

Technische Grundlagen der Informatik: Übungssatz 9

Aufgabe 9.1

Eine n-Kanal bzw. p-Kanal MOSFET und eine Lampe seien wie folgt zusammen geschaltet.

- (a) Für welchen Wertebereich von U_{GS} sind die MOSFETs jeweils gesperrt?
- (b) MOSFET sind Unipolartransistoren, der Drain-Strom kann in beide Richtungen durch den Kanal fließen. Zur Berechnung des Drain-Stroms muss jedoch bekannt welche der beiden Anschlüsse 1 und 2 (siehe Schaltung) die Funktion des Drains bzw. die Funktion des Source annimmt. Nach welchem Kriterium wird dies entschieden? Welches Vorzeichen hat daraufhin der Drain-Strom? (Anmerkung: Dies ist nur in integrierten Schaltungen möglich. Bei Einzeltransistoren ist Bulk mit Source intern verbunden. Zudem ist der Transistor nict symmetrisch aufgebaut.)
- (c) Betrachten Sie zunächst nur die linke Schaltung. Geben Sie in Abhängkeit von den folgenden Werten für U_B und U_E an: welche Funktion die Anschlüsse 1 und 2 annehmen, ob ein Strom durch die Lampe fließt und diese damit leuchtet, und, wenn ja, in welcher Richtung der Strom durch die Lampe fließt (I_L positiv oder negativ). Der Bulk-Anschluss sei jeweils mit dem niedrigsten Potential in der Schaltung verbunden, sodass die Bulk-Diode immer sperrt.

U_B/V	U_E/V	Anschluss	Anschluss	Lampe	Strom-
		1	2	leuchtet	richtung
5	-5				
5	0				
5	5				
0	-5				
0	0				
0	5				
-5	-5				
-5	0				
5	5				

(d) **Zusatzaufgabe:** Betrachten Sie jetzt nur die rechte Schaltung. Geben Sie in Abhängkeit von den folgenden Werten für U_B und U_E an: welche Funktion die Anschlüsse 1 und 2 annehmen, ob ein Strom durch die Lampe fließt und diese damit leuchtet, und, wenn ja, in welcher Richtung der Strom durch die Lampe fließt (I_L positiv oder negativ). Der Bulk-Anschluss sei jeweils mit dem höchsten Potential in der Schaltung verbunden, sodass die Bulk-Diode immer sperrt.

U_B/V	U _E /V	Anschluss 1	Anschluss 2	Lampe leuchtet	Strom- richtung
5	-5				
5	0				
5	5				
0	-5				
0	0				
0	5				
-5	-5				
-5	0				
5	5				

Aufgabe 9.2

Ein MOSFET sei wie folgt beschaltet, der Ausgang ist dabei unbelastet:

- (a) Es sei $U_E = 0$ V. Berechnen Sie für alle drei Werte von R die Ausgangsspannung U_A und den Eingangsstrom I_E .
- (b) Es sei $U_E = U_B$. Berechnen Sie für alle drei Werte von R die Ausgangsspannung U_A und den Eingangsstrom I_E .
- (c) Welcher Wert für R eignet sich am besten, wenn die Schaltung als Inverter für digitale Logik arbeiten soll?

Aufgabe 9.3

Ein MOSFET sei wie folgt beschaltet, der Ausgang ist dabei durch die Kapazität C (z.B. einer Leitung und/oder des Gates eines nachfolgenden MOSFETs) belastet:

- (a) Es sei $U_E=0$ V. Berechnen Sie U_A im eingeschwungenen Zustand $\left(\frac{d}{dt}=0\right)$.
- (b) Beschreiben Sie qualitativ den Verlauf von U_A wenn der Eingang von $U_E = 0$ V auf $U_E = U_B$ sofort umschaltet.

(c) Welche Ausgangsspannung U_A wird nach unendlicher Zeit erreicht?

Aufgabe 9.4

Zusatzaufgabe:

Ein Digitalsignal U_E wird mit Hilfe zweier Treiberstufen (NMOS-Inverter) über eine ohmsche Leitung mit dem Widerstand R_L übertragen.

- (a) Welcher Bereich ist für U_X maximal zulässig, damit bei $U_E=5.0$ V am Ausgang wieder $U_A=5.0$ V gilt? Hinweis: Geben Sie zunächst den nötigen Arbeitsbereich von T_2 an.
- (b) In welchem Arbeitsbereich befindet sich demnach T_1 ?
- (c) Wie groß muss R_1 mindestens sein, damit die Bedingung für U_X eingehalten wird? Das Ergebnis ist auf zwei Dezimalstellen genau anzugeben!