NATIONAL INSTITUTE OF TECHNOLOGY

AGARTALA, TRIPURA(WEST)

NAME – Arghajit Bhomik

ENROLLMENT NO - 20UCS134

REGISTRATION NO - 2012724

SUBJECT - DCLD LAB

BRANCH - Computer Science and Engineering

SECTION - B

1 EXPT NO. 4:

1.1 STUDY OF BOOLEAN EXPRESSION SIMPLIFICATION

Objective:

To study the Boolean rules & Boolean expression simplification Equipments: Logic circuit simulator pro application

Theory

Here is the list of rules used for the Boolean expression simplifications.

• The Idempotent Laws:

Idempotent Law states that combining a quantity with itself either by logical addition or logical multiplication will result in a logical sum or product that is the equivalent of the quantity.

$$A.A = AA + A = A$$

The Associative Laws:

This law allows the removal of brackets from an expression and regrouping of the variables

$$(A.B).C = A.(B.C) (A + B) + C = A + (B + C)$$

• The Commutative Laws:

The order of application of two separate terms is not important.

$$A.B = B.A A + B = B + A$$

The Distributive Laws:

This law permits the multiplying or factoring out of an expression.

$$A.(B+C) = A.B + A.C A + B.C = (A+B).(A+C)$$

The Identity Laws:

A term OR'ed with a "0" or AND'ed with a "1" will always equal that term.

$$A.F = FA.T = AA + F = AA + T = T$$

The Complement Laws:

A term AND'ed with its complement equals "0" and a term OR'ed with its complement equals "1".

$$A.A' = F Q.A + A' = 1$$

• The Involution Law:

$$A = A$$

De-Morgan's Law:

- 1. Two separate terms NOR'ed together is the same as the two terms inverted (Complement) and AND'ed for example (AB)' = A' + B'
- 2. Two separate terms NAND'ed together is the same as the two terms I nverted (Complement) and OR'ed for example (A + B)' = A'B'

2 Simplify: C + (B.C)':

Expression	Rule(s) Used
C + (B.C)'	Original Expression.
C+ (B' + C')	DeMorgan's Law.
(C + C') + B'	Commutative, Associative Laws.
T + B'	Complement Law.
Т	Identity Law.

3 Simplify (A.B)' + (A' + B).(B' + B):

Expression

Rule(s) Used

$$(A.B)' + (A' + B).(B' + B)$$

Original Expression

(A.B)'.(A' + B)

Complement law, Identity law

(A' + B').(A' + B)

DeMorgan's Law

A' + B'.B

Distributive law.

A١

Complement. Identity.

4 Simplify: (A + C).(A.D + A.D') + A.C + C:

1 Expression

Rule(s) Used

(A + C).(A.D + A.D') + A.C + C Original Expression

$$(A + C).A.(D + D') + A.C + C$$

Distributive.

$$(A + C).A + A.C + C$$

Complement, Identity.

A((A + C) + C) + C

Commutative. Distributive.

A.(A + C) + C

Associative. Idempotent

A.A + A.C + C

Distributive

A + (A + T).C

Idempotent, Identity, Distributive.

. . (/ . . . / . .

Identity, twice.

A + C

5 Simplify: A.(A + B) + (B + A.A).(A + B'):

Expression Rule(s) Used

$$A'.(A + B) + (B + A.A).(A + B')$$

Original Expression

Fig-

$$A'.A + A'B+ (B + A).A + (B + A).B'$$

A'.B + (B + A).A + (B + A).B'

A'.B + B.A + A.A + B.B' + AB'

A'.B + B.A + A + AB'

A'.B + A.B + A.T + A.B'

A'.B + A.(B + T + B')

A'.B + A

A + A'.B

(A + A').(A + B)

A + B

Idempotent (A.A to A),

Complement, then Identity.

Distributive, two places

Idempotent (for the A's)

Commutative, Identity

Distributive.

Identity

Commutative.

Distributive.

Complement, Identity

6 Simplify: (A+B).(A+C)

Expression

Rule(s) Used

$$A.A + A.C + A.B + B.C$$

Distributive law

$$A + A.C + A.B + B.C$$

$$A.(1 + C) + A.B + B.C$$

$$A.1 + A.B + B.C$$

$$A.(1 + B) + B.C$$

$$A.1 + B.C$$

$$A + (B.C)$$

Idempotent AND law (A.A = A)

Distributive law

Identity OR law (1+C=1)

Distributive law

Identity OR law (1 + B = 1)

Identity AND law (A.1 = A)

7 Simplify: A.B + A.(B + C) + B.(B + C)

Expression Rule(s) Used

A.B + A.B + A.C + B.B + B.C Distributive law

A.B + A.B + A.C + B + B.C

A.B + A.C + B + B.C

A.B + A.C + B

B + A.C

Idempotent law

Idempotent law

Absorption law

Absorption law

