

Integración numérica de Simpson

Samuel Santos Lucas Castilla Iván Trujillo Trujillo

Universidad de La Laguna

17 de mayo de 2013

Facultad de Matemáticas Universidad de La Laguna

Motivación y Objetivos

- Motivación y Objetivos
- 2 Fundamentos Teóricos
 - Deducción del modelo a partir de la ecuación de la parábola

- Motivación y Objetivos
- 2 Fundamentos Teóricos
 - Deducción del modelo a partir de la ecuación de la parábola
- ③ Procedimiento experimental
 - Descripción de los experimentos
 - Descripción del material
 - Resultados obtenidos
 - Análisis de los resultados

- 1 Motivación y Objetivos
- 2 Fundamentos Teóricos
 - Deducción del modelo a partir de la ecuación de la parábola
- ③ Procedimiento experimental
 - Descripción de los experimentos
 - Descripción del material
 - Resultados obtenidos
 - Análisis de los resultados
- 4 Conclusiones

Motivación

Definición

...

Objetivos

Ejemplo

 Implementar un programa en Python que sea capaz de resolver el problema del cálculo del área bajo una función conocida en un intervalo cerrado.

Objetivos

- Implementar un programa en Python que sea capaz de resolver el problema del cálculo del área bajo una función conocida en un intervalo cerrado.
- Entender los conceptos básicos de la integración aproximada empleando el método de Simpson, para posteriormente, saber emplearlos en Python.

Samuel e Iván (ULL)

El método de Simpson se trata de un procedimiento por el cual se obtiene una estimación más exacta de una integral. Para ello se utilizan polinomios de orden superior para conectar los puntos, concretamente de orden 2, es decir, de la forma: $ax^2 + bx + c$.

En este procedimiento, se toma el intervalo de anchura 2h, comprendido entre x_i y x_{i+2} , y se sustituye la funcion f(x) por la parábola que pasa por los puntos (x_i, y_i) , (x_{i+1}, y_{i+1}) , y (x_{i+2}, y_{i+2}) .

Para demostrar el método de Simpson hay que asumir que cada sub área es un pequeño arco de parábola de la forma $ax^2 + bx + c$ cuyos límites son los siguientes: límite inferior en -h , límite superior en h y por ende la mitad de la sub área se encontrará en el punto 0, tal y como se ve en la figura 2.

Se procede a la integración de dicho arco de parábola entre los límites descritos:

Si se reemplazan cada uno de los límites y se quitan los corchetes se obtiene lo siguiente:

$$\frac{\mathsf{a}\mathsf{h}^3}{3} + \frac{\mathsf{b}\mathsf{h}^2}{2} + \mathsf{c}\mathsf{h} + \frac{\mathsf{a}\mathsf{h}^3}{3} - \frac{\mathsf{b}\mathsf{h}^2}{2} + \mathsf{c}\mathsf{h} = 2\frac{\mathsf{a}\mathsf{h}^3}{2\mathsf{c}\mathsf{h}}$$

Y si se simplifica obtenemos la ecuación 1 que se muestra a continuación: Ecuación 1:

$$\int_{-h}^{h} ((ax^2 + bx + c) dx = \frac{h}{3} [2ah^2 + 6c]$$

En la figura 3 se observa, respecto a las notaciones, las siguientes igualdades:

•
$$fx_i = y_i = f(-h)$$

En la figura 3 se observa, respecto a las notaciones, las siguientes igualdades:

•
$$fx_i = y_i = f(-h)$$

•
$$fx_{i+1} = y_{i+1} = f(0)$$

En la figura 3 se observa, respecto a las notaciones, las siguientes igualdades:

- $fx_i = y_i = f(-h)$
- $fx_{i+1} = y_{i+1} = f(0)$
- $fx_{i+2} = y_{i+2} = f(h)$

En la figura 3 se observa, respecto a las notaciones, las siguientes igualdades:

- $fx_i = y_i = f(-h)$
- $fx_{i+1} = y_{i+1} = f(0)$
- $fx_{i+2} = y_{i+2} = f(h)$

Entonces se podría obtener, evaluando la ecuación general $ax^2 + bx + c$ en cada uno de los puntos de la sub área [-h,0,h], el siguiente sistema de ecuaciones:

- $f(-h) = ah^2 bh + c$, se puede tomar esta altura como $y_0 = fx_i$.
- f(0) = c, se toma esta altura como $y_1 = fx_{i+1}$.
- $f(h) = ah^2 + bh + c$, y esta altura como $y_2 = fx_{i+2}$.

De lo anterior se puede deducir las siguientes dos ecuaciones:

Ecuación 2: $y_0 + y_2 = 2ah^2 + 2c$.

Ecuación 3: $y_i = c$.

Si se vuelve a la Ecuación 1 se ve que se puede expresar igualmente de la siguiente forma:

Ecuación 4: $\int_{-h}^{h} (ax^2 + bx + c) dx = \frac{h}{3} [2ah^2 + 2c + 4c].$

Si se remplaza las ecuanciones 2 y 3 en la Ecuación 4 se obtiene que:

Ecuación 5: $\int_{-h}^{h} (ax^2 + bx + c) dx = \frac{h}{3} [y_0 + 4y_1 + y_2] = A_1$.

Ahora se interpreta la Ecuación 5 con base en la sub área seleccionada A_1 para el desarrollo del método de Simpson, se diría que el área del segmento es igual a la suma de la altura o función evaluada en el lado izquierdo más cuatro veces la función evaluada en la parte central de la sub área más la función evaluada en el lado derecho de la sub área, y todo ello multiplicado por el ancho del sub área y dividido por 3. Si se toma a y b como x_0 y x_2 , y $f_i(x_i)$ se representa mediante un polinomio de Lagrange de segundo orden, luego la integral que quedaría sería la siguiente:

$$I = \int_{x_0}^{x_2} \left[\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} f(x_0) + \frac{(x-x_1)(x-x_2)}{(x_1-x_0)(x_1-x_2)} f(x_1) + \frac{(x-x_1)(x-x_2)}{(x_2-x_0)(x_2-x_2)} f(x_2) + \frac{(x-x_1)(x-x_2)}{(x_2-x_0)(x_2-x_2)} f(x_2) + \frac{(x-x_1)(x-x_2)}{(x_2-x_2)(x_2-x_2)} f(x_2) + \frac{$$

Después de integrar y de reordenar los términos, se obtiene como resultado la siguiente ecuación:

$$I = (b - a) \frac{f(x_0) + 4f(x_1) + f(x_2)}{6}$$

Samuel e Iván (ULL)

Método Simpson

17-05-2013

Procedimiento experimental

A continuación se procederá a describir el experimento realizado, los materiales empleados para su realización, los resultados obtenidos y a analizar dichos resultados.

En este experimentos se lleva a cabo la implentación e interpretación de un programa en Python que este capacitado para calcular el valor de una integral definida en un intervalo cerrado, una aproximación por el método de Simpson, halle los errores relativo y absoluto entre los dos valores obtenidos y realice la representación gráfica de la función que se desea integrar y la parábola generada por el método utilizado para su aproximación.

① La función con la que se ha trabajado es: $f(x) = \frac{1}{1+e^x}$.

- ① La función con la que se ha trabajado es: $f(x) = \frac{1}{1+e^x}$.
- ② Y el intervalo en la se definine es: $x \in [1, 6]$.

- ① La función con la que se ha trabajado es: $f(x) = \frac{1}{1+e^x}$.
- ② Y el intervalo en la se definine es: $x \in [1, 6]$.
- 3 Considerimos f'(x) como In $e^x \ln(e^x + 1)$

- ① La función con la que se ha trabajado es: $f(x) = \frac{1}{1+e^x}$.
- ② Y el intervalo en la se definine es: $x \in [1, 6]$.
- 3 Considerimos f'(x) como In $e^x \ln(e^x + 1)$
- La parabola ha representar viene dado por los puntos:
 - ① f(a)

- ① La función con la que se ha trabajado es: $f(x) = \frac{1}{1+e^x}$.
- ② Y el intervalo en la se definine es: $x \in [1, 6]$.
- 3 Considerimos f'(x) como In $e^x \ln(e^x + 1)$
- 4 La parabola ha representar viene dado por los puntos:
 - ① f(a)
 - g f(b)

- ① La función con la que se ha trabajado es: $f(x) = \frac{1}{1+e^x}$.
- ② Y el intervalo en la se definine es: $x \in [1, 6]$.
- 3 Considerimos f'(x) como In $e^x \ln(e^x + 1)$
- La parabola ha representar viene dado por los puntos:
 - ① f(a)
 - ② f(b)
 - $3 \quad f(\frac{a+b}{2})$

- ① La función con la que se ha trabajado es: $f(x) = \frac{1}{1+e^x}$.
- Y el intervalo en la se definine es: $x \in [1, 6]$.
- Considerimos f'(x) como $\ln e^x \ln(e^x + 1)$
- La parabola ha representar viene dado por los puntos:
 - ① f(a)
 - ② f(b)
 - $3 f(\frac{a+b}{2})$
- ⑤ Por tanto, la ecuación obtenida es: $y = 0.0169x^2 0.17x + 0.422$

Para la realización de este trabajo se ha hecho uso de los siguiente materiales:

① Computador con procesador Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz 2.39 GHz, una memoria RAM de 3,00 GB y como sistema Bardinux 3.4 Beta3 de 32 bits.

- Computador con procesador Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz 2.39 GHz, una memoria RAM de 3,00 GB y como sistema Bardinux 3.4 Beta3 de 32 bits.
- ② Texmaker y Kate (versiones 3.2 y 3.8.5, respectivamente) para escribir los codigos fuentes de LaTeX.

- © Computador con procesador Intel(R) Core(TM)2 Quad CPU Q6600 © 2.40GHz 2.39 GHz, una memoria RAM de 3,00 GB y como sistema Bardinux 3.4 Beta3 de 32 bits.
- ② Texmaker y Kate (versiones 3.2 y 3.8.5, respectivamente) para escribir los codigos fuentes de LaTeX.
- Para escribir el codigo de los programas hechos en Python se empleo el Kate.

- © Computador con procesador Intel(R) Core(TM)2 Quad CPU Q6600 © 2.40GHz 2.39 GHz, una memoria RAM de 3,00 GB y como sistema Bardinux 3.4 Beta3 de 32 bits.
- ② Texmaker y Kate (versiones 3.2 y 3.8.5, respectivamente) para escribir los codigos fuentes de LaTeX.
- Para escribir el codigo de los programas hechos en Python se empleo el Kate.
- Para registrar los cambios realizados en el trabajo y subirlos a GitHub se hizo uso de Git (1.7.9.5).

- Omputador con procesador Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz 2.39 GHz, una memoria RAM de 3,00 GB y como sistema Bardinux 3.4 Beta3 de 32 bits.
- ② Texmaker y Kate (versiones 3.2 y 3.8.5, respectivamente) para escribir los codigos fuentes de LaTeX.
- Para escribir el codigo de los programas hechos en Python se empleo el Kate.
- Para registrar los cambios realizados en el trabajo y subirlos a GitHub se hizo uso de Git (1.7.9.5).
- ⑤ El intérprete de Python (2.7.3) y el compilador de Tex (pdfTeX 3.1415926-1.40.10-2.2 (TeX Live 2009/Debian)) se emplearon como compiladores.

Resultados obtenidos

Valores de x	Y(funcion)	Y(parabola)
1.0000	0.2689	0.2689
1.2631	0.2204	0.2338
1.5263	0.1785	0.2011
1.7895	0.1431	0.1707
2.0526	0.1137	0.1427
2.3158	0.0898	0.1169
2.5789	0.0705	0.0935
2.8421	0.0551	0.0725
3.1052	0.0428	0.0538
3.3684	0.0333	0.0374
3.6316	0.0258	0.0233
3.8947	0.0199	0.0116
4.1579	0.0154	0.0023
4.4211	0.0119	-0.0048
4.6842	0.0092	-0.0095

Análisis de los resultados

Figura: Ejemplo de figura

Ejemplo

① El método de Simpson es algo complicado de demostrar si no se tienen cierto conocimientos matemáticos, por eso suele ser un método más sistemático.

16 / 17

- ① El método de Simpson es algo complicado de demostrar si no se tienen cierto conocimientos matemáticos, por eso suele ser un método más sistemático.
- ② El método de Simpson puede ser utilizado para comprobar el resultado de una integracion y sabemos que el error es mínimo.

Ejemplo

- El método de Simpson es algo complicado de demostrar si no se tienen cierto conocimientos matemáticos, por eso suele ser un método más sistemático.
- ② El método de Simpson puede ser utilizado para comprobar el resultado de una integracion y sabemos que el error es mínimo.
- ③ El método de Simpson facilita en gran medida la integracion de funciones muy difíciles de resolver por otros métodos.

17-05-2013

16 / 17

- El método de Simpson es algo complicado de demostrar si no se tienen cierto conocimientos matemáticos, por eso suele ser un método más sistemático.
- El método de Simpson puede ser utilizado para comprobar el resultado de una integracion y sabemos que el error es mínimo.
- ③ El método de Simpson facilita en gran medida la integracion de funciones muy difíciles de resolver por otros métodos.
- El método de Simpson es fácil de aplicar ya que solo hace falta utilizar una formula y hallar las imágenes de la funcion en tres puntos diferentes.

- El método de Simpson es algo complicado de demostrar si no se tienen cierto conocimientos matemáticos, por eso suele ser un método más sistemático.
- El método de Simpson puede ser utilizado para comprobar el resultado de una integración y sabemos que el error es mínimo.
- El método de Simpson facilita en gran medida la integracion de funciones muy difíciles de resolver por otros métodos.
- El método de Simpson es fácil de aplicar ya que solo hace falta utilizar una formula y hallar las imágenes de la funcion en tres puntos diferentes.
- El método de Simpson produce una mala aproximacion si la funcion en el intervalo cerrado presenta una recta o más de una curva.

- El método de Simpson es algo complicado de demostrar si no se tienen cierto conocimientos matemáticos, por eso suele ser un método más sistemático.
- ② El método de Simpson puede ser utilizado para comprobar el resultado de una integracion y sabemos que el error es mínimo.
- ③ El método de Simpson facilita en gran medida la integracion de funciones muy difíciles de resolver por otros métodos.
- ⑤ El método de Simpson produce una mala aproximacion si la funcion en el intervalo cerrado presenta una recta o más de una curva.
- ⑤ El método de Simpson es muy útil para funciones con una curva similar a una parábola en un intervalo cerrado.

- El método de Simpson es algo complicado de demostrar si no se tienen cierto conocimientos matemáticos, por eso suele ser un método más sistemático.
- ② El método de Simpson puede ser utilizado para comprobar el resultado de una integracion y sabemos que el error es mínimo.
- ③ El método de Simpson facilita en gran medida la integracion de funciones muy difíciles de resolver por otros métodos.
- ⑤ El método de Simpson produce una mala aproximacion si la funcion en el intervalo cerrado presenta una recta o más de una curva.
- ⑤ El método de Simpson es muy útil para funciones con una curva similar a una parábola en un intervalo cerrado.

Bibliografía

- Cálculo integral. Método de Simpson. (2006)
- Cálculo diferencial e integral. (1993)
- CTAN. http://www.es.scrib.com/doc/5784437/Metodo Simpson