Homework 2

CS314

1 Problem — Finite State Automaton (FSA) - 20 pts

1. Specify the state transition graph of (1) a NFA (which is not DFA as well) without ϵ transitions and (2) a DFA that recognizes the following language: "All strings of 0's and 1's that end with 11

NFA

DFA

2. In addition to the state transition graphs (diagram), give the state transition table and the formal specification of an automaton as the quadruple < S, s, F, T> for both, your NFA and DFA. Do not include "error" states.

NFA

State transition table

	0	1
S0	S0	S1, S2
S1	-	S2
S2	-	-

Quadruple <S, s, F T> where...

- *S* is the set of states **(S0, S1, S2)**
- s is the start state **SO**
- F is the final state **S2**
- T is the set of labeled transitions
 - $(S0, 0) \rightarrow S0$
 - (S0, 1) \rightarrow S0
 - (S0, 1) \rightarrow S1
 - (S1, 1) → S2

DFA

State transition table

	0	1
S0	S0	S1
S1	S0	S2
S2	S0	S2

Quadruple <S, s, F T> where...

- *S* is the set of states **(S0, S1, S2)**
- s is the start state S0

- F is the final state S2
- T is the set of labeled transitions
 - $(S0, 0) \rightarrow S0$
 - $(S0, 1) \rightarrow S1$
 - $(S1, 0) \rightarrow S0$
 - (S1, 1) → S2
 - $(S2, 0) \rightarrow S0$
 - (S2, 1) → S2

2 Problem — Regular and Context-Free Languages - 20 pts

Are the following languages context-free or not? If yes, specify a context-free grammar in BNF notation that generates the language. If not, give an informal argument. Furthermore, which of the languages are also regular languages, i.e., can be expressed by a regular expression? Prove it by giving the regular expression that specifies the language.

1.
$$\{a^n b^m c^o \mid m > 0, n \ge 0, o > 0\}$$
, with alphabet $\Sigma = \{a, b, c\}$

This is a context-free language.

$$< A > ::= a < A > | \epsilon$$

$$< B > ::= b < B > | \epsilon$$

$$<$$
C $>$::= c $<$ C $> | $\epsilon$$

It can be expressed with the regular expression, $a^*b^+c^+$.

2.
$$\{a^nb^nc^n\mid n>0\}$$
, with alphabet $\Sigma=\{a,b,c\}$

This **is not a context-free language**. a^nb^n and b^nc^n can be expressed using context-free languages. However, when considering $a^nb^nc^n$, context is necessary to determine how many occurrences of c are required.

Furthermore, it can not be expressed with a regular expression.

3.
$$\{0^{2n}1^{4n} \mid n > 0\}$$
, with alphabet $\Sigma = \{0, 1\}$

This is a context-free language, but can not be expressed by regular expression.

$$<$$
start $>$::= 00 $<$ start $>$ 1111 | ϵ

```
4. \{wcw^R \mid w \in \Sigma^* \text{ and } w^R \text{ is w in reverse } \}, with alphabet \Sigma = \{a, b, c\}
```

This is a context-free language, but can not be expressed by regular expression.

```
<start> ::= a < start > a | b < start > b | c
```

5.
$$\{a^nb^mc^md^n\mid n\geq 0, m\geq 0\}$$
, with alphabet $\Sigma=\{a,b,c,d\}$

This is a context-free language, but can not be expressed as a regular expression.

```
<start> ::= <AD> <AD> ::= a<AD>d \mid b<BC>c \mid \epsilon <BC> ::= b <BC> c \mid \epsilon 6. \{a^nb^mc^nd^m\mid n\geq 0, m\geq 0\}, \text{ with alphabet } \Sigma=\{a,b,c,d\}
```

This **is not a context-free language**. Individually, the pairs a^nb^m and c^nd^m can be defined using context-free languages but together, the number of repetitions n and m can not be generated without context from the other pair. Context is required to determine how many occurrences of a, which is necessary to determine how many occurrences of c are required. The same goes for b and d.

Furthemore, it can not be expressed with a regular expression.

```
7. \{a^na^nb^nb^n\mid n\geq 0\}, with alphabet \Sigma=\{a,b\}
Note that a^na^nb^nb^n=a^{2n}b^{2n}
```

This is a context-free language, but can not be expressed as a regular expression.

```
<start> ::= aa<start>bb | \epsilon
```

8. $\{w \mid w \text{ has more than 3 symbols}\}$, with alphabet $\Sigma = \{a,b\}$

This is a context-free language.

```
<start> ::= <AB> <AB> <AB> <repeat> <AB> ::= A | B </repeat> ::= <AB> <repeat> | \epsilon
```

It can expressed with the regular expression, $(a|b)(a|b)(a|b)(a|b)^+$

3 Problem — Derivation, Parse Tree, Ambiguity, Precedence & Associativity - 60 pts

A language that is a subset of the language of propositional logic may defined as follows:

$$< start > ::= < expr > < expr > ::= < expr > $\lor < expr > \lor < expr >$ | $< expr > \land < expr >$ | $< expr > \leftrightarrow < expr >$ | $< const > | < var >$ | $< const > ::= true | false < var > ::= a | b | c$$$

1. Give a leftmost and a rightmost derivation for the sentence

 $a \wedge true \wedge b \leftrightarrow false \vee true$

Leftmost	Rule applied
<expr></expr>	1
<expr> ∧ <expr></expr></expr>	2b
<var> ∧ <expr></expr></var>	2e
a ∧ <expr></expr>	4a
a ∧ <expr> ∧ <expr></expr></expr>	2b
$a \land < const > \land < expr >$	2d
a ∧ true ∧ <expr></expr>	3a
$a \land true \land \langle expr \rangle \leftrightarrow \langle expr \rangle$	2c
$a \land true \land < var > \leftrightarrow < expr >$	2e
$a \wedge true \wedge b \leftrightarrow \langle expr \rangle$	4b
$a \land true \land b \leftrightarrow <\!expr> \lor <\!expr>$	2a
$a \land true \land b \leftrightarrow {<}const{>} \lor {<}expr{>}$	2d
$a \land true \land b \leftrightarrow false \lor $	3b
$a \land true \land b \leftrightarrow false \lor $	2d
$a \wedge true \wedge b \leftrightarrow false \vee true$	4a

Rightmost	Rule applied
<expr></expr>	1
<expr> ∨ <expr></expr></expr>	2a
<expr> ∨ <const></const></expr>	2d

Rightmost	Rule applied
<expr> ∨ true</expr>	3a
$\langle expr \rangle \leftrightarrow \langle expr \rangle \lor true$	2c
$\langle expr \rangle \leftrightarrow \langle const \rangle \lor true$	2d
$\langle expr \rangle \leftrightarrow false \lor true$	3b
$\langle expr \rangle \land \langle expr \rangle \leftrightarrow false \lor true$	2b
$\langle expr \rangle \land \langle var \rangle \leftrightarrow false \lor true$	2e
$\langle expr \rangle \wedge b \leftrightarrow false \vee true$	4b
$\langle expr \rangle \land \langle expr \rangle \land b \leftrightarrow false \lor true$	2b
$\langle expr \rangle \land \langle const \rangle \land b \leftrightarrow false \lor true$	2d
<expr> \land true \land b \leftrightarrow false \lor true</expr>	3a
$<\!\!\text{var>} \land true \land b \leftrightarrow false \lor true$	2e
$a \wedge true \wedge b \leftrightarrow false \vee true$	5a

2. Give the corresponding parse trees for the derivations.

Leftmost

Rightmost

3. Give the corresponding abstract syntax tree (AST) **Leftmost**

Rightmost

4. Show that the above grammar is ambiguous. Take the sentence, a $\wedge \ {\bf true} \ \wedge \ b$, for example.

With the above grammar, we may generate two distinct derivations for this sentence (either two leftmost, or two rightmost), which shows that the grammar is ambiguous.

Derivation 1.

Leftmost	Rule applied
<expr></expr>	1
<expr> ∧ <expr></expr></expr>	2b
<var> ∧ <expr></expr></var>	2e
a ∧ <expr></expr>	4a
$a \land < expr > \land < expr >$	2b
$a \land < const > \land < expr >$	2d
$a \wedge true \wedge \langle expr \rangle$	3a
$a \wedge true \wedge < var>$	2e
$a \wedge true \wedge b$	4b

Derivation 2.

Leftmost	Rule applied
<expr></expr>	1
<expr> ∧ <expr></expr></expr>	2b
$<$ expr $> \land <$ expr $> \land <$ expr $>$	2c
$<$ var $> \land <$ expr $> \land <$ expr $>$	2e
$a \land < expr > \land < expr >$	5a
$a \land < const > \land < expr >$	2d
$a \wedge true \wedge \langle expr \rangle$	3a
a ∧ true ∧ <var></var>	2e
$a \wedge true \wedge b$	4b

5. Give an unambiguous grammar for the same language that enforces the following precendence and associativity:

- $\bullet~\wedge$ has the highest precendence (binds strongest), followed by a \vee , and then \leftrightarrow
- $\bullet \ \lor$ is left associative, and \leftrightarrow and \lor are right associative
- 6. Give the parse tree and AST for your new, unambiguous grammar for the sentence a \vee true \wedge b \leftrightarrow false