Algebra liniowa z geometrią dla informatyków - konspekt wykładu 2018/19

Barbara Roszkowska -Lech

December 2, 2018

4 Rząd macierzy

Twierdzenie 4.1. Niech $A, A' \in M_m^n(K)$ oraz v_1, v_2, \dots, v_m będą wierszami macierzy A a v_1', v_2', \dots, v_m' wierszami macierzy A'. Jeśli macierze A i A' są wierszowo równoważne to $\mathcal{L}(v_1, v_2, \dots, v_m) = \mathcal{L}(v_1', v_2', \dots, v_m')$.

Twierdzenie 4.2. Jeśli v_1, \dots, v_m będa wierszami macierzy A, a v_1', \dots, v_m' będa wierszami macierzy A' wierszowo równoważnej z macierzą A to układ v_1, \dots, v_m jest liniowo niezależny wtedy i tylko wtedy gdy układ v_1', \dots, v_m' jest liniowo niezależny.

Zauważmy, że niezerowe wiersze każdej macierzy schodkowej tworzą układ liniowo niezależny, a jeśli jeden z wierszy jest zerowy to taki układ jest zależny.

Wniosek 4.3. Wiersze dowolnej macierzy A tworzą układ liniowo niezależny wtedy i tylko wtedy, gdy macierz ta jest równoważna z macierzą schodkowa bez zerowych wierszy.

Twierdzenie 4.4. Niech $c^1(A), c^2(A), \cdots, c^n(A)$ bedą kolumnami macierzy $A \in M_m^n(K)$. Wtedy układ wektorów

$$c^1(A), c^2(A), \cdots, c^n(A)$$

jest układem liniowo niezależnym wtedy i tylko wtedy gdy jednorodny układ równań o macierzy A ma tylko zerowe rozwiązanie.

Wniosek 4.5. Niech macierz A będzie wierszowo równoważna z macierzą A'. Wtedy kolumny macierzy A są liniowo niezależne wtedy i tylko wtedy, gdy liniowo niezależne są kolumny macierzy A'.

Wniosek 4.6. Macierz $A \in M_n^n(K)$ jest odwracalna wtedy i tylko wtedy gdy jej kolumny $c^1(A), c^2(A), \dots, c^n(A)$ tworzą układ liniowo niezalezny.

Wniosek 4.7. Niech macierz $A \in M_m^n(K)$ będzie wierszowo równoważna z macierzą A'. Wtedy układ kolumn $(c^{i_1}(A), c^{i_2}(A), \cdots, c^{i_k}(A))$ macierzy A jest bazą przestrzeni

$$\mathcal{L}(c^1(A), c^2(A), \cdots, c^n(A))$$

wtedy i tylko wtedy, gdy układ kolumn $(c^{i_1}(A'), c^{i_2}(A'), \cdots, c^{i_k}(A'))$ macierzy A' jest bazą przestrzeni

$$\mathcal{L}(c^{1}(A'), c^{2}(A'), \cdots, c^{n}(A')).$$

Definicja 4.8. Rzędem macierzy $A \in M_m^n(K)$ (ozn rz(A))nazywamy wymiar przestrzeni

$$\mathcal{L}(c^1(A), c^2(A), \cdots, c^n(A)).$$

Uwaga 4.9. (Drugie twierdzenie magiczne) Niech $A \in M_m^n(K)$. Wtedy

$$dim\mathcal{L}(c^{1}(A), c^{2}(A), \cdots, c^{n}(A)) = dim\mathcal{L}(r_{1}(A), r_{2}(A), \cdots, r_{m}(A)).$$

Twierdzenie 4.10. (Twierdzenie Kroneckera - Capelliego) Niech $A \in M_m^n(K)$, $B \in M_m^1(K)$. Układ równań liniowych Ax = B ma conajmniej jedno rozwiązanie wtedy i tylko wtedy gdy rz(A|B) = rz(A).

Wniosek 4.11. Niech $A \in M_m^n(K)$. Układ równań liniowych Ax = B ma dla każdego $B \in M_m^1(K)$ conajmniej jedno rozwiązanie wtedy i tylko wtedy gdy rz(A|B) = m.

Zbiór rozwiązań jednorodnego układu równań $Ax = \mathbf{0}$ zawsze jest przestrzenią liniową. Wyznaczymy teraz jej wymiar.

Twierdzenie 4.12. Niech $A \in M_m^n(K)$. Następujące warunki są równoważne

- 1. Układ równań Ax = 0 ma dokładnie jedno rozwiązanie. (zerowe)
- 2. Istnieje $B \in M_m^1(K)$ takie, że układ Ax = B ma dokładnie jedno rozwiązanie.

- 3. Dla każdego $B \in M_m^1(K)$ układ Ax = B ma co najwyżej jedno rozwiązanie.
- 4. rz(A) = n.

Twierdzenie 4.13. Niech $A \in M_m^n(K)$. Wtedy $Rozw(A|\mathbf{0}) < M_n^1(K)$ oraz $dimRozw(A|\mathbf{0}) = n - rz(A)$.

Dowolną bazę przestrzeni $Rozw(A|\mathbf{0})$ nazywamy fundamentalnym układem rozwiazań.

Twierdzenie 4.14. Niech $A \in M_m^n(K)$, $B \in M_m^1(K)$. Ponadto niech $X_0 \in M_n^1(K)$ będzie elementem zbioru rozwiązań układu równań Ax = B oraz niech $X \in M_n^1(K)$. Wtedy

$$X \in Rozw(A|B) \iff X - X_0 \in Rozw(A|\mathbf{0}).$$

Wniosek 4.15. Niech $A \in M_m^n(K)$, $B \in M_m^1(K)$. Ponadto niech $X_0 \in M_n^1(K)$ będzie ustalonym elementem zbioru rozwiązań układu równań Ax = B. Wtedy

- $Rozw(A|B) = X_0 + Rozw(A|\mathbf{0}) = \{X_0 + Y; Y \in Rozw(A|\mathbf{0}).$
- Jeśli X_1, \ldots, X_p jest układem fundamentalnym przestrzeni $Rozw(A|\mathbf{0})$ to każde rozwiazanie X układu Ax = B daje się jednoznacznie przedstawić w postaci $X = X_0 + a_1X_1 + \ldots + a_pX_p$, gdzie $a_1, a_2, \ldots, a_p \in K$.