Package 'randomizr'

November 23, 2015

Title Easy to Use Tools for Common Forms of Random Assignment

version 0.2.3									
Description Generates random assignments for common experimental designs: simple, complete, blocked, and clustered.									
Depends R (>= 2.10.0)									
License GPL-3									
LazyData true									
Suggests knitr, dplyr, blockTools, testthat									
VignetteBuilder knitr									
RoxygenNote 5.0.0									
Author Alexander Coppock [aut, cre]									
Maintainer Alexander Coppock <ac3242@columbia.edu></ac3242@columbia.edu>									
R topics documented:									
block_and_cluster_ra									
cluster_ra_probabilities									

56

17

Index

complete_ra8complete_ra_probabilities9condition_probs10conduct_ra12declare_ra12obtain_condition_probabilities13randomizr14simple_ra14simple_ra_probabilities15

2 block_and_cluster_ra

```
block_and_cluster_ra Blocked and Clustered Random Assignment.
```

Description

If clusters are nested within blocks, blocked and clustered random assignment is possible. For example, imagine that villages are nested within regions.

Usage

```
block_and_cluster_ra(clust_var, block_var, num_arms = NULL, block_m = NULL,
    prob_each = NULL, condition_names = NULL)
```

Arguments

clust_var	A vector of length N that indicates which cluster each unit belongs to.			
block_var	A vector of length N that indicates which block each unit belongs to.			
num_arms	The total number of treatment arms. If unspecified, will be determined from the number of columns of block_m, the length of prob_each, or the length of condition_names.			
block_m	A matrix of arm sizes with blocks in the rows and treatment conditions in the columns. The rows should respect the alphabetical ordering of the blocks as determined by sort(unique(block_var). The columns should be in the order of condition_names, if specified.			
prob_each	A vector whose length is equal to the number of treatment assignments. When specified, prob_each assigns the same (within rounding) proportion of each block to each treatment condition, using complete random assignment. prob_each must sum to 1.			

A character vector giving the names of the treatment conditions. If unspecified, the treatment conditions. will be named T1, T2, T3, etc.

Value

A random assignment

condition_names

```
clust_var <- rep(letters, times=1:26)
block_var <- rep(NA, length(clust_var))
block_var[clust_var %in% letters[1:5]] <- "block_1"
block_var[clust_var %in% letters[6:10]] <- "block_2"
block_var[clust_var %in% letters[11:15]] <- "block_3"
block_var[clust_var %in% letters[16:20]] <- "block_4"
block_var[clust_var %in% letters[21:26]] <- "block_5"

table(block_var, clust_var)

Z <- block_and_cluster_ra(clust_var = clust_var, block_var = block_var)
table(Z, clust_var)</pre>
```

block_and_cluster_ra_probabilities

Probabilities of assignment: Blocked and Clustered Random Assignment

Description

Probabilties of assignment: Blocked and Clustered Random Assignment

Usage

```
block_and_cluster_ra_probabilities(clust_var, block_var, num_arms = NULL,
    block_m = NULL, prob_each = NULL, condition_names = NULL)
```

Arguments

clust_var	A vector of length N that indicates which cluster each unit belongs to.
block_var	A vector of length N that indicates which block each unit belongs to.
num_arms	The total number of treatment arms. If unspecified, will be determined from the number of columns of block_m or the length of condition_names.
block_m	A matrix of arm sizes whose number of rows is equal to the number of blocks and whose number of columns is equal to the number of treatment arms. The rows should respect the alphabetical ordering of the blocks as determined by sort(unique(block_var). The columns should be in the order of condition_names, if specified.
prob_each	A vector whose length is equal to the number of treatment assignments. When specified, prob_each assigns the same (within rounding) proportion of each block to each treatment condition, using complete random assignment. prob_each must sum to 1.

condition_names

A character vector giving the names of the treatment conditions. If unspecified, the treatment conditions. will be named T1, T2, T3, etc.

4 block_ra

Value

A matrix of probabilities of assignment.

block_ra

Block Random Assignment

Description

This function assigns a fixed number of units within each block to treatment.

Usage

```
block_ra(block_var, num_arms = NULL, block_m = NULL, prob_each = NULL,
    condition_names = NULL)
```

Arguments

block_var A vector of length N indicating which block each unit belongs to.

num_arms The total number of treatment arms. If unspecified, will be determined from

the number of columns of block_m, the length of prob_each, or the length of

condition_names.

block_m A matrix of arm sizes with blocks in the rows and treatment conditions in the

columns. The rows should respect the alphabetical ordering of the blocks as determined by sort(unique(block_var). The columns should be in the order of

condition_names, if specified.

prob_each A numeric vector whose length is equal to the number of treatment conditions.

When specified, prob_each assigns the same (within rounding) proportion of each block to each treatment condition, using complete random assignment.

prob_each must sum to 1.

condition_names

A character vector giving the names of the treatment conditions. If unspecified, the treatment conditions. will be named T1, T2, T3, etc.

block_ra_probabilities 5

block_ra_probabilities

Probabilties of assignment: Block Random Assignment

Description

Probabilties of assignment: Block Random Assignment

Usage

```
block_ra_probabilities(block_var, num_arms = NULL, block_m = NULL,
    prob_each = NULL, condition_names = NULL)
```

Arguments

block_var A vector of length N indicating which block each unit belongs to.

number of columns of block_m or the length of condition_names.

block_m A matrix of arm sizes whose number of rows is equal to the number of blocks

and whose number of columns is equal to the number of treatment arms. The rows should respect the alphabetical ordering of the blocks as determined by sort(unique(block_var). The columns should be in the order of condition_names,

if specified.

prob_each A vector whose length is equal to the number of treatment conditions. When

specified, prob_each assigns the same (within rounding) proportion of each block to each treatment condition, using complete random assignment. prob_each

must sum to 1.

condition_names

A character vector giving the names of the treatment conditions. If unspecified, the treatment conditions. will be named T1, T2, T3, etc.

6 cluster_ra

Value

A matrix of probabilities of assignment.

cluster_ra

Cluster Random Assignment

Description

This function conducts complete random assignment by cluster. Clusters are collections of units that are assigned to a treatment together.

Usage

```
cluster_ra(clust_var, m = NULL, num_arms = NULL, m_each = NULL,
    prob_each = NULL, condition_names = NULL)
```

Arguments

clust_var A vector of length N that indicates which cluster each unit belongs to.

m The total number clusters to be treated. Should only be specified for a two group

design in which exactly m of N clusters is assigned to treatment. If not specified, half of the clusters will be assigned to treatment. Is NULL by default.

num_arms The total number of treatment arms. If unspecified, will be determined from the

length of m_each or condition_names.

m_each A numeric vector giving the number of clusters to be assigned to each treatment

group. Must sum to the total number of clusters. If unspecified, equally sized

(rounded) groups will be assumed.

prob_each A numeric vector giving the probability of assignment to each treatment arm.

Must sum to 1. Please note that due to rounding, these probabilities are approx-

imate. For finer control, please use m_each.

condition_names

A character vector giving the names of the treatment groups. If unspecified, the treatment groups will be names T1, T2, T3, etc.

cluster_ra_probabilities 7

cluster_ra_probabilities

Probabilties of assignment: Cluster Random Assignment

Description

Probabilties of assignment: Cluster Random Assignment

Usage

```
cluster_ra_probabilities(clust_var, m = NULL, num_arms = NULL,
    m_each = NULL, prob_each = NULL, condition_names = NULL)
```

Arguments

clust_var	A vector of length N that indicates which cluster each unit belongs to.		
m	The total number clusters to be treated. Should only be specified for a two groundesign in which exactly m of N clusters is assigned to treatment. If not specified half of the clusters will be assigned to treatment. Is NULL by default.		
num_arms	The total number of treatment arms. If unspecified, will be determined from the length of m_e ach or condition_names.		
m_each	A numeric vector giving the number of clusters to be assigned to each treatment group. Must sum to the total number of clusters. If unspecified, equally sized (rounded) groups will be assumed.		
prob_each	A numeric vector giving the probability of assignment to each treatment arm. Must sum to 1. Please note that due to rounding, these probabilities are approximate. For finer control, please use m_each.		
condition_name:	s		

treatment groups will be names T1, T2, T3, etc.

A character vector giving the names of the treatment groups. If unspecified, the

Value

A matrix of probabilities of assignment.

8 complete_ra

Description

This function conducts complete random assignment, a procedure in which a pre-specified number of units is assigned to each treatment condition. This function can accommodate any number of treatment arms.

Usage

```
complete_ra(N, m = NULL, prob = NULL, num_arms = NULL, m_each = NULL,
    prob_each = NULL, condition_names = NULL)
```

Arguments

guments				
N	the total number of units in the experimental sample (required).			
m	If specified, a two-group design is assumed. m is the total number of units to be assigned to treatment. Should only be specified for a two group design in which exactly m of N units are assigned to treatment. If not specified (and no other arguments are specified), half of the sample (N/2) will be assigned to treatment (if N is odd, m will be set to either floor(N/2) or ceiling(N/2) with equal probability. m is NULL by default.			
prob	If specified, a two-group design is assumed. prob is the probability of assignment to treatment. Within rounding, N*prob subjects will be assigned to treatment.			
num_arms	The total number of treatment arms. If unspecified, num_arms will be determined from the length of m_each or condition_names.			
m_each	A numeric vector giving the size of each treatment group. Must sum to N. If unspecified, equally sized (rounded) groups will be assumed.			
prob_each	A numeric giving the probability of assignment to each treatment arm. Must sum to 1. Please note that due to rounding, these probabilities are approximate. For finer control, please use m_each.			

condition_names

A character vector giving the names of the treatment groups. If unspecified, the treatment groups will be names T1, T2, T3, etc. An execption is a two-group design in which N only or N and m are specified, in which the condition names are 0 and 1.

Value

A vector of length N that indicates the treatment condition of each unit.

```
# Two Group Designs
Z <- complete_ra(N=100)
table(Z)</pre>
```

complete_ra_probabilities

Probabilties of assignment: Complete Random Assignment

Description

Probabilties of assignment: Complete Random Assignment

Usage

```
complete_ra_probabilities(N, m = NULL, prob = NULL, num_arms = NULL,
    m_each = NULL, prob_each = NULL, condition_names = NULL)
```

Arguments

N	the total number of units in the experimental sample (required).			
m	If specified, a two-group design is assumed. m is the total number of units to be assigned to treatment. Should only be specified for a two group design in which exactly m of N units are assigned to treatment. If not specified, half of the sample $(N/2)$ will be assigned to treatment (if N is odd, m will be set to either floor $(N/2)$ or ceiling $(N/2)$ with equal probability. m is $NULL$ by default.			
prob	If specified, a two-group design is assumed. prob is the probability of assignment to treatment. Within rounding, $N*prob$ subjects will be assigned to treatment.			
num_arms	The total number of treatment arms. If unspecified, num_arms will be determined from the length of m_each or condition_names.			
m_each	A numeric vector giving the size of each treatment group. Must sum to N. If unspecified, equally sized (rounded) groups will be assumed.			

10 condition_probs

prob_each

A numeric giving the probability of assignment to each treatment arm. Must sum to 1. Please note that due to rounding, these probabilities are approximate. For finer control, please use m_each.

condition_names

A character vector giving the names of the treatment groups. If unspecified, the treatment groups will be names T1, T2, T3, etc. An exception is a two-group design in which N only or N and m are specified, in which the condition names are 0 and 1.

Value

A matrix of probabilities of assignment.

condition_probs

Calculate Probability of Observed Condition

Description

This function calculates the probability that each experimental unit is in the experimental condition that it is in.. You specify designs exactly as you do in 'simple_ra()', 'complete_ra()', 'block_ra()' or 'cluster_ra()', adding only the 'design' argument. Especially when units have different probabilities of assignment, this function can be useful for calculating inverse probability weights.

Usage

```
condition_probs(Z, N = NULL, prob = NULL, prob_each = NULL, m = NULL,
    m_each = NULL, block_var = NULL, block_m = NULL, clust_var = NULL,
    num_arms = NULL, condition_names = NULL, design, return_design = FALSE)
```

Arguments

		Use the identical parameters

when generating the assignment and calculating the probabilities.

N the total number of units in the experimental sample

prob if specified, a two-group design is assumed. prob is the probability of assign-

ment to treatment.

prob_each a numeric giving the probability of assignment to each treatment arm. Must sum

to 1. Please note that due to rounding, these probabilities are approximate. For

finer control, please use m_each.

m if specified, a two-group design is assumed. m is the total number of units to be

assigned to treatment. Should only be specified for a two group design in which exactly m of N units to treatment. If not specified, half of the sample (N/2) will be assigned to treatment. Is null by default. In clustered designs, exactly m of N clusters is assigned to treatment. If not specified, half of the clusters will be

assigned to treatment.

m_each a numeric vector giving the size of each treatment group. Must sum to N. If

unspecified, equally sized (rounded) groups will be assumed.

block_var A vector of length N that includes the blocking variable

condition_probs 11

A matrix whose number of rows is equal to the number of blocks and whose number of columns is equal to the number of treatment arms. The rows should respect the alphabetical ordering of the blocks as determined by sort(unique(block_var).

The columns should be in the order of condition_names, if specified.

clust_var a vector of length N that describes which cluster each unit belongs to.

num_arms the total number of treatment arms. If unspecified, will be determined from the

length of m_each or condition_names.

condition_names

a character vector giving the names of the treatment groups. If unspecified, the

treatment groups will be names T1, T2, T3, etc.

design a string that specifies the design used. Can only take the values "simple", "com-

plete", "block", or "cluster".

return_design a logical value that specifies whether a dataframe with Z, the probabilities of

each condition, and the observed condition probability should be returned. De-

faults to FALSE.

prob_each A vector whose length is equal to the number of treatment assignments. When

specified, prob_each assigns the same (within rounding) proportion of each block to each treatment condition, using complete random assignment. prob_each

must sum to 1.

```
N <- 100
Z <- simple_ra(N)</pre>
condition_probs(Z=Z, N=N, design = "simple")
Z \leftarrow simple_ra(N=N,prob_each = c(.1, .2, .7), condition_names = c("A", "B", "C"))
condition_probs(Z=Z, N=N,prob_each = c(.1, .2, .7), condition_names = c("A", "B", "C"),
                design = "simple", return_design=TRUE)
# Complete designs
N <- 100
Z \leftarrow complete_ra(N=N, m = 45)
condition_probs(Z=Z, N=N, m = 45, design = "complete")
Z \leftarrow complete_ra(N=N, m_each = c(10, 20, 70))
condition_probs(Z=Z, N=N, m_each = c(10, 20, 70),
             design = "complete", return_design=TRUE)
# Block designs
block_var <- rep(c("A", "B", "C"), times=c(50, 100, 200))
block_m \leftarrow rbind(c(30, 20),
                  c(50, 50),
                  c(100, 100))
Z <- block_ra(block_var=block_var, block_m=block_m)</pre>
condition_probs(Z=Z, block_var=block_var, block_m=block_m, design="block")
Z <- block_ra(block_var=block_var, prob_each=c(.1, .1, .8),</pre>
                condition_names=c("control", "placebo", "treatment"))
condition_probs(Z=Z, block_var=block_var, prob_each=c(.1, .1, .8),
                condition_names=c("control", "placebo", "treatment"),
                design="block")
```

12 declare_ra

```
# Cluster designs

clust_var <- rep(letters, times=1:26)
Z <- cluster_ra(clust_var=clust_var, m_each=c(7, 7, 12))
condition_probs(Z=Z, clust_var=clust_var, m_each=c(7, 7, 12),
design="cluster", return_design=TRUE)</pre>
```

conduct_ra

Conduct a declared random assignment.

Description

Conduct a declared random assignment.

Usage

```
conduct_ra(ra_declaration)
```

Arguments

ra_declaration A random assignment declaration, created by declare_ra.

Examples

```
declaration <- declare_ra(N=100, m_each=c(30, 30, 40)) Z <- conduct_ra(ra_declaration = declaration) table(Z)
```

declare_ra

Declare a random assignment procedure.

Description

Declare a random assignment procedure.

Usage

```
declare_ra(N = NULL, prob = NULL, num_arms = NULL, prob_each = NULL,
    m = NULL, m_each = NULL, block_var = NULL, block_m = NULL,
    clust_var = NULL, condition_names = NULL, simple = FALSE)
```

Arguments

N The total number of units in the experimental sample.

prob The probability of assignment to treatment. If specified, a two-group design is

assumed.

num_arms The total number of treatment arms. If unspecified, will be determined from the

number of columns of block_m, the length of prob_each, the length of m_each,

or the length of condition_names.

prob_each A numeric vector giving the probability of assignment to each treatment arm.

Must sum to 1. Please note that due to rounding, these probabilities are approx-

imate. For finer control, please use m_each.

m If specified, a two-group design is assumed. m is the total number of units

to be assigned to treatment. Should only be specified for a two group design in which exactly m of N units are assigned to treatment. If not specified (and no other arguments are specified), half of the sample (N/2) will be assigned to treatment (if N is odd, m will be set to either floor(N/2) or ceiling(N/2) with

equal probability. m is NULL by default.

m_each A numeric vector giving the size of each treatment group. Must sum to N. If

unspecified, equally sized (rounded) groups will be assumed.

block_var A vector of length N indicating which block each unit belongs to.

block_m A matrix of arm sizes with blocks in the rows and treatment conditions in the

columns. The rows should respect the alphabetical ordering of the blocks as determined by sort(unique(block_var). The columns should be in the order of

condition_names, if specified.

clust_var A vector of length N that indicates which cluster each unit belongs to.

condition_names

A character vector giving the names of the treatment groups. If unspecified, the

treatment groups will be names T1, T2, T3, etc.

simple A logical indicating if simple random assignment is intended. Is FALSE by

default.

prob_each A numeric vector whose length is equal to the number of treatment conditions.

When specified, prob_each assigns the same (within rounding) proportion of each block to each treatment condition, using complete random assignment.

prob_each must sum to 1.

Value

A random assignment declaration.

obtain_condition_probabilities

Obtain the probabilities of units being in the conditions that they are in

Description

This function is especially useful when units have different probabilties of assignment and the analyst plans to use inverse-probability weights.

14 simple_ra

Usage

```
obtain_condition_probabilities(ra_declaration, assignment)
```

Arguments

```
ra_declaration A random assignment declaration, created by declare_ra.

assignment A vector of random assignments, often created by conduct_ra.
```

Examples

randomizr

randomizr

Description

randomizr

simple_ra

Simple Random Assignment

Description

This function conducts simple random assignment, a procedure in which units are assigned to treatment conditions with a known probability, but the number of units assigned to any condition might vary from one randomization to the next. This function can accommodate any number of treatment arms.

Usage

```
simple_ra(N, prob = NULL, num_arms = NULL, prob_each = NULL,
  condition_names = NULL)
```

simple_ra_probabilities 15

Arguments

N The total number of units in the experimental sample.

prob The probability of assignment to treatment. If specified, a two-group design is

assumed.

num_arms The total number of treatment arms. If unspecified, will be determined from the

length of prob_each or condition_names.

prob_each A numeric vector giving probabilites of assignment to each treatment group.

Must sum to 1. If unspecified, equal probabilities will be assumed.

condition_names

A character vector giving the names of the treatment groups. If unspecified, the

treatment groups will be names T1, T2, T3, etc.

Examples

```
# Two Group Designs
Z <- simple_ra(N=100)</pre>
table(Z)
Z <- simple_ra(N=100, prob=0.5)</pre>
table(Z)
Z <- simple_ra(N=100, prob_each = c(0.3, 0.7),
                condition_names = c("control", "treatment"))
table(Z)
# Multi-arm Designs
Z <- simple_ra(N=100, num_arms=3)</pre>
Z \leftarrow simple_ra(N=100, prob_each=c(0.3, 0.3, 0.4))
table(Z)
Z <- simple_ra(N=100, prob_each=c(0.3, 0.3, 0.4),
                condition_names=c("control", "placebo", "treatment"))
table(Z)
Z <- simple_ra(N=100, condition_names=c("control", "placebo", "treatment"))</pre>
table(Z)
```

 $simple_ra_probabilities$

Probabilties of assignment: Simple Random Assignment

Description

Probabilties of assignment: Simple Random Assignment

Usage

```
simple_ra_probabilities(N, prob = NULL, num_arms = NULL, prob_each = NULL,
    condition_names = NULL)
```

Arguments

N the total number of units in the experimental sample (required).

prob If specified, a two-group design is assumed. prob is the probability of assign-

ment to treatment. Within rounding, N*prob subjects will be assigned to treat-

ment.

num_arms The total number of treatment arms. If unspecified, num_arms will be deter-

mined from the length of m_each or condition_names.

prob_each A numeric giving the probability of assignment to each treatment arm. Must

sum to 1. Please note that due to rounding, these probabilities are approximate.

For finer control, please use m_each.

condition_names

A character vector giving the names of the treatment groups. If unspecified, the treatment groups will be names T1, T2, T3, etc. An execption is a two-group design in which N only or N and m are specified, in which the condition names

are 0 and 1.

Value

A matrix of probabilities of assignment.

Index

```
*Topic assignment
    block_ra, 4
    cluster_ra, 6
    complete_ra, 8
    condition_probs, 10
    simple_ra, 14
*Topic random
    block_ra, 4
    cluster_ra, 6
    complete\_ra, 8
    \verb|condition_probs|, 10|\\
    simple_ra, 14
block_and_cluster_ra, 2
block_and_cluster_ra_probabilities, 3
block_ra, 4
block_ra_probabilities, 5
cluster_ra, 6
cluster_ra_probabilities, 7
complete_ra, 8
\verb|condition_probs|, 10|\\
conduct_ra, 12, 14
declare_ra, 12, 12, 14
obtain\_condition\_probabilities, 13\\
randomizr, 14
randomizr-package (randomizr), 14
simple_ra, 14
simple\_ra\_probabilities, 15
```