# Лабораторная работа 2.2.3

# Определение теплопроводности газов при атмосферном давлении

Рашковецкий М.М., группа 526т

25 мая 2016 г.

**Цель работы:** определение коэффициента теплопроводности воздуха или углекислого газа при атмосферном давлении и разных температурах по теплоотдаче нагреваемой током нити в цилиндрическом сосуде.

Оборудование и материалы: прибор для определения теплопроводности газов; форвакуумный насос; газгольдер с углекислым газом; манометр; магазин сопротивлений; эталонное сопротивление 10 Ом; цифровой вольтметр В7-38; источник питания.

### Краткая теория

В задаче о теплопередаче между двумя коаксиальными цилиндрами тепловая мощность, протекающая наружу через цилиндрическую поверхность радиуса r с той же осью записывается как

$$Q = 2\pi r L \varkappa \frac{dT}{dr}.$$
 (1)

Принимая зависимость коэффициента теплопроводности от температуры степенной

$$\varkappa = \varkappa_2 \left(\frac{T}{T_2}\right)^{\beta},\tag{2}$$

получаем следующее соотношение:

$$Q\frac{dr}{r} = 2\pi L \frac{\varkappa_2}{T_2^{\beta}} T^{\beta} dT. \tag{3}$$

Проинтегрировав его, получим

$$Q \ln \frac{r_2}{r_1} = 2\pi L \varkappa_2 \frac{T_2^{\beta+1} - T_1^{\beta+1}}{(\beta+1)T_2^{\beta}},\tag{4}$$

откуда

$$\varkappa_2 = \frac{Q}{2\pi L} \frac{(\beta+1)T_2^{\beta}}{T_2^{\beta+1} - T_1^{\beta+1}} \ln \frac{r_2}{r_1}.$$
 (5)

В приближении  $\Delta T \ll T$  получаем уже разрешимое соотношение:

$$\varkappa = \frac{Q}{2\pi L (T_2 - T_1)} \ln \frac{r_2}{r_1}.$$
 (6)

Тут  $r_1$ ,  $T_1$  — радиус и температура нити,  $r_2$ ,  $T_2$  — цилиндра, L — длина нити и цилиндра.

В работе отношение заменяется на производную, которая расписывается как произведение производных, находимых из результатов измерений:

$$\varkappa = \frac{dQ}{dR}\frac{dR}{dT}\frac{1}{2\pi}\ln\frac{r_2}{r_1},\tag{7}$$

где R — сопротивление нити.

#### Установка

Рис. 1: Схема установки



В эксперименте температура нити определяется по изменению электрического сопротивления, температура цилиндра совпадает с температурой термостата, измеряемой его внутренним термометром. Напряжение на проволоке измеряется непосредственно вольтметром в положении 2, ток через неё — через напряжение на эталонном сопротивлении в положении 1.

## Ход работы

- 1. Записали параметры установки: L=367 мм,  $2r_1=0{,}050$  мм,  $2r_2=10$  мм,  $R_9=10$  Ом, материал проволоки железо-никелиевый сплав.
- 2. Установили на термостате температуру  $t = 30^{\circ}\mathrm{C}$  и дождались её установления.

- 3. Установили ключ в положение 1, выставили нужное напряжение  $U_{\mathfrak{d}}$ , подождали, пока оно установится.
- 4. Установив ключ в положение 2, измерили соответствующее  $U_{\rm H}$ .
- 5. Повторили измерения для разных токов.
- 6. Повторили пп. 2–5 для других температур.

# Обработка результатов

Результаты измерений приведены в таблице 1. Погрешностью температуры мы пренебрегли, погрешность напряжения приняли  $\sigma_U = 0{,}001~\mathrm{B}.$ 

| $t,  ^{\circ}C$               | 30                        | 40       | 50    | 60    |  |  |
|-------------------------------|---------------------------|----------|-------|-------|--|--|
| $U_{\mathfrak{d}},\mathrm{B}$ | <i>U</i> <sub>н</sub> , В |          |       |       |  |  |
| 0,05                          | 0,76                      | 0,767    | 0,774 | 0,781 |  |  |
| 0,075                         | 1,139                     | $1,\!15$ | 1,161 | 1,171 |  |  |
| 0,1                           | 1,52                      | 1,534    | 1,548 | 1,563 |  |  |
| 0,125                         | 1,902                     | 1,919    | 1,936 | 1,953 |  |  |
| 0,15                          | 2,29                      | 2,312    | 2,333 | 2,352 |  |  |
| 0,175                         | 2,675                     | $^{2,7}$ | 2,724 | 2,746 |  |  |
| 0,2                           | 3,06                      | 3,087    | 3,115 | 3,145 |  |  |
| 0,225                         | 3,447                     | 3,476    | 3,508 | 3,538 |  |  |
| 0,25                          | 3,833                     | 3,868    | 3,897 | 3,933 |  |  |

Таблица 1: Результаты измерений

Затем я посчитал для каждого  $U_{\rm H}$   $Q=\frac{U_{\rm H}U_{\rm 9}}{R_{\rm 9}}$  и  $R_{\rm H}=R_{\rm 9}\frac{U_{\rm H}}{U_{\rm 9}}$ , посчитал их погрешности и построил графики Q(R) (рис. 2).

На графиках также изображена линейная аппроксимация, которая использовалась, чтобы найти  $R_0$  — сопротивление при Q=0, т.е. при температуре термостата, и  $\frac{dQ}{dR}$  в той же точке. Параметры аппроксимаций приведены в таблице 2.

Таблица 2: Параметры аппроксимации

| $t, ^{\circ}C$               |               | 30              | 40              | 50              | 60                |
|------------------------------|---------------|-----------------|-----------------|-----------------|-------------------|
| 0 /                          |               | , ,             | $153,45\pm0,13$ | , ,             | , ,               |
| $\frac{dQ}{dR}, \frac{B}{O}$ | <u>r</u><br>4 | $0,069\pm0,008$ | $0.073\pm0,010$ | $0,09 \pm 0,02$ | $0,084 \pm 0,015$ |

По этим данным я построил график  $R_0(t)$  (рис. 3).

Он был также аппроксимирован линейно, параметры:  $R_{0^{\circ}\mathrm{C}} = (147.8 \pm 0.3)$  Ом,  $\frac{dR}{dT} = (0.142 \pm 0.006) \frac{\mathrm{O}_{\mathrm{M}}}{\mathrm{K}}$ , соответственно температурный коэффициент сопротивления получился  $\alpha = (9.6 \pm 0.4) \cdot 10^{-4} \, \mathrm{K}^{-1}$ , что по порядку величины совпадает с табличными данными для металлов.

Рис. 2: Графики Q(R) для разных температур



Таблица 3: Коэффициент теплопроводности

| t, °C                                                                            | 30              | 40              | 50              | 60              |
|----------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|
| $\varkappa, \frac{\operatorname{Br} \cdot \operatorname{K}}{\operatorname{M}^2}$ | $0,022\pm0,003$ | $0,024\pm0,003$ | $0,030\pm0,006$ | $0,027\pm0,005$ |

Затем по (7) был посчитан коэффициент теплопроводности. Результаты приведены в таблице 3 и на рис. 4.

По порядку величины результаты совпадают с табличными, однако разброс соответствующих температур больше, чем должен быть (где-то от  $-20^{\circ}\mathrm{C}$  до  $100^{\circ}\mathrm{C}$ ).

Из графика я получил значение для степени зависимости  $\beta$ :

$$\beta = 2.5 \pm 2.2 \tag{8}$$

Точность результата фактически не позволяет ничего сказать. Возможные причины такого плохого результата: мы не дождались установления теплового равновесия, утечки тепла через саму проволоку, разница температур была слишком большой для приближённой формулы (6) и следовало использовать (5), хотя это было бы сложно.

Рис. 3: График  $R_0(t)$ 



Рис. 4: График  $\ln \varkappa (\ln T)$ 

