Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра ІПІ

Звіт

з лабораторної роботи № 1 з дисципліни «Алгоритми та структури даних 2. Структури даних»

"Проектування і аналіз алгоритмів внутрішнього сортування"

Виконав(ла)	<u>III-</u> 13 Павленко Микита Андрійович (шифр, прізвище, ім'я, по батькові)		
Перевірив	(прізвище, ім'я, по батькові)		

3MICT

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ	3
2 ЗАВДАННЯ	4
3 ВИКОНАННЯ	5
3.1 Аналіз алгоритму на відповідність властивостям	5
3.2 ПСЕВДОКОД АЛГОРИТМУ	6
3.3 Аналіз часової складності	7
3.4 ПРОГРАМНА РЕАЛІЗАЦІЯ АЛГОРИТМУ	7
3.4.1 Вихідний код	7
3.4.2 Приклад роботи	8
3.5 ТЕСТУВАННЯ АЛГОРИТМУ	10
3.5.1 Часові характеристики оцінювання	10
3.5.2 Графіки залежності часових характеристик оцінюво	ання від
розмірності масиву	12
висновок	15
КРИТЕРІЇ ОШНЮВАННЯ	16

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи – вивчити основні методи аналізу обчислювальної складності алгоритмів внутрішнього сортування і оцінити поріг їх ефективності.

2 ЗАВДАННЯ

Виконати аналіз алгоритму внутрішнього сортування на відповідність наступним властивостям (таблиця 2.1):

- стійкість;
 - «природність» поведінки (Adaptability);
- базуються на порівняннях;
- необхідність додаткової пам'яті (об'єму);
- необхідність в знаннях про структуру даних.

Записати алгоритм внутрішнього сортування за допомогою псевдокоду (чи іншого способу по вибору).

Провести аналіз часової складності в гіршому, кращому і середньому випадках та записати часову складність в асимптотичних оцінках.

Виконати програмну реалізацію алгоритму на будь-якій мові програмування з фіксацією часових характеристик оцінювання (кількість порівнянь, кількість перестановок, глибина рекурсивного поглиблення та інше в залежності від алгоритму).

Провести ряд випробувань алгоритму на масивах різної розмірності (10, 100, 1000, 5000, 10000, 20000, 50000 елементів) і різних наборів вхідних даних (впорядкований масив, зворотно упорядкований масив, масив випадкових чисел) і побудувати графіки залежності часових характеристик оцінювання від розмірності масиву, нанести на графік асимптотичну оцінку гіршого і кращого випадків для порівняння.

Зробити порівняльний аналіз двох алгоритмів.

Зробити узагальнений висновок з лабораторної роботи.

Таблиця 2.1 – Варіанти алгоритмів

Nº	Алгоритм сортування
1	Сортування бульбашкою
2	Сортування гребінцем («розчіскою»)

3 ВИКОНАННЯ

3.1 Аналіз алгоритму на відповідність властивостям

Аналіз алгоритму сортування бульбашкою на відповідність властивостям наведено в таблиці 3.1.

Таблиця 3.1 – Аналіз алгоритму на відповідність властивостям

Властивість	Сортування бульбашкою
Стійкість	Алгоритм стійкий
«Природність» поведінки	Неприродна поведінка
(Adaptability)	
Базуються на порівняннях	Сортування за допомогою порівнянь
Необхідність в додатковій пам'яті	Не потребується
(об'єм)	
Необхідність в знаннях про структури	Потребується
даних	

Таблиця 3.1.2 – Аналіз алгоритму на відповідність властивостям

Властивість	Сортування гребінцем
Стійкість	Алгоритм нестійкий
«Природність» поведінки	Неприродна поведінка
(Adaptability)	
Базуються на порівняннях	Сортування за допомогою порівнянь
Необхідність в додатковій пам'яті	Не потребується
(об'єм)	
Необхідність в знаннях про структури	Потребується
даних	

3.2 Псевдокод алгоритму

```
Функція BubbleSort(array)
```

```
Для і від 0 до array.Length повторити

Для ј від 0 до array.Length-1 повторити

Якщо array[j] > array[j+1] то

tmp = array[j+1]

array[j+1] = array[j]

array[j] = tmp
```

все якщо

все повторити

все повторити

все функція

```
Функція CombSort(array)
```

interval = array.Length

Поки interval > 1 повторити

interval = interval / 1.3

Якщо interval < 1 то

interval = 1

все якшо

Для і від 0 до array. Length-interval повторити

Якщо array[i] > array[i + interval] то

tmp = array[i]

array[i] = array[i + interval]

array[i + interval] = tmp

все якщо

все повторити

все повторити

все функція

3.3 Аналіз часової складності

Для сортування бульбашкою:

Найкращий випадок (впорядкований масив)	$\Omega(n^2)$
Найгірший випадок (обернено впорядкований	O(n ²)
масив)	
Середній випадок	$\Theta(n^2)$

Для сортування гребінцем:

Найкращий випадок (впорядкований масив)	$\Omega(n \log(n))$
Найгірший випадок	O(n ²)
Середній випадок	$\Theta(n^2)$

- 3.4 Програмна реалізація алгоритму на мові С#
- 3.4.1 Вихідний код
- 1) Сортування бульбашкою

2) Сортування гребінцем

```
public static void CombSort(int[] array)
             int tmp;
             int interval = array.Length;
            while (interval > 1)
                 interval = (int)(interval / 1.3);
                 if (interval < 1)</pre>
                     interval = 1;
                 for (int i = 0; i < array.Length - interval; i++)</pre>
                     if (array[i] > array[i + interval])
                     {
                         tmp = array[i];
                         array[i] = array[i + interval];
                         array[i + interval] = tmp;
                     }
                 }
            }
```

3.4.2 Приклад роботи

На рисунках 3.1 i 3.2 показані приклади роботи програми сортування масивів на 100 i 1000 елементів відповідно.

Рисунок 3.1 – Сортування масиву на 100 елементів

Рисунок 3.2 – Сортування масиву на 1000 елементів

3.5 Тестування алгоритму

3.5.1 Часові характеристики оцінювання

В таблиці 3.2 наведені характеристики оцінювання числа порівнянь і числа перестановок алгоритму сортування бульбашки для масивів різної розмірності, коли масив містить упорядковану послідовність елементів.

Таблиця 3.2 — Характеристики оцінювання алгоритму сортування для упорядкованої послідовності елементів у масиві

Для сортування бульбашкою

Розмірність масиву	Число порівнянь	Число перестановок
10	110	0
100	10100	0
1000	1001000	0
5000	25005000	0
10000	100010000	0
20000	400020000	0
50000	1624950000	0

Для сортування гребінцем

Розмірність масиву	Число порівнянь	Число перестановок
10	42	0
100	1103	0
1000	18730	0
5000	123414	0
10000	276767	0
20000	613430	0
50000	1683441	0

В таблиці 3.3 наведені характеристики оцінювання числа порівнянь і числа перестановок алгоритму сортування для масивів різної розмірності, коли масиви містять зворотно упорядковану послідовність елементів.

Таблиця 3.3 — Характеристики оцінювання алгоритму сортування для зворотно упорядкованої послідовності елементів у масиві.

Для сортування бульбашкою

Розмірність масиву	Число порівнянь	Число перестановок
10	90	45
100	9900	4950
1000	999000	499500
5000	24995000	12497500
10000	99990000	49995000
20000	399980000	199990000
50000	1795017000	1249975000

Для сортування гребінцем

Розмірність масиву	Число порівнянь	Число перестановок
10	32	7
100	1003	122
1000	18713	1582
5000	123386	9572
10000	276739	20078
20000	613402	42634
50000	1683412	116838

У таблиці 3.4 наведені характеристики оцінювання числа порівнянь і числа перестановок алгоритму сортування бульбашки для масивів різної розмірності, масиви містять випадкову послідовність елементів.

Таблиця 3.4 — Характеристика оцінювання <mark>алгоритму сортування для випадкової послідовності елементів у масиві.</mark>

Для сортування бульбашкою

Розмірність масиву	Число порівнянь	Число перестановок
10	90	90
100	9900	2385
1000	999000	243371
5000	24995000	6272862
10000	99990000	25121547
20000	399980000	99698401
50000	1805017200	624976528

Для сортування гребінцем

Розмірність масиву	Число порівнянь	Число перестановок
10	32	11
100	1003	218
1000	18713	4084
5000	123386	27306
10000	276739	60305
20000	613402	130300
50000	1683412	376819

3.5.2 Графіки залежності часових характеристик оцінювання від розмірності масиву

На рисунку 3.3 показані графіки залежності часових характеристик оцінювання від розмірності масиву для випадків, коли масиви містять упорядковану послідовність елементів (зелений графік), коли масиви містять зворотно упорядковану послідовність елементів (червоний графік), коли масиви містять випадкову послідовність елементів (синій графік), також показані

асимптотичні оцінки гіршого (фіолетовий графік) і кращого (жовтий графік) випадків для порівняння.

Рисунок 3.3 – Графіки залежності часових характеристик оцінювання Сортування бульбашкою

Сортування гребінцем

ВИСНОВОК

При виконанні даної лабораторної роботи я вивчив основні методи аналізу обчислювальної складності алгоритмів внутрішнього сортування і оцінив поріг їх ефективності. Перевірив здобуті знання шляхом програмної реалізації і оцінок.

КРИТЕРІЇ ОЦІНЮВАННЯ

У випадку здачі лабораторної роботи до 21.02.2022 включно максимальний бал дорівнює — 5. Після 21.02.2022 — 28.02.2022 максимальний бал дорівнює — 2,5. Після 28.02.2022 робота не приймається

Критерії оцінювання у відсотках від максимального балу:

- аналіз алгоритму на відповідність властивостям 10%;
- псевдокод алгоритму -15%;
- аналіз часової складності -25%;
- програмна реалізація алгоритму 25%;
- тестування алгоритму 20%;
- висновок -5%.