# Week 14: Regularization

#### **Table of Contents**

- 1. Reglarized Hypothesis Set
  - Regression With Constraint
- 2. Weight Decay Regularization
  - <u>Lagrange Multiplier</u>
  - Augmented Error
  - <u>Legendre Polynomials</u>
- 3. Regularization and VC Theory
- 4. General Regularizers

#### **Regularized Hypothesis Set**



- 1. Regularization: Function approximation for ill-posed problems
  - Force "stepping back" to lower-order hypothesis sets, to alleviate/avoid overfitting when noise is present
  - Recall that lower-order hypothesis sets can be viewed as **subsets** of higher-order hypothesis sets (with some zero weights)



1. Given Q-th order polynomial *transform* for  $x \in \mathbb{R}$ :

$$\phi_Q(x) = (1, x, x^2, \dots, x^Q)$$
\$ + linear regression

For simplicity, denote the transformed weight  $\tilde{w}$  as w

2. If the target function defined above is to be learned by a second-order hypothesis set  $\mathcal{H}_2$  and a 10-th order hypothesis set  $\mathcal{H}_{10}$ , respective, there is:

hypothesis 
$$w$$
 in $\mathcal{H}_{10} = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \dots + w_{10} x^{10}$   
hypothesis  $w$  in $\mathcal{H}_2 = w_0 + w_1 x + w_2 x^2$ 

In other words, hypothesis sets  $\mathcal{H}_2$  and  $\mathcal{H}_{10}$  are **equivalent under constraint** 

$$w_3 = w_4 = \dots = w_{10} = 0$$

- $\Rightarrow$  "Stepping back" in hypothesis set is achieved by applying constraints
- 3. Represent ideas above in terms of optimization objectives:

$$\mathcal{H}_{10} \equiv \left\{ \begin{matrix} w \in \mathbb{R}^{10+1} \end{matrix} \right\} \quad \mathcal{H}_2 \quad \equiv \quad \left\{ \begin{matrix} w \in \mathbb{R}^{10+1} \\ \end{matrix} \right. \\ \text{while } w_3 = w_4 = \ldots = w_{10} = 0 \right\}$$
 regression with  $\mathcal{H}_{10}$ : regression with  $\mathcal{H}_2$ :

$$\begin{array}{ccc} \min\limits_{\mathbf{w}\in\mathbb{R}^{10+1}} E_{\text{in}}(\mathbf{w}) & \min\limits_{\mathbf{w}\in\mathbb{R}^{10+1}} & E_{\text{in}}(\mathbf{w}) \\ \text{s.t.} & w_3 = w_4 = \ldots = w_{10} = 0 \end{array}$$

- "Stepping back" in hypothesis set is essentially optimizing  $E_{in}$  in the form of a constrained optimization
- Overkill within the scope of this specific example, but helps illustrating the core idea of regularization
- 4. Regression with looser constraint

$$\mathcal{H}_2 \equiv \left\{ \begin{aligned} \mathbf{w} \in \mathbb{R}^{10+1} & \mathcal{H}_2' \equiv \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \\ & \text{while } w_3 = \ldots = w_{10} = 0 \end{aligned} \right\}$$
 while  $\geq 8$  of  $w_q = 0$   $\}$  regression with  $\mathcal{H}_2$ : regression with  $\mathcal{H}_2'$ : 
$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{\text{in}}(\mathbf{w})$$
 
$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{\text{in}}(\mathbf{w})$$
 s.t. 
$$\sum_{q=0}^{10} \llbracket w_q \neq 0 \rrbracket \leq 3$$

- Resulting hypothesis  $\mathcal{H}'_2$  only requires a **specific number of** w to be zero, not specific ones
- More flexible than original constrained H<sub>1</sub>
- Less prone to overfitting than  $\mathcal{H}_{10}$
- Sparse hypothesis set, NP-hard to solve
- 5. Regression with softer constraint

$$\mathcal{H}_2' \ \equiv \ \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \qquad \qquad \mathcal{H}(C) \ \equiv \ \left\{ \mathbf{w} \in \mathbb{R}^{10+1} \right. \\ \text{while} \ \geq 8 \text{ of } w_q = 0 \right\} \qquad \text{while } \|\mathbf{w}\|^2 \leq C \right\}$$
 regression with  $\mathcal{H}_2'$ : regression with  $\mathcal{H}(C)$ : 
$$\min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{\text{in}}(\mathbf{w}) \text{ s.t. } \sum_{q=0}^{10} \llbracket w_q \neq 0 \rrbracket \leq 3 \qquad \min_{\mathbf{w} \in \mathbb{R}^{10+1}} E_{\text{in}}(\mathbf{w}) \text{ s.t. } \sum_{q=0}^{10} w_q^2 \leq C$$

- Resulting hypothesis  $\mathcal{H}(C)$  has **small weights overall**:  $\|w\|^2 \leq C$ , where C is a small number
- Does not require a specific number of w to be zero. Instead weights can be any of
  - All w non-zero, but all very small
  - Small number of non-zero w, but relatively significant
  - Larger number of non-zero w, but relatively small
- $\mathcal{H}(C)$  *overlaps* but not exactly the same as  $\mathcal{H}'_2$
- $\mathcal{H}(C)$  provides soft and smooth structure over  $C \geq 0$ :

$$\mathcal{H}(0) \subset \mathcal{H}(1.126) \subset \cdots \subset \mathcal{H}(1226) \subset \cdots \subset \mathcal{H}(\infty) = \mathcal{H}_{10}$$

- Contraint essentially non-existent as C approaches infinity
- 6. Regularized hypothesis set
  - $\mathcal{H}(C)$  is a **regularized hypothesis set**
  - **Regularized hypothesis**  $w_{REG}$  is the optiaml solution from  $\mathcal{H}(C)$

#### **Weight Decay Regularization**

1. Matrix form of regularized regression problem

$$\min_{w \in \mathbb{R}^{Q+1}} E_{in}(w) = \frac{1}{N} \underbrace{\sum_{n=1}^{N} (w^{T} z_{n} - y_{n})^{2}}_{(Zw - y)^{T} (Zw - y)}$$
s.t.
$$\underbrace{\sum_{q=0}^{Q} w_{q}^{2}}_{w^{T} w} \leq C$$

• Constraint  $w^T w \leq C$  requires that feasible w resides within a radius- $\sqrt{C}$  hypersphere

#### Lagrange Multiplier



1. Target function

$$\min_{w \in \mathbb{R}^{Q+1}} \underline{E_{in}}(w) = \frac{1}{N} (Zw - y)^{T} (Zw - y) \text{ s.t. } w^{T} w \leq C$$

- 2. Guiding principle for minimizing  $E_{in}$ : Gradient descent in the direction of  $-\nabla E_{in}(w)$
- 3. In order to satisfy the constraint while seeking optimal solution, need to make sure that *w* **does not take value outside of the bound indicated by red circle above** 
  - Candidate w are most likely located along the **boundary** defined by  $w^T w = C$ , since it allows w to be as close to **unconstrained optimal**  $w_{LIN}$  as possible
  - Denote *normal* vector at the boundary of the constraint circle as  $\vec{w}$
  - **Cannot** iterate along direction of negative gradient if  $-\nabla E_{in} \parallel \vec{w}$ 
    - Otherwise w violates the constraint upon next iteration
  - If  $-\nabla E_{in}$  and w are **not** parallel with each other, it is **possible to decrease**  $E_{in}(w)$  without violating the constraint
    - There exists a component vector (denoted in green in picture above) along the constraint boundary, which allows w to move closer (with infinitely small step size) to wlin without moving out of the boundary
- 4. Optimal \color{purple}(w\_{REG}) must satisfy:
  - Gradient  $-\nabla E_{in}$  at  $w_{REG}$  is **parallel** with the normal vector of  $\mathbf{w}^T \mathbf{w} = \mathbf{C}$  at  $w_{REG}$ 
    - Otherwise further optimization is possible
    - In this case, the normal vector is  $w_{REG}$  itself (denoted as  $w_{REG}$ ), hence:

$$-\nabla E_{in}(w_{REG}) \propto w_{REG}$$

5. To solve for optimum regularized weight  $w_{REG}$ , need to find Lagrange multiplier  $\lambda > 0$  such that

$$\nabla E_{in}(w_{REG}) + \frac{2\lambda}{N} \left[ w_{REG} \right] = 0$$

• The extra constant  $\frac{2}{N}$  simplifies the solution, without impacting the optimal  $w_{REG}$ , because  $w_{REG}$  can always be treated as a unit vector

1. Given  $\lambda > 0$ , there is

$$\nabla E_{in}(w_{REG}) + \frac{2\lambda}{N} w_{REG} = 0$$

Recall the unconstrained optimal w from linear regression

$$\frac{2}{N} (Z^T Z w_{REG} - Z^T y) + \frac{2\lambda}{N} w_{REG} = 0$$

$$(Z^T Z w_{REG} - Z^T y) + \lambda w_{REG} = 0$$

$$(Z^T Z + \lambda) w_{REG} = Z^T y$$

Recall that  $Z^TZ$  is semi-positive definite. LHS is therefore positive definite (invertible) since  $\lambda$  is assumed to be p

$$w_{REG} = (Z^T Z + \lambda I)^{-1} Z^T y$$

- The process for solving regularized optimal weight  $w_{REG}$ , as shown above, is known as **ridge regression** in statistics, a.k.a **weight decay** in machine learning
- 2. Augmented error
  - Generalize the solution above beyond linear regression cases
  - 0

Solving the gradient equation

$$\nabla E_{in}(w_{REG}) + \frac{2\lambda}{N} [w_{REG}] = 0$$

Is equivalent to minimizing the integral form

$$E_{in}(w) + \underbrace{\frac{\lambda}{N}}_{\text{augmented error } E_{aug}(w)}$$

Recall that  $w^T w$  is the matrix form of  $w_{REG}^2$ 

- 3. Given  $\lambda > 0$ , the constrained regression problem essentially becomes regularization with augmented error instead of *constrained E*<sub>in</sub>
  - Minimizing unconstrained  $E_{aug}$  effectively minimizes some C constrained  $E_{in}$
  - In the special case of  $\lambda = 0$ , it becomes normal unconstrained regression problem, and  $E_{aug} = E_{in}$

$$w_{REG} \leftarrow \arg\min_{w} E_{aug}(w)$$
 for given  $\lambda > 0$  or  $\lambda = 0$ 

4. Effect of regularization



- A little **regularization** goes a long way!
- 5. The term  $+\frac{\lambda}{N} w^T w$  is known as **weight-decay** regularization
  - Larger  $\lambda \iff$  prefer shorter  $w \iff$  effectively smaller C (tighter constraint)
  - Works with any transform + linear model

#### **Legendre Polynomials**

1. General optimization problem for regularized regression with non-linear transformation

$$\min_{W \in \mathbb{R}^{Q+1}} \frac{1}{N} \sum_{n=0}^{N} (w^{T} \phi x_n - y_n)^2 + \frac{\lambda}{N} \sum_{q=0}^{Q} w_q^2$$

- 2. Problem with naive polynomial transform:  $\phi(x) = (1, x, x^2, \dots, x^Q)$ 
  - When  $x_n$  is small  $(x_n \in [-1, +1])$ , higher-order  $x_n^q$  is very small to begin with and requires very large  $w_q$  to actually cause overfitting
  - Regularization might over-punish higher-order terms in this case.
- 3. Use normalized polynomial transform:  $(1, L_1(x), L_2(x), \dots, L_Q(x))$  to avoid over-regularization
  - Treating polynomial terms as vectors
  - Require that the inner products of these vector terms to be small (or zero)
  - Orthonormal basis functions: Wikipedia
  - Known as Legendre polynomials
- 4. Using Legendre polynomials in place of naive polynomial transformations can help produce better results when using regularizations in polynomial regressions
- 5. First five Legendre polynomials



#### **Regularization and VC Theory**

1. VC guarantee of regularized regressions



- C equivalent to some  $\lambda$ • Constrained-minimizing  $E_{in}$ Minimizing (unconstrained)  $E_{aug}$
- Constrained-minimizing  $E_{in} \stackrel{\text{provides}}{\iff} \text{VC guarantee (under constrained hypothesis set } \mathcal{H}(C))$
- Given the equivalence relationship between  $E_{in}$  and  $E_{aug}$ , solution to augmented error problem provides the same VC guarantee without the hypothesis set constraint
- Another view of augmented error

## Augmented Error

### VC Bound

$$E_{\text{aug}}(\mathbf{w}) = E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^T \mathbf{w}$$
  $E_{\text{out}}(\mathbf{w}) \leq E_{\text{in}}(\mathbf{w}) + \Omega(\mathcal{H})$ 

$$E_{\text{out}}(\mathbf{w}) \leq E_{\text{in}}(\mathbf{w}) + \Omega(\mathcal{H})$$

- Regularizer  $w^T w$ : Penalizing complexity of a single hypothesis (specified by value of w)
- Generalization price  $\Omega(\mathcal{H})$ : Penalizing complexity of a hypothesis set
- Given the similarity between regularizer and generalization price, if  $\frac{\lambda}{N} \Omega(w)$  is a good representation of  $\Omega(\mathcal{H})$ ,  $E_{aug}$  is a **better proxy** of  $E_{out}$  than  $E_{in}$
- 3. Minimizing  $E_{aug}$ 
  - (Heuristically) allows learning algorithm to operate with better proxy of  $E_{out}$
  - $\circ$  (Technically) allows learning algorithm to enjoy flexibility of the whole hypothesis set  $\mathcal{H}$
- 4. Effective VC dimension
  - When minimizing augmented error

$$\min_{w \in \mathbb{R}^{\tilde{d}+1}} E_{aug}(w) = E_{in}(w) + \frac{\lambda}{N} \Omega(w)$$

- Model complexity  $d_{VC}(\mathcal{H}) = \tilde{d} + 1$ , because all possible w are considered during minimization
- However, only  $\mathcal{H}(C)$  choices of w are **actually considered**, with some C equivalent to  $\lambda$ 
  - Unconstrained minimization, but accounting for constraints in target function
- The effective VC dimension is therefore smaller than that obtained from solving unconstrained E<sub>in</sub>

$$d_{VC}(\mathcal{H}(\mathbf{C})) = d_{EFF}(\mathcal{H}, \underbrace{\mathcal{A}}_{\text{min } E_{aug}})$$

• Depending on the complexity of original hypothesis set, original VC dimension  $d_{VC}(\mathcal{H})$  could be large. However, the **effective** VC dimension  $d_{EFF}(\mathcal{H}, \mathcal{A})$  can remain small if  $\mathcal{A}$  is regularized.

### General Regularizers <a name="general-regularizers"/>

- 1. General guideline for choosing general regularizers  $\Omega w$  for target function:
  - **Target-dependent**: Make use of *properties* of target function, if known
    - The main purpose of regularizers is to get learning results closer to target function
    - e.g. If target function is known two be an even function, use symmetric regularizer:  $\sum \|\mathbf{q} \text{ is odd}\| w_q^2$
  - Plausible: Direction towards smoother or simpler hypothesis
    - Stochastic/deterministic noise are both **non-smooth**
    - Sparsity(L1) regularizer:  $\sum |w_a|$
  - Friendly: Easy to optimize

- Weight-decay(L1) regularizer:  $\sum w^2$
- **No regularizer**:  $\lambda = 0$ , always an option
- 2. Connection between regularizer and error measure
  - augmented error = error err + regularizer  $\Omega$
  - Given the relationship above, the guidelines for choosing regularizers and error measures share some commonalities
    - Regularizer: target-dependent, plausible, *or* friendly
    - Error measure: user-dependent, plausible, or friendly

#### 3. L1 and L2 regularizer



- L1 regularizer tends to produce sparse solutions (only a few non-zero weights) because given the "square" nature of its constraint boundary, there is a tendency for the optimal solutions to be at one of the corners.
- L1 regularizer is therefore suitable for feature selection (zero-out less important feature) or use cases that require sparse solution for computational simplicity
- Regression that uses L1 regularization is called **Lasso Regression** (Least Absolute Shrinkage and Selection Operator)
- Regression that uses L2 regularization is called Ridge Regression
- 4. Choosing the optimal  $\lambda$



- Annotations
  - $\sigma^2$ : Amount of stochastic noise
  - $Q_f$ : Order of target function (deterministic noise is the delta between this value and that of the hypothesis set, assume to be at 15-th order)
- $\circ$  More noise, more regularization required to achieve smooth solution with small  $E_{out}$