Application of machine learning in malware file classification

by

Guangjie Shi

(Under the direction of Khaled Rasheed)

Abstract

In this thesis multiple advanced machine learning algorithms, such as random forests,

boosted treess, support vector machine, etc., were applied to investigate the problem of mal-

ware file classification. Feature engineering procedures were performed on a large dataset

 $(\sim 400G)$ of malware files provided by Kaggle.com. Four different feature sets were gen-

erated: filesizes and header string frequency, byte-sequence n-grams, opcode n-grams and

image features. Each of these feature sets was studied individually at first, and then differ-

ent combinations of them were investigated in detail. Moreover, the importance of different

features was studied and discussed as well.

INDEX WORDS:

Machine Learning, Malware Classification, N-gram, Local Binary

Pattern, Random Forest, Support Vector Machine, Gradient Boosted

Tree.

APPLICATION OF MACHINE LEARNING IN MALWARE FILE CLASSIFICATION

by

Guangjie Shi

B.S., Xiamen University, 2011

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2016

©2016

Guangjie Shi

All Rights Reserved

APPLICATION OF MACHINE LEARNING IN MALWARE FILE CLASSIFICATION

by

Guangjie Shi

Approved:

Major Professors: Khaled Rasheed

Committee: Roberto Perdisci

Kang Li

Electronic Version Approved:

Suzanne Barbour Dean of the Graduate School The University of Georgia August 2016

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my adviser Prof. Khaled Rasheed, for his invaluable guidance, support, and patience throughout my MS studies. I would also like to thank Prof. Roberto Perdisci and Prof. Kang Li for invaluable discussions and for serving on my committee. Last but not least, I would like to thank my family for their endless support and unconditional love throughout all these years. Ever since I was a child, my parents have provided me with excellent education opportunities, and have respected every decision I made. Without them, I would not have been able to achieve this much.

Contents

\mathbf{A}	ckno	wledgments	iv
Li	${f st}$ of	Figures	viii
Li	${ m st}$ of	Tables	x
1	Intr	roduction	1
2	Met	thods and Metrics	4
	2.1	Classification Methods	4
	2.2	Evaluation Metrics	10
3	Fea	ture Engineering	13
	3.1	File Size	14
	3.2	Header Strings	14
	3.3	Byte Gram	15
	3.4	Opcode Gram	17
	3.5	Image Feature	18
4	Exp	periments and Results	20
	4.1	Experiment Setup	20
	4.2	Results and Discussion	22

5	Conclusion	37
Bi	Bibliography	39

List of Figures

1.1	Histogram of the occurrence for each malware class in the dataset	2
2.1	One example of the graphical representation of a decision tree	5
2.2	Two examples of the support vector machine, with hard margin (a) for cases	
	where the data points are linearly separable, and soft margin (b) for cases	
	where the data points are not linearly separable	8
2.3	An example of Artificial Neural Networks with two hidden layers	11
3.1	An example of the BYTE files on the left, and the corresponding ASM file	
	on the right.	13
3.2	The mean values with standard deviation of the normalized file sizes for	
	BYTE and ASM of each malware class. The y-axis indicates the stan-	
	dardized filesizes. That is, for each plot, all the filesizes are divided by the	
	maximum filesize out of nine classes.	14
3.3	Illustration of the procedures that we applied for generating the 2-byte gram	
	sequences as features.	16
3.4	Procedures that local binary pattern applied for calculating the local feature	
	of each pixel.	18
3.5	An example of converting gray-scale image file into local binary pattern his-	
	togram	19

4.1	Illustration of experiment setup	20
4.2	Feature importance for file size and ASM header string	23
4.3	Results of 4 different methods applied on 15 different models. Vertical axis,	
	in logscale, shows the logloss (smaller the better); while the horizontal axis	
	shows the abbreviation of different models. BG stands for Byte Gram. $\ \ .$	24
4.4	Feature importance score for top 20 1-byte gram	25
4.5	Feature importance score for top 20 2-byte gram	25
4.6	Feature importance score for top 20 3-byte gram	26
4.7	Feature importance score for top 20 4-byte gram	26
4.8	Results of 4 different methods applied on 15 different models. Vertical axis,	
	in logscale, shows the logloss (smaller the better); while the horizontal axis	
	shows the abbreviation of different models. OG stands for Opcode Gram. $$.	29
4.9	Feature importance for 1 opcode gram	30
4.10	Feature importance for 2 opcode gram	30
4.11	Feature importance for 3 opcode gram	31
4.12	Feature importance for 4 opcode gram	31

List of Tables

1.1	Nine malware classes in the dataset, with their occurrence	3
2.1	An example of confusion matrix for binary classification problems	11
3.1	Top ten sections in ASM files, with number of files that contain these sections.	15
3.2	Number of features for 1-, 2-, 3- and 4-byte gram sequences	17
3.3	Number of features for 1-, 2-, 3- and 4-opcode gram sequences	17
4.1	Methods and packages that are employed in this study.	22
4.2	Results of different methods on model that consist of file sizes and header	
	string frequency.	22
4.3	Results of Gradient Boosted Tree (GBT) on models that are composed of n	
	byte gram features. The best one in terms of Kaggle test is labeled by red	
	color	27
4.4	Results of random forest (RF) on models that are composed of n byte gram	
	features. The best one in terms of Kaggle test is labeled by red color	27
4.5	Results of support vector machine (SVM) on models that are composed of n	
	byte gram features. The best one in terms of Kaggle test is labeled by red	
	color	28
4.6	Results of naive bayes (NB) on models that are composed of n byte gram	
	features. The best one in terms of Kaggle test is labeled by red color	28

4.7	Results of Gradient Boosted Tree on opcode n-gram features	32
4.8	Results of Random Forest on opcode n-gram features	32
4.9	Results of Support Vector Machine on opcode n-gram features	33
4.10	Results of Naive Bayes on opcode n-gram features	33
4.11	Results of five different methods on two image features with two different	
	image widths: 512 and 1024 bytes. NB: naive bayes; SVM: support vector	
	machine; RF: random forest; GBT: gradient boosted tree; ANN: artificial	
	neural network.	34
4.12	Results of Gradient Boosted Tree on different combined features. BG stands	
	for byte gram and OG represents opcode gram	35

Chapter 1

Introduction

With large financial support in recent years, the malware industry has become a well-organized market. The traditional protections of anti-malware vendors are greatly challenged by multi-player syndicates. One of the major challenges is that there is a vast amount of files that need to be evaluated for potential malicious intent. For instance, Microsoft's real-time detection anti-malware products inspect over 700 million computers monthly, which generates tens of millions of daily data points to be analyzed as potential malware [5]. The reason behind the high volume of different files is that malware authors introduce polymorphism to the malware components. Therefore, even malware files that belong to the same malware "family" can look totally different from each other by modifying or obfuscating through various tactics.

The problem we try to address in this study is whether or not we could find an effective way to classify malware files into their respective "families" by using state-of-the-art machine learning techniques. The dataset that we used in this study is posted on Kaggle.com by Microsoft [5]. This dataset contains two parts: the training set and the testing set. In the training set, there are 10,868 labeled malware files belonging to 9 different families; in the testing set, there are 10,873 unlabeled malware files. For each malware file, the raw data

contains the hexadecimal representation of the file's binary content, without the PE header. Each file also comes with a metadata manifest, which is a log containing various metadata information. These metadata manifest were generated using the IDA disassembler tool. We will describe in detail how the process of feature engineering (Ch. 3) is performed on these two types of files in order to extract meaningful information. The nine malware classes with their occurrence in the training set are listed in Table 1.1. The histogram of these nine malware families is shown in Fig. 1.1. One can tell that the training set is very unbalanced throughout different classes. For example, the C3 class has the most instances, 2942, while the C5 class has only 42 instances.

Figure 1.1: Histogram of the occurrence for each malware class in the dataset.

Table 1.1: Nine malware classes in the dataset, with their occurrence

Class ID	Malware Family	Number of files
C1	Ramnit	1541
C2	Lollipop	2478
C3	$Kelihos_vers$	2942
C4	Vundo	475
C5	Simda	42
C6	Tracur	751
C7	$Kelihos_ver1$	398
C8	Obfuscator.ACY	1228
C9	Gatak	1013

Chapter 2

Methods and Metrics

2.1 Classification Methods

2.1.1 Decision Trees and Ensemble of Trees

Decision trees, one of the most popular classification methods, exhibit flowchart-like structure. Each internal node of the tree performs the "if-else" test of one attribute, the outcome of which will lead to the according branch. The classification rules of decision trees are represented by all the paths from root to leaf, which represents a class label. In Fig. 2.1, we show an example of the graphical representation of a decision tree for car buying. With gathered information about a car (e.g. price, mileage and etc.), one could easily go through the decision tree from top to bottom and obtain a decision. For instance, a certified used car with mileage less than 100,000 miles and price less than \$5,000 will result in a decision of purchase. This example shows very nicely the advantages of the decision tree method:

- 1. The graphical representation give it excellent interpretability.
- 2. The process of making decisions in a decision tree mimics the human decision-making process.

Figure 2.1: One example of the graphical representation of a decision tree.

In the case of determining which attribute is to be chosen as an internal node, decision trees have different classification criteria, the two most popular ways being Gini impurity and Cross entropy. The former is used by the CART (classification and regression tree) algorithm while the latter is adopted by the ID3, C4.5 and C5.0 tree-generation family of algorithms. For multi-class classification, one can assume there are K outcomes with values from 0,1,...,K-1. The proportion of class k observations can be calculated as:

$$f_k = \frac{1}{N} \sum_i I(y_i = k),$$
 (2.1)

where N is the total number of observations, y_i is the label of observation i, and I() is an indicator function. Then the **Gini impurity** and **Entropy** can be respectively written as

$$I_G = \sum_{k} f_k \cdot (1 - f_k), \tag{2.2}$$

$$I_E = -\sum_k f_k \cdot \log(f_k) \tag{2.3}$$

Even though the decision tree is a very simple idea, there is more to be considered when training one. For example, in order to avoid over-fitting the training data, one would avoid a fully grown tree by pruning a very large tree from the bottom up to its subtrees [4]. Moreover, a single decision tree is usually non-robust, or very sensitive to the training data. Therefore, it is usually used as a building block along with bagging or boosting methods to construct a more powerful classifier.

Random Forests

Random forests, also known as random decision forests, are one of the well known ensemble learning methods, taking advantage of the simplicity of decision trees and the ensemble technique, namely the boostrap aggregating (bagging) method. For a single decision tree, the deeper it grows, the higher its variance will be due to the fact that it overfits the training set. However, the idea of the random forests algorithm is to train multiple deep decision trees on different parts of the same training set, with the goal of reducing variance. It achieves this by randomly sampling from the same training set with replacement to generate the subsets for training multiple decision trees. Moreover, at each splitting process, instead of considering all of the given features, a randomly selected subset of features will be tested. This step is essential due to the fact that there might exist one or more strong features that could dominate the others. Without this step, all of the trees that have been grown could

end up very similar to each other, i.e. highly correlated. Averaging many highly correlated estimators wouldn't reduce the variance as much as averaging many uncorrelated estimators.

Gradient Tree Boosting

Taking a different approach from the random forest method, the gradient tree boosting method builds an additive model in a forward stage-wise fashion. At each step, it tries to optimize the differentiable loss function by fitting estimators (trees) on the negative gradient of the multinomial deviance loss function. However, in order to obtain the optimal model, multiple parameters need to be tuned. For example, the learning rate, which determines the "step size", is very important. If the learning rate is too small, the process will converge slowly and chances are it will be trapped in some local minimas. However, if the learning rate is too large, it might overlook the global minima that we are searching for. Another key factor in this method is the number of estimators to be trained. A small amount of estimators might not be able to build up a strong model, while a large amount of estimators could just overfit the data.

2.1.2 Support Vector Machine

The support vector machine (SVM) [3] has served as a great tool for performing classification and regression since it was proposed decades ago. It performs binary classification by constructing a hyper-plane with the goal of optimally separating the data points into two classes. The name support vectors represent those data points that are closest to the hyper-plane. For cases where the training data can be linearly separated (hard margin), the mathematical expression of support vector machine can be written as [4]:

Figure 2.2: Two examples of the support vector machine, with hard margin (a) for cases where the data points are linearly separable, and soft margin (b) for cases where the data points are not linearly separable.

$$\min_{\beta, \beta_0} ||\beta||,$$
 subject to $y_i(\mathbf{x_i}^T \beta + \beta_0) \ge 1, i = 1, \dots, N$,

where $y_i \in \{-1, 1\}$ is the class label, $\mathbf{x_i}$ is the feature vector of given sample point and $||\beta||^{-1} = M$ is one half of the margin (Fig. 2.2).

However, in real world problems, the training data is most likely not linearly separable. In these cases, the support vector machine can be extended by introducing the slack variable ξ_i , which is the proportional amount by which the prediction is on the wrong side of its

margin [4].

$$\min_{\beta,\beta_0} ||\beta||,$$
subject to $y_i(\mathbf{x_i}^T \beta + \beta_0) \ge 1 - \xi_i,$

$$\xi_i > 0 \text{ and } \sum \xi_i < \text{constant},$$

$$i = 1, \dots, N,$$

Moreover, the support vector machine can also be employed to classification problems where linear boundaries are not applicable by enlarging the feature space using basis expansions, e.g. splines [4].

2.1.3 Naive Bayes Classifiers

Naive Bayes Classifiers are a family of simple probabilistic classifiers based on Bayes' theorem. They make the assumption that every pair of features are independent from each other given the classification. Even though the assumption is quite strong (or 'naive'), it has been extensively studied since the 1950s and has been successfully applied in problems such as text categorization. Given a feature vector $\mathbf{x} = (x_1, x_2, \dots, x_n)$, the conditional probability of a class variable y can be written as

$$P(y|\mathbf{x}) = \frac{P(y) P(\mathbf{x}|y)}{P(\mathbf{x})}.$$

With the naive independence assumption, we now have

$$P(y|\mathbf{x}) = \frac{P(y)\prod_{i} P(x_{i}|y)}{P(\mathbf{x})}$$

Thus the classification rule can be derived as:

$$\hat{y} = \arg \max_{y} P(y) \prod_{i} P(x_i|y) ,$$

given that $P(\mathbf{x})$ is constant with the same input. The difference between naive bayes classifiers mainly comes from the choice of the distribution for $P(x_i|y)$. The one we chose for this study is Multinomial naive Bayes, which assumes the data are multinomially distributed.

2.1.4 Artificial Neural Networks

Artificial Neural Networks (ANNs) are machine learning algorithms that are inspired by biological neural networks. An artificial neural network (as seen in Fig. 2.3) is composed of a large amount of highly interconnected elements, namely artificial neurons, simulating the biological nervous systems. As the most fundamental element, each artificial neuron takes multiple input signals and generates one output. Due to the different processing rules of artificial neurons, the different structures of the network and the different learning procedures, ANNs can be applied to a lot of very important problems, such as image processing, pattern recognition (classification), regression, etc.

2.2 Evaluation Metrics

2.2.1 Logarithmic Loss

Logarithmic loss is an evaluation metric adopted by Kaggle.com. Its multi-class formulation can be written as

$$logloss = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} log(p_{ij}), \qquad (2.4)$$

Figure 2.3: An example of Artificial Neural Networks with two hidden layers.

where N is the number of samples, M is the number of total possible classes, p_{ij} is the predicted probability of assigning class j to instance i, and y_{ij} is an indicator showing whether class j is the correct classification for instance i.

2.2.2 Precision, Recall and F1 Score

Table 2.1: An example of confusion matrix for binary classification problems.

True Positive (TP)	False Positive (FP)
False Negative (FN)	True Negative (TN)

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

$$f1\text{-}score = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$
(2.5)

$$recall = \frac{TP}{TP + FN} \tag{2.6}$$

$$f1\text{-}score = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$
 (2.7)

In classification problems, one very important tool for evaluating models is the confusion matrix. In Table 2.1, a confusion matrix for a binary classification problem, which can easily be extended to multi-class classification, is shown. In the matrix, elements along the diagonal are those that have been correctly predicted. Some important metrics such as precision, recall and f1-score (as seen Eq. 2.5, 2.6 and 2.7) can be calculated based on this matrix.

Chapter 3

Feature Engineering

As described briefly in Ch. 1, two different types of files are given for each malware file: a binary file (namely **BYTE**) without PE header and a metadata manifest (namely **ASM**). Examples of these two files can be seen in Fig. 3.1. In this section, we will describe in detail how useful information is extracted and collected from these files.

Figure 3.1: An example of the **BYTE** files on the left, and the corresponding **ASM** file on the right.

3.1 File Size

A simple yet effective feature that one can extract from the dataset is the size of the malware files. In Fig. 3.2 we plot the mean with standard deviation of the normalized file size for each malware class. From this plot, we can find significant variance of file sizes among different malware classes, which indicates that the file size could be a potentially good feature for distinguishing between different classes.

Figure 3.2: The mean values with standard deviation of the normalized file sizes for **BYTE** and **ASM** of each malware class. The y-axis indicates the standardized filesizes. That is, for each plot, all the filesizes are divided by the maximum filesize out of nine classes.

3.2 Header Strings

Each ASM file contains different sections, such as ".text", ".data" and so on. We first compiled a list of all of the different header strings in the training set, which resulted in 448 in total. However, most of the header strings only exist in less than 5 files, which doesn't

give much information for classification. Therefore, we picked header strings that exist in at least 5 different files, thus resulting in 66 different header strings. For each of these picked header strings, we counted the number of lines that appeared in the ASM file as our feature. Top ten header strings are shown in Table 3.1.

Table 3.1: Top ten sections in **ASM** files, with number of files that contain these sections.

Header String	Number of files
.idata	10339
.data	10296
.text	10291
.rdata	9255
HEADER	8341
.rsrc	6721
.reloc	2299
.bss	1047

3.3 Byte Gram

n-gram is a contiguous sequence of n items from a given sequence of text. For instance, given a sequence "abcda", all possible 1-gram sequences are "a", "b", "c" and "d", and all possible 2-gram sequences are "ab", "bc", "cd" and "da". Using n-gram as the analysis tool for malware analysis has been proposed by Kolter et al. [6].

For each **BYTE** file, we first counted the frequency of 1-byte gram sequences and found 257 different byte sequences in total, all of which are collected into the feature set. Following the same procedures, we calculated the frequency of 2-, 3- and 4-byte gram sequences as well. However, due to the huge amount of sequences generated, we had to make choices. For instance, in the case of the 2-byte gram sequence seen in Fig. 3.3, we only kept the top 1000 byte sequences with the highest frequencies for each **BYTE** file. Thus the mean frequencies of these byte sequences over all the malware files of the same family can be calculated. Then

Figure 3.3: Illustration of the procedures that we applied for generating the 2-byte gram sequences as features.

the top 1000 byte sequences of each malware family are added to the feature set. The same procedures were applied to the calculation of the 3-gram and 4-gram byte sequences as well. The total number of features for each type of byte gram are listed in 3.2.

Table 3.2: Number of features for 1-, 2-, 3- and 4-byte gram sequences.

N-gram	Number of Features
1	257
2	4933
3	6144
4	6650

3.4 Opcode Gram

In machine language instruction, an opcode is the portion which specifies the operation to be performed. We manually collected ~ 200 X86 opcodes as our opcode vocabulary. Then we generated all the 1-, 2-, 3- and 4-opcode gram sequences for each of the **ASM** files. There are 193 1-opcode gram sequences, all of which are chosen into the feature set. For 2-, 3- and 4-gram opcode sequences, due to the large amount, we followed the same procedures that were described in Sec. 3.3. The total number of features that we generated are listed in Table 3.3.

Table 3.3: Number of features for 1-, 2-, 3- and 4-opcode gram sequences.

N-gram	Number of Features
1	193
2	3472
3	5231
4	6633

3.5 Image Feature

Local Binary Pattern

The local binary pattern has been an excellent visual descriptor used for image classification problems since it was proposed in 1990[2]. Particularly, it is known for its good performance in terms of texture classification. The essential idea behind it is actually very simple. Instead of taking the whole image as a high-dimensional vector, the local binary pattern focuses only on the local features. That is, for each pixel in the image, as seen in Fig. 3.4, we first compare its intensity with those of all the neighbors around. If a neighbor has a higher intensity, the neighbor will be assigned a value of 1; otherwise, it will be assigned a value of 0. Then, following a clockwise direction, a binary code as well as the corresponding decimal number can be generated according to these 0s and 1s. Then the histogram of these decimal numbers can be collected as our features. Depending on the radius, a different number of neighbors will be compared with, thus resulting in a different number of possible decimal numbers. For example, with a radius equal to 1, there are 8×1 neighbors and $2^8 = 256$ possible decimal numbers.

Figure 3.4: Procedures that local binary pattern applied for calculating the local feature of each pixel.

Feature Preparation

Nataraj et al. [8, 9] have proposed a method of analyzing malwares with image processing techniques and shown the result of which is comparable with dynamic analysis in terms of accuracy. In this work, we decided to convert every BYTE file into an image feature using the local binary pattern method. In order to convert a binary file into a gray-scale image file, one has to decide the width of the image. According to ref. [7], there are several good choices of the image width depending on the file size. Therefore, we chose 512 and 1024 bytes respectively as the image widths to calculate the local binary pattern and the resulting histogram. One example can be seen in Fig. 3.5.

Figure 3.5: An example of converting gray-scale image file into local binary pattern histogram.

Chapter 4

Experiments and Results

4.1 Experiment Setup

Figure 4.1: Illustration of experiment setup.

4.1.1 Local Training Set, Local Testing Set, Kaggle Testing Set

There are two sets of data provided by the Kaggle website: the training set and the testing set. The number of malware files are respectively 10868 and 10873 in these two dataset, with total size $\sim 400G$. The feature engineering procedures described in Chapter 3 are performed on both datasets. We will refer to the testing dataset as Kaggle Testing set, since the labels in this set are not provided and thus the results can only be checked by submitting to the website. Moreover, we split the training set into two different sets with an 80/20 split. We will refer to them as Local Training set and Local Testing set respectively.

4.1.2 Feature Selection

Due to the large number of features generated through our feature engineering procedures, we had to reduce the dimensionality of the feature space to reduce the training time, improve the accuracy and prevent over-fitting. The random forest method is used for this purpose in our study. In the implementation of random forest in scikit-learn, it provides the measure of feature importance with the idea that the feature on the top of a tree is relatively more important than its descendants. We only kept features that have importance scores higher than the mean value across all the features.

4.1.3 Software and Packages

There are a lot of well-developed open source software in the field of machine learning. In this work, we have utilized two very famous software: scikit-learn [10] and xgboost [1]. As listed in Table 4.1, we adopted the implementation of support vector machines, naive Bayes, artificial neural networks and random forests from scikit-learn and that of gradient boosted tree from the Xgboost package. To optimize the performance with the best parameters as well as prevent the overfitting, we have employed a method named GridsearchCV provided

by scikit-learn. With this method, we used 5-fold cross-validation for the search for the best parameters.

Table 4.1: Methods and packages that are employed in this study.

Method	Package	Implementation
Support Vector Machine(SVM)	scikit-learn	sklearn.svm.SVC
Naive Bayes (NB)	scikit-learn	sklearn.naive_bayes.MultinomialNB
Artificial Neural Network (ANN)	scikit-learn	$sklearn.neural_network.MLPClassifier$
Random Forest (RF)	scikit-learn	sklearn.ensemble.RandomForestClassifier
Gradient Boosted Tree (GBT)	xgboost	XGBClassifier*

^{*}XGBClassifier is a wrapper of xgboost, in order to take advantage of the model selection methods provided by scikit-learn.

4.2 Results and Discussion

4.2.1 Feature: Only file size and Header string

Table 4.2: Results of different methods on model that consist of file sizes and header string frequency.

Methods	Local Test				Kaggle Test	
	logloss	precision	recall	f1-score	log loss	rank
NB	1.36068	0.44045	0.43811	0.3495	1.358348074	289
SVM	0.59515	0.79959	0.71695	0.7402	0.584892249	272
RF	0.04954	0.99068	0.99066	0.9905	0.046072858	147
GBT	0.05442	0.99009	0.99019	0.9900	0.040359325	127

The first set of features we investigated are normalized file sizes and header strings frequency as described in Sec. 3.1 and 3.2. We applied four different methods: naive bayes (NB), support vector machine (SVM), random forest (RF) and gradient boosted tree (GBT) on this set of features, the results of which are shown in Table 4.2. Both RF and GBT perform fairly well in terms of both the local test and the Kaggle test. Even though RF

Figure 4.2: Feature importance for file size and ASM header string.

has slightly better scores compared with GBT, it turns out to be not as good as GBT on the Kaggle test. We present the top 20 features in terms of their importance scores. As we expected, both byte file size and asm file size turn out to be top features and some top 10 header string sections in Table 3.1 are very important features as well.

4.2.2 Feature: Only Byte Gram

In this section, we studied 1-, 2-, 3-, and 4-byte gram features and their combinations, which resulted in 15 models in total. A summary of the performance of all the methods on different models (or features) can be found in Fig. 4.3. For more details, we listed the results of four different methods: GBT, RF, SVM and NB, in Table 4.3, 4.4, 4.5 and 4.6 respectively. We found that different methods actually value features differently. The gradient boosted tree (GBT), which gave the best performance in terms of the Kaggle test in this section, achieved the best testing score with the model consisting of 1-, 3- and 4-byte gram. The random forest method works well with the same model but with worse performance. As for support vector

Figure 4.3: Results of 4 different methods applied on 15 different models. Vertical axis, in logscale, shows the logloss (smaller the better); while the horizontal axis shows the abbreviation of different models. BG stands for Byte Gram.

machine (SVM) and naive bayes (NB), the former scores the best with simply the 1-byte gram, while the latter works well with 2-, 3- and 4-byte gram models.

Moreover, to better understand the importance of each feature, we plotted the feature importance for the top 20 1-, 2-, 3- and 4-byte gram respectively in Fig. 4.4, 4.5, 4.6 and 4.7. As one can see, for 1- and 2-byte gram, there are some features that have much higher importance scores compared to others. For instance, in 1-byte gram, byte sequence '00' has almost twice the importance score of the second highest 'FF'; and in 2-byte gram, byte sequence '1000' has roughly 1.5 times the importance score of the second highest '008D'. However, for 3- and 4-byte gram, the differences are much smaller. Thus, one would expect that with even higher orders of byte-gram, the differences will be reduced further.

Figure 4.4: Feature importance score for top 20 1-byte gram.

Figure 4.5: Feature importance score for top 20 2-byte gram.

Figure 4.6: Feature importance score for top 20 3-byte gram.

Figure 4.7: Feature importance score for top 20 4-byte gram.

Table 4.3: Results of Gradient Boosted Tree (GBT) on models that are composed of n byte gram features. The best one in terms of Kaggle test is labeled by red color.

Footunes		Local	Test		Kaggle Test		
Features	logloss	precision	recall	f1-score	log loss	rank	
1-byte gram	0.06794	0.98513	0.98505	0.98485	0.058427869	170	
2-byte gram	0.04349	0.98780	0.98783	0.98774	0.039999557	127	
3-byte gram	0.04154	0.99055	0.99069	0.99055	0.034396248	115	
4-byte gram	0.05211	0.98482	0.98468	0.98466	0.046222758	147	
1- and 2-byte gram	0.04208	0.98836	0.98837	0.98826	0.035161211	118	
1- and 3-byte gram	0.04143	0.99098	0.99093	0.99093	0.031085531	107	
1- and 4-byte gram	0.03843	0.98726	0.98720	0.98721	0.031712716	108	
2- and 3-byte gram	0.03551	0.98964	0.98958	0.98953	0.031070368	107	
2- and 4-byte gram	0.04097	0.99178	0.99180	0.99171	0.033900608	114	
3- and 4-byte gram	0.04409	0.98809	0.98828	0.98791	0.036863338	121	
1-, 2- and 3-byte gram	0.03753	0.99270	0.99262	0.99262	0.030620258	105	
1-, 2- and 4-byte gram	0.03744	0.99219	0.99207	0.99209	0.029774098	103	
1-, 3- and 4-byte gram	0.03652	0.99121	0.99108	0.99091	0.029349611	103	
2-, 3- and 4-byte gram	0.03631	0.99195	0.99180	0.99182	0.030929875	107	
1-, 2-, 3- and 4-byte gram	0.03377	0.99174	0.99171	0.99166	0.029993074	103	

Table 4.4: Results of random forest (RF) on models that are composed of n byte gram features. The best one in terms of Kaggle test is labeled by red color.

Features		Local	Test		Kaggle Test		
reatures	logloss	precision	recall	f1-score	log loss	rank	
1-byte gram	0.12392	0.97873	0.97851	0.97783	0.106005521	230	
2-byte gram	0.09163	0.98789	0.98783	0.98778	0.084014007	212	
3-byte gram	0.05562	0.99171	0.99162	0.99140	0.047645314	149	
4-byte gram	0.05255	0.99428	0.99414	0.99416	0.043920403	142	
1- and 2-byte gram	0.08731	0.98747	0.98744	0.98724	0.074824771	188	
1- and 3-byte gram	0.05808	0.99286	0.99275	0.99276	0.047498616	149	
1- and 4-byte gram	0.05048	0.99319	0.99314	0.99313	0.044474508	143	
2- and 3-byte gram	0.06027	0.99253	0.99242	0.99242	0.052519540	160	
2- and 4-byte gram	0.05666	0.99416	0.99408	0.99389	0.048351297	152	
3- and 4-byte gram	0.05197	0.99585	0.99578	0.99580	0.042399837	135	
1-, 2- and 3-byte gram	0.06068	0.99402	0.99400	0.99398	0.050079276	154	
1-, 2- and 4-byte gram	0.05488	0.99304	0.99300	0.99300	0.046337592	147	
1-, 3- and 4-byte gram	0.04950	0.99253	0.99242	0.99236	0.040534530	128	
2-, 3- and 4-byte gram	0.05388	0.99417	0.99408	0.99404	0.045571748	145	
1-, 2-, 3- and 4-byte gram	0.05117	0.99499	0.99494	0.99493	0.043304202	139	

Table 4.5: Results of support vector machine (SVM) on models that are composed of n byte gram features. The best one in terms of Kaggle test is labeled by red color.

Eastunes		Local	Test		Kaggle Test		
Features	logloss	precision	recall	f1-score	log loss	rank	
1-byte gram	0.73383	0.74036	0.73657	0.70617	0.707840305	278	
2-byte gram	1.09163	0.27327	0.28932	0.24875	1.073261311	284	
3-byte gram	1.12277	0.32287	0.24849	0.25538	1.104820332	284	
4-byte gram	1.23142	0.40438	0.39279	0.30210	1.223500783	286	
1- and 2-byte gram	0.88550	0.39289	0.35023	0.33599	0.857133719	282	
1- and 3-byte gram	0.87787	0.57371	0.64279	0.58441	0.855480488	282	
1- and 4-byte gram	0.89377	0.58807	0.61454	0.55302	0.870126597	282	
2- and 3-byte gram	1.07242	0.46107	0.51729	0.45226	1.056115162	284	
2- and 4-byte gram	1.12241	0.34084	0.19627	0.18904	1.087907689	284	
3- and 4-byte gram	1.13259	0.46312	0.49438	0.42576	1.101415286	284	
1-, 2- and 3-byte gram	0.88585	0.37780	0.35533	0.34494	0.863722938	282	
1-, 2- and 4-byte gram	0.88832	0.51582	0.59049	0.53020	0.872646176	282	
1-, 3- and 4-byte gram	0.89918	0.52851	0.60856	0.54777	0.873518805	282	
2-, 3- and 4-byte gram	1.08138	0.33676	0.27699	0.27091	1.043608708	284	
1-, 2-, 3- and 4-byte gram	0.89801	0.52552	0.60820	0.54502	0.871688051	282	

Table 4.6: Results of naive bayes (NB) on models that are composed of n byte gram features. The best one in terms of Kaggle test is labeled by red color.

Features		Local	Test		Kaggle Test		
reatures	logloss	precision	recall	f1-score	log loss	rank	
1-byte gram	1.18588	0.66940	0.68239	0.62515	1.166548664	284	
2-byte gram	1.00010	0.76547	0.78909	0.74580	1.011161162	283	
3-byte gram	1.01351	0.74098	0.76966	0.72861	0.986500474	283	
4-byte gram	1.10197	0.71679	0.74820	0.70366	1.085435922	284	
1- and 2-byte gram	0.94656	0.79169	0.79302	0.76103	0.922949247	282	
1- and 3-byte gram	0.98398	0.73079	0.77244	0.73857	0.946556419	283	
1- and 4-byte gram	0.94308	0.77674	0.78738	0.75319	0.915573028	282	
2- and 3-byte gram	0.81452	0.75240	0.78778	0.75244	0.794525054	281	
2- and 4-byte gram	0.83145	0.78259	0.81603	0.78079	0.823162065	281	
3- and 4-byte gram	0.81777	0.74480	0.78585	0.74924	0.782990251	281	
1-, 2- and 3-byte gram	0.95900	0.79109	0.77204	0.73700	0.906776792	282	
1-, 2- and 4-byte gram	0.90697	0.78763	0.79571	0.76086	0.886961809	282	
1-, 3- and 4-byte gram	0.97343	0.77026	0.79046	0.75941	0.922360539	282	
2-, 3- and 4-byte gram	0.74160	0.80318	0.79636	0.76444	0.720803265	278	
1-, 2-, 3- and 4-byte gram	0.92980	0.78404	0.79282	0.76048	0.866792452	282	

4.2.3 Feature: Only Opcode Gram

Figure 4.8: Results of 4 different methods applied on 15 different models. Vertical axis, in logscale, shows the logloss (smaller the better); while the horizontal axis shows the abbreviation of different models. OG stands for Opcode Gram.

In this section, we studied 1-, 2-, 3-, and 4-opcode gram features and their combinations, which result in 15 models in total. A summary of the performance of all the methods on different models (or features) can be found in Fig. 4.8. For more detail, we listed the results of four different methods, GBT, RF, SVM and NB, in Table 4.7, 4.8, 4.9 and 4.10 respectively. Similar to the previous section, the gradient boosted tree (GBT) scores the best in combination with the model consisting of 1-, 2-, 3- and 4-opcode gram sequences. The other three methods also favor different combinations of opcode gram features.

Moreover, for a better understanding of the importance of each feature, we plotted the feature importance for the top 20 1-, 2-, 3- and 4-opcode gram respectively in Fig. 4.9, 4.10, 4.11 and 4.12. Different from byte-gram sequences, opcode-gram sequences do not show much difference in feature importance score for 1-opcode gram. However for higher orders of opcode-gram sequences, some combinations start to become more important. For

example, in 2-opcode gram, 'call,add','add, pop' and 'mov, pop' seem to be more significant than others, while in 3-opcode gram sequences, 'mov, sub, mov' seems to become the most influential.

Figure 4.9: Feature importance for 1 opcode gram.

Figure 4.10: Feature importance for 2 opcode gram.

Figure 4.11: Feature importance for 3 opcode gram.

Figure 4.12: Feature importance for 4 opcode gram.

Table 4.7: Results of Gradient Boosted Tree on opcode n-gram features

Features		Local	Kaggle Test			
reatures	logloss	precision	recall	f1-score	log loss	rank
1-opcode gram	0.06627	0.98437	0.98407	0.98399	0.055676499	164
2-opcode gram	0.06610	0.98226	0.98199	0.98186	0.067582810	183
3-opcode gram	0.12521	0.97084	0.96951	0.96920	0.116286780	232
4-opcode gram	0.16604	0.96648	0.96429	0.96375	0.147684057	237
1- and 2-opcode gram	0.05143	0.99045	0.99029	0.99024	0.037665565	121
1- and 3-opcode gram	0.05157	0.98698	0.98670	0.98664	0.044563968	143
1- and 4-opcode gram	0.05573	0.98821	0.98797	0.98799	0.046022506	147
2- and 3-opcode gram	0.06531	0.98375	0.98352	0.98321	0.060587208	174
2- and 4-opcode gram	0.06406	0.98307	0.98300	0.98268	0.063167623	177
3- and 4-opcode gram	0.11966	0.96648	0.96270	0.96302	0.109332554	231
1-, 2- and 3-opcode gram	0.05272	0.99077	0.99086	0.99074	0.036911443	121
1-, 2- and 4-opcode gram	0.04518	0.98855	0.98833	0.98831	0.040666626	128
1-, 3- and 4-opcode gram	0.05285	0.98964	0.98945	0.98944	0.042508895	135
2-, 3- and 4-opcode gram	0.06593	0.98648	0.98612	0.98598	0.056368037	166
1-, 2-, 3- and 4-opcode gram	0.04851	0.98769	0.98755	0.98754	0.035978248	120

Table 4.8: Results of Random Forest on opcode n-gram features

Features		Local	Kaggle Test			
reatures	logloss	precision	recall	f1-score	log loss	rank
1-opcode gram	0.06877	0.99366	0.99363	0.99363	0.056837769	166
2-opcode gram	0.06247	0.99182	0.99169	0.99171	0.054402368	163
3-opcode gram	0.06906	0.99015	0.99000	0.99001	0.053657352	163
4-opcode gram	0.07101	0.98935	0.98901	0.98903	0.059830554	172
1- and 2-opcode gram	0.06229	0.99679	0.99676	0.99676	0.053455132	162
1- and 3-opcode gram	0.06142	0.98960	0.98936	0.98939	0.049657314	154
1- and 4-opcode gram	0.05982	0.98903	0.98886	0.98885	0.049557661	154
2- and 3-opcode gram	0.05892	0.99140	0.99130	0.99130	0.048065831	151
2- and 4-opcode gram	0.06111	0.99012	0.98989	0.98988	0.053646641	163
3- and 4-opcode gram	0.06743	0.99049	0.99021	0.99024	0.053333982	161
1-, 2- and 3-opcode gram	0.05808	0.99636	0.99635	0.99635	0.045790234	146
1-, 2- and 4-opcode gram	0.05804	0.99260	0.99253	0.99254	0.049671613	154
1-, 3- and 4-opcode gram	0.06271	0.99113	0.99083	0.99084	0.051831562	158
2-, 3- and 4-opcode gram	0.06515	0.99269	0.99260	0.99257	0.050746933	154
1-, 2-, 3- and 4-opcode gram	0.05870	0.99037	0.99031	0.99027	0.046784063	147

Table 4.9: Results of Support Vector Machine on opcode n-gram features

Features		Local	Test		Kaggle Test		
reatures	logloss	precision	recall	f1-score	log loss	rank	
1-opcode gram	1.03205	0.86703	0.46427	0.52510	1.002435208	283	
2-opcode gram	1.52349	0.66821	0.09880	0.13224	1.468853733	290	
3-opcode gram	1.67486	0.14944	0.07051	0.09107	1.681416541	293	
4-opcode gram	1.69577	0.12984	0.06319	0.05275	1.668727274	193	
1- and 2-opcode gram	1.15368	0.75163	0.32609	0.40411	1.133881193	284	
1- and 3-opcode gram	1.31135	0.76577	0.28426	0.33652	1.221506540	286	
1- and 4-opcode gram	1.37267	0.62264	0.19251	0.20630	1.286477183	286	
2- and 3-opcode gram	1.63072	0.65938	0.08837	0.12453	1.591120403	292	
2- and 4-opcode gram	1.64494	0.29582	0.10473	0.14512	1.619302549	293	
3- and 4-opcode gram	1.66462	0.16743	0.24242	0.13100	1.671433106	293	
1-, 2- and 3-opcode gram	1.34362	0.67252	0.21151	0.24041	1.268720875	286	
1-, 2- and 4-opcode gram	1.41626	0.60037	0.17545	0.23020	1.298026947	286	
1-, 3- and 4-opcode gram	1.50896	0.64219	0.20220	0.20668	1.378100275	289	
2-, 3- and 4-opcode gram	1.65822	0.12220	0.10828	0.08842	1.633988533	293	
1-, 2-, 3- and 4-opcode gram	1.51366	0.55955	0.17574	0.18289	1.418311336	289	

Table 4.10: Results of Naive Bayes on opcode n-gram features $\,$

Features		Local	Kaggle Test			
reatures	logloss	precision	recall	f1-score	log loss	rank
1-opcode gram	1.52602	0.54456	0.48566	0.40232	1.526730089	291
2-opcode gram	1.22171	0.61043	0.64081	0.58644	1.217361408	286
3-opcode gram	1.23700	0.66681	0.66222	0.62262	1.232014974	286
4-opcode gram	1.30268	0.67899	0.63782	0.59650	1.282586933	286
1- and 2-opcode gram	1.11560	0.70631	0.68548	0.63450	1.115517048	284
1- and 3-opcode gram	1.10451	0.68594	0.67361	0.62970	1.104415665	284
1- and 4-opcode gram	1.10789	0.65694	0.66355	0.61836	1.102746148	284
2- and 3-opcode gram	1.08201	0.72531	0.67720	0.63662	1.068000043	284
2- and 4-opcode gram	1.08961	0.72253	0.67065	0.62790	1.067556825	284
3- and 4-opcode gram	1.11026	0.69884	0.64895	0.61161	1.094049439	284
1-, 2- and 3-opcode gram	1.06745	0.73117	0.70032	0.66509	1.042596323	284
1-, 2- and 4-opcode gram	1.05196	0.70993	0.68222	0.64819	1.037098949	284
1-, 3- and 4-opcode gram	1.04230	0.75490	0.67721	0.63499	1.040635579	284
2-, 3- and 4-opcode gram	1.02428	0.76622	0.69736	0.66503	1.019241233	283
1-, 2-, 3- and 4-opcode gram	1.05560	0.76810	0.69926	0.67095	1.025521649	283

4.2.4 Feature: Only Image Features

Table 4.11: Results of five different methods on two image features with two different image widths: 512 and 1024 bytes. NB: naive bayes; SVM: support vector machine; RF: random forest; GBT: gradient boosted tree; ANN: artificial neural network.

Features	Methods		Local	Test		Kaggle Te	est
reatures	Methods	logloss	precision	recall	f1-score	log loss	rank
	NB	1.89045	0.06812	0.26083	0.10803	1.894463592	295
	SVM	1.89524	0.00996	0.09973	0.01811	1.897860161	295
byte W512 image	RF	0.26894	0.94195	0.94043	0.94040	0.276092119	259
	GBT	0.29030	0.91883	0.91832	0.91783	0.262252929	258
	ANN	0.70867	0.76644	0.78926	0.76852	0.677654263	278
	NB	1.89270	0.06352	0.25203	0.10147	1.894214482	295
	SVM	1.89813	0.02303	0.15176	0.03999	1.900646913	306
byte W1024 image	RF	0.26578	0.93907	0.93631	0.93571	0.243892362	258
	GBT	0.26650	0.92578	0.92412	0.92344	0.237519064	258
	ANN	0.72745	0.77370	0.76694	0.74997	0.680402376	278

In this section, we investigated the image features for our classification task. Two different image widths, 512 and 1024 bytes, are chosen for converting BYTE files into gray-scale images. Different from previous sections, along with the naive bayes, support vector machine, random forest and gradient boosted tree, we also employed artificial neural network (ANN), which is known to be successful in image processing tasks. For ANN, due to the limitation of computing resources, only three hidden-layers and four hidden-layers architectures were used, with a various number of nodes for each layer. All the results are shown in Table 4.11. From this table, one can tell that the image features do not work well in this particular classification task. The best performance is gradient boosted tree with image width 1024 bytes. However, we see that, in combining with other features, image feature does improve our performance significantly.

4.2.5 Features: Mixture and Exploration

In previous sections, we found that the gradient boosted tree outperforms all of the other methods in every feature set. Therefore, in this section, we decided to focus on this method and applied it to different combinations of different feature sets, in hope that the performance of our models could be greatly enhanced. As shown in Table 4.12, we actually see the improvement by adding in more features to our model. For example, we start with the model consisting of 1-, 3- and 4-byte gram, and 1-, 2-, 3- and 4-opcode gram sequences, the result of which turns out to be much better than any of the single feature sets in previous sections. Moreover, by including the file size and header string frequency, the rank of our result jumps from 80 to 60, with the reduction of ~ 0.005 in logloss. Surprisingly, even though the image features did not work well as an individual feature set, we found it actually reduced the logloss when combined with other feature sets. Our best result so far had logloss of 0.0146 which ranked 53rd in the Kaggle private leaderboard.

Table 4.12: Results of Gradient Boosted Tree on different combined features. BG stands for byte gram and OG represents opcode gram.

Footuwes		Local		Kaggle Test		
Features	logloss	precision	recall	f1-score	log loss	rank
1-4 BG, 1-4 OG	0.02546	0.99536	0.99530	0.99529	0.020328240	78
above + file size and header string	0.02001	0.99189	0.99178	0.99161	0.020171480	78
above $+$ byte W1024 image	0.02185	0.99320	0.99305	0.99298	0.015425664	59
1,3,4 BG, 1-4 OG	0.02736	0.99504	0.99497	0.99499	0.021093468	80
above + file size and header string	0.02469	0.99405	0.99388	0.99392	0.015750215	60
above + byte W1024 image	0.02243	0.99385	0.99379	0.99373	0.014611916	53

4.2.6 Further thoughts on feature selection

Since there are different types of features being generated in this work, one can use deep learning techniques as a way of performing feature selection. For this purpose, we have performed some preliminary work using three-layer autoencoder networks. An autoencoder is one type of neural network used to learn a representation (encoding) for a set of data. Typically, an autoencoder can be used for the purpose of dimensionality reduction. We have combined all of the byte-gram features (1, 2, 3 and 4-byte gram) into a feature set, each record of which contains 17984 fields. Two different three-layer autoencoders are applied on this combined feature set, with 100 and 1000 hidden nodes respectively. For each case, after training, the values of the nodes in the hidden layer are selected as the final features for our classification task. When compared with the result of using random forests as the feature selection tool (rank 103 as seen in Table 4.3), the best result of this method only obtained a rank of 183 using the same classification method. Given the fact that we have only applied very simple autoencoders, one would expect better results when an autoencoder with multiple layers is considered. However, in this case, tremendous computing resources are required for training such networks.

Chapter 5

Conclusion

In this work, we applied multiple advanced machine learning algorithms including random forests, boosted trees, and support vector machines to investigate the problem of malware file classification. We performed different feature engineering procedures on a large dataset ($\sim 400G$) of malware files provided by Kaggle.com, and obtained four feature sets: filesizes and header string frequency, byte-sequence n-grams, opcode n-grams and image features.

First, we applied each machine learning method to each of these feature sets. As expected, both byte filesize and asm filesize turned out to be pretty good features in malware file classification. For byte-sequence n-grams, we generated 1, 2, 3 and 4-byte grams, all the combinations of which are examined and discussed. We found that the combination of 1,3 and 4-gram combined with GBT gives the best result with logloss of 0.0293. Similarly, for opcode n-grams, we examined all different combinations, and found that the combination of 1, 2, 3 and 4-gram with GBT performs the best with logloss of 0.0360. For the image feature, we first converted each malware file into gray-scale image, and then applied the local binary pattern to generate the histogram features. However, all the methods we applied on this feature set did not give good results compared to previous ones.

In the next step, we combined different feature sets, in hope that the overall performance

would be boosted. The best combination we found contained 1, 3 and 4-byte grams, 1, 2, 3 and 4-opcode grams, filesizes and header strings, and image features. This combined feature set, with GBT, gave the best performance overall with logloss of 0.0146. To our surprise, even though the image feature set does not work well alone, it does improve the overall performance when combined with other features.

Bibliography

- [1] Chen, T., and Guestrin, C. Xgboost: A scalable tree boosting system. CoRR abs/1603.02754 (2016).
- [2] CHEN HE, D., AND WANG, L. Texture unit, texture spectrum, and texture analysis.

 IEEE Transactions on Geoscience and Remote Sensing 28, 4 (Jul 1990), 509–512.
- [3] Cortes, C., and Vapnik, V. Support-vector networks. *Machine Learning*, 20 (1995), 273–297.
- [4] Hastie, T., Tibshirani, R., and Friedman, J. The elements of statistical learning: Data mining, inference, and prediction. New York: Springer Verlag, 2009.
- [5] KAGGLE.COM. Microsoft malware classification challenge (big 2015), Feb 2015.
- [6] KOLTER, J., AND MALOOF, M. Learning to detect malicious executables in the wild.

 Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2004), 470–478.
- [7] Nataraj, L. http://sarvamblog.blogspot.com/, 2014.
- [8] NATARAJ, L., KARTHIKEYAN, S., JACOB, G., AND MANJUNATH, B. Malware images: Visualization and automatic classification. *Proceedings of the 8th International Symposium on Visualization for Cyber Security* 4 (2011).

- [9] Nataraj, L., Yegneswaran, V. Porras, P., and Zhang, J. A comparative assessment of malware classification using binary texture analysis and dynamic analysis. Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence (2011), 21–30.
- [10] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research* 12 (2011), 2825–2830.