高等热力学与统计物理期末试题

2021-2022 春学期

(请于6月16日周四中午12时之前提交)

通用符号: T = 温度, P = 压强, $\rho = 数密度$, $\mu = 化学势$, $k = Boltzmann 常数, <math>\hbar = Planck$ 常数, $m_e = 电子质量$ 。

- 1. 试选出有关 自由 Bose 气体的正确说法(10分):
 - A. 状态方程在热波长远小于粒子平均距离的条件下可近似为理想 气体状态方程。
 - B. Bose-Einstein 凝聚可发生与任意空间维度。
 - C. Bose-Einstein凝聚可用来定量描述 He II 的 λ ー相变。
 - D. 定容比热对温度的导数在临界温度不连续。

- 2. 理想气体的 Carnot 循环: $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$ ---- 等温过程: $A \rightarrow B$ (与高温热源接触) $C \rightarrow D$ (与低温热源接触)
 - ---- 绝热过程: $B \to C$, $D \to A$ 。

证明循环效率为

$$\eta = 1 - \frac{T_1}{T_2} \tag{20分}$$

注意:这里<u>没有</u>假设热容量与温度无关,因而适用 于多原子分子的理想气体。

3. 电子气体自旋引起的磁化可用下列 Hamiltonian 描述(忽略轨道磁化效应):

$$H = \sum_{\vec{p},s} \frac{p^2}{2m_e} a_{\vec{p}s}^{\dagger} a_{\vec{p}s} - \mu_e B \sum_{\vec{p},s} s a_{\vec{p}s}^{\dagger} a_{\vec{p}s}$$

其中 μ_e 为电子磁矩, B 为磁感应强度, \vec{p} 为动量, $s = \pm 1$ 为自旋量子数,

其中 μ_e 为电子磁矩,B 为磁感应强度, \vec{p} 为动量, $s=\pm 1$ 为自旋量子数, $\left(a_{\vec{p}s},a_{\vec{p}s}^{\dagger}\right)$ 为单电子态 (\vec{p},s) 的湮灭产生算符。

假设强简并条件, 求该电子气体近似到 B 的领头阶的磁化强度 M(B) 和相应的磁化率, 即

$$\chi = \frac{\partial M}{\partial B} \bigg|_{B=0}$$

要求结果近似到 $\left(\frac{kT}{\varepsilon_F}\right)^2$ 阶,其中 ε_F 为零磁场下的 Fermi 能。(25分)

- 4. 对于最近邻相互作用为u(u < 0)且每个格点只能容纳一个分子的二维方格子格气
 - 1) 证明具有最近邻相互作用的二维方格子格气在 $T < T_c$ 时的状态方程: (10分)

$$\frac{P}{kT} = \begin{cases} y + \left(\frac{2}{x} - \frac{5}{2}\right)y^2 + \cdots & (\text{fil}) \\ \ln\frac{y}{x^2} + \frac{x^4}{y} + \left(2x^7 - \frac{5}{2}x^8\right)\frac{1}{y^2} \dots & (\text{in}) \end{cases}$$

其中 $x = e^{\frac{u}{kT}}$ 。

2) 证明临界温度为

$$kT_c = \frac{u}{\ln(3 - 2\sqrt{2})} \tag{10\%}$$

并求当 $T \rightarrow T_c(1-\tau)$, $\tau = 0^+$ 时两相密度差的临界行为(不需要给出系数)。

3) 当 $T > T_c$ 时,上述状态方程是否适用于气相的低密度区和高密度区? 并从下列图中选出 $T > T_c$ 时热力学极限下巨配分函数的根在复 y -平面上可能的连续分布(图中的粗体黑线)。(5分)

5. 令 $|\Psi_E\rangle$ 为N 个玻色子系统的归一化的能量本征态,即 $H|\Psi_E\rangle = E|\Psi_E\rangle$ $\langle \Psi_E|\Psi_E\rangle = 1$

其中 H 为 Hamiltonian。 定义关联函数

$$C_E(\vec{r}, \vec{r}') \equiv N \int \prod_{i=2}^{N} d^3 \vec{r}_i \, \Psi_E^*(\vec{r}, \vec{r}_2, ... \vec{r}_N) \Psi_E(\vec{r}', \vec{r}_2, ... \vec{r}_N)$$

及其热力学平均

$$\mathcal{G}(\vec{r}, \vec{r}') \equiv \frac{1}{Q} \sum_{E} e^{-\frac{E}{kT}} C_{E}(\vec{r}, \vec{r}')$$

其中 $\Psi_E(\vec{r}_1, \vec{r}_2, ... \vec{r}_N)$ 为归一化的 N 体波函数,Q 为正则配分函数。证明 1) $C_E(\vec{r}_1, \vec{r}'_1) = \langle \Psi_E | \psi^{\dagger}(\vec{r}_1) \psi(\vec{r}'_1) | \Psi_E \rangle$; (10分)

1)
$$C_E(\vec{r}, \vec{r}') = \langle \Psi_E | \psi^{\dagger}(\vec{r}) \psi(\vec{r}') | \Psi_E \rangle;$$
 (10分)

2) $G(\vec{r}, \vec{r}') = \frac{\text{Tr}e^{-\frac{H}{kT}}\psi^{\dagger}(\vec{r})\psi(\vec{r}')}{\text{Tr}e^{-\frac{H}{kT}}}$ 。 (10分)

其中 $\psi(\vec{r})$, $\psi^{\dagger}(\vec{r})$ 为玻色子的场算符。