数学笔记

BeBop

 $\mathrm{June}\ 25,\ 2024$

Contents

1	微分	流形							Ę
	1.1	向量丛	结构群的约化						Ę
		1.1.1	流形可定向与结构群可约化至 GL+(k,	\mathbb{R}).					(
		1.1.2	黎曼度量与结构群可约化至正交群 O(k).					(

4 CONTENTS

Chapter 1

微分流形

1.1 向量丛结构群的约化

定义 1.1.1 (向量丛的定义). 设 E, M 为微分流形, $\pi: E \to M$ 为光滑满射, 且有 M 的开覆盖 $\{U_{\alpha}\}$ 及微分同胚 $\psi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$, 满足:

- 1. $\psi(\pi^{-1}(p)) = \{p\} \times \mathbb{R}^k, \ \forall p \in U_\alpha,$
- 2. 当 $U_{\alpha} \cap U_{\beta} \neq \emptyset$ 时,存在光滑映射 $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k,\mathbb{R})$,使得 $\psi_{\beta} \circ \psi_{\alpha}^{-1}(p,v) = (p,g_{\beta\alpha}(p)v)$.

则称:

- $E \neq M$ 上的光滑向量丛, k 为向量丛的秩, π 为丛投影;
- $\{(U_{\alpha}, \psi_{\alpha})\}$ 为局部平凡化, $g_{\beta\alpha}$ 为连接函数, $GL(k, \mathbb{R})$ 为结构群;
- $E_n := \pi^{-1}(p)$ 为点 p 上的纤维.

对每个 E_p , 由条件I可知 E_p 上可自然定义一个线性空间结构, 这看似依赖于局部平凡化 ψ_{α} 的选取, 不过由条件2可知线性结构并不依赖局部平凡化的选取.

若存在 $\mathrm{GL}(k,\mathbb{R})$ 的闭 Lie 子群 H, 使得 $g_{\beta\alpha}(p) \in H$, $\forall p \in U_{\alpha} \cap U_{\beta}$, 则称结构群**可约化到**子群 H.

连接函数 $g_{\beta\alpha}$ 在向量丛的定义中占据很重要的地位, 容易证明它满足性质:

$$g_{\alpha\alpha} = 1, \ \forall U_{\alpha}, \qquad g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha} = 1, \ \forall U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset.$$

反之, 若有一族光滑函数 $\{g_{\alpha\beta}\}$ 满足以上性质, 定义商空间 $E:=\sqcup_{\alpha}(U_{\alpha}\times\mathbb{R}^{k})/\sim$, 其中等价关系定义为: $(p,v_{\alpha})\in U_{\alpha}\times\mathbb{R}^{k}, (q,v_{\beta})\in U_{\beta}\times\mathbb{R}^{k}$

$$(p, v_{\alpha}) \sim (q, v_{\beta}) \Leftrightarrow p = q, \ v_{\beta} = g_{\beta\alpha}(p)v_{\alpha}.$$

E 的拓扑由商拓扑给出, 记 [p,v] 为 (p,v) 的等价类, 定义 $\pi: E \to M, \pi([p,v]) = p$. 则 E 在投影映射 π 下成为 M 上的秩 k 的向量丛.

1.1.1 流形可定向与结构群可约化至 GL⁺(k, ℝ)

1.1.2 黎曼度量与结构群可约化至正交群 O(k)

流形 M 上的黎曼度量是指光滑 (0,2)-张量场 g,g 在每个点的切空间处都是内积. 下面就来说明 n 维流形 M 上存在黎曼结构与切丛 TM 的结构群可约化至正交群 O(n) 是等价的.

 1° . 设 (M,g) 为一个黎曼流形, 取 M 的一个局部坐标覆盖 $\{(U_{\alpha}; x_{\alpha}^{1}, \ldots, x_{\alpha}^{n})\}$, 于是 $\frac{\partial}{\partial x_{\alpha}^{1}}, \ldots, \frac{\partial}{\partial x_{\alpha}^{n}}$ 成为 U_{α} 上的一组标架, 因为 U_{α} 上有度量结构, 我们可对标 架做 Gram-Schmidt 正交化得到单位正交标架 $e_{1\alpha}, \ldots, e_{n\alpha}$, 令局部平凡化映射 为

$$\psi_{\alpha}: TU_{\alpha} \to U_{\alpha} \times \mathbb{R}^{n}$$
$$(p, a^{i}e_{i\alpha}|_{p}) \mapsto (p, a^{i}e_{i})$$

其中 e_1, \ldots, e_n 表示 \mathbb{R}^n 上的自然基底. 当 $U_\alpha \cap U_\beta \neq \emptyset$ 时, 对每个点 $p \in U_\alpha \cap U_\beta$, 因为 $\{e_{i\alpha}|_p\}$ 和 $\{e_{i\beta}|_p\}$ 都是 T_pM 的一组标准正交基, 所以转移函数 $g_{\beta\alpha}(p)$ 是正交矩阵, 因此结构群可被约化至 O(n).

 2° . 假设 TM 的结构群可约化至正交群, 设 $\{(U_{\alpha}, \psi_{\alpha})\}$ 是对应的平凡化, 即 ψ_{α} 是从 TU_{α} 到 $U_{\alpha} \times \mathbb{R}^{n}$ 的微分同胚, 令 $e_{i\alpha} = \psi^{-1}(U_{\alpha} \times \{e_{i}\})$, 其中 $\{e_{i}\}$ 为 \mathbb{R}^{n} 的自然基底. 我们得到了 TU_{α} 上处处线性无关的一组向量场 $\{e_{i\alpha}\}$, 命这组向量场构成 TU_{α} 的一个单位正交标架场, 这能唯一确定 TU_{α} 上的黎曼度量. 若 $U_{\alpha} \cap U_{\beta} \neq \emptyset$, 对 $\forall p \in U_{\alpha} \cap U_{\beta}$,

$$\langle e_{i\alpha}, e_{j\alpha} \rangle_p = \langle \psi_{\alpha}(e_{i\alpha}|_p), \psi_{\alpha}(e_{j\alpha}|_p) \rangle$$

$$= \langle g_{\alpha\beta}(p)\psi_{\beta}(e_{i\beta}|_p), g_{\alpha\beta}(p)\psi_{\beta}(e_{j\beta}|_p) \rangle$$

$$= \langle \psi_{\beta}(e_{i\beta}|_p), \psi_{\beta}(e_{j\beta}|_p) \rangle$$

$$= \langle e_{i\beta}, e_{j\beta} \rangle_p$$

所以不同平凡化定义的黎曼结构是相容的,因此能定义一个整体的黎曼度量 g. 注意到我们能用单位分解在任意微分流形上构造黎曼度量,这表明任意微分流形切丛的结构群都能约化到正交群.