第 27 讲 Riemann 映射定理

回忆: Riemann 映射定理: 假设 $D \neq \mathbb{C}$ 为平面上的单连通区域, 任取 $a \in D$, 存在唯一的双全纯映射 $f: D \to \mathbb{D}$, 满足 f(a) = 0, f'(a) > 0. (称 $\frac{1}{f'(a)}$ 为 D 在 a 处的映射半径, 记为 $R_D(a)$).

- 1. 记 \mathcal{F} 为所有全纯函数 $g:\mathbb{D}\to\mathbb{D}$ 的全体, $a\in\mathbb{D}$. 令 $v=\sup_{a\in\mathcal{F}}|g'(a)|$.
 - (1). 求 v 的值.
 - (2). 满足 |f'(a)| = v 的 $f \in \mathcal{F}$ 具有什么样的形式?
 - (3). 是否存在 $f \in \operatorname{Aut}(\mathbb{D})$ 满足 |f'(a)| < v?
- 2. 假设 $D \neq \mathbb{C}$ 为平面上的单连通区域, $a \in D$. 假设 $f: D \to D$ 全纯, 满足 f(a) = a. 证明 $|f'(a)| \leq 1$. 等号成立的充要条件是什么?
- 3. 假设 $\Omega \subset \mathbb{C}$ 是异于平面的单连通域. D 是平面区域, 证明函数族 $\mathcal{F} = \{f: D \to \Omega \}$ 是正规族.
- 4. 假设 $D \neq \mathbb{C}$ 为平面上的单连通区域, 关于实轴对称, $a \in D \cap \mathbb{R}$. 假设 $f: D \to \mathbb{D}$ 双全纯, 满足 $f(a) \in \mathbb{R}, f'(a) > 0$. 证明 $f(D \cap \mathbb{R}) = (-1, 1)$.
- 5. 假设 $D \neq \mathbb{C}$ 为平面上的有界单连通区域, $f: D \to \mathbb{D}$ 双全纯, 满足 f(a) = 0, f'(a) > 0, 证明

$$d(a, \partial D) \le R_D(a) \le \max_{z \in \partial D} |z - a|.$$

6. 假设 $D \neq \mathbb{C}$ 为平面上的单连通区域, $a \in D$. 假设 $F: D \to \mathbb{C}$ 全纯, F(a) = 0, F'(a) = 1. 证明

$$\int_{D} |F'(z)|^{2} dx dy \ge \pi R_{D}^{2}(a).$$

等号成立当且仅当 F 是从 D 到 $D(0,R_D(a))$ 的双全纯映射.

附加题 (不做要求)

请将解答发至 wxg688@163.com. 无截止日期.

问题 2.11. 在 Riemann 映射定理的证明中, 开根号的映射 改为取 Log 单值支映射, 证明还成立吗? 说明理由.