Lecture 14: Underdetermined least squares

Amos Ron

University of Wisconsin - Madison

March 10, 2021

Outline

- A comment on overdetermined least squares
- Underdetermined systems
 - The characterization theorem
 - The normal equation algorithm
 - Solving via QR-factorization

Outline

- A comment on overdetermined least squares
- Underdetermined systems
 - The characterization theorem
 - The normal equation algorithm
 - Solving via QR-factorization

Underdetermined systems

Blank page

Systems that have the same least square solution

Assume that *A* is $m \times n$ and *B* is $m \times n$, and

$$range(A) = range(B)$$
.

Then, the least square solution to Ax = b, and By = b is the same in the sense that

$$Ax^* = By^*$$
.

Systems that have the same least square solution

Assume that *A* is $m \times n$ and *B* is $m \times n$, and

$$range(A) = range(B)$$
.

Then, the least square solution to Ax = b, and By = b is the same in the sense that

$$Ax^* = By^*$$
.

Moreover, x^* is the solution of the system

$$B'Ax = B'b$$
,

and y^* is the solution of the system

$$A'By = A'b$$
.

Systems that have the same least square solution

The QR-factorization algorithm creates Q_1 such that

$$range(A) = range(Q_1)$$
.

So, indeed, we can solve

$$Q_1'Ax = Q_1'b.$$

If you are not interested in what x^* is but only in Ax^* , you may solve

$$Q_1z=b.$$

The solution is $z^* = Q_1'b$, and then

$$Ax^* = Q_1 Q_1' b.$$

The characterization theorem The normal equation algorithm Solving via QR-factorization

Outline

- A comment on overdetermined least squares
- Underdetermined systems
 - The characterization theorem
 - The normal equation algorithm
 - Solving via QR-factorization

The problem defined

Underdetermined least squares

Input: System $n \times m$

$$A'x = b$$
,

for which there is more than one exact solution.

Output: $x^* \in \mathbb{R}^n$ such that

- $A'x^* = b$.
- If A'x = b, then $||x^*||_2 \le ||x||_2$.

The characterization theorem

Characterizing x*

If $y \in \mathbb{R}^n$ such that:

- A'y = b
- $y \perp \ker(A')$

Then $y = x^*$.

The characterization theorem

Characterizing *x**

If $y \in \mathbb{R}^n$ such that:

- A'y = b
- $y \perp \ker(A')$

Then $y = x^*$.

Proof: Let x be such that Ax = b. Need to show

$$||y||_2 \le ||x||_2$$
.

Note: A'(x - y) = A'x - A'y = b - b = 0, therefore (x - y, y) = 0.

Then:

$$||x||_2^2 = ||(x - y) + y||_2^2 = ||x - y||_2^2 + ||y||_2^2 \ge ||y||_2^2.$$

The characterization theorem
The normal equation algorithm
Solving via QR-factorization

Linear algebra theorem

 $B n \times m$ is any matrix $v \in \mathbb{R}^m$.

Then: $v \perp \ker B$ if and only if $v \in \operatorname{range}(B')$.

Linear algebra theorem

$B n \times m$ is any matrix $v \in \mathbb{R}^m$.

Then: $v \perp \ker B$ if and only if $v \in \operatorname{range}(B')$.

Proof: We only prove the 'if'. So, assume $v \in \text{range}(B')$:

$$v = B'w$$
.

Let $x \in \ker(B)$. Need to show that (v, x) = 0:

$$(v,x) = (B'w,x) = \dots$$

Linear algebra theorem

$B n \times m$ is any matrix $v \in \mathbb{R}^m$.

Then: $v \perp \ker B$ if and only if $v \in \operatorname{range}(B')$.

Proof: We only prove the 'if'. So, assume $v \in \text{range}(B')$:

$$v = B'w$$
.

Let $x \in \ker(B)$. Need to show that (v, x) = 0:

$$(v,x) = (B'w,x) = (w,Bx) = (w,0) = 0.$$

Linear algebra theorem

Take B = A', then B' = A, therefore

Another characterization theorem

Given A'x = b, $A \ n \times m$, with solutions. Assume $y \in \mathbb{R}^m$ such that

- $\bullet A'y = b.$
- $y \in \text{range}(A)$.

Then $y = x^*$.

The algorithm

A'x = b, there are solutions

- Assume $x \in \text{range}(A)$, i.e., x = At.
- Then: A'At = b.
- The normal equation has solutions: Always, $\operatorname{range}(A'A) = \operatorname{range}(A')$, and by assumption $b \in \operatorname{range}(A')$. Let t^* be such solution.
- $x^* = At^*$.

The algorithm

A'x = b, there are solutions

- Assume $x \in \text{range}(A)$, i.e., x = At.
- Then: A'At = b.
- The normal equation has solutions: Always, $\operatorname{range}(A'A) = \operatorname{range}(A')$, and by assumption $b \in \operatorname{range}(A')$. Let t^* be such solution.
- $x^* = At^*$.

Underdetermined via QR-factorization

We factor
$$A = Q_1R_1$$
 as before.
Since range(Q₁) = range(A), then

$$x \in \text{range}(A)$$

is the same as $x = Q_1 t$:

$$A'Q_1t=b.$$

Underdetermined via QR-factorization

We factor $A = Q_1R_1$ as before. Since range(Q₁) = range(A), then

$$x \in \text{range}(A)$$

is the same as $x = Q_1 t$:

$$A'Q_1t=b.$$

$$A=Q_1R_1$$
, so

$$A'Q_1 = R'_1Q'_1Q_1 = R'_1.$$

So, we solve

$$R_1't = b.$$

Underdetermined via QR-factorization

Solving UD least squares via QR-factorization

Given A'x = b:

- Q-factor $A = Q_1R_1$.
- Solve $R'_1t = b$.
- $x^* = Q_1 t$.