Estatística Numérica Computacional Trabalho nº4

Marta Paz n°49861 Rafael Almeida n°49788 Rafael Gameiro n°50677 Ricardo Pinto n°49811

December, 2018

Estimação do parâmetro gama num modelo de crescimento não linear

Suponha que estamos interessados em considerar um modelo de crescimento não linear de uma espécie de animais em que o crescimento de cada animal Y se relaciona com a sua idade x. Assim, para o animal i, o modelo postula que:

$$Y_i \sim Normal\left(\alpha - \beta \gamma^{x_i}, \sigma^2\right), \alpha, \beta > 0; \quad 0 < \gamma < 1.$$

Considere que $\alpha = 2.7$, que $\beta = 0.9$ e que $\sigma^2 = 0.01$.

Assuma uma distribuição a priori não informativa Uniforme(0,1) para γ . Considere ainda os dados observados:

x = (1.0, 1.5, 1.5, 1.5, 2.5, 4.0, 5.0, 5.0, 7.0, 8.0, 8.5, 9.0, 9.5, 9.5, 10.0, 12.0, 12.0, 13.0, 13.0, 14.5, 15.5, 15.5, 16.5, 17.0, 22.5, 29.0, 31.5)

Y = (1.80, 1.85, 1.87, 1.77, 2.02, 2.27, 2.15, 2.26, 2.47, 2.19, 2.26, 2.40, 2.39, 2.41, 2.50, 2.32, 2.32, 2.43, 2.47, 2.56, 2.65, 2.47, 2.64, 2.56, 2.70, 2.72, 2.57)

Alínea 1

Obtenha a densidade a posteriori de $\gamma,$ a menos de uma constante multiplicativa.

Resolução

A probabilidade *a posteriori* consiste no cálculo de uma probabilidade condicionada aplicada a um conjunto de dados anteriormente tratados. A distribuição *a posteriori* descreve, assim, todo o conhecimento que se tem no momento à cerca de uma variável, com base na informação obtida *a priori* segundo uma função de verosimilhança.

Por outras palavras, a distribuição de probabilidade a posteriori de uma variável aleatória x, sabendo o valor de uma outra variável θ , que resulta na função densidade de probabilidade a posteriori de Θ , pode ser calculada pelo Teorema de Bayes:

$$h(\theta \mid x) = \frac{f(x \mid \theta)h(\theta)}{\int_{\theta} f(x \mid \theta)h(\theta)}$$

Sejam, portanto:

 $h(\theta \mid x)$ - densidade a posteriori de θ

 $h(\theta)$ - densidade a priori de θ

 $f(x \mid \theta)$ - função de verosimilhança de x sabendo θ

Seja ainda:

$$f(x) = \int_{\theta} f(x \mid \theta) h(\theta) dx$$

Uma vez que f(x) não depende de θ , podemos assumir que: $h(\theta \mid x) = \frac{f(x|\theta)h(\theta)}{\int_{\theta} f(x|\theta)h(\theta)dx}$ é, na verdade, proporcional a $f(x \mid \theta)h(\theta)$

Nesta alínea é pedido para calcularmos a densidade a posteriori de γ . Substituindo, na fórmula da densidade a posteriori, pelas variáveis correspondentes ao enunciado, temos:

$$h(\gamma \mid y) = \frac{f(y \mid \gamma)h(\gamma)}{\int_{\gamma} f(y \mid \gamma)h(\gamma)}$$

Sabe-se que $h(\gamma)$ assume uma distribuição Uniforme(0,1) e que $f(y \mid \gamma)$ assume uma distribuição Normal. Assim sendo, temos as respetivas funções densidade de probabilidade (f.d.p.):

- f.d.p. da Distribuição Uniforme: $Uniforme(a,b) \Rightarrow Uniforme(0,1)$:

$$f(y) = \frac{1}{h-a} \Rightarrow \frac{1}{1-0} = 1$$

- f.d.p. da Distribuição Normal: Normal $(\mu, \sigma^2) \Rightarrow \text{Normal}(\alpha - \beta \gamma^x, \sigma^2) \Rightarrow \text{Normal}(2,7 - 0,9\gamma^x, 0,01)$:

$$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y-\mu)^2}{2\sigma^2}} \Leftrightarrow \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y-2.7+0.9\gamma^{x_i})^2}{2*0.01}}$$

Substituindo estas funções densidade na função de densidade *a posteriori*, obtemos:

$$h(\gamma|y) = \frac{\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y-2.7+0.9\gamma^x)^2}{2*0.01}}*1}{\int \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y-2.7+0.9\gamma^x)^2}{2*0.01}}*1d\gamma} = \frac{\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y-2.7+0.9\gamma^x)^2}{2*0.01}}}{\frac{1}{\sqrt{2\pi}\sigma}\int e^{-\frac{(y-2.7+0.9\gamma^x)^2}{2*0.01}}d\gamma} = \frac{e^{-\frac{(y-2.7+0.9\gamma^x)^2}{2*0.01}}}{\int e^{-\frac{(y-2.7+0.9\gamma^x)^2}{2*0.01}}d\gamma}$$

Esta fórmula é proporcional a:

$$h(\gamma|y) \propto e^{-\frac{(y-2.7+0.9\gamma^x)^2}{2*0.01}}$$

Uma vez que as variáves dependem de vários valores, temos que:

$$h(\gamma|y) \propto \prod_{i=1}^{n=27} e^{-\frac{(y_i - 2.7 + 0.9\gamma^x i)^2}{2*0.01}} = e^{\sum_{i=1}^{n=27} -\frac{(y_i - 2.7 + 0.9\gamma^x i)^2}{2*0.01}}$$

Alínea 2

Estabeleça um algoritmo do $m\acute{e}todo$ de Metropolis-Hastings para amostrar da distribuição a posteriori de γ . Analise e comente os resultados. Usando valores amostrados através do seu algoritmo, estime a probabilidade a posteriori de γ tomar valores superiores a 0.9.

Resolução

O método de Metropolis-Hastings pertence aos métodos Markov Chain Monte Carlo (M.C.M.C), e consiste em formar uma cadeia de Markov gerando várias amostras apartir de uma distribuição proposta. Cada valor gerado pode ou não ser aceite com base na densidade da distribuição a priori, o que permite que a cadeia, no final, convirja para uma distribuição, a distribuição a posteriori.

Para este exercício, fizemos um algoritmo do *método de Metropolis-Hastings* em R, com o objetivo de amostrar a distribuição *a posteriori* de γ . Depois de colocar os dados do enunciado no R, na forma de dois vetores, criámos uma função para executar o algoritmo. Essa função recebe como parâmetros os dados x e y, o primeiro valor de gama, o burn.in (valor utilizado para "desprezar" os primeiros valores) e o m (valor que, somado com o burn.in, vai dar origem ao número de valores de gama gerados). Os valores de burn.in, de m e do primeiro gama podem ser fornecidos, mas a função já têm valores pré-definidos. Pelo contrário, os valores de x e y tem de ser obrigatoriamente fornecidos. Depois temos de:

- 1. Criar a variável gama, que é uma matriz de (burn.in+m) x 1
- 2. Atribuir o valor recebido como parâmetro do primeiro gama à posição 1 de gama
- 3. Gerar um γ ' com o runif(1)
- 4. Calcular $\alpha = \min\left(1, \frac{f(y|\gamma')}{f(y|\gamma)}\right) = \min\left(1, \frac{e^{\sum_{i=1}^{n=27} \frac{(y_i 2.7 + 0.9\gamma'^{x_i})^2}{2*0.01}}}{e^{\sum_{i=1}^{n=27} \frac{(y_i 2.7 + 0.9\gamma'^{x_i})^2}{2*0.01}}}\right)$, sendo que γ ' é o γ ' gerado em (3) e γ é o elemento da posição gama[i-1]
- 5. Gerar um u = runif(1)
- 6. Se u $\leq \alpha,$ gama[i] = γ' e a taxa de aceitação é incrementada. Caso contrário gama[i] = gama[i-1]
- 7. Fazer os pontos 3 a 6, desde i=2 até burn.in+m
- 8. Quando o ciclo acaba, é retornado os valores de gama compreendidos entre burn.in e m.

Para estimar a probabilidade a posteriori de γ tomar valores superiores a 0.9 temos que:

 $\hat{P}(\gamma > 0.9 \mid \text{y}) = \text{sum}(\text{gama.MH\$gama} > 0.9) / \text{length}(\text{gama.MH\$gama}) = 0.26789$, em que

- gama.MH\$gama : todos os valores de gama calculados com o algoritmo implementado para o *método de Metropolis-Hastings*
- \bullet gama. MH\$gama > 0.9 : os valores de gama maiores que 0.9
- \bullet sum(gama.MH\$gama > 0.9) : o número de valores maiores que 0.9
- length(gama.MH\$gama) : o número total de elementos gama calculados

Análise de Resultados

Após correr o algoritmo obtivemos uma taxa de aceitação igual a 0.023. De seguida, calculámos a média e o desvio padrão dos valores obtidos com o algoritmo implementado, resultando em 0.8951985 e 0.007216911, respetivamente. Por último, fizemos o seguinte histograma com base nos valores de gama obtidos com o algoritmo:

E, analisando o histograma, podemos verificar que a distribuição de γ se assemelha com a distribuição Normal (μ, σ^2) .

Alínea 3

Um aspeto importante da modelação Bayesiana é a sensibilidade dos resultados à escolha da distribuição a priori dos parâmetros desconhecidos. Assim, conduza uma análise de sensibilidade neste sentido considerando outras distribuições a priori diferentes para γ . Escolha essas novas distribuições a priori para γ na família Beta(a,b), de tal forma que explore as consequências nos

resultados de escolher distribuições a priori mais e menos variáveis que a inicial. Relembre que a distribuição Uniforme(0,1) é na verdade uma distribuição Beta(1,1) e consulte o formulário para relembrar quanto valem a média e a variância de variáveis aleatórias com distribuição Beta.

Resolução

Para este exercício é pedido que façamos uma análise de sensibilidade considerando outras distribuições a priori para γ . Essas novas distribuições devem estar na família Beta(a,b), de tal forma que explore as consequências nos resultados de escolher distribuições a priori mais e menos variáveis que a inicial.

Deste modo, baseamos a nossa resposta no algoritmo implementado na alínea anterior. Por isso, começamos por definir a função densidade *a posteriori* para este caso em que a variável γ assume uma função de distribuição *a priori* Beta(a,b).

Assim ficamos com:

$$\begin{split} h(\gamma|y) &= \frac{\frac{1}{\sqrt{2\pi}\sigma} \times e^{-\frac{(y-2,7+0,9\gamma^x)^2}{2\times0,01}} \times \frac{1}{Beta(a,b)} \times \gamma^{a-1} \times (1-\gamma)^{b-1}}{\int \frac{1}{\sqrt{2\pi}\sigma} \times e^{-\frac{(y-2,7+0,9\gamma^x)^2}{2\times0,01}} \times \frac{1}{Beta(a,b)} \times \gamma^{a-1} \times (1-\gamma)^{b-1} d\gamma} = \\ &= \frac{\frac{1}{\sqrt{2\pi}\sigma} \times e^{-\frac{(y-2,7+0,9\gamma^x)^2}{2\times0,01}} \times \frac{1}{Beta(a,b)} \times \gamma^{a-1} \times (1-\gamma)^{b-1}}{\frac{1}{\sqrt{2\pi}\sigma} \times \int e^{-\frac{(y-2,7+0,9\gamma^x)^2}{2\times0,01}} \times \frac{1}{Beta(a,b)} \times \gamma^{a-1} \times (1-\gamma)^{b-1} d\gamma} = \\ &= \frac{e^{-\frac{(y-2,7+0,9\gamma^x)^2}{2\times0,01}} \times \frac{1}{Beta(a,b)} \times \gamma^{a-1} \times (1-\gamma)^{b-1}}{\int e^{-\frac{(y-2,7+0,9\gamma^x)^2}{2\times0,01}} \times \frac{1}{Beta(a,b)} \times \gamma^{a-1} \times (1-\gamma)^{b-1} d\gamma} \end{split}$$

Sabemos que a função de densidade $a\ posteriori$ apresentada anteriormente é proporcional a:

$$h(\gamma|y) \propto e^{-\frac{(y-2,7+0,9\gamma^x)^2}{2\times0,01}} \times \frac{1}{Beta(a,b)} \times \gamma^{a-1} \times (1-\gamma)^{b-1}$$

Uma vez que y e x dependem de vários valores, temos que:

$$h(\gamma|y) \propto \prod_{i=1}^{n=27} e^{-\frac{(y_i-2,7+0,9\gamma^x i)^2}{0,02}} \times \frac{1}{Beta(a,b)} \times \gamma^{a-1} \times (1-\gamma)^{b-1} =$$

$$= e^{-\sum_{i=1}^{n=27} \frac{(y_i - 2, 7 + 0, 9\gamma^{x_i})^2}{0,02}} \times \frac{1}{Beta(a,b)} \times \gamma^{a-1} \times (1 - \gamma)^{b-1}$$

Uma vez que $\frac{1}{Beta(a,b)}$ resulta num valor constante, então este mesmo valor poderia ser visto como uma constante de proporcionalidade. De qualquer modo, sabemos que Beta(a,b) pode ser calculado através da seguinte expressão:

$$Beta(a,b) = \frac{\Gamma(a) \times \Gamma(b)}{\Gamma(a+b)}$$

Onde para valores inteiros, $\Gamma(a) = (a-1)!$ e para valores decimais temos:

$$\Gamma(a) = \int_0^{+\infty} e^{-x} x^{a-1} dx$$

Neste momento, já temos todas as fórmulas necessárias para a implementação do algoritmo de *Metropolis-Hastings*. Assim sendo, no R, realizámos os seguintes passos:

• Para a implementação do algoritmo que nos dará os valores de γ com base no Metropolis-Hastings, implementámos um algoritmo muito semelhante ao que fizemos no exercício 2. Neste caso, para além dos parâmetros que recebia nessa alínea, vai passar a receber também um valor de a e outro de b. Adicionalmente, como a distribuição a priori é igual à proposta, estas duas funções vão-se cortar ficando apenas, para o calculo de α a seguinte expressão (que será equivalente à expressão apresentada na alínea 2):

$$\alpha = \min \left(1, \frac{e^{-\sum_{i=1}^{n=27} \frac{(y_i - 2, 7 + 0, 9\gamma^{tx_i})^2}{0, 02}}}{e^{-\sum_{i=1}^{n=27} \frac{(y_i - 2, 7 + 0, 9\gamma^{x_i})^2}{0, 02}} \right)$$

Análise de Resultados

Para realizar uma análise de sensibilidade, considerámos os seguintes valores de a e b, calculando a média e a variância para cada grupo de valores:

• a = 0.1 e b = 1

A priori : $E[\gamma] = 0.09$ $Var(\gamma) = 0.039$

A posteriori : $E[\gamma] = 0.8955354$ $Var(\gamma) = 4.613906e - 05$

• a = 0.3 e b = 1

A priori : $E[\gamma] = 0.231$ $Var(\gamma) = 0.077$

A posteriori : $E[\gamma] = 0.8948389$ $Var(\gamma) = 4.801507e - 05$

• a = 0.5 e b = 1

A priori : $E[\gamma] = 0.33$ $Var(\gamma) = 0.089$

A posteriori : $E[\gamma] = 0.8949416$ $Var(\gamma) = 5.276032e - 05$

• a = 0.7 e b = 1

A priori : $E[\gamma] = 0.41$ $Var(\gamma) = 0.090$

A posteriori : $E[\gamma] = 0.8952692$ $Var(\gamma) = 5.235336e - 05$

• a = 0.9 e b = 1

A priori : $E[\gamma] = 0.47$ $Var(\gamma) = 0.086$

A posteriori : $E[\gamma] = 0.8952902$ $Var(\gamma) = 5.36512e - 05$

• a = 1 e b = 0.1

A priori : $E[\gamma] = 0.91$ $Var(\gamma) = 0.039$

A posteriori : $E[\gamma] = 0.8956029$ $Var(\gamma) = 5.19699e - 05$

• a = 1 e b = 0.3

A priori : $E[\gamma] = 0.77$ $Var(\gamma) = 0.077$

A posteriori : $E[\gamma] = 0.8954917$ $Var(\gamma) = 4.978047e - 05$

• a = 1 e b = 0.5

A priori : $E[\gamma] = 0.67$ $Var(\gamma) = 0.089$

A posteriori : $E[\gamma] = 0.8955286$ $Var(\gamma) = 4.950534e - 05$

•
$$a = 1 e b = 0.7$$

A priori :
$$E[\gamma] = 0.59 \hspace{1cm} Var(\gamma) = 0.090 \label{eq:equation:equation}$$

A posteriori :
$$E[\gamma] = 0.8951525$$
 $Var(\gamma) = 5.154195e - 05$

•
$$a = 1 e b = 0.9$$

A priori :
$$E[\gamma] = 0.53 \hspace{1cm} Var(\gamma) = 0.086 \label{eq:var}$$

A posteriori :
$$E[\gamma] = 0.8951582 \qquad Var(\gamma) = 5.246858e - 05$$

Com os valores acima de a e b, obtivemos os seguintes gráficos:

Histograma de gama com a=1 e b=0.3

Histograma de gama com a=1 e b=0.5

Histograma de gama com a=1 e b=0.7

Histograma de gama com a=1 e b=0.9

Histograma de gama com a=0.1 e b=1

Histograma de gama com a=0.3 e b=1

Density

Histograma de gama com a=0.7 e b=1

gama

Histograma de gama com a=1 e b=0.1

Ao avaliar os gráficos apresentados anteriormente, podemos verificar que apesar das várias alterações aos valores de a e b, as distribuições a posteriori que aparentam ser distribuições Normal (μ, σ^2) , não sofreram grandes alterações em termos de valores gerados. Podemos também observar isso comparando os valores da média e variância gerados nas diferentes distribuições a posteriori.

Todos os valores da média e variância de cada distribuição *a posteriori* são muito proximos entre si o que acaba por confirmar que, apesar de termos gerado varias distribuições *a poesteriori* os valores e graficos obtidos não diferem muito entre si.