Optimalizace a teorie her

Konvexní množiny

Martin Bohata

Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz

Definice konvexní množiny

Definice

Nechť $x,y\in\mathbb{R}^n$. Množina

$$[x, y] := \{\lambda x + (1 - \lambda)y \mid 0 \le \lambda \le 1\}$$

se nazývá (uzavřená) úsečka s krajními body x, y.

Definice

Množina $C\subseteq \mathbb{R}^n$ se nazve konvexní, jestliže pro každé $x,y\in C$ je $[x,y]\subseteq C.$

Základní příklady

Příklad

- lacksquare Každý interval v $\mathbb R$ je konvexní množina.
- $oldsymbol{2}$ Každý lineární podprostor prostoru \mathbb{R}^n je konvexní množina.
- **3** Každá úsečka a prázdná množina v \mathbb{R}^n jsou konvexní množiny.
- **4** Nechť $\alpha \in \mathbb{R}$ a $y \in \mathbb{R}^n \setminus \{0\}$. Nadrovina

$$H(y; \alpha) := \{x \in \mathbb{R}^n \mid \langle x, y \rangle = \alpha\}.$$

je konvexní množina. Vektor y se nazývá normálový vektor nadroviny $H(y;\alpha)$.

Základní příklady

Příklad

1 Nechť $y \in \mathbb{R}^n \setminus \{0\}$ a $\alpha \in \mathbb{R}$. Uzavřený poloprostor

$$\{x \in \mathbb{R}^n \mid \langle x, y \rangle \le \alpha\}$$

je konvexní množina.

Uzavřená koule

$$B(a;r) = \{x \in \mathbb{R}^n \, | \, ||x - a|| \le r\}$$

o středu $a \in \mathbb{R}^n$ a poloměru r > 0 je konvexní množina.

Okolí

$$U(a; r) = \{ x \in \mathbb{R}^n \, | \, ||x - a|| < r \}$$

bodu $a \in \mathbb{R}^n$ o poloměru r > 0 je konvexní množina.

Tvrzení

Průnik libovolného počtu konvexních množin je konvexní množina.

Důkaz: Viz přednáška.

Příklad

$$\{x \in \mathbb{R}^n \,|\, Ax = b\} \,.$$

je konvexní množina.

Nezáporný ortant

$$\mathbb{R}^n_+ := \{(x_1, \dots, x_n)^T \in \mathbb{R}^n \mid x_1 \ge 0, \dots, x_n \ge 0\}$$

je konvexní množina.

Příklad (Pokračování)

lacktriangle Nechť $A\in \mathbb{M}_{m,n}(\mathbb{R})$ a $b\in \mathbb{R}^m.$ Konvexní polyedrická množina

$$\{x \in \mathbb{R}^n \,|\, Ax \le b\}\,,$$

kde $Ax \leq b$ znamená $b-Ax \in \mathbb{R}^m_+$, je konvexní množina. Omezená konvexní polyedrická množina se nazývá konvexní mnohostěn. Například

$$\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \middle| \begin{pmatrix} 1 & 1 \\ -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \le \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$

je konvexní mnohostěn.

• Sjednocení a rozdíly množin konvexitu nezachovávají (viz např. $[0,1]\setminus(0,1)=\{0\}\cup\{1\}$).

Definice

Zobrazení $f:\mathbb{R}^n\to\mathbb{R}^m$ se nazývá afinní, existují-li $A\in\mathbb{M}_{m,n}(\mathbb{R})$ a $b\in\mathbb{R}^m$ tak, že f(x)=Ax+b.

Tvrzení

Nechť $f:\mathbb{R}^n \to \mathbb{R}^m$. Pak f je afinní právě tehdy, když pro každé $x,y \in \mathbb{R}^n$ a každé $\lambda \in \mathbb{R}$ platí

$$f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y).$$

Důkaz: Viz přednáška.

• Z uvedeného tvrzení speciálně plyne, že afinní zobrazení f zachovává úsečky, tj. pro všechna $x,y\in\mathbb{R}^n$ je

$$f([x,y]) = [f(x), f(y)].$$

7/23

Konvexní množiny

Tvrzení

Je-li $f: \mathbb{R}^n \to \mathbb{R}^m$ afinní a $C \subseteq \mathbb{R}^n$ konvexní, pak f(C) je konvexní.

Důkaz: Viz přednáška.

Tvrzení

Nechť $C_1 \subseteq \mathbb{R}^n$ a $C_2 \subseteq \mathbb{R}^m$. Pak C_1 a C_2 jsou konvexní množiny právě tehdy, když $C_1 \times C_2$ je konvexní množina.

Důkaz: Viz přednáška.

- $oldsymbol{0}$ $[0,1]^n$ je konvexní množina.
- $m{2} \ B(0;1) imes [0,1]$ je konvexní množina.
- **3** Kladný ortant $\mathbb{R}^n_{++} = (0, \infty)^n$.

Konvexní obal

Definice

Konvexní obal množiny $M \subseteq \mathbb{R}^n$ je průnik všech konvexních množin v \mathbb{R}^n obsahujících M. Konvexní obal množiny M se značí symbolem $\operatorname{conv}(M)$.

- Konvexní obal libovolné množiny je konvexní množinou.
- Množina C je konvexní právě tehdy, když $C = \operatorname{conv}(C)$.

- oorv(S(0;1)) = B(0;1).
- ② Nechť $x=(0,0)^T$, $y=(1,0)^T$ a $z=(0,1)^T$. Pak $\operatorname{conv}\left(\{x,y,z\}\right)$ je trojúhelník s vrcholy x,y,z.
- 3

$$\operatorname{conv}\left(\bigcup\right) = \bigcup$$
.

Konvexní kombinace

Definice

Řekneme, že $x \in \mathbb{R}^n$ je konvexní kombinací bodů $x_1,\ldots,x_k \in \mathbb{R}^n$, jestliže existují nezáporná reálná čísla α_1,\ldots,α_k tak, že $x=\sum_{i=1}^k \alpha_i x_i$ a $\sum_{i=1}^k \alpha_i =1$.

Věta

Je-li $M \subseteq \mathbb{R}^n$ neprázdná, pak $\operatorname{conv}(M)$ je množina všech konvexních kombinací bodů z M.

Důkaz: Vynecháváme.

Věta (Carathéodoryho věta)

Je-li $M\subseteq\mathbb{R}^n$ neprázdná, pak každý prvek z $\mathrm{conv}\,(M)$ lze vyjádřit jako konvexní kombinaci nejvýše n+1 prvků z M.

Důkaz: Vynecháváme.

Kužely

Definice

Množina $K \subseteq \mathbb{R}^n$ se nazve kužel, jestliže pro každé $x \in K$ a každé $\alpha > 0$ je $\alpha x \in K$.

Je-li kužel navíc konvexní množinou, nazývá se konvexní kužel.

Příklad

- Množiny \emptyset , $\{0\}$, \mathbb{R}^n_+ , \mathbb{R}^n_{++} a \mathbb{R}^n jsou konvexní kužely.
- **2** Množina $\{(x,0)^T \in \mathbb{R}^2 \mid x \ge 0\} \cup \{(0,x)^T \in \mathbb{R}^2 \mid x \ge 0\}$ je kužel, ale není konvexní.

Tvrzení

Průnik libovolného počtu kuželů je kužel.

Důkaz: Domácí úkol.

Průnik libovolného počtu konvexních kuželů je konvexní kužel.

Jaký bod z neprázdné množiny $M\subseteq\mathbb{R}^n$ je nejblíže bodu $x\in\mathbb{R}^n$?

Definice

Nechť $M \subseteq \mathbb{R}^n$ je neprázdná a $x \in \mathbb{R}^n$.

Reálné číslo

$$\operatorname{dist}\left(x;M\right)=\inf_{y\in M}\left\Vert x-y\right\Vert$$

se nazve vzdálenost bodu x od množiny M.

ullet Bod $y\in M$ se nazývá projekce bodu x na M, jestliže

$$y \in \operatorname*{argmin}_{z \in M} \|x - z\|$$

(tj.
$$||x - y|| \le ||x - z||$$
 pro všechna $z \in M$).

• Existuje-li právě jedna projekce x na M, pak ji budeme značit symbolem $P_M(x)$.

Příklad

- **1** $\operatorname{argmin}_{y \in (1,2]} |0 y| = \emptyset.$
- 2 $\operatorname{argmin}_{y \in (1,2]} |3 y| = \{2\}.$
- lacksquare Je-li $K=\left\{x\in\mathbb{R}^2\,\big|\,\|x\|=1
 ight\}$, pak

$$\underset{y \in K}{\operatorname{argmin}} \|0 - y\| = K.$$

Věta (Věta o nejlepší aproximaci)

Je-li $C\subseteq\mathbb{R}^n$ neprázdná uzavřená konvexní množina, pak pro každé $x\in\mathbb{R}^n$ existuje právě jeden bod $\hat{y}\in C$ tak, že

$$\operatorname{dist}(x;C) = \|x - \hat{y}\|.$$

Důkaz: Viz přednáška.

Definice

Nechť $C \subseteq \mathbb{R}^n$ je neprázdná uzavřená konvexní množina. Zobrazení $P_C: x \mapsto P_C(x)$, $x \in \mathbb{R}^n$, se nazývá projekční operátor na C.

- $P_C(x) = x$ pro každé $x \in C$.
- $P_C \circ P_C = P_C.$
- Lze ukázat, že projekční operátor je spojité zobrazení.

$$P_{[0,1]}(x) = \begin{cases} x, & \quad \text{pro } x \in [0,1], \\ 0, & \quad \text{pro } x < 0, \\ 1, & \quad \text{pro } x > 1. \end{cases}$$

Věta (Projekce bodu a variační nerovnost)

Nechť $C \subseteq \mathbb{R}^n$ je neprázdná uzavřená konvexní množina, $x \in \mathbb{R}^n$ a $y \in C$. Pak následující tvrzení jsou ekvivalentní:

- **1** $y = P_C(x)$.
- ② Pro každé $z \in C$ je $\langle x-y, z-y \rangle \leq 0$.

Důkaz: Viz přednáška

Příklad

Nechť C = B(0;1). Pak

$$P_C(x) = \begin{cases} x, & \text{jestliže } \|x\| \leq 1, \\ \frac{x}{\|x\|}, & \text{jestliže } \|x\| > 1. \end{cases}$$

Tvrzení

Nechť $L \subseteq \mathbb{R}^n$ je lineární podprostor. Potom platí:

- $lackbox{1}{} P_L: \mathbb{R}^n
 ightarrow \mathbb{R}^n$ je lineární zobrazení.
- ② Pro každé $x \in \mathbb{R}^n$ je $P_{L^{\perp}}(x) = x P_L(x)$.
- ullet Pro každé $x\in\mathbb{R}^n$ existují jednoznačně určené body $y\in L$ a $z\in L^\perp$ tak, že x=y+z. Navíc $y=P_L(x)$ a $z=P_{L^\perp}(x).$

Důkaz: Viz přednáška.

Příklad

Nechť $y \in \mathbb{R}^n$ a $L = \mathrm{span}\,(\{y\})$. Pak

$$P_L(x) = \frac{\langle x, y \rangle}{\langle y, y \rangle} y.$$

Metoda nejmenších čtverců

Nechť $A\in\mathbb{M}_{m,n}(\mathbb{R})$ a $b\in\mathbb{R}^m.$ Jaké prvky obsahuje množina

$$\underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|Ax - b\| = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|Ax - b\|^2?$$

Tvrzení

Nechť $A\in\mathbb{M}_{m,n}(\mathbb{R})$, $b\in\mathbb{R}^m$ a $\hat{x}\in\mathbb{R}^n$. Potom

$$\hat{x} \in \operatorname*{argmin}_{x \in \mathbb{R}^n} \|Ax - b\|^2$$
 právě tehdy, když $A^T A \hat{x} = A^T b$.

Důkaz: Viz přednáška.

- $A^TAx = A^Tb$... soustava normálních rovnic.
- Má-li A lineárně nezávislé sloupce, pak A^TA je invertibilní. V tomto případě je

$$\underset{x \in \mathbb{P}^n}{\operatorname{argmin}} \|Ax - b\| = \{ (A^T A)^{-1} A^T b \}$$

(a
$$P_L(b) = A\hat{x} = A(A^TA)^{-1}A^Tb$$
) pro každé $b \in \mathbb{R}^m$.

Martin Bohata

Metoda nejmenších čtverců

Příklad

Nechť
$$A=\begin{pmatrix}1&0\\0&1\\1&1\end{pmatrix}$$
 a $b=\begin{pmatrix}1\\1\\1\end{pmatrix}$. Pak jediný bod minima funkce $\|Ax-b\|$ je

 $\frac{2}{3}\begin{pmatrix}1\\1\end{pmatrix}$.

Příklad

V rovině jsou dány body $(0,-\frac{1}{2})^T$, $(1,\frac{1}{3})^T$ a $(2,\frac{2}{3})^T$. Pomocí metody nejmenších čtverců proložme těmito body přímku o rovnici y=kx+q, kde $k,q\in\mathbb{R}$.

Hledané hodnoty koeficientů k a q jsou $k = \frac{7}{12}$ a $q = -\frac{5}{12}$.

Věta o oddělování nadrovinou

Věta (O oddělitelnosti bodu a konvexní množiny)

Je-li $C \subseteq \mathbb{R}^n$ neprázdná uzavřená konvexní množina a $x \in \mathbb{R}^n \setminus C$, pak existuje $v \in \mathbb{R}^n \setminus \{0\}$ a $\alpha \in \mathbb{R}$ tak, že pro každé $y \in C$ platí

$$\langle y, v \rangle \le \alpha < \langle x, v \rangle$$
.

Důkaz: Viz přednáška.

Důsledek

Každá uzavřená konvexní množina v \mathbb{R}^n je průnikem všech poloprostorů, které ji obsahují.

Důkaz: Viz přednáška.

Věta o oddělování nadrovinou

• Existuje nezáporné řešení soustavy lineárních rovnic? Obecně ne, stačí uvážit rovnici $x_1+x_2=-1$. Kdy takové řešení existuje?

Příklad

Nechť
$$A = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$$
 a $b \in \mathbb{R}^2$. Označme
$$C = \left\{ Ax \,\middle|\, x \in \mathbb{R}^2_+ \right\} = \left\{ \alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \end{pmatrix} \,\middle|\, \alpha, \beta \geq 0 \right\}$$

$$K = \left\{ y \in \mathbb{R}^2 \,\middle|\, A^T y \leq 0 \right\}$$

$$= \left\{ y \in \mathbb{R}^2 \,\middle|\, \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix}, y \right\rangle \leq 0, \left\langle \begin{pmatrix} 1 \\ -1 \end{pmatrix}, y \right\rangle \leq 0 \right\}.$$

Nastává právě jedna z možností:

- ② Existuje nenulový vektor $y \in K$ svírající s b úhel $\varphi \in [0, \frac{\pi}{2})$.

Věta o oddělování nadrovinou

Lemma

Jestliže $A \in \mathbb{M}_{m,n}(\mathbb{R})$, pak $\left\{Ax \mid x \in \mathbb{R}^n_+\right\}$ je neprázdná uzavřená konvexní množina.

Důkaz: Viz přednáška (důkaz uzavřenosti vynecháváme).

Věta (Farkasovo lemma)

Je-li $A \in \mathbb{M}_{m,n}(\mathbb{R})$ a $b \in \mathbb{R}^m$, pak platí právě jedno z následujících tvrzení:

- Existuje $x \in \mathbb{R}^n$ tak, že Ax = b a $x \ge 0$.
- $\textbf{②} \ \, \textit{Existuje} \,\, y \in \mathbb{R}^m \,\, \textit{tak, \'ze} \,\, A^T y \leq 0 \,\, \textit{a} \,\, \langle y,b \rangle > 0.$

Důkaz: Viz přednáška.

Krajní body konvexní množiny

Úsečku, trojúhelník a čtverec lze rekonstruovat z jejich vrcholů. Jaké další konvexní množiny lze rekonstruovat ze znalosti "vrcholů"?

Definice

Nechť $C\subseteq\mathbb{R}^n$ je konvexní množina. Bod $x\in C$ nazveme krajní bod množiny C, jestliže neexistují dva různé body $y,z\in C$ tak, že $x=\frac{y+z}{2}$. Množinu všech krajních bodů množiny C budeme značit symbolem $\mathrm{ext}\,(C)$.

- **2** Je-li $L \subseteq \mathbb{R}^n$ netriviální lineární podprostor, pak $\operatorname{ext}(L) = \emptyset$.
- ext(B(0;1)) = S(0;1).

Krajní body konvexní množiny

Věta (Kreinova-Milmanova)

Jestliže $C\subseteq\mathbb{R}^n$ je kompaktní (tj. omezená a uzavřená) konvexní množina, pak $C=\operatorname{conv}\left(\operatorname{ext}\left(C\right)\right)$.

Důkaz: Vynecháváme.

Kompaktnost je důležitá:

- Interval (0,1) není uzavřený a $\operatorname{ext}((0,1)) = \emptyset$.
- Množina \mathbb{R}^2_+ není omezená a $\mathrm{ext}\left(\mathbb{R}^2_+\right)=\{0\}.$

$$B(0;1) = \operatorname{conv}(S(0;1)).$$