1) Naïve Bayes

- a. It is not likely to be true because they are most likely related in spam emails. If "viagra" is in the email, then the probability of "free" being in it increases; vice versa too. Mathematically, $P(A \cap B) = P(A|B)P(B)$ (whether A and B are independent or dependent), and P(A|B) > P(A) because of what we said, so $P(A \cap B) > P(A)P(B)$, where A and B are the existence of these two words.
- b. 2n + 1. For every word j of the n words, we need to calculate two things $P(\vec{x}_{test,j} = 1 | spam)$ and $P(\vec{x}_{test,j} = 1 | not spam)$, thus the 2n. We also need to calculate P(spam), thus the +1.
- c. $2^{n+1}-1$. Not assuming independence requires us to keep track of both cases of $\vec{x}_{test,j}$ for each of the n words. $P(x_{test,1},...,x_{test,n}|c)$ thus has 2^n possibilities for each c. However, the sum of all these 2^n possibilities for each c is 1, so we can just do 1 minus the sum of the previous 2^{n-1} P's to get the last P. That makes 2^n-1 calculations for each c. We need to do this for both spam and not spam. That's $(2^n-1)*2=2^{n+1}-2$. We still need to compute P(spam) once. $2^{n+1}-2+1=2^{n+1}-1$.
- d. Naïve Bayes has a much smaller runtime and is often good enough.
- e. $P(spam|"probability" = 1, "free" = 1, "viagra" = 1) = P(spam) \times P("probability"=1|spam) \times P("free"=1|spam) \times P("viagra"=1|spam) \times P("hello" = 0|spam) = 0$ because P("probability"|spam) = 0.

 $P(not spam|"probability" = 1, "free" = 1, "viagra" = 1) = P(not spam) \times P("probability"=1|not spam) \times P("free"=1|not spam) \times P("viagra"=1|not spam) \ge 0.$

Non-spam

f. $P(spam|"probability" = 1, "free" = 1, "viagra" = 1) = P(spam) \times P("probability"=1|spam) \times P("free"=1|spam) \times P("viagra"=1|spam) \times P("hello" = 0|spam) = 2.7 \times 10^{-5}$

$$P(spam) = \frac{1}{2}$$

$$P("probability"=1|spam) = \frac{0+1}{1000+2} = \frac{1}{1002}$$

$$P("free"=1|spam) = \frac{400+1}{1000+2} = \frac{401}{1002}$$

$$P("viagra"=1|spam) = \frac{300+1}{1000+2} = \frac{301}{1002}$$

$$P("hello" = 0|spam) = \frac{450+1}{1000+2} = \frac{451}{1002}$$

 $P(not \, spam | \text{"probability"} = 0, \text{"free"} = 0, \text{"viagra"} = 0) = P(not \, spam) \times P(\text{"probability"} = 1 | not \, spam) \times P(\text{"free"} = 1 | not \, spam) \times P(\text{"viagra"} = 1 | not \, spam) = 2.33 \times 10^{-6}$

$$P(not spam) = \frac{1}{2}$$

 $P("probability"=1|not spam) = \frac{20+1}{1000+2} = \frac{21}{1002}$

$$P("free"=1|not spam) = \frac{200+1}{1000+2} = \frac{201}{1002}$$

$$P("viagra"=1|not spam) = \frac{10+1}{1000+2} = \frac{11}{1002}$$

$$P("hello"=0|not spam) = \frac{100+1}{1000+2} = \frac{101}{1002}$$

 $2.33 \times 10^{-6} < 2.7 \times 10^{-5}$. Spam.

g. The intuition behind the +2 in the denominator is that we start out as if all classes are equally likely $(\frac{1}{|V_i|})$, and there are 2 such classes, spam and not spam.

2) Logic

Predicate	True or False?
Overlap(Open Sky, MidCo)	F
Overlap(SpecCom, FiveCo)	Т
Overlap(EastCom, MidCo)	Т
Overlap(MidCo, MidCo)	F
Overlap(Central, MidCo)	Т

- a. ^
- b. If two networks overlap, then they cannot use the same channel.
- c. $\neg Overlap(x, y) \lor (\neg HasChannel(x, c) \lor \neg HasChannel(y, c))$ = $\neg Overlap(x, y) \lor \neg HasChannel(x, c) \lor \neg HasChannel(y, c)$
- d. $\forall_x \ IsNetwork(x) \ \Big(\exists_c \ IsChannel(c) \ \Big(HasChannel(x,c) \land \\ (\forall_{d\neq c} \ IsChannel(d) \ \Big(\neg HasChannel(x,d)\Big)\Big)\Big)$
- e. Yes, it's satisfiable:

Open Sky: 1 SpecCom: 1 Central: 3 FiveCo: 2 MidCo: 1 EastCom: 2

- f. No, it's not satisfiable. If Open Sky, SpecCom, and EastCom all take channel 1, then that leaves all three of FiveCo, MidCo, and Central to choose between channels 2 and 3, but that's only two channels for three overlapping networks.
- 3) CNF and Resolution
 - a. $(a \land b) \lor (c \land d)$ converted to CNF is $(a \lor c) \land (a \lor d) \land (b \lor c) \land (b \lor d)$

Statement	Value
HasChannel(Open Sky, C_1)	T
HasChannel(Open Sky, C_2)	F
HasChannel(Open Sky, C_3)	F
Overlap(Open Sky, Central)	Т

b. ^

```
c. (\neg O(Open\ Sky, Central) \lor \neg HC(Open\ Sky, C_1) \lor \neg HC(Central, C_1)) \land (O(Open\ Sky, Central)) \land (HC(Open\ Sky, C_1)) \vDash \neg HC(Central, C_1)??
(\neg O(Open\ Sky, Central) \lor \neg HC(Open\ Sky, C_1) \lor \neg HC(Central, C_1)) \land (O(Open\ Sky, Central)) \land (HC(Open\ Sky, C_1)) \land HC(Central, C_1)
(\neg HC(Open\ Sky, C_1) \lor \neg HC(Central, C_1)) \land (HC(Open\ Sky, C_1)) \land HC(Central, C_1)
(\neg HC(Open\ Sky, C_1)) \land (HC(Open\ Sky, C_1))
```

d. Conversion to CNF

Open Sky cannot both overlap with Central and not overlap with Central. Central cannot both have channel 1 and not have channel 1.

Open Sky cannot both have channel 1 and not have channel 1.