Pre-lab Lab 6: Energy/Momentum Conservation

Name :					
NetID :			Grade:	/30	
Signature:					
	•	discussions with TA a er questions individua			
Question: [3	80]				
	e predicted velocity d values. [8]	with sign and $\%$ d	lifference between	the predicted and	
Collision type	predicted $v_{1,f}$	% diff in $v_{1,f}$	predicted $v_{2,f}$	% diff in $v_{2,f}$	
Elastic					
Completely					

ii. Fill in the initial value, final value, and % loss. [6]

inelastic

Collision type	Mome	ntum (kg \times m/s	:)	Kinetic Energy (kg \times m ² /s ²)		
	Initial	Final	% loss	Initial	Final	% loss
	$p_{1,i} + p_{2,i}$	$p_{1,f} + p_{2,f}$	/0 1055	$K_{1,i} + K_{2,i}$	$K_{1,f} + K_{2,f}$	/0 1033
Elastic						
Completely inelastic						

(2) Explain the four statements about the elastic collision experiment. [8]

Answer:

(3) Show $\frac{|K_{f,1}+K_{f,2}-K_{i,1}-K_{i,2}|}{|K_{i,1}+K_{i,2}|} = \frac{m_2}{m_1+m_2}$ for a completely inelastic collision and explain how this relation tells that the energy is not conserved. [4]

PHYS2125 Physics Laboratory I (Online
The University of Texas at Dallas

(4) Show that $v_{1,f}=v_{1,i}$ and $v_{2,f}=v_{2,i}$ satisfy the conservation equations and explain why it is not a solution to an elastic collision problem. [4]

Report Sheets Lab 6: Energy/Momentum Conservation

Name :	Report Grade:	/70
NetID :	Total Grade:	/100
Signature:		
 You are encouraged to have discus do calculations and answer question 	ssions with TA and other students, bu ons individually and independently.	it you are required to
Part I: Elastic collision		
Glider 1 : Bare mass $=$ \pm	g.	
Glider 2 : Bare mass = ±	g.	
*For only one measurement, the err	or part is the measurement error.	

Table R1:

Mass configuration	Trial	$v_{1,i}$ (m/s)	$v_{1,f}(m/s)$	$v_{2,f}(m/s)$
$m_1 = m_2:$	1			
40 g on Glider 1 40 g on Glider 2	2			
$m_1 < m_2$:	3			
40 g on Glider 1 200 g on Glider 2	4			
$m_1 > m_2$:	5			
200 g on Glider 1 40 g on Glider 2	6			

Part II: Completely inelastic collision

Table R2:

Mass configuration	Trial	$v_{1,i}(m/s)$	$v_f (= v_{1(2),f}) \text{ (m/s)}$
$m_1 = m_2$: 40 g on Glider 1	1		
40 g on Glider 2	2		
$m_1 < m_2$:	3		
40 g on Glider 1 200 g on Glider 2	4		
$m_1 > m_2$:	5		
200 g on Glider 1 40 g on Glider 2	6		

Check Box #1 [30]: The data sets are checked.	

Analysis I [20]: Elastic collision

(1) Use Eqs. (7) and (8) in **Manual** to predict $v_{1,f}$ and $v_{2,f}$ from the measured $v_{1,i}$ in **Table R1** and compare them with the measured values. Complete **Table R3** below. [6] (Note that $m_{1,2}$ are bare mass plus added mass, and % difference $=\frac{|\text{measured value}-\text{predicted value}|}{|\text{predicted value}|} \times 100\%$)

Table R3:

Mass config. Trial		$v_{1,f}(m/s)$			$v_{2,f}(m/s)$			
iviass cornig.	HHal	Predicted	Measured	% diff	Predicted	Measured	% diff	
$m_1 = m_2$	1							
m_1 : kg m_2 : kg	2							
$m_1 < m_2$ m_1 : kg	3							
m_2 :kg	4							
$m_1 > m_2$ m_1 : kg	5							
<i>m</i> ₂ : kg	6							

(2) For each mass configuration in **Table R3**, select one trial that has a smaller % difference and analyze its momentum and energy loss upon the collision (use the measured velocities in **Table R1**). Complete **Table R4** below in SI units. [6] (% loss = $\frac{|\text{final value-initial value}|}{|\text{initial value}|} \times 100\%$)

Table R4:

Mass	Trial	Mome	Momentum (kg·m/s)			Kinetic Energy (J)		
Config.	#	$p_{1,i} + p_{2,i}$	$p_{1,f} + p_{2,f}$	% loss	$K_{1,i} + K_{2,i}$	$K_{1,f} + K_{2,f}$	% loss	
$m_1 = m_2$								
$m_1 < m_2$								
$m_1 > m_2$								

(3) Assuming that the air friction is responsible for up to 15% momentum or energy loss, discuss how your results have (roughly) confirmed or contradicted the conservation law for elastic collisions if there is no air friction. Do different mass configurations show the same physics of conservation (or non-conservation)? Why or why not? [4]

(4) Which <u>trial</u> in **Table R4** has the largest % loss in total momentum? Please discuss possible reasons for this *relatively large* loss rate. [4]

Analysis II [18]: Completely inelastic collision

(1) Use Eq. (9) in **Manual** to predict v_f from the measured $v_{1,i}$ in **Table R2** and compare them with the measured values. Complete **Table R5** below. [6]

Table R5:

Mass config	Trial	v_f (m/s)					
Mass config.	Trial	Predicted	Measured	% difference			
$m_1 = m_2$	1						
m_1 :kg m_2 :kg	2						
$m_1 < m_2$ m_1 :kg	3						
m_1 :kg	4						
$m_1 > m_2$ m_1 : kg	5						
<i>m</i> ₂ : kg	6						

(2) For each mass configuration in **Table R5**, select one trial that has a smaller % difference, and analyze its momentum and energy loss upon the collision (use the measured velocities in **Table R2**). Complete **Table R6** below in SI units. [6]

Table R6:

Mass	Trial	Momentum (kg·m/s)			Kine	etic Energy (J)	
Config.	#	$p_{1,i} + p_{2,i}$	$p_{1,f} + p_{2,f}$	% loss	$K_{1,i} + K_{2,i}$	$K_{1,f} + K_{2,f}$	% loss
$m_1 = m_2$							
$m_1 < m_2$							
$m_1 > m_2$							

(3) Assuming that the air friction is responsible for up to 15% momentum or energy loss, discuss how your results have (roughly) confirmed or contradicted the conservation law for completely inelastic collisions if there is no air friction. Do different mass configurations show the same physics of conservation (or non-conservation)? Why or why not? [4]

_	
Answer:	
AIISWCI.	

(4) Which <u>configuration</u> in **Table R6** has the largest % loss in energy? How do you use the relation in Pre-lab Q(3) to explain it? [4]