

Design Of Wireless Sensor Network For Tomato Plants Monitoring

Jesicha Maghfiroh NRP 1203181038 3 D3 Telecommunication B

Advisor 1 Advisor 2

Moch. Zen Samsono Hadi, ST. MSc. Ph.D.NIP. 197412252003121003

Aries Pratiarso, ST. MT. NIP. 196611171991031004

PROGRAM STUDY OF TELECOMMUNICATION ENGINEERING
DEPARTEMENT OF ELECTRONIC ENGINEERING
ELECTRONIC ENGINEERING POLYTECHNIC INSTITUTE OF SURABAYA
2021

Outline

- 01 Background
- **02** Formulation of The Problem
- **03** Problem Limitations
- **04** Design System
- 05 Testing
- 06 Conclusion

Background

DESIGN OF WIRELESS SENSOR NETWORK FOR TOMATO PLANT MONITORING

Wireless Sensor Network

Formulation of the Problem

- How to design a monitoring device to determine the condition of tomato plants which includes temperature, soil moisture, soil pH, light intensity and automatic watering?
- 2. How does the device send tomato plant condition data including temperature, soil moisture, soil pH, and light intensity to the web server using the NRF24L01 communication module?
- 3. How does automatic watering work based on the soil moisture level of tomato plants?

Problem Limitation

- The node device used is Arduino Uno.
- 2. The sensors used are temperature sensor, soil moisture sensor, pH sensor, and light sensor.
- 3. The communication module device is NRF24L01.
- 4. The programming language is C Arduino.
- 5. Automatic watering will work if the soil moisture is less than the value specified in the Arduino Microcontroller program.
- 6. This plant monitoring system is only intended to tomato plants.

Design System

System Testing

NRF24L01 Testing

Physical Shapes of Device

Result by DHT11 Sensor

Number	Time	Temperature (°C)
1.	05.00	23.6
2.	06.00	25.3
3.	07.00	26
4.	08.80	27.5
5.	09.00	29.2
6.	10.00	31.2
7.	11.00	32.2
8.	12.00	31.2
9.	13.00	34
10	14.00	33.4
11.	15.00	32.4
12.	16.00	32.4
13.	17.00	29
14.	18.00	29
15.	19.00	29
16.	20.00	28.4
17.	21.00	28.4

Result by Light Intensity Sensor

Number	Time	(%) Light Intensity	Information	
1.	05.00	12	Foggy	
2.	06.00	70	Sunny	
3.	07.00	88	Sunny	
4.	08.00	89	Sunny	
5.	09.00	90	Sunny	
6.	10.00	90	Sunny	
7.	11.00	88	Cloudy	
8.	12.00	89	Cloudy	
9.	13.00	92	Sunny + Cloudy	
10	14.00	88	Sunny + Cloudy	
11.	15.00	85	Sunny + Cloudy	
12.	16.00	86	Sunny + Cloudy	
13.	17.00	57	Sunny	
14.	18.00	13	Sunny	
15.	19.00	0	Sunny	
16.	20.00	0	Sunny	
17.	21.00	0	Sunny	

Result by Soil PH Sensor

Number	(Soil pH)		
1.	6.29		
2.	6.36		
3.	6.22		
4.	6.36		
5.	6.08		
6.	6.01		
7.	6.15		
8.	6.36		
9.	6.29		
10	6.36		

Result by Soil Moisture Sensor

Number	Time	(%) Soil Moisture	Pump
1.	06.00	63	OFF
2.	07.00	65	OFF
3.	08.00	66	OFF
4.	09.00	62	OFF
5.	10.00	60	OFF
6.	11.00	60	OFF
7.	12.00	61	OFF
8.	13.00	59	OFF
9.	14.00	48	ON
10	15.00	58	OFF
11.	16.00	58	OFF
12.	17.00	58	OFF
13.	18.00	59	OFF
14.	19.00	58	OFF
15.	20.00	58	OFF
16.	21.00	57	OFF

Thinger.io Home Page

Thinger.io Login Page

Data Buckets Page

Data Buckets Page

Bucket Data

Date	Value
2021-07-11T22:47:39.710Z	22
2021-07-11T22:46:38.280Z	22
2021-07-11T22:45:38.282Z	22
2021-07-11T22:44:38.282Z	22
2021-07-11T22:43:38.282Z	22
2021-07-11T22:42:38.282Z	22
2021-07-11T22:41:38.437Z	22
2021-07-11T22:40:38.953Z	22
2021-07-11T22:39:38.408Z	22
2021-07-11T22:38:38.300Z	22
2021-07-11T22:37:38.285Z	22
2021-07-11T22:36:38.284Z	22

Bucket Data

Date	Value
2021-07-11T22:47:38.575Z	32
2021-07-11T22:46:38.125Z	32
2021-07-11T22:45:38.126Z	32
2021-07-11T22:44:38.127Z	32
2021-07-11T22:43:38.126Z	32
2021-07-11T22:42:38.126Z	32.29999923706055
2021-07-11T22:41:38.127Z	32.29999923706055
2021-07-11T22:40:38.560Z	32.29999923706055
2021-07-11T22:39:38.252Z	32.29999923706055
2021-07-11T22:38:38.145Z	32.29999923706055
2021-07-11T22:37:38.129Z	32.29999923706055
2021-07-11T22:36:38.129Z	32.29999923706055

Bucket Data

Date	Value
2021-07-09T14:52:23.807Z	5.940000057220459
2021-07-09T14:51:23.638Z	5,940000057220459
2021-07-09T14:50:23.757Z	5.940000057220459
2021-07-09T14:49:23.605Z	5.940000057220459
2021-07-09T14:48:24.062Z	5.869999885559082
2021-07-09T14:47:24.336Z	5.869999885559082
2021-07-09T14:46:24.201Z	5.869999885559082
2021-07-09T14:45:23.801Z	5.869999885559082
2021-07-09T14:44:23.605Z	5.869999885559082
2021-07-09T14:43:23.605Z	6.360000133514404
2021-07-09T14:42:23.693Z	6.360000133514404
2021-07-09T14;41;23.929Z	6.360000133514404

Bucket Data

Date	Value
2021-07-03T19:47:07.984Z	51
2021-07-03T19:46:07.600Z	51
2021-07-03T19:45:07.563Z	51
2021-07-03T19:44:07.648Z	51
2021-07-03T19:43:07.554Z	51
2021-07-03T19:42:07.990Z	51
2021-07-03T19:41:07.554Z	51
2021-07-03T19:40:07.553Z	52
2021-07-03T19:39:07.578Z	52
2021-07-03T19:38:07.561Z	52
2021-07-03T19:37:07.552Z	52
2021-07-03T19:36:07.552Z	52

₽ Refres

Temperature's Chart Page

Light Intensity's Chart Page

Soil PH's Chart Page

Soil Moisture's Chart Page

NRF24L01 Testing

Number	Condition	Distance	Transı	Transmission	
		(meter)	Accepted	Rejected	
		20	✓		
		40	✓		
		60	✓		
4	Non Line	80	✓		
1. of \$	of Sight	100	✓		
		120	✓		
		140	✓		
		160		✓	
2.	Line of Sight	100	✓		
		200	✓		
		300	✓		
		400	✓		
		500	✓		
		600		✓	

Conclusion

- 1. The results of tests on the DHT11 sensor, LDR sensor, soil PH sensor, and soil moisture sensor show that the sensor can read temperature, light intensity, soil pH, and soil moisture and can be displayed and accessed on the Thinger.io web Dashboards properly. real time.
- 2. From 10 times of testing the soil pH sensor, the percent error is less than 10%. So that the sensor is eligible for use.
- 3. The maximum communication distance of the NRF24L01 module in non-line of sight conditions is up to 140 meters. While the maximum communication distance of the NRF24L01 module in line of sight conditions can reach 500 meters.

Reference

- 1. G. B. Renata, "Tomatoes and Tomato Products as Dietary Sources of Antioxidants," Agriculture Journal, vol. 25, p. 4, 2009.
- 2. Agus Sunar Wijaya, Muhd. Nur Sangadji, Muhardi, "PRODUKSI DAN KUALITAS PRODUKSI BUAH TOMAT YANG DIBERI BERBAGAI KONSENTRASI PUPUK ORGANIK CAIR", e-J. Agrotekbis 5 (1): 1 8, Februari 2017
- 3. https://distan.bulelengkab.go.id/artikel/budi-daya-tanaman-tomat-25#:~:text=Tomat%20merupakan%20tanaman%20yang%20bisa,(kurang%20dari%20200%20mdpl), 22 Juli 2020
- 4. Masdukil Makruf, Ainiyatus Sholehah, Miftahul Walid, "Implementasi Wireless Sensor Network (WSN) untuk Monitoring Smart Farming pada Tanaman Hidroponik Menggunakan Mikrokontroler Wemos Di Mini," *Jurnal Informatika dan Ilmu Komputer (JIKO)*, vol. 2 no. 2 pp. 95-102, Oktober 2019.
- 5. Widodo, B. 2004. Interfacing Komputer dengan Mikrokontroler. Jakarta: Elex Media Komputindo.
- 6. Kusbiono Wisnu Pambudi, Jusak, Pauladie Susanto, "Rancang Bangun Wireless Sensor Network untuk Monitoring Suhu dan Kelembaban pada Lahan Tanaman Jarak," *Journal of Control and Network Systems*, vol. 3, no. 2, pp. 09-17, 2014.
- 7. Arief Sukma Indrayana, Rakhmadhany Primananda, Kasyful Amron, "Rancang Bangun Sistem Komunikasi Bluetooth Low Energy (BLE) Pada Sistem Pengamatan Tekanan Darah," *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, vol. 2, no. 8, pp.2462-2472, Agustus 2018.
- 8. https://elektronika-dasar.web.id/sensor-cahaya-ldr-light-dependent-resistor/, 2013
- 9. https://wiki.dfrobot.com/PH meter SKU SEN0161
- 10. http://depoinovasi.com/downlot.php?file=datasheet%20sensor%20ph%20tanah.pdf
- 11. http://belajarmikrokontroler2018.blogspot.com/2019/01/penyiram-tanaman-otomatis-berbasis.html, 2018
- 12. Teknik Elektronika., 2015, Pengertian dan Fungsi Relay, http://teknikelektronika.com/pengertian-Relay-fungsi-Relay/, Oktober 2015.

Thank You 99

