Umeå University

Institution för Datavetenskap

Datavetenskapens byggstenar 7.5 p DV160HT15

OU4 Analysis of Complexity

Submitted 2015-12-25

Author: Lorenz Gerber (dv15lgr@cs.umu.se)
Instructor: Lena Kallin Westin / Johan Eliasson

Contents

1	Intro	duction	2
	1.1	The 'Big O' notation'	2
	1.2	Determining of $Ordo$, c and n_0	2
2	Mate	rial and Methods	2
	2.1	Experimental Complexity Analysis	2
	2.2	Asymptotic Complexity Analysis	2
3	Resul	lts	3
	3.1	Experimental Complexity Analysis	3
	3.2	Asymptotic Complexity Analysis	6
4	Discu	ussion	7
	4.1	Experimental Complexity Analysis	7
	4.2	Asymptotic Complexity Analysis	7
Re	ferences		7

1 Introduction

The aim with this laboration was to apply experimental and asymptotic complexity analysis of algorithms.

What is complexity analysis. Experimental, asymptotic. What is big O notation, what does it mean.

1.1 The 'Big O' notation'

'Ordo' or 'Big O' notation is a mathematical definition on the complexity of an algorithm. It can be written as shown in equation (1)[1, pp. 245].

1.2 Determining of *Ordo*, c and n_0

bla bla bla

$$f(n) \Rightarrow O(g(n)) \text{ if } f(n) \le c \times g(n) \text{ for } n \ge n_0 \text{ and } c > 0 \text{ and } n_0 \ge 1$$
 (1)

bla bla bla

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} + 1 \tag{2}$$

2 Material and Methods

2.1 Experimental Complexity Analysis

Describe experiment, describe the rules.

2.2 Asymptotic Complexity Analysis

Describe what was given and the rules to analyse.

Listing 1 The given pseudo code of a bubble sort.

```
Algorithm bubbleSort(numElements, list[])
input: numElements, the number of elements in the list
        list, a list of numbers to be sorted
output: the sorted list
1: done <- false
2: n < -0
3:
     while (n < numElements) and (done = false)
4:
        done <- true
5:
        for m \leftarrow (numElements -1) downto n
             if list[m] < list[m - 1] then
6:
7:
                 tmp <- list[m]</pre>
                 list[m] \leftarrow list[m - 1]
8:
9:
                 list[m-1] \leftarrow tmp
10:
                 done <- false
11:
       n < - n + 1
12: return list
```


Figure 1: Runtime values in seconds for a series of n repetitions of the investigated algorithm. The left panel shows the measured times. For the right panel, the square root for each time value was calculated before plotting.

Table 1 Line	ar regression of the transformed experimental data
gradient intercept R^2	7.348×10^{-5} 1.393×10^{-2} 0.9988

3 Results

3.1 Experimental Complexity Analysis

Show formulas, C, n0

The resulting runtime values, shown in the left of figure 1, where transformed by calculating the square root. The transformed data is shown in the right panel of figure 1. Then linear regression was calculated on the transformed data (*table1*).

The obtained linear equation was then transformed back to yield a quadratic function as shown in equation (3).

$$y = 5.4 \times 10^{-9} x^2 + 2.1 \times 10^{-6} x + 0.2 \times 10^{-4}$$
 (3)

Then c was determined according to equation (2) and n_0 was determined by solving the quadratic equation resulting from f(n) = g(n) (Table 3, figure 2).

Table 2	Calculated value for ordo determination
\overline{c}	6.4×10^{-9}
n_0	2060

Figure 2: Comparison of f(x) and O(g(x)) in the range of n_0 which was determined to be at about n=2600.

Listing 2 Determining the 'worst case' complexity for the given 'bubblesort' algorithm. The line numbers correspond to those in the listing (??).

```
1: 1 * [<-] +
2: 1 * [<-] +
3: (numElements + 1) *
    (3 * [get] + 1 * [<] + 1 * [=] + 1 * [AND]) +
4: numElements * (1 * [<-]) +
5: init:
    (numElements \star (numElements -1) / 2 + 1) \star
    (1 * [qet] + 1 * [-] + 1 * [<-]) +
    cond success + counter:
    numElements * (numElements - 1) / 2) *
    (2 * [get] + 1 * [>] + 1 * [--]) +
    cond fail:
    numElements *
    (2 * [get n] + 1 * [>]) +
6: (numElements * (numElements - 1) / 2) *
    (2 * [get] + 2 * [list[]] + 1 * [-] + 1 * [<] +
7:
       1 * [get] + 1 * [list[]] + 1 * [<-] +
        1 * [get] + 1 * [-] + 1 * [list[]] + 1 * [<-] +
9:
        2 * [get] + 1 * [-] + 1 * [ <-] +
        1 * [<-] ) +
11: numElements * (1 * [get] + 1 * [+] + 1 * [<-] + \frac{1}{2}
12: 1 * return
set numElements = x
1: 1 +
2: 1 +
3: (x + 1) * 6
4: x * 1
5: (x * (x-1) / 2 + 1) * 3 +
    (x * (x - 1) / 2) * 4 +
    x * 3 +
6: (x * (x - 1) / 2) * (6 +
7:
     3 +
8:
     4 +
9:
     4 +
10: 1) +
11: x * 3 +
12: 1
Hence:
1 + 1 + 6x + 6 + x + 1.5x^2 - 1.5x + 3 + 2x^2 - 2x +
3x + 9x^2 - 9x + 3x + 1
= 12.5x^2 + 4.5x + 12
```

3.2 Asymptotic Complexity Analysis

Worst Case

Best case

Listing 3 Determining the 'best case' complexity for the given 'bubblesort' algorithm. The line numbers correspond to those in listing xxx

```
1: 1 * [<-] +
2: 1 * [<-] +
3: 2 * (3 * [get] + 1 *[<] + 1 * [and] + 1* [==]) +
4: 1 * [<-] +
5: init:
   1 * [get] + 1 * [-] + 1 * [<-] +
    cond success + counter:
    (numElements - 1) * (1 * [get] + 1 * [>]) + 1 * [--]) +
   cond fail:
   1* [get] + 1 * [>] +
6: (numElements - 1) *
    (2 * [get] + 2 * list[] + 1 * [-] + 1 * [<]) +
11: 1 * [get] + 1 * [+] + 1 * [<-]
12: 1 * [return]
set numElements = x
1: 1 +
2: 1 +
3: 2 * 6 +
4: 1 +
5: 3 +
   (x - 1) * 3 +
    2 +
6: (x - 1) * 6 +
11: 3 +
12: 1
Hence:
1 + 1 + 12 + 1 + 3 + 3x - 3 + 2 + 6x - 6 + 3 + 1
= 9x + 15
```

show plot

Table 3 Determination of ordo for 'Best' and 'Worst Case	se'	Cas	'Worst	and	'Best'	for	f orde	01	mination	eterm	3L	Table
---	-----	-----	--------	-----	--------	-----	--------	----	----------	-------	----	-------

	Worst Case	Best Case
f(n)	$12.5n^2 + 4.5x + 12$	9x + 15
g(n)	$13.5n^2$	10x
c	13.5	10
n_0	7	15

4 Discussion

4.1 Experimental Complexity Analysis

4.2 Asymptotic Complexity Analysis

Worst Case

Line 1, 2 and 12 run just once. Line 3 runs numElements + 1 times. Lines 4 and 11 run numElements times. Line 5 runs (numElements * (numElements - 1)) / 2) + 1 times. The lines 6 to 10 run numElements * (numElements - 1) / 2 times. The downto in for m <- (numElements - 1) downto n was interpreted as 'larger than' condition.

References

[1] L.E. Janlert and T. Wiberg. *Datatyper och algoritmer*. Studentlitteratur, 2000.