A point c in the domain of a function f(x) is called a **critical point** of f(x), if f'(c) = 0 or f'(c) does not exist. This article explains the critical points along with solved examples.

A function f, which is continuous with x in its domain, contains a critical point at point x if the following conditions hold good.

- •f'(x) = 0
- •f '(x) is undefined.

A point of a differentiable function f at which the derivative is zero can be termed a critical point. The types of critical points are as follows:

- •A critical point is a local maximum if the function changes from increasing to decreasing at that point, whereas it is called a local minimum if the function changes from decreasing to increasing at that point.
- •A critical point is an inflexion point if the concavity of the function changes at that point.
- •If a critical point is neither of the above, then it signifies a vertical tangent in the graph of a function.

Concavity, Increasing and Decreasing.

The definitions of "increasing," "decreasing," and "constant" describe the behavior of a function on an *interval* and not at a point. In particular, it is not inconsistent to say that the function in Figure 4.1.1 is decreasing on the interval [0, 2] and increasing on the interval [2, 4].

- **4.1.1 DEFINITION** Let f be defined on an interval, and let x_1 and x_2 denote points in that interval.
- (a) f is *increasing* on the interval if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.
- (b) f is *decreasing* on the interval if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.
- (c) f is *constant* on the interval if $f(x_1) = f(x_2)$ for all points x_1 and x_2 .

Increasing/Decreasing Test

- (a) If f'(x) > 0 on an interval, then f is increasing on that interval.
- (b) If f'(x) < 0 on an interval, then f is decreasing on that interval.

- **4.1.2 THEOREM** Let f be a function that is continuous on a closed interval [a, b] and differentiable on the open interval (a, b).
- (a) If f'(x) > 0 for every value of x in (a, b), then f is increasing on [a, b].
- (b) If f'(x) < 0 for every value of x in (a, b), then f is decreasing on [a, b].
- (c) If f'(x) = 0 for every value of x in (a, b), then f is constant on [a, b].

EXAMPLE 1 Find where the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and where it is decreasing.

Solution:

$$f'(x) = 12x^3 - 12x^2 - 24x$$

$$f'(x) = 12x(x^2 - x - 2)$$

$$12x(x^2 - x - 2) = 0$$

$$12x = 0 \text{ and } x^2 - x - 2 = 0$$

$$x = 0 \text{ and } x = 2, x = -1$$
Intervals:

 $(-\infty, -1), (-1,0), (0,2) \text{ and } (2, \infty)$

Intervals	sing of $f'(x)$	
$(-\infty, -1)$	-ve	Decreasing
(-1,0)	+ve	Increasing
(0,2)	-ve	Decreasing
(2,∞)	+ve	Increasing

EXAMPLE 1 Find where the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and where it is decreasing.

Example 2 Find the intervals on which $f(x) = x^3$ is increasing and the intervals on which it is decreasing.

$$f'(x) = 3x^{2}$$

$$3x^{2} = 0$$

$$x = 0$$
Intervals $(-\infty, 0)$ and $(0, \infty)$

Intervals	sign of $f'(x)$	
$(-\infty,0)$	+ve	f(x) is incressing
$(0,\infty)$	+ve	f(x) is incressing

$$f(x)$$
 is incressing in $(-\infty, \infty)$

4.1.3 DEFINITION If f is differentiable on an open interval, then f is said to be *concave up* on the open interval if f' is increasing on that interval, and f is said to be *concave down* on the open interval if f' is decreasing on that interval.

Definition If the graph of f lies above all of its tangents on an interval I, then it is called **concave upward** on I. If the graph of f lies below all of its tangents on I, it is called **concave downward** on I.

Concavity Test

- (a) If f''(x) > 0 for all x in I, then the graph of f is concave upward on I.
- (b) If f''(x) < 0 for all x in I, then the graph of f is concave downward on I.

Definition A point P on a curve y = f(x) is called an **inflection point** if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.

4.1.5 DEFINITION If f is continuous on an open interval containing a value x_0 , and if f changes the direction of its concavity at the point $(x_0, f(x_0))$, then we say that f has an *inflection point at* x_0 , and we call the point $(x_0, f(x_0))$ on the graph of f an *inflection point* of f (Figure 4.1.9).

Example 5 Figure 4.1.10 shows the graph of the function $f(x) = x^3 - 3x^2 + 1$. Use the first and second derivatives of f to determine the intervals on which f is increasing, decreasing, concave up, and concave down. Locate all inflection points and confirm that your conclusions are consistent with the graph.

Solution. Calculating the first two derivatives of f we obtain

$$f'(x) = 3x^2 - 6x = 3x(x - 2)$$

$$f''(x) = 6x - 6 = 6(x - 1)$$

The sign analysis of these derivatives is shown in the following tables:

INTERVAL	(3x)(x-2)	f'(x)	CONCLUSION
<i>x</i> < 0	(-)(-)	+	f is increasing on $(-\infty, 0]$
0 < x < 2	(+)(-)	_	f is decreasing on $[0, 2]$
x > 2	(+)(+)	+	f is increasing on $[2, +\infty)$

INTERVAL	6(x - 1)	f''(x)	CONCLUSION
x < 1 $x > 1$	(-)	-	f is concave down on $(-\infty, 1)$
	(+)	+	f is concave up on $(1, +\infty)$

$$f(x) = x^3 - 3x^2 + 1$$

15–32 Find: (a) the intervals on which f is increasing, (b) the intervals on which f is decreasing, (c) the open intervals on which f is concave up, (d) the open intervals on which f is concave down, and (e) the x-coordinates of all inflection points.

15.
$$f(x) = x^2 - 3x + 8$$

17.
$$f(x) = (2x + 1)^3$$

19.
$$f(x) = 3x^4 - 4x^3$$

21.
$$f(x) = \frac{x-2}{(x^2-x+1)^2}$$

23.
$$f(x) = \sqrt[3]{x^2 + x + 1}$$

25.
$$f(x) = (x^{2/3} - 1)^2$$

27.
$$f(x) = e^{-x^2/2}$$

29.
$$f(x) = \ln \sqrt{x^2 + 4}$$

16.
$$f(x) = 5 - 4x - x^2$$

18.
$$f(x) = 5 + 12x - x^3$$

20.
$$f(x) = x^4 - 5x^3 + 9x^2$$

22.
$$f(x) = \frac{x}{x^2 + 2}$$

24.
$$f(x) = x^{4/3} - x^{1/3}$$

26.
$$f(x) = x^{2/3} - x$$

28.
$$f(x) = xe^{x^2}$$

30.
$$f(x) = x^3 \ln x$$

15. f'(x) = 2(x - 3/2), f''(x) = 2.

(a) $[3/2, +\infty)$ (b) $(-\infty, 3/2]$ (c) $(-\infty, +\infty)$ (d) nowhere (e) none

16. f'(x) = -2(2+x), f''(x) = -2.

(a) $(-\infty, -2]$ (b) $[-2, +\infty)$ (c) nowhere (d) $(-\infty, +\infty)$ (e) none

17. $f'(x) = 6(2x+1)^2$, f''(x) = 24(2x+1).

(a) $(-\infty, +\infty)$ (b) nowhere (c) $(-1/2, +\infty)$ (d) $(-\infty, -1/2)$ (e) -1/2

18. $f'(x) = 3(4 - x^2), f''(x) = -6x.$

(a) [-2,2] (b) $(-\infty,-2],[2,+\infty)$ (c) $(-\infty,0)$ (d) $(0,+\infty)$ (e) 0

19. $f'(x) = 12x^2(x-1)$, f''(x) = 36x(x-2/3).

(a) $[1, +\infty)$ (b) $(-\infty, 1]$ (c) $(-\infty, 0), (2/3, +\infty)$ (d) (0, 2/3)

(e) 0, 2/3

20. $f'(x) = x(4x^2 - 15x + 18), f''(x) = 6(x - 1)(2x - 3).$

(a) $[0, +\infty)$ (b) $(-\infty, 0]$ (c) $(-\infty, 1), (3/2, +\infty)$ (d) (1, 3/2)

(e) 1,3/2

21.
$$f'(x) = -\frac{3(x^2 - 3x + 1)}{(x^2 - x + 1)^3}, f''(x) = \frac{6x(2x^2 - 8x + 5)}{(x^2 - x + 1)^4}.$$

(a)
$$\left[\frac{3-\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right]$$
 (b) $\left(-\infty, \frac{3-\sqrt{5}}{2}\right], \left[\frac{3+\sqrt{5}}{2}, +\infty\right)$ (c) $\left(0, 2-\frac{\sqrt{6}}{2}\right), \left(2+\frac{\sqrt{6}}{2}, +\infty\right)$

(d)
$$(-\infty,0)$$
, $\left(2-\frac{\sqrt{6}}{2},2+\frac{\sqrt{6}}{2}\right)$ (e) $0,2-\frac{\sqrt{6}}{2},2+\frac{\sqrt{6}}{2}$

22.
$$f'(x) = \frac{2-x^2}{(x^2+2)^2} f''(x) = \frac{2x(x^2-6)}{(x^2+2)^3}$$
.

(a)
$$(-\sqrt{2}, \sqrt{2})$$
 (b) $(-\infty, -\sqrt{2}), (\sqrt{2}, +\infty)$ (c) $(-\sqrt{6}, 0), (\sqrt{6}, +\infty)$ (d) $(-\infty, -\sqrt{6}), (0, \sqrt{6})$ (e) $0, \pm \sqrt{6}$

23.
$$f'(x) = \frac{2x+1}{3(x^2+x+1)^{2/3}}, f''(x) = -\frac{2(x+2)(x-1)}{9(x^2+x+1)^{5/3}}.$$

(a)
$$[-1/2, +\infty)$$
 (b) $(-\infty, -1/2]$ (c) $(-2, 1)$ (d) $(-\infty, -2), (1, +\infty)$ (e) $-2, 1$

24.
$$f'(x) = \frac{4(x-1/4)}{3x^{2/3}}, f''(x) = \frac{4(x+1/2)}{9x^{5/3}}.$$

(a)
$$[1/4, +\infty)$$
 (b) $(-\infty, 1/4]$ (c) $(-\infty, -1/2), (0, +\infty)$ (d) $(-1/2, 0)$ (e) $-1/2, 0$

25.
$$f'(x) = \frac{4(x^{2/3} - 1)}{3x^{1/3}}, f''(x) = \frac{4(x^{5/3} + x)}{9x^{7/3}}.$$

(a)
$$[-1,0],[1,+\infty)$$
 (b) $(-\infty,-1],[0,1]$ (c) $(-\infty,0),(0,+\infty)$ (d) nowhere (e) none

•

- **26.** $f'(x) = \frac{2}{3}x^{-1/3} 1$, $f''(x) = -\frac{2}{9}x^{-4/3}$.

 - (a) [0,8/27] (b) $(-\infty,0],[8/27,+\infty)$ (c) nowhere (d) $(-\infty,0),(0,+\infty)$ (e) none

- **27.** $f'(x) = -xe^{-x^2/2}$, $f''(x) = (-1 + x^2)e^{-x^2/2}$.
- (a) $(-\infty,0]$ (b) $[0,+\infty)$ (c) $(-\infty,-1),(1,+\infty)$ (d) (-1,1) (e) -1,1

- **28.** $f'(x) = (2x^2 + 1)e^{x^2}$, $f''(x) = 2x(2x^2 + 3)e^{x^2}$.
 - (a) $(-\infty, +\infty)$ (b) none (c) $(0, +\infty)$ (d) $(-\infty, 0)$ (e) 0

- **29.** $f'(x) = \frac{x}{x^2 + 4}$, $f''(x) = -\frac{x^2 4}{(x^2 + 4)^2}$.

- (a) $[0, +\infty)$ (b) $(-\infty, 0]$ (c) (-2, 2) (d) $(-\infty, -2), (2, +\infty)$ (e) -2, 2

- **30.** $f'(x) = x^2(1+3\ln x), f''(x) = x(5+6\ln x).$
 - (a) $[e^{-1/3}, +\infty)$ (b) $(0, e^{-1/3}]$ (c) $(e^{-5/6}, +\infty)$ (d) $(0, e^{-5/6})$ (e) $e^{-5/6}$

Lecture # 21

ANALYSIS OF FUNCTIONS
RELATIVE EXTREMA; GRAPHING POLYNOMIALS

4.2.1 DEFINITION A function f is said to have a *relative maximum* at x_0 if there is an open interval containing x_0 on which $f(x_0)$ is the largest value, that is, $f(x_0) \ge f(x)$ for all x in the interval. Similarly, f is said to have a *relative minimum* at x_0 if there is an open interval containing x_0 on which $f(x_0)$ is the smallest value, that is, $f(x_0) \le f(x)$ for all x in the interval. If f has either a relative maximum or a relative minimum at x_0 , then f is said to have a *relative extremum* at x_0 .

The points x_1 , x_2 , x_3 , x_4 , and x_5 are critical points. Of these, x_1 , x_2 , and x_5 are stationary points.

- $f(x) = x^2$ has a relative minimum at x = 0 but no relative maxima.
- $f(x) = x^3$ has no relative extrema.
- $f(x) = x^3 3x + 3$ has a relative maximum at x = -1 and a relative minimum at x = 1.
- $f(x) = \frac{1}{2}x^4 \frac{4}{3}x^3 x^2 + 4x + 1$ has relative minima at x = -1 and x = 2 and a relative maximum at x = 1.
- $f(x) = \cos x$ has relative maxima at all even multiples of π and relative minima at all odd multiples of π .

Example 2 Find all critical points of $f(x) = x^3 - 3x + 1$.

Solution. The function f, being a polynomial, is differentiable everywhere, so its critical points are all stationary points. To find these points we must solve the equation f'(x) = 0. Since

$$f'(x) = 3x^2 - 3 = 3(x+1)(x-1)$$

we conclude that the critical points occur at x = -1 and x = 1. This is consistent with the graph of f in Figure 4.2.4.

Example 3 Find all critical points of $f(x) = 3x^{5/3} - 15x^{2/3}$.

Solution. The function f is continuous everywhere and its derivative is

$$f'(x) = 5x^{2/3} - 10x^{-1/3} = 5x^{-1/3}(x - 2) = \frac{5(x - 2)}{x^{1/3}}$$

We see from this that f'(x) = 0 if x = 2 and f'(x) is undefined if x = 0. Thus x = 0 and x = 2 are critical points and x = 2 is a stationary point. This is consistent with the graph of f shown in Figure 4.2.5.

Critical point

Stationary point

Inflection point

Not a relative extremum

Critical point

Inflection point

Not a stationary point

Not a relative extremum

Critical point

Inflection point

Not a stationary point

Not a relative extremum

A function f has a relative extremum at those critical points where f' changes sign.

Critical point

Stationary point

Inflection point

Not a relative extremum

- **4.2.3 THEOREM** (First Derivative Test) Suppose that f is continuous at a critical point x_0 .
- (a) If f'(x) > 0 on an open interval extending left from x_0 and f'(x) < 0 on an open interval extending right from x_0 , then f has a relative maximum at x_0 .
- (b) If f'(x) < 0 on an open interval extending left from x_0 and f'(x) > 0 on an open interval extending right from x_0 , then f has a relative minimum at x_0 .
- (c) If f'(x) has the same sign on an open interval extending left from x_0 as it does on an open interval extending right from x_0 , then f does not have a relative extremum at x_0 .

The First Derivative Test Suppose that c is a critical number of a continuous function f.

- (a) If f' changes from positive to negative at c, then f has a local maximum at c.
- (b) If f' changes from negative to positive at c, then f has a local minimum at c.
- (c) If f' does not change sign at c (for example, if f' is positive on both sides of c or negative on both sides), then f has no local maximum or minimum at c.

Example 4 We showed in Example 3 that the function $f(x) = 3x^{5/3} - 15x^{2/3}$ has critical points at x = 0 and x = 2. Figure 4.2.5 suggests that f has a relative maximum at x = 0 and a relative minimum at x = 2. Confirm this using the first derivative test.

Table 4.2.1

INTERVAL	$5(x-2)/x^{1/3}$	f'(x)
<i>x</i> < 0	(-)/(-)	+
0 < x < 2	(-)/(+)	_
x > 2	(+)/(+)	+

Solution. We showed in Example 3 that

$$f'(x) = \frac{5(x-2)}{x^{1/3}}$$

A sign analysis of this derivative is shown in Table 4.2.1. The sign of f' changes from + to - at x = 0, so there is a relative maximum at that point. The sign changes from - to + at x = 2, so there is a relative minimum at that point.

- **4.2.4 THEOREM** (Second Derivative Test) Suppose that f is twice differentiable at the point x_0 .
- (a) If $f'(x_0) = 0$ and $f''(x_0) > 0$, then f has a relative minimum at x_0 .
- (b) If $f'(x_0) = 0$ and $f''(x_0) < 0$, then f has a relative maximum at x_0 .
- (c) If $f'(x_0) = 0$ and $f''(x_0) = 0$, then the test is inconclusive; that is, f may have a relative maximum, a relative minimum, or neither at x_0 .

Example 5 Find the relative extrema of $f(x) = 3x^5 - 5x^3$.

Solution. We have

$$f'(x) = 15x^4 - 15x^2 = 15x^2(x^2 - 1) = 15x^2(x + 1)(x - 1)$$

$$f''(x) = 60x^3 - 30x = 30x(2x^2 - 1)$$

Solving f'(x) = 0 yields the stationary points x = 0, x = -1, and x = 1. As shown in the following table, we can conclude from the second derivative test that f has a relative maximum at x = -1 and a relative minimum at x = 1.

STATIONARY POINT	$30x(2x^2-1)$	f''(x)	SECOND DERIVATIVE TEST
x = -1	-30	_	f has a relative maximum
x = 0	0	0	Inconclusive
x = 1	30	+	f has a relative minimum

The test is inconclusive at x = 0, so we will try the first derivative test at that point. A sign analysis of f' is given in the following table:

INTERVAL	$15x^2(x+1)(x-1)$	f'(x)
-1 < x < 0	(+)(+)(-)	_
0 < x < 1	(+)(+)(-)	_

Since there is no sign change in f' at x = 0, there is neither a relative maximum nor a relative minimum at that point. All of this is consistent with the graph of f shown in Figure 4.2.8.

Find the relative extrema of the following:

(i)
$$f(x) = x^3 - 5x + 2$$

(ii)
$$f(x) = x^4 - 2x^2 + 7$$

(i)
$$f(x) = x^3 - 5x + 2$$
 (1)

Solution:

Differentiate w.r.t 'x' on both side of (1)

$$\frac{dy}{dx} = \frac{d}{dx} (x^3 - 5x + 2)$$

$$f'(x) = 3 x^2 - 5$$
 (2)

For stationary point take f'(x) = 0

$$3x^2 - 5 = 0$$

$$\chi^2 = \frac{5}{3}$$

$$x = \pm \sqrt{\frac{5}{3}}$$
 (critical points)

For relative extrema again differentiate (2)

$$f''(x) = 6x$$

At
$$x = \sqrt{\frac{5}{3}}$$
, $f''\left(\sqrt{\frac{5}{3}}\right) = 6(\sqrt{\frac{5}{3}}) = \frac{6\sqrt{5}}{\sqrt{3}} > 0$ (relative minima)

At
$$x = -\sqrt{\frac{5}{3}}$$
, $f''(-\sqrt{\frac{5}{3}}) = 6(-\sqrt{\frac{5}{3}}) = \frac{-6\sqrt{5}}{\sqrt{3}} < 0$ (relative maxima)

7-14 Locate the critical points and identify which critical points are stationary points.

7.
$$f(x) = 4x^4 - 16x^2 + 17$$
 8. $f(x) = 3x^4 + 12x$

$$(x) = 4x^4 - 16x^2 + 17$$

9.
$$f(x) = \frac{x+1}{x^2+3}$$

11.
$$f(x) = \sqrt[3]{x^2 - 25}$$

13.
$$f(x) = |\sin x|$$

8.
$$f(x) = 3x^4 + 12x$$

10.
$$f(x) = \frac{x^2}{x^3 + 8}$$

11.
$$f(x) = \sqrt[3]{x^2 - 25}$$
 12. $f(x) = x^2(x - 1)^{2/3}$

14.
$$f(x) = \sin |x|$$

25–32 Use the given derivative to find all critical points of f, and at each critical point determine whether a relative maximum, relative minimum, or neither occurs. Assume in each case that f is continuous everywhere.

25.
$$f'(x) = x^2(x^3 - 5)$$

27.
$$f'(x) = \frac{2-3x}{\sqrt[3]{x+2}}$$
 28. $f'(x) = \frac{x^2-7}{\sqrt[3]{x^2+4}}$

29.
$$f'(x) = xe^{1-x^2}$$

31.
$$f'(x) = \ln\left(\frac{2}{1+x^2}\right)$$
 32. $f'(x) = e^{2x} - 5e^x + 6$

26.
$$f'(x) = 4x^3 - 9x$$

28.
$$f'(x) = \frac{x^2 - 7}{\sqrt[3]{x^2 + 4}}$$

30.
$$f'(x) = x^4(e^x - 3)$$

32.
$$f'(x) = e^{2x} - 5e^x + 6$$

33–36 Find the relative extrema using both first and second derivative tests.

33.
$$f(x) = 1 + 8x - 3x^2$$

34.
$$f(x) = x^4 - 12x^3$$

35.
$$f(x) = \sin 2x$$
, $0 < x < \pi$ **36.** $f(x) = (x - 3)e^x$

36.
$$f(x) = (x-3)e^x$$