Economics 703 : Anwer Key to the Mid-Term Exam

Raymond Deneckere

Fall 2006

1. Let $\{K_n\}$ be a collection of nonempty closed subsets of \mathbb{R}^N such that $K_{n+1} \subset K_n$ for all n = 0, 1, ..., and such that diameter $(K_n) \to 0$ as $n \to \infty$. Give a complete characterization of the set $\bigcap_{n=0}^{\infty} K_n$.

Define $S_n = \{d(p,q) : p \in K_n \text{ and } q \in K_n\}$. Then letting $\delta_n = \text{diameter}(K_n)$ we have $\delta_n = \sup S_n$.

- 2. Find two subsets A and B of \mathbb{R}^N and a point $x_0 \in \mathbb{R}^N$ such that $A \cup B$ is not connected but $A \cup B \cup \{x_0\}$ is connected.
- 3. Let $f: K \subset \mathbb{R}^N \to \mathbb{R}$ be continuous and K compact. Define

$$M = \{ x \in K : \forall \ y \in f(x) \ge f(y) \ \forall \ y \in K \}.$$

Is M compact? Defend your answer.

4. Let $f: \mathbb{R} \to \mathbb{R}$ be given by the rule

$$f(x) = \begin{cases} x^2, & \text{if } x \text{ is irrational} \\ 0, & \text{if } x \text{ is rational} \end{cases}.$$

Is $f(\cdot)$ continuous at 0? Is $f(\cdot)$ differentiable at 0? Defend your answer.

5. Consider the equations

$$u(x,y) = \frac{x^4 + y^4}{x}$$
, if $(x,y) \neq (0,0)$
= 0, if $(x,y) = (0,0)$

and

$$v(x,y) = \sin x + \cos x.$$

Near which points $(x,y) \in \mathbb{R}^2$ can we solve for x,y in terms of u,v? Defend your answer.