CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

Memory Organization

Lecture No.- 01

Recap of Previous Lecture

Topics to be Covered

Topic: Memory Hierarchy

Memory hierarchy used when discussing performance issues.

Goal of Memory Hierarchy:

- 1. To maximize the Access Speed
 - 2. To minimize the Per Bit Storage Cost

Topic: Memory Hierarchy

Topic: Memory Presentation

remony is represented by:-

= no. of cells × 1 cell capacity

= no. of memory location x bits per location

Topic: Memory Presentation

Topic: Memory Presentation

mem. capacity =>
$$2566B = 2^8.2^{30}$$
 bytes = $2^{38} \times 1B$
add. $5ize = \frac{38}{38}$ bits $add = \log_2 2^{38} = 38$

[MCQ]

#Q. Memory is represented as?

 $A \times B$ where A = No. of memory locations, B = No. of bits in each location

 $2^a \times B$ where a = No. of address bits, B = No. of bits in each location

 $B \times A$ where, B = No. of bits in each location, A = No. of memory locations

(A) & (B) both

mave.

#Q. A memory has 14-bits address bus. Then how many memory locations are there?

- A 16K
- **B** 16384
- C 214
- All

Memory cycletime: - (Mem. access time)

Time in which read or write operation is performed on one address of memory.

[MCQ]

#Q. The memory cycle time of a memory is 200nsec. The maximum rate with which the memory can be accessed?

Note: Consider memory as byte addressable.

- A 500 Bytes / Sec
- B 2000 Bytes / Sec
- 5 Mbytes / Sec
- 5 GBytes / Sec

$$\pm n \ 1 \ ns \ ---- = \frac{1B}{200 \ ns}$$

In
$$1 \, \text{sec}$$
, $-1/-- = \frac{1 \, \text{B}}{200 \, * 10^9 \, \text{sec}}$

ares) If mem. access time = 500 sec (mem. byte addressable)

access rate = 20 MBPSec

In sonsec, data accessed = 1B 1 sec, $-1/---==\frac{1B}{50 \times 10^{-9} \text{Sec}}$ = 20 MBPS

#Q. A processor can support a maximum memory of 4 GB, where the memory is word addressable (a word consists of two bytes). The size of the address bus of the processor is at least ____ bits?

bus of the processor is at least ___ bits?

$$2G \times 2by$$
 tes | no. of words (cells) = $\frac{2}{2B} = 2G$

Topic: Memory Address Decoder

ex:- 8×16 bits memory

mem:- 128×8 bits

add. size = 7 bits

mem. add. decoder = 7x128

mem: - 64M × 16 bits no. of cells = 2^{26} =) add. = 26 bits nem. add. decoder = 26×2^{26} mem. add. decoder = 26×2^{10} = $26 \times 64M$

#Q. Consider a memory of size 2K × 8-bits. What is the size of decoder needed to access the cells of the memory uniquely?

no. of cells =
$$2k = 2^{\parallel} \Rightarrow add$$
. Size = 11 bits

decoder = $11 \times 2^{\parallel}$ on $11 \times 2k$

#Q. If there are m input lines n output lines for a decoder that is used to uniquely address a byte addressable 1 KB RAM, then the minimum value of

$$\frac{1}{1} \times 13$$

$$\frac{1}$$

decoder
$$\frac{1}{2}$$
 $m = 10$ $m + n = 10 + 1024 = \frac{1034}{2}$ $m = 1024$ $m = 1024$

Topic: Main Memory

Used to store current running program (instructions) and their data.

```
Types:-

1. RAM (Random Access Memory) => Volatile

2. ROM (Read only memory) => Non-volatile
```


Topic: RAM

used to stone 05, nuser programs and other running programs & their data.

Topic: Types of RAM

	Static (S-RAM)	Dynamic (D-RAD)
	Made up of flip-flops	1. Made up of Capacitors
2.	No any recharge needed	2. Periodic recharge/refresh is needed.
	Faster read/write	3. slower read/write
	Costlier	4. Less costlier
5.	used for cache implementation	5. Used mainly for main memory chips
6	Less idle power consumption	More galle power consumption
7.	More operational power consumption	Less operational power consumption

[NAT]

- Consider 2 4-bits unsigned values (A) and (B). What will be the maximum size #Q. of result for:

 - 1. Addition of A and B \Rightarrow 5-bits (n+1) bits 2. Multiplication of A and B \Rightarrow 8-bits 2n bits

$$A$$
 B

max
 $(1111)_2$
 $(1111)_2$
 $Value$
 $= (15)_{10}$
 $(15)_2$

$$A+B \Rightarrow (30)_{10} \Rightarrow 5-bits needed$$

$$A*B \Rightarrow (225)_{10} \Rightarrow 8-bits needed$$

[MCQ]

#Q. The amount of ROM needed to store the table for multiplication of two 4-bit unsigned integer is?

store result of multiplicath of each possible value of each int.

- A 64 bits
- B 128 bits
- C 1K bits
- 2K bits

A B
4-bits 4-bits

n-bits

n-bits

Multiplication table size

28 × 8 bits

2n 2 × 2n bits Addition table size

28 x 5 bits

 $2^{2\eta} \times (n+1)$ bits

2 mins Summary

Topic

Memory Hierarchy

Topic

Memory Presentation

Topic

Memory Address Decoder

Topic

Main Memory

Happy Learning THANK - YOU