Problem Statement: Abalone Age Prediction

Description:- Predicting the age of abalone from physical measurements. The age of abalone is determined by cutting the shell through the cone, staining it, and counting the number of rings through a microscope -- a boring and time-consuming task. Other measurements, which are easier to obtain, are used to predict age. Further information, such as weather patterns and location (hence food availability) may be required to solve the problem.

```
IN[]:import libraries
  import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sb
  import plotly.express as px
```

Load the dataset into the tool

IN[]: = pd.read_csv('/content/drive/My Drive/Machine Learning/abalone.csv')
data

OUT[]:Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
•••									•••

OUT[]:Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 column

3. Perform Below Visualizations.

Univariate Analysis

· Bi-Variate Analysis

```
IN[]: plt.scatter(data.Rings, data.Sex)
    plt.title('The Gender of Abalone vs Number of Rings')
    plt.xlabel('No. of Rings')
    plt.ylabel('Gender')
```

OUT[]: Text(0, 0.5, 'Gender')

Multi-Variate Analysis

IN[]: sb.heatmap(data.corr(),annot=True)

OUT[]:

4. Perform descriptive statistics on the dataset.

IN[]:data.info()

RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
dt	ypes: float64(7),	int64(1), obje	ct(1)
memo	ry usage: 293.8+	KB	

data.describe()

IN[]: data.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
coun t	4177.00000 0	4177.00000 0	4177.00000 0	4177.00000 0	4177.00000 0	4177.00000 0	4177.00000 0	4177.00000 0
mea n	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

5. Check for Missing values and deal with them.

There is no missing values

```
IN[]:data.isnull().any()
```

False
False

6. Find the outliers and replace them outliers

The dataset does not have a outliers

```
In[]:
IN[]: fig = px.histogram(data, x='Whole weight')
fig.show()
```

7. Check for Categorical columns and perform encoding.

There is one Categorical column SEX is replaced by an Integer

```
IN[]: from sklearn.preprocessing import LabelEncoder
     le = LabelEncoder()
     data["Sex"] = le.fit transform(data["Sex"])
     data["Sex"]
OUT[]:
     0
             2
     1
     2
            0
     3
            2
     4172 0
     4173 2
     4174
     4175
     4176
     Name: Sex, Length: 4177, dtype: int64
```

8. Split the data into dependent and independent variables.

```
IN[]:
    x=data.iloc[:,0:8].values
    y=data.iloc[:,8:9].values
IN[]: x
OUT[]:
array([[2. , 0.455 , 0.365 , ..., 0.2245, 0.101 , 0.15 ],
             , 0.35 , 0.265 , ..., 0.0995, 0.0485, 0.07 ],
      [2.
             , 0.53 , 0.42 , ..., 0.2565, 0.1415, 0.21 ],
      [0.
             , 0.6 , 0.475 , ..., 0.5255, 0.2875, 0.308 ],
      [2.
             , 0.625 , 0.485 , ..., 0.531 , 0.261 , 0.296 ],
             , 0.71 , 0.555 , ..., 0.9455, 0.3765, 0.495 ]])
      [2.
IN[]: y
OUT[]:array([[15],
          [7],
          [ 9],
           . . . ,
           [ 9],
           [10],
           [12]])
```

9. Scale the independent variables

```
IN[]:x=data.iloc[:,0:8]
    print(x.head())
```

OUT[]:	Sex	Length Di	ameter 1	Height Whole	weight	Shucked weight
0	2	0.455	0.365	0.095	0.5140	0.2245
1	2	0.350	0.265	0.090	0.2255	0.0995
2	0	0.530	0.420	0.135	0.6770	0.2565
3	2	0.440	0.365	0.125	0.5160	0.2155
4	1	0.330	0.255	0.080	0.2050	0.0895

Viscera	weight	Shell	weight
0	0.1010)	0.150
1	0.0485	5	0.070
2	0.1415	5	0.210
3	0.1140)	0.155
4	0.0395	5	0.055

10. Split the data into training and testing

```
from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test =

IN[]: train_test_split(x, y, test_size=0.3, random_state=0)

IN[]: x_train.shape

OUT[]: (2923, 8)

IN[]: x_test.shape

OUT[]: (836, 8)
```

11. Build the Model

```
IN[]:
    from sklearn.linear_model import LinearRegression
    lr = LinearRegression()
```

12. Train the Model

```
IN[]: lr.fit(x_train, y_train)
    LinearRegression()
```

13. Test the Model

14. Measure the performance using Metrics.

```
# RMSE(Root Mean Square Error)

IN[]:from sklearn.metrics import mean_squared_error
    mse = mean_squared_error(y_test, y_pred)
    rmse = np.sqrt(mse)
    print("RMSE value : {:.2f}".format(rmse))

RMSE value : 2.26

IN[]: from sklearn.model_selection import cross_val_score
    cv_scores = cross_val_score(lr, x, y, cv=5)
```

Team id:PNT2022TMID22973 M.PRIYADHARSHINI

```
sco=cv_scores.round(4)
print(cv_scores.round(4))
print("Average", sco.sum()/5)
```

[0.4113 0.1574 0.4807 0.5046 0.4362] Average 0.3980399999999995