1- Preprocessing Part:

```
import pandas as pd
df=pd.read_excel("titanic-passengers.xlsx")
df.head()
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fa
0	343	No	2	Collander, Mr. Erik Gustaf	male	28.0	0	0	248740	13.00
1	76	No	3	Moen, Mr. Sigurd Hansen	male	25.0	0	0	348123	7.65
2	641	No	3	Jensen, Mr. Hans Peder	male	20.0	0	0	350050	7.85
3	568	No	3	Palsson, Mrs. Nils (Alma	female	29.0	0	4	349909	21.07

df.columns

Enregistrement...

print(df.isnull().sum())

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtyne: int61	

dtype: int64

print(df.isnull().sum().sum())

866

print(df['Age'].isnull().sum())

177

```
print(df['Cabin'].isnull().sum())
687

df["Age"].fillna(df["Age"].mean(),inplace=True)
df.head(20)
```

Enregistrement... ×

	Pa	assengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Tick
	0	343	No	2	Collander, Mr. Erik Gustaf	male	28.000000	0	0	2487
	1	76	No	3	Moen, Mr. Sigurd Hansen	male	25.000000	0	0	348
	2	641	No	3	Jensen, Mr. Hans Peder	male	20.000000	0	0	3500
	3	568	No	3	Palsson, Mrs. Nils (Alma Cornelia Berglund)	female	29.000000	0	4	3499
	4	672	No	1	Davidson, Mr. Thornton	male	31.000000	1	0	F 127
	5	105	No	3	Gustafsson, Mr. Anders Vilhelm	male	37.000000	2	0	31012
df['Er	mbarked	d'].value_c	counts()							
(C 16	44 68								
Enreg	jistreme	ent		×	Loveii, ivir.					

B96 B98 4
C23 C25 C27 4
G6 4
F33 3
F2 3
...
C111 1
C50 1
D49 1
A34 1
E12 1

Name: Cabin, Length: 147, dtype: int64

df['Cabin'].fillna('G6',inplace=True)
df['Cabin'].value_counts()

G6 691
B96 B98 4
C23 C25 C27 4
F33 3
F2 3
...
C111 1

```
C50 1
D49 1
A34 1
E12 1
```

Name: Cabin, Length: 147, dtype: int64

```
df['Embarked'].fillna('S',inplace=True)
df['Embarked'].value_counts()
```

S 646C 168Q 77

Name: Embarked, dtype: int64

df.isnull().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	0
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	0
Embarked	0
dtvpe: int64	

Enregistrement... X

2- Visualization Part:

```
import matplotlib.pyplot as plt
plt.plot(df['Age'])
plt.show()
```


import matplotlib.pyplot as plt

v=df['Sex'].value_counts()
v.plot.bar(rot=45)

import matplotlib.pyplot as plt
v=df['Embarked'].value_counts()
v.plot.bar(rot=45)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe857556310>

import matplotlib.pyplot as plt
df['Age'].plot.hist()

```
<matplotlib.axes._subplots.AxesSubplot at 0x7fe857477290>
350 -
```

import seaborn as sns
sns.distplot(df['Age'],bins=5,hist=True,kde=True,color='red')

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: warnings.warn(msg, FutureWarning)

import seaborn as sns
sns.distplot(df['Age'],bins=5,hist=True,kde=False,color='red')

40

Age

50

60

70

80

import matplotlib.pyplot as plt
import seaborn as sns
grid=sns.FacetGrid(df,col='Sex')
grid.map(plt.hist,'Age')

10

20

100

<seaborn.axisgrid.FacetGrid at 0x7fe8466c20d0>


```
import matplotlib.pyplot as plt
import seaborn as sns
grid=sns.FacetGrid(df,col='Survived')
grid.map(sns.barplot,'Sex','Age')
grid.add_legend()
```

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:643: UserWarning: Using t warnings.warn(warning)

<seaborn.axisgrid.FacetGrid at 0x7fe8466d0f90>


```
import matplotlib.pyplot as plt
import seaborn as sns
grid=sns.FacetGrid(df,row='Pclass',col='Survived')
grid.map(sns.barplot,'Sex','Age')
grid.add_legend()
```

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:643: UserWarning: Using t warnings.warn(warning)

```
<seaborn.axisgrid.FacetGrid at 0x7fe83dc78b10>
```



```
def plot_correlation_map(df):
   corr=df.corr()
   s,ax=plt.subplots(figsize=(12,10))
   cmap=sns.diverging_palette(220,10,as_cmap=True)
   s=sns.heatmap(
```

```
cbar_kws={'shrink':.9},
    ax=ax,
    annot=True,
    annot_kws={'fontsize':12}
)
plot_correlation_map(df)
```


Interprétation: cette fonction montre la corrélation entre les variables de la data . La corrélation varie de -1 à +1. Les valeurs les plus proches de 0 signifient qu'il n'y a pas une relation dans le changement entre les deux variables c-à-d une correlation neutre . Alors que les valeurs les plus proches de 1, les deux variables changent dans le meme sens c'est une correlation positive positivement. On trouve aussi des valeurs qui sont proche de -1, ici les deux variables changent dans des directions opposées c'est une corrélation négative. mais au lieu des deux, une variable augmentera à mesure que l'autre augmentera.la correlation entre chaque variable avec ellemême est une corrélation parfaite(Les diagonales sont à 1).

```
0.013
                    -0.55
                                    0.092
                                                0.16
df[["Survived","Pclass"]].groupby(["Survived"], as_index=False).mean()
 Enregistrement...
      0
                   2.531876
               No
      1
                   1.950292
              Yes
df["Surname"] = df["Name"].str.split(".").str.get(0)
df["Surname"]
df["title"] = df["Surname"].str.split(",").str.get(-1)
df["title"]
     0
               Mr
     1
               Mr
     2
               Mr
     3
              Mrs
     4
               Mr
     886
              Mrs
     887
               Mr
     888
             Miss
     889
               Mr
     890
     Name: title, Length: 891, dtype: object
```

df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fa
0	343	No	2	Collander, Mr. Erik Gustaf	male	28.0	0	0	248740	13.00
1	76	No	3	Moen, Mr. Sigurd Hansen	male	25.0	0	0	348123	7.65
2	641	No	3	Jensen, Mr. Hans Peder	male	20.0	0	0	350050	7.85
3	568	No	3	Palsson, Mrs. Nils (Alma Cornelia Berglund)	female	29.0	0	4	349909	21.07
4	672	No	1	Davidson, Mr. Thornton	male	31.0	1	0	F.C. 12750	52.00

df=df.drop('Name',axis=1)
df=df.drop('Surname',axis=1)
df.head()

	P	PassengerId	gerId Survived Pcl		Pclass Sex		Age SibSp		Parch	Ticket	Fare	Cabin
	Enregistrer	ment		2		male	28.0	0	0	248740	13.0000	NaN
L	Linegionei				3	male	25.0	0	0	348123	7.6500	F G73
	2	641	No		3	male	20.0	0	0	350050	7.8542	NaN
	3	568	No		3	female	29.0	0	4	349909	21.0750	NaN
	4	672	No		1	male	31.0	1	0	F.C.	52.0000	B71

import seaborn as sns
import matplotlib.pyplot as plt
g=sns.FacetGrid(df,col='title')
g.map(plt.hist,"Sex")

import seaborn as sns
import matplotlib.pyplot as plt
g=sns.FacetGrid(df,col='title')
g.map(plt.hist,"Age")

<seaborn.axisgrid.FacetGrid at 0x7f09515d17d0>

	title = Mr	924 - No	20 - 70	title = Dr	ttle - Major	stie - Don	ttle - Meter	title - Fax	90x = Col	ttle - Mie	ttle - Lady	title = jonkheer	Stir - Nov	title = Sir	ttle = Coot	904 = the Countries
100									1	1			1			
80 -			1							1						
]]]					
20		-	a Block													
		2 4 6 6	2 4 9 9	1 2 4 9 9	1 2 4 6 6	1 2 4 6 6	2 4 6 6	1 2 5 0 0			1 2 4 6 6		1 2 4 9 9			

• ×

Enregistrement...