โครงการ "การลดค่าใช้จ่ายงานบำรุงรักษาอุปกรณ์ ในระบบ SCADA ด้วย Big Data และ Machine Learning"

สมาชิกกลุ่ม นายพรชัย ฉวีวัฒน์, นางสาวฐิติภณ์ ชัยพัฒนาวรรณ, นายธนา ไพศาลสุทธิชล กองปฏิบัติการ ฝ่ายปฏิบัติการแลบำรุงรักษา การไฟฟ้าส่วนภูมิภาค เขต 1 ภาคเหนือ จังหวัดเชียงใหม่

ความเป็นมาของโครงการ

ระบบ SCADA มีงบประมาณในการติดตั้ง มากกว่า 15,700 ลบ.

- SCADA phase I ~3,000 ลบ.
- SCADA phase II ~8,700 ลบ.
- SCADA phase III ~4,000 ลบ.

FRTU ~570 ตัว

Fiber Optic

Radio

สถานี ~47 สถานี

ประโยชน์ ช่วยลดระยะเวลาไฟฟ้าดับ, outage cost, ค่าใช้จ่ายในการปลด-สับ โดยมีอุปกรณ์ที่สำคัญได้แก่ สวิตส์ตัดตอน โดยสั่งการผ่านระบบสื่อสารและ FRTU

ปัญหาที่พบ

แนวคิดในการแก้ไขปัญหา

สร้างระบบวิเคราะห์ข้อมูลเหตุขัดข้องของอุปกรณ์ ในระบบ SCADA

เพื่อวางแผนการบำรุงรักษาที่มีประสิทธิภาพรวมทั้ง ลดค่าใช้จ่ายในงานบำรุงรักษา

ด้วยแนวคิด Big Data และ Machine Learning เพื่อมุ่งไปสู่ Digital Utility

Smart FRTU maintenance work order

Man hour ในการวางแผนการบำรุง รักษารายสัปดาห์

1 คน ใช้เวลา ครึ่งวัน (4 ชม.) ต่อสัปดาห์ ใน 1 ปี คิดเป็น 208 man-hour

นอกจากนี้ ยังมีพนักงานช่างอีกประมาณ 8-10 คนต้องรอคนวางแผน ทำให้เสียเวลาไปรวมทั้งหมด 1,664~2,080 man-hour

คิดเป็นเงินทั้งสิ้น <u>~ 1,800,000* บาทต่อปี</u> รวม 12 เขต

^{*}ในการวางแผน 75 บาท / man-hour

แบ่งกลุ่มสาเหตุของปัญหา โดย Big Data และ Machine Learning

Input

Alarm จาก SCADA

จำนวนผู้ใช้ไฟใต้อุปกรณ์ FRTU จาก จฟ.3

ตำแหน่งอุปกรณ์จาก GIS

Methodology

Machine Learning แบ่งกลุ่มสาเหตุ

Output

อุปกรณ์ hardware บกพร่อง

อุปกรณ์สื่อสาร บกพร่อง

พร้อมทั้งสร้างลำดับการซ่อมอุปกรณ์ และกำหนดเส้นทางที่เข้าถึงอุปกรณ์ได้รวดเร็วที่สุด

แบ่งสาเหตุของปัญหาโดย Big Data และ Machine Learning

^{**}ผลการวิเคราะห์ข้อมูลเหตุขัดข้องจาก SCADA ของ กฟน. 1 จากข้อมูลอุปกรณ์ 70 อุปกรณ์ (~35,000 เหตุการณ์)

สุดท้ายนี้....ระบบจะสร้าง work order ให้ทีมบำรุงรักษา

ลำดับอุปกรณ์ ----> 1 ----> 2 ----> 3 ---->

Working order = DCCN1 -> NIA07VS-105 -> LPA01VS-106 -> CUN05VS-106 -> MCA
06VS-102 -> FAA09VS-105 -> CMB01VS-104 -> CMB03VS-114 -> CMD10VS-116 -> H
0A08VS-123 -> DCCN1
No. of equipment = 10
Distance = 954 km
Travelling duration = 16 hours 17 minutes
Working duration = 13 hours 30 minutes
Total duration = 29 hours 47 minutes

15ะมาณระยะเวลาดำเนินการทั้งหมด

- โดยแบ่งกลุ่มงาน โดยระยะเวลาการทำงานใกล้เคียงกัน เพื่อให้แต่ละทีมซ่อมบำรุง ได้รับภาระงานไม่เหลื่อมล้ำเกินไป
- โดยมีรายละเอียดข้อบกพร่องของอุปกรณ์แนบไปกับใบสั่งซ่อมไปด้วย

และแนะนำเส้นทางตาม work order ให้ทีมบำรุงรักษา

เพื่อให้ทีมซ่อมบำรุงรักษาเดินทางเข้า ถึงอุปกรณ์ทุกตัวในเวลาสั้นที่สุด

นอกจากนี้ยังช่วยลดต้นทุนค่าน้ำมัน และอื่นๆ ในการเดินทาง

*Traveling salesman optimization

ผลลัพธ์ที่จะได้รับ

วิเคราะห์สาเหตุข้อบกพร่อง

Man-hour ในการวางแผน = 0 บาท

ลด SAIDI

จัด priority ของอุปกรณ์ที่สำคัญ

Monday = Planing Monday = Working

เริ่มปฏิบัติงานได้ตั้งแต่เช้าวันจันทร์

Customer engagement

Requirement:

- Server และอุปกรณ์อื่นๆ ที่ใช้ประมวลผลข้อมูล ∼100,000 บาท
- ระยะเวลาจัดทำ และทดลองใช้งานให้ครอบคลุมทุกเขต ~ 3-4 เดือน

นำเสนอผลงานของโครงการพัฒนากฟภ. โดยผู้ได้รับทุนการศึกษา

จบการนำเสนอ

การขยายผลในอนาคต

ทำงานแต่ไม่ได้งาน = เหนื่อย

หลายๆครั้งที่ พนง. กฟภ. ออกไปซ่อมอุปกรณ์ชำรุดแต่ไม่สำเร็จ เนื่องจากปัจจัย เช่น อุปกรณ์ไม่พร้อม หรือ วิเคราะห์สาเหตุผิด เป็นต้น เสียทั้งงบประมาณ เสียทั้งเวลา เสียทั้งแรงกาย สิ่งเหล่านั้นเป็นจุดเริ่มต้นในสิ่งที่ผมจะพูดต่อไปนี้.......