5/26/2017 OneNote Online

July 6th, 2012

giovedì 25 maggio 2017 11:18

Exercise 2

• M1 is encrypted by means of K_B

My guess

- 1. Key confirmation is provided by M3 because A encrypts it by means of K_{ab} Key authentication is provided by M3 because A inserts P_A in the message.
- 2. K_{AB} compromised:

BAN logic

July 17th,

- Dopo M1, Bob non può sapere da chi sta arrivando, non si può applicare il primo postulato (Bob doesn't believe, it just sees).
 Non ha nessun belief su Kar, e nemmeno sulla sua freschezza, perché na non è gestito da Bob.
- 2. Bob encripta M2 K_{AB} assumendo che solo Alice lo abbia.

Stesso errore in old SSL. Un avversario potrebbe ri-eseguire lo stesso protocollo con K_{AB} tutte le volte che vuole.

- a. Perdendo K_{AB}, si perdono le sessioni passate, a meno che non si utilizzino sessioni ephemeral.
 Perdendo K_{AB}, si perdono le sessioni future.
- b. Ad esempio, P_A si potrebbe inserire subito in M1. Per dichiarare la freschezza di M1, Bob potrebbe inviare un nonce in M0.

M0	$B \rightarrow A$	n_B
M1	$A\toB$	$\{n_A, n_B, P_A, K_{AB}\}_{K_B}$
M2	$B \to A$	$\{n_A, n_B\}_{K_{aB}}$
М3	$A \rightarrow B$	$\{n_B, n_A\}_{K_{aB}}$

Con K_{AB} compromessa, all'avversario manca comunque la password P_A . Se K_{AB} viene compromessa, viene compromessa però anche la password P_A

5/26/2017 OneNote Online

