

部門: ML5C01

指導者: 唐竹宣

實習生: 湯琦恩



# Agenda

01 專案簡介

02 架構細節

03 結果分析

04 訓練環境與設備

05 結論&未來展望

06 實習心得



### 個人簡介



湯琦恩 Chi-En Tang ML5C01

學歷

國立暨南國際大學 電機工程學系 大三

專長

電腦視覺、影像處理、深度學習

競賽經歷

2023 科技論文競賽 人工智慧組 第三名 AI CUP 2022 教育部全國大專校院人工智慧競賽 Coding 101 大學程式設計競賽 國科會大專生計畫

相關經歷

AI 人工智慧導論 助教



# 專案簡介



### FMA Defect 分析

現況

Cell INT FMA分析流程盤點,defect 的影像需耗費專業人力來進行 judge

痛點

分析耗時

5C 生產種類較多, 人員judge費時 誤判分析

Defect 認知因人而異· 分析品質不一 耗費人力

判片流程繁瑣 & 時間較久

解決方案

預

期

效

益

分析速度快

模型預測結果花費時間少

—**1**—

判別標準統一

影像分類模型

對於模型辨識準確率高的 Defect種類· 直接使用模型來判別



輔助人員判片

降低人員判片比例

僅保留少數辨識率低, 不常見defect保留人員re-judge。 以免造成miss



節省

\$XXX(年)

# Failure Mode Analysis 失誤模型分析

#### Defect生成站點說明

各階層命名及含意



# 架構細節



## 分類框架說明

#### 常見分類框架 Classification Framework

- 模型學習全部類別(classes)的特徵。
- 類別之間互相 獨立。



#### 深度階層式分類框架

Deep Hierarchical Classification framework

參考論文: Deep Hierarchical Classification for Category Prediction - 2020.05

- 將自定義的類別樹 (Category tree) ,「階層結構」結合「神經網路」。
- 階層式框架損失計算 (Hierarchical Loss)。





### 深度階層式分類框架\_分類器選擇



根據 Paper 選擇在 ImageNet 上表現較佳的模型進行後續實現。

參考論文: A ConvNet for the 2020s - 2022.03



### ResNet50 +CBAM

- → 基於論文範例模型加入延伸模塊(CBAM)
- → CBAM 學習哪一部分為要重點關注的特徵·提高該部分特徵的權重·並抑制不必要的特徵
- → 應用注意力模塊於通道與空間兩個維度中,學習特徵圖 (feature map) 在通道與空間上該注意的部分



### **Vision Transformer**

- → Transformer 使用圖片切分作為輸入
- → 「Seq2Seq」 取代「CNN」萃取特徵

Transformer Encoder機制:使用『自注意力、多頭注意力機制』,結合 Encoder 與 Decoder 輸出預測結果 (參考論文:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale –(2021.07)



#### Token 的生成程序

- 1. 輸入圖片分割成 N 片 (Patch Embedding)
- 2. 輸入圖片的位置編碼 (Position Embedding)

#### Transformer Encoder 機制

- 1. 獲取各 patch 間的關係 (Multi-Head Attention)
- 2. 獲取單 patch 的局部特徵(Position Embedding)



### ConvNeXt

→ 基於ResNeXt架構保留CNN卷積優點,並加入 Swin Transformer 的模型注意力機制,達到縮小模型計算量 <sup>參考論文:</sup>A ConvNet for the 2020s - 2022.03



#### CNN 平移不變性

從 ResNeXt 模型修改,保留滑動窗口機制

#### Transformer 注意力機制

ResNeXt Block 採用depth-wise conv和 1\*1 conv 的組合 · 相當於做空間與通道的注意力權重機制。

#### 縮小模型計算量

反轉 BottleNeck 使隱藏層尺寸為輸入層尺寸 之4倍。



### 深度階層式分類框架





## 實驗架構

#### 分類框架





#### 分類器

ResNet50 | Transformer | ConvNeXt

#### 特徵

獨立 | 共享

#### 損失函數

Layer | Hierarchical

#### 實驗組合

| 分類器         | Туре  | 特徵     | 損失函數         |
|-------------|-------|--------|--------------|
| ResNet50    | 一般框架  | 獨立     | Layer        |
| Transformer | 階層式框架 | 獨立     | Hierarchical |
| ConvNeXt    | 阳眉刈征未 | <br>共享 | Hierarchical |

結果分析&討論



# 框架分析 常見分類 vs. 階層式分類

- → Top 1 準確率: **階層式分類框架** > 常見分類框架
- → 階層式框架模型訓練,使得模型學習到類別樹父子階層關係
- → 常見框架無類別樹概念,無法透過父層輔助判別較相似的種類



|      |        | 分類器          |          |
|------|--------|--------------|----------|
| Re   | sNet50 | Transformer  | ConvNeXt |
| Туре | 特徵     | 損失函數         | 圖例       |
| 一般   | 獨立     | Layer        | _        |
| 階層式  | 獨立     | Hierarchical |          |
| 怕眉玑  | 共享     | Hierarchical |          |



# 特徵分析 共享特徵 vs. 獨立特徵

→ 在「階層式分類架構」中·Top1 準確率 特徵獨立 > 特徵共享

→ 特徵獨立特色:每一層特徵各自獨立 優點:可以著重學習子層之特徵判別

→ 特徵共享特色:父子層間特徵繼承

缺點: 父階層特徵可能佔比較大,影響子層的判別結果







ConvNeXt.

## 模型分析 ResNet50 / Vision Transformer / ConvNeXt

- → Top 1 準確率: ConvNeXt > ResNet50 (+CBAM) > Vision Transformer
- → ConvNext 保留 CNN 的優點並加入 Transformer 架構, 在提升模型準確率的同時也降低模型大小





| 60%        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|            | Top 1  | Top 2  | Top 3  | Top 4  | Top 5  | Top 1  | Top 2  | Top 3  | Top 4  | Top 5  | Top 1  | Top 2  | Top 3  | Top 4  | Top 5  |
| 常見分類       | 71.10% | 82.40% | 90.13% | 92.48% | 94.50% | 70.00% | 83.33% | 88.33% | 92.22% | 93.33% | 80.83% | 91.11% | 93.61% | 95.83% | 96.39% |
| 階層式分類_特徵獨立 | 78.10% | 87.50% | 93.76% | 95.66% | 98.02% | 74.44% | 85.56% | 89.72% | 90.56% | 92.50% | 83.61% | 92.50% | 94.44% | 95.83% | 97.22% |
| 階層式分類_特徵共享 | 75.00% | 86.10% | 92.20% | 95.60% | 98.10% | 72.22% | 84.72% | 91.11% | 92.50% | 92.78% | 80.28% | 90.83% | 94.44% | 95.56% | 96.39% |

## 模型架構歷程

→ 各分類器延伸種類 &模型大小進行實驗,判別 FMA Defect 的準確率



Pre-training dataset

### 訓練環境與設備

→ 模型訓練時間: **ConvNeXt** < Transformer < Resnet50

■ ConvNeXt 訓練結果:準確率:第一層(DefectLocate) 100%;第二層(LocationFlag) 92.78%;第三層(FMA Defect) 83.61%

#### 各模型訓練效能比較

|                                                                                            | 訓練            | 參數            |             |         | 訓練                                |                |               |                   |                                  |
|--------------------------------------------------------------------------------------------|---------------|---------------|-------------|---------|-----------------------------------|----------------|---------------|-------------------|----------------------------------|
| 使用設備                                                                                       | Input<br>Size | Batch<br>size | Model       | 權重檔     | Forward/<br>backward<br>pass size | Params<br>size | 訓練佔<br>Memory | 時間<br>(Epoch 100) | 開發環境                             |
| NVIDIA JETSON AGX ORIN<br>DEFELOPER KIT                                                    |               | 6             | Resnet50    | 100 kB  | 11083.21 MB                       | 109.12 MB      | 30 G          | 2~3 天             |                                  |
| <ul><li>12-core Arm Cortex-</li><li>A78AE 64 bit CPU</li><li>Memory 36GB 256-bit</li></ul> | 224 * 224     | 32            | Transformer | 22.2 MB | 105.91 MB                         | 20.94 MB       | 14.8 G        | 5 小時              | ■Pytorch 1.11.0<br>■Python 3.7.9 |
|                                                                                            |               | 32            | ConvNeXt    | 111.5MB | 1337.26 MB                        | 917.3 MB       | 11.2 G        | 4 小時              |                                  |

ConvNext 佔用的Memory少,時間較快



# 結論&未來展望



### 模型架構平展

#### 階層式分類框架優點

#### 場域應用

- 1. 使用者帶入「自定義資料集」,定義類別樹父子層關係
- 2. 可判別影像的多層分類,模型提供「多輸出」
- 3. 在信心度未達標準時,可以先提供粗略答案 (1 & 2層)

#### 模型框架

- 1. 階層框架更符合真實世界「語意關係」,適用於專案場景
- 2. 一個模型即可預測多層分類結果·訓練效果好·每個階層 有對應的損失函數 (Loss Function)



## 未來展望

#### 場域應用

- 1. 持續收集訓練集與更多 Defect 類別的照片增加實用性
- 2. 模型訓練帶入更多 Defect 種類增加可辨識之種類 (18→147)
- 3. 將影像分類結果結合 · 成分分析「FTIR 資料數據 」快速找到 Defect 發生機構及位置

#### 技術層面 (提升模型準確率)

1. 持續調整訓練中父子層特徵共享之權重比例

參考論文: B-CNN: Branch Convolutional Neural Network for Hierarchical Classification

2. 嘗試 多標籤分類框架 , 導入語義特徵 , 輔助影像分類

參考論文: Deep Semantic Dictionary Learning for Multi-label Image Classification



Boat

Castle

## 實習心得

#### 專案內容

參與專案開發 實作經驗增加 接觸工廠運作 報告能力提升

#### 實習氛圍

部門前輩指導 辦公室氛圍輕鬆愉快 食堂菜單豐富



#### 宿舍生活

與夥伴交流實習期間的點滴

