Lo Kendra

Page No.:

PART-A Define Langrage Auxaliany equation Lagrange dunationy egnare the system of ordinary differential equation (ODE) So, to some first order linear differential equation (PDES) of the form P(x, y, z) dz + Q(x, y, z) dz - R(x, y, z) This is wretten in the form of Pp + 89 = R use differential egn is ragrange différential egni

Lokendras 24B(070400

Page No.:

Date:

logx = logy + log =0= a somethe PDE: 42p + 2x 2 = xy where, 8 = 2m x = a mide ractions

4

Page No.:

Date:

Charpilla Surraliary equation! df PQY + 2px + 224 -1 36 DP - 129 Lo Kendra 24β(070400

Page No.:

Date:

put the value of pin equation.

$$(qa+q)(qax+qy)=1$$

$$q(a+1)q(ax+y)=1$$

$$q^{2}(a+1)(ax+y)=1$$

$$q^{2}=\frac{1}{(a+1)(ax+y)} \Rightarrow q=\frac{1}{\sqrt{(a+1)(ax+y)}}$$
So,
$$p=qa$$

$$p=a$$

$$p=a$$

$$\sqrt{(a+1)(ax+y)}$$

$$\sqrt{(a+1)(ax$$

Lokendra

Page No.:

Date:

$$\frac{dx}{p} = \frac{dy}{q} = \frac{dz}{R}$$

$$\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{x^2}$$

$$\frac{dx}{x^2} = \frac{dy}{x^2} = \frac{dz}{x^2}$$

$$\frac{dx}{x^2} = \frac{dz}{x^2} = \frac{dz}{x^2}$$

$$\frac{dz}{x^2} = \frac{dz}{x^2$$

Page No.:

Date:

Queiz Solve-1(1+4) p+ (1+x) q = 12 1-xh Any. 59": (1+y)p + (1+x)q = 2 form: pp+ 8q=2 V+V2. p=1+y, Q=1+x, 1 R=12 (DE: 1 dx 1 = 2 dy = 1 dx 1 + e 1 por. 1ty = dy = dz + + + = 1 (1+x) dx = (1+y) dy + cy x+x2 - y+y2 + C, 50+x=1,7 . Traped . 2 statemen into both Education 2x+x2 = 2y+y2+C1xq+30 :00 -11d2 1 x2-y2+2x-2y=Gx 1 = 9 = + : Hill Now put, (1,1,0) in each fraction X +95 36. 0. 46

54B(020H00

Page No.:

dx + dy = 2 dx + dy a 12+1 dz was 1 1 min 1+4+1+x 2+844 10/x+11+ 9(p+1) 10p+ (1+x)0 $\frac{dX+dY}{2+X+Y} = \frac{dZ}{Z}$ · form: pp-1 60 52 2+x+4) = dz log (2+X+4) = log z + log cy 2+x+4= 202 2+X+4 202 11/2 X+1 f(c1,(2) = 0 f(x2-42+2x-24, 2+x+4)=0 Ques 3 Find the complete integral of $q = px + p^2$ egn: p2+px=q2++p2 = 5xxxc Anyf = p2+ px-q =0-x0+21-5x $\frac{\partial F}{\partial x} = \frac{\rho}{\rho} \frac{\partial F}{\partial z} = \frac{\partial F}{\partial z} \frac{\partial F}{\partial z} \frac{\partial F}{\partial z} = \frac{\partial F}{\partial z} \frac{\partial F}{\partial z} \frac{\partial F}{\partial z} \frac{\partial F}{\partial z} = \frac{\partial F}{\partial z} \frac{\partial F}{\partial z}$ of o of zp+x

Lokendras 24B(020400

Page No.:

Date:

AE:

3F 1 P OF 3F 1 Q OF 100 1 SOUTH ST 1 OF ST 100 1 SOUTH ST 1 OF ST 100 1 SOUTH ST 1 OF ST 100 1 SOUTH ST 100 1 S

P+P(0) 0+0

B - - x = 1 (x - 1x = 100 | 20 00 | 20 | 100 | 1

So, dq=0 → [q=a]

Put the value of q in the equation $p^{2} + px - q = 0$

so, it is a quadratic equation

 $P = -X \pm \sqrt{\chi^2 - 4a}$

P- (N+V) n , 144V1200 - 9

Who who is a man and a source and

(dz =) - x dx +) \ x2 + 4a dx + fa dy

5 = -X5

Page No.:

Date:

$$\frac{1}{\sqrt{x^{2}+a^{2}}} dx = \frac{1}{\sqrt{x^{2}+a^{2}}} + \frac{a^{2}}{\sqrt{x^{2}+a^{2}}} + \frac{a^{2}}{\sqrt{x^{2}+a^{2}}}$$

cos(x+y) + Sin(x+y) Cos(x+y) - Sin(x+y) then,

cos(x+y) + Sin(x+y) cos(x+y)-sin(x+y)

ax-dy = cos(x+y) - sin(x+y) (ax+dy) Cos (xty) + Sin (xty)

let (os (x ty)+ Sin (x ty) =t

- Sin (x+y) + cos(x+y) (dx +dy) = dt

=> vax-ay= au+v1/00 miles

on integrating both sides.

(ax-)dy = fatin chile

 $x-y = log[{(x+y)} - sin(x+y)] - log(x+y)$

x-y = log (cos(x+y) +sin(x+y)

ex-y = cos (x+y) + Sin (x+y)

12 1092 = 1 costil at

LoKendsoa 24B(0N0400

Page No.:

they, - xh $\frac{dz}{2} = \frac{dx + dy}{(\omega_1(x+y) + \sin(x+y))}$ divide and muchipey by 1/12 11 THEXICOS = (HEXXXXX = 1 ax + dy 1. (05(X+4) +1 Sin (X+4) (111 1 V2) + 111+11 WZ put 1 = cos x and sing - Sin (x+y) I routken) (dx +dyle d 1 (ax + dy) 1/2 Sin x cos(x+4) + (01 x Sin(x+4) Sin A GOSB + GOSA Sin B = Sin (A+B) axtay ubl-xbl 2 Sin (X+y+Z) 12 Jdz = Scorec(x+y+7) (dx+d4) alut X+y+x=t dx + dy = at √2 log z = ∫ cosect de

		To Kenga or	
		24B(0n0400	Page No.:
		ZAGCOTTO	Date: / /
	5 lng 2 = lo	g tan to + log 5 2	
	t uda -	ub 2 2 2.2	get at the
	log 2 52 = loog	(cz tan (x+y+ 1/4)	
	The second of the	2	
	252 = C2 tan	1 (X+4+74) (100) 1000)	
		2	
	2 52 Cot (X+Y	- 1752 B	<u> </u>
	2 (17	+8)===	
		E (T) 22 Lis Sil Lis	
	So final Answ	ver f(c1,(2)=0	
	1 5	2 - (und) - 2 c	
-11.5	f (2 52 cot (x+1)		(Mty)).
	9 77 50	e-(x-4) =	0
	×	- A - OLK /=	AM
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Quy-B	Ind the co	emplete integral of 22	= Paxy
۸ .	40 P	au ly do pyx	
Ans	$\frac{\alpha t}{\alpha x} = -pc$	to ay ist	
-12-	Der se Vi	5k 1 x 1 10 5	
	df 2x	$\frac{df}{dx} = -\frac{axy}{dx} \cdot \frac{df}{dx}$	= -pxy
	9507 + 5 BR	il ap + () a	
	dx de	d2 of 12 of x = 5	dp
	ary pa	y pany taxyp	ogy + &pz
	1 2 2 3 1		101

= <u>dq</u> -pqx +2qz

z= x va y Ja

Ja=c = x°y'c

JAM TO 9