Movie Recommendations

a project by:

Abdullah Adlouni Ben Healy Charles Dorman David Shackelford

Project Description

Purpose

- To get a better understanding of movie ratings
 - Explore recommendation systems
- Combine multiple data sources to try and get useful information
- Find interesting data which shows relationships in what people enjoy watching

Major Questions

- 1. Can we make recommendations of movies based on prior customer ratings?
- 2. Can we create inferences based on attributes of a movie?
- 3. Can we observe trends in the movie industry and how people enjoy movies?

Datasets

Description of Datasets

- Using multiple data sources which contain multiple datasets
 - Netflix
 - IMDB
 - o TMDB
- All datasets have been downloaded by each member
- Datasets are also accessible on AWS S3 database through boto3

Description of Datasets - Netflix

- https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data,
- Contains 17,770 movies rated by 480,189 users for a total of over 100 million ratings.

Description of Datasets - IMDB

- https://datasets.imdbws.com/
- Large datasets with information on 7,980,307 unique movies/shows/shorts objects and 11,906,873 uniques cast member objects
- 7 datasets
 - title.akas regional title name, language, region, type (8 attributes total)
 - title.basics secondary name, year released, runtime, genre (9 attributes total)
 - o title.crew directors, actors (3 attributes total)
 - title.episode if title was a show, contains show information by episode (4 attributes total)
 - title principles principle cast/crew including ordering and specific role (6 attributes total)
 - title.ratings imdb rating and vote information (3 attributes total)
 - title.name.basics names and information of crew including birth, death, and knownForTitles (6
 attributes total)

Description of Datasets - TMDB

- https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata
- 2 datasets
 - TMDB-Credits 4800 unique objects
 - 3 attributes name, credits (casting, directing), unique identifiers
 - TMDB-Movies 4800 unique objects
 - 20 attributes including popularity value, genres, revenue, runtime,

Prior Work

- The Netflix Prize: competition to predict user ratings for films based on previous ratings
- BellKor's Pragmatic Chaos team won
 - Improved Netflix's film recommendation algorithm by 10%
 - Used multiple ML algorithms sequentially and then blended their results
 - ML models were trained to minimize the RMSE on the probe data set
- Many sources for item-based collaborative filtering
 - https://medium.com/grabngoinfo/recommendation-system-item-based-collaborative-filtering-f5078
 504996a
 - https://medium.com/geekculture/overview-of-item-item-collaborative-filtering-recommendation-sys tem-64ee15b24bb8
- https://www-cs.stanford.edu/people/nipunb/CS345a.pdf
 - Attempt to increase recommendation accuracy with supplemental data

Work Completed So Far

- Set up AWS integration
 - All members have access and can manipulate/upload/download csvs
- Matched movie titles between datasets using nlp
 - Combined title data with release date data to increase efficiency
 - Has some error, but most titles have a match
- User-user comparison
 - Effort to narrow down data
 - Filtered users based on movie overlap and rating correlation

Tools

Tools

Project Management

- Github
- AWS
- Discord

aws

Data Analysis

- Pandas
- Numpy
- Regex
- Bash

Machine Learning

- NLTLK
- Scikit-Learn
- Statsmodels
- Tensorflow

Tools - Project Management

Github

- https://github.com/dash2927/ABCD
- Will contain code and documentation
- Each team member works on their own branch and pushes to the main branch

AWS

- Contains all data in one place through public S3 bucket (already set up)
- Interfaces with python through boto3
- o Possibility of using additional resources if needed AWS's relational database, EC2, etc.

Discord

- Communication channel between group members
- Weekly sprints with video scrum meetings on Thursdays

Tools - Data Analysis

Pandas

- Data analysis and manipulation
- Will explore data after importing through AWS

Numpy

- Python support for matrix and data arrays
- Faster data manipulation than pandas

Regex

- Regular expression search patterns in text
- Will use for pattern matching for data integration

Bash scripting

• Will use for pipeline data manipulation

Tools - Machine Learning

NLTLK

- NLP (Natural Language Processing) toolkit for python
- Will help us with title matching and possibly with getting attributes for recommendation

Scikit-Learn

- Machine learning library for python
- Will be using mostly for decision tree and feature importance modules

Statsmodels

- Python library that contains statistical models
- Will possibly use for vectorization during nlp

Tensorflow

• Possibility of using tensorflow if we decide that a NN model would fit better

Proposed Work

Cleaning

- Examine quality of all datasets
 - Missing values
 - Duplicated values
 - Wrong values (i.e. custom null values, strings in integer attributes)
- Normalize movie ratings
- Identify or remove outliers

Preprocessing

- Convert tab-spaced and comma-spaced datasets to consistent format
 - Should be easy to use within a pandas dataframe
- Remove attributes that give no added information
- NLP processing
 - Lemmatization
 - Stemming
 - Vectorizing
- Machine Learning preprocessing

Integration

- Match data based on movie titles
 - Will have to account for differences in title name, secondary title name
 - Can use either NLP or algorithm (subsequence matching)
- Make sure attributes are consistent between datasets
 - Decide on what information to leave out
- Export any integration changes to shared S3 database

Analysis

- Create a model for item-based collaborative filtering
 - Decision tree model which looks at item similarity
 - Can be based on multiple features found with dataset integration:
 - Title
 - Genre
 - Actors
 - Language
 - Use different attribute sets to observe how that affects recommendation
 - Can look at feature importance and what matters in deciding recommendation
- Create visuals on attribute trends, what people like and dislike

Evaluation

Evaluation

Recommendations of movies based on prior customer ratings?

- Create a working recommendation system (working meaning it will recommend a movie based on a set of preference features)
- Can calculate RMSE between our film recommendations and Netflix's Probe dataset

Can we create inferences based on attributes of a movie?

- Based on model, can use other attributes to improve on recommendation
- Calculated RMSE improves from previous recommendation model

Observe trends in the movie industry and what people enjoy?

- Visualizations on movie type, genre, director, actor, etc
- Visualizations on movie attributes over time

Thank you!