

Pesquisa Operacional Programação Inteira

Professor Msc. Aparecido Vilela Junior aparecido.vilela@unicesumar.edu.br

Programação Inteira

Problema Relaxado

Solução por Enumeração

Solução Excel

Caso LCL Tecnologia S.A.

Variáveis Binárias e Condições Lógicas

Caso LCL Equipamentos S.A.

Programação Inteira UniCesumar

São problemas de programação matemática em que a função objetivo, bem como as restrições, são lineares, porém uma ou mais variáveis de decisão podem apenas assumir valores inteiros.

Esse problema pode apresentar dois tipos básicos:

Programação Inteira Total - onde todas as variáveis de decisão são do tipo inteiro.

Programação Inteira Mista - onde apenas uma parte das variáveis são do tipo inteiro, enquanto outras são do tipo real

Programação Inteira UniCesumar

- A primeira idéia que pode vir à mente é resolver o problema como se fosse um problema de programação linear e arredondar os valores ótimos encontrados para cada uma das variáveis de decisão inteiras.
- Para problemas de grande porte, isto geralmente gerará uma solução aceitável (próxima do ótimo real) sem a violação de nenhuma das restrições.
- Para problemas menores, esse tipo de procedimento poderá nos levar a soluções inviáveis ou não ótimas.

Programação Inteira

Problema Relaxado

A todo problema de programação inteira está associado um problema com a mesma função-objetivo e as mesmas restrições, com exceção da condição de variáveis inteiras. A esse problema se dá o nome de **Problema Relaxado**

Programação Inteira UniCesumar LP Relaxado

Em um problema de MAXIMIZAÇÃO, o valor ótimo da função-objetivo, do **Problema Relaxado**, sempre representa um limite superior ao respectivo **Problema Inteiro**.

Em um problema de MINIMIZAÇÃO, o valor ótimo da função-objetivo, do **Problema Relaxado**, sempre representa um limite inferior ao respectivo **Problema Inteiro**.

Programação Inteira

LP Relaxado

Nenhum ponto inteiro vizinho ao ponto ótimo do problema relaxado é necessariamente viável.

Mesmo que um dos vizinhos seja viável.

Não é necessariamente o ponto ótimo inteiro.

Não é obrigatoriamente uma solução aceitável.

Programação Inteira UniCesumar Solução por Enumeração

Uma idéia que pode resultar em uma solução para um problema de programação inteira é a de se enumerar todas as possíveis soluções.

De forma exaustiva, o valor da função-objetivo é calculado para todas as soluções viáveis e é escolhido aquele que apresente o maior valor (no caso de maximização) ou o menor valor (no caso de minimização).

Programação Inteira UniCesumar Solução por Enumeração

GRADUAÇÃO

- O problema com essa tática de solução está no fato de que ela só consegue ser aplicada a problemas pequenos.
- O número de combinações possíveis de soluções cresce de forma exponencial, isto é de forma muito rápida.
 - Ex.: Um ILP com 100 variáveis de decisão do tipo binárias (assumem 0 ou 1) terá até 2^{100} soluções viáveis, isto é, 1,27 x 10^{30} soluções possíveis.

Usando Solver do Excel

GRADUAÇÃO

Definindo Variáveis Inteiras e Binárias

Problema de Orçamento de Capitalesumar Caso LCL Tecnologia S/A

GRADUAÇÃO

A LCL Tecnologia S/A tem que planejar seus gastos em P&D. A empresa pré-selecionou 4 projetos e deve escolher dentre esses quais deve priorizar em função de restrições orçamentárias. Os dados relevantes encontram-se na tabela abaixo.

		Capital Requerido em mil R\$					
Proj.	NPV(8%) (mil R\$)	Ano 1	Ano 2	Ano 3	Ano 4	Ano 5	
1	\$105.99	70	15	0	20	20	
2	\$128.90	80	20	25	15	10	
3	\$136.14	90	20	0	30	20	
4	\$117.38	50	30	40	0	20	
Capital	Disponível	200	70	70	70	70	

GRADUAÇÃO

Caso LCL Tecnologia S/A

Variáveis de Decisão

$$X_{i} = \begin{cases} 1, \text{ se o projeto i for selectionad o} \\ 0, \text{ se o projeto i não for selectionad o} \end{cases} i = 1,2,3,4$$

Função Objetivo = Maximizar o somatório NPV

$$Max \ 105.99X_1 + 128.90X_2 + 136.14X_3 + 117.38X_4$$

Caso LCL Tecnologia SAiCesumar

Restrições Orçamentárias

$$70X_1 + 80X_2 + 90X_3 + 50X_4 \le 200$$
 - Ano 1
 $15X_1 + 20X_2 + 20X_3 + 30X_4 \le 70$ - Ano 2
 $25X_2 + 40X_4 \le 70$ - Ano 3
 $20X_1 + 15X_2 + 30X_3 \le 70$ - Ano 4
 $20X_1 + 10X_2 + 20X_3 + 20X_4 \le 70$ - Ano 5

GRADUAÇÃO

Caso LCL Tecnologia S/AiCesumar O Modelo

$$Max\ 105.99X_1 + 128.90X_2 + 136.14X_3 + 117.38X_4$$

st

$$70X_1 + 80X_2 + 90X_3 + 50X_4 \le 200$$
 - Ano 1

$$15X_1 + 20X_2 + 20X_3 + 30X_4 \le 70$$
 - Ano 2

$$25X_2 + 40X_4 \le 70$$
 - Ano 3

$$20X_1 + 15X_2 + 30X_3 \le 70$$
 - Ano 4

$$20X_1 + 10X_2 + 20X_3 + 20X_4 \le 70$$
 - Ano 5

$$X_1; X_2; X_3; X_4 \ge 0$$

Caso LCL Tecnologia S/AiCesumar Solver do Excel

	C11 ▼								
	А	В	С	D	Е	F	G	Н	
1				Caso LC	L Tecnolog	_j ia			
2								Seleciona	
3	Projeto	NPV (8%)	Ano 1	Ano 2	Ano 3	Ano 4	Ano 5	0-Não / 1 - Sim	
4	1	\$105,99	70	15	0	20	20	0	
5	2	\$128,90	80	20	25	15	10	0	
6	3	\$136,14	90	20	0	30	20	0	
7	4	\$117,38	50	30	40	0	20	0	
8	Capital Ne	cessário	0	0	0	0	0		
9	Capital Dis	sponivel	200	70	70	70	70		
10									
11	N	PV Total =	0						T

GRADUAÇÃO

Caso LCL Tecnologia S/AiCesumar Solver do Excel

Parâmetros do Solver			?×
<u>D</u> efinir célula de destino: \$⊂\$11	Opções do Solv	ver	? 🗙
Iguala: 💽 <u>M</u> áx C Mí <u>n</u> C	<u>T</u> empo máximo:	100 segundos	ОК
<u>C</u> élulas variáveis:	<u>I</u> terações:	100	Cancelar
\$H\$4:\$H\$7	<u>P</u> recisão:	0,000001	Carregar modeļo
-Su <u>b</u> meter às restrições:	Tol <u>e</u> rância:	5 %	Salvar modelo
\$C\$8:\$G\$8 <= \$C\$9:\$G\$9 \$H\$4:\$H\$7 = binario	Con <u>v</u> ergência:	0,0001	A <u>ju</u> da
	✓ Presu <u>m</u> ir mod	lelo linear 🔲 Us <u>a</u> r escala	automática
	Presumir <u>n</u> ão	-	ultado de iteração
	Estimativas	Derivadas	Pesquisar
	Tangente		Newton
	© Quadrática	© <u>C</u> entral	C Conjugado

Caso LCL Tecnologia S/AiCesumar Solver do Excel

	C11 ▼ f _* =SOMARPRODUTO(B4:B7;H4:H7)							
	А	В	С	D	Е	F	G	Н
1				Caso LC	L Tecnolog	ļia		
2								Seleciona
3	Projeto	NPV (8%)	Ano 1	Ano 2	Ano 3	Ano 4	Ano 5	0-Não / 1 - Sim
4	1	\$105,99	70	15	0	20	20	1
5	2	\$128,90	80	20	25	15	10	1
6	3	\$136,14	90	20	0	30	20	0
7	4	\$117,38	50	30	40	0	20	1
8	Capital Ne	cessário	200	65	65	35	50	
9	Capital Dis	sponivel	200	70	70	70	70	
10								
11	N	PV Total =	352,2665					

GRADUAÇÃO UniCesumar

Variáveis Binárias e Condições Lógicas

As variáveis binárias também se prestam a selecionar alternativas que sejam condicionais.

No exemplo anterior imagine que não mais de um dos projetos 1, 3 e 4 pudesse ser selecionado. Deveríamos então adicionar:

$$X_1 + X_3 + X_4 \le 1$$

Se apenas um dos projetos e apenas um dos projetos 1, 2 e 4 tivesse que ser escolhido obrigatoriamente, deveríamos incluir:

$$X_1 + X_2 + X_4 = 1$$

Variáveis Binárias e Condições Lógicas

Imagine agora que o projeto 1 dependa de uma tecnologia que deve ser desenvolvida pelo projeto 2, isto é, o projeto 1 só pode ser aprovado se e somente se o projeto 2 for aceito. Deveríamos então incluir:

$$X_1 = 0, X_2 = 0 \Rightarrow \text{ nenhum dos projetos aceitos}$$

$$X_1 = 1, X_2 = 1 \Rightarrow \text{ ambos os projetos aceitos}$$

$$X_1 = 0, X_2 = 1 \Rightarrow \text{ apenas o projeto 2 foi aceito}$$

$$X_1 = 1, X_2 = 0 \Rightarrow \text{ inviável}$$

Exemplo: Problema da Mochila

Imagine que os alunos da disciplina sejam contemplados com um cruzeiro marítimo após o término do curso, patrocinado pelo programa de mestrado;

- Em alto mar o navio começa a afundar ...
- Só existe um barco salva-vidas, que, no entanto, só pode levar c quilos

Exemplo: Problema da Mochila

Cada pessoa no navio tem um certo peso pi Cada pessoa i proporciona um benefício bi se for levada para o barco salva-vidas O problema consiste em escolher as pessoas que trarão o maior benefício possível <u>sem ultrapassar</u> a capacidade do barco

Exemplo: Problema da Reso (Kg) Benefício Mochila Pessoa

GRADUAÇÃO

Exemplo: Problema da Mochila Pessoa Peso (Kg) Benefício

GRADUAÇÃO

Pessoa '	Peso (Kg)	Benefício
Professor	140	0

Exemplo: Problema da

Pessoa Mochilo	Peso (Kg)	Benefício
Professor	140	0
Recém-graduado	60	1

Exemplo: Problema da Mochila umar

Pessoa	Peso (Kg)	Benefício
Professor	140	0
Recém-graduado	60	1
Bombeiro	100	3

Exemplo: Problema da M Peso (Kg) Benefício Pessoa **Professor** 140 Recém-graduado 60 Bombeiro 3 100 Cozinheiro 80

GRADUAÇÃO

Exemplo: Problema da Mochina esumar

Pessoa	Peso (Kg)	Benefício
Professor	140	0
Recém-graduado	60	1
Bombeiro	100	3
Cozinheiro	80	4
Morena "olhos verdes"	75	3

Exemplo: Problema da M **Benefício** Peso (Kg) Pessoa **Professor** 140 Recém-graduado 60 Bombeiro 3 100 Cozinheiro 80 Morena "olhos verdes" 3 75 Enfermeira 2 60

GRADUAÇÃO

Exemplo: Problema da M Benefício Peso (Kg) Pessoa **Professor** 140 Recém-graduado 60 Bombeiro 3 100 Cozinheiro 80 Morena "olhos verdes" 3 75 Enfermeira 2 60 Médico 90 10

- ✓ Capacidade do barco: 250 Kg.
- ✓ Solução 1: M + E + B

(250 Kg) Benefício = 15

GRADUAÇÃO

Exemplo: Problema da M Peso (Kg) **Benefício** Pessoa **Professor** 140 Recém-graduado 60 Bombeiro 3 100 Cozinheiro 80 Morena "olhos verdes" 3

75

60

90

✓ Capacidade do barco: 250 Kg.

✓ Solução 1: M + E + B

Enfermeira

Médico

(250 Kg) Benefício = 15

GRADUAÇÃO

2

10

✓ Solução 2: M + MOV + C (245 Kg) Benefício = 17

Complexidade do Problema da mochila

Para n pessoas há 2^n configurações possíveis

Exemplo: Para n = 50 há 10^{15} soluções para serem testadas

Um computador que realiza uma avaliação em 10-8 segundos gastaria cerca de 130 dias para encontrar a melhor solução por enumeração completa!

Conclusão: O barco afundaria antes que fosse tomada a decisão de quem seriam os escolhidos

Problema da Mochila: observações

- Problema NP-difícil
- Ainda não existem algoritmos que o resolva em tempo polinomial
- Abordado por métodos heurísticos

GRADUAÇÃO UniCesumar

Exercício 01

- A Capitania S.A., localizada em Pedra Lascada, aluga 3 tipos de barcos para passeios marítimos: jangadas, supercanoas e arcas com cabine. A companhia fornece juntamente com o barco um capitão para navegá-lo e uma tripulação que varia de acordo com a embarcação: uma para jangadas, duas para supercanoas e três para arcas.
- A companhia tem 4 jangadas, 8 supercanoas e 3 arcas e em seu corpo de funcionários: 10 capitães e 18 tripulantes.
- O aluguel é por diárias e a Capitania lucra \$50 por jangada, \$70 por supercanoa e \$100 por arca.
- Faça um modelo de programação matemática que determine o esquema de aluguel que maximiza o lucro.

Problema da Mochila Uni Cesumar

GRADUAÇÃO

Um excursionista planeja fazer uma viagem acampando. Há 5 itens que ele deseja levar consigo, mas estes, juntos, excedem o limite de 60 quilos que ele supõe ser capaz de carregar. Para ajudar a si próprio no processo de seleção, ele atribui valores, por ordem crescente de importância a cada um dos itens conforme a tabela a seguir:

Item	1	2	3	4	5
Peso(Kg)	52	23	35	15	7
Valor	100	60	70	15	8

Supondo a existência de uma unidade de cada item, faça um modelo de programação inteira que maximize o valor total sem exceder as restrições de peso.

Alocação de Pessoa UniCesumar

Um hospital trabalha com atendimento variável em demanda durante as 24 horas do dia. As necessidades distribuem-se segundo a tabela:

Turno	Horário	Número requerido de enfermeiros
1	08 às 12h	51
2	12 às 16h	58
3	16 às 20h	62
4	20 às 24h	41
5	24 às 04h	32
6	04 às 08h	19

O horário de trabalho de um enfermeiro é de 8 horas seguidas e só pode ser iniciado no começo de cada turno, isto é, às 8 ou 12 ou 16 ou 20 ou 24 ou 04 horas. Elabore um modelo de PLI que minimize o gasto com a mão-de-obra. Considere que cada enfermeiro recebe \$100 por hora de trabalho no período diurno (08 às 20 h) e \$125 no período noturno (20 às 08 h)