Bounding the population size of IPOP-CMA-ES on the Noiseless BBOB Testbed + Testing impact of tuning + Expensive optimization scenarios

Tianjun Liao and Thomas Stützle

IRIDIA, CoDE, Université Libre de Bruxelles (ULB)

Motivation

bounding population size

- IPOP-CMA-ES increases population size exponentially
- Question: are very large population useful?
- particular motivation:
 - Chen et al., 2012: large pop. size can be unhelpful in EAs
 - Wessing et al., 2011: when parameter tuning actually is parameter control
- → examine bounds on maximum population size

Motivation

bounding population size

- IPOP-CMA-ES increases population size exponentially
- Question: are very large population useful?
- particular motivation:
 - Chen et al., 2012: large pop. size can be unhelpful in EAs
 - Wessing et al., 2011: when parameter tuning actually is parameter control
- → examine bounds on maximum population size

tuning, expensive

- tuning incurs only very light effort (in our case here)
- expensive functions: different look at data

Bounded population size

Experimental setup

- IPOP-CMA-ES default version (C version, 10/16/10), modified to clamp bounds and limit maximum pop. size
- Recall pop-size settings of IPOP-CMA-ES
 - initial: $\lambda = 4 + \lfloor 3 \ln(D) \rfloor$ • restart: $\lambda = 2 \cdot \lambda \mapsto \lambda_i = 2^i \cdot \lambda_0$
- poplation size bounds (limited experience, ad hoc)
 - fixed maximum to 500
 - dimension-dependent maximum of 10D²
- once maximum is reached, restart scheme at initial value

Significant differences ERT

"Visible" differences

"Visible" differences

On many functions population-size bounds too loose to make an effect (apparently f1, f2, f4 - f15, f17, f18)

Tuning setup

- use D = 10 functions from SOCO special issue
- removed Sphere, Rosenbrock, Rastrigin, Schwefel 1.2
 from SOCO set
 error :-(Schaffer, f17
- default version of irace
- tuning budget: 5000 runs of IPOP-CMA-ES each of 100D = 1000 function evaluations
- short runs because same tuned version is used for expensive scenario
- measured cost function: evaluation function value at end of trial

Tuning setup

- use D = 10 functions from SOCO special issue
- removed Sphere, Rosenbrock, Rastrigin, Schwefel 1.2
 from SOCO set
 error :-(Schaffer, f17
- default version of irace
- tuning budget: 5000 runs of IPOP-CMA-ES each of 100D = 1000 function evaluations
- short runs because same tuned version is used for expensive scenario
- measured cost function: evaluation function value at end of trial

we are aware: wrong target for BBOB, not many parameters tuned, maybe wrong algorithm overall, etc.

Paramete	r Internal pa	rameter	default	tuned
а	Init pop size: λ_0 =	$= 4 + \lfloor a \ln(D) \rfloor$	3	2.675
b	Parent size: μ =	$= \lfloor \lambda/b \rfloor$	2	1.351
С	Init step size: σ_0 =	$= c \cdot (B - A)$	0.5	0.102
d	IPOP factor: ipop =	= d	2	2.88
e	stopTolFun =	= 10 ^e	-12	-8.607
f	stopTolFunHist =	= 10 ^f	-20	-14.77
g	stopToIX =	= 10 ^{<i>g</i>}	-12	-9.529

Paramete	r Internal _I	parameter	default	tuned
а	Init pop size: λ_0	$=4+\lfloor a\ln(D)\rfloor$	3	2.675
b	Parent size: μ	$= \lfloor \lambda/b \rfloor$	2	1.351
С	Init step size: σ_0	$= c \cdot (B - A)$	0.5	0.102
d	IPOP factor: ipop	o = d	2	2.88
e	stopTolFun	= 10 ^e	-12	-8.607
f	stopTolFunHist	$= 10^{f}$	-20	-14.77
g	stopTolX	= 10 ^g	-12	-9.529

Following comparison

- default IPOP-CMA-ES
- IPOP-CMA-ES with pop. size bound 10D²
- IPOP-CMA-ES with pop. size bound 10D², tuned

Significant differences ERT

General scenario

Expensive scenario

no changes, same algorithm (tuned IPOP-CMA-ES with maximum population size bound (here not effective)

Expensive scenario

no changes, same algorithm (tuned IPOP-CMA-ES with maximum population size bound (here not effective)

just a different look at the same data

Expensive scenario

no changes, same algorithm (tuned IPOP-CMA-ES with maximum population size bound (here not effective)

just a different look at the same data

Motivation: direct search may not be so bad after all ...

Expensive scenario, comparison to default IPOP-CMA-ES

Expensive scenario, comparison to ImmCMA-ES

Expensive scenario, comparison to SMAC-BBOB

Conclusions

- limiting max. population size of IPOP-CMA-ES can help
- tuning can further improve performance
 - main differences on weakly structured multi-modal functions (also other benchmarks such as CEC'05 / '13)
- IPOP-CMA-ES anyway rather robust