Ministerul Educației și Cercetării al Republicii Moldova Universitatea Tehnică a Moldovei Facultatea Calculatoare, Informatică și Microelectronică Departamentul Ingineria Software și Automatică

Lucrare individuală

la disciplina "Baze de Date"

Tema: Expresii ale Algebrei Relaționale

Efectuat de: studentul/studenta gr. TI-216 Vlasitchi Stefan

Verificat de:

Lucrare individuală la disciplina "Baze de Date"

Tema: Expresii ale Algebrei Relaționale

Sarcina / Задание:

Fie relațiile r și s definite pe schemele respective R=ABC și S=ABC:

Пусть заданы отношения r и s, определенные на схемах R = ABC и S = ABC, соответственно:

r	A	В	C
	a_1	b_3	c_2
	a_2	b_{I}	c_2
	a_1	b_{I}	c_1
	a_2	b_2	c_2
	a_1	b_2	c_2
	a_1	b_2	c_1
	a_2	b_{I}	c_1

S	A	B	C
	a_2	b_{I}	c_3
	a_2	b_2	c_2
	a_2	b_{I}	c_2
	a_2	b_2	c_1
	a_1	b_2	c_{I}

Să se găsească relația reprezentată de expresia algebrei relaționale:

$$\sigma_{(C=c3)} \&_{(A=a_1)} (\tilde{s} \tilde{r}) \triangleleft O \pi_{S} \tilde{s} \cap r).$$

Rezolvare/Решение

Divizam expresia dată în părți și le rezolvăm pe fiecare aparte: Разделяем выражение на части и решаем каждую часть отдельно:

- 1. $q_1 = \tilde{s}$
- 2. $q2 = \tilde{r}$
- 3. $q3 = \frac{s}{r}$
- 4. $q4 = s \cap r$
- 5. $q5 = \pi_S(\ \tilde{s} \cap r)$.
- 6. $q6 = \circ (c=c3) & (A=a_1) (s r)$

1) Operația q_1 se calculează după formula Pentru a calcula atup(S), identificăm domeniile active ale atributelor relației s(ABC)

$$adom(A) = \{a_1, a2 \}$$

 $adom(B) = \{b_1, b2\}$
 $adom(C) = \{c_1, c2, c3 \}$

Formăm relația atup(R) din valorile domeniilor active / $atup(S)=adom(A) \times adom(B) \times adom(C)$

atup(S)	\boldsymbol{A}	В	C
	a_1	b_{I}	c_1
	a_1	b_{I}	c_2
	a_1	b_1	c_3
	a_1	b_2	c_1
	a_{I}	b_2	c_2
	a_1	b_2	<i>C</i> 3
	a_2	b_1	c_1
	a_2	b_{I}	c_2
	a_2	b_{I}	<i>C</i> 3
	a_2	b_2	c_1
	a_2	b_2	c_2
	a_2	b_2	<i>C</i> 3

Calculăm / Вычисляем

$$q_1 = \tilde{s}$$

~s	\boldsymbol{A}	В	\boldsymbol{C}
	a_1	b_{I}	c_I
	a_1	b_{I}	c_2
	a_1	b_I	c_3
	a_1	b_2	c_2
	a_1	b_2	c_3
	a_2	b_I	c_I
	a_2	b_2	c_3

2) Operația q2 se calculează după formula

Pentru a calcula atup(r), identificăm domeniile active ale atributelor relației r(ABC)

$$adom(A) = \{a_1, a_2\}$$

$$adom(B) = \{b_1, b_2, b_3\}$$

$$adom(C) = \{c_1, c_2\}$$

Formăm relația atup(R) din valorile domeniilor active /

 $atup(R) = adom(A) \times adom(B) \times adom(C)$

atup(R)	\boldsymbol{A}	В	C
	a_{I}	b_{I}	c_{I}
	a_1	b_2	c_1
	a_1	b_3	c_1
	a_1	b_1	c_2
	a_1	b_2	c_2
	a_1	b_3	c_2
	a_2	b_1	c_1
	a_2	b_2	c_1
	a_2	b_3	c_1
	a_2	b_1	c_2
	a_2	b_2	c_2
	a_2	b_3	c_2

Calculăm / Вычисляем

$$q2=\tilde{r}$$

~r	\boldsymbol{A}	В	\boldsymbol{C}
	a_1	b_3	c_1
	a_1	b_I	c_2
	a_2	b_2	c_{I}
	a_2	b_3	c_{I}
	a_2	b_3	c_2

3) Calculăm / Вычисляем

$$q3=\tilde{s}\tilde{r}$$

~s\~r	\boldsymbol{A}	В	\boldsymbol{C}
	a_1	b_{I}	c_I
	a_1	b_{I}	c_3
	a_1	b_2	c_2
	a_1	b_2	c_3
	a_2	b_I	c_1
	a_2	b_2	c_3

4) Calculăm / Вычисляем

~s∩ r	\boldsymbol{A}	В	\boldsymbol{C}
	a_1	b_1	c_1
	a_1	b_2	c_2
	a_2	b_1	C_1

5) Calculăm / Вычисляем

$$q5 = \pi_S(\ \tilde{s} \cap r).$$

$\pi_s(\tilde{s} \cap r).$	\boldsymbol{A}	В	C
	a_1	b_{I}	c_{I}
	a_1	b_2	c_2
		b_{I}	

6) Calculăm / Вычисляем

$\sigma_{(C=c3) \& (A=a_1)} (\tilde{s}\tilde{r})$	\boldsymbol{A}	В	$\boldsymbol{\mathcal{C}}$
	a_1	b_{I}	c_3
	a_1	b_2	<i>C</i> ₃

8) Calculăm / Вычисляем qn= REZ

REZ	Aq_6	Bq_6	Cq_6	Aq_5	Bq_5	Cq_5
	NULL	NULL	NULL	a_1	b_{I}	c_1
	NULL	NULL	NULL	a_1	b_2	c_2
	NULL	NULL	NULL	a_2	b_{I}	c_1