Functional Analysis II - Exercise 02

Lecturer: Mones Raslan

Date: 10/28/19

Orthogonal Projections

Definition 0.1

Let *E* be a vector space. A mapping $P: E \to E$ is called a **projection** if $P^2 = P$.

From now on we only consider *linear* projections.

Definition 0.2

Let $Y \subset E$ be a subspace. A mapping $P : E \to E$ is called a **projection onto** Y if $P^2 = P$ and ran(P) = Y.

Proposition

1. *P* is a projection onto *Y* if and only if

$$\forall x \in E : Px \in Y \text{ and } P|_Y = Id|_Y.$$

- 2. If *P* is a projection, then $E = \ker P \dotplus \operatorname{ran} P$, where $\dotplus \operatorname{denotes}$ the direct sum.
- 3. If *P* is a projection, so is Id-P. Additionally, $\ker Id P = \operatorname{ran} P$ and $\operatorname{ran} Id-P = \ker P$.
- 4. For every subspace $Y \subset E$ there exists a projection onto Y. The proof uses Zorn's lemma.

Now, let *E* be a normed space. Under which circumstances is *P* continuous?

Proposition

Let $P \in L(E)$ be a projection. Then,

- 1. $\ker P$ and $\operatorname{ran} P$ are closed
- 2. $||P|| \ge 1$ or ||P|| = 0.

- *Proof.* 1. Let $P \in L(E)$. Because of continuity we immediately get that ker $P = P^{-1}(\{0\})$ is closed (*preimage of closed sets of continuous functions are closed*). To show that the range of P is closed note that ran $P = \ker \operatorname{Id} P$ and $\operatorname{Id} P \in L(E)$. We just showed that the ker Id − P is closed, and so is ran P.
 - 2. It holds $||P|| = ||P^2|| \le ||P||^2$. Therefore, $Px \ge 1$ or Px = 0. Otherwise, $||P|| \le ||P||^2$ cannot hold.

There exist normed spaces E and *closed* subspaces $Y \subset E$ such that there is no continuous projection onto Y.

In Hilbert spaces the situation is different. We showed in Functional Analysis I that

 $E = Y \oplus Y^{\perp}$, E is Hilbert and Y is closed.

For x = y + z where $y \in Y$ and $z \in Y^{\perp}$ define

$$P: E \to Y, x \mapsto y$$

Definition 0.3

P is called **orthogonal projection** if ker $P \perp \operatorname{ran} P$.

Proposition

Let *H* be a Hilbert space. Let $P \in L(H), P \neq 0$ be a projection. Then the following are equivalent

- 1. *P* is an orthogonal projection
- 2. ||P|| = 1
- 3. $P = P^*$
- 4. $P^*P = PP^*$
- 5. *P* is positive, i.e. $\langle Tx, x \rangle \ge 0$ for all $x \in H$.

Proof. • (*i*) \Longrightarrow (*ii*): Let *P* be an orthogonal projection. We want to show that ||P|| = 1. Let $x \in H$ with x = y + z = Py + z where $y \in \operatorname{ran} P$ and $x \in \ker P$. Then,

$$||Px||^2 = ||Py||^2 \le ||Py||^2 + ||z||^2 \stackrel{(*)}{=} ||x||^2$$

where (*) is true because $Py \perp z$. To see this, note that

$$||Py||^2 + ||z||^2 = ||Py||^2 + 2\langle Py, z\rangle + ||z||^2 = ||Py + z||^2.$$

• (*ii*) \implies (*i*): Let $x \in \ker P$ and $y \in \operatorname{ran} P$. To show that P is an orthogonal projection we need to prove that $\ker P \perp \operatorname{ran} P$. For any λ we have

$$||\lambda y||^2 = ||P(\lambda y + x)||^2 \le ||\lambda y + x||^2 = ||x||^2 + 2\Re(\bar{\lambda}\langle x, y\rangle) + \lambda||y||^2$$

Hence, $-2\Re(\bar{\lambda}\langle x,y\rangle) \le ||x||^2$. Since this is true for all $\lambda \in \mathbb{C}$ we have $\langle x,y\rangle = 0$.

- (iii) \implies (iv): This is clear.
- $(i) \implies (iii)$: Homework exercise.
- (*i*) \implies (*v*): Let *P* be an orthogonal projection. We want to show that *P* is positive. Let $x = y + z \in H$ with $y \in \operatorname{ran} P$ and $z \in \ker P$. Then,

$$\langle Px, x \rangle = \langle y, y + z \rangle = ||y||^2 \ge 0.$$

Note that $\langle Px, x \rangle \in \mathbb{R}$ because of ||y||.

- (*iii*) \implies (*i*): Let *P* be self-adjoint. We want to show that *P* is an orthogonal projection. Let $y \in H$ and $z \in \ker P$. Then, $\langle Py, z \rangle = \langle y, Pz \rangle = 0$ as Pz = 0.
- (*v*) \implies (*iii*): Let *P* be positive. We want to show that $P = P^*$. $P \ge 0 \implies \langle Px, x \rangle \in \mathbb{R} \implies P = P^*$ (by exactly the same homework)
- $(iv) \implies (i)$: From homework sheet 1 #1 we know

$$T \in L(H)$$
 is normal $\iff ||Tx|| = ||T^*x|| \quad \forall x \in H.$

Thus, $\ker P = \ker P^*$. We proved earlier that the range of *P* is closed. By the closed range theorem we have

$$\ker P^* = (\operatorname{ran} P)^{\perp} \implies \ker P = (\operatorname{ran} P)^{\perp}.$$