A Parallel Ice Sheet Model

Jakobshavn Isbræ with a high resolution regional model

Century-scale evolution of the

Daniella DellaGiustina¹, A. Aschwanden^{1,2}, C. Khroulev¹, E. Bueler^{1,3}, and M. Truffer¹

1) Geophysical Institute, University of Alaska, Fairbanks. 2) Arctic Region Supercomputing Center, University of Alaska, Fairbanks. 3) Department of Mathematics and Statistics, University of Alaska.

. Motivation

Correspondence: dellagiu@gi.alaska.edu

- "The largest uncertainty in constraining sea level contribution from Greenland lies in the ability of a model to capture changes in the outlet systems"[1]
- Many ice sheet models are only capable of continental scale modeling
- Models of outlet glaciers have been developed, but these are flowline models and provide limited information about the state of a modeled glacier
- The trunk of these glaciers is typically no wider then 5 km, and an outlet glacier model should also be capable of resolving the details of grounding line motion
- Modeling the entire ice sheet (1,800,000 km²) has resolution limitations (e.g. 2.5 km grid cells), while considering only the area of the outlet catchment (110,000 km²) can allow much higher resolution modeling (potentially 500 m grid cells)

II. Regional Modeling Tools

- 1) Drainage basin (DB) generator, which:
- Uses the ice surface elevation to determine the surface gradient flow
- Streamlines are assumed to indicate the horizontal path that a test particle will follow if the ice flows down the surface gradient
- The pink user-defined TERM box that indicates the approximate location of the glacier terminus. The origin of streamlines that end in the TERM after N perturbations are considered part of the
- iv. The blue rectangle defines the boundaries of the regional model domain, which contains the DB

2) Domain Boundary Conditions:

- Map-plane boundary conditions: Enthalpy, Basal resistance Basal melt water, Ice thickness, and SSA "sliding" velocities
- Dirichlet boundary conditions: Some of these quantities are interpreted as Dirichlet boundary conditions by the key equations in PISM
 - SIA → ice thickness
 - $SSA \rightarrow$ "sliding" velocities
 - Enthalpy Field Equation → enthalpy

3) Force-to-thickness (FTT) Mechanism:

- The area outside the outlet glacier is held near present-day geometry with a "force-to-thickness" mechanism
- This modifies surface mass balance to protect drainage basin from flow to/from unmodeled region:

$$\frac{\partial H}{\partial x} = M + S - \nabla_{x,y} \cdot q$$

Where H is the ice thickness, M and S are the ice equivalent surface and basal mass balances, and q is map-plane ice flux. The FTT mechanism causes M to be modified by a multiple of the difference between the target thickness and the current model thickness: $\Delta M = \beta (H_{tar} - H)$. We add mass $(\Delta M > 0)$ where $H_{tar} > H$ and ablate mass ($\Delta M < 0$) where $H_{tar} < H$

III. Numerical Experiments

- 1) Parameter Study: We examine the influence of three key parameters, and their influence of ice dynamics
- **Basal Resistance:**
- ii. Calving Style:
 - a) float-kill=all floating ice is immediately calved off
 - b) ocean-kill= ice is calved at the present-day calving front
 - c) Eigen calving=model builds ice shelf or "floating tongue"
- iii. Ocean heat flux into floating ice
- 2) Model Inputs and Components:

Grid sizes	2 km → 1 km
Stress balance	SIA+SSA hybrid
Surface mass balance	HIRHAM regional atmospheric climate model [2]
Geothermal flux	Shapiro and Ritzwoller, 2004 [3]
Bedrock topography	Bamber et al., 2001 [4] and CReSIS flightline data for Jakoshavn [5]
Ice thickness	Bamber et al., 2001 [4] and CReSIS flightline data for Jakoshavn [5]
Enthalpy, SSA velocities, basal melt	125,000 a whole-Greenland ice sheet model run with PISM

3) A flowchart that depicts the procedure used to generate and validate all of the model results in this parameter study

4) An example of model validation: The distribution comparison between modeled vs. observed surface speeds[6]

observed eigen ocean Ice surface speed (m/a) Map-plane view of modeled and observed [6] surface

V. Discussion

1) Model capabilities:

IV. Results

- The tools are able to perform ice sheet modeling at the regional scale
- The regional model demonstrates a clear improvement over a continental model
- Both fast and slow ice flow are well captured
- iv. We are able to generate and floating ice and make to disappear, using eigen-calving
- v. We are able to produce an increase in ice velocities after the disintegration of a floating tongue
- vi. We area able to generate temperate ice in the trunk of Jakobshavn

2) Observations about this example:

- Model is analogous to a one-way nested ice sheet model, so we evaluate the "temporal relevance"
- Ice that is modeled in an unphysical way outside of the drainage basin is not observed to enter the DB on the order of a 1000 a
- . Perturbations that occur within the drainage basin appear to be confined to the DB and do not affect the domain boundaries where we have prescribed boundary conditions from a whole-ice sheet model

ment at (a) 0 a, (b) 500 a, & (c) 1000 a. Here red indicates the position of the coastline, blue and green represent the surface speeds & basal speeds. respectively (m a⁻¹), & black indicate areas of old ice. Courtesy of Constantine Khroulev.

VI. Conclusions

- 1) The purpose of this study was not to produce a model that closely matches the observations, but rather to identify sets of parameters that cause a given behavior within the model.
- 2) Future Work:
 - Provide better estimates of SMB directly to the model
 - ii. Improve the way we determine basal resistance using an iterative inverse method
 - iii. Use improved bedrock topography

speeds for 1 km experiments

iv. Run the model at higher resolutions (< 1 km)

3) Summary:

- This model is best suited for simulation of a region of an ice sheet at high spatial resolutions (≤ 1 km) and on short timescales (≤1000 a)
- The model provides improved performance over a continental ice-sheet model
- iii. Both slow and fast ice flow are well captured by the model

