Traversal, Tries & Heaps

Exam Prep 09

Announcements

Week 9

- HW3 party this Saturday 2-5pm (see ed for details)
- Project 2B due this Friday
- No lab this week

Content Review

Trees

Trees are structures that follow a few basic rules:

- 1. If there are N nodes, there are N-1 edges
- 2. There is exactly 1 path from every node to every other node
- 3. The above two rules means that trees are fully connected and contain no cycles

A parent node points towards its child.

The root of a tree is a node with no parent nodes.

A leaf of a tree is a node with no child nodes.

Breadth First Search

Breadth first search means we visit the nodes of a tree level by level. It can also be thought of as visiting nodes based off of their distance to the root.

BFS is usually done using a queue.

Depth First Search

Depth First Search means we visit each subtree in some order recursively.

DFS is usually done using a stack.

Pre-order traversals visit the parent node before visiting child nodes.

In-order traversals visit the left child, then the parent, then the right child.

Post-order traversals visit the child nodes before visiting the parent nodes

CS 61B // Fall 2020

Tries

Tries are special trees mostly used for language tasks.

Each node in a trie is marked as being a word-end or not, so you can quickly check whether a word exists within your structure.

Heaps

Heaps are special trees that follow a few basic rules:

- 1. Heaps are complete the only empty parts of a heap are in the bottom row, to the right
- 2. In a min-heap, each node must be *smaller* than all of its child nodes. The opposite is true for max-heaps.

Insertion into Heaps

Deletion from Heaps

Worksheet

1 Fill In The Blank

1.	removeMin has a best	case runtime of	and a worst case runtim	e of
----	----------------------	-----------------	-------------------------	------

- 2. insert has a best case runtime of _____ and a worst case runtime of _____.
- 3. A _____ or ____ traversal on a min-heap can output the elements in sorted order.
- 4. The fourth smallest element in a min-heap with 1000 distinct elements can appear in _____ places in the heap.
- 5. Given a min-heap with 2n 1 distinct elements, for an element . . .
 - a. to be on the second level it must be less than _____ element(s) and greater than _____ element(s).
 - b. to be on the bottommost level it must be less than _____ element(s) and greater than _____ element(s).

2 Heap Mystery

 $[A, B, C, D, E, F, G] \rightarrow [A, E, B, D, X, F, G]$

Operations to reach this heap:

- 1. removeMin()
- 2. ______
- 3. _____
- 4. _____

X _____ D

 $X \longrightarrow C$

B _____ C

G _____ X

3 A Wordsearch