

Kohonen's Self Organising Feature Maps (SOMs)

Tom Gedeon

Research School of Computer Science Australian National University tom@cs.anu.edu.au

Based partly on:

Kohonen: IEEE Trans on Neural Nets v11 n3:3, May 2000

"ai-junkie" tutorial at http://www.ai-junkie.com/ann/som/som1.html

Human Centred Computing

Purpose / function of SOM

- Map from higher number of dimensions down
 - Usually to 2D Good for visualisation
- Unsupervised learning
 - Learn "similarity graph of input data"
 - Approximate probability density function of inputs
 - Neurons in a regular usually 2D grid
- Want similar input vectors represented by nearby neurons
 - Maintain topological relationships (as possible)

Each Output Node is a vector of N weights

Input Layer -- Each Node a vector representing N terms.

1. Initialize input nodes, output nodes, and connection weights

- input vector: top (most frequently occurring) N terms
- output nodes: create a 2-dimensional map (grid) of M
- Initialize weights w_{ij} from N input nodes to M output nodes to small random values

2. Present each document in order

Describe each document as an input vector of N coordinates

3. Compute distance to all nodes

$$d_{i} = \sum_{j=0}^{N-1} (x_{j}(t) - w_{ji}(t))^{2}$$
 (1)

- 4. Select winning node i* and update weights to node i* and its neighbors
 - Update weights to nodes i^* and its neighbors to reduce the distances between them and the input vector $x_i(t)$:

$$w_{ij}(t+1) = w_{ij}(t) + \eta(t) \left(x_j(t+1) - w_{ij}(t) \right)$$
 (2)

- $\eta(t)$ is an error-adjusting coefficient $(0 < \eta(t) < 1)$ that decreases over time

SOIVI algorithm

- Recursive regression process
- t is the index of the regression step
- x(t) is the presentation of a sample of input x
- $h_{c(\mathbf{x}),i}(t)$ is the neighborhood function $m_{c(\mathbf{x})}(t)$ is the model ("winner") that matches best with

$$m_i(t+1) = m_i(t) + h_{c(x),i}(t)[x(t) - m_i(t)]$$
 (3)

$$c(\mathbf{x}) = \arg\min_{i} \{ \|\mathbf{x} - \mathbf{m}_{i}\| \}$$
 (4)

$$h_{c(\mathbf{x}),i}(t) = \alpha(t) \exp\left(-\frac{\left\|r_i - r_{c(\mathbf{x})}\right\|^2}{2\sigma^2(t)}\right)$$
 (5)

 0 < α(t) < 1 is the learning-rate factor which decreases monotonically with the regression steps

 σ(t) corresponds to the width of the neighborhood function, which is also decreasing monotonically with the regression steps

A geometric analogy

The vectors can be shown as points on a sphere.

Before learning

After learning

- x = input vector
- o = weight vector
- Assumed 3 inputs, with
 - Vector length normalised

Neighbourhood decreases over time

Some similarity to simulated annealing ...

Example with evenly distrib. data

- Illustrates ability to do topological mapping
 - Not otherwise a useful feature of SOMs
 - 2D 'triangle' of data
 - Linear topology used here

Example with hierarchical data

·Table 1 Input Data Matrix

	item	Item														
	Α	В	C	D	E	F	G	H	ı	1	K	L	M	N	0	P
Attribute			*													
a ₁	1	2	. 3.	4	5	3	3	3	3	3	3	3	3	3	3	3
a ₂	0	0	0	0	0	1	2	3	4	5	- 3	.3	3	3	3	3
a,	0	0	0	0	0	0	0	0	.0.	0	1	2	3	4	5	6
a₄	0	0	0	0	0	0				0	0	0	0	0	0	0
as	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1		- 1977														
	Q	R	s	Т	U	٧	W	Х	Υ	Z	.1	2	3	4	5	6
	3	3.	3	3	3	3	3	3	. 3	3	3	3	3	3	3	3
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
							6									
							1									
							0									

Hierarch. example continued

Self-organized map of the data matrix of Table 1.

Applic. World Poverty Map

- Various quality-of-life factors such as state of health, nutrition, educational services etc.
- A hex is a neuron in the SOM

Poverty map on World map

Has found reasonably similarities

