1 декабря 2017 7 декабря 2017

Лабораторная работа № 1.2.1

Определение скорости полета пули при помощи баллистического маятника

Цель работы: определить скорость полета пули, применяя законы сохранения и используя баллистические маятники.

В работе используется: духовое ружье на штативе, осветитель, оптическая система для измерения отклонений маятника, измерительная линейка, пули и весы для их взвешивания, а также баллистические маятники.

1 Метод баллистческого маятника, совершающего поступательное движение

Используем баллистический маятник, представляющий из себя тяжелый цилиндр массой $M=2090\pm5$ г, подвешенный на четырех нитях. При небольших возмущениях маятника возникают колебания с малым затуханием. В этом можно убедиться, раскачав маятник и оценив изменение амплитуды колебаний за 10 периодов. Выясняется, что амплитуда не успевает измениться в 2 раза.

Пуля массой m, летящая со скоростью u, сталкивается абсолютно неупруго, оставаясь внутри цилиндра. По закону сохранения импульса, цилиндр приобретет скорость V, причем:

$$(M+m)V = mu$$
$$u = \frac{M+m}{m}V \approx \frac{M}{m}V$$

При длине нити $L=(223\pm0.5)$ см и при наибольшем угле отклонения φ наибольшая высота подъема маятника равна:

$$h = L(1 - \cos \varphi) = L\frac{\varphi^2}{2}$$

Если Δx — амплитуда колебаний маятника по горизонтали, то $\varphi \approx \Delta x/L$. Тогда можем использовать приближенную формулу:

$$h = \frac{(\Delta x)^2}{2L}$$

Величины V и h связаны соотношением: V = 2gh. Отсюда находим выражение для u:

$$u = \frac{M}{m} \sqrt{2gh} = \frac{M}{m} \sqrt{\frac{g}{L}} \Delta x.$$

m, г	0,515	0,505	0,519	0,503
x_0 MM	-3	-3	-3	-3
x_1 MM	10,8	10,2	10,5	9,8
u, m/c	118	116	115	109
δu , м/с	6	5	6	5

Таблица 1: Результаты измерения для поступательного маятника

Все величины в правой части уравнения поддаются измерению. Величину Δx измеряем с помощью оптической системы по горизонтальному смещению шкалы. Участок шкалы в центре изображения смещается в сторону от начального положения x_0 до конечного x_1 . Результаты измерений и соответсвующее значение скорости u занасим в таблицу 1.

При подсчете δu использовались погрешности: $\delta m = 0{,}005$ г, $\delta x = 0{,}5$ мм. Значение δx было принято настолько большим из-за размытия шкалы ,а также из-за а также из-за невозможности снять показания именно в тот момент, когда маятник покоится.

Среднее значение скорости равно $\langle u \rangle = 115 \text{ м/c}$, среднеквадратичное отклонение $\sigma_u = 3 \text{ м/c}$.

2 Метод крутильного баллистического маятника

Используем крутильный маятник с оптической системой. При небольших возмущениях маятника возникают колебания с малым затуханием. В этом можно убедиться, раскачав маятник и оценив изменение амплитуды колебаний за 10 периодов. Выясняется, что амплитуда не успевает измениться в 2 раза.

Расстояние от оси вращения до мишени равно $r=(20,5\pm0,5)$ см. Расстояние от оси вращения до грузов равно $R=(33,5\pm0,5)$ см. Расстояние от маятника до шкалы равно $d=(52\pm0,5)$ см. Массы грузов равны $M_1=(714,1\pm0,1)$ г и $M_2=(713,9\pm0,1)$ г.

Пуля массой m, летящая со скоростью u, сталкивается с мишенью абсолютно неупруго. По законы сохранения момента импульса, маятник приобретет угловую скорость Ω , причем:

$$L\Omega = mur$$
.

Кинетическая энергия маятника преобразуется в энергию деформации проволоки. пусть φ — наибольший угол поворота маятника, k — модуль кручения провлоки. По законы сохранения энергии:

$$\frac{k\varphi^2}{2} = \frac{L\Omega^2}{2}$$

$$\Omega = \sqrt{\frac{k}{I}} \cdot \varphi.$$

Тогда можем выразить u:

$$u = \frac{I\Omega}{mr} = \frac{\varphi\sqrt{kL}}{mr}.$$

Малый угол φ приближенно выражается через расстояниеd и длину диапазона смещения изображения на шкале x, а именно: $\varphi \approx x/(4d)$. Окончательно формула для u:

$$u = \frac{x\sqrt{kI}}{4mrd}.$$

m, г	0,513	0,499	0,518	0,519
$x_1 \text{ MM}$	-1	-1	-1	-1
x_2 MM	23,5	25	24	21
u, m/c	175	181	178	160
δu , м/с	12	13	13	12

Таблица 2: Результаты измерения для поступательного маятника

Nº	1	2	3
$10T_1, c$	122,0	121,6	121,9
$10T_2$, c	85,6	86,0	84,5

Таблица 3: Период колебаний маятника за $T=10\ c$

Чтобы найти величину \sqrt{kI} , воспользуемся формулой для периода колебаний крутильного маятника:

$$T_1 = 2\pi \sqrt{\frac{I}{k}} \iff I = k \frac{T_1^2}{4\pi^2}$$

Измерим T_1 . Кроме того, измерим период колебаний T_2 без грузов. Согласно теореме Гюйгенса-Штейнера:

$$T_2 = 2\pi \sqrt{\frac{I - (M_1 + M_2)R^2}{k}} \iff I = k \frac{T_2^2}{4\pi^2} + (M_1 + M_2)R^2.$$

$$k = \frac{4\pi^2 (M_1 + M_2)R^2}{T_1^2 - T_2^2}$$

$$\sqrt{kI} = \frac{kT_1}{2\pi} = \frac{2\pi (M_1 + M_2)T_1R^2}{T_1^2 - T_2^2}$$

На основании измерения 10 периодов колебаний, можем записать: $T_1=(12.2\pm0.6)$ с, $T_1=(8.5\pm0.6)$ с. Таким образом, $\sqrt{KI}=(0.1604\pm0.002)$ $\frac{\mathrm{Kf\cdot M}^2}{\mathrm{c}}$.

Занесем измерения для нескольких пуль в таблицу 2. Погрешность определения границ диапазона $(x_1$ и $x_2)$ была принята равной 0.5 см.

Среднее значение скорости равно $\langle u \rangle = 173$ м/с, среднеквадратичное отклонение $\sigma_u = 8$ м/с.

3 Вывод

Проведенное исследование позволило обнаружить, что каждое ружье обладает своими характеристиками. Кроме того, скорость вылетающей пули может заметно меняться даже при использовании одного и того же ружья. С другой стороны, проводя эти рассуждения, следует помнить о большой погрешности эксперимента. Вероятно, она и обуславливает изменение скорости от выстрела к выстрелу.