(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 16. Januar 2003 (16.01.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/004020 A1

- (51) Internationale Patentklassifikation⁷: A61K 31/4025, 31/427, C07D 207/34, 405/12, 401/12, 403/12, 233/90, 417/12, 277/46, 213/82, 491/10, A61K 31/4178
- (21) Internationales Aktenzeichen: PCT/EP02/07215
- (22) Internationales Anmeldedatum:

29. Juni 2002 (29.06.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

101 32 686.6

5. Juli 2001 (05.07.2001) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BOEHRINGER INGELHEIM PHARMA KG [DE/DE]; Binger Strasse 173, 55216 Ingelheim am Rhein (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): PRIEPKE, Henning [DE/DE]; Birkenharder Strasse 11, 88447 Warthausen (DE). HAUEL, Norbert [DE/DE]; Marderweg 12, 88433 Schemmerhofen (DE). DAHMANN, Georg [DE/DE]; Bahnhofstrasse 14, 88448 Attenweiler (DE). THOMAS, Leo [DE/DE]; Georg-Schinbein-Strasse 221, 88400 Biberach (DE). MARK, Michael [DE/DE]; Hugo-Häring-Strasse 50, 88400 Biberach (DE).

- (74) Gemeinsamer Vertreter: BOEHRINGER INGEL-HEIM PHARMA KG; Binger Strasse 173, 55216 Ingelheim am Rhein (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- **(54) Title:** HETEROARYL CARBOXYLIC ACID AMIDES, THE PRODUCTION THEREOF AND THE USE OF THE SAME AS INHIBITORS OF THE MICROSOMAL TRIGLYCERIDE TRANSFER PROTEIN (MTP)
- **(54) Bezeichnung:** HETEROARYLCARBONSÄUREAMIDE, IHRE HERSTELLUNG UND IHRE VERWENDUNG ALS INHIBITOREN DES MIKROSMALEN TRIGLYCERID-TRANSFERPROTEINS (MTP)

- (57) Abstract: The invention relates to heteroaryl carboxylic acid amides of general formula (I) wherein A^a, R^a, X₁ to X₄, Het and R⁵ to R⁷ are as defined in patent claim 1, and the isomers and salts of the same, especially the physiologically compatible salts thereof, representing valuable inhibitors of the microsomal triglyceride transfer protein (MTP). The invention also relates to pharmaceuticals containing said compounds, the use thereof and the production of the same.
- **(57) Zusammenfassung:** Die vorliegende Erfindung betrifft Heteroarylcarbonsäureamide der allgemeinen
- Formel (I), in der A^a , R^a , X_1 bis X_4 , Het und R^5 bis R^7 wie im Anspruch 1 definiert sind, deren Isomere und deren Salze, insbesondere deren physiologisch verträgliche Salze, welche wertvolle Inhibitoren des mikrosomalen Triglyzerid-Transferproteins (MTP) darstellen, diese Verbindungen enthaltende Arzneimittel und deren Verwendung sowie deren Herstellung.

HETEROARYLCARBONSÄUREAMIDE, IHRE HERSTELLUNG UND IHRE VERWENDUNG ALS INHIBITOREN DES MIKROSMALEN TRIGLYCERID-TRANSFERPROTEINS (MTP)

Gegenstand der vorliegenden Erfindung sind Heteroarylcarbonsäureamide der allgemeinen Formel

$$\begin{array}{c|cccc}
R^a & & & & & & \\
A^a & O & & & & & \\
X_1 & & & & & & \\
X_2 & & & & & & \\
X_3 & & & & & & \\
\end{array}$$
Het $\begin{array}{c|cccc}
R^6 & & & & & \\
N & & & & & \\
R^7 & & & & & \\
\end{array}$ (1),

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträgliche Salze, welche wertvolle pharmakologische Eigenschaften aufweisen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung.

Die Verbindungen der obigen allgemeinen Formel I stellen wertvolle Inhibitoren des mikrosomalen Triglyzerid-Transferproteins (MTP) dar und eignen sich daher zur Senkung der Plasmaspiegel der atherogenen Lipoproteine.

In der obigen allgemeinen Formel I bedeutet

X₁ die Gruppe CR¹,

20 X₂ die Gruppe CR²,

5

10

15

25

X₃ die Gruppe CR³ und

X₄ die Gruppe CR⁴ oder

eine oder zwei der Gruppen X_1 bis X_4 jeweils ein Stickstoffatom und die restlichen der Gruppen X_1 bis X_4 drei oder zwei der Gruppen CR^1 bis CR^4 ,

wobei R¹, R², R³ und R⁴ jeweils ein Wasserstoffatom oder

5

15

20

eine oder zwei der Gruppen R^1 bis R^4 unabhängig voneinander jeweils ein Fluor-, Chlor- oder Bromatom, eine C_{1-3} -Alkylgruppe, eine Trifluormethyl-, Hydroxy-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino- oder Di-(C_{1-3} -alkyl)- aminogruppe darstellen und die restlichen der Gruppen R^1 bis R^4 jeweils ein Wasserstoffatom bedeuten,

wobei R⁴ zusätzlich zusammen mit R⁵ die Bedeutung einer –(CH₂)_n-Brücke annehmen kann, in der n die Zahl 1, 2 oder 3 darstellt, und

A^a eine Bindung, ein Sauerstoff- oder Schwefelatom, eine -NH-, -N(C₁₋₃-Alkyl)-, Sulfinyl-, Sulfonyl- oder Carbonylgruppe,

eine der Gruppen - CH_2 -, - $(CH_2)_2$ -, -CH=CH-, -C=C-, - OCH_2 -, - CH_2 O-, -NH- CH_2 -, - CH_2 -NH-, -NH-CO-, -CO-NH-, -NH- SO_2 - oder - SO_2 -NH-,

in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

25 R^a eine Phenyl-, 1-Naphthyl- oder 2-Naphthylgruppe,

eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

eine gegebenenfalls durch eine C₁₋₄-Alkyl- oder C₁₋₄-Alkylcarbonylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₄-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₄-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

10

5

wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können und

15

20

wobei die vorstehend genannten Phenyl- und Naphthylgruppen sowie die mono- und bicyclischen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chloroder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluor-methyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, N-(C₁₋₃-Alkyl)-acetylamino-, Propionyl-amino-, N-(C₁₋₃-Alkyl)-propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können.

25

eine C₃₋₇-Cycloalkylgruppe, wobei

30

jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrests durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonylgruppe oder durch eine gegebenenfalls durch eine C_{1-5} -Alkyl-, Phenyl-,

C₁₋₄-Alkyl-carbonyl-, C₁₋₄-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte lminogruppe ersetzt sein kann,

eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

5

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

10

jeweils die Methylengruppe in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine Hydroxycarbonyl-, C_{1-3} -Alkoxycarbonyl-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Aminocarbonyl-, C_{1-3} -Alkylamino-carbonyl-, Di-(C_{1-3} -alkyl)-aminocarbonyl- oder Phenyl- C_{1-3} -alkylaminogruppe substituiert oder

15

durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonylgruppe oder durch eine gegebenenfalls durch eine C_{1-5} -Alkyl-, Phenyl-, C_{1-4} -Alkyl-carbonyl-, C_{1-4} -Alkoxy-carbonyl-, C_{1-3} -Alkyl-aminocarbonyl- oder Di-(C_{1-3} -alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

20

in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann oder

25

eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,

30

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

 R^5 ein Wasserstoffatom oder eine C_{1-5} -Alkylgruppe,

* 3

117.29

5

Het eine über zwei Kohlenstoffatome oder, sofern Het eine 2-bindige Pyrrolgruppe bedeutet, auch über ein Kohlenstoff- und das Imino-Stickstoffatom, wobei letzteres mit der benachbarten Carbonylgruppe in Formel (I) verknüpft ist, gebundene 5-gliedrige Heteroarylengruppe, die

eine durch die Gruppe R⁹ substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

eine durch die Gruppe R⁹ substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom,

wobei R^9 ein Wasserstoffatom, eine C_{1-5} -Alkylgruppe, eine terminal durch eine Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)-amino- oder C_{1-5} -Alkoxy-carbonyl-aminogruppe substituierte C_{2-3} -Alkylgruppe, eine Carboxy- C_{1-3} -alkyl-, C_{1-3} -Alkoxy-carbonyl- C_{1-3} -alkyl-, Phenyl-, Phenyl- C_{1-3} -alkyl-, C_{1-5} -Alkylcarbonyl- oder Phenylcarbonylgruppe bedeutet oder R^9 zusammen mit R^6 eine $-(CH_2)_p$ - Brücke darstellt, in der p die Zahl 2 oder 3 bedeutet,

20

15

oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält.

25

30

oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₅-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, N-(C₁₋₃-Alkyl)-acetylamino, Propionylamino-, N-(C₁₋₃-Alkyl)-propionylamino-, Acetyl-, Propionyl-, Benzoyl-,

C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- Di-(C₁₋₃-alkyl)-amino-carbonyl- oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als ein Heteroatom enthaltenden 5-gliedrigen monocyclischen Heteroaryl-resten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

R⁶ ein Wasserstoffatom oder eine C₁₋₆-Alkylgruppe,

R⁷ eine C₁₋₉-Alkylgruppe,

10

5

eine geradkettige oder verzweigte, einfach, zweifach oder dreifach ungesättigte C_{3-9} -Alkenyl- oder C_{3-9} -Alkinylgruppe, wobei die Mehrfachbindungen von der Stickstoff-Kohlenstoff-Bindung isoliert sind,

eine geradkettige C_{2-6} -Alkylgruppe, die terminal durch eine Amino-, C_{1-3} -Alkylaminooder Di-(C_{1-3} -alkyl)-aminogruppe substituiert ist,

eine durch einen C₃₋₇-Cycloalkylrest substituierte C₁₋₆-Alkylgruppe, wobei

ein Wasserstoffatom in 3-Stellung des Cyclopentylrestes und in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrestes jeweils durch eine Hydroxy-, Hydroxy-C₁₋₃-alkyl, C₁₋₅-Alkoxy-, C₁₋₅-Alkoxy-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkoxy-C₁₋₃-alkyl, Amino-, C₁₋₅-Alkylamino-, Di-(C₁₋₅-alkyl)amino-, Phenyl-C₁₋₃-alkylamino-, C₁₋₅-Alkyl-carbonylamino-, Benzoylamino-, Amino-C₁₋₃-alkyl, C₁₋₃-Alkylamino-C₁₋₃-alkyl, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkyl-, Phenylamino-Carbonyl-, Phenyl-C₁₋₃-alkylamino-carbonyl-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe ersetzt sein kann oder

jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrestes durch ein Sauerstoff- oder Schwefelatom oder durch eine gegebenenfalls
durch eine C₁₋₆-Alkyl-, Phenyl-, C₁₋₆-Alkyl-carbonyl-, Benzoyl-, Phenyl-(C₁₋₃-al-

kyl)-carbonyl-, C_{1-6} -Alkyl-aminocarbonyl-, Di-(C_{1-5} -alkyl)-aminocarbonyl-, Phenyl-aminocarbonyl-, N-(C_{1-3} -Alkyl)-phenylaminocarbonyl-, Phenyl- C_{1-3} -alkylaminocarbonyl- oder N-(C_{1-3} -Alkyl)-phenyl- C_{1-3} -alkylamino-carbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

5

10

in einem 5- oder 6-gliedrigen Cycloalkylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₅-Alkylamino-carbonyl-, Di-(C₁₋₅-alkyl)amino-carbonyl-, Phenyl-C₁₋₃-alkylamino-carbonyl- oder C₁₋₅-Alkoxy-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

eine gegebenenfalls durch eine C₃₋₇-Cycloalkylgruppe substituierte C₁₋₆-Alkylgruppe, die

durch eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe,

durch eine Phenyl-, 1-Naphthyl- oder 2-Naphthylgruppe,

durch eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

25

eine gegebenenfalls durch eine C_{1-3} -Alkyl-, Trifluormethyl-, Phenyl-, Phenyl- C_{1-3} -alkyl-, C_{1-3} -Alkylcarbonyl-, Phenylcarbonyl- oder Phenyl- C_{1-3} -alkylcarbonylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

30

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält.

5

durch eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

10

wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können.

15

wobei die vorstehend genannten Phenyl- und Naphthylgruppen sowie die mono- und bicyclischen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₅-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl-, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl-, C₁₋₅-Alkoxy-carbonylamino-C₁₋₃-alkyl-, Acetylamino-, Propionylamino-, N-(C₁₋₃-Alkyl)-benzoylamino-, Acetyl-, Propionyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-alkyl, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)aminocarbonyl-, oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können.

25

20

substituiert ist,

eine durch einen Phenylrest und eine Carboxy-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte C₁₋₆-Alkylgruppe,

eine Phenyl-C₂₋₅-alkenylen-CH₂-, Phenyl-C₂₋₅-alkinylen-CH₂-, Heteroaryl-C₂₋₅-alkenylen-CH₂- oder Heteroaryl-C₂₋₅-alkinylen-CH₂-Gruppe, in denen ein Wasserstoffatom der Methylengruppe in Position 1 durch eine C₁₋₃-Alkylgruppe ersetzt sein kann und davon unabhängig der Phenylteil sowie der Heteroarylteil durch Fluor-, Chlor- oder Bromatome, durch C₁₋₆-Alkyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl-, Heteroaryl- oder Cyanogruppen mono- oder disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können und die Disubstitution durch zwei aromatische Gruppen ausgeschlossen ist,

10

5

wobei Heteroaryl eine über ein Kohlenstoff-oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

15

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

20

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

25

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

30

wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können,

die im C₁₋₃-Alkylteil gegebenenfalls durch eine C₁₋₄-Alkyl- oder C₃₋₅-Cycloalkylgruppe substituierte Gruppe R^b-A^b-E^b-C₁₋₃-alkyl-, in der

R^b eine gegebenenfalls durch Fluor-, Chlor-, Brom- oder lodatome, durch C₁₋₄-Al-kyl-, C₂₋₄-Alkenyl-, C₂₋₄-Alkinyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl-, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppen mono- oder disubstituierte Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können,

eine 5-gliedrige Heteroarylgruppe, die

15

10

5

über ein Kohlenstoffatom oder, sofern A^b eine Bindung, eine $-CH_2$ -, $-(CH_2)_2$ -, Sulfonyl- oder Carbonylgruppe darstellt, auch über ein Stickstoffatom gebunden sein kann und die

20

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

25

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

30

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

5

10

15

20

25

30

wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können,

wobei die vorstehend genannten mono- und bicyclischen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, C₂₋₄-Alkenyl-, C₂₋₄-Alkinyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

eine C₃₋₇-Cycloalkylgruppe, in der

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloal-kylrests durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl-, Sulfonyl- oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, C₁₋₃-Alkyl-carbonyl-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclopentylgruppe oder in 3- oder 4-Stellung einer Cyclohexyl- oder Cycloheptylgruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylendioxyoder 1,3-Propylendioxygruppe ersetzt sein können und in den so gebildeten

Ringen ein oder zwei Wasserstoffatome durch C₁₋₃-Alkylgruppen ersetzt sein Können,

eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

5

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

10

jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cycloal-kyleniminogruppe durch eine Hydroxy- C_{1-3} -alkyl-, C_{1-6} -Alkoxy- C_{1-3} -alkyl-, Hydroxycarbonyl-, C_{1-6} -Alkoxycarbonyl-, Aminocarbonyl-, C_{1-3} -Alkylaminocarbonyl-, Di-(C_{1-3} -alkyl)-aminocarbonyl-,4- bis 7-gliedrige Cycloalkylenimino-, Phenyl-, 4-(C_{1-3} -Alkyl)-1,2,4-triazol-3-yl-, Phenyl- C_{1-3} -alkylamino- oder N-(C_{1-3} -Alkyl)-phenyl- C_{1-3} -alkylaminogruppe substituiert oder

15

20

durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonyl- gruppe oder durch eine gegebenenfalls durch eine C_{1-3} -Alkyl-, Phenyl-, C_{1-3} -Alkyl-carbonyl-, Benzoyl-, Phenyl- C_{1-3} -alkyl-carbonyl-, C_{1-3} -Alkyl-aminocarbonyl-, Di-(C_{1-3} -alkyl)-aminocarbonyl-, Phenylaminocarbonyl- oder N-(C_{1-3} -Alkyl)-phenylaminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

25

30

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylendioxyoder 1,3-Propylendioxygruppe ersetzt sein können und in den so gebildeten Ringen ein oder zwei Wasserstoffatome durch C₁₋₃-Alkylgruppen ersetzt sein können oder

in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

10

5

 A^b eine Bindung, ein Sauerstoff- oder Schwefelatom, eine -NH-, -N(C_{1-3} -Alkyl)-, Sulfinyl-, Sulfonyl- oder eine Carbonylgruppe,

eine der Gruppen - CH_2 -, - $(CH_2)_2$ -, -O- CH_2 -, - CH_2 -O-, NH- CH_2 -, - CH_2 -NH-, -NH-CO-, -CO-NH-, -NH- SO_2 -, - SO_2 -NH-, -CH=CH- oder -C=C-,

20

15

in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe A^b nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^b verknüpft ist,

25

30

E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluor-methoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl-, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppe substituierte Phenylengruppe,

5

15

20

25

30

die im C_{1-3} -Alkylteil gegebenenfalls durch eine C_{1-4} -Alkyl- oder C_{3-5} -Cycloalkylgruppe substituierte Gruppe R^c - A^c - E^c - C_{1-3} -alkyl-, in der

R^c die vorstehend für R^b erwähnten Bedeutungen annimmt, wobei eine Bezugnahme auf A^b durch eine Bezugnahme auf A^c zu ersetzen ist,

 A^c die vorstehend für A^b erwähnten Bedeutungen annimmt, wobei eine Bezugnahme auf R^b durch eine Bezugnahme auf R^c zu ersetzen ist,

E^c eine über zwei Kohlenstoffatome oder über ein Kohlenstoffatom und ein Imino-Stickstoffatom gebundene 5-gliedrige Heteroarylengruppe, wobei das Iminostickstoffatom der Heteroarylengruppe nicht mit einem Heteroatom der Gruppe A^c verknüpft ist und wobei die Heteroarylengruppe

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält, oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält,

wobei an die vorstehend erwähnten 5-gliedrigen, ein oder zwei Heteroatome enthaltenden Heteroarylengruppen sowie an die vorstehend erwähnten 6-gliedrigen Heteroarylengruppen über zwei benachbarte Kohlenstoffatome

ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylengruppen über den heteroaromatischen oder/und den carbocyclischen Teil gebunden sein können,

5

und wobei die vorstehend genannten mono- und bicyclischen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppe substituiert sein können,

10

oder R^6 und R^7 zusammen eine n-Alkylen-Brücke mit 3 bis 6 Kohlenstoffatomen, in der

15

ein oder zwei Wasserstoffatome jeweils durch eine C_{1-3} -Alkylgruppe ersetzt sein können oder/und

20

eine –CH₂-CH₂-Gruppe durch eine 1,2-verknüpfte Phenylengruppe ersetzt sein kann, die durch Fluor-, Chlor- oder Bromatome, durch C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Cyano-, Phenyloxy- oder Phenyl-C₁₋₃-alkylgruppen mono- oder disubstituiert sein kann, wobei eine Disubstitution mit der letztgenannten Gruppe ausgeschlossen ist,

25

30

wobei die vorstehend genannten Phenyloxy- und Phenyl- C_{1-3} -alkylgruppe im Phenylteil ihrerseits durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetylamino-, oder Cyanogruppe substituiert sein können,

- 16 -

oder jeweils das Kohlenstoffatom in Position 3 einer n-Pentylen- oder n-Hexylen- gruppe durch eine terminal durch eine Phenyl-, Cyano-, Hydroxy-, C_{1-3} -Alkoxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)-amino- oder eine 5- bis 7-gliedrige Cycloalkyleniminogruppe substituierte C_{1-3} -Alkylgruppe, durch eine Carboxy-, C_{1-3} -Alkoxycarbonyl-, Amino- C_{1-3} -alkyl-, C_{1-3} -Alkylamino- C_{1-3} -alkyl-, N- C_{1-3} -Alkyl-N-(C_{1-3} -alkyl-carbonyl)-amino- C_{1-3} -alkyl-, Di-(C_{1-3} -alkyl)-amino- C_{1-3} -alkyl-, Aminocarbonyl-, C_{1-3} -Alkylamino-carbonyl- oder Di-(C_{1-3} -alkyl)-aminocarbonyl- gruppe monosubstituiert oder durch eine Phenylgruppe und eine Cyano-, Hydroxy- oder C_{1-3} -Alkoxygruppe disubstituiert sein kann oder

10

15

5

die Methylengruppe in Position 3 einer n-Pentylen- oder n-Hexylengruppe durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonylgruppe oder durch eine gegebenenfalls durch eine C_{1-3} -Alkyl-, Phenyl- C_{1-3} -alkyl-, C_{1-3} -Al-kyl-carbonyl-, Benzoyl-, C_{1-3} -Alkyl-aminocarbonyl-, Di-(C_{1-3} -alkyl)-aminocarbonyl-, Phenylaminocarbonyl- oder N-(C_{1-3} -Alkyl)-phenylaminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

eine Methylengruppe in Position 1 in einer n-Butylen-, n-Pentylen- oder n-Hexylengruppe durch eine Carbonylgruppe ersetzt sein kann,

20

25

wobei die bei der Definition der vorstehend genannten Reste als unsubstituiert oder monosubstituiert erwähnten Phenylgruppen sowie aromatischen oder heteroaromatischen Molekülteile, sofern nichts anderes erwähnt wurde, im Kohlenstoffgerüst gegebenenfalls zusätzlich durch Fluor-, Chlor- oder Bromatome, durch C₁₋₃-Alkylgruppen, durch Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppen substituiert sein können, wobei die Substituenten gleich oder verschieden sein können und die resultierenden aromatischen Gruppen und Molekülteile maximal disubstituiert sind,

- 17 -

die Wasserstoffatome in den bei der Definition der vorstehend genannten Reste erwähnten C₁₋₃-Alkyl- und Alkoxygruppen teilweise oder ganz durch Fluoratome ersetzt sein können und

- die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde.
- Die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen können durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein,
- desweiteren können die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein und somit in Form eines Prodrug-Restes vorliegen. Derartige Gruppen werden beispielsweise in der WO 98/46576 und von N.M. Nielsen et al. in International Journal of Pharmaceutics 39, 75-85 (1987) beschrieben.
- Unter einer in-vivo in eine Carboxygruppe überführbare Gruppe ist beispielsweise eine Hydroxymethylgruppe, eine mit einem Alkohol veresterte Carboxygruppe, in der der alkoholische Teil vorzugsweise ein C₁₋₆-Alkanol, ein Phenyl-C₁₋₃-alkanol, ein C₃₋₉-Cycloalkanol, wobei ein C₅₋₈-Cycloalkanol zusätzlich durch ein oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, ein C₅₋₈-Cycloalkanol, in dem eine Methylengruppe in 3- oder 4-Stellung durch ein Sauerstoffatom oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Phenyl-C₁₋₃-alkyl-, Phenyl-C₁₋₃-alkoxycarbonyl- oder C₂₋₆-Alkanoylgruppe substituierte Iminogruppe ersetzt ist und der Cycloalkanolteil zusätzlich durch ein oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, ein C₄₋₇-Cycloalkenol, ein C₃₋₅-Alkenol, ein Phenyl-C₃₋₅-alkenol, ein C₃₋₅-Alkinol oder Phenyl-C₃₋₅-alkinol mit der Maßgabe, daß keine Bindung an das Sauerstoffatom von einem Kohlenstoffatom ausgeht, welches eine Doppel- oder Dreifachbindung trägt, ein

C₃₋₈-Cycloalkyl-C₁₋₃-alkanol, ein Bicycloalkanol mit insgesamt 8 bis 10 Kohlenstoff-

- 18 -

atomen, das im Bicycloalkylteil zusätzlich durch eine oder zwei C₁₋₃-Alkylgruppen substituiert sein kann, ein 1,3-Dihydro-3-oxo-1-isobenzfuranol oder ein Alkohol der Formel

R_p-CO-O-(R_qCR_r)-OH,

in dem

 R_p eine C_{1-8} -Alkyl-, C_{5-7} -Cycloalkyl-, C_{1-8} -Alkyloxy-, C_{5-7} -Cycloalkyloxy-, Phenyl- oder Phenyl- C_{1-3} -alkylgruppe,

10

25

30

5

 R_q ein Wasserstoffatom, eine C_{1-3} -Alkyl-, C_{5-7} -Cycloalkyl- oder Phenylgruppe und

R_r ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellen,

unter einer unter physiologischen Bedingungen negativ geladenen Gruppe beispielsweise eine Tetrazol-5-yl-, Phenylcarbonylaminocarbonyl-, Trifluormethylcarbonylaminocarbonyl-, C₁₋₆-Alkylsulfonylamino-, Phenylsulfonylamino-, Benzylsulfonylamino-, Trifluormethylsulfonylamino-, C₁₋₆-Alkylsulfonylaminocarbonyl-, Phenylsulfonylaminocarbonyl-, Benzylsulfonylaminocarbonyl- oder Perfluor-C₁₋₆-alkylsulfonyl- aminocarbonylgruppe

und unter einem von einer Imino- oder Aminogruppe in-vivo abspaltbaren Rest beispielsweise eine Hydroxygruppe, eine Acylgruppe wie eine gegebenenfalls durch Fluor-, Chlor-, Brom- oder Jodatome, durch C₁₋₃-Alkyl- oder C₁₋₃-Alkoxygruppen mono- oder disubstituierte Phenylcarbonylgruppe, wobei die Substituenten gleich oder verschieden sein können, eine Pyridinoylgruppe oder eine C₁₋₁₆-Alkanoylgruppe wie die Formyl-, Acetyl-, Propionyl-, Butanoyl-, Pentanoyl- oder Hexanoylgruppe, eine 3,3,3-Trichlorpropionyl- oder Allyloxycarbonylgruppe, eine C₁₋₁₆-Alkoxycarbonyl-oder C₁₋₁₆-Alkylcarbonyloxygruppe, in denen Wasserstoffatome ganz oder teilweise durch Fluor- oder Chloratome ersetzt sein können, wie die Methoxycarbonyl-, Ethoxycarbonyl-, Propoxycarbonyl-, Isopropoxycarbonyl-, Butoxycarbonyl-, tert.-

carbonyl-, Decyloxycarbonyl-, Undecyloxycarbonyl-, Dodecyloxycarbonyl-, Hexadecyloxycarbonyl-, Methylcarbonyloxy-, Ethylcarbonyloxy-, 2,2,2-Trichlorethyl-carbonyloxy-, Propylcarbonyloxy-, Isopropylcarbonyloxy-, Butylcarbonyloxy-, tert.Butylcarbonyloxy-, Pentylcarbonyloxy-, Hexylcarbonyloxy-, Octylcarbonyloxy-, Nonylcarbonyloxy-, Decylcarbonyloxy-, Undecylcarbonyloxy-, Dodecylcarbonyloxy- oder Hexadecylcarbonyloxygruppe, eine Phenyl-C₁₋₆-alkoxycarbonylgruppe wie die Benzyloxycarbonyl-, Phenylethoxycarbonyl- oder Phenylpropoxycarbonylgruppe, eine 3-Amino-propionylgruppe, in der die Aminogruppe durch C₁₋₆-Alkyl- oder C₃₋₇-Cycloalkylgruppen mono- oder disubstituiert und die Substituenten gleich oder verschieden sein können, eine C₁₋₃-Alkylsulfonyl-C₂₋₄-alkoxycarbonyl-, C₁₋₃-Alkoxy-C₂₋₄-alkoxy-C₂₋₄-alkoxycarbonyl-, R_p-CO-O-(R_qCR_r)-O-CO-, C₁₋₆-Alkyl-CO-NH-(R_sCR_t)-O-CO- oder C₁₋₆-Alkyl-CO-O-(R_sCR_t)-(R_sCR_t)-O-CO-Gruppe, in denen R_p bis R_r wie vorstehend erwähnt definiert sind,

R_s und R_t, die gleich oder verschieden sein können, Wasserstoffatome oder C₁₋₃-Alkylgruppen darstellen,

zu verstehen.

5

10

Bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen X₁ bis X₄ wie vorstehend erwähnt definiert sind,

A^a eine Bindung, ein Sauerstoffatom, eine -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder Carbonylgruppe,

eine der Gruppen - CH_2 -, - $(CH_2)_2$ -,-NH- CH_2 -, - CH_2 -NH-, -NH-CO-, -CO-NH-, -NH- SO_2 - oder - SO_2 -NH-,

in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe

A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

Ra eine Phenylgruppe,

5

20

25

eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

eine gegebenenfalls durch eine C₁₋₄-Alkyl- oder C₁₋₄-Alkylcarbonylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

eine gegebenenfalls durch eine C₁₋₄-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom enthält,

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Phenyl und Heteroarylgruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-4} -Alkylgruppe, durch eine C_{3-7} -Cycloalkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetylamino-, N-(C_{1-3} -Alkyl)-acetylamino-, Acetyl- oder Cyanogruppe substituiert sein können,

eine C₃₋₇-Cycloalkylgruppe, wobei

die Methylengruppe in 4-Stellung eines 6-gliedrigen Cycloalkylrests durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Phenyl-, C₁₋₄-Alkyl-carbonyl- oder C₁₋₄-Alkoxy-carbonylgruppe substituierte Iminogruppe ersetzt sein kann,

30 eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

5

25

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

jeweils die Methylengruppe in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₅-Alkyl-, Phenyl-, C₁₋₄-Alkyl-carbonyl-, C₁₋₄-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,

wobei R^8 ein Wasserstoffatom oder eine C_{1-3} -Alkylgruppe darstellt,

20 R⁵ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

Het eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe, die

eine durch die Gruppe R⁹ substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

eine durch die Gruppe R⁹ substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom,

wobei R⁹ ein Wasserstoffatom, eine C₁₋₅-Alkylgruppe, eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino- oder C₁₋₅-Alkoxy- carbonyl-aminogruppe substituierte –C₂₋₃-Alkylgruppe, eine

Carboxy- C_{1-3} -alkyl-, C_{1-3} -Alkoxy-carbonyl- C_{1-3} -alkyl-, Phenyl-, Phenyl- C_{1-3} -alkyl-, C_{1-5} -Alkylcarbonyl- oder Phenylcarbonylgruppe bedeutet oder R^9 zusammen mit R^6 eine $-(CH_2)_p$ - Brücke darstellt, in der p die Zahl 2 oder 3 bedeutet,

5

oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

10

15

25

oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkylgruppe, durch eine Cyclopropyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetylamino-, N-(C_{1-3} -Alkyl)-acetylamino, Acetyl-, C_{1-3} -Alkylamino-carbonyl- oder Di-(C_{1-3} -alkyl)amino-carbonylgruppe substituiert sein können,

20 R⁶ ein Wasserstoffatom oder eine C₁₋₄-Alkylgruppe,

R⁷ eine C₁₋₆-Alkylgruppe,

eine geradkettige C_{2-6} -Alkylgruppe, die terminal durch eine Amino-, C_{1-3} -Alkylaminooder Di-(C_{1-3} -alkyl)-aminogruppe substituiert ist,

eine durch einen C₃₋₇-Cycloalkylrest substituierte C₁₋₆-Alkylgruppe, wobei

ein Wasserstoffatom in 3-Stellung des Cyclopentylrestes und in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrestes jeweils durch eine C₁₋₅-Alkoxy-, Phenyl-C₁₋₃-alkoxy-C₁₋₃-alkyl-, Phenyl-C₁₋₃-alkylamino-, C₁₋₅-Alkyl-carbonylamino-, Benzoyl-amino-, Phenyl-C₁₋₃-alkylamino-C₁₋₃-alkyl-, Benzoylamino-C₁₋₃-alkyl-, Phenyl-

5

20

25

30

amino-carbonyl-, Phenyl-C₁₋₃-alkylamino-carbonyl-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe ersetzt sein kann oder

jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrestes durch eine gegebenenfalls durch eine Phenyl-, C_{1-6} -Alkyl-carbonyl-, Benzoyl-, Phenyl-(C_{1-3} -alkyl)-carbonyl-, Phenylaminocarbonyl-, N-(C_{1-3} -Alkyl)-phenylaminocarbonyl-, Phenyl- C_{1-3} -alkylamino-carbonyl- oder N-(C_{1-3} -Alkyl)-phenyl- C_{1-3} -alkyl-amino-carbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

in einem 5- oder 6-gliedrigen Cycloalkylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₃-Alkylamino-carbonyl-,

Di-(C₁₋₃-alkyl)amino-carbonyl- oder C₁₋₅-Alkoxy-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

eine gegebenenfalls durch eine C_{3-7} -Cycloalkylgruppe substituierte C_{1-6} -Alkylgruppe, die

durch eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe,

durch eine Phenyl-, 1-Naphthyl- oder 2-Naphthylgruppe,

durch eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

eine gegebenenfalls durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

5

10

15

25

30

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom enthält,

durch eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Phenylgruppen sowie die Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl-, C₁₋₅-Alkoxy-carbonylamino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)amino-carbonylgruppe monosubstituiert oder durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

substituiert ist,

eine durch einen Phenylrest und eine Carboxy-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte C₁₋₆-Alkylgruppe,

eine Phenyl-C₂₋₃-alkenylen-CH₂- oder Phenyl-C₂₋₃-alkinylen-CH₂-Gruppe, in denen ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl-, Pyridyl-, Pyrimidinyl-, Pyrazinyl-, Thienyl-, Pyrrolyl-, Pyrazolyl- oder Thiazolylgruppe substituiert sein kann,

die im C_{1-3} -Alkylteil gegebenenfalls durch eine Methylgruppe substituierte Gruppe R^b - A^b - E^b - C_{1-3} -alkyl-, in der

 R^b eine gegebenenfalls durch Fluor-, Chlor- oder Bromatome, durch C_{1-3} -Alkyl-, Cyclopropyl-, Trifluormethyl-, Hydroxy-, C_{1-3} -Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di- $(C_{1-3}$ -alkyl)amino-, Acetylamino-, Acetyl-, Carboxy-, C_{1-3} -Alkoxy-carbonyl-, Aminocarbonyl-, C_{1-3} -Alkylamino-carbonyl-, Di- $(C_{1-3}$ -alkyl)amino-carbonyl- oder Cyanogruppen mono- oder disubstituierte Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können,

eine 5-gliedrige Heteroarylgruppe, die

über ein Kohlenstoffatom oder, sofern A^b eine Bindung, eine $-CH_2$ -, $-(CH_2)_2$ -, Sulfonyl- oder Carbonylgruppe darstellt, auch über ein Stickstoffatom gebunden sein kann und die

15

10

5

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

20

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

25

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

30

wobei die vorstehend genannten Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-,

- 26 -

C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-amino-carbonylgruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

eine C₃₋₇-Cycloalkylgruppe, in der

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

die Methylengruppe in 4-Stellung eines Cyclohexylrests durch ein Sauerstoffatom, durch eine Sulfonylgruppe- oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, C₁₋₃-Alkyl-carbonyl-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclopentylgruppe oder in 3- oder 4-Stellung einer Cyclohexyl- oder Cycloheptylgruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylendioxyoder 1,3-Propylendioxygruppe ersetzt sein können,

eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

5

10

15

20

25

5

10

15

20

25

30

jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine 4- bis 7-gliedrige Cycloalkylenimino-, Phenyloder 4-(C₁₋₃-Alkyl)-1,2,4-triazol-3-ylgruppe substituiert oder

durch ein Sauerstoffatom, durch eine Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, C₁₋₃-Alkyl-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylendioxy- oder 1,3-Propylendioxygruppe ersetzt sein können oder

in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann

A^b eine Bindung, ein Sauerstoffatom, eine -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder eine Carbonylgruppe,

eine der Gruppen -CH₂-, -(CH₂)₂-,-C≅C-, -O-CH₂-, -CH₂-O-, NH-CH₂-, -CH₂-NH-, -NH-CO-, -CO-NH-, -NH-SO₂-, -SO₂-NH-,

in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe A^b nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^b verknüpft ist, und

E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluor-

5

15

20

25

30

methoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, Acetyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppe substituierte Phenylengruppe bedeuten, oder

die Gruppe R^c-A^c-E^c-C₁₋₃-alkyl-, in der

R^c die vorstehend für R^b erwähnten Bedeutungen annimmt, wobei eine Bezugnahme auf A^b durch eine Bezugnahme auf A^c zu ersetzen ist,

A^c eine Bindung, ein Sauerstoffatom, eine -CH₂-, -NH-, -N(C₁₋₃-Alkyl)-, -NH-CO-, -CO-NH- oder Carbonylgruppe,

wobei ein Heteroatom der Gruppe A^c nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^c verknüpft ist, und

E^c eine über zwei Kohlenstoffatome oder über ein Kohlenstoffatom und ein Imino-Stickstoffatom gebundene 5-gliedrige Heteroarylengruppe, wobei das Iminostickstoffatom der Heteroarylengruppe nicht mit einem Heteroatom der Gruppe A^c verknüpft ist und wobei die Heteroarylengruppe

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

- 29 -

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält.

5

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppe substituiert sein können, bedeuten,

10

oder R⁶ und R⁷ zusammen eine n-Alkylen-Brücke mit 4 oder 5 Kohlenstoffatomen darstellen, in der

15

20

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und eine –CH₂-CH₂-Gruppe durch eine 1,2-verknüpfte Phenylengruppe ersetzt sein kann, die durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluor-methyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppe oder durch eine im Phenylteil gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino- oder Cyanogruppe substituierte Phenyloxy-oder Phenyl-C₁₋₃-alkylgruppe substituiert sein kann,

25

30

oder das Kohlenstoffatom in Position 3 einer n-Pentylengruppe durch eine terminal durch eine Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)-amino- oder eine 5- bis 7-gliedrige Cycloalkyleniminogruppe substituierte C_{1-3} -Alkylgruppe, durch eine Phenyl-, C_{1-3} -Alkoxycarbonyl-, Aminocarbonyl-, C_{1-3} -Alkylamino-carbonyl- oder Di-(C_{1-3} -alkyl)-aminocarbonylgruppe monosubstituiert oder durch eine Phenyl-gruppe und eine Cyanogruppe disubstituiert sein kann oder

die Methylengruppe in Position 3 einer n-Pentylengruppe durch ein Sauerstoffatom, durch eine Sulfonylgruppe oder durch eine gegebenenfalls durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkyl-carbonylgruppe substituierte Iminogruppe ersetzt sein kann,

bedeuten, wobei die bei der Definition der vorstehend genannten Reste als unsubstituiert oder monosubstituiert erwähnten Phenylgruppen sowie aromatischen oder heteroaromatischen Molekülteile, sofern nichts anderes erwähnt wurde, im Kohlenstoffgerüst gegebenenfalls zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkylgruppe, durch eine Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppe substituiert sein können,

15

10

5

die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,

20

die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und

25

30

die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

Besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

X₁ die Gruppe CR¹,

5

20

30

X₂ die Gruppe CR²,

X₃ die Gruppe CR³ und

10 X₄ die Gruppe CR⁴ oder

eine der Gruppen X_1 bis X_4 ein Stickstoffatom und die restlichen der Gruppen X_1 bis X_4 drei der Gruppen CR^1 bis CR^4 ,

wobei R¹, R², R³ und R⁴ jeweils ein Wasserstoffatom oder

eine oder zwei der Gruppen R^1 bis R^4 unabhängig voneinander jeweils ein Fluor-, Chlor- oder Bromatom, eine C_{1-3} -Alkylgruppe, eine Trifluormethyl-, Amino-, C_{1-3} -Alkylamino- oder Di-(C_{1-3} -alkyl)-aminogruppe darstellen und die restlichen der Gruppen R^1 bis R^4 jeweils ein Wasserstoffatom bedeuten,

wobei R⁴ zusätzlich zusammen mit R⁵ die Bedeutung einer –(CH₂)_n-Brücke annehmen kann, in der n die Zahl 1, 2 oder 3 darstellt, und

A^a eine Bindung, ein Sauerstoffatom, eine -CH₂-, -(CH₂)₂-, -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder Carbonylgruppe oder eine über das Kohlenstoff- bzw. Schwefelatom mit der Gruppe R^a in Formel (I) verknüpfte -NH-CH₂-, -NH-CO-, -NH-SO₂-Gruppe,

wobei ein Heteroatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist.

Ra eine Phenyl- oder Pyridinylgruppe,

eine über ein Kohlenstoff- oder Stickstoffatom gebundene Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl- oder Thiazolylgruppe,

wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino- oder Cyanogruppe substituiert sein können,

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

5

10

15

20

25

die Methylengruppe in Position 4 einer 6-gliedrigen Cycloalkyleniminogruppe durch eine Methylgruppe substituiert oder durch ein Sauerstoff- oder Schwefelatom oder durch eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe ersetzt sein kann oder

in einer Piperidinogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂-Gruppe durch eine Carbonylgruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

R⁵ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

Het eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe, die

5

10

15

20

eine durch die Gruppe R⁹ substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

eine durch die Gruppe R⁹ substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom enthält,

wobei R^9 ein Wasserstoffatom, eine C_{1-3} -Alkylgruppe, eine terminal durch eine Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)-amino- oder C_{1-4} -Alkoxy-carbonyl-aminogruppe substituierte $-C_{2-3}$ -Alkylgruppe, eine Carboxy- C_{1-3} -alkyl-, C_{1-3} -Alkoxy-carbonyl- C_{1-3} -alkyl- oder C_{1-3} -Alkylcarbonylgruppe bedeutet oder R^9 zusammen mit R^6 eine $-(CH_2)_p$ -Brücke darstellt, in der p die Zahl 2 oder 3 bedeutet.

oder eine Pyridinylen- oder Pyrimidinylengruppe,

wobei die vorstehend genannten Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetylamino- oder Cyanogruppe substituiert sein können,

R⁶ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

R⁷ eine C₁₋₆-Alkylgruppe,

eine geradkettige C_{2-6} -Alkylgruppe, die terminal durch eine Amino-, C_{1-3} -Alkylaminooder Di-(C_{1-3} -alkyl)-aminogruppe substituiert ist,

eine terminal durch einen C₃₋₇-Cycloalkylrest substituierte C₁₋₄-Alkylgruppe, wobei

ein Wasserstoffatom in 4-Stellung eines Cyclohexylrestes durch eine C₁₋₅-Al-koxy-, C₁₋₃-Alkoxy-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkoxy-methyl-, Phenyl-C₁₋₃-alkylamino-, Phenyl-C₁₋₂-alkyl-carbonylamino-, Benzoylamino-, Phenylaminocarbonyl-, Phe-

PCT/EP02/07215

nyl-C₁₋₃-alkyl-aminocarbonyl-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe ersetzt sein kann oder

in einem Cyclopentylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-amino-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

eine gegebenenfalls durch eine C_{3-5} -Cycloalkylgruppe substituierte C_{1-6} -Alkylgruppe, die

durch eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe oder

durch eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, Pyridinyl-, Pyrimidinyl-, Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl-, Thiazolyl- oder Isothiazolylgruppe,

20

25

5

10

wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, C₁₋₄-Alkoxy-carbonylamino-C₁₋₃-alkyl-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino- oder Cyanogruppe substituiert sein können,

30 substituiert ist.

- 35 -

eine durch einen Phenylrest und eine Carboxy- oder C_{1-3} -Alkoxy-carbonylgruppe substituierte C_{1-6} -Alkylgruppe,

eine Phenyl-C₂₋₃-alkinylen-CH₂-Gruppe, in der ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl- oder Cyanogruppe substituiert sein kann,

die im C₁₋₃-Alkylteil gegebenenfalls durch eine Methylgruppe substituierte Gruppe

10 R^b-A^b-E^b-C₁₋₃-alkyl-, in der

 R^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, Hydroxy-, C_{1-3} -Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Carboxy- oder C_{1-3} -Alkoxy-carbonylgruppe substituierte Phenylgruppe,

eine 5-gliedrige Heteroarylgruppe, die

5

15

20

25

30

über ein Kohlenstoffatom oder, sofern A^b eine Bindung darstellt, auch über ein Stickstoffatom gebunden sein kann und die eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

WO 03/004020

5

10

15

20

25

30

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, Phenyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di- (C_{1-3} -alkyl)-amino- oder Acetylaminogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch eine C_{1-4} -Alkylgruppe und einen Substituenten ausgewählt aus Fluor, Chlor, Brom, C_{1-3} -Alkyl, Trifluormethyl, Phenyl, C_{1-3} -Alkoxy und Trifluormethoxy auch disubstituiert sein können,

eine C₃₋₆-Cycloalkylgruppe, wobei

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclopentylgruppe oder in 3- oder 4-Stellung einer Cyclohexylgruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder ein Wasserstoffatom durch eine C_{1-3} -Alkylgruppe ersetzt sein kann oder/und

jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine 4- bis 7-gliedrige Cycloalkylenimino-, Phenyloder 4-(C₁₋₃-Alkyl)-1,2,4-triazol-3-ylgruppe substituiert sein kann oder

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

10

25

30

A^b eine Bindung, ein Sauerstoffatom, eine -CH₂-, -NH-, -O-CH₂-, Carbonyl-, -NH-CO- oder -CO-NH-Gruppe,

in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C_{1-3} -Alkylgruppe ersetzt sein kann,

 E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetylamino- oder C_{1-3} -Alkoxy-carbonylgruppe substituierte Phenylengruppe bedeuten, oder

die Gruppe Rc-Ac-Ec-C₁₋₃-alkyl-, in der

R^c eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte Phenylgruppe oder

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder
ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

Ac eine Bindung,

E^c eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe, die

WO 03/004020

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine Pyridinylen-, Pyridazinylen- oder Pyrimidinylengruppe,

15

10

5

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können, bedeutet,

20

oder R⁶ und R⁷ zusammen eine n-Alkylen-Brücke mit 4 oder 5 Kohlenstoffatomen darstellen, in der

25

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und eine –CH₂-CH₂-Gruppe durch eine gegebenenfalls durch eine Phenyloxy- oder Benzylgruppe substituierte 1,2-verknüpfte Phenylengruppe ersetzt sein kann, wobei

30

die Phenyloxy- oder Benzylgruppe im aromatischen Teil und die Phenylengruppe unabhängig voneinander durch ein Fluor-, Chlor- oder

- 39 -

Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können,

5

oder das Kohlenstoffatom in Position 3 einer n-Pentylengruppe durch eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino- oder N-(Methyl)-acetylaminogruppe oder eine 5- bis 7-gliedrige Cycloalkyleniminogruppe substituierte C₁₋₃-Alkylgruppe monosubstituiert oder durch eine Phenylgruppe und eine Cyanogruppe disubstituiert sein kann,

10

15

bedeuten, wobei die bei der Definition der vorstehend genannten Reste erwähnten Phenylgruppen, sofern nichts anderes erwähnt wurde, durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkylgruppe, durch eine Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Phenyl-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxycarbonyl- oder Cyanogruppe substituiert sein können,

20

die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,

25

die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und

die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

30

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze,

insbesondere jedoch die Verbindungen der obigen allgemeinen Formel I, in denen

X₁ die Gruppe CR¹,

5

20

30

X₂ die Gruppe CR²,

X₃ die Gruppe CR³ und

10 X₄ die Gruppe CR⁴ oder

eine der Gruppen X_1 bis X_4 ein Stickstoffatom und die restlichen der Gruppen X_1 bis X_4 drei der Gruppen \mathbb{CR}^1 bis \mathbb{CR}^4 ,

wobei R¹, R², R³ und R⁴ jeweils ein Wasserstoffatom oder

eine oder zwei der Gruppen R^1 bis R^4 unabhängig voneinander jeweils ein Fluor-, Chlor- oder Bromatom, eine C_{1-3} -Alkylgruppe, eine Trifluormethyl-, Amino-, C_{1-3} -Alkylamino- oder Di-(C_{1-3} -alkyl)-aminogruppe darstellen und die restlichen der Gruppen R^1 bis R^4 jeweils ein Wasserstoffatom bedeuten,

wobei R⁴ zusätzlich zusammen mit R⁵ die Bedeutung einer –(CH₂)_n-Brücke annehmen kann, in der n die Zahl 1, 2 oder 3 darstellt, und

A^a eine Bindung, ein Sauerstoffatom, eine -CH₂-, -(CH₂)₂-, -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder Carbonylgruppe oder eine über das Kohlenstoff- bzw. Schwefelatom mit der Gruppe R^a in Formel (I) verknüpfte -NH-CH₂-, -NH-CO-, -NH-SO₂-Gruppe,

wobei ein Heteroatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

R^a eine Phenyl- oder Pyridinylgruppe,

WO 03/004020

5

10

15

20

eine über ein Kohlenstoff- oder Stickstoffatom gebundene Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl- oder Thiazolylgruppe,

wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino- oder Cyanogruppe substituiert sein können,

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

die Methylengruppe in Position 4 einer 6-gliedrigen Cycloalkyleniminogruppe durch eine Methylgruppe substituiert oder durch ein Sauerstoff- oder Schwefelatom oder durch eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe ersetzt sein kann oder

in einer Piperidinogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂-Gruppe durch eine Carbonylgruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,

25

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

 R^5 ein Wasserstoffatom oder eine $\mathsf{C}_{1\text{--}3}\text{-}\mathsf{Alkylgruppe}$,

Het eine 2,4-verknüpfte Pyrrolylen- oder Imidazolylengruppe, die jeweils über die Position 2 an die benachbarte Carbonylgruppe der Formel I gebunden sind und die

an einem Stickstoffatom durch eine C_{1-3} -Alkylgruppe substituiert sind und im Kohlenstoffgerüst durch eine C_{1-3} -Alkylgruppe oder eine Trifluormethylgruppe substituiert sein können,

5 R⁶ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

10

25

30

R⁷ eine terminal durch einen C₃₋₇-Cycloalkylrest substituierte C₁₋₄-Alkylgruppe, wobei

ein Wasserstoffatom in 4-Stellung eines Cyclohexylrestes durch eine C₁₋₅-Al-koxy-, C₁₋₃-Alkoxy-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkoxy-methyl-, Phenyl-C₁₋₃-alkylamino-, Phenyl-C₁₋₂-alkyl-carbonylamino-, Benzoylamino-, Phenylaminocarbonyl-, Phenyl-C₁₋₃-alkyl-aminocarbonyl-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe ersetzt sein kann oder

in einem Cyclopentylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-amino-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

eine gegebenenfalls durch eine C_{3-5} -Cycloalkylgruppe substituierte C_{1-6} -Alkylgruppe, die

durch eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, Pyridinyl-, Pyrimidinyl-, Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl-, Thiazolyl- oder Isothiazolylgruppe,

wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen

im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-4} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, C_{1-4} -Alkoxy-carbonylamino- C_{1-3} -alkyl-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino- oder Cyanogruppe substituiert sein können,

substituiert ist,

5

15

25

30

eine durch einen Phenylrest und eine Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte C₁₋₆-Alkylgruppe,

eine Phenyl-C₂₋₃-alkinylen-CH₂-Gruppe, in der ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl- oder Cyanogruppe substituiert sein kann,

die im C_{1-3} -Alkylteil gegebenenfalls durch eine Methylgruppe substituierte Gruppe R^b - A^b - E^b - C_{1-3} -alkyl-, in der

20 R^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte Phenylgruppe,

eine 5-gliedrige Heteroarylgruppe, die

über ein Kohlenstoffatom oder, sofern A^b eine Bindung darstellt, auch über ein Stickstoffatom gebunden sein kann und die eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, Phenyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di- (C_{1-3} -alkyl)-amino- oder Acetylaminogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch eine C_{1-4} -Alkylgruppe und einen Substituenten ausgewählt aus Fluor, Chlor, Brom, C_{1-3} -Alkyl, Trifluormethyl, Phenyl, C_{1-3} -Alkoxy und Trifluormethoxy auch disubstituiert sein können,

20

5

10

15

eine C₃₋₆-Cycloalkylgruppe, wobei

25

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclopentylgruppe oder in 3- oder 4-Stellung einer Cyclohexylgruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

30

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine 4- bis 7-gliedrige Cycloalkylenimino-, Phenyloder 4-(C₁₋₃-Alkyl)-1,2,4-triazol-3-ylgruppe substituiert sein kann oder

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

A^b eine Bindung, ein Sauerstoffatom, eine -CH₂-, -NH-, -O-CH₂-, Carbonyl-, -NH-CO- oder -CO-NH-Gruppe,

in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C_{1-3} -Alkylgruppe ersetzt sein kann,

15

5

 E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetylamino- oder C_{1-3} -Alkoxy-carbonylgruppe substituierte Phenylengruppe bedeuten, oder

20

25

die Gruppe R^c - A^c - E^c - C_{1-3} -alkyl-, in der

 R^c eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Carboxy- oder C_{1-3} -Alkoxy-carbonylgruppe substituierte Phenylgruppe oder

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

30

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

5

Ac eine Bindung,

E^c eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe, die

10

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

15

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

20

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine Pyridinylen-, Pyridazinylen- oder Pyrimidinylengruppe,

25

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können, bedeutet,

30

oder R⁶ und R⁷ zusammen eine n-Alkylen-Brücke mit 4 oder 5 Kohlenstoffatomen, in der

WO 03/004020

5

10

20

25

30

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt-sein kann oder/und

eine –CH₂-CH₂-Gruppe durch eine gegebenenfalls durch eine Phenyloxy- oder Benzylgruppe substituierte 1,2-verknüpfte Phenylengruppe ersetzt sein kann, wobei

die Phenyloxy- oder Benzylgruppe im aromatischen Teil und die Phenylengruppe unabhängig voneinander durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können,

oder das Kohlenstoffatom in Position 3 einer n-Pentylengruppe durch eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino- oder N-(Methyl)-acetylaminogruppe oder eine 5- bis 7-gliedrige Cycloalkyleniminogruppe substituierte C₁₋₃-Alkylgruppe monosubstituiert oder durch eine Phenylgruppe und eine Cyanogruppe disubstituiert sein kann,

bedeuten, wobei die bei der Definition der vorstehend genannten Reste erwähnten Phenylgruppen, sofern nichts anderes erwähnt wurde, durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkylgruppe, durch eine Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Phenyl-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können,

die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,

die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und

5

die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

Ganz besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

15

X₁ die Gruppe CR¹,

X₂ die Gruppe CR²,

20 X₃ die Gruppe CR³ und

X₄ die Gruppe CR⁴,

wobei R¹, R², R³ und R⁴ jeweils ein Wasserstoffatom oder

25

eine der Gruppen R¹ bis R⁴ ein Fluor-, Chlor- oder Bromatom, eine C₁₋₃-Alkylgruppe oder eine Trifluormethylgruppe darstellen und die restlichen der Gruppen R¹ bis R⁴ ieweils ein Wasserstoffatom bedeuten,

A^a eine Bindung, ein Sauerstoffatom, eine -CH₂-, -(CH₂)₂-, -NH-, oder -N(C₁₋₃-Alkyl)-Gruppe,

10

15

20

30

wobei ein Stickstoffatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

R^a eine Phenyl-, 2-Pyridinyl-, 3-Pyridinyl- oder 4-Pyridinylgruppe,

eine 1-Pyrrolyl-, 2-Pyrrolyl-, 3-Pyrrolyl-, 2-Thienyl- oder 3-Thienylgruppe,

wobei das Stickstoffatom der Pyrrolylgruppe durch eine C_{1-3} -Alkylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl- oder Trifluormethylgruppe substituiert sein können,

eine Pyrrolidino-, Piperidino- oder Morpholinogruppe

R⁵ ein Wasserstoffatom,

Het eine 2,4-verknüpfte Pyrrolylen- oder Imidazolylengruppe, die jeweils über die Position 2 an die benachbarte Carbonylgruppe der Formel I gebunden sind und die

an einem Stickstoffatom durch eine C_{1-3} -Alkylgruppe substituiert sind und im Kohlenstoffgerüst durch eine C_{1-3} -Alkylgruppe oder eine Trifluormethylgruppe substituiert sein können,

25 R⁶ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

 R^7 die Gruppe R^d – CH_2 - oder R^d – CH_2 - CH_2 -, in denen ein Wasserstoffatom der Methylengruppe in Position 1 durch eine C_{1-3} -Alkylgruppe oder eine Cyclopropylgruppe ersetzt sein kann und in denen

R^d eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, 2-Pyridinyl-, 3-Pyridinyl-, 4-Pyridinyl-, 2-Pyrimidinyl- oder 5-Pyrimidinylgruppe,

wobei die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-4} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy- oder Fluormethoxygruppe substituiert sein können,

bedeutet,

5

eine Phenyl-C≡C-CH₂-Gruppe, in der ein Wasserstoffatom der Methylengruppe in
Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der
Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl- oder Phenylgruppe substituiert sein kann,

die Gruppe R^b-A^b-E^b-CH₂-, in der ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und in der

R^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, Methoxy-, Carboxy- oder Methoxy-carbonylgruppe substituierte Phenylgruppe,

20

15

eine über ein Kohlenstoffatom oder, sofern A^b eine Bindung darstellt, auch über ein Stickstoffatom gebundene Pyrrolyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl-, Thiazolyl-, Isothiazolyl-, Oxadiazol- oder Thiadiazolylgruppe, in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom durch eine C_{1-3} -Alkylgruppe ersetzt sein kann,

25

eine 2-Pyridyl-, 3-Pyridyl-, 4-Pyridyl-, Pyrazinyl-, 2-Pyrimidinyl-, 4-Pyrimidinyl-, 5-Pyrimidinyl-, 3-Pyridazinyl- oder 4-Pyridazinylgruppe,

30

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Phenyl-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-

15

20

amino- oder Acetylaminogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch eine C₁₋₃-Alkylgruppe und einen Substituenten ausgewählt aus Fluor, Chlor, Brom, C₁₋₃-Alkyl, Trifluormethyl, Phenyl, auch disubstituiert sein können,

eine C₅₋₆-Cycloalkylgruppe, wobei

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung der Cyclopentylgruppe oder in 4-Stellung der Cyclohexylgruppe durch eine n-Butylen-,
n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

oder eine 5- bis 6-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl- oder C₁₋₃-Alkoxygruppe substituierten Phenylring kondensiert sein kann oder

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

die beiden Wasserstoffatome der Methylengruppe in Position 3 der 5-gliedrigen oder in Position 4 der 6-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

A^b eine Bindung, eine -CH₂-, -NH-, -O-CH₂-, -NH-CO- oder -CO-NH-Gruppe, in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine Methylgruppe ersetzt sein kann,

E^b eine 1,4-verknüpfte, gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy- oder Trifluormethoxygruppe substituierte Phenylengruppe bedeuten, oder

15

20

25

30

die Gruppe Rc-Ac-Ec-C1-3-alkyl-, in der

R^c eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Methoxy-, Carboxy- oder Methoxycarbonylgruppe substituierte Phenylgruppe,

A^c eine Bindung,

 E^c eine über zwei Kohlenstoffatome in den relativen Positionen 1,3 gebundene Pyrrolylen-, Pyrazolylen-, Imidazolylen-, Oxazolylen-, Isoxazolylen-, Thiazolylen-, Isothiazolylen-, [1,3,4]-Oxadiazolen- oder [1,3,4]-Thiadiazolengruppe, in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom durch eine C_{1-3} -Alkylgruppe ersetzt sein kann,

oder eine 1,4-verknüpfte Pyridinylen-, Pyridazinylen- oder Pyrimidinylengruppe,

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl- oder Methoxygruppe substituiert sein können, bedeutet,

darstellen, wobei die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,

die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und

15

20

die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

Als besonders bevorzugte Verbindungen seien beispielsweise folgende erwähnt:

(a) N-[3-(Biphenyl-4-yl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1methyl-pyrrol-2-carbonsäureamid

(b) N-[4-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

(c) N-[4-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

(d) N-[4-(6-Methylpyridazin-3-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

5

(e) N-(4'-Hydroxybiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

10

(f) N-[4-(1,4-Dioxa-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

(g) N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

(h) N-[3-(4-lsopropylphenyl)-prop-2-inyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

(i) N-[3-(4-Biphenyl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

10

(j) N-[3-(4-Trifluormethylphenyl)-prop-2-inyl]-4-(4'-trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

sowie deren Salze.

- Erfindungsgemäß erhält man die neuen Verbindungen nach literaturbekannten Verfahren, beispielsweise nach folgenden Verfahren:
 - a. Umsetzung einer Verbindung der allgemeinen Formel

15

5

in der

- 57 -

X₁ bis X₄, R^a, A^a, R⁵ und Het wie eingangs erwähnt definiert sind und Z eine Carboxygruppe oder ein reaktives Derivat einer Carboxygruppe darstellt,

mit einem Amin der allgemeinen Formel

5

in der

R⁶ und R⁷ wie eingangs erwähnt definiert sind.

10

15

20

25

Die Umsetzung wird zweckmäßigerweise mit einem entsprechenden Halogenid oder Anhydrid der allgemeinen Formel II in einem Lösungsmittel wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Ether, Tetrahydrofuran, Dioxan, Benzol, Toluol, Acetonitril oder Sulfolan gegebenenfalls in Gegenwart einer anorganischen oder organischen Base bei Temperaturen zwischen -20 und 200°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 160°C, durchgeführt. Diese kann jedoch auch mit der freien Säure gegebenenfalls in Gegenwart eines die Säure aktivierenden Mittels, z. B. Propanphosphonsäurecycloanhydrid oder 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluoroborat (TBTU), oder eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Chlorwasserstoff, Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclo-hexylcarbodiimid/N-Hydroxysuccinimid oder 1-Hydroxy-benztriazol, N,N'-Carbonyldiimidazol oder N,N'-Thionyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, bei Temperaturen zwischen -20 und 200°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 160°C, durchgeführt werden.

b. Umsetzung einer Verbindung der allgemeinen Formel

- 58 -

$$\begin{array}{c} \mathbb{R}^{a} \\ \mathbb{A}^{a} \\ \mathbb{X}_{1} \\ \mathbb{X}_{2} \\ \mathbb{X}_{3} \\ \end{array} \qquad \text{(IV),}$$

in der

5

 X_1 bis X_4 , R^a und A^a wie eingangs erwähnt definiert sind und Z eine Carboxygruppe oder ein reaktives Derivat einer Carboxygruppe darstellt,

mit einem Amin der allgemeinen Formel

$$\begin{array}{c|c}
 & R^6 \\
 & N \\
 & R^7
\end{array}$$
(V),

in der

10 R⁵ bis R⁷ und Het wie eingangs erwähnt definiert sind.

Die Umsetzung kann entsprechend den vorstehend bei Verfahren (a) genannten Bedingungen erfolgen.

- Erhält man erfindungsgemäß eine Verbindung der allgemeinen Formel I, die eine Amino-, Alkylamino- oder Iminogruppe enthält, so kann diese mittels Acylierung oder Sulfonylierung in eine entsprechende Acyl- oder Sulfonylverbindung der allgemeinen Formel I übergeführt werden oder
- eine Verbindung der allgemeinen Formel I, die eine Amino-, Alkylamino- oder Iminogruppe enthält, so kann diese mittels Alkylierung oder reduktiver Alkylierung in eine entsprechende Alkylverbindung der allgemeinen Formel I übergeführt werden oder

eine Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, so kann diese mittels Veresterung in einen entsprechenden Ester der allgemeinen Formel I übergeführt werden oder

eine Verbindung der allgemeinen Formel I, die eine Carboxy- oder Estergruppe enthält, so kann diese mittels Amidierung in ein entsprechendes Amid der allgemeinen Formel I übergeführt werden oder

eine Verbindung der allgemeinen Formel I, die eine olefinische Doppelbindung oder eine C-C-Dreifachbindung enthält, so kann diese mittels katalytischer Hydrierung in eine entsprechende Alkyl- oder Alkylenverbindung der allgemeinen Formel I übergeführt werden.

10

15

20

25

Die nachträgliche Acylierung oder Sulfonylierung wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan mit einem entsprechenden Acyl- oder Sulfonylderivat gegebenenfalls in Gegenwart einer tertiären organischen Base oder in Gegenwart einer anorganischen Base oder in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid oder 1-Hydroxy-benztriazol und gegebenenfalls zusätzlich in Gegenwart von 4-Dimethylaminopyridin, N,N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 80°C, durchgeführt.

Die nachträgliche Alkylierung wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan mit einem Alkylierungsmittel wie einem entsprechenden Halogenid oder Sulfonsäureester, z.B. mit Methyljodid, Ethylbromid, Dimethylsulfat oder Benzylchlorid, gegebenenfalls in

Gegenwart einer tertiären organischen Base oder in Gegenwart einer anorganischen Base zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 100°C, durchgeführt.

Die nachträgliche reduktive Alkylierung wird mit einer entsprechenden Carbonylverbindung wie Formaldehyd, Acetaldehyd, Propionaldehyd, Aceton oder Butyraldehyd in Gegenwart eines komplexen Metallhydrids wie Natriumborhydrid, Lithiumborhydrid oder Natriumcyanoborhydrid zweckmäßigerweise bei einem pH-Wert von 6-7 und bei Raumtemperatur oder in Gegenwart eines Hydrierungskatalysators, z.B. mit Wasserstoff in Gegenwart von Palladium/Kohle, bei einem Wasserstoffdruck von 1 bis 5 bar durchgeführt. Die Methylierung wird jedoch vorzugsweise in Gegenwart von Ameisensäure als Reduktionsmittel bei erhöhten Temperaturen, z.B. bei Temperaturen zwischen 60 und 120°C, durchgeführt.

15

20

25

30

Die nachträgliche Veresterung wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan oder besonders vorteilhaft in einem entsprechenden Alkohol gegebenenfalls in Gegenwart einer Säure wie Salzsäure oder in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid oder 1-Hydroxy-benztriazol und gegebenenfalls zusätzlich in Gegenwart von 4-Dimethylaminopyridin, N,N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, zweckmäßigerweise bei Temperaturen zwischen 0 und 80°C, durchgeführt.

Die nachträgliche Amidierung wird durch Umsetzung eines entsprechenden reaktionsfähigen Carbonsäurederivates mit einem entsprechenden Amin gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan, wobei das eingesetzte Amin gleichzeitig als Lösungsmittel dienen kann,

gegebenenfalls in Gegenwart einer tertiären organischen Base oder in Gegenwart einer anorganischen Base oder mit einer entsprechenden Carbonsäure in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure, Phosphortrichlorid, Phosphorpentoxid, O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-tetrafluoroborat, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid oder 1-Hydroxy-benztriazol und gegebenenfalls zusätzlich in Gegenwart von 4-Dimethylamino-pyridin, N,N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 80°C, durchgeführt.

5

10

15

919

Die nachträgliche katalytische Hydrierung wird mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle oder Platin in einem Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester, Dimethylformamid, Dimethylformamid/Aceton oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar, durchgeführt.

- 20 Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Hydroxy-, Carboxy-, Amino-, Alkylamino- oder Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden.
- Beispielsweise kommt als Schutzrest für eine Hydroxygruppe die Trimethylsilyl-, tert.Butyl-dimethylsilyl-, Acetyl-, Benzoyl-, Methyl-, Ethyl-, tert.Butyl-, Trityl-, Benzyl-oder Tetrahydropyranylgruppe,

als Schutzreste für eine Carboxygruppe die Trimethylsilyl-, Methyl-, Ethyl-, tert.Butyl-, Benzyl- oder Tetrahydropyranylgruppe und

- 62 -

als Schutzreste für eine Amino-, Alkylamino- oder Iminogruppe die Formyl-, Acetyl-, Trifluoracetyl-, Ethoxycarbonyl-, tert.Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4-Dimethoxybenzylgruppe und für die Aminogruppe zusätzlich die Phthalylgruppe Betracht.

5

Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Essigsäure/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Natriumhydroxid oder Kaliumhydroxid oder aprotisch, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 120°C, vorzugsweise bei Temperaturen zwischen 10 und 100°C. - Die Abspaltung einer Silylgruppe kann jedoch auch mittels Tetrabutylammoniumfluorid wie vorstehend beschrieben erfolgen.

15

20

10

Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxycarbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 100°C, vorzugsweise jedoch bei Temperaturen zwischen 20 und 60°C, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar. Die Abspaltung eines 2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.

25

Die Abspaltung eines tert.-Butyl- oder tert.-Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Trifluoressigsäure oder Salzsäure oder durch Behandlung mit Jodtrimethylsilan gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenchlorid, Dioxan, Methanol oder Diethylether.

30

Die Abspaltung eines Trifluoracetylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Salzsäure gegebenenfalls in Gegenwart eines Lösungsmittels wie

Essigsäure bei Temperaturen zwischen 50 und 120°C oder durch Behandlung mit Natronlauge gegebenenfalls in Gegenwart eines Lösungsmittels wie Teträhydrofuran bei Temperaturen zwischen 0 und 50°C.

- Die Abspaltung eines Phthalylrestes erfolgt vorzugsweise in Gegenwart von Hydrazin oder eines primären Amins wie Methylamin, Ethylamin oder n-Butylamin in einem Lösungsmittel wie Methanol, Ethanol, Isopropanol, Toluol/Wasser oder Dioxan bei Temperaturen zwischen 20 und 50°C.
- Ferner können die erhaltenen Verbindungen der allgemeinen Formel I, wie bereits eingangs erwähnt wurde, in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden. So können beispielsweise cis-/trans-Gemische in ihre cis- und trans-Isomere, und Verbindungen mit mindestens einem optisch aktiven Kohlenstoffatom in ihre Enantiomeren aufgetrennt werden.

15

20

25

30

So lassen sich beispielsweise die erhaltenen cis-/trans-Gemische durch Chromatographie in ihre cis- und trans-Isomeren, die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestens 2 asymmetrischen Kohlenstoffatomen auf Grund ihrer physikalisch-chemischen Unterschiede nach an sich bekannten Methoden, z.B. durch Chromatographie und/oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.

Die Enantiomerentrennung erfolgt vorzugsweise durch Säulentrennung an chiralen Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umsetzen mit einer, mit der racemischen Verbindung Salze oder Derivate wie z.B. Ester oder Amide bildenden optisch aktiven Substanz, insbesondere Säuren und ihre aktivierten Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen diastereomeren Salzgemisches oder Derivates, z.B. auf Grund von verschiedenen

- 64 -

Löslichkeiten, wobei aus den reinen diastereomeren Salzen oder Derivaten die freien Antipoden durch Einwirkung geeigneter Mittel freigesetzt werden können. Besonders gebräuchliche, optisch aktive Säuren sind z.B. die D- und L-Formen von Weinsäure oder Dibenzoylweinsäure, Di-o-Tolylweinsäure, Äpfelsäure, Mandelsäure, Camphersulfonsäure, Glutaminsäure, Asparaginsäure oder Chinasäure. Als optisch aktiver Alkohol kommt beispielsweise (+)- oder (-)-Menthol und als optisch aktiver Acylrest in Amiden beispielsweise (+)-oder (-)-Menthyloxycarbonyl in Betracht.

Desweiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

15

20

25

10

5

Außerdem lassen sich die so erhaltenen neuen Verbindungen der Formel I, falls diese eine saure Gruppe wie eine Carboxygruppe enthalten, gewünschtenfalls anschließend in ihre Salze mit anorganischen oder organischen Basen, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, überführen. Als Basen kommen hierbei beispielsweise Natriumhydroxid, Kaliumhydroxid, Arginin, Cyclohexylamin, Ethanolamin, Diethanolamin und Triethanolamin in Betracht.

Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln II bis V sind entweder literaturbekannt oder man erhält diese nach literaturbekannten Verfahren bzw. werden in den Beispielen beschrieben.

Eine Verbindung der allgemeinen Formel II erhält man beispielsweise durch Umsetzung einer Verbindung der allgemeinen Formel

- 65 -

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$(VI),$$

in der X_1 bis X_4 , A^a und R^a wie eingangs erwähnt definiert sind und Z^1 eine Carboxygruppe oder ein reaktives Derivat einer Carboxygruppe darstellt, mit einem Amin der allgemeinen Formel

H Het—
$$COZ^2$$
 (VII),

in der R⁵ und Het wie eingangs erwähnt definiert sind und Z² ein Schutzgruppe für eine Carboxygruppe darstellt, und anschließender Abspaltung der Schutzgruppe.

Die Amine der allgemeinen Formel III sind literaturbekannt oder nach literaturbekannten Verfahren zugänglich.

5

- Die aromatischen oder heteroaromatischen Carbonsäuren gemäß der allgemeinen Formel IV sind literaturbekannt oder lassen sich mittels literaturbekannter Verfahren aus entsprechenden Aryl- oder Heteroaryl-Edukten herstellen.
- Die Amino-heteroarylcarbonsäureamide gemäß der allgemeinen Formel V sind ebenfalls literaturbekannt oder lassen sich in einfacher Weise aus gegebenenfalls substituierten Amino-heteroarylcarbonsäuren durch Umsetzung mit den entsprechenden Aminen oder aus Nitro-heteroarylcarbonsäuren durch Umsetzung mit den entsprechenden Aminen und anschließender Reduktion der Nitrogruppe herstellen.
- Ausgangsverbindungen der Formel V', in denen Het eine 5-gliedrige Heteroarylengruppe bedeutet, die eine durch die Gruppe R⁹ substituierte Iminogruppe enthält,

10

wobei R⁹ zusammen mit R⁶ eine –(CH₂)_p- Brücke darstellt, erhält man beispielsweise analog dem folgenden Syntheseschema:

One
$$Br - (CH_2)_p - Br$$

One O_2N

One

Wie bereits eingangs erwähnt, weisen die Verbindungen der allgemeinen Formel I und deren physiologisch verträgliche Salze wertvolle pharmakologische Eigenschaften auf. Diese stellen insbesondere wertvolle Inhibitoren des mikrosomalen Triglyzerid-Transferproteins (MTP) dar und eignen sich daher zur Senkung der Plasmaspiegel der atherogenen Lipoproteine.

Beispielsweise wurden die erfindungsgemäßen Verbindungen auf ihre biologischen Wirkungen wie folgt untersucht:

Inhibitoren von MTP wurden durch einen zellfreien MTP-Aktivitätstest identifiziert. Solubilisierte Lebermikrosomen aus verschiedenen Spezies (z.B. Ratte, Schwein) können als MTP-Quelle benutzt werden. Zur Herstellung von Donor- und Akzeptorvesikeln wurden in organischen Lösungsmitteln gelöste Lipide in einem geeigneten Verhältnis gemischt und durch Verblasen des Lösungsmittels im Stickstoffstrom als dünne Schicht auf eine Glasgefäßwand aufgebracht. Die zur Herstellung von Donorvesikeln verwendete Lösung enthielt 400 µM Phosphatidylcholin, 75 µM Cardiolipin und 10 µM [14C]-Triolein (68,8 µCi/mg). Zur Herstellung von Akzeptorvesikeln wurde eine Lösung aus 1,2 mM Phosphatidylcholin, 5 μM Triolein und 15 μM [³H]-Dipalmitoylphosphatidylcholin (108 mCi/mg) verwendet. Vesikel entstehen durch Benetzung der getrockneten Lipide mit Testpuffer und anschließende Ultrabeschallung. Vesikelpopulationen einheitlicher Größe wurden durch Gelfiltration der ultrabeschallten Lipide erhalten. Der MTP-Aktivitätstest enthält Donorvesikel, Akzeptorvesikel sowie die MTP-Quelle in Testpuffer. Substanzen wurden aus konzentrierten DMSO-haltigen Stammlösungen zugegeben, die Endkonzentration an DMSO im Test betrug 0,1%. Die Reaktion wurde durch Zugabe von MTP gestartet. Nach entsprechender Inkubationszeit wurde der Transferprozeß durch Zugabe von 500 µl einer SOURCE 30Q Anionenaustauscher-Suspension (Pharmacia Biotech) gestoppt. Die Mischung wurde für 5 Minuten geschüttelt und die an das Anionenaustauschermaterial gebundenen Donorvesikel durch Zentrifugation abgetrennt. Die sich im Überstand befindende Radioaktivität von [3H] und [14C] wurde durch Flüssigkeits-Szintillations-Messung bestimmt und daraus die Wiederfindung der Akzeptorvesikel und die Triglyzerid-Transfer-Geschwindigkeit berechnet. Die Verbindungen der allgemeinen Formel I zeigen in dem beschriebenen Test IC50-Werte ≤ 100µM.

25

30

5

10

15

20

Auf Grund der vorstehend erwähnten biologischen Eigenschaften eignen sich die Verbindungen der allgemeinen Formel I und deren physiologisch verträgliche Salze insbesondere zur Senkung der Plasmakonzentration von atherogenen Apolipoprotein B (apoB)-haltigen Lipoproteinen wie Chylomikronen und/oder Lipoproteinen sehr niedriger Dichte (VLDL) sowie deren Überreste wie Lipoproteine niedriger Dichte (LDL) und/oder Lipoprotein(a) (Lp(a)), zur Behandlung von Hyperlipidämien, zur Vorbeugung und Behandlung der Atherosklerose und ihrer klinischen Folgen, und zur

- 68 -

Vorbeugung und Behandlung verwandter Erkrankungen wie Diabetes mellitus, Adipositas und Pankreatitis, wobei die orale Applikation bevorzugt ist.

Die zur Erzielung einer entsprechenden Wirkung erforderliche Tagesdosis liegt beim Erwachsenen zwischen 0,5 und 500 mg, zweckmäßigerweise zwischen 1 und 350 mg, vorzugsweise jedoch zwischen 5 und 200 mg.

Hierzu lassen sich die erfindungsgemäß hergestellten Verbindungen der Formel I, gegebenenfalls in Kombination mit anderen Wirksubstanzen wie anderen Lipidsenker, beispielsweise mit HMG-CoA-Reduktase-Inhibitoren, Cholesterolbiosynthese-Inhibitoren wie Squalensynthase-Inhibitoren und Squalenzyklase-Inhibitoren, Gallensäure-bindende Harze, Fibrate, Cholesterol-Resorptions-Inhibitoren, Niacin, Probucol, CETP Inhibitoren und ACAT Inhibitoren zusammen mit einem oder mehreren inerten üblichen Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Cetylstearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen, in übliche galenische Zubereitungen wie Tabletten, Dragées, Kapseln, Pulver, Suspensionen oder Zäpfchen einarbeiten.

10

15

20

Die nachfolgenden Beispiele dienen der näheren Erläuterung der Erfindung:

- 69 -

PCT/EP02/07215

Beispiel 1

N-[4-(3-Methyl-5-phenyl-pyrazol-1-yl)-phenylmethyl]-2-(biphenyl-2-carbonylamino)-thiazol-4-carbonsäureamid

5

10

20

a. 4-(3-Methyl-5-phenyl-pyrazol-1-yl)-benzonitril

Eine Lösung aus 20.0 g (0.118 mol) 4-Cyanophenylhydrazin und 19.1 g (0.118 mol) Benzoylaceton in 600 ml Methanol wird mit 16.7 mg Triethylamin versetzt und zwei Tage gerührt. Das Lösungsmittel wird abdestilliert, der Rückstand in Dichlormethan aufgenommen, mit Wasser gewaschen und mit Natriumsulfat getrocknet. Anschließend wird über eine Kieselgelsäule chromatographiert, wobei mit Dichlormethan eluiert wird.

Ausbeute: 22.2 g (73 % der Theorie),

R_f-Wert: 0.9 (Kieselgel; Dichlormethan/Methanol= 19:1)

 $15 \quad C_{17}H_{13}N_3 (259.31)$

Massenspektrum: $(M+H)^{+} = 260$

b. 4-(3-Methyl-5-phenyl-pyrazol-1-yl)-phenylmethylamin

22.2 g (0.086 mol) 4-(3-Methyl-5-phenyl-pyrazol-1-yl)-benzonitril werden in 660 ml methanolischem Ammoniak gelöst und nach Zugabe von Raney-Nickel bei Raumtemperatur mit Wasserstoff (3 bar) hydriert. Der Katalysator wird abfiltriert und die Lösung eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Dichlormethan/Methanol = 4:1 eluiert wird.

Ausbeute: 22 g (97 % der Theorie),

25 R_f-Wert: 0.2 (Kieselgel; Dichlormethan/Methanol= 9:1)

 $C_{17}H_{17}N_3$ (263.35)

Massenspektrum: $(M+H)^+ = 264$ $M^+ = 263$

30 c. 2-Amino-thiazol-4-carbonsäureethylester

7.2 g (0.094 mol) Thioharnstoff werden in 100 ml Ethanol gelöst, bei Raumtemperatur mit 12.0 g (0.086 mol) Brombrenztraubensäureethylester versetzt und danach

1.5 Stunden zum Rückfluß erhitzt. Nach dem Abkühlen wird mit 50 ml Wasser verdünnt, mit konz. Ammoniak alkalisch gestellt und der Niederschlag abgesaugt. Ausbeute: 12.5 g (84 % der Theorie),

R_f-Wert: 0.5 (Kieselgel; Dichlormethan/Ethanol= 19:1)

 $C_6H_8N_2O_2S$ (172.21)

Massenspektrum:

$$(M-H)^{-} = 171$$

$$(M+H)^+ = 173$$

$$(M+Na)^{+} = 195$$

10 d. 2-(Biphenyl-2-carbonylamino)-thiazol-4-carbonsäureethylester

1.0 g (5.0 mmol) 2-Biphenylcarbonsäure werden in 15 ml Dimethylformamid vorgelegt und nach Zugabe von 0.9 g (5.45 mmol) 2-Amino-thiazol-4-carbonsäureethylester, 1.8 g (5.60 mmol) O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumtetrafluoroborat (TBTU) und 2.9 ml (15.4 mmol) N-Ethyl-diisopropyl-amin 12 Stunden gerührt. Die Lösung wird eingedampft und an Kieselgel chromatographiert, wobei mit Petrolether/Essigester (10-30%) eluiert wird.

Ausbeute: 0.5 g (28 % der Theorie),

R_f-Wert: 0.3 (Kieselgel; Petrolether/Essigester= 7:3)

 $C_{19}H_{16}N_2O_3S$ (352.41)

20 Massenspektrum:

15

25

$$(M+H)^{-} = 351$$

$$(M+Na)^{+} = 375$$

e. 2-(Biphenyl-2-carbonylamino)-thiazol-4-carbonsäure

0.5 g (1.4 mmol) 2-(Biphenyl-2-carbonylamino)-thiazol-4-carbonsäureethylester werden in 30 ml Ethanol und 1.6 ml 2 molarer Natronlauge 18 Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wird abdestilliert, der Rückstand mit Wasser versetzt und mit 2 molarer Salzsäure angesäuert. Das ausgefallene Produkt wird abgesaugt.

Ausbeute: 0.3 g (72 % der Theorie),

30 R_f-Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol= 4:1)

 $C_{17}H_{12}N_2O_3S$ (324.36)

Massenspektrum: $(M-H)^{-}$ = 323

- 71 -

f. N-[4-(3-Methyl-5-phenyl-pyrazol-1-yl)-phenylmethyl]-2-(biphenyl-2-carbonylamino)-thiazol-4-carbonsäureamid

Hergestellt analog Beispiel 1d aus 2-(Biphenyl-2-carbonylamino)-thiazol-4-carbonsäure, 4-(3-Methyl-5-phenyl-pyrazol-1-yl)-benzylamin, TBTU und N-Ethyldisopropylamin in Dimethylformamid.

Ausbeute: 23 % der Theorie,

R_F-Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $C_{34}H_{27}N_5O_2S$ (569.69)

10 Massenspektrum: $(M-H)^-$ = 568

 $(M+Na)^{+} = 592$

Beispiel 2

N-(Biphenyl-4-yl)methyl-2-(biphenyl-2-carbonylamino)-thiazol-4-carbonsäureamid

Hergestellt analog Beispiel 1d aus 2-(Biphenyl-2-carbonylamino)-thiazol-4-carbon-säure, 4-Phenylbenzylamin, TBTU und N-Ethyldiisopropylamin in Dimethylformamid. Ausbeute: 86 % der Theorie,

20 R_f-Wert: 0.40 (Kieselgel; Dichlormethan/Ethanol= 19:1)

 $C_{30}H_{23}N_3O_2S$ (489.60)

Massenspektrum: $(M-H)^{-}$ = 488

Beispiel 3

25

N-(4-Benzoylamino-phenylmethyl)-2-(biphenyl-2-carbonylamino)-thiazol-4-carbonsäureamid

Hergestellt analog Beispiel 1d aus 2-(Biphenyl-2-carbonylamino)-thiazol-4-carbonsäure, 4-Benzoylaminobenzylamin, TBTU und N-Ethyldiisopropylamin in Dimethyl-

30 formamid.

Ausbeute: 25 % der Theorie,

R_f-Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol= 9:1)

- 72 -

 $C_{31}H_{24}N_4O_3S$ (532.62)

Massenspektrum:

 $(M-H)^{-} = 531$

 $(M+H)^{+} = 533$

 $(M+Na)^{+} = 555$

5

Beispiel 4

N-(Biphenyl-4-yl)methyl-5-(4'-trifluormethylbiphenyl-2-carbonylamino)-thiophen-2-carbonsäureamid

10

15

a. N-(Biphenyl-4-yl)methyl-5-nitro-thiophen-2-carbonsäureamid

Ein Gemisch aus 766 mg (4.0 mmol) 5-Nitrothiophen-2-carbon-säurechlorid, 733 mg (4.0 mmol) 4-Phenylbenzylamin und 1 ml Triethylamin werden in 45 ml Tetrahydrofuran 18 Stunden gerührt. Das Lösungsmittel wird abdestilliert und an Kieselgel chromatographiert, wobei mit Dichlormethan eluiert wird.

Ausbeute: 540 mg (40 % der Theorie),

R_f-Wert: 0.30 (Kieselgel; Dichlormethan)

 $C_{18}H_{14}N_2O_3S$ (338.39)

Massenspektrum: $(M-H)^{-}$ = 337

20

25

F) _1

b. N-(Biphenyl-4-yl)methyl-5-aminothiophen-2-carbonsäureamid

500 mg (1.47 mmol) N-(Biphenyl-4-yl)methyl-5-nitrothiophen-2-carbonsäureamid werden in 35 ml Methanol und 15 ml Dichlormethan gelöst und nach Zugabe von 300 mg Raney-Nickel bei Raumtemperatur mit Wasserstoff (3 bar) hydriert. Der Katalysator wird abfiltriert und die Lösung eingedampft.

Ausbeute: 400 mg (88 % der Theorie),

R_f-Wert: 0.30 (Kieselgel; Dichlormethan/Ethanol = 50:1)

c. N-(Biphenyl-4-yl)methyl-5-(4'-trifluormethylbiphenyl-2-carbonylamino)-thiophen-

30 2-carbonsäureamid

- 73 -

Hergestellt analog Beispiel 4a aus N_r(Biphenyl-4-yl)methyl-5-aminothiophen-2-carbonsäureamid, 4'-Trifluormethylbiphenyl-2-carbonsäurechlorid und Triethylamin in Tetrahydrofuran.

Ausbeute: 43 % der Theorie

5 R_f-Wert: 0.50 (Kieselgel; Dichlormethan/Ethanol = 19:1)

 $C_{32}H_{23}F_3N_2O_2S$ (556.61)

Massenspektrum: $(M-H)^{-}$ = 555

Beispiel 5

10

N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-(4'-trifluormethylbiphenyl-2-carbonylamino)-pyrimidin-4-carbonsäureamid

a. 4-(3,4-Dihydro-2H-chinolin-1-yl)-benzonitril

5.3 g (0.04 mol) 1,2,3,4-Tetrahydrochinolin werden in 60 ml Dimethylsulfoxid gelöst, 7.1 g (0.064 mol) Kalium-tert.butylat zugesetzt und 20 Minuten gerührt. Anschließend werden 7.7 g (0.064 mol) 4-Fluorbenzonitril in Dimethylsulfoxid zugetropft und drei Tage bei 90°C gerührt. Das Reaktionsgemisch wird auf gesättigte Natriumchloridlösung gegossen und mit Essigester extrahiert. Die vereinigten organischen Extrakte werden an Aluminiumoxid chromatographiert, wobei mit Petrolether/Dichlormethan 1:1 eluiert wird.

Ausbeute: 4.5 g (48 % der Theorie),

R_f-Wert: 0.30 (Kieselgel; Dichlormethan/Petrolether = 1:1)

C₁₆H₁₄N₂ (234.30)

25 Massenspektrum: (M-H)

b. 4-(3,4-Dihydro-2H-chinolin-1-yl)-benzylamin

Hergestellt analog Beispiel 1b aus 4-(3,4-Dihydro-2H-chinolin-1-yl)-benzonitril, Raney-Nickel und methanolischem Ammoniak unter Zusatz von Wasserstoff.

= 233

30 Ausbeute: 88 % der Theorie

 R_f -Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 19:1) $C_{16}H_{18}N_2$ (238.34)

- 74 -

Massenspektrum: $(M+H)^+ = 239$

c. N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-chlor-pyrimidin-4-carbonsäureamid

Hergestellt analog Beispiel 4a aus 4-(3,4-Dihydro-2H-chinolin-1-yl)-benzylamin, 6-Chlorpyrimidin-4-carbonsäurechlorid und Triethylamin in Tetrahydrofuran.

Ausbeute: 69 % der Theorie

Rr-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 50:1)

 $C_{12}H_{19}CIN_4O$ (378.86)

10 Massenspektrum: (M-H) = 377/79 (Chlorisotope)

d. N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-(2,3-dimethoxy-phenylmethylamino)-pyrimidin-4-carbonsäureamid

300 mg (0.79 mmol) N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-chlor-pyrimidin-4-carbonsäureamid und 500 mg (3.0 mmol) 2,4-Dimethoxybenzylamin werden zwei Stunden bei 160°C gerührt. Nach dem Abkühlen wird an Kieselgel chromatographiert, wobei mit Dichlormethan eluiert wird.

Ausbeute: 380 mg (94 % der Theorie),

R_f-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 19:1)

 $20 \quad C_{30}H_{31}N_5O_3 (509.61)$

15

30

Massenspektrum: $(M-H)^{-} = 508$

 $(M+Na)^{+} = 532$

e. N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-amino-pyrimidin-4-

25 carbonsäureamid

350 mg (0.68 mmol) N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-(2,3-dimethoxy-benzylamino)-pyrimidin-4-carbonsäureamid werden in 30 ml Dichlormethan gelöst und nach Zugabe von 7 ml Trifluoressigsäure zwei Tage gerührt. Das Lösungsmittel wird abdestilliert, mit methanolischem Ammoniak alkalisch gestellt und an Kieselgel chromatographiert, wobei mit Dichlormethan/Ethanol = 99:1 eluiert wird. Ausbeute: 130 mg (53 % der Theorie).

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 19:1)

- 75 -

 $C_{21}H_{21}N_5O$ (359.43)

Massenspektrum: $(M-H)^{-}$ = 358

f. N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-(4'-trifluormethylbiphenyl-2-

carbonylamino)-pyrimidin-4-carbonsäureamid

Hergestellt analog Beispiel 4a aus N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-6-amino-pyrimidin-4-carbonsäureamid, 4'-Trifluormethylbiphenyl-2-carbonsäurechlorid und Triethylamin in Tetrahydrofuran.

Ausbeute: 17 % der Theorie

R-Wert: 0.40 (Kieselgel; Petrolether/Essigester = 2:1)

 $C_{35}H_{28}F_3N_5O_2$ (607.63)

Massenspektrum:

 $M^{+} = 607$

 $(M+Na)^+ = 630$

15 Beispiel 6

5

N-[4-(3,4-Dihydro-1H-isochinolin-2-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-

1-methyl-pyrrol-2-carbonsäure, 4-(3,4-Dihydro-1H-isochinolin-2-yl)-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 100 % der Theorie

R_f-Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $C_{36}H_{31}F_3N_4O_2$ (608.67)

25 Massenspektrum:

 $(M-H)^{+} = 609$

 $(M-H)^{-} = 607$

 $(M-HCOO)^{-} = 653$

WO 03/004020

- 76 -

Beispiel 7

N-(4'-Methylbiphenyl-4-yl)methyl-5-(4'-trifluormethylbiphenyl-2-carbonylamino)-nicotinsäureamid

Hergestellt analog Beispiel 1d aus 5-(4'-Trifluormethyl-biphenyl-2-carbonylamino)nicotinsäure, 4'-Methylbiphenyl-4-methylamin, TBTU und N-Ethyldiisopropylamin in Dimethyl-formamid.

Ausbeute: 26 % der Theorie

R_f-Wert: 0.49 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $10 \quad C_{34}H_{26}F_3N_3O_2$ (565.60)

Massenspektrum:

 $(M-H)^{-} = 564$

 $(M+Na)^{+} = 588$

Beispiel 8

15

20

N-(4-Phenylaminocarbonyl-phenylmethyl)-5-(4'-trifluormethylbiphenyl-

2-carbonylamino)-nicotinsäureamid

Hergestellt analog Beispiel 1d aus 4-Phenylaminocarbonyl-benzylamin, 5-(4'-Trifluor-methylbiphenyl-2-carbonyl-amino)-nicotinsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 21 % der Theorie

R_f-Wert: 0.41 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₄H₂₅F₃N₄O₃ (594.59)

Massenspektrum: $M^{\dagger} = 594$

25

Beispiel 9

N-[4-(3-Methyl-5-phenyl-pyrazol-1-yl)-phenylmethyl]- 5-(4'-trifluormethylbiphenyl-2-carbonylamino)-nicotinsäureamid

Hergestellt analog Beispiel 1d aus 5-(4'-Trifluormethyl-biphenyl-2-carbonylamino)nicotinsäure; 4-(3-Methyl-5-phenyl-pyrazol-1-yl)-benzylamin, TBTU und N-Ethyldiisopropylamin in Dimethylformamid. WO 03/004020

PCT/EP02/07215

- 77 -

Ausbeute: 32 % der Theorie

R_f-Wert: 0.48 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{37}H_{28}F_3N_5O_2$ (631.66)

Massenspektrum:

 $(M+Na)^{+} \approx 654$

5

Beispiel 10

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure, 4'-Methylbiphenyl-4-methylamin, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 10 % der Theorie

R_f-Wert: 0.95 (Kieselgel; Dichlormethan/Ethanol = 4:1)

15 $C_{33}H_{27}F_3N_4O_2$ (568.60)

Massenspektrum:

 $(M-H)^{-} = 567$

 $(M+Na)^{+} = 591$

Beispiel 11

20

25

N-(Biphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Eine Lösung aus 100 mg (0.25 mmol) 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)1-methyl-imidazol-2-carbonsäure, 48 mg (0.25 mmol) 4-Phenylbenzylamin und 0.2 ml
(1.5 mmol) N-Methylmorpholin in 6 ml Dichlormethan wird bei -10°C mit 0.3 ml (0.5 mmol) Propanphosphonsäurecycloanhydrid (50 Gewichts-% in Essigester) versetzt und 2 Stunden unter Kühlung gerührt. Anschließend wird mit 2 molarer Salzsäure und 2 molarer Natronlauge gewaschen, die vereinigten organischen Extrakte getrocknet und eingedampft.

30 Ausbeute: 0.12 g (84 % der Theorie),

R_f-Wert: 0.59 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $C_{32}H_{25}F_3N_4O_2$ (554.57)

- 78 -

Massenspektrum:

 $(M-H)^{-} = 553$

 $(M+H)^{+} = 555$

 $(M+Na)^{+} = 577$

5 Beispiel 12

N-[4-(Piperidino)-phenylmethyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4-(Piperidino)-benzylamin und 4-(4'-Tri-fluormethylbiphenyl-2-carbonylamino)-1-methylimidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 88 % der Theorie

R_f-Wert: 0.53 (Kieselgel; Dichlormethan/Ethanol= 9:1)

15 $C_{31}H_{30}F_3N_5O_2$ (561.61)

Massenspektrum: $(M-H)^2 = 560$

Beispiel 13

N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-4-(4'-tri-fluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4-(3,4-Dihydro-2H-chinolin-1-yl)-benzylamin und 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 85 % der Theorie

R-Wert: 0.71 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $C_{35}H_{30}F_3N_5O_2$ (609.65)

Massenspektrum: $(M-H)^{-}$ = 608

25

Beispiel 14

5

N-(4'-Trifluormethybiphenyl-4-yl)methyl-4-(4'-trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4'-Trifluormethylbiphenyl-4-methylamin und 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

10 Ausbeute: 83 % der Theorie

R_f-Wert: 0.52 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $C_{33}H_{24}F_6N_4O_2$ (622.57)

Massenspektrum: $(M-H)^{-}$ = 621

15 Beispiel 15

N-(4'-Chlorbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4'-Chlorbiphenyl-4-methyl-amin und 4-(4'-

Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 88 % der Theorie

R_f-Wert: 0.54 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $C_{32}H_{24}ClF_3N_4O_2$ (589.02)

Massenspektrum: $(M-H)^{-}$ = 587/89 (Chlorisotope)

WO 03/004020

PCT/EP02/07215

- 80 -

Beispiel 16

N=[4-(Pyridin-4-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4-(Pyridin-4-yl)-benzylamin und 4-(4'-Trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 94 % der Theorie

RrWert: 0.41 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $10 \quad C_{31}H_{24}F_3N_5O_2$ (555.56)

Massenspektrum: $(M-H)^{-} = 554$

Beispiel 17

N-[4-([1,2,3]-Thiadiazol-4-yl)-phenylmethyl]-4-(4'-trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4-([1,2,3]-Thiadiazol-4-yl)-benzylamin und 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 88 % der Theorie

R_f-Wert: 0.52 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $C_{28}H_{21}F_3N_6O_2S$ (562.57)

Massenspektrum: $(M-H)^{-}$ = 561

25

Beispiel 18

N-[4-(6-Methyl-pyridazin-3-yl)-phenylmethyl]-4-(4'-trifluor-methylbiphenyl-

30 <u>2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid</u>

a. 4-(6-Methyl-pyridazin-3-yl)-benzonitril

875 mg (6.8 mmol) 3-Chlor-6-methylpyridazin und 237 mg (0.2 mmol) Tetrakistriphenylphosphin-palladium(0) werden in 40 ml Toluol vorgelegt, eine Lösung von 1.0 g (6.8 mmol) 4-Cyano-phenylboronsäure in 20 ml Methanol und 1.4 g (13.6 mmol) Natriumcarbonat in 20 ml Wasser zugegeben und 7 Stunden zum Rückfluß erhitzt. Das Reaktionsgemisch wird zwei Tage bei Raumtemperatur gerührt und eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Dichlormethan/Ethanol = 9:1 eluiert wird.

Ausbeute: 340 mg (26 % der Theorie),

R_f-Wert: 0.53 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $10 C_{12}H_9N_3$ (195.23)

Massenspektrum: $(M+H)^+$ = 196

b. 4-(6-Methyl-pyridazin-3-yl)-benzylamin

Hergestellt analog Beispiel 1b aus 4-(6-Methyl-pyridazin-3-yl)-benzonitril und Raney-

Nickel in methanolischem Ammoniak unter Zusatz von Wasserstoff (3 bar).

Ausbeute: 73 % der Theorie,

R_f-Wert: 0.13 (Kieselgel; Dichlormethan/Ethanol= 75:25)

 $C_{12}H_{13}N_3$ (199.26)

Massenspektrum: $(M+H)^+ = 200$

20

25

5

c. N-[4-(6-Methyl-pyridazin-3-yl)-phenylmethyl]-4-(4'-trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4-(6-Methyl-pyridazin-3-yl)-benzylamin und 4-(4'- Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 96 % der Theorie

R_f-Wert: 0.51 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $C_{31}H_{25}F_3N_6O_2$ (570.57)

30 Massenspektrum:

 $(M-H)^{-} = 569$

 $(M+H)^{+} = 571$

 $(M+Na)^{+} = 593$

PCT/EP02/07215

Beispiel 19

5

10

30

WO 03/004020

N-[3-(4-Biphenyl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

a. N-tert.-Butoxycarbonyl-prop-2-inylamin

6.9 g (0.12 mol) Propargylamin wird in 50 ml Dichlormethan vorgelegt, bei 0°C wird eine Lösung aus 27.3 g (0.12 mol) Di-tert.butyldicarbonat in 50 ml Dichlormethan zugetropft und drei Stunden bei Raumtemperatur gerührt. Anschließend wird auf - 20°C abgekühlt und das ausgefallene Produkt wird abgesaugt.

Ausbeute: 18.2 g (94 % der Theorie),

b. N-tert.-Butoxycarbonyl-3-(4-biphenyl)prop-2-inylamin

Ein Gemisch aus 1.3 g (5.3 mmol) 4-Brombiphenyl, 0.1 g (0.53 mmol) Kupfer-(I)iodid, 0.6 g (0.53 mmol) Tetrakis-triphenylphosphin-palladium(0) und 2.2 ml (16.1
mmol) Triethylamin werden in 30 ml Tetrahydrofuran 10 Minuten zum Rückfluß
erhitzt, danach wird mit 1.0 g (6.4 mmol) N-tert.-Butoxycarbonyl-prop-2-inylamin
versetzt und weitere 10 Stunden zum Rückfluß erhitzt. Der Niederschlag wird abfiltriert und das Filtrat eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Petrolether/Essigester 96:4 eluiert wird.

Ausbeute: 370 mg (22 % der Theorie),

R_f-Wert: 0.62 (Kieselgel; Petrolether/Essigester = 7:3)

C₂₀H₂₁NO₂ (307.4)

25 Massenspektrum: $(M+Na)^+ = 330$

c. 3-(4-Biphenyl)-prop-2-inylamin-trifluoracetat

365 mg (1.1 mmol) N-tert.-Butoxycarbonyl-3-(4-biphenyl)prop-2-inylamin werden in 20 ml Dichlormethan und 2 ml Tri-fluoressigsäure 2 Stunden gerührt. Anschließend wird eingedampft und der Rückstand direkt weiter umgesetzt.

Ausbeute: 381 mg (quantitativ),

R_f-Wert: 0.22 (Kieselgel; Dichlormethan/Ethanol = 9:1)

d. N-[3-(4-Biphenyl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 3-Biphenyl-4-yl-prop-2-inylamin-trifluoracetat und 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 58 % der Theorie

R_f-Wert: 0.59 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $10 \quad C_{34}H_{25}F_3N_4O_2$ (578.59)

Massenspektrum: (M-H) = 577

 $(M+H)^+ = 579$

 $(M+Na)^{\dagger} = 601$

15 Beispiel 20

20

5

N-(4'-Hydroxybiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4'-Hydroxybiphenyl-4-methylamin und 4-(4'-Tri-fluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 30 % der Theorie

R_f-Wert: 0.45 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $C_{32}H_{25}F_3N_4O_3$ (570.57)

Massenspektrum: $(M-H)^{-}$ = 569

Beispiel 21

N-[3-(4-Trifluormethylphenyl)-prop-2-inyl]-4-(4'-trifluor-methylbiphenyl-2-carbonyl-amino)-1-methyl-imidazol-2-carbonsäureamid

- 84 -

Hergestellt analog Beispiel 11 aus 3-(4-Trifluormethylphenyl)-prop-2-inylamin und 4-(4'-Trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

5 Ausbeute: 71 % der Theorie

R_f-Wert: 0.49 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $C_{29}H_{20}F_6N_4O_2$ (570.49)

Massenspektrum: $(M-H)^{-}$ = 569

 $(M+Na)^+ = 593$

10

Beispiel 22

N-[4-(1,4-Dioxa-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4-(1,4-Dioxa-spiro[4.5]dec-8-yl)-benzylamin und 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 67 % der Theorie

20 R_f-Wert: 0.62 (Kieselgel; Dichlormethan/Ethanol= 9:1)

C₃₄H₃₃F₃N₄O₄ (618.66)

Massenspektrum: $(M-H)^{-}$ = 617

Beispiel 23

25

30

N-[3-(4-tert.Butylphenyl)-prop-2-inyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 3-(4-tert.Butylphenyl)-prop-2-inylamin und 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 33 % der Theorie

- 85 -

R_f-Wert: 0.52 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $C_{32}H_{29}F_3N_4O_2$ (558.60)

Massenspektrum: $(M-H)^{-}$ = 557

 $(M+Na)^{+} = 581$

5

Beispiel 24

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4'-Methylbiphenyl-4-methyl-amin, 4-(4'-Trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.40 (Kieselgel; Dichlormethan/Ethanol = 19:1)

15 $C_{34}H_{28}F_3N_3O_2$ (567.61)

Massenspektrum: $(M-H)^{-}$ = 566

 $(M+Na)^{+} = 590$

Beispiel 25

20

N-(4-Phenylcarbonylamino-phenylmethyl)-4-(4'-trifluormethyl-biphenyl-

2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-Phenylcarbonylamino-benzylamin, 4-(4'-Tri-fluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und

N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 62 % der Theorie

R_f-Wert: 0.20 (Kieselgel; Dichlormethan/Ethanol = 19:1)

 $C_{34}H_{27}F_3N_4O_3$ (596.61)

A gar

Massenspektrum: $(M-H)^{-}$ = 595

 $(M+Na)^{+} = 619$

Beispiel 26

N-[4-(3-Methyl-5-phenyl-pyrazol-1-yl)-phenylmethyl]-4-(4'-tri-fluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbon-säureamid

Hergestellt analog Beispiel 1d aus 4-(3-Methyl-5-phenyl-pyrazol-1-yl)-benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.25 (Kieselgel; Dichlormethan/Ethanol = 19:1)

 $10 \quad C_{37}H_{30}F_3N_5O_2$ (633.67)

Massenspektrum:

 $(M-H)^{-} = 632$

 $(M+Na)^{+} = 656$

Beispiel 27

15

20

N-(4'-Methylbiphenyl-4-yl)methyl-4-(biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4'-Methylbiphenyl-4-methyl-amin, 4-(Biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbon-säure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 99 % der Theorie

R_f-Wert: 0.40 (Kieselgel; Dichlormethan/Ethanol = 19:1)

C₃₃H₂₉N₃O₂ (499.61)

Massenspektrum: $M^+ = 499$

25

Beispiel 28

N-Benzyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus Benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

- 87 -

Ausbeute: quantitativ

R_f-Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{27}H_{22}F_3N_3O_2$ (477.49)

Massenspektrum: $(M-H)^{-}$ = 476

 $(M+Na)^{+} = 490$

Beispiel 29

N-Pyridin-2-ylmethyl-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-

10 2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 2-(Aminomethyl)-pyridin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.50 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{26}H_{21}F_3N_4O_2$ (478.47)

Massenspektrum: $(M-H)^{-}$ = 477

Beispiel 30

20

5

N-Pyridin-3-ylmethyl-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 3-(Aminomethyl)-pyridin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropyl-

amin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.40 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{26}H_{21}F_3N_4O_2$ (478.47)

Massenspektrum: $(M-H)^{-}$ = 477

 $(M+Na)^+ = 501$

- 88 -

Beispiel 31

N-Pyridin-4-ylmethyl-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(Aminomethyl)-pyridin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.35 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $10 \quad C_{26}H_{21}F_3N_4O_2$ (478.47)

Massenspektrum: $(M-H)^{-}$ = 477

 $(M+Na)^{+} = 501$

Beispiel 32

15

20

25

30

N-Methoxycarbonylmethyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus Glycinmethylester-hydrochlorid, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{23}H_{20}F_3N_3O_4$ (459.42)

Massenspektrum: $(M-H)^{-}$ = 458

 $(M+Na)^{+} = 482$

Beispiel 33

N-(2-Methoxycarbonylethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 89 -

WO 03/004020 PCT/EP02/07215

Hergestellt analog Beispiel 1d aus β -Alaninmethylester-hydrochlorid, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

5 R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{24}H_{22}F_3N_3O_4$ (473.45)

Massenspektrum:

 $(M-H)^{-} = 472$

 $(M+Na)^{+} = 496$

10 Beispiel 34

15

N-(4-[1,2,3]-Thiadiazol-4-yl-phenylmethyl)-4-(4'-trifluor-methylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

Hergestellt analog Beispiel 1d aus 4-[1,2,3]-Thiadiazol-4-yl-benzylamin, 4-(4'-Trifluor-methylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

Re-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{29}H_{22}F_3N_5O_2S$ (561.59)

20 Massenspektrum: $(M-H)^{-}$ = 560

Beispiel 35

N-[2-(4-Methylphenyl)pyridin-5-ylmethyl]-4-(4'-trifluor-methylbiphenyl-2-carbonyl-

25 <u>amino)-1-methyl-pyrrol-2-carbonsäureamid</u>

Hergestellt analog Beispiel 1d aus (2-(4-Methylphenyl)pyridin-5-yl)-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

30 R_f-Wert: 0.55 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{33}H_{27}F_3N_4O_2$ (568.60)

- 90 -

Massenspektrum:

 $(M-H)^{-} = 567$

 $(M+Na)^{+} = 591$

Beispiel 36

5

N-[4-(Pyridin-4-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(Pyridin-4-yl)-benzylamin, 4-(4'-Trifluormethylbi-phenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.45 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{32}H_{25}F_3N_4O_2$ (554.57)

Massenspektrum: $(M-H)^{-}$ = 553

15

10

Beispiel 37

N-[4-(N-Methyl-N-cyclohexylaminocarbonyl)-phenylmethyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(N-Methyl-N-cyclohexyl-aminocarbonyl)-benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 98 % der Theorie

 R_{t} -Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{35}H_{35}F_3N_4O_3$ (616.68)

Massenspektrum: $(M-H)^{-}$ = 615

Beispiel 38

N-(4-Bromphenylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 91 -

Hergestellt analog Beispiel 1d aus 4-Brombenzylamin-hydro-chlorid, 4-(4'-Trifluor-methylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

5 R_f-Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₇H₂₁BrF₃N₃O₂ (556.38)

Massenspektrum: $(M-H)^{-}$ = 554/56 (Bromisotope)

Beispiel 39

10 .

15

N-(4'-Trifluormethylbiphenyl-4-yl)methyl-4-(4'-trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4'-Trifluormethylbiphenyl-4-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{34}H_{25}F_6N_3O_2$ (621.58)

Massenspektrum: $(M-H)^{-}$ = 620

20

Beispiel 40

N-(4'-Chlorbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid____

Hergestellt analog Beispiel 1d aus 4'-Chlorbiphenyl-4-methyl-amin, 4-(4'-Trifluor-methylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 30 $C_{33}H_{25}CIF_3N_3O_2$ (588.03)

Massenspektrum: (M-H) = 586/88 (Chlorisotope)

- 92 -

Beispiel 41

N-[3-(4-Methylphenyl)-prop-2-inyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 3-(4-Methyl-phenyl)-prop-2-inylamin, 4-(4'-Tri-5 fluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 57 % der Theorie

Rr-Wert: 0.6 (Kieselgel; Dichlormethan/Ethanol = 9:1)

10 $C_{30}H_{24}F_3N_3O_2$ (515.54)

> Massenspektrum: (M-H)⁻ = 514

Beispiel 42

N-[3-(4-Isopropylphenyl)-prop-2-inyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-15 1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 3-(4-Isopropylphenyl)-prop-2-inylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 82 % der Theorie 20

R_f-Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{32}H_{28}F_3N_3O_2$ (543.59)

Massenspektrum: (M-H)⁻ = 542

25 Beispiel 43

30

N-Hydroxycarbonylmethyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methylpyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1e aus N-Methoxycarbonylmethyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid und 2 molarer Natronlauge in Methanol.

Ausbeute: 77 % der Theorie

- 93 -

R_f-Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 4:1)

 $C_{22}H_{18}F_3N_3O_4$ (445.40)

Massenspektrum: (M-H) = 444

 $(M+Na)^{+} = 468$

5

Beispiel 44

N-(2-Hydroxycarbonylethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1e aus N-(2-Methoxycarbonylethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid und 2 molarer Natronlauge in Methanol.

Ausbeute: 67 % der Theorie

R_FWert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 4:1)

 $C_{23}H_{20}F_3N_3O_4$ (459.42)

Massenspektrum: $(M-H)^{-}$ = 458

Beispiel 45

N-(Biphenyl-3-methyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 3-Phenylbenzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

25 Ausbeute: quantitativ

R_f-Wert: 0.8 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{33}H_{26}F_3N_3O_2$ (553.58)

Massenspektrum: $(M-H)^{-}$ = 552

Beispiel 46

N-(2'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 2'-Methylbiphenyl-4-methylamin, 4-(4'-Trifluorme-thylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.75 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $10 \quad C_{34}H_{28}F_3N_3O_2$ (567.61)

Massenspektrum: $(M-H)^{-}$ = 566

Beispiel 47

N-(4'-Methoxycarbonylbiphenyl-4-yl)methyl-4-(4'-trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4'-Methoxycarbonylbiphenyl-4-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

20 Ausbeute: quantitativ

R_f-Wert: 0.75 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{35}H_{28}F_3N_3O_4$ (611.62)

Massenspektrum: $(M-H)^{-}$ = 610

25 Beispiel 48

30

N-[4-(Piperidino)-phenylmethyl)-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(Piperidino)-benzylamin, 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiiso-propylamin in Dimethylformamid.

Ausbeute: quantitativ

- 95 -

Rr-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{32}H_{31}F_3N_4O_2$ (560.62)

Massenspektrum: $(M-H)^{-}$ = 559

5 Beispiel 49

N-[4-(1,4-Dioxa-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbon-säureamid

Hergestellt analog Beispiel 1d aus 4-(1,4-Dioxa-spiro[4.5]dec-8-yl)-benzylamin, 4-(4'-

Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldi-isopropylamin in Dimethylformamid.

Ausbeute: quantitativ

Rr-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{35}H_{34}F_3N_3O_4$ (617.67)

15 Massenspektrum: $(M+Na)^{\dagger} = 640$

Beispiel 50

20

N-(4-tert.Butylphenylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-tert.Butylbenzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

25 R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{31}H_{30}F_3N_3O_2$ (533.59)

Beispiel 51

N-(4-Chlorphenylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 96 -

Hergestellt analog Beispiel 1d aus 4-Chlorbenzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

5 R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₂₇H₂₁CIF₃N₃O₂ (511.93)

Massenspektrum: $(M-H)^2 = 510/12$ (Chlorisotope)

Beispiel 52

10

15

N-(2-Phenylthiazol-4-ylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus (2-Phenylthiazol-4-yl)-methylamin, 4-(4'-Trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{30}H_{23}F_3N_4O_2S$ (560.60)

Massenspektrum: $(M-H)^{-}$ = 559

20

Beispiel 53

N-(3-Chlor-5-trifluormethylpyridin-2-yl-methyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbon-säureamid

Hergestellt analog Beispiel 1d aus 3-Chlor-5-trifluormethyl-pyridin-2-yl-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 30 $C_{27}H_{19}CIF_6N_4O_2$ (580.92)

Massenspektrum: $(M-H)^2 = 579/81$ (Chlorisotope)

- 97 **-**

Beispiel 54

N-(5-Phenyl-[1,3,4]oxadiazol-2-yl-methyl)-4-(4'-trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus (5-Phenyl-[1,3,4]oxadiazol-2-yl)-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiiso-propylamin in Dimethylformamid.

Ausbeute: 76 % der Theorie

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $10 \quad C_{29}H_{22}F_3N_5O_3 (545.52)$

Massenspektrum: $(M-H)^{-}$ = 544

Beispiel 55

N-[4-(Pyrimidin-4-yl-carbonylamino)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(Pyrimidin-4-yl-carbonylamino)-benzylamin,

4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU

und N-Ethyl-diisopropylamin in Dimethylformamid.

20 Ausbeute: 99 % der Theorie

 R_f -Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{32}H_{25}F_3N_6O_3$ (598.58)

Massenspektrum: $(M-H)^{-}$ = 597

25 Beispiel 56

N-(Biphenyl-4-yl)methyl-N-methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus N-Methyl-4-phenylbenzylamin, 4-(4'-Trifluorme-thylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldisopropylamin in Dimethylformamid.

Ausbeute: 77 % der Theorie

- 98 -

Rr-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{34}H_{28}F_3N_3O_2$ (567.61)

Massenspektrum: $(M-H)^{-} = 566$

5 Beispiel 57

N-[4-(3,4-Dihydro-2H-chinolin-1-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(3,4-Dihydro-2H-chinolin-1-yl)-benzylamin, 4-(4'-

Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiiso-propylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.65 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{36}H_{31}F_3N_4O_2$ (608.66)

15 Massenspektrum: $(M-H)^{-}$ = 607

Beispiel 58

N-[4-(Pyridin-3-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-

20 <u>1-methyl-pyrrol-2-carbonsäureamid</u>

Hergestellt analog Beispiel 1d aus 4-(Pyridin-3-yl)-benzylamin, 4-(4'-Trifluormethylbi-phenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 37 % der Theorie

25 R_f-Wert: 0.65 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{32}H_{25}F_3N_4O_2$ (554.57)

Massenspektrum: $(M-H)^{-}$ = 553

Beispiel 59

30

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-fluorbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4'-Methylbiphenyl-4-methyl-amin, 4-(4'-Fluorbi-phenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 82 % der Theorie

R_f-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₃H₂₈FN₃O₂ (517.60)

Beispiel 60

5

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-methylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4'-Methylbiphenyl-4-methyl-amin, 4-(4'-Methylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

15 Ausbeute: quantitativ

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{34}H_{31}N_3O_2$ (513.64)

Massenspektrum: $(M-H)^{-}$ = 512

20 Beispiel 61

N-(4'-Hydroxycarbonylbiphenyl-4-yl)methyl-4-(4'-trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1e aus N-(4'-Methoxycarbonyl-biphenyl-4-yl)methyl-4-(4'trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid und 2 molarer Natronlauge in Ethanol.

Ausbeute: quantitativ

R_f-Wert: 0.40 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{34}H_{26}F_3N_3O_4$ (597.59)

30 Massenspektrum: $(M-H)^{-}$ = 596

Beispiel 62

N-(4'-Hydroxybiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4-Hydroxyphenyl)-benzylamin, 4-(4'-Trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 58 % der Theorie

R_FWert: 0.50 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $10 \quad C_{33}H_{26}F_3N_3O_3$ (569.58)

Massenspektrum: $(M-H)^{-}$ = 568

Beispiel 63

N-(4-Methoxycarbonyl-4-phenyl-hexyl)-4-(4'-trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 5-Amino-2-ethyl-2-phenyl-pentansäuremethylester, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

20 Ausbeute: 21 % der Theorie

R_f-Wert: 0.40 (Kieselgel; Petrolether/Essigester = 2:3)

C₃₄H₃₄F₃N₃O₄ (605.66)

Massenspektrum: $(M-H)^{-}$ = 604

25 Beispiel 64

30

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1H-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 4'-Methylbiphenyl-4-methylamin und 4-(4'-Tri-fluormethylbiphenyl-2-carbonylamino)-1H-pyrrol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 17 % der Theorie

- 101 -

R_f-Wert: 0.58 (Kieselgel; Dichlormethan/Ethanol= 9:1)

 $C_{33}H_{26}F_3N_3O_2$ (553.58)

Massenspektrum: $(M-H)^{-}$ = 552

5 Beispiel 65

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-ethyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4'-Methylbiphenyl-4-methylamin, 4-(4'-Trifluorme-thylbiphenyl-2-carbonylamino)-1-ethyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 78 % der Theorie

R_f-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{35}H_{30}F_3N_3O_2$ (581.64)

15 Massenspektrum: $(M-H)^{-}$ = 580

Beispiel 66

N-[4-(6-Methylpyridazin-3-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-

20 2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(6-Methylpyridazin-3-yl)-benzylamin, 4-(4'-Tri-fluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 28 % der Theorie

25 R_f-Wert: 0.49 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{32}H_{26}F_3N_5O_2$ (569.59)

Massenspektrum: $(M-H)^{-}$ = 568

 $(M+H)^{+} = 570$

 $(M+Na)^{+} = 592$

- 102 -

Beispiel 67

N-[4-(Pyridin-2-vi)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(Pyridin-2-yl)-benzylamin, 4-(4'-Trifluormethyl-5 biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.55 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₂H₂₅F₃N₄O₂ (554.57) 10

Massenspektrum:

 $(M-H)^{-} = 553$

 $(M+Na)^{+} = 577$

Beispiel 68

15

20

30

N-[3-(4-Methylphenyl)-propyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methylpyrrol-2-carbonsäureamid

50 mg (0.097 mmol) N-[3-(4-Methyl-phenyl)-prop-2-inyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid werden in 10 ml Ethanol gelöst und nach Zugabe von 20 mg Palladium auf Aktivkohle (10%) mit Wasserstoff hydriert. Der Katalysator wird abfiltriert und die Lösung eingedampft.

Ausbeute: 40 mg (79 % der Theorie),

R_f-Wert: 0.35 (Kieselgel; Petrolether/Essigester = 1:1)

 $C_{30}H_{28}F_3N_3O_2$ (519.57)

Massenspektrum: $(M-H)^{-}$ = 518 25

Beispiel 69

N-(4'-Methylbiphenyl-4-yl)methyl-4-[2-(morpholin-4-yl)-phenyl-carbonylamino]-1-methyl-pyrrol-2-carbonsäureamid

a. 2-(Morpholin-4-yl)-benzoesäureethylester

PCT/EP02/07215

Ein Gemisch aus 1.7 ml (10.6 mmol) 2-Brombenzoesäureethylester, 1.0 ml (11.0 mmol) Morpholin, 5.4 g (16.5 mmol) Cäsiumcarbonat, 75 mg (0.33 mmol) Palladium-II-acetat und 270 mg (0.43 mmol) 2,2'-Bis-(diphenylphosphino)-1,1'-binaphthyl werden in 30 ml Xylol 12 Stunden bei 100 °C gerührt. Das Lösungsmittel wird abdestilliert und der Rückstand an Kieselgel chromatographiert, wobei mit Dichlormethan/Ethanol 9:1 eluiert wird.

Ausbeute: 0.6 g (25 % der Theorie),

R_f-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 19:1)

C₁₃H₁₇NO₃ (235.29)

5

15

20

25

30

10 Massenspektrum: $(M+H)^+ = 236$

 $(M+Na)^{+} = 258$

b. 2-(Morpholin-4-vI)-benzoesäure

Hergestellt analog Beispiel 1e aus 2-(Morpholin-4-yl)-benzoesäureethylester und 2 molarer Natronlauge in Methanol.

Ausbeute: 90 % der Theorie,

R_f-Wert: 0.75 (Kieselgel; Dichlormethan/Ethanol/Ammoniak = 8 : 4 : 0.2)

C₁₁H₁₃NO₃ (207.23)

Massenspektrum: $(M-H)^{-}$ = 206

 $(M+H)^{+} = 208$

c. 1-Methyl-4-[2-(morpholin-4-yl)-phenylcarbonylamino]-pyrrol-2-carbon-säuremethylester

0.2 g (0.89 mmol) 2-(Morpholin-4-yl)-benzoesäure werden in 1.0 ml (13.7 mmol)

Thionylchlorid unter Zusatz von 2 Tropfen Dimethylformamid 90 Minuten gerührt. Die Lösung wird eingedampft, 0.2 g (0.89 mmol) 1-Methyl-4-amino-pyrrol-2-carbonsäure-methylester, 0.4 ml (2.7 mmol) Triethylamin und 20 ml Tetrahydrofuran zugesetzt und 17 Stunden gerührt. Das Lösungsmittel wird abdestilliert, der Rückstand in Dichlormethan gelöst und mit Wasser gewaschen. Die vereinigten organischen Extrakte werden getrocknet und eingedampft.

Ausbeute: 0.3 g (100 % der Theorie),

R_f-Wert: 0.35 (Kieselgel; Dichlormethan/Ethanol = 19:1)

- 104 -

 $C_{18}H_{21}N_3O_4$ (343.39)

Massenspektrum: $(M-H)^{-}$ = 342

 $(M+Na)^{+} = 366$

5 d. 1-Methyl-4-[2-(morpholin-4-yl)-phenylcarbonylamino]-pyrrol-2-carbonsäure

Hergestellt analog Beispiel 1e aus 1-Methyl-4-[2-(morpholin-4-yl)-phenylcarbonyl-amino]-pyrrol-2-carbonsäuremethylester und 2 molarer Natronlauge in Methanol.

Ausbeute: 75 % der Theorie

10 R_f-Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{17}H_{19}N_3O_4$ (329.36)

Massenspektrum: (M-H)

 $(M+Na)^+ = 352$

e. N-(4'-Methylbiphenyl-4-yl)methyl-4-[2-(morpholin-4-yl)-phenyl-carbonylamino]1-methyl-pyrrol-2-carbonsäureamid

= 328

Hergestellt analog Beispiel 1e aus 1-Methyl-4-[2-(morpholin-4-yl)-phenylcarbonyl-amino]-pyrrol-2-carbonsäure, 4'-Methylbi-phenyl-4-methylamin, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

20 Ausbeute: 94 % der Theorie

R_f-Wert: 0.55 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{31}H_{32}N_4O_3$ (508.62)

Massenspektrum: $(M-H)^{-} = 507$

25 Beispiel 70

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-

1-(3-tert.butoxycarbonylaminopropyl)-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4'-Trifluormethylbiphenyl-2-carbonsäure und N-(4'-

Methylbiphenyl-4-yl)methyl-4-amino-1-(3-tert.butoxycarbonylaminopropyl)-pyrrol-2-carbonsäureamid, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

- 105 -

R_f-Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{41}H_{41}F_3N_4O_4$ (710.80)

Massenspektrum: (M-H)

 $(M-H)^{-} = 709$

 $(M+Na)^{+} = 733$

5

Beispiel 71

N-(4-Benzyloxy-benzyl)-N-methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, N-(4-Benzyloxy-benzyl)-methylamin, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 79 % der Theorie

R_f-Wert: 0.54 (Kieselgel; Petrolether/Essigester = 1:2)

 $C_{35}H_{30}F_3N_3O_3$ (597.64)

Massenspektrum: $(M-H)^{-}$ = 596

 $(M+H)^{+} = 598$

Beispiel 72

20

25

N-[4-(2-Methoxycarbonyl-ethyl)-phenylmethyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(2-Methoxycarbonyl-ethyl)-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 85 % der Theorie

Rr-Wert: 0.78 (Kieselgel; Dichlormethan/Ethanol = 9:1)

1-19

C₃₁H₂₈F₃N₃O₄ (563.58)

Massenspektrum: $(M-H)^{-}$ = 562

 $(M+H)^+ = 564$

- 106 -

Beispiel 73

N-Methyl-N-benzyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, N-Methyl-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 79 % der Theorie

R_f-Wert: 0.77 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $10 \quad C_{28}H_{24}F_3N_3O_2$ (491.52)

Massenspektrum: $(M-H)^{-}$ = 490

 $(M+H)^+ = 492$

Beispiel 74

15

20

25

N-(2-Difluormethoxy-phenylmethyl)-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 2-Difluormethoxy-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 69 % der Theorie

R_f-Wert: 0.75 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{28}H_{22}F_5N_3O_3$ (543.49)

Massenspektrum: $(M-H)^{-} = 542$

 $(M+H)^+ = 544$

 $(M+Na)^{+} = 566$

Beispiel 75

N-(2-Methyl-phenylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

- 107 -

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 2-Methyl-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 66 % der Theorie

5 R-Wert: 0.76 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{28}H_{24}F_3N_3O_2$ (491.52)

Massenspektrum:

$$(M-H)^{-} = 490$$

$$(M+H)^{+} = 492$$

10 Beispiel 76

N-[2-(Biphenyl-4-yl)-ethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1methyl-pyrrol-2-carbonsäure, 2-(Biphenyl-4-yl)-ethylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 88 % der Theorie

R_f-Wert: 0.76 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{34}H_{28}F_3N_3O_2$ (567.61)

20 Massenspektrum:

$$(M-H)^{-}$$
 . = 566

 $(M+H)^{+} = 568$

 $(M+Na)^{+} = 590$

Beispiel 77

25

N-[4-(4-Methylpiperidino)-phenylmethyl)-4-(4'-trifluor-methylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(4-Methylpiperidino)-benzylamin, TBTU und

30 Triethylamin in Tetrahydrofuran.

Ausbeute: 48 % der Theorie

R_f-Wert: 0.25 (Kieselgel; Petrolether/Essigester = 3:2)

- 108 -

 $C_{33}H_{33}F_3N_4O_2$ (574.65)

Massenspektrum: $(M-H)^{-} = 573$

 $(M+H)^{+} = 575$

5 Beispiel 78

10

N-[4-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 90 % der Theorie

R_f-Wert: 0.65 (Kieselgel; Petrolether/Essigester = 3:2)

C₃₄H₃₃F₃N₄O₄ (618.66)

15 Massenspektrum: (M-H) = 617

 $(M+H)^{+} = 619$

Beispiel 79

N-[4-(3-Aza-spiro[5.5]undec-3-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(3-Aza-spiro[5.5]undec-3-yl)-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

25 Ausbeute: 65 % der Theorie

R_f-Wert: 0.21 (Kieselgel: Petrolether/Essigester = 3:2)

 $C_{37}H_{39}F_3N_4O_2$ (628.74)

Massenspektrum: $(M+H)^{+} = 629$

- 109 -

Beispiel 80

N-[1-(4-Chlorphenyl)-ethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 1-(4-Chlorphenyl)-ethylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 100 % der Theorie

R_f-Wert: 0.82 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $10 \quad C_{28}H_{23}CIF_3N_3O_2$ (525.96)

Massenspektrum: $(M-H)^{-}$ = 524/26 (Chlorisotope)

 $(M+H)^{\dagger}$ = 526/28 (Chlorisotope)

Beispiel 81

15

25

N-[4-(3-Methyl-[1,2,4]oxadiazol-5-yl)methyl-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(3-Methyl-[1,2,4]oxadiazol-5-yl)methyl-benzylamin,

20 TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 84 % der Theorie

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{31}H_{26}F_3N_5O_3$ (573.58)

Massenspektrum: $(M-H)^{-}$ = 572

 $(M+H)^{+} = 574$

 $(M+Na)^+ = 596$

Beispiel 82

N-(4-Methoxycarbonyl-cyclohexylmethyl)-4-(4'-trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-Aminomethyl-cyclohexancarbonsäuremethylester, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 62 % der Theorie

5 R_f-Wert: 0.72 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{29}H_{30}F_3N_3O_4$ (541.57)

Massenspektrum: $(M-H)^{-} = 540$

 $(M+H)^+ = 542$

10 Beispiel 83

15

30

N-(4-Benzyloxy-benzyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-Benzyloxy-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 83 % der Theorie

R_f-Wert: 0.73 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{34}H_{28}F_3N_3O_3$ (583.61)

20 Massenspektrum: $(M+H)^+$ = 584

 $(M+Na)^{+} = 606$

 $(M-H)^{-} = 582$

 $(M+HCOO)^{-} = 628$

25 Beispiel 84

N-[4-(3-Methylpiperidino)-phenylmethyl)-4-(4'-trifluor-methylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(3-Methylpiperidino)-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 16 % der Theorie

- 111 -

R_f-Wert: 0.81 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{33}H_{33}F_3N_4O_2$ (574.65)

Massenspektrum: $(M+H)^+ = 575$

 $(M+HCOO)^{-} = 619$

5

Beispiel 85 I

N-[Cyclopropyl-(4-methoxy-phenyl)-methyl]-4-(4'-trifluormethyl-biphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid und

N-[1-(4-Methoxy-phenyl)-butyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid im Verhältnis 1:1

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, einem 1:1 Gemisch aus 1-(4-Methoxy-phenyl)-butylamin und C-Cyclopropyl-C-(4-methoxy-phenyl)-methylamin, TBTU und

15 Triethylamin in Tetrahydrofuran.

Ausbeute: 100 % der Theorie

R_f-Wert: 0.74 (Kieselgel; Dichlormethan/Ethanol = 9:1)

N-[Cyclopropyl-(4-methoxy-phenyl)-methyl]-4-(4'-trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure-amid

20 C₃₁H₂₈F₃N₃O₃ (547.58)

Massenspektrum:

$$(M)^{+} = 547$$

 $(M+H)^{+} = 548$

 $(M+Na)^+ = 570$

 $(M-H)^{-} = 546$

N-[1-(4-Methoxy-phenyl)-butyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

 $C_{31}H_{30}F_3N_3O_3$ (549.59)

Massenspektrum:

30

$$(M)^{+} = 549$$

 $(M+H)^{+} = 550$

 $(M+Na)^{+} = 572$

 $(M-H)^{-} = 548$

WO 03/004020

- 112 -

Beispiel 86

N-[5-(4-Cyano-4-phenyl-piperidino-carbonyl)-1-methyl-pyrrol-3-yl]-4'-trifluor-methyl-biphenyl-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-Cyano-4-phenyl-piperidin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 67 % der Theorie

R_f-Wert: 0.83 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $10 \quad C_{32}H_{27}F_3N_4O_2$ (556.59)

Massenspektrum: $(M-H)^{-}$ = 555

 $(M+H)^{+} = 557$

Beispiel 87

15

20

N-[4-(9-Ethylaminocarbonyl-fluoren-9-yl)-butyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(9-Ethylaminocarbonyl-fluoren-9-yl)-butylamin, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_r-Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{40}H_{37}F_3N_4O_3$ (678.76)

Massenspektrum: $(M-H)^{-}$ = 677

 $(M+Na)^{+} = 701$

Beispiel 88

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-

30 1-(3-aminopropyl)-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 19c aus N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-(3-tert.butoxycarbonylaminopropyl)-pyrrol-2-carbonsäureamid und Trifluoressigsäure in Dichlormethan.

Ausbeute: quantitativ

R_f-Wert: 0.35 (Kieselgel; Dichlormethan/Ethanol/Ammoniak = 50 : 45 : 5)

 $C_{36}H_{33}F_3N_4O_2$ (610.68)

Massenspektrum: $(M-H)^{-}$ = 609

 $(M+H)^* = 611$

10 Beispiel 89

5

N-[4-(5-Dimethylaminopyridin-2-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(5-Dimethylamino-pyridin-2-yl)-benzylamin, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: 57 % der Theorie

R_f-Wert: 0.55 (Kieselgel; Dichlormethan/Ethanol = 19:1)

 $C_{34}H_{30}F_3N_5O_2$ (597.64)

20 Massenspektrum: $(M-H)^{-}$ = 596

 $(M+H)^{+} = 598$

 $(M+Na)^+ = 620$

Beispiel 90

25

30

15

N-[3-(Biphenyl-4-yl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 3-(Biphenyl-4-yl)-prop-2-inylamin-trifluoracetat, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: 22 % der Theorie

R_f-Wert: 0.70 (Kieselgel; Dichlormethan/Ethanol = 9:1)

- 114 -

 $C_{35}H_{26}F_3N_3O_2$ (577.60)

Massenspektrum: $(M-H)^{-}$ = 576

 $(M+H)^+ = 578$

5 Beispiel 91

N-[3-(4-Isopropylphenyl)-prop-2-inyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid

Hergestellt analog Beispiel 11 aus 3-(4-Isopropylphenyl)-prop-2-inylamin und 4-(4'-Trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-imidazol-2-carbonsäure in Dichlormethan unter Zusatz von Propanphosphonsäurecycloanhydrid und N-Methylmorpholin.

Ausbeute: 24 % der Theorie

R_f-Wert: 0.49 (Kieselgel; Dichlormethan/Ethanol = 9:1)

15 $C_{31}H_{27}F_3N_4O_2$ (544.58)

Massenspektrum: $(M-H)^{-}$ = 543

 $(M+Na)^{+} = 567$

Beispiel 92

20

N-(4'-Methylbiphenyl-4-yl)methyl-4-[2-(pyrrolidin-1-yl)phenyl-carbonylamino]-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-[2-(Pyrrolidin-1-yl)-phenylcarbonylamino)1-methyl-pyrrol-2-carbonsäure, 4'-Methyl-biphenyl-4-methylamin, TBTU und

N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 82 % der Theorie

R_f-Wert: 0.60 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{31}H_{32}N_4O_2$ (492.62)

Massenspektrum: $(M-H)^2 = 491$

 $(M+Na)^{+} = 515$

- 115 -

Beispiel 93

N-[5-(1,2,3,4-Tetrahydroisochinolin-2-yl-carbonyl)-1-methyl-pyrrol-3-yl]-4'-trifluor-methylbiphenyl-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 1,2,3,4-Tetrahydroisochinolin, TBTU und N-Ethyldiisopropylamin in Dimethylformamid.

Ausbeute: 70 % der Theorie

R_t-Wert: 0.72 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{29}H_{24}F_3N_3O_2$ (503.52)

Massenspektrum: $(M-H)^{-}$ = 502

 $(M+H)^{+} = 504$

Beispiel 94

15

20

25

N-[5-(1,3-Dihydro-isoindol-2-yl-carbonyl)-1-methyl-pyrrol-3-yl]-4'-trifluormethyl-biphenyl-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 2,3-Dihydro-1H-isoindol, TBTU und N-Ethyldiiso-propylamin in Dimethylformamid.

Ausbeute: 79 % der Theorie

R_f-Wert: 0.64 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{28}H_{22}F_3N_3O_2$ (489.50)

Massenspektrum: $(M-H)^{-}$ = 488

 $(M+H)^{+} = 490$

 $(M+Na)^{+} = 512$

Beispiel 95

N-(4'-Methylbiphenyl-4-yl)methyl-4-[1-oxo-7-(4-trifluormethylphenyl)-1,3-dihydro-isoindol-2-yl]-1-methyl-pyrrol-2-carbonsäureamid

5

20

30

a. 3-Methyl-4'-trifluormethylbiphenyl-2-carbonsäuremethylester

Ein Gemisch aus 1.1 g (4.58 mmol) 2-Brom-6-methyl-benzoesäuremethylester, 0.9 g (4.7 mmol) 4-(Trifluormethyl)-benzolboronsäure, 0.3 g (0.26 mmol) Tetrakis-triphenyl-phosphin-palladium(O) und 0.2 g (0.24 mmol) 2,2'-Bis-(diphenyl-phosphino)-1,1'-bi-naphthyl werden in 150 ml Dimethoxyethan vorgelegt, nach 10 Minuten mit 7 ml (7 mmol) 1 molarer Natriumcarbonatlösung versetzt und anschließend 5 Stunden zum Rückfluß erhitzt. Das Lösungsmittel wird abdestilliert, der Rückstand in Wasser/Dichlormethan verteilt, die vereinigten organischen Extrakte getrocknet und an Kieselgel chromatographiert, wobei mit Essigester/Petrolether 95:5 eluiert wird.

10 Ausbeute: 1.1 g (83 % der Theorie),

R_f-Wert: 0.8 (Kieselgel; Dichlormethan/Ethanol = 99:1)

 $C_{16}H_{13}F_3O_2$ (294.28)

Massenspektrum: $(M+Na)^{\dagger} = 317$

b. 3-Brommethyl-4'-trifluormethylbiphenyl-2-carbonsäuremethyl-ester

0.5 g (1.7 mmol) 3-Methyl-4'-trifluormethylbiphenyl-2-carbon-säuremethylester werden in 10 ml Tetrachlorkohlenstoff gelöst und nach Zugabe von 0.45 g (2.57 mmol) N-Bromsuccinimid und 10 mg (0.06 mmol 2,2-Azoisobuttersäurenitril 7 Stunden zum Rückfluß erhitzt. Das ausgefallene Succinimid wird abgesaugt und das Filtrat eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Petrolether/Dichloremethan 8:2 eluiert wird.

Ausbeute: 0.4 g (62 % der Theorie),

Rr-Wert: 0.45 (Kieselgel; Petrolether/Essigester = 9:1)

 $C_{16}H_{12}BrF_3O_2$ (373.17)

Massenspektrum: $M^+ = 372/74$ (Bromisotope)

c. 4-[1-Oxo-7-(4-trifluormethylphenyl)-1,3-dihydro-isoindol-2-yl]-1-methyl-pyrrol-

2-carbonsäuremethylester

0.4 g (1.0 mmol) 3-Brommethyl-4'-trifluormethylbiphenyl-2-carbonsäuremethylester werden in 15 ml Acetonitril gelöst und nach Zugabe von 0.2 g (1.0 mmol) 4-Amino-1-methyl-pyrrol-2-carbonsäuremethylester 3.5 Stunden bei 80°C gerührt; Das

Lösungsmittel wird abdestilliert und der Rückstand an Kieselgel chromatographiert, wobei mit Petrolether/Essigester 85:15 und 75:25 eluiert wird.

Ausbeute: 0.2 g (43 % der Theorie),

R_f-Wert: 0.25 (Kieselgel; Dichlormethan/Ethanol = 99:1)

5 $C_{22}H_{17}F_3N_2O_3$ (414.39)

Massenspektrum:

$$(M-H)^{-} = 413$$

$$(M+H)^{+} = 415$$

$$(M+Na)^{+} = 437$$

d. 4-[1-Oxo-7-(4-trifluormethylphenyl)-1,3-dihydro-isoindol-2-yl]-1-methyl-pyrrol-2-carbonsäure

Hergestellt analog Beispiel 1e aus 4-[1-Oxo-7-(4-trifluormethylphenyl)-1,3-dihydro-isoindol-2-yl]-1-methyl-pyrrol-2-carbonsäuremethylester und Natronlauge in Methanol.

15 Ausbeute: 85 % der Theorie

R_f-Wert: 0.35 (Kieselgel; Dichlormethan/Ethanol = 19:1)

 $C_{21}H_{15}F_3N_2O_3$ (400.36)

Massenspektrum:

20

25

$$(M-H)^{-} = 399$$

$$(M+H)^{+} = 401$$

$$(M+Na)^+ = 423$$

e. N-(4'-Methylbiphenyl-4-yl)methyl-4-[1-oxo-7-(4-trifluormethylphenyl)-1,3-dihydro-isoindol-2-yl]-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-[1-Oxo-7-(4-trifluormethylphenyl)-1,3-dihydro-isoindol-2-yl]-1-methyl-pyrrol-2-carbonsäure, C-(4'-Methyl-biphenyl-4-yl)methylamin, TBTU und N-Ethyl-diisopropylaminin Dimethylformamid.

Ausbeute: 96 % der Theorie

R_f-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{35}H_{28}F_3N_3O_2$ (579.62)

30 Massenspektrum:

$$(M+H)^{+} = 580$$

$$(M+Na)^+ = 602$$

- 118 -

Beispiel 96

N-(4-Dimethylaminobutyl)-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 1-Amino-4-(dimethylamino)-butan, 4-(4'-Trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und Triethylamin in Dimethylformamid.

Ausbeute: 99 % der Theorie

R_f-Wert: 0.17 (Kieselgel; Essigester/Ethanol/Ammoniak = 50:45:5)

 $10 \quad C_{26}H_{29}F_3N_4O_2$ (486,54)

Massenspektrum: $(M-H)^{-}$ = 485

 $(M+H)^+ = 487$

Beispiel 97

15

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-

1-(2-methoxycarbonyl-ethyl)-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 4a aus 4'-Trifluormethylbiphenyl-2-carbonsäurechlorid, N-(4'-Methylbiphenyl-4-yl)methyl-4-amino-1-(2-methoxycarbonyl-ethyl)-pyrrol-2-

20 carbonsäure und Triethylamin in Tetrahydrofuran.

Ausbeute: 80 % der Theorie

R_FWert: 0.60 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{37}H_{32}F_3N_3O_4$ (639.68)

Massenspektrum: (M+H)+ = 640

25

Beispiel 98

N-(4-Hydroxycarbonylcyclohexylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1a aus N-(4-Methoxycarbonylcyclohexylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid und Natronlauge in Methanol.

Specific

- 119 -

Ausbeute: 88 % der Theorie

R_f-Wert: 0.91 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{28}H_{28}F_3N_3O_4$ (527.54)

Massenspektrum: (M-H)- = 526

 $(M+H)^{+} = 528$

Beispiel 99

5

10

N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-

1-(2-hydroxycarbonylethyl)-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1e aus N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluor-methylbiphenyl-2-carbonylamino)-1-(2-methoxycarbonylethyl)-pyrrol-2-carbonsäure-amid und Natronlauge in Methanol.

Ausbeute: 62 % der Theorie

R_f-Wert: 0.30 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{36}H_{30}F_3N_3O_4$ (625.65)

Massenspektrum: (M-H)- = 624

 $(M+H)^{+} = 626$

 $(M+Na)^{+} = 648$

20

Beispiel 100

- 1-Methyl-2-[4-(piperidin-1-yl)methyl-piperidinocarbonyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-pyrrol
- Hergestellt analog Beispiel 1d aus 4-(Piperidin-1-yl)methyl-piperidin, 4-(4'-Trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und Triethylamin in Dimethylformamid.

Ausbeute: 96 % der Theorie

R-Wert: 0.29 (Kieselgel; Dichlormethan/Ethanol = 4:1)

 $30 \quad C_{31}H_{35}F_3N_4O_2$ (552.64)

Massenspektrum: $(M-H)^{-}$ = 551

- 120 -

$$(M+H)^{+} = 553$$

Beispiel 101

5 2-[4-(N-Acetyl-N-methyl-aminomethyl)piperidinocarbonyl]-1-methyl-4-(4'-<u>trifluor-methylbiphenyl-2-carbonylamino)-pyrrol</u>

Hergestellt analog Beispiel 1d aus N-Methyl-N-(piperidin-4-yl)methyl-acetamid, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und Triethylamin in Dimethylformamid.

10 Ausbeute: quantitativ

 $C_{29}H_{31}F_3N_4O_3$ (540.59)

Massenspektrum:

 $(M-H)^{-} = 539$

 $(M+H)^{+} = 541$

15

Beispiel 102

2-[7-(4-Cyano-phenoxy)-1,2,3,4-tetrahydroisochinolin-2-ylcarbonyl]-1-methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-pyrrol

Hergestellt analog Beispiel 1d aus 7-(4-Cyanophenoxy)-1,2,3,4-tetrahydroisochinolin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und Triethylamin in Dimethylformamid.

Ausbeute: 96 % der Theorie

R_r-Wert: 0.85 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{36}H_{27}F_3N_4O_3$ (620.63)

Massenspektrum: $(M-H)^{-}$ = 619

(M+H)+ = 621

Beispiel 103

30

N-(4'-Methÿlbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-isopropyl-pyrrol-2-carbonsäureamid

- 121 -

a. 1-Isopropyl-4-nitro-pyrrol-2-carbonsäureethylester

0.5 g (2.7 mMol) 4-Nitropyrrol-2-carbonsäureethylester werden in 8 ml

Dimethylformamid gelöst und nach portionsweiser Zugabe von 73 mg (3 mMol)

Natirumhydrid 45 Minuten nachgerührt. Anschließend werden 0.29 ml (2.9 mMol) Isopropyliodid zugegeben und 12 Stunden nachgerührt. Das Reaktionsgemisch wird mit Wasser verdünnt und mit Dichlormethan extrahiert. Die vereinigten organischen Extrakte werden getrocknet und eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Dichlormethan eluiert wird.

10 Ausbeute: 0.32 g (49 % der Theorie)

R_f-Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 99:1)

b. 4-Amino-1-isopropyl-pyrrol-2-carbonsäureethylester

0.32 g (1.4 mMol) 1-Isopropyl-4-nitro-pyrrol-2-carbonsäureethylester werden in 30 ml Ethanol gelöst und nach Zugabe von 0.15 g Palladium auf Aktivkohle 10 % bei Raumtemperatur mit Wasserstoff hydriert. Der Katalysator wird abfiltriert und die Lösung eingedampft.

Ausbeute: 0.26 g (94 % der Theorie)

R_f-Wert: 0.15 (Kieselgel; Dichlormethan/Ethanol = 99:1)

20

15

c. 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-isopropyl-pyrrol-2-carbonsäure-ethylester

Hergestellt analog Beispiel 4a aus 4'-Trifluormethylbiphenyl-2-carbonsäurechlorid, 4-Amino-1-isopropyl-pyrrol-2-carbonsäureethylester und Triethylamin in

25 Tetrahydrofuran.

Ausbeute: 65 % der Theorie

R_f-Wert: 0.75 (Kieselgel; Dichlormethan/Ethanol = 19:1)

d. 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-isopropyl-pyrrol-2-carbonsäure

Hergestellt analog Beispiel 1e aus 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-isopropyl-pyrrol-2-carbonsäureethylester und Natronlauge in Methanol.

Ausbeute: 80 % der Theorie

- 122 -

Rr-Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol = 19:1)

e. N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-isopropyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus (4'-Methylbiphenyl-4-yl)-methylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-isopropyl-pyrrol-2-carbonsäure, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

Ausbeute: 94 % der Theorie

R_f-Wert: 0.75 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $10 \quad C_{36}H_{32}F_3N_3O_2$ (595.67)

Massenspektrum: $(M-H)^{-}$ = 594

(M+H)+ = 596

Beispiel 104

15

20

25

N-[3-(Biphenyl-4-yl)-propyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methylimidazol-2-carbonsäureamid

Hergestellt analog Beispiel 104b aus N-[3-(4-Biphenyl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid und Palladium auf Aktivkohle 10 % in Ethanol.

Ausbeute: 99 % der Theorie

R_f-Wert: 0.5 (Kieselgel; Petrolether/Essigester = 1:1)

 $C_{34}H_{29}F_3N_4O_2$ (582.63)

Massenspektrum: $(M-H)^{-}$ = 581

(M+H)+ = 583

Beispiel 105

N-(Cyclohexylmethyl)-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-

30 pyrrol-2-carbonsäureamid

- 123 -

Hergestellt analog Beispiel 1d aus (Aminomethyl)-cyclohexan, 4-(4'-

Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und Triethylamin in Dimethylformamid.

Ausbeute: 99 % der Theorie

5 R_f-Wert: 0.7 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{27}H_{28}F_3N_3O_2$ (483.53)

Massenspektrum: $(M-H)^{-}$ = 482

(M+H)+ = 484

10 Beispiel 106

N-(4'-Methylbiphenyl-4-yl)methyl-4-(2-phenoxyphenyl-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 2-Phenoxybenzoesäure, N-(4'-Methylbiphenyl-4-

yl)methyl-4-amino-1-methyl-pyrrol-2-carbonsäureamid, TBTU und N-Ethyldisopropylamin in Dimethylformamid.

Ausbeute: quantitativ

R_f-Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol = 19:1)

C₃₃H₂₉N₃O₃ (515.61)

20 Massenspektrum: $(M+H)^+$ = 516

(M+HCOO)- = 560

Beispiel 107

N-(4'-Methylbiphenyl-4-yl)methyl-4-[2-(2-phenylethyl)phenyl-carbonylamino]-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 2-(2-Phenylethyl)benzoesäure, N-(4'-Methylbiphenyl-4-yl)methyl-4-amino-1-methyl-pyrrol-2-carbonsäureamid, TBTU und N-Ethyl-diisopropylamin in Dimethylformamid.

30 Ausbeute: quantitativ

R_f-Wert: 0.5 (Kieselgel; Dichlormethan/Ethanol = 19:1)

C₃₅H₃₃N₃O₂ (527.67)

- 124 -

Massenspektrum: (M-H)- = 526

(M+H)+ = 528

Beispiel 108

5

10

15

20

N-[4-(tert.Butoxycarbonylaminomethyl)-phenylmethyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-tert.Butoxycarbonylaminomethyl-benzylamin, 4-(4'-Trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, TBTU und Triethylamin in Dimethylformamid.

Ausbeute: 96 % der Theorie

R_f-Wert: 0.67 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₃H₃₃F₃N₄O₄ (606.65)

Massenspektrum: (M-H)- = 605

(M+Na)+ = 629

Beispiel 109

N-(4-Aminomethyl)phenylmethyl-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 19c aus N-[4-(tert.Butoxycarbonylaminomethyl)-phenylmethyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid und Trifluoressigsäure in Dichlormethan.

Ausbeute: quantitativ

25 R_f-Wert: 0. 7 (Kieselgel; Dichlormethan/Ethanol = 4:1)

 $C_{28}H_{25}F_3N_4O_2$ (506.53)

Massenspektrum: (M-H)- = 505

(M+H)+ = 507

Beispiel 110

N-(4'-Methylbiphenyl-4-yl)methyl-4-[3-methyl-2-(piperidin-1-yl)-phenyl-carbonyl-aminol-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 3-Methyl-2-(piperidin-1-yl)-benzoesäure, N-(4'-Methylbiphenyl-4-yl)methyl-4-amino-1-methyl-pyrrol-2-carbonsäureamid, TBTU und Triethylamin in Dimethylformamid.

Ausbeute: 66 % der Theorie

R_f-Wert: 0.4 (Kieselgel; Dichlormethan/Ethanol = 4:1)

 $10 \quad C_{33}H_{36}N_4O_2$ (520.68)

Massenspektrum: (M+H)+ = 521

Beispiel 111

N-(4'-Methylbiphenyl-4-yl)methyl-4-[2-(benzylamino)-phenyl-carbonylamino]
1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus N-Benzylanthranilsäure, N-(4'-Methylbiphenyl-4-yl)methyl-4-amino-1-methyl-pyrrol-2-carbonsäureamid, TBTU und Triethylamin in Dimethylformamid.

20 Ausbeute: 74 % der Theorie

R_f-Wert: 0.44 (Kieselgel; Dichlormethan/Ethanol = 9:1)

C₃₄H₃₂N₄O₂ (528.65)

Massenspektrum: (M-H)- = 527

(M+H)+ = 529

Beispiel 112

25

N-(4'-Methylbiphenyl-4-yl)methyl-4-[2-(4-methyl-phenylsulfonylamino)-phenylcarbonylamino]-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 2-(4-Methyl-phenylsulfonylamino)-benzoesäure, N-(4'-Methylbiphenyl-4-yl)methyl-4-amino-1-methyl-pyrrol-2-carbonsäureamid, TBTU und Triethylamin in Dimethylformamid.

Ausbeute: 5 % der Theorie

R_f-Wert: 0.65 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{34}H_{32}N_4O_4S$ (592.72)

Massenspektrum: $(M-H)^{-}$ = 591

5

Beispiel 113

N-[4-(4-Propylpiperidino)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)1-methyl-pyrrol-2-carbonsäure, 4-(4-Propylpiperidino)-benzylamin, TBTU und
Triethylamin in Tetrahydrofuran.

Ausbeute: 100 % der Theorie

R_f-Wert: 0.80 (Kieselgel; Dichlormethan/Ethanol = 9:1)

15 $C_{35}H_{37}F_3N_4O_2$ (602.71)

Massenspektrum: $(M+H)^{+} = 603$

Beispiel 114

20

N-{4-[4-(Pyrrolidin-1-yl)-piperidino]-phenylmethyl}-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

Herstellbar analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-[4-(pyrrolidin-1-yl)-piperidino]-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

5 Beispiel 115

N-[4-(4-Phenylpiperidino)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

Herstellbar analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(4-Phenylpiperidino)-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Beispiel 116

15

20

10

N-{4-[4-(4-Methyl-4-*H*-[1,2,4]triazol-3-yl)-piperidino]-phenylmethyl}-4-(4'-trifluor-methylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

Herstellbar analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-[4-(4-Methyl-4-*H*-[1,2,4]triazol-3-yl)-piperidino]-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Beispiel 117

N-[4-(4,4-Dimethylpiperidino)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

Herstellbar analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-(4,4-Dimethylpiperidino)-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Beispiel 118

10

15

20

N-{4-[4-(4-Methylphenyl)piperidino]-phenylmethyl}-4-(4'-trifluormethylbiphenyl-2-carbonyl-amino)-1-methyl-pyrrol-2-carbonsäure-amid

Herstellbar analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, 4-[4-(4-Methylphenyl)piperidino]-benzylamin, TBTU und Triethylamin in Tetrahydrofuran.

Beispiel 119

(S)-N-[1-(Naphth-2-yl)-ethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Herstellbar analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, (S)-1-(Naphth-2-yl)-ethylamin, TBTU und Triethylamin in Tetrahydrofuran.

25 <u>Beispiel 120</u>

(R)-N-[1-(Naphth-2-yl)-ethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)1-methyl-pyrrol-2-carbonsäure, (R)-1-(Naphth-2-yl)-ethylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 98 % der Theorie

- 129 -

R_f-Wert: 0.79 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{32}H_{26}CIF_3N_3O_2$ (541.58)

5

Massenspektrum: $(M-H)^{-}$ = 540

 $(M+H)^{\dagger} = 542$

(M+HCOO)- = 586

Beispiel 121 (entspricht enantiomerenreinem Bsp.80)

(S)-N-[1-(4-Chlorphenyl)-ethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-

10 methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäure, (R)-1-(4-Chlorphenyl)-ethylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 77 % der Theorie

R_f-Wert: 0.83 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{28}H_{23}CIF_3N_3O_2$ (525.96)

Massenspektrum: $(M-H)^{-}$ = 524/26 (Chlorisotope)

 $(M+H)^{\dagger}$ = 526/28 (Chlorisotope)

- 20 Beispiel 122 (entspricht enantiomerenreinem Bsp.80)
 - (R)-N-[1-(4-Chlorphenyl)-ethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid

Hergestellt analog Beispiel 1d aus 4-(4'-Trifluormethyl-biphenyl-2-carbonylamino)-

1-methyl-pyrrol-2-carbonsäure, (S)-1-(4-Chlorphenyl)-ethylamin, TBTU und Triethylamin in Tetrahydrofuran.

Ausbeute: 56 % der Theorie

R_f-Wert: 0.82 (Kieselgel; Dichlormethan/Ethanol = 9:1)

 $C_{28}H_{23}CIF_3N_3O_2$ (525.96)

Massenspektrum: $(M-H)^{-} = 524/26$ (Chlorisotope)

 $(M+H)^{\dagger}$ = 526/28 (Chlorisotope)

- 130 -

Beispiel 123

Tabletten mit 5 mg Wirkstoff pro Tablette

5

Zusammensetzung:

	Wirkstoff	5.0 mg
	Lactose-monohydrat	70.8 mg
10	Mikrokristalline Cellulose	40.0 mg
	Carboxymethylcellulose-Natrium, unlöslich quervernetzt	3.0 mg
	Magnesiumstearat	1.2 mg

Herstellung:

15

Der Wirkstoff wird für 15 Minuten zusammen mit Lactose-monohydrat, mikrokristalliner Cellulose und Carboxymethylcellulose-Natrium in einem geeigneten Diffusionsmischer gemischt. Magnesiumstearat wird zugesetzt und für weitere 3 Minuten mit den übrigen Stoffen vermischt.

20

Die fertige Mischung wird auf einer Tablettenpresse zu runden, flachen Tabletten mit Facette verpreßt.

Durchmesser der Tablette: 7 mm Gewicht einer Tablette: 120 mg

25

- 131 -

Beispiel 124

Kapseln mit 50 mg Wirkstoff pro Kapsel

5 Zusammensetzung:

141 1 1 1

	VVirkstoff	50.0 mg
	Lactose-monohydrat	130.0 mg
	Maisstärke	65.0 mg
10	Siliciumdioxid hochdispers	2.5 mg
	Magnesiumstearat	2.5 mg

Herstellung:

Eine Stärkepaste wird hergestellt, indem ein Teil der Maisstärke mit einer geeigneten Menge heißen Wassers angequollen wird. Die Paste läßt man danach auf Zimmertemperatur abkühlen.

Der Wirkstoff wird in einem geeigneten Mischer mit Lactose-monohydrat und Maisstärke für 15 Minuten vorgemischt. Die Stärkepaste wird zugefügt und die Mischung wird ausreichend mit Wasser versetzt, um eine homogene feuchte Masse zu erhalten. Die feuchte Masse wird durch ein Sieb mit einer Maschenweite von 1.6 mm gegeben. Das gesiebte Granulat wird auf Horden bei etwa 55°C für 12 Stunden getrocknet.

25

20

Das getrocknete Granulat wird danach durch Siebe mit den Maschenweiten 1.2 und 0.8 mm gegeben. Hochdisperses Silicium wird in einem geeigneten Mischer in 3 Minuten mit dem Granulat vermischt. Danach wird Magnesiumstearat zugesetzt und für weitere 3 Minuten gemischt.

30

Die fertige Mischung wird mit Hilfe einer Kapselfüllmaschine in leere Kapselhüllen aus Hartgelatine der Größe 1 gefüllt.

- 132 -

Beispiel 125

Tabletten mit 200 mg Wirkstoff pro Tablette

5 Zusammensetzung:

	Wirkstoff	200.0 mg
	Lactose-mMonohydrat	167.0 mg
	Microkristalline Cellulose	80.0 mg
10	Hydroxypropyl-methylcellulose, Typ 2910	10.0 mg
	Poly-1-vinyl-2-pyrrolidon, unlöslich quervernetzt	20.0 mg
	Magnesiumstearat	3.0 mg

Herstellung:

15

HPMC wird in heißem Wasser dispergiert. Die Mischung ergibt nach dem Abkühlen eine klare Lösung.

Der Wirkstoff wird in einem geeigneten Mischer für 5 Minuten mit Lactose Monohydrat und mikrokristalliner Cellulose vorgemischt. Die HPMC- Lösung wird hinzugefügt und das Mischen fortgesetzt bis eine homogene feuchte Masse erhalten wird.
Die feuchte Masse wird durch ein Sieb mit der Maschenweite 1.6 mm gegeben. Das
gesiebte Granulat wird auf Horden bei etwa 55°C für 12 Stunden getrocknet.

- Das getrocknete Granulat wird danach durch Siebe der Maschenweite 1.2 und 0.8 mm gegeben. Poly-1-vinyl-2-pyrrolidon wird in einem geeigneten Mischer für 3 Minuten mit dem Granulat vermischt. Danach wird Magnesiumstearat zugesetzt und für weitere 3 Minuten gemischt.
- Die fertige Mischung wird auf einer Tablettenpresse zu oblongförmigen Tabletten verpreßt (16.2 x 7.9 mm).

- 133 -

Gewicht einer Tablette: 480 mg

Patentansprüche

5

1. Heteroarylcarbonsäureamide der allgemeinen Formel

in der

10

X₁ die Gruppe CR¹,

X₂ die Gruppe CR²,

15 X₃ die Gruppe CR³ und

X₄ die Gruppe CR⁴ oder

eine oder zwei der Gruppen X₁ bis X₄ jeweils ein Stickstoffatom und die restlichen der Gruppen X₁ bis X₄ drei oder zwei der Gruppen CR¹ bis CR⁴,

wobei R1, R2, R3 und R4 jeweils ein Wasserstoffatom oder

eine oder zwei der Gruppen R¹ bis R⁴ unabhängig voneinander jeweils ein Fluor-,
Chlor- oder Bromatom, eine C₁₋₃-Alkylgruppe, eine Trifluormethyl-, Hydroxy-,
C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-

5

15

20

25

aminogruppe darstellen und die restlichen der Gruppen R¹ bis R⁴ jeweils ein Wasserstoffatom bedeuten,

wobei R⁴ zusätzlich zusammen mit R⁵ die Bedeutung einer –(CH₂)_n-Brücke annehmen kann, in der n die Zahl 1, 2 oder 3 darstellt, und

A^a eine Bindung, ein Sauerstoff- oder Schwefelatom, eine -NH-, -N(C₁₋₃-Alkyl)-, Sulfinyl-, Sulfonyl- oder Carbonylgruppe,

eine der Gruppen -CH₂-, -(CH₂)₂-, -CH=CH-, -C≡C-, -OCH₂-, -CH₂O-, -NH-CH₂-, -CH₂-NH-, -NH-CO-, -CO-NH-, -NH-SO₂- oder -SO₂-NH-,

in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

R^a eine Phenyl-, 1-Naphthyl- oder 2-Naphthylgruppe,

eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

eine gegebenenfalls durch eine C₁₋₄-Alkyl- oder C₁₋₄-Alkylcarbonylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₄-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₄-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

- 136 -

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können und

wobei die vorstehend genannten Phenyl- und Naphthylgruppen sowie die monound bicyclischen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chloroder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, N-(C₁₋₃-Alkyl)-acetylamino-, Propionylamino-, N-(C₁₋₃-Alkyl)-propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-,
Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder
Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten

eine C₃₋₇-Cycloalkylgruppe, wobei

5

25

jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrests durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₅-Alkyl-, Phenyl-,
C₁₋₄-Alkyl-carbonyl-, C₁₋₄-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder
Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann,

eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

WO 03/004020

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

jeweils die Methylengruppe in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine Hydroxycarbonyl-, C_{1-3} -Alkoxycarbonyl-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Aminocarbonyl-, C_{1-3} -Alkylamino-carbonyl-, Di-(C_{1-3} -alkyl)-aminocarbonyl- oder Phenyl- C_{1-3} -alkylaminogruppe substituiert oder

10

5

durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonylgruppe oder durch eine gegebenenfalls durch eine C_{1-5} -Alkyl-, Phenyl-, C_{1-4} -Alkyl-carbonyl-, C_{1-4} -Alkoxy-carbonyl-, C_{1-3} -Alkyl-aminocarbonyl- oder Di-(C_{1-3} -alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

15

in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann oder

20

eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann.

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

25

30

R⁵ ein Wasserstoffatom oder eine C₁₋₅-Alkylgruppe,

Het eine über zwei Kohlenstoffatome oder, sofern Het eine 2-bindige Pyrrolgruppe bedeutet, auch über ein Kohlenstoff- und das Imino-Stickstoffatom, wobei letzteres mit der benachbarten Carbonylgruppe in Formel (I) verknüpft ist, gebundene 5-gliedrige Heteroarylengruppe, die

WO 03/004020

5

10

25

30

PCT/EP02/07215

- 138 -

eine durch die Gruppe R⁹ substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

eine durch die Gruppe R⁹ substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom,

wobei R^9 ein Wasserstoffatom, eine C_{1-5} -Alkylgruppe, eine terminal durch eine Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)-amino- oder C_{1-5} -Alkoxy-carbonyl-aminogruppe substituierte $-C_{2-3}$ -Alkylgruppe, eine Carboxy- C_{1-3} -alkyl-, C_{1-3} -Alkoxy-carbonyl- C_{1-3} -alkyl-, Phenyl-, Phenyl- C_{1-3} -alkyl-, C_{1-5} -Alkylcarbonyl- oder Phenylcarbonylgruppe bedeutet oder R^9 zusammen mit R^6 eine $-(CH_2)_p$ - Brücke darstellt, in der p die Zahl 2 oder 3 bedeutet,

oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält.

oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält.

wobei die vorstehend genannten Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₅-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, N-(C₁₋₃-Alkyl)-acetylamino, Propionylamino-, N-(C₁₋₃-Alkyl)-propionylamino-, Acetyl-, Propionyl-, Benzoyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- Di-(C₁₋₃-alkyl)-amino-carbonyl- oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als ein Heteroatom enthaltenden 5-gliedrigen monocyclischen Heteroaryl-resten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

- 139 -

R⁶ ein Wasserstoffatom oder eine C₁₋₆-Alkylgruppe,

R⁷ eine C₁₋₉-Alkylgruppe,

30

5 eine geradkettige oder verzweigte, einfach, zweifach oder dreifach ungesättigte C₃₋₉-Alkenyl- oder C₃₋₉-Alkinylgruppe, wobei die Mehrfachbindungen von der Stickstoff-Kohlenstoff-Bindung isoliert sind,

eine geradkettige C₂₋₆-Alkylgruppe, die terminal durch eine Amino-, C₁₋₃-Alkylamino-10 oder Di-(C₁₋₃-alkyl)-aminogruppe substituiert ist,

eine durch einen C₃₋₇-Cycloalkylrest substituierte C₁₋₆-Alkylgruppe, wobei

ein Wasserstoffatom in 3-Stellung des Cyclopentylrestes und in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrestes jeweils durch eine Hydroxy-, Hydroxy-C₁₋₃-15 alkyl, C₁₋₅-Alkoxy-, C₁₋₅-Alkoxy-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkoxy-C₁₋₃-alkyl, Amino-, C₁₋₅-Alkylamino-, Di-(C₁₋₅-alkyl)amino-, Phenyl-C₁₋₃-alkylamino-, C₁₋₅-Alkylcarbonylamino-, Benzoylamino-, Amino-C₁₋₃-alkyl, C₁₋₃-Alkylamino-C₁₋₃-alkyl, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkylamino-C₁₋₃-alkyl-, C₁₋₃-Alkylcarbonylamino-C₁₋₃-alkyl-, Benzoylamino-C₁₋₃-alkyl-, Phenylamino-carbonyl-, 20 Phenyl-C₁₋₃-alkylamino-carbonyl-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe ersetzt sein kann oder

jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkyl-25 restes durch ein Sauerstoff- oder Schwefelatom oder durch eine gegebenenfalls durch eine C₁₋₆-Alkyl-, Phenyl-, C₁₋₆-Alkyl-carbonyl-, Benzoyl-, Phenyl-(C₁₋₃-alkyl)-carbonyl-, C₁₋₆-Alkyl-aminocarbonyl-, Di-(C₁₋₅-alkyl)-aminocarbonyl-, Phenylaminocarbonyl-, N-(C₁₋₃-Alkyl)-phenylaminocarbonyl-, Phenyl-C₁₋₃-alkylaminocarbonyl- oder N-(C₁₋₃-Alkyl)-phenyl-C₁₋₃-alkylamino-carbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

5

20

25

30

in einem 5- oder 6-gliedrigen Cycloalkylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₅-Alkylamino-carbonyl-, Di-(C₁₋₅-alkyl)amino-carbonyl-, Phenyl-C₁₋₃-alkylamino-carbonyl- oder C₁₋₅-Alkoxy-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

eine gegebenenfalls durch eine C₃₋₇-Cycloalkylgruppe substituierte C₁₋₆-Alkylgruppe, die

durch eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe,

durch eine Phenyl-, 1-Naphthyl- oder 2-Naphthylgruppe,

durch eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

eine gegebenenfalls durch eine C_{1-3} -Alkyl-, Trifluormethyl-, Phenyl-, Phenyl- C_{1-3} -alkyl-, C_{1-3} -Alkylcarbonyl-, Phenylcarbonyl- oder Phenyl- C_{1-3} -alkylcarbonylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

WO 03/004020

PCT/EP02/07215

- 141 -

durch eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können.

wobei die vorstehend genannten Phenyl- und Naphthylgruppen sowie die mono- und bicyclischen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₅-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl-, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl-, C₁₋₅-Alkoxy-carbonylamino-, Acetyl-, Propionyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkyl, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl-, oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können.

substituiert ist.

5

10

15

20

- eine durch einen Phenylrest und eine Carboxy-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe substituierte C₁₋₆-Alkylgruppe,
- eine Phenyl-C₂₋₅-alkenylen-CH₂-, Phenyl-C₂₋₅-alkinylen-CH₂-, Heteroaryl-C₂₋₅-alkenylen-CH₂- oder Heteroaryl-C₂₋₅-alkinylen-CH₂-Gruppe, in denen ein Wasserstoffatom der Methylengruppe in Position 1 durch eine C₁₋₃-Alkylgruppe ersetzt sein kann und davon unabhängig der Phenylteil sowie der Heteroarylteil durch Fluor-, Chlor- oder

Bromatome, durch C₁₋₆-Alkyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl-, Heteroaryl- oder Cyanogruppen mono- oder disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können und die Disubstitution durch zwei aromatische Gruppen ausgeschlossen ist,

5

wobei Heteroaryl eine über ein Kohlenstoff-oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

10

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

15

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

20

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

25

wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können,

die im C_{1-3} -Alkylteil gegebenenfalls durch eine C_{1-4} -Alkyl- oder C_{3-5} -Cycloalkylgruppe substituierte Gruppe R^b - A^b - E^b - C_{1-3} -alkyl-, in der

30

R^b eine gegebenenfalls durch Fluor-, Chlor-, Brom- oder Iodatome, durch C₁₋₄-Al-kyl-, C₂₋₄-Alkenyl-, C₂₋₄-Alkinyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-,

C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-C₁₋₃-alkyl-, Di-(C₁₋₃-alkyl)amino-C₁₋₃-alkyl-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, Carboxy-, C₁₋₃-Alkoxy-carbonyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppen mono- oder disubstituierte Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können,

eine 5-gliedrige Heteroarylgruppe, die

10

5

über ein Kohlenstoffatom oder, sofern A^b eine Bindung, eine $-CH_2$ -, $-(CH_2)_2$ -, Sulfonyl- oder Carbonylgruppe darstellt, auch über ein Stickstoffatom gebunden sein kann und die

15

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

20

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

25

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält.

30

wobei an die vorstehend erwähnten 5- oder 6-gliedrigen Heteroarylgruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylgruppen über den heteroaromatischen oder carbocyclischen Teil gebunden sein können,

wobei die vorstehend genannten mono- und bicyclischen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, C₂₋₄-Alkenyl-, C₂₋₄-Alkinyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder Cyanogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

eine C₃₋₇-Cycloalkylgruppe, in der

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloal-kylrests durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl-, Sulfonyl- oder durch eine gegebenenfalls durch eine C_{1-3} -Alkyl-, C_{1-3} -Alkyl-carbonyl-, C_{1-3} -Alkoxy-carbonyl-, C_{1-3} -Alkyl-aminocarbonyl- oder Di-(C_{1-3} -alkyl)-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclopentylgruppe oder in 3- oder 4-Stellung einer Cyclohexyl- oder Cycloheptylgruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylendioxyoder 1,3-Propylendioxygruppe ersetzt sein können und in den so gebildeten Ringen ein oder zwei Wasserstoffatome durch C₁₋₃-Alkylgruppen ersetzt sein können,

30

5

10

15

20

25

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

5

jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cycloal-kyleniminogruppe durch eine Hydroxy- C_{1-3} -alkyl-, C_{1-6} -Alkoxy- C_{1-3} -alkyl-, Hydroxycarbonyl-, C_{1-6} -Alkoxycarbonyl-, Aminocarbonyl-, C_{1-3} -Alkylaminocarbonyl-, Di-(C_{1-3} -alkyl)-aminocarbonyl-, 4- bis 7-gliedrige Cycloalkylenimino-, Phenyl-, 4-(C_{1-3} -Alkyl)-1,2,4-triazol-3-yl-, Phenyl- C_{1-3} -alkylamino- oder N-(C_{1-3} -Alkyl)-phenyl- C_{1-3} -alkylaminogruppe substituiert oder

10

durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonyl- gruppe oder durch eine gegebenenfalls durch eine C_{1-3} -Alkyl-, Phenyl-, C_{1-3} -Alkyl-carbonyl-, Benzoyl-, Phenyl- C_{1-3} -alkyl-carbonyl-, C_{1-3} -Alkyl-aminocarbonyl-, Di-(C_{1-3} -alkyl)-aminocarbonyl-, Phenylaminocarbonyl- oder N-(C_{1-3} -Alkyl)-phenylaminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

15

20

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylendioxyoder 1,3-Propylendioxygruppe ersetzt sein können und in den so gebildeten Ringen ein oder zwei Wasserstoffatome durch C_{1-3} -Alkylgruppen ersetzt sein können oder

25

in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte -(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder

30

eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

5

 A^b eine Bindung, ein Sauerstoff- oder Schwefelatom, eine -NH-, -N(C₁₋₃-Alkyl)-, Sulfinyl-, Sulfonyl- oder eine Carbonylgruppe,

eine der Gruppen - CH_2 -, - $(CH_2)_2$ -, -O- CH_2 -, - CH_2 -O-, NH- CH_2 -, - CH_2 -NH-, -NH-CO-, -CO-NH-, -NH- SO_2 -, - SO_2 -NH-, -CH=CH- oder -C=C-,

in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C_{1-3} -Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe A^b nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^b verknüpft ist,

15

20

10

 E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-4} -Alkylgruppe, durch eine Trifluormethyl-, Hydroxy-, C_{1-3} -Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di- $(C_{1-3}$ -alkyl)amino-, Amino- C_{1-3} -alkyl-, C_{1-3} -Alkylamino- C_{1-3} -alkyl-, Di- $(C_{1-3}$ -alkyl)amino- C_{1-3} -alkyl-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, Carboxy-, C_{1-3} -Alkoxy-carbonyl-, C_{1-3} -Alkoxy-carbonyl-, C_{1-3} -Alkylamino-carbonyl-, Di- $(C_{1-3}$ -alkyl)amino-carbonyl- oder Cyanogruppe substituierte Phenylengruppe,

25

die im C_{1-3} -Alkylteil gegebenenfalls durch eine C_{1-4} -Alkyl- oder C_{3-5} -Cycloalkylgruppe substituierte Gruppe R^c - A^c - E^c - C_{1-3} -alkyl-, in der

30

R^c die vorstehend für R^b erwähnten Bedeutungen annimmt, wobei eine Bezugnahme auf A^b durch eine Bezugnahme auf A^c zu ersetzen ist,

A^c die vorstehend für A^b erwähnten Bedeutungen annimmt, wobei eine Bezugnahme auf R^b durch eine Bezugnahme auf R^c zu ersetzen ist,

E^c eine über zwei Kohlenstoffatome oder über ein Kohlenstoffatom und ein Imino-Stickstoffatom gebundene 5-gliedrige Heteroarylengruppe, wobei das Iminostickstoffatom der Heteroarylengruppe nicht mit einem Heteroatom der Gruppe A^c verknüpft ist und wobei die Heteroarylengruppe

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält,

wobei an die vorstehend erwähnten 5-gliedrigen, ein oder zwei Heteroatome enthaltenden Heteroarylengruppen sowie an die vorstehend erwähnten 6-gliedrigen Heteroarylengruppen über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann und die so gebildeten bicyclischen Heteroarylengruppen über den heteroaromatischen oder/und den carbocyclischen Teil gebunden sein können,

und wobei die vorstehend genannten mono- und bicyclischen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch

15

10

5

20

30

25

WO 03/004020 PCT/EP02/07215

eine C₁₋₄-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppe substituiert sein können,

5

oder R^6 und R^7 zusammen eine n-Alkylen-Brücke mit 3 bis 6 Kohlenstoffatomen, in der

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

eine –CH₂-CH₂-Gruppe durch eine 1,2-verknüpfte Phenylengruppe ersetzt sein kann, die durch Fluor-, Chlor- oder Bromatome, durch C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, Propionylamino-, Acetyl-, Propionyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-, Cyano-, Phenyloxy- oder Phenyl-C₁₋₃-alkylgruppen mono- oder disubstituiert sein kann, wobei eine Disubstitution mit der letztgenannten Gruppe ausgeschlossen ist,

20

15

wobei die vorstehend genannten Phenyloxy- und Phenyl- C_{1-3} -alkylgruppen im Phenylteil ihrerseits durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetylamino-, oder Cyanogruppe substituiert sein können,

25

30

oder jeweils das Kohlenstoffatom in Position 3 einer n-Pentylen- oder n-Hexylen- gruppe durch eine terminal durch eine Phenyl-, Cyano-, Hydroxy-, C_{1-3} -Alkoxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)-amino- oder eine 5- bis 7-gliedrige Cycloalkyleniminogruppe substituierte C_{1-3} -Alkylgruppe, durch eine Carboxy-, C_{1-3} -Alkoxycarbonyl-, Amino- C_{1-3} -alkyl-, C_{1-3} -Alkylamino- C_{1-3} -alkyl-, N-(C_{1-3} -alkyl-carbonyl)-amino- C_{1-3} -alkyl-, Di-(C_{1-3} -alkyl)-amino- C_{1-3} -alkyl-, Aminocarbonyl-, C_{1-3} -Alkylamino-carbonyl- oder Di-(C_{1-3} -alkyl)-aminocarbonyl-

WO 03/004020 PCT/EP02/07215

gruppe monosubstituiert oder durch eine Phenylgruppe und eine Cyano-, Hydroxy- oder C_{1-3} -Alkoxygruppe disubstituiert sein kann oder

die Methylengruppe in Position 3 einer n-Pentylen- oder n-Hexylengruppe durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl- oder Sulfonylgruppe oder durch eine gegebenenfalls durch eine C_{1-3} -Alkyl-, Phenyl- C_{1-3} -alkyl-, C_{1-3} -Al-kyl-carbonyl-, Benzoyl-, C_{1-3} -Alkyl-aminocarbonyl-, Di-(C_{1-3} -alkyl)-aminocarbonyl-, Phenylaminocarbonyl- oder N-(C_{1-3} -Alkyl)-phenylaminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

10

25

30

5

eine Methylengruppe in Position 1 in einer n-Butylen-, n-Pentylen- oder n-Hexylengruppe durch eine Carbonylgruppe ersetzt sein kann,

bedeuten, wobei die bei der Definition der vorstehend genannten Reste als unsubstituiert oder monosubstituiert erwähnten Phenylgruppen sowie aromatischen oder heteroaromatischen Molekülteile, sofern nichts anderes erwähnt wurde, im Kohlenstoffgerüst gegebenenfalls zusätzlich durch Fluor-, Chlor- oder Bromatome, durch C₁₋₃-Alkylgruppen, durch Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Amino carbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppen substituiert sein können, wobei die Substituenten gleich oder verschieden sein können und die resultierenden aromatischen Gruppen und Molekülteile maximal disubstituiert sind.

die Wasserstoffatome in den bei der Definition der vorstehend genannten Reste erwähnten C₁₋₃-Alkyl- und Alkoxygruppen teilweise oder ganz durch Fluoratome ersetzt sein können,

die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,

die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und

5

die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

2. Verbindungen der Formel I gemäß Anspruch 1, in denen

 X_1 bis X_4 wie im Anspruch 1 erwähnt definiert sind,

A^a eine Bindung, ein Sauerstoffatom, eine -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder Carbonylgruppe,

eine der Gruppen -CH₂-, -(CH₂)₂-,-NH-CH₂-, -CH₂-NH-, -NH-CO-, -CO-NH-, -NH-SO₂-oder -SO₂-NH-,

25

in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

Ra eine Phenylgruppe,

30

eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die WO 03/004020 PCT/EP02/07215

- 151 -

eine gegebenenfalls durch eine C₁₋₄-Alkyl- oder C₁₋₄-Alkylcarbonylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

eine gegebenenfalls durch eine C₁₋₄-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom enthält.

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Phenyl und Heteroarylgruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, N-(C₁₋₃-Alkyl)-acetylamino-, Acetyl- oder Cyanogruppe substituiert sein können,

eine C₃₋₇-Cycloalkylgruppe, wobei

5

15

20

30

die Methylengruppe in 4-Stellung eines 6-gliedrigen Cycloalkylrests durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₃-Alkyl-, Phenyl-, C₁₋₄-Alkyl-carbonyl- oder C₁₋₄-Alkoxy-carbonylgruppe substituierte Iminogruppe ersetzt sein kann,

eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

jeweils die Methylengruppe in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfonylgruppe oder durch eine gegebenenfalls durch eine C₁₋₅-Alkyl-, Phenyl-, C₁₋₄-Alkyl-carbonyl-, C₁₋₄-Alkoxy-carbonyl-, C₁₋₃-Alkyl-aminocarbonyl- oder Di-(C₁₋₃-alkyl)aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder 5

10

15

20

25

in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann oder

eine mit dem Iminostickstoffatom verknüpfte – $(CH_2)_2$ - Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte – $(CH_2)_3$ - Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

R⁵ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

Het eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe, die

eine durch die Gruppe R⁹ substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

eine durch die Gruppe R⁹ substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom,

wobei R^9 ein Wasserstoffatom, eine C_{1-5} -Alkylgruppe, eine terminal durch eine Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)-amino- oder C_{1-5} -Alkoxy-carbonyl-aminogruppe substituierte $-C_{2-3}$ -Alkylgruppe, eine Carboxy- C_{1-3} -alkyl-, C_{1-3} -Alkoxy-carbonyl- C_{1-3} -alkyl-, Phenyl-, Phenyl- C_{1-3} -alkyl-, C_{1-5} -Alkylcarbonyl- oder Phenylcarbonylgruppe bedeutet oder R^9 zusammen mit R^6 eine $-(CH_2)_p$ - Brücke darstellt, in der p die Zahl 2 oder 3 bedeutet,

oder eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

WO 03/004020 PCT/EP02/07215

- 153 -

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkylgruppe, durch eine Cyclopropyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetylamino-, N-(C_{1-3} -Alkyl)-acetylamino, Acetyl-, C_{1-3} -Alkylamino-carbonyl- oder Di-(C_{1-3} -alkyl)amino-carbonylgruppe substituiert sein können,

R⁶ ein Wasserstoffatom oder eine C₁₋₄-Alkylgruppe,

R⁷ eine C₁₋₆-Alkylgruppe,

15

10

5

eine geradkettige C_{2-6} -Alkylgruppe, die terminal durch eine Amino-, C_{1-3} -Alkylaminooder Di-(C_{1-3} -alkyl)-aminogruppe substituiert ist,

eine durch einen C₃₋₇-Cycloalkylrest substituierte C₁₋₆-Alkylgruppe, wobei

20

ein Wasserstoffatom in 3-Stellung des Cyclopentylrestes und in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrestes jeweils durch eine C_{1-5} -Alkoxy-, Phenyl- C_{1-3} -alkoxy- C_{1-3} -alkyl, Phenyl- C_{1-3} -alkylamino-, C_{1-5} -Alkyl-carbonylamino-, Benzoylamino-, Phenyl- C_{1-3} -alkylamino- C_{1-3} -alkyl-, Benzoylamino- C_{1-3} -alkyl-, Phenyl-amino-carbonyl-, Phenyl- C_{1-3} -alkylamino-carbonyl-, Carboxy- oder C_{1-3} -Alkoxy-carbonylgruppe ersetzt sein kann oder

25

30

jeweils die Methylengruppe in 4-Stellung eines 6- oder 7-gliedrigen Cycloalkylrestes durch eine gegebenenfalls durch eine Phenyl-, C_{1-6} -Alkyl-carbonyl-, Benzoyl-, Phenyl-(C_{1-3} -alkyl)-carbonyl-, Phenylaminocarbonyl-, N-(C_{1-3} -Alkyl)-phenylaminocarbonyl-, Phenyl- C_{1-3} -alkylamino-carbonyl- oder N-(C_{1-3} -Alkyl)-phenyl- C_{1-3} -alkyl-amino-carbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

in einem 5- oder 6-gliedrigen Cycloalkylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₃-Alkylamino-carbonyl-, Di-(C₁₋₃-alkyl)amino-carbonyl- oder C₁₋₅-Alkoxy-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

10

5

eine gegebenenfalls durch eine C_{3-7} -Cycloalkylgruppe substituierte C_{1-6} -Alkylgruppe, die

durch eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe,

15

durch eine Phenyl-, 1-Naphthyl- oder 2-Naphthylgruppe,

durch eine über ein Kohlenstoff- oder Stickstoffatom gebundene 5-gliedrige Heteroarylgruppe, die

20

eine gegebenenfalls durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

25

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom enthält,

durch eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Phenylgruppen sowie die Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Amino-C₁₋₃-alkyl-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-C₁₋₃-alkyl-, C₁₋₃-Alkoxy-carbonylamino-C₁₋₃-alkyl-, C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)amino-carbonylgruppe monosubstituiert oder durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

substituiert ist,

5

10

15

20

30

eine durch einen Phenylrest und eine Carboxy-, C_{1-3} -Alkoxy-carbonyl-, Aminocarbonyl-, C_{1-3} -Alkyl-aminocarbonyl- oder Di-(C_{1-3} -alkyl)-aminocarbonylgruppe substituierte C_{1-6} -Alkylgruppe,

eine Phenyl-C₂₋₃-alkenylen-CH₂- oder Phenyl-C₂₋₃-alkinylen-CH₂-Gruppe, in denen ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl-, Pyridyl-, Pyrimidinyl-, Pyrazinyl-, Thienyl-, Pyrrolyl-, Pyrazolyl- oder Thiazolylgruppe substituiert sein kann,

die im C_{1-3} -Alkylteil gegebenenfalls durch eine Methylgruppe substituierte Gruppe R^b - A^b - E^b - C_{1-3} -alkyl-, in der

 R^b eine gegebenenfalls durch Fluor-, Chlor- oder Bromatome, durch C_{1-3} -Alkyl-, Cyclopropyl-, Trifluormethyl-, Hydroxy-, C_{1-3} -Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetyl-, Carboxy-, C_{1-3} -Alkoxy-carbonyl-, Aminocarbonyl-, C_{1-3} -Alkyl-amino-carbonyl-, Di-(C_{1-3} -alkyl)amino-carbonyl- oder Cyanogruppen mono- oder

disubstituierte Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können,

eine 5-gliedrige Heteroarylgruppe, die

5

über ein Kohlenstoffatom oder, sofern A^b eine Bindung, eine $-CH_2$ -, $-(CH_2)_2$ -, Sulfonyl- oder Carbonylgruppe darstellt, auch über ein Stickstoffatom gebunden sein kann und die

10

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

15

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

20

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält, eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

25

wobei die vorstehend genannten Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, C₃₋₇-Cycloalkyl-, Trifluormethyl-, Phenyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-amino-carbonylgruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch die vorstehend genannten Substituenten auch disubstituiert sein können, wobei die Substituenten gleich oder verschieden sein können,

30

5

10

15

20

25

30

eine C₃₋₇-Cycloalkylgruppe, in der

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

die Methylengruppe in 4-Stellung eines Cyclohexylrests durch ein Sauerstoffatom, durch eine Sulfonylgruppe- oder durch eine gegebenenfalls durch eine C_{1-3} -Alkyl-, C_{1-3} -Alkyl-carbonyl-, C_{1-3} -Alkyl-carbonyl-, C_{1-3} -Alkyl-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclopentylgruppe oder in 3- oder 4-Stellung einer Cyclohexyl- oder Cycloheptylgruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylendioxyoder 1,3-Propylendioxygruppe ersetzt sein können,

eine 4- bis 7-gliedrige Cycloalkyleniminogruppe, in der

ein oder zwei Wasserstoffatome jeweils durch eine C₁₋₃-Alkylgruppe ersetzt sein können oder/und

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine 4- bis 7-gliedrige Cycloalkylenimino-, Phenyloder 4-(C₁₋₃-Alkyl)-1,2,4-triazol-3-ylgruppe substituiert oder

durch ein Sauerstoffatom, durch eine Sulfonylgruppe oder durch eine gegebenenfalls durch eine C_{1-3} -Alkyl-, C_{1-3} -Alkyl-carbonyl-, C_{1-3} -Alkyl-aminocarbonylgruppe substituierte Iminogruppe ersetzt sein kann oder

5

10

15

20

25

30

٠..

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen-, n-Hexylen-, 1,2-Ethylendioxy- oder 1,3-Propylendioxygruppe ersetzt sein können oder

in einer 5-, 6- oder 7-gliedrigen Cycloalkyleniminogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂- Gruppe durch eine Carbonylgruppe ersetzt sein kann

A^b eine Bindung, ein Sauerstoffatom, eine -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder eine Carbonylgruppe,

eine der Gruppen - CH_2 -, - $(CH_2)_2$ -,- $C \equiv C$ -, -O- CH_2 -, - CH_2 -O-, NH- CH_2 -, - CH_2 -NH-, -NH-CO-, -CO-NH-, -NH- SO_2 -, - SO_2 -NH-,

in denen ein an ein Kohlenstoffatom gebundenes Wasserstoffatom oder/und ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C_{1-3} -Alkylgruppe ersetzt sein können und wobei ein Heteroatom der Gruppe A^b nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^b verknüpft ist, und

 E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-4} -Alkylgruppe, durch eine Trifluormethyl-, Hydroxy-, C_{1-3} -Alkoxy-, Fluor-methoxy-, Difluormethoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetylamino-, Acetyl-, Carboxy-, C_{1-3} -Alkoxy-carbonyl-, C_{1-3} -Alkoxy-carbonyl- C_{1-3} -alkyl, Aminocarbonyl-, C_{1-3} -Alkylamino-carbonyl-, Di-(C_{1-3} -alkyl)amino-carbonyl- oder Cyanogruppe substituierte Phenylengruppe bedeuten, oder

die Gruppe Rc-Ac-Ec-C₁₋₃-alkyl-, in der

5

15

20

25

30

R^c die vorstehend für R^b erwähnten Bedeutungen annimmt, wobei eine Bezugnahme auf A^b durch eine Bezugnahme auf A^c zu ersetzen ist,

 A^c eine Bindung, ein Sauerstoffatom, eine -CH₂-, -NH-, -N(C₁₋₃-Alkyl)-, -NH-CO-, -CO-NH- oder Carbonylgruppe,

wobei ein Heteroatom der Gruppe A^c nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^c verknüpft ist, und

E^c eine über zwei Kohlenstoffatome oder über ein Kohlenstoffatom und ein Imino-Stickstoffatom gebundene 5-gliedrige Heteroarylengruppe, wobei das Iminostickstoffatom der Heteroarylengruppe nicht mit einem Heteroatom der Gruppe A^c verknüpft ist und wobei die Heteroarylengruppe

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

oder eine 6-gliedrige Heteroarylengruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkylgruppe, durch eine C₃₋₇-Cycloalkyl-, Trifluormethyl-, Hydroxy-,

WO 03/004020 PCT/EP02/07215

C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl-oder Cyanogruppe substituiert sein können, bedeuten,

oder R⁶ und R⁷ zusammen eine n-Alkylen-Brücke mit 4 oder 5 Kohlenstoffatomen darstellen, in der

ein Wasserstoffatom durch eine C_{1-3} -Alkylgruppe ersetzt sein kann oder/und eine $-CH_2$ - CH_2 -Gruppe durch eine 1,2-verknüpfte Phenylengruppe ersetzt sein kann, die durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, Hydroxy-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di- $(C_{1-3}$ -alkyl)amino-, Acetylamino-, Acetyl-, C_{1-3} -Alkoxy-carbonyl-, Aminocarbonyl-, C_{1-3} -Alkylamino-carbonyl- oder Cyanogruppe oder durch eine im Phenylteil gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di- $(C_{1-3}$ -alkyl)amino-, Acetylamino- oder Cyanogruppe substituierte Phenyloxy-oder Phenyl- C_{1-3} -alkylgruppe substituiert sein kann,

oder das Kohlenstoffatom in Position 3 einer n-Pentylengruppe durch eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino- oder eine 5- bis 7-gliedrige Cycloalkyleniminogruppe substituierte C₁₋₃-Alkylgruppe, durch eine Phenyl-, C₁₋₃-Alkoxycarbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-aminocarbonylgruppe monosubstituiert oder durch eine Phenylgruppe und eine Cyanogruppe disubstituiert sein kann oder

25

10

15

20

die Methylengruppe in Position 3 einer n-Pentylengruppe durch ein Sauerstoffatom, durch eine Sulfonylgruppe oder durch eine gegebenenfalls durch eine C_{1-3} -Alkyl- oder C_{1-3} -Alkyl- carbonylgruppe substituierte Iminogruppe ersetzt sein kann,

30

bedeuten, wobei die bei der Definition der vorstehend genannten Reste als unsubstituiert oder monosubstituiert erwähnten Phenylgruppen sowie aromatischen oder 5

10

15

20

heteroaromatischen Molekülteile, sofern nichts anderes erwähnt wurde, im Kohlenstoffgerüst gegebenenfalls zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkylgruppe, durch eine Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, Acetyl-, C₁₋₃-Alkoxy-carbonyl-, Aminocarbonyl-, C₁₋₃-Alkylamino-carbonyl- oder Cyanogruppe substituiert sein können,

die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,

die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und

die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

3. Verbindungen der Formel I gemäß Anspruch 1, in denen

X₁ die Gruppe CR¹,

X₂ die Gruppe CR²,

30

X₃ die Gruppe CR³ und

WO 03/004020 PCT/EP02/07215

- 162 -

X₄ die Gruppe CR⁴ oder

eine der Gruppen X_1 bis X_4 ein Stickstoffatom und die restlichen der Gruppen X_1 bis X_4 drei der Gruppen CR^1 bis CR^4 ,

5

wobei R¹, R², R³ und R⁴ jeweils ein Wasserstoffatom oder

eine oder zwei der Gruppen R^1 bis R^4 unabhängig voneinander jeweils ein Fluor-, Chlor- oder Bromatom, eine C_{1-3} -Alkylgruppe, eine Trifluormethyl-, Amino-, C_{1-3} -Alkylamino- oder Di-(C_{1-3} -alkyl)-aminogruppe darstellen und die restlichen der Gruppen R^1 bis R^4 jeweils ein Wasserstoffatom bedeuten,

wobei R⁴ zusätzlich zusammen mit R⁵ die Bedeutung einer –(CH₂)_n-Brücke annehmen kann, in der n die Zahl 1, 2 oder 3 darstellt, und

15

10

 A^a eine Bindung, ein Sauerstoffatom, eine - CH_2 -, - $(CH_2)_2$ -, -NH-, - $N(C_{1-3}$ -Alkyl)-, Sulfonyl- oder Carbonylgruppe oder eine über das Kohlenstoff- bzw. Schwefelatom mit der Gruppe R^a in Formel (I) verknüpfte -NH- CH_2 -, -NH-CO-, -NH- SO_2 -Gruppe,

20

wobei ein Heteroatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

Ra eine Phenyl- oder Pyridinylgruppe,

25

eine über ein Kohlenstoff- oder Stickstoffatom gebundene Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl- oder Thiazolylgruppe,

wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-,

 C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-oder Cyanogruppe substituiert sein können,

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

5

die Methylengruppe in Position 4 einer 6-gliedrigen Cycloalkyleniminogruppe durch eine Methylgruppe substituiert oder durch ein Sauerstoff- oder Schwefelatom oder durch eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe ersetzt sein kann oder

10

15

in einer Piperidinogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂-Gruppe durch eine Carbonylgruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann,

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

20 R⁵ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

Het eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe, die

eine durch die Gruppe R⁹ substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder

eine durch die Gruppe R⁹ substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom enthält,

30

25

wobei R^9 ein Wasserstoffatom, eine C_{1-3} -Alkylgruppe, eine terminal durch eine Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)-amino- oder C_{1-4} -Alkoxy-carbonyl-aminogruppe substituierte $-C_{2-3}$ -Alkylgruppe, eine

Carboxy- C_{1-3} -alkyl-, C_{1-3} -Alkoxy-carbonyl- C_{1-3} -alkyl- oder C_{1-3} -Alkylcarbonylgruppe bedeutet oder R^9 zusammen mit R^6 eine $-(CH_2)_p$ -Brücke darstellt, in der p die Zahl 2 oder 3 bedeutet,

5 oder eine Pyridinylen- oder Pyrimidinylengruppe,

wobei die vorstehend genannten Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetylamino- oder Cyanogruppe substituiert sein können,

R⁶ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

R⁷ eine C₁₋₆-Alkylgruppe,

10

15

20

25

30

eine geradkettige C_{2-6} -Alkylgruppe, die terminal durch eine Amino-, C_{1-3} -Alkylamino-oder Di-(C_{1-3} -alkyl)-aminogruppe substituiert ist,

eine terminal durch einen C_{3-7} -Cycloalkylrest substituierte C_{1-4} -Alkylgruppe, wobei

ein Wasserstoffatom in 4-Stellung eines Cyclohexylrestes durch eine C_{1-5} -Alkoxy-, C_{1-3} -Alkoxy- C_{1-3} -alkyl, Phenyl- C_{1-3} -alkoxy-methyl-, Phenyl- C_{1-3} -alkylamino-, Phenyl- C_{1-2} -alkyl-carbonylamino-, Benzoylamino-, Phenylaminocarbonyl-, Phenyl- C_{1-3} -alkyl-aminocarbonyl-, Carboxy- oder C_{1-3} -Alkoxy-carbonylgruppe ersetzt sein kann oder

in einem Cyclopentylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)-

WO 03/004020 PCT/EP02/07215

- 165 -

amino-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

eine gegebenenfalls durch eine C_{3-5} -Cycloalkylgruppe substituierte C_{1-6} -Alkylgruppe, die

durch eine Carboxy- oder C₁₋₃-Alkoxycarbonylgruppe oder

durch eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, Pyridinyl-, Pyrimidinyl-, Pyrrolyl-,

Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl-, Thiazolyl- oder
Isothiazolylgruppe,

wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, C₁₋₄-Alkoxy-carbonylamino-C₁₋₃-alkyl-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino- oder Cyanogruppe substituiert sein können,

substituiert ist,

5

15

20

25

30

eine durch einen Phenylrest und eine Carboxy- oder C_{1-3} -Alkoxy-carbonylgruppe substituierte C_{1-6} -Alkylgruppe,

eine Phenyl-C₂₋₃-alkinylen-CH₂-Gruppe, in der ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl- oder Cyanogruppe substituiert sein kann,

die im C₁₋₃-Alkylteil gegebenenfalls durch eine Methylgruppe substituierte Gruppe Rb-Ab-Eb-C1-3-alkyl-, in der

R^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte Phenylgruppe,

eine 5-gliedrige Heteroarylgruppe, die

10

5

über ein Kohlenstoffatom oder, sofern Ab eine Bindung darstellt, auch über ein Stickstoffatom gebunden sein kann und die eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe. ein Sauerstoff- oder Schwefelatom,

15

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

20

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält.

25

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Phenyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino- oder Acetylaminogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch eine C₁₋₄-Alkylgruppe und einen Substituenten ausgewählt aus

30

Fluor, Chlor, Brom, C₁₋₃-Alkyl, Trifluormethyl, Phenyl, C₁₋₃-Alkoxy und Trifluormethoxy auch disubstituiert sein können,

eine C₃₋₆-Cycloalkylgruppe, wobei

5

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclopentylgruppe oder in 3- oder 4-Stellung einer Cyclohexylgruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können.

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

15

jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine 4- bis 7-gliedrige Cycloalkylenimino-, Phenyloder 4-(C₁₋₃-Alkyl)-1,2,4-triazol-3-ylgruppe substituiert sein kann oder

20

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

25

 A^b eine Bindung, ein Sauerstoffatom, eine -CH₂-, -NH-, -O-CH₂-, Carbonyl-, -NH-CO- oder -CO-NH-Gruppe,

in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C_{1-3} -Alkylgruppe ersetzt sein kann,

30

E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-,

 C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetylamino- oder C_{1-3} -Alkoxy-carbonylgruppe substituierte Phenylengruppe bedeuten, oder

die Gruppe R^c-A^c-E^c-C₁₋₃-alkyl-, in der

5

 R^c eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Carboxy- oder C_{1-3} -Alkoxy-carbonylgruppe substituierte Phenylgruppe oder

10

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

15

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

20

A^c eine Bindung,

E^c eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe, die

25

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

30

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

5

10

15

20

25

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält, oder eine Pyridinylen-, Pyridazinylen- oder Pyrimidinylengruppe,

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können, bedeutet,

oder R⁶ und R⁷ zusammen eine n-Alkylen-Brücke mit 4 oder 5 Kohlenstoffatomen darstellen, in der

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

eine –CH₂-CH₂-Gruppe durch eine gegebenenfalls durch eine Phenyloxy- oder Benzylgruppe substituierte 1,2-verknüpfte Phenylengruppe ersetzt sein kann, wobei

die Phenyloxy- oder Benzylgruppe im aromatischen Teil und die Phenylengruppe unabhängig voneinander durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können,

oder das Kohlenstoffatom in Position 3 einer n-Pentylengruppe durch eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino- oder N-(Methyl)-acetylaminogruppe oder eine 5- bis 7-gliedrige Cycloalkylenimino-

gruppe substituierte C_{1-3} -Alkylgruppe monosubstituiert oder durch eine Phenylgruppe und eine Cyanogruppe disubstituiert sein kann,

- bedeuten, wobei die bei der Definition der vorstehend genannten Reste erwähnten
 Phenylgruppen, sofern nichts anderes erwähnt wurde, durch ein Fluor-, Chlor- oder
 Bromatom, durch eine C₁₋₃-Alkylgruppe, durch eine Trifluormethyl-, C₁₋₃-Alkoxy-,
 Trifluormethoxy-, Phenyl-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxycarbonyl- oder Cyanogruppe substituiert sein können,
- die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,
- die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und
- die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,
 - deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

25

- 4. Verbindungen der Formel I gemäß Anspruch 1, in denen
- X₁ die Gruppe CR¹,

30

X₂ die Gruppe CR²,

X₃ die Gruppe CR³ und

X₄ die Gruppe CR⁴ oder

eine der Gruppen X_1 bis X_4 ein Stickstoffatom und die restlichen der Gruppen X_1 bis X_4 drei der Gruppen CR^1 bis CR^4 ,

wobei R1, R2, R3 und R4 ieweils ein Wasserstoffatom oder

eine oder zwei der Gruppen R¹ bis R⁴ unabhängig voneinander jeweils ein Fluor-, Chlor- oder Bromatom, eine C₁₋₃-Alkylgruppe, eine Trifluormethyl-, Amino-, C₁₋₃-Alkylamino- oder Di-(C₁₋₃-alkyl)-aminogruppe darstellen und die restlichen der Gruppen R¹ bis R⁴ jeweils ein Wasserstoffatom bedeuten,

wobei R⁴ zusätzlich zusammen mit R⁵ die Bedeutung einer –(CH₂)_n-Brücke annehmen kann, in der n die Zahl 1, 2 oder 3 darstellt, und

A^a eine Bindung, ein Sauerstoffatom, eine -CH₂-, -(CH₂)₂-, -NH-, -N(C₁₋₃-Alkyl)-, Sulfonyl- oder Carbonylgruppe oder eine über das Kohlenstoff- bzw. Schwefelatom mit der Gruppe R^a in Formel (I) verknüpfte -NH-CH₂-, -NH-CO-, -NH-SO₂-Gruppe.

wobei ein Heteroatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

25 R^a eine Phenyl- oder Pyridinylgruppe,

20

eine über ein Kohlenstoff- oder Stickstoffatom gebundene Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl- oder Thiazolylgruppe,

wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch

10

15

20

25

ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino- oder Cyanogruppe substituiert sein können,

5 eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

die Methylengruppe in Position 4 einer 6-gliedrigen Cycloalkyleniminogruppe durch eine Methylgruppe substituiert oder durch ein Sauerstoff- oder Schwefelatom oder durch eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe ersetzt sein kann oder

in einer Piperidinogruppe eine mit dem Iminostickstoffatom verknüpfte -CH₂-Gruppe durch eine Carbonylgruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₂- Gruppe durch eine -CO-NR⁸- Gruppe ersetzt sein kann oder eine mit dem Iminostickstoffatom verknüpfte –(CH₂)₃- Gruppe durch eine -CO-NR⁸-CO- Gruppe ersetzt sein kann.

wobei R⁸ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe darstellt,

R⁵ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

Het eine 2,4-verknüpfte Pyrrolylen- oder Imidazolylengruppe, die jeweils über die Position 2 an die benachbarte Carbonylgruppe der Formel I gebunden sind und die

an einem Stickstoffatom durch eine C_{1-3} -Alkylgruppe substituiert sind und im Kohlenstoffgerüst durch eine C_{1-3} -Alkylgruppe oder eine Trifluormethylgruppe substituiert sein können,

30 R⁶ ein Wasserstoffatom oder eine C₁₋₃-Alkylgruppe,

 R^7 eine terminal durch einen $\mathsf{C}_{3\text{--}7}$ -Cycloalkylrest substituierte $\mathsf{C}_{1\text{--}4}$ -Alkylgruppe, wobei

ein Wasserstoffatom in 4-Stellung eines Cyclohexylrestes durch eine C₁₋₅-Alkoxy-, C₁₋₃-Alkoxy-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkoxy-methyl-, Phenyl-C₁₋₃-alkylamino-, Phenyl-C₁₋₂-alkyl-carbonylamino-, Benzoylamino-, Phenylaminocarbonyl-, Phenyl-C₁₋₃-alkyl-aminocarbonyl-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe ersetzt sein kann oder

in einem Cyclopentylrest eine oder zwei durch mindestens eine Bindung voneinander und von der Position 1 getrennte Einfachbindungen jeweils mit einem Phenylrest kondensiert sein können, wobei in einem so gebildeten bi-oder tricyclischen Ringsystem das an das gesättigte Kohlenstoffatom in Position 1 gebundene Wasserstoffatom durch eine C₁₋₃-Alkylamino-carbonyl- oder Di-(C₁₋₃-alkyl)amino-carbonylgruppe, in denen terminale Methylgruppen jeweils ganz oder teilweise fluoriert sein können, ersetzt sein kann,

15

10

5

eine gegebenenfalls durch eine C₃₋₅-Cycloalkylgruppe substituierte C₁₋₆-Alkylgruppe, die

20

durch eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, Pyridinyl-, Pyrimidinyl-, Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl-, Thiazolyl- oder Isothiazolylgruppe,

25

30

wobei ein Stickstoffatom der Pyrrolyl-, Pyrazolyl- und Imidazolylgruppe durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, C₁₋₄-Alkoxy-carbonylamino-C₁₋₃-alkyl-, Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)amino- oder Cyanogruppe substitujert sein können,

substituiert ist,

15

eine durch einen Phenylrest und eine Carboxy- oder C_{1-3} -Alkoxy-carbonylgruppe substituierte C_{1-6} -Alkylgruppe,

- eine Phenyl-C₂₋₃-alkinylen-CH₂-Gruppe, in der ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Phenyl- oder Cyanogruppe substituiert sein kann,
- die im C₁₋₃-Alkylteil gegebenenfalls durch eine Methylgruppe substituierte Gruppe R^b-A^b-E^b-C₁₋₃-alkyl-, in der

R^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, Hydroxy-, C₁₋₃-Alkoxy-, Fluormethoxy-, Difluormethoxy-, Trifluormethoxy-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte Phenylgruppe,

eine 5-gliedrige Heteroarylgruppe, die

- über ein Kohlenstoffatom oder, sofern A^b eine Bindung darstellt, auch über ein Stickstoffatom gebunden sein kann und die eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,
- eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder
- eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe

 und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

5

10

15

20

25

30

eine 6-gliedrige Heteroarylgruppe, die ein oder zwei Stickstoffatome enthält,

wobei die vorstehend genannten Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, Phenyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di- (C_{1-3} -alkyl)-amino- oder Acetylaminogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch eine C_{1-4} -Alkylgruppe und einen Substituenten ausgewählt aus Fluor, Chlor, Brom, C_{1-3} -Alkyl, Trifluormethyl, Phenyl, C_{1-3} -Alkoxy und Trifluormethoxy auch disubstituiert sein können,

eine C₃₋₆-Cycloalkylgruppe, wobei

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung einer Cyclopentylgruppe oder in 3- oder 4-Stellung einer Cyclohexylgruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

jeweils das Kohlenstoffatom in Position 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine 4- bis 7-gliedrige Cycloalkylenimino-, Phenyloder 4-(C₁₋₃-Alkyl)-1,2,4-triazol-3-ylgruppe substituiert sein kann oder

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5-gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können.

A^b eine Bindung, ein Sauerstoffatom, eine -CH₂-, -NH-, -O-CH₂-, Carbonyl-, -NH-CO- oder -CO-NH-Gruppe,

in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine C_{1-3} -Alkylgruppe ersetzt sein kann,

 E^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetylamino- oder C_{1-3} -Alkoxy-carbonylgruppe substituierte Phenylengruppe bedeuten, oder

die Gruppe R^c-A^c-E^c-C₁₋₃-alkyl-, in der

R° eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Carboxy- oder C₁₋₃-Alkoxy-carbonylgruppe substituierte Phenylgruppe oder

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe, in der

20

25

5

10

der Cycloalkylenteil mit einem Phenylring kondensiert sein kann oder

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

die beiden Wasserstoffatome der Methylengruppe in Position 3 einer 5gliedrigen oder in Position 3 oder 4 einer 6- oder 7-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

30 A^c eine Bindung,

E^c eine über zwei Kohlenstoffatome gebundene 5-gliedrige Heteroarylengruppe, die

eine gegebenenfalls durch eine C_{1-3} -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom,

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe oder ein Sauerstoff- oder Schwefelatom und zusätzlich ein Stickstoffatom oder

10

5

eine gegebenenfalls durch eine C₁₋₃-Alkylgruppe substituierte Iminogruppe und zwei Stickstoffatome oder

ein Sauerstoff- oder Schwefelatom und zwei Stickstoffatome enthält,

15

20

25

oder eine Pyridinylen-, Pyridazinylen- oder Pyrimidinylengruppe,

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy-, Trifluormethoxy-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können, bedeutet,

oder R⁶ und R⁷ zusammen eine n-Alkylen-Brücke mit 4 oder 5 Kohlenstoffatomen, in der

ein Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann oder/und

eine –CH₂-CH₂-Gruppe durch eine gegebenenfalls durch eine Phenyloxy- oder

Benzylgruppe substituierte 1,2-verknüpfte Phenylengruppe ersetzt sein kann,
wobei

5

die Phenyloxy- oder Benzylgruppe im aromatischen Teil und die Phenylengruppe unabhängig voneinander durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy-, Trifluormethoxy-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)amino-, Acetylamino-, C_{1-3} -Alkoxy-carbonyl- oder Cyanogruppe substituiert sein können,

oder das Kohlenstoffatom in Position 3 einer n-Pentylengruppe durch eine terminal durch eine Amino-, C₁₋₃-Alkylamino-, Di-(C₁₋₃-alkyl)-amino-, Acetylamino- oder N-(Methyl)-acetylaminogruppe oder eine 5- bis 7-gliedrige Cycloalkyleniminogruppe substituierte C₁₋₃-Alkylgruppe monosubstituiert oder durch eine Phenylgruppe und eine Cyanogruppe disubstituiert sein kann,

- bedeuten, wobei die bei der Definition der vorstehend genannten Reste erwähnten
 Phenylgruppen, sofern nichts anderes erwähnt wurde, durch ein Fluor-, Chlor- oder
 Bromatom, durch eine C₁₋₃-Alkylgruppe, durch eine Trifluormethyl-, C₁₋₃-Alkoxy-,
 Trifluormethoxy-, Phenyl-, Amino-, C₁₋₃-Alkylamino-, Acetylamino-, C₁₋₃-Alkoxycarbonyl- oder Cyanogruppe substituiert sein können,
- die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,
- die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und
- die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

5. Verbindungen der Formel I gemäß Anspruch 1, in denen

X₁ die Gruppe CR¹,

 X_2 die Gruppe CR^2 ,

10

X₃ die Gruppe CR³ und

X₄ die Gruppe CR⁴,

wobei R¹, R², R³ und R⁴ jeweils ein Wasserstoffatom oder

eine der Gruppen R¹ bis R⁴ ein Fluor-, Chlor- oder Bromatom, eine C₁₋₃-Alkylgruppe oder eine Trifluormethylgruppe darstellen und die restlichen der Gruppen R¹ bis R⁴ jeweils ein Wasserstoffatom bedeuten,

20

25

 A^a eine Bindung, ein Sauerstoffatom, eine -CH₂-, -(CH₂)₂-, -NH-, oder -N(C₁₋₃-Alkyl)-Gruppe,

wobei ein Stickstoffatom der Gruppe A^a nicht mit einem Stickstoffatom einer 5-gliedrigen Heteroarylgruppe der Gruppe R^a verknüpft ist,

R^a eine Phenyl-, 2-Pyridinyl-, 3-Pyridinyl- oder 4-Pyridinylgruppe,

eine 1-Pyrrolyl-, 2-Pyrrolyl-, 3-Pyrrolyl-, 2-Thienyl- oder 3-Thienylgruppe,

30

wobei das Stickstoffatom der Pyrrolylgruppe durch eine C₁₋₃-Alkylgruppe substituiert sein kann und die Phenylgruppe sowie die vorstehend genannten

heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl- oder Trifluormethylgruppe substituiert sein können,

eine Pyrrolidino-, Piperidino- oder Morpholinogruppe

R⁵ ein Wasserstoffatom,

Het eine 2,4-verknüpfte Pyrrolylen- oder Imidazolylengruppe, die jeweils über die
Position 2 an die benachbarte Carbonylgruppe der Formel I gebunden sind und die

an einem Stickstoffatom durch eine C_{1-3} -Alkylgruppe substituiert sind und im Kohlenstoffgerüst durch eine C_{1-3} -Alkylgruppe oder eine Trifluormethylgruppe substituiert sein können,

15

20

5

 R^6 ein Wasserstoffatom oder eine $C_{1\text{--}3}$ -Alkylgruppe,

 R^7 die Gruppe R^d – CH_2 - oder R^d – CH_2 - CH_2 -, in denen ein Wasserstoffatom der Methylengruppe in Position 1 durch eine C_{1-3} -Alkylgruppe oder eine Cyclopropylgruppe ersetzt sein kann und in denen

R^d eine Phenyl-, 1-Naphthyl-, 2-Naphthyl-, 2-Pyridinyl-, 3-Pyridinyl-, 4-Pyridinyl-, 2-Pyrimidinyl- oder 5-Pyrimidinylgruppe,

25

wobei die Phenylgruppe sowie die vorstehend genannten heteroaromatischen Gruppen im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl-, C₁₋₃-Alkoxy- oder Fluormethoxygruppe substituiert sein können,

30 bedeutet,

eine Phenyl-C \equiv C-CH₂-Gruppe, in der ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und davon unabhängig der Phenylteil durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₄-Alkyl-, Trifluormethyl- oder Phenylgruppe substituiert sein kann,

5

die Gruppe R^b-A^b-E^b-CH₂-, in der ein Wasserstoffatom der Methylengruppe in Position 1 durch eine Methylgruppe ersetzt sein kann und in der

10

 R^b eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, Hydroxy-, Methoxy-, Carboxy- oder Methoxy-carbonylgruppe substituierte Phenylgruppe,

15

eine über ein Kohlenstoffatom oder, sofern A^b eine Bindung darstellt, auch über ein Stickstoffatom gebundene Pyrrolyl-, Pyrazolyl-, Imidazolyl-, Oxazolyl-, Isoxazolyl-, Thiazolyl-, Isothiazolyl-, Oxadiazol- oder Thiadiazolylgruppe, in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom durch eine C₁₋₃-Alkylgruppe ersetzt sein kann,

20

eine 2-Pyridyl-, 3-Pyridyl-, 4-Pyridyl-, Pyrazinyl-, 2-Pyrimidinyl-, 4-Pyrimidinyl-, 5-Pyrimidinyl-, 3-Pyridazinyl- oder 4-Pyridazinylgruppe,

25

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, Phenyl-, Amino-, C_{1-3} -Alkylamino-, Di-(C_{1-3} -alkyl)-amino- oder Acetylaminogruppe monosubstituiert oder, mit Ausnahme von mehr als zwei Heteroatome enthaltenden 5-gliedrigen Heteroarylresten, durch eine C_{1-3} -Alkylgruppe und einen Substituenten ausgewählt aus Fluor, Chlor, Brom, C_{1-3} -Alkyl, Trifluormethyl, Phenyl, auch disubstituiert sein können,

die beiden Wasserstoffatome der Methylengruppe in 3-Stellung der Cyclopentylgruppe oder in 4-Stellung der Cyclohexylgruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können,

oder eine 5- bis 6-gliedrige Cycloalkyleniminogruppe, in der

der Cycloalkylenteil mit einem gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl- oder C₁₋₃-Alkoxygruppe substituierten Phenylring kondensiert sein kann oder

10

5

ein Wasserstoffatom durch eine C_{1-3} -Alkylgruppe ersetzt sein kann oder/und

die beiden Wasserstoffatome der Methylengruppe in Position 3 der 5-gliedrigen oder in Position 4 der 6-gliedrigen Cycloalkyleniminogruppe durch eine n-Butylen-, n-Pentylen- oder 1,2-Ethylendioxygruppe ersetzt sein können.

15

A^b eine Bindung, eine -CH₂-, -NH-, -O-CH₂-, -NH-CO- oder -CO-NH-Gruppe,

in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom jeweils durch eine Methylgruppe ersetzt sein kann,

20

 E^b eine 1,4-verknüpfte, gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, C_{1-3} -Alkoxy- oder Trifluormethoxygruppe substituierte Phenylengruppe bedeuten, oder

25

30

die Gruppe R^c-A^c-E^c-C₁₋₃-alkyl-, in der

 R^c eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine C_{1-3} -Alkyl-, Trifluormethyl-, Methoxy-, Carboxy- oder Methoxycarbonylgruppe substituierte Phenylgruppe,

A^c eine Bindung,

- 183 -

 E^c eine über zwei Kohlenstoffatome in den relativen Positionen 1,3 gebundene Pyrrolylen-, Pyrazolylen-, Imidazolylen-, Oxazolylen-, Isoxazolylen-, Thiazolylen-, Isothiazolylen-, [1,3,4]-Oxadiazolen- oder [1,3,4]-Thiadiazolengruppe, in denen ein an ein Stickstoffatom gebundenes Wasserstoffatom durch eine C_{1-3} -Alkylgruppe ersetzt sein kann,

oder eine 1,4-verknüpfte Pyridinylen-, Pyridazinylen- oder Pyrimidinylengruppe,

wobei die vorstehend genannten 5- und 6-gliedrigen Heteroarylenreste im Kohlenstoffgerüst durch ein Fluor-, Chlor- oder Bromatom, durch eine C₁₋₃-Alkyl-, Trifluormethyl- oder Methoxygruppe substituiert sein können, bedeutet,

- darstellen, wobei die bei der Definition der vorstehend genannten Reste erwähnten Alkyl- und Alkoxygruppen oder in den in vorstehend definierten Gruppen der Formel I enthaltenen Alkylteile mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein können, soweit nichts anderes erwähnt wurde,
- die bei der Definition der vorstehend erwähnten Reste erwähnten Carboxygruppen durch eine in-vivo in eine Carboxygruppe überführbare Gruppe oder durch eine unter physiologischen Bedingungen negativ geladene Gruppe ersetzt sein können oder/und
- die bei der Definition der vorstehend erwähnten Reste erwähnten Amino- und Iminogruppen jeweils durch einen in-vivo abspaltbaren Rest substituiert sein können,

deren Tautomere, deren Diastereomere, deren Enantiomere, deren Gemische und deren Salze.

- 184 -

- 6. Folgende Verbindungen der allgemeinen Formel I gemäß Anspruch 1:
- (a) N-[3-(Biphenyl-4-yl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1methyl-pyrrol-2-carbonsäureamid,
 - (b) N-[4-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbi-phenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid,
- (c) N-[4-(1,4-Dioxa-8-aza-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-trifluormethylbi-phenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid,
 - (d) N-[4-(6-Methylpyridazin-3-yl)-phenylmethyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid,
 - (e) N-(4'-Hydroxybiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid,
- (f) N-[4-(1,4-Dioxa-spiro[4.5]dec-8-yl)-phenylmethyl]-4-(4'-tri-fluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbon-säureamid,
 - (g) N-(4'-Methylbiphenyl-4-yl)methyl-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid,
- 25 (h) N-[3-(4-Isopropylphenyl)-prop-2-inyl]-4-(4'-trifluormethyl-biphenyl-2-carbonylamino)-1-methyl-pyrrol-2-carbonsäureamid,

15

- (i) N-[3-(4-Biphenyl)-prop-2-inyl]-4-(4'-trifluormethylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid und
- (j) N-[3-(4-Trifluormethylphenyl)-prop-2-inyl]-4-(4'-trifluor-methylbiphenyl-2-carbonylamino)-1-methyl-imidazol-2-carbonsäureamid,

sowie deren Salze.

- 7. Physiologisch verträgliche Salze der Verbindungen gemäß den Ansprüchen 1 bis 6.
- 8. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 1
 bis 6 oder ein Salz gemäß Anspruch 7 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
- 9. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 6 oder eines Salzes gemäß Anspruch 7 zur Herstellung eines Arzneimittels mit einer senkenden Wirkung auf die Plasmaspiegel der atherogenen Lipoproteine.
- 10. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 8, dadurch gekennzeichnet, daß auf nichtchemischem Wege eine Verbindung nach mindestens
 einem der Ansprüche 1 bis 6 oder ein Salz gemäß Anspruch 7 in einen oder mehrere
 inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.
- 11. Verfahren zur Herstellung der Verbindungen gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß
 - a. eine Verbindung der allgemeinen Formel

$$X_1$$
 X_2
 X_3
 X_4
 R_5
Het—Z (II),

in der

 X_1 bis X_4 , R^a , A^a , R^5 und Het wie in den Ansprüchen 1 bis 6 definiert sind und Z eine Carboxygruppe oder ein reaktives Derivat einer Carboxygruppe darstellt,

mit einem Amin der allgemeinen Formel

10

5

in der

R⁶ und R⁷ wie wie in den Ansprüchen 1 bis 6 definiert sind, umgesetzt wird oder

b. eine Verbindung der allgemeinen Formel

15

$$X_1$$
 X_2
 X_3
 X_4
 Z
 Z
 Z
 Z
 Z

in der

 X_1 bis X_4 , R^a und A^a wie in den Ansprüchen 1 bis 6 definiert sind und Z eine Carboxygruppe oder ein reaktives Derivat einer Carboxygruppe darstellt,

20

mit einem Amin der allgemeinen Formel

- 187 -

H Het
$$R^{5}$$
 R^{7} (V) ,

in der

R⁵ bis R⁷ und Het wie in den Ansprüchen 1 bis 6 definiert sind, umgesetzt wird und

5

gewünschtenfalls anschließend eine so erhaltene Verbindung der allgemeinen Formel I, die eine Amino-, Alkylamino- oder Iminogruppe enthält, mittels Acylierung oder Sulfonylierung in eine entsprechende Acyl- oder Sulfonylverbindung der allgemeinen Formel I übergeführt wird und/oder

10

eine Verbindung der allgemeinen Formel I, die eine Amino-, Alkylamino- oder Iminogruppe enthält, mittels Alkylierung oder reduktiver Alkylierung in eine entsprechende Alkylverbindung der allgemeinen Formel I übergeführt wird und/oder

15

eine Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, mittels Veresterung in einen entsprechenden Ester der allgemeinen Formel I übergeführt wird und/oder

20

eine Verbindung der allgemeinen Formel I, die eine Carboxy- oder Estergruppe enthält, mittels Amidierung in ein entsprechendes Amid der allgemeinen Formel I übergeführt wird und/oder

25

eine Verbindung der allgemeinen Formel I, die eine olefinische Doppelbindung oder eine C-C-Dreifachbindung enthält, mittels katalytischer Hydrierung in eine entsprechende Alkyl- oder Alkylenverbindung der allgemeinen Formel I übergeführt wird und/oder

erforderlichenfalls ein während den Umsetzungen zum Schutze von reaktiven Gruppen verwendeter Schutzrest abgespalten wird und/oder

- 188 -

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit einer anorganischen oder organischen Säure oder Base, übergeführt wird.

II ERNATIONAL SEARCH REPORT

International Application No PCT/EP 02/07215

			PCT/EP 0	2/07215
	FICATION OF SUBJECT MATTER A61K31/4025 A61K31/427 C07D207 C07D403/12 C07D233/90 C07D417 C07D491/10 A61K31/4178	7/12 CO7D277	/12 C07 /46 C07	D401/12 D213/82
	o International Patent Classification (IPC) or to both national classifi SEARCHED	cation and IPC		
	cumentation searched (classification system followed by classification)	tlon symbols)		
IPC 7	CO7D A61K			
Documentati	ion searched other than minimum documentation to the extent that	such documents are incli	uded in the fields	searched
Electronic da	ata base consulted during the international search (name of data b	ase and, where practical	, search terms use	ed)
EPO-Int	ternal, CHEM ABS Data, WPI Data, PA	J, BEILSTEIN	Data	
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the re	elevant passages		Relevant to claim No.
А	DE 197 54 796 A (BOEHRINGER INGE PHARMA) 17 June 1999 (1999-06-17 abstract	LHEIM)		1-11
P,A	claims examples	LUSTM		1 11
г, А	DE 100 33 337 A (BOEHRINGER INGE PHARMA) 17 January 2002 (2002-01 abstract claims examples			1-11
A	DE 199 33 926 A (BOEHRINGER INGE PHARMA) 25 January 2001 (2001-01 abstract claims			1-11
Furth	er documents are listed in the continuation of box C.	X Patent family	members are listed	d in annex.
"A" documer	egories of cited documents : nt defining the general state of the art which is not ered to be of particular relevance ocument but published on or after the international	cited to understand invention	I not in conflict with the principle or the	n the application but neory underlying the
filing de "L" documer which is		involve an inventiv "Y" document of particu	red novel or canno e step when the d lar relevance; the	of the considered to ocument is taken alone claimed invention
"O" docume other m	nt referring to an oral disclosure, use, exhibition or	document is comb ments, such comb in the art.	ined with one or m ination being obvi	nventive step when the tore other such docu- ous to a person skilled
	an the priority date claimed	"&" document member		
	7 August 2002	03/09/2		ум он торон
Name and m	nailing address of the ISA	Authorized officer		
	European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Stix-Ma	laun, E	

IMERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/EP 02/07215

Patent document cited in search report	Publication date				Publication date	
DE 19754796 A	17-06-1999	DE AU BG BR CA CN EE WO EP HR JP NO PL SK TR	19754796 / 1759499 / 104500 / 9813495 / 2309388 / 1281434 7 20000342 / 9929669 / 1060162 / 20000377 / 0100335 / 2001525397 7 20002967 / 341060 / 8612000 / 200001635 7	A A A A A A A A A A A A A A A A A A A	17-06-1999 28-06-1999 30-03-2001 10-10-2000 17-06-1999 24-01-2001 15-08-2001 17-06-1999 20-12-2000 31-12-2000 30-07-2001 11-12-2001 09-08-2000 26-03-2001 07-11-2000 21-11-2000	
DE 10033337 A	17-01-2002	ZA DE AU WO US	9811262 A 10033337 A 6758301 A 0204403 A 2002032238 A	A1 A A1	09-06-2000 17-01-2002 21-01-2002 17-01-2002 14-03-2002	
DE 19933926 A	25-01-2001	DE AU WO EP	19933926 A 6434600 A 0105762 A 1202969 A	4 42	25-01-2001 05-02-2001 25-01-2001 08-05-2002	

INTERNATION ER RECHERCHENBERICH I

Internationales Aktenzeichen PCT/EP 02/07215

a. klassifizierung des anmeldungsgegenstandes IPK 7 A61K31/4025 A61K31/427 C07D207/34 C07D405/12 C07D401/12 C07D403/12 C07D233/90 C07D277/46 C07D417/12 C07D213/82 CO7D491/10 A61K31/4178 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK\ 7\ C07D\ A61K$ Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evfl. verwendete Suchbegriffe) EPO-Internal, CHEM ABS Data, WPI Data, PAJ, BEILSTEIN Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie® Bezelchnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Α DE 197 54 796 A (BOEHRINGER INGELHEIM 1 - 11PHARMA) 17. Juni 1999 (1999-06-17) Zusammenfassung Ansprüche Beispiele P,A DE 100 33 337 A (BOEHRINGER INGELHEIM 1-11PHARMA) 17. Januar 2002 (2002-01-17) Zusammenfassung Ansprüche Beispiele Α DE 199 33 926 A (BOEHRINGER INGELHEIM 1 - 11PHARMA) 25. Januar 2001 (2001-01-25) Zusammenfassung Ansprüche Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu X I Siehe Anhang Patentfamilie ° Besondere Kategorien von angegebenen Veröffentlichungen *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der "A" Veröffentlichung, die den aligemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *L* Veröffentlichung, die geeignet ist, einen Priorilätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

PV Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist *&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 27. August 2002 03/09/2002 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Stix-Malaun, E Fax: (+31-70) 340-3016

INTERNATIONAL RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen PCT/EP 02/07215

					
lm Recherchenbericht ngeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
DE 19754796 A	17-06-1999	DE AU BG BR CN EE WO EP HU JP NO PL STR ZA	19754796 A1 1759499 A 104500 A 9813495 A 2309388 A1 1281434 T 200000342 A 9929669 A1 1060162 A1 20000377 A1 0100335 A2 2001525397 T 20002967 A 341060 A1 8612000 A3 200001635 T2 9811262 A	17-06-1999 28-06-1999 30-03-2001 10-10-2000 17-06-1999 24-01-2001 15-08-2001 17-06-1999 20-12-2000 31-12-2000 30-07-2001 11-12-2001 09-08-2000 26-03-2001 07-11-2000 09-06-2000	
DE 10033337 A	17-01-2002	DE AU WO US	10033337 A1 6758301 A 0204403 A1 2002032238 A1	17-01-2002 21-01-2002 17-01-2002 14-03-2002	
DE 19933926 A	25-01-2001	DE AU WO EP	19933926 A1 6434600 A 0105762 A2 1202969 A2	25-01-2001 05-02-2001 25-01-2001 08-05-2002	

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 30 January 2003 (30.01.2003)

PCT

(10) International Publication Number WO 03/007945 A1

- (51) International Patent Classification⁷: A61K 31/4184, C07D 401/04, 407/04, 235/18, 471/04, 407/14, 417/14, 409/04, 403/04, A61K 31/437, A61P 31/22
- (21) International Application Number: PCT/CA02/01129
- (22) International Filing Date: 18 July 2002 (18.07.2002)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:

60/306,669 20 July 2001 (20.07.2001) US 60/338,324 7 December 2001 (07.12.2001) US

- (71) Applicant (for all designated States except US):
 BOEHRINGER INGELHEIM (CANADA) LTD.
 [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BEAULIEU, Pierre, Louis [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). FAZAL, Gulrez [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). GOULET, Sylvie [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). KUKOLJ, George [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). POIRIER, Martin [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). TSANTRIZOS, Youla, S. [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA).

- (74) Agent: BERNIER, Louise, G.; Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: VIRAL POLYMERASE INHIBITORS

(57) Abstract: An isomer, enantiomer, diastereoisomer, or tautomer of a compound, represented by formula (I): wherein R^1 is selected from: H, haloalkyl, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{3-7}) cycloalkyl, (C_{2-6}) alkynyl, (C_{5-7}) cycloalkenyl, 6 or 10-membered aryl, Het all optionally substituted; R2 is selected from (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{6-10}) bicycloalkyl, 6- or 10-membered aryl, or Het all optionally substituted; B is N or CR^5 , wherein R^5 is H, halogen, haloalkyl, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; X is N or

CR⁵; D is N or CR⁵; each of Y_1 and Y_2 is independently O or S; Z is O, N, or NR² wherein R² is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; R³ and R⁴ are each independently H, (C_{1-6}) alkyl, first (C_{3-7}) cycloalkyl, 6- or 10-membered aryl, Het (C_{1-6}) alkyl-6- or 10-membered aryl, (C_{1-6}) alkyl-Het; or each R³ and R⁴ are independently covalently bonded together to form second (C_{3-7}) cycloalkyl, or heterocycle, all optionally substituted; or when Z is N, either R³ or R⁴ are independently covalently bonded thereto to form a nitrogen-containing heterocycle; R⁷ is H, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or R⁷ is covalently bonded to either of R³ or R⁴ to form a heterocycle; A is (C_{1-6}) alkyl-CONHR⁸ wherein R⁸ is-6- or 10-membered aryl, or Het; or A is a 6- or 10-membered aryl, or Het said aryl or Het being optionally substituted; or a salt or a derivative thereof; such compounds being potent inhibitors of HCV NS5B polymerase.

1

VIRAL POLYMERASE INHIBITORS

Technical field of the invention

The invention relates to inhibitors of RNA dependent RNA polymerases, particularly those viral polymerases within the Flaviviridae family, more particularly HCV polymerase.

Background of the Invention

5

- About 30,000 new cases of hepatitis C virus (HCV) infection are estimated to occur 10 in the United States each year (Kolykhalov, A.A.; Mihalik, K.; Feinstone, S.M.; Rice. C.M.; 2000; J. Virol. 74: 2046-2051). HCV is not easily cleared by the hosts' immunological defences; as many as 85% of the people infected with HCV become chronically infected. Many of these persistent infections result in chronic liver disease, including cirrhosis and hepatocellular carcinoma (Hoofnagle, J.H.; 1997; Hepatology 26: 15S-20S). There are an estimated 170 million HCV carriers world-15 wide, and HCV-associated end-stage liver disease is now the leading cause of liver transplantation. In the United States alone, hepatitis C is responsible for 8,000 to 10,000 deaths annually. Without effective intervention, the number is expected to triple in the next 10 to 20 years. There is no vaccine to prevent HCV infection. Prolonged treatment of chronically infected patients with interferon or interferon and 20 ribavirin is the only currently approved therapy, but it achieves a sustained response in fewer than 50% of cases (Lindsay, K.L.; 1997; Hepatology 26: 71S-77S, and
- HCV belongs to the family *Flaviviridae*, genus *hepacivirus*, which comprises three genera of small enveloped positive-strand RNA viruses (Rice, C.M.; 1996; "*Flaviviridae*: the viruses and their replication"; pp. 931-960 in *Fields Virology*; Fields, B.N.; Knipe, D.M.; Howley, P.M. (eds.); Lippincott-Raven Publishers, Philadelphia Pa.). The 9.6 kb genome of HCV consists of a long open reading frame (ORF) flanked by 5' and 3' non-translated regions (NTR's). The HCV 5' NTR is 341 nucleotides in length and functions as an internal ribosome entry site for capindependent translation initiation (Lemon, S.H.; Honda, M.; 1997; *Semin. Virol.* 8:

Reichard, O.; Schvarcz, R.; Weiland, O.; 1997 Hepatology 26: 108S-111S).

WO 03/007945

2

PCT/CA02/01129

274-288). The HCV polyprotein is cleaved co- and post-translationally into at least 10 individual polypeptides (Reed, K.E.; Rice, C.M.; 1999; Curr. Top. Microlbiol. Immunol. 242: 55-84. The structural proteins result from signal peptidase induced cleavage in the N-terminal portion of the polyprotein. Two viral proteases mediate downstream cleavages to produce non-structural (NS) proteins that function as components of the HCV RNA replicase. The NS2-3 protease spans the C-terminal half of the NS2 and the N-terminal one-third of NS3 and catalyses cis cleavage of the NS2/3 site. The same portion of NS3 also encodes the catalytic domain of the NS3-4A serine protease that cleaves at four downstream sites. The C-terminal twothirds of NS3 is highly conserved amongst HCV isolates, with RNA-binding, RNAstimulated NTPase, and RNA unwinding activities. Although NS4B and the NS5A phosphoprotein are also likely components of the replicase, their specific roles are unknown. The C-terminal polyprotein cleavage product, NS5B, is the elongation subunit of the HCV replicase possessing RNA-dependent RNA polymerase (RdRp) activity (Behrens, S.E.; Tomei, L.; DeFrancesco, R.; 1996; EMBO J. 15: 12-22; and Lohmann, V.; Körner, F.; Herian, U.; Bartenschlager, R.; 1997; J. Virol. 71: 8416-8428). It has been recently demonstrated that mutations destroying NS5B activity abolish infectivity of RNA in a chimp model (Kolykhalov, A.A.; Mihalik, K.; Feinstone. S.M.; Rice, C.M.; 2000; J. Virol. 74: 2046-2051).

20

25

10

15

The development of new and specific anti-HCV treatments is a high priority, and virus-specific functions essential for replication are the most attractive targets for drug development. The absence of RNA dependent RNA polymerases in mammals, and the fact that this enzyme appears to be essential to viral replication, would suggest that the NS5B polymerase is an ideal target for anti-HCV therapeutics. WO 00/06529 reports inhibitors of NS5B which are α , γ -diketoacids. WO 00/13708, WO 00/10573, WO 00/18231, and WO 01/47883 report inhibitors of NS5B proposed for treatment of HCV.

30 SUMMARY OF THE INVENTION

It is therefore an object of the invention to provide a novel series of compounds having improved inhibitory activity against HCV polymerase.

In a first aspect of the invention, there is provided an isomer, enantiomer,

diastereoisomer, or tautomer of a compound, represented by formula I:

wherein

R¹ is selected from: R¹¹, OR¹¹, SR¹¹, COOR¹¹, SO₂N(R¹²)₂, N(R¹²)₂, CON(R¹²)₂, NR¹²C(O)R¹² or NR¹²C(O)NR¹² wherein R¹¹ and each R¹² is independently H, (C₁₋₆)alkyl, haloalkyl, (C₂₋₆)alkenyl, (C₃₋₇)cycloalkyl, (C₂₋₆)alkynyl, (C₅₋₇)cycloalkenyl, 6 or 10-membered aryl or Het, said R¹¹ and R¹² being optionally substituted with R¹⁰; or both R¹² are bonded together to form a 5, 6 or 7-membered saturated heterocycle with the nitrogen to which they are attached;

10

5

 ${f R}^2$ is selected from (C₁₋₆)alkyl, haloalkyl, (C₃₋₇)cycloalkyl, (C₅₋₇)cycloalkenyl, (C₆₋₁₀)bicycloalkyl, (C₆₋₁₀)bicycloalkenyl, 6- or 10-membered aryl, ${f Het}$, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl- ${f Het}$,

said alkyl, cycloalkyl, cycloalkenyl, bicycloalkenyl, aryl, Het, alkyl-

aryl and alkyl-**Het** being optionally substituted with from 1 to 4 substituents selected from: halogen, or

a) (C₁₋₆)alkyl optionally substituted with:

- OR^{21} or SR^{21} wherein R^{21} is H, (C_{1-6} alkyl), (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, **Het**, (C_{1-6})alkyl-aryl or (C_{1-6})alkyl-**Het**; or

20

- $N(\mathbf{R}^{22})_2$ wherein each \mathbf{R}^{22} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-**Het**; or both \mathbf{R}^{22} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle:

25

b) OR^{23} wherein R^{23} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-**Het**; c) SR^{24} wherein R^{24} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-**Het**; and

4

d) $N(\mathbf{R}^{25})_2$ wherein each \mathbf{R}^{25} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-**Het**; or both \mathbf{R}^{25} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

5

10

B is N or CR^5 , wherein R^5 is H, halogen, (C_{1-6}) alkyl, haloalkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or R^5 is OR^{51} or SR^{51} , COR^{51} or $NR^{51}COR^{51}$ wherein each R^{51} is independently H, (C_{1-6}) alkyl), (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or R^5 is $NR^{52}R^{53}$ wherein R^{52} and R^{53} are each independently H, (C_{1-6}) alkyl, $(C_3$. $^7)$ cycloalkyl, (C_{3-7}) cycloalkyl, or both R^{52} and R^{53} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

15 **X** is N or CR⁵, wherein R⁵ is as defined above;

D is N or CR⁵, wherein R⁵ is as defined above;

each of Y_1 and Y_2 is independently O or S;

20

Z is O, N, or NR⁶ wherein R⁶ is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl;

R³ and R⁴ are each independently H, (C₁₋₆)alkyl, haloalkyl, (C₃₋₇)cycloalkyl, 6- or 10membered aryl, **Het**, (C₁₋₆)alkyl-aryl, (C₁₋₆)alkyl-**Het**, wherein said alkyl, cycloalkyl, aryl, **Het**, (C₁₋₆)alkyl-aryl, (C₁₋₆)alkyl-**Het** are optionally substituted with R³⁰; or R⁷ and R⁸ are covalently bonded together to form second (C₃₋₇)cycloalkyl or a 4, 5- or 6-membered heterocycle having from 1 to 3 heteroatom selected from O, N, and S; or when **Z** is NR⁶, either of R⁷ or R⁸ is covalently bonded to R⁶ to form a nitrogencontaining 5-or 6-membered heterocycle;

 \mathbf{R}^7 is H, (C₁₋₆ alkyl), (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-**Het**, all of which optionally substituted with \mathbf{R}^{70} ; or \mathbf{R}^7 is covalently bonded to either of \mathbf{R}^3 or \mathbf{R}^4 to form a 5- or 6-membered heterocycle;

A is a 6- or 10-membered aryl, **Het**, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-**Het**, (C_{1-6}) alkyl-CONH-aryl or (C_{1-6}) alkyl-CONH-**Het**, all of which being optionally substituted with:

5

10

15

or a salt or a derivative thereof;

wherein Het is defined as:

5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, or a 9- or 10-membered heterobicycle having 1 to 5 heteroatoms selected from O, N and S; and

 \mathbf{R}^{10} , \mathbf{R}^{30} , \mathbf{R}^{70} and \mathbf{R}^{100} are defined as:

- 1 to 4 substituents selected from: halogen, OPO_3H , NO_2 , cyano, azido, $C(=NH)NH_2$, $C(=NH)NH(C_{1-6})$ alkyl or $C(=NH)NHCO(C_{1-6})$ alkyl; or
- 1 to 4 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;

20

b) OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl$ - (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het**, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het** being optionally substituted with R^{150} ;

25

c) OCOR¹⁰⁵ wherein R^{105} is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ; Het, $(C_{1-6}$ alkyl)Het being optionally substituted with Het0 SR¹⁰⁸, Het1 SO₂N(Het1 SO₂N(Het2 SO₂N(He

R¹⁵⁰;

- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C_{1-6})alkyl, (C_{3-7})cycloalkyl or (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, and R¹¹² is H, CN, (C_{1-6})alkyl, (C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl, (C_{1-6} alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C_{1-6})alkyl, (C_{3-7})cycloalkyl, or (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said (C₁₋₆alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with \mathbf{R}^{150} ;
- **g)** NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or \mathbf{R}^{118} is covalently bonded to \mathbf{R}^{119} and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or \mathbf{R}^{119} and \mathbf{R}^{120} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** or heterocycle being optionally substituted with \mathbf{R}^{150} ;
- h) $NR^{121}COCOR^{122}$ wherein R^{121} and R^{122} is each H, (C_{1-6}) alkyl, $(C_3._7)$ cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, a 6- or 10-membered aryl, Het, (C_{1-6}) alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R^{124} is OH or $O(C_{1-6}$ alkyl) or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{150} ; i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl or (C_{3-7}) cycloal

₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said alkyl, cycloalkyl,

10

5

15

20

25

aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** being optionally substituted with \mathbf{R}^{150} ; **j**) COOR¹²⁸ wherein \mathbf{R}^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het**, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) alkyl)**Het** being optionally substituted with \mathbf{R}^{150} ;

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁵⁰;

I) aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het**, all of which being optionally substituted with \mathbb{R}^{150} ; and

wherein R¹⁵⁰ is defined as:

1 to 3 substituents selected from: halogen, OPO₃H, NO₂, cyano, azido, $C(=NH)NH_2$, $C(=NH)NH(C_{1-6})$ alkyl or $C(=NH)NHCO(C_{1-6})$ alkyl; or 1 to 3 substituents selected from:

- $a) \ (C_{1-6}) \ alkyl \ or \ haloalkyl, \ (C_{3-7}) cycloalkyl, \ C_{3-7} \ spirocycloalkyl \\ optionally \ containing \ 1 \ or \ 2 \ heteroatom, \ (C_{2-6}) alkenyl, \ (C_{2-8}) alkynyl, \\ (C_{1-6}) \ alkyl-(C_{3-7}) cycloalkyl, \ all \ of \ which \ optionally \ substituted \ with \ \mathbf{R}^{160};$
- **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl-(C_{3-7})$ cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het**, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het** being optionally substituted with R^{160} ;
- c) OCOR¹⁰⁵ wherein R^{105} is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} ;
- d) SR^{108} , SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** or

10

5

15

20

25

8

heterocycle being optionally substituted with R¹⁶⁰;

e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C_{1-6})alkyl, (C_{3-7})cycloalkyl or (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, and R¹¹² is H, CN, (C_{1-6})alkyl, (C_{3-7})cycloalkyl or (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl, (C_{1-6} alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C_{1-6})alkyl, (C_{3-7})cycloalkyl, or (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰;

f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with R¹⁶⁰:

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** or heterocycle being optionally substituted with R¹⁶⁰;

h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with R¹⁶⁰, or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-

5

10

15

20

25

9

cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het** and heterocycle being optionally substituted with \mathbf{R}^{160} ;

i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het**, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** being optionally substituted with R^{160} ;

j) tetrazole, $COOR^{128}$ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl and (C_{1-6}) being optionally substituted with R^{160} ; and

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁶⁰;

wherein R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-6} alkyl, haloalkyl, $COOR^{161}$, SO_3H , SR^{161} , SO_2R^{161} , OR^{161} , $N(R^{162})_2$, $SO_2N(R^{162})_2$, $NR^{162}COR^{162}$ or $CON(R^{162})_2$, wherein R^{161} and each R^{162} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or both R^{162} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle,

Alternatively, there is provided a compound of formula la:

$$\begin{array}{c|c}
 & Y & R^7 \\
 & X & R^6 & O
\end{array}$$

10

15

20

10

wherein \mathbf{R}^1 is selected from: 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S and phenyl, said heterocycle and phenyl being optionally substituted with from 1 to 4 (C_{1-4})alkyl substituents;

 R^2 is selected from: (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl, (C_{1-3}) alkyl, and norbornane;

X is CH or N;

R⁶ is H or (C₁₋₆ alkyl);

Y is O or S;

15

20

30

B is N or CR⁵, wherein R⁵ is H or (C₁₋₆) alkyl with the proviso that **X** and **B** are not both N;

Z is O, N, or NH;

W is CR³R⁴ wherein R³ and R⁴ are each independently H, (C₁-6 alkyl), (C₃-7 cycloalkyl), (C₁-6 alkyl)phenyl, (C₁-6 alkyl)-(C₃-7 cycloalkyl), (C₃-7 cycloalkyl)-(C₁-6 alkyl), (C₃-7 cycloalkyl)-(C₁-6 alkyl), (C₃-7 cycloalkyl)-(C₂-4 alkenyl), (C₁-6 alkyl)-OH, phenyl, CH₂biphenyl, 5- or 6-membered heterocycle having from1 to 4 heteroatoms selected from O, N, and S, 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N, and S, (C₁-6 alkyl)-5- or 6-membered heterocycle having from1 to 4 heteroatoms selected from O, N, and S, or (C₁-6 alkyl)-9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N, and S, or R³ and R⁴ are covalently bonded together to form (C₃-7 cycloalkyl), 4-, 5- or 6-membered heterocycle having from1 to 4 heteroatoms selected from O, N, and S; or when Z is N, either R³ or R⁴ is covalently bonded thereto to form a 5-membered heterocycle;

wherein said alkyl, cycloalkyl, heterocycle, heterobicycle, phenyl are optionally substituted with from 1 to 4 substituents selected from: OH, COOH, (C₁₋₆ alkyl), (C₂₋₄ alkenyl), CONH₂, NH₂, NH(C₁₋₆ alkyl), N(C₁₋₆ alkyl)₂, NHCOCOOH, NHCOCON(C₁₋₆ alkyl)₂, NHCOCONH(C₁₋₆ alkyl), SH, S(C₁₋₆ alkyl), NHC(=NH)NH₂, and COO(C₁₋₆alkyl);

25 \mathbf{R}^7 is H or (C₁₋₆ alkyl);

A is selected from: (C₁₋₃alkyl)CONHaryl, 6- or 10-membered aryl, biphenyl, 5- or 6-atom heterocycle having 1 to 4 heteroatoms selected from O, N and S, 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N and S;

11

wherein said aryl, biphenyl, first heterocycle, and heterobicycle are all optionally substituted with from 1 to 4 substituents selected from: OH, COOH, COO(C_{1-6})alkyl, (C_{1-6})alkyl, (C_{1-6})alkylCOOH, (C_{1-6} alkyl)(C_{2-4} alkynyl), (C_{1-6})alkyl-hydroxy, phenyl, benzyloxy, halogen, (C_{2-4})alkenyl, (C_{2-4})alkenyl-(C_{1-6})alkyl-COOH, 5- or 6-membered second heterocycle having 1 to 4 heteroatoms selected from O, N and S, NH-5- or 6- membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S,

wherein said second heterocycle and phenyl being optionally substituted with from 1 to 4 substituents selected from: $(C_{1-6} \text{ alkyl})$, CF_3 , OH, $(C_{1-6} \text{alkyl}) COOH$, $O(C_{1-6} \text{alkyl}) COOH$, $(C_{1-6} \text{alkyl}) COO(C_{1-6} \text{alkyl})$, CH_2 phenyl, $COO(C_{1-6} \text{ alkyl})$, $(C_{1-6} \text{alkyl}) O(C_{1-6} \text{alkyl})$, COOH, $CH(C_{1-6} \text{alkyl})$, $COO(C_{1-6} \text{ alkyl})$, COOH, $CH(C_{1-6} \text{alkyl})$, $COO(C_{1-6} \text{ alkyl})$, $COO(C_{$

halogen, OPO₃H, benzyl, sulfonamido, SH, SOCH₃, SO₃H, SO₂CH₃, S(C₁₋₆ alkyl)COOH, -CONH₂, -COCH₃, (C₁₋₃)alkyl, (C₂₋₄alkenyl)COOH

wherein said alkenyl is optionally substituted with from 1 to 2 $(C_{1-6}$ alkyl) substituents,

 $(C_{2\text{-4}}\text{alkenyl}) \text{COO}(C_{1\text{-6}}\text{alkyl}), \text{ tetrazolyl, COOH, triazolyl, OH, NO}_2, \text{NH}_2, \\ -\text{O}(\text{CH}_2)_p \text{COOH, hydantoin, benzoyleneurea, } (C_{1\text{-4}})\text{alkoxy, } (C_{1\text{-4}})\text{alkoxy}(C_{1\text{-6}})\text{alkyl} \\ \text{COO-}(C_{1\text{-6}})\text{alkyl, -NHCOCOOH, -NHCOCONHOH, -NHCOCONH}_2, \\ -\text{NHCOCONHCH}_3, -\text{NHCO}(C_{1\text{-6}})\text{alkyl-COOH, -NHCOCONH}(C_{1\text{-6}})\text{alkyl-COOH, -NHCOCONH}(C_{1\text{-6}})\text{alkyl-COOH, -NHCONH}(C_{6\text{-10}})\text{aryl-COOH, - NHCONH}(C_{6\text{-10}})\text{aryl-COOH, - NHCONH}(C_{1\text{-6}})\text{alkyl-COOH, - NHCONH}(C_{1\text{-6}})\text{alkyl-COOH, - NHCONH}(C_{1\text{-6}})\text{alkyl-COOH, - NHCONH}(C_{1\text{-6}})\text{alkyl-COOH, - NHCONH}(C_{1\text{-6}})\text{alkyl-(C}_{6\text{-10}})\text{aryl-COOH, - NHCH}_2\text{COOH, - NHCH}_2\text{COOH, -NHCONH}_2, -\text{NHCONH}_2, -\text{NHCO}(C_{1\text{-6}})\text{hydroxyalkyl COOH, -OCO}(C_{1\text{-6}})\text{hydroxyalkyl COOH, -OCO$

-NHCHO, -NHSO $_2$ CH $_3$, -NHSO $_2$ CF $_3$, coumarin, (C $_{1-6}$)alkyl-amino, di-(C $_{1-6}$)alkyl-amino, C(halogen) $_3$, -NH(C $_{2-4}$)acyl, -NH(C $_{6-10}$)aroyl,

10

5

15

20

25

12

- -CONH(C₁₋₆alkyl), -CO(C₁₋₆)alkyl-COOH, -CONH(C₁₋₆)alkyl-COOH,
- -CO-NH-alanyl, -CONH(C_{2-4})alkylN(C_{1-6} alkyl)₂, -CONH(C_{2-4}) alkyl-**Het**
- -CONH(C_{2-4}) alkyl-(COOH)-Het -CONH(C_{1-2} alkyl) (OH)(C_{1-2} alkyl) OH,
- -CONH(C₁₋₆) alkyl-COOH, -CONH(C₆₋₁₀ aryl), -CONH-**Het**
- -CONH(C_{6-10}) aryl-COOH, -CONH(C_{6-10}) aryl-COO(C_{1-6}) alkyl,
- -CONH($C_{1:6}$) alkyl-COO(C_{1-6}) alkyl, -CONH(C_{6-10}) aryl-(C_{1-6})alkyl-COOH,
- -CONH(C₆₋₁₀) aryl-(C₂₋₆)alkenyl-COOH,

or salt thereof.

5

20

25

30

35

In a second aspect of the invention, there is provided a compound of the Formula I, or a pharmaceutically acceptable salt thereof, as an inhibitor of RNA dependent RNA polymerase activity of the enzyme NS5B, encoded by HCV.

In a third aspect of the invention, there is provided a compound of the formula I, or a pharmaceutically acceptable salt thereof, as an inhibitor of HCV replication.

In a fourth aspect of the invention, there is provided a method of treating or preventing HCV infection in a mammal, comprising administering to the mammal an effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.

In a fifth aspect of the invention, there is provided a pharmaceutical composition for the treatment or prevention of HCV infection, comprising an effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

In a sixth aspect of the invention, there is provided a method of treating or preventing HCV infection in a mammal, comprising administering to the mammal an effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof in combination with another anti-HCV agent.

In a seventh aspect of the invention, there is provided a use of a compound of formula I, for the manufacture of a medicament for the treatment of HCV infection.

In a eighth aspect of the invention, there is provided a use of a compound of formula

I, to prevent HCV infection.

In an ninth aspect of the invention, there is provided a use of a compound of formula I, as an HCV polymerase inhibitor.

5

10

In an tenth aspect of the invention, there is provided an intermediate compound of formula (i):

$$\begin{array}{c|c}
R^{1} & \stackrel{N}{\longrightarrow} & \stackrel{B}{\longrightarrow} & \stackrel{Y^{1}}{\longrightarrow} & R^{4} \\
R^{2} & & & & \\
\end{array}$$
(i)

wherein R¹, R², R³, R⁴, B, D, X, Y¹, and Z are as defined herein, or a derivative thereof.

In a eleventh aspect of the invention, there is provided an intermediate compound of formula I(ii):

I(ii)

wherein R¹, R², R³, R⁴, R⁷, A, B, D, X, Y¹, Y² and Z are as defined herein, or a derivative thereof.

In a twelfth aspect of the invention, there is provided a process for producing compounds of formula I.

20

wherein R¹, R², R³, R⁴, R⁷, A, B, D, X, Y¹, Y² and Z are as defined herein, comprising:

a) removing, in a mixture of an aqueous base or an aqueous acid in a co-

14

solvent, the protecting group (PG) from:

5

15

wherein R¹, R², R³, R⁴, R⁷, A, B, D, X, Y¹, Y² and Z are as defined herein, and wherein PG is a carboxylic acid protecting group, so as to produce compounds of formula I.

In a thirteenth aspect of the invention, there is provided a process for producing compounds of formula I,

$$R^{1} \xrightarrow{N} R^{2} X \xrightarrow{D} Z \xrightarrow{N} A$$

wherein R¹, R², R³, R⁴, R⁷, A, B, D, X, Y¹, Y² and Z are as defined herein, comprising:

a) cleaving, under acidic conditions, intermediate compound I(ii)

l(ii)

so as to produce compounds of formula I, where R¹, R², R³, R⁴, R⁷, A, B, D, X, Y¹ and Y² are as defined herein.

In a fourteenth aspect of the invention, there is provided a process for producing compounds of formula I,

15

wherein R¹, R², R³, R⁴, R⁷, A, B, D, X and Z are as defined herein, comprising:

i) coupling intermediate compound of formula (i):

$$R^{1} \xrightarrow{N} X^{2} D$$

$$R^{2}$$
(i)

5

25

30

wherein \mathbf{R}^1 , \mathbf{R}^2 , \mathbf{R}^3 , \mathbf{R}^4 , \mathbf{B} , \mathbf{D} , \mathbf{X} , and \mathbf{Z} are as defined herein, or a derivative thereof, with $\mathbf{HN}(\mathbf{R}^7)$ - \mathbf{A} wherein \mathbf{R}^7 and \mathbf{A} are as defined herein, to produce compound of formula I.

10 DETAILED DESCRIPTION OF THE INVENTION

Definitions

The following definitions apply unless otherwise noted:

As used herein, the terms "(C₁₋₃) alkyl", "(C₁₋₄) alkyl" or "(C₁₋₆) alkyl", either alone or in combination with another radical, are intended to mean acyclic straight or branched chain alkyl radicals containing up to three, four and six carbon atoms respectively. Examples of such radicals include methyl, ethyl, propyl, butyl, hexyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl.

As used herein, the term " (C_{2-6}) alkenyl", either alone or in combination with another radical, is intended to mean an unsaturated, acyclic straight chain radical containing two to six carbon atoms.

As used herein, the term (C_{2-6}) alkynyl" either alone or in combination with another group, is intended to mean an unsaturated, acyclic straight chain sp hybridized radical containing 2 to six carbon atoms.

As used herein, the term "(C₃₋₇) cycloalkyl", either alone or in combination with another radical, means a cycloalkyl radical containing from three to seven carbon atoms and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.

16

As used herein, the term (C_{5-7}) cycloalkenyl, either alone or in combination with another radical, means an unsaturated cyclic radical containing five to seven carbon atoms.

As used herein, the term "carboxy protecting group" defines protecting groups that can be used during coupling and are listed in Greene, "Protective Groups in Organic Chemistry", John Wiley & Sons, New York (1981) and "The Peptides: Analysis, Synthesis, Biology", Vol. 3, Academic Press, New York (1981), the disclosures of which are hereby incorporated by reference.

10

15

20

The α -carboxyl group of the C-terminal residue is usually protected as an ester (CPG) that can be cleaved to give the carboxylic acid. Protecting groups that can be used include: 1) alkyl esters such as methyl, trimethylsilylethyl and *t*-butyl, 2) aralkyl esters such as benzyl and substituted benzyl, or 3) esters that can be cleaved by mild base treatment or mild reductive means such as trichloroethyl and phenacyl esters.

As used herein, the term "aryl", or "6- or 10-membered aryl" either alone or in combination with another radical means aromatic radical containing six or ten carbon atoms, for example phenyl or naphthyl.

As used herein the term heteroatom means O, S or N.

As used herein, the term "heterocycle", either alone or in combination with another radical, means a monovalent radical derived by removal of a hydrogen from a five-, six-, or seven-membered saturated or unsaturated (including aromatic) heterocycle containing from one to four heteroatoms selected from nitrogen, oxygen and sulfur. Furthermore, "heterobicyclic" as used herein, means a heterocycle as defined above fused to one or more other cycle, be it a heterocycle or any other cycle. Examples of such heterocycles include, but are not limited to, pyrrolidine, tetrahydrofuran, thiazolidine, pyrrole, thiophene, coumarin, hydantoin, diazepine, 1H-imidazole, isoxazole, thiazole, tetrazole, piperidine, 1,4-dioxane, 4-morpholine, pyridine, pyridine-N-oxide, pyrimidine, thiazolo[4,5-b]-pyridine, quinoline, or indole, or the following heterocycles:

$$\begin{array}{c|c}
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

As used herein, the term "9- or 10-membered heterobicycle" or "heterobicycle" either alone or in combination with another radical, means a heterocycle as defined above fused to one or more other cycle, be it a heterocycle or any other cycle. Examples of such heterobicycles include, but are not limited to, thiazolo[4,5-b]-pyridine, quinoline, or indole, or the following:

10

5

As used herein, the term "**Het**" defines a 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, or a 9- or 10-membered heterobicycle having 1 to 5 heteroatoms wherever possible, selected from O, N and S.

As used herein, the term "halo" means a halogen atom and includes fluorine, chlorine, bromine and iodine.

As used herein, the term "haloalkyl" is intended to mean an alkyl that is described above in which each hydrogen atom may be successively replaced by a halogen atom, for example CH₂Br or CF₃.

As used herein, the term "metal halide" is intended to mean any metal that is bonded to a halogen atom for use in a metal-catalyzed cross-coupling reaction. Examples of such metal halides include, but are not limited to, -MgCl, -CuCl, or -ZnCl and the like.

25

20

As used herein, the term "OH" refers to a hydroxyl group. It is well known to one skilled in the art that hydroxyl groups may be substituted by functional group

18

equivalents. Examples of such functional group equivalents that are contemplated by this invention include, but are not limited to, ethers, sulfhydryls, and primary, secondary or tertiary amines.

- As used herein, the term "SH" refers to a sulfhydryl group. It is intended within the scope of the present invention that , whenever a "SH" or "SR" group is present, it can also be substituted by any other appropriate oxidation state such as SOR, SO₂R, or SO₃R.
- lt is intended that the term "substituted" when applied in conjunction with a radical having more than one moiety such as C₁₋₆alkyl-aryl, or C₁₋₆alkyl-**Het**, such substitution applies to both moieties i.e. both the alkyl and aryl or **Het** moieties can be substituted with the defined substituents.
- As used herein, the term "COOH" refers to a carboxylic acid group. It is well known to one skilled in the art that carboxylic acid groups may be substituted by functional group equivalents. Examples of such functional group equivalents that are contemplated by this invention include, but are not limited to, esters, amides, boronic acids or tetrazole.

20

35

As used herein, the term "functional group equivalent" is intended to mean an element or a substituted derivative thereof, that is replaceable by another element that has similar electronic, hybridization or bonding properties.

As used herein, the term "metal catalyst" is intended to mean a metal such as palladium (0) or palladium (2) that is bonded to a leaving group for use in a cross-coupling reaction. Examples of such palladium catalysts include, but are not limited to, Pd(Ph₃)₄, Pd/C, Pd(OAc)₂, PdCl₂, and the like. Alternative metals that can catalyze cross-coupling reactions include, but are not limited to: Ni(acac)₂, Ni(OAc)₂, or NiCl₂.

As used herein, the term "derivative" is intended to mean "detectable label", "affinity tag" or "photoreactive group". The term "detectable label" refers to any group that may be linked to the polymerase or to a compound of the present invention such that when the compound is associated with the polymerase target, such label allows

19

recognition either <u>directly or indirectly</u> of the compound such that it can be detected, measured and quantified. Examples of such "labels" are intended to include, but are not limited to, fluorescent labels, chemiluminescent labels, colorimetric labels, enzymatic markers, radioactive isotopes and affinity tags such as biotin. Such labels are attached to the compound or to the polymerase by well known methods. The term "affinity tag" means a ligand (that is linked to the polymerase or to a compound of the present invention) whose strong affinity for a receptor can be used to extract from a solution the entity to which the ligand is attached. Examples of such ligands include biotin or a derivative thereof, a histidine polypeptide, a polyarginine, an amylose sugar moiety or a defined epitope recognizable by a specific antibody. Such affinity tags are attached to the compound or to the polymerase by well-known methods.

The term "photoreactive group" means a group that is transformed, upon activation by light, from an inert group to a reactive species, such as a free radical. Examples of such groups include, but are not limited to, benzophenones, azides, and the like.

As used herein, the term "pharmaceutically acceptable salt" includes those derived from pharmaceutically acceptable bases and is non-toxic. Examples of suitable bases include choline, ethanolamine and ethylenediamine. Na⁺, K⁺, and Ca⁺⁺ salts are also contemplated to be within the scope of the invention (also see Pharmaceutical salts, Birge, S.M. et al., J. Pharm. Sci., (1977), <u>66</u>, 1-19, incorporated herein by reference).

25 Preferred embodiments

5

10

20

30

35

Preferably, compounds of the present invention have the following formula I as defined above, wherein preferably:

R¹ is selected from: (C₃₋₇)cycloalkyl, (C₅₋₇)cycloalkenyl, 6 or 10-membered aryl, or **Het** each of which being optionally substituted with 1 or 2 halogen or from 1 or 2 substituents selected from:

- a) (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{2-6}) alkenyl, each optionally substituted with OR^{11} , SR^{11} , wherein R^{11} is H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl;
- b) OR¹³ wherein R¹³ is H, (C₁₋₆ alkyl), (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, or **Het**; and

- f) a 6- or 10-membered aryl, or **Het** said aryl or **Het** being optionally substituted with (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl.
- More preferably, R¹ is selected from: 6 or 10-membered aryl, or **Het** each of which being optionally substituted with 1 or 2 halogen or with 1 or 2 (C₁₋₆)alkyl or (C₂₋₆)alkenyl.

Most preferably, R^1 is phenyl or **Het** optionally substituted with (C_{1-6}) alkyl.

10

Even most preferably, R¹ is:

15 Still, even most preferably, R¹ is:

Preferably, \mathbf{R}^2 is selected from (C₃₋₇)cycloalkyl, (C₆₋₁₀)bicycloalkyl, each optionally substituted with 1 or 2 substituents selected from:

a) halogen, (C₁₋₆)alkyl, OH and (C₁₋₆)alkoxy.

20

25

More preferably, \mathbf{R}^2 is selected from (C_{3-7}) cycloalkyl, (C_{6-10}) bicycloalkyl, each optionally mono- or di-substituted with halogen or (C_{1-6}) alkyl. Most preferably, \mathbf{R}^2 is selected from (C_{3-7}) cycloalkyl or (C_{6-10}) bicycloalkyl. Even most preferably, \mathbf{R}^2 is

cyclopentyl, cyclohexyl, or

. Still, even most preferably, $\mathbf{R}^{\mathbf{2}}$ is cyclopentyl

25

or cyclohexyl.

Preferably, **B** is N or CR⁵, wherein R⁵ is H, halogen, haloalkyl or (C₁₋₆)alkyl. More preferably, **B** is N, CH or C-(C₁₋₆ alkyl). Most preferably, **B** is N, CH or C(Me). Even most preferably **B** is CH.

Preferably, X is N, CH or C(C₁₋₆) alkyl. More preferably, X is N, CH or C(Me). Most preferably, X is N or CH. Even most preferably, X is CH.

Preferably, **D** is CR⁵, wherein R⁵ is H, halogen, haloalkyl, or (C₁₋₆)alkyl. More preferably, **D** is CH or C(Me). Most preferably, **D** is CH.

Preferably, \mathbf{Y}^1 is O.

Preferably, \mathbf{Y}^2 is O.

More preferably both Y^1 and Y^2 are O.

Preferably, **Z** is N, or NH or O. More preferably, **Z** is NH or O. Most preferably, **Z** is NH.

- Preferably, R³ and R⁴ are each independently H, (C₁₋₆)alkyl, first (C₃₋₇)cycloalkyl, 6or 10-membered aryl, **Het** (C₁₋₆)alkyl-6- or 10-membered aryl, (C₁₋₆)alkyl-**Het**; or R³ and R⁴ are covalently bonded together to form second (C₃₋₇)cycloalkyl or a 5- or 6-membered heterocycle having from1 to 4 heteroatom selected from O, N, and S; wherein said alkyl, first and second cycloalkyl, aryl, **Het** (C₁₋₆)alkyl-aryl,
 - (C₁₋₆)alkyl-**Het** or heterocycle are optionally substituted with: 1 or 2 substituents selected from:
 - a) (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{2-4}) alkenyl; and
 - c) OR^{31} or $COOR^{31}$ wherein R^{31} is H or (C_{1-6}) alkyl;
- or when **Z** is N, both **R**³ or **R**⁴ are covalently bonded thereto to form a nitrogencontaining 5-or 6-membered heterocycle.

More preferably, \mathbf{R}^3 and \mathbf{R}^4 are each independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, phenyl, **Het** (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-**Het**;

or R^3 and R^4 are covalently bonded together to form cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, 5- or 6-membered heterocycle having from 1 or 2 heteroatom selected from N or S;

wherein said alkyl, cycloalkyl, aryl, **Het** (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-**Het** cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl or heterocycle are optionally substituted with from 1 or 2 substituents selected from:

- a) (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{2-4}) alkenyl; and
- c) OH or COO(C₁₋₆)alkyl.
- Most preferably, R³ and R⁴ are each independently H, (C₁-6)alkyl, (C₃-7)cycloalkyl, (C₁-6)alkyl-(C₃-7)cycloalkyl, phenyl, Het (C₁-6)alkyl-phenyl, (C₁-6)alkyl-Het; or R³ and R⁴ are covalently bonded together to form cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl all optionally substituted with OH, (C₁-6 alkyl) or (C₂-4)alkenyl; or R³ and R⁴ form a piperidine or a pyrrolidine both optionally substituted with (C₁-6 alkyl) or COO(C₁-6)alkyl.

Even most preferably, \mathbf{R}^3 is H or (C_{1-6}) alkyl and \mathbf{R}^4 is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl-phenyl, phenyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl-biphenyl.

20 Still most preferably R³ and R⁴ are both H or both CH₃; or R³ is H and R⁴ is selected from:

R³ and R⁴ are bonded together and form:

Preferably, R^7 is H or (C₁₋₆ alkyl). More preferably, R^7 is H or Me. Most preferably, R^7 is H.

5

Preferably, **A** is 6- or 10-membered aryl, **Het** or (\mathbb{C}_{1-6})alkyl-CONH-aryl, said aryl and **Het** being optionally substituted with:

- 1 to 2 substituents selected from:

10

- a) (C_{1-6}) alkyl, (C_{1-6}) haloalkyl, (C_{3-7}) cycloalkyl, (C_{2-6}) alkenyl, (C_{2-6}) alkynyl, all of which are optionally substituted with:
 - (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl, both optionally substituted with a 6 or 10-membered aryl or Het;
 - OR^{101} or $COOR^{101}$ wherein each R^{101} is independently H or (C_{1-6}) alkyl;

15

- b) OR^{104} wherein R^{104} is H or $(C_{1-6}$ alkyl) optionally substituted with: COOH or COO(C_{1-6})alkyl;
- d) SR^{108} , wherein R^{108} is H or (C_{1-6}) alkyl optionally substituted with COOH or COO(C_{1-6})alkyl;

20

- e) NR¹¹¹R¹¹² wherein R¹¹¹ and R¹¹² are both H; or R¹¹¹ is H and R¹¹² is **Het** optionally substituted with (C₁₋₆)alkyl or COOR¹¹⁵ wherein R¹¹⁵ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl;
- j) tetrazole, COOH or COO(C₁₋₆)alkyl;

25

- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are each independently H or (C_{1-6}) alkyl optionally substituted with COOH or COO(C_{1-6})alkyl; and
- I) 6- or 10-membered aryl or **Het** said aryl or **Het** being optionally substituted with from 1 to 4 substituents selected from:
 - i) (C₁₋₆)alkyl or haloalkyl;

30

ii) OR¹⁰⁴ wherein R¹⁰⁴ is H, or (C₁₋₆)alkyl) optionally substituted with COOH or COO(C₁₋₆)alkyl; and

24

iii) COOR¹²⁸, NR¹¹¹R¹¹² or CON(R¹²⁹R¹³⁰)₂, wherein R¹²⁸, R¹¹¹, R¹¹², R¹²⁹ and R¹³⁰ are independently H or (C₁. $_{6}$)alkyl.

- More preferably **A** is a 6- or 10-membered aryl, or **Het** said aryl or **Het** being optionally substituted with:
 - -halogen, or

10

15

25

30

- 1 to 2 substituents selected from:
 - a) (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{2-8}) alkynyl, said alkyl and alkenyl being optionally substituted with:
 - OH, (C₁₋₆)alkoxy, or COOH;
 - b) OH or O(C₁₋₆)alkyl)COOH;
 - d) SH or S(C₁₋₆)alkylCOOH;
 - i) tetrazole or COOH; and
 - I) furan or thiazole mono or di- substituted with:
 - i) (C_{1-6}) alkyl; or
 - iii) COOH or CONH₂.

Most preferably, **A** is phenyl, indole, benzofuran, benzothiophene, coumarin or quinolone, all of which being optionally substituted with:

- -iodine, or
- 1 to 2 substituents selected from:
 - a) (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{2-8}) alkynyl, said alkyl and alkenyl being optionally substituted with:
 - OH, (C₁₋₆)alkoxy, or COOH;
 - b) OH or O(C₁₋₆)alkyl)COOH;
 - d) SH or S(C₁₋₆)alkylCOOH;
 - i) COOH; and
 - I) furan or thiazole mono or di- substituted with:
 - i) (C₁₋₆)alkyl; or
 - iii) COOH or CONH₂.

Even most preferably A is

25 and

5

Sill, even most preferably A is selected from:

5

15

Preferably, compounds of the invention have the following formula:

wherein **R**³ and **R**⁴ are each independently H, (C₁₋₆)alkyl, first (C₃₋₇)cycloalkyl, 6- or 10-membered aryl, Het (C₁₋₆)alkyl-6- or 10-membered aryl, (C₁₋₆)alkyl-Het; or **R**³ and **R**⁴ are covalently bonded together to form second (C₃₋₇)cycloalkyl or a 5- or 6-membered heterocycle having from1 to 4 heteroatom selected from O, N, and S;

wherein said alkyl, first and second cycloalkyl, aryl, Het

 (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-**Het** or heterocycle are optionally substituted with from 1 or 2 substituents selected from:

- a) (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₂₋₄)alkenyl; and
- c) OR^{31} or $COOR^{31}$, wherein each R^{31} is independently H or (C_{1-6}) alkyl; and
- A is a 6- or 10-membered aryl, **Het**, or (C₁₋₆) alkyl-CONH-aryl, said aryl or **Het** being optionally substituted with:

, halogen, or

- 1 to 2 substituents selected from:
- a) (C_{1-6}) alkyl, haloalkyl, (C_{3-7}) cycloalkyl, (C_{2-6}) alkenyl, (C_{2-8}) alkynyl, all of which are optionally substituted with:
 - (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, both optionally substituted with a 6 or 10-membered aryl, or **Het**;
 - b) OR^{101} , or $COOR^{101}$ wherein R^{101} is H or (C_{1-6}) alkyl;
- b) OR^{104} wherein R^{104} is H or (C₁₋₆alkyl) optionally substituted with: COOH or $COO(C_{1-6})$ alkyl;
- c) SR^{108} wherein R^{108} is H or (C_{1-6}) alkyl optionally substituted with COOH or $COO(C_{1-6})$ alkyl;
- d) $NR^{111}R^{112}$ wherein both R^{111} and R^{112} are H; or R^{111} is H and R^{112} is Het optionally substituted with (C_{1-6}) alkyl or $COOR^{115}$ wherein R^{115} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl;
- e) COOH or COO(C₁₋₆)alkyl; and
- f) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H or (C₁₋₆)alkyl optionally substituted with COOH or COO(C₁₋₆)alkyl; and
- g) 6- or 10-membered aryl or **Het** said aryl or **Het** being optionally substituted with from 1 to 4 substituents selected from:
 - i) (C₁₋₆)alkyl or haloalkyl;
 - ii) OR^{104} wherein R^{104} is H or (C_{1-6}) alkyl) optionally substituted with COOH or COO(C_{1-6})alkyl; and
 - iii) COOR¹²⁸, NR¹¹¹R¹¹² or CON(R¹²⁹R¹³⁰)₂, wherein R¹²⁸, R¹¹¹, R¹¹², R¹²⁹ and R¹³⁰ are independently H or (C₁₋₆)alkyl.

30

10

15

20

25

$$\begin{array}{c|c}
 & 28 \\
 & O \\
 & O$$

wherein

5

10

25

 \mathbf{R}^1 is selected from: (C_{3-7}) cycloalkyl, (C_{5-7}) cycloalkenyl, 6 or 10-membered aryl or **Het** each of which being optionally substituted with 1 or 2 halogen or from 1 or 2 substituents selected from:

- a) (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{3-7}) cycloalkyl, each optionally substituted with OR^{11} or SR^{11} wherein R^{11} is H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl;
- b) OR^{13} wherein R^{13} is H, (C₁₋₆ alkyl), (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, or **Het**; and
- f) a 6- or 10-membered aryl, or **Het** said aryl or **Het** being optionally substituted with (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl;
- 15 \mathbf{R}^2 is selected from (C₃₋₇)cycloalkyl, (C₆₋₁₀)bicycloalkyl, each optionally substituted with 1 or 2 substituents selected from: halogen, (C₁₋₆)alkyl, OH, and (C₁₋₆)alkoxy;

R³ and R⁴ are each independently H, (C₁₋₆)alkyl, first (C₃₋₇)cycloalkyl, 6- or 10-membered aryl, Het (C₁₋₆)alkyl-6- or 10-membered aryl, (C₁₋₆)alkyl-Het;
or R³ and R⁴ are covalently bonded together to form second (C₃₋₇)cycloalkyl, 5- or 6-membered heterocycle having from1 to 4 heteroatom selected from O, N, and S; wherein said alkyl, first and second cycloalkyl, aryl, Het (C₁₋₆)alkyl-aryl, (C₁₋₆)alkyl-Het or heterocycle are optionally substituted with from 1 or 2 substituents selected from:

- a) (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₂₋₄)alkenyl; and
- c) OR^{31} or $COOR^{31}$ wherein R^{31} is H or (C_{1-6}) alkyl; and

A' is a 6- or 10-membered aryl, Het, or (C_{1-6}) alkyl-CONH-aryl, said aryl or Het being optionally substituted with:

- 1 to 2 substituents selected from:

a) (C_{1-6}) alkyl, (C_{1-6}) haloalkyl, (C_{3-7})cycloalkyl, (C_{2-6})alkenyl, (C_{2-8})alkynyl, all of which are optionally substituted with:

second (C_{1-6})alkyl or second (C_{3-7})cycloalkyl, said second alkyl or second cycloalkyl being optionally substituted with a 6 or 10-membered aryl or **Het**;

- b) OR^{101} or $COOR^{101}$ wherein each R^{101} is independently H or (C_{1-6}) alkyl;
- b) OR^{104} wherein R^{104} is H or (C₁₋₆alkyl) optionally substituted with: COOH or COO(C₁₋₆)alkyl;
- c) SR^{108} , wherein R^{108} is H or (C_{1-6}) alkyl optionally substituted with COOH or COO(C_{1-6})alkyl;
- d) $NR^{111}R^{112}$ wherein R^{111} and R^{112} are both H; or R^{111} is H and R^{112} is **Het** optionally substituted with (C_{1-6}) alkyl or $COOR^{115}$ wherein R^{115} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; COOH or $COO(C_{1-6})$ alkyl;
- e) $CONR^{129}R^{130}$ wherein R^{129} and R^{130} are each independently H or (C_{1-6}) alkyl optionally substituted with COOH or COO(C_{1-6})alkyl; and
- f) 6- or 10-membered aryl or **Het**, said aryl or **Het** being optionally substituted with from 1 to 4 substituents selected from:
 - i) (C₁₋₆)alkyl or haloalkyl;
 - ii) OR^{104} wherein R^{104} is H, or (C_{1-6}) alkyl) optionally substituted with COOH or COO(C_{1-6}) alkyl; and
 - iii) COOR¹²⁸, NR¹¹¹R¹¹² or CON(R¹²⁹R¹³⁰)₂, wherein R¹²⁸, R¹¹¹, R¹¹², R¹²⁹ and R¹³⁰ are independently H or (C₁₋₆)alkyl.

15

5

10

20

25

Preferably, compounds of the invention have the following formula:

wherein

10

20

25

D is CH or C(C₁₋₆)alkyl;

B is N, CH, or $C(C_{1-6})$ alkyl;

R³ and R⁴ are each independently H, (C₁₋₆)alkyl, first (C₃₋₇)cycloalkyl, 6- or 10-membered aryl, Het (C₁₋₆)alkyl-6- or 10-membered aryl, (C₁₋₆)alkyl-Het; or R³ and R⁴ are covalently bonded together to form second (C₃₋₇)cycloalkyl, 5- or 6-membered heterocycle having from1 to 4 heteroatom selected from O, N, and S;

wherein said alkyl, first and second cycloalkyl, aryl, Het

 (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-**Het** or heterocycle are optionally substituted with from 1 or 2 substituents selected from:

- a) (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₂₋₄)alkenyl; and
- c) OR^{31} or $COOR^{31}$ wherein R^{31} is H or (C_{1-6}) alkyl; and

A' is a 6- or 10-membered aryl, **Het** or (C₁₋₆) alkyl-CONH-aryl, said aryl or **Het** being optionally substituted with:

- 1 to 2 substituents selected from:
 - a) (C_{1-6}) alkyl, (C_{1-6}) haloalkyl, (C_{3-7}) cycloalkyl, (C_{2-6}) alkenyl, (C_{2-8}) alkynyl, all of which are optionally substituted with:
 - second (C₁₋₆)alkyl or second (C₃₋₇)cycloalkyl, said second alkyl or second cycloalkyl being optionally substituted with a 6 or 10-membered aryl or **Het**;
 - OR^{101} or $COOR^{101}$ wherein each R^{101} is independently H or (C_{1-6}) alkyl;
 - b) OR^{104} wherein R^{104} is H or (C₁₋₆alkyl) optionally substituted with: COOH or COO(C₁₋₆)alkyl;
 - d) SR^{108} , wherein R^{108} is H or (C_{1-6})alkyl optionally substituted with

31

COOH or COO(C₁₋₆)alkyl;

- e) NR¹¹¹R¹¹² wherein R¹¹¹ and R¹¹² are both H; or R¹¹¹ is H and R¹¹² is **Het** optionally substituted with (C₁₋₆)alkyl or COOR¹¹⁵ wherein R¹¹⁵ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl;
- f) COOH or COO(C₁₋₆)alkyl;
- g) $CONR^{129}R^{130}$ wherein R^{129} and R^{130} are each independently H or (C_{1-6}) alkyl optionally substituted with COOH or $COO(C_{1-6})$ alkyl; and
- h) 6- or 10-membered aryl or **Het** said aryl or **Het** being optionally substituted with from 1 to 4 substituents selected from:
 - i) (C₁₋₆)alkyl or haloalkyl;
 - ii) OR^{104} wherein R^{104} is H, or (C_{1-6}) alkyl) optionally substituted with COOH or COO(C_{1-6}) alkyl; and
 - iii) COOR¹²⁸, NR¹¹¹R¹¹² or CON(R¹²⁹R¹³⁰)₂, wherein R¹²⁸, R¹¹¹, R¹¹², R¹²⁹ and R¹³⁰ are independently H or (C₁₋₆)alkyl.

5

10

15

20

25

30

35

Specific embodiments

Included within the scope of this invention are all compounds of formula I as presented in Tables 1 to 3.

Polymerase activity

The ability of the compounds of formula I to inhibit RNA synthesis by the RNA dependent RNA polymerase of HCV can be demonstrated by any assay capable of measuring RNA dependent RNA polymerase activity. A suitable assay is described in the examples.

Specificity for RNA dependent RNA polymerase activity

To demonstrate that the compounds of the invention act by specific inhibition of HCV polymerase, the compounds may be tested for inhibitory activity in a DNA dependent RNA polymerase assay.

When a compound of formula I or one of its therapeutically acceptable salts, is employed as an antiviral agent, it is administered orally, topically or systemically to mammals, e.g. humans, rabbits or mice, in a vehicle comprising one or more

32

pharmaceutically acceptable carriers, the proportion of which is determined by the solubility and chemical nature of the compound, chosen route of administration and standard biological practice.

- For oral administration, the compound of formula I or a therapeutically acceptable salt thereof can be formulated in unit dosage forms such as capsules or tablets each containing a predetermined amount of the active ingredient, ranging from about 25 to 500 mg, in a pharmaceutically acceptable carrier.
- For topical administration, the compound of formula I can be formulated in pharmaceutically accepted vehicles containing 0.1 to 5 percent, preferably 0.5 to 5 percent, of the active agent. Such formulations can be in the form of a solution, cream or lotion.
- For parenteral administration, the compound of formula I is administered by either intravenous, subcutaneous or intramuscular injection, in compositions with pharmaceutically acceptable vehicles or carriers. For administration by injection, it is preferred to use the compounds in solution in a sterile aqueous vehicle which may also contain other solutes such as buffers or preservatives as well as sufficient quantities of pharmaceutically acceptable salts or of glucose to make the solution isotonic.

Suitable vehicles or carriers for the above noted formulations are described in pharmaceutical texts, e.g. in "Remington's The Science and Practice of Pharmacy", 19th ed., Mack Publishing Company, Easton, Penn., 1995, or in "Pharmaceutical Dosage Forms And Drugs Delivery Systems", 6th ed., H.C. Ansel et al., Eds., Williams & Wilkins, Baltimore, Maryland, 1995.

The dosage of the compound will vary with the form of administration and the
particular active agent chosen. Furthermore, it will vary with the particular host under
treatment. Generally, treatment is initiated with small increments until the optimum
effect under the circumstance is reached. In general, the compound of formula I is
most desirably administered at a concentration level that will generally afford
antivirally effective results without causing any harmful or deleterious side effects.

25

33

For oral administration, the compound of formula I or a therapeutically acceptable salt is administered in the range of 10 to 200 mg per kilogram of body weight per day, with a preferred range of 25 to 150 mg per kilogram.

For systemic administration, the compound of formula I is administered at a dosage of 10 mg to 150 mg per kilogram of body weight per day, although the aforementioned variations will occur. A dosage level that is in the range of from about 10 mg to 100 mg per kilogram of body weight per day is most desirably employed in order to achieve effective results.

10

15

20

25

When the compositions of this invention comprise a combination of a compound of formula I and one or more additional therapeutic or prophylactic agent, both the compound and the additional agent should be present at dosage levels of between about 10 to 100%, and more preferably between about 10 and 80% of the dosage normally administered in a monotherapy regimen.

When these compounds or their pharmaceutically acceptable salts are formulated together with a pharmaceutically acceptable carrier, the resulting composition may be administered *in vivo* to mammals, such as man, to inhibit HCV polymerase or to treat or prevent HCV virus infection. Such treatment may also be achieved using the compounds of this invention in combination with agents which include, but are not limited to: immunomodulatory agents, such as α -, β -, δ -, or γ -interferons; other antiviral agents such as ribavirin, amantadine; other inhibitors of HCV NS5B polymerase; inhibitors of other targets in the HCV life cycle, which include but are not limited to, helicase, NS2/3 protease, NS3 protease, or internal ribosome entry site (IRES); or combinations thereof. The additional agents may be combined with the compounds of this invention to create a single dosage form. Alternatively these additional agents may be separately administered to a mammal as part of a multiple dosage form.

30

Methodology and Synthesis

Benzimidazole derivatives or analogs according to the present invention can be prepared from known starting materials by following Scheme 1, shown below wherein **R**¹, **R**², **R**³, **R**⁴, **R**⁷, and **A** are as described herein.

34 Scheme 1 FtOH R2NH₂ SOCI HN reflux CI DMSO (F) (F) 1. oxone H₂(1 atm) R1CHO ΗŅ DMF-water. Pd(OH)₂/C 2. NaOH coupling agent 3. AcOH MeOH then deprotection coupling 1. N-protection agent A-NH₂ 2. activation or H₂N-A-COOPG A-NH₂ or coupling or H₂Ñ-A-COOPG agent 4. N-deprotection

deprotection (if necessary)

and purification

wherein PG is a protecting

group

In carrying out the route illustrated in Scheme 1, a suitably protected form of 4-chloro-3-nitrobenzoic acid or 4-fluoro-3-nitrobenzoic acid is reacted with a primary amine R²NH₂. Amines are of commercial sources or can be prepared by literature methods. This reaction is carried out in a suitable solvent such as DMSO, DMF or the like, at temperatures ranging from 20 °C to 170 °C, or alternatively without solvent by heating the two components together. The nitro group of these derivatives is subsequently reduced to the corresponding aniline, using a reducing agent such as hydrogen gas or a formate salt in the presence of a catalyst (e.g. Pd metal and the like), metals in the presence of mineral acids (e.g. Fe or Zn with aqueous HCl), or metal salts (SnCl₂). The diamino derivatives that are obtained are condensed with commercially available aldehydes R¹CHO in the presence of an oxidizing agent (e.g. air, oxygen, iodine, oxone®, quinones, peroxides etc.) to give benzimidazole 5-carboxylates.

deprotection (if necessary)

5

10

15

20

and purification

Compound of formula I

Alternatively, other methods for benzimidazole ring construction can be employed, such as condensation of the diamino derivatives with carboxylic acids, nitriles or amides, in the presence or absence of a catalyst. Such methods are well known in the literature to those skilled in the art. Saponification of the ester protecting group of such derivatives using alkali metal hydroxides, followed by neutralization with

5

10

15

20

25

35

weak acids (e.g. AcOH) generates free 5-carboxybenzimidazoles.

Alternatively, 5-carboxybenzimidazole derivatives such as those described above can be prepared on a solid support as described in Scheme 2:

In carrying out the synthetic route illustrated in Scheme 2, 4-fluoro-3-nitrobenzoic acid is converted to the acid chloride derivative using standard procedures (e.g. thionyl chloride, oxalyl chloride, phosgene and the like in the presence of a catalytic amount of DMF) in an inert solvent such as DCM. Wang resin is esterified with this acid chloride by condensation in the presence of an organic tertiary amine such as Et₃N, *N*-methylmorpholine, DIEA and the like. Other types of resins are well known to those skilled in the art, for example Rink resin, which may be functionalized without deviating from the scope of the invention. The functionalized resin thus obtained is then elaborated to resin-bound benzimidazole carboxylate derivatives as described above for the solution-phase chemistry. Cleavage of the benzimidazole from the resin is carried out with strong acids (e.g. trifluoroacetic acid) to give benzimidazole 5-carboxylic acids.

Derivatives of formula I may be obtained by condensation of 5-carboxybenzimidazole derivatives such as those described above with suitably protected forms of an amino acid derivative H₂NCR³R⁴COOPG (where PG serves as a carboxylic acid protecting group, e.g. Me, Et, tBu etc.) through formation of an amide bond. Condensation of the carboxylic acid with H₂NCR³R⁴COOPG can be accomplished using standard peptide bond forming reagents such as TBTU, HATU, BOP, BroP, EDAC, DCC, isobutyl chloroformate, PCl₅ and the like, or by activation of the carboxyl group by conversion to the corresponding acid chloride prior to condensation with the amino acid derivative. This coupling reaction is then followed by deprotection of the ester (COOPG) to a free carboxylic acid group which is then condensed with amine

36

derivatives of formula H₂N-A to provide compounds of formula I after removal of any remaining protecting groups.

Alternatively, *N*-protected amino acid derivatives of formula P'HNCR³R⁴COOH (where P' is a nitrogen protecting group such as Boc, Cbz, Fmoc and the like) are coupled to amine derivatives of formula H₂N-A using standard amide bond forming reagents as described above. Following removal of the nitrogen protecting group from the amide derivative thus obtained, the free amine can be coupled to 5-carboxybenzimidazole derivatives through formation of a second amide linkage as described above. Following removal of any remaining protecting groups, compounds of formula 1 are obtained.

Alternatively, compounds of formula 1 according to the present invention can be prepared on a solid support as described in Scheme 3.

15 Scheme 3

5

10

20

25

In carrying out the synthetic route illustrated in Scheme 3, derivatives of formula O₂N-A (where A contains a free carboxyl group) are anchored on a solid support. Such support includes bromo Wang resin, and attachment is carried out using a suitable base such as DIEA, CsF or others well known to those trained in the field of peptide synthesis on solid supports. Following reduction of the nitro group to a free amine using reducing agents such as hydrogen gas or formate salts in the presence of a catalyst (e.g. Pd metal and the like), metals in the presence of mineral acids (e.g. Fe or Zn with aqueous HCl), or metal salts (SnCl₂), the free amine is coupled to a suitably *N*-protected form of an amino acid of formula P'HNCR³R⁴COOH (P' is an

37

amino acid *N*-protecting group such as Fmoc). Suitable coupling reagents include HATU, TBTU, BOP, EDAC, DCC, isobutyl chloroformate and others, in presence of an organic tertiary base such as DIEA, Et₃N, NMM and the like. Acid chlorides can also be used in the case of hindered amino acid derivatives. Following removal of the nitrogen-protecting group, the resulting amine is coupled to 5-carboxybenzimidazole derivatives with standard amide bond forming reagents as described previously. Compounds of formula 1 where **A** contains a free carboxylic acid group are obtained after cleavage from the resin under acidic conditions (TFA, MsOH, TfOH and the like).

10

EXAMPLES

The present invention is illustrated in further detail by the following non-limiting examples. All reactions were performed in a nitrogen or argon atmosphere.

Temperatures are given in degrees Celsius. Solution percentages or ratios express a volume to volume relationship, unless stated otherwise. Flash chromatography was carried out on silica gel. Mass spectral analyses were recorded using electrospray mass spectrometry. Abbreviations or symbols used herein include:

DIEA: diisopropylethylamine;

20 DMAP: 4-(dimethylamino)pyridine;

DMSO: dimethylsulfoxide;

DMF: *N*,*N*-dimethylformamide;

Et: ethyl;

EtOAc: ethyl acetate;

25 Et₂O: diethyl ether;

HPLC: high performance liquid chromatography;

ⁱPr: isopropyl

Me: methyl;

MeOH: methanol;

30 MeCN: acetonitrile;

Ph: phenyl;

TBE: tris-borate-EDTA;

TBTU: 2-(1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate;

TFA: trifluoroacetic acid;

35 THF: tetrahydrofuran;

38

MS (ES): electrospray mass spectrometry;

PFU: plaque forming units;

DEPC: diethyl pyrocarbonate;

DTT: dithiothreitol

5 EDTA: ethylenediaminetetraacetate

HATU: O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium

hexafluorophosphate

BOP: benzotriazole-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate

BroP: bromotris(dimethylamino)-phosphonium hexafluorophosphate

10 EDAC: see EDC

DCC: 1,3-Dicyclohexyl carbodiimide

DCE: 1,2-dichloroethane

HOBt: 1-Hydroxybenzotriazole

ES⁺: electrospray (positive ionization)

15 ES: electrospray (negative ionization)

DCM: dichloromethane

TBME: tert-butylmethyl ether

TLC: thin layer chromatography

CSA: camphorsulfonic acid

20 AcOH: acetic acid

EtOH: ethanol

DBU: 1,8-diazabicyclo[5.4.0]under-7-ene

BOC: tert-butyloxycarbonyl

Cbz: carbobenzyloxy carbonyl

25 'PrOH: isopropanol

NMP: N-methylpyrrolidone

NMM: N-methylmorpholine

EDC: 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride

RNAsin: A ribonuclease inhibitor marketed by Promega Corporation

30 Tris: 2-amino-2-hydroxymethyl-1,3-propanediol

UMP: uridine 5'-monophosphate

UTP: uridine 5'-triphosphate

Examples 1-21 illustrate methods of synthesis of representative compounds of this

35 invention.

Example 1:

1-Cyclohexyl-2-pyridin-2-yl-1H-benzoimidazole-5-carboxylic acid:

5 4-Chloro-3-nitrobenzoic acid, ethyl ester:

4-Chloro-3-nitrobenzoic acid (100.0 g, 0.496 mole) was suspended in EtOH (250 mL) and thionyl chloride (54 mL, 0.74 mole) was added drop-wise over 15 min. The mixture was then reflux for 2 h. After cooling to ambient temperature, volatiles were removed under reduced pressure and the residue was co-evaporated twice with EtOH (2 X 250 mL). The residue was crystallized from hot EtOH to give the desired ethyl ester as light yellow needles (109.8 g, 96% yield).

4-Cyclohexylamino-3-nitrobenzoic acid ethyl ester:

15

20

10

Ethyl 4-chloro-3-nitrobenzoate (20.00 g, 87 mmol) was dissolved in DMSO (50 mL) and cyclohexylamine (2.1 equiv. 21 mL, 183 mmol) was added and the mixture stirred at 60 °C for 5 h. After cooling to ambient temperature, the reaction mixture was added drop-wise with vigorous stirring to water (500 mL). After stirring for an additional 15 min, the precipitated solid was collected by filtration, washed with water and dried. The title compound (25.67 g, 100% yield) was obtained as a bright yellow solid.

3-Amino-4-cyclohexylamino benzoic acid ethyl ester:

The nitro derivative from above (24.28 g, 83 mmol) was hydrogenated (1 atm H_2) over 20% Pd(OH)₂ on carbon (200 mg) in MeOH (150 mL) for 3 days. The catalyst was removed by filtration and volatiles removed under reduced pressure to give the title diamine (21.72 g, 100 % yield) as a dark purple solid.

1-Cyclohexyl-2-pyridin-2-yl-1H-benzoimidazole-5-carboxylic acid:

5

10

15

20

The diamine from above (3.20 g, 12.2 mmol) was dissolved in DMF (15 mL) and water (0.5 mL). 2-Pyridine carboxaldehyde (1.45 mL, 15 mmol) was added followed by oxone® (0.65 equivalent, 8 mmol, 4.92 g). The mixture was stirred 1 h at room temperature. Water (60 mL) was added, and the pH of the reaction mixture was brought up to 9 by addition of 1 N NaOH. The brown precipitate that formed was collected by filtration, washed with water and dried. The crude benzimidazole ethyl ester was obtained in 80% yield (3.43 g).

The ester from above (2.36 g, 7.53 mmol) was dissolved in MeOH (15 mL) and 2 N NaOH (20 mmol, 10 mL) was added. The mixture was stirred at 60 °C for 2 h and then cooled to room temperature. MeOH was removed under reduced pressure and the residue acidified to pH 4 with glacial AcOH. The precipitated carboxylic acid was collected by filtration, washed with water and dried to give the free acid as a beige solid (2.20 g, 91% yield).

Example 2

1-Cyclohexyl-2-(4-{[2-({1-[4-(1-phenyl-methanoyl)-phenyl]-methanoyl}-amino)-ethylcarbamoyl]-methoxy}-phenyl)1H-benzimidazole-5-carboxylic acid

5

10

4-Formylphenoxyacetic acid (1.50 g, 8.32 mmol) in CH₂Cl₂ (25 ml) was stirred at RT with TBTU (2.75 g, 8.56 mmol) and DIPEA (2.8 g, 3.8 ml, 20 mmol) before addition of tert-butyl N-(2-aminoethyl)carbamate (1.38 g, 8.60 mmol). After stirring for 2.5 h, the solution was concentrated and the residue dissolved in EtOAc. The solution was successively washed with 5% water, 5% KHSO₄, brine and organic phase dried (MgSO₄). The dried solution was concentrated under reduced pressure to give a beige solid, which after purification using flash chromatography on silica gel with EtOAc gave the aldehyde as a white solid (2.0 g, 75%).

The aldehyde derivative from above (3.30g, 10.23 mmol) and the diamine derivative of example 1 (0.052 g, 0.1 mmol) were condensed with Oxone using a procedure similar to that described in Example 1 above. After removal of the Boc group under standard acidic conditions, benzoylbenzoic acid (900mg, 3.98 mmol) and an amide bond coupling agent, such as TBTU, were used to form the title compound after saponification, under standard conditions, of the carboxyl protecting group.

Example 3:

Solid phase synthesis of 5-carboxybenzimidazole derivatives from aldehydes:

25

To a solution of the 4-fluoro-3-nitrobenzoic acid (0.12 mol, 22.2 g) in 100 mL of anhydrous DCM was added 10 drops of anhydrous DMF. To this solution was

42

added drop wise over 60 min, oxalyl chloride (0.144 mol, 12.6 mL). During the addition, the solid slowly dissolved to give rise to a yellow solution. The mixture was stirred for an additional 4 h and the solvent was stripped down to give a yellow oil. This oil was distilled under vacuum (110 °C, 1.5 mm Hg) to give 4-fluoro-3nitrobenzovl chloride as a light yellow liquid (22.0 g, 90% yield). 5 On a solid phase synthesizer (Advanced Chemtech ACT 90), Wang resin (Nova Biochem, loading: 1.2 mmol/g, 20 mmol, 16.7 g) was washed twice with DCM (100 mL), twice with i-PrOH (100 mL) and was dried overnight under high vacuum over P₂O₅. The following day, the resin was washed with anhydrous DCM (2 x 100 mL) 10 and was suspended in anhydrous DCM (100 mL). To the suspension was added DIEA (30 mmol, 5.2 mL) followed by a solution of 4-fluoro-3-nitrobenzoyl chloride (22 mmol, 4.48 g) dissolved in 10 ml of anhydrous DCM. The slurry was shaken for 3 h, the solution was drained and the resin was washed twice with 100 mL-portions of anhydrous DCM. The resin was then suspended in anhydrous DCM (100 mL) and 15 was treated with DIEA (30 mmol, 5.2 mL) followed by acetic anhydride (24 mmol, 2.3 mL). After shaking for 2 h, the solution was drained and the resin was washed successively with DCM (2 x 100 mL), i-PrOH (2 x 100 mL), DCM (2 x 100 mL) and finally with i-PrOH (3 x 100 mL). The resin was dried overnight under high vacuum. To calculate the level of incorporation, the resin (45.9 mg) was treated with a 1:1 mixture of TFA/1,2-DCE (1.5 mL) for 1 h. The resin was filtered and was washed 20 twice with 1,2-DCE (1.5 mL). The filtrates were combined and concentrated under vacuum. The residue was lyophilized from MeCN/H₂O to give 4-fluoro-3-nitro benzoic acid as a yellow solid (6.3 mg, 0.033 mmol). Based on recovered compound, the loading was calculated to be 0.74 mmol/g.

25

The following steps were performed on a solid-phase synthesizer (ACT 496 from Advanced Chemtech), using the 96-well reaction block:

30

Amine addition:

Each well was filled with the benzoic acid resin from above (0.03 mmol, 40 mg) and was washed with DMF (3×1.2 mL) and DMSO (2×1.2 mL). To each well was

43

added DMSO (530 μ L), a 1 M solution in DMSO of the amine R²-NH₂ (600 μ L, 0.6 mmol) and DIEA (0.4 mmol, 70 μ L). The resins were shaken for 15 h at room temperature and the solvent was drained. The resins were washed successfully with 1.2-mL portions of DMF (3 x), MeOH (3 x), and DMF (4 x).

5 Reduction of the nitro group:

The resins were then suspended in DMF (600 μ L) and were shaken with a 1 M DMF solution of SnCl₂.2 H₂O (600 μ L, 0.6 mmol) for 25 h. The solvent was drained, the resins were washed successively with 1.2-mL portions of 1:1 DMF-H₂O (4 x), DMF (4 x), MeOH (4 x) and NMP (4 x).

10 Formation of the benzimidazole ring:

Each resin was suspended in DMF (200 μ L) and a 1 M solution of the aldehyde in DMF was added (0.20 mmol, 200 μ L), followed by a 0.25 M solution of chloranil in NMP (0.20 mmol, 800 μ L). The resins were shaken for 18 h, the liquid was drained and the resins were washed successively with 1.2-mL portions of NMP (3 x), 1 M DIEA/NMP (2 x), NMP (3 x), MeOH (3 x) and DCM (4 x). The reaction block was placed in a vacuum chamber for 30 min in order to dry the resin.

Cleavage from the resin:

In each well was added 1.0 mL of a 1:1 solution of TFA/1,2-DCE and the resins were shaken for 1 h. The wells were drained and the resins washed once with 1.0 mL of the cleavage solution. Volatiles were evaporated in a vacuum centrifuge to give the crude benzimidazole 5-carboxylic.

EXAMPLE 4:

Solid phase synthesis of 5-carboxybenzimidazole derivatives from carboxylic acids:

The following steps were performed on a solid-phase synthesizer (ACT 496 from Advanced Chemtech), using the 96-well reaction block.

The starting diamine resin was prepared as described in example 3.

15

20

25

Each well was filled with resin (0.0203 mmol, 35 mg) and was washed with DMF (3 X 1.2 mL). To each well was added a 0.5 M solution of DIEA in DMF (200 μ L, 0.1 mmol), a 0.2 M solution of the acid R₁-CO₂H in DMSO (500 μ L, 0.1 mmol) and a 0.2 M solution of HATU in DMF (500 μ L, 0.1 mmol). The resins were shaken for 6 h at room temperature and the solvent was drained. The coupling was repeated for another 6 h with fresh reagent. The resins were washed successfully with 1.2-mL portions of DMF (3 x), MeOH (3 x), and DCM (3 x).

Cleavage from the resin:

In each well was added 1.0 mL of a 30% solution of TFA/1,2-DCE and the resins were shaken for 1.5 h. The wells were drained and the resins washed once with 2 mL of 1,2-DCE. The resulting filtrates containing 10% TFA in 1,2-DCE was heated at 80 °C for 13 h. The volatiles were removed under vacuum and the residue was lyophilized from MeCN/H₂O to give the crude benzimidazole 5-carboxylic acid derivatives.

15

25

10

5

EXAMPLE 5:

3-Cyclohexyl-2-pyridin-2-yl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid:

20 Ethyl 5-amino-6-cyclohexylaminonicotinate:

Ethyl 6-chloro-5-nitronicotinate (1.00 g, 4.33 mmol) prepared according to A. H. Berrie et al. (J. Chem. Soc. 1951, 2590) was dissolved in DMSO (2 mL) and cyclohexylamine (0.54 g, 5.4 mmol) was added. The mixture was stirred for 1 h at room temperature, diluted with water and the yellow precipitate collected by filtration. The product was washed with water and dried (0.95 g, 74% yield).

The nitro derivative from above (0.68 g, 2.32 mmol) was hydrogenated (1 atm H_2) in EtOAc (30 mL) over 5% palladium on charcoal (100 mg). After 2 h, the reaction

(complete by HPLC) was filtered and concentrated under reduced pressure to give the title diamine (0.58 g, 94% yield).

3-Cyclohexyl-2-pyridin-2-yl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid:

5 The diamine from above (0.58 g, 2.2 mmol) and 2-pyridine carboxaldehyde (0.252 g, 2.4 mmol) were dissolved in a mixture of DMF (2 mL) and water (0.1 mL). Oxone® (1.24 g, 2 mmol) was added and the mixture stirred for 2 h at room temperature. The reaction was diluted with 5% aqueous NaHCO₃ and extracted with DCM. The extract was washed with water and brine, dried (MgSO₄) and concentrated to a brown oil.

The crude ester was dissolved in MeOH (30 mL) and KOH (300 mg) was added. The mixture was refluxed for 2 h, cooled and concentrated under reduced pressure. The residue was dissolved in water (20 mL) and the solution acidified with 4 N HCI until complete precipitation of the product as a purple solid. The crude product was collected, washed with water, dried, and further purified by preparative HPLC.

EXAMPLE 6:

1-Cyclohexyl-2-furan-3-yl-1H-imidazo[4,5-b]pyridine-5-carboxylic acid:

20

25

10

15

3-Methoxy-6-methyl-2-nitro-pyridine:

A solution of 3-hydroxy-6-methyl-2-nitropyridine (4.00 g, 26 mmol) in MeOH - DCM (30 mL, 2:1 ratio) was treated with diazomethane in Et₂O until all starting material was converted to 3-methoxy-6-methyl-2-nitropyridine (TLC). The solution was concentrated to dryness to give the desired product as a yellow solid (4.25 g, >98% yield).

5-Methoxy-6-nitro-pyridine-2-carboxylic acid methyl ester:

46

A solution of 3-methoxy-6-methyl-2-nitro-pyridine (2.25 g, 13.4 mmol) in H₂O containing MgSO₄ (5.24 g, 43.7 mmol) was heated to reflux. A solution of KMnO₄ (5.72 g, 36.2 mmol) was added slowly over a period of 1 h and reflux was maintained for an additional 5 h. The reaction mixture was cooled to room temperature and concentrated ammonia was added (6 mL). The brown solid was filtered and washed twice with water. The filtrate was concentrated and the new precipitate formed, composed mostly of starting material, was removed by filtration. The filtrate was acidified and extracted twice with EtOAc. The combined organic layers were washed with brine and dried over anhydrous MgSO₄, filtered and concentrated. The residue was taken up in MeOH-DCM (40 mL, 1:1 ratio) and a solution of diazomethane in Et₂O was added until a persisting yellow color was observed. The solution was then concentrated to dryness and purified by flash column chromatography, using a gradient of hexane/EtOAc from 6/4 to 4/6 as the eluent, to give 5-methoxy-6-nitro-pyridine-2-carboxylic acid methyl ester (585 mg, 20% yield).

15

20

5

10

5-Cyclohexylamino-6-nitro-pyridine-2-carboxylic acid methyl ester:

A solution of 5-methoxy-6-nitro-pyridine-2-carboxylic acid methyl ester (0.585 g, 2.75 mmol) and cyclohexylamine (0.636 mL, 5.51 mmol) in DMF (8 mL) was heated at 70 °C for 20 h. The mixture was poured on brine (50 mL) while mixing vigorously. The solid formed was filtered, washed with water and then dissolved in EtOAc. The solution was washed with water, saturated NaHCO₃ and brine, dried over anhydrous MgSO₄, filtered and concentrated to give 5-cyclohexylamino-6-nitro-pyridine-2-carboxylic acid methyl ester as a brown oil (0.558 g) which was used in the subsequent step without purification.

25

30

35

6-Amino-5-cyclohexylamino-pyridine-2-carboxylic acid methyl ester:

The crude 5-cyclohexyl-6-nitro-pyridine-2-carboxylic acid methyl ester from above (0.530~g, 1.90~mmol) was stirred in EtOH (10~mL) and 10%~Pd/C (50~mg), under 1 atm of H_2 gas at room temperature for 3 days. The suspension was filtered through a pad of celite and concentrated to dryness. The product was purified by flash column chromatography, using a gradient from 60% hexane in EtOAc to 100% EtOAc as the eluent, to give 6-amino-5-cyclohexylamino-pyridine-2-carboxylic acid methyl ester (0.210~g, 30% yield).

1-Cyclohexyl-2-furan-3-yl-1*H*-imidazo[4,5-*b*]pyridine-5-carboxylic acid methyl

ester:

5

10

15

20

25

To a solution of the methyl ester from above (0.100 g, 0.40 mmol) in DMF (3 mL) and H_2O (0.300 mL), oxone[®] (0.813 g, 1.32 mmol) and 3-furaldehyde (0.138 g, 1.32 mmol) were added. The reaction mixture was stirred at room temperature for 5 h and then stored at 5 °C for 3 days. The mixture was diluted with EtOAc and washed twice with water, twice with saturated NaHCO₃ and once with brine. The organic layer was then dried over MgSO₄, filtered and concentrated to give an oil that was purified by flash chromatography, using EtOAc as eluent, to give 1-cyclohexyl-2-furan-3-yl-1H-imidazo[4,5-b]pyridine-5-carboxylic acid methyl ester (0.058 g, 1 44% yield).

1-Cyclohexyl-2-furan-3-yl-1H-imidazo[4,5-b]pyridine-5-carboxylic acid:

The ester from above (0.058 g, 0.178 mmol) was dissolved in MeOH (2 mL) and aqueous LiOH (0.700 mL, 1 M) was added. The solution was stirred at room temperature for 2 h and then purified by C18 reversed phase preparative HPLC to give the title compound.

Example 7:

1-Cyclohexyl-2-furan-3-yl-4-methyl-1H-benzimidazole-5-carboxylic acid:

4-Chloro-2-methylbenzoic:

48

to maintain the temperature at $-90\,^{\circ}$ C. The reaction mixture was stirred at $-90\,^{\circ}$ C for 1 h before allowed to warm-up to $-80\,^{\circ}$ C and CH₃I (80 mL, 1.28 moles) was added very slowly. The reaction mixture was stirred for 10 min at $-80\,^{\circ}$ C, then quenched slowly with H₂O (600 mL) and allowed to warm-up to room temperature. The aqueous layer was separated, washed with Et₂O (2 x 500 mL) and then acidified with HCI (2.5 N, 600 mL) while cooling in an ice bath; cooling was continued for 16 h at 4°C to allow crystallization of the desired product. The crude product was dried under vacuum and over anhydrous P₂O₅ and then re-crystallized from hot toluene (700 mL) to obtain pure 4-chloro-2-methylbenzoic acid (40 g, 78% yield).

10

25

5

Mixture of 4-chloro-2-methyl-5-nitrobenzoic acid methyl ester and 4-chloro-2-methyl-3-nitrobenzoic acid methyl ester:

These compounds were prepared using a modification of the procedure reported by M. Baumgarth et al. (*J. Med. Chem.* **1997**, *40*, 2017-2034).

4-Chloro-2-methylbenzoic acid (6 g) was added to fuming HNO₃ (100%, 36 g) in small portions over a period of 20 min, at 10 °C, while stirring vigorously. The reaction mixture was stirred vigorously for a period of 1 h and the temperature allowed to warm-up to 20 °C. The reaction mixture was then poured onto ice (100 g) and the yellow precipitate formed was collected, washed with H₂O, dissolved in
 EtOAc (25 mL) and the solution was dried over Na₂CO₃ and filtered. After conceptration of the remaining mother liquor to 1/2 of the original volume, more

concentration of the remaining mother liquor to 1/2 of the original volume, more precipitate was formed, however, the solid formed was always a mixture of 4-chloro-2-methyl-5-nitrobenzoic acid and 4-chloro-2-methyl-3-nitrobenzoic acid. Thus, all of the solid material formed was collected by filtration (~6.5 g), stirred in MeOH/HCl at 0 °C for 1 h to form a mixture of methyl esters. This mixture was used in the following step without further purification.

4-Cyclohexylamino-2-methyl-5-nitrobenzoic acid methyl ester and 4-cyclohexylamino-2-methyl-3-nitrobenzoic acid methyl ester:

The mixture of esters from above (1.1 g, 4.8 mmol) and cyclohexylamine (1.7 mL, 14.4 mmol) in DMSO (2 mL) were stirred at 60 °C for 16 h. The reaction mixture was then cooled and poured onto ice (~5 g) and mixed vigorously to allow the formation of a precipitate. The solid material was filtered, washed with H₂O and dissolved in EtOAc. The solution was washed with H₂O and brine, dried over anhydrous MgSO₄ and evaporated to an oil containing the desired products. The oil was triturated with

49

hexane (~5 mL) to allow precipitation of relatively pure 4-cyclohexylamino-2-methyl-5-nitrobenzoic acid methyl ester (600 mg), whereas the mother liquor contained mostly 4-cyclohexylamino-2-methyl-3-nitrobenzoic acid methyl ester (600 mg).

5 3-Amino-4-cyclohexylamino-2-methylbenzoic acid methyl ester:

4-Cyclohexylamino-2-methyl-3-nitrobenzoic acid methyl ester (150 mg) was dissolved in THF/MeOH (30 mL, 1:2 ratio) and stirred in the presence of H_2 (1 atm) and a catalytic amount of $Pd(OH)_2$ (20 mg) at room temperature for 14 h. The reaction mixture was then filtered, evaporated to dryness and purified by flash column chromatography, using 25% EtOAc in hexane with 0.2% NH_4OH as the eluent, to give the pure aniline (106 mg).

1-Cyclohexyl-2-furan-3-yl-4-methyl-1H-benzimidazole-5-carboxylic acid:

To a solution of the diamine from above (500 mg, 1.9 mmol) in DMF (3 mL) and HO 15 (0.15 mL), 3-furaldehyde (0.22 mL, 2.5 mmol) and oxone® (1.29 g, 2.1 mmol) were added and the reaction mixture was stirred at room temperature for 1 h. Subsequently, H₂O (60 mL) was added and the pH was adjusted to 8 with aqueous NaHCO₃. The reaction mixture was then extracted with DCM, the organic layer was washed with brine, dried over anhydrous Na₂SO₄ and evaporated to dryness. The 20 desired benzimidazole methyl ester (446 mg) was obtained pure after column chromatography, using 25% EtOAc in hexane. Hydrolysis of the methyl ester was achieved with an aqueous solution of NaOH (1.0 N, 0.66 mL, 6.6 mmol) in MeOH/THF (10 mL, 1:1 ratio) at 60 °C for 1.5 h. The reaction mixture was then cooled to room temperature, the pH was adjusted to 4 with AcOH and the organic solvents were evaporated. The remaining aqueous mixture 25 was extracted with DCM (3 x 15 mL) and the combined organic layers were washed with H₂O, dried over anhydrous Na₂SO₄ and evaporated to dryness to give the desired title compound of example 7, 1-cyclohexyl-2-furan-3-yl-4-methyl-1 Hbenzimidazole-5-carboxylic acid (392 mg, 92% yield).

10

50

Example 8:

1-Cyclohexyl-2-furan-3-yl-6-methyl-1H-benzimidazole-5-carboxylic acid:

1-Cyclohexyl-2-furan-3-yl-6-methyl-1*H*-benzimidazole-5-carboxylic acid was prepared from 4-cyclohexylamino-2-methyl-5-nitrobenzoic acid methyl ester as described for the 4-methyl derivative in Example 7.

Example 9:

5

10

15

20

25

General procedure for coupling amino acid methyl ester hydrochlorides to 5carboxybenzimidazoles and deprotection of the ester functionality:

5-Carboxybenzimidazole derivatives were coupled to amino ester hydrochlorides under standard amide bond forming conditions (TBTU or HATU and base). The resulting amide esters were then saponified using a metal hydroxide and the desired free carboxylic acid isolated following acidification of the carboxylate salt with AcOH. The procedure is exemplified as follows:

2-{[1-(1-Cyclohexyl-2-furan-3-yl-1*H*-benzoimidazol-5-yl)-methanoyl]-amino}-2-methyl-propionic acid:

The 5-carboxybenzimidazole derivative (0.125 g, 0.40 mmol) and TBTU (0.154 g, 0.48 mmol) were dissolved in DMSO (1 mL) and Et_3N (280 μ L, 2 mmol) was added followed by methyl 2-aminoisobutyrate hydrochloride (0.074 g, 0.48 mmol). The mixture was stirred for 18 h at room temperature or till complete as judged by reversed-phase HPLC analysis. 5N NaOH (1.2 mL, 15 equivalents) was added to

51

the reaction mixture that was stirred for 4 h at room temperature. The reaction mixture was added drop wise with vigorous stirring to a solution of AcOH (1.5 mL) in water (15 mL). The precipitated solid was collected by filtration, washed with water and dried in vacuo over P_2O_5 giving the title compound (0.129 g).

5

Example 10:

General procedure for the preparation of aromatic amide derivatives from α -monosubstituted N-Boc-amino acids (R⁴ = H in Scheme 1):

10

15

 $N ext{-Boc}$ protected $lpha ext{-monosubstituted}$ amino acids were coupled to aromatic amine derivatives using standard amide bond coupling reagents. The $N ext{-Boc}$ protecting group was then cleaved under acidic conditions and the amine derivatives were isolated as hydrochloride salts. The following procedure for coupling $N ext{-Boc-D-alanine}$ to ethyl $4 ext{-aminocinnamate}$ is representative:

(R)-1-[4-((E)-2-Ethoxycarbonyl-vinyl)-phenylcarbamoyl]-ethyl-ammonium chloride:

20

25

30

N-Boc-D-alanine (0.284 g, 1.5 mmol) was dissolved in DMSO (2 mL) and DIEA (1.04 mL, 6 mmol, 4 equivalents) was added. Ethyl 4-aminocinnamate (0.287 g, 1.5 mmol) was added followed by TBTU (0.578 g, 1.80 mmol) and the mixture was stirred for 24 h at room temperature. The reaction mixture was diluted with EtOAc (75 mL) and the solution washed with water (40 mL), 1N NaOH (3 x 25 mL), 1M KHSO₄ (2 x 25 mL) and 5% NaHCO₃ (25 mL). The extract was dried (MgSO₄) and concentrated to give the desired *N*-Boc-protected anilide as a yellow solid (0.411 g). The material from above was stirred for 1 h with 4N HCl in dioxane (10 mL). Removal of volatiles under reduced pressure and trituration of the residue with TBME gave the title hydrochloride salt as a brown solid.

52

Example 11:

5

10

15

20

25

4-(4-Amino-phenyl)-thiazole-2-carboxylic acid ethyl ester:

4'-Nitro-2-bromoacetophenone (6.100 g, 25 mmol) and ethyl thioxamate (3.460 g, 26 mmol) were dissolved in MeOH (20 mL) and the solution was refluxed for 1 h. After cooling to room temperature, the precipitated solid was collected by filtration, washed with cold MeOH and dried under vacuum (5.15 g, 75% yield).

A suspension of the nitroester from above (2.50 g, 8.98 mmol) and 20% Pd(OH)₂ on carbon (200 mg) in 2:1 EtOH – THF (60 mL) was stirred for 3 h under 1 atm of hydrogen gas. The suspension was filtered to remove the catalyst and volatiles removed under reduced pressure to give the title compound as a reddish foam (2.05 g, 92% yield).

Example 12:

4-(4-Ethoxycarbonyl-thiazol-2-yl)-phenyl-ammonium chloride:

p-Bromoaniline (13.0 g, 76 mmol) and Boc₂O (19.8 g, 91 mmol) were dissolved in toluene (380 mL) and stirred at 70 °C for 15 h. The reaction mixture was cooled to RT, evaporated to dryness, re-dissolved in EtOAc and washed with 0.1M HCl and brine. The organic solution was dried over anhydrous MgSO₄, evaporated to dryness and purified by flash column chromatography, using 5% to 10% EtOAc in hexane as the eluent, to obtain the Boc-protected aniline (23 g). The Boc-protected bromoaniline (10.7 g, 39.2 mmol) was dissolved in anhydrous THF (75 mL) in a flask

equipped with an overhead stirrer. The solution was cooled to 0 °C and MeLi (1.2 M in Et₂O, 33 mL, 39.2 mmol) was added drop wise while maintaining the internal temperature below 7 °C. The reaction mixture was stirred at 0 °C for 15 min and then cooled to -78 °C before n-BuLi (2.4 M in hexane, 17 mL, 39.2 mmol) was added drop wise, maintaining the internal temperature below -70 °C). The reaction mixture was stirred at -78 °C for 1h, B(OEt)₃ (17 mL, 98 mmol) was added drop wise (internal temperature < -65 °C) and stirring was continued for 45 min at -78 °C and at 0 °C for 1 h. The reaction mixture was then treated with 5% aqueous HCl (\sim 100 mL, to pH \sim 1) for 15 min and NaCl(s) was added to saturate the aqueous layer. The aqueous layer was extracted with 0.5 M NaOH (4 x 100 mL) and the combined aqueous layers were acidified with 5% HCl (150 mL, to pH \sim 1) and extracted with Et₂O (3 x 200 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated to give the *N*-Boc carbamate of 4-aminophenylboronic acid as a solid (7.5 g).

Thiourea (7.60 g, 100 mmol) and ethyl bromopyruvate (12.6 mL, 100 mmol) were mixed and heated to 100 °C for 45 min. After cooling of the reaction mixture, the solid obtained was triturated with acetone, filtered and recrystallized from EtOH to obtain the desired aminothiazole product (10.6 g, 40 mmol). The aminothiazole was then added slowly (over a period of 20 min) to a solution of *t*-butylnitrite (6.2 g, 60 mmol) and $CuBr_2$ (10.7 g, 48 mmol) in MeCN (160 mL) at 0 °C. The reaction mixture was allowed to warm-up to RT and to stirred for 2.5 h. The mixture was then added to an aqueous HCl solution (20%) and extracted with Et_2O (2 x 400 mL). The organic layer was washed with aqueous HCl (10%), dried over anhydrous MgSO₄ and evaporated to dryness. The desired bromothiazole product was isolated in ~85% yield (4.3 g) after flash column chromatography using 15% EtOAc in hexane as the eluent.

To a de-gassed solution of the bromothiazole product (230 mg, 0.97 mmol), the boronic acid derivative from above (230 mg, 0.97 mmol) and aqueous Na₂CO₃ (2M, 3 mL) in DME (3mL), a catalytic amount of Pd(PPh₃)₄ (56 mg, 0.049 mmol) was added and the reaction mixture was stirred at 80 °C under argon for 20 h. The reaction mixture was then cooled to RT, diluted with EtOAc and extracted with brine, aqueous NaHCO₃ (2 x) and brine. The organic layer was dried over anhydrous MgSO₄ and concentrated to dryness. The carbamate-ester product was isolated after flash column chromatography using 20% to 30% EtOAc in hexane: 180 mg.

The aniline hydrochloride was isolated after removal of the Boc protecting group with

54

4N HCl in dioxane for 30 min.

Example 13:

4-(2-Methoxycarbonyl-4-methyl-thiazol-5-yl)-phenyl-ammonium chloride:

To a solution of 2-amino-4-methylthiazole (7.90 g, 69 mmol) in Et₂O (70 mL) at 15

5

10

15

20

25

°C, Br₂ was added slowly over a period of 30 min while stirring vigorously. The solid material formed was filtered and recrystallized from EtOH. The crystalline product was filtered and dried under vacuum to give the 5-bromo derivative as the HBr salt (10.3 g). This product was then dissolved in a solution of CuSO₄ (11.4 g) and NaBr (9.9 g) in H₂O (115 mL) and H₂SO₄ (5M, 360 mL) was added at 0 °C. An aqueous solution of NaNO₂ (6.10 g in 20 mL of H₂O) was then added drop wise to the reaction mixture over a period of 25 min, maintaining the temperature below 3°C. The reaction mixture was stirred at 3 °C for 20 min and then at RT for 1 h. The reaction mixture was diluted with brine (280 mL) and extracted with Et₂O (3 x 300 mL). The ether layers were combined, washed with a saturated, aqueous solution of sodium thiosulfate to eliminate any unreacted Br2, dried over anhydrous MgSO4 and filtered through a pad of silica gel (~200 mL). The solvent was evaporated and the desired product isolated by distillation (bp = 80-81 °C at 15mm Hg). A solution of the dibromo intermediate (500 mg, 1.94 mmol) in hexane (5 mL) was added to a cooled solution (-70 °C) of n-BuLi (870 µL of 2.2M in hexane), diluted with 10 mL of hexane. The reaction was stirred at -70 °C for 1 h and then added to CO₂(s). The mixture was partitioned between H₂O and Et₂O. The aqueous layer was acidified with 1N HCl (pH ~2) and extracted with EtOAc (2 x), dried over anhydrous MgSO₄, filtered and evaporated to dryness. The residue was re-dissolved in MeOH / DCM, treated with CH₂N₂ (until the solution remained yellow) and evaporated to dryness to give the desired 5-bromo-4-methylthiazole-2-carboxylate ester as a yellow solid (230 mg). Suzuki cross-coupling of this product with the N-Boc protected 4-

55

aminophenylboronic acid of example 12, as previously described, gave the building block 5-(4-amino-phenyl)-4-methyl-thiazole-2-carboxylate methyl ester. This product was treated with 4N HCl in dioxane for 30 min to remove the Boc protecting group and obtain the desired compound.

5

Example 14:

4-(6-Methoxycarbonyl-pyridin-3-yl)-phenyl-ammonium chloride:

10

15

20

25

The synthesis of the 5-bromopyridine-2-carboxylic acid methyl ester was achieved following the procedure of Chambers and Marfat (*Synth. Commun.* **1997**, *27*, 515). A solution of 2,5-dibromopyridine (10.0 g, 42.2 mmol), 1,1'-

bis(diphenylphosphino)ferrocene (dppf, 1.4 g, 2.5 mmol), $Pd(OAc)_2$ (0.3 g, 1.3 mmol), Et_3N (12 mL, 84 mmol) in dry MeOH (40 mL) and dry DMF (40 mL) was deairated under a stream of CO for 10 min, then shaken in a Parr apparatus under 30 psi CO at 50 °C for 6 h. The mixture was diluted with EtOAc (600 mL) and washed with H_2O (2 x 100 mL), brine (100 mL), dried over anhydrous $MgSO_4$ and concentrated to give a solid. Flash column chromatography, using 20% EtOAc in hexane as the eluent, gave the 5-bromopyridine-2-carboxylic acid methyl ester as a white solid (5.77 g).

Cross-coupling of the 5-bromopyridine-2-carboxylic acid methyl ester with *N*-Boc protected aniline boronic acid (Example 12) under typical Suzuki conditions, followed by removal of the Boc protecting group with HCI (as described previously), afforded the desired compound.

Example 15:

5-Amino-1-methyl-1H-indole-2-carboxylic acid ethyl ester

The ethyl ester of 5-nitroindole-2-carboxylic acid (0.300 g, 1.28 mmol) was dissolved in anhydrous DMF (6 mL) and NaH (0.078 g, 60%, 1.92 mmol) was added. The reaction was stirred at RT for 20 min, then MeI (160 μ L, 2.56 mmol) was added and stirring was continued for 3 h. The reaction was quenched with the addition of aqueous NaHCO₃ (~1%) while stirring vigorously. The brown solid formed (0.096 g) was filtered and dried in air overnight.

The *N*-methyl nitro derivative (196 mg, 0.79 mmol) was then dissolved in DMF (4 mL), H_2O (400 μ L) and $SnCl_2 \, ^2H_2O$ (888 mg, 3.95 mmol) were added, and the mixture was stirred at 60 °C for 3 h. The mixture was then partitioned between 10% aqueous $NaHCO_3$ and EtOAc and stirred vigorously. The aqueous layer was reextracted with EtOAc and the combined EtOAc layers were washed with brine, dried over anhydrous $MgSO_4$ and concentrated to dryness. The residue was purified by flash column chromatography, using 1:1 ratio EtOAc/hexane as the eluent, to obtain the pure 5-aminoindole derivative (118 mg).

N-Alkylation of 5-nitroindole-2-carboxylate with other alkylating agents (such as Etl, propargyl bromide, benzyl bromide) under the conditions described above gave the corresponding 5-amino-1-alkyl-1*H*-indole-2-carboxylates.

Example 16:

5

10

15

20

5-{[1-(4-Amino-1-t-butoxycarbonyl-piperidin-4-yl)-methanoyl]-amino}-1-methyl-1H-indole-2-carboxylic acid ethyl ester:

A solution of amino-indole from example 15 (70 mg, 0.32 mmol), *N*-Fmoc-amino-(4-*N*-Boc-piperidinyl)carboxylic acid (150 mg, 0.32 mmol), HATU (139 mg, 0.35 mmol), HOAt (48 mg, 0.35 mmol) and collidine (155 mg, 1.28 mmol) in DMF (2 mL) was stirred at RT for 15 h. The reaction mixture was diluted with EtOAc, washed with 1% aqueous citric acid (2 x), saturated NaHCO₃ (2 x) and brine, dried over anhydrous MgSO₄ and concentrated to dryness to give an orange solid (210 mg) which was used in the next reaction without purification. A solution of the crude solid (210 mg) in DMF (3 mL) and piperidine (95 mL, 0.95 mmol) was stirred at RT for 3 h. The reaction mixture was concentrated to dryness and purified by flash column chromatography, using a solvent gradient from 50% EtOAc in hexane to 100% EtOAc as the eluent, to give the desired compound as a brown solid (110 mg).

Example 17:

5

10

15

20

25

30

(E)-3-[4-(2-Amino-2-methyl-propanoylamino)-phenyl]-acrylic acid ethyl ester:

$$H_2N$$
 COOH PCI_5 NH_3+ COCI $Pyridine$ H_2N O O COOEt

Adapting the procedure described in E. S. Uffelman et al. (*Org. Lett.* **1999**, *1*, 1157), 2-aminoisobutyric acid was converted to the corresponding amino acid chloride hydrochloride: 2-oxazolidinone (12.30 g, 0.141 mole) was dissolved in MeCN (150 mL) and phosphorous pentachloride (49.02 g, 0.235 mole, 1.7 equivalent) was added in one portion. The homogeneous mixture was stirred for 24 h at room temperature. 2-Aminoisobutyric acid (14.55 g, 0.141 mole) was added and the suspension was stirred for 48 h at room temperature. The desired acid chloride hydrochloride was collected by filtration, washed with MeCN and dried under vacuum.

The acid chloride (12.778 g, 80 mmol, 1.4 equivalent) was suspended in DCM (200 mL) and ethyl 4-aminocinnamate (11.045 g, 57.7 mmol, 1 equivalent) was added. Pyridine (7.01 mL, 86.6 mmol, 1.5 equivalent) was added drop wise and the mixture was stirred for 3.5 h at room temperature. The reaction was then poured into a mixture of 1N NaOH (25 mL) and saturated aqueous NaHCO₃ (100 mL) and extracted with EtOAc. The organic phase was washed with aqueous NaHCO₃, water

58

and brine, and dried over MgSO₄. Removal of solvent under reduced pressure gave the title compound of as a white solid (15.96 g, 101% yield).

Example 18:

5

10

15

20

(E)-3-(4-{[1-(1-Amino-cyclobutyl)-methanoyl]-amino}-phenyl)-acrylic acid ethyl ester:

Diethyl 1,1-cyclobutanedicarboxylate (20.00 g, 100 mmol) and KOH (6.60 g, 100 mmol) were refluxed in EtOH (100 mL) for 2 h. After cooling to room temperature, volatiles were removed under reduced pressure and the residue partitioned between Et₂O and 4N HCI. The organic extract was washed with water and brine, and dried over MgSO₄. Removal of the solvent under reduced pressure gave the monoester as a clear oil (14.45 g, 84% yield).

The monoester from above (14.45 g, 84 mmol), Et₃N (14.1 mL, 100 mmol) and diphenylphosphoryl azide (24.05 g, 87.4 mmol) were dissolved in dry toluene (114 mL) and the mixture heated at 80 °C for 1 h and 110 °C for an additional hour. Trimethylsilylethanol (9.94 g, 100 mmol) was added in one portion and the mixture refluxed for 48 h. Toluene was then removed under reduced pressure and the residue dissolved in DCM. The solution was washed with water and brine and dried over MgSO₄. Concentration under reduced pressure gave a dark oil which was purified by passage through a pad of silica gel using 30% EtOAc in hexane as eluent. The desired carbamate was obtained as a clear yellow liquid (21.0 g). The carbamate from above (1.50 g, 5.22 mmol) was dissolved in THF (5 mL) and 2N NaOH (5 mL) was added. The mixture was stirred at 70 °C for 1 h. Following dilution with water, the aqueous phase was washed with Et₂O to remove unreacted starting material. The aqueous phase was then acidified with KHSO₄ and the product extracted with EtOAc. The desired free carboxylic acid was obtained as an oil (1.25 g).

25

59

The acid from above (0.519 g, 2.0 mmol) was dissolved in DCM (10 mL). DIEA (1.39 mL, 8.0 mmol, 4 equivalents) was added, followed by ethyl 4-aminocinnamate (0.573 g, 3.0 mmol, 1.5 equivalent) and HATU (1.143 g, 3.0 mmol, 1.5 equivalents). The mixture was stirred at room temperature for 3 days. The reaction was poured into TBME (100 mL) and the solution washed successively with 10% aqueous citric acid (2 x 25 mL) and saturated aqueous NaHCO₃ (25 mL), and dried over MgSO₄. The solvent was removed under reduced pressure and the residue stirred with TFA (10 mL) for 30 min. Volatiles were then removed under reduced pressure and the residue was co-evaporated twice with hexane. The crude product was dissolved in TBME (60 mL) and the solution washed with 1N NaOH (2 x 25 mL). After drying (Na₂SO₄), volatiles were removed in vacuum to give the title compound as a light brown solid (0.500 g).

Example 19:

5

10

30

35

15 Preparation of inhibitors on solid support:

Referring to Scheme 3 above, the following steps were performed on a solid-phase synthesizer (ACT 496 from Advanced Chemtech), using the 96-well reaction block:

Anchoring on the resin:

Each well was filled with bromo Wang resin (0.044 mmol, 40 mg) and was washed with DMF (3 X 1.2 mL). To each well was added DMF (200 μL), a 1 M solution of DIEA in DMF (300 μL, 0.3 mmol), and the appropriate nitro acid derivative (0.176 mmol) dissolved in 500 μL of DMF. The resins were shaken for 15 h at room temperature and the solvent was drained. The resins were washed successively with 1.2 mL portions of DMF (3 x), MeOH (3 x), and DMF (3 x).

Reduction of the nitro group and coupling of Fmoc-amino acids:

The nitro group was reduced to the corresponding aniline using tin (II) chloride dihydrate (1.2 mL of a 0.5 M solution in DMF, 0.6 mmol) for 24 h followed by washing (3 X 1.2 mL) with DMF, DMF/H₂O, DMF, MeOH and DMF. The resin was then suspended in DMF (200 μ L) and treated with a 0.5 M solution of DIEA in DMF (300 μ L, 0.15 mmol), a 0.13 M solution of Fmoc-amino acid (500 μ L, 0.066 mmol) and a 0.13 M solution of TBTU in DMF (500 μ L, 0.066 mmol). After shaking for 5 h at 60 °C, and since several reactions were not complete as indicated by the cleavage of a few resin beads, fresh reagents were added and a second coupling was done using

60

HATU as coupling agent at room temperature for 18 h.

Coupling of the core benzimidazole and cleavage from the resin:

The Fmoc group was cleaved with 20% piperidine/DMF (20 min) and after washing, the 5-carboxybenzimidazole derivative (e.g. from example 1) was coupled under standard conditions using TBTU as coupling agent (room temperature, 18 h).

Cleavage from the resin:

In each well was added 1.0 mL of a 50% solution of TFA/1,2-DCE and the resins were shaken for 1 h. The wells were drained and the resins washed once with 1 mL of the 50% TFA/1,2-DCE solution. The volatiles were removed under vacuum and the compounds were purified by semi-prep reversed phase chromatography to give

Example 20:

compounds of formula 1.

5

10

20

25

General procedure for coupling N-benzimidazoylamino acids to aromatic amines:

N-Benzimidazoylamino acid derivatives synthesised as described in Example 9 above, were coupled to aromatic amines using BroP / camphor-10-sulfonic acid as coupling agent as described by H. Heimgartner and P. Wipf in *Helv. Chim. Acta*, **1986**, *69*, 1153. Products were deprotected under standard conditions to give compounds of formula 1, which are the subject of the present invention. The following specific Example will serve to illustrate the process and is not intended to be limiting.

(E)-3-(4-{[1-(1-{[1-(1-Cyclohexyl-2-furan-3-yl-1H-benzoimidazol-5-yl)-methanoyl]-amino}-cyclopropyl)-methanoyl]-amino}-phenyl)-acrylic acid (Entry 1070):

The appropriate amino acid derivative from Example 9 (0.020 g, 0.05 mmol) was dissolved in DCM (1 mL). DMAP (0.018 g, 3 equivalents), Et₃N (20 μ L, 0.15 mmol, 3 equivalents), BroP (0.058 g, 0.15 mmol, 3 equivalent), and ethyl-4-aminocinnamate (0.029 g, 0.015 mmol, 3 equivalents) were added and the mixture stirred for 20 h at room temperature. Camphor-10-sulfonic acid (CSA; 0.046 g, 0.2 mmol, 4 equivalents) was added and the reaction mixture was stirred for an additional 24 h at room temperature.

5

10

15

20

25

The reaction mixture was then diluted with a 1:1 mixture of EtOAc and Et₂O (5 mL) and extracted with 5% NaHCO₃ (1 mL). The mixture was then passed through a cartridge of Extrelut[®] (EM Science, 0.6 g) to remove water using 1:1 EtOAc:Et₂O as eluent (5 mL). The organic filtrate was concentrated under reduced pressure and the residue co-evaporated with MeCN (5 mL).

The residue was then dissolved in DMSO (0.8 mL) and 2.5N NaOH (0.2 mL) was added. The mixture was stirred for 2 h at room temperature, neutralized by addition of TFA and the title compound (9 mg) isolated from the reaction mixture by preparative reversed-phase HPLC.

Example 21: General procedure for coupling of α -amino amide derivatives to 5-carboxybenzimidazole derivatives:

5-Carboxybenzimidazole derivatives, such as those described in Examples 1, 3 and 4, were coupled to α -amino amide derivatives, such as those described in Examples 10, 16, 17, and 18, using standard amide bond forming reagents, such as TBTU in the presence of an organic base (DIEA, Et₃N and the like). The resulting products were deprotected under standard conditions (if necessary) to give compounds of formula I, which are the subject of this invention. The following Example is intended to illustrate such a process and is non-limiting.

62

(E)-3-[4-((R)-2-{[1-(1-Cyclohexyl-2-furan-3-yl-1H-benzoimidazol-5-yl)-methanoyl]-amino}-butanoylamino)-phenyl]-acrylic acid (Entry 1075):

The 5-carboxybenzimidazole derivative (0.020 g, 0.064 mmol) was dissolved in DMSO (0.5 mL). TBTU (0.027 g, 0.084 mmol, 1.3 equivalent) was added followed by Et₃N (36 μL, 0.26 mmol, 4 equivalents). The reaction mixture was stirred for 20 min at room temperature. The amine hydrochloride prepared according to Example 10 (0.029 g, 0.096 mmol, 1.5 equivalent) was added and the mixture stirred for 1 h at room temperature.

DMSO (0.5 mL) and 2.5N NaOH (0.3 mL) were added and stirring at room temperature continued for an additional 1 h. The reaction mixture was then acidified with TFA (0.2 mL) and the title compound was isolated by preparative reversed-phase HPLC.

15

Example 22: Inhibition of NS5B RNA dependent RNA polymerase activity

The compounds of the invention were tested for inhibitory activity against the hepatitis C virus RNA dependant polymerase (NS5B), according to the following assay:

- 20 The substrates are:
 - a 12 nucleotide RNA oligo-uridylate (or oligo-uridine-monophosphate) (oligo-U) primer modified with biotin at the free 5'C position;
 - a complementary poly-adenylate (or adenosine monophosphate) (polyA) template of heterogeneous length (1000-10000 nucleotides); and
- 25 UTP-[5,6 ³H].

Polymerase activity is measured as the incorporation of UMP-[5,6 ³H] into the chain elongated from the oligo-U primer. The ³H-labelled reaction product is captured by SPA-beads coated with streptavidin and quantified on the TopCount.

All solutions were made from DEPC treated MilliQ water [2 ml of DEPC is added to 1 L of MilliQ water; the mixture is shaken vigorously to dissolve the DEPC, then

63

autoclaved at 121°C for 30 minutes].

Enzyme: The full length HCV NS5B (SEQ ID NO.1) was purified as an N-terminal hexa-histidine fusion protein from baculovirus infected insect cells. The enzyme can be stored at -20°C in storage buffer (see below). Under these conditions, it was found to maintain activity for at least 6 months.

Substrates: The biotinylated oligo-U₁₂ primer, the Poly(A) template, and the UTP-[5,6 3 H] were dissolved in water. The solutions can be stored at -80° C.

10 Assay buffer: 20 mM Tris-HCl pH 7.5

5 mM MgCl₂ 25 mM KCI 1 mM EDTA 1 mM DTT

15

20

25

5

NS5B storage buffer:

0.1 μM NS5B

25 mM Tris-HCl pH 7.5

300 mM NaCl

5 mM DTT

1 mM EDTA

0.1 % n-Dodecyl maltoside

30 % glycerol

Test compound cocktail: Just prior to assay, test compounds of the invention were dissolved in assay buffer containing 15% DMSO.

Substrate cocktail: Just prior to assay, the substrates were mixed in assay buffer to the following concentrations:

Component	Concentration in substrate cocktail	Final Concentration in
	,	assay
RNAsin™	0.5 U/ μL	1.67 U/ μL
Biotin-oligo-U ₁₂	3 ng/μL	1 ng/ μL

64

primer		
PolyA template	30 ng/ μL	10 ng/ μL
UTP-[5,6- ³ H] 35	0.025 μCi/ μL	0.0083 μCi/ μL
Ci/mmol		0.25 μΜ
UTP	2.25 μΜ	0.75 μΜ

Enzyme cocktail: Just prior to assay, the RNA polymerase (NS5B) cocktail was prepared in assay buffer to the following specifications:

Component	Concentration in cocktail
Tris-HCl at pH 7.5	20 mM
MgCl ₂	5 mM
KCI	25 mM
EDTA	1 mM
DTT	1 mM
n- Dodecyl maltoside	1%
NS5B	30 nM

5

Protocol:

The assay reaction was performed in a MicrofluorTM white "U" bottom plate (DynatechTM #7105), by successively adding:

20 µL of test compound cocktail;

10 20 μL of substrate cocktail; and

20 μL of enzyme cocktail

(final [NS5B] in assay = 10 nM; final [n-dodecyl maltoside] in assay = 0.33%; final DMSO in assay = 5%).

The reaction was incubated at room temperature for 1.5 hours. STOP solution (20 μL; 0.5 M EDTA, 150 ng/ μl tRNA) was added, followed by 30 μl streptavidin coated PVT beads (8mg/ml in 20 mM Tris-HCl, pH 7.5, 25 mM KCl, 0.025% NaN₃). The plate was then shaken for 30 minutes. A solution of CsCl was added (70 μL, 5 M), to bring the CsCl concentration to 1.95 M. The mixture was then allowed to stand for 1 hour. The beads were then counted on a Hewlett Packard TopCountTM instrument using the following protocol:

Data mode: counts per minute

65

Scintillator: liq/plast Energy range: low

Efficiency mode: normal

Region: 0-50

5 Count delay: 5 minutes
Count time: 1 minute

Expected results: 6000 cpm/well 200 cpm/well no enzyme control.

Based on the results at ten different concentrations of test compound, standard concentration-% inhibition curves were plotted and analysed to determine IC₅₀'s for the compounds of the invention. For some compounds, the IC₅₀ was estimated from two points.

15 Example 23: Specificity of NS5B RNA dependent RNA polymerase inhibition Some of the compounds of the invention were tested for inhibitory activity against polio virus RNA dependent RNA polymerase and the polio virus in the format that is described for the HCV polymerase with the exception that polio virus polymerase was used in place of the HCV NS5B polymerase. Select compounds were also tested for inhibitor of the calf thymus DNA-dependent RNA polymerase II (Kim and Dahimus, 1998, J. Biol. Chem. 263, 18880-18885).

Example 24: Cell Based HCV RNA Replication Assay

25 Cell Culture

Huh7 cells that stably maintain a subgenomic HCV replicon were established as previously described (Lohman et al., 1999. Science **285**: 110-113) and designated as the S22.3 cell-line. S22.3 cells were maintained in Dulbecco's Modified Earle Medium (DMEM) supplemented with 10% FBS and 0.5 mg/mL neomycin (Standard Medium). During the assay, DMEM medium supplemented with 10% FBS, containing 0.5% DMSO and lacking neomycin was used (Assay Medium). 16 hours prior to compound addition, S22.3 cells are trypsinized and diluted to 100 000 cells/ml in Standard Medium. 100μL (10 000 cells) are distributed into each well of a 96-well plate. The plate was then incubated at 37°C with 5% CO₂ until the next day.

66

Reagents and Materials:

Product	Company	Catalog #	Storage
DMEM	Wisent Inc.	10013CV	4°C
DMSO	Sigma	D-2650	RT
Dulbecco's PBS	Gibco-BRL	14190-136	RT
Fetal Bovine Serum	Bio-Whittaker	14-901F	-20°C/4°C
Neomycin (G418)	Gibco-BRL	10131-027	-20°C/4°C
Trypsin-EDTA	Gibco-BRL	25300-054	-20°C/4°C
96-well plates	Costar	3997	RT
PVDF 0.22µm Filter Unit	Millipore	SLGV025LS	RT
Deep-Well Titer Plate Polypropylene	Beckman	267007	RT

Preparation of Test Compound

10μL of test compound (in 100% DMSO) was added to 2 ml of Assay Medium for a final DMSO concentration of 0.5% and the solution was sonicated for 15 min and filtered through a 0.22μM Millipore Filter Unit. 900μl was transferred into row A of a Polypropylene Deep-Well Titer Plate. Rows B to H, contain 400μL aliquots of Assay Medium (containing 0.5% DMSO), and were used to prepare serial dilutions (1/2) by transferring 400μl from row to row (no compound was included in row H).

Application of test compound to cells

Cell culture medium was aspirated from the 96-well plate containing the S22.3 cells. 175µL of assay medium with the appropriate dilution of test compound was transferred from each well of the compound plate to the corresponding well of the cell culture plate (row H was used as the "No inhibition control"). The cell culture plate was incubated at 37°C with 5% C0₂ for 72 hours.

Extraction of Total Cellular RNA

15

Following the 72 hour incubation period, the total cellular RNA was extracted from the S22.3 cells of the 96-well plate using the RNeasy 96 kit (Qiagen®, RNeasy Handbook. 1999.). Briefly, assay medium was completely removed from cells and 100 μL of RLT buffer (Qiagen®) containing 143 mM β-mercaptoethanol was added to each well of the 96-well cell-culture plate. The microplate was gently shaken for 20 sec. 100 μL of 70% ethanol was then added to each microplate well, and mixed by

67

pipetting. The lysate was removed and applied to the wells of a RNeasy 96 (Qiagen®) plate that was placed on top of a Qiagen® Square-Well Block. The RNeasy 96 plate was sealed with tape and the Square-Well Block with the RNeasy 96 plate was loaded into the holder and placed in a rotor bucket of a 4K15C centrifuge. The sample was centrifuged at 6000 rpm (~5600 x g) for 4 min at room temperature. The tape was removed from the plate and 0.8 ml of Buffer RW1 (Qiagen® RNeasy 96 kit) was added to each well of the RNeasy 96 plate. The RNeasy 96 plate was sealed with a new piece of tape and centrifuged at 6000 rpm for 4 min at room temperature. The RNeasy 96 plate was placed on top of another clean Square-Well Block, the tape removed and 0.8 ml of Buffer RPE (Qiagen® RNeasy 96 kit) was added to each well of the RNeasy 96 plate. The RNeasy 96 plate was sealed with a new piece of tape and centrifuged at 6000 rpm for 4 min at room temperature. The tape was removed and another 0.8 ml of Buffer RPE (Qiagen® RNeasy 96 kit) was added to each well of the RNeasy 96 plate. The RNeasy 96 plate was sealed with a new piece of tape and centrifuged at 6000 rpm for 10 min at room temperature. Tape was removed, the RNeasy 96 plate was placed on top of a rack containing 1.2-mL collection microtubes. The RNA was eluted by adding 50 µL of RNase-free water to each well, sealing plate with a new piece of tape and incubated for 1 min at room temperature. The plate was then centrifuged at 6000 rpm for 4 min at room temperature. The elution step was repeated with a second volume of 50 µl RNase-free water. The microtubes with total cellular RNA are stored at -70°C.

Quantification of Total Cellular RNA

5

10

15

20

25

30

35

RNA was quantified on the STORM® system (Molecular Dynamics®) using the RiboGreen® RNA Quantification Kit (Molecular Probes®). Briefly, the RiboGreen reagent was diluted 200-fold in TE (10mM Tris-HCl pH =7.5, 1mM EDTA). Generally, 50µL of reagent was diluted in 10mL TE. A Standard Curve of ribosomal RNA was diluted in TE to 2µg/mL and pre-determined amounts (100, 50, 40, 20, 10, 5, 2 and 0µL) of the ribosomal RNA solution were then transferred to a new 96-well plate (COSTAR # 3997) and the volume was completed to 100µL with TE. Generally, column 1 of the 96-well plate was used for the standard curve and the other wells were used for the RNA samples to be quantified. 10µL of each RNA sample that was to be quantified, was transferred to the corresponding well of the 96-well plate and 90µL of TE was added. One volume (100µL) of diluted RiboGreen reagent was

68

added to each well of the 96-well plate and incubated for 2 to 5 minutes at room temperature, protected from light (a 10 μ L RNA sample in a 200 uL final volume generates a 20 X dilution). The fluorescence intensity of each well was measured on the STORM® system (Molecular Dynamics®). A standard curve was created on the basis of the known quantities of the ribosomal RNA and the resulting fluorescent intensities. The RNA concentration in the experimental samples was determined from the standard curve and corrected for the 20X dilution.

Reagents and Materials:

10

15

20

25

5

Product	Company	Catalog #	Storage
DEPC	Sigma	D5758	4°C
EDTA	Sigma	E5134	RT
Trizma-Base	Sigma	T8524	RT
· Trizma-HCl	Sigma	T7149	RT
Collection Tube Strips	Qiagen	19562	RT
Ribogreen RNA Quantitation Kit	Molecular Probe	R11490	-20°C
Rneasy 96 Kit	Qiagen	74183	RT ´
Square-Well Blocks	Qiagen	19573	RT

Real-Time RT-PCR

The Real-Time RT-PCR was performed on the ABI Prism 7700 Sequence Detection System using the TaqMan EZ RT-PCR Kit from (Perkin-Elmer Applied Biosystems®). RT-PCR was optimized for the quantification of the 5' IRES of HCV RNA by using the Taqman technology (Roche Molecular Diagnostics Systems) similar to the technique previously described (Martell et al., 1999. J. Clin. Microbiol. 37: 327-332). The system exploits the 5'-3' nucleolytic activity of AmpliTaq DNA polymerase. Briefly, the method utilizes a dual-labeled fluorogenic hybridization probe (SEQ ID NO. 4) that specifically anneals to the template between the PCR primers (SEQ ID NO. 2 and SEQ ID NO. 3). The 5' end of the probe contains a fluorescent reporter (6-carboxyfluorescein [FAM]) and the 3' end contains a fluorescent quencher (6-carboxytetramethylrhodamine [TAMRA]). The FAM reporter's emission spectrum was suppressed by the quencher on the intact hybridization probe. Nuclease degradation of the hybridization probe releases the

reporter, resulting in an increase in fluorescence emission. The ABI Prism 7700 sequence detector measures the increase in fluorescence emission continuously during the PCR amplification such that the amplified product was directly proportional to the signal. An amplification plot represents the logarithmic phase of product 5 accumulation and a point representing a defined detection threshold of the increase in the fluorescent signal associated with the exponential growth of the PCR product for the sequence detector was defined as the cycle threshold (C_T). C_T values are inversely proportional to the quantity of input HCV RNA; such that under identical PCR conditions, the larger the starting concentration of HCV RNA, the lower the C_T . 10 A standard curve was created automatically by the ABI Prism 7700 detection system by plotting the C_T against each standard dilution of known HCV RNA concentration. Reference samples for the standard curve are included on each RT-PCR plate. HCV Replicon RNA was synthesized (by T7 transcription) in vitro, purified and quantified by OD_{260} . Considering that 1µg of this RNA = 2.15 X 10^{11} RNA copies, dilutions are made in order to have 10^8 , 10^7 , 10^6 , 10^5 , 10^4 , 10^3 or 10^2 genomic RNA copies / 5µL. 15 Total cellular Huh-7 RNA was also incorporated with each dilution (50ng / 5uL). 5uL of each reference standard (HCV Replicon + Huh-7 RNA) was combined with 45µL of Reagent Mix, and used in the Real-Time RT-PCR reaction. The Real-Time RT-PCR reaction was set-up for the experimental samples that were 20 purified on RNeasy 96 -well plates by combining 5µl of each total cellular RNA

Reagents and Materials:

sample with 45µL of Reagent Mix.

Product	Company Catalog #		Storage
TaqMan EZ RT-PCR Kit	PE Applied Biosystems	N808-0236	-20°C
MicroAmp Optical Caps	PE Applied Biosystems	N801-0935	RT
MicroAmp Optical 96-Well Reaction Plate	PE Applied Biosystems	N801-0560	RT

25 Reagent Mix preparation:

Component	Volume for one sample (µL)	Volume for One Plate (μL) (91 samples + Dead Volume)	Final conc.
Rnase-free water	16.5	1617	

5X TaqMan EZ buffer	10	980	1X
Mn(OAc) ₂ (25mM)	6	588	3mM
dATP (10mM)	1.5	147	300µM
dCTP (10mM)	1.5	147	300µM
dGTP (10mM)	1.5	147	300μΜ
dUTP (20mM)	1.5	147 '	600µM
Forward Primer (10µM)	1	98	200nM
Reverse Primer (10µM)	1	98	200nM
PUTR probe (5µM)	2	196	200nM
rTth DNA polymerase	2	196	0.1 U/µL
(2.5 U/μL)	_		
AmpErase UNG (1U/μL)	0.5	49	0.01 U/μL
Total Volume	45	4410	

Forward Primer Sequence (SEQ ID NO. 2): 5' - ACG CAG AAA GCG TCT AGC CAT GGC GTT AGT - 3'

5 Reverse Primer Sequence (SEQ ID NO. 3): 5' - TCC CGG GGC ACT CGC AAG CAC CCT ATC AGG - 3'

Note: Those primers amplify a region of 256-nt present within the 5' untranslated region of HCV.

PUTR Probe Sequence (SEQ ID NO. 4): 6FAM - TGG TCT GCG GAA CCG GTG AGT ACA CC - TAMRA

No Template Controls (NTC): On each plate, 4 wells are used as "NTC". For these controls, 5µl of water are added to the well in place of RNA.

Thermal Cycling Conditions:

50°C 2 min

60°C 30 min

20 95°C 5 min

Following the termination of the RT-PCR reaction the data analysis requires setting of threshold fluorescence signal for the PCR plate and a standard curve was constructed by plotting the Ct value versus RNA copy number used in each reference reaction. The Ct values obtained for the assay samples were used to interpolate an RNA copy number based on the standard curve. Finally, the RNA copy number was normalized (based on the RiboGreen RNA quantification of the total RNA extracted from the cell culture well) and expressed as genome equivalents / µg of total RNA [ge/µg].

15

10

The RNA copy number [g.e./µg] from each well of the cell culture plate was a measure of the amount of replicating HCV RNA in the presence of various concentrations of inhibitor. The % inhibition was calculated with the following equation:

20

25

30

35

$$[100 - ([g.e./\mu g] inh / [g.e./\mu g] ctl)x 100].$$

A non-linear curve fit with the Hill model was applied to the inhibition-concentration data, and the 50% effective concentration (EC_{50}) was calculated by the use of SAS software (Statistical Software System; SAS Institute, Inc. Cary, N.C.).

Table of compounds

The compounds listed in Tables 1 to 3 were found to be active in the above-described NS5B assay (described in Example 22), with IC_{50} 's of less than 25 μ M. None of these compounds were found to exhibit significant inhibition of poliovirus RNA dependent RNA polymerase or calf thymus DNA dependent RNA polymerase II (of Example 23) at 25 μ M concentration. The compounds were also active in the cell-based assay, with EC₅₀'s of less than 50 μ M.

In the Tables 1 to 3, the following ranges apply:

72

For IC50 A = 25 μ M-5 μ M; B = 5-0.5 μ M; and C = <0.5 μ M

For EC₅₀ A = $50\mu M$ - $5\mu M$; and B = $\leq 5\mu M$

73 **TABLE 1**

Cpd. #	R ³ R ⁴	A	IC ₅₀	EC ₅₀	m/z (M+H) ⁺
1001	· · ·	СООН	В		501.1
1002	· · ·	ОН	В		527.2
1003	***	ООН	В		543.2
1004	****	но	В . ,		531.2
1005		ОН	В		589.3

Cpd. #	R ³ R ⁴	Α	IC ₅₀	EC ₅₀	m/z (M+H) ⁺
1006		ОН	В		589.3
1007	www	ОН	В		515.3
1008	, , , , , , , , , , , , , , , , , , ,	ОН	В		515.3
1009	War of the second of the secon	ОН	В		529.3
1010	***	CI	В		562.1
1011	***	ОН	В		555.2
1012	Amortin de la constantina della constantina dell	HO	В	-	567.2

		75			
Cpd. #	R ³ R ⁴	A	IC ₅₀	EC ₅₀	m/z (M+H) ⁺
1013		OH OH	В		569.3
1014		ОН	В		609.2
1015		ОН	В		617.2
1016		OH OH	В		589.3
1017		ОН	В	1	595.2
1018		OH OH	А		679.3

Cpd. #	R ³ R ⁴	Α	IC ₅₀	EC ₅₀	m/z (M+H) ⁺
1019		ОН	В		595.2
1020	· · ·	ОН	А		549.2
1021	****	OH	А		549.2
1022	***	NH ₂	В	А	548.2
1023		SOH	В		614.2
1024		N N NH_2	В		555.2

Cpd. #	R ³ R ⁴	Α	IC ₅₀	EC ₅₀	m/z (M+H) ⁺
1025		ОН	В		559.2
1026			В	В	539.2
1027		HO	В		581.2
1028			В		565.2
1029		O O O O CF ₃	А		633.2
1030			В		609.2
1031		MeO	В		621.2

		78			
Cpd. #	R ³ R ⁴	A	IC ₅₀	EC ₅₀	m/z (M+H)⁺
1032			В		523.2
1033		OEt	А		595.2
1034		/ S	В		639.2
1035	THE THE PARTY OF T		В		539.2
1036		s s	B		600.2
1037		Z CI	В		532.2
1038			В		565.2
1039		S N	В		616.2

Cpd. #	R ³ R ⁴	A	IC ₅₀	EC ₅₀	m/z (M+H) ⁺
1040		OH OH	A		652.3
1041		OH OH	В		670.3
1042			В		583.3
1043		OH	В		599.3
1044		CI OH	В		575.2
1045		OH	В		571.2

	80						
Cpd. #	R ³ R ⁴	Α	IC ₅₀	EC ₅₀	m/z		
	\ <u>\</u> '	,			(M+H) ⁺		
1046		4 ^	В		598.2		
		HN_					
		·]			•		
		O OH					
1047		4 ^	В		571.2		
	\ <u>\</u> '	0					
	·	ОН					
1048		ОН	В		585.2		
	\						
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
		110					
	-	HO 0					
1049		4	В		589.3		
	\ > /						
	× /						
		ОН					
		VП					
1050		, OH	В		531.2		
	. > /,						
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	HN-N O					
1051		Q	В	0	569.2		
	()						
	·	OH					
	X /						
1052		Q	В		599.2		
	\searrow .	OMe					
	\wedge	Oivie	:				
		но					
			==-				

Cpd. #	R ³ R ⁴	A	· IC ₅₀	EC ₅₀	m/z (M+H) ⁺ -
1053	· · ·	ОН	В	A	501.1
1054		OH	С	4	527.2
1055	· · · · · · · · · · · · · · · · · · ·	НО	В		517.2
1056		ОН	C	Α	527.2
1057	, , , , , , , , , , , , , , , , , , ,	OH	С	A	527.2
1058	· · · · · · · · · · · · · · · · · · ·	ОН	В		531.2
1059	· · · · · · · · · · · · · · · · · · ·	ОН	В		531.2

Cpd. #	R ³ R ⁴	A	IC ₅₀	EC ₅₀	m/z (M+H) ⁺
1060	Www.	HO	C	A	567.2
1061	· · ·	ОН	С	-	567.2
1062		OH	В		603.3
1063	, mm	О Н	С	 *	555.2
1064	OH	ОН	В		557.3
1065	THE PART OF THE PA	HO	Ċ		567.2

	83						
Cpd. #	R ³ R ⁴	A	IC ₅₀	EC ₅₀	m/z (M+H) [†]		
1066		OH OH	С		567.2		
1067		ОН	В		529.2		
1068		ЭН	С	В	565.2		
1069		OH	С	В	565.3		
1070	<u></u>	OH OH	С		539.2		
1071		OH	С	В	567.3		

	04						
Cpd. #	R ³ R ⁴	А	IC ₅₀	EC ₅₀	m/z (M+H) [†]		
1072		OH	С	В	581.2		
1073		O H	В	-	547,2		
1074	,	OH	В	В .	581.2		
1075	, , , , , , , , , , , , , , , , , , ,	ОН	C	Α	541.3		
1076		OH OH	В	В	555.3		
1077		OH	С	В	594.3		

Cpd. #	R ³ R ⁴	Α .	IC ₅₀	EC ₅₀	m/z (M+H) ⁺
1078		SH	В	В	586.1
1079		OH OH	С	Α	513.1
1080		ОН	С	В	607.2
1081		ОН	С		608.2
1082			В		579.3
1083		Н	С	В .	581.3
1084		N S OH	В		654.3

Cpd. #	R³ R⁴	A	IC ₅₀	EC ₅₀	m/z (M+H) ⁺		
1085		OH	С	В	608.3		
1086		OH	С		618.2		
1087		OH	С		554.3		
1088		OH OH	С	В	581.3		
1089		OH OH	С	В	682.3		
1090		N OH	С		624.2		

Cpd. #	R ³ R ⁴	Α	IC ₅₀	EC ₅₀	m/z
	××,				(M+H) ⁺
1091		N	B	В	638.2
1092	W T	O H H N H N H N H N H N H N H N H N H N	A		614.3
1093		OH	С	В	541.2
1094		ОН	С	В	553.2
1095	\searrow	ОН	С	В	567.3
1096	· · · · · ·	ОН	C .		541.2

				=6	, ,
Cpd. #	R ³ R ⁴	A	IC ₅₀	EC ₅₀	m/z (M+H) ⁺
1097		OH OH	С		540.2
1098		OH	С	А	580.3
1099		OH	С	B	611.2
1100		, OH	C	В	582.3
1101		OH	С		609.3
1102		OH	С		623.2
1103	×,	SOH	C		598.2

		09	_		
Cpd. #	R^3 R^4	Α	IC ₅₀	EC ₅₀	m/z
	\				(M+H) ⁺
1104	: THE	OH	B	В	609.3
	(+) enantiomer				
1105	NH NH	OH	С	В	609.3
,	(-) enantiomer				
1108		OH S O	С	В .	667.3
1109		NH ₂	С	В	666.3
1110		OH OH	C		721.2
1111		N NH ₂	В		590.4

TABLE 2

Cpd. #	R ¹	R²	R ³ R ⁴	IC ₅₀	EC ₅₀	m/z
						(M+H) ⁺
2001	s			С	В	583.2
2002	, N			С	В	538.3
2003				В	A	537.2
2004	A .			С	А	526.2
2005	N N			С	В	578.3

Cpd. #	R¹	R^2	R ³ R ⁴	IC ₅₀	EC ₅₀	m/z
	n		•			(M+H) ⁺
2006				В	В	577.3
2007	A,			С	В	566.3
2008	(N);			В		566.3
2009				В		553.2
2010				В		563.3
2011	S,			В		569.2
2012	N N			В	A	564.3
2013				С	A	553.2
2014	A)			В		552.2

Cpd. #	R ¹	R²	R ³ R ⁴	IC ₅₀	EC ₅₀	m/z (M+H) ⁺
2015				В		607.2
2016		Racemic mixture		В		592.3
2017		Racemic mixture		Ç	В	579.3
2018		Racemic mixture		В		589.3
2019	(s)	Racemic mixture		С	В	595.2
2020	₩ N	Racemic mixture		С	В	590.3
2021		Racemic mixture		С	В	579.3

Cpd. #	R¹	R ²	R ³ R ⁴	IC ₅₀	EC ₅₀	m/z (M+H) ⁺
2022	H	Racemic mixture		В		578.3
2023		Racemic mixture		В		633.3
2024	(N);			В		552.3
2025				В		539.2
2026				В		549.3
2027	S			В		555.2
2028	N.			В		550.3
2029				В		539.2

Cpd. #	R ¹	R²	\mathbb{R}^3 \mathbb{R}^4	IC ₅₀	EC ₅₀	m/z
			\ <u>\</u>			(M+H) ⁺
					•	
2030	N.			В		538.3
2031				В		593.2
2032		Mixture of enantiome diastereoisomers		В		608.3
2033		Mixture of enantiome diastereoisomers		В	В	595.3
2034		Mixture of enantiome diastereoisomers		В		605.3
2035	(s)	Mixture of enantiome diastereoisomers		С	В	611.3
2036	₩ N	Mixture of enantiome diastereoisomers		В	В	606.3

			າວ			
Cpd. #	R¹	R²	R ³ R ⁴	IC ₅₀	EC ₅₀	m/z (M+H) ⁺
2037		Mixture of enantiome diastereoisomers		В	В	595.3
2038	N.	Mixture of enantiome diastereoisomers		В		594.3
2039		Mixture of enantiome diastereoisomers	<u></u> .	В		649.3
2040	N.	Racemic mixture		В		594.3
2041		Racemic mixture		В	(581.3
2042		Racemic mixture		В		591.3

On all "	<u> </u>		_3 _4	10	FA	T
Cpd. #	R ¹	R²	R ³ R ⁴	IC ₅₀	EC ₅₀	m/z (M+H)⁺
2043	S,	Racemic mixture		В .		597.3
2044	N N N N N N N N N N N N N N N N N N N	Racemic mixture		В	В	592.3
2045		Racemic mixture		В	В	581.3
2046	A A	Racemic mixture		В	- -	580.3
2047		Racemic mixture		В		635.3
2048	N.			С	В	580.3
2049				С	B	567.3

			-3 -4	10	F.C.	
Cpd. #	R ¹	R²	R ³ R ⁴	IC ₅₀	EC ₅₀	m/z (M+H) ⁺
2050	S,			С	В	583.3
2051				В	-	621.3
2052	O H HN O		TZ .	A	-	917
2053	O NH H		NH H S	Α		1142.4

TABLE 3

Compound entry	В	D	IC ₅₀	EC ₅₀	m/z(M+H) ⁺
#					
3001	N	СН	С	Α	528.2
3002	СН	CMe	В		541.2
3003	СМе	СН	В	А	541.2

99

CLAIMS

WE CLAIM:

1. An isomer, enantiomer, diastereoisomer, or tautomer of a compound, represented by formula I:

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{7}$$

$$R^{2}$$

5 wherein

10

15

20

 R^1 is selected from: R^{11} , OR^{11} , SR^{11} , $COOR^{11}$, $SO_2N(R^{12})_2$, $N(R^{12})_2$, , $CON(R^{12})_2$, $NR^{12}C(O)R^{12}$ or $NR^{12}C(O)NR^{12}$ wherein R^{11} and each R^{12} is independently H, $(C_1$. $_6$)alkyl, haloalkyl, (C_{2-6}) alkenyl, (C_{3-7}) cycloalkyl, (C_{2-6}) alkynyl, (C_{5-7}) cycloalkenyl, $(C_5$ - (C_{5-7}) cycloalkenyl, (C_7) or 10-membered aryl or Het, said (C_7) and (C_7) being optionally substituted with (C_7) or both (C_7) are bonded together to form a 5, 6 or 7-membered saturated heterocycle with the nitrogen to which they are attached;

 ${f R}^2$ is selected from (C₁₋₆)alkyl, haloalkyl, (C₃₋₇)cycloalkyl, (C₅₋₇)cycloalkenyl, (C₆₋₁₀)bicycloalkyl, (C₆₋₁₀)bicycloalkenyl, 6- or 10-membered aryl, **Het**, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-**Het**,

said alkyl, cycloalkyl, cycloalkenyl, bicycloalkyl, bicycloalkenyl, aryl, **Het**, alkylaryl and alkyl-**Het** being optionally substituted with from 1 to 4 substituents selected from: halogen, or

- a) (C₁₋₆)alkyl optionally substituted with:
 - OR^{21} or SR^{21} wherein R^{21} is H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-**Het**; or
 - N(R²²)₂ wherein each R²² is independently H, (C₁₋₆)alkyl, (C₃₋

100

 $_{7}$)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-**Het**; or both \mathbf{R}^{22} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

5

b) OR^{23} wherein R^{23} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-**Het**; c) SR^{24} wherein R^{24} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-**Het**; and

10

d) $N(\mathbf{R}^{25})_2$ wherein each \mathbf{R}^{25} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-**Het**; or both \mathbf{R}^{25} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

15

B is N or CR^5 , wherein R^5 is H, halogen, (C_{1-6}) alkyl, haloalkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or R^5 is OR^{51} or SR^{51} , COR^{51} or $NR^{51}COR^{51}$ wherein each R^{51} is independently H, (C_{1-6}) alkyl), (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or R^5 is $NR^{52}R^{53}$ wherein R^{52} and R^{53} are each independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or both R^{52} and R^{53} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

X is N or CR⁵, wherein R⁵ is as defined above;

25

20

 ${\bf D}$ is N or ${\bf CR^5}$, wherein ${\bf R^5}$ is as defined above;

each of Y₁ and Y₂ is independently O or S;

Z is O, N, or NR⁶ wherein R⁶ is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl;

101

 ${f R}^3$ and ${f R}^4$ are each independently H, (C_{1-6})alkyl, haloalkyl, (C_{3-7})cycloalkyl, 6- or 10-membered aryl, ${f Het}$, (C_{1-6})alkyl-aryl, (C_{1-6})alkyl- ${f Het}$, wherein said alkyl, cycloalkyl, aryl, ${f Het}$, (C_{1-6})alkyl-aryl, (C_{1-6})alkyl- ${f Het}$ are optionally substituted with ${f R}^{30}$; or

- R⁷ and R⁸ are covalently bonded together to form second (C₃₋₇)cycloalkyl or a 4, 5- or 6-membered heterocycle having from 1 to 3 heteroatom selected from O, N, and S; or when Z is NR⁶, either of R⁷ or R⁸ is covalently bonded to R⁶ to form a nitrogencontaining 5-or 6-membered heterocycle;
- 10 **R**⁷ is H, (C₁₋₆ alkyl), (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-**Het**, all of which optionally substituted with **R**⁷⁰; or **R**⁷ is covalently bonded to either of **R**³ or **R**⁴ to form a 5- or 6-membered heterocycle;

A is a 6- or 10-membered aryl, **Het**, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-**Het**, (C_{1-6}) alkyl-CONH-Het, all of which being optionally substituted with:

or a salt or a derivative thereof;

20 wherein **Het** is defined as:

5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, or a 9- or 10-membered heterobicycle having 1 to 5 heteroatoms selected from O, N and S; and

25 R^{10} , R^{30} , R^{70} and R^{100} are defined as:

- 1 to 4 substituents selected from: halogen, OPO $_3$ H, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl; or
- 1 to 4 substituents selected from:

5

10

15

20

25

30

R¹⁵⁰:

102

a) (C₁₋₆) alkyl or haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;

b) OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl$ - (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het**, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ **Het** being optionally substituted with R^{150} :

c) OCOR¹⁰⁵ wherein R^{105} is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)

- $_{7}$)cycloalkyl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het**, said alkyl, cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het** being optionally substituted with \mathbf{R}^{150} ; **d)** $S\mathbf{R}^{108}$, $SO_{2}N(\mathbf{R}^{108})_{2}$ or $SO_{2}N(\mathbf{R}^{108})C(O)\mathbf{R}^{108}$ wherein each \mathbf{R}^{108} is independently H, (C_{1-6})alkyl, (C_{3-7})cycloalkyl or (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het** or both \mathbf{R}^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)**Het** or heterocycle being optionally substituted with
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;

5

10

15

20

25

30

103

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋ 7)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆ ₆alkyl)**Het**, or **R**¹¹⁸ is covalently bonded to **R**¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋ 6alkyl) **Het** or heterocycle being optionally substituted with R¹⁵⁰; h) $NR^{121}COCOR^{122}$ wherein R^{121} and R^{122} is each H, (C_{1-6}) alkyl, (C_{3-6}) 7)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, **Het**, (C₁₋₈) 6alkyl)aryl or (C1-6alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with R¹⁵⁰; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆ ₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or \mathbb{R}^{124} is OH or O(C₁₋₆alkyl) or both \mathbb{R}^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰; i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) ₇)cycloalkyl, aryl, **Het,** (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; j) COOR¹²⁸ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) 7)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₆ 7)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl and (C₁₋₆ 6alkyl)Het being optionally substituted with R150; k) $CONR^{129}R^{130}$ wherein R^{129} and R^{130} are independently H, (C_{1-6}) alkyl, (C_{3-6}) 7)cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} ₆alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl,

104

 $(C_{1-6}$ alkyl)**Het** and heterocycle being optionally substituted with R^{150} ; I) aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het**, all of which being optionally substituted with R^{150} ; and

wherein R¹⁵⁰ is defined as:

1 to 3 substituents selected from: halogen, OPO₃H, NO₂, cyano, azido, $C(=NH)NH_2$, $C(=NH)NH(C_{1-6})$ alkyl or $C(=NH)NHCO(C_{1-6})$ alkyl; or 1 to 3 substituents selected from:

- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{160} ;
- **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{160} ;
- c) OCOR¹⁰⁵ wherein R^{105} is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} ;
- d) SR^{108} , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** or heterocycle being optionally substituted with R^{160} ;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are

5

10

15

20

25

105

covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het**, or heterocycle being optionally substituted with R^{160} ;

5

f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with \mathbf{R}^{160} ;

10

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** or heterocycle being optionally substituted with R¹⁶⁰;

15

20

25

30

h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁶⁰, or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰;

i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het,** $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het**, said alkyl,

106

cycloalkyl, aryl, **Het**, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)**Het** being optionally substituted with \mathbf{R}^{160} ;

j) tetrazole, COOR¹²⁸ wherein \mathbf{R}^{128} is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl and (C₁₋₆alkyl)**Het** being optionally substituted with \mathbf{R}^{160} ; and

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with \mathbf{R}^{160} ;

wherein \mathbf{R}^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-6} alkyl, haloalkyl, $COOR^{161}$, SO_3H , SR^{161} , SO_2R^{161} , OR^{161} , $N(R^{162})_2$, $SO_2N(R^{162})_2$, $NR^{162}COR^{162}$ or $CON(R^{162})_2$, wherein R^{161} and each R^{162} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or both R^{162} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle,

- 2. A compound according to claim 1, wherein R^1 is selected from: (C_{3-7})cycloalkyl, (C_{5-7})cycloalkenyl, 6 or 10-membered aryl, or **Het** each of which being optionally substituted with 1 or 2 halogen or from 1 or 2 substituents selected from:
 - a) (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{2-6}) alkenyl, each optionally substituted with OR^{11} , SR^{11} , wherein R^{11} is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl;
 - b) OR¹³ wherein R¹³ is H, (C₁₋₆ alkyl), (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, or **Het**; and

5

10

15

20

- f) a 6- or 10-membered aryl, or **Het** said aryl or **Het** being optionally substituted with (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl.
- 3. A compound according to claim 2, wherein \mathbf{R}^1 is selected from: 6 or 10-membered aryl, or **Het** each of which being optionally substituted with 1 or 2 halogen or with 1 or 2 (C_{1-6})alkyl.

5

- **4.** A compound according to claim 3, wherein \mathbb{R}^1 is phenyl or **Het** optionally substituted with (C_{1-6}) alkyl.
- 5. A compound according to claim 4, wherein R¹ is selected from:

6. A compound according to claim 5, wherein **R**¹ is selected from:

- 7. A compound according to claim 1, wherein \mathbf{R}^2 is selected from (C_{3-7}) cycloalkyl, (C_{6-10}) bicycloalkyl, each optionally substituted with 1 or 2 substituents selected from:
 - a) halogen, (C_{1-6}) alkyl, OH, or (C_{1-6}) alkoxy.
- 8. A compound according to claim 7, wherein \mathbb{R}^2 is selected from

108

 (C_{3-7}) cycloalkyl, (C_{6-10}) bicycloalkyl, each optionally mono- or di-substituted with halogen or (C_{1-6}) alkyl.

- **9.** A compound according to claim 8, wherein \mathbf{R}^2 is selected from (C_{3-7}) cycloalkyl or (C_{6-10}) bicycloalkyl.
- 10. A compound according to claim 9, wherein R² is cyclopentyl, cyclohexyl, or

5

- 11. A compound according to claim 10, wherein R² is cyclopentyl or cyclohexyl.
- 12. A compound according to claim 1, wherein **B** is N or CR^5 , wherein R^5 is H, halogen, haloalkyl, or (C_{1-6}) alkyl.
 - 13. A compound according to claim 12, wherein **B** is N, CH or C- $(C_{1-6}$ alkyl).
 - **14.** A compound according to claim 13, wherein **B** is N, CH or C(Me).
 - 15. A compound according to claim 14, wherein **B** is CH.

- **16.** A compound according to claim 1, wherein X is N, CH or C-(C₁₋₆ alkyl).
- 17. A compound according to claim 16, wherein X is N, CH or C(Me).
- **18.** A compound according to claim 17, wherein **X** is CH.
- **19.** A compound according to claim 1, wherein \mathbf{D} is $C\mathbf{R}^5$, wherein \mathbf{R}^5 is H, halogen, haloalkyl, or (C_{1-6}) alkyl.

109

- **20.** A compound according to claim 19, wherein **D** is CH or C(Me).
- 21. A compound according to claim 20, wherein **D** is CH.
- 22. A compound according to claim 1 wherein Y^1 is O.
- 23. A compound according to claim 1 wherein Y^2 is O.

5

10

15

20

- 24. A compound according to claim 1 wherein both Y^1 and Y^2 are O.
- **25.** A compound according to claim 1, wherein **Z** is N, or NH or O.
- **26.** A compound according to claim 25, wherein **Z** is NH or O.
- 27. A compound according to claim 26, wherein **Z** is NH.
- 28. A compound according to claim 1, wherein \mathbb{R}^3 and \mathbb{R}^4 are each independently H, (C_{1-6}) alkyl, first (C_{3-7}) cycloalkyl, 6- or 10-membered aryl, (C_{1-6}) alkyl-6- or 10-membered aryl, (C_{1-6}) alkyl-Het;

or R³ and R⁴ are independently covalently bonded together to form second (C₃-7)cycloalkyl, 5- or 6-membered heterocycle having from1 to 4 heteroatom selected from O, N, and S;

wherein said alkyl, first and second cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het or heterocycle are optionally substituted with from 1 or 2 substituents selected from:

- a) (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{2-4}) alkenyl; and
- c) OR³¹ or COOR³¹, wherein each R³¹ is independently H or (C₁₋₆)alkyl;
- or when Z is N, either R3 or R4 are independently covalently bonded thereto to form a

110

nitrogen-containing 5-or 6-membered heterocycle.

29. A compound according to claim 28, wherein \mathbb{R}^3 and \mathbb{R}^4 are each independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-**Het**;

or R^3 and R^4 are covalently bonded together to form cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, 5- or 6-membered heterocycle having from 1 or 2 heteroatom selected from N or S;

wherein said alkyl, cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl or heterocycle are optionally substituted with from 1 or 2 substituents selected from:

- a) (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₂₋₄)alkenyl; and
- c) OH or $COO(C_{1-6})$ alkyl.

5

10

- **30.** A compound according to claim 29, wherein \mathbf{R}^3 and \mathbf{R}^4 are each independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl-phenyl, (C_{1-6}) alkyl-Het; or \mathbf{R}^3 and \mathbf{R}^4 are covalently bonded together to form cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl all optionally substituted with OH, (C_{1-6}) alkyl or (C_{2-4}) alkenyl; or (C_{2-6}) alkyl or (C_{2-6}) alkyl.
- **31.** A compound according to claim 30, wherein \mathbf{R}^3 is H or (C_{1-6}) alkyl and \mathbf{R}^4 is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl-aryl, aryl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl-biaryl.
- **32.** A compound according to claim 31, wherein both \mathbb{R}^3 and \mathbb{R}^4 are H or both $\mathbb{C}H_3$;

or
$$\mathbf{R}^3$$
 is H and \mathbf{R}^4 is selected from:

 \mathbf{R}^{3} and \mathbf{R}^{4} are bonded together and form:

5

- 33. A compound according to claim 1, wherein \mathbb{R}^7 is H or (C₁₋₆ alkyl).
- 34. A compound according to claim 33, wherein \mathbb{R}^7 is H or Me.
- **35.** A compound according to claim 34, wherein \mathbf{R}^7 is H.
- **36.** A compound according to claim 1, wherein **A** is a 6- or 10-membered aryl, **Het** or (C_{1-6}) alkyl-CONH-aryl, said anyl or **Het** being optionally substituted with:

10

- 1 to 2 substituents selected from:
 - a) (C₁₋₆) alkyl, (C₁₋₆) haloalkyl, (C₃₋₇)cycloalkyl, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, all of which are optionally substituted with:
 - (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl; both optionally substituted with a 6 or 10-membered aryl, or **Het**;
- OR^{101} , $COOR^{101}$ or $CON(R^{101})_2$, wherein each R^{101} is independently H or (C_{1-6}) alkyl;

112

- b) OR^{104} wherein R^{104} is H or (C₁₋₆alkyl) optionally substituted with: $COOR^{105}$ or $CON(R^{105})_2$ wherein each R^{105} is independently H or (C₁₋₆)alkyl;
- d) SR^{108} wherein R^{108} is H or (C_{1-6}) alkyl optionally substituted with $COOR^{109}$ or $CON(R^{109})_2$, wherein each R^{109} is independently H or $(C_{1-6})_6$ alkyl;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ and R¹¹² are both H; or R¹¹¹ is H and R¹¹² is Het optionally substituted with (C₁₋₆)alkyl or COOR¹¹⁵ or CON(R¹¹⁵)₂, wherein each R¹¹⁵ is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl;
- j) tetrazole, COOH or COO(C₁₋₆)alkyl; and
- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are each independently H or (C₁₋₆)alkyl optionally substituted with COOH or COO(C₁₋₆)alkyl; and
- l) 6- or 10-membered aryl or **Het**, said aryl or **Het** being optionally substituted with from 1 to 4 substituents selected from:
 - i) (C_{1-6}) alkyl or haloalkyl;
 - ii) OR^{104} wherein R^{104} is H, or (C_{1-6}) alkyl) optionally substituted with COOH or COO(C_{1-6})alkyl; and
 - iii) COOR¹²⁸, NR^{1/1}R¹¹² or CON(R¹²⁹R¹³⁰)₂, wherein R¹²⁸, R¹¹¹, R¹¹², R¹²⁹ and R¹³⁰ are independently H or (C₁₋₆)alkyl.
- **37.** A compound according to claim 36, wherein **A** is a 6- or 10-membered aryl, or **Het**, said aryl or **Het** being optionally substituted with:
 - -halogen, or
 - 1 to 2 substituents selected from:
 - a) (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{2-8}) alkynyl, said alkyl and alkenyl being optionally substituted with:
 - OH, (C₁₋₆)alkoxy, COOH or CONH₂;
 - b) OH, O(C₁₋₆)alkyl)COOH or O(C₁₋₆alkyl)CONH₂;

5

10

15

20

15

113

- d) SH, S(C₁₋₆)alkylCOOH or S(C₁₋₆)alkylCONH₂;
- i) tetrazole, COOH or CONH2; and
- furan or thiazole mono or di- substituted with:
 - i) (C₁₋₆)alkyl; or

5 iii) COOH or CONH₂.

38. A compound according to claim 37, wherein **A** is phenyl, indole, benzofuran, benzothiophene, coumarin or quinolone, all of which optionally substituted with:

-iodine, or

- 1 to 2 substituents selected from:
 - a) (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{2-8}) alkynyl, said alkyl and alkenyl being optionally substituted with:

- OH, (C₁₋₆)alkoxy, COOH or CONH₂;

- b) OH, O(C₁₋₆)alkyl)COOH or O(C₁₋₆)alkyl)CONH₂;
- d) SH, S(C₁₋₆)alkylCOOH or S(C₁₋₆)alkylCONH₂;
- j) COOH or CONH2; and
- I) furan or thiazole mono or di- substituted with:
 - i) (C_{1-6}) alkyl; or
 - iii) COOH or CONH₂.
- 39. A compound according to claim 38, wherein A is selected from

115

40. A compound according to claim 39, wherein **A** is selected from:

116

41. A compound according to claim 1, having the following formula:

wherein \mathbf{R}^3 and \mathbf{R}^4 are each independently H, (C_{1-6}) alkyl, first (C_{3-7}) cycloalkyl, 6- or 10-membered aryl, (C_{1-6}) alkyl-Het; or \mathbf{R}^3 and \mathbf{R}^4 are independently covalently bonded together to form second (C_{3-7}) cycloalkyl, 5- or 6-membered heterocycle having from 1 to 4 heteroatom selected from O, N, and S;

wherein said alkyl, first and second cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-**Het** or heterocycle are optionally substituted with from 1 or 2 substituents selected from:

a) (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₂₋₄)alkenyl; and

c) OR^{101} or $COOR^{101}$, wherein each R^{101} is independently H or (C_{1-6}) alkyl; and

A is a 6- or 10-membered aryl, **Het** or (C_{1-6}) alkyl-CONH-aryl, said aryl or **Het** being optionally substituted with:

- 1 to 2 substituents selected from:

- a) (C_{1-6}) alkyl, haloalkyl, (C_{3-7})cycloalkyl, (C_{2-6})alkenyl, (C_{2-8})alkynyl, all of which are optionally substituted with:
 - second (C₁₋₆)alkyl, second (C₃₋₇)cycloalkyl; said second alkyl or second cycloalkyl being optionally substituted with a 6 or 10-membered aryl, or **Het**;
 - OR^{101} , $COOR^{101}$ or $CON(R^{101})_2$, wherein each R^{101} is independently H or (C_{1-6}) alkyl;

10

5

15

117

b) OR¹⁰⁴ wherein R¹⁰⁴ is H or (C₁₋₆alkyl) optionally substituted with: COOH, COO(C₁₋₆)alkyl or CONH₂;

- d) SR^{108} wherein R^{108} is H or (C_{1-6}) alkyl optionally substituted with COOH, COO(C_{1-6})alkyl or CONH₂;
- e) NR¹¹¹R¹¹² wherein both R¹¹¹ and R¹¹² are H; or R¹¹¹ is H and R¹¹² is **Het** optionally substituted with (C₁₋₆)alkyl, COOR¹¹⁵ or CON(R¹¹⁵)₂, wherein each R¹¹⁵ is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl;
- j) COOH or COO(C₁₋₆)alkyl; and
- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H or (C₁₋₆)alkyl optionally substituted with COOH or COO(C₁₋₆)alkyl; and
- 6- or 10-membered aryl or Het, said aryl or Het being optionally substituted with from 1 to 4 substituents selected from:
 - i) (C₁₋₆)alkyl or haloalkyl;
 - ii) OR^{104} wherein R^{104} is H, or (C_{1-6}) alkyl) optionally substituted with COOH or COO(C_{1-6})alkyl; and
 - iii) COOR¹²⁸, NR¹¹¹R¹¹² or CON(R¹²⁹R¹³⁰)₂, wherein R¹²⁸, R¹¹¹, R¹¹², R¹²⁹ and R¹³⁰ are independently H or (C₁. $_{6}$)alkyl.

42. A compound according to claim 1, having the following formula:

wherein

5

10

15

20

25

 \mathbf{R}^1 is selected from: (C₃₋₇)cycloalkyl, (C₅₋₇)cycloalkenyl, 6 or 10-membered aryl or **Het**, each of which being optionally substituted with 1 or 2 halogen or from 1 or 2 substituents selected from:

118

- a) (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{3-7}) cycloalkyl, each optionally substituted with OR^{11} , SR^{11} , wherein R^{11} is H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl;
- b) OR¹³ wherein R¹³ is H, (C₁₋₆ alkyl), (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, or **Het**; and
- f) a 6- or 10-membered aryl or **Het**, said aryl or **Het** being optionally substituted with (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl;
- 10 **R**² is selected from (C₃₋₇)cycloalkyl, (C₆₋₁₀)bicycloalkyl, each optionally substituted with 1 or 2 substituents selected from: halogen, (C₁₋₆)alkyl, OH, and (C₁₋₆)alkoxy;

 ${f R}^3$ and ${f R}^4$ are each independently H, (C_{1-6}) alkyl, first (C_{3-7}) cycloalkyl, 6- or 10-membered aryl, Het (C_{1-6}) alkyl-6- or 10-membered aryl, (C_{1-6}) alkyl-Het;

or R³ and R⁴ are covalently bonded together to form second (C₃-¬)cycloalkyl, 5- or 6-membered heterocycle having from1 to 4 heteroatom selected from O, N, and S; wherein said alkyl, first and second cycloalkyl, aryl, Het, (C₁-๑)alkyl-aryl, (C₁-๑)alkyl-Het or heterocycle are optionally substituted with from 1 or 2

substituents selected from:

5

20

25

a) (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{2-4}) alkenyl; and

c) OR^{31} or $COOR^{31}$ wherein R^{31} is H or (C_{1-6}) alkyl; and

A' is a 6- or 10-membered aryl, Het or (C_{1-6}) alkyl-CONH-aryl, said aryl or Het being optionally substituted with:

- 1 to 2 substituents selected from:

- a) (C_{1-6}) alkyl, (C_{1-6}) haloalkyl, (C_{3-7}) cycloalkyl, (C_{2-6}) alkenyl, (C_{2-6}) alkynyl, all of which are optionally substituted with:
 - second (C_{1-6})alkyl or second (C_{3-7})cycloalkyl, said second alkyl or second cycloalkyl being optionally substituted with a 6

119

or 10-membered aryl or Het; or

- OR^{101} ,COOR¹⁰¹ or CONH₂, wherein each R^{101} is independently H or (C₁₋₆)alkyl;

- b) OR^{104} wherein R^{104} is H or (C₁₋₆alkyl) optionally substituted with: COOH, COO(C₁₋₆)alkyl or CONH₂;
- d) SR^{108} wherein R^{108} is H or (C_{1-6}) alkyl optionally substituted with COOH, COO(C_{1-6})alkyl or CONH₂;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ and R¹¹² are both H; or R¹¹¹ is H and R¹¹² is **Het** optionally substituted with (C₁₋₆)alkyl, CONH₂ or COOR¹¹⁵ wherein R¹¹⁵ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl;
- i) COOH or COO(C₁₋₆)alkyl;
- k) $CONR^{129}R^{130}$ wherein R^{129} and R^{130} are each independently H or (C_{1-6}) alkyl optionally substituted with COOH or $COO(C_{1-6})$ alkyl; and
- I) 6- or 10-membered aryl or **Het**, said aryl or **Het** being optionally substituted with from 1 to 4 substituents selected from:
 - i) (C_{1-6}) alkyl or haloalkyl;
 - ii) OR^{104} wherein R^{104} is H, or (C_{1-6}) alkyl) optionally substituted with COOH or COO(C_{1-6})alkyl; and
 - iii) COOR¹²⁸, NR¹¹¹R¹¹² or CON(R¹²⁹R¹³⁰)₂, wherein R¹²⁸, R¹¹¹, R¹¹², R¹²⁹ and R¹³⁰ are independently H or (C₁. $_{6}$)alkyl.

5

10

15

120

43. A compound according to claim 1, having the following formula:

wherein

10

20

D is CH or C(C₁₋₆)alkyl;

B is N, CH, or C(C₁₋₆)alkyl;

R³ and R⁴ are each independently H, (C₁₋₆)alkyl, first (C₃₋₇)cycloalkyl, 6- or 10-membered aryl, **Het**, (C₁₋₆)alkyl-6- or 10-membered aryl, (C₁₋₆)alkyl-**Het**; or R³ and R⁴ are covalently bonded together to form second (C₃₋₇)cycloalkyl, 5- or 6-membered heterocycle having from1 to 4 heteroatom selected from O, N, and S;

wherein said alkyl, first and second cycloalkyl, aryl, Het,

 (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-**Het** or heterocycle are optionally substituted with from 1 or 2 substituents selected from:

- a) (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₂₋₄)alkenyl; and
- c) OR^{31} or $COOR^{31}$ wherein R^{31} is H or (C_{1-6}) alkyl; and

A' is a 6- or 10-membered aryl, **Het** or (C₁₋₆) alkyl-CONH-aryl, said aryl or **Het** being optionally substituted with:

- 1 to 2 substituents selected from:
 - a) (C_{1-6}) alkyl, (C_{1-6}) haloalkyl, (C_{3-7}) cycloalkyl, (C_{2-6}) alkenyl, (C_{2-8}) alkynyl, all of which are optionally substituted with:
 - second (C₁₋₆)alkyl or second (C₃₋₇)cycloalkyl, said second alkyl or second cycloalkyl being optionally substituted with a 6 or 10-membered aryl or Het;

- OR^{101} , $COOR^{101}$ or $CONH_2$, wherein each R^{101} is independently H or (C_{1-6}) alkyl;

- b) OR^{104} wherein R^{104} is H or $(C_{1-6}$ alkyl) optionally substituted with: COOH, COO(C_{1-6})alkyl or CONH₂;
- d) SR^{108} wherein R^{108} is H or (C_{1-6}) alkyl optionally substituted with COOH, COO(C_{1-6})alkyl or CONH₂;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ and R¹¹² are both H; or R¹¹¹ is H and R¹¹² is **Het** optionally substituted with (C₁₋₆)alkyl, CONH₂ or COOR¹¹⁵ wherein R¹¹⁵ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl;
- j) COOH or COO(C₁₋₆)alkyl;
- k) $CONR^{129}R^{130}$ wherein R^{129} and R^{130} are each independently H or (C_{1-6}) alkyl optionally substituted with COOH or $COO(C_{1-6})$ alkyl; and l) 6- or 10-membered aryl or **Het**, said aryl or **Het** being optionally substituted with from 1 to 4 substituents selected from:
 - i) (C₁₋₆)alkyl or haloalkyl;
 - ii) OR^{104} wherein R^{104} is H, or (C_{1-6}) alkyl) optionally substituted with COOH or COO (C_{1-6}) alkyl; and
 - iii) COOR¹²⁸, NR¹¹¹R¹¹² or CON(R¹²⁹R¹³⁰)₂, wherein R¹²⁸, R¹¹¹, R¹¹², R¹²⁹ and R¹³⁰ are independently H or (C₁. 6)alkyl.

44. A compound of formula la:

$$\begin{array}{c|c}
 & Y & R^7 \\
 & X & R^6 & O
\end{array}$$

la

5

10

15

122

wherein \mathbf{R}^1 is selected from: 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S and phenyl, said heterocycle and phenyl being optionally substituted with from 1 to 4 (C_{1-4})alkyl substituents;

5 \mathbb{R}^2 is selected from: (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl (C_{1-3}) alkyl, and norbornane;

X is CH or N;

 \mathbf{R}^6 is H or (C₁₋₆ alkyl);

Y is O or S;

B is N or CR⁵, wherein R⁵ is H or (C₁₋₆) alkyl with the proviso that **X** and **B** are not both N:

Z is O, N, or NH;

W is CR^3R^4 wherein R^3 and R^4 are each independently H, $(C_{1-6}$ alkyl), $(C_{3-7}$ cycloalkyl), $(C_{1-6}$ alkyl)phenyl, $(C_{1-6}$ alkyl)- $(C_{3-7}$ cycloalkyl), $(C_{3-7}$ cycloalkyl),

(C₃₋₇ cycloalkyl)-(C₂₋₄ alkenyl), (C₁₋₆ alkyl)-OH, phenyl, CH₂biphenyl, 5- or 6-membered heterocycle having from1 to 4 heteroatoms selected from O, N, and S, 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N, and S, (C₁₋₆ alkyl)-5- or 6-membered heterocycle having from1 to 4 heteroatoms selected from O, N, and S, or (C₁₋₆ alkyl)-9- or 10-membered heterobicycle having 1 to 4

heteroatoms selected from O, N, and S, or R³ and R⁴ are covalently bonded together to form (C₃-7 cycloalkyl), 4-, 5- or 6-membered heterocycle having from 1 to 4 heteroatoms selected from O, N, and S; or when Z is N, either R³ or R⁴ is covalently bonded thereto to form a 5-membered heterocycle;

wherein said alkyl, cycloalkyl, heterocycle, heterobicycle, phenyl are optionally substituted with from 1 to 4 substituents selected from: OH, COOH, $(C_{1-6} \text{ alkyl})$, $(C_{2-4} \text{ alkenyl})$, $CONH_2$, NH_2 , $NH(C_{1-6} \text{ alkyl})$, $N(C_{1-6} \text{ alkyl})_2$, NHCOCOOH, $NHCOCON(C_{1-6} \text{ alkyl})_2$, $NHCOCONH(C_{1-6} \text{ alkyl})$, SH, $S(C_{1-6} \text{ alkyl})$, $NHC(=NH)NH_2$, and $COO(C_{1-6} \text{ alkyl})$;

 \mathbf{R}^7 is H or (\mathbf{C}_{1-6} alkyl);

123

A is selected from: (C₁₋₃alkyl)CONHaryl, 6- or 10-membered aryl, biphenyl, 5- or 6-atom heterocycle having 1 to 4 heteroatoms selected from O, N and S, 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N and S;

wherein said aryl, biphenyl, first heterocycle, and heterobicycle are all optionally substituted with from 1 to 4 substituents selected from: OH, COOH, COO(C_{1-6})alkyl, (C_{1-6})alkyl, (C_{1-6})alkylCOOH, (C_{1-6} alkyl)(C_{2-4} alkynyl), (C_{1-6})alkyl-hydroxy, phenyl, benzyloxy, halogen, (C_{2-4})alkenyl, (C_{2-4})alkenyl-(C_{1-6})alkyl-COOH, 5- or 6-membered second heterocycle having 1 to 4 heteroatoms selected from O, N and S, NH-5- or 6- membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S,

wherein said second heterocycle and phenyl being optionally substituted with from 1 to 4 substituents selected from: $(C_{1-6} \text{ alkyl})$, CF_3 , OH, $(C_{1-6} \text{ alkyl}) COOH$, $O(C_{1-6} \text{ alkyl}) COOH$, $(C_{1-6} \text{ alkyl}) COO(C_{1-6} \text{ alkyl})$, CH_2 phenyl, $COO(C_{1-6} \text{ alkyl})$, $(C_{1-6} \text{ alkyl}) O(C_{1-6} \text{ alkyl})$, $(C_{1-6} \text{ alkyl})$, $(C_{1-6} \text{ alkyl})$, $(C_{1-6} \text{ alkyl})$, and $(C_{1-6} \text{ alkyl})$, $(C_{1-6} \text{ alkyl})$, $(C_{1-6} \text{ alkyl})$, and $(C_{1-6} \text{ alkyl})$, $(C_{1-6} \text{ alkyl})$, $(C_{1-6} \text{ alkyl})$, $(C_{1-6} \text{ alkyl})$, and $(C_{1-6} \text{ alkyl})$,

halogen, OPO₃H, benzyl, sulfonamido, SH, SOCH₃, SO₃H, SO₂CH₃, S(C₁₋₆ alkyl)COOH, -CONH₂, -COCH₃, (C₁₋₃)alkyl, (C₂₋₄alkenyl)COOH wherein said alkenyl is optionally substituted with from 1 to 2 (C₁₋₆ alkyl) substituents,

 $(C_{2\text{-4}}alkenyl)COO(C_{1\text{-6}}alkyl), \ tetrazolyl, COOH, \ triazolyl, OH, NO_2, NH_2, \\ -O(CH_2)_pCOOH, \ hydantoin, \ benzoyleneurea, (C_{1\text{-4}})alkoxy, (C_{1\text{-4}})alkoxy(C_{1\text{-6}} \\ alkyl)COOH, \ cyano, \ azido, \ -O-(C_{1\text{-6}})alkyl COOH, \ -O-(C_{1\text{-6}})alkyl COOH, \\ -O-(C_{1\text{-6}})alkyl, \ -NHCOCOOH, \ -NHCOCONHOH, -NHCOCONH_2, \\ -NHCOCONHCH_3, \ -NHCO(C_{1\text{-6}})alkyl-COOH, \ -NHCOCONH(C_{1\text{-6}})alkyl-COOH, \\ -NHCO(C_{3\text{-7}})cycloalkyl-COOH, \ -NHCONH(C_{6\text{-10}})aryl-COOH, \ -NHCONH(C_{1\text{-6}})alkyl-COOH, \\ -NHCONH(C_{1\text{-6}})alkyl, \ -NHCONH(C_{1\text{-6}})alkyl-COOH, \ -NHCONH(C_{1\text{-6}})alkyl-COOH, \\ -NHCOCOH, \ -NHCONH(C_{1\text{-6}})alkyl-COOH, \ -NHCOOH, \ -NHCOOH, \ -NHCOOH, \\ -NHCOOH, \ -NHCOOH,$

10

5

15

25

20

10

124

-NHCONH $_{2,}$ -NHCO(C $_{1-6}$)hydroxyalkyl COOH, -OCO(C $_{1-6}$)hydroxyalkyl COOH, (C $_{3-6}$)cycloalkyl COOH,

-NHCHO, -NHSO₂CH₃, -NHSO₂CF₃, coumarin, (C₁₋₆)alkyl-amino,

di- (C_{1-6}) alkyl-amino, C(halogen)₃, -NH (C_{2-4}) acyl, -NH (C_{6-10}) aroyl,

-CONH(C₁₋₆alkyl), -CO(C₁₋₆)alkyl-COOH, -CONH(C₁₋₆)alkyl-COOH,

-CO-NH-alanyl, -CONH(C_{2-4})alkylN(C_{1-6} alkyl)₂, -CONH(C_{2-4}) alkyl-**Het**

-CONH(C_{2-4}) alkyl-(COOH)-**Het** -CONH(C_{1-2} alkyl) (OH)(C_{1-2} alkyl) OH,

-CONH(C₁₋₆) alkyl-COOH, -CONH(C₆₋₁₀ aryl), -CONH-Het

-CONH(C_{6-10}) aryl-COOH, -CONH(C_{6-10}) aryl-COO(C_{1-6}) alkyl,

-CONH(C_{1-6}) alkyl-COO(C_{1-6}) alkyl, -CONH(C_{6-10}) aryl-(C_{1-6})alkyl-COOH,

-CONH(C₆₋₁₀) aryl-(C₂₋₆)alkenyl-COOH;

or salt thereof.

45. A compound according to claim 1 having the following formula:

15

wherein \mathbb{R}^3 , \mathbb{R}^4 and \mathbb{A} are as defined below:

Cmpd. #	R ³	R ⁴		A	· · · · · · · · · · · · · · · · · · ·
		>/	0.000. AVIOLATION -		***************************************
			i		

Cmpd. #	R ³ R ⁴	A
1001	****	СООН
1002		ОН
1003	***************************************	ОТОН
1004		но
1005		ОН
1006		, OH

Cmpd. #	R ³ R ⁴	Α .
1007		У ОН
1008	***	у он
1009		, он
1010	****	о он
1011		он ;
1012		HOO

Consd #	R ³ R ⁴	A	7
Cmpd. #	R ³ R ⁴	A	ALTERNATION OF THE PERSONS IN
1		9	G-Water Story
1013			;
1411			-
TAMES IN THE STATE OF THE STATE			-
		ОН	
1014			,
•			
		ОН	
1015		<i>'</i>	. ,
7			######################################
**************************************			Titlih ilminamus
ANTICO CONTRACTOR OF THE CONTR	\\\\\\\		The balleton and the ba
1016	w 1977-001 - W	ÓН	
IOIO			;
	Van de la company de la compan		
The first at any of the fi		\ 0	
The state of the s	***************************************	ÓН	
1017			;
THE STATE OF THE S			
OCCUPATION OF THE PROPERTY OF			
	•	ОН	
	1998-1999 - I - Herstell Harristoningsbyrg (

Cmpd. #	R ³ R ⁴	A	Party Charles
			STATES AND
1018		, OH	
1019		, OH	information of the second seco
1020	***	ОН	Table to the state of the state
1021		OH	A T T T T T T T T T T T T T T T T T T T
1022		NH ₂	ATTENDED TO THE TOTAL AND ATTENDED ATTE

Cmpd. #	R ³ R ⁴	A
1023		S N O
1024		NH ₂
1025		ОН
1026		
1027		HO

Cmpd. #	R ³ R ⁴	A
1028		;
1029		CF ₃ ;
1030		;
1031		MeO
1032	***	;
1033		OEt

Cmpd. #	R ³ R ⁴	A .
1034		
1035		
1036		S N
1037		CI
1038		· CC°
1039		S N

Cmpd. #	R ³ R ⁴	A
1040		OOOH
1041		OH
1042		N N N N N N N N N N N N N N N N N N N
1043		OH
1044		CI OH

Cmpd. #	R ³ R ⁴	A
1045		OH O
1046		O OH
1047		, OH
1048		OH O HOO
1049		у он
1050		OH HN N O

Cmpd. #	R ³ R ⁴	Α
1051	× >	
		ОН
1052		OMe
1053	****	ОН
1054	****	OH
1055	***	но он
1056	\	OH OH

			7
Cmpd. #	R ³ R ⁴	Α	
Market and the state of the sta	()		
1057			•
L			
ell Jaller v manorra salve.			Company of the contraction of
		OH	ann ann
1058	*		. 7
agemente a tentra capital de la capital de l	\		Arresta velenness sessiones
· · · · · · · · · · · · · · · · · · ·			
		ОН	-
1059	*	,	,
10.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1		ОН	addition of the same of the sa
	•		Table Title Comments
1060	*		;
***************************************	$\langle \cdot \rangle$		-
		6-4	
1144		НО	
1061	*	_О У—ОН	
		0	-
Transported			

Cmpd. #	R ³ R ⁴	A	1
**************************************			and the construction of a the specimens are the construction of th
1062		ОН	= 7
1063		, OH	Parameter statement of the statement of
1064	OH .	ОН	To a contract of the contract
1065		HO	• 7
1066		OH OH	;

Cmpd. #	R ³ 、 _, R ⁴	A
	×/	
1067	\ <u>\</u>	OH OH
1068		OH OH
1069		OH OH
1070	\overline{X}	ОН
1071	<u></u>	ОН

Cmpd. #	R ³ R ⁴	A
1072		OH
1073		SOOH
1074		ОН
1075		OH
1076		, OH

Cmpd. #	R ³ R ⁴	A	11 TANKS BATE & 2 41 000 .
1077		OH	# 9
1078		SH	,
1079		, OH	
1080		ОН	
1081		ОН	
1082			;

Cmpd. #	R ³ R ⁴	A	and the state of t
1083		OH OH	
1084		N S OH	
1085		OH O	B 7
1086		OH OH	T = P
1087		OH OH	To the later later and the control of the control o

Cmpd. #	R ³ R ⁴	Α .
1088		OH OH
1089		ОН
1090		N O OH
1091		N S OH
1092		O OH

Cmpd. #	R ³ R ⁴	A
1093		OH OH
1094		ОН
1095		, OH
1096		OH ;
1097		OH ;
1098		у он у
1099		OH OH

Cmpd. #	H ³ H ⁴	A	
1100		OH OH	;
1101		OH	;
1102	N.	OH OH	;
1103		SNOHO	;
1104	(+) enantiomer	OH	;
1105	NH	OH	;
	(-) enantiomer	THE TOTAL TO THE	

Cmpd. #	R ³ R⁴	A .	e de la companya de l
THE			intermediate construction and security and s
1108		N OH S O	TO THE TOTAL OF THE PROPERTY OF THE
1109	N.	NH ₂	- 7
1110		OH OH	; and
1111		N NH ₂	

46. A compound according to claim 1 having the following formula:

wherein R^1 , R^2 , R^3 , and R^4 are as defined below:

145

Cmpd. #	R ¹	R ²	R ³ R ⁴	A CONTRACTOR OF THE PERSON
2001				
2001	s			
2002				• 7
2003		J	,	
2004	N.			- J
2005	N N			
2006				- 7
2007	A ,			-,

146

Cmpd. #	R¹	R ²	R ³ R ⁴
2008	N. T.		;
2009			,
2010			;
2011	s		,
2012	N		;
2013			;
2014	A ,		;
2015			;

147

Cmpd. #	R ¹	R ²	R ³ R ⁴	A LAMBAN WATER BOTH THE WATER BOTH THE SAME THE
2016	N.	Racemic mixture		- 7
2017		Racemic mixture		• •
2018		Racemic mixture		· · · · · · · · · · · · · · · · · · ·
2019	S,	Racemic mixture		e P
2020	N	Racemic mixture		The second second section of the second section sectio
2021		Racemic mixture		e 7
2022	A.	Racemic mixture		

Cmpd. #	R ¹	R ²	R ³ R ⁴
2023		Racemic mixture	
2024	N.		
2025			
2026			;
2027	S,		, , , , , , , , , , , , , , , , , , ,
2028	₩ N		;
2029			;
2030	A.	<u>``</u>	;

Cmpd. #	R ¹	R ²	R ³ R ⁴
- 10 A A		1	
2031			
2032	N.	Mixture of enantiomers/	
2033		Mixture of enantiomers/	
2034		Mixture of enantiomers/	
2035		Mixture of enantiomers/	
2036	N	Mixture of enantiomers/	;

Cmpd. #	R	R ²	R ³ R ⁴	
				and a constant
2037	, , , , , , , , , , , , , , , , , , ,	''m,		.,
·				-
	Indiana . Administration and a sequence industrial	Mixture of enantiomers/ diastereoisomers		:
2038		<i>""</i>		;
	H, ;			
		Mixture of enantiomers/ diastereoisomers	1	
2039		<i>""</i>		- 5
			\	
		Mixture of enantiomers/ diastereoisomers		
2040		,,,,,		;
wanter warms assume	N Y		\	
		Racemic mixture		
2041				;
- And the second	O ,		\	
The Company of the Co		Racemic mixture	N C A C A C A C A C A C A C A C A C A C	
2042				;
South or the state of the state				
V. Comp. 1. Strangerick		Racemic mixture		

151

Cmpd. #	R¹	R ²	R ³ R ⁴	-
2043	S	Racemic mixture		
2044	N N	Racemic mixture		
2045		Racemic mixture		,
2046	A A	Racemic mixture		;
2047		Racemic mixture		;
2048	N.J.			;

152

Cmpd. #	R ¹	R ²	R ³ R ⁴	
	*1			Problem and medicals
2049				- 7
2050	S.			
2051				,
2052	O NH H			; and

,

Cmpd. #	R ¹	R²	R ³ R ⁴
2053	O NH II		HN NH HN NH H S

47. A compound according to claim 1 having the following formula:

wherein **B** and **D** are as defined below:

В	D	
WANTED AND THE PARTY OF THE PAR	An elem-Andelsen	·
N	СН	;
CH	СМе	; and
СМе	СН	1.
	N CH CMe	CH CMe

48. A pharmaceutical composition for the treatment or prevention of HCV infection, comprising an effective amount of a compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically

154

acceptable carrier.

- **49.** A composition according to claim 48, further comprising an immunomodulatory agent.
- **50.** A composition according to claim 49, wherein said immunomodulatory agents is selected from: α -, β -, δ γ -, and ω -interferon.
- **51.** A composition according to claim 48, further comprising another antiviral agent.
- **52.** A composition according to claim 51, wherein said antiviral agent is selected from: ribavirin and amantadine.

5

- **53.** A composition according to claim 48, further comprising another inhibitor of HCV polymerase.
- **54.** A composition according to claim 48, further comprising an inhibitor of HCV selected from: HCV helicase, HCV protease, HCV metalloprotease or HCV IRES.
- 55. Use of a compound of formula I according to claim 1, for the manufacture of a medicament for the treatment of HCV infection.
- 56. An intermediate compound of formula (i):

$$\begin{array}{c|c}
R^{1} & \stackrel{N}{\longrightarrow} & \stackrel{R^{3}}{\longrightarrow} & R^{4} \\
R^{2} & & & & \\
\end{array}$$
(i)

wherein R¹, R², R³, R⁴, B, D, X, Y¹, and Z are as defined in claim 1, or a derivative thereof.

155

57. An intermediate compound of formula I(ii):

wherein \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^7 , \mathbb{A} , \mathbb{B} , \mathbb{D} , \mathbb{X} , \mathbb{Y}^1 , \mathbb{Y}^2 and \mathbb{Z} are as defined in claim 1, or a derivative thereof.

5

10

15

58. A process for producing compounds of formula I,

ı

wherein \mathbf{R}^1 , \mathbf{R}^2 , \mathbf{R}^3 , \mathbf{R}^4 , \mathbf{R}^7 , \mathbf{A} , \mathbf{B} , \mathbf{D} , \mathbf{X} , \mathbf{Y}^1 , \mathbf{Y}^2 and \mathbf{Z} are as defined in claim 1, comprising:

a) removing, in a mixture of an aqueous base or an aqueous acid in a cosolvent, the protecting group (PG) from:

 $R^{1} \xrightarrow{N} R^{2} R^{4} \xrightarrow{R^{7}} N \xrightarrow{A} PG$

wherein R¹, R², R³, R⁴, R⁷, A, B, D, X, Y¹, Y² and Z are as defined in claim 1, and wherein PG is a carboxylic acid protecting group, so as to produce compounds of formula I.

5

156

59. A process for producing compounds of formula I,

wherein R¹, R², R³, R⁴, R⁷, A, B, D, X, Y¹, Y² and Z are as defined in claim 1, comprising:

a) cleaving, under acidic conditions, intermediate compound I(ii)

so as to produce compounds of formula I, where R^1 , R^2 , R^3 , R^4 , R^7 , A, B, D, X, Y^1 and Y^2 are as defined in claim 1.

l(ii)

60. A process for producing compounds of formula I,

Į

- wherein R¹, R², R³, R⁴, R⁷, A, B, D, X, and Z are as defined in claim 1, comprising:
 - i) coupling intermediate compound of formula (i):

157

$$R^{1} \xrightarrow{N} X^{2} D$$

$$R^{2}$$

$$(i)$$

wherein \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{B} , \mathbb{D} , \mathbb{X} , and \mathbb{Z} are as defined in claim 1, or a derivative thereof,

with $HN(\mathbf{R}^7)$ -A wherein \mathbf{R}^7 and A are as defined in claim 1, to produce a compound of formula I.

1/3

SEQUENCE LISTING

```
<110> Boehringer Ingelheim (Canada) Ltd.
5
    <120> Viral Polymerase Inhibitors
    <130> 13/089
10
    <140> 60/306,669
    <141> 2001-07-20
    <150> 60/338,324
    <151> 2001-12-06
15
    <160> 4
    <170> FastSEQ for Windows Version 4.0
20
    <210> 1
    <211> 621
    <212> PRT
    <213> HCV NS5B
25
    <400> 1
    Met Ser Tyr Tyr His His His His His Asp Tyr Asp Ile Pro Thr
                                        10
    Thr Glu Asn Leu Tyr Phe Gln Gly Ala Met Asp Pro Glu Phe Ser Met
                 20
                                     25
    Ser Tyr Thr Trp Thr Gly Ala Leu Ile Thr Pro Cys Ala Ala Glu Glu
30
                                                     45
                                 40
    Ser Gln Leu Pro Ile Asn Ala Leu Ser Asn Ser Leu Val Arg His Arg
                             55
    Asn Met Val Tyr Ser Thr Thr Ser Arg Ser Ala Ala Leu Arg Gln Lys
35
                         70
                                             75
    Lys Val Thr Phe Asp Arg Leu Gln Val Leu Asp Asp His Tyr Arg Asp
                                         90
                     85
    Val Leu Lys Glu Met Lys Ala Lys Ala Ser Thr Val Lys Ala Lys Leu
                                     105
                                                         110
    Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro His Ser Ala Lys
40
                                 120
                                                     125
            115
     Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val Arg Asn Leu Ser Ser Lys
                             135
                                                 140
    Ala Val Asp His Ile Arg Ser Val Trp Lys Asp Leu Leu Glu Asp Thr
                                             155
45
                         150
    Glu Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn Glu Val Phe Cys
                                         170
     Val Gln Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg Leu Ile Val Phe
                                                         190
                 180
                                     185
50
     Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala Leu Tyr Asp Val
                                 200
     Val Ser Thr Leu Pro Gln Ala Val Met Gly Ser Ser Tyr Gly Phe Gln
```

2/3

		210					215					220				
	Tyr 225	Ser	Pro	Lys	Gln	Arg 230	Val	Glu	Phe	Leu	Val 235	Asn	Ala	Trp	Lys	Ser 240
5	Lys	Lys	Cys	Pro	Met 245	Gly	Phe	Ser	Tyr	Asp 250	Thr	Arg	Cys	Phe	Asp 255	Ser
	Thr	Val	Thr	Glu 260	Ser	Asp	Ile	Arg	Val 265	Glu	Glu	Ser	Ile	Tyr 270	Gln	Cys
	Cys	Asp	Leu 275	Ala	Pro	Glu	Ala	Arg 280		Ala	Ile	Lys	Ser 285	Leu	Thr	Glu
10	Arg	Leu 290	Tyr	Ile	Gly	Gly	Pro 295	Leu	Thr	Asn	Ser	Lys 300	Gly	Gln	Asn	Cys
	Gly 305	Tyr	Arg	Arg	Cys	Arg 310	Ala	Ser	Gly	Val	Leu 315	Thr	Thr	Ser	Cys	Gly 320
15	Asn	Thr	Leu	Thr	Cys 325	Tyr	Leu	Lys	Ala	Ser 330	Ala	Ala	Cys	Arg	Ala 335	Ala
	_			340	_	Thr			345		_	_	_	350		
			355			Gly		360					365			
20	Phe	370					375					380		•		
	385			_	_	Leu 390					395	_				400
25					405	Ala				410					415	
				420		Leu			425					430		
00			435			Trp		440					445			
30		450				Val	455					460				
	465					Glu 470	_			_	475			_	_	480
35	_	_			485	Pro				490					495	
				500		Phe			505					510		
40			515			Cys Ala		520					525			
40		530	_		_		535			_		540				
	545					Thr 550					555					560
45	_		_		565	Leu				570				_	575	-
				580		Val			585					590		
50			595			Arg		600	_				605	пеп	пеи	пеи
50	neu	610	val	GTĀ	val	Gly	615	тХт	пеп	neu	LTO	620	Arg			

<210> 2 55 <211> 30

3/3

	<212> DNA <213> Forward Primer			
5	<400> 2 acgcagaaag cgtctagcca	tggcgttagt		30
10	<210> 3 <211> 30 <212> DNA <213> Reverse Primer			
	<400> 3 tcccggggca ctcgcaagca	ccctatcagg	,	30
15	<210> 4 <211> 26 <212> DNA <213> PUTR probe			
20	<400> 4 tggtctgcgg aaccggtgag	tacacc	Ģ.	26

INTERNATIONAL SEARCH REPORT

Int nal Application No PCT/CA 02/01129

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61K31/4184 C07D401/04

C07D407/14 C07D417/14 A61P31/22

CO7D407/04 C07D235/18 CO7D409/04 CO7D403/04

C07D471/04 A61K31/437

Relevant to claim No.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Category °

Minimum documentation searched (classification system followed by classification symbols) IPC 7 A61K C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Citation of document, with indication, where appropriate, of the relevant passages

EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

P,X	WO 02 04425 A (BEAULIEU PIERRE L;BOEHRINGER INGELHEIM CA LTD (CA J) 17 January 2002 (2002-01-17) claims; examples 135-138,1111-1114,1118,13017-130 047	A); GILLARD	1-45
P,X X	EP 1 162 196 A (JAPAN TOBACCO IN 12 December 2001 (2001-12-12) & WO 01 47883 A 5 July 2001 (200		1-45 1-45
X	claims; examples DE 26 41 060 A (HOECHST AG) 16 March 1978 (1978-03-16) claims; examples		1-45
	,	-/	w.
	er documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
'A' documer conside 'E' earlier de filling de 'L' documer which is citation 'O' documer other m	nt defining the general state of the art which is not sered to be of particular relevance ocument but published on or after the international ste at which may throw doubts on priority claim(s) or a cited to establish the publication date of another or other special reason (as specified) and referring to an oral disclosure, use, exhibition or	 "T" later document published after the interest or priority date and not in conflict with a cited to understand the principle or the invention "X" document of particular relevance; the cited cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cited cannot be considered to involve an inventive step with one or more than the considered to involve an inventive such combined with one or more ments, such combination being obvious in the art. "&" document member of the same patent for the same patent f	aimed invention be considered to cument is taken alone aimed invention entive step when the re other such docu- s to a person skilled
	ctual completion of the international search November 2002	Date of mailing of the international sea	rch report
Name and m	ailing address of the ISA European Palent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Authorized officer Schmid, J-C	

INTERNATIONAL SEARCH REPORT

Int nal Application No
PCT/CA 02/01129

C (Continu	nation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/CA 02/01129
Category °		Relevant to claim No.
Х	CHEMICAL ABSTRACTS, vol. 112. no. 13.	1-45
	26 March 1990 (1990-03-26) Columbus, Ohio, US; abstract no. 118505c, KOTOVSKAYA S ET AL: "Benzimidazolyl derivatives of penicillin and cephalosporin: synthesis and antimicrobial activity." XP002221215	
	abstract & KHIMFARM. ZH. 1989, 23(8), 952-6,	***
į		
:		

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Present claim 1 relates to isomers, i.e. any compounds having the same molecular formulae.

Furthermore claim 1 refer to a radical R8 which is not represented so that a lack of clarity within the meaning of Article 6 PCT arises to such an extent as to render a meaningful search of the claims impossible. Consequently, the search has been carried out for those parts of the application which do appear to be clear, namely the compounds of claim 1 except those compounds referring to a radical R8, the meaning of isomers being furthermore restricted to enantiomers and diastereoisomers.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

national application No. PCT/CA 02/01129

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	-
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
Claims Nos.: Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte Il Application No PCT/CA 02/01129

Patent document cited in search report	Publication date		Patent family member(s)		Publication date
WO 0204425 A	17-01-2002	AU WO US WO	7225801 / 0204425 / 2002065418 / 02070739 /	A2 A1	21-01-2002 17-01-2002 30-05-2002 12-09-2002
EP 1162196 A	12-12-2001	AU BR EP NO NZ SK CN CZ WO JP TR	2401701 / 0008525 / 1162196 / 20014134 / 514403 / 13752001 / 1342145 7 20013424 / 0147883 / 2001247550 / 200103147 7	A A1 A A A3 T A3 A1	09-07-2001 02-01-2002 12-12-2001 22-10-2001 25-10-2002 02-07-2002 27-03-2002 13-02-2002 05-07-2001 11-09-2001 21-06-2002
DE 2641060 A	16-03-1978	DE	2641060 /	A1	16-03-1978