Anggota Kelompok Group 2:

- 1. Edrick Saputra Lionard
- 2. Deny Wahyudi Asaloei
- 3. Chaiden Richardo Foanto
- 4. A. Alfian Tenggara Putra

Analisa Simulasi Scheduling Algorithm dengan Menggunakan Python

1. Pendahuluan

Dalam analisis ini, kita akan membandingkan lima algoritma penjadwalan proses:

- First Come First Serve (FCFS)
- Shortest Job First Non-preemptive (SJF-NP)
- Shortest Job First Preemptive (SJF-P)
- Longest Job First Preemptive (LJF-P)
- Round Robin (RR) dengan quantum time 12

2. Kriteria Evaluasi

Dalam menentukan algoritma terbaik dan terburuk, kita menggunakan beberapa kriteria:

1. Average Waiting Time (AWT)

- Waktu rata-rata proses menunggu dalam antrian
- o Semakin rendah nilai AWT, semakin baik

2. Average Turnaround Time (ATT)

- Waktu rata-rata yang dibutuhkan untuk menyelesaikan proses
- Semakin rendah nilai ATT, semakin baik

3. Fairness

- Keadilan dalam pembagian CPU
- o Menghindari starvation

4. Response Time

- Waktu yang dibutuhkan untuk mulai merespon proses
- Semakin cepat respon, semakin baik

3. Analisis Per Algoritma

3.1 First Come First Serve (FCFS)

• Kelebihan:

o Implementasi sederhana

- Adil berdasarkan urutan kedatangan
- o Tidak ada starvation

• Kekurangan:

- o Convoy effect pada proses panjang
- Waiting time bisa tinggi
- o Tidak optimal untuk proses dengan burst time bervariasi

3.2 Shortest Job First Non-preemptive (SJF-NonPreemptive)

• Kelebihan:

- o Optimal untuk average waiting time
- Cocok untuk batch processing
- Efisien untuk proses pendek

• Kekurangan:

- Kemungkinan starvation untuk proses panjang
- Tidak responsif untuk proses interaktif
- o Sulit memprediksi burst time

3.3 Shortest Job First Preemptive (SJF-Preemptive)

• Kelebihan:

- Average waiting time paling optimal
- Responsif terhadap proses pendek baru
- o Efisien untuk sistem interaktif

• Kekurangan:

- o Overhead dari context switching
- Starvation proses panjang
- o Kompleksitas implementasi lebih tinggi

3.4 Longest Job First Preemptive (LJF-Preemptive)

• Kelebihan:

- Menguntungkan proses panjang
- o Mengurangi starvation proses besar

• Kekurangan:

- Average waiting time tinggi
- Proses pendek tertunda
- o Tidak efisien untuk sistem interaktif

3.5 Round Robin (RR)

• Kelebihan:

Fair scheduling

- Responsif
- o Tidak ada starvation

• Kekurangan:

- Average waiting time bisa tinggi
- Overhead context switching
- o Kinerja tergantung quantum time

4. Kesimpulan

Algoritma Terbaik: SJF Preemptive

Untuk kasus ini, SJF Preemptive merupakan algoritma terbaik karena:

- 1. Memberikan average waiting time paling optimal
- 2. Cocok untuk data processes.xlsx yang memiliki burst time bervariasi
- 3. Responsif terhadap proses-proses pendek
- 4. Mampu mengoptimalkan throughput sistem

Algoritma Terburuk: LJF Preemptive

LJF Preemptive dinilai sebagai algoritma terburuk untuk kasus ini karena:

- 1. Menghasilkan average waiting time tertinggi
- 2. Tidak efisien untuk proses-proses pendek yang banyak
- 3. Performa buruk untuk sistem interaktif
- 4. Penggunaan CPU tidak optimal

5. Rata-rata Hasil dari Masing-masing Algoritma

Algoritma	Average Waiting Time (AWT)	Average Turnaround Time (ATT)	Fairness	Response Time
FCFS	45.5	58.3	0.70	12.0
SJF_NP	32.1	42.5	0.80	10.5
SJF_P	30.2	40.8	0.85	9.8
LJF_P	53.7	65.4	0.60	15.3
RR	40.0	50.2	0.75	13.2
Rata-Rata	40.3	51.44	0.74	12.16