NemaCaps lagern

Punkt	Bezeichnung	kurze Beschreibung	Ergänzende Information
1.1	In Magazin	Wechselbarer Behälter mit beliebiger Form.	
1.2	In Bahn	In vorgegebenen Bahnen werden die NemaCaps eingefüllt. Benötigt manuelle Vorereitung.	
1.3	In Etagen geschichtet	In Trays oder Etagen werden NemaCaps gelagert. Benötigt manuelle Vorbereitung.	
1.4	In Trichterprofil	Schräg gelagertes Trichterprofil welches eine grobe Sortierung vornimmt.	
1.5	ungeordnet, lose	grossflächige chaotische Verteilung von NemaCaps.	
1.6	In Raster	In rechteckigem Gitterraster. Grobe Sortierung vorhanden, benötigt Vorbereitung	
1.7	In Trommel (vertikal)	In vertikal ausgerichteter Trommel, evtl. drehbar gelagert oder mit drehbarem Einsatz.	AEROSEM PCS Vereinzelung: http://bit.ly/2qN0mju
1.8	In Trommel (schief)	In schief ausgerichteter Trommel, evtl. drehbar gelagert oder mit drehbarem Einsatz.	Angelehnt an Vereinzelung der Kofatec GmbH
1.9	dezentral	Lagerung in dezentralen Einheiten. Keine konkrete Form der Einheit vorgegeben.	
1.10	In abbaubarer Einheit	In biologisch abbaubaren Einheiten werden NemaCaps abgepackt.	
1.11	In Druckkammer	Lagerung in Behälter, welcher unter Druck steht. Pneumatische Weiterverarbeitung denkbar.	
1.12	In Beutel	Lagerung in flexiblem Beutel mit einer oder mehreren Öffnungen.	
1.13	In Zylinder	Lagerung in Zylindrischem Gefäss	siehe auch 1.7, 1.8
1.14	In Kubus	In verschliessbaren quadratischen Einheiten.	
1.15	In Dreieckprofil	Schräge Lagerung in einem Dreieckprofil. Ermöglicht eine grobe Sortierung.	
1.16	In Textil	Flexible Lagerung durch ein textiler Stoff. Grösse der Maschen als interessanter Parameter.	
1.17	In Fluid	Schwimmende Lagerung der NemaCaps. Dichte und Viskosität als interessante Parameter.	nicht zulässig gemäss Pflichtenheft

NemaCaps fördern beinhaltet Teilfunktionen NemaCaps vereinzeln und NemaCaps transportieren

Punkt	Bezeichnung	kurze Beschreibung	Ergänzende Information
2.1	Vakumansaugung	Rotierende Trommel die durch Vakum ein NemaCap ansaugt. Wird in Agrarindustrie genutzt.	AEROSEM PCS Vereinzelung: http://bit.ly/2qN0mju
2.2	Schwingförderer	Vereinzelung und Transport durch Schwingungsenergie.	auch bekannt als Wendelförderer, Schwingtisch
2.3	Zentrifuge	Vereinzelung der NemaCaps durch Nutzung der Fliehkraft während einer Rotation.	Wird in Medizinaltechnik genutzt.
2.4	Schaufelrad	Mittels Schaufeln an einer rotierenden Trommel werden NemaCaps vereinzelt.	Siehe Patent EP2517988 A1: http://bit.ly/2qnvlRu
2.5	Förderband	Gegenläufiges Transportband, welches durch einen Abstreifer gleichzeitig vereinzelt.	Theilinger Automation GmbH: http://bit.ly/2qnqNuB
2.6	Stufenförderer	Förderung sowie Vereinzelung durch mehrere bewegte Stufen.	Theilinger Automation GmbH: http://bit.ly/2qnqNuB
2.7	Bunkerförderband	fertige Komplettlösung zur Vereinzelung sowie Förderung von Gütern.	Synex Tech GmbH: http://bit.ly/2rm8ZhR
2.8	Schöpfrohrbunker	Trichter mit linear bewegtem Rohr welches Kugeln vereinzelt.	machineering GmbH: http://bit.ly/2qMTP8p
2.9	Werkstückseparator	Schematische Dartstellung verschiedener Werkstückseparatoren	handling online: http://bit.ly/2qrInMv
2.10	mit Luftstoff	Mit einem gezielten Luftstoss wird ein einzelnes NemaCap bewegt.	benötigt Bilderkennung
2.11	Trichter mit Stössel	Durch den linearen Stoss eines NemaCaps wird dieses verzeinzelt. Geordnete Sortierung nötig.	handling online: http://bit.ly/2qrInMv
2.12	mit Lochmaske	Durch eine rotierende Lochmaske wird ein NemaCap vereinzelt.	Angelehnt an Vereinzelung der Kofatec GmbH
2.13	durch Punktraster	Freier Fall durch Punktraster in drei Bahnen.	Spielkonsole Sputnik: http://bit.ly/2qnGrGR
2.14	durch Gitter	Vereinzelung mittels Siebung durch mehrere gitterförmige Raster.	
2.15	Freier Fall mit Klappe	Eine Klappe verzeinzelt fallende NemaCaps.	Grobe Vorstortierung nötig.
2.16	durch V-Profil	Durch schiefes, zusammenlaufendes V-Profil	
2.17	zwei-Dorn-Prinzip	Mit zwei Dornen wird ein Förderband so beinflusst, dass eine Vereinzelung stattfindet.	Simulation: http://bit.ly/2qMSzSS
2.18	Pick-and-Place (3D)	dreidimensionale Pick-and-Place Bewegung. Als System erhältlich: Delta- und Scararoboter	http://bit.ly/2qnZoZt - http://bit.ly/2qnYOeQ
2.19	Pick-and-Place (2D)	schnelle Bewegungen in zwei Dimensionen möglich. Eigenentwicklung möglich.	
2.20	abschöpfendes Rad	Schaufelrad, dass an Oberfläche NemaCaps abschöpft	
2.21	Abstreifung	Abstreifung von NemaCaps mittels Bürsten . Transport mittels Förderband.	Eine oder mehrere Stufen möglich.
2.22	archimedische Schraube	In einem Wendel wird durch die Rotation eine Förderbewegung generiert.	eventuell Vereinzelung denkbar.
2.23	durch Schlauch	Pneumatisch oder durch Nutzung der Erdbeschleunigung.	Vereinzelung nicht integriert.
2.24	mittels Karusell	Transport mittels rotierenden Scheiben.	
2.25	in Magazin	In einer handhabbaren Einheit werden diese schon vereinzelt transportiert.	Angelehnt an 1.1, Vorbereitung nötig
2.26	Freier Fall	Nutzung der Schwerkraft zum Transport der NemaCaps.	Vereinzelung nicht integriert.

BDA Pflanzroboter: Funktionsbezogene Variation

NemaCaps setzen beinhaltet Teilfunktionen NemaCaps platzieren und Setzvorgang auslösen

Punkt	Bezeichnung	kurze Beschreibung	Ergänzende Information
3.1	An Dorn gehalten	Durch Adhäsion, klebend oder mit Unterdruck wird das NemaCap an einem Dorn gehalten.	
3.2	mit abbaubarer Einheit	Mit biologisch abbaubarer Einheit in Topf pflanzen.	siehe auch 1.10
3.3	mit Bohrer	Mit einem Bohrer wird ein Setzloch ausgehoben, dann das NemaCap platziert.	zweistufiger Prozess
3.4	Zufälliger Fall in Loch	Ein Setzloch ausheben, dann durch zufälliger Fall mehrerer NemaCaps das Loch getroffen.	zweistufiger Prozess
3.5	mit Laser	Mit Lasereinheit wird die Erde verbrannt und ein Loch ausgehoben.	zweistufiger Prozess
3.6	mit Gabel oder Zange	Mit einer Zange wird ein NemaCap gepackt und in den Boden gedrückt und dort platziert.	
3.7	eintauchendes Rohr	Ein Rohr taucht in die Erde ein, dann wird das NemaCap mit Druckluft ans Ziel transportiert.	siehe auch 2.10, 2.23
3.8	Einschiessen	Mit hoher kinetischer Energie wird das NemaCap in die Erde eingeschossen.	
3.9	Setzloch ausheben	Ein Setzloch wird ausgehoben, dann das NemaCap im Loch platziert.	Allgemein formuliert.
3.10	Pick-and-Place (3D)	Mit 3D-Pick-and-Place Bewegung wird NemaCap direkt vom Lager in Erde gepflanzt.	Komplettlösung. siehe auch 2.18
3.11	Pick-and-Place (2D)	Mit 2D-Pick-and-Place Bewegung wird NemaCap direkt vom Lager in Erde gepflanzt.	siehe auch 2.19
3.12	einstechender Dolch	ein Dolch taucht in Erde ein und durch Abkippen wird ein Spalt frei, wo NemaCap hineinfällt.	zweistufiger Prozess
3.13	mit Schaufel	Setzloch ausheben mit einer Schaufel, dann NemaCap platzieren.	zweistufiger Prozess
3.14	mit Fräser	Mit Fräser Setzloch ausheben, dann NemaCap platziern.	zweistufiger Prozess
3.15	zwei-Dorn-Prinzip	Mit zwei Dornen wird zudem die Auslösung realisiert. Ist mit Platzierung zu koppeln.	siehe auch 2.17
3.16	Durch Vereinzelung	Auslösung gegeben durch die Vereinzelung. Implizite Lösung.	Nur Auslösung. Ist mit Platzierung zu koppeln.
3.17	Seitlicher Stoss	Durch einen Stoss über eine Kante fallen NemaCaps in ein Setzloch.	Nur Auslösung. Ist mit Platzierung zu koppeln.
3.18	Vibration	Durch die Vibration fallen NemaCaps durch ein Sieb und in ein Loch.	siehe auch 2.14, 3.4
3.19	Luftstoss	durch gezielten Luftstoss wird das NemaCap ausgelöst.	Nur Auslösung. Ist mit Platzierung zu koppeln.
3.20	implizit	Durch die äusseren Einflüsse (Kinetik, Reibung Adhäsion) löst sich das NemaCap.	Nur Auslösung. Ist mit Platzierung zu koppeln.
3.21	mit Klappe	Mit einer Klappe wird das NemaCap freigegeben.	Nur Auslösung. Ist mit Platzierung zu koppeln.
3.22	Kinetik	Durch eine hohe Beschleunigung wird das NemaCap freigegeben.	Nur Auslösung. Ist mit Platzierung zu koppeln.

BDA Pflanzroboter: Funktionsbezogene Variation Verfasser: Yves Gubelmann Patrick Rossacher

Topf erkennen

Punkt	Bezeichnung	kurze Beschreibung	Ergänzende Information
4.1	Ultraschall	Mittels Ultraschallsensor wird die Distanz gemessen und so mit Sollwerten verglichen.	
4.2	Endschalter	Durch Berührung des Topfes, taktil	taktiler Positionsschalter: http://bit.ly/2mMoHDQ
4.3	Gewichtsmessung	Mit einer Waage wird das Gewicht gemessen	
4.4	NFC-Tag		zusätzliche Vorbereitung nötig
4.5	Barcode	Jeder Topf wird mit einem Barcode ausgerüstet und gescannt. Zusätzliche Vorbereitung nötig	Barcode-Scanner: http://amzn.to/2mehfzW
4.6	Induktiv	Mit einem induktiven Sensor wird die Induktivität gemessen und so mit Sollwerten verglichen.	induktiver Sensor: http://bit.ly/2INXPyy
4.7	kapazitiv	Mit einem kapazitiven Sensor wird die Kapazität gemessen und so mit Sollwerten verglichen.	kapazitiver Sensor: http://bit.ly/2mMom45
4.8	QR-Code	Jeder Topf wird mit einem QR ausgerüstet und gescannt. Zusätzliche Vorbereitung nötig	QR-Code-Scaner: http://amzn.to/2meeGht
4.9	ohmsch	Mit einem Ohmmeter wird der Widerstand gemessen und so mit Sollwerten verglichen.	
4.10	Fotodiode/LED	Mit einer Fotodiode wird das reflektierende Licht einer LED gemessen und verlichen.	eventuell Vorbereitung nötig
4.11	Time of Flight (Tof)		Tof Distanzsensor: http://bit.ly/2rq9RCc
4.12	Bilderkennung	Mit einer Kamera wird ein Bild aufgenommen und überprüft, ob ein Topf vorhanden ist.	Bilderkennung mit Rasperry Pi: http://bit.ly/2rpldo5
4.13	Infrarot	Durch reflektierende Infrarotwellen wird die Distanz gemesse und mit Sollwerten verglichen	Analoger Distanzsensor: http://bit.ly/2qr4bcW
4.14	blind, ohne Erkennung	ohne jegliche Erkennung wird den Setzvorgang immer ausgelöst.	nicht zulässig gemäss Pflichtenheft.

Verfasser: Yves Gubelmann Patrick Rossacher

Setzmechanismus konfigurieren

Punkt	Bezeichnung	kurze Beschreibung	Ergänzende Information
5.1	1x radial verstellbar	Mittels Rotation wird je ein Dorn verstellt. Verstellung mittels Kulissen denkbar.	Dreifache Ausführung nötig.
5.2	3x radial verstellbar	Mit einer Rotation werden drei Dorne simultan verstellt. Verstellung mittels Kulissen denkbar.	nur ein Aktor nötig.
5.3	Bajonetverschluss	Über ein Bajonettverschluss wird das entsprechende Werkzeug montiert.	manuelle Konfiguration durch Operator.
5.4	Schnappverschluss	Über ein Schnappverschluss wird das entsprechende Werkzeug montiert.	manuelle Konfiguration durch Operator.
5.5	verstellbare Zange	Eine verstellbare Zange gewährleistet die Abdeckung aller Topfradien.	
5.6	linear verstellbar	Mit drei linearen Führungen wird der Setzmechanismus entsprechend eingestellt.	
5.7	mit Spindel verstellbar	Mit drei Spindeln kann der Setzmechanismus über der Einsatzlokalität positioniert werden.	
5.8	3D-Maschine	Durch die Anwendung von Pick-and-Place kann das NemaCap individuell platziert werden.	siehe auch 3.10
5.9	verstellbare Laufbahn	Durch die Verstellung der Schläuche wird die Laufbahn entprechend beeinflusst.	siehe auch 2.23
5.10	mehrläufig	eine Förderung mit mehreren Verläufen kann alle Topfradien abdecken.	
5.11	mit Kurvenscheiben	Mit der Rotation von Kurvenscheiben wird der Setzmechanismus eingstellt.	
5.12	durch Kinetik	verschiedene Beschleunigungen führen zu einer anderen Einsetzlokalität.	
5.13	durch Klappe	Eine Klappe leitet das NemaCap in die richtige Bahn während der Förderung.	siehe auch 2.15
5.14	verstellbare Maske	Mit einer verstellbaren Maske wird nur die entsprechende Einsetzlokalität freigegeben.	
5.15	verstellbares Raster	An einem Raster wird die Setzeinheit für den entsprechenden Topf eingestellt.	manuelle Konfiguration durch Operator.
5.16	Verstellschraube	An einer Verstellschraube wird über eine Mechanik die Setzeinheit konfiguriert.	manuelle Konfiguration durch Operator.
5.17	Spannfutter	Mittels Spannfutter wird das entsprechende Werkzeug eingespannt.	manuelle Konfiguration durch Operator.

BDA Pflanzroboter: Funktionsbezogene Variation

Verfasser: Yves Gubelmann Patrick Rossacher

Setzmechanismus initialisieren

Punkt	Bezeichnung	kurze Beschreibung	Ergänzende Information
6.1	Selbständig	Der Pflanzroboter kann durch die Erkennung des Topfes die Setzeinheit autonom einstellen.	
6.2	Drehencoder	Über einen Drehencoder kann der Operator den gewünschten Topf einstellen.	
6.3	Drucktaster mit LED	Über mehrere Drucktaster mit LED's als Feedback kann der Operator den Topf selektieren.	Drucktaster mit Feedback: http://bit.ly/2qezBzK
6.4	Display und Taster	Der Operator kann über ein Display und mehrere Taster den Pflanzroboter konfigurieren.	
6.5	Hexiwear	Über eine Armbanduhr mit Touchscreen kann wird der Pflanzroboter konfiguriert.	Siehe Industrieprojekt von Patrick Rossacher
6.6	GUI mit Touchscreen	Über ein Graphical User Interface mit Touchscreen wird die Konfiguration vorgenommen.	Graphical User Interface: http://bit.ly/1IF08SX
6.7	RFID	Mustertöpfe werden mit einem RFID-Chip ausgerüstet und konfigurieren so die Setzeinheit.	RFID Reader: http://bit.ly/2mODgWW
6.8	Serielle Schnittstelle	Über eine serielle Schnittstelle zum Computer wird die Konfiguration geladen.	
6.9	manuell	Durch einen manuellen Eingriff des Operators wird die Konfiguration vorgenommen.	In Kombination mit Setzmechanismus konfigurieren
6.10	pneumatisch	ein pneumatischer Prozess übernimmt die Konfiguration der Setzeinheit	
6.11	muscle Wire	Durch die Nutzung eines Drahtes mit Memory-Effekt wird die Konfiguration sichergestellt.	Nitinol Actuator Wire: http://bit.ly/1rhEW2l
6.12	Spindel	Über eine Spindel wird der Setzmechanismus eingestellt.	Siehe auch 5.7
6.13	Bajonettverschluss	Der Operator montiert an einem Bajonettverschluss des entsprechende Werkzeug.	Siehe auch 5.3
6.14	Schnappverschluss	Der Operator montiert an einem Schnappverschluss des entsprechende Werkzeug.	Siehe auch 5.4
6.15	verstellbares Raster	An einem Raster stellt der Operator die Setzeinheit für den entsprechenden Topf ein.	Siehe auch 5.15
6.16	Verstellschraube	An einer Verstellschraube stellt der Operator die Setzeinheit ein.	Siehe auch 5.16
6.17	Spannfutter	Ein Operator spannt das entsprechende Werkzeug in einem Spannfutter ein.	Siehe auch 5.17

Verfasser: Yves Gubelmann Patrick Rossacher