SBML Model Report

Model name: "Leber2015 - Mucosal immunity and gut microbiome interaction during C. difficile infection"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Andrew Leber² at April eighth 2014 at 1:02 p. m. and last time modified at August 27th 2015 at 5:07 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	4
species types	0	species	23
events	0	constraints	0
reactions	30	function definitions	11
global parameters	0	unit definitions	3
rules	0	initial assignments	0

Model Notes

Leber2015 - Mucosal immunity and gutmicrobiome interaction during C. difficile infection

¹EMBL-EBI, viji@ebi.ac.uk

²Virginia Tech, ajleber@vbi.vt.edu

This model is described in the article:Systems Modeling of Interactions between Mucosal Immunity and the Gut Microbiome during Clostridium difficile Infection.Leber A, Viladomiu M, Hontecillas R, Abedi V, Philipson C, Hoops S, Howard B, Bassaganya-Riera J.PLoS ONE 2015; 10(7): e0134849

Abstract:

Clostridium difficile infections are associated with the use of broad-spectrum antibiotics and result in an exuberant inflammatory response, leading to nosocomial diarrhea, colitis and even death. To better understand the dynamics of mucosal immunity during C. difficile infection from initiation through expansion to resolution, we built a computational model of the mucosal immune response to the bacterium. The model was calibrated using data from a mouse model of C. difficile infection. The model demonstrates a crucial role of T helper 17 (Th17) effector responses in the colonic lamina propria and luminal commensal bacteria populations in the clearance of C. difficile and colonic pathology, whereas regulatory T (Treg) cells responses are associated with the recovery phase. In addition, the production of anti-microbial peptides by inflamed epithelial cells and activated neutrophils in response to C. difficile infection inhibit the re-growth of beneficial commensal bacterial species. Computational simulations suggest that the removal of neutrophil and epithelial cell derived anti-microbial inhibitions, separately and together, on commensal bacterial regrowth promote recovery and minimize colonic inflammatory pathology. Simulation results predict a decrease in colonic inflammatory markers, such as neutrophilic influx and Th17 cells in the colonic lamina propria, and length of infection with accelerated commensal bacteria re-growth through altered anti-microbial inhibition. Computational modeling provides novel insights on the therapeutic value of repopulating the colonic microbiome and inducing regulatory mucosal immune responses during C. difficile infection. Thus, modeling mucosal immunity-gut microbiota interactions has the potential to guide the development of targeted fecal transplantation therapies in the context of precision medicine interventions.

This model is hosted on BioModels Database and identified by: BIOMD0000000583.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit volume

Name volume

Definition dimensionless

2.2 Unit time

Name time

Definition 86400 s

2.3 Unit substance

Name substance

Definition item

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains four compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
Lumen	Lumen		3	1	dimensionless		
Epithelium	Epithelium		3	4	dimensionless		
LP	LP		3	0.07	dimensionless		
MLN	MLN		3	1	dimensionless		

3.1 Compartment Lumen

This is a three dimensional compartment with a constant size of one dimensionless.

Name Lumen

3.2 Compartment Epithelium

This is a three dimensional compartment with a constant size of four dimensionless.

Name Epithelium

3.3 Compartment LP

This is a three dimensional compartment with a constant size of 0.07 dimensionless.

Name LP

3.4 Compartment MLN

This is a three dimensional compartment with a constant size of one dimensionless.

Name MLN

4 Species

This model contains 23 species. The boundary condition of four of these species is set to true so that these species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Cdiff	Cdiff	Lumen	item · dimensionless ⁻¹		
Commensal- _Beneficial	Commensal_Beneficial	Lumen	item \cdot dimensionless ⁻¹		
Commensal_Dead	Commensal_Dead	Lumen	$\begin{array}{c} \text{item} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
tDC_LP	tDC_LP	Lumen	$\begin{array}{c} \text{item} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
tDC_MLN	tDC_MLN	Lumen	item · dimensionless ⁻¹		
Commensal_Harmful	Commensal_Harmful	Lumen	item · dimensionless ⁻¹		
N_Lum	N_Lum	Lumen	item \cdot dimensionless ⁻¹		
E	E	Epithelium	$\begin{array}{c} \text{item} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
$E_{-}d$	E_d	Epithelium	item \cdot dimensionless ⁻¹		
iDC_E	iDC_E	Epithelium	item · dimensionless ⁻¹		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
E_i	E_i	Epithelium	item \cdot dimensionless ⁻¹		
M_LP	M_LP	Epithelium	item \cdot dimensionless ⁻¹		
eDC_LP	eDC_LP	LP	item · dimensionless ⁻¹		
МО	M0	LP	item · dimensionless ⁻¹		
N_LP	N_LP	LP	${\rm item}$ ${\rm dimensionless}^{-1}$		
Th17_LP	Th17_LP	LP	${\rm item}$ ${\rm dimensionless}^{-1}$		
Th1_LP	Th1_LP	LP	$\begin{array}{c} \text{item} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
iTreg_LP	iTreg_LP	LP	$\begin{array}{c} \text{item} & \cdot \\ \text{dimensionless}^{-1} \end{array}$		
eDC_MLN	eDC_MLN	MLN	${\rm item}$ ${\rm dimensionless}^{-1}$		
iTreg_MLN	iTreg_MLN	MLN	item \cdot dimensionless ⁻¹		
nT	nT	MLN	$\begin{array}{c} \text{item} & \cdot \\ \text{dimensionless}^{-1} \end{array}$	\square	
Th17_MLN	Th17_MLN	MLN	${\rm item}$ ${\rm dimensionless}^{-1}$		
Th1_MLN	Th1_MLN	MLN	item \cdot dimensionless ⁻¹		

5 Function definitions

This is an overview of eleven function definitions.

5.1 Function definition KSA

Name KSA

Arguments K, S, A

Mathematical Expression

$$K \cdot S \cdot A$$
 (1)

5.2 Function definition Rate_Law_for_E_damage

Name Rate Law for E damage

Arguments v, S, k1, a1, k2, a2, k3, a3

Mathematical Expression

$$\mathbf{v} \cdot \mathbf{S} \cdot (\mathbf{k} \cdot \mathbf{1} \cdot \mathbf{a} + \mathbf{k} \cdot \mathbf{a} + \mathbf{k} \cdot \mathbf{a} + \mathbf{k} \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{a}) \tag{2}$$

5.3 Function definition Rate_Law_for_Th17plas

Name Rate Law for Th17plas

Arguments k1, s, k2, m2, p

Mathematical Expression

$$k1 \cdot s - k2 \cdot m2 \cdot p \tag{3}$$

5.4 Function definition Rate_Law_for_Effector_DC_Production_1

Name Rate Law for Effector DC Production_1

Arguments k, S

Mathematical Expression

$$\mathbf{k} \cdot \mathbf{S}$$
 (4)

5.5 Function definition Rate_Law_for_eDC

Name Rate Law for eDC

Arguments K, S, M1, M2, k2, M3, k1

Mathematical Expression

$$\frac{K \cdot S \cdot M1}{k1 \cdot M2 + k2 \cdot M3} \tag{5}$$

5.6 Function definition Rate_Law_for_CD_Lumen_death

Name Rate Law for CD_Lumen death

Arguments K, S, A1, m2, A2, m3, A3

Mathematical Expression

$$K \cdot S \cdot (A1 + m2 \cdot A2 - m3 \cdot A3) \tag{6}$$

5.7 Function definition Rate_Law_for_tDC_Production

Name Rate Law for tDC Production

Arguments K, S, k1, M1, M2, k2, M3, M4

Mathematical Expression

$$K \cdot S \cdot \left(\frac{k1 \cdot M1}{M2} + \frac{k2 \cdot M3}{M4 + 100}\right) \tag{7}$$

5.8 Function definition Rate_Law_for_M_Activation

Name Rate Law for M Activation

Arguments K, S, e1, A1, A2, e2, I1

Mathematical Expression

$$K \cdot S \cdot (e1 \cdot A1 + A2 - e2 \cdot I1) \tag{8}$$

5.9 Function definition Rate_Law_for_N_Activation_Migration

Name Rate Law for N Activation/Migration

Arguments v, S, m, k1, A1, k2, A2, k3, I1

Mathematical Expression

$$v \cdot S \cdot (m \cdot (k1 \cdot A1 + k2 \cdot A2) - k3 \cdot I1) \tag{9}$$

5.10 Function definition Rate_Law_for_Commensal_Regrowth

Name Rate Law for Commensal Regrowth

Arguments k1, S, m1, m2, k2, P

Mathematical Expression

$$k1 \cdot S \cdot m1 \cdot m2 - k2 \cdot P \tag{10}$$

5.11 Function definition Rate_Law_for_Commensal_Harmful_Death_1

Name Rate Law for Commensal Harmful Death_1

Arguments K, S, m1, A1, m2, A2

Mathematical Expression

$$K \cdot S \cdot (m1 \cdot A1 + m2 \cdot A2) \tag{11}$$

6 Reactions

This model contains 30 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

		Table 4. Overview of	t an reactions	
Nº	Id	Name	Reaction Equation	SBO
1	Treg- _Degradation	Treg Degradation	$iTreg_LP \xrightarrow{Cdiff, iTreg_LP, iTreg_LP} \emptyset$	
2	eDC_Degradation	eDC Degradation	eDC_MLN iTreg_MLN, eDC_MLN, eDC_MLN	
3	Th17- _Degradation	Th17 Degradation	Th17_LP $\xrightarrow{\text{iTreg_LP, Th17_LP, Th17_LP}} \emptyset$	
4	Th1_Degradation	Th1 Degradation	Th1_LP iTreg_LP, Commensal_Dead, Th1_LP, Th1	$\stackrel{\perp}{\longrightarrow} \emptyset$
5	$N_Degradation$	N Degradation	N_Lum Commensal_Beneficial, N_Lum, Commens	al_Beneficial, N_Lum, Commensal_
6	E_Damage	E Damage	E N.Lum, Th17.LP, M.LP, E, N.Lum, Th17.LP, I	M_LP, E, N_Lum, Th17_LP, M_LP
7	eDC_Migration	eDC Migration	$eDC_LP \xrightarrow{eDC_LP, eDC_LP} eDC_MLN$	
8	$eDC_Production$	eDC Production	iDC_E+Cdiff Commensal_Dead, Commensal_Ben	
9	Cdiff_Death	Cdiff Death	Cdiff M.LP, N.Lum, Commensal Harmful, Cdiff,	
10	N_Activation- _Migration	N Activation/Migration	N_LP Cdiff, E_d, Th17_LP, iTreg_LP, N_LP, Cdiff,	, E_d, Th17_LP, iTreg_LP, N_LP, Co
11	$\operatorname{Cdiff}_{\operatorname{_Growth}}$	Cdiff Growth	Cdiff Commensal_Harmful, Commensal_Beneficial	l, Cdiff, Commensal_Harmful, Cdiff
12	Treg_Migration	Treg Migration	$iTreg_MLN \xrightarrow{E_i, iTreg_MLN, iTreg_MLN} iTreg_LF$)
13	${ m Th1_Migration}$	Th1 Migration	$Th1_MLN \xrightarrow{E.i, Th1_MLN, Th1_MLN} Th1_LP$	

N⁰	Id	Name	Reaction Equation	SBO
14	Th17_Plasticity	Th17 Plasticity	Th17_LP Cdiff, Th17_LP, Cdiff, iTreg_LP, Th17_	LP, Cdiff, iTreg_LP iTreg_LP
15	Th17_Migration	Th17 Migration	Th17_MLN $\xrightarrow{\text{E_i}, \text{Th17_MLN}, \text{Th17_MLN}}$ Th17_L	P
16	$E_{-}Inflame$	E Inflame	$E \xrightarrow{\text{Cdiff, E, Cdiff, E, Cdiff}} E_i$	
17	E_{i}_{Damage}	E_i Damage	E_i N_Lum, Th17_LP, M_LP, E_i, N_Lum, Th17_l	LP, M_LP, E_i, N_Lum, Th17_LP, M
18	M_Activation	M Activation	M0 Th17_LP, Cdiff, iTreg_LP, M0, Th17_LP, Cdi	iff, iTreg_LP, M0, Th17_LP, Cdiff, iT
19	M_Death	M Death	$M_LP \xrightarrow{iTreg_LP, M_LP, M_LP} \emptyset$	
20	Commensal- _Regrowth	Commensal Regrowth	Commensal_Beneficial N_Lum, E_i, Commensal_	Beneficial, N.Lum, E.i, Commensal.
21	E_Heal	E Heal	$E_{-d} \xrightarrow{E_{-d}, E_{-d}} E$	
22	tDC_Production	tDC Production	iDC_E+Cdiff Commensal_Beneficial, Commensal	ll_Dead, E, E_i, Cdiff, Commensal_B
23	tDC_Migration	tDC Migration	$tDC_LP \xrightarrow{tDC_LP, tDC_LP} tDC_MLN$	
24	tDC_Degradation	tDC Degradation	$tDC_MLN \xrightarrow{iTreg_MLN,\ tDC_MLN,\ tDC_MLN} \emptyset$	
25	Th17Differentiation	Th17 Differentiation	$eDC_MLN \xrightarrow{eDC_MLN, eDC_MLN} Th17_MLN$	
26	Th1Differentiation	Th1 Differentiation	eDC_MLN Commensal_Benefit	icial, E, eDC_MLN, Commensal_Dea
27	Treg- _Differentiation	Treg Differentiation	$tDC_MLN \xrightarrow{tDC_MLN, \ tDC_MLN} iTreg_MLN$	
28	Commensal- _Harmful_Death	Commensal Harmful Death	Commensal_Harmful N_LP, E_i, Commensal_Har	
29	Commensal_Death	Commensal Death	Commensal_Dead, Commensal	$\xrightarrow{\text{Dead}} \emptyset$

Nº Id	Name	Reaction Equation	SBO
30 E_i_Natural _Death	- E_i Natural Death	$E_{-i} \xrightarrow{E_{-i}, E_{-i}} E_{-d}$	

6.1 Reaction Treg_Degradation

This is an irreversible reaction of one reactant forming no product influenced by three modifiers.

Name Treg Degradation

Reaction equation

$$iTreg_LP \xrightarrow{Cdiff, iTreg_LP, iTreg_LP} \emptyset$$
 (12)

Reactant

Table 5: Properties of each reactant.

Id	Name	SBO
iTreg_LP	iTreg_LP	

Modifiers

Table 6: Properties of each modifier.

Id	Name	SBO
Cdiff	Cdiff	
$iTreg_LP$	iTreg_LP	
$iTreg_LP$	iTreg_LP	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}(\text{LP}) \cdot \text{k1} \cdot [\text{iTreg}.\text{LP}] \tag{13}$$

Table 7: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	0.507	\overline{Z}

6.2 Reaction eDC_Degradation

This is an irreversible reaction of one reactant forming no product influenced by three modifiers.

Name eDC Degradation

Reaction equation

$$eDC_MLN \xrightarrow{iTreg_MLN, eDC_MLN, eDC_MLN} \emptyset$$
 (14)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
eDC_MLN	eDC_MLN	

Modifiers

Table 9: Properties of each modifier.

Id	Name	SBO
iTreg_MLN eDC_MLN eDC_MLN	iTreg_MLN eDC_MLN eDC_MLN	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(MLN) \cdot k1 \cdot [\text{eDC_MLN}] \tag{15}$$

Table 10: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	$1.72495199303666 \cdot 10^{-5}$			

6.3 Reaction Th17_Degradation

This is an irreversible reaction of one reactant forming no product influenced by three modifiers.

Name Th17 Degradation

Reaction equation

Th17_LP
$$\xrightarrow{\text{iTreg}_LP, \text{Th}17_LP, \text{Th}17_LP} \emptyset$$
 (16)

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
Th17_LP	Th17_LP	

Modifiers

Table 12: Properties of each modifier.

Id	Name	SBO
$iTreg_LP$	iTreg_LP	
$Th17_{LP}$	Th17_LP	
$Th17_LP$	Th17_LP	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{LP}) \cdot \text{k1} \cdot [\text{Th17}_\text{LP}] \tag{17}$$

Table 13: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	2.397	

6.4 Reaction Th1_Degradation

This is an irreversible reaction of one reactant forming no product influenced by four modifiers.

Name Th1 Degradation

Reaction equation

Th1_LP
$$\xrightarrow{\text{iTreg}_LP, Commensal_Dead, Th1}_LP, Th1_LP \xrightarrow{\emptyset} \emptyset$$
 (18)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
Th1_LP	Th1_LP	

Modifiers

Table 15: Properties of each modifier.

Id	Name	SBO
iTreg_LP	iTreg_LP	
${\tt Commensal_Dead}$	Commensal_Dead	
Th1_LP	Th1_LP	
Th1_LP	Th1_LP	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}(\text{LP}) \cdot \text{k1} \cdot [\text{Th1} \cdot \text{LP}] \tag{19}$$

Table 16: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	0.995	

6.5 Reaction N_Degradation

This is an irreversible reaction of one reactant forming no product influenced by five modifiers.

Name N Degradation

Reaction equation

N_Lum Commensal_Beneficial, N_Lum, Commensal_Beneficial, N_Lum, Commensal_Beneficial
$$\emptyset$$
 (20)

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
N_Lum	N_Lum	

Modifiers

Table 18: Properties of each modifier.

Id	Name	SBO
Commensal_Beneficial N_Lum	Commensal_Beneficial N_Lum	
Commensal_Beneficial	Commensal_Beneficial	
$N_{-}Lum$	N_Lum	
Commensal_Beneficial	Commensal_Beneficial	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = vol(Lumen) \cdot KSA(K,[N_Lum],[Commensal_Beneficial])$$
 (21)

$$KSA(K,S,A) = K \cdot S \cdot A \tag{22}$$

$$KSA(K, S, A) = K \cdot S \cdot A \tag{23}$$

Table 19: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
K	K	$2.35932924820229 \cdot 10^{-7}$			

6.6 Reaction E_Damage

This is an irreversible reaction of one reactant forming one product influenced by eleven modifiers.

Name E Damage

Reaction equation

$$E \xrightarrow{N_Lum, \ Th17_LP, \ M_LP, \ E, \ N_Lum, \ Th17_LP, \ M_LP, \ E, \ N_Lum, \ Th17_LP, \ M_LP} E_d \tag{24}$$

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
Е	Е	

Modifiers

Table 21: Properties of each modifier.

Id	Name	SBO
N_Lum	N_Lum	
$Th17_{LP}$	Th17_LP	
M_LP	M_LP	
E	E	
$N_{\perp}Lum$	N_Lum	
$Th17_{LP}$	Th17_LP	
M_{LP}	$M_{\perp}LP$	
E	E	
N_Lum	N_Lum	
Th17_LP	Th17_LP	
M_LP	M_LP	

Product

Table 22: Properties of each product.

Id	Name	SBO
$E_{-}d$	$E_{-}d$	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = vol\left(Epithelium\right) \cdot Rate_Law_for_E_damage\left(v, [E], k1, [N_Lum], k2, [Th17_LP], k3, [M_LP]\right) \tag{25}$$

Rate_Law_for_E_damage
$$(v, S, k1, a1, k2, a2, k3, a3) = v \cdot S \cdot (k1 \cdot a1 + k2 \cdot a2 + k3 \cdot a3)$$
 (26)

Rate_Law_for_E_damage
$$(v, S, k1, a1, k2, a2, k3, a3) = v \cdot S \cdot (k1 \cdot a1 + k2 \cdot a2 + k3 \cdot a3)$$
 (27)

Table 23: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
V	V	1.59	9920673150176 - 1	10^{-6}	
k1	k1		$1.1 \cdot 1$	10^{-5}	
k2	k2	2.3	3381277077344 - 1	10^{-6}	
k3	k3		62.591		

6.7 Reaction eDC_Migration

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name eDC Migration

Reaction equation

$$eDC_LP \xrightarrow{eDC_LP, eDC_LP} eDC_MLN$$
 (28)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
eDC_LP	eDC_LP	

Modifiers

Table 25: Properties of each modifier.

Id	Name	SBO
020-21	eDC_LP eDC_LP	

Product

Table 26: Properties of each product.

Id	Name	SBO
eDC_MLN	eDC_MLN	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = k1 \cdot [eDC_LP] \tag{29}$$

Table 27: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	10.5	

6.8 Reaction eDC_Production

This is an irreversible reaction of two reactants forming one product influenced by four modifiers.

Name eDC Production

Reaction equation

$$iDC_E + Cdiff \xrightarrow{Commensal_Dead, Commensal_Beneficial, Cdiff, Cdiff} eDC_LP \qquad (30)$$

Reactants

Table 28: Properties of each reactant.

Id	Name	SBO
	iDC_E	
Cdiff	Caiff	

Modifiers

Table 29: Properties of each modifier.

Id	Name	SBO
Commensal_Dead	Commensal_Dead	

Id	Name	SBO
Commensal_Beneficial	Commensal_Beneficial Cdiff	
Cdiff	Cdiff	

Product

Table 30: Properties of each product.

Id	Name	SBO
eDC_LP	eDC_LP	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{Rate_Law_for_Effector_DC_Production_1} (k, [\text{Cdiff}])$$
 (31)

Rate_Law_for_Effector_DC_Production_1
$$(k, S) = k \cdot S$$
 (32)

Table 31: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k	k	0.55	

6.9 Reaction Cdiff_Death

This is an irreversible reaction of one reactant forming no product influenced by eleven modifiers.

Name Cdiff Death

Reaction equation

Cdiff M.LP, N.Lum, Commensal Harmful, Cdiff, M.LP, N.Lum, Cdiff, M.L

(33)

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
Cdiff	Cdiff	

Modifiers

Table 33: Properties of each modifier.

Id	Name	SBO
M_LP	M_LP	
$N_{\perp}Lum$	N_Lum	
${\tt Commensal_Harmful}$	Commensal_Harmful	
Cdiff	Cdiff	
M_LP	M_LP	
N_Lum	N_Lum	
${\tt Commensal_Harmful}$	Commensal_Harmful	
Cdiff	Cdiff	
M_LP	$M_{\perp}LP$	
$N_{\perp}Lum$	N_Lum	
Commensal_Harmful	$Commensal_Harmful$	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = vol\left(Lumen\right) \cdot Rate_Law_for_CD_Lumen_death\left(K, [Cdiff], [M_LP], m2, [N_Lum], m3, [Commensal_Harmful]\right) \tag{34}$$

$$Rate_Law_for_CD_Lumen_death\left(K,S,A1,m2,A2,m3,A3\right) = K \cdot S \cdot \left(A1 + m2 \cdot A2 - m3 \cdot A3\right) \tag{35}$$

$$Rate_Law_for_CD_Lumen_death\left(K,S,A1,m2,A2,m3,A3\right) = K \cdot S \cdot \left(A1 + m2 \cdot A2 - m3 \cdot A3\right) \tag{36}$$

Table 34: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
K	K	6.2	7092296294148 · 10	$)^{-10}$	
m2	m2		594.897		$ \mathbf{Z} $
m3	m3		0.103		

6.10 Reaction N_Activation_Migration

This is an irreversible reaction of one reactant forming one product influenced by 14 modifiers.

Name N Activation/Migration

Reaction equation

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
N_LP	N_LP	

Modifiers

Table 36: Properties of each modifier.

Id	Name	SBO
Cdiff	Cdiff	
E_d	E_d	
$Th17_LP$	Th17_LP	
$iTreg_LP$	iTreg_LP	
$N_{-}LP$	N_LP	
Cdiff	Cdiff	
$E_{-}d$	$E_{-}d$	
$Th17_LP$	Th17_LP	
$iTreg_LP$	iTreg_LP	
$N_{-}LP$	N_LP	
Cdiff	Cdiff	
E_d	E_d	
${\tt Th17_LP}$	Th17_LP	
$\mathtt{iTreg_LP}$	iTreg_LP	

Product

Table 37: Properties of each product.

Id	Name	SBO
N_Lum	N_Lum	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = Rate_Law_for_N_Activation_Migration(v, [N_LP], [Cdiff], k1, [E_d], k2, [Th17_LP], \\ k3, [iTreg_LP])$$
 (38)

Rate_Law_for_N_Activation_Migration
$$(v, S, m, k1, A1, k2, A2, k3, I1)$$

= $v \cdot S \cdot (m \cdot (k1 \cdot A1 + k2 \cdot A2) - k3 \cdot I1)$ (39)

Table 38: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
V	V	5.29	9827880572231 · 1	0^{-5}	\overline{Z}
k1	k1		0.121		\square
k2	k2		0.171		\square
k3	k3		0.130		

6.11 Reaction Cdiff_Growth

This is an irreversible reaction of one reactant forming one product influenced by six modifiers.

Name Cdiff Growth

Reaction equation

Cdiff Commensal_Harmful, Commensal_Beneficial, Cdiff, Commensal_Harmful, Cdiff, Commensal_Harmful 2 Cdiff (40)

Reactant

Table 39: Properties of each reactant.

Id	Name	SBO
Cdiff	Cdiff	

Modifiers

Table 40: Properties of each modifier.

Id	Name	SBO
Commensal_Harmful	Commensal_Harmful	
${\tt Commensal_Beneficial}$	Commensal_Beneficial	
Cdiff	Cdiff	
Commensal_Harmful	Commensal_Harmful	
Cdiff	Cdiff	
${\tt Commensal_Harmful}$	Commensal_Harmful	

Product

Table 41: Properties of each product.

Id	Name	SBO
Cdiff	Cdiff	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{vol}\left(\text{Lumen}\right) \cdot \text{KSA}\left(\text{K}, [\text{Cdiff}], [\text{Commensal_Harmful}]\right)$$
 (41)

$$KSA(K, S, A) = K \cdot S \cdot A \tag{42}$$

$$KSA(K, S, A) = K \cdot S \cdot A \tag{43}$$

Table 42: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
K	K		$5\cdot 10^{-11}$		

6.12 Reaction Treg_Migration

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name Treg Migration

Reaction equation

$$iTreg_MLN \xrightarrow{E_i, iTreg_MLN, iTreg_MLN} iTreg_LP$$
 (44)

Reactant

Table 43: Properties of each reactant.

Id	Name	SBO
iTreg_MLN	iTreg_MLN	

Modifiers

Table 44: Properties of each modifier.

Id	Name	SBO
E_i	E_i	
${\tt iTreg_MLN}$	iTreg_MLN	
iTreg_MLN	iTreg_MLN	

Product

Table 45: Properties of each product.

Id	Name	SBO
iTreg_LP	iTreg_LP	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = k1 \cdot [iTreg_MLN] \tag{45}$$

Table 46: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	5.5	\square

6.13 Reaction Th1_Migration

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name Th1 Migration

Reaction equation

$$Th1_MLN \xrightarrow{E_i, Th1_MLN, Th1_MLN} Th1_LP$$
 (46)

Reactant

Table 47: Properties of each reactant.

Id	Name	SBO
Th1_MLN	Th1_MLN	

Modifiers

Table 48: Properties of each modifier.

Id	Name	SBO
$E_{-}i$	E_i	
${\tt Th1_MLN}$	Th1_MLN	
${\tt Th1_MLN}$	$Th1_MLN$	

Product

Table 49: Properties of each product.

Id	Name	SBO
Th1_LP	Th1_LP	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = k1 \cdot [Th1_MLN] \tag{47}$$

Table 50: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	1.459	

6.14 Reaction Th17_Plasticity

This is a reversible reaction of one reactant forming one product influenced by seven modifiers.

Name Th17 Plasticity

Reaction equation

$$Th17_LP \xrightarrow{Cdiff, Th17_LP, Cdiff, iTreg_LP, Th17_LP, Cdiff, iTreg_LP} iTreg_LP \tag{48}$$

Reactant

Table 51: Properties of each reactant.

Id	Name	SBO
Th17_LP	Th17_LP	_

Modifiers

Table 52: Properties of each modifier.

Id	Name	SBO
Cdiff	Cdiff	
$Th17_{LP}$	Th17_LP	
Cdiff	Cdiff	
$iTreg_{-}LP$	iTreg_LP	
$Th17_LP$	Th17_LP	
Cdiff	Cdiff	
$iTreg_LP$	iTreg_LP	

Product

Table 53: Properties of each product.

Id	Name	SBO
iTreg_LP	iTreg_LP	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}(\text{LP}) \cdot \text{Rate_Law_for_Th17plas}(\text{k1}, [\text{Th17_LP}], \text{k2}, [\text{Cdiff}], [\text{iTreg_LP}])$$
 (49)

Rate_Law_for_Th17plas
$$(k1, s, k2, m2, p) = k1 \cdot s - k2 \cdot m2 \cdot p$$
 (50)

Rate_Law_for_Th17plas
$$(k1, s, k2, m2, p) = k1 \cdot s - k2 \cdot m2 \cdot p$$
 (51)

Table 54: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	1.274	$ \mathbf{Z} $
k2	k2	0.002	\checkmark

6.15 Reaction Th17_Migration

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name Th17 Migration

Reaction equation

$$Th17_MLN \xrightarrow{E_i, Th17_MLN, Th17_MLN} Th17_LP$$
 (52)

Reactant

Table 55: Properties of each reactant.

Id	Name	SBO
Th17_MLN	Th17_MLN	

Modifiers

Table 56: Properties of each modifier.

Id	Name	SBO
E_i	E_i	
${\tt Th17_MLN}$	Th17_MLN	

Id	Name	SBO
Th17_MLN	Th17_MLN	

Product

Table 57: Properties of each product.

Id	Name	SBO
Th17_LP	Th17_LP	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = k1 \cdot [Th17_MLN] \tag{53}$$

Table 58: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	2.505	

6.16 Reaction E_Inflame

This is an irreversible reaction of one reactant forming one product influenced by five modifiers.

Name E Inflame

Reaction equation

$$E \xrightarrow{\text{Cdiff}, E, \text{Cdiff}, E, \text{Cdiff}} E_{-i}$$
 (54)

Reactant

Table 59: Properties of each reactant.

Id	Name	SBO
Е	E	

Modifiers

Table 60: Properties of each modifier.

Id	Name	SBO
Cdiff	Cdiff	
E	E	
Cdiff	Cdiff	
E	E	
Cdiff	Cdiff	

Product

Table 61: Properties of each product.

Id	Name	SBO
$E_{-}i$	E_i	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}(\text{Epithelium}) \cdot \text{KSA}(K, [E], [\text{Cdiff}])$$
 (55)

$$KSA(K,S,A) = K \cdot S \cdot A \tag{56}$$

$$KSA(K, S, A) = K \cdot S \cdot A \tag{57}$$

Table 62: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
K	K	1.7	1079818745428 · 1	0^{-4}	

6.17 Reaction E_i_Damage

This is an irreversible reaction of one reactant forming one product influenced by eleven modifiers.

Name E_i Damage

Reaction equation

$$E_i \xrightarrow{N_Lum, \ Th17_LP, \ M_LP, \ E_i, \ N_Lum, \ Th17_LP, \ M_LP, \ E_i, \ N_Lum, \ Th17_LP, \ M_LP} E_d \tag{58}$$

Reactant

Table 63: Properties of each reactant.

Id	Name	SBO
E_i	E_i	

Modifiers

Table 64: Properties of each modifier.

1		
Id	Name	SBO
N_Lum	N_Lum	
$Th17_{LP}$	Th17_LP	
M_LP	M_LP	
$E_{-}i$	E_i	
$N_{\perp}Lum$	N_Lum	
Th17_LP	Th17_LP	
$M_{-}LP$	$M_{-}LP$	
$E_{-}i$	E_i	
$N_{\perp}Lum$	N_Lum	
Th17_LP	Th17_LP	
M_{LP}	$M_{-}LP$	

Product

Table 65: Properties of each product.

Id	Name	SBO
$E_{-}d$	$E_{-}d$	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol} (\text{Epithelium})$$

$$\cdot \text{Rate_Law_for_E_damage} (v, [\text{E_i}], k1, [\text{N_Lum}], k2, [\text{Th17_LP}], k3, [\text{M_LP}])$$
(59)

Rate_Law_for_E_damage
$$(v, S, k1, a1, k2, a2, k3, a3) = v \cdot S \cdot (k1 \cdot a1 + k2 \cdot a2 + k3 \cdot a3)$$
 (60)

Rate_Law_for_E_damage
$$(v, S, k1, a1, k2, a2, k3, a3) = v \cdot S \cdot (k1 \cdot a1 + k2 \cdot a2 + k3 \cdot a3)$$
 (61)

Table 66: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
V	v		0.065		$ \mathbf{Z} $
k1	k1		0.006		
k2	k2		0.011		
k3	k3	1.16	013457036959 · 1	10^{-6}	

6.18 Reaction M_Activation

This is an irreversible reaction of one reactant forming one product influenced by eleven modifiers.

Name M Activation

Reaction equation

$$M0 \xrightarrow{Th17_LP, \ Cdiff, \ iTreg_LP, \ M0, \ Th17_LP, \ Cdiff, \ iTreg_LP, \ M0, \ Th17_LP, \ Cdiff, \ iTreg_LP} M_LP$$

Reactant

Table 67: Properties of each reactant.

Id	Name	SBO
МО	M0	

Modifiers

Table 68: Properties of each modifier.

Id	Name	SBO
Th17_LP	Th17_LP	
Cdiff	Cdiff	
$iTreg_LP$	iTreg_LP	
MO	M0	
${\tt Th17_LP}$	Th17_LP	
Cdiff	Cdiff	
$iTreg_LP$	iTreg_LP	
MO	M0	
$Th17_{LP}$	Th17_LP	
Cdiff	Cdiff	
iTreg_LP	iTreg_LP	

Product

Table 69: Properties of each product.

Id	Name	SBO
M_LP	M_LP	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{Rate_Law_for_M_Activation}(K, [M0], e1, [Th17_LP], [Cdiff], e2, [iTreg_LP])$$
 (63)

Rate_Law_for_M_Activation
$$(K, S, e1, A1, A2, e2, I1) = K \cdot S \cdot (e1 \cdot A1 + A2 - e2 \cdot I1)$$
 (64)

Table 70: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K	K	$4.5 \cdot 10^{-5}$	\overline{Z}
e1	e1	2.000	
e2	e2	0.092	

6.19 Reaction M_Death

This is an irreversible reaction of one reactant forming no product influenced by three modifiers.

Name M Death

Reaction equation

$$M LP \xrightarrow{iTreg LP, M LP, M LP} \emptyset$$
 (65)

Reactant

Table 71: Properties of each reactant.

Id	Name	SBO
M_LP	M_LP	

Modifiers

Table 72: Properties of each modifier.

Id	Name	SBO
iTreg_LP	iTreg_LP	
$M_{-}LP$	M_LP	
$M_{-}LP$	$M_{-}LP$	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{vol}(\text{Epithelium}) \cdot \text{k1} \cdot [\text{M_LP}]$$
 (66)

Table 73: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	20.0	

6.20 Reaction Commensal_Regrowth

This is a reversible reaction of one reactant forming one product influenced by ten modifiers.

Name Commensal Regrowth

Reaction equation

Commensal_Beneficial N_Lum, E_i, Commensal_Beneficial, N_Lum, E_i, Commensal_Dead, Commensal_Beneficial

(67)

Reactant

Table 74: Properties of each reactant.

Id	Name	SBO
Commensal_Beneficial	Commensal_Beneficial	

Modifiers

Table 75: Properties of each modifier.

Tuble 75.11 operates of each mounter.			
Id	Name	SBO	
N_Lum	N_Lum		
E_i	E_i		
${\tt Commensal_Beneficial}$	Commensal_Beneficial		
N_{-} Lum	N_Lum		
E_i	E_i		
${\tt Commensal_Dead}$	Commensal_Dead		
Commensal_Beneficial	Commensal_Beneficial		
N_{-} Lum	N_Lum		
E_i	E_i		
Commensal_Dead	Commensal_Dead		

Product

Table 76: Properties of each product.

Id	Name	SBO
Commensal_Dead	Commensal_Dead	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{vol} (\text{Lumen}) \cdot \text{Rate_Law_for_Commensal_Regrowth} (k1, [\text{Commensal_Beneficial}], [N_Lum], [E_i], k2, [\text{Commensal_Dead}])$$
 (68)

Rate_Law_for_Commensal_Regrowth $(k1, S, m1, m2, k2, P) = k1 \cdot S \cdot m1 \cdot m2 - k2 \cdot P$ (69)

Rate_Law_for_Commensal_Regrowth $(k1, S, m1, m2, k2, P) = k1 \cdot S \cdot m1 \cdot m2 - k2 \cdot P$ (70)

Table 77: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	$4.5 \cdot 10^{-10}$	$ \overline{\checkmark} $
k2	k2	0.156	\mathbf{Z}

6.21 Reaction E_Heal

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name E Heal

Reaction equation

$$E_{-d} \xrightarrow{E_{-d}, E_{-d}} E \tag{71}$$

Reactant

Table 78: Properties of each reactant.

Id	Name	SBO
E_d	E_d	

Modifiers

Table 79: Properties of each modifier.

Id	Name	SBO
E_d E_d		

Product

Table 80: Properties of each product.

Id	Name	SBO
E	Е	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}\left(\text{Epithelium}\right) \cdot \text{k1} \cdot [\text{E_d}]$$
 (72)

Table 81: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	4000.0	

6.22 Reaction tDC_Production

This is an irreversible reaction of two reactants forming one product influenced by 14 modifiers.

Name tDC Production

Reaction equation

iDC_E + Cdiff Commensal_Beneficial, Commensal_Dead, E, E_i, Cdiff, Commensal_Beneficial, Commensal_Dead, (73)

Reactants

Table 82: Properties of each reactant.

Id	Name	SBO
100_0	iDC_E	
Cdiff	Cdiff	

Modifiers

Table 83: Properties of each modifier.

Id	Name	SBO	
Commensal Beneficial	Commensal Beneficial		

Id	Name	SBO	
Commensal_Dead	Commensal_Dead		
E	E		
E_i	E_i		
Cdiff	Cdiff		
Commensal_Beneficial	Commensal_Beneficial		
${\tt Commensal_Dead}$	Commensal_Dead		
E	E		
E_i	E_i		
Cdiff	Cdiff		
Commensal_Beneficial	Commensal_Beneficial		
Commensal_Dead	Commensal_Dead		
E	E		
E_i	E_i		

Product

Table 84: Properties of each product.

Id	Name	SBO
tDC_LP	tDC_LP	

Kinetic Law

$$v_{22} = \text{Rate_Law_for_tDC_Production}(K, [\text{Cdiff}], k1, [\text{Commensal_Beneficial}], [\text{Commensal_Dead}], k2, [E], [E_i])$$
 (74)

$$Rate_Law_for_tDC_Production\left(K,S,k1,M1,M2,k2,M3,M4\right) = K \cdot S \cdot \left(\frac{k1 \cdot M1}{M2} + \frac{k2 \cdot M3}{M4 + 100}\right) \tag{75}$$

Table 85: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K	K	$2 \cdot 10^{-4}$	\checkmark
k1	k1	559.297	
k2	k2	26.875	\checkmark

6.23 Reaction $tDC_Migration$

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name tDC Migration

Reaction equation

$$tDC_LP \xrightarrow{tDC_LP, tDC_LP} tDC_MLN$$
 (76)

Reactant

Table 86: Properties of each reactant.

Id	Name	SBO
tDC_LP	tDC_LP	

Modifiers

Table 87: Properties of each modifier.

Id	Name	SBO
tDC_LP	tDC_LP	
tDC_LP	tDC_LP	

Product

Table 88: Properties of each product.

Id	Name	SBO
tDC_MLN	tDC_MLN	

Kinetic Law

$$v_{23} = \text{vol}(\text{Lumen}) \cdot \text{k1} \cdot [\text{tDC.LP}] \tag{77}$$

Table 89: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	3.65	

6.24 Reaction tDC_Degradation

This is an irreversible reaction of one reactant forming no product influenced by three modifiers.

Name tDC Degradation

Reaction equation

$$tDC_MLN \xrightarrow{iTreg_MLN, tDC_MLN, tDC_MLN} \emptyset$$
 (78)

Reactant

Table 90: Properties of each reactant.

Id	Name	SBO
tDC_MLN	tDC_MLN	

Modifiers

Table 91: Properties of each modifier.

Id	Name	SBO
iTreg_MLN	iTreg_MLN	
$\mathtt{tDC_MLN}$	tDC_MLN	
tDC_MLN	tDC_MLN	

Kinetic Law

$$v_{24} = \text{vol}(\text{Lumen}) \cdot \text{Rate_Law_for_Effector_DC_Production_1}(k, [\text{tDC_MLN}])$$
 (79)

Rate_Law_for_Effector_DC_Production_1
$$(k, S) = k \cdot S$$
 (80)

$$Rate_Law_for_Effector_DC_Production_1(k, S) = k \cdot S$$
(81)

Table 92: Properties of each parameter.

Id	Name	SBO V	alue	Unit	Constant
k	k	9.5	$\cdot 10^{-4}$		

6.25 Reaction Th17_Differentiation

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name Th17 Differentiation

Reaction equation

$$eDC_MLN \xrightarrow{eDC_MLN, eDC_MLN} Th17_MLN$$
 (82)

Reactant

Table 93: Properties of each reactant.

Id	Name	SBO
eDC_MLN	eDC_MLN	

Modifiers

Table 94: Properties of each modifier.

Id	Name	SBO
02 0	eDC_MLN eDC_MLN	

Product

Table 95: Properties of each product.

Id	Name	SBO
Th17_MLN	Th17_MLN	

Kinetic Law

$$v_{25} = \text{vol}(MLN) \cdot k1 \cdot [eDC_MLN]$$
(83)

Table 96: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1		2255.805		

6.26 Reaction Th1_Differentiation

This is an irreversible reaction of one reactant forming one product influenced by eleven modifiers.

Name Th1 Differentiation

Reaction equation

eDC_MLN Commensal_Dead, Commensal_Beneficial, E, eDC_MLN, Commensal_Dead, Commensal_Beneficial, E (84)

Reactant

Table 97: Properties of each reactant.

Id	Name	SBO
eDC_MLN	eDC_MLN	

Modifiers

Table 98: Properties of each modifier.

Id	Name	SBO
Commensal_Dead	Commensal_Dead	
Commensal_Beneficial	Commensal_Beneficial	
E	E	
eDC_MLN	eDC_MLN	
Commensal_Dead	Commensal_Dead	
Commensal_Beneficial	Commensal_Beneficial	
E	E	
eDC_MLN	eDC_MLN	
Commensal_Dead	Commensal_Dead	
Commensal_Beneficial	Commensal_Beneficial	
E	Е	

Product

Table 99: Properties of each product.

Id	Name	SBO
Th1_MLN	Th1_MLN	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{vol}(MLN) \cdot \text{Rate_Law_for_eDC}(K, [eDC_MLN], [Commensal_Dead],$$

$$[Commensal_Beneficial], k2, [E], k1)$$
(85)

$$Rate_Law_for_eDC\left(K,S,M1,M2,k2,M3,k1\right) = \frac{K\cdot S\cdot M1}{k1\cdot M2 + k2\cdot M3} \tag{86}$$

$$Rate_Law_for_eDC(K,S,M1,M2,k2,M3,k1) = \frac{K \cdot S \cdot M1}{k1 \cdot M2 + k2 \cdot M3} \tag{87}$$

Table 100: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
K	K		0.043		\checkmark
k2	k2	9.65	5568121975566 · 1	0^{-5}	
k1	k1		0.065		

6.27 Reaction Treg_Differentiation

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name Treg Differentiation

Reaction equation

$$tDC_MLN \xrightarrow{tDC_MLN, tDC_MLN} iTreg_MLN$$
 (88)

Reactant

Table 101: Properties of each reactant.

Id	Name	SBO
tDC_MLN	tDC_MLN	

Modifiers

Table 102: Properties of each modifier.

Id	Name	SBO
tDC_MLN	tDC_MLN tDC_MLN	

Product

Table 103: Properties of each product.

Id	Name	SBO
iTreg_MLN	iTreg_MLN	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = k1 \cdot [tDC_MLN] \tag{89}$$

Table 104: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	53.913	\checkmark

6.28 Reaction Commensal_Harmful_Death

This is an irreversible reaction of one reactant forming no product influenced by eight modifiers.

Name Commensal Harmful Death

Reaction equation

 $Commensal_Harmful \xrightarrow{N_LP, \ E_i, \ Commensal_Harmful, \ N_LP, \ E_i, \ Commensal_Harmful, \ N_LP, \ E_i} \emptyset$

Reactant

Table 105: Properties of each reactant.

Id	Name	SBO
Commensal_Harmful	Commensal_Harmful	

Modifiers

Table 106: Properties of each modifier.

Id	Name	SBO		
N_LP	N_LP			
E_i	E_i			
${\tt Commensal_Harmful}$	Commensal_Harmful			
$N_{-}LP$	N_LP			
$E_{\mathtt{-}}i$	E_i			
${\tt Commensal_Harmful}$	Commensal_Harmful			
$N_{-}LP$	N_LP			
$E_{-}i$	E_i			

Kinetic Law

$$v_{28} = \text{vol} (\text{Lumen}) \cdot \text{Rate_Law_for_Commensal_Harmful_Death_1} (K, [\text{Commensal_Harmful}], [\text{N_LP}], \text{A1}, [\text{E_i}], \text{A2})$$
 (91)

$$Rate_Law_for_Commensal_Harmful_Death_1 \left(K,S,m1,A1,m2,A2\right) = K \cdot S \cdot \left(m1 \cdot A1 + m2 \cdot A2\right) \tag{92}$$

$$Rate_Law_for_Commensal_Harmful_Death_1 (K, S, m1, A1, m2, A2) = K \cdot S \cdot (m1 \cdot A1 + m2 \cdot A2)$$

$$(93)$$

Table 107: Properties of each parameter.

		*	*	
Id	Name	SBO Valu	ue Unit	Constant
K	K	2.33225	$\cdot 10^{-5}$	
A1	A1	0.00)5	
A2	A2	0.18	80	\square

6.29 Reaction Commensal_Death

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name Commensal Death

Reaction equation

Reactant

Table 108: Properties of each reactant.

Id	Name	SBO
Commensal_Dead	Commensal_Dead	

Modifiers

Table 109: Properties of each modifier.

Id	Name	SBO
Commensal_Dead	Commensal_Dead	
Commensal_Dead	Commensal_Dead	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{vol}(\text{Lumen}) \cdot \text{k1} \cdot [\text{Commensal_Dead}]$$
 (95)

Table 110: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k 1	0.093	

6.30 Reaction E_i_Natural_Death

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name E_i Natural Death

Reaction equation

$$E_{-i} \xrightarrow{E_{-i}, E_{-i}} E_{-d}$$
 (96)

Reactant

Table 111: Properties of each reactant.

Id	Name	SBO
E_i	E_i	

Modifiers

Table 112: Properties of each modifier.

Id	Name	SBO
E_i	E_i	
$E_{-}\mathtt{i}$	E_i	

Product

Table 113: Properties of each product.

Id	Name	SBO
E_d	$E_{-}d$	

Kinetic Law

$$v_{30} = \text{vol}\left(\text{Epithelium}\right) \cdot \text{k1} \cdot \left[\text{E}_{.i}\right]$$
 (97)

Table 114: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	2.5	

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

7.1 Species Cdiff

Name Cdiff

Initial concentration 484 item · dimensionless⁻¹

This species takes part in 26 reactions (as a reactant in eDC_Production, Cdiff_Death, Cdiff_Growth, tDC_Production and as a product in Cdiff_Growth and as a modifier in Treg_Degradation, eDC_Production, eDC_Production, Cdiff_Death, Cdiff_Death, N_Activation_Migration, N_Activation_Migration, Cdiff_Growth, Cdiff_Growth, Cdiff_Growth, Th17_Plasticity, Th17_Plasticity, Th17_Plasticity, E_Inflame, E_Inflame, E_Inflame, M_Activation, M_Activation, M_Activation, tDC_Production, tDC_Production).

$$\frac{d}{dt}Cdiff = 2|v_{11}| - |v_8| - |v_9| - |v_{11}| - |v_{22}|$$
(98)

7.2 Species Commensal_Beneficial

Name Commensal_Beneficial

Initial concentration 1 item · dimensionless⁻¹

This species takes part in 14 reactions (as a reactant in Commensal_Regrowth and as a modifier in N_Degradation, N_Degradation, N_Degradation, eDC_Production, Cdiff_Growth, Commensal_Regrowth, Commensal_Regrowth, tDC_Production, tDC_Production, tDC_Production, Th1_Differentiation, Th1_Differentiation).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Commensal_Beneficial} = -v_{20} \tag{99}$$

7.3 Species Commensal_Dead

Name Commensal_Dead

Initial concentration $5 \cdot 10^{10}$ item · dimensionless⁻¹

This species takes part in 14 reactions (as a reactant in Commensal_Death and as a product in Commensal_Regrowth and as a modifier in Th1_Degradation, eDC_Production, Commensal_Regrowth, Commensal_Regrowth, tDC_Production, tDC_Production, tDC_Production, Th1_Differentiation, Th1_Differentiation, Th1_Differentiation, Commensal_Death, Commensal_Death).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Commensal_Dead} = v_{20} - v_{29} \tag{100}$$

7.4 Species tDC_LP

Name tDC_LP

Initial concentration 0 item ⋅ dimensionless⁻¹

This species takes part in four reactions (as a reactant in tDC_Migration and as a product in tDC_Production and as a modifier in tDC_Migration, tDC_Migration).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{tDC}\mathrm{LP} = |v_{22}| - |v_{23}| \tag{101}$$

7.5 Species tDC_MLN

Name tDC_MLN

Initial concentration 0 item · dimensionless⁻¹

This species takes part in seven reactions (as a reactant in tDC_Degradation, Treg_Differentiation and as a product in tDC_Migration and as a modifier in tDC_Degradation, tDC_Degradation, Treg_Differentiation, Treg_Differentiation).

$$\frac{d}{dt}tDC_MLN = |v_{23}| - |v_{24}| - |v_{27}|$$
 (102)

7.6 Species Commensal Harmful

Name Commensal Harmful

Initial concentration $1.5 \cdot 10^{10} \ \text{item} \cdot \text{dimensionless}^{-1}$

This species takes part in nine reactions (as a reactant in Commensal_Harmful_Death and as a modifier in Cdiff_Death, Cdiff_Death, Cdiff_Death, Cdiff_Growth, Cdiff_Growth, Cdiff_Growth, Commensal_Harmful_Death, Commensal_Harmful_Death).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Commensal_Harmful} = -v_{28} \tag{103}$$

7.7 Species N_Lum

Name N_Lum

Initial concentration 0 item · dimensionless⁻¹

This species takes part in 16 reactions (as a reactant in N_Degradation and as a product in N_Activation_Migration and as a modifier in N_Degradation, N_Degradation, E_Damage, E_Damage, E_Damage, E_Damage, Cdiff_Death, Cdiff_Death, Cdiff_Death, E_i_Damage, E_i_Damage, E_i_Damage, Commensal_Regrowth, Commensal_Regrowth, Commensal_Regrowth).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{N}_{-}\mathrm{Lum} = |v_{10}| - |v_{5}| \tag{104}$$

7.8 Species E

Name E

Initial concentration 1052500 item · dimensionless⁻¹

This species takes part in 13 reactions (as a reactant in E_Damage, E_Inflame and as a product in E_Heal and as a modifier in E_Damage, E_Damage, E_Inflame, E_Inflame, tDC_Production, tDC_Production, tDC_Production, Th1_Differentiation, Th1_Differentiation, Th1_Differentiation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E} = |v_{21}| - |v_6| - |v_{16}| \tag{105}$$

7.9 Species E_d

Name Ed

Initial concentration 0 item · dimensionless⁻¹

This species takes part in nine reactions (as a reactant in E_Heal and as a product in E_Damage, E_i_Damage, E_i_Natural_Death and as a modifier in N_Activation_Migration, N_Activation_Migration, E_Heal, E_Heal).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}_{-}\mathbf{d} = |v_6| + |v_{17}| + |v_{30}| - |v_{21}| \tag{106}$$

7.10 Species iDC_E

Name iDC_E

Initial concentration 500000 item · dimensionless⁻¹

This species takes part in two reactions (as a reactant in eDC_Production, tDC_Production), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{iDC}_{-}\mathrm{E} = 0 \tag{107}$$

7.11 Species E_i

Name E_i

Initial concentration 0 item · dimensionless⁻¹

This species takes part in 19 reactions (as a reactant in E_i_Damage, E_i_Natural_Death and as a product in E_Inflame and as a modifier in Treg_Migration, Th1_Migration, Th17-_Migration, E_i_Damage, E_i_Damage, Commensal_Regrowth, Commensal_Regrowth, Commensal_Regrowth, tDC_Production, tDC_Production, tDC_Production, Commensal_Harmful-Death, Commensal_Harmful_Death, E_i_Natural_Death, E_i_Natural_Death, E_i_Natural_Death).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}_{-}\mathbf{i} = |v_{16}| - |v_{17}| - |v_{30}| \tag{108}$$

7.12 Species M_LP

Name M_LP

Initial concentration 3250 item · dimensionless⁻¹

This species takes part in 13 reactions (as a reactant in M_Death and as a product in M_Activation and as a modifier in E_Damage, E_Damage, E_Damage, Cdiff_Death, Cdiff_Death, Cdiff_Death, E_i_Damage, E_i_Damage, M_Death, M_Death).

$$\frac{d}{dt}MLP = |v_{18}| - |v_{19}| \tag{109}$$

7.13 Species eDC_LP

Name eDC_LP

Initial concentration 0 item · dimensionless⁻¹

This species takes part in four reactions (as a reactant in eDC_Migration and as a product in eDC_Production and as a modifier in eDC_Migration, eDC_Migration).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{eDC}.\mathrm{LP} = v_8 - v_7 \tag{110}$$

7.14 Species MO

Name M0

Initial concentration 1714285.71428571 item · dimensionless⁻¹

This species takes part in three reactions (as a reactant in M_Activation and as a modifier in M_Activation, M_Activation), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M}\mathbf{0} = 0\tag{111}$$

7.15 Species N_LP

Name NLP

Initial concentration 714285.714285714 item · dimensionless⁻¹

This species takes part in six reactions (as a reactant in N_Activation_Migration and as a modifier in N_Activation_Migration, N_Activation_Migration, Commensal_Harmful_Death, Commensal_Harmful_Death), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{N} \perp \mathrm{P} = 0 \tag{112}$$

7.16 Species Th17_LP

Name Th17_LP

Initial concentration 0 item ⋅ dimensionless⁻¹

This species takes part in 19 reactions (as a reactant in Th17_Degradation, Th17_Plasticity and as a product in Th17_Migration and as a modifier in Th17_Degradation, Th17_Degradation, Th17_Degradation, Th17_Degradation, N_Activation_Migration, N_Activation_Migration, N_Activation_Migration, Th17_Plasticity, Th17_Plasticity, E_i_Damage, E_i_Damage, E_i_Damage, M_Activation, M_Activation, M_Activation).

$$\frac{d}{dt}Th17.LP = |v_{15}| - |v_{3}| - |v_{14}|$$
 (113)

7.17 Species Th1_LP

Name Th1_LP

Initial concentration 0 item · dimensionless⁻¹

This species takes part in four reactions (as a reactant in Th1_Degradation and as a product in Th1_Migration and as a modifier in Th1_Degradation, Th1_Degradation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Th}1\mathrm{LP} = |v_{13}| - |v_4| \tag{114}$$

7.18 Species iTreg_LP

Name iTreg_LP

Initial concentration 0 item · dimensionless⁻¹

This species takes part in 16 reactions (as a reactant in Treg_Degradation and as a product in Treg_Migration, Th17_Plasticity and as a modifier in Treg_Degradation, Treg_Degradation, Th17_Degradation, Th17_Degradation, N_Activation_Migration, N_Activation_Migration, Th17_Plasticity, Th17_Plasticity, M_Activation, M_Activation, M_Death).

$$\frac{d}{dt}iTreg_LP = |v_{12}| + |v_{14}| - |v_{1}|$$
 (115)

7.19 Species eDC_MLN

Name eDC_MLN

Initial concentration 0 item · dimensionless⁻¹

This species takes part in ten reactions (as a reactant in eDC_Degradation, Th17_Differentiation, Th1_Differentiation and as a product in eDC_Migration and as a modifier in eDC_Degradation, eDC_Degradation, Th17_Differentiation, Th17_Differentiation, Th1_Differentiation, Th1_Differentiation).

$$\frac{d}{dt}eDC_MLN = |v_7| - |v_2| - |v_{25}| - |v_{26}|$$
(116)

7.20 Species iTreg_MLN

Name iTreg_MLN

Initial concentration $0 \text{ item} \cdot \text{dimensionless}^{-1}$

This species takes part in six reactions (as a reactant in Treg_Migration and as a product in Treg_Differentiation and as a modifier in eDC_Degradation, Treg_Migration, Treg_Migration, tDC_Degradation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{i}\mathrm{Treg}_{-}\mathrm{MLN} = |v_{27}| - |v_{12}| \tag{117}$$

7.21 Species nT

Name nT

Initial concentration $1.2 \cdot 10^7$ item · dimensionless⁻¹

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{n}\mathbf{T} = 0\tag{118}$$

7.22 Species Th17_MLN

Name Th17_MLN

Initial concentration 0 item · dimensionless⁻¹

This species takes part in four reactions (as a reactant in Th17_Migration and as a product in Th17_Differentiation and as a modifier in Th17_Migration, Th17_Migration).

$$\frac{d}{dt}Th17_MLN = |v_{25}| - |v_{15}|$$
 (119)

7.23 Species Th1_MLN

Name Th1_MLN

Initial concentration 0 item · dimensionless⁻¹

This species takes part in four reactions (as a reactant in Th1_Migration and as a product in Th1_Differentiation and as a modifier in Th1_Migration, Th1_Migration).

$$\frac{d}{dt}Th1_MLN = |v_{26}| - |v_{13}|$$
 (120)

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany