SISTEMAS DE GERENCIAMENTO DE BANCOS DE DADOS

Um Sistema de Gerenciamento de BD é uma coleção de programas que facilita criar e manter um BD.

SGBD: Ferramenta de propósito geral utilizada em diferentes aplicações (Definição, Construção e Manipulação)

SGBD manipulam BD's que contêm principalmente dados estruturados (formatados). Facilita a classificação dos dados em tipos. Separação entre dados e descrição.

SISTEMAS DE GERENCIAMENTO DE BANCOS DE DADOS

ALGUNS CONCEITOS RELACIONADOS

a) Instâncias e Esquemas

- □*Esquema*: visão global do BD (≈ definição de tipos em LP)
- □*Instâncias*: Coleção de dados armazenados no BD.

(valor de variáveis ≈ instância de esquema)

Característica dos tipos de SGBD's estudados:

Nro. tipos << Nro. instâncias de cada tipo.

b) Abstração em Bancos de Dados

Nos primeiros SGBD's, o usuario tinha que tratar com dados tal como eram armazenados — manipular ponteiros, tabelas e índices.

Abstração de Dados — Independência da representação dos datos.

Visão dos usuários de cada aplicação

Níveis de abstração

Armazenamento Físico

ALGUNS CONCEITOS RELACIONADOS

c) LDD (Linguagem de Definição de Dados)

Um esquema dum BD é especificado por um conjunto de definições que são expressadas numa linguagem (LDD)

Compilação da LDD

Metadados

d) LMD (Linguagem de Manipulação de Dados)

Permite aos usuários acessar e manipular dados organizados duma forma definida.

Dois tipos:

- Procedimental

A parte da LMD relacionada com a consulta de informação é chamada de Linguagem de Consulta.

e) Independência de Dados

Proposta, criação de níveis de abstração.

Esquema do Exemplo

ALUNO

Nome	NumerodoAluno	Turma	Curso_Hab

CURSO

I	NomedoCurso	NumerodoCurso	Creditos	Departamento	l
-1		T.			

PRE_REQUISITO

,

DISCIPLINA

	Identificador_Disciplina	NumerodoCurso	Semestre	Ano	Instrutor
- 1					

RELATORIO_DE_NOTAS

NumerodoAluno Identificador Disciplinas	Nota
---	------

ALGUNS CONCEITOS RELACIONADOS

ARQUITECTURA ANSI/SPARC

ALGUNS CONCEITOS RELACIONADOS

Independência física medida de isolamento de uma aplicação às modificações feitas na estrutura física dos dados.

Ex: Criação de um índice (semestre, ano) no arquivo DISCIPLINAS não muda a consulta "listar todas as disciplinas oferecidas no segundo semestre de 1998"

Independência lógica — medida de isolamento duma visão de uma aplicação às modificações no esquema conceitual ou lógico do BD.

Ex: O esquema externo (visão) 1.4a não deveria ser afetado pela mudança do arquivo HISTORICO_ESCOLAR para o apresentado na Fig. 1.5a Analogia com os tipos de dados em LP.

Um exemplo

o Banco de dados de uma universidade (Fig. 1.2):

ALUNO	Nome	Numero	Turma	Curso_Hab
	Smith	17	1	CC
	Brown	8	2	CC

CURSO	NomedoCurso	NumerodoCurso	Creditos	Departamento
	Introdução à Ciência da Computação	CC1310	4	CC
	Estruturas de dados	CC3320	4	СС
	Matemática Discreta	MAT2410	3	MATH
	Banco de dados	CC3380	3	СС

DISCIPLINA	IdentificadordeDisciplina	NumerodoCurso	Semestre	Ano	Instrutor
	85	MAT2410	Segundo Semestre	98	King
	92	CC1310	Segundo Semestre	98	Anderson
	102	CC3320	Primeiro Semestre	99	Knuth
	112	MAT2410	Segundo Semestre	99	Chang
	119	CC1310	Segundo Semestre	99	Anderson
	135	CC3380	Segundo Semestre	99	Stone

HISTORICO_ESCOLAR	NumerodoAluno	Identificador_Disciplinas	Nota
	17	112	В
	17	119	С
	8	85	Α
	8	92	Α
	8	102	В
	8	135	Α

PRE_REQUISITO	NumerodoCurso	NumerodoPre_requisito
	CC3380	CC3320
	CC3380	MAT2410
	CC3320	CC1310

Figura 1.4 Duas visões derivadas de um banco de dados da Figura 1.2 (a) Visão do HISTORICO ESCOLAR DO ALUNO. (b) Visão dos PRÉ-REQUISITOS DO CURSO.

(a)

LUCTORICO FOCOLAR	NomedoAluno	Histórico Escolar do Aluno					
HISTORICO_ESCOLAR		NumerodoCurso	Nota	Semestre	Ano	IdDisciplina	
	C lab	CC1310	С	Outono	99	119	
	Smith	MAT2410	В	Outono	99	112	
		MAT2410	Α	Outono	98	85	
		CC1310	Α	Outono	98	92	
	Brown	CC3320	В	Primavera	99	102	
		CC3380	Α	Outono	99	135	

(b)

5)				
,	PRE_REQUISITOS	NomedoCurso	NumerodoCurso	Pre_Requisitos
		D d- Dd	000000	CC3320
		Banco de Dados	CC3380	MAT2410
		Estruturas de Dados	CC3320	CC1310

Figura 1.5 Armazenamento redundante do NomedoAluno e NumerodoCurso no HISTORICO_ESCOLAR. (a) Dados consistentes. (b) Registro inconsistente.

(a)

HISTORICO_ESCOLAR	NumerodoAluno	NomedoAluno	IdentificadordeDisciplina	NumerodoCurso	Nota
	17	Smith	112	MAT2410	В
	17	Smith	119	CC1310	С
	8	Brown	85	MAT2410	Α
	8	Brown	92	CC1310	Α
	8	Brown	102	CC3320	В
	8	Brown	135	CC3320	Α

(b)

))						
,	HISTORICO_ESCOLAR	NumerodoAluno	NomedoAluno	IdentificadordeDisciplina	NumerodoCurso	Nota
		17	Brown	112	MAT2410	В

O Ambiente de SBD's – Módulos componentes do SGBD

O Ambiente de SBD's – Utilitários do SBD's

- Auxiliam o ABD.
- o Funções:
 - Carregamento ("loading")
 - Backup
 - Reorganização de arquivos
 - Monitoramento de desempenho
- Outras ferramentas: Ferramentas CASE (ambientes de desenvolvimento de aplicações)

A arquitetura física centralizada.

A arquitetura lógica de duas camadas cliente/servidor

Arquitetura física cliente/servidor de duas camadas

Arquitetura lógica cliente/servidor de três camadas

Modelo de Dados

- Conceito
- Componentes Básicos
 - Mecanismos de abstração
 - Estruturas
 - Restrições
 - Operações
- Tipos de Modelos

MODELO DE DADOS

CONCEITO

É um formalismo utilizado para descrever a organização lógica dos dados correspondente a uma determinada realidade (UNIVERSO DE DISCURSO)

A representação de uma determinada parte da realidade de acordo con um modelo de dados é chamado ESQUEMA.

- Un modelo de dados define as regras de acordo com as quais os dados são estruturados.
- Estruturas não são suficientes (propriedades estáticas)

MODELO DE DADOS

¿Propriedades dinâmicas?

Formalmente, um modelo de dados pode ser definido pelo par

M = (G, O), onde:

G = Conjunto de regras para definir a estrutura dos dados — LDD

O = Conjunto de operações permitidas sobre os dados — LMD

Ge: Regras para definição da estrutura lógica dos dados.

Gr: Regras para definição das restrições lógicas sobre os dados.

COMPONENTES BÁSICOS

ESTRUTURAS

Não existe um consenso geral sobre que conceitos devem ser utilizados como base para definir a estrutura dos dados.

- Modelo relacional: relações e domínios
- Modelo de rede: registros e enlaces

Na prática, entretanto, três conceitos são difundidos amplamente como primitivas básicas de modelagem:

- **Entidades**
- Relacionamentos

Atributos

A aplicação destes conceitos é geralmente feita a través de três mecanismos de abstração:

- Clasificação
- Agregação

Generalização

Abstração é um processo mental a través do qual a gente se concentra nos aspectos relevantes de um conjunto de objetos sem considerar suas diferenças.

Abstrações de dados constituem um modelo bastante simples de representar a realidade.

São usados como mecanismos básicos de modelagem por vários modelos chamados conceituais.

MECANISMOS DE ABSTRAÇÃO

<u>■CLASIFICAÇÃO</u>

É um mecanismo de abstração usado para definir um conceito como uma classe de objetos do mundo real caracterizados por propriedades comunes. Exemplo:

bicicletas = {bicicleta "vermelha", a bicicleta de Tomás, etc.}

■AGREGAÇÃO

É um mecanismo de abstração a través do qual uma nova classe de objetos é definida a partir de outras classes que representam suas partes componentes

Clasificação e agregação ——

Abstrações básicas para construir estruturas de dados (BDs, LPs)

<u>GENERALIZAÇÃO</u>

É um mecanismo de abstração a través do qual um conjunto de classes de objetos chamados de categorías se relacionam com outra que é considerada uma classe genérica de objetos de nível mais alto.

Numa generalização, todas as "propriedades" (abstrações) definidas para a classe genérica são herdadas automáticamente por todas suas categorias (sub-classes).

ENTIDADES, TIPOS DE ENTIDADES E ATRIBUTOS

Uma entidade é qualquer coisa que exista ou que pode ser pensada

Um atributo é uma propiedade associada a un determinado tipo (classe) de entidade.

Uma entidade é descrita em termos dos valores de seus atributos. Um tipo de entidade corresponde a uma **AGREGAÇÃO** de atributos.

ESTRUTURAS ASSOCIAÇÕES E TIPOS DE ASSOCIAÇÕES

Uma associação representa relacionamentos significativos entre entidades.

Um tipo de asociação corresponde a uma **classe** de associações similares.

Associações estabelecem relacionamentos entre entidades. Relacionamentos estabelecidos por associações podem ser:

> um-para-um (1:1) um-para-muitos (1:N) muitos-para-um (N:1) muitos-para-muitos (M:N)

ESTRUTURAS ASSOCIAÇÕES E TIPOS DE ASSOCIAÇÕES

Un tipo de associação pode ser também como uma **AGREGAÇÃO** de dois ou mais tipos (classes) de entidades.

OPERAÇÕES

As operações oferecidas por um modelo de dados permitem transformar um banco de dados de um estado Bi para outro estado Bj ou seja:

A especificação de uma operação sobre um banco de dados envolve a especificação de uma ação e de uma seleção sobre o banco de dados.

OPERAÇÕES

Ação: Especifica o que deve ser feito.

Seleção: Seleciona a parte do banco de dados sobre a qual a ação será

aplicada.

Uma ação pode ser uma (ou a combinação) das seguintes operações básicas: RECUPERE, INCLUA, MODIFIQUE e REMOVA.

Ação aplicada atributo, associação, entidade

A seleção de uma parte do banco de dados pode ser especificada por: POSIÇÃO LÓGICA, VALORES DE DADOS OU ASSOCIAÇÕES ENTRE OS DADOS.

RESTRIÇÕES

A estrutura e operações não conseguem representar toda a semântica dos dados.

Devem ser definidas restrições sobre os valores dos dados ou sobre a forma como estão relacionados.

EXEMPLOS

- O salário de um empregado não pode ser maior que o salário do chefe.
- Todos os empregados devem pertencer a um departamento.

Restrições necessárias

Clasificação:

Inerentes;

Explícitas e Implícitas

TIPOS DE MODELOS DE DADOS

MODELOS DE DADOS CONCEITUAIS. (SEMÂNTICOS)

Utilizados para descrever a estrutura de um banco de dados num nível de abstração independente dos aspectos de implementação.

EXEMPLOS

Modelo Entidade-Relacionamento.

Modelo funcional.

Modelos orientados a objetos.

MODELOS DE DADOS LÓGICOS (CLÁSSICOS)

Utilizados para descrever a estrutura de um banco de dados num nível de abstração mais próximo das estruturas físicas de armazenamento de dados. **Exemplo:** Relacional, rede, hierárquico.