15강. 벡터 방정식

※ 연습문제

- 문제 1. 좌표공간에 네 점 A(2,0,0), B(0,1,0), C(-3,0,0), D(0,0,2)를 꼭짓점으로 하는 사면체 ABCD가 있다. 모서리 BD 위를 움직이는 점 P에 대하여 $\overline{PA}^2+\overline{PC}^2$ 의 값을 최소로 하는 점 P의 좌표를 (a,b,c) 라고 할 때, a+b+c 의 값은?
 - $\oplus \frac{6}{5}$
 - ② 1
 - $3 \frac{3}{4}$
 - $\frac{3}{5}$

정답: ①

B(0,1,0), D(0,0,2)를 지나는 직선 BD의 방정식은 $\frac{y}{1}=\frac{z-2}{-2}$, x=0이고, 직선 위의 임의의 점 P의 좌표를 (0,t,-2t+2)로 놓으면 $\overline{PA}^2+\overline{PC}^2=2^2+(-t)^2+(2t-2)^2+(-3)^2+(-t)^2+(2t-2)^2$ $=10t^2-16t+21$ $=10(t-\frac{4}{5})^2+\frac{73}{5}$

 $t=rac{4}{5}$ 일 때, $\overline{PA}^2+\overline{PC}^2$ 의 값은 최소이고, 점 P의 좌표는 $(0,rac{4}{5},rac{2}{5})$ 이므로 점 P는 선분 BD 위에 있다.

$$a+b+c=0+\frac{4}{5}+\frac{2}{5}=\frac{6}{5}$$

문제 2. 좌표공간에 점 A(2,2,1)과 평면 $\alpha: x+2y+2z-14=0$ 이 있다. 평면 α 위의 점 P 가 $\overline{AP} \leq 3$ 을 만족시킬 때, 점 P 가 나타내는 도형의 xy평면 위로의 정사영의 넓이는 $\frac{q}{p}\pi$ 이다. p+q의 값은? (단, p, q는 서로소인 자연수이다.)

① 13

2 18

3 21

4 24

정답: ①

점 A(2,2,1)과 평면 $\alpha:x+2y+2z-14=0$ 사이의 거리를 d 라 하면 $d=\frac{\left|1\times 2+2\times 2+2\times 1-14\right|}{\sqrt{1^2+2^2+2^2}}=\frac{6}{3}=2$

이때, 점 P가 $\overline{AP} \leq 3$ 을 만족시키므로 점 P가 나타내는 도형은 아래 그림과 같이 점 A를 중심으로 하고 반지름의 길이가 3인 구와 평면 α 의 교선인 원의 경계 및 내부이다.

따라서 점 P가 나타내는 도형의 넓이는 반지름의 길이가 $\sqrt{3^2-2^2}=\sqrt{5}$ 인 원의 넓이이므로 $(\sqrt{5})^2\pi=5\pi$ 이다.

한편, 평면 α 의 법선벡터는 (1,2,2), xy평면의 법선벡터는 (0,0,1)이므로 평면 α 와 xy평면이 이루는 예각의 크기를 θ 라 하면

$$\cos\theta = \frac{|1 \times 0 + 2 \times 0 + 2 \times 1|}{\sqrt{1^2 + 2^2 + 2^2} \times \sqrt{0^2 + 0^2 + 1^2}} = \frac{2}{3}$$

따라서 점 P가 나타내는 도형의 xy평면 위로의 정사영의 넓이를 S 라 하면

$$S = 5\pi \times \cos\theta = 5\pi \times \frac{2}{3} = \frac{10}{3}\pi = \frac{q}{p}\pi$$

$$p + q = 3 + 10 = 13$$