Matrius i Vectors Tardor 2020

3.1 Siguin u_1, u_2, u_3, u_4 vectors tals que les ternes

$$\{u_1, u_2, u_3\}, \{u_1, u_2, u_4\}, \{u_1, u_3, u_4\}, \{u_2, u_3, u_4\}$$

són de vectors linealment independents. Podem assegurar que els vectors u_1, u_2, u_3, u_4 són linealment independents? Demostreu-ho en cas afirmatiu o doneu-ne un contraexemple en cas negatiu.

3.2 Demostreu que els següents subconjunts de l'espai de les matrius quadrades de dimensió n són subespais; determineu una base i la dimensió de cadascun.

Notació: escrivim

$$M = (a_j^i)_{i,j=1,\dots,n} = \begin{pmatrix} a_1^1 & \dots & a_n^1 \\ \vdots & & \vdots \\ a_1^n & \dots & a_n^n \end{pmatrix}.$$

- (a) $\{M|a_i^i=0 \text{ si } i\neq j\}$ (matrius diagonals).
- (b) $\{M|a_j^i=0 \text{ si } i>j\}$ (matrius triangulars superiors).
- (c) $\{M|a_j^i=a_i^j \text{ per a qualsevols } i,j\}$ (matrius simètriques).
- (d) $\{M|a_i^i=-a_i^j \text{ per a qualsevols } i,j\}$ (matrius antisimètriques).
- **3.3** Comproveu que $\mathcal{B}_1 = \{(1,2,3), (4,5,6), (7,8,10)\}$ és una base de \mathbb{R}^3 . Trobeu les coordenades de (1,1,1) en aquesta base.
- **3.4** A \mathbb{R}^3 considerem les bases

$$\mathcal{B}_1 = ((1,0,1), (-1,1,1), (1,-1,0))$$

i

$$\mathcal{B}_2 = ((2,1,1), (1,1,1), (1,-1,1)).$$

Calculeu les coordenades en la base \mathcal{B}_1 del vector que en la base \mathcal{B}_2 té coordenades (3, -2, 2).

- **3.5** Designem per $\mathcal{B}_e = \{e_1, e_2, e_3, e_4\}$ la base canònica de \mathbb{R}^4 .
 - (i) Comproveu que els vectors

$$u_1 = (1, 2, 3, 4), u_2 = (1, 2, -3, 0), u_3 = (3, 1, 2, 1), u_4 = (3, 1, 1, 1)$$

formen una base de \mathbb{R}^4 , que denotarem per \mathcal{B}_u .

- (ii) Escolliu dos dels vectors de la base \mathcal{B}_u , u_k , u_h , de forma que $\mathcal{B} = \{u_k, u_h, e_3, e_4\}$ sigui també una base de \mathbb{R}^4 .
- (iii) Trobeu les coordenades dels altres dos vectors de \mathcal{B}_u en la base \mathcal{B} que hagueu escollit a (ii).
- **3.6** Considerem una base (e_1, e_2, e_3) d'un espai vectorial E.
- (i) Demostreu que els vectors $u_1 = e_1$, $u_2 = e_1 e_2$ i $u_3 = e_1 e_3$ formen una base de E.

Matrius i Vectors Tardor 2020

(ii) Trobeu les coordenades dels vectors $w_1 = 6e_1 - 2e_2 - 3e_3$, $w_2 = 3e_1 - e_2 - e_3$ i $w_3 = 2e_1 - e_2$ en la base $\mathcal{B}_u = (u_1, u_2, u_3)$.

3.7 Els vectors $u_1 = (0, 1, -1), u_2 = (1, 2, -1)$ i $u_3 = (1, -1, 1)$ de \mathbb{R}^3 tenen coordenades

$$u_1 = (1, 2, -1)_{\mathcal{B}}, \quad u_2 = (1, 1, 1)_{\mathcal{B}}, \quad u_3 = (1, -1, 0)_{\mathcal{B}}$$

en una base desconeguda $\mathcal{B} = (v_1, v_2, v_3)$. Trobeu v_1, v_2 i v_3 .

- **3.8** D'una base $\mathcal{B} = (u_1, u_2, u_3)$ de \mathbb{R}^3 coneixem els vectors $u_1 = (1, 2, 3)$ i $u_2 = (4, 5, 6)$ però no el tercer vector u_3 . En canvi sabem que el vector w = (1, 1, 1) té coordenades (1, 1, 1) en la base \mathcal{B} : $w = (1, 1, 1)_{\mathcal{B}}$. Trobeu u_3 o demostreu que no existeix la base \mathcal{B} .
- **3.9** Designem per $\mathcal{B}_e = \{e_1, e_2, e_3, e_4\}$ la base canònica de \mathbb{R}^4 .
- (i) Donats els vectors

$$v_1 = (1, 2, 3, b), v_2 = (3, 2, 1, 0), v_3 = (1, 0, a, 0)$$

escolliu valors per a a i b de forma que $\{v_1, v_2, v_3, e_3\}$ sigui una base de \mathbb{R}^4 però $\{v_1, v_2, v_3, e_4\}$ no sigui base.

- (ii) Determineu si el vector u = (1, 1, 1, 1) és al subespai $\langle v_1, v_2, v_3 \rangle$ (amb els valors de a i b que hagueu escollit a (i).
- (iii) Trobeu les coordenades de u en la base (v_1, v_2, v_3, e_3) .