

本科实验报告

课程名称: 自动控制理论

姓 名: 金镇雄

学院: 元培

系: 智能科学系

专 业: 智能科学与技术

年 级: 19

学 号: 1900094619

2022年 4月 10日

实验一、PID 控制实验

一、实验目的

- 了解 PID 控制器的原理
- 了解并使用 Ziegler-Nichols 方法
- 了解 PID 控制的各组件对系统稳定性的影响

二、实验器材

PC机、MATLAB、任一实际系统的传递函数

三、实验原理

在工程实际中,应用最为广泛的调节器控制规律为比例(Proportional)、积分(Integral)、微分(Derivative)控制,简称 PID 控制。PID 控制是三种反馈控制:比例控制,积分控制与微分控制的统称。根据控制对象和应用条件,可以采用这三种控制的部分组合,即 P 控制,PI 控制,PD 控制或者是三者的组合,即真正意义上的 PID 控制。

PID 一般算式及模型控制规律如下:

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$

其中 u(t) 为控制器的输出; e(t) 为偏差,即期望值与实际值的差值; K_p 为控制器的放大系数,即比例系数; K_i 为积分系数; K_d 为微分系数。

比例控制是最简单的控制方式之一,其控制器的输出与输入误差信号成比例关系。比例系数 K_p 直接决定控制作用的强弱,加大 K_p 可以减少系统的稳态误差,提高系统的动态响应速度,但 K_p 过大会使动态质量变坏,引起被控制量振荡甚至导致闭环系统不稳定。当只有比例控制时系统输出会存在稳态误差。

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。系统在进入稳态后会存在稳态误差,为了消除稳态误差,在控制器中必须引入"积分项"。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到接近于零。但积分控制将使系统的动态过程变慢,而且过强的积分作用使系统的超调量增大,从而系统的稳定性变坏。

在微分控制中,控制器的输出与输入误差信号的微分成正比关系。在克服误差的调节过程中可能会出现振荡甚至失稳。解决的办法是使抑制误差的作用的变化"超前"。它能预测误差变化的趋势,产生超前的校正作用,有助于减少超调,克服振荡,使系统趋于稳定,并加快系统的动作速度,减少调节时间,从而改善系统的动态性能。

Ziegler-Nichols 方法是一种整定 PID 控制器,探索其控制参数的方法。其调试方式为,首先将积分和微分增益设置为 0,然后比例增益从零开始逐渐增加,直到到达极限增益 K_U ,此时控制器输出值以恒定值振荡。 K_U 和振荡周期 T_U 根据不同的类型,按下表中的方式来设置比例、积分和微分增益。

Ziegiei-Nichols Method					
Control Type	K_p	T_i	T_d	K_i	K_d
Р	$0.5K_u$	_	_	_	_
PI	$0.45K_u$	$0.80T_u$	_	$oxed{0.54 K_u/T_u}$	_
PD	$0.8K_u$	_	$0.125T_u$	_	$0.10K_uT_u$
classic PID ^[2]	$0.6K_u$	$0.5T_u$	$0.125T_u$	$1.2K_u/T_u$	$0.075K_uT_u$
Pessen Integral Rule ^[2]	$0.7K_u$	$0.4T_u$	$0.15T_u$	$1.75K_u/T_u$	$0.105K_uT_u$
some overshoot ^[2]	$0.3\overline{3}K_u$	$0.50T_u$	$0.3\overline{3}T_u$	$0.6\overline{6}K_u/T_u$	$0.1\overline{1}K_uT_u$
no overshoot ^[2]	$0.20K_u$	$0.50T_u$	$0.3\overline{3}T_u$	$0.40K_u/T_u$	$0.06\overline{6}K_uT_u$

Ziegler-Nichols method[1]

四、实验内容

1. 选定系统

本实验中使用了电梯模型。

系统的传递函数为 $G(s) = \frac{K(s+10)}{s^4+71s^3+1070s^2+1000s}$ 。

2. 引入 PID 控制器

由于原系统包含 P 控制,在比例控制器处并联积分控制器或微分控制器,即可实现 PI 控制、PD 控制以及 PID 控制。

3. 用 Ziegler-Nichols 方法探索控制参数

A. $令 K_I = K_D = 0$,求临界增益 K_U

根轨迹与虚轴的交点处所对应的 K 值即是划分系统工作于稳态或非稳态的临界值。因此,求临界增益 K_U 只需观察系统的根轨迹。根轨迹与虚轴的交点取决于如下特征方程:

$$1 + F(j\omega)A(j\omega) = 0, \ F(s)A(s) = \frac{N(s)}{D(s)} = K \frac{(s - z_1)(s - z_2) \dots (s - z_m)}{(s - p_1)(s - p_2) \dots (s - p_n)}$$

使用 MATLAB 中 r1 ocus 函数即可得到系统的根轨迹,在图上点击根轨迹与虚轴的交点处可得 K_U 值:26399.796。

B. 求临界振荡周期 T_U

求系统的阶跃响应和临界振荡周期 T_U ,求得 T_U =0.3024。

C. 计算 K_P 、 K_I 、 K_D

根据 K_U 和 T_U 值,按照 Ziegler-Nichols 方法参数整定公式,计算 K_P 、 K_I 、 K_D 。

	K_P	K_I	K_D
P 控制	1319. 9898	0	0
PI 控制	11879. 9082	46347. 9564	0
PD 控制	21119. 8368	0	845. 8495
PID 控制	15839. 8776	98875. 6404	634. 3870978

五、实验结果与分析

1. 原系统 $(K_P = 1)$

 $K_P = 1$ 时,阶跃响应的超调量、上升时间、调节时间以及峰值时间如下:

K_P	1	
K_I	0	
K_D	0	
超调量	0	
上升时间	217. 5612	
调节时间	388. 3686	
峰值时间	1044.3	

可见,系统的阶跃响应中不出现振荡和超调量,可是达到稳定需要很长时间,不适合于电梯模型。

上图中反对角线上的紫色直线为输入信号,粉色直线为系统的输出。可见,系统稳定后,输入信号与输出信号不一致,存在稳态误差。

2. P控制

K_P	1319. 9898	
K_I	0	
K_D	0	
超调量	88. 2427	
上升时间	0.0766	
调节时间	3. 3251	
峰值时间	0. 2398	

可见,引入 $K_P = 1319.99$ 的 P 控制器后,调节时间减少到 3.3s,与 $K_P = 11$ 时相比,系统的动态响应速度有明显的提高。然而,系统出现了振荡,且超调量达到了 88.24%。在实际应用中,超调量过大会导致安全问题,仅引入 P 控制器不满足需求。

由上图可见,系统的输入和响应几乎一致,加大 K_p 基本上消除了系统的稳态误差。

3. PI 控制

K_P	11879. 9082	
K_{I}	46347. 9564	
K_D	0	
超调量	Nan	
上升时间	Nan	
调节时间	Nan	
峰值时间	Inf	

引入 PI 控制后,由于系统的阶次提高,系统的稳定性下降,调解过程中出现失稳。 其实,该系统中 P 控制器已基本上能消除稳态误差,不需要引入积分器。

4. PD 控制

K_P	21119.8368	
K_I	0	
K_D	845. 8495	
超调量	39. 7020	
上升时间	0.0543	
调节时间	0.4119	
峰值时间	0. 1461	

在 P 控制的基础上加微分控制后,超调量从 88.2%减少到 39.7%,调节时间从 3.3s 减少到 0.4s。可见,微分控制有助于减少超调,克服振荡,使系统趋于稳定,并加快系统的动作速度,减少调节时间,从而改善系统的动态性能。

5. PID 控制

K_P	15839. 8776	
K_I	98875. 6404	
K_D	634. 3870978	
超调量	71. 2028	
上升时间	0.0607	
调节时间	1.8386	
峰值时间	0. 1844	

可见,引入 PID 控制器与 PD 控制器相比,调节时间和超调量均增大,系统的动态性能更差,不适合于实际的电梯系统。

6. PID 控制: 调节参数K_P

K_P	15839. 8776	25839. 8776	35839. 8776
K_I	98875. 6404	98875. 6404	98875. 6404
K_D	634. 3870	634. 3870	634. 3870
超调量	71. 2028	75. 3802	83. 1437
上升时间	0.0607	0.0500	0.0437
调节时间	1. 8386	1. 1666	1. 4827
峰值时间	0. 1844	0. 1450	0.1304

调节参数 K_P ,与公式得到的PID控制器对比

可见,比例系数 K_P 增加,稳态误差减少,超调量增大,振荡性更强。

7. PID 控制:调节参数 K_I

K_P	15839. 8776	15839. 8776	15839. 8776
K_I	98875. 6404	78875. 6404	58875. 6404
K_D	634. 3870	634. 3870	634. 3870
超调量	71. 2028	65. 2215	59. 0331
上升时间	0.0607	0.0616	0. 0625
调节时间	1.8386	1. 3810	0. 9813
峰值时间	0. 1844	0. 1857	0. 1850

调节参数 K_P ,与公式得到的 PID 控制器对比

可见, K_I 增加时,调节时间增加,响应速度变慢,超调量变大,振荡变得厉害。

8. PID 控制: 调节参数K_D

K_P	15839. 8776	15839. 8776	15839. 8776
K_I	98875. 6404	98875. 6404	98875. 6404
K_D	634. 3870	1634. 3870	2634. 3870
超调量	71. 2028	24. 7089	14. 8682
上升时间	0.0607	0. 0451	0.0336
调节时间	1.8386	0. 1400	0. 8937
峰值时间	0. 1844	0. 1400	0. 0767

可见,微分增益 K_D 增加,阻尼增大,振荡减少,超调量减少。结果发现, K_P = 15839.88, K_I = 98875.64, K_D = 2634.39 的 PID 控制器最适合于实际的电梯系统,其超调量不到 15%,调节时间也比较短。

六、讨论

1. PID 的优缺点

优点:具有原理简单,易于实现,适用面广,控制参数相互独立,参数的选定比较简单。 缺点: P、I、D 三者之间是线性组合关系,导致系统总是会出现"超调"、"震荡"等 问题,而现有的数学工具还是不足以支撑我们找到一个"通解"。体现在实际的应用中, 由于被控过程往往机理复杂,具有高度非线性、时变不确定性和纯滞后等特点,特别是在 噪声、负载扰动等因素的影响下,过程参数甚至模型结构均会随时间和工作环境的变化而 变化,最终导致系统无法满足控制需求。

2. PID 控制器参数整定方法

从本次实验可知,Ziegler-Nichols 方法不是万能的,以自行调整得到的 K_P 、 K_I 、 K_D

为参数的 PID 控制的动态性能优于公式得到的 PID 控制。

在实际应用中,PID 控制器参数整定方法有:理论计算整定法和工程整定法。理论计算整定法主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。工程整定方法主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID 控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。

七、代码

```
clear;
clc:
close all;
%% Define Plant
n=[1 \ 10];
                           % Defining Numerator
d=[1 71 1070 1000 0];
                           % Defining Denominator
Gs=tf(n, d)
                           % Transfer function=
Ts=feedback(Gs, 1)
t=0:0.1:1600;
u = t;
                             % Input
[y, t, \sim] = 1sim(Ts, u, t); \% Output
figure;
plot(t, y, 'm', t, u, 'b');
xlabel('Time (sec)'); ylabel('Amplitude');
title('Input-blue, Output-purple');
%figure;
%rlocus(Gs);
                    %根轨迹
%figure;
%step(Ts);
%stepinfo(Ts)
%% Add PID Contoller
Ku = 26399.796;
Tu = 0.6532-0.3328:
c_type = ["P" "PI" "PD" "PID"]
for i=1:4
    [Kp, Ki, Kd] = ZieglerNichols(Ku, Tu, c type(i));
    Gc = pid(Kp, Ki, Kd);
    Ts = feedback(Gs*Gc, 1);
    figure;
    step(Ts);
    title(c type(i));
    stepinfo(Ts)
end
```

KP = 0.5*KU;

```
function [varargout] = ZieglerNichols(varargin)
%ZIEGLERNICHOLS Computes PID gains using Ziegler-Nichols
%
    [KP, KI, KD] = ZIEGLERNICHOLS(KU, TU, TYPE) Computes the KP, KI, and KD gains
    for a PID controller using the Ziegler-Nichols method.
%
%
    TYPE:
%
        'PID'
        'P'
%
        'PI'
%
        'PD'
%
        'PessenIntegrationRule'
%
        'SomeOvershoot'
%
%
        'NoOvershoot'
%INPUT:
            -KU:
                    Ultimate gain that leads to steady oscillations
            -TU:
                    Oscillation period (seconds)
            -TYPE: char array denoting the type of desired control
%OUTPUT:
            -KP:
                    Proporational gain
            -KI:
                    Integral gain
            -KD:
                    Derivative gain
switch nargin
    case 3
        %User supplies all inputs
                = varargin{1};
        TU
                = varargin{2};
        TYPE
                = varargin{3};
    case 2
        %Assume ClassicPID
                = varargin{1};
        TU
                = varargin{2};
                = 'PID';
        TYPE
    otherwise
        error('Invalid number of inputs');
end
assert(TU > 0, 'TU should be a positive value')
if (strcmp(TYPE, 'PID')==1)
    KP = 0.6*KU;
    Ti = TU/2;
    Td = TU/8;
elseif(strcmp(TYPE, 'P')==1)
```

```
Ti = NaN;
    Td = NaN;
elseif(strcmp(TYPE, 'PI')==1)
    KP = 0.45*KU;
    Ti = 0.8*TU;
    Td = NaN;
elseif(strcmp(TYPE, 'PD')==1)
    KP = 0.8 * KU;
    Ti = NaN;
    Td = TU/8;
elseif(strcmp(TYPE, 'PessenIntegrationRule')==1)
    KP = 0.7*KU;
    Ti = 2*TU/5;
    Td = 3*TU/20;
elseif(strcmp(TYPE, 'SomeOvershoot')==1)
    KP = KU/3;
    Ti = TU/2;
    Td = TU/3;
elseif(strcmp(TYPE, 'NoOvershoot')==1)
    KP = 0.2*KU;
    Ti = TU/2;
    Td = TU/3;
else
    error('Unsupported TYPE')
end
%Compute KI and KD based on KP, TI, and TD
KI = KP/Ti;
KD = Td*KP;
%If KI or KD are NaN, change to 0 so it is compatible with simulations
if(isnan(KI))
    KI = 0;
end
if(isnan(KD))
    KD = 0;
end
%Package outputs
varargout \{1\} = KP;
varargout \{2\} = KI;
varargout \{3\} = KD;
end
```