Corsi di Laurea in Scienze Naturali

ISTITUZIONI DI MATEMATICA - A.A. 2009-2010 - FOGLIO 1

1.1 Esercizio

Trovare dominio e immagine delle seguenti funzioni:

$$f(x) = -\sqrt{x-4};$$
 $g(x) = 1 + \sqrt[5]{x};$ $h(x) = \frac{x}{x-1};$ $k(x) = \log(\cos x).$

1.2 Esercizio

Trovare $f \circ g$, $g \circ f$ e specificare il loro dominio di definizione nei seguenti casi:

1.
$$f(x) = 3x^2$$
, $g(x) = \frac{1}{x-1}$;

2.
$$f(x) = \sqrt{x+1}, \quad g(x) = \sin x;$$

3.
$$f(x) = \log x$$
, $g(x) = x + 1$;

4.
$$f(x) = \log(1-x), \quad g(x) = \frac{4x}{x^2+3};$$

5.
$$f(x) = \sqrt{\log x}, \quad g(x) = \frac{x^2 - 1}{x};$$

6.
$$f(x) = \arcsin(2 - x^2), \quad g(x) = \tan(x).$$

1.3 Esercizio

Per ciascuna delle seguenti funzioni

$$f(x) = \begin{cases} x, & x < 0 \\ x^2, & x \ge 0 \end{cases} \qquad g(x) = 3^{x^3 + x}$$

dire se è invertibile e, in caso affermativo, indicarne il dominio dell'inversa.

1.4 Esercizio

Trovare l'insieme di definizione delle seguenti funzioni:

1.
$$f(x) = \arccos\left(\frac{x-3}{x+1}\right);$$
 2. $f(x) = \sqrt{\arctan\left(\frac{x+2}{x}\right)};$

3.
$$f(x) = \arcsin\left(\frac{x-1}{x+1}\right) - \log(1-x^2);$$
 4. $f(x) = \arccos\left(1 - \frac{x^2-1}{x}\right);$

5.
$$f(x) = \tan\left(\arccos\left(\frac{x}{x+2}\right)\right);$$

1.5 Esercizio

Dire quali delle funzioni dell'esercizio precedente sono invertibili. Esaminare se le funzioni date sono monotone.

1.6 Esercizio

Date due funzioni $f,g:\mathbb{R}\to\mathbb{R},$ indichiamo con $f\cdot g$ la funzione prodotto, cioè

$$(f \cdot g)(x) := f(x)g(x)$$
 per ogni $x \in \mathbb{R}$.

Dimostrare le seguenti implicazioni:

- 1. f pari, g pari \Longrightarrow $g \cdot f$ pari;
- 2. f dispari, g pari \Longrightarrow $g \cdot f$ dispari;
- 3. f dispari, g dispari \Longrightarrow $g \cdot f$ pari.

1.7 Esercizio

Date due funzioni $f,g:\mathbb{R}\to\mathbb{R},$ dimostrare le seguenti implicazioni:

- 1. f pari \Longrightarrow $g \circ f$ pari;
- 2. f dispari, g pari \Longrightarrow $g \circ f$ pari;
- 3. f dispari, g dispari \Longrightarrow $g \circ f$ dispari.

1.8 Esercizio

Date due funzioni $f,g:\mathbb{R}\to\mathbb{R},$ dimostrare le seguenti implicazioni:

- 1. f crescente, g crescente \implies $g \circ f$ crescente;
- 2. f decrescente, g decrescente $\implies g \circ f$ crescente;
- 3. f decrescente, g crescente \Longrightarrow $g \circ f$ e $f \circ g$ decrescenti.

1.9 Esercizio

Sia $f: X \to Y$ una funzione e siano A, B sottoinsiemi di Y. Dimostrare che:

- 1. $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B);$
- 2. $f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B);$
- 3. $f^{-1}(A) \setminus f^{-1}(B) = f^{-1}(A \setminus B)$.

<u>Nota</u>: Si ricorda che $f^{-1}(A)$ è la controimmagine dell'insieme A tramite la funzione f, cioè l'insieme definito come $f^{-1}(A) := \{x \in X : f(x) \in A\}$.

1.10 Esercizio

Sia $f: X \to Y$ una funzione e siano A, B sottoinsiemi di X. Dimostrare che

- 1. $f(A) \cup f(B) = f(A \cup B);$
- 2. $f(A \cap B) \subseteq f(A) \cap f(B)$;
- 3. $f(A) \setminus f(B) \subseteq f(A \setminus B)$.

Dimostrare infine che in (2) e (3) vale l'uguaglianza quando f è iniettiva.

Nota: Si ricorda che f(A) è l'immagine dell'insieme A tramite la funzione f, cioè l'insieme definito come $f(A) := \{ y \in Y : y = f(x) \text{ per qualche } x \in A \}.$