PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-016843

18.01.2000

(43) Date of publication of application:

(51)Int.CI.

C04B 7/32

C04B 28/06

C04B 35/66

F27D 1/16

//(C04B 28/06

C04B 22:06

C04B103:24

(21)Application number: 10-187329

(71)Applicant: DENKI KAGAKU KOGYO KK

(22)Date of filing:

02.07.1998

(72)Inventor: KOGA YUJI

SAKAI HIROTOMO TAKADA MAKOTO

(54) ALUMINA CEMENT, ALUMINA CEMENT COMPOSITION, ITS AMORPHOUS REFRACTORY, AND SPAY APPLICATION USING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an amorphous refractory not needing its scrapping, even when left in a device after the finish of a spray application, capable of being stored, used also at the next day or later, reducing the cost of the application and saving labors, and having a long pot life, to provide an alumina cement composition, and to provide a method for spraying and applying the amorphous refractory.

SOLUTION: Calcium aluminate comprises crystalline portions and amorphous portions, and has a mineral composition comprising 60-95 wt.% of CaO.2Al2O3, 5-30 wt.% of 2CaO.Al2O3.SiO2, and ≤10 wt.% of CaO.Al2O3. An alumina cement comprises the calcium aluminate and α -alumina having an average particle diameter of $\leq 10~\mu m$ and a BET specific surface area of ≤5 m2/g. An alumina cement composition comprises the alumina cement and a curing retardant. An amorphous refractory comprises the alumina cement composition and a refractory aggregate. A method for spraying and applying the amorphous refractory comprises combinedly using the amorphous refractory and an accelerating agent.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-16843

(P2000-16843A)

(43)公開日 平成12年1月18日(2000.1.18)

(51) Int.Cl.		識別記号	FI C04B 7	7/32		テーマコード(参考) 4G012
C 0 4 B	7/32			8/06		4G033
	28/06			5/66	В	4K051
	35/66				D	
F 2 7 D	1/16	審查請求		1/16 (の数11 O 	C L (全10頁)	最終頁に続く
(21)出願番		特顧平10-187329	(71) 出願人	電気化学工	業株式会社	
(22)出廣日		平成10年7月2日(1998.7.2)	(72)発明者	古賀 祐司	2田市新開町1	"目4番1号 電気化学工業株
			(72)発明者	福岡県大名	智 全田市新開町 1 全田工場内	電気化学工業株
			(72)発明者	福岡県大学	争田市新開町 1 争田工場内	電気化学工業株
						最終頁に続く

(54) 【発明の名称】 アルミナセメント、アルミナセメント組成物、その不定形耐火物、及びそれを用いた吹付施工方法

(57)【要約】

【課題】 吹付施工が終了しても装置内に残った不定形耐火物を廃棄する必要が無く、保管しておくことが可能となり、翌日以降も使用可能である、コスト低減が可能であり、作業の軽労化が図れる、可使時間が著しく長いアルミナセメント組成物、不定形耐火物、及びその吹付施工方法を提供すること。

【解決手段】 結晶質と非晶質からなり、鉱物組成のCa 0・ $2Al_2O_3$ が $60\sim95$ 重量%、2CaO・ Al_2O_3 ・ SiO_2 が 5 ~ 30 重量%、及びCaO ・ Al_2O_3 が10重量%以下であるカルシウムアルミネート、該カルシウムアルミネートと平均粒子径が 10μ m以下でBET比表面積が $5\,m^2/g$ 以下の α -アルミナとを配合したアルミナセメント、該アルミナセメントと硬化遅延剤とを配合したアルミナセメント組成物、耐火骨材と該アルミナセメント組成物とを配合した不定形耐火物、該不定形耐火物と急結剤を併用した吹付施工方法を構成とする。

2

【特許請求の範囲】

【請求項1】 結晶質と非晶質とを含有してなり、結晶質の鉱物組成の $Ca0 \cdot 2A1_2O_3$ が $60 \sim 95$ 重量%、 $2Ca0 \cdot A1_2O_3 \cdot SiO_2$ が $5 \sim 30$ 重量%、及び $Ca0 \cdot A1_2O_3$ が10重量%以下であることを特徴とするカルシウムアルミネート。

【請求項2】 ガラス化率が50%以上であることを特徴とする請求項1記載のカルシウムアルミネート。

【請求項3】 請求項1又は2記載のカルシウムアルミネートを含有してなるアルミナセメント。

【請求項4】 請求項1又は2記載のカルシウムアルミネートと、α-アルミナとを配合してなるアルミナセメント。

【請求項5】 α -アルミナが、平均粒子径 10μ m以下 でBET比表面積 $5m^2/g$ 以下であることを特徴とする 請求項4記載のアルミナセメント。

【請求項6】 請求項3~5のうちの1項記載のアルミナセメントを含有してなるアルミナセメント組成物。

【請求項7】 請求項3~5のうちの1項記載のアルミナセメントと硬化遅延剤とを配合してなるアルミナセメント組成物。

【請求項8】 硬化遅延剤が、リン酸類、ホウ酸類、ケイフッ化物、オキシカルボン酸類、ポリカルボン酸類、ポリオキシアルキレン類、及び糖類からなる群より選ばれた一種又は二種以上であることを特徴とする請求項7記載のアルミナセメント組成物。

【請求項9】 耐火骨材と、請求項6~8のうちの1項 記載のアルミナセメント組成物とを配合してなる不定形 耐火物。

【請求項10】 請求項9記載の不定形耐火物を圧送ポ 30 ンプで吹付ノズルに輸送し、吹付ノズルで圧縮空気と共 に急結剤を不定形耐火物に添加し、吹付施工することを 特徴とする吹付施工方法。

【請求項11】 急結剤が、リチウム化合物、アルミン酸塩、ケイ酸塩、及びカルシウムアルミネート類からなる群より選ばれた一種又は二種以上であることを特徴とする請求項10記載の吹付施工方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高炉出銑樋、混銑 40 車、取鍋、及びタンディシュ等の内張り材として使用されるカルシウムアルミネート、アルミナセメント、アルミナセメント組成物、不定形耐火物、及びそれを用いた吹付施工方法に関する。

[0002]

【従来の技術とその課題】不定形耐火物を吹付けすることは、従来より実施されていた。最近、不定形耐火物を湿式吹付けで施工することは、型枠が不要である、部分補修が容易である、及び発塵やリバウンドロスが少ないなどの面から、流し込み施工と比べて施工作業を大幅に 50

省力化できるので注目を浴びている。湿式吹付施工とは、既に混練された状態の材料をポンプで圧送して、吹付ノズルに輸送し、吹付ノズルで圧縮空気と共に急結剤を添加し、被施工体に吹付ける方法である(特公昭57-7350号公報、特公昭62-21753号公報、及び特公平2-33665号公報)。しかしながら、従来の湿式吹付施工は大量施工には適しているが、少量施工の場合、材料のロスが多いのでコストアップになるという課題があった。特に、アルミナセメントをバインダーとして使用した不定形耐火物は、通常、混練してから1日以内に凝結するので、施工終了後、装置内に残った不定形耐火物を抜き出し廃棄しているのが現状である。

【0003】前記課題を鋭意検討した結果、本発明者は、特定のカルシウムアルミネート、アルミナセメント、又はアルミナセメント組成物を配合してなる不定形耐火物を使用することによって、前記課題が解消できることを知見し本発明を完成するに至った。

[0004]

20

【課題を解決するための手段】即ち、本発明は、結晶質 と非晶質とを含有し、結晶質の鉱物組成のCaO ・2Al₂O₃ が60~95重量%、2CaO・ Al₂O₃・ SiO₂ が5~30重量 %、及びCaO · Al₂O₃が10重量%以下であるカルシウム アルミネートであり、ガラス化率が50%以上である該カ ルシウムアルミネートであり、該カルシウムアルミネー トを含有する、また、該カルシウムアルミネートと、平 均粒子径が10μm以下でBET比表面積が5m²/g以下の α -アルミナとを配合するアルミナセメントであり、該 アルミナセメント、また、該アルミナセメントと硬化遅 延剤とを配合したアルミナセメント組成物であり、硬化 遅延剤が、リン酸類、ホウ酸類、ケイフッ化物、オキシ カルボン酸類、ポリカルボン酸類、ポリオキシアルキレ ン類、及び糖類からなる群より選ばれた一種又は二種以 上である該アルミナセメント組成物であり、耐火骨材 と、該アルミナセメント組成物とを配合した不定形耐火 物であり、該不定形耐火物を圧送ポンプで吹付ノズルに 輸送し、吹付ノズルで圧縮空気と共に急結剤を該不定形 耐火物に添加し、吹付施工する吹付施工方法であり、急 結剤が、リチウム化合物、アルミン酸塩、ケイ酸塩、及 びカルシウムアルミネート類からなる群より選ばれた一 種又は二種以上である該吹付施工方法である。

【0005】以下、本発明を詳細に説明する。本発明におけるカルシウムアルミネートは、石灰石や生石灰などのCaO 源、赤ボーキサイト等の天然原料をバイヤープロセス等の精製法により精製して得られた高純度アルミナやボーキサイト等のA1203 源、及びケイ石やシリカなどのSiO2源を所定の成分割合になるように配合し、電気炉、反射炉、縦型炉、平炉、シャフトキルン、及びロータリーキルン等の設備で、溶融及び/又は焼成して得られるクリンカーを粉砕したもので、結晶質と非晶質とを含有するものである。溶融法で本発明のカルシウムアル

4

ミネートを製造する場合、CaO 源、Al₂O₃ 源、及びSiO₂ 源を所定の割合で混合、若しくは、混合粉砕し、又は一 部混合後、さらに混合粉砕し、例えば、電気炉を用いて 1,600 ℃以上の温度で溶融することで得られるクリンカ ーを粉砕して本発明のカルシウムアルミネートが得られ る。焼成法で本発明のカルシウムアルミネートを製造す る場合は、同様に混合した原料を、例えば、ロータリー キルンを用いて 1,000~1,600 ℃の温度で焼成すること で得られるクリンカーを粉砕して本発明のカルシウムア ルミネートが得られる。本発明では、カルシウムアルミ ネートの結晶質の鉱物組成とその割合が重要であって、 CaO をC 、Al₂O₃ をA 、及びSiO₂をS とすると、CA₂ と C_2 ASの鉱物組成を含有することが重要である。また、カ ルシウムアルミネートとして、TiO2をT、Fe2O3をFと すると、CA2、C2AS、及びCAの鉱物組成の他に、さらに 原料から混入する不純物により生成するCTやC4AFなどと 示される鉱物組成を含有しているものも使用可能であ

【0006】鉱物組成の定量方法としては、回折線の強 度比測定法、内部標準法、Zevin 法、及びX線回折ピー ク分離法等があり、本発明においては、いずれの方法で も定量可能である。ここでいう回折線の強度比測定法 は、各鉱物の回折強度を相対的に表した値で示すもので あり、内部標準法とは、内部標準物質と試料を一定の割 合で混合し、成分濃度と回折線強度比との間には直線関 係が得られることを利用して、濃度が既知の標準試料で 検量線を作成し分析する方法である。また、Zevin 法と は、試料の平均質量吸収係数と回折線強度比を測定し、 n次の連立方程式を解くことにより各結晶相を定量する 方法であり、平均質量吸収係数は蛍光X線分析法又は化 学分析によって、試料の成分を定量し、算出することが できる。この他、X線回折ピーク分離法でも定量可能で あって、この方法は、試料の結晶やガラス相から測定す るものである。本発明においてはいずれの方法を使用し ても、鉱物組成やガラス化率を定量することが可能であ るが、測定が簡単で、精度が良い回折線の強度比測定法 又はZevin 法の使用が好ましい。

【0007】本発明では、カルシウムアルミネートの結晶質の鉱物組成割合を、CA2 が60~95重量%、C2ASが5~30重量%、及びCAが10重量%以下になるように製造することが重要である。CA2 が95重量%を越えると可使時間延長効果が低下する傾向があり、60重量%未満では急結剤との反応性が低下する傾向がある。本発明のカルシウムアルミネートの化学成分は、Ca0 20~30重量%、Si02 15~5重量%で、残部がAl2O3 であることが重要であり、Ca0 22~28重量%、Si0212~6 重量%で、残部がAl2O3 であることが重要であり、Ca0 22~28重量%、Si0212~6 重量%で、残部がAl2O3 であることがより好ましい。Ca0 が30重量%を越えるとCA生成量が多くなり、可使時間延長効果が低下する傾向がある。また、Ca0 が20重量%未満では非水硬性鉱物であるCa0・6Al2O3が生成しやすくなり、強度発現 50

性が低下する傾向がある。

【0008】カルシウムアルミネートのガラス化率は、 結晶中にCA2 とC2ASを含有する場合、高い方が可使時間 延長効果が得られるため、ガラス化率は50%以上である ことが重要である。ガラス化率が50%未満だと可使時間 延長効果が低下する傾向がある。ガラス化率は溶融又は 焼成した髙温のクリンカーを冷却する度合いにより調整 可能であり、急冷するとガラス化率が高くなる。クリン カーの粉砕には、通常、粉塊物の微粉砕用に使用され る、例えば、ローラーミル、ジェットミル、チューブミ ル、ボールミル、及び振動ミル等の粉砕機の使用が可能 である。これら粉砕機によって、クリンカーを平均粒子 径で10μm以下の粒度まで粉砕する。カルシウムアルミ ネートの平均粒子径は、重要特性である流動性、硬化 性、及び強度発現性に関連し、要求特性を得るためには 重要な管理ポイントであり、10μm以下が好ましく、5 μm以下がより好ましい。

【0009】本発明において使用するαーアルミナは、 不定形耐火物に配合した際の要求品質に応じて適宜決定 されるものであるが、流動性、硬化性、強度発現性、耐 スポーリング性、及び収縮率を小さくする面等、アルミ ナセメントの特性を大きく左右するため慎重に行うべき である。 α -アルミナは高温強度発現性や体積安定性を 付与させるものであり、バイヤープロセス等によって高 純度化処理された水酸化アルミニウムをロータリーキル ンで焼成して得られる精製アルミナであって、一般に は、高純度アルミナ、バイヤーアルミナ、易焼結アルミ ナ、及び軽焼アルミナ等と呼ばれるものである。 αーア ルミナの純度は、高ければ高いほど好ましく、Al₂O₃90 重量%以上が好ましく、98重量%以上がより好ましい。 通常のプロセスによって製造されたアルミナであればAl $_{2}0_{3}$ 90重量%以上の純度は確保可能である。さらに、 $_{lpha}$ -アルミナは、Al₂O₃ 純度の他に不純物としてのNa₂O量 が問題であって、Na20量が多いとアルミナセメントにし た際、流動性の低下、耐火性の低下、及び高温での収縮 発生等の課題が発生するため、Na₂0量は少ない方が好ま しく、0.5 重量%以下が好ましく、0.3 重量%以下の低 ソーダタイプのものがより好ましい。 α -アルミナは、 粉砕前の一次粒子径が平均粒子径で20~100 μm程度の ものであって、 $30\sim60\,\mu\,\mathrm{m}$ のものが好ましく、 $40\sim50\,\mu\,$ mのものがより好ましい。100 μmを越えると不定形耐 火物にした際の焼結強度が低下しやすく、20 μ m未満で は流動性が低下する傾向がある。通常、この一次粒子径 は、バイヤープロセスにおける水酸化アルミニウムの析 出速度に関連し、析出速度を遅くすると粒子径の大きい ものが得られ、逆に早くすると粒子径の小さいものが得 られる。また、αーアルミナの焼成度の指標はBET法 による比表面積であり、 $5m^2/g$ 以下が好ましく、 $1m^2/g$ 以下がより好ましい。焼成度は、比表面積が大きいもの ほど軽焼タイプのアルミナであることを示し、高温下で

30

使用した際、焼結性に優れるが収縮が大きくなる欠点も 有する。αーアルミナの比表面積が大きいとアルミナセ メントにした際の流動性が低下し、逆に小さいと流動性 が向上する傾向を示す。また、比表面積が大きいと不定 形耐火物として配合した際、高温での焼結性は向上する ものの、過焼結により、耐スポーリング性が低下し、収 縮も大きくなる傾向を示す。比表面積が小さいα-アル ミナを配合した不定形耐火物は、収縮が小さくなり、焼 結強度が低下する傾向がある。

【0010】本発明において、カルシウムアルミネート とα-アルミナとからアルミナセメントを製造する際の 混合・粉砕方法は、αーアルミナを単独でアルミナセメ ント相当の粒度、即ち、平均粒子径が1~5 μ mまで粉 砕後、前記カルシウムアルミネートと混合するか、カル シウムアルミネートのクリンカーとα-アルミナとを配 合し、混合粉砕する方法が可能である。本発明では、カ ルシウムアルミネートのクリンカーとαーアルミナとを 混合粉砕した方がアルミナセメント中にαーアルミナが 均一に混合されるため、不定形耐火物とした際、硬化体 組織が均一になり、耐食性が向上するなどの効果が得ら 20 れ好ましい。 α-アルミナの使用量は、カルシウムアル ミネートとα-アルミナの混合物中、CaO が5 ~15重量 %、Al₂O₃ が95~85重量%になるように配合する。 α ー アルミナの使用量を増加させると、耐火性や高温での焼 結強度は増加するが、養生強度や乾燥後の強度が低下 し、流動性も低下する傾向がある。また、CaO が多い と、不定形耐火物に使用した際の耐食性が低下する傾向 がある。

【0011】本発明では、可使時間延長効果を有する面 から、硬化遅延剤を併用することが好ましい。本発明で 使用する硬化遅延剤(以下遅延剤という)とは、アルミ ナセメントに通常使用されるものであり、具体的には、 リン酸類、ホウ酸類、ケイフッ化物、オキシカルボン酸 類、ポリカルボン酸類、ポリオキシアルキレン類、及び 糖類からなる群より選ばれた一種又は二種以上を併用す ることが好ましい。

【0012】リン酸類としては、ヘキサメタリン酸、ト リポリリン酸、ウルトラリン酸、ピロリン酸、及びオル トリン酸又はそれらの塩が挙げられ、ヘキサメタリン酸 とトリポリリン酸又はその塩が分散作用に優れるため好 40 ましく、飽和水溶液の p Hがアルカリ性であって、 p H が8.0~11.0であることがより好ましい。リン酸類の塩 としては、ナトリウム、カリウム、及びカルシウム塩が 挙げられ、入手のしやすさからナトリウム塩の使用が好 ましい。リン酸類の粒度は、200 メッシュ以下のもの が、混練り時に溶解しやすく、分散作用が優れるため好 ましく、品質的には、一般に医薬品や食品添加物などと して市販されているものが使用可能である。

【0013】ホウ酸類は、ホウ酸及びそのアルカリ塩と して、ナトリウム塩、カリウム塩、及びカルシウム塩等 50

があるが、そのうち、硬化遅延作用の強いホウ酸の使用 が好ましい。ホウ酸類の粒度は、流し込み用不定形耐火 物に混練した際、水に溶解し易いように小さい程好まし い。また、ホウ酸類の純度は特に限定されるものではな いが、現在、工業的に精製されているものの使用が可能 である。

【0014】ケイフッ化物としては、ケイフッ化ナトリ ウム、ケイフッ化カリウム、及びケイフッ化マグネシウ ム等の使用が好ましい。これらのうち、ケイフッ化ナト リウムの使用が硬化遅延作用が強いので好ましい。ケイ フッ化物の粒度は、アルミナセメントと混和した際、水 に溶解しやすいように、細かい程好ましく、100 メッシ ュ以下が好ましく、200 メッシュ以下がより好ましい。 ケイフッ化物の純度は特に限定されるものではないが、 現在、工業的に精製されているものの使用が可能であっ て、目的とするケイフッ化物の純度が80重量%程度以上 のものの使用が好ましい。

【0015】オキシカルボン酸類としては、クエン酸、 グルコン酸、酒石酸、リンゴ酸、及び乳酸又はそれらの 塩が挙げられる。オキシカルボン酸類の塩としては、ナ トリウム、カリウム、及びカルシウム塩が挙げられ、入 手のしやすさからナトリウム塩の使用が好ましい。オキ シガルボン酸類の粒度は、200 メッシュ以下のものが、 混練り時に溶解しやすく、分散作用が優れるため好まし く、品質的には、一般に食品添加物などとして市販され ているものが使用可能である。

【0016】ポリカルボン酸類としては、ポリアクリル 酸類、ポリメタクリル酸類、アクリル酸類・メタクリル 酸類共重合体、及びポリイタコン酸類が挙げられる。

【0017】ポリアクリル酸類としては、ポリアクリル 酸やその誘導体又はそれらのアルカリ塩や、ポリアクリ ル酸エステル共重合体又はそのアルカリ塩などが挙げら れ、共重合体としては架橋分岐型が好ましい。

【0018】ポリメタクリル酸類としては、メタクリル 酸メチル等の非官能性モノマー、メタクリル酸ジエチル アミノエチル等の一官能性モノマー、及びジメタクリル 酸エチレン等の多官能性モノマーに分類されるメタクリ ルモノマー、ポリメタクリル酸又はそのアルカリ金属 塩、並びに、共重合体を含むメタクリル酸エステル系合 成樹脂が挙げられる。

【0019】アクリル酸類・メタクリル酸類共重合体と は、アクリル酸類とメタクリル酸類が共重合したもので ある。アクリル酸類とメタクリル酸類の共重合の割合 は、アクリル酸類/メタクリル酸類が重量比で9/1~ 4/6の割合であることが好ましく、 $8/2\sim5/5$ の 割合の共重合体が分散作用に優れより好ましい。特に好 ましい共重合体の組み合わせは、アクリル酸ナトリウム /メタクリル酸ナトリウムの重量比が8/2~5/5で ある。アクリル酸類の割合が多過ぎると、流動性と可使 時間が早くなる傾向を示し、アクリル酸類の割合が少な

過ぎると、混練り時の粘性が高くなり、硬化遅延を生じ やすくなるばかりでなく、共重合が不可能となる傾向が ある。

【0020】ポリイタコン酸類としては、ポリイタコン 酸やその誘導体又はそれらのアルカリ塩や、ポリイタコ ン酸エステル共重合体又はそのアルカリ塩などが挙げら れ、共重合体としては架橋分岐型が好ましい。

【0021】本発明で使用するポリカルボン酸類のアル カリ塩としては、ナトリウム塩、カリウム塩、及びカル シウム塩等が使用可能であるが、入手しやすさからナト リウム塩の使用が好ましい。中でも、水に可溶で、固形 分90重量%以上、B型粘度計で測定した、25℃における 40重量%濃度のスラリー粘度が 10,000cps以下の可溶性 タイプのものの使用が、アルミナセメントの流動性を向 上する面から好ましく、1,000cps以下のものを使用する ことがより好ましい。本発明において、ポリカルボン酸 類のスラリーのイオン性や p Hは特に限定されるもので はないが、アルミナセメントと配合した際、より大きな 流動性を得るために、ポリカルボン酸類がアニオン性 で、かつ、25℃における1重量%濃度のスラリーのpH が中性からアルカリ性であることが重要で、特に、pH が7.5~10のものが好ましい。また、ポリカルボン酸類 は、ハンドリングの面から、粉末タイプであることが好 ましい。ポリカルボン酸類の粉末化は、液状品をスプレ ードライヤー等の乾燥機で乾燥処理するなどして製造す ることが可能である。

【0022】ポリオキシアルキレン類としては、具体的 には、ポリアルキレングリコールアクリル酸エステルの 共重合体、ポリアルキレングリコールアルケニルエーテ ルー無水マレイン酸共重合体、及びポリアルキレングリ コールモノエステル単量体・メタクリル酸共重合体等が 挙げられる。

【0023】糖類としては、多価アルコールのアルデヒ ド、ケトン、並びに、酸や多価アルコール自体及びそれ らの誘導体や置換体であり、具体的にはグルコース、フ ルクトース、デキストリン、及びショ糖等が挙げられ

【0024】遅延剤の種類の組み合わせは、アルミナセ メントによって適宜選択できるもので特に限定されるも のではなく、材料配合に合わせて組み合わせを変えるこ とが可能である。これら遅延剤の使用量は、可使時間延 長効果が得られる面から、アルミナセメント100 重量部 に対して、0.2~10重量部が好ましい。

【0025】本発明において、遅延剤の配合方法は特に 限定されるものではなく、各添加剤を所定の割合になる ように配合し、あらかじめ粉砕したクリンカーと、V型 ブレンダー、コーンブレンダー、ナウタミキサー、パン 型ミキサー、及びオムニミキサー等の混合機を用いて均 一混合するか、あるいは、所定の割合でクリンカーに配 合後、振動ミル、チューブミル、ボールミル、及びロー 50 せたアルミナ・ジルコニアクリンカー等の使用も可能で

ラーミル等の粉砕機で混合粉砕することが可能である。 さらに、本発明では、個々の遅延剤を、又は、遅延剤の 混合物を、100 ~200℃の温度で30分以上、好ましくは6 0分以上 180分以下、乾燥又は軽焼の熱処理をすること は、アルミナセメントに配合した際の流動性が向上する ため好ましく、特に、120~180℃で熱処理したものの 効果が著しい。本発明の遅延剤は、GC-MS、 C¹³-NMR 、HPLC、イオンクロマト、及びFT-IR等の機器分析や 放射化分析などで分析することが可能である。

【0026】本発明では、アルミナセメント組成物と耐 火骨材とを配合して不定形耐火物とする。耐火骨材とし ては、溶融マグネシア、焼結マグネシア、天然マグネシ ア、及び軽焼マグネシア等のマグネシア、溶融マグネシ アスピネルや焼結マグネシアスピネルなどのマグネシア スピネル、溶融アルミナ、焼結アルミナ、軽焼アルミ ナ、及び易焼結アルミナ等のアルミナ、シリカヒュー ム、コロイダルシリカ、軽焼アルミナ、及び易焼結アル ミナ等の超微粉、その他、溶融シリカ、焼成ムライト、 酸化クロム、ボーキサイト、アンダルサイト、シリマナ イト、シャモット、ケイ石、ロー石、粘土、ジルコン、 ジルコニア、ドロマイト、パーライト、バーミキュライ ト、煉瓦屑、陶器屑、窒化珪素、窒化ホウ素、炭化珪 素、及び窒化珪素鉄等が挙げられる。特に、本発明の不 定形耐火物においては、耐食性、耐用性、及び耐火性の 面から、マグネシアスピネル、アルミナ、及び超微粉の 中から選ばれた一種又は二種以上の耐火骨材を使用する ことが好ましい。

【0027】マグネシアスピネルとは、水酸化マグネシ ウムや仮焼マグネシアなどのMgO 源と、水酸化アルミニ ウムや仮焼アルミナなどのAloOa 源を、所定の割合にな るように調合し、ロータリーキルン等の焼成装置を用い て、約1,800 ~1,900 ℃の温度で反応・焼結させてスピ ネルクリンカーとしたもの、電気炉などの溶融装置で溶 融した溶融マグネシアスピネルを所定のサイズに粉砕 し、篩い分けしたもの、さらには、これら焼成したもの と溶融したものを混合したものなどである。マグネシア スピネルにおけるMgO $/Al_2O_3$ の重量比は、 $1/1\sim0$. 1 /1が好ましく、0.4 /1~0.2 /1が耐久性に優れ る面からより好ましい。

【0028】アルミナとは、水酸化アルミニウムや仮焼 アルミナなどのAl₂O₃源を、ロータリーキルン等の焼成 装置や電気炉等の溶融装置によって、焼結及び/又は溶 融したものを所定のサイズに粉砕し、篩い分けしたもの であって、鉱物組成としてα-Al₂O₃やβ-Al₂O₃などと示 される酸化アルミニウムであり、焼結アルミナ、仮焼ア ルミナ、及び易焼結アルミナ等と呼ばれるものであっ て、通常、Al₂O₃ を90重量%以上含有するαーアルミナ の使用が最も好ましい。また、アルミナとジルコニアを 溶融することで得られる、耐熱スポーリング性を向上さ ゙ある。

【0029】本発明において耐火骨材は、通常、5~3 mm、3~1 mm、1~0 mm、200 メッシュ下、及び325 メッシュ下等の粒度のものを要求物性に応じて配合する。【0030】本発明において、耐火骨材として、さらに、粒径が微小の粉体である超微粉を使用することが可能である。超微粉とは、粒径10 μ m以下の粒子が80重量%以上占める耐火性微粉末であって、平均粒子径が1 μ m以下で、BET法による比表面積が10m²/g以上のものが、不定形耐火物に配合した際、流動性が確保でき、高 10 強度を有するため好ましい。具体的には、シリカフューム、コロイダルシリカ、易焼結アルミナ、非晶質シリカ、ジルコン、炭化珪素、窒化珪素、酸化クロム、及び酸化チタン等の無機微粉が使用可能であり、このうち、シリカフューム、コロイダルシリカ、及び易焼結アルミナの使用が好ましい。

【0031】本発明の不定形耐火物の配合割合は、施工場所によって適宜決定すべきものであり特に限定されるものではない。本発明の不定形耐火物の製造方法は、特に限定されるものではなく、通常の不定形耐火物の製造20方法に準じ、各材料を所定の割合になるように配合し、V型ブレンダー、コーンブレンダー、ナウタミキサー、パン型ミキサー、及びオムニミキサー等の混合機を用いて均一混合するか、あるいは、所定の割合で混練り施工する際、混練り機に直接秤込むことも可能である。

【0032】また、本発明の不定形耐火物に、アルカリ 水と反応し水素ガスを発生する金属アルミニウムや金属 マグネシウムなどの発泡材や、ビニロン繊維、ポリプロ ピレン繊維、及び塩化ビニール繊維等の有機繊維、加熱 によりN2ガスを発生する繊維であるN2ガス発生分解繊維、乳酸アルミニウム等の塩基性コロイド、並びに、フミン酸類等の爆裂防止材を必要に応じて、硬化体乾燥時の爆裂防止の目的で、配合することが可能である。

【0033】さらに、本発明の不定形耐火物と水分との 材料分離を避けるために、メチルセルロース、カルボキ シメチルセルロース、ポリアクリルアミド変性物又はそ の共重合体、及びポリビニルアルコール等の増粘剤を配 合することも可能である。

【0034】不定形耐火物の混練時に使用する混練水量は、通常の流し込み可能な程度に設定するもので、粒度 40構成や耐火骨材の気孔率によって大きく影響を受けるが、概ね不定形耐火物 100重量部に対して、5~8重量部程度である。

【0035】本発明に係わる吹付施工とは、混練した不 定形耐火物をミキサーから圧送ポンプによって吹付ノズ ルに輸送し、該吹付ノズルで圧縮空気と共に急結剤を不 定形耐火物に混合し、吹付施工するものである。

【0036】本発明で使用する急結剤は、被覆面に吹付けた不定形耐火物にダレが生じないように凝結させる作用を有するものであり、液体、粉末のどちらでも使用可 50

能であるが、吹付施工する不定形耐火物中の水分量を必要最小限にとどめ、緻密にするには粉末の急結剤を使用するのが好ましい。急結剤の混合方法は、均一に分散するように圧縮空気をキャリアとして急結剤注入口から不定形耐火物と混合することが好ましい。液体の急結剤を不定形耐火物と混合する場合は、極力濃い水溶液を使用するのが低水量化で緻密化するため好ましい。急結剤としては、リチウム化合物、アルミン酸塩、ケイ酸塩、及びカルシウムアルミネート類、その他硬化促進剤の使用が可能である。特に、リチウム塩、アルミン酸塩、ケイ酸塩、及びカルシウムアルミネート類の中から選ばれた一種又は二種以上を配合するのが急結性が向上し、ダレの発生が無くなるので好ましい。

【0037】リチウム化合物とは、水酸化リチウム、塩化リチウム、炭酸リチウム、クエン酸リチウム、硝酸リチウム、及びフッ化リチウム等が挙げられ、塩化リチウムが急結性に優れているので好ましい。アルミン酸塩とは、アルミン酸ナトリウムやアルミン酸カリウムが挙げられ、入手が容易であって、安価であり、かつ、急結性に優れるアルミン酸ナトリウムの粉末又は水溶液を使用するのが好ましい。ケイ酸塩とは、ケイ酸ナトリウムやケイ酸カリウムなどが挙げられ、入手が容易であって、安価であるケイ酸ナトリウムの粉末又は水溶液を使用することが好ましい。カルシウムアルミネートであり、具体的にはC3A 又はC12A7 の鉱物組成を含有するものである。カルシウムアルミネート類の粒度は細い程急結性が向上し、平均粒子径で45μm以下が好ましい。

【0038】急結剤の使用量は、不定形耐火物100 重量30 部に対して、固形分換算で0.01~5重量部とするのが好ましい。0.01重量部未満だと急結性が不十分となり、吹付けた不定形耐火物にダレが発生したり、収縮が大きくなる傾向があり、5重量部を越えると急激に硬化し、強度が低下し、耐食性が低下する傾向がある。

[0039]

【実施例】以下、実験例に基づき本発明をさらに説明す ろ

【0040】実験例1

Ca0 源、A1₂O₃ 源、及びSiO₂源を所定の割合で配合し、電気炉を用いて、1,400~1,600 ℃で溶融後、急冷又は放冷してクリンカーを製造し、振動ミルで平均粒子径5μmになるように粉砕してカルシウムアルミネートを調製した。その化学成分と鉱物組成を表1に示す。20℃恒温室内で、カルシウムアルミネート10重量部、耐火骨材A70重量部、耐火骨材B10重量部、耐火骨材C10重量部、及び水6.2 重量部を配合し、モルタルミキサーで3分間混練りして不定形耐火物を作製した。作製した不定形耐火物について、ガラス化率、流動性、及び可使時間を測定した。結果を表1に併記する。

【0041】<使用材料>

特開2000-16843

12

Al₂O₃ 源 : 仮焼アルミナ、150 μm下

CaO 源: 生石灰粉、1 mm下SiO2源: シリカ粉、1 mm下

耐火骨材A:電融アルミナ、5~1 mm20重量部、1~0 mm20重量部、48F15重量部、325 F15重量部混合品

耐火骨材B:焼結スピネル、200 F

耐火骨材C:超微粉、焼結アルミナ、平均粒子径1.2 μ

m

【0042】<測定方法>

化学成分 : JIS R 2522に準じて分析

鉱物組成 :理学社製X線回折装置「RADIIB」によ

る回折強度比 d 値、CA=4.67 Å、 $CA_2=4.45$ Å、 $C_2AS=2.85$ Å、 α - アルミナ=2.55 Åの回折線の強度を用いて Zevin 法により算出

ガラス化率:鉱物組成と同様に算出

流動性: 3分混練り後、30分放置した混練物を用いて、フローテーブルにより15回タップした後の広がり径

を、JIS R 2521に準じて測定

可使時間:作製した不定形耐火物をビニール袋に移し

取り、流動性が無くなるまでにかかった時間

10 [0043]

【表1】

実験	クリン	化学	成分	皺	物組	成	ガラ	流		動	性	(mm)	可使	備考
No.	記号	CaO	SiO ₂	CA ₂	C.AS	CA	化率	3 分	30分	60分	90分	120 分	時間	1/88 43
I- 1	0	2 0. 0	1. 0	95	5	0	6 0	190	185	181	179	172	*	実施例
1- 2	(2)	2 4. 0	3. 0	90	10	0	70	196	190	187	183	180	*	実施例
1- 3	(3)	2 7. 0	7. 0	7 5	20	5	80	200	194	189	185	181	*	実施例
1- 4	3	3 0. 0	1 0. 0	60	3 0	10	90	203	195	192	190	186	*	実施例
1-5	(5)	2 2. 0	0. 5	98	2	0	60	152	134	128	124	122	3:10	比較例
1- 6	6	3 1. 0	9. 5	5 0	4 0	10	90	165	142	136	130	128	3:30	比較例
1- 7	Ø	29.0	7. 5	60	3 0	10	4 0	155	139	131	127	123	3:00	比較例
1- 8	(8)	28.0	7. 0	6 0	2 0	20	6 0	148	125	120	117	111	2:45	比較例
1-9	9	2 7. 0	7. 0	75	2 0	5	3 0	139	119	115	108	102	2:30	比較例
1-10	0	2 4. 0	3. 0	90	10	0	20	123	114	109	104	100	2:20	比較例

化学成分と鉱物組成は(重量%)、ガラス化率は(%)、可使時間は(時間:分)で、*は48時間超

【0044】表から明らかなように、本発明のカルシウムアルミネートを配合した不定形耐火物は、比較例に比べて流動性が良好で、可使時間が著しく長い。

【0045】実験例2

クリンカー②を粉砕したもの40重量部、表2に示す平均 粒子径とBET比表面積の市販のαーアルミナ60重量部 を混合し、CaO 約10重量%のアルミナセメントとしたこ と以外は、実験例1と同様に行った。結果を表2に併記 する。

【0046】<測定方法>

30 平均粒子径:島津製作所製レーザー回折式粒度分布測定 装置を使用

BET比表面積: ユアサアイオニクス社製カンターソーブを使用

[0047]

【表2】

特開2000-16843

14

13

実験	平均	BRTH	流	•	b	性	(mm)	可使
No.	粒子径((μm)	表面積 (m²/g)	3分	30分	60 5)	90分	120 分	時間
2- 1	10	5. 0	199	190	185	181	176	*
2- 2	8.0	3.0	202	194	189	185	177	*
2- 3	5. 0	5.0	196	188	187	183	180	*
2- 4	3.0	2. 0	207	200	193	190	1 8 5	*
2- 5	1. 0	3.0	203	198	192	188	183	*
2- 6	0. 5	1. 0	208	203	197	194	190	*
2- 7	1. 0	0.5	213	209	202	198	191	*
2- 8	12	5. 0	189	166	154	149	136	22:50
2- 9	5.0	10	177	168	147	142	132	20 : 40

可使時間は(時間:分)で、*は48時間超

【0048】表に示すように、本発明のアルミナセメントを配合した不定形耐火物は、比較例に比べて流動性が良好で、可使時間が著しく長かった。

【0049】実験例3

クリンカー②を粉砕したもの 100重量部に対して、表 3 に示す遅延剤を配合し、振動ミルで平均粒子径 5 μ m に 粉砕してアルミナセメント組成物を製造したこと以外 は、実験例1と同様に行った。結果を表 3 に併記する。

【0050】<使用材料>

遅延剤 a : トリポリリン酸ナトリウム、市販品

遅延剤b : クエン酸ナトリウム、市販品

遅延剤 c : ポリアクリル酸ナトリウム、市販品

遅延剤d :ケイフッ化ナトリウム、市販品

20 遅延剤e : ホウ酸、市販品

遅延剤 f :ポリアルキレングリコールモノエステル単

量体・メタクリル酸共重合体、市販品

遅延剤g :ショ糖、市販品

遅延剤h :リグニンスルホン酸ナトリウム、市販品

[0051]

【表3】

実験	湿 延 剤	流		動	性	(mm)	可使
No.	選 延 剤	3分	30 5)	604)	905	120 分	時間
3- 1	a 0.2	200	193	190	186	182	*
3- 2	b 0.5	203	196	194	190	186	*
3- 3	c 1.0	209	200	197	193	190	*
3- 4	d 2.0	215	211	207	204	201	*
3- 5	e 5.0	220	217	213	210	205	*
3- 6	f 7.0	226	221	219	216	214	*
3- 7	g10. 0	229	225	221	219	217	*
3- 8	a0. 5, b0. 5	207	201	199	194	188	*
3- 9	c1. 0. d1. 0	212	209	204	201	197	*
3-10	el. 0, f2. 0, g5. 0	228	223	216	214	210	*
3-11	a2. 0. c3. 0. e5. 0	230	226	223	218	215	*
3-12	b5. 0, d2. 0, f1. 0, g2. 0	231	224	220	216	212	*
3-13	b5. 0, c2. 0, e2, 0, f2, 0	218	212	206	197	190	*
3-14	h0. 2	196	189	182	176	169	*
3-15	a0. 5, h0. 5	201	194	189	182	178	*
3-16	a1. 0, h1. 0	211	199	191	187	179	*
3-17	e1. 0, f2. 0, h5. 0	224	211	204	195	183	*
3-18	65. 0. d2. 0. g2. 0. h1. 0	229	224	221	213	207	*

遅延剤はセメント100重量部に対する(重量部)、可使時間は(時間:分)で、*は48時間超

【0052】表に示すように、本発明のアルミナセメント組成物を配合した不定形耐火物は、比較例に比べて流動性が良好で、可使時間が著しく長かった。

【0053】実験例4

実験例3の実験No.3-8で使用したアルミナセメント組成物を配合した不定形耐火物を圧送ポンプで吹付ノズルに輸送し、吹付ノズルで圧縮空気と共に表4に示す急結剤を不定形耐火物に添加し、吹付施工した。吹付施工後、24時間養生した各施工体より所定の大きさに切り出したものを試験片とした。結果を表4に併記する。

【0054】<使用材料>

急結剤α:炭酸リチウム、市販品

急結剤β:アルミン酸ソーダ無水塩、市販品

急結剤 γ:ケイ酸ソーダ、市販品

急結剤 δ : カルシウムアルミネート類、鉱物組成 C_3A 95

重量%、C₁₂A₇ 5重量%

急結剤 ε:カルシウムアルミネート類、鉱物組成C₁₂A₇

90重量%、CA10重量%

急結剤 (: カルシウムアルミネート類、鉱物組成C12A7

50重量%、CA50重量%

急結剤η:水酸化ナトリウム、市販品

【0055】<測定方法>

凝結時間: 吹付施工後の不定形耐火物を指で押し、弾性が無くなるまでの時間

後生強度 : 4×4×16cmに切り出し、油圧測定機で測定

乾燥強度 : 試験片を 110℃で24時間乾燥後、室温まで 放冷し、油圧測定機で測定

焼成強度 : 乾燥後の試験片をシリコニット電気炉に入れ、1,000 ℃までは10℃/分の昇温速度、1,000 ℃以上は5℃/分で1,500 ℃まで昇温後、3時間保持し、室温まで放冷し、油圧測定機で測定

収縮率: 24時間養生後の試験片を基準として、1,50 0℃焼成後の残存線変化率

10 耐食性 : 4×4×16cmに切り出した試験片を110℃で24時間乾燥後、1,500℃で3時間焼成しCa0 /SiO₂=2.0、全Feが10重量%のスラグ500gが入った1,550℃の高周波炉内に3時間浸漬させた後の、深さ方向の溶損寸法を測定。溶損寸法が3.0 mm以上になると耐火物として使用不可となる。

外観観察 : 吹付施工直後の吹付面につきダレの状況を 外観観察。

[0056]

【表4】

実験	急精剤	凝結間	強	度	(MPa)	収縮率	種性	外観	備考
No.	急	(min)	養生	乾燥	焼成	(%)	姓	観察)HE 45
4- 1	イ 0. 01	< 5	20.5	59. 4	73. 2	-0.21	1. 2	0	実施例
4- 2	□ 0. 1	< 5	21.2	60. 1	73.6	-0.23	1. 3	0	実施例
4- 3	ハ0.5	< 5	22. 1	61.8	74.9	-0.23	1. 3	0	実施例
4-4	=1.0	< 5	22.7	62. 3	75.6	- 0. 24	1. 3	0	実施例
4- 5	水2.0	< 5	23.4	62. 7	76. 1	-0.24	1. 4	0	実施例
4- 6	イ0.1,ハ0.5	< 5	22. 6	62. 1	76. 0	-0.23	1. 3	0	実施例
4- 7	□1.0, 二 2.0	< 5	23. 9	63. 6	77.4	-0.24	1. 4	0	実施例
4-8	イ1.0,ニ1.0,ホ2.0	< 5	24.5	65. 2	78.8	- 0. 25	1. 4	0	実施例
4- 9	ロ1.0,ハ2.0,ホ2.0	< 5	24.8	66. 9	79. 3	- 0. 25	1. 4	0	実施例
4-10	~2.0	< 5	14.9	45.8	56. 2	- 0. 24	1. 5	Δ	実施例
4-11	F 3. 0	< 5	16.5	47. 5	57. 9	- 0. 24	1. 5	Δ	実施例
4-12	イ0.1,へ0.5	< 5	13.7	44.4	56. 1	- 0. 23	1. 4	Δ	実施例
4-13	□1.0, ト2.0	< 5	16.4	47.6	58. 0	- 0. 24	1. 4	Δ	実施例
4-14	二1.0, 未2.0, ~1.0	< 5	17. 1	48. 2	5 9 . 5	- 0. 25	1. 5	Δ	実施例
4-15	イ 0. 005	< 5	13.7	45. 1	56. 0	- 0. 30	1. 6	Δ	実施例
4-16	□ 6. 0	< 5	10.2	40.5	51. 1	- 0. 26	1. 6	Δ	実施例
4-17	無し	>1440	0.0	12. 3	37.7	- 0. 45	3. 8	×	比較例

急結剤は不定形耐火物100重量部に対する(重量部)、耐食性は(mm)、外観観察の○はダレ無し、△は若干ダレがあるが問題ないレベル、×はダレが多く使用不可

【0057】表に示すように、本発明のアルミナセメント組成物を配合した不定形耐火物は、比較例に比べて強度高く、収縮率が小さく、耐食性が良好であった。

[0058]

【発明の効果】本発明の可使時間が著しく長いカルシウムアルミネート、アルミナセメント、アルミナセメント 組成物、それらを配合してなる不定形耐火物及び吹付施 工方法は、吹付施工が終了しても装置内に残った不定形耐火物を廃棄する必要が無く、保管しておくことが可能となり、翌日以降も使用可能である。従って、コスト低減が可能であり、特に施工現場にミキサー等の混練設備が無い場合、工場で混練し、アジテーターで現場まで搬送し、施工現場で急結剤を混練すれば良いので、作業の軽労化が図れる。

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

テーマコード(参考)

//(C 0 4 B 28/06 22:06) 103:24

Fターム(参考) 4G012 MA01 MB02 PB01 PB03 PB05

PB06 PB13 PB17 PB19 PB36

PC05 PC06 PD03 PE04

4G033 AA02 AA04 AA06 AB03 AB04

AB08 AB21 AB23

4K051 AA01 AA06 LA11