An Inductorless Step-down Converter Utilizing Inductance of Transmission Cables in Charging Applications

Circuit Simulation

D.K.M.A.M. Padmal - 140427D

1 Circuit

The circuit simulations in this report were done with the following circuit created using PLECS

2 Parameters

Following parameters were used in the circuit simulation

Component	Simulated Values
Source Voltage (V_g)	5 V
Duty Ratio (D)	0.6129
Load Resistance (R_o)	3.8 Ω
Output Voltage (V_o)	3.8 V
Switching Frequency (f_s)	1 MHz
Inductor (L_1)	$2.4194 \ \mu H, ESR = 0.001\Omega$
Inductor (L_2)	$3.6774 \ \mu\text{H}, \ \text{ESR} = 0.001\Omega$
Capacitor (C_1, C_2)	$4.7451 \ \mu\text{F}, \ \text{ESR} = 0.001\Omega$
Capacitor (C_o)	6.1290 μ F, ESR = 0.001 Ω

3 Simulations

3.1 Duty Cycle

Pulse generator is used to generate the square wave to drive the MOSFETs and the following waveform is observed.

3.2 Output Voltage Waveforms

Output voltage waveform is observed across the R_o resistor and an intermediate waveform can be observed across the C_1 or C_2 capacitor.

Figure 1: Output Voltage Waveform

Figure 2: Capacitor Voltage Waveform

3.3 Inductor Current Waveforms

Current across the inductors L_1 and L_2 were observed as follows;

1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1i_L1 0.0 5.292 5.294 5.296 5.298 5.300 5.302 5.304 5.306 × 1e-3

Figure 3: Inductor Current Waveforms

4 Voltage Gain

Output voltage expression was derived as follows;

$$V_o = \frac{2DV_g - (1+D)V_{D_1}D'}{(1+D) + \frac{R_Z}{R_o}}$$

By dividing both sides by V_g we can derive the voltage gain function for non ideal case.

$$\frac{V_o}{V_g} = \frac{2D - (1+D)\frac{V_{D_1}}{V_g}D'}{(1+D) + \frac{R_Z}{R_o}}$$

This will simplify into;

$$M = \frac{2D}{(1+D) + \frac{R_Z}{R_o}} - \frac{(1+D)\frac{V_{D_1}}{V_g}D'}{(1+D) + \frac{R_Z}{R_o}}$$

There is another step taken in the plots. That is when the diode forward voltage is zero and when it is 0.6 V.

For both ideal and non-ideal cases, gain function can be plotted as follows;

Figure 4: Gain Plots when $V_f = 0 \text{ V}$

Figure 5: Gain Plots when $V_f = 0.6 \text{ V}$

5 Transfer Functions

There are two transfer functions taken into consideration at four different input parameters.

5.1 Line to Output Transfer Function

Line to Output transfer function $(G_{vg}(s))$ is expressed as;

$$G_{vg}(s) = \frac{(1+D)}{2D} \frac{u(s)}{z(s)}$$

Where;

$$z(s) = \frac{R_o + (L_a + L_2)s + (L_a C_o + L_a C_a + L_2 C_o)R_o s^2 + L_a L_2 C_a s^3 + L_a C_a L_2 C_o R_o s^4}{1 + R(C_a + C_o) + L_2 C s^2 + L_2 C_o C R_o S^3}$$

$$u(s) = \frac{R_o}{1 + R_o C_o s}$$

$$L_a = \frac{4D^2}{(1 + D)^2} L_1$$

$$C_a = \frac{C}{D^2}$$

5.2 Control to Output Transfer Function

Control to Output transfer function $(G_{vd}(s))$ is expressed as;

$$G_{vd}(s) = e(s)\frac{(1+D)}{2D}\frac{u(s)}{z(s)}$$

Where;

$$z(s) = \frac{R_o + (L_a + L_2)s + (L_aC_o + L_aC_a + L_2C_o)R_os^2 + L_aL_2C_as^3 + L_aC_aL_2C_oR_os^4}{1 + R(C_a + C_o) + L_2Cs^2 + L_2C_oCR_oS^3}$$

$$u(s) = \frac{R_o}{1 + R_oC_os}$$

$$L_a = \frac{4D^2}{(1 + D)^2}L_1$$

$$C_a = \frac{C}{D^2}$$

5.3 Source Code

5.3.1 Gain Plots

```
1 % Duty Cycle
_{2} D = 0:0.001:1;
  d = 1 - D;
  % Ideal Condition
  IdealGain = 2 * D . / (1 + D);
  % Non Ideal Condition
  V_D1 = 0.6;
  V_{-g} = 5;
  R_L1 = 0.001;
  R_L L2 = 0.001;
  R_{-}C1 = 0.001;
  R_{-}C2 = 0.001;
  R_{-0} = 3.8;
  % On resistance of semiconductors are assumed to be zero, therefore
  R_{-}Z = (1 + D) \cdot * R_{-}L2 + (D / (1 + D)) \cdot * (4 * D \cdot * R_{-}L1 + d \cdot * (R_{-}C1 + D))
      R_{-}C2);
18
  First\_Term = 2 * D . / (1 + D + (R_Z / R_o));
19
  Second\_Term = -((1 + D) .* (V_D1 / V_g) .* d) ./ (1 + D + (R_Z / R_o))
  NonIdealGain = (First_Term + Second_Term);
22
  figure
23
  subplot (2,1,1);
  plot (D, IdealGain);
  xlabel('Ideal Gain');
  subplot (2,1,2);
  plot (D, NonIdealGain);
  xlabel('Non Ideal Gain with V_D1 = 0.6 V');
  5.3.2
         Transfer Functions
 % Duty Cycle
 D = 0.6129;
  % Passive component values
  R_{-0} = 3.8;
_{6} C<sub>-0</sub> = 6.1290e-6;
 C_{-c} = 4.7451e - 6;
L_1 = 2.4194e - 6;
_{9} L<sub>2</sub> = 3.6774e-6;
```

```
V_{-0} = 3.3;
  V_{-g} = V_{-o} * (1 + D) / (2 * D);
  I_{-0} = 1;
  % Derived parameters
  I_{-g} = I_{-o} * 2 * D / (1 + D); \%
  L_a = L_1 * ((4 * (D ^2))/((1 + D) ^2)); \%
  C_{-a} = C_{-c} / (D^{2}); \%
  D_{-}fac = 1 / (D + D^{2}); \%
20
  % Intermediate transfer functions
  U_{-}S = tf(R_{-}o, [(R_{-}o * C_{-}o), 1]); \%
  Z_{-}S = tf([(L_{-}a * C_{-}a * L_{-}2 * C_{-}o * R_{-}o), (L_{-}a * L_{-}2 * C_{-}a), (R_{-}o * (L_{-}a))
       * C_{-0} + L_{-a} * C_{-a} + L_{-2} * C_{-0}), (L_{-a} + L_{-2}), R_{-0}, [(L_{-2} * C_{-0} * C_{-0})]
      C_a * R_o, (L_2 * C_a), ((C_a + C_o) * R_o + 1); %
  E_S = tf([(-4 * L_1 * V_g * C_c * D_fac / (1 + D)), (L_1 * I_g * D_fac))
      (-D * V_g * D_fac), (1); %
  % Transfer Functions
  G_{vg} = ((1 + D) * U_{S}) / (2 * D * Z_{S});
  G_{-}vd = ((1 + D) * U_{-}S * 1) / (2 * D * Z_{-}S);
  bode (G_vd);
  xlabel('G_vd(s)) at V_o = 3.3 V and I_o = 1 A');
  grid
```


(a) $G_{vg}(s)$ when $V_o=3.3V$ and $I_o=1A$

(c) $G_{vg}(s)$ when $V_o=4.2V$ and $I_o=1A$

(b) $G_{vg}(s)$ when $V_o=3.8V$ and $I_o=1A$

(d) $G_{vg}(s)$ when $V_o=4.2V$ and $I_o=0.5A$

(c) $G_{vd}(s)$ when $V_o=4.2V$ and $I_o=1A$

(b) $G_{vd}(s)$ when $V_o=3.8V$ and $I_o=1A$

(d) $G_{vd}(s)$ when $V_o=4.2V$ and $I_o=0.5A$