# РАСЧЕТ БАРАБАННОЙ СУШИЛЬНОЙ УСТАНОВКИ ПРОИЗВОДИТЕЛЬНОСТЬЮ 20,5 Т/Ч ДЛЯ СУШКИ ОТХОДОВ ГОРНОДОБЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ

Груздев А.В., Чижова Л.А.

Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых Владимир, Россия

# CALCULATION OF A DRUM DRYER WITH A CAPACITY OF 20.5 T / H FOR DRYING WASTES FROM THE MINING INDUSTRY

Gruzdev A.V.., Chizhova LA

Vladimir State University named after Alexander G. and Nicholas G. Stoletovs Vladimir, Russia

В данном курсовом проекте приведен вариант расчета барабанной сушильной установки, а также рассчитано и выбрано вспомогательное оборудование: вентилятор.

К пояснительной записке прилагается технологическая схема барабанной сушильной установки и чертеж общего вида барабанной сушилки.

Стр. 31 Рис.3 Табл. 2 Библ. 8

В технике сушки подвергается множество материалов, различающихся химическим составом, дисперсности и структурой, адгезионными свойствами и термочувствительностью, содержанием и формы связи влаги с материалом и другими свойствами. В химической промышленности процессы массо- и теплопереноса при сушке иногда осложняются протекающими одновременно химическими реакциями.

В связи с этим выбор рационального способа сушки, типа сушильные установки и конструкции сушильного аппарата представляет собой сложную технико-экономическую задачу и пока ещё не может быть включён в студенческий курсовой проект. Поэтому в настоящем пособии приводятся примеры расчёта только конвективных сушилок заданного типа. В примерах не дано обоснование выбора сушильного агента, а также параметров материала и сушильного агента. С этими вопросами проектанты могут ознакомиться в специальной литературе, ссылки на которую приведены в библиографии.

Желание дать общий пример расчета, основана на кинетических закономерностях массо- и теплообмена, определило выбор и высушенного материала, с которым влага связана механическим силами. Процесс в этом случае протекает в первом периоде сушки при постоянной температуре влажного материала, равной температуре мокрого термометра, и скорость сушки определяется внешней диффузией.

Расчет различных вариантов сушильного процесса (с промежуточным подогревом теплоносителя, с дополнительным подводом тепла в сушильную камеру, с частичной рециркуляцией сушильного агента) принципиально не отличается от приведенного в качестве примера расчета сушилки, работающие по основному (нормальному) сушильному варианту.

#### 1. Описание технологической схемы

Принципиальная схема противоточной барабанной сушильной установки показана на рисунке 1.



Рис. 1. Принципиальная схема барабанной установки:

Б - бункер; Д - дозатор; БС - барабан сушильный; Т - топка; СК - смесительная камера; В1-В3 - вентиляторы; Н - насос; ПБ - промежуточный бункер; ЛТ - ленточный транспортер; Ц - циклон; ЗВ - зубчатый венец; ВЗ<sub>1</sub> - ВЗ<sub>6</sub> - вентили запорные; ВР<sub>1</sub> - ВР<sub>3</sub> - вентили регулирующие; З1-З2 - затворы; МП - мокрый пылеуловитель

Влажный материал из бункера Б с помощью питателя Д подается во вращающийся сушильный барабан БС. Параллельно материалу в сушилку подается сушильный агент, образующийся от сгорания топлива в топке Т и смешения топочных газов с воздухом в смесительной камере СК. Воздух в топку и смесительную камеру подается вентиляторами В1 и В2. Высушенный материал с противоположного конца сушильного барабана поступает в промежуточный бункер ПБ, а из него на транспортирующее устройство ЛТ.

Отработанный сушильный агент перед выбросом в атмосферу очищается от пыли в циклоне Ц. Дополнительная очистка производится в мокром пылеуловителе МП.

Транспортировка сушильного агента через сушильную установку осуществляется с помощью вентилятора ВЗ. При этом установка находится под небольшим разрежением, что исключает утечку сушильного агента через неплотности установки.

Барабан приводится во вращение электродвигателем через зубчатый венец ЗВ.

### 2. Расчет барабанной сушилки

#### 2.1. Задание на проектирование

Рассчитать барабанную сушилку с подъемно-лопастными перевалочными устройствами для высушивания песка топочными газами при следующих исходных данных:

- Высушиваемый материал: доломит,
- Производительность сушилки по влажному материалу  $G_K = 20,5$  т/ч
- Влагосодержание материала, % от массы сухого материала:
  - начальное  $W_{\text{нач}} = 19,4$
  - конечное  $W_{\text{кон}} = 2,2$
- Температура сушильного агента на входе в барабан  $t_{\text{нач}} = 300 \, ^{\circ}C$ ,
- Температура влажного материала начальная  $\theta = 18^{\circ}C$ ,
- Размер частиц материала d = 2,8 мм.

Принимаем следующие значения незаданных параметров:

- Конечная температура сушильного агента (на выходе из барабана)  $t_{\text{кон}} = 100 \, ^{\circ}\text{C};$
- Температура топлива  $t_T = 20 \, ^{\circ}\text{C};$
- Температура свежего воздуха  $t_0 = 18$  °C;
- Относительная влажность воздуха  $\phi_0 = 72 \%$ ;
- Давление в сушилке: атмосферное
- Влагосодержание свежего воздуха  $x_0$ = 0,0092 кг/кг.

# 2.2. Параметры топочных газов подаваемых в сушилку

В качестве топлива используем газ следующего состава [в % (об.)]: 94  $CH_4$ ;  $1,2\,C_2H_6$ ;  $0,7\,C_3H_8$ ;  $0,4\,C_4H_{10}$ ;  $0,2\,C_5H_{12}$ ;  $0,2\,H_2$ ;  $2,8\,CO$ ;  $0,5\,N_2$ .

Теоретическое количество сухого воздуха  $L_0$ , необходимого на сжигание1 кг топлива, равно [1]:

$$L_0 = 138 \cdot [0.0179CO + 0.24H_2 + \sum \frac{(m + (n/4)C_m H_n)}{(12m + n)}], \tag{1}$$

Подставив соответствующие значения, получим:

$$\begin{split} L_0 &= 138 \cdot [0,0179 \cdot 0,028 + 0,24 \cdot 0,002 + \frac{(1+4/4) \cdot 0,94}{(12 \cdot 1 + 4)} + \frac{(2+6/4) \cdot 0,012}{(12 \cdot 2 + 6)} + \frac{(3+8/4) \cdot 0,007}{(12 \cdot 3 + 8)} + \\ &+ \frac{(4+10/4) \cdot 0,004)}{(12 \cdot 4 + 10)} + \frac{(5+12/4) \cdot 0,002)}{(12 \cdot 5 + 12)}] = 16,75 \, \text{ke/ke}. \end{split}$$

Количество тепла  $Q_V$ , выделяющегося при сжигании 1м<sup>3</sup> газа, равно[1]:

$$Q_v = \sum \text{мас. доля} \cdot Q_i$$
, (2)

где  $Q_i$  - тепловой эффект реакции горения простого газа, кДж/м $^3$ .

$$\begin{aligned} Q_{v} &= CH_{4} \cdot Q_{CH4} + C_{2}H_{4} \cdot Q_{C2H4} + C_{3}H_{6} \cdot Q_{C3H6} + C_{4}H_{10} \cdot Q_{C4H10} + C_{5}H_{12} \cdot Q_{C5H12} + CO \cdot Q_{CO} + H_{2} \cdot Q_{H2} \\ Q_{V} &= 0.94 \cdot 35741 + 0.012 \cdot 63797 + 0.002 \cdot 10810 + 0.028 \cdot 12680 + 0.007 \cdot 91321 + \\ &+ 0.004 \cdot 118736 + 0.002 \cdot 146080 = 36145.115 \, \kappa \cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}}\cancel{\text{J}$$

Плотность газообразного топлива  $\rho_T$  [1]:

$$p_{T} = \frac{\sum C_{m} H_{n} M_{i}}{v_{0}} \cdot \frac{T_{0}}{T_{0} + t_{T}}$$
(3)

где  $M_i$ - мольная масса топлива, кмоль/кг;  $t_T$ -температура топлива, равная 20  $^{0}C$ ;  $v_0$ - мольный объем, равный 22,4 м $^3$ /кмоль. Подставив, получим:

$$\rho_T = \frac{0.94 \cdot 16 + 0.012 \cdot 30 + 0.007 \cdot 44 + 0.004 \cdot 58 + 0.002 \cdot 72 + 0.002 \cdot 2 + 0.028 \cdot 28 + 0.005 \cdot 28}{22.4 \cdot (273 + 20)} = 0.708 \, \kappa \epsilon / m^3.$$

Количество тепла, выделяющегося при сжигании 1 кг топлива[1]:

$$Q = Q_V / \rho_T = \frac{36145,115}{0,708} = 51052,422 \ \text{кДж} / \text{кг}$$
 (4)

Масса сухого газа, подаваемого в сушильный барабан, в расчете на 1кг сжигаемого топлива определяется общим коэффициентом избытка воздуха  $\alpha$ , необходимого дли сжигания топлива и разбавления топочных газов до температуры смеси  $t_{\text{см}} = t_{\text{нач}} = 300 \, ^{\circ}\text{C}$ .

Значение α находят из уравнений материального и теплового балансов.

Уравнение материального баланса [1]:

$$1 + L_0 = L_{c.e.} + \sum_{n=0}^{\infty} \frac{9n}{12m + n} C_m H_n, \qquad (5)$$

где  $L_{c.e.}$ - масса сухих газов, образующихся при сгорании 1 кг топлива;  $C_m H_n$ - массовая доля компонентов, при сгорании которых образуется вода, кг/кг.

Уравнение теплового баланса [1]

$$Q_{\eta} + c_{T}t_{T} + \alpha L_{0}I_{0} = \left[L_{c.r.} + L_{0}(a-1)\right] \cdot i_{c.r.} + \left[aL_{0}x_{0} + \sum_{12m+n}^{9n} C_{m}H_{n}\right] \cdot i_{n}, \quad (6)$$

где  $\eta$  - общий коэффициент полезного действия, учитывающий эффективность работ топки и потери тепла топкой в окружающую среду, принимаемый равным 0,95;  $c_T$  - теплоемкость газообразного топлива при температуре  $t_T = 20$  °C, равная 1,34 кДж/кг · К;  $I_0$  — энтальпия свежего воздуха, кДж/кг;  $i_{c.r.} = c_{c.r.} \cdot t_{c.r.}$  — энтальпия сухих газов, кДж/(кг · K) [2];  $c_{c.r.} \cdot t_{c.r.}$  — соответственно теплоемкость и температура сухих газов [2];  $c_{c.r.} = 1,05$  кДж/(кг · K),  $t_{c.r.} = 550$ °C; х<sub>0</sub>- начальное влагосодержание воздуха, кг/кг сухого воздуха, при температуре  $t_0 = 20$ °c, равное 9 г/кг = 0,009 кг/кг; $i_n = r_0 + c_n \cdot t_n$  — энтальпия водяных паров, кДж/кг [2];  $r_0$  - теплота испарения воды при температуре 0°C, равная 2500 кДж/кг;  $c_n$  — средняя теплоемкость водяных паров, равная 1,97 кДж/(кг · K);  $t_n$  —температура водяных паров;  $t_n = t_{cr} = t_{cw} = 300$  °C.

Решая совместно уравнения (5) и (6), получим:

$$Q\eta + ct_T - i_{c.r.} \cdot \left(1 - \sum_{12m+n}^{9n} C_m H_n\right) - \alpha = \frac{-i_n \sum_{12m+n}^{9n} C_m H_n}{L_0(i_{c.r.} + i_n \cdot x_0 - I_0)}.$$
 (7)

Пересчитаем кг топлива, при сгорании которых образуется вода, из объемных долей в массовые [1]:

$$C_m H_n = \frac{C_m H_n \cdot M_r \cdot T_0}{V_m \cdot \rho_T \cdot (T_0 + t_T)},\tag{8}$$

где  $C_m H_n$  - объёмная доля компонента в смеси;  $V_m$ - молярный объём, равный 22,4 моль/л;  $\rho_T$  - плотность газообразного топлива ;  $T_0$  - термодина-мическая температура, равная 273 К;  $t_T$  — температура топлива, равная 20 °C.

$$CH_4 = \frac{0.94 \cdot 16 \cdot 273}{22.4 \cdot 0.708 \cdot (273 + 20)} = 0,884;$$

$$C_2H_6 = \frac{0.012 \cdot 30 \cdot 273}{22.4 \cdot 0.708 \cdot (273 + 20)} = 0,0216;$$

$$C_3H_8 = \frac{0.007 \cdot 44 \cdot 273}{22.4 \cdot 0.708 \cdot (273 + 20)} = 0,0181;$$

$$C_4H_{10} = \frac{0.004 \cdot 58 \cdot 273}{22.4 \cdot 0.708 \cdot (273 + 20)} = 0,0136;$$

$$C_5H_{12} = \frac{0.002 \cdot 72 \cdot 273}{22.4 \cdot 0.708 \cdot (273 + 20)} = 0,00846;$$

$$H_2 = \frac{0.002 \cdot 2 \cdot 273}{22.4 \cdot 0.708 \cdot (273 + 20)} = 0,000235.$$

Количество влаги, выделяющейся при сгорании 1 кг топлива, равно[1]:

$$\sum \frac{9n}{12m+n} C_m H_n = \frac{9\cdot4}{12\cdot1+4} \cdot 0,8841 + \frac{9\cdot6}{12\cdot2+6} \cdot 0,0211 + \frac{9\cdot8}{12\cdot3+8} \cdot 0,0181 + \frac{9\cdot10}{12\cdot4+10} \cdot 0,0136 + \frac{9\cdot12}{12\cdot5+12} \cdot 0,0085 + 0,0002 = 2,09 \text{ kg/kg}.$$

Коэффициент избытка воздуха находим по уравнению (7) [1]:

$$\alpha = \frac{Q_P^B \cdot \eta_T + c_T \cdot t_T - (1 - \sum \frac{9n}{12m + n} C_m H_n) \cdot c_{C.\Gamma.} \cdot t_{C.\Gamma.} - \sum \frac{9n}{12m + n} C_m H_n \cdot i_{\Pi}}{L_0(c_{C.\Gamma.} \cdot t_{\Gamma} + i_{\Pi} \cdot x_0 - I_0)}$$
(9)

Подставив значения, получим:

$$\alpha = \frac{51052,422 \cdot 0,95 + 1,34 \cdot 20 - 1,05 \cdot 300 \cdot (1 - 2,092) - (2500 + 1,97 \cdot 300) \cdot 2,092}{16,75 \cdot [1,05 \cdot 300 + (2500 + 1,97 \cdot 300) \cdot 0,0092 - 4,19]} = 7,462.$$

Общая удельная масса сухих газов, получаемых при сжигании 1 кг топлива и разбавлении топочных газов воздухом до температуры смеси 300°C, равна[2]:

$$G_{C.\Gamma.} = 1 + \alpha \cdot L_0 - \sum \frac{9n \cdot C_m H_n}{12m + n};$$

$$G_{C.\Gamma.} = 1 + 7,462 \cdot 2,092 \cdot 16,75 - 2,092 = 123,897 \, \kappa \epsilon / \kappa \epsilon.$$
(10)

Удельная масса водяных паров в газовой смеси при сжигании 1 кг топлива[1]:

$$G_n = \sum \frac{9n}{12m+n} C_m H_n + \alpha \cdot x_0 \cdot L_0,$$

$$G_{II} = 2,092 + 7,462 \cdot 0,092 \cdot 16,75 = 3,242 \, \kappa \epsilon / \kappa \epsilon$$
(11)

Влагосодержание газов на входе в сушилку  $(x_1 = x_{cm})$  на 1 кг сухого воздуха равно [1]:

$$x_1 = \frac{G_{II}}{G_{C,F}},\tag{12}$$

$$x_1 = \frac{3,242}{123,897} = 0,0262 \frac{\text{K}\Gamma}{\text{K}\Gamma},$$

Энтальпия газов на входе в сушилку [1]:

$$I_1 = \frac{(Q\eta_T + c_T \cdot t_T + \alpha \cdot L_0 \cdot I_0)}{G_{CT}}; \tag{13}$$

$$I_1 = \frac{51052,\!422\cdot 0,\!95+1,\!34\cdot 20\cdot 7,\!462\cdot 16,\!75\cdot 4,\!19}{123,\!897} = 395,\!896 \; \text{кДж} / \, \text{кг} \, .$$

Поскольку коэффициент избытка воздуха α велик, физические свойства газовой смеси, используемой в качестве сушильного агента, практически не отличаются от физических свойств воздуха. Это дает возможность использовать в расчетах диаграмму состояния влажного воздуха I-х.

#### 2.3. Параметры отработанных газов. Расход сушильного агента.

Определим расход влаги W, удаляемой из высушиваемого материала, при изменении влажности материала от  $W_{\text{нач}}$  до  $W_{\text{кон}}$ , если влагосодержание задано в процентах от массы сухого вещества [1]:

$$W = G_k \cdot \frac{W_{\text{HAY}} - W_{\text{KOH}}}{100 - W_{\text{HAY}}},\tag{14}$$

Переведём производительность сушилки по высушенному материалу из т/ч в кг/с:

$$G_k = \frac{20.5 \cdot 1000}{3600} = 5.694 \frac{\text{K}\Gamma}{\text{c}}.$$

Полученные значения подставим в выражение (14):

$$W = 5,694 \cdot \frac{(19,4-2,2)}{(100-19,4)} = 1,215 \text{ Kr/c}$$

Уравнение внутреннего теплового баланса сушилки [1]:

$$\Delta = c\theta_1 + q_{\text{доп}} - (q_1 + q_{\text{M}} + q_{\text{\Pi}}), \tag{15}$$

где  $\Delta$  - разность между удельным расходом и приходом тепла в сушильной камере, кДж/кг влаги; с - теплоемкость влаги во влажном материале при температуре  $\theta_1$ =18 °C, равная 4,19 кДж/кг·К [2];  $q_{доп}$  - удельный дополнительный подвод тепла в сушильную камеру, при работе сушилки по нормальному сушильному варианту:  $q_{доп} = 0$  [2];  $q_T$  - удельный подвод тепла в сушилку с транспортными средствами, кДж/кг влаги ; в рассматриваемом случае  $q_T = 0$  кДж/кг влаги [2];  $q_M$  - удельный подвод тепла в сушильный барабан с высушиваемым материалом, кДж/кг влаги [1]:

$$q_{\rm M} = \frac{G_k \cdot C_{\rm M}(\theta_2 - \theta_1)}{W},\tag{16}$$

где см – теплоемкость высушенного материала, равная для доломита 0,92 кДж/кг·К [1];  $\theta_2$  - температура высушенного материала на входе в °C. испарении поверхностей сушилку, При влаги  $\theta_2$ принимаем приблизительно равной температуре мокрого термометра при соответствующих параметрах сушильного агента.

Принимая в первом приближении процесс сушки адиабатическим, находим  $\theta_2$  по I - х диаграмме (приложение B) по начальным параметрам сушильного агента ( $x_1 = 0.0262 \text{ кг/кг}$ ;  $I_1 = 395.896 \text{ кДж/кг}$ ):  $\theta_2 = t_{\text{м}} = 58^{\circ}\text{C}$ ;  $q_{\text{n}}$  - удельные потери тепла в окружающую среду.

Подставив соответствующие значения в уравнение (14) получим:

$$\Delta$$
= 4,19 · 18 + 0 - 0 +  $\frac{5,694 \cdot 0,92(58-18)}{1,215}$  - 22,6 = -132,986 кДж/кг влаги

Запишем уравнение рабочей линии сушки [1]:

$$\Delta = \frac{I - I_1}{(x - x_1)}$$
 или  $I = I_1 + \Delta \cdot (x - x_1)$ . (17)

Для построения рабочей линии сушки по диаграмме I - x необходимо знать координаты (x и I) минимум двух точек. Координаты одной точки известны:  $x_1 = 0,0239$  кг/кг;  $I_1 = 389,049$  кДж/кг. Для нахождения координат второй точки зададимся произвольным значением x = 0,1 кг/кг и определим соответствующее значение I, подставив в уравнение (16):

 $I = 395,896 - 132,986 \cdot (0,1 - 0,0262) = 386,055$  кДж/кг.

Через две точки на диаграмме I - x (приложение B) с координатами  $x_I$ ,  $I_I$  и x, I проводим линию сушки до пересечения с выбранным конечным параметром  $t_{\text{кон}}$ = 100°C.

В точке пересечения линии сушки с изотермой  $t_{\text{кон}}$  находим параметры отработанного сушильного агента:  $x_2$ =0,108 кг/кг;  $I_2$ = 380 кДж/кг. Определяем температуру материала на выходе из сушилки:  $t_{\text{МТВвых}}$ = 54°C.

Расход сухого газа [1]:

$$L_{c.r.} = \frac{W}{x_2 - x_1},$$
 (18)  
 $L_{c.r.} = \frac{1,215}{0.108 - 0.0262} = 14,853 \text{ KF/c.}$ 

Расход сухого воздуха [1]:

$$L = \frac{W}{x_2 - x_0};$$

$$L = \frac{1,215}{0.108 - 0.0092} = 12,298 \text{ kg/c}.$$
(19)

Расход тепла па сушку [1]:

$$Q_c = L_{c.r.} \cdot (I_1 - I_0),$$
 (20)  
 $Q_c = 14.853 \cdot (395.896 - 4.19) = 5818,009 кДж/с$ 

Расход топлива на сушку [1]:

$$G_T = \frac{Q_c}{Q},$$
 (21)  
 $G_T = \frac{5818.009}{51052.422} = 0,114 \text{ kg/c}.$ 

# 2.4. Определение основных размеров сушильного барабана

Основные размеры барабана выбирают по нормативам и каталогам - справочникам [2, 3] в соответствии с объемом сушильного пространства. Объем сушильного пространства V складывается из объема  $V_n$ , необходимого для прогрева влажного материала до температуры, при которой начинается интенсивное испарение влаги (до температуры мокрого термометра сушильного агента), и объема  $V_c$ , требуемого для проведения процесса испарения влаги, то есть  $V = V_c + V_n$ . Объем сушильного пространства барабана вы-

числяем по уравнению массопередачи [1]:

$$V_c = \frac{W}{K_{\nu} \cdot \Delta x'_{\rm cp}},\tag{22}$$

где  $\Delta x'_{\rm cp}$  - средняя движущая сила массопередачи, кг влаги/м³;  $K_{\it V}$  - объёмный коэффициент массопередачи, 1/с.

При кристаллических материалов происходит сушке удаление поверхностной влаги, т.е. процесс протекает в первом периоде сушки, когда скорость процесса определяется только внешним диффузионным сопротивлением. При параллельном движении материала и сушильного агента температура влажного материала равна температуре мокрого термометра. В этом случае коэффициент массопередачи численно равен коэффициенту массоотдачи  $K_v = \beta_v$ . [1]

Для барабанной сушилки коэффициент массоотдачи  $\beta_{\nu}$  вычисляется по эмпирическому уравнению [1]:

$$\beta_v = 1,62 \cdot 10^{-2} \cdot \frac{(\omega \cdot \rho_{\rm cp})^{0.9} \cdot n^{0,7} \cdot \beta^{0,54} \cdot P_0}{[C \cdot \rho_{cp} \cdot (P_0 - P)]},\tag{23}$$

где  $\rho_{cp}$  - средняя плотность сушильного агента, кг/м³; с - теплоемкость сушильного агента при средней температуре в барабане, равная 1 кДж/кг·К [1];  $\beta$  - оптимальное заполнение барабана высушиваемым материалом, %;  $P_0$  - давление, при котором осуществляется сушка, Па; P - среднее парциальное давление водяных паров в сушильным барабане, Па.

Уравнение (23) справедливо для значений  $\omega \rho_{cp} = 0.6$  - 1,8 кг/ (м² · c), n = 1.5 -5.0 об/мин,  $\beta = 10$  - 25%.

Рабочая скорость сушильного агента в барабане зависит от дисперстности и плотности высушиваемого материала. В данном случае сушке подвергается доломит с размером высушиваемого материала 2,8 мм, насыпная плотность доломита  $\rho_{\text{M}} = 1800 \text{ кг/м}^3[6]$ . Принимаем скорость газов в барабане  $\omega = 2,4 \text{ м/c}$ .

Средняя температура в барабане:

$$t_{\rm cp} = \frac{t_{\rm KOH} + t_{\rm Ha^{\rm q}}}{2}$$

$$t_{\rm cp} = \frac{300 + 100}{2} = 200^{\circ}\text{C}$$
(24)

Плотность сушильного агента при средней температуре в барабане  $t_{cp}$  практически соответствует плотности воздуха при этой температуре:

$$\rho_{\rm cp} = \frac{{}^{M}_{\nu_0} \cdot \frac{T_0}{T_0 + t_{\rm cp}},$$

$$\rho_{\rm cp} = \frac{{}^{29}_{22.4} \cdot \frac{273}{273 + 200} = 0,747 \text{ K}\Gamma/\text{M}^3.$$
(25)

При этом  $\omega \cdot \rho_{cp} = 2,4 \cdot 0,747 = 1,7928 \ кг/м^3 \cdot c$ , что не нарушает справедливости уравнения (23).

Принимаем частоту вращения барабана n = 1,5 об/мин.

Оптимальное заполнение барабана высушиваемым материалом  $\beta$  для разных конструкций перевалочных устройств различно. Наиболее распространенные перевалочные устройства показаны на рисунке 2. Для рассматриваемой конструкции сушильного барабана  $\beta = 12\%$ .



**Рис.2.** Типы перевалочных устройств, применяемых в барабанных сушилках, и степень заполнения барабана β:

1 — подъемно-лопастного, $\beta$  = 12%; 2 — то же,  $\beta$  =14%; 3 — распределительные,  $\beta$  =20,6%; 4 — распределительные с закрытыми ячейками,  $\beta$  =27,5%.

Для рассматриваемой конструкции сушильного барабана принимаем степень заполнения барабана  $\beta=12\%$ . Процесс сушки осуществляется при атмосферном давлении, то есть  $P_0=10^5~\Pi a.~[1]$ 

Парциальное давление водяных паров в газе определим по уравнению:

$$P = \frac{\left(\frac{x}{M_{\rm B}}\right) \cdot P_0}{\frac{1}{M_{\rm C.B.}} + \frac{x}{M_{\rm B}}},\tag{26}$$

Тогда на входе в сушилку:

$$p_1 = \frac{(\frac{0.0262}{18}) \cdot 10^5}{\frac{1}{29} + \frac{0.0262}{18}} = 4050,15 \, \Pi a$$
;

на выходе из сушилки:

$$p_2 = \frac{(\frac{0,108}{18}) \cdot 10^5}{\frac{1}{29} + \frac{0,108}{18}} = 14821,124 \text{ }\Pi a.$$

Парциальное давление водяных паров в сушильном барабане определим, как среднеарифметическую величину между парциальными давлениями на входе газа в сушилку и на выходе из нее:

$$p = \frac{p_1 + p_2}{2},$$

$$P_{\rm cp} = \frac{4050.15 + 14821.124}{2} = 9435.637 \,\text{\Pia}.$$
(27)

Таким образом, объёмный коэффициент массоотдачи равен [1]:

$$\beta_v = 1.62 \cdot 10^{-2} \cdot \frac{1.8^{0.9} \cdot 1.5^{0.7} \cdot 12^{0.54} \cdot 10^5}{1 \cdot 0.747(10^5 - 9435.637)} = 0.207 c^{-1}$$

Движущую силу массопередачи  $\Delta x'_{cp}$  определим по уравнению [1]:

$$\Delta x'_{\rm cp} = \frac{\Delta x'_6 - \Delta x'_{\rm M}}{\ln(\frac{x_6}{x_{\rm M}})} = \frac{\Delta P_{\rm cp} - M_B}{P_0 \cdot v_0 \cdot \frac{T_0 + t_{\rm cp}'}{T_0}}$$
(28)

где  $\Delta x'_6 = x_1^* - x'_1$  — движущая сила в начале процесса сушки, кг/м³;  $\Delta x'_{\rm M} = x_2^* - x'_1$  — движущая сила в конце процесса сушки, кг/м³;  $x_2^*$  и  $x_1^*$  - равновесное содержание влаги на входе в сушилку и на выходе из нее, кг/м³.

Средняя движущая сила  $\Delta P_{cp}$ , выраженная через единицы давления (Па) равна [1]:

$$\Delta P_{\rm cp} = \frac{\Delta P_6 - \Delta P_{\rm M}}{\ln\left(\frac{\Delta P_6}{\Delta P_{\rm M}}\right)},\tag{29}$$

Для противоточного движения сушильного агента и высушиваемого материала имеем:  $\Delta P_6 = p_1^* - p_1$  - движущая сила в начале процесса сушки, Па;  $\Delta P_{\rm M} = p_2^* - p_2$  - движущая сила в конце процесса сушки, Па;  $p_1^*$  и  $p_2^*$  - давления насыщенных паров над влажным материалом в начале и в конце процесса сушки, Па.

Значения  $p_1^*$  и  $p_2^*$  определяем по температуре мокрого термометра

сушильного агента в начале  $(t_{MT \ ex})$  и в конце  $(t_{MT \ ebs})$  процесса сушки по уравнению:

$$p_1^* = exp \left(23,477 - \frac{3990,67}{233,93 + t_{MT,BX}}\right) \tag{30}$$

$$p_1^* = exp\ (23,477 - \frac{3990,67}{233,92 + 58}) = 18160,424$$
 Па

$$p_2^* = exp \left(23,477 - \frac{3990,67}{233,93 + t_{MT \text{ BbIX}}}\right) \tag{31}$$

$$p_2^* = exp\ (23,477 - \frac{3990,67}{233,92 + 57}) = 17326,632\ \Pi a$$

Откуда получаем:

$$\Delta P_{\rm cp} = \frac{(p_1^* - p_1) - (p_2^* - p_2)}{\ln\left(\frac{p_1^* - p_1}{(p_2^* - p_2)}\right)}$$
(32)

$$\Delta P_{cp} = \frac{\left(18160,\!424-4050,\!15\right)-\left(17326,\!632-14821,\!124\right)}{\ln\left(\frac{18160,\!424-4050,\!15}{17326,\!632-14821,\!124}\right)} = 6714,\!12\;\Pi a\,.$$

Выразим движущую силу в кг/м³ по уравнению (27):

$$\Delta X_{\rm cp} = \frac{5424 \cdot 18}{10^5 \cdot 22,4 \cdot (\frac{273 + 200}{273})} = 0,0252 \text{ kg/m}^3$$

Находим объем сушильного барабана V<sub>c</sub>, необходимый для проведения процесса испарения влаги, без учета объема аппарата, требуемого на прогрев влажного материала находим по уравнению (22):

$$V_c = \frac{1,215}{0,207 \cdot 0,0311} = 188,732 \,\mathrm{m}^3.$$

Объем сушилки, необходимый для прогрева влажного материала, находим по модифицированному уравнению теплопередачи:

$$V_n = \frac{Q_n}{k_v \cdot \Delta t_{\rm cp}},\tag{33}$$

где  $Q_n$  - расход тепла на нагрев материала до температуры  $t_{MTBx}$ , кBт;  $K_v$  объёмный коэффицент теплопередачи, кBт/м $^3$  · K;  $\Delta t_{cp}$  - средняя разность температур, °C

Расход тепла Q<sub>n</sub> равен [1]:

$$Q_n = G_k \cdot c_M \cdot (T_{MT_{BX}} - \Theta_1) + W \cdot c \cdot (T_{MT_{BX}} - \Theta_1), \tag{34}$$

$$Q_n = 5,694 \cdot 0,92 \cdot (58 - 18) + 1,215 \cdot 4,19 \cdot (58 - 18) = 413,173 \text{ kBt}.$$

Объемный коэффициент теплопередачи определим по эмпирическому уравнению [1]:

$$k_{\nu} = 16 \cdot (\omega \cdot \rho_{\rm cp})^{0.9} \cdot n^{0.7} \cdot \beta^{0.54}, \tag{35}$$
$$k_{\nu} = 16 \cdot 1,8^{0.9} \cdot 1,5^{0.7} \cdot 12^{0.54} = 0,138 \text{ kBT/M}^3 \cdot \text{K}$$

Для вычисления  $\Delta t_{cp}$ , необходимо найти температуру сушильного агента  $t_x$ , до которой он охладится от  $t_{Ha^{\prime\prime}}$  до  $t_{MT_{6bl}x}$ , отдавая тепло на нагрев высушиваемого материала до  $t_{MT_{6x}}$ . Эту температуру можно определить из уравнения теплового баланса [1]:

$$Q_n = L_{c.r.} \cdot (1 + x_1) \cdot c_{c.r.} \cdot (t_{\text{Hay}} - t_x), \tag{36}$$

$$t_{x} = t_{\text{HaY}} - \frac{Q_{n}}{L_{c.r.}(1+x_{1}) \cdot c_{c.r.}},$$
(37)

$$t_x = 400 - \frac{413,173}{14,853 \cdot (1 + 0,0262) \cdot 1,05} = 325$$
°C

Средняя разность температур  $\Delta t_{cp}$  равна [2]:

$$\Delta t_{\rm cp} = \frac{\left[ (t_{\rm Ha^{_{}}} - \Theta_1) + (t_{_{}\chi} - t_{MT_{\rm BX}}) \right]}{2},$$
 
$$\Delta t_{\rm cp} = \frac{(300 - 20) + (325 - 57)}{2} = 274,908^{\circ}\text{C}$$

Подставляем полученные значения в выражение (33):

$$V_n = \frac{413,173}{0,138 \cdot 274,908} = 10,891 \text{m}^3$$

Общий объем сушильного барабана равен [1]:

$$V = V_c + V_{\pi}$$

$$V = 188.732 + 10.891 = 199.623 \text{ m}^3$$
(38)

В соответствии со справочными данными [7] выбираем барабанную сушилку  $\phi$  3,2 × 25 выпускаемую Шанхайской компанией с общим объемом V=219,8 м³, основные характеристики которой представлены в табл. 1.

| Показатели                                    | Значения         |
|-----------------------------------------------|------------------|
| Внутренний диаметр барабана, м                | 3,2              |
| Длина барабана, м                             | 25               |
| Толщина стенок наружного цилиндра, мм         | 22               |
| Объём сушильного пространства, м <sup>3</sup> | 200,96           |
| Частота вращения барабана, об/мин             | 1,5              |
| Общая масса, кг                               | $166 \cdot 10^3$ |
| Потребляемая мощность двигателя, кВт/ч        | 110              |
| Производительность, т/ч                       | 75 - 90          |

Определим действительную скорость газов в барабане [1]:

$$\omega_{\Lambda} = \frac{v_r}{0.785 \cdot d^2},\tag{39}$$

Объемный расход влажного сушильного агента на выходе из барабана равен [1]:

$$v_r = L_{c.r.} \cdot v_0 \cdot \frac{T_0 + t_{cp}}{T_0} \cdot \left(\frac{1}{M_{c.r.}} + \frac{x_{cp}}{M_B}\right), \tag{40}$$

где  $x_{cp}$ - среднее содержание влаги в сушильном агенте, кг/кг сухого воздуха, равное:

$$x_{\rm cp} = \frac{x_1 + x_2}{2},$$

$$x_{\rm cp} = \frac{0,0262 + 0,108}{2} = 0,0671$$
(41)

Подставим значения в уравнение (39) получим:

$$v_r = 14,853 \cdot 22,4 \cdot \frac{273 + 200}{273} \cdot \left(\frac{1}{29} + \frac{0,0671}{18}\right) = 22,026 \, \text{m}^3/c$$

Тогда 
$$\omega_{\text{Д}} = 22,026 / (0,785 \cdot 3,2^2) = 2,74 \text{ м}^3/\text{c}$$

Действительная скорость газов ( $\omega_{\rm Д}=2,74{\rm m}^3/{\rm c}$ ) отличается от принятой в расчёте ( $\omega$ =2,4 м/c) менее чем на 15%. Некоторое уменьшение интенсивности процесса сушилки при снижении скорости газов по сравнению с принятой в расчёте полностью компенсируется избытком

объёма выбранной сушилкой сравнению с расчётным. Если расхождение принятой и действительной скоростями газов более существенно, необходимо повторить расчёт, внося соответствующие коррективы.

Определим среднее время пребывания материала в сушилке[1]:

$$\tau = G_M/(G_K + W/2) \tag{42}$$

Количество находящегося в сушилке материала (в кг) равно:

$$G_M = V\beta \rho_M; \tag{43}$$

$$G_M = 200,96 \cdot 0.12 \cdot 1800 = 43407,36 \,\kappa c$$

Отсюда 
$$\tau = \frac{43407,36}{5,694 + \frac{1,215}{2}} = 6888,417 c.$$

Зная время пребывания, рассчитаем угол наклона барабана  $\alpha$  [1]:

$$\alpha' = \left(\frac{30 \cdot L}{d \cdot n \cdot \tau} + 0,007 \cdot \omega_{\Lambda}\right) \cdot \left(\frac{180}{\pi}\right), \tag{44}$$

$$\alpha' = \left(\frac{30 \cdot 25}{3,2 \cdot 1,5 \cdot 6888,417} + 0,007 \cdot 2,74\right) \cdot \left(\frac{180}{3,14}\right) = 2,4^{\circ}$$

Далее проверяем допустимую скорость газов, исходя из условия, что частицы высушиваемого материала наименьшего диаметра не должны уноситься потоком сушильного агента из барабана. Скорость уноса, равную скорости свободного витания  $\omega$  С.В. определим по уравнению:

$$\omega_{\text{C.B.}} = \frac{\mu_{cp}}{d \cdot \rho_{cp}} \cdot \left(\frac{Ar}{18 + 0.575 + \sqrt{Ar}}\right),\tag{45}$$

где  $\mu_{cp}$  и  $\rho_{cp}$  - вязкость и плотность сушильного агента при средней температуре  $t_{cp}=200$ °C; Ar - критерий Архимеда.

Средняя плотность сушильного агента равна [1]:

$$\rho_{cp} = [M_{C.B.} \cdot (P_0 - p) + M_B \cdot p] \cdot \frac{T_0}{\nu_0 p_0 \cdot (T_0 + t_{cp})}, \tag{46}$$

$$\rho_{\rm cp} = [29 \cdot (10^5 - 9435,637) + 18 \cdot 9435,637] \cdot \frac{273}{22,4 \cdot 10^5 \cdot (273 + 200)}$$
$$= 0.72 \,\,\mathrm{kg/m^3}.$$

Определим вязкость сушильного агента  $\mu_{cp}$  при средней температуре  $t_{cp} = 200 ^{\circ} \text{C [6]}$ :

$$\mu_t = \mu_0 \frac{273 + C}{T + C} \left(\frac{T}{273}\right)^{\frac{3}{2}} \tag{47}$$

где  $\mu_0$  - динамический коэффициент вязкости при 0°C, равен 17,3·10<sup>-6</sup> Па·с [6]; T - температура, равная T = 200 + 273 = 473 K; C - постоянная Сатерленда, при данных условиях C = 124 [6].

Подставим значения в уравнение (46) получим:

$$\mu_{200} = 17.3 \cdot 10^{-6} \frac{273 + 124}{473 + 124} (\frac{473}{273})^{\frac{3}{2}} = 2,624 \cdot 10^{-5} \,\mathrm{\Pia} \cdot \mathrm{c} \,.$$

Критерий Архимеда:

$$Ar = \frac{d^3 \cdot \rho_{\mathsf{q}} \cdot \rho_{\mathsf{cp}} \cdot g}{\mu_{\mathsf{cp}}^2},\tag{48}$$

где  $\rho_{\rm ч}$ - плотность частиц высушиваемого материала, равная для доломита:  $2650~\kappa z/{\rm M}^3~[1];$ 

$$Ar = \frac{(2.8 \cdot 10^{-3})^3 \cdot 2650 \cdot 0.72 \cdot 9.8}{(2.624 \cdot 10^{-5})^2} = 59.614 \cdot 10^4.$$

Тогда скорость уноса  $\omega_{C.B.}$  находим по уравнению (44):

$$\omega_{\text{\tiny C.B.}} = rac{2,624\cdot 10^{-5}}{2,8\cdot 10^{-3}\cdot 0,72} \cdot rac{59,614\cdot 10^4}{18+0,575\cdot \sqrt{59,614\cdot 10^4}} = 16,796 \; \text{m/c} \, .$$

Рабочая скорость сушильного агента в сушилке ( $\omega_{\rm д}$ = 2,74 м/с) меньше, чем скорость уноса частиц наименьшего размера ( $\omega_{\rm c.в.}$ = 16,796 м/с), поэтому расчет основных размеров сушильного барабана заканчиваем.

#### 3. Расчет и выбор вентилятора

Для выбора вентилятора, который должен обеспечить отвод требуемого количества сушильного агента  $L_{\rm c.r}=14,853$  кг/с из сушилки, необходимо рассчитать избыточное давление, которое должен обеспечить вентилятор для преодоления гидравлического сопротивления системы сушилка — циклон — вентилятор, в которой фильтр не учитывается так как изза малого значения скорости движения газов в нём  $\Delta P_{\varphi}$ = 0 Па.

Пересчитаем массовый расход газа в объемный расход:

$$L_{c.r} = \frac{14,853}{\rho_{cp}} = \frac{14,853}{0,72} = 20,629 \text{ m}^3/\text{c}.$$



Рис. 3. Схема трубопровода к расчету вентилятора

Определим диаметр трубопровода круглого сечения [1]:

$$d_{\rm m} = \sqrt{\frac{4L_{c.2}}{\pi\omega}},\tag{49}$$

где  $L_{c.z}$  — расход сухого газа, м<sup>3</sup>/с;

 $\omega$  — скорость воздуха в трубопроводе, принимаем равной 10 м/с;

$$d_{\rm m} = \sqrt{\frac{4 \cdot 20,629}{3,14 \cdot 20}} = 1,146 \text{ m}.$$

Выбираем трубу из углеродистой стали с наружным диаметром  $d_m^{\it hap}=1200~{\rm mm}~{\rm u}~{\rm толщиной}~{\rm стенкu}~\delta_{\rm cr}=20~{\rm mm}~{\rm no}~\Gamma{\rm OCT}~10704~91.$ 

Тогда внутренний диаметр трубы  $(d_m^{g_H})$  равен [1]:

$$d_m^{eH} = d_m^{Hap} - 2\delta_{cT};$$
 (50)  
 $d_m^{eH} = 1,220 - 2 \cdot 20 = 1,180 \text{ M}.$ 

Определяем фактическую скорость воздуха в трубе [1]:

$$\omega_{\phi a \kappa m} = \frac{4L_{c.2}}{\pi (d_m^{GH})^2} \tag{51}$$

$$\omega_{\phi a \kappa m} = \frac{4 \cdot 20,629}{3,14 \cdot (1,180)^2} = 18,873 \text{ M/c}.$$

Определим критерий Рейнольдса для потока в трубопроводе [1]:

$$Re = \frac{\omega_{\phi a \kappa m} \cdot d_m^{gH} \cdot \rho_{cp}}{\mu_{cp}},$$
 (52)

где  $\mu_{\rm cp}$  — вязкость сушильного агента при температуре  $t_{\rm cp}$  = 60°C [6]:

$$\mu_{\rm cp} = \mu_0 \cdot \frac{273 + C}{T + C} \cdot \left(\frac{T}{273}\right)^{\frac{3}{2}}$$
 (53)

$$\mu_{\rm cp} = 17.3 \cdot 10^{-6} \cdot \frac{273 + 124}{20 + 124} \cdot \left(\frac{61 + 273}{273}\right)^{\frac{3}{2}} = 2,029 \cdot 10^{-5} \,\, \mathrm{\Pia} \cdot \mathrm{c}.$$

Тогда:

$$Re = \frac{18,873 \cdot 1,180 \cdot 0,72}{2,029 \cdot 10^{-5}} = 790266,18$$

Re> 10000, следовательно имеем турбулентный режим движения газа. Примем, что трубы были в эксплуатации, значит имеют незначительную коррозию. Тогда абсолютная шероховатость  $\Delta = 0.15$  мм [1].

Определяем относительную шероховатость труб[1]:

$$e = \frac{\Delta}{d_{\rm T}^{\rm BH}}$$
 (54)

$$e = \frac{1.5 \cdot 10^{-4}}{1.180} = 1.271 \cdot 10^{-4} \text{ MM}.$$

Определяем зону трения в трубопроводе [1]:

$$\frac{1}{e} = \frac{1}{1,271 \cdot 10^{-4}} = 7867,821;$$

$$\frac{10}{e} = \frac{10}{1,271 \cdot 10^{-4}} = 78678,206;$$

$$\frac{560}{e} = \frac{560}{1,271 \cdot 10^{-4}} = 4405979,544.$$

Следовательно, в трубопроводе имеет место зона смешанного трения [1]. Определяем коэффициент трения в трубах [1]:

$$\lambda = 0.11 \cdot \left( e + \frac{68}{Re} \right)^{0.25}$$

$$\lambda = 0.11 \cdot \left( 1.271 \cdot 10^{-4} + \frac{68}{790266.18} \right)^{0.25} = 0.0133.$$
(55)

Учитывая, что коррозия труб незначительна, рассчитаем сумму коэффициентов местных сопротивлений в соответствии с технологической схемой:

- вход в трубопровод (принимаем с закругленными краями):  $\xi_1 = 0.2$ ;
- колено с углом 90°C (угольник):  $\xi_2 = 1,1$ ;
- выход из трубопровода: $ξ_3 = 1$ .

$$\sum \xi = \xi_1 + n \cdot \xi_2 + \xi_3,\tag{56}$$

где n — количество поворотов (колен)трубопровода, в рассматриваемом случает n=2.

$$\sum \xi = 0.2 + 2 \cdot 1.1 + 1 = 3.4.$$

Определяем гидравлическое сопротивление трубопровода [1]:

$$\Delta P_{\rm T} = \frac{\left(\frac{\lambda L}{d} + \sum \xi\right) \cdot \rho_{\rm cp} \cdot \omega_{\rm \phi a \kappa T}^2}{2},\tag{57}$$

где L – длина трубопровода, принимаем равной 20 м.

$$\Delta P_{T} = \frac{\left(\frac{0.0133 \cdot 20}{1.180} + 3.4\right) \cdot 0.72 \cdot 18.873^{2}}{2} = 464,882 \text{ }\Pi a.$$

Определяем избыточное давление, которое должен обеспечить вентилятор [1]:

$$\Delta P = \Delta P_{c6} + \Delta P_{II} + \Delta P_{T}, \tag{58}$$

где  $\Delta P_{c6}$  — гидравлическое сопротивление сушилки, которым можно пренебречь из-за малого значения скорости движения газов в сушильном барабане  $\Delta P_{c6} = 0$  Па;  $\Delta P_{u}$  — гидравлическое сопротивление циклона, равное  $\Delta P_{u} = 491,388$  Па.

$$\Delta P = 0 + 491,388 + 464,882 = 956,27 \text{ }\Pi a.$$

Таким образом, необходим вентилятор среднего давления. Определим его полезную мощность[1]:

$$N_{\pi} = L_{c.r} \cdot \Delta P$$
 (59)  
 $N\pi = 20,629 \cdot 956,27 = 19,718 \text{ kBt.}$ 

Мощность, которую должен развивать электродвигатель вентилятора на выходном валу при установившемся режиме работы, равна[1]:

$$N = \frac{N_{\Pi}}{\eta_{B} \eta_{\Pi ep}},\tag{60}$$

где  $\eta_{\rm B}$  – коэффициент полезного действия вентилятора, принимаем равный 0,6;  $\eta_{\rm nep}$  – коэффициент полезного действия передачи от электродвигателя к вентилятору, принимаем равным 1;

$$N = \frac{19,718}{1.0,6} = 32,863 \text{ kBt}.$$

По справочным данным [8] выбираем вентилятор ВЦ 4-75 №16 (ВР 89-75-16), основные характеристики которого приведены в таблице 2.

*Таблица 2* **Основные характеристики вентилятора ВЦ 4-75 №16 (ВР89-75-16)** 

| Показатели                                       | Значения         |
|--------------------------------------------------|------------------|
| Производительность $L_{c.r}$ , м <sup>3</sup> /ч | $76,55\cdot10^3$ |
| Обеспечиваемое давление $\Delta P$ , $\Pi a$     | 1288             |
| Число оборотов двигателя n, об/мин               | 600              |
| К.п.д. вентилятора $\eta_{s}$                    | 0,74             |
| Тип электродвигателя                             | 4АМУ,5АМ         |
| Мощность электродвигателя N, кВт                 | 55               |
| К.п.д. электродвигателя                          | 0,8              |

#### **ЗАКЛЮЧЕНИЕ**

В соответствии с заданием проведен расчет барабанной сушильной установки с подъемно-лопастными перевалочными устройствами для сушки доломита. По заданной производительности по сухому материалу, начальной и конечной влажности, температуре сушильного агента и температуре влажного материала, а также вида используемого топлива были определены: расход влаги, удаляемой из высушиваемого материала, расход сухого газа, воздуха, тепла, топлива на сушку. Для нахождения выше перечисленных значений был проведен совместный расчет уравнения теплового баланса. Был выбран сушильный барабан ф 3,2 × 25 Шанхайской компании.

Выбран вентилятор типа ВЦ 4-75 №16 (ВР 89-75-16).

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Основные процессы и аппараты химической технологии: Пособие по проектированию / Г.С. Борисов, В.П. Брыков, Ю.И. Дытнерский и др. Под ред. Ю.И. Дытнерского, 3-е изд., стереотипное. М.: ООО ИД "Альянс", 2007. 496 с.
- 2. Сушильные аппараты и установки. Каталог ЦИНТИХИМНЕФТЕМАШ. Изд. 3-е. М.: 1988. 73 с.
- 3. Аппараты с вращающимися барабанами общего назначения. Основные параметры и размеры. ГОСТ 11875-79
- 4. Касаткин А. Г. Основные процессы и аппараты химической технологии. М.: Химия, 1973. 754 с.
- Лыков М. В. Сушка в химической промышленности. М.: Химия, 1973. – 754 с.
- 6. К.Ф.Павлов, П.Г, Романков, А.А. Носков Примеры и задачи по курсу процессов и аппаратов химической технологии. Учебное пособие для вузов /Под ред. чл.-корр. АН СССР П.Г. Романкова. 10-е изд., перераб. и доп. Л.: Химия, 1987. 576 с., ил.
- 7. Оборудование для руды. Сушилка барабанная URL: www.zgshmg.com (Дата обращения 04.12.17).
- 8. Центробежные вентиляторы (радиальные вентиляторы) низкого давления. Основные технические характеристики –URL: ventilator.od.ua (Дата обращения 04.12.17).