Discrete Computational Structures Take Home Exam 1

Ilgaz ŞENYÜZ 2375764

Question 1 (25 pts)

a) Given the sets A and B, prove that

$$(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$$

using set membership notation and logical equivalences. Show each step clearly.

We must show both

$$(A \cup B) - (A \cap B) \subseteq (A - B) \cup (B - A)$$

and

$$(A - B) \cup (B - A) \subseteq (A \cup B) - (A \cap B)$$

- 1) Suppose $x \in (A \cup B) (A \cap B)$
- 2) By the definition of difference

$$x \in (A \vee B) \land x \not\in (A \cap B)$$

3) By the defination of union and intersection

$$(x \in A \lor x \in B) \land \neg (x \in A \land x \in B)$$

4) By using De Morgan's Law for propositions

$$(x \in A \lor x \in B) \land (\neg(x \in A) \land \neg(x \in B))$$

5) By the definition of $\not\in$

$$(x \in A \lor x \in B) \land (x \not\in A \lor x \not\in B)$$

6) Using Distributive Law

$$((x \in A \lor x \in B) \land x \notin A) \lor ((x \in A \lor x \in B) \land x \notin B)$$

7) Using Distributive Law x2

$$[(x \in A \land x \not\in A) \lor (x \in B \land x \not\in A)] \lor [(x \in A \land x \not\in B) \lor (x \in B \land x \not\in B)]$$

8) Using Complement Laws

$$[\varnothing \lor (x \in B \land x \not\in A)] \lor [(x \in A \land x \not\in B) \lor \varnothing]$$

9) Using Identity Law

$$(x \in B \land x \not\in A) \lor (x \in A \land x \not\in B)$$

10) By the definition of difference x2

$$(1)x \in (B-A) \lor (2)x \in (A-B)$$

11) Using Commutative Law

$$(2)x \in (A - B) \lor (1)x \in (B - A)$$

12) By the definition of union

$$(A - B) \cup (B - A)$$

Therefore $(A \cup B) - (A \cap B) \subseteq (A - B) \cup (B - A)$

- 1) Suppose $x \in (A B) \cup (B A)$
- 2) By the definition of union

$$x \in (A - B) \lor x \in (B - A)$$

3) By the definition of difference x2

$$(x \in A \land x \notin B) \lor (x \in B \land x \notin A)$$

4) Using Distribution Law

$$((x \in A \land x \notin B) \lor x \in B) \land ((x \in A \land x \notin B) \lor x \notin A)$$

5) Using Distribution Law x2

$$[(x \in A \lor x \in B) \land (x \notin B \lor x \in B)] \land [(x \in A \lor x \notin A) \land (x \notin B \lor x \notin A)]$$

6) Using Complement Law x2

$$[(x \in A \lor x \in B) \land U] \land [U \land (x \notin B \lor x \notin A)]$$

7) Using Identity Law x2

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A)$$

8) By the definition of $\not\in$

$$(x \in A \lor x \in B) \land (\neg(x \in B) \lor \neg(x \in A))$$

9) By the definition of De Morgan's Law for propositional logic

$$(x \in A \lor x \in B) \land \neg (x \in B \land x \in A)$$

10) By the definition of Union and Intersection

$$x \in (A \cup B) \land x \not\in (B \cap A)$$

11) Using Commutative Law

$$x \in (A \cup B) \land x \not\in (A \cap B)$$

12) By the definition of difference

$$(A \cup B) - (A \cap B)$$

Therefore $(A-B) \cup (B-A) \subseteq (A \cup B) - (A \cap B)$

Hence,
$$(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$$

Question 2 (25 pts)

Prove that the set

```
\{f \mid f : N \to \{0, 1\}, f \text{ is a function}\} - \{f \mid f : \{0, 1\} \to N, f \text{ is a function}\}\ is uncountable.
```

Let say X to the set : $\{f \mid f : N \to \{0, 1\}, f \text{ is a function}\}\$

Let say Y to the set : $\{f \mid f : \{0, 1\} \rightarrow N, f \text{ is a function}\}\$

Any function f, where $N \to \{0, 1\}$ means the set of all binary strings.

I will show that this set is uncountable by the diagonalization argument.

The set X {includes a1, a2, a3 ...} where:

```
a1= a.11 a.12 a.13 ...
```

 $a2 = a.21 \ a.22 \ a.23 \dots$

 $a3 = a.31 \ a.32 \ a.33 \dots$

... goes on like this (any enumeration)

And there exists a binary string $b = b1 b2 b3 \dots$ such that:

 $b.i \neq a.ii,$ For instance b.i = 0 if a.ii = 1, and b.i = 1 if a.ii = 0

 $b \neq ai, i \in N (a1, a2, a3 ...)$

Therefore there does not exist an enumeration counting each element in X

Hence the set X is UNCOUNTABLE.

Any function f, where $\{f \mid f : \{0, 1\} \to N, \text{ is determined by its values at } 0 \text{ and } 1, f(0) \text{ and } f(1). f(0) \text{ can be any Natural number so does } f(1). Therefore f is actually cartesian product of two sets with cardinality of N. Lets enumarate these sets as <math>\{a1,a2,a3...\}$ and $\{b1,b2,b3...\}$. I arrange these elements in an infinite matrix and use "zigzag" method to traverse this matrix. For instance $\{(a1,b1),(a2,b1),(a1,b2),(a3,b1),(a2,b2),(a1,b3)...\}$. Hence f is countable.

Therefore the set Y is COUNTABLE.

By the previous two boxes, X is UNCOUNTABLE, and Y is COUNTABLE.

Assume X - Y is countable.

The union of countably many countable sets is countable; thus $(X-Y)\cup Y$ is countable.

Since $X \subset (X - Y) \cup Y$, then X must be countable too. $\bot But$ it can not be, because we know that X is uncountable.

Therefore X - Y is UNCOUNTABLE

(Proof of (1):

Since (X-Y) is countable, we can enumerate $(X-Y)=\{a1,a2,a3,...\}$.

Since Y is countable we can enumerate $Y=\{b1,b2,...\}$ And now we can enumerate $(X-Y)\cup Y$ as $\{a1,b1,a2,b2,...\}$ and thus $(X-Y)\cup Y$ is countable.)

In the previous box, it is shown that X-Y which is $\{f \mid f : N \to \{0, 1\}, f \text{ is a function}\}$ - $\{f \mid f : \{0, 1\} \to N, f \text{ is a function}\}$ is UNCOUNTABLE

Question 3) 25pts

Prove that $f(n) = 4^n + 5n^2 \log n$ is not $O(2^n)$

Definition: f(x) is O(g(x)) if there exists such constants c and k such that f(x) $f(x) \le c \cdot g(x)$ where $x \ge k$

Assume
$$f(n) = 4^n + 5n^2 \log n$$
 is $O(2^n)$, and $n > 1$ $\frac{f(n)}{g(n)} \le c$, where $\frac{f(n)}{g(n)} = \frac{2^{2n} + 5n^2 \log n}{2^n} = 2^n + \frac{5n^2 \log n}{2^n}$

Since
$$x > 1$$
, $2^n + \frac{5n^2 \log n}{2^n} > 2^n + 0 = 2^n$

 $n>\log_2(c)$ implies $2^n>c$ and $f(n)>c\cdot 2^n$

 \perp Contradiction with the definition of the Big O Notation

Therefore when n > 1, n > k, and $n > \log_2(c)$ $f(n) > c \cdot 2^n$ which contradicts with the definition of the Big O Notation.

$$f(n) = 4^n + 5n^2 log n$$
 is NOT $O(2^n)$

Question 4) 25pts

$$x > 2, n > 2, (2x - 1)^n - x^2 \equiv -x - 1(mod(x - 1))$$

Determine the value of x

 $1 2x - 1 = 1 + (2 \cdot (x - 1))$

 $2 2x - 1 \equiv 1 (mod(x - 1)) (1)$

 $3 x \equiv 1(mod(x-1)) (2)$

 $4 (2x-1)^n - x^2 \equiv 1^n - 1^2 (2,3)$

 $5 0 \equiv -x - 1(mod(x-1)) (Premise, 4)$

 $6 x+1 \equiv 0(mod(x-1)) (5)$

 $7 2 \equiv 0(mod(x-1)) (3,6)$

 $8 2 \equiv x - 1(mod(x-1)) (7)$

9 x = 3