CB n°7 - Isométries - Sujet 1

EXERCICE 1

Préciser la nature et les éléments caractéristiques de l'endomorphisme de \mathbb{R}^3 admettant pour matrice dans la base canonique :

$$A = \frac{1}{4} \begin{pmatrix} -1 & -\sqrt{6} & 3\\ \sqrt{6} & 2 & \sqrt{6}\\ 3 & -\sqrt{6} & -1 \end{pmatrix}$$

EXERCICE 2

Donner la matrice dans la base canonique de \mathbb{R}^3 de la rotation d'axe Vect $\{(1,1,1)\}$, d'angle $\frac{\pi}{3}$.

EXERCICE 3

Donner la matrice dans la base canonique de \mathbb{R}^3 de la composée de la rotation d'axe Vect $\{(1,1,0)\}$, d'angle $-\frac{\pi}{2}$, et de la réflexion par rapport au plan d'équation x+y=0.

${\rm CB}\ {\rm N}^{\circ}7$ - Isométries - Sujet 2

EXERCICE 1

Préciser la nature et les éléments caractéristiques de l'endomorphisme de \mathbb{R}^3 admettant pour matrice dans la base canonique :

$$A = \frac{1}{2} \begin{pmatrix} -1 & 1 & -\sqrt{2} \\ 1 & -1 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 0 \end{pmatrix}$$

EXERCICE 2

Donner la matrice dans la base canonique de \mathbb{R}^3 de la reflexion par rapport au plan d'équation x + y - z = 0.

EXERCICE 3

Donner la matrice dans la base canonique de \mathbb{R}^3 de la composée de la rotation d'axe $\mathrm{Vect}\{(1,1,1)\}$, d'angle $\frac{-2\pi}{3}$, et de la réflexion par rapport au plan d'équation x+y+z=0.

Spé PT B CB7 - 2020-2021