

겁나는 쿼리 문제..

14427번

숏코딩

풀이 작성

풀이 요청

내 소스

강의▼

질문 검색

수열과 쿼리 15

시간 제한	메모리 제한	제출	정답	맞은 사람	정답 비율
2 초	512 MB	81	68	59	89.394%

문제

길이가 N인 수열 A₁, A₂, ..., A_N이 주어진다. 이때, 다음 쿼리를 수행하는 프로그램을 작성하시오.

- 1 i v : A_i를 v로 바꾼다.
- 2 : 수열에서 가장 크기가 작은 값의 인덱스를 출력한다. 크기가 작은 값이 여러개인 경우에는 인덱스가 작은 것을 출력한다.

수열의 인덱스는 1부터 시작한다.

쿼리 문제를 만나면 겁이 난다 8ㅅ8.. 하지만 Binary Indexed Tree & Segment Tree와 함께라면 기초적인 쿼리 문제는 더 이상 두려워하지 않아도 괜찮다!!

워밍업 (1/2)

구간 합 구하기 4 🐻 icpc.me/11659

	á		
≺	٩	,	
	^		

시간 제한	메모리 제한	제출	정답	맞은 사람	정답 비율
1 초	256 MB	5312	2862	2226	53.833%

문제

수 N개가 주어졌을 때, i번째 수부터 i번째 수까지 합을 구하는 프로그램을 작성하시오.

입력

첫째 줄에 수의 개수 N (1 ≤ N ≤ 100,000), 합을 구해야 하는 횟수 M (1 ≤ M ≤ 100,000)이 주어진다. 둘째 줄에는 N개의 수가 주어진다. 수는 1,000보다 작거나 같은 자연 수이다. 셋째 줄부터 M개의 줄에는 합을 구해야 하는 구간 i와 j가 주어진다.

출력

총 M개의 줄에 입력으로 주어진 i번째 수부터 i번째 수까지 합을 출력한다.

$$D[i] = \sum_{k=1}^{n} arr[i]$$
 으로 두면 각 쿼리를 $O(1)$ 로 해결 가능 (Prefix sum)

arr: 152410

$$D[0] = 0$$

$$D[1] = 1$$

$$D[2]=6$$

$$D[3] = 8$$

$$D[4]=12$$

$$D[5] = 22$$

워밍업 (2/2)

구간 합 구하기 🚜

☆	

시간 제한	메모리 제한	제출	정답	맞은 사람	정답 비율
2 초	256 MB	18316	6073	3105	29.529%

문제

어떤 N개의 수가 주어져 있다. 그런데 중간에 수의 변경이 빈번히 일어나고 그 중간에 어떤 부분의 합을 구하려 한다. 만약에 1,2,3,4,5 라는 수가 있고, 3번째 수를 6으로 바꾸고 2번째부터 5번째까지 합을 구하라고 한다면 17을 출력하면 되는 것이다. 그리고 그 상태에서 다섯 번째 수를 2로 바꾸고 3번째부터 5번째까지 합을 구하라고 한다면 12가 될 것이다.

입력

첫째 줄에 수의 개수 $N(1 \le N \le 1,000,000)$ 과 $M(1 \le M \le 10,000)$, $K(1 \le K \le 10,000)$ 가 주어진다. M은 수의 변경이 일어나는 회수이고, K는 구간의 합을 구하는 회수이다. 그리고 둘째 줄부터 N+1번째 줄까지 N+1번째 줄까지 N+1인 경우 N+1번째 수가 주어진다. 그리고 N+1번째 줄부터 N+1번째 줄까지 N+1인 경우에는 N+1번째 수가지의 합을 구하여 출력하면 된다.

a가 1인 경우 c는 long long 범위를 넘지 않는다.

출력

첫째 줄부터 K줄에 걸쳐 구한 구간의 합을 출력한다. 단, 정답은 long long 범위를 넘지 않는다.

arr: 152410

D[0]=0

D[1]=1

D[2]=6

D[3] = 8

D[4] = 12

D[5] = 22

으로 계산을 다 해두었는데 arr[i] = 3 으로 변경된다면, prefix sum을 최대 N개 바꾸므로 Update가 O(N) 이 걸린다.

원소가 바뀌고 나면 Prefix sum을 구한 것이 아무 의미 없어진다. 이 문제를 <mark>어썸</mark>하게 해결할 수 있는 Binary Indexed Tree를 이제 배워보자!

Binary Indexed Tree의 연산

Binary Indexed Tree에서 제공하는 연산

- ADD(x): arr[1]부터 arr[x]까지의 합을 반환, O(lgN)
- $\mathsf{UPDATE}(\mathsf{x},\mathsf{val})$: $\mathsf{arr}[\mathsf{x}]$ 의 값을 val 만큼 변경, O(lgN)

다시 앞의 문제를 생각해보면, 특정 위치의 수를 변경하는 것과 특정 구간의 합을 구하는 것을 모두 O(lgN) 에 수행할 수 있게 되어 시간 내에 풀이가 가능하다.

Binary Indexed Tree의 구현 (1/3)

위와 같이 BIT라는 배열을 만들어놓았다고 가정해보자.

- ADD(21): BIT[16] + BIT[20] + BIT[21]
- UPDATE(11, val): BIT[11], BIT[12], BIT[16] 변경

뭔가 시간복잡도가 많이 줄어들 느낌이다!!

Binary Indexed Tree의 구현 (2/3)

BIT[x]는 어디서부터 어디까지의 합을 가지고 있는걸까?

```
\begin{split} & \text{BIT}[20 = 10100_{(2)}] = \text{arr}[17] + \text{arr}[18] + \text{arr}[19] + \text{arr}[20] \\ & \text{BIT}[10 = 1010_{(2)}] = \text{arr}[9] + \text{arr}[10] \\ & \text{BIT}[8 = 1000_{(2)}] = \text{arr}[1] + \text{arr}[2] + \text{arr}[3] + \text{arr}[4] + \text{arr}[5] + \text{arr}[6] + \text{arr}[7] + \text{arr}[8] \end{split}
```

규칙이 보이나요?

Binary Indexed Tree의 구현 (3/3)

BIT[x]는 어디서부터 어디까지의 합을 가지고 있는걸까?

BIT[20 =
$$10100(2)$$
] = arr[17]+arr[18]+arr[19]+arr[20]
BIT[10 = $1010(2)$] = arr[9]+arr[10]
BIT[8 = $1000(2)$] = arr[1]+arr[2] +arr[3] +arr[4] +arr[5] +arr[6] +arr[7] +arr[8]

마지막 1이 나타내는 값만큼의 수의 합을 저장한다.

Binary Indexed Tree의 구현 - ADD (1/3)


```
BIT[21 = 10101_{(2)}] = BIT[21 = 10101_{(2)}] + BIT[20 = 10100_{(2)}] + BIT[16 = 10000_{(2)}]
BIT[15 = 1111_{(2)}] = BIT[15 = 1111_{(2)}] + BIT[14 = 1110_{(2)}] + BIT[12 = 1100_{(2)}] + BIT[8 = 1000_{(2)}]
```

뭔가 느낌이 오나요?

Binary Indexed Tree의 구현 - ADD (2/3)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
BIT[16]												T[16]									
BIT[8]																					
		Е	BIT[4]						BIT[12]							BIT[20]					
E	BIT[2]			E	BIT[6]			BI	T[10]			BIT[14]				BIT[18]					
1		3		5		7				11		13		15		17		19		21	

$$BIT[21 = 10101_{(2)}] = BIT[21 = 10101_{(2)}] + BIT[20 = 10100_{(2)}] + BIT[16 = 10000_{(2)}]$$

$$BIT[15 = 1111_{(2)}] = BIT[15 = 1111_{(2)}] + BIT[14 = 1110_{(2)}] + BIT[12 = 1100_{(2)}] + BIT[8 = 1000_{(2)}]$$

마지막 1을 계속 빼나가면서 더하면 된다!

Binary Indexed Tree의 구현 - ADD (3/3)

마지막 1을 계속 빼나가면서 더하면 된다!

```
int sum(int i) {
  int ret = 0;
  while(i){
    ret += BIT[i];
    i = (i \& -i);
  return ret;
```

-i가 ~i + 1이므로 i와 -i는 최초로 1이 등장하는 지점의 bit만 같게 된다.

```
i = 11011000
-i = 00101000
```

Binary Indexed Tree의 구현 - UPDATE (1/3)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
BIT[16]																				
BIT[8]																				
		Е	BIT[4]						BIT[12]							BIT[20]				
Е	BIT[2]			Е	BIT[6]			BI	T[10]			BI	T[14]			BI	T[18]			
1		3		5		7				11		13		15		17		19		21

```
arr[13=1101_{(2)}]을 변경 : BIT[13=1101_{(2)}], BIT[14=1110_{(2)}], BIT[16=10000_{(2)}]을 변경 arr[17=10001_{(2)}]을 변경 : BIT[17=10001_{(2)}], BIT[18=10010_{(2)}], BIT[20=10100_{(2)}]을 변경
```

뭔가 느낌이 오나요?

Binary Indexed Tree의 구현 - UPDATE (2/3)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
	BIT[16]												T[16]							
BIT[8]																				
BIT[4]								BIT[12]							BIT[20]					
Е	BIT[2]			Е	BIT[6]			BI	T[10]			ВІ	T[14]			ВІ	T[18]			
1		3		5		7				11		13		15		17		19		21

```
arr[13=1101 ②]을 변경: BIT[13=1101 ②], BIT[14=111<mark>0</mark>(2)], BIT[16=1<mark>0000</mark>(2)]을 변경
arr[17=10001 ②]을 변경: BIT[17=10001 ②], BIT[18=1001<mark>0</mark>②], BIT[20=101<mark>00</mark>②]을 변경
```

```
이전에 변경한 index에서 마지막 1을 더해주면 됩니다.
ex) 13+1 = 14, 14+2 = 16 // 17+1 = 18, 18+2 = 20
```

Binary Indexed Tree의 구현 - UPDATE (3/3)

마지막 1을 계속 더해나가면서 갱신해주면 된다!

```
void update(int i, int val){
    while(i <= n) {
        BIT[i] += val;
        i += (i & -i);
    }
}</pre>
```

Binary Indexed Tree의 구현 - INIT

맨 처음 배열의 원소를 입력받았을 때 BIT 배열을 채우는 방법

- Prefix Sum을 이용하면 O(N)
- Update 함수를 이용하면 O(NlgN)

Update를 사용하는 방식이 시간복잡도가 안 좋지만 PS에서는 O(N)이나 O(NlgN) 이나 도찐개찐이기 때문에 그냥 이미 만들어둔 Update함수를 가져다 써서 BIT 배열을 채우는 것을 추천한다.

Binary Indexed Tree의 응용과 한계

- Q. 1부터 x까지의 합이 아니라 a부터 b까지의 합을 구해야 하는 쿼리가 들어온다면?
- A. sum(b)-sum(a-1)
- Q. x번째 값을 val만큼 더하는 것이 아니라 x번째 값을 val로 변경하는 쿼리가 들어온다면?
- A. arr[x] 값을 따로 저장하고 있으면 됨
- Q. 1부터 x까지의 합이 아니라 1부터 x까지의 곱/GCD/최댓값/최솟값을 구해야 하는 쿼리가 들어온다면?
- A. sum, update 함수를 변경하면 됨
- Q. 1부터 x까지의 GCD/최댓값이 아니라 a부터 b까지의 GCD/최댓값을 구해야 하는 쿼리가 들어온다면?
- A. 불가능ㅠㅠ Segment Tree가 필요하다.

Segment Tree의 연산

Segment Tree에서 제공하는 연산

- ADD(a, b): arr[a]부터 arr[b]까지의 합을 반환, O(lgN)
- UPDATE(x, val): arr[x]의 값을 val만큼 변경, O(lgN)

BIT보다 더 좋아보인다!!

Segment Tree의 구현

Segment Tree의 구현 - ADD (1/9)

3부터 9의 합은 3,5,9번 노드의 합이다.

뭔가 구간을 적절하게 택하면 a부터 b까지의 합을 효율적으로 구할 수 있을 것 같은데 어떻게 구간을 택해야할까?

Segment Tree의 구현 - ADD (2/9)

3부터 9까지의 합을 구하고 싶은 상황, root에서부터 top-down 형식으로 순회를 해보자. 별은 탐색을 해야하나 아직 완료하지 않은 노드를 의미.

Segment Tree의 구현 - ADD (4/9)

Segment Tree의 구현 - ADD (5/9)

16

1~1

17

2~2

Segment Tree의 구현 - ADD (6/9)

Segment Tree의 구현 - ADD (7/9)

Segment Tree의 구현 - ADD (8/9)

Segment Tree의 구현 - ADD (9/9)

```
// idx번째 node가 나타내는 구간이 st에서 en이고 1부터 r까지의 합을 구하고 싶다.
int sum(int idx, int st, int en, int l, int r) {
   if(l > en or r < st) return 0;
   if(l <= st and en <= r) return seg[idx];
   return sum(2*idx, st, (st+en)/2, l, r) + sum(2*idx+1, (st+en)/2+1, en, l, r);
}
```

처음 보면 헷갈리는게 당연하다. 직접 Tree를 그려보거나 sum 함수가 어떻게 출력되는지를 보면서 이해해보자.

Segment Tree의 구현 - UPDATE (1/6)

4번째 원소를 update한다면 해당 원소가 들어있는 모든 노드의 값을 변경해줘야 한다. 마찬가지로 root에서 재귀적으로 순회를 돌면서 처리한다.

Segment Tree의 구현 - UPDATE (2/6)

Segment Tree의 구현 - UPDATE (3/6)

Segment Tree의 구현 - UPDATE (4/6)

Segment Tree의 구현 - UPDATE (5/6)

Segment Tree의 구현 - UPDATE (6/6)

```
// idx번째 node가 나타내는 구간이 st에서 en이고 i번쨰 원소를 diff만큼 변화시키고 싶다.

void update(int idx, int st, int en, int i, int diff) {
   if(st==en) {
      seg[idx] += diff;
      return;
   }
   if(i <= (st+en)/2) update(2*idx,st,(st+en)/2,i,diff);
   else update(2*idx+1,(st+en)/2+1,en,i,diff);
}
```

Segment Tree의 구현 - INIT

맨 처음 배열의 원소를 입력받았을 때 seg 배열을 채우는 방법

- Prefix Sum을 이용하면 *O(N)*
- Update 함수를 이용하면 O(NlgN)

BIT와 마찬가지로 Update를 사용하는 방식이 시간복잡도가 안 좋지만 PS에서는 O(N)이나 O(NlgN) 이나 도찐개찐이기 때문에 그냥 이미 만들어둔 Update함수를 가져다 써서 seg 배열을 채우는 것을 추천한다.

Segment Tree의 응용과 한계

- Q. BIT에서 할 수 있는 모든걸 Segment Tree에서 할 수 있는 것 아닌가요?
- A. ㅇㅇ. 그러나 BIT는 메모리/수행시간이 더 우수하다는 장점이 있음.(그러나 나는 Segment Tree만 씀)
- Q. x번째 값을 val만큼 더하는 것이 아니라 x번째 값을 val로 변경하는 쿼리가 들어온다면?
- A. arr[x] 값을 따로 저장하고 있으면 됨.
- Q. x번째 값을 val만큼 더하는 것이 아니라 a부터 b번째 까지를 val만큼 더하는 쿼리가 들어온다면?
- A. Lazy Propagation이라는 테크닉을 알아야 한다. 이건 다음 기회에!