Name:	

SEMIFINAL

credit for a standard.

Math 237 – Linear Algebra Fall 2017

Fall 2017 Choose up to 6 problems to work. Work each problem on one of the attached pages; write the standard in the lower left corner. Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 2 & -1 & 0 & 1 \\ -1 & 4 & 1 & -7 \\ 1 & 2 & -1 & 0 \end{bmatrix}$$

Solution:

$$2x_1 - x_2 = 1$$
$$-x_1 + 4x_2 + x_3 = -7$$
$$x_1 + 2x_2 - x_3 = 0$$

E2. Find RREF A, where

$$A = \begin{bmatrix} 2 & -7 & | & 4 \\ 1 & -3 & | & 2 \\ 3 & 0 & | & 3 \end{bmatrix}$$

Solution:

RREF
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

E3. Solve the system of linear equations.

$$2x + y - z + w = 5$$
$$3x - y - 2w = 0$$
$$-x + 5z + 3w = -1$$

Solution:

RREF
$$\left(\begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{12} & 1 \\ 0 & 1 & 0 & \frac{7}{4} & 3 \\ 0 & 0 & 1 & \frac{7}{12} & 0 \end{bmatrix}$$

So the solutions are

$$\left\{ \begin{bmatrix}
1+a \\
3-21a \\
-7a \\
12a
\end{bmatrix} \mid a \in \mathbb{R} \right\}$$

E4. Find a basis for the solution set to the homogeneous system of equations

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 0$$
$$x_1 + x_2 - x_3 + 5x_4 = 0$$

Solution: Let $A = \begin{bmatrix} 2 & 3 & -5 & 14 & 0 \\ 1 & 1 & -1 & 5 & 0 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 0 & 2 & 1 & 1 \\ 0 & 1 & -3 & 4 & 2 \end{bmatrix}$. It follows that the basis for the solution set is given by $\left\{ \begin{bmatrix} -2 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -4 \\ 0 \\ 1 \end{bmatrix} \right\}$.

V1. Let V be the set of all real numbers together with the operations \oplus and \odot defined by, for any $x, y \in V$ and $c \in \mathbb{R}$,

$$x \oplus y = x + y - 3$$
$$c \odot x = cx - 3(c - 1)$$

- (a) Show that scalar multiplication is associative: $a \odot (b \odot x) = (ab) \odot x$.
- (b) Determine if V is a vector space or not. Justify your answer

Solution: Let $x, y \in V$, $c, d \in \mathbb{R}$. To show associativity:

$$c \odot (d \odot x) = c \odot (dx - 3(d - 1))$$
$$= c (dx - 3(d - 1)) - 3(c - 1)$$
$$= cdx - 3(cd - 1)$$
$$= (cd) \odot x$$

We verify the remaining 7 properties to see that V is a vector space.

- 1) Real addition is associative, so \oplus is associative.
- 2) $x \oplus 3 = x + 3 3 = x$, so 3 is the additive identity.
- 3) $x \oplus (6-x) = x + (6-x) 3 = 3$, so 6-x is the additive inverse of x.
- 4) Real addition is commutative, so \oplus is commutative.
- 5) Associativity shown above
- 6) $1 \odot x = x 3(1 1) = x$

7)

$$c \odot (x \oplus y) = c \odot (x + y - 3)$$

$$= c(x + y - 3) - 3(c - 1)$$

$$= cx - 3(c - 1) + cy - 3(c - 1) - 3$$

$$= (c \odot x) \oplus (c \odot y)$$

8)

$$(c+d) \odot x = (c+d)x - 3(c+d-1)$$

= $cx - 3(c-1) + dx - 3(c-1) - 3$
= $(c \odot x) \oplus (d \odot x)$

V2. Determine if $\begin{bmatrix} 1\\4\\3 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 3\\0\\-1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1\\4 \end{bmatrix}$, and $\begin{bmatrix} 5\\1\\-6 \end{bmatrix}$.

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 3 & 1 & 5 & 1 \\ 0 & -1 & 1 & 4 \\ -1 & 4 & -6 & 3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

So $\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$ is not a linear combination of the three vectors.

V3. Determine if the vectors $\begin{bmatrix} 1\\0\\2\\1 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\0\\-3 \end{bmatrix}$, $\begin{bmatrix} 0\\3\\0\\-2 \end{bmatrix}$, and $\begin{bmatrix} -1\\1\\-1\\-1 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 1 & 3 & 1 \\ 2 & 0 & 0 & -1 \\ 1 & -3 & -2 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since every row contains a pivot, the vectors span \mathbb{R}^4 .

V4. Determine if the set of all lattice points, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers}\}$ is a subspace of \mathbb{R}^2 . **Solution:** This set is closed under addition, but not under scalar multiplication so it is not a subspace.

S1. Determine if the vectors $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\1 \end{bmatrix}$, and $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$ are linearly dependent or linearly independent

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since each column is a pivot column, the vectors are linearly independent.

S2. Determine if the set $\left\{ \begin{bmatrix} 3\\-1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\0\\2\\4 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\3\\0\\5 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^4 .

Solution:

$$RREF\left(\begin{bmatrix} 3 & 2 & 1 & -1 \\ -1 & 0 & -1 & 3 \\ 2 & 2 & 0 & 0 \\ 3 & 4 & -1 & 5 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix is not the identity matrix, it is not a basis.

Solution: Let
$$A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$$
, and compute $\text{RREF}(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Since the first two columns are

pivot columns, $\left\{ \begin{bmatrix} -3\\-8\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\}$ is a basis for W.

S4. Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix} 2\\0\\-2\\0\end{bmatrix}, \begin{bmatrix} 3\\1\\3\\6\end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\end{bmatrix}, \begin{bmatrix} 1\\2\\0\\1\end{bmatrix}\right\}\right)$$
. Compute the dimension of W .

Solution:

RREF
$$\left(\begin{bmatrix} 2 & 3 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ -2 & 3 & 1 & 0 \\ 0 & 6 & 1 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2} \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so $\dim(W) = 3$.

A1. Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 7x + 2y + 3z \\ 0 \end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R}^4 .

Solution:

$$\begin{bmatrix} 3 & 1 & 0 \\ -8 & 2 & -1 \\ 7 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

A2. Determine if $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} e^x \\ e^y \end{bmatrix}$ is a linear transformation.

Solution: It is not linear. For example,

$$\begin{bmatrix} e^2 \\ 1 \end{bmatrix} = T \left(\begin{bmatrix} 2 \\ 0 \end{bmatrix} \right) \neq 2T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2e \\ 1 \end{bmatrix}$$

A3. Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

- (a) $S: \mathbb{R}^2 \to \mathbb{R}^2$ given by the standard matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.
- (b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by the standard matrix $\begin{bmatrix} 2 & 3 & -1 & -2 \\ 0 & 1 & 3 & 1 \\ 2 & 1 & -7 & -4 \end{bmatrix}$

Solution:

- (a) RREF $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Since each column is a pivot column, S is injective. Since there is no zero row, S is surjective.
- (b) Since $\dim \mathbb{R}^4 > \dim \mathbb{R}^3$, T is not injective.

RREF
$$\left(\begin{bmatrix} 2 & 3 & -1 & -2 \\ 0 & 1 & 3 & 1 \\ 2 & 1 & -7 & -4 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -5 & -\frac{5}{2} \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there are only two pivot columns, T is not surjective.

A4. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear map given by $T \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 8x - 3y - z + 4w \\ y + 3z - 4w \\ -7x + 3y + 2z - 5w \end{bmatrix}$. Compute a basis for the kernel and a basis for the image of T.

Solution:

$$RREF\left(\begin{bmatrix} 8 & -3 & -1 & 4\\ 0 & 1 & 3 & -4\\ -7 & 3 & 2 & -5 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 1 & -1\\ 0 & 1 & 3 & -4\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus $\left\{ \begin{bmatrix} 8\\0\\-7 \end{bmatrix}, \begin{bmatrix} -3\\1\\3 \end{bmatrix} \right\}$ is a basis for the image, and $\left\{ \begin{bmatrix} 1\\3\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\4\\0\\1 \end{bmatrix} \right\}$ is a basis for the kernel.

M1. Let

$$A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & -1 & 4 \\ 1 & 0 & 2 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Solution: AC is the only one that can be computed, and

$$AC = \begin{bmatrix} 9 & -2 & 14 \\ 1 & 0 & 2 \end{bmatrix}$$

M2. Determine if the matrix $\begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$ is invertible.

Solution:

RREF
$$\begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Since it is not equivalent to the identity matrix, it is not invertible.

M3. Find the inverse of the matrix $\begin{bmatrix} 6 & 0 & 1 \\ -14 & 3 & -4 \\ -23 & 4 & -6 \end{bmatrix}$.

Solution:

$$\begin{bmatrix} 6 & 0 & 1 \\ -14 & 3 & -4 \\ -23 & 4 & -6 \end{bmatrix}^{-1} = \begin{bmatrix} -2 & 4 & -3 \\ 8 & -13 & 10 \\ 13 & -24 & 18 \end{bmatrix}$$

G1. Compute the determinant of the matrix

$$\begin{bmatrix} 0 & -4 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ -2 & 3 & -1 & 1 \\ 5 & 0 & -4 & 0 \end{bmatrix}.$$

Solution: 55.

G2. Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 3 & -3 & 2 \\ 108 & -9 & 5 \\ 10 & -7 & 3 \end{bmatrix}$.

Solution: The eigenvalues are 1 with multiplicity 1 and -2, with algebraic multiplicity 2.

G3. Compute the eigenspace of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Solution:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenspace is spanned by $\begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}$.

G4. Compute the geometric multiplicity of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Solution:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the geometric multiplicity is 2.

Standard:	

Standard:	