0.1 Charakteristische Funktionen

Nützlich beim Zentralen GWS.

Sei X Zufallsvariable ?? mit Dichtefunktion f_X fall(X stetig) oder Wkt.funktion p_j (falls X diskret).

Definition 0.1. Charakteristische Funktion von X

$$\phi_X(t) := \mathbf{E}e^{itX} = \begin{cases} \int_{-\infty}^{\infty} e^{itx} f_X(x) dx & ,falls \ X \ stetig \\ \sum_{j=1}^{\infty} e^{itx_j} p_j & ,falls \ X \ diskret. \end{cases}$$

Theorem 1. 1. $\phi_X(t)$ ist in $-\infty < t < \infty$ gleichmäßig stetig.

2. Die Zufallsvariable Y = aX + b hat die char. Funktion

$$\phi_Y(t) = \phi_X(at)e^{ibt}$$

3. $\phi_X(t)$ ist reelwertig \iff X bzgl. x=0 symmetrisch ist.

Theorem 2. Multiplikationssatz Seien die Zufallsvariablen X_1 und X_2 unabhängig mit den charakteristischen Funktionen ϕ_1 und ϕ_2 . Dann hat die Zufallsvariable $X_1 + X_2$ die charakteristische Funktion $\phi_1 \cdot \phi_2$.

Proof.

$$\phi_{X_1+X_2}(t) = \mathbf{E}e^{it(X_1+X_2)} = \mathbf{E}e^{itX_1} \cdot \mathbf{E}e^{itX_2}$$

Theorem 3. Eindeutigkeitssatz Die Beziehung $F_x \iff \phi_X$ ist eineindeutig. Für X stetig gilt:

$$f_X(x) = \frac{1}{2\pi} \inf_{-\infty}^{\infty} e^{-itx} \phi_X(t) dt$$

Für X diskret gilt:

$$p_j = \lim_{T \to \infty}$$

Die Funktion $\phi_X(t)$ ist die Fourier-Transformierte von f_X