Factorisation des polynômes. 21

I - Rappels sur le trinôme du second degré

Equations du second degré

Définition 1. On appelle équation du second degré toute équation pouvant se ramener sous la forme : $ax^2 + bx + c = 0$ avec $a \neq 0$.

Nous rappelons la méthode de résolution vue en classe de seconde.

Soit l'équation (E) suivante : $ax^2 + bx + c = 0$.

On utilise le discriminant $\Delta = b^2 - 4ac$.

- 1. Si $\Delta < 0$ alors l'équation (E) n'a pas de solutions et $ax^2 + bx + c$ n'est pas factorisable.
- 2. Si $\Delta = 0$ alors l'équation (E) a une seule solution $x_0 = -\frac{b}{2a}$ et $ax^2 + bx + c = a(x x_0)^2$
- 3. Si $\Delta > 0$ alors l'équation (E) a deux solutions (ou racines) distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
; $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ et $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Remarque 2. Si l'équation du second degré est incomplète du type $ax^2 + bx = 0$ ou $ax^2 + c = 0$ alors il est inutile de calculer Δ : on peut faire une factorisation pour trouver les racines.

Exemple 3. Résolvons dans \mathbb{R} les équations suivantes puis factoriser le trinôme figurant au 1er membre.

1.
$$3x^2 - 2x - 16 = 0$$

1.
$$3x^2 - 2x - 16 = 0$$

2. $-5x^2 + x - 1 = 0$
3. $-4x^2 + 20x - 25 = 0$
4. $2x^2 + 3x - 1 = 0$
5. $7x^2 + 3x = 0$

5.
$$7x^2 + 3x = 0$$

$$2. -5x^2 + x - 1 = 0$$

4.
$$2x^2 + 3x - 1 = 0$$

1.
$$3x^2 - 2x - 16 = 0$$

On a:
$$\Delta = (-2)^2 - 4 \times 3(-16) = 4 - 4(-48) = 4 + 192 = 196$$
.

Donc
$$\Delta > 0$$
 et $\sqrt{\Delta} = 14$.

Donc
$$\Delta > 0$$
 et $\sqrt{\Delta} = 14$.
 $x_1 = \frac{2 - 14}{6} = \frac{-12}{6} = -2$ et $x_2 = \frac{2 + 14}{6} = \frac{16}{6} = \frac{8}{3}$ ainsi: $S = \left\{-2, \frac{8}{3}\right\}$

Factorisation:
$$3x^2 - 2x - 16 = 3\left(x - \frac{8}{3}\right)(x+2) = (3x-8)(x+2)$$

$$2. -5x^2 + x - 1 = 0$$

On a:
$$\Delta = (1)^2 - 4 \times (-5)(-1) = 1 - 20 = -19$$

Donc $\Delta < 0$ ainsi $S = \emptyset$ et on ne peut pas factoriser $-5x^2 + x - 1$

$$3. -4x^2 + 20x - 25 = 0$$

On a :
$$\Delta = (20)^2 - 4 \times (-4)(-25) = 400 - 400 = 0$$

Donc
$$\Delta = 0$$
: il y a une seule solution $x_0 = \frac{-20}{-8} = \frac{5}{2}$ ainsi $S = \left\{\frac{5}{2}\right\}$

Factorisation:
$$-4x^2 + 20x - 25 = -4\left(x - \frac{5}{2}\right)^2$$

4.
$$7x^2 + 3x = 0$$
.

Ici, il est inutile de calculer Δ .

On a:
$$7x^2 + 3x = x(7x + 3) = 0$$

Donc x = 0 ou 7x + 3 = 0 (produit de facteurs nul)

soit
$$x = 0$$
 ou $x = -\frac{3}{7}$ et $S = \left\{0, -\frac{3}{7}\right\}$

Factorisation : déjà faite $7x^2 + 3x = x(7x + 3)$.

Somme et produit des racines

Propriété 4. — Si l'équation $ax^2 + bx + c = 0$ a deux racines distinctes ou confondues (c'est-à-dire $\Delta \ge 0$), alors leur somme $: x_1 + x_2 = -\frac{b}{a}$ et leur produit $: x_1 \times x_2 = \frac{c}{a}$.

— Réciproquement, si deux nombres ont pour somme S et pour produit P, alors ils sont les solutions de l'équation du second degré : $X^2 - SX + P = 0$ ou du système $\begin{cases} x + y = S \\ xy = P \end{cases}$

Exemple 5. Résolvons dans \mathbb{R}^2 le système suivant : $\begin{cases} x + y = 5 \\ xy = 6 \end{cases}$

On a: S = 5 et P = 6

Résoudre un tel système, revient à résoudre l'équation $X^2 - 5X + 6 = 0$.

On trouve $\Delta = 25 - 24 = 1$ et $x_1 = 3$, $x_2 = 2$. (faire les calculs).

Les solutions du système sont les couples (2,3) et (3,2).

Equations bicarrées

Définition 6. On appelle équation bicarrée, toute équation (E) pouvant se ramener sous la forme : $ax^4 + bx^2 + c = 0$.

Pour résoudre une telle équation, on procède par un changement d'inconnue en posant $X = x^2$ qui mène à l'équation du second degré (E') : $aX^2 + bX + c = 0$, ensuite on résout si possible les équations d'inconnue x suivantes; $x^2 = X_1$ et $x^2 = X_2$ où X_1 et X_2 sont les solutions possibles (E').

Exemple 7. Soit à résoudre l'équation : $x^4 - 4x^2 + 3 = 0$

En posant $X = x^2$, l'équation devient $X^2 - 4X + 3 = 0$.

Après calcul, on trouve comme solutions : $X_1 = 1$ et $X_2 = 3$.

On a $x^2 = 1$ soit x = 1 ou x = -1

On a
$$x^2 = 3$$
 soit $x = \sqrt{3}$ ou $x = -\sqrt{3}$

D'où
$$S = \left\{ -\sqrt{3}, \sqrt{3}, -1, 1 \right\}$$

Signe du trinôme $ax^2 + bx + c$

Propriété 8. Soit $ax^2 + bx + c$ un trinôme du second degré.

• Si $\Delta < 0$ alors $ax^2 + bx + c$ est du signe de a pour tout $x \in \mathbb{R}$.

x	$-\infty$		$+\infty$
$ax^2 + bx + c$	signe de a		

• Si $\Delta = 0$ alors $ax^2 + bx + c$ est du signe de a pour tout $x \neq -\frac{b}{2a}$ et s'annule en $-\frac{b}{2a}$.

$\boldsymbol{\mathcal{X}}$	$-\infty$		$+\infty$
		$-\frac{b}{2a}$	
$ax^2 + bx + c$	signe de <i>a</i>	0	signe de <i>a</i>

- Si $\Delta > 0$ alors $ax^2 + bx + c$ est:
 - du signe de a quand $x \in]-\infty; x_1[\cup]x_2; +\infty[$ (on suppose $x_1 < x_2$);
 - du signe opposé de a quand $x \in]x_1; x_2[$;
 - s'annule en x_1 et en x_2 .

Exemple 9. Résolvons dans \mathbb{R} les inéquations suivantes.

1.
$$4x^2 - x + 2 < 0$$

2.
$$-x^2 + x + 2 > 0$$

1.
$$4x^2 - x + 2 \le 0$$
 2. $-x^2 + x + 2 > 0$ **3.** $x^2 - \sqrt{28}x + 7 > 0$

1.
$$4x^2 - x + 2 \le 0$$
 On a: $\Delta = (-1)^2 - 4 \times 4 \times 2 = 1 - 32 = -31$

x	$-\infty$		+∞
$4x^2 - x + 2$		+	

$$S = \emptyset$$

2.
$$-x^2 + x + 2 > 0$$
 On a: $\Delta = 1^2 - 4 \times (-1) \times 2 = 1 + 8 = 9$
On trouve $x_1 = \frac{-1 - 3}{-2} = 2$ et $x_2 = \frac{-1 + 3}{-2} = -1$

x	$-\infty$	-1	2	+∞
$-x^2 + x + 2$	_	0	+ 0	_

$$S =]-1, 2[$$

3.
$$x^2 - \sqrt{28}x + 7 > 0$$
 On a: $\Delta = (-\sqrt{28})^2 - 4 \times 1 \times 7 = 28 - 28 = 0$
Donc $x_0 = \frac{\sqrt{28}}{2} = \frac{2\sqrt{7}}{2} = \sqrt{7}$

$$\begin{array}{c|cccc}
x & -\infty & \sqrt{7} & +\infty \\
\hline
x^2 - \sqrt{28}x + 7 & + & 0 & +
\end{array}$$

$$S = \left] -\infty, \sqrt{7} \left[\cup \right] \sqrt{7}, +\infty \right[$$

II - Factorisation d'un polynôme

Définition 10. Dire que le réel α est une **racine** ou un **zéro** d'un polynôme P(x), signifie que : $P(\alpha) = 0$.

Remarque 11. Déterminer les racines d'un polynôme P(x), c'est résoudre l'équation P(x) = 0.

Nous admettons le théorème suivant.

Théorème 12. Soit P(x) un polynôme et α un réel. α est une racine de P(x) si et seulement si P(x) est factorisable par $(x - \alpha)$. Dans ce cas il existe un polynôme Q(x) tel que : $P(x) = (x - \alpha)Q(x)$. Q(x) est le quotient de P(x) par $(x - \alpha)$ et $d^{\circ}Q = d^{\circ}P - 1$.

Remarque 13. Si α et β sont deux racines de P(x) alors P(x) est factorisable par $(x-\alpha)(x-\beta)$ et dans ce cas il existe un polynôme Q(x) tel que $P(x)=(x-\alpha)(x-\beta)Q(x)$ et $d^{\circ}Q=d^{\circ}P-2$.

Exemple 14. Considérons le polynôme suivant : $P(x) = 2x^3 - 5x^2 - 6x + 9$ Montrons que P(x) est factorisable par (x-3). Ensuite déterminons le polynôme quotient Q(x) tel que : P(x) = (x-3)Q(x) puis factorisons P(x).

- On a $P(3) = 2 \times 3^3 5 \times 3^2 6 \times 3 + 9 = 54 45 18 + 9 = 9 9 = 0$ Donc 3 est une racine de P(x) c'est-à-dire que P(x) est factorisable par (x-3). D'après le théorème précédent, il existe un polynôme Q(x) tel que : P(x) = (x-3)Q(x).
- Or P(x) est de degré trois donc Q(x) sera de degré deux. Par conséquent nous devons déterminer trois réels a, b et c tels que $P(x) = (x-3)(ax^2 + bx + c)$

Nous proposons ici la méthode Hörner 1 pour déterminer de Q(x).

► Méthode de Hörner

On utilise la disposition suivante appelée méthode de Hörner:

	2	-5	-6	9
3	\boxtimes	6	3	-9
	2	1	-3	0

Les valeurs 2, 1 et -3 figurant dans la dernière ligne, correspondent respectivement à celles des coefficients a, b et c de Q(x). Soit $Q(x) = 2x^2 + x - 3$.

 $P(\alpha)$ correspond à la valeur 0 figurant dans la dernière case de la dernière ligne du tableau de Hörner. Cette valeur n'est pas nécessairement nulle.

Ce tableau permet donc de calculer $P(\alpha)$ et de trouver en même temps les coefficients du polynôme Q(x).

Factorisation de P(x)

Maintenant factorisons au mieux P(x).

On a: $P(x) = (x-3)(2x^2 + x - 3)$ (attention ceci n'est pas la factorisation demandée!) On va continuer la factorisation **si possible** dans $2x^2 + x - 3$

On va continuer la factorisation **si possible** dans
$$2x^2 + x - 3$$
.
 $\Delta = 1 - 4 \times 2(-3) = 25$ et $x_1 = \frac{-1 - 5}{4} = -\frac{3}{2}$, $x_2 = \frac{-1 + 5}{4} = 1$.

Donc $2x^2 + x - 3 = 2\left(x + \frac{3}{2}\right)(x - 1) = (2x + 3)(x - 1)$. (attention ceci n'est pas la factorisation demandée!)

On remplace $(2x^2 + x - 3)$ par (2x + 3)(x - 1) dans P(x).

Finalement P(x) = (x-3)(2x+3)(x-1) cette expression est la factorisation de P(x).

Remarque 15. Dans la démarche précédente, on a trouvé toutes les racines du polynôme P(x). C'est-à-dire : 3, $-\frac{3}{2}$ et 1.

On pourrait aussi vous démander d'étudier le signe P(x) à l'aide d'un tableau de signes puis de résoudre une inéquation comme nous le verrons dans les exercices.

Remarque 16. On pourrait aussi utiliser les méthodes vues en classe de première : la division ou l'identification des coefficients.

/

 $^{1. \} William \ George \ H\"{o}rner \ math\'{e}maticien \ allemand (1819-1845$