

Spectra processing, statistical analysis and functional integration using MetaboAnalyst 5.0

TA: Zhiqiang Pang

Zhiqiang.pang@xialab.ca | www.xialab.ca

McGill University, Montreal, QC Canada

Acknowledgements

Schedule

Part I: 8:15 AM - 10:15 PM

- **8:15 8:30**: Opening lecture (Jeff)
- 8:30 8:50: Section 1: LC-MS spectral processing (Qiang)
- 8:50 9:15: Section 1: Hands-on
- 9:20 9:45: Section 2: Stats I simple experimental design (Jessica)
- 9:45 10:15: Section 2 Hands on

Part II: 10:30AM - 12:30PM

- **10:30 10:50**: Section 3: Functional analysis (Yao)
- 10:50 11:10: Section 3: Hands on
- 11:15 11:40: Section 4: Stats II complex experimental design (Jessica)
- 11:40 12:15: Section 4: Hands-on
- **12:15 12:30**: Summary (Jeff)

How are molecules different from each other?

Molecules are made of atoms.

They can have different **mass** based on the **types of their atoms**.

They can have different **shapes and polarity** based on the **arrangement of their atoms**.

How can we measure these things with LC-MS?

Therefore, the **location** that the ionized molecule collides with the detector is associated with the **mass** of the molecule

Can we uniquely identify compounds?

The higher the machine's resolution, the more we can narrow down the possibilities

e.g. m/z = 157.0318

 $C_7H_8O_2S;$ $C_4H_4N_4O_{3;}$

Furfuryl thioacetate; Allantoxanamide; Orotic acid; etc...

What does MS1 data look like?

The MS performs hundreds of 'scans' per second. Each scan measures the m/z values for all compounds that enter the MS during that time window (retention time).

Not all molecules from the same compound exit the column at *exactly* the same time (range). The mass spec will measure different intensities at a specific m/z value over different time points, creating a peak

What does MS1 data look like?

This is what the raw data looks like: peaks of intensity values over time, for many different m/z values. This is the input for the MS1 raw data processing algorithm in MetaboAnalyst.

What is raw spectra (pre-)processing?

- Convert the raw spectra data from MS instrument into metabolic features (MS peaks);
- Usually contains 2~3 dimensions. For DI-MS, the raw spectra includes m/z and intensity (2D); while for the LC-MS, the raw spectra data includes m/z, retention time and intensity (3D);
- The most common vendor raw data file formats are .raw/.RAW/.wiff/.d/.D/ etc. They need to be converted into open-source format for further processing with open-source software.

Profile or Centroid?

- The vendor raw spectra data is usually in profile format, which is redundant for regular LC-MS based metabolomics analysis;
- We need to convert the MS data into centroid mode to condense the Gaussian Profile peaks into centroids.
- Open-source formats (.mzML/ etc.)..

Open-source Software for raw spectra processing...

centWave

ROI Extraction

- Data-driven ROI extraction;
- Regions with high abundance of MS signals;
- Both low intensity peaks as well as high intensity peaks will be retained;

DoE-based Parameter Optimization

DoE -- Central composite design

3 level for every parameters (-1, 0, 1)

- The most important parameters are evaluated with 44 DoE runs
- Instead of 3⁸ = 6561 one-variable-at-a-time runs.

Performance Evaluation - Speed

+ 3 datasets: Standard Mixture (SM), NIST-SRM 1950 and IBD data from iHMP2.

Benchmark Studies - 1

Table 1
Qualitative peak picking results of the different tools using different settings.

Methods	Total Peaks	True Peaks	Quantified Consensus	Gaussian Peak Ratio
Default	16,896	382	350	47.8%
IPO	24,346	744	663	52.0%
AutoTuner	25,517	664	603	40.5%
MetaboAnalyst	18,044	799	754	64.4%

Pang Z, Chong J, Li S, Xia J. MetaboAnalystR 3.0: Toward an Optimized Workflow for Global Metabolomics. Metabolites. 2020 May 7;10(5):186. doi: 10.3390/metabo10050186. PMID: 32392884; PMCID: PMC7281575.

Benchmark Studies - 2

	Default	Optimized		
Total peaks	2,492	2,423		
Isotopes / Adducts	667 (26.8%)	1,112 (45.9%)		
Formula Assigned	663	762		
Potential compounds	1,085	1,692		
Variance (PC1 + PC2)	37%	50%		
Significant peaks	855	1,091		

	Default	Optimized
Total peaks	4,344	5,113 (+ 17.7%)
Isotopes	760	1,274 (+ 67.6%)
Adducts	927	1,132 (+ 22.1%)
Formulas assigned	632	687 (+ 8.7%)
Potential compound matches	1,587	1,803 (+ 13.6%)
Variance explained (PC1 +	,	
PC2)	76.5%	81.3% (+ 4.8%)

Benchmark Studies - 3

Correlations of Dilution Series (MS1, C18 ESI⁺)

Preprocessing of MS data

Summarize peaks

- Uniquely identify each peak: retention time and m/z value Calculate the relative intensity in each sample

m/z value

Retention time

Sample	X1014	X1049	X1068	X1070	X1071	X1073	X1074	X1075	X1076	X1078
85.02798773 398.845656	91281.129	295971.19	244257.92	82883.828	357387.91	314793.29	296933.07	259134.23	316398.3	298981.38
85.03918591_540.7198895	20368705	23645645	27541993	20197810	20698441	27700133	18903295	21151136	22135283	23551889
85.0393 418 2_206.8491361	100801.73	147630.84	128838.32	48201.572	14503.911	94388.175	147840.04	94226.848	47368.725	86117.51
85.05850153_553.5489174	28578.672	NA	42871.286	45854.92	31862.665	42511.683	16638.517	21645.293	42802.335	47630.422
85.06447722_552.8676506	64506.008	36993.153	64365.242	21970.254	22431.698	42717.702	49608.002	61113.878	45457.694	31242.437
85.07557123_503.1977875	5185552	6545664.8	4849575.1	7455068.2	4687812.5	8568037.4	5092330.2	3961282.2	6480194.6	7331818.4
85.07616337_141.9029172	82899.952	207861.36	50610.657	79208.885	225161.43	NA	347408.98	236485.2	776251.79	164112
85.0838011_198.0411769	85303.336	123532.16	91254.97	66497.463	172721.72	236255.05	47396.288	78663.557	189683.64	245493.04
85.50950642_172.3411474	339908.68	321187.16	322001.53	255557.48	330914.06	254245.84	NA	NA	290287.6	298955.37
85.51517772_50.65023803	118159.94	112972.04	114059.62	113950.95	167858.69	103292.57	86749.39	82707.461	119298.44	107657.2
85.5363475_41.45434989	53482.821	17514.179	35163.947	36411.914	59951.47	51123.602	41371.083	30019.615	22520.943	47343.966
85.96264165_42.73935005	81788.089	78215.738	50882.903	65819.686	73752.586	57479.55	71399.888	42905.115	49373.813	68847.43
86.00545485_545.3171583	46468 886	40671.699	23324.775	36142.339	31310.553	56563.276	26034.229	NA	NA	29480./62
86.01779309_54.25356378	57728.236	36204.919	31645.834	63374.773	42848.297	70339.755	NA	46788.918	78406.509	49801.696
86.03613685_568.0578201	120163.19	121293.45	137159.94	118697.36	114696.1	147598.85	95348.512	97339.544	120371.54	117616.77
86.04255464_546.3279646	773051.95	675716.91	764306.84	716529.31	614985.95	775433.46	527588.69	666915.52	719938.04	659466.81
86.05953662_575.4776799	1305749	986112.65	1107787.1	896955.61	623282.13	622941.45	627053.74	507228.47	1017792.5	491771.67
86.05955314_395.2147633	1151506.4	827450.26	484189.22	252791.25	1586988.1	522492.9	1083396.6	410343.24	291013.34	591663.48
86.0596265_321.9552286	2306641.6	2636648.8	2057971	2244866.3	2813936.3	2650464.4	2521397.2	2291594.2	2794708.7	2986888.4
86.07101485_545.5074342	18024.92	48694.834	39266.12	NA	21814.652	14367.843	NA	16065.358	11001.248	26206.676
86.07888004_507.2294891	186762.52	274866.34	292333	168433.73	130364.59	257889.76	129553.62	137593.85	315715.95	134660.58
86.08334857_524.9644006	NA	NA	51854.327	NA	55064.237	84586.362	38654.123	45651.322	54524.784	40857.812

Workflow Overview

• Our optimization approach is designed to extract a region abundant with MS signals for a design of experiment (DoE)-based optimization.

Xia Lab @ McGill (last updated 2022-06-17)

Functional Utilities

- Raw Data Uploading (.mzML/.mzXML/.mzData/.cdf);
- Centroiding on the fly;
- Parameters Optimization (automatically);
- Peak Profiling (Peak Picking/Alignment/Gap filling);
- Peak Annotation (Adducts + Isotopes);
- Putative Compound Mapping;
- Result visualization...

From raw spectra into biological insight

Demo Time

Raw data centroiding and conversion: 1 min; Raw spectral data uploading and Parameters' setting: 2min; Results Exploration: 2min;

Next version: MetaboAnalyst 6

Raw Data (.mzML/.mzXML/.msp)

MS and MS/MS Data Processing

Mapping into Biological Insights

Learning Questions..

- Which software is encouraged to use for raw data centroiding?
- What is the algorithm MetaboAnalyst is using for MS data preprocessing? And why?
- Generate an EIC plot (overlay of at least one sample from the three groups) for the most significant peak?

Tutorials

- https://github.com/xia-lab/Metabolomics 2023
- Publication: https://www.nature.com/articles/s41596-022-00710-w
- Or our manuscript: https://www.dropbox.com/s/7184c4dheeiiz2p/NP-MetaboAnalyst-2022.pdf?dl=0
 - Stage 1: LC-HRMS raw spectra processing;
- Questions? https://www.omicsforum.ca/
- If your question is not covered, please create a new topic we will try to answer them in the coming days.

Caution:

- 1. For raw spectra processing, you are strongly encouraged to use 1^{st} example rather than the 2^{nd} one to avoid waiting in queue for learning purpose;
- 2. Avoid downloading and uploading any example raw spectra data due to the limited bandwidth.
- 3. Default MetaboAnalyst includes www.metaboanalyst.ca, new.metaboanalyst.ca and genap.metaboanalyst.ca. please use either of them.