Problem Session 3

Probability and Martingales, 1MS045

28 October 2024

Note: If not specified otherwise, all random variables are finite and real-valued, with the usual σ -algebra of Borel sets.

Problems

1. Suppose that X is a random variable that has moments of all orders, i.e., $\mathbb{E}(|X|^p) < \infty$ for all p > 0. Prove that

$$\lim_{n \to \infty} (\mathbb{E}(|X|^p))^{1/p} = \inf\{K \ge 0 : \mathbb{P}(|X| > K) = 0\}.$$

(If the set $\{K \ge 0 : \mathbb{P}(|X| > K) = 0\}$ is empty, the infimum is ∞).

2. Suppose that X is a random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{E}(X^2) < \infty$. We define the conditional variance with respect to a sub- σ -algebra \mathcal{G} of \mathcal{F} by

$$\operatorname{Var}(X|\mathcal{G}) = \mathbb{E}((X - \mathbb{E}(X|\mathcal{G}))^2|\mathcal{G}).$$

Prove that

$$Var(X) = \mathbb{E}(Var(X|\mathcal{G})) + Var(\mathbb{E}(X|\mathcal{G})).$$

- 3. Let Y_1, Y_2, \ldots be independent random variables with $\mathbb{P}(Y_i = 1) = p$ and $\mathbb{P}(Y_i = -1) = 1 p$ $(p \in (0, 1), p \neq \frac{1}{2})$ for all i, and consider the simple biased random walk $X_n = \sum_{i=1}^n Y_i$.
 - (a) Find a constant $\theta \neq 1$ such that θ^{X_n} is a martingale.
 - (b) Find a (deterministic) function f(n) such that $X_n f(n)$ is a martingale.
 - (c) Let a and b be positive integers. Determine the probability that X_n reaches the value a before the value -b.
 - (d) Determine the expected number of steps until one of these two values is reached.
- 4. Prove: a previsible martingale X_n is almost surely constant, i.e., $X_n = X_0$ holds almost surely for all n.
- 5. Suppose that X and Y are integrable random variables such that $\mathbb{E}(X|\mathcal{G}) = Y$ and $\mathbb{E}(X^2|\mathcal{G}) = Y^2$. Prove that X = Y almost surely. **Hint:** Consider $\mathbb{E}((X Y)^2|\mathcal{G})$.
- 6. Let (X,Y) be a uniformly random point in the unit disk (centre at (0,0), radius 1). Determine $\mathbb{E}(X\mid Y), \, \mathbb{E}(|X|\mid Y), \, \mathbb{E}(X\mid |Y|), \, \mathbb{E}(X\mid |Y|), \, \mathbb{E}(X\mid |Y|)$.

- 7. Let Y_1, Y_2, \ldots be independent random variables that follow a normal distribution with mean 0 and variance 1. Set $S_n = Y_1 + Y_2 + \cdots + Y_n$. Prove that
 - (a) $X_n = e^{S_n n/2}$ is a martingale.
 - (b) $X_n \to 0$ almost surely as $n \to \infty$.
 - (c) X_n^r is a supermartingale for 0 < r < 1, and a submartingale for r > 1.