Applied Text Mining in Python

Naïve Bayes Classifier

Case study: Classifying text search queries

 Suppose you are interested in classifying search queries in three classes: Entertainment, Computer Science, Zoology

Most common class of the three is Entertainment.

Case study: Classifying text search queries

- Suppose the query is "Python"
 - Python, the snake (Zoology)
 - Python, the programming language (Computer Science)
 - Python, as in Monty Python (Entertainment)

• Most common class, given "Python", is Zoology.

Case study: Classifying text search queries

Suppose the query is "Python download"

 Most probable class, given "Python download", is Computer Science.

Probabilistic Model

Update the likelihood of the class given new information

Prior Probability: Pr(y = Entertainment), Pr(y = CS),
 Pr(y=Zoology)

• Posterior probability: Pr(y = Entertainment|x = "Python")

Bayes' Rule

• Posterior probability = Prior probability x Likelihood Evidence

•
$$Pr(y \mid X) = Pr(y) \times Pr(X \mid y)$$

 $Pr(X)$

Naïve Bayes Classification

```
• Pr(y=CS|"Python") = Pr(y=CS) \times Pr("Python" | y=CS)

Pr("Python")
```

- Pr(y=Zoology|"Python")
 = Pr(y=Zoology) x Pr("Python" | y=Zoology)
 Pr("Python")
- Pr(y=CS | "Python") > Pr(y=Zoology | "Python") => _

Naïve Bayes Classification

 Naïve assumption: Given the class label, features are assumed to be independent of each other

$$y^* = \underset{y}{\operatorname{argmax}} \Pr(y \mid X) = \underset{y}{\operatorname{argmax}} \Pr(y) \times \prod_{i=1}^{n} \Pr(x_i \mid y)$$

Naïve Bayes Classifier

$$y^* = \underset{y}{\operatorname{argmax}} \Pr(y \mid X) = \underset{y}{\operatorname{argmax}} \Pr(y) \times \prod_{i=1}^{T} \Pr(x_i \mid y)$$

Query: "Python download"

Naïve Bayes: What are the parameters?

- Prior probabilities: Pr(y) for all y in Y
- Likelihood: $Pr(x_i \mid y)$ for all features x_i and labels y in Y

• If there are 3 classes (|Y| = 3) and 100 features in X, how many parameters does naïve Bayes models have?

Naïve Bayes: Learning parameters

- Prior probabilities: Pr(y) for all y in Y
 - Remember training data?

- Count the number of instances in each class
- If there are N instances in all, and n out of those are labeled as class y $\square Pr$

Naïve Bayes: Learning parameters

- Likelihood: $Pr(x_i \mid y)$ for all features x_i and labels y in Y
 - Count how many times feature x_i appears in instances labeled as class y
 - If there are p instances of class y, and x_i appears in k of those, Pr(x_i | y) = k / p

Naïve Bayes: Smoothing

- What happens if $Pr(x_i | y) = 0$?
 - Feature xi never occurs in documents labeled y
 - But then, the posterior probability $Pr(y \mid x_i)$ will be 0!!
- Instead, smooth the parameters
- Laplace smoothing or Additive smoothing: Add a dummy count
 - $Pr(x_i | y) = (k+1) / (p+n)$; where n is number of features

Take Home Concepts

- Naïve Bayes is a probabilistic model
- Naïve, because it assumes features are independent of each other, given the class label
- For text classification problems, naïve Bayes models typically provide very strong baselines
- Simple model, easy to learn parameters