Lista 10, Capítulo 5 - Geometria Analítica e Álgebra Linear

Profa. Roseli

1. Desenhe dois vetores não colineares \vec{u} e \vec{v} , com a mesma origem. A seguir, construa um representante do vetor:

(i)
$$\vec{u} - \vec{v}$$

(ii)
$$\vec{v} - \vec{u}$$

(iii) -
$$\vec{v}$$
 - $2\vec{u}$

(iv)
$$3\vec{u} - 2\vec{v}$$

2. Desenhe três vetores, dois a dois não colineares, \vec{u} , \vec{v} e \vec{w} . A seguir, construa um representante do vetor:

(i)
$$4\vec{u} - 3\vec{v} - \vec{w}$$

(ii)
$$\vec{u} + \vec{v} + \vec{w}$$

(iii)
$$2\vec{v}$$
 - $(\vec{u} + \vec{w})$

Nos problemas a seguir, todos os vetores estão referidos a uma mesma base.

3. Dados os vetores $\vec{u} = (1, -1, 3), \vec{v} = (2, 1, 3)$ e $\vec{w} = (-1, -1, 4),$ ache as coordenadas de:

(a)
$$\vec{u} + \vec{v}$$
 (b) $\vec{u} - 2\vec{v}$ (c) $\vec{u} + 2\vec{v} - 3\vec{w}$

4. No Problema 1, verifique se \vec{u} é combinação linear de \vec{v} e \vec{w} .

5. Escreva $\vec{t}=(4,\,0,\,13)$ como combinação linear dos vetores $\vec{u},\,\,\vec{v}\,$ e $\,\vec{w}$ do Problema 1.

6. $\vec{u}=(1,$ -1, 3) pode ser escrito como combinação linear de $\vec{v}=($ -1, 1, 0) e $\vec{w}=(6,$ 9, 1)?

7. Decida se os vetores dados são LI ou LD:

(a)
$$\vec{u} = (0, 1, 0), \quad \vec{v} = (1, 0, 1)$$

(b)
$$\vec{u} = (0, 1, 1), \quad \vec{v} = (1, 0, 0)$$

$$(\mathbf{c}) \hspace{0.5cm} \vec{u} = (0,\,1,\,1), \hspace{0.5cm} \vec{v} = (0,\,3,\,1)$$

- (d) $\vec{u} = (1, -3, 14), \quad \vec{v} = (\frac{1}{14}, -\frac{3}{14}, 1)$
- (e) $\vec{u} = (1, 0, 0), \quad \vec{v} = (200, 2, 1), \quad \vec{w} = (300, 1, 2)$
- (f) $\vec{u} = (1, 2, 1), \quad \vec{v} = (1, -1, -7), \quad \vec{w} = (4, 5, -4)$
- $(\mathbf{g}) \qquad \vec{\mathbf{u}} = \vec{\mathbf{0}}$
- **(h)** $\vec{\mathbf{u}} = (1, 1, 1)$
- 8. Considere $E = \{\vec{e}_1, \ \vec{e}_2, \ \vec{e}_3\}$ uma base de V^3 . Decida se $F = \{\vec{f}_1, \ \vec{f}_2, \ \vec{f}_3\}$ é base de V^3 , para $\vec{f}_1 = \vec{e}_1 \ + \ \vec{e}_2 \ + \ \vec{e}_3$, $\vec{f}_2 = \vec{e}_1 \ + \ \vec{e}_2$ $\vec{f}_3 = \vec{e}_3$
- 9. Calcule o valor de m para que os vetores abaixo sejam LD:
 - (a) $\vec{u} = (m, 1, m), \qquad \vec{v} = (1, m, 1)$
 - (b) $\vec{u} = (1 m^2, 1 m, 0), \quad \vec{v} = (m, m, m)$
 - (c) $\vec{u} = (m, 1, m + 1),$ $\vec{v} = (1, 2, m),$ $\vec{w} = (1, 1, 1)$
 - (d) $\vec{u} = (m, 1, m + 1), \quad \vec{v} = (0, 1, m), \quad \vec{w} = (0, m, 2m)$

Respostas

- **3.** (3, 0, 6) (-3, -3, -3) (8, 4, -3) **4.** não é
- **5.** $\vec{t} = \vec{u} + 2 \vec{v} + \vec{w}$ **6.** não
- 7. LI LI LD LI LD LD LI
- 8. Não é
- 9. $m = \pm 1$ M = 0 ou m = 1 não existe m = m = 0 ou m = 2