Introduction

Introduction

Problem

Pseudo-teste

Function

Evaluation

Conclusion

Automatic Detection of Pseudo-Tested Methods in a Test Suite Using Fault Injection

Nicholas Tocci

November 19, 2018

Problem

Introduction

Problem

Pseudo-teste

Methods

Fiasco

Evaluation Strategy

0,

How can we know if our test suites are adequate?

Coverage

Introduction

Problen

Coverage Calculation

Coverage vs

Pseudo-test

Function-

Evaluatio

Strategy

Conclusion

Coverage

Def: % of a system that has been tested.

Calculation

Introduction

Probler

Calculation

Coverage vs Adequate Covera

Pseudo-teste

Methods

Function Fiasco

Evaluation

riategy

$$Coverage = \frac{Number of Tested Methods}{Total Number of Methods}$$

High Coverage

Introduction

Problen

Calandaria

Coverage vs

Adequate Coverage

Pseudo-teste

Function-

Fiasco

Evaluatio Strategy

Conclusion

%!=:6

Pseudo-tested Methods

Introduction

roblem

Pseudo-tested Methods

Detection

Function

Evaluatio

Conclusio

Pseudo-tested Methods

Definition

Introduction

roblem

Pseudo-teste

Defintion

Detection

Fiasco

Evaluatio Strategy

Conclusio

What is a Pseudo-tested Method?

Def: It will never fail.

Detection

Introduction

⁹roblem

Pseudo-teste

Defintion

Detection

Function Fiasco

Evaluation Strategy

Conclusio

How Can We Detect Pseudo-tested Methods

It is harder than you think!

Example of a Pseudo-tested method

Introduction

Problem

Pseudo-teste Methods

Defintion Detection

Function Fiasco

Evaluatio Strategy

Conclusion

```
numbers.py:
def numberOrder(n):
  numbersSorted = sorted(n)
  return numbersSorted
test_numbers.py:
def test_numbers_ordered():
  numbers = \{2,4,3,1\}
  sortedNumbers = \{1,2,3,4\}
  orderedNumbers = numberOrder(numbers)
  assert numbers == sorted Numbers
```

What is Function-Fiasco

Introduction

Problem

Pseudo-teste

Function Fiasco

What is Function-Fiasco Flow

Feasibility

Strategy

Conclusion

A Pseudo-tested method detection tool

Flow to system

Introduction

Problem

Pseudo-tested

Function

What is

Function-Fias

Flow

Feasibility

Evaluatio

C = = = 1...=! = =

Feasibility

Introduction

Problem

Pseudo-tested

Function-

What is

Function-Fias

Feasibility

Evaluation Strategy

Conclusion

Coverage Calculation

Introduction

Problem

Pseudo-teste

Function

Evaluatio

Strategy

Coverage Calculation

Truly-Tested-Meth Calculation

Metrics Produce

onclusion

$$\textit{Coverage} = \frac{\textit{NumberofTestedMethods}}{\textit{TotalNumberofMethods}}$$

Coverage Example

Introduction

Problem

Pseudo-teste

Function

Fiasco

Evaluatio

Strategy

Truly-Tested-Metho

Metrics Produced

Conclusion

NUMM	NUMTM	Coverage
40	25	62.5%

Truly-Tested-Method Calculation

Introduction

Problem

Pseudo-teste

Functio Fiasco

Evaluation

Coverage Calculation
Truly-Tested-Method

Calculation

Metrics Produced

Conclusion

- Number of Truly-Tested-Methods = NUMTTM
- Number of Tested Methods = NUMTM
- Number of Pseudo-tested Methods = NUMPTM

NUMTTM = NUMTM - NUMPTM

Truly-Tested-Method Example

Introduction

Problem

Pseudo-tested

Function

Fiasco

Evaluation

6 6

Truly-Tested-Method

Calculation

. . .

NUMTM	NUMPTM	NUMTTM
25	3	22

Adequate-Coverage Calculation

Introduction

Problem

Pseudo-teste

Function

Evaluation

Strategy

Coverage Calcu

Truly-Tested-Method

Calculation

. . .

$$AC = \frac{Number of Truly Tested Methods}{Total Number of Methods}$$

Output

Introduction

 $\mathsf{Problem}$

Pseudo-teste

Function

Evaluatio

Strategy

Coverage Calculation
Truly-Tested-Method
Calculation

Metrics Produced

onclusion

NUMM	NUMTM	Coverage	NUMPTM	NUMTTM	AC
40	25	62.5%	3	22	55%

What is different?

Introduction

 $\mathsf{Problem}$

Pseudo-teste

Function

T lasco

Strategy

Conclusion

Conclusion

What is different?

Why

Why

Future Research

FFiasco VS Mutation VS Fuzz VS Fault Injection VS Chaos

Why is a tool like this necessary?

Introduction

Problem

Pseudo-teste

Function Fiasco

Evaluation Strategy

Conclusion

What is different Why

Impact Future Research

- Nothing like this exists for Python
- Coverage does not tell enough

What is the impact of this research?

Introduction

Problem

Pseudo-teste Methods

Function

Evaluation Strategy

Conclusion

What is different

Why

Future Research

%

Coverage with fault detection

Better Understanding of Pseudo-tested Methods

Automatic Detection Tool

Future Research

Introduction

Problem

Pseudo-teste Methods

Function Fiasco

Evaluatior Strategy

Conclusion

What is different

Why

Why .

Future Research

■ Return Inferencing

Hypothesis

Demo

Introduction

 $\mathsf{Problem}$

Pseudo-teste

Function

Evaluation

Conclusion

Conclusion

vvnat is d

vvny

Future Resear

Demo

DEMO