Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

MATEMATIKA – 2018

sem vlepiť čiarový kód uchádzača

Test obsahuje **20 úloh**. Na jeho vypracovanie máte **90 minút**. Každá úloha spolu so zadaním obsahuje aj miesto na zapísanie odpovede – je označené hrubším rámikom.

Povolené pomôcky: modré alebo čierne pero. Pomocné výpočty môžete robiť na voľné miesto v tomto teste alebo na papier, ktorý dostanete. **Nemôžete používať** žiadne iné pomôcky (napr. kalkulačku, mobil, vlastný papier a pod.).

Za správnu odpoveď na jednu úlohu získate 1 **bod** (ak úloha obsahuje viacero otázok alebo odpoveď má viacero častí, tak bod získate iba vtedy, keď správne zodpoviete všetky tieto otázky, resp. časti), inak za odpoveď získate 0 bodov.

Odpovede píšte na vyznačené miesto perom. Ak nie je v zadaní úlohy uvedené inak, zapisujte číselné odpovede ako desatinné čísla (teda napr. 2031 alebo – 315,7).

Ak sa pri zapisovaní odpovede **pomýlite**, zreteľne prečiarknite chybnú odpoveď a novú odpoveď vpíšte čitateľne opäť na vyznačené miesto. Pri hodnotení sa bude prihliadať iba na **odpovede**, ktoré sú **jednoznačne čitateľné a napísané na mieste určenom na zapísanie odpovede k príslušnej úlohe**.

Rekapitulácia hodnotenia:

	počet bodov		počet bodov
strana 2 (úlohy 1 – 6)		strana 5 (úlohy 14 – 17)	
strana 3 (úlohy 7 – 8)		strana 6 (úlohy 18 – 20)	
strana 4 (úlohy 9 – 13)			
		celkový počet bodov	

Dátum: 12. 6. 2018. Test vyhodnotil/a (podpis)

1	Výraz $x^2 - 4x + 8$ možno upraviť na tvar $(x - a)^2 + b$.	a =
	Nájdite hodnoty <i>a, b</i> .	b =

- Pre body A, B, C platí |AB| = 3, |BC| = 4. Aká najväčšia a aká najmenšia môže byť vzdialenosť |AC|? najmenšia =
- Aritmetický priemer dvoch čísel je 70. Ak jedno z týchto dvoch čísel označíme *c*, tak druhé číslo je
 - (A) 70 c,
 - (B) $70 \frac{c}{2}$,
 - (C) 140 c
 - (D) $140 \frac{c}{2}$.

- Sem napíšte písmeno správnej odpovede:
- 4 V nasledujúcom texte vyberte vždy správnu z možností kladné/záporné:

Číslo
$$\left(\frac{2}{3}\right)^4 - 1$$
 je kladné/záporné,

vybrali ste možnosť

číslo
$$\left(\frac{3}{4}\right)^{-\frac{2}{3}} - 1$$
 je kladné/záporné,

vybrali ste možnosť

preto
$$\frac{\left(\frac{2}{3}\right)^4 - 1}{\left(\frac{3}{4}\right)^{-\frac{2}{3}} - 1}$$
 je kladné/záporné číslo.

vybrali ste možnosť

- Množiny *A, B* sú disjunktné, množina *A* má 5 prvkov, množina *B* 10 prvkov. Koľko 6-prvkových podmnožín množiny *A* ∪ *B* obsahuje práve 2 prvky množiny *A*?
- **6** Ak na riešenie rovnice $2\sin^2 x + 3\cos x 4 = 0$ použijeme substitúciu $\cos x = t$, dostaneme po úprave rovnicu
 - (A) $2t^2 + 3t 4 = 0$,
 - (B) $2t^2 + 3t + 2 = 0$,
 - (C) $2t^2 + 3t 2 = 0$,
 - (D) $2t^2 3t + 2 = 0$,
 - (E) $2t^2 3t 4 = 0$,
 - (F) $2t^2 3t 2 = 0$.

Sem napíšte písmeno správnej odpovede: 7 Na obrázku sú grafy funkcií

$$f: y = x^3 - x^2 + 2x + 3$$
 a $g: y = x^2 + 7x - 3$,

ktoré sa pretínajú v bodoch s x-ovými súradnicami -2, 1 a 3.

V každej z nasledujúcich dvoch viet doplňte jednu z možností "f, g":

Neprerušovaná čiara je graf funkcie

vybrali ste možnosť

Prerušovaná čiara je graf funkcie

vybrali ste možnosť

Zapíšte množinu všetkých riešení nerovnice

$$x^3 - x^2 + 2x + 3 > x^2 + 7x - 3$$

ako zjednotenie intervalov.

8 Vypočítajte objem V telesa, ktoré vznikne rotáciou pravouhlého trojuholníka na obrázku okolo jeho dlhšej odvesny. Výsledok zapíšte v tvare násobku čísla π .

$$V = \cdot \pi$$

3

9

Postupnosť $\{a_n\}_{n=1}^{\infty}$ je určená rekurentne:

$$a_1 = 2$$
, $a_{n+1} = a_n + 2n$.

Vypočítajte, akú hodnotu má člen a_{100} .

10

Nájdite najmenšiu a najväčšiu hodnotu p, pre ktorú má rovnica $4 \sin x = p$ aspoň jedno riešenie.

najmenšia = najväčšia =

11

Na obrázku sú znázornené uhly x, a, b, c.

Pre veľkosť uhla *x* platí

(A)
$$x = 180^{\circ} - a - b - c$$
,

(B)
$$x = 180^{\circ} + a - b - c$$
,

(C)
$$x = 180^{\circ} - a + b - c$$
,

(D)
$$x = 180^{\circ} - a - b + c$$
.

Sem napíšte písmeno správnej odpovede:

12

Doplňte chýbajúce časti v nasledujúcom tvrdení o nepárnej funkcii f (chýbajúci text je označený DOPLŇTE).

Ak nepárna funkcia f rastie na intervale $\langle -3; -2 \rangle$ a klesá na intervale (0,1), tak musí

- rásť aj na intervale DOPLŇTE
- a klesať aj na intervale DOPLŇTE.

13

Ku kružnici *k* so stredom *S* a polomerom 5 sme viedli dotyčnicu bodom A, ktorého vzdialenosť od S je 13. Vypočítajte vzdialenosť A od bodu B, v ktorom sa táto dotyčnica dotýka kružnice k.

Voda pri zamrznutí na ľad zväčší svoj objem o $\frac{1}{11}$. O akú časť zmenší svo objem ľad pri rozmrznutí na vodu?					
	(A) $0 \frac{1}{12}$,	Sem napíšte písmeno správnej odpovede:			

(C) (D)

15	Nájdite číslo a tak, aby platilo $\log_a 2 + \log_a 4 = \frac{1}{3}$.	
13	trajente elete a tany ale y pravine 108a - 108a - 2	_
Ī		a =

18	Je známe, že platí toto tvrdenie: Počet kladných koreňov polynómu nie je väčší ako počet zmien znamienok jeho koeficientov.					
	(Za zmenu znamienka polynómu $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ pokladáme prípad, keď koeficient u nasledujúcej mocniny má opačné znamienko, pričom nulové koeficienty nezapočítavame; napr. polynóm $3x^5 - 4x^2 - 4x + 5$ má dve zmeny znamienok.)					
	Iba na základe tohto tvrdenia odhadnite počet kladných koreňov polynómu $x^7 + 5x^5 - x^4 - 2x^2 + x - 12$.					
	V odpovedi doplňte znak nerovnosti ≥ alebo ≤ a prirodzené číslo. Počet kladných koreňov je znak prirodzené nerovnosti číslo					
19	Jedným z riešení nasledujúcej "obrázkovej úlohy" je dvojica $X = 10$, $Y = 3$. Nájdite ďalšie riešenie.					

<i>Y</i> =	= 3. Nájdit	e ďal	šie riešenie.				
	6 m ²		X	,		X =	
	6 m ²	Y	15 m ²	,	5 m	Y =	
▼ 8 m							

Náhodne zvolíme dve čísla $a, b \in (0; 2)$. Aká je pravdepodobnosť, že existuje trojuholník s dĺžkami strán a, b, 1?

Výsledok zapíšte ako zlomok v základnom tvare ležiaci v intervale $\langle 0; 1 \rangle$.

KONIEC TESTU