Laboratório 3: Filtragem linear invariante no tempo e filtro de mediana

Processamento Digital de Sinais

Grupo 20

André Abreu dos Santos Francisco Rabaça Moller Freiria

Ano Académico 2021/2022

Índice

lr	ntrodução	3	
Q	Questões3		
	Questão 1 a)	3	
	Questão 1 b)	3	
	Questão 1 c)	3	
	Questão 2 a)	3	
	Questão 2 c)	3	
	Questão 2 d)	4	
	Questão 2 e)	4	
	Questão 2 f)	4	
	Questão 3 a)	4	
	Questão 3 b)	5	
	Questão 3 c)	5	
	Questão 3 d)	5	
	Questão 3 e)	5	
	Questão 3 f)	5	

Introdução

Este relatório é referente ao terceiro laboratório da unidade curricular de Processamento Digital de Sinal. Tem como objetivo a compreensão prática de dois tipos de sistemas de filtros, filtros lineares invariantes no tempo (LTI) e filtros de mediana comparando-os no que diz respeito à capacidade de atenuar ou remover o ruído.

Questões

Questão 1 a)

Ao reproduzir o sinal de áudio, ouvem-se alguns 'cliques' que são característicos nos vinyls mais antigos. Este ruído indesejado ocorre uma vez que existem algumas amostras para os quais a amplitude do sinal nesse momento é muito mais elevada do que seria suposto.

Questão 1 b)

Na representação gráfica do sinal, pode-se visualizar que existem algumas amostras para as quais a amplitude do sinal é muito superior aos valores de intensidade dos instrumentos/parte vocal da música, confirmando assim o que foi referido nos comentários da questão anterior.

Analisando os segmentos um a um, notam-se os 'cliques' no início do sinal são mais relevantes. Isto deve-se ao facto de a música iniciar com intensidade baixa, sem instrumentos, apenas voz. No meio da música não é tão notório visto que também existem outros instrumentos, voz e uma maior gama de frequências utilizadas, apesar de o fenómeno continuar a existir.

Questão 1 c)

Através da análise do gráfico do espectro de magnitude do sinal, pode-se verificar que nas frequências mais baixas verifica-se a amplitude da combinação entre instrumentos e voz, que é um pouco mais elevada do que nas frequências mais altas do sinal de áudio.

Questão 2 a)

Sabemos que a partir de pi/2, o sinal começa a sofrer uma atenuação na sua magnitude, enquanto a sua fase varia entre 0º a -1000º, atingindo o valor intermédio também em pi/2 (frequência de corte)

Questão 2 c)

Observa-se que com a aplicação do filtro há uma redução do ruido. Ou seja, em zonas de sinal com baixa amplitude, o ruido é muito mais baixo. Isto é observável uma vez que as amplitudes aleatórias e de elevada magnitude (muito maior que o sinal) que caracterizam o

ruido são atenuadas com a aplicação do filtro. A amplitude do restante sinal (o que não é ruído) mantém-se semelhante.

Questão 2 d)

Através do espectro de magnitude observa-se que para frequências baixas o sinal fica inalterado. Para frequências acima da frequência de corte (2000 Hz) o sinal é atenuado.

Questão 2 e)

O que é ouvido comprova os resultados anteriores. Apenas se ouvem sons mais graves, devido ao efeito do filtro passa-baixo de Butterworth - as componentes de alta frequência do sinal são atenuadas. Nota-se que em relação ao ruido, este melhora um pouco. Os cliques não ocorrem tantas vezes. Os cliques que se situam nas altas frequências são atenuados e, portanto, só permanece o ruido de baixa frequência. Contudo, a música não é percetível e embora o ruído diminua.

Questão 2 f)

Observa-se que com a redução da frequência de corte, há melhorias em relação ao ruído, mas perde-se a perceção do sinal em si. Aumentando a frequência de corte, aumenta o ruído, mas o sinal torna-se mais percetível. Isto é visível tanto nas figuras do sinal e espectro de magnitude do sinal como na audição do sinal filtrado. Conclui-se que com um filtro passa-baixo nunca se consegue elimina completamente o ruido, uma vez que este persiste nas zonas de baixo frequência. Uma maneira de eliminar o máximo de ruido possível é reduzir a largura de banda do filtro, mas isto tem consequências na qualidade do som.

Questão 3 a)

Causalidade: Para o filtro ser um sistema causal, significa que não pode depender de instantes futuros, o que acontece neste caso, uma vez que para valores positivos de M, o princípio da causalidade não é respeitado. Por exemplo, no caso de f, se n = 3, a mediana depende de n+1, pelo que não é causal.

Linearidade: Para o filtro ser um sistema linear, y(n) = y1(n) + y2(n) = med(x1+x2), o que não ocorre neste caso.

Invariância no Tempo: O filtro é um sistema invariante no tempo uma vez que y(n) depende exclusivamente de x(n) e não do instante temporal em que é aplicada.

Estabilidade: O filtro é um sistema estável uma vez que se o input for limitado, o output também será, nessas circunstâncias haverá um número infinito de elementos para fazer a

operação da mediana. O output da filtragem para um certo n, corresponde a um elemento da amostra.

Questão 3 b)

As altas amplitudes que eram representadas pelos 'cliques' foram agora filtradas pelo median filter. Foi criada uma 'janela admissível' onde se situam todas as amplitudes que contêm as samples da música.

Questão 3 c)

O filtro processa de acordo com as amplitudes vizinhas, os 'clicks' têm alta intensidade por isso são reorganizados e posteriormente eliminados o que permite eliminar os efeitos indesejados sem prejudicar as altas frequências da música em si.

Questão 3 d)

Verifica-se que o som tem uma qualidade muito superior ao original, de um modo geral já era esperado visto que o filtro consegue aplicar o processo descrito em 3c).

Questão 3 e)

Ao filtrar a música por median filters de ordens entre 1 a 8, verifica-se que se o n for um valor demasiado baixo (n=1 ou n=2), existem ainda alguns 'cliques' que não são eliminados, como tal o sinal ainda não é de boa qualidade. No entanto, ao aumentar em demasia a ordem do filtro, existem frequências da música que são filtradas sem que fosse esse o objetivo. Isto ocorre porque ao restringir a janela de atuação do filtro, este vai acabar por fazer um processo de seleção de forma exagerada, utilizando a mediana de um intervalo maior, filtrando assim samples importantes da música em si, tornando o sinal com menor qualidade. Este processo de filtragem inadequado é observado para valores de n iguais ou superior a 5. Como tal, conclui-se que as ordens adequadas de filtragem para este sinal em específico são n=3 ou n=4.

Questão 3 f)

Após o estudo adequado e a análise aprofundada de filtragem do sinal com LTI e median filter, conclui-se que o median filter é o mais adequado para remover ruído do sinal.

O processo de filtragem através dos valores de mediana é o ideal para remover ruído uma vez que estabelece uma comparação direta entre o valor de amplitude de frequências adjacentes e elimina a que tiver um valor muito superior. É um processo mais rigoroso do que o filtro LTI uma vez que percorre todas as samples e aplica este algoritmo. Já no processo de filtragem do LTI, a partir da frequência de corte, todas as frequências são eliminadas inclusivamente algumas que não são ruído, mas sim notas mais agudas da música em si, o que não é um efeito desejado para a qualidade do sinal.