WHAT IS CLAIMED IS:

1

2

1	1. A method, comprising:
2	requesting, by a network storage driver, a connection from an offload application,
3	wherein the offload application interfaces with a first network stack implemented in an
4	operating system and a second network stack implemented in a hardware device;
5	receiving the connection from the offload application, wherein the received
5	connection is an offloaded connection and is reserved for the network storage driver; and
7	communicating data over the offloaded connection through the hardware device.
1	2. The method of claim 1, wherein communicating the data over the
2	offloaded connection further comprises:
3	sending the data directly from the network storage driver to a hardware driver for
4	the hardware device, wherein the network storage driver uses the second network stack
5	implemented in the hardware device to communicate with a storage area network.
l	3. The method of claim 1, further comprising:
2	releasing the offloaded connection to the offload application, wherein the
3	offloaded connection is no longer reserved for the network storage driver.
l	4. The method of claim 1, further comprising:
2	receiving the request for the connection at the offload application;
3	generating, by the offload application, the offloaded connection;
1	reserving, by the offload application, the offloaded connection for the network
5	storage driver; and
5	sending the offloaded connection to the network storage driver.
	5. The method of claim 1, wherein the connection is a Transmission Control

Protocol / Internet Protocol connection included in a file descriptor sent from the offload

Docket No. P19003 Firm No. 0077.0097

application to the network storage driver, and wherein the file descriptor includes a port 4 address that is reserved for the network storage driver. 1 6. The method of claim 1, wherein the network storage driver implements an 2 Internet Small Computer Systems Interface protocol for communicating with a target 3 storage device through the hardware device. 1 7. The method of claim 1, wherein the first network stack and the second network stack do not implement an Internet Small Computer Systems Interface protocol. 2 The method of claim 1, wherein the first network stack and the second 1 8. 2 network stack comprise an Internet address family and a Transmission Control protocol 3 implemented over an Internet Protocol network layer, wherein the offload application can offload a network communication request to the second network stack in preference to 4 5 the first network stack, and wherein a single stack behavior is maintained by the first and 6 second network stacks to applications and network management utilities. 1 9. The method of claim 1, wherein the hardware device is a Transmission 2 Control Protocol offload engine adapter, and wherein a network communication request 3 for communicating the data is processed faster in the second network stack in comparison 4 to the first network stack. 1 10. A system, comprising: 2 a processor; and 3 program logic including code that is capable of causing the processor to be 4 operable to: 5 request, by a network storage driver, a connection from an offload application, wherein the offload application interfaces with a first network stack 6

3

7	implemented in an operating system and a second network stack implemented in a
8	hardware device;
9	receive the connection from the offload application, wherein the received
0	connection is an offloaded connection and is reserved for the network storage driver; and
1	communicate data over the offloaded connection through the hardware
2	device.
1	11. The system of claim 10, wherein the program logic is further capable of
2	causing the processor to be operable to:
3	send the data directly from the network storage driver to a hardware driver for the
4	hardware device, wherein the network storage driver uses the second network stack
5	implemented in the hardware device to communicate with a storage area network.
1	12. The system of claim 10, wherein the program logic is further capable of
2	causing the processor to be operable to:
3	release the offloaded connection to the offload application, wherein the offloaded
4	connection is no longer reserved for the network storage driver.
1	13. The system of claim 10, wherein the program logic is further capable of
2	causing the processor to be operable to:
3	receive the request for the connection at the offload application;
4	generate, by the offload application, the offloaded connection;
5	reserve, by the offload application, the offloaded connection for the network
6	storage driver; and
7	send the offloaded connection to the network storage driver.
1	14. The system of claim 10, wherein the connection is a Transmission
2	Control Protocol / Internet Protocol connection included in a file descriptor sent from the

offload application to the network storage driver, and wherein the file descriptor includes 3 4 a port address that is reserved for the network storage driver. 1 15. The system of claim 10, wherein the network storage driver implements an Internet Small Computer Systems Interface protocol for communicating with a target 2 3 storage device through the hardware device. 1 16. The system of claim 10, wherein the first network stack and the second 2 network stack do not implement an Internet Small Computer Systems Interface protocol. The system of claim 10, wherein the first network stack and the second 1 17. 2 network stack comprise an Internet address family and a Transmission Control protocol 3 implemented over an Internet Protocol network layer, wherein the offload application can 4 offload a network communication request to the second network stack in preference to 5 the first network stack, and wherein a single stack behavior is maintained by the first and 6 second network stacks to applications and network management utilities. 18. 1 The system of claim 10, wherein the hardware device is a Transmission 2 Control Protocol offload engine adapter, and wherein a network communication request 3 for communicating the data is processed faster in the second network stack in comparison 4 to the first network stack. 1 19. A system, comprising: 2 a computational platform; 3 a storage controller implemented in the computational platform; 4 a processor coupled to the computational platform;

program logic including code that is capable of causing the processor to be

an offload adapter coupled to the computational platform; and

5

6

7

operable to:

8	request, by a network storage driver, a connection from an offload
9	application, wherein the offload application interfaces with a first network stack
10	implemented in an operating system and a second network stack implemented in the
11	offload adapter;
12	receive the connection from the offload application, wherein the received
13	connection is an offloaded connection and is reserved for the network storage driver; and
14	communicate data over the offloaded connection through the offload
15	adapter.
1	20. The system of claim 19, wherein the program logic is further capable of
2	causing the processor to be operable to:
3	release the offloaded connection to the offload application, wherein the offloaded
4	connection is no longer reserved for the network storage driver.
1	21. The system of claim 19, wherein the program logic is further capable of
2	causing the processor to be operable to:
3	receive the request for the connection at the offload application;
4	generate, by the offload application, the offloaded connection;
5	reserve, by the offload application, the offloaded connection for the network
6	storage driver; and
7	send the offloaded connection to the network storage driver.
1	22. An article of manufacture, comprising a storage medium having stored
2	therein instructions capable of being executed by a machine to:
3	request, by a network storage driver, a connection from an offload application,
4	wherein the offload application interfaces with a first network stack implemented in an
5	operating system and a second network stack implemented in a hardware device;
6	receive the connection from the offload application, wherein the received
7	connection is an offloaded connection and is reserved for the network storage driver; and

8	communicate data over the offloaded connection through the hardware device.
1	23. The article of manufacture of claim 22, wherein the instructions are
2	further capable of being executed by a machine to:
3	send the data directly from the network storage driver to a hardware driver for the
4	hardware device, wherein the network storage driver uses the second network stack
5	implemented in the hardware device to communicate with a storage area network.
1	24. The article of manufacture of claim 22, wherein the instructions are
2	further capable of being executed by a machine to:
3	release the offloaded connection to the offload application, wherein the offloaded
4	connection is no longer reserved for the network storage driver.
1	25. The article of manufacture of claim 22, wherein the instructions are
2	further capable of being executed by a machine to:
3	receive the request for the connection at the offload application;
4	generate, by the offload application, the offloaded connection;
5	reserve, by the offload application, the offloaded connection for the network $_{\circ}$
6	storage driver; and
7	send the offloaded connection to the network storage driver.
1	26. The article of manufacture of claim 22, wherein the connection is a
2	Transmission Control Protocol / Internet Protocol connection included in a file descriptor
3	sent from the offload application to the network storage driver, and wherein the file
4	descriptor includes a port address that is reserved for the network storage driver.
l	27. The article of manufacture of claim 22, wherein the network storage driver
2	implements an Internet Small Computer Systems Interface protocol for communicating
3	with a target storage device through the hardware device.

Docket No. P19003 Firm No. 0077.0097

- 1 28. The article of manufacture of claim 22, wherein the first network stack 2 and the second network stack do not implement an Internet Small Computer Systems 3 Interface protocol.
- The article of manufacture of claim 22, wherein the first network stack and the second network stack comprise an Internet address family and a Transmission Control protocol implemented over an Internet Protocol network layer, wherein the offload application can offload a network communication request to the second network stack in preference to the first network stack, and wherein a single stack behavior is maintained by the first and second network stacks to applications and network management utilities.
- 1 30. The article of manufacture of claim 22, wherein the hardware device is a
 2 Transmission Control Protocol offload engine adapter, and wherein a network
 3 communication request for communicating the data is processed faster in the second
 4 network stack in comparison to the first network stack.