MATH 350-2 Advanced Calculus

W.R. Casper

Department of Mathematics California State University Fullerton

September 4, 2024

Outline

- Real Analysis Lecture 3
 - Suprema and Infima
 - Decimal expansions
 - The Triangle Inequality

Outline

- Real Analysis Lecture 3
 - Suprema and Infima
 - Decimal expansions
 - The Triangle Inequality

Last time, we finished with the Completeness Axiom:

Last time, we finished with the Completeness Axiom:

Last time, we finished with the Completeness Axiom:

completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Last time, we finished with the Completeness Axiom:

completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Examples:

Last time, we finished with the Completeness Axiom:

completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Examples:

3 is the supremum of (0,3)

Last time, we finished with the Completeness Axiom:

completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Examples:

- 3 is the supremum of (0,3)
- 1 is the supremum of

$$\left\{\frac{n}{n+1}:n\in\mathbb{Z}_+\right\}$$

Last time, we finished with the Completeness Axiom:

completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Examples:

- 3 is the supremum of (0,3)
- 1 is the supremum of

$$\left\{\frac{n}{n+1}:n\in\mathbb{Z}_+\right\}$$

 \bullet π is the supremum of

$$\{3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, \dots\}.$$

Problem

Prove that if *A* is a set of integers that is bounded above, then *A* has a maximum.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b - 1 is not an upper bound, so there exists $a \in A$ with b - 1 < a.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b - 1 is not an upper bound, so there exists $a \in A$ with b - 1 < a.

If $a' \in A$, then a' is an integer and therefore a' = a + k for $k \in \mathbb{Z}$.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b - 1 is not an upper bound, so there exists $a \in A$ with b - 1 < a.

If $a' \in A$, then a' is an integer and therefore a' = a + k for $k \in \mathbb{Z}$. Since b is an upper bound, $b \ge a + k > b - 1 + k$, making 0 > k - 1.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b - 1 is not an upper bound, so there exists $a \in A$ with b - 1 < a.

If $a' \in A$, then a' is an integer and therefore a' = a + k for $k \in \mathbb{Z}$. Since b is an upper bound, $b \ge a + k > b - 1 + k$, making 0 > k - 1.

Therefore $k \le 0$ and $a' \le a$.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b - 1 is not an upper bound, so there exists $a \in A$ with b - 1 < a.

If $a' \in A$, then a' is an integer and therefore a' = a + k for $k \in \mathbb{Z}$. Since b is an upper bound, $b \ge a + k > b - 1 + k$, making 0 > k - 1.

Therefore $k \le 0$ and $a' \le a$.

It follows that a is an upper bound of A, and since $a \in A$ it is a maximum.

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

In this case, we say S is **bounded below** by b.

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

In this case, we say S is **bounded below** by b. If $b \in S$ also, then b is called a **minimal element** of S.

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

In this case, we say S is **bounded below** by b. If $b \in S$ also, then b is called a **minimal element** of S. An **infimum** of a set S of real numbers is a real number $b \in \mathbb{R}$ such that

- b is a lower bound of S
- if b < b', then b' is not a lower bound of S

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

In this case, we say S is **bounded below** by b. If $b \in S$ also, then b is called a **minimal element** of S. An **infimum** of a set S of real numbers is a real number $b \in \mathbb{R}$ such that

- b is a lower bound of S
- if b < b', then b' is not a lower bound of S

In other words

an infimum is a greatest lower bound

Properties of Suprema

The first property of suprema is that they must be arbitrarily close to elements of the set.

Theorem (Approximation Property)

Let $S \subseteq \mathbb{R}$ be bounded above, and let $b = \sup(S)$. Then for all $\epsilon > 0$, there exists $a \in S$ with

$$b - \epsilon < a \le b$$
.

Properties of Suprema

Proof.

Since $b - \epsilon < b$, the definition of a supremum implies $b - \epsilon$ cannot be an upper bound.

Properties of Suprema

Proof.

Since $b - \epsilon < b$, the definition of a supremum implies $b - \epsilon$ cannot be an upper bound.

Therefore thre must exist $a \in S$ with $a > b - \epsilon$.

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

Notice that

$$s_1 < s_2 < s_3 < s_4 < \dots$$

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

Notice that

$$s_1 < s_2 < s_3 < s_4 < \dots$$

Consider the set

$$S=\{s_n:n\in\mathbb{Z}_+\}.$$

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

Notice that

$$s_1 < s_2 < s_3 < s_4 < \dots$$

Consider the set

$$S = \{s_n : n \in \mathbb{Z}_+\}.$$

For every n,

$$s_n \le 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 3 - \frac{1}{2^n} < 3$$

so S is bounded above by 3.

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

Notice that

$$s_1 < s_2 < s_3 < s_4 < \dots$$

Consider the set

$$S = \{s_n : n \in \mathbb{Z}_+\}.$$

For every *n*,

$$s_n \le 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 3 - \frac{1}{2^n} < 3$$

so S is bounded above by 3. Therefore S has a supremum, $\sup(S)$.

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists N with $s_N > \sup(S) - \epsilon$.

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists N with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S).$$

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists N with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S).$$

This says $\sup(S)$ is *really* close to s_N .

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists N with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S).$$

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S).$$

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

$$\sup(S) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

Important example: The number e

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S)$$
.

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

$$\sup(S) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

If we remember Taylor series

Important example: The number e

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S)$$
.

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

$$\sup(S) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

If we remember Taylor series

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

Important example: The number e

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S)$$
.

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

$$\sup(S) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

If we remember Taylor series

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

We've just shown that $e^1 = e$ exists.

Also, suprema play nicely with addition.

Theorem (Additive Property)

Let $A, B \subseteq \mathbb{R}$ be bounded above set

$$C = \{x + y : x \in A, y \in B\}.$$

Then C is bounded above and

$$\sup(C) = \sup(A) + \sup(B).$$

Proof.

Let
$$a = \sup(A)$$
, $b = \sup(B)$, and $c = \sup(C)$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$. We will prove $c \le a + b$ and then $a + b \le c$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Therefore c - y is an upper bound of A and $a \le c - y$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Therefore c - y is an upper bound of A and $a \le c - y$.

It follows that $y \le c - a$ for all $y \in B$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Therefore c - y is an upper bound of A and $a \le c - y$.

It follows that $y \le c - a$ for all $y \in B$.

Thus c - a is an upper bound of B, and it follows $b \le c - a$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Therefore c - y is an upper bound of A and $a \le c - y$.

It follows that $y \le c - a$ for all $y \in B$.

Thus c - a is an upper bound of B, and it follows $b \le c - a$. Therefore $a + b \le c$.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists The number b is an upper bound and if b' < b, then b' is not.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists The number b is an upper bound and if b' < b, then b' is not. Then b-1 < b by Axiom 7, so b-1 cannot be an upper bound.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists The number b is an upper bound and if b' < b, then b' is not. Then b-1 < b by Axiom 7, so b-1 cannot be an upper bound. This means there exists $n \in \mathbb{Z}_+$ with b-1 < n.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists

The number b is an upper bound and if b' < b, then b' is not.

Then b-1 < b by Axiom 7, so b-1 cannot be an upper bound.

This means there exists $n \in \mathbb{Z}_+$ with b-1 < n.

It follows from Axiom 7 that b < n + 1.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists

The number b is an upper bound and if b' < b, then b' is not.

Then b-1 < b by Axiom 7, so b-1 cannot be an upper bound.

This means there exists $n \in \mathbb{Z}_+$ with b-1 < n.

It follows from Axiom 7 that b < n + 1.

However, $n+1 \in \mathbb{Z}$, so this contradicts b being an upper bound.

Theorem (Apostol Theorem 1.18)

For every $x \in \mathbb{R}$, there exists $n \in \mathbb{Z}_+$ with n > x.

Theorem (Apostol Theorem 1.18)

For every $x \in \mathbb{R}$, there exists $n \in \mathbb{Z}_+$ with n > x.

Proof.

If not, then x is an upper bound of \mathbb{Z}_+ .

Theorem (Apostol Theorem 1.18)

For every $x \in \mathbb{R}$, there exists $n \in \mathbb{Z}_+$ with n > x.

Proof.

If not, then x is an upper bound of \mathbb{Z}_+ .

Theorem (Archimedian Property of Reals)

For every $x, y \in \mathbb{R}$ with x > 0, there exists $n \in \mathbb{Z}_+$ with y < nx.

Theorem (Apostol Theorem 1.18)

For every $x \in \mathbb{R}$, there exists $n \in \mathbb{Z}_+$ with n > x.

Proof.

If not, then x is an upper bound of \mathbb{Z}_+ .

Theorem (Archimedian Property of Reals)

For every $x, y \in \mathbb{R}$ with x > 0, there exists $n \in \mathbb{Z}_+$ with y < nx.

Proof.

Replace x with y/x in the previous theorem.

Outline

- Real Analysis Lecture 3
 - Suprema and Infima
 - Decimal expansions
 - The Triangle Inequality

A finite decimal expansion is an expression

$$r = a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n},$$

where $a_0 \in \mathbb{Z}_+$ and $0 \le a_k \le 9$ for $1 \le k \le n$.

A finite decimal expansion is an expression

$$r = a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n},$$

where $a_0 \in \mathbb{Z}_+$ and $0 \le a_k \le 9$ for $1 \le k \le n$.

Notation:

$$a_0.a_1a_2a_3...a_n$$
.

A finite decimal expansion is an expression

$$r = a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n},$$

where $a_0 \in \mathbb{Z}_+$ and $0 \le a_k \le 9$ for $1 \le k \le n$.

Notation:

$$a_0.a_1a_2a_3...a_n$$
.

Any positive real number x > 0 can be approximated by a finite decimal expansion.

Theorem (Apostol Theorem 1.20)

For any real x > 0 and $n \in \mathbb{Z}_+$, there exists a finite decimal expansion $r_n = a_0.a_1a_2...a_n$ with

$$r_n \leq x < r_n + \frac{1}{10^n}.$$

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \le x\}.$$

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \le x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Then clearly $x_1 = a - a_0 \in [0, 1)$.

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Then clearly $x_1 = a - a_0 \in [0, 1)$.

Define a_1, a_2, a_3, \ldots and x_1, x_2, x_3, \ldots recursively by

$$a_k = \max\{a \in \mathbb{Z}_+ : a \leq 10x_k\}$$

and
$$x_{k+1} = 10x_k - a_k$$
.

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Then clearly $x_1 = a - a_0 \in [0, 1)$.

Define a_1, a_2, a_3, \ldots and x_1, x_2, x_3, \ldots recursively by

$$a_k = \max\{a \in \mathbb{Z}_+ : a \leq 10x_k\}$$

and $x_{k+1} = 10x_k - a_k$. Then $0 \le a_k \le 9$ for all $k \ge 1$

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Then clearly $x_1 = a - a_0 \in [0, 1)$.

Define a_1, a_2, a_3, \ldots and x_1, x_2, x_3, \ldots recursively by

$$a_k = \max\{a \in \mathbb{Z}_+ : a \leq 10x_k\}$$

and $x_{k+1} = 10x_k - a_k$. Then $0 \le a_k \le 9$ for all $k \ge 1$ and

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \dots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \dots + \frac{a_n+1}{10^n}$$

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

Note: this is slightly different than the usual limit meaning, for two good reasons:

we haven't defined limits

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

- we haven't defined limits
- with this definition, numbers have unique decimal expansions!

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

- we haven't defined limits
- with this definition, numbers have unique decimal expansions!

$$1 \neq 0.999999999...$$

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\dots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

- we haven't defined limits
- with this definition, numbers have unique decimal expansions!

$$1 \neq 0.999999999...$$

$$1 \nless 0 + \frac{9}{10} + \frac{9}{100} + \dots + \frac{9+1}{100} = 1$$

Outline

- Real Analysis Lecture 3
 - Suprema and Infima
 - Decimal expansions
 - The Triangle Inequality

Absolute value

The **absolute value** of $x \in \mathbb{R}$ is

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

In particular,

$$0 \le |x|$$

and also

$$-|x| \le x \le |x|.$$

Problem

Prove Apostol Theorem 1.21 that if $a \ge 0$, then $|x| \le a$ if and only if $-a \le x \le a$.

Solution

If
$$|x| \le a$$
 then $-a \le -|x|$

Problem

Prove Apostol Theorem 1.21 that if $a \ge 0$, then $|x| \le a$ if and only if $-a \le x \le a$.

Solution

If $|x| \le a$ then $-a \le -|x|$ and therefore

$$-a \le -|x| \le x \le |x| \le a$$

.

Problem

Prove Apostol Theorem 1.21 that if $a \ge 0$, then $|x| \le a$ if and only if $-a \le x \le a$.

Solution

If $|x| \le a$ then $-a \le -|x|$ and therefore

$$-a \le -|x| \le x \le |x| \le a$$

. Conversely, if $-a \le x \le a$ then

Problem

Prove Apostol Theorem 1.21 that if $a \ge 0$, then $|x| \le a$ if and only if $-a \le x \le a$.

Solution

If $|x| \le a$ then $-a \le -|x|$ and therefore

$$-a \le -|x| \le x \le |x| \le a$$

. Conversely, if $-a \le x \le a$ then

$$x \ge 0 \Rightarrow |x| = x \le a$$

Problem

Prove Apostol Theorem 1.21 that if $a \ge 0$, then $|x| \le a$ if and only if $-a \le x \le a$.

Solution

If $|x| \le a$ then $-a \le -|x|$ and therefore

$$-a \le -|x| \le x \le |x| \le a$$

. Conversely, if $-a \le x \le a$ then

$$x \ge 0 \Rightarrow |x| = x \le a$$

$$x \le 0 \Rightarrow |x| = -x \le -(-a) = a$$

Basic triangle inequality

Theorem (Triangle inequality)

For any real numbers $x, y \in \mathbb{R}$ we have

$$|x+y|\leq |x|+|y|.$$

Proof.

$$-|x| \le x \le |x|$$
 and $-|y| \le y \le |y|$

Basic triangle inequality

Theorem (Triangle inequality)

For any real numbers $x, y \in \mathbb{R}$ we have

$$|x+y|\leq |x|+|y|.$$

Proof.

$$-|x| \le x \le |x|$$
 and $-|y| \le y \le |y|$

Adding these together, we get

$$-(|x|+|y|) \le x+y \le |x|+|y|$$

Basic triangle inequality

Theorem (Triangle inequality)

For any real numbers $x, y \in \mathbb{R}$ we have

$$|x+y|\leq |x|+|y|.$$

Proof.

$$-|x| \le x \le |x|$$
 and $-|y| \le y \le |y|$

Adding these together, we get

$$-(|x|+|y|) \le x+y \le |x|+|y|$$

It follows from the previous theorem that

$$|x+y| \le |x| + |y|$$

Advanced triangle inequality

Theorem (Triangle inequality)

For any real numbers $x_1, x_2, \ldots, x_n \in \mathbb{R}$ we have

$$|x_1 + x_2 + \cdots + x_n| \le |x_1| + |x_2| + \cdots + |x_n|.$$

Advanced triangle inequality

Theorem (Triangle inequality)

For any real numbers $x_1, x_2, \ldots, x_n \in \mathbb{R}$ we have

$$|x_1 + x_2 + \cdots + x_n| \le |x_1| + |x_2| + \cdots + |x_n|.$$

Proof.

Induction.

Higher-dimensional triangle inequality

Theorem (Cauchy-Schwartz Inequality (Apostol Theorem 1.23))

If x_1, \ldots, x_n and y_1, \ldots, y_n are real numbers, then

$$\left(\sum_{k=1}^n x_k y_k\right)^2 \leq \left(\sum_{k=1}^n x_k^2\right) \left(\sum_{k=1}^n y_k^2\right)$$

If y_k isn't always zero, thene equality holds if and only if there exists $t \in \mathbb{R}$ with $x_k = ty_k$ for all k.

Higher-dimensional triangle inequality

Proof.

$$\sum_{k=1}^{n} (x_k + ty_k)^2 \ge 0, \quad \text{with equality iff all terms zero}$$

$$\sum_{k=1}^{n} x_k^2 + 2t \sum_{k=1}^{n} x_k y_k + t^2 \sum_{k=1}^{n} y_k^2 \ge 0$$

Take
$$t = -(\sum_{k=1}^{n} x_k y_k) / (\sum_{k=1}^{n} y_k^2)$$
:

$$\sum_{k=1}^{n} x_k^2 - \frac{\left(\sum_{k=1}^{n} x_k y_k\right)^2}{\left(\sum_{k=1}^{n} y_k^2\right)} \ge 0.$$

