

Grundbegriffe der Informatik Tutorium 38

Wörter und Formale Sprachen
Patrick Fetzer, uxkln@student.kit.edu | 01.11.2018

Hinweise zur Abgabe

- Blätter vollständig nutzen, nicht ein Blatt pro Aufgabe
- Aufgabenblatt nicht mit abgeben
- Nur antworten, was gefragt wurde (keine falschen oder nicht gefragten Lösungswege)
- "geben Sie anërfordert keinen Beweis
- Lieber sprachlich erklären, wenn man Probleme mit formalen Beweisen hat (falls nicht explizit einer gefordert ist)
- Genau schreiben, warum die Behauptung aus dem folgt, was ihr gerade bewiesen habt
- Unterscheidet Element und Teilmenge: $x \in A$ oder $\{x\} \subset A$
- Vereinigung ist ∪ und nicht +

Typische Fehler

- Sprachlich: A oder B ist die leere Menge
- Formal: $A = \emptyset \lor B = \emptyset$ Nicht: $A \lor B = \emptyset$
- Leere Menge ist ∅ oder {}, nicht 0

Seien $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6, 7\}, C = \{5, 6, 7\}.$ Bestimme

- $A \cup B$
- $A \cup C$
- $A \cap B$
- $A \cap C$

sowie die Kardinalität dieser Mengen.

Lösung:

- $A \cup B = \{1, 2, 3, 4, 5, 6, 7, \}$ und $|A \cup B| = 7$
- $A \cup B = \{1, 2, 3, 4, 5, 6, 7, \}$ und $|A \cup C| = 7$
- $A \cap B = \{3, 4\} \text{ und } |A \cap B| = 2$
- $A \cap C = \emptyset$ und $|\emptyset| = 0$

Aufgabe aus WS16/17

Es seinen A,B und C Mengen. Beweisen oder widerlegen Sie:

$$A \setminus (B \setminus C) = (A \setminus B) \setminus C$$

Widerlegung durch Gegenbeispiel

Seien $A = \{1, 2, 3\}, B = \{3, 4, 5\}$ und $C = \{3\}$. Dann ist

$$\{1,2,3\}\setminus (\{3,4,5\}\setminus \{3\})=\{1,2,3\}\setminus \{4,5\}=\{1,2,3\}\neq \{1,2,3\}$$

$$\{1,2\} = \{1,2\} \setminus \{3\} = (\{1,2,3\} \setminus \{3,4,5\}) \setminus \{3\}$$

Mengenäquivalenz

Zeigen Sie

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

- " \subseteq ": Sei $x \in A \cup (B \cap C)$. Dann ist $x \in A$ oder $x \in (B \cap C)$
 - Falls $x \in A$, dann gilt auch $x \in (A \cup B)$ und $x \in (A \cup C)$. Also insbesondere $x \in (A \cup B) \cap (A \cup C)$.
 - Falls $x \in (B \cap C)$, dann gilt auch $x \in (A \cup B)$ und $x \in (B \cup C)$. Also insbesondere $x \in (A \cup B) \cap (A \cup C)$.
- "⊇": $x \in (A \cup B) \cap (A \cup C)$. Dann liegt x in $(A \cup B)$ und $(A \cup C)$. Also liegt x entweder in A oder in (B und C). Folglich gilt $x \in A \cup (A \cap C)$.
- Insgesamt ist also $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Aufgabe aus WS16/17

Es sei M eine Menge und es seien $A \subseteq M$ und $B \subseteq M$. Beweisen Sie: $M \setminus (A \cap B) = (M \setminus A) \cup (M \setminus B)$

- "⊆": Sei $x \in M \setminus (A \cap B)$. Dann ist $x \in M$ und $x \notin A$ oder $x \notin B$. Somit ist
 - $x \in M$ und $x \notin A$ oder
 - $x \in M$ und $x \notin B$.

Also ist $x \in (M \backslash A)$ oder $(M \backslash B)$, folglich also $x \in (M \backslash A) \cup (M \backslash B)$.

- "⊇": Sei $x \in (M \setminus A) \cup (M \setminus B)$. Dann ist $x \in (M \setminus A)$ oder $x \in (M \setminus B)$. Somit ist
 - $x \in M$ und $x \notin A$ oder

Patrick Fetzer, uxkln@student.kit.edu - Grundbegriffe der Informatik

 $\mathbf{x} \in M$ und $x \notin B$.

Also ist $x \in M$, und $x \notin A$ oder $x \notin B$. Dann ist $x \in M$ und $x \notin (A \cap B)$, folglich also $x \in M \setminus (A \cap B)$.

Konkatenation

Durch Konkatenation werden einzelne Buchstaben aus einem Alphabet miteinander verbunden.

- Symbol: ·, also zwei Buchstaben a und b miteinander konkateniert: a · b.
- Nicht kommutativ : $a \cdot b \neq b \cdot a$
- Aber assoziativ : $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Kurzschreibweise : Ohne Punkte , also $a \cdot b = ab$

Wörter: Intuitivere Definition

Ein Wort w entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

→ Also Abfolge von Zeichen über ein Alphabet A.

Sei $A := \{a, b, c\}.$

- Mögliche Worte: $w_1 := a \cdot b$, $w_2 = b \cdot c \cdot c$, $w_3 = a \cdot c \cdot c \cdot b \cdot a$.
- Keine möglichen Worte: d.

Wörter: Abstraktere Definition

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung $w: \mathbb{Z}_n \to A$. Dabei heißt n die Länge |w| des Wortes.

- $\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$ $\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$
- Länge oder Kardinalität eines Wortes: |w|. |abcde| = 5.
- Wort w = abdec als Relation aufgeschrieben: $w = \{(0, a), (1, b), (2, d), (3, e), (4, c)\}$. Also w(0) = a, w(1) = b, w(2) = d, ...
 - Damit sieht man auch: $|w| = |\{(0, a), (1, b), (2, d), (3, e), (4, c)\}| = 5.$

Wort der Kardinalität 0?

Das leere Wort

Das leere Wort ε ist definiert ein Wort mit Kardinalität 0 , also mit 0 Zeichen.

- Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden: $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$.
- $|\{\varepsilon\}| = 1$, die Menge ist nicht leer! Das leere Wort ist nicht *nichts*! (Vergleiche leere Menge)
- $|\varepsilon|=0.$
- Formale Definition:ε : ∅ → ∅

Mehr über Wörter

A^n

Zu einem Alphabet A ist Aⁿ definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$ $A^{1} = A, A^{0} = \{\varepsilon\}.$

Die Menge aller Wörter beliebiger Länge:

- $A^* := \bigcup_{i \in \mathbb{N}_0} A_i$
- $A := \{a, b, c\}$. $aa \in A^*$, $abcabcabc \in A^*$, $aaaa \in A^*$, $\varepsilon \in A^*$.

Mehr über Wörter

Wort Potenzen

Sich direkt wiederholende Teilworte kann man als Wortpotenz darstellen , daher $w_i^n = w_i \cdot w_i \cdots w_i$ (n × mal).

- $a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$
- $a^3c^2b^6 = aaaccbbbbbbb.$
- $b \cdot a \cdot (n \cdot a)^2 = banana$.

Übung zu Wörter

Sei A ein Alphabet.

Übung zu Wörter

- 1. Finde Abbildung $f: A^* \to A^*$, sodass für alle $w \in A^*$ gilt:
 - $2\cdot |w|=|f(w)|.$
- 2. Finde Abbildung $g: A^* \to A^*$, sodass für alle $w \in A^*$ gilt: |w| + 1 = |g(w)|.
- 3. Sind f, g injektiv und/oder surjektiv?
- 1. $f: A^* \rightarrow A^*, w \mapsto w \cdot w$.
- 2. $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$.

Übung zu Wörter

- 1. $f: A^* \rightarrow A^*, w \mapsto w \cdot w$.
 - f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.
 - f ist nicht surjektiv, denn z.B. bildet nichts auf $x \in A$ ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2. $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$.
 - g ist injektiv.
 - g ist nicht surjektiv, denn z.B. bildet nichts auf ε ab.

Formale Sprache

Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

- Zufälliges Beispiel: $A := \{b, n, a\}$.
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$
 - $=\{w: w=bana(na)^k, k\in\mathbb{N}\}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$
- Formale Sprachen sind also nicht zwangsweise endliche Mengen.
- Praktischeres Beispiel: A := {w : w ist ein ASCII Symbol }.
- $L_4 := \{ w : w \text{ ist korrekt kompilierendes Java-Programm } \}$

Übung zu formalen Sprachen

$$A := \{a, b\}$$

- Sprache L aller Wörter über A, die nicht das Teilwort ab enthalten?
 - Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!
 - $L = \{w_1 \cdot w_2 : w_1 \in \{b\}^* \text{ und } w_2 \in \{a\}^*\}$
 - Andere Möglichkeit: Suche Wörter mit ab und nehme diese Weg.
 - $L = \{a, b\}^* \setminus \{w_1 \cdot ab \cdot w_2 : w_1, w_2 \in \{a, b\}^*\}$

Übung zu formalen Sprachen

Sei
$$A := \{a, b\}, B := \{0, 1\}.$$

Aufgabe zu formalen Sprachen

- 1. Sprache $L_1 \subseteq A^*$ von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache $L_2 \subseteq A^*$ von Wörtern, die gerade Zahl von *a*'s enthält.
- 3. Sprache $L_3 \subseteq B^*$ von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
- 1. $L_1 = \{ w = w_1 b w_2 b w_3 b w_4 : w_1, w_2, w_3, w_4 \in A^* \}$
- 2. $L_2 = \{w = (w_1 a w_2 a w_3)^* : w_1, w_2, w_3 \in \{b\}^*\}$ (Ist da ε drin?)
- 3. $L_3 = \{w = w \cdot 0 : w \in B^*\}$

Aussagenlogik

- Das wars erst mal zu formalen Sprachen.
- Heute ist Donnerstag.
- Die Menge aller M\u00e4nner dieser Welt ist disjunkt zur Menge aller Frauen dieser Welt.

Das sind alles Aussagen. Aussagen sind entweder wahr oder falsch.

Aussagenlogik

Wir kapseln Aussagen und verwendet Variablen dafür.

- A := "Die Straße ist nass."
- B := "Es regnet."

Aussagen lassen sich verknüpfen:

- **Logisches Und:** $A \wedge B = A$ und B = Die Straße ist nass und esregnet.
- Logisches Oder: $A \lor B = A$ oder B = Die Straße ist nass oder es regnet. Es kann auch beides wahr sein.
- Negierung: $\neg A$ = nicht A = Die Straße ist nicht nass.
- Implikation: $A \rightarrow B = \text{Aus } A \text{ folgt } B = \text{Wenn die Straße nass ist,}$ dann regnet es.
- Aguivalenz:pause $A \leftrightarrow B = A$ und B sind aguivalent = Die Straße ist genau dann nass, wenn es regnet.
 - $A \leftrightarrow B = (A \rightarrow B) \land (B \rightarrow A)$, also die Straße ist nass wenn es regnet und es regnet wenn die Straße nass ist.

Übung zu Aussagenlogik

- A := "Die Straße ist nass."
- B := "Es regnet."
- $C := \pi$ ist gleich 3."
- Was ist $B \rightarrow C$? "Wenn es regnet, ist π gleich 3."

<i>X</i> ₁	<i>X</i> ₂	$\neg x_1$	$x_1 \wedge x_2$	$x_1 \vee x_2$	$x_1 \rightarrow x_2$
f	f	w	f	f	W
f	w	w	f	w	w
W	f	f	f	w	f
W	w	f	w	w	w

Syntax der Aussagenlogik

Menge der Aussagevariablen:

$$Var_{AL} \subseteq \{P_i : i \in \mathbb{N}_0\} \text{ oder } \{P, Q, R, S, \dots\}$$

Alphabet der Aussagenlogik:

$$A_{AL} = \{(,),\neg,\wedge,\vee,\rightarrow,\leftrightarrow\} \cup Var_{AL}$$

Patrick Fetzer, uxkln@student.kit.edu - Grundbegriffe der Informatik

Boolesche Funktionen

Boolesche Funktionen

Eine boolsche Funktion ist eine Abbildung der Form $f : \mathbb{B}^n \to \mathbb{B}$ mit $\mathbb{B} = \{w, f\}$.

Typische Boolsche Funktionen: $b_{\neg}(x) = \neg x$, $b_{\lor}(x_1, x_2) = x_1 \lor x_2 \ldots$

Hinweise

Mengen

Wörter 0000000 Formale Sprachen

Aussagenlogik

Interpretationen

Interpretation

Eine Interpretation ist eine Abbildung $I: V \to \mathbb{B}$, die einer Variablenmenge eine "Interpretation", also wahr oder falsch zuordnet.

Weiter legt man $val_i(F)$ als Auswertung einer aussagenlogischer Formel F fest.

$$val_I(X) = I(X)$$

 $val_I(\neg G) = b_{\neg}(val_I(G))$
 $val_I(G \land H) = b_{\land}(val_I(G), val_I(H))$
 $val_I(G \lor H) = b_{\lor}(val_I(G)val_I(H))$
 $val_I(G \to H) = b_{\rightarrow}(val_I(G), val_I(H))$

Übung zu Interpretationen

- Wie viele Interpretationen gibt es bei k = 1, 2, 3 Variablen?
- Wie viele Interpretationen gibt es bei k+1 Variablen im Vergleich zu k Variablen?

Übung zur Aussagenlogik

Sei A := w, B := w, C := f.

- Ist $(A \land B) \lor \neg C$ wahr oder falsch? $(A \land B) \lor \neg C = (w \land w) \lor \neg f = w \lor \neg f = w \lor w = w$, die Aussage ist also wahr.
- Ist $\neg (A \lor A)$ wahr oder falsch? Falsch! Wann ist $\neg (A \lor A)$ im allgemeinen wahr? Genau dann, wenn $\neg A$ wahr ist.

Äguivalenz von Aussagen

Erinnerung: $A \leftrightarrow B$ heißt: $(A \rightarrow B) \land (B \rightarrow A)$.

Wenn zwei Aussagen äquivalent sind, sind ihre Wahrheitswerte immer gleich, wenn die Wahrheitswerte, von denen sie abhängen, gleich sind. Mann sagt und schreibt dann: A ist genau dann wahr, wenn B wahr ist.

 $\neg (A \lor A)$ ist genau dann wahr, wenn $\neg A$ wahr ist, also gilt: $\neg (A \lor A) \leftrightarrow \neg A$.

Mehr zu Äquivalenz

Alternative Definition zu Äquivalenz

Zwei Formeln G und H heißen äquivalent, wenn für jede Interpretation gilt $val_I(G) = val_I(H)$.

Vorher Äquivalenz von Formeln unter gegebener Interpretation, diesmal Äquivalenz von Formeln unter beliebiger Interpretation.

Bemerkung

- Man schreibt $G \equiv H$
- $\blacksquare \mathbb{B}^V \to \mathbb{B} : I \mapsto val_I(G)$

Beispiele

$$(\neg(\neg P))$$
 ist äquivalent zu P $(\neg(P \land Q))$ ist äquivalent zu $((\neg P) \lor (\neg Q))$

Beispiele zu Äquivalenz

- Ein Wort w hat die Länge $n \leftrightarrow |w| = n$.
- Die Vereinigung zweier Mengen A und B hat die Kardinalität |A| + |B| \leftrightarrow $A \cap B = \emptyset \leftrightarrow A$ und B sind disjunkt.
- ullet p ist eine rationale Zahl \leftrightarrow p lässt sich darstellen als $p = \frac{a}{b}, a \in \mathbb{Z}, b \in \mathbb{N} \leftrightarrow p \in \mathbb{Q}.$

Wahrheitstabellen

 $(((P \land Q) \lor Q) \to (P \land \neg Q))$

P	Q	$(P \wedge Q)$	$\vee Q$	\rightarrow	$(P \land \neg Q)$
W	w	W	W	f	f
W	f	f	f	w	w
f	w	f	W	f	f
f	f	f	f	w	f

Übungen zu Aussagenlogik

Übungen zu Aussagenlogik

- Schreibe Wahrheitstabellen zu den Formeln um den Wahrheitsgehalt festzustellen.
- $\neg (P \land Q) \land \neg (Q \land P)$
- $(P \land Q \land R) \leftrightarrow (\neg P \lor Q)$
- $\bullet (A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))$
- Welche dieser Aussagen sind wahr?
- $\neg (P \land Q) = \neg P \lor \neg Q$
- $P \land P = P \lor P$
- $(P \lor Q) \land R = (P \land R) \lor (Q \land R)$

Wahrheitstabellen

Α	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$
W	w	f	w	W	W	W
w	f	f	f	W	f	f
f	w	w	f	w	w	f
f	f	w	f	f	w	w

Aufgabe

Finde einen logischen Ausdruck in A und B unter Verwendung von \land, \lor und $\neg,$ der die Aussage "Entweder A oder B" repräsentiert

Hinweise

Mengen

Wörter

Formale Sprachen

Aussagenlogik

Wahrheitstabellen

Finde einen logischen Ausdruck in A und B unter Verwendung von \wedge, \vee und ¬, der die Aussage "Entweder A oder B" repräsentiert

Lösung

Α	В	$A \wedge \neg B$	$\neg A \wedge B$	$(A \land \neg B) \lor (\neg A \land B)$
W	W	f	f	f
w	f	w	f	W
f	w	f	w	W
f	f	f	f	f

Weitere Begriffe

Tautologie

Die Formel G ist eine Tautologie (oder allgemeingültig), wenn G für alle Interpretationen wahr ist.

Erfüllbarkeit

Eine Formel G ist erfüllbar, wenn sie für mindestens eine Interpretation wahr ist.

Lemma

Wenn $G \equiv H$ ist, dann ist $G \leftrightarrow H$ eine Tautologie.

Übung zu Tautologien

Sind das Tautologien?

$$\bullet (G \to (H \to K)) \to ((G \to H) \to (G \to K))$$

$$(\neg P \rightarrow Q) \land R \lor P$$

$$G \rightarrow (H \rightarrow G)$$

$$(\neg P \rightarrow \neg Q) \rightarrow ((\neg P \rightarrow Q) \rightarrow P)$$

Patrick Fetzer, uxkln@student.kit.edu - Grundbegriffe der Informatik

35/39

Übung zu Tautologien Lösung

Sind das Tautologien?

$$lacksquare (G
ightarrow (H
ightarrow K))
ightarrow ((G
ightarrow H)
ightarrow (G
ightarrow K))$$
 Ja

•
$$(\neg P \rightarrow Q) \land R \lor P$$
 Nein

$$lacksquare$$
 $G o (H o G)$ Ja

$$lacksquare (\neg P
ightarrow \neg Q)
ightarrow ((\neg P
ightarrow Q)
ightarrow P)$$
 Ja

Übung zu Erfüllbarkeit

Sind die folgenden Ausdrücke erfüllbar?

- $\neg (A \lor \neg A)$
- $(P \land \neg Q) \lor (\neg P \land R)$

Übung zu Erfüllbarkeit Lösung

Sind die folgenden Ausdrücke erfüllbar?

- $\neg (A \lor \neg A)$ nein
- $(P \land \neg Q) \lor (\neg P \land R)$

Hinweise

Mengen

Wörter

Formale Sprachen

Aussagenlogik 0000000000000000000 01.11.2018