数值计算方法

非线性方程的数值解法

张晓平

2019年11月4日

武汉大学数学与统计学院

Table of contents

- 1. 二分法
- 2. 不动点迭代法
- 3. 牛顿迭代法
- 4. 弦截法

求代数方程

$$x^4 - 10x^3 + 35x^2 - 50x + 24 = 0$$

及超越方程

$$e^{-x} - \sin\left(\frac{n\pi}{2}\right) = 0$$

的解。

求代数方程

$$x^4 - 10x^3 + 35x^2 - 50x + 24 = 0$$

及超越方程

$$e^{-x} - \sin\left(\frac{n\pi}{2}\right) = 0$$

的解。

定理

高于 4 次的代数方程无精确的求根公式。

用数值方法求方程的根,必须知道方程的根所在的区间。

定义:隔根区间

对方程 f(x) = 0,若在区间 [a, b] 内有且只有一个根,则称 [a, b] 为它的一个隔根区间。

二分法的基本思想

通过计算隔根区间的中点,逐步将隔根区间缩小,从而可得方程的近似根数列 $\{x_n\}$ 。

二分法的基本思想

通过计算隔根区间的中点,逐步将隔根区间缩小,从而可得方程的近似根数列 $\{x_n\}$ 。

设 f(x) = 0 的隔根区间是 [a,b], 且 f(a) < 0, f(b) > 0.

(1) 计算 $f(\frac{a_0+b_0}{2})$:

- $f(\frac{a_0+b_0}{2}) = 0 \implies x^* = \frac{a_0+b_0}{2}$ 就是f(x) = 0的根
- $f(\frac{a_0+b_0}{2}) > 0 \implies$ 隔根区间为 $[a_0, \frac{a_0+b_0}{2}]$
- $f(\frac{a_0+b_0}{2}) < 0 \implies$ 隔根区间为 $[\frac{a_0+b_0}{2},b_0]$

(1) 计算 $f(\frac{a_0+b_0}{2})$:

- $f(\frac{a_0+b_0}{2}) = 0 \implies x^* = \frac{a_0+b_0}{2}$ 就是f(x) = 0的根
- $f(\frac{a_0+b_0}{2}) > 0 \implies$ 隔根区间为 $[a_0, \frac{a_0+b_0}{2}]$
- $f(\frac{a_0+b_0}{2}) < 0 \implies$ 隔根区间为 $[\frac{a_0+b_0}{2},b_0]$

(1) 计算 $f(\frac{a_0+b_0}{2})$:

- $f(\frac{a_0+b_0}{2}) = 0 \implies x^* = \frac{a_0+b_0}{2}$ 就是f(x) = 0的根
- $f(\frac{a_0+b_0}{2}) > 0 \implies$ 隔根区间为 $[a_0, \frac{a_0+b_0}{2}]$
- $f(\frac{a_0+b_0}{2}) < 0 \implies$ 隔根区间为 $[\frac{a_0+b_0}{2},b_0]$

(1) 计算 $f(\frac{a_0+b_0}{2})$:

- $f(\frac{a_0+b_0}{2}) = 0 \implies x^* = \frac{a_0+b_0}{2}$ 就是f(x) = 0的根
- $f(\frac{a_0+b_0}{2}) > 0 \implies$ 隔根区间为 $[a_0, \frac{a_0+b_0}{2}]$
- $f(\frac{a_0+b_0}{2}) < 0 \implies$ 隔根区间为 $[\frac{a_0+b_0}{2},b_0]$

5

- (2) 将新的隔根区间记为 $[a_1,b_1]$, 计算 $f(\frac{a_1+b_1}{2})$:
 - $f(\frac{a_1+b_1}{2}) = 0 \implies x^* = \frac{a_1+b_1}{2}$ 就是f(x) = 0的根
 - $f(\frac{a_1+b_1}{2}) > 0$ \Longrightarrow 隔根区间为 $[a_1, \frac{a_1+b_1}{2}]$
 - $f(\frac{a_1+b_1}{2}) < 0 \implies$ 隔根区间为 $[\frac{a_1+b_1}{2}, b_1]$

- (2) 将新的隔根区间记为 $[a_1,b_1]$, 计算 $f(\frac{a_1+b_1}{2})$:
 - $f(\frac{a_1+b_1}{2}) = 0 \implies x^* = \frac{a_1+b_1}{2}$ 就是f(x) = 0的根
 - $f(\frac{a_1+b_1}{2}) > 0$ \Longrightarrow 隔根区间为 $[a_1, \frac{a_1+b_1}{2}]$
 - $f(\frac{a_1+b_1}{2}) < 0 \implies$ 隔根区间为 $[\frac{a_1+b_1}{2},b_1]$

- (2) 将新的隔根区间记为 $[a_1,b_1]$, 计算 $f(\frac{a_1+b_1}{2})$:
 - $f(\frac{a_1+b_1}{2})=0 \implies x^* = \frac{a_1+b_1}{2}$ 就是f(x)=0的根
 - $f(\frac{a_1+b_1}{2}) > 0$ \Longrightarrow 隔根区间为 $[a_1, \frac{a_1+b_1}{2}]$
 - $f(\frac{a_1+b_1}{2}) < 0 \implies$ 隔根区间为 $[\frac{a_1+b_1}{2},b_1]$

- (2) 将新的隔根区间记为 $[a_1,b_1]$, 计算 $f(\frac{a_1+b_1}{2})$:
 - $f(\frac{a_1+b_1}{2}) = 0 \implies x^* = \frac{a_1+b_1}{2}$ 就是f(x) = 0的根
 - $f(\frac{a_1+b_1}{2}) > 0$ \Longrightarrow 隔根区间为 $[a_1, \frac{a_1+b_1}{2}]$
 - $f(\frac{a_1+b_1}{2}) < 0$ \Longrightarrow 隔根区间为 $[\frac{a_1+b_1}{2},b_1]$

- (2) 将新的隔根区间记为 $[a_1,b_1]$, 计算 $f(\frac{a_1+b_1}{2})$:
 - $f(\frac{a_1+b_1}{2}) = 0 \implies x^* = \frac{a_1+b_1}{2}$ 就是f(x) = 0的根
 - $f(\frac{a_1+b_1}{2}) > 0$ \Longrightarrow 隔根区间为 $[a_1, \frac{a_1+b_1}{2}]$
 - $f(\frac{a_1+b_1}{2}) < 0 \implies$ 隔根区间为 $[\frac{a_1+b_1}{2},b_1]$

6

- (2) 将新的隔根区间记为 $[a_1,b_1]$, 计算 $f(\frac{a_1+b_1}{2})$:
 - $f(\frac{a_1+b_1}{2}) = 0 \implies x^* = \frac{a_1+b_1}{2}$ 就是f(x) = 0的根
 - $f(\frac{a_1+b_1}{2}) > 0$ \Longrightarrow 隔根区间为 $[a_1, \frac{a_1+b_1}{2}]$
 - $f(\frac{a_1+b_1}{2}) < 0$ \Longrightarrow 隔根区间为 $[\frac{a_1+b_1}{2},b_1]$

6

- (3) 将新的隔根区间记为 $[a_2,b_2]$, 计算 $f(\frac{a_2+b_2}{2})$:
 - 1 $f(\frac{a_2+b_2}{2}) = 0$ \implies $x^* = \frac{a_2+b_2}{2}$ 就是f(x) = 0的根
 - $2 f(\frac{a_2+b_2}{2}) < 0 \implies$ 隔根区间为 $[\frac{a_2+b_2}{2},b_2]$
 - 3 $f(\frac{a_2+b_2}{2}) > 0$ \Longrightarrow 隔根区间为 $[a_2, \frac{a_2+b_2}{2}]$

- (3) 将新的隔根区间记为 $[a_2,b_2]$, 计算 $f(\frac{a_2+b_2}{2})$:
 - 1 $f(\frac{a_2+b_2}{2}) = 0$ \implies $x^* = \frac{a_2+b_2}{2}$ 就是f(x) = 0的根
 - $2 f(\frac{a_2+b_2}{2}) < 0 \implies$ 隔根区间为 $[\frac{a_2+b_2}{2},b_2]$
 - 3 $f(\frac{a_2+b_2}{2}) > 0$ \Longrightarrow 隔根区间为 $[a_2, \frac{a_2+b_2}{2}]$

- (3) 将新的隔根区间记为 $[a_2,b_2]$, 计算 $f(\frac{a_2+b_2}{2})$:
 - 1 $f(\frac{a_2+b_2}{2}) = 0$ \implies $x^* = \frac{a_2+b_2}{2}$ 就是f(x) = 0的根
 - $2 f(\frac{a_2+b_2}{2}) < 0 \implies$ 隔根区间为 $[\frac{a_2+b_2}{2},b_2]$
 - 3 $f(\frac{a_2+b_2}{2}) > 0$ \Longrightarrow 隔根区间为 $[a_2, \frac{a_2+b_2}{2}]$

7

- (3) 将新的隔根区间记为 $[a_2,b_2]$, 计算 $f(\frac{a_2+b_2}{2})$:
 - 1 $f(\frac{a_2+b_2}{2}) = 0$ \implies $x^* = \frac{a_2+b_2}{2}$ 就是f(x) = 0的根
 - $2 f(\frac{a_2+b_2}{2}) < 0 \implies$ 隔根区间为 $[\frac{a_2+b_2}{2},b_2]$
 - 3 $f(\frac{a_2+b_2}{2}) > 0$ \Longrightarrow 隔根区间为 $[a_2, \frac{a_2+b_2}{2}]$

- (3) 将新的隔根区间记为 $[a_2,b_2]$, 计算 $f(\frac{a_2+b_2}{2})$:
 - 1 $f(\frac{a_2+b_2}{2}) = 0$ \implies $x^* = \frac{a_2+b_2}{2}$ 就是f(x) = 0的根
 - $2 f(\frac{a_2+b_2}{2}) < 0 \implies$ 隔根区间为 $[\frac{a_2+b_2}{2},b_2]$
 - 3 $f(\frac{a_2+b_2}{2}) > 0$ \Longrightarrow 隔根区间为 $[a_2, \frac{a_2+b_2}{2}]$

- (3) 将新的隔根区间记为 $[a_2,b_2]$, 计算 $f(\frac{a_2+b_2}{2})$:
 - 1 $f(\frac{a_2+b_2}{2}) = 0$ \implies $x^* = \frac{a_2+b_2}{2}$ 就是f(x) = 0的根
 - $2 f(\frac{a_2+b_2}{2}) < 0 \implies$ 隔根区间为 $[\frac{a_2+b_2}{2},b_2]$

重复上述过程, 可得到一系列的隔根区间

$$[a_0,b_0]\supset [a_1,b_1]\supset \cdots\supset [a_2,b_2]\supset \cdots$$

并有 $f(a_k) \cdot f(b_k) < 0$, $x^* \in (a_k, b_k)$, 且后一区间的长度都是前一区间长度的一半, 即

$$b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \dots = \frac{b_0 - a_0}{2^k} = \frac{b - a}{2^k}$$

重复上述过程, 可得到一系列的隔根区间

$$[a_0,b_0]\supset [a_1,b_1]\supset \cdots\supset [a_2,b_2]\supset \cdots$$

并有 $f(a_k) \cdot f(b_k) < 0$, $x^* \in (a_k, b_k)$, 且后一区间的长度都是前一区间长度的一半, 即

$$b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \dots = \frac{b_0 - a_0}{2^k} = \frac{b - a}{2^k} \to 0, \quad k \to \infty.$$

重复上述过程,可得到一系列的隔根区间

$$[a_0,b_0]\supset [a_1,b_1]\supset \cdots\supset [a_2,b_2]\supset \cdots$$

并有 $f(a_k) \cdot f(b_k) < 0$, $x^* \in (a_k, b_k)$, 且后一区间的长度都是前一区间长度的一半, 即

$$b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \dots = \frac{b_0 - a_0}{2^k} = \frac{b - a}{2^k} \to 0, \quad k \to \infty.$$

即这些区间最终收缩于一点 x^* , 显然 x^* 就是方程 f(x) = 0 的根。

实际计算时,只要二分的次数 n 足够大,就可取最后区间的中点 $x_k = \frac{a_k + b_k}{2}$ 作为方程 f(x) = 0 的近似值,即

$$x^* \approx \frac{a_k + b_k}{2}.$$

实际计算时,只要二分的次数 n 足够大,就可取最后区间的中点 $x_k = \frac{a_k + b_k}{2}$ 作为方程 f(x) = 0 的近似值,即

$$x^* \approx \frac{a_k + b_k}{2}.$$

此时所产生的误差为

$$|x_k - x^*| \le \frac{b_k - a_k}{2} = \frac{b - a}{2^{k+1}}.$$

实际计算时,只要二分的次数 n 足够大,就可取最后区间的中点 $x_k = \frac{a_k + b_k}{2}$ 作为方程 f(x) = 0 的近似值,即

$$x^* \approx \frac{a_k + b_k}{2}.$$

此时所产生的误差为

$$|x_k - x^*| \le \frac{b_k - a_k}{2} = \frac{b - a}{2^{k+1}}.$$

若事先给定的精度要求为 ϵ ,则只需

$$|x_k - x^*| \le \frac{b - a}{2^{k+1}} < \epsilon$$

便可停止计算。

用二分法求方程 $x^3 + 4x^2 - 10 = 0$ 在 [1,2] 内的根的近似解,要求 绝对误差不超过 $\frac{1}{2} \times 10^{-2}$

用二分法求方程 $x^3 + 4x^2 - 10 = 0$ 在 [1,2] 内的根的近似解,要求绝对误差不超过 $\frac{1}{2} \times 10^{-2}$

解

在[1,2]上,

$$f'(x) = 3x^2 + 4x > 0,$$

故 f(x) 在 [1,2] 上严格单调增加,且 f(1) < 0, f(2) > 0,所以方程 在 [1,2] 内有惟一实根。

用二分法求方程 $x^3+4x^2-10=0$ 在 [1,2] 内的根的近似解,要求绝对误差不超过 $\frac{1}{2}\times 10^{-2}$

解

在[1,2]上,

$$f'(x) = 3x^2 + 4x > 0,$$

故 f(x) 在 [1,2] 上严格单调增加,且 f(1) < 0,f(2) > 0,所以方程在 [1,2] 内有惟一实根。令 $\frac{b-a}{2k+1} \le \frac{1}{2} \times 10^{-2}$,则得

$$k+1 \ge \frac{\ln 200}{\ln 2},$$

所以至少对分7次。

表 1: 计算结果

k	x_k	f(xk) 符号	隔根区间
1	$x_1 = 1.5$	+	[1, 1.5]
2	$x_2 = 1.25$	_	[1.25, 1.5]
3	$x_3 = 1.375$	+	[1.25, 1.375]
4	$x_4 = 1.3125$	_	[1.3125, 1.375]
5	$x_5 = 1.34375$	_	[1.34375, 1.375]
6	$x_6 = 1.359375$	_	[1.359375, 1.375]
7	$x_7 = 1.3671875$	+	[1.359375, 1.3671875]

计算步骤

- (1) 准备
 - 输入 a, b, ϵ , 计算 f(a)
- (2) 循环

计算
$$x = \frac{a+b}{2}$$

若 $f(a) \cdot f(x) < 0$, 则 $x \rightarrow b$; 否则 $x \rightarrow a$

(3) 控制

若 $|b-a| < \epsilon$,则终止循环,x 即为所求的根;否则转(2)继续循环;

优点

- 运算简单,方法可靠,易于在计算机上实现
- 对函数 f(x) 的要求不高,只要求 y=f(x) 在区间 [a,b] 连续

二分法

优点

- 运算简单,方法可靠,易于在计算机上实现
- 对函数 f(x) 的要求不高,只要求 y=f(x) 在区间 [a,b] 连续

缺点

- 不能用于求复根及偶数重根
- 收敛速度较慢(因为每步误差是以 1/2 因子下降)

二分法

优点

- 运算简单,方法可靠,易于在计算机上实现
- 对函数 f(x) 的要求不高,只要求 y=f(x) 在区间 [a,b] 连续

缺点

- 不能用于求复根及偶数重根
- 收敛速度较慢 (因为每步误差是以 1/2 因子下降)

用途

常用该方法为其他求根方法提供较好的初始值,再用其他的求根方法精确化。

给定方程

$$f(x) = 0, \qquad (1)$$

其中 f(x) 在有根区间 [a,b] 上连续,并设 x_0 是方程的一个近似根。

给定方程

$$f(x) = 0, \tag{1}$$

其中 f(x) 在有根区间 [a,b] 上连续,并设 x_0 是方程的一个近似根。

将(1)改写成等价形式

$$x = \varphi(x). \tag{2}$$

给定方程

$$f(x) = 0, \qquad (1)$$

其中 f(x) 在有根区间 [a,b] 上连续,并设 x_0 是方程的一个近似根。

将(1)改写成等价形式

$$x = \varphi(x). \tag{2}$$

为了求得(1)的根,可由(2)构造迭代序列

$$\begin{array}{rcl}
x_1 & = & \varphi(x_0), \\
x_2 & = & \varphi(x_1), \\
\vdots & & \vdots \\
x_{k+1} & = & \varphi(x_k), \\
\vdots & & \vdots
\end{array}$$

给定方程

$$f(x) = 0, \qquad (1)$$

其中 f(x) 在有根区间 [a,b] 上连续,并设 x_0 是方程的一个近似根。

将(1)改写成等价形式

$$x = \varphi(x). \tag{2}$$

为了求得(1)的根,可由(2)构造迭代序列

$$x_1 = \varphi(x_0),$$

$$x_2 = \varphi(x_1),$$

$$\vdots$$

$$x_{k+1} = \varphi(x_k),$$

$$\vdots$$

该方法成为迭代法, $\varphi(x)$ 称为迭代函数。

若由迭代法产生的序列 $\{x_k\}$ 的极限存在,即

$$\lim_{k\to\infty}x_k=x^\star,$$

则称迭代法收敛,否则称迭代法发散。

图 1: 几何解释 (1): $0 < \varphi'(x^*) < 1$

图 1: 几何解释 (1): $0 < \varphi'(x^*) < 1$

图 1: 几何解释 (1): $0 < \varphi'(x^*) < 1$

图 1: 几何解释 (1): $0 < \varphi'(x^*) < 1$

图 1: 几何解释 (1): $0 < \varphi'(x^*) < 1$

图 1: 几何解释 (1): $0 < \varphi'(x^*) < 1$

图 1: 几何解释 (1): $0 < \varphi'(x^*) < 1$

图 1: 几何解释 (1): $0 < \varphi'(x^*) < 1$

图 2: 几何解释 (2): $-1 < \varphi'(x^*) < 0$

图 2: 几何解释 (2): $-1 < \varphi'(x^*) < 0$

图 2: 几何解释 (2): $-1 < \varphi'(x^*) < 0$

图 2: 几何解释 (2): $-1 < \varphi'(x^*) < 0$

图 2: 几何解释 (2): $-1 < \varphi'(x^*) < 0$

图 2: 几何解释 (2): $-1 < \varphi'(x^*) < 0$

图 2: 几何解释 (2): $-1 < \varphi'(x^*) < 0$

图 2: 几何解释 (2): $-1 < \varphi'(x^*) < 0$

图 3: 几何解释 (3): $\varphi'(x^*) > 1$

图 4: 几何解释 (4): $\varphi'(x^*) < -1$

图 4: 几何解释 (4): $\varphi'(x^*) < -1$

由图可看出,

- 当 $\varphi'(x)$ 在 x^* 处满足不同条件时,迭代过程的收敛情况也有所不同。
- 迭代过程的收敛依赖于迭代函数的构造,为使迭代法有效,必须 保证其收敛性。

定义:不动点

设 $\varphi(x)$ 为连续函数,则

$$\lim_{k \to \infty} x_k = x^* \implies x^* = \varphi(x^*) \implies x^* \not\equiv x = \varphi(x) \textbf{ in } \mathbf{m},$$

称 x* 为迭代函数的不动点,简单迭代法又称为不动点迭代法。

定义:不动点

设 $\varphi(x)$ 为连续函数,则

$$\lim_{k \to \infty} x_k = x^* \implies x^* = \varphi(x^*) \implies x^* \not\equiv x = \varphi(x) \text{ in } \mathbf{M},$$

称 x* 为迭代函数的不动点,简单迭代法又称为不动点迭代法。

将 f(x) = 0 转化为等价方程 $x = \varphi(x)$ 的方法有多种,且不惟一。如

$$f(x) = x - \sin x - 0.5 = 0 \iff \begin{cases} (1) & x = \varphi_1(x) = \sin x + 0.5 \\ (2) & x = \varphi_2(x) = \arcsin(x - 0.5). \end{cases}$$

定义:不动点

设 $\varphi(x)$ 为连续函数,则

$$\lim_{k \to \infty} x_k = x^* \implies x^* = \varphi(x^*) \implies x^* \not\equiv x = \varphi(x) \textbf{ in } \mathbf{m},$$

称 x* 为迭代函数的不动点,简单迭代法又称为不动点迭代法。

将 f(x) = 0 转化为等价方程 $x = \varphi(x)$ 的方法有多种,且不惟一。如

$$f(x) = x - \sin x - 0.5 = 0 \iff \begin{cases} (1) & x = \varphi_1(x) = \sin x + 0.5 \\ (2) & x = \varphi_2(x) = \arcsin(x - 0.5). \end{cases}$$

对于不动点迭代法,选择迭代函数非常重要。 不同的迭代函数会产生 不同的迭代序列,且收敛情况也不一定相同,即使初始值选择相同。

例

已知 $10^x - x - 2 = 0$ 在 [0.3, 0.4] 内有一个根,用两种不同的迭代公式,

(1)
$$x_{k+1} = 10^{x_k} - 2$$

(2)
$$x_{k+1} = \log(x_k + 2)$$

例

已知 $10^x - x - 2 = 0$ 在 [0.3, 0.4] 内有一个根,用两种不同的迭代公式,

(1)
$$x_{k+1} = 10^{x_k} - 2$$

(2)
$$x_{k+1} = \log(x_k + 2)$$

表 2: 计算结果

k	迭代格式 (1)	迭代格式 (2)
0	$x_0 = 0.3$	$x_0 = 0.3$
1	$x_1 = -0.0047$	$x_1 = 0.3617$
2	$x_2 = -1.0108$	$x_2 = 0.3732$
3		$x_3 = 0.3753$
4		$x_4 = 0.3757$

由迭代法的几何意义可知,为了保证迭代过程收敛,就要求迭代函数 $\varphi(x)$ 在区间 [a,b] 上变化不是很大,即 $\varphi'(x)$ 的绝对值应较小。

定理

设有方程 $x = \varphi(x)$, 若

- (1) 当 $x \in [a, b]$ 时, $\varphi(x) \in [a, b]$
- (2) $\varphi(x)$ 在 [a,b] 上可导,且有 $|\varphi'(x)| \le L < 1$, $x \in [a,b]$

定理

设有方程 $x = \varphi(x)$, 若

- (1) 当 $x \in [a, b]$ 时, $\varphi(x) \in [a, b]$
- (2) $\varphi(x)$ 在 [a,b] 上可导,且有 $|\varphi'(x)| \le L < 1$, $x \in [a,b]$

则

- (1) $x = \varphi(x)$ 存在惟一解 x^*
- (2) 对任意初值 x₀ ∈ [a, b], 迭代公式

$$x_{k+1} = \varphi(x_k), \quad k = 0, 1, 2, \dots$$

产生的数列 $\{x_k\}$ 收敛于方程的惟一根 x^* ,即 $\lim_{k\to\infty} x_k = x^*$

(3) 误差估计

$$|x_k - x^*| \le \frac{L^k}{1 - L} |x_1 - x_0|$$

 $|x_k - x^*| \le \frac{L}{1 - L} |x_k - x_{k-1}|$

利用

$$|x_k - x^*| \le \frac{L^k}{1 - L} |x_1 - x_0|,$$

可用于

- 估计迭代 k 次时的误差
- 估计达到给定精度要求 ϵ 时,所需迭代的次数 k

利用

$$|x_k - x^*| \le \frac{L^k}{1 - L} |x_1 - x_0|,$$

可用于

- 估计迭代 k 次时的误差
- 估计达到给定精度要求 ϵ 时,所需迭代的次数 k

若欲使 $|x_k - x^*| \le \epsilon$, 只要

$$\frac{L^k}{1-L}|x_1-x_0| \le \epsilon$$

利用

$$|x_k - x^*| \le \frac{L^k}{1 - L} |x_1 - x_0|,$$

可用于

- 估计迭代 k 次时的误差
- 估计达到给定精度要求 ϵ 时,所需迭代的次数 k

若欲使 $|x_k - x^*| \le \epsilon$, 只要

$$\frac{L^k}{1-L}|x_1-x_0| \le \epsilon \implies k > \frac{\ln \frac{\epsilon(1-L)}{|x_1-x_0|}}{\ln L}$$

由

$$|x_k - x^*| \le \frac{L}{1 - L} |x_k - x_{k-1}|,$$

可知:

- 0<L<1 越小, {x_k} 收敛越快。
- 只要相邻两次迭代的差 $|x_k x_{k-1}|$ 足够小,就可保证近似解 x_k 有足够的精度

由

$$|x_k - x^*| \le \frac{L}{1 - L} |x_k - x_{k-1}|,$$

可知:

- 0 < L < 1 越小, {x_k} 收敛越快。
- 只要相邻两次迭代的差 $|x_k x_{k-1}|$ 足够小,就可保证近似解 x_k 有足够的精度

实际计算时, 常采用条件

$$|x_k - x_{k-1}| \le \epsilon$$

来控制迭代终止。

定理:局部收敛性

设 x^* 是方程 $x = \varphi(x)$ 的根, $\varphi'(x)$ 在 x^* 的某一邻域连续, 且 $|\varphi'(x^*)| < 1$, 则存在 x^* 的一个邻域 $S = \{x: |x - x^*| \le \delta\}$, 使得 $\forall x_0 \in S$, 由迭代公式

$$x_{k+1} = \varphi(x_k), \quad k = 0, 1, 2, \cdots$$

产生的数列 $\{x_k\}$ 收敛于方程的根 x^* 。

证明

取 $[a,b] = [x^* - \delta, x^* + \delta]$,只需验证前面定理的条件 (1)。

定理:局部收敛性

设 x^* 是方程 $x = \varphi(x)$ 的根, $\varphi'(x)$ 在 x^* 的某一邻域连续, 且 $|\varphi'(x^*)| < 1$, 则存在 x^* 的一个邻域 $S = \{x : |x - x^*| \le \delta\}$, 使得 $\forall x_0 \in S$, 由迭代公式

$$x_{k+1} = \varphi(x_k), \quad k = 0, 1, 2, \cdots$$

产生的数列 $\{x_k\}$ 收敛于方程的根 x^* 。

证明

取 $[a,b] = [x^* - \delta, x^* + \delta]$,只需验证前面定理的条件 (1)。设 $x \in S$,即当 $|x - x^*| \le \delta$ 时,由微分中值定理及 $|\varphi'(x)| < 1$,有

$$|\varphi(x) - x^{\star}| = |\varphi(x) - \varphi(x^{\star})| = |\varphi'(x - x^{\star})| \le L|x - x^{\star}| < |x - x^{\star}| \le \delta,$$

故 $\varphi(x) \in S$ 。

例

$$\vec{x} f(x) = 2x - \log x - 7 = 0$$
 的最大根,要求精度为 10^{-4} 。

解

(1) 等价方程为

$$2x-7 = \log x$$

由以下示意图知方程的最大根在[3.5,4]内。

解(续):

(2) 建立迭代公式, 判别收敛性

将方程等价变形为

$$x = \frac{1}{2}(\log x + 7)$$

迭代公式为

$$x_{k+1} = \frac{1}{2}(\log x_k + 7)$$

解 (续):

(2) 建立迭代公式, 判别收敛性

将方程等价变形为

$$x = \frac{1}{2}(\log x + 7)$$

迭代公式为

$$x_{k+1} = \frac{1}{2}(\log x_k + 7)$$

因 $\varphi'(x) = \frac{1}{2\ln 10} \cdot \frac{1}{x}$,故 $\varphi(x)$ 在 [3.5,4] 内可导。因 $\varphi(x)$ 在 [3.5,4] 内为增函数,且

$$\varphi(3.5) \approx 3.77, \quad \varphi(4) \approx 3.80$$

故当 $x \in [3.5,4]$ 时, $\varphi(x) \in [3.5,4]$ 。因为

$$L = \max |\varphi'(x)| \approx \varphi'(3.5) \approx 0.06 < 1$$

故迭代法收敛。

解 (续):

(3) 计算

取
$$x_0 = 3.5$$
, 有

$$x_1 = \frac{1}{2}(\log x_0 + 7) \approx 3.78989,$$

 $x_2 = \frac{1}{2}(\log x_1 + 7) \approx 3.78931,$
 $x_3 = \frac{1}{2}(\log x_2 + 7) \approx 3.78928.$

因为
$$|x_3 - x_2| \le 10^{-4}$$
, 故方程的最大根为

$$x^* \approx x_3 = 3.789.$$

例

用迭代法求 $x^3 - x^2 - 1 = 0$ 在隔根区间 [1.4,1.5] 内的根,要求精确 到小数点后第 4 位。

例

用迭代法求 $x^3 - x^2 - 1 = 0$ 在隔根区间 [1.4,1.5] 内的根,要求精确 到小数点后第 4 位。

解

(1) 构造迭代公式

方程的等价形式为

$$x = (x^2 + 1)^{1/3} = \varphi(x)$$

迭代公式为

$$x_{k+1} = (x_k^2 + 1)^{1/3}$$

解(续):

(2) 判断迭代法的收敛性

$$\varphi'(x) = \frac{2x}{3(x^2+1)^{2/3}}$$

因 $\varphi(x)$ 在区间 [1.4,1.5] 内可导,且

$$|\varphi'(x)| \le 0.5 < 1$$

故迭代法收敛

解 (续):

(3) 计算结果

k	x_k	$ x_{k+1} - x_k \le \frac{1}{2} \times 10^{-4}$
0	$x_0 = 1.5$	
1	$x_1 = 1.4812480$	$ x_1 - x_0 \approx 0.02$
2	$x_2 = 1.4727057$	$ x_2 - x_1 \approx 0.009$
3	$x_3 = 1.4688173$	$ x_2 - x_1 \approx 0.004$
4	$x_4 = 1.4670480$	$ x_2 - x_1 \approx 0.002$
5	$x_5 = 1.4662430$	$ x_2 - x_1 \approx 0.0009$
6	$x_6 = 1.4658786$	$ x_2 - x_1 \approx 0.0004$
7	$x_7 = 1.4657020$	$ x_2 - x_1 \approx 0.0002$
8	$x_8 = 1.4656344$	$ x_2 - x_1 \approx 0.00007$
9	$x_9 = 1.4656000$	$ x_2 - x_1 \le \frac{1}{2} \times 10^{-4}$
	·	

计算步骤

(1) 准备

选取初值 x_0 , 确定 f(x) = 0 的等价方程 $x = \varphi(x)$;

(2) 迭代

依公式

$$x_1 = \varphi(x_0)$$

迭代一次得新近似值 x_1 ;

(3) 控制

若 $|x_1 - x_0| < \epsilon$,则终止迭代, x_1 即为所求的根;否则转(4);

(4) 准备迭代

若迭代次数超过预先指定的次数 N,则方法失败;

否则

$$x_1 \rightarrow x_0$$
,

转(2)继续迭代。

优点

- 计算程序简单,可计算复根
- 若迭代公式收敛,只要迭代次数足够,可使结果达到指定精度
- L 越接近于零,收敛速度越快

优点

- 计算程序简单,可计算复根
- 若迭代公式收敛,只要迭代次数足够,可使结果达到指定精度
- L 越接近于零, 收敛速度越快

缺点

- 需自行选取合适的迭代函数
- L接近于1时,收敛速度越很慢

牛顿法的条件

设 x^* 为 f(x) = 0 在隔根区间 [a, b] 内的根,

- f(x) 在 [a, b] 上可导
- $\forall x \in [a, b]$ **有** $f'(x) \neq 0$.

(1) 任取初值 $x_0 \in [a,b]$, 过点 $(x_0,f(x_0))$ 作切线, 切线方程为

$$y = f(x_0) + f'(x_0)(x - x_0).$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

(1) 任取初值 $x_0 \in [a, b]$, 过点 $(x_0, f(x_0))$ 作切线, 切线方程为

$$y = f(x_0) + f'(x_0)(x - x_0).$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

(1) 任取初值 $x_0 \in [a, b]$, 过点 $(x_0, f(x_0))$ 作切线, 切线方程为

$$y = f(x_0) + f'(x_0)(x - x_0).$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

(2) 过点 $(x_1,f(x_1))$ 作切线, 切线方程为

$$y = f(x_1) + f'(x_1)(x - x_1).$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

(2) 过点 $(x_1,f(x_1))$ 作切线, 切线方程为

$$y = f(x_1) + f'(x_1)(x - x_1).$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

(2) 过点 $(x_1,f(x_1))$ 作切线, 切线方程为

$$y = f(x_1) + f'(x_1)(x - x_1).$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

(3) 过点 $(x_2, f(x_2))$ 作切线, 切线方程为

$$y = f(x_2) + f'(x_2)(x - x_2).$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

(3) 过点 $(x_2,f(x_2))$ 作切线, 切线方程为

$$y = f(x_2) + f'(x_2)(x - x_2).$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

(3) 过点 $(x_2, f(x_2))$ 作切线, 切线方程为

$$y = f(x_2) + f'(x_2)(x - x_2).$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

如此下去,第 n+1 条切线为

$$y = f(x_n) + f'(x_n)(x - x_n).$$

它与 x 轴交点的横坐标为

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \cdots$$
 (1)

该方法称为牛顿法,(2)为牛顿迭代公式。

因为

$$f(x) = 0 \Rightarrow x = x - \frac{f(x)}{f'(x)},$$

故牛顿迭代法可由等价方程写出,迭代函数为

$$\varphi(x) = x - \frac{f(x)}{f'(x)}.$$

定理:局部收敛性定理

设 x^* 为 f(x) = 0 的根,若

- 1 f(x) 在 x* 的邻域内有连续的二阶导数
- 2 在 x^* 的邻域内 $f'(x) \neq 0$

则 $\exists S = \{x | |x - x^*| \le \delta\}$, $s.t. \forall x_0 \in S$, 牛顿迭代所产生的数列收敛 到 x^* 。

定理:局部收敛性定理

设 x^* 为 f(x) = 0 的根,若

- 1 f(x) 在 x^* 的邻域内有连续的二阶导数
- 2 在 x^* 的邻域内 $f'(x) \neq 0$

则 $\exists S = \{x | |x - x^*| \le \delta\}$, $s.t. \forall x_0 \in S$, 牛顿迭代所产生的数列收敛 到 x^* 。

证明

由 $\varphi'(x) = \frac{f(x)f''(x)}{[f'(x)]^2}$ 及条件 (1)、(2) 可知, $\varphi(x)$ 在 x^* 的邻域内可导。由 $\varphi'(x^*)$ 及连续函数的性质,必存在 x^* 的某个邻域 $S = \{x \mid |x-x^*| \leq \delta\}$, s.t. $\forall x \in S$ 有

$$|\varphi'(x)| \le L < 1.$$

牛顿法的局部收敛性对初值 x_0 要求较高,即要求初值必须选取得充分接近方程的根才能保证迭代序列 $\{x_n\}$ 收敛到 x^* 。

牛顿法的局部收敛性对初值 x_0 要求较高,即要求初值必须选取得充分接近方程的根才能保证迭代序列 $\{x_n\}$ 收敛到 x^* 。

事实上,若 x_0 不是选取得充分接近根 x^* 时,牛顿法则收敛得很慢,甚至会发散。

定理

设 x^* 为 f(x) = 0 在 [a,b] 内的根,若

- $\forall x \in [a,b]$, f'(x), f''(x) 连续且不变号
- 选取 $x_0 \in [a, b]$, 使 $f(x_0)f''(x_0) > 0$

则牛顿迭代所产生的数列收敛到 x^* 。

图 5: f'(x) > 0, f''(x) > 0, $f(x_0) > 0$

§ 5: f'(x) > 0, f''(x) > 0, $f(x_0) > 0$

图 5: f'(x) > 0, f''(x) > 0, $f(x_0) > 0$

图 5: f'(x) > 0, f''(x) > 0, $f(x_0) > 0$

图 5: f'(x) > 0, f''(x) > 0, $f(x_0) > 0$

§ 6: f'(x) > 0, f''(x) < 0, $f(x_0) < 0$

§ 6: f'(x) > 0, f''(x) < 0, $f(x_0) < 0$

§ 6: f'(x) > 0, f''(x) < 0, $f(x_0) < 0$

§ 6: f'(x) > 0, f''(x) < 0, $f(x_0) < 0$

§ 6: f'(x) > 0, f''(x) < 0, $f(x_0) < 0$

图 7: f'(x) < 0, f''(x) > 0, $f(x_0) > 0$

图 7: f'(x) < 0, f''(x) > 0, $f(x_0) > 0$

图 7: f'(x) < 0, f''(x) > 0, $f(x_0) > 0$

图 7: f'(x) < 0, f''(x) > 0, $f(x_0) > 0$

图 7: f'(x) < 0, f''(x) > 0, $f(x_0) > 0$

8: f'(x) < 0, f''(x) < 0, $f(x_0) < 0$

8: f'(x) < 0, f''(x) < 0, $f(x_0) < 0$

8: f'(x) < 0, f''(x) < 0, $f(x_0) < 0$

图 8: f'(x) < 0, f''(x) < 0, $f(x_0) < 0$

图 8: f'(x) < 0, f''(x) < 0, $f(x_0) < 0$

由图可看出,用牛顿法求得的序列 $\{x_n\}$ 都是单调地趋于 x^* ,故牛顿法 是收敛的,并且凡满足关系式

$$f(x_0)f''(x_0) > 0$$

的 x_0 都可做初值。

使用牛顿法,初始值的选取非常重要。

问题

若 [a,b] 上 f'(x), f''(x) 的符号不容易判别,该如何选取初值?

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$\Rightarrow \underbrace{x_{1} - x^{*}}_{e_{1}} = \underbrace{(x_{0} - x^{*})}_{e_{0}} - \frac{f(x_{0})}{f'(x_{0})}$$

$$\Rightarrow \frac{e_{1}}{e_{0}} = 1 - \frac{f(x_{0})}{f'(x_{0})(x_{0} - x^{*})} = -\frac{f(x_{0}) + f'(x_{0})(x^{*} - x_{0})}{f'(x_{0})(x^{*} - x_{0})}$$

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$\Rightarrow \underbrace{x_{1} - x^{*}}_{e_{1}} = \underbrace{(x_{0} - x^{*})}_{e_{0}} - \frac{f(x_{0})}{f'(x_{0})}$$

$$\Rightarrow \frac{e_{1}}{e_{0}} = 1 - \frac{f(x_{0})}{f'(x_{0})(x_{0} - x^{*})} = -\frac{f(x_{0}) + f'(x_{0})(x^{*} - x_{0})}{f'(x_{0})(x^{*} - x_{0})}$$

由泰勒展开

$$0 = f(x^*) = f(x_0) + f'(x_0)(x^* - x_0) + \frac{1}{2}f''(\xi)(x^* - x_0)^2$$
$$0 = f(x^*) = f(x_0) + f'(\eta)(x^* - x_0)$$

可得

$$\frac{\mathbf{e_1}}{\mathbf{e_0}} = \frac{\frac{1}{2}f''(\xi)(x^{\star} - x_0)^2}{-f'(x_0)(x^{\star} - x_0)} = -\frac{1}{2}\frac{f''(\xi)(x^{\star} - x_0)}{f'(x_0)} = \frac{f''(\xi)f(x_0)}{2f'(x_0)f'(\eta)}$$

若 f'(x), f''(x) 在 x_0 附近变化不大,可用 $f'(x_0), f''(x_0)$ 近似代替 $f'(\xi), f''(\eta)$ 。

若 f'(x), f''(x) 在 x_0 附近变化不大,可用 $f'(x_0), f''(x_0)$ 近似代替 $f'(\xi), f''(\eta)$ 。于是,只要 $f'(x_0) \neq 0$,就有近似公式

$$\frac{{\color{red}e_1}}{{\color{red}e_0}} \approx \frac{f''(x_0)f(x_0)}{2[f'(x_0)]^2}$$

若 f'(x), f''(x) 在 x_0 附近变化不大,可用 $f'(x_0), f''(x_0)$ 近似代替 $f'(\xi), f''(\eta)$ 。于是,只要 $f'(x_0) \neq 0$,就有近似公式

$$\frac{e_1}{e_0} \approx \frac{f''(x_0)f(x_0)}{2[f'(x_0)]^2}$$

要使牛顿法收敛,则误差必须减少,即 $|e_1| < |e_0|$,亦即

$$[f'(x_0)]^2 > \left| \frac{f''(x_0)}{2} \right| \cdot |f(x_0)|$$
 (*)

若 f'(x), f''(x) 在 x_0 附近变化不大,可用 $f'(x_0), f''(x_0)$ 近似代替 $f'(\xi), f''(\eta)$ 。于是,只要 $f'(x_0) \neq 0$,就有近似公式

$$\frac{e_1}{e_0} \approx \frac{f''(x_0)f(x_0)}{2[f'(x_0)]^2}$$

要使牛顿法收敛,则误差必须减少,即 $|e_1| < |e_0|$,亦即

$$[f'(x_0)]^2 > \left| \frac{f''(x_0)}{2} \right| \cdot |f(x_0)|$$
 (*)

初值的选取

若在 x_0 处, f(x) 满足式(*)且 $f'(x_0) \neq 0$, 就可用 x_0 作为牛顿法的 初值。

计算步骤

(1) 准备

选取初值 x_0 , 计算 $f(x_0)$, $f'(x_0)$

(2) 迭代

依公式

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

迭代一次得新近似值 x_1 , 并计算 $f(x_1)$, $f'(x_1)$

(3) 控制

若 $|f(x_1)| < \epsilon$, 则终止迭代, x_1 即为所求的根; 否则转(4)

(4) 准备迭代

若迭代次数超过预先指定的次数 N, 或 $f'(x_1) = 0$, 则方法失败;

否则

$$x_1 \to x_0$$
, $f(x_1) \to f(x_0)$, $f'(x_1) \to f'(x_0)$,

例

用牛顿迭代法求解 $x^3 - x^2 - 1 = 0$ 在 [1.4, 1.5] 内的根

例

用牛顿迭代法求解 $x^3 - x^2 - 1 = 0$ 在 [1.4, 1.5] 内的根

解

$$f(x) = x^3 - x^2 - 1$$

- (1) 牛顿迭代公式为 $x_{n+1} = \frac{2x_n^3 x_n^2 + 1}{3x_n^2 2x_n}$
- (2) 判断牛顿迭代法的收敛性

$$f(1.4) \approx -0.2$$
, $f(1.5) \approx 0.2$,
 $f'(x) = 3x^2 - 2x > 0$ $(x \in [1.4, 1.5])$,
 $f''(x) = 6x - 2 > 0$ $(x \in [1.4, 1.5])$,

因为 f(1.5)f''(1.5) > 0,故可选取初值 $x_0 = 1.5$,此时牛顿迭代 法收敛。

表 3: 计算结果

n	x_n	$ x_{n+1} - x_n \le \frac{1}{2} \times 10^{-4}$
0	$x_0 = 1.5$	
1	$x_1 = 1.466667$	$ x_2 - x_1 \approx 0.04$
2	$x_2 = 1.465572$	$ x_3 - x_2 \approx 0.002$
3	$x_3 = 1.465571$	$ x_4 - x_3 \le \frac{1}{2} \times 10^{-4}$

例

用牛顿法求方程

$$f(x) = x^{41} + x^3 + 1 = 0$$

在 $x_0 = -1$ 附近的实根,精确到小数点后第 4 位。

例

用牛顿法求方程

$$f(x) = x^{41} + x^3 + 1 = 0$$

在 $x_0 = -1$ 附近的实根,精确到小数点后第 4 位。

解

(1) 牛顿迭代公式为

$$x_{n+1} = x_n - \frac{x_n^{41} + x_n^3 + 1}{41x_n^{40} + 3x_n^2}$$

(2) 判断收敛性

$$f'(x) = 41x^{40} + 3x^2, \quad \frac{1}{2}f''(x) = 820x^{39} + 3x,$$

$$f(-1) = -1, \quad f'(-1) = 44, \quad \frac{1}{2}f''(-1) = -823,$$

$$[f'(-1)]^2 = 44^2 = 1936 > |\frac{1}{2}f''(-1)| \cdot |f(-1)| = 823$$

表 4: 计算结果

n	x_n
0	$x_0 = -1$
1	$x_1 = -0.9773$
2	$x_2 = -0.9605$
3	$x_3 = -0.9525$
4	$x_4 = -0.9525$

例

用牛顿法建立计算 $\sqrt{C}(C>0)$ 近似值的迭代公式。

例

用牛顿法建立计算 $\sqrt{C}(C>0)$ 近似值的迭代公式。

解

$$x = \sqrt{C} \implies f(x) = x^2 - C = 0$$

例

用牛顿法建立计算 $\sqrt{C}(C>0)$ 近似值的迭代公式。

解

$$x = \sqrt{C} \implies f(x) = x^2 - C = 0$$

(1) 牛顿迭代公式为

$$x_{n+1} = x_n - \frac{x_n^2 - C}{2x_n} = \frac{1}{2} \left(x_n + \frac{C}{x_n} \right)$$

(2) 收敛性判别

当 x>0 时,f'(x)>0, f''=2>0,故任意选取 $x_0>\sqrt{C}$ 作为 初值,迭代序列必收敛到 \sqrt{C} ,故迭代公式是收敛的。

图 9: 用牛顿法求 $\sqrt{2}$

图 10: 用牛顿法求 $\sqrt{2}$ (局部放大)

图 9: 用牛顿法求 $\sqrt{2}$

图 10: 用牛顿法求 $\sqrt{2}$ (局部放大)

图 9: 用牛顿法求 $\sqrt{2}$

图 10: 用牛顿法求 $\sqrt{2}$ (局部放大)

图 9: 用牛顿法求 $\sqrt{2}$

图 10: 用牛顿法求 $\sqrt{2}$ (局部放大)

图 9: 用牛顿法求 $\sqrt{2}$

图 10: 用牛顿法求 $\sqrt{2}$ (局部放大)

图 9: 用牛顿法求 $\sqrt{2}$

图 10: 用牛顿法求 $\sqrt{2}$ (局部放大)

图 9: 用牛顿法求 $\sqrt{2}$

图 10: 用牛顿法求 $\sqrt{2}$ (局部放大)

图 9: 用牛顿法求 $\sqrt{2}$

图 10: 用牛顿法求 $\sqrt{2}$ (局部放大)

图 9: 用牛顿法求 $\sqrt{2}$

图 10: 用牛顿法求 $\sqrt{2}$ (局部放大)

迭代法的收敛阶

定义: 迭代法的收敛阶

设数列 $\{x_n\}$ 收敛于 x^* , 令误差 $e_n = x_n - x^*$, 若存在某个实数 $p \ge 1$ 及常数 C > 0 使得

$$\lim_{n\to\infty}\frac{|e_{n+1}|}{|e_n|^p}=C$$

则称数列 $\{x_n\}$ 为 p 阶收敛,相应的迭代法是p 阶方法。

■ 线性收敛: p=1且0<C<1

■ 平方收敛: p=2

■ 超线性收敛: p>1

61

迭代法的收敛阶

定义: 迭代法的收敛阶

设数列 $\{x_n\}$ 收敛于 x^* , 令误差 $e_n = x_n - x^*$, 若存在某个实数 $p \ge 1$ 及常数 C > 0 使得

$$\lim_{n\to\infty}\frac{|e_{n+1}|}{|e_n|^p}=C$$

则称数列 $\{x_n\}$ 为 p 阶收敛,相应的迭代法是p 阶方法。

■ 线性收敛: p=1且0<C<1

■ 平方收敛: p=2

■ 超线性收敛: p>1

p 越大, 数列收敛越快。故迭代法的收敛阶是对迭代法收敛速度的一种 度量。

迭代法的收敛阶

定理

- (1) 若在根 x^* 的某个邻域内有 $\varphi'(x) \neq 0$,则不动点迭代线性收敛
- (2) 若在根 x* 的某个邻域内连续, 且有

$$\varphi'(x^{\star}) = \dots = \varphi^{(p-1)}(x^{\star}) = 0$$

而 $\varphi^{(p)}(x^*) \neq 0$,则不动点迭代p 阶收敛

(3) 牛顿迭代平方收敛

对于牛顿迭代法,

优点

- 1 迭代格式自动生成
- 2 收敛速度快, 具有 2 阶精度

对于牛顿迭代法,

优点

- 1 迭代格式自动生成
- 2 收敛速度快, 具有 2 阶精度

缺点

- 1 对初值敏感
- 2 每次迭代都需要计算 f 的导数

当 f 比较复杂时,计算 f 的导数就可能十分麻烦,特别是当 $f'(x_k)$ 很小时,必须精确计算,否则会产生很大的误差

对于牛顿迭代法,

优点

- 1 迭代格式自动生成
- 2 收敛速度快, 具有 2 阶精度

缺点

- 1 对初值敏感
- 2 每次迭代都需要计算 f 的导数

当 f 比较复杂时,计算 f 的导数就可能十分麻烦,特别是当 $f'(x_k)$ 很小时,必须精确计算,否则会产生很大的误差

本节介绍的弦截法,不需要计算导数,其收敛速度低于牛顿迭代法但 高于不动点迭代法。

(1) 设方程 f(x) = 0 的一个隔根区间为 [a,b], 连接 $(x_0,f(x_0))$ 与 $(x_1,f(x_1))$, 得弦的方程为

$$y = f(x_1) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_1)$$

$$x_2 = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)}(x_1 - x_0)$$

(1) 设方程 f(x) = 0 的一个隔根区间为 [a,b], 连接 $(x_0,f(x_0))$ 与 $(x_1,f(x_1))$, 得弦的方程为

$$y = f(x_1) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_1)$$

$$x_2 = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)}(x_1 - x_0)$$

(1) 设方程 f(x) = 0 的一个隔根区间为 [a,b], 连接 $(x_0,f(x_0))$ 与 $(x_1,f(x_1))$, 得弦的方程为

$$y = f(x_1) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_1)$$

$$x_2 = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)}(x_1 - x_0)$$

(2) 以 x_2 为 x^* 的近似值,连接 $(x_1,f(x_1))$ 与 $(x_2,f(x_2))$,得弦的方程为

$$y = f(x_2) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_2)$$

$$x_3 = x_2 - \frac{f(x_2)}{f(x_2) - f(x_1)}(x_2 - x_1)$$

(2) 以 x_2 为 x^* 的近似值,连接 $(x_1,f(x_1))$ 与 $(x_2,f(x_2))$,得弦的方程为

$$y = f(x_2) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_2)$$

$$x_3 = x_2 - \frac{f(x_2)}{f(x_2) - f(x_1)}(x_2 - x_1)$$

(2) 以 x_2 为 x^* 的近似值,连接 $(x_1,f(x_1))$ 与 $(x_2,f(x_2))$,得弦的方程为

$$y = f(x_2) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_2)$$

$$x_3 = x_2 - \frac{f(x_2)}{f(x_2) - f(x_1)}(x_2 - x_1)$$

如此下去,即可得到迭代公式

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n) - f(x_{n-1})} (x_n - x_{n-1}), \quad n = 0, 1, 2, \cdots$$
 (2)

该方法称为弦截法。

如此下去,即可得到迭代公式

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n) - f(x_{n-1})} (x_n - x_{n-1}), \quad n = 0, 1, 2, \cdots$$
 (2)

该方法称为弦截法。

几何意义: 依次用弦线代替曲线, 用线性函数的零点作为函数 f(x) 零点的近似值。

计算步骤

- (1) **准备** 选取初值 x_0, x_1 , 计算 $f(x_0), f(x_1)$
- (2) 迭代 依公式

$$x_2 = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)}(x_1 - x_0)$$

迭代一次得新近似值 x_2 ,并计算 $f(x_2)$

- (3) 控制 若 $|f(x_2)| < \epsilon_1$ 或 $|x_2 x_1| < \epsilon_2$,则终止迭代, x_2 即为 所求的根;否则转(4)
- (4) 准备迭代 若迭代次数超过预先指定的次数 N,则方法失败;否则

$$(x_1, f(x_1)) \rightarrow (x_0, f(x_0)), \quad (x_2, f(x_2)) \rightarrow (x_1, f(x_1)).$$

转(2)继续迭代

定理

条件

- $f \propto x^*$ 的某邻域 S 内有二阶连续导数
- $\forall x \in S$, 有 $f'(x) \neq 0$

结论

- 当 S 充分小时, $\forall x_0, x_1 \in S$,弦截法生成的迭代序列 $\{x_n\}$ 收敛到 x^*
- 弦截法的收敛速度为 $p = \frac{1+\sqrt{5}}{2} \approx 1.618$

牛顿法与弦截法的区别

顿法和弦截法都是先将 f(x) 线性化后再求根(化曲为直),但线性化方式不同:

- 牛顿法是作切线的方程
- 弦截法是作弦线的方程

另外

- 牛顿法只需一个初值
- 弦截法需要两个初值