厦门大学《微积分 I-1》课程试卷

试卷类型: (A卷) 考试时间: 2018.01.17

- 一、计算下列各题: (每小题 5 分, 共 35 分)
- 1. 求函数 $y = x 2\ln(1+x)$ (x > -1) 的极值.

得 分	
评阅人	

得 分	
评阅人	

3. 求不定积分 $\int \frac{1-2x}{\sqrt{1-x^2}} dx$.

得 分	
评阅人	

4.求不定积分 $\int x \arctan x dx$.

得 分	
评阅人	

5. 求极限 $\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+n}} + \frac{1}{\sqrt{n^2+2n}} + \dots + \frac{1}{\sqrt{n^2+n^2}}\right)$.

得 分	
评阅人	

6. 设 $e^x \sin x$ 为 f(x) 的一个原函数,求 $\int e^{-x} f(x) dx$.

得 分	
评阅人	

7. 求星形线 $x = a\cos^3 t$, $y = a\sin^3 t$ (a > 0, $0 \le t \le 2\pi$) 的长度 s.

得 分	
评阅人	

- 二、计算下列各题: (每小题 7 分, 共 35 分)
- 1. 求定积分 $\int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \frac{1}{(1+x)\sqrt{1-x^2}} dx$.

得 分	
评阅人	

2. 求反常积分 $\int_0^{+\infty} x^3 e^{-x^2} dx$.

得 分	
评阅人	

3. 求不定积分 $\int \frac{3\sin x + 4\cos x}{2\sin x + \cos x} dx.$

得 分	
评阅人	

4. 设函数 f(x) 在区间 $[0,\frac{\pi}{2}]$ 上连续,且满足

$$f(x) = \sin^3 x + 2 \int_0^{\frac{\pi}{2}} f(x) \sin x dx$$
,

试求 f(x).

得 分	
评阅人	

5. 计算 $\int_{-1}^{1} (1+x+\sqrt{1-x^2})^2 dx$.

得 分	
评阅人	

三、(本题 12 分)求直线 y=x+2,抛物线 $y=x^2$ ($x\geq 0$)及 y 轴所围图 形的面积 A 和该图形绕 x 轴旋转而成的旋转体体积 V .

得 分	
评阅人	

四、(本题 8 分) 设 f(x) 为 [a,b] 上连续的单调增加函数,证明:

$$\int_a^b x f(x) dx > \frac{a+b}{2} \int_a^b f(x) dx.$$

得 分	
评阅人	

五、(本题 10 分) 设 f(x) 在[a,b]上连续,证明:

$$\int_a^b f(x) dx = \int_a^b f(a+b-x) dx,$$

并由此计算
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos^2 x}{x(\pi - 2x)} \, \mathrm{d}x.$$

得 分	
评阅人	