August 15, 2019 IJCAI 2019

Finding Statistically Significant Interactions between Continuous Features

Mahito Sugiyama (National Institute of Informatics) Karsten Borgwardt (ETH Zürich)

Our Proposal: *C-Tarone*

 Find all feature interactions that are significantly associated with class labels from multivariate data with controlling the FWER

Input:			X				У
	F1	F2	F3	F4	F5	•••	Class
ID1	-0.96	-3.03	3.38	2.57	-6.06	•••	0
ID2	-1.80	4.45	-4.35	0.82	8.90	•••	1
ID3	-3.29	1.39	-4.44	-0.77	2.78	•••	1
ID4	-0.53	-1.96	-3.43	-4.42	-3.92	•••	0
•			:				•

Our Proposal: *C-Tarone*

 Find all feature interactions that are significantly associated with class labels from multivariate data with controlling the FWER

Existing Method: Significant Pattern Mining

- So far only binary (or discrete) data can be used
 - → Results obtained by SPM via binarization can be uninformative!

Input:			X				У	
	F1	F2	F3	F4	F5	•••	Class	Output:
ID1	0	1	1	1	0	•••	0	{F1}, {F3},
ID2	1	1	0	1	1	•••	1	→ {F2, F5},
ID3	1	1	0	0	1	•••	1	{F2, F5, F6},
ID4	0	0	1	0	1	•••	0	
•			:				:	

We solve:

- 1. How to assess the significance for a multiplicative interaction of continuous features?
- 2. How to perform multiple testing correction?
 - How to control the FWER (family-wise error rate),
 the probability to detect one or more false positives?
- 3. How to manage combinatorial explosion of the candidate space?
 - The number of possible interactions is 2^d for d features

Problem Formulation

- Define $X_{\mathcal{F}}$ as the binary random variable of joint occurrence for a feature combination $\mathcal{F} = \{F_i, F_{i+1}, \dots, F_{i+k}\}$
 - $X_{\mathcal{F}} = 1$ if \mathcal{F} "occurs", $X_{\mathcal{F}} = 0$ otherwise
- Let Y be an output binary variable
- Our task: Test the null hypothesis $X_{\mathcal{F}} \perp \!\!\! \perp Y$ for all $\mathcal{F} \in 2^V$
 - Testing statistical independence between $X_{\mathcal{F}}$ and Y
- We need to estimate the probability $Pr(X_F)$ from data

Copula Support [Tatti, 2013] for $Pr(X_{\mathcal{F}} = 1)$

F1 F2 F3
$$R(F1) R(F2) R(F3)$$
 $\pi(F1) \pi(F2) \pi(F3)$
 $x_1 -0.96 -3.03 3.38$
 $x_2 -1.80 4.45 -4.35$
 $x_3 -3.29 1.39 -4.44$
 $x_4 -0.53 -1.96 -3.43$
 $R(F1) R(F2) R(F3)$
 $R(F1) R(F2) R(F3)$
 $R(F1) \pi(F2) \pi(F3)$
 $R(F1) \pi(F3)$
 $R(F1) \pi(F2) \pi(F3)$
 $R(F1) \pi(F3)$
 $R(F1) \pi(F2)$
 $R(F1) \pi(F3)$
 $R(F$

Contingency Tables

Expected (under null) for p_E	$X_{\mathcal{F}}=1$	$X_{\mathcal{F}}=0$	Total
Y = 1 $Y = 0$, .	$r_1 - \eta(\mathcal{F}) r_1$ $r_0 - \eta(\mathcal{F}) r_0$	r ₁
Total	$\eta(\mathcal{F})$	$1-\eta(\mathcal{F})$	1

Observed for p_0	$X_{\mathcal{F}}=1$	$X_{\mathcal{F}}=0$	Total
Y = 1 Y = 0		$r_1 - \eta(\mathcal{F}, Y = 1)$ $r_0 - \eta(\mathcal{F}, Y = 0)$	r_1 r_0
Total	$\eta(\mathcal{F})$	$1-\eta(\mathcal{F})$	1

Significance Test

• The independence $X_{\mathcal{F}} \perp \!\!\! \perp Y$ is translated into the condition:

$$H_{o}: D_{KL}(\mathbf{p}_{O}, \mathbf{p}_{E}) = 0, \quad H_{1}: D_{KL}(\mathbf{p}_{O}, \mathbf{p}_{E}) \neq 0$$

- p_F and p_O are vectorized contingency tables:

$$\mathbf{p}_{E} = (\eta(\mathcal{F})r_{1}, \eta(\mathcal{F})r_{0}, r_{1} - \eta(\mathcal{F})r_{1}, r_{0} - \eta(\mathcal{F})r_{0})
\mathbf{p}_{O} = (\eta(\mathcal{F}, Y = 1), \eta(\mathcal{F}, Y = 0), r_{1} - \eta(\mathcal{F}, Y = 1), r_{0} - \eta(\mathcal{F}, Y = 0))$$

• We apply G-test: the statistic $\lambda = 2ND_{KL}(\boldsymbol{p}_O, \boldsymbol{p}_E)$ follows the χ^2 -distribution with the d.f. 1

Multiple Testing Correction

- The FWER should be controlled
 - Probability that at least one feature combination is a false positive
 - If we naïvely test all combinations, $\alpha 2^d$ false positives could occur!!
- We use Tarone's testability trick, which requires the minimum achievable p-value $\psi(\mathcal{F})$ for \mathcal{F}
- Theorem (tight upper bound of KL divergence):

$$D_{\mathsf{KL}}(\boldsymbol{p}, \boldsymbol{p}_{\mathsf{E}}) < a \log \frac{1}{b} + (b - a) \log \frac{b - a}{(1 - a)b} + (1 - b) \log \frac{1}{(1 - a)}$$

-
$$\mathbf{p}_{E} = (ab, a(1-b), (1-a)b, (1-a)(1-b)),$$

 $\mathbf{p} \in \{ \mathbf{p} \in \mathcal{P} \mid p_{1} + p_{2} = a, p_{1} + p_{3} = b \}$

Tarone's Testability Trick

$$\mathcal{F}_1$$
, \mathcal{F}_2 , \mathcal{F}_3 ,..., \mathcal{F}_{m-1} , \mathcal{F}_m , \mathcal{F}_{m+1} ,..., \mathcal{F}_{2d} $\left(\psi(\mathcal{F}_i) \leq \psi(\mathcal{F}_{i+1})\right)$

Tarone's Testability Trick

$$m \psi(\mathcal{F}_m) < \alpha \text{ and } (m+1) \psi(\mathcal{F}_{m+1}) \ge \alpha$$

$$\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, ..., \mathcal{F}_{m-1}, \mathcal{F}_m, \mathcal{F}_{m+1}, ..., \mathcal{F}_{2^d} \quad \left(\psi(\mathcal{F}_i) \le \psi(\mathcal{F}_{i+1})\right)$$

Tarone's Testability Trick

$$m \, \psi(\mathcal{F}_m) < \alpha \quad \text{and} \quad (m+1) \psi(\mathcal{F}_{m+1}) \geq \alpha$$

$$\mathcal{F}_1, \, \mathcal{F}_2, \, \mathcal{F}_3, \, \dots, \, \mathcal{F}_{m-1}, \, \mathcal{F}_m, \, \mathcal{F}_{m+1}, \dots, \, \mathcal{F}_{2^d} \quad \left(\psi(\mathcal{F}_i) \leq \psi(\mathcal{F}_{i+1})\right)$$

$$Testable \quad Untestable \quad Prune without testing combinations$$

$$\mathcal{F}_i \text{ is significant if: } p\text{-value}(\mathcal{F}_i) < \alpha \, / \text{m} \quad \text{Correction factor}$$

10/14

Experimental Results on Synthetic Data

Experimental Results on Synthetic Data

Experimental Results on Real Data

Experimental Results on Real Data

Conclusion

- We have proposed C-Tarone, a solution to the open problem of finding all multiplicative interactions between continuous features significantly associated with an output variable
 - Significance is rigorously controlled for multiple testing
- Our work opens the door to many applications of searching significant feature combinations, in which the data is not adequately described by binary features