Notes of Functional Analysis

泛函分析复习

Jinhua Wu

Contents

1	度量空间	
	1.1	压缩映射原理
	1.2	完备化
	1.3	列紧集
	1.4	赋范线性空间
	1.5	凸集与不动点
	1.6	内积空间
2	线性算子和线性泛函	
	2.1	线性算子的概念
	2.2	Riesz 表示定理及其应用
	2.3	纲与开映射定理
	2.4	Hahn-Banach 定理
	2.5	共轭空间、弱收敛、自反空间 37
3	14	
	3.1	第一章
	3.2	第二章

Chapter 1

度量空间

1.1 压缩映射原理

3 设 (\mathscr{X}, ρ) 是度量空间,映射 $T: \mathscr{X} \to \mathscr{Y}$ 满足 $\rho(Tx, Ty) < \rho(x, y)$,并且已知 T 有不动点,求证此不动点唯一。

Proof. 这里我们假设其存在 x, y 两个不动点,则

$$\rho(x,y) = \rho(Tx,Ty) < \rho(x,y)$$

可见上式满足当且仅当 x = y, 故而不动点唯一。

4 设 T 是度量空间上的压缩映射, 求证: T 是连续的。

Proof. 考虑 $\forall x_0 \in \mathcal{X}$,而 $x_n \in \mathcal{X}$ 且 $x_n \to x_0$,我们要证明 $Tx_n \to Tx_0$,而这是显然的,由于

$$|Tx_n - Tx_0| \leqslant \alpha \rho(x_n, x_0) \to 0 \quad (\alpha \in (0, 1))$$

5 设 T 是压缩映射, 求证: T^n $(n \in \mathbb{N})$ 也是压缩映射, 且逆命题不一定成立。

Proof. 考虑由于 T 为压缩映射,则存在 $\alpha \in (0,1)$ 使得 $\forall x,y \in \mathcal{X}$, $\rho(Tx,Ty) \leqslant \alpha \rho(x,y)$ 。而 $\rho(T^nx,T^ny) \leqslant \alpha^n\rho(x,y)$,而 $\alpha \in (0,1)$,从而 T^n 也为压缩映射。但若 $\alpha^n \in (0,1)$ 不一定能推知 T 压缩映射。考虑 $T: x \mapsto \frac{1}{2}(-x)$,显然不为压缩映射,但 $T^2: x \mapsto \frac{1}{4}x^2$ 为压缩映射。

6 设 M 是 (\mathbb{R}^n, ρ) 中的有界闭集,映射 $T: M \to M$ 满足 $\rho(Tx, Ty) < \rho(x, y)$,求证: T 在 M 中有唯一的不动点。

Proof. 先证明存在, 定义 $f(x) = \rho(x, Tx)$, 则

$$\rho(x,Tx) \leqslant \rho(x,y) + \rho(y,Ty) + \rho(Ty,Tx) \leqslant 2\rho(x,y) + \rho(y,Ty) \quad (\forall x,y \in \mathscr{X})$$

而 f 在 M 上是连续的,因此 $\exists x_0 \in M$ 使得

$$\rho(x_0, Tx_0) = \min_{x \in M} \rho(x, Tx) = m$$

若 $x_0 \neq Tx_0$,则

$$m \leqslant f(Tx_0) = \rho(Tx_0, T^2x_0) < \rho(x_0, Tx_0) = m$$

矛盾,故而 x_0 为 T 的一个不动点。

而唯一性由第三题给出。

1.2 完备化

2 在一个度量空间 (\mathcal{X}, ρ) 上,求证:基本列是收敛列,当且仅当其中存在一串收敛子列。

Proof. 这是很显然的,先说明必要性,若为收敛列,去掉第一个元素后依旧收敛。下面说明必要性,若 $\{x_n\}$ 存在收敛子列 $\{x_{n_k}\}$,记 x_{n_k} 收敛于 x_0 ,而

我们总可以控制使得两项分别为
$$\varepsilon/2$$

$$\rho(x_n,x_0)\leqslant \rho(x_n,x_{n_k})+\rho(x_{n_k},x_0)\to 0$$

因此 $x_n \to x_0$, 即为收敛列。

5 在完备的度量空间 (\mathcal{X}, ρ) 中给定点列 $\{x_n\}$, 如果 $\forall \varepsilon > 0$, 存在基本列 $\{y_n\}$ 使得

$$\rho(x_n, y_n) < \varepsilon \quad (n \in \mathbb{N})$$

求证: $\{x_n\}$ 收敛。

Proof. 在完备空间中 y_n 是收敛的,考虑其收敛于 y_0 ,则

$$\rho(x_n, y_0) \leqslant \rho(x_n, y_n) + \rho(y_n, y_0) \to 0$$

因此 $\{x_n\}$ 不仅收敛, 还收敛于 y_0 。

1.3 列紧集

6 设 $E = \{\sin nt\}_{n=1}^{\infty}$, 求证: $E \in C[0,\pi]$ 中不是列紧的。

Proof. 等价于说明 E 不是完全有界集。我们只需要找到一个 ε ,而后证明不存在这样的有穷 ε 网。我们也可以用 Arzelà-Ascoli 来说明,首先其肯定是完全有界的,但 $\exists \varepsilon_0 = \frac{1}{3}$,考虑 $t_1 = \frac{\pi}{2n}$, $t_2 = \frac{\pi}{n}$,则

$$|\sin nt_1 - \sin nt_2| = 1 > \varepsilon_0$$

因此并非是等度连续的。

9 设 (M,ρ) 是一个紧度量空间,又 $E \subset C(M)$,E 中的函数一致有界且满足下列 Hölder 条件

$$|x(t_1) - x(t_2)| \leqslant C\rho(t_1, t_2)^{\alpha} \quad (\forall x \in E, \forall t_1, t_2 \in M)$$

1.4. 赋范线性空间 3

Proof. 显然利用 Arzelà-Ascoli,只需说明等度连续即可, $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon) = \left(\frac{\varepsilon}{2C}\right)^{1/\alpha}$,当 $\rho(t_1, t_2) < \delta$ 时

$$|x(t_1) - x(t_2)| \leqslant C \frac{\varepsilon}{2C} \leqslant \varepsilon$$

因此等度连续的,从而满足 Arzelà-Ascoli, 因此 E 是列紧的。

1.4 赋范线性空间

- 2 设 C(0,1] 表示 (0,1] 上连续且有界的函数 x(t) 的全体。对 $\forall x \in C[0,1]$,令 $\|x\| = \sup_{0 < t \leqslant 1} |x(t)|$,求证
 - $(1) \| \cdot \|$ 是 C(0,1] 上的范数

Proof. 我们需要验证其满足三条性质,首先对于第一条而言显然有 $\|x\| \ge 0$,且 $\|x\| = 0$ ⇔ $\sup_{0 < t \le 1} |x(t)| = 0$,即说明 x(t) = 0, $\forall 0 < t \le 1$,因而正定性满足。

对于三角不等式而言,

$$\|x+y\| = \sup_{0 < t \leqslant 1} |x(t) + y(t)| \leqslant \sup_{0 < t \leqslant 1} |x(t)| + \sup_{0 < t \leqslant 1} |y(t)| \leqslant \|x\| + \|y\|$$

齐次性显然。故而为范数

(2) l^{∞} 与 C(0,1] 的一个子空间等距同构。

Proof. 我们要考虑把连续的函数离散化,考虑子集

$$M \triangleq \{x \in C(0,1] \mid x \times \left(\frac{1}{i+1}, \frac{1}{i}$$
分段为直线段)}

则 M 与 l^{∞} 等距同构。即 $x\in M$ 由 $\left\{x\left(\frac{1}{i}\right)\right\}_{i=1}^{\infty}$ 唯一确定,且

$$||x|| = \sup_{i} \left| x \left(\frac{1}{i} \right) \right|$$

7 设 \mathscr{X}^* 是 B^* 空间, 求证: \mathscr{X} 是 B 空间, 必须且仅须对 $\forall \{x_n\} \subset \mathscr{X}$, $\sum\limits_{n=1}^{\infty}\|x_n\|<\infty\Rightarrow\sum\limits_{n=1}^{\infty}x_n$ 收敛。

Proof. 必要性: 若 \mathcal{X} 是 B 空间,则由于范数求和收敛,可以推出

$$\left\| \sum_{k=0}^{p} x_{m+k} \right\| \leqslant \sum_{k=0}^{p} \|x_{m+k}\| \to 0 \quad (\forall p \in \mathbb{N}^+, \ n \to \infty)$$

因此 $\{x_m\}$ 为基本列,从而求和收敛。

充分性: 若条件成立,则由上文可知 $\{x_n\}$ 基本列收敛,而由于 $\{x_n\}$ 的任意性,则 \mathscr{X}^* 为 B 空间。

1.5 凸集与不动点

1.6 内积空间

4 设 M,N 是内积空间中的两个子集, 求证:

$$M \subset N \Rightarrow N^{\perp} \subset M^{\perp}$$

Proof. $\forall x \in M$,我们可以知道 $x \in N$,而 $\forall y \in N^{\perp}$,则 $\forall x \in N$,均有 $\langle x, y \rangle = 0$ 。那么我们缩小范围, $\forall x \in M$,上面的内积也显然为 0,因此成立。

5 设 M 是 Hilbert 空间 \mathcal{X} 的子集, 求证:

$$(M^{\perp})^{\perp} = \overline{\operatorname{span} M}$$

Proof. 我们要证两边, $\forall x \in (M^{\perp})^{\perp}$,则 $\forall y \in M^{\perp}$,则 $\langle x,y \rangle = 0$ 。若 $x \notin \overline{\operatorname{span} M}$,但 $\langle x,y \rangle = 0$,则我们发现 $M^{\perp} \cup M = \mathscr{X} \backslash \operatorname{span} x$,矛盾。

而 $\forall x \in \overline{\operatorname{span} M}$,显然 $\langle x, y \rangle = M^{\perp}$ 。因此 $x \in (M^{\perp})^{\perp}$,因此二者等价。

9 设 $\{e_n\}_{n=1}^{\infty}$, $\{f_n\}_{n=1}^{\infty}$ 为 Hilbert 空间 $\mathscr X$ 的两个正交规范集,满足条件:

$$\sum_{n=1}^{\infty} ||e_n - f_n||^2 < 1$$

求证: 二者中一个完备蕴含另一个完备。

Proof. 若 $\{e_n\}$ 完备,假设 $\{f_n\}$ 不完备,则 $\exists u \in \mathcal{X}$, $u \neq 0$,且 $(u, f_n) = 0$, $\forall n \in \mathbb{N}$ 。那么 会有

$$||u||^{2} = \sum_{n=1}^{\infty} |(u, e_{n})|^{2} = \sum_{n=1}^{\infty} |(u, e_{n} - f_{n})|^{2}$$

$$\leq ||u|| \sum_{n=1}^{\infty} ||e_{n} - f_{n}||^{2}$$

$$< ||u||^{2}$$

而这是显然矛盾的,故而 $\{f_n\}$ 完备。

10 设 \mathscr{X} 是 Hilbert 空间, \mathscr{X}_0 是 \mathscr{X} 的闭线性子空间, $\{e_n\}$ 和 $\{f_n\}$ 分别是 \mathscr{X}_0 和 \mathscr{X}_0^{\perp} 的正交规范基,求证: $\{e_n\} \cup \{f_n\}$ 是 \mathscr{X} 的正交规范基。

Proof. 考虑规范性显然,正交性

$$\langle e_n, f_m \rangle = 0$$

是由于一个为另一个的正交补得到的,而二者分别正交,故而并起来之后也是正交的。故而为 正交规范基。 □

12 设 ${\mathscr X}$ 是内积空间, $\{e_n\}$ 是 ${\mathscr X}$ 中的正交规范基,证明

$$\left| \sum_{n=1}^{\infty} (x, e_n) \overline{(y, e_n)} \right| \leqslant ||x|| \cdot ||y||$$

1.6. 内积空间 5

Proof.

$$||x||^2 \cdot ||y||^2 \geqslant \sum_{n=1}^{\infty} |(x, e_n)|^2 \cdot \sum_{n=1}^{\infty} |(y, e_n)|^2$$
$$\geqslant \left| \sum_{n=1}^{\infty} (x, e_n) \overline{(y, e_n)} \right|$$

Chapter 2

线性算子和线性泛函

2.1 线性算子的概念

定义与例子

- 线性算子 两个线性空间 \mathcal{X} , \mathcal{Y} , D 为 \mathcal{X} 的一个线性子空间, $T:D\to\mathcal{Y}$ 是一种映射, D 称为 T 的定义域, 也记作 D(T), $R(T)=\{Tx\mid\forall\ x\in D\}$ 称为 T 的值域。如果 $T(\alpha x+\beta y)=\alpha Tx+\beta Ty$, 则称 T 为一个线性算子。
 - (1) 设 $\mathscr{X}=\mathscr{Y}=C^{\infty}(\overline{\Omega})$, 设微分多项式 $P(\partial_x)=\sum\limits_{|\alpha|\leqslant m}a_{\alpha}(x)\partial_x^{\alpha}\;(a_{\alpha}(x)\in C^{\infty}(\overline{\Omega}))$, 如果 $T:\;u(x)\to P(\partial_x)u(x)\;(\forall u\in\mathscr{X})$, 那么 T 是一个从 \mathscr{X} 到 \mathscr{Y} 的线性算子。这里即 为对 u(x) 进行了小于等于 m 阶导数且以 $a_{\alpha}(x)$ 相乘后累加,而微分是一个线性算子,故而 T 是线性算子。若 $\mathscr{X}=\mathscr{Y}=L^2(\Omega)$, $D(T)=C^m(\overline{\Omega})$,则也是线性的。

线性泛函 取值于实数(或复数)的线性算子称为实(复)线性泛函,记作 f(x) 或 $\langle f, x \rangle$,即线性函数。

- (1) 设 $\mathcal{X} = C(\overline{\Omega})$,若规定 $f(x) := \int_{\Omega} x(\xi) d\xi$,则 f 是一个线性泛函,但是 $x(\xi) \to \int_{\Omega} x^2(\xi) d\xi$ 却不是线性泛函。确切的说,虽然这个映射映出的是一个实数,但是该算子不是线性的。
- (2) 设 $\mathscr{X} = C^{\infty}(\Omega)$, 若对某个指标 α 及 $\xi_0 \in \Omega$ 规定 $f(u) = \partial^{\alpha} u(\xi_0)$, 则 $f \in C^{\infty}(\Omega)$ 上的一个线性泛函。线性易证,而由于求 α 阶 Partial 后取 ξ_0 一点的值,故而为实数。
- 连续性 设 \mathscr{X} , \mathscr{Y} 是 F^* 空间, $D(T) \subset \mathscr{X}$,称线性泛函 $T: D(T) \to \mathscr{Y}$ 是连续的,如果 $x_n \in D(T)$, $x_n \to x_0 \Longrightarrow Tx_n \to Tx_0$ 。 即收敛列的映射也是收敛的。
- 有界的 设 \mathcal{X} , \mathcal{Y} 都是 B^* 空间,称线性算子 $T: \mathcal{X} \to \mathcal{Y}$ 是有界的,如果有常数 $M \geqslant 0$,使得 $\|Tx\|_{\mathscr{X}} \leqslant M\|x\|_{\mathscr{X}} \ (\forall \ x \in \mathcal{X})$ 。
- 有界线性算子的全体 用 $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ 表示一切由 \mathcal{X} 到 \mathcal{Y} 的有界线性算子的全体,并规定 $||T|| = \sup_{x \in \mathcal{X} \setminus \theta} ||Tx||/||x|| = \sup_{x \in \mathcal{X} \setminus \theta} ||Tx||$ 为 $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ 的范数,特别用 $\mathcal{L}(\mathcal{X})$ 表示 $\mathcal{L}(\mathcal{X}, \mathcal{X})$,用 \mathcal{X}^* 表示 $\mathcal{L}(\mathcal{X}, \mathbb{K})$,即 \mathcal{X} 上的有界线性泛函全体。

命题与定理等

1 对于线性算子 T,为了它在 D(T) 内处处连续,必须且仅须它在 $x = \theta$ 处连续。

Proof. 若 T 在 θ 连续,则 \forall x_n , $x_0 \in D(T)$,若 $x_n \to x_0$,则 $x_n - x_0 \to \theta$,则有 $Tx_n - Tx_0 = T(x_n - x_0) \to T\theta = 0$,故而显然。

2 设 \mathcal{X} , \mathcal{Y} 都是 B^* 空间,为了线性算子 T 连续,当且仅当 T 有界。

Proof. 充分性: 若 T 有界,则存在常数 $M \ge 0$,考虑 $\forall x_n, x_0 \in D(T)$ 且 $x_n \to x_0$,则 $Tx_n - Tx_0 = T(x_n - x_0) \le M(x_n - x_0) \to 0$,故而 T 连续。下面证明必要性。

必要性: 若 T 连续,则我们考虑另一种方式来证明,由于其连续,则 $\forall \|x\|_{\mathscr{X}} \leq \delta$, $\|Tx\|_{\mathscr{Y}} \leq \varepsilon$,那么我们考虑 $\|x_0\| \leq \delta$,取 $y \in D(T)$,考虑 $x = \frac{y}{\|y\|x_0}\delta$,则 $\|Tx\|_{\mathscr{Y}} = \frac{\delta}{\|y\|x_0}\|Ty\|_{\mathscr{Y}} < \varepsilon$,故而有 $\|Ty\|_{\mathscr{Y}} < \varepsilon \frac{x_0}{\delta}\|y\| \leq M\|y\|$,故而其有界。我们亦可考虑利用反证法,原理同上。

3 设 \mathcal{X} 是 B^* 空间, \mathcal{Y} 是 B 空间,若在 $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ 上规定线性运算: $(\alpha_1 T_1 + \alpha_2 T_2)(x) = \alpha_1 T_1 x + \alpha_2 T_2 x$, $(\forall x \in \mathcal{X})$,其中 α_1 , $\alpha_2 \in \mathbb{K}$, T_1 , $T_2 \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$,则 $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ 按 ||T|| 构成一个 Banach 空间。

Proof. 我们要证明其为 B^* 空间,只需要证明 $\|T\|$ 满足三件事: 即正定性、三角不等式与齐次性。正定性由定义可知,若 $\|T\|=0$,则 $Tx=\theta$ ($\forall x\in \mathcal{X}$),当且仅当 $T=\theta$ 。下面证明三角不等式,即 $\|T_1+T_2\|=\sup_{\|x\|=1}\|(T_1+T_2)x\|\leqslant \sup_{\|x\|=1}\|T_1x\|+\|T_2x\|=\|T_1\|+\|T_2\|$ 。而后我们证明齐次性,即 $\|\alpha T\|=|\alpha|\|T\|$,考虑其定义: $\|\alpha T\|=\sup_{\|x\|=1}\|\alpha Tx\|=|\alpha|\sup_{\|x\|=1}\|Tx\|=|\alpha|\|Tx\|$ 。故而其为范数,从而构成一个 B^* 空间。而后我们需要证明完备性,即基本列都是收敛列。那么我们考虑一列基本列 $\{T_n\}$,则 $\forall \varepsilon>0$, $\exists N=N(\varepsilon)>0$, $\forall x\in \mathcal{X}$,有 $\|T_{n+p}x-T_nx\|<\varepsilon\|x\|$ ($\forall n\geqslant N$),故而 $T_nx\to y$,记此 y=Tx,我们要证明 $T\in\mathcal{L}(\mathcal{X},\mathcal{Y})$,由于 T 为线性的,我们要证明其有界性,而事实上 $\exists n\in \mathbb{N}$,使得 $\|Tx\|=\|y\|\leqslant \|T_nx\|+1\leqslant (\|T_n\|+1)\|x\|$ ($\forall x\in \mathcal{X}$, $\|x\|=1$)。故而 $\|T\|\leqslant \|T_n\|+1$,从而为完备的。

4 设 T 为有穷维 B^* 空间 \mathscr{X} 到 \mathscr{Y} 的线性映射,则 T 必然是连续的。

Proof. 由于 T 为有穷维的,故而可以用矩阵表示出来 t_{ij} ,而由于同一维度空间等价,记 $\mathscr{X} = \mathbb{K}^n$, 而 $\mathscr{Y} = \mathbb{K}^m$, 故而我们有 $\|Tx\| = \left(\sum_{i=1}^m \left|\sum_{j=1}^n t_{ij} x_j\right|^2\right)^{1/2} \leqslant \left(\sum_{i=1}^m \sum_{j=1}^n |t_{ij}|^2 \sum_{j=1}^n |x_j|^2\right)^{1/2} = \left(\sum_{i=1}^m \sum_{j=1}^n |t_{ij}|^2\right)^{1/2} \|x\|$, 故而 $\|T\|$ 有界,从而连续。

5 Hilbert 空间 $\mathscr X$ 上的正交投影算子。设 M 是 $\mathscr X$ 的一个闭线性子空间,由正交分解定理, $\forall \ x \in \mathscr X$,存在唯一的分解 x = y + z ,其中 $y \in M$, $z \in M^{\perp}$,对应 $x \to y$ 称为由 $\mathscr X$ 到 M 的正交投影算子,记作 P_M 。在不强调子空间 M 时,我们简记为 P ,我们来证明 P 是一个连续线性算子,且如果 $M \neq \{\theta\}$,则 $\|P\| = 1$ 。

Proof. 先证明线性,对于 $x_i = Px_i + z_i$, i = 1, 2 ,其中 $z_i \in M^{\perp}$,这时 $\alpha_1x_1 + \alpha_2x_2 = \alpha_1Px_1 + \alpha_1z_1 + \alpha_2Px_2 + \alpha_2z_2$,而由于 $\alpha_1x_1 + \alpha_2x_2 \in M$, $\alpha_1z_1 + \alpha_2z_2 \in M^{\perp}$,故而 $\alpha_1x_1 + \alpha_2x_2 = P(\alpha_1x_1 + \alpha_2x_2) + \alpha_1z_1 + \alpha_2z_2$,故而 $P(\alpha_1x_1 + \alpha_2x_2) = \alpha_1Px_1 + \alpha_2Px_2$,故而 为线性。下面证明连续,由于 $\|Px\|^2 = \|x\|^2 - \|z\|^2 \leqslant \|x\|^2$,故而 $\|Px\| \leqslant \|x\|$,即 $\|P\| \leqslant 1$ 。而若 $M \neq \{\theta\}$ 时,任取 $x \in M \setminus \{\theta\}$,便有 $\|Px\| = \|x\|$,从而 $\|P\| = 1$ 。

习题 (本节各题中, \mathcal{X} , \mathcal{Y} 均指 Banach 空间)

1 求证: $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ 的充要条件是 T 为线性算子, 并将 \mathcal{X} 中的有界集映为 \mathcal{Y} 中的有界集.

2.1. 线性算子的概念 9

Proof. 即我们要说明的是有界 + 线性能否等价为有界映射 + 线性,这是很好说明的,即说明存在常数 $M \ge 0$,使得

$$||Tx||_{\mathscr{Y}} \leqslant M||x||_{\mathscr{X}}$$

先证明充分性,若 T 将有界集映射为有界集,则 $\|x\|_{\mathscr{X}}$ 有界,且 $\|Tx\|_{\mathscr{Y}}$ 有界,故而令 $M\leqslant \frac{\|Tx\|_{\mathscr{Y}}}{\|x\|_{\mathscr{X}}}$ 即可。

再说明必要性,若 $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$,则存在常数 $M \ge 0$,使得上式成立,故而对于 \mathcal{X} 中任意有界集 D , $\|x\|_{\mathcal{X}} < \infty$,从而映射后的集合 $\|Tx\|_{\mathcal{Y}} < \infty$,故而映射为有界集。 \square

- 2 设 $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, 求证:
 - (1) $||A|| = \sup_{||x|| \le 1} ||Ax||$

Proof. 由定义我们知道 $\|A\| = \sup_{\|x\|=1} \|Ax\|$ 。故而题中 $RHS \geqslant LHS$,我们需要证明 $LHS \geqslant RHS$ 。 $\|A\| = \sup_{x \in \mathcal{X} \setminus \{\theta\}} \frac{\|Ax\|}{\|x\|} \geqslant \sup_{x \in \mathcal{X} \setminus \{\theta\}, \|x\| \leqslant 1} \frac{\|Ax\|}{\|x\|} \geqslant \sup_{\|x\| \leqslant 1} \|Ax\|$ 。故而得证。 \square

(2) $||A|| = \sup_{||x|| < 1} ||Ax||$.

Proof. 即我们现在需要说明 $\sup_{\|x\| \le 1} \|Ax\| = \sup_{\|x\| < 1} \|Ax\|$ 。 考虑 $LHS \geqslant RHS$,故而仅证 $LHS \leqslant RHS$,考虑 $\sup_{\|x\| \leqslant 1} \|Ax\| = \sup_{\|x_0\| = 1} \|A(x_0 - \varepsilon)\| \geqslant \sup_{\|x_0\| = 0} (\|Ax_0\| - \|A\varepsilon\|)$,令 $\varepsilon \to 0$ 即得 $RHS \geqslant LHS$,故而二者相等。

- 3 设 $f \in \mathcal{L}(\mathcal{X}, \mathbb{R})$, 求证:
 - (1) $||f|| = \sup_{||x||=1} f(x)$

Proof. 我们知道 $\|f\|=\sup_{\|x\|=1}\|fx\|$,而 $\sup_{\|x\|=1}\|fx\|\geqslant\sup_{\|x\|=1}f(x)$,同理我们要证反方向,而 $\sup_{\|x\|=1}\|fx\|=\sup_{\|x\|=1}|f(x)|$,记 f(x) 在 $\|x\|=1$ 时的上界为 a ,而我们可以证明这个上界与 |f(x)| 的相等。如若不然 $\sup|f(x)|=b>a$,则 $\sup|f(x)|=\sup-f(-x)$,但是对于线性算子而言,此二者相等,故得证。

(2) $\sup_{\|x\|<\delta} f(x) = \delta \|f\| \quad (\forall \delta > 0).$

Proof. 而我们由这几道题,可以得出 $\sup_{\|x\|<1} f(x) = \|f\|$,考虑 $\|y\| < \delta$,则存在对应的 $\|x\| = 1$,使得 $y = \frac{x\delta}{\|x\|}$,则有 $\sup_{\|y\|<\delta} f(y) = \frac{\delta}{\|x\|} \sup_{\|x\|=1} f(x) = \delta \|f\|$ 。

4 设 y(t) ∈ C[0,1], 定义 C[0,1] 上的泛函

$$f(x) = \int_0^1 x(t)y(t)dt \quad (\forall x \in C[0,1])$$

求 || f||.

Proof.

$$||f|| = \sup_{||x||=1} ||f(x)|| = \sup_{||x||=1} \int_0^1 x(t)y(t)dt$$

而 ||x(t)|| = 1 意味着 $\max |x(t)| = 1$, 故而我们有:

$$||f|| \le \sup_{||x||=1} \int_0^1 \max |x(t)|y(t)dt = \int_0^1 y(t)dt$$

而后我们考虑对于 x(t) , 总存在 $\varepsilon > 0$, 使得 $x(t) > 1 - \varepsilon$ 。故而有

$$||f|| \geqslant \sup_{||x||=1} \int_0^1 y(t)(1-\varepsilon)dt \geqslant \int_0^1 y(t)dt, \quad \varepsilon \to 0$$

故而我们得到 $||f|| = \int_0^1 y(t)dt$ 。

5 设 f 是 \mathscr{X} 上的非零有界线性泛函, 令

$$d = \inf\{||x|| \mid f(x) = 1, x \in \mathcal{X}\}\$$

求证: ||f|| = 1/d.

Proof. 考虑定义, $\|f(x)\| \le \|f\| \|x\|$,而由于 f(x) = 1,则 $\|f\| = \frac{1}{\|x\|} \ge \frac{1}{d}$ 。下面证明反方向,考虑对于 $\varepsilon > 0$,总存在 $\exists \ x_0 \ne 0$,使得 $\|f(x_0)\| / \|x_0\| \ge \|f\| - \varepsilon$,而由于 $f\left(\frac{x_0}{\|f(x_0)\|}\right) = 1$,故而 $\left|\frac{x_0}{f(x_0)}\right| \ge d$,故而 $\|f\| - \varepsilon \le \frac{1}{d}$,令 $\varepsilon \to 0$ 即得 $\|f\| \le \frac{1}{d}$,即有 $\|f\| = \frac{1}{d}$ 。

6 设 $f \in \mathcal{X}^*$, 求证: $\forall \varepsilon > 0, \exists x_0 \in \mathcal{X},$ 使得 $f(x_0) = ||f||$,且 $||x_0|| < 1 + \varepsilon$.

7 设 $T: \mathcal{X} \to \mathcal{Y}$ 是线性的, 令

$$N(T) \triangleq \{x \in \mathscr{X} \mid Tx = \theta\}.$$

(1) 若 $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, 求证: N(T) 是 \mathcal{X} 的闭线性子空间. 题中, \mathcal{X}, \mathcal{Y} 均指 Banach 空间)

Proof. 首先证明线性, $\forall \alpha_1, \alpha_2 \in \mathbb{K}$, $\forall x_1, x_2 \in N(T)$,则 $Tx_1 = Tx_2 = \theta$,则 $T(\alpha_1x_1 + \alpha_2x_2) = \alpha_1Tx_1 + \alpha_2Tx_2 = \theta$,故而 $\alpha_1x_1 + \alpha_2x_2 \in N(T)$,故而为线性的,考虑闭这一性质。对于 $x_n \to x_0$, $x_n \in N(T)$,我们需要证明收敛的 x_0 也在 N(T) 中。事实上这是很显然的,首先我们知道 $T\theta = \theta$ 故而在 N(T) 中,那么 $Tx_n - Tx_0 = T(x_n - x_0) \to T\theta = \theta$,而 $Tx_n = \theta$,故而 $Tx_0 = \theta$,即 $x_0 \in N(T)$,故而为闭的线性子空间。

(2) 问 N(T) 是 $\mathscr X$ 的闭线性子空间能否推出 $T \in \mathscr L(\mathscr X,\mathscr Y)$?

Proof. 不能,我们来举一个反例。令 $X = \{(\xi_1, \ \xi_2, \cdots, \xi_n, \cdots) \mid \sum_{n=1}^{\infty} |\xi_n| < \infty \}$,考虑 $\|x\| = \sup \|\xi_n\|$ 。定义 $f(x) = \sum_{i=1}^{\infty} |\xi_n|$,令 Tx = x - af(x) ,其中 $a = (1, -1, 0, 0, \cdots, 0, \cdots)$,则 f(a) = 0 ,现在我们来观察 N(T) 。 $Tx = \theta$,则 x = af(x) ,从而 f(x) = f(a)f(x) = 0 ,即 $N(T) = \{\theta\}$,则 N(T) 显然是闭线性子空间,但是 T 无界。

(3) 若 f 是线性泛函, 求证:

$$f \in \mathcal{X}^* \iff N(f)$$
 是闭线性子空间.

Proof. 必要性由 (1) 已经证明,我们来证明充分性。利用反证法,若 $\forall x_n$, $||x_n|| = 1$, $|f(x_n)| \ge n$, $y_n = \frac{x_n}{f(x_n)} - \frac{x_1}{f(x_1)}$,则有 $y_n = 0$ 进而推出 $y_n \in N(f)$,但是 $y_n \to -\frac{x_1}{f(x_1)} \notin N(f)$ 与闭空间矛盾。

8 设 f 是 \mathcal{X} 上的线性泛函, 记

$$H_f^{\lambda} \triangleq \{x \in \mathcal{X} \mid f(x) = \lambda\} \quad (\forall \lambda \in \mathbb{K})$$

如果 $f \in \mathcal{X}^*$, 并且 ||f|| = 1, 求证:

 $(1) |f(x)| = \inf \left\{ ||x - z|| \mid \forall z \in H_f^0 \right\} \quad (\forall x \in \mathscr{X});$

Proof. $\forall z \in H_f^0$,则 f(z) = 0 ,即证 $|f(x)| = ||f||\rho(x, N(f))$ 。 $\forall \varepsilon > 0$, $\exists y_{\varepsilon} \in N(f)$,则 $||x - y_{\varepsilon}|| < \rho(x, N(f)) + \varepsilon$ 。则

$$\|f(x)\| = \|f(x - y_{\varepsilon})\| < \|f\| \left(\rho(x, N(f)) + \varepsilon\right), \quad \|f(x)\| \leqslant \|f\|\rho(x, N(f)). \quad \varepsilon \to 0$$

而我们现在来证明反方向, $\forall z \in H_f^0$,进行如下分解: $\mathscr{X} = \{\lambda z \mid \lambda \in \mathbb{K}\} \oplus N(f)$ 。取 $\lambda = \frac{f(x)}{f(z)}$, $y = x - \frac{f(x)}{f(z)}z$,则有 $\forall x \in \mathscr{X}$, $x = \frac{f(x)}{f(z)}z + y$, $y \in N(f)$,f(z)(x - y) = f(x)z,则有 |f(z)||x - y|| = |f(x)||z||,即 $\frac{|f(z)|}{||z||}||x - y|| = |f(x)|$,则 $||x - y|| \sup_{z \in N(f)} \frac{f(z)}{||z||} \leqslant |f(x)|$,即 $||f||\rho(x, N(f)) \leqslant |f(x)|$,即证。

- (2) $\forall \lambda \in \mathbb{K}, H_f^{\lambda}$ 上的任一点 x 到 H_f^0 的距离都等于 $|\lambda|$. 并对 $\mathscr{X} = \mathbb{R}^2, \mathbb{K} = \mathbb{R}$ 情形解释 (1) 和 (2) 的几何意义.
- 9 设 \mathscr{X} 是实 B^* 空间, f 是 \mathscr{X} 上的非零实值线性泛函, 求证: 不存在开球 $B(x_0, \delta)$, 使得 $f(x_0)$ 是 f(x) 在 $B(x_0, \delta)$ 中的极大值或极小值.

Proof. 这里其实是很显然的,如果说存在 $x_0 \in B(x_0, r\delta)$,那么总存在开球上的两点 x, y,使 得 $x_0 = \lambda x + (1 - \lambda)y$,从而

$$f(x_0) = \lambda f(x) + (1 - \lambda)f(y)$$

但由于左侧为极值, 故而上式不可能成立。

2.2 Riesz 表示定理及其应用

命题与定理

1 设 f 是 Hilbert 空间 $\mathscr X$ 上的一个连续线性泛函,则必存在唯一的 $y_f \in \mathscr X$, 使得 $f(x) = (x, y_f)$ $(\forall x \in \mathscr X)$ 。

Proof. 不妨设 f 不是 0 泛函,考察集合 $M ext{ } ex$

 $f(x)=\alpha f(x_0)=(x,\ \overline{f(x_0)}x_0)$ 。取 $y_f=\overline{f(x_0)}x_0$ 即可¹。而后我们再次证明其唯一性如果 $\exists\ y,\ y'\in\mathscr{X}$ 满足 $f(x)=(x,\ y)=(x,\ y')$,则 $(x,\ y-y')=0$,由于 x 的任意性,显然 y=y',故而唯一性证毕。

而若考虑 $||f(x)|| \le ||x|| \cdot ||y_f||$,而取 $x = y_f$ 即得 $||y_f|| \le ||f||$,故而为二者相等。

2 设 $\mathscr X$ 是一个 Hilbert 空间,a(x,y) 是 $\mathscr X$ 上的一个共轭双线性函数,并且 $\exists \ M>0$,使得 $|a(x,y)| \leqslant M\|x\|\cdot\|y\|$,则存在唯一的 $A\in\mathscr L(\mathscr X)$,使得 a(x,y)=(x,Ay) ($\forall \ x,\ y\in\mathscr X$) ,且

$$||A|| = \sup_{(x, y) \in \mathcal{X} \times \mathcal{X}, x \neq \theta, y \neq \theta} \frac{|a(x, y)|}{||x|| \cdot ||y||}$$

Proof. 固定 $y \in \mathcal{X}$, $x \to a(x, y)$ 是一个连续线性泛函,由 Hilbert 表示定理, $\exists z = z(y) \in \mathcal{X}$,使得 a(x, y) = (x, z)。 定义映射 $A: y \to z(y)$,则有 a(x, y) = (x, Ay) = (x, z),又由于内积的共轭双线性,故而 A 是线性的,而且 $\|Ay\| = \sup_{x \in \mathcal{X} \setminus \{\theta\}} \frac{|a(x, y)|}{\|x\|} \leqslant M\|y\|$ 。

习题

1 设 f_1 , f_2 , \cdots , f_n 是 H 上一组有界线性泛函,

$$M \triangleq \bigcap_{k=1}^{n} N(f_k), \quad N(f_k) \triangleq \{x \in H \mid f_k(x) = 0\}$$

 $\forall x_0 \in H$,记 y_0 为 x_0 在 M 上的正交投影,求证: $\exists y_1, y_2, \dots, y_n \in N(f_k)^{\perp}$ 及 $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{K}$,使得

$$y_0 = x_0 - \sum_{k=1}^n \alpha_k y_k$$

Proof. 由 Riesz 表示定理, $\exists y_k \in H$,使得 $f_k(x) = (x, y_k)$ 。 $\forall x_0 \in \bigcap_{k=1}^n N(f_k)$,则 $(x_0, y_k) = 0$,这意味着 $y_k \perp M$ 。 不妨假设 $\{y_k\}_{k=1}^n$ 的极大无关线性组就是本身,那么由正交分解, $x_0 = y_0 + z_0$, $z_0 \in \operatorname{span}\{y_k\}$,则 $\exists \alpha_1, \alpha_2, \cdots, \alpha_n \in \mathbb{K}$,使得

$$y_0 = x_0 - \sum_{k=1}^n \alpha_k y_k$$

即 M 的正交补 $\{y_k\}$ 的一个线性组合

2 设 l 是 H 上的实值有界线性泛函,C 是 H 中的一个闭凸子集,又设

$$f(v) = \frac{1}{2} ||v||^2 - l(v)$$

(1) 求证: $\exists u^* \in H$,使得

$$f(v) = \frac{1}{2} \|u^* - v\|^2 - \frac{1}{2} \|u^*\|^2$$

¹注意这里内积的定义是共轭的。

Proof. 由于 l 有界则必连续,故而满足 Riesz 表示定理,故而存在唯一的 $u^* \in H$,使 得 $l(v) = (v, u^*)$ 。那么原式变为:

$$\begin{split} f(v) &= \frac{1}{2}\|v\|^2 - (v, u^*) \\ &= \frac{1}{2}\|v\|^2 - \frac{1}{2}\left(\|v\|^2 + \|u^*\|^2 - \frac{\|u^* - v\|^2}{2}\right) \\ &= \frac{1}{2}\|u^* - v\|^2 - \frac{1}{2}\|u^*\|^2 \end{split}$$
 这里由于 l 是实值泛函,则共轭为本身。

(2) 求证: $\exists \|u_0 \in C$,使得 $f(u_0) = \inf_{v \in C} f(v)$ 。

Proof. 由于 f(v) 只有第一项是与 v 有关的,故而必然存在 $u_0 \in C$,使得

$$\inf_{v \in C} \|u^* - v\|^2 = \|u^* - u_0\|^2$$

故而
$$\inf_{v \in C} f(v) = f(u_0)$$
。

3 设 H 的元素是定义在集合 S 上的复值函数,又若 $\forall x \in S$,由

$$J_x(f) = f(x) \quad (\forall f \in H)$$

定义的映射 $J_x: H \to \mathbb{C}$ 是 H 上的连续线性泛函。求证,存在 $S \times S$ 上复值函数 K(x,y),满足条件:

- (1) 对任意固定的 $y \in S$, 作为 x 的函数有 $K(x,y) \in H$;
- (2) $f(y) = (f, K(\cdot, y)), \forall f \in H, \forall y \in S$.

Proof. 我们自然的会想到利用 Riesz 表示定理,即存在唯一的 $K_y \in H$,使得 $J_x(f) = (f, K_y) = f(x)$ 。 这里 K_y 依赖于 y,我们记 k(x,y) = (ky,kx),则固定 $y \in S$, $K(x,y) = k_y(x) \in H$,而同理 $f(y) = (f,k_y)k_y = (f,K(\cdot,y))$ 。

4 求证: $H^2(D)$ 的再生核为

$$K(z, w) = \frac{1}{\pi (1 - z\overline{w})^2}, \quad z, w \in D$$

Proof. 首先这里要求的是需要满足上一个题目的要求 (1)(2), 且 H2(D) 表示在 D 内满足

$$\iint_D |u(z)|^2 dx dy < \infty$$

的解析函数全体组成的函数。这里透露出两个信息,首先这里的函数是有界的,且解析函数显然连续。显然是一个连续线性泛函。

- 5 设 L, M 是 H 上的闭线性子空间, 求证
 - (1) $L \perp M \Leftrightarrow P_L P_M = 0$

$$P_L P_M x = P_L m = 0, \quad \forall x \in H$$

(2) $L = M^{\perp} \Leftrightarrow P_L + P_M = I$

Proof. 则对于上述分解, $P_L x = l \in M^{\perp}$, 故而

$$(P_L + P_M)x = l + m = x$$

故而为恒同映射。

(3) 若 $P_L P_M = P_{L \cap M}$, 则我们考虑 x = l + m, 从而

$$P_{L\cap M}(l+m) = P_L m$$

从而我们换个方向

$$P_{L\cap M}x = P_{M\cap L}x = P_M P_L x$$

从而是等价的,反方向: 考虑 $\forall y \in H$,有

$$P_L P_M x (\in M) = P_M P_L x \in L$$

从而 $P_L P_M x \in L \cap M$,下面我们验证 $P_L P_M \supset P_{L \cap M}$ 。 只需要验证

$$(x - P_L P_M x) \perp (L \cap M) \quad (\forall x \in \mathcal{H})$$

事实上,

$$(x - P_L P_M x, y) = (x, y) - (x, P_M P_L y) = (x, y) - (x, y) = 0 \quad (\forall y \in L \cap M)$$

2.3 纲与开映射定理

定义与例子

- 1 设 (\mathcal{X}, ρ) 是一个度量空间,集合 $E \subset \mathcal{X}$, 称 E 是疏的, 如果 \overline{E} 的内点是空的。
- 2 在度量空间 (\mathscr{X}, ρ) 中,集合 E 称为**第一纲集**,如果 $E = \bigcup_{n=1}^{\infty} E_n$,其中 E_n 是疏集。不是第一纲集的称为**第二纲集**。
 - (1) 在 \mathbb{R}^n 上,有穷点集是疏集。Cantor 集是疏集。
 - (2) 在 ℝ上,有理点集是第一纲集,更一般的,可数点集总是第一纲集。
- 3 设 \mathcal{X} , \mathcal{Y} 都是 B 空间, $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$,算子 T 称为单射,如果 T 是 1-1 的,算子 T 称为满射,如果 $T(\mathcal{X}) = \mathcal{Y}$ 。
- 4 设 $T \in \mathcal{X} \to \mathcal{Y}$ 的线性算子,D(T) 是定义域,称 T 是闭的是指由 $x_n \in D(T)$, $x_n \to x$,以及 $Tx_n \to y$,有 $x \in D(T)$ 且 Tx = y 。

命题与定理

1 设 (\mathcal{X}, ρ) 是一个度量空间,为了 $E \subset \mathcal{X}$ 是疏集,i.f.f \forall 球 $B(x_0, r_0)$,存在 $B(x_1, r_1) \subset B(x_0, r_0)$,使得 $\overline{E} \cap \overline{B}(x_1, r_1) = \emptyset$ 。

Proof. 必要性由于 \overline{E} 无内点,所以 \overline{E} 不能包含任意球 $B(x_0, r_0)$,从而 $\exists x_1 \in B(x_0, r_0)$,使得 $x_1 \notin \overline{E}$,又由于 \overline{E} 是闭集,所以 $\exists \varepsilon_1 > 0$,使得 $\overline{B}(x_1, \varepsilon) \cap \overline{E} = \emptyset$ 。取 $0 < r_1 < \min(\varepsilon_1, r_0 - \rho(x_0, x_1))$,便有 $B(x_1, r_1) \subset B(x_0, r_0)$,且 $\overline{B}(x_1, r_1) \cap \overline{E} = \emptyset$ 。

充分性若 E 不是疏的,即 \overline{E} 有内点,则 \exists $B(x_0, r_0) \subset \overline{E}$,但与我们的条件,即 \exists $B(x_1, r_1) \subset B(x_0, r_0)$ 且这二者不交矛盾。

2 (Baire) 完备度量空间 (\mathscr{X} , ρ) 是第二纲集。

Proof. 那么我们就用反证法假设其为第一纲集,得到 contradiction 即可。即存在疏集 $\{E_n\}$,使得 $X=\bigcup_{n=1}^{\infty}E_n$,则对于任意的球 $B(x_0,\ r_0)$,均存在 $B(x_1,\ r_1)\subset B(x_0,\ r_0)$ $r_1<1$,使得 $\overline{B}(x_1,\ r_1)\cap\overline{E}_1=\varnothing$ 。而后我们在 $B(x_1,\ r_1)$ 中寻找更小的球,满足 $B(x_2,\ r_2)\subset B(x_1,\ r_1)$ $r_2<\frac{1}{2}$ 且 $\overline{B}(x_2,\ r_2)\cap(\overline{E}_1\cup\overline{E}_2)=\varnothing$,同理我们可以找到一组集合列来不断逼近之,而 $x_1,\ x_2,\ \cdots,x_n,\cdots$ 为一基本列,由于 $\rho(x_{n+p}-x_n)\leqslant r_n<\frac{1}{n}\to 0$ 。故而记 $\lim_{n\to\infty}x_n=x$ 。另一方面,令 $p\to\infty$ 有, $\rho(x,\ x_n)\leqslant r_n$,从而 $x\notin\overline{B}(x_n,\ r_n)$ 。故而矛盾。

3 在 C[0,1] 中处处不可微的函数集合 E 是非空的,更确切的,E 的余集是第一纲集。

Proof. 取 $\mathscr{X} = C[0, 1]$,设 A_n 表示 \mathscr{X} 中这样一些元素 f 之集,对于 f , $\exists s \in [0, 1]$,使得对于适合 $0 \le s + h \le 1$ 与 $|h| \le 1/n$ 的任何 h ,成立

$$\left| \frac{f(s+h) - f(s)}{h} \right| \leqslant n$$

若 f 在某个点 s 处可微,则必有正整数 n ,使得 $f\in A_n$,于是 $\mathscr{X}\backslash E\in\bigcup_{n=1}^\infty A_n$,下面我们证明每个 A_n 是疏集。若如此则 E 的余集是第一纲集,而 E 是第二纲集。

首先 A_n 是闭的,事实上若 $f \in \mathcal{X} \setminus A_n$,则 $\forall s \in [0, 1]$,日 h_s 使得 $|h_s| \leqslant \frac{1}{n}$ 且 $|f(s+h) - f(s)| > n|h_s|$,又由于 f 的连续性,日 $\varepsilon_s > 0$,以及 s 的某个适当的邻域 J_s ,使得对 $\forall \sigma \in J_s$,有 $|f(\sigma + h_s) - f(\sigma)| > n|h_s| + 2\varepsilon_s$,由有限覆盖原理,可设 J_{s_1} , J_{s_2} , · · · , J_{s_m} 覆盖 [0, 1] ,并设 $\varepsilon = \min\{\varepsilon_{s_1}, \cdots, \varepsilon_{s_m}\}$ 。若 $g \in \mathcal{X}$,适合 $||g - f|| < \varepsilon$,则对 $\forall \sigma \in J_{s_k}$,有

$$|g(\sigma + h_{s_k}) - g(\sigma)| \ge |f(\sigma + h_{s_k}) - f(\sigma)| - 2\varepsilon \ge n|h_{s_k}|$$

则 $\mathcal{X}\setminus A_n$ 是开集,从而 A_n 为闭集。再证明 A_n 没有内点。²

 $\forall f \in A_n$, $\forall \varepsilon > 0$, 由 Weierstrass 逼近定理,存在多项式 p , 使得 $\|f - p\| < \frac{\varepsilon}{2}$, p 的导数在 [0, 1] 上是有界的,因此根据中值定理, $\exists M > 0$,使得对 $\forall s \in [0, 1]$,以及 $|h| < \frac{1}{n}$,使得 $|p(s+h) - p(s)| \leq M|h|$ 。 设 $g(s) \in C[0, 1]$ 是一个分段线性函数,满足 $\|g\| < \frac{\varepsilon}{2}$, 并且各条线段的线段斜率的绝对值都大于 M+n ,那么 $p+g \in B(f, \varepsilon)$, 而 $p+g \notin A_n$, 故而每个 A_n 都是疏集,则 $\mathscr X$ 是第二纲集。

4 (Banach) 设 \mathcal{X} , \mathcal{Y} 是 B 空间,若 $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ 既是一个单射也是满射,则 $T^{-1} \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ 。

Proof. 我们先完成下面的**开映射定理**的证明。而后我们来证明 **Banach** 。已知 $U(\theta, 1) \subset TB(\theta, \frac{1}{\delta})$,即 $T^{-1}U(\theta, 1) \subset B(\theta, \frac{1}{\delta})$ 或 $\|T^{-1}(y)\| < \frac{1}{\delta}$,由范数齐次性, $\forall \ y \in \mathscr{Y}$, $\forall \ \varepsilon > 0$

 $^{^2}$ 由于 A_n 为闭集,故而内部即为自身,不需要加 bar。

,有

$$||T^{-1}(y)|| < \frac{(1+\varepsilon)}{\delta}||y||$$

令 $\varepsilon \to 0$ 即得 $||T^{-1}(y)|| \leqslant \frac{1}{\delta}||y||$,从而 $T^{-1} \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ 。

5 (开映射定理) 设 \mathcal{X} , \mathcal{Y} 是 B 空间, 若 $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ 是一个满射, 则 T 是开映射。

Proof. 我们用 $B(x_0, a)$ 和 $U(y_0, b)$ 表示 $\mathscr X$ 和 $\mathscr Y$ 中的开球。为了证明 T 是开映射,我们要证明对于任意的开集 W ,T(W) 也是开集,即我们要证明 $\exists \, \delta > 0$,使得 $TB(\theta, 1) \supset U(\theta, \delta)$ 。必要性显然,我们来说明充分性。由于 T 的线性,条件等价于 $TB(x_0, r) \supset U(Tx_0, r\delta)$ 。而 $\forall \, y_0 \in T(W)$,按定义 $\exists \, x_0 \in W$,使得 $y_0 = Tx_0$,由于 W 是开集,所以 $\exists \, B(x_0, r) \subset W$,取 $\varepsilon = r\delta$,则有 $U(Tx_0, \varepsilon) \subset TB(x_0, r) \subset T(W)$,即 y_0 为 T(W) 的内点,由于任意性,故而 T 为开映射。

而后我们需要证明: $\exists \, \delta > 0$,使得 $\overline{TB(\theta, \, 1)} \supset U(\theta, \, 3\delta)$,这是因为 $\mathscr{Y} = T\mathscr{X} = \bigcup_{n=1}^{\infty} TB(\theta, \, n)$,而 \mathscr{Y} 是完备的,所以至少有一个 $n \in \mathbb{N}$ 使得 $TB(\theta, \, n)$ 非疏集。因此 $\exists \, U(y_0, \, r) \subset \overline{TB(\theta, \, n)}$,而由于 $TB(\theta, \, n)$ 是一个对称疏集,那么有 $U(-y_0, \, r) \subset \overline{TB(\theta, \, n)}$,从而

$$U(\theta, r) \subset \frac{1}{2}U(-y_0, r) + \frac{1}{2}U(y_0, r) \subset \overline{TB(\theta, n)}$$

由于 T 的齐次性,取 $\delta = \frac{r}{3n}$,则 $\overline{TB(\theta,\ 1)} \supset U(\theta,\ 3\delta)$ 。

而后我们证明: $TB(\theta, 1) \supset U(\theta, \delta)$, $\forall y_0 \in U(\theta, \delta)$,要证明 $\exists x_0 \in B(\theta, 1)$,使得 $Tx_0 = y_0$ 。即求方程 $Tx = y_0$ 在 $B(\theta, 1)$ 的一个解。我们利用逐步逼近法即可。对于 $y_0 \in U(\theta, \delta)$,考虑 $\exists x_1 \in B(0, \frac{1}{3})$,使得 $||y_0 - Tx_1|| < \frac{\delta}{3}$ 。

而后对 $y=y_0-Tx_1\in U(\theta,\ \frac{\delta}{3})$, $\exists\ x_2\in B(\theta,\ \frac{1}{3^2})$, 使得

$$||y_1 - Tx_2|| < \frac{\delta}{3^2}$$

而后我们构建的这一组,令 $x_0 riangleq \sum\limits_{n=1}^{\infty} x_n$,便有 $x_0 \in B(0, 1)$,而

$$||y_n|| = ||y_{n-1} - Tx_n|| = ||y_0 - T(x_1 + x_2 + \dots + x_n)|| < \frac{\delta}{3^n} \to 0$$

而由于 T 是连续的, 故而 $Tx_0 = y_0$ 。即 $Y(\theta, \delta) \subset TB(\theta, 1)$ 。

6 若 \mathscr{X} , \mathscr{Y} 是 B 空间,T 是 $\mathscr{X} \to \mathscr{Y}$ 的一个闭线性算子,满足 R(T) 是 \mathscr{Y} 中的第二纲集,则 $R(T) = \mathscr{Y}$ 并且 $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon) > 0$, 使得 $\forall y \in \mathscr{Y}$, $||y|| < \delta$,必有 $x \in D(T)$, 适合 $||x|| < \varepsilon$ 且 y = Tx 。

Proof. 已知对 $\varepsilon=1$, $\exists \ \delta>0$, 使得 $U(\theta,\ \delta)\subset T(B(\theta,\ 1)\cap D(T))$ 。 $\forall \ y\in\mathscr{Y}$, 不妨设 $y\neq\theta$, $\forall \ 0<\delta_1<\delta$, 按前式

见开映射定理中
$$U(\theta, \ \delta) \subset TB(\theta, \ 1)$$

$$\frac{\delta_1 y}{\|y\|} \in U(\theta, \ \delta) \Longrightarrow \frac{\delta_1 y}{\|y\|} \in T(B(\theta, \ 1) \cap D(T))$$

于是 $\exists x \in B(\theta, 1) \cap D(T)$, 使得

$$\frac{\delta_1 y}{\|y\|} = Tx \Longrightarrow y = T\left(\frac{\|y\|}{\delta_1}x\right) \Longrightarrow y \in R(T)$$

2.3. 纲与开映射定理 17

即我们这里用了开映射定理中的(1)-(3)的部分证明。

7 一个连续线性算子总可以延拓到 $\overline{D(T)}$ 上。设 T 是 B^* 空间 $\mathscr X$ 到 B 空间 $\mathscr Y$ 的连续线性算 子,那么T可以唯一延拓到 $\overline{D(T)}$ 上成为连续线性算子 T_1 使得 T_1 = T,且 $||T_1|| = ||T||$

Proof. 任取 $x \in D(T)$, $\exists x_n \in D(T)$, $\lim_{n \to \infty} x_n = x$, 依据假设 T 在 D(T) 上连续,从而有 界,即存在 M>0 ,使得 $\|Tx\|\leqslant M\|x\|$,于是 $\|Tx_{n+p}-Tx_n\|\leqslant M\|x_{n+p}-x_n\|$,故而 $\{Tx_n\}$ 为 $\mathscr Y$ 中的基本列,由于 $\mathscr Y$ 为 B 空间,故而完备,则 $\{Tx_n\}$ 可以收敛,故而 $\exists y \in \mathscr Y$,使得 $Tx_n \to y$ 。而 y 仅依赖于 x ,与 x_n 的选择无关。故而可以定义 $T_1: x \to y$,且 T_1 是线性的,且 $T_1|_{D(T)} = T$,并且 $||T_1x|| \leq M||x||$ 。

8 等价范数定理设线性空间 $\mathscr X$ 上有两个范数 $\|\cdot\|_1$ 和 $\|\cdot\|_2$,如果 $\mathscr X$ 关于这两个范数都构成 B 空间,而且 $\|\cdot\|_2$ 比 $\|\cdot\|_1$ 强,则两个范数等价。

Proof. 考察恒同映射 $I: \mathscr{X} \to \mathscr{X}$, 把它看成由 $(\mathscr{X}, \|\cdot\|_2) \to (\mathscr{X}, \|\cdot\|_1)$ 的线性算子, 由 $\|\cdot\|_2$ 比 $\|\cdot\|_1$ 强,故而存在 C>0 ,有 $\|Ix\|_1 \leq C\|x\|_2$ 。故而 I 是连续的,同样它既单又 满,故而 I 可逆且 I^{-1} 连续,即存在 M>0 ,使得 $||I^{-1}x||_2 \leq M||x||_1$,故而 $||\cdot||_1$ 与 $||\cdot||_2$ 等价。

9 **闭图像定理**设 \mathcal{X} , \mathcal{Y} 是 B 空间, 若 T 是 $\mathcal{X} \to \mathcal{Y}$ 的闭线性算子, 并且 D(T) 是闭的, 则 T 是连续的。

Proof. 因为 D(T) 是闭的, 所以 D(T) 作为 \mathcal{X} 的线性子空间可看成是 B 空间, 在 D(T) 上 引入一个新范数

$$||x||_G = ||x|| + ||Tx||$$

现在证明 $(D(T), \|\cdot\|_G)$ 也是 B 空间,事实上从

$$||x_n - x_m||_G = ||x_n - x_m|| + ||Tx_n - Tx_m|| \to 0 \quad n, m \to \infty$$

可知 $\exists x^* \in \mathcal{X}$ 与 $y^* \in \mathcal{Y}$, 使得 $x_n \to x^*$ 且 $Tx_n \to y^*$, 由于 T 是闭线性算子, 则有 $Tx^* = y^*$ 。从而 $Tx_n \to Tx^*$,因此 $||x_n - x^*||_G \to 0$,而又显然 $||\cdot||_G$ 比 $||\cdot||$ 强,故而由等 价范数定理,这二者等价。存在 M > 0 有

$$\|Tx\|\leqslant \|x\|_G\leqslant M\|x\|\quad\forall\ x\in D(T)$$
 由于 $\|\cdot\|_G$ 的定义,显然大于 $\|Tx\|$

即我们的目的说明了 T 是有界算子, 故而 T 是连续的。

10 共鸣定理/一致有界定理设 $\mathscr X$ 是 B 空间, $\mathscr Y$ 是 B^* 空间,如果 $W \subset \mathscr L(\mathscr X,\mathscr Y)$,使得

$$\sup_{A\in W}\|Ax\|<\infty \qquad \forall \ x\in \mathcal{X}$$
 意味着 $\|Ax\|\leqslant M_x\|x\|$,而我们需要寻找一个与 x 无关的 M

那么存在常数 M , 使得 $\|A\| \leq M$ ($\forall A \in W$) 。

 $Proof. \ \forall x \in \mathcal{X} \ , \ 定义$

$$||x||_W = ||x|| + \sup_{A \in W} ||Ax||$$

显然 $\|\cdot\|_W$ 是 $\mathscr X$ 上的范数,且强于 $\|\cdot\|$ 。下面证明($\mathscr X$, $\|\cdot\|_W$)完备。如果 $\|x_m-x_n\|_G\to 0$,则分别为 0。而由于 $\mathscr X$ 是 B 空间,故而 $\exists x\in\mathscr X$,使得 $\|x_n-x\|\to 0$ 。下面我们说明 Ax 这一部分。由于 $\forall \varepsilon>0$, $\exists N=N(\varepsilon)$,使得 $\sup_{A\in W}\|Ax_m-Ax_n\|<\varepsilon$,从而对 $A\in W$ 有 $\|Ax_n-Ax\|\leqslant \varepsilon$,于是 $\|x_n-x\|+\sup_{A\in W}\|Ax_n-Ax\|\to 0$ 。从而 $\|\cdot\|_W$ 完备,同闭图像定理的证明部分,该范数与 $\|\cdot\|$ 等价,从而存在常数 M 使得

同理
$$\|Ax\| \le \|A\| \|x\|$$
 可得
$$\sup_{A \in W} \|Ax\| \le \|x\|_W \le M \|x\|$$

故而 $||A|| \leq M$ 。

而从反面来叙述,将有:
$$\sup_{A\in W}\|A\|=\infty\Longrightarrow\exists\;x_0\in\mathscr{X}$$
,使得 $\sup_{A\in W}\|Ax_0\|=\infty$ 。

- 11 Banach-Steinhaus 定理设 $\mathscr X$ 是 B 空间, $\mathscr Y$ 是 B^* 空间,M 是 $\mathscr X$ 的某个稠密子集,若 $A_n,\ A\in\mathscr L(\mathscr X,\mathscr Y)$,则 $\forall x\in\mathscr X$ 都有 $\lim_{x\to \infty}A_nx=Ax$ 的充要条件是:
 - ||*A_n*|| 有界
 - $\lim_{n \to \infty} A_n x = Ax \ \forall x \in M \ \text{成立}$.

Proof. 必要性:由共鸣定理,由于 $A_n \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$,故而 $||A_n||$ 有界。且 ||A|| 有界。而显然对于 $\forall x \in M$ 均成立。

充分性: 假定 $||A_n|| \leq C$, 对 $\forall x \in \mathcal{X}$ 以及 $\forall \varepsilon > 0$, 取 $y \in M$ 使得

$$\|x-y\|\leqslant rac{arepsilon}{4(\|A\|+C)}$$
 这里由稠密性推导的 $arepsilon'$ 网即得

便有

$$\|A_nx-Ax\|\leqslant \|A_nx-A_ny\|+\|A_ny-Ay\|+\|Ax-Ay\|<\frac{\varepsilon}{2}+\|A_ny-Ay\|$$
 由于刚才的稠密性即得均小于 $\varepsilon/4$

再取 N 足够大,使得 $||A_ny - Ay|| < \frac{\varepsilon}{2}$,即证。

- 12 **Lax-Milgram 定理**设 a(x,y) 是 Hilbert 空间 \mathcal{X} 上的一个共轭双线性函数,满足
 - $\exists M > 0$, $\notin \{a(x,y) | \leq M \|x\| \cdot \|y\|$
 - $\exists \delta > 0$,使得 $|a(x,x)| \ge \delta ||x||^2$

那么必然存在唯一有连续逆的连续线性算子 $A \in \mathcal{L}(\mathcal{X})$ 满足

- $a(x,y) = (x,Ay) \ (\forall x,y \in \mathscr{X})$
- $||A^{-1}|| \leq \frac{1}{\delta}$

2.3. 纲与开映射定理

Proof. 由第一个满足的条件,知道存在唯一的算子 $A \in \mathcal{L}(\mathcal{X})$ 。现在我们证明以下部分。

(1) A 是单射,若有 $y_1, y_2 \in \mathcal{X}$,满足 $Ay_1 = Ay_2$,则

$$a(x, y_1) = a(x, y_2)$$

则 $a(x,y_1-y_2)=0$, 若取 $x=y_1-y_2$, 则显然 $y_1=y_2$ 。故而 A 为单射。

(2) A 是满射, 先证明 R(A) 是闭的, 事实上, $\forall w \in \overline{R}(A)$, $\exists v_n \in \mathscr{X}$ 使得

$$w = \lim_{n \to \infty} Av_n$$

则

$$\begin{split} \delta \|v_{n+p} - v_n\| &\leqslant |a(v_{n+p} - v_n, v_{n+p} - v_n)| \\ &= |(v_{n+p} - v_n, A(v_{n+p} - v_n))| \\ &\leqslant \|v_{n+p} - v_n\| \cdot \|Av_{n+p} - Av_n\| \end{split}$$

即得

$$||v_{n+p} - v_n|| \le \frac{1}{\delta} ||Av_{n+p} - Av_n|| \to 0$$

从而 v_n 是基本列,因此 $\exists v^* \in \mathcal{X}$,使得 $v_n \to v^*$,并且有连续性得 $w = Av^*$,即得 $w \in R(A)$,于是 R(A) 是闭集。再证明 $R(A)^\perp = \{\theta\}$ 。倘若 $w \in R(A)^\perp$,则

$$(w, Av) = 0 \quad (\forall v \in \mathscr{X})$$

即 a(w,v)=0, 特别取 v=w, 即得

$$\delta ||w||^2 \leqslant |a(w, w)| = 0$$

故而 $w = \theta$, 则 A 为满射。

(3) 再利用 Banach 逆算子定理, $A^{-1} \in \mathcal{L}(\mathcal{X})$,因为

$$\delta ||x||^2 \le |a(x,x)| = |(x,Ax)| \le ||x|| \cdot ||Ax||$$

所以 $\delta ||x|| \leq ||Ax||$,故而 $||A^{-1}|| \leq \frac{1}{\delta}$ 。

13 Lax 等价定理如果 $\forall x \in \mathcal{X}$, $||Tx - T_n x|| \to 0$ 成立,那么为了 $x_n \to x$ $(n \to \infty)$,其中 x_n 与 x 分别是 $T_n x_n = y$ 和 Tx = y 的解,必须且仅须 $\exists C > 0$,使得 $||T_n^{-1}|| \leqslant C$ 成立。

Proof. 充分性。由 $||Tx - T_n x|| \to 0$ 和 $||T_n^{-1}|| \leqslant C$ 得到,

$$||x_n - x|| = ||T_n^{-1}y - T_n^{-1}T_nx||$$

$$\leq ||T_n^{-1}|| \cdot ||Tx - T_nx||$$

$$\leq C||Tx - T_nx|| \to 0 \quad (n \to \infty)$$

必要性。 $\forall y \in \mathcal{Y}$, 令 $x_n = T_n^{-1}y$, $x = T^{-1}y$, 便有 $x_n \to x$, 因此

$$T_n^{-1}y \to T^{-1}y$$

由共鸣定理,则 $||T^{-1}||$ 有界。

习题

1 设 \mathscr{X} 是 B 空间, \mathscr{X}_0 是 \mathscr{X} 的闭子空间, 映射 $\varphi: \to \mathscr{X}/\mathscr{X}_0$ 定义为:

$$\varphi: x \to [x]$$

其中 [x] 表示含 x 的商类,证明 φ 是开映射。

Proof. 这里我们可以发现 φ 是连续线性有界算子,且 φ 显然是满射,所以自然的有 φ 是开映射。

2 设 \mathcal{X} , \mathcal{Y} 是 B 空间,又设方程 Ux = y 对 $y \in \mathcal{Y}$ 都有解 $x \in \mathcal{X}$,其中 $U \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$,并且 $\exists m > 0$ 使得

$$||Ux|| \geqslant m||x|| \quad (\forall x \in \mathscr{X})$$

求证: U 有连续逆 U^{-1} , 且 $||U^{-1}|| \leq 1/m$ 。

Proof. 这里要用 Banach 定理说明问题,首先这里显然是满射,且若不为单射,则存在 $x_1, x_2 \in \mathcal{X}$,使得 $Ux_1 = Ux_2$,则有 $U(x_1 - x_2) = 0$,因此二者相等,故而为单射。因此 $U^{-1} \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ 。而后我们考虑 $\|U\| = \sup_{x \in \mathcal{X} \setminus \{\theta\}} \frac{\|Ux\|}{\|x\|} \geqslant m$,则

$$||U^{-1}|| = \inf_{x \in \mathcal{X} \setminus \{\theta\}} \frac{||x||}{||Ux||} \le \frac{1}{m}$$

3 设 H 为 Hilbert 空间,并且 $A \in \mathcal{L}(\mathcal{H})$,且 $\exists m > 0$ 使得

$$|(Ax, x)| \geqslant m||x||^2 \quad (\forall x \in H)$$

求证 $\exists A^{-1} \in \mathcal{L}(\mathcal{H})$ 。

Proof. 我们依然用 Banach 说明问题,要说明 A 是单射与满射。首先由上式得到

$$||A|| \cdot ||x|| \ge |(Ax, x)| \ge m||x||^2$$

则我们可以发现 $\|A\| \ge m\|x\|$,但由于 A 有界,则 $\|A\|$ 与 $\|x\|$ 等价,因此为双射。故而显然。

- 4 设 \mathcal{X}, \mathcal{Y} 是 B^* 空间, D 是 \mathcal{X} 的线性子空间, 并且 $A: D \to \mathcal{Y}$ 是线性映射, 求证
 - (1) 如果 A 连续且 D 是闭的,则 A 是闭算子

Proof. 考虑 D 中的序列 $\{x_n\}$,且 $x_n \to x_0$,且 $Ax_n \to y_0$,我们要说明 $Ax_0 = y_0$ 。考虑由于 A 连续,则 $|A(x_n) - A(x_0)| \to A(\theta) = 0$,因此 $A(x_0) = y_0$ 。

2.3. 纲与开映射定理 21

(2) 如果 A 连续且是闭算子,那么 \mathcal{Y} 完备蕴含 D 闭。

Proof. 由于 A 连续且 $\mathscr Y$ 完备,则 A 可以连续的唯一延拓到 $\bar D$ 上,且 $\tilde A|_D=A$,且 $\|\tilde A\|=\|A\|$ 。下面证明 D 是闭集, $x_n\in D$,且 $x_n\to x_0$,从而 $\tilde Ax_n=Ax_n\to \tilde Ax_0$ 。而 因此 $x_0\in D$,因此为闭集。

(3) 如果 A 是单射的闭算子,那么 A^{-1} 也是闭算子。

Proof. 考虑 $y_n \in R(A)$,且 $y_n \to y_0$,则 $y_0 \in R(A)$,且对应的存在 $x_n \in D(A)$ 使得 $y_n = Ax_n$,由于 A 为单射,因此 $x_n = A^{-1}y_n \to x_0 = A^{-1}y_0$ 。因此 $x_0 \in D(A)$,故而为闭算子。

- (4) 如果 A 完备,A 为单射的闭算子,R(A) 在 $\mathcal Y$ 中稠密,并且 A^{-1} 连续,则 $R(A) = \mathcal Y$ Proof. 由 A 完备,A 为单射的闭算子推知 A^{-1} 也是闭算子。则 $D(A^{-1}) = R(A)$ 是闭的。且由于 R(A) 在 $\mathcal Y$ 中稠密,因此 $R(A) = \mathcal Y$ 。
- 5 用等价范数定理证明: $(C[0,1], \|\cdot\|_1)$ 不是 B 空间,其中 $\|f\|_1 = \int_0^1 |f(t)| dt$ 。

Proof. 若是 B 空间,则由于 $\int_0^1 |f(t)| dt \leq \max_{t \in [0,1]} |f(t)| = \|f\|$ 。故而这二者范数等价。那么存在正数 M > 0,使得 $M\|f\|_1 \geq \|f\|$ 。且这里显然有 M > 1。那么我们考虑

$$f(t) = \begin{cases} 1 - Mt & t \in [0, \frac{1}{M}] \\ 0 & t \in (\frac{1}{M}, 1] \end{cases}$$

则有 $\|f\|_1 = \frac{1}{2M}$ 而 $\|f\| = 1$,矛盾。因此并非 B 空间。

- 6 Gelfand 引理: 设 \mathcal{X} 是 B^* 空间, $p:\mathcal{X}\to\mathbb{R}$ 满足
 - (1) $p(x) \geqslant 0 \ (\forall x \in \mathscr{X});$
 - (2) $p(\lambda x) = \lambda p(x), \ \forall \lambda > 0, \forall x \in \mathcal{X};$
 - (3) $p(x_1 + x_2) \leqslant p(x_1) + p(x_2)$, $\forall x_1, x_2 \in \mathcal{X}$;
 - $(4) \stackrel{\text{def}}{=} x_n \to x \text{ iff, } \liminf_{n \to \infty} p(x_n) \geqslant p(x).$

求证: $\exists M > 0$,使得 $p(x) \leqslant M||x||$, $\forall x \in \mathscr{X}$ 。

Proof. 这里我们要证明定义的 p 是完备的 banach 空间,进而可以由等价范数定理得到。我们考虑定义 $\|x\|_1 \triangleq \|x\| + \sup_{\|x\|=1} p(x)$ 。而 $\sup_{\|x\|=1} p(ax) = |a| \sup_{\|x\|=1} p(x)$ 。

而后考虑 $\forall x \in \mathcal{X}$,||x|| = 1。

$$p(e^{ia}x) = p(y) \leqslant \sup_{\|y\|=1} p(y) = \sup_{\|x\|=1} p(x)$$
$$p(x) = p(e^{ia} \cdot e^{-ia}x) = p(e^{ia}y) \leqslant \sup_{\|y\|=1} p(e^{ia}y)$$

因此我们得到

$$\sup_{\|x\|=1} p(e^{ia}x) = \sup_{\|x\|=1} p(x)$$

而 $\forall x \neq 0$, $0 \leq p(\theta) \leq \liminf_{n \to \infty} p(\frac{1}{n}x_0) = \lim_{n \to \infty} \frac{1}{n}p(x_0) = 0$,因此 $p(\theta) = 0$ 。 下面证明 $(\mathcal{X}, \|\cdot\|_1)$ 完备,这是类似的。故而就可以利用等价范数定理来证明之。

7 设 \mathcal{X} , \mathcal{Y} 是 B 空间, $A_n \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, 又对 $\forall x \in \mathcal{X}$, $\{A_n x\}$ 在 \mathcal{Y} 中收敛, 求证: $\exists A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, 使得

$$A_n x \to A x \quad (\forall x \in \mathscr{X}) \quad ||A|| \leqslant \liminf_{n \to \infty} ||A_n||$$

Proof. 我们可以看出 $\sup_{A_n \in \mathcal{L}} ||Anx|| < \infty$,而我们可以利用共鸣定理。

$$||Ax|| = \liminf_{n \to \infty} ||A_n x|| \leqslant M||x||$$

因此存在 $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, 且下面的条件均满足。

8 设 $1 , 并且 <math>\frac{1}{p} + \frac{1}{q} = 1$, 如果序列 $\{\alpha_k\}$ 使得对 $\forall x = \{\xi_k\} \in l^p$ 保证 $\sum_{k=1}^{\infty} a_k \xi_k$ 收敛,求证 $\{a_k\} \in l^q$,又若 $f: x \to \sum_{k=1}^{\infty} a_k \xi_k$,求证 f 作为 l^p 上的线性泛函有

$$||f|| = \left(\sum_{k=1}^{\infty} |\alpha_k|^q\right)^{1/q}$$

Proof. 这里我们可以用 Hölder Ineq

$$\sum_{k=1}^{\infty} |a_k \xi_k| \le ||a_k||_q ||\xi_k||_p < \infty$$

因此 $\{a_k\} \in l^p$ 。 而

$$||f|| = \sup_{\|x\|_q = 1} ||f(x)|| = \left(\sum_{k=1}^{\infty} |\alpha_k|^q\right)^{1/q}$$

9 如果序列 $\{\alpha_k\}$ 使得对 $\forall x \in \{\xi_k\} \in l^1$,保证 $\sum_{k=1}^{\infty} a_k \xi_k$ 收敛,求证 $\{a_k\} \in l^{\infty}$ 。又若 $f: x \to \sum_{k=1}^{\infty} a_k \xi_k$ 作为 l^1 上的线性泛函,求证

$$||f|| = \sup_{k \ge 1} |\alpha_k|$$

Proof. 这里和之前的显然,只是用广义的 Holder 形式即可。

10 用 Gelfand 定理证明共鸣定理

$$Proof.$$
 考虑 $p(x) = \sup_{A \in W} \|Ax\|$,则 $|p(x)| \leqslant M\|x\|$ 。 因此有 $\|A\| \leqslant M$ 。

11 设 \mathcal{X} , \mathcal{Y} 是 B 空间, $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ 是满射的,求证: 如果在 \mathcal{Y} 中 $y_n \to y_0$,则 $\exists C > 0$ 与 $x_n \to x_0$,使得 $Ax_n = y_n$,且 $||x_n|| \le C||y_n||$ 。

Proof. 这里由开映射定理可知 A 是闭映射,故而考虑 $x_n \in \mathcal{X}$,使得 $Ax_n = y_n$ 。考虑由于 $\{x_n\}$ 和 $\{y_n\}$ 都是有界集,则显然存在这样的 C。

12 设 \mathcal{X} , \mathcal{Y} 是 B 空间, T 是闭线性算子, $D(T) \subset \mathcal{X}$, $R(T) \subset \mathcal{Y}$, $N(T) \triangleq \{x \in \mathcal{X} \mid Tx = \theta\}$.

(1) 求证: N(T) 是 \mathcal{X} 的闭线性子空间。

Proof. 线性显然,这里不再叙述。闭也是很自然的,我们考虑 $x_n \to x_0$,且 $x_n \in N(T)$,则 $Tx_n = \theta$,而由于 $x_n \to x_0$,则 $T(x_n - x_0) \to T\theta = 0$,因此 $x_0 \in N(T)$ 。

(2) 求证: $N(T) = \{\theta\}$, R(T) 在 \mathcal{Y} 中闭的充要条件是, $\exists \alpha > 0$,使得

$$||x|| \le \alpha ||Tx|| \quad (\forall x \in D(T))$$

Proof. 我们先说明必要性,若 R(T) 在 $\mathscr Y$ 中闭,则考虑 $T:D(T)\to R(T)$ 是双射,则由 Banach, $T^{-1}\in \mathscr L(\mathscr Y,\mathscr X)$ 。故而 $T^{-1}\leqslant \alpha$, $\alpha>0$ 。则即为 $\|x\|\leqslant \alpha\|Tx\|$ 。而后再考虑充分性,若 $\|x\|\leqslant \alpha\|Tx\|$,则 $\|T^{-1}x\|\leqslant \alpha\|x\|$,即 T^{-1} 有界,从而连续线性也满足,故而 $T^{-1}\in \mathscr L(R(T),\mathscr X)$ 。则对于 $y_n\in R(T)$, $y_n\to y_0$,我们要说明 $y_0\in R(T)$ 。由于 $N(T)=\{\theta\}$,则 $|T^{-1}(y_n-y_0)|\to \theta$ 。而存在 $x_n\in \mathscr X$, $x_n\to x_0$ 。故而 $T^{-1}y_0\to x_0$ 。

(3) 如果用 d(x, N(T)) 表示点 $x \in \mathcal{X}$ 到集合 N(T) 的距离 $\left(\inf_{z \in N(T)} \|z - x\|\right)$ 。求证 R(T) 在 \mathcal{Y} 中闭的充要条件是 $\exists \alpha > 0$ 使得

$$d(x, N(T)) \le \alpha ||Tx||$$

Proof. 首先 θ 显然在 N(T) 中。那么 $\|x\| = d(x,\theta) \geqslant d(x,N(T))$ 。而由 (2) 知,则必要性成立。下面证明充分性,即我们考虑 $\tilde{T}: \mathcal{X}/N(T) \to \mathcal{Y}$ 。考虑 $D(\tilde{T}) = \{[x] \in \mathcal{X}/N(T) \mid x \in D(T)\}$,且 $R(\tilde{T}) = R(T)$ 。证明 \tilde{T} 是闭算子即可。

13 设 a(x,y) 是 Hilbert 空间 H 上的一个共轭双线性泛函,满足

- (1) $\exists M > 0$ 使得 $|a(x,y)| \leq M||x|| \cdot ||y||$;
- (2) $\exists \delta > 0$ 使得 $|a(x,y)| \geqslant \delta ||x||^2$ 。

求证: $\forall f \in H^*$, $\exists y_f \in H$, 使得

$$a(x, y_f) = f(x) \quad (\forall x \in H)$$

且 y_f 连续的依赖于 f。

Proof.

2.4 Hahn-Banach 定理

本节主要是利用 Hahn-Banach 定理来完成对连续线性泛函的延拓。

定义与例子

1 在线性空间 \mathscr{X} 中, \mathscr{X} 的线性子空间 M 称为**极大的**,如果对于任何一个以 M 为真子集的 线性子空间 M_1 必有 $M_1 = \mathscr{X}$ 。

2 \mathscr{X} 的极大线性子空间 M 对向量 $x_0 \in \mathscr{X}$ 的平移

$$L \triangleq x_0 + M$$

称为极大线性流形,或简称超平面。

3 所谓超平面 $L = H_f^r$ 分离集合 E 与 F,指的是

$$\forall x \in E \implies f(x) \leqslant r(or \geqslant r)$$

 $\forall x \in F \implies f(x) \geqslant r(or \leqslant r)$

严格分离去掉等号即可。

4 超平面 $L = H_f^r$ 称为凸集 E 在点 x_0 的**承托超平面**,是指 E 在 L 的一侧,且 \overline{E} 与 L 有公共点 x_0 ,换句话说

$$f(x) \leqslant r = f(x_0) \quad (\forall x \in E)$$

或

$$f(x) \geqslant r = f(x_0) \quad (\forall x \in E)$$

命题与定理

若满足 $p(x+y) \leqslant p(x) + p(y)$ 与 $p(\lambda x) = \lambda p(x)$

- 1 (实 Hahn-Banach 定理) 设 $\mathscr X$ 是实线性函数,p 是定义在 $\mathscr X$ 上的 次线性泛函, $\mathscr X_0$ 是 $\mathscr X$ 的实线性子空间, f_0 是 $\mathscr X_0$ 上的实线性泛函并满足 $f_0(x) \leqslant p(x)$ ($\forall x \in \mathscr X_0$),那么 $\mathscr X$ 上 必然有一个实线性泛函 f 满足:
 - (1) $f(x) \leq p(x)$ $(\forall x \in \mathcal{X})$ 受 p 控制条件
 - (2) $f(x) = f_0(x)$ $(\forall x \in \mathcal{X}_0)$ 延拓条件

 $Proof. \ \forall y_0 \in \mathcal{X} \setminus \mathcal{X}_0$,记 $\mathcal{X}_1 \triangleq \{x + ay_0 \mid x \in \mathcal{X}_0, \alpha \in \mathbb{R}\}$,首先将 f_0 延拓到 \mathcal{X}_1 ,设延拓后的线性泛函记为 f_1 ,那么

$$f_1(x+ay_0)=f_0(x)+lpha f_1(y_0)$$
 , $\forall x\in\mathscr{X}_0,\ orall lpha\in\mathbb{R}$ 这里的构造是这段证明的最重要的地方,通过构建 y 的"流形"来完成证明。

可见问题只在于决定 $f_1(y_0)$ 的值。既然要求 f_1 满足受 p 控制条件,所以

这里我们需要分类讨论
$$ay_0$$
 的系数正负问题。

$$f_1(x + ay_0) \leqslant p(x + ay_0)$$

两边同时除以 $|\alpha|$, 推出等价于

$$f_1(y_0 - z) \le p(y_0 - z)$$

 $f_1(-y_0 + y) \le p(-y_0 + y)$

或者

$$f_0(y) - p(-y_0 + y) \le f_1(y_0) \le f_0(z) + p(y_0 - z)$$

于是为了能取到适合的 $f_1(y_0)$ 必须且仅须:

$$\sup_{y \in \mathcal{X}_0} \{ f_0(y) - p(-y_0 + y) \} \leqslant f_1(y_0) \leqslant \inf_{z \in \mathcal{X}_0} \{ f_0(z) + p(y_0 - z) \}$$

而由于

$$f_0(y) - f_0(z) = f_0(y - z) \le p(y - z) \le p(y - y_0) - p(y_0 - z)$$

故而我们取定 $f_1(y_0)$ 为任意中间值,就能得出在 \mathcal{X}_1 上的延拓 f_1 。现在我们需要把 f_0 逐步延拓到整个 \mathcal{X} 上,我们利用 **Zorn** 引理³,令

$$\mathscr{F} \triangleq \left\{ (\mathscr{X}_{\Delta}, f_{\Delta}) \middle| \begin{array}{c} \mathscr{X}_{0} \subset \mathscr{X}_{\Delta} \subset \mathscr{X} \\ \forall x \in \mathscr{X}_{0} \Longrightarrow f_{\Delta}(x) = f_{0}(x) \\ \forall \in \mathscr{X}_{\Delta} \Longrightarrow f_{\Delta}(x) \leqslant p(x) \end{array} \right\}$$

在 \mathscr{F} 引入序关系如下: $(\mathscr{X}_{\Delta_1}, f_{\Delta_1}) \prec (\mathscr{X}_{\Delta_2}, f_{\Delta_2})$,是指

$$\mathscr{X}_{\Delta_1} \subset \mathscr{X}_{\Delta_2}, \quad f_{\Delta_1}(x) = f_{\Delta_2}(x), \quad \forall x \in \mathscr{X}_{\Delta_1}$$

于是 \mathscr{F} 成为一个半序集,又设 M 是 \mathscr{F} 中的任一个全序子集,令

$$\mathscr{X}_M \triangleq \bigcup_{(\mathscr{X}_{\Delta}, f_{\Delta}) \in M} \{\mathscr{X}_{\Delta}\}$$

以及

$$f_M(x) = f_{\Delta}(x), \quad \forall x \in \mathscr{X}_{\Delta}, \ (\mathscr{X}_{\Delta}, f_{\Delta}) \in M$$

由于 M 是全序子集,容易验证 \mathscr{X} 是包含 \mathscr{X}_0 的子空间,且 f_M 在 \mathscr{X}_M 上是唯一确定的,满足 $f_M(x) \leq p(x)$,于是 $(\mathscr{X}_M, f_M) \in \mathscr{F}$ 并且是 M 的一个上界。由 Zorn 引理, \mathscr{F} 本身存在极大元,记为 (\mathscr{X}_A, f_A) 。

最后我们证明 $\mathscr{X}_A = \mathscr{X}$,用反证法,若不然则可以构造出 $(\mathscr{\tilde{X}}_A, \widetilde{f}_A) \in \mathscr{F}$,与极大性矛盾。故而所求的 f 即为 f_A 。

2 **(复 Hahn-Banach 定理)** 设 \mathscr{X} 是复线性空间,p 是 \mathscr{X} 上的半范数, \mathscr{X}_0 是 \mathscr{X} 的线性子空间, f_0 是 \mathscr{X}_0 上的线性泛函,并满足 $|f_0(x)| \leq p(x)$, $\forall x \in \mathscr{X}_0$ 。那么 \mathscr{X} 上必然有一个线性泛函 f 满足:

由于复数无法比较大小,故而采用模长

- $(1) |f(x)| \leqslant p(x) (\forall x \in \mathscr{X})$
- (2) $f(x) = f_0(x) \ (\forall x \in \mathscr{X}_0)$

Proof. 把 \mathscr{X} 看成实线性空间,相应的把 \mathscr{X}_0 也看成是实线性空间,令:

$$g_0 \triangleq \operatorname{Re} f_0(x) \quad (\forall x \in \mathscr{X}_0)$$

那么便有 $g_0(x) \leq p(x)$ ($\forall x \in \mathcal{X}_0$)。从而由实 Hahn-Banach 定理,必然有 \mathcal{X} 上的实线性泛

 $^{^3}$ 设 (P,\preceq) 是一个非空的偏序集,如果每一个链(即每一个全序子集)都有一个上界,那么 P 中必存在一个极大元。

函使得

$$g(x) = g_0(x) \quad \forall x \in \mathscr{X}_0$$

 $g(x) \leqslant p(x) \quad \forall x \in \mathscr{X}$

现在令 $f(x) \triangleq g(x) - ig(ix) \ (\forall x \in \mathcal{X})$ 。那么我们有

$$f(x) = g_0(x) - ig_0(ix)$$

= Re $f_0(x) + i \text{Im} f_0(x) = f_0(x) \quad (\forall x \in \mathscr{X}_0)$

且

$$f(ix) = g(ix) - ig(-x)$$
$$= i[g(x) - ig(ix)] = if(x) \quad (\forall x \in \mathcal{X})$$

从而 f 也是复齐次性的,剩下还要说明在 \mathcal{X} 上,|f(x)| 受 p(x) 控制。若 f(x) = 0,这是显然的。若 $f(x) \neq 0$,令

$$\theta \triangleq \arg f(x),$$

那么我们就有

$$|f(x)| = e^{-i\theta} f(x) = f(e^{-i\theta} x)$$
$$= g(e^{-i\theta} x) \le p(e^{-i\theta} x) = p(x)$$

集合 A, 对于任意复数 $|\lambda| \leqslant 1$, 则 $\lambda A \subset A$ 。

- 4 (Hahn-Banach) 设 \mathscr{X} 是 B^* 空间, \mathscr{X}_0 是 \mathscr{X} 的线性子空间, f_0 是定义在 \mathscr{X}_0 上的有界线性泛函,则在 \mathscr{X} 上必然有有界线性泛函 f 满足:
 - (1) $f(x) = f_0(x) (\forall x \in \mathcal{X}_0)$ (延拓条件)
 - (2) $||f|| = ||f_0||_0$ (保范条件)

其中 $||f_0||_0$ 表示 f_0 在 \mathcal{X}_0 上的范数。通常称 f 为 f_0 的保范延拓。

Proof. 在 \mathscr{X} 上定义 $p(x) \triangleq ||f_0||_0 \cdot ||x||$,那么 p(x) 是 \mathscr{X} 上的半范数,从而由上个定理,必然存在 \mathscr{X} 上的线性泛函 f(x) 满足

$$f(x) = f_0(x) \ (\forall x \in \mathscr{X}_0)$$

以及

$$|f(x)| \leqslant p(x) = ||f_0||_0 \cdot ||x|| \ (\forall x \in \mathscr{X})$$

而由于 $|f(x)| \leq ||f|| \cdot ||x||$,故而 $||f|| \leq ||f_0||_0$ 。而由于在 \mathscr{X}_0 上二者相等。**这里需要详细叙述** 而非书上一句显然带过。这是由于 f_0 所定义的范围在 \mathscr{X}_0 之上,而为 \mathscr{X} 的子集。故而

$$||f_0|| = \sup_{x \in \mathcal{X}_0, \ ||x|| = 1} ||f_0(x)|| = \sup_{x \in \mathcal{X}_0, \ ||x|| = 1} ||f(x)|| \leqslant \sup_{x \in \mathcal{X}, \ ||x|| = 1} ||f(x)|| = ||f||$$

故而 $||f_0||_0 \le ||f||_0$ 。故而二者相等。

(1) 每个 B* 空间必有足够多的连续线性泛函。

Proof. 任意给定 $x_1, x_2 \in \mathcal{X}$,若 $x_1 \neq x_2$,则 $x_0 \triangleq x_1 - x_2 \neq \theta$ 。令 $\mathcal{X}_0 \triangleq \{\lambda x_0 \mid \lambda \in \mathbb{C}\}$ 。并在 \mathcal{X} 上定义

$$f_0(\lambda x_0) = \lambda ||x_0|| \ (\forall \lambda \in \mathbb{C})$$

那么 $f_0(x_0) = ||x_0||$ 且 $||f_0||_0 = 1$ 。

由 Hahn-Banach 定理,存在 \mathcal{X} 上的连续线性泛函 f,使得

$$f(x_0) = f_0(x_0) = ||x_0||, ||f|| = ||f_0||_0 = 1$$

 \mathscr{X} 上的这个非零连续线性泛函 f, 可以分辨 x_1, x_2 。即

$$f(x_1) - f(x_2) = f(x_1 - x_2) = f(x_0) \neq 0$$

故而显然有足够多的连续线性泛函。

(2) 设 \mathscr{X} 是 B^* 空间, $\forall x_0 \in \mathscr{X} \setminus \{\theta\}$,必然 $\exists f \in \mathscr{H}^*$,使得

$$f(x_0) = ||x_0||, ||f|| = 1$$

Proof. 在 Hilbert 空间中,对任意的连续线性泛函 f, $\exists y \in H$, 使得

$$f(x) = (x,y)$$
 Riesz 表示定理

若记 $M \triangleq \{x \mid f(x) = 0\}$, 那么对 $\forall x_0 \in H$, 有

$$f(x_0) = (x_0, y) = (x_0 - P_M x_0, y)$$

其中 $P_M x_0$ 表示 x_0 在 M 上的投影,从而

$$\frac{\|f_0\|_0 = \sup_{\|x\|=1} f_0(x) = \sup_{\|x\|=1} \|f(\bar{x}_0)\| \le \|x_0 - P_M x_0\| \cdot \|y\| = \|f\|\rho(x_0, M)$$

在一般的 B^* 空间中, $\rho(x_0,M)=\inf_{y\in M}\|x_0-y\|$ 。事实上, $\forall n\in N$ 以及 $\forall x_0\in\mathcal{X}$,按下确界定义, $\exists x_n\in M$,使得

$$\rho(x_0, M) \leqslant \rho(x_0, x_n) \leqslant \rho(x_0, M) + \frac{1}{n}$$

因此

$$|f(x_0)| = |f(x_n - x_0)| \le ||f|| ||x_n - x_0||$$

 $\le ||f|| \left(\rho(x_0, M) + \frac{1}{n}\right)$

令 $n \to \infty$ 即得到结果。

5 设 \mathcal{X} 是 B^* 空间, M 是 \mathcal{X} 的线性子空间。若 $x_0 \in \mathcal{X}$, 且

$$d \triangleq \rho(x_0, M) > 0$$

则必然存在 $\exists f \in \mathcal{X}^*$ 适合条件:

- (1) $f(x) = 0 \ (\forall x \in M);$
- (2) $f(x_0) = d$;
- (3) $||f|| = 1_{\circ}$

Proof. 考虑 $\mathscr{X}_0 \triangleq \{x = x' + \alpha x_0 \mid x' \in M, \alpha \in \mathbb{K}\}, \forall x \in \mathscr{X}_0$ 。定义 $f_0(x) = \alpha d$ 。则条件 (1)-(2) 均满足。现在说明第三条。若 $x = x' + \alpha x_0$,则

$$|f_0(x)| = |\alpha|d = |\alpha|\rho(x_0, M)$$

$$\leq |\alpha| \|\frac{x'}{\alpha} + x_0\|$$

$$= \|x' + \alpha x_0\| = \|x\|$$

故而 $||f_0|| = \sup_{\|x\|=1} |f_0(x)| = \sup_{\|x\|=1} ||x|| = 1$

(1) 设 $M \in B^*$ 空间 \mathscr{X} 的一个子集, 又设 $x_0 \in \mathscr{X}$ 中的任一个非零元素, 那么

$$x_0 \in \overline{\operatorname{span} M}$$

的充分必要条件是:对 $\forall f \in \mathcal{X}^*$,

$$f(x) = 0 \ (\forall x \in M) \Longrightarrow f(x_0) = 0$$

Proof. 必要性是显然的?? 确实

下面证明充分性。如果 $x \notin \overline{\text{span}M}$, 那么记

$$d \triangleq \rho(x_0, \overline{\operatorname{span}M}) > 0$$

因此,依照上个定理, $\exists f \in \mathcal{X}^*$,使得 f(x) = 0,并且 $f(x_0) = d > 0$,但按照充分性 假定, $f(x_0) = 0$ 。故而矛盾。

6 M 是极大线性子空间的充要条件是,M 是线性真子空间,并且 $\forall x_0 \in \mathcal{X} \setminus M$,有

$$\mathscr{X} = \{\lambda x_0 \mid \lambda \in \mathbb{R}\} \oplus M$$

Proof. 必要性是显然的。我们要证明充分性,设 M_1 是以 M 为真子集的线性子空间,那么

 $\exists x_0 \in M_1 \backslash M$ 。于是有 $\lambda x_0 \in M$ $(\forall \lambda \in \mathbb{R})$ 以及 $M \subset M_1$,从而

$$\mathscr{X} = \{\lambda x_0 \mid \lambda \in \mathbb{R}\} \oplus M \subset M_1$$

从而 $\mathcal{X} = M_1$, 故而 M 为极大线性子空间。

7 为了 L 是线性 (B^*) 空间 $\mathscr X$ 上的一个 $(\mathsf R)$ 超平面,i.f.f. 存在非零(连续)线性泛函 f 以及 $r\in\mathbb R$,使得 $L=H^r_r$ 。

考虑 f 为线性 (B^*) 空间 $\mathscr X$ 上的非零 (连续) 线性泛函,那么集合

一定是一个(闭)超平面,这是由于 H_f^0 显然是 线性子空间。

而又由于 $\forall x_1 \in \mathcal{X} \backslash H_f^0$, $\forall x \in \mathcal{X}$, 有

$$x = \frac{f(x)}{f(x_1)} x_1 + H_f^0$$

从而 H_f^0 还是 极大的。

由于 f 是非零的, $\exists x_0 \in \mathcal{X}$,使得 $f(x_0) \neq 0$,由于 f 的线性,设 $f(x_0) = r$,则对于任意 $x \in H_r^r$,有

$$f(x - x_0) = f(x) - f(x_0) = 0$$

所以 $x-x_0\in H_f^0$,即 $H_f^r=x_0+H_f^0$ 是一个超平面。而由于 f 为连续映射,则 H_f^r 显然为闭的。

而反之,若 L 是 (闭) 超平面,可设 $L = x_0 + M$,其中 M 是 (闭) 极大线性子空间, $x_0 \in \mathcal{X} \setminus M$,这时候 $\forall x \in \mathcal{X}$ 可以表示为:

$$x = \lambda x_0 + y, \quad \lambda \in \mathbb{R}, \ y \in M$$

相应的,线性泛函 $f: \mathcal{X} \to \mathbb{R}$,

$$f(x) = f(\lambda x_0 + y) = \lambda$$

显然 f 为 \mathcal{X} 上线性泛函,且满足 $M=H_f^0$ 以及 $f(x_0)=1$ 。因此 $L=H_f^1$,且为闭的。

8 (Hahn-Banach 定理的几何形式) 设 E 是实 B^* 空间 $\mathscr X$ 上以 θ 为内点的真凸子集,又设 $x_0 \notin E$,则必然存在一个超平面 H_f^r 分离 x_0 与 E。 这里可以平移,把任意一点变为 θ ,但是无穷维空间不能省略这一条。

Proof. 设 \mathcal{X} 为 B^* 空间,如果 E 是 \mathcal{X} 的以 θ 为内点的真凸子集,则它的 Minkowski 泛函 p(x) 便是一个非零的连续次线性泛函,满足

$$\forall x \in E \Longrightarrow p(x) \leqslant 1$$

如果还存在一点 $x_0 \in \mathcal{X} \setminus E$,则由 p(x) 的定义可以得到 $p(x_0) \ge 1$ 。下面证明存在超平面分离 x_0 和 E。先在一维线性空间 $\mathcal{X}_0 \triangleq \{\lambda x_0 \mid \lambda \in \mathbb{R}\}$ 上定义 $f_0(\lambda x_0) \triangleq \lambda p(x_0)$ 。显然 f_0 是

 \mathcal{X}_0 上的线性泛函,满足

$$f_0(x) = f_0(\lambda x_0) = \lambda p(x_0) \leqslant p(\lambda x_0) = p(x) \quad (\forall x \in \mathscr{X}_0)$$

由实形式的 Hahn-Banach 定理, 必然存在 $\mathscr X$ 上的线性泛函 f(x) 满足

$$f(x_0) = f_0(x_0) = p(x_0) \ge 1$$

$$f(x) \le p(x) \le 1 \quad (\forall x \in \mathcal{X})$$

则 $f(x) \le 1 \ (\forall x \in E)$,故而定义的 f 分离 x_0 与 E。

9 (凸集分离定理) 设 E_1 和 E_2 是 B^* 空间中两个互不相交的非空凸集, E_1 有内点,那么 $\exists s \in \mathbb{R}$ 以及非零连续线性泛函 f,使得超平面 H_f^s 分离 E_1 和 E_2 。也就是说,存在一个非零的连续线性泛函 f,使得

$$f(x) \leqslant s \ (\forall x \in E_1) \quad f(x) \geqslant s \ (\forall x \in E_2)$$

Proof. 考虑两个凸集的分离问题。我们想办法把它转化为一个凸集与其外一点的分离问题,在 B^* 中,若 E_1, E_2 是两个互不相交的凸集, E_1 是有内点的,那么容易推知

$$E \triangleq E_1 + (-1)E_2$$

是一个非空凸集, 并且有内点, 此外 $\theta \notin E$ 。倘若不然, 则 $\exists x_1 \in E_1$, $x_2 \in E_2$, 使得 $x_1 - x_2 = \theta$ 。 从而

$$x_1 = x_2 \in E_1 \cap E_2$$

这与 $E_1 \cap E_2 = \emptyset$ 矛盾。由几何形式的 Hahn-Banach 定理,存在闭超平面 H_f^r 分解 E 和 θ ,不妨假定

$$f(x) \leqslant r \ (\forall x \in E) \quad f(\theta) \geqslant r$$

从而 $f(x) \le 0 \ (\forall x \in E)$,即有 $f(y-z) \le 0 \ (\forall y \in E_1, \forall x \in E_2)$ 。再由 f 的线性得到:

这里是分离最重要的一部分,即令 r=0 寻找 f。

$$f(y) \leqslant f(z) \quad (\forall y \in E_1, \forall z \in E_2)$$

因此 $\exists s \in \mathbb{R}$, 使得

$$\sup_{y \in E_1} f(y) \leqslant s \leqslant \inf_{z \in E_2} f(z)$$

10 (Ascoli 定理) 设 E 是实 B^* 空间 \mathscr{X} 中的闭凸集,则 $\forall x_0 \in \mathscr{X} \setminus E$, $\exists f \in \mathscr{X}^*$ 以及 $\alpha \in \mathbb{R}$, 适合

$$f(x) < \alpha < f(x_0) \quad (\forall x \in E)$$

Proof. 因为 $x_0 \in \mathcal{X} \setminus E$ 以及 E 是闭集, 所以 $\exists \delta > 0$, 使得

$$B(x_0, \delta) \subset \mathscr{X} \backslash E$$

而 $B(x_0, E)$ 是有内点的凸集,对 E 和 $B(x_0, \delta)$ 应用凸集分离定理,存在非零连续线性泛函 f,适合

$$\sup_{x \in E} f(x) \leqslant \inf_{y \in B(x_0, \delta)} f(y)$$

进一步可以证明

$$\inf_{y \in B(x_0, \delta)} f(y) < f(x_0)$$

故而我们任取 α 为上个式子的中间值, 即得 $f(x) < \alpha < f(x_0)$ 。

11 **(Mazur 定理)** 设 $E \in B^*$ 空间 \mathscr{X} 上的一个有内点的闭凸集, $F \in \mathscr{X}$ 的一个线性流形, 又设 $\mathring{E} \cap F = \varnothing$, 那么存在一个包含 F 的闭超平面 L, 使 E 在 L 的一侧。

Proof. 设 $F = x_0 + \mathcal{X}_0$,其中 $x_0 \in \mathcal{X}$, \mathcal{X}_0 为 \mathcal{X} 的线性子空间。由凸集分离定理,存在 H_f^r 分离 E = F,即

$$f(E) \leqslant r, \quad f(x_0 + \mathscr{X}_0) \geqslant r$$

记 $r_0 riangleq r - f(x_0)$,便有 $f(x) \ge r_0$ ($\forall x \in \mathcal{X}_0$)。又由于 f 是线性的,及 \mathcal{X}_0 是线性子空间,则有

$$f(x) \equiv 0 \ (\forall x \in \mathscr{X}_0)$$

即有 $\mathcal{X}_0 \subset H_f^0$,从而 $F \subset x_0 + H_f^0 = H_f^s$ 。其中 $s \triangleq f(x_0)$,故而 $f(E) \leqslant s$ 。

12 设 E 是实 B^* 空间中含有内点的闭凸集,那么通过 E 的每个边界点都可以作出 E 的一个承托超平面。

 $Proof. \ \forall x_0 \in E \setminus \mathring{E}$,由 Mazur 定理,令 $F \triangleq \{x_0\}$,即存在 $f \in \mathcal{X}^* \setminus \{\theta\}$,以及 $s \in \mathbb{R}$,使得

$$f(x) \leqslant s = f(x_0)$$

故而 H_f^s 即为 E 在 x_0 的承托超平面。

应用

1 抽象可微函数的中值定理设 \mathscr{Y} 是 B^* 空间, $f:(a,b)\to\mathscr{Y}$ 叫做数值变数 t 的抽象函数,如果 $t\in(a,b)$,在 \mathscr{Y} 中存在极限

$$\lim_{\Delta \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}$$

那么就定义此极限为 f 在 t 的微商

2 设抽象函数 $f:(a,b)\to \mathcal{Y}$ 在 (a,b) 内可微,那么对 $\forall t_1,t_2\in(a,b)$, $\exists\theta\in(0,1)$ 使得

$$||f(t_2) - f(t_1)|| \le ||f'(\theta t_2 + (1 - \theta)t_1)|| \cdot |t_2 - t_1||$$

3 设 $f: \mathcal{X} \to \mathbb{R}$ 是凸的, 称集合

$$\partial f(x_0) \triangleq \{x^* \in \mathscr{X}^* \mid \langle x^*, x - x_0 \rangle + f(x_0) \leqslant f(x) \ (\forall x \in \mathscr{X})\}$$

 $\stackrel{lack}{\bigcirc}$ 这里 \mathscr{X}^* 指的是有界线性泛函全体。

为函数 f 在 x_0 的次微分, $\partial f(x_0)$ 中的任意泛函 x^* 称为 f 在 x_0 点的次梯度。

 $4 \ \ \ \ \ \ f: \mathscr{X} \to \mathbb{R}$ 是凸的,并在 $x_0 \in \mathscr{X}$ 连续,则 $\partial f(x_0) \neq \varnothing$ 。

习题

- 1 求证
 - (1) $p(\theta) = 0$
 - $(2) \ p(-x) \geqslant -p(x)$
 - (3) 任意给定 $x_0 \in \mathcal{X}$,在 \mathcal{X} 上必然实线性泛函 f,满足 $f(x_0) = p(x_0)$,以及 $f(x) \leq p(x)$ ($\forall x \in \mathcal{X}$).

Proof. 考虑次线性泛函的定义,即满足 $p(x+y) \leq p(x) + p(y)$ 以及 p(ax) = ap(x)。那么 $p(\theta) = p(\theta\lambda) = \theta p(\lambda) = 0$ 。且 p(x-x) = p(x+(-x)) = 0,且 $0 = p(x+(-x)) \leq p(x) + p(-x)$,故而 $p(-x) \geq -p(-x)$ 。现在我们证明最后一步。我们需要构建一个线性子空间 \mathcal{X}_0 以及 对应的线性泛函 f_0 。我们不如考虑这样的流形 $\mathcal{X}_0 \triangleq \{\alpha x_0\}$,而后在其上定义的线性泛函 $f(x) = \alpha p(x_0)$ 。

显然为线性泛函

故而我们立刻用 Hahn-Banach 即可得到 (3)。

2 设 \mathscr{X} 是由实数列 $x = \{a_n\}$ 全体组成的实线性空间,其元素间相等和线性运算都按坐标定义,并定义

$$p(x) = \overline{\lim_{n \to \infty}} \alpha_n \quad (\forall x = \{\alpha_n\} \in \mathscr{X})$$

证明 p(x) 是 \mathscr{X} 上次线性泛函。

Proof. 我们只需要证明其满足的两个条件。首先对于 $\forall x = \{\alpha_n\}, y = \{\beta\} \in \mathcal{X}, y = \{\beta\}$ ∈ \mathcal{X} , $y = \{\beta\}$ ∈ \mathcal{X} ∈ \mathcal{X} .

$$p(x_1 + x_2) = \overline{\lim_{n \to \infty}} (\alpha_n + \beta_n) \leqslant \overline{\lim_{n \to \infty}} \alpha_n + \overline{\lim_{n \to \infty}} \beta_n = p(x) + p(y)$$

而同理上极限有线性的性质,即 $p(\lambda x) = \lambda p(x)$ 。故而 p 为 \mathscr{X} 上的次线性泛函。

- 3 设 \mathscr{X} 是复线性空间,p 为 \mathscr{X} 上的半范数, $\forall x_0 \in \mathscr{X}$, $p(x_0) \neq 0$ 。求证:存在 \mathscr{X} 上的线性 泛函 f 满足:
 - (1) $f(x_0) = 1$;
 - (2) $|f(x)| \leq p(x)/p(x_0)$

Proof. 那我们根据证明中提到的 $p(x)/p(x_0)$,考虑线性子空间 $\mathscr{X} = \{\alpha x_0\}$,线性泛函 $f(x) = f(\alpha x_0) = \alpha p(x_0)$ 。则 $f(x_0) = 1$ 。且由 Hahn-Banach 的前置条件中 $|f(x_0)| \leq |\alpha p(x_0)| \leq |p(x)|$ 。因此可以使用复 Hahn-Banach,得到定义在 \mathscr{X} 上的线性泛函 f。而后考虑 $f_1(x) = \frac{f(x)}{p(x_0)}$,则满足两条,且由于只改变了系数,则依然为线性泛函。

4 设 \mathscr{X} 是 B^* 空间, $\{x_n\}$ $(n = 1, 2, 3, \cdots)$ 是 \mathscr{X} 中的点列,如果 $\forall f \in \mathscr{X}^*$,数列 $\{f(x_n)\}$ 有界,求证 $\{x_n\}$ 在 \mathscr{X} 中有界。

Proof. 我们考虑建立如下的映射:

$$F_x: \mathscr{X}^* \to K$$

 $f \mapsto f(x)$

则有

$$|F_x(f)| = |f(x)| \le ||f|| \cdot ||x||$$

因此 $\|F_x\| \leq \|x\|$,而另一方面,考虑 $x \neq 0$ 的时候,由 Hahn-Banach,存在 $\exists \tilde{f} \in \mathcal{X}^*$,使得 $\|\tilde{f}\| = 1$,则 $\tilde{f}(x) = \|x\|$ 。因此 $\|F_x\| \geqslant \|x\|$ 。从而综上二者相等。

设 $\{x_n\} \subset \mathcal{X}$,且 $\sup f(x_n) < \infty$,则由共鸣定理知

$$\sup_{n \ge 1} ||F_{x_n}(f)|| = \sup_{n \ge 1} ||x_n|| < \infty$$

5 设 \mathscr{X}_0 是 B^* 空间 \mathscr{X} 的闭子空间, 求证

$$\rho(x, \mathcal{X}_0) = \sup\{|f(x)| \mid f \in \mathcal{X}^*, \ ||f|| = 1, \ f(\mathcal{X}_0) = 0\}$$

其中 $\rho(x, \mathscr{X}_0) = \inf_{y \in \mathscr{X}_0} \|x - y\|$ 。

Proof. 我们可以知道 $|f(x)| = \rho(x, N(f)) \leq \rho(x, \mathcal{X}_0)$ 。则上式小于 $\rho(x, \mathcal{X}_0)$ 。而另一方面,当 $x \in \mathcal{X}_0$ 时, $\rho(x, \mathcal{X}_0) = \sup\{|f(x)| \mid f \in \mathcal{X}^*, \|f\| = 1, f(\mathcal{X}_0) = 0\}$ 显然成立。而由保范延 拓,存在 $f \in \mathcal{X}^*$ 使得 $\|f\| = 1$, $f(\mathcal{X}_0) = 0$,且 $f(x) = \rho(x, \mathcal{X}_0)$ 。则二者相等。

6 设 \mathscr{X} 是 B^* 空间,给定 \mathscr{X} 中 n 个线性无关的元素 x_1, x_2, \dots, x_n 与数域 \mathbb{K} 中的 n 个数 C_1, C_2, \dots, C_n 以及 M > 0。求证:为了 $\exists f \in \mathscr{X}^*$ 适合 $f(x_k) = C_k$,以及 $\|f\| \leq M$,必须 且仅须对任意的 $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{K}$,有

$$\left| \sum_{k=1}^{n} \alpha_k C_k \right| \leqslant M \left\| \sum_{k=1}^{n} \alpha_k x_k \right\|$$

Proof. 先证明必要性, 若存在这样的 f, 则

$$\left| \sum_{k=1}^{n} \alpha_k C_k \right| = \left| \sum_{k=1}^{n} \alpha_k f(x_k) \right| = f\left(\left| \sum_{k=1}^{n} \alpha_k x_k \right| \right) \leqslant \|f\| \left\| \sum_{k=1}^{n} \alpha_k x_k \right\| \leqslant M \left\| \sum_{k=1}^{n} \alpha_k x_k \right\|$$

再证明充分性。设 $E = \operatorname{span}\{x_i\}$,考虑 $\forall x = \sum_{k=1}^n \alpha_k x_k$,则定义 $f_0(x) = \sum_{k=1}^n \alpha_k C_k$ 。特别的 $f_0(x_i) = C_i$ 。由不等式,

$$|f_0(x)| = \left| \sum_{k=1}^n \alpha_k C_k \right| \leqslant M \left\| \sum_{k=1}^n \alpha_k x_k \right\| \leqslant M \|x\| \Rightarrow \|f_0\| \leqslant M$$

因此由保范的 Hahn-Banach 得到延拓在 \mathcal{X}^* 上的 f 。

7 给定 B^* 空间 $\mathcal X$ 上 n 个线性无关的元素 x_1,x_2,\cdots,x_n ,求证: $\exists f_1,f_2,\cdots,f_n\in\mathcal X^*$ 使得

$$\langle f_i, x_i \rangle = \delta_{ij} \quad (i, j = 1, 2, \dots, n)$$

Proof. 考虑 $M_i \triangleq \text{span}\{x_i\}$,且记 $d_i = \rho(x_i, M_i)$ 。对于 M_i ,由于 $d_i > 0$,则 $\exists \bar{f}_i \in \mathcal{X}^*$,使得

$$\bar{f}_i(x_i) = d_i$$

$$\bar{f}_i(x) = 0 \quad \forall x \in M_i$$

$$\|\bar{f}_i\| = 1$$

则我们考虑令 $f_i(x)=\frac{\bar{f}_i(x_i)}{d_i}$,那么 $f_i(x_i)=1$,且 $f_i(x_j)=0$, $\forall i\neq j$ 。

2.5 共轭空间、弱收敛、自反空间

定义与例子

- 1 设 $\mathscr X$ 是一个 B^* 空间, $\mathscr X$ 上所有连续线性泛函全体 $\mathscr X^*$ 按范数 $\|f\|=\sup_{\|x\|=1}|f(x)|$ 构成一个 B 空间,称为 $\mathscr X$ 的 共轭空间。
 - (1) $L^p[0,1]$ 的共轭空间 $(1 \leq p < \infty)$, 设 q 是共轭数,即

$$\frac{1}{p} + \frac{1}{q} = 1, if p > 1$$
$$q = \infty if p = 1$$

我们将证明 $L^p[0,1]^* = L^q[0,1]$ 。我们分三步进行,从示性函数到简单函数再到简单函数列。由 Hölder 不等式得到

$$\left| \int_{0}^{1} f(x)g(x)dx \right| \leq \left(\int_{0}^{1} |f(x)|^{p} dx \right)^{1/p} \left(\int_{0}^{1} |g(x)|^{q} dx \right)^{1/q}$$

考虑 μ 是 [0,1] 上的 Lesbegue 测度, 故而

$$F_g(f) \triangleq \int_0^1 f(x)g(x)d\mu \quad (\forall f \in L^p[0,1])$$

定义了 $L^p[0,1]$ 上的一个连续线性泛函,并且有

$$||F_a||_{L^p[0,1]} \le ||g||_{L^q[0,1]}$$

以下证明映射 $g \to F_q$ 是等距在上的,即对于给定的 $F \in L^P[0,1]^*$,要找一个 $g \in L^q[0,1]$ 。

$$F(f) = \int_0^1 f(x)g(x)d\mu \quad (\forall f \in L^p[0,1])$$

并且

$$||g||_{L^q[0,1]} = ||F||$$

对任意的可测集 $E \subset [0,1]$, 令

$$\nu(E) \triangleq F(\chi_E)$$

其中 χ_E 是 E 的特征函数。而后我们验证 ν 是一个完全可加测度。首先 ν 是有限可加的,设 $\{E_n\}\subset [0,1]$ 满足

$$E_1 \supset E_2 \supset \cdots \supset E_n \supset \cdots$$

以及

$$\bigcap_{n=1}^{\infty} E_n = \emptyset$$

则

$$\nu(E_n) = F(\chi_{E_n}) \leqslant ||F|| \cdot ||\chi_{E_n}||_{L^p[0,1]}$$
$$= ||F|| \left(\int_0^1 |\chi_E|^p d\mu \right)^{1/p}$$
$$= ||F|| \mu(E_n)^{1/p} \to 0$$

此外 ν 关于 μ 还是绝对连续的,即由 $\mu(E)=0$ 可以推出 $\nu(E)=0$ 。现在应用 Radon-Nikodym 定理,存在可测函数 g,对任意的可测集 E 有

$$u(E) = \int_E g d\mu$$
即用示性函数来替换积分区域
 $F(\chi_E) = \nu(E) = \int_0^1 \chi_E(x) g(x) d\mu$

于是对于一切简单函数 f 都有

以有 即存在互不相交的可测集
$$\{E_n\}_{i=1}^\infty$$
 与 $\{c_i\}_{i=1}^\infty\in\mathbb{K}$,使得 $f(x)=\sum\limits_{n=1}^\infty c_n\chi_{E_n}(x)$
$$F(f)=\int_0^1 f(x)\ g(x)d\mu$$

进一步我们要证明 $\|g\|_{L^q[0,1]} \leq F$ 。如果一旦得证,即可推出 $F(f) = \int_0^1 f(x)g(x)d\mu$ 一式子。由于简单函数列在 $L^p[0,1]$ 中是稠密的,所以 $\forall f \in L^p[0,1]$,存在简单函数列 $f_n \to f$,从而有

$$F(f) = \lim_{n \to \infty} F(f_n)$$

以及

$$\left|\int_0^1 |f(x)-f_n(x)|g(x)d\mu\right| \leqslant \left(\int_0^1 |f(x)-f_n(x)|^p d\mu\right)^{1/p} \left(\int_0^1 |g(x)|^q d\mu\right)^{1/q}$$

$$\leqslant \|F\| \cdot \|f-f_n\|_{L^p[0,1]} \to 0$$
 即这里是我们要证明的地方

亦即

$$F(f) = \lim_{n \to \infty} f_n(x)g(x)d\mu = \int_0^1 f(x)g(x)d\mu$$

下面我们分情况证明

(1) 对于 $1 而言, <math>\forall t > 0$, 记

$$E_t \triangleq \{x \in [0,1] \mid |g(x)| \leqslant t\}$$

令 $f = \chi_{E_t} |g|^{q-2} g$,便有

$$\int_{E_t} |g|^q d\mu = \int_0^1 f \cdot g d\mu = F(f) \leqslant ||F|| \cdot ||f||_{L^q[0,1]} = ||F|| \left(\int_{E_t} |g|^q d\mu\right)^{1/p}$$

即

$$\left(\int_{F_{\bullet}} |g|^q d\mu\right)^{1/q} \leqslant \|F\|$$

令 $t \to \infty$ 即可。

(2) p=1, 这时 $q=\infty$, 对于 $\forall \varepsilon>0$, 令

$$A \triangleq \{x \in [0,1] \mid |g(x)| > ||F|| + \varepsilon\}$$

再对于 $\forall t > 0$, 按前面的定义 E_t , 并令 $f = \chi_{E_t \cap A} \operatorname{sign} g$, 便有

即 f 作用后会去掉 | a | 的绝对值与积分区域

$$||f||_{L^1[0,1]} = \mu(E_t \cap A)$$

并且有

$$\mu(E_t \cap A)(\|F\| + \varepsilon) \leqslant \int_{A \cap E_t} |g| d\mu = \int_0^1 f \cdot g d\mu \leqslant \|F\| \mu(E_t \cap A)$$

$$\mu(A)(\|F\| + \varepsilon) \leq \|F\|\mu(A)$$

从而推出 $\mu(A) = 0$, 从而

$$||g||_{L^{\infty}[0,1]} \leqslant F$$

(2) C[0,1] 的共轭空间,设

$$BV[0,1] \triangleq \left\{ g \middle| \begin{array}{l} g:[0,1] \to \mathbb{C}, \ g(0) = 0 \\ g(t) = g(t=0) \ (\forall t \in (0,1)) \\ \text{var}(q) < \infty \end{array} \right\}$$

其中 $\operatorname{var}(g) = \sup \sum_{j=0}^{n-1} |g(t_{j+1}) - g(t_j)|$, 这里的上确界是对所有的 [0,1] 分割来取的。在 BV[0,1] 上赋以范数 $||g|| = \operatorname{var}(g) \ (\forall g \in BV[0,1])$, 那么 BV[0,1] 是 B 空间。而

$$C[0,1]^* = BV[0,1]_{\circ}$$

2 考虑 \mathscr{X}^* 空间的共轭空间,记作 \mathscr{X}^{**} ,称为 X 的**第二共轭空间**。注意到 $\forall x \in \mathscr{X}$,可以定义

$$X(f) = \langle f, x \rangle \quad (\forall f \in \mathscr{X}^*)$$

不难验证: X 还是 \mathcal{X}^* 上的一个线性泛函,满足

$$|X(f)| \leqslant ||f|| \cdot ||x||$$

从而 X 还是连续的,满足

$$||X|| \leq ||x||$$

称映射 $T: x \to X$ 是**自然映射**,表明 T 是 \mathscr{X} 到 \mathscr{X}^{**} 的连续嵌入。注意到,若 $\alpha, \beta \in \mathbb{C}$, $x, y \in \mathscr{X}$,记 X = Tx,Y = Ty,则有

$$T(\alpha x + \beta y)(f) = f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

= $\alpha X(f) + \beta Y(f) = (\alpha X + \beta Y)(f) = (\alpha Tx + \beta Ty)(f) \quad (\forall f \in \mathscr{X}^{**})$

因此 T 还是一个线性同构, 由 Hahn-Banach 定理, 存在 $\exists f \in \mathcal{X}^*$, 使得

$$||f|| = 1, \quad \langle f, x \rangle = ||x||$$

便得到

$$||x|| = X(f) \le ||X|| \cdot ||f|| = ||X||$$

故而 T 是等距的。

- 3 如果 $\mathscr X$ 到 $\mathscr X^{**}$ 的自然映射 T 是满射的,则称 $\mathscr X$ 是**自反的**,记作 $\mathscr X=\mathscr X^{**}$ 。
- 4 设 \mathcal{X}, \mathcal{Y} 是 B^* 空间,算子 $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ 。算子 $T^* : \mathcal{Y}^* \to \mathcal{X}^*$ 称为是 T 的共轭算子是指:

$$f(Tx) = (T^*f)(x) \quad (\forall f \in \mathscr{Y}^*, \ \forall x \in \mathscr{X})$$

命题与定理

 $1 B^*$ 空间 \mathcal{X} 与它的第二共轭空间 \mathcal{X}^{**} 的一个子空间等距同构。

 $Proof.\ \forall T\in\mathcal{L}(\mathcal{X},\mathcal{Y})$, T^* 是唯一存在的,并且属于 $\mathcal{L}(\mathcal{Y},\mathcal{X})$ 。事实上,对于 $\forall f\in\mathcal{Y}^*$,令

$$g(x) = f(Tx) \quad (\forall x \in \mathscr{X}^*)$$

它是线性的,并且有界

$$|g(x)| \le ||f|| \cdot ||T|| \cdot ||x|| \quad (\forall x \in \mathcal{X})$$

因此 $g \in \mathcal{X}^*$,对应 $f \to g$ 也是线性的,正是 T^* ,按照定义

$$||T^*f|| = ||g|| \leqslant ||T|| \cdot ||f|| \quad (\forall f \in \mathscr{Y}^*)$$

故而 $T^* \in \mathcal{L}(\mathcal{Y}^*, \mathcal{X}^*)$,同时 $||T^*|| \leq ||T||$ 。因此唯一性显然。

2 映射 $*: T \to T^*$ 是 $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ 到 $\mathcal{L}(\mathcal{Y}^*, \mathcal{X}^*)$ 的等距同构。

习题

1 求证: $(l^p)^* = l^q$, $1 \le p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$

Proof. 我们要证明是等距同构的。一方面,对 $y = \{\eta_k\}_{k=1}^\infty \in l^q$ 而言,由 Hölder Ineq 得到

$$\left| \sum_{k=1}^{\infty} \xi_k \eta_k \right| \leqslant ||x|| \cdot ||y||, \quad \forall x = \{\xi_k\} \in l^p$$

因而 $||T_y|| \leq ||y||$,从而 l^q 通过映射 $y \to T_y$ 连续的嵌入到 $(l^p)^*$ 中。即所有的 $y \in l^q$ 都可以嵌入进去。

另一方面,对 $T \in (l^p)^*$,令

$$e_k = (\underbrace{0, 0, \cdots, 1}_{k \uparrow}, 0, \cdots)$$

则

$$T(x) = T\left(\sum_{k=1}^{\infty} \xi_k e_k\right) = \sum_{k=1}^{\infty} \xi_k T(e_k)$$

下面证明 $y_T = \{T(e_k)\} \in l^q$,且 $||y_T|| \leq ||T||$,从而为等距同构。 若 $1 \leq q < \infty$ 时,

$$||y_T||_{l^q}^q = \sum_{k=1}^n |T(e_k)|^q = \sum_{k=1}^n |T(e_k)|^{q-1} e^{-i \arg T(e_k)} \le ||T|| \cdot ||y_T||_{l^q}^{q/p}$$

而若 $q = \infty$,则

$$||y_T||_{l^{\infty}} = \sup_{n \ge 1} |T(e_n)| = \sup_{n \ge 1} T(e_n) e^{-i \arg T(e_n)} = \sup_{n \ge 1} T(\tilde{x}_n) \le ||T||$$

2 设 C 是收敛数列的全体, 赋以范数

$$\|\cdot\|:\ \{\xi_k\}\in C\mapsto \sup_{k\geqslant 1}|\xi_k|$$

求证: $C^* = l^1$

Proof. 注意对于 $\forall x \in C$, $x = \{\xi_k\}$, 考虑 $\lim_{k \to \infty} \xi_k = \xi_0$, 则

$$x = \xi_0 e_0 + \sum_{k=1}^{\infty} (\xi_k - \xi_0) e_k$$

其中

$$e_0 = (1, 1, 1, \dots, 1, \dots, 1);$$

 $e_k = (\underbrace{0, 0, \dots, 1}_{k}, 0, \dots, 0).$

对于 $\forall f \in C^*$, 记

$$f(x) = \xi_0 f(e_0) + \sum_{k=1}^{\infty} (\xi_k - \xi_0) f(e_k)$$
$$\tilde{\eta}_0 = f(e_0)$$
$$\tilde{\eta}_k = f(e_k)$$

则有

$$f(x) = \xi_0 \tilde{\eta}_0 + \sum_{k=1}^{\infty} (\xi_k - \xi_0) \tilde{\eta}_k$$

而后证明这两个范数相等即可。

- 3 同理
- 4 求证:有限维 B^* 空间必是自反的。

Proof. 我们要证明从 $\mathscr X$ 到 $\mathscr X^{**}$ 的映射是满的,即就是自反的。 考虑定义在 $\mathscr X$ 上的一组基 $\{e_i\}_{i=1}^\infty$,而因此存在 $\{f_i\}\subset \mathscr X^*$ 使得

$$\langle f_i, e_i \rangle = \delta_{ij}$$

从而 $\forall f \in \mathcal{X}^*$,

$$f(x) = f\left(\sum_{i=1}^{n} \lambda_i e_i\right) = \sum_{i=1}^{n} \lambda_i f(e_i) = \sum_{i=1}^{n} \lambda_i f_i(e_i) = \sum_{i=1}^{n} f_i(x) f(e_i) = \left\langle \sum_{i=1}^{n} f_i f(e_i), x \right\rangle$$

从而有

$$f = \sum_{i=1}^{n} f(e_i) f_i$$

而现在对 $\forall x^{**} \in \mathcal{X}^{**}$,

$$x^{**}(f) = x^{**} \left(\sum_{i=1}^{n} f(e_i) f_i \right) = \sum_{i=1}^{n} f(e_i) x^{**}(f_i) = \left\langle \sum_{i=1}^{n} e_i x^{**}(f_i), f \right\rangle$$

因此

$$x^{**} = \sum_{i=1}^{n} x^{**}(f_i)e_i$$

因此从 \mathscr{X} 到 \mathscr{X}^{**} 的自然映射是满的,因此是自反的。

5 求证: B 空间是自反的, 当且仅当它的共轭空间是自反的。

Proof. 设 $\mathscr X$ 是自反的,记从 $\mathscr X$ 到 $\mathscr X^{**}$ 的自然映射 T 是满的。则对于 $\forall x_0^{***} \in \mathscr X^{***}$ 。

$$\langle x_0^{***}, x^{**} \rangle = \langle x_0^{***}, Tx \rangle = \langle T^* x_0^{***}, x \rangle = \langle Tx, T^* x_0^{***} \rangle = \langle x^{**}, T^* x_0^{***} \rangle$$

因此是满射。

对于充分性而言,若 \mathscr{X}^* 自反,则 X^{**} 自反。而又由于 \mathscr{X} 是 B 空间,作为 \mathscr{X} 的子空间是闭的。由 Pettis 定义知 X 自反。

6 $\mathscr X$ 是 B^* 空间, T 是从 $\mathscr X$ 到 $\mathscr X^{**}$ 的自然映射, 求证: R(T) 是闭的的充要条件是 $\mathscr X$ 是完备的。

Proof. 若 $\mathscr X$ 是完备的,则 T 是满射的。因此 T 是等距同构。而 R(T) 是闭的当且仅当 R(T) 是完备的,从而 R(T) 完备当且仅当 T 是等距同构。(由于 $\mathscr X^{**}$ 是 B 空间)

7 在 l1 中定义算子

$$T: (x_1, x_2, \cdots, x_n, \cdots) \mapsto (0, x_1, x_2, \cdots, x_n, \cdots)$$

求证 $T \in \mathcal{L}(l^1)$ 并求 T^*

Proof. 首先我们要说明有界,在 l^1 中的有界指的是求和有限。而由于 $x = (x_1, x_2, \dots, x_n, \dots) \in l^1$,因而

$$||x|| < \infty$$

且自然的,我们可以发现

$$||Tx||_{l^1} = ||x||_{l^1} < \infty$$

故而其有界且 ||T||=1,而由命题,显然也是连续的,因此 $T\in\mathcal{L}(l^1)$ 。下面我们求其对偶空间。而对于 $\forall y\in l^\infty$,则

$$\langle y, Tx \rangle = \langle T^*y, x \rangle = \sum_{k=1}^{\infty} y_{k+1} x_k = \langle \tilde{y}, x \rangle$$

故而

$$T^*(y) = T^*(y_1, y_2, \dots, y_n, \dots) = (y_2, y_3, \dots, y_n, \dots)$$

8 在 l² 中定义算子

$$T: (x_1, x_2, \cdots, x_n, \cdots) \mapsto \left(x_1, \frac{x_2}{2}, \cdots, \frac{x_n}{n}, \cdots\right)$$

求证: $T \in \mathcal{L}(l^2)$ 并求 T^* .

Proof. 考虑 $\forall x \in l^2$,则

$$||Tx|| = \sum_{k=1}^{\infty} \left(\frac{x_k}{k}\right)^2 \le ||x_k||_2 < \infty$$

因此 $T \in \mathcal{L}(l^2)$,而后 $\forall y \in l^2$

$$\langle y, Tx \rangle = \langle T * y, x \rangle = \sum_{k=1}^{\infty} \left(\frac{x_k \cdot y_k}{k} \right)^2 = \langle Ty, x \rangle$$

因此 $T^* = T$ 。

9 设 H 是 Hilbert 空间, $A \in \mathcal{L}(H)$ 并满足

$$(Ax, y) = (x, Ay)$$

求证:

- (1) $A^* = A$;
- (2) 若 R(A) 在 H 中稠密,则方程 Ax = y 对 $\forall y \in R(A)$ 存在唯一解。

Proof. 由于

$$\langle Ax, y \rangle = \langle x, A^*y \rangle = \langle x, Ay \rangle$$

由内积的性质得 $A = A^*$ 。下面说明存在唯一解。若存在 x_1, x_2 使得 $Ax_1 = Ax_2 = y$,则

$$0 = \langle Ax_1 - Ax_2, z \rangle = \langle x_1 - x_2, Az \rangle$$

由于 R(A) 在 \mathcal{H} 中稠密。 $\exists z_n \in \mathcal{H}$,使得 $Az_n \to x_1 - x_2$,因此 $x_1 = x_2$,故而唯一性成立。

- 10 设 \mathcal{X}, \mathcal{Y} 是 B^* 空间, $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$,又设 A^{-1} 存在,且 $A^{-1} \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$,求证:
 - (1) $(A^*)^{-1}$ 存在,且 $(A^*)^{-1} \in \mathcal{L}(\mathcal{Y}^*, \mathcal{X}^*)$;

Proof. 我们需要证明 A^* 是双射。若 $A^*y=0$,则

$$\langle A^*y, x \rangle = \langle y, Ax \rangle = 0$$

因此 y = 0,故而是单射。而后证明满射, $\forall x \in \mathcal{X}^*$,

$$\langle A^*(A^*)^{-1}x^*, x \rangle = \langle (A^*)^{-1}x^*, Ax \rangle = \langle x^*, A^{-1}Ax \rangle = \langle x^*, x \rangle$$

因此 $A^*(A^*)^{-1}=I$,故而其满射,因此为双射,从而 $(A^*)^{-1}$ 存在。由 Banach 定理知, $(A^*)^{-1}\in\mathcal{L}(\mathcal{Y}^*,\mathcal{X}^*)$ 。

 $(2) (A^*)^{-1} = (A^{-1})^* \circ$

Proof. 由 $A^*(A^*)^{-1}x^* = x^*$,两边同时作用 $(A^*)^{-1}$,即证 $(A^*)^{-1} = (A^{-1})^*$ 。

11 设 $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ 是 B 空间,而 $B \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, $A \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$,求证: $(AB)^* = B^*A^*$ 。

Proof. 我们考虑

$$\langle B^*A^*z, x \rangle = \langle A^*z, Bx \rangle = \langle z, ABx \rangle = \langle z, (AB)x \rangle = \langle (AB)^*z, x \rangle$$

而由内积的性质, 我们可以发现 $(AB)^* = B^*A^*$ 。

12 设 \mathcal{X} , \mathcal{Y} 是 B 空间, T 是 \mathcal{X} 到 \mathcal{Y} 的线性算子, 又设对 $\forall g \in \mathcal{Y}^*$, g(Tx) 是 \mathcal{X} 上的有界 线性泛函。求证: T 是连续的。

Proof. 我们先证明 T 是闭算子。对于 $x_n \in \mathcal{X}$, $Tx_n \in \mathcal{Y}$, $x_n \to x_0$, $Tx_n \to y_0$ 。则 $g(Tx_n) \to g(Tx_0)$,且 $g(Tx_n) \to g(y_0)$,因此 $Tx_0 = y_0$,故而为闭算子。且 $D(T) = \mathcal{X}$,由 闭图像定理知 T 是连续的。

13 设 $\{x_n\} \subset C[a,b]$, $x \in C[a,b]$, 且 $x_n \to x$ $(n \to \infty)$, 求证:

$$\lim_{n\to\infty} x_n(t) = x(t), \ (\forall t\in[a,b]) \ (点点收敛)$$

Proof. 对任意固定的 t, 有

$$x \in C[a, b] \Rightarrow x(t) \in \mathbb{R}$$

因此属于 C[a,b]*,由弱收敛知 $x_n(t) \to x(t)$ 。

14 已知在 B^* 空间中 $x_n \rightarrow x_0$, 求证:

$$\underline{\lim}_{n \to \infty} \|x_n\| \geqslant \|x_0\|$$

Proof. 若 $x_0 = 0$ 则显然。而 $x_0 \neq 0$ 的时候,必然存在 $f \in \mathcal{X}^*$,使得 $f(x_0) = ||x_0||$ 且 ||f|| = 1。因此

$$||x_0|| = f(x_0) = f\left(\lim_{n \to \infty} x_n\right) = f\left(\lim_{n \to \infty} x_n\right) \leqslant \lim_{n \to \infty} f(x_n) \leqslant \lim_{n \to \infty} ||f|| \cdot ||x_n||$$

因此有

$$\underline{\lim}_{n \to \infty} \|x_n\| \geqslant \|x_0\|$$

- 15 设 H 为 Hilbert 空间, $\{e_n\}$ 是 H 的正交规范基,求证,在 H 中 $x_n \to x_0$ 的充要条件是
 - $(1) \|x_n\|$ 有界
 - (2) $(x_n, e_k) \to (x_0, e_k) \ (n \to \infty), \ k = 1, 2, \cdots$

Proof. 先证明必要性,由共鸣定理知 $||x_n||$ 有界,且 $(x_n, e_k) \rightarrow (x_0, e_k)$ 。

再证明充分性,由于 $(x_n, e_k) \to (x_0, e_k)$,且 $\overline{\text{span}\{e_k\}} = \mathcal{X}$,因此我们只需要把 x_n 看作是 \mathcal{X}^* 上的有界线性泛函,则 $f(x_n) = \langle x_n, f \rangle$,再由 Banach-Steinhaus 定理即得弱收敛。

16 设 S_n 是 $L^p(\mathbb{R})$ $(1 \leq p < \infty)$ 到自身的算子:

$$(S_n u)(x) = \begin{cases} u(x), & |x| \leq n \\ 0, & |x| > n \end{cases}$$

其中 $u \in L^p(\mathbb{R})$ 是任意的,求证: $\{S_n\}$ 强收敛于恒同算子,但不一致收敛到 I。

Proof. 考虑 $\forall u \in L^p(\mathbb{R})$,则

$$||(S_n - I)u||_{L^p}^p = \int_{|x| > n} |u(x)|^p dx \to 0$$

但

$$||S_n - I|| \geqslant ||u_n||_p, \quad \left(u_n = \begin{cases} 0, & |x| \leqslant n \\ e^{\frac{x-n}{p}}, & |x| > n \end{cases}\right)$$

$$= 1$$

因此并非一致收敛。

17 设 H 是 Hilbert 空间,在 H 中 $x_n \rightarrow x_0$ $(h \rightarrow \infty)$,而且 $y_n \rightarrow y_0$ $(h \rightarrow \infty)$,求证: $(x_n, y_n) \mapsto (x_0, y_0)$ 。

Proof.

$$|(x_n, y_n) - (x_0, y_0)| \le |(x_n, y_n) - (x_n, y_0)| + |(x_n, y_0) - (x_0, y_0)|$$

$$\le ||x_n|| \cdot ||y_n - y_0|| + ||x_n - x_n|| \cdot ||y_0||$$

而由于 $||x_n||$ 与 $||y_0||$ 均有界,且 $||y_n-y_0|| \to 0$, $||x_n-x_n|| \to 0$,因此收敛。

18 设 $\{e_n\}$ 是 Hilbert 空间 H 中的正交规范集,求证: 在 H 中 $e_n \rightharpoonup \theta$,但 $e_n \nrightarrow \theta$ 。

Proof. 这里需要用到 Bessel 不等式,即

$$\sum_{n=1}^{\infty} \|(e_n, x)\| \leqslant \sum_{n=1}^{\infty} \|x\| \to \infty$$

但显然 $e_n \to \theta$ 。

- 19 设 H 是 Hilbert 空间, 求证: 在 $H + x_n \rightarrow x$ 的充要条件是
 - $(1) ||x_n|| \to ||x||$
 - (2) $x_n \rightharpoonup x$

Proof.

$$||x_n - x|| = \langle x_n - x, x_n - x \rangle = ||x_n||^2 - ||x||^2 \to 0$$

因此 $x_n \to x_0$

20 求证: 在自反的 B 空间中,集合的弱列紧性和有界性是等价的。

Proof. 若集合存在弱列紧性,假设集合 $M \subset \mathcal{X}$ 是无界的。则 $\forall n > 1$,都存在 $x_n \in M$ 使得 $\|x_n\| > n$ 。从而 $\{x_n\}$ 构造出来之后存在收敛子列 $\{x_{n_i}\}$,而由共鸣定理知 $\|x_{n_i}\|$ 有界,但与前文所述无界矛盾。

若集合有界,则用 2.5.28,即自反空间的单位球是列紧的。而有界可以用球形邻域覆盖,故而列紧。 □

21 求证: B^* 空间中的闭凸集是弱闭的,即若 M 是闭凸集, $\{x_n\}\subset M$,且 $x_n\rightharpoonup x_0$,则 $x_0\in M$ 。

Proof. 涉及凸集分离定理,不会。

22 22 与 23 同,均涉及凸集分离定理,不会。

Chapter 3

14 个定理总结

3.1 第一章

Theorem 3.1.1 (Banach 压缩映像原理). 对于完备的度量空间 $\mathscr X$ 而言,对于到自身的压缩映射 $T:\mathscr X\to\mathscr X$,存在唯一的不动点。

Proof. 我们考虑其上的距离为 ρ,先证明存在性。任取 $x_0 \in \mathcal{X}$,作压缩映射的序列 $x_1 = Tx_0$,而后不断作 $x_2 = Tx_1$,有 $x_n = Tx_{n-1}$ 。在完备的度量空间中,我们要说明这是一个基本列,即可证明其为收敛列。我们先来考虑

$$|x_{n+1} - x_n| = |Tx_n - Tx_{n-1}| < \alpha |x_n - x_{n-1}| < \dots < \alpha^n |x_1 - x_0|$$

故而我们考虑 $\forall n, p \in \mathbb{N}^+$,

$$|x_{n+p} - x_n| \leq |x_{n+p} - x_{n+p-1}| + |x_{n+p-1} - x_{n+p-2}| + \dots + |x_{n+1} - x_n|$$

$$\leq \sum_{k=1}^p |x_{n+k} - x_{n+k-1}|$$

$$< \sum_{k=1}^p \alpha^{n+k-1} |x_1 - x_0|$$

$$< \frac{\alpha^n (1 - \alpha^p)}{1 - \alpha} |x_1 - x_0| \to 0 \quad (n \to \infty)$$

故而这里构造的 $\{x_n\}$ 是一个基本列,从而有收敛列。下面证明唯一,若存在两个不动点 x^*, x^{**} ,则

$$|x^* - x^{**}| = |Tx^* - Tx^{**}| < \alpha |x^* - x^{**}|$$

矛盾,故而 $x^* = x^{**}$,因此不动点唯一。

Theorem 3.1.2 (Arzelà-Ascoli 定理). 为了 $F \subset C(M)$ 是列紧的,当且仅当 F 是一致有界且等度连续的函数族。

Proof. 先证明必要性,已知 C(M) 是完备的,故而等价于 F 是完全有界的,而完全有界集必然是有界集,因此 F 是一致有界的。下面我们证明其等度连续。考虑完全有界即存在有穷 ε 网,考虑 F 的 $\frac{\epsilon}{3}$ 网 $N(\varepsilon/3)$,

即存在有穷的 $M = \{\varphi_1, \varphi_2, \cdots, \varphi_n\}$ 。 $\forall \varphi \in F$,我们总能找到 $\varphi_i \in M$ 使得 $|\varphi - \varphi_i| < \frac{\varepsilon}{3}$,则对于 $\delta = \delta(\varepsilon)$, 当 $\rho(x_1, x_2) \leq \delta$ 时我们有

$$|\varphi(x_1) - \varphi(x_2)| \leq |\varphi(x_1) - \varphi_i(x_1)| + |\varphi_i(x_1) - \varphi_i(x_2)| + |\varphi_i(x_2) - \varphi(x_2)| < \varepsilon$$

故而 F 一致有界且等度连续。

下面证明充分性。如果 F 是一致有界且等度连续的。 $\exists \delta = \delta(\frac{\varepsilon}{3})$,使得当 $\rho(x_1, x_2) < \delta$ 时, $\forall \varphi \in F$, $|\varphi(x_1) - \varphi(x_2)| < \varepsilon/3$ 。而后就此 δ ,选取空间 M 上的有穷 δ 网, $N(\delta) = \{x_1, x_2, \cdots, x_n\}$,从而定义映射 $T: F \to \mathbb{R}$:

$$T\varphi \triangleq (\varphi(x_1), \varphi(x_2), \cdots, \varphi(x_n))$$

记 $\tilde{F} = TF$,则 \tilde{F} 为 \mathbb{R} 中的有界集。而设 $|\varphi| \leq M_1$,则

$$\left(\sum_{i=1}^{n} |\varphi(x_i)|^2\right)^{1/2} \leqslant \sqrt{n} M_1$$

故而有界。从而 \tilde{F} 为列紧集,因此 \tilde{F} 有有穷的 $\varepsilon/3$ 网,记为

$$\tilde{N}(\varepsilon/3) = \{T\varphi_1, T\varphi_2, \cdots, T\varphi_m\}$$

故而我们取定 $x_r \in N$, 从而

$$|\varphi(x) - \varphi_i(x)| \leq |\varphi(x) - \varphi(x_r)| + |\varphi(x_r) - \varphi_i(x_r)| + |\varphi_i(x_r) - \varphi_i(x)| < \varepsilon$$

故而 F 为完全有界集, 即 $\{\varphi_1, \varphi_2, \cdots, \varphi_m\}$ 也是 ε 网, 进而为列紧的。

Theorem 3.1.3. 具有相同维数的有穷维赋范空间都是等价同构的。

Proof. 这里我们考虑有穷维赋范空间 \mathscr{X} 上的一组基为 e_1, e_2, \cdots, e_n ,则对于任意 $x \in \mathscr{X}$ 都可以表示为 $x = \xi_1 e_1 + \cdots + \xi_n e_n$ 。而后我们考虑任意两个范数 $\|\| = \|\|\|_T$,考虑 $\|x\|_T = |Tx|$ 。而 $\|Tx\|$ 在 \mathbb{K}^n 中的范数为 $\|x\|_T = |Tx| = \|\xi\| = \left(\sum_{i=1}^n |\xi_i|^2\right)^{1/2}$ 。考察函数 $p(\xi) = \left|\sum_{i=1}^n \xi_i e_i\right|$ 。首先 p 对 ξ 是一致连续的

$$|p(\xi) - p(\eta)| = p(\xi - \eta) \le \left| \sum_{i=1}^{n} (\xi_i - \eta_i) e_i \right| \le |\xi - \eta| \left(\sum_{i=1}^{n} |e_i|^2 \right)^{1/2}$$

而后根据范数的齐次性

$$|\eta|p(\frac{\eta}{|\eta|}) = p(\eta)$$

而由于 $S^1 = \{||x|| = 1 \mid ||x|| \in \mathbb{K}^n\}$ 。且 S^1 是列紧的,故而在上面有最大最小值,从而

$$C_1 \leqslant p(\eta) \leqslant C_2 \quad \eta \in S^1$$

3.1. 第一章

则考虑 $\xi \in \mathcal{X}$,而 $\frac{\xi}{|\xi|} \in S^1$,则

$$C_1 \leqslant p(\frac{\xi}{|\xi|}) \leqslant C_2$$

$$C_1 \leqslant \frac{1}{|\xi|} p(\xi) \leqslant C_2$$

$$C_1 |\xi| \leqslant p(\xi) \leqslant C_2 |\xi|$$

下面证明 $C_1 > 0$,若 $C_1 = 0$ 意味着 $\exists \xi^* \in S_1$,使得 $\xi_1 e_1 + \xi_2 + \cdots + \xi_n e_n = 0$ 则 $\xi^* = 0$ 矛盾,故而 $C_1 > 0$,改写上式

$$C_1 ||x|| \leqslant ||x||_T \leqslant C_2 ||x||$$

Theorem 3.1.4. Hilbent 空间中,若 $\{e_{\alpha} \mid \alpha \in A\}$ 是正交规范集,则有 Bessel 不等式,且若其为 完备的,则有 Parseval 等式

Proof. Bessel Ineq 即为

$$||x|| \geqslant \sum_{\alpha \in A} |(x, e_{\alpha})|^2$$

我们考虑 $\forall x \in \mathcal{X}$,而由于该空间为 Hilbert 空间,我们总能找到 $e_1, e_2, \dots, e_m \in A$,使得

$$\left| x - \sum_{i=1}^{m} (x, e_i) e_i \right| = \|x\| - \sum_{i=1}^{m} |(x, e_i)|^2 \geqslant 0$$

而由此可见,对于 $\forall m \in \mathbb{N}$,适合 $|(x,e_{\alpha})| > \frac{1}{m}$ 的 $a \in A$ 至多只有有穷个,从而 $(x,e_{\alpha}) \neq 0$ 的 α 只有可数个,故而我们对 m 取极限即可得到。

$$\sum_{\alpha \in A_{\varepsilon}} |(x, e_a)|^2 \leqslant ||x||$$

而 Parseval Eq 为对于正交完备规范集而言的。

$$||x|| = \sum_{\alpha \in A} |(x, e_{\alpha})|^2$$

由于 \mathscr{X} 为完备集,从而 $\forall x \in \mathscr{X}$,都有

$$x = \sum_{\alpha \in A} (x, e_a) e_a$$

故而按照上述方法可以立即得到二者相等。反证法也可以,即若 LHS-RHS=y,则 $y\notin \mathrm{span}\{e_1,e_2,\cdots,e_n,\cdots\}$,显然与完备集矛盾。

3.2 第二章

Theorem 3.2.1 (Riesz 表示定理). 在 Hilbert 空间 \mathcal{X} 中,对于任意的连续线性泛函 f,必然存在 唯一的 $y_f \in \mathcal{X}$ 使得 $f(x) = (x, y_f)$ 。

Proof. 先证明存在性。我们考虑这样一个集合,考虑 $\exists x_0$ 使得 $f(x_0) \neq 0$ 且 $\|x_0\| = 1$,而后考虑集合 $M \triangleq \{x \mid f(x) = 0\}$ 。则作如下的分解,考虑 $x = \alpha x_0 + y$,其中 $y \in M$ 。而两边作用 f 得到 $f(x) = \alpha f(x_0)$ 。现在我们来探究 α 的取值。两侧对 x_0 作内积得到 $(x, x_0) = \alpha$ 。这里若 $(y, x_0) \neq 0$,由于 $x_0 \perp M$ 。故而 $f(x) = (x, x_0)f(x_0) = (x, \overline{f(x_0)}x_0)$ 。现在我们来探讨唯一性,若存在两个 y, y' 使得 (x, y) = (x, y') = f(x),则 (x, y - y') = 0。而后我们取 x = y - y' 即得 y = y'。唯一性证明结束,故而 Riesz 表示定理成立。

Theorem 3.2.2 (开映射定理). 若 \mathcal{X} , \mathcal{Y} 都是 B 空间,且 $f \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$,而 f 为满射,则 f 为开映射。

Proof. 证明分三步进行。首先考虑在 \mathscr{X} , \mathscr{Y} 中的开球分别为 $B(x_0,r), U(y_0,r)$ 。 原命题等价于 $U(\theta,\delta) \subset TB(\theta,1)$ 。这是由于开映射等价于证明 $TB(x_0,r) \supset U(Tx_0,r\delta)$,而由于其线性性质,即为 $U(\theta,\delta) \subset TB(\theta,1)$ 。必要性是显然的,我们来证明充分性,考虑 $\forall y_0 \in T(W)$,按定义有 $\exists x_0 \in W$ 使得 $Tx_0 = y_0$,由于 W 为开集,则存在 $\exists B(x_0,r) \in W$,取 $\varepsilon = r\delta$,使得

$$U(Tx_0,\varepsilon) \subset TB(x_0,r) \subset T(W)$$

故而为内点。

第二步,证明 $U(\theta,3\delta)=\overline{TB(\theta,1)}$ 。这里我们考虑 $\mathscr{Y}=f(\mathscr{X})=\bigcup_{n=1}^{\infty}TB(\theta,n)$ 。由于 f 为满射,必然存在某个 n 使得 $TB(\theta,n)$ 不为疏集,即有内点。而因此 $\exists U(y_0,r)\subset\overline{TB(\theta,n)}$ 。我们考虑对称凸集的性质

$$U(\theta, r) = \frac{1}{2}(U(y_0, r) + U(-y_0, r)) \subset \overline{TB(\theta, n)}$$

这里我们取 $\delta = \frac{r}{3n}$ 即可得到。

第三步,证明 $U(\theta,\delta) \subset TB(\theta,1)$ 。我们可以考虑 $\forall y_0 \in U(\theta,\delta)$,要证明存在 $x_0 \in B(\theta,1)$ 使得 $y_0 = f(x_0)$,我们利用逐次逼近法。先考虑存在 $x_1 \in B(\theta,\frac{1}{3})$,使得 $\|y_0 - f(x_1)\| \leq \frac{1}{3}\delta$ 。而后我们考虑 $y_1 = y_0 - f(x_2)$,而后构造出 $x_2 \in B(\theta,\frac{1}{3^2}\delta)$ 使得 $\|y_1 - f(x_2)\| \leq \frac{1}{3^2}\delta$ 。而后我们构造出的 $x_0 = \sum_{n=1}^{\infty} x_n$,而 $\|y_0 - f(x_0)\| = \|y_1 - f(x_1 + x_2 + \cdots)\| = \frac{1}{3^n}\delta \to 0$,故而 $y_0 = f(x_0)$ 且 $\|x_0\| \leq \frac{1}{2}$,因此为内点。

Theorem 3.2.3 (闭图像定理). 设 \mathcal{X} , \mathcal{Y} 是 B 空间,若 T 是 $\mathcal{X} \to \mathcal{Y}$ 的闭线性算子,且 D(T) 是闭的,则 T 是连续的。

Proof. 那么我们要证明连续。先在 D(T) 上构造范数,这里 D(T) 由于是闭的也为 B 空间。构造

$$||x||_G = ||x|| + ||Tx|| \quad (\forall x \in D(T))$$

现在证明赋范的 D(T) 也是 B 空间, 而

$$||x_m - x_n||_G = ||x_m - x_n|| + ||T(x_m - x_n)|| \to 0$$

3.2. 第二章 49

我们要证明其收敛,首先由第一项可知存在 $x^* \in \mathcal{X}$ 使得 $x_m \to x^*$,而同时 $\|T(x_m - x^*)\| \to 0$,因此这里的范数也是完备的,同样收敛于 x^* 。而我们也知道 $\|x\|_G$ 比 $\|x\|$ 强。由等价范数定理,我们可知存在 M>0 使得

$$||Tx|| \leqslant ||x||_G \leqslant M||x||$$

这里可以发现 ||T|| 也是有界的。由于 $||T|| \leq ||Tx||/||x|| \leq M$ 。故而 T 连续。

Theorem 3.2.4 (共鸣定理或一致有界定理). 设 \mathscr{X} 是 B 空间,而 \mathscr{Y} 是 B^* 空间,如果 $W \subset \mathscr{L}(\mathscr{X},\mathscr{Y})$,有 $\sup_{A \in W} Ax < \infty \; (\forall x \in \mathscr{X})$,则存在常数 M 使得, $\|A\| \leqslant M \; (\forall A \in W)$ 。

Proof. 我们构建一个范数 $\|x\|_W = \|x\| + \sup_{A \in W} |Ax|$ 。而显然会有 $\|x\|_W$ 强于 $\|x\|$ 。现在我们说明构建的赋范线性空间 $(\mathcal{X}, \|\cdot\|_W)$ 是完备的(即 B 空间)。

考虑

$$||x_n - x_m||_W = ||x_n - x_m|| + \sup_{A \in W} |A(x_n - x_m)|$$

而 $\|x\|$ 是完备的,故而存在 $\exists x_0 \in \mathcal{X}$ 使得 $x_n \to x_0$,而因此 $\sup_{A \in W} |Ax_m| = \sup_{A \in W} |Ax_0|$,故而其为完备的。且由于 $\|x\|_W$ 强于 $\|x\|$,故而由等价范数定理,存在常数 $M \geqslant 0$ 使得

$$\sup_{A \in W} |Ax| \leqslant ||x||_G \leqslant M||x||$$

则显然有 $||A|| \leq M$ 。

Theorem 3.2.5 (Banach-Steinhaus 定理). 设 \mathscr{X} 是 B 空间, \mathscr{Y} 是 B^* 空间,M 是 \mathscr{X} 的某个稠密子集。若 $A_n, A \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$,则 $\forall x \in \mathscr{X}$ 都有

$$\lim_{n \to \infty} A_n x = Ax$$

的充要条件是:

- $1 \|A_n\|$ 有界

Proof. 我们先来证明必要性。由于 $A_n, A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$,则 $\sup_{n \in \mathbb{N}} |A_n x|$ 有界,且由题设,满足共鸣定理,故而显然 $\|A_n\|$ 有界。而条件 2 是显然的。

而后考虑充分性,我们由条件 2,只需要说明那些 $\mathscr{X}\setminus M$ 的元素。由于 M 为 \mathscr{X} 的某个稠密子集,即 $\bar{M}=\mathscr{X}$ 。因此 $\forall x\in\mathscr{X}\setminus M$,总存在序列 $\{x_n\}\subset M$,满足 $x_n\to x_0$,且 $A_nx_n\to Ax$ 。而我们不妨用最朴素的方法

$$|A_n x - Ax| \leq |A_n x - A_n x_n| + |A_n x_n - A_n x_n| + |Ax_n - Ax|$$

这里我们可以巧妙的控制 x 与 x_n 中 n > N 的部分,巧妙的达到上式小于 ε ,故而成立。

Theorem 3.2.6 (实 Hahn-Banach 定理). 设 $\mathscr X$ 是实线性空间,而 p 是定义在 $\mathscr X$ 上的次线性泛 函, $\mathscr X_0$ 为 $\mathscr X$ 的实线性子空间, f_0 是定义在 $\mathscr X_0$ 上的实线性泛函,且满足 $f_0(x) \leqslant p(x)$ ($\forall x \in \mathscr X_0$)。那么 $\mathscr X$ 上必然存在一个实线性泛函 f 满足

- $1 \ f(x) = f_0(x), \ \forall x \in \mathscr{X}_0;$
- $2 f(x) \leqslant p(x), \ \forall x \in \mathscr{X}.$

Proof. 这里的证明是一步步构建的,首先先构造一个略大于 \mathscr{X}_0 的子流形。考虑任一 $y_0 \in \mathscr{X} \setminus \mathscr{X}_0$,构造 $\mathscr{X}_1 \triangleq \{x + \alpha y_0 \mid x \in \mathscr{X}_0\}$,我们在其上定义的延拓函数 f_1 为

$$f_1(x + \alpha y_0) = f_0(x) + \alpha f_1(y_0)$$

而后我们这里就需要确定 $f_1(y_0)$ 的值。而要求 $f_1 \in p$ 控制,即我们这里就可以任意取 x 来控制

$$f_1(x + \alpha y_0) \leqslant p(x + \alpha y_0)$$

两侧同时除以 $|\alpha|$, 考虑 α 的正负性,则有

$$f_1(y_0 - z) \leqslant p(y_0 - z), \quad \forall z \in \mathscr{X}_0,$$

 $f_1(-y_0 + y) \leqslant p(-y_0 + y), \quad \forall y \in \mathscr{X}_0.$

或

$$f_0(y) - p(-y_0 + y) \le f_1(y_0) \le f_0(z) + p(y_0 - z)$$

而 $f_1(y)$ 取在两侧的任意值即可。且为了能取到合适的 $f_1(y_0)$ 必须且仅须

$$\sup_{y \in \mathcal{X}_0} \{ f_0(y) - p(-y_0 + y) \} \leqslant \inf_{z \in \mathcal{X}_0} \{ f_0(z) + p(y_0 - z) \}$$

而这里即

$$f_0(z) - f_0(y) = f_0(z - y) \le p(z - y) = p(z - y_0 + y_0 - y) \le p(z - y_0) + p(y_0 - y)$$

故而必然满足。即我们就确定了线性子流形上的一个延拓的泛函。而后我们需要把 f_0 继续延拓到整个 \mathscr{X} 上去,我们利用 Zorn 引理,令

$$\mathscr{F} \triangleq \left\{ (\mathscr{X}_{\Delta}, f_{\Delta}) \middle| \begin{array}{l} \mathscr{X}_{0} \subset \mathscr{X}_{\Delta} \subset \mathscr{X} \\ \forall x \in \mathscr{X}_{0} \Rightarrow f_{\Delta}(x) = f_{0}(x) \\ \forall x \in \mathscr{X}_{\Delta} \Rightarrow f_{\Delta}(x) \leqslant p(x) \end{array} \right\}$$

Zorn 引理规定若每一个全序子集都有上界,则存在极大元。我们在 $\mathscr P$ 中引入序关系,若 $(\mathscr X_{\Delta_1},f_{\Delta_1}) \prec (\mathscr X_{\Delta_2},f_{\Delta_2})$,则 $\mathscr X_{\Delta_1} \subset \mathscr X_{\Delta_2}$,且 $f_{\Delta_1}(x) = f_{\Delta_2}(x)$ $(\forall x \in \mathscr X_{\Delta_1})$ 。

于是 \mathscr{F} 成为一个半序集,又考虑 M 是 \mathscr{F} 中的任一个全序子集,令

$$\mathscr{X}_M \triangleq \bigcup_{(\mathscr{X}_\Delta, f_\Delta) \in M} \{\mathscr{X}_\Delta\}$$

以及

$$f_M(x) = f_{\Delta}(x), \quad (\forall x \in \mathscr{X}_{\Delta}, (\mathscr{X}_{\Delta}, f_{\Delta}) \in M)$$

从而这里规定的 (\mathscr{X}_M, f_M) 为 M 的一个上界,依 Zorn 引理其存在极大元,记为 $(\mathscr{X}_\Lambda, f_\Lambda)$ 。而后我们来证明 $\mathscr{X}_\Lambda = \mathscr{X}$ 。用反证法,倘若不然则可以构造出 $(\mathscr{X}_\Lambda, \widetilde{f}_\Lambda) \in \mathscr{F}$,从而与极大性矛盾。因此 $\mathscr{X}_\Lambda = \mathscr{X}$ 从而 f_Λ 即为我们所求的 f。

Theorem 3.2.7 (复 Hahn-Banach 定理). 设 $\mathscr X$ 是复线性空间,且 p 为定义在 $\mathscr X$ 上的半范数, $\mathscr X_0$ 是 $\mathscr X$ 的线性子空间, f_0 为定义在 $\mathscr X_0$ 上的线性泛函,并满足 $|f_0(x)| \leq p(x), \ \forall x \in \mathscr X$ 。那么 $\mathscr X$ 上必然有一个线性泛函 f 满足

- 1 $f(x) = f_0(x), x \in \mathcal{X}_0$;
- $2 |f(x)| \leq p(x), x \in \mathcal{X}.$

Proof. 这里的复线性空间,我们的证明仅需将其转换为实线性空间的证明。我们定义 $g_0(x) = \operatorname{Re} f_0(x)$ 。那么我们就会得到 $g_0(x) \leq p(x)$ 。故而我们可以延拓其至 $\mathscr X$ 上,必有实线性泛函 g,使得 $g(x) \leq p(x)$, $\forall x \in \mathscr X$,且 $g_0(x) = g(x)$, $\forall x \in \mathscr X_0$ 。

而后我们来定义 $f(x) \triangleq g(x) - ig(ix)$ 。则 $f(x) = g_0(x) - ig_0(ix) = \operatorname{Re} f_0(x) + i\operatorname{Im} f_0(x) = f_0(x)$,且由于 f(ix) = g(ix) - ig(ix) = i[-ig(ix) + g(x)] = if(x),因此 f 是复齐次性的。剩下的我们还要说明在 \mathcal{X} 上,|f(x)| 受到 p(x) 控制,考虑 $f(x) \neq 0$,令

$$\theta \triangleq \arg f(x),$$

故而

$$|f(x)| = e^{-i\theta} f(x) = f(e^{-i\theta} x) = g(e^{-i\theta} x) \le p(e^{-i\theta} x) = p(x)$$

因此存在该线性泛函。

Theorem 3.2.8 (Hahn-Banach 定理的保范延拓推论). 设 \mathscr{X} 是 B^* 空间, \mathscr{X}_0 是 \mathscr{X} 的线性子空间,而 f_0 是定义在 \mathscr{X}_0 上的有界线性泛函,则在 \mathscr{X} 上必然存在有界线性泛函 f 满足:

- $f(x) = f_0(x)$, $\forall x \in \mathcal{X}_0$, 延拓条件
- $||f|| = ||f_0||_0$, 保范条件

Proof. 在 \mathscr{X} 上定义 $p(x) \triangleq \|f_0\|_0 \cdot \|x\|_0$ 那么 p(x) 是 \mathscr{X} 上的半范数,从而必然存在 \mathscr{X} 上的线性泛函 f(x) 使得

$$f(x) = f_0(x), \quad x \in \mathscr{X}_0$$

以及

$$|f(x)| \le p(x) \le ||f_0||_0 \cdot ||x||$$

从而有 $||f|| \le ||f_0||$,且又由 f(x) 在 \mathscr{X}_0 上恒等于 f_0 ,则 $||f|| \ge ||f_0||_0$,从而二者相等。

Theorem 3.2.9. 设 \mathscr{X} 是可分的 B^* 空间,那么 \mathscr{X}^* 上的任意有界列 $\{f_n\}$ 必有 * 弱收敛的子列。

Proof. 由于 $\mathscr X$ 可分,所以 $\mathscr X$ 有可数的稠密子集 $\{x_m\}$,由于 $\{f_n\}$ 有界,所以对每一个固定的 m,数集

$$\{\langle f_n, x_m \rangle \mid n, m \in \mathbb{N}\}$$

是有界的,从而我们用对角线法则抽出子列 $\{f_{n_k}\}_{k=1}^{\infty}$,使得对于 $\forall m \in \mathbb{N}$

$$\{\langle f_{n_k}, x_m \rangle \mid k, m \in \mathbb{N}\}$$

是收敛的。再由 x_m 在 \mathscr{X} 中稠密且 $\{f_n\}$ 有界,对于 $\forall x \in \mathscr{X}$,

$$\{\langle f_{n_k}, x \rangle \mid k \in \mathbb{N}, x \in \mathcal{X}\}$$

是收敛数列,记 $F(x) \triangleq \lim_{k \to \infty} \langle f_{n_k}, x \rangle$,则 F 是线性的,且 $\|F(x)\| \leqslant \sup_n \|f_n\| \cdot \|x\|$,从而存在 $f \in \mathcal{X}^*$ 。使得

$$\langle f, x \rangle = F(x) = \lim_{k \to \infty} \langle f_{n_k}, x \rangle \quad (\forall x \in \mathscr{X})$$

从而 $f_{n_k} \rightharpoonup f_{\circ}$

Theorem 3.2.10. 设 A 是有界线性算子,则 $\sigma(A) \neq \emptyset$ 。

Proof. 用反证法,倘若 $\rho(A) = \mathbb{C}$,那么 $R_{\lambda}(A)$ 在 \mathbb{C} 上解析,并且当 $|\lambda| > ||A||$ 时,有

$$R_{\lambda}(A) = \sum_{n=0}^{\infty} \frac{1}{\lambda^{n+1}} A^n$$

以及

$$||R_{\lambda}(A)|| \leqslant \frac{1}{|\lambda| - ||A||}$$

因此, $\|R_{\lambda}(A)\|$ 在复平面上是有界的。为了导出矛盾,对 $\forall f \in \mathcal{L}(\mathcal{X})^*)$,考察数值解析函数

$$u_f(\lambda) \triangleq f(R_{\lambda}(A))$$

因为它在全平面是有界的解析函数,依照 Liouville 定理, $u_f(\lambda)$ 是仅依赖于 f 的常值函数,再由推论 2.4.5, $R_{\lambda}(A)$ 是与 λ 无关的常值算子,依第一预解公式,这显然是不可能的。