Precipitate Reactions and Selective Precipitation Assignment

Part A: Net Ionic Equations

Write the balanced and net-ionic equation for the following double replacement reactions.

Note that all reactants are aqueous. All states must be shown. If a reaction does not occur
you must indicate that and a balanced equation is not necessary.

1) Potassium phosphate and calcium nitrate.

$$2K_3PO_{4(4)} + 3Ca(NO_3)_{2(4)} \rightarrow 6KNO_{3(4)} + Ca_3(PO_4)_{26}$$

 $3Ca^{2+}_{(49)} + 2PO_4^{3-} \rightarrow Ca_3(PO_4)_{2(5)}$

2) Barium chloride and sodium sulfate.

$$BaCl_{2(aq)} + Nb_2SO_{4(aq)} \rightarrow BaSO_{4(s)} + 2NaCl_{(aq)}$$

$$Ba^{2+}(aq) + SO_{4-(aq)}^{2-} \rightarrow BaSO_{4(s)}$$

3) Sodium acetate and silver nitrate.

NaCt13c00(ag) + Ag NO3(ag) -> NaNO3(ag) -> AgCH3c00(s)
$$Ag^{4}(ag) + CH3c00(ag) -> AgCH3c00(s)$$

4) Hydrochloric acid and copper (II) nitrate

5) Calcium iodide and potassium carbonate.

$$(aI_{2(eq)} + K_{3}(O_{3(aq)} \rightarrow CaCO_{3(5)} + 2KI(aq)$$

 $(a^{2+}_{(aq)} + CO_{3(aq)} \rightarrow CaCO_{3(5)}$

Part B Selective Precipitation

- 1. An aqueous solution containing the following cations: Ca^{2*} Ag* Cu^{2*} K* In order to separate them, the following solutions are available: Na₂S Na₂CO₃ NaBr If we wish to separate the cations by causing only one cation to precipitate out of solution at a time:
 - a) in what order should the solutions Na₂S, Na₂CO₃, and NaBr be added?

b) identify the three precipitates that form after the addition of those solutions.						Ь
c) wh	ich one cation	will remain in	solution?	K+	D NaBr→	AgBr(s)
	Ca				CON Co	
52-	201	PPI	YPT	1501	(2) NazS>	Cu Sis)
C032-	1 राप	PPT	PPT	501	3 Na, (0, >	CaCO3(5)
Br-	Sol		_4	1 _) Kt is the on	- ,

2. We wish to separate the cations from a mixture containing the following solutions:

$Ra(NO_3)_2$, $Mg(NO_3)_2$, and $AgNO_3$

In order to do so we are given the following separate solutions: K2SO4, K2S, and KOH

In what order should we add the separate solutions in order to remove the cations by selective

precipitation	Ra2+	Mg2+	nat form, in the		ь)
5042-	TTG	S.1	PPT		-> Ag2 S(5)
<u> </u>	Sol	Sol	PPT	•	→ pig(un)z(s)
OH-	Sol	TYY	PPT	*(3) 12704_	7 Ka 504(5)

3. You want to separate the followings cations from a solution: Be≥, Sr₂, and Ag. If you are given NH_4Br , Na_2SO_3 , and H_2SO_4 , list the order the substances must be added and the precipitates that form

in each st	Be2+	Srzh	PPT (D) HABY -> AgBr(s)
S032-	PPI	PPT	PPT (3) Na2 SO3 -> Be SO3(S)
5092-	Sol	PPT	PPT (3) Na ₂ 30 ₃ - Be 30 ₃₍₅₎

4. An aqueous solution contains a mixture of Ba2+, Pb2+ and Ca2+. List 3 substances that can be added in the correct order such that 1 cation will precipitate out at a time. List the precipitate that forms in each

OKOWSKI WILL	step.	Bast	1 7520	(a2+	00
Jary Dut	Br	Sol	TPT	Sol	O NaB
10.2	5042-	PPT	PPT	PPT	(3) Nool
OS CONTO	OH-	Sol	PPT	PPT	3 Na ₂

order precipe

order precipe

O NaBr
$$\rightarrow$$
 PbBr₂₍₅₎

O NoOH \rightarrow (a(OH)₂₍₅₎

O Na₃So₄ \rightarrow BaSO₄₍₅₎