1 Estructuras algebráicas ordenadas

Lemma 1. Sean (P, \leq) y (P', \leq') posets. Supongamos que F es un isomorfismo de (P, \leq) en (P', \leq') , entonces:

- a) Para cada $S \subseteq P$ y cada $a \in P$, se tiene que a es **cota superior** (resp. **inferior**) de S si y solo si F(a) es **cota superior** (resp. **inferior**) de F(S).
- b) Para cada $S \subseteq P$, se tiene que $\exists \sup(S)$ si y solo si $\exists \sup(F(S))$ y en el caso de que existan tales elementos se tiene que $F(\sup(S)) = \sup(F(S))$.
- c) P tiene 1 (resp. 0) si y solo si P' tiene 1 (resp. 0) y en tal caso tales elementos están conectados por F.
- d) Para cada $m \in P$, m es **maximal** (resp. **minimal**) si y solo si F(m) es **maximal** (resp. **minimal**).
- e) Para $a, b \in P$, tenemos que $a \prec b$ si y solo si $F(a) \prec' F(b)$.

Proof. a) Probaremos solo el caso de la **cota superior**.

 \Rightarrow Supongamos que a es **cota superior** de S, veamos entonces que F(a) es **cota superior** de F(S). Sean:

- $x \in F(S)$
- $s \in S$ tal que x = F(s).

Ya que $s \le a$, tenemos que $x = F(s) \le' F(a)$. Luego, F(a) es **cota superior**.

 \Leftarrow Supongamos ahora que F(a) es **cota superior** de F(S) y veamos entonces que a es cota superior de S.

Sea $s \in S$, ya que $F(s) \leq' F(a)$, tenemos que $s = F^{-1}(F(s)) \leq' F^{-1}(F(a)) = a$. Por lo tanto, a es **cota superior**.

b) \implies Supongamos existe $\sup(S)$. Veamos que $F(\sup(S))$ es el supremo de F(S). Por el iniciso (a) $F(\sup(S))$ es cota superior de F(S). Veamos que es la menor de las cotas superiores. Supongamos b' cota superior de F(S), entonces $F^{-1}(b')$ es cota superior de S, es decir, $\sup(S) \leq F^{-1}(b')$, produciendo $F(\sup(S)) \leq' b'$. Por lo tanto, $F(\sup(S))$ es el supremo de F(S).

- c) Se desprende del inciso (b) tomando S = P.
- d) Probaremos solo el caso **maximal**.

 \Rightarrow Supongamos que m es maximal de (P, \leq) . Veamos que F(m) es maximal de (P', \leq') . Supongamos que F(m) no es maximal de (P', \leq') , es decir, $F(m) <' b' \ \forall b' \in P'$. Dado que F es isomorfismo:

$$F^{-1}(F(m)) < F^{-1}(b')$$

 $m < F^{-1}(b')$

Lo cual es un absurdo, dado que m es maximal de (P, \leq) . Por lo tanto, F(m) es maximal de (P', \leq') .

 \leftarrow Supongamos que F(m) es maximal de (P', \leq') . Veamos que m es maximal de (P, \leq) . Supongamos que m no es maximal de (P, \leq) , es decir, $m < b \ \forall b \in P$. Dado que F es isomorfismo:

Lo cual es un absurdo, dado que F(m) es maximal de (P', \leq') . Por lo tanto, m es maximal de (P, \leq) .

- e) \implies Supongamos $a \prec b$, veamos que $F(a) \prec' F(b)$. Debemos ver:
 - 1) F(a) <' F(b)
 - 2) $\nexists z'$ tal que F(a) < z' < F(b)

Ya que $a \prec b$, por definición tenemos: $a < b \ y \not\exists z \text{ tal que } a < z < b \ (\star)$

Dado que la función F es un isomorfismo, se cumple (1). Veamos que se cumple (2), supongamos que $\exists z'$ tal que F(a) < z' < F(b). Luego, nuevamente utilizando que F es isomorfismo, tenemos:

$$F^{-1}(F(a)) < F^{-1}(z') < F^{-1}(F(b))$$

 $a < F^{-1}(z') < b$

Lo cual, contradice (\star) , el absurdo vino de suponer que $\exists z'$ tal que F(a) < z' < F(b), por lo tanto $\nexists z'$ tal que F(a) < z' < F(b).

Finalmente, dado que se cumplen los puntos (1) y (2), se cumple también $F(a) \prec' F(b)$.

 \subseteq Supongamos $F(a) \prec' F(b)$, veamos que $a \prec b$.

Ya que $F^{-1}:(P',\leq')\to(P,\leq)$ es isomorfismo, por lo ya visto tenemos:

$$F^{-1}(F(a)) \prec F^{-1}(F(b))$$

$$a \prec b$$

Lemma 2. Dado un reticulado (L, \leq) y elementos $x, y, z, w \in L$, se cumplen las siguientes propiedades:

$$(1) \ x \le x \ \mathsf{s} \ y$$

(8)
$$x i (x s y) = x$$

(2)
$$x i y \leq x$$

(9)
$$(x s y) s z = x s (y s z)$$

(3)
$$x \cdot s \cdot x = x \cdot i \cdot x = x$$

$$(10) (x i y) i z = x i (y i z)$$

(4)
$$x \circ y = y \circ x$$

(11) Si
$$x \le z$$
 e $y \le w$ entonces:

(5)
$$x i y = y i x$$

•
$$x s y < z s w$$

(6)
$$x \le y \Leftrightarrow x \text{ s } y = y \Leftrightarrow x \text{ i } y = x$$

•
$$x \mid y \leq z \mid w$$

(7)
$$x s (x i y) = x$$

(12)
$$(x i y) s (x i z) < x i (y s z)$$

Proof. Dado que las propiedades (1), (2), (3), (4), (5), (6), son consecuencia inmediata de las definiciones de s e i, probaremos solo las restantes.

$$(7) (8)$$

$$x i y \le x$$
 Por (2) $x \le x s y$ Por (1) $(x i y) s x = x$ Por (6) $x i (y s x) = x$ Por (6) $x s (x i y) = x$ Por (3)

- (9) Para probar la igualdad probaremos las siguientes desigualdades:
 - $\bullet \quad \boxed{(x \mathsf{s} y) \mathsf{s} z \leq x \mathsf{s} (y \mathsf{s} z)}$

Notese que $x \le (y \le z)$ es cota superior de $\{x, y, z\}$ ya que:

$$x \leq x \operatorname{s} (y \operatorname{s} z)$$

$$y \leq (y \operatorname{s} z) \leq x \operatorname{s} (y \operatorname{s} z)$$

$$z \leq (y \operatorname{s} z) \leq x \operatorname{s} (y \operatorname{s} z)$$

Por otro lado, $x \le (y \le z)$ es cota superior de $\{x,y\}$, tenemos que $x \le y \le x \le (y \le z)$, por lo cual $x \le (y \le z)$ es cota superior del conjunto $\{x \le y, z\}$, lo cual dice que $(x \le y) \le z \le x \le (y \le z)$.

 $\bullet \quad \boxed{(x \mathsf{s} y) \mathsf{s} z \ge x \mathsf{s} (y \mathsf{s} z)}$

Notese que $(x \mathbf{s} y) \mathbf{s} z$ es cota superior de $\{x, y, z\}$ ya que:

$$x \leq x \operatorname{s} y \leq (x \operatorname{s} y) \operatorname{s} z$$

$$y \leq x \operatorname{s} y \leq (x \operatorname{s} y) \operatorname{s} z$$

$$z \leq (x \operatorname{s} y) \operatorname{s} z$$

Por otro lado, $(x exttt{s} y) exttt{s} z$ es cota superior de $\{y, z\}$, tenemos que $y exttt{s} z \leq (x exttt{s} y) exttt{s} z$, por lo cual $(x exttt{s} y) exttt{s} z$ es cota superior del conjunto $\{x, y exttt{s} z\}$, lo cual dice que $(x exttt{s} y) exttt{s} z \geq x exttt{s} (y exttt{s} z)$.

Por lo tanto, (x s y) s z = x s (y s z)

- (10) Para probar la igualdad probaremos las siguientes desigualdades:
 - $\bullet \quad \boxed{(x \mid y) \mid z \leq x \mid (y \mid z)}$

Notese que x i (y i z) es cota inferior de $\{x, y, z\}$ ya que:

$$\begin{array}{rcl} x \mathrel{\mathrm{i}} (y \mathrel{\mathrm{i}} z) & \leq & x \\ (y \mathrel{\mathrm{i}} z) \leq x \mathrel{\mathrm{i}} (y \mathrel{\mathrm{i}} z) & \leq & y \\ z & \leq & (y \mathrel{\mathrm{i}} z) \leq x \mathrel{\mathrm{i}} (y \mathrel{\mathrm{i}} z) \end{array}$$

Por otro lado, x i (y i z) es cota inferior de $\{x, y\}$, tenemos que $x i y \le x i (y i z)$, por lo cual x i (y i z) es cota inferior del conjunto $\{x i y, z\}$, lo cual dice que $(x i y) i z \le x i (y i z)$.

 $\bullet \quad \boxed{(x \mathrel{\mathsf{i}} y) \mathrel{\mathsf{i}} z \ge x \mathrel{\mathsf{i}} (y \mathrel{\mathsf{i}} z)}$

Notese que $(x \mid y)$ i z es cota inferior de $\{x, y, z\}$ ya que:

$$x \leq x i y \leq (x s y) i z$$

$$y \leq x i y \leq (x s y) i z$$

$$z \leq (x i y) i z$$

Por otro lado, (x i y) i z es cota inferior de $\{y, z\}$, tenemos que y i $z \le (x i y)$ i z, por lo cual (x i y) i z es cota inferior del conjunto $\{x, y i z\}$, lo cual dice que (x i y) i $z \ge x$ i (y i z).

Por lo tanto, (x i y) i z = x i (y i z)

$$x \le z \le z \text{ s } w$$

$$x \le z \Rightarrow x \text{ i } y \le z$$

$$y < w < z \text{ s } w$$

$$y \le w \Rightarrow x \text{ i } y \le w$$

Luego, z s w es cota superior de $\{x,y\}$ y x i y es cota inferior de $\{z,w\}$, por lo tanto, x s $y \le z$ s w y x i $y \le z$ i w.

Lemma 3. Sea (L, \leq) un reticulado, dados elementos $x_1, \ldots, x_n \in L$, con $n \geq 2$, se tiene

$$(\dots(x_1 \mathsf{s} x_2) \mathsf{s} \dots) \mathsf{s} x_n = \sup(\{x_1, \dots, x_n\})$$

 $(\dots(x_1 \mathsf{i} x_2) \mathsf{i} \dots) \mathsf{i} x_n = \inf(\{x_1, \dots, x_n\})$

Proof. Probaremos por inducción en n.

Caso Base: n=2

$$x_1 ext{ s } x_2 = \sup(\{x_1, x_2\})$$

 $x_1 ext{ i } x_2 = \inf(\{x_1, x_2\})$

Lo cual vale, dado que es la definición.

Caso Inductivo: n > 2

Supongamos ahora que vale para n y veamos entonces que vale para n+1. Sean $x_1, \ldots, x_{n+1} \in L$, por hipótesis inductiva tenemos que:

$$(\dots(x_1 \mathsf{s} x_2) \mathsf{s} \dots) \mathsf{s} x_n = \sup(\{x_1, \dots, x_n\}) (\star_1)$$

 $(\dots(x_1 \mathsf{i} x_2) \mathsf{i} \dots) \mathsf{i} x_n = \inf(\{x_1, \dots, x_n\}) (\star_2)$

Veamos entonces que:

$$((\dots(x_1 s x_2) s \dots) s x_n) s x_{n+1} = \sup(\{x_1, \dots, x_{n+1}\}) (\dagger_1)$$
$$((\dots(x_1 i x_2) i \dots) i x_n) i x_{n+1} = \inf(\{x_1, \dots, x_{n+1}\}) (\dagger_2)$$

Para ello debemos ver $((\dots(x_1 \ \mathsf{s} \ x_2) \ \mathsf{s} \ \dots) \ \mathsf{s} \ x_n) \ \mathsf{s} \ x_{n+1}$ es cota superior de $\{x_1,\dots,x_{n+1}\}$ y que es la menor de las cotas superiores. Además, que $((\dots(x_1 \ \mathsf{i} \ x_2) \ \mathsf{i} \ \dots) \ \mathsf{i} \ x_n) \ \mathsf{i} \ x_{n+1}$ es cota inferior de $\{x_1,\dots,x_{n+1}\}$ y que es la mayor de las cotas inferiores.

Es fácil ver que $((\dots(x_1 \mathsf{s} x_2) \mathsf{s} \dots) \mathsf{s} x_n) \mathsf{s} x_{n+1}$ es cota superior de $\{x_1, \dots, x_{n+1}\}$. Supongamos que z es otra cota superior de $\{x_1, \dots, x_{n+1}\}$. Ya que z es también cota superior del conjunto $\{x_1, \dots, x_n\}$, por (\star_1) tenemos que:

$$(\ldots(x_1 \mathsf{s} x_2) \mathsf{s} \ldots) \mathsf{s} x_n \leq z$$

Además, dado que $x_{n+1} \leq z$, tenemos que:

$$((\dots(x_1 \mathsf{s} x_2) \mathsf{s} \dots) \mathsf{s} x_n) \mathsf{s} x_{n+1} \leq z$$

Por lo tanto, vale (\dagger_1) .

Nuevamente, es fácil ver que $((\ldots(x_1 i x_2) i \ldots) i x_n) i x_{n+1}$ es cota inferior de $\{x_1, \ldots, x_{n+1}\}$. Supongamos que z' es otra cota inferior de $\{x_1, \ldots, x_{n+1}\}$. Ya que z' es también cota inferior del conjunto $\{x_1, \ldots, x_n\}$, por (\star_2) tenemos que:

$$z' \leq (\dots(x_1 \mid x_2) \mid \dots) \mid x_n$$

Además, dado que $z' \leq x_{n+1}$, tenemos que:

$$z' \leq ((\dots(x_1 \mid x_2) \mid \dots) \mid x_n) \mid x_{n+1}$$

Por lo tanto, vale (\dagger_2) .

Theorem 4. Sea (L, s, i) un reticulado, la relación binaria definida por:

$$x \le y \Leftrightarrow x \text{ s } y = y$$

es un orden parcial sobre L para el cual se cumple:

$$\sup(\{x,y\}) = x s y$$

$$\inf(\{x,y\}) = x i y$$

Proof. • Reflexiva: Sea $x \in L$ un elemento cualquiera. Luego,

$$\left. \begin{array}{l} x \text{ s } x = x \\ x \text{ i } x = x \end{array} \right\} \Rightarrow x \le x$$

• Antisimétrica: Sean $x,y\in L$ elementos cualquieras. Supongamos que $x\leq y$ e $y\leq x,$ entonces:

$$\left. \begin{array}{l} x \leq y \Rightarrow x \text{ s } y = y \\ y \leq x \Rightarrow x \text{ s } y = x \end{array} \right\} \Rightarrow x = y$$

• Transitiva: Supongamos que $x \le y$ e $y \le z$, entonces:

$$x \operatorname{s} z = x \operatorname{s} (y \operatorname{s} z) = (x \operatorname{s} y) \operatorname{s} z = y \operatorname{s} z = z$$

por lo cual $x \leq z$.

Veamos ahora que $\sup(\{x,y\}) = x$ s y. Es claro que x s y es una cota superior del conjunto $\{x,y\}$, veamos que es la menor. Supongamos $x,y \leq z$, entonces:

$$(x s y) s z = x s (y s z) = x s z = z$$

por lo que $x \le y \le z$, es decir, $x \le y$ es la menor cota superior.

Resta probar que $\inf(\{x,y\}) = x$ i y. Nuevamente, es claro que x i y es una cota inferior del conjunto $\{x,y\}$, veamos que es la mayor. Supongamos $z \le x, y$, entonces:

$$(x \mid y) \mid z = x \mid (y \mid z) = x \mid z = z$$

por lo que $z \le x$ i y, es decir, x i y es la mayor cota inferior.

Lemma 5. Si $F:(L,s,i) \to (L',s',i')$ es un homomorfismo biyectivo, entonces F es un isomorfismo.

Proof. Debemos probar que F^{-1} es un homomorfismo. Sean F(x), F(y) dos elementos cualesquiera de L', tenemos que:

П

Luego, F^{-1} es homomorfismo y por lo tanto F es isomorfismo.

Lemma 6. Sean (L, s, i) y(L', s', i') reticulados y sea $F : (L, s, i) \rightarrow (L', s', i')$ un homomorfismo, entonces I_F es un subuniverso de (L', s', i').

Proof. Ya que $L \neq \emptyset$, tenemos que $I_F \neq \emptyset$. Sean $a, b \in I_F$, $x, y \in L$ tales que F(x) = a y F(y) = b. Se tiene que:

$$a ext{ s' } b = F(x) ext{ s' } F(y) = F(x ext{ s } y) \in I_F$$

 $a ext{ i' } b = F(x) ext{ i' } F(y) = F(x ext{ i } y) \in I_F$

por lo cual I_F es cerrada bajo s' e i'.

Lemma 7. Sean (L, s, i) y (L', s', i') reticulados y sean (L, \leq) y (L', \leq') los posets asociados. Sea $F: L \to L'$ una función, entonces F es un isomorfismo de (L, s, i) en (L', s', i') si y solo si F es un isomorfismo de (L, \leq) en (L', \leq') .

Proof. \Rightarrow Supongamos que F es un isomorfismo de (L, s, i) en (L', s', i'). Sean $x, y \in L$ tales que $x \leq y$. Tenemos:

$$y = x s y$$

$$F(y) = F(x s y)$$

$$= F(x) s' F(y)$$

$$\therefore F(x) \leq' F(y)$$

Sean $x', y' \in L'$ tales que $x' \leq y'$. Tenemos:

$$y' = x' \text{ s' } y'$$

$$F^{-1}(y') = F^{-1}(x' \text{ s' } y')$$

$$= F^{-1}(x') \text{ s } F^{-1}(y')$$

$$\therefore F^{-1}(x) \leq F^{-1}(y)$$

Por lo tanto, F es un isomorfismo de (L, \leq) en (L', \leq') .

 \Leftarrow Supongamos ahora que F es un isomorfismo de (L, \leq) en (L', \leq') , entonces el **Lemma ??** nos dice que F y F_1 respetan la operaciones de supremo e ínfimo, por lo cual F es un isomorfismo de (L, s, i) y (L', s', i').

Lemma 8. Sea $(L/\theta, \tilde{s}, \tilde{\imath})$ un reticulado. El orden parcial $\tilde{\leq}$ asociado a este reticulado cumple:

$$x/\theta \,\, \tilde{\leq} \,\, y/\theta \Leftrightarrow y \,\, \theta \,\, (x \,\, \mathbf{s} \,\, y)$$

Proof. Veamos que $(L/\theta, \tilde{s}, \tilde{\imath})$ satisface las 7 identidades de la definición de reticulado. Sean $x/\theta, y/\theta, z/\theta$ elementos cualesquiera de L/θ .

(I5)
$$(x/\theta \ \tilde{\imath} \ y/\theta) \ \tilde{\imath} \ z/\theta = x/\theta \ \tilde{\imath} \ (y/\theta \ \tilde{\imath} \ z/\theta)$$

$$(x/\theta \tilde{\imath} y/\theta) \tilde{\imath} z/\theta = (x i y)/\theta \tilde{\imath} z/\theta$$

$$= ((x i y) i z)/\theta$$

$$= (x i (y i z))/\theta$$

$$= x/\theta \tilde{\imath} (y i z)/\theta$$

$$= x/\theta \tilde{\imath} (y/\theta \tilde{\imath} z/\theta)$$

$$x/\theta \ \tilde{\mathbf{s}} \ (x/\theta \ \tilde{\imath} \ y/\theta) = x/\theta \ \tilde{\mathbf{s}} \ (x \ \mathbf{i} \ y)/\theta$$

$$= (x \ \mathbf{s} \ (x \ \mathbf{i} \ y))/\theta$$

 $= x/\theta$

(I6) $x/\theta \tilde{s} (x/\theta \tilde{i} y/\theta) = x/\theta$

Corollary 9. Sea (L, s, i) un reticulado en el cual hay un elemento máximo 1 (resp. mínimo 0), entonces si θ es una congruencia sobre $(L, s, i), 1/\theta$ (resp. $0/\theta$) es un elemento máximo (resp. mínimo) de $(L/\theta, \tilde{s}, \tilde{i})$.

Proof. Ya que 1 θ (x **s** 1), para cada $x \in L$, tenemos que $x/\theta \leq 1/\theta$, para cada $x \in L$.

Lemma 10. Si $F:(L,s,i) \to (L',s',i')$ es un homomorfismo de reticulados, entonces ker F es una congruencia sobre (L,s,i).

Proof. Veamos primero que ker F es una relación de equivalencia.

- Reflexiva: $(x, x) \in \ker F$. Trivial pues F(x) = F(x).
- Simétrica: Si $(x, y) \in \ker F \Rightarrow (y, x) \in \ker F$. Si $(x, y) \in \ker F \Rightarrow F(x) = F(y)$. Luego, vale también F(y) = F(x).
- Transitiva: Si $(x, y), (y, z) \in \ker F \Rightarrow (x, z) \in \ker F$.

$$(x,y) \in \ker F \Rightarrow F(x) = F(y)$$

 $(y,z) \in \ker F \Rightarrow F(y) = F(z)$ $\} \Rightarrow F(x) = F(y) = F(z)$

Por lo tanto, $(x, z) \in \ker F$.

Supongamos $x \ker F(x')$ y $y \ker F(y')$, entonces:

$$F(x s y) = F(x) s' F(y) = F(x') s' F(y') = F(x' s y')$$

 $F(x i y) = F(x) i' F(y) = F(x') i' F(y') = F(x' i y')$

lo cual nos dice que $(x \mathbf{s} y) \ker F(x' \mathbf{s} y') \mathbf{y} (x \mathbf{i} y) \ker F(x' \mathbf{i} y')$.

Lemma 11. Sea (L, s, i) un reticulado y sea θ una congruencia sobre (L, s, i), entonces π_{θ} es un homomorfismo de (L, s, i) en $(L/\theta, \tilde{s}, \tilde{\imath})$. Además $\ker \pi_{\theta} = \theta$.

Proof. Sean $x, y \in L$ elementos cualquier. Tenemos que:

$$\pi_{\theta}(x \mathsf{s} y) = (x \mathsf{s} y)/\theta = x/\theta \mathsf{\tilde{s}} \ y/\theta = \pi_{\theta}(x) \mathsf{\tilde{s}} \pi_{\theta}(y)$$
$$\pi_{\theta}(x \mathsf{i} y) = (x \mathsf{i} y)/\theta = x/\theta \mathsf{\tilde{i}} \ y/\theta = \pi_{\theta}(x) \mathsf{\tilde{i}} \pi_{\theta}(y)$$

por lo cual π_{θ} preserva las operaciones de supremo e ínfimo.

Lemma 12. Si $F:(L,s,i,0,1) \to (L',s',i',0',1')$ un homomorfismo biyectivo, entonces F es un isomorfismo.

П

Proof. Debemos probar que F^{-1} es un homomorfismo. Sean F(x), F(y) dos elementos cualesquiera de L', tenemos que:

$$F^{-1}(F(1)) = F^{-1}(1')$$
 $F^{-1}(F(0)) = F^{-1}(0')$ $F^{-1}(0') = 0$

Luego, F^{-1} es homomorfismo y por lo tanto F es isomorfismo.

Lemma 13. Si $F:(L,s,i,0,1) \to (L',s',i',0',1')$ es un homomorfismo, entonces I_F es un subuniverso de (L',s',i',0',1').

Proof. Dado que F es un homomorfismo de (L, s, i) en (L', s', i') utilizando el **Lemma ??** tenemos que I_F es subuniverso de (L', s', i') lo cual ya que $0', 1' \in I_F$ implica que I_F es un subuniverso de (L', s', i', 0', 1').

Lemma 14. Si $F:(L,s,i,0,1) \to (L',s',i',0',1')$ es un homomorfismo de reticulados acotados, entonces ker F es una congruencia sobre (L,s,i,0,1).

Lemma 15. Sea (L, s, i, 0, 1) un reticulado acotado y θ una congruencia sobre (L, s, i, 0, 1), entonces:

- a) $(L/\theta, \tilde{s}, \tilde{\imath}, 0/\theta, 1/\theta)$ es un reticulado acotado.
- b) π_{θ} es un homomorfismo de (L, s, i, 0, 1) en $(L/\theta, \tilde{s}, \tilde{\imath}, 0/\theta, 1/\theta)$ cuyo núcleo es θ .

Lemma 16. Si $F:(L,s,i,^c,0,1) \to (L',s',i',^{c'},0',1')$ un homomorfismo biyectivo, entonces F es un isomorfismo.

Lemma 17. Si $F:(L,s,i,^c,0,1) \to (L',s',i',^{c'},0',1')$ es un homomorfismo, entonces I_F es un subuniverso de $(L',s',i',^{c'},0',1')$.

Lemma 18. Si $F:(L,s,i,^c,0,1) \to (L',s',i',^{c'},0',1')$ es un homomorfismo de reticulados complementados, entonces ker F es una congruencia sobre $(L,s,i,^c,0,1)$.

Proof. Ya que F es un homomorfismo de $(L, \mathsf{s}, \mathsf{i}, {}^c, 0, 1)$ en $(L', \mathsf{s}', \mathsf{i}', {}^c', 0', \mathsf{tenemos}$ por **Lemma ??** que kerF es una congruencia sobre $(L, \mathsf{s}, \mathsf{i}, {}^c, 0, 1)$, es decir, solo falta probar que para todos $x, y \in L$ se tiene que x/kerF = y/kerF implica $x^c/kerF = y^c/kerF$, lo cual es dejado al lector.

TODO

Lemma 19. Sea (L, s, i, c, 0, 1) un reticulado complementado y sea θ una congruencia sobre (L, s, i, c, 0, 1).

- a) $(L/\theta, \tilde{s}, \tilde{i}, \tilde{c}, 0/\theta, 1/\theta)$ es un reticulado complementado.
- b) π_{θ} es un homomorfismo de $(L, \mathbf{s}, \mathbf{i}, {}^{c}, 0, 1)$ en $(L/\theta, \tilde{\mathbf{s}}, \tilde{\imath}, {}^{\tilde{c}}, 0/\theta, 1/\theta)$ cuyo núcleo es θ .

Lemma 20. Sea (L, s, i) un reticulado. Son equivalentes:

- (1) x i (y s z) = (x i y) s (x i z), cualesquiera sean $x, y, z \in L$
- (2) $x \circ (y \circ z) = (x \circ y) \circ (x \circ z)$, cualesquiera sean $x, y, z \in L$.

Proof. $(1) \Rightarrow (2)$ Notar que:

$$(x s y) i (x s z) = ((x s y) i x) s ((x s y) i z)$$

$$= (x s (z i (x s y))$$

$$= (x s ((z i x) s (z i y))$$

$$= (x s (z i x)) s (z i y)$$

$$= x s (z i y)$$

$$= x s (y i z)$$

 $(2) \Rightarrow (1)$ Notar que:

$$(x i y) s (x i z) = ((x i y) s x) i ((x i y) s z)$$

$$= (x i (z s (x i y))$$

$$= (x i ((z s x) i (z s y))$$

$$= (x i (z s x)) i (z s y)$$

$$= x i (z s y)$$

$$= x i (y s z)$$

Lemma 21. Si (L, s, i, 0, 1) un reticulado acotado y distributivo, entonces todo elemento tiene a lo sumo un complemento.

Proof. Supongamos $x \in L$ tiene complementos y, z. Se tiene:

$$y s x = 1 = x s z$$

 $y i x = 0 = x i z$

por lo cual:

$$y = y \le 0 = y \le (x i z) = (y \le x) i (y \le z) = 1 i (y \le z) = (x \le z) i (y \le z) = (x i y) \le z = 0 \le z = z$$

Por lo tanto, $y = z$.

Lemma 112: Con prueba. Lemma 22.

Lemma 22. Si $S \neq \emptyset$, entonces [S] es un filtro. Más aún si F es un filtro y $F \supseteq S$, entonces $F \supseteq [S]$, es decir, [S] es el menor filtro que contiene a S.

Proof. Recordemos:

$$[S) = \{ y \in L : y \ge s_1 \text{ i } \dots \text{ i } s_n, \text{ para algunos } s_1, \dots, s_n \in S, n \ge 1 \}$$

- 1. $[S] \neq \emptyset$: Ya que $S \subseteq [S]$, tenemos que $[S] \neq \emptyset$.
- 2. $x, y \in [S) \Rightarrow x \text{ i } y \in [S)$: Sean x, y tales que:

$$y \ge s_1 \mid s_2 \mid \dots \mid s_n$$
, i.e, $y \in [S)$
 $z \ge t_1 \mid t_2 \mid \dots \mid t_m$, i.e, $z \in [S)$

con $s_1, s_2, \ldots, s_n, t_1, t_2, \ldots, t_m \in S$, entonces:

$$y \mid z \geq s_1 \mid s_2 \mid \ldots \mid s_n \mid t_1 \mid t_2 \mid \ldots \mid t_m$$

3. $x \in [S]$ y $x \le y \Rightarrow y \in [S]$: Por construcción, claramente [S] cumple esta propiedad.

Lemma 23. (**Zorn**) Sea (P, \leq) un poset y supongamos que cada cadena de (P, \leq) tiene una cota superior, entonces existe un elemento maximal en (P, \leq) .

Theorem 24. (Teorema del Filtro Primo) Sea (L, s, i) un reticulado distributivo y F un filtro. Supongamos $x_0 \in L - F$, entonces hay un filtro primo P tal que $x_0 \notin P$ $y F \subseteq P$.

Proof. Sea:

$$\mathcal{F} = \{F_1 : F_1 \text{ es un filtro}, x_0 \notin F_1 \text{ y } F \subseteq F_1\}$$

Notar que $\mathcal{F} \neq \emptyset$, por lo cual (\mathcal{F}, \subseteq) es un poset.

Veamos que cada cadena en (\mathcal{F},\subseteq) tiene una cota superior. Sea C una cadena.

- Si $C = \emptyset$, entonces cualquier elemento de \mathcal{F} es cota de C.
- Si $C \neq \emptyset$. Sea:

$$G = \{x \in L : x \in F_1, \text{ para algún } F_1 \in C\}$$

Veamos que G es un filtro.

- 1. Es claro que $G \neq \emptyset$.
- 2. Supongamos que $x, y \in G$. Sean $F_1, F_2 \in \mathcal{F}$ tales que $x \in F_1$ y $y \in F_2$.
 - Si $F_1 \subseteq F_2$, entonces ya que F_2 es un filtro tenemos que x i $y \in F_2 \subseteq G$.
 - Si $F_2 \subseteq F_1$, entonces tenemos que x i $y \in F_1 \subseteq G$.

Ya que C es una cadena, tenemos que siempre x i $y \in G$.

3. En forma analoga se prueba la propiedad restante ...

Por lo tanto, tenemos que G es un filtro. Además $x_0 \notin G$, por lo que $G \in \mathcal{F}$ es cota superior de C. Por el **Lemma ??**, (\mathcal{F}, \subseteq) tiene un elemento maximal P. Veamos que P es un filtro primo.

Supongamos $x \in P$ y $x, y \notin P$, entonces ya que P es maximal tenemos que:

$$x_0 \in [P \cup \{x\}) \cap [P \cup \{y\})$$

Ya que $x_0 \in [P \cup \{x\})$, tenemos que hay elementos $p_1, \ldots, p_n \in P$, tales que:

$$x_0 \geq p_1$$
 i ... i p_n i x

Ya que $x_0 \in [P \cup \{y\})$, tenemos que hay elementos $q_1, \ldots, q_m \in P$, tales que:

$$x_0 \geq q_1$$
 i ... i q_m i y

Denotemos:

$$p = p_1 \mathsf{i} \ldots \mathsf{i} p_n \mathsf{i} q_1 \mathsf{i} \ldots \mathsf{i} q_m$$

tenemos que:

$$x_0 \ge p i x$$

 $x_0 > p i y$

Se tiene que $x_0 \ge (p \mid x)$ s $(p \mid y) = p \mid (x \mid x) \in P$, lo cual es absurdo ya que $x_0 \notin P$.

Corollary 25. Sea (L, s, i, 0, 1) un reticulado acotado distributivo. Si $\emptyset \neq S \subseteq L$ es tal que s_1 i s_2 i ... i $s_n \neq 0$, para cada $s_1, \ldots, s_n \in S$, entonces hay un filtro primo que contiene a S.

Proof. Dado que $[S) \neq L$, se puede aplicar el **Theorem ??** (Teorema del filtro primo).

Lemma 26. Sea (B, s, i, c, 0, 1) un algebra de Boole, entonces para un filtro $F \subseteq B$ las siguientes son equivalentes:

- (1) F es primo
- (2) $x \in F$ ó $x^c \in F$, para cada $x \in B$.

Proof. $(1) \Rightarrow (2)$ Ya que x s $x^c = 1 \in F$, y F es filtro primo, por definición de filtro primo se cumple que $x \in F$ ó $x^c \in F$.

 $(2) \Rightarrow (1)$ Supongamos que $x \in F$ y que $x \notin F$, entonces por $(2), x^c \in F$ y por lo tanto tenemos que:

$$y \geq x^c \text{ i } y = 0 \text{ s } (x^c \text{ i } y) = (x^c \text{ i } x) \text{ s } (x^c \text{ i } y) = x^c \text{ i } (x \text{ s } y) \in F$$

lo cual dice que $y \in F$.

Lemma 27. Sea (B, s, i, c, 0, 1) un álgebra de Boole. Supongamos que $b \neq 0$ y $a = \inf A$, con $A \subseteq B$, entonces si b i a = 0 existe un $e \in A$ tal que b i $e^c \neq 0$.

Proof. Supongamos que para cada $e \in A$, tengamos que b i $e^c = 0$, entonces tenemos que para cada $e \in A$,

$$b=b \mathrel{\mathrm{i}} (e \mathrel{\mathrm{s}} e^c) = (b \mathrel{\mathrm{i}} e) \mathrel{\mathrm{s}} (b \mathrel{\mathrm{i}} e^c) = b \mathrel{\mathrm{i}} e$$

lo cual nos dice que b es cota inferior de A. Pero si $b \le a$, entonces b = b i a = 0, es decir, b = 0, lo cual es un absurdo dado que por hipótesis sabíamos que $b \ne 0$.

Theorem 28. (Rasiova y Sikorski) Sea (B, s, i, c, 0, 1) un álgebra de Boole. Sea $x \in B$, tal que $x \neq 0$. Supongamos que A_1, A_2, \ldots son subconjuntos de B tales que existe $\inf(A_j)$, para cada $j = 1, 2, \ldots$, entonces hay un filtro primo P el cual cumple:

- $a) \ x \in P$
- b) $A_i \subseteq P \Rightarrow \inf(A_i) \in P$, para cada $j = 1, 2, \ldots$

Proof. Sea $a_j = \inf(A_j)$, para $j = 1, 2, \ldots$ construiremos inductivamente una sucesión b_0, b_1, \ldots de elementos de B tal que:

- $b_0 = x$
- b_0 i ... i $b_n \neq 0$, para cada $n \geq 0$
- $b_j = a_j$ ó $b_j^c \in A_j$, para cada $j \ge 1$
- (1) Definamos $b_0 = x$
- (2) Supongamos ya definimos b_0, \ldots, b_n , veamos como definir b_{n+1} .
 - Si $(b_0 i \ldots i b_n)$ i $a_{n+1} \neq 0$, entonces definamos $b_{n+1} = a_{n+1}$.
 - Si $(b_0 i \dots i b_n)$ i $a_{n+1} = 0$, entonces por el **Lemma ??**, tenemos que hay un $e \in A_{n+1}$ tal que $(b_0 i \dots i b_n)$ i $e^c \neq 0$, lo cual nos permite definir $b_{n+1} = e^c$.

Dado que el conjunto $S = \{b_0, b_1, \dots\}$ satisface la hipótesis del **Corollary ??**, por lo tanto hay un filtro primo P tal que $\{b_0, b_1, \dots\} \subseteq P$, el cual satisface las propiedades (a) y (b) dado que así lo construimos.

2 Términos y fórmulas

Lemma 29. Supongamos $t \in T_k^{\tau}$, con $k \geq 1$, entonces ya sea $t \in Var \cup \mathcal{C}$ ó $t = f(t_1, \ldots, t_n)$, con $f \in \mathcal{F}_n, n \geq 1, t_1, \ldots, t_n \in T_{k-1}^{\tau}$.

Proof. Probaremos este teorema por inducción en k.

<u>Caso Base:</u> k = 1 Es directo, ya que por definición:

$$T_1^{\tau} = Var \cup \mathcal{C} \cup \{f(t_1, t_2, \dots t_n) : f \in \mathcal{F}_n, n \ge 1, t_1, t_2, \dots t_n \in T_0^{\tau}\}$$

<u>Caso Inductivo:</u> k > 1 Sea $t \in T_{k+1}^{\tau}$. Por definición de T_{k+1}^{τ} tenemos que:

- $t \in T_k^{\tau}$ ó
- $t = f(t_1, \dots, t_n)$ con $f \in \mathcal{F}_n, n \ge 1$ y $t_1, \dots, t_n \in T_k^{\tau}$.

Si se da que $t \in T_k^{\tau}$, entonces podemos aplicar hipótesis inductiva y usar que $T_{k-1}^{\tau} \subseteq T_k^{\tau}$. \square

Lemma 30. Sea $b \in Bal$. Se tiene:

- (1) $|b|_{(} |b|_{)} = 0$
- (2) Si x es tramo inicial propio de b, entonces $|x|_{(-|x|_{)}} > 0$
- (3) Si x es tramo final propio de b, entonces $|x|_{(-|x|)} < 0$

Proof. Probaremos por inducción en k, que valen (1), (2) y (3) para cada $b \in Bal_k$.

Caso Base: k = 1

- (1) $Bal_1 = \{()\}$. Luego, $|b|_1 = |b|_2 = 1$. Por lo tanto, $|b|_1 |b|_2 = 0$.
- (2) Supongamos x tramo inicial propio de b. Luego x = (, es decir, $|x|_{(} = 1 \text{ y } |x|_{)} = 0$. Por lo tanto, $|x|_{(} |x|_{)} > 0$.
- (3) Supongamos x tramo final propio de b. Luego x=), es decir, $|x|_{(}=0$ y $|x|_{)}=1$. Por lo tanto, $|x|_{(}-|x|_{)}<0$.

<u>Caso Inductivo</u>: k > 1 Supongamos $b \in Bal_{k+1}$. Si $b \in Bal_k$, se aplica directamente HI para cualquiera de los casos. Supongamos entonces que $b = (b_1 \dots b_n)$, con $b_1, \dots, b_n \in Bal_k, n \ge 1$.

- (1) Por HI, b_1, \ldots, b_n satisfacen $|b|_{(} |b|_{)} = 0$. Luego, (b_1, \ldots, b_n) también satisface, es decir, al agregar un paréntesis de cada tipo, el balanceo se mantiene.
- (2) Sea x un tramo inicial propio de b. Notese que x es de la forma $x=(b_1...b_iy)$ con $0 \le i \le n-1$ y y un tramo inicial de b_{i+1} , pero entonces:

$$|x|_{(}-|x|_{)}=1+\left(\sum_{j=1}^{i}|b_{j}|_{(}-|b_{j}|_{)}\right)+|y|_{(}-|y|_{)}$$

tenemos que por HI, se da que $|x|_{(}-|x|_{)}>0$.

(3) Sea x un tramo final propio de b. Notese que x es de la forma $x = yb_1 \dots b_i$) con $1 \le i \le n$ y y un tramo final de b_{i+1} , pero entonces:

$$|x|_{(-|x|_{)}} = |y|_{(-|y|_{)}} + \left(\sum_{j=1}^{i} |b_{j}|_{(-|b_{j}|_{)}}\right) + 1$$

tenemos que por HI, se da que $|x|_{(-|x|)} < 0$.

Lemma 31. $del(xy) = del(x)del(y) \ \forall x, y \in \Sigma^*$.

Lemma 32. Supongamos que Σ es tal que $T^{\tau} \subseteq \Sigma^*$, entonces $del(t) \in Bal$, para cada $t \in T^{\tau} - (Var \cup C)$.

Lemma 33. Sean $s, t \in T^{\tau}$ y supongamos que hay palabras x, y, z, con $y \neq \varepsilon$ tales que s = xy y t = yz, entonces $x = z = \varepsilon$ ó $s, t \in C$. En particular, si un término es tramo inicial o final de otro término, entonces dichos términos son iguales.

Proof. • Supongamos $s \in \mathcal{C}$: Ya que $y \neq \varepsilon$ tenemos que t debe comenzar con un símbolo que ocurre en un nombre de constante, lo cual dice que t no puede ser ni una variable ni de la forma $g(t_1, \ldots, t_m)$, es decir $t \in \mathcal{C}$.

• Supongamos $s \in Var$: Si sucediese que $x \neq \varepsilon$, t comenzaría con alguno de los siguientes símbolos:

lo cual es absurdo. Luego, $x = \varepsilon$ y por lo tanto t debe comenzar con X, pero esto dice que $t \in Var$ de lo que sigue que $z = \varepsilon$.

• Supongamos que s es de la forma $f(s_1, \ldots, s_n)$: Ya que) debe ocurrir en t, tenemos que t es de la forma $g(t_1, \ldots, t_m)$, osea que $del(s), del(t) \in Bal$. Ya que) ocurre en $y, del(y) \neq \varepsilon$. Tenemos también que:

$$del(s) = del(x)del(y)$$
$$del(t) = del(y)del(z)$$

Utilizando el Lemma 2 obtenemos que:

1)
$$|del(y)|_{(-|del(y)|_{)}} \le 0$$

2)
$$|del(y)|_{\ell} - |del(y)|_{\ell} \ge 0$$

por lo cual:

$$|del(y)|_{(}-|del(y)|_{)}=0$$

pero entonces ya que del(y) es tramo final de del(s), el **Lemma 2** nos dice que $del(x) = \varepsilon$. De la misma manera, obtenemos que $del(z) = \varepsilon$. Ya que que t termina con) tenemos que $z = \varepsilon$, osea que $f(s_1, \ldots, s_n) = xg(t_1, \ldots, t_m)$ con $del(x) = \varepsilon$, de lo que se desprende que f = xg ya que (no ocurre en x. Finalmente, de la definición de tipo se desprende que $x = \varepsilon$.

Theorem 34. (Lectura única de terminos). Dado $t \in T^{\tau}$ se da una de las siguientes:

- (1) $t \in Var \cup C$
- (2) Hay únicos $n \geq 1$, $f \in \mathcal{F}_n$, $t_1, \ldots, t_n \in T^{\tau}$ tales que $t = f(t_1, \ldots, t_n)$.

Proof. En virtud del **Lemma 1** solo nos resta probar la unicidad de t_1, \ldots, t_n en el punto (2). Supongamos que:

$$t = f(t_1, \dots, t_n) = g(s_1, \dots, s_m)$$

con $n, m \ge 1$, $f \in \mathcal{F}_n, g \in \mathcal{F}_m, t_1, \dots, t_n, s_1, \dots, s_m \in T^{\tau}$. Notese que f = g, es decir, n = m = a(f). Notemos que:

- t_1 es tramo inicial de s_1 ó
- s_1 es tramo inicial de t_1

En general:

- t_i es tramo inicial de s_i ó
- s_i es tramo inicial de t_i , para $1 \le i \le n$.

lo cual por el **Lemma 5** nos dice que $t_i = s_i$ con $1 \le i \le n$.

Lemma 35. Sean $r, s, t \in T^{\tau}$.

- (a) Si $s \neq t = f(t_1, ..., t_n)$ y s ocurre en t, entonces dicha ocurrencia sucede dentro de algún $t_i, j = 1, ..., n$.
- (b) Si r, s ocurren en t, entonces dichas ocurrencias son disjuntas o una ocurre dentro de otra. En particular, las distintas ocurrencias de r en t son disjuntas.
- (c) Si t' es el resultado de reemplazar una ocurrencia de s en t por r, entonces $t' \in T^{\tau}$.

- Proof. (a) Supongamos la ocurrencia de s comienza en algún t_j , entonces el **Lemma 5** nos conduce a que dicha ocurrencia debera estar contenida en t_j . Veamos que la ocurrencia de s no puede ser a partir de un $i \in \{1, \ldots, |f|\}$. Supongamos lo contrario. Tenemos entonces que s debe ser de la forma $g(s_1, \ldots, s_m)$ ya que no puede estar en $Var \cup \mathcal{C}$. Notese que $i \neq 1$ ya que en caso contrario s seria un tramo inicial propio de t. Pero entonces g debe ser un tramo final propio de f, lo cual es absurdo. Ya que s no puede comenzar con parentesis o coma, hemos contemplado todos los posibles casos de comienzo de la ocurrencia de s en t.
- (b) Por induccion, usando (a).
- (c) Por induccion, usando (a).

Lemma 36. Supongamos $\varphi \in F_k^{\tau}$, con $k \geq 1$, entonces φ es de alguna de las siguientes formas:

- $\varphi = (t \equiv s), \ con \ t, s \in T^{\tau}.$
- $\varphi = r(t_1, \ldots, t_n), \ con \ r \in \mathcal{R}_n, t_1, \ldots, t_n \in T^{\tau}.$
- $\varphi = (\varphi_1 \eta \varphi_2), \ con \ \eta \in \{\land, \lor, \rightarrow, \leftrightarrow\}, \ \varphi_1, \varphi_2 \in F_{k-1}^{\tau}.$
- $\varphi = \neg \varphi_1, \ con \ \varphi_1 \in F_{k-1}^{\tau}.$
- $\varphi = Qv\varphi_1$, $con\ Q \in \{\forall, \exists\},\ v \in Var\ y\ \varphi_1 \in F_{k-1}^{\tau}$.

Llamaremos (\star) a dicha lista.

Proof. Probaremos este teorema por inducción en k, utilizando la definición del conjunto F^{τ} .

Caso Base:

$$\varphi \in \{(t \equiv s) : t, s \in T^{\tau}\} \cup \{r(t_1, \dots, t_n) : r \in \mathcal{R}_n, n \ge 1, t_1, \dots, t_n \in T^{\tau}\}$$

por lo que φ es de alguna de las siguientes formas:

- $\varphi = (t \equiv s)$, con $t, s \in T^{\tau}$.
- $\varphi = r(t_1, \dots, t_n)$, con $r \in \mathcal{R}_n, t_1, \dots, t_n \in T^{\tau}$.

Caso Inductivo: Supongamos que si $\varphi \in F_{k-1}^{\tau}$ entonces φ es de alguna de las formas de (\star) . Probaremos que si $\varphi \in F_k^{\tau}$ entonces φ también es de alguna de las formas de la lista (\star) .

$$\varphi \in F_{k-1}^{\tau} \cup \{ \neg \varphi : \varphi \in F_{k-1}^{\tau} \} \cup \{ (\varphi \eta \psi) : \varphi, \psi \in F_{k-1}^{\tau}, \eta \in \{ \lor, \land, \to, \leftrightarrow \} \}$$

$$\cup \{ Qv \varphi : \varphi \in F_{k-1}^{\tau}, v \in Var, Q \in \{ \forall, \exists \} \}$$

Luego, si $\varphi \in F_{k-1}^{\tau}$ aplicando HI obtenemos que φ es de alguna de las formas de la lista anterior. Caso contrario, se dá alguna de las siguientes:

- $\varphi = (\varphi_1 \eta \varphi_2)$, con $\varphi_1, \varphi_2 \in F_{k-1}^{\tau}, \eta \in \{\land, \lor, \to, \leftrightarrow\}$.
- $\varphi = \neg \varphi_1$, con $\varphi_1 \in F_{k-1}^{\tau}$.
- $\varphi = Qv\varphi_1$, con $Q \in \{\forall, \exists\}, v \in Var \ y \ \varphi_1 \in F_{k-1}^{\tau}$.

Lemma 37. Sea τ un tipo.

- a) Supongamos que Σ es tal que $F^{\tau} \subseteq \Sigma^*$, entonces $del(\varphi) \in Bal$, para cada $\varphi \in F^{\tau}$.
- b) Sea $\varphi \in F_k^{\tau}$, con $k \geq 0$, existen $x \in (\{\neg\} \cup \{Qv : Q \in \{\forall, \exists\}, v \in Var\})^*$ y $\varphi_1 \in F^{\tau}$ tales que $\varphi = x\varphi_1$ y φ_1 es de la forma $(\psi_1\eta\psi_2)$ o atómica. En particular toda fórmula termina con el símbolo).

Proof. a) HACER!!!!

- b) Induccion en k. El caso k=0 es trivial. Supongamos (b) vale para cada $\varphi \in F_k^{\tau}$ y sea $\varphi \in F_{k+1}^{\tau}$. Hay varios casos de los cuales haremos solo dos
 - CASO $\varphi = (\varphi_1 \eta \varphi_2)$, con $\varphi_1, \varphi_2 \in F_k^{\tau}$ y $\eta \in \{ \lor, \land, \to, \leftrightarrow \}$. Podemos tomar $x = \varepsilon$ y $\varphi_1 = \varphi$.
 - CASO $\varphi = Qx_i\psi$, con $\psi \in F_k^{\tau}$, $i \geq 1$ y $Q \in \{\forall, \exists\}$. Por HI hay $\bar{x} \in (\{\neg\} \cup \{Qv : Q \in \{\forall, \exists\} \text{ y } v \in Var\})^*$ y $\psi_1 \in F^{\tau}$ tales que $\psi = x\psi_1$ y ψ_1 es de la forma $(\gamma_1\eta\gamma_2)$ o atomica. Entonces es claro que $x = Qx_i\bar{x}$ y $\varphi_1 = \psi_1$ cumplen (b). \square

Lemma 38. Ninguna fórmula es tramo final propio de una fórmula atómica, es decir, si $\varphi = x\psi$, con $\varphi \in F_0^{\tau}$ y $\psi \in F^{\tau}$, entonces $x = \varepsilon$.

Proof. • Si φ es de la forma $(t \equiv s)$, entonces $|del(y)|_{(-|del(y)|_{)}} < 0$ para cada tramo final propio y de φ , lo cual termina el caso ya que $del(\psi)$ es balanceada.

• Supongamos entonces $\varphi = r(t_1, \ldots, t_n)$. Notese que ψ no puede ser tramo final de t_1, \ldots, t_n) ya que $del(\psi)$ es balanceada y $|del(y)|_{(}-|del(y)|_{)}<0$ para cada tramo final y de t_1, \ldots, t_n). Es decir que $\psi = y(t_1, \ldots, t_n)$, para algun tramo final y de r. Ya que en ψ no ocurren cuantificadores ni nexos ni el simbolo \equiv el Lema 124 nos dice $\psi = \tilde{r}(s_1, \ldots, s_m)$, con $\tilde{r} \in \mathcal{R}_m$, $m \geq 1$ y $s_1, \ldots, s_m \in T^{\tau}$. Ahora es facil usando un argumento paresido al usado en la prueba del Teorema 122 concluir que $m = n, s_i = t_i, i = 1, \ldots, n$ y \tilde{r} es tramo final de r. Por (3) de la definicion de tipo tenemos que $\tilde{r} = r$ lo cual nos dice que $\varphi = \psi$ y $x = \varepsilon \square$

Lemma 39. $Si \varphi = x\psi$, $con \varphi, \psi \in F^{\tau} y x sin paréntesis$, entonces $x \in (\{\neg\} \cup \{Qv : Q \in \{\forall, \exists\}\})^*$.

Proof. Probaremos por inducción en k, tal que $\varphi \in F_k^{\tau}$.

<u>Caso Base</u>: El caso k = 0 es probado en el lema anterior.

Caso Inductivo: Asumamos que el resultado vale cuando $\varphi \in F_k^{\tau}$ y veamos que vale cuando $\varphi \in F_{k+1}^{\tau}$. Mas aun supongamos $\varphi \in F_{k+1}^{\tau} - F_k^{\tau}$. Primero haremos el caso en que $\varphi = Qv\varphi_1$, con $Q \in \{\forall, \exists\}, \ v \in Var \ y \ \varphi_1 \in F_k^{\tau}$. Supongamos $x \neq \varepsilon$. Ya que ψ no comienza con simbolos de v, tenemos que ψ debe ser tramo final de φ_1 lo cual nos dice que hay una palabra x_1 tal que $x = Qvx_1 \ y \ \varphi_1 = x_1\psi$. Por HI tenemos que $x_1 \in (\{\neg\} \cup \{Qv : Q \in \{\forall, \exists\} \ y \ v \in Var\})^*$ con lo cual $x \in (\{\neg\} \cup \{Qv : Q \in \{\forall, \exists\} \ y \ v \in Var\})^*$. El caso en el que $\varphi = \neg \varphi_1$ con $\varphi_1 \in F_k^{\tau}$, es similar. Note que no hay mas casos posibles ya que φ no puede comenzar con (porque en x no ocurren parentesis por hipotesis \square

Proposition 40. Si $\varphi, \psi \in F^{\tau}$ y x, y, z son tales que $\varphi = xy, \psi = yz$ y $y \neq \varepsilon$, entonces $z = \varepsilon$ y $x \in (\{\neg\} \cup \{Qv : Q \in \{\forall, \exists\} \ y \ v \in Var\})^*$. En particular ningún tramo inicial propio de una fórmula es una fórmula.

Proof. Ya que φ termina con) tenemos que $del(y) \neq \varepsilon$. Ya que $del(\varphi), del(\psi) \in Bal$ y ademas

$$del(\varphi) = del(x)del(y)$$

$$del(\psi) = del(y)del(z)$$

tenemos que del(y) es tramo inicial y final de palabras balanceadas, lo cual nos dice que $|del(y)|_{(-|del(y)|)} = 0$

Pero esto por (3) del Lema 118 nos dice que $del(x) = \varepsilon$. Similarmente obtenemos que $del(z) = \varepsilon$. Pero ψ termina con) lo cual nos dice que $z = \varepsilon$. Es decir que $\varphi = x\psi$. Por el lema anterior tenemos que $x \in (\{\neg\} \cup \{Qv : Q \in \{\forall, \exists\} \text{ y } v \in Var\})^* \square$

Theorem 41. (Lectura única de fórmulas) Dada $\varphi \in F^{\tau}$ se da una y solo una de las siguientes:

- (1) $\varphi = (t \equiv s), \ con \ t, s \in T^{\tau}$
- (2) $\varphi = r(t_1, \dots, t_n), \text{ con } r \in \mathcal{R}_n, t_1, \dots, t_n \in T^{\tau}$
- (3) $\varphi = (\varphi_1 \eta \varphi_2), \text{ con } \eta \in \{\land, \lor, \rightarrow, \leftrightarrow\}, \ \varphi_1, \varphi_2 \in F^{\tau}$
- (4) $\varphi = \neg \varphi_1, \ con \ \varphi_1 \in F^{\tau}$
- (5) $\varphi = Qv\varphi_1$, con $Q \in \{\forall, \exists\}, \varphi_1 \in F^{\tau} \ y \ v \in Var$.

Más aún, en todos los puntos tales descomposiciones son únicas.

Proof. (1)

- (2)
- (3)
- (4)
- (5)

Si una formula φ satisface (1), entonces φ no puede contener simbolos del alfabeto $\{\land, \lor, \rightarrow, \leftrightarrow\}$ lo cual garantiza que φ no puede satisfacer (3). Ademas φ no puede satisfacer (2) o (4) o (5) ya que φ comienza con (. En forma analoga se puede terminar de ver que las propiedades (1), ..., (5) son excluyentes.

La unicidad en las descomposiciones de (4) y (5) es obvia. La de (3) se desprende facilmente del lema anterior y la de los puntos (1) y (2) del lema analogo para terminos. \square

Lemma 42. Sea τ un tipo.

- (a) Las fórmulas atómicas no tienen subfórmulas propias.
- (b) Si φ ocurre propiamente en $(\psi \eta \varphi)$, entonces tal ocurrencia es en ψ ó en φ .
- (c) Si φ ocurre propiamente en $\neg \psi$, entonces tal ocurrencia es en ψ .
- (d) Si φ ocurre propiamente en $Qx_k\psi$, entonces tal ocurrencia es en ψ .
- (e) $Si \varphi_1, \varphi_2$ ocurren en φ , entonces dichas ocurrencias son disjuntas o una contiene a la otra.
- (f) Si λ' es el resultado de reemplazar alguna ocurrencia de φ en λ por ψ , entonces $\lambda' \in F^{\tau}$.

Proof. Ejercicio.