Función Gamma e Integrales de Probabilidad La Función Gamma

Es la generalización del factorial n! el cual sólo está definido para enteros, mientras que $\Gamma(z)$ está definida para toda variable compleja z con parte real positiva.

 $\Gamma(z)$ se define indistintamente como:

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt \equiv (z-1)! \equiv \prod (z-1) \qquad \text{Re } z > 0$$

$$\Gamma(z) = \lim_{n \to \infty} \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{z (z+1) (z+2) \cdot \dots (z+n)} n^z$$

$$\frac{1}{\Gamma(z)} = z e^{\gamma z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}$$

donde n es un entero positivo y

$$\gamma = 0.577215664901 \cdots$$

se conoce como la constante de Euler-Mascheroni:

También es frecuente encontrar $\Gamma(z)$ con algunas variantes cosméticas:

$$\Gamma(z) = 2 \int_0^\infty e^{-t^2} t^{2z-1} dt = \int_0^1 \left[\ln\left(\frac{1}{t}\right) \right]^{z-1} dt = k^z \int_0^\infty e^{-kt} t^{z-1} dt$$

Para probar la equivalencia de las dos primeras definiciones inventamos las siguiente función de dos variables

$$F(z,n) = \int_0^n \left(1 - \frac{t}{n}\right)^n t^{z-1} dt \qquad \text{Re } z > 0$$

y como es conocido que

$$\lim_{n \to \infty} \left(1 - \frac{t}{n} \right)^n \equiv e^{-t}$$

Entonces

$$\lim_{n \to \infty} F(z, n) = F(z, \infty) = \int_0^\infty e^{-t} t^{z-1} dt \equiv \Gamma(z)$$

Con lo cual queda demostrada la primera de propuestas de Euler.

Para construir la segunda partimos de la misma función F(z,n) y un cambio estratégico de variable $u=\frac{t}{n}$.

$$F(z,n) = n^z \int_0^n (1-u)^n u^{z-1} du$$
 Re $z > 0$

Un par de integraciones por partes nos llevan a comprobar

$$F(z,n) = n^{z} \left\{ (1-u)^{n} \frac{u^{z}}{z} \Big|_{0}^{1} + \frac{n}{z} \int_{0}^{1} (1-u)^{n-1} u^{z} du \right\}$$
$$= n^{z} \left\{ (1-u)^{n-2} u^{z+1} \frac{n(n-1)}{z(z+1)} \Big|_{0}^{1} + \frac{n(n-1)}{z(z+1)} \int_{0}^{1} (1-u)^{n-2} u^{z+1} du \right\}$$

que el primer término se anula siempre. Repitiendo el proceso n veces

$$F(z,n) = n^z \left\{ \frac{n(n-1)(n-2)(n-3)\cdots 3\cdot 2\cdot 1}{z(z+1)(z+2)(z+3)\cdots (z+n-1)} \right\} \int_0^1 u^{z+n-1} du$$
$$= n^z \left\{ \frac{n(n-1)(n-2)(n-3)\cdots 3\cdot 2\cdot 1}{z(z+1)(z+2)(z+3)\cdots (z+n)} \right\}$$

Una vez más, haciendo

$$\lim_{n \to \infty} F(z, n) = F(z, \infty) = \lim_{n \to \infty} n^z \left\{ \frac{n(n-1)(n-2)(n-3)\cdots 3\cdot 2\cdot 1}{z(z+1)(z+2)(z+3)\cdots (z+n)} \right\} \equiv \Gamma(z)$$

Se completa la equivalencia para la primera y segunda definiciones de Euler.

En particular, de la primera de las definiciones se tiene por integración directa

$$\Gamma(1) = \int_0^\infty e^{-t} dt = 1$$

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty e^{-t} t^{-1/2} dt = \int_0^\infty e^{-u^2} du = \sqrt{\pi}$$

mientras que de la segunda, si $z=n=1,2,3,\cdots$, se obtiene

$$\Gamma(n+1) = n!$$

$$\Gamma\left(n + \frac{1}{2}\right) = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^n} \sqrt{\pi}$$

Finalmente la tercera de las definiciones de la función $\Gamma(z)$ viene expresada en término de un producto infinito (Weierstrass). Este puede demostrarse partiendo de la segunda definición de Euler

$$\Gamma(z) = \lim_{n \to \infty} \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{z (z+1) (z+2) \cdot \dots \cdot (z+n)} n^z$$
$$= \lim_{n \to \infty} \frac{1}{z} \prod_{m=1}^n \left(\frac{m}{m+z}\right) n^z = \lim_{n \to \infty} \frac{1}{z} \prod_{m=1}^n \left(1 + \frac{z}{m}\right)^{-1} n^z$$

Por lo tanto

$$\frac{1}{\Gamma(z)} = z \lim_{n \to \infty} \prod_{m=1}^{n} \left(1 + \frac{z}{m} \right) e^{-z \ln n}$$

Ahora bien, multiplicando y dividiendo por

$$\prod_{m=1}^{n} e^{z/m} = e^{z\left(\sum_{m=1}^{n} \frac{1}{m}\right)}$$

nos queda

$$\frac{1}{\Gamma(z)} = z \left\{ \lim_{n \to \infty} e^{z\left(\left(\sum_{m=1}^{n} \frac{1}{m}\right) - \ln n\right)} \right\} \left\{ \lim_{n \to \infty} \prod_{m=1}^{n} \left(1 + \frac{z}{m}\right) e^{-z/m} \right\}$$

Donde, la serie exponente del primero de los términos converge a un valor constante y cual ha quedado bautizado como la constante de *Euler-Mascheroni*

$$\gamma = \lim_{n \to \infty} \left\{ 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} - \ln n \right\} = \lim_{n \to \infty} \left\{ \left(\sum_{m=1}^{n} \frac{1}{m} \right) - \ln n \right\}$$

$$\gamma = 0.5772156649015328606065112 \dots$$

Con lo cual queda demostrada la tercera de las propuestas para expresar la Función Gamma

$$\frac{1}{\Gamma(z)} = ze^{\gamma z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}$$

Es fácil comprobar las siguientes propiedades

$$\Gamma(z+1) = z \ \Gamma(z)$$

$$\Gamma(z) \Gamma(1-z) = \int_0^\infty \frac{x^{z-1} dx}{(1+x)} = \frac{\pi}{\sin \pi z}$$

$$2^{2z-1} \Gamma(z) \Gamma\left(z + \frac{1}{2}\right) = \sqrt{\pi} \Gamma(2z)$$

La primera de ellas (la relación de recurrencia) es trivial y se obtiene integrando por partes la definición integral de Euler.

$$\Gamma(z+1) = \int_0^\infty e^{-t} t^z dt = z e^{-t} t^{z-1} \Big|_0^\infty + z \int_0^\infty e^{-t} t^{z-1} dt = z \Gamma(z)$$

El primer sumando de la integración por partes se anula siempre. Esta propiedad es válida $\forall z$ con $z \neq 0, -1, -2, \cdots$.

La segunda de las propiedades (fórmula de reflexión) se comprueba también partiendo de definición integral de Euler con el siguiente cambio de variable $t = u^2$.

$$\Gamma(z) \Gamma(1-z) = 2 \int_0^\infty e^{-u^2} u^{2z-1} du \ 2 \int_0^\infty e^{-v^2} v^{1-2z} dv$$
$$= 4 \iint_0^\infty e^{-(u^2+v^2)} \left(\frac{u}{v}\right)^{2z-1} du dv$$

si ahora hacemos $u = \rho \cos \varphi$ y $v = \rho \sin \varphi$, la integral anterior queda como

$$\Gamma(z) \Gamma(1-z) = 4 \int_0^\infty \rho e^{-\rho^2} d\rho \int_0^{\pi/2} \cot^{2z-1} \varphi d\varphi$$
$$= 4 \cdot \frac{1}{2} \int_0^{\pi/2} \cot^{2z-1} \varphi d\varphi$$

Finalmente, si

$$\varphi = \operatorname{arccot} \sqrt{x}; \qquad d\varphi = \frac{-dx}{2\sqrt{x}(1+x)}$$

nos queda

$$\Gamma(z)\Gamma(1-z) = \int_0^\infty \frac{x^{z-1} dx}{(1+x)} = \frac{\pi}{\sin \pi z}$$

Es inmediato volver a comprobar

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

Del mismo modo, si utilizamos además la relación de recurrencia encontramos

$$\Gamma(z)\Gamma(-z) = \frac{\pi}{-z \operatorname{sen} \pi z}$$

La fórmula de duplicación y puede comprobarse partiendo de la definición del límite de Euler, así

$$\frac{2^{2z-1}\Gamma(z)\Gamma(z+\frac{1}{2})}{\Gamma(2z)} = \sqrt{\pi}$$

Hay que hacer notar que en el numerador sustituimos directamente las expresiones para del límite de Euler y en la del denominador, adicionalmente sustituimos n por 2n

$$\Gamma(2z) = \lim_{n \to \infty} \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{2z (2z+1) \cdot \dots \cdot (2z+n)} n^{2z} = \lim_{n \to \infty} \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot 2n}{2z (2z+1) \cdot \dots \cdot (2z+2n)} (2n)^{2z}$$

por lo cual se tiene la siguiente expresión dentro del argumento del límite

$$\frac{2^{2z-1} \left(\frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{z (z+1) (z+2) \cdot \dots (z+n)} n^{z}\right) \left(\frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{\left(z+\frac{1}{2}\right) \left(z+\frac{3}{2}\right) \cdot \dots \left(z+\frac{1}{2}+n\right)} n^{z+\frac{1}{2}}\right)}{\left(\frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot 2n}{2z (2z+1) (2z+2) \cdot \dots (2z+2n)} (2n)^{2z}\right)}$$

la cual se reacomoda como

$$\lim_{n \to \infty} \frac{2^{2z-1} (n!)^2 2z (2z+1) (2z+2) \cdots (2z+2n)}{(2n)! \ z \left(z+\frac{1}{2}\right) (z+1) \left(z+\frac{3}{2}\right) (z+2) \cdots \left(z+\frac{1}{2}+n\right) (z+n)} \cdot \frac{n^{2z+\frac{1}{2}}}{(2n)^{2z}}$$

у

$$\lim_{n \to \infty} \frac{z\left(z + \frac{1}{2}\right)\left(z + 1\right)\left(z + \frac{3}{2}\right)\left(z + 2\right)\cdots\left(z + \frac{n}{2}\right)\left(2^{n-1}\right)}{z\left(z + \frac{1}{2}\right)\left(z + 1\right)\left(z + \frac{3}{2}\right)\left(z + 2\right)\cdots\left(z + \frac{1}{2} + n\right)\left(z + n\right)} \cdot \frac{2^{2z-1}\left(n!\right)^{2}}{(2n)!} \cdot \frac{n^{z + \frac{1}{2}}}{2^{2z}n^{2z}}$$

Entonces

$$\frac{2^{2z-1}\Gamma\left(z\right)\Gamma\left(z+\frac{1}{2}\right)}{\Gamma\left(2z\right)} = \lim_{n \to \infty} \frac{\left(2^{n-2}\right)\left(n!\right)^2\sqrt{n}}{(2n)!}$$

por lo cual se deduce que el valor de lado izquierdo de la ecuación es independiente del valor de z por lo tanto es el mismo valor para cualquier z y lo evaluamos para $z=\frac{1}{2}$

$$\frac{2^{2z-1}\Gamma\left(z\right)\Gamma\left(z+\frac{1}{2}\right)}{\Gamma\left(2z\right)} = \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

con lo cual queda comprobada la fórmula de duplicación.

Otras propiedades que van quedar como curiosidad y sin demostración son:

$$\Gamma(nz) = (2\pi)^{(1-n)/2} n^{nz-\frac{1}{2}} \prod_{k=0}^{n-1} \left(z + \frac{k}{n}\right)$$
$$\binom{z}{w} = \frac{z!}{w!(z-w)!} = \frac{\Gamma(z+1)}{\Gamma(w+1)\Gamma(z-w+1)}$$

A partir de $\Gamma(z)$ se definen otras funciones especiales, las cuales se expresan conjuntamente con sus propiedades como

La Funciones Digamma y Poligamma,

Para evitar tratar con derivadas de los factoriales es costumbre trabajar con sus derivadas logarítmicas. A partir de la segunda definición

$$\Gamma(z+1) = z! = \lim_{n \to \infty} \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{(z+1)(z+2) \cdot \dots \cdot (z+n)} n^{z}$$

$$\ln(z!) = \ln\left(\lim_{n \to \infty} \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{(z+1)(z+2) \cdot \dots \cdot (z+n)} n^{z}\right)$$

$$= \lim_{n \to \infty} (\ln(n!) + z \ln n - \ln(z+1) - \ln(z+2) - \dots - \ln(z+n))$$

ahora derivando,

$$\frac{\mathrm{d}}{\mathrm{d}z}\ln(z!) \equiv \mathbf{F}(z) = \lim_{n \to \infty} \left(\ln n - \frac{1}{(z+1)} - \frac{1}{(z+2)} - \dots - \frac{1}{(z+n)}\right)$$

y finalmente acomodando, para llegar a la definición más conocida

$$\mathbf{F}(z) = -\gamma - \sum_{n=1}^{\infty} \left(\frac{1}{(z+n)} - \frac{1}{n} \right)$$

También se le conoce como función Psi

$$\psi(z) = \frac{\Gamma'(z)}{\Gamma(z)} = \frac{\mathrm{d}}{\mathrm{d}z} \ln \left(\Gamma(z)\right) \equiv \mathbf{F}(z-1) = \frac{\mathrm{d}}{\mathrm{d}z} \ln \left((z-1)!\right)$$

con las siguientes propiedades

$$\psi(z+1) = \frac{1}{z} + \psi(z)$$
$$\psi(z-1) - \psi(z) = \pi \cot \pi z$$
$$\psi(z) + \psi\left(z + \frac{1}{2}\right) + 2\ln 2 = 2\psi(2z)$$

De donde se pueden deducir

$$\psi(1) = \Gamma'(1) = \gamma$$

La función $\psi(z)$ puede ser expresada en términos de integrales definidas, para ello notamos que

$$\Gamma'(z) = \int_0^\infty e^{-t} t^{z-1} \ln t \, dt$$

y sustituyendo la identidad de Frullani

$$\ln t = \int_0^\infty \frac{e^{-x} - e^{-xt}}{x} \, \mathrm{d}x$$

tendremos

$$\Gamma'(z) = \int_0^\infty e^{-t} t^{z-1} \int_0^\infty \frac{e^{-x} - e^{-xt}}{x} dx dt$$

$$= \int_0^\infty \frac{dx}{x} \int_0^\infty \left(e^{-x} - e^{-xt} \right) e^{-t} t^{z-1} dt$$

$$= \int_0^\infty \frac{dx}{x} e^{-x} \int_0^\infty e^{-t} t^{z-1} dt - \int_0^\infty \frac{dx}{x} \int_0^\infty e^{-t(x+1)} t^{z-1} dt$$

$$= \Gamma(z) \int_0^\infty \frac{dx}{x} \left[e^{-x} - (x+1)^{-z} \right]$$

ya que $\Gamma\left(z\right)=k^{z}\int_{0}^{\infty}\mathrm{e}^{-kt}t^{z-1}\mathrm{d}t$ y por lo tanto

$$\psi(z) = \int_0^\infty \frac{dx}{x} \left[e^{-x} - (x+1)^{-z} \right]$$

También daremos (sin demostración) otras expresiones

$$\psi(z) = \int_0^\infty \left(\frac{e^{-t}}{t} - \frac{e^{-tz}}{1 - e^{-t}} \right) dt$$
$$\psi(z) = -\gamma + \int_0^1 \frac{1 - x^{z-1}}{1 - x} dx$$

La Función Poligamma se obtiene derivando en forma repetida la Función Digamma

$$\psi^{(m)}(z+1) = \mathbf{F}^{(m)}(z) = \frac{\mathrm{d}^m}{\mathrm{d}z^m} \mathbf{F}(z) = (-1)^{m+1} m! \sum_{n=1}^{\infty} \frac{1}{(z+n)^{m+1}} \qquad m = 1, 2, 3 \cdots$$

y cuya serie puede ser expresada en términos de la función Zeta de Riemman

$$\zeta(m) \equiv \sum_{n=1}^{\infty} \frac{1}{n^m}$$

como

$$\mathbf{F}^{(m)}(0) = -1)^{m+1} m! \zeta(m+1)$$

de esta forma es posible desarrollar en serie de Maclaurin

$$\ln(n!) = -\gamma + \frac{z^2}{2}\zeta(2) - \frac{z^3}{3}\zeta(3) + \dots + (-1)^n \frac{z^n}{n}\zeta(n) + \dots$$

La Aproximación de Stirling

El comportamiento asintótico de las funciones especiales será tratado en una clase aparte. Pero la importancia de la Aproximación de Stirling obliga a que se trate en este punto. Supongamos que consideramos el caso $z \equiv x \in \Re$. Por lo cual estamos interesados en el caso $x \gg 1$. Partimos de

$$\Gamma(x) = \frac{1}{x}\Gamma(x+1) = \frac{1}{x}\int_0^\infty e^{-t}t^x dt = \frac{1}{x}\int_0^\infty e^{-t+x\ln t} dt$$

haciendo t = xu tenemos que

$$\Gamma(x) = x^x \int_0^\infty e^{-x(u - \ln u)} du$$

Ahora bien, el integrando tendrá su máximo en u = 1 donde la exponencial tiene su mínimo y es entorno a ese punto que desarrollará en series de Taylor

$$u - \ln u = 1 + \frac{1}{2} (u - 1)^2 - \frac{1}{3} (u - 1)^3 + \frac{1}{4} (u - 1)^4 + \cdots$$

por lo cual

$$\Gamma(x) = x^x \int_0^\infty e^{-x(u-\ln u)} du \approx x^x \int_0^\infty du \ e^{-x(1+\frac{1}{2}(u-1)^2 - \frac{1}{3}(u-1)^3 + \cdots)} du$$

Otro cambio de variable $v=\sqrt{x}\left(u-1\right)$ nos lleva

$$\Gamma(x) \approx \frac{x^x e^{-x}}{\sqrt{x}} \int_{-\sqrt{x}}^{\infty} dv e^{-\frac{1}{2}v^2} \exp\left(\frac{1}{3\sqrt{x}}v^3 - \frac{1}{4x}v^4 + \frac{1}{5x^{\frac{3}{2}}}v^5 - \cdots\right)$$

Para valores $x \gg 1$ se expande, en series de Taylor los exponenciales que contengan términos $\frac{1}{\sqrt{x}}$

$$\Gamma(x) \approx \frac{x^x e^{-x}}{\sqrt{x}} \int_{-\infty}^{\infty} dv e^{-\frac{1}{2}v^2} \left\{ 1 + \left(\frac{1}{3\sqrt{x}} v^3 - \frac{1}{4x} v^4 + \frac{1}{5x^{\frac{3}{2}}} v^5 - \cdots \right) + \frac{1}{2!} \left(\frac{1}{3\sqrt{x}} v^3 - \frac{1}{4x} v^4 + \frac{1}{5x^{\frac{3}{2}}} v^5 - \cdots \right)^2 + \frac{1}{3!} \left(\frac{1}{3\sqrt{x}} v^3 - \frac{1}{4x} v^4 + \frac{1}{5x^{\frac{3}{2}}} v^5 - \cdots \right)^3 + \cdots \right\}$$

Finalmente, utilizando que

$$\int_{-\infty}^{\infty} dv e^{-\frac{1}{2}v^2} v^n = \begin{cases} \sqrt{2\pi} & n = 0\\ \sqrt{2\pi} \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (n-1) & n = 2k\\ 0 & n = 2k-1 \end{cases}$$

e integrando término a término, tendremos que

$$\Gamma(x) \approx \sqrt{\frac{2\pi}{x}} x^x e^{-x} \left\{ 1 + \frac{1}{12x} + \frac{1}{288 x^2} + \dots \right\}$$

La función Beta

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt \qquad \operatorname{Re} x > 0 \ \land \ \operatorname{Re} y > 0$$
$$B(x,y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$$

La Función Integral de Probabilidad

La función Integral de Probabilidad para una variable compleja arbitraria z como

$$\Phi(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$$

Obviamente $\Phi(0)=0$ y $\Phi(\infty)=1.$ A partir de esta función se define la **Función Error y su complemento**

$$\operatorname{erf}(z) = \int_0^z e^{-t^2} dt = \frac{\sqrt{\pi}}{2} \Phi(z)$$
$$\operatorname{erf} c(z) = \int_z^z e^{-t^2} dt = \frac{\sqrt{\pi}}{2} [1 - \Phi(z)]$$

Función Gamma Incompleta $\gamma\left(z,\alpha\right)$ y Función Gamma Complementaria $\Gamma\left(z,\alpha\right)$

$$\gamma(z, \alpha) = \int_0^{\alpha} e^{-t} t^{z-1} dt$$
$$\Gamma(z, \alpha) = \int_0^{\infty} e^{-t} t^{z-1} dt$$

las cuales claramente cumplen con

$$\gamma(z, \alpha) + \Gamma(z, \alpha) = \Gamma(z)$$

y resumen

$$\gamma(z+1,\alpha) = z\gamma(z,\alpha) - \alpha^z e^{-\alpha}$$

$$\Gamma(z+1,\alpha) = z\Gamma(z,\alpha) + \alpha^z e^{-\alpha}$$

Métodos Matemáticos de la Física Ecuaciones Diferenciales de Legendre, Laguerre y Hermite y Series de Polinomios Ortogonales

Polinomios de Legendre

La ecuación de Legendre

$$(1 - x^2) y'' - 2x y' + \lambda(\lambda + 1) y = 0$$

tiene singularidades en $x = \pm 1$. Por lo tanto, todos los x son ordinarios si $x \in (-1,1)$. En ese intervalo se propone una solución

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

por lo tanto

$$(1 - x^2) \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} - 2x \sum_{n=1}^{\infty} n \ a_n x^{n-1} + \lambda(\lambda+1) \sum_{n=0}^{\infty} a_n x^n = 0$$

multiplicando y acomodando

$$\sum_{j=0}^{\infty} (j+2)(j+1)a_{j+2}x^{j} - \sum_{n=2}^{\infty} n(n-1)a_{n}x^{n} - 2\sum_{n=1}^{\infty} n \ a_{n}x^{n} + \lambda(\lambda+1)\sum_{n=0}^{\infty} a_{n}x^{n} = 0$$

expandiendo

$$2a_2 + \lambda(\lambda + 1)a_0 \{(\lambda + 2)(\lambda - 1)a_1 + (3 \cdot 2)a_3\} x -$$

$$+ \sum_{n=2}^{\infty} \{(n+2)(n+1)a_{n+2} + (\lambda + n + 1)(\lambda - n)a_n\} x^n = 0$$

donde hemos utilizado

$$-n(n-1) - 2n + \lambda(\lambda+1) = (\lambda+n+1)(\lambda-n)$$

por lo tanto

$$a_{2} = -\frac{(\lambda+1)\lambda}{2} a_{0}$$

$$a_{4} = \frac{(\lambda+3)(\lambda+1)\lambda(\lambda-2)}{4!} a_{0}$$

$$a_{2n} = (-1)^{n} \frac{(\lambda+2n-1)(\lambda+2n-3)\cdots(\lambda+1)\lambda(\lambda-2)\cdots(\lambda-2n+2)}{(2n)!} a_{0}$$

y las potencias impares serán

$$a_{3} = -\frac{(\lambda+2)(\lambda-1)}{3!} a_{1}$$

$$a_{5} = \frac{(\lambda+4)(\lambda+2)(\lambda-1)(\lambda-3)}{5!} a_{1}$$

$$a_{2n+1} = (-1)^{n} \frac{(\lambda+2n)(\lambda+2n-2)\cdots(\lambda+2)(\lambda-1)\cdots(\lambda-2n+1)}{(2n+1)!} a_{1}$$

y su solución general de la forma

$$y(x) = a_0 y_0(x) + a_1 y_1(x)$$

con

$$y_0(x) = 1 - \frac{(\lambda+1)\lambda}{2} x^2 + \frac{(\lambda+3)(\lambda+1)\lambda(\lambda-2)}{4!} x^4 + \cdots$$
$$y_1(x) = x - \frac{(\lambda+2)(\lambda-1)}{3!} x^3 + \frac{(\lambda+4)(\lambda+2)(\lambda-1)(\lambda-3)}{5!} x^5 + \cdots$$

si $\lambda=2n$ la solución es un polinomio de potencias pares y si $\lambda=2n+1$ es uno de potencias impares

λ	Ecuación de Legendre	Solución
0	$(1-x^2) y'' - 2x y' = 0$	$y_0(x) = 1$
1	$(1-x^2) y'' - 2x y' + 2 y = 0$	$y_1(x) = x$
2	$(1-x^2) y'' - 2x y' + 6 y = 0$	$y_0(x) = 1 - 3x^2$
3	$(1 - x^2) y'' - 2x y' + 12 y = 0$	$y_1(x) = x - \frac{5}{3}x^3$
4	$(1 - x^2) y'' - 2x y' + 20 y = 0$	$y_0(x) = 1 - 10x^2 + \frac{35}{3}x^4$

Fórmula de Rodríguez

Se definen como los polinomios de Legendre las soluciones a las ecuaciones arriba expuestas para λ dados o también a partir de la Fórmula de Rodríguez

$$P_n(x) = \frac{1}{n!2^n} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n, \qquad n = 0, 1, 2, \dots$$

con $P_0(x) = 1$.

Ortogonalidad de los Polinomios de Legendre

Como los polinomios de Legendre son soluciones de su ecuaciones

$$(1 - x^2) P_{\alpha}(x)'' - 2x P_{\alpha}(x)' + \alpha(\alpha + 1) P_{\alpha}(x) = 0$$

$$(1 - x^2) P_{\beta}(x)'' - 2x P_{\beta}(x)' + \beta(\beta + 1) P_{\beta}(x) = 0$$

Acomodando y restando ambas ecuaciones

$$(1 - x^{2}) \{ P_{\beta}(x)P_{\alpha}(x)'' - P_{\alpha}(x)P_{\beta}(x)'' \} - -2x \{ P_{\beta}(x)P_{\alpha}(x)' - P_{\alpha}(x)P_{\beta}(x)' \} + + \{ \alpha(\alpha + 1) - \beta(\beta + 1) \} P_{\beta}(x)P_{\alpha}(x) = 0$$

el primer término de la ecuación puede interpretarse una la derivada

$$[(1-x^2) \{ P_{\beta}(x)P_{\alpha}(x)' - P_{\alpha}(x)P_{\beta}(x)' \}]'$$

por lo tanto al integrar

$$(1 - x^{2}) \left\{ P_{\beta}(x) P_{\alpha}(x)' - P_{\alpha}(x) P_{\beta}(x)' \right\}_{-1}^{1}$$
$$\left\{ \alpha(\alpha + 1) - \beta(\beta + 1) \right\} \int_{-1}^{1} P_{\alpha}(x) P_{\beta}(x) dx = 0$$

El primer término de la ecuación se anula en los extremos y es fácil comprobar que los polinomios de Legendre $|\mathbf{P}_{\alpha}\rangle = P_{\alpha}(x)$ son mutuamente ortogonales con un producto interno definido como

$$\langle \mathbf{P}_{\alpha} | \mathbf{P}_{\beta} \rangle = \int_{-1}^{1} P_{\alpha}(x) P_{\beta}(x) dx \propto \delta_{\alpha\beta}$$

Relación de Recurrencia

Conocido esto se puede generar una relación de recurrencia. Supongamos que conocemos todos los polinomios de Legendre hasta $P_n(x)$ y queremos generar el próximo. Obviamente el ese polinomio será de grado n+1 y nos plantemos generarlo a partir de $xP_n(x)$ así como los estos polinomios son base del espacio de funciones, entonces

$$xP_n(x) = |x\mathbf{P}_n\rangle = \sum_{k=0}^{n+1} \frac{\langle \mathbf{P}_k | x\mathbf{P}_n\rangle}{\langle \mathbf{P}_k | \mathbf{P}_k\rangle} |\mathbf{P}_k\rangle$$

en donde

$$\langle \mathbf{P}_k | x \mathbf{P}_n \rangle = \langle x \mathbf{P}_k | \mathbf{P}_n \rangle = \int_{-1}^1 P_n(x) x P_k(x) dx = 0$$

para k < n - 1. Sobreviven entonces tres términos

$$|x\mathbf{P}_{n}\rangle = xP_{n}(x) = \frac{\langle \mathbf{P}_{n-1}|x\mathbf{P}_{n}\rangle}{\langle \mathbf{P}_{n-1}|\mathbf{P}_{n-1}\rangle} |\mathbf{P}_{n-1}\rangle + \frac{\langle \mathbf{P}_{n}|x\mathbf{P}_{n}\rangle}{\langle \mathbf{P}_{n}|\mathbf{P}_{n}\rangle} |\mathbf{P}_{n}\rangle + \frac{\langle \mathbf{P}_{n+1}|x\mathbf{P}_{n}\rangle}{\langle \mathbf{P}_{n+1}|\mathbf{P}_{n+1}\rangle} |\mathbf{P}_{n+1}\rangle$$

y dado que

$$\langle \mathbf{P}_n | x \mathbf{P}_n \rangle = \int_{-1}^1 P_n(x) x P_n(x) dx = \int_{-1}^1 x P_n^2(x) dx$$
,

es una función impar, entonces $\langle \mathbf{P}_n | x \mathbf{P}_n \rangle = 0$. Entonces

$$|x\mathbf{P}_n\rangle = xP_n(x) = \frac{\langle \mathbf{P}_{n-1}|x\mathbf{P}_n\rangle}{\langle \mathbf{P}_{n-1}|\mathbf{P}_{n-1}\rangle} |\mathbf{P}_{n-1}\rangle + \frac{\langle \mathbf{P}_{n+1}|x\mathbf{P}_n\rangle}{\langle \mathbf{P}_{n+1}|\mathbf{P}_{n+1}\rangle} |\mathbf{P}_{n+1}\rangle$$

Es decir

$$xP_n(x) = AP_{n+1}(x) + BP_{n-1}(x)$$

desarrollando con la fórmula de Rodríguez el coeficiente de orden k del lado izquierdo es

$$\frac{1}{2^k k!} 2k(2k-1) \cdots [2k-(k-1)] = \frac{(2k)!}{2^k (k!)^2}$$

mientras que el primer término del lado izquierdo, hasta orden k-2 queda como

$$\frac{(2k-2)!}{2^k(k-2)!(k-1)}$$

por lo cual

$$A = \frac{n+1}{2n+1}$$

De igual forma se determina B igualando coeficientes a orden n-1 y queda la relación de recurrencia:

$$(n+1) P_{n+1}(x) = (2n+1) x P_n(x) - n P_{n-1}(x)$$

Norma de los Polinomios de Legendre

Conociendo que la ortogonalidad de los polinomios de Legendre y la relación de recurrencia, procedemos encontrar el valor de su norma

$$\|\mathbf{P}_n\|^2 = \langle \mathbf{P}_n | \mathbf{P}_n \rangle = \int_{-1}^1 P_n^2(x) dx = \frac{2}{2n+1}$$

De la relación de recurrencia

$$(2n+1) P_n(x) n P_n(x) = (2n+1) P_n(x) [(2n-1) x P_{n-1}(x) - (n-1) P_{n-2}(x)]$$

$$(2n-1) P_{n-1}(x) (n+1) P_{n+1}(x) = (2n-1) P_{n-1}(x) [(2n+1) x P_n(x) - n P_{n-1}(x)]$$

restando miembro a miembro obtenemos:

$$(2n+1) P_n(x) n P_n(x) + (2n+1) (n-1) P_n(x) P_{n-2}(x) - (n+1) (2n-1) P_{n-1}(x) P_{n+1}(x) - (2n-1) n P_{n-1}^2(x) = 0$$

integrando y considerando la ortogonalidad

$$\int_{-1}^{1} P_{n}^{2}(x) dx = \frac{2n-1}{2n+1} \int_{-1}^{1} P_{n-1}^{2}(x) dx$$

$$\int_{-1}^{1} P_{n}^{2}(x) dx = \left(\frac{2n-1}{2n+1}\right) \left(\frac{2n-3}{2n-1}\right) \int_{-1}^{1} P_{n-2}^{2}(x) dx$$

$$\int_{-1}^{1} P_{n}^{2}(x) dx = \left(\frac{2n-1}{2n+1}\right) \left(\frac{2n-3}{2n-1}\right) \left(\frac{2n-5}{2n-3}\right) \int_{-1}^{1} P_{n-3}^{2}(x) dx$$

$$\vdots \qquad = \qquad \vdots$$

$$\int_{-1}^{1} P_{n}^{2}(x) dx = \frac{3}{2n+1} \int_{-1}^{1} P_{1}^{2}(x) dx$$

$$\int_{-1}^{1} P_{n}^{2}(x) dx = \frac{2}{2n+1}$$

Otras propiedades de los polinomios de Legendre, dignas de ser mencionadas son

- $P_n(1) = 1$ y $P_n(-1) = (-1)^n$ para todo n.
- $P_n(x)$ tiene n raíces en el intervalo (-1,1) Esta propiedad puede apreciarse para los primeros 5 polinomios en la figura ??
- Tienen una representación integral de la forma

$$P_n(x) = \frac{1}{2\pi} \int_0^{\pi} \left[x + \sqrt{x^2 - 1} \cos \varphi \right]^n d\varphi$$

- Cambios de variables inmediatos conllevan a ecuaciones diferenciales equivalentes
 - Forma autoadjunta

$$[(1 - x^2) y']' + \lambda(\lambda + 1) y = 0$$

• En coordenadas esféricas con $u = P_n(\cos \theta)$

$$\frac{1}{\operatorname{sen}\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\operatorname{sen}\theta \frac{\mathrm{d}u}{\mathrm{d}\theta} \right) + \lambda(\lambda + 1)u = 0$$

• En coordenadas esféricas con $u = \sqrt{\sin \theta} P_n(\cos \theta)$

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2} + \left[\left(\lambda + \frac{1}{2} \right)^2 + \frac{1}{4 \operatorname{sen}^2 \theta} \right] u = 0$$

Figura 1: Polinomios de Lengendre

Función Generatriz de los Polinomios de Legendre

Se puede encontrar una función generatriz $\mathcal{P}(t,x)$ de los polinomios de Legendre:

$$\mathcal{P}(t,x) = \frac{1}{\sqrt{1 - 2xt + t^2}} = P_0(x) + P_1(x) t + P_2(x) t^2 + \dots = \sum_{n=0}^{\infty} P_n(x) t^n$$

para la cual los $P_n(x)$ son los coeficientes de su desarrollo en series de potencias. Esta serie converge para $||2xt + t^2|| < 1$. Para demostrar que el desarrollo en serie de la función $\mathcal{G}(t,x)$ tiene como coeficientes a los $P_n(x)$ partimos de que:

$$\mathcal{P}(t,x) = \frac{1}{\sqrt{1 - 2xt + t^2}} \quad \Rightarrow \quad \frac{\partial \mathcal{P}(t,x)}{\partial t} = \frac{t - x}{(1 - 2xt + t^2)^{3/2}}$$

por lo cual

$$(t-x)\mathcal{P}(t,x) + (1-2xt+t^2)\frac{\partial \mathcal{P}(t,x)}{\partial t} = 0$$

y, consecuentemente

$$(t-x)\sum_{n=0}^{\infty} P_n(x) t^n + (1-2xt+t^2)\sum_{n=0}^{\infty} nP_n(x) t^{n-1} = 0.$$

Multiplicando y acomodando queda

$$-x P_0(x) + P_0(x) t + \sum_{n=0}^{\infty} (n+1) P_{n+1}(x) t^n - \sum_{n=1}^{\infty} (2n+1) x P_n(x) t^n - \sum_{n=2}^{\infty} n P_{n-1}(x) t^n = 0$$

por lo tanto

$$\left[\underbrace{P_1(x) - x \ P_0(x)}_{=0}\right] + \left[\underbrace{2P_2(x) - 3xP_1(x) + P_0(x)}_{=0}\right] t - + \sum_{n=1}^{\infty} \left[\underbrace{(n+1) P_{n+1}(x) - (2n+1) \ xP_n(x) + nP_{n-1}(x)}_{=0}\right] t^n = 0$$

El primero de los términos se cumple siempre por cuanto $P_0(x) = 1$ y $P_1(x) = x$. El tercer término conforma la relación de recurrencia para los polinomios de Legendre. Con esto queda demostrado que el desarrollo en series de potencias de la función generatriz, tiene como coeficientes a los polinomios de Legendre.

Un Ejemplo de la Física

En Física el ejemplo claro es el cálculo del potencial electrostático producido por dos cargas $q_1 = +q$ y $q_2 = -q$ separadas por una distancia 2d en un punto P cualquiera de un plano (x, y). El potencial en ese punto genérico viene dado por

$$V = q \left(\frac{1}{R'} - \frac{1}{R} \right)$$

Tal y como puede apreciarse de la figura ??

$$(R')^2 = r^2 + d^2 - 2r \ d\cos\theta$$

 $R^2 = r^2 + d^2 - 2r \ d\cos(\pi - \theta)$

por lo cual

$$\frac{1}{R'} = \frac{1}{r} \left[1 - \left(2\frac{d}{r} \cos \theta - \left\{ \frac{d}{r} \right\}^2 \right) \right]^{-1/2}$$

$$\frac{1}{R} = \frac{1}{r} \left[1 - \left(2\frac{d}{r} \cos (\pi - \theta) - \left\{ \frac{d}{r} \right\}^2 \right) \right]^{-1/2}$$

Potencial Electrostático

y consecuentemente

$$\frac{1}{R'} = \frac{1}{r} \sum_{n=0}^{\infty} P_n(\cos \theta) \left\{ \frac{d}{r} \right\}^n$$

$$\frac{1}{R} = \frac{1}{r} \sum_{n=0}^{\infty} P_n(\cos (\pi - \theta)) \left\{ \frac{d}{r} \right\}^n = \frac{1}{r} \sum_{n=0}^{\infty} P_n(-\cos \theta) \left\{ \frac{d}{r} \right\}^n$$

El potencial será

$$V = \frac{q}{r} \left(\sum_{n=0}^{\infty} \left[P_n(\cos \theta) - P_n(-\cos \theta) \right] \left\{ \frac{d}{r} \right\}^n \right)$$

donde todos los términos pares de $P_n(\cos \theta)$ se anula y finalmente tendremos la expresión del potencial para cualquier punto del plano

$$V = \frac{2q}{r} \left(\sum_{n=0}^{\infty} P_{2n+1}(\cos \theta) \left\{ \frac{d}{r} \right\}^{2n+1} \right)$$

Entonces nos quedamos con el primer término de la serie, si

$$\frac{d}{r} \ll 1 \quad \Rightarrow \quad V \approx \frac{q}{r^2} \ 2d\cos\theta$$

Series de Legendre

Cualquier función en el intervalo [-1,1] puede ser expresada en esa base.

$$f(x) = |\mathbf{F}\rangle = \sum_{k=0}^{\infty} a_k |\mathbf{P}_k\rangle = \sum_{k=0}^{\infty} \frac{\langle \mathbf{P}_k | \mathbf{F} \rangle}{\langle \mathbf{P}_k | \mathbf{P}_k \rangle} |\mathbf{P}_k\rangle$$

Varios ejemplos ilustrarán esta aplicación

Si f(x) es un polinomio

$$f(x) = \sum_{n=0}^{m} b_n x^n = \sum_{k=0}^{\infty} a_k | \mathbf{P}_k \rangle = \sum_{n=0}^{\infty} a_n P_n(x)$$

no se requiere hacer ninguna integral por cuanto los coeficientes a_n se determinan a través de un sistema de ecuaciones algebraicas. Para el caso de $f(x) = x^2$ tendremos

$$f(x) = x^{2} = a_{0}P_{0}(x) + a_{1}P_{1}(x) + a_{2}P_{2}(x)$$

$$f(x) = x^{2} = a_{0} + a_{1}x + \frac{1}{2}a_{2}(3x^{2} - 1)$$

$$f(x) = x^{2} = \frac{1}{3}P_{0}(x) + \frac{2}{3}P_{2}(x)$$

Si

$$f(x) = \sqrt{\frac{1-x}{2}} = \sum_{k=0}^{\infty} \frac{\langle \mathbf{P}_k | \mathbf{F} \rangle}{\langle \mathbf{P}_k | \mathbf{P}_k \rangle} | \mathbf{P}_k \rangle$$
$$\langle \mathbf{P}_k | \mathbf{F} \rangle = \int_{-1}^{1} f(x) P_k(x) dx = \int_{-1}^{1} \sqrt{\frac{1-x}{2}} P_k(x) dx$$

Sin embargo aquí muestra su utilidad la función generatriz e integrando. Así

$$\int_{-1}^{1} \sqrt{\frac{1-x}{2}} \left[\frac{1}{\sqrt{1-2xt+t^2}} \right] dx = \sum_{n=0}^{\infty} t^n \int_{-1}^{1} \sqrt{\frac{1-x}{2}} P_n(x) dx$$
$$\frac{1}{2t} \left[1+t - \frac{(1-t)^2}{2\sqrt{t}} \ln\left(\frac{1+\sqrt{t}}{1-\sqrt{t}}\right) \right] = \sum_{n=0}^{\infty} t^n \int_{-1}^{1} \sqrt{\frac{1-x}{2}} P_n(x) dx$$

Expandiendo el lado izquierdo en series de potencias de t

$$\frac{4}{3} - 4\sum_{n=1}^{\infty} \frac{t^n}{(4n^2 - 1)(2n + 3)} = \sum_{n=0}^{\infty} t^n \int_{-1}^{1} \sqrt{\frac{1 - x}{2}} P_n(x) dx$$

lo cual nos conduce, al igualar coeficientes a

$$\frac{4}{3} = \int_{-1}^{1} \sqrt{\frac{1-x}{2}} P_0(x) dx$$
$$\frac{-4}{(4n^2 - 1)(2n + 3)} = \int_{-1}^{1} \sqrt{\frac{1-x}{2}} P_n(x) dx$$

y finalmente a la forma de la expansión en series

$$\sqrt{\frac{1-x}{2}} = \frac{2}{3}P_0(x) - 2\sum_{n=1}^{\infty} \frac{P_n(x)}{(2n-1)(2n+3)}$$

Polinomios de Hermite

Tal y como los polinomios de Legendre, los polinomios de Hermite, surgen como soluciones particulares de una ecuación diferencial

$$y'' - 2xy' + 2\lambda y = 0.$$

para la cual todos los x son ordinarios con $x \in (-\infty, \infty)$. Se propone como solución

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

y se procede de la forma estándar. También, al igual que los otros polinomios ortogonales puede ser definido a partir de una ecuación:

$$H_{\lambda}(x) = (-1)^{\lambda} e^{x^2} \frac{\mathrm{d}^{\lambda}}{\mathrm{d}x^{\lambda}} e^{-x^2}, \qquad \lambda = 0, 1, 2, \dots$$
 (1)

obteniendo

$$H_0(x) = 1;$$
 $H_1(x) = 2x;$ $H_2(x) = 4x^2 - 2;$
 $H_3(x) = 8x^3 - 12x$ $H_4(x) = 16x^5 - 48x^2 + 12$
 $H_5(x) = 32x^5 - 160x^3 + 120x$

y en general

$$H_{\lambda}(x) = \sum_{k=0}^{\lambda/2} \frac{(-1)^k \lambda!}{k! (\lambda - 2k)!} (2x)^{\lambda - 2k}$$

Función Generatriz de los Polinomios de Hermite

Se puede encontrar una función generatriz $\mathcal{H}(t,x)$ de los polinomios de Hermite:

$$\mathcal{H}(t,x) = e^{2xt - t^2} = H_0(x) + H_1(x) t + \frac{H_2(x)}{2} t^2 + \frac{H_3(x)}{3!} t^2 + \dots = \sum_{n=0}^{\infty} \frac{H_n(x)}{n!} t^n$$

para la cual los $H_n(x)$ son los coeficientes de su desarrollo en series de potencias. Es fácil darse cuenta que esta expresión proviene del desarrollo en Serie de Taylor

$$\mathcal{H}(t,x) = e^{2xt - t^2} = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\frac{\partial^n \mathcal{H}(t,x)}{\partial t^n} \right]_{t=0} t^n \qquad ||t|| < \infty$$

para lo cual

$$\left[\frac{\partial^n \mathcal{H}(t,x)}{\partial t^n}\right]_{t=0} = e^{x^2} \left[\frac{\partial^n}{\partial t^n} e^{-(x-t)^2}\right]_{t=0} = (-1)^n e^{x^2} \left[\frac{\mathrm{d}^n}{\mathrm{d}u^n} e^{-(u)^2}\right]_{u=x} = H_n(x)$$

Relación de Recurrencia

A partir de la función generatriz se puede construir la siguiente identidad

$$\frac{\partial \mathcal{H}(t,x)}{\partial t} = (2x - 2t) \mathcal{H}$$

y utilizando el desarrollo en series de potencias en t tendremos,

$$\sum_{n=1}^{\infty} \frac{H_n(x)}{n!} nt^{n-1} - 2x \sum_{n=0}^{\infty} \frac{H_n(x)}{n!} t^n + \sum_{n=0}^{\infty} \frac{H_n(x)}{n!} t^{n+1} = 0$$

$$\sum_{n=1}^{\infty} \frac{1}{n!} \left[H_{n+1}(x) - 2x H_n(x) + 2n H_{n-1}(x) \right] t^n = 0$$

 $\sum_{n=0}^{\infty} \frac{1}{n!} \left[\underbrace{H_{n+1}(x) - 2xH_n(x) + 2nH_{n-1}(x)}_{=0} \right] t^n = 0$

Así la relación de recurrencia será

$$H_{n+1}(x) - 2xH_n(x) + 2nH_{n-1}(x) = 0$$

De igual modo, podemos partir de otra identidad

$$\frac{\partial \mathcal{H}(t,x)}{\partial x} = 2t \ \mathcal{H} \Rightarrow \sum_{n=0}^{\infty} \frac{H'_n(x)}{n!} \ t^n - 2 \sum_{n=0}^{\infty} \frac{H_n(x)}{n!} \ t^{n+1}$$

y encontrar una relación para generar las derivadas de los polinomios de Hermite en término de ellos mismos:

$$H'_n(x) = 2n \ H_{n-1}(x), \qquad n = 1, 2, 3, \cdots$$

Finalmente, utilizando la ecuación anterior en la relación de recurrencia y derivando esa expresión una vez más, queda como:

$$H_{n+1}(x) - 2xH_n(x) + H'_n(x) = 0$$

$$H''_n(x) - 2xH'_n(x) + 2n H_n(x) = 0$$

con lo cual queda demostrado que los polinomios de Hermite son una solución particular de esa ecuación diferencial.

$$y'' - 2xy' + 2ny = 0,$$

Donde hemos hecho $y=H_n(x)$ Adicionalmente, haciendo un cambio cosmético podremos demostrar que $y=e^{-x^2/2}H_n(x)$ es solución de la ecuación diferencial autoadjunta

$$y'' + (2n + 1 - x^2)y = 0$$

Ortogonalidad y Norma de los Polinomios de Hermite

En general estos polinomios cumplen con

$$\langle \mathbf{H}_{\alpha} | \mathbf{H}_{\beta} \rangle = 2^{n} n! \sqrt{\pi} \ \delta_{\alpha\beta} = \int_{-\infty}^{\infty} e^{-x^{2}} H_{\beta}(x) H_{\alpha}(x) \mathrm{d}x$$

Donde la función delta de Kronecker es $\delta_{\alpha\beta}=0$ si $\alpha\neq\beta;$ y $\delta_{\beta\beta}=1.$

Para demostrar el caso $\alpha \neq \beta$ partimos de

$$u_{\beta} \left[u_{\alpha}'' + (2\alpha + 1 - x^2) u_{\alpha} \right] = 0$$

 $u_{\alpha} \left[u_{\beta}'' + (2\beta + 1 - x^2) u_{\beta} \right] = 0$

restando miembro a miembro e integrando se tiene que:

$$[u'_{\alpha}u_{\beta} - u'_{\beta}u_{\alpha}]' + 2(\alpha - \beta)u_{\alpha}u_{\beta} = 0$$

$$(\alpha - \beta) \int_{-\infty}^{\infty} e^{-x^{2}} H_{\beta}(x) H_{\alpha}(x) dx = 0$$

$$\int_{-\infty}^{\infty} e^{-x^{2}} H_{\beta}(x) H_{\alpha}(x) dx = 0 \qquad \alpha \neq \beta;$$

ya que

$$e^{-x^2/2} \left(2\alpha \ H_{\alpha-1}(x) H_{\beta}(x) - 2\beta \ H_{\beta-1}(x) H_{\alpha}(x) \right) \Big|_{-\infty}^{\infty} = 0$$

Para encontrar el valor de la norma, procedemos a partir de la relación de recurrencia

$$H_n(x) (H_n(x) - 2xH_{n-1}(x) + 2(n-1)H_{n-2}(x)) = 0$$

$$H_{n-1}(x) (H_{n+1}(x) - 2xH_n(x) + 2nH_{n-1}(x)) = 0$$

restando miembro a miembro, multiplicando por e^{-x^2} e integrando entre $(-\infty, \infty)$ se obtiene

$$\int_{-\infty}^{\infty} e^{-x^2} H_{\alpha}^2(x) dx = 2\alpha \int_{-\infty}^{\infty} e^{-x^2} H_{\alpha-1}^2(x) dx$$

repitiendo la operación y recordando que al final queda

$$\int_{-\infty}^{\infty} e^{-x^2} x^2 \mathrm{d}x = 2\sqrt{\pi}$$

Obtenemos

$$\langle \mathbf{H}_{\alpha} | \mathbf{H}_{\alpha} \rangle = \| \mathbf{H}_{\alpha} \|^2 = \int_{-\infty}^{\infty} e^{-x^2} H_{\alpha}^2(x) dx = 2^n n! \sqrt{\pi}$$

Representación Integral de los Polinomios de Hermite

Los polinomios de Hermite pueden ser representados como

$$H_n(x) = \frac{2^n(-i)^n e^{x^2}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^2 + 2itx} t^n dt$$

que puede ser separada como

$$H_{2n}(x) = \frac{2^{2n+1}(-1)^n e^{x^2}}{\sqrt{\pi}} \int_0^\infty e^{-t^2} t^{2n} \cos 2xt \, dt \qquad n = 1, 2, 3, \dots$$

y paralos términos impares

$$H_{2n+1}(x) = \frac{2^{2n+2}(-1)^n e^{x^2}}{\sqrt{\pi}} \int_0^\infty e^{-t^2} t^{2n+1} \operatorname{sen} 2xt \, dt \qquad n = 1, 2, 3, \dots$$

La forma de llegar a cualquiera de estas últimas fórmulas se parte de las conocidas integrales desarrolladas en el plano complejo

$$e^{-x^2} = \frac{2}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^2} \cos 2xt \, dt$$

se deriva 2n veces a ambos miembros se utiliza la definición de los polinomios de Hermite.

Series de Hermite

Antes de desarrollar funciones en términos de los polinomios de Hermite, expondremos un par de teoremas sin demostración.

Teorema 1

Sean | \mathbf{f} \rangle y | \mathbf{g} \rangle dos funciones arbitrarias, cuando menos continuas a trozos en $(-\infty, \infty)$ y que cumplen con

$$\int_{-\infty}^{\infty} e^{-x^2} f^2(x) dx < \infty \qquad \wedge \qquad \int_{-\infty}^{\infty} e^{-x^2} g^2(x) dx < \infty$$

Entonces el conjunto de estas funciones forman un espacio vectorial Euclideano \mathcal{I}_2^w con un producto interno definido por

$$\langle \mathbf{g} \mid \mathbf{f} \rangle = \int_{-\infty}^{\infty} e^{-x^2} f(x) g(x) dx$$

Las funciones f(x) y g(x) se denominan cuadrado-integrables respecto al peso w. Es por ello que denotamos el espacio de funciones como \mathcal{I}_2^w

Teorema 2

Si f(x) es una función continua arbitraria en \mathcal{I}_2^w entonces puede ser aproximada por un polinomio en ese mismo espacio. Es decir

$$\lim_{n \to \infty} ||f(x) - p_n(x)|| = \lim_{n \to \infty} \left(\int_{-\infty}^{\infty} e^{-x^2} \left[f(x) - p_n(x) \right]^2 dx \right)^{1/2} = 0$$

Así, la expresión de una función arbitraria en la base de los polinomio de Hermite se reduce a

$$f(x) = |\mathbf{f}\rangle = \sum_{k=0}^{\infty} a_k |\mathbf{H}_k\rangle = \sum_{k=0}^{\infty} \frac{\langle \mathbf{H}_k | \mathbf{f} \rangle}{\langle \mathbf{H}_k | \mathbf{H}_k \rangle} |\mathbf{H}_k\rangle$$

donde

$$a_k = \frac{\langle \mathbf{H}_k | \mathbf{f} \rangle}{\langle \mathbf{H}_k | \mathbf{H}_k \rangle} = \frac{\int_{-\infty}^{\infty} e^{-x^2} f(x) H_k(x) dx}{\int_{-\infty}^{\infty} e^{-x^2} H_k^2(x) dx} = \frac{1}{2^k k! \sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^2} f(x) H_k(x) dx$$

Si $f(x) = x^{2p}$ con $p = 1, 2, 3, \cdots$

$$f(x) = x^{2p} = \sum_{k=0}^{p} a_{2k} H_{2k}(x)$$

entonces

$$a_{2k} = \frac{1}{2^{2k}(2k)!\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^2} x^{2p} H_{2k}(x) dx$$

$$= \frac{1}{2^{2k}(2k)!\sqrt{\pi}} \int_{-\infty}^{\infty} x^{2p} \frac{d^{2k}}{dx^{2k}} e^{-x^2} dx$$
(2)

Una integración por partes estratégica muestra que:

$$a_{2k} = \frac{1}{2^{2k}(2k)!\sqrt{\pi}} \left\{ x^{2p} \frac{\mathrm{d}^{2k-1}}{\mathrm{d}x^{2k-1}} e^{-x^2} \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} 2px^{2p-1} \frac{\mathrm{d}^{2k-1}}{\mathrm{d}x^{2k-1}} e^{-x^2} \mathrm{d}x \right\}$$

El primer térmico de la resta se anula siempre debido a la defición de los polinomios de Hermite

$$x^{2p} \frac{\mathrm{d}^{2k-1}}{\mathrm{d}x^{2k-1}} e^{-x^2} \Big|_{-\infty}^{\infty} = x^{2p} (-1)^{2k-1} e^{-x^2} H_{2k-1}(x) \Big|_{-\infty}^{\infty}$$

Repitiendo el proceso 2k veces, tendremos

$$a_{2k} = \frac{1}{2^{2k}(2k)!\sqrt{\pi}} \frac{(2p)!}{(2p-2k)!} \int_{-\infty}^{\infty} x^{2p-2k} e^{-x^2} dx$$

ahora si en la integralhacemos $x=\sqrt{t}$ obtenemos

$$a_{2k} = \frac{1}{2^{2k}(2k)!\sqrt{\pi}} \frac{(2p)!}{(2p-2k)!} \int_{-\infty}^{\infty} t^{p-k} e^{-t} \frac{dt}{2\sqrt{t}}$$
$$= \frac{1}{2^{2k+1}(2k)!\sqrt{\pi}} \frac{(2p)!}{(2p-2k)!} \int_{-\infty}^{\infty} t^{p-k-\frac{1}{2}} e^{-t} dt$$

y utilizando la definición $\Gamma\left(z\right)\equiv\int_{0}^{\infty}e^{-t}t^{z-1}\mathrm{d}t\equiv\left(z-1\right)!$, queda como

$$a_{2k} = \frac{1}{2^{2k+1}(2k)!\sqrt{\pi}} \frac{(2p)!}{(2p-2k)!} \Gamma\left(p-k+\frac{1}{2}\right)$$

Ahora, recurrimos a la propiedad de "duplicación" de la Función Gamma, i.e.

$$2^{2z-1}\Gamma(z)\Gamma\left(z+\frac{1}{2}\right) = \sqrt{\pi}\Gamma(2z)$$

tenemos que

$$2^{2p-2k}\Gamma\left(p-k+\frac{1}{2}\right)(p-k)! = \sqrt{\pi}(2p-2k)!$$

quedan entonces los coeficientes determinados como

$$a_{2k} = \frac{(2p)!}{2^{2p+1}(2k)!(p-k)!}$$

y, por lo tanto el desarrollo en la base de los polinomios de Hermite

$$f(x) = x^{2p} = \frac{(2p)!}{2^{2p+1}} \sum_{k=0}^{p} \frac{H_{2k}(x)}{(2k)! (p-k)!} - \infty < x < \infty$$

Muestre que del mismo modo se puede encontrar

$$f(x) = x^{2p+1} = \frac{(2p-1)!}{2^{2p-1}} \sum_{k=0}^{p} \frac{H_{2k+1}(x)}{(2k+1)!(p-k)!} - \infty < x < \infty$$

Si $f(x) = e^{-a^2x^2}$ con Re $a^2 > -1$. Otra vez

$$f(x) = e^{-a^2x^2} = \sum_{k=0}^{\infty} a_{2k} H_{2k}(x)$$

entonces

$$a_{2k} = \frac{1}{2^{2k}(2k)!\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(a^2+1)x^2} H_{2k}(x) dx$$

Sustituyendo $H_{2k}(x)$ por su expresión integral tendremos

$$\begin{aligned} a_{2k} &= \frac{1}{2^{2k}(2k)!\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(a^2+1)x^2} \left[\frac{2^{2k+1}(-1)^k e^{x^2}}{\sqrt{\pi}} \int_{0}^{\infty} e^{-t^2} t^{2k} \cos 2xt \, dt \right] dx \\ &= \frac{2(-1)^k}{\pi(2k)!} \int_{-\infty}^{\infty} e^{-a^2x^2} \left[\int_{0}^{\infty} e^{-t^2} t^{2k} \cos 2xt \, dt \right] dx \\ &\equiv \frac{2(-1)^k}{\pi(2k)!} \int_{0}^{\infty} e^{-t^2} t^{2k} \left[\int_{-\infty}^{\infty} e^{-a^2x^2} \cos 2xt \, dx \right] dt \\ &= \frac{2(-1)^k}{\pi(2k)!} \int_{0}^{\infty} e^{-t^2} t^{2k} \left[\sqrt{\frac{\pi}{a^2}} e^{-t^2/a^2} \right] dt = \\ &= \frac{2(-1)^k}{\sqrt{\pi}(2k)!} \int_{0}^{\infty} e^{-t^2(1+a^{-2})} t^{2k} \, dt \\ &= \frac{(-1)^k}{\sqrt{\pi}(2k)!} \frac{a^{2k}}{(1+a^2)^{k+1/2}} \int_{0}^{\infty} e^{-s} s^{k-\frac{1}{2}} \, ds \qquad \leftarrow t^2(1+a^{-2}) = s \\ &= \frac{(-1)^k}{\sqrt{\pi}(2k)!} \frac{a^{2k}}{(1+a^2)^{k+1/2}} \Gamma\left(k + \frac{1}{2}\right) \end{aligned}$$

y ahora usando, otra vez la propiedad de "duplicación" de la función gamma,

$$2^{2k}\Gamma\left(k+\frac{1}{2}\right)k! = \sqrt{\pi} (2k)!$$

obtenemos

$$a_{2k} = \frac{(-1)^k a^{2k}}{2^{2k} \ k! \left(1 + a^2\right)^{k+1/2}}$$

por lo tanto

$$f(x) = e^{-a^2x^2} = \sum_{k=0}^{\infty} \frac{(-1)^k a^{2k}}{2^{2k} k! (1+a^2)^{k+1/2}} H_{2k}(x)$$

Un Ejemplo de la Física:

El Oscilador armónico, independiente del Tiempo, en Mecánica Cuántica.

La Ecuación de Schrödinger independiente del tiempo y en una dimensión es

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) + \frac{2\mu}{\hbar^2} \left[E - \mathcal{U}(x) \right] \psi(x) = 0$$

con μ la "masa" de la partícula; E los niveles de energía y $\mathcal{U}(x)$ el potencial al cual está sometida la partícula. En el caso que estudiemos un potencial $\mathcal{U}(x) = \frac{1}{2}\mu\omega^2x^2$ en el cual la frecuencia angular del oscilador viene representada por ω . La ecuación de Schrödinger se convierte en

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) + \frac{2\mu}{\hbar^2} \left[E - \frac{1}{2}\mu\omega^2 x^2 \right] \psi(x) = 0$$

haciendo un cambio de variable $\xi = x\sqrt{\mu\omega/\hbar}$ para adimensionalizar la ecuación, se obtiene

$$\psi''(\xi) + \left[\frac{2E}{\hbar\omega} - \xi^2\right]\psi(\xi) = 0$$

la cual corresponde a la forma autoadjunta de la Ecuación de Hermite y por lo tanto identificamos

$$\frac{2E}{\hbar\omega} = 2n + 1 \quad \Rightarrow \quad E = \left(n + \frac{1}{2}\right)\hbar\omega$$

con lo cual comprobamos la forma como viene cuantizada la energía en este sistema y la energía del estado fundamental. Por su parte, la función de onda se podrá expresar en la base de soluciones de esa ecuación

$$\psi(\xi) = \sum_{n=0}^{\infty} c_n \ \psi_n(\xi) = \sum_{n=0}^{\infty} c_n \ e^{-\xi^2/2} H_n(\xi)$$

y se mantenemos la normalización

$$\int_{-\infty}^{\infty} \psi_n^2(\xi) \mathrm{d}\xi = 1$$

podremos expresar los coeficientes como

$$c_n = \left(\frac{\mu\omega}{\pi\hbar}\right)^{1/4} \frac{1}{\sqrt{2^n n!}}$$

Resumen de Propiedades Polinomios Ortogonales

Polinomios de Legendre			
Definición	$P_n(x) = \frac{1}{n!2^n} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n, \qquad n = 0, 1, 2, \dots$		
Ejemplos	$P_{-1} \equiv 0; P_0 \equiv 1; P_1 = x$ $P_2 = \frac{1}{2}(3x^2 - 1); P_3 = \frac{1}{2}(5x^3 - 3x)$		
Relación de Recurrencia	$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$		
Ecuaciones Diferenciales	$\frac{(1-x^2) y'' - 2x y' + \lambda(\lambda+1) y = 0}{\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{du}{d\theta}\right) + n(n+1)u = 0; u = P_n(\cos \theta)}$		
Función Generatriz	$\mathcal{P}(t,x) = \frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(x) \ t^n$		
Representación Integral	$P_n(x) = \frac{1}{2\pi} \int_0^{\pi} \left[x + \sqrt{x^2 - 1} \cos \varphi \right]^n d\varphi$		
Ortogonalidad	$\langle \mathbf{P}_{\alpha} \mathbf{P}_{\beta} \rangle = \int_{-1}^{1} P_{\alpha}(x) P_{\beta}(x) dx = \delta_{\alpha\beta} \frac{2}{2\alpha + 1}$		

	J-1		
Polinomios de Hermite			
Definición	$H_n(x) = (-1)^n e^{x^2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} e^{-x^2}, \qquad n = 0, 1, 2, \dots$ $H_n(x) = \sum_{k=0}^{n/2} \frac{(-1)^k n!}{k! (n - 2k)!} (2x)^{n-2k}$ $H_0(x) = 1; \qquad H_1(x) = 2x; \qquad H_2(x) = 4x^2 - 2;$		
Ejemplos	$H_0(x) = 1;$ $H_1(x) = 2x;$ $H_2(x) = 4x^2 - 2;$ $H_3(x) = 8x^3 - 12x$ $H_4(x) = 16x^5 - 48x^2 + 12$		
Relaciones de Recurrencia	$H_{n+1}(x) - 2xH_n(x) + 2nH_{n-1}(x) = 0$ $H'_n(x) = 2n \ H_{n-1}(x), \qquad n = 1, 2, 3, \cdots$		
Ecuaciones Diferenciales	y'' - 2xy' + 2ny = 0 $u'' + (2n + 1 - x^2) u = 0; u(x) = e^{-x^2/2} H_n(x)$		
Función Generatriz	$\mathcal{H}(t,x) = \mathbf{e}^{2xt-t^2} = \sum_{n=0}^{\infty} \frac{H_n(x)}{n!} t^n$		
Representación Integral	$H_{2n}(x) = \frac{2^{2n+1}(-1)^n e^{x^2}}{\sqrt{\pi}} \int_0^\infty e^{-t^2} t^{2n} \cos 2xt dt$ $H_{2n+1}(x) = \frac{2^{2n+2}(-1)^n e^{x^2}}{\sqrt{\pi}} \int_0^\infty e^{-t^2} t^{2n+1} \sin 2xt dt$ $\langle \mathbf{H}_{\alpha} \mathbf{H}_{\beta} \rangle = 2^n n! \sqrt{\pi} \delta_{\alpha\beta} = \int_{-\infty}^\infty e^{-x^2} H_{\beta}(x) H_{\alpha}(x) dx$		
Ortogonalidad	$\langle \mathbf{H}_{\alpha} \mathbf{H}_{\beta} \rangle = 2^{n} n! \sqrt{\pi} \ \delta_{\alpha\beta} = \int_{-\infty}^{\infty} e^{-x^{2}} H_{\beta}(x) H_{\alpha}(x) dx$		

Polinomios de Laguerre Generalizados $(\alpha \neq 0)$			
Definición	$L_n^{\alpha}(x) = e^x \frac{x^{-\alpha}}{n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (e^{-x} x^{n+\alpha}), \qquad n = 0, 1, 2, \dots$		
Ejemplos	$L_0^{\alpha}(x) \equiv 1; L_1^{\alpha}(x) = 1 + \alpha - x$ $L_2^{\alpha}(x) = \frac{1}{2} \left\{ (1 + \alpha)(2 + \alpha) - 2(2 + \alpha)x + x^2 \right\}$		
Relaciones de Recurrencia	$(n+1) L_{n+1}^{\alpha}(x) + (x - \alpha - 2n - 1) L_n^{\alpha}(x) + (n + \alpha) L_{n-1}^{\alpha}(x) = 0$ $x \frac{dL_n^{\alpha}(x)}{dx} = nL_n^{\alpha}(x) - (n - \alpha) L_{n-1}^{\alpha}(x)$ $L_n^{\alpha+1}(x) = L_n^{\alpha}(x) + L_{n-1}^{\alpha-1}(x)$ $\frac{dL_n^{\alpha}(x)}{dx} = -nL_{n-1}^{\alpha+1}(x)$ $xy'' + (\alpha + -x) y' + ny = 0$		
Ecuaciones Diferenciales	$xy'' + (\alpha + -x) y' + ny = 0$ $xu'' + (\alpha + 1 - 2\nu) u' + \left(n + \frac{\alpha + 1}{2} - \frac{x}{4} + \frac{\nu(\nu - \alpha)}{x}\right) u = 0$ $u(x) = e^{-x^2/2} x^{\nu} L_n^{\alpha}(x)$		
Función Generatriz	$L(t,x) = (1-t)^{-\alpha-1} e^{-xt/(1-t)} = \sum_{n=0}^{\infty} L_n^{\alpha}(x) t^n$		
Representación Integral	$L_n^{\alpha}(x) = \frac{e^x x^{-\alpha/2}}{n!} \int_0^{\infty} t^{(n+\alpha/2)} J_{\alpha} \left(2\sqrt{xt}\right) e^{-t} dt$ $\langle L_n^{\alpha} L_m^{\alpha} \rangle = \int_0^{\infty} e^{-x} x^{\alpha} L_n^{\alpha}(x) L_m^{\alpha}(x) dx = \delta_{nm} \frac{\Gamma(n+\alpha+1)}{n!}$		
Ortogonalidad	$\langle L_n^{\alpha} L_m^{\alpha} \rangle = \int_0^{\infty} e^{-x} x^{\alpha} L_n^{\alpha}(x) L_m^{\alpha}(x) dx = \delta_{nm} \frac{\Gamma(n+\alpha+1)}{n!}$		

Ejemplos en la Expansión de Funciones en Términos de Polinomios de Laguerre

Otro Teorema sin demostración

Teorema 3

Toda función f(x) continua a trozos, definida en el intervalo infinito $(0, \infty)$, podrá ser representada como

$$f(x) = |\mathbf{F}\rangle = \sum_{n=0}^{\infty} c_n |\mathbf{L}_n^{\alpha}\rangle = \sum_{n=0}^{\infty} \frac{\langle \mathbf{L}_n^{\alpha} | \mathbf{F} \rangle}{\langle \mathbf{L}_n^{\alpha} | \mathbf{L}_n^{\alpha} \rangle} |\mathbf{L}_n^{\alpha}\rangle \equiv \sum_{n=0}^{\infty} c_n(x) L_n^{\alpha}(x)$$

con

$$c_n(x) = \frac{\langle \mathbf{L}_n^{\alpha} | \mathbf{F} \rangle}{\langle \mathbf{L}_n^{\alpha} | \mathbf{L}_n^{\alpha} \rangle} \equiv \frac{n!}{\Gamma(n+\alpha+1)} \int_0^{\infty} e^{-x} x^{\alpha} f(x) L_n^{\alpha}(x) dx$$

 \sin

$$\int_0^\infty e^{-x} x^\alpha f^2(x) \, \mathrm{d}x$$

es finita.

Como un ejemplo del uso de este teorema, calcularemos la expansión de $f(x)=x^{\nu}$, por lo tanto

$$f(x) = x^{\nu} = \sum_{n=0}^{\infty} c_n(x) L_n^{\alpha}(x)$$

con

$$c_n(x) = \frac{n!}{\Gamma(n+\alpha+1)} \int_0^\infty e^{-x} x^{\alpha+\nu} L_n^{\alpha}(x) dx$$

Sustituyendo la definición e integrando por partes

$$c_n(x) = \frac{1}{\Gamma(n+\alpha+1)} \int_0^\infty x^{\upsilon} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (e^{-x}x^{n+\alpha}) \, \mathrm{d}x$$
$$= \frac{1}{\Gamma(n+\alpha+1)} \left\{ x^{\upsilon} \frac{\mathrm{d}^{n-1}}{\mathrm{d}x^{n-1}} \left(e^{-x}x^{n+\alpha} \right) \Big|_0^\infty - \int_0^\infty \nu x^{\upsilon-1} \frac{\mathrm{d}^{n-1}}{\mathrm{d}x^{n-1}} \left(e^{-x}x^{n+\alpha} \right) \mathrm{d}x \right\}$$

El primer término de la resta se anula siempre debido a la definición de los polinomios de Laguerre

$$x^{\nu} \frac{\mathrm{d}^{n-1}}{\mathrm{d}x^{n-1}} \left(e^{-x} x^{n+\alpha} \right) \Big|_{0}^{\infty} = L_{n-1}^{\alpha}(x) e^{-x} x^{\nu+\alpha} n! \Big|_{0}^{\infty} \equiv 0$$

Repitiendo el proceso n veces, tendremos

$$c_n(x) = \frac{(-1)^n \nu(\nu - 1)(\nu - 2) \cdots (\nu - n + 1)}{\Gamma(n + \alpha + 1)} \int_0^\infty e^{-x} x^{\nu + \alpha} dx$$
$$= (-1)^n \frac{\Gamma(\nu + \alpha + 1) \Gamma(\nu + 1)}{\Gamma(n + \alpha + 1) \Gamma(\nu - n + 1)}$$

una vez más hemos utilizado la definición $\Gamma(z) \equiv \int_0^\infty e^{-t} t^{z-1} \mathrm{d}t \equiv (z-1)!$. Por lo tanto la serie en cuestión queda como

$$f(x) = x^{\nu} = \Gamma(\nu + \alpha + 1) \Gamma(\nu + 1) \sum_{n=0}^{\infty} (-1)^n \frac{L_n^{\alpha}(x)}{\Gamma(n + \alpha + 1) \Gamma(\nu - n + 1)}$$

en particular si $\nu = p$, un entero positivo, la serie se termina en un número finito de términos

$$f(x) = x^{p} = \Gamma(p + \alpha + 1) p! \sum_{n=0}^{p} (-1)^{n} \frac{L_{n}^{\alpha}(x)}{\Gamma(n + \alpha + 1) (p - n)!}$$

Funciones de Bessel

La Ecuación de Bessel es

$$x^2y'' + xy' + (x^2 - k^2)y = 0;$$
 $k \in \Re$

obviamente x=0 es una singularidad regular, por lo tanto el método de Frobenius nos permite afirmar que si $x=x_0$ corresponde a un polo regular de la ecuación

$$x^{2}y'' + x\tilde{P}(x)y' + \tilde{Q}(x)y = 0;$$

la solución vendrá expresada de la forma

$$y(x) = (x - x_0)^r \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

con r real y determinado a través de las raíces de la ecuación indicadora

$$r^{2} + (\tilde{P}(x_{0}) - 1) r + \tilde{Q}(x_{0}) = 0$$

y donde $\tilde{P}\left(x\right)$ y $\tilde{Q}\left(x\right)$ son funciones analíticas en el entorno de $x=x_{0}$ y por lo tanto

$$\tilde{P}(x_0) = \sum_{n=0}^{\infty} b_n (x - x_0)^n \quad \land \quad \tilde{Q}(x_0) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$

Para la Ecuación de Bessel

$$\tilde{P}(x) = 1 \Rightarrow b_0 = 1 \quad \land \quad \tilde{Q}(x) = (x^2 - k^2) \Rightarrow c_0 = -k^2; \quad c_2 = 1$$

los demás coeficientes b's y c's se anulan. La ecuación indicadora y sus raíces quedan como

$$m(m-1) + m - k^2 = 0 \implies m^2 = k^2 \implies r_{1,2} = \pm k$$

Donde, para r = k proponemos

$$y_1(x) = x^k \sum_{n=0}^{\infty} a_n x^n$$

Al hacer las cuentas

$$(x^{2} - k^{2}) y_{1}(x) = x^{k} \sum_{n=2}^{\infty} a_{n-2} x^{n} - x^{k} \sum_{n=0}^{\infty} k^{2} a_{n} x^{n}$$
$$xy'_{1}(x) = x^{k} \sum_{n=0}^{\infty} (k+p) a_{n} x^{n}$$
$$x^{2}y''_{1}(x) = x^{k} \sum_{n=0}^{\infty} (k+p) (k+p-1) a_{n} x^{n}$$

la ecuación de Bessel queda como

$$\sum_{n=0}^{\infty} \left[(k+n) (k+n-1) + (k+n) - k^2 \right] a_n x^n + \sum_{n=2}^{\infty} a_{n-2} x^n = 0$$

$$(2n+1) a_1 x + \sum_{n=2}^{\infty} \left[k (2n+k) a_k + a_{n-2} \right] x^n = 0$$

y por consiguiente obtenemos la relación de recurrencia

$$a_n = -\frac{a_{n-2}}{n\left(2k+n\right)}$$

donde es claro que $a_1 = 0$. Adicionalmente, si suponemos

$$a_0 = \frac{1}{2^k \Gamma(k+1)}$$

tendremos

$$a_{1} = a_{3} = a_{5} = \dots = 0$$

$$a_{2} = -\frac{a_{0}}{2(2k+2)}$$

$$a_{4} = \frac{a_{0}}{2 \cdot 4(2k+2)(2k+4)}$$

$$\vdots$$

$$a_{2n} = (-1)^{n} \frac{a_{0}}{2^{2n} n! (k+1)(k+2) \cdots (k+n)}$$

Por lo tanto, la primera de las soluciones será

$$J_k(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{\Gamma(n+1)\Gamma(n+k+1)} \left(\frac{x}{2}\right)^{2n+k}$$

la Función de Bessel, de orden k de primera especie.

Si k=0 entonces

$$J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n!)^2} \left(\frac{x}{2}\right)^{2n}$$

Para el caso particular de k=m entero positivo la función de Bessel de primera especie toma la forma de

$$J_m(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n! (n+m)!} \left(\frac{x}{2}\right)^{2n+m}$$

Para encontrar la segunda solución linealmente independiente de la ecuación de Bessel el método de Frobenius propone tres casos dependiendo el valor de k

$$\begin{cases} r_1 - r_2 \neq entero \Rightarrow k \neq entero \\ r_1 = r_2 = r \Rightarrow k = 0 \\ r_1 - r_2 = entero \Rightarrow k = entero \end{cases}$$

Caso 1: $r_1 - r_2 \neq entero \Rightarrow k \neq entero$.

La solución general será de la forma

$$y(x) = C_1 J_k(x) + C_2 J_{-k}(x)$$

donde

$$J_{-k}(x) = \sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{\Gamma\left(n+1\right)\Gamma\left(n-k+1\right)} \left(\frac{x}{2}\right)^{2n-k} \qquad x > 0$$

Para x < 0 se debe reemplazar x^{-k} por $||x||^{-k}$. Nótese que esta última expresión también es válida para k semientero, i.e. $k = n + \frac{1}{2}$.

Caso 2: $r_1 = r_2 = r \implies k = 0$.

La solución general será de la forma

$$K_0(x) = \sum_{n=0}^{\infty} \tilde{a}_n x^n + J_0(x) \ln x$$

y los coeficientes \tilde{a}_n se encuentran mediante el tradicional método de sustituirlos en la ecuación de Bessel para k=0

$$xy'' + y' + xy = 0;$$

De donde se obtiene

$$xK_0(x) = \sum_{n=0}^{\infty} \tilde{a}_n x^{n+1} + xJ_0(x) \ln x = \sum_{n=3}^{\infty} \tilde{a}_{n-2} x^{n-1} + xJ_0(x) \ln x$$

$$K_0'(x) = \sum_{n=0}^{\infty} n\tilde{a}_n x^{n-1} + (J_0(x) \ln x)' = \sum_{n=1}^{\infty} n\tilde{a}_n x^{n-1} + J_0'(x) \ln x + \frac{J_0(x)}{x}$$

$$xK_0''(x) = \sum_{n=2}^{\infty} n(n-1)\tilde{a}_n x^{n-1} + xJ_0''(x) \ln x + 2J_0'(x) - \frac{J_0(x)}{x}$$

y por lo tanto

$$\tilde{a}_1 + 4\tilde{a}_2 x + \sum_{n=3}^{\infty} \left[n^2 \tilde{a}_n + \tilde{a}_{n-2} \right] x^{n-1} + \left[\underbrace{x J_0'' + J_0' + x J_0}_{= 0} \right] \ln x + 2J_0'(x) = 0$$

Acomodando y derivando la expresión para J_0 tendremos

$$\tilde{a}_1 + 4\tilde{a}_2 x + \sum_{n=3}^{\infty} \left[n^2 \tilde{a}_n + \tilde{a}_{n-2} \right] x^{n-1} = -2J_0'(x) = 2\sum_{n=1}^{\infty} \frac{2n}{2^{2n-1}} \frac{(-1)^{n+1}}{(n!)^2} x^{2n-1}$$

Ahora multiplicando la expresión por x y separando las sumatorias en sus términos pares e impares, tendremos

$$\tilde{a}_1 x + \sum_{n=1}^{\infty} \left[(2n+1)^2 \, \tilde{a}_{2n+1} + \tilde{a}_{2n-1} \right] x^{2n+1} = 0$$

$$\sum_{n=2}^{\infty} \left[(2n)^2 \, \tilde{a}_{2n} + \tilde{a}_{2n-2} \right] x^{2n} + 4 \tilde{a}_2 x^2 = x^2 + \sum_{n=1}^{\infty} \left(-1 \right)^{n+1} \frac{2n}{2^{2n} \left(n! \right)^2} x^{2n}$$

Por lo cual $\tilde{a}_1 = \tilde{a}_3 = \tilde{a}_5 = \cdots = 0$ mientras que

$$4\tilde{a}_2 = 1;$$
 $(2n)^2 \tilde{a}_{2n} + \tilde{a}_{2n-2} = (-1)^{n+1} \frac{2n}{2^{2n} (n!)^2}$ $n > 1$

De esta forma los coeficientes quedan como:

$$\tilde{a}_{2} = \frac{1}{2^{2}}$$

$$\tilde{a}_{4} = -\frac{1}{2^{2} \cdot 4^{2}} \left(1 + \frac{1}{2} \right) = -\frac{1}{2^{4} \cdot (2!)^{2}} \left(1 + \frac{1}{2} \right)$$

$$\vdots$$

$$\tilde{a}_{2n} = \frac{(-1)^{n+1}}{2^{2n} (n!)^{2}} \left\{ 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{k} \right\}$$

La expresión para la solución general de la ecuación de Bessel para k=0 será

$$K_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(n!)^2} \left\{ 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{k} \right\} \left(\frac{x}{2}\right)^{2n} + J_0(x) \ln x$$

En Física, es costumbre expresar esta solución de una forma equivalente pero ligeramente diferente:

$$Y_0(x) = -\frac{2}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^n}{(n!)^2} \left\{ 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} \right\} \left(\frac{x}{2}\right)^{2n} + \frac{2}{\pi} J_0(x) \left[\ln \frac{x}{2} + \gamma \right]$$

donde, una vez más, $\gamma = 0.577215664901\cdots$ es la constante de Euler-Mascheroni.

Caso 3: $r_1 - r_2 = entero \Rightarrow k = entero$.

La solución general será de la forma

$$K_k(x) = \sum_{n=0}^{\infty} \tilde{a}_n x^{k+n} + CJ_n(x) \ln x$$

Procediendo de forma equivalente a la situación anterior tenemos que la solución general podrá expresarse (luego de una laboriosa faena) como

$$K_k(x) = -\frac{1}{2} \sum_{n=0}^{k-1} \frac{(k-n-1)!}{n!} \left(\frac{x}{2}\right)^{2n-k} - \frac{H_k}{2k!} \left(\frac{x}{2}\right)^k - \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n \left[H_n + H_{n+k}\right]}{n! (k+n)!} \left(\frac{x}{2}\right)^{2n+k} + J_k(x) \ln x$$

Y finalmente la Función de Bessel de orden k de segunda especie o Función de Neumann

$$Y_k(x) = -\frac{1}{\pi} \sum_{n=0}^{k-1} \frac{(k-n-1)!}{(n!)^2} \left(\frac{x}{2}\right)^{2n-k} - \frac{H_k}{\pi k!} \left(\frac{x}{2}\right)^k - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n \left[H_n + H_{n+k}\right]}{n! (k+n)!} \left(\frac{x}{2}\right)^{2n+k} + \frac{2}{\pi} J_k(x) \left[\ln \frac{x}{2} + \gamma\right]$$

En ambos casos

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

Más aún

$$Y_k(x) = \frac{2}{\pi} J_k(x) \ln \frac{x}{2} - \frac{1}{\pi} \sum_{n=0}^{k-1} \frac{(k-n-1)!}{(n!)^2} \left(\frac{x}{2}\right)^{2n-k}$$
$$-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n! (k+n)!} \left(\frac{x}{2}\right)^{2n+k} \left[\psi(n+1) + \psi(n+k+1)\right]$$

donde $\psi(n) = \frac{\Gamma'(n)}{\Gamma(n)}$ es la función Digamma con

$$\psi(n+1) = -\gamma + 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
$$\psi(1) = -\gamma$$

También es costumbre definir la función de Bessel de segunda especie en terminos de las de primera especie

$$N_k(x) = Y_k(x) = \frac{J_k(x)\cos k\pi - J_{-k}(x)}{\sin k\pi}$$

Nótese que para k=m entero, aparentemente no esta definida. Pero, aplicando la regla de

L'Hospital

$$N_m(x) = \frac{\frac{\mathrm{d}}{\mathrm{d}k} \left[J_k(x) \cos k\pi - J_{-k}(x) \right]}{\frac{\mathrm{d}}{\mathrm{d}k} \left[\sin k\pi \right]} \bigg|_{k=m}$$

$$= \frac{-\pi J_n(x) \sin n\pi + \left\{ \cos n\pi \frac{\mathrm{d}}{\mathrm{d}k} J_k(x) - \frac{\mathrm{d}}{\mathrm{d}k} J_{-k}(x) \right\}}{\pi \cos n\pi} \bigg|_{k=m}$$

$$= \frac{1}{\pi} \left\{ \frac{\mathrm{d}}{\mathrm{d}k} J_k(x) - (-1)^n \frac{\mathrm{d}}{\mathrm{d}k} J_{-k}(x) \right\}_{k=m}$$

De este modo, la soluciónes generales para la ecuación de Bessel, se expresan según el caso en

$$Z_k(x) = C_1 J_k(x) + C_2 J_{-k}(x);$$
 $k \neq entero$
 $\tilde{Z}_k(x) = C_1 J_k(x) + C_2 Y_k(x);$ $k = 0 \lor entero$

La funciones $Z_k(x)$ y $\tilde{Z}_k(x)$ se denominan Funciones Cilíndricas de orden k

Propiedades de las Funciones de Bessel

Otras Formas de la Ecuación de Bessel

Haciendo los cambios de variables correspondientes llegamos a

$$u''(x) + \frac{1 - 2\alpha}{x}u'(x) + \left[\left(\beta\nu \ x^{\nu - 1}\right)^2 + \frac{\alpha^2 - k^2\nu^2}{x^2}\right]u(x) = 0$$

donde

$$u(x) = x^{\alpha} Z_k(\beta x^{\nu})$$

o también

$$u''(x) + \alpha x^{\nu} \ u(x) = 0$$

con

$$u(x) = \sqrt{x} Z_{\frac{1}{\nu+2}} \left(\frac{2\sqrt{\alpha}}{\nu+2} x^{1+\frac{\nu}{2}} \right)$$

Relaciones de Recurrencia:

Las funciones de Bessel tienen las siguientes relaciones de recurrencia

$$xJ_{k+1}(x) - 2k J_k(x) + xJ_{k-1}(x) = 0$$

$$J_{k+1}(x) + 2J'_k(x) - J_{k-1}(x) = 0$$

Para demostrar estas relaciones partimos por demostrar la siguiente identidad

$$[x^{k}J_{k}(x)]' = x^{k}J_{k-1}(x)$$
$$[x^{-k}J_{k}(x)]' = -x^{-k}J_{k+1}(x)$$

De la expresión para $J_k(x)$ se obtiene

$$\left[\sum_{n=0}^{\infty} \frac{(-1)^n}{\Gamma(n+1)\Gamma(n+k+1)} \left(\frac{x}{2}\right)^{2n+2k}\right]' = \sum_{n=0}^{\infty} \frac{(-1)^n 2(n+k) x^{2n+2k-1}}{2^{2n+k}\Gamma(n+1)\Gamma(n+k+1)} \\
= x^k \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+(k-1)}}{2^{2n+(k-1)}\Gamma(n+1)\Gamma(n+k)} \\
= x^k J_{k-1}(x)$$

Unos cambios apropiados nos llevan a demostrar las segunda de las relaciones y al desarrollar las derivadas

$$[x^{k}J_{k}(x)]' = kx^{k-1}J_{k}(x) + x^{k}J'_{k}(x) = x^{k}J_{k-1}(x)$$
$$[x^{-k}J_{k}(x)]' = -kx^{-k-1}J_{k}(x) + x^{-k}J'_{k}(x) = -x^{-k}J_{k+1}(x)$$

Por lo cual

$$kJ_k(x) + xJ'_k(x) = xJ_{k-1}(x) -kJ_k(x) + xJ'_k(x) = -xJ_{k+1}(x)$$

Al sumar y restar miembro a miembro obtenemos las relaciones de recurrencia. Es obvia la importancia que adquieren $J_1(x)$ y $J_0(x)$ para generar el resto de las funciones de Bessel.

Funciones de Bessel y Funciones Elementales

Las funciones de Bessel de órden semientero, $k = \frac{1}{2}$ se expresa como

$$J_{1/2}(x) = \sqrt{\frac{x}{2}} \sum_{n=0}^{\infty} \frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\frac{3}{2})} \left(\frac{x}{2}\right)^{2n}$$

pero como

$$\Gamma\left(n+\frac{3}{2}\right) = \left\{\frac{3}{2} \cdot \frac{5}{2} \cdot \dots \cdot \frac{2n+1}{2}\right\} = \Gamma\left(\frac{3}{2}\right) \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)}{2^n}$$

se encuentra que

$$J_{1/2}(x) = \sqrt{\frac{x}{2}} \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n n! \Gamma\left(\frac{3}{2}\right) 1 \cdot 3 \cdot 5 \cdots (2n+1)} x^{2n}$$

$$= \frac{x}{\sqrt{2x} \Gamma\left(\frac{3}{2}\right)} \left\{ 1 - \frac{x^2}{2 \cdot 3} + \frac{x^4}{2 \cdot 4 \cdot 3 \cdot 5} - \frac{x^6}{2 \cdot 4 \cdot 6 \cdot 3 \cdot 5 \cdot 7} + \cdots \right\}$$

$$= \frac{1}{\sqrt{2x} \Gamma\left(\frac{3}{2}\right)} \left\{ 1 - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \right\} = \frac{1}{\sqrt{2x} \Gamma\left(\frac{3}{2}\right)} \operatorname{sen} x$$

Finalmente, y otra vez invocando a las propiedades de la función Gamma: $\Gamma\left(\frac{3}{2}\right) = \frac{\sqrt{\pi}}{2}$

$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \operatorname{sen} x$$

Equivalentemente se puede demostrar que

$$J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$

y ahora utilizando las relaciones de recurrencia tendremos que

$$J_{3/2}(x) = -J_{-1/2}(x) + \frac{1}{x}J_{1/2}(x)$$
$$= \sqrt{\frac{2}{\pi x}} \left[\frac{\sin x}{x} - \cos x \right]$$

Así mismo

$$J_{5/2}(x) = -J_{1/2}(x) + \frac{3}{x}J_{3/2}(x)$$
$$= \sqrt{\frac{2}{\pi x}} \left[\frac{3 \sin x}{x^2} - \frac{3 \cos x}{x} - \sin x \right]$$

En general

$$J_{n+\frac{1}{2}}(x) = (-1)^n \sqrt{\frac{2}{\pi}} x^{n+\frac{1}{2}} \frac{\mathrm{d}^n}{(x \mathrm{d} x)^n} \left(\frac{\sin x}{x}\right) \qquad n = 1, 2, 3, \dots$$

$$J_{n+\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi}} x^{n+\frac{1}{2}} \frac{\mathrm{d}^n}{(x \mathrm{d} x)^n} \left(\frac{\cos x}{x}\right) \qquad n = -1, -2, -3, \dots$$

Las funciones de Bessel de órden semientero son las únicas funciones de Bessel que pueden ser expresadas en términos de funciones elementales.

Reflexión:

Las funciones de Bessel cumplen con

$$J_{-m}(x) = (-1)^m J_m(x)$$

Para el caso k=m entero positivo la Función de Bessel de primera especie toma la forma de

$$J_m(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n! (n+m)!} \left(\frac{x}{2}\right)^{2n+m}$$

Si k=-m es un entero negativo los primeros m términos de la serie anterior se anulan ya que $\Gamma(n)\to\infty$ para $n=-1,-2,-3,\cdots$ y la serie se arma como

$$J_{-m}(x) = \sum_{n=m}^{\infty} \frac{(-1)^n}{n! \ (n-m)!} \left(\frac{x}{2}\right)^{2n+m} = \sum_{l=0}^{\infty} \frac{(-1)^{l+m}}{(l+m)! \ l!} \left(\frac{x}{2}\right)^{2l+m}$$
$$J_{-m}(x) = (-1)^m J_m(x)$$

Función Generatriz

La función generatriz para las Funciones de Bessel es

$$\mathcal{B}(x,t) = e^{\frac{x}{2}\left(t - \frac{1}{t}\right)}$$

desarrollando las dos series para las exponenciales

$$e^{\frac{xt}{2}} = 1 + \frac{x}{2}t + \frac{x}{2^22!}t^2 + \dots + \frac{x^n}{2^n n!}t^n + \dots$$

$$e^{\frac{x}{2t}} = 1 - \frac{x}{2}t^{-1} + \frac{x}{2^22!}t^{-2} + \dots + \frac{(-1)^n x^n}{2^n n!}t^{-n} + \dots$$

Por lo tanto multiplicando ambas series

$$\mathcal{B}(x,t) = e^{\frac{x}{2}(t-\frac{1}{t})} = \left\{ \sum_{n=0}^{\infty} \frac{x^n}{2^n n!} t^n \right\} \left\{ \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{2^n n!} t^{-n} \right\} = \sum_{n=-\infty}^{\infty} J_n(x) t^n$$

Representación Integral para las Funciones de Bessel

En la expresión anterior para la función generatriz se realiza el siguiente cambio de varible $t=\mathrm{e}^{i\theta}$ de este modo

$$e^{\frac{x}{2}(t-\frac{1}{t})} = e^{ix \operatorname{sen} \theta} = \cos(x \operatorname{sen} \theta) + i \operatorname{sen}(x \operatorname{sen} \theta)$$

y por lo tanto

$$\cos(x \operatorname{sen} \theta) + i \operatorname{sen}(x \operatorname{sen} \theta) = \sum_{n=-\infty}^{\infty} J_n(x) \left[\cos(n\theta) + i \operatorname{sen}(n\theta)\right]$$

igualando partes reales e imaginarias y recordando que $J_{-m}(x) = (-1)^m J_m(x)$, para anular los términos impares en la serie de la parte real y los pares en la de la parte imaginaria, podemos escribir

$$\cos(x \operatorname{sen} \theta) = J_0(x) + 2\sum_{n=1}^{\infty} J_{2n}(x)\cos(2n\theta)$$

$$\operatorname{sen}(x\operatorname{sen}\theta) = 2\sum_{n=0}^{\infty} J_{2n+1}(x)\operatorname{sen}([2n+1]\theta)$$

Multiplicando miembro a miembro en la primera de ellas por $\cos(2k\theta)$ (y por $\cos([2k+1]\theta)$) y la segunda por $\sin([2k+1]\theta)$ (y por $\sin(2k\theta)$). Integrando (en $0 \le \theta \le \pi$), también miembro a miembro y término por término en las series, se obtienen

$$J_{2n}(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) \cos(2n\theta) d\theta$$
$$0 = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) \cos([2n+1]\theta) d\theta$$
$$J_{2n+1}(x) = \frac{1}{\pi} \int_0^{\pi} \sin(x \sin \theta) \sin([2n+1]\theta) d\theta$$
$$0 = \frac{1}{\pi} \int_0^{\pi} \sin(x \sin \theta) \sin(2n\theta) d\theta$$

Sumando miembro a miembro primera con cuarta y segunda con tercera tendremos la expresión integral para las funciones de Bessel

$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(\cos(n\theta) - x \sin\theta) d\theta$$

ya que todos sabemos que

$$\cos(n\theta - x \sin \theta) = \cos(2n\theta)\cos(x \sin \theta) + \sin(2n\theta)\sin(x \sin \theta)$$

Ortogonalidad de las Funciones de Bessel y Series de Bessel-Fourier

Ortogonalidad:

Haciendo el caso particular de $\alpha=0$ y $\nu=1$ en la primera de las expresiones equivalentes para la ecuación de Bessel, tendremos

$$u''(x) + \frac{1}{x}u'(x) + \left[\beta^2 - \frac{k^2}{x^2}\right]u(x) = 0$$

donde

$$u(x) = J_k(\beta x)$$

multiplicando por x la ecuación diferencial puede ser reescrita como

$$[xJ'_k(\beta x)]' + \left[\beta^2 x - \frac{k^2}{x}\right] J_k(\beta x) = 0$$

suponiendo k real y positivo, planteamos la ecuación para dos índices diferentes β_1 y β_2 por lo tanto quedan como

$$[xJ'_k(\beta_1 x)]' + \left[\beta_1^2 x - \frac{k^2}{x}\right] J_k(\beta_1 x) = 0$$
$$[xJ'_k(\beta_2 x)]' + \left[\beta_2^2 x - \frac{k^2}{x}\right] J_k(\beta_2 x) = 0$$

Multiplicando apropiadamente por $J_k(\beta_1 x)$ y $J_k(\beta_2 x)$, Integrando y restando miembro a miembro tendremos que

$$(\beta_2^2 - \beta_1^2) \int_0^1 x J_k(\beta_1 x) J_k(\beta_2 x) dx = \int_0^1 \{ J_k(\beta_2 x) \left[x J_k'(\beta_1 x) \right]' - J_k(\beta_1 x) \left[x J_k'(\beta_2 x) \right]' \} dx$$

$$= \int_0^1 \left[J_k(\beta_2 x) x J_k'(\beta_1 x) - J_k(\beta_1 x) x J_k'(\beta_2 x) \right]' dx$$

$$= J_k(\beta_2 x) x J_k'(\beta_1 x) - J_k(\beta_1 x) x J_k'(\beta_2 x) \Big|_{x=0}^{x=1}$$

para β_i las raíces de los polinomios de Bessel, i.e. $J_k(\beta_i)=0$ podemos deducir que las funciones de Bessel son ortogonales

$$\left(\beta_i^2 - \beta_j^2\right) \int_0^1 x J_k(\beta_i x) J_k(\beta_j x) dx \propto \delta_{ij}$$

Más aún partiendo de la ecuación de Bessel original se puede llegar a

$$||J_k(\beta x)||^2 = \frac{1}{2} [J'_k(\beta)]^2 + \frac{\beta^2 - k^2}{2\beta^2} [J_k(\beta)]^2$$