DISCLINATION LOOP IN MORI-NAKANISHI ANSATZ:

ROLE OF THE DIVERGENCE ELASTICITY

O.D. LAVRENTOVICH¹, T. ISHIKAWA¹, AND E.M. TERENTJEV²

Liquid Crystal Institute and Chemical Physics Program,

Kent State University, Kent, Ohio 44242, USA 1

Cavendish Laboratory, Madingley Road, Cambridge, CB3 0EH, U.K. ²

Abstract Energetic stability of loop defects in nematic liquid crystal is analyzed using Mori-Nakanishi ansatz and Frank-Oseen theory with non-zero K_{24} divergence term. The ratio of the bulk and divergence elastic constants defines a characteristic material length, which is the equilibrium radius a^* of the disclination ring. Positive K_{24} forces the ring to shrink.