

Digital Image Processing Lab

Course Code: CSEL - 4104

Presentation on

Hand Gesture Recognition

A Digital Image Processing Approach

Maria Akter Abin(B190305040) Najnin Sultana Shirin(B190305031)

Supervised by

Dr.Md.Zulfiker Mahmud

Professor

Dept. of Computer Science & Engineering

Jagannath University, Dhaka

Table of Contents

01.Introduction

06. Methodology

02. Challenges & Goal

07.Image Acquisition

03. Key Features

08. Preprocessing

04.Implementation

09. Classification

05. Diagram and charts

10. Gesture Output

11. Conclusion

Introduction

Hand Gesture Recognition (HGR) is a field of computer science that focuses on recognizing and interpreting human hand gestures. It involves using Digital Image Processing techniques to analyze images or video frames.

- A gesture is a **non-verbal** communication in which visible body communicates **particular** message.
- Motion of body that contains information.
- Human Computer Interaction Gesture

Challenges in Real-Time HGR

- Real-time Processing
- Robustness to Environmental Factors
- Accurately segmenting the hand from the background

Project Goals

Goal-1

Develop a robust and accurate real-time Hand Gesture Recognition (HGR) system

Goal-2

Implement an efficient HGR pipeline capable of processing image frames in real-time

Goal-3

Create effective hand segmentation techniques to isolate hand regions, such

Key Features

Real-Time Gesture Recognition

 Detects and recognizes hand gestures from live input.

Multi-Gesture Support

 Supports a variety of hand gestures for different use cases.

Image processing & Machine Learning

 Utilizes OpenCV for image processing and detecting hand landmarks for gesture classification.

Customizable

 Easily extendable to add new gestures or improve the accuracy of the model.

Implementation

Software Tools used in HGR project making

Numpy

TensorFlow

Sequence Diagram

Flow Chart Diagram

Activity Diagram

Use Case Diagram

Project Flow

Hand Landmark and contour

Methodology

GP7) Filly Gradani Ma

- 1.Image acquisition
- 2.Pre-processing
 - i) Hand Detection
 - ii) Cropping
 - iii) Resizing and Centering
 - iv) Gray-scale Conversion
 - v) Binarization
 - vi) Noise Removal
 - vii) Blob Removal
- 3. Model Training
- 4. Real-Time Gesture Recognition
 - i) Color Conversion
 - ii) Hand Landmark Detection
 - iii) Drawing Landmarks
- 5. Testing and Evaluation

Image Acquisition

- The first step in hand gesture recognition is **Image Acquisition**. This involves capturing images or video frames of the hand performing various gestures.
- Webcams: Use a webcam to capture hand gestures with OpenCV and detect hands with the HandDetector.

Preprocessing

Before feeding images into the HGR system, We preprocessed data to improve their quality and facilitate subsequent analysis.

Image Preprocessing(Deatils)

- **1.Hand Detection:** Detects and locates hands using bounding boxes.
- **2.Image Cropping:** Extracts only the **hand** region from each frame.
- 3.Resizing and Centering: Resizes the cropped image to fit within a fixed square size (300 x 300 pixels), centering it within a white background.
- **4.Gray-scale** Conversion: Converts the centered image to gray-scale.

5.Binarization: Converts the gray-scale image to a binary (black and white) image using thresholding.

6. Noise Removal: Applies a median filter to reduce noise in the binary image.

7.Blob Removal: Removes **small components** (unwanted parts) from the image, keeping only **larger components** (like the hand).

5

7

Gesture Recognition & Landmark Detection

Model Training:

- Image Labeling: Assigns labels to images based on gesture classes.

Real-Time Gesture Recognition:

- Color Conversion: Converts frames from BGR to RGB for Mediapipe compatibility.
- Hand Landmark Detection: Identifies key points on the hand (e.g., fingertips, knuckles).
- Drawing Landmarks: Visualizes hand landmarks and connections on each frame.

0.	WRIST	MIDDLE_FINGER_DI	[P
1.	THUMB_CMC	12. MIDDLE_FINGER_TI	P
2.	THUMB_MCP	13. RING_FINGER_MCP	E.
3.	THUMB_IP	14. RING_FINGER_PIP	
4.	THUMB_TIP	15. RING_FINGER_DIP	
5.	INDEX_FINGER_MCP	16. RING_FINGER_TIP	
6.	INDEX_FINGER_PIP	17. PINKY_MCP	
7.	INDEX_FINGER_DIP	18. PINKY_PIP	
8.	INDEX_FINGER_TIP	19. PINKY_DIP	•
9.	MIDDLE_FINGER_MCP	20. PINKY_TIP	•
10.	MIDDLE_FINGER_PIP		•

Classification

GPIAIRY FANGATIONS

Image Classification has two steps:

- 1. Machine learning
- 2. Recognition

Gesture Output

Testing and Evaluation:

- Frame Processing: Continuously processes each frame to detect hands and predict gestures.
- Text Overlay: Displays predicted gesture label on the video frame for real-time feedback.

Our Predicted Gestures: We worked on some gestures like thumbs up, thumbs down, okay, peace, call me, stop etc.

Gestures Output

Conclusion

This project successfully developed a hand gesture recognition system capable of accurately recognizing a variety of hand gestures.

Future Improvements

- Expanding Gesture Library
- Improving Robustness
- User-Centric Design

Applications

- Robotics
- Artificial Intelligence
- Controlling computer through gesture

References

1.IEEE Xplore: Real-Time Hand Gesture Recognition -

https://ieeexplore.ieee.org/document/8756576

2. Research Gate: Hand Gesture Recognition-

https://www.researchgate.net/publication/264117080 Real Time Hand Gesture Recognition on for Computer Interaction

3. https://techvidvan.com/tutorials/hand-gesture-recognition-tensorflow-opency/

Thank you Any question?

••••