Materials 8 - Interpreting "overshooting" in learning IRFs

Laura Gáti

November 7, 2019

Overview

1	Model summary with interest rate smoothing ρi_{t-1}	2
2	Compact notation - with lagged interest rate term in TR	3
3	Recap of timing	4
4	Current set of baseline parameters	5
5	Plots - what are expectations doing? ◀	6
6	GE effects of long-horizon expectations ◀	7

1 Model summary with interest rate smoothing ρi_{t-1}

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left((1 - \beta) x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n} \right)$$
 (1)

$$\pi_t = \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} \left(\kappa \alpha \beta x_{T+1} + (1-\alpha) \beta \pi_{T+1} + u_T \right)$$
 (2)

$$i_t = \psi_\pi \pi_t + \psi_x x_t + \rho i_{t-1} + \bar{i}_t \tag{3}$$

$$\hat{\mathbb{E}}_t z_{t+h} = \begin{bmatrix} \bar{\pi}_{t-1} \\ 0 \\ 0 \end{bmatrix} + bhx^{h-1} s_t \quad \forall h \ge 1 \qquad b = gx \ hx \qquad \text{PLM}$$
(4)

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t^{-1} \underbrace{\left(\pi_t - (\bar{\pi}_{t-1} + b_1 s_{t-1})\right)}_{\text{fcst error using (4)}} \qquad (b_1 \text{ is the first row of } b)$$
 (5)

$$k_t = \mathbb{I} \times (k_{t-1} + 1) + (1 - \mathbb{I}) \times \bar{g}^{-1}$$
 (6)

$$\mathbb{I} = \begin{cases}
1 & \text{if } \theta_t \le \bar{\theta} \\
0 & \text{otherwise.}
\end{cases}
\tag{7}$$

$$\theta_t = |\hat{\mathbb{E}}_{t-1}\pi_t - \mathbb{E}_{t-1}\pi_t|/\sigma_s$$
 CEMP criterion for the gain (8)

The alternative criterion for the choice of gain is a recursive variant of the CUSUM-test (Brown, Durbin, Evans 1975):

- 1. Let FE_t denote the short-run forecast error, and ω_t firms' estimate of the FE variance.
- 2. Let $\kappa \in (0,1)$ and $\tilde{\theta}$ be the new threshold value for the criterion.
- 3. Then for initial (ω_0, θ_0) , firms in every period estimate the criterion and the FEV as:

$$\omega_t = \omega_{t-1} + \kappa k_{t-1}^{-1} (F E_t^2 - \omega_{t-1})$$
(9)

$$\theta_t = \theta_{t-1} + \kappa k_{t-1}^{-1} (F E_t^2 / \omega_t - \theta_{t-1}) \tag{10}$$

$$k_t = \mathbb{I} \times (k_{t-1} + 1) + (1 - \mathbb{I}) \times \bar{g}^{-1}$$
 (11)

$$\mathbb{I} = 1 \quad \text{if} \quad \theta_t \le \tilde{\theta} \tag{12}$$

2 Compact notation - with lagged interest rate term in TR

$$z_t = A_p^{RE} \, \mathbb{E}_t \, z_{t+1} + A_s^{RE} s_t \tag{13}$$

$$z_t = A_a^{LH} f_a(t) + A_b^{LH} f_b(t) + A_s^{LH} s_t (14)$$

$$s_t = Ps_{t-1} + \epsilon_t \qquad \rightarrow \quad s'_t = hx \ s'_{t-1} + \epsilon'_t \tag{15}$$

where
$$s'_{t} \equiv \begin{pmatrix} r_{t}^{n} \\ \bar{i}_{t} \\ u_{t} \\ i_{t-1} \end{pmatrix}$$
 $hx \equiv \begin{pmatrix} \rho_{r} & 0 & 0 & 0 \\ 0 & \rho_{i} & 0 & 0 \\ 0 & 0 & \rho_{u} & 0 \\ gx_{3,1} & gx_{3,2} & gx_{3,3} & gx_{3,4} \end{pmatrix}$ $\epsilon'_{t} \equiv \begin{pmatrix} \varepsilon_{t}^{r} \\ \varepsilon_{t}^{i} \\ \varepsilon_{t}^{u} \\ 0 \end{pmatrix}$ and $\Sigma' = \begin{pmatrix} \sigma_{r} & 0 & 0 & 0 \\ 0 & \sigma_{i} & 0 & 0 \\ 0 & 0 & \sigma_{u} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ (16)

 i_{t-1} is an endogenous state and breaks the link that previously had P = hx; now this is no longer true. In particular, using Matlabby notation, P = hx(1:3,1:3).

And the A_s^{RE} and A_s^{LH} are given by:

$$A_s^{RE} = \begin{pmatrix} \frac{\kappa \sigma}{w} & -\frac{\kappa \sigma}{w} & 1 - \frac{\kappa \sigma \psi_{\pi}}{w} & 0\\ \frac{\sigma}{w} & -\frac{\sigma}{w} & -\frac{\sigma \psi_{\pi}}{w} & 0\\ \psi_x(\frac{\sigma}{w}) + \psi_{\pi}(\frac{\kappa \sigma}{w}) & \psi_x(-\frac{\sigma}{w}) + \psi_{\pi}(-\frac{\kappa \sigma}{w}) + 1 & \psi_x(-\frac{\sigma \psi_{\pi}}{w}) + \psi_{\pi}(1 - \frac{\kappa \sigma \psi_{\pi}}{w}) & \rho \end{pmatrix}$$
(17)

$$A_s^{LH} = \begin{pmatrix} g_{\pi s} & & & \\ g_{xs} & & & \\ \psi_{\pi} g_{\pi s} + \psi_x g_{xs} + \begin{bmatrix} 0 & 1 & 0 & \rho \end{bmatrix} \end{pmatrix}$$
 (18)

$$g_{\pi s} = (1 - \frac{\kappa \sigma \psi_{\pi}}{w}) \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} (I_4 - \alpha \beta hx)^{-1} - \frac{\kappa \sigma}{w} \begin{bmatrix} -1 & 1 & 0 & \rho \end{bmatrix} (I_4 - \beta hx)^{-1}$$
(19)

$$g_{xs} = \frac{-\sigma\psi_{\pi}}{w} \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} (I_4 - \alpha\beta hx)^{-1} - \frac{\sigma}{w} \begin{bmatrix} -1 & 1 & 0 & \rho \end{bmatrix} (I_4 - \beta hx)^{-1}$$
 (20)

3 Recap of timing

Define some objects: (I usually let t denote the time in which the variable is formed.)

$$f_t^j = \hat{\mathbb{E}}_t(z_{t+1})$$
 one-period-ahead forecast formed at time $t, j = m, e$ (morning or evening) (21)

$$FE_t = z_{t+1} - f_t$$
 one-period-ahead forecast error realized at time $t+1$ (22)

$$= ALM(t+1) - PLM(t) \tag{23}$$

$$\theta_t = \hat{\mathbb{E}}_{t-1}(z_t) - \mathbb{E}_{t-1}(z_t)$$
 CEMP's criterion (24)

$$= PLM(t-1) - \mathbb{E}_{t-1} ALM(t) \tag{25}$$

$$PLM(t): \hat{\mathbb{E}}_t z_{t+1} = \bar{z}_{t-1} + bs_t$$

Morning: morning of time t available: $\mathcal{I}_t^m = \{\bar{z}_{t-1}, s_t, k_{t-1}, FE_{t-2}\}$

- 1. Form all future expectations using PLM(t) (morning forecast) $\to z_t$ realized, $\to FE_{t-1}$ realized
- 2. Form $\theta_t \to k_t$ realized
- 3. **Evening**: Update $\bar{z}_t = \bar{z}_{t-1} + k_t^{-1}(FE_{t-1}^e)$

where $FE_{t-1}^e = z_t - f_{t-1}^e = z_t - (\bar{z}_{t-1} + bs_{t-1})$ is the most recent realized FE, so:

$$\bar{z}_t = \bar{z}_{t-1} + k_t^{-1}(z_t - (\bar{z}_{t-1} + bs_{t-1}))$$

 \rightarrow evening of time t available: $\mathcal{I}^e_t = \{\bar{z}_t, s_t, k_t, FE_{t-1}\}$

4 Current set of baseline parameters

β	0.99	stochastic discount factor	standard (Woodford 2003/2011)
σ	1	IES	consistent with long-run growth
α	0.5	Calvo probability of not adjusting	match 6-month duration of prices (can increase to 0.75)
ψ_{π}	1.5	coefficient of inflation in Taylor rule	Taylor
ψ_x	0	coefficient of output gap in Taylor rule	focus on π
\bar{g}	0.145	value of the constant gain	CEMP
$ar{ heta}$	1	threshold deviation between $\hat{\mathbb{E}}$ & \mathbb{E}	CEMP: 0.029
$ ho_r$	0	persistence of natural rate shock	n.a.
$ ho_i$	0.6	persistence of monetary policy shock	CEMP: 0.877 (can increase to 0.78 if $\alpha = 0.75$)
$\overline{ ho_u}$	0	persistence of cost-push shock	CEMP
σ_r	0.1	standard deviation of natural rate shock	n.a.
σ_i	0.359	standard deviation of mon. policy shock	CEMP
σ_u	0.277	standard deviation of cost-push shock	CEMP
θ	10	price elasticity of demand	Woodford 2003/2011, Chari, Kehoe & McGrattan 2000
ω	1.25	elasticity of marginal cost to output	Woodford 2003/2011, Chari, Kehoe & McGrattan 2000

5 Plots - what are expectations doing? ◀

Figure 1: A constant gain learning IRF for a monetary policy shock

Figure 2: IRFs of morning and evening one-period-ahead forecasts

Figure 3: Long-horizon expectations, mean IRF

6 GE effects of long-horizon expectations ◀

Plugging in the interest rate rule into the equations for the output gap and inflation, equations (1) and (2), and ignoring the exogenous states, I can write the system as a function of discounted sums of expectations (f_a, f_b) :

$$x_t = \frac{-\sigma\psi_{\pi}}{w} \begin{bmatrix} (1-\alpha)\beta & \kappa\alpha\beta & 0 \end{bmatrix} f_a + \frac{1}{w} \begin{bmatrix} \sigma(1-\beta\psi_{\pi}) & 1-\beta & 0 \end{bmatrix} f_b$$
 (26)

$$\pi_t = (1 - \frac{\kappa \sigma \psi_{\pi}}{w}) \left[(1 - \alpha)\beta \quad \kappa \alpha \beta \quad 0 \right] f_a + \frac{\kappa}{w} \left[\sigma (1 - \beta \psi_{\pi}) \quad 1 - \beta \quad 0 \right] f_b \tag{27}$$

Let's analyze the signs. Everything is positive, except for the red and blue stuff.

- f_a appears in the x_t -equation because we plugged in the Taylor-rule, and with it, π_t . So this is saying that x_t depends negatively on future expectations of itself and inflation because those lead to increased interest rates.
- $-\beta\psi_{\pi}$ comes from plugging in the nominal interest rate. Thus, again, x_t depends negatively on expected inflation through the anticipated interest rate response. This also introduces a negative dependence of π_t on own future values via the expected interest rate's effect on x_t .

Note: $1 - \beta \psi_{\pi} > 0$ if $\psi_{\pi} < 1/\beta$. For $\beta = 0.99 \rightarrow \psi_{\pi} < 1.0101$, or for $\beta = 0.98 \rightarrow \psi_{\pi} < 1.0204$. So monetary policy can only limit the "GE effect long-horizon expectations" by being more passive on inflation.

This explains the overshooting despite expectations moving in the right direction (down), and also why overshooting is more pronounced for the output gap.

The reason it's only happening for constant gain learning is because expectations are updated a lot more in that case.

So this is suggesting that monetary policy wants to be aggressive on inflation in order to keep expectations anchored, but once they are unanchored, then being aggressive on inflation induces a lot of volatility because oscillatory belief updating becomes very volatile, and this emphasizes the counterintuitive GE effects from expectations.