AR16

CODE: 16BS1001 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, March-2017

ENGINEERING MATHEMATICS – I

(Common to CE, EEE, ME. ECE, CSE & IT Branches)

Time: 3 Hours Max Marks: 70M

Answer ONE Question from each Unit

All Questions Carry Equal Marks

All parts of the question must be answered in one place only

UNIT-I

1. a) Solve $x dx + y dy = \frac{a^2(x dy - y dx)}{(x^2 + y^2)}$

b) Show that the family of curves
 rⁿ = a sec n θ and rⁿ = b cosec n θ are orthogonal.

(OR)

2. a) Solve $y \log y \, dx + (x - \log y) \, dy = 0$ 7 M

7 M

b) The number N of bacteria in a culture grew at a rate proportional to N . The value of N was initially 100 and increased to 332 in one hour. What would be the value of N after $1\frac{1}{2}$ hours?

UNIT-II

3. a) Solve $(D^2 - 2D + 1)y = e^x$ 7 M

b) Solve $(3x+2)^2 \frac{d^2y}{dx^2} + 5(3x+2)\frac{dy}{dx} - 3y = x^2 + x + 1$

(OR)

4. a) Solve $(D^3 + 2D^2 + D)y = x^2$ 7 M

b) Solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x \log x$ by the method of variation 7 M of parameters.

AR16

CODE: 16BS1001

SET-2

5. a) If
$$f(x,y) = 0$$
, show that
$$\frac{\frac{\mathbf{UNIT-III}}{d^2y}}{dx^2} = -\frac{q^2r - 2pqs + p^2t}{q^3}$$
where $p = \frac{\partial f}{\partial x}$, $q = \frac{\partial f}{\partial y}$, $r = \frac{\partial^2 f}{\partial x^2}$, $s = \frac{\partial^2 f}{\partial x \partial y}$, $t = \frac{\partial^2 f}{\partial y^2}$

b) Expand $f(x,y) = x^2y + 3y - 2$ in power of (x-1) and (y+2) using taylor's theorem. 7M

- 6. a) Find the Maximum and Minimum values of **7M** $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$
 - b) If $u^3 + v^3 = x + y$ and $u^2 + v^2 = x^3 + y^3$, show that $\frac{\partial(u,v)}{\partial(x,y)} = \frac{1}{2} \frac{y^2 x^2}{uv(u-v)}$ **7M**

UNIT-IV

- 7. a) Evaluate the integral $\int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-y}}{y} dy dx$ by changing **7M** of order of integration
 - b) Find the Volume bounded by the xy-plane, the 7M cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 3

- 8. a) Evaluate $\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^{x}} \log z \, dz \, dx \, dy$ **7**M
 - b) Evaluate the integral $\int_0^4 \int_{y^2}^x \frac{x^2 y^2}{x^2 + y^2} dx dy$ by **7**M

changing to polar co – ordinates.

<u>UNIT-V</u>

- a) Show that $\operatorname{div}(\operatorname{grad} r^n) = n(n+1)r^{n-2}$ **7 M** 9.
 - b) Using Green's theorem evaluate **7** M $\int [(y-\sin x)dx + \cos x dy]$ where C is the plane triangle enclosed by the lines $y=0, x=\frac{\pi}{2}$ and $y=\frac{2x}{\pi}$

10. Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\vec{i} - 2xy\vec{j}$ taken 14 M around the rectangle bounded by the lines

CODE: 13BS1001

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, March-2017 **ENGINEERING MATHEMATICS - I** (Common to All Branches)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- 1. Define the orthogonal trajectories.
 - b) Find the integrating factor of the linear differential equation $\frac{dy}{dx} + \frac{y}{x} = \frac{\log x}{x}$.
 - c) Solve $(D^2 1) y = 0$.
 - d) If $f(D) = D^2 + 4$, then find $\frac{1}{f(D)} \cos 3x$.
 - e) If $U = x^2 + y^2$, $x = t^2$ and y = 2t, find du/dt. f) Find f_x for $f(x, y) = x^2 + y^2 6x + 12$.

 - g) Evaluate $\int_0^2 \int_0^3 xy dx dy$
 - h) Transform to Cartesian form $\int_0^{\pi/2} \int_0^a f(r, \theta) dr d\theta$..
 - If $\bar{r} = x\bar{\iota} + y\bar{\jmath} + z\bar{k}$, then find curl \bar{r} i)
 - j) State Stoke's theorem.

PART-B

Answer one question from each unit

[5x12=60M]

UNIT-I

- Form the differential equation of the family of circles having centre on x-axis and 2. a) [6M] passing through the origin.
 - b) Solve $\frac{dy}{dx} + y = x^3 y^6$. [6M]

- 3. a) Solve $(1 x^2) \frac{dy}{dx} + 2xy = x\sqrt{1 x^2}$. b) Solve $x^2y dx (x^3 + y^3) dy = 0$ [6M]
 - [6M]

UNIT-II

- Solve (D^2+1)y = e^{-x} Solve (D^3-3D^2+3D-1)y = x^2 . [6M]
 - [6M]

(OR)

- Solve $(D^2+4)y = \sec 2x$ by method of variation of parameters. 5. a) [6M]
 - Solve $(D^2+9)y = \sin 2x$ [6M]

UNIT-III

- Find the Taylor series of $f(x, y) = e^{xy}$ in powers of x-1 and y-1 6. a) [6M]
 - If x + y + z = u, y + z = uv and z = uvw find $\frac{\partial(x,y,z)}{\partial(y,x,w)}$ [6M]

Find the maximum and minimum values of $f(x,y) = x^3-3xy^2-15x^2-15y^2+72x$ 7. [12M]

AR13

CODE: 13BS1001 SET-2

UNIT-IV

- Evaluate $\int_0^{\pi} \int_0^{a \sin \theta} r dr d\theta$. 8. a) [6M]
 - Change the order of integration and evaluate $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$. b) [6M]

(OR) Find the volume common to the cylinders $x^2+y^2=a^2$ and $x^2+z^2=a^2$. 9. [12M]

UNIT-V

- 10. a) [6M]
- Find div \bar{f} where $\bar{f} = (x^2-yz) \bar{\iota} + (y^2-xz) \bar{\jmath} + (z^2-xy)\bar{k}$ at (1,2,1)Find a unit normal to the surface $x^2+y^2+2z^2=26$ at (2,2,6)[6M]

Evaluate $\int \overline{F} \cdot \overline{n} dS$ where $\overline{F} = z\overline{\iota} + x\overline{\jmath} - 3y^2z \overline{k}$ and Sis the surface $x^2 + y^2 = 16$ 11. [12M] included in the first octant between z = 0 an z = 5.

2 of 2