Running Spark on a Cluster

Spark Cluster Options

Spark can run

- Locally
 - No distributed processing
 - Locally with multiple worker threads
 - On a cluster
 - Spark Standalone
 - Apache Hadoop YARN (Yet Another Resource Negotiator)
 - Apache Mesos

Why Run on a Cluster?

- Run Spark on a cluster to get the advantages of distributed processing
 - Ability to process large amounts of data efficiently
 - Fault tolerance and scalability
- Local mode is useful for development and testing
- **✓** Production use is almost always on a cluster

Distributed Processing with the Spark Framework

Spark Cluster Terminology

- A cluster is a group of computers working together
 - Usually runs HDFS in addition to Spark Standalone, YARN, or Mesos
- A node is an individual computer in the cluster
 - Master nodes manage distribution of work and data to worker nodes
- **⚠** A daemon is a program running on a node
 - Each performs different functions in the cluster

The Spark Driver Program

A Spark Driver

- The "main" program
 - Either the Spark Shell or a Spark application
- Creates a Spark Context configured for the cluster
- Communicates with Cluster Manager to distribute tasks to executors

Starting the Spark Shell on a Cluster

Set the Spark Shell master to

- -url the URL of the cluster manager
- -local[*] run with as many threads as cores (default)
- **-local** [n] run locally with n worker threads
- -local run locally without distributed processing


```
Python $ MASTER=spark://masternode:7077 pyspark

Scala $ spark-shell --master spark://masternode:7077
```

Spark Standalone Daemons

Spark Standalone daemons

- Spark Master
 - One per cluster
 - Manages applications, distributes individual tasks to Spark Workers
- Spark Worker
 - One per worker node
 - Starts and monitors Executors for applications

Running Spark on a Standalone Cluster (1)

Running Spark on a Standalone Cluster (2)

Running Spark on a Standalone Cluster (3)

Running Spark on a Standalone Cluster (4)

Running Spark on a Standalone Cluster (5)

Spark Standalone Web UI

- Spark Standalone clusters offer a Web UI to monitor the cluster
 - -http://masternode:uiport
 - e.g., in our class environment, http://localhost:18080

Spark Standalone Web UI: Application Overview

Spark Standalone Web UI: Worker Detail

Supported Cluster Resource Managers

Spark Standalone

- Included with Spark
- Easy to install and run
- Limited configurability and scalability
- Useful for testing, development, or small systems

*M***Hadoop YARN**

- Included in CDH
- Most common for production sites
- Allows sharing cluster resources with other applications (MapReduce, Impala, etc.)

Apache Mesos

- First platform supported by Spark
- Now used less often

Client Mode and Cluster Mode

- - Called "client" deploy mode
 - Most common
 - Required for interactive use (e.g., the Spark Shell)

Installing a Spark Cluster (2)

Difficult:

Download and install Spark and HDFS directly from Apache

Easier: CDH

- Cloudera's Distribution, including Apache Hadoop
- Includes HDFS, Spark API, Spark Standalone, and YARN
- Includes many patches, backports, bug fixes

Easiest: Cloudera Manager

- Wizard9based UI to install, configure, and manage a cluster
- Included with Cloudera Express (free) or Cloudera Enterprise
- Supports Spark deployment as Standalone or YARN

Exercise:

Spark Two Nodes Cluster – 90 Minutes