Submodular Stochastic Probing with Prices

Ben Chugg^{1,2} Takanori Maehara²

¹University of Oxford ²RIKEN Advanced Intelligence Project

Paris, April 2019

Query and Commit

Irrevocable decisions made on the fly. A kind of *optimization under uncertainty*.

Query and Commit

Irrevocable decisions made on the fly. A kind of *optimization under uncertainty*.

- Stochastic Matching and Packing
- The Secretary Problem
- Buying socks, airplane tickets, booking a hotel room.

A query and commit model ... with some additional constraints. Introduced by Gupta and Nagarajan in 2013.

A query and commit model ... with some additional constraints.

- Elements $N = \{e_1, \ldots, e_n\}$.
- e_i active with probability p_i .

A query and commit model ... with some additional constraints.

- Elements $N = \{e_1, \dots, e_n\}$.
- e_i active with probability p_i .
- Can only include e_i in solution if it's active.

A query and commit model ... with some additional constraints.

- Elements $N = \{e_1, \dots, e_n\}$.
- e_i active with probability p_i .
- Can only include e_i in solution if it's active.
- $Probe/Query\ e_i$ to determine if it's active.

A query and commit model ... with some additional constraints.

- Elements $N = \{e_1, \dots, e_n\}$.
- e_i active with probability p_i .
- Can only include e_i in solution if it's active.
- $Probe/Query\ e_i$ to determine if it's active.
- If element is queried and active, MUST be included in solution.

A query and commit model ... with some additional constraints.

- Elements $N = \{e_1, \dots, e_n\}$.
- e_i active with probability p_i .
- Can only include e_i in solution if it's active.
- $Probe/Query\ e_i$ to determine if it's active.
- If element is queried and active, MUST be included in solution.
- Inner and outer constraints: \mathcal{F}_{in} and \mathcal{F}_{out} .
 - ▶ Set of probed elements, P, must lie in \mathcal{F}_{out} .
 - ▶ Solution, S, must lie in \mathcal{F}_{in} .

A query and commit model ... with some additional constraints.

- Elements $N = \{e_1, \dots, e_n\}$.
- e_i active with probability p_i .
- Can only include e_i in solution if it's active.
- Probe/Query e_i to determine if it's active.
- If element is queried and active, MUST be included in solution.
- Inner and outer constraints: \mathcal{F}_{in} and \mathcal{F}_{out} .
 - ▶ Set of probed elements, P, must lie in \mathcal{F}_{out} .
 - ▶ Solution, S, must lie in \mathcal{F}_{in} .
- Maximize objective function f subject to these constraints.

Let ${\mathcal A}$ be the set of active elements (determined a priori).

Let $\mathcal A$ be the set of active elements (determined a priori).

Solution is then $S = P \cap A$ (set of probed elements which are active).

Let A be the set of active elements (determined a priori).

Solution is then $S = P \cap A$ (set of probed elements which are active).

Objective:

$$\begin{array}{ll} \max_{P} & \mathbb{E}_{\mathcal{A}}[f(P\cap\mathcal{A})] \\ \text{s.t.} & P\in\mathcal{F}_{out} \\ & S=P\cap\mathcal{A}\in\mathcal{F}_{in}. \end{array}$$

Let A be the set of active elements (determined a priori).

Solution is then $S = P \cap A$ (set of probed elements which are active).

Objective:

$$egin{array}{ll} \max_{P} & \mathbb{E}_{\mathcal{A}}[f(P\cap\mathcal{A})] \\ & ext{s.t.} & P \in \mathcal{F}_{out} \\ & S = P \cap \mathcal{A} \in \mathcal{F}_{in}. \end{array}$$

 \mathcal{F}_{in} and \mathcal{F}_{out} are downward-closed.

Stochastic Probing

Objective set function *f* is either linear or *submodular*:

$$f(U \cup \{e\}) - f(U) \ge f(V \cup \{e\}) - f(V)$$
 whenever $U \subset V$.

Submodularity captures decreasing marginal gains.

Stochastic Probing

Objective set function *f* is either linear or *submodular*:

$$f(U \cup \{e\}) - f(U) \ge f(V \cup \{e\}) - f(V)$$
 whenever $U \subset V$.

Submodularity captures decreasing marginal gains.

Monotone if $f(V) \ge f(U)$ whenever $U \subset V$.

Why should you care?

Why should you care?

Useful for modelling:

- Kidney Exchange;
- Online Dating;
- Posted Price Mechanisms;
- etc.

Stochastic Probing with Prices (SPP)

In reality, querying an element costs time and/or resources.

Stochastic Probing with Prices (SPP)

In reality, querying an element costs time and/or resources.

Associate with each $e \in N$ a price $\Delta_e \in \mathbb{R}^+$.

Stochastic Probing with Prices (SPP)

In reality, querying an element costs time and/or resources.

Associate with each $e \in N$ a price $\Delta_e \in \mathbb{R}^+$.

New objective:

$$\begin{aligned} \max_{P} \quad & \mathbb{E}_{\mathcal{A}}[f(P \cap \mathcal{A})] - \sum_{e \in P} \Delta_{e} \\ \text{s.t.} \quad & P \in \mathcal{F}_{out} \\ & S = P \cap \mathcal{A} \in \mathcal{F}_{in}. \end{aligned}$$

PAUSE

First introduced by Chekuri, Vondrák, and Zenklusen in 2011 for submodular maximization.

 \mathcal{P} : Polytope relaxation of the constraints of an optimization problem (i.e., fractional solutions).

First introduced by Chekuri, Vondrák, and Zenklusen in 2011 for submodular maximization.

 \mathcal{P} : Polytope relaxation of the constraints of an optimization problem (i.e., fractional solutions).

Let $\mathbf{x} \in \mathcal{P}$.

CRS

Intuition: A c-CRS rounds **x** to a **feasible** integral solution such that x_e then e is in the solution with probability $\geq c \cdot x_e$.

First introduced by Chekuri, Vondrák, and Zenklusen in 2011 for submodular maximization.

 \mathcal{P} : Polytope relaxation of the constraints of an optimization problem (i.e., fractional solutions).

Let $\mathbf{x} \in \mathcal{P}$.

CRS

Intuition: A c-CRS rounds **x** to a **feasible** integral solution such that x_e then e is in the solution with probability $\geq c \cdot x_e$.

A (b, c)-CRS makes the same guarantee assuming that $x \in b \cdot \mathcal{P}$.

First introduced by Chekuri, Vondrák, and Zenklusen in 2011 for submodular maximization.

 \mathcal{P} : Polytope relaxation of the constraints of an optimization problem (i.e., fractional solutions).

Let $\mathbf{x} \in \mathcal{P}$.

CRS

Intuition: A c-CRS rounds **x** to a **feasible** integral solution such that x_e then e is in the solution with probability $\geq c \cdot x_e$.

A (b, c)-CRS makes the same guarantee assuming that $x \in b \cdot \mathcal{P}$.

Online CRSs were introduced by Feldman, Svensson, and Zenklusen in 2016.

Back to main show.

Maximum facility Location is inapproximable to within a constant factor. (Feige et al. 2009)

Therefore unlikely that SPP has a constant factor approximation.

Maximum facility Location is inapproximable to within a constant factor. (Feige et al. 2009)

Therefore unlikely that SPP has a constant factor approximation.

Instead, we look for bi-criteria approximations:

(α, β) approximation

If Opt is optimal set of probed elements, and Alg satisfies $\mathbb{E}[\mathsf{Alg}] \geq \alpha \mathbb{E}[f(\mathsf{Opt} \cap \mathcal{A})] - \beta \sum_{e \in \mathsf{Opt}} \Delta_e$, then we say Alg is an (α, β) approximation for SPP.

Nomenclature:

- Offline SPP we choose how we query the elements.
- Online SPP order is given to us, either in (uniformly) random order or in adversarial order.

Not to be confused with Offline and Online CRSs! (I know ...)

Nomenclature:

- Offline SPP we choose how we query the elements.
- Online SPP order is given to us, either in (uniformly) random order or in adversarial order.

Not to be confused with Offline and Online CRSs! (I know ...)

- Linear SPP: Objective function *f* is linear.
- Submodular SPP: Objective function f is submodular. (Note: Cost function is always linear.)

Theorem 1

If there exists an α -approximation to linear SP then there exists an α -approximation to linear SPP.

Theorem 2

Suppose $\mathcal{P}(\mathcal{F}_{in})$ and $\mathcal{P}(\mathcal{F}_{out})$ admit (b,c_{in}) and (b,c_{out}) CRSs and let $\gamma = \max\{c_{out} + c_{in} - 1, c_{out} \cdot c_{in}\}$. There exists a $(\gamma \alpha(b), b)$ -approximation to adversarial, submodular SPP where $\alpha(b) = 1 - e^{-b}$ if the objective function is monotone, and be^{-b} otherwise.

Theorem 1

If there exists an α -approximation to linear SP then there exists an α -approximation to linear SPP.

Theorem 2

Suppose $\mathcal{P}(\mathcal{F}_{in})$ and $\mathcal{P}(\mathcal{F}_{out})$ admit (b,c_{in}) and (b,c_{out}) CRSs and let $\gamma = \max\{c_{out} + c_{in} - 1, c_{out} \cdot c_{in}\}$. There exists a $(\gamma \alpha(b), b)$ -approximation to adversarial, submodular SPP where $\alpha(b) = 1 - e^{-b}$ if the objective function is monotone, and be^{-b} otherwise.

Theorem 2 applies to both offline and online CRSs.

Approximation to SPP \Rightarrow Appoximation to SP.

Remarks on Theorem 2:

 Both offline and online CRSs give us approximations to adversarial SPP.

Approximation to SPP \Rightarrow Appoximation to SP.

Remarks on Theorem 2:

- Both offline and online CRSs give us approximations to adversarial SPP.
- First general (i.e., not only for matroids) SP approximations for non-monotone submodular functions.

Approximation to SPP \Rightarrow Appoximation to SP.

Remarks on Theorem 2:

- Both offline and online CRSs give us approximations to adversarial SPP.
- First general (i.e., not only for matroids) SP approximations for *non-monotone* submodular functions.
- For monotone submodular functions, previous approximation was $(1-e^{-b})c_{in}c_{out}$ (Feldman et al. 2016). This is improved to $(1-e^{-b})\max\{c_{in}c_{out},c_{in}+c_{out}-1\}$.

Approximation to SPP \Rightarrow Appoximation to SP.

Remarks on Theorem 2:

- Both offline and online CRSs give us approximations to adversarial SPP.
- First general (i.e., not only for matroids) SP approximations for non-monotone submodular functions.
- For monotone submodular functions, previous approximation was $(1-e^{-b})c_{in}c_{out}$ (Feldman et al. 2016). This is improved to $(1-e^{-b})\max\{c_{in}c_{out},c_{in}+c_{out}-1\}$.
- Synthesis of different techniques into two algorithms: one for offline CRSs, one for online CRSs.

SP for Matroids

Suppose $\mathcal{F}_{\mathit{in}}$ and $\mathcal{F}_{\mathit{out}}$ are intersections of k and ℓ matroids.

f is submodular.

 $\checkmark = \mathsf{best}$ or equal approximation ratio.

		This work	Previous
Monotone	Offline		√(ASW '16)
	Random Order	✓	
	Adversarial	✓	
Non- Monotone	Offline	✓	
	Random Order	✓	
	Adversarial	✓	

Invaluable Prior Work

We owe much to

- A recent technique of Sviridenko, Vondrák, and Ward (2014) to maximize the sum of a concave and linear function, which can take negative values (!).
- The Measured Continuous Greedy algorithm of Feldman, Noar, and Schwartz (2011) which applies to non-monotone submodular functions.