# Signal Processing in Quantum Mechanics



Department of Electrical and Computer Engineering University of Waterloo 3A Candidates for B.A.Sc. in Computer Engineering

March 15th, 2018



# **Presentation Overview**

- Introduction
  - Presentation Overview
  - Signal Processing
- Quantum Control Blocks
  - Quantum Operators
  - Signal Processing Notation
- Operations on Quantum Signals
  - Signal Filtering
  - Signal Scaling, Summing Junctions
  - Signal Feedback
- Summary
- References



#### Introduction

#### **Signal Processing**

**Signal** is a function that conveys information about the behaviour of a system.

- Common operations on signals:
  - Scaling, Addition, and Subtraction
  - Delays, Phase Changes
  - Filtering and Feedback



## Introduction

#### **Signal Processing**

- ► Control Blocks often perform following operations:
  - Scaling
  - Delays
  - Filtering



## Introduction

#### **Signal Processing**

- Signals often representable as sum of many sinusoids
- Signals commonly represented in Frequency Domain
- Laplace Transform commonly used for Frequency Domain form

$$\mathcal{L}{f(t)} \to F(s)$$



#### **Developing Quantum Control Blocks**

- We use Quantum Operators as Quantum Control Blocks
- Quantum States are input and output signals



#### Mathematical Notation

- Quantum Transfer Functions represent Quantum Control Blocks
- Quantum Transfer Functions are operator matrices



$$|\psi'(s)\rangle = A(s)|\psi(s)\rangle$$

#### **Projection Blocks**

- Projection Blocks represent act of observing the quantum state
- Observers are used to predictably alter quantum state

$$|\psi'(t)\rangle = \frac{P_{\pm n}|\psi(t)\rangle}{\sqrt{\langle\psi(t)|P_{\pm n}|\psi(t)\rangle}}$$



#### **Projection Blocks**

- Can be used to prepare an input signal to a certain state
- Example: Given an arbitrary input, we want an output signal of state  $|\psi'(t)\rangle = |-\rangle$

$$|\psi(t)\rangle = k_1|+\rangle + k_2|-\rangle \rightarrow |\psi'(t)\rangle = |-\rangle$$

$$|\psi(s)\rangle = \frac{k_1}{s}|+\rangle + \frac{k_2}{s}|-\rangle \rightarrow |\psi'(s)\rangle = \frac{k_2}{s}|-\rangle$$

$$|\psi'(s)\rangle = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} |\psi(s)\rangle$$

$$\mathbf{T}(s) = \mathbf{P}_{-s}$$

#### **Projection Blocks**

- Disadvantage: Projection Blocks do not guarantee an output
- Projection Blocks behave similar to traditional filters

$$|\psi(t)\rangle = k_1|+\rangle + k_2|-\rangle \rightarrow |\psi'(t)\rangle = |-\rangle$$

$$|\psi(s)\rangle = \frac{k_1}{s}|+\rangle + \frac{k_2}{s}|-\rangle \rightarrow |\psi'(s)\rangle = \frac{k_2}{s}|-\rangle$$

$$|\psi'(s)\rangle = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} |\psi(s)\rangle$$

$$\mathbf{T}(s) = \mathbf{P}_{-s}$$

#### **Projection Blocks**

- What if a projection block has no output?
- We defined a Zero Signal to indicate absence of a quantum state

$$|\psi(s)\rangle = \frac{k_1}{s}|+\rangle \qquad |\psi'(s)\rangle = 0|+\rangle + 0|-\rangle$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$



High Pass Filter

#### **Precession Blocks**

- Precession Blocks represent time-evolution under influence of magnetic fields
- Magnetic fields of strength B in direction  $\hat{n}$  applied for time T used to modify relative phase

$$|\psi'(T)\rangle = k_1 e^{-i\omega T} |E_1\rangle + k_2 e^{i\omega T} |E_2\rangle$$



Precession Blocks: Phase Changer

Phase Changer is used to modify relative phase of an input state



• Since  $\omega = \frac{Be^-}{m_e^-} \gg \pi$ , the time  $T \approx 0$  and delays can be ignored

Precession Blocks: Amplitude Reversal

► Amplitude Reversal is used to implement quantum NOT gates



Minuscule delays are ignored in favor of simplicity

#### Signal Filtering

Filtering in traditional control systems refers to filtering frequency components



Filtering in our context refers to removing super-position

$$|\psi(s)\rangle = \frac{k_1}{s}|+\rangle + \frac{k_2}{s}|-\rangle$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$|\psi'(s)\rangle = \frac{k_2}{s}|-\rangle$$

Signal Phase Changes

Phase Changer is used to modify relative phase of an input state



$$\begin{array}{c|c} k_1|E_1\rangle + k_2|E_2\rangle \\ \hline & \begin{pmatrix} 1 & 0 \\ 0 & e^{e^{i(2\omega)T}} \end{pmatrix} & |\psi'(t)\rangle \\ \hline \\ |\psi(t)\rangle & |\psi'(t)\rangle \\ \end{array}$$

**Signal Scaling** 

 Scaling in traditional control systems refers to changing signal magnitude



 Quantum states are always of a unit magnitude; scaling is not required

#### **Summing Junction**

Summing Junctions in traditional control systems are used to add multiple, different signals



Summing Junctions are binary operations in our context



**Summing Junction: Derivation** 

Concept of Quantum Summing junctions originates from the following case:



- Multiply input by appropriate operators
- Retain the global phase of different terms before summation

Signal Feedback, Summing Junction

Signal Feedback involves using the output as a part of the input signal itself

$$|\psi_{e_{(i+1)}}(t)\rangle = I|\psi(s)\rangle + T_2(s)T_1(s)|\psi_{e_{(i)}}(t)\rangle$$



$$|\psi'(s)\rangle = (I - T_1(s)T_2(s))^{-1}(T_1(s))|\psi(s)\rangle$$

Signal Feedback: Example



$$k_1|+\rangle + k_2|-\rangle$$
 $T_1(s)$ 
 $k_2|+\rangle + k_1|-\rangle$ 
 $k_1|+\rangle + k_2|-\rangle$ 
 $T_2(s)$ 
 $k_1|+\rangle - k_2|-\rangle$ 

 $T_1(s)$  is a **NOT** gate  $T_2(s)$  is a **Phase Flip** 

$$|\psi'(s)\rangle = (I - T_1(s)T_2(s))^{-1}(T_1(s))|\psi(s)\rangle$$

Signal Feedback: Simulation of a Quantum Feedback System





# Questions?

# References

- ▶ [1] David H. McIntyre, "Quantum Mechanics: A Paradigms Approach", Pearson, 2012
- [2] Lucas V. Barbosa, "Fourier Series", Wikimedia

https://en.wikipedia.org/wiki/Fourier\_series