

DEPARTAMENTO DE MATEMÁTICAS CUCEI ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS **EXAMEN PARCIAL 1 PRIMAVERA 2020**

NOMBRE Jesés Uriel Guzmán Menloza FECHA 23/abril/200 CAL.

$P(\bigcup A_l) = \sum A_l$ si A_l son excluyentes.	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	$P_{k,n} = \frac{n!}{(n-k)!}$	$C_{k,n} = \frac{n!}{n! (n-k)!}$	$P(A \cap B)$
$P(B) = \sum P(B A_m)P(A_m)$	$E(X) = \sum X p(X)$		$V(X) = \sum_{i=1}^{N} (X - \mu)^2 p(x)$	$P(A B) = \frac{P(A B)}{P(B)}$
$b(x, n, p) = C_{n,x}p^{x}(1-p)^{n-x}$	$f(z) = \frac{1}{\sqrt{z-z^2}} e^{\frac{z^2}{2}}$	$E(X) = \int X p(X) dx$ $X - \mu$		$V(X) = \int (X - \mu)^2 p(x)$
	$f(z) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-z}$	$z = \frac{1}{\sigma}$	$P(x) = \frac{e^{-\lambda}\lambda^x}{x!}$	$F(x) = \sum b(y; n, p)$
impresión ha sido selecciona a. Ponga en lista los resultade b. Que A denote el evento en c. Sea B el evento en que el l d. Sea C el evento en que el l c. Sea S el los formas	rsidad dispone de cinco ejemplares de egundas impresiones. Un estudiante da. Un posible resultado es 5 y otro se n \(\rho\). que exactamente un libro debe ser que exactamente	examinado. ¿Qué residos están en B? tados están en C?	ultados están en A?	ine sólo cuando una segunda cultimos (el cil imento es la segun presión h las que so go son 1
A= {3}, {6	3, {s} - 1 3, {s}, {	1,53,{2,	53, £53 "S	todos los que los que los que los que el elemen
) C = {2,3?			7 9 e	con todas agrice no incluing to make to make to make to the make t

2. Considere la siguiente información sobre vacacionistas: 40% revisan su correo electrónico de trabajo, 30% utilizan un teléfono celular para permanecer en contacto con su trabajo, 25% trajeron una computadora portátil consigo, 23% revisan su correo electrónico de trabajo y utilizan un teléfono celular para permanecer en contacto y 51% ni revisan su correo electrónico de trabajo ni utilizan un teléfono celular para permanecer en contacto ni trajeron consigo una computadora portátil. Además, 88 de cada 100 que traen una computadora portátil también revisan su portátil.

Correo electrónico de trabajo y 70 de cada 100 que utilizan un teléfono celular para permanecer en contacto también traen una computadora a ¿Cutal es la probabilidad de que una computadora

portátil.

¿Cuál es la probabilidad de que un vacacionista seleccionado al azar que revisa su correo electrónico de trabajo también utilice un teléfono celular para permanecer en contacto?

b. ¿Cnál es la probabilidad de que alguien que trae una computadora portátil también utilice un teléfono celular para permanecer en contacto?

Le c. Si el vacacionista seleccionado al azar revisó su correo electrónico de trabajo y trajo una computadora portátil, ¿cnál es la probabilidad de que él o ella utilice un teléfono celular para permanecer en contacto?

P(revisa email) = P(A) = 0.4 , P(Usa tel.) = P(B) = 0.8

P(trae lap) = P(C) = 0.25 , P(revisa email y usa tel) = P(AnB) = 0.23

P(ho revisa email y no usa tel y no trae lap) = P(A'nB'nC') = 0.51

P(tevisa email | trae lap) = P(A1C) = 0.88 , P(trae laplusa tel) = P(C1B) = 0.7

a) P(B|A) =
$$\frac{P(AnB)}{P(A)} = \frac{0.23}{0.4} = \frac{0.575}{0.25}$$

b) P(B|C) = $\frac{P(BnC)}{P(C)} = \frac{P(B)P(C1B)}{0.25} = \frac{0.84}{0.25}$

c) P(B|AnC) = $\frac{P(B)nP(AnC)}{P(C)P(AC)} = \frac{P(AnBnC)}{0.25} = \frac{0.49}{0.22} = \frac{0.23}{0.22}$

3. Un artículo en Los Ángeles Times (3 de diciembre de 1993) reporta que una de cada 200 personas porta el gen defectuoso que provoca cáncer de colon hereditario. En una muestra de 1000 individuos, ¿cuál es la distribución aproximada del número que porta este gen? Use esta distribución para calcular la probabilidad aproximada de que

a. Entre 5 y 8 (inclusive) porten el gen.

b. Por lo menos 8 porten el gen.

P=
$$\frac{1}{200}$$
 h=1000 x=?

Es una distribución binomial, ya que require un número de experiententos. Bernoulli (1000, tiene el gen o no), la probabilidad es constante (1/200 para todos) y se requieren todos estos parámetros. B(x, n, p) = 1000 (x (1/200)^x (1- $\frac{1}{200}$) 1000-x

a) B(5=x=8,1000,1/200) = $\frac{8}{2}$ B(x, n, p) = 0.492344 }

b) B(x≥8,1000,1/200) = 1- $\frac{1}{2}$ B(x, n, p) = 1-0.867152

Resto de 100/0, que = 0.132848}

representa hasta to

4. La demanda semanal de gas propano (en miles de galones) de una instalación particular es una variable aleatoria X con función de densidad

$$f(x) = \begin{cases} 2\left(1 - \frac{1}{x^2}\right) & 1 \le x \le 2\\ 0 & \text{de lo contration} \end{cases}$$

- n. Calcule la función de distribución acumulativa de X
- In Calcule E(X) y V(X).
- el. Si 1500 galones están en existencia al principio de la semana y no se espera ningún nuevo suministro durante la semana, ¿cuántos de los 1500 galones se espera que queden al final de la semana? [Sugerencia: Sea h(x) = cantidad que queda cuando la demanda es x.]

(q

5. Si X es una variable aleatoria normal con media 80 y desviación estándar 10, calcule las signientes probabilidades mediante estandarización:

a. P(70 < X).

b. P(85 < X < 95).

c. $P(1X - 801 \le 10)$. $M = E_X = 80$ O = |O $f(x) : \frac{1}{10\sqrt{2\pi}}$ $e^{-\frac{1}{2}} (x - 80)^2$ $f(x) : \frac{1}{10\sqrt{2\pi}}$ $e^{-\frac{1}{2}} (x - 80)^2$ $f(x) : \frac{1}{10\sqrt{2\pi}}$ $f(x) : \frac{1}{10\sqrt{2\pi}}$ f(x)