MAT257 PSET 7—Question 7

Jonah Chen

November 19, 2021

First, we show that if $f:[a,b]\to\mathbb{R}$ is an increasing function, then for any finite set of distinct points x_1,\ldots,x_n

$$\sum_{i=1}^{n} o(f, x_i) < f(b) - f(a)$$

where $o(f,x)=\lim_{r\to 0}M_{B_r(x)}(f)-m_{B_r(x)}(f)$. For an increasing function, $x>y\implies f(x)>f(y)$ so

1.
$$M_{B_r(x)}(f) = f(x+r), m_{B_r(x)}(f) = f(x-r)$$

2.
$$o(f,x) = \lim_{r \to 0} f(x+r) - f(x-r)$$

3.
$$\forall s, t > 0, o(f, x) < f(x + s) - f(x - t)$$

WLOG, assume $x_i < x_{i+1}$. Then, letting $a = x_0, b = x_{n+1}$

$$\sum_{i=1}^{n} o(f, x_i) < \sum_{i=1}^{n} f(x_n + [x_{n+1} - x_n]) - f(x_n - [x_n - x_{n-1}]) = \sum_{i=1}^{n} f(x_{i+1}) - f(x_{i-1}) = f(b) - f(a)$$

Define the set

$$D_n = \{x \in [a, b] : o(f, x) > 1/n\} \text{ for } n = 1, 2, 3, \dots$$

As f is discontinuous at $x\iff o(f,x)>0,$ $\bigcup_{n=1}^\infty D_n$ contains the set of discontinuities of f.

Moreover, each D_n is a discrete set because $\frac{|D_n|}{n} \leq \sum_{x \in D_n} o(f,x) < f(b) - f(a) \implies |D_n| < n(f(b) - f(a))$. So, each D_n

is measure zero. A countable union of measure zero sets is measure zero. Therefore, $\bigcup_{n=1}^{\infty} D_n$ is measure zero hence the set of discontinuities of f is measure zero.