Hyeji Kim*, Weihao Gao*, Sreeram Kannan+, Sewoong Oh*, Pramod Viswanath*

University of Illinois at Urbana-Champaign*, University of Washington+

INTRODUCTION

Discovering associations in large datasets

Example: Data for 300 indicators for 200 countries

Which pairs of indicators are associated?

~ 900,000 pairs of indicators!

Associations are used to make policy decisions

Important both in industry and scientific research

World Health Organization (WHO)

BACKGROUND

Correlation analysis to discover associations

Estimate correlation coefficients for all pairs of indicators

Pairs w. large corr coeff: candidates for strong association

PROBLEM STATEMENT

Motivation:

Existing correlation estimators discover average correlations but fail to discover potential correlations

Discovering potential correlations can affect policy decisions and lead to scientific findings

Goal: discover potential correlations

METHOD

1. Propose 7 axioms for a measure of potential correlation

 $0 \le \rho(X, Y) \le 1$

 $\rho(X,Y) = 0 \text{ iff } X \text{ and } Y \text{ are independent}$ $\rho(X,Y) = 1 \text{ if } Y = f(X) \text{ for } (X,Y) \in \mathcal{X}_r \times \mathcal{Y} \text{ for some } \mathcal{X}_r \subseteq \mathcal{X}$

2. Show hypercontractivity coefficient satisfies all axioms

$$s(X;Y) \equiv \sup_{U-X-Y} \frac{I(U;Y)}{I(U;X)}$$

- 3. Propose a novel estimator
 - based on an alternative definition

$$\begin{split} s(X;Y) = \sup_{r(x) \neq p(x)} \frac{D_{\mathrm{KL}}(r(y) \| p(y))}{D_{\mathrm{KL}}(r(x) \| p(x))} \\ \text{where} \quad r(y) = \sum r(x) p(y|x) \end{split}$$

via joint optimization and estimation

EXPERIMENTS

1. WHO dataset

- (A): Scatter plot of Pearson correlation vs. HC
- (D): Scatter plot of Maximal Info. Coefficient vs. HC
- (B): All correlations are small
- (C): All correlations are large
- (E) and (F): Only HC discovers potential correlations

2. Genetic Pathway Recovery

Gene expression time series data for four genes

Biological fact:

can we recover the sequential order of influence?

Hypercontractivity: robust measure strength of influence

EXPERIMENTS

3. Power test

Binary hypothesis testing of potential correlations

Power: true positive rate for a fixed false positive rate

HC is more powerful than others in hypothesis testing of canonical examples of potential correlations

CONCLUSION

- We postulate a set of natural axioms that we expect a measure of potential correlation to satisfy
- We show that rate of information bottleneck, i.e., the hypercontractivity coefficient (HC), satisfies all the proposed axioms
- 3. We provide a novel estimator for HC
- Experimental results:
 WHO datasets, genetic pathway recovery, power tests

ACKNOWLEDGEMENTS

This work was partially supported by NSF grants CNS-1527754, CNS-1718270, CCF-1553452, CCF-1617745, CCF-1651236, CCF-1705007, and GOOGLE Faculty Research Award.

Hyeji Kim*, Weihao Gao*, Sreeram Kannan+, Sewoong Oh*, Pramod Viswanath*

University of Illinois at Urbana-Champaign*, University of Washington+

INTRODUCTION

Discovering associations in large datasets

Example: data for 300 indicators for 200 countries Which pairs of indicators are associated?

~ 900,000 pairs of indicators!

		?	?	
	Population	Energy Use		CO ₂ Emissions
Afghanistan	26088	470		0.02
Albania	3172	761		0.98
Zambia	11696	620		0.21
Zimbabwe	13228	741		0.94

World Health Organization (WHO)

Correlation analysis to discover associations

Estimate correlation coefficients for all pairs of indicators

Rank pairs according to correlation coefficients

Different correlation estimators discover diff, associations

PROBLEM STATEMENT

Motivation:

Existing correlation estimators discover average correlations but fail to discover potential correlations

Discovering potential correlations can affect policy decisions and lead to scientific findings

Discover potential correlations

Our Approach:

1. Postulate 7 axioms for a measure of potential correlation, including

$$\begin{split} 0 &\leq \rho(X,Y) \leq 1 \\ \rho(X,Y) &= 0 \text{ iff } X \text{ and } Y \text{ are independent} \\ \rho(X,Y) &= 1 \text{ if } Y = f(X) \text{ for } (X,Y) \in \mathcal{X}_r \times \mathcal{Y} \text{ for some } \mathcal{X}_r \subseteq \mathcal{X} \end{split}$$

2. Show hypercontractivity coefficient satisfies all axioms

$$s(X;Y) \equiv \sup_{U-X-Y} \frac{I(U;Y)}{I(U;X)}$$

- 3. Propose a novel estimator
 - based on equivalent definition

$$\begin{split} s(X;Y) &= \sup_{r(x) \neq p(x)} \frac{D_{\mathrm{KL}}(r(y) \| p(y))}{D_{\mathrm{KL}}(r(x) \| p(x))} \\ &\quad \text{where} \quad r(y) = \sum r(x) p(y|x) \end{split}$$

- joint optimization and estimation

EXPERIMENTS

1. WHO dataset

Scatter plots of Pearson correlation vs. HC (left) and MIC vs. HC (right)

Only hypercontractivity discovers potential correlations

Hypercontracitivy & others discover average correlations

2. Genetic Pathway Recovery

Gene expression time series data for four genes

can we recover the sequential order of influence?

EXPERIMENTS

Hypercontractivity: robust measure strength of influence

3. Power test

Binary hypothesis testing of potential correlation

Power: true positive rate for a fixed false positive rate

HC is more powerful than others for canonical examples of potential correlations

CONCLUSION

- 1. We postulate a set of natural axioms that we expect a measure of potential correlation to satisfy
- 2. We show that rate of information bottleneck, i.e., the hypercontractivity coefficient (HC), satisfies all the proposed axioms
- 3. We provide a novel estimator for HC
- 4. Experimental results: WHO datasets, genetic pathway recovery, power tests

Hyeji Kim*, Weihao Gao*, Sreeram Kannan+, Sewoong Oh*, Pramod Viswanath*

University of Illinois at Urbana-Champaign*, University of Washington+

INTRODUCTION

Discovering associations in large datasets

Example: Data for 300 indicators for 200 countries

Which pairs of indicators are associated?

~ 900,000 pairs of indicators!

Associations are used to make policy decisions

Important both in industry and scientific research

		?	?	
	Population	Energy Use		CO ₂ Emissions
Afghanistan	26088	470		0.02
Albania	3172	761		0.98
Zambia	11696	620		0.21
Zimbabwe	13228	741		0.94

World Health Organization (WHO)

BACKGROUND

Correlation analysis to discover associations

Estimate correlation coefficients for all pairs of indicators

Pairs w. large corr coeff: candidates for strong association

PROBLEM STATEMENT

Motivation:

All correlation estimators discover average correlations

Fail to discover potential correlation

Discovering potential correlations can

- · affect policy decisions
- · lead to scientific findings

Discover potential correlations

Our approach:

1. Propose 7 axioms for a measure of potential correlation

 $\rho(X, Y) = 0$ iff X and Y are independent

 $\rho(X,Y) = 1$ if Y = f(X) for $(X,Y) \in \mathcal{X}_r \times \mathcal{Y}$ for some $\mathcal{X}_r \subseteq \mathcal{X}$

2. Show hypercontractivity coefficient satisfies all axioms

$$s(X;Y) \equiv \sup_{U-X-Y} \frac{I(U;Y)}{I(U;X)}$$

- 3. Propose a novel estimator
 - based on an alternative definition

$$\begin{split} s(X;Y) = \sup_{r(x) \neq p(x)} \frac{D_{\mathrm{KL}}(r(y) || p(y))}{D_{\mathrm{KL}}(r(x) || p(x))} \\ \text{where} \quad r(y) = \sum_{x} r(x) p(y | x) \end{split}$$

- via joint optimization and estimation

EXPERIMENTS

1. WHO dataset

- (A): Scatter plot of Pearson correlation vs. HC
- (D): Scatter plot of Maximal Info. Coefficient vs. HC
- (B): All correlations are small
- (C): All correlations are large
- (E) and (F): Only HC discovers potential correlations

2. Genetic Pathway Recovery

Gene expression time series data for four genes

Biological fact:

can we recover the sequential order of influence?

Hypercontractivity: robust measure strength of influence

EXPERIMENTS

3. Power test

Binary hypothesis testing of potential correlations

Power: true positive rate for a fixed false positive rate

HC is more powerful than others in hypothesis testing of canonical examples of potential correlations

CONCLUSION

- 1. We postulate a set of natural axioms that we expect a measure of potential correlation to satisfy
- 2. We show that rate of information bottleneck, i.e., the hypercontractivity coefficient (HC), satisfies all the proposed axioms
- 3. We provide a novel estimator for HC
- 4. Experimental results: WHO datasets, genetic pathway recovery, power tests

ACKNOWLEDGEMENTS

This work was partially supported by NSF grants CNS-1527754, CNS-1718270, CCF-1553452, CCF-1617745, CCF-1651236, CCF-1705007, and GOOGLE Faculty Research Award.

Hyeji Kim*, Weihao Gao*, Sreeram Kannan+, Sewoong Oh*, Pramod Viswanath*

University of Illinois at Urbana-Champaign*, University of Washington+

INTRODUCTION

Discovering associations in large datasets

Example: Data for 300 indicators for 200 countries

Which pairs of indicators are associated?

Associations are used to make policy decisions

Important both in industry and scientific research

		?	?	
	Population	Energy Use		CO ₂ Emissions
Afghanistan	26088	470		0.02
Albania	3172	761		0.98
	11696	620		0.21
Zimbabwe	13228	741		0.94

World Health Organization (WHO)

Democracy Bad teeth

ner child

CORRELATION ANALYSIS

Estimate correlation coefficients for all pairs of indicators

Correlation coefficients: measure strength of association

Different correlation estimators discover diff. associations

Example: Pearson correlations - linear associations

Maximal correlations - Functional associations

POTENTIAL CORRELATION

Goal

Discover potential correlation from large datasets

Problem

All correlation estimators discover average correlations

Fail to discover potential correlation

Our Approach

Provide a measure of potential correlation and estimator

(1) Propose axioms for a measure of potential correlation

$$\begin{split} 0 &\leq \rho(X,Y) \leq 1 \\ \rho(X,Y) &= 0 \text{ iff } X \text{ and } Y \text{ are independent} \\ \rho(X,Y) &= 1 \text{ if } Y = f(X) \text{ for } (X,Y) \in \mathcal{X}_r \times \mathcal{Y} \text{ for some } \mathcal{X}_r \subseteq \mathcal{X} \end{split}$$

(2) Hypercontractivity coefficient satisfies all axioms

$$s(X;Y) \equiv \sup_{U-X-Y} \frac{I(U;Y)}{I(U;X)}$$

(3) Estimator for Hypercontractivity coefficient (HC)

$$\begin{split} s(X;Y) = \sup_{r(x) \neq p(x)} \frac{D_{\mathrm{KL}}(r(y) || p(y))}{D_{\mathrm{KL}}(r(x) || p(x))} \\ \text{where} \quad r(y) = \sum r(x) p(y|x) \end{split}$$

- Joint optimization and estimation

EXPERIMENTS

(1) WHO dataset

- (A) and (D): Scatter plot of correlation measures
- (B): All correlations are small
- (C): All correlations are large
- (E) and (F): Only HC discovers potential correlations

(2) Genetic Pathway Recovery

Gene expression time series data for four genes

can we recover the sequential order of influence?

Hypercontractivity: robust measure strength of influence

EXPERIMENTS

(3) Power test

Binary hypothesis testing of potential correlation

CONCLUSION

- 1. We postulate a set of natural axioms that we expect a measure of potential correlation to satisfy $% \left\{ 1,2,...,n\right\}$
- show that the rate of information bottleneck, i.e., the hypercontractivity coefficient, satisfies all the proposed axioms
- 3. We provide a novel estimator for HC
- 4. Experimental results:

WHO datasets, genetic pathway recovery, power tests

ACKNOWLEDGEMENTS

Hyeji Kim*, Weihao Gao*, Sreeram Kannan+, Sewoong Oh*, Pramod Viswanath*

University of Illinois at Urbana-Champaign*, University of Washington+

INTRODUCTION

Discovering associations in large datasets

Example: Data for 300 indicators for 200 countries

Which pairs of indicators are associated?

~ 900,000 pairs of indicators!

Associations are used to make policy decisions

Important both in industry and scientific research

		?	~?	
	Population	Energy Use		CO ₂ Emissions
Afghanistan	26088	470		0.02
Albania	3172	761		0.98
Zambia	11696	620		0.21
Zimbabwe	13228	741		0.94

World Health Organization (WHO)

PROBLEM STATEMENT

Motivation

Exist. correlation estimators discover average correlation Fail to discover *potential* correlation

Examples of potential correlations from WHO dataset

Discovering potential correlations between aid received vs. income growth: affect policy decisions

Goal: discover potential correlation

BACKGROUND

Correlation analysis to discover associations

Estimate correlation coefficients for all pairs of indicators

Pairs w. large corr coeff: candidates for strong association

METHOD

1. Propose axioms for a measure of potential correlation

$$0 \le \rho(X, Y) \le 1$$

$$\rho(X,Y) = 0$$
 iff X and Y are independent

$$\rho(X,Y) = 1$$
 if $Y = f(X)$ for $(X,Y) \in \mathcal{X}_r \times \mathcal{Y}$ for some $\mathcal{X}_r \subseteq \mathcal{X}$

2. Show hypercontractivity coefficient satisfies all axioms

$$s(X;Y) \equiv \sup_{U-X-Y} \frac{I(U;Y)}{I(U;X)}$$

3. Propose a novel estimator for hypercontractivity coeff.

- based on equivalent definition of s(X;Y):

$$\begin{split} s(X;Y) = \sup_{r(x) \neq p(x)} \frac{D_{\mathrm{KL}}(r(y) \| p(y))}{D_{\mathrm{KL}}(r(x) \| p(x))} \\ \text{where} \quad r(y) = \sum r(x) p(y|x) \end{split}$$

ioint optimization and actimatic

EXPERIMENTS

(1) WHO dataset

- (A) and (D): Scatter plot of correlation measures
- (B): All correlations are small
- (C): All correlations are large
- (E) and (F): Only HC discovers potential correlations

(2) Genetic Pathway Recovery

Gene expression time series data for four genes

can we recover the sequential order of influence?

Hypercontractivity: robust measure strength of influence

EXPERIMENTS

(3) Power test

Binary hypothesis testing of potential correlation

Power: true positive rate for a fixed false positive rate

CONCLUSION

- We postulate a set of natural axioms that we expect a measure of potential correlation to satisfy
- We show that rate of information bottleneck, i.e., the hypercontractivity coefficient (HC), satisfies all the proposed axioms
- 3. We provide a novel estimator for $\ensuremath{\mathsf{HC}}$
- 4. Experimental results:
 WHO datasets, genetic pathway recovery, power tests

ACKNOWLEDGEMENTS

Hyeji Kim*, Weihao Gao*, Sreeram Kannan+, Sewoong Oh*, Pramod Viswanath*

University of Illinois at Urbana-Champaign*, University of Washington+

INTRODUCTION

Discovering associations in large datasets

Example: Data for 300 indicators for 200 countries

Which pairs of indicators are associated?

~ 900,000 pairs of indicators!

BACKGROUND

Associations are used to make policy decisions

Important both in industry and scientific research

		?	~?	
	Population	Energy Use		CO ₂ Emissions
Afghanistan	26088	470		0.02
Albania	3172	761		0.98
Zambia	11696	620		0.21
Zimbabwe	13228	741		0.94

World Health Organization (WHO)

PROBLEM STATEMENT

Motivation

Exist. correlation estimators discover average correlation Fail to discover *potential* correlation

Examples of potential correlations from WHO dataset

Discovering potential correlations between aid received vs. income growth: affect policy decisions

Goal: discover potential correlation

Correlation analysis to discover associations

Estimate correlation coefficients for all pairs of indicators

Pairs w. large corr coeff: candidates for strong association

Examples of strong (left) and week (right) associations from WHO dataset

METHOD

1. Propose axioms for a measure of potential correlation

 $0 \le \rho(X, Y) \le 1$

 $\rho(X, Y) = 0$ iff X and Y are independent

 $\rho(X,Y) = 1$ if Y = f(X) for $(X,Y) \in \mathcal{X}_r \times \mathcal{Y}$ for some $\mathcal{X}_r \subseteq \mathcal{X}$

2. Show hypercontractivity coefficient satisfies all axioms

$$s(X;Y) \equiv \sup_{U-X-Y} \frac{I(U;Y)}{I(U;X)}$$

3. Propose a novel estimator for hypercontractivity coeff.

- based on equivalent definition of s(X;Y):

$$\begin{split} s(X;Y) = \sup_{r(x) \neq p(x)} \frac{D_{\mathrm{KL}}(r(y) \| p(y))}{D_{\mathrm{KL}}(r(x) \| p(x))} \\ \text{where} \ \ r(y) = \sum r(x) p(y|x) \end{split}$$

ioint optimization and actimati

EXPERIMENTS

(1) WHO dataset

(A) and (D): Scatter plot of correlation measures

(B): All correlations are small

(C): All correlations are large

(E) and (F): Only HC discovers potential correlations

(2) Genetic Pathway Recovery

Gene expression time series data for four genes

can we recover the sequential order of influence?

Hypercontractivity: robust measure strength of influence

EXPERIMENTS

(3) Power test

Binary hypothesis testing of potential correlation

Power: true positive rate for a fixed false positive rate

CONCLUSION

- We postulate a set of natural axioms that we expect a measure of potential correlation to satisfy
- We show that rate of information bottleneck, i.e., the hypercontractivity coefficient (HC), satisfies all the proposed axioms
- 3. We provide a novel estimator for $\ensuremath{\mathsf{HC}}$
- 4. Experimental results:
 WHO datasets, genetic pathway recovery, power tests

ACKNOWLEDGEMENTS

Hyeji Kim*, Weihao Gao*, Sreeram Kannan+, Sewoong Oh*, Pramod Viswanath*

University of Illinois at Urbana-Champaign*, University of Washington+

INTRODUCTION

Discovering associations in large datasets

Example: Data for 300 indicators for 200 countries

Which pairs of indicators are associated?

~ 900,000 pairs of indicators!

Associations are used to make policy decisions $% \left\{ \mathbf{n}_{1}^{2},\mathbf{n}_{2}^{2}\right\} =\mathbf{n}_{1}^{2}$

Important both in industry and scientific research

		?	~?	
	Population	Energy Use		CO ₂ Emissions
Afghanistan	26088	470		0.02
Albania	3172	761		0.98
Zambia	11696	620		0.21
Zimbabwe	13228	741		0.94

World Health Organization (WHO)

CORRELATION ANALYSIS

Correlation analysis to discover associations

Correlation coefficient: a measure to quantify association Estimate correlation coefficients for all pairs of indicators Pairs w. large corr coeff: candidates for strong association

Examples of strong (left) and week (right) associations from WHO dataset

POTENTIAL CORRELATION

Goal

Discover potential correlation from large datasets

Problem

Exist. correlation estimators discover average correlation Fail to discover *potential* correlation

Our Approach

1. Propose axioms for a measure of potential correlation

$$\begin{split} 0 &\leq \rho(X,Y) \leq 1 \\ \rho(X,Y) &= 0 \text{ iff } X \text{ and } Y \text{ are independent} \\ \rho(X,Y) &= 1 \text{ if } Y = f(X) \text{ for } (X,Y) \in \mathcal{X}_r \times \mathcal{Y} \text{ for some } \mathcal{X}_r \subseteq \mathcal{X} \end{split}$$

2. Show hypercontractivity coefficient satisfies all axioms

$$s(X;Y) \equiv \sup_{U-X-Y} \frac{I(U;Y)}{I(U;X)}$$

- 3. Propose a novel estimator for HC
 - based on equivalent definition of s(X;Y):

$$\begin{split} s(X;Y) = \sup_{r(x) \neq p(x)} \frac{D_{\mathrm{KL}}(r(y) || p(y))}{D_{\mathrm{KL}}(r(x) || p(x))} \\ \text{where } \ r(y) = \sum_{x} r(x) p(y|x) \end{split}$$

- joint optimization and estimation

EXPERIMENTS

(1) WHO dataset

- (A) and (D): Scatter plot of correlation measures
- (B): All correlations are small
- (C): All correlations are large
- (E) and (F): Only HC discovers potential correlations

(2) Genetic Pathway Recovery

Gene expression time series data for four genes

can we recover the sequential order of influence?

Hypercontractivity: robust measure strength of influence

EXPERIMENTS

(3) Power test

Binary hypothesis testing of potential correlation

Power: true positive rate for a fixed false positive rate

CONCLUSION

- We postulate a set of natural axioms that we expect a measure of potential correlation to satisfy
- We show that rate of information bottleneck, i.e., the hypercontractivity coefficient (HC), satisfies all the proposed axioms
- 3. We provide a novel estimator for HC
- 4. Experimental results:
 WHO datasets, genetic pathway recovery, power tests

ACKNOWLEDGEMENTS

Hyeji Kim*, Weihao Gao*, Sreeram Kannan+, Sewoong Oh*, Pramod Viswanath*

University of Illinois at Urbana-Champaign*, University of Washington+

INTRODUCTION

Discovering associations in large datasets

Example: Data for 300 indicators for 200 countries

Which pairs of indicators are associated?

~ 900,000 pairs of indicators!

Associations are used to make policy decisions

Important both in industry and scientific research

		?	~?	
	Population	Energy Use		CO ₂ Emissions
Afghanistan	26088	470		0.02
Albania	3172	761		0.98
Zambia	11696	620		0.21
Zimbabwe	13228	741		0.94

World Health Organization (WHO)

Correlation analysis to discover associations

Correlation coefficient: a measure to quantify association Estimate correlation coefficients for all pairs of indicators Pairs w. large corr coeff: candidates for strong association

Examples of strong (left) and week (right) associations from WHO dataset

POTENTIAL CORRELATION

Goal

Discover potential correlation from large datasets

Examples of potential correlations from WHO dataset

Problem

Exist. correlation estimators discover average correlation Fail to discover *potential* correlation

Our Approach

1. Propose axioms for a measure of potential correlation

$$\begin{split} 0 &\leq \rho(X,Y) \leq 1 \\ \rho(X,Y) &= 0 \text{ iff } X \text{ and } Y \text{ are independent} \\ \rho(X,Y) &= 1 \text{ if } Y = f(X) \text{ for } (X,Y) \in \mathcal{X}_r \times \mathcal{Y} \text{ for some } \mathcal{X}_r \subseteq \mathcal{X} \end{split}$$

2. Show hypercontractivity coefficient satisfies all axioms

$$s(X;Y) \equiv \sup_{U-X-Y} \frac{I(U;Y)}{I(U;X)}$$

- 3. Propose a novel estimator for HC
 - based on equivalent definition of s(X;Y):

$$\begin{split} s(X;Y) = \sup_{r(x) \neq p(x)} \frac{D_{\mathrm{KL}}(r(y) || p(y))}{D_{\mathrm{KL}}(r(x) || p(x))} \\ \text{where } \ r(y) = \sum_{x} r(x) p(y|x) \end{split}$$

- joint optimization and estimation

EXPERIMENTS

(1) WHO dataset

- (A) and (D): Scatter plot of correlation measures
- (B): All correlations are small
- (C): All correlations are large
- (E) and (F): Only HC discovers potential correlations

(2) Genetic Pathway Recovery

Gene expression time series data for four genes

If we only know

can we recover the sequential order of influence?

Hypercontractivity: robust measure strength of influence

EXPERIMENTS

(3) Power test

Binary hypothesis testing of potential correlation

Power: true positive rate for a fixed false positive rate

CONCLUSION

- We postulate a set of natural axioms that we expect a measure of potential correlation to satisfy
- We show that rate of information bottleneck, i.e., the hypercontractivity coefficient (HC), satisfies all the proposed axioms
- 3. We provide a novel estimator for HC
- 4. Experimental results: WHO datasets, genetic pathway recovery, power tests

ACKNOWLEDGEMENTS

