$\mathbf{Math}\ \mathbf{342W}/\mathbf{642}/\mathbf{742W}$

Recitation – Day #12 (3.25.25)

I. Types of Modeling

Fill in the missing cells of the table below regarding the various modeling types:

Response	Type of Modeling	g returns	Example ${\cal A}$
$\mathcal{Y}\subset\mathbb{R}$	Regression	$\hat{y} \in \mathbb{R}$	OLS
$\mathcal{Y} \in \{C_1, \dots, C_k\}$	Classification	$\hat{y} \in \{C_1, \dots, C_k\}$	KNN
$\mathcal{Y} = \{0,1\}$	Binary Classification	$\hat{y} \in \{0,1\}$	KNN, SVM
$\mathcal{Y} = \{0, 1\}$	Probability Estimation	$\hat{p} \in (0,1)$	Logistic Regression
$\mathcal{Y} = (0, \infty)$	Survival/Churn	$\hat{y} \in \mathbb{R}$	Weibull Regression
$\mathcal{Y} = \{0, 1, 2, \ldots\}$	Count	$\hat{y} \in \{0,1,\ldots\}$	Poisson Regression
$\mathcal{Y} = \{C_1, C_2, \dots, C_k\}$	Probability Estimation	$\hat{p}_i = \mathbb{P}(Y = C_i \mid m{x})$	Multilogistic Regression
$\mathcal{Y} = \{C_1 < C_2 < \ldots < C_k\}$	Probability Estimation	same column vector above	Proportional Odds
$\mathcal{Y} \in (0,1)$	Regression	$\hat{y} \in (0,1)$	Beta Regression

II. Logistic Regression

(i) What is the response space for *logistic regression*?

$$\mathcal{Y} = \{0, 1\}$$

(ii) What type of modeling is *logistic regression*?

Probability Estimation

(iii) What is the function f_{pr} ? And what are we trying to find the "best guess" of?

$$f_{pr}(\boldsymbol{x}): \mathbb{R}^{p+1} \to (0,1)$$
 and is the best guess of $\mathbb{P}\left(Y=1 \mid \boldsymbol{x}\right)$

(iv) What is the *link function*, Φ that we will use for logistic regression?

$$\Phi : \mathbb{R} \to (0,1) \text{ where } \Phi(u) = \frac{e^u}{1 + e^u} = \frac{1}{1 + e^{-u}}$$

(v) What is the candidate set of functions \mathcal{H}_{pr} for approximating f_{pr} ?

$$\mathcal{H}_{pr} = \left\{ \frac{1}{1 + e^{-oldsymbol{x} \cdot oldsymbol{w}}} \;\middle|\; oldsymbol{w} \in \mathbb{R}^{p+1}
ight\}$$

(vi) What is the name that we give to this model based upon the candidate set \mathcal{H}_{pr} ?

(vii) What is the algorithm for which we compute $g_{pr} = \mathcal{A}(\mathbb{D}, \mathcal{H}_{pr})$? The algorithm is called the "maximum likelihood" where

$$\mathcal{A}: \quad oldsymbol{b} = rg \max_{oldsymbol{w} \in \mathbb{R}^{p+1}} \{ \mathbb{P}(\mathbb{D}) \}$$

$$\mathbb{P}(\mathbb{D}) = \mathbb{P}(Y_1 = y, Y_2 = y_2, \dots, Y_n = y_n \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$$

$$= \mathbb{P}(Y_1 = y_1 \mid \boldsymbol{x}_1) \cdot \mathbb{P}(Y_2 = y_2 \mid \boldsymbol{x}_2) \cdots \mathbb{P}(Y_n = y_n \mid \boldsymbol{x}_n)$$

$$= \prod_{i=1}^n \mathbb{P}(Y_i = y_i \mid \boldsymbol{x}_i)$$

$$= \prod_{i=1}^n (f_{pr}(\boldsymbol{x}_i))^{y_i} \cdot (1 - f_{pr}(\boldsymbol{x}_i))^{1-y_i}$$

$$= \prod_{i=1}^n \left(\frac{1}{1 + e^{-\boldsymbol{x} \cdot \boldsymbol{w}}}\right)^{y_i} \cdot \left(\frac{1}{1 + e^{\boldsymbol{x} \cdot \boldsymbol{w}}}\right)^{1-y_i}$$