FATEC Desenvolvimento de Software Multiplataforma

2º SEMESTRE 2024

IAL-011 - Internet das Coisas e Aplicações

Prof. Me. Eng. Santana

Sensores

Sensores Digitais

- Sensores digitais são dispositivos que detectam mudanças físicas ou ambientais e enviam informações ao Arduino na forma de sinais binários, ou seja, 0 ou 1. Esses sensores operam com base em limites predefinidos: por exemplo, um sensor de presença envia um sinal digital 1 (HIGH) quando detecta movimento, e um sinal 0 (LOW) quando não detecta.
- A simplicidade dos sensores digitais os torna ideais para aplicações que requerem apenas um "sim" ou "não", como a detecção de abertura de portas, presença de objetos, ou acionamento de botões. Essa natureza binária facilita a programação e o uso em sistemas de controle simples.

Sensores Digitais

Sensor Infravermelho

Sensor Toque

Sensores Analógicos

- Sensores analógicos, por outro lado, fornecem uma gama contínua de valores, refletindo a magnitude das variáveis físicas medidas, como luz, temperatura, ou pressão. Eles geram uma saída de tensão que varia proporcionalmente à grandeza medida, e o Arduino converte essa tensão em um valor digital correspondente (usando seu conversor ADC) que pode variar, por exemplo, entre 0 e 1023.
- Isso permite uma leitura muito mais precisa e detalhada, o que é essencial em aplicações onde é necessário monitorar variações sutis ou medir grandezas com um grau elevado de sensibilidade. Sensores analógicos são amplamente usados em projetos que exigem uma análise mais detalhada dos dados coletados.

Sensores Analógicos

DTH11

É um sensor de temperatura e umidade que permite fazer leituras de temperaturas entre 0 e 50 graus Celsius e umidade do ar entre 20 e 90%.

DTH22

É um sensor de temperatura e umidade que permite fazer leituras de temperaturas entre -40 a +80 graus Celsius e umidade do ar entre 0 e 100%.

Sensores Analógicos

LDR

LDR (*Light Dependent Resistor*), Resistor Dependente de Luz ou Foto resistência, é um componente eletrônico passivo do tipo resistor variável, mais especificamente, é um resistor cuja resistência varia conforme a intensidade da luz que incide sobre ele, sendo que à medida que a intensidade da luz aumenta, a sua resistência diminui.

O LDR é construído a partir de material semicondutor com elevada resistência elétrica. Quando a luz que incide sobre o semicondutor tem uma frequência suficiente, os fótons que incidem sobre o semicondutor libertam elétrons para a banda condutora que irão melhorar a sua condutividade e assim diminuir a resistência. Alguns LDRs são projetados para responder em luz infravermelha (ou ainda em luz ultravioleta).

Lab 7

- Tinkercad
- Iluminação Publica

- Usar fotorresistor para acender a luz caso a luminosidade seja baixa
- Fotorresistor é um sensor analógico

Lab 8

Tinkercad

- Alerta de Temperatura
- Gerar uma mensagem na serial se temperatura for maior que 30°C
- Tocar alarme quando temperatura passar de 90°C
- Sensor TMP36
- Buzzer

Lab 9

Tinkercad

- Alerta de Presença
- Gerar uma mensagem na serial e piscar LED se detectado presença
- Sensor PIR

