Školsko natjecanje iz informatike

Srednja škola Prva podskupina (1. i 2. razred)

3. veljače 2021.

Zadatci

Ime zadatka	Vremensko ograničenje	Broj bodova
Mjere	5 sekundi	40
Konj	5 sekundi	50
Anagram	5 sekundi	60
Ukupno		150

Zadatak: Mjere

Mirta i Mirko idu na koncert – naravno, klasične glazbe – usred epidemioloških mjera. U koncertnoj dvorani, gdje su inače sjedala raspoređena u R redova po S sjedala, sada se samo na nekim mjestima nalaze sjedala, a ostala mjesta su prazna.

Zadatak: Mjere

5 sekundi / 40 bodova

Mirta i Mirko odabrat će **dva susjedna sjedala u istom redu**. Budući da su par, oni će sjediti jedno pored drugoga. Ipak, kao dodatnu mjeru opreza, sjedala koja izaberu bit će takva da se **pored njih ne nalazi nijedno drugo sjedalo** gledajući susjedna mjesta u svih osam smjerova (vodoravno, okomito i dijagonalno). Dodatno, Mirta i Mirko **ne žele sjediti na rubu dvorane**, što znači da neće odabrati sjedalo u prvom ili posljednjem redu ili stupcu dvorane.

Napišite program koji unosi raspored sjedala u dvorani te ispisuje na koliko načina Mirta i Mirko mogu odabrati par sjedala u skladu s navedenim uvjetima.

Ulazni podatci

U prvom retku nalaze se prirodni brojevi R i S ($3 \le R, S \le 10$), dimenzije dvorane.

U idućih R redaka nalazi se po S znakova, bez razmaka, koji opisuju raspored sjedala u dvorani. Znak točka ('') označava prazno mjesto, a znak ljestve ('#') označava sjedalo.

Izlazni podatci

U prvi redak ispišite traženi broj načina.

Probni primjeri

ulaz	ulaz
3 6	7 5
 .##.## #	7 5 # #.##.
izlaz	#.###
0	.##.#
	izlaz
	2

Objašnjenje prvog primjera: u drugom redu nalaze se dva para susjednih sjedala, ali prvi im ne odgovara zbog susjednog sjedala u trećem redu, dok im drugi par ne odgovara jer se sjedalo nalazi na rubu dvorane.

Objašnjenje drugog primjera: moguće je odabrati desni par sjedala u drugom redu ili lijevi par sjedala u šestom redu dvorane.

Zadatak: Konj

Beth igra šah u glavi, ali ne uvijek na standardnoj kvadratnoj ploči, nego na pravokutnoj ploči dimenzija $R \times S$ i to samo s jednom figurom: skakačem. Neka polja na ploči su slobodna, a na nekima se nalaze prepreke i na njih skakač ne može skočiti.

Zadatak: Konj

5 sekundi / 50 bodova

Beth stavlja skakača na neko polje ploče i pita se koliko polja (brojeći i početno) skakač može obići krenuvši s tog polja, pri čemu je dopušteno da na neko polje skoči više puta (no i tada ga brojimo samo jednom). Štoviše, ako može proizvoljno izabrati početno polje skakača, Beth zanima koliko je najviše polja moguće obići u jednom takvom nizu skokova (kojih može biti nula ili proizvoljno mnogo). Napišite program koji Beth odgovara na to pitanje!

Napomena. Skakač se kreće kao i u šahu, u obliku slova L. Preciznije, on uvijek skoči za dva polja horizontalno (u bilo kojem smjeru) i jedno polje vertikalno (u bilo kojem smjeru), ili obrnuto, za dva polja vertikalno (u bilo kojem smjeru) i jedno polje horizontalno (u bilo kojem smjeru). Donja slika dijela ploče prikazuje polja na koja skakač može skočiti u jednom potezu, pod uvjetom da su slobodna i unutar ploče.

Ulazni podatci

U prvom retku nalaze se prirodni brojevi R i S ($2 \le R, S \le 10$), dimenzije ploče.

U idućih R redaka nalazi se po S brojeva iz skupa $\{0,1\}$ odvojenih razmakom. Broj 1 predstavlja slobodno polje, a 0 polje na kojemu se nalazi prepreka. Barem jedno polje na ploči bit će slobodno.

Izlazni podatci

U prvi redak ispišite traženi najveći broj polja.

Probni primjeri

ulaz	ulaz
2 3 1 1 1 1 1 1	3 3 1 1 1 1 0 0
izlaz	1 1 1
2	izlaz
	7

Objašnjenje prvog primjera: s polja u nekom kutu ploče skakač može skočiti na polje u suprotnom kutu i tako posjetiti ukupno dva polja. S ostalih polja skakač ne može nikamo skočiti.

Objašnjenje drugog primjera: moguće je obići sva slobodna polja.

Zadatak: Anagram

Anagram neke riječi definiramo kao riječ koju dobijemo premetanjem (promjenom poretka) slova zadane riječi.

Zadatak: **Anagram**

5 sekundi / 60 bodova

Za zadanu riječ, potrebno je pronaći njezin anagram koji **ne sadrži dva ista susjedna slova**, tj. kojemu su svaka dva susjedna slova međusobno različita. Točnije, među svim takvim anagramima potrebno je pronaći **prvi po abecedi**.

Napišite program koji rješava ovaj problem, tj. za zadanu riječ pronalazi traženi anagram ili određuje da takav ne postoji.

Ulazni podatci

U prvom retku nalazi se riječ sastavljena od barem dva, a najviše 1000 znakova – malih slova engleske abecede.

Izlazni podatci

U prvi redak ispišite traženi anagram ili broj -1 ako takav ne postoji.

Bodovanje

U testnim primjerima ukupno vrijednima 30% bodova, zadana riječ imat će najviše 10 znakova.

Probni primjeri

ulaz	ulaz	ulaz
love	aabbcc	jooooj
izlaz	izlaz	izlaz
elov	abacbc	-1