

Algorytmy i struktury danych

Temat: Wybrane algorytmy grafowe

Podstawowe pojęcia

- ☐ Grafem nazywamy strukturę **G** = (**V**, **E**) złożoną z niepustego zbioru wierzchoków **V**, zwanych także węzłami oraz zbioru krawędzi **E**, zwanych inaczej łukami.
- Rozróżnia się grafy skierowane (ang. directed graph), zwane też grafami zorientowanymi lub krócej digrafami i grafy nieskierowane (ang. undirected graph), zwane również grafami niezorientowanymi.
- W grafie skierowanym krawędzie można opisać jako uporządkowane pary wierzchołków (u, v); w grafie nieskierowanym jako zbiory {u, v}
- Wierzchołek u nazywamy początkiem krawędzi, a v jej końcem.
- Mówimy, że krawędź (u, v) biegnie od wierzchołka u do wierzchołka v, a także że wierzchołki u i v są sąsiednimi, sąsiadującymi lub incydentnymi.
- Krawędź, która rozpoczyna się i kończy w tym samym wierzchołku, nazywamy netla
- □ Krawędź (u, v) jest często zapisywana jako u → v i rysowana w postaci zakończonego strzałką odcinka lub łuku łączącego oba wierzchołki.
- Oznaczenia: |V| = n, |E| = m

Algorytmy i struktury danya

Rodzaje grafów

- Grafy proste
- Multigrafy
- ☐ Grafy skierowane (digrafy)
- Grafy ważone
- Hipergrafy

Algorytmy i struktury danye

Określenie grafu

- ☐ Graf prosty G=(V,E) jest uporządkowaną parą dwóch zbiorów: zbioru wierzchołków V oraz zbioru krawędzi E ⊆ V × V.
- Graf prosty nie zawiera krawędzi postaci {u,u} oraz pomiędzy każdą parą wierzchołków istnieje co najwyżej jedna krawędź.
- Wierzchołki u i v są sąsiednie, gdy {u,v} ∈ E.
- lacktriangledown Wierzcholek u oraz krawędź e są incydentne, gdy $u \in e$.

Przykład:

 $G = (\{ v_1, v_2, v_3, v_4 \},$

 $\{\ \{v_1,\,v_2\},\,\{v_2,\,v_3\},\,\{v_3,\,v_4\},\,\{v_4,\,v_1\},\{v_2,\,v_4\}\ \}\)$

Algorytmy i struktury danye

Określenie grafu

- Multigraf to graf, w którym pomiędzy dowolną parą wierzcholków może wystąpić więcej niż jedna krawędź oraz dopuszczalne są pętie, tzn. krawędzie postaci (vył, gdzie ve V.
- Graf nazywamy digrafem (grafem skierowanym), gdy krawędź łącząca u oraz v jest parą uporządkowaną postaci (u,v).

Przykład:

 $G = (\{u, v, w, x\}, \{\{u,v\}, \{w,v\}, \{w,w\}, \{w,x\}, \{w,x\}, \{w,x\}, \{x,v\}, \{x,v\}\})$

 $D = (\{u, v, w, x\}, \\ \{(u,v), (w,v), (v,x), (x,w)\})$

Grafy ważone

- Niekiedy krawędziom grafu przypisuje się pewne wartości, zwane wagami lub etykietami, a wtedy graf nazywamy ważonym lub etykietowanym.
- Przykładem rzeczywistego grafu ważonego jest graf przedstawiający sieć polączeń drogowych lub lotniczych, w którym wierzcholkami są miejscowości, a wagami odległości między nimi, czas przelotu lub koszty podróży.

Algorytmy i struktury danyci

Reprezentacje grafów

Macierz przyległości (sąsiedztwa)

- $f \square$ Wówczas macierz A(G) = $[a_{ij}]_{n\times n}$, gdzie a_{ij} jest liczbą krawędzi łączących wierzchołki v_i oraz v_j nazywa się macierzą przyległości grafu G.
- W przypadku grafu skierowanego a_{ii} jest liczbą łuków z wierzchołka v_i do v_i.

Algorytmy i struktury danye

Własności macierzy przyległości

- Macierz przyległości (sąsiedztwa) A(G) jest dla grafu prostego macierzą binarna
- Macierz przyległości wymaga |V|² = n² bitów pamięci
- ☐ Jeżeli w jest długością słowa maszynowego, to każdy wiersz macierzy przyległości można zapisać jako ciąg n bitów zajmujących n/w słów maszynowych, gdzie [x] oznacza najmniejszą liczbę całkowitą nie mniejszą niż
- ☐ Implementacja macierzy przyległości wymaga zatem n n/n/w słów
- □ Dla grafu prostego: macierz A(G) jest symetryczna i wymaga n(n 1)/2 bitów
- □ Reprezentacja macierzowa jest korzystna dla tzw. grafów gęstych tj. takich, dla których |E| >> |V| ²

Algorytmy i struktury danyel

Własności macierzy przyległości

- Reprezentacja macierzowa grafu jest wygodna w obliczeniach (łatwo jest sprawdzić, czy pomiędzy dwoma dowolnymi wierzchołkami grafu istnieje krawędż).
- Czas dostępu do elementów macierzy jest stały, niezależnie od liczby wierzchołków i krawedzi.
- Podstawową wadą macierzy sąsiedztwa jest wysoka złożoność pamięciowa oraz niedogodność reprezentowania grafu o zmiennej liczbie wierzcholków.
- Zapis grafu o n wierzchołkach wymaga n² komórek pamięci i jest szczególnie niekorzystny w przypadku grafów rzadkich, w których liczba krawędzi m jest mala w porównaniu z wartością n².
- Elementy macierzy można pamiętać po 8 w bajcie, co pozwala istotnie zredukować zapotrzebowanie na pamięć, ale nieco utrudnia dostęp do nich.

Algorytmy i struktury danyel

Macierz incydencji

- □ Dany jest graf G = (V, E), przy czym V = {v₁, v₂, ..., vₙ} jest zbiorem wierzchołków, natomiast E = {e₁, e₂, ..., eሔ} jest zbiorem krawędzi grafu.
- $\begin{tabular}{ll} \square & Wówczas macierz $M(G) = [m_{ij}]_{n:m}$, $\ dzie liczba $m_{ij} \in \{0,1,2\}$ oznacza ile razy wierzcholek v_i oraz krawędź e_i są incydentne (2 występuje w przypadku pętli) jest macierzą incydencji grafu G. } \end{tabular}$

Algorytmy i struktury danych

Macierz incydencji Przykład v_3 e_3 e_{4} e_6 00 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1

Własności macierzy incydencji

- Macierz incydencji wymaga n-m bitów pamięci, co może być liczbą większą niż n² bitów zajmowanych przez macierz przyległości, ponieważ liczba krawędzi m=|E| jest często większa niż liczba wierzchołków n= |V|
- W niektórych jednak przypadkach może być korzystniejsze użycie macierzy incydencji niż macierzy przyległości, pomimo zwiększonej zajętości pamięci.
- Macierze incydencji są szczególnie dogodne przy modelowaniu obwodów elektrycznych i układów przełączających.

Algorytmy i struktury danyen

Lista krawędzi

- Innym, często stosowanym sposobem reprezentacji grafu jest wypisanie wszystkich jego krawędzi jako par wierzchołków.
- Przykład

 $\{v1,\,v2\},\,\{v1,\,v4\},\,\{v2,\,v3\},\,\{v2,\,v4\},\,\{v2,\,v5\},\,\{v3,\,v4\},\,\{v4,\,v5\}.$

 Dla grafu skierowanego, byłyby to uporządkowane pary wierzchołków odpowiadające łukom.

 e_1 e_2 e_3 e_4 e_5 e_6 e_5

Algorytow i struktury danyel

Własności listy krawedzi

□ Liczba bitów potrzebnych do zaetykietowania (etykietami od 1 do n) wierzchołków grafu G jest równa b, gdzie

$$2^{b-1} < n \le 2^b$$
, czyli $b = \lfloor \log_2 n \rfloor + 1$

np. dla n=30 b=5 (11110)

- Całkowita zajętość pamięci jest równa 2bm bitów
- Ten sposób reprezentacji jest bardziej ekonomiczny niż macierz przyległości, jeżeli 2bm < n²
- $\hfill\Box$ Reprezentacja "listowa" jest korzystniejsza dla grafów rzadkich tj. takich, dla których |E| << |V| 2
- Przechowywanie i przekształcanie grafu w komputerze jest trudniejsze (na przykład przy badaniu spójności grafu)

Algorytmy i struktury dany

Dwie tablice liniowe

Modyfikacją listy krawędzi jest przedstawienie grafu za pomocą dwóch tablic jednowymiarowych (początków i końców krawędzi):

$$F = (f_1, f_2, ..., f_m)$$

$$H = (h_1, h_2, ..., h_m)$$

- ☐ Elementy obu tablic: etykiety wierzchołków, m = |E|
- ☐ G graf skierowany: łuk e, prowadzi od wierzchołka f, do wierzchołka h,
- ☐ G graf nieskierowany: krawędź e; łączy f; i h;
- Dogodna reprezentacja do sortowania w grafach ważonych

Algorytmy i struktury danye

16

Dwie tablice liniowe

Przykład

F = (v1, v2, v2, v3, v2, v4, v1), H = (v2, v3, v5, v4, v4, v5, v4).

Algorytmy i struktury danych

Lista wierzchołków sąsiednich (następników)

- □ Efektywna metoda reprezentacji grafów, stosowana w przypadku gdy stosunek |E| / |V| nie jest duży
- Dla każdego wierzchołka v tworzymy listę (tablicę jednowymiarową), której pierwszym elementem jest v, a pozostałymi elementami są:
 - wierzchołki będące sąsiadami wierzchołka v (w przypadku grafu nieskierowanego)
 - bezpośredni następnicy wierzchołka v, tzn. wierzchołki, do których istnieje łuk z wierzchołka v (w przypadku grafu skierowanego)

Algorytmy i struktury danye

18

Lista wierzchołków sąsiednich (następników) sąsiedztwa wierzchołka u w poszukiwaniu wierzchołka v, toteż jego pesymistyczna złożoność czasowa wynosi O(n).

□ Lista sąsiedztwa jest strukturą danych, w której występuje *n* elementowy wektor *N* zwany nagłówkiem taki, że *M*[//] jest wskaźnikiem na listę zawierającą sąsiadów wierzchołka *v*_i. Zapotrzebowanie na pamięć list sąsiedztwa jest proporcjonalne do sumy liczby wierzcholków i liczby krawędzi, wynosi więc O(m+n). ☐ Jednak sprawdzenie, czy istnieje krawędź (u, v), wymaga przeglądania listy W przypadku macierzy sąsiedztwa takie sprawdzenie wykonuje się natychmiastowo, tj. w czasie O(1), gdyż wymaga jedynie dostępu do wartości

4

