Арифметический сопроцессор (сложные вычисления)

Вопросы

- Частичный остаток от деления
- Тригонометрические функции
- Степень и логарифм

FPREM

$$ST \coloneqq ST -$$
 целая часть $\left(\frac{ST}{ST(1)}\right) * ST(1)$

знак результата = знак делимого

$$0 \le |\text{результат}| < |\text{ST}(1)|$$

Пример:

9.3 FPREM 2 =
$$9.3 - 4*2 = 1.3$$

$$-9.3 \text{ FPREM } 2 = -9.3 - (-4)*2 = -1.3$$

9.3 FPREM
$$(-2) = 9.3 - (-4)*(-2) = 1.3$$

FPREM1 – остаток по стандарту IEEE 754

$$ST \coloneqq ST -$$
округленное до целого $\left(\frac{ST}{ST(1)}\right) * ST(1)$

$$\frac{\left|ST(1)\right|}{2} \le$$
результат $\le \frac{\left|ST(1)\right|}{2}$

Пример:

9.3 FPREM1 2 =
$$9.3 - 5*2 = -0.7$$

8.6 FPREM1 2 =
$$8.6 - 4*2 = 0.6$$

$$-9.3 \text{ FPREM1 } 2 = -9.3 - (-5)*2 = 0.7$$

• <u>Экспонента</u> ST может быть уменьшена не более, чем на 63

если экспонента(ST) - экспонента(ST(1)) ≤ 63

TO

ST := остаток

C2 := 0

иначе

ST := <u>частичный</u> остаток

C2 := 1

- Если требуется, инструкцию нужно повторять пока C2 = 1
- Пример: найти остаток от деления b на а

```
FLD a ; a
```

FLD b; a, b

lrem:

FPREM ; а, частичный ост. от b/a

FSTSW ax

SAHF

J**P** lrem ; пока не найден остаток

; в стеке а, остаток от b/a

• Если вычислен полный остаток, младшие 3 бита частного сохраняются в СО, СЗ, С1 (в таком порядке!)

• Пример: получить младшие 3 бита частного

```
...
FSTSW ax
SAHF
JP lrem
```

```
; AL = xx xx xx xx xx xx xx xx xx
           ; AH = \times \times C3 \times \times \times \times C2 C1 C0
           ; CF = C0
RCL al, 1 ; AL = xx xx xx xx xx xx xx xx xx
SHL ah, 2; AH = xx xx xx C2 C1 C0 xx xx
           ; CF = C3
RCL al, 1 ; AL = xx xx xx xx xx xx xx xx C0 C3
SHL ah, 5; AH = C0 xx xx xx xx xx xx xx
           ; CF = C1
RCL al, 1 ; AL = xx xx xx xx xx xx C0 C3 C1
AND al, 7; AL = 0 0 0 0 CO C3 C1
```

Тригонометрические функции

Общие сведения:

- Углы в радианах
- Аргумент должен лежать в [-2⁶³, 2⁶³]
 - в противном случае можно сначала использовать FPREM с делителем, кратным 2π
 - если операнд слишком велик, то C2=1 и стек не меняется

Тригонометрические функции

команда	действие
FSIN	ST := sin(ST)
FCOS	ST := cos(ST)
FSINCOS	ST := sin(ST)
	поместить в стек cos(старое ST) (sin теперь в <u>ST(1)</u>)

• FSINCOS быстрее, чем пара команд SIN и COS

Пример

• Вычислить катеты треугольника по углу а и гипотенузе h

Тангенс

команда	действие
FPTAN	• ST := tg(ST)
	• поместить в стек "1"
7	(tg теперь в ST(1))

- 1 добавляется чтобы легче было найти ctg
- В FPU до 387 аргумент должен был лежать в $\left[0,\frac{\pi}{4}\right]$, сейчас в $\left[-2^{63},2^{63}\right]$

Пример

• Общая часть примера:

```
FLD a ; a FPTAN ; tg(a), 1
```

• Вычислить ctg:

```
FDIVRP ; 1/tg(a) = ctg(a)
```

• Вычислить tg и ctg:

```
FDIV st, st(1); tg(a), ctg(a)
```

Пример

• Вычислить

```
tg: FFREE st
FINCSTP ; tg(a)
```

• Вычислить tg – вариант 2:

```
FMULP ; tg(a)
```

Арктангенс

команда	действие
FPATAN	$ST_{(1)} := arctg\left(\frac{ST(1)}{ST(0)}\right)$
	выталкивает ST из стека
•	(arctg теперь в ST)

• Результат всегда лежит в $[-\pi,\pi]$

Арктангенс

• ST(1)/ST(0) - чтобы легче было находить угол наклона отрезка

 Находит угол при любых ST(0) и ST(1), включая 0 и ∞

Значения FPATAN

0	ST(0)						
ST(1)	_∞	-F	-0	+0	+F	+∞	NaN
2	-∞	-3π/4*	-π/2	- π /2	- π /2	- π /2	- π /4*
	-F	- π	$-\pi$ to $-\pi/2$	- π /2	- π /2	- π/2 to -0	-0
¥.	-0	- π	- π	-π*	-0*	-0	-0
	+0	+ π	+ π	+π*	+0*	+0	+0
	+F	+ π	+ π to + $\pi/2$	+ π /2	+ π /2	$+\pi/2$ to $+0$	+0
M	+∞	+3π/4*	+ π/2	+ π /2	+ π /2	+ π/2	+ π/4*
300	NaN	NaN	NaN	NaN	NaN	NaN	NaN

• F – любое конечное число

Пример

• Найти угол прямоугольного треугольника с катетами a, b:

```
FLD a; a
FLD b; a, b
FPATAN; arctg(a/b)
```

• Найти арктангенс числа х:

```
FLD x; x
FLD1 ; x, 1
FPATAN ; arctg(x)
```

Арксинус и арккосинус

- Команды для прямого вычисления <u>отсутствуют!</u>
- Можно вычислить, используя тождества:

$$tg(x) = \frac{\sin(x)}{\cos(x)}$$
$$\sin^2(x) + \cos^2(x) = 1$$

• Пример:

$$arcsin(sin(x)) = arctg(tg(x))$$

= $arctg(\frac{sin(x)}{cos(x)})$

Пример (продолжение)

$$cos(x) = \sqrt{1 - sin^2(x)}$$

2019

```
FLD sinx ; sin(x)
FLD st ; sin(x), sin(x)
FMUL st, st; sin(x), sin<sup>2</sup>(x)
FLD1 ; sin(x), sin<sup>2</sup>(x), 1
FSUBRP ; sin(x), cos<sup>2</sup>(x)
FSQRT ; sin(x), cos(x)
FPATAN ; arcsin(sin(x)) = x
```

Возведение в степень

команда	действие		
F2XM1	$ST := 2^{ST} - 1$		

- Аргумент должен находиться в [-1, 1]
 - в противном случае результат не определен, но нет исключения

Использование

• Возведение 2 в произвольную степень

$$2^{x} = 2^{A} * 2^{B}$$

где
$$A$$
 – целое, $B = x - A$, $B \in [-1,1]$

- 2^B вычисляется командой **F2XM1**
- $2^A * 2^B$ командой **FSCALE**
- A командой **RNDINT** (режим округления не важен)

Пример

• Вычислить 2^x

```
FLD x
                     ; X
FLD st
                     ; X, X
FRNDINT
                     ; x, A
FSUB st(1), st; B, A
FXCH
                     ; A, B
                     ; A, 2^{B}-1
F2XM1
                     ; A, 2^{B}-1, 1
FLD1
                     ; A, 2<sup>B</sup>
FADDP
                     A_{\bullet} 2^{A} \times 2^{B} = 2^{X}
FSCALE
                    ; 2x
FSTP st(1)
```

Двоичный логарифм

команда	действие
FYL2X	$ST(1) := ST(1) * log_2(ST)$
	выталкивает ST из стека
7	(log ₂ теперь в ST)

Использование 1

• Вычисление логарифма по произвольному основанию

$$log_b(x) = log_b(2) * log_2(x)$$

- Удобно использовать FLDLG2, FLDLN2
- Пример натуральный логарифм числа а:

```
FLDLN2 ; ln(2)
FLD a ; ln(2), a
FYL2X ; ln(2)*log<sub>2</sub>(a)=ln(a)
```

Использование 2

• Возведение произвольного числа в степень

$$x^{y} = 2^{y*log_2(x)}$$

```
FLD y ; y
FLD x ; y, x
FYL2X ; y*log<sub>2</sub>(x)
```

• Затем возводим 2 в степень ST(0), см. пример к F2XM1

Логарифм повышенной точности

команда	действие
FYL2XP1	$ST(1) := ST(1) * log_2(ST + 1)$
	выталкивает ST из стека
	(log ₂ теперь в ST)

• Ограничение:

$$ST \in \left[-\left(1 - \frac{1}{\sqrt{2}}\right), +\left(1 - \frac{1}{\sqrt{2}}\right) \right]$$

- иначе результат не определен и исключения может не возникнуть (Intel's Software Developer's Manual, 2003)

Логарифм повышенной точности

 Точнее, чем FYL2X для чисел, близких к 1 (FYL2X округлит результат до 0)

 Использование – капитализация процентов и аннуитет (рента)

$$(1 + R)^n$$

где *n* – срок,

R – ставка (обычно меленькое число)