Reguleringsteknik 1

DIO NO

J. Christian Andersen

Kursusuge 10

Plan

- Ustabile systemer poler i højre halvplan
 - Regulatordesign fortegnsanalyse
 - Regulatordesign Nyquist baseret
- REGBOT model, og intro til øvelse
 - Model forklaring
 - Regulator sløjfer
 - Tilt måling på robot gyro og accelerometer

Øvelse 10+11+12

REGBOT balance regulering

DTU Electrical Engineering

Department of Electrical Engineering

REGBOT model

MATLAB Simulink

Sæt forstyrrelse til 0 (først relevant når model kan balancere)

Regbot balance Mekaniske dele

Linearisering med LINMOD

Arbejdspunkt er her startvinklen StartAngle = 30

Etabler netop et input (source)
her "motor_voltage"
Og netop et output (sink)
her "hastighed"

Kør linmod med modelnavn som parameter.

Genererer ss (state-space) model, som kunverteres til overføringsfunktion.

Minreal forkorter (ekstra)

pol/nulpunkt par

%% linearisering i arbejdspunkt
startAngle = 30; % in degrees
 [A,B,C,D] = linmod('regbot_1mg');
 [num,den] = ss2tf(A,B,C,D);
Gwv = minreal(tf(num,den))

$$Gwv = \frac{1443s^3 + 1.443e06s^2 - 9.11e04s - 9.11e07}{s^5 + 1800s^4 + 6.559e05s^3 + 5.21e06s^2 - 4.848e07s - 3.374e08}$$
 DTU Electrical Engineering, Technical University of Denmark

Del af "regbot mg_param.m"

REGBOT virkelighed

Husk, kun i teorien er der ikke forskel på teori og virkeligheden.

- Ulineær motor
 - Især ved lave hastigheder (~1V for at starte)
 - Slør i gearkasse
 - Hjulspin
- Estimering af hastighed er bagud (forsinket)
- Målinger af tilt og vinkelhastighed
 - har offset og "målefejl"
- Balancepunkt er ikke 0 grader (offset kan stilles i REGBOT GUI)

Reguleringsteknik 1

J. Christian Andersen

Kursusuge 10

Plan

- Ustabile systemer poler i højre halvplan
 - Regulatordesign fortegnsanalyse
 - Regulatordesign Nyquist baseret
- REGBOT model, og intro til øvelse
 - Model forklaring
 - Regulator sløjfer
 - Tilt måling på robot gyro og accelerometer

Øvelse 10+11+12

REGBOT balance regulering

DTU Electrical Engineering

Department of Electrical Engineering

Regulator udfordringer

Motorregulator kan (nok) genbruge resultat fra tidligere

- Balance regulator
 - Kp fortegn
 - Designet I-led
- Hastighed regulator
 - Tager ikke hensyn til balance
 - Bliver let for hurtig
 - Svært at styre krydsfrekvens
 - Integrator windup et problem
 - Kræver begrænser på φ_{ref}

- Mekanik
 - Udregning af \dot{x}
 - Tilt vinkel

REGBOT Balance hastigheds-regulator

En krydsfrekvens $\omega_c \approx 20 \ \mathrm{rad/s}$ er for hurtig! hvad så?

hvad er problemet?

Reguleringsteknik 1

J. Christian Andersen

Kursusuge 10

Plan

- Ustabile systemer poler i højre halvplan
 - Regulatordesign fortegnsanalyse
 - Regulatordesign Nyquist baseret
- REGBOT model, og intro til øvelse
 - Model forklaring
 - Regulator sløjfer
 - Tilt måling på robot gyro og accelerometer

Øvelse 10+11+12

REGBOT balance regulering

Department of Electrical Engineering

Tilt måling med IMU

Forkert ved anden acceleration f.eks.: \ddot{x}

Komplementærfilter

Gyro – accelerometer komplementær filter

Nu og fremover

- Dagens øvelse: REGBOT Balance
 - Sidste øvelsesvejledning
 - Resultat skal med i REGBOT rapport

- Plan for resten af kurset (lektion og øvelse)
 - 11 Forstyrrelser, støj, sensitivitet (*REGBOT balance*)
 - 12 Feed forward, delay (REGBOT balance youtube?)
 - 13 Prøveeksamen (*REGBOT rapport*)