CLAIMS:

1. A compound of formula (I):

$$R_2$$
 CH_2OR_4 NHR_1

wherein

5

10

15

20

 R_1 represents a hydrogen, a branched or linear alkyl, aryl, alkylamine, or a group -C(O) R_5 ;

 R_2 and R_5 represent, independently, a branched or linear C_{10} - C_{24} alkyl, alkenyl or polyenyl groups;

 \mathbf{R}_3 and \mathbf{R}_4 are independently a group -C(O)-NR₆R₇, \mathbf{R}_6 and \mathbf{R}_7 being the same or different for R₃ and R₄ and represent, independently, a hydrogen, or a saturated or unsaturated branched or linear polyalkylamine, wherein one or more amine units in said polyalkylamine may be a quaternary ammonium; or \mathbf{R}_3 is a hydrogen; or

 $\mathbf{R_3}$ and $\mathbf{R_4}$ form together with the oxygen atoms to which they are bound a heterocyclic ring comprising $-C(O)-NR_9-[R_8-NR_9]_m-C(O)-$, $\mathbf{R_8}$ represents a saturated or unsaturated C_1-C_4 alkyl and $\mathbf{R_9}$ represents a hydrogen or a polyalkylamine of the formula $-[R_8-NR_9]_n$ -, wherein said R_9 or each alkylamine unit R_8NR_9 may be the same or different in said polyalkylamine; and

n and m, represent independently an integer from 1 to 10;

W represents a group selected from –CH=CH–, –CH₂–CH(OH)– or –CH₂– $\rm CH_{2}$ –.

2. The compound of Claim 1, wherein R_1 represents a -C(O) R_5 group, R_5 being as defined.

5

10

25

- 3. The compound of Claim 1 or 2, wherein said R_2 and R_5 represent, independently, a linear or branched C_{12} - C_{18} alkyl or alkenyl groups.
- 4. The compound of any one of Claims 1 to 3, wherein W represents -CH=CH-.
- 5. The compound of Claim 1, wherein R_1 represents a -C(O) R_5 group; R_5 represents a C_{12} - C_{18} linear or branched alkyl or alkenyl; W represents -CH=CH-; R_2 represents a C_{12} - C_{18} linear or branched alkyl or alkenyl; R_3 and R_4 represent, independently, a group C(O)-NR₆R₇, and R_3 may also represent a hydrogen, wherein R_6 and R_7 represent, independently, a hydrogen or a polyalkylamine having the general formula (II):

$$R_8$$
 NR_9 $+$ R_9

wherein

R₈ represent a C₁-C₄ alkyl;

R₉ represents a hydrogen or a polyalkylamine branch of formula (II), said R₈ and R₉ may be the same or different for each alkylamine unit, -R₈NR₉-, in the polyalkylamine of formula (II); and

n represents an integer from 3 to 6.

- 6. The compound of Claim 5, wherein R_3 is a hydrogen atom.
- 7. The compound of Claim 5, wherein both R_3 and R_4 represent the same or different polyalkylamine as defined in claim 1.
 - 8. The compound of Claim 1, wherein R_1 represents a $-C(O)R_5$ group; R_5 represents a C_{12} - C_{18} linear or branched alkyl or alkenyl; W represents -CH=CH-; R_2 represents a C_{12} - C_{18} linear or branched alkyl or alkenyl; R_3 and R_4 represent independently a group C(O)- NR_6R_7 , wherein R_6 and R_7 represent, independently, an alkylamine or a polyalkylamine having the general formula (II):

$$-\left\{ -R_{8}-NR_{9}\right\} _{n}H$$

wherein

R₈ represent a C₁-C₄ alkyl;

WO 2004/110980 PCT/IL2004/000536

R₉ represents a hydrogen or a polyalkylamine branch of formula (II), said R₈ and R₉ may be the same or different for each alkylamine unit, -R₈NR₉-, in the polyalkylamine of formula (II); and

-35 -

n represents an integer from 3 to 6.

9. The compound of Claim 1, wherein R_1 represents a $C(O)R_5$ group; R_5 represents a C_{12} - C_{18} linear or branched alkyl or alkenyl; W represents -CH=CH-; R_2 represents a C_{12} - C_{18} linear or branched alkyl or alkenyl; R_3 and R_4 form together with the oxygen atoms to which they are bonded a heterocyclic ring comprising -C(O)-[NH- R_8]_n-NH-C(O)-,

wherein

5

10

 R_8 represents a C_1 - C_4 alkyl, wherein for each alkylamine unit -NH- R_8 -, said R_8 may be the same or different; and

n represents an integer from 3 to 6.

- The compound of any one of Claims 5 to 9, wherein said R_8 is a C_3 15 C_4 alkyl.
 - 11. The compound of Claim 1, being N-palmitoyl D-erythro sphingosyl-1-carbamoyl spermine.
 - 12. The compound of Claim 1, having the chemical structure as depicted in Fig. 2C.
- 20 **13.** A process for the preparation of a sphingoid-polyalkylamine conjugate of formula (I)

$$R_2$$
— W
 CH_2OR_4
 NHR_1

wherein

5

10

15

20

 R_1 represents a hydrogen, a branched or linear alkyl, aryl, alkylamine, or a group -C(O) R_5 ;

 R_2 and R_5 represent, independently, a branched or linear C_{10} - C_{24} alkyl, alkenyl or polyenyl groups;

 \mathbf{R}_3 and \mathbf{R}_4 are independently a group -C(O)-NR₆R₇, \mathbf{R}_6 and \mathbf{R}_7 being the same or different for R₃ and R₄ and represent, independently, a hydrogen, or a saturated or unsaturated branched or linear polyalkylamine, wherein one or more amine units in said polyalkylamine may be a quaternary ammonium; or

R₃ represents a hydrogen; or

 \mathbf{R}_3 and \mathbf{R}_4 form together with the oxygen atoms to which they are bound a heterocyclic ring comprising $-\mathbf{C}(O)$ - $\mathbf{N}\mathbf{R}_9$ - $[\mathbf{R}_8$ - $\mathbf{N}\mathbf{R}_9]_{\mathrm{m}}$ - $\mathbf{C}(O)$ -, \mathbf{R}_8 represents a saturated or unsaturated \mathbf{C}_1 - \mathbf{C}_4 alkyl and \mathbf{R}_9 represents a hydrogen or a polyalkylamine of the formula $-[\mathbf{R}_8$ - $\mathbf{N}\mathbf{R}_9]_{\mathrm{n}}$ -, wherein said \mathbf{R}_9 or each alkylamine unit $\mathbf{R}_8\mathbf{N}\mathbf{R}_9$ may be the same or different in said polyalkylamine; and

n and m represent independently an integer from 1 to 10;

W represents a group selected from -CH=CH-, -CH₂-CH(OH)- or -CH₂-CH₂-;

the process comprises:

- (a) providing a sphingoid compound of formula (I) wherein R₁, R₂ and W have the meaning as defined above and R₃ and R₄ represent, independently, a hydrogen atom or an oxo protecting group, wherein at least one of said R₃ and R₄ represent a hydrogen atom;
 - (b) reacting said compound of step (a) with an activating agent, optionally in the presence of a catalyst, to obtain an activated R₃ and/or R₄ group;
- 25 (c) reacting said activated sphingoid compound with a polyalkylamine;
 - (d) removing said protecting group thereby obtaining said sphingoid-polyalkylamine conjugate of formula (I) as defined above.
 - 14. The process of Claim 13, wherein said sphingoid-polyalkylamine conjugate is as defined in any one of Claims 1 to 12.

WO 2004/110980 PCT/IL2004/000536

- 15. The process of Claim 13 or 14, wherein said protecting group is a primary amine protecting group selected from trifluoroacetamide, fmoc, carbobenzoxy (CBZ), dialkyl Phosphoramidates.
- 16. The process of any one of Claims 13 to 15, wherein said activating agent is selected from N,N'-disuccinimidylcarbonate, di- or tri-phosgene or an imidazole derivative.

5

10

15

20

25

- 17. The process of any one of Claims 13 to 16, wherein said activation is performed in the presence of a catalyst, the catalyst being selected from 4-dimethylamino pyridine (DMAP), tetrazole, dicyanoimidazole or diisopropylethylamine.
- 18. The process of any one of Claims 13 to 17, for obtaining a disubstituted sphingoid-polyalkylamine conjugate, wherein

in step (a) both R₃ and R₄ are hydrogen atoms, and said process comprises reacting the compound of formula (I) with at least two equivalents of polyalkylamine to obtain a disubstituted sphingoid-polyalkylamine conjugate, with identical polyalkylamine substituents.

19. The process of any one of Claims 13 to 17, for obtaining a disubstituted sphingoid-polyalkylamine conjugate, wherein

in step (a) at least one of R₃ or R₄ is protected with a protecting group, the process comprises reacting in step (c) the activated sphingoid compound with a first polyalkylamine; removing the protecting group of R₃ or R₄ to obtain an unprotected oxo group; reacting the unprotected compound with an activating agent to obtain an activated mono-substituted sphingoid-polyalkylamine conjugate; and reacting said activated mono-substituted sphingoid-polyalkylamine conjugate with a second polyalkylamine, thereby obtaining a di-substituted sphingoid-polyalkylamine conjugate, said first and second polyalkylamine may be the same or different.

20. The process of any one of Claims 13 to 17, for obtaining a heterocyclic sphingoid-polyalkylamine conjugate, wherein

WO 2004/110980 PCT/IL2004/000536

in step (a) both R₃ and R₄ are hydrogen atoms, said sphingoid compound is reacted with at least two equivalents of an activating agent to obtain an activated sphingoid with both R₃ and R₄ activated and reacting said activated sphingoid compound with less than an equivalent of polyalkylamine, thereby obtaining a heterocyclic sphingoid-polyalkylamine conjugate.

- 21. The process of any one of Claims 13 to 20, for obtaining any one of the sphingoid-polyalkylamine conjugates depicted in Figs. 1A to 1D.
- 22. A pharmaceutical composition comprising a sphingoid-polyalkylamine conjugate of the formula (I):

10

15

20

25

5

wherein

 R_1 represents a hydrogen, a branched or linear alkyl, aryl, alkylamine, or a group -C(O) R_5 ;

 $\mathbf{R_2}$ and $\mathbf{R_5}$ represent, independently, a branched or linear C_{10} - C_{24} alkyl, alkenyl or polyenyl groups;

 R_3 and R_4 are independently a group -C(O)-NR₆R₇, R₆ and R₇ being the same or different for R₃ and R₄ and represent, independently, a hydrogen, or a saturated or unsaturated branched or linear polyalkylamine, wherein one or more amine units in said polyalkylamine may be a quaternary ammonium; or

R₃ is a hydrogen; or

 R_3 and R_4 form together with the oxygen atoms to which they are bound a heterocyclic ring comprising $-C(O)-NR_9-[R_8-NR_9]_m-C(O)-$, R_8 represents a saturated or unsaturated C_1-C_4 alkyl and R_9 represents a hydrogen or a polyalkylamine of the formula $-[R_8-NR_9]_n$ -, wherein said R_9 or each alkylamine unit R_8NR_9 may be the same or different in said polyalkylamine; an

n and m are independently an integer from 1 to 10;

W represents a group selected from –CH=CH–, –CH₂–CH(OH)– or –CH₂–CH₂–.

- 23. The composition of Claim 22, further comprising a pharmaceutically acceptable carrier.
 - 24. The composition of Claim 22 or 23, wherein said sphingoid-polyalkylamine conjugate is as defined in any one of Claims 1 to 12.
 - 25. The composition of any one of Claims 22 to 24, comprising a biologically active substance.
 - 26. Use of a compound of formula (I):

wherein

10

15

20

25

 R_1 represents a hydrogen, a branched or linear alkyl, aryl, alkylamine, or a group -C(O) R_5 ;

 R_2 and R_5 represent, independently, a branched or linear C_{10} - C_{24} alkyl, alkenyl or polyenyl groups;

 R_3 and R_4 are independently a group -C(O)-NR₆R₇, R_6 and R_7 being the same or different for R_3 and R_4 and represent, independently, a hydrogen, or a saturated or unsaturated branched or linear polyalkylamine, wherein one or more amine units in said polyalkylamine may be a quaternary ammonium; or

R₃ is a hydrogen; or

 R_3 and R_4 form together with the oxygen atoms to which they are bound a heterocyclic ring comprising $-C(O)-NR_9-[R_8-NR_9]_m-C(O)-$, R_8 represents a saturated or unsaturated C_1-C_4 alkyl and R_9 represents a hydrogen or a polyalkylamine of the formula $-[R_8-NR_9]_n$ -, wherein said R_9 or each alkylamine

5

unit R_8NR_9 may be the same or different in said polyalkylamine; and ${\bf n}$ and ${\bf m}$ are independently an integer from 1 to 10;

W represents a group selected from –CH=CH–, –CH₂–CH(OH)– or –CH₂– CH₂–;

as a capturing agent.

- 27. The use of Claim 26, wherein said compound is as defined in any one of Claims 1 to 12.
- 28. The use of Claim 26, wherein said compound is prepared as defined in any one of Claims 13 to 21.
- 10 **29.** A kit comprising a compound according to any one of Claims 1 to 12, and instructions for use of said compound as a capturing agent.