Name: Sam Louvall

Course: CS 5402

Assignment: Programming Assignment 4

Date: 07-13-2021

Concept Description:

Use K-Nearest neighbor to classify and compare attributes to see what gives some one chronic heart disease.

Data Collection:

The data has be provided by the client.

```
In [1]: # #For data managment
    import pandas as pd
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import confusion_matrix,classification_report
    from sklearn.linear_model import LinearRegression
    import seaborn as sns
    from matplotlib import pyplot as plt
    #For Simple Linear Regression
    import statsmodels.api as sm
```

```
In [2]: #reading in the file
df = pd.read_csv(r'C:\Users\samlo\DataMining\PA4\heart-disease-data.csv')
```

Example Description:

Age:

Ratio attribute that describes the age of the person.

cigsPerDay:

Ratio attribute that describes the amount of cigs per day.

totChol:

Ratio attribute that describes the total cholesterol of the person.

sysBP:

Ratio attribute that describes the systolic blood pressure of the person.

diaBP:

Ratio attribute that describes the diabolic blood pressure of the person.

BMI:

Ratio attribute that describes the body mass index of the person.

heartRate:

Ratio attribute that describes the heart rate of the person.

Glucose:

Ratio attribute that describes the blood glucose of the person.

CHD:

Binary attribute that describes if the person has chronic heart disease or not.

Data Import and Wrangling:

Due to an attribute missing some values, I had to use simple linear regression to find the missing values.

#dropping the NULL values from the data frame and considering it the train data df.dropna(inplace = True) df

5]:

	age	cigsPerDay	totChol	sysBP	diaBP	ВМІ	heartRate	glucose	CHD
0	39	0	195	106.0	70.0	26.97	80	77	0
1	46	0	250	121.0	81.0	28.73	95	76	0
2	48	20	245	127.5	80.0	25.34	75	70	0
3	61	30	225	150.0	95.0	28.58	65	103	1
4	46	23	285	130.0	84.0	23.10	85	85	0
3809	68	0	176	168.0	97.0	23.14	60	79	1
3810	50	1	313	179.0	92.0	25.97	66	86	1
3811	51	43	207	126.5	80.0	19.71	65	68	0
3812	48	20	248	131.0	72.0	22.00	84	86	0
3813	52	0	269	133.5	83.0	21.47	80	107	0

3800 rows x 9 columns

```
▶ #creating "X_train" and a "Y_train" from the data frame
  y_train = df["BMI"]
  y_train
: 0
         26.97
         28.73
  1
         25.34
  2
        28.58
  3
  4
        23.10
  3809
        23.14
  3810
        25.97
  3811
         19.71
         22.00
  3812
  3813
        21.47
  Name: BMI, Length: 3800, dtype: float64
x_train = df.drop('BMI',axis=1)
▶ #Building the model
  lr = LinearRegression()
  #train the model on train data set
  lr.fit(x_train,y_train)
: LinearRegression()
```

```
In [9]:  # #creating the X_test from the test_data
x_test = test_data.drop("BMI",axis=1)
x_test
```

Out[9]:

	age	cigsPerDay	totChol	sysBP	diaBP	heartRate	glucose	CHD
91	40	0	205	100.0	60.0	60	72	1
1048	64	3	221	148.0	85.0	90	80	1
1446	40	0	164	135.0	75.0	75	85	0
1456	40	20	266	101.0	73.0	70	64	0
1474	70	0	107	143.0	93.0	68	62	1
1783	63	20	213	163.0	94.0	76	69	1
1844	35	0	274	104.0	61.0	60	68	0
1861	58	1	244	160.5	98.0	86	69	0
1881	65	0	240	235.0	100.0	68	297	1
1955	53	0	240	109.0	79.0	92	80	1
2281	39	0	229	119.0	63.5	76	83	0

Out[13]:										
[]		age	cigsPerDay	totChol	sysBP	diaBP	BMI	heartRate	glucose	CHD
	91	40	0	205	100.0	60.0	22.987636	60	72	1
	1048	64	3	221	148.0	85.0	26.473629	90	80	1
	1446	40	0	164	135.0	75.0	24.733662	75	85	0
	1456	40	20	266	101.0	73.0	24.065771	70	64	0
	1474	70	0	107	143.0	93.0	26.916610	68	62	1
	1783	63	20	213	163.0	94.0	27.077624	76	69	1
	1844	35	0	274	104.0	61.0	23.125122	60	68	0
	1861	58	1	244	160.5	98.0	27.834669	86	69	0
	1881	65	0	240	235.0	100.0	30.804700	68	297	1
	1955	53	0	240	109.0	79.0	25.584413	92	80	1
	2281	39	0	229	119.0	63.5	23.528254	76	83	0

From the images provided, I separated the missing BMI values from the dataset. Next, I created a new data set without the BMI attribute. After that I created a Y_train set from the BMI values that were available. I also created an X_train data set with all values present without BMI. Then I used the SKlearn module to use Linear Regression to build the model. I then used the model to predict the missing BMI values. I did replace the missing BMI values manualy into a new dataset. I then used KNN on the new dataset with no missing values.

Exploratory Data Analysis:

I wanted to explore the data in an easy visual way. So I thought comparing each attribute to each other was a good way to analyze each attribute.

Mining or Analytics:

Splitting the data into an 80% %20 split.

```
#Partitioning the data into an 80 / 20 split
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,train_size = .80)
```

K-Nearest Neighbor model. With three different values of k.

K=3

```
model = KNeighborsClassifier(n_neighbors = 3)
  model.fit(X_train,Y_train['CHD'])
  y_pred = model.predict(X_test)
pred = pd.DataFrame(y_pred,)
  pred.rename(columns = {0:"pred"},inplace = True)
  results = pd.concat([pred,Y_test.reset_index(drop=True)],axis=1)
  results
      pred CHD
    0
        0 0
        0
             0
    1
        0
             1
             0
    4
        0
   758
        0
             0
   759
        0
             0
   760
        0
             0
   761
        0
             0
  763 rows x 2 columns
```

```
print(classification_report(Y_test,y_pred))
```

	precision	recall	f1-score	support
0	0.86	0.94	0.90	647
1	0.28	0.13	0.18	116
accuracy			0.82	763
macro avg	0.57	0.54	0.54	763
weighted avg	0.77	0.82	0.79	763

print(confusion_matrix(Y_test,y_pred))

```
[[609 38]
[101 15]]
```

```
map = confusion_matrix(Y_test,y_pred)
sns.heatmap(map.T,square=True,annot=True,fmt='d',cbar = False)
```

26]: <AxesSubplot:>


```
from sklearn.metrics import accuracy_score
print("Accuracy of prediction using KNN =",accuracy_score(y_pred,Y_test)*100)
```

Accuracy of prediction using KNN = 81.7824377457405

```
#Next is K = 10;
#Creating the k-nearest neighbor

model = KNeighborsClassifier(n_neighbors = 10)
model.fit(X_train,Y_train['CHD'])
y_pred = model.predict(X_test)
```

```
pred = pd.DataFrame(y_pred,)
pred.rename(columns = {0:"pred"},inplace = True)
results = pd.concat([pred,Y_test.reset_index(drop=True)],axis=1)
results
```

	pred	CHD
0	0	0
1	0	0
2	0	1
3	0	0
4	0	1
758	0	0
759	0	0
760	0	0
761	0	0
762	0	0

763 rows x 2 columns

```
print(classification_report(Y_test,y_pred))
print(confusion_matrix(Y_test,y_pred))
map = confusion_matrix(Y_test,y_pred)
sns.heatmap(map.T,square=True,annot=True,fmt='d',cbar = False)
from sklearn.metrics import accuracy_score
print("Accuracy of prediction using KNN =",accuracy_score(y_pred,Y_test)*100)
```

	precision	recall	f1-score	support
0	0.85	0.99	0.92	647
1	0.55	0.05	0.09	116
accuracy			0.85	763
macro avg	0.70	0.52	0.51	763
weighted avg	0.81	0.85	0.79	763
[[642 5]				

[[642 5] [110 6]] Accuracy of prediction using KNN = 84.92791612057667

K=50

```
#Next will be k = 50;

model = KNeighborsClassifier(n_neighbors = 50)
model.fit(X_train,Y_train['CHD'])
y_pred = model.predict(X_test)

#I pred = pd.DataFrame(y_pred,)
pred.rename(columns = {0:"pred"},inplace = True)
results = pd.concat([pred,Y_test.reset_index(drop=True)],axis=1)
results
```

	pred	CHD
0	0	1
1	0	0
2	0	1
3	0	1
4	0	0
758	0	0
759	0	0
760	0	0
761	0	0
762	0	0

763 rows × 2 columns

```
print(classification_report(Y_test,y_pred))
print(confusion_matrix(Y_test,y_pred))
map = confusion_matrix(Y_test,y_pred)

sns.heatmap(map.T,square=True,annot=True,fmt='d',cbar = False)
from sklearn.metrics import accuracy_score
print("Accuracy of prediction using KNN =",accuracy_score(y_pred,Y_test)*100)
```

	precision	recall	f1-score	support
0	0.84	1.00	0.91	642
1	1.00	0.01	0.02	121
accuracy			0.84	763
macro avg	0.92	0.50	0.47	763
weighted avg	0.87	0.84	0.77	763

[[642 0] [120 1]]

Accuracy of prediction using KNN = 84.27260812581913

Evaluation:

print(classification_report(Y_test,y_pred))

	precision	recall	f1-score	support
0	0.86	0.94	0.90	647
1	0.28	0.13	0.18	116
accuracy			0.82	763
macro avg	0.57	0.54	0.54	763
weighted avg	0.77	0.82	0.79	763

print(confusion_matrix(Y_test,y_pred))

```
[[609 38]
[101 15]]
```

```
map = confusion_matrix(Y_test,y_pred)
sns.heatmap(map.T,square=True,annot=True,fmt='d',cbar = False)
```

26]: <AxesSubplot:>

from sklearn.metrics import accuracy_score
print("Accuracy of prediction using KNN =",accuracy_score(y_pred,Y_test)*100)

Accuracy of prediction using KNN = 81.7824377457405

```
print(classification_report(Y_test,y_pred))
print(confusion_matrix(Y_test,y_pred))
map = confusion_matrix(Y_test,y_pred)
sns.heatmap(map.T,square=True,annot=True,fmt='d',cbar = False)
from sklearn.metrics import accuracy_score
print("Accuracy of prediction using KNN =",accuracy_score(y_pred,Y_test)*100)
```

	precision	recall	f1-score	support
0	0.85	0.99	0.92	647
	0.55	0.05	0.09	116
accuracy	0.55	0.03	0.85	763
macro avg	0.70	0.52	0.51	763
weighted avg	0.81	0.85	0.79	763

[[642 5] [110 6]]

Accuracy of prediction using KNN = 84.92791612057667


```
print(classification_report(Y_test,y_pred))
print(confusion_matrix(Y_test,y_pred))
map = confusion_matrix(Y_test,y_pred)

sns.heatmap(map.T,square=True,annot=True,fmt='d',cbar = False)
from sklearn.metrics import accuracy_score
print("Accuracy of prediction using KNN =",accuracy_score(y_pred,Y_test)*100)
```

	precision	recall	f1-score	support
0	0.84	1.00	0.91	642
1	1.00	0.01	0.02	121
accuracy			0.84	763
macro avg	0.92	0.50	0.47	763
weighted avg	0.87	0.84	0.77	763
[[642 0] [120 1]]				

[120 1]] Accuracy of prediction using KNN = 84.27260812581913

After using a confusion matrix and looking at the accuracy of each value of k, it appears that using k = 10 was the most accurate. With an accuracy of 84% and having the most true positives and true negatives. K = 50 did have the most precision in guessing if they did have chronic heart disease.

Results:

After looking at the results of the confusion matrices and accuracy scores. I would say the best model for finding if someone has chronic heart disease is k = 10.

Reference:

Youtube teaching about KNN

https://www.youtube.com/watch?v=_ukYsNbZy8Q

seaborn: python visualization

http://seaborn.pydata.org/introduction.html

Scikitlearn visualization

https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html

More seaborn visualization

https://jakevdp.github.io/PythonDataScienceHandbook/04.14-visu alization-with-seaborn.html