Comparative Genomics

2. Gene Prediction

Zvelebil Chapters 9, 10

Outline

- Introduction genes
- Gene prediction
 - ORFs
 - Prokaryote prediction
 - Eukaryote prediction
 - Experimental support
 - Database searches
- Promoter prediction
 - Prokaryotes
 - Eukaryotes

Introduction why?

- What can be said based solely upon raw sequence?
- Why do we need special methods to do this?
- ASLDITALSKDJMIGHTPOWEIURBELERNBLK JDHARDLASKDJJDETOASKDGETJWOVNBRG JINFORMATIONASNREFROMAJKRACNERAW ALKEJFSEQUENCELKHFENLKNAMGIRASDF

Introduction why?

- What can be said based solely upon raw sequence?
- Why do we need special methods to do this?
- ASLDITALSKDJMIGHTPOWEIURBELERNBLK JDHARDLASKDJJDETOASKDGETJWOVNBRG JINFORMATIONASNREFROMAJKRACNERAW ALKEJFSEQUENCELKHFENLKNAMGIRASDF

Introduction *Genes*

• What is a gene?

Introduction Eukaryotic vs prokaryotic genes

- What do they have in common?
- What is different?

ORFs - open reading frames

The genetic code

			c c	11.44			
Second letter							
		U	C	Α	G		
First letter	U	UUU Phe UUC Leu UUG Leu	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop		U C A G	Third letter
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAA GIn CAG	CGU CGC CGA CGG	UCAG	
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU Asn AAA Lys	AGU Ser AGA AGG AGG	U C A G	
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG GAG	GGU GGC GGA GGG	U C A G	

E. coli in Artemis (Zvelebil Figure 9.3)

ORFs in a virus genome

ORFs Summary

- A stretch without stop codons is an Open Reading Frame.
- The ORF sequence is a list of codons from start to stop.
- Each species has characteristic pattern of use of synonymous codons, "codon bias"
- Different syn. codons often used in strongly versus weakly expressed genes.
- Organisms with high GC content have a bias towards G and C in the third codon position

Gene Prediction Protein coding considerations

• Is the universal genetic code used?

• Is the mRNA edited?

• Is the mRNA chemically modified?

Gene Prediction testing ORF quality

- Period three compositional bias
 - TESTCODE

- Compare codon usage in gene with average codon usage for organism
 - CODONFREQUENCY
- ORF translated into aa seq and compared with database of known proteins.

Gene Prediction 2 main approaches

Ab initio methods

- Searching by sequence motifs, e.g Open Reading Frames, Promoters,
 Splice motifs, Breakpoints
- Searching by content, e.g. different composition coding/non-coding regions

• Extrinsic evidence methods

- E.g. sequence match to known gene, EST, or protein
- E.g. similarity to aligned closely related genomes

Gene prediction in ACEDB

Gene Prediction Prokaryotes

Usually no sequence modification from DNA -> mRNA -> Protein

Simply find the longest ORF from start- to stop

codon

Gene Prediction Prokaryote prediction tools

- Use ORF, coding potential, promoter signals
- Hidden markov models perform best
 - GeneMark.HMM, Glimmer (Interpolated Markov model)

Gene Prediction Eukaryotes

- More complex gene structure
- Not just a matter of finding longest ORF
- Complex exon/intron structure

Gene Prediction splicing

- Intron signals
 - Donor
 - Acceptor

Introns and alternative splicing

- Complex eukaryotes have their genes split up into a series of exons (sometimes hundreds) separated by intron sequences.
- After transcription, a special machinery (splicing) removes the introns.
- This machinery may also remove exons selectively, so the same gene can give rise to different final proteins: *alternative splicing*.
- Alternative splicing and more complex regulatory systems, enabling more fine-grained reaction patterns, may explain why complexity grows faster than gene number.

Alternative splicing

Gene Prediction Eukaryote predictions

- Find the difference between coding/noncoding regions
 - Compositional bias
 - Uneven use of synonymous/nonsynonymous codons
- HMM
 - E.g. Genscan
- Neural networks
 - E.g. GRAIL, GeneParser
- Pattern discriminating methods
 - E.g. HEXON, FGENEH, MZEF

Gene Prediction Neural networks

- Nodes read the sequence, perform evaluation and pass on information to lower layers
- Final node makes a prediction
- Requires training on known genes

Gene Prediction Sequence database searches

- I: Find proteins/genes in a DNA sequence
 - Translate sequence in all reading frames
 - Search protein db using e.g. blastx
- II: Scan DNA sequence for a particular protein
 - Search for a protein against DNA sequence
 (db) translated in all reading frames with
 e.g. tblastn

Promoter prediction

Promoter prediction Prokaryotes

- Characteristic promoters from *E.coli*
 - consensus TATAAT at position -10
 - consensus TTGACA at position -35
 - AT rich region before the -35 region

Promoter prediction Methods

Conserved patterns

- Align promotor regions
- Check for conserved patterns
- Check query sequence for these patterns

Scoring matrix

- Align promotor regions
- Count base frequencies for each column and convert to log odds scores in a matrix
- "Slide" matrix over query sequence and calculate score
- Neural Networks
- Works well when the regions are well conserved

Promoter prediction Statistical methods

- Expectation maximization
 - Initial scoring matrix from guessed alignment
 - Scan sequences with matrix
 - Update scoring matrix with sequence pattern found at each position weighted by probability of match to position

• HMMs

Promoter prediction Eukaryotes

- Predicting promotors not as easy in eukaryotes
- NN trained on TATA and Inr sites/NN-genetic alg. To identify conserved patterns and spacings in RNAPII promoters
- Recognition of TATA with weight matrix and an analysis of the density of TF sites
- Linear discriminant model using features of promoter sequences
- Weight matrixes from different organism against query sequence
- Evaluation of query sequence for presence of clustered groups or modules of TF-binding sites that are characteristic of a given pattern

Conclusions

- Gene prediction in prokaryotes is relatively easy
 - Simple methods are often sufficient; more advanced methods give a modest improvement
- Introns in eukaryotes make gene prediction more difficult
 - For lower organism this is still doable with more advanced methods
 - Higher organisms have more and longer introns making prediction even harder
- The need for experimental support/validation increases with genome complexity.