Context Summary

Problem 1: Linear Regression	Page.
	No
The comp-activ databases is a collection of a computer systems activity measures.	3
The data was collected from a Sun Sparcstation 20/712 with 128 Mbytes of memory	
running in a multi-user university department. Users would typically be doing a large	
variety of tasks ranging from accessing the internet, editing files or running very cpu-	
bound programs.	
As you are a budding data scientist you thought to find out a linear equation to build a	
model to predict 'usr' (Portion of time (%) that cpus run in user mode) and to find out	
how each attribute affects the system to be in 'usr' mode using a list of system attributes.	
1.1 Read the data and do exploratory data analysis. Describe the data briefly. (Check	3
the Data types, shape, EDA, 5 point summary). Perform Univariate, Bivariate Analysis,	
Multivariate Analysis.	
1.2 Impute null values if present, also check for the values which are equal to zero. Do	10
they have any meaning or do we need to change them or drop them? Check for the	
possibility of creating new features if required. Also check for outliers and duplicates if	
there.	
1.3 Encode the data (having string values) for Modelling. Split the data into train and	14
test (70:30). Apply Linear regression using scikit learn. Perform checks for significant	
variables using appropriate method from statsmodel. Create multiple models and check	
the performance of Predictions on Train and Test sets using Rsquare, RMSE & Adj	
Rsquare. Compare these models and select the best one with appropriate reasoning.	
1.4 Inference: Basis on these predictions, what are the business insights and	14
recommendations. Please explain and summarise the various steps performed in this	
project. There should be proper business interpretation and actionable insights present.	
Problem 2: Logistic Regression, LDA and CART	
You are a statistician at the Republic of Indonesia Ministry of Health and you are	14
provided with a data of 1473 females collected from a Contraceptive Prevalence	
Survey. The samples are married women who were either not pregnant or do not know	
if they were at the time of the survey.	
Th	
The problem is to predict do/don't they use a contraceptive method of choice based on	
their demographic and socio-economic characteristics.	1.4
2.1 Data Ingestion: Read the dataset. Do the descriptive statistics and do null value	14
condition check, check for duplicates and outliers and write an inference on it. Perform	
Univariate and Bivariate Analysis and Multivariate Analysis.	- 0.1
2.2 Do not scale the data. Encode the data (having string values) for Modelling. Data	21
Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA	
(linear discriminant analysis) and CART.	
2.3 Performance Metrics: Check the performance of Predictions on Train and Test sets	23
using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each	
model Final Model: Compare Both the models and write inference which model is	
best/optimized.	

Figure Content	Page. No
Visualization of bar plot for Univaraite Analysis	5
2. Visualization plot between CPU run in usr mode vs rchar using scatter plot	6
3. Visualization plot between CPU run in usr mode vs wchar using scatter plot	6
4. Visualization plot between CPU run in usr mode vs fork using scatter plot	6
5. Visualization plot between CPU run in usr mode vs sread using scatter plot	7
6. Visualization plot between CPU run in usr mode vs swrite using scatter plot	7
7. Visualization plot between CPU run in usr mode vs freeswap using bar plot	7
8. Visualization plot between CPU run in usr mode vs freemam using bar plot	8
9. Visualization plot between CPU run in lread vs lwrite by runqsz using scatter plot	8
10. Visualization plot between CPU run in sread mode vs swrite by runqsz using scatter plot	8
11. Visualization plot between CPU run in exec mode vs fork by runqsz using scatter plot	9
12. Visualization plot between CPU run in vflt mode vs pflt by runqsz using scatter plot	9
13. Visualization of Heat map for Multivariate Analysis	9
14. Visualization of the box plot to check the outlier present in the dataset	12
15. Visualization of box plot after treating outliers	13
16. Visualization of box plot with outliers	19
17. Visualization of box plot after outlier's treatment	19
18. Visualization of the Univariate Analysis	20
19. Visualization of the Bivariate Analysis	20
20. Visualization of the Multivariate Analysis	21
21. Visualization Confusion Matrix for Training Data Logistic Regression	23
22. Visualization of AUC and ROC for the training data Logistic Regression	24
23. Visualization Confusion Matrix for Test Data Logistic Regression	24
24. Visualization of AUC and ROC for the test data Logistic Regression	24
25. Visualization Confusion Matrix for Training Data LDA Model	25
26. Visualization Confusion Matrix for Test Data LDA Model	26
27. Visualization of AUC and ROC for the training and test data LDA Model	26
28. Visualization of AUC and ROC for the training data CART	27

Problem 1: Linear Regression

The comp-activ databases is a collection of a computer systems activity measures.

The data was collected from a Sun Sparcstation 20/712 with 128 Mbytes of memory running in a multi-user university department. Users would typically be doing a large variety of tasks ranging from accessing the internet, editing files or running very cpu-bound programs.

As you are a budding data scientist you thought to find out a linear equation to build a model to predict 'usr'(Portion of time (%) that cpus run in user mode) and to find out how each attribute affects the system to be in 'usr' mode using a list of system attributes.

1.1 Read the data and do exploratory data analysis. Describe the data briefly. (Check the Data types, shape, EDA, 5 point summary). Perform Univariate, Bivariate Analysis, Multivariate Analysis.

Solution:

Head Function

	Iread	lwrite	scall	sread	swrite	fork	exec	rchar	wchar	pgout	 pgscan	atch	pgin	ppgin	pflt	vflt	runqsz	freemem	freeswap
0	1	0	2147	79	68	0.2	0.2	40671.0	53995.0	0.0	 0.0	0.0	1.6	2.6	16.00	26.40	CPU_Bound	4670	1730946
1	0	0	170	18	21	0.2	0.2	448.0	8385.0	0.0	 0.0	0.0	0.0	0.0	15.63	16.83	Not_CPU_Bound	7278	1869002
2	15	3	2162	159	119	2.0	2.4	NaN	31950.0	0.0	 0.0	1.2	6.0	9.4	150.20	220.20	Not_CPU_Bound	702	1021237
3	0	0	160	12	16	0.2	0.2	NaN	8670.0	0.0	 0.0	0.0	0.2	0.2	15.60	16.80	Not_CPU_Bound	7248	1863704
4	5	1	330	39	38	0.4	0.4	NaN	12185.0	0.0	 0.0	0.0	1.0	1.2	37.80	47.60	Not_CPU_Bound	633	1760253

5 rows × 22 columns

Tail Function

	Iread	lwrite	scall	sread	swrite	fork	exec	rchar	wchar	pgout	 pgscan	atch	pgin	ppgin	pflt	vflt	runqsz	freemem	freesv
8187	16	12	3009	360	244	1.6	5.81	405250.0	85282.0	8.02	 55.11	0.6	35.87	47.90	139.28	270.74	CPU_Bound	387	986
8188	4	0	1596	170	146	2.4	1.80	89489.0	41764.0	3.80	 0.20	8.0	3.80	4.40	122.40	212.60	Not_CPU_Bound	263	1055
8189	16	5	3116	289	190	0.6	0.60	325948.0	52640.0	0.40	 0.00	0.4	28.40	45.20	60.20	219.80	Not_CPU_Bound	400	969
8190	32	45	5180	254	179	1.2	1.20	62571.0	29505.0	1.40	 18.04	0.4	23.05	24.25	93.19	202.81	CPU_Bound	141	1022
8191	2	0	985	55	46	1.6	4.80	111111.0	22256.0	0.00	 0.00	0.2	3.40	6.20	91.80	110.00	CPU_Bound	659	1756

5 rows × 22 columns

Shape Function

```
no.of rows: 8192 no.of columns: 22 (8192, 22)
```

Duplicate Function

```
Number of duplicate rows = 0
```

Describe Function

	count	mean	std	min	25%	50%	75%	max
Iread	8192.0	1.955969e+01	53.353799	0.0	2.0	7.0	20.000	1845.00
lwrite	8192.0	1.310620e+01	29.891726	0.0	0.0	1.0	10.000	575.00
scall	8192.0	2.306318e+03	1633.617322	109.0	1012.0	2051.5	3317.250	12493.00
sread	8192.0	2.104800e+02	198.980146	6.0	86.0	166.0	279.000	5318.00
swrite	8192.0	1.500582e+02	160.478980	7.0	63.0	117.0	185.000	5456.00
fork	8192.0	1.884554e+00	2.479493	0.0	0.4	0.8	2.200	20.12
exec	8192.0	2.791998e+00	5.212456	0.0	0.2	1.2	2.800	59.56
rchar	8088.0	1.973857e+05	239837.493526	278.0	34091.5	125473.5	267828.750	2526649.00
wchar	8177.0	9.590299e+04	140841.707911	1498.0	22916.0	46619.0	106101.000	1801623.00
pgout	8192.0	2.285317e+00 5.307038 0.0 0.0	0.0	2.400	81.44			
ppgout	8192.0	5.977229e+00	15.214590	0.0	0.0	0.0	4.200	184.20
pgfree	8192.0	1.191971e+01	32.363520	0.0	0.0	0.0	5.000	523.00
pgscan	8192.0	2.152685e+01	71.141340	0.0	0.0	0.0	0.000	1237.00
atch	8192.0	1.127505e+00	5.708347	0.0	0.0	0.0	0.600	211.58
pgin	8192.0	8.277960e+00	13.874978	0.0	0.6	2.8	9.765	141.20
ppgin	8192.0	1.238859e+01	22.281318	0.0	0.6	3.8	13.800	292.61
pflt	8192.0	1.097938e+02	114.419221	0.0	25.0	63.8	159.600	899.80
vflt	8192.0	1.853158e+02	191.000603	0.2	45.4	120.4	251.800	1365.00
freemem	8192.0	1.763456e+03	2482.104511	55.0	231.0	579.0	2002.250	12027.00
freeswap	8192.0	1.328126e+06	422019.426957	2.0	1042623.5	1289289.5	1730379.500	2243187.00
usr	8192.0	8.396887e+01	18.401905	0.0	81.0	89.0	94.000	99.00

Info Function

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8192 entries, 0 to 8191
Data columns (total 22 columns):
# Column Non-Null Count Dtype
--- -----
0 lread 8192 non-null int64
1 lwrite 8192 non-null int64
2 scall 8192 non-null int64
           8192 non-null int64
 3
    sread
 4 swrite 8192 non-null int64
            8192 non-null float64
 5
   fork
 6
    exec
             8192 non-null
                             float64
           8088 non-null float64
 7
    rchar
           8177 non-null float64
 8 wchar
 9 pgout 8192 non-null float64
10 ppgout 8192 non-null float64
11 pgfree 8192 non-null float64
12 pgscan 8192 non-null float64
             8192 non-null float64
13 atch
 14 pgin
            8192 non-null float64
 15 ppgin
           8192 non-null float64
8192 non-null float64
 16 pflt
           8192 non-null float64
17 vflt
 18 rungsz 8192 non-null object
 19 freemem 8192 non-null int64
 20 freeswap 8192 non-null int64
 21 usr
             8192 non-null
dtypes: float64(13), int64(8), object(1)
memory usage: 1.4+ MB
```

Null Function

lread	0
lwrite	0
scall	0
sread	0
swrite	0
fork	0
exec	0
rchar	104
wchar	15
pgout	0
ppgout	0
pgfree	0
pgscan	0
atch	0
pgin	0
ppgin	0
pflt	0
vflt	0
runqsz	0
freemem	0
freeswap	0
usr	0
dtype: int64	

Summary:

- Database administrator would be checking the size of the dataset using '.shape' which throw output for number of rows and number of columns and using '.info()' for checking the type of variables in the dataset.
- There are 8192 number of rows and 22 columns in the dataset.
- There are 8 in int64, 13 in float64 and 1 in object present in the dataset
- No duplicate records is present in the dataset
- Null value present in the dataset for rchar is having 104 rows & wchar is having 15 rows

Univariate Analysis – Visualization of bar plot

Bivariate Analysis

Visualization plot between CPU run in usr mode vs rchar using scatter plot cpu run in usr mode vs rchar

Visualization plot between CPU run in usr mode vs wchar using scatter plot

Visualization plot between CPU run in usr mode vs fork using scatter plot

Visualization plot between CPU run in usr mode vs sread using scatter plot

Visualization plot between CPU run in usr mode vs swrite using scatter plot

Visualization plot between CPU run in usr mode vs freeswap using bar plot

Visualization plot between CPU run in usr mode vs freemam using bar plot

Visualization plot between CPU run in Iread vs lwrite by runqsz using scatter plot

Visualization plot between CPU run in sread mode vs swrite by runqsz using scatter plot

Visualization plot between CPU run in exec mode vs fork by runqsz using scatter plot

Visualization plot between CPU run in vflt mode vs pflt by runqsz using scatter plot

Multivariate Analysis – Visualization of Heat map for Multivariate Analysis

1.2 Impute null values if present; also check for the values which are equal to zero. Do they have any meaning or do we need to change them or drop them? Check for the possibility of creating new features if required. Also check for outliers and duplicates if there.

Solution:

Replace the null value with median function

```
# Replacing blank value with Median
median_1 = ca['wchar'].median()
ca['wchar'] = ca['wchar'].replace(np.nan,median_1)
ca['wchar'].isnull().sum()
median_2 = ca['rchar'].median()
ca['rchar'] = ca['rchar'].replace(np.nan,median_2)
ca['rchar'].isnull().sum()
```

To check for the values which are equal to zero

```
* of records with 0 value in lread: 8.24%
* of records with 0 value in lwrite: 32.76%
* of records with 0 value in scall: 0.00%
* of records with 0 value in sread: 0.00%
* of records with 0 value in swrite: 0.00%
* of records with 0 value in fork: 0.26%
* of records with 0 value in exec: 0.26%
* of records with 0 value in rchar: 0.00%
* of records with 0 value in wchar: 0.00%
* of records with 0 value in pgout: 59.55%
* of records with 0 value in ppgout: 59.55%
* of records with 0 value in pgfree: 59.44%
* of records with 0 value in pgscan: 78.71%
* of records with 0 value in atch: 55.85%
* of records with 0 value in pgin: 14.89%
* of records with 0 value in ppgin: 14.89%
* of records with 0 value in pflt: 0.04%
* of records with 0 value in vflt: 0.00%
* of records with 0 value in rungsz: 0.00%
* of records with 0 value in freemem: 0.00%
* of records with 0 value in freeswap: 0.00%
* of records with 0 value in usr: 3.45%
```

Drop function is used to drop columns and check the dataset using head function

	Iread	lwrite	scall	sread	swrite	fork	exec	rchar	wchar	pgin	ppgin	pflt	vflt	runqsz	freemem	freeswap	usr
0	1	0	2147	79	68	0.2	0.2	40671.0	53995.0	1.6	2.6	16.00	26.40	CPU_Bound	4670	1730946	95
1	0	0	170	18	21	0.2	0.2	448.0	8385.0	0.0	0.0	15.63	16.83	Not_CPU_Bound	7278	1869002	97
2	15	3	2162	159	119	2.0	2.4	125473.5	31950.0	6.0	9.4	150.20	220.20	Not_CPU_Bound	702	1021237	87
3	0	0	160	12	16	0.2	0.2	125473.5	8670.0	0.2	0.2	15.60	16.80	Not_CPU_Bound	7248	1863704	98
4	5	1	330	39	38	0.4	0.4	125473.5	12185.0	1.0	1.2	37.80	47.60	Not_CPU_Bound	633	1760253	90

Replace minimum zero value by median function

```
# Replace the 0 value into median
ca.lread.replace(to_replace=0, value=ca.lread.median(),inplace=True)
ca.lwrite.replace(to_replace=0, value=ca.lwrite.median(),inplace=True)
ca.fork.replace(to_replace=0,value=ca.fork.median(),inplace=True)
ca.exec.replace(to_replace=0,value=ca.exec.median(),inplace=True)
ca.pgin.replace(to_replace=0,value=ca.pgin.median(),inplace=True)
ca.ppgin.replace(to_replace=0,value=ca.ppgin.median(),inplace=True)
ca.pflt.replace(to_replace=0,value=ca.pflt.median(),inplace=True)
ca.usr.replace(to_replace=0,value=ca.usr.median(),inplace=True)
```

Describe Function

	count	mean	std	min	25%	50%	75%	max
Iread	8192.0	2.013647e+01	53.176752	1.00	3.00	7.0	20.000	1845.00
lwrite	8192.0	1.343384e+01	29.751410	1.00	1.00	1.0	10.000	575.00
scall	8192.0	2.306318e+03	1633.617322	109.00	1012.00	2051.5	3317.250	12493.00
sread	8192.0	2.104800e+02	198.980146	6.00	86.00	166.0	279.000	5318.00
swrite	8192.0	1.500582e+02	160.478980	7.00	63.00	117.0	185.000	5456.00
fork	8192.0	1.886605e+00	2.478264	0.19	0.40	0.8	2.200	20.12
exec	8192.0	2.795074e+00	5.211161	0.19	0.20	1.2	2.800	59.56
rchar	8192.0	1.964728e+05	238446.012054	278.00	34860.50	125473.5	265394.750	2526649.00
wchar	8192.0	9.581275e+04	140728.464118	1498.00	22977.75	46619.0	106037.000	1801623.00
pgin	8192.0	8.694952e+00	13.660319	0.19	1.60	2.8	9.765	141.20
ppgin	8192.0	1.295450e+01	22.006000	0.20	2.00	3.8	13.800	292.61
pflt	8192.0	1.098172e+02	114.403309	0.80	25.15	63.8	159.600	899.80
vflt	8192.0	1.853158e+02	191.000603	0.20	45.40	120.4	251.800	1365.00
freemem	8192.0	1.763456e+03	2482.104511	55.00	231.00	579.0	2002.250	12027.00
freeswap	8192.0	1.328126e+06	422019.426957	2.00	1042623.50	1289289.5	1730379.500	2243187.00
usr	8192.0	8.704346e+01	9.297604	1.00	83.00	89.0	94.000	99.00

Info function:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8192 entries, 0 to 8191
Data columns (total 17 columns):
# Column
                 Non-Null Count Dtype
                         -----
0 lread
                        8192 non-null int64
                        8192 non-null int64
8192 non-null int64
1 lwrite
    scall
 3 sread
                        8192 non-null int64
                        8192 non-null int64
8192 non-null float64
4 swrite
5 fork
                        8192 non-null float64
6 exec
                        8192 non-null float64
7 rchar
                        8192 non-null float64
8192 non-null float64
8 wchar
9 pgin
10 ppgin
                        8192 non-null float64
                        8192 non-null float64
8192 non-null float64
11 pflt
12 vflt
13 freemem
                        8192 non-null int64
14 freeswap
                         8192 non-null int64
                          8192 non-null
                                          int64
16 rungsz Not CPU Bound 8192 non-null uint8
dtypes: float64(8), int64(8), uint8(1)
memory usage: 1.0 MB
```

Duplicate Function: To check the number of duplicate records present in the dataset

```
Number of duplicate rows = 0
```

Shape function:

no.of rows: 8192 no.of columns: 17

Summary:

- Null value is replaced by the median value for rchar & wchar in the dataset.
- The variables columns prout, proport, proport,
- Yes we need to drop the columns is having more 50% of values is having 0. The variable columns is dropped from the dataset and columns details are prout, ppgout, pgfree, pgscan and atch
- The remaining variables columns lread, lwrite, fork, exec, pgin, ppgin, usr & pflt are having minimum values of 0. Needs to clean up the columns
- Treat the columns is having minimum values of 0 with replace value using median function
- Database administrator would be checking the size of the dataset using '.shape' which throw output for number of rows and number of columns and using '.info()' for checking the type of variables in the dataset
- There are 8192 number of rows and 17 columns in the dataset.
- There are 8 in int64, 8 in float64 and 1 in object present in the dataset
- No duplicate records is present in the dataset and No Null value present in the dataset

Visualization of the box plot to check the outlier present in the dataset

Summary:

- 1. Yes outliers have been detected in all items. These outliers value needs to be treated and there are several ways of treating them:
 - o Drop the outlier value
 - o Replace the outlier value using the IQR

Visualization of box plot after treating outliers

1.3 Encode the data (having string values) for Modelling. Split the data into train and test (70:30). Apply Linear regression using scikit learn. Perform checks for significant variables using appropriate method from statsmodel. Create multiple models and check the performance of Predictions on Train and Test sets using Rsquare, RMSE & Adj Rsquare. Compare these models and select the best one with appropriate reasoning.

Solution:

Linear Regression Model

LinearRegression()

Linear Regression using stats models (OLS)

OLS Regression Re	sults						
Dep. Variable	c	usr	R-	equared:	0.	799	
Model	l:	OLS	Adj. R-	equared:	0.	799	
Method	: Lea	ast Squares	F-	etatietic:	14	121.	
Date	: Wed, 2	3 Nov 2022	Prob (F-	etatietic):	(0.00	
Time	c	09:50:46	Log-LII	kellhood:	-163	397.	
No. Observations	i:	5734		AIC:	3.283e	+04	
Df Residuals	1	5717		BIC:	3.294e	+04	
Df Model	l:	16					
Covariance Type	C	nonrobust					
		coef	etd err	t	P> t	[0.02	25 0.975]
	const	98.0406	0.288	340.806	0.000	97.47	77 98.605
	Iread	-0.0119	0.001	-9.628	0.000	-0.01	14 -0.009
	Iwrite	-0.0024	0.002	-1.009	0.313	-0.00	0.002
	scall	-0.0014	5.26e-05	-26.695	0.000	-0.00	0.001
	aread	0.0006	0.001	0.901	0.367	-0.00	0.002
	swrite	-0.0039	0.001	-5.035	0.000	-0.00	0.002
	fork	0.2044	0.094	2.185	0.029	0.02	21 0.388
	exec	-0.3242	0.019			-0.36	
		-1.197e-06			0.000	-1.83e-0	
		-5.136e-06		-10.453	0.000	-6.1e-0	
	pgin	-0.0139	0.011	-1.231		-0.03	
	ppgin	-0.0530	0.007	-7.685		-0.06	
	pfit	-0.0176 -0.0155	0.002	-10.622 -12.458	0.000	-0.02	
	reemem		2.91e-05		0.000	0.00	
			1.76e-07	-2.090			7 -2.27e-08
rungez_Not_CPU		-0.1211	0.118	-1.025		-0.35	
Omnibue:			-Wateon:		997		
Prob(Omnibus):		Jarque-B					
Skew:	-9.883		rob(JB):		.00		
Kurtosis:	197.889	С	ond. No.	7.39e4	+06		

Intercept Model

The intercept for our model is 98.04063083065795

Coefficients for each of the independent attribute

```
The coefficient for lread is -0.011900566545768987
The coefficient for lwrite is -0.002382139356811826
The coefficient for scall is -0.001405192374101927
The coefficient for sread is 0.0006411282096700219
The coefficient for swrite is -0.003931752249884772
The coefficient for fork is 0.2043696725744861
The coefficient for exec is -0.32419117788998597
The coefficient for rchar is -1.1965134149888863e-06
The coefficient for wchar is -5.1359696811800335e-06
The coefficient for pgin is -0.013921553275936208
The coefficient for ppgin is -0.05295469120861771
The coefficient for pflt is -0.01764265064165738
The coefficient for vflt is -0.015474555520646915
The coefficient for freemem is 0.00021261163686064945
The coefficient for freeswap is -3.669252004797546e-07
The coefficient for runqsz_Not_CPU_Bound is -0.12111793824531514
```

Summary:

- Linear Regression Equation is (98.0406) * const + (-0.0119) * lread + (-0.0024) * lwrite + (-0.0014) * scall + (0.0006) * sread + (-0.0039) * swrite + (0.2044) * fork + (-0.3242) * exec + (-0.0) * rchar + (-0.0) * wchar + (-0.0139) * pgin + (-0.053) * ppgin + (-0.0176) * pflt + (-0.0155) * vflt + (0.0002) * freemem + (-0.0) * freeswap + (-0.1211) * rungsz Not CPU Bound
- The R-squared value tells us that our model can explain 0.799% of the variance in the training set.
- The Adj. R-squared value tells us that our model can explain 0.799% of the variance in the training set.
- The RMSE training data having value of 4.2237 and RMSE test data having value of 4.202
- 1.4 Inference: Basis on these predictions, what are the business insights and recommendations.

Please explain and summarise the various steps performed in this project. There should be proper business interpretation and actionable insights present.

Problem 2: Logistic Regression, LDA and CART

You are a statistician at the Republic of Indonesia Ministry of Health and you are provided with a data of 1473 females collected from a Contraceptive Prevalence Survey. The samples are married women who were either not pregnant or do not know if they were at the time of the survey.

The problem is to predict do/don't they use a contraceptive method of choice based on their demographic and socio-economic characteristics.

2.1 Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, check for duplicates and outliers and write an inference on it. Perform Univariate and Bivariate Analysis and Multivariate Analysis.

Solution:

Head Function

١	Wife_age	Wife_ education	Husband_education	No_of_children_born	Wife_religion	Wife_Working	Husband_Occupation	Standard_of_living_index	Media_exposure
0	24.0	Primary	Secondary	3.0	Scientology	No	2	High	Exposed
1	45.0	Uneducated	Secondary	10.0	Scientology	No	3	Very High	Exposed
2	43.0	Primary	Secondary	7.0	Scientology	No	3	Very High	Exposed
3	42.0	Secondary	Primary	9.0	Scientology	No	3	High	Exposed
4	36.0	Secondary	Secondary	8.0	Scientology	No	3	Low	Exposed

Tail Function

	Wife_age	Wife_ education	Husband_education	No_of_children_born	Wife_religion	Wife_Working	Husband_Occupation	Standard_of_living_index	Media_exposu
1468	33.0	Tertiary	Tertiary	NaN	Scientology	Yes	2	Very High	Expos
1469	33.0	Tertiary	Tertiary	NaN	Scientology	No	1	Very High	Expos
1470	39.0	Secondary	Secondary	NaN	Scientology	Yes	1	Very High	Expos
1471	33.0	Secondary	Secondary	NaN	Scientology	Yes	2	Low	Expos
1472	17.0	Secondary	Secondary	1.0	Scientology	No	2	Very High	Expos

Shape Function

no.of rows: 1473 no.of columns: 10

(1473, 10)

Describe Function

	count	mean	std	min	25%	50%	75%	max
Wife_age	1402.0	32.606277	8.274927	16.0	26.0	32.0	39.0	49.0
No_of_children_born	1452.0	3.254132	2.365212	0.0	1.0	3.0	4.0	16.0
Husband_Occupation	1473.0	2.137814	0.864857	1.0	1.0	2.0	3.0	4.0

Info Function

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1473 entries, 0 to 1472
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Wife_age	1402 non-null	float64
1	Wife_ education	1473 non-null	object
2	Husband_education	1473 non-null	object
3	No_of_children_born	1452 non-null	float64
4	Wife_religion	1473 non-null	object
5	Wife_Working	1473 non-null	object
6	Husband_Occupation	1473 non-null	int64
7	Standard_of_living_index	1473 non-null	object
8	Media_exposure	1473 non-null	object
9	Contraceptive_method_used	1473 non-null	object
	· · · · · · · · · · · · · · · · · ·		_

dtypes: float64(2), int64(1), object(7)
memory usage: 115.2+ KB

Check the is Null value function

Wife_age	71
Wife_ education	0
Husband_education	0
No_of_children_born	21
Wife_religion	0
Wife_Working	0
Husband_Occupation	0
Standard_of_living_index	0
Media exposure	0
Contraceptive_method_used	0
dtype: int64	

Duplicate Function

Number of duplicate rows = 80

	Wife_age	Wife_ education	Husband_education	No_of_children_born	Wife_religion	Wife_Working	Husband_Occupation	Standard_of_living_index	Media_expost
79	38.0	Tertiary	Tertiary	1.0	Scientology	Yes	1	Very High	Expos
167	26.0	Tertiary	Tertiary	1.0	Scientology	No	1	Very High	Expos
224	47.0	Tertiary	Tertiary	4.0	Scientology	No	1	Very High	Expos
270	30.0	Tertiary	Tertiary	2.0	Scientology	No	1	Very High	Expos
299	26.0	Tertiary	Tertiary	1.0	Scientology	No	1	Very High	Expos
1367	44.0	Tertiary	Tertiary	5.0	Scientology	Yes	1	Very High	Expos
1387	NaN	Secondary	Tertiary	2.0	Scientology	Yes	2	Very High	Expos
1423	NaN	Tertiary	Tertiary	2.0	Non- Scientology	No	1	Very High	Expos
1440	NaN	Tertiary	Tertiary	1.0	Non- Scientology	Yes	2	Very High	Expos
1447	NaN	Tertiary	Tertiary	2.0	Non- Scientology	Yes	2	Very High	Expos

80 rows × 10 columns

Summary: Before treating the Null values and Duplicate values

- Database administrator would be checking the size of the dataset using '.shape' which throw output for number of rows and number of columns and using '.info()' for checking the type of variables in the dataset.
- There are 1473 number of rows and 10 columns in the dataset.
- There are 1 in int64, 2 in float64 and 7 in object present in the dataset
- Duplicate records is present in the dataset with 80
- Null value present in the dataset for wife_age is having 71 rows & No_of_children_born is having 21 rows

Duplicate Function: Drop the duplicate records in the dataset

Number of duplicate rows = 0

Shape Function

```
no.of rows: 1393 no.of columns: 10
```

Replace the null value with median

```
# Replace the null value with Median cmd[['Wife_age', 'No_of_children_born']].fillna(cmd[['Wife_age', 'No_of_children_born']].
```

Info Function:

```
Wife_age 0
Wife_ education 0
Husband_education 0
No_of_children_born 0
Wife_religion 0
Wife_Working 0
Husband_Occupation 0
Standard_of_living_index 0
Media_exposure 0
Contraceptive_method_used 0
dtype: int64
```

Describe Function

	count	mean	std	min	25%	50%	75%	max
Wife_age	1393.0	32.530510	8.088188	16.0	26.0	32.0	38.0	49.0
No_of_children_born	1393.0	3.286432	2.381791	0.0	1.0	3.0	5.0	16.0
Husband_Occupation	1393.0	2.174444	0.854590	1.0	1.0	2.0	3.0	4.0

Summary: After removing the duplicate values and replacing the null value with median

- Database administrator would be checking the size of the dataset using '.shape' which throw output for number of rows and number of columns and using '.info()' for checking the type of variables in the dataset.
- There are 1393 number of rows and 10 columns in the dataset.
- There are 1 in int64, 2 in float64 and 7 in object present in the dataset
- No Duplicate records is present in the dataset
- No Null value present in the dataset

Visualization of box plot with outliers

Summary:

- Yes outliers have been detected in all items. These outliers value needs to be treated and there are several ways of treating them:
 - o Drop the outlier value
 - o Replace the outlier value using the IQR

Visualization of box plot after outlier's treatment

Visualization of the Univariate Analysis

Visualization of the Bivariate Analysis

Visualization of the Multivariate Analysis

2.2 Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis) and CART.

Solution:

Logistic Regression

Define the Label Encoder object

LabelEncoder()

For the created Label Encoder object for the target class

	Wife_age	Wife_ education	Husband_education	No_of_children_born	Wife_religion	Wife_Working	Husband_Occupation	Standard_of_living_index	Media_exposure
0	24.0	1.0	2.0	3.0	1.0	0.0	2.0	2.0	1.0
1	45.0	0.0	2.0	10.0	1.0	0.0	3.0	3.0	1.0
2	43.0	1.0	2.0	7.0	1.0	0.0	3.0	3.0	1.0
3	42.0	2.0	1.0	9.0	1.0	0.0	3.0	2.0	1.0
4	36.0	2.0	2.0	8.0	1.0	0.0	3.0	1.0	1.0

Fit the Logistic Regression model

LogisticRegression(max_iter=400, n_jobs=2, penalty='none', solver='newton-cg', verbose=True)

Generate the Predicted Classes and Probability

	0	1
0	0.269587	0.730413
1	0.626732	0.373268
2	0.331280	0.668720
3	0.366515	0.633485
4	0.305626	0.694374

Linear Discriminant Analysis (LDA)

Define the LDA Model

```
LinearDiscriminantAnalysis()
```

Generate Coefficients and intercept for the Linear Discriminant Function

```
array([-0.67133942])
```

Coefficients for the Linear Discriminant Function

```
array([[-7.10680959e-02, 5.60975886e-01, 6.93257323e-02, 3.12163468e-01, -1.09593225e-15, -1.63112756e-01, 1.44856377e-01, 3.50587041e-01, -0.000000000e+00]])
```

```
Linear Discriminant Function = -0.67133942 + (-7.10680959e-02 x Wife_age) + (5.60975886e-01 x Wife_education) + (6.93257323e-02xHusband_education) + (3.12163468e-01 x No_of_children_born) + (-1.09593225e-15 x Wife_religion) + (-1.63112756e-01 x Wife_Working) + (1.44856377e-01 x Husband_Occupation) + (3.50587041e-01 x Standard_of_living_index) + (-0.00000000e+00 xMedia exposure)
```

CART

Define the CART Model

```
DecisionTreeClassifier()
```

Regularizing the Decision Tree

```
DecisionTreeClassifier(max_depth=7, min_samples_leaf=10, min_samples_split=30)
```

Importance of features in the tree building

	Imp
Wife_age	0.317299
Wife_ education	0.120375
Husband_education	0.045355
No_of_children_born	0.253368
Wife_religion	0.000000
Wife_Working	0.061082
Husband_Occupation	0.113701
Standard_of_living_index	0.088819
Media_exposure	0.000000

2.3 Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model Final Model: Compare Both the models and write inference which model is best/optimized. Generate Coefficients and intercept for the Linear Discriminant Function

Solution:

Logistic Regression

Confusion Matrix for Training Data

	precision	recall	f1-score	support
0.0	0.66	0.53	0.59	430
1.0	0.68	0.79	0.73	545
accuracy			0.67	975
macro avg	0.67	0.66	0.66	975
weighted avg	0.67	0.67	0.67	975

Visualization Confusion Matrix for Training Data Logistic Regression

Visualization of AUC and ROC for the training data Logistic Regression

Confusion Matrix for Test Data

	precision	recall	f1-score	support
0.0	0.64	0.46	0.54	184
1.0	0.65	0.79	0.72	234
accuracy			0.65	418
macro avg	0.65	0.63	0.63	418
weighted avg	0.65	0.65	0.64	418

Visualization Confusion Matrix for Test Data Logistic Regression

Visualization of AUC and ROC for the test data Logistic Regression AUC: 0.718

Summary:

- 1) The confusion matrix and classification report for testing data
 - a. The precision is having 66% and recall is having 53% for Contraceptive method used label is 0
 - b. The precision is having 68% and recall is having 79% for Contraceptive method used label is 1
 - c. The overall accuracy is having 67%
- 2) The confusion matrix and classification report for test data
 - a. The precision is having 64% and recall is having 46% for Contraceptive method used label is 0
 - b. The precision is having 65% and recall is having 79% for Contraceptive method used label is 1
 - c. The overall accuracy is having 65%

LDA Model

Confusion Matrix for Training Data LDA Model

	precision	recall	f1-score	support
0	0.66	0.53	0.59	430
1	0.68	0.79	0.73	545
accuracy			0.67	975
macro avg	0.67	0.66	0.66	975
weighted avg	0.67	0.67	0.67	975

Visualization Confusion Matrix for Training Data LDA Model

Confusion Matrix for Test Data LDA Model

	precision	recall	f1-score	support
0	0.64	0.46	0.54	184
1	0.65	0.79	0.72	234
accuracy			0.65	418
macro avg	0.65	0.63	0.63	418
weighted avg	0.65	0.65	0.64	418

Visualization Confusion Matrix for Test Data LDA Model

Visualization of AUC and ROC for the training and test data LDA Model

AUC for the Training Data: 0.717 AUC for the Test Data: 0.665

Summary:

- 1) The confusion matrix and classification report for training data
 - a. The precision is having 66% and recall is having 53% for Contraceptive method used label is 0
 - b. The precision is having 68% and recall is having 79% for Contraceptive method used label is 1
 - c. The overall accuracy is having 67%
- 2) The confusion matrix and classification report for test data
 - a. The precision is having 64% and recall is having 46% for Contraceptive method used label is 0
 - b. The precision is having 65% and recall is having 79% for Contraceptive method used label is 1
 - c. The overall accuracy is having 65%

CART

Confusion Matrix for Training Data

	precision	recall	f1-score	support
0.0 1.0	0.77 0.75	0.62 0.86	0.68 0.80	422 553
accuracy macro avg weighted avg	0.76 0.75	0.74 0.75	0.75 0.74 0.75	975 975 975

Visualization of AUC and ROC for the training data CART

Confusion Matrix for Test Data

	precision	recall	f1-score	support
0.0	0.67	0.47	0.56	192
1.0	0.64	0.81	0.72	226
accuracy			0.65	418
macro avg	0.66	0.64	0.64	418
weighted avg	0.66	0.65	0.64	418

Visualization of AUC and ROC for the test data CART

Summary:

- 1) The confusion matrix and classification report for training data
 - a. The precision is having 77% and recall is having 62% for Contraceptive method used label is 0
 - b. The precision is having 75% and recall is having 86% for Contraceptive method used label is 1
 - c. The overall accuracy is having 75%
- 2) The confusion matrix and classification report for test data
 - a. The precision is having 67% and recall is having 47% for Contraceptive method used label is 0
 - b. The precision is having 64% and recall is having 81% for Contraceptive method used label is 1
 - c. The overall accuracy is having 65%

Comment:

- Accuracy is having 65% for all three models for test data
- Accuracy is having 75% in CART Model and other 2 model is having 67% for training data
- 2.4 Inference: Basis on these predictions, what are the insights and recommendations. Please explain and summarise the various steps performed in this project. There should be proper business interpretation and actionable insights present