Evaluation of Mg compounds as coating materials in Mg batteries

Tina Chen,^{1,2} Gerbrand Ceder,^{1,2} Gopalakrishnan Sai Gautam,^{3,#} and Pieremanuele Canepa^{4,*}

¹Department of Materials Science and Engineering, University of California Berkeley, California 94720, United States.

²Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

³Department of Mechanical and Aerospace Engineering, Princeton
 University, Princeton, New Jersey 08544, United States.
 ⁴Department of Materials Science and Engineering, National University of Singapore,
 Singapore 117575, Singapore.

*Corresponding author: <u>gautam91@princeton.edu</u>
*Corresponding author: <u>pcanepa@nus.edu.sg</u>

S1. Mg-binary and ternary compounds

Table S1: List of the specific Mg-binaries whose reductive and oxidative stabilities have been evaluated.

Mg-X	Binaries
Mg-B	$ m MgB_2$
	MgB_4
	MgB_7
Mg-Si	Mg_2Si
	${ m Mg}_9{ m Si}_5$
	Mg_5Si_6
Mg-C	Mg_2C_3
	MgC_2
Mg-As	$\mathrm{Mg_3As_2}$
Ma D	Mg_3P_2
Mg-P	MgP_4
Mg-N	$\mathrm{Mg_3N_2}$
Mg-Te	MgTe
Mg-Se	MgSe
Mg-S	MgS
Mg-O	MgO
Mg-I	MgI_2
Mg-Br	$MgBr_2$
Mg-Cl	$MgCl_2$
Mg-F	MgF_2
Mg-H	MgH_2

Table S2: List of the specific Mg-ternaries whose reductive and oxidative stabilities have been evaluated.

Mg-Si-Se	Mg(InTe ₂) ₂ Mg ₂ SiSe ₄
	Mg ₂ SiSe ₄
M. D.C.	
Mg-P-Se	$MgPSe_3$
Mg-Sc-Se	$Mg(ScSe_2)_2$
Mg-In-Se	Mg(InSe ₂) ₂
Mg-Ge-Se	Mg ₂ GeSe ₄
Mg-Si-S	Mg ₂ SiS ₄
Mg-Ge-S	Mg ₂ GeS ₄
Mg-P-S	MgPS ₃
Mg-Al-S	$Mg(AlS_2)_2$
Mg-Ga-S	$Mg(GaS_2)_2$
Mg-Sc-S	$Mg(ScS_2)_2$
Mg-In-S	$Mg(InS_2)_2$
Mg-B-H	$Mg(BH_4)_2$
Ternary o	oxides
	$Mg_3(BO_3)_2$
Mg-B-O	$Mg_2B_2O_5$
]	$MgO(B_2O_3)_2$
	$Mg_{14}Si_5O_{24}$
Mg-Si-O	Mg_2SiO_4
	$MgSiO_3$
Mg-C-O	$MgCO_3$
Mg-As-O	$Mg_2As_2O_7$
	$Mg_3(PO_4)_2$
Mg-P-O	$Mg_2P_2O_7$
lvig-1 -O	$Mg(PO_3)_2$
]	MgP_4O_{11}
Mg-N-O	$Mg(NO_3)_2$
	Mg_3TeO_6
Mg-Te-O	$Mg_2Te_3O_8$
	$MgTe_6O_{13}$
	MgSeO ₃
Mg-Se-O	MgSeO ₄
]	MgSe ₂ O ₅
Mg-S-O	MgSO ₄
	MgS_2O_7
	$Mg(IO_3)_2$
	$Mg(ClO_4)_2$
	Mg ₂ TiO ₄
<u> </u>	MgTiO ₃
	Mg ₃ Ti ₉ O ₂₀
	$Mg_{11}Ti_{25}O_{60}$
	MgTi ₂ O ₅
	$Mg_3Nb_6O_{11}$
Mg-Nb-O	$Mg_4Nb_2O_9$
	$MgNb_2O_6$
Mg-Ga-O	MgGa ₂ O ₄

Mg-Al-O	MgAl ₂ O ₄
Mg-Ge-O	$Mg_{14}Ge_5O_{24}$
	Mg_2GeO_4
	MgGeO ₃

S2. Input parameters for DFT calculations

For compounds not available in the Materials Project database¹, we perform density functional theory (DFT)^{2, 3} calculations as implemented in the Vienna Ab initio Simulation Package (VASP).^{4,5} We use the Perdew-Burke-Ernzerhof (PBE) parametrization of the generalized gradient approximation (GGA) to describe the electronic exchange and correlation.⁶ The wave functions of the valence electrons are expanded with a plane-wave basis using a well-converged energy cutoff of 520 eV, whereas the core electrons are treated with the projector augmented wave (PAW) scheme.⁷ The Brillouin-zone integration is carried out on a Monkhorst-Pack⁸ *k*-point mesh with reciprocal density of 64 *k*-points per Å⁻¹. The total energy is converged within 5*10⁻⁵ eV/atom.

References

- 1. Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. *Apl Materials* **2013**, 1, (1), 011002.
- 2. Kohn, W.; Sham, L. J., Self-consistent equations including exchange and correlation effects. *Physical Review* **1965**, 140, (4A).
- 3. Hohenberg, P., Kohn, W., Inhomogeneous electron gas. *Physical Review B* **1973**, 7, (5), 1912-1919.
- 4. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. *Physical Review B* **1993**, 47, (1), 558-561.
- 5. Kresse, G.; Furthmüller, J., Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set. *Physical Review B* **1996**, 54, (16), 11169-11186.
- 6. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Physical Review Letters* **1996**, 77, (18), 3865-3868.
- 7. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. *Physical Review B* **1999**, 59, (3), 1758-1775.
- 8. Monkhorst, H. J.; Pack, J. D., "Special points for Brillouin-zone integrations" a reply. *Physical Review B* **1977**, 16, (4), 1748-1749.