سلسلة 10: التمثيل المبياني لدالة عددية

التمرين 1

 $f(x)=x\sqrt{x}$:لتكن f الدالة العددية للمتغير x المعرفة بما يلي

 $oldsymbol{\cdot}(O;ec{i};ec{j})$ منحناها في معلم متعامد ممنظم (C_f)

f عدد D_f مجموعة تعريف الدالة D_f

2. أدرس قابلية اشتقاق الدالة f على اليمبن في 0 ثم أول مبيانيا النتيجة.

 (C_f) أدرس الفروع اللانهائية للمنحنى.

به أحسب f'(x) لكل f من f(x) من f(x) أحسب f(x) بنالة أf(x)

 $\cdot(C_f)$ أنشئ 5.

التمرين 2

 $f(x)=x+rac{2x+6}{x+1}$:لتكن f الدالة العددية للمتغير x المعرفة بما يلي

 $\bullet(O; ec{i}; ec{j})$ منحناها في معلم متعامد ممنظم (C_f)

به محدد D_f مجموعة تعریف الدالة D_f

 D_f عند محدات الدالة D_f عند محدات .2

 $• \forall x \in D_f: \ f(x) = x + 2 + rac{4}{x+1}$ ئن بین أن3

 $\bullet(C_f)$ أدرس الفروع اللانهائية للمنحنى \bullet

5. أدرس الوضع النسبي للمنحنى (C_f) مع مقاربه المائل.

ه. بين أن $\frac{x^2+2x-3}{(x+1)^2}$ أن $\forall x \in D_f: \ f'(x) = \frac{x^2+2x-3}{(x+1)^2}$ 6.

 $\bullet(C_f)$ بين أن $\forall x \in D_f: \ f''(x) = rac{8}{(x+1)^3}$ بين أن $\forall x \in D_f: \ f''(x) = rac{8}{(x+1)^3}$

 (C_f) للمنحنى (C_f) في النقطة ذات الأفصول (T_f)

(T) و (C_f) و (T)

 $h(x) = rac{x^2 - 3|x| + 6}{1 - |x|}$ يلي: $h(x) = rac{x^2 - 3|x| + 6}{1 - |x|}$ نعتبر الدالة h(x)

 $oldsymbol{\cdot}(O;ec{i};ec{j})$ بين أن h دالة زوجية و أنشئ منحناها (C_h) في نفس المعلم h

التمرين 3

 $f(x)=4\sin(x)+\cos(2x)$:لتكن f الدالة العددية للمتغير x المعرفة بما يلى

 $oldsymbol{\cdot}(O;ec{i};ec{j})$ منحناها في معلم متعامد ممنظم (C_f)

ا. حدد D_f مجموعة تعريف الدالة f ثم بين أنه يكفي دراسة الدالة f على المجال.

- ullet $egin{aligned} ullet \forall x \in \mathbb{R}: \ f'(x) = 4\cos(x)(1-\sin(x)) \end{aligned}$ و بین أن
 - I أدرس تغيرات الدالة f على I
- 0 للمنحنى (C_f) في النقطة ذات الأفصول (T)
- $\cdot(C_f)$ بدلالة $\sin(x)$ لكل من \mathbb{R} ثم حدد نقط انعطاف المنحني أحسب f''(x)
 - $-[-2\pi; 4\pi]$ على المجال (C_f) على المجال 6.

التمرين 4

لتكن f الدالة العددية للمتغير x المعرفة بما يلي: $f(x)=\frac{3x^2+ax+b}{x^2+1}$ عددين حقيقيين. و ليكن $f(x)=\frac{3x^2+ax+b}{x^2+1}$ منحناها في معلم متعامد ممنظم $f(x)=\frac{3x^2+ax+b}{x^2+1}$

- y=4x+3 معادلته I(0;3) معادلته I(0;3) معادلته I(0;3) معادلته و I(0;3)
 - بريف الدالة D_f عدد وعد D_f عموعة D_f
 - D_f عند محدات f عند عدات f مين أن f بين أن f عند f f f f f f مين أن f
 - 4. أدرس تغيرات الدالة f ثم ضع جدول تغيراتها.
 - $\cdot (C_f)$ أدرس الفروع اللانهائية للمنحنى
 - I(0;3) مع المستقيم الماس في النقطة (C_f) مع المستقيم الماس في النقطة (C_f).
 - I(0;3) بين أن المنحنى (C_f) متماثل بالنسبة للنقطة ،7
 - ر أنشئ المنحنى (C_f) .8
- $x^{2}(3-m) + 4x + 3 m = 0$ عدد حلول المعادلة m = 3 عدد علول المعادلة والمعادلة $x^{2}(3-m) + 4x + 3 m = 0$

التمرين 5

 $f(x) = \frac{x^2 + 4|x|}{\sqrt{x^2 - 1}}$ الدالة العددية للمتغير x المعرفة بما يلي: $f(x) = \frac{x^2 + 4|x|}{\sqrt{x^2 - 1}}$

 $\bullet(O; ec{i}; ec{j})$ منحناها في معلم متعامد ممنظم (C_f)

- به محدد D_f مجموعة تعريف الدالة D_f
- 2. بين أن المنحني (C_f) متماثل بالنسبة لمحور الأراتيب.
 - .3 أحسب $\lim_{x\to 1^+} f(x)$ ثم أول مبيانيا النتيجة.
 - $\lim_{x\to +\infty} f(x)$ أحسب. 4
- $-+\infty$ بين أن المستقيم Δ) الذي معادلته y=x+4 هو مقارب مائل للمنحنى Δ) بجوار.
 - $oldsymbol{\cdot}$ 1; $+\infty$ [النسبي المنحنى (C_f) مع المستقيم (Δ) على المجال.
 - $-1;+\infty[$ لكل x من المجال f'(x)
 - D_f على D_f على D_f على D_f على D_f
 - $\cdot(C_f)$ أنشئ المنحنى .9