Math 412 Homework 3

Paul Hacking

February 12, 2013

Reading: Saracino, Chapter 18.

Show your work and justify your answers carefully.

- (1) Let R be a commutative ring with 1. Let a, b be elements of R and assume that a is not a zero divisor. Show that (ba) = (a) iff b is a unit.
- (2) Let R be the ring from HW1Q1(c):

$$R = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, \quad b \text{ is not divisible by } 3 \right\} \subset \mathbb{Q},$$

a subring of \mathbb{Q} .

- (a) Find all the units in R.
- (b) Find all the ideals I in R, identify the prime ideals, and describe the quotient rings R/I.
- (3) Let R be the ring from HW1Q2(d):

$$R = \{a + bx \mid a, b \in \mathbb{R}\}\$$

with addition

$$(a + bx) + (c + dx) = (a + c) + (b + d)x$$

and multiplication

$$(a+bx)(c+dx) = ac + (ad+bc)x.$$

- (a) Find all the units in R.
- (b) Find all the ideals I in R, identify the prime ideals, and describe the quotient rings R/I.

[Remark: Actually the ring R is isomorphic to the quotient ring $\mathbb{R}[x]/(x^2)$ (why?), but it is possible to do this question without using this.]

- (4) Let $R = \mathbb{R}[x]/(x^2 3x + 2)$. Find all the ideals of R. [Hint: Use the bijective correspondence between ideals K of a quotient ring S/I and ideals J of S containing I given by $J \mapsto K = J/I$.]
- (5) Which of the following maps are ring homomorphisms?

(a)
$$\alpha \colon \mathbb{R} \to \mathbb{R}^{2 \times 2}$$
, $\alpha(a) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$.

- (b) $\beta : \mathbb{C} \to \mathbb{R}, \, \beta(a+bi) = a.$
- (c) $\gamma : \mathbb{C} \to \mathbb{H}, \ \gamma(a+bi) = a+bj.$
- (d) $\delta \colon \mathbb{R}^{2 \times 2} \to \mathbb{R}$, $\delta(A) = \det(A)$. [Here $\det A$ denotes the determinant of the 2×2 matrix A, given by $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad bc$.]
- (e) $\epsilon \colon \mathbb{Z}/2\mathbb{Z}[x] \to \mathbb{Z}/2\mathbb{Z}[x], \ \epsilon(f) = f^2.$
- (6) Recall from class that every ideal I in the ring $R = \mathbb{Z}$ of integers is principal, equal to $(n) = n\mathbb{Z}$ for some $n \in \mathbb{Z}$, $n \geq 0$. Now suppose $a, b \in \mathbb{N}$, and consider the ideal

$$I = (a, b) = \{xa + yb \mid x, y \in \mathbb{Z}\} \subset \mathbb{Z}.$$

We know I = (c) for some $c \in \mathbb{N}$. Identify (with proof) the number c.

(7) Let R be a commutative ring with 1. Recall that we say an ideal $I \subset R$ is maximal if $I \neq R$ and there does not exist an ideal $J \subset R$ such that $I \subsetneq J \subsetneq R$. [Then I is maximal iff R/I is a field.] Suppose $I \subset R$ is an ideal such that every element of $R \setminus I$ is a unit. Show that I is maximal, $U(R) = R \setminus I$, and I is the only maximal ideal of R. [In this case we say R is a $local\ ring$.]

(8) Let R_1 and R_2 be commutative rings with 1. Show that an ideal I of the direct sum $R = R_1 \oplus R_2$ is given by

$$I = I_1 \oplus I_2 = \{(i_1, i_2) \mid i_1 \in I_1 \text{ and } i_2 \in I_2\} \subset R_1 \oplus R_2$$

for some ideals $I_1 \subset R_1$ and $I_2 \subset R_2$. Which ideals I are prime?

[Hint: What is the quotient R/I?]

- (9) (Optional) In this question, we will see that it is in general difficult to find ideals I of a noncommutative ring R other than $\{0\}$ and R.
 - (a) Let $R = \mathbb{R}^{2 \times 2}$ be the ring of 2×2 real matrices and $I \subset R$ an ideal. Show that $I = \{0\}$ or I = R.
 - (b) Let R be the Weyl algebra generated by variables x and y over the real numbers such that x and y do not commute but satisfy the equation

$$yx = xy + 1$$
. (*)

Explicitly,

$$R = \left\{ f \mid f = \sum_{i=0}^{n} \sum_{j=0}^{m} a_{ij} x^{i} y^{j}, \quad a_{ij} \in \mathbb{R} \right\}$$

with the obvious addition, and multiplication given by using the relation (*) repeatedly. Let $I \subset R$ be an ideal. Show that $I = \{0\}$ or I = R.

[Hint: Prove by induction that

$$yx^n - x^n y = nx^{n-1}$$

and

$$xy^n - y^n x = -ny^{n-1}$$

for all $n \in \mathbb{N}$. Deduce that

$$yf - fy = \frac{\partial f}{\partial x}$$

and

$$xf - fx = -\frac{\partial f}{\partial y}$$

for all $f \in R$ (regarding f as a function of x, y). Now use these identities to show that if $I \neq \{0\}$ then I = R.]