432 Week 3 Slides

github.com/THOMASELOVE/2020-432

2020-01-28 & 01-30

This Week's Agenda

- Predicting a binary outcome using linear probability models.
- Predicting a binary outcome with logistic regression

Setup

```
library(here); library(magrittr); library(janitor)
library(broom); library(simputation); library(patchwork)
library(naniar); library(visdat); library(caret)
library(tidyverse)

theme_set(theme_bw())

smart1 <- readRDS(here("data/smart1.Rds"))
smart1_sh <- readRDS(here("data/smart1_sh.Rds"))</pre>
```

smart1_sh Variables, by Type

Variable	Туре	Description
landline	Binary (1/0)	survey conducted by landline? (vs. cell)
healthplan	Binary $(1/0)$	subject has health insurance?
age_imp	Quantitative	age (imputed from groups - see Notes)
fruit_day	Quantitative	mean servings of fruit / day
drinks_wk	Quantitative	mean alcoholic drinks / week
bmi	Quantitative	body-mass index (in kg/m^2)
physhealth	Count (0-30)	of last 30 days, $\#$ in poor physical health
dm_status	Categorical	diabetes status (now 2 levels)
activity	Categorical	physical activity level (4 levels)
smoker	Categorical	tobacco use status (now 3 levels)
genhealth	Categorical	self-reported overall health (5 levels)

Today's Questions

Can we predict Prob(BMI < 30) for a subject in the smart1_sh data:

- using the mean number of servings of fruit per day that they consume?
- using their diabetes status?
- using their self-reported general health status?
- using some combination of these predictors?

Let's predict the probability that BMI < 30

1 5069 68.4%

Association of BMI < 30 and Fruit Consumption

Fruit Servings per day vs. Obesity Status 7412 subjects in SMART Ohio for 2017

Add some vertical jitter and shading to the plot

Fruit Servings per day vs. Obesity Status 7412 subjects in SMART Ohio for 2017

Linear Probability Model to predict BMI < 30?

```
m1 <- smart1_sh %$% lm(bmilt30 ~ fruit_day)

tidy(m1, conf.int = TRUE, conf.level = 0.95) %>%
    select(term, estimate, std.error, conf.low, conf.high) %>%
    knitr::kable(digits = 3)
```

term	estimate	std.error	conf.low	conf.high
(Intercept)	0.645	0.009	0.628	0.662
fruit_day	0.029	0.005	0.019	0.039

Linear Probability Model to predict BMI < 30?

```
tidy(m1, conf.int = TRUE, conf.level = 0.95) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  knitr::kable(digits = 3)
```

term	estimate	std.error	conf.low	conf.high
(Intercept)	0.645	0.009	0.628	0.662
fruit_day	0.029	0.005	0.019	0.039

 What's the predicted probability of BMI < 30 if a subject eats 5 servings of fruit per day?

$$Pr(BMI < 30) = 0.645 + 0.029(5) = 0.645 + 0.145 = 0.790$$

 \bullet What's the predicted probability of BMI < 30 if a subject eats no fruit?

Linear Probability Model m1 in a plot (code)

```
ggplot(smart1_sh, aes(x = fruit_day, y = bmilt30)) +
  geom_point() +
  geom_smooth(method = "lm", col = "red") +
  labs(title = "Predicting BMI < 30 using Fruit Servings per of subtitle = "7412 subjects in SMART Ohio for 2017",
      y = "BMI less than 30?",
      x = "Average Servings of Fruit per day")</pre>
```

Linear Probability Model m1 predicting BMI < 30

Predicting BMI < 30 using Fruit Servings per day 7412 subjects in SMART Ohio for 2017

Residual Plots for the Linear Probability Model (m1)

Models to predict a Binary Outcome

Our outcome takes on two values (zero or one) and we then model the probability of a "one" response given a linear function of predictors.

Idea 1: Use a linear probability model

- Main problem: predicted probabilities that are less than 0 and/or greater than 1
- Also, how can we assume Normally distributed residuals when outcomes are 1 or 0?

Idea 2: Build a non-linear regression approach

 Most common approach: logistic regression, part of the class of generalized linear models

The Logit Link and Logistic Function

The particular link function we use in logistic regression is called the **logit link**.

$$logit(\pi) = log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$

The inverse of the logit function is called the **logistic function**. If $logit(\pi) = \eta$, then $\pi = \frac{exp(\eta)}{1 + exp(\eta)}$.

• The logistic function $\frac{e^x}{1+e^x}$ takes any value x in the real numbers and returns a value between 0 and 1.

The Logistic Function $y = \frac{e^x}{1+e^x}$

The logit or log odds

We usually focus on the **logit** in statistical work, which is the inverse of the logistic function.

- If we have a probability $\pi < 0.5$, then $logit(\pi) < 0$.
- If our probability $\pi > 0.5$, then $logit(\pi) > 0$.
- Finally, if $\pi = 0.5$, then $logit(\pi) = 0$.

Why is this helpful?

- log(odds(Y = 1)) or logit(Y = 1) covers all real numbers.
- Prob(Y = 1) is restricted to [0, 1].

Returning to the prediction of Prob(BMI < 30)

We'll use the glm function in R, specifying a logistic regression model.

• Instead of predicting Pr(BMI < 30), we're predicting log(odds(BMI < 30)) or logit(BMI < 30).

```
m2 <- smart1_sh %$%
  glm(bmilt30 ~ fruit_day, family = binomial)

tidy(m2, conf.int = TRUE, conf.level = 0.95) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  knitr::kable(digits = 3)
```

term	estimate	std.error	conf.low	conf.high
(Intercept)	0.583	0.040	0.505	0.662
fruit_day	0.145	0.025	0.097	0.194

Our model m2

$$\mathsf{logit}(\mathsf{BMI} < 30) = \mathsf{log}(\mathsf{odds}(\mathsf{BMI} < 30)) = 0.583 + 0.145 \; \mathsf{fruit_day}$$

• If Jaime consumes 5 servings of fruit per day, what is the prediction?

$$log(odds(BMI < 30)) = 0.583 + 0.145 (5) = 0.583 + 0.725 = 1.308$$

Exponentiate to get the odds, on our way to estimating the probability.

$$odds(BMI < 30) = exp(1.308) = 3.699$$

ullet so, we can estimate his Probability of BMI < 30 as. . .

$$Pr(BMI < 30) = \frac{3.699}{(3.699 + 1)} = 0.787.$$

Another Prediction

What is the predicted probability of BMI < 30 if a subject (Cersei) eats no fruit?

$$log(odds(BMI < 30)) = 0.583 + 0.145(0) = 0.583$$

$$odds(BMI < 30) = exp(0.583) = 1.791$$

$$Pr(BMI < 30) = \frac{1.791}{(1.791 + 1)} = 0.642$$

Can we get R to do this work for us?

Predictions from a Logistic Regression Model

```
new2 <- tibble( fruit_day = c(0, 5) )</pre>
predict(m2, newdata = new2, type = "link") # predicted logit
0.5834646 1.3082673
exp(predict(m2, newdata = new2, type = "link")) # odds
1.792237 3.699758
predict(m2, newdata = new2, type = "response") # probability
0.6418642 0.7872231
```

Will augment do this, as well?

```
new2 <- tibble( fruit day = c(0, 5) )
augment(m2, newdata = new2, type.predict = "link")
# A tibble: 2 x 3
  fruit_day .fitted .se.fit
     <dbl> <dbl> <dbl>
         0 0.583 0.0403
         5 1.31 0.0964
augment(m2, newdata = new2, type.predict = "response")
# A tibble: 2 \times 3
  fruit_day .fitted .se.fit
      <dbl> <dbl> <dbl>
         0 0.642 0.00925
2
         5 0.787 0.0161
```

Plotting the Logistic Regression Model

Use the augment function to get the fitted probabilities into the original data, then plot.

Results on next slide

Plotting Model m2

Fitted Logistic Model m2 for Pr(BMI < 30)

Evaluating the Model, again

m2

$$logit(BMI < 30) = log(odds(BMI < 30)) = 0.583 + 0.145$$
 fruit

How can we interpret the coefficients of the model?

Residual Deviance: 9213 AIC: 9217

Could we try exponentiating the coefficients?

```
coef(m2)

(Intercept) fruit_day
  0.5834646  0.1449605

exp(coef(m2))
```

```
(Intercept) fruit_day
1.792237 1.155994
```

Suppose Charlie ate one more piece of fruit per day than Harry.

- ullet The **odds** of Charlie having BMI < 30 are 1.156 times as large as they are for Harry.
- Odds Ratio comparing two subjects whose fruit_day differ by 1 serving is 1.156.

More details on m2 coefficients

```
tidy(m2, exponentiate = TRUE, conf.int = TRUE) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  knitr::kable(digits = 3)
```

term	estimate	std.error	conf.low	conf.high
(Intercept)	1.792	0.040	1.656	1.939
fruit_day	1.156	0.025	1.101	1.214

- What would it mean if the Odds Ratio for fruit_day was 1?
- If Charlie eats more servings of fruit than Harry, what would an odds ratio for fruit_day that was greater than 1 mean?
- How about an odds ratio that was less than 1?
- What is the smallest possible Odds Ratio?

m2: some additional output

m2

```
Call: glm(formula = bmilt30 ~ fruit_day, family = binomial)
Coefficients:
(Intercept) fruit_day
    0.5835
                0.1450
```

Degrees of Freedom: 7411 Total (i.e. Null); 7410 Residual Null Deviance: 9249

Residual Deviance: 9213 ATC: 9217

- Think of the Deviance as a measure of "lack of fit".
- Deviance accounted for by m2 is
 - \bullet 9249 9213 = 36 points on 7411 7410 = 1 df
- Can do a likelihood ratio test via anova.

anova(m2) for our logistic regression model

Analysis of Deviance

```
anova(m2, test = "LRT")
```

Analysis of Deviance Table

```
Model: binomial, link: logit
```

```
Response: bmilt30
```

Terms added sequentially (first to last)

```
Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 7411 9248.7

fruit_day 1 35.737 7410 9213.0 2.259e-09 ***
```

```
Signif. codes:
```

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

m2: output from glance

```
# A tibble: 1 x 2
    AIC BIC
    <dbl> <dbl>
1 9217. 9231.
```

• AIC and BIC still useful for comparing models using the same outcome.

Can we predict BMI < 30 using dm_status and genhealth?</pre>

```
genhealth No Yes
1_Excellent 1035 22
2_VeryGood 2228 192
3_Good 1993 375
4_Fair 779 360
5_Poor 275 153
```

Two-Factor Linear Probability model for bmilt30

```
m3 <- smart1_sh %$%
lm(bmilt30 ~ dm_status * genhealth)
anova(m3) %>% knitr::kable(digits = 3)
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
dm_status	1	56.215	56.215	276.320	0.000
genhealth	4	38.003	9.501	46.700	0.000
dm_status:genhealth	4	2.273	0.568	2.793	0.025
Residuals	7402	1505.867	0.203	NA	NA

Equation for model m3

```
tidy(m3) %>%
select(term, estimate) %>% knitr::kable(digits = 3)
```

term	estimate
(Intercept)	0.847
dm_statusYes	-0.120
genhealth2_VeryGood	-0.090
genhealth3_Good	-0.193
genhealth4_Fair	-0.213
genhealth5_Poor	-0.189
dm_statusYes:genhealth2_VeryGood	-0.101
dm_statusYes:genhealth3_Good	-0.041
dm_statusYes:genhealth4_Fair	-0.047
dm_statusYes:genhealth5_Poor	-0.198

Prediction for a subject without diabetes who is in Excellent Health?

Get predictions for all subjects in our data

```
m3_aug <- augment(m3)</pre>
m3_aug %>% count(.fitted, dm_status, genhealth)
# A tibble: 10 \times 4
  .fitted dm_status genhealth
                              n
    <dbl> <fct> <fct> <int>
   0.340 Yes 5_Poor
                            153
2 0.467 Yes 4 Fair 360
3 0.493 Yes 3_Good 375
   0.536 Yes 2_VeryGood 192
    0.634 No
             4 Fair 779
6
    0.655 No
              3 Good 1993
    0.658 No
            5 Poor 275
8
    0.727 Yes 1 Excellent
                             22
    0.758 No
              2_VeryGood
                           2228
10
    0.847 No
                 1 Excellent
                           1035
```

Plot observed vs. predicted values

```
ggplot(m3_aug, aes(x = .fitted, y = bmilt30)) +
geom_count()
```


Making Classification Decisions (0.5 as cutoff)

- Our outcome is bmilt30, where bmilt30 = 1 if BMI < 30, and otherwise bmilt30 = 0.
- ullet We establish a classification rule based on our model's predicted probabilities of BMI < 30.
 - ullet If .fitted is below 0.5, we classify that as a prediction that bmilt30 = 0.
 - If .fitted is 0.5 or larger, we classify that as a prediction that bmilt30 =
 1.
- 0.5 is a natural cut point here but not the only possible one.

```
m3_aug %$% table(.fitted >= 0.5, bmilt30)
```

```
bmilt30
0 1
FALSE 483 405
TRUE 1860 4664
```

Standard Epidemiological Format

```
confuse3_small <- m3_aug %>%
  mutate(bmilt30_act = factor(bmilt30 == "1"),
    bmilt30_pre = factor(.fitted >= 0.5),
    bmilt30_act = fct_relevel(bmilt30_act, "TRUE"),
    bmilt30_pre = fct_relevel(bmilt30_pre, "TRUE")) %$%
  table(bmilt30_pre, bmilt30_act)
```

```
bmilt30_act
bmilt30_pre TRUE FALSE
TRUE 4664 1860
FALSE 405 483
```

(Mis-)Classification Table / Confusion Matrix

confuse3_small

```
bmilt30_act
bmilt30_pre TRUE FALSE
TRUE 4664 1860
FALSE 405 483
```

- Total Observations: 483 + 1860 + 405 + 4664 = 7412
- Correct Predictions: 483 + 4664 = 5147, or 69.4% accuracy
- Incorrect Predictions: 405 + 1860 = 2265 (30.6%)
- Actual TRUE: 4664 + 405 = 5069, or 68.4% prevalence
- Predicted TRUE: 4664 + 1860 = 6524, or 88.0% **detection prevalence**

Other Summaries from a Confusion Matrix

confuse3_small

```
bmilt30_act
bmilt30_pre TRUE FALSE
TRUE 4664 1860
FALSE 405 483
```

- **Sensitivity** = 4664 / (4664 + 405) = 92.01% (also called Recall)
 - \bullet if the subject actually has BMI < 30 our model predicts that 92.01% of the time.
- **Specificity** = 483 / (1860 + 483) = 20.61%
 - if the subject actually has BMI >= 30 our model predicts that 20.61% of the time.
- Positive Predictive Value or Precision = 4664 / (4664 + 1860) = 71.49%
 - our predictions of BMI < 30 were correct 71.49% of the time.
- Negative Predictive Value = 483 / (483 + 405) = 54.39%
 - \bullet our predictions that BMI >= 30 were correct 54.39% of the time.

Big Summary of Confusion Matrix (from caret)

```
m3_aug %$% confusionMatrix(
  data = factor(.fitted >= 0.5),
  reference = factor(bmilt30 == 1),
  positive = "TRUE")
```

Results on next two slides...

Confusion Matrix statistics for m3

Reference

Prediction FALSE TRUE

FALSE 483 405 TRUE 1860 4664

Accuracy : 0.6944

95% CI: (0.6838, 0.7049)

No Information Rate: 0.6839 P-Value [Acc > NIR]: 0.02617

Kappa : 0.1516

McNemar's Test P-Value : < 2e-16

• Kappa is a correlation statistic ranging from -1 to +1. It measures the inter-rater reliability of our predictions and the true classifications, in this context. Complete agreement would be +1, and complete disagreement would be -1.

Confusion Matrix statistics for m3

'Positive' Class : TRUE

Sensitivity: 0.9201

Specificity: 0.2061

Pos Pred Value : 0.7149

Neg Pred Value: 0.5439

Prevalence: 0.6839

Detection Rate: 0.6292

Detection Prevalence: 0.8802

Balanced Accuracy: 0.5631

Tidying a Confusion Matrix

```
confuse3 <- m3_aug %$% confusionMatrix(
  data = factor(.fitted >= 0.5),
  reference = factor(bmilt30 == 1),
  positive = "TRUE")

tidy(confuse3) %>% knitr::kable(digits = 3)
```

Results next slide.

term	class	estimate	conf.low	conf.high	p.value
accuracy	NA	0.694	0.684	0.705	0.026
kappa	NA	0.152	NA	NA	0.000
sensitivity	TRUE	0.920	NA	NA	NA
specificity	TRUE	0.206	NA	NA	NA
pos_pred_value	TRUE	0.715	NA	NA	NA
neg_pred_value	TRUE	0.544	NA	NA	NA
precision	TRUE	0.715	NA	NA	NA
recall	TRUE	0.920	NA	NA	NA
f1	TRUE	0.805	NA	NA	NA
prevalence	TRUE	0.684	NA	NA	NA
detection_rate	TRUE	0.629	NA	NA	NA
detection_prevalence	TRUE	0.880	NA	NA	NA
balanced_accuracy	TRUE	0.563	NA	NA	NA

How do we fit a simple logistic regression model?

```
m4 <- smart1_sh %$%
glm(bmilt30 ~ dm_status, family = binomial(link = logit))</pre>
```

How do we interpret the coefficients?

```
tidy(m4) %>% select(term, estimate) %>%
knitr::kable(digits = 3)
```

term	estimate
(Intercept)	0.946
dm_statusYes	-1.044

```
Equation: logit(BMI < 30) = 0.946 - 1.044 (dm_status = Yes)
How can we interpret this result?
```

Interpreting our Logistic Regression Equation

$$logit(BMI < 30) = 0.946 - 1.044 (dm_status = Yes)$$

- Harry has diabetes.
 - His predicted logit(BMI < 30) is 0.946 1.044(1) = -0.098
- Sally does not have diabetes.
 - Her predicted logit (BMI < 30) is 0.946 1.044(0) = 0.946

Now, logit(BMI < 30) = log(odds(BMI < 30)), so exponentiate to get the odds...

- Harry has predicted odds (BMI < 30) = $\exp(-0.098) = 0.9066$
- Sally has predicted odds (BMI < 30) = exp(0.946) = 2.575

Can we convert these odds into something more intuitive?

Converting Odds to Probabilities

- Harry has predicted odds (BMI < 30) = exp(-0.098) = 0.9066
- Sally has predicted odds (BMI < 30) = exp(0.946) = 2.575

$$odds(BMI < 30) = \frac{Pr(BMI < 30)}{1 - Pr(BMI < 30)}$$

and

$$Pr(BMI < 30) = \frac{odds(BMI < 30)}{odds(BMI < 30) + 1}$$

- So Harry's predicted Pr(BMI < 30) = 0.9066 / 1.9066 = 0.48
- Sally's predicted Pr(BMI < 30) = 2.575 / 3.575 = 0.72
- odds range from 0 to ∞ , and log(odds) range from $-\infty$ to ∞ .
- odds > 1 if probability > 0.5. If odds = 1, then probability = 0.5.

What about the odds ratio?

- Harry, with diabetes, has odds(BMI < 30) = 0.9066
- Sally, without diabetes, has odds(BMI < 30) = 2.575

Odds Ratio for BMI < 30 associated with having diabetes (vs. not) =

$$\frac{0.9066}{2.575} = 0.352$$

• Our model estimates that a subject with diabetes has 35.2% of the odds of a subject without diabetes of having BMI < 30.

Can we calculate the odds ratio from the equation's coefficients?

• Yes, $\exp(-1.044) = 0.352$.

Tidy with exponentiation

```
tidy(m4, exponentiate = TRUE,
    conf.int = TRUE, conf.level = 0.9) %>%
select(term, estimate, conf.low, conf.high) %>%
knitr::kable(digits = 3)
```

term	estimate	conf.low	conf.high
(Intercept)	2.575	2.459	2.697
dm_statusYes	0.352	0.316	0.393

- ullet The odds ratio for BMI < 30 among subjects with diabetes as compared to those without diabetes is 0.352
- ullet The odds of BMI < 30 are 35.2% as large for subjects with diabetes as they are for subjects without diabetes, according to this model.
- A 90% uncertainty interval for the odds ratio estimate includes (0.316, 0.393).

Interpreting these summaries

Connecting the Odds Ratio and Log Odds Ratio to probability statements. . .

- If the probabilities were the same (for diabetes and non-diabetes subjects) of having BMI < 30, then the odds would also be the same, and so the odds ratio would be 1.
- If the probabilities of BMI < 30 were the same and thus the odds were the same, then the log odds ratio would be log(1) = 0.

```
logit(BMI < 30) = 0.946 - 1.044 (dm_status = Yes)
```

- If the log odds of a coefficient (like diabetes = Yes) are negative, then what does that imply?
- What if we flipped the order of the levels for diabetes so our model was about diabetes = No?

New model: $logit(BMI < 30) = -0.098 + 1.044 (dm_status = No)$

Two-Factor Logistic Regression (model m5)

First, let's try a model without interaction.

```
m5_without <- smart1_sh %$%
    glm(bmilt30 ~ dm_status + genhealth,
        family = binomial()) # logit is default link

tidy(m5_without) %>% select(term, estimate) %>%
    knitr::kable(digits = 3)
```

term	estimate
(Intercept)	1.716
dm_statusYes	-0.813
genhealth2_VeryGood	-0.595
genhealth3_Good	-1.051
genhealth4_Fair	-1.124
genhealth5_Poor	-1.244

Our model m5_without

- How do we interpret the meaning of the -0.81 coefficient for dm status = Yes in this model?
- When the end of the

Our model m5_without

```
logit(BMI < 30) =
= 1.72 - 0.81 (dm = Yes) - 0.60 (Very Good) - 1.05 (Good)
- 1.12 (Fair) - 1.24 (Poor)
```

• How do we interpret the meaning of the -0.81 coefficient for dm_status = Yes in this model?

If Harry and Sally have the **same** genhealth status, but Harry has diabetes and Sally does not, the model predicts that Harry's log(odds(BMI < 30)) will be 0.81 lower than Sally's.

- Harry: logit(BMI < 30) = (1.72 0.81) 0.60 (Very Good)
 1.05 (Good) 1.12 (Fair) 1.24 (Poor)</pre>
- Sally: logit(BMI < 30) = 1.72 0.60 (VG) 1.05 (G) 1.12 (F) 1.24 (P)

Suppose that, for example, Harry and Sally each had Excellent genhealth...

Question 1 (continued)

• How do we interpret the meaning of the -0.81 coefficient for dm_status = Yes in this model?

Subject	Harry	Sally
genhealth	Excellent	Excellent
dm_status	Yes	No
log(odds(BMI < 30))	1.72 - 0.81 = 0.91	1.72
odds(BMI < 30)	exp(0.91) = 2.484	$\exp(1.72) = 5.585$
Pr(BMI < 30)	2.484/3.484 = 0.71	5.585/6.585 = 0.85

Our model m5_without

When the end of the

If Harry and Sally have the **same dm_status**, but Harry has Good genhealth and Sally has Excellent genhealth, the model predicts that Harry's log(odds(BMI < 30)) will be 1.05 lower than Sally's.

- Harry: logit(BMI < 30) = 1.72 0.81 (dm = Yes) 1.05
- Sally: logit(BMI < 30) = 1.72 0.81 (dm = Yes)

Why are we comparing Harry at Good to Sally at Excellent here?

Question 2 (continued)

When the end of the

Subject	Harry	Sally
genhealth	Good	Excellent
dm_status	No	No
log(odds(BMI < 30))	1.72 - 1.05 = 0.67	1.72
odds(BMI < 30)	$\exp(0.67) = 1.954$	$\exp(1.72) = 5.585$
Pr(BMI < 30)	1.954/2.954 = 0.66	5.585/6.585 = 0.85

- What is the odds ratio for BMI < 30 comparing Harry to Sally? 1.954/5.585 = 0.350
- Now, what if Harry and Sally each had diabetes?

Question 2 (continued)

When the end of the

Subject	Harry	Sally
genhealth	Good	Excellent
dm_status	Yes	Yes
log(odds(BMI < 30))	1.72 - 1.05 - 0.81 = -0.14	1.72 - 0.81 = 0.91
odds(BMI < 30)	$\exp(-0.14) = 0.869$	$\exp(0.91) = 2.484$
Pr(BMI < 30)	0.869/1.869 = 0.46	2.484/3.484 = 0.71

Now what is the odds ratio for BMI < 30 comparing Harry to Sally? 0.869/2.484 = 0.350

Tidying our m5_without model

```
tidy(m5_without, exponentiate = TRUE,
    conf.int = TRUE, conf.level = 0.90) %>%
    select(term, estimate, conf.low, conf.high) %>%
    knitr::kable(digits = 3)
```

term	estimate	conf.low	conf.high
(Intercept)	5.565	4.848	6.416
dm_statusYes	0.444	0.396	0.498
genhealth2_VeryGood	0.551	0.469	0.646
genhealth3_Good	0.350	0.298	0.409
genhealth4_Fair	0.325	0.272	0.387
genhealth5_Poor	0.288	0.232	0.358

How do we interpret the odds ratios here?

How well does our model predict the outcome?

We can build a table of predicted outcomes.

```
augment(m5_without, type.predict = "response") %>%
count(.fitted, dm_status, genhealth)
```

```
# A tibble: 10 \times 4
  .fitted dm_status genhealth
                              n
    <dbl> <fct> <fct> <int>
   0.416 Yes 5_Poor
                            153
2 0.445 Yes 4 Fair
                          360
3 0.463 Yes
               3 Good
                       375
  0.577 Yes
              2 VeryGood 192
5
              5 Poor
                       275
    0.616 No
               4 Fair 779
6
    0.644 No
    0.660 No
                 3 Good
                            1993
8
    0.712 Yes
               1 Excellent
                             22
9
    0.754 No
                 2 VeryGood
                            2228
10
                 1 Excellent
    0.848 No
                            1035
```

Making Classification Decisions (0.5 as cutoff)

- Our outcome is bmilt30, where bmilt30 = 1 if BMI < 30, and otherwise bmilt30 = 0.
- We establish a classification rule based on our model's predicted probabilities of BMI < 30.
 - If .fitted is below 0.5, we classify that as a prediction that bmilt30 = 0.
 - If .fitted is 0.5 or larger, we classify that as a prediction that bmilt30 =
 1.
- 0.5 is a natural cut point here but not the only possible one.

(Mis-)Classification Table / Confusion Matrix

```
m5_without_aug <- augment(m5_without, data = smart1_sh,</pre>
                         type.predict = "response")
confuse5_without <- m5_without_aug %>%
  mutate(bmilt30_act = factor(bmilt30 == "1"),
     bmilt30_pre = factor(.fitted >= 0.5),
     bmilt30_act = fct_relevel(bmilt30_act, "TRUE"),
     bmilt30_pre = fct_relevel(bmilt30_pre, "TRUE")) %$%
  table(bmilt30_pre, bmilt30_act)
confuse5_without
```

```
bmilt30_act
bmilt30_pre TRUE FALSE
TRUE 4664 1860
FALSE 405 483
```

• Same results as linear probability model m3!

m5_with: Adding an interaction term?

```
m5_with <- smart1_sh %$%
  glm(bmilt30 ~ dm_status * genhealth, family = binomial())

tidy(m5_with) %>%
  select(term, estimate, std.error, p.value) %>%
  knitr::kable(digits = 3)
```

Results on next slide....

Coefficients of model m5_with

```
m5_with <- smart1_sh %$%
glm(bmilt30 ~ dm_status * genhealth, family = binomial())</pre>
```

term	estimate	std.error	p.value
(Intercept)	1.714	0.086	0.000
dm_statusYes	-0.733	0.486	0.132
genhealth2_VeryGood	-0.574	0.100	0.000
genhealth3_Good	-1.074	0.098	0.000
genhealth4_Fair	-1.164	0.114	0.000
genhealth5_Poor	-1.059	0.154	0.000
dm_statusYes:genhealth2_VeryGood	-0.261	0.510	0.609
dm_statusYes:genhealth3_Good	0.066	0.500	0.894
dm_statusYes:genhealth4_Fair	0.050	0.503	0.922
$dm_statusYes:genhealth5_Poor$	-0.586	0.531	0.270

Interpreting m5_with Coefficients

Equation for log(odds(BMI < 30)) =1.71 - 0.73 (dm = Yes)

- 0.57 (Very Good) 1.07 (Good) 1.16 (Fair) 1.06 (Poor)
- 0.26 (dm = Yes)(Very Good) + 0.07 (dm = Yes)(Good) + 0.05 (dm = Yes)(Fair) - 0.59 (dm = Yes)(Poor)
- How do we understand the -0.59 coefficient here?

Suppose Cersei has Excellent and Jaime has Poor genhealth. What are their model equations for log(odds(BMI < 30))?

- Cersei: 1.71 0.73 dm_status
- Jaime: (1.71 1.06) + ((-0.73) + (-0.59)) dm_status,
- so Jaime: 0.65 1.32 dm_status.

Making Predictions with m5_with

Equation for log(odds(BMI < 30)) =

```
1.71 - 0.73 (dm = Yes)

- 0.57 (Very Good) - 1.07 (Good) - 1.16 (Fair) - 1.06 (Poor)

- 0.26 (dm = Yes)(Very Good) + 0.07 (dm = Yes)(Good)
```

Subject	dm_status	genhealth	$\log(\operatorname{odds}(\operatorname{BMI} < 30))$
Harry	No	Excellent	1.71
Sally	No	Poor	1.71 - 1.06 = 0.65
Cersei	Yes	Excellent	1.71 - 0.73 = 0.98
Jaime	Yes	Poor	1.71 - 0.73 - 1.06 - 0.59 = -0.67

Getting R to make the predictions

```
1 2 3 4
1.7139120 0.6552022 0.9808293 -0.6638768
```

Making Predictions with m5_with (again)

```
1.71 - 0.73 (dm = Yes)

- 0.57 (Very Good) - 1.07 (Good) - 1.16 (Fair) - 1.06 (Poor)

- 0.26 (dm = Yes)(Very Good) + 0.07 (dm = Yes)(Good)

+ 0.05 (dm = Yes)(Fair) - 0.59 (dm = Yes)(Poor)
```

Subject	dm	genhealth	odds(BMI < 30)
Harry	No	Excellent	$\exp(1.71) = 5.53$
Sally	No	Poor	$\exp(0.65) = 1.92$
Cersei	Yes	Excellent	$\exp(0.98) = 2.66$
Jaime	Yes	Poor	$\exp(-0.67) = 0.51$

Getting R to make the predictions

Making Predictions with m5_with (one more time)

```
1.71 - 0.73 (dm = Yes)

- 0.57 (Very Good) - 1.07 (Good) - 1.16 (Fair) - 1.06 (Poor)

- 0.26 (dm = Yes)(Very Good) + 0.07 (dm = Yes)(Good)

+ 0.05 (dm = Yes)(Fair) - 0.59 (dm = Yes)(Poor)
```

How do we understand the -0.59 coefficient here?

Subject	dm	genhealth	Pr(BMI < 30)
Harry	No	Excellent	5.53/6.53 = 0.85
Sally	No	Poor	1.92/2.92 = 0.66
Cersei	Yes	Excellent	2.66/3.66 = 0.73
Jaime	Yes	Poor	0.51/1.51 = 0.34

Getting R to make the predictions

Model m5_with Results (from R's predict)

Subject	dm	genhealth	logit	odds	Pr(BMI < 30)
Harry	No	Excellent	1.714	5.551	0.847
Sally	No	Poor	0.655	1.926	0.658
Cersei	Yes	Excellent	0.981	2.667	0.727
Jaime	Yes	Poor	-0.664	0.515	0.340

Calculating Odds Ratios

- Comparing DM to No DM (if GenHealth = Excellent) = 2.667/5.551 = 0.480
- ullet Comparing Poor to Excellent (if no DM) $=1.926\ /\ 5.551=0.347$
- • Comparing DM to No DM (if GenHealth = Poor) = 0.515/1.926 = 0.267
- \bullet Comparing Poor to Excellent (if DM) = 0.515 / 2.667 = 0.193

Exponentiating the m5_with Coefficients

```
tidy(m5_with, exponentiate = TRUE, conf.int = TRUE,
      conf.level = 0.90) %>%
    select(term, estimate, conf.low, conf.high) %>%
    knitr::kable(digits = 3)
```

Results on the next slide...

Exponentiating the m5_with Coefficients

term	estimate	conf.low	conf.high
(Intercept)	5.551	4.826	6.414
dm_statusYes	0.480	0.224	1.132
genhealth2_VeryGood	0.563	0.477	0.662
genhealth3_Good	0.342	0.290	0.401
genhealth4_Fair	0.312	0.259	0.376
genhealth5_Poor	0.347	0.270	0.447
dm_statusYes:genhealth2_VeryGood	0.771	0.316	1.726
dm_statusYes:genhealth3_Good	1.068	0.445	2.349
dm_statusYes:genhealth4_Fair	1.051	0.435	2.326
$dm_statusYes:genhealth5_Poor$	0.557	0.221	1.292

- Interpret the dm_statusYes coefficient (0.480).
- 2 Interpret the genhealth5_Poor coefficient (0.347).

Model m5_with Predictions, Again

- Interpret the dm_statusYes coefficient (0.480).
- 2 Interpret the genhealth5_Poor coefficient (0.347).

Subject	dm	genhealth	odds(BMI < 30)
Harry	No	Excellent	5.551
Sally	No	Poor	1.926
Cersei	Yes	Excellent	2.667
Jaime	Yes	Poor	0.515

Odds Ratios we calculated earlier...

- Comparing DM to No DM (if GenHealth = Excellent) = 2.667/5.551 = 0.480
- ② Comparing Poor to Excellent (if no DM) = 1.926 / 5.551 = 0.347

Exponentiating the m5_with Coefficients

term	estimate	conf.low	conf.high
(Intercept)	5.551	4.826	6.414
dm_statusYes	0.480	0.224	1.132
genhealth2_VeryGood	0.563	0.477	0.662
genhealth3_Good	0.342	0.290	0.401
genhealth4_Fair	0.312	0.259	0.376
genhealth5_Poor	0.347	0.270	0.447
dm_statusYes:genhealth2_VeryGood	0.771	0.316	1.726
dm_statusYes:genhealth3_Good	1.068	0.445	2.349
dm_statusYes:genhealth4_Fair	1.051	0.435	2.326
$dm_statusYes:genhealth5_Poor$	0.557	0.221	1.292

• How do we interpret the interaction coefficients, like 0.557 for (DM = Yes)(GenHealth = Poor)?

Interpreting m5_with Interaction Odds Ratios

• How do we interpret the interaction coefficients, like 0.557 for (DM = Yes)(GenHealth = Poor)?

Odds Ratios we calculated earlier...

- ullet Comparing DM to No DM (if GenHealth = Poor) pprox 0.267
- ullet Comparing DM to No DM (if GenHealth = Excellent) pprox 0.480
- Comparing Poor to Excellent (if DM) ≈ 0.193
- ullet Comparing Poor to Excellent (if no DM) pprox 0.347

Within rounding error,

$$\frac{0.267}{0.480} \approx \frac{0.193}{0.347} \approx 0.557$$

Using glance on these models

model	AIC	BIC	deviance_diff	df_diff
With Interaction	8821.6	8890.7	447.1	9
No Interaction	8823.5	8864.9	437.2	5

Confusion Matrix for m5_with

```
m5_with_aug <- augment(m5_with, data = smart1_sh,
                         type.predict = "response")
confuse5_with <- m5_with_aug %>%
  mutate(bmilt30 act = factor(bmilt30 == "1"),
     bmilt30 pre = factor(.fitted >= 0.5),
     bmilt30 act = fct relevel(bmilt30 act, "TRUE"),
     bmilt30 pre = fct relevel(bmilt30 pre, "TRUE")) %$%
  table(bmilt30 pre, bmilt30 act)
confuse5 with
```

```
bmilt30_act
bmilt30_pre TRUE FALSE
TRUE 4664 1860
FALSE 405 483
```

• Still 4664 + 483 = 5147 accurate predictions (69.4%)

Logistic Regression Comparisons via anova

Based on Likelihood Ratio Test

```
anova(m5_without, m5_with, test = "LRT")
```

Analysis of Deviance Table

```
Model 1: bmilt30 ~ dm_status + genhealth

Model 2: bmilt30 ~ dm_status * genhealth

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 7406 8811.5

2 7402 8801.6 4 9.8769 0.04255 *
---

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Other options include Rao's efficient score test (test = "Rao") and Pearson's chi-square test (test = "Chisq")

Logistic Regression Comparisons via anova

Another potentially attractive option compares the models based on Mallows' C_p statistic, which is closely related to the AIC, in general, and identical to what glance provides for AIC in this case.

```
anova(m5_without, m5_with, test = "Cp")
```

Analysis of Deviance Table

```
Model 1: bmilt30 ~ dm_status + genhealth

Model 2: bmilt30 ~ dm_status * genhealth

Resid. Df Resid. Dev Df Deviance Cp

1 7406 8811.5 8823.5

2 7402 8801.6 4 9.8769 8821.6
```

m6: Logistic Regression (Interaction & Covariate)

```
m6 <- smart1_sh %$%
  glm(bmilt30 ~ fruit_day + dm_status * genhealth,
      family = binomial)

tidy(m6) %>%
  select(term, estimate, std.error, p.value) %>%
  knitr::kable(digits = 3)
```

Results on next slide...

m6 model coefficients

term	estimate	std.error	p.value
(Intercept)	1.548	0.094	0.000
fruit_day	0.114	0.025	0.000
dm_statusYes	-0.741	0.487	0.128
genhealth2_VeryGood	-0.563	0.100	0.000
genhealth3_Good	-1.052	0.099	0.000
genhealth4_Fair	-1.129	0.114	0.000
genhealth5_Poor	-1.016	0.154	0.000
dm_statusYes:genhealth2_VeryGood	-0.258	0.511	0.614
dm_statusYes:genhealth3_Good	0.071	0.500	0.887
dm_statusYes:genhealth4_Fair	0.051	0.504	0.920
$dm_statusYes:genhealth5_Poor$	-0.601	0.532	0.259

The m6 model

```
log(odds(BMI < 30)) =
  1.548 +
  + 0.114 fruit_day
  -0.741 \text{ dm status} = \text{Yes}
  - 0.563 genhealth = Very Good
  - 1.052 genhealth = Good
  - 1.129 genhealth = Fair
  - 1.016 genhealth = Poor
  - 0.258 (dm status = Yes)(genhealth = Very Good)
  + 0.071 (dm status = Yes)(genhealth = Good)
  + 0.051 (dm status = Yes)(genhealth = Fair)
  - 0.601 (dm_status = Yes)(genhealth = Poor)
```

Does the impact of fruit_day change depending on dm_status and genhealth?

Confusion Matrix for m6

```
bmilt30_act
bmilt30_pre TRUE FALSE
TRUE 4731 1925
FALSE 338 418
```

- 4731 + 418 = 5149 accurate predictions (69.5%)
- Sensitivity 93.3%, and Specificity 17.8%

The m7 model with factor-covariate interactions

The m7 model

term	estimate	std.error	p.value
(Intercept)	1.463	0.149	0.000
fruit_day	0.175	0.088	0.048
dm_statusYes	-0.788	0.498	0.113
genhealth2_VeryGood	-0.481	0.168	0.004
genhealth3_Good	-0.957	0.166	0.000
genhealth4_Fair	-1.039	0.180	0.000
genhealth5_Poor	-0.798	0.224	0.000
fruit_day:dm_statusYes	0.029	0.065	0.656
fruit_day:genhealth2_VeryGood	-0.059	0.099	0.555
fruit_day:genhealth3_Good	-0.069	0.099	0.486
fruit_day:genhealth4_Fair	-0.066	0.107	0.542
fruit_day:genhealth5_Poor	-0.184	0.132	0.163
dm_statusYes:genhealth2_VeryGood	-0.251	0.512	0.624
dm_statusYes:genhealth3_Good	0.081	0.502	0.872
dm_statusYes:genhealth4_Fair	0.063	0.506	0.901
dm_statusYes:genhealth5_Poor	-0.567	0.534	0.288

Confusion Matrix for m7

```
bmilt30_act
bmilt30_pre TRUE FALSE
TRUE 4724 1915
FALSE 345 428
```

- 4724 + 428 = 5152 accurate predictions (69.5%)
- Sensitivity 93.1%, and Specificity 18.3%

Could we do a three-way interaction?

term	estimate
(Intercept)	1.504
fruit_day	0.145
dm_statusYes	-2.526
genhealth2_VeryGood	-0.527
dm_statusYes:genhealth5_Poor	0.734
fruit_day:dm_statusYes:genhealth2_VeryGood	-1.599
fruit_day:dm_statusYes:genhealth3_Good	-1.676
fruit_day:dm_statusYes:genhealth4_Fair	-1.609
fruit_day:dm_statusYes:genhealth5_Poor	-1.225

These are just 9 of the 20 coefficients fit in total.

Confusion Matrix for m8

```
bmilt30_act
bmilt30_pre TRUE FALSE
TRUE 4729 1919
FALSE 340 424
```

- 4729 + 424 = 5153 accurate predictions (69.5%)
- Sensitivity 93.2%, and Specificity 18.1%

Comparison of Models with Deviance Tests

```
anova(m5_without, m5_with, m6, m7, m8, test = "LRT")
```

Analysis of Deviance Table

```
Model 1: bmilt30 ~ dm_status + genhealth
Model 2: bmilt30 ~ dm_status * genhealth
Model 3: bmilt30 ~ fruit day + dm status * genhealth
Model 4: bmilt30 ~ fruit day * dm status + fruit day * genheal
   genhealth
Model 5: bmilt30 ~ fruit day * dm status * genhealth
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
      7406 8811.5
2
      7402 8801.6 4 9.8769 0.04255 *
3
      7401 8780.3 1 21.3157 3.895e-06 ***
4
   7396 8778.2 5 2.0927 0.83617
5
  7392 8770.2 4 7.9755 0.09248 .
```

Comparison of Models with AIC/BIC

A tibble: 5×3

Comparison of Models by Confusion Matrix

Model	Correct Preds.	Accuracy	Sensitivity	Specificity
m5_without	5,147	69.44%	92.0%	20.6%
${\tt m5_with}$	5,147	69.44%	92.0%	20.6%
m6	5 149	69.47%	93.3%	17.8%
m7	5,152	69.51%	93.1%	18.3%
m8	5,153	69.52%	93.2%	18.1%

What's Coming Up?

Building on what we know about Linear & Logistic Regression

- Model Selection and Cross-Validation Strategies
- Incorporating the Survey Weights into our Analyses
- Checking Assumptions (in Logistic Regression)
- ROC Curve Analysis (in Logistic Regression)
- Multiple Imputation (rather than Simple Imputation) to deal with missing data

At which point, we'll move on to ...

- Other methods for predicting 1/0 and quantitative outcomes (via the rms package)
- Using regression-style approaches to predict other kinds of outcomes (counts, multiple categories, times to event with censoring)