```
In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.graphics.regressionplots import influence plot
import statsmodels.formula.api as smf
import pandas.util.testing as tm
<ipython-input-1-19fc16e3f5f4>:7: FutureWarning: pandas.util.testing is deprecated. Use the functions in
the public API at pandas.testing instead.
  import pandas.util.testing as tm
Importing the dataset
                                                                                                         In [2]:
df= pd.read csv('/Users/acer/Sandesh Pal/Data Science Assgn/Multiple REgression/50 Startups.csv')
                                                                                                         In [3]:
df.columns
                                                                                                        Out[3]:
Index(['R&D Spend', 'Administration', 'Marketing Spend', 'State', 'Profit'], dtype='object')
                                                                                                         In [4]:
df.info() #no-null values
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
# Column
                      Non-Null Count Dtype
                      -----
                     50 non-null
0 R&D Spend
                                       float.64
   Administration 50 non-null
                                      float64
  Marketing Spend 50 non-null
                                      float64
                      50 non-null
                                      object
    State
    Profit
                      50 non-null
                                       float64
 4
dtypes: float64(4), object(1)
memory usage: 2.1+ KB
                                                                                                         In [5]:
df['State'].value_counts() #Checking the categories of State variable
                                                                                                        Out[5]:
New York
              17
California
            17
Florida
              16
Name: State, dtype: int64
                                                                                                         In [6]:
#Getting dummy variables
df1= pd.get dummies(df,columns=['State'])
                                                                                                         In [7]:
df1.head()
                                                                                                        Out[7]:
   R&D Spend Administration Marketing Spend
                                        Profit State_California State_Florida State_New York
  165349.20
               136897.80
                            471784.10 192261.83
  162597.70
               151377.59
                            443898.53 191792.06
                                                        1
   153441.51
               101145.55
                            407934.54 191050.39
   144372.41
               118671.85
                            383199.62 182901.99
   142107.34
                91391.77
                            366168.42 166187.94
                                                                                                         In [8]:
dfl.columns #renaming the columns
                                                                                                        Out[8]:
Index(['R&D Spend', 'Administration', 'Marketing Spend', 'Profit',
       'State_California', 'State_Florida', 'State_New York'],
      dtype='object')
                                                                                                        In [14]:
df1 = df1.rename({'R&D Spend':'rnd', 'Administration':'admin', 'Marketing Spend':'ms', 'Profit':'p',
        'State_California':'ca', 'State_Florida':'fl', 'State_New York':'ny'},axis=1)
                                                                                                        In [15]:
```

df1.columns

```
Out[15]:
Index(['rnd', 'admin', 'ms', 'p', 'ca', 'fl', 'ny'], dtype='object')
                                                                                                       In [16]:
df1[df1.duplicated()].shape #checking for duplicates# Building the regression model
                                                                                                      Out[16]:
(0, 7)
                                                                                                       In [17]:
dfl.corr() #Correlation of profit with admin is very less
                                                                                                      Out[17]:
          rnd
                 admin
                           ms
                                            ca
  rnd 1.000000 0.241955 0.724248 0.972900 -0.143165 0.105711 0.039068
      0.241955 1.000000 -0.032154
                               0.200717 -0.015478
                                                0.010493 0.005145
admin
  ms 0.724248 -0.032154 1.000000 0.747766 -0.168875 0.205685 -0.033670
   p 0.972900 0.200717 0.747766 1.000000 -0.145837
                                                0.116244 0.031368
   ca -0.143165 -0.015478 -0.168875 -0.145837 1.000000 -0.492366 -0.515152
      0.105711 0.010493 0.205685
                               0.116244 -0.492366
                                               1.000000 -0.492366
```

Building the regression model

model1.summary()

```
In [18]:
model1 = smf.ols('p~rnd+admin+ms+ca+fl+ny',data=df1).fit()
In [19]:
```

OLS Regression Results									
Dep. Variable:		р		R-squared:		0.951			
	Model:		C	OLS Ad		dj. R-squared:		0.945	
N	1ethod	:	Least Squa	res	F-sta	tistic:	169.9		
Date: Wed		d, 23 Jun 20)21	Prob (F- statistic):		1.34	1.34e-27		
	Time	:	13:01:38 Lo		g-Likelihood:		-525.38		
No. Observ	vations	:		50	AIC:		1063.		
Df Re	siduals	:		44		BIC:	1074.		
Df	Model	:		5					
Covariano	е Туре	:	nonrob	ust					
		coef	std err	t	P> t	[0.0	025	0.975]	
Intercept	3.763	e+04	5073.636	7.417	0.000	2.74e-	+04	4.79e+04	
rnd	0.	8060	0.046	17.369	0.000	0.7	712	0.900	
admin	-0.	0270	0.052	-0.517	0.608	-0.2	132	0.078	
ms	0.	0270	0.017	1.574	0.123	-0.0	800	0.062	
ca	1.249	e+04	2449.797	5.099	0.000	7554.8	868	1.74e+04	
fl	1.269	e+04	2726.700	4.654	0.000	7195.	596	1.82e+04	
ny	1.245	e+04	2486.364	5.007	0.000	7439.2	285	1.75e+04	
Omnibus: 14.782 Durbin-Watson: 1.283									
Prob(Omnibus): 0.00		1 Jarque-l	Bera (JB):	21	.266				
S	kew:	-0.94	8	Prob(JB):	2.41	e-05			
Kur	tosis:	5.57	2 (Cond. No.	2.63e	+21			

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 5.63e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

As per model 1, admin and ms are not significant, hence checking individually

modella = smf.ols('p~admin',data=df1).fit()

model1a.summary()

In [20]:

In [21]:

OLS Regression Results								
Dep. Variable		::			R-squared:		0.040	
	Mode	:	C	DLS /	Adj. R-so	Adj. R-squared:		0.020
M	1ethod	:	Least Squares		F-st	F-statistic:		2.015
Date: We		d, 23 Jun 2021		Prob (F- statistic):		0.162		
	Time:		13:02:59 L o		og-Likelihood: -599.63			99.63
No. Observ	No. Observations:			50	AIC:		1203.	
Df Residuals		:	48		BIC: 1207.		L207.	
Df Model		:		1				
Covariance Type		::	nonrob	ust				
		coef	std err	t	P> t	[0.0]	25	0.975]
Intercept	7.697	e+04	2.53e+04	3.040	0.004	2.61e+	04	1.28e+05
admin	0.	2887	0.203	1.419	0.162	-0.1	20	0.698
Omnibus: 0.		0.126	26 Durbin-Watson:		0.	099		
Prob(Omnibus):		0.939	9 Jarque-Bera (JB):		0.	110		
Skew:		0.093	Р	rob(JB):	0.	947		
Kurtosis:		2.866	Co	ond. No.	5.59e	+05		

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 5.59e+05. This might indicate that there are strong multicollinearity or other numerical problems.

As per model 1a, admin is not significant.

model1b = smf.ols('p~ms',data=df1).fit()

model1b.summary()

In [22]:

Out[21]:

In [23]:

Out[23]:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.89e+05. This might indicate that there are strong multicollinearity or other numerical problems.

As per model 1b, ms is signoficant

OLS Regression Results

р

OLS

Least Squares

13:03:48

nonrobust

Intercept 6e+04 7684.530 7.808 0.000 4.46e+04 7.55e+04

0.032 7.803 0.000

Durbin-Watson:

Prob(JB):

Cond. No. 4.89e+05

0.110 Jarque-Bera (JB):

50

48

1

P>|t|

Wed, 23 Jun 2021

R-squared:

F-statistic:

Prob (F-

AIC:

BIC:

[0.025

1.178

3.882

0.144

statistic):

Adj. R-squared:

Log-Likelihood:

0.559

0.550

60.88

4.38e-10

-580.18

1164.

1168.

0.975]

0.310

Dep. Variable:

Model:

Method:

Date:

Time:

No. Observations:

Df Residuals:

Covariance Type:

Df Model:

ms 0.2465

Prob(Omnibus):

coef

Omnibus: 4.420

Skew: -0.336

Kurtosis: 4.188

Proceeding for model deletion dignostics now

Cook's distance

Iteration -1

```
model_influence = model1.get_influence()
(c, _) = model_influence.cooks_distance

fig = plt.subplots(figsize=(20, 7))
plt.stem(np.arange(len(df1)), np.round(c, 3))
plt.xlabel('Row index')
plt.ylabel('Cooks Distance')
plt.show()
```

In [24]:

In [25]:

np.argmax(c),np.max(c)

Out[26]: (49, 0.22625094501509324)

ln [27]:
df2 = df1.drop([49],axis=0).reset_index()

In [28]:

df2 = df2.drop(['index'],axis=1)
In [29]:

model2 = smf.ols('p~rnd+admin+ms+ca+fl+ny',data=df2).fit()
In [30]:

model2.summary()

OLS Regression Results								
Dep. Variable:				p	R-sq	uared:	(0.962
Model:			C	OLS Adj. R-squared:		uared:	(0.957
N	1ethod	l :	Least Squa	res	F-sta	tistic:		216.6
Date: We		d, 23 Jun 2021		Prob (F- statistic):		2.51e-29		
	Time	:	13:05:49 L o		og-Likelihood:		-505.97	
No. Observ	vations	::		49		AIC:	1024.	
Df Re	siduals	:		43		BIC:	1035.	
Df	Model	l :		5				
Covariano	е Туре	<u>:</u>	nonrob	ust				
					D. Iti	FO. 4	005	0.0751
		coef	std err	t	P> t	-	025	0.975]
Intercept	3.915	e+04	4249.909	9.213	0.000	3.06e+	+04	4.77e+04
rnd	0.	.7836	0.039	20.056	0.000	0.7	705	0.862
admin	-0.0220		0.044	-0.505	0.616	-0.	110	0.066
ms	0.0258		0.014	1.804	0.078	-0.0	003	0.055
ca	1.422	e+04	2081.663	6.833	0.000	1e-	+04	1.84e+04
fl	1.266	e+04	2276.728	5.561	0.000	8068.6	684	1.73e+04
ny	1.227	e+04	2076.431	5.909	0.000	8082.8	828	1.65e+04
Omr	ibuci	0.051	Durbin-	Matcon:	1.6	67		
					1.667			
Prob(Omnibus): 0.97		0.975	Jarque-B	era (JB):	0.2	207		
S	kew:	0.061	Р	rob(JB):	0.9	002		
Kurtosis:		2.705	Co	ond. No.	3.47e+	-21		

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 3.21e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Rsquared value has increased, ms and admin are still insignificant

Iteration 2

```
model_influence = model2.get_influence()
(c1, _) = model_influence.cooks_distance

fig = plt.subplots(figsize=(20, 7))
plt.stem(np.arange(len(df2)), np.round(c1, 3))
plt.xlabel('Row index')
plt.ylabel('Cooks Distance')
plt.show()
```

In [31]:

In [32]:

np.argmax(c1),np.max(c1)

Out[33]: (48, 0.24352817571403915)

In [34]:
df3 = df2.drop([48],axis=0).reset_index()

ln [35]:
df3 = df3.drop(['index'],axis=1)

In [36]:

In [37]:

model3= smf.ols('p~rnd+admin+ms+ca+fl+ny',data=df3).fit()

model3.summary()

OLS Regression Results									
Dep. Variable:		р		R-squared:		0.963			
Model:		OLS A		dj. R-squared:		0.958			
ı	1ethoc	l:	Least Squares		F-statistic:		217.6		
Date: We			d, 23 Jun 20)21	Prob (F- 7 statistic):		7.0	7.02e-29	
	Time	: :	13:07	:39 L e	Log-Likelihood: -49		93.23		
No. Obser	vations	s:		48		AIC:		998.5	
Df Re	siduals	::		42		BIC:		1010.	
Df	Mode	l:		5					
Covariand	е Тур	2:	nonrob	ust					
		coef	std err	t	P> t	[0.	025	0.975]	
Intercept	4.409	e+04	4569.825	9.648	0.000	3.49e-	+04	5.33e+04	
rnd	0	.7888	0.037	21.160	0.000	0.	714	0.864	
admin	-0	.0621	0.045	-1.381	0.174	-0.	153	0.029	
ms	0	.0179	0.014	1.275	0.209	-0.	010	0.046	
ca	1.53	e+04	2035.915	7.516	0.000	1.12e-	+04	1.94e+04	
fl	1.415	e+04	2261.128	6.259	0.000	9588.	163	1.87e+04	
ny	1.464	e+04	2223.793	6.581	0.000	1.01e-	+04	1.91e+04	
Omnibus: 0.267		0.267	Durbin-Watson:		1.835				
Prob(Omnibus): 0		0.875	Jarque-Bera (JB)		0.453				
9	Skew:	0.108	Р	rob(JB):	0.797				
Kurtosis:		2.576	Co	ond. No.	1.39e+	-21			

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 2.02e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Rsquared value has increased, ms and admin are still insignificant

Iteration 3

```
model_influence = model3.get_influence()
(c2, _) = model_influence.cooks_distance

fig = plt.subplots(figsize=(20, 7))
plt.stem(np.arange(len(df3)), np.round(c2, 3))
plt.xlabel('Row index')
plt.ylabel('Cooks Distance')
plt.show()
```

In [38]:

In [39]:

Since cook's distance of most of the points seems to lie in the same range, hence we can conculde that there are no more influence points.

```
In [40]:
#Checking VIF value to see if there's some collinearity in the variables
rsq rnd = smf.ols("rnd~admin+ms", data= df3).fit().rsquared
ViF rnd = 1/(1-rsq rnd)
rsq adm = smf.ols("admin~rnd+ms", data=df3).fit().rsquared
ViF adm = 1/(1-rsq adm)
rsq mar = smf.ols("ms~admin+rnd", data= df3).fit().rsquared
ViF_mar = 1/(1-rsq_mar)
d1 = {'Variables':['rnd','admin','ms'],'VIF':[ViF_rnd,ViF_adm,ViF_mar]}
Vif_frame = pd.DataFrame(d1)
Vif frame
                                                                                                       Out[40]:
  Variables
0
      rnd 2.250972
    admin 1.196016
      ms 2.229867
```

Since all VIFs are below 10, hence there's no interdependency among the variables

In [41]:

```
import statsmodels.api as sm
fig = plt.figure(figsize=(15,10))
fig = sm.graphics.plot_regress_exog(model3, "rnd", fig=fig)
plt.show()
```


fig = plt.figure(figsize=(15,10))
fig = sm.graphics.plot_regress_exog(model3, "admin", fig=fig)
plt.show()

fig = plt.figure(figsize=(15,10))
fig = sm.graphics.plot_regress_exog(model3, "ms", fig=fig)
plt.show()

sm.graphics.plot_partregress_grid(model3)

Since the correlation of admin with profit is less, and also as per the p-value, it's insignificant, hence we can drop the admin variable

```
final model= smf.ols('p~rnd+ms+ca+fl+ny',data=df3).fit()
                                                                                                                                     In [46]:
final_model.summary()
                                                                                                                                    Out[46]:
                     OLS Regression Results
    Dep. Variable:
                                р
                                         R-squared:
                                                        0.961
          Model:
                              OLS
                                     Adj. R-squared:
                                                        0.958
         Method:
                      Least Squares
                                         F-statistic:
                                                        265.9
                                            Prob (F-
           Date: Wed, 23 Jun 2021
                                                    1.02e-29
                                           statistic):
           Time:
                          13:11:32
                                     Log-Likelihood:
                                                      -494.30
No. Observations:
                               48
                                               AIC:
                                                        998.6
     Df Residuals:
                               43
                                               BIC:
                                                        1008.
       Df Model:
 Covariance Type:
                         nonrobust
                        std err
                                     t P>|t|
                                                 [0.025
                                                           0.975]
Intercept
           3.83e+04 1841.077 20.803 0.000 3.46e+04
                                                          4.2e+04
      rnd
              0.7692
                         0.035 22.072 0.000
                                                  0.699
                                                            0.840
                                                 -0.001
      ms
              0.0251
                         0.013
                                1.908 0.063
                                                            0.052
       ca 1.353e+04 1599.496
                                8.461 0.000 1.03e+04 1.68e+04
       fl 1.216e+04 1761.727
                                6.904 0.000 8609.549 1.57e+04
           1.26e+04 1685.592 7.478 0.000 9204.975
                                                        1.6e+04
      Omnibus: 0.133 Durbin-Watson:
                                           1.645
Prob(Omnibus): 0.936 Jarque-Bera (JB):
                                           0.304
         Skew: 0.097
                              Prob(JB):
      Kurtosis: 2.661
                             Cond. No. 1.41e+21
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 1.66e-30. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.
```

Test for Normality of Residuals (Q-Q Plot)

In [47]:

In [45]:

qqplot=sm.qqplot(final_model.resid,line='q') # line = 45 to draw the diagnoal line
plt.title("Normal Q-Q plot of residuals")
plt.show()

Residual Plot for Homoscedasticity

In [48]:

In [49]:

