MATHEMATICAL QUESTIONS

Question 1

For the circuit of Fig. 1,

Figure 1: A sample circuit.

- (a) Draw the circuit graph.
- (b) Find a reduced node-to-branch incident matrix **A**.
- (c) Find the reduced mesh-to-branch incident matrix \mathbf{M} .
- (d) Find a fundamental cut-set matrix \mathbf{Q} .
- (e) Find a fundamental loop matrix **B**.
- (f) Can you introduce a tree for which the matrices A and Q are equal?

(g) Can you introduce a tree for which the matrices M and B are equal?

Question 2

Prove that the branch voltages of a tree of a given circuit graph provide a set of linearly independent voltages.

Question 3

The circuit of Fig. 2 includes LTI resistors and a voltage source. In an experimental measurement, we set $R_1=1~\Omega$, and find that $v_1=4$ V, $i_1=1$ A, and $v_2=1$ V. In a second measurement, we set $R_1=2~\Omega$, and find that $v_1=2$ V and $i_1=1.2$ A, but we forget to measure v_2 . Can you determine the value of v_2 in the second experiment? The inside of the sub-circuit N remains unchanged for the two experiments.

Figure 2: An LTI resistive network with a driving voltage source.

Question 4

Draw the dual circuit of the circuit shown in Fig. 3 and write at least two dual circuit equations for the two circuits.

Figure 3: A circuit for which the dual network is required.

Question 5

Write the KCL and KVL equations corresponding to the fundamental cut sets and loops of the circuit graph shown in Fig. 4 having the highlighted tree.

Figure 4: A circuit graph and one of its associated trees.

Question 6

Draw a directed graph whose node-to-branch incidence matrix \mathbf{A}_a is given by

SOFTWARE QUESTIONS

Question 7

Dijkstra's conventional algorithm is a systematic method to find the shortest path between two given nodes of a weighted graph. However, a more common variant of the algorithm fixes a single node as the reference node and finds shortest paths from the source to all other nodes in the graph, producing a shortest-path tree. Implement Dijkstra's algorithm as a MATLAB function and use it to find a tree of a given connected circuit graph.

Note: A circuit graph is a special weighted graph, where all the edges have a same weight. Note: A graph can be represented by a matrix. In fact, for the graph $G(\mathbf{N}=\{1,2,\cdots,n\},\mathbf{E})$ with n node, the representing matrix of the graph is $A_{n\times n|}=[a_{ij}]$, where a_{ij} is 1 if $(i,j)\in\mathbf{E}$, and 0 otherwise.

BONUS QUESTIONS

Question 8

Return your answers by filling the Lateral Text template of the assignment. If you want to add a circuit schematic, you can draw it directly using TikZ package, or draw it in a secondary application such as Microsoft Visio and then, import it as a figure.

EXTRA QUESTIONS

Question 9

Feel free to solve the following questions from the book "Basic Circuit Theory" by C. Desoer and E. Kuh.

- 1. Chapter 9, question 1.
- 2. Chapter 9, question 3.
- 3. Chapter 9, question 4.
- 4. Chapter 9, question 9.