Модель реального газу

Розглянемо детерміністичну (молекулярно-динамічну) модель багаточастинкової системи на атомному рівні. При малій густині частинок відсутній як ближній (характерний для рідин та аморфних речовин), так і дальній (кристалічні структури) порядок. У найпростішому випадку це може бути <u>газ</u>. У такій системі між частинні взаємодії повинні обраховуватися за принципом «всі з усіма». Велика кількість частинок вимагає обмеження модельної системи, тобто використання граничних умов.

Постановка задачі

- 1. Відтворити рух атомів аргону у двовимірному модельному зразку методом молекулярної динаміки методом молекулярної динаміки. Концентрація атомів у системі визначається співвідношенням кількості частинок N до площі модельного зразка у формі прямокутника L_x x L_v.
- 2. Відпрацювати розроблений алгоритм
 - а) для різних граничних умов (фіксовані стінки, періодичні);
 - б) для трьох різних чисельних алгоритмів методу МД;
 - в)* для різних потенціалів і речовин.
- 3. Забезпечити збереження енергії системи:
 - а) у канонічному ансамблі;
 - б) у мікроканонічному ансамблі.

Основні складові моделі (модулі програми)

- 1) ініціалізація початкових умова; //процедура init
- 2) задання потенціалу міжчастинної взаємодії; // ϕ ункція U(r)
- 3) задання сили міжчастинної взаємодії; //функція F(r), як -dU(r)/dr (взяти аналітично)
- 4) перевірка граничних умов при розрахунку взаємодії (за правилом мінімуму між відображеннями); //npoцедура bc_min
- 5) обрахунок сил по проекціях, що діють на кожну частинку системи; //npoqedypa interaction
- 6) перевірка граничних умов (для уникнення виходу частинки за межі модельного зразка); //процедура bc
- 7) обрахунок стану системи на даному кроці МД-схеми; //процедура та
- 8) забезпечення збереження енергії системи; // процедура energy
- 9) візуалізація; //процедура visual
- 10) збірка всіх модулів у єдиній процедурі.

Для універсальності моделі доречно передбачити програмний інтерфейс — введення кількості частинок N та розміру модельного зразка L_x , L_y з форми. Модифікації складових алгоритму (різні граничні умови, різні чисельні схеми, різні потенціали взаємодії) доречно викликати різними кнопками з форми, у процедурах яких збірку провести з використанням відповідних підпрограм. (Можна вибір робити перемикачами на формі, але їх обробка на кожному кроці $M\mathcal{I}$ -схеми буде суттєво гальмувати виконання програми).

Розмірність фазового простору багаточастинкової системи 2dN (d – розмірність простору модельної системи) потребує використання масивів для опису стану (x, y,vx, vy, fx, fy). Оскільки система не є упорядкованою і враховується взаємодія всіх частинок з усіма, то для опису годяться лінійні масиви.

1) Ініціалізація початкових умова

Для ініціалізації невеликої кількості частинок використаємо випадковий розкид по кожній координаті:

$$x_n^i := R + (L - R) \cdot random$$
,

де R – ефективний радіус взаємодії,

та розподіл за Максвелом для визначення початкових швидкостей за кожною проекцією x:

$$v_x^i := \sqrt{\frac{2kT}{m} \ln\left(\frac{1}{random}\right)} \sin(2\pi \cdot random)$$

При використанні random потрібно не забути про ініціалізацію генератора випадкових чисел randomize!

2-3) Задання потенціалу і сили міжчастинної взаємодії

Потенціал Ленарда-Джонса складається з відштовхувальної

$$4\varepsilon \left(\frac{r_0}{r}\right)^{12} \text{ та притягальної } -4\varepsilon \left(\frac{r_0}{r}\right)^6 \text{ частин}$$

$$V(r) = 4\varepsilon \left[\left(\frac{r_0}{r}\right)^{12} - \left(\frac{r_0}{r}\right)^6\right],$$

 ε - максимальна глибина потенціальної ями при $r = 2^{\frac{1}{6}} r_0$,

 r_0 - відстань при V(r) = 0.

Даний потенціал ϵ короткодіючим і для $r > 2.5 r_0$ практично рівний нулю.

Потенціал Борна-Майєра $V(r) = A\,e^{\alpha\left(1-\frac{r}{r_0}\right)} \;.$

відштовхувальний, розширення системи при моделюванні стримується лише граничними умовами.

Потенціал Борна-Майєра часто застосовують для металів (зокрема, міді), експонента описує екранування кулонівської взаємодії електронним газом.

end:

Потенціал Морзе – потенціал типу Борна-Майєра, який, окрім відштовхування, враховує також притягання

$$V(r) = A\left(e^{-2\alpha(r-r_0)} - 2e^{-\alpha(r-r_0)}\right),$$

 r_0 - точка рівноваги.

Визначення параметрів модельних потенціалів (Ленарда-Джонса, Борна-Майєра, Морзе та інших) є однією з найскладніших проблем фізики твердого тіла. Вони, як правило, підбираються підгонкою під конкретні, відомі з експерименту, властивості речовини. Проблема полягає в тому, що підгонка під пружні властивості дає можливість добре моделювати пружні властивості, але застосування підібраних параметрів для опису інших властивостей, наприклад,

дифузії, дає значно гірші результати. Це пов'язано, зокрема, з тим, що істинна взаємодія в речовині не може бути зведена до суми парних потенціалів. Тому результати, скажімо, молекулярної динаміки з парними потенціалами дають лише якісний опис властивостей твердих тіл. Для кількісного опису зараз розвиваються більш строгі методи ("ab initio" - "з перших принципів").

Парні потенціали Ленарда-Джонса і Морзе для різних газів та металів http://www.kirensky.ru/master/articles/monogr/Book/Chapter_1_9.htm

{потенциал Ленарда-Джонса для Ar} sigma = 119*kb; r0:double = 3.4e-10; function U(r:double):double; begin U:=4*sigma*(exp(12*ln(r0/r))-exp(6*ln(r0/r))); end; function F(r:double):double; begin F:=24*sigma/r*(2*exp(12*ln(r0/r))-exp(6*ln(r0/r)));

 ${$ потенциал Борна-Майера для $Cu}$ alfa = 13.9; aa = 0.053*1.6e-19; x0 = 2.886e-10;

function U(r:double):double; begin U:=aa*exp(alfa)*exp(-alfa/x0*r); end;

function F(r:double):double; begin F:=alfa/x0*aa*exp(alfa)*exp(-alfa/x0*r); end;

7) Обрахунок стану системи на даному кроці МД-схеми

В окремих циклах потрібно:

- по кожній проекції визначити силу, що діє на частинку з боку системи як суперпозицію впливів всіх інших частинок(у випадку використання періодичних граничних умов не забути про вибір найближчого образу сусіда – процедура bc_min), а також потенціальну енергію системи;

Метод Ейлера ϵ асиметричним, оскільки він просуває розв'язок на один крок по часу Δt , а використовує при цьому інформацію про похідну тільки в початковій точці інтервалу.

Метод Ейлера дає найпростіші і досить грубі формули розв'язку диференціального рівняння. Існують більш точні методи, для яких ми наведемо лише формули, а геометричну інтерпретацію пропонуємо розглянути самостійно.

Метод Ейлера-Кромера, або метод наближення по останній точці:

$$\upsilon_{n+1} = \upsilon_n + a_n \Delta t \,,$$

$$x_{n+1} = x_n + \upsilon_{n+1} \Delta t .$$

Метод середньої точки використовує для нового значення координати середню на відрізку швидкість:

$$\upsilon_{n+1} = \upsilon_n + a_n \Delta t \,,$$

$$x_{n+1} = x_n + \frac{1}{2}(v_{n+1} + v_n)\Delta t$$
.

Метод напівкроку використовує припущення, що швидкість на відрізку дорівнює значенню швидкості в середині відрізка:

$$\upsilon_{n+1/2} = \upsilon_{n-1/2} + a_n \Delta t$$
,

$$x_{n+1} = x_n + \upsilon_{n+1/2} \Delta t .$$

Метод не ϵ самостартуючим, оскільки дані формули не дозволяють обчислити $\upsilon_{1/2}$. Можна покласти

$$v_{1/2} = v_0 + \frac{1}{2}a_0 \Delta t$$

Метод Верле більш точний:

$$x_{n+1} = 2x_n - x_{n-1} + a_n(\Delta t)^2$$

$$\upsilon_n = \frac{x_{n+1} - x_{n-1}}{2\Delta t} \cdot$$

Недоліком цього методу ϵ необхідність використання іншого методу для отримання декількох перших точок фазового простору і обчислення швидкості через віднімання близьких по величині значень, що може призвести до втрати значущих цифр і значного росту похибки.

Ці недоліки усуваються в швидкісній формі алгоритму Верле:

$$x_{n+1} = x_n + \upsilon_n \Delta t + \frac{1}{2} a_n (\Delta t)^2,$$

$$\upsilon_{n+1} = \upsilon_n + \frac{1}{2}(a_{n+1} + a_n)\Delta t.$$

Метод Бімана і Шофілда:

$$x_{n+1} = x_n + \upsilon_n \Delta t + \frac{1}{6} (4a_n - a_{n-1})(\Delta t)^2,$$

$$\upsilon_{n+1} = \upsilon_n + \frac{1}{6}(2a_{n+1} + 5a_n - a_{n-1})\Delta t$$

не є самостартуючим, але краще, ніж алгоритм Верле, оскільки краще зберігає енергію.

Метод предиктор-коректора полягає в передбаченні нового значення координати

предиктор
$$\bar{x}_{n+1} = x_{n-1} + 2\upsilon_n \Delta t$$
,

що дозволяє визначити прискорення \bar{a}_{n+1} , використовуючи яке знаходимо скореговані значення

коректор
$$\upsilon_{n+1} = \upsilon_n + \frac{1}{2}(\overline{a}_{n+1} + a_n)\Delta t$$
,

$$x_{n+1} = x_n + \frac{1}{2}(\upsilon_{n+1} + \upsilon_n)\Delta t.$$

Скореговане значення x_{n+1} використовується для обчислення передбачуваного значення a_{n+1} , а отже, нових передбачень значень υ_{n+1} і x_{n+1} . Ця процедура повторюється до тих пір, поки передбачуване і скореговане значення не будуть відрізнятися на величину менше заданої.

8) Забезпечення збереження енергії системи

Якщо не розглядати траєкторію та характеристики кожної окремої частинки, то стан системи можна описати як макростан: кількість частинок, абсолютна температура, середній тиск, об'єм та повна енергія.

Кінетичне означення температури випливає з теореми про рівномірний розподіл: кожен квадратичний член, що входить у вираз для енергії класичної системи, що знаходиться у рівновазі при температурі T, має середнє значення

$$\frac{k_B T}{2}$$
 на кожен ступінь вільності, де k_B – стала Больцмана. Для d -вимірного простору температуру T можна

визначити із співвідношення

$$N\frac{dk_BT}{2} = \sum_i \frac{m_i v_i^2}{2} ,$$

де сума береться по всіх N частинках і d компонентах швидкості. Слід зауважити, що дане співвідношення справедливе лише тоді, коли рух системи як цілого рівний нулеві.

Для канонічного ансамблю

Навіть обравши надзвичайно малий крок по часу, неможливо уникнути флуктуацій енергії в системі, тому періодично необхідно перевіряти умову, щоб кінетична енергія системи відповідала заданій температурі, оскільки для канонічного ансамблю траєкторія у фазовому просторі розміщена на ізотермі.

Тому за допомогою процедури перенормування потрібно забезпечувати підтримання певної температури системи T і перенормовувати кінетичну енергію

$$N\frac{dk_BT}{2} = norma^2 \cdot \sum_i \frac{m_i v_i^2}{2} \cdot$$
Тоді
$$norma = \sqrt{\frac{Ndk_BT}{\sum_i m_i v_i^2}} \cdot$$

Для мікроканонічного ансамблю

Навіть обравши надзвичайно малий крок по часу, неможливо уникнути флуктуацій енергії в системі, тому періодично необхідно перевіряти умову, щоб повна енергія системи залишалася постійною

$$E_0 = E_{0p} + E_{0K} = \sum_{i=1}^{N} \varepsilon_{0p}^i + N \frac{dk_B T}{2},$$

 $arepsilon_{0p}^i$ – потенціальна енергія i -го атома при ініціалізації початкових умов,

d – розмірність.

Якщо повна енергія системи у певний момент часу відрізняється від E_0 , необхідно виконати процедуру перенормування кінетичної енергії (швидкостей атомів)

$$E_0 = E_p + E_K = \sum_{i=1}^{N} \varepsilon_p^i + norma^2 \cdot \sum_i \frac{m_i v_i^2}{2},$$

 $arepsilon_{p}^{i}$ – потенціальна енергія $\,i\,$ -го атома в момент $\,t\,$,

сума швидкостей по всіх компонентах d,

norma — нормувальний множник для вирівнювання повної енергії до початкової E_0 .

Отже, всі складові швидкостей кожного атома необхідно домножити на множник

$$norma = \sqrt{\frac{2\left(E_0 - \sum_{i=1}^{N} \varepsilon_p^i\right)}{\sum_{i} m_i \upsilon_i^2}}.$$