

Análisis Aplicado

Algunos plots de regiones de confianza

Andreas Wachtel 23 de septiembre de 2019

Outline

Motivación

- 2 Experimentos
 - Una función cuadrática
 - La función de Branin
 - La función de Shubert

Motivación

"Ver regiones de confianza del modelo cuadrático."

- ullet usando la Hessiana $B=
 abla^2 f(oldsymbol{x})$ (exacta y aproximada)
- usando la $B=(\nabla^2 f({m x})+sI)$ donde $s=\left|\lambda_{min}(\nabla^2 f({m x}))\right|$ (exacta y aproximada)

Una función cuadrática en $x_0 = (1, 1.5)^T$ con radio $\Delta = 1$.

$$f(x) = x_1^2 + 2x_2^2$$

con $abla f({m x}_0)$ y $B=
abla^2 f({m x}_0)$ (exactos).

Una función cuadrática en $x_0 = (1, 1.5)^T$ con radio $\Delta = 1$.

$$f(x) = x_1^2 + 2x_2^2$$

con $\nabla f({m x}_0)$ y $B=\nabla^2 f({m x}_0)$ (aproximados).

La función de Branin

$$f(\mathbf{x}) = a(x_2 - bx_1^2 + cx_1 - r)^2 + s(1 - t)\cos(x_1) + s$$

Los parametros $\{a,b,c,r,s,t\}$ se encuentran en la página: https://www.sfu.ca/~ssurjano/branin.html

La función de Branin en $\boldsymbol{x}_0 = (3.25, \, 2.25)^T$ con radio $\Delta = 1/2$.

La región de confianza del modelo cuadrático (malla blanca) usando $m{g} = \nabla f(m{x}_0)$ y $B = \nabla^2 f(m{x}_0)$ (exactos).

La función de Branin en $\boldsymbol{x}_0 = (3.25, \, 2.25)^T$ con radio $\Delta = 1/2$.

La región de confianza del modelo cuadrático (malla blanca) usando ${m g} = \nabla f({m x}_0) \;\; {\bf y} \;\; B = \nabla^2 f({m x}_0) \;\; {\bf (aproximados)}.$

"The Shubert function"

$$f(\mathbf{x}) = \left(\sum_{i=1}^{5} i \cos((i+1)x_1 + i)\right) \left(\sum_{i=1}^{5} i \cos((i+1)x_2 + i)\right)$$

La región de confianza del modelo cuadrático (malla blanca) usando $m{g} = \nabla f(m{x}_0)$ y $B = \nabla^2 f(m{x}_0)$ (exactos).

La región de confianza del modelo cuadrático (malla blanca) usando $g = \nabla f(x_0)$ y $B = \nabla^2 f(x_0)$ (aproximados).

La región de confianza del modelo cuadrático (malla blanca) usando ${m g} = \nabla f({m x}_0) \;\; {m y} \;\; B = (\nabla^2 f({m x}_0) + sI) \;\; \mbox{(exactos)}.$

La región de confianza del modelo cuadrático (malla blanca) usando ${m g} = \nabla f({m x}_0) \;\; {\bf y} \;\; B = (\nabla^2 f({m x}_0) + sI) \;\; \mbox{(aproximados)}.$

Thank you!

Questions & Anwers *

* (hopefully)