

D-JK-T Flip Flop

PRESENTED BY NABANITA DAS

D Flip-Flop

Timing Diagram of D Flip Flop

State Transition Diagram of D Flip Flop

Clk	D	Q	Q'	State	
0	0	Q	Q'	No change in state	
1	0	0	1	Resets Q to 0	
1	1	1	1	Sets Q to 1	

D Flip-Flop

Characteristic Table of an D Flip Flop.

Flip-flop inputs	Present output	Next output
D	$Q_{_{n}}$	Q_{n+1}
0	0	0
0	1	0
1	0	1
1	1	1

Now we will find out the characteristic equation of the D flip-flop from the characteristic table with the help of the Karnaugh map:-

Hence, the characteristic equation of a D flip-flop is

$$\mathbf{Q}_{n+1} = \mathbf{D}$$

JK Flip-Flop

JK flip – flop is named after Jack Kilby.

A JK flip – flop is a modification of SR flip – flop. In this the J input is similar to the set input of SR flip – flop and the K input is similar to the reset input of SR flip – flop. The condition J = K = 1 which is not allowed in SR flip – flop (S = R = 1) is interpreted as a toggle command.

Clk	J	K	Q	Q'	State
1	0	0	Q	Q'	No change in state
1	0	1	0	1	Resets Q to 0
1	1	0	1	0	Sets Q to 1
1	1	1	>	=	Toggles

Timing Diagram of JK Flip Flop

State Transition Diagram of JK Flip-Flop

Clk	J	K	Q	Q'	State
1	0	0	Q	Q'	No change in state
1	0	1	0	1	Resets Q to 0
1	1	0	1	0	Sets Q to 1
1	1	1	-	-	Toggles

Characteristic Equation of JK Flip-Flop

As we have already discussed the characteristic equation of an S-R flip-flop, we can similarly find out the characteristic equation of a J-K flip-flop. The characteristic table of a J-K flip-flop is given in the table below. From the characteristic table we have to find out the characteristic equation of the J-K flip-flop.

Flip-f	lop inputs	Present output	Next output						
J	K	$Q_{\scriptscriptstyle A}$	Q_{n+1}						
0	0	0	0	1					
0	0	1	1						
0	1	0	0						
0	1	1	0	$ \bot\rangle$	KO,	00	01	K'Q _n	10
1	0	0	1	"					
1	0	1	1		0	0	1	0	0
1	1	0	1		1	1	1	0	
1	1	1	0		l				الم

From the Karnaugh map, we obtain $Q_{n+1} = JQ'_n + K'Q_n$. Hence, the characteristic equation of a J-K flip-flop is

$$\mathbf{Q}_{n+1} = \mathbf{J}\mathbf{Q'}_n + \mathbf{K'}\mathbf{Q}_n$$

T (Toggle) flip-flop

T	Q_n	Q_{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

State Transition Diagram of T Flip-Flop

T	Q_n	Q_{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

Characteristic Equation of T Flip-Flop

Now we will find out the characteristic equation of the T flip-flop from the characteristic table with the help of the Karnaugh map below:-

Flip-flop inputs	Present output	Next output		
T	Q_n	Q_{n+1}		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

From the Karnaugh map, the Boolean expression of Q_{n+1} is derived as $Q_{n+1} = TQ'_n + T'Q_n$. Hence, the characteristic equation of a T flip-flop is

$$Q_{n+1} = TQ'_n + T'Q_n$$