Week 7

Mathematics and Computational Methods for Complex Systems, 2023-2024

Outline of today

Differential quantities

What are they?

Operations and algebra

How do we compute them?

Optimisation

Differential equations

Machine learning

Course structure

Dynamical systems

Optimisation

Complexity

Mid module feedback

Position of car as a function of time

Velocity of car as a function of time

What does this even mean?

N.B. Velocity has a direction, so can be negative Speed is the magnitude of velocity

Differential quantity:

Velocity requires comparison of position at two points in time!

Average speed over a time interval

Average velocity between times t and $t+\Delta t$:

$$\frac{x(t+\Delta t)-x(t)}{\Delta t}$$

N.B. Δ often represents 'change in'

Average speed over a time interval

Average velocity between times t and $t+\Delta t$:

$$\frac{x(t + \Delta t) - x(t)}{\Delta t}$$

Velocity at a point in time

Velocity at time
$$t$$
:
$$\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

$$\left(=\lim_{\Delta t\to 0}\frac{x(t+\Delta t)-x(t)}{\Delta t}\right)$$

Suppose
$$x(t) = t^2$$

Velocity at time
$$t$$
:
$$\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

Suppose
$$x(t) = t^2$$

Then
$$\frac{x(t+\Delta t)-x(t)}{\Delta t} = \frac{(t+\Delta t)^2-t^2}{\Delta t}$$

Velocity at time
$$t$$
:
$$\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

Suppose
$$x(t) = t^2$$

Then
$$\frac{x(t+\Delta t)-x(t)}{\Delta t} = \frac{(t+\Delta t)^2-t^2}{\Delta t}$$

$$= \frac{t^2 + 2t\Delta t + (\Delta t)^2 - t^2}{\Delta t}$$

x(t)

Velocity at time
$$t$$
:
$$\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

Suppose
$$x(t) = t^2$$

Then
$$\frac{x(t + \Delta t) - x(t)}{\Delta t} = \frac{(t + \Delta t)^2 - t^2}{\Delta t}$$

$$= \frac{t^2 + 2t\Delta t + (\Delta t)^2 - t^2}{\Delta t}$$

x(t)

$$= 2t + \Delta t$$

$$=2t$$
 (As $\Delta t \rightarrow 0$)

Velocity at time
$$t$$
:
$$\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

Suppose
$$x(t) = t^2$$

Then
$$\frac{x(t+\Delta t)-x(t)}{\Delta t} = \frac{(t+\Delta t)^2-t^2}{\Delta t}$$

$$= \frac{t^2 + 2t\Delta t + (\Delta t)^2 - t^2}{\Delta t}$$

x(t)

$$= 2t + \Delta t$$

$$=2t$$
 (As $\Delta t \rightarrow 0$)

Velocity at time t: $\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$

Exercise

Did we assume Δt is positive?

Tangents

Velocity at time
$$t$$
:
$$\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

(i.e. as triangle width goes to zero)

Velocity function
$$\frac{\Delta x}{\Delta t}(t)$$
 Small change in Time
$$\frac{\Delta x}{\Delta t}$$
 Small change in Position

"Velocity is the rate of change of position with respect to time"

Independent variable x(t)Dependent variable t

"Velocity is the derivative of position with respect to time"

Notation: the differential

dr:Infinitesimal change in variable r

Velocity is
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t}$$

"Velocity is the derivative of position with respect to time"

Notation: the differential

dr:Infinitesimal change in variable r

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t}$$

Infinitesimal change in denominator => How much change in numerator?

If t changed infinitesimally, how much would x(t) (infinitesimally) change?

Lots of* functions have derivatives

Mathematical notation for derivative?

Sketch the derivative from intuition

*Terms and conditions apply

Lots of* functions have derivatives

Common notations:

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} \qquad \frac{\mathrm{d}f}{\mathrm{d}x}(x)$$

$$f'(x)$$
 $\dot{f}(x)$

*Terms and conditions apply

Derivatives are undefined at corners and jumps

$$\lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x}?$$

Derivatives are undefined at corners and jumps

$$\lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{5}{\Delta x}$$

Derivatives are undefined at sharp corners and jumps

$$\lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} : \qquad \Delta x \text{ can be negative or positive.}$$

$$\lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} : \qquad \text{Limit should be the same!}$$

Derivative?

Derivative?

Linear functions have constant derivatives

Derivative?

Constant functions have zero derivatives

Acceleration

Geometrical analogue?

Acceleration

Geometrical analogue?

Acceleration

Geometrical analogue:

Derivative of velocity (= steepness)

Double derivative of position (= curviness)

Acceleration is a differential quantity

Common notations:

$$\frac{\mathrm{d}^2 f(x)}{\mathrm{d}x^2} \qquad \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}(x)$$

$$f''(x)$$
 $\ddot{f}(x)$

Geometrical analogue:

Derivative of velocity (= steepness)

Double derivative of position (= curviness)

Higher-order derivatives

Common notations:

$$\frac{\mathrm{d}^n f(x)}{\mathrm{d} x^n}$$

$$\frac{\mathrm{d}^n f}{\mathrm{d} x^n}(x)$$

(Fourth order)
$$\longrightarrow f''''(x)$$

A bog-standard function

Mapping between values

$$f: \mathbb{R} \to \mathbb{R}$$
$$y = f(x)$$

y is the output . f is the mapping

They are not the same

$$x \longrightarrow y$$

Differentiation is an operator Mapping between functions

Differentiation is an operator Mapping between functions

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x)$$
 is the output.

 D_{χ} is the mapping

f is the input

They are not the same

$$D_{\chi}(f)$$

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x)$$

Differentiation is an operator Mapping between functions

$$D_{x}(f)(x) = \frac{\mathrm{d}f}{\mathrm{d}x}(x) \qquad \text{(=value at } x\text{)}$$

Common notations:

 $D_{x}(f)$: differential operator with respect to x

$$f(x) \qquad \qquad D_{x}(f)$$

$$\frac{D_{x} \circ D_{x}(f)}{\mathrm{d}x}$$

$$\frac{\mathrm{d}^2 f}{\mathrm{d}x^2}(x)$$

$$kD_{x}(f) = D_{x}(kf)$$

Where $k \in \mathbb{R}$ and f is a function

$$D_x(f_1) + D_x(f_2) = D_x(f_1 + f_2)$$

Overall:

$$D_{x}\left(\sum_{i=1}^{n}a_{i}f_{i}\right) = \sum_{i=1}^{n}a_{i}D_{x}(f_{i})$$

for any $a_i \in \mathbb{R}$, $n \in \mathbb{N}$

$$f(x) = x^2 + 3x - 4$$

$$f = f_1 + 3f_2 - 4f_3$$

$$f_1(x) = x^2$$

$$f_2(x) = x$$

$$f_3(x) = 1$$

$$f(x) = x^2 + 3x - 4$$

$$f = f_1 + 3f_2 - 4f_3$$

$$f_1(x) = x^2$$

$$f_2(x) = x$$

$$f_3(x) = 1$$

$$D_{x}(f) = \frac{\mathrm{d}f(x)}{\mathrm{d}x} = D_{x}(f_{1}) + 3D_{x}(f_{2}) - 4D_{x}(f_{3})$$

Standard derivatives

Function	Derivative
$y = x^n$	$y'=nx^{n-1}$
$y = \sin(x)$	$y' = \cos(x)$
$y = \cos(x)$	$y' = -\sin(x)$
$y = \ln(x)$	y'=1/x
$y=e^x$	$y'=e^x$

Standard derivatives

$$f(x) = 2x^3 + 3x^4 + 5\ln(x)$$

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x) = ?$$

Function	Derivative
$y = x^n$	$y'=nx^{n-1}$
$y = \sin(x)$	$y' = \cos(x)$
$y = \cos(x)$	$y' = -\sin(x)$
$y = \ln(x)$	y'=1/x
$y=e^x$	$y'=e^x$

Standard derivatives

$$f(x) = 2x^3 + 3x^4 + 5\ln(x)$$

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x) = 2 * (3x^2) + 3 * (4x^3) + \frac{5}{x}$$

$$= 6x^2 + 12x^3 + \frac{5}{x}$$

Function	Derivative
$y = x^n$	$y'=nx^{n-1}$
$y = \sin(x)$	$y' = \cos(x)$
$y = \cos(x)$	$y' = -\sin(x)$
$y = \ln(x)$	y'=1/x
$y = e^x$	$y'=e^x$

Computing derivatives

```
begin
Drag to move cell
                             using Symbolics ✓
                             @variables t # independent variable
                             D_t = Differential(t)
                             y = \underline{t}^2 + 4\sin(\underline{t}) + \log(\underline{t})
                    end
                                                                    \frac{\mathrm{d}}{\mathrm{d}t} \left( \log\left(t\right) + 4\sin\left(t\right) + t^2 \right)

    Dt(y)

                                                                           2t + \frac{1}{t} + 4\cos\left(t\right)
                       expand_derivatives(D_t(y))
```

Alternatives

SymPy in Python
Wolfram alpha online

Not ChatGPT

Product and chain rules

Differentiate product and composition of functions

$$\mathrm{d}f = \left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)\mathrm{d}x$$

$$f(x) = g(x)h(x)$$

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x)$$
?

$$\mathrm{d}f = \left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)\mathrm{d}x$$

$$f(x) = g(x)h(x)$$

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x)$$
?

$$x \to x + dx$$
$$f(x) \to f(x) + df$$

$$f(x) = g(x)h(x)$$

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x)?$$

$$df = h(x)dg + g(x)dh + dgdh$$

$$x \to x + dx$$
$$f(x) \to f(x) + df$$

$$f(x) = g(x)h(x)$$

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x)$$
?

$$df = h(x)dg + g(x)dh + dgdh$$

$$\frac{\mathrm{d}f}{\mathrm{d}x} = h(x)\frac{\mathrm{d}g}{\mathrm{d}x} + g(x)\frac{\mathrm{d}h}{\mathrm{d}x} + \frac{\mathrm{d}g\mathrm{d}h}{\mathrm{d}x}$$

$$x \to x + dx$$
$$f(x) \to f(x) + df$$

$$\frac{\mathrm{d}g\mathrm{d}h}{\mathrm{d}x^{*}}$$

$$\frac{\mathrm{d}f}{\mathrm{d}x} = h(x)\frac{\mathrm{d}g}{\mathrm{d}x} + g(x)\frac{\mathrm{d}h}{\mathrm{d}x} + \frac{\mathrm{d}g\mathrm{d}h}{\mathrm{d}x}$$

There must be some $k \in \mathbb{R}$ such that:

$$|dg| \le k |dx|$$

$$|dh| \le k |dx|$$

e.g. twice the max steepness of g(x) and h(x)

$$\frac{\mathrm{d}g\mathrm{d}h}{\mathrm{d}x} \leq \left| \frac{k^2 \mathrm{d}x^2}{\mathrm{d}x} \right| = k \left| \mathrm{d}x \right|$$

$$= 0 \text{ as } dx \rightarrow 0$$

$$\frac{\mathrm{d}f}{\mathrm{d}x} = h(x)\frac{\mathrm{d}g}{\mathrm{d}x} + g(x)\frac{\mathrm{d}h}{\mathrm{d}x} + \frac{\mathrm{d}g\mathrm{d}h}{\mathrm{d}x}$$

There must be some $k \in \mathbb{R}$ such that:

$$|dg| \le k |dx|$$

$$|dh| \le k |dx|$$

e.g. twice the max steepness of g(x) and h(x)

$$D_{x}(fg) = gD_{x}(f) + fD_{x}(g)$$

$$\frac{\mathrm{d}f}{\mathrm{d}x} = h(x)\frac{\mathrm{d}g}{\mathrm{d}x} + g(x)\frac{\mathrm{d}h}{\mathrm{d}x} + \frac{\mathrm{d}g\mathrm{d}h}{\mathrm{d}x}$$

Example

$$f(x) = x^3 \cos(x)$$

$$D_{x}(fg) = gD_{x}(f) + fD_{x}(g)$$

$$f(x) = g(x)h(x)$$

$$g(x) = x^3 \qquad h(x) = \cos(x)$$

Example

$$f(x) = x^3 \cos(x)$$

$$D_{x}(fg) = gD_{x}(f) + fD_{x}(g)$$

$$f(x) = g(x)h(x)$$

$$g(x) = x^{3}$$

$$dg = 3x^{2}dx$$

$$h(x) = \cos(x)$$

$$dh = -\sin(x)dx$$

$$df = \cos(x)(3x^2dx) - x^3(\sin(x)dx)$$

$$f(x) = g(x)h(x)$$
 (Product rule)

$$f(x) = g \circ h(x)$$
 (Chain rule)

$$g(x) = x^2$$
$$h(x) = \sin(x)$$

$$g \circ h$$
? $h \circ g$? gh ? hg ?

$$f(x) = g(x)h(x)$$
 (Product rule)

$$f(x) = g \circ h(x)$$
 (Chain rule)

$$g(x) = x^2$$
$$h(x) = \sin(x)$$

$$g \circ h$$
? $h \circ g$? gh ? hg ?
$$[sin(x)]^2 \sin(x^2) \qquad x^2 \sin(x) \qquad x^2 \sin(x)$$

$$f(x) = g \circ h(x)$$

Step 1: Rewrite

$$f(x) = g(u)$$
$$u = h(x)$$

$$D_{x}(g \circ h)$$
?

$$f(x) = g \circ h(x)$$

Step 1: Rewrite

$$f(x) = g(u)$$
$$u = h(x)$$

Step 2: Individual derivatives

$$du = \frac{dh(x)}{dx}dx$$

$$\mathrm{d}f = \frac{\mathrm{d}g(u)}{\mathrm{d}u}\mathrm{d}u$$

$$f(x) = g \circ h(x)$$

Step 1: Rewrite

$$f(x) = g(u)$$
$$u = h(x)$$

Step 2: Individual derivatives

$$du = \frac{dh(x)}{dx}dx$$

$$\mathrm{d}f = \frac{\mathrm{d}g(u)}{\mathrm{d}u}\mathrm{d}u$$

Step 3: Put together

$$df = \frac{dg(u)}{du} \frac{dh(x)}{dx} dx$$

$$f(x) = g \circ h(x)$$

Example

$$f(x) = \cos(x^3)$$

$$f(x) = g \circ h(x)$$

Example

$$f(x) = \cos(x^3)$$

Step 1: break into pieces

$$g(u) = \cos(u)$$

$$u = h(x) = x^3$$

$$f(x) = g \circ h(x)$$

Example

$$f(x) = \cos(x^3)$$

Step 1: break into pieces

$$g(u) = \cos(u)$$
$$u = h(x) = x^3$$

Step 2: calculate derivatives

$$dg(u) = -\sin(u)du$$

$$du = 3x^2 dx$$

$$f(x) = g \circ h(x)$$

Example

$$f(x) = \cos(x^3)$$

Step 1: break into pieces

$$g(u) = \cos(u)$$

$$u = h(x) = x^3$$

Step 2: calculate derivatives

$$dg(u) = -\sin(u)du$$

$$du = 3x^2dx$$

Step 3: Put together

$$df(x) = -\sin(x^3)3x^2dx$$

Question

Dimensionality of derivative?

Humidity

Temperature

Utility function U(T,H)

"Utility" x 225

$$U: \mathbb{R}^2 \to \mathbb{R}^{225}$$

$$x = (T, H)$$

$$\frac{dU}{dx_1} = \frac{dU_1}{dx_2}$$

$$\frac{dU_2}{dx_1} = \frac{dU_2}{dx_2}$$

$$\vdots$$

$$\frac{dU_n}{dx_1} = \frac{dU_n}{dx_2}$$

$$f: \mathbb{R}^m \to \mathbb{R}^n$$

Question

Dimensionality of derivative?

Question

Dimensionality of derivative?

$$f: \mathbb{R}^m \to \mathbb{R}^n$$

The Jacobian matrix
$$m \text{ columns}$$

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \begin{bmatrix} \frac{\mathrm{d}f_1}{\mathrm{d}x_1} & \frac{\mathrm{d}f_1}{\mathrm{d}x_2}, \dots, \frac{\mathrm{d}f_1}{\mathrm{d}x_m} \\ \frac{\mathrm{d}f_2}{\mathrm{d}x_1} & \frac{\mathrm{d}f_2}{\mathrm{d}x_2}, \dots, \frac{\mathrm{d}f_2}{\mathrm{d}x_m} \\ \vdots & \vdots \\ \frac{\mathrm{d}f_n}{\mathrm{d}x_1} & \frac{\mathrm{d}f_n}{\mathrm{d}x_2}, \dots, \frac{\mathrm{d}f_n}{\mathrm{d}x_m} \end{bmatrix}$$
 $n \text{ rows}$

Question

n rows

Dimensionality of derivative?

 $f: \mathbb{R}^m \to \mathbb{R}^n$

The Jacobian matrix

m columns

$$\frac{\mathrm{df}_{1}}{\mathrm{d}x_{1}} \quad \frac{\mathrm{df}_{1}}{\mathrm{d}x_{2}}, \dots, \frac{\mathrm{df}_{1}}{\mathrm{d}x_{m}}$$

$$\frac{\mathrm{df}_{2}}{\mathrm{d}x_{1}} \quad \frac{\mathrm{df}_{2}}{\mathrm{d}x_{2}}, \dots, \frac{\mathrm{df}_{2}}{\mathrm{d}x_{m}}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\frac{\mathrm{df}_{n}}{\mathrm{d}x_{1}} \quad \frac{\mathrm{df}_{n}}{\mathrm{d}x_{2}}, \dots, \frac{\mathrm{df}_{n}}{\mathrm{d}x_{m}}$$

Notation

$$D_{\chi}(f): \mathbb{R}^m \to \mathbb{R}^{m \times n}$$

$$J_{x}(f): \mathbb{R}^{m} \to \mathbb{R}^{m \times n}$$

$$\nabla(f): \mathbb{R}^{m} \to \mathbb{R}^{m \times n}$$

$$\nabla(f): \mathbb{R}^m \to \mathbb{R}^{m \times n}$$

Practice

$$f(x) = [x_1^2 + 4x_3, 5x_2 + 6x_1^3]$$

$$f: \mathbb{R}^n \to \mathbb{R}^2$$

Function	Derivative
$y = x^n$	$y'=nx^{n-1}$
$y = \sin(x)$	$y' = \cos(x)$
$y = \cos(x)$	$y' = -\sin(x)$
$y = \ln(x)$	y'=1/x
$y=e^x$	$y'=e^x$

Practice

$$f(x) = [x_1^2 + 4x_3, 5x_2 + 6x_1^3]$$

$$f: \mathbb{R}^n \to \mathbb{R}^2$$

$$D_{x}(f): \mathbb{R}^{n} \to \mathbb{R}^{n \times 2}$$

	•
•	•
0	0
•	•
0	0

Function	Derivative
$y = x^n$	$y'=nx^{n-1}$
$y = \sin(x)$	$y' = \cos(x)$
$y = \cos(x)$	$y' = -\sin(x)$
$y = \ln(x)$	y'=1/x
$y=e^x$	$y'=e^x$

Finite difference approximation Scalar functions

$$\frac{\mathrm{df}}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\frac{\mathrm{df}}{\mathrm{d}x} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

(Small Δx)

Don't know derivative? Approximate!

Finite differences

Scalar functions

$$\frac{\mathrm{df}}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\frac{\mathrm{df}}{\mathrm{d}x} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Don't know function value? Approximate!

(Small Δx)

Extrapolation

$$f(x + \Delta x) \approx \frac{\mathrm{d}f}{\mathrm{d}x} \Delta x$$

Finite differences

Approximation error

$$\frac{\mathrm{df}}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\frac{\mathrm{df}}{\mathrm{d}x} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

(Small Δx)

Approximation error

Issues

How small?

How accurate?

Numerical error: small small

Multidimensional finite differences

$$f: \mathbb{R}^m \to \mathbb{R}^n$$

$$\frac{\mathrm{df_i}}{\mathrm{d}x_j} \approx \frac{f_i(x + \Delta x_j) - f_i(x)}{\|\Delta x_j\|_2}$$

$$\Delta x_j = [0, 0, \dots \Delta, 0]$$
Entry j

$$x = [x_1, x_2, ..., x_n]$$

m columns

$$\frac{\mathrm{df}_{1}}{\mathrm{d}x_{1}} \quad \frac{\mathrm{df}_{1}}{\mathrm{d}x_{2}}, \dots, \frac{\mathrm{df}_{1}}{\mathrm{d}x_{m}}$$

$$\frac{\mathrm{df}}{\mathrm{d}x} = \begin{bmatrix} \frac{\mathrm{df}_{2}}{\mathrm{d}x_{1}} & \frac{\mathrm{df}_{2}}{\mathrm{d}x_{2}}, \dots, \frac{\mathrm{df}_{2}}{\mathrm{d}x_{m}} \\ \vdots & \vdots \\ \frac{\mathrm{df}_{n}}{\mathrm{d}x_{1}} & \frac{\mathrm{df}_{n}}{\mathrm{d}x_{2}}, \dots, \frac{\mathrm{df}_{n}}{\mathrm{d}x_{m}} \end{bmatrix} \qquad n \text{ rows}$$

Must take $n \times m$ finite differences

Example

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\mathrm{df_i}}{\mathrm{d}x_j} \approx \frac{f_i(x + \Delta x_j) - f_i(x)}{\|\Delta x_j\|_2}$$

$$\Delta x_1 = 0.01[1,0]$$

$$\Delta x_2 = 0.01[0,1]$$

Example

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\mathrm{df_i}}{\mathrm{d}x_j} \approx \frac{f_i(x + \Delta x_j) - f_i(x)}{\|\Delta x_j\|_2}$$

$$\Delta x_1 = 0.01[1,0]$$

 $\Delta x_2 = 0.01[0,1]$

$$v = 3\Delta x_1 + 2\Delta x_2$$
$$f(x + v)?$$

-0.75

-0.50

-0.25

Example

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\frac{\mathrm{df_i}}{\mathrm{d}x_j} \approx \frac{f_i(x + \Delta x_j) - f_i(x)}{\|\Delta x_j\|_2}$$

$$\Delta x_1 = 0.01[1,0]$$

 $\Delta x_2 = 0.01[0,1]$

-0.75

-0.50

-0.25

Directional derivatives (more to come)

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$f(x + v)$$
?

$$v = [v_1, v_2, ..., v_n]$$

$$\frac{\mathrm{df}}{\mathrm{d}x} = [\bullet \quad \bullet \quad ... \quad \bullet]$$

$$f(x + v) \approx f(x) + \sum_{i=1}^{n} v_i \frac{\mathrm{d}f}{\mathrm{d}x_i}$$

Directional derivatives (more to come)

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$v = [v_1, v_2, ..., v_n]$$

$$\frac{\mathrm{df}}{\mathrm{d}x} = [\bullet \quad \cdots \quad \bullet]$$

$$f(x + v) \approx f(x) + v^{T} \frac{\mathrm{d}f}{\mathrm{d}x}$$

Visualising the multidimensional derivative

$$f(x + v) \approx f(x) + v^{T} \frac{\mathrm{d}f}{\mathrm{d}x}$$

$$v = \frac{\mathrm{d}f}{\mathrm{d}x}$$
?