DEEP LEARNING FOR ARTIFICIAL INTELLIGENCE

Day 1 Lecture 2

Machine Learning Basics

Organizers

Supporters

GitHub Education

+ info: http://bit.ly/dlai2019

[course site]

Xavier Giro-i-Nieto xavier.giro@upc.edu

Associate Professor

Universitat Politecnica de Catalunya Technical University of Catalonia

Acknowledgements

Kevin McGuinness kevin.mcguinness@dcu.ie

Research Fellow
Insight Centre for Data Analytics
Dublin City University

Source: NVIDIA

Types of Machine Learning

Yann Lecun's Black Forest cake

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples
- Supervised Learning (icing)
 - The machine predicts a category or a few numbers for each input
 - Predicting human-supplied data
 - ▶ 10→10,000 bits per sample
- Unsupervised/Predictive Learning (cake)
 - The machine predicts any part of its input for any observed part.
 - Predicts future frames in videos
 - Millions of bits per sample

is unsupervised learning. If intelligence was a cake, unsupervised learning would be the cake, supervised learning would be the icing on the cake, and reinforcement learning would be the cherry on the cake.

~ Yann Lecun (On true Al)

Carnegie Mellon University

Machine Learning

(Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

Machine Learning

	with a teacher	without a teacher
Active agent	Reinforcement learning (with extrinsic reward)	Intrinsic motivation / Exploration.
Passive agent	Supervised learning	Unsupervised learning

Slide inspired by Alex Graves (Deepmind) at "Unsupervised Learning Tutorial" @ NeurIPS 2018.

Machine Learning

	with a teacher	without a teacher
Active agent	Reinforcement learning (with extrinsic reward)	Intrinsic motivation / Exploration.
Passive agent	Supervised learning	Unsupervised learning

Slide inspired by Alex Graves (Deepmind) at "Unsupervised Learning Tutorial" @ NeurIPS 2018.

Supervised learning

Fit a function: y = f(x), $x \in \mathbb{R}^m$

Supervised learning

Fit a function: y = f(x), $x \in \mathbb{R}^m$

Given paired training examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}$

Supervised learning

Fit a function: y = f(x), $x \in \mathbb{R}^m$

Given paired training examples $\{(\mathbf{x}_i, \mathbf{y}_i)\}$

Key point: generalize well to unseen examples

Black box abstraction of supervised learning

Regression vs Classification

Depending on the type of target **y** we get:

• Regression: $y \in \mathbb{R}^N$ is continuous (e.g. temperatures $y = \{19^\circ, 23^\circ, 22^\circ\}$)

• Classification: y is discrete (e.g. y = {"dog","cat","ostrich"}).

Regression vs Classification

Depending on the type of target **y** we get:

• Regression: $y \in \mathbb{R}^N$ is continuous (e.g. temperatures $y = \{19^\circ, 23.2^\circ, 22.8^\circ\}$)

• Classification: y is discrete (e.g. y = {"dog", "cat", "ostrich"}).

Linear Regression (eg. 1D input - 1D ouput)

Linear Regression (eg. 1D input - 1D ouput)

Linear Regression (M-D input)

Input data can also be M-dimensional with vector \mathbf{x} :

$$y = \mathbf{w}^{T} \cdot \mathbf{x} + b = w1 \cdot x1 + w2 \cdot x2 + w3 \cdot x3 + ... + wM \cdot xM + b$$

e.g. we want to predict the price of a house (y) based on:

$$x2,3 = location (lat, lon)$$

$$y = price = w1\cdot(sqm) + w2\cdot(lat) + w3\cdot(lon) + b$$

Regression vs Classification

Depending on the type of target **y** we get:

• Regression: $y \in \mathbb{R}^N$ is continuous (e.g. temperatures $y = \{19^\circ, 23^\circ, 22^\circ\}$)

• Classification: y is discrete (e.g. y = {"dog","cat","ostrich"}).

Binary Classification (eg. 2D input, 1D ouput)

Multi-class Classification

Produce a classifier to map from pixels to the digit.

- ▶ If images are grayscale and 28×28 pixels in size, then $\mathbf{x}_i \in \mathbb{R}^{784}$
- $y_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Example of a multi-class classification task.

Multi-class Classification

- Classification: y is discrete (e.g. y = {"dog","cat","ostrich"}.
 - Classes are often coded as one-hot vector (each class corresponds to a different dimension of the output space)

End-to-end Learning

- Old style machine learning:
 - Engineer features (by some unspecified method)
 - Create a representation (descriptor)
 - Train shallow classifier on representation

Example:

- SIFT features (engineered)
- BoW representation (engineered + unsupervised learning)
- SVM classifier (convex optimization)

Deep learning

- Learn layers of features, representation, and classifier in one go based on the data alone
- Primary methodology: deep neural networks (non-convex)

Multi-class Classification

What is the dimensionality of a one-hot representation of the MNIST classes?

- A. 1
- B. 28
- C. 10
- D. 784

Multi-class Classification

What is the dimensionality of a one-hot representation of the MNIST classes?

- A. 1
- B. 28
- C. 10
- D. 784

Should you treat these three problems as classification or as regression problems?

Problem	Regression?	Classification?
Predicting whether stock price of a company will increase tomorrow		
Predict the number of copies a music album will be sold next month		
Predicting the gender of a person by his/her handwriting style		

Should you treat these three problems as classification or as regression problems?

Problem	Regression?	Classification?
Predicting whether stock price of a company will increase tomorrow		V
Predict the number of copies a music album will be sold next month		
Predicting the gender of a person by his/her handwriting style		V

Questions?

Undergradese

What undergrads ask vs. what they're REALLY asking

"Is this going to be

"Is it going to be an open book exam?"

Translation: "I don't have to actually memorize anything, do I?"

"Hmm, what do you mean by that?"

> Translation: "What's the answer so we can all go home."

"Are you going to have office hours today?"

> Translation: "Can I do my homework in your office?"

"Can i get an extension?"

> Translation: "Can you re-arrange your life around mine?"

> > "Is grading going to be curved?"

WW. PHDCOMICS. COM

Translation: "Can I do a mediocre job and still get an A?"

what's going to be on the test."

