Quantenalgorithmen

Alexander May

28. Oktober 2013

Literatur

Mika Hirvensalo Quantum Computing

 ${\bf Chuang/Nielsen} \ \ {\bf Quantum} \ \ {\bf Computation} \ \ {\bf and} \ \ {\bf Quantum} \ \ {\bf Information}$

D. Aharanov Quantum Computation

1 Warum Quantenalgorithmen

- 1. Notwendigkeit: Moores Gesetz Bald Rechnerstruktur subatomarer Größe (Quantenphysik)
- 2. Potential: Quantencomputer können klassische Computer simulieren + evt. mehr
 - Polyzeit-Alg für Faktorisierung/Dlog
 - Exp. Speed-up für relativierte Modelle
 - Quadratischer Speed-up für Datenbanksuche
 - Quantenkryptographie/-kodierung

2 Berechnungen

Boolesche Funktion / Schaltkreise Klassisch: Bits prob. DTM, Kopierfunktion Bits Eingabe Berechnung Ausgabe Quanten: Qubits Reversible Funktion / Quantenschaltkreise Messung liefert Bits QTM, lineare Funktionen, Verschränkung keine Kopierfunktion

Probleme bei Implementierung:

- Dekohärenz, Skalierbarkeit
- Quantenfehlerkorrektur

Klassische, probalistische Systeme: Seien x_1, \ldots, x_n Basiszustände

Wahrscheinlichkeitsverteilung eines Zustandsraum:

$$p_1[x_1] + p_2[x_2] + \dots + p_n[x_n] \text{ mit } 0 \le p_i \le 1, \sum_{i=1}^n p_i = 1$$

Zustandsübergang:

$$x_i \mapsto p_{1i}[x_1] + p_{2i}[x_2] + \dots + p_{ni}[x_n], \ \sum_{j=1}^n p_{ij} = 1 \ \forall \ i \ (Markovkette)$$

Allgemein:

$$p_1[x_1] + p_2[x_2] + \dots + p_n[x_n] \mapsto p_1(p_{11}[x_1] + \dots + p_{n1}[x_n] = (p_1p_{11} + p_2p_{21} + \dots + p_np_{1n})[x_1] + \dots + (p_np_{n1} + \dots + p_np_{nn})[x_n]$$

$$\mathbf{Markov\text{-}Matrix}: \begin{pmatrix} p_1' \\ \vdots \\ p_n' \end{pmatrix} = \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \ddots & \vdots \\ p_{n1} & \cdots & p_{nn} \end{pmatrix} \cdot \begin{pmatrix} p_1 \\ \vdots \\ p_n \end{pmatrix}$$

Übung: Zeigen Sie, dass $\sum_{i=1}^{n} p'_i = \sum_{i=1}^{n} p_i$.

1. Münzwurf: Beispiel:

$$\begin{array}{l} \operatorname{Kopf} \mapsto \frac{1}{2}[Kopf] + \frac{1}{2}[Zahl] \\ \operatorname{Zahl} \mapsto \frac{1}{2}[Kopf] + \frac{1}{2}[Zahl] \end{array}$$

Strategie: Maximiere Ws. des gewünschten Endzustands

• x_1, x_2, \dots, x_4 Basisvektoren eines n-dim. Vektorraums Vektorraum Interpretation:

• Wahrscheinlichkeitsverteilen entsprechen Linearkombinationen

3 1-Qbit Systeme

Zustände eines Qbits: Einheitsvektoren im \mathbb{C}^2

Exkurs über die komplexen Vektorräume \mathbb{C}^n :

Komplexe Zahl:

 $|x\rangle \in \mathbb{C}^n \Leftrightarrow |x\rangle = (x_1, \dots, x_n)^T, x_i \in \mathbb{C}$ "ket"-Notation. $x = a + ib, \ a, b \in \mathbb{R}, i = \sqrt{-1} \text{ d.h. } i^2 = -1$

Konjugiert Komplexes: $x^* = a - ib$

$$|x| = \sqrt[3]{x \cdot x^*} = \sqrt{a^2 + b^2}$$

$$\sin \varphi = \frac{b}{|x|}, \cos \varphi = \frac{a}{|x|} \Rightarrow x = (\cos \varphi + i \sin \varphi) \cdot |x| = e^{i\varphi} \cdot |x|, \text{ insb. } e^{2\pi i} = 1$$

$$\sin \varphi = \frac{b}{|x|}, \cos \varphi = \frac{a}{|x|} \Rightarrow x = (\cos \varphi + i \sin \varphi) \cdot |x| = e^{i\varphi} \cdot |x|, \text{ insb. } e^{2\pi i} = 1.$$
Sei $|x\rangle = (x_1, \dots, x_n), \langle x| = (x_1^*, \dots, x_n^*) \text{ und } |x\rangle, \langle y| \text{ orthogonal } \Leftrightarrow \langle x|y\rangle = 0$

Satz: Die Vektoren $|x_1\rangle, |x_2\rangle, \dots, |x_n\rangle \in \mathbb{C}^n$ bilden eine orthonomale Basis des \mathbb{C}^n falls:

1.
$$\langle x_i | x_i \rangle = 0 \ \forall i, j \ \text{mit} \ i \neq j$$

2.
$$||x_i\rangle| = 1 \ \forall x_i$$

Beispiel: Orthonormale Basen für \mathbb{C}^2

•
$$|0\rangle = (1,0)^T, |1\rangle = (0,1)^T$$

•
$$(e^{i\varphi}, 0), (0, e^{i\varphi})$$

•
$$\sqrt{\frac{1}{5}}(1,2), \sqrt{\frac{1}{5}}(2,-1)$$

Beispiel: Orthonormale Basen für \mathbb{C}^4

•
$$|0\rangle = (1,0,0,0)^T, |1\rangle = (0,1,0,0)^T, |2\rangle = (0,0,1,0)^T, |3\rangle = (0,0,0,1)^T$$

•
$$\frac{1}{5}(1,2,2,4)^T$$
, $\frac{1}{5}(2,-1,4,-2)^T$, $\frac{1}{5}(2,4,-1,-2)^T$, $\frac{1}{5}(4,-2,-2,1)^T$

Zustand eines Qbits: Seien $|0\rangle, |1\rangle$ eine orthonormale Basis des \mathbb{C}^2 . Der Zustand eines Qbits ist ein Einheitsvektor der Form: $\alpha_0|0\rangle + \alpha_1|1\rangle, \ \alpha_0,\alpha_1 \in \mathbb{C}$

3

Übung: $|\alpha_0|0\rangle + \alpha_1|1\rangle| = 1 \Leftrightarrow |\alpha_0|^2 + |\alpha_1|^2 = 1$

Allgemein: Seien $|x_1\rangle, \ldots, |x_n\rangle$ eine orthonormale Basis des \mathbb{C}^n (auch H_n für Hilbertraum). Zustand eines Quantensystems: $\alpha_1|x_1\rangle + \alpha_2|x_2\rangle + \cdots + \alpha_n|x_n\rangle$ mit $|\alpha_1|^2 + \cdots + |\alpha_n|^2 = 1$ Messung: x_i mit $WS|\alpha_i|^2$

Bezeichnung: • Basisvektoren $|x_i\rangle$ werden Basiszustände genannt.

- α_i heißen Amplituden
- Allg. Zustand ist Superposition der Basiszustände (Überlagerung)
- $\psi(x_i) = \alpha_i$ heist Wellenfunktion.
- $|x>=e^{i\varphi}|y>\Leftrightarrow$ Zustände $|x\rangle$ und $|y\rangle$ heißen äquivalent

Vergleich: Wahrscheinlichkeitsverteilung $P_1[x_1] + \cdots + p_n[x_n]$ $\sum i = 1^n p_i = 1$ Superposition $\alpha_1|x_1\rangle + \cdots + \alpha_n|x_n\rangle$ $\sum_{i=1}^n |\alpha_i|^2 = 1$, d.h. $|\alpha_i|^2WS$ -Verteilung. Trotzdem fundamental verschieden!

Beispiel: Quanten-Münzwurf:

$$|Kopf\rangle \mapsto \frac{1}{\sqrt{2}}|Kopf\rangle + \frac{1}{\sqrt{2}}|Zahl\rangle |Zahl\rangle \mapsto \frac{1}{\sqrt{2}}|Kopf\rangle - \frac{1}{\sqrt{2}}|Zahl\rangle$$

Einfacher Münzwurf liefert Kopf oder Zahl mit WS jeweils $\frac{1}{2}$ Zweifacher Münzwurf:

- Amplituden von $|Kopf\rangle$ summieren sich zu $1 \to \text{positive Interferenz}$
- Amplituden von $|Zahl\rangle$ summieren sich zu $0 \to \text{negative Interferenz}$

Strategie: Statt die Ws. unerwünschter Konfiguration klein zu halten, kann man auch deren Amplituden gegenseitig auslöschen.

Man beachte: Superposition $\alpha_1|x_1\rangle + \cdots + \alpha_n|x_n\rangle$ liefert x_i mit $Ws|\alpha_i|^2$ Wechsel zu anderer orthonormaler Basis $|x_1'\rangle, \ldots, |x_n'\rangle$ mit $|x_1'\rangle = \alpha_1|x_1\rangle + \cdots + \alpha_n|x_n\rangle$ liefert x_1' mit Ws1.

3.1 Zustandsübergänge

Da Quantenzustände stets Einheitsvektoren sind: längenerhaltene Abbildung Aus den Gesetzen der Quantenphysik: lineare Abbildung, reversibel

Definition (unitäre Abb.): eine lineare Abb. $U:\mathbb{C}^n\to\mathbb{C}^n$ heißt unitär, falls für alle $|x\rangle\in\mathbb{C}^n$ gilt: $||x\rangle|=\sqrt{\langle x|x\rangle}=\sqrt{\langle U||x\rangle|U|x\rangle}>=|U||x\rangle|$ Eine Matrix heißt unitär falls $(U^*)^T=U^{-1}$

Satz: Sei $U \in \mathbb{C}^{m \times m}$ eine unitäre Matrix. Dann gilt für alle $|x\rangle \in \mathbb{C}^m : |U|x\rangle| = ||x\rangle|$. D.h. U beschreibt eine unitäre Abbildung.

4

Beweis: Lineare Algebra: Für jedes
$$A \in \mathbb{C}^{m \times m}, |x\rangle, |y\rangle \in \mathbb{C}^m$$
 gilt: $\langle x|A|y\rangle = \langle (A^*)^T|x\rangle||y\rangle\rangle$ $\Rightarrow |U|x\rangle| = \sqrt{\langle U|x\rangle|U|x\rangle\rangle} = \sqrt{\langle U^*\rangle^T} U|x\rangle||x\rangle\rangle = \sqrt{\langle x|x\rangle} = ||x\rangle|$

Beispiel: Hadamard-Walsh-Matrix $W_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$

Übung: $W_2(W_2^*)^T = I$

Anmerkung: W_2 Beschreibt "Quanten-Münzwurf"

3.2 Entwicklung eines Quantenbits

Sei
$$|0\rangle = (1,0)^T, |1\rangle = (0,1)^T, U = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \text{ d.h.} |0\rangle \stackrel{U}{\longmapsto} a|0\rangle + b|1\rangle$$

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} c \\ d \end{pmatrix} = c \begin{pmatrix} 1 \\ 0 \end{pmatrix} + d \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \text{ d.h.} |1\rangle \stackrel{U}{\longmapsto} c|0\rangle + d|1\rangle$$

3.3 Beispiele unitärer Abbildungen

Beispiel 1 (Quanten-Not):
$$M_{\neg} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 M_{\neg} ist unitär, $(M_{\neg}^*)^T = M_{\neg}, M_{\neg}^2 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$
 $(1,0) \mapsto (0,1)$
 $(0,1) \mapsto (1,0)$ d.h. $|0\rangle \mapsto |1\rangle$
 $(0,1) \mapsto (1,0)$ d.h. $|1\rangle \mapsto |0\rangle$

Beispiel 2 (Wurzel des Not): $\sqrt{M_{\neg}} = \begin{pmatrix} \frac{1+i}{2} & \frac{1-i}{2} \\ \frac{1-i}{2} & \frac{1+i}{2} \end{pmatrix}$

$$\begin{split} |0\rangle & \stackrel{\sqrt{M_{7}}}{\Longrightarrow} \frac{1+i}{2}|0\rangle + \frac{1-i}{2}|1\rangle & \stackrel{\sqrt{M_{7}}}{\Longrightarrow} \frac{1+i}{2}(\frac{1+i}{2}|0\rangle + \frac{1-i}{2}|1\rangle) + \frac{1-i}{2}(\frac{1-i}{2}|0\rangle + \frac{1+i}{2}|1\rangle) \\ &= ((\frac{1+i}{2})^{2} + (\frac{1-i}{2})^{2})|0\rangle + 2\frac{1-i^{2}}{4}|1\rangle \\ &= \frac{1+2i+i^{2}+1-2i+i^{2}}{4}|0\rangle + \frac{4}{4}|1\rangle = |1\rangle \end{split}$$

Äqivalent $|1\rangle \stackrel{\sqrt{M_{\neg}}}{\longmapsto} \frac{1-i}{2}|0\rangle + \frac{1+i}{2}|1\rangle \stackrel{\sqrt{M_{\rightarrow}}}{\longmapsto} |0\rangle$ wegen $\left|\frac{1+i}{2}\right|^2 = \left|\frac{1-i}{2}\right|^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ Übung: $\sqrt{M_{\neg}}$ ist unitär, $(\sqrt{M_{\neg}})^2 = M_{\neg}$.

Beispiel 3 (Haddamard-Walsh Matrix $W_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

$$|0\rangle \xrightarrow{W_2} \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \xrightarrow{W_2} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle\right)$$

$$= \left(\frac{1}{2} + \frac{1}{2}\right)|0\rangle + \left(\frac{1}{2} - \frac{1}{2}\right)|1\rangle = |0\rangle$$

$$\begin{aligned} \textbf{Beispiel 4 (Flip)} \ \ F &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ & |0\rangle \mapsto |0\rangle, |1\rangle \mapsto -|1\rangle \\ & \text{Allgemein: } F_{\Theta} &= \begin{pmatrix} 1 & 0 \\ 0 & e^{i\Theta} \end{pmatrix} \\ & |0\rangle \mapsto |0\rangle, |1\rangle \mapsto e^{i\Theta} |1\rangle, \text{ Man beachte: } F_{\pi} = F \end{aligned}$$

Definition (Äquivalenz von Zuständen) Zwei Zustände $|x\rangle, |y\rangle \in \mathbb{C}^n$ heißen genau dann <u>äquivalent</u>, wenn gilt: $|x\rangle = e^{i\Theta}|y\rangle$

Flip transformiert $|1\rangle$ in einen äquivalenten Zustand. Messung von $|1\rangle$ mit selber Ws.

Übung:
$$U = \begin{pmatrix} i\cos\Theta & -i\sin\Theta \\ i\sin\Theta & i\cos\Theta \end{pmatrix}$$
 ist unitär

Der Zustand eines 2-Qbit-Systems ist ein Einheitsvektor im \mathbb{C}^4

4 Exkurs über Tensorprodukte

Definition (Tensorprodukt) Seien $|x\rangle = (x_1, \dots, x_n) \in \mathbb{C}^n, |y\rangle = (y_1, \dots, y_m) \in \mathbb{C}^m$. Das Tensorprodukt von $|x\rangle$ und $|y\rangle$ ist definiert als:

$$|x\rangle\otimes|y\rangle=(x_1y_1,x_1y_2,\ldots,x_1y_m,x_2y_1,\ldots,x_2y_m,\ldots,x_ny_1,\ldots,x_ny_m)\in\mathbb{C}^{nm}$$

Beispiel: $\bullet |0\rangle = (1,0)^T, |1\rangle = (0,1)^T$ $|0\rangle \otimes |1\rangle = (0,1,0,0)^T$

•
$$|x\rangle = \frac{1}{\sqrt{2}}(1, -1)^T, |y\rangle = \frac{1}{\sqrt{2}}(1, 1)^T$$

 $|x\rangle \otimes |y\rangle = \frac{1}{2}(1, 1, -1, -1)^T$

Man beobachte: $|x\rangle \otimes |y\rangle \neq |y\rangle \otimes |x\rangle$

4.1 Rechenregeln für das Tensorprodukt

• Distributivität:

$$\forall |x\rangle \in \mathbb{C}^n, |y\rangle, |z\rangle \in \mathbb{C}^m, |x\rangle \otimes (|y\rangle + |z\rangle) = |x\rangle \otimes |y\rangle + |x\rangle \otimes |z\rangle$$
$$\forall |x\rangle, |y\rangle \in \mathbb{C}^n, |z\rangle \in \mathbb{C}^m, (|x\rangle + |y\rangle) \otimes |z\rangle = |x\rangle \otimes |z\rangle + |y\rangle \otimes |z\rangle$$

• Skalare Multiplikation:

$$\forall |x\rangle \in \mathbb{C}^n, |y\rangle, \in \mathbb{C}^m, c \in \mathbb{C} : (c|x\rangle) \otimes |y\rangle = c(|x\rangle \otimes |y\rangle) = |x\rangle \otimes (c|y\rangle)$$

• Skalarprodukt:

$$\forall \ |v\rangle, |x\rangle \in \mathbb{C}^n, |y\rangle, |z\rangle \in \mathbb{C}^m, \langle |v\rangle \otimes |y\rangle ||x\rangle \otimes |z\rangle \rangle = \langle v|x\rangle \cdot \langle y|z\rangle$$

• Norm des Tensorprodukts:

$$\forall |x\rangle \in \mathbb{C}^n, |y\rangle \in \mathbb{C}^m : ||x\rangle \otimes |y\rangle|^2 = ||x\rangle|^2 \cdot ||y\rangle|^2$$

Lemma: Sei $|x_1\rangle, \ldots, |x_n\rangle \in \mathbb{C}^n$ eine orthonormale Basis des \mathbb{C}^n und $|y_1\rangle, \ldots, |y_m\rangle \in \mathbb{C}^m$ eine orthonormale Basis des \mathbb{C}^m . Dann ist

 $|x_1\rangle\otimes|y_1\rangle, |x_1\rangle\otimes|y_2\rangle, \dots, |x_1\rangle\otimes|y_m\rangle, |x_2\rangle\otimes|y_1\rangle, \dots, |x_n\rangle\otimes|y_m\rangle\in\mathbb{C}^{mn}$ eine orthonormale Basis des \mathbb{C}^{nm}

Beweis: Für $|x_i\rangle, |y_j\rangle$ gilt:

$$||x_i\rangle \otimes |y_j\rangle| = ||x_i\rangle| \cdot ||y_j\rangle| = 1 \cdot 1 = 1$$

Weiterhin sind die Vektoren paarweise orthogonal:

$$\langle |x_i\rangle \otimes |y_j\rangle ||x_k\rangle \otimes |y_l\rangle \rangle = \langle x_i||x_k\rangle \cdot \langle y_j||y_l\rangle = 0 \ \forall \ i \neq k \ \text{oder} \ j \neq l.$$

Beispiel:

$$|0\rangle = (1,0)^{T}, |1\rangle = (0,1)^{T} \qquad |x\rangle = \frac{1}{\sqrt{2}} (1,-1)^{T}, |y\rangle = \frac{1}{\sqrt{2}} (1,1)^{T}$$

$$|0\rangle \otimes |0\rangle = (1,0,0,0)^{T} \qquad |x\rangle \otimes |x\rangle = \frac{1}{2} (1,-1,-1,1)^{T}$$

$$|0\rangle \otimes |1\rangle = (0,1,0,0)^{T} \qquad |x\rangle \otimes |y\rangle = \frac{1}{2} (1,1,-1,-1)^{T}$$

$$|1\rangle \otimes |0\rangle = (0,0,1,0)^{T} \qquad |y\rangle \otimes |x\rangle = \frac{1}{2} (1,-1,1,-1)^{T}$$

$$|1\rangle \otimes |1\rangle = (0,0,0,1)^{T} \qquad |y\rangle \otimes |y\rangle = \frac{1}{2} (1,1,1,1)^{T}$$

Notation: Seien $|x\rangle \in \mathbb{C}^n$, $|y\rangle \in \mathbb{C}^m$. Wir bezeichnen $|x\rangle \otimes |y\rangle$ abkürzend als $|xy\rangle$.

Insbesondere gilt: $|0\rangle \otimes |0\rangle = |00\rangle, |0\rangle \otimes |1\rangle = |01\rangle$, usw.

5 2-Quantum Register

Bezeichne $|00\rangle = (1,0,0,0)^T, |01\rangle = (0,1,0,0)^T, |10\rangle = (0,0,1,0)^T, |11\rangle = (0,0,0,1)^T$ eine orthonormale Basis dez \mathbb{C}^4 .

5.1Zustand eines 2-Qubit Systems

Ein Zustand eines 2-Qubit Systems ist ein Einheitsvektor $|v\rangle = c_0|00\rangle + c_1|10\rangle + c_2|10\rangle + c_3|11\rangle \in \mathbb{C}^4 \text{ mit } c_0, c_1, c_2, c_3 \in \mathbb{C}$ Es gilt: $|v\rangle$ ist ein Einheitsvektor $\Leftrightarrow |c_0|^2 + |c_1|^2 + |c_2|^2 + |c_3|^2 = 1$ D.h. die Amplitudenquadrate liefern eine Ws-Verteilung.

Messung eines 2-Qubit Systems: Messung von $|v\rangle$ liefert:

- Basiszustand $|00\rangle$ mit $Ws.|c_0|^2$
- Basiszustand $|01\rangle$ mit $Ws.|c_1|^2$
- Basiszustand $|10\rangle$ mit $Ws.|c_2|^2$
- Basiszustand $|11\rangle$ mit $Ws.|c_3|^2$

Nach Messung befindet sich das 2-Qubit System im gemessenen Basiszustand. (Kollaps der Wellenfunktion, irreversibel)

Messung eines einzelnen Qubits eines 2-Qubit Systems: Messung des 1. Qubits von $|1\rangle$ liefert:

- $|0\rangle$ mit $Ws.|c_0|^2 + |c_1|^2$
- $|1\rangle$ mit $Ws.|c_2|^2 + |c_3|^2$

Nach der Messung befindet sich das System im Zustand:

- $\frac{c_0|00\rangle+c_1|01\rangle}{\sqrt{|c_0|^2+|c_1|^2}}$ falls $|0\rangle$ im ersten Qubit gemessen wurde
- $\frac{c_2|10\rangle+c_3|11\rangle}{\sqrt{|c_2|^2+|c_3|^2}}$ falls $|1\rangle$ im ersten Qubit gemessen wurde

Man beachte:
$$\left| \frac{c_0|00\rangle + c_1|01\rangle}{\sqrt{|c_0|^2 + |c_1|^2}} \right| = \frac{1}{\sqrt{|c_0|^2 + |c_1|^2}} \cdot |c_0|00\rangle + c_1|01\rangle = \frac{1}{\sqrt{|c_0|^2 + |c_1|^2}} \cdot \sqrt{|c_0|^2 + |c_1|^2} = 1$$

D.h. der neue Zustand ist wieder ein Einheitsvektor im \mathbb{C}^4

Separabel/Verschränkt

Definition: Wir nennen den Zustand $|z\rangle \in \mathbb{C}^4$ eines 2-Qubit Systems separabel, falls $|z\rangle = |x\rangle \otimes |y\rangle$ für $|x\rangle, |y\rangle \in \mathbb{C}^2.$

Ein Zustand, der nicht separabel ist, heißt verschränkt.

Beispiel (separabler Zustand): $|z\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$ ist separabel

Gesucht: $\alpha_0, \alpha_1, \beta_0, \beta_1 \in \mathbb{C}$ mit $|z\rangle = (\alpha_0|0\rangle + \alpha_1|1\rangle) \otimes (\beta_0|0\rangle + \beta_1|1\rangle) = \alpha_0\beta_0|00\rangle + \alpha_0\beta_1|01\rangle + \alpha_0\beta_1|$ $\alpha_1\beta_0|10\rangle + \alpha_1\beta_1|11\rangle.$

Gleichungssystem
$$\begin{bmatrix} \alpha_0 \beta_0 = \frac{1}{2} \\ \alpha_0 \beta_1 = \frac{1}{2} \\ \alpha_1 \beta_0 = \frac{1}{2} \\ \alpha_1 \beta_1 = \frac{1}{2} \end{bmatrix}$$
 erfüllt für $\alpha_0 = \beta_0 = \alpha_1 = \beta_1 = \frac{1}{\sqrt{2}}$ (ebenso z.B. für $-\frac{1}{\sqrt{2}}$).

Frage: Wie groß ist die Ws., $|0\rangle$ im 1. Qubit zu messen?

$$|z\rangle = \alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle$$

$$|z\rangle = \alpha_0\beta_0|00\rangle + \alpha_0\beta_1|01\rangle + \alpha_1\beta_0|10\rangle + \alpha_1\beta_1|11\rangle$$
Messung von $|0\rangle$ im 1. Qubit mit Ws.: $|\alpha_0\beta_0|^2 + |\alpha_0\beta_1|^2 = |\alpha_0|^2(|\beta_0|^2 + |\beta_1|^2) = |\alpha_0|^2$

Nach Messung von
$$|0\rangle$$
 befindet sich das 2-Qubit System im Zustand
$$\frac{\alpha_0\beta_0|00\rangle+\alpha_0\beta_1|01\rangle}{\sqrt{|\alpha_0\beta_0|^2+|\alpha_0\beta_1|^2}} = \frac{\alpha_0|0\rangle\otimes(\beta_0|0\rangle+\beta_1|1\rangle)}{\sqrt{|\alpha_0|^2(|\beta_0|^2+|\beta_1|^2)}} = \underbrace{\frac{\alpha_0}{\sqrt{|\alpha_0|^2}}|0\rangle}_{\text{äquivalent zu }|0\rangle} \otimes(\beta_0|0\rangle+\beta_1|1\rangle)$$

Analog: • Mit Ws. $|\alpha_1|^2$ Messung $|1\rangle$ im 1. Qubit. Nach messung: $|1\rangle \otimes (\beta_0|0\rangle + \beta_1|1\rangle)$

- Mit Ws. $|\beta_0|^2$ Messung $|0\rangle$ im 2. Qubit. Nach messung: $(\alpha_0|0\rangle + \alpha_1|1\rangle) \otimes \beta_0|0\rangle)$
- Mit Ws. $|\beta_1|^2$ Messung $|1\rangle$ im 2. Qubit. Nach messung: $(\alpha_0|0\rangle + \alpha_1|1\rangle) \otimes \beta_1|1\rangle)$

Man beachte: Bei separablen 2-Qubit Systemen können die einzelnen Qubits unabhängig voneinander betrachtet werden.

Beispiel (verschränkter Zustand): $|z\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Schreibe
$$|z\rangle = (\alpha_0|0\rangle + \alpha_1|1\rangle) \otimes (\beta_0|0\rangle + \beta_1|1\rangle)$$

 \Rightarrow Gleichungssystem
$$\begin{vmatrix} \alpha_0\beta_0 = \frac{1}{\sqrt{2}} \\ \alpha_0\beta_1 = 0 \\ \alpha_1\beta_0 = 0 \\ \alpha_1\beta_1 = \frac{1}{\sqrt{2}} \end{vmatrix} \Rightarrow \alpha_1 \neq 0 \land \beta_0 \neq 0 \Rightarrow \alpha_1 = 0 \lor \beta_0 = 0 \Rightarrow \alpha_1 = 0 \lor \beta_0 = 0 \Rightarrow \alpha_1 \neq 0 \land \beta_1 \neq 0$$
inicht erfüllbar.

Bezeichnung (EPR Paar): Ein 2-Qubit System im Zustand $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ wird als EPR-Paar (Einstein, Podolsky, Rosen) bezeichnet.

Messung des 1. Qubits eines EPR-Paars liefert: $|0\rangle$ mit $Ws.\frac{1}{2}$, nachher im Zustand

D.h. aber: Messung des 2. Qubits liefert ebenfalls Null! (Qubits sind abhängig).

Fakt: 2-Qubit Systeme entwickeln sich gemäß unitärer Abbildung $U \in \mathbb{C}^{4\times 4}$

$$\textbf{Beispiel (CNOT):} \ \ M_{\texttt{CNOT}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{array}{c} |00\rangle & \mapsto & |00\rangle \\ |01\rangle & \mapsto & |01\rangle \\ |10\rangle & \mapsto & |11\rangle \\ |11\rangle & \mapsto & |10\rangle \\ \end{array}$$

Controlled-Not: Das zweite Bit wird genau dann invertiert, wenn das 1. Bit (Kontrollbit) gesetzt ist. Man überprüfe, dass $M_{\texttt{CNOT}} \cdot (M_{\texttt{CNOT}}^*)^T = I_2$

Definition: $U \in \mathbb{C}^{m \times m}$ heißt Permutationsmatrix $\Leftrightarrow U$ in jeder Zeile und Spalte genau eine Eins und sonst Nullen erhält.

Beispiel: $M_{\texttt{CNOT}}$ ist Permutationsmatrix.

Übung: Permutationsmatrizen sind unitär.

Bez.: Eine unitäre Abbildung, die nur auf einen Teil der Qubits agiert, heißt lokal unitär.

Sei $|z\rangle = (c_0|00\rangle + c_2|10\rangle + c_3|11\rangle)$ ein 2-Qubit und $A, B \in \mathbb{C}^{2\times 2}$ unitär.

 $c_0(A|0\rangle \otimes B|0\rangle) + c_1(A|0\rangle + B|1\rangle) + c_2(A|1\rangle + B|0\rangle) + c_3(A|1\rangle + B|1\rangle)$ heißt Anwendung von A auf das 1. Qubit und Anwendung von B auf das 2. Qubit.

Spezialfälle: • $B = I_2$ liefert eine lokal unitäre Abb. auf dem 1. Qubit

• $A = I_2$ liefert eine lokal unitäre Abb. auf dem 2. Qubit

5.3 Tensorprodukt bzw. Kroneker-Produkt von Matrizen

Dann ist das Tensorprodukt von
$$A$$
 und B definiert als:
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mm} \end{pmatrix} \in \mathbb{C}^{m \times m}, B = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} \in \mathbb{C}^{n \times n}$$

$$A \otimes B = \begin{pmatrix} a_{11}B & \cdots & a_{1m}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mm}B \end{pmatrix} \in \mathbb{C}^{mn \times mn}$$

Beispiel:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}, A \otimes B = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{pmatrix}$$

Satz: Seien $A, B \in \mathbb{C}^{2 \times 2}$ unitär. Ferner sei $|z\rangle \in \mathbb{C}^4$ ein 2-Qubit System. Die Anwendung von A auf das 1. Qubit und B auf das 2. Qubit wird beschrieben durch: $(A \otimes B)|z\rangle$

Beweis: Für $|00\rangle$, andere Basiszustände folgen analog:

$$(A \otimes B)|00\rangle = a_{11}b_{11}|00\rangle + a_{11}b_{21}|01\rangle + a_{21}b_{11}|10\rangle + a_{21}b_{21}|11\rangle$$

$$= a_{11}|0\rangle \otimes (b_{11}|0\rangle + b_{21}|1\rangle) + a_{21}|1\rangle \otimes (b_{11}|0\rangle + b_{21}|1\rangle)$$

$$= (a_{11}|0\rangle + a_{21}|1\rangle) \otimes (b_{11}|0\rangle + b_{21}|1\rangle)$$

$$= A|0\rangle \otimes B|0\rangle$$

Aus der Linearität von $A \otimes B$ folgt: Gilt obige Identität für alle Basiszustände, so gilt sie auch für alle Linearkombinationen von Basiszuständen.

 \Rightarrow Identität gilt für beliebiges $|z\rangle \in \mathbb{C}^4$

Man beachte: Lokal unitäre Abb. auf separablen Zuständen $|z\rangle = |x\rangle \otimes |y\rangle$ liefert stets einen separablen Zustand: $|z\rangle \xrightarrow{A\otimes B} A|x\rangle \otimes B|y\rangle$.

D.h. lokal unitäre Operationen allein können keine Verschränkung erzeugen.

Beispiel 1: Anwendung von W_2 auf das 1. Qubit: $W_2 \otimes I_2$

$$W_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, I_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$W_{2} \otimes I_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}, I_{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$W_{2} \otimes I_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \quad |00\rangle \mapsto \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle = \underbrace{\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)}_{W_{2}} \otimes |0\rangle$$

Beispiel 2: $W_4 = W_2 \otimes$

Zustandsübergang für Basiszustand
$$|x_0x_1\rangle, x_0, x_1 \in \{0, 1\}$$
:
 $W_4|x_0x_1\rangle = \frac{1}{2}(|00\rangle + (-1)^{x_1}|01\rangle + (-1)^{x_0}|10\rangle + (-1)^{x_0+x_1}|11\rangle)$

$$= \underbrace{\frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x_0}|1\rangle)}_{W_2|x_1\rangle} \otimes \underbrace{\frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x_1}|1\rangle)}_{W_2|x_1\rangle}$$

Wissen bereits: Nicht jeder 2-Qubit Zustand ist Tensorprodukt zweier 1-Qubit Zustände. Analog gilt:

Satz: Nicht jede unitäre Abb. $U \in \mathbb{C}^{4\times 4}$ ist Tensorprodukt unitärer Matrizen $A, B \in \mathbb{C}^{2\times 2}$

Beweis: M_{CNOT} ist unitär.

Annahme: $M_{\mathtt{CNOT}}$ sei Tensorprodukt zweier unitärer Abbildungen, d.h. $M_{\mathtt{CNOT}} = A \otimes B$. Beachte: $|00\rangle \overset{W_2 \otimes I_2}{\longmapsto} \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle) \overset{A \otimes B}{\longmapsto} \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$. D.h. wir erhalten ein <u>verschränktes</u> EPR-Paar durch lokal unitäre Abbildungen auf dem separablen Zustand $|00\rangle$. 4 5.3

No-Cloning Theorem 5.4

Definition (Quanten-Kopiermaschine): Sei $|x\rangle\in\mathbb{C}^2$ ein Qubit. Eine Quanten-Kopiermaschine ist eine unitäre Abbildung U mit: $U(|z\rangle \otimes |x\rangle) = |z\rangle \otimes |z\rangle$ für alle Qubits $|z\rangle \in \mathbb{C}^2$

Satz (No-Cloning Theorem): Es gibt keine Quantenkopiermaschine.

Beweis: Annahme: Es gibt Quanten-Kopiermaschine U. Seien $|0\rangle, |1\rangle$ Basiszustände. Aufgrund der Kopiereigenschaft gilt: $U(W_2|0) \otimes |1\rangle = W_2|0\rangle \otimes W_2|0\rangle$ (ist seperabel).

Aufgrund der Linearität von U gilt aber ebenfalls:

 $U(\widetilde{W_2}|0\rangle\otimes|1\rangle) = U(\frac{1}{\sqrt{2}}|01\rangle + \frac{1}{\sqrt{2}}|11\rangle) = \frac{1}{\sqrt{2}}(U|01\rangle + U|11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ (ist verschränkt, (EPR-Paar)). \(\xi \)

Man beachte:
$$M_{\texttt{CNOT}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
 ist Kopiermaschine für Basiszustände $|0\rangle, |1\rangle,$

Allerdings gilt $(\alpha_0|0\rangle + \alpha_1|1\rangle)|0\rangle \stackrel{M_{\text{CNOT}}}{\longmapsto} \alpha_0|00\rangle + \alpha_1|11\rangle \neq (\alpha_0|0\rangle + \alpha_1|1\rangle)(\alpha_0|0\rangle + \alpha_1|1\rangle)$ für $\alpha_0, \alpha_1 \neq 0$.

6 n-Qubit Zustandssysteme (Register)

Sei $|0\rangle$, $|1\rangle$ eine orthonormale Basis des \mathbb{C}^2 .

Gemäs Basis-Lemma (4.1): $|0\rangle \otimes |0\rangle, |0\rangle \otimes |1\rangle, |1\rangle \otimes |0\rangle, |1\rangle \otimes |1\rangle$ ist orthonormale Basis des \mathbb{C}^4 . Erneute Anwendung des Lemmas liefert eine orthonormale Basis $|b_0b_1b_2\rangle$, $b_i \in \{0,1\}$ des \mathbb{C}^{2^3} . Induktiv: $|b_0 \dots b_{n-1}\rangle$, $b_i \in \{0,1\}$ ist orthonormale Basis des \mathbb{C}^{2^n} .

Definition: Ein
$$n$$
-Qubit System ist ein Einheitsvektor im \mathbb{C}^{2^n} der Form $|z\rangle = \sum_{x\in\{0,1\}^n} c_x |x\rangle$ mit $c_x\in\mathbb{C}, \sum_{x\in\{0,1\}^n} |c_x|^2 = 1.$

Notation: Wir interpretieren $x = x_0 \dots x_{n-1}$ als Binärdarstellung der natürlichen Zahl $\sum_{i=0}^{n-1} x_i 2^{n-1-i}$.

Damit schreiben wir auch $|z\rangle = \sum_{i=1}^{2^{n}-1} c_{i}|i\rangle$.

 • n-Qubit Systeme entwickelt sich gemäß unitärer Abb. $U:\mathbb{C}^{2^n}\to\mathbb{C}^{2^n}$ Zustandsübergang:

• Lokal unitäre Abbildungen operieren auf einzelnen Qubits des Systems.

• n Qubits werden durch 2^n Amplituden beschrieben.

 $\bullet\,$ Unitäre Matrizen $U\in\mathbb{C}^{2^n\otimes 2^n}$ haben Beschränkungsgröße $2^{2n}.$

D.h. die Beschreibungsgröße ist exponentiell in der physikalischen Größe n.

Feyman: "Quantenrechner sollten nicht effizient auf klassischen Rechnern simulierbar sein."

Definition (Separabilität): Ein n-Qubit $|z\rangle \in \mathbb{C}^{2^n}$ heißt separabel gdw. $|z\rangle = |x_1\rangle \otimes |x_2\rangle \otimes \cdots \otimes |x_n\rangle$ für $|x_i\rangle \in \mathbb{C}^2$.

Nicht separable Zustände heißen verschränkt.

Beispiel: $|z\rangle = \frac{1}{\sqrt{3}}(|000\rangle - |001\rangle - |111\rangle)$ ist verschränkt.

Messung des 1. Qubits: $\begin{vmatrix} 0 \end{pmatrix}$ mit $Ws_{\frac{1}{3}}^2$ $\begin{vmatrix} 0 \end{pmatrix}$ mit $Ws_{\frac{1}{3}}^2$

- $|0\rangle$ gemessen: Zustand $\frac{\frac{1}{\sqrt{3}}(|000\rangle |001\rangle)}{\sqrt{\frac{2}{3}}} = \frac{1}{\sqrt{2}}(|000\rangle |001\rangle)$
- $|1\rangle$ gemessen: Zustand $\frac{\frac{1}{\sqrt{3}}|111\rangle}{\sqrt{\frac{1}{3}}} = |111\rangle$.

7 Quanten-Protokolle

7.1 Quantenteleportation

• Alice besitzt Qubit $|z\rangle = c_0|0\rangle + c_1|1\rangle$. Amplituden c_0, c_1 sind Alice unbekannt.

• Alice kann über klassischen Kanal mit Bob kommunizieren (d.h. Bits, keine Qubits)

• Alice und Bob teilen sich EPR-Paar $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$; 1. Bit ist Alices, 2. Bit gehört Bob.

Ziel: Alice sendet $|z\rangle$ an Bob.

Probleme: • Alice kennt Amplituden nicht.

- Messung zerstört Wellenfunktion.
- Alice kann keine Kopien von $|z\rangle$ erzeugen, um Amplituden durch hinreichend viele Messungen zu approximieren. Würde auch nur $|c_0|^2$, $|c_1|^2$ liefern, nicht c_0 , c_1 .
- Gibt es einen Algorithmus zur Rekonstrutkion von Quantenbits aus klassischer Information, so existiert ein Quanten-Kopierer. \(\) (No-Cloning-Theorem (5.4))

Lösung: Nutze Verschränkung zur Übertragung.

Zusammengesetzter Zustand von $|z\rangle$ und $|e\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$:

$$|z\rangle \otimes |e\rangle = (c_0|0\rangle + c_1|1\rangle) \otimes \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
$$= \frac{1}{\sqrt{2}}(c_0|000\rangle + c_0|011\rangle + c_1|100\rangle + c_1|111\rangle)$$

Man beachte: Alice hat Zugriff auf die ersten beiden Qubits, Bob auf das 3. Qubit.

Protokoll für die Teleportation von $|z\rangle$:

- 1. Alice wendet CNOT auf das 2. Qubit mit dem 1. Qubit als Kontrollbit an: $|ze\rangle \stackrel{\mathtt{CNOT}}{\longmapsto} \tfrac{1}{\sqrt{2}} (c_0|000\rangle + c_0|011\rangle + c_1|110\rangle + c_1|101\rangle)$
- 2. Alice wendet nun auf das 1. Qubit die Hadamard-Walsh Transformation \mathcal{W}_2 an: $\frac{1}{\sqrt{2}}(\frac{c_0}{\sqrt{2}}(|0\rangle + |1\rangle)|00\rangle + \frac{c_0}{\sqrt{2}}(|0\rangle + |1\rangle)|11\rangle + \frac{c_1}{\sqrt{2}}(|0\rangle - |1\rangle)|10\rangle + \frac{c_1}{\sqrt{2}}(|0\rangle - |1\rangle)|01\rangle)$ $\begin{array}{l} = \frac{1}{2}(c_0|000\rangle + c_0|100\rangle + c_0|011\rangle + c_0|111\rangle + c_1|010\rangle - c_1|110\rangle + c_1|001\rangle - c_1|101\rangle) \\ = \frac{1}{2}(|00\rangle(c_0|0\rangle + c_1|1\rangle) + |01\rangle(c_0|1\rangle + c_1|0\rangle) + |10\rangle(c_0|0\rangle - c_1|1\rangle) + |11\rangle(c_0|1\rangle - c_1|0\rangle)) \end{array}$
- 3. Alice misst die ersten beiden Qubits. Sie erhält jeweils mit $Ws^{\frac{1}{4}}$:

$$\begin{array}{c|c} \text{Qubit} & \text{Zustand nach Messung} \\ \hline |00\rangle & |00\rangle (c_0|0\rangle + c_1|1\rangle \\ |01\rangle & |01\rangle (c_0|1\rangle + c_1|0\rangle \\ |10\rangle & |10\rangle (c_0|0\rangle - c_1|1\rangle \\ |11\rangle & |11\rangle (c_0|1\rangle - c_1|0\rangle \\ \end{array}$$

Alice sendet Messergebnis 00, 01, 10 oder 11 an Bob.

- 4. Abhängig von Messergebnis führt Bob folgende Operation aus:
 - |00\): Bobs Qubit ist bereits im gewünschten Zustand.
 - $|01\rangle$ NOT Operation $c_0|1\rangle + c_1|0\rangle \stackrel{\text{NOT}}{\longmapsto} c_0|0\rangle + c_1|1\rangle$

 - $|10\rangle \text{ Flip Operation: } c_0|0\rangle c_1|1\rangle \stackrel{\mathsf{Flip}}{\longmapsto} c_0|0\rangle + c_1|1\rangle \\ |11\rangle \text{ Flip } \circ \text{ NOT } c_0|1\rangle c_1|0\rangle \stackrel{\mathsf{Flip}}{\longmapsto} c_0|0\rangle + c_1|1\rangle$

Beobachtung: • Alices Zustand $|z\rangle$ wird übertragen, nicht kopiert.

- Es wird nur der Zustand übertragen, kein physikalisches Qubit
- Bob benötigt Alices Messung, um $|z\rangle$ zu erhalten.

Superdense Coding (Bennet, Wiesner 1992) 7.2

• Alice und Bob teilen sich ein EPR-Paar $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ Szenario:

• Alice & Bob besitzen einen Quantenkanal zum Übertragen von Qubits.

Ziel: übertrage zwei klassische Bits b_0, b_1 mit Hilfe eines einzelnen Qubits.

Protokoll Superdense Codding:

1. Abhängig von b_0, b_1 berechnet Alice:

Falls
$$b_0 = 1$$
: Flip auf 1. Qubit

Falls $b_1 = 1$: NOT auf 1. Qubit

$$\begin{array}{c|c|c} Talls & b_1 & \text{Zustand} \\ \hline b_0 & b_1 & \text{Zustand} \\ \hline 0 & 0 & \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ 0 & 1 & \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \\ 1 & 0 & \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle \\ 1 & 1 & \frac{1}{\sqrt{2}}(|10\rangle - |01\rangle \\ \hline \Delta lice condet |c\rangle \text{ an Reb.} \\ \end{array}$$

Alice sendet $|z\rangle$ an Bob.

2. Bob wendet die folgende unitäre Matrix U auf $|z\rangle$ an.

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0\\ 1 & 0 & 0 & -1\\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \stackrel{U}{\longmapsto} \frac{1}{2}(|00\rangle + |10\rangle + |00\rangle - |10\rangle) = |00\rangle \text{ Interpretation: } (b_0, b_1) = (0, 0)$$

$$\frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \stackrel{U}{\longmapsto} \frac{1}{2}(|00\rangle + |10\rangle - |00\rangle + |10\rangle) = |01\rangle \text{ Interpretation: } (b_0, b_1) = (0, 1)$$

$$\frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \stackrel{U}{\longmapsto} \frac{1}{2}(|00\rangle + |10\rangle - |00\rangle + |10\rangle) = |10\rangle \text{ Interpretation: } (b_0, b_1) = (1, 0)$$

$$\frac{1}{\sqrt{2}}(|10\rangle - |01\rangle) \stackrel{U}{\longmapsto} \frac{1}{2}(-|01\rangle + |11\rangle + |01\rangle + |11\rangle) = |11\rangle \text{ Interpretation: } (b_0, b_1) = (1, 1)$$

Quanten Schlüsselaustausch 7.3

One-Time Pad für *n*-Bit Nachricht $m = m_1 m_2 \dots m_n \in \{0, 1\}^n$

Alice
$$(SK = k_1 \dots k_n \in \{0, 1\}^n)$$
 $E_{SK}(m) = m \oplus SK$ Bob $(SK = k_1 \dots k_n \in \{0, 1\}^n)$ $D_{SK}(E_{SK}(m)) = E_{sk}(m) \oplus SK = m \oplus SK \oplus SK = m$

Szenario: • Alice und Bob besitzen Quantenkanal

- Alice und Bob besitzen authentisierten klassischen Kanal
- Kanäle werden belauscht und manipuliert durch Eve.

Ziel: Austausch von n klassischen Bits, so dass

- Eve durch Belauschen keine Information erhält
- Manipulation von Eve entdeckt wird

Einfache Lösung: falls Alice und Bob n EPR-Paare $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ teilen:

Messen in derselben Basis $|0\rangle$, $|1\rangle$ liefert n identische Zufallsbits.

Definition(Z und X-Basis): Wir nennen $|0\rangle$, $|1\rangle$ die Z-Basis des \mathbb{C}^2

Die Basis $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$, die durch Anwendung von W_2 auf die Basisvektoren der Z-Basis entsteht, bezeichnen wir als X-Basis.

• Messung von $\frac{1}{\sqrt{2}}(|0\rangle \pm |1\rangle)$ in Z-Basis liefert $|0\rangle,\,|1\rangle$ jeweils mit $Ws.\frac{1}{2}$.

• Messung von $|0\rangle$ oder $|1\rangle$ in X-Basis liefert $\frac{1}{\sqrt{2}}(|0\rangle \pm |1\rangle)$ jeweils mit $Ws.\frac{1}{2}$.

Idee: Kodiere Bit $a \in \{0,1\}$ entweder in der X-Basis oder in der Z-Basis.

Kodierungstabelle: Bit a Basis b Zustand
$$|z_{ab}\rangle$$
 0 0 $|z_{00}\rangle = |0\rangle$ $|z_{00}\rangle = |1\rangle$ 0 $|z_{10}\rangle = |1\rangle$ $|z_{10}\rangle = |1\rangle$ $|z_{10}\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ $|z_{11}\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

7.3.1 BB84-Protokoll (Bennet-Brassard)

- 1. Alice wählt zufällige 4n-Bit Strings $a=a_1\ldots a_{4n}, a=b_1\ldots b_{4n}\in\{0,1\}^{4n}$. Alice sendet 4n Qubits $|z_{a_ib_i}\rangle, i=1\ldots 4n$ an Bob
- 2. Bob wählt einen zufälligen Bitstring $b'=b'_1\dots b'_{4n}\in\{0,1\}.$ Falls $b_i=0$ Messe $|z_{a_ib_i}\rangle$ zur Z-Basis. Falls $|0\rangle$, setze $a'_i=0$, sonst $a'_i=1$ Falls $b_i=1$ Messe $|z_{a_ib_i}\rangle$ zur X-Basis. Falls $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$, setze $a'_i=0$, sonst $a'_i=1$ Bob erklärt, dass er gemessen hat.
- 3. Alice gibt die Basen b_1, \ldots, b_{4n} bekannt. Für $b_i \neq b_i'$ wird das *i*-te Bit a_i verworfen. Im Erwartungswert bleiben 2n Bits übrig.
- 4. Alice und Bob vergleichen von den 2n übrigen Bits n zufällig gewählte Testbits. Stimmen nicht alle Testbits überein, Abbruch (Manipulationsversuch von Eve). Sonst bilden die restlichen n Bits den geheimen Schlüssel SK.

Korrektheit: Falls keine Manipulation der Qubits vorliegt, gilt $Ws(a_i = a'_i|b_i = b'_i) = 1$, denn Bob misst Basiszustand in der korrekt gewählten Basis.

Sicherheit: Eve erhält nur dann das *i*-te Bit, falls sie $|z_{a_ib_i}\rangle$ misst.

- **1. Fall:** Eve misst zur korrekten Basis mit Ws. $\frac{1}{2}$. In diesem Fall sendet sie $|z_{a_ib_i}\rangle$ an Bob und kennt a_i .
- 2. Fall: Eve misst zur inkorrekten Basis $\bar{b_i}$ mit Ws. $\frac{1}{2}$. Sie sendet $|z_{\tilde{a_i}\hat{b_i}}\rangle$ an Bob, wobei $\tilde{a_i}\in_R\{0,1\}$. Misst Bob in Basis b_i , so erhält er a_i' mit $Ws(a_i'=a_i)=\frac{1}{2}$. D.h. wird das i-te Bit für die Menge der Testbits ausgewählt, erfolgt Abbruch mit $Ws.\frac{1}{2}$.

Damit ist nicht schwer zu zeigen, das Eves Erfolgswahrscheinlichkeit, unbemerkt k bits zu ermitteln exponentiell klein in k ist.

Beobachtungen: • Eve kann Denial-of-Service Angriff durchführen, d.h. Abbruch erzwingen.

• Bei nicht-authentisierten Kanal kann Eve Man-in-the-Middle Angriff durchführen.

Alice:
$$SK_1$$
 BB84 Eve: SK_1, SK_2 Bob: SK_2

7.3.2 BB92-Protokoll (Bennet)

Führe die folgenden Schritte durch, bis n Bits ausgetauscht wurden:

- 1. Alice wählt ein Zufallsbit $a \in_R \{0,1\}$ und sendet: $|z\rangle = \begin{cases} |0\rangle & \text{falls } a = 0 \\ \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) & \text{falls } a = 1 \end{cases}$
- 2. Bob wählt $a' \in_R \{0,1\}$. Bob misst $|z\rangle$ in der
 - Z-Basis für a' = 0: Falls Ergebnis $|0\rangle$, setze b = 0, sonst setze b = 1.
 - X-Basis für a'=1: Falls Ergebnis $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$, setze b=0, sonst setze b=1.

Bob sendet b an Alice

3. Falls b=0: Zurück zu Schritt 1. Falls b=1: Schlüsselbit ist a für Alice, 1-a' für Bob

In jedem Durchlauf wird ein Schlüsselbit generiert gdw. b = 1 gilt.

Satz: Ws. $(b = 1) = \frac{1}{4}$

Beweis: Es gilt

Ws.
$$(b = 1) = \text{Ws.}$$
 $(b = 1|a = a') \cdot \text{Ws.}$ $(a = a') + \text{Ws.}$ $(b = 1|a \neq a') \cdot \text{Ws.}$ $(a \neq a') = 0 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

Denn im Fall a=a' misst Bob stets den von Alice gesendeten Basiszustand (b=0), im Fall $a\neq a'$ misst Bob einen anderen Zustand mit Ws. $\frac{1}{2}$

D.h also, dass wir im Erwartungswert 4n Protokolldurchläufe benötigen, bis n Schlüsselbits generiert sind. Es bleibt zu zeigen, dass die erzeugten Schlüsselbits korrekt sind, d.h a = 1 - a'.

Satz: Ws.
$$(a = 1 - a'|b = 1) = 1$$

Beweis: Es gilt Ws.
$$(a = 1 - a'|b = 1 \cdot \text{Ws.} (b = 1) = \text{Ws.} (b = 1|a = 1 - a') \cdot \text{Ws.} (a = 1 - a')$$

 $\Rightarrow \text{Ws.} (a = 1 - a'|b = 1) = \frac{\text{Ws.} (b = 1|a = 1 - a') \cdot \text{Ws.} (a = 1 - a')}{\text{Ws.} (b = 1)} = \frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{4}} = 1$

D.h. falls b=1, so müssen a und a' verschiedene Bits sein. Damit erhalten Alice und Bob dasselbe Bit a=1-a'

8 Boolesche Schaltkreise, Schaltkreiskomplexitäten

Ziel: Berechne Boolesche Funktion $f_n: \mathbb{F}_2^n \to \mathbb{F}_2^m, n \in \mathbb{N}$

Beispiel: Und
$$\wedge : \mathbb{F}_2^2 \to \mathbb{F}_2, (x_1, x_2) \xrightarrow{\wedge} x_1 \wedge x_2 = x_1 x_2 \text{ bzw. } \mathbb{F}_2^n \to \mathbb{F}_2, (x_1, \dots, x_n) \mapsto (((x_1 \wedge x_2) \wedge x_3) \dots x_n)$$

$$\begin{aligned} \mathbf{Oder} \ \lor : \mathbb{F}_2^2 \to \mathbb{F}_2, (x_1, x_2) &\stackrel{\lor}{\longmapsto} x_1 \lor x_2 = x_1 + x_2 + x_1 x_2 \text{ bzw. } \mathbb{F}_2^n \to \mathbb{F}_2, \\ (x_1, \dots, x_n) &\mapsto (((x_1 \lor x_2) \lor x_3) \dots x_n) \end{aligned}$$

Nicht $\neg : \mathbb{F}_2 \to FZ, x \stackrel{\neg}{\longmapsto} 1 - x$ Schreibweise auch: \overline{x}

 $\textbf{Kopierfunktion} \ \mathtt{c}: \mathbb{F}_2 \to \mathbb{F}_2^2, x \stackrel{\mathtt{c}}{\longmapsto} (x,x)$

$$\textbf{Entscheiden von Sprachen} \ \mathtt{L}: X_\mathtt{L}: \mathbb{F}_2^n \to \mathbb{F}_2, X_\mathtt{L}(\omega) = \begin{cases} 1 & \text{falls } \omega \in \mathtt{L} \\ 0 & \text{sonst} \end{cases}$$

Definition (Boolescher Schaltkreis): Sei S eine Menge von Booleschen Funktionen, die eine konstante Anzahl von Eingabebits auf eine konstante Anzahl von Ausgabebits abbildet (z.b. $S = \{\land, \lor, \neg\}$) Ein Boolescher Schaltkreis über S ist ein azyklischer, gerichteter Graph G = (V, E) mit:

- \bullet Die Knoten V sind gelabelt mit Eingabe-/Ausgabevariablen oder Elementen aus S.
- Eingabeknoten haben Eingrad 0. Ausgabeknoten haben Eingrad 1, Ausgrad 0.
- Knoten mit Label $s \in S, s : \mathbb{F}_2^n \to \mathbb{F}_2^m$ haben Eingrad n und Ausgrad m.
- Die Komplexität des Booleschen Schaltkreises ist definiert als |V| + |E| (Bezüglich S).

Beispiel: Addierer $f(x_1, x_2) = (y_1, y_2)$ mit $y_1 = x_1 \oplus x_2, y_2$ Übertrag

x_1	x_2	y_1	y_2
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1
(x_1)		· (¬_

Komplexität bezüglich $\{\land, \lor, \neg\} : |V| + |E| = 10 + 12 = 22$

$$y_1 = (\overline{x_1} \land x_2) \lor (x_1 \land \overline{x_2})$$

$$y_2 = x_1 \land x_2$$

8.1 Universelle Mengen

Definition (universell): Sei S eine Menge von Booleschen Funktionen, die eine konstante Anzahl von Bits auf eine Konstante Anzahl von Bits abbilden. S ist <u>universell</u>, falls jede Boolesche Funktion $\mathbb{F}_2^n \to \mathbb{F}_2$ durch Verknüpfung von Elementen aus S realisiert werden kann.

Übung: Sei S universell. Dann kann jede Funktion $f: \mathbb{F}_2^n \to \mathbb{F}_2^m$ mittels S realisiert werden.

Satz: $S_U = \{\land, \neg, c\}$ ist eine universelle Menge.

Beweis: Wir definieren die Funktion $M_a, a = (a_1, \dots, a_n) \in \mathbb{F}_2^n$. Vermöge $M_a(x_1, \dots, x_n) = \varphi_1(x_1) \wedge \varphi_2(x_2) \wedge \dots \wedge \varphi_n(x_n)$ für $\varphi_i(x_i) = \begin{cases} x_i & \text{für } a_i = 1 \\ \overline{x_i} & \text{für } a_i = 0 \end{cases}$

D.h. M_a ist die charakteristische Funktion $M_a(x_1,\ldots,x_n)=\begin{cases} 1 & \text{falls } x=a\\ 0 & \text{sonst} \end{cases}$ Sei $\mathtt{T}=\{a\in\mathbb{F}_2^n|f(a)=1\}$. Dann gilt $f=\bigvee_{a\in\mathtt{T}}M_a(x_1,\ldots,x_n)=\lnot(\bigwedge_{a\in\mathtt{T}}\lnot M_a(x_1,\ldots,x_n))$. D.h. wir können f als \lnot,\land -Verknüpfung von Kopien von (x_1,\ldots,x_n) darstellen.

Beispiel (obiger Addierer): Für Ausgabebit y_1 gilt:

T =
$$\{(0,1), (1,0)\} \Rightarrow y_1 = \bigvee_{a \in \mathbb{T}} M_a(x_1 x_2) = (\overline{x_1} \wedge x_2) \vee (x_1 \wedge \overline{x_2}) = \neg(\neg((\overline{x_1} \wedge x_2) \vee (x_1 \wedge \overline{x_2})))$$

= $\neg((\overline{x_1} \wedge x_2) \wedge \overline{(x_1 \wedge \overline{x_2})})$

Beobachtung: Seien S_1, S_2 Mengen von booleschen Funktionen und S_1 universell. Falls jedes $s \in S_1$ durch eine Verknüpfung aus S_2 darstellbar ist, dann ist S_2 universell.

Seien nand $(x_1, x_2) = \overline{x_1 \wedge x_2}$.

Satz: $S = \{\text{nand}, c\}$ ist universell

Beweis: Wir stellen \neg und \wedge als Verknüpfung durch nand-Funktionen dar.

 \neg : nand $(x,x) = \overline{x \wedge x} = \overline{x}$ (Anwendung von c, um x zu duplizieren) \wedge : nand $(\operatorname{nand}(x_1,x_2),\operatorname{nand}(x_1,x_2)) = \operatorname{nand}(\overline{x_1 \wedge x_2},\overline{x_1 \wedge x_2}) = x_1 \wedge x_2$.

8.2 Uniforme / nicht-Uniforme Schaltkreisfamilien

Bezeichnung Wir bezeichnen mit C_n Schaltkreise mit n Eingabeknoten.

Wir nennen $C = \{C_n\}_{n \in \mathbb{N}}$ eine Schaltkreisfamilie.

Definition: Eine boolesche Funktion $f_n, n \in \mathbb{N}$ hat <u>nicht-uniforme</u> Schaltkreiskomplexität $\mathcal{O}(g(n))$ bzgl. einer universellen Menge S, falls es eine Schaltkreisfamilie $\{C_n\}_{n\in\mathbb{N}}$ über S mit Komplexität $\mathcal{O}(g(n))$ gibt, die f_n berechnet.

Beobachtung Nach 8.1 können alle Funktionen $\mathbb{F}_2^n \to \mathbb{F}_2$ mittels einer nicht-uniformen Schaltkreisfamilie $C = \{C_n\}_{n \in \mathbb{N}}$ berechnet werden.

Insbesondere existiert C mit: $C_n = \begin{cases} 1 & \text{falls DTM} \ M_n \ \text{auf Eingabe} \ M_n \ \text{hält} \\ 0 & \text{sonst} \end{cases}$

D.h. C_n entscheidet das im Touringmaschinen-Modell nicht entscheidbare Halteproblem.

Problem: Konstruktion von C_n erfordert die Kenntnis der Funktionswerte der f_n .

Definition (uniformes Modell): Eine Schaltkreisfamilie $\{C_n\}_{n\in\mathbb{N}}$ heißt <u>uniform</u>, falls es eine DTM gibt, die für alle $n\in\mathbb{N}$ bei Eingabe 1^n in Zeit und Platz poly(n) C_n ausgibt. Eine boolesche Funktion $f_n, n\in\mathbb{N}$ hat <u>uniforme</u> Schaltkreiskomplexität $\mathcal{O}(g(n))$, falls es eine uniforme Schaltkreisfamilie $\{C_n\}_{n\in\mathbb{N}}$ gibt, die f_n berechnet.

8.3 Die Klasse \mathcal{P}

Bezeichnung: poly $(n) = \mathcal{O}(n^c)$ für konstantes c.

Definition (\mathcal{P}): Die Klasse \mathcal{P} besteht aus allen booleschen Funktionen $f_n, n \in \mathbb{N}$ mit uniformer Schaltkreiskomplexität poly(n)

Beispiel: $f_n = \bigwedge_{i=1}^n x_i$ hat uniforme Schaltkreiskomplexität $\mathcal{O}(n)$ bezüglich $S_u = \{\land, \neg, c\}$. $f_n = \bigvee_{i=1}^n x_i$ hat uniforme Schaltkreiskomplexität $\mathcal{O}(n)$ bezüglich $S_u = \{\land, \neg, c\}$.

Die Klasse \mathcal{BPP}

Definition (\mathcal{BPP}): Die Klasse \mathcal{BPP} besteht aus allen booleschen Funktionen $f_n, n \in \mathbb{N}$, für die es eine uniforme Schaltkreisfamile $\{C_n\}_{n\in\mathbb{N}}$ gibt mit:

- C_n hat Größe poly(n)
- $\exists m \in \text{poly}(n) : y \in_R \mathbb{F}_2^m \ \forall \ x \in \mathbb{F}_2^n : \text{Ws.}_{y}(C(x,y) = f_n(x)) \geq \frac{2}{3}$

Beispiel: Sei x eine n-bit Zahl, $f_n(x) = \begin{cases} 1 & \text{falls } x \text{ prim} \\ 0 & \text{sonst} \end{cases}$

Miller-Rabin Test liefert uniforme Schaltkreisfamilie mit Ws. $(C(x,y) = f_n(x)) \geq \frac{3}{4}$

Die Klasse \mathcal{NP} 8.5

Definition (\mathcal{NP}): Die Klasse \mathcal{NP} besteht aus allen booleschen Funktionen $f_n, n \in \mathbb{N}, \mathbb{F}_2^n \to \mathbb{F}_2$, für die es eine uniforme Schaltkreisfamilie $\{C_n\}_{n\in\mathbb{N}}$ gibt mit:

- C_n hat Größe poly(n)
- $\exists m \in \text{poly}(n) \ \forall x \in \mathbb{F}_2^n : f_n(x) = 1 \Leftrightarrow \exists \ y \in \mathbb{F}_2^m : C(x,y) = 1$

Beispiel: $f_n = X_{\text{SAT}}(\langle \phi \rangle) = \begin{cases} 1 & \text{falls } \langle \phi \rangle \in \text{SAT} \\ 0 & \text{sonst} \end{cases}$

 $X_{\mathtt{SAT}} \in \mathcal{NP}$, denn für jedes $\langle \phi \rangle \in \mathtt{SAT}$ mit m Variablen gibt es eine erfüllbare Belegung $y \in \mathbb{F}_2^m$. Der Schaltkreis C_n wertet ϕ mit Belegung y aus.

Quantenschaltkreiskomplexitäten 9

Reversible Schaltkreise

Definition (Reversibel): Sei $f: \mathbb{F}_2^n \to \mathbb{F}_2^m$ eine beliebige boolesche Funktion.

Die reversible Einbettung U_f von f ist definiert als $U_f : \mathbb{F}_2^{n+m} \to \mathbb{F}_2^{n+m}, (x,y) \mapsto (x,f(x)+y)$ Beachte: $U_f(U_f(x,y)) = U_f(x,f(x)+y) = (x,f(x)+f(x)+y) = (x,y)$, d.h. U_f ist Permutation. Wir bezeichnen Permutationen auch als reversible Funktion. Sie werden durch Permutationsmatrizen beschrieben.

Beispiel: $\wedge : \mathbb{F}_2^2 \to \mathbb{F}_2, (x_1, x_2) \mapsto x_1 x_2$ $\mathbb{T} = U_{\wedge} : \mathbb{F}_2^3 \to \mathbb{F}_2^3, (x_1, x_2, x_3) \mapsto (x_1, x_2, x_1 x_2 + x_3) = (x_1, x_2, x_1 \wedge x_2 \oplus x_3)$

Toffoli-Funktion T

NOT auf
$$x_3 \Leftrightarrow x_1 = x_2 = 1$$

 $I: \mathbb{F}_2 \to \mathbb{F}_2, x_1 \mapsto x_1$

 ${\tt CNOT} = U_I : \mathbb{F}_2^{\hat{2}} \to \mathbb{F}_2^{\hat{2}}, (x_1, x_2) \mapsto (x_1, x_1 + x_2)$

Man beachte: $\mathtt{CNOT}(x_1,0) \mapsto (x_1,x_1)$ liefert Kopierfunktion c für $x_1 \in \mathbb{F}_2$

Definition (r-universell): sei R eine Menge von reversieblen booleschen Funktionen, die auf einer konstanten Anzahl von Bits operieren. R heißt <u>r-universell</u>, falls jede reversible Funktion als Verknüpfung von Elementen aus R, Hilfsvariablen und Konstanten 0,1 dargestellt werden kann.

Satz: {T} ist r-universell.

Beweis: Da $S_u = \{\land, \neg, c\}$ universell ist, kann insbesondere jede reversible Funktion mittels S_u dargestellt werden. Es genügt daher, jedes Element als Verknüpfung von T, Hilfsvariablen und 0,1 zu schreiben. Rest: Übungsaufgabe.

9.2 Die Klassen QP und BQP

Definition (einbettbar): Seien $f: \mathbb{F}_2^n \to \mathbb{F}_2^m$ und $U_f: \mathbb{F}_2^{n+l} \to \mathbb{F}_2^{m+k}$ boolesche Funktionen. Wir nennen f einbettbar in U_f , falls es ein $h \in \mathbb{F}_2^k$ gibt mit $U_f(x,h) = (h',f(x))$ für ein $h' \in \mathbb{F}_2^k$.

Satz: Jede boolesche Funktion $f: \mathbb{F}_2^n \to \mathbb{F}_2^m$ ist in eine reversible Funktion $U_f: \mathbb{F}_2^{n+m} \to \mathbb{F}_2^{n+m}$ einbettbar.

Beweis: Verwende reversible Einbettung aus 9.1: $U_f(x,y) \mapsto (x,f(x)+y)$. Damit ist f in U_f eingebettet, denn $u_f(x,0^m) = x(f(x))$, d.h. $h = 0^m$ und h' = x.

Reversible boolesche Schaltkreise bestehen ausschließlich aus Gattern, die reversible boolesche Funktionen realisieren. Wir betten nun boolesche Schaltkreise in reversible Schaltkreise ein.

Satz: Sei $C = \{C_n\}_{n \in \mathbb{N}}$ eine uniforme Schaltkreisfamilie über $S = \{\land, \neg\}$ der Größe $\mathcal{O}(g(n))$, die $f_n, n \in \mathbb{N}$ berechnet. Dann gibt es eine uniforme reversible Schaltkreisfamilie C_r über $\{\mathtt{T}, 0, 1\}$ der Größe $\mathcal{O}(g(n))$, die $f_n^r : \mathbb{F}_2^{n+m+l} \to \mathbb{F}_2^{n+m+l}$ mit $(x, y, z \mapsto (x, f_n(x) + y, z')$ berechnet. D.h. f_n und U_{f_n} sind in f_n^r eingebettet.

Beweis: Da C uniform ist, können wir für jedes n den Schatkrleis C_n auf einer DTM konstruieren. Wir ersetzen in C_n die

- \wedge -Gatter mit $T(x_1, x_2, 0) = (x_1, x_2, x_1x_2)$
- \neg -Gatter mit $T(x_1, 1, 1) = x_1, 1, 1 x_1)$

Dazu verwenden wir höchstens dreimal soviele Eingabeknoten/Ausgabeknoten wie in C_n . D.h. die Größe von C_r ist höchstens dreimal die Größe von C, d.h die Größe von C_r ist $\mathcal{O}(g(n))$.

Beispiel:

$$f(x_1, x_2) = \overline{x_1} x_2 U_f(x_1, x_2, 0) = (x_1, x_2, \overline{x_1} x_2)$$

Definition (Quantenschaltkreis-Familie): Eine QC-Familie $Q = \{Q_n\}_{n \in \mathbb{N}}$ heißt uniform, falls es eine DTM gibt, die für jedes $n \in \mathbb{N}$ bei Eingabe 1^n in Zeit und Platz poly(n) Q_n ausgibt. Eine boolesche Funktion $f_n, n \in \mathbb{N}$ hat uniforme Quanten-Schaltkreiskomplexität $\mathcal{O}(g(n))$ bezüglich S, falls es eine uniforme QC-Familie über S gibt, die f_n berechnet.

Definition (\mathcal{QP}): Die Klasse \mathcal{QP} ist die Klasse aller booleschen Funktionen $f_n, n \in \mathbb{N}$, für die es ein $g(n) \in \text{poly}(n)$ und eine uniforme QC-Familie $Q_{g(n)}$ bezüglich $S_2 = \{\mathtt{H}, \mathtt{CNOT}, \mathtt{T}\}$ gibt mit:

- $Q_{g(n)}$ hat Größe poly(n)
- $Q_{g(n)}$ berechnet $f_n^r : \mathbb{F}_2^{g(n)} \to \mathbb{F}_2^{g(n)}$, wobei f_n in f_n^r eingebettet ist für alle $n \in \mathbb{N}$.

Satz: $\mathcal{P} \subseteq \mathcal{QP}$

Beweis: Sei $f_n \in \mathcal{P}$. Dann gibt es eine uniforme Schaltkreisfamile C mit Größe poly(n) die f_n berechnet. $\stackrel{9,2}{\Rightarrow} \exists$ uniforme reversible Schaltkreisfamilie C_r der Größe poly(n), die f_n^r berechnet, so dass f_n in f_n^r eingebettet ist. C_r ist über $\{\mathsf{T},0,1\}$ definiert.

Ersetzung der booleschen Gatter T durch unitäre Gatter, die T beschreiben, transformiet C_r in einen Quantenschaltkreis. Damit ist die Funktion $f_n \in \mathcal{QP}$.

Definition (\mathcal{BQP}): Die Klasse \mathcal{BQP} ist die Klasse aller booleschen Funktionen $f_n, n \in \mathbb{N}$, für die es ein $g(n) \in \text{poly}(n)$ und eine uniforme QC-Familie $Q_{g(n)}$ bezüglich $\{H, CNOT, T\}$ gibt mit:

- $Q_{q(n)}$ hat Größe poly(()n)
- $\exists k \in \text{poly}(n) : y \in_R \mathbb{F}_2^k \ \forall \ x \in \mathbb{F}_2^n : \text{Ws.}_y(Q_{g(n)}(x,y) = f_n^r(x)) \ge \frac{2}{3}$, wobei f_n^r eine Einbettung von f_n ist.

Problem: Erzeugung zufälliger Eingaben $y \in \mathbb{F}_2^k$ mit QC.

Definition (H_k): Sei $x = |x_0 x_1 \dots x_{k-1}\rangle$. Dann ist

 $H_k|x\rangle = H_k|x_0 \dots x_{k-1}\rangle = H|x_0\rangle \otimes H|x_1\rangle \otimes \dots \otimes H|X_{k-1}\rangle$ die Hadamard-Abbildung auf ein k-Qubit-Register.

Satz: $H_k|x\rangle = \frac{1}{2^{\frac{k}{2}}} \sum_{y \in \{0,1\}^k} (-1)^{xy} |y\rangle$, wobei xy das innere Produkt von x,y ist.

Beweis: k = 1, 2: siehe 5.3, k = 3: siehe Übung. Beliebiges k: induktiv.

Korollar: $H_k|0^k\rangle=\frac{1}{2^{\frac{k}{2}}}\sum_{y\in\{0,1\}^k}|y\rangle$ liefert gleichmäßige Überlagerung der Basiszustände.

Satz: $\mathcal{BPP} \subseteq \mathcal{BQP}$

Beweis: Sei $f \in \mathcal{BPP}$ und C die Schaltkreisfamilie polynomieller Größe mit Ws. $y(C(x,y) = f_n) \ge \frac{2}{3}$. Analog zum Beweis $\mathcal{P} \subseteq \mathcal{QP}$:

- Transformiere C in reversible Familie C_r über $\{T,0,1\}$ polynomieller Größe, die f_n^r berechnet.
- Transformire C_r in QC-Familie Q durch Ersetzung von T durch seine unitäre Variante.

Wir verwenden $H_k|0^k\rangle$ zur Erzeugung von y:

Aber $C_r|xy\rangle = f(x) \,\forall x$ und mindestens $\frac{2}{3}$ aller y.

Messung der letzten k Qubits liefert $C_r|xy\rangle\otimes|y\rangle$ für jedes $y\in\{0,1\}^k$ mit Ws. $\frac{1}{2^k}$. Messung der restlichen Qubits liefert f(x) mit Ws. $\geq \frac{2}{3}$

10 Quanten -schaltkreise und -algorithmen

10.1 Deutsch-Josza Problem

Gegeben: Gatter $f: \mathbb{F}_2 \to \mathbb{F}_2$

Gesucht: Schaltkreis, der entscheidet ob f(0) = f(1) mit minimaler Anzahl von f-Gattern

Boolescher Schaltkreis C:

 $C(0,1) = \mathsf{T}(f(0),1,f(1)) = f(0) + f(1) \Rightarrow C(0,1) = 0 \Leftrightarrow f(0) = f(1)$. Minimale Anzahl von f-Gattern für boolesche Schaltkreise, da f(0) keine Information über f(1) liefert.

Quantenschaltkreis Q:

 $U_f|xy\rangle = |x\rangle \otimes |f(x)+y\rangle$ ist die reversible Einbettung von f. Beachte: Q verwendet nur ein f-Gatter!

 \mathbf{Satz} : Q entscehidet das Deutsch-Josza Problem.

Beweis:

$$\begin{split} |01\rangle &\overset{H_2=H\otimes H}{\longmapsto} \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \\ &= \frac{1}{2} (|0\rangle \otimes (|0\rangle - |1\rangle) + |1\rangle (|0\rangle - |1\rangle) \\ &\overset{U_f}{\longmapsto} \frac{1}{2} (|0\rangle \otimes (|0+f(0)\rangle - |1+f(0)\rangle) + |1\rangle (|0+f(1)\rangle - |1+f(1)\rangle)) \\ &= \frac{1}{2} (|0\rangle \otimes (-1)^{f(0)} (|0\rangle - |1\rangle) + |1\rangle \otimes (-1)^{f(1)} (|0\rangle - |1\rangle)) \\ &= \frac{1}{2} (((-1)^{f(0)} |0\rangle + (-1)^{f(1)} |1\rangle) \otimes (|0\rangle - |1\rangle)) \\ &\overset{H\otimes I}{\Longrightarrow} \frac{1}{2^{\frac{3}{2}}} (((-1)^{f(0)} + (-1)^{f(1)}) |0\rangle + ((-1)^{f(0)} - (-1)^{f(1)}) |1\rangle) \otimes (|0\rangle - |1\rangle) \end{split}$$

Für f(0) = f(1): $(-1)^{f(0)} \frac{1}{\sqrt{2}} |0\rangle \otimes (|0\rangle - |1\rangle)$ \Rightarrow Messung liefert 0 im 1. Qubit

Für $f(0) \neq f(1)$: $(-1)^{f(0)} \frac{1}{\sqrt{2}} |1\rangle \otimes (|0\rangle - |1\rangle)$ \Rightarrow Messung liefert 1 im 1. Qubit.

D.h. die Messung des 1. Qubits entscheidet das Deutsch-Josza Problem.

Orakel-Modell: Information über $f: \mathbb{F}_2^n \to \mathbb{F}_2^m$ durch Auswerten von f.

10.2 Verallgemeinertes Deutsch-Josza Problem

Gegeben: $f: \mathbb{F}_2^n \to \mathbb{F}_2$ im Orakel-Modell Promise-Problem: f ist entweder

- konstant, d.h. $f(x) = c \ \forall c \in \mathbb{F}_2, \ \forall x \in \mathbb{F}_2^n$
- balanciert, d.h f(x) = 0 für genau die Hälfte aller $x \in \mathbb{F}_2^n$

Ziel: Entscheide, ob f konstant oder balanciert ist mit minimaler Zahl von f-Aufrufen.

Klassischer deterministischer Algorithmus:

- 1. Setze $c = f(0^n)$
- $2. \ {\rm FOR} \ {\rm i} \ = \ 1 \ {\rm TO} \ 2^{n-1}$
 - ullet Falls f(i)
 eq c, Ausgabe ''balanciert'' und EXIT.
- 3. Ausgabe: "Konstant"

Anzahl f-Aufrufe $\leq 2^{n-1} + 1$ (genau $2^{n-1} + 1$ für konstante f) Erfolgswahrscheinlichkeit: 1.

Probalistischer Algorithmus:

- 1. Setze $c = f(0^n)$
- 2. FOR i-1 zufällige Werte $x_i \in \{1, 2, ..., 2^{n-1}\}$
 - ullet Falls $f(x_i)
 eq c$, Ausgabe ''balanciert'' und EXIT.
- 3. Ausgabe: ''Konstant''

 $\label{eq:continuous} Fehlerwahrscheinlichkeit: Ws. (Ausgabe "balanciert" | f konstant" | f konstant" | f konstant" | f balanciert)$

= Ws.
$$(x_1 = x_2 = \dots = x_{i-1} = f(0)|f \text{ balanciert}) = \prod_{j=1}^{i-1} \frac{2^{n-1} - j}{2^n} \le \left(\frac{1}{2}\right)^{i-1}$$

Quantenschaltkreis Q_{DJ} :

 U_f ist reversible Einbettung von $f: \mathbb{F}_2^{n+1} \to \mathbb{F}_2^{n+1}, |xy\rangle \mapsto |x\rangle \otimes |f(x)+y\rangle$ für $x \in \mathbb{F}_2^n, y \in \mathbb{F}_2$. Q_{DJ} besitzt nur ein U_f -Gatter und damit nur ein f-Gatter!

Satz: Q_{DJ} entscheidet das verallgemeinerte Deutsch-Josza Problem.

Beweis:

$$\begin{split} |0^n 1\rangle & \overset{H_n \otimes H}{\longmapsto} \frac{1}{2^{\frac{n}{2}}} \sum_{x \in \{0,1\}^n} |x\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \\ & \overset{U_f}{\longmapsto} \frac{1}{2^{\frac{n+1}{2}}} \sum_{x \in \{0,1\}^n} |x\rangle (|0+f(x)\rangle - |1-f(x)\rangle) \\ & = \frac{1}{2^{\frac{n+1}{2}}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle \otimes (|0\rangle - |1\rangle) \\ & \overset{H_n}{\mapsto} \frac{1}{2^{\frac{2n+1}{2}}} \sum_{x \in \{0,1\}^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)+xy} |y\rangle \otimes (|0\rangle - |1\rangle) = |z\rangle \end{split}$$

Lemma: $\sum_{x \in \{0,1\}^n} (-1)^{xy} = \begin{cases} 2^n & \text{für } y = 0^n \\ 0 & \text{sonst} \end{cases}$ Beweis: Übungsaufgabe.

1. Fall: f konstant: Für die ersten n Qubits von $|z\rangle$ gilt: $\frac{\frac{1}{2^{\frac{2n+1}{2}}}}{\frac{1}{2^{\frac{2n+1}{2}}}} \sum_{y \in \{0,1\}^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} (-1)^{xy} |y\rangle = \frac{1}{2^{\frac{2n+1}{2}}} (-1)^{f(0^n)} (2^n |0^n\rangle + \sum_{y \in \{0,1\}^n} \sum_{x \in \{0,1\}^n} (-1)^{xy} |y\rangle$ $\Rightarrow |z\rangle = \frac{1}{\sqrt{2}} (-1)^{f(0^n)} |0^n\rangle \otimes (|0\rangle - |1\rangle)$

D.h für konstantes f liefert die Messung der ersten n Qubits 0^n .

2. Fall:
$$f$$
 balanciert: $\sum_{y \in \{0,1\}^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)+xy} |y\rangle = \underbrace{\sum_{x \in \{0,1\}^n} (-1)^{f(x)} |0^n\rangle}_{x \in \{0,1\}^n} + \underbrace{\sum_{y \in \{0,1\}^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)+xy} |y\rangle}_{y \neq 0^n} + \underbrace{\sum_{y \in \{0,1\}^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)+xy} |y\rangle}_{y \neq 0^n}$ \Rightarrow Messung der ersten n Qubits von z liefert 0^n mit Ws. 0

Entscheiden des DJ-Problems durch Messung der ersten n Qubits von $|z\rangle$: Falls 0^n , Ausgabe "f konstant" Sonst Ausgabe "f balanciert"

Vergleich:

	f-Aufrufe	W_{S} .
Deterministisch	$2^{n-1} + 1$	1
Probabilistisch	3	$\geq \frac{3}{4}$
Quanten	1	1

Bernstein-Vazirani Problem (1983) 10.3

Gegeben: Funktion $f_a: \mathbb{F}_2^n \to \mathbb{F}_2, x \mapsto ax = \sum_{i=1}^n a_i x_i \mod 2$ mit $a \in \{0,1\}^n$ im Orakel-Modell

Gesucht: $a \in \{0,1\}^n$ mit minimaler Anzahl von f-Aufrufen

Klassisch: Untere Schranke: Jeder Aufruf von f liefert 1 Bit an Information.

 \Rightarrow Mindestens n Aufrufe von f zur Bestimmung von a notwendig.

Seien $e_i, i = 1 \dots n$ die Einheitsvektoren.

Optimaler klassischer Algorithmus:

ullet Werte f_a an $e_i, i=1\dots n$ aus und gib die entsprechenden a_i aus.

 U_f ist reversible Einbettung von f_a

Satz: Q_{BV} berechnet a mit einem Aufruf von f.

Beweis:

$$|0^{n}1\rangle \overset{H_{n}\otimes H}{\longmapsto} \frac{1}{2^{\frac{n+1}{2}}} \sum_{x \in \{0,1\}^{n}} |x\rangle \otimes (|0\rangle - |1\rangle)$$

$$\overset{U_{f_{\alpha}}}{\longmapsto} \frac{1}{2^{\frac{n+1}{2}}} \sum_{x \in \{0,1\}^{n}} (-1)^{f(x)} |x\rangle \otimes (|0\rangle - |1\rangle)$$

$$\overset{H_{n}\otimes I_{2}}{\longmapsto} \frac{1}{2^{\frac{n+1}{2}}} \sum_{y \in \{0,1\}^{n}} \sum_{x \in \{0,1\}^{n}} (-1)^{xa} (-1)^{xy} |y\rangle \otimes (|0\rangle - |1\rangle) = |z\rangle$$

Beobachtung:
$$\sum_{x \in \{0,1\}^n} (-1)^{x(y+a)} = \begin{cases} 2^n & \text{für } y+a=0^n, \text{d.h. } y=a \\ 0 & \text{sonst} \end{cases}$$

Messung der ersten n Qubits liefert a mit Wahrscheinlichkeit 1.

Für das Berstein-Vazirani Problem liefern Quantenschaltkreise einen Speedup von n, d.h. einen polynomiellen Faktor.

Das Problem von Simon (1994):

Gegeben: Funktion $f: \mathbb{F}_2^n \to \mathbb{F}_2^m, m \geq n$ im Orakel-Modell

Promise-Problem: $\exists s \in \mathbb{F}_2^n : f(x) = f(y) \Leftrightarrow x = y + s$

D.h. insbesondere die Funktion f ist eine 2:1-Abbildung: Je zwei Urbilder x und x + s werden auf

dasselbe Bild abgebildet.

Gesucht: $s \in \mathbb{F}_2^n$

Klassischer Algorithmus: Werte verschiedene x_1, \ldots, x_k aus, bis Kollision $f(x_i) = f(x_j)$ gefunden. Ausgabe: $x_i + x_j$

Deterministisch: $k \le 2^{n-1} + 1$ Auswertungen notwendig

Probabilistisch: Wie groß muss k gewählt werden, damit Kollision erwartet wird?

Definiere:
$$x_{ij} = \begin{cases} 1 & \text{falls } f(x_i) = f(x_j) \\ 0 & \text{sonst} \end{cases}$$
, Ws. $(x_{ij} = 1) = \frac{1}{2^{n-1}}$
 $E(\# \text{ Kollisionen}) = \sum_{1 \le i < j \le n} \text{Ws. } (x_{ij} = 1) = \binom{k}{2} \frac{1}{2^{n-1}} \approx \frac{k^2}{2^{n-1}}$

$$E(\# \text{ Kollisionen}) = \sum_{1 \le i \le j \le n} \text{Ws.} (x_{ij} = 1) = {k \choose 2} \frac{1}{2^{n} - 1} \approx \frac{k^2}{2^{n} - 1}$$

Der Erwartungswert ist konstant für $k = \Omega(2^{\frac{n}{2}})$, d.h k ist exponentiell in n.