

6.1 Training Neural Networks

Machine Learning 1: Foundations

Marius Kloft (TUK)

Recap

Artificial neural networks (ANN)

Key advantage over SVM, logistic regression, and friends: can learn a good representation of the data,

$$\min_{b \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d, \boldsymbol{\phi}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \ln \left(1 + \exp(-y_i(\mathbf{w}^\top \boldsymbol{\phi}(\mathbf{x}_i) + b)) \right).$$

Need to restrict search space of ϕ !

ldea: design ϕ similar to our brain

- multiple neurons in multiple layers with feed-forward connections
- ightharpoonup optimize over $W = (W_1, \dots, W_L)!$

How to train ANNs?

Contents of this Class

Training Neural Networks

Deep Learning

Training Neural Networks

Deep Learning

How to Train (Deep) ANNs?

In the same way as we trained the SVM: (stochastic) gradient descent!

Recall the ANN optimization problem:

$$\min_{\mathbf{w}, W} \underbrace{\frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{2} \sum_{l=1}^{L} \|W_l\|_{\text{Fro}}^2 + C \sum_{i=1}^{n} \ln \left(1 + \exp \left(-y_i \mathbf{w}^{\top} \phi_W(\mathbf{x}_i) \right) \right)}_{=:F(\mathbf{w}, W)}$$

How to compute the gradient of *F*?

For the sake of simplicity, we focus on discussing how to train fully connected ANNs (not CNNs).

The Gradient of F With Respect to $\overline{\mathbf{w}}$ is Simple:

The function

$$g(x) = \ln(1 + \exp(x))$$

has the derivative

$$g'(x) = \frac{\exp(x)}{1 + \exp(x)} = \frac{1}{1 + \exp(-x)}.$$

Thus, by the chain rule:

$$\nabla_{\mathbf{w}} F(\mathbf{w}, W) = \mathbf{w} + C \sum_{i=1}^{n} \nabla_{\mathbf{w}} \ln \left(1 + \exp \left(-y_{i} \mathbf{w}^{\top} \phi_{W}(\mathbf{x}_{i}) \right) \right)$$
$$= \mathbf{w} - C \sum_{i=1}^{n} \frac{y_{i} \phi_{W}(\mathbf{x}_{i})}{1 + \exp(y_{i} \mathbf{w}^{\top} \phi_{W}(\mathbf{x}_{i}))}$$

But how to compute the gradient of F with respect to W?

Gradient of F With Respect to $|W = (W_1, ..., W_L)|$

$$W = (W_1, \ldots, W_L)$$

Analogously, we have, for all l = 1, ..., L:

$$\nabla_{W_{l}}F(\mathbf{w},W) = W_{l} + C\sum_{i=1}^{n} \nabla_{W_{l}} \ln \left(1 + \exp\left(-y_{i}\mathbf{w}^{\top}\phi_{W}(\mathbf{x}_{i})\right)\right)$$
$$= W_{l} - C\sum_{i=1}^{n} \frac{y_{i}\mathbf{w}^{\top}\nabla_{W_{l}}\phi_{W}(\mathbf{x}_{i})}{1 + \exp(y_{i}\mathbf{w}^{\top}\phi_{W}(\mathbf{x}_{i}))},$$

where we applied the chain rule.

From now on, denote the *ij*th entry of W_i by w_{iii} .

Given a data point **x**, how to compute $\nabla_{w_m} \phi_W(\mathbf{x})$?

Computing $\nabla_{W_{iil}} \phi_W(\mathbf{x})$

We have:

$$\nabla_{w_{ijl}}\phi_{W}(\mathbf{x}) = \nabla_{w_{ijl}} \sigma\left(\underbrace{W_{L}^{\top}\sigma(\ldots\sigma(\underbrace{W_{1}^{\top}\mathbf{v}_{0}}_{=\mathbf{u}_{1}})\ldots)}_{=\mathbf{v}_{1}}\right).$$

Need to compute a gradient of a nested function!

Idea: Chain rule

$$\nabla_{w_{ijl}}\phi_{W}(\mathbf{x}) = \frac{\partial \mathbf{v}_{L}}{\partial w_{ijl}} = \frac{\partial \mathbf{v}_{L}}{\partial \mathbf{u}_{L}} \cdot \frac{\partial \mathbf{u}_{L}}{\partial \mathbf{v}_{L-1}} \cdot \frac{\partial \mathbf{v}_{L-1}}{\partial \mathbf{u}_{L-1}} \cdots \frac{\partial \mathbf{u}_{l+1}}{\partial \mathbf{v}_{l}} \cdot \frac{\partial \mathbf{v}_{l}}{\partial \mathbf{u}_{l}} \cdot \frac{\partial \mathbf{u}_{l}}{\partial w_{ijl}}$$

- (1)
- 2
- 1

- 2
- 1

Three Terms Occur by the Chain Rule:

For all $l = 1, \ldots, L$:

- $3 \frac{\partial \mathbf{u}_I}{\partial w_{iil}}$

We need to compute all of them!

First Term

We compute the first term as:

where

$$\mathbb{R} \to \mathbb{R}$$
 $\Theta: x \mapsto \begin{cases} 0 & \text{if } x \leq 0 \\ 1 & \text{otherwise} \end{cases}$

is the **heavyside function**, which, for a vector $\mathbf{x} = (x_1, \dots, x_d)^{\top} \in \mathbb{R}^d$, is defined elementwise:

$$\Theta(\mathbf{x}) := \begin{pmatrix} \Theta(x_1) \\ \vdots \\ \Theta(x_d) \end{pmatrix}.$$

Second Term

We compute the second term as:

Third Term

We compute the third term as:

where

- \triangleright $v_{i,l-1}$ denotes the *i*th entry of \mathbf{v}_{l-1}
- e_j is a unit vector with entries zero everywhere except in the jth component.

Putting Things Together

Our chain rule formula from Slide 7 thus translates into:

$$\nabla_{w_{ijl}}\phi_{W}(\mathbf{x}) = \frac{\partial \mathbf{v}_{L}}{\partial \mathbf{u}_{L}} \cdot \frac{\partial \mathbf{u}_{L}}{\partial \mathbf{v}_{L-1}} \cdot \frac{\partial \mathbf{v}_{L-1}}{\partial \mathbf{u}_{L-1}} \cdots \frac{\partial \mathbf{u}_{l+1}}{\partial \mathbf{v}_{l}} \cdot \frac{\partial \mathbf{v}_{l}}{\partial \mathbf{u}_{l}} \cdot \frac{\partial \mathbf{u}_{l}}{\partial w_{ijl}}$$
$$= \Theta(\mathbf{u}_{L})W_{L}^{\top}\Theta(\mathbf{u}_{L-1}) \cdots W_{l+1}^{\top}\Theta(\mathbf{u}_{l})v_{i,l-1}\mathbf{e}_{j}$$

How to code up the computation of

$$\nabla_{w_{ijl}}\phi_{W}(\mathbf{x}) \qquad \forall i,j,l$$

in an efficient algorithm?

Backpropagation Algorithm

Given an input \mathbf{x} , we first compute all variables \mathbf{u}_l and \mathbf{v}_l :

Forward propagation

```
1: initialize \mathbf{v}_0 := \mathbf{x}

2: for l = 1 : (L - 1) do

3: \mathbf{u}_l := W_l^{\top} \mathbf{v}_{l-1}

4: \mathbf{v}_l := \sigma(\mathbf{u}_l)

5: end for
```

Then, we compute the gradient via the chain rule:

Backward propagation

```
1: initialize \delta_L := \Theta(\mathbf{u}_L)

2: \nabla_{w_{ijL}} \phi_W(\mathbf{x}) := \delta_L v_{i,L-1} \mathbf{e}_j \qquad \forall i,j

3: for I = (L-1): 1 do

4: \delta_I := \delta_{I+1} W_{I+1}^{\top} \Theta(\mathbf{u}_I)

5: \nabla_{w_{ijI}} \phi_W(\mathbf{x}) := \delta_I v_{i,I-1} \mathbf{e}_j \qquad \forall i,j

6: end for
```

Conclusion

How to train ANNs?

Stochastic gradient descent

How to compute gradient?

- ANN is a nested function
- ► Thus we compute the gradient via the chain rule
- Lead to a recursive algorithm: backpropagation

Outlook

Advanced training algorithms:

- Adagrad
- Adam
- Nesterov momentum