Importing Libraries

In [109]: import numpy as np
 import pandas as pd
 import seaborn as sns
 import matplotlib.pyplot as plt

Importing Datasets

In [110]: df=pd.read_csv(r"C:\Users\user\Desktop\csvs_per_year\csvs_per_year\madrid_2004.
df

Out[110]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PI
0	2004- 08-01 01:00:00	NaN	0.66	NaN	NaN	NaN	89.550003	118.900002	NaN	40.020000	39.990
1	2004- 08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999	22.950
2	2004- 08-01 01:00:00	NaN	1.02	NaN	NaN	NaN	93.389999	138.600006	NaN	20.860001	49.480
3	2004- 08-01 01:00:00	NaN	0.53	NaN	NaN	NaN	87.290001	105.000000	NaN	36.730000	31.070
4	2004- 08-01 01:00:00	NaN	0.17	NaN	NaN	NaN	34.910000	35.349998	NaN	86.269997	54.080
245491	2004- 06-01 00:00:00	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66	33.029999	30.900
245492	2004- 06-01 00:00:00	2.49	0.75	2.44	4.57	NaN	97.139999	146.899994	2.34	7.740000	37.689
245493	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.13	102.699997	132.600006	NaN	17.809999	22.840
245494	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.09	82.599998	102.599998	NaN	NaN	45.630
245495	2004- 06-01 00:00:00	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60	11.460000	24.389

245496 rows × 17 columns

Data Cleaning and Data Preprocessing

```
In [111]: df=df.dropna()
In [112]: df.columns
Out[112]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_
          3',
                 'PM10', 'PM25', 'PXY', 'SO_2', 'TCH', 'TOL', 'station'],
                dtype='object')
In [113]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 19397 entries, 5 to 245495
          Data columns (total 17 columns):
               Column
                        Non-Null Count Dtype
           0
               date
                        19397 non-null object
               BEN
           1
                        19397 non-null float64
           2
               CO
                        19397 non-null float64
           3
               EBE
                        19397 non-null float64
           4
               MXY
                        19397 non-null float64
           5
               NMHC
                        19397 non-null float64
           6
               NO 2
                        19397 non-null float64
           7
                        19397 non-null float64
               NOx
           8
               OXY
                        19397 non-null float64
           9
               0 3
                        19397 non-null float64
           10 PM10
                        19397 non-null float64
           11 PM25
                        19397 non-null float64
           12 PXY
                        19397 non-null float64
           13 SO 2
                        19397 non-null float64
           14 TCH
                        19397 non-null float64
           15 TOL
                        19397 non-null float64
           16 station 19397 non-null int64
          dtypes: float64(15), int64(1), object(1)
          memory usage: 2.7+ MB
```

```
In [114]: data=df[['CO' ,'station']]
  data
```

Out[114]:

	СО	station
5	0.63	28079006
22	0.36	28079024
26	0.46	28079099
32	0.67	28079006
49	0.30	28079024
245463	0.08	28079024
245467	0.67	28079099
245473	1.12	28079006
245491	0.21	28079024
245495	0.67	28079099

19397 rows × 2 columns

Line chart

```
In [115]: data.plot.line(subplots=True)
```

Out[115]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

```
In [116]: data.plot.line()
```

Out[116]: <AxesSubplot:>

Bar chart

```
In [117]: b=data[0:50]
In [118]: b.plot.bar()
Out[118]: <AxesSubplot:>
```


Histogram

```
In [119]: data.plot.hist()
```

Out[119]: <AxesSubplot:ylabel='Frequency'>

Area chart

```
In [120]: data.plot.area()
```

Out[120]: <AxesSubplot:>

Box chart

```
In [121]: data.plot.box()
```

Out[121]: <AxesSubplot:>

Pie chart

```
In [122]: b.plot.pie(y='station' )
```

Out[122]: <AxesSubplot:ylabel='station'>

Scatter chart

```
In [123]: data.plot.scatter(x='CO' ,y='station')
```

Out[123]: <AxesSubplot:xlabel='CO', ylabel='station'>


```
In [124]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 19397 entries, 5 to 245495
Data columns (total 17 columns):
```

#	Column	Non-Null Count	Dtype
0	date	19397 non-null	object
1	BEN	19397 non-null	float64
2	CO	19397 non-null	float64
3	EBE	19397 non-null	float64
4	MXY	19397 non-null	float64
5	NMHC	19397 non-null	float64
6	NO_2	19397 non-null	float64
7	NOx	19397 non-null	float64
8	OXY	19397 non-null	float64
9	0_3	19397 non-null	float64
10	PM10	19397 non-null	float64
11	PM25	19397 non-null	float64
12	PXY	19397 non-null	float64
13	S0_2	19397 non-null	float64
14	TCH	19397 non-null	float64
15	TOL	19397 non-null	float64
16	station	19397 non-null	int64
dtyp	es: float	64(15), int64(1)	, object(1)

memory usage: 2.7+ MB

```
In [125]:
            df.describe()
Out[125]:
                                                                      MXY
                            BEN
                                            CO
                                                        EBE
                                                                                   NMHC
                                                                                                 NO_2
             count 19397.000000
                                  19397.000000
                                                19397.000000
                                                              19397.000000
                                                                            19397.000000
                                                                                          19397.000000
                                                                                                        1939
                                                    2.775913
                                                                                0.151024
                         2.250781
                                      0.675347
                                                                   5.424809
                                                                                             62.887023
                                                                                                           1:
              mean
                std
                         2.184724
                                      0.591026
                                                    2.729622
                                                                   5.554358
                                                                                0.158603
                                                                                             37.952255
                                                                                                           1:
                        0.000000
                                      0.000000
                                                    0.000000
                                                                   0.000000
                                                                                0.000000
                                                                                              0.090000
               min
               25%
                        0.870000
                                      0.320000
                                                     1.020000
                                                                   1.780000
                                                                                0.060000
                                                                                             35.150002
               50%
                         1.620000
                                      0.520000
                                                     1.970000
                                                                   3.800000
                                                                                 0.110000
                                                                                             58.310001
                         2.910000
                                      0.860000
                                                                                0.200000
              75%
                                                    3.580000
                                                                   7.260000
                                                                                             85.730003
                                                                                                          1
                       34.180000
                                      8.900000
                                                   41.880001
                                                                 91.599998
                                                                                4.810000
                                                                                            355.100006
                                                                                                         170
               max
                                                      'NMHC', 'NO_2',
In [126]:
                                                                          'NOx', 'OXY',
              'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [138]: sns.pairplot(df1[0:50])

Out[138]: <seaborn.axisgrid.PairGrid at 0x1cd2081d5e0>

In [139]: | sns.distplot(df1['station'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[139]: <AxesSubplot:xlabel='station', ylabel='Density'>

In [140]: sns.heatmap(df1.corr())

Out[140]: <AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

Linear Regression

Out[145]:

	Co-efficient
BEN	-4.149320
СО	28.974299
EBE	4.093538
MXY	-3.564947
NMHC	76.214166
NO_2	-0.152042
NOx	-0.263485
OXY	-2.700986
O_3	-0.299274
PM10	0.091041
PXY	6.509818
SO_2	-0.207503
тсн	-6.417410
TOL	1.237076

Co-officient

```
In [146]: prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[146]: <matplotlib.collections.PathCollection at 0x1cd000e0c40>

ACCURACY

```
In [147]: lr.score(x_test,y_test)
Out[147]: 0.10368510261153874
In [148]: lr.score(x_train,y_train)
Out[148]: 0.10720468459527421
```

Ridge and Lasso

```
In [149]: from sklearn.linear_model import Ridge,Lasso
In [150]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
Out[150]: Ridge(alpha=10)
```

Accuracy(Ridge)

```
madrid 2002 - Jupyter Notebook
In [151]: rr.score(x_test,y_test)
Out[151]: 0.1013285735884294
In [152]: |rr.score(x_train,y_train)
Out[152]: 0.10691065764218544
In [153]: la=Lasso(alpha=10)
          la.fit(x_train,y_train)
Out[153]: Lasso(alpha=10)
In [154]: la.score(x_train,y_train)
Out[154]: 0.0562981891575286
          Accuracy(Lasso)
In [155]: la.score(x_test,y_test)
Out[155]: 0.04747300651618447
In [156]: from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x train,y train)
Out[156]: ElasticNet()
In [157]: en.coef_
                            , 0.42069669, 1.41170788, -1.88395165,
Out[157]: array([-0.
                 -0.16846589, -0.09328818, -0.
                                                     , -0.23225802, 0.11512537,
                                                     , 1.21346959])
                  0.38645125, -0.13953972, 0.
```

In [158]: en.intercept_

In [159]:

Out[158]: 28079067.29497689

In [160]: en.score(x_test,y_test)

Out[160]: 0.06055311810140007

prediction=en.predict(x_test)

Evaluation Metrics

```
In [161]: from sklearn import metrics
    print(metrics.mean_absolute_error(y_test,prediction))
    print(metrics.mean_squared_error(y_test,prediction))
    print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

38.63234705078924 1666.5565468600973 40.823480337424655

Logistic Regression

```
In [162]: from sklearn.linear model import LogisticRegression
target vector=df[ 'station']
In [164]: | feature_matrix.shape
Out[164]: (19397, 14)
In [165]: | target_vector.shape
Out[165]: (19397,)
In [166]: from sklearn.preprocessing import StandardScaler
In [167]: | fs=StandardScaler().fit transform(feature matrix)
In [168]: logr=LogisticRegression(max iter=10000)
         logr.fit(fs,target_vector)
Out[168]: LogisticRegression(max_iter=10000)
In [169]: | observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
```

Random Forest

```
In [178]: from sklearn.model selection import GridSearchCV
          grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acc
          grid_search.fit(x_train,y_train)
Out[178]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                  'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [179]: grid_search.best_score_
Out[179]: 0.7760189647834945
In [180]: | rfc_best=grid_search.best_estimator_
In [181]: | from sklearn.tree import plot tree
          plt.figure(figsize=(80,40))
          plot tree(rfc best.estimators [5],feature names=x.columns,class names=['a','b'
           Text(2539.8620689655177, 181.199999999999, 'gini = 0.349\nsamples = 1250
          \nvalue = [207, 209, 1601]\nclass = c'),
           Text(2924.689655172414, 906.0, 'EBE <= 4.325\ngini = 0.545\nsamples = 2431
          \nvalue = [2003, 215, 1552]\nclass = a'),
           amples = 2293\nvalue = [1953, 207, 1389]\nclass = a'),
           Text(2693.7931034482763, 181.1999999999982, 'gini = 0.551\nsamples = 1700
          \nvalue = [1298, 149, 1184]\nclass = a'),
           Text(2847.724137931035, 181.1999999999982, 'gini = 0.437\nsamples = 593\n
          value = [655, 58, 205]\nclass = a'),
           Text(3078.6206896551726, 543.599999999999, '0 3 <= 6.98 ngini = 0.404 nsa
          mples = 138\nvalue = [50, 8, 163]\nclass = c'),
           Text(3001.6551724137935, 181.19999999999982, 'gini = 0.127\nsamples = 55\n
          value = [6, 0, 82]\nclass = c'),
           Text(3155.586206896552, 181.1999999999982, 'gini = 0.516\nsamples = 83\nv
          alue = [44, 8, 81] \setminus class = c'),
           Text(3848.275862068966, 1268.4, 'NOx <= 143.5\ngini = 0.39\nsamples = 1752
          \nvalue = [2091, 25, 714]\nclass = a'),
           Text(3540.4137931034484, 906.0, 'TCH <= 1.365\ngini = 0.497\nsamples = 170
          \nvalue = [113, 5, 171]\nclass = c'),
```

Conclusion

Accuracy

Linear Regression:0.11045993310581825

Ridge Regression: 0.11011845641033136

Lasso Regression: 0.044541624988104433

ElasticNet Regression:0.055622313951294466

Logistic Regression:0.7360416559261741

Random Forest: 0.7754293098484298

From the above data, we can conclude that logistic regression and random forest is preferrable to other regression types

In []:
