Building Tractable Generative Models

Day 1

Day 2

Day 3

Slides adapted from the PC tutorial by Prof. Guy Van Den Broeck's group and Einsum Network presentation

Joint distributions

Q1: What is the likelihood of a pregnant woman being over the age of 30, having high BMI, a family history of diabetes and gestational diabetes?

Q1: What is the likelihood of a pregnant woman being over the age of 30, having high BMI, a family history of diabetes and gestational diabetes?

Q2: Women of what age are most likely to have gestational diabetes?

Q1: What is the likelihood of a pregnant woman being over the age of 30, having high BMI, a family history of diabetes and gestational diabetes?

Q2: Women of what age are most likely to have gestational diabetes?

Train a predictive model!

Q1: What is the likelihood of a pregnant woman being over the age of 30, having high BMI, a family history of diabetes and gestational diabetes?

Q2: Women of what age are most likely to have gestational diabetes?

Train a predictive model!

Learn a probabilistic model of the world!

Q1: What is the likelihood of a pregnant woman being over the age of 30, having high BMI, a family history of diabetes and gestational diabetes?

P(BMI = High, Age = 30, FamilyHist = True, GestD = True)

Q1: What is the likelihood of a pregnant woman being over the age of 30, having high BMI, a family history of diabetes and gestational diabetes?

P(BMI = High, Age = 30, FamilyHist = True, GestD = True)

Q2: Women of what age are most likely to have gestational diabetes?

$$argmax_aP(Age = a, GestD = True)$$

MMAP

What is tractable probabilistic inference?

A class of queries Q is tractable on a family of probabilistic models M iff for any query $q \in Q$ and model $m \in M$ exactly computing q(m) runs in time O(poly|m|)

What is tractable probabilistic inference?

A class of queries Q is tractable on a family of probabilistic models M iff for any query $q \in Q$ and model $m \in M$ exactly computing q(m) runs in time O(poly|m|)

Why tractable inference?

What is tractable probabilistic inference?

A class of queries Q is tractable on a family of probabilistic models M iff for any query $q \in Q$ and model $m \in M$ exactly computing q(m) runs in time O(poly|m|)

Why tractable inference?

Scalability Real-time inference

No need to approximate

Expressive efficiency vs Tractability

Expressive efficiency vs Tractability

Probabilistic Circuits: Outline

1. Representation

2. Inference

3. Learning

A probabilistic circuit C over variables X is a computational graph encoding a probability distribution P(X)

A probabilistic circuit C over variables X is a computational graph encoding a probability distribution P(X)

Which computations are allowed?

Leaf nodes

A single node encoding a distribution E.g.: Gaussian, categorical etc.

Leaf nodes

A single node encoding a distribution E.g.: Gaussian, categorical etc.

Leaf nodes

- Such simple distributions allow for tractable:
- ☐ Likelihood of full of evidence (EVI)
- ☐ Marginals (MAR)
- ☐ MAP (MAP)

Product nodes

$$P(X_1, X_2, X_3) = P(X_1) * P(X_2) * P(X_3)$$

Product nodes

$$P(X_1, X_2, X_3) = P(X_1) * P(X_2) * P(X_3)$$

Sum nodes

$$P(X_1, X_2, X_3) = w_1 * P_1(X_1, X_2, X_3) + w_2 * P_2(X_1, X_2, X_3) + w_3 * P_3(X_1, X_2, X_3)$$

Sum nodes

$$P(X_1, X_2, X_3) = w_1 * P_1(X_1, X_2, X_3) + w_2 * P_2(X_1, X_2, X_3) + w_3 * P_3(X_1, X_2, X_3)$$

A probabilistic circuit C over variables X is a computational graph encoding a probability distribution P(X)

Any computational graph composed of sums and products?

A probabilistic circuit C over variables X is a computational graph encoding a probability distribution P(X)

Any computational graph composed of sums and products?

Structural constraints to ensure tractability!

A probabilistic circuit C over variables X is a computational graph encoding a probability distribution P(X)

Any computational graph composed of sums and products?

Structural constraints to ensure tractability!

Which constraints?

Definitions to build up to structural constraints

Scope: The scope of a node is the set of all variables in the leaves of the subgraph rooted at that node Intuitively, the scope identifies the variables the output of a node "depends" on

Decomposability

A product node is decomposable if the scope of its children are disjoint A PC is decomposable if all its product nodes are decomposable

Decomposable circuit

 $Non-decomposable\ circuit$

Smoothness

A sum node is smooth if its children have the same scope A PC is smooth if all its sum nodes are smooth

Smooth circuit

Non – smooth circuit

$$P(x) = \sum_{i} w_{i} P_{i}(x)$$

$$\int P(x) dx = \int \sum_{i} w_{i} P_{i}(x) dx$$

$$= \sum_{i} w_{i} \int P_{i}(x) dx$$

$$P(x) = \sum_{i} w_{i} P_{i}(x)$$

$$\int P(x) dx = \int \sum_{i} w_{i} P_{i}(x) dx$$

$$= \sum_{i} w_{i} \int P_{i}(x) dx$$

Integrals at <u>smooth</u> sum nodes are "pushed down" to children

$$P(\mathbf{x}, \mathbf{y}, \mathbf{z}) = P(\mathbf{x}) * P(\mathbf{y}) * P(\mathbf{z})$$

$$\int \int P(x, y, z) dx dy dz$$

$$= \int \int \int P(x) P(y) P(z) dx dy dz$$

$$= \int P(x) dx \int P(y) dy \int P(z) dz$$

$$P(\mathbf{x}, \mathbf{y}, \mathbf{z}) = P(\mathbf{x}) * P(\mathbf{y}) * P(\mathbf{z})$$

$$\int \int P(x, y, z) dx dy dz =$$

$$= \int \int \int P(x) P(y) P(z) dx dy dz =$$

$$= \int P(x) dx \int P(y) dy \int P(z) dz$$

Integrals at <u>decomposable</u> product nodes decompose into simpler ones

Probabilistic Circuits: Outline

1. Representation

2. Inference

3. Learning

Inference: evaluate the computational graph!

EVI: Evaluate the PC bottom-up

Inference: evaluate the computational graph!

MAR: Set marginalized leaf distributions to 1 (assuming normalized distributions) and compute output of root node

Linear in the size of the circuit!

Probabilistic Circuits: Outline

1. Representation

2. Inference

3. Learning

Sum-product networks: Smooth & Decomposable PCs

Hoifun Poon and Pedro Domingos, "Sum-product networks: A new deep architecture", Proceedings of the Twenty-Seventh international conference on Uncertainty in artificial intelligence. 2011

Sum-product networks: Learning

Einsum Networks

Weaknesses of PCs

- ☐ Highly sparse computational graphs
- \square ~ 50 times slower than neural net of comparable size

Einsum Networks

Weaknesses of PCs

- ☐ Highly sparse computational graphs
- □ ~ 50 times slower than neural net of comparable size

Einsum Networks propose

- ☐ New PC architecture using eisum operations
- ☐ Training and inference up to two orders of magnitude faster
- ☐ Scale PCs to large datasets (CelebA, SVHN)

Vectorizing leaf nodes

K parameterized distributions, each modeling the density of varibles in the scope of that leaf node

Redefining product nodes

P is the outerproduct of its children

 $P-Matrix\ of\ dimension\ K\ by\ K$

Vectorizing sum nodes

S = Wvec(P)

 $W-Matrix\ of\ dimension\ KXK^2$

Basic Einsum Operation

$$S_k = \boldsymbol{W}_{kij} N_i N_j'$$

Einsum Layers

 $\mathbf{S}_{lk} = \mathbf{W}_{lkij} \mathbf{N}_{li} \mathbf{N}_{lj}'$ single einsum-operation

Recap

Sum-product retwork (SPN)

- Nodes { , , }
- ••• mooth, Decomposable
- Introduces latent variables
- Universal density approximator
- MAR tractable
- Mixture is SPN

Hands-On Demo

bit.ly/tpm-day2-pc1

bit.ly/tpm-day2-pc2

