ORTOGONALIDAD

Una forma de simplificar el procedimiento de mínimos cuadrados es aplicar la ortogonalización a las ecuaciones normales del sistema Ax = b, produciendo las ecuaciones $A^TAc = A^Tb$, las cuales resuelven el sistema, en este caso

$$c = x$$
, $A = A^T A y b = A^T b$.

Ejemplo1: Hallar las estimaciones para los parámetros del modelo y los datos de la tabla:

$$y = \beta_0 + \beta_1 Inx$$

Х	1	2	3	4	5	6	7	8	9	10	11	12
У	2.11	2.45	2.61	2.73	2.75	2.81	2.87	2.91	2.96	3.03	3.05	3.12

Ejemplo2: Una mezcla de dos sustancias radiactivas con constantes de desintegración conocidas, determinar las constantes C y D, sí el número de desintegraciones se modela por la expresión siguiente:

$$y = Ce^{-t} + De^{-2t}$$

Las mediciones del contador Geiger durante el intervalo t se muestran en la siguiente tabla:

							0.6				
У	2	1.7	1.5	1.3	1.1	1	0.85	0.7	0.65	0.6	0.5

Ejemplo 3. Ajustar los datos de la tabla aplicando ortogonalización al modelo mostrado:

$$f(x) = a_1 + a_2 e^x + a_3 x e^x$$

Х	1.2	2.8	4.3	5.4	6.8	7.0
У	7.5	16.1	38.9	67	146.6	266.2

Ejemplo 4. Determinar a y b de la función

$$f(x) = asen(\pi x/2) + bcos(\pi x/2)$$

Х	-0.5	-0.19	0.02	0.20	0.35	0.50
У	-3.558	-2.874	-1.995	-1.040	-0.068	0.677

Ejemplo 5. Ajustar el modelo mediante ortogonalización a los datos de la tabla.

$$y = a + bx^2 + ce^{-x}$$

Х	0	0.25	1	2	3	4	5	6	7	8
У	7.5	5.3	5.6	11.9	21	40	64	90	125	155

LINEALIZACIÓN

En algunos casos de aproximación por mínimos cuadrados no está restringido a funciones lineales ya que los fenómenos responden a una relación exponencial, la cual puede ser resuelta aplicando logaritmos a la ecuación de aproximación para obtener b y m, este procedimiento se denomina linealización o regresión lineal, y se aplica haciendo una transformación para obtener las ecuaciones normales.

Función a	Función linealizada	Parámetro de
ajustar	Y = Ax + B	restauración
$y = be^{ax}$	In(y) = ax + In(b)	$y' = Iny$; b = e^b
$y = \frac{a}{x} + b$	$y = a\frac{1}{x} + b \implies y = ax' + b$	$x' = \frac{1}{x}$
$y = \frac{b}{x+a}$	$\frac{1}{y} = \frac{1}{b}x + \frac{a}{b} \Rightarrow y' = a'x + b'$	$y' = \frac{1}{y}, a = \frac{b'}{a'}, b = \frac{1}{a'}$
$y = \frac{C}{1 + be^{ax}}$	$In\left(\frac{C}{y}-1\right) = ax + Inb$	$y' = In\left(\frac{c}{y} - 1\right)$, b=e ^{b'}
$y = ax^b$	In(y) = aIn(x) + In(b)	$x'=\ln(x), y'=\ln(y), b'=e^b$

Los cambios recomendados deben ser sustituidos en las ecuaciones normales:

$$bN + m\sum_{i=1}^{N} x_i = \sum_{i=1}^{N} Y_i$$
$$b\sum_{i=1}^{N} x_i + m\sum_{i=1}^{N} x_i^2 = \sum_{i=1}^{N} x_i Y_i$$

Por ejemplo: para el modelo $y=be^{ax}$, el cambio recomendado es In(y), y las ecuaciones normales se transforman en:

$$bN + m \sum_{i=1}^{N} x_i = \sum_{i=1}^{N} In(Y_i)$$

$$b\sum_{i=1}^{N} x_i + m\sum_{i=1}^{N} x_i^2 = \sum_{i=1}^{N} x_i In(Y_i)$$

Y se agrega el parámetro de restauración: b = e^b

Ejemplo 1: La presión barométrica se debe ajustar al modelo $y=be^{ax}$ P es la presión en pulgadas de mercurio, h es la altura sobre el nivel del mar en pies, determinar b y a, para los datos de la tabla:

$$P = be^{ah}$$

h	0	886	2753	4763	6942	10593
р	30	29	27	25	23	20

Ejemplo 2: Un experimento con un circuito RC se usa para determinar la capacitancia de un capacitor desconocido, se conecta un resistor R de 5 M Ω , las mediciones se hacen cada 2 segundos, durante 30 segundos, los datos son registrados en la tabla siguiente:

$$V_R = ve^{(-t/(RC))}$$

t	2	4	6	8	10	12	14
V_R	9.7	8.1	6.6	5.1	4.4	3.7	2.8

t	16	18	20	22	24	26	28	30
V_R	2.4	2	1.6	1.4	1.1	0.85	0.69	0.6

En este problema, b = v, x = t, a = -1/(RC)

Para el modelo $y = ax^b$ resolver el siguiente problema:

La tabla siguiente da el número de gramos S, de cloruro de amonio anhidro, que disueltos en 100 gramos de agua hacen una solución saturada para Θ ° de temperatura absoluta.

S	29.4	33.3	35.2	37.2	45.8	55.2	65.6	77.3
θ	273	283	288	293	313	333	353	373

$$S = a\theta^b$$

Los cambios recomendados son:

$$In(y) = aIn(x) + In(C)$$

Las ecuaciones normales resultan en:

$$bN + m \sum_{i=1}^{N} In(x_i) = \sum_{i=1}^{N} In(Y_i)$$

$$b\sum_{i=1}^{N} In(x_i) + m\sum_{i=1}^{N} In(x_i^2) = \sum_{i=1}^{N} In(x_i)In(Y_i)$$