WiSe 2022/23 Stand: 23. Dezember 2022

9. freiwillige Hausaufgabe - Logik

Abgabe: bis 10:30 am 20.01.2023 im ISIS-Kurs [WiSe 2022/23] Logik

Hausaufgabe 1

Sei $\sigma := \{E\}$ eine Signatur, wobei E ein zweistelliges Relationssymbol ist. Entscheiden Sie für die Formeln $\varphi_1, \varphi_2, \varphi_3 \in \mathrm{FO}[\sigma]$ jeweils ob diese unerfüllbar, erfüllbar mit einem endlichen Modell, oder erfüllbar mit einem unendlichen Modell sind.

$$\varphi_{1} \coloneqq \forall x \exists y \forall z \left(E(x,y) \land (z \neq y \rightarrow \neg E(x,z)) \right) \\ \land \exists x \left(\forall y \left(\neg E(y,x) \right) \land \forall y \forall z \left(x \neq z \rightarrow \exists w \left(E(w,z) \land (y \neq w \rightarrow \neg E(y,z)) \right) \right) \right) \\ \varphi_{2} \coloneqq \exists x \exists z \forall w \forall y \left(x \neq z \land \neg E(x,z) \land \neg E(z,x) \land \left(E(y,w) \lor E(w,y) \right) \right) \\ \varphi_{3} \coloneqq \forall x \left(\neg E(x,x) \right) \land \forall x \forall y \left(E(x,y) \rightarrow E(y,x) \right) \land \exists x_{1} \exists x_{2} \exists x_{3} \forall y \left(\bigwedge_{1 \leq i \leq 3} \left(y = x_{i} \lor E(y,x_{i}) \right) \right) \right)$$

Hausaufgabe 2

Sei σ eine beliebige Signatur, seien \mathcal{A}, \mathcal{B} σ -Strukturen und $\varphi(x_1, \ldots, x_k) \in FO(\sigma)$.

Für eine Relation $R\subseteq A^k$ und eine Abbildung $f:A\to B$ schreiben wir

$$f(R) := \{(f(r_1), \dots, f(r_k)) : (r_1, \dots, r_k) \in R\}.$$

Sei $\pi: A \to B$ ein Isomorphismus von \mathcal{A} auf \mathcal{B} . Zeigen Sie, dass $\pi(\varphi(\mathcal{A})) = \varphi(\mathcal{B})$.

Anmerkung: Dieser Beweis ist am sinnvollsten mittels zwei strukturellen Induktionen durchzuführen.