Unit 2.1: Understanding Parallelism

Video lesson 3: Speed-up and efficiency

Eduard Ayguadé, Josep Ramon Herrero, Daniel Jiménez and Gladys Utrera

> Barcelona Supercomputing Center Universitat Politècnica de Catalunya

Motivation: Mandelbrot set

• The Mandelbrot set is the set of complex numbers p in a delimited two-dimensional space for which the sequence $z_{n+1}=z_n^2+p$ (starting with $z_0=0$):

$$p, p^2 + p, (p^2 + p)^2 + p, ((p^2 + p)^2 + p)^2 + p, \dots$$

fulfils $|z_{\infty}| < 2$

Motivation: Mandelbrot set


```
n = 0; z.real = z.imag = 0;
do {
  temp = z.real*z.real - z.imag*z.imag + p.real;
  z.imag = 2*z.real*z.imag + p.imag;
  z.real = temp;
  norm_sq = z.real*z.real + z.imag*z.imag;
} while (norm_sq < (2*2) && ++n < max);</pre>
```

limiting the exploration of the sequence up to a maximum number of steps (n < max)

Motivation: Mandelbrot set

• The plot of the Mandelbrot set is created by coloring each point p in the complex plane according to the number of steps n (dark in the plot above if (n=max)

- Assume a task corresponds with the computation of the previous recurrence for a set of consecutive rows of the two-dimensional space
- Embarrassingly parallel decomposition of the problem in tasks

... but heavily unbalanced in terms of computational load

 If we execute the tasks generated in a machine with a single processor ...

the execution time is $T_1=1034929,\,\mathrm{which}$ we will take as reference time for the sequential execution

• What if we execute with 2 processors?

resulting in an execution time of $T_2=528859$ time units, 1.95 times faster than the sequential execution

Load unbalance

Task creation overhead

 $T_4 = 324489, 3.18$ times faster

 $T_8 = 318018, 3.25 \text{ times faster}$

 $T_{16} = 318018, 3.25 \text{ times faster}$

Execution time bounds on P processors

- T_p = execution time on P processors
- Task scheduling: how are tasks assigned to processors? For example:

- Lower bounds
 - $T_p \ge T_1/P$
 - $T_p \ge T_\infty$

Speed-up

Speedup S_p : relative reduction of the sequential execution time when using P processors

- In this example:

$$T_2 = 40$$
, $S_2 = 47/40 = 1.175$

Scalability and efficiency

- Scalability: how the speed-up evolves when the number of processors is increased
- Efficiency: $E_p = S_p \div P$

Strong vs. weak scalability

Two usual scenarios to evaluate the scalability of one application:

- Increase the number of processors P with constant problem size (strong scaling \rightarrow reduce the execution time)
- Increase the number of processors P with problem size proportional to P (weak scaling \rightarrow solve larger problem)

Performance improvement is limited by the fraction of time the program does not run in fully parallel mode

- ullet Parallel part is 5 times faster: $Speedup_{parallel_part} = 50/10 = 5$
- Parallel version is just 1.67 times faster: $S_p=100/60=1.67$, $E_p=1.67/5=0.33$

Assume the following simplified case, where the parallel fraction φ is the fraction of time the program can run in parallel

$$T_1 = T_{seq} + T_{par}$$
$$\varphi = T_{par}/T_1$$

$$T_1 = (1 - \varphi) \times T_1 + \varphi \times T_1$$

$$\begin{split} T_P &= T_{seq} + T_{par}/P \\ T_P &= (1-\varphi) \times T_1 + (\varphi \times T_1/P) \end{split}$$

From where we can compute the speed–up S_P that can be achieved as

$$S_p = \frac{T_1}{T_p} = \frac{T_1}{(1 - \varphi) \times T_1 + (\varphi \times T_1/P)}$$
$$S_p = \frac{1}{((1 - \varphi) + \varphi/P)}$$

Two particular cases:

$$\varphi = 0 \to S_p = 1$$

 $\varphi = 1 \to S_p = P$

When $P \to \infty$ the expression of the speed-up becomes

$$S_{\infty} \to \frac{1}{(1-\varphi)}$$

Sources of overhead

Parallel computing is not for free, we should account overheads (i.e. any cost that gets added to a sequential computation so as to enable it to run in parallel)

Amdahl's law (with constant and linear overheads)

$$T_p = (1 - \varphi) \times T_1 + \varphi \times T_1/p + overhead(p)$$

Conclusions of Amdahl's Law

Amdahl's Law can be overly pessimistic:

• Parallel processing might not be worthwhile if there is a large amount of inherently sequential code.

However, often in practice . . .

- The goal of applying parallelism is to increase the accuracy of the solution that can be computed in a fixed amount of time.
 - ightarrow Treat time as constant and let problem size increase with P.
- The serial part grows slowly or remains fixed
 - \rightarrow It's proportion gets reduced as the problem size increases.

 Speedup grows as workers are added and the problem size is increased. (Weak Scaling).

Unit 2.1: Understanding Parallelism

Video lesson 3: Speed-up and efficiency

Eduard Ayguadé, Josep Ramon Herrero, Daniel Jiménez and Gladys Utrera

> Barcelona Supercomputing Center Universitat Politècnica de Catalunya

