• Tief-inelasische Streuung

Kinematik: $W^2=M^2-Q^2+2M\nu$

elast. Streuung: $W^2=M^2 \ \Rightarrow \ x=\frac{Q^2}{2M\nu}=1$

inelastische / tief-inelasische Streuung: $W^2>M^2 \ \Rightarrow \ 1>x>0$, $x=\frac{Q^2}{2M\nu}$

$$\left(\frac{d^2\sigma}{d\Omega dE'}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Mott}^* \cdot \left[W_2(Q^2, \nu) + 2W_1(Q^2, \nu) \tan^2(\theta/2)\right]$$

- Abhängigkeit von zwei Variablen (inelastische Streuung)
- Strukturfunktionen $W_2(Q^2, \nu), W_1(Q^2, \nu),$ bzw. $F_2(x, Q^2), F_1(x, Q^2)$ (dimensionslos)

Beobachtung: Praktisch keine Q^2 -Abhängigkeit der Strukturfunktionen

- ⇒ Punktförmige Konstituenten (Partonen) im Nukleon
- ⇒ Spin-1/2-Teilchen (Callan-Gross-Relation)

255

Tief-inelastische Streuung - Partonen -

tiefinelastische Streuung am Parton = inkohärente Summe der WW des virtuellen Photons mit individuellen Partonen (<u>elastische</u> Streuung an Konstituenten des Protons); Partonmodell (Feynman 1969)

Solange die Konstituenten (im Rahmen der Auflösung) punktförmig sind, besitzen sie keine Substruktur und können daher nicht angeregt werden → nur elastische Streuung möglich, bei der die Identität der Streupartner nicht geändert wird

Wirkungsquerschnitt abhängig von einer Zahl x (dimensionslos; keine Massen-, Längen- oder Energieskalen involviert!)

Skaleninvarianz!

Partonen werden heute mit den Quarks identifiziert

Erste Evidenz für Quarks: Aus der Beobachtung von Mesonen und Baryonen (Bindungszustände der starken WW) ... etwas später in der VL

Interpretation im Partonmodell: Was ist die Bedeutung von x?

Betrachtung im "infinit momentum frame" d.h. schnell bewegtes Nukleon, Transversalbewegung der Partonen vernachlässigbar

Parton hat den Anteil ξP des 4-Impulses des Protons

Wechselwirkung des Elektrons mit dem Proton

(Stoßnäherung)

inkohärente Summe der Wechselwirkung mit den Partonen (elastische Streuung)

Tief-inelastische Streuung - Partonmodell -

Interpretation im Partonmodell: Was ist die Bedeutung von x?

Betrachtung im "infinit momentum frame" d.h. schnell bewegtes Nukleon, Transversalbewegung der Partonen vernachlässigbar

Parton hat den Anteil EP des 4-Impulses des Protons

 $(\xi P + q)^2 = (m_q c)^2 = 4er$ -Impuls-Quadrat des herausgeschossenen Partons $\mathbf{\xi}^2 \mathbf{P}^2 + 2\mathbf{\xi} \mathbf{P} \cdot \mathbf{q} + \mathbf{q}^2 = \mathbf{m}_a^2 \mathbf{c}^2 \approx 0$

Da tiefinelastischer Prozess: $\left|\xi^2 \mathbf{P}^2\right| << \mathbf{q}^2 \rightarrow \xi = -\frac{\mathbf{q}^2}{2\mathbf{P} \cdot \mathbf{q}} = \frac{\mathbf{Q}^2}{2\mathbf{M}_{\mathbf{V}}} = \mathbf{x}$

=> x: Bruchteil des Viererimpulses des Protons, der von einem Parton getragen wird (Stoßnäherung, kein Transversalimpuls, $\mathbf{m}_{\mathbf{q}} \approx 0$)

- x: Bruchteil des 4er-Impulses des Protons der vom Parton getragen wird
- \Rightarrow Messung von $F_1(x), F_2(x)$
 - → Bestimmung der Impulsverteilungen der Partonen im Nukleon

- 1) Experimentell: Was beobachtet man?

Hadronisierung bei inelastischer Streuung

Nach Streuung an Parton kein freies Parton (Quark) im Endzustand beobachtet (confinement)

tief inelastische e⁻p –Streuung = 2-Stufenprozeß

- 1.) elastische eq Streuung
- 2.) <u>Hadronisierung</u>: getroffenes Parton \rightarrow jet 1 Wahrscheinlichkeit Zuschauer Partonen \rightarrow jet 2 Für Hadronisierung =1 \rightarrow $\sigma_{\text{Hadr}} \approx \sigma_{\text{el,o}}$

d.h. Wirkungsquerschnitt bestimmt durch e-Parton Streuung

Experimenteller Nachweis der Hadronisierung bei tiefinelastischer Elektronenstreuung am Proton

Im ZEUS-Detektor hinterlassen das gestreute Elektron sowie der Protonenrest und der von einem Quark ausgelöste hadronische Jet charakteristische Signaturen

Effekt des Confinements

Der Versuch, Quarks voneinander zu trennen, führt zur Bildung neuer Quark-Antiquark-Paare

Confinement:

Quarks existieren nicht separat; Sie sind in Hadronen gebunden: Mesonen (q\overline{q}) oder Baryonen (qqq)

Spin der punktförmigen Partonen = ½ Ladung = ?

Strukturfunktionen beschreiben die innere Zusammensetzung des Nukleons

Annahme: Nukleon ist aus verschiedenen Quarktypen f (f = u, d, c, s, t, b) gebaut, die die Ladung z_f e tragen (Partonen mit Quarks identifiziert)

Wirkungsquerschnitt für elektromagnetische Wechselwirkung des e- mit

 $q_f(x)dx$ = Erwartungswert für die Zahl der Quarks vom Typ f im Hadron im Impulsbereich x ... x+dx

Partonenmodell und Strukturfunktionen

z.B. Proton:
$$\mathbf{F}_{2}^{\mathbf{e},\mathbf{p}}(\mathbf{x}) = \mathbf{x} \left\{ \left(\frac{2}{3} \right)^{2} \mathbf{u}(\mathbf{x}) + \left(-\frac{1}{3} \right)^{2} \mathbf{d}(\mathbf{x}) \right\}$$
 für e-p-Streuung

(uud) mit $Q_u = 2/3$ und $Q_d = -1/3 \rightarrow$ drittelzahlige Ladungen angenommen

Neutron (udd): Vertauschen von u und d Quarks : Proton → Neutron Isospin-Invarianz : u-Quarks im Neutron haben die gleiche Impulsverteilung wie d-Quarks im Proton

$$u_n(x) = d_p(x) = d(x)$$
 und entsprechend $d_n(x) = u_p(x) = u(x)$

für das Neutron:

$$\rightarrow \mathbf{F}_{2}^{\mathbf{e},\mathbf{n}}(\mathbf{x}) = \mathbf{x} \left\{ \left(\frac{2}{3} \right)^{2} \mathbf{d}(\mathbf{x}) + \left(-\frac{1}{3} \right)^{2} \mathbf{u}(\mathbf{x}) \right\}$$

für Nukleon:

$$\mathbf{F}_{2}^{\text{e,N}}(\mathbf{x}) = \frac{1}{2} \left\{ \mathbf{F}_{2}^{\text{en}}(\mathbf{x}) + \mathbf{F}_{2}^{\text{ep}}(\mathbf{x}) \right\} = \mathbf{x} \frac{1}{2} \left\{ \frac{5}{9} \left[\mathbf{u}(\mathbf{x}) + \mathbf{d}(\mathbf{x}) \right] \right\} = \mathbf{x} \frac{5}{18} \left\{ \mathbf{u}(\mathbf{x}) + \mathbf{d}(\mathbf{x}) \right\}$$

264

Wirkungsquerschnitte für Elektron- und Neutrinostreuung

Neutrinos koppeln durch schwache Wechselwirkung an schwache Ladung der Quarks, elektrische Ladung taucht nicht auf: $F_2^{v,N} = x \{ u(x) + d(x) \}$

falls tatsächlich Quarks wie angenommen Drittel-Ladungen tragen, dann müsste gelten:

$$\frac{18}{5}\mathbf{F}_{2}^{\mathbf{e},\mathbf{N}}(\mathbf{x}) = \mathbf{F}_{2}^{\mathbf{v},\mathbf{N}}(\mathbf{x}) = \mathbf{x} \{ \mathbf{u}(\mathbf{x}) + \mathbf{d}(\mathbf{x}) \}$$

Aussage durch Vergleich der Experimente am CERN und SLAC bestätigt

Vergleich der Elektronen- und Neutrino-Streuung am Nukleon

→ Partonen tragen Drittel-Ladungen

265

Partonen im Nukleon

Partonen: ... mehr als nur Quarks ??

 \Rightarrow Tafel

→ es gibt Konstituenten des Nukleons, die ca. die Hälfte des Nukleonenimpulses ausmachen und keine Wechselwirkung mit Leptonen (weder schwach noch elektromagnetisch) machen

→ Evidenz für <u>Gluonen</u>, die <u>nur der starken Wechselwirkung</u> unterliegen Austauschteilchen der starken Wechselwirkung, die die Bindung zwischen den Quarks bewirken

Direkte Evidenz für Gluonen aus späteren e⁺e⁻ Collider-Experimenten

Beobachtung von 3 Hadronenjets durch Gluonenabstrahlung (Bremsstrahlung der starken Wechselwirkung)

267

Evidenz für Gluonen

Tief-inelasische Streuung

 $q(x) = \delta$ -Funktion bei x=1

Proton bestehend aus drei freien Quarks δ -Funktion bei x=1/3

Bindung → **Verschmierung**

See-Quarks = Quark-Antiquark-Paare → Anwachsten der Strukturfunktion bei kleinen x

 \rightarrow Tafel

269

Quark - Verteilungen

Aus Streuexperimenten (Elektronen, Neutrinos, Antineutrinos):

ep-Streuung an HERA: Bestimmung der Strukturfunktionen im Bereich kleiner Impulsanteile x:

Abnahme bei größeren x

Anschauliche Interpretation => Tafel

271

Skalenbrechung der Strukturfunktion $F_2(x,Q^2)$

 Insbesondere bei kleinen x Abweichungen vom Bjorken-Scaling ⇔ Abweichung von

$$\mathbf{F}_2(\mathbf{x}, \mathbf{Q}^2) \approx \mathbf{F}_2(\mathbf{x})$$

- ⇔ mit wachsendem Q² gibt es immer mehr Quarks mit kleinem Impulsanteil x im Nukleon
- d.h., betrachtet man das Nukleon mit sehr großer Auflösung, so sieht man eine Vielzahl virtueller Quark-Antiquark Paare (und Gluonen)

Vorhersage der Q²-Abhängigkeit mittels QCD-Rechnungen möglich.

Partonenverteilungen selbst müssen experimentell bestimmt werden