Taxes, Debts, and Redistribution

Anmol Bhandari, David Evans, Mikhail Golosov, Thomas J. Sargent

December 5, 2014

Motivation

- ► How costly are high levels of government debt? What determines welfare cost of debt?
- Should the gov't try to reduce its initial high debt? If so, how quickly?
- How should tax rates, transfers, and government debt respond to aggregate shocks, especially if markets are incomplete?

Motivation

- Analysis with complete markets is well known:
 - Smooth distortionary costs of raising revenue
 - Labor taxes are (approximately) constant
 - Arrow securities used to finance all expenditure needs
- Another extreme is where the government has a "rich" enough set of tax instruments.

Our focus: Markets less than fully complete and there are limits to redistribution

Key ingredients

- Heterogeneity: Agents are heterogeneous in productivities and assets
- Instruments: A tax system that is linear in labor income and an intercept that is uniform across agents
- Markets: All agents trade a single security whose payoff might depend on aggregate shocks

Characterize optimal tax rate, transfers and asset purchases

US taxes: Affine taxes

Findings I

- Welfare cost of debt is determined by distribution of asset positions across agents
 - Ricardian logic: Increasing all agents' assets and reducing transfers keeps budget sets unaltered
 - Costs are lower when debt is more equally distributed
 - Credit constraints (if present) may weakly improve welfare
- ► **Ergodic distribution** of debts and taxes, in particular mean, variance and speed of convergence depend on
 - ▶ **Spanning ability:** correlation of returns on the traded asset with govt's needs for revenue, and
 - ► Redistribution concerns: Welfare weights relative to "market" weights that depend on wealth and productivities

Findings II

- ▶ What mechanisms drives long run debt and tax rates?
 - If interest rate co-moves with revenue needs: issue positive debt
 - ► Larger the correlation: lower the magnitude debt and higher is the speed of convergence
 - More redistributive governments: larger transfers and less incentives to accumulate assets
- Analytical results for quasilinear preferences and some extensions to more general preferences

Findings III

- **Calibration:** In the US data,
 - Correlation of interest rates and business cycles is small
 - ► In recent recessions, low income agents faced much larger drops in income than high income agents
- Optimal responses over business cycle
 - ▶ For short run responses, nature of shock matters
 - In recessions with high inequality: big increase in transfers and debt. moderate increase in tax rates
 - Normative predictions are very different from representative agent RBC models

Related literature

- Representative agent incomplete market economies
 - ▶ Barro (1974, 1979), Aiyagari et al (2002), Faraglia-Marcet-Scott (2012), Farhi (2010), etc
- Representative agent complete market economies
 - Lucas-Stokey (1983), Chari-Kehoe (1999), etc
- Heterogeneous agents with complete markets
 - Werning (2007), Azzimonti-Francisco-Krusell (2008)

Environment

- Uncertainty: Markov aggregate shocks s_t
- **Demography**: N types of infinitely lived agents (mass n_i) plus a benevolent planner
- **Technology**: Output $\sum_{i} n_i \theta_{i,t} I_{i,t}$ is linear in labor supplies.
- Preferences (Households)

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U^i \left(c_{i,t}, l_{i,t} \right)$$

▶ **Preferences** (Planner): Given Pareto weights $\{\omega_i\}$

$$\mathbb{E}_0 \sum_{i} \omega_i \sum_{t=0}^{\infty} \beta^t U_t^i(c_{i,t}, I_{i,t})$$

Asset markets: A risky bond with payoffs $P_t = \mathbb{P}(s_t|s_{t-1})$

Environment, II

▶ **Affine Taxes**: Agent *i*'s tax bill

$$-T_t + \tau_t \theta_{i,t} I_{i,t}$$

- ▶ Budget constraints Let $R_{t-1,t} = \frac{P_t}{q_{t-1}}$
 - Agent *i*: $c_{i,t} + b_{i,t} = (1 \tau_t) \theta_{i,t} I_{i,t} + R_{t-1,t} b_{i,t-1} + T_t$
 - ▶ Government: $g_t + B_t + T_t = \tau_t \sum_i n_i \theta_{i,t} I_{i,t} + R_{t-1,t} B_{t-1}$
- Market Clearing
 - Goods: $\sum_{i} n_i c_{i,t} + g_t = \sum_{i} n_i \theta_{i,t} I_{i,t}$
 - Assets: $\sum_i n_i b_{i,t} + B_t = 0$
- ▶ Initial conditions: $(\{b_{i,-1}, B_{-1}\}_i, s_{-1})$

Ramsey Problem

Definition

Allocation, price system, government policy: Standard

Definition

Competitive equilibrium: Given $(\{b_{i,-1}\}_i, B_{-1}, s_{-1})$ and $\{\tau_t, T_t\}_{t=0}^{\infty}$, a competitive equilibrium is an allocation and price system such that households are optimizing and markets clear

Definition

Optimal competitive equilibrium: A welfare-maximizing competitive equilibrium for a given $(\{b_{i,-1}\}_i, B_{-1}, s_{-1})$

Ricardian Equivalence

Result: A large set of transfers and asset profiles support the same competitive equilibrium allocation

Notation: $\tilde{b}_{i,t} = b_{i,t} - b_{1,t}$: relative assets of Agent *i*

Theorem

Given $(\{b_{i,-1}\}_i, B_{-1})$, let $\{\{c_{i,t}, l_{i,t}, b_{i,t}\}_i, B_t, R_t\}_t$ and $\{\tau_t, T_t\}_t$ be a competitive equilibrium.

For any bounded sequences $\left\{\hat{b}_{i,t}
ight\}_{i,t\geq -1}$ that satisfy

$$\hat{b}_{i,t} - \hat{b}_{1,t} = \tilde{b}_{i,t}$$
 for all $t \geq -1, i \geq 2$,

there exist sequences $\left\{\hat{T}_{t}\right\}_{t}$ and $\left\{\hat{B}_{t}\right\}_{t\geq -1}$ such that $\left\{\left\{c_{i,t}, I_{i,t}, \hat{b}_{i,t}\right\}_{i}, \hat{B}_{t}, R_{t}\right\}_{t}$ and $\left\{\tau_{t}, \hat{T}_{t}\right\}_{t}$ constitute a competitive equilibrium given $\left(\left\{\hat{b}_{i,-1}\right\}_{i}, \hat{B}_{-1}\right)$.

Ricardian Equivalence: Implications

- Present value of tax revenues and gov't debt is pinned down but not period-by-period transfers
- ► Can set $b_{i,t} = 0$ for any t, i or government without loss of generality
- Generally, more equally spread debt promised (implicit Social Security promises, debt in Japan) are less distortionary than debt skewed towards highly productive agents or foreigners (debt in Greece)
- **Extension:** Welfare is weakly higher with exogenous borrowing constraints of the form $b_{i,t} > \underline{b}_i$

Characterization of optimal policy: Road map

- Active channels:
 - 1. Limited hedging ability
 - 2. Concerns for redistribution
- Analytical results:
 - 1. Quasi Linear preferences : $u(c, l) = c \frac{l^{1+\gamma}}{1+\gamma}$
 - 2. IID aggregate shocks
- 2 step build up:
 - 1. Assume first that there is one agent and no ability to use T
 - Use results to characterize outcomes in the more general settings with heterogeneous agents and no restriction on transfers
 - 3. Allows us to disentangle hedging and redistribution motives
 - 4. Informative about the setup with multiple agents where transfers are unrestricted but their costs are endogenously high

Single agent quasi-linear economy with $T\equiv 0$

Let $V(B_{-})$ be the maximum ex-ante value the government can achieve with assets B_{-} .

$$V(B_{-}) = \max_{c(s),l(s),B(s)} \sum_{s} \pi(s) \left\{ c(s) - \frac{l(s)^{1+\gamma}}{1+\gamma} + \beta V(B(s)) \right\}$$

subject to

$$c(s) - B(s) = I(s)^{1+\gamma} - \beta^{-1}P(s)B_{-1}$$
$$c(s) + g(s) \le \theta I(s)$$

$$\underline{B} \leq B(s) \leq \bar{B}$$

Single agent quasi-linear economy with $T\equiv 0$

▶ Decompose the set of payoffs:

$$\mathcal{P}^* = \left\{ P(s) : P(s) = 1 + rac{eta}{B^*} (g(s) - \mathbb{E}g) ext{ for some } B^* \in [\overline{B}, \underline{B}]
ight\}$$

Spanning condition that supports complete market allocations

Invariant distribution

Theorem

1. Suppose $P \notin \mathcal{P}^*$, there is an invariant distribution of government assets such that

$$\forall \epsilon > 0, \quad \Pr\{B_t < \underline{B} + \epsilon \text{ or } B_t > \overline{B} - \epsilon \quad i.o\} = 1$$

2. Suppose $P(s) - P(s') > \beta \frac{g(s) - g(s')}{B}$ $\forall s, s'$, then for large enough government assets (or debt) there is a drift towards the interior region. In particular the value function V(B) is strictly concave and there exists $B_1 < B_2$ such that

$$\mathbb{E}V'(B(s)) > V'(B_{-}) \quad B_{-} > B_2$$

and

$$\mathbb{E}V'(B(s)) < V'(B_{-}) \quad B_{-} < B_{1}$$

3. Suppose $P(s) \in \mathcal{P}^*$, then the long run government assets converge to a degenerate steady state

$$\lim_{t} B_{t} = B^{*} \quad a.s \quad \forall B_{-1}$$

Perfect spanning

- ▶ For $P(s) \in \mathcal{P}^*$, we can replicate complete markets perfectly asymptotically
- Target assets

$$B^* = \beta \frac{\operatorname{var}(g(s))}{\operatorname{cov}(P(s), g(s))}$$

- ▶ Tax rate is constant in long run and inversely related to B^* .
- ▶ Use this to construct an approximation for the ergodic distribution of debt and taxes of an economy with P(s) "close" enough to \mathcal{P}^* . In particular split P(s)

$$P(s) = \hat{P}(s) + P^*(s)$$

where $P^*(s) \in \mathcal{P}^*$ and $\hat{P}(s)$ is orthogonal to g(s). More details

Imperfect spanning

Theorem

The ergodic distribution of debt (under the first order approximation of dynamics near $P^*(s)$) has the following properties,

- ▶ Mean: The ergodic mean is B* which corresponds to the steady state level of govt. assets of an economy with payoff vector P*(s)
- ▶ **Variance:** The coefficient of variation of assets satisfies

$$\frac{\sigma(B)}{\mathbb{E}(B)} = \sqrt{\frac{\operatorname{var}(P(s)) - |\operatorname{cov}(g(s), P(s))|}{(1 + |\operatorname{cov}(g(s), P(s))|)|\operatorname{cov}(g(s), P(s))|}} \le \sqrt{\frac{\operatorname{var}(\hat{P}(s))}{\operatorname{var}(P^*(s))}}$$

► Convergence rate: The speed of convergence to the ergodic distribution is

$$\frac{\mathbb{E}_{t-1}(B_t - B^*)}{(B_{t-1} - B^*)} = \frac{1}{1 + |\operatorname{cov}(P(s), g(s))|}$$

Ergodic distribution

Figure : Ergodic distribution for debt and taxes in the representative agent quasilinear economy for three choices P(s).

Summary and next steps

So far: In a single agent - quasilinear - no transfers economy we saw that,

- Target level of assets maximizes spanning
 - taxes are constant when perfect spanning is achieved
- When markets are imperfect, can be far away from the target
 - invariant distribution of taxes also has large support
- Speed of moving to the target debt level depends on covariance of asset payoff and shocks
 - ▶ low covariance ⇒ slow speed

Next: A version with heterogeneous agents and no restrictions on transfers

- ► This adds a new instrument to hedge shocks but welfare cost of using transfers is endogenous
- ➤ The single agent results are informative about cases where these costs are large

Heterogeneous agents

Suppose we have 2 agents

- Quasi-linear preferences as before
- ▶ Productivities: $\theta_1 > \theta_2 = 0$
- ▶ Pareto weights, mass of Agent 1 and 2: $\{\omega, 1-\omega\}$ and $\{n, 1-n\}$ respectively
- Non-negative consumption: $c_2 \ge 0$

Normalize $b_{2,t} = 0$, thus $B_t = -nb_{1,t}$ are interpreted to be government assets

Heterogeneous Agents

Theorem

Let ω , n be the Pareto weight and mass of the productive agent with $n<\frac{\gamma}{1+\gamma}$. The optimal tax, transfer and asset policies $\{\tau_t,T_t,B_t\}$ are characterized as follows,

- 1. For $\omega \geq n\left(\frac{1+\gamma}{\gamma}\right)$ we have $T_t=0$ and the optimal policy is same as in our representative agent economy studied
- 2. For $\omega < n\left(\frac{1+\gamma}{\gamma}\right)$, suppose we assume that $P(s) \notin \mathcal{P}^*$ and $\min_s \{P(s)\} > \beta$. There exists $\mathcal{B}(\omega)$ and $\tau^*(\omega)$ with $\mathcal{B}'(\omega) > 0$ such that

2.1
$$B_- > \mathcal{B}(\omega)$$

$$T_t > 0$$
, $\tau_t = \tau^*(\omega)$, and $B_t = B_- \quad \forall t$

2.2
$$B_{-} \leq \mathcal{B}(\omega)$$

$$T_t > 0$$
 i.o., $\lim_t \tau_t = au^*(\omega)$ and $\lim_t B_t = \mathcal{B}(\omega)$ a.s

Concerns for redistribution

- Balancing costs of fluctuations in tax rates and transfer
 - fluctuations in taxes is costly: deadweight loss
 - fluctuations in transfers is costly: deviations from target level of redistribution
- ightharpoonup For large ω transfers are costly as the planner gives resources to unproductive agents
- ▶ For low ω , transfers are used:
 - For low initial debt, interior solution: All shocks hedged by transfers
 - For high debt, accumulate assets until costs of transfers are equalized to costs of collecting labor taxes
- ▶ The more redistributory the planner is:
 - bigger average tax rates and transfers
 - less need to accumulate assets for precautionary reasons

Risk aversion

- With risk aversion: for a (generic) set of parameters there is asset allocation replicating complete market economy
 - ▶ arguments harder since "real" interest rates $\mathbb{E}_t U'(c_{t+1}) R(s_{t+1}) / U'(c_t)$ is endogenous
- Same general flavor as quasi-linear economy
 - cost of fluctuations in transfers comes from cost of fluctuation in $U_c \iff$ similar to multiplier on constraint $c \ge 0$ in quasi-linear case
 - ▶ If real payoffs are positively correlated with *g* : accumulate assets
 - ▶ If real payoffs are (sufficiently) negatively correlated with g : accumulate debt
 - absolute amount of asset/debt is decreasing in redistributive objective

Numerical exercise

Solve N=5 agent economy with realistic level and movements in wage dispersion across booms and recessions

- Long run dynamics: Study settings that differ in covariance of interest rates and output
- Transient dynamics: Study outcomes in recessions that are accompanied by higher inequality

Aggregate shocks affect,

1. Wages:

$$\log \theta_i = \epsilon [1 + (.9 - d(i))m]$$

2. Payoffs:

$$P = 1 + \chi \epsilon$$

Calibrating *m*: Inequality over business cycles

Figure : Change in log average earnings during recessions, prime-age males from Guvenen et all [2014]

Calibrating χ : Ex post variation in Payoffs

Let $q_t^{(n)}$ be the log price of a nominal bond of maturity n. We can define the real holding period returns $r_{t,t+1}^{(n)}$ as follows

$$r_{t,t+1}^{(n)} = q_{t+1}^{(n-1)} - q_t^{(n)} - \pi_{t+1}$$

With the transformation $y_t^{(n)}:-\frac{1}{n}q_t^{(n)}$ we can express $r_{t,t+1}^{(n)}$ as follows:

$$r_{t,t+1}^{(n)} = \underbrace{y_t^{(n)}}_{\text{Ex-ante part}} - (n-1) \left[\underbrace{\left(y_{t+1}^{(n)} - y_t^{(n)}\right)}_{\text{Interest rate risk given } n} + \underbrace{\left(y_{t+1}^{(n-1)} - y_{t+1}^{(n)}\right)}_{\text{Term structure risk}} \right] - \underbrace{\pi_{t+1}}_{\text{Inflation risk}}$$

Interest rates and TFP

- In the model the holding period returns are given by $\log \left\lfloor \frac{P_{t+1}}{q_t^1} \right\rfloor$ and $q_t^1 = \frac{\beta \mathbb{E}_t u_{c,t+1} P_{t+1}}{u_{c,t}}$.
- P_{t+1} allows us to captures ex-post fluctuations in returns to the government's debt portfolio coming from maturity and inflation.
- ▶ Since ϵ_t is i.i.d over time in our calibration $\chi = \frac{\sigma_r}{\sigma_\epsilon} Corr(r, \epsilon)$

Using data on labor productivity ϵ_t and $\{q_t^n\}_n$:

Maturity (n)	2yr	3yr	4yr	5yr
$Corr(\epsilon_{t+1}, r_{t,t+1}^{(n)})$	-0.11	-0.093	-0.083	-0.072
$Corr(\epsilon_{t+1}, r_{t,t+1}^{(n)} - ny_t^{(n)})$	0.00	-0.0463	-0.080	-0.091
$Corr(\epsilon_{t+1}, y_t^{(n)} - \pi_{t+1})$	-0.097	-0.086	-0.080	-0.073
$\frac{\sigma(r_{t+1}^n)}{\sigma(\epsilon_{t+1})}$	0.820	0.835	0.843	0.845

Calibration

Parameter	Value	Description	
$\{\bar{\theta}_i\}$	{1 , 1.4, 2.1, 3.24, 4.9}	Wages dispersion for {10,25,50,75,90} per-	
		centiles	
γ	2	Average Frisch elasticity of labor supply of	
		0.5	
β	0.98	Average (annual) risk free interest rate of	
		2%	
m	1.5 .8 -0.06	Changes in dispersion	
χ	-0.06	covariance between holding period returns	
		and labor productivity	
σ_e	0.03	vol of labor productivity	
g	.13 %	Average pre-transfer expenditure- output	
		ratio of 12 %	

Table: Benchmark calibration

The Pareto weights and initial distribution of wealth are chosen to match an average tax rate of 20%, and debt to gdp ratio of 100%, transfers to gdp ratio of 10%, and deciles of US wealth distribution

Long run

Figure : The red, black and blue lines plot simulations for a common sequence of shocks for values of $\chi=-1.0,0,1.0$ respectively

Long run: Speed of convergence

Figure : The plot shows conditional mean paths for different values of χ . The red (blue) lines have $\chi < 0$ ($\chi > 0$). The thicker lines represent larger values

Spreading of tax rates

Figure : Tax rate for a sequence of -1 s.d shocks to aggregate productivity

Short run

Let us denote consecutive period of negative (positive) one s.d ϵ shocks a "recession" (boom)

- ▶ Engineer a recession of four periods from t = 3. Before and after this recession, the economy receives $\epsilon_t = 0$.
- Decompose responses into TFP component and inequality component:

Baseline:
$$\log \theta_i = \epsilon [1 + (.9 - d(i))m]$$

Only TFP:

$$\log \theta_i = \epsilon$$

Only Ineq:

$$\log \theta_i = \epsilon[(.9 - d(i))m]$$

Recessions with higher inequality

Figure : The bold line is the total response. The dashed (dotted) line reflects the only TFP (inequality) effect. The shaded region is the recession

Tfp and Tfp+Ineq recessions: Sample moments

Moments	Tfp	Tfp + Ineq
vol. of tax rates	0.003	0.006
vol. of transfers	0.01	0.02
autocorr. in tax rates	0.93	0.66
autocorr. in transfers	0.17	0.18
corr. of taxes with tfp	0.15	-0.63
corr. of transfers with tfp	0.99	-0.98

Table : These are sample moments averaged acrosss simulations of 100 periods

Conclusion

- ► Size of government debt alone is not informative ⇒ need to know the net distribution of assets in the economy
- Ignoring heterogeneity produces misleading results about size and direction of the optimal policy response
- ► The better ability we have to tax assets, the less debt matters and can approximate complete markets closer

Credit limits

Impose $b_{i,t} \ge \underline{b}_i$ and extend the definition of competitive eqb. in the obvious way. Now we have

Theorem

Given an initial asset distribution $(\{b_{i,-1}\}_i, B_{-1})$, let $\{c_{i,t}, l_{i,t}\}_{i,t}$ and $\{R_t\}_t$ be a competitive equilibrium allocation and interest rate sequence in an economy without exogenous borrowing constraints. Then for any exogenous constraints $\{\underline{b}_i\}_i$, there is a government tax policy $\{\tau_t, T_t\}_t$ such that $\{c_{i,t}, l_{i,t}\}_{i,t}$ is a competitive equilibrium allocation in an economy with exogenous borrowing constraints $(\{b_{i,-1}, \underline{b}_i\}_i, B_{-1})$ and $\{\tau_t, T_t\}_t$.

back

Ergodic distribution: Linear approximation

- ▶ For a given P(s), g(s), we can compress the equilibrium conditions to two functions $b(\mu_-)$ and a law of motion $\mu(s|\mu_-)$
- ▶ Instead of approximating near a deterministic steady state we,
 - explicitly recognize that policy rules depend on payoffs: $\mu(s|\mu_-, \{P(s)\}_s)$ and $b(\mu_-, \{P(s)\}_s)$
 - ▶ take the first order expansion with respect to both μ_- and $\{P(s)\}$ around the vector $(\bar{\mu}, \{\bar{P}(s)\}_s)$ where $\bar{P}(s) \in \mathcal{P}^*$:
- ▶ The choice of $\bar{P}(s)$ is pinned down by

$$\min_{\tilde{P}\in\mathcal{P}^*}\sum_s\pi(s)(P(s)-\tilde{P}(s))^2.$$

The law of motion approximated by

$$\mu_t - \mu^* = (\mu_{t-1} - \mu^*)B(s_t) + C(s_t)$$

More details on cases with risk aversion

- ▶ With risk aversion ||S|| = 2 is necessary for a steady state to exist
- Existence: Consider an economy consisting of two types of households with only one productive agent and i.i.d binary shocks to his productivity

Theorem

Suppose
$$u(c, l) = \ln c - \frac{1}{2}l^2$$
 and $g < \theta(s)$ for all s . Let $x = U_c^2(s) [b_2(s) - b_1(s)]$

- 1. Countercyclical interest rates. If $P(s_H) = P(s_L)$, then there exists a steady state (x^{SS}, ρ^{SS}) such that $x^{SS} > 0$, $R^{SS}(s_H) < R^{SS}(s_L)$.
- 2. **Procyclical interest rates.** There exists a pair $\{P(s_H), P(s_L)\}$ such that there exists a steady state with $x^{SS} < 0$ and $R^{SS}(s_H) > R^{SS}(s_L)$.

In both cases, tax rates $\tau(s) = \tau^{SS}$ and ratio of consumption $\frac{c_1}{c_2}$ are independent of the realized state.

▶ We then develop a test for local stability as in the quasilinear case.

Ramsey problem: Recursive formulation

Split into two parts

1. $\mathbf{t} \geq \mathbf{1}$: Ex-ante continuation problem with state variables $(\mathbf{x}, \boldsymbol{\rho}, s_{-})$

$$\begin{split} \mathbf{x} &= \beta^{-1} \left(U_{c,t-1}^2 \tilde{b}_{2,t-1}, ..., U_{c,t-1}^I \tilde{b}_{I,t-1} \right) \\ \boldsymbol{\rho} &= \left(U_{c,t-1}^2 / U_{c,t-1}^1, ..., U_{c,t-1}^I / U_{c,t-1}^1 \right) \end{split}$$

2. $\mathbf{t} = \mathbf{0}$: Ex-post initial problem with state variables (\mathbf{b}_{-1}, s_0)

Bellman Equation for $t \geq 1$

$$V(\mathbf{x}, \boldsymbol{\rho}, s_{-}) = \max_{c_i(s), l_i(s), \mathbf{x}'(s), \rho'(s)} \sum_{s} \Pr(s|s_{-}) \left(\left[\sum_{i} \pi_i \alpha_i U^i(s) \right] + \beta V(\mathbf{x}'(s), \rho'(s), s) \right)$$

where the maximization is subject to

$$\begin{aligned} U_c^i(s)\left[c_i(s)-c_1(s)\right] + U_c^i(s)\left(\frac{U_c^i(s)}{U_c^i(s)}I_i(s) - \frac{U_l^1(s)}{U_c^1(s)}I_1(s)\right) + \beta x_i'(s) &= \frac{\mathbf{x}_i P(s|s_-)U_c^i(s)}{\mathbb{E}_{s_-}\mathbf{U}_c^i} \text{ for all } s, i \end{aligned}$$

$$\frac{\mathbb{E}_{s_-}P\mathbf{U}_c^i}{\mathbb{E}_{s_-}P\mathbf{U}_c^1} &= \rho_i \text{ for all } i \geq 2$$

$$\frac{U_l^i(s)}{\theta_i(s)U_c^i(s)} &= \frac{U_l^1(s)}{\theta_1(s)U_c^1(s)} \text{ for all } s, i \geq 2$$

$$\sum_i n_i c_i(s) + g(s) &= \sum_i n_i \theta_i(s)I_i(s) \quad \forall s$$

$$\rho_i'(s) &= \frac{U_c^i(s)}{U_c^1(s)} \text{ for all } s, i \geq 2$$

$$\underline{\mathbf{x}}_i(s; \mathbf{x}, \rho, s_-) \leq x_i(s) \leq \bar{x}_i(s; \mathbf{x}, \rho, s_-)$$

Bellman equation for t = 0

$$V_{0}\left(\{\tilde{b}_{i,-1}\}_{i=2}^{I}, s_{0}\right) = \max_{c_{i,0}, l_{i,0}, x_{0}, \rho_{0}} \sum_{i} \pi_{i} \alpha_{i} U^{i}(c_{i,0}, l_{i,0}) + \beta V\left(x_{0}, \rho_{0}, s_{0}\right)$$

where the maximization is subject to

$$\begin{split} U_{c,0}^{i}\left[c_{i,0}-c_{1,0}\right] + U_{c,0}^{i}\left(\frac{U_{l,0}^{i}}{U_{c,0}^{i}}I_{i,0} - \frac{U_{l,0}^{i}}{U_{c,0}^{1}}I_{1,0}\right) + \beta x_{i,0} &= U_{c,0}^{i}\tilde{b}_{i,-1}P(s_{0}) \text{ for all } i \geq 2 \\ \\ \frac{U_{l,0}^{i}}{\theta_{i,0}U_{c,0}^{i}} &= \frac{U_{l,0}^{1}}{\theta_{1,0}U_{c}^{1,0}} \text{ for all } i \geq 2 \\ \\ \sum_{i} n_{i}c_{i,0} + g_{0} &= \sum_{i} n_{i}\theta_{i,0}I_{i,0} \\ \\ \rho_{i,0} &= \frac{U_{c,0}^{i}}{U_{c,0}^{1}} \text{ for all } i \geq 2 \end{split}$$