Московский государственный технический университет имени Н. Э. Баумана

Факультет: Информатика и системы управления

Кафедра: Программное обеспечение ЭВМ и информационные технологии

Математическая статистика Лекции

1 Предельные теоремы теории вероятностей

1.1 Неравенства Чебышева

Теорема 1.1 (первое неравенство господина Чебышева).

- X случайная величина;
- $P\{X \le 0\} = 0$ так как $X \ge 0$.

Доказательство. Для непрерывной случайное величины X и зная, что при $X \ge 0 \Rightarrow f(x) = 0, x < 0$

$$MX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{+\infty} x f(x) dx = \underbrace{\int_{0}^{\varepsilon} x f(x) dx}_{\geq 0} + \int_{\varepsilon}^{+\infty} x f(x) dx$$

учитывая $x \ge \varepsilon$

$$\underbrace{\int_{0}^{\varepsilon} x f(x) dx}_{>0} + \int_{\varepsilon}^{+\infty} x f(x) dx \ge \int_{\varepsilon}^{+\infty} x f(x) dx \ge \varepsilon \cdot \int_{\varepsilon}^{+\infty} f(x) dx$$

где

$$\varepsilon \cdot \int_{\varepsilon}^{+\infty} f(x) \, dx = \varepsilon \cdot \mathsf{P}\{X \ge \varepsilon\}$$

таким образом

$$MX \ge \varepsilon \cdot \mathsf{P}\{X \ge \varepsilon\} \ \Rightarrow \ \mathsf{P}\{X \ge \varepsilon\} \le \frac{MX}{\varepsilon}$$

Теорема 1.2 (второе неравенство лорда Чебышева).

$$\exists MX, \exists DX \Rightarrow \forall \varepsilon > 0, \ \mathsf{P}\{|X - MX| \ge \varepsilon\} \le \frac{DX}{\varepsilon^2}$$
 (2)

• X — случайная величина.

Доказательство. Выпишем дисперсию

$$DX = M\left[(X - MX)^2 \right]$$

Рассмотрим случайную величину $Y=(X-MX)^2$, где $Y\geq 0$. Тогда из *первого неравенства Чебышева* следует, что $\forall \delta\geq 0,\, MY\geq \delta\,\mathsf{P}\{Y\geq \delta\}$, где получается, что $\delta=\varepsilon^2$.

$$\left[DX = M \left[(X - MX)^2 \right] \right] \ge \left[\varepsilon^2 \cdot \mathsf{P} \left\{ (X - MX)^2 \ge \varepsilon^2 \right\} = \varepsilon^2 \cdot \mathsf{P} \left\{ |X - MX| \ge \varepsilon \right\} \right]$$

таким образом

$$DX \ge \varepsilon^2 \cdot \mathsf{P}\{|X - MX| \ge \varepsilon\} \ \Rightarrow \ \mathsf{P}\{|X - MX| \ge \varepsilon\} \le \frac{DX}{\varepsilon^2}$$

Пример 1.1. Предельно допустимое давление в пневмосистеме ракеты равна 200 (Па). После проверки большого количество ракет было получено среднее значение давления 150 (Па). Оценить вероятность того, что давление в пневмосистеме очередной ракеты будет больше 200 (Па), если по результатам проверки ракет было получено среднеквадратичное отклонение 5 (Па).

Решение. Имеем следующее:

- случайная величина X давление в пневмосистеме;
- X > 0;
- $MX = 150 \text{ (\Pi a)};$
- $DX = 25 \ (\Pi a);$

Решим поставленную задачу с помощью первого неравенства Чебышева

$$\left[\mathsf{P}\{X \ge \varepsilon\} = \mathsf{P}\{X \ge 200\} \right] \le \left[\frac{MX}{\varepsilon} = \frac{150}{200} = \frac{3}{4} = 0.75 \right]$$
$$\mathsf{P}\{X \ge 200\} \le 0.75$$

Поскольку нам известна дисперсия почему бы не воспользоваться *вторым неравенством Чебышева*? Действуем. Для начало рассмотрим вероятность следующего события

$$\mathsf{P}\{X \ge \varepsilon\} = \mathsf{P}\{X \ge 200\} = \mathsf{P}\{X - \underbrace{150}_{MX} \ge \underbrace{50}_{\varepsilon}\}$$

Остаётся построить вероятность, которая будет удовлетворять форме *второго неравенства Чебышева* (т. е. сделать модуль).

$$P{X - 150 \ge 50} \le P{X - 150 \ge 50} + P{X - 150 \le -50}$$

Так как события $\{X-150 \ge 50\}$ и $\{X-150 \le -50\}$ несовместные, то по формуле сложения вероятностей несовместных событий получаем

$$P\{X - 150 \ge 50\} + P\{X - 150 \le -50\} =$$

$$= P\{\{X - 150 \ge 50\} + \{X - 150 \le -50\}\} = P\{|X - 150| \ge 50\}$$

Таким образом применяем второе неравенство Чебышева

$$\left[\mathsf{P} \big\{ |X - MX| \ge \varepsilon \big\} = \mathsf{P} \big\{ |X - 150| \ge 50 \big\} \right] \le \left[\frac{DX}{\varepsilon^2} = \frac{25}{50^2} = \left(\frac{5}{50} \right)^2 = 0.01 \right] \\
\mathsf{P} \big\{ |X - 150| \ge 50 \big\} \le 0.01$$

Ответ:

- с использованием первого неравенства Чебышева $P \le 0.75$;
- с использованием второго неравенства Чебышева Р < 0.01.

Замечание. Второе неравенство Чебышева даёт более точную оценку, так как используется информация о дисперсии случайной величины.

Замечание. Использование *первого неравенства Чебышева* при $\varepsilon < MX$ и *второго неравенства Чебышева* при $\varepsilon < \sqrt{DX}$ даёт тривиальную оценку: $\mathsf{P} \le 1$.

1.2 Сходимость последовательности случайных величин

Будем считать, что X_1, \ldots, X_n, \ldots — последовательность случайных величин, заданных на одном вероятностном пространстве.

Определение 1.1. Последовательность случайных величин X_1, \ldots, X_n, \ldots сходится по вероятности к случайной величине Z, если $\forall \varepsilon > 0$, $\mathsf{P}\{|X_n - Z| \geq \varepsilon\} \xrightarrow[n \to \infty]{} 0$ Обозначение:

$$X_n \xrightarrow[n \to \infty]{\mathsf{P}} Z$$

Определение 1.2. Последовательность случайных величин X_1, \ldots, X_n, \ldots слабо сходится к случайной величине Z, если $\forall x \in \Re$ где F_z непрерывна в точке x, числовая последовательность $F_{X_1}(x), \ldots, F_{X_n}(x), \ldots$ сходится к $F_Z(x)$. Обозначение:

$$F_{X_n}(x) \Longrightarrow_{n \to \infty} F_Z(x)$$

Замечание. Данные виды сходимости неэквивалентны.

1.3 Закон больших чисел (ЗБЧ)

Будем считать, что

- X_1, \ldots, X_n, \ldots последовательность случайных величин;
- $\exists MX_i = m_i$, где $i = \overline{1, \infty}$.

Определение 1.3. Последовательность случайных величин X_1, \ldots, X_n, \ldots удовлетворяет *закону больших чисел*, если

$$\forall \varepsilon > 0, \ \mathsf{P} \left\{ \left| \frac{1}{n} \cdot \sum_{i=1}^{n} X_i - \frac{1}{n} \cdot \sum_{i=1}^{n} m_i \right| \ge \varepsilon \right\} \xrightarrow[n \to \infty]{} 0$$

Замечание. Выполнение *закона больших чисел* для последовательности X_1, \ldots, X_n, \ldots означает, что при достаточно больших n величина

$$Y_n = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i - \frac{1}{n} \cdot \sum_{i=1}^{n} m_i$$

практически теряет случайный характер.

Теорема 1.3 (Закон больших чисел в форме Чебышева или достаточное условие выполнимости для последовательности случайных величин). Последовательность случайных величин X_1, \ldots, X_n, \ldots удовлетворяет закону больших чисел тогда и только тогда, когда выполняются следующие условия:

- случайные величины X_1, \ldots, X_n, \ldots независимы;
- $\exists MX_i = m_i, \exists DX_i = \sigma_i^2, i = 1, 2, ...;$
- Дисперсия случайных величин ограничена в совокупности т. е.

$$\exists C > 0 : \sigma_i^2 \le C, \quad i = 1, 2, \dots$$

4

Доказательство.

$$\overline{X}_n = \frac{1}{n} \cdot \sum_{i=1}^n X_i \quad n \in N$$

$$M\overline{X}_n = \frac{1}{n} \cdot \sum_{i=1}^n m_i$$

$$D\overline{X}_n = \frac{1}{n^2} \cdot D\left(\sum_{i=1}^n X_i\right) = \{X_i \text{ независимы}\} = \frac{1}{n^2} \cdot \sum_{i=1}^n DX_i = \frac{1}{n^2} \cdot \sum_{i=1}^n \sigma_i^2$$

Используем второе неравенство Чебышева

$$\mathsf{P}\big\{|\overline{X}_n - M\overline{X}_n| \geq \varepsilon\big\} \leq \frac{D\overline{X}_n}{\varepsilon^2}$$

В нашем случае

$$\mathsf{P}\bigg\{\bigg|\frac{1}{n}\cdot\sum_{i=1}^{n}X_{i}-\frac{1}{n}\cdot\sum_{i=1}^{n}m_{i}\bigg|\geq\varepsilon\bigg\}\leq\frac{1}{\varepsilon^{2}}\cdot\frac{1}{n^{2}}\cdot\sum_{i=1}^{n}\sigma_{i}^{2}\leq\frac{1}{\varepsilon^{2}}\cdot\frac{1}{n^{2}}\cdot\sum_{i=1}^{n}C=\frac{1}{\varepsilon^{2}}\cdot\frac{1}{n^{2}}\cdot n\,C=\frac{C}{\varepsilon^{2}\,n}$$

таким образом

$$0 \le \mathsf{P} \left\{ \left| \frac{1}{n} \cdot \sum_{i=1}^n X_i - \frac{1}{n} \cdot \sum_{i=1}^n m_i \right| \ge \varepsilon \right\} \le \frac{C}{\varepsilon^2 \, n}$$

По теореме о двух милиционерах

$$\mathsf{P}\bigg\{\bigg|\frac{1}{n}\cdot\sum_{i=1}^n X_i - \frac{1}{n}\cdot\sum_{i=1}^n m_i\bigg| \geq \varepsilon\bigg\} \xrightarrow[n\to\infty]{} 0$$

Следствие. Пусть

• выполняется теорема о ЗБЧ в форме Чебышева

• X_i одинаково распределены т. е. $M\!X_i=m,\; D\!X_i=\sigma^2,\; i\in\aleph$

Тогда

$$\mathsf{P}\left\{ \left| \frac{1}{n} \cdot \sum_{i=1}^{n} X_i - m \right| \ge \varepsilon \right\} \xrightarrow[n \to \infty]{} 0 \tag{3}$$