සියලු ම හිමිකම් ඇවිරිණි / ψ ගුට වනිට්பුලිකාගවුනා...uනු / $All\ Rights\ Reserved$)

ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තලේත්තුව සි. ලෙක විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව හෝහාසට පාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව කි. ලෙක විභාග දෙපාර්තමේන්තුව ප්රදේශය නිකශාස්සභාව මුහෝහාසට පාර්තමේන්තුව epartment of Examinations. Sri Lanka Department **මුහෝහාසා සිරු දි. ලංකා විභාග පෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලේකා විම විභාග දෙපාර දෙපාර**

අධායන පොදු සහතික පහු (උසස් පෙළ) විශාශය, 2017 අශෝස්තු கல்விப் டொதுத் தராதரப் பத்திர (உயர் தர)ப் ப**ரீட்சை, 2017 ஓகஸ்**ற் General Certificate of Education (Adv. Level) Examination, August 2017

තාක්ෂණවේදය සඳහා විදපාව தொழினுட்பவியலுக்கான விஞ்ஞானம் Science for Technology

පැය දෙකයි இரண்டு மணித்தியாலம் Two hours

උපදෙස්:

- * සියලු ම පුශ්තවලට පිළිතුරු සපයන්න.
- * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- උත්තර පතුගේ පිටුපස දී ඇති උපදෙස් ද සැලකිල්ලෙන් කියවා පිළිපදින්න.
- * 1 සිට 50 තෙක් එක් පුශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් නිවැරදි හෝ වඩාත් ම හැළපෙන හෝ පිළිතුර තෝරාගෙන, එය **උත්තර පතුයේ පහුපස දැක්වෙන උපදෙස් පරිදි කතිරයක්** (X) **යොද දක්වන්න.**
- ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- 1. දිලීර සම්බන්ධයෙන් පහත සඳහන් කවර වගන්තිය සතා වේ ද?
 - (1) බොහෝ දිලීර ස්වයංපෝෂීන් වේ.
 - (2) යීස්ට් ඒකමෙසලික දිලිරයක් සඳහා උදාහරණයකි.
 - (3) දිලීරවල මෙසල බිත්ති සෑදී ඇත්තේ සෙලියුලෝස්වලිනි.
 - (4) දිලීරවල පුධාන සංචිත ආහාරය පිෂ්ටයයි.
 - (5) දිලීර අලිංගිකව පමණක් පුජනනය කරයි.
- 2. 'රන්වන් සහල්' නිෂ්පාදනය සඳහා අවශා ජානය ලබා ගැනීමට භාවිත කළ බැක්ටීරියාව වනුයේ,
 - (1) Agrobacterium tumefaciens
- (2) Bacillus thuringiensis
- (3) Escherichia coli

- (4) Corynebacterium glutamicum
- (5) Erwinia uredovora
- විතාකිරි නිෂ්පාදනය සම්බන්ධයෙන් පහත පුකාශ සලකන්න.
 - (A) එතනෝල්, ඇසිටික් අම්ලය බවට පත් කිරීම විතාකිරි නිෂ්පාදනයේ පළමු පියවර වේ.
 - (B) Acetobacter හෝ Gluconobacter භාවිත කර එතනෝල්, ඇසිටික් අම්ලය බවට පත් කළ හැකි ය.
 - (C) මෙම කිුයාවලියේ දී එතනෝල්, ඇසි<mark>ටික් අම</mark>ලය බවට පත් කිරීම ඔක්සිකරණ පුතිකිුයාවකි.

ඉහත පුකාශ අතුරෙන් නිවැරදි වනුයේ,

- (1) (A) පමණි.
- (2) (B) පමණි.
- (3) (C) පමණි.
- (4) (A) සහ (B) පමණි. (5) (B) සහ (C) පමණි.

- 4. ලැක්ටෝස් අයත් වන්නේ කවර කාබොහයිඩ්රේට කාණ්ඩයට ද?
 - (4) පොලිසැකරයිඩ (Polysaccharide)
 - (1) මොනොසැකරයිඩ (Monosaccharide) (2) ඩයිසැකරයිඩ (Disaccharide)
- (3) පිෂ්ටය

- (5) ඔලිගොසැකරයිඩ (Oligosaccharide)
- කෘතිම බහුඅවයවික පිළිබඳ පහත පුකාශ සලකන්න.
 - (A) එක් බහුඅවයවිකයක් තැනී ඇත්තේ එක් වර්ගයක ඒකඅවයවික මගින් පමණි.
 - (B) සියලු ම බහුඅවයවික නොබෙදුනු දාම වේ.
 - (C) බහුඅ<mark>වයවික</mark>වල අණුක භාර සරල අණුවල අණුක භාරවලට වඩා ඉහළ ය.

ඉහත පුකාශ අතුරෙන් නිවැරදි වනුයේ,

- (1) (A) 59 85.
- (2) (B) පමණි.
- (3) (C) පමණි.
- (4) (A) සහ (B) පමණි. (5) (A) සහ (C) පමණි

- තීන්ත තුළ බහුඅවයවික දවා කි්යා කරනුයේ,
 - (1) වර්ණක (pigments) ලෙස ය.
 - (3) තෙත් (wetting) කාරක ලෙස ය.
 - (5) දුාවක (solvents) ලෙස ය.

- (2) පිරවුම් (filling) කාරක ලෙස ය.
- (4) බැඳුම් (binding) කාරක ලෙස ය.

7. සබන් අණුවක වසුහයක් විය හැක්කේ,

(1)

- 8. ඉජෙව වීසල් සම්බන්ධයෙන් සතා පුකාශය කුමක් ද?
 - (1) එය දහනය කිරීමේ දී පරිසරයට ${
 m CO}_2$ නිදහස් වීමක් සිදු නොවේ.
 - (2) එය නැවුම් ශාක තෙල් මගින් පමණක් නිපදවිය හැකි ය.
 - (3) එය නිපදවීම සඳහා මෙනනෝල් අමුදුවායක් වේ.
 - (4) එය නිපදවීම සඳහා වඩාත් සුදුසු උත්ප්‍රේරකය NaOH වේ.
 - (5) එය පූනර්ජනනීය නොවන බලශක්ති පුභවයකි.

[දෙවැනි පිටුව බලන්න.

- පොහොර නිෂ්පාදනය සඳහා ඇපටයිට් (apatite) භාවිත කරයි. මෙහි දී ඇපටයිට් සල්ෆියුරික් අම්ලය සමග ප්‍රතිකියා කරවීමට හේතුව වනුයේ,
 - (1) අවසාන ඵලයේ ජලභීතික ස්වභාවය අඩු කිරීම සඳහා ය.
 - (2) කුඩා කොටස්වලට කඩා ගැනීම සඳහා ය.
 - (3) පිරවුම් කාරකයක් එකතු කිරීම සඳහා ය.
 - (4) ඇපටයිට්වල වීෂ ස්වභාවය අඩු කිරීම සඳහා ය.
 - (5) ජලදාවානතාව වර්ධනය කර ගැනීම සඳහා ය.
- 10. රසායනික අමුදුවා‍යක් සම්බන්ධයෙන් විදාාත්මක, සෞඛාමය හා තාක්ෂණික තොරතුරු දැන ගැනීමට වඩාත් ම සුදුසු කුමය කුමක් ද?
 - (1) රසායනික අමුදුවාසය සැපයුම්කරුවකුට (chemical supplier) කථා කිරීම මගින්
 - (2) දුවාසය ආරක්ෂණ දත්ත පතිකාව (Material Safety Data Sheet) භාවිතය මගින්
 - (3) අන්තර්ජාලයේ (internet) සෙවීම මගින්
 - (4) නිෂ්පාදකයාට කථා කිරීම මගින්
 - (5) අදාළ පේටන්ට් බලපතු (patents) පරිශීලනය මගින්
- 11. පහත වායු සලකන්න.

 - (1) (A), (B) සහ (C) පමණි

(2) (A), (C) සහ (D) පමණි

(3) (A), (D) සහ (E) පමණි

(4) (B), (C) සහ (D) පමණි

- (5) (C),(D) සහ (E) පමණි
- 12. ජෛව රසායනික ඔක්සිජන් ඉල්ලුම (BOD) යනු,
 - (1) දෙන ලද ක්ෂුදුජීවීන් සහිත ජල නියැදියක දිය වී ඇති ඔක්සිජන් පුමාණයයි.
 - (2) ජල නියැදියක සිටින ජලජ ජීවීන් විසින් දිවා කාලය තුළ නිපදවන <mark>ඔක්සි</mark>ජන් පුමාණයයි.
 - (3) ජල නියැදියක සිටින ජලජ ජීවීන් විසින් රාති කාලය තුළ පරිභෝජනය කරන ඔක්සිජන් පුමාණයයි.
 - (4) ජල නියැදියක සිටින ජලජ ජීවීන් විසින් පැය 24 ක් තුළ පරිභෝජනය කරන ඔක්සිජන් පුමාණයයි.
 - (5) ක්ෂුදුජිවීන් විසින් ජල නියැදියක ඇති කාබනික සංයෝග ඔක්සිකරණය සඳහා පරිභෝජනය කරන ඔක්සිජන් පුමාණයයි.
- 13. පාලක සාම්පලයක් ඇසුරෙන් නොදන්නා සාම්පලයක් හැදැරීම සඳහා භාවිත කළ සැකසූ තුනී ස්තර වර්ණලේඛ ශිල්ප තහඩුවක රූප සටහනක් පෙන්වා ඇත. පහත දී ඇති වගන්හි අතුරෙන් සතා වන්නේ කුමක් ද?
 - (1) නොදන්නා සාම්පලයේ සංයෝග දෙකකු<mark>ට වඩා</mark> අඩුවෙන් ඇත.
 - (2) නොදන්නා සාම්පලයේ සංයෝග දෙකක් ඇත.
 - (3) නොදන්නා සාම්පලයේ පාලක සාම්පලයේ ඇති සංයෝග අඩංගු විය හැකි ය.
 - (4) නොදන්නා සාම්පලයේ ඇත්තේ පාලක සාම්පලයේ ඇති සංයෝග පමණි.
 - (5) පාලක සාම්පලය සාදා ඇත්තේ සංශුද්ධ සංයෝගයක් යොදා ගැනීමෙනි.

14. KClO $_3$ හි වියෝ<mark>ජනය</mark> පහත පුතිකිුයාවෙන් දැක්විය හැකි ය.

 $2 \text{ KClO}_3 \text{ (s)} \longrightarrow 2 \text{ KCl (s)} + 3 \text{ O}_2 \text{ (g)}$

රත්කරන ලද KClO₃ සාම්පලයක් මහින් පළමු විනාඩි 5 තුළ ඔක්සිජන් මවුල 5 ක් නිපදවන ලදී. ඊළඟ විනාඩි 5 තුළ තවත් ඔක්සිජ<mark>න් මවු</mark>ල 3 ක් නිපදවන ලදී. එම විනාඩි 10 තුළ KClO₃ හි සාමානා වියෝජන ශීඝුතාව වනුයේ,

(1) 0.20 mol min⁻¹

- (2) $0.33 \text{ mol min}^{-1}$
- (3) 0.50 mol min⁻¹

(4) $0.53 \text{ mol min}^{-1}$

- (5) 0.80 mol min⁻¹
- 15. අම්ලයක් හා භෂ්මයක් අතර සිදුවන පුතිකිුයාවක් පහත පරිදි දැක්විය හැකි ය.

 $OH^{-}(aq) + H^{+}(aq) \longrightarrow H_{2}O(l)$ 55.7 kJ mol⁻¹

HCl අම්ලයකින් 100.00 ml පුමාණයක් වැඩිපුර NaOH පුමාණයක් සමග පුතිකියා කරවීමේ දී නිපදවුණු තාප පුමාණය 5.57 kJ විය. HCl දුාවණයේ සාන්දුණය වනුයේ,

(1) 0.2 mol dm⁻³

(2) 0.8 mol dm^{-3}

(3) 1.0 mol dm^{-3}

(4) 1.5 mol dm^{-3}

- (5) 2.5 mol dm⁻³
- 16. ඖෂධ නිපදවීම සඳහා ද්විතීයික පරිවෘත්තජ (secondary metabolites) නිස්සාරණය පිළිබඳ පහත වගන්ති සලකන්න.
 - (A) සියලු ම සංයෝග විවිධ මූලයන්ගෙන් පහසුවෙන් නිස්සාරණය කළ හැකි ය.
 - (B) කියාකාරි සංයෝග සහිත නිස්සාරකය තුළ වෙනත් සංයෝග ද තිබීය හැකි ය.
 - (C) ස්වාභාවික පුභවයන් ඉතා සුලභ බැවින් ඒවා රසායනිකව සංශ්ලේෂණය කිරීමේ අවශාතාවක් නොමැත. ඉහත පුකාශ අතුරෙන් නිවැරදි වනුයේ,
 - (1) (A) පමණි.

(2) (B) පමණි.

(3) (C) පමණි.

(4) (A) සහ (C) පමණි.

(5) (B) සහ (C) පමණි.

[තුන්වැනි පිටුව බලන්න.

- 17. දවයක් හා වායුවක් අමුදවා ලෙස භාවිත කරන කාර්මික කි්යාවලියක් සලකන්න. මෙම කි්යාවලිය සඳහා යොදා ගන්නා රසායනික ප්‍රතිකියා කුටීරය රූප සටහනේ පෙන්වා ඇත. මෙහි දක්වා ඇති බටවලින් වායුමය අමුදවා රසායනික ප්‍රතිකියා කුටීරය වෙත සැපයීම සඳහා වඩාත් සුදුසු වනුයේ,
 - (1) A ප®-ඎ

(2) B පමණි.

(3) C පමණි.(5) E පමණි.

(4) D පමණි.

- 18. ශිෂායෙක් තම නිවසේ (A) සිට පාසලට (B) යන ගමන් මාර්ගය රූප සටහනේ දක්වා ඇත. නිවසේ සිට පාසලට කඩ ඉර ඔස්සේ ඇති දුර වනුයේ,
 - (1) $\sqrt{7}$ km
 - (2) 5 km
 - (3) 7 km
 - (4) 11 km
 - (5) 25 km

19. රූපයේ දැක්වෙන ආකාරයට තිරස් පොළොවක A,B,C හා D ලෙස සලකුණු කර ඇති කණු හතරක් සිරස්ව සවිකර ඇත.

 $m{D}$ කණුවේ උස වනුයේ,

- (1) 15 m
- (2) 26 m
- (3) 33 m
- (4) 39 m
- (5) 40 m

- 20. පතුලේ අරය 7 cm සහ පරිමාව $154\,\mathrm{cm}^3$ වූ සෘජු වෘක්තාකාර කේතුවක උස වනුයේ, ($\pi=rac{22}{7}$ ලෙස සලකන්න.)
 - (1) 1 cm
- (2) 2 cm
- (3) 3 cm
- (4) 12 cm
- (5) 21 cm
- 21. රූපයේ පෙන්වා ඇති <mark>ශීර්ෂ A, B, C හා D ලෙස නම් කර ඇති සමචතුරසුාකාර කොළයකින් A හා C ශීර්ෂ ස්පර්ශ වන ලෙස බටයක් ආකාරයේ වස්තුවක් සාදා ඇත. A හා C යා කරන රේඛාව මගින් නි<mark>ර්මිත</mark> වෘත්තයේ විෂ්කම්භය වනුයේ,</mark>

 $(2) \quad \frac{\pi}{\sqrt{32}}$

 $(3) \quad \frac{2\sqrt{2}}{\pi}$

(4) $\frac{32}{\pi}$

- $(5) \sqrt{32}$
- 22. වෘත්තාකාර කිුිඩා පිටියක රූපයේ දැක්වෙන ආකාරයට ජෙුක්ෂකාගාරයක් ඉදි කිරීමට සැලසුම් කර ඇත. ජෙුක්ෂකාගාරයේ බිම් වර්ගඵලය වනුයේ,

 $(\pi = \frac{22}{7}$ ලෙස සලකන්න.)

- (1) $\frac{7}{231}$ m²
- (2) $1386 \,\mathrm{m}^2$
- (3) 2541 m²
- (4) 14520 m^2
- (5) 15246 m²

 $(\sin 30^{\circ} = \frac{1}{2}$ සහ $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$ ලෙස සලකන්න.)

(2) $\sqrt{3}:1$

(3) 1:3

316

(4) 2:1

(5) 3:1

24. ස්වභාව නිෂ්පාදනයක් මත පදනම් වූ කර්මාන්තයක් ආරම්භ කිරීම සඳහා තනන ලද සිලින්ඩරාකාර පුතිකියා කුටීරයක අභාන්තර අරය r_1 (මීටර) චේ. අරය r_2 (මීටර) වන ඝන සිලින්ඩරාකාර කුරක් රූපයේ පරිදි සිරස්ව කුටීරයට සවිකොට ඇත. කුටීරය තුළට මිශුණය π m^3 ක් වත්කළ විට කුටීරය තුළ ඇති මිශුණයේ උස (මීටර) කොපමණ ද?

 $(1) \quad \frac{\pi}{r_2^2}$

- (2) $\frac{1}{(r_1^2 r_2^2)}$
- $(3) \quad \frac{\pi}{r_1^2}$

- $(4) \quad \frac{1}{\left(r_1^2 + r_2^2\right)}$
- $(5) \quad \frac{\pi}{\left(r_1^2 + r_2^2\right)}$

25.

අගය	1	4	6	8
සංවනාතය	1	a	3	2

ඉහත දී ඇති අසමූහිත සංඛාාත වාාප්තියේ මධානාය 5 නම්, a හි අගය වනුයේ,

- (1) 1
- (2) 2
- (3) 3
- (4) 4
- (5) 5

 $oxed{26.}$ පහත වගුව මගින් 4,2,9,7,8,14,12,11,19,17,23 යන දත්ත කුලක<mark>යේ සම</mark>ූහිත සංඛාාත වාාාප්තියක් දක්වා ඇත.

පන්ති ය	පන්ති සීමා	සංවනාතය	පන්ති ලකුණ
1	1 - 5	2	3
2	6 - 10	3	8
3	11 - 15	3	13
4	16 - 20	2	18
5	21 - 25	1 9	23

සමූහිත සංඛ්යාත වයාප්තියේ මධ්යනයය, දත්ත කුලකයේ සතය මධ්යනයට වෙනස් වන බව සොයා ගන්නා ලදී. මෙම වෙනස සිදු වනුයේ කුමන පන්තියට අයත් දත්ත නිසා ද?

- (1) පන්තිය 1
- (2) පන්තිය 2
- (3) පන්තිය 3
- (4) පන්තිය 4
- **(5)** පන්තිය 5
- 27. ළමයෙක් අරය $0.5\,\mathrm{m}$ වන ටයරයක් $6\,\mathrm{m\,s^{-1}}$ වේගයෙන් තත්පර $11\,\mathrm{m}$ කාලයක් රෝල් කරගෙන ගියහොත් එය කරකැවී ඇති වට පුමාණය වනුයේ, $\left(\pi=rac{22}{7}\,$ ලෙස සලකන්න.ight)
 - (1) 3.5
- (2) 10.5
- (3) 15
- (4) 21
- (5) 42
- 28. පහත සඳහන් දෑ අතුරෙන් පරිගණක පද්ධතියක පුකාශ ගබඩා උපකුමයක් (optical storage device) වන්නේ කවරක් ද?
 - (1) දෘඩ කැටිය (Hard Disk)
- (2) ROM

(3) RAM

(4) CD ROM

- (5) USB
- පරිගණක පද්ධතියක පහත සඳහන් උපකුම සලකන්න.
 - (A) යතුරු පුවරුව
- (B) CRT මෞතිටරය
- (C) DVD ධාවකය
- (D) Pen drive

ඉහත උපකුම අතුරෙන් ආදාන සහ පුතිදාන ද්විත්වය ම සහිත උපකුම මොනවා ද?

(1) (A) සහ (B) පමණි

(2) (A) සහ (C) පමණි

(3) (B) සහ (C) පමණි

(4) (B) සහ (D) පමණි

- (5) (C) සහ (D) පමණි
- 30. එකිනෙකට සම්බන්ධ වෙබ් පිටු එකතුවක් ලෙස හඳුන්වනු ලැබේ.
 - (1) ජාලයක් (network) (2) URL
- (3) Google
- (4) වෙබ් අඩවිය (website)
- (5) අන්තර්ජාලය
- 31. වෙබ් පිටු සෑදීමට සාමානායෙන් භාවිත කරන කුම ලේඛන භාෂාව වේ.
 - (1) ඉංගීසි
- (2) **HTTP**
- (3) HTML
- (4) FTP
- (5) URL
- 32. පහත දැක්වෙන දෑ අතුරෙන් පරිගණක මෙහෙයුම් පද්ධතියක (operating system) පුධාන කාර්යයක් වන්නේ කුමක් ද?
 - (1) වෛරස් මගින් පරිගණකය ආරක්ෂා කිරීම
 - (2) වෙබ් අතිරික්සුමක් (web browser) සැපයීම
 - (3) එහි RAM කළමතාකරණය
 - (4) අවම වශයෙන් එක් වදන් සැකසුම් (word processing) මෘදුකාංගයක් සැපයීම
 - (5) අවම වශයෙන් එක් අන්තර්ජාල සම්බන්ධතාවයක් සැපයීම

[පස්වැනි පිටුව බ<u>ු</u>නේන.

- 33. වදන් සැකසුමේ දී Portrait හෝ Landscape මහින් පිටුවක දක්වයි. (1) දිශානතිය (orientaion)
 - (2) පුමාණය (size)

(3) පිරිසැලසුම (layout)

- (4) සීමා තී්ර (margins)
- (5) අකුරු වර්ගය (font type)
- 34. වදන් සැකසුම් යෙදීම් තුළ අඩංගු පහත සඳහන් පහසුකම් අතුරින් දෙන ලද වචනයකට සමාන තේරුම් ඇති වචන සෙවීමට භාවිත කළ හැකි වනුයේ කුමක් ද?
 - (1) ශබ්දකෝෂය (Dictionary)
- (2) තිසෝරසය (Thesaurus)
- (3) සෙවීම (Find)

- (4) සමුද්දේශ (References)
- (5) අාකෘති පින්තාරුව (Format Painter)
- 35. වීදාූත් තැපෑල (email) යෙදුම් සම්බන්ධයෙන් පහත සඳහන් පුකාශ සලකන්න.
 - (A) යවන ලද සියලු ම විදාුුත් කැපෑල ලබන්නාට සැමවිට ම ලැබුණු බවට සහතික කළ හැකි ය.
 - (B) විදුවුත් තැපැලක් ලැබුණු පසු එය අනෙක් විදුවුත් තැපෑල භාවිත කරන්නන්ට යොමු කළ හැකි ය.
 - (C) ව්දාුත් තැපැලක් ලිවීමේ දී විෂය සඳහන් කළ යුතු කොටුව පිරවීම අනිවාර්ය වේ. ඉහත පුකාශ අතුරෙන් නිවැරදි වනුයේ,
 - (1) (A) පමණි.
- (2) (B) පමණි.

(3) (C) පමණි.

- (4) (A) සහ (B) පමණි.
- (5) (B) සහ (C) පමණි.
- පුශ්න 36 සහ 37 පහත දැක්වෙන පැතුරුම්පත් ඛණ්ඩය මත පදනම් වී ඇත. එය
 - (i) පරිපථයක විභව අන්තරය සහ පුතිරෝධය සමග ධාරා විචලනය
 - (ii) තත්පර 5 තුළ පරිපථයේ සිදු වූ ශක්ති ජනනය ගණනය කිරීම සඳහා නිර්මාණය කර ඇත.

	A	В	C	e anna la company de la co
1	විහව අන්තරය (වෝල්ට්)	පුතිරෝධය (ඕම්)	ධාරාව (ඇම්පිගර්)	තත්පර 5 තු <mark>ළ ඉක්ති</mark> ජනනය (ජුල්)
2	3	3.0		
3	3	2.5		
4	3	2,0		
5	3	1.5		
6	3	1.0	• (
7	3	0.5		
8	4	3.0		
9	4	2.5		
10	4	2.0		
11	4	1.5		
12	4	1.0	HANNE TO A STATE OF THE STATE O	
13	4	0.5		

- **36.** C2 සහ D2 කෝෂ තුළට අදාළ පුතිඵල ල<mark>බා</mark> ගැනීම සඳහා ඇතුළත් කළ යුතු සමීකරණ පිළිවෙළින් කුමක් විය යුතු ද?
 - (1) A2/B2 හා (A2*A2*5)/B2
- (2) A2/B2 හා (A2*A2*5)/A2
- (3) B2/A2 හා (A2*A2*5)/A2
- (4) A2/B2 හා (A2*A2)/C2
- (5) B2/A2 to (A2*5)/B2
- **37.** දෙන ලද වෝල්ටීයතාවක් සඳ<mark>හා පුති</mark>රෝධය සමග ධාරාවේ විචලනය දැක්වීමට භාවිත කළ හැකි වඩාත් උචිත පුස්තාර වර්ගය ඓ.
 - (1) වට පුස්තාරය (Pie chart)
- (2) ජාල රේඛය (Histogram)
- (3) විසිරි සටහන (Scatter diagram)
- (4) රේඛා සටහන (XY diagram)
- (5) ස්තම්භ පුස්තාරය (Bar chart)
- **38.** ඝනකයක <mark>පැත්ත</mark>ක දිග මැනීමේ දී 3% ක දෝෂයක් ඇති වේ නම්, එහි පරිමාව ගණනය කිරීමේ දී සිදුවන දෝෂය වනුයේ,
 - (1) 3%
- (2) 4%
- (3) 6%
- (4) 9%
- 39. පුතිරෝධය $2~\Omega$ වන ඒකාකාර තඹ කම්බියක දිග $20~ ext{m}$ වේ. කම්බිය තනා ඇති දුවායෙේ පුතිරෝධකතාව $1.7 imes 10^{-8}~\Omega~ ext{m}$ නම්, එහි හරස්කඩ වර්ගඵලය වනුයේ,
 - (1) $1.7 \times 10^{-4} \text{ m}^2$ (2) $2.0 \times 10^{-4} \text{ m}^2$

- (3) $3.4 \times 10^{-6} \,\mathrm{m}^2$ (4) $17 \times 10^{-8} \,\mathrm{m}^2$
- (5) $34 \times 10^{-8} \,\mathrm{m}^2$
- f 40. දුනු නියත පිළිවෙළින් $710\,
 m N~m^{-1}$ සහ $2840\,
 m N~m^{-1}$ වන X සහ Yදුනු දෙකක් වෙන වෙන ම එක ම විශාලත්වයක් ඇති බල දෙකක් මගින් ඇදී පවතී. Xසහ Y හි විභව ශක්ති අනුපාතය වනුයේ,
- (2) 1:3
- (3) 1:4
- (4) 3:1
- (5) 4:1
- 41. සඵල වර්ගඵලය A වන විදුලි පංකාවක් මගින් ඝනත්වය ho වන වාතය u වේගයකින් වලනය වේ. මෙම චලනය සඳහා අවශා වන ජවය වනුයේ,
 - (1) $\frac{1}{2}\rho Av^3$
- (2) $\frac{1}{2}\rho Av$
- (3) $\rho A \nu$
- (4) $\rho A v^2$
- $m{42.}$ මිනිස් හෘදය $0.1~\mathrm{mHg}$ ක පීඩනයකට එරෙහිව එක් ස්පන්දනයක දී රුධිරය මිලිලීටර $74~\mathrm{m}$ මුදා හරිනු ලැබේ. මිනිත්තුවක දී ස්පන්දන සංඛාාතය 72 ක් ද, රසදිය ඝනත්වය $13600~\mathrm{kg}~\mathrm{m}^{-3}$ සහ ගුරුත්වජ ත්වරණය $10~\mathrm{N}~\mathrm{kg}^{-1}$ ද නම් හෘදයේ ක්ෂමතාව වනුයේ,
 - (1) 0.01 W
- (2) 0.02 W
- (3) 1.00 W
- (4) 1.20 W
- (5) 72.5 W

- f 43. විදුලි පහනක $230\,
 m V$, $60\,
 m W$ ලෙස දක්වා ඇති අතර එය $230\,
 m V$ සහ $50\,
 m Hz$ විදුලි සැපයුමකට සම්බන්ධ කර ඇත. පහත දී ඇති පුකාශ සලකන්න.
 - (A) පහන වෙත යෙදෙන උපරිම විභව අන්තරය 460 V වේ.
 - (B) වීදුලි පහන දක්වා ඇති ක්ෂමතාවයෙන් දැල්වෙන විට එහි පුතිරෝධය $960~\Omega$ වේ.
 - (C) සෑම තත්පරයක් තුළ දී ම විදුලි පහන තුළින් ගලන ධාරාව 100 වාරයක් ශුනා වේ. ඉහත පුකාශ වලින් නිවැරදි වනුයේ,
 - (1) (A) පමණි.

(2) (B) පමණි.

(3) (C) පමණි.

- (4) (A) සහ (B) පමණි.
- (5) (B) සහ (C) පමණි.
- 44. මිනිසෙක් 180 N තණකොළ කපන යන්තුයක් රූපයේ පෙන්වා ඇති පරිදි නියත පුවේගයකින් තල්ලු කරනු ලැබේ. තණකොළ කපන යන්තුය මත ඝර්ෂණ බලය 90 N කි. යන්තුයේ හැඬලය පොළොව සමග 45° ක කෝණයක් සාදයි නම්, මිනිසා විසින් හැඬලය මත ඇති කළ යුතු බලය සහ යන්තුය මත පොළොව මගින් ඇති කරන ලම්බක බලය පිළිමෙච්චින්, $\left(\cos 45^{\circ} = \sin 45^{\circ} = \frac{1}{\sqrt{2}}\right)$

- (2) $90\sqrt{2}$ N සහ 180 N වේ.
- (3) 90 N සහ 180√2 N වේ.
- (4) 90 N සහ 270 N වේ.
- (5) 90√2 N සහ 270 N වේ.
- 45. රූපයේ දක්වා ඇති පරිදි බයිසිකල් පැඩලයකට (bicycle pedal) 45 N ක ඒකාකාර බලයක් යොදනු ලැබේ. පැඩල් බාහුවේ (pedal arm) දිග 26 cm නම්, ඊෂාවට (shaft)යොදනු ලබින වාාාවර්තය වනුයේ,
 - (1) 0.58 N m

(2) 1.73 N m

(3) 11.7 N m

(4) 829 N m

(5) 1170 N m

- $oldsymbol{46.}$ ඝනත්වය $oldsymbol{d}$ වන දුස්සුාවී නොවන තරලයක් රූපයේ පෙන්<mark>වා</mark> ඇති විචලා හරස්කඩක් සහිත අක්ෂය තිරස්ව තබා ඇති නළය<mark>ක්</mark> තුළින් අනාකූල පුවාහයක් ඇති කරයි. පුවාහ පුවේගය u වන ලක්ෂායක දී තරලයේ පීඩනය P නම්, පුවාහ පුවේගය 5
 u වන ලක්ෂායක දී පීඩනය කුමක් ද?
 - $(1) P 2dv^2$

- $(2) P + 2dv^2$

 $(4) P - 4dv^2$

- (5) $P 12dv^2$
- 47. රට තුළ විදුලිය සම්පේෂණය කි<mark>රීම</mark>ට ඉතා අධික චෝල්ටීයතාවක් යොදා ගනී. මෙයට හේතුව වනුයේ,
 - (1) සම්පේෂණ රහැන්වලට මිනිසුන්ගෙන් ඇති විය හැකි හානිය වැළැක්වීමට ය.
 - (2) ඉලෙක්ටෝන ඈත දුරකට තල්ලු කිරීමට අධි චෝල්ටීයතාවක් අවශා නිසා ය.
 - (3) එමගින් විශාල ධාරාවක් ගැලීමට සලස්වන නිසා ය.
 - (4) විදුලි බලය වඩා කාර්යක්ෂම ලෙස සම්පේෂණය කිරීමට ය.
 - (5) විදාපත් ජනක මගින් අධික චෝල්ටීයතාවක් නිපදවන නිසා ය.
- $oldsymbol{48.}$ රූපයේ දැක්වෙන පරිදි අධි චෝල්ටීයතා විදුලි කේබලයක්, පුතිරෝධය Rූවන වානේ සන්නායකයක් සහ ඒ ව<mark>ටා එක</mark> එකෙහි පුතිරෝධය $R_{_{\mathcal{I}}}$ වන සන්නායක කම්බි හයකින් සමන්විත වේ. සියලු ම කම්බි වෙන වෙනම පරිවරණය කර ඇති නම්, කේබලයේ පුතිරෝධය කුමක් ද?

- **49.** කාමර උෂ්ණත්වයේ දී ජලයේ විශිෂ්ඨ තාප ධාරිතාව $4.2 imes10^3\,\mathrm{J\,kg^{-1}\,K^{-1}}$ නම්, පහත සඳහන් පුකාශ අතුරෙන් සතා වනුයේ
 - (1) ජලය 1 g ට 4.2 J ක තාප ශක්ති පුමාණයක් සැපයූ විට එහි උෂ්ණත්වය 1 $^{\circ}$ C කින් ඉහළ යයි.
 - (2) ජලය $1~{
 m kg}$ ට $4.2~{
 m J}$ ක තාප ශක්ති පුමාණයක් සැපයූ විට එහි උෂ්ණත්වය $1~{
 m ^{\circ}C}$ කින් ඉහළ යයි.
 - (3) ජලය $1\,\mathrm{kg}$ ට $1.0\,\mathrm{J}$ ක තාප ශක්ති පුමාණයක් සැපයූ විට එහි උෂ්ණත්වය $1\,^\circ\mathrm{C}$ කින් ඉහළ යයි.
 - (4) ජලය $1~{
 m kg}$ ට $4.2 \times 10^3~{
 m J}$ ක තාප ශක්ති පුමාණයක් සැපයූ වීට එහි උෂ්ණත්වය $100~{
 m ^{\circ}C}$ කින් ඉහළ යයි.
 - (5) ජලය $1~{
 m kg}$ ට $4.2 \times 10^3~{
 m J}$ ක තාප ශක්ති පුමාණයක් සැපයූ විට එහි උෂ්ණත්වය $273~{
 m C}$ කින් ඉහළ යයි.
- 50. ෆ්ලෙමිංගේ දකුණත් නීතියට අනුව සුරතේ දබරැඟිල්ල, මාපටැඟිල්ල සහ මැදඟිල්ල එකිනෙකට ඍජුකෝණි වන සේ සකස් කළ විට පිළිවෙළින් ඒවායෙන් දක්වනු ලබනුයේ,
 - (1) චලිතය, චුම්බක ක්ෂේතුය සහ ජුේරිත ධාරාව වේ.
- (2) චූම්බක ක්ෂේතුය, චලිතය සහ පේරිත ධාරාව වේ.

- (5) චූම්බක ක්ෂේතුය, ජූරිත ධාරාව සහ චලිතය වේ.

සියලු ම හිමිකම් ඇවරිනි / முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

ලි ලංකා විතාන දෙපාර්තමේන්තුව ලි ලංකා විතාන දෙපා**දාලේන්තුනු ලිදුලෙන** විතාන අදුපාර්තමේන්තුව ලි ලංකා විතාන දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் ප්රදේශය දී නියාත්තිය ප්රදේශය දී නියාත්තිය ප්රදේශය දී නියාත්තිය ප්රදේශය Department of Examinations, Sri Lanka Departm**ලිමටිස්මෙස්**ඩ්රාස්ඩ්රාස්වීම් **කිස්නු**ිදු**නි ගෙනාන්ය සාග**්ගත්තිය ප්රදේශය දී ලංකා විතාන දෙපාර්තමේන්තුව ලි ලංකා විතාන දෙපාර්තමේන්තුව සියාත්තිය ප්රදේශය දී කියාත්තිය ප්ර

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2017

II

II

තාක්ෂණවේදය සඳහා ව්දපාව

தொழினுட்பவியலுக்கான விஞ்ஞானம் Science for Technology

67		
	العطا	الططا

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

විතාග අංකය:	

උපදෙස් :

- 🕸 මෙම පුශ්න පතුය පිටු 12 කින් යුක්ත වේ.
- st මෙම පුශ්න පතුය ${f A, B, C}$ සහ ${f D}$ යන **කොටස් හතරකින්** යුක්ත වේ. **කොටස් සියල්ලට ම** නිය<mark>මිත</mark> කාලය **පැය තුනකි**.
- 🕸 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.

A කොටස - වපුහගත රචනා (පිටු 07 කි.)

- * සියලු ම පුශ්නවලට පිළිතුරු මෙම පුශ්න පතුගේ ම සපයන්න.
- * ඔබේ පිළිතුරු, පුශ්න පතුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.

B, C සහ D කොටස් - රචනා (පිටු 05 කි.)

- * අවම වශයෙන් B, C සහ D යන කොටස්වලින් පුශ්න එක බැගින් තෝරා ගෙන, පුශ්න හතරකට පමණක් පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න. සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු **සියලු කොටස්** එක් පිළිතුරු පතුයක් වන සේ A කොටස් B, C සහ D කොටස්වලට උඩින් තිබෙන පරිදි අමුණා, විභාග ශාලාධිපතිට භාර දෙන්න.
- 🔆 පුශ්න පතුයේ B, C සහ D කොටස් පමණක් විභාග <mark>ශාලා</mark>වෙන් පිටතට ගෙන යා හැකි ය.

පරීක්ෂකගේ පුයෝජනය සඳහා පමණි.

කොටස	උශ්න අංකය	ලැබූ ලකුණු
	1	
,	2	0
A	3	
	4	
В	5	
D	6	
С	7	
	8	
D	9	
	10	
එකතුව		
පුතිශ තය		

අවසාන	രത്ത
	SW/W

ඉලක්කමෙන්	
අකුරෙන්	

සංකේත අංක

උත්තර පතු පරීක්ෂක 1	
උත්තර පතු පරීක්ෂක 2	
ලකුණු පරීක්ෂා කළේ	
අධීක්ෂණය කළේ	

Department of Examinations, Sri Lanka-

A කොටස - වනුහගත රචනා

සියලු ම පුශ්නවලට පිළිතුරු **මෙම පතුයේ ම** සපයන්න.

මේ කුරුවෙ මයිවක් හාලියන්න

පරික්ෂකවරුන් සඳහා පමණි.

1. පහත ${f A}$ හා ${f B}$ රූප සටහන් මගින් ජීවී ලෙසල ආකාර දෙකක් පෙන්වා ඇත.

(a)	(i)	A හා B හඳුනා ගන්න.
		A: B:
	(ii)	ඉහත සඳහන් කරන ලද ${f A}$ හා ${f B}$ අතර ඇති සමානකම් දෙකක් හා වෙනස්කම් දෙකක් සඳහන් කරන්න. සමානකම් :
		(1)
		(2)
		වෙනස්කම් :
		(1)
		(2)
	(iii)	B රූප සටහනෙහි ලකුණු කොට ඇති කොටස් නම් කරන්න.
	-	p : q q
		r:s:
		t:
	(iv)	ඉහත හඳුනා ගන්නා ලද මෛලවලින් වෛරස වෙනස් වන්නේ කෙසේ දැයි සඳහන් කරන්න.
	(v)	වෛරසවල පුධාන හැඩයන් දෙකක් නම් කරන්න.
		(1)
(b)		ත දී ඇති පුශ්න කාර්මික බීර (beer) නිෂ්පාදනය මත පදනම් ව ඇත.
	(i)	බීර නිෂ්පාදනය සඳහා බහුලව යොදා ගන්නා ධානා වර්ගය නම් කරන්න.
	(ii)	මෝල්ටින් (malting) යනු බීර නිෂ්පාදනයේ වැදගත් පියවරකි. මෙම කිුයාවලියේ දී 'මෝල්ට්' (malt) සකසා ගන්නේ කෙසේ ද?
	(iii)	'මෝල්ට්' නිෂ්පාදනයේ දී ධානාෳ තුළ සිදු වන පුධාන රසායනික පරිවර්තනය කුමක් ද?
	(iv)	ඉහත (b) (iii) කොටසේ සඳහන් රසායනික පරිවර්තනයෙහි පුගතිය ඔබ විදාහගාරයක දී පරීක්ෂා කරන්නේ කෙසේ ද?

[තුන්වැනි පිටුව බලන්න.

2.

L/2017/6	/-S-II - 3 -	වහාග අංකය :	
(v)	ඉහත (b) (iii) කොටසේ සඳහන් රසායනික පරිවර්තනය උත්පේුරණ කරන්න.	ාය කළ හැකි එන්සයිමයක් නම්	මෙම තීරුවේ කිසිවක් හොලියන්න
			පරික්ෂකවරු: සඳහා පමණි.
(m.15)		•••••	
(VI)	එන්සයිමයක කිුියාකාරිත්වය කෙරෙහි බලපාන සාධක දෙකක් ලියන්	ත.	
	(1) (2)	***************************************	
(vii)	බීර නිෂ්පාදනයේ දී 'භොප්' (hop) වල කාර්යය කුමක් ද?		
,		••••••••••	
(viii)	බීර පැසවීම සඳහා භාවිත කරන පුධාන දිලීරය නම් කරන්න.		
(c) පුෝ	්ටීන යනු ජීවීන් තුළ ඇති වැදගත් ජීව අණු වර්ගයකි.		
(i)	ලෙස්ටීන හඳුනා ගැනීම සඳහා යොදාගත හැකි පුතිකාරකයක් නම් ක	ාරන්න.	
			-
(ii)	පෝටීනවල කිුමාන (3D) ව ූහවල පුධාන හැඩයන් දෙකක් නම් කරන	ත්ත.	
	(1)		
(iii)	එන්සයිම ජීව පුතිකිුිිිිිිිිි උත්පේරණය කරයි. එන්සයිමයක් සහිතව ස	හ රහිතව සිදු වන එන්සයිමීය !	
, ,	පුතිකුියාවකට අදාළ ශක්ති සටහන් ඇඳ දක්වන්න.		
	^		පු.අ. 1
		6	
			100
		6 1	100
	- L		
	, D	` - බල්බය	
	S	- 60C60W	
	යට සංවේදී සංයෝග ගබඩා කිරීමට ජෛව-ප්ලාස් <mark>ටික්</mark>	මිනුම් සරාව	
	විශේෂයක් නිපදවීම සඳහා මෛව හායනයට ලක්වන	୍	
	හැ නව සංඝටකයක් ජෛව-ප්ලාස්ට්ක් නිෂ්පාද <mark>නය</mark> කරන යක් මගින් නිෂ්පාදනය කර ඇත. මෙම නව <mark>සංඝටක</mark> යේ 🗡		
	පරීක්ෂා කිරීම සඳහා රූපයේ දැක්වෙන ඇටවුම භාවිත කරන		
	හ හයිඩුජන් පෙරොක්සයිඩ් දුාවණයකි <mark>න් පුරවන</mark> ලද බෝතල්		
-	ා්කයට සමාන ආලෝකය නිකුත් කරන විදුලි බල්බයකට		
	ශිය කර පැයක කාලයක් තුළ මුදා හ <mark>රින</mark> ලද ඔක්සිජන් පුමාණය 📉 🗡	20/20 ace	
	o western Cy.	බෝතලය .	
හයිඩුජන්	් පෙරොක්සයිඩ්හි වියෝජ <mark>නය</mark> සඳහා තුලිත නොකරන ලද රසායනික	පුතිකිුයාව පහත දැක්වේ.	

 $H_2O_2(l) \longrightarrow O_2(g) + H_2O(l)$

$$H_2O_2(l) \longrightarrow O_2(g) + H_2O(l)$$

- (a) (i) හයිඩුජන් පෙරොක්සයිඩහි වියෝජන ශීඝුතාව සඳහා බලපාන සාධක **දෙකක්** සඳහන් කරන්න.
 - (1) (2)
 - (ii) හයිඩුජන් <mark>පෙරොක්</mark>සයිඩ්හි වියෝජනය සඳහා තුලින රසායනික සමීකරණය ලියන්න.

(b) පරීක්ෂණය ආරම්භයට පෙර $50\,^{\circ}$ C හි පවතින ජලය $150\,\mathrm{ml}$ හා $20\,^{\circ}$ C හි පවතින $10\,\mathrm{mol}~\mathrm{dm}^{-3}~\mathrm{H}_2\mathrm{O}_2$ දුාවණය 100 ml මිශු කිරීම මගින් පරීක්ෂණ දුාවණය සාදා ගන්නා ලදී. (දුාවණ දෙකෙහි ම තාප ධාරිතාවන් $4.2~{
m J}~{}^{\circ}{
m C}^{-1}~{
m g}^{-1}$ ලෙස සහ දාවණවල ඝනත්ව $1~{
m g}~{
m mi}^{-1}$ යැයි උපකල්පනය කරන්න.)

.....

(i)	ජලය හා	හයිඩුජන්	පෙරොක්සයිඩ්	දුාවණය	මිශු	කිරීමෙන්	ලැබෙන	පරීක්ෂණ	දාවණයේ	උෂ්ණත්වය
	ගණනය	කරන්න.								

(ii) පදාර්ථ හා ශක්ති හුවමාරුව පදනම් කරගනිමින් පරීක්ෂණ දාවණය පුරවන ලද ලෛ්ව හායනයට ලක්වන බෝතලය කුමන වර්ගයේ පද්ධතියක් දැයි නම් කරන්න.

(c) විස්තර කරන ලද කුමය භාවිත කොට වෙනස් දුවෳ තුනක් මගින් නිපදවන ලද වෙනස් මූලාකෘති බෝතල් වර්ග තුනක් පරීක්ෂා කරන ලදී. මෙම පරීක්ෂණය පැයක කාලයක් තුළ සිදු කර ලබා ගත් පුතිඵල පහත වගුවේ දැක්වේ.

බෝතල් වර්ගය	පරීක්ෂණ කාලග අවසානයේ දී	වායු පරිමා කියවීම (ml)			
	පරීක්ෂණ දුාවණයේ උෂ්ණත්වය	ආරම්භක	අවසාන		
මූලාකෘති A	30 °C	4	12		
මූලාකෘති B	31 °C	3	9		
මූලාකෘති C	36 °C	5	13		

(i)	මූලාකෘති	බෝතල්	තුන	ම යාදා	ගනිමින්	සිදු	කරන	ලද	එක්	එක්	පරීක්ෂණයේ	Ę	මුදා	හරින	ලද
	ඔක්සිජන්	පරිමාව (ගණප	ාය කරෘ	ත්න.										

- (ii) මූලාකෘති ${f A}$ බෝතලය මහින් පරීක්ෂණය සිදු කළ කාලය තුළ පරිසරයට හානි වූ තාප පු ${f \Theta}$ ාණය ගණනය කරන්න.
- (iii) අදාළ පියවර දක්වමින් ඔක්සිජන් වායුව නිපදවීමේ සාමානාඃ ශීඝුතාව ml/min වලින් ගණනය කරන්න.
- (iv) මූලාකෘති C බෝතලය යොදා ගෙන සිදු කළ පරීක්ෂණයේ දී ඉහළ අවසාන උෂ්ණත්වයක් නිරීක්ෂණය කිරීම සඳහා හේතුවක් දෙන්න.
- (v) මෙම පුතිඵල අනුව කුමන මූලාකෘති බෝ<mark>තලය</mark> ආලෝකයට සංවේදී සංයෝග ගබඩා කිරීමට වඩාත් සුදුසු වේ ද?

පු.අ. 2

100

- බල සමාන්තරාසු මූලධර්මය සත‍‍යාපන්‍ය කිරීමට යොදාගනු ලබන සැකැස්මක් රූපයේ දැක්වේ.
 - P සැහැල්ලු තුලා තැටි
 - $oldsymbol{Q}$ අල්පෙනෙති මගින් සුදු කඩදාසියක් සවිකොට ඇති සිරස් අඳින පුවරුව
 - R සුමට කුඩා කප්පි
 - S සැහැල්ලු තත්තුව
 - L, M සහ N භාර

(a) මෙම පරීක්ෂණය නිවැරදිව සිදු කිරීමට අවශා අනෙකුත් උපකරණ මොනවා ද?

(b) පද්ධතිය ආරම්භක සමතුලිත පිහිටුමෙන් මඳක් වෙනස්

/ පස්වැනි පිටුව බලන්න.

7		
	7	
	1	
i		
	i	
	9 1-1	
į	i	
	9	

(c)) ලමලි	ව පරීක්ෂණයේ දී සැහැල්ලු තන්තු භාවිත කිරීමට හේතුව කුමක් ද?	මෙම කිරුවේ කිසිවක් නොලියන්න
(d)	 බල	සමාන්තරාසු මූලධර්මය සතාහපනය කිරීම සඳහා පහත සඳහන් ආරම්භක පියවරයන් සම්පූර්ණ කරන	පරික්ෂකවරුන් සඳහා පමණි.
, ,	ලදී.		
		කඩදාසිය මත එක් එක් තන්තුවෙහි පිහිටුම ලකුණු කර ගැනීම.	
		කඩදාසිය පුවරුවෙන් ඉවත් කිරීම.	
	(111)	L සහ N භාරයන්ට සමානුපාතික වන රේබාවන් තන්තුවේ අාතත කොටස් දෙක ඡේදනය වන ලක්ෂයේ සිට ඇඳීම.	
	ඉතිරි	ි පියවරයන් ලියා දක්වන්න.	
	(iv)		
	(v)		
			•
	(vi)		
	(vii)		
(e)	ලමලි සමා:	සැකසුම ගලක බර M සෙවීම සඳහා භාවිත කරන ලදී. මෙම පරීක්ෂණයේ දී අඳින ලද බල \sim න්තරාසුයේ අදාළ පැති රූපයේ පෙන්වා ඇත.	
		4 to 1 to	
	ගලෙ	හි බර <i>M</i> සොයන්න. (1 cm = 0.27 N)	
	•••••		
	,,,,,,		
	•••••		
		1 cm	
		1 cm	
(f)		ගල ජල බීකරයක සම්පූර්ණයෙන් ගිල්වා පරීක්ෂණය නැවත සිදු කළ විට, අදාළ විකර්ණයේ දිග 3 cm	
	වූලය	නම්, ගලෙ <mark>හි සා</mark> පේක්ෂ ඝනත්වය ගණනය කරන්න.	
	•••••		
	•••••	····	
(g)	න්වැර කරන්	දිව අඳින ලද බල සමාන්තරාසුයේ අදාළ විකර්ණය සිරස් නොවේ නම්, ඒ සඳහා හේතුවක් සඳහන් න.	
			4
(h)	තුලා :	තැටි සැහැල්ලු නොවේ නම්, මෙම පරීක්ෂණය නිවැරදිව සිදු කිරීමට ගන්නා පියවර කවරේ ද?	<u>ප.අ. 3</u>
			100

4. ඒකාකාර හරස්කඩක් සහිත ලෝහ දණ්ඩක තාප සන්නායකතාව නිර්ණය කිරීම සඳහා රූපයේ පෙන්වා ඇති ඇටවුම භාවිත කළ හැකි ය. මෙහි දී කුටීරය හරහා $100~^{\circ}$ C හි හුමාලය යැවීමෙන් පරිවරණය කරන ලද දණ්ඩෙහි එක් අන්තයක් රත් කර ගනු ලැබේ. දණ්ඩෙහි අනෙක් අන්තයට සම්බන්ධ කර ඇති කැලරිමීටරයේ අඩංගු ජලයේ උෂ්ණත්වය heta, කාලය t සමග මනිනු ලැබේ.

මෙම තිරුවේ කිසිවක් නොලියන්න පරීක්ෂකවරුන් සඳහා පමණි.

(b) හුමාලය භාවිත කිරීමේ වාසියක් සඳහන් කරන්න.

(c) කාලය සමග කැලරිමීටරයේ ඇති ජලයේ උෂ්ණත්ව විචලනය පහත දක්වා ඇති පරිදි පුස්තාරගත කර ඇත.

(i)	පුස්තාරයට	අනුව	අතවරත	අවස්ථාවේ	දී	ජලයේ	උෂ්ණත්වය	කොපමණ	ę?
(r)	90000000	457	40,000	40000	τ	-0	0		

(ii) ජලයේ උෂ්ණත්වය අනවරත අගයකට ළඟා වන්නේ කුමන හේතුවක් නිසා ද?

/ ඉත්වැනි පිටුව බලන්න.

		-	
		i	
		1	
		i	
		-	
	i	1	
		i	
		1	
		-	
,	ř	:	
		-	
		1	
		1	
		i	
		ì	
		İ	

	(iii) කාලය $t=0$ සිට $t=t_1$ දක්වා උෂ්ණත්වයේ $(heta)$ විචලනය රේඛීය නොවේ . මෙයට පුධාන හේතු දෙකක් සඳහන් කරන්න.	මෙම සීරුවේ කිසිවක් තොලියන්න පරික්ෂකවරුන්
	(1)	සඳහා පමණි.
	(2)	
(d)	වෙනත් සිසිලන පරීක්ෂණයක් මගින් උෂ්ණත්වය $ heta$ හි දී කැලරිමීටරය සහ එහි අඩංගු දෑ මගින් තාපය උත්සර්ජනය වන ශීඝුතාව R පහත සමීකරණය මගින් දෙනු ලබන බව සොයාගෙන ඇත.	-
	$R = 0.16 (\theta - \theta_{\rm r})$	
	මෙහි $ heta_{ extsf{ iny T}}$ යනු කාමර උෂ්ණත්වයයි.	
	(i) කාමර උෂ්ණත්වය $30~^\circ\mathrm{C}$ නම්, අනවරත උෂ්ණත්වයේ දී R ගණනය කරන්න.	
		0
	(ii) දණ්ඩ ඔස්සේ තාපය සන්නයනය වීමේ ශීසුතාව දක්වන පුකාශනයක් ලියන්න.	
	(iii) A සිට B දක්වා දණ්ඩේ දිග 0.6 m සහ එහි හරස්කඩ වර්ගඵලය 1.4×10^{-4} m 2 නම්, ලෝහයේ තාප සන්නායකතාව නිර්ණය කරන්න.	
(e)	මෙම පරීක්ෂණයේ දී කැලරිමීටරය පරිවරණය <mark>නොඛ්රීමට</mark> හේතුව කෙටියෙන් පැහැදිලි කරන්න.	
		٠
(f)	රබර් දණ්ඩක තාප සන්නායකතාව සෙවීමට මෙම කුමය යෝගා නොවන්නේ ඇයි?	
(1)	රූණ ද්යාස්ථක භාව සහභාව සෙවලට මෙම කුමය සොගන නොවන්නෙ ඇය?	
		පු.අ. 4
		<u> </u>
	**	100
٠		
		•
	·	

Department of Examinations, still anka

සියලු ම හිමිකම් ඇව්රිනි /முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

இ ලංකා විගාග දෙපාර්තමේත්තුව ලී ලංකා විගාශ දෙපා**ද්යල්කින් වාදහැද්වීමට උදෙපාර්තමේ**ත්තුව ලේ ලංකා විගාශ දෙපාර්තමේත්තුව இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் சரிட்சுச்ச திணைக்களம் Department of Examinations, Sri Lanka Department of Examinations Sri Lanka Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka இ ලංකා විගාශ දෙපාර්තමේත්තුව ලී ලංකා විගාශ දෙපාර්තමේත්තුව සිට සහ දෙපාර්තමේත්තුව ලී ලංකා විගාශ දෙපාර්තමේත්තුව ලී ලංකා විගාශ දෙපාර්තමේත්තුව ලී ලංකා විගාශ දෙපාර්තමේත්තුව ලී ලංකා විගාශ දෙපාර්තමේත්තුව இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கை**ப**ர்ப்பேசத் திணைக்களம்

අධානයන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2017

තාක්ෂණවේදය සඳහා විදනව

தொழினுட்பவியலுக்கான விஞ்ஞானம் II Science for Technology II 67 S II

රචනා

උපදෙස්:

- * B, C සහ D යන කොටස්වලින් එක් කොටසකින් අවම වශයෙන් එක් පුශ්නය බැගින් තෝරාගෙන පුශ්න හතරකට පමණක් පිළිතුරු සපයන්න.
- * එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය 15 කි.
- st f B කොටසේ පුශ්න අංක f 6 සඳහා අවශා පුස්තාර කොළය පුශ්න පතුය සමග සපයා ඇත.

B කොටස - රචනා

5. කීඩා පිටියක ඇති 400 m ක් වන ධාවන පථයක සැලැස්මක් රූපයේ දක්වා ඇති අතර එහි ඕනෑම අනුයාත ධාවන තීරුවල කඩ ඉරි දෙකක් අතර පරතරය 3.5 m වේ. රූපය පරිමාණයට ඇඳ නොමැත. සියලු ම තරගකරුවන් තම ධාවන තීරුව මධායේ ඇති කඩ ඉර ඔස්සේ 400 m ක් දුර දිවිය යුතු ය.

- (a) රූපයේ පෙන්වා ඇති ධාවන තී<mark>රුවල</mark> අර්ධ වෘත්තාකාර කොටස්වල අරයයන් r, සහ r, π ඇසුරින් ලියා දක්වන්න.
- (b) පළමුවන හා දෙවන ධාවන <mark>තීරු</mark>වල ආරම්භක ස්ථානයන් අතර පරතරය කොපමණ විය යුතු ද?
- (c) ඉහත කීඩා පිටියේ ස<mark>රඹ සංද</mark>ර්ශනයක් පැවැත්වීම සඳහා පහත රූපයේ දක්වා ඇති පරිදි අරයයන් 12 m ක් වූ වෘත්ත හතරක් ඒවායේ අනු<mark>යාත කේන්දුයන් 12 m ක් ද</mark>ුරින් එක ම තිරස් රේඛාවක පිහිටන පරිදි ඇඳ ඇත.

	30°	45°	60°
sin	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1/2
tan	$\frac{1}{\sqrt{3}}$	1	√3

- (i) PQ පාදයේ දිග සොයන්න.
- (ii) heta කෝණය රේඩියන්වලින් සොයන්න.
- (iii) APR තිකෝණයේ වර්ගඑලය සොයන්න.
- (iv) APBR කේන්දික ඛණ්ඩයේ වර්ගඵලය π ඇසුරෙන් සොයන්න.
- (v) PBR චාපයෙන් සහ PR ජාගයෙන් වටවන කොටසේ වර්ගඵලය π ඇසුරෙන් සොයන්න.
- (vi) මෙම වෘත්තවලින් වටවන සංයුක්ත රූපයේ වර්ගඵලය π ඇසුරෙන් ගණනය කරන්න.

6. (a) එකම වර්ගයේ කෙසෙල් ඇවරි 75 ක බර ගුැම්වලින් පහත සමුහිත සංඛාාත වාාප්තියේ දක්වා ඇත.

පන්ති සීමා	සංඛනතය	පන්ති මායිම	පන්ති ලකුණ	සමුච්චිත සංඛනාතය
730 - 770	10			
780 - 820	30			~~
830 - 870	20			
880 - 920	11			
930 - 970	03			
980 - 1020	01			

(i) ඉහත වගුව සම්පූර්ණ කරන්න.

ඉහත සම්පූර්ණ කරන ලද සමුහිත සංඛාාත වාාප්තිය ඇසුරින් පහත සඳහන් පුශ්නවලට පිළිතුරු සපයන්න.

- (ii) කෙසෙල් ඇවරියක සාමානා බර ගණනය කරන්න.
- (iii) කෙසෙල් 1 kg ක නිෂ්පාදන මිල රුපියල් 100 නම් මෙම කෙසෙල් තොගයේ නිෂ්පාදන වියදම ගණ<mark>නය ක</mark>රන්න.
- (iv) අමු දත්ත කුලකයේ පරාසයට තිබිය හැකි උපරිම සහ අවම අගයයන් සොයන්න.
- (v) සමුච්චිත සංඛානත වකුය දී ඇති පුස්තාර කොළයෙහි අඳින්න.
- (vi) ඉහත (v) කොටසෙහි අදින ලද පුස්තාරය උපයෝගී කර ගනිමින් අඩු ම බර සහිත <mark>කෙසෙ</mark>ල් ඇවරි 20% හි උපරිම බරත් වැඩි ම බර සහිත කෙසෙල් ඇවරි 20% හි අවම බරත් සොයන්න.
- (b) (i) පුවාහනයේ දී කෙසෙල් තොගයේ මුළු බරෙන් 20% ක් හානි වූයේ නම්, 50% ක ලාභයක් ලබා ගැනීමට කෙසෙල් කිලෝගුෑම් එකක් විකිණිය යුතු මිල ගණනය කරන්න.
 - (ii) ලී පෙට්ටි භාවිතයෙන් පුවාහනයේ දී සිදු වන හානිය 4% දක්වා අවම කර ගත හැකි ය. එවිට (b)(i) හි දී ඔබ ලබා ගත් විකුණුම් මිලට ම කෙසෙල් කිලෝගුෑමයක් අලෙවි කළේ නම්, ලී පෙට්ටි භාවිතය නිසා ලබා ගත හැකි ලාභ පුතිශතය ගණනය කරන්න.

C කොටස - රචනා

සබන් හා ජෛව ඩීසල් නිපදවීම සඳහා භාවිත කරන කි්යාවලි පහත ගැලීම් සටහනේ පෙන්වා ඇත.

- (a) ජෛව <mark>ඩීසල් ඉ</mark>න්ධනයක් ලෙස සෘජුව ම හෝ පෙටුෝලියම් ඩීසල් සමග මිශු කර භාවිත කළ හැකි ය.
 - (i) ජෛව ඩීසල් භාවිතය පාරිසරිකව හිතකාමී වීම සඳහා **එක්** හේතුවක් සඳහන් කරන්න.
 - (ii) දෙන ලද ගැලීම් සටහනට අනුව ජෛව ඩීසල් නිෂ්පාදනය සඳහා යොදා ගන්නා අමුදුවාාය/අමුදුවාායන් මොනවා ද?
 - (iii) NaOH උත්ජෝරකය ලෙස යොදා ගෙන ජෛව ඩීසල් නිෂ්පාදනයේ දී ලැබෙන අකුරුඵලයක් නම් කරන්න.
- (b) ශී් ලාංකික නව නිර්මාණකරුවන්ගේ කණ්ඩායමක් විසින් විෂමජාතීය උත්පේරකයක් මත පදනම් වූ නව නිෂ්පාදන කුමයක් (ගැලීම් සටහනේ පෙන්වා ඇත.) යෝජනා කොට ඇත. මෙම නව කුමය මගින් ලැබෙන ඵලදාව සමජාතීය උත්පේරක මත පදනම් කුමවලට වඩා වැඩි බව ඔවුන් විසින් නිරීක්ෂණය කරන ලදී.
 - (i) උත්පේුරකයක් මගින් රසායනික පුතිකිුයාවක් මත ඇති කළ හැකි වෙනස්කම් **දෙකක්** සඳහන් කරන්න.
 - (ii) විෂමජාතීය උත්ජෝරකයක් මත පදනම් වූ යෝජිත නව නිෂ්පාදන කුමය මගින් සාම්පුදායික කුමවලින් ලබා දෙන එලදාවට වඩා වැඩි එලදාවක් ලබා දීමට හේතුව කුමක් විය හැකි ද?
 - (iii) සබන් හා ජෛව ඩීසල් අණු අතර **එක්** ව<u>ූ</u>දුහාත්මක වෙනස්කමක් සඳහන් කරන්න.

/ දහවැති පිටුව බලන්න.

- (c) නව නිෂ්පාදකයන් විසින් 3R සංකල්පය භාවිතයෙන් පරිසරයට සිදුවන බලපෑම අවම කිරීමට සැලසුම් කරයි. ඔවුන් විසින් මෛව ඩීසල් නිෂ්පාදන කිුිියාවලිය නැවත සැලසුම් කිරීම මගින් එය වඩාත් පරිසර හිතකාමී කරන ලදී.
 - (i) 3R සංකල්පය පුධාන අරමුණු තුනක් මත පදනම්ව ඇත. 'අවමකරණය' (Reduce) මින් එක් අරමුණකි. අනෙක් අරමුණු **දෙක** කවරේ ද?
 - (ii) විෂමජාතීය උත්පේුරක භාවිතය මගින් නිෂ්පාදන කිුිියාවලිය සඳහා යොදා ගන්නා අමුදුවා පුමාණය අවම කර ගත හැක්කේ කෙසේ දැයි පැහැදිලි කරන්න.
 - (iii) ඔබ මෙම නව නිර්මාණ කණ්ඩායමේ සාමාජිකයෙක් නම්, 3R සංකල්පය මත පදනම්ව ජෛව ඩීසල් නිෂ්පාදන කිුිිියාවලියේ දී පරිසරයට සිදුවන බලපෑම අවම කර ගත හැකි කුමයක් යෝජනා කරන්න.
- 8. විශ්වව්දාාාලයක සිසුන් කණ්ඩායමක් විසින් තාක්ෂණවේදී පර්යේෂණ වාාපෘතියක් සඳහා තේ පතුවලින් ෆ්ලැවනොයිඩ් එකතු කර ගැනීමට නිස්සාරණ කුමයක් සැලසුම් කරන ලදී. මෙම නිස්සාරණ කුමය රූපයේ පෙන්වා ඇත. නිස්සාරණය කරන ලද ෆ්ලැවනොයිඩ් යොදා ගනිමින් ස්වාභාවික පුතිඔක්සිකාරක අඩංගු නව ෂැම්පු වර්ගයක් නිෂ්පාදනය කරන ලදී. මොවුන් විසින් මෙම නව ෂැම්පු වර්ගය සඳහා ඉදිරියේ දී ශුී ලාංකික පේටන්ට් බලපතුය (patent) ලබා ගැනීමට සැලසුම් කරයි. ෆ්ලැවනොයිඩ් නිස්සාරණයේ පියවර පහත ගැලීම් සටහනේ පෙන්වා ඇත.

- (a) එකතු කරගන්නා ලද දළ නිස්සාරකය මූලික ෂැම්පු මිශුණය සමග මිශු කර ගැනීම මගින් පුතිඔක්සිකාරක ගුණ එකතු කර ගත හැකි ය. අනෙකුත් සංඝටක තවමත් අනාවරණය කොට නැත.
 - (i) 'දළ නිස්සාරකය' යනු කුමක් ද?
 - (ii) දළ නිස්සාරකය තුළ අඩංගු සංයෝග ගුණන සොයා ගැනීම සඳහා යොදාගත හැකි සරල පරීක්ෂණාත්මක කුමයක් නම් කරන්න.
 - (iii) 'පුතිඔක්සිකාරක' යනු කුමක් ද?
 - (iv) නව නිෂ්පාදනය සඳහා පේටන්ට් බලපතුය ලබා ගැනීමේ ඇති වැදගත්කම පැහැදිලි කරන්න.
- (b) නිස්සාරණ කිුයාවලිය සඳහා යොදා ගත් ඇටවුම රූපයේ පෙන්වා ඇත. මෙම නිස්සාරණ ඇටවුමේ ඇති කන්ඩෙන්සරයේ වීවර දෙකක් A හා B ලෙස දක්වා ඇත.
 - (i) මෙම නිස්සාරණ ඇටවුම සඳහා කන්ඩෙන්සරයක් භාවිත කිරීමට හේතුව පැහැදිලි කරන්න.
 - (ii) මිශුණය ජල තාපකයක ගිල්වා රත් කිරීමට හේතුව කුමක් ද?
 - (iii) කන්ඩෙන්<mark>සරයේ</mark> ඇති විවර දෙකෙන් කුමන විවරය ජලය ඇතුඑ කිරීමට සුදුසු වේ ද?
 - (iv) ඉහ<mark>ත (b) (iii)</mark> කොටසේ ඔබගේ පිළිතුර සඳහා හේතුව පැහැදිලි කරන්න.
- (c) කාර්මික කිුයාවලියක දී ජනනය වන අපදුවා පුමාණය අවම කිරීම සඳහා සුපිරිසිදු නිෂ්පාදන සංකල්පය යොදාගත හැකි ය. **පියවර 03** දී නිදහස් වන එකනෝල් වාෂ්ප හා තේ කුඩු මෙම කිුයාවලියේ දී ජනනය වන අපදුවා ලෙස සැලකිය හැකි ය.
 - (i) මෙම නිස්සාරණ කියාවලියේ දී ක්ලෝරිනිකෘත කාබනික දාවකයක් භාවිත කළහොත් ඇති විය හැකි පාරිසරික ගැටලු දෙකක් සඳහන් කරන්න.
 - (ii) සුපිරිසිදු නිෂ්පාදන සංකල්පයට අනුකූල වන ලෙස මෙම කි්යාවලියේ දී ජනනය වන අපදුවා පුතිචකීකරණය/නැවත භාවිත කළ හැකි ආකාරය කෙටියෙන් විස්තර කරන්න.

D කොටස - රචනා

- 9. නිවසක 230 V, 60 W සඳහන් සුතුකා බල්බ 10 ක් ද 230 V, 1 kW සඳහන් විදුලි ඉස්තික්කයක් සහ 230 V, 2 kW සඳහන් විදුලි උදුනක් ඇත. විලායකයක් භාවිතයෙන් විදුලි උපකරණ හරහා අධික ධාරාවක් ගලා යාම නිසා සිදුවන හානි වළක්වා ගත හැකි ය. විදුලි ඉස්තික්කය සහ විදුලි උදුන ආරක්ෂා කිරීම සඳහා නියමිත පුමාණනයෙන් යුත් විලායක සම්බන්ධ කර ඇත. සෑම දිනක ම සියලු විදුලි බල්බ, විදුලි ඉස්තික්කය සහ විදුලි උදුන පිළිවෙළින් පැය 4, මිනිත්තු 30 සහ පැය 2 ක කාලයක් තුළ භාවිත කරනු ලැබේ. විදුලි ශක්ති පරිභෝජන පුමාණය කිලෝවොට පැය (kWh) මහින් මනිනු ලැබේ.
 - (a) (i) දින 30 ක් සහිත මාසයක් තුළ මෙම නිවසේ පරිභෝජනය කරනු ලබන විදයුත් ශක්තිය kWh වලින් ගණනය කරන්න.
 - (ii) විදුලි ඒකකයක මිල රු. 8.00 ක් වේ නම් දින 30 ක් සහිත මාසයක් සඳහා එම නිවසේ විදුලි බිල ගණනය කරන්න.
 - (b) (i) විදුලි උදුනෙහි ඇති විලායකය සහ විදුලි ඉස්තුක්කයෙහි ඇති විලායකය තුළින් ගලා යන උපරිම විදයුත් ධාරා ගණනය කරන්න.
 - (ii) ව්දුලි උදුනට සහ විදුලි ඉස්තික්කයට අදාළ විලායක සම්බන්ධ කිරීමේ දී වැරදීමකින් එකිනෙක මාරු වූයේ නම්, එය විදුලි උපකරණවල සාමානාෳ කිුියාකාරිත්වයට කෙසේ බලපායි ද?
 - (c) සුතිකා බල්බ වෙනුවට ආලෝක විමෝචක දියෝඩ (LED) යෙදූ බල්බ භාවිත කිරීම වාසිදායක බව නිෂ්පාදකයා පවසයි.
 - (i) LED බල්බ භාවිත කිරීමේ වාසි **දෙකක්** ලියන්න.
 - (ii) සුතිකා බල්බයක සහ LED බල්බයක කාර්යක්ෂමතාවන් පිළිවෙළින් 20% සහ 96% ක් වේ නම් සුතිකා බල්බයක් වෙනුවට එක ම පුතිදාන ක්ෂමතාවක් ලබා ගැනීම සඳහා භාවිත කළ යුතු LED බල්බයක ක්ෂමතාව කොපමණ ද?
 - (iii) මෙම නිවසේ පවතින සුතිුකා බල්බ සියල්ල වෙනුවට ඉහත (c) (ii) කොටසේ සඳහන් කළ LED බල්බ භාවිත කළේ නම්, මාසික (දින 30) විදුලි බිල ගණනය කරන්න.
- 10. (a) චලිතය සඳහා වන නිව්ටන්ගේ දෙවන නියමය ඇසුරින් ලබාගත හැකි සමීකරණය ලියා, එහි පද අර්ථ දක්වන්න.
 - (b) බඩු ගබඩාවක A නම් ස්ථානයේ ඇති ස්කන්ධය 400 kg වූ ලී පෙට්ටියක් ස්කන්ධය 100 kg වන ටොලියක් මත තබා ඇත. ආරම්භයේ දී නිශ්චලව ඇති ලී පෙට්ටිය සහිත ටොලිය ඒකාකාර තිරස් බලයක් යටතේ B ස්ථානය දක්වා තල්ලු කර, ඉන් පසුව පුවාහනය සඳහා යොදා ගන්නා ලොරි රථය ආසන්නය දක්වා නිදහසේ චලනය වීමට ඉඩ හරිනු ලැබේ. පසුව දොඹකරයක් ආධාරයෙන් ලී පෙට්ටිය පමණක් ලොරි රථයට පටවනු ලැබේ.

(ගුරුත්වජ ත්වරණය $10~{
m N~kg^{-1}}$ ලෙස සහ $\cos 60^{\circ} = \sin 30^{\circ} = \frac{1}{2}$ ලෙස සලකන්න.)

- (i) B නම් ස්ථානයේ දී ලී පෙට්ටිය $2\,\mathrm{ms}^{-1}$ ක පුවේගයක් ලබා ගනී නම්, A සහ B ස්ථානවල දී ගමාතාවයන් ගණනය කරන්න. (A සහ B ස්ථාන අතර සිදුවන චලිතයේ දී ශක්ති හානිය ශූනා ලෙස සලකන්න.)
- (ii) A සිට B දක්වා ලී පෙට්ටිය ගෙන යාමට තත්පර 20 ක කාලයක් ගත වේ නම්, තිරස් බලය ගණනය කරන්න.
- (iii) $^{\prime}A$ සහ $^{\prime}B$ අතර දුර $^{\prime}20$ m නම්, ඉහත කිුයාවලියේ දී සිදු කරන ලද කාර්ය පුමාණය ගණනය කරන්න.
- (c) රූපයේ පෙන්වා ඇති පරිදි ස්කන්ධය 20000 kg වන දොඹකරයක් මගින් ලී පෙට්ටිය ඔසවනු ලැබේ. දොඹකරයේ PR බාහුවේ (බූමයේ) ස්කන්ධය 2000 kg වේ. දොඹකරයේ සහ PR බාහුවේ බර කියා කරන ලක්ෂායන් පිළිවෙළින් S සහ Q වේ. Q යනු PR හි මධා ලක්ෂාය වේ. ලී පෙට්ටිය රැගත් PD ලෙස ලකුණු කර ඇති සිරස් කේබල කොටස P හි දී සම්බන්ධ කර ඇති සුමට කප්පියක් මතින් ගමන් කර ඇත. මෙම කේබලයේ අනිත් කෙළවර මෝටරයක් හා සම්බන්ධ සිලින්ඩරයක් වටා ඔතා ඇත. සිලින්ඩරය කරකැවීම මගින් ලී පෙට්ටිය එසවිය හැකි ය.
 - (i) ලී පෙට්ටිය 3 m ක උසක් එසවීමට කරන ලද කාර්ය පුමාණය කොපමණ ද?
 - (ii) දොඹකර බාහුවේ දිග ගණනය කරන්න.
 - (iii) දොඹකරයේ කේබලය ඔතා ඇති සිලින්ඩරයේ අරය 50 cm නම්, ලී පෙට්ටිය එසවීම සඳහා සිලින්ඩරය මත යෙදිය යුතු වසාවර්තය කොපමණ ද?
 - (iv) ලී පෙට්ටිය ඔසවා ඇති සිරස් කේබල කොටසේ (PD) ආතතිය කුමක් ද?
 - (v) ඔසවන ලී පෙට්ටියෙහි ස්කන්ධය එක්තරා සීමාවකට වඩා වැඩිවූ විට දොඹකරය F අක්ෂය වටා පෙරළී යා හැකි ය. මෙම සීමාව ගණනය කරන්න.

 Ω

AL/2017/67-S-II	
තාක්ෂණවේදය සඳහා විදුස	ව
தொழினுட்பவியலுக்கான	விஞ்ஞானம்
Science for Technology	

67 S	II

- 12 -

II II

විභාග	අංකය	:	• • •	•	••	٠.	• •			• •	٠.	•
පශ්න (ඇංකය: (6	(w)									

Department of Examinations, Still anka