Lagebeziehungen

- 1. Punkt Ebene
- 2. Gerade Ebene
- 3. Ebene Ebene
- 4. Schnittwinkel: Ebene Ebene

1. Punkt-Ebene:

In der Ebene:

- 1. Der Punkt P liegt in der Ebene E wenn:
 - a. Der Vektor \vec{P} vor der Parametergleichung hat für beide Parameter genau eine Lösung
 - b. Der Vektor \overrightarrow{P} in der Koordinatenform hat eine Lösung
- 2. Der Punkt *P* liegt nicht in der Ebene *E* wenn:
 - a. Die Gleichung bei allen Formen keine Lösung hat

Abstand:

- 1. Den Abstand mit der Hesseschen Normalenform berechnen
- 2. Den Abstand mit dem Lotfußpunktverfahren berechnen:
 - 1: Hilfsgerade aufstellen $h: \overrightarrow{n_E} + r \cdot \overrightarrow{P}$
 - 2: Schnittpunkt S mit Ebene bestimmen
 - 2.1: Geradengleichung in Ebenengleichung setzen
 - 2.2: Parameter mit LGS bestimmen
 - 2.3: Parameter in Ebene einsetzen
 - 3: Den Betrag des Vektors \overrightarrow{SP} berechnen

2. Gerade-Ebene:

- 1. Man setzt die Gerade *G* mit der Ebene *E* gleich:
 - a. Bei genau einer Lösung schneiden sich Gerade und Ebene
 - b. Bei keiner Lösung liegen Gerade und Ebene parallel zueinander
 - c. Bei unendlich vielen Lösungen liegt die Gerade in der Ebene

Abstand:

Den Ortsvektor der Geraden nehmen und:

- 1. Den Abstand mit der Hesseschen Normalenform berechnen
- 2. Den Abstand mit dem Lotfußpunktverfahren berechnen:
 - 1: Hilfsgerade aufstellen $h: \overrightarrow{n_E} + r \cdot \overrightarrow{P}$
 - 2: Schnittpunkt S mit Ebene bestimmen
 - 2.1: Geradengleichung in Ebenengleichung setzen
 - 2.2: Parameter mit LGS bestimmen
 - 2.3: Parameter in Ebene einsetzen
 - 3: Den Betrag des Vektors \overrightarrow{SP} berechnen

3. Ebene-Ebene:

Niemals zwei Parametergleichungen gleichsetzen!!

- 1. Man rechnet das Skalarprodukt der Normalenvektoren aus:
 - = 0: Die Ebenen sind identisch oder Parallel
 - ≠ 0: Die Ebenen schneiden sich
- 2. Sind die Normalenvektoren ein Vielfaches voneinander, sind die Ebenen identisch, ansonsten parallel
- 3. Man setzt eine Parametergleichung in eine Koordinatenform ein und löst nach einem Parameter auf. Dadurch erhält man die Schnittgerade

Abstand:

Einen Punkt der einen Ebene nehmen und:

- Den Abstand mit der Hesseschen Normalenform berechnen
- 2. Den Abstand mit dem Lotfußpunktverfahren berechnen:
 - 1: Hilfsgerade aufstellen $h: \overrightarrow{n_E} + r \cdot \overrightarrow{P}$
 - 2: Schnittpunkt S mit Ebene bestimmen
 - 2.1: Geradengleichung in Ebenengleichung setzen
 - 2.2: Parameter mit LGS bestimmen
 - 2.3: Parameter in Ebene einsetzen
 - 3: Den Betrag des Vektors \overrightarrow{SP} berechnen

4. Schnittwinkel Gerade - Ebene:

Man berechnet den Schnittwinkel α mit dem Richtungsvektor \vec{u} der Geraden und dem Normalenvektor \vec{n} der Ebene:

$$\sin(\alpha) = \frac{|\vec{u} \cdot \vec{n}|}{|\vec{u}| \cdot |\vec{n}|}$$