2023-Jan-29 Shift-2

AI24BTECH11003 - Badde Vijaya Sreyas

16) If the tangent at a point P on the parabola $y^2 = 3x$ is parallel to the line x + 2y = 1 and the tangents at the points Q and R on the ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 1$ are perpendicular to the line x - y = 2, then the area of the triangle PQR is:

17) Let y = y(x) be the solution of the differential equation $x \log_e x \frac{dy}{dx} + y = x^2 \log_e x, (x > 1)$.

c) $\frac{3}{2}\sqrt{5}$ d) $3\sqrt{5}$

b) $5\sqrt{3}$

a) $\frac{9}{\sqrt{5}}$

	If $y(2) = 2$, then $y(e)$ is equal to				
	a) $\frac{4+e^2}{4}$	b) $\frac{1+e^2}{4}$	c) $\frac{2+e^2}{2}$	d) $\frac{1+e^2}{2}$	
1	18) The number of 3 digit numbers, that are divisible by either 3 or 4 but not divisible by 48, is				
	a) 472	b) 432	c) 507	d) 400	
1	19) Let R be a relation defined on N as $a R b$ is $2a + 3b$ is a multiple of 5 , $a, b \in N$. Then R is				
	a) not reflexiveb) transitive but not symmetric		c) symmetric but not transitived) an equivalence relation		
20) Consider a function $f: N \to R$, satisfying $f(1) + 2f(2) + 3f(3) + \cdots + xf(x) = x(x+1) f(x); x > 2$ with $f(1) = 1$. Then $\frac{1}{(2022)} + \frac{1}{f(2028)}$ is equal to					
	a) 8200	b) 8000	c) 8400	d) 8100	
 21) The total number of 4-digit numbers whose greatest common divisor with 54 is 2, is 22) A triangle is formed by the tangents at the point (2,2) on the curves y² = 2x and x² + y² = 4x, and the line x + y + 2 = 0. If r is the radius of its circumcircle, then r² is equal to 22) A right with a result (2,2) and with a first exercise the line x + y + 2 = 0. 					
	23) A circle with centre (2, 3) and radius 4 intersects the line $x + y = 3$ at the points P and Q . If the tangents at P and Q intersect at the point $S(\alpha, \beta)$, then $4\alpha - 7\beta$ is equal to				
2	24) Let $a_1 = b_1 = 1$ and $a_n = a_{n-1} + + (n-1)$, $b_n = b_{n-1} + a_{n-1} \forall n \ge 2$. If $S = \sum_{n=1}^{10} \frac{b_n}{2^n}$ and				
•	$T = \sum_{n=1}^{\infty} \frac{n}{2^{n-1}}$, then $2^{7}(2S - T)$ is equal to				
2	25) If the equation of the normal to the curve $y = \frac{x-a}{(x+b)(x-2)}$ at the point $(1, -3)$ is $x-4y = 13$ then the value of $a + b$ is equal to				

- 26) If A be the symmetric matrix such that |A| = 2 and $\begin{pmatrix} 2 & 1 \\ 2 & \frac{3}{2} \end{pmatrix} A = \begin{pmatrix} 1 & 2 \\ \alpha & \beta \end{pmatrix}$. If the sum of the diagonal elements of A is s, then $\frac{\beta s}{\sigma^2}$ is equal to
- 27) Let $\{a_k\}$ and $\{b_k\}$, $k \in N$, be two G,P,s with common ratio r_1 and r_2 respectively such that $a_1 = b_1 = 4$ and $r_1 < r_2$. Let $c_k = a_k + b_k$, $k \in N$. If $c_2 = 5$ and $c_3 = \frac{13}{4}$ then $\sum_{k=1}^{\infty} c_k (12a_6 + 8b_4)$ is equal to
- 28) Let $X = \{11, 12, 13, \dots, 40, 41\}$ and $Y = \{61, 62, 63, \dots, 90, 91\}$ be the two sets of observations. If \overline{x} and \overline{y} are their respective means and σ^2 is the variance of all the observations in $X \cup Y$, then $|\overline{x} + \overline{y} \sigma^2|$ is equal to
- 29) Let $\alpha = 8 14i$, $A = \left\{ z \in C : \frac{\alpha z \overline{\alpha z}}{z^2 (z)^2 112i} = 1 \right\}$ and $B = \{ z \in C : |z + 3i| = 4 \}$. Then $\sum_{z \in C} (Re \ z Im \ z)$ is equal to
- 30) Let $\alpha_1, \alpha_2, \dots, \alpha_7$ be the roots of the equation $x^7 + 3x^5 13x^3 15x = 0$ and $|\alpha_1| \ge |\alpha_2| \ge \dots \ge |\alpha_7|$. Then $\alpha_1\alpha_2 \alpha_3\alpha_4 + \alpha_5 + \alpha_6$ is equal to