Motor Trend MPG Analysis Mikhail Romadanovskiy 25 Jul 2015

Executive summary

In this report, we will analyze mtcars data set and explore the relationship between a set of available variables and miles per gallon (MPG). The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models). There are 2 main questions to consider: what type of transmission is better for mpg, and how it can be discribed in numeric terms. The t-test shows that mpg performance difference between cars with automatic and manual transmission. And it is about 7 MPG more for cars with manual transmission than those with automatic transmission. We fit several linear regression models and select the one with highest Adjusted R-squared value. Given model shows that cars that are lighter in weight with a manual transmission and cars that are heavier in weight with an automatic transmission will have higher MPG values.

Contex

You work for Motor Trend, a magazine about the automobile industry. Looking at a data set of a collection of cars, they are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome). They are particularly interested in the following two questions:

- Is an automatic or manual transmission better for MPG
- Quantify the MPG difference between automatic and manual transmissions

Since p-Value is pVal the automatic and manual transmissions are from different populations. And the mean for MPG of manual transmitted cars is about resultestimate[[2]] - resultestimate[[1]] more than that of automatic transmitted cars.

Regression Model

Testing simple model.

Simple model can explain 34% of variance of MPG. Adjusted R-squared value indicates that we need to add other variables to the model to make better predictions.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	17.1474	1.1246	15.25	0.0000
am1	7.2449	1.7644	4.11	0.0003

Finding proper set of explanation variables

Let's use all the available data to make a regression model.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	23.8791	20.0658	1.19	0.2525
cyl6	-2.6487	3.0409	-0.87	0.3975
cyl8	-0.3362	7.1595	-0.05	0.9632
disp	0.0355	0.0319	1.11	0.2827
hp	-0.0705	0.0394	-1.79	0.0939
drat	1.1828	2.4835	0.48	0.6407
wt	-4.5298	2.5387	-1.78	0.0946
qsec	0.3678	0.9354	0.39	0.6997
VS1	1.9309	2.8713	0.67	0.5115
am1	1.2121	3.2135	0.38	0.7113
gear4	1.1144	3.7995	0.29	0.7733
gear5	2.5284	3.7364	0.68	0.5089
carb2	-0.9794	2.3180	-0.42	0.6787
carb3	2.9996	4.2935	0.70	0.4955
carb4	1.0914	4.4496	0.25	0.8096
carb6	4.4776	6.3841	0.70	0.4938
carb8	7.2504	8.3606	0.87	0.3995

Full regression model can explain 78% of MPG variance, but none of the coeficients are significant. We could find more effective set of variables to explain mpg.

```
stepModel <- step(fullModel, k = log(nrow(mtcars)))</pre>
xtable(summary(stepModel)) # results='hide'
mpgModel <- lm(mpg ~ wt + qsec + am, data = mtcars)</pre>
```

Linear model mpg ~ wt + qsec + am - 1 explains 83% of MPG variance, but consists only significant at 5% s.l. coefficients.

xtable(anova(mpgModel, simpleMpgModel, fullModel))

	Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
1	28	169.29				
2	30	720.90	-2	-551.61	34.36	0.0000
3	15	120.40	15	600.49	4.99	0.0018

xtable(confint(mpgModel))

	2.5 %	97.5 %
(Intercept)	-4.64	23.87
wt	-5·37	-2.46
qsec	0.63	1.82
am1	0.05	5.83

```
amIntWtModel <- lm(mpg ~ wt + qsec + am + wt:am,</pre>
    data = mtcars)
xtable(summary(amIntWtModel)) # results hidden
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.7231	5.8990	1.65	0.1109
wt	-2.9365	0.6660	-4.41	0.0001
qsec	1.0170	0.2520	4.04	0.0004
am1	14.0794	3.4353	4.10	0.0003
wt:am1	-4.1414	1.1968	-3.46	0.0018

The measure of how much an observation has effected the estimate of a regression coefficient, we get sum((abs(dfbetas(mpgModel)))>1) Therefore, the above analyses meet all basic assumptions of linear regression and well answer the questions.

Appendix: Figures

Figure 1: Selected Dimensions Pair Graph

Pair Graph of Motor Trend Car Road Tests

Figure 2: Full Pair Graph

Figure 3: Box Plot

Figure 4: Residuals Analysis