

SN74LVC2T45

SCES516J-DECEMBER 2003-REVISED DECEMBER 2014

SN74LVC2T45 Dual-Bit Dual-Supply Bus Transceiver With Configurable Voltage **Translation and 3-State Outputs**

Features

- Available in the Texas Instruments NanoFree™ Package
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.65-V to 5.5-V Power-Supply Range
- V_{CC} Isolation Feature If Either V_{CC} Input Is at GND, Both Ports Are in the High-Impedance State
- DIR Input Circuit Referenced to V_{CCA}
- Low Power Consumption, 10-µA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- I_{off} Supports Partial-Power-Down Mode Operation
- Max Data Rates
 - 420 Mbps (3.3-V to 5-V Translation)
 - 210 Mbps (Translate to 3.3 V)
 - 140 Mbps (Translate to 2.5 V)
 - 75 Mbps (Translate to 1.8 V)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 4000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

Applications

- Personal Electronic
- Industrial
- Enterprise
- Telecom

3 Description

This dual-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track $V_{\text{CCA}}.\ V_{\text{CCA}}$ accepts any supply voltage from 1.65 V to 5.5 V. The B port is designed to track V_{CCB} . V_{CCB} accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.

The SN74LVC2T45 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input activate either the B-port outputs or the A-port outputs. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess I_{CC} and I_{CCZ}.

The SN74LVC2T45 is designed so that the DIR input circuit is supplied by V_{CCA}. This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, both ports are in the high-impedance state. NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
	SSOP (8)	2.95 mm x 2.80 mm		
SN74LVC2T45	VSSOP (8)	2.30 mm x 2.00 mm		
	DSBGA (8)	1.89 mm x 0.89 mm		

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Functional Block Diagram

Table of Contents

1	Features 1	8	Detailed Description	13
2	Applications 1		8.1 Overview	13
3	Description 1		8.2 Functional Block Diagram	13
4	Revision History2		8.3 Feature Description	13
5	Pin Configuration and Functions		8.4 Device Functional Modes	13
6	Specifications4	9	Application and Implementation	14
•	6.1 Absolute Maximum Ratings		9.1 Application Information	14
	6.2 ESD Ratings		9.2 Typical Applications	14
	6.3 Recommended Operating Conditions	10	Power Supply Recommendations	17
	6.4 Thermal Information		10.1 Power-Up Considerations	17
	6.5 Electrical Characteristics	11	Layout	
	6.6 Switching Characteristics: V _{CCA} = 1.8 V ± 0.15 V 6		11.1 Layout Guidelines	17
	6.7 Switching Characteristics: $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V} \dots 7$		11.2 Layout Example	18
	6.8 Switching Characteristics: V _{CCA} = 3.3 V ± 0.3 V 7	12	Device and Documentation Support	19
	6.9 Switching Characteristics: V _{CCA} = 5 V ± 0.5 V 8		12.1 Trademarks	19
	6.10 Operating Characteristics8		12.2 Electrostatic Discharge Caution	19
	6.11 Typical Characteristics9		12.3 Glossary	19
7	Parameter Measurement Information 12	13	Mechanical, Packaging, and Orderable Information	19

4 Revision History

Changes from Revision I (March 2007) to Revision J

Page

Added Pin Configuration and Functions section, Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

5 Pin Configuration and Functions

Pin Functions

	PIN	TVDE	DESCRIPTION					
NO.	NAME	TYPE	DESCRIPTION					
1	V _{CCA}	Р	A-port supply voltage. 1.65 V ≤ V _{CCA} ≤ 5.5 V					
2	A1	I/O	Input/output A1. Referenced to V _{CCA}					
3	A2	I/O	Input/output A2. Referenced to V _{CCA}					
4	GND	G	Ground					
5	DIR	1	Direction control signal					
6	B2	I/O	Input/output B2. Referenced to V _{CCB}					
7	B1	I/O	Input/output B1. Referenced to V _{CCB}					
8	V _{CCB}	Р	B-port supply voltage. 1.65 V ≤ V _{CCB} ≤ 5.5 V					

Pin Functions

	PIN		TVDE	DESCRIPTION
BALL	NAME	NO.	TYPE	DESCRIPTION
A1	V _{CCA}	1	Р	A-port supply voltage. 1.65 V ≤ V _{CCA} ≤ 5.5 V
A2	V _{CCB}	8	Р	B-port supply voltage. 1.65 V ≤ V _{CCB} ≤ 5.5 V
B1	A1	2	I/O	Input/output A1. Referenced to V _{CCA}
B2	B1	7	I/O	Input/output B1. Referenced to V _{CCB}
C1	A2	3	I/O	Input/output A2. Referenced to V _{CCA}
C2	B2	6	I/O	Input/output B2. Referenced to V _{CCB}
D1	GND	4	G	Ground
D2	DIR	5	I	Direction control signal

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT	
V _{CCA} V _{CCB}	Supply voltage range		-0.5	6.5	V	
V _I	Input voltage range ⁽²⁾		-0.5	6.5	V	
Vo	Voltage range applied to any output in the high-impe	edance or power-off state ⁽²⁾	-0.5	6.5	V	
	Voltage range applied to any output in the high or	A port	-0.5	V _{CCA} + 0.5	V	
	Voltage range applied to any output in the high or low state $^{(2)}\ ^{(3)}$	B port	-0.5	V _{CCB} + 0.5	V	
I _{IK}	Input clamp current	V _I < 0		-50	mA	
lok	Output clamp current	V _O < 0		-50	mA	
Io	Continuous output current	<u> </u>		±50	mA	
T _{stg}	Storage temperature range	-65	150	°C		
	Continuous current through V _{CC} or GND			±100	mA	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±4000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V
		Machine model (A115-A)	±200	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted) (1) (2) (3)

		3 (V _{CCI}	V _{cco}	MIN	MAX	UNIT	
V_{CCA}	Cupply voltage				1.65	5.5	V	
V_{CCB}	Supply voltage				1.65	5.5	V	
V _{IH} High-level input voltage			1.65 V to 1.95 V		$V_{CCI} \times 0.65$			
	Data inputs ⁽⁴⁾	2.3 V to 2.7 V		1.7		V		
	input voltage	Data inputs	3 V to 3.6 V		2		V	
			4.5 V to 5.5 V		$V_{CCI} \times 0.7$			
			1.65 V to 1.95 V			$V_{CCI} \times 0.35$		
.,	Low-level	Data inputa (4)	2.3 V to 2.7 V			0.7	\/	
V _{IL}	input voltage	Data inputs ⁽⁴⁾	3 V to 3.6 V			8.0	V	
			4.5 V to 5.5 V			$V_{CCI} \times 0.3$		

4) For V_{CCI} values not specified in the data sheet, V_{IH} min = $V_{CCI} \times 0.7$ V, V_{IL} max = $V_{CCI} \times 0.3$ V.

Submit Documentation Feedback

Copyright © 2003–2014, Texas Instruments Incorporated

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the recommended operating conditions table.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽¹⁾ V_{CCI} is the V_{CC} associated with the input port.

⁽²⁾ V_{CCO} is the V_{CC} associated with the output port.

⁽³⁾ All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Recommended Operating Conditions (continued)

over operating free-air temperature range (unless otherwise noted)⁽¹⁾ (2) (3)

			V _{CCI}	V _{cco}	MIN	MAX	UNIT		
			1.65 V to 1.95 V		V _{CCA} × 0.65				
\/	High-level	DIR	2.3 V to 2.7 V		1.7		V		
V_{IH}	input voltage	(referenced to V _{CCA}) ⁽⁵⁾	3 V to 3.6 V		2		V		
			4.5 V to 5.5 V		$V_{CCA} \times 0.7$				
			1.65 V to 1.95 V			$V_{CCA} \times 0.35$			
\	Low-level	DIR	2.3 V to 2.7 V			0.7	V		
V_{IL}	input voltage	(referenced to V _{CCA}) ⁽⁵⁾	3 V to 3.6 V			0.8	V		
			4.5 V to 5.5 V			$V_{CCA} \times 0.3$			
VI	Input voltage				0	V			
Vo	Output voltage				0	V _{cco}	V		
				1.65 V to 1.95 V		-4			
	High-level output cu	rrant		2.3 V to 2.7 V		-8	mA		
I _{OH}	nign-ievei output cu	rrent		3 V to 3.6 V		-24	MA		
				4.5 V to 5.5 V		-32			
				1.65 V to 1.95 V					
	Law layed autaut au	rrant		2.3 V to 2.7 V		8	A		
l _{OL}	Low-level output cur	rent		3 V to 3.6 V		24	mA		
				4.5 V to 5.5 V		32			
			1.65 V to 1.95 V			20			
		Data inputa	2.3 V to 2.7 V			20			
$\Delta t/\Delta v$	Input transition rise or fall rate	Data inputs	3 V to 3.6 V			10	ns/V		
			4.5 V to 5.5 V			5			
		Control input	1.65 V to 5.5 V		5				
T _A	Operating free-air te	emperature			-40	85	°C		

⁽⁵⁾ For V_{CCI} values not specified in the data sheet, V_{IH} min = $V_{CCA} \times 0.7$ V, V_{IL} max = $V_{CCA} \times 0.3$ V.

6.4 Thermal Information

			SN74LVC2T45				
	THERMAL METRIC ⁽¹⁾	DCT	DCU	YZP	UNIT		
			8 PINS				
$R_{\theta JA}$	Junction-to-ambient thermal resistance	184.0	203.6	105.8			
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	114.7	75.9	1.6			
$R_{\theta JB}$	Junction-to-board thermal resistance	96.4	82.3	10.8	°C/W		
ΨЈТ	Junction-to-top characterization parameter	40.8	7.2	3.1			
ΨЈВ	Junction-to-board characterization parameter	95.4	81.9	10.8			

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics (1)(2)

over recommended operating free-air temperature range (unless otherwise noted)

DADA	METER	TEST CONDITIO	NC	V	V	1	_A = 25°	С	-40°C to 8	5°C	UNIT	
PARAMETER		TEST CONDITIO	ONS	V _{CCA}	V _{CCB}	MIN	TYP	MAX	MIN	MAX	UNIT	
		I _{OH} = -100 μA		1.65 V to 4.5 V	1.65 V to 4.5 V				V _{CCO} - 0.1			
		$I_{OH} = -4 \text{ mA}$		1.65 V	1.65 V				1.2			
V_{OH}		$I_{OH} = -8 \text{ mA}$ V	$I_{I} = V_{IH}$	2.3 V	2.3 V				1.9		V	
		$I_{OH} = -24 \text{ mA}$		3 V	3 V				2.4			
		$I_{OH} = -32 \text{ mA}$		4.5 V	4.5 V				3.8			
		I _{OL} = 100 μA		1.65 V to 4.5 V	1.65 V to 4.5 V					0.1		
	$I_{OL} = 4 \text{ mA}$			1.65 V	1.65 V					0.45		
V_{OL}		I _{OL} = 8 mA V	$I_{I} = V_{IL}$	2.3 V	2.3 V					0.3	V	
		I _{OL} = 24 mA		3 V	3 V					0.55		
		I _{OL} = 32 mA		4.5 V	4.5 V					0.55		
I _I	DIR	$V_I = V_{CCA}$ or GND		1.65 V to 5.5 V	1.65 V to 5.5 V			±1		±2	μΑ	
	A port	V V 0. 55V		0 V	0 to 5.5 V			±1		±2		
I _{off}	B port	$V_I \text{ or } V_O = 0 \text{ to } 5.5 \text{ V}$		0 to 5.5 V	0 V			±1		±2	μΑ	
I _{OZ}	A or B port	V _O = V _{CCO} or GND		1.65 V to 5.5 V	1.65 V to 5.5 V			±1		±2	μΑ	
				1.65 V to 5.5 V	1.65 V to 5.5 V					3		
I _{CCA}	$V_I = V_{CCI}$ or GND, $I_O = 0$		5 V	0 V					2	μΑ		
				0 V	5 V					-2		
				1.65 V to 5.5 V	1.65 V to 5.5 V					3		
I_{CCB}		$V_I = V_{CCI}$ or GND, I_C	0 = 0	5 V	0 V					-2	μΑ	
				0 V	5 V					2		
I _{CCA} + (see Ta		$V_I = V_{CCI}$ or GND, I_C	0 = 0	1.65 V to 5.5 V	1.65 V to 5.5 V					4	μΑ	
	A port	One A port at V _{CCA} - DIR at V _{CCA} , B port = open	- 0.6 V,	0.11. 5.5.1	0.77. 5.57					50		
ΔI _{CCA}	DIR	DIR at $V_{CCA} - 0.6 \text{ V}$, B port = open, A port at V_{CCA} or GNI			3 V to 5.5 V					50	μA	
ΔI _{CCB}	B port	One B port at V _{CCB} – DIR at GND, A port =		3 V to 5.5 V	3 V to 5.5 V					50	μΑ	
Cı	DIR	$V_I = V_{CCA}$ or GND		3.3 V	3.3 V		2.5				pF	
C _{io}	A or B port	$V_O = V_{CCA/B}$ or GND		3.3 V	3.3 V		6				pF	

 $[\]begin{array}{ll} \hbox{(1)} & V_{CCO} \mbox{ is the } V_{CC} \mbox{ associated with the output port.} \\ \hbox{(2)} & V_{CCI} \mbox{ is the } V_{CC} \mbox{ associated with the input port.} \\ \end{array}$

6.6 Switching Characteristics: $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$

over recommended operating free-air temperature range, V_{CCA} = 1.8 V ± 0.15 V (unless otherwise noted) (see Figure 17)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.8 V ±0.15 V		V _{CCB} = 2.5 V ±0.2 V		V _{CCB} = 3.3 V ±0.3 V		V _{CCB} = 5 V ±0.5 V		UNIT
		(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	^	В	3	17.7	2.2	10.3	1.7	8.3	1.4	7.2	no
t _{PHL}	Α	Ь	2.8	14.3	2.2	8.5	1.8	7.1	1.7	7	ns
t _{PLH}	В	Δ.	3	17.7	2.3	16	2.1	15.5	1.9	15.1	20
t _{PHL}	В	A	2.8	14.3	2.1	12.9	2	12.6	1.8	12.2	ns
t _{PHZ}	DID	Δ.	10.6	30.9	10.3	30.5	10.5	30.5	10.7	29.3	
t _{PLZ}	DIR	DIR A	7.3	19.7	7.5	19.6	7.5	19.5	7	19.4	ns

Switching Characteristics: V_{CCA} = 1.8 V ± 0.15 V (continued)

over recommended operating free-air temperature range, V_{CCA} = 1.8 V ± 0.15 V (unless otherwise noted) (see Figure 17)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.8 V ±0.15 V		V _{CCB} = 2.5 V ±0.2 V		V _{CCB} = 3.3 V ±0.3 V		V _{CCB} = 5 V ±0.5 V		UNIT		
		(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
t _{PHZ}	DIR	В	10	27.9	8.4	14.9	6.5	11.3	4.1	8.6	20		
t _{PLZ}	DIR	Ь	6.5	19.5	7.2	12.6	4.3	9.7	2.1	7.1	ns		
t _{PZH} (1)	DID	А		37.2		28.6		25.2		22.2			
t _{PZL} (1)	DIR	A		42.2		27.8		23.9		20.8	ns		
t _{PZH} ⁽¹⁾	DIR	D		37.4		29.9		27.8		26.6	20		
t _{PZL} ⁽¹⁾		אוט	DIK	В		45.2		39		37.6		36.3	ns

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the enable times section.

6.7 Switching Characteristics: $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$

over recommended operating free-air temperature range, V_{CCA} = 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 17)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.8 V ±0.15 V		V _{CCB} = ±0.2		V _{CCB} = 3.3 V ±0.3 V		V _{CCB} = 5 V ±0.5 V		UNIT	
	(INPUT)	(001701)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
t _{PLH}	А	В	2.3	16	1.5	8.5	1.3	6.4	1.1	5.1	no	
t _{PHL}	A	Ь	2.1	12.9	1.4	7.5	1.3	5.4	0.9	4.6	ns	
t _{PLH}	В	А	2.2	10.3	1.5	8.5	1.4	8	1	7.5	ns	
t _{PHL}	Ь	A	2.2	8.5	1.4	7.5	1.3	7	0.9	6.2	ns	
t _{PHZ}	DIR	А	6.6	17.1	7.1	16.8	6.8	16.8	5.2	16.5	ns	
t_{PLZ}	DIK	А	5.3	12.6	5.2	12.5	4.9	12.3	4.8	12.3		
t _{PHZ}	DIR	В	10.7	27.9	8.1	13.9	5.8	10.5	3.5	7.6		
t _{PLZ}	DIK	Ь	7.8	18.9	6.2	11.2	3.6	8.9	1.4	6.2	ns	
t _{PZH} ⁽¹⁾	DIR	А		29.2		19.7		16.9		13.7	no	
t _{PZL} ⁽¹⁾	DIK	A		36.4		21.4		17.5		13.8	ns	
t _{PZH} ⁽¹⁾	DIR	В		28.6		21		18.7		17.4	ns	
t _{PZL} ⁽¹⁾	אוט	Б		30		24.3		22.2		21.1		

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the enable times section.

6.8 Switching Characteristics: $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 17)

PARAMETER FROM (INPUT)		TO (OUTPUT)			V _{CCB} = ±0.2		V _{CCB} = 3.3 V ±0.3 V		V _{CCB} = 5 V ±0.5 V		UNIT	
		(001F01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
t _{PLH}	Α	В	2.1	15.5	1.4	8	0.7	5.6	0.7	4.4		
t _{PHL}	A	В	2	12.6	1.3	7	0.8	5	0.7	4	ns	
t _{PLH}	В	Α	1.7	8.3	1.3	6.4	0.7	5.8	0.6	5.4	ns	
t _{PHL}	Ь	A	1.8	7.1	1.3	5.4	0.8	5	0.7	4.5		
t _{PHZ}	DIR	А	5	10.9	5.1	10.8	5	10.8	5	10.4	no	
t _{PLZ}	DIK	A	3.4	8.4	3.7	8.4	3.9	8.1	3.3	7.8	ns	
t _{PHZ}	DIR	В	11.2	27.3	8	13.7	5.8	10.4	2.9	7.4		
t _{PLZ}	אוט	В	9.4	17.7	5.6	11.3	4.3	8.3	1	5.6	ns	
t _{PZH} (1)	DID	۸		26		17.7		14.1		11	ns	
t _{PZL} ⁽¹⁾	DIR	А		34.4		19.1		15.4		11.9		

(1) The enable time is a calculated value, derived using the formula shown in the enable times section.

Switching Characteristics: $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (continued)

 $\underline{\text{over recommended operating free-air temperature range, V}_{\text{CCA}} = 3.3 \text{ V} \pm 0.3 \text{ V} \text{ (unless otherwise noted) (see Figure 17)}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.8 V ±0.15 V	V _{CCB} = 2.5 V ±0.2 V	V _{CCB} = 3.3 V ±0.3 V	V _{CCB} = 5 V ±0.5 V	UNIT	
(INI	(INPOT)	(001701)	MIN MAX	MIN MAX	MIN MAX	MIN MAX		
t _{PZH} (1)	DID	В	23.9	23.9 16.4 13.9		12.2	20	
t _{PZL} ⁽¹⁾	DIR	В	23.5	17.8	15.8	14.4	ns	

6.9 Switching Characteristics: $V_{CCA} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range, $V_{CCA} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figure 17)

PARAMETER	FROM	TO (OUTPUT)			V V _{CCB} = 2.5 V ±0.2 V		V _{CCB} = 3 ±0.3		V _{CCB} = ±0.5		UNIT	
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
t _{PLH}	Α	В	1.9	15.1	1	7.5	0.6	5.4	0.5	3.9	no	
t _{PHL}	A	ь	1.8	12.2	0.9	6.2	0.7	4.5	0.5	3.5	ns	
t _{PLH}	В	^	1.4	7.2	1	5.1	0.7	4.4	0.5	3.9		
t _{PHL}	Б	Α	1.7	7	0.9	4.6	0.7	4	0.5	3.5	ns	
t _{PHZ}	DIR	^	2.9	8.2	2.9	7.9	2.8	7.9	2.2	7.8	ns	
t _{PLZ}	אוט	Α	1.4	6.9	1.3	6.7	0.7	6.7	0.7	6.6		
t _{PHZ}	DID		11.2	26.1	7.2	13.9	5.8	10.1	1.3	7.3	ns	
t _{PLZ}	DIR	В	8.4	16.9	5	11	4	7.7	1	5.6		
t _{PZH} (1)	DIR	۸		24.1		16.1		12.1		9.5	ns	
t _{PZL} ⁽¹⁾	אוט	Α		33.1		18.5		14.1		10.8		
t _{PZH} ⁽¹⁾	DID	В		22		14.2		12.1		10.5		
t _{PZL} ⁽¹⁾	DIR	В	20.			14.1		12.4		11.3	ns	

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the *Enable Times* section.

6.10 Operating Characteristics

 $T_A = 25^{\circ}C$

ı	PARAMETER	TEST $V_{CCA} = V_{CCA} = V_{CCB} = 1.8 \text{ V}$ $V_{CCB} = 2.5 \text{ V}$ TYP		$V_{CCA} = V_{CCB} = 3.3 \text{ V}$	$V_{CCA} = V_{CCB} = 5 V$	UNIT		
C (1)	A-port input, B-port output	C _L = 0 pF, f = 10 MHz,	3	4	4	4	pF	
C _{pdA} (*)	B-port output B-port output, A-port output	$t_r = t_f = 1 \text{ ns}$	18	19	20	21	PΓ	
C (1)	A-port input, B-port output	C _L = 0 pF,	18	19	20	21		
C _{pdB} ⁽¹⁾	B-port input, A-port output	$f = 10 \text{ MHz},$ $t_r = t_f = 1 \text{ ns}$	3	4	4	4	- pF	

(1) Power dissipation capacitance per transceiver

Submit Documentation Feedback

Copyright © 2003–2014, Texas Instruments Incorporated

6.11 Typical Characteristics

Figure 1. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 1.8 \text{ V}$

Figure 2. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 1.8 \text{ V}$

Figure 3. Typical Propagation Delay of High-to-Low (B to A) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 1.8 \text{ V}$

Figure 4. Typical Propagation Delay of Low-to-High (B to A) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 1.8 \text{ V}$

Figure 5. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 2.5 \text{ V}$

Figure 6. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 2.5$ V

Copyright © 2003–2014, Texas Instruments Incorporated

Submit Documentation Feedback

TEXAS INSTRUMENTS

Typical Characteristics (continued)

Figure 7. Typical Propagation Delay of High-to-Low (B to A) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 2.5 \text{ V}$

Figure 8. Typical Propagation Delay of Low-to-High (B to A) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 2.5$ V

Figure 9. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 3.3 \text{ V}$

Figure 10. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 3.3 \text{ V}$

Figure 11. Typical Propagation Delay of High-to-Low (B to A) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 3.3 \text{ V}$

Figure 12. Typical Propagation Delay of Low-to-High (B to A) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 3.3 \text{ V}$

Submit Documentation Feedback

Copyright © 2003–2014, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 13. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance $T_A = 25$ °C, $V_{CCA} = 5$ V

Figure 14. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 5 \text{ V}$

Figure 15. Typical Propagation Delay of High-to-Low (B to A) vs Load Capacitance T_A = 25°C, V_{CCA} = 5 V

Figure 16. Typical Propagation Delay of Low-to-High (B to A) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 5$ V

Copyright © 2003–2014, Texas Instruments Incorporated

Submit Documentation Feedback

 V_{CCA}

7 Parameter Measurement Information

TEST	S1
t _{pd}	Open
t _{PLZ} /t _{PZL}	$2\times\mathbf{V_{CCO}}$
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

V _{CCO}	CL	R _L	V _{TP}
1.8 V ± 0.15 V	15 pF	2 k Ω	0.15 V
2.5 V \pm 0.2 V	15 pF	2 k Ω	0.15 V
3.3 V \pm 0.3 V	15 pF	2 k Ω	0.3 V
5 V \pm 0.5 V	15 pF	2 k Ω	0.3 V

V_{CCA}/2

V_{CCA}/2

Output Control

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $dv/dt \geq$ 1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CCO} is the V_{CC} associated with the output port.
- J. All parameters and waveforms are not applicable to all devices.

Figure 17. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

Copyright © 2003–2014, Texas Instruments Incorporated

8 Detailed Description

8.1 Overview

The SN74LVC2T45 is dual-bit, dual-supply noninverting voltage level translation. Pin Ax and direction control pin are support by $V_{\rm CCA}$ and pin Bx are support by $V_{\rm CCB}$. The A port is able to accept I/O voltages ranging from 1.65 V to 5.5 V, while the B port can accept I/O voltages from 1.65 V to 5.5 V. The high on DIR allows data transmission from A to B and a low on DIR allows data transmission from B to A.

8.2 Functional Block Diagram

Figure 18. Logic Diagram (Positive Logic)

8.3 Feature Description

8.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.65-V to 5.5-V Power-Supply Range

Both V_{CCA} and V_{CCB} can be supplied at any voltage between 1.65 V and 5.5 V making the device suitable for translating between any of the voltage nodes (1.8-V, 2.5-V, 3.3-V and 5-V).

8.3.2 Support High-Speed Translation

SN74LVC2T45 can support high data rate application. The translated signal data rate can be up to 420 Mbps when signal is translated from 3.3 V to 5 V.

8.3.3 I_{off} Supports Partial-Power-Down Mode Operation

loff will prevent backflow current by disabling I/O output circuits when device is in partial-power-down mode.

8.4 Device Functional Modes

Table 1. Function Table⁽¹⁾ (Each Transceiver)

INPUT DIR	OPERATION
L	B data to A bus
Н	A data to B bus

(1) Input circuits of the data I/Os always are active.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74LVC2T45 device can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The max data rate can be up to 420 Mbps when device translate signal from 3.3 V to 5 V.

9.2 Typical Applications

9.2.1 Unidirectional Logic Level-Shifting Application

The following shows an example of the SN74LVC2T45 being used in a unidirectional logic level-shifting application.

PIN NAME **FUNCTION DESCRIPTION** SYSTEM-1 supply voltage (1.65 V to 5.5 V) 1 V_{CCA} V_{CC1} Output level depends on V_{CC1} voltage. 2 OUT1 Α1 OUT2 Output level depends on V_{CC1} voltage. 3 A2 4 GND **GND** Device GND 5 DIR DIR GND (low level) determines B-port to A-port direction. IN2 6 B2 Input threshold value depends on V_{CC2} voltage. IN1 Input threshold value depends on V_{CC2} voltage. 7 B1 8 SYSTEM-2 supply voltage (1.65 V to 5.5 V) V_{CCB} V_{CC2}

Figure 19. Unidirectional Logic Level-Shifting Application

9.2.1.1 Design Requirements

For this design example, use the parameters listed in Table 2.

Table 2. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE				
Input voltage range	1.65 V to 5.5 V				
Output voltage range	1.65 V to 5.5 V				

9.2.1.2 Detailed Design Procedure

To begin the design process, determine the following:

- Input voltage range
 - Use the supply voltage of the device that is driving the SN74LVC2T45 device to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{IL} of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74LVC2T45 device is driving to determine the output voltage range.

9.2.1.3 Application Curve

9.2.2 Bidirectional Logic Level-Shifting Application

Figure 20 shows the SN74LVC2T45 being used in a bidirectional logic level-shifting application. Because the SN74LVC2T45 does not have an output-enable (OE) pin, the system designer should take precautions to avoid bus contention between SYSTEM-1 and SYSTEM-2 when changing directions.

The following table shows data transmission from SYSTEM-1 to SYSTEM-2 and then from SYSTEM-2 to SYSTEM-1.

STATE	DIR CTRL	I/O-1	I/O-2	DESCRIPTION
1	Н	Out	In	SYSTEM-1 data to SYSTEM-2
2	Н	Hi-Z	Hi-Z	SYSTEM-2 is getting ready to send data to SYSTEM-1. I/O-1 and I/O-2 are disabled. The busline state depends on pullup or pulldown. (1)
3	L	Hi-Z	Hi-Z	DIR bit is flipped. I/O-1 and I/O-2 still are disabled. The bus-line state depends on pullup or pulldown. (1)
4	L	In	Out	SYSTEM-2 data to SYSTEM-1

⁽¹⁾ SYSTEM-1 and SYSTEM-2 must use the same conditions, i.e., both pullup or both pulldown.

Figure 20. Bidirectional Logic Level-Shifting Application

9.2.2.1 Design Requirements

Please refer to Unidirectional Logic Level-Shifting Application.

9.2.2.2 Detailed Design Procedure

9.2.2.2.1 Enable Times

Calculate the enable times for the SN74LVC2T45 using the following formulas:

- t_{PZH} (DIR to A) = t_{PLZ} (DIR to B) + t_{PLH} (B to A)
- t_{PZI} (DIR to A) = t_{PHZ} (DIR to B) + t_{PHI} (B to A)
- t_{PZH} (DIR to B) = t_{PLZ} (DIR to A) + t_{PLH} (A to B)
- t_{PZL} (DIR to B) = t_{PHZ} (DIR to A) + t_{PHL} (A to B)

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the SN74LVC2T45 initially is transmitting from A to B, then the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

9.2.2.3 Application Curve

10 Power Supply Recommendations

10.1 Power-Up Considerations

A proper power-up sequence always should be followed to avoid excessive supply current, bus contention, oscillations, or other anomalies. To guard against such power-up problems, take the following precautions:

- 1. Connect ground before any supply voltage is applied.
- 2. Power up V_{CCA}.
- 3. V_{CCB} can be ramped up along with or after V_{CCA} .

V_{CCA} V_{CCB} UNIT 0 V 1.8 V 2.5 V 3.3 V 5 V 0 V 0 <1 <1 <1 <1 2 1.8 V <1 <2 <2 <2 2.5 V <2 <2 <1 <2 <2 μΑ 3.3 V <2 <2 <2 <1 <2 5 V <1 2 <2 <2 <2

Table 3. Typical Total Static Power Consumption (I_{CCA} + I_{CCB})

11 Layout

11.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended.

- Bypass capacitors should be used on power supplies.
- Short trace lengths should be used to avoid excessive loading.
- Placing pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of signals depending on the system requirements

11.2 Layout Example

12 Device and Documentation Support

12.1 Trademarks

NanoFree is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

25-Oct-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LVC2T45DCTR	ACTIVE	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CT2 Z	Samples
SN74LVC2T45DCTRE4	ACTIVE	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CT2 Z	Samples
SN74LVC2T45DCTT	ACTIVE	SM8	DCT	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CT2 Z	Samples
SN74LVC2T45DCTTG4	ACTIVE	SM8	DCT	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CT2 Z	Samples
SN74LVC2T45DCUR	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 85	(CT2Q ~ CT2R ~ T2) CZ	Samples
SN74LVC2T45DCURE4	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CT2R	Samples
SN74LVC2T45DCURG4	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CT2R	Samples
SN74LVC2T45DCUT	ACTIVE	VSSOP	DCU	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(CT2Q ~ CT2R ~ T2) CZ	Samples
SN74LVC2T45DCUTE4	ACTIVE	VSSOP	DCU	8		TBD	Call TI	Call TI	-40 to 85		Samples
SN74LVC2T45DCUTG4	ACTIVE	VSSOP	DCU	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CT2R	Samples
SN74LVC2T45YZPR	ACTIVE	DSBGA	YZP	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(TB ~ TB7 ~ TBN)	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

25-Oct-2016

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVC2T45:

Automotive: SN74LVC2T45-Q1

Enhanced Product: SN74LVC2T45-EP

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 22-Jan-2016

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC2T45DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74LVC2T45DCTT	SM8	DCT	8	250	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74LVC2T45DCUR	VSSOP	DCU	8	3000	180.0	9.0	2.05	3.3	1.0	4.0	8.0	Q3
SN74LVC2T45DCURG4	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2T45DCUTG4	VSSOP	DCU	8	250	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2T45YZPR	DSBGA	YZP	8	3000	178.0	9.2	1.02	2.02	0.63	4.0	8.0	Q1
SN74LVC2T45YZPR	DSBGA	YZP	8	3000	180.0	8.4	1.02	2.02	0.63	4.0	8.0	Q1

www.ti.com 22-Jan-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC2T45DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
SN74LVC2T45DCTT	SM8	DCT	8	250	182.0	182.0	20.0
SN74LVC2T45DCUR	VSSOP	DCU	8	3000	182.0	182.0	20.0
SN74LVC2T45DCURG4	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74LVC2T45DCUTG4	VSSOP	DCU	8	250	202.0	201.0	28.0
SN74LVC2T45YZPR	DSBGA	YZP	8	3000	220.0	220.0	35.0
SN74LVC2T45YZPR	DSBGA	YZP	8	3000	182.0	182.0	20.0

DCT (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion
- D. Falls within JEDEC MO-187 variation DA.

DCT (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

YZP (R-XBGA-N8)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

DCU (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)

NOTES:

- : A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-187 variation CA.

DCU (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity