Practical Course

EMG-based Robotic Control

Oussema Dhaouadi

Final Presentation

Supervisor: Dr. Yi Ren, Jakob Fröhner

Lehrstuhl für Informationstechnische Regelung

Technische Universität München

Contents

- Introduction
- System Overview
- Data Acquisition
- Processing Module
- Recognition Module
- Robot Arm Simulator
- Conclusion

Introduction

Motivation:

- EMGs control human movements.
- Popularity of EMG-based systems and their application fields (e.g. upper-limb prostheses).
- Analyse and understand the signal profiles.

Purpose:

Build an EMG-based control of a robotic arm.

Challenges:

- EMG data collection methodology.
- Design of an accurate classifier.
- Robot Arm control.

System Overview

Figure: System Overview

Data Acquisition

1. Target muscles definition:

Biceps &Triceps

2. Movement classes definition:

Movement 2

Movement 3

Movement 4

Movement 5

Movement 6

Data Acquisition

3. Shimmer Hardware configuration:

Sampling frequency 120Hz.

4. Camera calibration:

Making sure a continuous tracking of the marker.

5. EMG and Camera data synchronization (Trigger).

Input:

Human movements

Output:

RAW EMG signal

Data Acquisition

Figure: 3 recording sessions with 2 movement per session, links: biceps – right: triceps

1. Filtering:

- Low pass filter with cut-off frequency of 55Hz.
- Notch filter, 50Hz.

Notch Filter Frequency Response

1.0

0.8

0.6

0.4

0.2

0.0

10

20

30

40

50

60

Frequency [Hz]

Figure: Low pass filter

Figure: Notch filter

2. Normalization:

- Statistical normalization (unbiased, unit variance).
- Standard normalization (range [-1, 1]).

Figure: Filtered and normalized signals

3. Segmentation:

- Full segements: Extract labeled samples from the recording sessions by the means of camera data.
- Partial Segments: From the full semgents extract subsegments of 200ms.

Figure: Label and preprocessed EMG data

Figure: 3D Representation of Marker Trajectory (Camera data)

Challenge:

Figure: 3D representation of EMG signals associated to class 3 and 5.

4. Features Extraction:

- **TD features:** Mean Absolute Value, Mean Root Square, Variance, Slope Sign Change, maximum amplitude, minimum amplitude
- Spectrograms (TD/FD combination):

Figure: Spectrogram of a random sample from the class 4.

Figure: Spectrogram

of a random sample from the class 2.

Again Challenge:

Input:

RAW EMG and Camera Signals

Output:

Processed and labeled EMG samples

"full-segments dataset" (#636 @ 3s per sample)

"partial-segments dataset" (#3180 @ 200ms per sample)

"TD features dataset"

"spectrograms dataset"

Recognition Module Support Vector Machine

1. Dimensionality Reduction: Principle Component Analysis (PCA)

2 Principle Components preserved

Figure: Full explained variance ratio

Recognition Module Support Vector Machine

2. Training and Evaluation

- Train on the 4 dataset types
- Hyperparameter Tuning: Kernel function (linear, RBF, poly, sigmoid)

Recognition Module Support Vector Machine (SVM)

2. Training and Evaluation

Data-set	Kernel	Accuracy
Full segments	RBF	38.28%
Partial segments	Linear	21.85%
TD features	Linear	16.41%
Spectrograms	Sigmoid	17.96%

Table: SVM achieved accuracies

Figure: Best SVM model decision boundaries

Recognition Module Multilayer Perceptron (MLP)

1. Training and Evaluation

- Train on the 4 dataset types
- Hyperparameter Tuning: Number of Neurons, dropout rate, batch size

Recognition Module Multilayer Perceptron (MLP)

1. Training and Evaluation

Figure: Best MLP model training and test accuracies

·				
Data-set	Number of Neurons	Dropout	Batch Size	Accuracy
Full segments	256	0.5	32	66.40%
Partial segments	64, 32, 16	0.2	64	36.32%
TD features	64, 32	0.2	32	61.71%
Spectrograms	64, 32	0.2	32	81.25%

Table: MLP achieved accuracies

Figure: Best MLP model training and test loss

Recognition Module

Convolutional Neural Network (CNN)

1. Training and Evaluation

- Train on the 3 dataset types (TD features dataset is not relevant).
- Hyperparameter Tuning: # filters, kernel size, pooling size, # neurons, dropout, batch size

Full segments dataset

Partial segments dataset

Recognition Module

Convolutional Neural Network (CNN)

1. Training and Evaluation

Figure: Best CNN model training and test accuracies

Data-set	Number Filters	Kernel Size	Pooling Size	Number Neurons	Dropout	Batch Size	Accuracy
Full segments	64, 32, 16	3	2	512	0.5	64	84.43%
Partial segments	64, 32, 16	3	2	512	0.5	128	51.88%
Spectrograms	64	3	2	512	0.5	64	89.84%

Table: CNN achieved accuracies

Figure: Best CNN model training and test loss

Recognition Module Long-Short-Term Memory (LSTM)

1. Training and Evaluation

- Train on the 3 dataset types (TD features dataset is not relevant).
- Hyperparameter Tuning: # units, dropout, # neurons, batch size

Data-set	Number of Units	Dropout	Number of Neurons	Batch Size	Accuracy
Full segments	64	0.5	64	32	28.90%
Partial segments	32	0.2	64	128	25.00%
Spectrograms	64	0.2	64	64	82.03%

Table: LSTM achieved accuracies

Recognition Module

Input:

Processed and labeled EMG samples

Output:

Predicted Movement Class

Simulation Module

1. Robot arm model selection

6DoFs, PUMA robot of Walla University.

2. Robot kinematic and inverse kinematics Solvers

From joint-angles to 3D target coordinates and vice-versa.

3. Control panel construction

GUI for visualizations.

4. Link of the classifiers with the simulator

Predictions of samples from the test-set

Simulation Module

Input:

RAW EMG samples

Output:

Robot joint positions

Simulation Module

DEMO

References

P. K. Artemiadis and K. J. Kyriakopoulos. (2009)

Emg-based control of a robot arm using low-dimensional embeddings.

IEEE Transactions on Robotics, 26(2):393–398, April 2010. doi:10.1109/TRO.2009. 2039378.

Rubana Chowdhury, Mamun Bin Ibne Reaz, et.al. (2013).

Surface electromyography signal processing and classification techniques.

Sensors (Basel, Switzerland), 13:12431-66, 09 2013. doi: 10.3390/s130912431.

Gabriel D. Eisenberg, Kyle G.H.M. Fyvie, et.al. (2010).

EMG-Based Control of a Robot Arm Using Low-Dimensional Embeddings.

IEEE Transactions on Robotics, 26(2):393–398, April 2010. doi:10.1109/TRO.2009. 2039378.

Xiaolong Zhai, Beth Jelfs et. al. (2017)

Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network

Frontiers in Neuroscience doi: 10.3389/fnins.2017.00379

