- 1 目的
- 2 課題1

3 課題2吸収係数の測定(石川)

3.1 原理

3.1.1 吸収係数

 γ 線は通過するとき、相互作用を起こしながら一個一個ビーム束から失われていく。通過前に I_0 個の γ 線が厚さ x の物を通過すると、通過後の γ 線の個数 I は、

$$I(x) = I_0 \exp^{-\mu x}$$

となる。 μ は γ 線が単位暑さを通る間に失われる確率を表した量であり、全吸収係数と呼ばれる。これは光電効果、コンプトン効果、電子対生成効果の相互作用によって決まる。

3.1.2 解析

課題1の解析方法に準じる。

3.2 実験方法

3.2.1 試料・装置

実験試料

- ⁶⁰Co 線源
- ¹³⁷Cs 線源
- 吸収体 Al
- 吸収体 Pb

実験装置

- ・ノギス
- コリメータ
- 検出器
- 吸収体固定器具

3.2.2 手順

- 1. 吸収体2種類各4枚の暑さをノギスで測定した。
- 2. 検出器、吸収体固定器具、コリメータ、線源の順に配置した。
- 3. 吸収体それぞれにおいて、枚数を 4,3,2,1,0 枚と変化させながら 300 秒間測定した。
- 4. Co線源より 1.33,1.17MeV,Cs 線源より 0.662MeV における 2 種類の 吸収体の質量吸収係数を求めた。

3.3 結果

測定結果を表1~表3、図1~図3に示す。

表 1: Cs 線源 (0.662MeV) におけるカウント数

条件	thickness $[g/cm^2]$	counts	count-err
Pb*4	91.37	407.883	10.729
Pb*3	67.53	516.345	11.460
Pb*2	44.83	628.302	12.794
Pb*1	22.98	791.932	16.199
Pb*0	0.00	975.312	19.112
Al*4	4.394	713.589	16.030
Al*3	3.294	779.481	15.410
Al*2	2.194	800.105	15.871
Al*1	1.094	865.602	16.667
Al*0	0.000	916.487	18.576

3.4 考察

測定結果と文献値の比較すると、測定結果は概ね文献値に一致している事が伺える。しかし完全に一致しているとは言い難い。これは、吸収体の厚さの測定誤差が影響していると考えられる。また表4より換算カイ二乗の値を読み取ると、フィッティングの精度がやや低い事が伺える。

表 2: Co 線源 (1.17MeV) におけるカウント数

条件	thickness $[g/cm^2]$	counts	count-err
Pb*4	91.37	377.318	16.044
Pb*3	67.53	480.421	18.995
Pb*2	44.83	494.764	17.330
Pb*1	22.98	605.956	21.885
Pb*0	0.00	695.440	20.696
Al*4	4.394	588.768	20.998
Al*3	3.294	585.289	20.783
Al*2	2.194	649.388	21.835
Al*1	1.094	676.884	22.603
Al*0	0.000	710.113	20.801

表 3: Co 線源 (1.33MeV) におけるカウント数

条件	thickness $[g/cm^2]$	counts	count-err
Pb*4	91.37	368.798	18.781
Pb*3	67.53	474.963	21.952
Pb*2	44.83	468.756	21.003
Pb*1	22.98	572.481	25.054
Pb*0	0.00	637.676	23.621
Al*4	4.394	530.308	25.082
Al*3	3.294	542.671	25.208
Al*2	2.194	606.691	25.864
Al*1	1.094	636.237	27.067
Al*0	0.000	637.661	24.523

図 1: 0.662MeV(Cs137) における各吸収体の厚さとカウント数

図 2: 1.17MeV(Co60) における各吸収体の厚さとカウント数

図 3: 1.33MeV(Co60) における各吸収体の厚さとカウント数

図 4: Pb における吸収係数の文献値と測定値の比較

図 5: Al における吸収係数の文献値と測定値の比較

	7	X 4. — 17/1/1	C 11 1/242 17 10 17 10 1/242 1/1 30		
	吸収体	energy[MeV]	$\mu[cm^-1]$	誤差	reduced-chisquare
	Pb	0.662	0.096	0.003	0.252
	Pb	1.173	0.064	0.005	1.749
	Pb	1.332	0.056	0.006	1.857
	Al	0.662	0.055	0.006	0.566
	Al	1.173	0.047	0.009	0.546
L	Al	1.332	0.047	0.012	0.548

表 4: エネルギーと各吸収体における吸収係数

ゆえにフィッティングを用いて推定したカウントの値の正確性が低く、吸収係数の推定の精度が低くなったと考えられる。

4 実験3不安定核の崩壊の測定(石川)

4.1 原理

4.1.1 半減期

原子核等の崩壊過程は始状態と終状態とその崩壊を起こす相互作用によって決定される。初めにに N_0 個のアイソトープがあったとすると、時間tが経過した後のアイソトープの個数Nは、

$$N(t) = N_0 \exp^{-\lambda t}$$

となる。 λ は「寿命 τ 」の逆数で表される量である。また半減期 T_0 とは、 $N=\frac{N_0}{2}$ になるまでかかる時間であり、

$$T_0 = \frac{\ln 2}{T_0}$$

の関係がある。

4.1.2 解析

課題1の解析方法に準じる。

4.2 実験方法

4.2.1 試料・装置

実験試料

• ¹⁹⁸Au

実験装置

- コリメータ
- 検出器
- サンプルホルダ

4.2.2 手順

- 1. サイクロトロンセンターで金サンプルビームの照射を行い不安定核である ^{198}Au サンプルを作成した。
- 2. 検出器、吸収体固定器具、コリメータ、線源の順に配置した。
- 3. 一定時間経過ごとに900秒間測定した。
- 4. 測定結果より ¹⁹⁸Au の半減期を求めた。

4.3 結果

測定結果を表5、図6に示す。

表 5: 測定時間とエネルギーピーク

測定時刻	エネルギー [MeV]	err	
2018/6/6/16:21	0.425265	0.006	
2018/6/7/13:19	0.425021	0.006	
2018/6/13/13:20	0.427356	0.004	
2018/6/14/13:20	0.428244	0.006	

図 6: Au

4.4 考察

表5と文献値0.41180[MeV]と比較すると、文献値が誤差の範囲内に収まっていないことが分かる。これは課題1で述べたが、較正曲線が厳密には1次関数でフィッテングできない為であると考えられる。

また半減期 T_0 は 2.77 ± 0.04 [日] と求められた。これは 2σ の範囲に文献値 2.696[日] が収まる。誤差の原因としては、表 5 においてエネルギーピークの位置が変化しているように見えることから、一定として考えていた印加電圧がずれてしまっていることが考えられる。また電源をつけてすぐに測定を行なっていた実験があった為、光電子増倍菅の電源電圧が安定していなかったことが影響していると考えられる。

5 結論

各種測定を行うことで、 γ 線の測定原理について理解を深めることが出来た。また測定結果の考察を通して測定の際に気をつけるべき手順について学ぶことができた。