

THE PROBLEM

Many wearable devices contain microelectromechanical (MEM) sensors, which can be used in activity recognition. Our model **recognizes** and **transcribes** weight-lifting exercises by reading MEM input **sequences** collected during a workout.

OUR DATASET

6 LiftersGeoff Sabri PierceRooz Claire Sophia8,000 Reps

4 Exercises
Curl Squat
Bench Clean
2,300 Sets

MODEL ARCHITECTURE

MODEL VISUALIZATION

ATTITUDE (ROLL, PITCH, YAW)

MODEL TRAINING

Our TRAIN set came from 5 out of the 6 lifters
Our DEV and TEST sets came from the 1 unseen lifter

NOTEWORTHY MODELS	DEV SET ACCURACY
BLSTM-50	73.0%
BLSTM-50 (with Rerack*)	78.3%
BLSTM-150 (with Rerack*)	96.5%
CONV-64 BLSTM-128 (with Rerack*)	97.6%

BLSTM-*k*: Bidirectional LSTM with *k* hidden units.

CONV-*k*: 1-D Convolutional Layer with *k* filters.

Rerack: Added one rerack label to each exercise to detect the rerack

TEST ACCURACY

98% Set Transcription100% Exercise Recognition

Armed with our model, a smartwatch could recognize, count and record the exercises you perform during a workout – making it easier to stay on top of your fitness goals. With the appropriate data, our model could easily be extended to assess lifting form or track physical therapy prescriptions.