

Écrit du Lundi 20 mai Durée 2h

Calculatrice et documents interdits. Téléphones portables éteints et hors de la table.

Aurtôgraffe et présentation soignées; prises en compte dans la notation (-2 points possibles).

Aucun point ne sera attribué à une réponse non justifiée.

L'usage du crayon est réservé au brouillon.

Cet énoncé contient 19 questions en tout, pour un total de 30 points et 0 points bonus. Un formulaire succinct vous est donné page 6.

Questions de cours

1. Donner la définition d'un solide indéformable.

Solution:

2. On suppose que $\vec{V}(A \in S/\mathcal{R}) = \vec{V}(B \in S/\mathcal{R})$ pour $A \neq B$. Peut-on affirmer que le solide S est en translation pure dans le référentiel \mathcal{R} ?

Solution : L'affirmation est fausse si \overrightarrow{AB} et $\overrightarrow{\Omega}(S/\mathcal{R})$ sont colinéaires.

3. Soit S un solide de masse m en mouvement de translation pure dans le référentiel \mathcal{R} . Exprimer son énergie cinétique par rapport à \mathcal{R} , $T(S/\mathcal{R})$.

Solution:

$$T(S/\mathcal{R}) = \frac{1}{2m} \vec{p}(S/\mathcal{R})^2 = \frac{1}{2} m \vec{V}(A \in S/\mathcal{R})^2, \quad \forall A.$$

- 4. On considère un solide constitué de deux points matériels A, B de masse identique m. On se donne un repère $(O, \vec{X}, \vec{Y}, \vec{Z})$ tel que $\overrightarrow{OA} = a\vec{X} + b\vec{Y}$ et $\overrightarrow{OB} = -b\vec{Y}$ où a, b sont des constantes.
 - (a) caractériser le centre de masse et le moment d'inertie par rapport à (O, \vec{X}) du solide.

Solution:

$$2m\overrightarrow{OC} = m\overrightarrow{OA} + m\overrightarrow{OB} \quad \Rightarrow \quad \overrightarrow{OC} = \frac{a}{2}\overrightarrow{X}$$

$$I = m \|\overrightarrow{OA} \wedge \vec{X}\|^2 + m \|\overrightarrow{OB} \wedge \vec{X}\|^2 = 2mb^2$$

(b) le solide est-il équilibré statiquement autour de l'axe (\mathcal{O}, \vec{X}) ?

Solution : Oui car $C \in (O, \vec{X})$.

(c) si c'est le cas, a-t-on équilibrage dynamique autour du même axe?

Solution : Non car il y a absence de symétrie matérielle (sauf si a=0) et donc (O, \vec{X}) n'est pas principal d'inertie.

5. Énoncer le théorème des axes parallèles.

Solution: $I' = I + md^2$

Problème

Le but de ce problème est de dimensionner un moteur actionnant une bétonnière embarquée sur un camion. Le camion (1) se déplace sur une route horizontale plane (0) liée à un référentiel $\mathcal{R}_0 = (O, \vec{x_0}, \vec{y_0}, \vec{z_0})$ supposé galiléen avec $\vec{z_0}$ vertical descendant.

La cuve de mélange (ou bétonnière) (2) a une masse m et son centre de masse est noté C_2 . Elle est fixée au camion en A par une liaison rotule et est maintenue par un système de roulements à billes (lui-même fixé sur le camion). L'axe (AC₂) est incliné d'un angle constant α par rapport à la verticale (cf. Figure 1) et constitue un axe de symétrie matérielle de révolution pour (2).

À un instant t donné, la vitesse $\vec{V}(C_2 \in 1/0)$ est donnée par $v(t)\vec{y_1}$ où $\vec{y_1}$ est un vecteur unitaire horizontal. On introduit l'angle orienté $\theta = (\vec{y_0}, \vec{y_1})$ mesuré autour de $(O, \vec{z_0})$.

FIGURE 1 – Vue de côté du camion à bétonnière.

On introduit le point matériel $D \in (2)$ situé sur la circonférence de la cuve ainsi que H, son projeté orthogonal sur l'axe (AC₂) (FIGURE 1). On pose $\overrightarrow{AC_2} = \ell \vec{z_1}$, $\overrightarrow{C_2H} = L\vec{z_1}$, $\overrightarrow{HD} = d\vec{x_2}$, $\vec{x_1} = \vec{y_1} \wedge \vec{z_0}$, $\vec{y_1}' = \vec{z_1} \wedge \vec{x_1}$ et $\vec{y_2} = \vec{z_1} \wedge \vec{x_2}$. L'angle $\varphi = (\vec{x_1}, \vec{x_2})$, mesuré autour de (A, $\vec{z_1}$), paramétrise la rotation de la cuve autour de (AC₂).

1 Cinématique

1. Dessiner le diagramme de changement de base $(\vec{x_0}, \vec{y_0}, \vec{z_0}) \leftrightarrow (\vec{x_1}, \vec{y_1}, \vec{z_0})$.

Solution:

2. Estimer numériquement la vitesse angulaire $\dot{\theta}$ dans le cas où le camion tourne sur un cercle de rayon 10 m à une vitesse de 20 km/h. Préciser l'unité.

Solution:

$$V = 20 \text{ km.h}^{-1} = \frac{2 \cdot 10^4}{3600} \text{ m.s}^{-1} = \frac{30 \times 6 + 20}{6 \times 6} \text{ m.s}^{-1} \simeq 5.5 \text{ m.s}^{-1}.$$

Pour la vitesse angulaire $\dot{\theta} = \frac{V}{R} \simeq \frac{5.5}{10} = 0.55 \text{ rad.s}^{-1}$ ce qui signifie que le camion fait un tour complet en $2\pi/\dot{\theta} \simeq 11.4 \text{ s.}$

3. Exprimer les vecteurs vitesse de rotation $\vec{\Omega}(1/0)$, $\vec{\Omega}(2/1)$ puis $\vec{\Omega}(2/0)$.

Solution:

$$\begin{split} \vec{\Omega}(1/0) &= \dot{\theta} \vec{z_0} \\ \vec{\Omega}(2/1) &= \dot{\phi} \vec{z_1} \\ \vec{\Omega}(2/0) &= \vec{\Omega}(2/1) + \vec{\Omega}(1/0) = \dot{\phi} \vec{z_1} + \dot{\theta} \vec{z_0} \end{split}$$

On peut passer (pas demandé) dans la base $(\vec{x_1}, \vec{y_1'}, \vec{z_1})$:

$$\vec{\Omega}(2/0) = \dot{\phi}\vec{z_1} + \dot{\theta}(\cos\alpha\vec{z_1} + \sin\alpha\vec{y_1}') = (\dot{\phi} + \dot{\theta}\cos\alpha)\vec{z_1} + \dot{\theta}\sin\alpha\vec{y_1}'.$$

4. Calculer l'accélération $\vec{\Gamma}(C_2 \in 2/0)$.

Solution:

Par définition de l'accélération :

$$\vec{\Gamma}(C_2 \in 2/0) = \frac{d}{dt} \vec{V}(C_2 \in 1/0) \Big|_{0} = \dot{v}(t) \vec{y_1} + v(t) \frac{d\vec{y_1}}{dt} \Big|_{0} = \dot{v}(t) \vec{y_1} - v(t) \dot{\theta} \vec{x_1}.$$

2 Cinétique

On note la matrice d'inertie de (2) en C_2 dans la base $(\vec{x_2}, \vec{y_2}, \vec{z_1})$ de la manière suivante :

$$[J_2(C_2)] = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}. \tag{1}$$

- 1. Justifier l'identité A = B par des arguments de symétrie.
- 2. Justifier que, bien que le repère $(C_2, \vec{x_1}, \vec{y_1}', \vec{z_1})$ ne soit pas lié à la cuve, la matrice d'inertie $[J_2(C_2)]$ exprimée dans la base $(\vec{x_1}, \vec{y_1}', \vec{z_1})$ s'écrive encore sous la forme (1).
- 3. Calculer le moment cinétique $\overrightarrow{\sigma}(C_2 \in 2/0)$.

Solution:

$$\overrightarrow{\sigma}(C_2 \in 2/0) = \begin{pmatrix} A \\ A \\ C \end{pmatrix} \begin{pmatrix} 0 \\ \dot{\theta} \sin \alpha \\ \dot{\varphi} + \dot{\theta} \cos \alpha \end{pmatrix}$$
$$= A\dot{\theta} \sin \alpha \overrightarrow{y_1'} + C(\dot{\varphi} + \dot{\theta} \cos \alpha) \overrightarrow{z_1}$$

3 Dynamique

L'effort $1 \rightarrow 2$ en A est modélisé par une liaison rotule parfaite :

$$\left\{\mathcal{A}_{\mathrm{rotule}\rightarrow 2}\right\}_{\mathrm{A}} = \left\{ \overrightarrow{R} = X_{\mathrm{A}} \vec{x_1} + Y_{\mathrm{A}} \vec{y_1}' + Z_{\mathrm{A}} \vec{z_1} \right\}.$$

Le maintien par les roulements est modélisé par le torseur :

$$\left\{\mathcal{A}_{\text{roulements}\rightarrow 2}\right\}_{\mathcal{D}} = \left\{ \overrightarrow{R'} = Y_{\mathcal{D}} \overrightarrow{y_1'} \right\}.$$

Un moteur, monté entre le camion et la bétonnière, assure la mise en rotation de cette dernière. Il fournit un couple $\{\mathcal{A}_{\text{moteur}\to 2}\}_{\text{A}} = \begin{Bmatrix} \vec{0} \\ \kappa(t)\vec{z_1} \end{Bmatrix}$

Dans cette partie, on supposera que $v(t) = \text{Cte} = v_0$, $\dot{\theta} = \text{Cte}$ et $\dot{\varphi} = \text{Cte} = \omega$.

1. Exprimer la quantité d'accélération $m\vec{\Gamma}(C_2 \in 2/0)$.

Solution:

Comme $\dot{v}(t) = 0$, on a d'après la dernière question de cinématique :

$$m\vec{\Gamma}(C_2 \in 2/0) = -mv_0\dot{\theta}\vec{x_1}.$$

2. Exprimer l'accélération de la pesanteur \vec{g} dans la base $(\vec{x_1}, \vec{y_1}', \vec{z_1})$.

Solution:

$$\vec{g} = g\vec{z_0} = g(\cos\alpha\vec{z_1} + \sin\alpha\vec{y_1'}).$$

3. Appliquer le théorème de la résultante dynamique à la cuve. Exprimer, lorsque c'est possible, les composantes de l'action de la liaison rotule sur la cuve.

Solution:

Le référentiel \mathcal{R}_0 étant considéré comme galiléen, le théorème de la résultante dynamique appliqué à la cuve fournit :

$$-mv_0\dot{\theta}\vec{x_1} = m\vec{g} + \vec{R} + \vec{R}'$$

que l'on projète suivant $\vec{z_1}$ (ce qui permet d'exploiter $\overrightarrow{R'} \cdot \vec{z_1} = \vec{0}$) :

$$0 = -mg(\vec{z_0} \cdot \vec{z_1}) + (\overrightarrow{R} \cdot \vec{z_1})$$

ou encore

$$Z_{\mathcal{A}} = \overrightarrow{R} \cdot \overrightarrow{z_1} = mg \cos \alpha$$

La projection suivant $\vec{x_1}$ fournit :

$$X_{\rm A} = -mv_0\dot{\theta}.$$

4. Exprimer le moment dynamique $\vec{\delta}(C_2 \in 2/0)$.

Solution:

$$\vec{\delta}(C_2 \in 2/0) = \frac{\mathrm{d}}{\mathrm{d}t} \vec{\sigma}(C_2 \in 2/0) \bigg|_0 = \frac{\mathrm{d}}{\mathrm{d}t} \Big(A \dot{\theta} \sin \alpha \vec{y_1}' + C(\omega + \dot{\theta} \cos \alpha) \vec{z_1} \Big) \bigg|_0$$

On a $\dot{\theta} = \text{Cte}$ et $\omega = \text{Cte}$, donc seuls les vecteurs $\vec{y_1}'$ et $\vec{z_1}$ sont fonction du temps.

$$\frac{\mathrm{d}\vec{y_1'}}{\mathrm{d}t}\Big|_0 = (\dot{\theta}\vec{z_0}) \wedge \vec{y_1'} = \dot{\theta}\vec{z_0} \wedge (\cos\alpha\vec{y_1} + \sin\alpha\vec{z_0}) = -\dot{\theta}\cos\alpha\vec{x_1}$$

$$\frac{\mathrm{d}\vec{z_1}}{\mathrm{d}t}\Big|_0 = (\dot{\theta}\vec{z_0}) \wedge \vec{z_1} = \dot{\theta}\sin\alpha\vec{x_1}$$

Ainsi

$$\vec{\delta}(C_2 \in 2/0) = ((C - A)\dot{\theta}^2 \cos \alpha + C\omega\dot{\theta})\sin \alpha \vec{x_1}.$$

5. Appliquer le théorème du moment dynamique au système (2).

Solution:

Le référentiel \mathcal{R}_0 étant galiléen, le théorème du moment dynamique appliqué à la cuve fournit la relation vectorielle :

$$\vec{\delta}(C_2 \in 2/0) = \underbrace{\overrightarrow{\mathcal{M}_{poids \to 2}}(C_2)}_{=\vec{0}} + \underbrace{\overrightarrow{\mathcal{M}_{rotule}}(C_2)}_{=\overrightarrow{R} \land \overrightarrow{AC_2}} + \underbrace{\overrightarrow{\mathcal{M}_{moteur}}(C_2)}_{=\kappa \vec{z_1}} + \underbrace{\overrightarrow{\mathcal{M}_{roulement}}(C_2)}_{=\overrightarrow{R} \land \overrightarrow{DC_2}}$$

6. En déduire une expression du couple κ que doit fournir le moteur.

Solution:

On projète $\vec{\delta}(C_2 \in 2/0)$ suivant $\vec{z_1}$:

$$\vec{\delta}(C_2 \in 2/0) \cdot \vec{z_1} = 0 = (\overrightarrow{R} \wedge \overrightarrow{AC_2}) \cdot \vec{z_1} + \kappa(t) + (\overrightarrow{R'} \wedge \overrightarrow{DC_2}) \cdot \vec{z_1}$$

d'où on tire:

$$\begin{split} \kappa(t) &= (\overrightarrow{\mathrm{AC}_2} \wedge \overrightarrow{R}) \cdot \vec{z_1} + (\overrightarrow{\mathrm{DC}_2} \wedge \overrightarrow{R'}) \cdot \vec{z_1} \\ &= (\vec{z_1} \wedge \overrightarrow{\mathrm{AC}_2}) \cdot \overrightarrow{R} + (\vec{z_1} \wedge \overrightarrow{\mathrm{DC}_2}) \cdot \overrightarrow{R'} \\ &= \ell(\vec{z_1} \wedge \vec{z_1}) \cdot \overrightarrow{R} - \left(\vec{z_1} \wedge (L\vec{z_1} + d\vec{x_2})\right) \cdot \overrightarrow{R'} = -d\overrightarrow{R'} \cdot \vec{y_2}. \end{split}$$

7. **Bonus :** Peut-on, comme ci-dessus, parvenir à la détermination du couple κ si l'on remplace la liaison rotule par une liaison pivot parfaite d'axe $(A, \vec{z_1})$?

4 Formulaire

Relation de torseur pour le champ de vitesse d'un solide S par rapport à un référentiel \mathcal{R} :

$$\vec{V}(B \in S/\mathcal{R}) = \vec{V}(A \in S/\mathcal{R}) + \vec{\Omega}(S/\mathcal{R}) \wedge \overrightarrow{AB}.$$

Moment cinétique d'un solide S de masse m par rapport à \mathcal{R} au point A :

$$\vec{\sigma}(\mathbf{A} \in \mathbf{S}/\mathcal{R}) = m \overrightarrow{\mathbf{AC}} \wedge \vec{V}(\mathbf{A} \in \mathbf{S}/\mathcal{R}) + \mathcal{J}_{\mathbf{S}}(\mathbf{A})[\vec{\Omega}(\mathbf{S}/\mathcal{R})]$$

où C est le centre de masse et $\mathcal{J}_S(A)$ est l'opérateur d'inertie en A de S.

Moment dynamique de S dans son mouvement par rapport à \mathcal{R} en un point A:

$$\vec{\delta}(\mathbf{A} \in \mathbf{S}/\mathcal{R}) = \frac{\mathrm{d}}{\mathrm{d}t} \vec{\sigma}(\mathbf{A} \in \mathbf{S}/\mathcal{R}) \bigg|_{\mathcal{P}} + m\vec{V}(\mathbf{A} \in \mathbf{S}/\mathcal{R}) \wedge \vec{V}(\mathbf{C} \in \mathbf{S}/\mathcal{R}).$$