- 1.14 1) Placer en rang 3 garçons et 3 filles revient à permuter 6 personnes. On peut le faire de $P_6 = 6! = 720$ façons.
 - 2) Formons un groupe garçons et un groupe filles.

Ces deux groupes peuvent être disposés de $P_2 = 2! = 2$ façons.

Au sein du groupe de 3 garçons, il y a $P_3 = 3! = 6$ dispositions possibles.

De même, au sein du groupe des 3 filles, $P_3=3!=6$ dispositions sont possibles.

Au total, cela représente $P_2 \cdot P_3 \cdot P_3 = 2 \cdot 6 \cdot 6 = 72$ possibilités.

3) Formons un groupe avec les garçons.

Il s'agit de placer le groupe des garçons ainsi que les trois filles, c'est-à-dire quatre éléments. On peut le faire de $P_4=4!=24$ façons.

Au sein du groupe de 3 garçons, il y a $P_3 = 3! = 6$ dispositions possibles.

En résumé, on a obtenu $P_4 \cdot P_3 = 24 \cdot 6 = 144$ possibilités.

4) Il y a deux façons de faire en sorte que deux personnes du même sexe ne soient jamais voisines :

Il reste alors à placer les 3 garçons aux trois places qui leur sont réservées $(P_3 = 3! = 6 \text{ possibilités})$ et les 3 filles aux trois places qui leur sont dévolues $(P_3 = 3! = 6 \text{ possibilités})$.

Au total, on a donc $2 \cdot 6 \cdot 6 = 72$ possibilités.

Combinatoire Corrigé 1.14