Stærðfræði II

Tímadæmi 5

Þema vikunnar eru tvöföld heildi.

Myndrænar pælingar - Samhverfa.

Glósur 3.1.1. Teiknið upp mynd af eftirfarandi svæðum:

(a)
$$D_1 = \{(x,y) \mid x^2 + y^2 \le 4, x \ge 0, y \le 0\}.$$

(b)
$$D_2 = \{(x,y) \mid 2 \le \sqrt{x^2 + y^2} \le 5\}.$$

(c)
$$D_3 = \{(x,y) \mid \frac{1}{4}x^2 \le y \le x^2, 0 \le x \le 1\}.$$

Glósur 3.1.1.d Látum D_4 vera svæði innan þríhyrnings með hornpunkta (0,0), (1,1) og (1,3). Finnið tvö föll f(x) og g(x) og tvær tölur a og b þ.a. megi rita

$$D_4 = \{(x, y) \mid f(x) \le y \le g(x), a \le x \le b\}$$

Adams 14.1.14. Látum D vera efri helmingur skifu með geisla 2 og miðju í (0,0). Reiknið

$$\int \int_{D} (x+3) \, dA$$

með því að athuga samhverfu.

Adams 14.1.17. Reiknið tvöfalda heildið

$$\int \int_{x^2+y^2 \le 1} (4x^2y^3 - x + 5) dA$$

með því að athuga samhverfu.

Tvöföld heildi í kartesískum hnitum.

Adams 14.2.7. Látum F vera svæði innan fernings $0 \le x \le \frac{\pi}{2}, \ 0 \le y \le \frac{\pi}{2}$. Reiknið

$$\int \int_{F} (\sin(x) + \cos(y)) \, dA$$

Adams 14.2.9. Látum D vera svæði í fyrsta fjórðungi sem afmarkast af ferlunum $y=x^2$ og $y^2=x$. Reiknið

$$\int \int_D xy^2 dA$$

Adams 14.2.14. Látum T vera þríhyrning með hornpunkta (0,0), (1,1) og (1,0). Setjið upp heildið

$$\int \int_{T} \frac{xy}{1+x^4} dA$$

á tvo vegu, fyrst þar sem innra heildi er með tilliti til x og síðan þar sem innra heildi er með tilliti til y. Veljið það form sem hentar best til að reikna svo upp úr heildinu.

Tvöföld heildi í pólhnitum.

Adams 14.4.2. Látum S vera skifu með geisla a og miðju í (0,0). Reiknið

$$\int \int_{S} \sqrt{x^2 + y^2} \, dA$$

Adams 14.2.9. Látum Q vera þann fjórðung af skifunni $x^2 + y^2 \le a^2$ þ.s. $x \ge 0$ og $y \ge 0$. Reiknið

$$\int \int_{Q} e^{x^2 + y^2} dA$$

Adams 14.2.12. Látum S vera þann hluta skifunnar $x^2 + y^2 \leq 2$ þar sem $x \geq 1$. Reiknið

$$\int \int (x+y) \, dA$$

Hér viljið þið endilega teikna mynd af svæðinu, nota samhverfu. Hentar betur að nota pólhnit eða kartesísk hnit?

Eitt erfiðara dæmi - Lausnin er á Canvas.

Glósur 3.3.3. Finnið rúmmál þess hlutar sem er bæði inni kúlunni $x^2 + y^2 + z^2 = 9a^2$ og inní sívalningnum $x^2 + y^2 = 2ax$ þ.s. a > 0 er fasti. Notið pólhnit.