Formelsammlung Statistik

Inhalt	
Beschreibende Statistik	. 2
Relative Häufigkeiten	. 2
Bedingte Häufigkeiten	. 2
Arithmetisches Mittel	. 2
Geometrisches Mittel	. 2
Median	. 2
Quartile	. 3
Modus	. 3
Varianz	. 3
Standardabweichung	. 3
Variationskoeffizient	. 3
Gini-Koeffizient	. 3
Chiquadrat	. 4
Cramers V	. 4
Kovarianz	. 4
Korrelation	. 4
Spearmansche Rangkorrelation	. 4
Regressionsgerade	. 4
Bestimmtheitsmaß	. 5
Wahrscheinlichkeitstheorie	. 5
Rechnen mit Wahrscheinlichkeiten	. 5
Rechnen mit bedingten Wahrscheinlichkeiten	. 5
Wahrscheinlichkeiten von unabhängigen Ereignissen	. 5
Binomialkoeffizient	. 5
Fakultät	. 5
Urnenmodell – Ziehen ohne Zurücklegen – Hypergeometrische Verteilung	. 5
Urnenmodell – Ziehen mit Zurücklegen - Binomialverteilung	. 6
Normalverteilung	. 6
Standard-Normalverteilung	. 6
Rechnen mit Standard-Normalverteilung	. 7
Schließende Statistik	. 7

Schätzen und Testen einer relativen Häufigkeit	7
Schätzen und Testen eines Mittelwerts	9
p-Wert	10
Testen von Hypothesen über Regressionskoeffizienten	10
Standardnormalverteilung	12
Binomialkoeffizient	13
Fakultäten	14

Beschreibende Statistik

Relative Häufigkeiten

$$p_{ij} = \frac{h_{ij}}{N}$$

Mit i=Zeilen und j=Spalten

Bedingte Häufigkeiten

$$p_{j|i=k} = \frac{h_{kj}}{N_{k.}} \quad \text{ oder } p_{i|j=l} = \frac{h_{il}}{N_{.l}}$$

Mit k als einer bestimmten Zeile bzw. I als einer bestimmten Spalte

Arithmetisches Mittel

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$\bar{x} = \frac{\sum_{i=1}^k x_i \cdot h_i}{N} = \sum_{i=1}^k x_i \cdot \frac{h_i}{N} = \sum_{i=1}^k x_i \cdot p_i$$

Mit k= Anzahl der verschiedenen Merkmalsausprägungen, h_i = absolute Häufigkeit der Merkmalsausprägungen und p_i = relative Häufigkeit der Merkmalsausprägungen

Geometrisches Mittel

$$g = \sqrt[n]{x_1 \cdot x_2 \cdot, \dots, \cdot x_n}$$

Median

$$\tilde{x} = \begin{cases} x_{\frac{n+1}{2}} & \text{für n ungerade} \\ \frac{1}{2} \cdot \left(x_{\frac{n}{2}} + x_{\frac{n}{2}+1} \right) & \text{für n gerade} \end{cases}$$

Quartile

$$Q_p = \begin{cases} x_{\lceil n \cdot p \rceil} & \text{für n} \cdot \text{p nicht ganzzahlig} \\ \frac{1}{2} \cdot \left(x_{n \cdot p} + x_{n \cdot p + 1} \right) & \text{für n} \cdot \text{p ganzzahlig} \end{cases}$$

Mit $[n \cdot p]$ die kleinste ganze Zahl, die größer oder gleich $n \cdot p$ ist (einfach $n \cdot p$ aufrunden bis zur nächsten vollen Zahl). Mit p als p-tes Quartil (z.B. $Q_{0,25}$, $Q_{0,75}$). Achtung. $Q_{0,50}$ =Median.

Modus

 $x_{mod} =$ Merkmalsausprägung mit der größten relativen Häufigkeit

Varianz

aus Rohdaten
$$s^2 = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N}$$

aus (absoluten) Häufigkeiten
$$s^2 = \frac{\sum_{i=1}^k (x_i - \bar{x})^2 \cdot h_i}{N}$$

aus relativen Häufigkeiten
$$s^2 = \sum_{i=1}^k (x_i - \bar{x})^2 \cdot p_i$$

Standardabweichung

$$s = \sqrt{s^2}$$

Variationskoeffizient

$$v = \frac{s}{\bar{x}}$$

Mit s = Standardabweichung und \bar{x} als Mittelwert des Merkmals

Gini-Koeffizient

Normierter Gini-Koeffizient = (Fläche unter der Diagonale – Fläche unter der Lorenzkurve) / Fläche Maximalkonzentration

Wobei die Fläche der Maximalkonzentration $=\frac{1}{2}\cdot\left(1-\frac{1}{N}\right)$ mit N=Anzahl der Erhebungseinheiten

Chiquadrat

$$\chi^2 = N \cdot \sum \frac{\left(p_{ij}^b - p_{ij}^e\right)^2}{p_{ij}^e}$$

Mit b=beobachtet und e=erwartet.

wobei $p_{ij}^e = p_{.j}^b \cdot p_{i.}^b$ (Produkt der beobachteten Randhäufigkeiten)

Cramers V

$$V = \sqrt{\frac{\chi^2}{N \cdot (\min(k, l) - 1)}}$$

Mit k und l als Anzahl der Merkmalsausprägungen der beiden Merkmale

Kovarianz

$$s_{xy} = \frac{\sum_{i=1}^{N} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{N}$$

Korrelation

$$r = \frac{s_{xy}}{s_x \cdot s_y}$$

Mit s_x und s_y als Standardabweichung der Merkmale x und y.

Spearmansche Rangkorrelation

$$r = \frac{s_{uv}}{s_u \cdot s_v}$$

Mit s_u und s_v als Standardabweichung der Ränge u und v zweier Merkmale. Und s_{uv} als Kovarianz der Ränge u und v zweier Merkmale

Regressionsgerade

$$y = b_1 \cdot x + b_2$$

Mit dem Regressionskoeffizienten (Steigung): $b_1 = \frac{s_{xy}}{s_x^2}$

Und der Konstante (Achsenabschnitt): $b_2 = \bar{y} - b_1 \cdot \bar{x}$

Y wird häufig als Regressand oder abhängige Variable bezeichnet, x als Regressor oder unabhängige Variable, b_1 als Regressionskoeffizient und b_2 als Konstante.

4

Bestimmtheitsmaß

$$B = r^2$$

Mit r als Korrelationskoeffizient

Wahrscheinlichkeitstheorie

Rechnen mit Wahrscheinlichkeiten

$$Pr(x = a) = \frac{Anzahl \text{ der günstigen Ereignisse}}{Anzahl \text{ möglicher Ereignisse}}$$

Rechnen mit bedingten Wahrscheinlichkeiten

$$\Pr(x = a \mid x \neq b) = \frac{\text{Anzahl der günstigen Ereignisse}}{\text{Anzahl möglicher Ereignisse-Anzahl der unmöglichen Ereignisse (b)}}$$

Mit a = günstiges Ereignis und b=unmögliche Ereignis

Wahrscheinlichkeiten von unabhängigen Ereignissen

$$Pr(x = a \& y = c) = Pr(x = a) \cdot Pr(y = c)$$

Binomialkoeffizient

$$\binom{a}{b} = \frac{a!}{b! \cdot (a-b)!}$$

Fakultät

$$a! = \prod_{k=1}^{a} k = 1 \cdot 2 \cdot \dots \cdot a$$

Urnenmodell - Ziehen ohne Zurücklegen - Hypergeometrische Verteilung

$$\Pr(x = a) = \frac{\binom{A}{a} \cdot \binom{N-A}{n-a}}{\binom{N}{n}}$$

N Kugeln, A weiße, N-A schwarze, n werden zufällig gezogen, x = a ... Anzahl der gezogenen weißen Kugeln, n-a Anzahl der gezogenen schwarzen Kugeln

5

Theoretischer Mittelwert: $\mu = n \cdot \frac{A}{N}$

Theoretische Varianz:
$$\sigma^2 = n \cdot \frac{A}{N} \cdot \left(1 - \frac{A}{N}\right) \cdot \frac{N-n}{N-1}$$

Achtung: Bei großen Stichprobenumfängen (n>100) nähert sich die hypergeometrische Verteilung der Normalverteilung an → zentraler Grenzwertsatz der Statistik → Erwartungswert und theoretische Varianz dieser Normalverteilung entsprechen jenen der hypergeometrischen Verteilung

Urnenmodell - Ziehen mit Zurücklegen - Binomialverteilung

$$Pr(x=a) = \binom{n}{a} \cdot \pi^a \cdot (1-\pi)^{n-a}$$

$$Mit \pi = A/N \text{ und } 1 - \pi = 1 - A/N$$

N Kugeln, A weiße, N-A schwarze, n werden zufällig gezogen, $x = a \dots$ Anzahl der gezogenen weißen Kugeln, n-a Anzahl der gezogenen schwarzen Kugeln

Theoretischer Mittelwert: $\mu = n \cdot \pi$

Theoretische Varianz: $\sigma^2 = n \cdot \pi \cdot \left(1 - \pi\right)$

Achtung: Binomialverteilung als Näherungslösung für Hypergeometrische Verteilung bei großen Grundgesamtheiten und kleinen Stichproben

Normalverteilung

$$f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot e^{-\frac{1}{2} \cdot \frac{(x-\mu)^2}{\sigma^2}}$$

Mittelwert: μ

Varianz: σ^2

$$Pr(x \le x_0) = \int_{-\infty}^{x_0} f(x) dx = \int_{-\infty}^{x_0} \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot e^{-\frac{1}{2} \cdot \frac{(x_0 - \mu)^2}{\sigma^2}} dx$$

Standard-Normalverteilung

$$f(u) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2}u^2}$$

 $\text{Mittelwert: } \mu = 0$

Varianz: $\sigma^2 = 1$

$$Pr(u \le u_0) = \int_{-\infty}^{u_0} f(u) du = \int_{-\infty}^{u_0} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2} \cdot u_0^2} du$$

Standardisierung der Normalverteilung durch $u_0 = \frac{x_0 - \mu}{\sigma}$

Mit μ = theoretischer Mittelwert und σ = Standardabweichung der Zufallsvariable x

Rechnen mit Standard-Normalverteilung

Gegenwahrscheinlichkeit: $Pr(u > u_0) = 1 - Pr(u \le u_0)$

Negative Werte: $Pr(u \le -u_0) = Pr(u > u_0) = 1 - Pr(u \le u_0)$

Intervalle: $Pr(u_1 \le u \le u_2) = Pr(u \le u_2) - Pr(u \le u_1)$

Schließende Statistik

Punktschätzer (aus der Stichprobe)	Parameter (in der Grundgesamtheit)
Relative Häufigkeit p	Relative Häufigkeit π
Mittelwert $ar{x}$	Mittelwert μ
Stichprobenvarianz s^2	Varianz σ^2
Differenz zweier relativer Häufigkeiten (oder Mittelwerte) \boldsymbol{d}	Differenz zweier relativer Häufigkeiten (oder Mittelwerte) δ
Chiquadrat χ^2_{err}	Chiquadrat χ^2
Korrelationskoeffizient r	Korrelationskoeffizient $ ho$
Regressionskoeffizient b_1 , b_2	Regressionskoeffizient eta_1 , eta_2

Schätzen und Testen einer relativen Häufigkeit

Hypergeometrische Verteilung

Theoretischer Erwartungswert: $\mu = n \cdot \pi$

Theoretische Varianz: $\sigma^2 = n \cdot \pi \cdot (1-\pi) \cdot \frac{N-n}{N-1}$

Theoretische Varianz bei großen Grundgesamtheiten: $\sigma^2 = n \cdot \pi \cdot (1-\pi)$

Mit $\pi = A/N$ als Häufigkeit in der Grundgesamtheit und N=Grundgesamtheit

Konfidenzintervall für Punktschätzer π zur Sicherheit 1- α in großen Grundgesamtheiten und großen Stichproben

obere Intervallgrenze :
$$\pi_o = p + u_{1-\alpha/2} \cdot \sqrt{\frac{p \cdot (1-p)}{n}}$$

untere Intervallgrenze:
$$\pi_u = p - u_{1-\alpha/2} \cdot \sqrt{\frac{p \cdot (1-p)}{n}}$$

Mit p = a/n als relativer Häufigkeit in der Stichprobe und n=Stichprobenumfang

 $\textbf{Zweiseitiges} \text{ Testen von Hypothesen zum Signifikanzniveau } \alpha \text{ \"{u}ber eine relative H\"{a}ufigkeit}$

$$H_0$$
: $π = π_0$ und H_1 : $π ≠ π_0$

Zweiseitiger Test: obere Schranke :
$$p_o = \pi + u_{1-\alpha/2} \cdot \sqrt{\frac{\pi \cdot (1-\pi)}{n}}$$

untere Schranke:
$$p_u = \pi - u_{1-\alpha/2} \cdot \sqrt{\frac{\pi \cdot (1-\pi)}{n}}$$

Beibehaltung von H_0 wenn gilt $p \in [p_u; p_o]$, Akzeptanz von H_1 wenn $p \notin [p_u; p_o]$

 $\textbf{Einseitiges} \ \text{Testen von Hypothesen zum Signifikanzniveau } \alpha \ \text{\"{u}} \text{ber eine relative H\"{a}} \text{ufigkeit}$

 $H_0: \pi \leq \pi_0 \text{ und } H_1: \pi > \pi_0$

Einseitiger Test: obere Schranke :
$$p_o = \pi + u_{1-\alpha} \cdot \sqrt{\frac{\pi \cdot (1-\pi)}{n}}$$

Beibehaltung von H_0 wenn gilt $p \le p_0$, Akzeptanz von H_1 wenn $p > p_0$

Einseitiges Testen von Hypothesen zum Signifikanzniveau α über eine relative Häufigkeit H_0 : $\pi \ge \pi_0$ und H_1 : $\pi < \pi_0$

Einseitiger Test: untere Schranke :
$$p_u = \pi - u_{1-\alpha} \cdot \sqrt{\frac{\pi \cdot (1-\pi)}{n}}$$

Beibehaltung von H_0 wenn gilt $p \ge p_u$, Akzeptanz von H_1 wenn $p < p_u$

Schätzen und Testen eines Mittelwerts

Bei großen Stichproben annähernd normalverteilt

 $\mu = \bar{x}$ Theoretischer Erwartungswert:

 $\sigma_{\chi}^2 = \frac{\sigma^2}{n} \cdot \frac{N-n}{N-1}$ Theoretische Varianz:

Theoretische Varianz bei großen Grundgesamtheiten: $\sigma_x^2 = \frac{\sigma^2}{n}$

Mit N = Anzahl der Beobachtungen in der Grundgesamtheit und n=Stichprobenumfang

Konfidenzintervall für Punktschätzer μ zur Sicherheit 1- α in großen Grundgesamtheiten und großen Stichproben

obere Intervallgrenze : $\mu_0 = \bar{x} + u_{1-\alpha/2} \cdot \sqrt{\frac{s^2}{n}}$

 $\mu_u = \bar{x} - u_{1-\alpha/2} \cdot \sqrt{\frac{s^2}{n}}$ untere Intervallgrenze:

Mit \bar{x} = Mittelwert in der Stichprobe, s² als Stichprobenvarianz und n=Stichprobenumfang

Zweiseitiges Testen von Hypothesen zum Signifikanzniveau α über einen Mittelwert

 H_0 : $\mu = \mu_0$ und H_1 : $\mu \neq \mu_0$

Zweiseitiger Test:

obere Schranke : $\bar{x}_o = \mu + u_{1-\alpha/2} \cdot \sqrt{\frac{\sigma^2}{n}}$ Ersetzen mit Stichprobenvarianz s² wenn σ^2 unbekannt ist

Beibehaltung von H_0 wenn gilt $\bar{x} \in [\bar{x}_u; \bar{x}_o]$, Akzeptanz von H_1 wenn $\bar{x} \notin [\bar{x}_u; \bar{x}_o]$

Einseitiges Testen von Hypothesen zum Signifikanzniveau α über einen Mittelwert

 H_0 : $\mu \le \mu_0$ und H_1 : $\mu > \mu_0$

Einseitiger Test:

obere Schranke :
$$\bar{x}_o = \mu + u_{1-\alpha} \cdot \sqrt{\frac{\sigma^2}{n}}$$

Beibehaltung von H_0 wenn gilt $\bar{x} \leq \bar{x}_o$, Akzeptanz von H_1 wenn $\bar{x} > \bar{x}_o$

Ersetzen mit Stichprobenvarianz s^2 wenn σ^2 unbekannt ist

10

Einseitiges Testen von Hypothesen zum Signifikanzniveau α über einen Mittelwert

 H_0 : $\mu \ge \mu_0$ und H_1 : $\mu < \mu_0$

Einseitiger Test:

untere Schranke :
$$\bar{x}_u = \mu - u_{1-\alpha} \cdot \sqrt{\frac{\sigma^2}{n}}$$

Beibehaltung von H_0 wenn gilt $\bar{x} \ge \bar{x}_u$, Akzeptanz von H_1 wenn $\bar{x} < \bar{x}_u$

p-Wert

p-Wert ist die Irrtumswahrscheinlichkeit, die gemacht wird wenn man aufgrund der Daten aus der Stichprobe die H₁ akzeptiert obwohl die H₀ zutrifft.

p-Wert bei zweiseitigen Fragestellungen: α₂

p-Wert bei einseitigen Fragestellungen: α1

Beziehung zwischen beiden p-Werten: $\alpha_1 = \alpha_2/2$

Testen von Hypothesen über Regressionskoeffizienten

Regressionsgerade in der Grundgesamtheit $y=\beta_1 \cdot x + \beta_2$

Mit y=abhängige Variable, x=unabhängige Variable, β_1 =Steigung, β_2 =Achsenabschnitt (Konstante)

Zweiseitiges Testen von Hypothesen zum Signifikanzniveau α über die Steigung β_1

 H_0 : $β_1 = 0$ und H_1 : $β_1 \neq 0$

Obere und untere Schranken $b_{1o} = u_{1-\alpha/2} \cdot s_{b1}$ und $b_{1u} = -u_{1-\alpha/2} \cdot s_{b1}$ sind t-verteilt → in großen Stichproben annähernd normalverteilt

zweiseitiger Test:

Obere Schranke:
$$b_{1o} = +u_{1-\alpha/2} \cdot \frac{1-r^2}{n-2} \cdot \frac{s_y^2}{s_x^2}$$

Zweiseitiger Test:

Unter Schranke:
$$b_{1u} = -u_{1-\alpha/2} \cdot \frac{1-r^2}{n-2} \cdot \frac{s_y^2}{s_x^2}$$

Beibehaltung von H_0 wenn $b_1 \in [b_{1u}, b_{1o}]$, Akzeptanz von H_1 wenn $b_1 \notin [b_{1u}, b_{1o}]$

Einseitiges Testen von Hypothesen zum Signifikanzniveau α über die Steigung β_1

 $H_0: \beta_1 \le 0 \text{ und } H_1: \beta_1 > 0$

Einseitiger Test: Obere Schranke:
$$b_{1o} = +u_{1-\alpha} \cdot \frac{1-r^2}{n-2} \cdot \frac{s_y^2}{s_x^2}$$

Beibehaltung von H_0 wenn H_0 wenn $b_1 \le b_{10}$, Akzeptanz von H_1 wenn $b_1 > b_{10}$

Einseitiges Testen von Hypothesen zum Signifikanzniveau α über die Steigung β_1

 H_0 : $\beta_1 \ge 0$ und H_1 : $\beta_1 < 0$

Einseitiger Test: Untere Schranke:
$$b_{1u} = -u_{1-\alpha} \cdot \frac{1-r^2}{n-2} \cdot \frac{s_y^2}{s_x^2}$$

Beibehaltung von H_0 wenn h_0 wenn $b_1 \ge b_{1u}$, Akzeptanz von h_1 wenn $b_1 < b_{1u}$

Tabelle Standardnormalverteilung

$$Pr(u \le u_0) = \int_{-\infty}^{u_0} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2}u_0^2} du$$

Ablesebeispiel: Pr(u≤1,65)=0,9505

u	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0		0,5040	0,5080	0,5120		0,5199	0,5239		0,5319	0,5359
0,1		0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5754
0,2		0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3		0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4		0,6591	0,6628		0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5		0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
	0,7258	0,7291	0,7324		0,7389	0,7422	0,7454		0,7518	0,7549
0,7		0,7612	0,7642	0,7673		0,7734	0,7764		0,7823	0,7852
0,8		0,7910	0,7939	0,7967	0,7996	0,8023	0,8051	0,8079	0,8106	0,8133
0,9		0,8186	0,8212	0,8238		0,8289	0,8315		0,8365	0,8389
1,0		0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686		0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9430	0,9441
1,6	0,9452	0,9463	0,9474	0,9485	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9700	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9762	0,9767
2,0	0,9773	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9865	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9980	0,9980	0,9981
		0,9982							0,9986	0,9986
		0,9987						-		
	-	0,9991		0,9991			0,9992			
		0,9993			0,9994				0,9995	
	0,9995		0,9996		0,9996	0,9996	0,9996		0,9996	0,9997
	0,9997		0,9997	0,9997		0,9997	0,9997	0,9997	0,9998	0,9998
		0,9998			0,9998				0,9998	
		0,9999			0,9999				0,9999	0,9999
	0,9999	0,9999				0,9999	0,9999		0,9999	0,9999
	0,9999		0,9999			0,9999	0,9999		1,0000	1,0000
		1,0000			1,0000	1,0000			1,0000	1,0000
4,0	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000

Tabelle: Binomialkoeffizienten $\binom{n}{k}$

k	0	1	2	3	4	5	6	7	8	9	10
n											
0	1										
1	1	1									
2	1	2	1								
3	1	3	3	1							
4	1	4	6	4	1						
5	1	5	10	10	5	1					
6	1	6	15	20	15	6	1				
7	1	7	21	35	35	21	7	1			
8	1	8	28	56	70	56	28	8	1		
9	1	9	36	84	126	126	84	36	9	1	
10	1	10	45	120	210	252	210	120	45	10	1
11	1	11	55	165	330	462	462	330	165	55	11
12	1	12	66	220	495	792	924	792	495	220	66
13	1	13	78	286	715	1287	1716	1716	1287	715	286
14	1	14	91	364	1001	2002	3003	3432	3003	2002	1001
15	1	15	105	455	1365	3003	5005	6435	6435	5005	3003
16	1	16	120	560	1820	4368	8008	11440	12870	11440	8008
17	1	17	136	680	2380	6188	12376	19448	24310	24310	19448
18	1	18	153	816	3060	8568	18564	31824	43758	48620	43758
19	1	19	171	969	3876	11628	27132	50388	75582	92378	92378
20	1	20	190	1140	4845	15504	38760	77520	125970	167960	184756

Beispiele: $\binom{8}{3} = 56$; $\binom{15}{12} = \binom{15}{15 - 12} = \binom{15}{3} = 455$

Fakultät

Jede natürliche Zahl n hat eine Fakultät. Sie ist das Produkt der natürlichen Zahlen, die kleiner oder gleich der Zahl n sind.

Man schreibt sie als $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot (n-1) \cdot n$ und liest sie *n Fakultät*. Es ist zweckmäßig, 1! = 1 und auch 0! = 1zu definieren.

0!=1	5!=120	10!=3.628.800
1!=1	6!=720	11!=39.916.800
2!=2	7!=5.040	12!=479.001.600
3!=6	8!=40.320	13!=6.227.020.800
4!=24	9!=362.880	14!=8,717829120*10 ¹⁰