Indice

1	Lezione 1	2
	1.1 Definizione sistema dinamico	2
	1.2 Definizione sistema autonomo	2
	1.3 Definizione stabilità	2

Capitolo 1

Lezione 1

1.1 Definizione sistema dinamico

Un sistema dinamico è composta da uno stato $x \in \mathbb{R}^n$ e da una legge di evoluzione

$$\dot{x}(t) = f(x(t), u(t), t)$$

1.2 Definizione sistema autonomo

Un sistema dinamico è detto autonomo se la sua evoluzione non dipende esplicitamente dall'ingresso u(t), cioè:

$$\dot{x}(t) = f(x(t), t)$$

Se il sistema è sia autonomo che tempo invariante allora si ha:

$$\dot{x}(t) = f(x(t))$$

1.3 Definizione stabilità

Un sistema dinamico tempo invariante è detto stabile se

$$\forall \varepsilon > 0, \exists \delta > 0 : x_0 \in B_{\delta}(\bar{x}) \Rightarrow |x_{x_0}(t) - \bar{x}| \leq \varepsilon, \forall t \geq 0$$

Dove con $x_{x_0}(t)$ si intende la traiettoria del sistema che parte da x_0 .

Ora dimostriamo che $\delta \leq \varepsilon, \forall \varepsilon > 0$. Supponiamo per assurdo che esista un $\varepsilon > 0$ per cui si ha che la δ per cui è rispettata la definizione di stabilità sia tale che $\delta > \varepsilon$. Allora si ha che per le $x_0 \in B_{\delta}(\bar{x}) \backslash B_{\varepsilon}(\bar{x})$ vale:

$$|x_{x_0}(0) - \bar{x}| = |x_0 - \bar{x}| > \varepsilon$$

Ma questo è assurdo perché per la definizione di stabilità si dovrebbe avere:

$$|x_{x_0}(0) - \bar{x}| = |x_0 - \bar{x}| \le \varepsilon$$

Dunque siamo arrivati ad un assurdo.

Figura 1.1: Assi con etichette x_1 e x_2 .