\mathrm{Fl}_x = \{V_{\bullet} \in \mathrm{Fl}_n : xV_i \subset V_i\}.$$

- S_n acts on $H^*(\mathrm{Fl}_x;\mathbb{Q})$
- $H^*(\mathrm{Fl}_x; \mathbb{Q}) \cong_{S_n} \mathrm{Ind}_{S_{\lambda_1} \times \cdots \times S_{\lambda_\ell}}^{S_n} \mathbb{Q}$
- $H^{\text{top}}(\mathrm{Fl}_x;\mathbb{Q}) \cong_{S_n} V^{\lambda}$ irreducible

$$\operatorname{Fl}_n = \{ V_{\bullet} = (V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{C}^n) \}$$

$$\operatorname{Fl}_x = \{ V_{\bullet} \in \operatorname{Fl}_n : xV_i \subset V_i \}.$$

- S_n acts on $H^*(\mathrm{Fl}_x;\mathbb{Q})$
- $H^*(\mathrm{Fl}_x; \mathbb{Q}) \cong_{S_n} \mathrm{Ind}_{S_{\lambda_1} \times \cdots \times S_{\lambda_\ell}}^{S_n} \mathbb{Q}$
- $H^{\text{top}}(\mathrm{Fl}_x;\mathbb{Q}) \cong_{S_n} V^{\lambda}$ irreducible
- The graded S_n -module structure can be characterized using symmetric functions...

 $\Lambda_q = \text{symmetric functions in } x_1, x_2, x_3, \dots$

 $\Lambda_q = \text{symmetric functions in } x_1, x_2, x_3, \dots$

(virtual) $\mathbb{Q}S_n$ -modules $\xrightarrow{\operatorname{Frob}}$ Symmetric functions

$$\mathbb{Q}$$

$$\longleftrightarrow$$

$$h_n = \sum_{1 \leqslant i_1 \leqslant i_2 \leqslant \dots \leqslant i_n} x_{i_1} x_{i_2} \cdots x_{i_n}$$

$$\longleftrightarrow$$

$$e_n = \sum_{1 \leqslant i_1 < i_2 < \dots < i_n} x_{i_1} x_{i_2} \cdots x_{i_n}$$

$$V^{\lambda}$$
 (irreducible) \leftrightarrow

$$s_{\lambda}$$

 $\Lambda_q = \text{symmetric functions in } x_1, x_2, x_3, \dots$

(virtual) $\mathbb{Q}S_n$ -modules $\xrightarrow{\operatorname{Frob}}$ Symmetric functions

$$\mathbb{Q} \qquad \longleftrightarrow \qquad h_n = \sum_{1 \leqslant i_1 \leqslant i_2 \leqslant \dots \leqslant i_n} x_{i_1} x_{i_2} \cdots x_{i_n}$$

$$\operatorname{sgn} \qquad \leftrightarrow \qquad e_n = \sum_{1 \leqslant i_1 < i_2 < \dots < i_n} x_{i_1} x_{i_2} \cdots x_{i_n}$$

$$V^{\lambda}$$
 (irreducible) \leftrightarrow s_{λ}

If $V = \bigoplus_i V_i$ is a graded S_n -module, it has a graded Frobenius character,

$$\operatorname{Frob}(V;q) := \sum_{i} \operatorname{Frob}(V_i)q^i.$$

Thm (Hotta–Springer) ${\rm Frob}(H^*({\rm Fl}_x;\mathbb{Q});q)=\widetilde{H}_\lambda(x;q) \ \ {\rm Hall-Littlewood\ polynomial}$

Thm (Hotta–Springer)

 $\operatorname{Frob}(H^*(\operatorname{Fl}_x;\mathbb{Q});q)=\widetilde{H}_\lambda(x;q)$ Hall–Littlewood polynomial

Q: What about other symmetric functions? Are they Frob of some cohomology ring?

Thm (Hotta–Springer)

 $\operatorname{Frob}(H^*(\operatorname{Fl}_x;\mathbb{Q});q)=\widetilde{H}_\lambda(x;q)$ Hall–Littlewood polynomial

Q: What about other symmetric functions? Are they Frob of some cohomology ring?

ullet Bergeron introduced an operator abla on $\Lambda_{q,t}$

Thm (Hotta–Springer)

 $\operatorname{Frob}(H^*(\operatorname{Fl}_x;\mathbb{Q});q)=\widetilde{H}_\lambda(x;q)$ Hall-Littlewood polynomial

Q: What about other symmetric functions? Are they Frob of some cohomology ring?

- ullet Bergeron introduced an operator abla on $\Lambda_{q,t}$
- It diagonalizes the **Macdonald polynomial** basis of $\Lambda_{q,t}$, but is difficult to compute on other bases.

Thm (Hotta–Springer)

$$\operatorname{Frob}(H^*(\operatorname{Fl}_x;\mathbb{Q});q)=\widetilde{H}_\lambda(x;q)$$
 Hall–Littlewood polynomial

Q: What about other symmetric functions? Are they Frob of some cohomology ring?

- ullet Bergeron introduced an operator abla on $\Lambda_{q,t}$
- It diagonalizes the **Macdonald polynomial** basis of $\Lambda_{q,t}$, but is difficult to compute on other bases.
- Astonishingly, the evaluation ∇e_n has a wonderful formula in terms of word parking functions:

Conjectured by Haglund-Haiman-Loehr-Remmel-Ulyanov.

Shuffle Theorem (Carlsson-Mellit, 2018)

$$\nabla e_n = \sum_{P \in \mathcal{WPF}_n} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^P.$$

Conjectured by Haglund-Haiman-Loehr-Remmel-Ulyanov.

Shuffle Theorem (Carlsson-Mellit, 2018)

$$\nabla e_n = \sum_{P \in \mathcal{WPF}_n} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^P.$$

$$\mathcal{WPF}_n = \{n \times n \text{ word parking functions}\}$$

Ex:
$$n = 6$$

Conjectured by Haglund-Haiman-Loehr-Remmel-Ulyanov.

Shuffle Theorem (Carlsson-Mellit, 2018)

$$\nabla e_n = \sum_{P \in \mathcal{WPF}_n} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^P.$$

$$\mathcal{WPF}_n = \{n \times n \text{ word parking functions}\}$$

 $\operatorname{dinv}(P) = \#$ inversions along diagonals

Ex: n = 6

 $\operatorname{dinv}(P) = 3$

Conjectured by Haglund–Haiman–Loehr–Remmel–Ulyanov.

Shuffle Theorem (Carlsson-Mellit, 2018)

$$\nabla e_n = \sum_{P \in \mathcal{WPF}_n} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^P.$$

$$\mathcal{WPF}_n = \{n \times n \text{ word parking functions}\}$$

 $\operatorname{dinv}(P) = \#$ inversions along diagonals

area(P) = # whole boxes btw path and diagonal

$$\operatorname{dinv}(P) = 3$$

$$\frac{\operatorname{dinv}(P) = 3}{\operatorname{area}(P) = 9}$$

Conjectured by Haglund–Haiman–Loehr–Remmel–Ulyanov.

Shuffle Theorem (Carlsson-Mellit, 2018)

$$\nabla e_n = \sum_{P \in \mathcal{WPF}_n} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^P.$$

$$\mathcal{WPF}_n = \{n \times n \text{ word parking functions}\}$$

 $\operatorname{dinv}(P) = \#$ inversions along diagonals

area(P) = # whole boxes btw path and diagonal

$$\operatorname{dinv}(P) = 3$$

$$\frac{\operatorname{dinv}(P) = 3}{\operatorname{area}(P) = 9}$$

Conjectured by Haglund-Haiman-Loehr-Remmel-Ulyanov.

Shuffle Theorem (Carlsson-Mellit, 2018)

$$\nabla e_n = \sum_{P \in \mathcal{WPF}_n} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^P.$$

$$\mathcal{WPF}_n = \{n \times n \text{ word parking functions}\}$$

 $\operatorname{dinv}(P) = \#$ inversions along diagonals

area(P) = # whole boxes btw path and diagonal

$$\operatorname{dinv}(P) = 3$$

$$area(P) = 9$$

$$x^P = x_2^2 x_3 x_4 x_5 x_7$$

Conjectured by Haglund–Haiman–Loehr–Remmel–Ulyanov.

Shuffle Theorem (Carlsson-Mellit, 2018)

$$\nabla e_n = \sum_{P \in \mathcal{WPF}_n} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^P.$$

Frob
$$(H_*(??);q,t) = \nabla e_n$$

Yes, this symmetric function does come from a geometric S_n action!

Conjectured by Haglund–Haiman–Loehr–Remmel–Ulyanov.

Shuffle Theorem (Carlsson-Mellit, 2018)

$$\nabla e_n = \sum_{P \in \mathcal{WPF}_n} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^P.$$

Frob
$$(H_*(??);q,t) = \nabla e_n$$

Yes, this symmetric function does come from a geometric S_n action!

We must "upgrade" to affine Springer fibers to see the t grading.

$$\mathcal{O}=\mathbb{C}[\![\epsilon]\!]$$
, $\mathcal{K}=\mathbb{C}(\!(\epsilon)\!)$

A **lattice** Λ is a \mathcal{O} -submodule of \mathcal{K}^n of rank n.

$$\mathcal{O}=\mathbb{C}[\![\epsilon]\!]$$
, $\mathcal{K}=\mathbb{C}(\!(\epsilon)\!)$

A **lattice** Λ is a \mathcal{O} -submodule of \mathcal{K}^n of rank n.

Example:
$$n=5$$
 \vdots $\epsilon^{-1}e_1$ $\epsilon^{-1}e_2$ $\epsilon^{-1}e_3$ $\epsilon^{-1}e_4$ $\varepsilon^{-1}e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_4$ $\bullet e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_4$

$$\mathcal{O}=\mathbb{C}[\![\epsilon]\!]$$
, $\mathcal{K}=\mathbb{C}(\!(\epsilon)\!)$

A **lattice** Λ is a \mathcal{O} -submodule of \mathcal{K}^n of rank n.

Example:
$$n=5$$
 :
$$\epsilon^{-1}e_1 \ \epsilon^{-1}e_2 \ \epsilon^{-1}e_3 \ \epsilon^{-1}e_4 \ \epsilon^{-1}e_5$$

$$\underbrace{ (e_1)}_{\epsilon e_1} \ e_2 \ (e_3) \ e_4 \ e_5$$

$$\epsilon e_1 \ (\epsilon e_2) \ \epsilon e_3 \ \epsilon e_4 \ \epsilon e_5$$

$$\epsilon^2 e_1 \ \epsilon^2 e_2 \ \epsilon^2 e_3 \ (\epsilon^2 e_4) \ \epsilon^2 e_5$$

$$\vdots \ \vdots \ \Lambda = \mathcal{O}\{e_1, \epsilon e_2, e_3, \epsilon^2 e_4, \epsilon^{-1}e_5\}$$

A complete flag of lattices Λ_{\bullet} is $\Lambda_0 \supset \Lambda_1 \supset \cdots \supset \Lambda_{n-1} \supset \Lambda_n = \epsilon \Lambda_0$ such that $\dim_{\mathbb{C}}(\Lambda_i/\Lambda_{i-1}) = 1$.

$$\mathcal{O}=\mathbb{C}[\![\epsilon]\!]$$
, $\mathcal{K}=\mathbb{C}(\!(\epsilon)\!)$

A **lattice** Λ is a \mathcal{O} -submodule of \mathcal{K}^n of rank n.

Example:
$$n=5$$
 \vdots $\epsilon^{-1}e_1$ $\epsilon^{-1}e_2$ $\epsilon^{-1}e_3$ $\epsilon^{-1}e_4$ $\epsilon^{-1}e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_4$ $\bullet e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_4$ $\bullet e_5$ $\bullet e_1$ $\bullet e_2$ $\bullet e_3$ $\bullet e_4$ $\bullet e_5$ $\bullet e_4$ $\bullet e_5$

A complete flag of lattices Λ_{\bullet} is $\Lambda_0 \supset \Lambda_1 \supset \cdots \supset \Lambda_{n-1} \supset \Lambda_n = \epsilon \Lambda_0$ such that $\dim_{\mathbb{C}}(\Lambda_i/\Lambda_{i-1}) = 1$.

The **affine Grassmannian** (for GL_n):

$$\widetilde{Gr}_n := \{ \Lambda \subset \mathcal{K}^n \text{ lattices} \}$$

The affine flag variety,

$$\widetilde{Fl}_n := \{\Lambda_{\bullet} \text{ flags of lattices}\}$$

The **affine Grassmannian** (for GL_n):

$$\widetilde{Gr}_n := \{ \Lambda \subset \mathcal{K}^n \text{ lattices} \}$$
 $= GL_n(\mathcal{K})/GL_n(\mathcal{O}).$

The affine flag variety,

$$\widetilde{Fl}_n := \{\Lambda_{\bullet} \text{ flags of lattices}\}$$
 $= GL_n(\mathcal{K})/I.$

Both spaces have **infinitely** many connected components, indexed by \mathbb{Z} .

The **affine Grassmannian** (for GL_n):

$$\widetilde{Gr}_n := \{ \Lambda \subset \mathcal{K}^n \text{ lattices} \}$$
 $= GL_n(\mathcal{K})/GL_n(\mathcal{O}).$

The affine flag variety,

$$\widetilde{Fl}_n := \{\Lambda_{\bullet} \text{ flags of lattices}\}$$
 $= GL_n(\mathcal{K})/I.$

Both spaces have **infinitely** many connected components, indexed by \mathbb{Z} .

Given $\gamma \in \mathfrak{gl}_n(\mathcal{K})$, the associated **affine Springer fiber(s)** are

$$\widetilde{Gr}_{\gamma} := \{ \Lambda \in \widetilde{Gr}_n \mid \gamma \Lambda \subseteq \Lambda \}$$

$$\widetilde{Fl}_{\gamma} := \{ \Lambda_{\bullet} \in \widetilde{Fl}_n \mid \gamma \Lambda_i \subseteq \Lambda_i \}$$

The **affine Grassmannian** (for GL_n):

$$\widetilde{Gr}_n := \{ \Lambda \subset \mathcal{K}^n \text{ lattices} \}$$
 $= GL_n(\mathcal{K})/GL_n(\mathcal{O}).$

The affine flag variety,

$$\widetilde{Fl}_n := \{\Lambda_{\bullet} \text{ flags of lattices}\}$$
 $= GL_n(\mathcal{K})/I.$

Both spaces have **infinitely** many connected components, indexed by \mathbb{Z} .

Given $\gamma \in \mathfrak{gl}_n(\mathcal{K})$, the associated **affine Springer fiber(s)** are

$$\widetilde{Gr}_{\gamma} := \{ \Lambda \in \widetilde{Gr}_n \mid \gamma \Lambda \subseteq \Lambda \}$$

$$\widetilde{Fl}_{\gamma} := \{ \Lambda_{\bullet} \in \widetilde{Fl}_n \mid \gamma \Lambda_i \subseteq \Lambda_i \}$$

The **affine Grassmannian** (for GL_n):

$$\widetilde{Gr}_n := \{ \Lambda \subset \mathcal{K}^n \text{ lattices} \}$$
 $= GL_n(\mathcal{K})/GL_n(\mathcal{O}).$

The affine flag variety,

$$\widetilde{Fl}_n := \{\Lambda_{\bullet} \text{ flags of lattices}\}$$
 $= GL_n(\mathcal{K})/I.$

Both spaces have **infinitely** many connected components, indexed by \mathbb{Z} .

Given $\gamma \in \mathfrak{gl}_n(\mathcal{K})$, the associated **affine Springer fiber(s)** are

$$\widetilde{Gr}_{\gamma} := \{ \Lambda \in \widetilde{Gr}_n \mid \gamma \Lambda \subseteq \Lambda \}$$

$$\widetilde{Fl}_{\gamma} := \{ \Lambda_{\bullet} \in \widetilde{Fl}_n \mid \gamma \Lambda_i \subseteq \Lambda_i \}$$

By Lusztig, there is a Springer action of S_n on $H_*(\widetilde{Fl}_{\gamma};\mathbb{Q})$.

Let
$$\gamma = \left(\frac{0}{\epsilon I_{n-1}} \frac{\epsilon^2}{0}\right)$$
.

Theorem (Hikita, 2012)

Frob
$$(H_*(\widetilde{Fl}_{\gamma}; \mathbb{Q}); q, t) = \nabla e_n$$
.

By Lusztig, there is a Springer action of S_n on $H_*(\widetilde{Fl}_{\gamma};\mathbb{Q})$.

Let
$$\gamma = \left(\frac{0}{\epsilon I_{n-1}} \frac{\epsilon^2}{0}\right)$$
.

Theorem (Hikita, 2012)

Frob
$$(H_*(\widetilde{Fl}_{\gamma}; \mathbb{Q}); q, t) = \nabla e_n$$
.

[There is a tensor by sgn and q-reversal that I'm hiding]

By Lusztig, there is a Springer action of S_n on $H_*(Fl_\gamma; \mathbb{Q})$.

Let
$$\gamma = \left(\frac{0 | \epsilon^2}{\epsilon I_{n-1} | 0} \right)$$
.

Theorem (Hikita, 2012)

Frob
$$(H_*(\widetilde{Fl}_{\gamma}; \mathbb{Q}); q, t) = \nabla e_n$$
.

[There is a tensor by sgn and q-reversal that I'm hiding]

By Lusztig, there is a Springer action of S_n on $H_*(\widetilde{Fl}_{\gamma};\mathbb{Q})$.

Let
$$\gamma = \left(\frac{0 | \epsilon^2}{\epsilon I_{n-1} | 0} \right)$$
.

Theorem (Hikita, 2012)

Frob
$$(H_*(\widetilde{Fl}_{\gamma}; \mathbb{Q}); q, t) = \nabla e_n$$
.

[There is a tensor by sgn and q-reversal that I'm hiding]

- ullet This result is for the SL_n -version of \widetilde{Fl}_γ .
- q grading = (halved) homological co-degree.
- ullet t grading comes from a filtration of \widetilde{Gr}_{γ} .

Rectangular Shuffle Theorem

Let n, m, k be positive integers such that gcd(n, m) = 1.

 $\mathcal{WPF}_{kn,km} = \{(kn) \times (km) \text{ word parking functions}\}$

Rectangular Shuffle Thm (Mellit, 2021)

$$E_{kn,km} \cdot 1 = (-1)^{k(m+1)} \sum_{P \in \mathcal{WPF}_{kn,km}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}.$$

Rectangular Shuffle Theorem

Let n, m, k be positive integers such that gcd(n, m) = 1.

 $\mathcal{WPF}_{kn,km} = \{(kn) \times (km) \text{ word parking functions}\}$

Rectangular Shuffle Thm (Mellit, 2021)

$$E_{kn,km} \cdot 1 = (-1)^{k(m+1)} \sum_{P \in \mathcal{WPF}_{kn,km}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}.$$

Left side (algebraic): An Elliptic Hall Algebra element $E_{kn,km}$ acting on 1

Right side (combinatorial):

 $\frac{\text{dinv}}{\text{dinv}}$ is now computing using inversions along lines of slope n/m

Affine Springer fiber for Rectangular Shuffle

Let
$$\gamma = \begin{pmatrix} 0 & 0 & 0 \\ \hline 0 & \epsilon I_{k-1} & 0 \\ \hline I & 0 & 0 \end{pmatrix}$$
.

Affine Springer fiber for Rectangular Shuffle

Let
$$\gamma = \begin{pmatrix} 0 & 0 & 0 \\ \hline 0 & \epsilon I_{k-1} & 0 \\ \hline I & 0 & 0 \end{pmatrix}$$
.

$$\widetilde{\mathrm{Fil}}_{\gamma}^{+,0} = \{ \Lambda_{\bullet} \in \mathrm{Sp}_{\gamma} : \Lambda_{0} \subseteq \mathcal{O}^{kn}, \ \Lambda_{0} \not\subseteq \epsilon \mathcal{O} \oplus \mathcal{O}^{kn-1} \}$$

Theorem (Gillespie-Gorsky-G.)

Frob
$$(H_*(\widetilde{\mathrm{Fl}}_{\gamma}^{+,0};\mathbb{Q});q,t)=E_{kn,k}\cdot 1$$

Affine Springer fiber for Rectangular Shuffle

Let
$$\gamma = \begin{pmatrix} 0 & 0 & 0 \\ \hline 0 & \epsilon I_{k-1} & 0 \\ \hline I & 0 & 0 \end{pmatrix}$$
.

$$\widetilde{\mathrm{Fil}}_{\gamma}^{+,0} = \{ \Lambda_{\bullet} \in \mathrm{Sp}_{\gamma} : \Lambda_{0} \subseteq \mathcal{O}^{kn}, \ \Lambda_{0} \not\subseteq \epsilon \mathcal{O} \oplus \mathcal{O}^{kn-1} \}$$

Theorem (Gillespie-Gorsky-G.)

Frob
$$(H_*(\widetilde{\mathrm{Fl}}_{\gamma}^{+,0};\mathbb{Q});q,t)=E_{kn,k}\cdot 1$$

• t grading is by connected components!

Theorem (Gillespie–Gorsky–G.)

Frob
$$(H_*(\widetilde{\mathrm{Fl}}_{\gamma}^{+,0};\mathbb{Q});q,t)=E_{kn,k}\cdot 1$$

The action of γ on basis vectors:

$$e_1 \rightarrow e_4 \rightarrow e_7$$
 $e_2 \rightarrow e_5 \rightarrow e_8$ $e_3 \rightarrow e_6 \rightarrow e_9$

$$\epsilon e_2 \rightarrow \epsilon e_5 \rightarrow \epsilon e_8$$
 $\epsilon e_3 \rightarrow \epsilon e_6 \rightarrow \epsilon e_9$

$$\epsilon^2 e_3 \rightarrow \epsilon^2 e_6 \rightarrow \epsilon^2 e_9$$

Theorem (Gillespie-Gorsky-G.)

Frob
$$(H_*(\widetilde{Fl}_{\gamma}^{+,0};\mathbb{Q});q,t)=E_{kn,k}\cdot 1$$

The action of γ on basis vectors:

A lattice preserved by γ is gen'd by the circled elements.

Theorem (Gillespie-Gorsky-G.)

Frob
$$(H_*(\widetilde{Fl}_{\gamma}^{+,0};\mathbb{Q});q,t)=E_{kn,k}\cdot 1$$

The action of γ on basis vectors:

A lattice preserved by γ is gen'd by the circled elements.

Theorem (Gillespie-Gorsky-G.)

Frob
$$(H_*(\widetilde{Fl}_{\gamma}^{+,0};\mathbb{Q});q,t)=E_{kn,k}\cdot 1$$

The action of γ on basis vectors:

A lattice preserved by γ is gen'd by the circled elements.

Flag of lattices ↔ Labeling of the circled elements

Theorem (Gillespie–Gorsky–G.)

$$Frob(H_*(\widetilde{Fl}_{\gamma}^{+,0};\mathbb{Q});q,t) = E_{kn,k} \cdot 1$$

The action of γ on basis vectors:

		5
	8	
	8	<i>;</i>
	1	
9		
9 7		
6		
6 3		
2		

A lattice preserved by γ is gen'd by the circled elements.

Flag of lattices ↔ Labeling of the circled elements

• Word parking functions $\mathcal{WPF}_{K,k}$ can be translated into a set of affine permutations, which we call γ -restricted.

Rank function on cells:

27	18	9					
24	15	6					
21	12	3					
17	8						
14	5	· · · · · · · · · · · · · · · · · · ·					
11	2	***************************************					
7							
4	******						
1	· · · · · .						
	-kn						

$$+k \text{ or } (k+1)$$

• Word parking functions $\mathcal{WPF}_{K,k}$ can be translated into a set of affine permutations, which we call γ -restricted.

Rank function on cells:

27 18 9								
21 12 3 17 8 1/ 14 5 9 11 2 7 7 6/ 4 3 1 2	27	18	9					5
17 8 14 5 11 2 7 6 4 3 1 2	24	15	6				8	
14 5 9 11 2 7 7 6 4 3 1 2	21	12	3	···			4	···
11 2 7 7 6 4 3 1 2	17	8					1	
7 6 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14	5				9	••••••	
	11	2	· · · · · · · · · · · · · · · · · · ·			•	٠٠٠	
	7					6		
	4					3		
$-kn \longrightarrow P$	1					2		
		-k	cn	-			P	

+k or (k+1)

• Word parking functions $\mathcal{WPF}_{K,k}$ can be translated into a set of affine permutations, which we call γ -restricted.

Rank function on cells:

27	18	9	*******			9	5
24	15	6			15	8	
21	12	3	***************************************		12	4	···
17	8				8	1	
14	IJ	· · · · · · · · · · · · · · · · · · ·		14	9	••••••	
11	2	···		11	7	···	
7	***************************************			7	6		
4	*******			4	3		
1	···			1	2		
	-k	cn	—			\overline{P}	
	,	010	-				

+k or (k+1)

• Word parking functions $\mathcal{WPF}_{K,k}$ can be translated into a set of affine permutations, which we call γ -restricted.

Rank function on cells:

27	18	9	
24	15	6	
21	12	3	
17	8	***************************************	
14	5	••••••	
11	2	٠٠٠	
7			
4	********		
1	···		
		cn .	—

+k or (k+1)

- -w indexes a cell in $\widetilde{\mathrm{Fl}}_{\gamma}^{+,0}$
- -The codim of the cell is dinv(P).

Delta Theorem

A different generalization of the Shuffle Theorem.

(Fall) Delta Theorem (D'Adderio-Mellit + BHMPS)

$$\Delta'_{e_{k-1}}(e_n) = \sum_{P \in \mathcal{WPF}_{n,k}^{\mathsf{fall}}} q^{\mathsf{dinv}(P)} t^{\mathsf{area}^-(P)} x^P$$

When n=k, $\nabla e_n=\Delta'_{e_{n-1}}e_n$ and we recover the Shuffle Theorem.

*

Ex:
$$n = 6, k = 5$$

$$P = \begin{bmatrix} 7 \\ 5 \\ 2 \end{bmatrix}$$

$$\operatorname{dinv}(P) = 3$$

$$area^-(P) = 7$$

Delta Theorem

A different generalization of the Shuffle Theorem.

(Fall) Delta Theorem (D'Adderio-Mellit + BHMPS)

$$\Delta'_{e_{k-1}}(e_n) = \sum_{P \in \mathcal{WPF}_{n,k}^{\mathsf{fall}}} q^{\mathsf{dinv}(P)} t^{\mathsf{area}^-(P)} x^P$$

When n=k, $\nabla e_n=\Delta'_{e_{n-1}}e_n$ and we recover the Shuffle Theorem.

Ex: n = 6, k = 5

$$P =$$

		*	2	
	7			
	5			
4				
3				
2				

$$\operatorname{dinv}(P) = 3$$

$$\operatorname{dinv}(P) = 3$$

$$\operatorname{area}^{-}(P) = 7$$

Rectangular Shuffle Thms

Delta Theorem

$$\Delta'_{e_{k-1}} e_n$$

$$k = n$$

Shuffle Theorem

 ∇e_n

"Integer slope" case

$$E_{kn,k} \cdot 1$$

Rectangular Shuffle Thms

$$E_{kn,km} \cdot 1$$

Delta Theorem

$$\Delta'_{e_{k-1}} e_n$$

$$k = n$$

Shuffle Theorem

$$\nabla e_n$$

"Integer slope" case

$$E_{kn,k} \cdot 1$$

 \bigcap

$s_{(k-1)^{n-k}}^{\perp}$

GGG

Rectangular Shuffle Thms

$$E_{kn,km} \cdot 1$$

$$m = n, k \neq 1$$

Delta Theorem

$$\Delta'_{e_{k-1}}e_n$$

$$k = n$$

Shuffle Theorem

 ∇e_n

Skewing formula

The Delta Thm and Rectangular Shuffle Thm are **directly** related:

Theorem (Gillespie-Gorsky-G.)

Letting
$$\lambda = (k-1)^{n-k}$$
, then

$$\Delta'_{e_{k-1}}(e_n) = s_{\lambda}^{\perp} \left(E_{k(n-k+1),k} \cdot 1 \right).$$

Skewing formula

The Delta Thm and Rectangular Shuffle Thm are **directly** related:

Theorem (Gillespie–Gorsky–G.)

Letting $\lambda = (k-1)^{n-k}$, then

$$\Delta'_{e_{k-1}}(e_n) = s_{\lambda}^{\perp} \left(E_{k(n-k+1),k} \cdot 1 \right).$$

• The identity has geometric meaning in terms of affine Springer fibers.

Affine Springer fiber for Delta Thm

Take the same γ , K = k(n-k+1)

$$BM_{\gamma} := \{ \Lambda_{\bullet} \in \widetilde{Fl}_{(K-n,1^n)} \mid \gamma \Lambda_i \subseteq \Lambda_i, \ JT(\gamma \subset \Lambda_0/\Lambda_1) \leqslant (n-k)^{k-1} \}.$$

Theorem (Gillespie-Gorsky-G.)

Frob
$$(H_*(BM_{\gamma}^{+,0};\mathbb{Q});q,t)=\Delta'_{e_{k-1}}e_n$$

Paths under any line

BHMPS have a Shuffle Theorem for paths under any line in the first quadrant.

Theorem (G, 2025)

If $b_1 \in \mathbb{Z}_{\geqslant 0}$, there is a γ such that

$$\operatorname{Frob}(H_*(\widetilde{Fl}_{\gamma}^{+,0};\mathbb{Q});q,t) = D_{b_1,b_2,\dots,b_{\ell}} \cdot 1.$$

Operator

Parking func's

Springer fiber

$$\nabla e_n$$
 \longleftarrow

 $\nabla e_n \quad \Longleftrightarrow \quad \mathcal{WPF}_n \quad \Longleftrightarrow \quad H_*(\widetilde{\operatorname{Fl}}_{\gamma})$

Operator

Parking func's

Springer fiber

$$\nabla e_n \quad \leftrightsquigarrow$$

 $\nabla e_n \quad \longleftrightarrow \quad \mathcal{WPF}_n \quad \longleftrightarrow \quad$

 $H_*(\widetilde{\mathrm{Fl}}_\gamma)$

$$\Delta'_{e_{k-1}}e_n \iff$$

 $\Delta'_{e_{k-1}}e_n \longleftrightarrow \mathcal{WPF}_{n,k}^{\mathsf{fall}} \longleftrightarrow H_*(BM_{\gamma}^{+,0})$

Operator Parking func's

Springer fiber

$$\nabla e_n \quad \leftrightsquigarrow$$

$$\nabla e_n \quad \leftrightsquigarrow \quad \mathcal{WPF}_n \quad \leftrightsquigarrow$$

$$H_*(\widetilde{\mathrm{Fl}}_\gamma)$$

$$\Delta'_{e_{k-1}}e_n \iff$$

$$\Delta'_{e_{k-1}}e_n \longleftrightarrow \mathcal{WPF}_{n,k}^{\mathsf{fall}} \longleftrightarrow H_*(BM_{\gamma}^{+,0})$$

$$H_*(BM_{\gamma}^{+,0})$$

$$E_{K,k} \cdot 1 \iff$$

$$E_{K,k} \cdot 1 \iff \mathcal{WPF}_{K,k} \iff H_*(\widetilde{Fl}_{\gamma}^{+,0})$$

$$H_*(\widetilde{\mathrm{Fl}}_{\gamma}^{+,0})$$

Operator

Parking func's

Springer fiber

$$\nabla e_n \quad \leftrightsquigarrow$$

$$\nabla e_n \quad \leftrightsquigarrow \quad \mathcal{WPF}_n \quad \leftrightsquigarrow$$

$$H_*(\widetilde{\mathrm{Fl}}_\gamma)$$

$$\Delta'_{e_{k-1}}e_n \iff$$

$$\Delta'_{e_{k-1}}e_n \longleftrightarrow \mathcal{WPF}_{n,k}^{\mathsf{fall}} \longleftrightarrow H_*(BM_{\gamma}^{+,0})$$

$$H_*(BM_{\gamma}^{+,0})$$

$$E_{Kk} \cdot 1 \iff$$

$$E_{K,k} \cdot 1 \iff \mathcal{WPF}_{K,k} \iff H_*(\widetilde{Fl}_{\gamma}^{+,0})$$

$$H_*(\widetilde{\mathrm{Fl}}_{\gamma}^{+,0})$$

Operator

Parking func's

Springer fiber

$$\nabla e_n \quad \leftrightsquigarrow$$

$$\nabla e_n \quad \leftrightsquigarrow \quad \mathcal{WPF}_n \quad \leftrightsquigarrow$$

$$H_*(\widetilde{\mathrm{Fl}}_\gamma)$$

$$\Delta'_{e_{k-1}}e_n \iff$$

$$\Delta'_{e_{k-1}}e_n \longleftrightarrow \mathcal{WPF}_{n,k}^{\mathsf{fall}} \longleftrightarrow H_*(BM_{\gamma}^{+,0})$$

$$H_*(BM_{\gamma}^{+,0})$$

$$E_{Kk} \cdot 1 \iff$$

$$E_{K,k} \cdot 1 \iff \mathcal{WPF}_{K,k} \iff H_*(\widetilde{Fl}_{\gamma}^{+,0})$$

$$H_*(\widetilde{\mathrm{Fl}}_{\gamma}^{+,0})$$

Thanks for listening!