

BLANK PAGE

Indian Standard

INFORMATION PROCESSING—DATA INTERCHANGE ON 130 mm (5.25 in) FLEXIBLE DISK CARTRIDGES USING MODIFIED FREQUENCY MODULATION RECORDING AT 13 262 ftprad, ON 80 TRACKS ON EACH SIDE

PART 2 TRACK FORMAT A FOR 77 TRACKS

UDC 681.327.634 : 621.798.11.52

© BIS 1990

BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

IS 12327 (Part 2): 1988 ISO 8630-2: 1987

Indian Standard

INFORMATION PROCESSING —DATA INTERCHANGE

ON 130 mm (5.25 in) FLEXIBLE DISK CARTRIDGES USING MODIFIED FREQUENCY MODULATION RECORDING AT 13 262 ftprad, ON 80 TRACKS ON EACH SIDE

PART 2 TRACK FORMAT A FOR 77 TRACKS

NATIONAL FOREWORD

This Indian Standard, which is identical with ISO 8630-2: 1987 Information processing—Data interchange on 130 mm (5.25 in) flexible disk cartridges using modified frequency modulation recording at 13 262 ftprad, on 80 tracks on each side—Part 2: Track format A for 77 tracks', issued by the International Organization for Standardization (ISO), was adopted by the Bureau of Indian Standards on 10 February 1988 on the recommendation of the Computers, Business Machines and Calculators Sectional Committee (LTDC 24) and approval of the Electronics and Telecommunication Division Council.

In the adopted standard certain terminology and conventions are not identical with those used in Indian Standards; attention is especially drawn to the following:

Wherever the words 'International Standard' appear referring to this standard, they should be read as 'Indian Standard.

CROSS REFERENCES

International Standard	Corresponding Indian Standard	Degree of Correspondence
ISO 646:1983 Information processing—ISO 7-bit coded character set for information interchange	IS 10315:1982 7-Bit coded character set for information interchange	Technically equivalent
ISO 2022:1986 Information processing –ISO 7-bit and 8-bit coded character sets – Code extension techniques	IS 12326:1987 7-Bit and 8-bit coded character sets—Code extension techniques	Technically equivalent
ISO 4873 Information processing—ISO 8-bit code for information interchange—Structure and rules for implementation	IS 10401: 1982 8-bit coded character set for information interchange	Technically equivalent
ISO 7665 Information processing — File structure and labelling of flexible disk cartridges for information interchange	IS 11406: 1986 File structure and labelling of flexible disk cartridges for information interchange	Technically equivalent

The Computers, Business Machines and Calculators Sectional Committee has reviewed the provision of the following ISO Standards and has decided that they are acceptable for use in conjunction with these standards:

- ISO 6429 Information processing—ISO 7-bit and 8-bit character sets—Additional control functions for character-imaging devices.
- ISO 7065-2 Information processing Data interchange on 200 mm (8 in) flexible disk cartridges using modified frequency modulation recording at 13 262 ftprad, 1.9 tpmm (48 tpi), on both sides: Part 2 Track format.

0 Introduction

ISO 8630 specifies the characteristics of 130 mm (5.25 in) flexible disk cartridges recorded at 13 262 ftprad, using modified frequency modulation (MFM) recording, on 80 tracks on each side.

ISO 8630-1 specifies the dimensional, physical and magnetic characteristics of the cartridge, so as to provide physical interchangeability between data processing systems.

ISO 8630-3 specifies an alternative track format for data interchange.

ISO 8630-1 and ISO 8630-2, together with the labelling scheme specified in ISO 7665, provide for full data interchange between data processing systems.

1 Scope and field of application

This part of ISO 8630 specifies the quality of recorded signals, the track layout, and a track format to be used on 130 mm (5.25 in), 13 262 ftprad flexible disk cartridges intended for data interchange between data processing systems.

NOTE — Numeric values in the SI and/or Imperial measurement system in this part of ISO 8630 may have been rounded off and therefore are consistent with, but not exactly equal to, each other. Either system may be used, but the two should be neither intermixed nor re-converted. The original design was made using Imperial units and further developments were made using SI units.

2 Conformance

A flexible disk cartridge shall be in conformance with ISO 8630 when it meets all the requirements of parts 1 and 2 of ISO 8630 and when it implements one of the three sector sizes specified in 4.11.

Data interchange is possible only when the interchange parties implement the same sector size.

NOTE — ISO 7665 specifies a field in the volume label in which the implemented sector size is identified.

3 References

ISO 646, Information processing — ISO 7-bit coded character set for information interchange.

ISO 2022, Information processing — ISO 7-bit and 8-bit coded character sets — Code extension techniques.

ISO 4873, Information processing — ISO 8-bit code for information interchange — Structure and rules for implementation.

ISO 6429, Information processing — ISO 7-bit and 8-bit character sets — Additional control functions for characterimaging devices.

ISO 7065-2, Information processing — Data interchange on 200 mm (8 in) flexible disk cartridges using modified frequency modulation recording at 13 262 ftprad, 1,9 tpmm (48 tpi), on both sides — Part 2: Track format.

ISO 7665, Information processing — File structure and labelling of flexible disk cartridges for information interchange.

4 General requirements

4.1 Mode of recording

4.1.1 Track 00, side 0

The mode of recording shall be two-frequency where the start of every bit cell is a clock flux transition. A ONE is represented by a data flux transition between two clock flux transitions.

Exceptions to this are defined in 4.12.

4.1.2 All tracks excluding track 00, side 0

The mode of recording shall be Modified Frequency Modulation (MFM) for which the conditions are

- a) a flux transition shall be written at the centre of each bit cell containing a ONE;
- b) a flux transition shall be written at each cell boundary between consecutive bit cells containing ZEROs.

Exceptions to this are defined in 4.12.

4.2 Track location tolerance of the recorded flexible disk cartridge

The centrelines of the recorded tracks shall be within \pm 0,042 5 mm (\pm 0.001 67 in) of the nominal positions, over the range of operating environment specified in ISO 8630-1.

4.3 Recording offset angle

At the instant of writing or reading a magnetic transition, the transition shall have an angle of $0^{\circ} \pm 18'$ with the radius.

NOTE — As tracks may be written and overwritten at extremes of the tolerances given in 4.2 and 4.3, a band of old information may be left at one edge of the newly written data and would constitute unwanted noise when reading. It is therefore necessary to trim the edges of the tracks by erasure after writing.

4.4 Density of recording

- 4.4.1 The nominal density of recording shall be 13 262 ftprad*. The resulting nominal bit cell length for track 00, side 0 is 151 μrad, and for all the other tracks it is 75,5 μrad.
- **4.4.2** The long-term average bit cell length shall be the average bit cell length measured over a sector. It shall be within \pm 2.0 % of the nominal bit cell length.
- **4.4.3** The short-term average bit cell length, referred to a particular bit cell, shall be the average of the lengths of the preceding eight bit cells. It shall be within \pm 8 % of the long-term average bit cell length.

4.5 Flux transition spacing

The instantaneous spacing between flux transitions may be influenced by the reading and writing process, the bit sequence recorded (pulse crowding effects) and other factors.

The locations of the transitions are defined as the locations of the peaks in the signal when reading. Tests should be carried out using a peak-sensing read amplifier (see annexes B and C).

4.5.1 Flux transition spacing for track 00, side 0 (see figure 1)

- **4.5.1.1** The spacing between two clock flux transitions surrounding a data flux transition or between two data flux transitions surrounding a clock flux transition shall be between 90 % and 140 % of the nominal bit cell length.
- **4.5.1.2** The spacing between two clock flux transitions not surrounding a data flux transition or between two data flux transitions surrounding a missing clock flux transition shall be between 60 % and 110 % of the nominal bit cell length.
- **4.5.1.3** The spacing between a data flux transition and the preceding clock flux transition (when not missing) or between a clock flux transition and the preceding data flux transition (when not missing) shall be between 45 % and 70 % of the nominal bit cell length.

4.5.2 Flux transition spacing for all tracks excluding track 00, side 0 (see figure 2)

4.5.2.1 The spacing between the flux transitions in a sequence of ONEs shall be between 80 % and 120 % of the short-term average bit cell length.

Figure 1

Figure 2

^{*} Flux transitions per radian

- **4.5.2.2** The spacing between the flux transition for a ONE and that between two ZEROs preceding or following it shall be between 130 % and 165 % of the short-term average bit cell length.
- **4.5.2.3** The spacing between the two ONE flux transitions surrounding a ZERO bit cell shall lie between 185 % and 225 % of the short-term average bit cell length.

4.6 Average Signal Amplitude

For each side the Average Signal Amplitude on any non-defective track (see ISO 8630-1) of the interchanged flexible disk cartridge shall be less than 160 % of SRA_{1f} and more than 40 % of SRA_{2f} .

4.7 Byte

A byte is a group of eight bit-positions, identified B1 to B8, with B8 most significant and recorded first.

The bit in each position is a ZERO or a ONE.

4.8 Sector

Track 00, side 0 and side 1 is divided into 26 sectors. All other tracks of the flexible disk cartridge shall have the same number of sectors, which can be 8, 15 or 26.

4.9 Cylinder

A pair of tracks, one on each side of the disk, having the same track number.

4.10 Cylinder Number

The Cylinder Number shall be a two-digit number identical with the track number of the tracks of the cylinder.

4.11 Data capacity of a track

The data capacity of track 00, side 0 shall be 3 328 bytes.

The data capacity of track 00, side 1 shall be 6 656 bytes.

The data capacity of all other tracks shall be as shown in table 1.

Table 1

Number of sectors	Number of data bytes in the sector	Data capacity of a track
26	256	6 656 bytes
15	512	7 680 bytes
8	1 024	8 192 bytes

4.12 Hexadecimal notation

Hexadecimal notation is used hereafter to denote the following bytes:

- (00) for (B8 to B1) = 00000000 (01) for (B8 to B1) = 00000001 (02) for (B8 to B1) = 00000010 (03) for (B8 to B1) = 00000011
- (FF) for (B8 to B1) = 11111111
- (FC)* for (B8 to B1) = 111111100 where the clock transitions of B6 and B4 are missing
- (FE)* for (B8 to B1) = 11111110 where the clock transitions of B6, B5 and B4 are missing (FB)* for (B8 to B1) = 11111011
- where the clock transitions of B6, B5 and B4 are missing (F8)* for (B8 to B1) = 11111000
- (F8)* for (B8 to B1) = 11111000 where the clock transitions of B6, B5 and B4 are missing
- (4E) for (88 to B1) = 01001110
- (FC) for (B8 to B1) = 111111100
- (FE) for (B8 to B1) = 11111110 (FB) for (B8 to B1) = 11111011
- (F8) for (B8 to B1) = 11111000
- (A1)* for (B8 to B1) = 10100001 where the boundary transition between B3 and B4 is missing
- (C2)* for (B8 to B1) = 11000010 where the boundary transition between B4 and B5 is missing

4.13 Error Detection Characters (EDC)

The two EDC-bytes are hardware generated by shifting serially the relevant bits, specified later for each part of the track, through a 16-bit shift register described by the generator polynomial:

$$X^{16} + X^{12} + X^{5} + 1$$

(See also annex A.)

5 Track layout after the first formatting for track 00, side 0

After the first formatting there shall be 26 usable sectors on the track. The layout of the track shall be as shown in figure 3.

Figure 3

5.1 Index Gap

This field shall comprise 73 bytes nominally.

The content is not specified except that it shall not contain any (FE)*-bytes.

Writing the Index Gap is started when the index hole is detected. Any of the first 20 bytes may become ill-defined due to subsequent overwriting.

5.2 Sector Identifier

This field shall be as given in table 2.

Table 2

Identific	er Mark	Address Identifier				
		Track /	Address	S		EDC
6 bytes (00)	1 byte (FE)*	C 1 byte (00)	Side 1 byte (00)	1 byte	1 byte (00) *	2 bytes

5.2.1 Identifier Mark

This field shall comprise 7 bytes:

6 (00)-bytes

1 (FE)*-byte

5.2.2 Address Identifier

This field shall comprise 6 bytes.

5.2.2.1 Track Address

This field shall comprise 2 bytes:

a) Cylinder Address (C)

This field shall specify in binary notation the Cylinder Address. It shall be (00) for all sectors.

b) Side Number (Side)

This field shall specify the side of the disk. It shall be (00) for all sectors.

5.2.2.2 Sector Number (S)

The 3rd byte shall specify in binary notation the Sector Number from 01 for the first sector to 26 for the last sector.

The 26 sectors shall be recorded in the natural order:

1, 2, 3, . . ., 25, 26

5.2.2.3 4th byte of the Sector Address

The 4th byte shall be always a (00)-byte.

5.2.2.4 EDC

These two bytes shall be generated as defined in 4.13 using the bytes of the Sector Identifier starting with the (FE)*-byte (see 5.2.1) of the Identifier Mark and ending with the 4th byte (see 5.2.2.3) of the Sector Address.

5.3 Identifier Gap

This field shall comprise 11 initially recorded (FF)-bytes.

5.4 Data Block

The layout of this field shall be as given in table 3.

Table 3

	Data	Block		
Data	Mark	Data Mark Data		EDC
6 bytes (00)	1 byte (FB)*	128 bytes	2 bytes	

5.4.1 Data Mark

This field shall comprise 7 bytes:

6 (00)-bytes

1 (FB)*-byte

5.4.2 Data Field

This field shall comprise 128 bytes. No requirements are implied beyond the correct EDC for the content of this field (see also 7.4.2.4.2).

5.4.3 EDC

These two bytes shall be generated as defined in 4.13 using the bytes of the Data Block starting with the 7th byte of the Data Mark (see 5.4.1) and ending with the last byte of the Data Field (see 5.4.2).

5.5 Data Block Gap

This field shall comprise 27 initially recorded (FF)-bytes. It is recorded after each Data Block and it precedes the following Sector Identifier. After the last data block it precedes the Track Gap.

5.6 Track Gap

This field shall follow the Data Block Gap of the 26th sector. At nominal density it should comprise 247, (FF)-bytes. Writing of the Track Gap takes place until the index hole is detected, unless it has been detected during writing of the last Data Block Gap, in which case there shall be no Track Gap.

6 Track layout after the first connatting for all tracks other than track 00, side 0

After the first formatting there shall be a number of sectors with the number determined by the sector length byte (see 6.2.2.3) of the Sector Address. The layout of each track shall be as shown in figure 4.

NOTE - Track 00, side 1 is always recorded with 26 sectors (see 4.8).

6.1 Index Gap

This field shall comprise 146 bytes nominally.

The content is not specified except that it shall not contain an (A1)*-byte.

Writing the Index Gap is started wher. the index hole is detected. Any of the first 40 bytes may become ill-defined due to subsequent overwriting.

6.2 Sector Identifier

This field shall be as given in table 4.

6.2.1 Identifier Mark

This field shall comprise 16 bytes:

12 (00)-bytes

3 (A1)*-bytes

1 (FE)-byte

6.2.2 Address Identifier

This field shall comprise 6 bytes.

6.2.2.1 Track Address

This field shall comprise 2 bytes:

a) Cylinder Address (C)

This field shall specify in binary notation the Cylinder Address from 00 for the outermost cylinder to 74 for the innermost cylinder.

b) Side Number (Side)

This field shall specify the side of the disk. On side 0 it shall be (00) on all tracks. On side 1 it shall be (01) on all tracks.

6.2.2.2 Sector Number (S)

The 3rd byte shall specify in binary notation the Sector Number from 01 for the first sector to the number of the last sector (8, 15 or 26).

The sectors shall be recorded in the natural order:

1, 2, 3,

up to the last sector.

6.2.2.3 Sector Length (SL)

This field shall have one of the three values (see table 5) which defines the number of bytes of the data field and consequently

Table 4

ldentifier Mark			Address Identifier				
			Track	Address	S	SL	EDC
12 bytes (00)	3 bytes (A1)*	1 byte (FE)	C 1 byte	Side 1 byte (00) or (01)	1 byte	1 byte	2 bytes

Figure 4

determines the number of sectors of the track. The value shall be the same for all sectors on a track, and for all cylinders except cylinder 00.

Table 5

(SL) value in hexadecimal	Number of bytes of the data field	Number of sectors of the track
(01)	256	26
(02)	512	15
(03)	1 024	8

On track 00, side 1 only 26 sectors of 256 data bytes are permitted, consequently only the (01)-byte is allowed in this field on this track.

6.2.2.4 EDC

These two bytes shall be generated as defined in 4.13 using the bytes of the Sector Identifier starting with the first (A1)*-byte (see 6.2.1) of the Identifier Mark and ending with the sector length byte (see 6.2.2.3) of the sector address.

6.3 Identifier Gap

This field shall comprise 22 initially recorded (4E)-bytes.

6.4 Data Block

This field shall be as given in table 6.

Table 6

	Data Mark		Data Field	EDC
12 bytes (00)	3 bytes (A1)*	1 byte (FB)		2 bytes

6.4.1 Data Mark

This field shall comprise:

12 (00)-bytes

3 (A1)*-bytes

1 (FB)-byte

6.4.2 Data Field

This field shall comprise a number of bytes as defined by the sector length byte (see 6.2.2.3) in the Sector Address. No requirements are implied beyond the correct EDC for the content of this field (see also 7.4.2.4.2).

6.4.3 EDC

These two bytes shall be generated as defined in 4.13 using the bytes of the Data Block starting with the first (A1)*-byte of the Data Mark (see 6.4.1) and ending with the last byte of the Data Field (see 6.4.2).

6.5 Data Block Gap

This field shall comprise a number of initially recorded (4E)-bytes. The number is dependent on the number of bytes in the Data Field (see 6.4.2) as given in table 7.

Table 7

Number of bytes in the data field	Number of bytes in the data block gap
256	54
512	84
1 024	116

It is recorded after each Data Block and it precedes the following Sector Identifier. After the last data block, it precedes the Track Gap.

6.6 Track Gap

This field shall follow the Data Block Gap of the last sector. It shall comprise a number of initially recorded (4E)-bytes. The number at nominal density is dependent on the number of bytes in the Data Field (see 6.4.2) as given in table 8.

Table 8

Number of bytes in the Track Gap
598
400
654

Writing of the Track Gap takes place until the index hole is detected, unless it has been detected during writing of the last Data Block Gap, in which case there will be no Track Gap.

7 Track layout of a recorded flexible disk for data interchange

7.1 Representation of characters

Characters shall be represented by means of the 7-bit coded character set (ISO 646) and, where required, by its 7-bit or 8-bit extensions (ISO 2022) or by means of the 8-bit coded character set (ISO 4873).

Each 7-bit coded character shall be recorded in bit-positions 87 to B1 of a byte; bit-position 88 shall be recorded with bit ZERO.

The relationship shall be as shown in figure 5.

Bits of the 7-bit combination	0	b7	b6	b5	b4	b3	b2	b1
Bit-positions in the byte	В8	B7	B6	B 5	В4	В3	В2	B1

Figure 5

Each 8-bit coded character shall be recorded in bit-positions B8 to B1 of a byte.

The relationship shall be as shown in figure 6.

Bits of the 8-bit combination	b8	b7	b6	b5	b4	b3	b2	b1
Bit-positions in the byte	B8	B7	В6	•B5	В4	вз	B2	B1

Figure 6

7.2 Good and bad cylinders

A good cylinder is a cylinder which has both tracks formatted according to 7.4.

A bad cylinder is a cylinder which has both tracks formatted according to 7.5.

7.3 Requirements for cylinders

Cylinder 00 shall be a good cylinder. There shall be at least 74 good cylinders between cylinder 01 and cylinder 76.

7.4 Layout of the tracks of a good cylinder

References to clause 5 are for track 00, side 0.

References to clause 6 are for all other tracks.

7.4.1 Index Gap

Description: see 5.1 and 6.1.

7.4.2 Sector Identifier

7.4.2.1 Identifier Mark

Description: see 5.2.1 and 6.2.1.

7.4.2.2 Address Identifier

This field shall comprise 6 bytes.

7.4.2.2.1 Track Address

This field shall comprise 2 bytes:

a) Cylinder Address (C)

This field shall specify in binary notation the Cylinder Address from 00 for the outermost cylinder to 74 for the innermost cylinder.

NOTE — A unique Cylinder Number is associated with each cylinder (see 4.10). Two of these cylinders are intended for use only when there are one or two defective cylinders. Each good cylinder possesses a unique Cylinder Address; a defective cylinder does not possess a Cylinder Address. Cylinder Addresses are assigned consecutively to the good cylinders in the ascending sequence of Cylinder Numbers.

b) Side Number (Side)

Description: see 5.2.2.1 and 6.2.2.1.

7.4.2.2.2 Sector Number (S)

Description: see 5.2.2.2 and 6.2.2.2.

7.4.2.2.3 4th byte of the Sector Address

Description: see 5.2.2.3 and 6.2.2.3.

7.4.2.2.4 EDC

Description: see 5.2.2.4 and 6.2.2.4.

7.4.2.3 Identifier Gap

Description: see 5.3 and 6.3. These bytes may subsequently become corrupted due to the overwriting process.

7.4.2.4 Data Block

7.4.2.4.1 Data Mark

For track 00, side 0 this field shall comprise

6 (00)-bytes

1 byte

The 7th byte shall be

(FB)* indicating that the data are valid and that the whole Data Field can be read;

(F8)* indicating that the first byte of the Data Field shall be interpreted according to ISO 7665.

For all other tracks this field shall comprise

12 (00)-bytes

3 (A1)*-bytes

1 byte

The 16th byte shall be

(FB) indicating that the data are valid and that the whole Data Field can be read;

(F8) indicating that the first byte of the Data Field shall be interpreted according to ISO 7665.

7.4.2.4.2 Data Field

This field shall contain a number of bytes as specified in 5.4.2 and 6.4.2.

If it comprises less than the requisite number of data bytes, the remaining positions shall be filled with (00)-bytes.

Data fields in cylinder 00 are reserved for operating system use, including labelling.

7.4.2.4.3 EDC

Description: see 5.4.3 and 6.4.3.

If the last byte of the data mark is (F8)* or (F8) and the first character of the Data Field is capital letter F, the EDC may or may not be correct, as the sector contains a defective area. If the first character is capital letter D, then the EDC shall be correct.

On cylinder 00, only capital letter D is permitted.

IS 12327 (Part 2): 1988 ISO 8630-2 (1987)

7.4.2.5 Data Block Gap

This field is recorded after each Data Block and it precedes the following Sector Identifier. After the last Data Block it precedes the Track Gap.

It comprises initially 27 (FF)-bytes (see 5.5) or a number of (4E)-bytes (see 6.5). These bytes may subsequently become ill-defined due to the overwriting process.

7.4.2.6 Track Gap

Description: see 5.6 and 6.6.

7.5 Layout of the tracks of a bad cylinder

7.5.1 Contents of the fields

The fields of the tracks of a bad cylinder should have the following contents.

7.5.1.1 Index Gap

This field should comprise 146 (4E)-bytes.

7.5.1.2 Sector Identifier

This field should comprise an Identifier Mark and an Address Identifier.

7.5.1.2.1 Identifier Mark

This field should comprise 16 bytes:

12 (00)-bytes

3 (A1)*-bytes

1 (FE)-byte

7.5.1.2.2 Address Identifier

This field should comprise 6 bytes:

4 (FF)-bytes

2 EDC-bytes

These two EDC bytes shall be generated as defined in 4.13 using the bytes of the Sector Identifier starting with the first (A1)*-byte (see 7.5.1.2.1) of the Identifier Mark and ending with the above 4 (FF)-bytes.

7.5.1.3 Other fields

The contents of the remaining fields are not specified and may be ill-defined.

7.5.2 Requirements for tracks

Each track of a bad cylinder shall have at least one of its Sector Identifiers with the content specified in 7.5.1.2. If this condition is not satisfied the cartridge shall be rejected.

Annex A

EDC implementation

(This annex does not form part of the standard.)

Figure 7 shows the feedback connections of a shift register which may be used to generate the EDC bytes.

Prior to operation, all positions of the shift register are set to ONE. Input data are added (exclusive OR) to the contents of position C_{15} of the register to form a feedback. This feedback is in its turn added (exclusive OR) to the contents of position C_{4} and position C_{11} .

On shifting, the outputs of the exclusive OR gates are entered respectively into positions C₀, C₅ and C₁₂. After the last data bit has been added, the register is shifted once more as specified above.

The register then contains the EDC bytes.

If further shifting is to take place during the writing of the EDC bytes, the control signal inhibits exclusive OR operations.

To check for errors when reading, the data bits are added into the shift register in exactly the same manner as they were during writing. After the data, the EDC bytes are also entered into the shift register as if they were data. After the final shift, the register contents will be all ZERO if the record does not contain errors.

Figure 7

Annex B

Procedure and equipment for measuring flux transition spacing

(This annex does not form part of the standard.)

B.1 General

This annex specifies equipment and a procedure for measuring flux transition spacing on 130 mm (5.25 in) flexible disk cartridges using MFM recording at 13 262 ftprad on both sides.

B.2 Format

The disk to be measured shall be written by the disk drive for data interchange use. Testing shall be done on tracks 00 and 76 on both sides. Track 00, side 0 shall have the test patterns 00100000 (20) and 11101111 (EF) written repeatedly.

On all other test tracks the test patterns 11011011 (DB) and 11011100 (DC) shall be written repeatedly.

B.3 Test equipment

B.3.1 Disk drive

The disk drive shall have a rotational speed of 360 r/min, with a tolerance of ± 3 r/min, averaged over one revolution.

The average angular speed, taken over 32 ms, shall not deviate by more than 0,5 % from the speed averaged over one revolution.

B.3.2 Head

B.3.2.1 Resolution

The head shall have an absolute resolution of 55 % to 65 % at track 76 on side 0 and at track 68 on side 1, using the reference material RM 8630, applying the calibration factor of the reference material, and recording with the appropriate test recording current.

The resonant frequency of the head shall be at least 500 000 Hz.

The resolution shall not be adjusted by varying the load impedance of the head.

The resolution shall be measured at the output of the amplifier defined in B.3.3.1.

B.3.2.2 Offset angle

The head shall have a gap offset angle of $0^{\circ} \pm 6'$ with the disk radius on the testing drive.

B.3.2.3 Contact

Care shall be taken that the heads are in good contact with the media during the tests.

B.3.3 Read channel

B.3.3.1 Read amplifier

The read amplifier shall have a flat response from 1 000 to 375 000 Hz within ± 1 dB, and amplitude saturation shall not occur.

B.3.3.2 Peak sensing amplifier

Peak sensing shall be carried out by a differentiating and limiting amplifier.

B.3.4 Time interval measuring equipment

The time interval counter shall be able to measure 2 µs to at least 5 ns resolution.

A triggering oscilloscope may be used for this purpose.

B.4 Procedure for measurement

B.4.1 Flux transition spacing measurement

The transition locations shall be measured by the locations of the peaks in the signal when reading.

The flux transition spacing shall be measured by the pulse timing intervals after the read channel amplifier defined in B.3.3.

B.4.2 Flux transition spacing for track 00, side 0

Measure time intervals t_1 to t_8 as shown in figure 8.

 t_1 and t_2 correspond to sub-clause 4.5.1.1 t_3 and t_4 correspond to sub-clause 4.5.1.2

 t_5 , t_6 , t_7 and t_8 correspond to sub-clause 4.5.1.3

Figure 8

B.4.3 Flux transition spacing for all other tracks

Measure time intervals t_1 to t_5 as shown in figure 9.

 t_1 and t_2 correspond to sub-clause 4.5.2.1

 t_3 and t_4 correspond to sub-clause 4.5.2.2

t₅ corresponds to sub-clause 4.5.2.3

Annex C

Data separators for decoding MFM recording

(This annex does not form part of the standard.)

- C.1 On track 00, side 0 the two-frequency recording results in nominal flux transition periods of
 - t for a ONE cell
 - 2t for a ZERO cell

where $t = 2 \mu s$.

The data separator shall be capable of resolving a difference of 2 µs. This can be achieved satisfactorily by the use of a digital data separator, or one using a fixed timer.

- C,2 On all other tracks the MFM recording method gives nominal flux transition spacings of
 - t for the patterns 11 or 000
 - 3t/2 for the patterns 10 or 01
 - 2t for the pattern 101

The data separator should be capable of resolving a difference of 1 µs. To achieve this with a low error rate, the separator cannot operate on a fixed period but should follow changes in the bit cell length.

It is recognized that various techniques may be developed to achieve dynamic data separation; with present technology only an analogue data separator based on a phase-locked oscillator can provide the necessary reliability.

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS

Revision of Indian Standards

Indian Standards are reviewed periodically and revised, when necessary and amendments, if any, are issued from time to time. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition. Comments on this Indian Standard may be sent to BIS giving the following reference:

Doc: No. LTD 24 (1117)

PATNA. TRIVANDRUM.

Amendments Issued Since Publication		
Amend No.	Date of Issue	Text Affected
BUR	EAU OF INDIAN STANDARDS	
Headquarters: Manak Bhavan, 9 Bahadur Shah Za Telephones: 331 01 31, 331 13 7	far Marg, New Delhi 110002 5	Telegrams : Manaksanstha (Common to all Offices)
Regional Offices:		Telephone
Central: Manak Bhavan, 9 Bahada NEW DELHI 110002	ır Shah Zafar Marg	(331 01 31 (331 13 75
Eastern: 1/14 C. I. T. Scheme VII CALCUTTA 700054	M, V. I. P. Road, Maniktola	37 86 62
Northern: SCO 445-446, Sector 35	-C, CHANDIGARH 160036	2 18 43
Southern : C. I. T. Campus, IV Cro	ss Road, MADRAS 600113	41 29 16
Western : Manakalaya, E9 MIDC, BOMBAY 400093	Marol, Andheri (East)	6 32 92 95
Branches: AHMADABAD, BANG	SALORE, BHOPAL, BHUBANES BRAD, GUWAHATI, HYDERABA	