Bare Demo of IEEERev.cls for IEEE Journals

Yuchen Jin, Member, IEEE, and Yuchen Jin II, Member, IEEE

Abstract—The abstract goes here.

Index Terms—IEEE, IEEEtran, journal, LATEX, paper, template.

I. SHOW HOMEWORK

sadfasf, sdfdsf, sdf.

Test citations:

[1-3].

A. Show Floats

Test figures and example block which is shown in Example 1.

Example 1: Show figures

Test inner subgraphs, i.e. Figure 1(a) and Figure 1(b):

Here could be graphs. 1 (b) D = 0.5

(a) D = 1

Fig. 1. Test graphs.

Test subequations and the theorem block which is shown in Theorem 1.

Theorem 1: Example Theorem

Here we show a simple example of subequations in

Yuchen Jin was with the Department of Electrical and Computer Engineering, University of Houston, TX, 77004 USA e-mail: cain-magi@gmail.com.

Yuchen Jin II was with the Department of Electrical and Computer Engineering, University of Houston, TX, 77004 USA e-mail: cain.king@foxmail.com.

$$\frac{\partial \mathcal{L}(\mathbf{w}, \mathbf{b})}{\partial \mathbf{w}} = \mathbf{w} + C \sum_{i} \frac{\partial \ell_{i}}{\partial \mathbf{w}}, \tag{1-1}$$

$$\frac{\partial \mathcal{L}(\mathbf{w}, \mathbf{b})}{\partial \mathbf{b}} = C \sum_{i} \frac{\partial \ell_{i}}{\partial \mathbf{b}}, \tag{1-2}$$

Test table, which is shown in Table I:

TABLE I PARAMETERS OF Daubechies'S FILTER.

n	h[n]	g[n]
0	0.3327	-0.0352
1	0.8069	-0.0854
2	0.4599	0.1350
3	-0.1350	0.4599
4	-0.0854	-0.8069
5	0.0352	0.3327

Test equations in (2):

$$I(\Omega) = \operatorname{Re}\left\{\frac{e^{-x}}{j\Omega}e^{j\Omega x}\Big|_{0}^{1} + o\left(\frac{1}{\Omega}\right)\right\} \approx \operatorname{Re}\left\{\frac{e^{-x}}{j\Omega}e^{j\Omega x}\Big|_{0}^{1}\right\}$$
$$= \operatorname{Re}\left\{\frac{e^{j\Omega - 1} - 1}{j\Omega}\right\} = \frac{1}{\Omega e}\cos\left(\Omega - \frac{\pi}{2}\right) = \frac{1}{\Omega e}\sin\Omega. \tag{2}$$

B. Show Algorithm

Test Algorithm in Algorithm 1:

Algorithm 1 DWT Algorithm

Input: Sequence **x** in time domain

Output: Sequence \hat{x} in wavelet domain

- 1: $N = |\log_2(\operatorname{length}(\mathbf{x}))|;$
- 2: $\mathbf{c}_{N} = \mathbf{x}, \ \hat{\mathbf{x}} = \emptyset;$
- 3: **for** i from 1 to N **do**
- 4: \mathbf{c}_{N-i} , \mathbf{d}_{N-i} = analysis_filter(\mathbf{c}_{N-i+1});
- 5: insert \mathbf{d}_{N-i} at the beginning of $\hat{\mathbf{x}}$.
- 6: end for

Test codings:

```
# HyperPlate of SVM. It contains variables
       including w and b, and convert input x
       vector to a single value y(+-1).
   with tf.name_scope('SVMPlate'): #Noted that the
       dimension of y must be 1, so the constants
       should be 1 dimensional.
3
       self.constrain = tf.constant(
           SVMPrimalSolution.Domain, dtype=tf.
           float32, shape=[1], name='Constrain')
       self.w = self.weight_variable([1, self.xDim],
4
            name='Weight')
       bias = self.bias_variable([1], name='Bias')
5
       self.subjection = tf.multiply(self.y, tf.
           matmul(self.w, self.x) + bias)
7
       tf.add_to_collection('Weight', self.w)
       tf.add_to_collection('Bias', bias)
   @staticmethod
   def weight_variable(shape, name=None):
11
       '''weight_variable generates a weight
12
           variable of a given shape.'''
       initial = tf.truncated_normal(shape, stddev
13
           =0.1)
       if name is not None:
14
           return tf.Variable(initial, name=name)
15
       else:
16
           return tf.Variable(initial)
17
18
   @staticmethod
19
   def bias_variable(shape, name=None):
20
21
       ''''bias_variable generates a bias variable
           of a given shape.'''
       initial = tf.constant(0.1, dtype=tf.float32,
22
           shape=shape)
       if name is not None:
23
           return tf.Variable(initial, name=name)
24
25
           return tf.Variable(initial)
```

Yuchen Jin Biography text here.

PLACE PHOTO HERE

PLACE PHOTO HERE

Yuchen Jin II Biography text here.

APPENDIX A

Appendix one text goes here.

APPENDIX B

PROOF OF THE FIRST ZONKLAR EQUATION

Appendix two text goes here.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

- [1] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, "Deconvolutional networks," in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2010, pp. 2528–2535.
- [2] J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, "Coupled dictionary training for image super-resolution," IEEE Transactions on Image Processing, vol. 21, no. 8, pp. 3467-3478, Aug 2012.
- [3] C. Dong, C. C. Loy, K. He, and X. Tang, "Image super-resolution using deep convolutional networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 2, pp. 295-307, Feb 2016.