

OF ADA 559

LEVEL

DATA PROCESSING SHEET

PHOTOGRAPH THIS SHEET

DDC ACCESSION NUMBER

AEWES TR-6-553 Vol. /

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

DISTRIBUTION STATEMENT

79 10 19 089

DATE RECEIVED IN DDC

PHOTOGRAPH THIS SHEET

AND RETURN TO DDA-2

TA7 W34 ~ 6-553

INVESTIGATION OF PERFORMANCE OF

CONCRETE AND CONCRETING MATERIALS

EXPOSED TO NATURAL WEATHERING

Volume I
ACTIVE INVESTIGATIONS

AD-A075359

TECHNICAL REPORT NO. 6-553

June 1960

U. S. Army Engineer Waterways Experiment Station CORPS OF ENGINEERS

Vicksburg, Mississippi

ARMY-MRC VICKSBURG, MISS.

THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, FUBLICATION, OR PROMOTIONAL PURPOSES

INVESTIGATION OF PERFORMANCE OF CONCRETE AND CONCRETING

MATERIALS EXPOSED TO NATURAL WEATHERING

TECHNICAL REPORT NO. 6-553

June 1960

Supplements, Corrections, and Revisions
Distribution No. 14*

August 1977

VOLUME 1

Supplement, Correction, or Revision
Revised pp iii, iv, and new p v
New pp vii and viii
New p ix
New p xi
Revised Table 1 and reprinted Table 2
Revised sheet 3 of Table 1-TC-A
Revised sheet 8, and new sheets 9 and 10 of Table 1-TC-B
Revised sheet 2 of Table 1-SF
New sheet 2 of Table 1-CRMI-PB
Revised Table 1-CERL-FC (1 page)
Revised sheets 2 and 3 of Table 2-PR; revised sheet 2 of Table 5-PR; revised sheet 3 of Table 6-PR

^{*} TR 6-553 was issued in June 1960. Distributions of Supplements, Corrections, and Revisious are issued each year. This distribution, No. 14, brings the report up to date as of July 1977.

<u>Item</u>	Part	Section	Supplement, Correction, or Revision
1	II	7	Revised Table 1-WES-FC (1 page)
18	II	8	Revised sheet 5 of Table 1-CRMI-PD; revised sheet 3 and new sheet 4 of Table 2-CRMI-PD
W.	II	9	Revised sheet 2 of Table 1-PQ
W	II	10	Revised sheet 2 of Table 1-SC; revised Table 2-SC (1 page)
126	· II	11	Revised sheets 2, 3, and 4 of Table 1-BFS
1	II	12	Revised Table 1-SSFE (1 page)
18	II	13	Revised Table 1-TP (1 page)
y)	· II	14	Revised Table 1-4.5A (1 page)
6	II	15	A new item including Key (1 page), text (1 page), Tables 1 (1 page), 2 (2 pages), 3 (1 page), and 1-SIC (1 page)
&	II	16	A new item including Key (1 page), text (1 page), and Table 1-RCC (1 page)
12	II	17	Revised sheets 9, 10, 11, and 12 of Table 1-LTS
23	II	18	A new item including Key (1 page), text (1 page), Table 1, and Table 1-NED (1 page each)
24	II	22	Revised Table 1-MM (1 page)
05	II	25	Revised sheet 6 of Table 1-CRA
26	II	26	Revised Table 1-OD (1 page)
27	II	27	Revised sheet 2 of Tables 1-KCD and 2-KCD; revised Tables 3-KCD, 4-KCD, 5-KCD, 6-KCD, and 7-KCD (1 page each)
be	II	28	Revised Table 1-ED (1 page)
29	II	34	Revised Table 1-MCP (1 page)
90	II	35	Revised Tables 1-QA and 2-QA (1 page each)
31	II	37	Revised sheet 3 of Table 1-CAP
32	II	38	Revised sheet 2 of Table 1-MAWC
133	II	39	New sheet 3 of Table 1-CT
94	II		Revised Plate 2

(Issued May 1976)

INVESTIGATION OF PERFORMANCE OF CONCRETE AND CONCRETING MATERIALS EXPOSED TO NATURAL WEATHERING

TECHNICAL REPORT NO. 6-553

June 1960

Supplements, Corrections, and Revisions Distribution No. 13*

May 1976

VOLUME 1

Item	Part	Section	Supplement, Correction, or Revision
√ 1	Pr	eface	Reprinted p iii; revised p iv
~2	Co	ntents	Revised p v and reprinted p vi
√3	II		Revised Table 1 and reprinted Table 2
√ 4	II	1	Revised sheet 3 of Table 1-TC-A
V5	II	2	Revised sheets 8 and 9 of Table 1-TC-B
6	II	3	Revised sheet 2 of Table 1-SF
17	II	4	Revised Table 1-CRMI-PB (1 page)
8	II	5	A new item including Key (1 page), text (1 page), and Table 1-CERL-FC (1 page)
19	II	6	Revised sheets 2 and 3 of Table 2-PR; revised sheet 2 of Table 5-PR; revised sheet 3 of Table 6-PR
V 10	II	7	A new item including Key (1 page), text (1 page), and Table 1-WES-FC (1 page)
V 11	II	8	Revised sheet 5 of Table 1-CRMI-PD; revised sheet 3 of Table 2-CRMI-PD
√ 12	II	9	Revised sheet 2 of Table 1-PQ

^{*} TR 6-553 was issued in June 1960. Distributions of Supplements, Corrections, and Revisions are issued each year. This distribution, No. 13, brings the report up to date as of June 1975.

(Issued May 1976)

<u>Item</u>	Part	Section	Supplement, Correction, or Revision
13	II,	10	Revised sheet 1 and new sheet 2 of Table 1-SC; revised Table 2-SC (1 page)
14	II	11	Revised sheets 2, 3, and 4 of Table 1-BFS
14	II	12	Revised Table 1-SSFE (1 page)
16	II	13	Revised Table 1-TP (1 page)
417	II	14	Revised Table 1-4.5A (1 page)
18	II	17	Revised sheets 5, 6, 7, and 8 and new sheets 9, 10, 11, and 12 of Table 1-LTS
19	II	22	Revised Table 1-MM (1 page)
120	II	25	Revised sheet 6 of Table 1-CRA
120	II	26	Revised Table 1-OD (1 page)
V22	II	27	Revised Key; reprinted sheet 3, revised sheet 4, new sheet 5; revised sheet 2 of Tables 1-KCD and 2-KCD; revised Tables 3-KCD, 4-KCD, and 5-KCD (1 page each); new Tables 6-KCD and 7-KCD (1 page each).
25	II	28	Revised Table 1-ED (1 page)
ex.	II	34	Revised Table 1-MCP (1 page)
V25	II	35	Revised Tables 1-QA and 2-QA (1 page each)
VEG.	II	37	Revised sheet 3 of Table 1-CAP
V25 V25 V27	II	38	Revised sheet 2 of Table 1-MAWC
1/28	· II	39	Revised sheet 2 of Table 1-CT
129	II	1827 - 18	Revised Plate 2

INVESTIGATION OF PERFORMANCE OF CONCRETE AND CONCRETING MATERIALS EXPOSED TO NATURAL WEATHERING

TECHNICAL REPORT NO. 6-553

June 1960

Supplements, Corrections, and Revisions Distribution No. 12*

August 1974

VOLUME 1

Item	Part	Section	Supplement, Correction, or Revision
1/1	Pr	eface	Reprinted p iii; revised p iv
(2	Co	ntents	Revised p v and reprinted p vi
3			Revised p vii
4	I		Revised pp 3 and 6; reprinted pp 4 and 5
15	II		Revised p 9 and Table 1, deleted Table 3
16	II	1	Revised sheet 3 of Table 1-TC-A
1,7	II	2	New sheets 8 and 9 of Table 1-TC-B
18	II	3	Revised sheet 1 of Table 1-SF; new sheet 2 of Table 1-SF
19	II	4	Revised Table 1-CRMI-PB (1 page)
J ₁₀	II	6	Revised sheets 2 and 3 of Table 2-PR; sheet 2 of Table 5-PR; and sheet 3 of Table 6-PR
VII	II	8	Revised sheet 4 of Table 1-CRMI-PD; new sheet 5 of Table 1-CRMI-PD; revised sheet 3 of Table 2-CRMI-PD
112	II	9	Revised sheet 2 of Table 1-PQ
(13	II	10	Revised Tables 1-SC and 2-SC (1 page each)

^{*} TR 6-553 was issued in June 1960. Distributions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 were issued, respectively, in May 1962, August 1963, August 1964, August 1965, September 1966, September 1967, September 1968, September 1969, September 1970, January 1972, and January 1973. This distribution, No. 12, brings the report up to date as of August 1974.

(Issued Aug 1974)

<u>Item</u>	Part	Section	Supplement, Correction, or Revision
1/24	II	11	Revised sheets 2, 3, and 4 of Table 1-BFS
15	II	12	Revised Table 1-SSFE (1 page)
116	II	13	Revised Table 1-TP (1 page)
117	II	14	Revised Table 1-4.5A (1 page)
82/	II	17	Revised sheets 5, 6, 7, and 8 of Table 1-LTS
119	II	22	Revised Table 1-MM (1 page)
720	II	25	Revised sheet 6 of Table 1-CRA
751	II	26	Revised Table 1-OD (1 page)
52	II	27	Revised sheet 2 of Tables 1-KCD and 2-KCD; revised Tables 3-KCD, 4-KCD, and 5-KCD (1 page each)
23	II	28	Revised Table 1-ED (1 page)
2 24	II	29	Reprinted p 1; revised p 2
325	II	30	Revised pp 1 and 2
126	II	34	Revised Table 1-MCP (1 page)
1 27	II	35	Revised Table 1-QA and 2-QA (1 page each)
√ 28	II	37	Revised sheet 3 of Table 1-CAP
1 29	II	38	Revised sheet 2 of Table 1-MAWC
1/30	II	39	Revised sheet 2 of Table 1-CT
31	II	40	Revised Tables 1-MBC, 2-MBC, 3-MBC, and 4-MBC (1 page each)
32	II	25-1-109	Revised Plate 2

(Issued Jan 1973)

INVESTIGATION OF PERFORMANCE OF CONCRETE AND CONCRETING MATERIALS EXPOSED TO NATURAL WEATHERING

TECHNICAL REPORT NO. 6-553

June 1960

Supplements, Corrections, and Revisions Distribution No. 11*

January 1973

VOLUME 1

<u>Item</u>	Part	Section	Supplement, Correction, or Revision
1	Pr	eface	Revised pp iii and iv
12	Co	ntents	Revised p v; reprinted p vi
S	I		Reprinted pp 1 and 5 and Tables 2 and 3; revised pp 2 and 6 and Table 1 (1 page)
14	II		Revised p 10
4	II	1	Revised sheet 3 of Table 1-TC-A
16	II	2	Revised sheets 6 and 7 of Table 1-TC-B
17	II	3	Revised Table 1-SF (1 page)
18	II	4	Revised Table 1-CRMI-PB (1 page)
19	II	5	Withdraw Section 5 from this volume (see Vol 2, COM- PLETED INVESTIGATIONS, Program 22)
10	II	6	Revised sheet 2 of Table 1-PR, sheets 2 and 3 of Table 2-PR; sheet 2 of Table 5-PR; and sheet 2 of Table 6-PR New sheets 3 of Tables 1-PR and 6-PR
11	II	7	Withdraw Section 7 from this volume (see Vol 2, COMPLETED INVESTIGATIONS, Program 23)

^{*} TR 6-553 was issued in June 1960. Distributions 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 were issued, respectively, in May 1962, August 1963, August 1964, August 1965, September 1966, September 1967, September 1968, September 1969, September 1970, and January 1972. This distribution, No. 11, brings the report up to date as of January 1973.

(Issued Jan 1973)

<u>Item</u>	Part	Section	Supplement, Correction, or Revision
12	II	8	Revised sheet 4 of Table 1-CRMI-PD and sheet 3 of Table 2-CRMI-PD
13	II	9	Revised sheet 2 of Table 1-PQ
14	II	10	Revised Tables 1-SC and 2-SC (1 page each)
V15	II	11	Revised sheets 2, 3, and 4 of Table 1-BFS
1 16	II	12	Revised Table 1-SSFE (1 page)
17	II	13	A new item including Key (1 page), text (1 page), and Table 1-TP (1 page)
18	II	14	Revised Table 1-4.5A (1 page)
19	II	17	Revised sheets 5, 6, 7, and 8 of Table 1-LTS
120	II	22	Revised Table 1-MM (1 page)
121	II	25	Revised sheet 5 and new sheet 6 of Table 1-CRA
122	II	26	Revised Table 1-OD (1 page)
123	II	27	New sheets 2 of Tables 1- and 2-KCD; revised Tables 3-KCD, 4-KCD, and 5-KCD (1 page)
24	II	28	Revised Table 1-ED (1 page)
125	II	30	Reprinted p 1; revised p 2
126	II	34	Revised Table 1-MCP (1 page)
127	II	35	Revised Table 1-QA (1 page) and Table 2-QA (1 page)
28	II	37	Revised sheet 3 of Table 1-CAP
29	II	38	Revised sheet 2 of Table 1-MAWC
30	II	39	New sheet 2 of Table 1-CT (1 page)
131	II	40	Revised Tables 1-MBC, 2-MBC, 3-MBC, and 4-MBC
132	II		Revised Plates 1 and 2

INVESTIGATION OF PERFORMANCE OF CONCRETE AND CONCRETING MATERIALS EXPOSED TO NATURAL WEATHERING

TECHNICAL REPORT NO. 6-553

June 1960

Supplements, Corrections, and Revisions Distribution No. 10*

January 1972

VOLUME 1

Item	Part	Section	Supplement, Correction, or Revision
1	Pr	eface	Revised pp iii and iv
2	I		Reprinted p 1; revised pp 2, 3, 4, 5, 6, Tables 1, 2, and 3
3	II		Revised p 11
4	II	1	Revised sheet 3 of Table 1-TC-A
5	II	2	Revised sheets 6 and 7 of Table 1-TC-B
6	II	3	Revised Table 1-SF (1 p)
7	II	4	Revised Table 1-CRMI-PB (1 p)
8	II	5	Revised Tables 1-PF and 2-PF (1 p ea)
9	II	6	Revised sheet 2 of Table 1-PR; revised sheets 2 and 3 of Table 2-PR; revised Table 3-PR (1 p); revised sheet 2 of Table 5-PR; revised sheet 2 of Table 6-PR
10	II	7	Revised Table 1-GLD (1 p)
11	II	8	Revised sheet 4 of Table 1-CRMI-PD; revised sheet 3 of Table 2-CRMI-PD
12	II	9	Revised sheet 2 of Table 1-PQ
13	II	10	Revised Tables 1-SC (1 p) and 2-SC (1 p)

^{*} TR 6-553 was issued in June 1960. Distributions 1, 2, 3, 4, 5, 6, 7, 8, and 9 were issued, respectively, in May 1962, August 1963, August 1964, August 1965, September 1966, September 1967, September 1968, September 1969, and September 1970. This distribution, No. 10, brings the report up to date as of January 1972.

(Issued Jan 1972)

Item	Part	Section	Supplement, Correction, or Revision
14	II	11	Reprinted p 1; revised p 2; revised sheets 2, 3, and 4 of Table 1-BFS
15	II	12	Revised Table 1-SSFE (1 p)
16	II	14	Revised Table 1-4.5A (1 p)
17	II	17	Revised p 1; revised sheets 5, 6, 7, and 8 of Table 1-LTS
18	II	22	Revised Table 1-MM (1 p)
19	II	25	Revised sheets 4 and 5 of Table 1-CRA
20	II	26	Revised Tables 1-OD (1 p) and 2-OD (1 p)
21	II	27	Revised Tables 1-KCD (1 p), 2-KCD (1 p), 3-KCD (1 p), 4-KCD (1 p), and 5-KCD (1 p)
22	II	28	Revised Table 1-ED (1 p)
23	II	29	Reprinted p 1; revised p 2
24	II	30	Reprinted p 1; revised p 2; revised sheets 2 and 5 of Table 1-WS; revised sheets 1 and 2 of Table 3-WS; revised sheets 1, 2, 3, and 4 of Table 4-WS
25	II	32	Revised p l
26	II	34	Revised Table 1-MCP (1 p)
27	II	35	Revised Tables 1-QA (1 p) and 2-QA (1 p)
28	II	36	Revised Table 1-CRMI-PG (1 p)
29	II	37	Revised sheet 3 of Table 1-CAP
30	II	38	Revised sheet 2 of Table 1-MAWC
31	II	39	Revised sheets 1 and 2 of Table 1-CT
32	II	40	Revised key; revised p 1; revised Tables 1-MBC (1 p) and 2-MBC (1 p); new tables 3-MBC (1 p) and 4-MBC (1 p)
33	II		Revised Plate 1
34	II		Revised Plate 2
35	II		Revised Plate 3

INVESTIGATION OF PERFORMANCE OF CONCRETE AND CONCRETING

MATERIALS EXPOSED TO NATURAL WEATHERING

TECHNICAL REPORT NO. 6-553

June 1960

Supplements, Corrections, and Revisions Distribution No. 9*

September 1970

VOLUME I

Item	Part S	Section	Supplement, Correction, or Revision
1	Pref	ace	Reprinted p iii; revised p iv
2	Cont	ents	Revised p v; reprinted p vi
3	I		Revised Tables 1, 2, and 3 (1 p ea)
4	II		Revised p 11
5	II	1	Revised sheet 3 of Table 1-TC-A
6	II	2	Revised sheets 6 and 7 of Table 1-TC-B
7	ΙΙ	3	Revised Table 1-SF (1 p)
8	II	14	Revised Table 1-CRMI-PB (1 p)
9	II	5	Revised Table 1-PF (1 p); new Table 2-PF (1 p)
10	II	6	Revised sheet 2 of Table 1-PR; revised sheets 2 and 3 of Table 2-PR; revised Table 3-PR (1 p); revised Table 4-PR (1 p); revised sheet 2 of Table 5-PR; revised sheet 2 of Table 6-PR
11	II	7	Revised Table 1-GLD (1 p)
12	II	8	Revised sheet 4 of Table 1-CRMI-PD; revised sheet 2 and new sheet 3 of Table 2-CRMI-PD
13	II	9	Revised sheet 2 of Table 1-PQ
14	II	10	Revised Tables 1-SC (1 p) and 2-SC (1 p)

^{*} TR 6-553 was issued in June 1960. Distributions 1, 2, 3, 4, 5, 6, 7, and 8 were issued, respectively, in May 1962, August 1963, August 1964, August 1965, September 1966, September 1967, September 1968, and September 1969. This distribution, No. 9, brings the report up to date as of September 1970.

(Issued Sept 1970)

Item	Part	Section	Supplement, Correction, or Revision
15	II	11	Revised sheets 2, 3, and 4 of Table 1-BFS; revised sheets 2, 3, and 4 of Table 2-BFS
16	II	12	Revised Table 1-SSFE (1 p)
17	II	13	Withdraw Section 13 from this volume (see Vol 2, COM- PLETED INVESTIGATIONS, Program 21)
18	II	14	Revised Table 1-4.5A (1 p)
19	II	17	Revised sheets 5, 6, 7, and 8 of Table 1-LTS; revised sheets 1, 2, 3, and 4 of Table 2-LTS
20	II	22	Revised Table 1-MM (1 p)
21	II	25	Revised sheets 4 and 5 of Table 1-CRA
22	II	26	Revised Table 1-OD (1 p); revised Table 2-OD (1 p)
23	II	27	Revised Table 1-KCD (1 p); revised Table 2-KCD (1 p); revised Table 3-KCD (1 p); revised Table 4-KCD (1 p); revised Table 5-KCD (1 p)
24	II	28	Revised Table 1-ED (1 p)
25	II	29	Revised sheets 3 and 4 of Table 1-AA; revised Table 2-AA (1 p)
26	II	30	Revised sheets 2 and 5 of Table 1-WS; revised sheets 2 and 3 of Table 2-WS; revised sheets 1 and 2 of Table 3-WS; revised sheets 2, 3, and 4 of Table 4-WS
27	II	31	Revised key, revised pp 1 and 2; revised Table 1-WPF (1 p)
28	II	32	Revised sheet 2 of Table 1-SS
29	II	34	Revised Table 1-MCP (1 p)
30	II	35	Revised Table 1-QA (1 p); revised Table 2-QA (1 p)
31	II	36	Revised p 1; revised Table 1-CRMI-PG (1 p)
32	II	37	Revised sheet 2 of Table 1-CAP; new sheet 3 of Table 1-CAP
33	II	38	Revised sheet 2 of Table 1-MAWC
34	II	39	Revised sheets 1 and 2 of Table 1-CT
35	II	40	Revised key; revised p 1; revised Table 1-MBC; new Table 2-MBC (1 p)
36	II		Revised Plates 1, 2, and 3 (1 p ea)

(Issued Sept 1970)

VOLUME 2

COMPLETED INVESTIGATIONS

Item	Part	Program	Supplement, Correction, or Revision
37			Revised Contents (1 p)
38	III		New p 3
39	III	21	A new item (including key (2 pp); 7 pp of text; and Tables 1-CRE, 2-CRE, and 3-CRE)

(Issued Sept 1969)

INVESTIGATION OF PERFORMANCE OF CONCRETE AND CONCRETING

MATERIALS EXPOSED TO NATURAL WEATHERING

TECHNICAL REPORT NO. 6-553

June 1960

Supplements, Corrections, and Revisions Distribution No. 8*

September 1969

VOLUME I

	Item	Part	Section	Supplement, Correction, or Revision
*	1	Pr	eface	Reprinted p iii; revised p iv
	2	Co	ntents	Revised p v; reprinted p vi
	3	I		Reprinted p 5; revised p 6; revised Tables 1, 2, and 3 (1 p ea)
	4	II		Revised p ll
	5	II	1	Revised sheet 3 of Table 1-TC-A
	6	II	2	Revised sheets 6 and 7 of Table 1-TC-B
	7	II	3	Revised Table 1-SF (1 p)
	8	II	4	Revised Table 1-CRMI-PB (1 p)
	9	II	5	Revised Tables 1-PF and 2-PF (same page)
	10	II	6	Revised sheet 2 of Table 1-PR; revised sheets 2 and 3 of Table 2-PR; revised Table 3-PR (1 p); revised sheet 1 and new sheet 2 of Table 5-PR; revised sheet 2 of Table 6-PR
	11	II	7	Revised Table 1-GLD (1 p)
	12	II	8	Revised sheet 3 and new sheet 4 of Table 1-CRMI-PD; revised sheet 2 of Table 2-CRMI-PD
	13	II	9	Revised sheet 1 and new sheet 2 of Table 1-PQ
	14	II	10	Revised Tables 1-SC (1 p) and 2-SC (1 p)

^{*} TR 6-553 was issued in June 1960. Distributions 1, 2, 3, 4, 5, 6, and 7 were issued, respectively, in May 1962, August 1963, August 1964, August 1965, September 1966, September 1967, and September 1968. This distribution, No. 8, brings the report up to date as of September 1969.

(Issued Sept 1969)

Item	Part	Section	Supplement, Correction, or Revision
15	II	11	Revised sheets 2, 3, and 4 of Table 1-BFS
16	II	12	A new item (including key; l p of text; and Table l-SSFE (l p)
17	II	13	Revised sheet 5, reprinted sheet 6, and revised sheet 7 of Table 1-CRE; revised sheet 2 of Table 2-CRE
18	II	14	A new item (including key; l p of text; and Table 1-4.5A (l p))
19	II	17	Revised sheets 5, 6, 7, and 8 of Table 1-LTS
20	II	22	Revised Table 1-MM (1 p)
21	II	25	Revised sheets 4 and 5 of Table 1-CRA
22	II	26	Revised Table 1-OD (1 p); revised Table 2-OD (1 p)
23	II	27	Additional key (1 p); revised p 3 and new p 4; revised Table 1-KCD (1 p); revised Table 2-KCD (1 p); revised Table 3-KCD (1 p); revised Table 4-KCD (1 p); new Table 5-KCD (1 p)
24	II	28	Revised Table 1-ED (1 p)
25	II	30	Revised sheets 1, 2, 3, and 4, new sheet 5, and revised sheets 6 and 7 of Table 1-WS; revised sheets 1, 2, and 3 of Table 2-WS; revised sheets 1 and 2 of Table 3-WS; revised sheets 2, 3, and 4 of Table 4-WS
26	II	34	Revised Table 1-MCP (1 p)
27	II	35	Revised Table 1-QA (1 p); revised Table 2-QA (1 p)
28	II	36	Revised p 1; revised Table 1-CRMI-PG (1 p)
29	II	37	Revised sheet 2 of Table 1-CAP
30	II	38	Revised sheet 2 of Table 1-MAWC
31	II	39	Revised sheets 1 and 2 of Table 1-CT
32	II	40	A new item (including key; l p of text; and Table l-MBC (l p)
33	II		Revised Plates 1 and 2 (1 p ea)

(Issued Sept 1968)

INVESTIGATION OF PERFORMANCE OF CONCRETE AND CONCRETING

MATERIALS EXPOSED TO NATURAL WEATHERING

TECHNICAL REPORT NO. 6-553

June 1960

Supplements, Corrections, and Revisions Distribution No. 7*

September 1968

VOLUME 1

Item	Part	Section	Supplement, Correction, or Revision
1	Pr	eface	Reprinted p iii; revised p iv
2	Co	ntents	Revised pp v and vi
3	Conversion factors		Revised p vii
4	Ι		Revised pp 1, 2, 3, 4, 5, and 6; revised Tables 1, 2, and 3
5	II	1	Revised sheets 1, 2, and 3 of Table 1-TC-A
6	II	2	Revised sheets 5 and 6 of Table 1-TC-B; new sheet 7 of Table 1-TC-B
7	II	3	Revised Table 1-SF (1 p)
8	II	4	Revised p 1; revised Table 1-CRMI-PB (1 p)
9	II	5	Revised Tables 1-PF and 2-PF (same page)
10	II	6	Revised sheets 1 and 2 of Table 1-PR; revised sheet 2 and new sheet 3 of Table 2-PR; revised Table 3-PR (1 p); revised Table 4-PR (1 p); revised Table 5-PR (1 p); revised sheets 1 and 2 of Table 6-PR
11	II	7	Revised Table 1-GLD (1 p)
12	II	8	Revised p 1; revised sheets 2 and 3 of Table 1-CRMI-PD; revised sheets 1 and 2 of Table 2-CRMI-PD
13	II	9	Revised Table 1-PQ (1 p)
14	II	10	Revised Table 1-SC (1 p); revised Table 2-SC (1 p)

^{*} TR 6-553 was issued in June 1960. Distributions 1, 2, 3, 4, 5, and 6 were issued, respectively, in May 1962, August 1963, August 1964, August 1965, September 1966, and September 1967. This distribution, No. 7, brings the report up to date as of September 1968.

(Issued Sept 1968)

Item	Part	Section	Supplement, Correction, or Revision
15	II	11	Revised pp 1 and 2; revised sheet 2 and new sheets 3 and 4 of Table 1-BFS; revised sheet 2 and new sheets 3 and 4 of Table 2-BFS
16	II	13	Revised sheet 3, reprinted sheet 4, revised sheets 5, 6, and 7 of Table 1-CRE; revised sheet 2 of Table 2-CRE; revised sheets 3, 4, 5, and 6 of Table 3-CRE
17	II	17	Revised p 1; revised sheets 5, 6, 7, and 8 of Table 1-LTS; revised sheets 1, 2, 3, and 4 of Table 2-LTS
18	II	22	Revised Table 1-MM (1 p)
19	II	25	Revised sheets 3, 4, and 5 of Table 1-CRA
20	II	26	Revised Table 1-OD (1 p); revised Table 2-OD (1 p)
21	II	27	Revised Table 1-KCD (1 p); revised Table 2-KCD (1 p); revised Table 3-KCD (1 p); revised Table 4-KCD (1 p)
22	II	28	Revised Table 1-ED (1 p)
23	II	29	Revised sheets 3 and 4 of Table 1-AA; revised Table 2-AA (1 p)
24	II	30	Revised sheets 2 and 4 of Table 1-WS; revised sheets 2 and 3 of Table 2-WS; revised sheets 1 and 2 of Table 3-WS; revised sheets 2, 3, and 4 of Table 4-WS
25	II	32	Revised sheet 2 of Table 1-SS
26	II	34	Revised Table 1-MCP (1 p)
27	II	35	Revised Tables 1-QA and 2-QA (same page)
28	II	36	Revised Table 1-CRMI-PG (1 p)
29	II	37	Revised sheet 2 of Table 1-CAP
30	II	38	Revised sheet 1 and new sheet 2 of Table 1-MAWC
31	II	39	A new item (including key; 1 p of text; and Table 1-CT (2 pp))
32	II		Revised Plates 1, 2, and 3

(Issued Sept 1967)

INVESTIGATION OF PERFORMANCE OF CONCRETE AND CONCRETING

MATERIALS EXPOSED TO NATURAL WEATHERING

TECHNICAL REPORT NO. 6-553

June 1960

Supplements, Corrections, and Revisions Distribution No. 6*

September 1967

VOLUME 1

Item	Part	Section	Supplement, Correction, or Revision
1	Preface		Reprinted p iii; revised p iv
2	Contents		Revised pp v and vi
3	I		Revised Table 1; reprinted Table 2; revised Table 3
4	II		Revised p 11
5	II	1	Revised sheet 3 of Table 1-TC-A
6	II	2	Revised sheets 5 and 6 of Table 1-TC-B
7	II	3	Revised Table 1-SF
8	II	4	Revised Table 1-CRMI-PB
9	II	5	Revised Tables 1-PF and 2-PF (same page)
10	II	6	Reprinted p 5; new p 6; revised sheet 2 of Table 1-PR; revised sheets 1 and 2 of Table 2-PR; revised Table 4-PR; revised Table 5-PR; revised sheet 2 of Table 6-PR
11	II	7	Revised Table 1-GLD
12	II	8	Revised sheets 2 and 3 of Table 1-CRMI-PD; revised sheet 2 of Table 2-CRMI-PD
13	II	9	Revised Table 1-PQ
14	II	10	Revised Tables 1-SC and 2-SC
15	II	11	Revised sheets 1 and 2 of Table 1-BFS

^{*} TR 6-553 was issued in June 1960. Distributions 1, 2, 3, 4, and 5 were issued, respectively, in May 1962, August 1963, August 1964, August 1965, and September 1966. This distribution, No. 6, brings the report up to date as of September 1967.

(Issued Sept 1967)

Item	Part	Section	Supplement, Correction, or Revision
16	II	12	Withdraw Section 12 from this volume (see Vol 2, COM- PLETED INVESTIGATIONS, Program 10)
17	II	13	Revised sheets 5 and 7 of Table 1-CRE; revised sheet 2 of Table 2-CRE
18	II	14	Withdraw Section 14 from this volume (see Vol 2, COM- PLETED INVESTIGATIONS, Program 11)
19	II	15	Withdraw Section 15 from this volume (see Vol 2, COM- PLETED INVESTIGATIONS, Program 13)
20	II	16	Withdraw Section 16 from this volume (see Vol 2, COM- PLETED INVESTIGATIONS, Program 14)
21	II	17	Revised sheets 5, 6, 7, and 8 of Table 1-LTS
22	II	18	Withdraw Section 18 from this volume. The results of this study will be issued in Distribution No. 7 (1968) as Program 17 of Vol 2, COMPLETED INVESTIGATIONS
23	II	19	Withdraw Section 19 from this volume (see Vol 2, COM- PLETED INVESTIGATIONS, Program 12)
24	II	20	Withdraw Section 20 from this volume (see Vol 2, COM- PLETED INVESTIGATIONS, Program 15)
25	II	21	Withdraw Section 21 from this volume (see Vol 2, COM- PLETED INVESTIGATIONS, Program 16)
26	II	22	Revised Table 1-MM
27	II	23	Withdraw Section 23 from this volume. The results of this study will be issued in Distribution No. 7 (1968) as Program 18 of Vol 2, COMPLETED INVESTIGATIONS
28	II	24	Withdraw Section 24 from this volume. The results of this study will be issued in Distribution No. 7 (1968) as Program 19 of Vol 2, COMPLETED INVESTIGATIONS
29	II	25	Revised sheets 4 and 5 of Table 1-CRA
30	II	26	Revised Tables 1-OD and 2-OD
31	II	27	Revised Table 1-KCD; revised Table 2-KCD; revised Table 3-KCD; revised Table 4-KCD
32	II	28	Revised Table 1-ED
33	II	30	Revised sheets 2 and 4 of Table 1-WS; revised sheets 1 and 2 of Table 3-WS; revised sheets 2, 3, and 4 of Table 4-WS
34	II	31	Revised p 1; new p 2; revised Table 1-WPF

(Issued Sept 1967)

Item	Part	Section	Supplement, Correction, or Revision
35	II	33	Withdraw Section 33 from this volume. The results of this study will be issued in Distribution No. 7 (1968) as Program 20 of Vol 2, COMPLETED INVESTIGATIONS
36	II	34	Revised Table 1-MCP
37	II	35	Revised Table 1-QA; revised Table 2-QA (same page)
38	II	36	Revised Table 1-CRMI-PG
39	II	37	Revised sheet 2 of Table 1-CAP
40	II	38	Revised Table 1-MAWC
41	II		Revised Plates 1 and 2

(Issued Sept 1966)

INVESTIGATION OF PERFORMANCE OF CONCRETE AND CONCRETING

MATERIALS EXPOSED TO NATURAL WEATHERING

TECHNICAL REPORT NO. 6-553

June 1960

Supplements, Corrections, and Revisions Distribution No. 5*

September 1966

VOLUME 1

Item	Part	Section	Supplement, Correction, or Revision
M	Pr	eface	Reprinted p iii; revised p iv
12	Contents		Revised p v; reprinted p vi
13		version ctors	(New section.) p vii
14	Su	mmary	Revised p ix
5	Ι		Revised pp 1, 2, 3, and 4; new sheet 5; revised Tables 1, 2, and 3
6	II		Revised p ll
1	II	1	Revised sheet 3 of Table 1-TC-A**
18	II	2	Revised sheets 5 and 6 of Table 1-TC-B**
9	II	3	Revised Table 1-SF**
10	II	4	Revised Table 1-CRMI-PB**
/11	II	5	Revised Tables 1-PF and 2-PF (same page)**

^{*} TR 6-553 was issued in June 1960. Distributions 1, 2, 3, and 4 were issued respectively in May 1962, August 1963, August 1964, and August 1965. This distribution, No. 5, brings the report up to date as of September 1966.

^{**} Pulse velocities are not given for all specimens in these Treat Island programs for 1966. Values were obtained but they were determined with the James Soniscope ("V-scope") and appear to be too low when compared with previous readings taken with the McPhar Soniscope. An effort has been made to establish a factor for use in adjusting these readings, but has not yet been successful.

(Issued Sept 1966)

Item	Part	Section	Supplement, Correction, or Revision
J_{12}	II	6	Revised sheet 1 and new sheet 2 of Table 1-PR; revised sheets 1 and 2 of Table 2-PR; revised Table 3-PR; revised Table 5-PR; revised sheet 1 and new sheet 2 of Table 6-PR**
13	II	7	Revised Table 1-GLD
14	II	8	Revised sheets 2 and 3 of Table 1-CRMI-PD; revised sheet 2 of Table 2-CRMI-PD**
15	II	9	Revised Table 1-PQ
16	II	10	Revised Key; revised sheet 1; new sheet 2; revised Table 1-SC; new Table 2-SC
17	II	11	Revised sheets 1 and 2 of Table 1-BFS; revised sheets 1 and 2 of Table 2-BFS
18	II	12	Revised sheet 3 of Table 1-NBS
19	II	13	Revised sheets 5 and 7 of Table 1-CRE; revised sheet 2 of Table 2-CRE; revised sheets 3, 4, 5, and 6 of Table 3-CRE
V20	II	14	Revised Table 1-ADB
V21	II	15	Revised sheet 4 of Table 1-CRN
122	II	16	Revised sheet 6 of Table 1-VR; new sheets 7 and 8 of Table 1-VR
V23	II	17	Revised sheet 1; revised sheets 5, 6, 7, and 8 of Table 1-LTS
124	II	18	Revised sheet 2 of Table 2-PCA
125	II	19	Revised Table 1-SY
26	II	20	Revised sheet 4 of Table 2-FLC
27	II	21	Revised sheet 2 of Table 1-FL
28	II	22	Revised Table 1-MM
129	II	23	Revised sheet 2 of Table 1-VP; revised Table 2-VP
/30	II	24	Revised Table 1-PK
<i>y</i> 31	II	25	Revised sheets 4 and 5 of Table 1-CRA
J32	II	26	Revised Table 1-OD; revised Table 2-OD
V33	II	27	Revised Table 1-KCD; revised Table 2-KCD; revised Table 3-KCD; revised Table 4-KCD
√3 ⁴	II	28	Revised Table 1-ED
/35	II	29	Revised sheet 2 of Table 1-AA; new sheets 3 and 4 of Table 1-AA; revised Table 2-AA

(Issued Sept 1966)

Item	Part	Section	Supplement, Correction, or Revision
36	II	30	New sheet 2 of Table 1-WS; revised sheets 3, 4, 5, and 6 of Table 1-WS; revised sheet 2 and new sheet 3 of Table 2-WS; revised sheets 1 and 2 of Table 3-WS; revised sheets 1, 2, and 4 of Table 4-WS
37	II	31	Revised Table 1-WPF
/38	II	32	Revised Table 1-SS
39	II	33	Revised sheet 2 of Table 1-Z
40	II	34	Revised Table 1-MCP
JH	II	35	Revised Table 1-QA
42	II	36	Revised Table 1-CRMI-PG
<i>A</i> 43	II	37	Revised sheet 1 and new sheet 2 of Table 1-CAP
. 44	II	38	Revised Table 1-MAWC
45	II		Revised Plates 1, 2, and 3

(Issued Aug 1965)

INVESTIGATION OF PERFORMANCE OF CONCRETE AND CONCRETING

MATERIALS EXPOSED TO NATURAL WEATHERING

TECHNICAL REPORT NO. 6-553

June 1960

Supplements, Corrections, and Revisions Distribution No. 4*

August 1965

VOLUME 1

Item	Part Section	Supplement, Correction, or Revision
1	Preface and Contents	Reprinted p iii; revised p iv; reprinted p v; revised p vi
2	I	Revised sheets 1 and 2 of Table 1; reprinted Table 2; revised Table 3
3	II 1	Revised Key; revised sheet 1; revised sheets 1-3 of Table 1-TC-A
4	II 2	Revised sheet 1; revised sheets 1-5 and new sheet 6 of Table 1-TC-B
5	II 3	Corrected sheet 1; revised Table 1-SF
6	II 4	Corrected sheet 1; revised Table 1-CRMI-PB
7	II 5	Revised Tables 1-PF and 2-PF (same page)
8	II 6	Revised sheet 5; revised Table 1-PR; revised sheets 1 and 2 of Table 2-PR; revised Table 5-PR; new Table 6-PR

^{*} TR 6-553 was issued in June 1960. It was intended that there be issued annually thereafter a distribution of replacement and supplementary sheets by means of which the report would be kept up to date. Distributions 1, 2, and 3 were issued respectively in May 1962, August 1963, and August 1964. This distribution, No. 4, brings the report up to date as of August 1965. It is planned to issue future distributions annually as of August of each year. It is further planned that specimen testing at the various installations be accomplished in May in those years when such testing is to be done, and to schedule formal inspections of the specimens after the distribution of data including the results of such May inspections; thus formal inspections would probably be scheduled during September of any year in which it might be determined that a formal inspection should be made.

(Issued Aug 1965)

Item	Part	Section	Supplement, Correction, or Revision
9	II	7	Revised Table 1-GLD
10	II	8	Corrected sheet 1; revised sheets 2 and 3 of Table 1-CRMI-PD; revised sheet 2 of Table 2-CRMI-PD
11	II	9	Corrected sheet 1, reprinted sheet 2, revised Table 1-PQ
12	II	10	Revised Table 1-SC
13	II	11	Revised sheets 1 and 2 of Table 1-BFS
14	II	12	Revised sheet 1; revised sheet 3 of Table 1-NBS
15	II	13	Corrected sheet 1, reprinted sheet 2, corrected sheet 3, reprinted sheet 4; revised sheets 5 and 7 of Table 1-CRE; revised sheet 2 of Table 2-CRE
16	II	14	Revised Table 1-ADB
17	II	15	Revised sheet 4 of Table 1-CRN
18	II	16	Revised sheets 4, 5, and 6 of Table 1-VR
19	II	17	Revised sheet 4 of Table 1-LTS; new sheets 5, 6, 7, and 8 of Table 1-LTS
20	II	18	Corrected sheet 1; revised sheet 2 of Table 2-PCA
21	II	19	Corrected sheet 1; revised Table 1-SY
22	II	20	Revised sheet 4 of Table 2-FLC
23	II	21	Revised sheet 2 of Table 1-FL
24	II	22	Revised Key; revised Table 1-MM
25	II	23	Revised sheet 2 of Table 1-VP; revised Table 2-VP
26	II	24	Revised Table 1-PK
27	II	25	Revised sheets 4 and 5 of Table 1-CRA
28	II	26	Revised Key; revised sheet 1; revised Table 1-OD; new Table 2-OD
29	II	27	Revised Table 1-KCD; revised Table 2-KCD; revised Table 3-KCD; revised Table 4-KCD
30	II	28	Corrected sheet 1; revised Table 1-ED
31	II	30	Revised sheets 1 and 3 of Table 1-WS; revised sheets 1 and 2 of Table 3-WS; revised sheets 1, 2, and 3 and new sheet of Table 4-WS
32	II	33	Corrected sheet 1; corrected sheet 1 and revised sheet 2 of Table 1-Z
33	II	34	Revised Table 1-MCP
34	II	35	Corrected sheet 1; revised Table 1-QA

(Issued Aug 1965)

Item	Part	Section	Supplement, Correction, or Revision
35	II	36	Corrected Key and sheet 1; revised Table 1-CRMI-PG
36	II	37	Corrected Key; revised Table 1-CAP
37	II	38	(New section). Key, sheet 1, and Table 1-MAWC
38			Revised Plates 1 and 2

(Revised August 1977)

PREFACE

The establishment of exposure stations, and the conduct of programs of investigation relative to the durability of concrete exposed to natural weathering have been authorized from time to time by the Office, Chief of Engineers. The initial installation of concrete specimens at an exposure station was made at Treat Island, Maine, in 1936 by the Concrete Laboratory of the Passamaquoddy Tidal Power Project. In 1939 the Office, Chief of Engineers, authorized the Central Concrete Laboratory, North Atlantic Division, to develop data relative to the durability of concrete exposed to severe weathering. Under this authorization specimens were prepared and installed at exposure stations in Maine, Florida, and New York. In 1946, the Office, Chief of Engineers, directed the Concrete Research Division (now Concrete Laboratory) of the U.S. Army Engineer Waterways Experiment Station (WES) (successor to the Central Concrete Laboratory) to continue the work in connection with these exposure stations. Further authority is contained in multiple letter of the Office, Chief of Engineers, dated 14 September 1948, subject, "Civil Works Investigations of Office, Chief of Engineers," Item CW-604-Concrete "Continuation of Permanent Exposure Stations." Additional authorizations have been provided since that time for the making and installing of specific specimens at these exposure stations. Installation and testing of specimens at the Florida station was discontinued in November 1971.

Results of these various investigations have been reported from time to time in the reports listed below.

- 1. Corps of Engineers, Central Concrete Laboratory, Cement Durability Program, First Interim Report, June 1942.
- 2. , Concrete Research, <u>Laboratory Studies of</u>
 Concrete Containing Air-Entraining Admixtures, Second
 Interim Report, Part I, July 1945.

(Revised August 1977)

- 3. Waterways Experiment Station, Concrete Research, Third Interim Report, Durability of Concrete Exposed to Natural Weathering, Technical Memorandum No. 6-226, August 1947.
- 4. _____, Concrete Research, Third Interim Report,
 Supplement No. 1, Durability of Concrete Exposed to Natural Weathering, Technical Memorandum No. 6-226, June 1950.
- 5. , Investigation of Durability of Concrete Exposed to Natural Weathering, Report No. 5, Summary of Results 1936-1953, Technical Memorandum No. 6-226, May 1954.
- 6. ; Cement Durability Program, Long-Term Field Exposure of Concrete Columns, Technical Report C-72-2, August 1972.
- 7. Roshore, E. C. and Houston, B. J., Investigation of Plastic and Rubber-Based Coatings Used in Lieu of Rubbed Finishes on Formed Concrete Surfaces, sponsored by the Assistant Secretary of the Army (R&D), Department of the Army; Miscellaneous Paper No. 6-864, November 1966.
- 8. Houston, B. J., <u>Investigation of Nonmetallic Waterstops;</u>
 Preliminary Laboratory and <u>Field Exposure Tests</u>, sponsored by Office, Chief of Engineers, U. S. Army; Technical Report No. 6-546, Report No. 1, May 1960.
- 9. Investigation of Nonmetallic Waterstops;
 Progress Report of Laboratory and Field Exposure Tests,
 sponsored by Office, Chief of Engineers, U. S. Army;
 Technical Report No. 6-546, Report No. 3, June 1963.
- 10. , Investigation of Nonmetallic Waterstops
 Effect of Exposure, sponsored by Office, Chief of
 Engineers, U. S. Army; Technical Report No. 6-546,
 Report No. 6, January 1968.
- 11. Kennedy, T. B., <u>Tensile Crack Exposure Tests</u>, <u>CWI Item</u>
 No. 026, <u>Tensile Crack Exposure Test for Reinforced Concrete Beams</u>, <u>Technical Memorandum No. 6-412</u>, U. S. Army Engineer Waterways Experiment Station, CE, July 1955.
- 12. Roshore, E. C., <u>Durability and Behavior of Prestressed</u>
 <u>Concrete Beams</u>, <u>Pretensioned Concrete Investigation</u>;
 <u>Progress to July 1960</u>, <u>Technical Report No. 6-570</u>, Report 1, June 1961.
- 13. , Tensile Crack Exposure Tests; Results of Tests of Reinforced Concrete Beams, Technical Memorandum No. 6-412, Report 2, November 1964.

- 14. Roshore, E. C., <u>Durability and Behavior of Prestressed</u>
 <u>Concrete Beams; Posttensioned Concrete Investigation,</u>
 <u>Progress to July 1966, Technical Report No. 6-570, Report No. 6-570, Report No. 6-570, Report 2, March 1967.</u>
- 15. Field Exposure Tests of Reinforced Concrete
 Beams, Miscellaneous Paper No. 6-868, January 1967.
- 16. , Durability and Behavior of Prestressed Concrete

 Beams; Laboratory Tests of Weathered Pretensioned Beams,
 Technical Report No. 6-570, Report 3, October 1971.
- 17. O'Neil, E. F., <u>Durability and Behavior of Prestressed</u>
 Concrete Beams; <u>Posttensioned Concrete Beam Investigation</u>
 with <u>Laboratory Tests from June 1961 to September 1975</u>,
 Technical Report No. 6-570, Report 4, February 1977.
- 18. , <u>Durability and Behavior of Prestressed Concrete Beams</u>; <u>Laboratory Tests of Weathered Pretensioned Beams</u>, <u>Technical Report No. 6-570</u>, <u>Report 5</u>, <u>June 1976</u>.

This report summarizes all investigations made to date, and is issued in loose-leaf form in order that it may be kept up to date by the addition of new material or revision of old material, as appropriate. The report is made up of two volumes: Volume 1 (this volume) summarizes the test results of investigations which are still active, and Volume 2 summarizes the findings of completed investigations.

The major part of the work reported herein and the preparation of this report constitute part of Civil Works Investigation Item ES-630, "Field Exposure Durability Studies of Concrete." The studies were made by the Concrete Laboratory, Waterways Experiment Station. Personnel actively engaged in the direction and conduct of the work include Ms. K. Mather, Messrs. B. Mather, John Scanlon, B. R. Sullivan, R. V. Tye, Jr., E. E. McCoy, E. C. Roshore, H. T. Thornton, R. E. Black, Dale Glass, and G. S. Harris. Mr. Thornton prepared this distribution.

During the preparation of this report COL Edmund H. Lang, CE, was Director of the Waterways Experiment Station, and Mr. J. B. Tiffany was Technical Director. During the preparation of this distribution of the Supplements, Corrections, and Revisions, COL John L. Cannon, CE, was Commander and Director and Mr. F. R. Brown was Technical Director.

CONTENTS

	Page	
PREFACE		
CONVERSION FAC	TORS, BRITISH TO METRIC UNITS OF MEASUREMENT vii	
SUMMARY	ix	
PART I: INTRO	DUCTION	
	eathering Station, Treat Island, Maine 1	
	thering Station, St. Augustine, Fla	
	-Weathering Exposure Stations	
Test Met	hods	
Summary	of Specimens 6	
PART II: PROG	RAMS OF INVESTIGATIONS	
Section	1: Tensile Crack Specimens, Series A (CW R&D)	
Section	2: Tensile Crack Specimens, Series B (CW R&D)	
Section	3: Stewart Field Spheres (NAD)	
Section	4: Cement-Replacement Materials Investigation, Phase B (CW R&	D)
Section	5: CERL Fibrous Concrete (CW R&D)	
Section	6: Prestressed Concrete Program (CW R&D)	
Section	7: WES Fibrous Concrete (CW R&D)	
Section	8: Cement-Replacement Materials Investigation, Phase D (CW R&	D)
Section	9: Passamaquoddy Tidal Power Project	
Section	10: Missouri River Division Program	
Section	ll: Portland Blast-Furnace Slag Cement Investigation (CW R&D)	
Section	12: Specimen Size-Frost Effects Program (CW R&D)	
Section	13: Trumbull Pond Dam Prisms (NED)	
Section	14: Investigation of 4-1/2-inAggregate Concrete (CW R&D)	
Section	15: Sulfur-Infiltrated Concrete (Canadian)	
Section		
Section		
Section	18: Charles River Dam-Smelt Brook Protection Project (NED)	

CONTENTS (Continued)

Section 22: Mt. Morris Dam Cores (Buffalo) Section 25: Air-Entraining Admixture Study (CW R&D) Section 26: Omaha District Aggregate Program Section 27: Kansas City District Aggregate Program Section 28: Eufaula Dam Aggregates Study (Tulsa) Section 29: Alkali-Aggregate Reactivity Investigation (CW R&D) Section 30: Nonmetallic Waterstop Investigation (CW, LMVD) Section 31: Woven Plastic Test Program (CW R&D) National Bureau of Standards Supersulfate Cement Program Section 32: Membrane Curing Program (CW R&D) Section 34: Quality Aggregate Investigation (CW R&D) Section 35: Cement-Replacement Materials Investigation, Phase G (CW R&D) Section 36: Maximum Size of Coarse Aggregate Program (CW R&D) Section 37: Section 38: Maximum Allowable Water-Cement Ratio Investigation (CW R&D) Curing Investigation (CW R&D) Section 39: Section 40: Investigation of Plastic Based Mortar Coatings (CW R&D)

(Issued August 1977)

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

- 1 inch = 25.4 millimetres
- 1 inch = 2.54 centimetres
- 1 foot = 30.48 centimetres
- 1 foot = 0.3048 metre
- $37^{\circ}F = 2.8^{\circ}C$
- $-10^{\circ}F = -23.4^{\circ}C$
- $28^{\circ}F = -2.2^{\circ}C$
- $70^{\circ}F = 21.1^{\circ}C$
- 1 1b = 0.453592 kilogram
- 1 bag of cement = 94 1b of cement = 42.637648 kilograms of cement
- 1 cu yd = 0.764555 cubic metre
- 1 gal (U. S.) = 3785.412 cubic centimetres
- 1 gal (U. S.) = 3.785412 cubic decimetres
- 1 cu ft = 0.028317 cubic metre
- 1 ton = 2000 1b = 907.184 kilograms
- 1 psi = 0.006894757 megapascals
- 1 fps = 0.3048 metre/second
- 1 lb/cu ft = 16.018477 kilograms/cubic metre
- 1 bag/cu yd = 55.767928 kilograms/cubic metre
- 1 gal/bag = 88.781398 cubic centimetres/kilogram
- 3-1/2 by 4-1/2 by 16 in. = approximately 9 by 11-1/2 by 41 centimetres
- 6 by 6 by 30 in. = approximately 15 by 15 by 76 centimetres
- 6 by 6 by 48 in. = approximately 15 by 15 by 122 centimetres
- 18 by 18 by 36 in. = approximately 46 by 46 by 91 centimetres

(Issued August 1977)

SUMMARY

To assess the durability of concrete and other materials used in concrete construction when exposed to natural weathering, the Corps of Engineers maintains severe-, mild-, moderate-, and nonweathering exposure stations at various locations in the United States. Specimens from actual structures and experimental specimens in which the amounts or kinds of components are varied are exposed until they fail or until testing is completed, whichever occurs first. The specimens are inspected periodically, and tested to determine their dynamic modulus of elasticity and pulse velocity. This report, in two volumes, describes the exposure stations, test methods used, the specimens, and lists test results to date. Volume 1 contains the active investigations, and volume 2 the completed investigations. These volumes are in loose-leaf form so that new or revised data can be added to volume 1, and completed studies can be transferred from volume 1 to volume 2. A preliminary report was prepared in June 1959, but the first complete edition was issued in June 1960. Revisions will be distributed annually.

(Reprinted Jan 1973)

INVESTIGATION OF PERFORMANCE OF CONCRETE AND CONCRETING MATERIALS EXPOSED TO NATURAL WEATHERING

PART I: INTRODUCTION

1. The ultimate test of the durability of concrete is its performance under the exposure conditions in which it is to serve. Although laboratory tests yield valuable indications of probable durability, the potential disrupting influences in nature are so numerous and variable that actual field exposures are highly desirable to assess the durability of concrete when exposed to natural weathering. To this end, exposure stations have been provided at several locations in the United States.

Severe-Weathering Station, Treat Island, Maine

2. The severe-weathering exposure station is located at Treat Island in Cobscook Bay near Eastport, Maine. This station has been in use since 1936 and is an ideal location for these tests, providing twice-daily tide reversals, together with severe winters. The specimens are installed at mean-tide elevation and the alternate conditions of immersion of the specimens in sea water, then exposure to cold air, provide numerous cycles of freezing-and-thawing of the concrete during the winter. The effect of the relatively cool summers is to lessen, in general, autogenous healing and chemical reactions in the concrete. The tidal range is a mean of about 18 ft,* with a maximum of about 28 ft and a minimum of about 13 ft. Prior to September 1963, the half-tide exposure rack, on which most of the specimens are installed (the rest are on the beach), had a roof over it to eliminate differences in exposure due to sunlight and wind. In September 1963, the exposure-rack specimens were moved onto a new rack. This new rack contained no roof and the specimens are therefore exposed to sunlight and wind as are the beach specimens.

^{*} A table of factors for converting British units of measurement to metric units is included on page vii.

3. In winter, the combination of air and water temperatures creates a condition in which specimens at the mean-tide elevation are thawed to a temperature of about 37 F when covered with water, and are frozen to temperatures as low as -10 F when exposed in air. A recording thermometer, the bulb of which is embedded in the center of a concrete specimen, records these temperatures. A cycle of freezing-and-thawing consists of the reduction of the temperature at the center of a concrete specimen to below 28 F, and its subsequent rise to above that figure. During an average winter, the specimens are subjected to over 100 cycles of freezing-and-thawing. In eleven winters, from 1960 to 1972, the number of annual cycles has ranged from 89 to 185, with the average being 145.

Mild-Weathering Station, St. Augustine, Fla.

- 4. The mild-weathering exposure station located in Salt-Run, off Anastasia Island near St. Augustine, Fla., was discontinued in November 1971. This station was established to provide information on the effects of sea water on concrete specimens apart from the effects of freezing-and-thawing. The specimens were installed at mean-tide elevation and, therefore, were subject to twice-daily tide reversals. The mean water temperature of about 70 F was found to be conducive to attack on concrete specimens by the dissolved salts in the sea water.
- 5. In September 1964, Hurricane "Dora" struck the St. Augustine area, breaching the bar between Salt-Run and the open sea and depositing a large quantity of sand on the exposure rack. In February 1966, an inspection party established that the continuing deposition of sand did not seriously alter the exposure conditions and no immediate action as a result of it was indicated. It became obvious, however, by mid-1971 that the sand deposits, which had by then become extensive, and the accelerating deterioration of the facility dictated its abandonment. A firm decision concerning the possible reestablishment of the mild-weathering station at another site has not yet been reached.

Moderate-Weathering Exposure Stations

6. The moderate-weathering exposure station was located outdoors at West Point, N. Y., from September 1940 to April 1942, then at Mt. Vernon, N. Y., from 1942 to 1946. Specimens for moderate exposure were stored outdoors at the U. S. Army Engineer Waterways Experiment Station Jackson Installation, Jackson, Miss., until October 1969. Here specimens were exposed to rain, occasionally ice or snow, cold, and strong sunlight, but were supported above the ground and allowed to drain freely. Moderate-weathering exposure was discontinued after October 1969.

Nonweathering Exposure Stations

7. A nonweathering exposure station was located in 1940 inside the laboratory buildings at West Point, N. Y., and later indoors at Mt. Vernon, N. Y., until 1946. Since that time, specimens for nonweathering exposure have been stored inside the Concrete Laboratory building at the Jackson Installation.

Composition of Sea Water at Treat Island, Maine, and St. Augustine, Fla.

	Parts per Million								
Constituent	Treat Island (Sampled in 1959)	Salt-Run (Sampled in 1958)							
Total solids	35,275	38,770							
Suspended solids		160							
Dissolved solids		38,610							
Calcium	370	430							
Magnesium	1,175	1,340							
Sodium	9,500	11,130							
Potassium	370	450							
Chloride	17,100	20,460							
Sulfate	2,385	2,780							

Test Methods

Frequency readings

8. The concrete specimens at all installations are subjected to test

for fundamental transverse frequency (Test Method CRD-C 18-59*) at regular intervals** during exposure, unless their shape or size prevents. The specimen is supported in a horizontal position at the nodes and caused to vibrate in its fundamental flexural mode. The resonant frequency is obtained by observing the maximum indication on a suitable meter as the applied frequency is varied. From this value together with the size, shape, and weight of the specimens, the dynamic modulus of elasticity (E) is determined. The moduli so determined are expressed as percentages of the initial dynamic modulus obtained at installation (%E). A specimen is considered as having failed if this percentage (%E) drops below 50 during the exposure.

Pulse velocity readings

9. The concrete specimens at all installations are subjected to pulse velocity tests (Test Method CRD-C 51-57) at regular intervals during exposure, unless their size or shape prevents. The test instrument measures the time of travel of a sound pulse through a concrete specimen. From the travel time and the path length, values for velocity of sound in concrete (V) are calculated. The square of the velocity thus determined is expressed as a percentage of the square of initial velocity obtained at installation (%V²). Example:

 $\mathbf{V}_{_{\mathbf{O}}}$ = velocity of sound in a certain specimen at installation.

 $\mathbf{V}_{\mathbf{t}}$ = velocity of sound in this same specimen at a later date. Therefore

$$%V^2 \text{ (at time t)} = \frac{V_t^2}{V_0^2}$$

10. Pulse velocity readings on test specimens are taken through various paths depending upon specimen size, shape, and type of specimen. For example, one pulse velocity reading is taken through an 18- by 18- by 36-in. prism from the center of one 18- by 18-in. face to the center of

** The specimens at St. Augustine were tested every two years; the specimens at all other stations are tested annually.

^{*} U. S. Army Engineer Waterways Experiment Station, CE, <u>Handbook for Concrete and Cement</u>, Aug 1949 (with quarterly supplements), Vicksburg, Miss.

the 18- by 18-in. face on the other end; this provides a 36-in. path. This same path is used, if possible, each time the specimen is tested. A 2-ft cube is tested by transmitting the ultrasonic pulse from the center of one 2- by 2-ft face to the center of the opposite 2- by 2-ft face. Two such readings are taken for each 2-ft cube (paths normal to each other) and averaged to give the pulse velocity reading. The same two paths are used, if possible, each time the specimen is tested.

Visual inspection

11. All specimens are visually inspected periodically at all exposure stations to ascertain their condition. Those specimens not amenable to quantitative testing are inspected more thoroughly at times comparable to the testing periods to determine their condition and to permit comparisons of the durability of these specimens.

Criteria of failure

12. Specimens are regarded as having failed when they separate into pieces, when the %E is 50 or less, or when deterioration has progressed to such a point that reliable determinations of fundamental frequency and pulse velocity cannot be obtained. Specimens that have been broken in handling are so listed and not as "failed."

Specimen size

13. Test specimens of various sizes and shapes have been used from time to time as outdoor exposure specimens. In December 1963, however, it was specified in the Handbook for Concrete and Cement* that specimens for outdoor exposure shall be 18 in. in height and depth, and 36 in. in length. The 18- by 18- by 36-in. prism was selected instead of a 2-ft cube because it (a) afforded a longer path length for pulse velocity readings, (b) contained less concrete and therefore weighed less, and (c) was more amenable to tests for fundamental transverse frequency. With a 36-in. path a smaller percentage of error is introduced into pulse velocity calculations because of minor variations in the measurement of path length than with a 24-in. path. A lighter specimen reduces handling and shipping costs and a specimen with a length-to-width ratio of 2 to 1 (prism) is less difficult

^{*} U. S. Army Engineer Waterways Experiment Station, op. cit.

to excite in the fundamental flexural mode than a specimen with a length-to-width ratio of 1 to I (cube). In 1968, with the 18- by 18- by 36-in. prism as the outdoor exposure specimen and with enough exposure rack space available for the proper installation of a large number of prisms on their nodal points, large mass concrete specimens were tested for both fundamental flexural frequency and pulse velocity on a regular basis (see Section 39, Part II) for the first time at Treat Island, Maine.

Summary of Specimens

Treat Island exposure

14. Plate 1 gives a summary and the layout of the test specimens installed on the beach at Treat Island, Maine. The summary indexes each group of specimens on the beach by the section number given them in Part II of this report. Plate 2 gives the arrangement of test specimens on the exposure rack and also indexes each group by section number. Table 1 is a recapitulation of all specimens exposed at Treat Island and indexes each group by section number.

St. Augustine exposure

15. Plate 3 gives in detail the arrangement of test specimens on the exposure rack at St. Augustine, Fla., in November 1971 when that station was discontinued, and indexes each group by section number. Table 2 lists each group of test specimens exposed at St. Augustine and indexes them by section number.

(Revised August 1977)

Table 1

Recapitulation of Specimens Exposed at Treat Island, Maine

			Specimens	W.		D.4.	Section
Locat			Cine and Vind	No. Installed	No. Left	Date Installed	No. i
ection	Row	Program of Investigation	Size and Kind				
each	2	Tensile Crack Specimens, Series A	7-ft-9-inlong beams	82	0	Nov 1951	1
each	1	Tensile Crack Specimens, Series B	7-ft-9-inlong beams	76	75	Nov 1954	2
ack	9	Stewart Field Spheres	1-ft spheres	24	12	May 1954	3
each	2	Cement-Replacement Materials	18- by 18- by 36-in. prisms	21	6	Dec 1953	4
		Investigation, Phase B					,
each	2	Prestressed Concrete Program	4-1/2- by 9- by 81-in. beams	16	0	Oct 1958	6
ck	3	Prestrassed Concrete Program	3-1/2- by 4-1/2- by 16-in. beams	72	57	Oct 1958	6
ach	2	Prestressed Concrete Program	10- by 16- by 96-in. beams	20	12	June 1961	6
ck	4	Cement-Replacement Materials	10- by 20-in. cores	75	21	Oct 1958	8
		Investigation, Phase D				F 50	
ach	1	Cement-Replacement Materials	2-ft cubes	20	4	Oct 1958	8
		Investigation, Phase D					
ck	8	Passamaquoddy Project	5- by 5- by 60-in. columns	43	1	June 1936	9
ck	5	Missouri River Division Program	3-1/2- by 4-1/2- by 16-in. beams	12	5	Sept 1963	10
ck	5	Missouri River Division Program	3- by 4-1/2- by 16-in. beams	3	2	Nov 1965	10
ck	5	Portland Blast-Furnace Slag	3-1/2- by 4-1/2- by 16-in. beams	108	66	May 1956	11
		Cement Investigation					
ck	3	Specimen Size-Frost Effects	3-1/2- by 4-1/2- by 16-in. beams	9	9	Dec 1968	12
	-	Investigation	• • • • • • • • • • • • • • • • • • • •				
ck	2		6- by 6- by 30-in. beams	3	3	Dec 1968	12
ck	3		2-ft cubes	3	3	Dec 1968	12
ck	2		18- by 18- by 36-in. prisms	3	3	Dec 1968	12
ck	3	Trumbull Pond Dam Prisms	18- by 18- by 36-in. prisms	6	6	June 1972	13
ick	2	Investigation of 4-1/2-in.	18- by 18- by 36-in. prisms	12	5	Dec 1968	14
		Aggregate Concrete	10- 0j 10- 0j 50-111. prismo		,	200 1900	-
ok	2		3-1/2- by 4-1/2- by 16-in. beams	198	196	May 1955	17
ıck	3	Longtime Study, Waterways	3-1/2- by 4-1/2- by 10-11. beams	190	190	1975	11
-1-	4	Experiment Station	10 de diam by 19 de	11	2	Oat 1010	22
ck		Mt. Morris Dam Cores	10-indiam by 18-in. cores	11	3	Oct 1949	
ck	2	Air-Entraining Admixture Study	6- by 6- by 30-in. prisms	90	13	Nov 1944	25
ck	2	Omaha District Aggregate Program	6- by 6- by 30-in. beams	6	3	Dec 1956	26
ck	2	Omaha District Aggregate Program		3	0	Nov 1964	26
ck	2	Kansas City District Aggregate		18	6	Jan 1958	27
		Program					
ck	2			18	1	May 1959	27
ck	2			9	5	Nov 1962	27
ck	2			9	5	Dec 1963	27
ck	2			3	3	May 1969	27
ck	2			3	3	July 1974	27
ck	2			3	3	July 1974	27
each	1	Eufaula Dam Aggregates Study	2-ft cubes	3	3	Oct 1958	28
ck	N wall	Nonmetallic Waterstop	Waterstop pieces	54	16	May 1957	30
		Investigation					
			Embedded waterstop pieces	27	0	May 1957	30
ck	N wall		Waterstop pieces	30	0	Nov 1957	30
-			Embedded waterstop pieces	15	0	Nov 1957	30
ck	N wall		Waterstop pieces	2	0	Aug 1958	30
-			Embedded waterstop pieces	1	0	Aug 1958	30
ck	5	Woven Plastic Test Program		160	0	Nov 1963	31
-		Woven Plastic Test Program	13-in. squares	80	0	Apr 1967	31
			13-in. squares	22			31
ck	5	Woven Plastic Test Program	13-in. squares	14	0	Mar 1970	
p of		Membrane Curing Program	Box specimens	14	14	June 1946	34
wharf	•	Quality Assurants Toward and	0. At autos	10	•	Non 1060	-
ach	2	Quality Aggregate Investigation	2-ft cubes	10	0	Nov 1962	35
ach	A-1	Quality Aggregate Investigation	2-ft cubes	6	2	Dec 1963	35
ach	2	Cement-Replacement Materials	18- by 18- by 36-in. prisms	2	0	Nov 1962	36
	153	Investigation, Phase G				-	
ach	2	Maximum Size of Coarse Aggregate		18	9	Dec 1963	37
	75	Program					-
each	A-1	Maximum Allowable Water-Cement		24	12	Dec 1964	38
		Ratio Investigation				10 P. Car	
ck	1	Curing Investigation		56	56	June 1968	39
ck	5	Investigation of Plastic Based	10- by 10- by 3-in. mortar-coated	8	8	July 1969	40
		Mortar Coatings	panels				
ck	5	Investigation of Plastic Based	10- by 10- by 3-in. mortar-coated	8	8	Nov 1969	40
		Mortar Coatings	panels				
ck	5	Investigation of Plastic Based	10- by 10- by 3-in. mortar-coated	16	16	Dec 1970	40
		Mortar Coatings	panels				
ck	3	CERL Fibrous Concrete	3-1/2- by 4-1/2- by 16-in. beams	30	10	Jan 1975	5
ck	4 & 6	WES Fibrous Concrete	9- by 9- by 45-in. beams	17	17	June 1975	7
ck	ALCOHOLD STREET			12			
	5	WES Fibrous Concrete	6- by 6- by 30-in. beams		12	June 1975	7
ck	5	WES Fibrous Concrete	6- by 6- by 36-in. beams	21	21	June 1975	7
ck	9	Sulfur-Infiltrated Concrete	4- by 8-in. cylinders	18	18	Aug 1976	15
ck	9	Sulfur-Infiltrated Concrete	3- by 6-in. cylinders	36	36	Aug 1976	15
ck	6	Roller-Compacted Concrete	12- by 12- by 36-in. beams	6	6	July 1977	16
CA	6	Charles River - Smelt Brook	6- by 6- by 24-in. beams	18	18	Aug 1976	18

(Reprinted August 1977)

Table 2

Recapitulation of Specimens Exposed at St. Augustine, Fla.

	S	pecimens			Sec.
Program of Investigation	Size and Kind	No. In- stalled	No. Left	Date In- stalled	No. in This Vol
Prestressed Concrete Program	4-1/2- by 9- by 81-in. beams	3	1	Oct 1959	6
Portland Blast- Furnace Slag Ce- ment Investigation	3-1/2- by 4-1/2- by 16-in. beams	108	93	Aug 1956	11
	8-1/2- by 8-1/2- by 12-in. prism	45 s	0	Aug 1956	11
Longtime Study Waterways Experi- ment Station	3-1/2- by 4-1/2- by 16-in. beams	198	195	Aug 1955	17
Alkali-Aggregate Reactivity In- vestigation	6- by 6- 30-in. beams	72	45	Aug 1955	29
	6- by 6- by 30-in beams	. 36	30	Aug 1956	29
National Bureau of Standards Super- sulfate Cement Program	3- by 4- by 16-in beams	. 27	19	Nov 1957	32

Note: Installation and testing of specimens at St. Augustine, Fla., was discontinued in November 1971.

PART II: PROGRAMS OF INVESTIGATION

16. A large number of investigational programs are in progress at the exposure stations. These programs involve varying numbers of specimens, installed at one or all exposure stations. The purposes of the different programs also have been varied. In general, they have constituted investigations of cements, aggregates, construction methods, admixtures, or combinations of these variables. The remainder of this report is devoted to a discussion of these test programs and to a presentation of the exposure records of the test specimens involved.

PART II: PROGRAMS OF INVESTIGATION

- 15. A large number of investigational programs are in progress at the exposure stations. These programs involve varying numbers of specimens, installed at one or all exposure stations. The purposes of the different programs also have been varied. In general, they have constituted investigations of cements, aggregates, construction methods, admixtures, or combinations of these variables. The remainder of this report is devoted to a discussion of these test programs and to a presentation of the exposure records of the test specimens involved.
- 16. During the inspection of the Treat Island Exposure Station in July 1966, representatives of the Office, Chief of Engineers, recommended that the Treat Island exposure of test specimens in the following 13 programs be discontinued during FY 1967 provided the sponsoring agencies concurred.

	12
National Bureau of Standards Program	12
Cement Durability Program	13
Rome Air Depot Program	14
Natural Cement Investigation	15
Resin Air-entraining Agent Program	16
Long-time Study, Waterways Experiment Station	17
Long-time Study, Portland Cement Association	18
Syracuse Air Base Beams	19
Field and Laboratory Correlation Program	20
Form Lining Investigation	21
Vacuum Treatment Investigation	23
Preplaced Aggregate Cores	24
Cooperative Study of Air-entrained Concrete	33

17. Eleven of the 13 programs listed above were discontinued in FY 1967. Subsequent correspondence has established that the Long-time Study, Waterways Experiment Station, Section 17, will continue active. The Cement Durability Study, Section 13, was discontinued in FY 1971. Data will no longer be collected from specimens at St. Augustine, Fla.

Tensile Crack Specimens, Series A*

In November 1951, 82 reinforced-concrete beams were installed at half-tide elevation on the beach at Treat Island. The purpose of this installation is to determine, for different types of reinforcing steel, the relation between the degree of tensile stress in the steel and the resistance of reinforced concrete to severe natural weathering.

The beams were 7 ft 9 in. long and were made of concrete with a nominal compressive strength of 3500 psi at 28 days age. Air-entrained (4-1/2 + 1/2%) and nonair-entrained concrete were used. Seventy-four beams were reinforced with rail-steel bars, of which 64 had deformations conforming to ASTM Designation A 305-50T, and the other 10 had old-style deformations. Eight beams were reinforced with billet-steel bars having deformations conforming to ASTM Designation A 305-50T. Coverage over the steel was either 3/4 in. or 2 in., and bars were placed in either bottom or top position when the concrete was placed. Aggregates were a manufactured limestone sand and a crushed limestone coarse aggregate (1-in. maximum size). Type II cement was used, with the cement factors ranging from 5.20 (for the plain concrete) to 5.35 (for the air-entrained concrete) bags per cu yd. The air-entraining agent was admixture P. The water-cement ratio (by weight) used was 0.60 for the air-entrained concrete and 0.70 for the plain concrete.

Seventy-two beams were yoked and stressed by third-point loading; loads ranged from 20,000 to 50,000 psi. The remaining 10 beams were controls.

Table 1-TC-A lists these specimens and gives their exposure record along with other pertinent information.

^{*} See U. S. Army Engineer Waterways Experiment Station, CE, Tensile Crack Exposure Tests, by T. B. Kennedy, and Tensile Crack Exposure Tests.

Results of Tests of Reinforced Concrete Beams, 1955-1963, by E. C. Roshore, Technical Memorandum No. 6-412, Reports 1 and 2 (Vicksburg, Miss., July 1955 and November 1964).

Table 1-TC-A

Record of Observation and Testing of Large-Beam Tensile Crack Specimens, Series A, 1951- (Installed Nov 1951)

								23.35	1051	1057	D				Beach I	Row 2
	Nominal	Steel		Type** Steel	Plain or	0 Cycl 1951	101 Cycl 1952	186 C	cles, 1951.	953	Readings 297 Cyc 195	cles	442 Cy		609 Cy	
Beam No.	Stress	Posi- tion*	Cover in.	Defor- mation	Air-entr Concrete	Condi- tion	Condi- tion	Condi- tion	Veloc fps	%v2	Condi- tion	2v2	Condi- tion	1/v2	Condi- tion	1v2
1 2 3 4 5	20,000 20,000 20,000 20,000 30,000	T T B T	3/4 3/4 3/4 3/4	RS RS RS RS	Air Air Air Air	100 100 100 100 100	93 96 96 93 93	93 91 95 85 98	12,345 13,425 14,965 15,505 12,120	100 100 100 100 100	83 82 89 84 95	143 129 86 91 82	76 91 78 91 92	153 131 102 95 102	64 77 69 76 77	157 135 105 98 138
6 7 8 9	30,000 30,000 30,000 40,000	T B B T	3/4 3/4 3/4 3/4	RS RS RS RS	Air Air Air Air	100 100 100 100 100	93 96 96 89 93	89 100 95 85 100	15,230 12,245 13,605 14,600 13,455	100 100 100 100 100	91 91 91 82 92	60 124 94 100 104	89 79 94 94 89	144 116 112 112	84 47 82 78 76	107 149 124 113 130
11 12 13 14 15	40,000 40,000 50,000 50,000 50,000	B B T T	3/4 3/4 3/4 3/4	RS RS RS RS	Air Air Air Air	100 100 100 100	89 93 96 93 93	85 98 100 88 95	13,130 13,335 13,575 12,685 12,000	100 100 100 100 100	82 94 95 80 89	79 80 77	91 89 86 89 86	70 113 75 126 100	70 80 78 80 85	134 131 121 151 163
16 17 18 19 20	50,000 None None 20,000 20,000	B B T B	3/4 3/4 3/4 3/4	RS RS RS RS	Air Air Air Plain Plain	100 100 100 100 100	93 96 96 54 26	83 90 100 25 F 3 F	12,550 15,190 15,190 10,150	100 100 100 100	82 87 95	92 94 96	89 100	92 104 99	86 82 90	147 96 90
21 22 23 24 25	20,000 20,000 20,000 20,000 30,000	B B B	3/4 3/4 3/4 3/4	RS RS OS OS RS	Plain Plain Plain Plain Plain	100 100 100 100	87 78 53 83 61	81 58 10F 57 20	16,090 15,465 13,305	100 100	60 23 F F	=	F F			
26 27 28 29	30,000 30,000 30,000 30,000	B B B	3/4 3/4 3/4 3/4	RS RS RS OS	Plain Plain Plain Plain	100 100 100 100	25 86 83 F	81 28	14,390 14,020	100	81 3 F	-	F			
30 31 32 33 34 35	40,000 40,000 40,000 40,000 40,000	T T B B	3/4 3/4 3/4 3/4 3/4	OS RS RS RS RS	Plain Plain Plain Plain Plain Plain	100 100 100 100 100	75 8F F 71 50 25	68 27 5 F	14,495 14,530	100 100 100	F 32 F		P			
36 37 38 39 40	40,000 50,000 50,000 50,000 50,000	B T T T	3/4 3/4 3/4 3/4	RS RS RS RS	Plain Plain Plain Plain Plain	100 100 100 100 100	93 25 64 64 25	42 8F 33 F F	13,575 12,765	100	F F					
41 42 43 44 45	50,000 50,000 None None	B T T B	3/4 3/4 3/4 3/4	RS RS RS RS	Plain Plain Plain Plain Plain	100 100 100 100 100	83 32 58 50 61	40 22 57 32 46	13,795 13,425 15,915 12,605 10,100	100 100 100 100 100	23 F 35 17 20	:- :: ::	F 17 F F	-	,	
46 47 48 49 50	None 20,000 20,000 20,000	3 7 7 5 8	3/4	OS RS RS RS	Plain Plain Plain Plain Plain	100 100 100 100 100	64 70 50 75 92	43 54 27 68 46	9,315 11,740 13,245 12,795	100 100 100 100	8 20 F 23 F	= -	F F			
51 52 53 54 55	20,000 20,000 30,000 30,000	n of the A	to the Winds	OS OS RS RS	Plain Plain Plain Plain Plain	100 100 100 100 100	57 75 50 46 75	F 44 29 F 41	12,930	100	F F					
56 57 58 59 60	,000 ,000 ,000 ,000	3 3 7	2 2 2	RS OS OS RS RS	Plain Plain Plain Plain Plain	100 100 100 100 100	39 87 F 67 58	F 46 66 46	13,605 13,985 10,990	100	F 39 F		,			

(Continued)

Note: Condition ratings are expressed numerically; i.e., 100 denotes perfect condition, F denotes specimen failed.

-- Dashed lines in the "Pulse Veloc" or "%V2" columns indicate that a pulse velocity reading was not taken because of the per condition of the beam.

* T = new top of beam.

** RS = rail steel with deformations conforming to ASTM Designation A 305-507.

** OS = old style (does not meet ASTM Designation A 305-507 deformation requirements).

BS = billet-steel with deformations conforming to ASTM Designation A 305-507.

(Seet 1)

															Beach I	Row 2
				_				20/ 0			Reading		1100	-	COO. 0	
	Nominal			Type Steel	Plain or	0 Cycl 1951	101 Cycl 1952	106 Cy	Pulse	53_	297 Cyc		442 Cy		609 Cyc	
Beam	Stress	Steel Posi-	Cover	Defor-	Air-entr	Condi-	Condi-	Condi-	Veloc		Condi-		Condi-		Condi-	
No.	psi	tion	in.	mation	Concrete	tion	tion	tion	fps	%v2	tion	%v2	tion	%v2	tion	%V2
61	40,000	T	2	RS	Plain	100	F									
62	40,000	В	2	RS	Plain	100	43	27	9,330	100	F					
63	40,000	В	2 2 2	RS	Plain	100	88	64	14,220	100	37		F			
64	40,000	В	2	RS	Plain	1.00	61.	25	12,765	100	F					
65	50,000	T	2	RS	Plain	100	F									
66	50,000	T	2	RS	Plain	100	50	5			F					
67	50,000	T	2 2	RS	Plain	100	68	52	13,515	100	42		F			
68	50,000	В		RS	Plain	100	87	83	14,150	100	80	114	F			
69	50,000	В	2	RS	Plain	100	67	58	12,765	100	34		F			
70	50,000	В	2	RS	Plain	100	42	29	10,850	100	23		F			
71	None	T	2	RS	Plain	100	58	41	12,850	100	30		14		F	
72	None	T	2	RS	Plain	100	68	59	12,295	100	47		17		F	
73	None	В	2	RS	Plain	100	29	25	10,325	100	9 8		F			
74	None	В	2	OS	Plain	100	29	23			8		F			
75	20,000	В	3/4	BS	Plain	100	93	81	13,485	100	30		F			
76	20,000	В	3/4	BS	Air	100	96	100	14,780	100	91		F			
77	20,000	В	2	BS	Plain	100	86	59	13,160	100	31		F			
78	20,000	В	2	BS	Air	100	96	100	14,495	100	94		F			
79	30,000	В	3/4	BS	Plain	100	89	40	12,295	100	F					
80	30,000	В	3/4	BS	Air	100	93	93	11,110	100	87		F			
81	30,000	В	2	BS	Plain	100	89	65	13,575	100	28		F			
82	30,000	В	2	BS	Air	100	93	100	11,930	100	89		F			

																Beach !	Row 2
						753 Cyc		824 Cyc		974 Cyc 1959	les	1045 Cy 1960	cles	1186 Cy 1961		1275 C	
						Condi- tion	%v2	Condi- tion	%v2	Condi- tion	%v ²	Condi- tion	16v2	Condi- tion	%v2	Condi- tion	%v ²
1	20,000	T	3/4	RS-"A"	Air	76	143	70	144	26	142	26	129	29	155	27	145
2	20,000	T	3/4	RS-"A"	Air	71	127	65	128	55	114	55	125	48	139	50	127
3	20,000	В	3/4	RS-"A"	Air	73	105	79	106	26	104	26	104	32	105	30	98
4	20,000	В	3/4	RS-"B"	Air	61+	94	72	95	46	91	46	97	44	99	1414	96
5	30,000	T	3/4	RS-"B"	Air	79	152	80	154	63	147	63	151	61	158	60	153
6	30,000	T	3/4	RS-"B"	Air	80	92	78	95	73	81	73	85	63	102	60	90
7	30,000	В	3/4	RS-"B"	Air	32	150	35	149	25	137	25	152	34	157	32	154
8	30,000	В	3/4	RS-"B"	Air	76	117	71	118	75	107	75	126	62	112	60	108
9	40,000	T	3/4	RS-"A"	Air	77	108	75	109	66	102	66	103	64	105	63	98
10	40,000	T	3/4	RS-"A"	Air	81		79	135	67	126	67	120	66	120	63	110
11	40,000	В	3/4	RS-"A"	Air	64	126	57	127	51	108	51	114	50	141	50	120
12	40,000	В	3/4	RS-"A"	Air	80	131	81	126	75	111	75	118	61	132	59	112
13	50,000	T	3/4	RS-"B"	Air	74	115	81.	120	59	118	59	82	51	127	48	108
14	50,000	T	3/4	RS-"B"	Air	65	140	70	144	60	94	60	91	60	129	58	121
15	50,000	В	3/4	RS-"B"	Air	78	169	69	149	59	104	59	138	57	134	57	118
16	50,000	В	3/4	RS-"B"	Air	76	143	84	139	57	104	57	144	55	143	56	143
17	None	В	3/4	RS-"A"	Air	71	99	74	100	66	91	tt					
18	None	В	3/4	RS-"A"	Air	79	98	73	100	67	93	67	90	56	88	54	182

t Hardware on all remaining loaded specimens was replaced in May 1959. The condition of these remaining specimens is adjudged either annually or biennially by a panel of observers and is expressed numerically.

tt Exposure testing on this beam was discontinued in January 1960, as a piece of steel had to be removed from it for additional testing.

(Sheet 2)

																Beac	h Row 2
										196	3-196	7 Readin	gs			5 Cycles	
														_		1967 %v ² \$	
						1291 0	alas	1516 0	rolon	1670 0		1809 Cy	-1		Be- fore	76V S	Afte
Beam	Nominal Stress		Cover	Type Steel Defor-	Plain or Air-entr	1963 Condi-	_	196	+	1965 Condi-		1966 Condi-	_	Con-	Un- load-	Not	Re-
No.	psi	tion	in.	mation	Concrete	tion	%v2	tion	<u>%v2</u>	tion	<u>%v²</u>	tion	%v2	tion	ing	Loaded	ing
1 2	20,000	T	3/4	RS-"A"	Air Air	29 46	103	26 44	111		86 70	24 39 28	**		100 89 68		88 66
3	20,000	B B	3/4	RS-"A"	Air Air	39 46	70 65	30 44	69 63		62 46	28 42			68 64		57 56
5	30,000	T	3/4	RS-"B"	Air Air	57 71	107	54 60	103 57		70	50 61			82 47		57 23
6 7 8	30,000 30,000 30,000	B	3/4	RS-"B" RS-"B"	Air Air	32 59	104	31 63	95 78		97 52	31 62			98 83		49 54 49
9	40,000	T	3/4	RS-"A"	Air Air	60 67	91 98	63 66	65 71		42	62 60			48		49
11	40,000	В	3/4	RS-"A"	Air	51	91	50	81		57	46			71		44
12	40,000	B T	3/4	RS-"A" RS-"B"	Air Air	61 48	86 78	59 51	83 85		60 57	55 34			66 70		49
14 15	50,000 50,000	T B	3/4 3/4	RS-"B" RS-"B"	Air Air	60 56	109	60 58	90 60		63 51	58 56			60 82		19 63
16 18	50,000 None	B B	3/4	RS-"B" RS-"A"	Air Air	55 65	100 81	55 55	78 66		51 52	55 60			78	52	56
						2150 Cy		2304 C		2457 C 197	ycles		Cycle	s 278	3 Cycl		Cycle
						Condi- tion	% v ²	Condi- tion		Condi-		# Condi	-	2 Cor	1972 ndi- ion %	V ² Cond	
1	20,000	T	3/4	RS-"A"	Air	24	84	29	63	29	56	26		30 2	28	31 24	+
3	20,000	T B	3/4	RS-"A"	Air Air	39 28	50 58	46 28	36 47	46 31	38 36	29		34 2		30 17 54 29	
5	20,000 30,000	B T	3/4	RS-"A" RS-"B"	Air Air	37 50	49 87	37 54	45	38 54	32 64	16 54				27 30 40 52	
6	30,000	T B	3/4	RS-"B"	Air Air	57 31	40	56 33	23 46	57 33 61	37 66	52 33 48			32	20 91 38 31	
8	30,000	B	3/4	RS-"B" RS-"A"	Air Air	55 56	47 48	55 59	34 21	59	54 30	48 50		11 5	50	29 44 ## 21	
10	40,000	T B	3/4	RS-"A"	Air Air	47	49 68	50 47	26 24	62 49	38	22 45				## 72 25 46	
12	40,000	B	3/4	RS-"A"	Air Air	50 28	62 51	51 22	22 37	58 19	32 55	45 18	2	9 5	51	31 46 28 16	
14	50,000	T B	3/4	RS-"B"	Air	58 54	63	58 51	37 26	58 56	53 34	55 50	2	25 5	58	25 50 29 Fail	
16	50,000	В	3/4	RS-"B"	Air	53	57	54	26	52	36	53	3	36	50	32 Dame	
18	None	В	3/4	RS-"A"	Air	55	49	55	22	53	34	55	2	27 5	55	36	
						3059 0	vcles		3171 C	197	4-	Readin	gs				
							74	. 2	3171 C 197	. 0							
1	20,000	T	3/4	RS-"A"	Air	26	<u>.on</u> <u>r</u>	##	23	30							
3	20,000	T B	3/4	RS-"A"	Air Air	31 			20	30							
5	20,000	B	3/4	RS-"A" RS-"B"	Air Air	Unloade 52	d		51	45							
6	30,000	T B	3/4	RS-"B"	Air Air	44 33			40 30	47 40							
8	30,000	B	3/4	RS-"B" RS-"A"	Air	50 II			30	57	N			ms ret	turned	to labor	atory
10	40,000	T	3/4	RS-"A"	Air Air	Unloade	d										
11 12	40,000	B	3/4	RS-"A"	Air Air	43			41	62 52							
13 14	50,000	T	3/4	RS-"B"	Air Air	Unloade	d										
15	50,000	В	3/4	RS-"B"	Air	- 11											
16 18	50,000 None	B	3/4	RS-"B" RS-"A"	Air Air	Damage	d										

* In 1965 and 1967 the condition of specimens was not rated by panel of observers.

* Satisfactory pulse velocity readings were not obtained in 1966, 1973, and 1974 due to malfunction of testing equipment.

\$ Channel iron on all loaded beams was replaced with stainless steel channel in June 1967. Pulse velocity readings were therefore taken on all loaded beams before unloading and after reloading with stainless steel channel.

Some pulse velocity readings obtained in 1969 and 1970 are not believed to be valid due to the power limitations of the test equipment; these \$V^2\$ readings are therefore questionable.

Unable to obtain satisfactory reading.

(Sheet

Tensile Crack Specimens, Series B*

In November 1954, 76 reinforced-concrete beams were installed at half-tide elevation on the beach at Treat Island. The purpose of this installation is to compare the relative resistance to weathering of highly stressed reinforced-concrete beams containing (a) reinforcement bars deformed to conform to ASTM Designation A 305-50T, and (b) bars with old-style deformations.

The beams were 7 ft 9 in. long and were made of air-entrained concrete with a nominal compressive strength of 3500 psi at 28 days age. All of the beams were reinforced with rail-steel bars; the bars in half of the beams had deformations conforming to ASTM Designation A 305-50T, and those in the other half had old-style deformations. All steel was placed with a nominal cover of 2 in. from either the top or bottom of the beam, depending on whether the bar was in the top or the bottom of the mold when the concrete was placed. Aggregates were a manufactured limestone sand and a crushed limestone coarse aggregate (1-in. maximum size). Type II cement was used, with the cement factors ranging from 5.25 to 5.38 bags per cu yd. The air-entraining admixture was admixture R; the water-cement ratio (by weight) was 0.58; the air content ranged from 5.0 to 7.0 per cent.

Sixty-four of the beams were yoked and stressed by third-point loadings; the loads ranged from 20,000 to 50,000 psi. The remaining 12 beams were controls and were not loaded.

Table 1-TC-B lists these specimens and gives their exposure record along with other pertinent information.

^{*} See report to Office, Chief of Engineers, <u>Tensile Crack Exposure Tests</u> - <u>Progress Report - Second Series of Tests</u> (July 1955).

U. S. Army Engineer Waterways Experiment Station, CE, <u>Tensile Crack</u>
Exposure Tests; Results of Tests of Reinforced Concrete Beams, 1955-1963, by E. C. Roshore, Technical Memorandum No. 6-412, Report No. 2 (Vicksburg, Miss., November 1964).

Record of Observation and Testing of Large-beam Tensile Crack Specimens,

Series B, 1954- (Installed Nov 1954)

Beach Row 1

Nominal Steel Stee	
Nominal Steel Steel Steel Pulse 1955 1956 Condition Steel No. Psi tion mation tion fps \$\frac{4}{V^2}\$ tion tion	525 Cycles, 1958
No. psi tion* mation tion fps \$V^{\subset}\$ tion tion \$V^{\subset}\$ 1/1000	ack Max Crack
83	
84 20,000 B A-305 Sound 11,150 100 100 91 88 168 5 5 20,000 B OS Sound 11,170 100 100 90 84 157 10 86 20,000 B OS Sound 11,170 100 100 87 82 170 10 87 20,000 B A-305 Sound 10,640 100 100 82 74 171 5 5 88 20,000 B A-305 Sound 10,640 100 100 82 74 171 5 5 88 20,000 B A-305 Sound 11,255 100 100 84 87 162 10 90 20,000 B OS Sound 11,300 100 100 83 83 160 10 91 30,000 B A-305 Sound 11,540 100 93 90 79 146 10 92 30,000 B A-305 Sound 11,540 100 100 83 83 160 10 91 30,000 B A-305 Sound 11,540 100 100 87 82 161 10 10 93 30,000 B A-305 Sound 11,540 100 100 87 82 145 20 100 95 30,000 B A-305 Sound 11,905 100 100 87 82 145 20 109 100 87 82 145 10 96 30,000 B A-305 Sound 11,195 100 100 90 86 162 10 97 30,000 B A-305 Sound 11,385 100 100 90 86 86 162 10 99 40,000 B A-305 Sound 11,385 100 100 88 87 190 15 100 40,000 B A-305 Sound 10,495 100 100 88 87 190 15 100 40,000 B A-305 Sound 10,495 100 100 88 87 190 10 101 40,000 B A-305 Sound 10,495 100 100 88 87 190 15 100 40,000 B A-305 Sound 10,495 100 100 88 87 190 10 101 40,000 B A-305 Sound 10,495 100 100 88 87 190 10 101 40,000 B A-305 Sound 10,495 100 100 88 87 190 10 101 40,000 B A-305 Sound 10,495 100 100 88 87 190 10 101 40,000 B A-305 Sound 10,495 100 100 88 87 190 10 101 40,000 B A-305 Sound 10,495 100 100 88 87 190 15 100 40,000 B A-305 Sound 10,495 100 100 88 87 190 10 101 40,000 B A-305 Sound 8,585 100 94 82 82 195 15 15 100 40,000 B A-305 Sound 8,585 100 94 82 78 248 25 107 50,000 B A-305 Sound 10,495 100 100 86 80 195 15 100 50,000 B A-305 Sound 10,495 100 100 86 80 195 15 15 100 50,000 B A-305 Sound 10,495 100 100 86 80 195 15 15 100 50,000 B A-305 Sound 10,495 100 100 86 80 195 15 15 100 50,000 B A-305 Sound 9,130 100 100 86 80 195 15 15 100 50,000 B A-305 Sound 9,130 100 100 86 80 195 15 15 11 50,000 B A-305 Sound 9,130 100 100 86 80 195 15 15 11 50,000 B A-305 Sound 9,130 100 100 86 80 195 15 15 11 50,000 B A-305 Sound 9,130 100 100 86 86 242 20 11 11 50,000 B A-305 Sound 9,130 100 100 86 86 242 20 11 11 50,000 B A-305 Sound 9,130 100 100 86 86 242 20 11 11 50,000	88 173 10
85 20,000 B OS Sound 11,720 100 100 90 84 157 10 86 20,000 B A-305 Sound 10,640 100 100 82 74 171 5 88 20,000 B A-305 Sound 10,470 100 100 82 74 171 5 88 20,000 B A-305 Sound 10,470 100 100 84 76 175 10 89 20,000 B OS Sound 11,300 100 100 83 83 83 160 10 91 30,000 B A-305 Sound 11,540 100 93 90 79 146 10 92 30,000 B A-305 Sound 11,540 100 93 90 79 146 10 92 30,000 B A-305 Sound 11,605 100 100 87 82 161 10 96 30,000 B A-305 Sound 11,905 100 100 87 82 145 20 95 30,000 B A-305 Sound 11,905 100 100 92 84 154 10 96 30,000 B A-305 Sound 11,195 100 100 92 84 154 10 96 30,000 B A-305 Sound 11,195 100 100 90 86 162 10 97 30,000 B A-305 Sound 11,195 100 100 90 86 162 10 97 30,000 B A-305 Sound 11,195 100 100 90 86 162 10 10 100 90 86 10 10 10 10 10 10 10 10 10 10 10 10 10	84 170 10
86 20,000 B A-305 Sound 11,470 100 100 87 82 170 10 87 20,000 B A-305 Sound 10,470 100 100 82 74 171 5 5 8 20,000 B A-305 Sound 10,470 100 100 84 76 175 10 10 90 20,000 B OS Sound 11,255 100 100 84 87 162 10 90 20,000 B OS Sound 11,300 100 100 83 83 160 10 91 30,000 B A-305 Sound 11,540 100 93 90 79 146 10 92 30,000 B A-305 Sound 11,540 100 90 82 161 10 93 30,000 B A-305 Sound 11,540 100 100 90 82 161 10 93 30,000 B A-305 Sound 11,540 100 100 87 82 161 10 93 30,000 B A-305 Sound 11,605 100 100 87 82 145 20 95 30,000 B A-305 Sound 11,905 100 100 87 82 145 20 95 30,000 B A-305 Sound 11,905 100 100 92 84 154 10 96 30,000 B A-305 Sound 11,195 100 100 90 86 162 10 97 30,000 B OS Sound 11,385 100 100 90 86 162 10 99 40,000 B A-305 Sound 11,385 100 100 86 86 152 15 100 40,000 B A-305 Sound 10,405 100 100 88 87 190 10 101 40,000 B A-305 Sound 10,405 100 100 88 87 190 10 101 40,000 B A-305 Sound 10,405 100 100 88 87 190 10 101 40,000 B A-305 Sound 10,405 100 100 88 87 190 10 101 40,000 B A-305 Sound 10,455 100 100 88 87 190 10 101 40,000 B A-305 Sound 10,455 100 100 88 87 190 10 101 40,000 B A-305 Sound 10,455 100 100 88 87 190 10 100 40,000 B A-305 Sound 10,455 100 100 88 82 167 20 103 40,000 B A-305 Sound 8,915 100 94 82 78 248 25 107 50,000 B A-305 Sound 9,435 100 100 86 86 91 246 10 106 40,000 B A-305 Sound 10,310 100 100 86 80 236 25 107 50,000 B A-305 Sound 10,310 100 100 86 80 195 15 101 105 50,000 B A-305 Sound 8,915 100 91 74 72 274 20 109 50,000 B A-305 Sound 10,310 100 100 86 80 195 15 11 50,000 B A-305 Sound 9,435 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,130 100 100 86 86 242 20 113 50,000 B A-305 Sound 9,130 100 100 86 86 242 20 113 50,000 B A-305 Sound 8,850 100 93 70 64 243 25	83 153 10
87 20,000 B A-305 Sound 10,640 100 100 82 74 171 5 88 20,000 B A-305 Sound 10,470 100 100 84 76 175 10 89 20,000 B OS Sound 11,255 100 100 84 87 162 10 90 20,000 B OS Sound 11,300 100 100 83 83 160 10 91 30,000 B A-305 Sound 11,540 100 90 82 161 10 92 30,000 B A-305 Sound 11,540 100 90 82 161 10 93 30,000 B OS Sound 11,605 100 100 87 80 151 15 94 30,000 B A-305 Sound 11,905 100 100 87 82 145 20 95 30,000 B A-305 Sound 11,905 100 100 92 84 154 10 96 30,000 B A-305 Sound 11,385 100 100 90 86 162 10 97 30,000 B OS Sound 11,385 100 100 86 86 152 15 98 30,000 B A-305 Sound 10,290 100 100 88 87 190 15 100 40,000 B A-305 Sound 10,435 100 100 88 87 190 15 102 40,000 B OS Sound 10,455 100 100 88 87 190 15 102 40,000 B A-305 Sound 10,455 100 100 86 82 82 195 15 103 40,000 B A-305 Sound 8,915 100 94 82 78 248 25 105 40,000 B OS Sound 10,310 100 86 80 195 15 106 40,000 B A-305 Sound 8,915 100 94 82 78 248 25 107 50,000 B OS Sound 10,310 100 86 80 195 15 108 50,000 B A-305 Sound 10,310 100 100 86 80 195 15 108 50,000 B A-305 Sound 10,310 100 92 74 73 199 55 108 50,000 B A-305 Sound 10,710 100 92 74 73 199 55 108 50,000 B A-305 Sound 10,710 100 92 74 73 199 55 111 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 113 50,000 B OS Sound 8,850 100 93 70 64 243 25	84 155 10
89 20,000 B OS Sound 11,255 100 100 84 87 162 10 90 20,000 B OS Sound 11,300 100 100 83 83 160 10 91 30,000 B A-305 Sound 11,540 100 90 82 161 10 92 30,000 B A-305 Sound 11,540 100 90 82 161 10 93 30,000 B OS Sound 12,120 100 100 87 82 145 20 95 30,000 B OS Sound 11,905 100 100 87 82 145 20 95 30,000 B A-305 Sound 11,905 100 100 90 86 162 10 96 30,000 B A-305 Sound 11,195 100 100 90 86 162 10 97 30,000 B OS Sound 11,385 100 100 86 86 152 15 98 30,000 B OS Sound 11,385 100 100 86 86 152 15 98 30,000 B A-305 Sound 10,290 100 100 88 87 190 15 100 40,000 B A-305 Sound 10,435 100 100 88 87 190 15 100 40,000 B OS Sound 10,455 100 100 88 87 190 15 102 40,000 B A-305 Sound 10,455 100 100 88 82 82 195 15 102 40,000 B A-305 Sound 10,455 100 100 86 82 82 195 15 102 40,000 B A-305 Sound 8,915 100 94 82 78 248 25 105 40,000 B A-305 Sound 8,915 100 96 80 28 10 104 40,000 B A-305 Sound 8,915 100 96 80 28 10 104 40,000 B A-305 Sound 8,915 100 97 83 80 228 10 104 40,000 B A-305 Sound 10,310 100 86 80 236 25 107 50,000 B OS Sound 11,385 100 98 86 77 147 20 109 50,000 B OS Sound 10,310 100 100 86 80 236 25 107 50,000 B A-305 Sound 10,310 100 99 79 74 251 20 113 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 113 50,000 B OS Sound 9,130 100 99 79 74 251 20 113 50,000 B OS Sound 9,160 100 93 70 64 243 25	77 183 5
90	77 200 10
91 30,000 B A-305 Sound 11,540 100 93 90 79 146 10 92 30,000 B A-305 Sound 11,540 100 100 90 82 161 10 93 30,000 B OS Sound 11,605 100 100 87 80 151 15 94 30,000 B A-305 Sound 11,905 100 100 87 82 145 20 95 30,000 B A-305 Sound 11,905 100 100 92 84 154 10 96 30,000 B A-305 Sound 11,905 100 100 90 86 162 10 97 30,000 B A-305 Sound 11,385 100 100 86 86 152 15 98 30,000 B OS Sound 11,385 100 100 86 86 152 15 98 30,000 B A-305 Sound 10,290 100 100 88 87 190 15 100 40,000 B A-305 Sound 10,435 100 100 88 87 190 10 101 40,000 B OS Sound 10,435 100 100 88 87 190 10 101 40,000 B OS Sound 10,455 100 100 88 87 190 10 101 40,000 B OS Sound 10,455 100 100 88 87 190 10 102 40,000 B A-305 Sound 10,400 100 98 82 82 195 15 102 40,000 B OS Sound 10,455 100 100 84 82 167 20 103 40,000 B A-305 Sound 8,915 100 95 83 80 228 10 104 40,000 B A-305 Sound 9,230 100 100 86 91 246 10 106 40,000 B OS Sound 9,230 100 100 86 91 248 25 107 50,000 B A-305 Sound 10,310 100 100 86 80 236 25 107 50,000 B A-305 Sound 10,310 100 92 74 73 199 25 111 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 113 50,000 B A-305 Sound 9,160 100 100 86 86 242 20	87 167 10
92 30,000 B A-305 Sound 11,540 100 100 90 82 161 10 93 30,000 B OS Sound 12,120 100 100 87 80 151 15 94 30,000 B OS Sound 11,605 100 100 87 82 145 20 95 30,000 B A-305 Sound 11,905 100 100 92 84 154 10 97 30,000 B A-305 Sound 11,195 100 100 90 86 162 10 97 30,000 B OS Sound 11,385 100 100 86 86 152 15 98 30,000 B A-305 Sound 10,290 100 100 88 87 190 15 100 40,000 B A-305 Sound 10,435 100 100 88 87 190 15 101 40,000 B OS Sound 10,455 100 100 88 87 190 15 102 40,000 B A-305 Sound 10,455 100 100 84 82 167 20 103 40,000 B A-305 Sound 10,455 100 100 84 82 167 20 103 40,000 B A-305 Sound 8,915 100 95 83 80 228 10 104 40,000 B A-305 Sound 8,585 100 94 82 78 248 25 105 40,000 B A-305 Sound 8,585 100 94 82 78 248 25 105 40,000 B A-305 Sound 10,310 100 86 80 195 15 108 50,000 B A-305 Sound 10,310 100 100 86 80 236 25 107 50,000 B A-305 Sound 10,310 100 97 74 72 274 20 108 50,000 B A-305 Sound 8,915 100 97 74 72 274 20 109 50,000 B A-305 Sound 10,170 100 92 74 73 199 25 112 50,000 B A-305 Sound 9,160 100 100 86 86 242 20 113 50,000 B A-305 Sound 9,160 100 100 86 86 242 20	82 169 10
93 30,000 B OS Sound 12,120 100 100 87 80 151 15 94 30,000 B OS Sound 11,605 100 100 87 82 145 20 95 30,000 B A-305 Sound 11,195 100 100 92 84 154 10 96 30,000 B A-305 Sound 11,195 100 100 90 86 162 10 97 30,000 B OS Sound 11,1385 100 100 86 86 152 15 98 30,000 B OS Sound 11,385 100 100 88 86 152 15 98 30,000 B A-305 Sound 10,290 100 100 88 87 190 15 100 40,000 B A-305 Sound 10,435 100 100 88 87 190 15 100 40,000 B OS Sound 10,455 100 100 88 87 190 15 102 40,000 B OS Sound 10,455 100 100 84 82 167 20 103 40,000 B A-305 Sound 10,455 100 100 84 82 167 20 103 40,000 B A-305 Sound 8,915 100 95 83 80 228 10 104 40,000 B A-305 Sound 8,915 100 94 82 78 248 25 105 40,000 B OS Sound 9,435 100 100 86 80 236 25 107 50,000 B A-305 Sound 10,310 100 100 86 80 236 25 107 50,000 B A-305 Sound 10,310 100 100 86 80 195 15 108 50,000 B A-305 Sound 11,385 100 98 86 77 147 20 109 50,000 B OS Sound 10,100 100 97 74 72 274 20 110 50,000 B A-305 Sound 9,130 100 97 74 72 274 20 110 50,000 B A-305 Sound 9,130 100 97 79 74 251 20 111 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,160 100 97 77 14 72 274 20 113 50,000 B A-305 Sound 9,160 100 97 77 14 72 274 20 113 50,000 B A-305 Sound 9,160 100 97 77 14 72 274 20 113 50,000 B A-305 Sound 9,160 100 97 77 14 72 274 20 113 50,000 B A-305 Sound 9,160 100 100 86 86 242 20	76 151 15 81 166 10
94 30,000 B A-305 Sound 11,905 100 100 92 84 154 20 95 30,000 B A-305 Sound 11,905 100 100 92 84 154 100 97 30,000 B A-305 Sound 11,385 100 100 90 86 162 10 97 30,000 B OS Sound 11,385 100 100 86 86 152 15 98 30,000 B OS Sound 11,385 100 100 86 86 152 15 15 100 100 86 87 190 15 100 100 40,000 B A-305 Sound 10,290 100 100 88 87 190 15 100 100 40,000 B OS Sound 10,435 100 100 88 87 190 15 102 40,000 B OS Sound 10,455 100 100 88 87 190 15 102 40,000 B OS Sound 10,455 100 100 84 82 167 20 103 40,000 B A-305 Sound 10,455 100 100 84 82 167 20 103 40,000 B A-305 Sound 8,915 100 95 83 80 228 10 104 40,000 B A-305 Sound 8,585 100 94 82 78 248 25 105 40,000 B OS Sound 9,230 100 100 86 91 246 100 106 40,000 B OS Sound 9,230 100 100 86 80 236 25 107 50,000 B A-305 Sound 10,310 100 100 86 80 195 15 108 50,000 B A-305 Sound 10,310 100 100 86 80 195 15 108 50,000 B A-305 Sound 10,310 100 100 86 80 195 15 15 108 50,000 B A-305 Sound 10,310 100 99 79 74 72 274 20 110 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 113 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 113 50,000 B A-305 Sound 9,160 100 86 86 242 20	80 152 15
95 30,000 B A-305 Sound 11,95 100 100 92 84 154 10 96 30,000 B A-305 Sound 11,195 100 100 90 86 162 10 97 30,000 B OS Sound 11,385 100 100 96 86 152 15 98 30,000 B A-305 Sound 10,290 100 100 88 87 190 15 100 40,000 B A-305 Sound 10,490 100 100 88 87 190 10 101 40,000 B OS Sound 10,495 100 100 88 87 190 10 101 40,000 B OS Sound 10,455 100 100 88 82 167 20 100 100 84 82 167 20 100 100 84 82 167 20 100 100 84 82 167 20 100 100 85 80 80 100 100 86 80 100 100 100 86 80 100 100 86 80 100 100 100 86 80 100 100 100 86 80 100 100 100 86 80 100 100 86 80 100 100 100 86 80 100 100 86 80 100 100 100 86 80 100 100 86 80 100 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 100 86 80 100 100 86 80 100 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 86 80 100 100 100 86 80 100 100 100 86 80 100 100 100 86 80 100 100 100 86 80 100 100 100 86 80 100 100 100 86	80 152 15 80 169 20
96 30,000 B A-305 Sound 11,195 100 100 90 86 162 10 97 30,000 B OS Sound 11,385 100 100 86 86 152 15 98 30,000 B OS Sound 11,385 100 100 86 86 152 15 98 30,000 B OS Sound 10,290 100 100 88 87 190 15 100 40,000 B A-305 Sound 10,435 100 100 88 87 190 10 101 40,000 B OS Sound 10,435 100 100 88 87 190 10 102 40,000 B OS Sound 10,455 100 100 88 82 82 195 15 102 40,000 B OS Sound 10,455 100 100 84 82 167 20 103 40,000 B A-305 Sound 8,915 100 95 83 80 228 10 104 40,000 B A-305 Sound 8,585 100 94 82 78 248 25 105 40,000 B OS Sound 9,230 100 100 86 91 246 10 106 40,000 B OS Sound 9,230 100 100 86 91 246 10 106 40,000 B OS Sound 10,310 100 100 86 80 236 25 107 50,000 B A-305 Sound 11,385 100 98 86 77 147 20 109 50,000 B A-305 Sound 11,385 100 98 86 77 147 20 109 50,000 B OS Sound 11,385 100 91 74 72 274 20 110 50,000 B A-305 Sound 9,130 100 92 74 73 199 25 111 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,130 100 97 79 74 251 20 113 50,000 B OS Sound 9,160 100 100 86 86 242 20	80 156 10
97 30,000 B 08 Sound 11,385 100 100 86 86 152 15 98 30,000 B 08 Sound 11,385 100 100 92 85 149 20 99 40,000 B A-305 Sound 10,290 100 100 88 87 190 15 100 40,000 B A-305 Sound 10,435 100 100 88 87 190 10 101 40,000 B 08 Sound 10,455 100 100 84 82 82 195 15 102 40,000 B A-305 Sound 8,915 100 95 83 80 228 10 103 40,000 B A-305 Sound 8,585 100 94 82 78 248 25 105 40,000 B 08 Sound 9,230 100 100 86 91 246 10 106 40,000 B 08 Sound 9,435 100 100 86 80 236 25 107 50,000 B A-305 Sound 11,385 100 100 86 80 195 15 108 50,000 B A-305 Sound 11,385 100 98 86 77 147 20 109 50,000 B 08 Sound 11,385 100 98 86 77 147 20 109 50,000 B 08 Sound 8,915 100 97 74 72 274 20 110 50,000 B 08 Sound 9,130 100 97 77 74 73 199 25 111 50,000 B A-305 Sound 9,130 100 97 77 74 73 199 25 112 50,000 B A-305 Sound 9,130 100 97 77 74 251 20 113 50,000 B 08 Sound 9,130 100 97 77 74 251 20 113 50,000 B 08 Sound 9,130 100 97 77 74 251 20 113 50,000 B A-305 Sound 9,130 100 100 86 86 242 20	80 174 10
99	86 154 15
99	87 159 20
100	84 202 15
102 40,000 B OS Sound 10,455 100 100 84 82 167 20 103 40,000 B A-305 Sound 8,915 100 95 83 80 228 10 104 40,000 B A-305 Sound 8,585 100 94 82 78 248 25 105 40,000 B OS Sound 9,230 100 100 86 91 246 10 106 40,000 B OS Sound 9,435 100 100 86 80 236 25 107 50,000 B A-305 Sound 11,385 100 98 86 77 147 20 109 50,000 B OS Sound 8,915 100 91 74 72 274 20 110 50,000 B OS Sound 10,170 100 92 74 73 199 25 111 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,160 100 93 70 64 243 25	88 188 15
103	79 191 20
104	81 203 20
105	76 246 20
106 40,000 B 0S Sound 9,455 100 100 80 80 236 25 107 50,000 B A-305 Sound 10,310 100 100 86 80 195 15 108 50,000 B A-305 Sound 11,385 100 98 86 77 147 20 109 50,000 B OS Sound 10,170 100 91 74 72 274 20 111 50,000 B A-305 Sound 9,130 100 92 74 73 199 25 112 50,000 B A-305 Sound 9,160 100 100 86 86 242 20 113 50,000 B OS Sound 8,850 100 93 70 64 243 25	73 269 25
107 50,000 B A-305 Sound 10,310 100 100 86 80 195 15 108 50,000 B A-305 Sound 11,385 100 98 86 77 147 20 109 50,000 B OS Sound 8,915 100 91 74 72 274 20 110 50,000 B A-305 Sound 10,170 100 92 74 73 199 25 111 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,160 100 100 86 86 242 20 113 50,000 B OS Sound 8,850 100 93 70 64 243 25	92 237 20 84 238 30
109 50,000 B OS Sound 8,915 100 91 74 72 274 20 110 50,000 B OS Sound 10,170 100 92 74 73 199 25 111 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,160 100 100 86 86 242 20 113 50,000 B OS Sound 8,850 100 93 70 64 243 25	80 191 15
109 50,000 B OS Sound 8,915 100 91 74 72 274 20 110 50,000 B OS Sound 10,170 100 92 74 73 199 25 111 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,160 100 100 86 86 242 20 113 50,000 B OS Sound 8,850 100 93 70 64 243 25	80 156 20
110 50,000 B OS Sound 10,170 100 92 74 73 199 25 111 50,000 B A-305 Sound 9,130 100 99 79 74 251 20 112 50,000 B A-305 Sound 9,160 100 100 86 86 242 20 113 50,000 B OS Sound 8,850 100 93 70 64 243 25	80 273 20
112 50,000 B A-305 Sound 9,160 100 100 86 86 242 20 113 50,000 B OS Sound 8,850 100 93 70 64 243 25	76 201 25
113 50,000 B OS Sound 8,850 100 93 70 64 243 25	76 252 25
	86 255 25
114 50.000 B OS Sound 8.525 100 100 11 17 250 30	69 279 25 76 269 30
115 None B A-305 Sound 12.985 100 96 86 84 115 0	
115 None B A-305 Sound 12,985 100 96 86 84 115 0 116 None B A-305 Sound 13,015 100 100 88 84 110 0	80 111 0
117 None B A-305 Sound 13,245 100 100 94 93 114 10	90 116 10
118 None B OS Sound 13,250 100 98 76 65 111 0	69 119 0
119 None B OS Sound 13.130 100 100 91 90 119 0	86 112 0
120 None B OS Sound 13.185 100 100 88 89 115 0	
121 20,000 T A-305 Sound 9,600 100 96 87 80 218 35	81 234 35
122 20,000 T A-305 Sound 9,570 100 96 87 86 237 10	85 225 20
123 20,000 T OS Sound 9,870 100 100 86 86 205 10	76 229 10
124 20,000 T OS Sound 9,675 100 100 84 86 216 10	73 231 15 86 131 15
12) 20,000 1 A-30) Bound 12,900 100	86 131 15
126 20,000 T A-305 Sound 13,160 100 100 79 80 122 35 127 20,000 T 0S Sound 13,365 100 100 94 90 132 10	87 127 35 93 122 10
	92 132 10 74 227 15
129 30,000 T A-305 Sound 9,755 100 97 83 75 224 15 130 30,000 T A-305 Sound 9,820 100 98 83 83 230 20	
131 30.000 T OS Sound 11.675 100 96 81 76 136 20	
132 30,000 T OS Sound 11,675 100 96 77 76 159 30	75 155 25 80 150 30
133 30,000 T A-305 Sound 13,070 100 100 88 88 115 10	88 125 10
134 30,000 T A-305 Sound 12,820 100 100 88 88 120 15	87 130 15
135 30,000 T OS Sound 12,875 100 93 87 78 141 15	80 142 20
136 30,000 T OS Sound 11,340 100 92 86 80 158 10	
137 40,000 T A-305 Sound 10,510 100 91 88 70 148 20	76 127 20

^{*} T = near top of beam.

B = near bottom of beam.

** A-305 = deformation conforming to ASTM Designation A 305-50T.

OS = old style deformations (does not meet ASTM Designation A 305-50T deformation requirements).

† From 1956, the widths of cracks in these specimens were measured with a measuring magnifier (least reading = 0.005 in.).

								19	54-1958 F	Readin	gs	-		Beach Row 1
			Туре	о Су	cles, 195	4	143 Cycles	310 Cycles			es, 1957	525	Cycl	es, 1958
Beam No.	Nominal Stress psi	Steel Posi- tion	Steel Defor- mation	Condi- tion	Pulse Veloc fps	<u>%</u> v ²	1955 Condi- tion	1956 Condi- tion	Condi- tion	%v2	Max Crack Width 1/1000 in.	Condi- tion	%v ²	Max Crack Width 1/1000 in.
138 139 140 141	40,000 40,000 40,000 40,000	T T T	A-305 OS OS A-305	100 100 100 100	10,490 12,095 12,225 9,275	100 100 100 100	92 88 90 99	89 78 76 84	74 72 71 78	177 132 129 249	25 15 15 15	78 72 74 70	182 150 148 241	25 15 15 20
142	40,000	Ť	A-305	100	9,570	100	100	85	76	228	15	78	227	20
143 144 145 146 147	40,000 40,000 50,000 50,000	T T T	OS OS A-305 A-305 OS	100 100 100 100 100	9,375 9,390 9,435 9,345 8,970	100 100 100 100	94 95 96 94 86	82 86 82 81 66	76 84 82 78 68	224 231 243 238 272	25 40 40 30 85	84 84 81 72	234 238 253 255 249	25 40 40 30 85
148 149 150 151 152	50,000 50,000 50,000 50,000 50,000	T T T	OS A-305 A-305 OS OS	100 100 100 100 100	8,900 9,105 9,175 11,130 10,655	100 100 100 100 100	82 99 100 92 88	67 83 82 80 - 78	67 78 82 76 72	260 225 235 180 195	75 40 25 15 25	70 88 86 72 74	260 235 259 164 181	75 40 30 15 25
153 154 155 156 157	None None None None	T T T	A-305 A-305 A-305 OS	100 100 100 100 100	12,475 12,795 12,875 13,045 12,630	100 100 100 100 100	94 100 100 100 98	86 92 90 91 86	74 87 86 90 80	120 117 115 120 120	0 0 0 0	72 88 80 82 75	121 132 120 118 124	0 0 0 0
158	None	T	os	100	12,710	100	99	78	61	120	10	70	119	15

												Beach Row 1
							1959	-1961 R	leadings			
				675	Cycle		746	Cycles		887 (Cycles,	
				Condi- tion	%v ²	Max Crack Width 1/1000 in.	Condi- tiontt	%v ²	Max Crack Width 1/1000 in.	Condi- tion	%v ²	Max Crack Width 1/1000 in.
83	20,000	В	A-305	84	161	15	84	180	10	75	192	10
84	20,000	В	A-305	86	161	20	86	159	10	77	179	10
85	20,000	В	OS	91	143	15	91	158	10	79	146	10
85 86	20,000	В	os	82	150	15	82	137	10	68	172	10
87	20,000	В	A-305	72	176	15	72	128	10	61	187	10
88	20,000	В	A-305	73	181	10	73	133	10	68	174	10
89	20,000	В	OS	86	160	15	86	152	10	73	153	10
90	20,000	В	os	78	158	10	78	147	10	74	151	10
91	30,000	В	A-305	80	140	15	80	107	10	71	155	10
92	30,000	В	A-305	82	154	10	82	162	10	67	159	10
93	30,000	В	os	80	152	30	80	108	20	71	151	15
94	30,000	В	os	75	158	25	75	113	30	69	158	25
93 94 95 96 97	30,000	В	A-305	85	144	25	85	142	15	79	159	10
96	30,000	В	A-305	85	162	20	85	167	15	69	168	15
97	30,000	В	OS	78	147	20	78	133	10	65	168	10
98	30,000	В	os	78	145	20	78	151	15	63	164	10
99	40,000	В	A-305	77	189	25	77	174	15	62	215	15
100	40,00	В	A-305	78	179	25	78	167	15	70	205	10
101	40,000	В	OS	70	181		70	135	30			25
102	40,000	В	os	68	188	45	68	137	20	67	190	15
103	40.000	В	A-305	72	233	25	72	197	15	61	224	15
104	40,000	В	A-305	66	250		66	267				20
105			os	86	224	20			15	72		15
		В	os	66	223	20			15	56	253	15
107	50,000	В	A-305	68	180	20	68	132	15	53	199	15
108	50,000	В	A-305	75	146	25	75	107	20	58	145	15
109		В	os	68	254	35	68	228	25	67		25
110		В	os	57				169	30	56	191	25
	50,000								20	58	226	20
	50,000	В					77	168	20	66	228	15
101 102 103 104 105 106 107	40,000 40,000 40,000 40,000 40,000 50,000	B B B B B B B	OS OS A-305 A-305 OS A-305 OS	70 68 72 66 86 66 68	181 188 233 250 224 223 180	35 45 25 25 20 20 20	70 68 72 66 86 66	135 137 197 267 165 158 132 107 228 169 167	30 20 15 20 15 15 15 20 25 30 20	65 67 61 65 72 56 53 58 67 56 58	177 190 224 243 219 253 199 145 221 191 226	15 20 15 15 15 15 15 25 25 25 26

tt Hardware was replaced on all loaded specimens in May 1959. The condition of these specimens is adjudged either annually or biennially by a panel of observers during the formal inspection, and is expressed numerically, i.e. 100 denotes perfect condition. (Sheet 2)

(Revised Aug 1965)

Table 1-TC-B (Continued) Section 2

							1959	-1961 I	Readings			
			Туре	675	Cycle	s, 1959	746	Cycles	s, 1960	887	Cycles	s, 1961
Seam No.	Nominal Stress psi	Steel Posi- tion	Steel Defor- mation	Condi- tion	%v ²	Max Crack Width 1/1000 in.	Condi- tion	%v ²	Max Crack Width 1/1000 in.	Condi- tion	%v ²	Max Crack Width 1/1000 in.
110.	101	01011	macron	CIOI	2	1/1000 111.		pv	1/1000 111.	CIOII	<u> </u>	1/1000 111.
13	50,000	В	OS	62 64	238	30	62 64	173	25	50	229	20
14	50,000	В	OS		255	35		192	25	54	265	20
15	None	В	A-305	78	113	0	78	112	0	69	131	0
16	None	В	A-305	80	107	0	80	114	0	74	115	5
17	None	В	A-305	80	105	20	80	109	10	68	117	10
18	None	В	os	55	111	0	55	112	0	46	104	0
19	None	В	OS	70	104	0	70	111	0	67	123	0
20	None	В	os	59 80	105	0	59	112	0	59	119	0
21	20,000	T	A-305	80	221	15	80	165	10	77	230	10
22	20,000	T	A-305	82	213	15	82	156	10	70	226	10
23	20,000	т	os	77	216	20	77	158	10	61	231	10
24	20,000	T	OS	82	217	20	82	196	15	65	230	10
25	20,000	T	A-305	70	124	20	70	89	10	68	124	10
26	20,000	T	A-305	77	118	10	77	84	10		120	10
20 27	20,000	T	0S	86	121	15	86	130	10	77 75	137	10
28		T	os	82	120	20	82		10		132	10
	20,000			65			65	133	10	75		10
29	30,000	T	A-305	81	214	15	81	135	10	55	159 164	
30	30,000	T	A-305		213	• 15		202	10	66		10
31	30,000	T .	OS	75	144	15	75	114	15	75	142	15
32	30,000	T	os	72	147	25	72	115	20	61	145	15
33	30,000	T	A-305	77	119	20	77	118	15	63	121	10
34	30,000	T	A-305	78	122	25	78	133	15	66	121	10
35	30,000	T	OS	73	134	30	73	96	20	66	121	10
36	30,000	T	os	77	148	25	77	112	20	. 66	149	15
37	40,000	T	A-305	64	173	25	64	164	20	51	167	20
38	40,000	T	A-305	68	171	40	68	183	30	57	194	25
39	40,000	T	OS	75	139	35	75	145	20	69	129	15
40	40,000	T	os	70	136	30	70	149	15	69	145	15
+1	40,000	T	A-305	68	231	25	68	218	25	- 55	267	20
+2	40,000	T	A-305	73	228	20	73	193	15	60	220	15
43	40,000	T	os	66	223	20	66	169	15	65	225	15
14	40,000	T	OS	75	226	25	75	171	20	63	209	20
15	50,000	T	A-305	70	236	25	70	170	20	71	224	15
16	50,000	T	A-305	64	235	30	64	173	20	55	237	15
+7	50,000	T	OS	61	232	105	61	221	100	59	271	90
48	50,000	T	os	64	242	110	64	258	90	64	268	85
49	50,000	T	A-305	70	228	30	70	164	15	70	224	20
50	50,000	T	A-305	66	240	35	66	165	25	67	224	15
51	50,000	T	0S	68	155	30	68	170	25	60	156	25
52	50,000	T	OS	61	173	35	61	197	30	55	179	25
	Nama	T	1 205	55	116	0	55		0		128	0
53	None		A-305	80			55 80	123	0	51	115	0
54	None	T	A-305		114	0		123	0	77		
55	None	T	A-305	77	116	0	77 88	106	0	72	136	0
56	None	T	os	88	111	0		117	0	82	125	0
57	None	T	os	70	115	0	70	123	0	67	131	0

													Beach Row 1
									62-1964 Read:	ings			
				97	6 Cycl	es, 1962	108	2 Cycle	es, 1963	121	7 Cyc	les, 1964	
						Max Crack			Max Crack	1		Max Crack	
				Condi- tion	%v2	Width 1/1000 in.	Condi- tion	%v ²	Width 1/1000 in.	Condi- tion	%v2	Width 1/1000 in.	
83	20,000	В	A-305	68	192	10	80	131	20	68	118	15	
84	20,000	В	A-305	75	174	10	82	126	20	70	116	15	
85	20,000	В	os	77	162	15	87	101	30	74	107	20	
86	20,000	В	os	73	159	10	80	112	25	67	103	20	
87	20,000	В	A-305	58	174	10	72	127	20	58	127	10	
88	20,000	В	A-305	61	184	10	61	137	10	52	130	10	
89	20,000	В	OS	71	173	10	61 86	114	20	72	121	15	
90	20,000	В	os	67	171	10	66	100	20	66	115	15	
91	30,000	В	A-305	71	143	15	70	112	30	70	100	25	
92	30,000	В	A-305	67	150	15	66	108	35	72	106	20	

(Revised Aug 1965)

Table 1-TC-B (Continued)

Section 2 Beach Row 1

			m	- 07	- Oreal	1060	100	1	962-1964 Read				
	Nominal	Steel	Type Steel	91	o Cycle	Max Crack	108	2 Cycle	es, 1963 Max Crack	121	7 Cyc	les, 1964 Max Crack	
Beam No.	Stress psi	Posi- tion	Defor- mation	Condi- tion	%v ²	Width 1/1000 in.	Condi- tion	%v2	Width 1/1000 in.	Condi- tion	%v2	Width 1/1000 in.	
93 94 95 96 97	30,000 30,000 30,000 30,000 30,000	B B B B	OS OS A-305 A-305 OS	71 69 79 69 64	136 163 148 162 147	20 25 15 20 10	70 69 94 81 64	106 133 105 120 109	40 40 30 35 30	70 69 76 69 65	91 109 100 107 60	30 30 20 25 25	
98 99 100 101 102	30,000 40,000 40,000 40,000 40,000	B B B B	OS A-305 A-305 OS OS	64 62 64 64 67	154 180 212 184 206	15 15 15 25 20	63 62 75 62 66	111 136 143 136 143	25 30 25 30 35	63 62 64 65 67	105 83 132 122 127	25 20 15 25 30	
103 104 105 106 107	40,000 40,000 40,000 40,000 50,000	B B B B	A-305 A-305 OS OS A-305	59 66 72 56 54	210 258 258 244 194	15 25 20 15 15	72 77 72 66 53	143 154 145 139 131	40 50 30 30 30	61 65 72 56 53	174 197 169 165 138	30 35 20 30 25	
108 109 110 111 112	50,000 50,000 50,000 50,000 50,000	B B B P	A-305 OS OS A-305 A-305	59 68 55 58 66	134 192 197 256 267	15 25 2 5 25 15	57 68 55 57 65	107 183 148 163 159	30 50 45 50 30	58 67 56 58 65	110 175 140 177 177	30 50 50 30 25	
113 114 115 116 117	50,000 50,000 None None None	B B B B	OS OS A-305 A-305	49 54 66 70 73	204 285 113 112 120	15 20 0 5	149 514 78 80 67	170 183 93 76 76	30 35 0 15 30	50 54 64 80 68	177 194 93 89 93	25 35 0 10 30	
118 119 120 121 122	None None None 20,000 20,000	B B B T	OS OS A-305 A-305	44 58 58 74 69	96 124 114 236 227	0 0 0 10	55 70 70 87 82	76 74 80 156 140	0 0 0 10	44 58 57 80 75	84 97 98 159 151	0 0 0 10 20	
123 124 125 126 127	20,000 20,000 20,000 20,000 20,000	T T T T	OS OS A-305 A-305 OS	61 65 64 77 80	238 229 134 115 130	10 10 10 10	72 77 70 90 82	139 148 82 77 87	20 25 10 20 20	72 65 64 77 82	154 148 82 88 77	25 20 5 10 20	
128 129 130 131 132	20,000 30,000 30,000 30,000 30,000	T T T T	OS A-305 A-305 OS OS	70 55 66 74 61	138 225 228 133 143	10 10 15 15	69 65 55 74 61	90 137 119 83 84	20 20 30 40 20	70 55 66 74 61	87 154 155 108 108	20 15 25 40 35	
133 134 135 136 137	30,000 30,000 30,000 30,000 40,000	T T T	A-305 A-305 OS OS A-305	63 66 62 66 51	125 128 131 159 154	10 10 15 15 20	7 ¹ 4 66 73 77 51	85 87 77 104 130	20 20 30 20 40	63 66 67 66 51	88 86 89 114 112	20 20 15 20 35	
138 139 140 141 142	40,000 40,000 40,000 40,000 40,000	T T T	A-305 OS OS A-305	57 67 69 55 63	187 139 140 247 218	20 15 10 15 15	57 69 69 55 59	132 98 100 155 150	40 30 30 35 30	57 68 69 55 60	108 97 87 165 174	40 20 25 35 30	
143 144 145 146 147	40,000 40,000 50,000 50,000 50,000	T T T	OS OS A-305 A-305 OS	65 64 71 55 60	236 226 257 175 266	15 15 25 20 100	65 75 70 64 59	152 152 176 165 177	35 40 40 40 180	66 63 70 54 60	167 148 160 168 173	35 35 40 40	
148 149 150 151 152	50,000 50,000 50,000 50,000 50,000	T T T	0S A-305 A-305 OS OS	64 70 67 60 54	278 170 248 176 195	90 20 20 25 25	63 70 66 59 514	175 167 171 120 125	140 40 40 50 55	64 70 67 60 54	175 164 164 119 128	125 40 50 50	

		-				
_	_	_	_	_	_	-

			Туре	976	Cycles,	1962		1082 (2-1964 Rea , 1963		17 Cyc	les, 1964		CH NOW 1
Beam No.	Nominal Stress psi	Steel Posi- tion	Steel Defor- mation	2	Ma	x Crack Width 1000 in	Cond	i-	2	Max Crack Width 1/1000 in.	Condi- tion		Max Crack Width 1/1000 in.		
153 154 155 156 157	None None None None	T T T	A-305 A-305 A-305 OS	74 71 81	121 118 121 123 118	0 0 0 0	5: 86 7' 88 70	0 7 8	97 92 91 89 88	0 0 0 0	51 80 77 75 64	94 97 90 97 91	0 0 0 0		
158	None	T	os	53	123	15	6	3	88	25	53	90	15	Beac	h Row 1
									1965-	1967 Readin		Cycles			
				1380 Cycle		1510 0	ycles,				%v2			Crack Wi	dth
00				Con- di- tion 1/V ²	Max Crack Width 1/1000 in.	Con- di- tion	%v ² 1,	Max rack idth /1000 in.	Con- di- tion	Before Unload- ing§	Not Loaded	After Re- load- ing	Before Unload- ing§	Not Loaded	After Re- load- ing
83 84 85 86 87	20,000 20,000 20,000 20,000 20,000	B B B B	A-305 A-305 OS OS A-305	\$ 93 90 65 83 104	5 10 10 15 10	65 70 72 66 52	**	10 15 10 15 15	*	116 93 85 83 125		99 116 58 56 95	10 15 10 15 15		10 15 10 20 15
88 89 90 91 92	20,000 20,000 20,000 30,000 30,000	B B B B	A-305 OS OS A-305 A-305	120 109 102 65 67	5 5 10 15 15	50 69 66 70 78		5 5 10 15 15		97 92 108 83 83		64 66 88 54 60	5 5 10 15 15		10 15 10 20 25
93 94 95 96 97	30,000 30,000 30,000 30,000 30,000	B B B B	os os A-305 A-305 os	69 62 74 104 71	20 25 15 15 20	68 64 72 68 62		25 35 20 25 20		95 86 100 111 84		81 110 85 57 61	25 35 25 25 20		40 50 30 25 30
98 99 100 101 102	30,000 40,000 40,000 40,000 40,000	B B B B	os A-305 A-305 os os	70 94 94 84 79	20 20 15 35 30	63 62 64 62 65		25 30 30 50 50		85 106 106 86 98		64 75 83 74 80	20 25 30 50 45		35 30 30 55 50
103 104 105 106 107	40,000 40,000 40,000 40,000 50,000	B B B B	A-305 A-305 OS OS A-305	138 148 120 118 110	30 25 20 20 25	52 65 71 56 52		35 30 30 30 30		117 137 139 154 129		93 114 96 123 90	35 30 30 25 25		40 45 35 35 35
108 109 110 111 112	50,000 50,000 50,000 50,000 50,000	B B B B	A-305 0S 0S A-305 A-305	77 97 96 104 143	25 40 40 30 25	58 66 55 54 63		25 45 40 30 30		105 166 128 170 127		57 105 111 90 86	25 45 45 25 25		30 55 50 40 35
113 114 115 116	50,000 50,000 None None None	B B B B	os os A-305 A-305 A-305	147 177 76 83 60	20 25 0 10 20	49 53 60 65 68		30 40 0 10		119 172	73 50 69	97 144	35 40	0 10 10	45 55
118 119 120 121 122	None None None 20,000 20,000	B B T T	os os os A-305 A-305	84 59 64 113 136	0 0 0 10 10	41 52 54 87 82		0 0 0 15 10		147 129	69 71 68	113 143	15 10	0 0 0	15 15
123 124 125 126 127	20,000 20,000 20,000 20,000 20,000	T T T	os os A-305 A-305 os	136 143 79 82 64	15 10 5 5	72 71 64 77 82		15 15 5 10 5		141 144 84 82 65		83 97 53 62 64	15 15 5 10 5		30 25 10 10
128 129 130 131 132	20,000 30,000 30,000 30,000 30,000	T T T	os A-305 A-305 os os	66 136 106 71 83	5 15 20 30 30	70 65 77 74 61	Contin	10 20 20 45 30		69 117 132 60 86		87 77 79 48 56	5 15 15 45 30		5 15 25 50 40

t In 1965 and 1967 the condition of specimens was not rated by panel of observers.

Satisfactory pulse velocity readings were not obtained in 1966 due to malfunction of testing equipment.

Channel iron on all loaded beams was replaced with stainless steel channel in June 1967. Readings were therefore taken on all loaded beams before unloading and after reloading with stainless steel channel. (Sheet 5)

		LITOS III			67 Readin	965-19	1					-				
			Cycles	1666					1							
ith	Crack Wid 1000 in.			%V ²			s, 1966 Max	Cycle	1510	s, 1965 Max	Cycle	1380				
After Re- load- ing	Not Loaded	Before Unload- ing§	After Re- load- ing	Not Loaded	Before Unload- ing	Con- di- tion	Crack Width 1/1000 in.	%v ²	Con- di- tion	Crack Width 1/1000 in.	%v ²	Con- di- tion	Type Steel Defor- mation	Steel Posi- tion	Nominal Stress psi	Beam No.
15		10	52		82	+	15	++	63	15	59		A-305	T	30,000	133
15		10	68		84		20		72	15	83		A-305	T	30,000	134
30		30	44		65		25		67	15	75		os	T	30,000	135
35		30	58		79		30		65	25	89		OS	T	30,000	136
70		55	72		91		55		51	40	73		A-305	T	40,000	137
75		50	97		98		50		57	40	83		A-305	T	40,000	138
35		30	61		70		30		67	20	57		OS	T	40,000	139
35		30	56		74		35		69	20	70		OS	T	40,000	140
45		30	93		155		30		55	30	106		A-305	T	40,000	141
40		35	93		135		35		59	30	116		A-305	T	40,000	142
30		25	111		119		25		65	25	143		os	T	40,000	143
60		45	95		109		45		62	35	118		OS	T	40,000	144
70		45	88		103		45		70	30	139		A-305	T	50,000	145
45		30	76		114		35		53	30	120		A-305	T	50,000	146
125		115	98		162		125		59	100	98		OS	T	50,000	147
120		100	137		157		100		.64	85	116		OS	T	50,000	148
50		45	60		124		50		69	35	147		A-305	T	50,000	149
50		35	65		145		40		65	40	150		A-305	T	50,000	150
45		35	64		111		35		57	35	71		OS	T	50,000	151
45		40	70		102		45		54	35	82		os	T	50,000	152
	0			74			0		44	0	96		A-305	T	None	153
	0			73			0		67	0	75		A-305	T	None	154
	0			70			0		77	0	67		A-305	T	None	155
	0			69			0		66	0	74		os	T	None	156
	0			87			0		60	0	64		OS	T	None	157
	10			68			10		52	15	53		os	T	None	158

																	Bea	ch Row 1
				1851	Cycle		2005	Cycle		2158	Cycle		2327	Cycle		2484	Cycle	
																		Max
																		Crack
																		Width 1/1000
					4.2			4.2"			4211			4.2			4.2	
00	00 000																	in.
																		10
								37										10
							72				53							25
								35		-		-						25
87	20,000	В	A-305	52	93	20	53	41	25	52	63	25	47	58	30	47	48	25
88	20,000	В	A-305	50	84	20	54	44	25	59	70	25	51	68	20	51	39	25
89	20,000	В	OS															30
90	20,000	В	OS	63														30
91	30,000	В	A-305	70														20
92	30,000	В	A-305	76	66	20	67	35	50	67	55	20	66	51	25	67	37	50
93	30,000	В	os	68	53	40	66	32	40	64	51	40	64	49	40	62	36	25
94	30,000	В	OS		78			35				55						50
95	30,000	В	A-305		100													25
	30,000	В	A-305															20
97	30,000	В	OS	62	76	30	64	34	35	61	61	35	61	56	35	62	37	40
98	30.000	В	OS	63	87	30	62	34	30	62	58	35	61	54	40	62	36	40
			A-305	62	110	35	60	70	35	59	58		59	53	40	59	37	40
			A-305	64	75	30	63	37	30	60	60	35	57	52	35	58	37	35
			OS	62		60	61	39	70	61	59	70	61	52	75	60	40	75
102	40,000	В	OS	65	98	50	64	33	50	64	50	55	62	49	60	64	42	60
103	40.000	В	A-305	51	79	45	53	50	50	53	75	50	51	71	55	52	58	50
104	40,000	В	A-305	65	99	45		52	50		79	50	59	76	50			50
105	40,000	В	OS	71	111	45	71			68	87	45	67	84	50	70	90	40
106	40,000	В	OS	54		50	54		55	54	73	55	54	67	50	52	79	50
		В	A-305	52	92	40	52	33	45	52	54	45	52	52	50	52	44	40
	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	84 20,000 85 20,000 86 20,000 87 20,000 88 20,000 90 20,000 91 30,000 92 30,000 93 30,000 94 30,000 95 30,000 97 30,000 98 30,000 99 40,000 100 40,000 101 40,000 102 40,000 103 40,000 104 40,000 106 40,000	84 20,000 B 85 20,000 B 86 20,000 B 87 20,000 B 88 20,000 B 89 20,000 B 90 20,000 B 91 30,000 B 92 30,000 B 93 30,000 B 94 30,000 B 95 30,000 B 96 30,000 B 97 30,000 B 99 40,000 B 100 40,000 B 101 40,000 B 102 40,000 B 103 40,000 B 104 40,000 B 105 40,000 B	84 20,000 B A-305 85 20,000 B OS 86 20,000 B OS 87 20,000 B OS 887 20,000 B A-305 88 20,000 B A-305 89 20,000 B OS 90 20,000 B OS 91 30,000 B A-305 92 30,000 B A-305 93 30,000 B OS 94 30,000 B OS 95 30,000 B A-305 96 30,000 B A-305 97 30,000 B OS 99 40,000 B A-305 100 40,000 B A-305 101 40,000 B A-305 102 40,000 B OS 103 40,000 B OS	Con-di-tion	83 20,000 B A-305 65 116 84 20,000 B A-305 65 116 85 20,000 B OS 72 61 86 20,000 B OS 66 84 87 20,000 B OS 66 84 87 20,000 B OS 66 84 89 20,000 B OS 63 69 75 90 20,000 B OS 63 104 91 30,000 B A-305 70 85 92 30,000 B A-305 70 85 92 30,000 B OS 68 73 93 30,000 B OS 68 73 94 30,000 B A-305 76 95 30,000 B A-305 76 96 30,000 B A-305 68 97 30,000 B A-305 68 98 30,000 B A-305 68 99 40,000 B A-305 62 110 100 40,000 B A-305 62 110 100 40,000 B A-305 62 110 100 40,000 B A-305 65 98 103 40,000 B A-305 65 98 103 40,000 B A-305 65 98 103 40,000 B A-305 65 99 104 40,000 B A-305 65 99 105 40,000 B A-305 65 99	Max Crack Width 1/10000 1/100000 1/100000 1/100000 1/100000 1/100000 1/100000 1/100000 1/100000 1/100000 1/100000 1/100000 1/100000 1/1000000 1/1000000 1/1000000 1/1000000 1/10000000 1/10000000000	Max Crack Width Condition Width Condition Width Condition Width Condition Max Crack Width Condition Width Condition Midth Condition Midth Condition Midth Condition Midth Condition Condit	Nax Crack Width Continum W Width Continum W Width Continum W Width Continum W Width W Width W Width W Width W W W W W W W W W	Max Crack Max Crack Max Crack Max Crack Midth Contition Max Midth Mi	Ref 1851 Cycles 1968 2005 Cycles 1969 2158 Max Crack Width Condition 1/1/000 ditable 1/1/0000 ditable 1/1/00000 ditable 1/1/00000 ditable 1/1/00000 ditable 1/1/00000 ditable 1/1/00000 ditabl	Ref Store Store	Nax Crack Width Con- I/1000 di- I/10000 di- I/10000 di- I/10000 di- I/10000 di- I/10000 di- I/10000 di-	1851 Cycles, 1968 2005 Cycles, 1969 2158 Cycles, 1970 2327 Max Crack Width Condition 1/1000 displayment 1/1000 di	1851 Cycles, 1968 2005 Cycles, 1969 2158 Cycles, 1970 2327 Cycles Max Crack Width Condition 4V 1000 41 10000 41 100000 41 10000 41 10000 41 10000 41 10000 41 10000 41 10000 41 10000 41 10000 41 10000 41 10000 41 10000 41 10000 41 10000 41 10000 41 400000 41 400000 41 400000 41 400000 41 400000 41 400000 41 400000 41 400000 41 400000 41 400000 41 400000 41 400000 41 400000 41 400000 41 400000 41 400000 41 400000 41 400000 41 400000 400000 400000 400000 400000 400000 4000000 400000 400000 400000 4000000 4000000 4000000 40000000 4	1851 Cycles, 1968 2005 Cycles, 1969 2158 Cycles, 1970 2327 Cycles, 1971 Max Crack Width Condition 1/1000 din 1	Ref Ref	1968 1972 1968 1972 1968 1972 1968 1972 1972 1973 1974 1974 1974 1975 1974 1975 1975 1975 1975 1976

^{*} In 1965 and 1967 the condition of specimens was not rated by panel of observers. (Sheet 6 Satisfactory pulse velocity readings were not obtained in 1966 due to malfunction of testing equipment. (Schannel iron on all loaded beams was replaced with stainless steel channel in June 1967. Readings were therefore taken on all loaded beams before unloading and after reloading with stainless steel channel.

Some pulse velocity readings obtained in 1969 and 1970 are not believed to be valid due to the power limitations of the test equipment; these NV2 readings are therefore questionable.

	F21155-14-7			- 0		20/0	2005	2 1	1060			adings	0000			1.01		
				1851	Cycle	s, 1968 Max	2005	Сусте	s, 1969 Max	2158	Cycles	, 1970 Max	2321	Cycle	s, 1971 Max	2484	Cycle	
Beam No.	Nominal Stress psi	Steel Posi- tion	Type Steel Deform- mation	Con- di- tion	%v ²	Crack Width 1/1000 in.	Con- di- tion	%v ² #	Crack Width 1/1000 in.	Con- di- tion	%v ² #	Crack Width 1/1000 in.	Con- di- tion	%v2	Crack Width 1/1000 in.	Con- di- tion	%v ²	Max Crack Width 1/1000 in.
108	50,000	В	A-305	57	73	40	57	26	45	57	41	45	55	40	45	56	37	50
.09 .10 .11	50,000 50,000 50,000 50,000	B B B	OS OS A-305 A-305	66 55 53 63	149 117 91 93	50 50 50 40	66 55 55 63	59 56 52 50	50 50 50 45	66 55 56 63	99 95 79 76	55 55 50 45	66 55 51 62	91 81 72 71	55 50 50 40	66 56 53 63	64 47 62 65	50 50 40 40
113	50,000	В	os	49	103	55	49	53	55	48	92	60	48	86	60	48	59	60
114 115 116 117	50,000 None None	B B B	OS A-305 A-305 A-305	53 59 65 65	180 68 58 68	55 0 5 0	52 59 67 65	26 25 28	65 0 0	52 58 67 65	64 43 38 43	65 0 0	50 56 66 67	62 39 36 40	70 0 0	50 58 65 65	64 32 29 30	70 0
118	None	В	os	40	66	0	39	27	0	43	43	0	44	41	0	36	44	0
119 120 121 122	None None 20,000 20,000	B B T	0S 0S A-305 A-305	52 54 87 82	67 69 91 85	0 0 25 25	53 56 74 70	30 27 49 52	0 0 25 30	56 56 74 69	49 43 79 81	0 0 25 25	52 55 71 67	47 41 73 77	0 0 25 20	51 54 74 68	21 27 86 54	0 0 30 25
123	20,000	T	08	72	119	30	61	47	35	61	76	40	61	74	35	60	51	40
124 125 126 127	20,000 20,000 20,000 20,000	T T T	OS A-305 A-305 OS	71 64 77 76	111 45 63 68	35 20 20 10	65 60 77 69	59 34 34 28	40 20 25 10	65 59 76 70	98 59 60 42	40 25 25 10	65 58 77 68	92 33 49	45 25 30	65 60 76 68	51 33 42 22	50 30 30
128	20,000	T	os	69	69	5	69	27	5	70	47	10	68	37 43	20	67	25	15
129 130 131	30,000 30,000 30,000	T T T	A-305 A-305 OS	60 71 74	90 84 56 84	20 35 50	55 66 73	50 45 34	25 35 50	55 65 74	77 69 52	30 35 50	53 62 72	73 66 47	35 35 55	55 63 72	56 54 53	40 35 50
132	30,000	T	os A-305	61	45	20	61	35 26	50 25	61	54 44	50 30	58 61	51	50 30	58 61	42	40
L34 L35 L36	30,000 30,000 30,000 40,000	T T T	A-305 OS OS A-305	66 62 65 51	61 53 63 89	25 35 35 70	66 61 63 49	28 28 33 ##	25 30 30 70	66 61 64 49	47 44 50 50	25 30 25 70	64 61 61	45 42 48 50	25 35 25 75	65 60 62 49	45 32 56 47	30 40 25 70
137	40,000	T	A-305	57	106	70	56	37	70	56	60	75	49 56	56	70	56	45	60
139 140 141 142	40,000 40,000 40,000 40,000	T T T	OS OS A-305 A-305	67 69 55 59	92 82 99	35 35 55 50	67 70 54 58	26 29 52 50	40 40 55 55	66 68 54 57	39 53 91 80	45 40 60 60	66 67 53 57	38 49 84 84	45 40 60 65	66 68 53 62	32 32 67	40 40 60
143	40,000	T	os	65	116	30	64	48	35	64	74	35	64	71	30	64	59 61	60
144 145 146 147	40,000 50,000 50,000 50,000	T T T	OS A-305 A-305 OS	61 68 52 Fail	115 101 98 Led§§	55 65 50	61 66 51	51 50 68	60 70 55	61 65 49	80 84 116	65 65 55	61 56 48	73 79 96	70 65 55	61 54 47	61 63 55	60 60 60
148	50,000	T	os		ged													
149 150 151 152	50,000 50,000 50,000 50,000	T T T	A-305 A-305 OS	68 65 57 54	126 142 79 111	45 50 50 50	68 65 58 54	50 62 30 40	55 50 50 55	68 64 57 54	83 86 49 66	60 50 55 55	67 65 57 54	77 80 45 63	55 50 55 50	68 65 57 54	60 54 39 31	50 50 50 50
153 154	None None	T T	A-305 A-305	44 61	72 [°]	0	44 62	30 29	0	46 62	48 45	0	43	45	0	44 57	33 34	0
155 156 157	None None None	T T T	A-305 OS OS	66 66 60	63 74 79	0 0	65 68 60	30 29 29	0 0	66 63 60	44 46 46	0 0	66 66 56	40 31 44	0	65 66 52	32 35 32	0 0
158	None	T	os	52	67	10	53	33	10	53	52	10	52	45	15	53	66	10

Sheam failed but left under exposure.

Damaged when beam 147 failed, but left under exposure.

Some pulse velocity readings obtained in 1969 and 1970 are not believed to be valid due to the power limitations of the test equipment; these \$V^2\$ readings are therefore questionable.

A pulse velocity reading was not obtained on this specimen.

Beach	

				2624	Cycle	s, 1973	2760	Cycle		2872	Cycle	Readings s, 1975		3018	Cycles, 1976
Beam	Nominal Stress	Steel Posi-	Type Steel Defor-	Con-	•	Max Crack Width 1/1000	Con-	•	Max Crack Width 1/1000	Con-		Max Crack Width 1/1000	Con-		Max Crack Width 1/1000
No.	psi	tion	mation	tion	<u>≸v²</u>	in.	tion	<u>\$v²</u>	in.	tion	₹V2	in.	tion	%v2	in
83 84 85 86 87	20,000 20,000 20,000 20,000	B B B	A-305 A-305 OS OS	59 63 72 66 46	**	10 10 25 20	53 67 71 66 48	**	5 10 20 20	59 65 71 66 45	74 67 72 66 70	10 15 25 20 20	46 64 66 63 47	66 74 73 65 105	15 25 20 20 20
88 89 90	20,000 20,000 20,000 20,000	B B B	A-305 0S 0S	50 64 61		15 10 20 20	49 66 60		15 15 20 20	49 65 60	68 76 60	20 25 30	51 64 57 68	69 76 97	15 25 20
91 92	30,000	B B	A-305 A-305	69 67		20 15	68 66		20 15	67 66	56 83	30 20	68 51	55 80	25 20
93 94 95 96	30,000 30,000 30,000 30,000	B B B	08 08 A-305 A-305	64 67 68 65		25 55 20 20	66 67 68 66		40 70 15 20	64 67 67	53 57 78 53	35 70 25 25	64 61 62 62 62	53 65 77 80 58	50 70 25 20 40
97 98 99 100	30,000 40,000 40,000 40,000	B B B B	0S 0S A-305 A-305 OS	59 59 58 58		40 50 50 40 60	63 58 59 56 60		30 50 60 30 70	61 60 59 57 60	59 63 57 73 53	50 50 50 50 75	58 57 53 58	62 58 71 52	50 60 50 75
.02 .03 .04	40,000 40,000 40,000 40,000	B B B	0S A-305 A-305 OS	61 50 57 69		60 60 60 50	63 51 58 70		60 60 50 50	63 48 58 68	89 76 110	70 60 55 55	59 47 57 64	94 81 108	100 60 55 70
106	40,000	B B	OS A-305	52 51		50 50	52 51		50 60	52 51	63 38	70 55	48 51	66 38	70 (1-in. spall)
108 109 110 111	50,000 50,000 50,000 50,000 50,000	B B B	A-305 08 08 A-305 A-305	55 66 55 51 63		50 60 60 40	52 66 55 50 62		50 70 60 50 70	54 66 53 51 58	37 62 57 83 74	55 60 60 50	57 64 55 49 61	38 126 100 92 103	(1/2-in. spall) (1-1/2 in. spall) 75 75 75
113 114 115 116	50,000 50,000 None None	B B B	08 08 A-305 A-305 A-305	48 51 63 65 43		80 70 0 0	48 52 57 58 45		80 60 0 0	48 52 55 57 48	75 71 79 82 42	80 75	47 51 47 55 35	76 138 79 79 42	(1/4-in. spall) 100
118 119 120 121	None None 20,000 20,000	B B B T	08 08 08 A-305 A-305	34 56 53 74		0 0 0 30 20	35 49 54 72 68		0 0 0 25 15	38 49 48 72 67	61 40 83 97	35 25	35 50 52 72 69	65 43 80 98 102	25 30
123 124 125 126	20,000 20,000 20,000 20,000 20,000	TTTT	08 08 A-305 A-305 OS	60 64 60 76 65		50 40 25 25 15	61 64 59 77 67		50 40 20 25 20	60 62 56 74 66	90 86 55 57	50 50 30 30 20	60 61 57 75 67	103 81 56 58 56	60 50 30 30
128 129 130 131	20,000 30,000 30,000 30,000 30,000	TTTT	08 A-305 A-305 08 08	58 54 63 72 59		10 50 50 60 60	67 52 63 72 59		10 40 50 60	64 54 63 70 58	61 75 70 62 71	20 50 60 70	68 52 61 72 51	59 98 111 62 83	15 50 65 75
133 134 135 136 137	30,000 30,000 30,000 30,000 40,000	T T T	A-305 A-305 OS OS A-305	60 64 61 65 49		50 60 40 20 80	61 64 61 65 50		50 50 40 30 70	58 64 61 62 49	83 60 50 82 66	50 65 40 30	57 62 61 63 49	78 61 46 86 67	50 75 40 30 90
138 139 140 141	40,000 40,000 40,000 40,000 40,000	T T T	A-305 08 08 A-305 A-305	56 66 67 53		75 50 45 60 40	55 65 67 53 59		80 60 40 60 50	56 65 67 52 54	68 92 65 75 70	75 50 55 60	55 64 66 58 61	67 68 67 105 86	75 50 60 60
143 144 145 146	40,000 40,000 50,000 50,000	TTTTT	08 08 A-305 A-305	64 61 60 46		40 60 80 50	63 61 54 48		40 70 80 60	62 55 52 44	78 72 68 72	50 65 80	64 59 54 46	114 91 116 84	75 (1/4-in. spall) 125 80

(Issued August 1977)

Table 1-TC-B (Continued)

Section 2 Beach Row 1

							1977-	Readings	Beach Row 1
					3095	Cycles, 1977			
Beam	Nominal Stress psi	Steel Posi- tion	Type Steel Defor- mation	Con- di- tion	% √ ²	Max Crack Width 1/1000 in.			
83 84 85 86 87	20,000 20,000 20,000 20,000 20,000	B B B B	A-305 A-305 OS OS A-305	22 60 68 65 46	80 74 88 69 66	15 25 25 25 25 20			
88 89 90 91	20,000 20,000 20,000 30,000 30,000	B B B B	A-305 0S 0S A-305 A-305	51 63 58 68 65	53 46 59 60 84	20 25 25 25 25 25			
93 94 95 96 97	30,000 30,000 30,000 30,000 30,000	B B B	0S 0S A-305 A-305 0S	63 63 60 64 62	51 68 76 86 76	55 70 25 25 50			
98 99 00 01 02	30,000 40,000 40,000 40,000 40,000	B B B	0S A-305 A-305 OS OS	59 56 56 56 56	63 92 72 54 53	50 60 55 80 100			
.03 .04 .05 .06	40,000 40,000 40,000 40,000 50,000	B B B	A-305 A-305 OS OS A-305	47 64 65 66 50	86 62 82 69 46	60 60 75 70 (1-in. spall)			
08 09 10 11	50,000 50,000 50,000 50,000 50,000	B B B	A-305 OS OS A-305 A-305	53 65 53 50 59	44 115 94 68 67	(5/8-in. spall) (1-1/2 in. spall) 75 75 75			
13 14 15 16 17	50,000 50,000 None None	B B B	0S 0S A-305 A-305 A-305	47 51 51 57 59	79 101 78 76 44	(1/4-in. spall) 100			
18 19 20 21 22	None None None 20,000 20,000	B B T	0S 0S 0S A-305 A-305	44 55 54 70 67	64 43 79 92 97	35 35			
23 24 25 26 27	20,000 20,000 20,000 20,000 20,000	TTTT	0S 0S A-305 A-305 OS	59 63 57 75 66	65 71 54 54 68	60 60 30 30 20			
28 29 30 31 32	20,000 30,000 30,000 30,000 30,000	T T T	0S A-305 A-305 0S 0S	67 52 60 70 54	65 93 83 49 53	20 50 60 75 75			
33 34 35 36 37	30,000 30,000 30,000 30,000 40,000	TTTT	A-305 A-305 OS OS A-305	58 62 61 62 49	91 72 43 59	50 75 40 40			
38 39 40 41 42	40,000 40,000 40,000 40,000 40,000	TTTTT	A-305 08 08 A-305 A-305	55 65 65 59 57	77 89 81 94 86	75 55 60 60 60			
43 44 45 46	40,000 40,000 50,000 50,000	T T T	08 08 A-305 A-305	62 57 52 47	81 93 89 73	75 (3/8-in. spall) 125 80			

				1001	. 11 3					3-1976 R	eading	Z8			
				2624 C	ycles	. 1973	2760 Cy	cles,	1974	2872 0	ycles	1975	3	018 C	ycles, 1976
Beam No.	Nominal Stress psi	Steel Posi- tion	Type Steel Defor- mation	Con- dition	≤v ²	Max Crack Width 1/1000 in.	Con- dition	≴v ²	Max Crack Width 1/1000 in.	Con- dition	<u></u> 1√2	Max Crack Width 1/1000 in.	Con- di- tion	%v2	Max Crack Width 1/1000 in.
148	50,000	T	08		**		Unloaded	##			-				
149	50,000	T	A-305	68		75	66		5001	61	73 61	500	61	100	(4-in. spall)
150	50,000	T	A-305	65		60	65		70	62	61	500 70	64	104	75
151	50,000	T	os	57		70 60	58		70	57	62	60	56	63	(1/2-in. spall)
152	50,000	T	os	54		60	54		55	51	52	50	53	52	50
153	None	T	A-305	44		0	36		0	16 54 61	50		26	52 81 81	
154	None	T	A-305	55		0	54		0	54	50 84		55 65	81	
155	None	T	A-305	76		0	65		0	61	82		65	81	
156	None	T	os	52		0	27		0	25	82 83		22	81	
157	None	T	os	52		0	51		0	49	83		50	90	
158	None	T	os	51		0	50		0	50	74		51	79	(2-in. spall)

1977- Readings

				- 3	095 C	ycles, 1977
				Con- di- tion	%v ²	Max Crack Width 1/1000 in.
148 149 150 151 152	50,000 50,000 50,000 50,000 50,000	T T T	OS A-305 A-305 OS OS	64 63 53 53	67 65 63 67	(4-in. spall) 75 (5/8-in. spall) 50
153 154 155 156 157	None None None None	T T T	A-305 A-305 A-305 OS	29 55 65 23 54	53 74 82 82 80	
158	None	T	os	50	68	

⁸⁸ Satisfactory pulse velocity readings were not obtained in 1973 and 1974.
9 One rebar failed during winter of 1973-1974.

Stewart Field Spheres*

Twenty-four air-entrained concrete spheres were installed on the beach at Treat Island in May 1954 for soniscope studies. These spheres are 12 in. in diameter and were fabricated in March and April of 1943. They had previously been exposed at Treat Island during the period from October 1943 to May 1949 as a part of the Stewart Field Program. This previous exposure (approximately 600 cycles of freezing-and-thawing) had no appreciable effect on the spheres. Spheres were selected for this exposure primarily because the concrete in a sphere is in a relatively stress-free condition with no corners.

Table 1-SF lists these specimens and gives their exposure record along with pertinent mixture data.

^{*} See Corps of Engineers, Central Concrete Laboratory, Concrete Investigation, Stewart Field, Newburgh, New York, First Interim Report (March 1943); Second Interim Report (April 1943); Final Report (April 1944).

Table 1-SF

Mixture Data and Record of Testing of Stewart Field Spheres

1954- (Installed May 1954)

		-							100	Exposure Rack, Row 9 (W to E)					
			Water-			19	954		19	1902	Reduin	Ke			
Sphere No.	Aggregate Fine	Combination Coarse	Cement Ratio gal/bag	Cement Factor bags/cu yd	Air %	Pulse Veloc fps	% ∨	1955 2 ½v ²	1950 2 v ²	5 1957 5v ²	1958 %v ²	1959 %v ²	1960 %v ²		1962 %v ²
11A	Nat. sand A	Nat. gravel A	4.5	7.2	3.2	14,92	5 10			103	113	*			
11B	Nat. sand A	Nat. gravel A	4.5	7.1	4.0	14,08				97	123	105	102		119
11G	Nat. sand A	Nat. gravel A	4.5	7.0	2.9	13,890				116	131	103	109		115
12D 13D	Nat. sand A	Nat. gravel A	5.0	5.3	2.3	14,929				94	100	87 85	92 91	117	94 73
										106	116	106			
21A 21B	Crushed Crushed	Nat. gravel A Nat. gravel A	4.5	7·3 7·3	4.5	14,49				109	124	113	113		113
22A	Crushed	Nat. gravel A	5.0	6.4	4.8	13,700				116	123	113	120		139
22B	Crushed	Nat. gravel A	5.0	6.4	4.7	13, 335				115	109	115	132		133
23A	Crushed	Nat. gravel A	5.5	5.6	4.5	14,08	10	0 106	123	106	119	100	106		131
23B	Crushed	Nat. gravel A	5.5	5.6	4.6	13,890	10	0 112		116	127	106	109	135	140
31D	Nat. sand B	Nat. gravel A	4.5	6.5	4.3	14,92				110	125	110	110	121	113
33D	Nat. sand B	Nat. gravel A	5.5	5.0	4.8	13,890				112	135	107	100	139	135
52D 53A	Blend A Blend B	Nat. gravel A Nat. gravel A	5.0	5.9 5.2	3.8	14,499				106 116	109	106	Failed 120	131	131
53E	Blend A	Nat. gravel A	5.5	5.1	4.3	13,890	10			116	123	107	119		103
71A	Crushed Crushed	Rock C	4.5	7.4	6.8	18,520				90 104	100	76 94	87	96 111	93
73D 81A	Nat. sand B	Rock C Rock C	5.5	5.8	2.9	17,240				110	114	96	97	124	85
83A	Nat. sand B	Rock C	5.5	7.0 5.3	7.7	16,950				88	100	97	83	85	85
83D	Nat. sand B	Rock C	5.5	5.3	4.1	16,39	5 10	0 103	128	111	100	85	94	107	66
83E	Nat. sand B	Rock C	5.5	5.3	3.9	16, 39				111	123	97	104	123	83
92E	Blend C	Rock C	5.0	6.3	3.9	16,130				110	122	103	114	132	110
13G	Nat. sand A	Nat. gravel A	5.5	5.2	3.8	15, 38		0 89	106	94	**	114	94	106	94
									1	963-197			ck, Ro	w 9 (W 1	to E)
						1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
						%v2	%v2	%v2	%v2	%v2	%v2	%v ²	%v2	%v2	%v2
11B	Nat. sand A	Nat. gravel A	4.5	7.1	4.0	90	112	119	+	87	119	123	103	83	58
11G	Nat. sand A	Nat. gravel A	4.5	7.0	2.9	87	61	87		Failed					
12D	Nat. sand A	Nat. gravel A	5.0	6.2	2.3	106	103	121		82	92	89	87	33	43
130	Nat. sand A	Nat. gravel A	5.5	5.3	4.7	83	115	119		64	85	91	78	48	47
21A	Crushed	Nat. gravel A	4.5	7.3	4.5	132	128	157		61	120	120	113	76	69
21B	Crushed	Nat. gravel A	4.5	7.3	4.3	110	117	143		62	106	109	106	64	80
22A	Crushed	Nat. gravel A	5.0	6.4	4.8	130	139	139		37	85	88	83	81	100
22B 23A	Crushed Crushed	Nat. gravel A	5.0	5.6	4.7	151	146	125		103	90 119	55 116	50 103	Failed 85	65
					4.6			140		106	149	139	109		75
23B	Crushed Nat. sand B	Nat. gravel A	5.5	5.6	4.6	131	135	106		41	40	Failed		85	75
			5.5	5.0	4.8	127	127	139		92	131	109	95	Failed	
33D	Nat. sand R	Nat. oravel A				127	127	135		77	123	112	103	85	47
33D 53A	Nat. sand B Blend B	Nat. gravel A Nat. gravel A	5.5	5.2	5.1										
33D 53A				5.2	4.3	123	123	135		87	139	106	100	83	49
33D 53A 53E 71A	Blend B Blend A Crushed	Nat. gravel A Nat. gravel A Rock C	5.5 5.5 4.5	5.1 7.4	4.3	123 96	87	90		36	139	106 46	100 43	83 19	NR
33D 53A 53E 71A 73D	Blend B Blend A Crushed Crushed	Nat. gravel A Nat. gravel A Rock C Rock C	5.5 5.5 4.5 5.5	5.1 7.4 5.8	4.3 6.8 2.9	123 96 111	87 50	90 69		36 Failed	71	46	43		
33D 53A 53E 71A 73D 81A	Blend B Blend A Crushed	Nat. gravel A Nat. gravel A Rock C Rock C Rock C	5.5 5.5 4.5 5.5 4.5	5.1 7.4 5.8 7.0	4.3 6.8 2.9 4.9	123 96 111 138	87 50 103	90 69 97		36					NR
33D 53A 53E 71A 73D 81A 83A	Blend A Crushed Crushed Nat. sand B Nat. sand B	Nat. gravel A Nat. gravel A Rock C Rock C Rock C Rock C	5.5 5.5 4.5 5.5 4.5 5.5	5.1 7.4 5.8 7.0 5.3	4.3 6.8 2.9 4.9 7.7	123 96 111 138 91	87 50 103 82 F	90 69 97 Tailed		36 Failed 30	71	46	43	19	NR
33D 53A 53E 71A 73D 81A 83A	Blend A Crushed Crushed Nat. sand B Nat. sand B	Nat. gravel A Nat. gravel A Rock C Rock C Rock C Rock C	5.5 5.5 4.5 5.5 4.5 5.5	5.1 7.4 5.8 7.0 5.3	4.3 6.8 2.9 4.9 7.7	123 96 111 138 91	87 50 103 82 F	90 69 97		36 Failed 30	71 46	46 25	43	19	NR
33D 53A 53E 71A 73D 81A 83A	Blend A Crushed Crushed Nat. sand B Nat. sand B	Nat. gravel A Nat. gravel A Rock C Rock C Rock C Rock C	5.5 5.5 4.5 5.5 4.5 5.5	5.1 7.4 5.8 7.0 5.3	4.3 6.8 2.9 4.9 7.7	123 96 111 138 91	87 50 103 82 F	90 69 97 Tailed		36 Failed 30	71	46 25	43	19	NR

^{*} Specimen 11A disappeared between May 1958 and May 1959.

** This specimen could not be found to test in 1958, but it was later found in another location on the beach and reinstalled.

† Satisfactory pulse velocity readings were not obtained in 1966 due to malfunction of testing equipment.

NR A satisfactory reading was not obtained although an attempt was made to obtain one.

			Water-								Exposure Rack, Row 9 (W to E)
			Cement	Cement					1973		eadings
Sphere	Aggregate	Combination	Ratio	Factor	Air	1973	1974	1975	1976	1977	
No.	Fine	Coarse	gal/bag	bags/cu yd	3	≴ v ²	<u>\$v²</u>	%v2	%v2	%v2	
11B	Nat. sand A	Nat. gravel A	4.5	7.1	4.0	52	49	33	NR	Failed	
12D	Nat. sand A	Nat. gravel A	5.0	6.2	2.3	NR	NR	NR	NR	NR	
13D	Nat. sand A	Nat. gravel A	5.5	5.3	4.7	NR	NR 60	NR 80	NR	NR	
21A	Crushed	Nat. gravel A	4.5	7.3	4.5	66	60	80	73	73	
21B	Crushed	Nat. gravel A	4.5	7.3	4.3	78	76	72	62	65	
22A	Crushed	Nat. gravel A	5.0	6.4	4.8	95	93	72 88 70	81 65	83	
23A	Crushed	Nat. gravel A	5.5	5.6	4.5	62	93 62	70	65	62	
23B	Crushed	Nat. gravel A	5.5	5.6	4.6	43	40	67	61	63	
53A	Blend B	Nat. gravel A	5.5	5.2	5.1	NR	NR	NR	Failed		
53E	Blend A	Nat. gravel A	5.5	5.1	4.3	NR	NR	NR	Failed		
71A	Crushed	Rock C	4.5	7.4	6.8	Failed					
92E	Blend C	Rock C	5.0	6.3	3.9	NR	NR	NR	Failed		
13G	Nat. sand A	Nat. gravel A	5.5	5.2	3.8	NR	NR	NR	Failed		

Cement-Replacement Materials Investigation, Phase B*

In December 1953, 21 concrete prisms (18 by 18 by 36 in.) were installed at half-tide elevation on the beach at Treat Island as a part of Phase B of the Cement-Replacement Materials Investigation.* Phase B involved the proportioning, outdoor mixing, and placing of mass concrete, using 2-cu-yd batching, mixing, and placing equipment. The purpose of this installation is to develop information about the durability of Phase B concretes.

The prisms were made from seven different concrete mixtures (3 prisms per mixture); the coarse and fine aggregate used in all mixtures was a crushed limestone. All concrete mixtures were air-entrained; the air-entraining admixture was admixture G. The mixture data are tabulated below. Table 1-CRMI-PB lists the concrete specimens exposed as a part of this program and gives their exposure record.

	Date		land ment		Replacement Material		Cement	Water- Cement			15
Mix No.	Cast 1953	Туре	% Used	Туре	Used	Coarse Aggr	Factor bags/cu yd	Ratio by wt	Slump in.	Air*	Specimen No.
a	4-7	·II	100	None	None	6 in.	2.52	0.8	2-1/4 2-3/4 3-1/4	6.0 6.7 5.1	B-10 B-11 B-12
b	4-14	II	100	None	None	3 in.	2.91	0.8	3/4 2-1/2 1-1/2	5.9 6.8 5.6	B-30 B-31 B-32
c	4-28	II	100	None	None	3 in.	4.76	0.5	2-1/2 1-1/2 1/4	7.2 2.5 1.2	B-61 B-62 B-63
đ	4-21	II	55 **	Fly ash	45 **	6 in.	2.16	0.8	2 1-1/2 2-1/2	5.4 4.8 5.0	B-46 B-47 B-48
е	5-19	II	65**	Nat. cem	35**	6 in.	2.33	0.8	1-1/2 3 3-1/4	5.3 5.7 5.2	B-109 B-110 B-111
f	5-6	II	55 **	Fly ash	45**	3 in.	2.49	0.8	2-1/2 2-1/2 2	5.7 5.4 5.9	B-77 B-78 B-79
g	5-12	II	65 **	Nat. cem	35**	3 in.	2.68	0.8	1/2 2 2	6.0 7.2 6.3	B-93 B-94 B-95

^{*} Air content of that portion of the concrete containing aggregate smaller than 1-1/2 in. in size. ** Per cent by solid volume.

^{*} See U. S. Army Engineer Waterways Experiment Station, CE, <u>Investigation</u> of Cement-Replacement Materials; <u>Preliminary Field Investigations</u> (<u>Phase B</u>), <u>Miscellaneous Paper No. 6-123</u>, <u>Report No. 4</u> (<u>Vicksburg</u>, <u>Miss.</u>, <u>April 1956</u>).

Table 1-CRMI-PB

Record of Testing of Prisms Made for Cement-Replacement Materials Investigation,

Phase B, 1953- (Installed December 1953)

								1953	8-1963 Re	eadings					h Row 2
Mix No.	Specimen No.	Port- land Cement	Max Aggr Size in.	Cycles 1953	110 Cycles 1954 4v ²	255 Cycles 1955 %v ²	422 Cycles 1956 % V ²	566	637	78 es Cyc	les C	858 ycles 1960 %v ²	999 Cycles 1961 4v ²	1088 Cycles 1962 %V ²	1194 Cycles 1963 %v ²
a	B-10 B-11 B-12	100	6	100 100 100	100 107 106	106 115 113	111 114 112	96 108 105	101 108 106	10		90 102 98	85 99 92	Failed 75 Failed	92
ъ	B-30 B-31 B-32	100	3	100 100 100	94 93 94	100 97 98	100 98 97	92 92 93	95 94 93	8	95 38 38	97 89 94	94 93 93	102 88 90	97 86 95
c	B-61 B-62 B-63	100	3*	100 100 100	88 63** 62**	97 95 97	97 94 99	91 90 91	93 93 93	8	90 37 38	93 89 93	91 92 91	97 88 93	99 92 87
đ	B-46 B-47 B-48	55†	6	100 100 100	86 90 94	92 97 99	79 97 96	59 85 93	†† 91 96	1	†† †† 33	†† †† ††	†† †† ††	Failed Failed	++
е	B-109 B-110 B-111	65*	6	100 100 100	95 93 95	98 99 100	99 97 99	89 88 93	91 90 96		74 32 35	75 83 91	66 81 89	Failed 65 90	82 84
f	B-77 B-78 B-79	55†	3	100 100 100	95 106 94	101 103 101	104 103 99	93 94 97	94 92 89		tt 38 tt	†† †† ††	†† †† ††	†† †† ††	†† †† ††
g	B-93 B-94 B-95	65#	3	100 100 100	92 94 96	96 101 100	102 99 98	91 98 94	95 93 90	9	36 91 37	92 95 89	90 91 88	90 91 76	90 90 81
				1964-1975 Readings											
				1329 Cycles 1964 %v ²	1492 Cycles 1965 4v ²	1622 Cycles 1966	1778 Cycles 1967 %v ²	1963 Cycles 1968 4v ²	2117 Cycles 1969 %V ²	2270 Cycles 1970 %V ²	2439 Cycles 1971 %V ²	2596 Cycle 1972 %V ²	s Cycles	2782 Cycles 1974 %v ²	2894 Cycles 1975
a	B-11	100	6	81	75	**	66	73	tt	++					
b	B-30 B-31 B-32	100	3	90 79 88	92 80 87	82 65 73	93 73 86	93 77 88	89 69 79	84 65 72	68 55 67	68 NR 70	999	81 74 88	76 85 93
c	B-61 B-62 B-63	100	3*	93 94 89	106 95 49	91 87 Failed	95 86	92 86	91 78	86 74	88 66	88 73	9	116 103	102 100
đ	B-48	55t	6	tt	Failed										
е	B-110 B-111	65#	6	72 77	64 74	57 58	59 66	59 67	20 58	**					
f	B-77 B-78 B-79	55†	3	**	Failed Failed Failed										
g	B-93 B-94 B-95	65#	3	95 82 69	92 77 64	83 75 63	92 71 58	91 74 59	88 69 57	79 65 54	77 Failed		\$	88	90

^{**} Water-cement ratio (by wt), 0.5; that of all other specimens, 0.8.

** These two values are inconsistent with previous and subsequent readings and are presumed incorrect.

† 45% fly ash used as replacement material.

† End of specimen too rough to obtain satisfactory reading.

* 35% natural cement used as replacement material.

* Satisfactory pulse velocity reading was not obtained on this prism in 1966; the reading obtained was spurious and was thrown out.

§ Satisfactory pulse velocity reading was not obtained on this specimen in 1973 due to equipment malfunction.

(Issued August 1977)

Table 1-CRMI-PB (Continued)

Section 4

Record of Testing of Prisms Made for Cement-Replacement Materials Investigation,

Phase B, 1953- (Installed December 1953)

Beach Row 2

		8 3				1976-	Readings			A-STATE -
Specimen No.	Port- land Cement	Max Aggr Size in.	3040 Cycles 1976 %v ²	3117 Cycles 1977 \$v ²						
B-11	100	6								
B-30 B-31 B-32	100	3	75 89 91	70 61 101						
B-61 B-62 B-63	100	3*	96 96	108 97						
B-48	55†	6								
B-110 B-111	65‡	6								
B-77 B-78 B-79	55 †	3								
B-93 B-94 B-95	65‡	3	88	90						
	B-11 B-30 B-31 B-32 B-61 B-62 B-63 B-48 B-110 B-111 B-77 B-78 B-79 B-93 B-94	Speciment No. Cement No. Second No. No.	Specimen No. Cement Size in.	Specimen No. Specimen No. Specimen No. Size 1976 Size Size 1976 Size 1976 Size 1976 Size 1976 Size Size 1976 Size Size 1976 Size Size 1976 Size Size	Specimen No. Cement Size 1976 1977 1977 1977 1	Specimen No. Cycles 1976 1977 1976 1977 1976 1977 1977 1978 1977 1978 1	Specimen Cement Size 1976 1977 1977	Specimen No. No.	Specimen Port- No. Size Siz	Specimen No. No. Size Size

<sup>Water-cement ratio (by wt), 0.5; that of all other specimens, 0.8.
45% fly ash used as replacement material.
35% natural cement used as replacement material.</sup>

Table 1-CERL-FC

Record of Testing of Concrete Beams for CERL Fibrous Concrete Program Installed January 1975

								1		Rack	Row 3
						75-	Read:				
				Jan 1975		Jun I			76		977
Mix	Beam	Flaw		0 cycles		A Comment of the Comment	ycles		ycles	289 6	cycles
No.	No.	in.	<u>%E</u>	fps	%v ²	<u>%E</u>	<u>%v²</u>	<u>%E</u>	%v ²	<u>%E</u>	<u>%v</u> 2
0-1	0	0	100	14,150	100	110	161	110	102	110	94
	1	0	100	14,000	100	104	145	109	104	109	87
	2	0	100	13,855	100	105	148	++			
	3	H.L.*	100	13,040	100	**	**	++			
	4	1/16+	100	13,435	100	**	**	††			
	5	1/8	100	13,300	100	**	**	++			
0-2	10	0	100	13,435	100	102	157	103	94	105	94
	11	0	100	13,570	100	100	158	99	100	101	94
	12	0	100	13,435	100	101	165	++			
	13 14	H.L.	100	13,300	100	101 85	160 176	++			
	15	1/16 1/8	100	12,545	100	90	156	†† ††			
	1)	1/0	100	12,747	100	90	1)0	''			
0-3	20	0	100	14,150	100	104	153	104	104	108	94
	21	0	100	14,300	100	104	154	105	96	109	94
	22	0	100	14,150	100	101	157	††			
	23	H.L.	100	13,855	100	100	168	++			
	24	1/16	100	13,435	100	79	161	++			
	25	1/8	100	13,570	100	93	150	++			
0-4	30	0	100	13,855	100	101	155	111	96	111	102
	31	0	100	13,570	100	108	154	113	106	115	89
	32	0	100	13,855	100	102	160	++			
	33	H.L.	100	13,435	100	102	153	++			
	34	1/16	100	13,040	100	100	159	++			
	35	1/8	100	12,915	100	78	170	++			
0-5	40	0	100	14,150	100	100	161	114	112	113	98
	41	0	100	14,150	100	103	157	104	107	109	98
	42	0 H.L.	100	14,000	100	101	174 164	++			
	43 44	1/16	100	13,855	100	97 77	172	++			
	44	1/16	100	12,915	100	72	158	++			
	47	1/0	100	12,91)	100	12	1,0	- ' '			

^{*} Hairline crack.

^{**} Unable to obtain reading in June 1975.

[†] In two pieces.

tt Shipped to CERL in July 1976 for laboratory tests.

CERL Fibrous Concrete Program

In January 1975, 30 concrete beams (3-1/2 by 4-1/2 by 16 in.) were installed at half-tide elevation on the exposure rack at Treat Island, Maine, to determine the effects of the seawater and the freezing and thawing action on the flexural strength and other properties of various fiber concretes. Half the beams were cracked for testing.

The beams were made from five different concrete mixtures (6 beams per mixture); natural coarse (3/8-in. max) and fine aggregate were used in all mixtures. All mixtures were air-entrained (admixture A), and a water-reducing admixture (admixture B) was used in all mixtures. Type III portland cement was used in the amount of 8.0 cwt per cu yd with a water-cement ratio of 0.5 in all mixtures. Concrete mixture data are tabulated below. Table 1-CERL-FC gives the exposure record of the specimens.

		Concrete	Mixture	Data	
Mixture	Туре	Fiber Length, in.	Slump, In.	Air Content	Fiber Ratio by Wt
0-1	A	1/2	0	10.0	0.01
0-2	В	1	1	8.0	0.02
0-3	C	1	8	3.5	0.05
0-4	D		0	4.5	0.05
0-5	E	2-1/2	7	2.5	0.05

Prestressed Concrete Program

The purpose of this installation is to develop information on the effect of prestressing on the durability of concrete beams.

In October 1958, 16 prestressed (pretensioned) concrete beams (4-1/2 by 9 by 81 in.) were installed at half-tide elevation on the beach at Treat Island. Each beam contains nine nominal 1/4-in. (1 by 7) strands of high-strength steel wire. In 14 of the 16 beams the strands were tensioned to approximately 70% of their ultimate strength prior to placement of the concrete around them (approximately 3 tons each strand); the strands in the other two beams were not tensioned. Each of these 16 beams contains four sets of gage points with which strains are measured. Twelve of the 16 beams are loaded flexurally (third-point) in pairs. Two intensities of loading are used; in one case the compression due to prestressing is just balanced (100%), and in the other case the compression is exceeded so that approximately 200-psi tension exists in the bottom fibers of the beams (108%). The other four beams are nonloaded controls.

The concrete mixtures represented both air-entrained (admixture II) and nonair-entrained concrete of the following characteristics:

		Nominal		
Water-cement		Compressive		Cement
Ratio		Strength		Factor
gal/bag	Cement	psi	Slump, in.	bags/cu yd
5.85-6.22	Type III (high-early)	6000	1-3/4 + 1/2	6.1-6.3

The aggregates used were manufactured limestone sand and limestone rock (3/4-in. maximum size).

Table 1-PR lists these specimens and gives their exposure record along with other pertinent information.

Eight additional prestressed beams (4-1/2 by 9 by 81 in.) are exposed in the laboratory as control beams (loaded and nonloaded).

In addition, in October 1958, 72 conventional concrete beams (3-1/2 by 4-1/2 by 16 in.) were installed on the Treat Island exposure rack to determine the field durability of the concrete mixes. These beams were fabricated from the same concrete batches (3 beams from each of 24 batches) as the large beams, and therefore have the same mixture characteristics.

Section 6

(Issued June 1959)

Table 2-PR lists these specimens and gives their exposure record along with other pertinent information.

Companion specimens to the small beams (3-1/2 by 4-1/2 by 16 in.) were subjected to freezing-and-thawing tests in the laboratory. The results of these tests are given below:

Batch No.	Avg %E at 300 Cycles	Batch No.	Avg %E at 300 Cycles
1 2 3 4 5 6 7 8 9 10	92 89 64 86 91 86 89 84 89	13 14 15 16 17 18 19 20 21 22 23 24	93 90 4 3 91 70 91 87 89
12	93	1 24	5

St. Augustine Installation (1959)

In October 1959, three prestressed (pretensioned) concrete beams (4-1/2 by 9 by 81 in.) were installed on the exposure rack at St. Augustine, Fla. Each beam contains nine nominal 1/4-in. (1 by 7) strands of high-strength steel wire. The strands in all three beams were tensioned to approximately 70% of their ultimate strength prior to placement of the concrete around them (approximately 3 tons per strand). Each beam also contains four sets of gage points for length change measurements. At installation, two of the beams were yoked together and loaded flexurally (third point) until cracks appeared in both beams. The other beam is an unloaded control.

The concrete mixture used in these beams was air-entrained (admixture M) concrete of the following characteristics:

Cement	Air Content	Water-cement Ratio gal/bag	Nominal Compressive Strength	Clump in	Cement Factor bags/cu yd
Сещепс		gar/ nag	psi	Slump, in.	bags/cu yu
Type III (high-early)	4.3-4.8	5.85	6000	1-3/4 <u>+</u> 1/2	6.00-6.03

The aggregates used were manufactured limestone sand and limestone rock (3/4-in. maximum size).

Table 3-PR lists these specimens and gives their exposure record.

Posttensioned Phase (1961 Installation)

The primary purpose of this installation is the exposure testing of end anchorages and end-anchorage protection for several systems of post-tensioning. While not being introduced as variables the following additional effects will be observed and studied in the beam specimens:

- a. Durability of thin web sections
- b. Behavior of grout
- c. Exposure effects on posttensioning steel and conventional reinforcing steel
- d. Effect of eccentricity of loading

In June 1961, 20 posttensioned beams (nominal size, 10- by 16- by 96-in.) were installed at half-tide elevation on the beach at Treat Island. These beams represent four typical posttensioning systems: Systems A and B (six beams each), Systems C and D (four beams each). Each beam contains one sheathed steel tendon* which was stressed in accordance with the recommendations of the particular system. The end-anchorage components of all beams are provided with 1-1/2 in. of cover. This cover consists of either air-entrained concrete, sand-cement mortar, or epoxy concrete.

The concrete beams are made of air-entrained concrete and in addition to the posttensioning steel, contain steel for reinforcing. This reinforcing has been provided with $3/4 \pm 1/4$ in. of cover.

The concrete mixtures in the test beams proper (excluding grout and anchorage protection) have the following characteristics:

	Air Content	Water-cement Ratio	Nominal Compressive Strength		Cement Factor
Cement	<u>%</u>	(by wt)	psi	Slump, in.	bags/cu yd
Type III (high-early)	4.0-5.0	0.52 (5.85 gal/bag)	6000	1-1/2 to 2	5.98-6.05

The aggregates used in the test beams proper were manufactured limestone sand and limestone rock (3/4-in. maximum size).

The concrete mixtures used for end-anchorage protection contained the same aggregates and have the following characteristics:

Cement	Air Content	Water-cement Ratio (by wt)	Nominal Compressive Strength psi	Slump, in.	Cement Factor bags/cu yd
Type III (high-early)	3.5-5.0	0.80 (9.03 gal/bag)	3000	1-1/4 to 2	3.90-3.96

The sand-cement mortar used for end-anchorage protection contained manufactured limestone sand and had the following characteristics:

^{*} All tendons except that of beam 13 were grouted.

(Reprinted Sept 1967)

Section 6

	28-day								
Cement Type III (high-early)	Water-cement Ratio (by wt)	Compressive Strength psi	Cement Factor bags/cu yd						
Type III (high-early)	0.44 (4.97 gal/bag)	6930-10,400	10.90						

The epoxy concrete used for end-anchorage protection contained the same limestone aggregates and had the following characteristics:

		Mixture Proportions (by wt)	28-day
Cement	Max Aggr Size, in.	Epoxy Coarse Binder:Sand:Aggregate	Compressive Strength psi
None	3/4	2.83:7.00:10.00	9320-11,320

The steel tendon in 19 of the 20 test beams was pressure-grouted after posttensioning using a grout of the following characteristics:

Cement	Water-cement Ratio (by_wt)	7-day Compressive Strength psi	3-day Expansion
Type III (high-early)	0.40-0.49 (4.51-5.53 gal/bag)	3640-7400	0-7

The grout used for beam 14 contained a natural sand (100% passing No. 30 sieve). All grouts contained a small amount of aluminum powder.

This program of investigation is being conducted in cooperation with the Reinforced Concrete Research Council, and the test beams and variables were designed in accordance with their recommendations.

Tables 4-PR, 5-PR, and 6-PR give additional information and exposure records of these beams.

Section 6

(Issued Sept 1967)

Reports Published

Four U. S. Army Engineer Waterways Experiment Station reports concerned with the prestressed concrete program have been issued since 1958. These reports are listed below:

- a. Roshore, E. C., "Durability and Behavior of Prestressed Concrete Beams; Pretensioned Concrete Investigation, Progress to July 1960," Technical Report No. 6-570, Report 1, June 1961, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- b. , "Durability and Behavior of Pretensioned-Prestressed Concrete Beams," Miscellaneous Paper No. 6-611, December 1963, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- c. _____, "Durability of Prestressed Concrete Beams,"
 Miscellaneous Paper No. 6-665, July 1964, U. S. Army Engineer
 Waterways Experiment Station, CE, Vicksburg, Miss.
- d.

 , "Durability and Behavior of Prestressed Concrete Beams; Posttensioned Concrete Investigation, Progress to July 1966," Technical Report No. 6-570, Report 2, March 1967, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Record of Testing of Large, Prestressed Beams

Treat Island Exposure

1958-(Installed October 1958)

							1958-19	61 Read	dings	ien Row	2 (W to E)
				0 Cycl 1958							
Beam*		Strands	Loaded	Pulse		The contract of	cles, 1959		ycles, 1960	362 0	ycles, 1961
No.	Type Concrete	Pretensioned	Flexurally, %	fps	%v2	%v2	Conditiont	%v2	Conditiont	%v2	Condition
3**	Air	No	0	15,100	100	106	2	108	1	104	3
4	Air	No	0	15,235	100	106	1	107	1	105	4
7**	Air	Yes	0	15,270	100	102	1	103	2	103	4
8	Air	Yes	0	15,205	100	104	1	107	2	105	4
11**	Air	Yes	108	15,235	100	106	1	105	1	106	4
12	Air	Yes	108	15,135	100	105	1	106	2	106	4
13**	Air	Yes	108	15,170	100	104	1	104	2	109	4
14	Air	Yes	108	15,555	100	104	1	104	2	104	4
15	Plain	Yes	108	15,375	100	Failed					
16	Plain	Yes	108	15,375	100	Failed					
19**	Air	Yes	100	14,965	100	107	1	107	2	107	4
20	Air	Yes	100	15,205	100	106	1	108	1	105	4
21	Air	Yes	100	15,340	100	106	1	107	2	105	3
22**	Air	Yes	100	15,270	100	106	1	104	1	104	3
23	Plain	Yes	100	15,445	100	Failed					
24	Plain	Yes	100	15,590	100	Failed					
				451 C	ycles	1962-1965 Readings 557 Cycles 692 Cycles			855 Cycles		
				19	62 Condi-		1963 Condi-		1964		1965 Condi-
				%v2	tiont	%v ²	tiont	%v2	tiont	%v2	tiont
3 **	Air	No	0	105	3	111	4	100	9	103	tt
14	Air	No	0	104	4	111	4	157	11	105	
7**	Air	Yes	0	102	4	109	4	102	18	109	
8	Air	Yes	0	97	3	105	4	100	12	72	
11**	Air	Yes	108	99	3	107	4	99	4	104	
12	Air	Yes	108	96	3	107	4	100	4	105	
13**	Air	Yes	108	98	3	107	4	101	6	110	
14	Air	Yes	108	94	3	104	4	103	3	104	
19**	Air	Yes	100	98	3	110	4	103	4	108	
20	Air	Yes	100	97	3	104	3	108	3	102	
21	Air	Yes	100	94	3	105	3	99	3	105	
22**	Air	Yes	100	96	3	119	4	100	5	99	
				(Continu	ied)						

^{*} For purposes of comparison with the results of tests of the small beams listed in table 2-FR, it should be noted that the beam numbers of the large beams are also their batch numbers.

** In June 1963 epoxy pads were removed from both ends of one beam in each pair. This was done to equalize exposure conditions as some epoxy pads had become disengaged.

† The condition of these specimens is adjudged either annually or biennially by a panel of observers. The beams are examined carefully for cracks, cracks bordered by iron stain, degree of surface scaling (light, moderate, or heavy), rust spots, etc., and a numerical value of condition is assigned to each beam based on the severity of the defects observed. A numerical value of 0 denotes perfect condition; all beams had a condition rating of 0 when they were installed. The higher the condition numerical rating, the greater the deterioration. When a beam breaks in two due to load or accumulates a condition rating of 100 it is considered to have failed.

† In 1965 the condition of the specimens was not rated by a panel of observers.

				Ta	pre 1-bk (C	ontinue	ed)				Section 6		
										Beach	Row 2 (W to E)		
							1966-19	67 Readin	ngs	77			
			Loaded	985 Cy	cles, 1966			%v ²	cycles, 19	70			
No.	Type Concrete	Strands Pretensioned	Flexurally	%v2	Condition	Before	Unloading##	Not Load	led After	Reloadi	ng Condition		
3	Air	No	.0		11			101			- § §		
4	Air	No	0		20			100					
7	Air	Yes	0		24			105					
8	Air	Yes	0		24			103					
11	Air	Yes	108		4		Failed (Cond:	ition rat:	ing = 100)				
12	Air	Yes	108		5		104		(Not	reloade	a)§		
13	Air	Yes	108		5		106			100			
14	Air	Yes	108		4		107			100			
19	Air	Yes	100		6		Failed (Cond:	ition rat	tion rating = 100)				
20	Air	Yes	100		18		107		(Not reloaded)§				
21	Air	Yes	100		6		106			101			
22	Air	Yes	100		4		106			99			
										Beach	Row 2 (W to E)		
				100/ 0	1 10/1	11.00		71 Readin					
				%v ²	ycles, 1968		Cycles, 1969		eles, 1970	1802 Cy	cles, 1971		
					Condition		Condition	%v ²	Condition	%v2	Condition		
3	Air	No	0	104	11	101	8	98	5	89	5		
4	Air	No	0	103	34 (Re	turned	to laborator	y in 1968)				
7	Air	Yes	0	100	36	100	34	96	27	Failed	100		
8	Air	Yes	0	104	36 (Re	turned	to laborator	y in 1968)				
12	Air	Yes	108	89	6	95	7	94	14	86	20		
13	Air	Yes	108	Failed	100								
14	Air	Yes	108	99	4	91	7	89	7	78	12		
20	Air	Yes	100	96	19	- 1	27	. 1	73	Failed	100		
21	Air	Yes	100	100	6	96	4	93	5	11	6		

100

Yes

100

22

Air

^{*} Satisfactory pulse velocity readings were not obtained in 1966 due to malfunction of testing equipment. (Sheet

** Channel iron on all loaded beams was replaced with stainless steel channel in June 1967. Pulse velocity readings were
therefore taken on all loaded beams before unloading and after reloading with stainless steel channel.

** Due to failure of companion beam.

** In 1967 the condition of the specimens was not rated by a panel of observers.

| End of specimen was too rough to obtain satisfactory pulse velocity reading.

| | Reading could not be obtained. (Sheet 2)

(Issued Jan 1973)

Table 1-PR (Concluded)

Beach	Row	2	(W	to	E	1
 		_	_			-

No.					1972 Reading							
Beam No.	Type Concrete	Strands Pretensioned	Loaded Flexurally	1959 %v ²	Cycles, 1972 Condition							
3	Air	No	0	#	#							
12	Air	Yes	108									
14	Air	Yes	108									
21	Air	Yes	100									
22	Air	Yes	100									

Record of Testing of Small, Conventional Beams Made from Same Concrete Batches as Large Beams

Treat Island Exposure

1958- (Installed October 1958)

1970- (Installed						1958-	Readings		osure Rac	k, Row 3	(W to E)	
Beam No.	Batch No.	Type Concrete	O Cycles 1958	150 Cycles 1959	221 Cycles 1960	362 Cycles 1961	451 Cycles 1962	557 Cycles 1963	692 Cycles 1964 %E	855 Cycles 1965	985 Cycles 1966 %E	1141 Cycles 1967 %E
6770 6772 6774	1	Air	100 100 100	108 105 104	109 102 103	102 97 98	105 101 102	106 102 101	104 99 100	104 99 100	104 101 101	104 102 103
6776 6778 6780	2	Air	100 100 100	103 108 109	101 105 106	95 99 100	98 102 103	98 103 103	97 100 99	96 100 100	94 100 101	94 99 101
6782 6784 6786	3	Air	100 100 100	106 107 108	103 105 105	98 99 98	98 105 103	98 106 103	100 100 100	99 100 99	98 99 99	100 99 100
6788 6790 6792	4	Air	100 100 100	104 106 108	102 105 106	96 99 100	100 101 103	98 103 103	97 99 101	96 100 102	97 101 103	96 103 104
6804 6806 6808	5	Air	* 100 100	107 107	105 105	99 99	103 102	103 96	99 98	1 00 99	100 97	101 98
6810 6812 6814	6	Air	* 100 100	106 105	103 103	97 98	100 101	99 101	95 104	94 101	94 97	95 98
6816 6818 6820	7	Air	100 100 100	109 106 104	103 101 100	95 93 91	97 93 92	97 93 91	94 91 87	93 90 86	91 88 86	91 89 87
6822 6824 6826	8	Air	100 100 100	104 101 104	101 99 102	95 93 96	98 95 97	96 88 91	96 91 89	94 91 88	94 90 86	93 91 86
6828 6830 6832	9	Air	100 100 100	108 104 108	105 101 106	99 94 99	99 107 101	101 97 100	97 92 96	93 92 94	95 90 93	95 92 92
6834 6836 6838	10	Air	100 100 100	106 105 109	104 103 107	97 97 101	99 99 104	98 98 106	95 96 102	94 94 100	93 96 101	93 96 100
6846 6848 6850	11	Air	100 100 100	109 106 107	106 104 105	100 98 98	103 100 99	103 100 101	101 94 94	101 94 95	101 92 93	101 90 93
6852 6854 6856	12	Air	100 100 100	108 107 106	104 104 104	97 98 98	101 102 100	99 100 99	99 98 96	97 97 95	97 97 94	97 97 93
6858 6860 6862	13	Air	100 100 100	106 107 107	103 104 105	96 97 99	98 100 103	96 99 104	95 96 102	93 94 102	91 94 103	91 92 101
6864 6866 6868	14	Air	100 100 100	106 108 108	104 105 105	100 99 99	102 103 102	102 102 102	101 100 101	99 100 99	101 98 99	99 98 99
6870 6872 6874	15	Plain	100 100 100	107 104 105	106 102 104	100 97 98	103 97 101	101 101 101	96 101 97	92 100 96	92 98 100	93 98 94
6876 6878 6880	16	Plain	100 100 100	105 104 106	102 102 108	92 94 101	95 96 101	94 96 98	90 95 102	90 91 96	88 91 98	89 93 98
6882 6884 6886	17	Air	100 100 100	107 107 108	105 106 105	99 99 100	103 102 103	101 102 103	101 101 101	101 101 102	101 102 101	100 102 101
6888 6890 6892	18	Air	100 100 100	107 106 109	105 106 107	100 100 101	104 101 104	102 103 107	101 101 104	101 100 104	101 101 100	102 101 99
					(Contin	nued)						

(Revised August 1977)

Table 2-PR (Continued)

			0	150	221	362	45	1	Readings 557	692	855		1141
Beam No.	Batch No.	Type Concrete	Cycles 1958	Cycles 1959	Cycles 1960 %E	Cycles 1961	8 Cyc		Cycles 1963 %E	Cycles 1964 %E	Cycles 1965	985 Cycles 1966 %E	Cycle 1967
6894 6896 6898	19	Air	100 100 100	104 103 107	103 101 105	97 95 99	9	9 18 13	101 92 105	97 97 103	97 95 101	97 96 102	93 95 102
6900 6902 6904	20	Air	100 100 100	107 108 107	105 105 105	99 99 99	10	14	105 105 102	104 104 102	103 103 101	108 104 103	108 103 103
6906 6908 6910	21	Air	100 100 100	105 105 105	103 104 103	98 98 98	10)1	102 102 104	96 99 101	98 100 101	100 101 97	100 101 99
5912 5914 5916	22	Air	100 100 100	105 102 105	103 101 103	98 96 98	9	9	104 100 102	103 100 100	102 100 100	102 100 100	103 102 101
6918 6920 6922	23	Plain	100 100 100	108 109 105	107 107 104	99 95 99	9	97 98 90	91 80 101	86 70 104	87 65 106	84 43 Failed 106	108
6924 6926 6928	24	Plain	100 100 100	108 103 106	106 100 103	101 95 95	10 9)3)5)2	106 93 93	106 95 86	106 92 82	106 90 48 Failed	107 94
							1968		Readings				
			1326 Cycles 1968 %E	1480 Cycles 1969	1633 Cycles 1970 %E	1802 Cycles (1971 %E	1959 Cycles 1972 %E	2099 Cycle 1973	s Cycle	s Cycle	s Cyc	les Cycles 76 1977	
6770 6772 6774	1	Air	104 99 99	102 100 101	99 98 101	95 95 99	95 95 98	104 141 145	106 147 145	108 147 146	119 158 14	9 130 8 108	
6776 6778 6780	2	Air	92 99 102	94 98 98	90 94 96	88 92 91	88 90 90	93 94 101	101 99 100	103 102 101	95		
6782 6784 6786	3 ,	Air	98 98 98	98 96 98	96 96 97	91 91 95	91 89 94	91 91 90	93 92 92	95 94 96	95 91 93		
5788 5790 5792	4	Air	95 101 101	95 101 105	93 99 103	95 101 98	94 99 100	89 95 100	89 103 102	92 103 106	107 108	7 109	
6806 6808	5	Air	99 93	99 96	97 96	90 90	91 94	89 89	91 94	91 95	96		
6812 6814	6	Air	88 94	93 98	91 98	91 88	82 90	82 92	85 92	86 93	84		
6816 6818 6820	7	Air	90 86 84	87 84 82	89 86 84	83 84 82	87 84 83	78 79 75	80 79 72	80 79 74	75 74 62		
6822 6824 6826	8	Air	91 87 83	86 83 83	88 87 82	88 74 88	87 74 89	87 83 76	89 84 76	89 86 79	82 80 80	70	
6828 6830 6832	9	Air	91 88 88	89 84 84	89 86 86	79 74 85	81 73 86	83 71 86	80 71 79	82 73 81	75 53 77	60 136 117	
6834 6836 6838	10	Air	92 94 100	88 91 97	90 93 98	92 87 95	90 90 94	84 85 90	85 85 90	85 89 92	78 81 90		
5846 5848 5850	11	Air	100 90 92	95 88 88	97 90 90	88 84 90	87 83 89	85 76 87	87 78 89	89 78 90	87 78	82 90	
5852 5854 5856	12	Air	96 94 90	93 94 92	96 93 91	89 90 82	89 89 83	92 86 84	92 87 82	92 89 83	88 92 89	97 89 105	

(Revised August 1977)

Table 2-PR (Continued)

							196	Я_ т	Readings	Expo	sure Raci	k, Row 3	(W to E)
Beam No.	Batch No.	Type Concrete	1326 Cycles 1968 %E	1480 Cycles 1969	1633 Cycles 1970 %E	1802 Cycles 1971 %E	1959 Cycles 1972 %E	2099 Cycles 1973	2235 Cycles 1974	2347 Cycles 1975	2493 Cycles 1976 %E	2570 Cycles 1977 %E	
6858 6860 6862	13	Air	90 91 102	90 90 101	90 92 99	87 99 96	87 99 96	85 88 102	86 87 104	88 88 104	88 88 107	89 90 109	
5864 5866 5868	14	Air	99 98 97	96 98 96	97 96 95	90 90 97	91 91 92	95 90 90	94 90 91	96 91 93	93 90 89	93 85 90	
6870 6872 6874	15	Plain	87 97 92	85 95 90	84 93 91	Failed Failed Failed							
6876 6878 6880	16	Plain	79 79 82	77 76 79	Failed Failed Failed								
6882 6884 6886	17	Air	99 102 100	97 100 96		eared from			99	100	92	99	
6888 6890 6892	18	Air	102 100 102	100 101 101	97 99 104	95 94 103	94 93 102	96 94 106	96 95 107	97 95 107	97 95 103	98 82 109	
6894 6896 6898	19	Air	95 96 103	92 96 101	90 88 103	88 87 100	87 85 98	89 85 109	91 86 109	92 87 108	73 53 119	80 111 84	
6900 6902 69 0 4	20	Air	108 105 101	107 103 98	105 102 101	101 100 110	98 99 111	110 109 117	110 104 116	111 107 117	120 107 121	109 108 115	
6906 6908 6910	21	Air	96 100 101	92 102 100	96 99 95	107 105 107	109 106 111	114 113 109	114 113 117	114 114 116	124 118 119	103 118 113	
6912 6914 6916	22	Air	103 102 101	103 100 102	101 98 100	109 108 114	108 106 113	110 113 114	111 112 115	111 112 115	113 114 117	103 128 117	
6918 6922	23	Plain	76 107	74 Failed	74	94	95	115	113	114	111	112	
6924 6926	24	Plain	106 92	Failed Failed									

Record of Testing of Large, Prestressed Beams

St. Augustine Exposure

1959- (Installed October 1959)

	- 8				1959			1960
Beam No.*	Type Con- crete	Strands Pre- tensioned	Loaded Flex- urally	Pulse Velocity fps	%v ²	Max Crack Width 1/1000 in.	%v ²	Max Crack Width 1/1000 in.
6	Air	Yes	0	14,900	100	0	107	0
10	Air	Yes	189	15,065	100	10	102	10
18	Air	Yes	189	14,935	100	5	106	5

				1	962	1	964	1	966
Beam	Type Con- crete	Strands Pre- tensioned	Loaded Flex- urally	%v ²	Max Crack Width 1/1000 in.	%v ²	Max Crack Width 1/1000 in.	%v ²	Max Crack Width 1/1000 in.
6	Air	Yes	0	109	0	106	0	106	0
10	Air	Yes	189	101	8	99	10	109	20
18	Air	Yes	189	106	5	105	15	108	40

	1000			1	968	1	.970		1971
Beam No.*	Type Con- crete	Strands Pre- tensioned	Loaded Flex- urally	%v ²	Max Crack Width 1/1000 in.	%v ²	Max Crack Width 1/1000 in.	%v ²	Max Crack Width 1/1000 in.
6	Air	Yes	0	87	0	94	0		0#
10	Air	Yes	189**	93†	20†				
18	Air	Yes	189**	91†	45 (F	ailed	in 1968)+	

^{*} Beam numbers of these large beams are also their batch numbers.

^{**} In 1968, during reloading operation, beam 18 failed, releasing the load on both specimens. This pair could therefore not be reloaded to proper load.

t Returned to laboratory in the spring of 1969.

^{*} Testing has been discontinued.

Table 4-PR

General Information, Posttensioned Beams at Treat Island

(Installed June 1961)

	Post-		Total Post-	(See N	Protection otes)
Beam No.	tensioning System	Eccentricity in.	tensioning Force, 1b	Landward End	Seaward End
1 2 3 4 5 6 7 8 9 10 11 12 13* 14 15 16 17 18	A A A A B B B C C C C D D	0 0 3 2 2 1 0 2 3 3 1 1 0 1 3 2	84,000 85,000 80,000 83,000 82,000 84,000 70,000 70,000 70,000 70,000 70,000 70,000 64,000 70,500 70,000 99,000	Flush (1) Ext (4) Ext (3) Ext (7) Ext (6) Flush (9) Ext (1)† Ext (2) Ext (3)† Flush (6) Flush (7) Ext (8) Ext (1) Ext (2) Ext (1) Ext (2) Ext (5) Ext (7) Ext (4) Ext (5)†	Ext (5) Ext (2) Ext (1) Flush (7) Flush (6) Ext (8) Flush (1) Ext (4) Ext (5) Ext (6) Ext (7) Flush (9) Ext (3) Ext (4) Ext (6) Ext (8) Ext (8) Ext (2) Ext (6)†
19 20	D D	2	99,000 99,000	Ext (8)	Ext (7)

Note: The end-anchorage protection consists of cover for Flush anchorages and External (Ext) anchorages. In the case of flush anchorages the protection simply fills the recess in the end of the beams. For external anchorages the protection forms an extension of a rectangular section corresponding to the outline of the end blocks at the ends of the beam. The variables are:

- (1) Concrete placed against a <u>cold joint</u> with <u>no</u> surface treatment and <u>no</u> reinforcement. [Ext (1) and Flush (1)]
- (2) Concrete placed against a cold joint with no surface treatment but with reinforcement. [Ext (2)]
- (3) Concrete placed against a <u>bush-hammered</u> surface and with <u>no</u> reinforcement. [Ext (3)]
- (4) Concrete placed against a <u>bush-hammered</u> surface but <u>with</u> reinforcement. [Ext (4)]
- (5) Concrete placed against a surface that has been treated with a retarding agent and no reinforcement. [Ext (5)]
- (6) Concrete bonded to the ends of the beam with an epoxy adhesive and no reinforcement. [Ext (6) and Flush (6)]
- [Ext (7) and Flush (7)]
- (8) Epoxy concrete with reinforcement. [Ext (8)]
 Sand-cement mortar with aluminum powder additive, comparatively dry and well tamped. [Flush (9)]

mendon in this beam was an unbonded coated tendon (not grouted).

and protection has become detached.

Record of Testing of Posttensioned Beams

(Installed June 1961)

Beach	Row	2	(W	to	E

-		0	Cycles,	1961		-						Bea	ch Row	2 (W to E)
	Trans Pulse		Long. Pulse	1701			2	es, 1962			es, 1963			es, 1964
No.	Veloc fps	%v2	Veloc fps	%v2	Condition*	Trans	Long.	Condition*	%V Trans	Long.	Condition*	Trans	Long.	Condition*
1	15,000	100	14,295	100	0	116	116	17	tt	118	18	134	111	25
2	17,375	100	15,020	100	0	84	104	11		106	18	213	103	24
3	16,040	100	14,435	100	0	117	108	18		109	23	122	106	24
4	17,670	100	14,435	100	0**	113	112	19		115	20	231	111	24
5	15,795	100	14,735	100	0	117	105	17		110	28	122	104	25
6	17,090	100	14,610	100	0	100	107	12		109	22	146	106	17
7	17,375	100	14,760	100	0**	83	104	7		109	19	196	104	20
8	16,290	100	14,575	100	Ot	98	104	20		102	31	140	93	45
9	17,230	100	14,825	100	0**	102	109	18		108	31 23	176	102	24
10	17,670	100	15,105	100	0**	95	105	14		106	21	173	105	19
11	18,450	100	15,160	100	0**	100	101	8		105	13	182	99	12
12	17,820	100	14,840	100	0**	88	100	16		105	25	152	102	24
13 14	16,680	100	16,120	100	0**	103	85	11		103	12	152	99	16
	17,230	100	14,720	100	0**	83	94	25		103	38	157	98	41
15	17,975	100	14,625	100	0**	111	95	15		107	18	178	103	17
16	17,670	100	14,770	100	0**	119	103	10		108	15	156	103	13
17	17,670	100	14,790	100	0	100	78	16		99	46	153	91	50
18	17,820	100	14,020	100	0**	70	81	8		113	16	123	87	22
19	18,785	100	14,950	100	0**	88	107	12		92	15	176	104	41
20	18,615	100	14,765	100	0**	98	105	10		107	15	192	103	16

		493 Cycles, 1965			23 Cycle	es, 1966	779 Cycles, 1967			964 Cycles, 1968		
	%V	2		%V	2		%V	2		%V	2	
	Trans	Long.	Condition	Trans	Long.	Condition	Trans	Long.	Condition	Trans	Long.	Condition
1 2	134	121	#	tt	tt	35 22	139	120	+	131	116	1,1,
2	134	101				22	92	85		98	87	27
3	145	96				38 29	98	85		120	85	1414
	126	112				29	100	115		91	103	38
5	158	72				28	106	107		106	108	28
6	149	115				31	98	109		88	107	33
7	131	80				29 68	92	103		87	76	37
7 8 9	149	95					95	85		99	85	68
9	111	73				41	88	57		91	61	47
10	129	103				25	82	57 81		99	80	30
11	128	102				22	95	104		108	101	22
12	104	83				41	98	108		106	105	42
13	118	98				30	90	100		73	103	32
14	111	146				30 48	98			96	87	54
15	122	107				25	86	90 84		80	85	27
16	154	113				19	80	106		89	108	26
17	139	130				74	88	117		75	119	76
18	124	83				39	57	82		70	82	45
19	112	107				39 48	86	51		83	56	72
20	114	109				25	87	105		79 83 84	105	72 26

(Continued)

^{*} The condition of these specimens is adjudged by a panel of observers either annually or biennially and is expressed numerically. The observers examine and rate the five parts of each beam, which are: part A (landward end anchorage protection), part B (bond between landward end anchorage protection and part C), part C (beam proper including web), part D (bond between seaward end anchorage protection and part C), and part E (seaward end anchorage protection). The surface conditions of parts A, C, and E are rated as to degree (slight, moderate, or heavy) of scaling, spalling, or cracking. Also the number of rust spots, length of reinforcing exposed, number of or cracks, etc., are noted. Parts B and D are rated as to the tightness of the bond, if there is a separation, etc. The score of the five parts of the beam is then summed to give a numerical condition rating for the entire beam. A rating of 0 indicates perfect condition and although a score for failure of the entire beam has not as yet been assigned, a score indicating failure would be expressed by a condition rating of the order of 150 to 200. See footnote to table 6-PR for a failing score for beam parts A, B, D, and E.

** These beams were chipped in several places during shipment and placement.

† This beam was chipped in several places during shipment and placement, which resulted in exposure of 3 in. of reinforcing.

† 1963 transverse readings, 1966 transverse readings, and 1966 longitudinal readings were not satisfactory because of malfunction of testing equipment.

‡ In 1965 and 1967 the condition of the specimens was not rated by a panel of observers.

(Sheet 1)

			10/0	1000	~ .	3000		handing.						Row 2	
	1118	Cycles,	1969	1271	Cycles,	1970	1440	Cycles,	1971		Cycles	1972		Cycles	1973
Beam	%	v ²	Condi-		v ²	Condi-	96	v ²	Condi-		v ²	Condi-	*	v ²	Condi-
No.	Trans	Long.	tion	Trans	Long.	tion	Trans	Long.	tion	Trans	Long.	tion	Trans	Long.	tion
1	128	96 84	26	130	94 87	31	93	88	26	85	84	28	\$	S	29
2	98	84	31	89	87	30	60	73	33	62	75	34			37
3	105	87	31 33 26	105	90 111	30 28 39 30	79 57	73 85 78	33 26 36 33	40	75 66 88	34 32 30			29 37 22 31 21
4	100	110	26	82	111	39	57	85	36	60	88	30			31
5	112	92	23	103	94	30	73	78	33	41	65	26			21
6	92 87	100	23	85	101	27	62	75 83	28	58 56	70 80	22			31
7		95	31	81	96	49	60	83	48	56	80	54			45
8	108	95 89 60	31 67	95 79 82	96 90 62 85	52	71 56 58	##	49 48	63 34 33	##	54 52 39 34			31 45 47 54 32
9	89	60	36 29	79	62	53	56	++	48	. 34	**	39			54
10	92	80	29	82	85	52 53 29	58	##	31	33	**	34			32
11	87	79	20	76	81	26	61	62	27	43	50 65	18			12
12 13 14	87 88	79 64	24	81	64	30 27	70	77	40	22	65	26			12 41
13	74	73	30	76 82	74	27	75	##	30 45 26	37	##	21			23
14	85	97	30 37	82	97	35	63 62	64	45	48	63	36 24			23 46
15	85 74	73 97 98	23	69	100	26	62	69	26	26	63 69	24			43
16	81	96	21	78	98 99 88	22	70	74	20	26	95	26			19
17	72	96 85	69	76	99	75	64	++	70	45	++	70			70
17 18	76	75	50	74	88	46	66	63	42	30	76	34			70 41
19 20	76 76		50 68	74 74	**	71	62	##	65	37 56		34 69			67
20	78	97	37	83	98	34	62 54	77	65 32	56	## 92	30			41

	1873	Cycles,	1974		Cycles,	1975	2131	Cycles,	1976	2208	Cycles,	1977
	21	12	Condi-	96V	2	Condi-	%	v ²	Condi-	961	2	Condi-
	Trans	Long.	tion	Trans	Long.	tion	Trans	Long.	tion	Trans	Long.	tion
1 2 3 4 5	S	ş	32 40 §§ 35	§§ 60	60	46	53	58	47	52	54	52
5			35 30	#	114 113	16 24	**	93 104	35 29	**	83 101	39 41
6 7 8 9			40 53 54 §§ 50	\$\$ * 70	85 57	46 44	** 54	84 57	56 59	** 55	74 55	68 75
10			50	62	94	38	32	95	56	29	84	64
11 12			22 65 66	§§ 65	103	29	57	93	1414	57	87	41
13 14 15			\$\$ 51 \$\$	60	67	36	53	68	55	53	64	59
16 17 18 19			41 77 47 \$\$	52 § 61	111 § 86	18 72 33	46 ## 47	106 ## 87	40 82 60	45 ## 48	90 ## 80	93 55
20			42	51	90	32	41	91	50	41	88	55

^{##} A satisfactory reading was not obtained.
\$ Satisfactory pulse velocity readings were not obtained in 1973 and 1974.
\$\$ Shipped back to Concrete laboratory.

Posttensioned Beams (Installed June 1961)

Summary of Condition of End-Anchorage Protection 1961-

							Beach Row 2
Type	e of	No. of Beam		Aver	age Condition	1*	
Er	nd ection	Ends Used	O Cycles 1961	89 Cycles 1962	195 Cycles 1963	330 Cycles 1964	493 Cycles 1965
Flush	n (1)	2	0	0	0	1	**
Flush	h (6)	2	0	0	0	0	
Flush	n (7)	2	0	1	1	2	
Flush	h (9)	2	0	0	0	0	
Ext	(1)	4	0	3	6	7	
Ext	(2)	4.	0	4	6	10	
Ext	(3)	14	0	1	4	10	
Ext	(4)	4	, 0	5	6	11	
·Ext	(5)	14	0	1	ı	3	
Ext	(6)	4	0	2	4	9	
Ext	(7)	14	0	0	0	ı	
Ext	(8)	4	0	0	0	l	
To	tal	140					

(Condition)

** In 1965 the condition of the specimens was not rated by a panel of observers.

(Sheet 1)

^{*} The condition of anchorage protection is adjudged by a panel of observers either annually or biennially; the condition is expressed numerically. The observers examine and rate four of the five parts of each beam: part A (landward end anchorage protection), part B (bond between landward end anchorage protection and beam), part D (bond between seaward end anchorage protection and beam), and part E (seaward end anchorage protection). The condition rating for any one type of end protection is the sum of the scores of parts A and B or parts D and E. A rating of O indicates perfect condition while a rating of 28 is equal to failure for an end protection. The average condition rating shown for a given type of end protection is the average score for all protection of that type in this program.

(Revised Jan 1973)

Table 6-PR (Continued)

Section 6

100		No. of		A	verage Con	ndition	Dear	ch Row 2
Type End Protec		Beam Ends Used	623 Cycles 1966	779 Cycles 1967	964 Cycles 1968	1118 Cycles 1969	1271 Cycles 1970	1440 Cycles 1971
Flush	(1)	2	2	† †	2	0	0	2
Flush	(6)	2	0		0	0	0	0
Flush	(7)	2	2		2	4	2	6
Flush	(9)	2	2		2	0	0	0
Ext	(1)	4	11†		12†	13†	16‡	17‡
Ext	(2)	4	11		12	14	10	12
Ext	(3)	4	10†		12†	14+	16‡	13‡
Ext	(4)	4	13		15	15	12	14
Ext	(5)	4	2		9†	10†	9†	11†
Ext	(6)	4	9†		9t	12†	10 †	12†
Ext	(7)	4	1		1	4	2	5
Ext	(8)	4	4		4	4	4	10
Tota	1.	40						

(Continued)

⁺ One end protection has failed.

tt In 1967 the condition of the specimens was not rated by a panel of observers.

^{*} Two end protections have failed.

Table 6-PR (Continued)

								Beach Row 2
		No. of			Avera	ge Condit	ion	
Type En Prote	d	Beam Ends Used	1597 Cycles 1972	1737 Cycles 1973	1873 Cycles 1974	1985 Cycles 1975	2131 Cycles 1976	2208 Cycles 1977
Flush	(1)	2	2	1	5	3§	48	6§
Flush	(6)	2	0	0	6	0	1	0
Flush	(7)	2	4	2	5	1§	6§	6§
Flush	(9)	2	0	0	7	2§	3§	0§
Ext	(1)	4	16	17	**			
Ext	(2)	4	10	10	12	12	15	12
Ext	(3)	4	16	16	##			
Ext	(4)	4	12	18	14	13	17	15
Ext	(5)	4	10	14	##			
Ext	(6)	4	14	17	##			
Ext	(7)	4	4	4	6	3§§	4§§	488
Ext	(8)	4	4	11	14	7§§	9§§	8§§
Tota	al	40						

Data incomplete; beams were shipped back to concrete laboratory.

Based on 1 beam end. Based on 3 beams ends.

WES Fibrous Concrete Program

In July 1975, 50 concrete beams were installed at half-tide elevation on the exposure rack at Treat Island, Maine, to determine the effects of sea water and freezing and thawing action on the flexural strength and other properties of various fiber concretes.

The beams were made from nine different mixtures. The fine and coarse aggregates were manufactured limestone sand and 3/4-in. maximum limestone, respectively. All mixtures contained a water-reducing admixture (admixture B), and five mixtures contained an air-entraining admixture (admixture A). Type II portland cement was used in the amount of 7.89 cwt per cu yd except for mixtures N and O, which contained 11.0 cwt per cu yd. The water cement ratio was 0.45 for all mixtures.

The number and types of beams exposed are: twelve 6 by 6 by 30 in., twenty-one 6 by 6 by 36 in., and seventeen 9 by 9 by 45 in. The 9 by 9 by 45-in. beams were yoked and stressed by third-point loadings to working loads of 35 percent of ultimate. Table 1-WES-FC gives the exposure record of the specimens. More mixture data are tabulated below:

		Concrete	Mixture	Data	
		Fiber	Slump,	Air Content	Fiber Ratio
Mixture	Type	Length, in.	in.	76	by Wt
н	None		5 3/4	2.5	
I	C	3/4	2 1/2	1.8	0.04
J	None		7	8.5	
K	C	3/4	4	8.5	0.04
L	A	1	2	1.9	0.04
M	A	1	3	7.0	0.04
N	D	1	1	3.6	0.01
0	D	1	2	7.0	0.01
P	В	1	2 3/4	7.0	0.04

Record of Testing of Concrete Beams for WES Fibrous Concrete Program

Installed July 1975

Rack Rows 4 and 6 Readings Jul 1975 0 Cycles SE fps Sv2 SE Load, 1b 9- by 9- by 45-in. Beams 16,095 100 15,560 16,375 14,315 14,590 H-3 I-1 J-3 J-1 J-3 K-1 K-3 L-1 L-3 M-1 M-3 N-1 N-3 0-1 0-3 P-1 P-2 2720 4340 103 102 97 101 97 98 103 106 102 14,590 14,260 16,520 16,305 14,590 15,060 104 103 94 99 98 101 102 100 93 101 99 100 14,765 14,705 14,150 14,370 14,940 15,245 103 103 107 105 108 103 108 104 106 109 103 6- by 6- by 30-in. Beams 16,235 15,725 15,825 15,825 105 106 105 109 107 110 108 108 H-7 H-8 H-15 H-16 98 102 106 102 103 100 101 99 97 99 100 101 15,925 14,970 16,130 16,130 I-8 K-8 L-7 L-8 105 109 108 108 116 125 109 103 120 109 94 103 M-7 0-8 0-16 P-8 14,125 13,890 15,245 14,705 102 103 110 105 103 103 97 106 94 101 100 100 88 106 100 6- by 6- by 36-in. 15,875 16,130 14,495 14,495 14,495 14,565 I-7 I-15 J-7 J-8 J-15 J-16 103 109 106 104 104 109 96 114 112 118 100 106 98 102 99 96 97 103 100 100 119 105 103 109 100 115 109 106 106 109 106 103 109 100 104 108 103 106 109 210 109 109 109 109 105 106 102 124 106 112 K-7 K-15 K-16 L-15 L-16 14,780 14,565 14,285 14,635 14,635 98 101 102 101 100 103 106 102 104 103 14,085 15,075 14,850 14,150 14,085 14,020 14,020 M-8 M-15 M-16 N-7 N-8 N-15 N-16 205 100 112 118 112 109 100 99 99 102 109 99 101 102 13,825 12,710 14,635 106 97 109 110 109 103 109 103 102 98

107

Loaded beams not tested for %E.

Cement-Replacement Materials Investigation, Phase D*

In October 1958, 75 concrete cores (10 in. in diameter by 20 in. long) were installed on the Treat Island exposure rack as a part of Phase D of the Cement-Replacement Materials Investigation. The purpose of this installation is to determine the durability of mass concrete of several cement factors containing certain cement-replacement materials. The cores were diamond-drilled from twenty-five 1000-cu-ft mass concrete blocks (3 core sections per block) which were fabricated as a part of this investigation.

Also in October 1958, 20 mass concrete cubes (8 cu ft) were installed at half-tide elevation on the beach at Treat Island. These cubes were companion specimens to 18 of the 25 large blocks, and therefore to 54 of the 75 cores. Cubes numbered 10 and 10A are duplicates, as are 11 and 11A. Successful completion of the laboratory heat studies, for which the cubes were originally made, required that two additional cubes (10A and 11A) be fabricated. This provided the two additional cubes for this field exposure, making a total of 20 cubes instead of 18.

The aggregates used in these concrete specimens were limestone rock (6-in. maximum size) and manufactured limestone sand.

Table 1-CRMI-PD lists the concrete cores and gives their exposure record along with mixture data; table 2-CRMI-PD gives the same information for the concrete cubes.

^{*} See U. S. Army Engineer Waterways Experiment Station, CE, <u>Investigation</u> of Cement-Replacement Materials; Performance of Various Materials in Mass Concrete, Field Study (Phase D), Miscellaneous Paper No. 6-123, Report No. 6 (Vicksburg, Miss., May 1957).

Mixture Data and Record of Testing of Cores from Cement-replacement Materials Investigation,

Phase D, 1958- (Installed October 1958)

									10	958-196			Rack, Ro	w 4,	West to	East
	Type II Portland	Replace- ment	Nominal Cement Factor	Water- cement	Air		0 Cycles 1958 Pulse		1 Cy	50 cles	22 Cyc	1	36 Cyc 19	les	45: Cyc: 190	les
No.	Cement %	Material 5	cu yd	Ratio by Wt*	Content %**	16E	Yeloc fps	<u>≸v²</u>	≸E	%v ²	%E	% v ²	<u>≸E</u>	%v ²	≸E_	%v ²
1T 1M 1B	100	0	1-3/4	0.93	6.1-6.6	100 100 100	13,950 14,910 14,570	100 100 100	91 102 95	105 100 102	89 102 96	106 100 101	80 92 92	98 93 100	82 91 90	102 85 93
2T 2M 2B	65	Nat cem 35	1-3/4	0.96	1.7-8.2	100 100 100	14,965 14,480 15,675	100 100 100	80 84 91	98 95 93	81 89 96	100 97 92	81 89 89	79 102 91	58 77 91	† 95 90
3T 3M 3B	70	Cal sh 30	1-3/4	1.01	5.3-5.8	100 100 100	14,920 15,725 16,190	100 100 100	116 95 98	95 88 92	112 113 101	93 91 96	105 96 96	83 85 92	105 107 99	† † 32
4T 4M 4B	88	Unc D 12	1-3/4	0.98	5.4-6.4	100 100 100	14,875 16,580 14,700	100 100 100	100 99 101	95 89 102	91 95 100	95 92 103	83 90 92	83 84 100	93 103 106	† 72 90
5T 5M 5B	100	0	2-1/4	0.73	3.9 - 6.1	100 100 100	16,020 17,160 15,240	100 100 100	98 93 103	98 92 102	97 94 99	96 100 113	89 86 96	102 90 110	90 88 97	52 98 112
6т 6м 6в	75	Pumicite 25	2-1/4	0.77	5 .7-7. 4	1,00 100 100	14,975 16,140 17,835	100 100 100	100 99 99	86 91 80	118 103 103	89 95 82	106 96 97	95 91 81	90 92	35 87 77
7T 7M 7B	50	Slag 50	2-1/4	0.76	4.7-6.6	100 100 100	16,395 17,185 17,125	100 100 100	110 111 104	93 89 87	107 102 107	96 91 97	95 92 98	96 89 100	98 96 100	50 92 111
811 814 818	65	Nat cem 35	2-1/4	0.76	5.7-6.4	100 100 100	15,245 16,135 15,195	100 100 100	108 91 88	100 94 110	109 92 97	101 96 111	101 84 87	110 98 119	94 87 91	104 102 119
9T 9M 9B	70	Cal sh 30	2-1/4	0.79	5.9-6.3	100 100 100	15,385 15,580 16,080	100 100 100	102 78 104	93 96 89	93 80 113	86 98 93	Brok 70 102	en in 104 103	handlin 76 98	99 91
10T 10M 10B	88	Unc D 12	2-1/4	0.80	5.5 - 6.2	100 100 100	15,195 15,380 15,435	100 100 100	101 93 105	112 96 95	102 99 105	120 102 100	96 90 98	100 106 100	90 87 98	88 110 101
11T 11M 11B	70	Fly ash 30	2-1/4	0.73	5.5-6.2	100 100 100	16,345 17,805 16,345	100 100 100	106 91 111	93 80 94	112 87 115	89 81 101	105 84 106	93 77 106	100 99 103	† 49 †
12T 12M 12B	100	0	3	0.55	6.3-7.4	100 100 100	14,990 16,140 14,990	100 100 100	104 95 102	96 93 102	106 94 102	114 103 114	93 89 96	110 98 115	97 89 94	100 118 117
13T 13M 13B	75	Pumicite 25	3	0.58	6.2-7.6	100 100 100	15,480 16,395 16,135	100 100 100	104 115 104	93 100 91	109 124 106	99 101 93	106 112 98	102 108 98	108 112 100	77 113 113
14T 14M 14B	50	Slag 50	3	0.60	5.8-6.3	100 100 100	16,840 16,580 17,565	100 100 100	107 102 105	91 91 76	110 106 104	96 99 77	100 99 96	96 92 82	99 96 97	52 104 87
15T 15M 15B	65	Nat cem 35	3	0.56	6.5-8.7	100 100 100	15,875 16,415 16,625	100 100 100	99 97 91	98 96 92	100 99 97	100 105 97	95 91 87	100 100 92	96 93 88	104 106 113
16T 16M 16B	75	Cal sh 25	3	0.59	5.7-7.4	100 100 100	16,125 16,090 15,425	100 100 100	99 86 100	93 91 96	99 87 107	95 103 105	91 78 96	98 102 104	97 82 94	40 96 82

(Continued)

Nat cem = natural cement; cal sh = calcined shale; unc D = uncalcined diatomite; slag = blast-furnace slag. Ratio of water to cementitious material based on total weight.

Air content of that portion of the concrete containing aggregate smaller than 1-1/2 in. in size.

End of specimen too rough to obtain satisfactory reading.

(Revised Sept 1968) Table 1-CRMI-PD (Continued)

Section 8

		Row 4			-		-1962			g	O Cycle				Nominal	ious Mat'l	Cementit	
les	451 Cycl 196		62 rcles 1961	C	21 les		s	150 Cycle 1959	-	5	1958 Pulse	_	Air	Water- Cement	Cement Factor	Replace- ment	Type II Portland	
261	6E	2	%v ²	%E	%v ²		%v ²		<u>v</u> ²	. 16	Veloc fps	<u>%E</u>	Content	Ratio by Wt	bags/ cu yd	Material 5	Cement %	No.
12	96 83 88		104 98 106	99 87 87	101 96 103	103 95 96	96 94 104	98 92 95	00	1	16,560 17,200 15,925	100 100 100	5.3-7.4	0.55	3	Unc D	92	L7T L7M L7B
10	89 96 108		108 100 98	93 98 107	104 100 97		100 96 94	.00 .01 .11	00 1	1	15,675 16,675 16,560	100 100 100	6.1-7.7	0.55	3	Fly ash 30	70	181 181 181 181
10	95 90 92		104 104 100	95 91 93	100 103 97	105 98 100	100 94 92	.03 .97 .00	00	1	16,020 16,750 16,575	100 100 100	6.9-7.9	0.42	4	0	100	19T 19M 19B
10	10 107 107	1	100 102 89	107 106 105	95 106 96	114 114 114	93 94 93	.12 .10 .10	00	1	16,445 16,300 16,395	100 100 100	5.7-8.5	0.45	4	Pumicite 25	75	20T 20M 20B
10	99 98 98		100 104 100	101 100 99	99 111 97	110 106 107	95 102 94	.00 .95 .04	00	1	16,170 15,375 16,720	100 100 100	5.4-6.8	0.44	4	Slag 50	50	21T 21M 21B
alir 10	hand 86 94	Bkn in	102 94 94	67 86 99	102 107 96	68 93 98	104 91 91	.00 92 97	00 1	1	15,295 16,140 16,840	100 100 100	3.9-7.4	0.43	4	Nat cem 20	80	22T 22M 22B
10	99 95 94		88 96 98	95 94 94	100 98 97	104 103 101	93 87 91	.00 97 .01	00	1	16,185 16,700 16,610	100 100 100	4.5-6.1	0.45	4	Cal sh 20	80	23T 23M 23B
10	96 97 93		112 112 100	95 97 92	107 115 105	103 106 100	100 104 94	.02 .02 .99		1	15,335 15,240 16,460	100 100 100	6.5-7.8	0.42	4	Unc D	94	24T 24M 24B
10	94 93 101		95 100 96	96 110 100	95 104 96	107 114 109	91 93 91	.05 .09 .06	00]	1	15,525 16,030 16,490	100 100 100	6.3-8.6	0.44	4	Fly ash 30	70	25T 25M 25B
to I	(W t	Row 4	Rack,			8 Rea	3-196	196										
326 cle: 968	Cyc	141 cles 967	Cy	:	985 Cycles 1966	C	155 1es 165	Cyc		Cyc 19	.es	55 Cycl 196						
	%E	%v ²	%E	%v2	Œ_	_ 9	96V2	%E	%v2	%E	%v2	96E						
	57	66	57	70	37F iled 54	Fai	† † 108	64 NR 68	77 † 83	80 NR 77	87 84 103	80 NR 88	6.1-6.6	0.93	1-3/4	0	100	1M 1M 1B
,	82	+	82	t	iled 38		† 103	74 95	t 67	NR NR	† 96 76	41F NR NR	1.7-8.2	0.96	1-3/4	Nat cem 35	65	2T 2M 2B
					led		led t	Fai NR 75	† † †	NR NR 67	† † 51	NR 109 NR	5.3-5.8	1.01	1-3/4	Cal sh 30	70	3T 3M 3B
					lled lled		;	89 98	† 90	NR NR	† † 103	37F NR 87	5.4-6.4	0.98	1-3/4	Unc 1D 12	88	4Т 4М 4В
						9	108	86	104	87 86	99 105 109	89 86	3.9-6.1	0.73	2-1/4	0	100	5T 5M
	75 73 64	42 88 49	75 71 64	43 80 49	32 77 35	7	107	77 88	115	88	109	97						5B
	75 73 64	88 49	71	80 49 †	77 35 32 1ed	13	107 127 † † †			NR 71 75	33 88 66	89 72 NR	5.7-7.4	0.77	2-1/4	Pumicite 25	75	5В 6Т 6М 6В

Note: NR denotes satisfactory reading was not obtained although an attempt was made to obtain a satisfactory reading.

† End of specimen too rough to obtain satisfactory reading.

(Sh

(Sheet 2)

(Revised Sept 1969)

Table 1-CRMI-PD (Continued)

										196	63-196	8 Rese	dings				
Core	Type II Portland Cement	Replace- ment Material	Nominal Cement Factor bags/	Water- Cement Ratio	Air Content	Cye:	les 53	Cyc 19		Cyc	355 cles 965		85 1es 66	114 Cycl 196	es 7	Cy	326 cles 968
No.	<u></u>	- 95	cu yd	by wt	-%	%E	%v2	_%E	%v2	<u>%E</u>	%V	<u>Æ</u>	%v2		%v2	%E	%V
8T 8M 8B	65	Nat cem	2-1/4	0.76	5.7-6.4	97 85 89	109 112 113	79 88 87	105 103 105	77 85 76	97 111	85 93 70	65 96	76 82 68	64 † 91	Fai 81 68	led † 96
9M 9B	70	Cal sh 30	2-1/4	0.79	5.9-6.3	NR 95	104 98	100 95	95 94	Bro 86	oken i 92	n han	dling 67	81	70	76	+
10T 10M 10B	88	Unc D 12	2-1/4	0.80	5.5-6.2	92 81 93	97 94 68	92 89 95	91 99 92	78 78 92	72 104 102	81 75 83	66 65 65	79 72 81	66 69 64	69 69 78	67 75 84
11T 11M 11B	70	Fly ash 30	2-1/4	0.73	5.5-6.2	NR NR 109	† 48 104	97 NR 101	† † 91	92 Bro 84	t ken i	Fai n hand 75		Failed			
12T 12M 12B	100	0	3	0.55	6.3-7.4	87 83 N R	117 107 138	87 83 79	119 103 119	83 77 71	106 91 129	81 77 74	91 84 93	79 68 69	76 87 91	72 71 72	95 89 †
13T 13M 13B	75	Pumicite 25	3	0.58	6.2-7.6	110 111 101	69 115 107	99 115 97	58 110 103	104 106 100	116 103 107	111 106 101	† 93 94	92 103 96	† 93 93	95 101 99	† 94 91
14T 14M 14B	50	Slag 50	3	0.60	5.8 - 6.3	92 92 93	98 101 74	87 98 91	89 98 NR	82 86 82	81 87 77	83 86 80	68 73 †	80 84 Failed	68 67	Fai: 85	
15T 15M 15B	65	Nat cem 35	3	0.56	6.5-8.7	94 93 91	103 72 92	90 87 86	106 110 99	88 87 83	110 103 100	89 86 81	82 94 73	88 81 80	85 89 89	85 80 76	93 92 74
16T 16M 16B	75	Cal sh 25	3	0.59	5.7-7.4	95 79 91	101 119 109	93 75 78	94 91 NR	83 70 79	103 97 117	87 59 76	72 67 68	82 56 75	82 69 70	75 Fail 55	78 led 78
17T 17M 17B	92	Unc D	3	0.55	5.3-7.4	96 80 86	102 104 114	84 87 85	108 98 98	82 76 82	99 85 99	85 82 81	89 82 85	82 81 78	73 73 82	76 65 75	84 84 93
18T 18M 18B	70	Fly ash 30	3	0.55	6.1-7.7	93 92 108	107 59 106	86 91 110	109 98 104	87 84 107	113 111 99	84 91 109	† 73 91	82 87 106	† 70 89	73 72 106	† 70 94
19T 19M 19B	100	0	4	0.42	6.9-7.9	93 90 92	101 90 70	90 90 93	111 108 112	83 85 78	89 85 105	83 82 78	87 74 92	79 78 74	90 † 94	78 59 7 9	98 † 100
20T 20M 20B	75	Pumicite 25	4	0.45	5.7-8.5	110 107 108	107 116 104	110 105 110	107 112 106	107 101 104	107 95 94	102 101 108	87 93 87	99 95 106	89 87 87	96 97 103	93 96 93
21T 21M 21B	50	Slag 50	4	0.44	5.4-6.8	97 NR 95	63 97 93	91 Fai 93	93 led 102	87 81	89 82	89 81	81 65	79 Failed	77	73	81
22M 22B	80	Nat cem 20	4	0.43	3.9-7.4	87 94	107 109	87 95	109 95	67 93	104 100	67 96	106	64 93	108	64 96	102
23T 23M 23B	80	Cal sh 20	4	0.45	4.5-6.1	90 95 93	118 111 100	84 92 78	95 118 97	86	110 102 101	63 82 80	82. 85 89	60 77 77	80 85 91	60 69 70	80 82 86
24T 24M 24B	94	Unc D	4	0.42	6.5-7.8	82 95 93	112 119 114	79 93 95	114 113 109	78 88 89	102 120 103	78 91 88	90 93 86	76 83 82	98 87 94		100 91 ††
25T 25M 25B	70	Fly ash	4	0.44	6.3-8.6	86 96 102	108 107 102	74 89 100	101 111 99	77 78 97	111 104 93	71 71 97	55 79 88	68 67 92	58 83 80		58 † 84

⁺ End of specimen too rough to obtain satisfactory reading.

†† Broken in handling in 1968.

(Revised Aug 1974)

Table 1-CRMI-PD (Continued)

	Comontiti	oue Met ! 1	Nominal						19	69-1973 F		posure Ra	ch, n	JW 4 1	. 00 1/
	Type II Portland	Replace-	Cement	Water- Cement	Air	Cycle	s	1633 Cycle	s	1802 Cycle	es	1959 Cycle	S	Cy	099 cles
Core No.	Cement %	Material %	bags/ cu yd	Ratio by wt	Content %	1969 %E	%v ²	1970 %E	%v ²	1971 %E	%v2	1972 %E	%v ²	1 %E	.973 %v ²
1B	100	0	1-3/4	0.93	6.1-6.6	Failed	+				7				
2B	65	Nat cem	1-3/4	0.96	1.7-8.2	Failed	t								
5T 5M 5B	100	0	2-1/4	0.73	3.9-6.1	72 72 63	81 69 85	69 67 61	71 60 81	72 70 60	49 50 34	NR NR 55	62 44 44	NR 72 51	Failed 50 69
7B	50	Slag 50	2-1/4	0.76	4.7-6.6	NR	66	71	62	Failed	+				
8 M 8 B	65	Nat cem	2-1/4	0.76	5.7-6.4	78 67	† 88	82 65	† 82	Failed Failed	†				
9В	70	Cal sh	2-1/4	0.79	5.9-6.3	NR	+	Failed	+						
10T 10M 10B	88	Unc D	2-1/4	0.80	5.5-6.2	68 66 7 6	† 68 71	NR 67 74	† 63 68	66 72	† †	NR NR	† †		
12T 12M 12B	100	0	3	0.55	6.3-7.4	72 70 71	81 84 †	68 69 72	77 72 †	68 63 Failed	52 58 †	64 58	44 55	62 50	32 54
13T 13M 13B	75	Pumicite 25	3	0.58	6.2-7.6	93 99 97	† 91 91	98 108 107	† 78 80	94 104 98	† 54 43	90 98 100	† 49 47	76 85 100	† 57 32
14 M	50	Slag 50	3	0.60	5.8-6.3	Failed	†								
15T 15M 15B	65	Nat cem	3	0.56	6.5-8.7	85 81 75	88 87 68	84 83 78	77 81 63	77 76 67	47 69 †	74 80 NR	83 77 †	75 72	65 67
16 T 16B	75	Cal sh 25	3	0.59	5.7-7.4	74 50F	69 †	73	65	67	+	NR	t		
17T 17M 17B	92	Unc D	3	0.55	5.3-7.4	75 65 74	76 73 82	71 66 76	68 65 75	61 64 75	45 43 62	NR 66 84	48 61 68	NR 56 46	Failed 58 58
18T 18M 18B	70	Fly ash	3	0.55	6.1-7.7	72 87 104	† 70 91	NR Failed 114	† 48 68	104	64	106	46	106	74
19T 19M 19B	100	0	4	0.42	6.9-7.9	77 58 76	93 † 98	78 Failed	79 † 75	69 73	45 67	72 71	67 56	72 66	86 70
20T 20M 20B	75	Pumicite 25	4	0.45	5.7-8.5	96 96 104	84 93 87	88 102 111	78 83 78	81 93 102	44 61 62	87 88 97	42 61 60	48 84 97	40 79 71
211	50	Slag 50	4	0.44	5.4-6.8	73	67	NR	48	69	+	Failed	t		
22M 22B	80	Nat cem 20	4	0.43	3.9-7.4	62 95 -	106	61 NR	93	59 90	75 †	Failed Failed	†		
23T 23M 23B	80	Cal sh 20	4	0.45	4.5-6.1	59 69 69	† 84 86	59 73 68	† 74 81	53 60 66	† 46 32	Failed 57 65	† 29 40	52 52	76 69
24T 24M 24B	94	Unc D	4	0.42	6.5-7.8	75 87 ††	88 87 ††	77 87	82 81	75 88	35 37	77 85	34 69	75 82	90 78
25T 25M 25B	70	Fly ash	4	0.44	6.3-8.6	50F 50F Failed	91 †								

[†] End of specimen too rough to obtain satisfactory reading.
†† Broken in handling in 1968.

NR Satisfactory reading was not obtained although an attempt was made to obtain one.
F Denotes specimen has failed.

(Revised August 1977)

Table 1-CRMI-PD (Continued)

			77 Readin	1974-19						Nominal	wa Mat 11	Cementitio	
70 les 77	Cyc	Les 76	249 Cyc. 19	les	23 Cyc 19	Les 14	223 Cycl 197	Air Content	Water- Cement Ratio	Cement Factor bags/	Replace- ment Material	Type II Portland Cement	Core
%v2	%E_	%v2	%E	102 ×	_%E_	% v ²	% E	*	by wt	cu yd	*		No.
Broker	64	75	60 Failed	94 NR	70 NR	53 69	70 NR	3.9-6.1	0.73	2-1/4	0	100	5M 5B
65	46	73	60 Failed	93 96	62 NR	92 68	62 48	6.3-7.4	0.55	3	0	100	12T 12M
79	75	88	Failed NR	Failed	Failed 96	† 66 89	73 NR 96	6.2-7.6	0.58	3	Pumicite 25	75	13T 13M 13B
88 71	60 51	94 67	68 60	94 120	70 62	91 94	70 63	6.5-8.7	0.56	3	Nat cem	65	15T 15M
NR	80	77	69	Failed	Failed 78	64 95	50 77	5.3-7.4	0.55	3	Unc D	92	17M 17B
68	49	77	88	123	106	100	106	6.1-7.7	0.55	3	Fly ash 30	70	L8B
73	87 Failed	79 78	96 49	120 135	69 66	96 94	68 67	6.9-7.9	0.42	4	0	100	19T 19B
67 64	Failed 36 89	49 86 80	NR 71 68	51 96 115	51 84 102	67 76 79	48 84 97	5.7-8.5	0.45	4	Pumicite 25	75	20T 20M 20B
78	Failed 67	91 93	55 42	116 94	55 51	66 73	52 52	4.5-6.1	0.45	4	Cal sh 20	80	23M 23B
87 81	61 61	104 90	61 94	116 131	72 84	91 93	75 82	6.5-7.8	0.42	4	Unc D	94	24T 24M

[†] End of specimen too rough to obtain satisfactory reading.

NR Satisfactory reading was not obtained although an attempt was made to obtain one.

MICROCOPY RESOLUTION TEST CHART

Mixture Data and Record of Testing of Cubes from Cement-Replacement Materials Investigation,

Phase D, 1958- (Installed October 1958)

								1958	-1963 Read		ch Row 1	
	Cementiti Type II	Replace-	Nominal Cement	Water-		0 Cycl 1958		150	221	362	451	557
Cube	Portland Cement	ment Material	Factor bags/ cu yd	Cement Ratio by Wt*	Air Content %**	Pulse Veloc fps	%v ²	Cycles 1959 4v ²	Cycles 1960 %v ²	Cycles 1961 %v ²	Cycles 1962 %v ²	Cycles 1963 4v ²
1	100	0	1-3/4	0.93	6.1-6.6	15,625	100	93	88	81	84	+
2	65	Nat cem	1-3/4	0.96	1.7-8.2	14,185	100	96	105	103	109	52
3	70	Cal sh 30	1-3/4	1.01	5.3-5.8	15,150	100	97	103	103	106	50
4	88	Unc D 12	1-3/4	0.98	5.4-6.4	15,265	100	98	104	112	104	112
5	100	0	2-1/4	0.73	3.9-6.1	16,000	100	95	101	105	108	97
6	75	Pumicite 25	2-1/4	0.77	5:7-7.4	16,130	100	90	99	102	98	98
7	50	Slag 50	2-1/4	0.76	4.7-6.6	15,875	100	97	105	107	94	107
8	65	Nat cem	2-1/4	0.76	5.7-6.4	15,625	100	98	106	108	98	107
9	70	Cal sh 30	2-1/4	0.79	5.9 - 6.3	15,625	100	97	110	108	97	97
10	88	Unc D 12	2-1/4	0.80	5.5-6.2	15,625	100	103	105	100	103	++
10A	88	Unc D 12	2-1/4	0.80	5.5-6.2	16,130	100	100	105	98	98	105
11	70	Fly ash	2-1/4	0.73	5.5-6.2	15,875	100	98	115	116	117	109
11A	70	Fly ash	2-1/4	0.73	5.5-6.2	15,265	100	100	119	115	104	110
12	100	0	3	0.55	6.3-7.4	16,395	100	97	104	105	98	103
13	75	Pumicite 25	3	0.58	6.2-7.6	16,395	100	97	109	115	102	119
14	50	Slag 50	3	0.60	5.8-6.3	16,395	100	100	117	111	91	117
15	65	Nat cem	3	0.56	6.5-8.7	16,395	100	98	96	105	107	98
16	· 75	Cal sh 25	3	0.59	5.7-7.4	16,130	100	98	98	105	102	105
17	92	Unc D	3	0.55	5.3-7.4	16,395	100	98	105	111	109	112
18	70	Fly ash	3	0.55	6.1-7.7	16,665	100	97	97	97	97	96

⁽Continued)

Note: Nat cem = natural cement; cal sh = calcined shale; unc D = uncalcined diatomite; slag = blast-furnace slag.

** Ratio of water to cementitious material based on total weight.

** Air content of that portion of the concrete containing aggregate smaller than 1-1/2 in. in size.

†* End of specimen too rough to obtain satisfactory reading.

†* The Resident Inspector did not clean this cube specimen in 1963, and as a result proper pulse velocity readings could not be taken. The cube was left uncleaned so that the Chief, Concrete Division, and other members of the November 1963 inspection party could observe how much seaweed would accumulate on a test specimen if it were not cleaned during the summer.

(Sheet 1)

(Revised Sept 1970)

Table 2-CRMI-PD (Continued)

,, 00 E	Beach Row 1	Readings	1964-								
1480 Cycle 1969 4v ²	1326 Cycles 1968 %v ²	1141 Cycles 1967 %V ²	985 Cycles 1966 \$v ²	855 Cycles 1965 %v ²	692 Cycles 1964 \$v ²	Air Content	Water- Cement Ratio by Wt	Nominal Cement Factor bags/ cu yd	Replace- ment Material	Cementiti Type II Portland Cement	Cube
				Failed	•	6.1-6.6	0.93	1-3/4	0	100	1
		Failed	•	•	35	1.7-8.2	0.96	1-3/4	Nat cem	65	2
		Failed		•	74	5.3-5.8	1.01	1-3/4	Cal sh 30	70	3
	Failed	+		41	87	5.4-6.4	0.98	1-3/4	Unc D 12	88	4
65	78	91		105	91	3.9-6.1	0.73	2-1/4	0	100	5
Faile	•	•		110	92	5.7-7.4	0.77	2-1/4	Pumicite 25	75	6
,	86	83		110	78	4.7-6.6	0.76	2-1/4	Slag 50	50	7
•	62	82		103	103	5.7-6.4	0.76	2-1/4	Nat cem 35	65	8
	85	82		114	103	5.9-6.3	0.79	2-1/4	Cal sh 30	70	9
•	95	81		110	86	5.5-6.2	0.80	2-1/4	Unc D 12	88	10
•	47	49		103	88	5.5-6.2	0.80	2-1/4	Unc D 12	88	10A
79	97	112		110	107	5.5-6.2	0.73	2-1/4	Fly ash	70	11
1	90	97		105	98	5.5-6.2	0.73	2-1/4	Fly ash	70	11A
57	78	78		103	101	6.3-7.4	0.55	3	0	100	12
103	100	113		123	121	6.2-7.6	0.58	3	Pumicite 25	75	13
105	107	109		103	107	5.8-6.3	0.60	3	Slag 50	50	14
86	107	97		105	94	6.5-8.7	0.56	3	Nat cem	65	15
95	105	102		112	97	5.7-7.4	0.59	3	Cal sh 25	75	16
102	103	121		123	113	5.3-7.4	0.55	3	Unc D	92	17
88	94	100		103	101	6.1-7.7	0.55	3	Fly ash	70	18

[†] End of specimen too rough to obtain satisfactory reading. ‡ Satisfactory pulse velocity readings were not obtained in 1966 due to malfunction of testing equipment.

Beach	Row	1	(W	to	E)	i

							11-11-1	1970	0-1976 Rea	dings		1 (W to
Cube No.	Type II Portland Cement	Replace- ment Material	Nominal Cement Factor bags/ cu yd	Water- Cement Ratio by Wt	Air Content	1633 Cycles 1970 4V ²	1802 Cycles 1971 4V ²	1959 Cycles 1972 %V ²	2099 Cycles 1973 %v ²	2238 Cycles 1974 %V ²	2350 Cycles 1975 \$v ²	2496 Cycles 1976 4v ²
5	100	0	2-1/4	0.73	3.9-6.1	Failed						
7	50	Slag 50	2-1/4	0.76	4.7-6.6	Failed						
8	65	Nat cem 35	2-1/4	0.76	5.7-6.4	Failed						
9	70	Cal sh	2-1/4	0.79	5.9-6.3	Failed						
10	88	Unc D 12	2-1/4	0.80	5.5-6.2	•	Failed					
10A	88	Unc D 12	2-1/4	0.80	5.5-6.2	+	Failed					
11	70	Fly ash 30	2-1/4	0.73	5.5-6.2	74	71	60	##	83	51	Failed
11A	70	Fly ash 30	2-1/4	0.73	5.5-6.2	Failed						
12	100	0	3	0.55	6.3-7.4	+	Failed					
13	75	Pumicite 25	3	0.58	6.2-7.6	94	15	N R	##	Failed		
14	50	Slag 50	3	0.60	5.8-6.3	100	82	66	**	65	38	31
15	65	Nat cem	3	0.56	6.5-8.7	82	48	49	##	44	NR	NR
16	75	Cal sh 25	3	0.59	5.7-7.4	91	NR	91	**	Failed		
17	92	Unc D 8	3	0.55	5.3-7.4	98	85	77	##	71	NR	NR
18	70	Fly ash	3	0.55	6.1-7.7	85	15	Failed				

[†] End of specimen too rough to obtain satisfactory reading. ** Equipment malfunctioned in 1973.

(Issued August 1977)

Table 2-CRMI-PD (Continued)

							 1977-	D24	Beach Row 1 (W to
Cube	Cementit: Type II Portland Cement	Replace- ment Material	Nominal Cement Factor bags/ cu yd		Air Content	2573 Cycles 1977	1977-	Readings	
5	100	0	2-1/4	0.73	3.9-6.1				
7	50	Slag 50	2-1/4	0.76	4.7-6.6				
8	65	Nat cem 35	2-1/4	0.76	5.7-6.4				
9	70	Cal sh 30	2-1/4	0.79	5.9-6.3				
10	88	Unc D 12	2-1/4	0.80	5.5-6.2				
10A	88	Unc D	2-1/4	0.80	5.5-6.2				
11	70	Fly ash	2-1/4	0.73	5.5-6.2				
11A	70	Fly ash 30	2-1/4	0.73	5.5-6.2				
12	100	0	3	0.55	6.3-7.4				
13	75	Pumicite 25	3	0.58	6.2-7.6				
14	50	Slag 50	3	0.60	5.8-6.3	Failed			
15	65	Nat cem	3	0.56	6.5-8.7	Failed			
16	75	Cal sh	3	0.59	5.7-7.4				
17	92	Unc D	3	0.55	5.3-7.4	89			
18	70	Fly ash	3	0.55	6.1-7.7				

Passamaquoddy Tidal Power Project*

In connection with studies for the Passamaquoddy Tidal Power Project, 43 concrete columns** (5 by 5 by 60 in.) were installed on the exposure rack at Treat Island in 1936. The purpose of the installation was to find the cement and aggregate combination that would give the greatest assurance of durability for the proposed concrete structures. The mixture data for these 43 specimens were as follows:

		Cement Factor		Sand- aggregate Ratio		
Spec No.	Cement	bags/cu yd	Coarse Aggregate	<u></u>	Water	
B-14	Type I	5.25	Natural gravel A	34	Тар	
B-19	Type I	5.25	Natural gravel A	30	Tap	
B-26	Type I	5.25	Natural gravel A	28	Tap	
B-31	Туре І	5.25	Crushed diabase rock B	30	Тар	
B-36	Type I	5.25	Crushed diabase rock C	34	Тар	
B-39	Type I, 50%; other PC, 50%*	5.25	Crushed diabase rock C	34	Тар	
B-46	Natural, 21%; Type I, 79%	5.25	Crushed diabase rock C	34	Tap	
B-51	Type I	5.25	Crushed diabase rock B	32	Тар	
B-56	Type I	5.25	Crushed diabase rock B	34	Тар	
B-61	Type I	5.25	Crushed diabase rock B	36	Тар	
B-66	Type I	5.25	Crushed diabase rock B	38	Тар	
B-71	Aluminous cement	5.25	Crushed diabase rock C	34	Тар	
B-76	Pozzolan, 15%; Type I, 85%	5.25	Crushed diabase rock C	34	Тар	
B-81	Portland, pozzolan	5.25	Crushed diabase rock C	34	Тар	
в-86	Type I	5.25	Crushed diabase rock C	34	Тар	
B-88**	Type I	5.64	Crushed diabase rock P	40	Тар	
D-1	Type I	5.25	Crushed diabase rock B	38	Тар	
D-2	Туре І	5.25	Crushed diabase rock B	36	Тар	
D-3	Type I	5.50	Crushed diabase rock B	38	Тар	
D-4	Type I	5.50	Crushed diabase rock C	36	Тар	
D-5	Type I	5.50	Crushed diabase rock C	. 38	Тар	
D-6	Type I	5.50	Crushed diabase rock C	34	Tap	
D-7	Type I	5.25	Crushed diabase rock C	36	Тар	
D-8	Type I	5.50	Crushed diabase rock C	40	Tap	
D-9	Type I	5.25	Crushed diabase rock C	38	Тар	
S-3-R†	Type I	5.00	Natural gravel A	32	Тар	
S-5	Aluminous cement	5.00	Natural gravel A	32	Тар	
S-7	Type I	5.00	Natural gravel A	32	Sea (conc)	
S-2	Type I	5.00	Natural gravel A	32	Tap	
S-4-Rt	Aluminous cement	5.00	Natural gravel A	32	Тар	
S-8-Rt	Type I	5.00	Natural gravel A	32	Sea (conc)	
S-10	Portland, pozzolan	5.00	Natural gravel A	32	Tap	
S-11-R†	Portland, pozzolan	5.00	Natural gravel A	32	Тар	
S-13-Rt	Aluminous cement	5.00	Natural gravel A	32	Sea (normal)	
S-14	Aluminous cement	5.00	Natural gravel A	32	Sea (normal)	
S-16	Portland, pozzolan	5.00	Natural gravel A	32	Sea (conc)	
S-17-Rt	Portland, pozzolan	5.00	Natural gravel A	32	Sea (conc)	
S-20-Rt	Type I	5.00	Natural gravel A	32	Sea (normal)	
S-21	Type I	5.00	Natural gravel A	32	Sea (normal)	
S-22	Aluminous cement	5.00	Natural gravel A	32	Sea (conc)	
S-23-Rt	Aluminous cement	5.00	Natural gravel A	32	Sea (conc)	
S-25	Portland, pozzolan	5.00	Natural gravel A	32	Sea (normal)	
S-26-Rt	Portland, pozzolan	5.00	Natural gravel A	32	Sea (normal)	
D-20-111	Torona, possozan	,	manua Brater V	-	con (normal)	

Note: Maximum size aggregate, 2 in.; fine aggregate, natural sand (A); 5- by 5- by 60-in. columns; water-cement ratio, 6 gal per bag.

* This cement does not meet all of the present specifications for any of the types of portland cement.

** Fine aggregate was manufactured sand (B).

† Specimen contains 3/4-in. reinforcing bar.

See Passamaquoddy Tidal Power Development, Final Report of Concrete Tests (15 September 1936). Columns are molded with the long axis in a vertical position.

(Reprinted Aug 1965)

Section 9

In October 1940, after approximately 600 cycles of freezing-and-thawing, the exposure of all but six specimens was discontinued. These six specimens were selected as the most durable, and were reinstalled on the exposure rack.

Three of the six specimens (B-14, B-39, and B-86) contained plain portland cement which was manufactured by a mill which permitted the introduction of crusher oil into the cement (thereby possibly introducing involuntary air-entrainment). These three columns contained concrete having a cement factor of 5.25 bags per cu yd, and a water-cement ratio of 6.0 gal per bag. The other three columns (S-4-R, S-13-R, and S-23-R), each containing one 3/4-in.-diameter, deformed, reinforcing steel bar, were made with aluminous cement (cement factor = 5.0 bags per cu yd, water-cement ratio = 6.0 gal per bag). The aggregate used in all six columns was a granitic sand and gravel (2-in. maximum size) from an esker.

Table 1-PQ gives the exposure record of these six specimens.

Record of Observations of Concrete Columns Containing Cement-Aggregate Combinations Proposed for

Passamaquoddy Tidal Power Project Structures

1936- (Installed in 1936)

Speci- men			19	170	10	171	10	130	10	44()	10	att I
			1936 Condi-		1937 * Condi-		1938 Condi-		1940 Condi-		1941 Condi-	
	Type Cement	Type Water	Cycles	tion	Cycles	tion	Cycles	tion	Cycles	tion	Cycles	tion
			Sne	oimene W	1+hout Re	inforcing						
						teur di- 3						
B-14	Type I	Тар	0	Sound	422	Vy good	598	Vy good	759	Vy good	916	Good
B-39	Type I, 50%; other PC, 50%**	Тар	0	Sound	378	Vy good	554	Vy good	715	Vy good	872	Good
B-86	Type I	Тар	0	Sound	361	Excel.	537	Vy good	698	Vy good	855	Vy good
			Sp	ecimens	with Rein	forcing E	ar					
S-4-R	Aluminous	Тар	0	Sound	288	Excel.	464	Excel.	625	Good	782	Good
S-13-R	Aluminous	Sea (normal)	0	Sound	288	Vy good	464	Good	625	Good	782	Good
S-23-R	Aluminous	Sea (conc)	0	Sound	288	Vy good	464	Good	625	Good	782	Good
						194	2-1958 0	bservatio	ons			
			19	42	19	43		48		957	19	58
			Cycles	Condi- tion	Cycles	Condi- tion	Cycles	Condi- tion	Cycles	Condi- tion	Cycles	Condi- tion
			Spe	cimens W	ithout Re	inforcing	Bar					
B-14	Type I	Tap	1082	Fair	1270	Failed						
B-39	Type I, 50%; other PC, 50%**	Tap	1038	Fair	1226	Failed						
B-86	Type I	Tap	1021	Good	1209	Failed						
			Sp	ecimens	with Rein	forcing B	ar					
S-4-R	Aluminous	Tap	948	Fair	1136	Fair	1742	Fair	2850	Poor	2921	Poor
S-13-R	Aluminous	Sea (normal)	948	Good	1136	Good	1742	Fair	2850	Fair	2921	Fair
S-23-R	Aluminous	Sea (conc)	948	Good	1136	Good	1742	Poor	2850	Failed		
						105	0.10(0.0		Expos	ure Rack,	Row 2,	West End
			19	959	1960		9-1963 Observation 1961		1962		1963	
			Cycles	Condi- tion	Cycles	Condi- tion	Cycles	Condi- tion	Cycles	Condi- tion	Cycles	Condi- tion
				Specime	ens with	Reinforci	ng Bar					
S-4-R	Aluminous	Тар	3071	Poor	3142	Poor	3283	Poor	3372	Failed		
S-13-R	Aluminous	Sea (normal)	3071	Fair	3142	Fair	3283	Fair	3372	Fair	3478	Fair
											- 0 -	
								bservation	ons		Row 8, W	
			196	Condi-	196	Condi-	196	Condi-	196	Condi-	196	Condi-
			Cycles	tion	Cycles	tion	Cycles	tion	Cycles	tion	Cycles	tion
				Specimen	ns with F	Reinforcin	g Bar					
-13-R	Aluminous	Sea (normal)	3613	Fair	3776	Fair	3906	Fair	4062	Fair	4247	Fair
					ntinued)							

^{*} Specimens were installed on different dates in 1936; hence different numbers of freezing-and-thawing cycles.
** This cement does not meet all of the present specifications for any of the types of portland cement.

(Revised August 1977)

Table 1-PQ (Continued)

OF STREET			1969-1973 Observations										
		Type Water	1969		1970		1971		1972		1973		
Speci- men	Type Cement		Cycles	Condi- tion	Cycles	Condi- tion	Cycles	Condi- tion	Cycles	Condi- tion	Cycles	Condi- tion	
			Spec	imens vi	th Reinfo	orcing Be	<u>ur</u>						
S-13-R	Aluminous	Sea (normal)	4401	Fair	4554	Fair	4723	Fair	4880	Pair	5020	Fair	
								Observat	ions				
			19	74	197		197		1977				
			Cycles	Condi- tion		Condi- tion	Cycles	Condi- tion	AND DESCRIPTION OF THE PARTY OF	ondi- tion			
S-13-R	Aluminous	Sea (normal)	5159	Fair	5271	Fair*	5417	Fair	5494	Fair			

Missouri River Division Program

1963 installation

In September 1963, 12 sawed mortar beams (3-1/2 by 4-1/2 by 16 in.) were installed on the Treat Island exposure rack to provide field durability data on specimens from various projects in the Missouri River Division.

This installation was made up of five series of beams; the specimens* represented five different mortar mixtures and were sawed from 3-ft-square by nominally 3-1/2-in.-thick test panels. The mortar was placed pneumatically (shot) in each of the panels at each jobsite.

Table 1-SC lists the specimens and gives their exposure record along with other pertinent data.

Companion specimens (3-1/2 by 4-1/2 by 16 in.) to the Treat Island exposure specimens were subjected to laboratory freezing-and-thawing tests in the Missouri River Division Laboratory, Omaha, Nebr. The companion beams were also sawed from the test panels. The results of the laboratory tests are given below:

Mixture No.	No. of Beams <u>Tested</u>	Age at Test _days_	Avg %E at 300 Cycles of Freezing-and- Thawing
1	3	14	78
2	3	14	29
3	3	90	14
4	3	90	6
5	3	21	3

^{*} Four of the beams contained mesh reinforcing.

1965 installation

In November 1965, three sawed concrete beams (3 by 4-1/2 by 16 in.) were installed on the Treat Island exposure rack to provide field durability data on specimens from a specific project in the Missouri River Division.

The specimens represented one concrete mixture and were sawed from a 3-ft-square by 3-in.-thick test slab. The test slab was placed pneumatically (shot) as a reinforcement to rock slope bank protection.

Table 2-SC lists the specimens and gives their exposure record along with other pertinent data.

Record of Testing of Mortar Beams, Missouri River Division Program

1963 - (Installed September 1963)

								Exposu	re Rack, Row	5 (W to E)
Beam No.	Mixture No.	Cement/ Aggregate Ratio as Shot (by wt)	Position of Panel When Shot	Type Cement	Fine Aggregate	Reinforcing Mesh	O Cycles 1963	135 Cycles 1964 Æ	298 Cycles 1965 Æ	428 Cycles 1966 %E
1A	1	1:3.5	Vertical	II, A	Sand A	Yes	100	99	101	100
18	1	1:3.5	Vertical	II, A	Sand A	Yes	100	99	99	100
2A	2	1:4.0	Vertical	II, A	Sand A	No	100	119	120	127
2B	2	1:4.0	Vertical	II, A	Sand A	No	100	92	89	97
2C	2	1:4.0	Vertical	II, A	Sand A	Yes	100	122	124	126
2D	2	1:4.0	Vertical	II, A	Sand A	Yes	100	99	101	116
3A	3	1:3.8	Horizontal	II, B	Sand B	No	100	125	124	125
3B	3	1:3.8	Horizontal	II, B	Sand B	No	100	125	125	127
4A	4	1:3.8	Vertical	II, B	Sand B	No	100	73	74	93
4B	4	1:3.8	Vertical	II, B	Sand B	No	100	101	105	112
5A	5	1:3.5	Vertical	I, C	Sand C	No	100	101	102	105
5B	5	1:3.5	Vertical	I, C	Sand C	No	100	101	102	101
							584 Cycles 1967 %E	769 Cycles 1968 %E	923 Cycles 1969 Æ	1076 Cycles 1970 %E
1A	1	1:3.5	Vertical	II, A	Sand A	Yes	100	99	100	100
1B	1	1:3.5	Vertical	II, A	Sand A	Yes	102	102	100	104
2A	2	1:4.0	Vertical	II, A	Sand A	No	125	125	127	136
2B	2	1:4.0	Vertical	II, A	Sand A	No	97 1	Broken in hand	iling	
2C	2	1:4.0	Vertical	II, A	Sand A	Yes	123	123	125	133
SD	2	1:4.0	Vertical	II, A	Sand A	Yes	121	123	126	133
3A	3	1:3.8	Horizontal	II, B	Sand B	No	125	134	136	143
3B	3	1:3.8	Horizontal	II, B	Sand B	No	127	129	129	143
4A	4	1:3.8	Vertical	II, B	Sand B	No	91	62	65	68
4B	4	1:3.8	Vertical	II, B	Sand B	No	110	114	110	NR
5A	5	1:3.5	Vertical	I, C	Sand C	No	103	102	105	NR
5B	5	1:3.5	Vertical	I, C	Sand C	No	101	83	81	NR
							1245 Cycles 1971 *E	1402 Cycles 1972	1542 Cycles 1973	1681 Cycles 1974 %E
1A	1	1:3.5	Vertical	II, A	Sand A	Yes	97	96	95	96
1B	1	1:3.5	Vertical	II, A	Sand A	Yes	103	102	94	104
2 A	2	1:4.0	Vertical	II, A	Sand A	No	129	141	116	123
2C	2	1:4.0	Vertical	II, A	Sand A	Yes	128	110	96	105
2D	2	1:4.0	Vertical	II, A	Sand A	Yes	91	88	81	77
3A	3	1:3.8	Horizontal	II, B	Sand B	No	130	NR	Failed	
3B	3	1:3.8	Horizontal	II, B	Sand B	No	124	NR	Failed	
4A	4	1:3.8	Vertical	II, B	Sand B	No	63	NR	Failed	
4B	4	1:3.8	Vertical	II, B	Sand B	No	NR	NR	Failed	
5A	5	1:3.5	Vertical	I, C	Sand C	No	NR	NR	Failed	
5B	5	1:3.5	Vertical	I, C	Sand C	No	NR	NR	Failed	

						,					
										posure Rack, Row 5 (1	I to E)
Beam No.	Mixture No.	Cement/ Aggregate Ratio as Shot (by wt)	Position of Panel When Shot	Type Cement	Fine Aggregate	Reinforcing Mesh	1793 Cycles 1975	1939 Cycles 1976 %E	2016 Cycles 1977	Readings	
1A	1	1:3.5	Vertical	II, A	Sand A	Yes	96	101	102		
18	1	1:3.5	Vertical	II, A	Sand A	Yes	104	Failed			
2A	2	1:4.0	Vertical	II, A	Sand A	No	123	128	91		
2C	2	1:4.0	Vertical	II, A	Sand A	Yes	105	121	107		
2D	2	1:4.0	Vertical	II, A	Sand A	Yes	78	81	NR*		
3A	3	1:3.8	Horizontal	II, B	Sand B	No					
3B	3	1:3.8	Horizontal	II, B	Sand B	No					
4A	4	1:3.8	Vertical	II, B	Sand B	No					
4B	14	1:3.8	Vertical	II, B	Sand B	No					
5A	5	1:3.5	Vertical	I, C	Sand C	No					
5B	5	1:3.5	Vertical	I. C	Sand C	No					

(Revised August 1977)

Table 2-SC

Section 10

Record of Testing of Concrete Beams, Missouri River Division Program

1965- (Installed November 1965)

		-				-			965-1972		re Rack,	HOW 5	W to E
Beam No.	Mixture No.	Type Cement	Fine Aggregate	Coarse Aggregate	Air Content	O Cycles 1965 %E	130 Cycles 1966 %E	286 Cycles 1967 %E	471 Cycles 1968 %E	625 Cycles 1969 %E	778 Cycles 1970 %E	947 Cycles 1971 %E	1104 Cycles 1972 %E
sc-1	6	I, D	Sand D	Gravel A	7.5	100	92	94	100	100	101	96	65
sc-2	6	I, D	Sand D	Gravel A	7.5	100	97	99	96	94	91	73	49
sc-3	6	I, D	Sand D	Gravel A	7.5	100	102	102	100	102	102,	80	65
									973-	Reading	s		
						1244 Cycles 1973 %E	1383 Cycles 1974 %E	1495 Cycles 1975 %E	1641 Cycles 1976 %E	1718 Cycles 1977 %E			
SC-1	6	I, D	Sand D	Gravel A	7.5	89	81	80	82	NR			
SC-2	6	I, D	Sand D	Gravel A	7.5	NR	Failed						
sc-3	6	I, D	Sand D	Gravel A	7.5	45	NR	NR	NR	NR			

Portland Blast-Furnace Slag Cement Investigation*

This investigation was initiated in FY 1955 to evaluate the performance of blast-furnace slag cement and determine how its performance compares with that of type II portland cement. Twelve air-entrained concrete mixtures were used in the investigation, the difference between the mixtures being the type cement used. Eight portland blast-furnace slag cements, one type II portland cement, and three blends of portland blast-furnace slag cement and natural cement were used. The aggregates used were limestone (3/4-in. maximum size) and natural sand. The cement factor was 5.5 bags per cu yd for all mixtures, and the air content was 6.0 ± 0.5 percent.

Eighteen beams (3-1/2 by 4-1/2 by 16 in.) were fabricated from each of the 12 concrete mixtures (total of 216 beams). Half of these beams (108) were installed on the exposure rack at Treat Island in May 1956; the other half (108) were installed on the St. Augustine exposure rack in August 1956.

Table 1-BFS lists the specimens exposed at Treat Island and gives their exposure record along with their cements.

Table 2-BFS lists the specimens exposed at St. Augustine, and gives their exposure record along with their cements.

In 1956 the question of whether reinforcing steel surrounded by portland blast-furnace slag cement concrete was more prone to corrosion than that surrounded by portland-cement concrete was raised. To answer this question, 45 concrete prisms (8-1/2 by 8-1/2 by 12 in.), each containing 4 pieces of reinforcing bars, were fabricated and installed on the exposure rack at St. Augustine in August 1956. The aggregates and concrete mixtures were the same as those used to fabricate the beams described above except that only three cements were used: two

^{*} See U. S. Army Engineer Waterways Experiment Station, CE, <u>Investigation of Portland Blast-Furnace Slag Cements</u>, Technical Report No. 6-445, also U. S. Army Engineer Waterways Experiment Station, CE, <u>Investigation of Portland Blast-Furnace Slag Cements</u>; Supplementary <u>Data</u>, by Bryant Mather, Technical Report No. 6-445, Report No. 2 (Vicksburg, Miss., September 1965).

(Revised Jan 1972)

blast-furnace slag cements and one type II portland cement. No tests of these prisms were scheduled while they were undergoing field exposure. They were to be returned to the laboratory for examination in accordance with the following schedule:

			Prisms to to Laborat	
Cement	No. of Prisms Installed	1958	1960	1961
Type II, portland cement	15	6	6	3
PBFS* No. 1	15	6	6	3
PBFS* No. 2	15	6	6	3

^{*} Portland blast-furnace slag cement.

Specimens examined after two, four, and five years exposure showed the same relative relation of cement type to amount of corrosion of embedded steel, with the amount of rusting increasing with length of exposure. A "pinpoint" of rust was considered as 1 unit area of corrosion; spots 1/16 in. in diameter were regarded as 4 units; those 1/8 in. in diameter as 16 units, etc. Total average rusted area on all bars, per specimen, arranged by cements was as follows:

Average	Rusted Area on Bar	s, by Cement	Length of Exposure	
Type II	PBFS No. 1	PBFS No. 2	years	Date
173	17	79	2	1958
1877	60	258	4	1960
2827	111	427	5	1961

Testing of specimens exposed at St. Augustine exposure station was discontinued after the 1970 inspection.

Record of Testing of Concrete Beams Made for Portland Blast-furnace Slag Cement Investigation, Exposed at Treat Island

1956- (Installed May 1956)

								7 Readir					
Beam No.	Cement	O Cycles 1956	144 Cycles 1957	215 Cycles 1958	365 Cycles 1959	436 Cycles 1960 5E	577 Cycles 1961 	666 Cycles 1962	772 Cycles 1963 %E	907 Cycles 1964 %E	1070 Cycles 1965 %E	1200 Cycles 1966 %E	1356 Cycles 1967
1ST-2	PBFS* No. 3	100	109	117	115	**							
1ST-4	rbrs* No. 3	100	111	117	115 116	114	109	112	112	110	110	110	108
1ST-6		100	111	119	116	115	110	122	116	117	120	119	115
1ST-8		100	117	123	125	121	117	118	118	114	114	114	114
1ST-10		100	116	121	122	122	115	115	112	111	110	109	108
1ST-12		100	116	125	126	125	118	116	116	113	113	113	112
1ST-14		100	108	115	119	117	112	111	114	112	111	112	112
1ST-16		100	108	115	118	117	109	110	110	107	109	111	110
1ST-18		100	109	117	119	118	112	113	114	111	111	109	109
2ST-20	PBFS No. 4	100	118	125	128	125	119	121	122	117	118	119	118
2ST-22		100	121	130	129	125	118	122	123	119	119	119	119
2ST-24		100	120	128	133	128	122	126	124	120	120	122	120
2ST-26		100	123	134	135	**							
2ST-28		100	123	134	134	133	123	128	126	126	125	124	123
2ST-30		100	122	133	134	131	122	127	127	125	124	124	124
2ST-32		100	122	132	134	132	127	129	129	128	127	125	123
2ST-34		100	121	130	131	130	125	124	126	122	122	124	124
2ST-36		100	120	136	130	126	121	123	122	122	120	121	120
3ST-38	PBFS No. 1	100	119	128	130	141	122	124	123	127	126	128	126
3ST-40		100	113	123	1.24	**							
3ST-42		100	118	128	130	128	122	127	126	122	122	122	122
3ST-44		100	128	138	139	138	130	129	128	119	114	112	112
3ST-46		100	122	128	132	131	122	123	122	115	114	112	110
3ST-48		100	122	128	132	131	122	122	123	121	120	119	115
3ST-50		100	124	131	135	134	125	127	128	128	120	120	119
3ST-52 3ST-54		100	123 123	130 132	134 134	133 132	124 124	126 125	126 125	125 125	121 123	119	119
4ST-56	PBFS No. 2	100	119	128	131	128	121	123	124	128	125	125	125
4ST-58		100	118	126	128	**	10000						
4ST-60		100	114	123	124	124	117	123	121	127	128	128	125
4ST-62		100	125	130	136	133	126	128	127	126	126	122	121
4ST-64		100	126	135	136	135	126	131 128	130	130	125	121	120
4ST-66		100	127	134	135	134	124		127	126	123	123	123
4ST-68		100	118	125	130	128	121	123	125	123	121	120	119
4ST-70 4ST-72		100	117 120	125 127	129 132	128 130	121	122	121 126	121 126	121	120	120
5ST-74 5ST-76	PBFS No. 5	100 100	105	112	114	112	106	110	110	110	110	108	108
5ST-78		100	110	116	113	112	105	110	107	109	109	105	104
5ST-80		100	116	123	117	116	109	111	111	109	109	110	109
5ST-82		100	117	125	122 124		115	116	114	114	114	115	116
5ST-84		100	120	124	124	123	115	117		113	112	111	116
5ST-86		100	115	122	124	122		116	113	113	115	113	111
5ST-88		100	112	118	121	119	115 112	113	112	110	112	112	112
5ST-90		100	114	122	123	120	112	115	114	108	108	108	106
6ST-92	PBFS No. 6	100	121	129	131	130	121	125	123	118	120	118	118
6ST-94		100	124	132	135	**							
6ST-96		100	123	133	134	134	124	128	128	127	127	127	124
6ST-98		100	125	134	134	133	125	124	120	119	117	122	122
6ST-100		100	124	135	137	132	124	124	125	116	117	121	119
6ST-102		100	124	133	136	136	127	127	128	123	121	126	125
6ST-104		100	120	130	130	128	121	121	121	117	116	119	119
6ST-106 6ST-108		100	126 123	135 129	134 131	134	125 120	125 120	124	120 117	119	119	117
70M 110	DDDC W- 7	100											
7ST-110 7ST-112	PBFS No. 7	100 100	114 116	124 124	126 126	**	118	117	121	120	118	118	117
7ST-114		100	115	124	126	125	120	121	120	116	116	118	117
7ST-116		100	121			124	122		125	123	121		117
7ST-118				129	131	131		123	126	125	125	123	121
7ST-110		100	122	130	133	130	124	127		125	121	123	123
7ST-120		100 100	121	131	134	134	123 118	125 121	126	120	116	122	121
7ST-124			117	126	128	126			118	116	114	118	117
7ST-126		100	115	122 123	126 127	125 125	117	119	120	115	113	115	115
			114	153	151	153	110	7	100		440	11)	11)

Note: From 1956 to 1958 the wooden tie-downs were resting directly on these specimens; thereafter they were spaced so as not to touch the concrete.

* Portland blast-furnace slag cement.

** Returned to laboratory 1959. (Sheet

							1956-196	7 Readir	ngs.	Exposu	re Rack,	Row 5 (W to E)
Beam No.	Cement	O Cycles 1956	144 Cycles 1957 %E	215 Cycles 1958 %E	365 Cycles 1959 5E	436 Cycles 1960 5E	577 Cycles 1961 5E	666	772 Cycles 1963 %E	907 Cycles 1964 %E	1070 Cycles 1965 %E	1200 Cycles 1966 %E	1356 Cycles 1967 %E
8ST-128 8ST-130 8ST-132 8ST-134 8ST-136	Type II PC†	100 100 100 100	121 117 120 125 123	128 123 126 133 132	130 125 126 134 132	125 123 122 132 **	120 116 115 123	120 114 114 125	121 116 112 123	121 116 108 122	118 114 108 118	121 114 110 120	120 114 110 118
85T-138 85T-140 85T-142 85T-144		100 100 100 100	123 123 123 127	129 130 130 135	133 132 131 136	128 128 129 132	120 120 119 124	122 120 121 126	121 122 123 122	115 120 118 122	115 120 116 122	117 120 116 122	115 119 116 123
9ST-146 9ST-148 9ST-150 9ST-152 9ST-154 9ST-156	PBFS* No. 8	100 100 100 100 100	112 112 112 114 113 110	120 120 121 122 123 119	120 120 122 124 123 119	120 120 121 122 123 **	110 113 114 116 114	115 111 116 117 116	116 113 116 116 117	112 111 113 114 114	112 111 113 113 114	111 111 115 116 114	111 111 115 118 115
9ST-158 9ST-160 9ST-162		100 100 100	111 109 111	117 116 118	118 117 120	117 118 119	107 110 110	108 111 110	106 109 108	103 107 106	105 103 102	103 105 106	104 105 106
10ST-164 10ST-166 10ST-168 10ST-170	Blend: No. 2 PEFS, 80%; nat cem A, 20%††	100 100 100 100	116 115 107 114	124 120 113 121	128 123 115 123	127 120 111 **	120 113 104	120 115 107	119 116 103	118 109 101	116 109 98	118 109 91	117 110 93
10ST-172 10ST-174 10ST-176 10ST-178 10ST-180	20 %	100 100 100 100 100	113 110 112 111 111	121 117 119 118 117	122 120 122 120 129	122 117 119 118 117	112 108 111 110 108	111 110 113 110 109	111 108 111 111 107	107 105 109 110 102	105 103 106 108 104	103 100 106 106 101	105 99 110 108 101
11ST-182 11ST-184 11ST-186 11ST-188 11ST-190	Blend: No. 2 PBFS, 75%; nat cem A, 25%	100 100 100 100 100	109 105 108 119 111	115 110 114 125 118	115 113 116 129 120	113 113 114 128 **	104 101 102 120	108 103 105 121	102 101 103 121	97 94 96 118	94 89 94 119	92 89 92 118	93 89 92 117
11ST-192 11ST-194 11ST-196 11ST-198		100 100 100 100	109 110 106 106	117 118 114 113	118 117 111 115	116 116 109 112	106 104 93 101	102 106 92 103	108 103 92 101	106 95 83 95	113 72 81 92	115 78 94 90	117 77 93 90
12ST-200 12ST-202 12ST-204 12ST-206 12ST-208 12ST-210 12ST-212 12ST-214 12ST-216	Blend: No. 2 PRFS, 70%; nat cem A, 30%	100 100 100 100 100 100 100 100	106 101 99 100 102 111 113 117	110 109 103 104 106 117 120 123 126	112 109 103 100 104 116 126 126 128	110 105 101 100 104 116 121 124	100 83 88 84 90 103 109 114	105 95 89 87 92 107 110	100 94 89 78 88 103 110 118	95 92 84 74 79 100 107 111	92 89 75 70 74 95 104 106	90 80 72 62 69 97 101 104	90 81 71 60 65 97 100 107
						1	968-	Readings					
		1541 Cycles 1968 %E	1695 Cycles 1969	1848 Cycles 1970 %E	2017 Cycles 1971	2174 Cycles 1972 %E	2314 Cycles 1973	2453 Cycles 1974 %E	2565 Cycles 1975 %E	2711 Cycles 1976	2788 Cycles 1977 %E		
1ST-4 1ST-6 1ST-8 1ST-10 1ST-12 1ST-14 1ST-16 1ST-18	PBFS No. 3	109 120 112 113 111 113 106 105	110 117 114 114 112 114 102 103	112 120 113 110 112 108 102 103	112 121 114 103 111 108 102 109	100 105 99 103 116 110 121 116	Failed Failed 97 100 98 75 104	97 102 98 79 150	98 162 100 79 152	148 127 102 NR NR	116 NR 102 NR NR		
2ST-20 2ST-22 2ST-24 2ST-28 2ST-30 2ST-32 2ST-34 2ST-36	PBFS No. 4	114 117 120 125 123 125 119	118 121 125 123 125 126 120 118	116 119 120 119 118 120 114 114	117 121 122 124 123 128 118 119	122 123 118 123 127 128 116 115	122 154 123 109 110 110 123 119	153 154 118 98 117 111 124 165	153 160 123 100 118 112 128 165	NR NR 184 147 122 121 134 NR	NR NR 191 NR 141 136 135 NR		

(Revised August 1977)

Table 1-BFS (Continued)

Section 11

			4			10	68-	Readings		Exposu	re Rack,	Row 5 (W to E)
Beam No.	Cement	1541 Cycles 1968 %E	1695 Cycles 1969 %E	1848 Cycles 1970	2017 Cycles 1971	2174 Cycles 1972	2314 Cycles 1973	2453 Cycles 1974 %E	2565 Cycles 1975	2711 Cycles 1976	2788 Cycles 1977	
3ST-38 3ST-42 3ST-44 3ST-46 3ST-48 3ST-50 3ST-52 3ST-54	PBFS* No. 1	126 122 103 99 115 119 117 126	126 123 102 98 116 121 118 128	124 118 94 97 NR 114 111	121 117 NR NR NR 117 114 NR	118 115 D D D D	97 128	105 M	107	NR	NR	
4ST-56 4ST-60 4ST-62 4ST-64 4ST-66 4ST-68 4ST-70	PBFS No. 2	125 125 113 122 120 119 121	126 126 116 122 123 119 119	125 125 106 124 115 114 110	128 132 113 120 116 119 114	116 NR NR NR NR NR	NR NR NR NR NR NR	98 NR M NR M M	98 NR M NR M M	118 D D	114	
4ST-72 5ST-74 5ST-76 5ST-78 5ST-82 5ST-84 5ST-86 5ST-88 5ST-90	PBFS No. 5	120 106 103 109 111 108 111 110	120 110 104 107 111 110 109 110	113 114 102 107 112 108 108 107	118 111 99 103 107 99 104 105 96	NR 104 92 97 104 97 102 102	NR 105 94 100 104 99 97 96 70	M 107 NR 97 M 100 99 88 77	M 107 NR 99 M 101 99 90 78	NR D 133 114 D 96 100	D 137 113 96 106	
6ST-92 6ST-96 6ST-98 6ST-100 6ST-102 6ST-104 6ST-106 6ST-108	PBFS No. 6	120 126 120 119 125 116 117	120 124 121 118 124 114 119	120 125 115 117 124 113 117	116 120 110 112 120 110 112 106	112 115 107 110 116 108 105 92	101 114 113 108 117 104 87 92	111 114 113 108 117 104 NR 93	111 115 114 111 117 106 NR 95	106 NR D NR NR 108 D	NR NR D D 112	
78T-112 78T-114 78T-116 78T-118 78T-120 78T-122 78T-124 78T-126	PBFS No. 7	118 118 122 125 122 114 109 112	117 116 121 126 118 114 111 113	117 116 119 122 118 109 107	109 114 114 116 114 100 95 108	106 106 114 111 107 100 103 106	105 109 109 114 109 97 92 103	103 108 107 113 107 96 92 126	105 110 112 114 112 98 94 127	103 104 110 114 115 98 92 130	NR NR NR 118 NR 129 132	
8sT-128 8sT-130 8sT-132 8sT-134 8sT-138 8sT-140 8sT-142 8sT-144	Type II PCt	118 114 108 120 117 119 116 121	116 112 110 119 115 121 114 120	114 110 108 118 115 119 116 118	114 116 109 113 111 107 112 114	123 105 99 105 104 104 109	123 114 107 123 119 114 111	118 114 107 121 116 132 119 118	120 116 111 122 118 130 117 118	118 105 112 122 114 131 118 142	119 115 117 124 117 121 119 146	
98T-146 98T-148 98T-150 98T-152 98T-154 98T-158 98T-160 98T-162	PBFS No. 8	112 113 117 116 113 101 105 106	110 111 116 114 110 100 105 104	108 111 114 114 112 100 103 105	106 109 116 114 112 100 101	102 105 112 123 121 115 109 116	112 116 119 118 139 83 88 104	114 119 120 174 NR NR	114 118 120 160 NR NR NR	NR	D	•
10ST-164 10ST-166 10ST-168 10ST-172 10ST-174 10ST-176 10ST-178 10ST-180	Blend: No. 2 PBFS, 80%; nat cem A, 20%††	114 102 82 101 99 106 102 93	116 100 82 101 101 104 103 91	114 98 83 101 99 102 101 91	106 108 92 74 103 103 97 Broken	NR 109 85 D 97 96 95	96 93 85 101 76 80	100 96 NR 102 91 NR	102 96 NR 102 89 NR			

(Continued)

(Sheet 3)

^{*} Portland blast-furnace slag cement.
† Portland cement.
† Nat cem = natural cement.
NR A satisfactory reading was not obtained although an attempt was made to obtain one.
D Specimens so deteriorated that no reading can be obtained.
M Missing.

						19	68-	Readings		шерово	TO MUCK,	Row 5 (W to I
Beam No.	Cement	1541 Cycles 1968	1695 Cycles 1969 %E	1848 Cycles 1970 %E	2017 Cycles 1971 %E	2174 Cycles 1972 %E	2314 Cycles 1973	2453 Cycles 1974 %E	2565 Cycles 1975	2711 Cycles 1976	2788 Cyçles 1977	
11ST-182	Blend: No. 2	85	82	84	62	68	NR	NR	NR .	D	D	
11ST-184	PBFS, 75%;	85 80	82 76 78	81 76	52	68 56	NR	NR	NR	1.	1	
11ST-186	nat cem A,	82	78		Broken							
11ST-188	25%	110	106	104	94	86	NR	NR	NR			
11ST-192		108	106	108	Broken							
11ST-194		69 68	64	66	Broken							
11 ST- 196		68	Failed									
11 ST- 198		86	82	75	66	62	NR	NR	NR			
12ST-200	Blend: No. 2	84	80	81	73	68	NR	NR	NR			
12ST-202	PBFS,* 70%;	Failed										
12ST-204	nat cem A,	Failed										
12ST-206	30%++	Failed										
12ST-208		Failed										
12ST-210		86	83	87	80	81	NR	NR	NR			
12ST-212		92	91	Failed								
12ST-214		95	93	96	Failed							

^{**} Portland blast-furnace slag cement.

†† Nat cem = natural cement.

NR A satisfactory reading was not obtained although an attempt was made to obtain one.

D Specimens so deteriorated that no reading can be obtained.

Record of Testing of Concrete Beams Made for Portland Blast-furnace Slag Cement Investigation, Exposed at St. Augustine 1956- (Installed August 1956)

(Continued)

^{*} Portland blast-furnace slag cement.

				1956-1966			
Beam No.	Cement	1956 %E	1958 % E	1960 ≸E	1962 %E	1964 %E	1966 %E
8SA-127 8SA-129 8SA-131 8SA-135 8SA-137 8SA-137 8SA-139 8SA-141 8SA-143	Type II PC**	100 100 100 100 100 100 100 100	126 126 126 125 125 125 128 131	134 136 134 132 132 136 135 137	121 124 122 120 120 122 120 125 120	126 122 121 120 120 122 120 125 120	121 124 121 123 121 115 122 132 132
98A-145 98A-147 98A-149 98A-151 98A-153 98A-155 98A-157 98A-157 98A-161	PRFS* No. 8	100 100 100 100 100 100 100 100	121 119 119 117 115 114 120 122 120	130 128 128 124 124 116 129 130 129	116 117 117 112 115 107 117 117	116 117 117 112 117 107 117 119	11 ¹ 4 113 111 110 117 109 119 121 118
10SA-163 10SA-165 10SA-167 10SA-169 10SA-171 10SA-173 10SA-175 10SA-177 10SA-179	Blend: No. 2 PBFS, 80%; nat cem A, 20%†	100 100 100 100 100 100 100 100	123 124 128 124 122 123 124 124	131 134 138 127 130 130 135 136	117 120 126 117 123 114 118 124	122 122 135 118 124 115 119 125	122 126 113 124 120 122 123
11SA-181 11SA-183 11SA-185 11SA-187 11SA-189 11SA-191 11SA-193 11SA-195 11SA-197	Blend: No. 2 PBFS, 75%; nat cem A, 25%	100 100 100 100 100 100 100 100	125 123 124 128 129 127 123 123	133 131 130 138 138 136 131 130	120 119 118 123 122 125 122 118 122	123 119 119 123 124 126 124 120 124	123 119 126 128 128 130 119 120
128A-199 128A-201 128A-203 128A-205 128A-207 128A-209 128A-211 128A-213 128A-215	Blend: No. 2 FBFS, 70%; nat cem A, 30%	100 100 100 100 100 100 100 100	121 118 121 125 124 122 122 130 131	129 125 127 129 131 128 129 138 140	117 114 111 127 119 117 118 125 127	124 120 111 128 119 116 119 125 128	121 109 120 123 121 118 126 130 Lost
				1968-	Readings		
		1968 <u>%</u> E	1970 %E				
18A-1 18A-3 18A-5 18A-7 18A-9 18A-11 18A-13 18A-15	PEFS No. 3	125 118 121 123 118 120 103 107 108	Lost 117 121 121 118 119 103 107				
28A-19 28A-21 28A-23 28A-25 28A-27 28A-29 28A-31 28A-33 28A-35	PBFS No. 4	136 124 117 112 133 135 122 115	133 122 117 112 134 135 121 113				

Portland blast-furnace slag cement. PC = portland cement. Nat cem = natural cement.

Table 2-BFS (Continued)

		1968	1970	1968- Readings	
Beam No.	Cement	%E_	%E_		
3SA-37 3SA-39	PBFS* No. 1	132 123	131 Lost		
3SA-41		129	Lost		
3SA-43		141	141 136		
3SA-45 3SA-47		139 141	140		
3SA-49		119	117		
3SA-51 3SA-53		117 114	116 114		
4SA-55	PBFS No. 2	138 126	134 Lost		
4SA-57 4SA-59		129	128		
4SA-61		135	135		
4SA-63 4SA-65		140 137	139 137		
4SA-67		139	135		
4SA-69		114	113		
4SA-71		114	114		
5SA-73	PBFS No. 5	118	118		
5SA-75 5SA-77		119 119	119 119		
5SA-79		113	113		
5SA-81		118	118		
5SA-83 5SA-85		115 112	113 Lost		
5SA-87		118	Lost		
5SA-89		111	110		
6SA-91	PBFS No. 6	123	123		
6SA-93		131	131		
6SA-95 6SA-97		125 127	123 125		
6SA-99		126	Lost		
6SA-101		119	Lost		
6SA-103 6SA-105		131 132	Lost Lost		
6SA-107		129	Lost		
7SA-109	PBFS No. 7	126	Lost		
7SA-111	1210 1101	119	Lost		
7SA-113		126 124	Lost 124		
7SA-115 7SA-117		128	127		
7SA-119		131	128		
7SA-121 7SA-123		121 121	120 119		
7SA-125		125	124		
8sa-127	Type II PC**	124	122		
8SA-129	type II Io	120	118		
8SA-131		121	121		
8SA-133 8SA-135		121 122	119 122		
8SA-137		116	115		
8SA-139 8SA-141		118	117 138		
8SA-143		138 128	128		
004 1hr	PBFS No. 8	110	110		
9SA-145 9SA-147	PBFS NO. O	112 110	112 109		
98A-147 98A-149		111	109		
9SA-151 9SA-153		111	109 114		
98A-155		109	107		
98A-157		119	118		
98A-159 98A-161		119 120	118 120		
OSA-163 OSA-165	Blend: No. 2 PBFS, 80%;	121 107	121 105		
OSA-167	nat cem A,	122	121		
.08A-169	20%†	110	109		
OSA-171 OSA-173		123	121 115		
OSA-175		121	121		
OSA-177 OSA-179		118 131	117 130		
		-3-	230		
			ontinued)		

^{*} Portland blast-furnace slag cement. ** PC = portland cement. † Nat cem = natural cement.

				1968-	Readings	
Beam No.	Cement	1968 %E	1970 %E			
11SA-181	Blend: No. 2	125	123			
11SA-183	PBFS,* 75%;	118	116			
11SA-185	nat cem A,	126	126			
11SA-187	25%t	121	120			
11SA-189		132	131			
11SA-191		129	127			
11SA-193		112	111			
11SA-195		118	117			
11SA-197		131	131			
12SA-199	Blend: No. 2	120	120			
12SA-201	PBFS, 70%;	110	110			
12SA-203	nat cem A,	121	118			
12SA-205	30%	129	128			
12SA-207		119	119			
12SA-209		124	122			
12SA-211		126	124			
12SA-213		125	125			

Portland blast-furnace slag cement. Nat cement = natural cement.

Specimen Size-Frost Effects Investigation

In December 1968, 18 concrete specimens (four sizes) were installed on the Treat Island exposure rack. This installation consisted of nine 3-1/2- by 4-1/2- by 16-in. beams, three 6- by 6- by 30-in. beams, three 2-ft cubes, and three 18- by 18- by 36-in. prisms. The purpose of this installation was to develop data on the effect of specimen size on the durability of concrete specimens in tidal exposure.

The four sizes of concrete test specimens were made from six batches of the same concrete mixture. The mixture contained crushed limestone fine and coarse aggregates and had the following characteristics:

> Coarse aggregate - 100% passing 1-in. sieve Fine aggregate - 98-100% passing No. 4 sieve Cement - type II portland Air content - 4-1/2 + 1/2%

Water-cement ratio - 5.5 gal/bag

Slump - 2-1/2 + 1/2 in.

Sand content - 36 to 42%

Cement factor - 6.0 + 0.3 bags/cu yd

Compressive strength at 28 days age (nominal) - 5000 psi Table 1-SSFE lists these concrete specimens and gives their exposure record along with other pertinent information.

Record of Testing of Concrete Specimens for Specimen Size-Frost Effects Investigation

1968- (Installed Dec 1968)

									968-197						NE SAL SE		posure	
	Air	0	Cycles, Pulse	1968	Cyc. 19		Cyc. 19		Cycl 197	es	6. Cyc. 19		7 Cyc 19		6 Cyc 19		Cyc	009 les 075
Specimen No.	Content*	%E_	Veloc fps	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v ²	%E	*v2	\$E	%v
					3.	-1/2-	by 4-1,	/2- by	16-in.	Beam	1							
ROS-4A ROS-4B ROS-4C	4.3 4.3 4.3	100 100 100		5 100 0 100 0 100	102 104 101	107 99 95	107 110 108	100 96 89	119 118	91 82 78	118 119 119	102 96 89	115 117 119	96 94 93	116 118 118	119 110 105	116 118 119	8 5 6
ROS-5A ROS-5B ROS-5C	4.6 4.6 4.6	100 100 100	15,74 16,42 16,42	100	102 100 99	104 100 95	108 109 110	101 93 91	118 119 120	86 79 83	120 117 118	94 85 91	121 117 118	101 103 98	120 118 119	95 111 105	118 118 118	7
ROS-6A ROS-6B ROS-6C	4.2** 4.2** 4.2**	100 100 100	16,32	0 100 0 100 0 100	101 100 101	99 94 90	111 110 110	94 88 84	119 118 117	84 75 75	117 116 115	96 90 84	117 118 120	96 99 104	116 120 119	105 103 105	117 120 120	7 6
						6-	by 6-	by 30	in. Be	ams								
ROS-1 ROS-2 ROS-3	4.0 4.4** 4.8	100 100 100	14,70	5 100 5 100 5 100	100 102 100	114 116 105	115 126 108	112 111 104	111 121 101	92 90 81	109 118 102	99 99 98	109 116 104	112 101 98	109 118 104	127 123 113	109 116 104	150 150 130
							2-	ft Cub	es									
ROS-1 ROS-2 ROS-3	4.0 4.4** 4.8	100 100 100	15,21 15,26 15,15	5 100	†	101 100 100	:	99 94 97	† † †	82 78 80	† † †	101 93 100	† † †	102 103 97	† † †	119 112 110	† † †	150
						18-	by 18-	by 36	-in. Pr	isms								
ROS-4 ROS-5 ROS-6	4.3 4.6 4.2**	100 100 100	15,54	0 100 5 100 5 100	94 94 97	102 102 103	106 102 108	99 100 100	107 114 108	89 87 90	105 116 108	95 99 101	108 116 108	105 105 111	109 116 108	105 108 108	109 116 108	109
				1000				19	976-	Read	lings							
		Cyc	155 1es 176 170 ²	1232 Cycles 1977 E #V	2													
		75				-1/2- 1	by 4-1,	/2- by	16-in.	Beams								
ROS-4A ROS-4B	4.3			113 9	1													
ROS-4C	4.3	116		116 8														
ROS-5A ROS-5B ROS-5C	4.6 4.6 4.6	102 119 121	105	114 8 120 8 120 8	9													
ROS-6A ROS-6B ROS-6C	4.2** 4.2** 4.2**	118 115 117	100	17 9 17 8 17 7	9													
						6-	by 6-	by 30-	in. Be	ams								
ROS-1 ROS-2 ROS-3	4.0	112	114	107 11 119 11 102 10	6													
							2-1	t Cube	8									
ROS-1 ROS-2 ROS-3	4.0 4.4** 4.8	†	112 100 102	† 11 † 10 † 10	6													
						18- 1	by 18-	by 36-	in. Pr	isms								
ROS-4 ROS-5 ROS-6	4.3 4.6 4.2		110	.07 10 18 10	6													

Air content determined on each batch; six batches of concrete were made for this investigation. Slump was 2-1/4 in. for these batches; slump of all other batches of concrete was 2 in. Unable to obtain satisfactory flexural frequency reading on these cubes.

Trumbull Pond Dam Prisms

In June 1972, six concrete prisms (18 by 18 by 36 in.) were installed on the Treat Island exposure rack to determine the durability of two interior mass concrete mixtures containing the aggregate being considered for use in Trumbull Pond Dam.

The prisms were made from two concrete mixtures (three prisms per mixture); the fine and coarse aggregates used were pit-run sand and gravel, maximum size 6 in., from an undeveloped on-site source. Both concrete mixtures were air entrained (5 ± 1 percent) with a slump of $2 \pm 1/2$ in. Type II portland cement was used in both mixtures, with one mixture containing a replacement material (35 percent by solid volume). Water-cement ratios were 0.66 and 0.63, by weight; cement factors were 2.90 and 3.15 bags per cu yd.

Table 1-TP lists these concrete specimens and gives their exposure record along with other pertinent information.

Record of Testing of Trumbull Pond Dam Concrete Prisms

1972- (Installed June 1972)

			Cementit					197	2-1975	Readir	ngs				
	Replacement	Water- Cement Ratio	terial, Type II Portland	lb/cu yd	0	Cycles, 1 Pulse Velocity			ycles 73		Cycles		Cycles 1975		
rism No.	Material	by Wt	Cement	Fly Ash	%E	fps	%v ²	%E	%v ²	%E	%v ²	%E	x v ²		
Cem-1	None	0.66	273	0	100	13,760	100	113	111	113	103	109	98		
Cem-2	None	0.66	273	0	100	13,890	100	117	101	115	106	114	127		
Cem-3	None	0.66	273	0	100	14,220	100	101	108	100	105	99	126		
FA-1	Fly ash*	0.63	192	79	100	13,335	100	118	103	113	108	108	107		
FA-2	Fly ash*	0.63	192	79	100	13,275	100	125	116	121	106	116	98		
FA-3	Fly ash*	0.63	192	79	100	13,335	100	120	92	106	58	106	End gone		
									-						
					534 (cycles 6	11 Cyc	19	/6-	Readin	ngs	-			
							1977	res							
Cem-1	None	0.66	273	0	75	NR	NR	NR							
Cem-2	None	0.66	273	ŏ	109			106							
Cem-3	None	0.66	273	Ö	100		47	97							
FA-1	Fly ash*	0.63	192	79	119	NR	62	NR							
FA-2	Fly ash*	0.63	192	79	106	NR	NR	NR							
FA-3	Fly ash*	0.63	192	79											

³⁵ percent replacement by solid volume; all prisms contain type II portland cement. NR denotes a satisfactory reading could not be obtained.

Investigation of 4-1/2-in. Aggregate Concrete

In December 1968, 12 concrete prisms (18 by 18 by 36 in.) were installed on the Treat Island exposure rack. The purpose of this installation was to determine the durability of mass concrete containing 4-1/2-in. maximum size aggregate.

The prisms were made from six concrete mixtures (two prisms per mixture); the fine and coarse aggregates used in all mixtures were of a crushed limestone, maximum size 4-1/2 in. Each concrete mixture was airentrained ($5 \pm 1\%$) with a slump of $2 \pm 1/2$ in. Type II portland cement was used in all mixtures, and three mixtures also contained a replacement material (30% by solid volume). Water-cement ratios were 0.8, 0.9, or 1.0, by weight; cement factors varied from 1.84 to 2.40 bags per cu yd.

Table 1-4.5A lists these concrete specimens and gives their exposure record along with other pertinent information.

Record of Testing of Prisms Made for Investigation of 4-1/2-in. Aggregate Concrete

1968- (Installed Dec 1968)

								30	68-10°	72 Res	dings		Expos		
		Replacement	Water- Cement Ratio	Cement Factor bags/	0	Cycles, Pulse Veloc		Cyc	39 les 69	Cyc	92 :les	46 Cycl 197	es 1	19	les 72
Prism No.	Date Made	Material	by Wt	cu yd	<u>%E</u>	fps	<u>%v²</u>	%E	<u>%v2</u>	%E_	%v2	%E	16v2	%E	%v2
fix 1, Rd 1 Rd 2		None None	0.8	2.30	100 100	16,130 16,130		87 96	102 101	106 105	99 99	105 104	73 61	91 91	62 NR**
fix 2, Rd 1 Rd 2	Nov 1967 Dec 1967	None None	0.9	2.04	100 100	15,705		99 99	103 99	102 91	100 92	101 87	83 66		81 43
fix 3, Rd 1 Rd 2	Apr 1968 July 1968	None None	1.0	1.84	100 100	15,705		95 97	103 103	88 110	95 99	83 109	69 75	82 Failed	NR NR
fix 4, Rd 1 Rd 2		Fly ash* Fly ash*	0.8	2.40	100 100	16,440		93 89	104 99	122 120	98 96	108 116	76 79		86 91
fix 5, Rd 1 Rd 2	June 1968 July 1968	Fly ash*	0.9	2.14	100 100	15,790 15,669		95 90	111	106 103	107	106 103	86 84	99 100	96 65
	July 1968 July 1968	Fly ash* Fly ash*	1.0	1.94	100 100	15,625 15,545		101 97	102 107	65 105	97 96	Failed 103	78 75	Failed 84	58 84
									1973-1	977 Re	ading				
					758 Cy 197	3	894 Cy 197		10	06 Cyc 1975	cles	1152 Cyc			Cycle 77
					%E	%v ²	%E	%v2		%E	<u>%v²</u>	%E	<u>*v2</u>	%E	%v ²
fix 1, Rd 1 Rd 2		None None	0.8	2.30	77 NR	86	75 Failed	61		72	67	93	14	90	18
fix 2, Rd 1 Rd 2		None None	0.9	2.04	92 Failed	92	NR	98	Fa	iled					
fix 3, Rd 1 Rd 2		None None	1.0	1.84	NR Failed	NR NR	Failed								
fix 4, Rd 1 Rd 2		Fly ash* Fly ash*	0.8	2.40	101 107	98 103	92 100	92 96		92 .00	95 108	95 Failed	37		Faile
	June 1968 July 1968	Fly ash*	0.9	2.14	95 93	111 104	86 87	103 105		86 81	111 107	66 79	50 11	73 Failed	48
	July 1968 July 1968	Fly ash*	1.0	1.94	Failed	95 93	Failed NR	78	Fa	iled					

^{30%} replacement by solid volume; all prisms contain type II portland cement. NR denotes a satisfactory reading could not be obtained.

Sulfur-Infiltrated Concrete (Canadian)

Aggregates: Coarse, limestone, Ottawa

Fine, natural sand, Ottawa Valley, Ottawa

Admixture: Air-entraining, DAREX, W. R. Grace

Cement: Type I (CSA type 10), Canada Cement La Farge,

Hull, Quebec

Sulfur: 99.9 percent pure sulfur obtained commercially

(Ottawa)

Sulfur-Infiltrated Concrete (Canadian)

In January 1976, the Canada Centre for Mineral and Energy Technology received permission from the Office, Chief of Engineers, to install specimens of sulfur-infiltrated concrete at the Treat Island exposure station.

In August 1976, eighteen 4- by 8-in. cylinders and thirty-six 3- by 6-in. cylinders were installed at half-tide elevation on the exposure rack. The cylinders were made from nine different concrete mixtures that included air-entrained and nonair-entrained concrete. The fine and coarse aggregates were natural sand and 1/2-in.-maximum size limestone, respectively. Type I (CSA Type 10) portland cement was used in the mixtures. Tables 1, 2, and 3 contain pertinent data on mixtures and specimens. Table 1-SIC contains the exposure records of installed specimens.

In July 1977, 15 sulfur-infiltrated precast concrete elements were installed as additions to the program. Pertinent data on these specimens will be included as the information becomes available.

(Issued August 1977)

Table 1

Mix Data and Properties of Uninfiltrated Concrete Specimens

										Prope	rties of (Uni	Properties of Hardened Concrete (Uninfiltrated)	ed Concre	ete
			W	Mix Data							ж-К	3- × 6-in.	F	- × 8-in.
		Fine/		M			Prop	Properties of Fresh Concrete	qse	1-Day	Cylinder	nder	Cylinder	Cylinder
Mix No.	Size in.	Coarse	Content 1b/cu yd		Aggr/ Cement	AEA cc/cu yd	Slump in.	Unit Weight 1b/cu yd	Air %	Density 1b/cu yd	Strengt 48-hr	Strength, psi 48-hr 28-day	Streng 48-hr	Strength, psi 48-hr 28-day
						Nonair-Entrained Concrete	trained	Concrete						
81	1/2	50/50	760	69.0	4.9	1	5-1/2	3953	5.6	148	1260	3615	1375	3860
82	1/5	20/20	444	0.68	7.2	1	a	3942	2.8	148	1450	4030	1530	3920
83	1/5	20/20	143	0.68	7.2	1	2-1/5	3931	5.9	148	1505	4545	1410	3940
78	1/5	20/20	111	99.0	7.2	1	2-1/4	3942	2.5	148	1275	4035	1275	3840
85	1/5	20/20	777	0.68	7.2	1	1-3/4	3942	2.1	148	1380	4105	1375	3890
						Air-Entrained Concrete	ained Co	oncrete						
98	1/5	50/50	414	0.61	7.2	80	3-1/2	3650	8.0	137	1090	3890	1275	3600
87	1/5	20/20	h21	0.68	7.2	8	4-1/2	3737	8.0	138	1060	3060	1255	2895
88	1/5	20/20	384	79.0	7.9	80	3-1/2	3672	8.2	137	885	2725	1015	2630
89	1/5	20/20	392	79.0	4.7	80	3-1/5	3748	7.0	139	1025	2830	1095	2790

* Average of two specimens.

(Issued August 1977) Table 2 Infiltrated 3- × 6-in. Cylinders

Specimen No.	Density lb/cu yd	Sul	_fur _%*_	48-hr Compressive Strength psi
81-5 81-6 81-7** 81-8** 81-9** 81-10**	157.4 156.9 156.5 156.6 157.2 156.8	187 184 180 169 201 197	11.8 11.7 11.6 11.0 12.9	11,040 10,475
82-5 82-6 82-7** 82-8** 82-9** 82-10**	157.7 158.0 157.8 157.7 157.8 157.9	191 197 198 202 199 197	12.3 12.8 12.8 12.9 12.7 12.9	11,605 11,180
83-5 83-6 83-7** 83-8** 83-9** 83-10**	156.6 157.2 157.8 157.2 157.4 157.7	197 203 200 204 207 198	12.6 13.2 12.8 13.0 13.4 12.7	11,040
84-5 84-6 84-7** 84-8** 84-9** 84-10**	158.2 156.2 158.5 158.5 158.5	200 205 204 199 205 204	12.7 13.2 13.4 13.0 13.5	10,970 11,325
85-5 85-6 85-7** 85-8** 85-9** 85-10**	157.6 158.2 158.4 158.2 158.2	209 206 203 194 207 210	13.6 13.3 13.1 12.3 13.1 13.5	12,170 11,605

(Continued)

Weight of sulfur/weight of dry specimen. Exposed Treat Island specimens.

(Issued August 1977) Table 2 (Continued)

Specimen	Density lb/cu yd	Sul	.fur _%*	48-hr Compressive Strength psi
86-5 86-6 86-7** 86-8** 86-9** 86-10**	151.2 151.5 150.3 150.2 151.3	223 237 236 226 239 252	15.0 16.2 16.1 15.6 16.5 17.9	10,190 9,910
87-5 87-6 87-7** 87-8** 87-9** 87-10**	155.0 155.4 154.5 155.0 154.9 155.6	283 276 286 284 285 282	19.6 19.0 19.9 19.6 19.7	12,030 11,750
88-5 88-6 88-7** 88-8** 88-9** 88-10**	155.1 155.2 155.0 155.1 155.0 154.9	293 284 281 291 294 288	20.4 19.5 19.7 20.5 20.5 20.3	12,030 11,890
89-5 89-6 89-7** 89-8** 89-9**	155.2 155.2 155.9 155.5 155.7	287 276 279 277 276 278	20.4 19.3 19.1 19.2 18.9 19.6	11,040 11,180

Weight of sulfur/weight of dry specimen. Exposed Treat Island specimens.

(Issued August 1977)

Table 3

Infiltrated 4- × 8-in. Cylinders

Specimen	Density lb/cu yd	Sul	fur %	48-hr Compressive Strength psi
81-5	154.0	394	10.6	10,110
81-6*	153.5	369	9.9	
81-7*	153.9	386	10.4	
82-5	156.0	435	11.7	10,030
82-6*	155.2	416	11.1	
82-7*	156.1	438	12.0	
83-5	154.6	398	10.6	10,030
83-6*	153.8	388	10.7	
83-7*	154.1	411	11.1	
84-5	155.4	409	11.0	10,670
84-6*	155.3	401	10.9	
84-7*	155.9	412	11.1	
85-5	157.8	415	11.3	11,385
85-6 *	157.4	449	12.3	
85-7 *	156.9	447	12.3	
86-5	153.1	518	14.9	7,800
86-6*	146.2	446	13.1	
86-7*	146.3	460	13.2	
87-5	153.1	614	18.1	11,545
87-6*	154.0	641	18.6	
87-7*	152.4	591	17.1	
88-5	152.0	619	18.5	10,030
88-6*	152.2	604	17.5	
88-7*	152.5	592	17.2	
89-5	155.9	660	18.8	11,465
89-6*	156.0	638	18.3	
89-7*	155.7	641	18.6	

^{*} Exposed Treat Island specimens.

(Issued August 1977)

Table 1-SIC

Section 15

Sulfur-Infiltrated Concrete Specimens (Installed August 1976)

				Exposure Rack, Row 9
Specimen No.	O Cycles, 1976 Pulse Veloc, fps	77 Cycles, 1977	1976- Readings	
			4- × 8-in. Cylinders	
81-6	14,620	96		
82-6	15,360	89		
83-6 84-6	15,360	93 87		
85-6	15,505 16,500	79		
86-6	14,185	80		
87-6	15,875	83		
88-6	15,505	86		
89-6	16,105	85		
81-7	15,150	88		
82-7 83-7	16,835 15,360	77 89		
84-7		87		
85-7	15,875 16,665	81		
86-7	13,550	101		
87-7	16.180	78		
88-7 89-7	15,505 16,025	87 85		
09-1	10,02)	0,	3- × 6-in. Cylinders	
81-7 81-8	15,150 14,880	110 120		
81-9	14,970	109		
81-10	15,060	108		
82-7	15,245	108		
82-8	15,430	106		
82-9	15,625	107		
82-10	15,625	107		
83-7 83-8	15,060 15,245	108 105		
83-9 83-10	15,335 15,245	104 102		
84-7	15,245	112		
84-8	15,825	98		
84-9	15,825	111		
84-10	15,430	109		
85-7	15,825	104		
85-8	15,430	109		
85-9 85-10	15,430 15,060	109 115		
86-7 86-8	13,890 14,285	112 106		
86-9	14,970	97		
86-10	14,795	112		
87-7	15,150	110		
87-8	14,705	117		
87-9	14,705	117		
87-10	14,705	109		
88-7 88-8	14,970 14,880	109 120		
88-9 88-10	14,705	109		
88-7	14,880 14,880	120 113		
89-8	14,970	102		
89-9	14,795	102		
89-10	14,970	102		

Roller Compacted Concrete

North Pacific Division - Walla Walla District

Aggregates: Coarse - natural minus 3-in. pit-run gravel, Benton County Pit. Fine-Benton County pit-run sand.

Air-Entraining Admixture: Neutralized vinsol Resin (NVX), Hercules Powder Co.

Cement: Sun Types I and II, Oregon Cement Co., Lime, Oreg.

Roller Compacted Concrete

U. S. Army Engineer Division, North Pacific, U. S. Army Engineer District, Walla Walla, CE.

In July 1977, six roller compacted concrete beams (12 by 12 by 36 in.) were installed on the Treat Island exposure rack for the North Pacific Division Materials Laboratory. The mixes, No. 17257 and No. 17258, are considered as interior and exterior mixes, respectively, and were designed and tested for Zintel Canyon Optimum Gravity Dam (Walla Walla District), Kennewick, Wash. Portland cement types I and II and air-entraining admixture were used in both mixtures. Fine and coarse aggregates used were pit-run sand and gravel (natural minus 3 in.). Table 1-RCC gives the exposure record of the beams. More mixture data are given below:

Mix No.	Cement Content lb/cu yd	Water/ Cement Ratio	Vebe sec	A.E.A. ml/cu yd	Air Con- tent	Theore- tical Unit Weight lb/cu ft		essive th, psi 90-day
17257	100	1.95	11	2000	2.4	153.8	610	1090
17258	200	0.98	17	1700	1.2	154.4	1920	2280

Table 1-RCC

Record of Testing for Roller Compacted Concrete

(Installed at Treat Island in August 1977)

						Exposure	Rack,	Row	6
	1			1977-	Readings				
	0	Cycles, 19	77						
Beam No.	%E_	Pulse Velocity fps	%v ²						
17257-7	100	13,160	100						
17257-8	100	12,930	100						
17257-9	100	13,045	100						
17258-7	100	14,020	100						
17258-8	100	14,150	100						
17258-9	100	14,425	100						

Longtime Study, Waterways Experiment Station*

This study was initiated in FY 1955 in cooperation with the Portland Cement Association to investigate the durability of concretes containing selected cements. Eighteen beams (3-1/2 by 4-1/2 by 16 in.) were made with each of 22 cements, the cement factor being 6.0 bags per cu yd. The aggregates were a manufactured limestone sand and a limestone coarse aggregate. Resin soap was used as an air-entraining admixture in the amount necessary to give an air content of $6 \pm 1/2\%$.

In July 1955, half of these beams (198) were installed on the exposure rack at Treat Island, and the other half were installed on the exposure rack at St. Augustine in August 1955.

Table 1-LTS lists the specimens exposed at Treat Island and gives their exposure record along with their cements.

Table 2-LTS lists the specimens exposed at St. Augustine and gives their exposure record along with their cements.

Testing of specimens exposed at St. Augustine exposure station was discontinued after the 1970 inspection.

^{*} See U. S. Army Engineer Waterways Experiment Station, CE, Cement Performance in Concrete, by Bryant Mather, Technical Report No. 6-787 (Vicksburg, Miss., September 1967).

(Revised Aug 1964) Table 1-LTS (Continued)

											1055	-1964	Read	inge				Expos	ure R	ack,	Row 3	(W t	o E)
Spec-	Cem	ent Pro-	0 0	ycles, 1 Pulse	955		les	31 Cyc	les	38 Cyc	2 les	53 Cyc	2 les	60 Cyc	les		les	Cyc		Cyc	39 les	Cyc	
imen No.	Туре	gram No.	%E	Veloc fps_	%v2	19 %E	%v ²	19 %E	%v ²	19	%v ²		%v ²	%E	60 6v ²	%E	61 %v ²	%E	62 % v ²	%E	63 %v ²	19 %E	<u></u> €v ²
5741C	III	33†	100	15,080	100	104	98	103	107	110	108	111	93	112	101	106	100			-	101	111	103
5742C 5743C			100	14,980 15,080	100	106	99 99	105 102	107	111	116 113	112 109	92 95	113	104	106	99	109	111	112	121	112	104
5744c 5745c 5746c	I	14**		15,645 15,535 15,465	100 100 100	119 106 107	96 96 99	118 107 105	105 105 104	126 114 113	108 113 115	125 113 113	90 92 93	125 114 114	103 104 106	116 107 108	94 95 100		105 110 109	122 112 114		121 112 113	105 105 112
5747C 5748C 5749C	II	24**	100 100 100	15,180 15,215 15,320	100 100 100	111 111 108	103 103 102	109 110 107	107 106 108	117 117 114	115 112 112	118 118 114	94 - 91 89	118 118 115	106 104 105	112 111 109	106 103 100		113	115 118 117	113	117 117 113	110 103 101
5750C 5751C 5752C	I	19A	100	14,680 14,650 14,715	100 100 100	114 113 113	105	113 112 113	112	120	120 114 120	120 121 122	96 97 102	121 122 123	108 110 112	115 117 117	105 105 109	120 118 122	117 114 113	122 126 123	121 123 116	126	113 114 117
5753C 5754C 5755C	I	18	100 100 100	15,115 15,115 15,045	100 100 100	113 112 110	107 104 107	111	112 111 109	118 118 116	116 118 117	119 119 117	96 96 94	119 119 118	110 108 108	112 113 113	103 107 108	114 115 116	118 119 119	114 118 119	123 121 124	112 113 115	104 102 110
5756C 5757C 5758C	IV	43*	100 100 100	14,650 14,810 14,980	100 100 100	117 116 114	110 108 106	116 116 112	115	124 123 120	121 121 120	125 124 121	98 97 98	125 124 120	109 107 107	118 116 114	112 107 101	121 118 116	118 118 116	127 121 117		126 120 115	114 111 109
5759C 5760C 5761C	II	2211	100	15,465 15,465 15,395		111 112 119	105 107 108	110 109 117		117 117 125	120 118 121	117 119 127	94 94 95	119 120 128	106 107 105	113 115 123	100 118 108	117 118 128	119 116 109	120 119 129	109 105 106	120 119 128	110 109 107
57620 57630 57640	IV	43*		14,945 15,150 15,150	100	117 117 114		116 115 113	111	123	124 121 118	124 122 121	95 97 95	124 122 122	108 107 107	117 114 116	110 108 106		118 117 117	121 112 120	113 127 119	121 112 122	113 110 107
57650 57660 57670	II	25†	100 100 100	15,150 15,395 15,535	100 100 100		114 110 107	111		120	115 119 114	118 121 118	101 94 89	119 122 118	108 106 103	113 116 114	103 104 100	115 120 115	113 116 113	118 125 117	118 115 112	117 121 116	109 107 104
5768C 5769C 5770C	II	23	100 100 100	15,755 15,795 15,830	100 100 100	105 107 105	106 103 96	104 105 104	109	110 112 110	109 108 107	112 113 111	89 85 86	112 114 112	104 101 101	107 108 108	101 100 100		109	114	104 101 106	106 111 110	101 100 98
5771C 5772C 5773C	I	17	100	15,755 15,505 15,395	100 100 100	106 106 104	103	104 105 102	106	110 112 108	108 111 117	111 112 108	90 90 89	112 113 107	99 103 104	108	100 104 103	112	111 113 101	107 112 106	107 117 117	108 112 101	99 104 103
5775C 5775C 5776C	IV	43A*	100 100 100	14,845 14,845 14,585	100	118 118 122	101 116 122			125 124 129		127 125 130	100	128 126 133	102 114 118	121 119 126		123 123 129	127	125 125 132	133 133 118	126 124 132	118 120 122
5777C 5778C 5779C	I	16	100	15,150 15,320 15,430	100 100 100	107 108 109	108	105 107 107	111	113 114 114	119 118 118	116 115 116	91	115 116 117	107 106 106	110 109 111	110 103 105	114 113 115	103 104 112	116 115 116	122 128 111	117 115 119	112 104 102
5780C 5781C 5782C	III	31++	100 100 100	14,980 14,910 14,945	100 100 100	106 109 109	106 107 105		109	111 112 114	115 119 116	113 111 114	97 96 92	113 113 115	108 107 108	107 108 112	111 109 105		110 112 106	115 119 123	118 108 118	114 117 124	102 106 106
5783C 5784C 5785C	III	33†	100	15,115 15,115 15,355	100	105	102	104	104	109	111	113	91	113 113 112	103	108	102	114 114 113	107	116	115	115 118 116	107 109 107
5786C 5787C 5788C	I	12++	100	15,680 15,720 15,755	100	105	105	102	109	108	116	108	92	106 107 111	104		102		104	102	105 112 109	102	
5789C 5790C 5791C	I	19В	100	15,795 15,355 15,505	100	105	106	104	108	110		111	90	112 110 111	102	107 105 105	101	112 109 108	115	111	109	113 111 109	109
57920 57930 57940	I	19C	100	15,570 15,505 15,285	100	106	103	104	104	111 110	114	113 111	93	114 112 112	98 96 104	107 106 109	101	111 110 124	96	112	99 95 108	113 114 129	96 95 103

^{**} Cements 43 and 43A made at same plant.

** Cements 14, 24, and 41 made at same plant.

† Cements 25 and 33 made from same major raw materials.

†† Cements 12, 22, and 31 made at same plant.

(Revised Aug 1964) Table 1-HTS (Continued)

											1055	-1964	Read	ings		Exposure Rack, Row 3 (W to E)							
Spec-	Cem	Pro-	00	ycles, 1 Pulse	955	16 Cyc 19	les	31 Cyc 19	les	38 Cyc 19	2 les	53 Cyc 19	2 les	60	les	74 Cyc 19	les		3 les 62		9 :les :63	Cyc	074 cles 964
No.	Type	No.	%E	Veloc fps	%v2	%E	%v ²	%E	%v2	%E	2	1/E	2	%E	%v ²	9€E	%v2	<u>4</u> E	% v ²	%E	%v2	%E	%v2
5795C 5796C 5797C	I	14**	100 100 100	15,720 15,985 15,795	100 100 100	105 100 101	99 97 101	104 99 100	101 99 100	104	112 111 111		87 85 88	111 106 104	97 95 88	106 101 100	97 96 101	122 104 103	107 105 106	124 106 106	107	123 103 101	101
5798C 5799C 5800C	I	11	100	15,645 15,720 15,720	100	105 108 106		104			111 113 115		89 87 88	110 115 113	101 100 98	105 110 108	103 99 105	108 114 112	107 107 105	113 120 115	105 108 112	112 117 115	101
5801C 5802C 5803C	II	21	100 100 100	15,335 15,570 15,830	100		101 100 97	105 105 104	104	113 111 109	115 117 110		95	114 111 111	106 97 100	109 106 106	97 103 99	113 108 109	106 108 107	116 110 110	112 107 98	115 110 110	100
5804C 5805C 5806C	v	51	100 100 100	15,795 15,465 15,535		107 107 107	99 104 101	105 107 106	105	113	115 118 115	113 115 114	93	113 114 113	101 104 103	107 107 106	97 103 103	109 110 109	103 118 114	109 111 108	112 115 104	110 111 108	100 98 93
5807C 5808C 5809C	I	18	100 100 100	15,680 15,465 15,180	100	102 108 106	101 104 105	107	101 102 105			107 115 112	95	106 115 111	101 103 105	101 112 106	101 112 106	102 115 109	116 115 118	103 119 113	113	101 117 109	91 93 97
58100 58110 58120	II	24**		15,465 15,570 15,570	100		101 102 101		102	109 108 113	107 108 108	108 108 114	89 89 89	107 107 113	99 98 96	101 101 107	99 97 99	106 105 110	106 106 108	107 107 115	109 99 110		93
5813C 5814C 5815C	I	13	100 100 100	15,505 15,795 15,535	100	106 105 106	104 100 103	105 103 105		112 109 109	114 109 116	112 108 110	90 87 92	111 105 108	101 96 97	104 97 100	99 91 95	108 98 104	100 109 109	109 99 102	107 101 104	108 96 105	99 98 100
5816C 5817C 5818C	IV	41**	100 100 100	15,285 15,795 15,355	100	111 106 108	106 98 100	110 105 107	106 99 102	115 110 111	109 105 1 1 6	117 111 113	95 89 91	117 112 113	104 96 101	111 105 108	98 95 103	115 108 111	110 107 109	122 110 111	103 112 112	117 110 111	100
5819C 5820C 5821C	I	19A	100 100 100	14,910 14,945 14,910	100	108 110 112	107 108 109		105 103 115		122 120 122	113 118 120	91 97 96	115 118 121	104 104 107	109 113 115	105 103 110	113 118 120	115 106 118	117 121 122	113 103 113		104 111 101
5822C 5823C 5824C	I	15	100 100 100	15,795 15,720 15,680	100	102 101 103	100 102 103	101 99 102	101 100 101	102	113 106 112	105 103 107		106 104 109	98 101 98	100 99 103	99 97 92		113 112 111	106 103 106	111 107 105	105 102 105	98 106 99
58250 58260 58270	I	19C	100 100 100	15,250 15,320 15,215	100 100 100	103 104 104	105 104 106	102 103 104		106 106 107	103 111 116	107 108 109	94 93 94	110 110 110	103 100 104	105 105 105	103 101 110	108 109 109	112 116 112	112 111 111	115 110 113	111 112 109	103
5828C 5829C 5830C	I	11	100 100 100	16,020 16,060 15,535		101 99 102	101 98 105	99 98 101	97 97 102	105 102 105	108 110 117	107 104 107	85 87 100	109 106 106	101 96 103	105 102 101	97 98 98	108 105 104	102 99 110	111 109 107	117 110 104	110 106 108	102 99 102
5831C 5832C 5833C	I	19A	100 100 100	15,180 15,250 15,080		107 106 108	104 103 103	106 105 108	105 109 108	111 110 113	118 118 115	113 112 116	94 95 97	113 111 118	104 102 102	106 104 112	104 100 103	109 108 116	112 117 107	111 110 118	108 108 106	109 108 118	108
5834C 5835C 5836C	IV	43A*	100 100 100	14,845 14,945 15,535		113 112 111	110 111 101			119 117 117		121 120 119		121	110 109 101	114	109 110 104	118	115	118 119 115	114 120 107	119	118
5837C 5838C 5839C	I	18	100 100 100	15,610 15,320 15,570					103		114 117 115	116 114 112	95	115 116 112	98 105 99		100 105 115	114		115	117 110 104	116	104 103 95
5840C 5841C 5842C	I	15	100	15,720 15,755 15,645	100	104		102	98	107	112 110 108	110	91	106 110 107	99 98 100	99 104 99		107	106 95 102	106		100 106 97	93 92 92
5843C 5844C 5845C	III	33†	100	15,215 15,395 15,355	100	102 103 103	99 98 98	101		106	114 113 114	108	90	107 109 109	97 97 97	101 105 104	97		106 103 103	111		109	91 88 100
5846C 5847C 5848C	IV	43*	100	14,980 15,250 15,610	100	107	104	106	100	111	121 118 113	112	92	110	104	103	99	102	114 111 107	100	111	100	111

^{**} Cements 43 and 43A made at same plant.

** Cements 14, 24, and 41 made at same plant.

† Cements 25 and 33 made from same major raw materials.

Table 1-LTS (Continued)

-		-								-	1955	-1964	Read	ings											
Spec-	en		0 0	Pulse Veloc		16 Cyc 19	les 56	31 Cyc 19	les 57	38 Cyc 19	2 1es 58	53	les 59	60 Cyc	les 60	74 Cyc 19	les 61		1es 62		les 63	Cyc	174 eles 964		
No.	Туре	No.	<u>%</u> E	fps	%v2	% E	%v ²	%E	%v2	% E	%v ²	%E	%v2	%E	% v ²	% E	%v2	%E	%v2	%E	%v2	%E	%v ²		
5849C 5850C 5851C	I	16	100 100 100	15,985 15,680 15,830	100 100 100	100 105 105	92 97 96	100 105 105	92 99 93	103 109 109	117 116 117	104 113 110	89 90 90	107 114 111	103 101 98	103 109 107	95 102 96	106 111 110	109 107 111	106 116 111	99 110 117	107 116 109	100 102 100		
58520 58530 58540	I	13	100 100 100	15,505 15,795 15,535	100 100 100	106 105 107	99 97 97	106 104 107	105 102 106	110 108 111	122 115 119	112 111 113	93 90 93	111 110 113	102 96 101	105 104 107	99 100 93	110 109 110	114 106 103	110 108 111	110 111 112	110 108 106	102 99 108		
5855C 5856C 5857C	III	31++	100 100 100	15,045 15,115 14,910		105 103 103	105 99 105	103 101 101	105 92 104	105 105 104	93 118	108 104 107	94 92 96	109 103 108	104 101 103	104 98 102	98 96 105	107 97 105	107 96 106	107 100 108	114 110 113	106 99 107	108 102 105		
58580 58590 58600	II	24**	100 100 100	15,285 15,320 15,570	100 100 100	106 106 102	100 98 97	106 106 100	101 99 98	110 110 103	118 114 114	110 110 102	90 90 89	112 111 100	101 96 92	108 106 94	102 100 96	110 113 96	107 105 104	113 113 94	110 105 109	113 111 91	104 107 103		
58610 58620 58630	I	14**	100 100 100	15,320 15,795 15,465	100 100 100	105 104 105	102 98 100	103 103 105	100 96 102	108 108 110	118 110 116	109 109 111	92 85 90	108 108 111	96 92 99	101 104 106	94 92 93	105 108 109	105 99 108	105 111 110	110 101 110	104 108 110	99 100 105		
58640 58650 58660	II	23	100 100 100	15,610 15,645 15,905	100	104 102 101	98 98 91	103 102 100	100 101 98	107 106 105	115 113 115	109 107 107	89 87 88	109 105 105	99 99 102	104 98 98	98 96 96	107 101 101	101 103 101	109 100 102	107 113 109	107 100 100	103 95 93		
58670 58680 58690	II	21	100 100 100	15,180 15,250 15,180	100 100 100	105 107 107	105 101 104	105 107 106	105 103 101	110 112 112	117 120 120	112 114 114	94 92 94	111 113 115	106 103 106	107 107 110	104 104 106	109 111 113	107 107 109	109 112 115	115 115 115	109 109 113	109 108 108		
58700 58710 58720	I	19B	100 100 100	15,320 15,795 15,795	100 100 100	105 105 102	102 98 101	104 104 101	99 95 96	108 107 104	118 110 109	110 109 105	94 86 86	110 112 104	103 95 93	106 108 99	105 93 92	111 112 102	109 101 99	112 113 103	118 111 105	110 111 101	102 95 94		
5873C 5874C 5875C	I	12++	100 100 100	15,870 15,830 15,505	100	100 101 105	96 98 101	98 100 104	97 99 104	100 104 108	117 117 121	100 105 110	88 90 91	98 105 111	96 98 99	92 100 106	96 -92 100	94 103 110	98 111 110	92 104 113	100 105 110	92 100 112	91 101 107		
58760 58770 58780	v	51	100 100 100	15,285 15,320 15,180	100	106 106 111	104 102 100	106 105 112	107 105 108		123 121 124	115 112 119	94 94 97	115 111 121	102 103 108	108 103 115	106 100 105		115 113 116	110 106 117	119 119 118	109 103 118	110 104 111		
5879C 5880C 5881C	IV	41**	100 100 100	15,215 15,010 15,355	100	109 110 107	100 102 101	109 110 106		115 114 111	123 123 117	115 115 111	94 94 88	116 116 112	107 104 99	110 109 107	100 99 101	114 115 109	110 113 98	115 113 108	116 114 111	114 114 106	100 110 100		
5882C 5883C 5884C	I	17	100 100 100	15,795 15,535 15,570	100 100 100	104 106 103	94 98 98	104 104 102	96 101 99	108 110 106	113 122 117	110 112 109	90 93 99	111 112 110	96 100 101	104 107 105	99 99 97	108 109 109	106 103 107	106 110 110	106 107 112	103 110 107	103 101 99		
58850 58860 58870	II	25†	100 100 100	15,395 15,355 15,250	100 100 100	106 108 109	101 105 105	104 107 111		112	119 122 121	114 113 116	96 97 103	114 114 117	96 105 104	108 108 114	103 101 107	112	107 109 106	112 113 119	117 118 119	112 113 121	107 110 108		
5888C 5889C 5890C	II	22††	100 100 100	15,795 15,355 15,505		111 106 107	98 105 105	111 105 105		115 109 112			89 87 93	118 111 114	99 90 103	114 106 110	103	119 108 116	109 113 105	118 110 124	111 118 114	118 108 126	102 109 107		

(Continued)

^{**} Cements 14, 24, and 41 made at same plant.
† Cements 25 and 33 made from same major raw materials.
†† Cements 12, 22, and 31 made at same plant.

(Revised May 1976)

Table 1-LTS (Continued)

Section 17

(Installed at Treat Island in July 1955)

-	1237 1367 1523 1708								1965-1974 Readings 1862 2015 2184							2341 2481						
Spec-			Cyc	les 65	Cyc 19	les 66	Cyc	23 1es 67	Сус	les 68	Cyc	les 69	Сус	les 70	Сус	84 les 71	Cyc	41 1es 72	Cyc 19	les	26 Cyc 19	les
No.	Туре	No.	%E	%v ²	%E	%	%E	%v2	%E	%v ²	%E	%v ²	%E	%v2	%E	%v2	%E_	%v ²	%E	%v ²	%E	%v ²
56930 56940 56950	IV	43A*	121 118 114	127 125 121	122 120 115	131 129 129	120 115 113	125 123 121	119 120 111	133 136 128	116 115 107	122 123 109	116 119 105	113 112 99	114 1 1 9 97	* * *	109 115 95	:	110 123 95	:	109 115 99	:
56960 56970 56980	II	21	108 111 112	100 121 122	106 112 109	120 109 124	106 111 107	113 118 120	104 111 111	118 121 128	102 109 109	106 106 115	104 111 108	99 97 105	100 109 108	*	98 108 101	•	96 108 101	:	94 111 100	*
56990 57000 57010	IA	41**	116 116 111	119 119 113	113 114 111		112 114 109	114 112 108	113 115 111	125 115 117	111 114 107	107 107 105	112 115 107	95 98 96	114 115 107	* * *	107 113 105	:	107 110 104	:	108 110 103	:
5702C 5703C 5704C	I	16	104 103 103	108 112 105	106 102 102	103 111 109	103 102 100	100 102 104	101 101 102	110 111 111	101 99 100	94 94 94	99 98 102	88 84 82	99 98 ‡	* * *	103 101 108	:	96 95 111	:	93 91 112	:
5705C 5706C 5707C	V	51	104 99 100	115 122 118	104 101 98	109 115 114	102 99 96	112 111 107	100 95 93	123 121 117	98 94 91	102 102 101	101 91 91	91 93 90	94 83 83	‡ ‡ ‡	89 80 80	: :	84 83 75	:	89 90 73	:
5708c 5709c 5710c	I	13	96 107 109	127 120 117	97 103 109	100 122 122	96 102 106	110 111 108	94 101 107	116 118 116	94 99 105	98 100 105	97 102 104	88 92 92	95 100 103	* *	93 96 101	:	92 98 102	:	94 97 112	:
57110 57120 57130	I	11	113 112 114	115 116 111	113 112 114	121 109 110	113 112 113	109 108 105	114 113 111	111 109 110	112 111 110	107 104 100	112 114 114	91 95 90	111 * *	* * *	110 127 128	:	127 130 133	:	126 125 131	:
5714c 5715c 5716c	II	23	119 112 115	122 NR 115	119 114 115	121 114 106	119 114 115	115 109 108	121 116 118	121 119 112	119 116 116	102 103 96	122 120 119	94 94 90	130 125 127	‡ ‡ ‡	128 124 125	‡ ‡ ‡	130 129 130	:	135 127 129	:
57170 57180 57190	II	25 †	124 120 119	115 128 125	124 122 119	113 109 104	124 122 120	115 116 111	126 122 120	122 120 112	126 120 120	106 109 107	131 127 126	96 99 95	133 132 129	:	132 128 128	* * *	137 130 128	:	135 128 125	:
57200 57210 57220	I	19B	113 114 117	115 114 114	114 114 116	103 102 111	115 114 115	103 111 112	117 116 118	104 116 116	116 118 118	92 102 103	123 123 123	81 93 92	123 125 128	:	123 123 126	:	127 125 128	:	125 125 127	:
57230 57240 57250	I	19C	118 114 116	115 116 122	121 114 116	106 109 110	120 115 117	109 116 118	120 115 117	114 118 115	120 114 115	99 99 103	125 114 119	90 95 89	125 124 119	:	130 122 127	:	135 138 130	:	136 139 130	:
57260 57270 57280	I	12††	119 119 116	122 120 118	119 121 117	113	120 121 117	116 113 115	119 120 118	107 105 106	119 120 118	96 98 96	124 123 122	87 89 90	131 130 127	:	129 129 126	: :	130 131 133	:	131 129 133	:
57290 57300 57310	I	17	115 108 109	118 125 121	115 109 110	117	114 109 110	113 115 117	114 109 109	111 112 113	112 108 110	102 95 102	116 112 116	96 89 96	124 118 114	:	122 116 114	* *	129 123 116	:	128 128 115	:
5732C 5733C 5734C	III	31††	113 113 113	126 127 118	115 114 118		114 112 118	114 113 113	117 117 121	109 108 113	117 117 123	* * *	124 122 130	:	133 140 138	:	132 146 143	* * *	144 159 156	:	144 154 156	:
57350 57360 57370	I	15	106 100 102	116 118 115	110 100 101	106 107 99	111 99 101	110 110 112	111 101 103	102 112 108	112 100 103	* * *	116 102 105	:	124 108 108	:	126 105 102	:	126 110 110	:	131 102 109	:
5738c 5739c 5740c	11	22††	118 121 124	120 128 122	117 123 126	122 110 105	117 122 125	124	119 124 127	116 122 124	117 126 123	* * *	124 133 135	:	132 133 138	:	125 136 134	:	128 136 129	:	116 132 136	:

(Continued)

^{*} Cements 43 and 43A made at same plant.

** Cements 14, 24, and 41 made at same plant.

† Cements 25 and 33 made from same major raw materials.

†† Cements 12, 22, and 31 made at same plant.

NR Reading was not taken due to oversight.

‡ End of specimen too rough to obtain satisfactory reading.

(Installed At Treat Island in July 1955)

				307		<i>C</i> 7			-	700		965-19								0-		
Spec-	Cen	Pro-		37 les	Cyc	67 les 66	Сус	523 cles 967	Cyc	708 :les 968	18 Cyc 19	les	20 Cyc 19	les		84 les		341 eles	24 Cyc 19	les	26. Cyc. 19	les
No.	Туре	gram No.	%E	%v2	%E	%v2	%E	%v2	%E	%v ²	%E	%v ²	%E	%v2	%E	%v2	%E	%v2	%E_	%v2	%E	%v ²
5741C 5743C	III	33 †	109 112	126 106	111 115	101 106	111 115	120 117	114 116	109 116	114 118	#	120 122	:	‡ 123	‡ ‡	141 118	*	146 139	*	147 139	:
5744C 5745C 5746C	I	14**	116 110 113	109 117 119	120 113 113	103 107 120	118 113 114	108 109 114	118 113 114	109 115 122	119 115 115	‡ ‡ ‡	124 120 122	:	124 120 122	‡ ‡ ‡	119 115 113	:	119 117 115	* * *	114 117 Gone	*
5747C 5748C 5749C	II	24**	115 118 114	119 118 113	116 118 115	112 120 124	116 117 116	114 112 116		122 122 124	115 117 116	‡ ‡ ‡	122 124 123	* * *	122 126 121	‡ ‡ ‡	117 118 108	* * *	122 123 121	* * *	122 117 119	*
5750C 5751C 5752C	I	19A	121 126 123	125 121 123	122 128 127	132 136 128	121 128 127	121 118 122		104 112 116	120 131 127	‡ ‡	126 138 132	:	129 140 136	‡ ‡ ‡	131 133 137	:	128 126 133	:	129 127 131	*
5753C 5754C 5755C	I	18	110 111 114	120 127 118	110 114 112	110 116 123	112 115 112	99 111 112		100 103 108	114 115 112	‡ ‡	121 122 119	:	123 121 126	: :	118 115 118	‡ ‡ ‡	97 113 131	:	102 113 130	*
57560 57570 57580	IV	43*	124 120 117	130 125 121	124 122 118	129 127 124	124 122 117	120 116 118		117 117 111	126 122 117	‡ ‡ ‡	131 127 124	:	132 129 128	:	131 125 123	* * *	136 125 128	*	133 123 126	* *
57590 57600 57610	II	2211	119 119 129	113 121 123	119 118 133	125 125 109	119 117 132	112	118 117 132	113 113 114	117 117 133	* * *	124 124 138	:	130 125 142	:	123 124 139	:	114 126 139	:	110 131 134	*
5762C 5763C 5764C	IV	43*	121 110 122	125 122 121	123 113 123					117 111 112	123 113 124	:	130 120 131	:	130 120 137	:	118 119 130	# # #	130 120 130	* * *	118 132 124	*
57650 57660 57670	II	25 †	118 122 117	124 112 115	118 123 118	121 106 118	118 123 119	113	118 123 118	112 112 110	118 124 117	‡ ‡ ‡	127 131 123	:	129 131 125	:	127 129 123	‡ ‡ ‡	129 129 123	*	128 124 122	*
5768c 5769c 5770c	II	23	110 111 111	118 116 116	110 111 113			111		109 107 105	108 112 117	‡ ‡ ‡	114 116 124	:	120 122 126	:	116 116 126	:	118 119 131	:	116 116 134	*
5771C 5772C 5773C	I	17	106 109 104	122 116 120	105 111 105	116	106 112 106	110	106 111 102	100 104 106	107 112 104	* * *	109 116 100	:	109 115 104	:	107 111 104	* *	120 128 106	:	111 126 108	* * *
5774c 5775c 5776c	IV	43A*	127 122 135	126 118 135	127 122 132	107 117 118	127 122 131	120		123 114 131	127 123 135	: :	134 128 143	:	135 125 145	:	129 136 144	* * *	129 136 145	:	130 133 142	* *
5777C 5778C 5779C	I	16	119 110 117	126 124 NR	117 113 117		117 114 116	102 113 112	117 114 117	102 113 111	119 115 115	‡ ‡ ‡	126 119 117	:	126 122 125	:	123 118 126	*	124 124 125	:	122 117 130	:
5780C 5781C 5782C	III	31††	108 118 122	128 126 122	110 119 128	98 94 100	110 119 127	:	114 124 128	:	115 124 127	:	118 129 135	:	124 141 145	:	123 140 134	:	137 152 155	:	136 163 160	*
5783C 5784C 5785C	III	33 †	118 119 116	120 113 113	118 119 115		118 119 117	\$ 108 104	119 121 119	‡ 106 103	120 123 119	:	125 130 126	:	137 142 137	:	133 141 138	:	151 155 150	:	154 155 156	:
57860 57870 57880	I	12††	99 101 105	113 105 116	99 103 106	100	100 104 107		101	102 97 102	99 99 106	:	103 103 110	:	100 109 112	:	95 111 110	:	97 107 114	:	95 109 116	::
5789C 5790C 5791C	1	19В	113 111 111	112 119 108	113 110 110	107		101 108 105	109	101 107 105	111 110 111	:	115 116 115	:	121 118 116	:	112 126 115	:	123 126 140	:	128 130 118	:
5792C 5793C 5794C	I	19C	111 113 131		111 115 132	89	113 114 131	100	114 117 133	97 98 103	115 117 (Cont	:	119	:	126 134 148	:	120 133 148	:	129 123 124	:	130 125 128	:

^{**} Cements 43 and 43A made at same plant.

** Cements 14, 24, and 41 made at same plant.

† Cements 25 and 33 made from same/major raw materials.

† Cements 12, 22, and 31 made at same plant.

NR No reading taken due to oversight.

‡ End of specimen too rough to obtain satisfactory reading.

(Revised May 1976)

Table 1-LTS (Continued)

(Installed at Treat Island in July 1955)

Section 17

			70	200		7-							974 Re									
Spec- imen	Cen	Pro-	Сус	237 :les 965	13 Cyc 19	les	Cyc	123 1es 167	Cyc	708 :les 968	Cyc	162 :les 169	20 Cyc 19	les		84 1es 71	23 Cyc 19		Cyc	81 les 73	Cyc	17 :les :74
No.	Туре	No.	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v ²	%E	% v ²	%E	%v ²
57950 57960 57970	I	14**	124 104 104	101 104 109	125 105 104	102 96 103	126 107 105	97 95 101	127 106 103	97 94 99	128 105 103	* * *	133 109 109	*	133 113 111	:	135 111 112	:	135 113 111	*	135 111 107	:
5798c 5799c 5800c	I	11	112 120 117	123 115 116	112 120 119	96 104 104	113 120 120	105 102 101	113 121 122	104 102 101	114 120 121	:	118 122 125	:	126 130 135	:	126 130 135	:	126 139 140	:	125 138 141	:
5801C 5802C 5803C	11	21	116 110 110	123 104 118	116 110 110	109 101 94	116 109 110	106 87 98	114 109 108	104 95 96	116 110 108	:	120 110 112	:	121 114 113	* * *	121 113 110	:	124 114 114	:	124 111 115	:
5804c 5805c 5806c	V	51	110 113 107	103 121 121	110 111 109	99 98 95	111 110 108	99 99 103	110 111 106	96 100 102	108 111 107	:	112 118 107	:	113 119 103	*	114 120 105	:	112 113 101	:	115 115 98	:
5807C 5808C 5809C	I	18	101 117 110	114 117 114	101 119 107	93 108 95	103 118 108	95 ‡ ‡	102 121 109	93 *	104 122 111	:	108 129 115	:	108 139 117	: :	111 141 121	* * *	112 143 121	:	111 142 120	:
5810C 5811C 5812C	11	24**	106 105 115	117 107 111	106 105 113	92 90 95	106 107 113	94 92 106	103 103 114	94 92 104	105 102 115	:	109 102 117	:	107 109 121	: :	104 104 118	:	99 96 118	:	100 94 124	:
5813C 5814C 5815C	I	13	107 99 101	112 126 105	108 98 101		109 106 102	109 100 102	107 100 100	107 99 100	109 102 101	:	113 100 102	:	112 89 97	* *	105 94 93	‡ ‡ ‡	122 85 101	:	123 93 120	:
58160 58170 58180	IV	41**	120 109 112	110 109 116	120 109 111	119	120 110 112	105 101 107	120 108 111	103 100 105	118 109 113	:	123 113 113	:	129 114 115	:	124 111 109	:	122 109 122	:	120 114 119	:
5819C 5820C 5821C	I	19A	115 121 122	124 118 121	113 120 117		113 120 118	113 105 106	115 125 121	111 100 101	113 127 123	:	115 132 128	:	121 132 132	:	120 131 130	:	120 135 132	:	119 135 130	:
5822C 5823C 5824C	I	15	105 102 105	115 116 117	104 102 107		106 101 107	:	110 103 107	:	112 104 109	:	114 106 111	:	118 116 117	:	117 115 114	:	115 116 130	:	116 119 130	:
58250 582 6 0 582 7 0	I	19C	110 112 112	116 110 115	112 113 112		113 113 112	:	113 112 111	:	113 112 113	:	113 114 113	:	123 124 119	:	123 124 119	:	124 129 140	:	125 124 138	:
5828c 5829c 5830c	I	11	110 107 107	112 106 115	108 105 105	87	109 105 106	:	112 107 106	:	111 107 107	:	116 111 111	:	120 121 118	:	115 119 117	:	112 130 123	:	114 130 118	:
5831C 5832C 5833C	I	19A	109 108 118	120 118 123	110 108 118	92	112 108 119	:	109 107 119	:	111 109 120	:	115 109 125	:	113 129 115	:	108 122 109	:	113 128 114	:	115 127 116	:
5834C 5835C 5836C	IV	43A*	117 119 118	127 125 100	115 122 117	105	114 124 118	:	115 118 108	:	116 120 106	:	116 120 108	:	120 124 114	:	112 124 112	:	115 124 110	:	117 122 114	:
58370 58380 58390	I	18	108 114 107	108 112 116	111 114 111	100	110 115 112	:	108 118 106	:	109 120 107	:	111 122 105	:	119 137 109	:	115 135 105	:	122 150 111	:	124 153 111	:
5840C 5841C 5842C	I	15	98 104 97	105 97 103	98 108 97	79	99 110 99	:	101 108 97	:	102 108 99	:	102 108 101	:	112 117 109	:	111 113 106		123 124 110	:	123 122 113	:
5843C 5844C 5845C	ш	33 †	105 107 113	108 109 113	105 112 113	87	106 112 113	:	107 111 117	:	108 111 119	:	110 115 123	:	112 134 140	:	108 133 135	:	122 146 164	:	125 148 140	:
5846c 5847c 5848c	IV	43*	114 96 99	125 122 118	116 96 99	92	117 98 101	101 96 ‡	117 92 95	100 96 \$	119 92 95	:	124 96 95	:	131 92 87	:	129 90 84		129 86 84	:	129 88 89	:

(Continued)

^{*} Cements 43 and 43A made at same plant.

** Cements 14, 24, and 41 made at same plant.

† Cements 25 and 33 made from same major raw materials.

‡ End of specimen too rough to obtain satisfactory reading.

(Installed at Treat Island in July 1955)

					nistr.							965-1										
Spec-	Cem	Pro-	Cyc	37 :les :65	Cyc	67 :les 66	Cyc	23 :les :67	Сус	708 :les 968		162 1es	Cyc	15 les 70		.84 les	23 Cyc 19	les	Cyc	81 les	26 Cyc	les
imen No.	Туре	No.	%E	%v ²	%E	%v ²	%E	%v2	%E	%v ²	%E	%v ²	%E	%v2	%E	%v2	%E	%v2	19	%v ²	19 %E	%v ²
58490 58500 58510	I	16	106 115 107	110 120 126	110 117 107	96 105 103	110 117 107	* * *	106 116 105	::	108 117 104	*	110 121 106	:	113 123 112	: :	109 124 108	:	116 127 112	* * *	118 127 108	*
5852c 5853c 5854c	I	13	109 109 108	130 123 128	107 109 108	102 88 91	108 108 107	* * *	106 109 109	:	108 111 109	* * *	108 113 109	:	112 116 118	* * *	102 107 111	:	110 117 120	:	105 118 122	:
58550 58560 58570	III	31++	106 100 108	128 117 109	107 103 110	87 83 83	107 104 110	‡ ‡ ‡	108 107 117	:	110 107 117	*	112 109 122	:	134 121 140	:	136 119 132	:	152 119 163	:	155 121 163	:
5858c 5859c 5860c	II	24 **	115 113 89	111 116 111	113 113 86	90 98 90	112 113 84	95 100 101	114 111 80	94 96 97	115 113 80	* * *	115 113 84	:	121 117 77	* * *	115 115 74	:	122 117 69	:	127 119 69	:
58610 58620 58630	I	14**	103 108 109	116 111 114	102 108 109	100 101 108	102 107 109	99 94 98	100 108 108	98 92 96	102 108 110	:	102 108 108	:	102 117 112	:	90 111 110	:	92 115 110	:	100 116 115	:
5864c 5865c 5866c	II	23	107 97 99	116 116 114	107 97 97	106 96 97	108 97 97	* * *	105 93 95	*	107 91 93	*	105 93 95	:	107 93 97	:	99 85 89	:	105 91 89	:	109 78 97	:
58670 58680 58690	II	21	109 109 113	129 121 117	109 109 113	112 106 102	108 108 112	100 112 100	105 106 113	100 108 109	103 108 113	* * *	103 106 109	:	108 110 ‡	:	126 106 ‡	:	104 110 ‡	:	106	:
58700 58710 58720	I	19В	110 109 101	114 111 117	109 109 98	96 90 94	109 109 99	108 ‡ ‡	109 107 96	105 ‡ ‡	110 109 98	* * *	107 109 98	:	* * 94	:	102 101 90	:	112 114 93	:	112 118 99	:
58730 58740 58750	I	12††	90 100 112	111 109 122	88 100 113	93 79 87	88 100 112	* * *	86 99 113	‡ ‡	86 100 113	‡ ‡ ‡	88 102 117	*	84 110 122	:	81 105 122	:	84 107 126	:	87 109 126	:
58760 58770 58780	v	51	109 102 116	126 122 131	119 101 116	96 103 112	119 99 115	‡ 111 112	117 95 114	‡ 107 109	119 93 116	*	124 95 118	:	124 92 122	:	149 95 120	:	124 85 122	:	125 88 124	:
58790 58800 58810	IV	41**	114 112 106	122 124 116	112 114 107	109 104 100	112 113 107	113 117 109	112 111 103	109 114 105	114 113 105	* * *	116 113 105	:	117 115 107	:	117 112 103	:	116 111 103	:	121 112 105	:
5882C 5883C 5884C	I	17	106 110 109	115 114 114	108 108 108	90 91 92	106 107 108	103 ‡ ‡	106 109 110	101	104 110 112	* * *	104 110 114	:	116 118 121	:	113 115 119	:	112 123 122	:	112 125 124	:
58850 58860 58870	II	25t	111 111 119	110 119 127	112 112 120	104 104 108	110 111 118	‡ 107 103	108 109 120	‡ 102 100	108 111 120	:	112 113 122	:	112 113 131	:	109 109 125	:	112 113 132	:	113 113 134	:
5888c 5889c 5890c	II	2211	118 108 126	112 123 115	118 110 125	109 112 116	117 110 123	103 109 ‡	117 108 123	99 104 ‡	119 108 125	* * *	121 112 127	:	125 112 131	:	122 108 127	:	130 112 128	:	132 116 130	:

^{**} Cements 14, 24, and 41 made at same plant.
† Cements 25 and 33 made from same major raw materials.
†† Cements 12, 22, and 31 made at same plant.
‡ End of specimen too rough to obtain satisfactory reading.

(Revised August 1977)

Table 1-LTS (Continued)

(Installed at Treat Island in July 1955)

					onge	2050	 1975-	Readings	
Spec-	Cen	Pro-	Cyc.	les	2875 Cycles	2952 Cycles			1
men No.	Туре	gram No.	19'	5v ²	1976 %E	1977			
5693C 5694C 5695C	IV	43A*	125 121 105	*	137 121 123	Failed 135 95			
5696C 5697C 5698C	11	21	102 112 100	*	113 136 100	97 112 117			
5699C 5700C 5701C	IV	41**	110 111 106	* * *	107 108 107	108 128 107			
5702C 5703C 5704C	1	16	97 96 112	‡ ‡ ‡	106 101 112	122 102 117			
5705C 5706C 5707C	V	51	98 95 69	* * *	121 100 88	121 68 88			
5708C 5709C 5710C	I	13	93 101 114	* * *	99 102 114	91 99 125			
5711C 5712C 5713C	I	11	126 127 132	* * *	128 130 132	139 136 147			
5714C 5715C 5716C	11	23	135 128 129	* * *	137 129 132	139 136 132			
5717C 5718C 5719C	11	25†	136 130 126	‡ ‡	134 132 126	150 143 133			
5720C 5721C 5722C	I	19B	125 130 127	* *	127 137 128	133 138 135			
5723C 5724C 5725C	I	19C	136 139 130	‡ ‡	137 139 130	137 140 133			
5726C 5727C 5728C	I	12††	132 131 133	* * *	137 132 133	137 130 130			
5729C 5730C 5731C	I	17	128 130 118	* *	128 131 122	130 130 Failed			
5732C 5733C 5734C	ш	31++	144 154 156	* * *	Failed 154 156	Failed Failed			
735C 736C 737C	I	15	131 106 110	* * *	133 110 125	Failed Failed 110			
5738C 5739C 5740C	11	22††	117 132 136	‡ ‡	118 134 136	129 132 Failed			

Cements 43 and 43A made at same plant.
Cements 14, 24, and 41 made at same plant.
Cements 25 and 33 made from some major raw materials.
Cements 12, 22, and 31 made at same plant.
End of specimen too rough to obtain satisfactory reading. %V² data discontinued.

(Revised August 1977)

Table 1-LTS (Continued)

(Installed at Treat Island in July 1955)

	Cen	ent	27		2875 Cycles	2952 Cycles	1975-	Reading			
Spec-		Pro-	Cyc.		1976	1977				- 9	
No.	Туре	gram No.	%E		%E	%E					
741C 743C	III	33†	147 139	# #	150 113	Failed 140					
5744C 5745C 5746C	I	14**	115 119 Miss	‡ ‡ ing	114 121	144 119					
5747C 5748C 5749C	11	24**	124 118 113	‡ ‡ ‡	123 119 117	124 134 117					
5750C 5751C 5752C	I	19A	129 127 131	‡ ‡ ‡	130 132 133	135 132 133					
5753C 5754C 5755C	I	18	107 115 134	‡ ‡ ‡	Failed Failed Failed						
5756C 5757C 5758C	IA	43*	133 123 128	* * *	Failed 123 128	Failed 130					
5759C 5760C 5761C	11	22++	112 131 134	‡ ‡ ‡	112 133 139	127 141 135					
5762C 5763C 5764C	IV	43*	120 132 125	‡ ‡	122 133 125	120 132 125					
5765C 5766C 5767C	11	25†	129 124 124	‡ ‡ ‡	130 126 124	128 Failed 126					
5768C 5769C 5770C	11	23	118 119 133	‡ ‡ ‡	120 120 133	119 119 122					
5771C 5772C 5773C	I	17	116 126 110	* * *	116 124 112	116 120 112					
5774C 5775C 5776C	IV	43A*	130 133 142	* * *	128 134 141	160 137 142					
5777C 5778C 5779C	I	16	124 119 130	* * *	132 120 124	133 115 123					
780C 781C 5782C	III	31++	136 163 160	* * *	Failed Failed Failed						
5783C 5784C 5785C	III	33†	157 155 156	*	Failed Failed Failed						
5786C 5787C 5788C	I	12++	107 111 117	*	110 115 117	110 117 122					
5789C 5790C 5791C	I	19B	129 130 119	*	130 125 119	112 133 114					
792C 793C 794C	I	19C	131 101 128	:	130 103 132	126 103 133					

^{*} Cements 43 and 43A made at same plant.

** Cements 14, 24, and 41 made at same plant.

† Cements 25 and 33 made from same major raw materials.

†† Cements 12, 22, and 31 made at same plant.

‡ End of specimen too rough to obtain satisfactory reading. \$V^2 data discontinued.

(Installed at Treat Island in July 1955)

								1975-	Readin	gs	7	
Spec-	Cem	Pro-	27 Cyc 19	les	2875 Cycles 1976	2952 Cycles 1977						
No.	Туре	gram No.	%E	<u>₹</u> v ²	\$E	%E						
5795C 5796C 5797C	I	14**	135 112 107	* * *	130 113 106	128 155 107						
5798C 5799C 5800C	I	11	125 142 141	*	119 142 146	119 142 130						
5801C 5802C 5803C	11	21	124 112 116	*	122 113 116	124 115 116						
5804C 5805C 5806C	v	51	116 115 99	*	116 115 103	120 Failed 108						
5807C 5808C 5809C	1	18	112 142 120	‡ ‡ ‡	115 152 123	116 147 111						
5810C 5811C 5812C	11	24**	102 95 125	‡ ‡ ‡	108 104 126	107 103 128						
5813C 5814C 5815C	I	13	123 94 122	‡ ‡	116 102 124	114 102 125						
5816C 5817C 5818C	IV	41**	125 115 120	*	126 116 117	127 117 119						
5819C 5820C 5821C	I	19A	119 135 130	*	117 137 129	118 137 Failed						
5822C 5823C 5824C	Ì	15	117 119 131	* * *	115 125 136	Failed 97 131						
5825C 5826C 5827C	I	19C	130 126 138	* *	135 126 143	130 129 143						
5828C 5829C 5830C	I	11	116 130 120	:	114 137 123	113 130 124						
5831C 5832C 5833C	I	19A	117 129 120	:	121 129 139	Failed 130 128						
5834c 5835c 5836c	IV	43A*	119 122 118	:	122 127 126	Failed Failed Failed						
5837C 5838C 5839C	1	18	124 153 115	:	130 166 121	Failed 155 132						
5840C 5841C 5842C	I	15	124 122 114	:	Failed Failed Failed							
5843C 5844C 5845C	111	33†	125 148 141	:	Failed Failed Failed							
5846C 5847C 5848C	IV	43*	131 90 91	:	Failed Failed Failed							

(Continued)

^{*} Cements 43 and 43A made at same plant.

** Cements 14, 24, and 41 made at same plant.

† Cements 25 and 33 made from same major raw materials.

‡ End of specimen too rough to obtain satisfactory reading. ** Add to the specimen too rough to obtain satisfactory reading.

Table 1-LTS (Continued)

(Installed at Treat Island in July 1955)

			0.3.3					1975-	Readings		
Spec- imen	Cem	Pro- gram			2875 Cycles 1976	2952 Cycles 1977					
No.	Type	No.	%E	%v2	%E	%E					
5849C 5850C 5851C	I	16	119 127 114	‡ ‡ ‡	124 127 115	118 129 114					
5852C 5853C 5854C	I	13	106 119 123	*	103 120 131	101 120 134					
58550 58560 58570	ш	31++	155 123 162	‡ ‡	166 Failed 178	158 Failed					
58580 58590 58600	11	24**	127 121 70	* * *	132 122 62	132 Failed 128	**				
5861C 5862C 5863C	I	14**	96 116 115	* * *	91 115 118	97 117 105					
5864c 5865c 5866c	11	23	114 77 97	* * *	117 79 102	114 77 Failed			\ 		
5867C 5868C 5869C	11	21	108 112 *	‡ ‡ ‡	110 116 Failed	112 118					
5870C 5871C 5872C	I	19B	114 120 99	* * *	117 125 107	124 127 109					
5873C 5874C 5875C	I	12††	87 109 127	‡ ‡	92 112 123	92 112 124					
58760 58770 58780	V	51	125 88 123	:	127 95 126	127 Failed 128					
5879C 5880C 5881C	IV	41**	121 113 106	*	124 114 115	125 114 135					
5882C 5883C 5884C	I	17	114 125 123	:	112 123 124	112 123 125					
58850 58860 56870	11	25t	114 115 134	*	114 113 135	146 119 136					
5888C 5889C 5890C	II	2211	132 117 130	*	135 120 133	134 152 158					

cements 14, 24, and 41 made at same plant.

† Cements 25 and 33 made from same major raw materials.

†† Cements 12, 22, and 31 made at same plant.

‡ End of specimen too rough to obtain satisfactory reading. **X² data discontinued.

Table 2-ITS

Record of Testing of Concrete Beams, Longtime Study, WES

St. Augustine Exposure

1955- (Installed Summer 1955)

				1055							1955	- 1960	Read	ings									
pec-	Cem		-	1955 Pulse	_	19	56	19	58	10	960	10	62*	10	64*	10	66 *	20	68*	10	70*		
men No.	Туре	LTS No.	%E	Veloc fps	%v2	%E	%v2	%E	2v2	%E	%v ²	Æ	2	%E	%v ²	%E	%v ²	%E	%v2	%E	%v ²	%E	16v2
891D 892D 893D	IV	43A**	100 100 100	15,255 15,575 15,220	100 100 100	105 106 106	108 100 109	110 108 111	108 101 105		110 104												
972D 973D 974D	IV	43A**	100 100 100	15,290 15,290 14,715	100 100 100	106 109 117	110 98 122	108 112 122	113 111 122	118 121 133	109 108 119												
032D 033D 034D	IV	43A**	100 100 100	15,540 16,105 16,065	100 100 100	108 100 100	=======================================	112 97 100	103 97 100	122 106 109	106 100 101												
894D 895D 896D	II	21	100 100 100	15,360 15,470 15,910	100 100 100	110 104 102	109 105 100	115 107 105	107	124 111 105	110 105 97												
999D 000D 001D	II	21	100 100 100	15,800 15,615 15,950	100 100 100	97 101 99	103 106 101	99 103 98	101 101 100	108 109 105	106 104 100												
065D 066D 067D	II	21	100 100 100	16,220 16,105 15,835	100 100 100	99 102 102	::	104 92 108	96 95 97	114 100 115	98 99 101												
897D 898D 899D	IV	41+	100 100 100	15,725 15,800 15,875	100 100 100	102 105 103	98 99 100	105 104 107	99 99 100	113 118 113	99 100 99												
014D 015D 016D	IV	41+	100 100 100	15,360 15,505 15,650	100 100 100	112 107 103	::	116 110 100	106 105 103	121 114 106	102 105 101												
077D 078D 079D	IV	41+	100 100 100	15,950 15,725 15,725	100 100 100	98 104 105	::	103 108 110	95 97 98	111 118 119	101 91 102												
900D 901D 902D	I	16	100 100 100	15,910 15,985 15,910	100 100 100	96 95 96	98 98 100	99 98 98	101 99 101	99 104 102	102 99 102												
975D 976D 977D	I	16	100 100 100	15,150 15,255 15,505	100 100 100	107 108 107	106 108 108	116 111 111	113 109 109	128 120 120	109 107 103												
047D 048D 049D	I	16	100 100 100	16,460 16,260 15,985	100 100 100	100 101 105	=======================================	97 99 105	93 94 99	103 108 111	93 98 101												
903D 904D 905D	v	51	100 100 100	15,800 15,800 15,835	100 100 100	101 102 102	101 102 101	103 105 105	103 105 105	111 111 112	101 103 98												
002D 003D 004D	V	51	100 100 100	15,985 15,835 15,615	100 100 100	100 102 104	102 97 105	101 103 106	97 103 104	107 109 113	103 100 102												
074D 075D 076D	V	51	100 100 100	15,760 15,725 15,835	100 100 100	105 111 108	=======================================	110 112 108	104 105 104	120 123 119	106 107 105												
906D 907D 908D	I	13	100 100 100	15,950 15,910 15,685	100 100 100	100 102 104	101 100 102	103 103 109	107 108 109	110 108 117	99 100 105												
011D 012D 013D	I	13	100 100 100	15,910 15,760 15,505	100 100 100	102 104 104	::	103 104 106	99 103 103	110 111 114	98 103 105												

⁻⁻ Dashed lines in "%v2" column in 1956 indicate that pulse velocity readings were not taken that year due to breakdown of

⁻⁻ Dashed lines in 'v column in 1990 indicate that pulse velocity readings were not taken that year due to breakdown of electronic equipment.

* The information obtained at the July 1964 inspection of these specimens indicated the specimens could not be identified. The loss of identification is believed to have taken place in April 1962, consequently data developed subsequent to that date, previously reported, have been deleted.

** Cements 43 and 43A made at same plant.

(Sheet 1)

			_	1955		_					1955	-1960	Read	ings								
Spec-	Ceme			Pulse	1	19	56	19	58	_19	60	_19	62*	19	64*	19	66*	_19)68 *	_19	70*	
No.	Type	No.	%E	Veloc fps	%v2	%E	%v2	%E	16v2	%E	%v2	% E	202	%E	%v2	%E	%v2	%E	%v ²	%E	%v2	
6050D 6051D 6052D	I	13	100 100 100	15,985 16,065 15,950	100	100 99 103	===	98 96 94	96 95 94		100 100 101											
5909D 5910D 5911D	I	11		15,430 15,615 15,290	100	108	105 104 106	112 112 111	108 108 110	117 119 120												
5996D 5997D 5998D	I	11	100	15,910 16,300 15,910	100	95 102 99	100 98 100	104 100 99	98 97 101	104 110 107	99 95 99											
6026D 6027D 6028D	I	11	100	16,260 16,105 16,065	100	102 100 101	===	97 102 100	96 98 96	104 109 109	98 98 99											
5912D 5913D 5914D	II	23		15,540 15,360 15,540	100	105 107 105	105 106 104	109 110 108	109 110 106	125 110 117	102 104 104											
5966D 5967D 5968D	II	23		16,025 15,985 16,105	100	96 96 94	105 106 101	96 97 95	106 109 107	105 103 102	102 103 93											
6062D 6063D 6064D	II	23	100	16,065 16,420 16,220	100	100 100 98	:::	94 109 90	95 90 95	104 116 103	101 97 94											
5915D 5916D 5917D	II	25++		15,290 15,150 15,185		108 111 110	111 107 109		111 110 108	122 119 123	110 109 108											
5963D 5964D 5965D	II	25++	100	15,910 15,985 16,065	100		105 103 107	101 102 98	105 106 110	109 109 106	99 100 100											
6083D 6084D 6085D	II	25++		16,065 16,260 16,065	100	102 99 103	==	104 102 105	98 98 96	112 113 114	100 97 102											
5918D 5919D 5920D	I	19B	100	15,540 15,540 15,360	100	104		108 105 107	104 105 106	114 109 115	104 102 104											
5987D 5988D 5989D	I	19B		15,115 15,150 15,115			110 108 111	109 109 107	109 108 108	118 117 117	105 108 109											
6068D 6069D 6070D	I	19B	100	15,760 15,615 15,800	100	101 101 102	==	100 101 110	99 98 96	108 100 124	101 102 102											
5921D 5922D 5923D	I	19C	100	15,725 15,910 15,835	100	106	103 101 102	105 108 104	102 100 104	111 118 112	99 103 99											
5990D 5991D 5992D	I	19C	100	15,685 15,800 15,950	100	103 98 95	101 101 99	107 101 97	103 99 99	115 108 102	104 101 99											
6023D 6024D 6025D	I	19C	100	15,615 15,540 15,505	100	103	==	103 105 102	100 101 99	108 110 102	100 99 98											
5924D 5925D 5926D	I	12#	100	15,650 15,875 15,540	100		107 103 106	115 108 112		125 116 120	106 99 98											
5984D 5985D 5986D	I	12#	100	15,185 15,685 15,360	100	105	107	110 109 110	112 109 113	118	110 102 105											
6071D 6072D 6073D	I	12‡	100	16,105 16,625 16,420	100	99	==	107 107 97	96 93 93	114	101 96 99 tinue	4)										

⁻⁻ Dashed lines in "#\forall^2" column in 1956 indicate that pulse velocity readings were not taken that year due to breakdown of electronic equipment.

* The information obtained at the July 1964 inspection of these specimens indicated the specimens could not be identified. The loss of identification is believed to have taken place in April 1962, consequently data developed subsequent to that date, previously reported, have been deleted.

† Cements 25 and 33 made from same major raw materials.

(Sheet 2)

			_	1955							1955	-1960	Read	ings			-					
Spec- imen	Cem	ent		Pulse Veloc		19	56	19	58	_ 19	60_	19	62*	_19	64*	196			968*	_1	970*	-
No.	Type	No.	<u>%E</u>	fps	%v ²	%E	%V2	<u>%</u> E	20V2	<u>%E</u>	%V2	<u>%E</u>	%V2	<u>%</u> E	%v2	Æ	%V2	Æ	%V2	%E	%v	-
5927D 5928D 5929D	I	17	100 100 100	15,505 15,085 15,185	100	103 108 108	104 104 103	105 110 109	107 111 108	114 116 108												
5969D 5970D 5971D	I	17	100 100 100	16,220 16,140 16,065	100	96 95 95	96 99 100	98 97 96	98 103 100	104 102 102	96 97 96											
6080D 6081D 6082D	I	17	100 100 100	15,985 16,260 16,065	100	102 101 98	 	103 103 100	94 94 97	113 113 110	100 97 100											
5930D 5931D 5932D	III	31#	100 100 100	15,150 15,150 15,430	100	100	105 105 96	105 100 99	104 105 100	108 122 114	100 100 95											
5978D 5979D 5980D	III	31#	100 100 100	15,220 15,290 15,185		105 106 102	105 99 105	109 109 104	106 103 107	124 116 109	104 103 100											
6053D 6054D 6055D	III	31#		15,760 15,760 15,760	100	99 101 99	=	96 104 107	91 89 88	101 102 115	97 95 104											
5933D 5934D 5935D	I	15	100 100 100	15,615 15,575 15,835		101 103 101	99 94 99	99 101 99	99 101 99	103 107 107	99 101 97											
6020D 6021D 6022D	I	15		16,300 16,140 16,220	100 100 100	95 98 97	=======================================	95 97 Brok	92 96 cen in		97 95 Uing											
6038D 6039D 6040D	I	15	100 100 100	16,300 16,340 16,220	100 100 100	97 95 98	=	96 94 94	89 89 93	102 101 102	96 95 95											
5936D 5937D 5938D	II	22#		15,430 15,220 15,650	100	104 106 104	106 107 103	104 106 105	108 111 108	109 117 109	98 102 97											
5957D 5958D 5959D	II	22‡	100 100 100	16,220 15,760 15,835	100		99 102 102	102 105 108	103 106 108	102 113 117	100 104 104											
6086D 6087D 6088D	II	22‡		15,985 15,760 15,835		102 109 106		106 109 110	96 102 98	117 120 119	104 103 102											
5939D 5940D 5941D	III	33++	100 100 100	15,650 15,650 15,615	100	101 102 101	101 99 101	102 102 101	111 106 105	105 115 112	97 97 95											
5981D 5982D 5983D	III	33++		15,650 15,255 15,185	100	102 102 103	99 104 105	104 103 105	99 106 105	110 112 112	100 100 101											
6041D 6042D 6043D	III	33++	100	15,835 15,725 15,950	100	99 98 100	==	95 105 100	97 97 95	102 104 108	97 94 93											
5942D 5943D 5944D	I	14+	100	16,065 15,985 15,650	100	97 104 106	101 100 106	97 105 108	101 106 106	98 114 119	102 100 103											
5993D 5994D 5995D	I	14+	100	16,300 16,220 16,260	100	96 96 96	97 101 102	99 98 98	101 100 97	107 105 107	96 99 98											
6059D 6060D 6061D	I	14+	100	16,420 16,260 16,180	100	98 98 101	::	107 88 107	88 90 91	115 97 112	94 94 94											
5945D 5946D 5947D	11	24+	100	15,725 15,575 15,360	100	105	103 101 108	105 108 112	106 106 113	114 116 119	98 101 103											

Dashed lines in "W" column in 1956 indicate that pulse velocity readings were not taken that year due to breakdown of electronic equipment.

* The information obtained at the July 1964 inspection of these specimens indicated the specimens could not be identified. The loss of identification is believed to have taken place in April 1962, consequently data developed subsequent to that date, previously reported, have been deleted.

† Cements 14, 24, and 41 made at same plant.

† Cements 25 and 33 made from same major raw materials.

† Cements 12, 22, and 31 made at same plant.

(Sheet 3)

											1955	-1960	Read	ings								
Spec-	Ceme	nt LTS	-	1955 Pulse Veloc		19		19		_19	60	19	62*	19	64*	19	66*	19	68*	_19	70*	
No.	Type	No.	%E	fps	%V2	%E	%v2	%E	96V2	%E	%V-	%E	%v2	%E	16N2	%E	%v2	%E	%v2	<u>%</u> E	%V2	
6056D 6057D 6058D	II	24+	100 100 100	16,300 15,950 15,835		102 102 102		110 96 108	90 89 92	121 106 108	93 98 93											
6008D 6009D 6010D	II	24+		15,395 15,505 15,430	100 100 100	102 103 107	===	105 106 108	100 97 100	113 113 118	100 97 101											
5948D 5949D 5950D	I	19A		15,085 15,115 15,115	100	109 107 107	111 108 110	113 109 109	117 118 117	121 117 120	107 104 105											
6029D 6030D 6031D	I	19A		15,725 15,650 15,615		106 105 106		106 107 112	104 102 103		104 in hd 104	lg										
6017D 6018D 6019D	I	19A	100	15,085 14,950 15,185		105 113 104		109 116 108	109 112 105	113 121 117	106 108 108											
5951D 5952D 5953D	I	18	100	15,950 16 55 15,575	100	100 101 106	98 98 107	101 102 107	101 100 114	106 114 112	99 97 103											
6005D 6006D 6007D	I	18		15,800 15,470 15,835	100	103 106 103	98 104 100	106 108 105	101 104 101	113 119 112	102 105 100											
6035D 6036D 6037D	I	18	100	16,340 15,985 16,025	100	100 100 101		97 99 104	93 98 98	104 107 111	99 100 100											
5954D 5955D 5956D	IV	43**	100	15,360 15,650 15,615	100	101	102 96 103	109 102 102	113 108 105	118 112 109	108 100 99											
5960D 5961D 5962D	IV	43**	100 100 100	15,255 15,325 15,290		113 116 116	111 114 111	118 121 121	114 115 118	126 127 130	115 113 113											
6044D 6045D 6046D	IA	43**	100	15,220 15,615 15,875	100	104 103 100		116 109 99	100 99 98	126 120 97	104 98 97											

⁻⁻ Dashed lines in "\$\sqrt{2}" column in 1956 indicate that pulse velocity readings were not taken that year due to breakdown of electronic equipment.

* The information obtained at the July 1964 inspection of these specimens indicated the specimens could not be identified. The loss of identification is believed to have taken place in April 1962, consequently data developed subsequent to that date, previously reported, have been deleted.

** Cements 43 and 43A made at same plant.

(Sheet 4)

Charles River Dam-Smelt Brook Local Protection Project New England Division

Aggregates: Coarse "A," natural gravel, Ossipee, N. H.

Fine "A," natural sand, Ossipee, N. H.

Coarse "B," crushed quarry and natural gravel,

Marshfield sand and gravel.

Fine "B," natural sand, Marshfield sand and gravel.

Admixtures: Water Reducer "A," Pozzolith 122 N, Master Builders.

Water Reducer "B," WRDA, W. R. Grace

Air-entraining "A," MBVR, Master Builders.

Air-entraining "B," DAREX, W. R. Grace.

Cement: Atlantic type II, Hudson Valley, N. Y.

Charles River Dam-Smelt Brook Local Protection Project New England Division

In August 1976, 18 concrete beams (6 by 6 by 24 in.) were installed on the Treat Island exposure rock for the U. S. Army Engineer Division, CE, New England. These specimens represent three concrete mixes used for two construction jobs; Mixes 1 and 2 were used for the Charles River Dam, Boston, Mass., and Mix 3 was used for Smelt Brook Local Protection Project, Weymouth, Mass. Type II Portland cement was used in the three mixes. Mixes 1 and 2 contain coarse and fine aggregates "A" (1-1/2 in. maximum size), water reducer, and air-entraining admixture "A." Mix 3 contains coarse and fine aggregates "B" (3/4-in. maximum size), water reducer, and air-entraining admixtures "B." More mixture data are given in Table 1. Table 1-NED gives the exposure record of the installed beams.

(Issued August 1977)

Table 1

Charles River Dam-Smelt Brook Local Protection Project

New England Division

		Charles River Dam, Boston-Charlestown, Mass.	ston-Charlesto	wn, Mass.	Smelt Brook Local Pro- tection, Weymouth, Mass.	Local Pro-
Formula Number	Mix 1	Mix 1	Mix 2	Mix 2	Mix 3	Mix 3
Tag Identification Numbers*	7, 8, 9	10, 11, 12	13, 14, 15	16, 17, 18	1, 2, 3	4, 5, 6
N.E.D. nomenclature	ı	1	•	1	2A, 2B, 2C	1A, 1B, 1C
Date of fabrication	10/6/75	10/7/75	10/11/75	10/22/75	9/5/75	8/14/75
Slump, in.	2.50	2.50	3.00	2.50	3.00	3.00
Air content, %	5.2	5.0	5.7	4.3	3.0	4.2
Concrete temperature, oF	62	62	75	99	78	72
Unit weight of fresh concrete, pcf	145.2	ı	7.44.1	145.0	143.63	142.97
Compression cylinders	229-A, C, D	230-A, C, D	241-A, C, D	244-A, C, D	43-A, C, D	40-A, C, D
Compressive strength, psi 7-day 28-day	3890 4870 4955	3820 5095 5180	3855 4420 4670	3960 5375 5375	2810 3940 4020	4310 5440 5360

^{*} Identification tag is attached to each specimen.

Table 1-NED

Record of Testing of Concrete Specimens from Charles River Dam, and Smelt Brook Local Protection Project (Installed August 1976)

							Exposure	Rack,	Row 3
					1976-	Readings			
		0 Cycles 1976			ycles 977				
_		Pulse							
No.	<u>%E</u>	Veloc fps	<u>%v</u> 2	<u>%E</u>	<u>%v²</u>				
1	100	16,000	100	100	98				
	100	16,130	100	106	97				
2 3 4	100	16,000	100	107	98				
4	100	17,240	100	113	88				
5	100	17,700	100	108	89				
6	100	17,240	100	115	95				
7 8	100	16,130	100	107	91				
8	100	16,260	100	106	97				
9	100	15,750	100	105	. 105				
10	100	16,130	100	116	97				
11	100	16,530	100	112	91				
12	100	16,000	100	111	95				
				200	0.17				
13	100	15,750	100	108	97				
14	100	15,875	100	105	97				
15	100	15,750	100	107	98				
16	100	15,875	100	105	98				
17	100	16,130	100	99	95				
18	100	16,260	100	107	95				

Mt. Morris Dam* Cores

In October 1949, 11 concrete cores (10 in. in diameter by 18 in. long) taken from concrete placed at Mt. Morris Dam, N. Y., between May and August 1949, were installed on the Treat Island exposure rack. The purpose of this installation was to determine the durability of these cores. The aggregates used consisted of crushed limestone and manufactured limestone sand; the cement was type II-A. Five of these cores were taken from the upstream face of the structure and represent exterior concrete of approximately 4.0-bags-per-cu-yd cement factor. The remaining six cores represent interior concrete of approximately 3.1-bags-per-cu-yd cement factor.

Table 1-MM lists these cores and gives their exposure record along with other pertinent information.

See U. S. Army Engineer Waterways Experiment Station, CE, Aggregate Tests, Mount Morris Dam (Vicksburg, Miss., February 1948).

Table 1-MM

Record of Testing of Concrete Cores, Mount Morris Dam 1949- (Installed October 1949)

						1949-	(Instal	lled	Octob	er 19	49)									
	Water		_								-1958	Read		69	2	85		Bay,	Row 1		o S)
Specimen	Ratio (by	Air	O Cycle 1949			les 50	351 Cycle 1952	8		les, lse loc	1953	Cyc	les 54		les	Cyc	les 956	Cyc	les 57	Cyc 19	les 58
No.	wt)	4	%E		xteri	E M	ME ominal	/- ba		рв	<u>%v²</u>	₹E	%V2	<u>%E</u>	<u>%√</u>	<u>≸E</u>	%v2	<u>%</u> E	<u>%v²</u>	<u>%E</u>	<u>%v²</u>
Con-1-20(1)	0.49	4.1	100	109	10		114	118		,855	100	119	96	117	98	127	90	125	92	125	103
Con-2-21(2) Con-3-22(1) Con-5-24(2) Con-6-24A	0.49 0.49 0.49	4.1 4.1 4.1 4.1	100 100 100 100	104 110 113 108	11	12 14 15 13	114 118 121 117	110	4 16 9 16 8 16	,305 ,665 ,485 ,855	100 100 100 100	116 123 125 121	90 92 96 96	118 125 123 122	100 107 100 105	124 129 129 128	92 94 90 94	122 129 126 125	96 98 96 92	122 132 120 132	99 105 100 100
				1	nteri	or, N	ominal	3-ba	g-per	-cu-y	d Cem	ent F	actor								
Con-8-3A Con-9-3B(1) Con-11-7 Con-12-8(2) Con-14-9B(2) Con-15-10	0.59 0.59 0.61 0.59 0.59 0.62	4.6 4.7 4.3 3.3 3.3 4.2	100 100 100 100 100	112 113 106 107 104 103	10	14 15 08 10 15	115 113 113 114 118 113	118	9 16 2 15 5 15 8 16	,485 ,485 ,790 ,955 ,130 ,625	100 100 100 100 100	120 119 117 120 120 117	102 107 100 100 94 102	121 115 116 121 119 96	105 112 107 104 100 98	126 116 121 126 124 102	100 105 96 98 92 92	128 117 110 124 116 97	100 103 98 102 94 92	130 120 112 127 115 104	107 108 104 104 100 98
											20/1					Expos	sure I	Rack,	Row 4	(W t	0 E)
			122 Cycl 195	es Cy	295 cles 960	Cy 1	436 cles 961 %v ²	152 Cyc: 196	les 52	16 Cyc 19	-1968 31 les 63 %V ²	17 Cyc	66 les 64	Cyc	029 cles 065 %v ²	Cy 1	059 cles 966		215 cles 967	Cyc	100 eles 968
			<u>≸Æ</u>			%E	ominal	<u>%E</u>	%v_	<u>≰</u> E		%E ent F	%V	₹E	76V	<u> 16E</u>	gv-	%E	%v-	%E	70V
Con-1-20(1) Con-2-21(2) Con-3-22(1) Con-5-24(2) Con-6-24A	0.49 0.49 0.49 0.49	4.1 4.1 4.1 4.1 4.1	132. 131 137 126 132	90 125 91 131 90 133 90 130 84 125	92 97 86 92	123 125 125	98 104 92 90 94	111 123 120 134 119	92 90 84 77 98	117 122 121 116 119	107 102 90 98 92	113 117 109 119 113	82 94 90 92 88	107 113 119 129 114	90 100 98 100 88	107 109 106 124 109	94 86 77	98 99 106	81 72	94	72 85 81 78 82
				1	nteri	or, N	ominal	3-ba	g-per	-cu-y	d Cen	ent I	actor								
Con-8-3A Con-9-3B(1) Con-11-7 Con-12-8(2) Con-14-9B(2) Con-15-10	0.59 0.59 0.61 0.59 0.59 0.62	4.6 4.7 4.3 3.3 3.3 4.2	127 106 113 122 109 98	94 125 101 113 94 115 92 125 83 106 89 92	101 96 92 92	101	96	118 100 103 111 95 86	96 71 92 104 77 79	116 76 101 115 91	102 86 102 104 102 92	110 71 93 106 124 68	100 109 94 98 92 89	101 67 80 105 109 60	94 83 90 96 82 78	100	58 72 79 69	62 74 83 112	59 77 88		88 39 71 88 68
			255 Cycl 196	es 9	2707 Cycles 1970		287 Cycl 197	es 1	Су	033 cles 972		3173 Cycle 1973	8	3309 Cycl 1974	es	342 Cycl 197	les 75	357 Cycl 197	es 6	364 Cycl 197	es 7
			₹E			6v ²	<u>%E</u>	%V"	≸E						<u>v</u> ²	<u>%E</u> 2	tv ²	<u>%E</u> ¶	<u>v</u> ²	%E	%v2
Con-1-20(1) Con-2-21(2) Con-3-22(1) Con-5-24(2) Con-6-24A	0.49 0.49 0.49 0.49	4.1 4.1 4.1 4.1	92 108 93 106 109	59 81 1 69 75 1	93 05 NR 11	55 69 54 69 64	91 105 93 106 108	27 29 41 52 40	NR F F	2 ailed ailed	6	Faile	a		75	97	90	96	83	117	74
				2	nteri	or, N	ominal	3-ba	g-per	-cu-y	d Cen	ent I	actor								
Con-8-3A Con-9-3B(1) Con-11-7 Con-12-8(2) Con-14-9B(2)	0.59 0.59 0.61 0.59 0.59	4.6 4.7 4.3 3.3 3.3	92 NR 71 90 105	81 NR 82 58	91 Faile 72 87 NR	70 ed 68 51	88 72 87 NR	52 27 25	86	ailed		83 89	49 NR	79 88	48 63	80 88	90 96		81 88	73 65	70 73

⁻⁻ Dashed lines in "%V" column indicate that end of specimen was too rough to obtain satisfactory reading.

NR denotes that a satisfactory reading was not obtained although an attempt was made to obtain a satisfactory reading.

Air-entraining Admixture Study*

The purpose of this study is to determine the relative effect of several commercial admixtures on the durability of concrete. In November 1944, ninety (6- by 6- by 30-in.) concrete specimens containing eight admixtures were installed on the Treat Island exposure rack. The aggregates used in these specimens were natural siliceous sand and crushed traprock of 1-1/2-in. maximum size. One cement (type II) was used, and the concrete mixtures had nominal cement factors of 4.5, 5.25, and 6.0 bags per cu yd with a nominal slump of 3 in. The water-cement and sand-aggregate ratios were permitted to fluctuate as affected by the admixture. The test specimens were of one size, but of two types: columns and beams.

Table 1-CRA lists these specimens and gives their exposure record along with other pertinent information.

In November 1957, the following seven concrete beam specimens were returned to the laboratory for detailed studies.

Specimen No.	Admixture Used
AB5A	Admixture A
AB5B	Admixture A
AB4	Admixture A
PB5C	None
PB4	None
RB5A	Resin soap
RB4	Resin soap

The purpose of these studies was to determine why some specimens with no admixture and some specimens with admixture A survived 13 years exposure at Treat Island when similar concrete was found to be nonfrost-resistant by laboratory tests made in 1944. Similar tests conducted in 1958 gave the same results as the 1944 tests. The laboratory studies did not indicate conclusively the reason for the survival of these specimens, but they did indicate the following:

^{*} See Central Concrete Laboratory, <u>Concrete Research</u>, Second Interim Report, Part I, "Laboratory Studies of Concrete Containing Airentraining Admixtures" (July 1945).

- a. Specimens with high relative moduli (%E) are not necessarily undamaged by exposure at Treat Island; microfractures were found in one specimen having a %E of 153.
- b. The reason for the survival of the specimens with no admixture and with admixture A was not the accidental inclusion of an air-entraining agent that produced an air-void system capable of imparting frost resistance, since no such void system is present.
- c. It is possible that the early termination of moist-curing of the specimens with admixture A increased their frost resistance by making them less readily saturable on exposure.

Record of Testing of Concrete Columns and Beams, Air-entraining Admixture Study

1944- (Installed November 1944)

		Cement	400						-1953 Re						
		Factor		O	110 Cycles	215 Cycles	333 Cycles	464 Cycles	569 Cycles	730 Cycles	819 Cycles	920 Cycles	1005	Cycles, Pulse	195
men No.	Type Specimen	(Nominal) bags/ cu yd	Air	Cycles 1944 E	1945	1946	1947	1948 %E	1949 %E	1950	1951 %E	1952 %E	≸E	Veloc fps	\$
							Admixtur	e A							
C5A	Column*	5.25	1.9	Broken	at inst	allation									
B5A	Beam* Column			100	120	127 128	133	132 129	134 130	136	136 131	139 135	137 138	15,330	10
C5B B5B	Beam			100	119	131	135	135	135	131 136	136	140	143	15,150	10
C5C	Column			100	119	127	130	130	132	131	131	133	138	15,725	10
B5C	Beam			100	120	131	136	135	138	138	138	140	144	15,530	10
C4 B4	Beam Beam	4.5	2.0	100	120 119	136 134	136 139	138 137	133 140	138 141	138 140	141 142	146 148	14,880 15,060	1
.c6 . B 6	Column Beam	6.0	1.8	100 100	118 118	127 127	129 129	104 128	88 130	Failed 129	129	131	136	16,020	1
						P	araffin	011							
C5A	Column	5.25	3.9	100	109	113	116	115	115	117	114	118	121	15,430	10
B5A	Beam			100	110	117	118	118	117	119	118	121	123	15,625	1
C5B B5B	Column Beam			100	106	115 115	116 116	115 116	114	115	113	115	119	15,150	1
C5C	Column			100	110	120	122	122	121	122	121	125	127	15,430	1
B5C	Beam			100	108	114	115	115	115	116	115	117	120	15,245	1
B4	Column Beam	4.5	7.5	100	110	115	116	117	116	117	115	118	121	14,795 14,370	1
c6	Column	6.0	5.6	100	111	114	115	116	113	115	113	116	119	15,430	1
1B 6	Beam			100	111	116	118	118	119	119	120	120	124	15,150	1
							Admixtu								
C5A	Column	5.25	4.9	100	108	115	115	114	116	116	115	117	120	15,825	1
B5A C5B	Beam Column			100	106	115	117	115	113	112	111	113	120	14,705	i
B5B	Beam			100	101	109	112	110	110	110	110	112	115	15,530	1
25C 285C	Column Beam			100	106	115	117	115 112	116	117	117	120	123	15,530	1
C4	Column	4.5	4.7	100	104	112	112	112	112	111	110	112	116	15,725	1
B4	Beam			100	102	110	112	110	109	111	110	111	113	15,430	1
26	Column Beam	6.0	6.0	100 100	105 106	111	112 119	111	111	112	111	114 121	117 123	15,625 15,150	1
						Resi	n Soap	CaCl ₂							
C5A	Column	5.25	7.8	100	106	112	115	112	111	111	114	113	99	14,970	1
B5A	Beam			100	104	111	112	111	108	111	108	112	115	14,705	1
C5B	Column			100	109	116	116	114	116	116	113	117	119	15,245	1
C4	Column	4.5	5.2	100	107	114	115	114	113	113	112	114	116	15,335	1
B4	Beam			100	107	112	113	110	110	110	109	113	114	15,060	1
c 6 B 6	Column Beam	6.0	6.4	100 100	107 108	113 113	114 115	113 113	113 113	113 113	112	114	117	15,335 15,060	1
						With	hout Adm	ixture							
C5A	Column	5.25	1.6	100	109	113	Failed								
B5A C5B	Column			100	102	Failed 113	114	Failed							
B5B	Beam			100	110	115	115	115	115	117	117	Failed			
C5C B5C	Column Beam			100	111	118	116	111	116	118	118	Failed	116	15,335	1
C4	Column	h =		100	109		118	118	129	118	117	119	122		1
B4	Beam	4.5	3.3	100	109	117	115	113	113	113	iii	112	113	15,060	1
c6 B 6	Column Beam	6.0	1.7	100 100	106	111	112	Failed 115	115	118	118	118	119	14,705	1
DO	Dear			100	110	117	11	11)	11)	110	110	110	119	14, (0)	-

^{*} A column is cast with its long axis vertical; a beam is cast with its long axis horizontal.

(Revised Aug 1963)
Table 1-CRA (Continued)

		Cement Factor		0	110	215	333	464	4-1953 R 569	730	819	920	1005 0	ycles,	1052
pec-		(Nominal)		Cycles			Cycles	Cycles	Cycles	Cycles	Cycles	Cycles	1005 0	Pulse	1973
men No.	Type Specimen	bags/ cu yd	Air \$	1944 %E	1945	1946 % E	1947 % E	1948 Æ	1949 % E,	1950 Æ	1951 % E	1952	₫E	Veloc fps	≸v
							Resin S	овр							
C5A	Column	5.25	6.5	100	112	118	120	118	118	121	118	120	123	15,150	10
B5A	Beam			100	108	113	115	115 115	116	117	115	119	122	14,880	
C5A1 B5A1	Column Beam			100	111	115	116	115	117	118	116	118	121	15,150	10
C5B	Column			100	111	119	120	121	121	122	118	121	126	14,970	10
B5B	Beam			100	110	115	117	117	117	118	116	118	120	15,060	10
C5C B5C	Column Beam			100	110	114	117	115	116	116	114	118 114	120	15,060	10
C4	Column	4.5	7.8	100	112	119	120	117	116	116	114	116	119	14,535	10
B4	Beam	4.,	1.0	100	110	114	114	114	111	111	110	111	111	14,450	10
C6 B6	Column Beam	6.0	6.5	100	110 109	113 120	114 119	114	113	113 119	111	113 119	116 116	15,335 15,060	10
							Tallow (->,,	
TEA.	Column	E 0E	4.0	100	111	118	119	118	115	112	100	Failed			
C5A B5A	Beam	5.25	4.0	100	108	110	113	113	113	113	92	Failed			
C5B	Column			100	109	121	125	123	124	121	114	93	Failed		
B5B	Beam			100	104	111	114	113	111	112	107	Failed			
785C	Column Beam			100	109 108	96 113	Failed 115	113	114	115	113	113	116	14,970	10
C4 184	Column Beam	4.5	3.4	100 100	109 104	117	119 109	115 106	126 111	112	107	96 109	Failed	14,880	10
106	Column	6.0	3.6	100	109	114	116	115	109	97	92	90	Failed		
186	Beam			100	m	120	123	122	121	122	121	123	124	15,530	1
							Admixtu	re C							
C5A	Column	5.25	6.5	100	109	114	116	115	117	117	114	117	118	15,060	
B5A	Beam			100	108	115	117 113	116	116	116	115	116 110	117	15,150	1
C5B B5B	Column Beam			100	111	111	116	115	116	117	113	116	120	14,705	i
C5C	Column			100	111	118	120	118	118	118	117	120	118	14,795	1
B5C	Beam			100	109	113	116	116	114	114	111	114	116	14,535	
B4	Column Beam	4.5	8.1	100	109 109	114	112	114	107	107	107 105	109 106	108	14,450	
0C6 0B6	Column Beam	6.0	6.1	100	109 111	116 119	116 122	116	113 120	114 120	111	115 120	117 120	14,970	
							Admixtu								
C5A	Column	5.25	8.0	100	111	116	118	117	116	117	115	118	121	15,335	1
B5A	Beam			100	110	118	118	117	117	118	117	119	123	15,245	1
IC5B IB5B	Column Beam			100	109	113	116 119	116	117	117	114	118	118	14,880	
IC5C	Column			100	113	120	117	115	117	119	117	119	122	15,245	1
B5C	Beam			100	110	115	116	116	115	115	114	117	120	14,795	1
IC4 IB4	Column Beam	4.5	9.4	100	113	118 115	120 115	118	118	118 112	111	118	120 Failed	14,970	1
EC6	Column Beam	6.0	6.0	100	112 111	117 116	120 118	118	120 119	120	120	122	124	15,625	
ш	Deam			100		110	110	'	119			Exposure			
				1116	5 12	61	1428	195 1572	4-1962 R 1643	eadings		1864	2005		094
				Cycle 195			ycles 1956	Cycles 1957	Cycles 1958	Cycl 195		Cycles 1960	Cycles 1961		cle 962
				<u>≸</u> E 9	tv ² 1E	1v2 1	E %v ²	<u>≸E</u> <u>≸v²</u>	<u>≸E</u>	2 <u>%</u> E	<u>%v²</u> _	E V2	SE SV	<u>r</u> ² <u>≰</u> E	\$1
							Admixtu								
B5A C5B	Beam Column	5.25	1.9		101 147		0 99	153 Retur 148 93	ned to 1	aborator 7 155	y Novem	ber 1957 42 92	148 9	9 144	1
AB5B AC5C	Beam Column			148	106 148	109 15	3 106 0 95	153 Retur 138 97	ned to 1	aborator	y Novem	ber 1957 51 99	148 9	95 141	1
	Beam				105 147					3 155		49 101			1

(Revised Sept 1968)

		Cement		-11	14	10	C 1	17	00	10			2 Rea						Row 2		
Spec- men No.	Type Specimen	Factor (Nominal) bags/ cu yd	Air	Cyc	16 les 54 % v ² .	Cyc	161 les 055 gv ²	Cyc	28 les 56	15 Cyc 19	les	Cyc	1es 58 2v ²	Cyc 19		18 Cyc 19	les		05 les 61 %v ²	Cyc	94 eles 962
							Ad	lmixtu	re A	(Cont	inued)									
C4 B4	Column Beam	4.5	2.0	147 149	104 106	147 150	108 108	146 158		152 153			105 o lab		99 ry No	152 vember		152	102	147	10
NB6	Beam	6.0	1.8	137	100	133	98	145	**	137	90	146	91	149	87	144	88	141	95	133	
								Pa	raffi	n Oil											
055A 085A 055B 085B 055C 085C	Column Beam Column Beam Column Beam	5.25	3.9	122 124 121 122 129 122	104 108 106 104 104	122 125 121 123 129 122	101 106 105 103 105	129 132 128 130 135 127	** 96 99 104 98	126 130 125 128 132 126	114 100 104 104 	127 135 129 133 136 128	102 104 108 104 	132 139 132 135 147 131	94 98 102 100 	127 133 129 130 155 125	96 101 103 101 99	127 133 130 129 171 124	98 100 99 101 96	119 131 127 118 154 114	1
)B4	Column Beam	4.5	7.5	122 111	104 102	122 110	104	127	93 96	123 110	101 98	126 114	102 97	123	93 86	103 113	80 102	98 102	79 91	82 86	
ос6 ов6	Column Beam	6.0	5.6	126 127	103 105	121 126	103 108	127 132	87 93	126 131	100 103	134 131	103 104	130 138	98 98	125 131	98 100	126 131	98 101	124 123	1
								A	dmixt	ure B											
C5A CB5A C5B	Column Beam Column	5.25	4.9	122 121 119	104	122 122 Faile	104	130 129	101 96	128 121	100	130 125	105 104	135 132	97 99	130 128	97 100	129 127	101 99	120 122	10
2B5B 2C5C 2B5C	Beam Column Beam			117 126 116	106 101 104	118 126 116	108 99 105	124 129 123	95 102 101	122 133 115	104 97 105	124 133 120	105 105 104	128 141 122	99 96 97	122 138 117	99 95 102	122 143 117	103 88 100	117 138 112	1
184 184	Column Beam	4.5	4.7	116 114	104 104	116 112	100 105	117 108	100 95	117 104	81 92	118 106	84 93	126 91	76	161 74	76	153 128	=	125 128	
126 1386	Column Beam	6.0	6.0	117 125	105 109	118 126	105 110	124 133	99 99	124 125	103 107	120 133	106 110	127 137	100 93	122 132	100 93	121	99 105	117 125	1
								Resin	Soap	+ Ca	C12										
C5A B5A C5B B5B	Column Beam Column Beam	5.25	7.8	99 115 127 120	105 104 105 101	99 116 126 121	106 107 104 100	102 121 126 123	95 98 92 95	101 120 131 124	97 100 96 96	102 121 135 128	101 102 101 102	102 123 136 128	99 97 95 94	100 118 127 123	99 98 97 99	98 117 130 122	99 98 95	94 114 122 118	1
C4 :B4	Column Beam	4.5	5.2	115 1 1 6	100	117 116	101 105	119 120	93	119 119	96	123 119	106	124 124	98	115 118	97	117 117	94	107 110	1
:C6 :B6	Column Beam	6.0	6.4	118 121	103 104	119 122	103 105	118 125	94 97	123 121	95 96	126 126	99 103	130 130	95 98	122	96 100	123 124	92 100	116 119	1
								With	out A	dmixt	ure										
PB5C	Beam	5.25	1.6	117	104	117	105	122	94	1.20	Retur	ned t	o lab	orato	ry No	vember	1957				
C4 B4	Column Beam	4.5	3.3	121 111	104 102	119 106	105 102	120 96	89 91	111 78		109 ned t				o labo		Octo	ber 19	158	
рв6	Beam	6.0	1.7	122	91	125	92	143		151		157		Retur	ned t	o labo	ratory	Octo	ber 19	158	
								F	esin	Soap											
RC5A RB5A RC5A1 RB5A1 RC5B RB5B RC5C RB5C	Column Beam Column Beam Column Beam Column Beam Column Beam	5.25	6.5	126 123 123 123 126 123 122 118	104 105 105 104 106 106 106 104	126 123 124 124 126 122 122 118	102 106 106 102 105 106 106 108	132 128 127 129 132 125 128 124	99 98 101 99 102 101	126 127 129	100 101 103 100 101	130 128 132 129 125	102 103 104 104 102	131 133 Lost Lost Lost	95 96 overboverboverb	128 vember 126 128 pard is pard is pard is	97 n stor n stor n stor	126 128 m, Fe m, Fe m, Fe	100 98 b 1959 b 1959 b 1959	122	1
RC4 RB4	Column Beam	4.5	7.8	119 114		119 113	106 104	118 114	101 93				104 o lab			121 vember	98 1957	121	96	111	
RC6 RB6	Column Beam	6.0	6.5	117 125		117 126		121 131		120 128			100		90 99	119 130	91 98	117	93 99	112	

⁻⁻ Dashed lines in "%2" column indicate that end of specimen was too rough to obtain satisfactory reading.
** These readings were inadvertently omitted in 1956.

(Revised Jan 1972)

										an 19											
							Та	ble 1	-CRA	(Cont	inued	1)				Exp	posure	Rack,		Section 2 (W t	
Spec-	Туре	Cement Factor (Nominal) bags/	Air	Cyc	.16 :les	12 Cyc 19		Cyc	28 les 56		72 les	Cyc	43	Cyc	793 eles	Cyc	364 eles 960	Cyc	005 eles 061	Cyc	94 eles 962
No.	Specimen	cu yd	96	%E	%v ²	<u>%E</u>	%V	<u>%E</u>	96V2	<u>%E</u>	%V2	%E	%V2	%E	96V2	%E	%V2	%E_	%V2	%E	96V
								Ta	llow	(Beef)										
TB5C	Beam	5.25	4.0	119	106	118	108	123	90	118	102	123	105	127	100	122	102	121	101	109	10
TB4	Beam	4.5	3.4	112	105	112	106	112	95	106	100	111	101	110	92	101	89	94	82	84	8
тв6	Beam	6.0	3.6	127	103	121	103	128	95	124	100	133	104	140	97	135	101	131	99	126	10
								A	dmixt	ure C											
DC5A DB5A DC5B DB5B DC5C DB5C	Column Beam Column Beam Column Beam	5.25	6.5	121 120 116 119 122 116	102 102 101 105 101 104	121 120 115 120 122 117	104 104 102 106 101 105	127 126 121 124 123 122	99 95 97 96 98 97	122 124 118 121 119 118	100 101 98 102 101 100	127 134 121 124 127 121	108 105 102 106 103 101	130 129 124 125 131 124	91 94 94 97 96 95	122 123 118 120 122 118	94 99 97 100 98 96	122 122 118 118 122 117	100 100 99 100 99 97	115 115 113 113 117 112	10 10 10 10
DC4 DB4	Column Beam	4.5	8.1	112 109	101 101	113 108	104 105	119 111	97 93	118 108	103 103	122 110	102 103	122 115	99 95	109 109	100 97	99 103	97 95	84 86	10
DC6 DB6	Column Beam	6.0	6.1	119 121	105 104	120 126	106 104	125 130	95 98	124 129	101 98	125 132	102 103	128 136	100 99	123 129	101 105	123 128	102 98	118 124	10
								A	dmixt	ure I	2										
HC5A HB5A HC5B HB5B HC5C HB5C	Column Beam Column Beam Column Beam	5.25	8.0	123 126 122 128 125 122	100 102 102 106 106 105	117 126 122 127 126 119	100 106 105 107 108 106	122 133 128 134 132 126	98 96 98 104 101 104	120 128 120 130 126 122	104 103 100 104 102 105	129 133 123 134 132 126	104 103 105 104 106 106	132 137 131 139 136 130	98 98 98 99 100	126 131 126 128 128 122	100 103 102 103 102 105	126 131 126 125 131 121	100 102 101 101 99 104	120 128 121 125 126 116	10 10 11 10 10
HC4	Column	4.5	9.4	120	106	112	106	126	86	122	98	125	103	124	95	116	97	113	98	108	10
нс6 нв6	Column Beam	6.0	6.0	128 124	105 109	122 124	107 106	136 129	95 91	133 126	101 103	136 129	105 107	140 133	99 99	108 127	102 101	131 123	101 101	128 121	11
																Exp	posure	Rack,	Row	2 (W t	o E
					200		35		98	26	28		784	29	969	312	23	34	276	31	145
				Cyc 19	les 63		les 64		1es 65	Cyc 19	66		les 67		les 68	Cyc.			eles 970		eles 971
				%E	96V2	%E	96V	%E	%V2	%E	96V2	%E.	96V2	%E	%V2	<u>%</u> E	%v2	<u>%E</u>	<u>%v</u> 2	<u>%E</u>	%1
								Ac	lmixt	ure A											
AC5B AC5C AB5C	Column Column Beam	5.25	1.9	146 138 143	107 104 108	142 133 140	60 87 100	143 136 140	107 100 103	166 136 140	100	169 NR++		162 F 135	96 93	175	91	165	87	165	
AC4	Column	4.5	2.0	148	102	147		141		144		147		156		138		175		172	
AB6	Beam	6.0	1.8	125	84	114	91	109	98	121	66	121	61	F							
								Pa	raff	in Oi:	1										
OC5A OB5A OC5B OB5B OC5C OB5C	Column Beam Column Beam Column Beam	5.25	3.9	117 125 124 123 187 91	39 89 90 106 	115 129 132 121 193 89	95 101 105	113 126 143 123 199 87	105 104 108	115 124 199 125 199 85	93	113 124 NR 123 NR	100	113 126 209 123 254 79	99	113 128 NR 125 NR 77		111 130 74 128 71 74	::	108 124 F 125 73 69	
OC4 OB4	Column Beam	4.5	7.5	80 76	Ξ	65 119	=	60 F†		F											
ос6 ов6	Column Beam	6.0	5.6	121 122	108 112	119 118	94	114 114	121	116 116	89	116 114	101	118 109	100	118 111	::	131 116	::	170 111	:
								Ad	mixtu	re B											
ZC5A ZB5A ZB5B ZC5C ZB5C	Column Beam Beam Column Beam	5.25	4.9	124 123 115 143 112	107 105 80	122 118 113 157 112	100	110	117	118 118 160	98 91 95	116 118 118 NR 106	104	118	94	123 118 120 166 108	88	123 113 115 166 106	80	123 88 95 105 NR	

⁻⁻ Dashed lines in "%V" column indicate that end of specimen was too rough to obtain satisfactory reading.

† F denotes specimen has failed.

† NR denotes that a satisfactory reading was not obtained as specimen would not respond to flexural vibration. (Sheet 4)

(Revised Jan 1973)

								(vev	ised	Jan 19	113)										
							Та	ble 1	-CRA	(Conti	nued)				Expe	sure	Rack,		Section (W t	
200		Cement										3-197									
Spec-	Туре	Factor (Nominal) bags/	Air		00 les 63		35 les 64		98 1es 65	262 Cyc: 196	les		184 eles 167	Сус	69 les 068	31 Cyc 19		32° Cycl 19°	es	Cyc	45 les 71
No.	Specimen	cu yd	96	%E	%v2	%E	%v2	%E	%v2	%E	%V2	%E	%v2	%E	%v2	%E	%v ²	%E	%v2	%E	%v2
							Ad	mixtu	re B	(Conti	inued	.)									
ZC4 ZB4	Column Beam	4.5	4.7	143 F†		173		F													
zc6 zb6	Column	6.0	6.0	115 125	104 113	110 122	103 96	112 122	107	114 153	92	NR++ 150	98	112	==	117 112	::	112 112	==	108	==
								Resi	n Soa	ip + Ca	acl ₂										
CC5A CB5A CC5B CB5B	Column Beam Column Beam	5.25	7.8	94 114 125 121	104 101 99 104	88 109 120 121	99 97 	84 107 120 116	102	84 117 120 119		78 112 120 116		74 110 117 106	=======================================	78 110 120 108	::	60 110 120 99	=======================================	62 108 NR 75	
CC4 CB4	Column Beam	4.5	5.2	101 110	108	91 104	97	116 101	95	200 140		NR NR		F F							
сс6 св6	Column Beam	6.0	6.4	115 119	92 95	106 114	98	101 110	108	159 110	==	F 110		100		102		Fai	led		
								R	esin	Soap											
RC5A RC5A1 RB5A1 RB5C	Column Column Beam Beam	5.25	6.5	122 119 119 112	98 106 93 78	119 118 119 108	96 100 98 98	119 115 125 108	90 108 102 106	122 116 125 108	86 93 83	119 116 125 108	90	114 116 125 108	95	119 118 135 113	84	114 116 127 108	80	114 116 127 104	
RC4	Column	4.5	7.8	112	98	108		108		103		NR		111		127		127		F	
RC6 RB6	Column Beam	6.0	6.5	110 114	92 99	103 112	100	105 110	108	122 108	81	NR 101		143 86	-:	149 86		149 74	=	F F	::
								Ta	llow	(Beef)	2										
TB5C	Beam	5.25	4.0	114	86	112		110		108		106		101		103		103		99	
TB4	Beam	4.5	3.4	72	82	F															
тв6	Beam	6.0	3.6	129	93	124	86	121	101	124	86	119		109		111		106		95	
								A	dmixt	ure C											
DC5A DB5A DC5B DB5B DC5C DB5C	Column Beam Column Beam Column Beam	5.25	6.5	116 116 114 113 117 110		112 112 112 111 115 108	103 104 104 97 93	11 ⁴ 107 110 111 115 101	108 105 112 105 110	124 112 125 109 115 107	83 98 98 92	117 112 117 107 115 105	106 98 93	110 107 105 107 108 103	102 94 90	110 107 110 109 103 101	94	108 109 110 107 94 96	90	110 109 108 105 83 122	
DC4 DB4	Column Beam	4.5	8.1	84 81	93	68 66	70	74 67	::	F F											
DC6 DB6	Column Beam	6.0	6.1	118 124	92 73	114 119	=	110 115	::	112 115	==	111	::	107 106		109 106	::	111 104	::	113 104	::
								Ad	lmixt	ure D											
HC5A HB5A HC5B HB5B HC5C HB5C	Column Beam Column Beam Column Beam	5.25	8.0	120 124 121 120 126 116	105 114 95	116 120 121 117 126 109	63 95 100 102 		108 105 103 116 	120 121 114 124	92	114 115 121 114 NR 109	105		102 101 90 93	107 120 118 121 131 109	93 95 	105 120 123 119 131 109	:::::::::::::::::::::::::::::::::::::::	106 118 123 115 NR 83	:::::::::::::::::::::::::::::::::::::::
нс4	Column	4.5	9.4	101	96	91		87		89		NR		F							
нс6 нв6	Column Beam	6.0	6.0	128 121	103 108	190 119	104 96		107		89 83	100	98 99	98 110	101 98	100 110	87	98 105	84	98 102	=

Dashed lines in " $\sqrt[4]{2}$ " column indicate that end of specimen was too rough to obtain satisfactory reading. F denotes specimen has failed.

NR denotes a satisfactory reading was not obtained as specimen would not respond to flexural vibration.

(Revised August 1977)

Table 1-CRA (Continued) Section 25

		Coment								1	972-	Readi	ngs			Rack, Row 2	, 00
		Cement Factor			02		142		78	399	0	4136		4213			
pec- men	Туре	(Nominal) bags/	Air		les 772	19	les 73		les 74	Cycl. 197	5	Cycle 1976	s 	Cycle 1977			
No.	Specimen	cu yd	%	%E	%v2	<u>≉E</u>	<u>%v²</u>	≸E	<u>%v²</u>		<u>%v²</u>	%E	%v2	%E	%v2		
								<u> </u>	dmix	ture A							
C5B B5C	Column Beam	5.25	1.9	159 93	=	244 143	=	172 128	=	179 Gone		163		166			
C4	Column	4.5	2.0	165		171		272		Failed							
								Pe	raff	in Oil							
C5A	Column	5.25	3.9	101		94		96		96		Gone					
)B5A)C5B	Beam Column			120 F†		119		117		112		119		101			
)B5B	Beam			120		147		186		Failed							
C5C	Column			79		72		NR		Gone							
DB5C	Beam			62		58	-	52	-	51		Gone					
ос6 ов6	Column Beam	6.0	5.6	164		155 102	=	NR 100	=	Gone Failed							
								4	dmix	ture B							
ZC5A ZB5A	Column Beam	5.25	4.9	121	==	121		119	-	114	-	Failed					
ZB5B	Beam			85		176 91		NR 172	=	Gone Failed							
C5C	Column			100		215		215		Failed							
B5C	Beam			184		102		209		Failed							
c6	Column	6.0	6.0	91		126		95		75		Gone					
:в6				112		112		78			-	82		Failed			
								Resir	Soa								
CC5A	Column	5.25	7.8	F				-		Gone							
CB5A CC5B	Beam Column			85 F		62		NR		Gone							
CB5B	Beam			F													
								Ī	Resin	Soap							
RC5A	Column	5.25	6.5	116		116		111		113		Gone					
RC5A1	Column			114		119		NR		Gone							
RB5A1 RB5C	Beam Beam			122 97		120 88		120		122 119		Gone		108			
									llow	(Beef)							
B5C	Beam	5.25	4.0	F													
гв6	Beam	6.0	3.6	83		NR		F									
								A	dmix	ture C							
C5A	Column	5.25	6.5	105		105		96		87		118		135 98			
B5A	Beam			107		112		105		105		78		98			
DC5B	Column Beam			106		92		182		182		Gone					
0B5B 0C5C	Column			96 F		92		132		Failed							
B5C	Beam			72		F											
006	Column	6.0	6.1	88		122		153		Failed							
)B6	Beam			95		80	-	157		Gone							
IC5A	Column	5.25	8.0	105		Ol.				ture D		05		120			
IB5A	Beam	7.27	0.0	116		94 114		103	=	99 112		95 79		130			
IC5B	Column			120		128		123		118	==	133		79 78			
IB5 B	Beam			117		124		114		116		133 114		126			
IC5C	Column			252		252		234		Failed							
IB5C	Beam			79		68		NR		Gone							
106	Column	6.0	6.0	95 96		98		96		90		116		116			
186	Beam			96		138		90		90		67		Failed			

⁻⁻ Dashed lines in " V^2 " column indicate that end of specimen was too rough to obtain satisfactory reading. t F denotes specimen has failed. t Denotes no reading obtained.

Omaha District Aggregate Program

1956 installation

In December 1956, six concrete beams (6 by 6 by 30 in.) were installed on the Treat Island exposure rack to provide field durability data on concrete specimens fabricated as a part of the Omaha District, CE, Aggregate Program. This installation was made up of two series of beams, one containing the aggregate and cement combinations being used for concrete for the Oahe Dam, and the other containing a sand-gravel with a limestone addition, typical of limestone-sweetened concrete in the Lincoln-Omaha area.

Table 1-OD lists these specimens and gives their exposure record along with pertinent mixture data.

Companion specimens (3-1/2 by 4-1/2 by 16 in.) to these Treat Island exposure specimens were subjected to laboratory freezing-and-thawing tests in the Missouri River Division Laboratory, Omaha, Nebr. The results of these laboratory tests are given below:

Mixture	No. of Specimens Tested	Average %E at 300 Cycles of Freezing-and-Thawing
Oahe	9 beams	86
Sand-gravel	9 beams	53

1964 installation

In November 1964, three concrete beams (6 by 6 by 30 in.) were installed on the Treat Island exposure rack as a part of the Omaha District, CE, Aggregate Program. These beams were representative of concrete and materials used in Big Bend Dam.

Table 2-OD lists these specimens and gives their exposure record along with pertinent mixture data.

Record of Testing of Concrete Beams, Omaha District Aggregate Program

					1956-	(Install	Led Dece	mber 1	956)									
										105	6-196	2 Rea			ure H	ack,	Row 2	(W t	o E
Beam No.	Fine Aggre- gate	Coarse Aggre- gate	Type Cement	Air %	Cement Factor bags/ cu yd	0 Cycle 1956	s	Cycles, Pulse Veloc fps	1957	19 Cyc 19	5 les	34 Cyc 19	5 les	Cyc	les 60	Cyc 19	les	64 Cyc 19	
Oahe-1 Oahe-2 Oahe-3	Natural sand	Limestone A*	II, low- alk	6.1 6.7 6.6	5.32 5.29 5.30	100 100 100	116 110	15,245 14,880 15,245	100	117 116 116	108 109 106	123 122 123	98 101 98	121 120 119	100 105 102	121 119 118	102 108 108	115 113 113	10
S-G-1 S-G-2 S-G-3	Sand- gravel	Limestone B**	I	7.1 6.4 6.3	5.81 5.86 5.86	100 100 100	103	15,430 15,530 15,625	100	106	107 105 105	113 111 114	103 101 101	110 102 111	103 98 102	106 74 103	105 93 101	90 F† 79	10
						75	2	887		196 1050	3-196 1	9 Rea		1336		1521		675	-
						Cyc 19	1es 63 4v ²	Cycles 1964 %E %V		/cles 1965	<u>_i</u>	cles 966 % V ²	C	7cles 1967	C	rcles 1968		cles 969	5
Oahe-1 Oahe-2 Oahe-3	Natural sand	Limestone A*	II, low- alk	6.1 6.7 6.6	5.32 5.29 5.30	116 114 113	118	114 10 112 11 108 10	0 10	7 112	1111	102	10	+ 10	100	5 100		96	2
S-G-1 S-G-3	Sand- gravel	Limestone B**	I	7.1 6.3	5.81 5.86	41F F	61												
										197	0-197	6 Rea	dings						
						182 Cycl 197	es 0_	1997 Cycles 1971 %E %V ²	Су	154 cles 972 %v ²		194 1es 173 %v ²	24; Cyc: 19	les	Cyc 19	1es 75 %v ²	Cy	688 cles 976	
Oahe-1 Oahe-2 Oahe-3	Natural sand	Limestone A*	II, low- alk	6.1 6.7 6.6	5.32 5.29 5.30	105 103 100	90 1	103 74 103 78 100 74	101 96 96	82 82	95 98	94 87 93	85 84 82	94 95 93	83 82 82	113 114	91 82 80	96 86 88	
						276 Cycl 197	es			197	7-	Rea	dings						
Oahe-1 Oahe-2 Oahe-3	Natural sand	Limestone A*	II, low- alk	6.1 6.7 6.6	5.32 5.29 5.30	76	92 92 78												

⁻⁻ End of specimen too rough to obtain satisfactory reading.

* Maximum size aggregate = 1-1/2 in.; slump for this mix = 2-3/4 to 3 in.

** Maximum size aggregate = 1 in.; slump for this mix = 2 in.

† F denotes specimen has failed.

Record of Testing of Concrete Beams, Omaha District Aggregate Program

1964- (Installed November 1964)

					Cement		0 Cy	64			3 Cycles 1965
Beam No.	Fine Aggregate	Coarse Aggregate	Type Cement	Air %	Factor bags/cu yd	%E		e Vel ps	%v2	%E	%v2
Big Bend-1	Natural	Quartzite*	II, low	5.9	5.48	100	15,	195	100	102	99
Big Bend-2	sand		alkali (C3A content less than	5.8	5.48	100	15,	195	100	103	101
Big Bend-3			6%)	6.2	5.46	100	15,	100	100	103	101
							ycles 66		Cycles		Cycles 968
						%E	%v2	%E	%v2	%E	%v2
Big Bend-1	Natural sand	Quartzite*	II, low alkali (C ₂ A	5.9	5.48	106	104	102	110	53	66
Big Bend-2			content 3	5.8	5.48	106	103	104	107	63	58
Big Bend-3			6%)	6.2	5.46	104	103	103	108	70	87
						78		941		110	
						196	59	Cycles 1970	1	cles 1971 %v ²	
						%E			<u>%E</u>	76V	
Big Bend-1	Natural sand	Quartzite*	II, low alkali (C ₂ A	5.9	5.48	53	41	28F+ 3	9 F		
Big Bend-2			content 3	5.8	5.48	57	30	F†			
Big Bend-3			6%)	6.2	5.46	67	41	NR 3	8 F		

^{*} Maximum size aggregate, 1-1/2 in.; slump for this mix, 2-1/4 to 2-1/2 in.; water cement ratio, 4.93 gal/bag. † F denotes specimen has failed.

NR A satisfactory reading was not obtained although an attempt was made to obtain one.

Kansas City District Aggregate Program

1958 installation

In January 1958, eighteen concrete beams (6 by 6 by 30 in.) were installed on the Treat Island exposure rack to provide field durability data on concrete specimens containing certain aggregate materials commercially produced in the Kansas City District, CE. This installation is a part of an aggregate program being conducted by the Kansas City District. The concrete beams represented six different combinations of fine and coarse aggregate (3 beams per combination). All concrete mixtures contained type II low-alkali cement and an air-entraining admixture, and were designed to have a water-cement ratio of 5.0 gal per bag, a slump of 2 to 3 in., an air content of 4 to 7%, and a maximum aggregate size of 1-1/2 in.

Table 1-KCD lists these specimens and gives their exposure record along with other pertinent information.

Companion specimens (3-1/2 by 4-1/2 by 16 in.) to these Treat Island exposure specimens were subjected to laboratory freezing-and-thawing tests in the Missouri River Division Laboratory, Omaha, Nebr. The results of these laboratory tests are given below:

Mixture No.	No. of Beams Tested	Average %E at 300 Cycles of Freezing-and-thawing
1	9	29
2	9	31
3	9	9
4	9	25
5	9	59
6	9	73

1959 installation

In May 1959, eighteen concrete beams (6 by 6 by 30 in.) were installed on the Treat Island exposure rack; this installation is a part of the Kansas City District aggregate program. The concrete beams represented six different aggregate combinations of fine and coarse aggregate (3 beams per combination). All concrete mixtures contained type II cement and an air-entraining admixture, and were designed to have a water-cement ratio

of 5.0 gal per bag, a slump of 2 to 3 in., an air content of 4 to 7%, and a maximum aggregate size of 1-1/2 in.

Table 2-KCD lists these specimens and gives their exposure record along with other pertinent information.

Companion specimens (3-1/2 by 4-1/2 by 16 in.) to these Treat Island exposure specimens were subjected to laboratory freezing-and-thawing tests in the Missouri River Division Laboratory, Omaha, Nebr. The results of these laboratory tests are given below:

Mixture No.	No of Beens Tosted	Average %E at
HO.	NO. Of Deams lested	300 Cycles of Freezing-and-Thawing
7	9	29
8	9	68
9	9	25
10	9	40
11	9	28
12	9	3

1962 installation

In November 1962, nine concrete beams (6 by 6 by 30 in.) were installed on the Treat Island exposure rack; this installation is a part of the Kansas City District aggregate program. The concrete beams represented three different concrete mixtures (three beams per mixture). All concrete mixtures contained type II low-alkali cement and an air-entraining admixture, and were designed to have a water-cement ratio of 5.0 gal per bag, a slump of 2 to 3 in., an air content of 4 to 7%, and a maximum aggregate size of 1-1/2 in.

Table 3-KCD lists these specimens and gives their exposure record along with other pertinent information.

Companion specimens (3-1/2 by 4-1/2 by 16 in.) to these Treat Island exposure specimens were subjected to laboratory freezing-and-thawing tests in the Missouri River Division Laboratory, Omaha, Nebr. The results of these laboratory tests are given below:

Mixture No.	No. of Beams Tested	Average %E at 300 Cycles of Freezing-and-Thawing
13* 14**	9	69 56
15*	9	53

^{*} Specimens had 14 days of curing before start of test.

^{**} Specimens had 28 days of curing before start of test.

1963 installation

In December 1963, nine concrete beams (6 by 6 x 30 in.) were installed on the Treat Island exposure rack; this installation is a part of the Kansas City District aggregate program. The concrete beams represented three concrete mixtures (three beams per mixture). All concrete mixtures contained type II cement and an air-entraining admixture and were designed to have a cement factor of approximately 6 bags per cu yd, a slump of 2 to 3 in., and an air content of approximately 4-1/2 percent. The maximum aggregate size was 1-1/2 in. in two of the mixes and 3/4 in. in the other (mixture 17). One mixture (mixture 16) contained a cement-replacement material in addition to the type II cement.

Table 4-KCD lists these specimens and gives their exposure record along with other pertinent information.

Companion specimens (3-1/2 by 4-1/2 by 16 in.) to the Treat Island exposure specimens were subjected to laboratory freezing-and-thawing tests in the Missouri River Division Laboratory, Omaha, Nebr. The results of the laboratory tests are given below:

	No. of	Avg %E at
Mixture No.	Beams Tested	300 Cycles of Freezing-and-Thawing
16*	9	55
17**	9	3
18 **	9	55

^{*} Specimens had 28 days curing in saturated limewater before start of test.

1969 installation

In May 1969, three concrete beamst (6 by 6 by 30 in.) were installed on the Treat Island exposure rack; this installation is a part of the

^{**} Specimens had 14 days curing in saturated limewater before start of test.

[†] These beams had 28 days curing in saturated limewater before exposure.

Kansas City District aggregate program. The concrete beams represented three concrete batches (one beam per batch) of one concrete mixture. The concrete mixture was air-entrained and contained type II low-alkali portland cement and a cement-replacement material (20% by absolute volume). The mixture was designed to have a theoretical cement factor of 5.76 bags per cu yd, a slump of 2-1/2 in., and an air content of 4.7 to 5.0 percent. The maximum aggregate size (crushed limestone) was 1-1/2 in.

Table 5-KCD lists these specimens and gives their exposure record along with other pertinent information.

Companion specimens (3-1/2 by 4-1/2 by 16 in.) to the Treat Island exposure specimens were subjected to laboratory freezing-and-thawing tests in the Missouri River Division Laboratory, Omaha, Nebr. The results of the laboratory tests are given below:

Mixture No.	Batch No.	No. of Beams Tested	Avg %E After 300 Cycles of Freezing-and-Thawing
19	1	3*	61
19	2	2*	64
19	3	3*	65

^{*} These beams had 90 days of water curing prior to start of the laboratory freezing-and-thawing test.

1974 installation

In July 1974, six concrete beams (6 by 6 by 30 in.) were installed on the Treat Island exposure rack; this installation is a part of the Kansas City District aggregate program. The concrete beams represented two concrete mixtures (three beams per mixture). The concrete mixtures (20 and 21) contained type II cement and an air-entraining admixture and were designed to have cement factors of approximately 5.3 and 5.7 bags per cu yd, slumps of 2-1/2 and 2 in., and air contents of 5 and 4.5 percent. Maximum aggregate sizes were 1-1/2 in. Mixture 20 contained a cement-replacement material.

(Issued May 1976)

Section 27

Tables 6- and 7-KCD list these specimens and give their exposure record along with other pertinent data.

Companion specimens (3-1/2 by 4-1/2 by 16 in.) were subjected to laboratory freezing-and-thawing tests in the Missouri River Division Laboratory, Omaha, Nebr. The results of these tests are given below:

Mixture No.	No. of Beams Tested	Avg %E at 300 Cycles of Freezing-and-Thawing
20*	9	64
21**	9	35

^{*} Specimens were 90 days old when freezing-and-thawing cycles started.

^{**} Specimens were 14 days old when freezing-and-thawing cycles started.

Mixture Data and Record of Testing of Concrete Beams, Kansas City District Aggregate Program

1957- (Installed January 1958)

											195	7-196	3 Read		Lipos	ure R	ucn,	210# 2	("	00 E)
Beam	Mix-	Fine	Coarse	Cement Factor bags/	O Cycl 195		43 (Cycles Pulse Veloc			19 Cyc 19	3 les 59	26 Cyc:	t les 50		les 61		les 62_	Су	00 cles 963
No.	No.	Aggregate	Aggregate	cu yd	%E		%E	fps	_	%v ²	%E	%v2	%E	%v2	%E	%v ²	%E	%v2	%E	%v2
KC-1-1 KC-1-2 KC-1-3	1	Sand A	Limestone A	5.67 5.60 5.59	100 100 100		110 112 110	15,43 15,15 15,15	0	100 100 100	99 102 106	90 93 95	92 93 99	90 94 96	84 89 93	83 86 87	76 79 84	80 95 88	74 79 83	
KC-2-1 KC-2-2 KC-2-3	2	Sand B	Limestone AA	5.36 5.34 5.34	100 100 100		111 109 108	15,06 15,06 15,06	0	100 100 100	104 102 104	95 94 97	93 88 95	94 90 98	87 85 90	88 81 90	77 76 78	86 76 89	75 74 78	
KC-3-1 KC-3-2 KC-3-3	3	Sand B	Limestone B	5.39 5.36 5.41	100 100 100		88 88 Broke	14,12 14,04 en at	5	100 100 alla	74 68 tion	73 72	46F* 48F							
KC-4-1 KC-4-2 KC-4-3	4	Sand B	Limestone C	5.34 5.34 5.40	100 100 100		108 107 105	14,62 14,53 14,79	15	100 100 100	112 113 109	99 98 100	105 108 100	99 104 100	88 92 89	93 96 94	82 86 79	92 96 89	76 83 80	93
KC-5-1 KC-5-2 KC-5-3	5	Sand B	Limestone D	5.16 5.14 5.15	100 100 100		112 114 111	15,43 15,53 15,53	0	100 100 100	114 114 113	98 98 98	108 112 110	105 100 102	104 107 108	103 103 103	101 101 100	85 104 **	99 102 102	69 95 73
KC-6-1 KC-6-2 KC-6-3	6	Sand C	Limestone D	5.84 5.83 5.81	100 100 100		111 111 112	15,33 15,33 15,24	15	100 100 100	116 117 117	99 101 101	112 113 115	105 105 106	111 111 113	108 108 106	106 106 107	104 109 112	109 109 106	
						5	8	98	10	028		4-197 1184	l Rea	dings		1523		1676		845
					Cyc	1es 64 %v ²	Су	cles 965 %v ²	Cy	cles 966	C	ycles 1967		ycles 1968		lycles 1969		Cycle 1970	s Cy	cles 971
KC-1-1 KC-1-2 KC-1-3	1	Sand A	Limestone A	5.67 5.60 5.59	64 69 76	69 68 68	59 62 71	68 68	54 59 59	49) F	6 38	8 F		2 %	<u> %v°</u>	<u>%</u>	E 76V	E %E	76V
KC-2-1 KC-2-2 KC-2-3	2	Sand B	Limestone AA	5.36 5.34 5.34	65 69 74	70	71 62 65		63 60 63		- F				-					
KC-4-1 KC-4-2 KC-4-3	4	Sand B	Limestone C	5.34 5.34 5.40	66 72 66	77 85 83	67 62 61	85	74 F F	61	+ 7	4 68	B F		-					
KC-5-1 KC-5-2 KC-5-3	5	Sand B	Limestone D	5.16 5.14 5.15	97 97 98	89 99 94	108 78 94	101	110 86 94	88	3 8	90	0 7	6 8	88 96 85 71 89 90	4 82	8	2 7	7 96 8 84 3 95	59
KC-6-1 KC-6-2 KC-6-3	6	Sand C	Limestone D	5.84 5.83 5.81	102 101 104	98 104 99	101 99 102	117	101 97 100	85	3 9	7 95	5 9		1 9 9 9 9	1 85	9	1 8	6 97 2 95 8 98	69

⁻⁻ Dashed lines in "\$\sqrt{2}" column indicate end of specimen was too rough to obtain satisfactory reading.

** F denotes specimen has failed.

** A spurious reading was obtained on this beam in 1962 and was discarded.

(Revised August 1977) Table 1-KCD (Continued)

1										19	72-	Re	adin	gs				100
Beam	Mix-	Fine	Coarse	Cement Factor bags/	Cyc	02 les 72	Cyc	142 1es 73	227 Cycl 197	.es	23 Cyc 19	les	Cyc	36 les 76	Cyc	13 les		
No.	No.	Aggregate	Aggregate	cu yd	%E	%v2	\$E	% √2	5E	%v ²	盔	100°	%E	%v2	%E	%v2		
KC-5-1 KC-5-2 KC-5-3	5	Sand B	Limestone D	5.16 5.14 5.15	96 NR† 74	66 79 65	98 88 93	79 87 83	94 88 93	82 81 90	88 84 93	70 66 107	92 78 85	:	84 76 81			
KC-6-1 KC-6-2 KC-6-3	6	Sand C	Limestone D	5.84 5.83 5.81	95 89 96	87 78 79	101 91 96	94 90 98	93 89 92	98 93 93	97 89 90	121 75 77	89 85 88	96 94 85	89 85 86	91 80 92		

[†] NR denotes a satisfactory reading was not obtained as specimen would not respond to flexural vibration. ‡ End of specimen too rough to obtain reading. \$V² data discontinued.

(Revised August 1977)

Table 2-KCD (Continued)

										1972		Read		osure	Raci	, Row	2 (W to E)
Beam	Mix-	Fine	Coarse	Cement Factor bags/	18 Cyc 19	les	Cyc	149 1es 173	Cyc	085 :les	Cyc		Cyc	143 :les :76		20 les 77	
No.	No.	Aggregate	Aggregate	cu yd	%E	%v2	5E	<u>%v²</u>	<u>\$E</u>	%v ²	盔	%v2	%E	%v2	%E	%v2	
KC-8-1 KC-8-2 KC-8-3	8	Sand BB	Limestone F	5.44 5.44 5.47	99 NR++ NR	79 55 68	101 NR NR	104 94 79	Fai	91 led	95	117	93	87	83	72	

Mixture Data and Record of Testing of Concrete Beams, Kansas City District Aggregate Program

				15	962-	(Inst	alled	No	vember	1962	2							··· ·	1
						-			-		1962	-1967	Readi	exposi	ire Re	ck, I	NOW 2	(W to) E)
Beam	Mix-	Fine	Coarse	Cement Replace- ment	Cement Factor bags/	00	Pula Velo	se		Cyc	106 eles 963	Cy	241 cles 964	Cyc	104 cles 965	Cyc	534 cles 966	Cyc	690 cles 967
No.	No.	Aggregate	Aggregate	Material	cu yd	<u>%E</u>	fp		%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%V
KC-13-1 KC-13-2 KC-13-3	13	Sand E	Limestone F	None	5.47 5.44 5.46	100 100 100	15,1 14,7 15,1	95	100 100 100	117 103 103	101 102 102	102 103 103		102 104 101	110 116 112	100 100 99	101 100 95	94 100 93	10 10
KC-14-1 KC-14-2 KC-14-3	14	Sand E	Limestone F	Fly ash*	5.13 5.16 5.13	100 100 100	14,5 14,7 14,5	05	100 100 100	102 104 104	104 100 105	102 104 102	104 107 102	103 102 100	130 116 109	101 104 98	98 101 98	101 102 98	10 10
KC-15-1 KC-15-2 KC-15-3	15	Sand E	Limestone C	None	5.37 5.36 5.38	100 100 100	15,00 15,00 15,19	60	100 100 100	103 102 103	98 105 104	101 101 101	95 95 95	99 97 100	90 101 100	99 99 100	93 93 86	95 91 100	999
							375		1029 Cycle		11	8-1973 82 eles		ngs 351 cles		1508 Cycles	5	164 Cycl	
						%E	968 %v ²	-	1969 Æ	%v ²	19 %E	970 96v ²		971 %v		1972	6v ²	197	73 %v
KC-13-1 KC-13-2 KC-13-3	13	Sand E	Limestone F	None	5.47 5.44 5.46	98 97 97	100 104 100		98 100 99	94 98 94	96 96 97	90 95 90	94 95 96	75 86 75		32 32 39	87 93 75	88 90 93	10:
KC-14-1 KC-14-2 KC-14-3	14	Sand E	Limestone F	Fly ash*	5.13 5.16 5.13	101 102 100	107 105 105		99 102 98	102 99 99	97 102 98	99 97 95	97 101 106	74 72 68	2 8	39	86 88	101 106 122	81
KC-15-1 KC-15-2 KC-15-3	15	Sand E	Limestone C	None	5.37 5.36 5.38	93 80 84	98 85 81		91 80 84	87 76 70	93 84 82	84 75 68	101 F** 85	56)3 84	77	76 F	8: F
						17	9).		896		197 2042	4- 211	Readi	ngs				1	
							les	Cy	rcles 1975 180 ²	Cy 1	cles 976	Cyc:	les						
KC-13-1 KC-13-2 KC-13-3	13	Sand E	Limestone F	None	5.47 5.44 5.46	82 88 91	104	84 84 85	116 122 123	88	96 98 90	82 84 87	86 90 92						
KC-14-1 KC-14-2 KC-14-3	14	Sand E	Limestone F	Fly ash*	5.13 5.16 5.13	68 100 113	85 82 80	50 71 Fe	65 101 iled		NR NR	Fail Fail							
KC-15-1	15	Sand E	Limestone C	None	5.37	63	76	Fe	iled										

^{*} Fly ash content, 25 percent replacement by volume.

** F denotes specimen has failed.
-- Dashed lines in "%" indicate that end of specimen was too rough to obtain satisfactory reading.

NR Denotes no satisfactory reading was obtained.

Section 27

Mixture Data and Record of Testing of Concrete Beams, Kansas City District Aggregate Program

1963- (Installed December 1963)

					-705-	(11100011	cu po	COMBOCI	1/05	_								
										-	1063	-1067	Read		Rack,	Row	2 (W t	0 E)
Beam	Mix- ture		Replace- ment	Fine	Coarse	Cement Factor bags/		Pulse Veloc		- C3	.21 cles .964	C	284 ycles 1965	Cy 1	14 cles 966	Cyc 19	70 les 67	
No.	No.	Cement	Material	Aggregate	Aggregate	cu yd	<u>%E</u>	fps	_ <u>%</u> V		%v2	96E	%V	%E	%V	%E	g/	
KC-16-1 KC-16-2 KC-16-3	16	A	Fly ash*	Sand E	Limestone F	6.25 6.27 6.26	100 100 100	14,53 14,70 14,62	5 100	0 101	105	104 105 104	95	103		106 103 100	122 114 114	
KC-17-1 KC-17-2 KC-17-3	17	В	None	Sand F	Gravel B	6.00 6.02 6.00	100 100 100	14,20 14,53 14,12	35 100	0 103	3 109	74		F	38	F		
KC-18-1 KC-18-2 KC-18-3	18	С	None	Sand G	Quartzite	5.73 5.77 5.74		14,70 15,15 15,06	50 100	0 102	102	102	98		111 109 108	102 106 104	117 113 115	
											1069	1072	Readi					
								755	90	9	100		12		13	388	15	28
							Cyc	968 968	Cycl 196		Cycl 197		Cyc 19 %E	les	Cyc	les 72 %v ²	Cyc	eles 973 %v ²
KC-16-1 KC-16-2 KC-16-3	16	A	Fly ash*	Sand E	Limestone F	6.25 6.27 6.26	104 107 104	114 110 111	108	107 105 105	106 109	104 100 101	108 107 NRt	87 84 88	104 105 108	95 88 95	100 107 104	99 93 88
KC-18-1 KC-18-2 KC-18-3	18	С	None	Sand G	Quartzite	5.73 5.77 5.74	102 102 104	116 109 109	104	107 104 99	108	1.05 102 108	104 106 107	84 85 81	100 104 83	84 87 90	98 92 100	80 88 76
								564			1974-		Readi					
							Cyc	eles 974	17° Cyc: 19°	les 75	19 Cyc. 19	les	Cyc	99 :les 777				
							%E	% v ²	Æ	%v2	%E	%v2	%E_	%v2				
KC-16-1 KC-16-2 KC-16-3	16	A	Fly ash*	Sand E	Limestone F	6.25 6.27 6.26	98 109 104	106 65 68	98 109 104	137 130 125	94 105 104	79 100 90	90 109 104	98 100 NR				
KC-18-1 KC-18-2 KC-18-3	18	С	None	Sand G	Quartzite	5.73 5.77 5.74	102 64 92	106 65 68	102 Fai: 80	82 1ed 72	82 176	93 NR	100 Fai	NR led				

Fly ash content, 25 percent replacement by volume.
F denotes specimen has failed.
NR denotes satisfactory reading was not obtained as specimen would not respond to flexural vibration.

(Revised August 1977)

Table 5-KCD

Section 27

Mixture Data and Record of Testing of Concrete Beams, Kansas City District Aggregate Program

1969- (Installed May 1969)

										1000				Rack,	Row 2	(W t	0 E)
	Mix-			Air	Avg** 28-day Compres- sive		adin Pu	Labor gs, 1 lse loc	atory 969			Cyc	153 cles	Cyc	322 cles	Cyc	179 eles
No.	No.	No.*	Aggregates	Content	Strength psi	%E		ps	%v2	%E	%v2	%E	%v2	%E	%v2	%E	%v2
KC-19-1	19	1	Crushed limestone 1-1/2 in. max	4.9	3360	100	14	,620	100	101	100	93	97	88	84	83	92
KC-19-2	19	2	Crushed limestone 1-1/2 in. max	5.0	3360	100	14	,620	100	100	100	90	98	87	84	83	91
KC-19-3	19	3	Crushed limestone 1-1/2 in. max	4.7	3640	100	14	,620	100	106	101	90	98	90	85	88	92
										1973			dings				
						19	les 73	755 Cycl 197	les 14	867 Cycl 197	les 75_	Cyc	13 :les :76	109 Cycl 197	es 7		
						<u>%E</u>	<u>%v²</u>		<u>%v²</u>	%E	%v2		%V		<u>v</u> ²		
KC-19-1	19	1	Crushed limestone 1-1/2 in. max	4.9	3360	83	102	83	114	83	78	81	114	66 1	.09		
KC-19-2	19	2	Crushed limestone 1-1/2 in. max	5.0	3360	82	94	82	114	79	77	74	110	79 1	.04		
KC-19-3	19	3	Crushed limestone 1-1/2 in. max	4.7	3640	84	101	86	113	86	139	82	116	82 1	105		

The water-cement ratio of all three batches was 5.39 gal/bag or 0.49 by weight.

(Revised August 1977)

Section 27

Mixture Data and Record of Testing of Concrete Beams, Kansas City District Aggregate Program

1975- (Installed July 1974)

					Avg**				1974			lings		Row 2 (W	
Beam	Mix-	Batch		Air Content	28-day Compres- sive Strength		ial Labor adings, l Pulse Veloc	974	19	les 75	19	les 076	33 Cyc 19	les 77	
No.	No.	No.*	Aggregates	_5_	psi	≸E	fps	%v ²	₹E	<u>%v²</u>	%E	%v ²	%E	<u>%v²</u>	
KC-20-1	20	1	Crushed limestone 1-1/2-in. max	5.0	3360	100	14,285	100	102	134	104	117	106	109	
KC-20-2	20	2	Crushed limestone 1-1/2-in. max	5.4	3280	100	14,370	100	107	129	105	107	110	101	
KC-20-3	20	3	Crushed limestone 1-1/2-in. max	5.3	3260	100	14,285	100	106	131	108	115	113	102	

The water-cement ratio of all three batches was 5.34 gal/cwt or 0.445 by wt.
 Average based on compressive strength of three 6- by 12-in. cylinders per batch.

(Revised August 1977)

Table 7-KCD

Section 27

Mixture Data and Record of Testing of Concrete Beams, Kansas City District Aggregate Program

1975- (Installed July 1974)

					Avg				1974	-		ings			(W to
Beam	Mix-	Batch		Air Content	28-day Compres- sive Strength		ial Labor adings, 1 Pulse Veloc	974		1es		les 76	33 Cyc	les	
No.	No.	No.*	Aggregates		psi	\$E	fps	%v ²	5E	<u>\$v</u> ²	5E	<u>%v²</u>	%E_	<u>\$v²</u>	
(C-21-1	21	1	Crushed limestone 1-1/2-in. max	5.0	4600	100	14,795	100	102	134	106	114	104	104	
(C-20-2	21	2	Crushed limestone 1-1/2-in. max	4.9	5150	100	14,620	100	101	132	107	114	109	106	
C-21-3	21	3	Crushed limestone	5.1	4930	100	14,535	100	102	139	106	116	106	105	

The water-cement ratio of all three batches was 5.28 gal/cwt or 0.44 by wt.
 Average based on compressive strength of three 6- by 12-in. cylinders per batch.

Eufaula Dam Aggregates Study

In October 1958, three concrete cubes (8 cu ft) were installed at half-tide elevation on the beach at Treat Island as part of a program being conducted by the Tulsa District, CE, to develop information about the aggregates to be used in Eufaula Dam. These aggregates were from the Tulsa District. The cubes were fabricated at the Southwestern Division Laboratory, Dallas, Tex.

The cubes were made of air-entrained concrete, admixture Z being the air-entraining admixture; type II cement was the cementing medium. The aggregates were a natural sand fine aggregate and a crush stone coarse aggregate. Two cubes contain 6-in. maximum size aggregate, the other contains 3-in. maximum size aggregate. All cubes were fabricated in August 1958.

Table 1-ED lists these specimens and gives their exposure record along with pertinent mixture data.

Mixture Data and Record of Testing of Concrete Cubes, Eufaula Dam Aggregate Study

1958- (Installed October 1958)

												Beac	h Row 1	W to E)
										1965 Re				
Cube	Maximum Size in.	Descrip- tion	Air 5	Water- Cement Ratio gal/bag	Theo Cement Factor bags/cu yd	O Cycles, Pulse Veloc fps	1958	150 Cycles 1959 %v ²	220 Cycles 1960 \$v ²	361 Cycles 1961 \$v ²	451 Cycles 1962 4v ²	557 Cycles 1963 4v ²	692 Cycles 1964 4V ²	855 Cycles 1965 %v ²
1	6	Poor	5.4	4.97	4.0	14,450	100	95	101	96	100	102	110	113
2	6	Random	5.9	4.85	4.0	14,650	100	95	100	100	104	107	110	107
3	3	Random	5.7	5.30	4.0	14,075	100	95	103	99	102	108	111	112
									1966-	1973 Re	adings			
						985 Cycles 1966 1972	1141 Cycles 1967	1326 Cycle 1968 %v ²	s Cyc	les C	1633 ycles 1970 %v ²	1802 Cycles 1971 4v ²	1959 Cycles 1972 4V ²	2099 Cycles 1973 %v ²
1	6	Poor	5.4	4.97	4.0	90	112	105	9	6	94	85	84	
2	6	Random	5.9	4.85	4.0	92	107	110	9	9	94	89	82	
3	3	Random	5.7	5.30	4.0	97	114	109	10	О	96	97	95	•
									1974-	Pa	adings			
						2235 Cycles 1974 %V ²	2347 Cycles 1975	2493 Cycles 1976 4v ²	2570 Cycle 1977 %V ²	es	aurigs			
1	6	Poor	5.4	4.97	4.0	94	88	92	97					
2	6	Random	5.9	4.85	4.0	115	109	108	93					
3	3	Random	5.7	5.30	4.0	109	99	96	93					

[•] Equipment malfunctioned in 1973.

Alkali-Aggregate Reactivity Investigation

The purpose of this investigation is to determine the effect on alkali-aggregate reactivity of varying amounts of C₃A (tricalcium aluminate) in high-alkali and low-alkali cements in concrete specimens exposed to sea water at St. Augustine, Fla.

1955 Installations

In August 1955, 72 concrete beams (6 by 6 by 30 in.) were installed on the exposure rack at St. Augustine. In September 1955, 36 concrete beams (6 by 6 by 30 in.) were installed outdoors at the Waterways Experiment Station Suboffice, Jackson, Miss. The beams installed at Jackson were controls for those installed at St. Augustine. The concrete was airentrained, and had a water-cement ratio of 0.5 (by wt), a slump of 2-1/2 ± 1/2 in., and an air content of 5.0 + 0.5%. Cement factors were in the range of 4.5 to 5.8 bags per cu yd. Twelve concrete combinations were represented, in which two fine aggregates, three coarse aggregates (maximum size, 1-1/2 in.), two pozzolans, two high-alkali cements, and two low-alkali cements were used. Nine beams represented each of the 12 combinations (six beams at St. Augustine and three at Jackson).

Table 1-AA lists the specimens and gives their exposure record along with other pertinent information.

In November 1957, two of the specimens exposed at St. Augustine were returned to the laboratory for study (specimens 1823 and 1850). The findings were:

Beam 1823: Showed evidence of slight alkali-aggregate reaction; no sign that this had been damaging to the concrete.

Beam 1850: Showed evidence of heavy alkali-aggregate reaction and of heavy sulfate attack. The effects of this had been damaging to the concrete.

1956 Installations

In August 1956, 36 concrete beams (6 by 6 by 30 in.) were installed

on the exposure rack at St. Augustine and 18 concrete beams (6 by 6 by 30 in.) were installed outdoors at the WES Suboffice, Jackson, Miss. The beams installed at Jackson were controls for those installed at St. Augustine. The concrete was air-entrained and had a water-cement ratio of 0.5 (by wt), a slump of 2-1/2 + 1/2 in., and an air content of 5.0 + 0.5%. Cement factors were in the range of 4.5 to 5.8 bags per cu yd. Six concrete combinations were represented, in which two cement replacement materials, one high-alkali cement, one low-alkali cement, one fine aggregate, and one coarse aggregate (maximum size, 3/4 in.) were used. These six combinations represented a repeat of two of those included in the 1955 group plus each of these with the inclusion of each of two pulverized water-quenched iron blast furnace slags used as cement replacement materials. Nine beams represented each of the six combinations (six beams at St. Augustine and three beams at Jackson).

Table 2-AA lists the specimens and gives their exposure record along with other pertinent information.

In August 1971, 15 beams (9 from 1955 installation and 6 from 1956 installation) were returned to the laboratory for study. The testing and installation of specimens at St. Augustine were discontinued after the 1970 inspection.

Record of Testing of Concrete Beams, Alkali-aggregate Reactivity Investigation

1955- (Installed August and September 1955)

						1955			195	5-196	4 Rea	dings					_
Beam		Replacement Material*	Fine	Coarse*		Pulse Veloc		_ 19	56	19	58	19	60	_19	_	_19	264
No.	Cement	(Pozzolan)	Aggregate	Aggregate	12	fps	\$v ²	≸E	<u>\$v²</u>	12	<u>\$v</u> ²	至	<u>\$v</u> ²	*	<u>\$v²</u>	4	<u>\$v</u> 2
			Beams I	installed at 8	St. Au	gustine,	Fla.	, Aug	1955								
1823 1824	RC 331 high alkali	None	Nat sand	Nat gravel + quartz-	100	14,620	100	104	117 99	**	96	64	oR.	Fail	-4		
1826 1827	low C3A			ite (5%)	100	14,620	100	102	100	126	100	++					
1829 1830					100	14,535	100	104	104 99 98	121	90	92		Fail	_	_	
				•	100	15,060	100	103		131	97	106	93	56	82		lled
1832 1833	RC 333 low alkali	None	Nat sand	Mat gravel + quartz-	100	14,370	100	107	106	131	109	116	111	108	123 120	109	102
.835 .836	low C3A			ite (5%)	100	14,450	100	107	105	117	109	112	114	106	117	106	105
1838 1839					100	15,060	100	108	98 101	119	102	116	106	109	112	107	99
1841	RC 333	None	Limestone	Limestone	100	14,880	100	109	112	120	115	119	121	113	122	110	112
1842 1844	low alkali low C3A		sand		100	15,150	100	109	108	120	112	119	118	115	128	112	113
1845	104 c34				100	14,975	100	111	110	132	113	117	119 122	105	134	107	119
1847 1848					100	14,535	100	114	111	146	114	119 120	122	118	125 137	118	116
1850	RC 332	None	Nat sand	Net gravel	100	14,125	100	69 66	87	**	~						
1851 1853	high alkali high C ₃ A			+ quartz- ite (5%)	100	14,370	100	68	83 87	124	36	Fai					
1854 1856					100	14,620	100	86 67	89	110	39 23	Fai Fai	000000000000000000000000000000000000000				
1857					100	14,620	100	56	79	73	26	Fai	led				
1859 1860	RC 332 high alkali	None	Limestone	Limestone	100	15,060	100	105	109	126	106	110	113	105	122	122	108
1862 1863	high C3A				100	15,245	100	106	105	126	110	110	112	106	121	104	105
1865					100	14,620	100	105	105	123	111	108	113	104	127	108	109
1868	RC 334	None	Limestone	Limestone	100	14,705	100	108	114	125	117	107	116	103	122	103	106
1869 1871	low alkali high CaA		sand		100	14,205	100	110	115	130	118	119	120	114	129	114	117
1872				1	100	14,880	100	110	113	128	115	117	118	111	131	117	112
1874 1875					100	14,970	100	108	109	127 131	115	118	116	114	126 125	114	110
1877	RC 331 high alkali	None	Nat sand	Nat gravel	100	15,060	100	104	99 89	125 115	101	110	104	105	109	110	101
1880	low C3A				100	14,795	100	103	100	119	100	108	105	107	113	103	99
1881 1883					100	14,795	100	104	100	121	100 98	108	106	105	113	108	95 96
1884					100	14,970	100	105	99	118	100	111	105	107	106	107	
1886 1887	RC 332 high alkali	None	Nat sand	Nat gravel	100	14,285	100	105	97 98	115	109 97	107	105	103	106	105	100 98
1889 1890	high C3A				100	14,370	100	103	98	112	100	111	106	107	110	109	100
1892 1893					100	14,880	100	104	99 98 98	114	97	107	101	103	105	106	95
1895	RC 331	Shale 30%	Net send	Nat gravel	100	13,735	100	115	102		112	107	109	102	119	104	105
1896 1898	high alkali low C2A			+ quartz- ite (5%)	100	13,810	100	114	102			125	109	119	116		105
1899	3.			(),,	100	14,370	100	110	98	123	101	121	107	113	111	119	93
1901 1902					100	13,890	100	110	99	129	105	133	106	125	113	122	99
1904 1905	RC 331 high alkali	Fly ach 20%	Net send	Hat gravel + quarts-	100	14,705	100	106	97 98	122	94 101	114	106	107		102	96 98 100
1907	low C3A			1te (5%)	100	14,705	100	108	105	106	101	96	110	93	114	92	100
1908 1910					100	14,795	100	104	98	122	100	115	107		115	107	99 98 98
1911					100	14,880 mued)	100	108	97	120	100	113	105	109	110	106	98

^{**} Percentages given are by volume of material replaced.

** Returned to laboratory Rovember 1957.

† Broken in handling 1958.

†† Broken in handling 1960.

(Revised Sept 1966)
Table 1-AA (Continued)

Section 29

				WENTER TO					195	5-196	4 Rea	dings					_
		Replacement			_	1955 Pulse	_	10	56	10	58	10	60	10	62	10	64
No.	Cement	Material (Pozzolan)	Fine Aggregate	Coarse Aggregate	<u>#</u>	Veloc fps	%v ²	%E	%v ²	15 1E	15v2	%E	%v ²	≸E	½v ²	%E	%v ²
		Be	ams Install	ed at St. Aug	ustin	e, Fla.,	Aug	1955	(Cont	inued)						
1913 1914 1916 1917 1919 1920	RC 332 high alkali high C ₃ A	Shale 30%	Nat sand	Nat gravel + quartz- ite (5%)	100 100 100 100 100	13,515 13,515 13,890 13,890 14,125 14,285	100 100 100 100 100	114 111 110 113 111' 112	102 103 102 103 102 97	132 130 126 124 127 130	106 106 103 105 106 100	122 124 119 118 116 120	110 113 111 110 106 105	117 115 113 113 110 115	117 117 119 115 111 112	121 119 115 113 111 113	106 104 101 101 99 97
1922 1923 1925 1926 1928 1929	RC 332 high alkali high C ₃ A	Fly ash 20%	Nat sand	Nat gravel + quartz- ite (5%)	100 100 100 100 100	14,535 14,450 14,535 14,535 14,705 14,970	100 100 100 100 100	107 106 106 107 108 107	100 104 100 101 100 100	75 100 68 120 129 115	92 99 88 102 99 96	F# F 112 115 69	72 78 71 105 101 85	66 53 F	89 72 70	43F 40F	
			Beams	Installed at	Jack	son, Mis	s., S	Sept 1	955								
1825 1828 1831	RC 331 high alkali low C3A	None	Nat sand	Nat gravel + quartz- ite (5%)	100 100 100	14,970 14,795 14,795	100 100 100	102 105 102	104 104 105	98 111 103	102 100 102	108 107 107	98 98 98	102 100 101	101 100 99	100 101 101	99 98 98
1834 1837 1840	RC 333 low alkali low C3A	None	Nat sand	Nat gravel + quartz- ite (5%)	100 100 100	14,205 14,880 14,620	100 100 100	104 105 106	101 105 109	107 109 110	108 108 106	109 111 112	105 102 105	103 105 106		103 103 105	105 95 101
1843 1846 1849	RC 333 low alkali low C3A	None	Limestone sand	Limestone	100 100 100	14,880 14,370 14,370	100 100 100	105 107 108	112 114 114	108 112 112	115 118 118	110 114 116	116 117 117	103 107 107	109 117 114	104 107 109	110 115 117
1852 1855 1858	RC 332 high alkali high C ₃ A	None	Nat sand	Nat gravel + quartz- ite (5%)	100 100 100	14,125 14,535 14,535	100 100 100	104 103 100	106 104 104	107 106 104	105 100 101	108 110 104	100 97 99	104 105 98	102 98 98	99 99 96	99 96 96
1861 1864 1867	RC 332 high alkali high C ₃ A	None	Limestone sand	Limestone	100 100 100	14,880 14,450 14,450	100 100 100	102 102 100	109 116 106	108 106 104	113 121 117	111 111 109	113 120 116	103 104 101	109 117 117	103 103 101	115 121 114
1870 1873 1876	RC 334 low alkali high C ₃ A	None	Limestone sand	Limestone	100 100 100	14,535 14,450 14,705	100 100 100	104 105 104	101 113 107	111 112 111	113 117 110	113 114 113	114 114 110	105 106 104	114 116 112	105 106 104	114 113 111
1879 1882 1885	RC 331 high alkali low C ₃ A	None	Nat sand	Nat gravel	100 100 100	13,965 14,705 15,060	100 100 100	103 102 101	115 107 102	106 104 104	112 102 97	111 108 108	110 100 95	103 102 100	114 100 100	103 102 100	108 99 96
1888 1891 1894	RC 332 high alkali high C3A	None	Nat sand	Nat gravel	100 100 100	14,125 13,890 14,620	100 100 100	103 104 103	107 111 101	107 109 105	100 105 98	110 111 107	98 100 94	101 104 101	105 107 96	101 102 98	100 101 93
1897 1900 1903	RC 331 high alkali low C3A	Shale 30%	Nat sand	Nat gravel + quartz- ite (5%)	100 100 100	13,660 13,515 13,735	100 100 100	95 98 93	102 106 101	103 107 100	98 102 99	106 110 105	94 100 96	101 103 98	102 104 101	100 98 98	99 101 98
1906 1909 1912	RC 331 high alkali low C ₃ A	Fly ash 20%	Nat sand	Nat gravel + quartz- ite (5%)	100 100 100	14,535 14,045 14,705	100 100 100	96 99 94	106 112 102	102 104 99	101 107 100	106 108 103	107 108 100	98 100 96	101 108 100	98 98 93	100 107 99
1915 1918 1921	RC 332 high alkali high C3A	Shale 30%	Nat sand	Nat gravel + quartz- ite (5%)	100 100 100	13,160 13,890 13,515	100 100 100	93 99 96	103 101 102	102 108 103	103 100 103	107 110 105	104 99 95	100 103 98	105 102 104	95 101 94	102 99 98
1924 1927 1930	RC 332 high alkali high C ₃ A	Fly ash 20%	Nat sand	Nat gravel + quartz- ite (5%)	100 100 100	14,205 14,795 14,705	100 100 100	97 101 96	101 107 104	103 106 104	105 99 99	107 104 115	102 100 98	99 98 100	106 101 100	97 99 96	105 100 99

		Replace ent			10	966	10	68	196	6-197 70	O Readings
Beam No.	Cement	Material (Pozzolan)	Fine Aggregate	Coarse Aggregate	%E	%v ²	%E	%v ²	%E	%v2	
				nstalled at S		10			Aug :		
2000	ng 222										
1832 1833 1835 1836 1838 1839	RC 333 low alkali low C ₃ A	None	Nat sand	Nat gravel + quartz- ite (5%)	109 108 107 107 107 108		110 108 113	110 111 111 104 103 105	109 110 108 113 103 112	109 105 107 108 101 106	
1841 1842 1844 1845 1847 1848	RC 333 low alkali low C ₃ A	None	Limestone sand	Limestone	101 114 101 111 115 113	133 126 132 134 134 137	99 113 105 115 116 112	114 117 111 116 119 119	99 113 105 117 116 112	120 115 116 119 119 116	
1859 1860 1862 1863 1865 1866	RC 332 high alkali high C ₃ A	None	Limestone sand	Limestone	103 103 103 106 104 114	138 126 123 122 127 131	105 101 108 108 102 119	109 113 108 112 109 122	103 101 106 108 104 119	105 109 105 110 112 117	
1868 1869 1871 1872 1874 1875	RC 334 low alkali high C ₃ A	None	Limestone sand	Limestone	99 116 113 111 114 112	119 134 133 129 125 127	103 114 111 111 121 117	115 113	99 114 111 111 121 117	105 117 114 118 113 116	
1877 1878 1880 1881 1883 1884	RC 331 high alkali low C ₃ A	None	Nat sand	Nat gravel	106 103 105 105 105 107	113 116 116 105 111 107	110 99 105 104 110 106	107 106 108 101	99 105 104 108 110	105 108 107 107 92 95	
1886 1887 1889 1890 1892 1893	RC 332 high alkali high C ₃ A	None	Nat sand	Nat gravel	105 108 105 106 104 101	111 110 113 114 111 112	103 115 109 108 102 102	103 105 108 99	105 117 111 108 102 102	100 99 99 103 101 105	
1895 1896 1898 1899 1901 1902	RC 331 high alkali low C ₃ A	Shale 30%	Nat sand	Nat gravel + quartz- ite (5%)	104 124 114 110 134 118	119 118 115 118 120 114	104 126 115 112 133 123	109	130	110 106 103 98 108 99	
1904 1905 1907 1908 1910	RC 331 high alkali low C ₃ A	Fly ash 20%	Nat sand	Nat gravel + quartz- ite (5%)	112 109 94 107 111 110	112 118 113 112 113 111	108 106 90 104 111 105	104 107 104 104	108 106 87 106 111 105	100 101 100 98 100 99	
1913 1914 1916 1917 1919	RC 332 high alkali high C ₃ A	Shale 30%	Nat sand	Nat gravel + quartz- ite (5%)	121 118 115 113 113 113	120 116 117 115 114 110	126 119 114 115 115 120	110 109 106 103	129 119 114 115 111 120	108 109 107 106 97 100	

(Revised Sept 1970)
Table 1-AA (Concluded)

Section 29

		Replacement				,		-			O Readings		10
Beam No.	Cement	Material	Fine	Coarse Aggregate		66 102		%v ²		%v ²			
NO.	Cement	(Pozzolan)	Aggregate				<u>%E</u>						
			Beams	Installed at	Jacks	on, N	liss.	Sept	1955	2			
1825	RC 331	None	Nat sand	Nat gravel	102		102		104	95 94			
.828 .831	high alkali low C ₃ A			+ quartz- ite (5%)	100	95 94	102	95 98	103	97			
.834	RC 333	None	Nat sand	Nat gravel	103	92	104	105	107	101			
.837	low alkali	None	Nac Sand	+ quartz-	103	106	105	100	105	101			
840	low C ₃ A			ite (5%)	105		106	101	107	100			
843	RC 333	None	Limestone	Limestone	104	101	104	109	107	109			
.846	low alkali		sand		107		109	109	115	113			
.849	low C ₃ A				109	105	111	115	114	114			
852	RC 332	None	Nat sand	Nat gravel	104	89	104	97	108	97			
855	high alkali			+ quartz-	98	88	100	94	102	91			
.858	high C ₃ A			ite (5%)	95	85	98	97	100	91			
.861	RC 332	None	Limestone	Limestone	105	113	107	117	108	112			
864	high alkali		sand		104		106	118	111	118			
.867	high C ₃ A				102	109	104	114	111	113			
.870	RC 334	None	Limestone	Limestone	106		107	116	111	111			
873	low alkali		sand		107		108	114	111	114			
.876	high C ₃ A				104	106	105	106	112	104			
879	RC 331	None	Nat sand	Nat gravel	103	103		107	106	100			
.882	high alkali				102	100		98	105	99			
.885	low C ₃ A				100	93	102	93	104	94			
888	RC 332	None	Nat sand	Nat gravel	101		103	99	105	97			
891	high alkali				102		102	99	106	99			
894	high C ₃ A				90	92	100	93	102	90			
.897	RC 331	Shale 30%	Nat sand	Nat gravel	94	85	98	89	108	89			
.900	high alkali			+ quartz-	97		103	98	112	98			
.903	low C ₃ A			ite (5%)	94	83	98	95	105	93			
.906	RC 331	Fly ash 20%	Nat sand	Nat gravel	98		100	100	101	98			
.909	high alkali			+ quartz-	100		100	106	103	102			
.912	low C ₃ A			ite (5%)	97	98	96	98	98	93			
915	RC 332	Shale 30%	Nat sand	Nat gravel	96	94	99	102	104	100			
918	high alkali			+ quartz-	101	94	104	99	107	98			
.921	high C ₃ A			ite (5%)	93	93	96	97	103	94			
.924	RC 332	Fly ash 20%	Nat sand	Nat gravel	99	106	100	102	103	102			
927	high alkali			+ quartz-	100	102	101	99	104	99			
.930	high C ₃ A			ite (5%)	98	98	98	97	102	97			

Record of Testing of Concrete Beams, Alkali-Aggregate Reactivity Investigation

1956- (Installed August 1956)

Fine aggregate, limestone sand

^{*} Percentages given are by volume of material replaced.

Nonmetallic Waterstop Investigation

The purpose of this investigation is to evaluate the durability of nonmetallic waterstops of a variety of compositions, when exposed under different stress conditions, to different types and severity of exposure conditions.

The test specimens are rectangular pieces of nonmetallic waterstop material 1/16 to 3/8 in. thick. Pieces are either 6 by 6 in. or 3 by 6 in. in size. The specimens are exposed at four locations: Treat Island, Maine; St. Augustine, Fla.; Jackson, Miss. (indoors); and Jackson, Miss. (outdoors). Three stress conditions are represented:

- a. Unstressed; bolted on lumber stringer.
- b. Bent; bolted around lumber stringer (approximately 180°).
- c. Embedded; embedded across joint plane between two 6-in. concrete cubes and stressed to open up 1-in. gap in the joint plane. Wood blocks are inserted to maintain the waterstop in a stretched condition.

Treat Island Installations

In 1957 and 1958, 129 nonmetallic waterstop specimens were installed on the exposure rack at Treat Island as follows:

Date	No. and Types of Specimens Installed
May 1957	81 (27 embedded, 27 bent, and 27 unstressed)
Nov 1957	45 (15 embedded, 15 bent, and 15 unstressed)
Aug 1958	3 (1 embedded, 1 bent, and 1 unstressed)

Table 1-WS lists these specimens, identifies them as to type, manufacturer, and stress condition, and gives their exposure record. It should be noted that bent and unstressed specimens of the same material have the same specimen numbers. All remaining specimens were sent back to the concrete laboratory in 1973. Exposure was discontinued at that time.

St. Augustine Installations

In 1957 and 1958, 111 nonmetallic waterstops were installed on the

Record of Observations of Unstressed, Bent, and Embedded Specimens, Nonmetallic Waterstop Investigation

Treat Island Exposure

1957- (Installed 1957 and 1958)

									is, 1957-	ressed 1965	mosure I		
Specimen No.	Description	Manu- facturer	Dat Ir stal	1-	O Cycles 1957	71 Cycles 1958	221 Cycles 1959	292 Cycles 1960	433 Cycles 1961	522 Cycles 1962	628 Cycles 1963	763 Cycles 1964	926 Cycles 1965
NR-1-1	Natural rubber	A	May		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
NR-1-2 NR-1-3					Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound
NR-2-1 NR-2-2	Natural rubber (3500-1b tensile	В	Nov	'57	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound
NR 2-3	strength)				Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
SR-1-1 SR-1-2	General service rubber	A	May	'57	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound
SR-1-3					Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
SR-2-1 SR-2-2	General service rubber (2000-1b	В	Nov	'57	Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound
SR-2-3	tensile strength)				Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
SR-3-1	General service	В	Nov	'57	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
SR-3-2 SR-3-3	rubber (3000-1b tensile strength)				Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound
NEOR-1-1	Neoprene rubber	A	May	157	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
NEOR-1-2					Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
NEOR-1-3					Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
NEOR-2-1	Neoprene rubber	В	Nov	'57	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
NEOR-2-2 NEOR-2-3					Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound
BUTYL-1-1	Butyl rubber	В	Nov	'57	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
BUTYL-1-2 BUTYL-1-3					Sound Sound	Sound Sound	Sound Sound	Lost* Sound	Lost* Sound	Sound	Sound	Sound	Sound
PVC-2-1	Type IV standard	C	May	157	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
PVC-2-2	polyvinyl				Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
PVC-2-3	chloride				Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
PVC-2A-1	Type IV arctic	C	May	'57	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
PVC-2A-2 PVC-2A-3	polyvinyl chloride				Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound
PVC-3-1	Type V standard	C	May	157	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
PVC-3-2	polyvinyl		1100	,	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
PVC-3-3	chloride				Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
PVC-3A-1	Type V arctic	C	May	'57	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
PVC-3A-2 PVC-3A-3	polyvinyl chloride				Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound
PVC-4-1	Polyvinyl	A	May	157	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
PVC-4-2	chloride		1100	,	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
PVC-4-3					Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
PVC-5-1	Polyvinyl	D	May	'57	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound Sound
PVC-5-2 PVC-5-3	chloride				Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound
						0	150	221	362	451	557	692	855
						Cycles 1958	Cycles 1959	Cycles 1960	Cycles 1961	Cycles 1962	Cycles 1963	Cycles 1964	Cycles 1965
PVC-9A(2)	Polyvinyl chloride	E	Aug	'58		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound

							Condi Spec	tion of Unimens, 196	Exposure Rack, stressed
Specimen No.	Description	Manu- facturer	Date In- stalled	1056 Cycles 1966	1212 Cycles 1967	1397 Cycles 1968	1551 Cycles 1969	1704 Cycles 1970	1873 Cycles 1971
R-1-1 R-1-2 R-1-3	Natural rubber	A	May '57	t t Sound	Sound	Crazing	Crazing	•	
R-2-1 R-2-2 R-2-3	Natural rubber (3500-lb tensile strength)	В	Nov '57	† † Sound	Sound	Crazing	Crazing	Crazing	Crazing
R-1-1 R-1-2 R-1-3	General service rubber	A	May '57	† † Sound	Sound	Crazing	Crazing	Crazing	Crazing
R-2-1 R-2-2 R-2-3	General service rubber (2000-lb tensile strength)	В	Nov '57	t t Sound	Sound	Crazing	Crazing	Crazing	Crazing
SR-3-1 SR-3-2 SR-3-3	General service rubber (3000-1b tensile strength)	В	Nov '57	† † Sound	Sound	Crazing	Crazing	Crazing	Crazing
TEOR-1-1 TEOR-1-2 TEOR-1-3	Neoprene rubber	A	May '57	t t Sound	Sound	Sound	Crazing	Crazing	Crazing
TEOR-2-1 TEOR-2-2 TECR-2-3	Neoprene rubber	В	Nov '57	† † Sound	Sound	Sound	Sound	Sound	Sound
SUTYL-1-1 SUTYL-1-3	Butyl rubber	В	Nov '57	† Sound	Sound	Sound	Sound	Sound	Sound
VC-2-1 VC-2-2 VC-2-3	Type IV standard polyvinyl chloride	С	May '57	† † Sound	Soundtt	Soundtt	Soundtt	Sound++	Sound
VC-2A-1 VC-2A-2 VC-2A-3	Type IV arctic polyvinyl chloride	С	May '57	t t Sound	Sound	Sound	Sound	Sound	Sound
VC-3-1 VC-3-2 VC-3-3	Type V standard polyvinyl chloride	c	May '57	† † Sound	Sound	Sound	Sound	Sound	Sound
PVC-3A-1 PVC-3A-2 PVC-3A-3	Type V arctic polyvinyl chloride	С	May '57	† † Sound	Sound	Sound	Sound		
PVC-4-1 PVC-4-2 PVC-4-3	Polyvinyl chloride	A	May '57	† † Sound	Sound	Sound	Sound	Sound	Sound
VC-5-1 VC-5-2 VC-5-3	Polyvinyl chloride	D	May '57	† † Sound	Sound	Sound	Sound	Sound	Sound
				985 Cycles 1966	1141 Cycles 1967	1326 Cycles 1968	1480 Cycles 1969	1633 Cycles 1970	1802 Cycles 1971

(Continued)

PVC-9A(2) Polyvinyl chloride E Aug '58 Sound Sound Sound Sound Sound

10

[†] Returned to laboratory for tests. †† This specimen has curled.

Table 1-WS (Continued)

								ion of Ber		
			Date	0	71	221	292	433	522	628
Specimen No.	Description	Manu- facturer	In- stalled	Cycles 1957	Cycles 1958	Cycles 1959	Cycles 1960	Cycles 1961	Cycles 1962	Cycles 1963
NR-1-1 NR-1-2 NR-1-3	Natural rubber	A	May '57	Sound Sound Sound	Crazing Crazing Crazing	Crazing Crazing	Crazing Crazing Crazing	Crazing Crazing Crazing	Crazing Crazing Crazing	Crazing Crazing Crazing
									0.000	0.000
NR-2-1 NR-2-2 NR-2-3	Natural rubber (3500-lb tensile strength)	В	Nov '57	Sound Sound	Crazing Sound Crazing	Crazing Crazing Crazing	Crazing Crazing Crazing	Crazing Crazing Crazing	Crazing Crazing Crazing	Crazing Crazing Crazing
SR-1-1 SR-1-2 SR-1-3	General service rubber	A	May '57	Sound Sound	Crazing Crazing Crazing	Cracked Cracked Cracked	Cracked Cracked Cracked	Cracked Cracked Cracked	Badly cracked Badly cracked Badly cracked	Badly cracked Badly cracked Badly cracked
SR-2-1 SR-2-2 SR-2-3	General service rubber (2000-1b tensile strength)	В	Nov '57	Sound Sound Sound	Cracked Cracked Cracked	Cracked Cracked Cracked	Cracked Cracked Cracked	Cracked Cracked Cracked	Badly cracked Badly cracked Badly cracked	Badly cracked Badly cracked Badly cracked
SR-3-1 SK-3-2 SR-3-3	General service rubber (3000-1b tensile strength)	В	Nov '57	Sound Sound Sound	Sound Sound Sound	Cracked Cracked Cracked	Cracked Cracked Cracked	Cracked Cracked Cracked	Badly cracked Badly cracked Badly cracked	Badly cracked Badly cracked Badly cracked
NEOR-1-1 NEOR-1-2 NEOR-1-3	Neoprene rubber	A	May '57	Sound Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound	Sound Sound	Sound Sound
NEOR-2-1 NEOR-2-2 NEOR-2-3	Neoprene rubber	В	Nov '57	Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound	Sound Sound
BUTYL-1-1 BUTYL-1-2 BUTYL-1-3	Butyl rubber	В	Nov '57	Sound Sound	Sound Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Crazing Crazing Crazing
PVC-2-1 PVC-2-2 PVC-2-3	Type IV standard polyvinyl chloride	С	May '57	Sound Sound	Sound Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound
PVC-2A-1 PVC-2A-2 PVC-2A-3	Type IV arctic polyvinyl chloride	С	May '57	Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound	Sound Sound	Sound Sound
PVC-3-1 PVC-3-2 PVC-3-3	Type V standard polyvinyl chloride	С	May '57	Sound Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound	Sound Sound
PVC-3A-1 PVC-3A-2 PVC-3A-3	Type V arctic polyvinyl chloride	С	May '57	Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound	Sound Sound
PVC-4-1 PVC-4-2 PVC-4-3	Polyvinyl chloride	A	May '57	Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound Sound	Sound Sound	Sound Sound
PVC-5-1 PVC-5-2 PVC-5-3	Polyvinyl chloride	D	May '57	Sound Sound	Sound Sound	Sound Sound Sound	Sound Sound	Sound Sound	Sound Sound Sound	Sound Sound
					O Cycles 1958	150 Cycles 1959	221 Cycles 1960	362 Cycles 1961	451 Cycles 1962	557 Cycles 1963

							condition of Ber becimens, 1964-1		
Specimen	Description	Manu- facturer		te n- lled	763 Cycles 1964	926 Cycles 1965	1056 Cycles 1966	1212 Cycles 1967	1397 Cycles 1968
NR-1-1 NR-1-2 NR-1-3	Natural rubber	A	May	' 57	Crazing Crazing	Crazing Crazing Crazing	Crazing t	Crazing	Cracked
NR-2-1 NR-2-2 NR-2-3	Natural rubber (3500-lb tensile strength)	В	Nov	'57	Crazing Crazing Crazing	Crazing Crazing Crazing	Crazing † †	Crazing	Cracked
SR-1-1 SR-1-2 SR-1-3	General service rubber	A	May	' 57	Badly cracked Badly cracked Badly cracked	Badly cracked Badly cracked Badly cracked	Badly cracked t	Badly cracked	Badly cracked
SR-2-1 SR-2-2 SR-2-3	General service rubber (2000-1b tensile strength)	В	Nov	'57	Badly cracked Badly cracked Badly cracked	Badly cracked Badly cracked Badly cracked	Badly cracked t	Badly cracked	Badly cracked, to
SR-3-1 SR-3-2 SR-3-3	General service rubber (3000-1b tensile strength)	В	Nov	'57	Badly cracked Badly cracked Badly cracked	Badly cracked Badly cracked Badly cracked	Badly cracked t	Badly cracked	Badly cracked, to
NEOR-1-1 NEOR-1-2 NEOR-1-3	Neoprene rubber	A	May	' 57	Sound Sound	Sound Sound	Sound t t	Sound	Sound
NEOR-2-1 NEOR-2-2 NEOR-2-3	Neoprene rubber	В	Nov	' 57	Sound Sound	Sound Sound Sound	Sound †	Sound	Sound
BUTYL-1-1 BUTYL-1-2 BUTYL-1-3	Butyl rubber	В	Nov	'57	Crazing Crazing Crazing	Crazing Crazing Crazing	Crazing † †	Crazing	Crazing
PVC-2-1 PVC-2-2 PVC-2-3	Type IV standard polyvinyl chloride	С	May	' 57	Sound Sound	Sound Sound	Sound † †	Sound	Crazing
PVC-2A-1 PVC-2A-2 PVC-2A-3	Type IV arctic polyvinyl chloride	С	May	' 57	Sound Sound	Sound Sound	Sound † †	Sound	Sound
PVC-3-1 PVC-3-2 PVC-3-3	Type V standard polyvinyl chloride	c	May	' 57	Sound Sound	Sound Sound	Sound t	Sound	Sound
PVC-3A-1 PVC-3A-2 PVC-3A-3	Type V arctic polyvinyl chloride	С	May	' 57	Sound Sound	Sound Sound	Sound + + +	Sound	Sound
PVC-4-1 PVC-4-2 PVC-4-3	Polyvinyl chloride	А	May	•57	Sound Sound	Sound Sound	Sound †	Sound	Sound
PVC-5-1 PVC-5-2 PVC-5-3	Polyvinyl chloride	D	May	'57	Sound Sound	Sound Sound Sound	Sound †	Sound	Sound
					692 Cycles 1964	855 Cycles 1965	985 Cycles 1966	1141 Cycles 1967	1326 Cycles 1968
PVC-9A(2)	Polyvinyl chloride	E	Aug	•58	Sound	Sound	Sound	Sound	Sound

					Co	ndition of Bent	Exposure Rack,	MOPEN WAL
					Spe	cimens 1969-		
Specimen No.	Description	Manu- facturer	In- stalled	1551 Cycles 1969	1704 Cycles 1970	1873 Cycles 1971		
NR-1-1	Natural rubber	A	May '57	Cracked	Cracked	Cracked		
NR-2-1	Natural rubber (3500-lb tensile strength)	В	Nov '57	Cracked	Cracked	Cracked		
SR-1-1	General service rubber	A	May '57	Badly cracked	Badly cracked	Badly cracked		
SR-2-1	General service rubber (2000-1b tensile strength)	В	Nov '57	Badly cracked, torn	Torn	Torn		
SR-3-1	General service rubber (3000-1b tensile strength)	В	Nov '57	Badly cracked, torn	Torn	Torn		
NEOR-1-1	Neoprene rubber	A	May '57	Sound	Sound	Sound		
COR-2-1	Neoprene rubber	В	Nov '57	Sound	Sound	Sound		
BUTYL-1-1	Butyl rubber	В	Nov '57	Crazing	+			
PVC-2-1	Type IV standard polyvinyl chloride	c	May '57	Crazing	Crazing	Crazing		
PVC-2A-1	Type IV arctic polyvinyl chloride	С	May '57	Sound	Sound	Sound		
PVC-3-1	Type V standard polyvinyl chloride	c	May '57	Sound	Sound	Sound		
PVC-3A-1	Type V arctic polyvinyl chloride	С	May '57	Sound	Sound	Sound		
PVC-4-1	Polyvinyl chloride	A	May '57	Sound	Sound	Sound		
PVC-5-1	Polyvinyl chloride	D	May '57	Sound	Sound	Sound		
				1480 Cycles 1969	1633 Cycles 1970	1802 Cycles 1971		

Sound

Sound

PVC-9A(2) Polyvinyl chloride E Aug '58 Sound

	ecimen							ded Specimens, 195	
Specimen No.	Description	Manu- facturer	In stal	-	O Cycles 1957	71 Cycles 1958	Cycles 1959	292 Cycles 1960	433 Cycles 1961
EOR-1-15	Neoprene rubber	A	May	157	Sound	Sound	Sound	Sound	Sound
EOR-1-14	morphone rubber			,	Sound	Sound	Sound	Sound	Sound
EOR-1-13					Sound	Sound	Sound	Sound	Sound
VC-4-7	Polyvinyl chloride	A	May	'57	Sound	Sound	Sound	Sound	Sound
VC-4-6					Sound	Sound	Sound	Sound	Sound
/C-4-5					Sound	Sound	Sound	Sound	Sound
R-1-11	Natural rubber	A	May	'57	Sound	Sound	Sound	Crazing	Crazing
R-1-12					Sound	Sound	Sound	Sound	Sound
R-1-10					Sound	Sound	Sound	Crazing	Crazing
VC-3A-25	Type V arctic	C	May	'57	Sound	Sound	Sound	Sound	Sound
VC-3A-26	polyvinyl				Sound	Sound	Sound	Sound	Sound
VC-3A-27	chloride				Sound	Sound	Sound	Sound	Sound
VC-2A-24	Type IV arctic	C	May	157	Sound	Badly torn	Completely torn	Completely torn	Completely torn
VC-2A-23	polyvinyl				Sound	Sound	Sound	Completely torn	Completely torn
VC-2A-22	chloride				Sound	Sound	Sound	Completely torn	Completely torn
VC-2-3	Type IV standard	С	May	'57	Sound	Sound	Sound	Sound	Sound
VC-2-2	polyvinyl				Sound	Sound	Sound	Sound	Sound
VC-2-1	chloride				Sound	Sound	Sound	Sound	Sound
vc-3-6	Type V standard	c	May	'57	Sound	Sound		Concrete cracked	Sound
VC-3-5	polyvinyl				Sound	Sound	Sound	Sound	Sound
VC-3-4	chloride				Sound	Sound	Sound	Sound	Sound
R-1-18	General service	A	May	'57	Sound	Sound	Sound	Crazing	Crazing
R-1-17	rubber				Sound	Sound	Sound	Crazing	Crazing
R-1-16					Sound	Sound	Sound	Sound	Sound
VC-5-21	Polyvinyl chloride	D	May	'57	Sound	Sound	Sound	Sound	Sound
VC-5-20					Sound	Sound	Sound	Sound	Sound
VC-5-19					Sound	Sound	Sound	Sound	Sound
R-3-105	General service	В	Nov	'57	Sound	Sound	Sound	Crazing	Crazing
R-3-104	rubber (3000-1b				Sound	Sound	Sound	Crazing	Crazing
R-3-103	tensile strength)				Sound	Sound	Sound	Crazing	Crazing
R-2-102	General service	В	Nov	'57	Sound	Sound	Sound	Crazing	Crazing
R-2-101	rubber (2000-1b				Sound	Sound	Sound	Crazing	Crazing
R-2-100	tensile strength)				Sound	Sound	Sound	Crazing	Crazing
R-2-99	Natural rubber	В	Nov	'57	Sound	Sound	Sound	Crazing	Crazing
R-2-98 R-2-97	(3500-lb tensile strength)				Sound Sound	Sound Sound	Sound Sound	Sound Sound	Sound Sound
EOR-2-96	Neoprene rubber	В	Nov	'57	Sound	Sound	Sound	Sound	Sound Sound
EOR-2-95					Sound	Sound	Sound	Sound	Sound
EOR-2-94					Sound	Sound	Sound	Sound	Sound
UTYL-1-93	Butyl rubber	В	Nov	'57	Sound	Sound	Sound	Sound	Sound
UTYL-1-92					Sound	Sound	Sound	Sound	Sound
UTYL-1-91					Sound	Sound	Sound	Sound	Sound
						0	150	221	362
					Cycles	Cycles	Cycles	Cycles	Cycles
					1957	1958	1959	1960	1961

Sound

Sound

Sound

PVC-9A(2) Polyvinyl chloride E Aug '58 --- Sound

Exposure Rack, Row 2 (W to E)

Specimen		Manu-	Date In-		of Embedded Specimens, 19	62-1964
No.	Description	facturer	stalled	522 Cycles, 1962	628 Cycles, 1963	763 Cycles, 1964
EOR-1-15	Name and bear	A	May '57	Sound (concrete cracked)	Sound (concrete cracked)	D/-/
EOR-1-14	Neoprene rubber		may 51	Sound (concrete cracked)		Disintegrated Disintegrated
AND THE RESIDENCE OF STREET					Sound (concrete cracked)	
EOR-1-13				Sound (concrete cracked)	Sound (concrete cracked)	Disintegrated
rc-4-7	Polyvinyl chloride	A	May '57	Sound	Sound (concrete cracked)	Disintegrated
VC-4-6	1019 1110 1 011101 140			Sound	Sound	Disintegrated
VC-4-5				Sound	Sound	Disintegrated
VC-4-5				Sound	Sound	DistuceRaced
R-1-11	Natural rubber	A	May '57	Crazing	Crazing	Disintegrated
R-1-12	madaz zabbez			Sound	Sound (concrete cracked)	Disintegrated
R-1-10				Crazing	Crazing	Disintegrated
11-1-10				or united	or and a	promocerated
VC-3A-25	Type V arctic	C	May '57	Sound	Sound (concrete cracked)	Disintegrated
VC-3A-26	polyvinyl			Sound	Sound	Disintegrated
VC-3A-27	chloride			Sound	Sound	Disintegrated
10 31 -1	0			-		Dibinochi acca
VC-2A-24	Type IV arctic	C	May '57	Completely torn	Completely torn	Disintegrated
VC-2A-23	polyvinyl		0	Completely torn	Completely torn	Disintegrated
VC-2A-22	chloride			Completely torn	Completely torn	Disintegrated
VC-2-3	Type IV standard	C	May '57	Sound	Sound (concrete cracked)	Disintegrated
VC-2-2	polyvinyl			Sound	Sound	Disintegrated
VC-2-1	chloride			Sound (concrete cracked)	Sound (concrete cracked)	Disintegrated
VC-3-6	Type V standard	C	May '57	Sound (concrete cracked)	Sound (concrete cracked)	Disintegrated
VC-3-5	polyvinyl			Sound (concrete cracked)	Sound (concrete cracked)	Disintegrated
VC-3-4	chloride			Sound (concrete cracked)	Sound (concrete cracked)	Disintegrated
R-1-18	General service	A	May '57	Crazing (concrete	Crazing	Disintegrated
	rubber			cracked)	C	Disintegrated
R-1-17				Crazing	Crazing	
R-1-16				Sound	Sound (concrete cracked)	Disintegrated
WIG E 01	Delendered ablands		Man 157	C3	Sound (concrete cracked)	Disintegrated
VC-5-21	Polyvinyl chloride	D	May '57	Sound		Disintegrated
VC-5-20				Sound (concrete cracked)	Sound (concrete cracked)	Disintegrated
VC-5-19				Sound	Sound (concrete cracked)	Disintegrated
R-3-105	General service	В	Nov '57	Crazing (concrete	Crazing	Disintegrated
3-10)	rubber (3000-1b		NOV)	cracked)	ordaning	Distincegraced
SR-3-104	tensile strength)			Crazing (concrete	Crazing	Disintegrated
11-3-104	censile screngen)			cracked)	0142116	Distincegraced
R-3-103				Crazing	Crazing	Disintegrated
				A. M. 1.10		Preriocklaced
R-2-102	General service	В	Nov '57	Crazing	Crazing	Disintegrated
R-2-101	rubber (2000-1b			Crazing	Crazing	Disintegrated
R-2-100	tensile strength)			Crazing	Crazing	Disintegrated
. 2-100	constac soreingen)				-	
R-2-99	Natural rubber	В	Nov '57	Crazing	Crazing	Disintegrated
R-2-98	(3500-1b tensile			Sound	Sound	Disintegrated
R-2-97	strength)			Sound	Sound	Disintegrated
EOR-2-96	Neoprene rubber	В	Nov '57	Sound	Sound	Disintegrated
TEOR-2-95				Sound	Sound	Disintegrated
EOR-2-94				Sound	Sound	Disintegrated
UTYL-1-93	Butyl rubber	В	Nov '57	Sound	Sound	Disintegrated
UTYL-1-92				Sound	Sound	Disintegrated
UTYL-1-91				Sound	Sound	Disintegrated
				451 Cycles, 1962	557 Cycles, 1963	692 Cycles, 196
VC-9A(2)	Polyvinyl chloride	E	Aug '58	Sound	Sound	Disintegrated
VC-9A(2)	rotyvinyi chioride	E	Hug 50	bound		Promocet and

Record of Observation of Unstressed, Bent, and Embedded Specimens, Nonmetallic Waterstop Investigation

St. Augustine Exposure

1957- (Installed November 1957 Except Where Otherwise Indicated)

				Condit		0	A1+1	of Dont	0	+400 06	The same
		Manufac-		f Unstr	1957-1960			of Bent 1957-1960			1957-1960
Specimen No.	Description	turer	1957	1958	1960	1957	1958	1960	1957	1958	1960
IR-1-1 & 64	Natural rubber	A	Sound	Sound	Lost*	Sound	Sound	Lost	Sound	Sound	Sound
IR-1-2 & 65			Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
IR-1-3 & 66			Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
R-2-1 & 82	Natural rubber	В	Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
R-2-2 & 83	(3500-1b tensile	ь	Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Crazing
R-2-3 & 84	strength)		Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
	,										
R-1-1 & 70	General service	A	Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
R-1-2 & 71	rubber		Sound	Sound	Lost	Sound	Sound	Lost	Sound	Sound	Sound
R-1-3 & 72			Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
R-2-1 & 85	General service	В	Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
R-2-2 & 86	rubber (2000-1b	В	Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Crazing
R-2-3 & 87	tensile strength)		Sound	Sound	Sound	Sound	Sound	Cracked	Sound	Sound	Crazing
	,										
R-3-1 & 88	General service	В	Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
R-3-2 & 89	rubber (3000-lb		Sound	Sound	Sound	Sound	Sound	Cracked	Sound	Sound	Sound
R-3-3 & 90	tensile strength)		Sound	Sound	Lost	Sound	Sound	Cracked	Sound	Sound	Sound
EOR-1-1 & 67	Neoprene rubber	A	Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
EOR-1-2 & 68	neoprene rubber	A	Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
EOR-1-3 & 69			Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
			Douna	Douna		Journa	Douis		Journa	Journa	
EOR-2-1 & 79	Neoprene rubber	В	Sound	Sound		Sound	Sound	Sound	Sound	Sound	Sound
EOR-2-2 & 80			Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
EOR-2-3 & 81			Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
UTYL-1-1 & 76	Butyl rubber	В	Sound	Sound	Lost	Sound	Sound	Lost	Sound	Sound	Sound
UTYL-1-2 & 77	Bucyl rubber	ь	Sound	Sound	Lost	Sound	Sound	Lost	Sound	Sound	Sound
UTYL-1-3 & 78			Sound	Sound	Lost	Sound	Sound	Lost	Sound	Sound	Sound
			Count	Doum		Dodina	Douis		Douna	Douna	
VC-2-1 & 55	Type IV standard	C	Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
VC-2-2 & 56	polyvinyl		Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
VC-2-3 & 57	chloride		Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	+
VC-3-1 & 58	Type V standard	C		· · · · · ·	Lost	Sound	Sound	Lost	C3	Sound	Sound
VC-3-2 & 59	polyvinyl	C	Sound	Sound	Lost	Sound	Sound	Lost	Sound	Sound	Sound
VC-3-3 & 60	chloride		Sound	Sound		Sound	Sound	Lost	Sound	Sound	Sound
			Douna	Journa			Journa		- Count		
VC-4-1 & 61	Polyvinyl chloride	A	Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
VC-4-2 & 62			Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
VC-4-3 & 63			Sound	Sound	Lost	Sound	Sound	Lost	Sound	Sound	Sound
VC-5-1 & 73	Delandard ablands				Sound	C		Lost			Sound
VC-5-2 & 74	Polyvinyl chloride	D	Sound Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
VC-5-3-& 75			Sound	Sound	Sound	Sound	Sound	Lost	Sound	Sound	Sound
.0-,-, -, -,			Douna	Count	Domina	Dound	Couna		Douna	Count	
VC-9A(2) & 91	Polyvinyl chloride	E	**	Sound	Lost	**	Sound	Lost	**	Sound	Sound
				Condit	don						
				of Unstr		Con	dition	of Bent	Condi	tion of	Embedded
					1962-1964			1962-1964			1962-1964
			1962		1964	1962		1964	1962		1964
R-1-1 & 64	Natural rubber	A							Crazin		Crazin
R-1-2 & 65			Crazin		Crazing				Crazin		Crezin
R-1-3 & 66			Crazin	R	Crazing				Crazin	R	Crazin
R-2-1 & 82	Natural rubber	В	Crazin		Crazing				Crazin	e .	Crazin
R-2-2 & 83	(3500-1b tensile		Crazin		Crazing				Crazin		Crazin
R-2-3 & 84	strength)		Crazin		Crazing				Crazin		Crazin
R-1-1 & 70	General service	A	Crazin	g	Crazing				Crazin		Crazin
R-1-2 & 71	rubber				Constant				Crazin		Crazin
R-1-3 & 72			Crazin	R	Crazing				Crazin	R	Crazin

Specimens marked "Lost" have disappeared from the exposure rack. Installed Aug 1958.

Specimen completely torn.

(Revised Sept 1970)

Table 2-WS (Continued)

Section 30

		Manufac-	Condi- of Unst Specimens,	ressed 1962-1964	Condition Specimens,		Specimens	of Embedded s, 1962-1964
Specimen No.	Description	turer	1962	1964	1962	1964	1962	1964
SR-2-1 & 85	General service	В	Cracked	Cracked			Crazing	Crazin
SR-2-2 & 86	rubber (2000-1b		Crazing	Crazing			Crazing	Crazin
SR-2-3 & 87	tensile strength)		Crazing	Cracked	Cracked	Lost	Crazing	Crazin
SR-3-1 & 88	General service	В	Cracked	Cracked			Sound	Sound
SR-3-2 & 89	rubber (3000-1b		Crazing	Cracked	Cracked	Cracked	Sound	Sound
SR-3-3 & 90	tensile strength)				Cracked	Cracked	Sound	Sound
EOR-1-1 & 67	Neoprene rubber	A	Sound	Sound			Crazing	Crazin
EOR-1-2 & 68	Noopi one i union		Sound	Sound			Crazing	Crazin
EOR-1-3 & 69			Sound	Sound			Crazing	Crazi
EOR-2-1 & 79	Neoprene rubber	В	Sound	Sound	Sound	Sound	Crazing	Crazi
EOR-2-2 & 80			Sound	Sound	Sound	Sound	Crazing	Crazi
EOR-2-3 & 81			Sound	Sound	Cracked	Cracked	Crazing	Crazi
UTYL-1-1 & 76	Butyl rubber	В					Crazing	Crazin
BUTYL-1-2 & 77							Crazing	Crazin
UTYL-1-3 & 78							Crazing	Crazi
VC-2-1 & 55	Type IV standard	С	Sound	Lost			Crazing	Crazi
VC-2-2 & 56	polyvinyl		Sound	Lost			Crazing	Crazi
VC-2-3 & 57	chloride		Sound	Lost			Crazing	Crazi
VC-3-1 & 58	Type V standard	C					Crazing	Crazi
VC-3-2 & 59	polyvinyl						Crazing	Crazi
vc-3-3 & 60	chloride						Crazing	Crazi
VC-4-1 & 61	Polyvinyl chloride	A	Sound	Sound			Crazing	Crazi
VC-4-2 & 62			Sound	Sound			Crazing	Crazi
PVC-4-3 & 63							Crazing	Crazi
PVC-5-1 & 73	Polyvinyl chloride	D	Sound	Sound			Crazing	Crazi
PVC-5-2 & 74 PVC-5-3 & 75			Sound Sound	Sound Sound			Crazing Crazing	Crazi Crazi
				Down				
PVC-9A(2) & 91	Polyvinyl chloride	E					Crazing	Crazi
			Condi					
			of Unst		Condition Speci			of Embedded
			Speci 19	66		966	1966	s, 1966-1970 1968 and 19
R-1-1 & 64	Natural rubber	A					tt	
R-1-2 & 65	11404141 140001		+	†			tt	
							Crazing	Crazing#
			+					
R-1-3 & 66	Natural rusher	В	,				tt	
R-1-3 & 66 R-2-1 & 82 R-2-2 & 83	(3500-16 teraile	В	;					
R-1-3 & 66 R-2-1 & 82 R-2-2 & 83		В	+				tt	Crazing*
R-1-3 & 66 R-2-1 & 82 R-2-2 & 83 R-2-3 % 84	(3500-lb tensile strength)	В	; ; ;	† † †			tt tt Crazing	
R-1-3 & 66 R-2-1 & 82 R-2-2 & 83 R-2-3 & 84 R-1-1 & 70 R-1-2 & 71	(3500-16 tensile strength)		; ; ;				tt tt Crazing tt	Crazing*
R-1-3 & 66 R-2-1 & 82 R-2-2 & 83 R-2-3 & 84 R-1-1 & 70 R-1-2 & 71	(3500-lb tensile strength)		; ; ;				tt tt Crazing	
R-1-3 & 66 R-2-1 & 82 R-2-2 & 83 R-2-3 % 84 R-1-1 & 70 R-1-2 & 71 R-1-3 & 72 R-2-1 & 85	(3500-lb tensile strength) General service rubber General service		† † † † †	† † †			tt tt Crazing tt tt Crazing	Crazing*
R-1-3 & 66 R-2-1 & 82 R-2-2 & 83 R-2-3 % 84 R-1-1 & 70 R-1-2 & 71 R-1-3 & 72 R-2-1 & 85 R-2-2 & 86	(3500-1b tensile strength) General service rubber General service rubber (2000-1b	A	† † † †	† † †			tt tt Crazing tt tt Crazing	Crazing*
R-1-3 & 66 R-2-1 & 82 R-2-2 & 83 R-2-3 & 84 R-1-1 & 70 R-1-2 & 71 R-1-3 & 72 R-2-1 & 85 R-2-2 & 86 R-2-3 & 87	(3500-lb tensile strength) General service rubber General service rubber (2000-lb tensile strength)	В	† † † † † †	† † † † † † † † † † † † † † † † † † †			tt tt Crazing tt Crazing tt tt Crazing	Crazing*
R-1-3 & 66 R-2-1 & 82 R-2-2 & 83 R-2-3 & 84 R-1-1 & 70 R-1-2 & 71 R-1-3 & 72 R-2-1 & 85 R-2-2 & 86 R-2-3 & 87 R-3-1 & 88	(3500-1b tensile strength) General service rubber General service rubber (2000-1b tensile strength) General service	A	† † † † † †	; ; ;			tt tt Crazing tt tt Crazing tt Crazing	Crazing*
R-1-3 & 66 R-2-1 & 82 R-2-2 & 83 R-2-3 & 84 R-1-1 & 70 R-1-2 & 71 R-1-3 & 72 R-2-1 & 85 R-2-2 & 86 R-2-3 & 87	(3500-lb tensile strength) General service rubber General service rubber (2000-lb tensile strength)	В	† † † † † †	† † † † † † † † † † † † † † † † † † †	Lo: Lo:		tt tt Crazing tt Crazing tt tt Crazing	Crazing*
R-1-3 & 66 R-2-1 & 82 R-2-2 & 83 R-2-3 & 84 R-1-1 & 70 R-1-2 & 71 R-1-3 & 72 R-2-1 & 85 R-2-2 & 86 R-2-3 & 87 R-3-1 & 88 R-3-2 & 89 R-3-3 & 90	(3500-1b tensile strength) General service rubber General service rubber (2000-1b tensile strength) General service rubber (3000-1b tensile strength)	A B B	† † † † † † †				tt tt Crazing tt tt Crazing tt tt Crazing	Crazing* Crazing*
R-1-3 & 66 R-2-1 & 82 R-2-2 & 83 R-2-3 % 84 R-1-1 & 70 R-1-2 & 71 R-1-3 & 72 R-2-1 & 85 R-2-2 & 86 R-2-3 & 87 R-3-1 & 88 R-3-1 & 88 R-3-2 & 89	(3500-1b tensile strength) General service rubber General service rubber (2000-1b tensile strength) General service rubber (3000-1b	В	† † † † † †				tt tt Crazing tt tt Crazing tt Crazing tt Crazing tt Sound	Crazing* Crazing*

(Continued)

Returned to laboratory in June 1966 for tests. Exposure discontinued in 1970.

		Manufac-	Condition of Unstressed Specimens	Condition of Bent Specimens	Specime	on of Embedded
Specimen No.	Description	turer	1966	<u>1966</u>	1966	1968 and 1970
NEOR-2-1 & 79	Neoprene rubber	В	tt	Lost	tt	
VEOR-2-2 & 80			††	Lost	t†	
NEOR-2-3 & 81			††	Lost	Crazing	Crazing*
BUTYL-1-1 & 76	Butyl rubber	В			tt	
SUTYL-1-2 & 77					tt	
BUTYL-1-3 & 78					Crazing	Crazing*
VC-2-1 & 55	Type IV standard	c			tt	
PVC-2-2 & 56	polyvinyl				tt	
NC-2-3 & 57	chloride				Crazing	Completely torn#
VC-3-1 & 58	Type V standard	C			tt	
WC-3-2 & 59	polyvinyl				tt	
VC-3-3 & 60	chloride				Crazing	Crazing*
VC-4-1 & 61	Polyvinyl chloride	A	tt .		tt	
PVC-4-2 & 62			††		††	
PVC-4-3 & 63					Crazing	Crazing*
PVC-5-1 & 73	Polyvinyl chloride	D	tt		tt	
PVC-5-2 & 74			tt t		tt -	
PVC-5-3 & 75			††		Crazing	Crazing*
WC-9A(2) & 91	Polyvinyl chloride	E			tt	

Returned to laboratory in June 1966 for tests. Exposure discontinued in 1970.

Record of Observations of Unstressed and Bent Specimens, Nonmetallic Waterstop Investigation

Jackson Indoor Exposure

1957- (Installed 1957)

WES Specimen		Manu-				Conditi	on of U	Instress	ed Spec	imens.	1957-	
No.	Description	facturer	1957	1958	1959	1960	1962	1963	1964	1965	1966	1970**
R-1-1	Natural rubber	A	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
R-1-2	Hattar rabber		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	Douna
R-1-3			Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
R-2-1 R-2-2	Natural rubber (3500-1b tensile	В	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound *	Sound
R-2-3	strength)		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
n-2-3	screngen)		Bound	Sound	bound	Sound	Bound	Sound	Bound	Sound		
R-1-1	General service	A	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
R-1-2	rubber		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
R-1-3			Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
R-2-1	General service	В	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
R-2-2	rubber (2000-1b		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
R-2-3	tensile strength)		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
	ocusite serengen)		Domid	Sound	bound	bound	Dound	Dound	Dound	Sound		
R-3-1	General service	В	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
R-3-2	rubber (3000-1b		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
R-3-3	tensile strength)		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
EOR-1-1	Neoprene rubber	A	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
EOR-1-2	morphone rubbet	^	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
EOR-1-3			Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
EOR-2-1	Neoprene rubber	В	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
EOR-2-2			Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
OR-2-3			Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
JTYL-1-1	Butyl rubber	В	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
UTYL-1-2			Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
JTYL-1-3			Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
0 1	m											
VC-2-1 VC-2-2	Type IV standard	C	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound *	Sound
VC-2-2 VC-2-3	polyvinyl chloride		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
10-2-3	chioride		Sound	sound	Sound	Sound	Sourid	Sound	Scurid	sourid	*	
VC-2A-1	Type IV arctic	C	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
VC-2A-2	polyvinyl		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
VC-2A-3	chloride		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
/C-3-1	Type V standard	C	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
rc-3-2	polyvinyl		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	Dould
VC-3-3	chloride		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
VC-3A-1	Type V arctic	C	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
/C-3A-2	polyvinyl		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
7C-3A-3	chloride		Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
/C-4-1	Polyvinyl chloride	A	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
VC-4-2			Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
7C-4-3			Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
WG C 1	Delendard ablants		C			O 1	C 1		C 1			
/C-5-1 /C-5-2	Polyvinyl chloride	D	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound
IC-5-2			Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	
0-9-3			Sound	Sound	Sound	Sound	Sound	Sound	Sound	Sound	*	

^{*} Removed from exposure in June 1966 for tests.
** The condition of all of these specimens was the same in 1967, 1968, 1969, and 1970.

WES Specimen		Manu-							Specime	ns, 195			
No.	Description	facturer	1957	1958	1959	1960	1962	1963	1964	1965	1966	1970**	1971
R-1-1	Natural rubber	A	Sound	Sound	Sound	Sound	Sound						
R-1-2			Sound	Sound	*								
R-1-3			Sound	Sound	*								
R-2-1	Natural rubber	В	Sound	Sound	Sound	Sound	Sound						
R-2-2	(3500-lb tensile		Sound	Sound	*								
R-2-3	strength)		Sound	Sound	*								
R-1-1	General service	A	Sound	Sound	Sound	Sound	Sound						
R-1-2	rubber		Sound	Sound	*								
R-1-3			Sound	Sound	*								
R-2-1	General service	В	Sound	Sound	Sound	Sound	Sound						
R-2-2	rubber (2000-1b		Sound	Sound	*								
R-2-3	tensile strength)		Sound	Sound	*								
SR-3-1	General service	В	Sound	Sound	Sound	Sound	Sound						
R-3-2	rubber (3000-1b		Sound	Sound	*								
R-3-3	tensile strength)		Sound	Sound	*								
EOR-1-1	Neoprene rubber	A	Sound	Sound	Sound	Sound	Sound						
EOR-1-2			Sound	Sound	*								
EOR-1-3			Sound	Sound	*								
EOR-2-1	Neoprene rubber	В	Sound	Sound	Sound	Sound	Sound						
EOR-2-2			Sound	Sound	*								
EOR-2-3			Sound	Sound	*								
SUTYL-1-1	Butyl rubber	В	Sound	Sound	Sound	Sound	Sound						
BUTYL-1-2			Sound	Sound	*								
UTYL-1-3			Sound	Sound	*								
VC-2-1	Type IV standard	C	Sound	Sound	Sound	Sound	Sound						
VC-2-2	polyvinyl		Sound	Sound	*								
VC-2-3	chloride		Sound	Sound	*								
PVC-2A-1	Type IV arctic	С	Sound	Sound	Sound	Sound	Sound						
VC-2A-2	polyvinyl		Sound	Sound	*								
VC-2A-3	chloride		Sound	Sound	*								
VC-3-1	Type V standard	C	Sound	Sound	Sound	Sound	Sound						
VC-3-2	polyvinyl		Sound	Sound	*								
VC-3-3	chloride		Sound	Sound	*								
VC-3A-1	Type V arctic	C	Sound	Sound	Sound	Sound	Sound						
VC-3A-2	polyvinyl		Sound	Sound	*								
VC-3A-3	chloride		Sound	Sound	*								
VC-4-1	Polyvinyl chloride	A	Sound	Sound	Sound	Sound	Sound						
VC-4-2			Sound	Sound	*								
VC-4-3			Sound	Sound	*								
VC-5-1	Polyvinyl chloride	D	Sound	Sound	Sound	Sound	Sound						
VC-5-2			Sound	Sound	*								

Removed from exposure in June 1966 for tests. The condition of all of these specimens was the same in 1967, 1968, 1969, and 1970.

(Revised Jan 1972)

Table 4-WS

Section 30

Record of Observations of Unstressed, Bent, and Embedded Specimens, Nonmetallic Waterstop Investigation

Jackson Outdoor Exposure

1957-(Installed 1957)

Specimen		Manu-				Cond	ition*	of Un	stress	ed Spe	cimens	, 1957	-		
No.	Description	facturer	1957	1958	1959	1960	1962	1963	1964	1965	1966	1967	1968	1969	1970
R-1-1	Natural rubber	A	Sd	Sd	Sd	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz
R-1-2			Sd	Sd	Sd	Crz	Crz	Crz	Crz	Crz	**				
R-1-3			Sd	Sd	Sd	Crz	Crz	Crz	Crz	Crz	**				
R-2-1	Natural rubber	В	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd
R-2-2	(3500-lb tensile		Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	**				
R-2-3	strength)		Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	**				
R-1-1	General service	A	Sd	Sd	Sd	Sd	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz
R-1-2	rubber		Sd	Sd	Sd	Sd	Crz	Crz	Crz	Crz	**	01.0	02.0	02.0	0.2
R-1-3	140001		Sd	Sd	Sd	Sd	Crz	Crz	Crz	Crz	**				
W-T-2			bu	bu	bu	bu	CIZ	CIZ	CIZ	CIZ					
R-2-1	General service	В	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd
R-2-2	rubber (2000-1b		Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	**				
R-2-3	tensile strength)		Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	**				
R-3-1	General service	В	Sd	Sd	Sd	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz
R-3-2	rubber (3000-1b		Sd	Sd	Sd	Crz	Crz	Crz	Crz	Crz	**				
R-3-3	tensile strength)		Sd	Sd	Sd	Crz	Crz	Crz	Crz	Crz	**				
EOR-1-1	Neoprene rubber	A	Sd	Sd	Sd	Sđ	Crz	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd
EOR-1-2			Sd	Sd	Sd	Sd	Crz	Sd	Sd	Sd	**				
EOR-1-3			Sd	Sd	Sd	Sd	Crz	Sd	Sd	Sd	**				
EOR-2-1	Neoprene rubber	В	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd
EOR-2-2			Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	**	-	-		-
EOR-2-3			Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	**				
UTYL-1-1	Butyl rubber	В	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd
UTYL-1-2	budy1 lubbel		Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	**	bu	bu	bu	bu
UTYL-1-3			Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	**				
01111-1-2			Su	ou	bu	bu	bu	bu	Su	Su	^^				
VC-2-1	Type IV standard	C	Sd	Sd	Sd	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz
VC-2-2	polyvinyl		Sd	Sd	Sd	Crz	Crz	Crz	Crz	Crz	**				
VC-2-3	chloride		Sd	Sd	Sd	Crz	Crz	Crz	Crz	Crz	**				
VC-2A-1	Type IV arctic	C	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd
VC-2A-2	polyvinyl		Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	**				
VC-2A-3	chloride		Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	**				
VC-3-1	Type V standard	C	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Crz	Crz	Crz	Crz	Crz
VC-3-2	polyvinyl		Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	**				
VC-3-3	chloride		Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	**				
VC-3A-1	Type V arctic	c	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd
VC-3A-2	polyvinyl		Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	**		-		
VC-3A-3	chloride		Sd	Sd	Sd	Sd	Sd	Sd	Sd	Sd	**				
VC-4-1	Polyvinyl chloride	A	Sd	Sd	Sd	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz
VC-4-2	1019 viny 1 chiloride	^	Sd	Sd	Sd	Crz	Crz	Crz	Crz	Crz	**	CIZ	CIZ	CIZ	Crz
VC-4-3			Sd	Sd	Sd	Crz	Crz	Crz	Crz	Crz	**				
VC-5-1	Doluminul oblania		Ca	Ca	Ca	0	C	0	C	Q	-	0	0	2	0
	Polyvinyl chloride	A	Sd	Sd Sd	Sd	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz	Crz
VC-5-2			Sd	Sd	-	Crz	Crz	Crz	Crz	Crz					
VC-5-3			Sd		Sd	Crz	Crz	Crz	Crz	Crz	**				

(Continued)

Conditions are described as sound (SD), crazing (Crz). Removed from exposure in June 1966 for tests.

(Revised Jan 1972)

Table 4-WS (Continued)

Section 30

Specimen	-	Manu- Condition* of Bent Specimens, 1957-1971														
No.	Description	facturer	1957	1958	1959	1960	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971
NR-1-1 NR-1-2 NR-1-3	Natural rubber	A	Sd Sd Sd	Crz Crz Crz	Cd Cd Cd	Cd Cd	Cd Cd	Cd Cd	Cd Cd	Cd Cd	Cd ** **	Cd	Cd	Cd	Cd	Cd
NR-2-1 NR-2-2 NR-2-3	Natural rubber (3500-1b tensile strength)	В	Sd Sd Sd	Sd Sd Sd	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz ** **	Crz	Crz	Crz	Crz	Crz
SR-1-1 SR-1-2 SR-1-3	General service rubber	A	Sd Sd Sd	Cd Cd	B cd B cd B cd	B cd ** **	B cd									
SR-2-1 SR-2-2 SR-2-3	General serivce rubber (2000-1b tensile strength)	В	Sd Sd Sd	Sd Crz Sd	Crz Crz Crz	Cd Cd	Cd Cd	Cd Cd	Cd Cd	Cd Cd	Cd **	Cd	Cd	Cd	Cđ	Cd
SR-3-1 SR-3-2 SR-3-3	General service rubber (3000-1b tensile strength)	В	Sd Sd Sd	Cd Cd	B cd B cd B cd	B cd ** **	B cd									
NEOR-1-1 NEOR-1-2 NEOR-1-3	Neoprene rubber	A	Sd Sd Sd	Cd Cd	Cd Cd	Cd Cd	Cd Cd	Cd Cd	Cd Cd Cd	Cd Cd	Cd **	Cd	Cd	Cd	Cd	Cd
NEOR-2-1 NEOR-2-2 NEOR-2-3	Neoprene rubber	В	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd ** **	Sd	Sd	Sd	Sd	Sd
BUTYL-1-1 BUTYL-1-2 BUTYL-1-3	Butyl rubber	В	Sd Sd Sd	Crz Crz Crz	Cd Cd	Cd Cd	Cd Cd	Cd Cd	Cd Cd	Cd Cd	Cd ** **	Cd	Cd	Cd	Cd	Cd
PVC-2-1 PVC-2-2 PVC-2-3	Type IV standard polyvinyl chloride	С	Sd Sd Sd	Sd Sd Sd	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz ** **	Crz	Crz	Crz	Crz	Crz
PVC-2A-1 PVC-2A-2 PVC-2A-3	Type IV arctic polyvinyl chloride	С	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd ** **	Sd	Sd	Sd	Sd	Sd
PVC-3-1 PVC-3-2 PVC-3-3	Type V standard polyvinyl chloride	С	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Crz Crz Crz	Crz ** **	Crz	Crz	Crz	Crz	Crz
PVC-3A-1 PVC-3A-2 PVC-3A-3	Type V arctic polyvinyl chloride	С	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd ** **	Sd	Sd	Sd	Crz	Crz
PVC-4-1 PVC-4-2 PVC-4-3	Polyvinyl chloride	A	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Crz Crz Crz	Crz ** **	Crz	Crz	Crz	Crz	Crz
PVC-5-1 PVC-5-2 PVC-5-3	Polyvinyl chloride	A	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Crz Crz Crz	Crz	Crz	Crz	Crz	Crz	Crz

(Continued)

(Sheet 2)

^{*} Conditions are described as sound (SD), crazing (Crz), cracked (Cd), and badly cracked (B cd). ** Removed from exposure in June 1966 for tests.

Table 4-WS (Concluded)

Section 30

Specimen		Manu-				Cond	ition*	of Em	bedded	Speci	mens,	1957-1	971			
No.	Description	facturer	1957	1958	1959	1960	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971
NR-1-37 NR-1-38 NR-1-39	Natural rubber	А	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz ** **	Crz	Crz	Crz	Crz	Crz
VR-2-112 VR-2-113 VR-2-114	Natural rubber (3500-lb tensile strength)	В	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz ** **	Crz	Crz	Crz	Crz	Crz
SR-1-43 SR-1-44 SR-1-45	General service rubber	A	Sd Sd Sd	Cd Cd	B cd B cd B cd	C tn C tn C tn	**									
SR-2-115 SR-2-116 SR-2-117	General service rubber (2000-1b tensile strength)	В	Sd Sd Sd	Tn Tn Tn	C tn C tn C tn											
SR-3-118 SR-3-119 SR-3-120	General service rubber (3000-lb tensile strength)	В	Sd Sd Sd	Cd Cd	B cd B cd B cd	B cd B cd B cd	B cd B cd B cd	Tn Tn Tn	Tn Tn Tn	C tn C tn C tn	** ** **					
NEOR-1-40 NEOR-1-41 NEOR-1-42	Neoprene rubber	A	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd ** **	Sd	Sd	Sd	Sd	Sd
NEOR-2-109 NEOR-2-110 NEOR-2-111	Neoprene rubber	В	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz ** **	Crz	Crz	Crz	Crz	Crz
BUTYL-1-106 BUTYL-1-107 BUTYL-1-108	Butyl rubber	В	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd ** **	Sd	Sd	Sd	Sd	Sd
PVC-2-28 PVC-2-29 PVC-2-30	Type IV standard polyvinyl chloride	С	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Crz Crz Crz	Crz Crz Crz	Crz Crz Crz	Crz ** **	Crz	Crz	Crz	Crz	Crz
PVC-2A-49 PVC-2A-50 PVC-2A-51	Type IV arctic polyvinyl chloride	c	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd ** **	Sd	Sd	Sd	Crz	Crz
PVC-3-31 PVC-3-32 PVC-3-33	Type V standard polyvinyl chloride	С	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd **	Sd	Sd	Sd	Crz	Crz
PVC-3A-52 PVC-3A-53 PVC-3A-54	Type V arctic polyvinyl chloride	С	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd ·	Sd ** **	Sd	Sd	Sd	Sd	Sd
PVC-4-34 PVC-4-35 PVC-4-36	Polyvinyl chloride	A	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd ** **	Sd	Sd	Sd	Crz	Crz
PVC-5-46 PVC-5-47 PVC-5-48	Polyvinyl chloride	D	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd Sd Sd	Sd **	Sd	Sd	Sd	Crz	Crz

Conditions are described as sound (Sd), cracked (Cd), torn (Tn), badly cracked (B cd), completely torn (C tn), and crazing (Crz).

Removed from exposure in June 1966 for tests.

Woven Plastic Test Program

The purpose of this investigation is to evaluate the durability of two types of woven plastic filter material under three exposure conditions.

The test specimens are 13-in.-square pieces of woven plastic and are exposed at two locations: Treat Island, Maine, and Jackson, Mississippi (indoors).

1963 Treat Island installation

In November 1963, 160 woven plastic pieces were installed at the Treat Island exposure station. Eighty pieces were installed in thin redwood frames (two pieces per frame) with a nominal 1-in. space between them for circulation of air. The redwood frames were contained in one long redwood box, slatted to permit circulation of air and seawater; the top of the box had an overhang, and baffles were provided to shade the plastic pieces from the sun at all times. The remaining 80 pieces were installed flat in two redwood boxes with a 2-in. layer of pea gravel top and bottom.

1963 Jackson installation

In November 1963, 80 woven plastic pieces were installed indoors at the WES Jackson installation. These specimens were installed in thin redwood frames contained in a long redwood box as were one set of the companion specimens at Treat Island.

Loss of test specimens

In July 1966, 60 specimens in redwood frames were lost overboard (two plastic pieces per frame). At that time, 20 of the frame specimens had already been returned to the laboratory for testing.

1967 Treat Island installation

In April 1967, 80 woven plastic pieces were installed at the Treat Island exposure station. All of these were installed in thin redwood frames (two pieces per frame) with a nominal 1-in. space between them for circulation of air. As in the 1963 installation, the redwood frames were contained in one long redwood box, slatted to permit circulation of air

(Revised Sept 1970)

Section 31

and seawater. Baffles were provided to shade the plastic pieces from the sun at all times. This installation replaced the specimens lost overboard in July 1966.

Schedule of testing (from May 1967)

Every 6 months until November 1969, 12 specimens were removed from their exposure (four from Jackson, eight from Treat Island) and tested in the laboratory (see table 1-WPF).

In January 1970, this phase of the investigation was terminated. At that time only 64 specimens remained under test: 32 were in the pea gravel boxes at Treat Island and 32 were in frames (indoors) at the laboratory.

1970 installation

In March 1970, 22 plastic pieces were installed at Treat Island in redwood frames. This installation represented four additional types of plastic, three of which were woven plastics (see table 1-WPF). The schedule for laboratory testing of these samples has not yet been established.

Table 1-WPF
Woven Plastic Test Program Summary

			No. of Specimens to
			be Removed from
No. of	Pura suma Conditions	Woven	Exposure and Tested
Specimens	Exposure Conditions	Plastic	Every 6 months
	Exposed at Treat Island, Maine (Installed Nov	rember 1963)
40 ×	Wooden frames, vertical	Type F	0
40*	Wooden frames, vertical	Type P	0
40	Horizontal, pea gravel, Box F	Type F	2
40	Horizontal, pea gravel, Box P	Type P	2
E	xposed at Jackson, Miss. (Indoors) (Installed	November 1963)
40	Wooden frames, vertical	Type F	2
40	Wooden frames, vertical	Type P	2
	Exposed at Treat Island, Maine	(Installed Ar	oril 1967)
40†	Wooden frames, vertical	Type F	2 **
40+	Wooden frames, vertical	Type P	2 **
	Exposed at Treat Island, Maine	(Installed Ma	rch 1970)
1	Wooden frames, vertical	Type F	
1	Wooden frames, vertical	Type P	
10	Wooden frames, vertical	Type L	
4	Wooden frames, vertical	Type PM (r	not a woven plastic)
2	Wooden frames, vertical	Type PGB	
4	Wooden frames, vertical	Type Z	

^{*} Thirty of these specimens were lost overboard in July 1966. Ten of these specimens had been sent back to the laboratory for testing prior to July 1966.

^{**} Return of these specimens began in May 1967. No frame specimens were returned from Treat Island in November 1966.

[†] Thirty of these specimens were lost overboard in a storm in November 1969. Ten specimens have been tested in the laboratory after exposure.

National Bureau of Standards Supersulfate Cement Program

In November 1957, 27 concrete beams (3 by 4 by 16 in.) were installed on the exposure rack at St. Augustine as part of a program being conducted by the National Bureau of Standards to investigate the properties of concrete containing supersulfate cements.

The 27 beams represented nine cements (3 beams per cement); other concrete characteristics were: slump, 5 ± 1 in.; nominal cement factor, 5.5 bags per cu yd; aggregates, natural sand and natural gravel of 1-in. maximum size.

Table 1-SS lists these specimens and gives their exposure record, along with their cements.

Data collection on these specimens was discontinued after the 1970 inspection.

Record of Testing of Concrete Beams, Supersulfate

Cement Program

1957- (Installed November 1957)

	Cementitious Material		1957-1964 Readings						
Beam No.	Туре	Serial No.	1957 Æ	1958 %E	1960 %E	1962 Æ	1964 %E		
1SS1 1SS2 1SS3	Supersulfate cement	1	100 100 100	113 115 114	103 104 100	99 102 99	102 104 102		
2SS1 2SS2 2SS3	Supersulfate cement	2	100 100 100	109 110 109	109 112 110	103 107 105	105 106 109		
3SS1 3SS2 3SS3	Supersulfate cement	3	100 100 100	119 119 121	113 111 111	106 104 105	107 105 106		
4551 4552 4553	Supersulfate cement	4	100 100 100	116 118 117	102 110 110	99 106 106	101 109 108		
5881 5882 5883	Supersulfate cement	5	100 100 100	109 109 109	109 110 109	100° 104 105	105 106 106		
6SS1 6SS2 6SS3	Portland, blast-furnace slag	6	100 100 100	113 113 112	109 109 107	94 93 96	84 Failed 95		
7881 7882 7883	Type V	7	100 100 100	113 112 111	102 101 102	97 99 99	100 99 101		
8ss1 8ss2 8ss3	Portland-pozzolan blend	8	100 100 100	112 113 112	110 106 108	99 102 *	105 107		
9881 9882 9883	High-alumina cement	9	100 100 100	112 112 114	105 102 105	101 101 105	108 107 110		

(Continued)

^{*} Broken in handling.

Table 1-SS (Concluded)

Section 32

	Cementitious Material			66-	Readings	
Beam		Serial	1966	1968	1970	
No.	Туре	No.	%E	<u>%</u> E	<u>%E</u>	
1881	Supersulfate cement	1	101	97	96	
1882			103	104	102	
1883			100	104	102	
2881	Supersulfate cement	2	105	104	104	
2882			107	101	100	
2883			108	109	108	
3881	Supersulfate cement	3	107	105	105	
3882			104	106	106	
3553			106	101	101	
4881	Supersulfate cement	4	100	105	104	
4552			109	112	110	
4553			107	114	112	
5881	Supersulfate cement	5	104	105	104	
5882			108	107	107	
5883			106	111	Failed	
6881	Portland, blast-furnace slag	6	Failed			
6883			94	86	85	
7881	Type V	7	100	99	98	
7882			99	101	99	
7553			100	102	101	
8881	Portland-pozzolan blend	8	111	109	108	
8ss2 8ss3			*			
9881	High-alumina cement	9	109	114	Lost	
9882			107	104	Lost	
9883			111	104	Lost	

Membrane Curing Program

On 12 June 1946, 14 box specimens were installed on top of the wharf at Treat Island, Maine. Exposure of these specimens is a phase of the investigation of the effect of method of curing on the durability of vertical concrete surfaces. Each of the specimens is a hollow, monolithic, concrete box with exterior vertical surfaces 24 in. wide and 20 in. high and with hollow, tapered, prismoidal centers 18 in. square at the top and 14 in. square at the bottom.

The specimens were made during the winter of 1942-43 and were formed out-of-doors, on the ground, at the moderate weathering exposure installation at Mount Vernon, N. Y. Each pair of adjacent exterior vertical surfaces represented a given test condition and the edge between each pair of similar surfaces was oriented in an east or west direction. The hollow centers were filled with earth.

After two and one-half winters of moderate weathering exposure (approximately 250 cycles of freezing-and-thawing), the specimens were emptied of earth and transferred to Treat Island, installed on top of the wharf with the same orientation as previously employed, and the centers were refilled with earth.

Table 1-MCP lists these specimens and gives their present condition along with other pertinent information.

Record of Testing of Box Specimens, Membrane Curing Program

1959- (Installed June 1946)

									Con	dition of	of Speci	mens, 1		
Box	East	West	Admix	ture		Cur	rial	Form	13 Wint			inters 960		nters 61
No.	Corner	Corner	East	West	Cement	East	West	Lining	East	West	East	West	East	West
1	GVRW	GW	Resin	None	A	Water	Water	T-and-G*	Excel**	Excel	Excel	Excel	Excel	Excel
2	GVRCCW	GVRAHW	Resin + CC	Resin + AH	A	Water	Water	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
3	GCCJW	GCCW	Resin soap	cc	A	Water	Water	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
4	GJ	W	Resin soap	Resin soap	A	Water	Water	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
5		C	None	None	В	Air	Air	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
6	CAC	CWC	None	None	В	Air	Water	Lining A	Excel	Excel	Excel	Excel	Excel	Excel
7	RAC	RWC	None	None	В	Air	Water	Lining B	Excel	Excel	Excel	Excel	Excel	Excel
8	AHA	C	AH	AH	В	Air	Air	T-and-G	Sl ckt	Excel	Sl ck	Excel	Excel	Excel
9	B-3	B-1	None	None	В	HPB	RG	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
10	B-8	B-2	None	None	В	KC70	HPC	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
11	B-25	B-23	None	None	В	SF45W	CS45	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
12	B-24	B-29	None	None	В	SF45	DSA	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
13 14	B-17	B-28	None	None	В	AFMST	PENC	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel
14	B-18	B-30	None	None	В	AlC	TFX199	T-and-G	Excel	Excel	Excel	Excel	Excel	Excel

							Condi	tion of	Specim	ens, 19	62-1972					
	16 Wi 19	nters 62	17 Wi 19	nters 63		nters 64		nters 65		nters 66	24 Wi 1970		25 Wi 19		26 Wi	
	East	West	East	West	East	West	East	West	East	West	East	West	East	West	East	West
1	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
2	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
3	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
4	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
5	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
6	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
7	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
В	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
9	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
0	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
1	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
2	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
3	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel
4	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel	Excel

27 Wi	nters 73		nters 74		nters 75		nters 76		nters 77
East	West								
Excel	Excel								
Excel	Excel								
Excel	Excel								
Excel	Excel								
Excel	Excel								
Excel	Excel								
Excel	Excel								
Excel	Excel								
Excel	Excel								
Excel	Excel								
Excel	Excel								
Excel	Excel								
Excel	Excel								
Excel	Excel								

^{*} Tongue-and-groove lumber.

** Excel denotes excellent.

† S1 ck denotes slight crack.

†† Condition of the specimens did not change from 1967 to 1971.

Quality Aggregate Investigation

The purpose of this investigation is to develop satisfactory test methods for evaluating the quality of aggregate larger than the 1-1/2-in. size.

During the period 1959-1962, 16 mass concrete cubes (8 cu ft) were fabricated for field exposure tests from 16 different concrete mixtures (one cube per mixture). All cubes were made of air-entrained concrete using type II portland cement, a 6-in. maximum size coarse aggregate, and a manufactured limestone sand as the fine aggregate. The test variables were water-cement ratio and kind of coarse aggregate; eight coarse aggregates and two water-cement ratios were used. Each cube was allowed to reach a minimum age of 1 year before installation at Treat Island.

1962 Installation

In November 1962, ten of these concrete cubes were installed at halftide elevation on the beach at Treat Island for field exposure tests. Table 1-QA lists these specimens and gives their exposure record along with pertinent mixture data.

1963 Installation

In December 1963, the remaining six of these concrete cubes were installed at half-tide elevation on the beach at Treat Island. Table 2-QA lists these specimens and gives their exposure record.

Record of Testing of Cubes Made for Quality Aggregate Investigation

1962 Installation (Installed November 1962)

Beach	Post	2	(W	+0	P1	۱
Beach	ROW	~	(W	CO	E .	,

-									1962-	1968 Read		CII IOW L	(W to I
Cube No.	Date Made	Coarse Aggregate	Water- Cement Ratio (by Wt)	Air Content*	Slump* in.	O Cycl 1962 Pulse Veloc fps		106 Cycles 1963 4v ²	241 Cycles 1964 4v ²	404 Cycles 1965 %V ²	534 Cycles 1966	690 Cycles 1967	875 Cycles 1968
Q-1	Mar 1959	Limestone C	0.5	5-3	1	17,315	100	104	97	103	96	88	79
2-2	July 1959	Limestone C	0.8	5.0	1-3/4	16,065	100	65	72	41	Failed		
Q-3	June 1959	Graywacke	0.5	5.5	1-3/4	13,515	100	108	112	126	112	110	NR**
2-4	June 1959	Graywacke	0.8	5.4	2	12,780	100	99	102	91	46	66	Failed
Q-5	Oct 1959	Natural gravel A	0.5	5.2	1-1/2	15,150	100	97	100	106	97	100	100
2-6	Oct 1959	Natural gravel A	0.8	5.3	2	14,035	100	97	89	75	51	Failed	
Q-7	Feb 1960	Limestone B	0.5	5.0	1-3/4	16,000	100	102	102	108	97	90	82
Q-8	Feb 1960	Limestone B	0.8	4.9	1-1/4	15,150	100	77	57	NR××	33t	Failed	
2-9	Mar 1960	Limestone A	0.5	4.8	1-1/4	16,600	100	94	97	101	86	82	93
Q-10	Mar 1960	Limestone A	0.8	5.2	1-3/4	16,065	100	96	98	81	75	79	60

							1969-1977 Readings								
						1029 Cycles 1969 %V ²	1182 Cycles 1970 %v ²	1351 Cycles 1971 %v ²	1508 Cycles 1972 %v ²	1648 Cycles 1973 %v ²	1784 Cycles 1974 %v ²	1896 Cycles 1975 %v ²	2042 Cycles 1976 %V ²		
Q-1	Mar 1959	Limestone C	0.5	5.3	1	Failed									
Q-3	June 1959	Graywacke	0.5	5.5	1-3/4	NR**	NR**	Failed							
Q-5	Oct 1959	Natural gravel A	0.5	5.2	1-1/2	73	67	58	58	tt	27	Failed			
Q-7	Feb 1960	Limestone B	0.5	5.0	1-3/4	56	54	29	43	tt	17	41	Failed		
Q-9	Mar 1960	Limestone A	0.5	4.8	1-1/4	66	64	53	65	++	58	56	Failed		
Q-10	Mar 1960	Limestone A	0.8	5.2	1-3/4	42	NR**	Failed							

^{**} Air content and slump of that portion of the concrete containing aggregate smaller than 1-1/2 in. in size.

*** NR = no satisfactory reading was obtained due to condition of specimen; however, specimen cannot as yet be adjudged as "failed."

† This reading is doubtful because of deteriorated condition of specimen.

† Equipment malfunctioned in 1973.

Table 2-QA

Record of Testing of Cubes Made for Quality Aggregate Investigation

1963 Installation (Installed December 1963)

1									1963-19	69 Readin		Row A-1 (
Cube	Date Made	Coarse Aggregate	Water- Cement Ratio (by Wt)	Air Content*	Slump*	O Cycl 1963 Pulse Veloc fps		121 Cycles 1964 %v ²	284 Cycles 1965 4v ²	414 Cycles 1966 4v ²	570 Cycles 1967 % v ²	755 Cycles 1968 4v ²	909 Cycles 1969 %V ²
Q-11	Aug 1962	Dolomite	0.5	4.8	1-1/2	15,565	100	102	119	117	88	89	73
Q-12	Aug 1962	Dolomite	0.8	4.9	1-1/2	14,870	100	112	110	122	51	Failed	
Q- 13	July 1962	Natural gravel B	0.5	5.0	1-1/2	15,875	100	114	122	112	107	105	91
Q-14	Aug 1962	Natural gravel B	0.8	4.9	1-1/2	15,505	100	103	118	118	102	84	66
Q-15	Aug 1962	Gneiss	0.5	4.8	1-1/2	14,335	100	124	140	135	131	121	107
Q-16	Aug 1962	Gneiss	0.8	4.8	1-1/2	13,890	100	122	112	139	76	Failed	
									1000 100	76 Donatin			

		19/0-19/0 Readings											
						1062 Cycles 1970	1231 Cycles 1971	1388 Cycles 1972 %v ²	1528 Cycles 1973 %v ²	1664 Cycles 1974 %v ²	1776 Cycles 1975 %v ²	1922 Cycles 1976 %V ²	
Q-11	Aug 1962	Dolomite	0.5	4.8	1-1/2	Failed							
Q-13	July 1962	Natural gravel B	0.5	5.0	1-1/2	81	80	90	ff	118	105	94	
Q-14	Aug 1962	Natural gravel B	0.8	4.9	1-1/2	+	Failed						
Q-15	Aug 1962	Gneiss	0.5	4.8	1-1/2	99	104 •	115	tt	120	123	116	

• • •		uno 200	•••	1.0	1-1/2	,,			120	123	110
							19	977-	Readings		
						1999 Cycles 1977 %v ²					
Q-11	Aug 1962	Dolomite	0.5	4.8	1-1/2						
Q-13	July 1962	Natural gravel B	0.5	5.0	1-1/2	94					
Q-14	Aug 1962	Natural gravel B	0.8	4.9	1-1/2						
Q-15	Aug 1962	Gneiss	0.5	4.8	1-1/2	109					

^{*} Air content and slump of that portion of the concrete containing aggregate smaller than 1-1/2 in. in size.
† A satisfactory reading could not be taken because of the condition of the specimen.
†† Equipment malfunctioned in 1973.

Cement-Replacement Materials Investigation, Phase G*

In November 1962, two concrete prisms (18 by 18 by 36 in.) were installed at half-tide elevation on the beach at Treat Island as a part of Phase G (field phase) of the cement-replacement materials investigation.* Phase G (field phase) involved the proportioning, outdoor mixing, and placing of lean mass concrete containing pozzolans. The purpose of this installation is to develop information about the durability of these lean mass concretes.

The prisms were made from two different concrete mixtures (one prism per mixture); the coarse and fine aggregates used in both mixtures were crushed limestone. Each concrete mixture was air-entrained and each contained type II portland cement and one replacement material. The mixture data are tabulated below. Table 1-CRMI-PG lists these concrete prisms and gives their exposure record.

Speci- men and Mix No.	Date Cast 1962	Portland Cement %, by Wt		cement erial % by Wt Used	Max Size Coarse Aggr	Nominal Cemen- titious Material Factor bags/ cu yd	Water- cement Ratio by Wt	Nominal Slump in.	Air** _%_
1	9-12	48.5	Fly ash	51.5	6	2.1	0.62	1-3/4	5.0 - 6.6
6	6-21	57.3	Shale	42.7	6	1.7	0.85	1-3/4	5.0 -

^{**} Air content of that portion of the concrete containing aggregate smaller than 1-1/2-in. size.

^{*} See: (1) U. S. Army Engineer Waterways Experiment Station, CE, Investigation of Cement-Replacement Materials; Use of Large Amounts of Pozzolans in Lean Mass Concrete, by W. O. Tynes, Miscellaneous Paper No. 6-123, Report 10 (Vicksburg, Miss., August 1962).

(2) U. S. Army Engineer Waterways Experiment Station, CE, Investigation of Cement-Replacement Materials; Use of Large Amounts of of Pozzolans in Lean Mass Concrete (Second Phase), by W. O. Tynes, Miscellaneous Paper No. 6-123, Report 14 (Vicksburg, Miss., October 1966).

Record of Testing of Prisms Made for Cement-Replacement Materials Investigation Phase G, 1962- (Installed November 1962)

Beach Row 2 (E to W)

				10		Reading	
Specimen and Mix No.	Portland Cement	Replace- ment Material*	Maximum Aggregate Size in.	0 Cycl 196 Pulse Veloc fps	.es	106 Cycles 1963 %V ²	241 Cycles 1964
1	48.5 **	51 . 5**	6	16,665	100	102	95
6	57•3 **	42.7 **	6	15,305	100	94	92
				1	965-196	8 Readin	gs
				404 Cycles 1965 %v ²	534 Cycles 1966 %V ²	690 Cycles 1967 %v ²	875 Cycles 1968 %V ²
1	48.5 **	51.5 **	6	94	76	79	66
6	57·3 **	42.7 **	6	119	85	. .	+
					969-	Readin	gs
				1029 Cycles 1969 %V ²	1182 Cycles 1970 %V ²	1351 Cycles 1971 %V ²	
1	48.5*×	51.5**	6	t	t	Failed	
6	57•3 **	42.7 **	6	t	Failed		1

^{*} Replacement material in mix 1 was fly ash; replacement material in mix 6 was shale.

^{**} Percent by weight of total cementitious material (cement plus pozzolan).

t Faces of prism too rough to obtain satisfactory reading.

Maximum Size of Coarse Aggregate Program

In December 1963, 18 mass concrete prisms (18 by 18 by 36 in.) were installed at half-tide elevation on the beach at Treat Island.

The objective of this program was to determine if the maximum size of coarse aggregate used in mass concrete could be reduced from 6 to 3 in. without loss in quality of concrete.

The prisms were made from 18 different concrete mixtures (one prism per mixture); the coarse and fine aggregate used in all mixtures was a crushed limestone. Each concrete mixture was air-entrained $(5 \pm 1 \text{ percent})$ with a slump of $2 \pm 1/2$ in., and each contained type II portland cement. Cement factors varied from 2 to 3 bags per cu yd; 12 mixtures contained a cement-replacement material. The maximum size of aggregate in all mixtures was either 3 or 6 in.

Table 1-CAP lists these concrete prisms and gives their exposure record along with other pertinent information.

Theorem INTERNATION for the second with the contract of the second secon

Table 1-CAP

Record of Testing of Prisms Made for Maximum Size

of Coarse Aggregate Program

1963- (Installed December 1963)

						Bead	h Row	2 (W to	E)
Speci- men and Mix No.	Date Made	Nominal Cement Factor bags/ cu yd	Replace- ment Material*	Actual Sand: Aggre- gate Ratio	Max Size Coarse Aggre- gate in.	0 Cycle 1963 Pulse Velocity fps	s	121 Cycles 1964 4V ²	284 Cycle 1965 %V ²
1	Sept 1963	2.0	None	30	3	14,285	100	129	121
2	Sept 1963	2.0	None	24	6	15,545	100	109	114
3	Sept 1963	2.0	Fly ash	30	3	14,150	100	93	**
4	Sept 1963	2.0	Fly ash	24	6	15,385	100	115	115
5	Sept 1963	2.0	Shale	30	3	14,780	100	107	119
6	Sept 1963	2.0	Shale	24	6	16,395	100	107	109
7	Sept 1963	2.5	None	30	3	14,850	100	117	119
8	Sept 1963	2.5	None	23	6	16,215	100	110	113
9	Sept 1963	2.5	Fly ash	30	3	15,465	100	104	115
10	Sept 1963	2.5	Fly ash	23	6	16,130	100	107	114
11	Oct 1963	2.5	Shale	30	3	15,305	100	104	116
12	0ct 1963	2.5	Shale	23	6	15,955	100	106	113
13	Oct 1963	3.0	None	29	3	14,925	100	113	126
14	Oct 1963	3.0	None	22	6	16,130	100	104	113
15	Oct 1963	3.0	Fly ash	29	3	14,705	100	113	136
16 .	Oct 1963	3.0	Fly ash	22	6	15,875	100	107	109
17	Oct 1963	3.0	Shale	29	3	15,385	100	111	123
18	Oct 1963	3.0	Shale	22	6	15,955	100	108	118

(Continued)

Note: The following specimens were made on the same day: 1 and 2, 3 and 4, 5 and 6, 7 and 8, 9 and 10, 11 and 12, 13 and 14, 15 and 16, 17 and 18; in other words, the specimens were made on 9 different days (2 per day).

^{**} Condition of this prism precluded pulse velocity testing.

Table 1-CAP (Continued)

Section 37

							Beach	Row 2 (W to E)
Speci- men and Mix No.	Date Made	Nominal Cement Factor bags/ cu yd	Replace- ment <u>Material</u>	Actual Sand: Aggre- gate Ratio	Max Size Coarse Aggre- gate in.	414 Cycles 1966 7v ²	570 Cycles 1967 %V ²	755 Cycles 1968 %v ²	909 Cycles 1969 %v ²
1	Sept 1963	2.0	None	30	3	106	+	Failed	
2	Sept 1963	2.0	None	24	6	103	88	102	t
3	Sept 1963	2.0	Fly ash	30	3	Failed			
4	Sept 1963	2.0	Fly ash	24	6	108	104	103	97
5	Sept 1963	2.0	Shale	30	3	108	107	100	+
6	Sept 1963	2.0	Shale	24	6	97	94	92	88
7	Sept 1963	2.5	None	30	3	111	113	110	106
8	Sept 1963	2.5	None	23	6	106	103	106	91
9	Sept 1963	2.5	Fly ash	30	3	100	91	93	85
10	Sept 1963	2.5	Fly ash	23	6	101	94	95	85
11	Oct 1963	2.5	Shale	30	3	108	99	101	95
12	Oct 1963	2.5	Shale	23	6	101	101	100	88
13	Oct 1963	3.0	None	29	3	112	117	112	103
14	Oct 1963	3.0	None	22	6	100	100	99	92
15	Oct 1963	3.0	Fly ash	29	3	115	114	114	110
16	Oct 1963	3.0	Fly ash	22	6	108	100	103	96
17	Oct 1963	3.0	Shale	29	3	111	110	106	97
18	Oct 1963	3.0	Shale	22	6	108	101	103	94

t End of prism too rough to obtain satisfactory reading.

Table 1-CAP (Continued)

	Row 2 (1	Reading	970-1975	1		Max	Actual				
177 Cycl 197	1664 Cycles 1974 %v ²	1528 Cycles 1973 %v ²	1388 Cycles 1972 %v ²	1231 Cycles 1971 % V ²	1062 Cycles 1970 %v ²	Size Coarse Aggre- gate in.	Sand: Aggre- gate Ratio	Replace- ment Material	Nominal Cement Factor bags/ cu yd	Date Made	men and Mix No.
				Failed	+	6	24	None	2.0	Sept 1963	2
			Failed	+	86	6	24	Fly ash	2.0	Sept 1963	4
				Failed	+	3	30	Shale	2.0	Sept 1963	5
			Failed	+	84	6	24	Shale	2.0	Sept 1963	6
106	84	tt	104	76	104	3	30	None	2.5	Sept 1963	7
94	104	tt	86	NR	87	6	23	None	2.5	Sept 1963	8
					Failed	3	30	Fly ash	2.5	Sept 1963	9
Fail	38	tt	86	NR	80	6	23	Fly ash	2.5	Sept 1963	10
	Failed	tt	88	NR	88	3	30	Shale	2.5	Oct 1963	11
92	96	tt	84	20	83	6	23	Shale	2.5	Oct 1963	12
113	116	tt	100	NR	100	3	29	None	3.0	Oct 1963	13
71	84	tt	91	34	89	6	22	None	3.0	Oct 1963	14
118	122	tt	109	90	91	3	29	Fly ash	3.0	Oct 1963	15
106	107	++	94	74	89	6	22	Fly ash	3.0	Oct 1963	16
114	112	++	99	72	95	3	29	Shale	3.0	Oct 1963	17
108	108	tt	102	80	91	6	22	Shale	3.0	Oct 1963	18
	5	Readings	976-								
				1999 Cycles 1977	1922 Cycles 1976						
				%v ²	% v ²						
						6	24	None	2.0	Sept 1963	2
						6	24	Fly ash	2.0	Sept 1963	4
						3	30	Shale	2.0	Sept 1963	5
						6	24	Shale	2.0	Sept 1963	6
					Failed	3	30	None	2.5	Sept 1963	7
				Failed	83	6	23	None	2.5	Sept 1963	8
						3	30	Fly ash	2.5	Sept 1963	9
						6	23	Fly ash	2.5	Sept 1963	10
						3	30	Shale	2.5	Oct 1963	11
				Failed	67	6	23	Shale	2.5	Oct 1963	12
				95	101	3	29	None	3.0	Oct 1963	13
				81	71	6	22	None	3.0	Oct 1963	14
				103	115	3	29	Fly ash	3.0	Oct 1963	15
				65	89	6	22	Fly ash	3.0	Oct 1963	16
				47	86	3	29	Shale	3.0	Oct 1963	17
				59	77	6	22	Shale	3.0	Oct 1963	18

[†] End of prism too rough to obtain satisfactory reading.
†† Equipment malfunctioned in 1973.
NR Unable to obtain satisfactory reading, although an attempt was made to do so.

Maximum Allowable Water-cement Ratio Investigation

In December 1964, 24 concrete prisms (18 by 18 by 36 in.) were installed on the beach at Treat Island. The objective of this installation was to observe the durability of mass concrete mixtures in which the water-cement ratios varied from 0.6 to 1.1 by weight.

The prisms were made from 12 concrete mixtures (two prisms per mixture); the coarse and fine aggregate used in all mixtures was a crushed limestone. The maximum size of the aggregate was 6 in. Each concrete mixture was air-entrained $(5 \pm 1\%)$ with a slump of $2 \pm 1/2$ in., and each contained type II portland cement. Cement factors varied from 1.59 to 2.93 bags per cu yd; 6 mixtures contained a cement-replacement material (30%) by solid volume).

Table 1-MAWC lists these concrete prisms and gives their exposure record along with other pertinent information.

Record of Testing of Prisms Made for Maximum Allowable Water-Cement Ratio Investigation

1964- (Installed December 1964)

		_	2 - 1	W-4 C	ent Ratio	Cement Factor	0 Cycles 196 Pulse Velocity	4	152 Cycles 196
Prism No.	Date Made	Type Cement	Replacement Material*	gals/bag	by weight	bags/cu yd	fps fps	%v2	<u>%v2</u>
Mix 1, Rd 1	Feb 1964	II	None	6.8	0.6	2.93	16,395	100	106
Rd 2	Aug 1964	II	None	6.8	0.6	2.93	16,130	100	114
Mix 2, Rd 1	May 1964	II	None	7.9	0.7	2.51	16,215	100	116
Rd 2	July 1964	II	None	7.9	0.7	2.51	16,665	100	108
Mix 3, Rd 1	June 1964	II	None	9.0	0.8	2.20	16,485	100	109
Rd 2	July 1964	II	None	9.0	0.8	2.20	16,395	100	111
Mix 4, Rd 1	June 1964	II	None	10.2	0.9	1.95	16,215	100	108
Rd 2	Aug 1964	II	None	10.2	0.9	1.95	16,045	100	107
Mix 5, Rd 1	Apr 1964	II	None	11.3	1.0	1.76	15,705	100	100
Rd 2	Aug 1964	II	None	11.3	1.0	1.76	15,875	1.00	104
Mix 6, Rd 1	Apr 1964	II	None	12.4	1.1	1.59	15,230	100	106
Rd 2	Aug 1964	II	None	12.4	1.1	1.59	15,150	100	111
Mix 7, Rd 1	Mar 1964	II	Fly ash	6.4	0.6	2.93	17,240	100	95
Rd 2	Aug 1964	II	Fly ash	6.4	0.6	2.93	16,575	100	103
Mix 8, Rd 1	June 1964	II	Fly ash	7.4	0.7	2.51	16,305	100	113
Rd 2	June 1964	IT	Fly ash	7.4	0.7	2.51	16,760	100	102
Mix 9, Rd 1	Mar 1964	II	Fly ash	8.4	0.8	2.20	16,215	100	106
Rd 2	Aug 1964	II	Fly ash	8.4	0.8	2.20	16,215	100	108
Mix 10, Rd 1	June 1964	II	Fly ash	9.6	0.9	1.95	16,215	100	106
Rd 2	Aug 1964	II	Fly ash	9.6	0.9	1.95	15,385	100	111
Mix 11, Rd 1	June 1964	II	Fly ash	10.6	1.0	1.76	16,395	100	101.
Rd 2	Aug 1964	II	Fly ash	10.6	1.0	1.76	16,130	100	110
Mix 12, Rd 1	June 1964	II	Fly ash	11.6	1.1	1.59	15,955	100	102
Rd 2	Aug 1964	II	Fly ash	11.6	1.1	1.59	16,130	100	89

Prism		Туре	Replacement	Water-Cer	ment Ratio	Cement Factor	282 Cycles 1966	438 Cycles 1967
No.	Date Made	Cement	Material*	gals/bag	by weight	bags/cu yd	<u>%v²</u>	%V2
Mix 1, Rd 1	Feb 1964	II	None	6.8	0.6	2.93	103	112
Rd 2	Aug 1964	II	None	6.8	0.6	2.93	107	117
Mix 2, Rd 1	May 1964	II	None	7.9	0.7	2.51	106	116
Rd 2	July 1964	II	None	7.9	0.7	2.51	100	113
Mix 3, Rd 1	June 1964	II	None	9.0	0.8	2.20	102	109
Rd 2	July 1964	II	None	9.0	0.8	2.20	103	111
Mix 4, Rd 1	June 1964	II	None	10.2	0.9	1.95	106	109
Rd 2	Aug 1964	II	None	10.2	0.9	1.95	107	116
Mix 5, Rd 1	Apr 1964	II	None	11.3	1.0	1.76	111	103
- Rd 2	Aug 1964	II	None	11.3	1.0	1.76	110	108
Mix 6, Rd 1	Apr 1964	II	None	12.4	1.1	1.59	70	99
Rd 2	Aug 1964	II	None	12.4	1.1	1.59	93	82
Mix 7, Rd 1	Mar 1964	II	Fly ash	6.4	0.6	2.93	93	101
Rd 2	Aug 1964	II	Fly ash	6.4	0.6	2.93	101	113
Mix 8, Rd 1	June 1964	II	Fly ash	7.4	0.7	2.51	103	111
Rd 2	June 1964	II	Fly ash	7.4	0.7	2.51	99	110
Mix 9, Rd 1	Mar 1964	II	Fly ash	8.4	0.8	2.20	106	113
Rd 2	Aug 1964	II	Fly ash	8.4	0.8	2.20	104	117
Mix 10, Rd 1	June 1964	II	Fly ash	9.6	0.9	1.95	90	106
Rd 2	Aug 1964	II	Fly ash	9.6	0.9	1.95	105	115
Mix 11, Rd 1	June 1964	II	Fly ash	10.6	1.0	1.76	93	101
Rd 2	Aug 1964	II	Fly ash	10.6	1.0	1.76	106	114
Mix 12, Rd 1	June 1964	II	Fly ash	11.6	1.1	1.59	98	103
Rd 2	Aug 1964	II	Fly ash	11.6 (Cont	1.1 inued)	1.59	%	99

^{* 30%} replacement by solid volume.

Prism		Туре	Replacement		ment Ratio	Cement Factor	623 Cycles 1968	777 Cycles 1969	930 Cycles 1970	1099 Cycles 1971	1256 Cycles 1972
No.	Date Made	Cement	Material*	gals/bag	by weight	bags/cu yd					
Mix 1, Rd 1	Feb 1964	II	None	6.8	0.6	2.93	111	115	109	102	88
Rd 2	Aug 1964	11	None	6.8	0.6	2.93	117	102	NR	106	91
Mix 2, Rd 1	May 1964	II	None	7.9	0.7	2.51	108	100	102	87	75
Rd 2	July 1964	II	None	7.9	0.7	2.51	108	101	121	115	66
Mix 3, Rd 1	June 1964	II	None	9.0	0.8	2.20	105	97	98	75	65
Rd 2	July 1964	II	None	9.0	0.8	2.20	110	99	88	82	78
Mix 4, Rd 1	June 1964	II	None	10.2	0.9	1.95	106	NR**	NR	NR	NR
Rd 2	Aug 1964	II	None	10.2	0.9	1.95	112	101	91	80	35
Mix 5, Rd 1	Apr 1964	II	None	11.3	1.0	1.76	100	77	NR	NR	Faile
Rd 2	Aug 1964	II	None	11.3	1.0	1.76	105	82	NR	NR	Faile
Mix 6, Rd 1	Apr 1964	II	None	12.4	1.1	1.59	57	+	Failed		
Rd 2	Aug 1964	II	None	12.4	1.1	1.59	78	NR	Failed		
Mix 7, Rd 1	Mar 1964	II	Fly ash	6.4	0.6	2.93	93	88	102	88	84
Rd 2	Aug 1964	II	Fly ash	6.4	0.6	2.93	109	101	97	99	93
Mix 8, Rd 1	June 1964	II	Fly ash	7.4	0.7	2.51	103	100	107	90	NR
Rd 2	June 1964	II	Fly ash	7.4	0.7	2.51	105	96	100	85	NR
Mix 9, Rd 1	Mar 1964	II	Fly ash	8.4	0.8	2.20	110	95	74	86	NR
Rd 2	Aug 1964	II	Fly ash	8.4	0.8	2.20	113	97	95	NR	NR
Mix 10, Rd 1	June 1964	II	Fly ash	9.6	0.9	1.95	110	NR	NR	NR	NR
Rd 2	Aug 1964	II	Fly ash	9.6	0.9	1.95	115	NR	NR	NR	NR
Mix 11, Rd 1	June 1964	II	Fly ash	10.6	1.0	1.76	102	61	NR	NR	NR
Rd 2	Aug 1964	II	Fly ash	10.6	1.0	1.76	110	98	97	90	NR
Mix 12, Rd 1	June 1964	II	Fly ash	11.6	1.1	1.59	106	87	76	NR	NR
				The state of the s					***	-	-
Rđ 2	Aug 1964	11	Fly ash	11.6	1.1	1.59	1396	NR 1532	NR 1644	NR 1790	
Prism		Туре	Replacement	Water-Cer	ment Ratio	Cement Factor	1396 Cycles 1973	1532 Cycles 1974		1790 Cycles 1976	1889 Cycle 1977
Prism No.	Date Made	Type Cement	Replacement Material	Water-Cei	ment Ratio	Cement Factor bags/cu yd	1396 Cycles 1973	1532 Cycles 1974	1644 Cycles 1975 *2	1790 Cycles 1976	1889 Cycle 1977
Prism No. Mix 1, Rd 1	Date Made Feb 1964	Type Cement II	Replacement Material* None	Water-Cer gals/bag 6.8	ment Ratio by weight 0.6	Cement Factor bags/cu yd 2.93	1396 Cycles 1973 \$2 ++	1532 Cycles 1974 \$2 109	1644 Cycles 1975 x ²	1790 Cycles 1976 **2	1889 Cycle 1977 x ² 96
Prism No. Mix 1, Rd 1 Rd 2	Date Made Feb 1964 Aug 1964	Type Cement II II	Replacement Material* None	Water-Cer gals/bag 6.8 6.8	ment Ratio by weight 0.6 0.6	Cement Factor bags/cu yd 2.93 2.93	1396 Cycles 1973 22 ++	1532 Cycles 1974 2 109 107	1644 Cycles 1975 x ² 103 112	1790 Cycles 1976 g ² 69	1889 Cycle 1977 x ² 96 98
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1	<u>Date Made</u> Feb 1964 Aug 1964 May 1964	Type Cement II II	Replacement Material* None None	Water-Cer gals/bag 6.8 6.8 7.9	ment Ratio by weight 0.6 0.6 0.7	Cement Factor bags/cu yd 2.93 2.93 2.51	1396 Cycles 1973 *2 †† ††	1532 Cycles 1974 2 109 107 94	1644 Cycles 1975 \$2 103 112 109	1790 Cycles 1976 *2 69 107 86	1889 Cycle 1977 \$ 2 96 98
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2	Date Made Feb 1964 Aug 1964 May 1964 July 1964	Type Cement II II II	Replacement Material* None None None None	Water-Cer gals/bag 6.8 6.8 7.9 7.9	ment Ratio by weight 0.6 0.6 0.7 0.7	Cement Factor bags/cu yd 2.93 2.93 2.51 2.51	1396 Cycles 1973 \$2 ++ ++ ++	1532 Cycles 1974 \$2 109 107 94	1644 Cycles 1975 x ² 103 112	1790 Cycles 1976 g ² 69	1889 Cycle 1977 x ² 96 98
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1	Date Made Feb 1964 Aug 1964 May 1964 July 1964 June 1964	Type Cement II II II II	Replacement Material* None None None None None	Water-Cer gals/bag 6.8 6.8 7.9 7.9	ment Ratio by weight 0.6 0.6 0.7 0.7	Cement Factor bags/cu yd 2.93 2.93 2.51 2.51 2.20	1396 Cycles 1973 \$2 ++ ++ ++ ++	1532 Cycles 1974 \$2 109 107 94 105 Failed	1644 Cycles 1975 g ² 103 112 109 118	1790 Cycles 1976 *2 69 107 86 112	1889 Cycle 1977 g 2 96 98
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2	Date Made Feb 1964 Aug 1964 May 1964 July 1964 June 1964 July 1964	Type Cement II II II II II	Replacement Material* None None None None None None None	Water-Cer gals/bag 6.8 6.8 7.9 7.9 9.0	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8	Cement Factor bags/cu yd 2.93 2.93 2.51 2.51 2.20 2.20	1396 Cycles 1973 \$2 ++ ++ ++ ++ ++	1532 Cycles 1974 2 109 107 94 105 Failed 89	1644 Cycles 1975 \$2 103 112 109	1790 Cycles 1976 *2 69 107 86	1889 Cycle 1977 g 2 96 98
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1	Date Made Feb 1964 Aug 1964 July 1964 June 1964 July 1964 June 1964	Type Cement II II II II II II II II II	Replacement Material* None None None None None None None Non	Water-Cer gals/bag 6.8 6.8 7.9 7.9 9.0 9.0	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9	Cement Factor bags/cu yd 2.93 2.93 2.51 2.51 2.20 2.20 1.95	1396 Cycles 1973 g ² ++ ++ ++ ++ ++	1532 Cycles 1974 \$2 109 107 94 105 Failed 89	1644 Cycles 1975 g ² 103 112 109 118	1790 Cycles 1976 g2 69 107 86 112	1889 Cycle 1977 g 2 96 98
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2	Date Made Feb 1964 Aug 1964 July 1964 June 1964 June 1964 June 1964 Aug 1964	Type Cement II	Replacement Material* None None None None None None None Non	Water-Cer gals/bag 6.8 6.8 7.9 7.9 9.0 10.2	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9	Cement Factor bags/cu yd 2.93 2.93 2.51 2.51 2.20 2.20 1.95 1.95	1396 Cycles 1973 \$2 ++ ++ ++ ++ ++	1532 Cycles 1974 2 109 107 94 105 Failed 89	1644 Cycles 1975 g ² 103 112 109 118	1790 Cycles 1976 *2 69 107 86 112	1889 Cycle 1977 g 2 96 98
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 4, Rd 1	Date Made Feb 1964 Aug 1964 July 1964 June 1964 June 1964 Aug 1964 Apr 1964	Type Cement II	Replacement Material* None None None None None None None Non	Water-Cer gals/bag 6.8 6.8 7.9 7.9 9.0 9.0 10.2 10.2	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9 0.9	Cement Factor bags/cu yd 2.93 2.93 2.51 2.51 2.20 2.20 1.95 1.95	1396 Cycles 1973 g ² ++ ++ ++ ++ ++	1532 Cycles 1974 \$2 109 107 94 105 Failed 89	1644 Cycles 1975 g ² 103 112 109 118	1790 Cycles 1976 g2 69 107 86 112	1889 Cycle 1977 g 2 96 98
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2	Date Made Feb 1964 Aug 1964 July 1964 June 1964 June 1964 Aug 1964 Apr 1964 Aug 1964	Type Cement II	Replacement Material* None None None None None None None Non	Water-Cer gals/bag 6.8 7.9 7.9 9.0 9.0 10.2 10.2 11.3	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0	Cement Factor bags/cu yd 2.93 2.93 2.51 2.51 2.20 2.20 1.95 1.76 1.76	1396 Cycles 1973 g ² ++ ++ ++ ++ ++	1532 Cycles 1974 \$2 109 107 94 105 Failed 89	1644 Cycles 1975 g ² 103 112 109 118	1790 Cycles 1976 g2 69 107 86 112	1889 Cycle 1977 g 2 96 98
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 5, Rd 1	Date Made Feb 1964 Aug 1964 July 1964 June 1964 June 1964 Aug 1964 Apr 1964 Apr 1964 Apr 1964	Type Cement II	Replacement Material* None None None None None None None Non	Water-Cer gals/bag 6.8 6.8 7.9 7.9 9.0 9.0 10.2 11.3 11.3	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0	Cement Factor bags/cu yd 2.93 2.93 2.51 2.51 2.20 2.20 1.95 1.76 1.76 1.79	1396 Cycles 1973 g ² ++ ++ ++ ++ ++	1532 Cycles 1974 \$2 109 107 94 105 Failed 89	1644 Cycles 1975 g ² 103 112 109 118	1790 Cycles 1976 g2 69 107 86 112	1889 Cycle 1977 g 2 96 98
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2	Date Made Feb 1964 Aug 1964 July 1964 June 1964 June 1964 Aug 1964 Apr 1964 Aug 1964 Aug 1964 Aug 1964	Type Cement II	Replacement Material* None None None None None None None Non	Water-Ceres 18	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1	Cement Factor bags/cu yd 2.93 2.93 2.51 2.20 2.20 1.95 1.76 1.76 1.79 1.59	1396 Cycles 1973 *** *** *** *** *** *** *** *** *** *	1532 Cycles 1974 #2 109 107 94 105 Failed 89 Failed 88	1644 Cycles 1975 \$2 103 112 109 118	1790 Cycles 1976 \$2 69 107 86 112 Failed	1889 Cycle 1977 \$2 96 98 77 51
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 7, Rd 1	Date Made Feb 1964 Aug 1964 May 1964 July 1964 July 1964 June 1964 Aug 1964 Apr 1964 Apr 1964 Aug 1964 Aug 1964 Mar 1964	Type Cement II	Replacement Material* None None None None None None None Non	Water-Cerests State Water-Cerests State 6.8 7.9 7.9 9.0 10.2 10.2 11.3 12.4 12.4 6.4	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1	Cement Factor bage/cu yd 2.93 2.93 2.51 2.51 2.20 2.20 1.95 1.76 1.76 1.59 1.59 2.93	1396 Cycles 1973 *** *** *** *** *** *** *** *** *** *	1532 Cycles 1974 #2 109 107 94 105 Failed 89 Failed 88	1644 Cycles 1975 \$2 103 112 109 118 102	1790 Cycles 1976 \$2 69 107 86 112 Failed	1885 Cycle 1977 g ² 96 98 77 51
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2	Date Made Feb 1964 Aug 1964 July 1964 June 1964 June 1964 Aug 1964	Type <u>Cement</u> II II II II II II II II II	Replacement Material* None None None None None None None Non	Water-Cer gals/bag 6.8 6.8 7.9 7.9 9.0 9.0 10.2 11.3 11.3 12.4 6.4 6.4	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1 0.6 0.6	Cement Factor bags/cu yd 2.93 2.93 2.51 2.51 2.20 2.20 1.95 1.76 1.76 1.59 1.59 2.93	1396 Cycles 1973 g² ++ ++ ++ ++ ++ ++ ++ ++ ++	1532 Cycles 1974 \$2 109 107 94 105 Failed 89 Failed 88	1644 Cycles 1975 g ² 103 112 109 118 102 84	1790 Cycles 1976 g² 69 107 86 112 Failed Failed	1885 Cycle 1977 <u>\$2</u> 96 98 77 51
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2 Mix 8, Rd 1	Date Made Feb 1964 Aug 1964 July 1964 June 1964 June 1964 Aug 1964 Aug 1964 Apr 1964 Aug 1964 Aug 1964 Aug 1964 June 1964 June 1964 June 1964 June 1964	Type Cement II II II II II II II II II	Replacement Material* None None None None None None None Non	Water-Cer gals/bag 6.8 6.8 7.9 7.9 9.0 9.0 10.2 11.3 11.3 12.4 6.4 6.4 7.4	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1 0.6 0.6 0.7	Cement Factor bage/cu yd 2.93 2.93 2.51 2.51 2.20 2.20 1.95 1.76 1.76 1.79 2.93 2.93 2.93	1396 Cycles 1973 *** *** *** *** *** *** *** *** ***	1532 Cycles 1974 \$2 109 107 94 105 Failed 89 Failed 88	1644 Cycles 1975 g ² 103 112 109 118 102 84	1790 Cycles 1976 g² 69 107 86 112 Failed Failed	1885 Cycle 1977 <u>\$2</u> 96 98 77 51
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 6, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2 Mix 8, Rd 1 Rd 2	Date Made Feb 1964 Aug 1964 July 1964 June 1964 June 1964 Aug 1964 Aug 1964 Apr 1964 Aug 1964 Aug 1964 June 1964 June 1964 June 1964 June 1964 June 1964	Type Cement II	Replacement Material* None None None None None None None Non	Water-Cer gals/bag 6.8 6.8 7.9 7.9 9.0 10.2 11.3 11.3 12.4 6.4 6.4 7.4	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1 0.6 0.6 0.7 0.7	Cement Factor bage/cu vd 2.93 2.93 2.51 2.20 2.20 1.95 1.76 1.76 1.59 2.93 2.93 2.51 2.51 2.93 2.93 2.51 2.51	1396 Cycles 1973 g2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	1532 Cycles 1974 \$2 109 107 94 105 Failed 89 Failed 88	1644 Cycles 1975 \$2 103 112 109 118 102 84	1790 Cycles 1976 32 69 107 86 112 Failed Failed	1885 Cycle 1977 g ² 96 98 77 51
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 6, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2 Mix 8, Rd 1 Rd 2 Mix 8, Rd 1 Rd 2 Mix 8, Rd 1 Rd 2 Mix 9, Rd 1	Date Made Feb 1964 Aug 1964 July 1964 June 1964 June 1964 Aug 1964 Apr 1964 Apr 1964 Aug 1964 June 1964	Type Cement II	Replacement Material* None None None None None None None Non	Water-Cer gals/bag 6.8 6.8 7.9 7.9 9.0 10.2 10.2 11.3 11.3 12.4 6.4 6.4 7.4 7.4	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1 0.6 0.6 0.7 0.7 0.8	Cement Factor bags/cu vd 2.93 2.93 2.51 2.20 2.20 1.95 1.76 1.76 1.59 2.93 2.93 2.51 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.2	1396 Cycles 1973 *** *** *** *** *** *** ***	1532 Cycles 1974 \$2 109 107 94 105 Failed 89 Failed 88	1644 Cycles 1975 g ² 103 112 109 118 102 84	1790 Cycles 1976 g² 69 107 86 112 Failed Failed	1885 Cycle 1977 <u>\$2</u> 96 98 77 51
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 6, Rd 1 Rd 2 Mix 6, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2 Mix 8, Rd 1 Rd 2 Mix 8, Rd 1 Rd 2 Mix 9, Rd 1 Rd 2	Date Made Feb 1964 Aug 1964 July 1964 June 1964 June 1964 Aug 1964 Apr 1964 Apr 1964 Aug 1964 June 1964 Aug 1964	Type Cement II	Replacement Material* None None None None None None None Non	Water-Cer gals/bag 6.8 6.8 7.9 7.9 9.0 10.2 10.2 11.3 12.4 6.4 6.4 7.4 7.4 8.4	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1 0.6 0.6 0.7 0.7	Cement Factor bags/cu vd 2.93 2.93 2.51 2.20 2.20 1.95 1.76 1.76 1.59 2.93 2.51 2.51 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.2	1396 Cycles 1973 \$2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	1532 Cycles 1974 \$2 109 107 94 105 Failed 89 Failed 88	1644 Cycles 1975 \$2 103 112 109 118 102 84	1790 Cycles 1976 32 69 107 86 112 Failed Failed	1885 Cycle 1977 \$2 96 98 77 51
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 6, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2 Mix 8, Rd 1 Rd 2 Mix 8, Rd 1 Rd 2 Mix 9, Rd 1 Rd 2 Mix 9, Rd 1 Rd 2 Mix 10, Rd 1	Date Made Feb 1964 Aug 1964 July 1964 June 1964 Aug 1964 Aug 1964 Aug 1964 Apr 1964 Apr 1964 Aug 1964 June 1964	Type Cement	Replacement Material* None None None None None None None Non	Water-Cer gals/bag 6.8 6.8 7.9 7.9 9.0 10.2 10.2 11.3 12.4 6.4 6.4 7.4 7.4 8.4 8.4	ment Ratio by weight 0.6 0.7 0.7 0.8 0.9 0.9 1.0 1.1 1.1 0.6 0.6 0.7 0.7 0.8	Cement Factor bage/cu vd 2.93 2.93 2.51 2.51 2.20 2.20 1.95 1.76 1.76 1.59 1.59 2.93 2.51 2.51 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.2	1396 Cycles 1973 \$2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	1532 Cycles 1974 \$2 109 107 94 105 Failed 89 Failed 88	1644 Cycles 1975 \$2 103 112 109 118 102 84	1790 Cycles 1976 32 69 107 86 112 Failed Failed	1885 Cycle 1977 \$2 96 98 77 51
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 6, Rd 1 Rd 2 Mix 6, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2 Mix 8, Rd 1 Rd 2 Mix 9, Rd 1 Rd 2 Mix 9, Rd 1 Rd 2 Mix 10, Rd 1 Rd 2	Date Made Feb 1964 Aug 1964 July 1964 June 1964 June 1964 Aug 1964 Aug 1964 Aug 1964 Aug 1964 Aug 1964 Aug 1964 June 1964 June 1964 June 1964 June 1964 June 1964 June 1964 Aug 1964 Aug 1964	Type Cement	Replacement Material* None None None None None None None Non	Water-Cer gals/bag 6.8 6.8 7.9 7.9 9.0 10.2 10.2 11.3 12.4 6.4 6.4 7.4 7.4 8.4 8.4 9.6	ment Ratio by weight 0.6 0.7 0.7 0.8 0.9 0.9 1.0 1.1 1.1 0.6 0.6 0.7 0.7 0.8 0.9	Cement Factor bags/cu yd 2.93 2.93 2.51 2.51 2.20 2.20 1.95 1.76 1.76 1.59 2.93 2.51 2.51 2.20 2.20 1.95 1.76 1.76 1.59 1.59 2.93 2.51 2.20 2.20 1.95 1.95 1.95	1396 Cycles 1973 \$2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	1532 Cycles 1974 \$2 109 107 94 105 Failed 89 Failed 88	1644 Cycles 1975 \$2 103 112 109 118 102 84	1790 Cycles 1976 32 69 107 86 112 Failed Failed	1885 Cycle 1977 <u>\$2</u> 96 98 77 51
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 6, Rd 1 Rd 2 Mix 6, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2 Mix 8, Rd 1 Rd 2 Mix 9, Rd 1 Rd 2 Mix 9, Rd 1 Rd 2 Mix 10, Rd 1 Rd 2 Mix 10, Rd 1 Rd 2 Mix 10, Rd 1	Date Made Feb 1964 Aug 1964 July 1964 June 1964 June 1964 Aug 1964 Aug 1964 Aug 1964 Aug 1964 Aug 1964 Aug 1964 June 1964	Type Cement	Replacement Material* None None None None None None None Non	Water-Ceresels/bear 6.8 6.8 7.9 7.9 9.0 10.2 10.2 11.3 11.3 12.4 6.4 6.4 7.4 7.4 8.4 8.4 9.6 9.6 10.6	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1 0.6 0.7 0.7 0.8 0.8	Cement Factor bags/cu yd 2.93 2.93 2.51 2.51 2.20 2.20 1.95 1.76 1.76 1.59 2.93 2.51 2.51 2.20 2.20 1.95 1.76 1.76	1396 Cycles 1973 \$2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	1532 Cycles 1974 \$2 109 107 94 105 Failed 89 Failed 88 93 99 104 99 103 Failed Failed Failed Failed Failed	1644 Cycles 1975 \$2 103 112 109 118 102 84 NR 102 109 114 108	1790 Cycless 1976 x ² 69 107 86 112 Failed Failed 59 96 105 Failed Failed	1885 Cycle 1977 <u>\$2</u> 96 98 77 51
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 6, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2 Mix 9, Rd 1 Rd 2 Mix 9, Rd 1 Rd 2 Mix 10, Rd 1 Rd 2 Mix 10, Rd 1 Rd 2 Mix 11, Rd 1 Rd 2	Date Made Feb 1964 Aug 1964 July 1964 June 1964 Aug 1964 June 1964 Aug 1964 June 1964 Aug 1964	Type Cement II	Replacement Material* None None None None None None None Non	Water-Ceres 18/bag 6.8 6.8 7.9 7.9 9.0 10.2 11.3 11.3 12.4 6.4 6.4 7.4 7.4 8.4 8.4 9.6 9.6 10.6 10.6	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1 0.6 0.6 0.7 0.7 0.8 0.8	Cement Factor bags/cu yd 2.93 2.93 2.51 2.51 2.20 2.20 1.95 1.76 1.76 1.59 2.93 2.51 2.51 2.20 2.20 1.95 1.76 1.76 1.76 1.79 1.76 1.76 1.76	1396 Cycles 1973 \$2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	1532 Cycles 1974 \$2 109 107 94 105 Failed 89 Failed 88 93 99 104 99 103 Failed Failed Failed Failed Failed	1644 Cycles 1975 \$2 103 112 109 118 102 84	1790 Cycles 1976 32 69 107 86 112 Failed Failed	1885 Cycle 1977 <u>\$2</u> 96 98 77 51
Prism No. Mix 1, Rd 1 Rd 2 Mix 2, Rd 1 Rd 2 Mix 3, Rd 1 Rd 2 Mix 4, Rd 1 Rd 2 Mix 5, Rd 1 Rd 2 Mix 6, Rd 1 Rd 2 Mix 6, Rd 1 Rd 2 Mix 7, Rd 1 Rd 2 Mix 8, Rd 1 Rd 2 Mix 9, Rd 1 Rd 2 Mix 9, Rd 1 Rd 2 Mix 10, Rd 1 Rd 2 Mix 10, Rd 1 Rd 2 Mix 10, Rd 1	Date Made Feb 1964 Aug 1964 July 1964 June 1964 June 1964 Aug 1964 Aug 1964 Aug 1964 Aug 1964 Aug 1964 Aug 1964 June 1964	Type Cement	Replacement Material* None None None None None None None Non	Water-Ceresels/bear 6.8 6.8 7.9 7.9 9.0 10.2 10.2 11.3 11.3 12.4 6.4 6.4 7.4 7.4 8.4 8.4 9.6 9.6 10.6	ment Ratio by weight 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.1 1.1 0.6 0.7 0.7 0.8 0.8	Cement Factor bags/cu yd 2.93 2.93 2.51 2.51 2.20 2.20 1.95 1.76 1.76 1.59 2.93 2.51 2.51 2.20 2.20 1.95 1.76 1.76	1396 Cycles 1973 \$2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	1532 Cycles 1974 \$2 109 107 94 105 Failed 89 Failed 88 93 99 104 99 103 Failed Failed Failed Failed Failed	1644 Cycles 1975 \$2 103 112 109 118 102 84 NR 102 109 114 108	1790 Cycless 1976 x ² 69 107 86 112 Failed Failed 59 96 105 Failed Failed	1885 Cycle 1977 \$2 96 98 77 51

^{30%} replacement by solid volume.

**R denotes that a satisfactory reading was not obtained although an attempt was made.

† A pulse velocity reading could not be taken through the path previously used because of the poor condition of the specimen.

† Equipment malfunctioned in 1973.

(Sheet

Curing Investigation

In June 1968, 56 mass concrete prisms (18- by 18- by 36-in.) were installed on the Treat Island exposure rack.

The purpose of this installation is to develop information about the durability of mass concrete mixtures that contain special cements or pozzolans.

The prisms were made from seven concrete mixtures (eight prisms per mixture); the coarse and fine aggregate used in all mixtures was a crushed limestone, maximum size 6-in. Each concrete mixture was air-entrained (5.5 ± 1 percent) with a slump of 1-1/2 ± 1/2 in. and a cement factor of 2.5 bags per cu yd. One portland blast-furnace slag cement, two type II portland cements, one blend of type II portland cement and natural cement, and three blends of type II portland cement with a replacement material (fly ash or calcined shale) were used. Four curing conditions were utilized (14 prisms per curing condition):

Curing Condition No.	Days of Fog Room Curing	Subsequent Curing
1	14	Laboratory air
2	21	Laboratory air
3	2	Membrane curing
4	2	compound Laboratory air

Table 1-CT lists these concrete prisms and gives their exposure record along with other pertinent information.

Record of Testing of Prisms Made for Curing Investigation 1968- (Installed June 1968 at Treat Island, Me.)

											E	posure	Rack	, Row 1
Prism	Position	Curing	Type II Portland Cement	Other Cement	Other Re- placement Material	00	Pulse Veloc		154 Cy	9		Cycles		Cycles 971
No.	on Rack*	Condition**	%t	%	%	%E	fps	%v2	%E++	%V2	%E	%V2	%E	%V2
30021	10 49	1	100 (cement A)	None	None	100	16,305 16,485	100 100		104 100	106 103	102 97	105 102	82 83
40021	14 44	2				100	16,575	100		103	103	99	99	74 78
50021	8	3				100	16,045	100		108	114	95	114	92
50022	31 23	4				100	15,705	100		104	113 106	104	112	87 74
60022	30					100	15,705	100		105	112	104	112	84
30421	40	1	100 (cement B)	None	None	100	17,145	100		99	105	100	106	76
30422	20 15	2				100	17,045	100		98 98	106	98 95	103	76 80
40422	26					100	16,665	100		102	107	102	104	83
50421	28	3				100	16,215	100		103	112	99	108	71
50422	6 35	4				100	15,955 16,395	100		109	114	107	103	89 70
60422	ii					100	15,790	100		107	115	105	112	82
32581	18	1	75 (cement A)	None	25	100	16,395	100		96	115	95	115	77
325S2 425S1	1 42	2			(calcined shale)	100	15,790 16,130	100		98 97	111	94 84	117	87 78
42582	38					100	16,215	100		95	108	95	108	78
52581 52582	51 12	3			25	100	15,705	100		99	131	96	127	70
62581	27	4			(shale)	100	15,465	100		100	116	99	113	85 86
62582	13					100	15,875	100		100	119	99	116	82
335N1	3	1	65 (cement A)	35 (nat	None	100	15,955	100		101	1.08	98	102	83
335N2 435N1	24 50	2		cement)		100	16,305	100		100	107	98 96	104	79 78
435N2	9					100	15,790	100		104	110	103	110	88
535N1 535N2	55	3				100	16,395	100		96	110	93	109	64 77
635N1	39 4	4				100	15,790	100		103	107	100	104	31
635N2	7					100	16,215	100		95	116	107	116	75
325F1 325F2	53 45	1	75 (cement A)	None	25 (£34, 55h)	100	17,750	100		83	108	79	107	80
425F1	56	2			(fly ash)	100	16,130	100		94	109	91 93	110	77 80
425F2	25					100	16,305	100		95	110	95	107	80
525F1 525F2	17 29	3				100	16,305 16,485	100		97	115	95	113	76 77
625F1	33	4				100	16,305	100		102	127	100	124	87
625 F 2	36					100	15,790	100		101	116	99	115	80
3BFS1	41	1	None	100	None	100	16,855	100		94	102	89	101	74
3BFS2 4BFS1	19 52	2		(portland blast-		100	16,665	100		94	107	93 86	106	78 75
4BFS2	21			furnace		100	16,485	100		96	108	93	105	75
5BFS1 5BFS2	16 2	3		slag		100	16,575	100		97	108	92	108	72 86
6BFS1	5	4		cement)		100	16,760	100		95 95	108	92 89	97	80
6BFS2	37					100	16,215	100		102	107	100	104	73
335F1	22	1	65 (cement A)	None	35	100	16,855	100		94	111	93	108	75
335F2 435F1	54 46	2			(fly ash)	100	16,855	100		87 90	106	82 88	105	59 83
435F2	48 47	3				100	16,760	100		90	111	84	107	72
535F1 535F2	34	3				100	16,395	100		95	94 120	93 96	90	75 86
635F1	32	4				100	16,485	100		98	114	97	110	80
635F2	43					100	15,705	100		101	121	99	118	80

^{**} Position in row 1 of exposure rack starting from western end. For example: Prism 30021 is the 10th prism from the western end of row 1.

** See text of Section 39 for outline of curing conditions.

† All percentages are by solid volume of total cementitious material.

† Satisfactory flexural frequency readings were not obtained on any of these prisms in 1969 due to malfunction of testing equipment.

† A satisfactory reading was not obtained.

(Revised May 1976)

Table 1-CT (Continued)

Section 39

			Type II		Other Re-								osure Rack,	Row 1
Prism	Position	Curing	Portland Cement	Other Cement	placement		cycles 972		Cycles 973		Cycles 974		Cycles 975	
No.	on Rack	Condition	<u></u>	%	96	%E	%v2	%E	% √2	%E	<u>\$v²</u>	%E	<u>\$v²</u>	
30021	10	1	100 (cement A)	None	None	91	92	99	100	100	100	103	129	
30022	49					103	99	103	99	104	99	104	125	
40021	14	2				93	94	90	97	87	97	83	115	
40022	44 8	3				107	97 99	107 92	110	100	110	100	123	
50022	31	3				111	101	109	109	109	109	105	140 128	
60021	23	4				83	82	83	85	82	85	NR	89	
60022	30	ALL I				109	107	109	110	109	110	108	137	
30421	40	1	100 (cement B)	None	None	95	88	90	89	90	89	85	67	
30422	20					104	95	103	82	103	82	100	117	
40421	15	2				98	93	100	99	97	99	87	111	
40422	26					104	96	104	107	104	107	104	36	
50421	28 6	3				98 100	87	94	79	91	79	84	129	
60421	35	4				86	99 59	78 85	102	101	102	101	125	
60422	11					109	94	108	64 86	107	64 86	116	120 129	
32581	18	1	75 (cement A)	None	25	105	98	107	105	105	105	105	107	
32582	1		,, (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(calcined	117	95	92	113	117	113	117	131	
42581	42	2			shale)	108	86	106	93	103	93	103	87	
42582	38					101	81	102	106	100		101	38	
52581	51	3			25	122	85	95	103	101		101	92	
52582	12				(shale)	107	100	113	112	113	112		133	
62581 62582	27 13	4				108	85 99	97 116	79 108	90	79 108	83	108	
		10	(F (A)	25 (Wassa	98				96			102	
335N1	3 24	1	65 (cement A)	35 (nat	None	103	93 89	99	95 88	97	95 88	93	102	
335N2 435N1	50	2		cement)		100	90	106	97	98		NR	102	
435N2	9					104	92	90	113	111		112	125	
535N1	55	3				102	33	99	61	98		NR	58	
535N2	39	7				99	83	96	82	100	82	97	127	
635N1	4	4				98	59	81	47	77	47	70	33	
635N2	7					108	99	106	81	104	81	101	113	
325F1	53	- 1	75 (cement A)	None	25	101	75	95	82	95		95	100	
325F2	45				(fly ash)	107	93	108	93	105		110	126	
425F1	56	2				108	95 86	93	95	90		NR	107	
425F2 525F1	25 17	3				97	100	108	98	111	100	110	134	
525F2	29	3				111	101	113	100	112	105		132 120	
625F1	33	4				106	100	104	107	104		100	99	
625F2	36					115	92	115	100	118	100		43	
3BFS1	41	1	None	100	None	92	77	87	75	92	75	87	32	
3BFS2	19			(portland		106	95	106	102	105	102	104	124	
4BFS1	52	2		blast-		98	44	90	78	90	78	90	91	
4BFS2	21			furnace		101	99	101	98	104		104	112	
5BFS1	16	3		slag		102	80	99	79	99		107	102	
5BFS2	2	4		cement)		96	94 84	83	94	97	94		105	
6BFS1	5 37					100	78	88 93	100	87 94	100	77 91	103 126	
335F1	22	1	65 (cement A)	None	35	105	96	102	92	102	92	103	118	
335F2	54		O) (Cement A)	None	(fly ash)	106	49	105	91	105	91	NR	116	
435F1	46	2				103	84	100	93	106		109	115	
435F2	48					104	91	101	91	104	91		91	
535F1	47	3				103	99	85	99	84	99	84	122	
535F2	34 32	4				117	89	122	79 100	122	79 100	127	58 126	
635F1 635F2	43	Etc. De Piles				120	97	120	103	102		107	141	
05)12	45					120	91	150	103	105	103	701	141	

Exposure Rack, Row 1

Prism	Position	Curing	Type II Portland Cement	Other Cement	Other Re- placement Material	1167 Cy			Cycles	Exposure nace, now 1
No.	on Rack	Condition		4		%E	%v2	%E	<u>4</u> y ²	
30021	10 49	1	100 (cement A)	None	None	99 104	99 98	99 101	98 92 70 68	
40021	14	2				109	91	105	70	
40022	17t					93	98	101	68	
50021 50022	31	3				102	100	101	96 109	
60021	23	4				NR*	66	61	78	
60022	30					102	105	102	109	
30421	40	1	100 (cement B)	None	None	86	85	101	24	
40421	20	2				96	95	95 88	99	
40422	15 26					95	109	98	92 84	
50421	28 6	3				91 96 95 84 98 71	86	98 83	Broken	
50422						98	98	95 62	102	
60421 60422	35 11	4				113	93 96 109 86 98 44 66	100	Broken 89	
32581	18	1	75 (cement A)	None	25	97	75	96	75	
32582	,1				(calcined	108	104	106	83	
42581 42582	42 38	2			shale	119	26 89	NR 100	NR Broken	
52581	51	3			25	Broken	61	NER	Broken	
52582	12	•			(shale)	116	96	110	108	
62581	27	4				75	NR	88	109	
62582	13					101	96	113	98	
335N1 335N2	3 24	1	65 (cement A)	35 (nat cement)	None	110 97	82 94	84 90	72 86	
435N1	50	2		Cement)		108	98	94	79	
435N2	9					100	101	102	94	
535N1	55	3				128	50	120	Broken	
535112	39	4				124	NR	118	101	
635N1 635N2	7	•				Broke 109	n	98	oken	
325F1	53 45 56	1	75 (cement A)	None	25	101	81	90	81	
325F2	45				(fly ash)	106	97	105	100	
425F1	56	2				84	96 99	80	95 96	
425F2 525F1	25 17	3				116	103	112	105	
525F2	29					107	100	104	80	
625F1	33 36	4				100	95 107	97	87	
625F2	36					124	107	110	60	
3BFS1 3BFS2	41 19	1	None	100 (portland	None	95 96 110	NR	69	84	
4BFS1	52	2		blast-		110	94 68	96	93 59	
4BFS2	21			furnace		110	92		90	
5BFS1	16	3		slag		99 86	92 72	99	90 68	
5BFS2	2			cement)			74	78	Broken	
6BFS1 6BFS2	5 37	4				97 110	73	71 109	Broken 97	
335F1	22	1	65 (cement A)	None	35	102	97 85	101	104	
335F2	54 46				(fly ash)	109		102	69	
435F1	46	2				92	97	93	93	
435F2 535F1	48	3				105 79	83 88	93 94 79	89	
535F2	47 34 32	•				125	NR	123	97	
635F1	32	4				107	91	101	93 89 94 97 92 69	
635F2	43					110	89	112	69	

In July 1969, eight concrete panels (nominal size 10 by 10 by 3 in.) were installed on the exposure rack at Treat Island. These panels are part of an investigation to determine the field durability of certain plastic based coatings.

The panels were made of air-entrained concrete containing 3/4-in. maximum size natural coarse aggregate, natural sand fine aggregate, and type II portland cement. The concrete in four of the panels had a 28-day compressive strength of 3000 psi, while the concrete in the other four had a 28-day compressive strength of 5000 psi. Each panel (10 by 10 by 3 in.) was formed against a plywood mold, moist-cured for 28 days, and then stored at a relative humidity of 50 percent for seven days (at laboratory temperature). After this 35-day curing period each panel was coated with a 1/8-to 1/4-in.-thick plastic based mortar coating in accordance with the coating manufacturer's specifications. The coated panels were then stored at 50 percent relative humidity (at laboratory temperature) for 28 days and then shipped to Treat Island.

The eight panels installed in July 1969 were coated with a plastic based mortar coating designated PMC-1. Table 1-MBC lists these panels and gives their exposure record along with other pertinent information.

In early November 1969, eight additional concrete panels of the same size were installed on the Treat Island exposure rack. These panels were identical in every respect to the first eight panels except that a different plastic based mortar coating, designated PMC-2, was used. The exposure record and other information about these panels are given in table 2-MBC.

Panels representing two additional plastic based mortar coatings were installed at Treat Island in December 1971. The mortar coatings, designated PMC-3 and PMC-4, represent two new materials. The panels are identical with previous ones exposed. The exposure record and other information are given in Tables 3-MBC and 4-MBC.

Table 1-MBC

Record of Testing of Concrete Panels

1969- (Installed July 1969)

			Exposure Rack, Row 5 (W to E)									
	28-day			1969-1971 Condit:								
	Compressive		0	153	322							
Panel	Strength of	Mortar	Cycles	Cycles	Cycles							
No.	Mixture, psi	Coating	1969_	1970	1971							
I-A-1	3000	PMC-1	Sound	Light spalling	Heavy spalling							
I-A-2	3000	PMC-1	Sound	Moderate spalling	Heavy spalling							
I-A-3	3000	PMC-1	Sound	Moderate spalling	Heavy spalling							
I-A-4	3000	PMC-1	Sound	Moderate spalling	Heavy spalling							
T D 3	5000	DMG 1	G3	Harry amalling	W							
I-B-1	5000	PMC-1	Sound	Heavy spalling	Heavy spalling							
I-B-2	5000	PMC-1	Sound	Heavy spalling	Heavy spalling							
I-B-3	5000	PMC-1	Sound	Heavy spalling	Heavy spalling							
I-B-4	5000	PMC-1	Sound	Heavy spalling	Heavy spalling							
				479 Cycles, 19	72*							
I-A-1	3000	PMC-1	Mortar	coating completely	deteriorated							
I-A-2	3000	PMC-1	Mortar	coating completely	deteriorated							
I-A-3	3000	PMC-1	Mortar	coating completely	deteriorated							
I-A-4	3000	PMC-1	Mortar	coating completely	deteriorated							
I-B-1	5000	PMC-1		coating completely								
I-B-2	5000	PMC-1		coating completely								
I-B-3	5000	PMC-1		coating completely								
I-B-4	5000	PMC-1	Mortar	coating completely	deteriorated							

^{*} Monitoring discontinued after 1972 inspection.

Table 2-MBC

Record of Testing of Concrete Panels

1969- (Installed November 1969)

			Exposure Ra	Exposure Rack, Row 5 (W to E)			
28-day				1969-1971 Conditions			
	Compressive		0	153	322		
Panel	Strength of	Mortar	Cycles	Cycles	Cycles		
No.	Mixture, psi	Coating	1969	1970	1971		
II-A-1	3000	PMC-2	Sound	Light spalling	Heavy spalling		
II-A-2	3000	PMC-2	Sound	Light spalling	Heavy spalling		
II-A-3	3000	PMC-2	Sound	Light spalling	Heavy spalling		
II-A-4	3000	PMC-2	Sound	Sound	Heavy spalling		
II-B-1	5000	PMC-2	Sound	Sound	Heavy spalling		
II-B-2	5000	PMC-2	Sound	Sound	Heavy spalling		
II-B-3	5000	PMC-2	Sound	Light cracking	Heavy spalling		
II-B-4	5000	PMC-2	Sound	Sound	Moderate spalling		
			479 Cycles, 1972				
II-A-1	3000	PMC-2	Morta	r coating comple	tely deteriorated		
II-A-2	3000	PMC-2	Morta	r coating comple	tely deteriorated		
II-A-3	3000	PMC-2	Heavy spalling				
II-A-4	3000	PMC-2	Heavy	spalling			
II-B-1	5000	PMC-2		spalling			
II-B-2	5000	PMC-2	Heavy spalling				
II-B-3	5000	PMC-2	Heavy spalling				
II-B-4	5000	PMC-2	Moderate spalling				
				619 Cycles	, 1973*		
II-A-1	3000	PMC-2			tely deteriorated		
II-A-2	3000	PMC-2	Morta	r coating comple	tely deteriorated		
II-A-3	3000	PMC-2	Morta	r coating comple	tely deteriorated		
II-A-4	3000	PMC-2	Morta	r coating comple	tely deteriorated		
II-B-1	5000	PMC-2	Morta	r coating comple	tely deteriorated		
II-B-2	5000	PMC-2			tely deteriorated		
II-B-3	5000	PMC-2			tely deteriorated		
II-B-4	5000	PMC-2			tely deteriorated		

^{*} Monitoring discontinued after 1973 inspection.

Table 3-MBC

Record of Testing of Concrete Panels

1970- (Installed Dec 1970)

	7- N. T. S.			Exposure Rack	, Row 5 (W to E)
	28-day			1970-1972 Condi	itions
	Compressive		0	156	313
Panel	Strength of	Mortar	Cycles	Cycles	Cycles
No.	Mixture, psi	Coating	1970	1971	1972
III-A-1	3000	PMC-3	Sound	Light spalling	Light spalling
III-A-2	3000	PMC-3	Sound	Light spalling	Light spalling
III-A-3	3000	PMC-3	Sound	Light spalling	Light spalling
III-A-4	3000	PMC-3	Sound	Light spalling	Light spalling
III-B-I	5000	PMC-3	Sound	Light spalling	Light spalling
III-B-2	5000	PMC-3	Sound	Light spalling	Light spalling
III-B-3	5000	PMC-3	Sound	Light spalling	Light spalling
III-B-4	5000	PMC-3	Sound	Light spalling	Light spalling
				453 Cycles,	1973*
III-A-1	3000	PMC-3		coating complete	
III-A-2	3000	PMC-3		coating complete	
III-A-3	3000	PMC-3		coating complete	
III-A-4	3000	PMC-3	Mortar	coating complete	ely deteriorated
	5000	D110 0			
III-B-1	5000	PMC-3		coating complete	
III-B-2	5000	PMC-3		coating complete	
III-B-3	5000	PMC-3		coating complete	
III-B-4	5000	PMC-3	Mortar	coating complete	ely deteriorated

^{*} Monitoring discontinued after 1973 inspection.

Table 4-MBC

Investigation of Plastic Based Mortar Coatings Record of Testing of Concrete Panels

1970- (Installed Dec 1970)

	00 1				, Row 5 (W to E)	
	28-day		1970-1972 Conditions			
	Compressive		0	156	313	
Panel	Strength of	Mortar	Cycles	Cycles	Cycles	
No.	Mixture, psi	Coating	1970	1971	1972	
IV-A-1	3000	PMC-4	Sound	Light spalling	Light spalling	
IV-A-2	3000	PMC-4	Sound	Sound	Light spalling	
IV-A-3	3000	PMC-4	Sound	Light spalling	Light spalling	
IV-A-4	3000	PMC-4	Sound	Light spalling	Light spalling	
IV-B-1	5000	PMC-4	Sound	Sound	Sound	
IV-B-2	5000	PMC-4	Sound	Sound	Sound	
IV-B-3	5000	PMC-4	Sound	Light spalling	Light spalling	
IV-B-4	5000	PMC-4	Sound	Light spalling	Light spalling	
				453 Cycles,	1973*	
IV-A-1	3000	PMC-4	Mortar	coating complete	ely deteriorated	
IV-A-2	3000	PMC-4	Mortar	coating complete	ely deteriorated	
IV-A-3	3000	PMC-4		coating complete		
IV-A-4	3000	PMC-4		coating complete		
IV-B-1	5000	PMC-4	Mortar	coating complete	ely deteriorated	
IV-B-2	5000	PMC-4		coating complete		
IV-B-3	5000	PMC-4		coating complet		
IV-B-4	5000	PMC-4		coating complete		

^{*} Monitoring discontinued after 1973 inspection.

NOTE: THE EXPOSURE OF THESE CEMENT DURABILITY PROGRAM SPECIMENS HAS NOW BEEN TERMINATED. THE TEST SPECIMENS REMAIN ON THE EXPOSURE RACK, HOWEVER. SEE VOL II, COMPLETED INVESTIGATIONS, PROGRAM 21.

THE TESTING AND INSTALLATION OF SPECIMENS AT ST. AUGUSTINE WAS DISCONTINUED AFTER THE 1970 INSPECTION. IN AUGUST 1971, 15 SPECIMENS FROM THE ALKALI-AGGREGATE REACTIVITY INVESTIGATION WERE RETURNED TO THE LABORATORY.

ARRANGEMENT OF TEST SPECIMENS
MILD-WEATHERING EXPOSURE STATION
ST AUGUSTINE, FLORIDA

(SEE TABLE 2)

NOT TO SCALE