Topic: Quadrilaterals

Lesson Objectives

By the end of this lesson, students should be able to:

- Define and identify quadrilaterals
- Describe the properties of different quadrilaterals
- Construct quadrilaterals accurately using technical drawing tools

1. What is a Quadrilateral?

A quadrilateral is a four-sided polygon. It has:

- 4 sides
- 4 angles
- 4 vertices (corners)

Sum of Angles in a Quadrilateral:

The sum of the interior angles of any quadrilateral is always 360°.

2. Types of Quadrilaterals and Their Properties

Quadrilateral	Description	Properties
Square	A four-sided figure with all sides equal and all angles 90°	4 equal sides4 right anglesOpposite sides parallel
Rectangle	A four-sided figure with opposite sides equal and all angles 90°	Opposite sides equal and parallel4 right angles
Rhombus	A parallelogram with all sides equal, but angles not necessarily 90°	All sides equalOpposite angles equal

Quadrilateral	Description	Properties
		- Diagonals bisect each other at 90°
Parallelogram	Opposite sides are equal and parallel , but angles are not 90°	Opposite sides equalOpposite angles equalDiagonals bisect each other
Trapezium (Trapezoid)	Only one pair of opposite sides is parallel	One pair of parallel sidesNo sides necessarilyequal
Kite	A quadrilateral with two pairs of adjacent sides equal	Diagonals are perpendicularOne pair of opposite angles equal

3. Construction of Quadrilaterals

Tools Required:

- Compass
- Ruler
- Protractor
- Set square
- Pencil (2H or HB)

a) Construction of a Square

Steps:

- 1. Draw a base line (AB) using the ruler.
- 2. At point **A**, use a **set square** or **protractor** to construct a **90° angle** and mark point **D**.
- 3. From A and B, use a compass to mark sides AD and BC equal to AB.

4. Connect points **C** and **D** to complete the square.

b) Construction of a Rectangle

Steps:

- 1. Draw the base (AB).
- 2. At points **A** and **B**, construct **90° angles** using a set square or protractor.
- 3. From A and B, measure the height (AD and BC).
- 4. Join **C to D** to complete the rectangle.

c) Construction of a Rhombus

Steps (Using Diagonals):

- 1. Draw both diagonals, which cross at 90° and bisect each other.
- 2. Using a compass, measure from the **center to a corner**, and draw arcs to locate the four vertices.
- 3. Join the points to form the **rhombus**.

d) Construction of a Parallelogram

Steps:

- 1. Draw one side (AB).
- 2. Use the compass to measure the adjacent side (AD).
- 3. At points **A** and **B**, use the **set square** to draw **parallel lines** for the other sides.
- 4. Mark points **C** and **D** where the sides intersect.
- 5. Join C to D and B to C.

e) Construction of a Trapezium

Steps:

- 1. Draw the parallel sides (top and base).
- 2. Connect the two parallel sides using the **non-parallel sides** (legs).
- 3. Use a **protractor** to ensure the angles are correct if specified.

f) Construction of a Kite

Steps:

- 1. Draw the main diagonal (longer one).
- 2. At the midpoint, draw the **shorter diagonal** perpendicular to the longer diagonal.
- 3. Use a compass to mark the sides of the kite.
- 4. Join the points to complete the kite.

4. Uses of Quadrilaterals in Real Life

Quadrilateral Real-Life Example

Square Tiles, chessboard squares

Rectangle Books, windows, doors

Rhombus Diamond shapes, playing cards

Parallelogram Slanted tiles, ramps

Trapezium Bridges, road signs

Kite Actual kites, decorations

5. Importance of Quadrilaterals in Technical Drawing

• Architecture: Walls, windows, roofs

• **Engineering:** Machine parts, design components

• Construction: Floor plans, tile designs

• **Graphic Design:** Patterns, logos, decorations

6. Summary of Key Points

Concept Details

Quadrilateral A polygon with 4 sides and 4 angles

Types Square, Rectangle, Rhombus, Parallelogram, Trapezium, Kite

Properties Sides, angles, diagonals

Construction Use compass, ruler, protractor, set square

Applications Architecture, design, daily objects