

$$y = |X| = \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \end{cases}$$

Limit = height of curve at \times $x \to 0$ |x|

approaching $\lim_{x\to 0} \frac{x}{-x}$ = -1

 $\lim_{X\to 0^+} \frac{x}{x} \quad \text{opproaching}$ = 1

Limit from left MUST =
to limit from right
EVEN IF there is a hole

This limit therefore does NOT exist ?

· Absolute distance to the centre of the absolute

left 2

Centre is usually at the origin but can be different if there is a horizontal translation

1xy1 = 1x1·191

SEP15 $x \to a$ $f(x) \to beight of curve <math>f(x)$ as x approaches a $x \to 2$ $x \to 2$

Writing restrictions

* ONLY write hole restrictions *

natural log
$$\lim_{h\to 0} \frac{2^{h-1}}{h} = \ln 2 \qquad \lim_{h\to 0} \frac{3^{h-1}}{h} = \ln 3 \qquad \lim_{h\to 0} \frac{e^{h-1}}{h} = 1$$