

$$Y \ge A = 2yA$$

 $Y \times 10422 = 277020 \rightarrow Y = 26.6 mm$

Since the x and y coordinates of each of the area component are equal, So, the x any y coordinates of the controld are similar.

		1			
e pusiei se	Compenent	Area(A)	X	ΣA	d on the second
	Quarter-circle	<u>Xr</u> 4	4r 3T	$\frac{4\Gamma \times \overline{\lambda}\Gamma^2 = \overline{\Gamma^3}}{3\pi 4}$	
- Cassanda	Square	- Q ²	<u>-a</u> 2	$\frac{-q^3}{2}$	
		$\sum A = \frac{\chi r^2}{4} - q^2$		$\sum_{x} A = r^3 - \frac{q^3}{2}$	and disputed in their
					Mary Security

X -> centroid of individual areas.

r -> radius

a -> side of square

$$\alpha = \frac{\left(\frac{r^3}{3} - \frac{\alpha^3}{2}\right)}{\left(\frac{\kappa c^2}{4} - \alpha^2\right)}$$

$$\frac{Xar^2-q^3=\frac{r^3}{3}-\frac{q^3}{2}}{4}$$

$$\frac{Xar^{2}-r^{3}-a^{3}-a^{3}}{4}$$

$$\frac{r^3}{3}\left(\frac{3\pi q}{4r}-1\right)=\frac{q^3}{2}$$

$$\frac{a^3}{2} - \frac{r^3}{3} \left(\frac{3\pi a}{4r} - 1 \right) = 0$$

$$\frac{3a^3}{2c^3} - \frac{3\pi}{4} \left(\frac{a}{c}\right) + 1 = 0$$

$$1.5\left(\frac{q}{r}\right)^3 - \frac{3\pi}{4}\left(\frac{q}{r}\right) + 1 = 0$$

$$a = 0.917$$
 or -1.423 or 0.508