Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\sigma_{0}^{#1} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1
$\tau_{0}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_0^{\#1} - 2 i k \sigma_0^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	П
$\tau_{1}^{\#2}\alpha + 2ik \ \sigma_{1}^{\#2}\alpha = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}t^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}t^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	ĸ
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	м
$\tau_1^{\#1}{}^{\alpha\beta} == 0$	$\partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} ==$	3
	$\partial_{\chi}\partial^{\alpha} \iota^{\chi\beta} + \partial_{\chi}\partial^{\beta} \iota^{\alpha\chi} + \partial_{\chi}\partial^{\chi} \iota^{\beta\alpha}$	
$\sigma_{1}^{\#2}\alpha\beta==0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	8
$\sigma_{2}^{\#_{1}}\alpha\beta\chi==0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta}^{\delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{eta\chi} \partial_{\phi} \partial_{\phi} \partial_{\varepsilon} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta} +$	
	$3 \eta^{\alpha \chi} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\beta \delta \epsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial_{\delta} \partial_{\delta} \partial^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial_{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \epsilon}{}_{\delta} +$	
	$3 \eta^{eta\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial_\delta \sigma^{\alpha\delta\epsilon} +$	
	$3~\eta^{lpha\chi}~\partial_{\phi}\partial_{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{eta\delta}_{~\delta}$	
$\tau_2^{\#1}\alpha\beta == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	2
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta\chi} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha\chi} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} t^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} t^{\chi}$	
Total constraints/gauge generators:	uge generators:	25

$ \frac{\sigma_{1}^{\#1} + \alpha \beta}{\sigma_{1}^{\#1} + \alpha \beta} = \frac{\sigma_{1}^{\#1} + \alpha \beta}{\frac{1}{k^{2}(2r_{3} + r_{5})}} $ $ \frac{\sigma_{1}^{\#2} + \alpha \beta}{\sigma_{1}^{\#1} + \alpha} = 0 $ $ \frac{\sigma_{1}^{\#1} + \alpha}{\sigma_{1}^{\#2} + \alpha} = 0 $ $ \frac{\sigma_{1}^{\#2} + \alpha}{\sigma_{1}^{\#2} + \alpha} = 0 $ $ \frac{\sigma_{1}^{\#2} + \alpha}{\sigma_{1}^{\#2} + \alpha} = 0 $ $ \frac{\sigma_{1}^{\#2} + \alpha}{\sigma_{1}^{\#2} + \alpha} = 0 $

f ₀	$ \begin{array}{c c} $									
$\sigma_0^{\#1}$	$ \begin{array}{c c} \sigma_{0}^{\#1} \\ \frac{1}{(1+2k^2)^2 t_3} \\ \frac{i}{\sqrt{2}k} \\ \frac{i}{(1+2k^2)^2 t_3} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $									
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
(Quadratic (free) action									
,	$S == \iiint (f^{\alpha\beta} \ \tau_{\alpha\beta} + \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - \frac{1}{2} \ r_3 \ (\partial_\beta \omega_{_i \ \theta}^{\ \theta} \ \partial^i \omega^{\alpha\beta}_{\ \alpha} + \partial_i \omega_{\beta \ \theta}^{\ \theta} \ \partial^i \omega^{\alpha\beta}_{\ \alpha} +$									
	$\partial_{\alpha}\omega^{\alpha\beta}\partial_{\theta}\omega_{\beta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $									
	$2\partial'\omega^{\alpha\beta}_{\alpha}\partial_{\theta}\omega^{\beta}_{\beta} + 8\partial_{\beta}\omega_{\alpha}\partial^{\theta}\omega^{\alpha\beta\prime}) -$									
				2	t_3 (ω	αι α (ω _κ -	-2 ω	ακ	$\partial_{i}f^{\alpha i} + 2 \omega_{i\kappa}^{\kappa} \partial^{i}f^{\alpha}_{\alpha}$
	$\partial_{i}f_{\kappa}^{\kappa}\partial_{i}f_{\alpha}^{\alpha}-\partial_{i}f_{\alpha}^{\alpha i}\partial_{\kappa}f_{\alpha}^{\kappa}+2\partial_{i}f_{\alpha}^{\alpha}\partial_{\kappa}f_{i}^{\kappa})+$									
	$r_{5} \left(\partial_{i} \omega_{\theta}^{\kappa}_{\kappa} \partial^{\theta} \omega_{\alpha}^{\alpha i} - \partial_{\theta} \omega_{i\kappa}^{\kappa} \partial^{\theta} \omega_{\alpha}^{\alpha i} - (\partial_{\alpha} \omega_{\alpha}^{\alpha i} - 2 \partial^{\theta} \omega_{\alpha}^{\alpha i})\right)$									
	$(\partial_{\kappa}\omega_{i}^{\kappa}_{\theta}-\partial_{\kappa}\omega_{\theta}^{\kappa}_{i})))[t, x, y, z]dzdydxdt$									

α[#]2 0 0 0 0 0 0

 $\sigma_{2^{+}\alpha\beta}^{\#1} \ \tau_{2^{+}\alpha\beta}^{\#1} \ \sigma_{2^{-}\alpha\beta\chi}^{\#1}$

0 0

0

0

 $-\frac{2}{3}ikt_3$ $\frac{1}{3}i\sqrt{2}kt_3$ 0 $\frac{2k^2t_3}{3}$

0 0

0

0

0

0 0 $\frac{\sqrt{2}t_3}{3}$ $\frac{t_3}{3}$ 0 0 1

 $\begin{array}{c|c}
0 & 0 \\
0 & \\
+ r_5) + \\
\hline
+ r_5) + \\
0 & \\
0 & \\
2ikt_3 \\
3 & \\
3 & \\
3 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 & \\
0 &$

0

0

 $\omega_{1}^{#1} + \alpha \beta$ $\omega_{1}^{#2} + \alpha \beta$ $\omega_{1}^{#2} + \alpha \beta$ $\omega_{1}^{#1} + \alpha$ $\omega_{1}^{#2} + \alpha$ $f_{1}^{#1} + \alpha$ $f_{1}^{#2} + \alpha$

0

 $k^2 (2 r_3)$

0

0

0 0 0 0

0 0

Massive and massless spectra

Quadratic pole									
Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$								
Polarisations:	2								

(No massive particles)

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$