Support Vector Regression (2)

Manel Martínez-Ramón

ECE, UNM

October 2018

• The ν -SVR is a way to automatically tune ε by adding a parameter that imposes a bound on the fraction of support vectors (Smola, 2003). The primal problem becomes

Minimize
$$||\mathbf{w}||^2 + C \left(\sum_{n=1}^{N} (\xi_i + \xi_i^*) + N\nu\varepsilon \right)$$

subject to
$$\begin{cases} y_n - \mathbf{w}^{\top} \mathbf{x}_n - b - \varepsilon - \xi_n \leq 0 \\ -y_n + \mathbf{w}^{\top} \mathbf{x}_n + b - \varepsilon - \xi_n^* \leq 0 \\ \xi_n, \xi_n^* \geq 0 \end{cases}$$

• Here we introduce ε as part of the optimization, multiplied by a constant $N\nu$ which represents a fraction of the number of samples (where $0 < \nu < 1$ is another free parameter).

• The Lagrange optimization is equal to the one of the SVR, where the dual to be maximized is

$$L_{d} = -\frac{1}{2}(\boldsymbol{\alpha} - \boldsymbol{\alpha}^{*})^{\top} \mathbf{K}(\boldsymbol{\alpha} - \boldsymbol{\alpha}^{*}) + (\boldsymbol{\alpha} - \boldsymbol{\alpha}^{*})^{\top} \mathbf{y}$$
subject to
$$\begin{cases} \sum_{n \in N_{sv}} (\alpha_{n} - \alpha_{n}^{*}) = 0 \\ \sum_{n \in N_{sv}} (\alpha_{n} + \alpha_{n}^{*}) = CN\nu \\ 0 \leq \alpha_{n}, \alpha_{n}^{*} \leq C \end{cases}$$

where N_{sv} is the number of support vectors.

Dual constraint

$$\begin{cases} \sum_{n \in N_{sv}} (\alpha_n + \alpha_n^*) = CN\nu \\ 0 \le \alpha_n, \alpha_n^* \le C \end{cases}$$

mean that ν is a lower bound on the fraction of support vectors.

• Indeed, assume that all support vectors are outside the ϵ -tube. Then, $\alpha_n, \alpha_n^* = C$ for all of them. Then

$$\sum_{n \in N_{sv}} (\alpha_n + \alpha_n^*) = CN_{sv}$$

Thus $N_{sv} = \nu N$.

The ν -SVR

• If there are support vectors on the margin, the number of support vectors will be higher.

$$N_{sv} \ge \nu N$$

• In either case the number of support vectors outside the margin will be equal or less than νN : Hence, ν is an upper bound of the number of errors of absolute value higher than ϵ .

One dimension example of regression using ν -SVR with $\nu=0.5$. The total number of SV is 16, and the number of saturated ones is 13, of a total of 30 training data.

Examples

In this example, the value of ν is swept from 0.1 to 0.9. The margin (decreasing line) is higher when the fraction of support vectors is lower. The straight line represents ν . The blue (upper line) represents the fraction of total SVs, which is always higher than ν . The red (lower) line represents the fraction of non saturated support vectors, which is always less than ν .

Outcomes of this lesson

We have seen here the ν -SVM (nu-SVM). After it you must have a clear idea of:

- The purpose of the modification that introduces ν .
- The meaning of the constraints found in the dual.
- The behaviour of the machine with respect to ν .