Bolzano's Theorem and the Bolzano Weierstrass Theorem

Daniel Rostovtsev Date: May 26, 2017

Continuity

Let f be a function $f: \mathbb{R} \to \mathbb{R}$, then f is continuous at point $x_0 \in \mathbb{R}$ if $f(x_0) \approx_{\epsilon} f(x)$ for some $x_0 \approx_{\delta} x$ where ϵ and δ are arbitrarily close to 0.

Limit Mutation Theorem

Let f be a function $f : \mathbb{R} \to \mathbb{R}$ and $\{a_i\}$ be a sequence such that $\lim a_i = L$, then $\lim f(a_i) = f(L)$ if f is continuous at L.

 $\lim f(a_i) = f(\lim a_i) \leftrightarrow f$ is continuous at L.

Proof. This follows directly from the definitions of limits and continuous functions.

Since $\lim a_i = L$, it must follow that $a_i \approx_{\delta} L$. Also, since f is continuous at L, it must also follow that $f(x) \approx_{\epsilon} f(L)$ for some $x \approx_{\delta} L$. So it follows that $f(a_i) \approx_{\epsilon} f(L)$ since $a_i \approx_{\delta} L$. Therefore, if f is continuous at L, $\lim f(a_i) = f(L)$.

Nested Intervals

An interval $U_1 = [a_1, b_1]$ is nested inside of the interval $U_0 = [a_0, b_0]$ if and only if $a_1 \ge a_0$ and $b_1 \le b_0$.

Nested Interval Theorem

Let $\{U_i\} = \{[a_i, b_i]\}$ be an infinite sequence of nested intervals where $U_{i+1} \neq U_i$. Then there exists a unique $c \in \mathbb{R}$ such that $\lim a_i = \lim b_i = c$.

Proof. This theorem can be proven using the completeness theorem, which states that if a sequence is monotone (always increasing or always decreasing) and bounded, then it has a limit.

The sequence a_i is, by definition, always increasing, so it is monotone. Also, since $a_i < b_i$ for all i, $\{a_i\}$ must certainly be bounded above b_0 . Likewise the sequence $\{b_i\}$ is, by definition, always increasing, so it is also monotone. And, since $b_i > a_i$ for all i, $\{b_i\}$ must certainly be bounded below by a_0 . So, by the completeness theorem, both $\{a_i\}$ and $\{b_i\}$ must converge.

Let their limits be defined like this:

 $\lim a_i = A$

 $\lim b_i = B.$

To show that A = B, consider the limit of $\{c_i\} = \{b_i - a_i\}$. Since $\{U_i\}$ is an infinite sequence of nested intervals, a_i and b_i must move infinitely close together, so $\lim c_i = 0$. But the limit of c_i can also be expressed as follows:

$$\lim c_i = \lim (b_i - a_i) = \lim b_i - \lim a_i = B - A = 0$$

Therefore A = B and there exists a unique $c \in \mathbb{R}$ such that $\lim a_i = \lim b_i = c$.

Bolzano's Theorem

Let f be continuous on [a, b], and f(a) and f(b) are of opposite polarity. Then there exists a number $C \in \mathbb{R}$ such that f(C) = 0.

Proof. At the heart of this proof is an algorithm for constructing an infinite sequence of nested intervals that center around some root in the interval [a, b]. For the sake of clarity, the algorithm will be described in two different cases, which depend on the sign of f(a) and f(b).

Suppose f(a) < 0 and f(b) > 0. The first nested interval in the sequence is, trivially, $U_0 = [a, b]$. Take the midpoint of a and b, say x_1 . If $f(x_1) < 0$, let the second nested interval be $U_1 = [x_1, b]$. Since f must switch sign in that interval, there might be a root on that interval. If $f(x_1) > 0$, let the second nested interval be $U_1 = [a, x_1]$ for the same reason. If $f(x_1) = 0$, then clearly there is some C such that f(C) = 0. Continue this process, of slicing the interval at the midpoint, to generate the sequence of nested intervals $\{U_i\}$ so that f switches sign on each interval. Denote each U_i in the sequence to be the interval $[l_i, r_i]$, for left and right.

By the nested interval theorem, both $\{l_i\}$ and $\{r_i\}$ converge to the same unique C. By the construction of the intervals, it is also evident that $\{f(l_i)\}$ and $\{f(r_i)\}$ converge to 0. So, by the limit mutation theorem:

$$f(C) = f(\lim r_i) = \lim f(r_i) = 0$$
 (and)
 $f(C) = f(\lim l_i) = \lim f(l_i) = 0$

So f(C) = 0 and there is a zero [a, b]. The same construction of nested intervals applies if f(a) > 0 and f(b) < 0, the signs are just reversed. This proves Bolzano's Theorem.

The Bolzano Weierstrass Theorem

Let a_i be an infinite bounded sequence. Then $\{a_i\}$ has a convergent subsequence.

Proof. This is, in essence, a corollary to the nested interval theorem.

To construct the nested intervals for the proof, start with the trivial interval $U_0 = [L, H]$, where L is the lower bound and H is the upper bound.

Take any point x_1 in this interval. If there are infinitely many points greater than x_1 , let U_1 be the interval $[x_1, H]$, and if there are infinitely many points less than x_1 , let U_1 be the interval $[L, x_1]$. If there are infinitely many points to either side, pick any side randomly, and if there are infinitely many points equal to x_1 then clearly some subsequence of $\{a_i\}$ converges to x_1 . Continue generating new U_i infinitely to create the infinite sequence of nested intervals $\{U_i\}$.

By the nested interval theorem, the lower bound of the intervals converges to some C in [L, H], and since the lower bound of these intervals is a subsequence of a_i , this proves the Bolzano Weierstrass Theorem.