Algebraic Geometric Codes

Soham Chatterjee sohamc@cmi.ac.in BMC202175

Shree Ganesh S J shreeganesh@cmi.ac.in MCS202219

Contents

	Mathematics	2		
	.1 Divisors			
	.2 Reimann-Roch Spaces	2		
	.3 Differentials			
	.4 Reimann-Roch Theorem			
	.5 Index of speciality	3		
2	Codes from Algebraic Curves .1 Preliminaries	4		
	.2 Geometric Reed Solomon Codes			
3	Bibliography			

CHAPTER 1

Mathematics

1.1 Divisors

1.2 Reimann-Roch Spaces

Definition 1.2.1 (Reimann-Roch Spaces). For any divisor $\mathcal{D} \in \tilde{\mathfrak{D}}$

$$\mathcal{L}(\mathcal{D}) = \{ f \in \mathbb{F}(\mathcal{X})^* \mid (f) + \mathcal{D} \succcurlyeq 0 \} \cup \{ 0 \}$$

The dimension of $\mathcal{L}(\mathcal{D})$ over \mathbb{F} is denoted by $l(\mathcal{D})$

Theorem 1.2.1. (i) If $deg(\mathcal{D}) < 0$ then $l(\mathcal{D}) = 0$

(ii)
$$l(\mathcal{D}) \leq 1 + \deg(\mathcal{D})$$

Theorem 1.2.2. $\mathcal{L}(0) = \mathbb{F}$. Hence l(0) = 1

1.3 Differentials

1.4 Reimann-Roch Theorem

Theorem 1.4.1 (Reimann-Roch Theorem). \mathcal{D} is a divisor on a smooth projective curve with genus g. Then for any canonical divisor W

$$l(\mathcal{D}) - l(W - \mathcal{D}) = \deg(\mathcal{D}) - (g - 1)$$

Corollary 1.4.2. For any canonical divisor W, deg(W) = 2g - 2

Proof: Take $\mathcal{D} = W$. Then $l(W - \mathcal{D}) = l(0) = 1$ by Theorem 1.2.2. So we have

$$l(W) - 1 = \deg(W) - (g - 1)$$

. By definition l(W)=g. Hence we have $g-1=\deg(W)-(g-1)\iff \deg(W)=2g-2$.

With the help of this corollary we can finally focus on the divisors which we will actually use to define codes. The following corollary gives the dimension of the Reimann-Roch Spaces of divisors with degree more than 2g - 2.

Corollary 1.4.3. Let \mathcal{D} be a divisor on a smooth projective curve of genus g and let $deg(\mathcal{D}) > 2g - 2$. Then

$$l(\mathcal{D}) = \deg(D) - (g - 1)$$

Proof: We have $\deg(W - \mathcal{D}) = \deg(W) - \deg(\mathcal{D})$. Now by Corollary 1.4.2 $\deg(W - \mathcal{D}) < 0$. So0 $l(W - \mathcal{D}) = 0$ by Theorem 1.2.1 part (ii). So We have $l(D) = \deg(D) - (g - 1)$. ■

1.5 Index of speciality

Definition 1.5.1 (Index of speciality). Let \mathcal{D} be a divisor on a curve \mathcal{X} . We define

$$\Omega(\mathcal{D}) = \{ \omega \in \Omega(\mathcal{X}) \mid (w) - D \succcurlyeq 0 \}$$

and we denote the dimension of $\Omega(\mathcal{D})$ over \mathbb{F} by $\delta(\mathcal{D})$ called the index of speciality of \mathcal{D} .

Theorem 1.5.1. $\delta(\mathcal{D}) = l(W - \mathcal{D})$

Proof: If $W = (\omega)$. Define the linear map $\varphi : \mathcal{L}(W - \mathcal{D}) \to \Omega(\mathcal{D})$ by $\varphi(f) = f\omega$.

$$f \in \mathcal{L}(W - \mathcal{D}) \implies (f) + W - \mathcal{D} \succcurlyeq 0 \iff (f) + (\omega) - \mathcal{D} \succcurlyeq \iff (f\omega) - \mathcal{D} \succcurlyeq 0 \iff f \in \Omega(\mathcal{D})$$

Hence φ is an isomorphism. Therefore $\delta(\mathcal{D}) = l(W - \mathcal{D}) \blacksquare$

Codes from Algebraic Curves

We have now came to define the Algebraic Geometric Codes.

2.1 Preliminaries

First we will define the system where we will define the codes.

- Our alphabet will be \mathbb{F}_q
- We will consider the functions $f \in \mathbb{F}_q[X_1, \dots, X_n]$. Sometimes we will write \overline{X} to denote (X_1, \dots, X_n) . n depends on the context
- If the affine curve \mathcal{X} over \mathbb{F}_q is defined by a prime ideal I in $\mathbb{F}_q[\overline{X}]$ then its coordinate ring $\mathbb{F}_q[\mathcal{X}] = \mathbb{F}_q[\overline{X}]/I$ and its function field $\mathbb{F}_q(\mathcal{X})$ is the quotient field of $\mathbb{F}_q[\mathcal{X}]$.
- It is always assumed that the curve is *absolutely irreducible*, i.e. the defining ideal is also prime in $\mathbb{F}[X]$ where $\mathbb{F} := \overline{\mathbb{F}_q}$ i.e. \mathbb{F} is the algebraic closure of \mathbb{F}_q .

Similar adaptations are made for projective curves.

Observation. For any $F \in \mathbb{F}_q[\overline{X}]$, $F(x_1, \ldots, x_n)^q = F(x_1^q, \ldots, x_n^q)$. So if (x_1, \ldots, x_n) is a zero of F and F is defined over \mathbb{F}_q then (x_1^q, \ldots, x_n^q) is also a zero of F.

We can extend the *Frobenius Map*, $Fr: x \mapsto x^q$ coordinate-wise to points in affine and projective space by $Fr(x_1, \ldots, x_n) = (x_1^q, \ldots, x_n^q)$. If \mathcal{X} is a curve defined over \mathbb{F}_q and P is a point of \mathcal{X} , then Fr(P) is also a point of \mathcal{X} .

Definition 2.1.1 (Rational Divisor). A divisor \mathcal{D} on \mathcal{X} is called rational if the coefficients of P and Fr(P) is \mathcal{D} are the same for any point P of \mathcal{X} .

Remark: Now on the space $\mathcal{L}(\mathcal{D})$ will only be considered for rational divisors and as before but with the restriction of the rational functions to $\mathbb{F}_q(\mathcal{X})$

Let W be an absolutely irreducible nonsingular projective curve over \mathbb{F}_q . We will define two kinds of algebraic geometry codes from \mathcal{X} , Geometric Reed Solomon Codes and Geometric Goppa Codes. Let P_1, \ldots, P_n are rational

points on \mathcal{X} and \mathcal{D} be the divisor $\mathcal{D} = P_1 + \cdots + P_n$. Furthermore \mathcal{G} is some other divisor that has support disjoint from \mathcal{D} . **Remark:** We will make more restrictions on \mathcal{G} , $\deg(\mathcal{G}) > 2g - 2$

2.2 Geometric Reed Solomon Codes

With the setting as above we define

Definition 2.2.1 (Geometric Reed Solomon Codes). The linear code $C(\mathcal{D},\mathcal{G})$ of length n over \mathbb{F}_q is the image of the linear map $\alpha: \mathcal{L}(\mathcal{G}) \to \mathbb{F}_q^n$ defined by $\alpha(f) = (f(P_1), \ldots, f(P_n))$

Theorem 2.2.1. The code $C(\mathcal{D},\mathcal{G})$ has dimension $k = \deg(\mathcal{G}) - (g-1)$ and distance $d \ge n - \deg(\mathcal{G})$

Corollary 2.2.2. $k + d \ge n - (g - 1)$

Proof: $k + n \ge \deg(G) - (g - 1) + n - \deg(G) = n - (g - 1)$ ■

CHAPTER	3

Bibliography