

Gradient Flow Provably Learns Robust Classifiers for Orthonormal GMMs

Hancheng Min, René Vidal

INTRODUCTION

- NNs are often vulnerable to adversarial attacks
- [Pal et al., 2023]: If data is "concentrated and separated", Authentic Input

How can we find such robust classifiers by training NNs?

Problem: Training shallow networks for binary classification problems with orthogonal GMMs

pReLU network,
$$p \ge 1$$
; $\theta := \{w_j, v_j\}_j^h$

$$f_p(x; \theta) = \sum_{j=1}^h v_j \frac{\sigma^p(\langle x, w_j \rangle)}{\|w_j\|^{p-1}}, \ \sigma : \text{ReLU}$$

Data: samples from balanced mix. of Gaussians

 $\mathcal{N}(\mu_1, \alpha^2 I), \cdots, \mathcal{N}(\mu_{K_1}, \alpha^2 I)$ K_1 pos. clusters $\mathcal{N}(\mu_{K_1+1}, \alpha^2 I), \cdots \mathcal{N}(\mu_K, \alpha^2 I)$ K_2 neg. clusters

Cluster centers: μ_1, \cdots, μ_K are orthonormal

Class average: $\mu_+ \coloneqq \sum_{k=1}^{K_1} \mu_k$, $\mu_- \coloneqq \sum_{k=K_1+1}^K \mu_k$

Neurons visualized at initialization

 \mathbf{x} : Positive data $\{x_i: y_i = +1\}$ o : Neurons $\{w_j\}$

x: Negative data $\{x_i: y_i = -1\}$ -: Neuron directions $\{\frac{w_j}{\|w_i\|}\}$ -: Oluster centers

CRUCIAL ROLE OF IMPLICIT BIAS

- Small initialization \Longrightarrow Two-phase neuron dynamics (direction $\frac{w_j}{\|w_j\|}$ first, then norm $\|w_j\|$)
- First alignment phase: Neuron move towards $x^{(p)}(w_j)$

$$\frac{d}{dt} \frac{w_j}{\|w_j\|} \approx \mathcal{P}_{w_j}^{\perp} \left(\sum_{i: \langle x_i, w_j \rangle > 0} x_i p \cos^{p-1}(x_i, w_j) y_i \right)$$

$$\mathcal{P}_{w_j}^{\perp} \coloneqq \left(I - \frac{w_j w_j^{\top}}{\|w_i\|^2} \right) \qquad \chi(p)(w_i)$$

• Depending the value of p, neurons learn different directions

GRADIENT FLOW PROVABLY LEARNS ROBUST CLASSIFIERS

Observations

Neurons visualized

at the end of training

oss: $\mathcal{L} = \sum_{i=1}^{n} \ell(y_i f_p(x_i; \theta))$ ℓ : exp. or logistic loss Gradient flow (GF) with

small initialization: $\dot{\theta} = -\nabla_{\theta} \mathcal{L}, ||\theta(0)|| \ll 1$

- Vulnerability of ReLU net persists even after: adding layers (MLP), change activations (Tanh, LogReg)
- Carefully chosen activation is the solution

Theorems

Provable vulnerability of ReLU (Prior works)

[Frei et al., 2023]: Any ReLU network trained by GF/GD is non-robust against $\mathcal{O}(1/\sqrt{K})$ -radius ℓ_2 attacks

[Li et al., 2025]: ReLU network trained by GD with small initialization: $f_1(x; \theta_T) \propto F(x) = \sigma(\langle x, \mu_+ \rangle) - \sigma(\langle x, \mu_- \rangle)$

[Min and Vidal, 2024]: F(x) is non-robust against $\mathcal{O}(1/\sqrt{K})$ -attacks

Provable robustness of of pReLU (This work)

pReLU network (p > 2) trained by GF with small initialization:

$$f_p(x;\theta_T) \propto F^{(p)}(x) = \sum_{k=1}^{K_1} \sigma^p(\langle x, \mu_k \rangle) - \sum_{k=K_1+1}^K \sigma^p(\langle x, \mu_k \rangle)$$

 $F^{(p)}(x)$ (p large) \approx Bayes classifier \Longrightarrow Robust against $\mathcal{O}(1)$ -attack: Let p>2, then $\forall \delta \in (0,\sqrt{2}]$,

$$\mathbb{P}\left(\min_{\|d\| \le 1} \left[F^{(p)} \left(x + \frac{\sqrt{2} - \delta}{2} d \right) y \right] > 0 \right) \ge 1 - 2(K+1) \exp\left(-\frac{CD\delta^2}{2\alpha^2 K^2} \right)$$

Optimal robust classifier: clusters are separated by $\sqrt{2}$ distance $\sqrt{2}/2$ is the maximum achievable robustness w.o. clean acc drop

References

Pal et al., Adversarial examples might be avoidable: The role of data concentration in adversarial robustness. NeurIPS, 2023.

Frei et al., The double-edged sword of implicit bias: Generalization vs. robustness in ReLU networks. NeurIPS, 2023.

Li et al., Feature averaging: An implicit bias of gradient descent leading to non-robustness in neural networks. ICLR, 2025

Min and Vidal, Can implicit bias imply adversarial robustness? ICML, 2024