MATH 235, Class 2 Practice Problems

Andrej Vukovic

September 2021

1 Problems

- **1.** Which of the following are subspaces of the \mathbb{R} -vector space $M_{n\times n}(\mathbb{R})$?
- (a) The set of $n \times n$ real matrices whose top-left entry is 0.
- (b) $\mathfrak{sl}_n(\mathbb{R})$, the set of $n \times n$ matrices with real entries whose trace is 0, i.e., the sum of whose diagonal entries is 0.
- (c) $M_{n\times n}(2\mathbb{Z})$, the set of $n\times n$ integer matrices whose entries are all even.
- **2.** Recall that $C([0,1]) = \{f : [0,1] \to \mathbb{R} \mid f \text{ is continuous}\}$ can be viewed as a vector space over \mathbb{R} . (The notation $f : [0,1] \to \mathbb{R}$ means f is a function from the closed interval [0,1] to the real numbers \mathbb{R} .) For $r \in [0,1]$, let $S(r) := \{f \in C([0,1]) \mid f(r) = 0\}$. For which $r \in [0,1]$ is S(r) a subspace of C([0,1])?
- **3.** Let V be a vector space over \mathbb{R} and S_1, S_2 two subspaces of V. Prove that the union $S_1 \cup S_2$ is a subspace of V if and only if $S_1 \subseteq S_2$ or $S_2 \subseteq S_1$. (Here \subseteq means "is a subset of", not "is a subspace of".)

2 Solutions

- 1. (a) This is a subspace since it satisfies all conditions of the subspace test. Sums and scalar multiples of matrices with top-left entry 0 still have top-left entry 0, and the zero matrix has top-left entry 0.
- (b) The zero matrix has trace 0, and sums and scalar multiples of trace 0 matrices have trace 0, so this is a subspace.
- (c) This is not a subspace because it's not closed under scalar multiplication, as you can see by, for example, multiplying the $n \times n$ matrix all of whose entries are 2 by the scalar 0.5. It fails the subspace test.
- **2.** Note that the zero vector in C([0,1]) is just given by the zero function z(x)=0 for all $x \in [0,1]$. For S(r) to be a subspace, we need $z \in S(r)$. Since z(r)=0 for any $r \in [0,1]$, $z \in S(r)$ for all r.

By the subspace test, it remains to check that S(r) is closed under addition and scalar multiplication for each $r \in [0,1]$. If $f,g \in C([0,1])$ are such that f(r) = g(r) = 0, then (f+g)(r) = f(r) + g(r) = 0, so S(r) is closed under addition. If $c \in \mathbb{R}$ and $f \in S(r)$, then cf(r) = (c)(0) = 0, so $cf \in S(r)$. It follows that for every $r \in [0,1]$, S(r) is a subspace of C([0,1]).

3. Suppose $S_1 \cup S_2$ is a subspace of V. For the sake of contradiction, assume that $S_1 \not\subseteq S_2$ and $S_2 \not\subseteq S_1$. Since subspaces must contain the zero vector, they can't be empty, so S_1 and S_2 are not empty. Thus there exist $v \in S_1 \setminus S_2$ and $w \in S_2 \setminus S_1$.

Since $S_1 \cup S_2$ is a subspace by assumption, $v + w \in S_1 \cup S_2$, i.e., $v + w \in S_1$ or $v + w \in S_2$. Suppose $v + w \in S_1$. Then since $v \in S_1$, we have $-v \in S_1$, so $v + w + (-v) \in S_1$. But v + w + (-v) = w, so $w \in S_1$, contradicting the assumption that $w \in S_2 \setminus S_1$. Similarly, if we had assumed that $v + w \in S_2$ instead, we would have concluded that $v \in S_2$, contradicting the assumption that $v \in S_1 \setminus S_2$. Since we have reached a contradiction in either case, we conclude that $S_1 \subseteq S_2$ or $S_2 \subseteq S_1$.

Conversely, suppose that $S_1 \subseteq S_2$. Then $S_1 \cup S_2 = S_2$ is a subspace by assumption, so we are done. The case where $S_2 \subseteq S_1$ is similar. \square