* A die is thrown twice.

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$
 - * Events:

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$
 - * Events:
 - * A :=The first throw shows an odd number.

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$
 - * Events:
 - * A :=The first throw shows an odd number.
 - * B := The second throw shows an even number.

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$
 - * Events:
 - * A := The first throw shows an odd number.
 - * B := The second throw shows an even number.
 - * C := The sum of face values is odd.

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$
 - * Events:
 - * A :=The first throw shows an odd number.
 - * B := The second throw shows an even number.
 - * C := The sum of face values is odd.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/36 to each atom.

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$
 - * Events:
 - * A :=The first throw shows an odd number.
 - * B := The second throw shows an even number.
 - * C := The sum of face values is odd.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/36 to each atom.
- * Are A,B, and C independent events?

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$
 - * Events:
 - * A := The first throw shows an odd number.
 - * B := The second throw shows an even number.
 - * C := The sum of face values is odd.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/36 to each atom.
- * Are A,B, and C independent events?

Event		Probability
A	{(j, k): j is odd}	
В	{(j, k): k is even}	
С	{(j, k): either (j is odd and k is even) or (j is even and k is odd)}	
A n B	{(j, k): j is odd and k is even}	
$A \cap C$	{(j, k): j is odd and k is even}	
BnC	{(j, k): j is odd and k is even}	
AnBnC	{(j, k): j is odd and k is even}	

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$
 - * Events:
 - * A := The first throw shows an odd number.
 - * B := The second throw shows an even number.
 - * C := The sum of face values is odd.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/36 to each atom.
- * Are A,B, and C independent events?

Event		Probability
A	{(j, k): j is odd}	$\frac{3\times 6}{36} = \frac{1}{2}$
В	{(j, k): k is even}	
С	{(j, k): either (j is odd and k is even) or (j is even and k is odd)}	
A n B	{(j, k): j is odd and k is even}	
AnC	{(j, k): j is odd and k is even}	
BnC	{(j, k): j is odd and k is even}	
AnBnC	{(j, k): j is odd and k is even}	

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$
 - * Events:
 - * A :=The first throw shows an odd number.
 - * B := The second throw shows an even number.
 - * C := The sum of face values is odd.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/36 to each atom.
- * Are A,B, and C independent events?

Event		Probability
A	{(j, k): j is odd}	$\frac{3\times6}{36}=\frac{1}{2}$
В	{(j, k): k is even}	$\frac{6\times3}{36} = \frac{1}{2}$
С	{(j, k): either (j is odd and k is even) or (j is even and k is odd)}	
A∩B	{(j, k): j is odd and k is even}	
AnC	{(j, k): j is odd and k is even}	
$B \cap C$	{(j, k): j is odd and k is even}	
AnBnC	{(j, k): j is odd and k is even}	

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$
 - * Events:
 - * A :=The first throw shows an odd number.
 - * B := The second throw shows an even number.
 - * C := The sum of face values is odd.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/36 to each atom.
- * Are A,B, and C independent events?

Event		Probability
A	{(j, k): j is odd}	$\frac{3\times 6}{36} = \frac{1}{2}$
В	{(j, k): k is even}	$\frac{6\times3}{36} = \frac{1}{2}$
С	{(j, k): either (j is odd and k is even) or (j is even and k is odd)}	$\frac{(3\times3)+(3\times3)}{36} = \frac{1}{2}$
A n B	{(j, k): j is odd and k is even}	
A n C	{(j, k): j is odd and k is even}	
BnC	{(j, k): j is odd and k is even}	
AnBnC	{(j, k): j is odd and k is even}	

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$
 - * Events:
 - * A :=The first throw shows an odd number.
 - * B := The second throw shows an even number.
 - * C := The sum of face values is odd.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/36 to each atom.
- * Are A,B, and C independent events?

Event		Probability
A	{(j, k): j is odd}	$\frac{3\times 6}{36} = \frac{1}{2}$
В	{(j, k): k is even}	$\frac{6\times3}{36} = \frac{1}{2}$
С	{(j, k): either (j is odd and k is even) or (j is even and k is odd)}	$\frac{(3\times3) + (3\times3)}{36} = \frac{1}{2}$
A∩B	{(j, k): j is odd and k is even}	$\frac{3\times3}{36} = \frac{1}{4}$
$A \cap C$	{(j, k): j is odd and k is even}	$\frac{3\times3}{36} = \frac{1}{4}$
BnC	{(j, k): j is odd and k is even}	$\frac{3\times3}{36} = \frac{1}{4}$
AnBnC	{(j, k): j is odd and k is even}	

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$
 - * Events:
 - * A :=The first throw shows an odd number.
 - * B := The second throw shows an even number.
 - * C := The sum of face values is odd.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/36 to each atom.
- * Are A,B, and C independent events?

Event		Probability	
A	{(j, k): j is odd}	$\frac{3\times6}{36}=\frac{1}{2}$	
В	{(j, k): k is even}	$\frac{6\times3}{36} = \frac{1}{2}$	
С	{(j, k): either (j is odd and k is even) or (j is even and k is odd)}	$\frac{(3\times3)+(3\times3)}{36} = \frac{1}{2}$	
A ∩ B	{(j, k): j is odd and k is even}	$\frac{3\times3}{36} = \frac{1}{4}$	
$A \cap C$	{(j, k): j is odd and k is even}	$\frac{3\times3}{36} = \frac{1}{4}$	
BnC	{(j, k): j is odd and k is even}	$\frac{3\times3}{36} = \frac{1}{4}$	
AnBnC	{(j, k): j is odd and k is even}	$\frac{3\times3}{36} = \frac{1}{4}$	

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$
 - * Events:
 - * A := The first throw shows an odd number.
 - * B := The second throw shows an even number.
 - * C := The sum of face values is odd.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/36 to each atom.
- * Are A,B, and C independent events?

	Event	Probability	
A	{(j, k): j is odd}	$\frac{3\times 6}{36} = \frac{1}{2}$	
В	{(j, k): k is even}	$\frac{6\times3}{36} = \frac{1}{2}$	
С	{(j, k): either (j is odd and k is even) or (j is even and k is odd)}	$\frac{(3\times3)+(3\times3)}{36} = \frac{1}{2}$	
A n B	{(j, k): j is odd and k is even}	$\frac{3\times 3}{36} = \frac{1}{4} = \frac{1}{2} \times$	1/2
$A \cap C$	{(j, k): j is odd and k is even}	$\frac{3\times3}{36} = \frac{1}{4} = \frac{1}{2} \times$	1/2
BnC	{(j, k): j is odd and k is even}	$\frac{3\times3}{36} = \frac{1}{4} = \frac{1}{2} \times$	1/2
AnBnC	{(j, k): j is odd and k is even}	$\frac{3\times3}{36} = \frac{1}{4} \neq \frac{1}{2} \times$	$\frac{1}{2}$

- * A die is thrown twice.
 - * Sample space: $\Omega = \{(j, k): 1 \le j, k \le 6\}.$
 - * Events:
 - * A :=The first throw shows an odd number.
 - * B := The second throw shows an even number.
 - * C := The sum of face values is odd.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/36 to each atom.
- * Are A,B, and C independent events?

	Event	Probability
A	{(j, k): j is odd}	$\frac{3\times6}{36} = \frac{1}{2}$
В	{(j, k): k is even}	$\frac{6\times3}{36} = \frac{1}{2}$
С	{(j, k): either (j is odd and k is even) or (j is even and k is odd)}	$\frac{(3\times3) + (3\times3)}{36} = \frac{1}{2}$
A∩B	{(j, k): j is odd and k is even}	$\frac{3 \times 3}{36} = \frac{1}{4} = \frac{1}{2} \times \frac{1}{2}$
AnC	{(j, k): j is odd and k is even}	$\frac{3\times3}{36} = \frac{1}{4} = \frac{1}{2} \times \frac{1}{2}$
BnC	{(j, k): j is odd and k is even}	$\frac{3\times 3}{36} = \frac{1}{4} = \frac{1}{2} \times \frac{1}{2}$
AnBnC	{(j, k): j is odd and k is even}	$\frac{3 \times 3}{36} = \frac{1}{4} \neq \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$

- 1) $P(A \cap B) = P(A) \times P(B)$,
- 2) $P(A \cap C) = P(A) \times P(C)$,
- 3) $P(B \cap C) = P(B) \times P(C)$,
- 4) $P(A \cap B \cap C) = P(A) \times P(B) \times P(C)$.

1)
$$P(A \cap B) = P(A) \times P(B)$$
,

2)
$$P(A \cap C) = P(A) \times P(C)$$
,

3)
$$P(B \cap C) = P(B) \times P(C)$$
,

4)
$$P(A \cap B \cap C) = P(A) \times P(B) \times P(C)$$
.

Independence implies pairwise independence but pairwise independence does not imply independence.