Data Analysis Using Regression and Multilevel/Hierarchical Models

ANDREW GELMAN
Columbia University

JENNIFER HILL Columbia University

Contents

List of examples page xvii				
Preface				
1	Wh	y?	1	
	1.1	What is multilevel regression modeling?	1	
	1.2	Some examples from our own research	3	
	1.3	Motivations for multilevel modeling	6	
	1.4	Distinctive features of this book	8	
	1.5	Computing	9	
2	Con	cepts and methods from basic probability and statistics	13	
	2.1	Probability distributions	13	
	2.2	Statistical inference	16	
	2.3	Classical confidence intervals	18	
	2.4	Classical hypothesis testing	20	
	2.5	Problems with statistical significance	22	
	2.6	55,000 residents desperately need your help!	23	
	2.7	Bibliographic note	26	
	2.8	Exercises	26	
Pa	art 1	A: Single-level regression	29	
3	Line	ear regression: the basics	31	
	3.1	One predictor	31	
	3.2	Multiple predictors	32	
	3.3	Interactions	34	
	3.4	Statistical inference	37	
	3.5	Graphical displays of data and fitted model	42	
	3.6	Assumptions and diagnostics	45	
	3.7	Prediction and validation	47	
	3.8	Bibliographic note	49	
	3.9	Exercises	49	
4	Line	ear regression: before and after fitting the model	53	
	4.1	Linear transformations	53	
	4.2	Centering and standardizing, especially for models with interactions	55	
	4.3	Correlation and "regression to the mean"	57	
	4.4	Logarithmic transformations	59	
	4.5	Other transformations	65	
	4.6	Building regression models for prediction	68	
	4.7	Fitting a series of regressions	73	

	4.8	Bibliographic note	74
	4.9	Exercises	74
_	- .		=0
5	_	stic regression	79
	5.1	Logistic regression with a single predictor	79
	5.2	Interpreting the logistic regression coefficients	81
	5.3	Latent-data formulation	85
	5.4	Building a logistic regression model: wells in Bangladesh	86
	5.5	Logistic regression with interactions	92
	5.6	Evaluating, checking, and comparing fitted logistic regressions	97
	5.7	Average predictive comparisons on the probability scale	101
	5.8	Identifiability and separation	104
	5.9	Bibliographic note	105
	5.10	Exercises	105
6	Gen	eralized linear models	109
	6.1	Introduction	109
	6.2	Poisson regression, exposure, and overdispersion	110
	6.3	Logistic-binomial model	116
	6.4	Probit regression: normally distributed latent data	118
	6.5	Ordered and unordered categorical regression	119
	6.6	Robust regression using the t model	124
	6.7	Building more complex generalized linear models	125
	6.8	Constructive choice models	127
	6.9	Bibliographic note	131
	6.10	Exercises	132
Pa	rt 1I	B: Working with regression inferences	135
7	Sim	ulation of probability models and statistical inferences	137
•	7.1	Simulation of probability models	137
	7.2	Summarizing linear regressions using simulation: an informal	101
		Bayesian approach	140
	7.3	Simulation for nonlinear predictions: congressional elections	144
	7.4	Predictive simulation for generalized linear models	148
	7.5	Bibliographic note	151
	7.6	Exercises	152
	G :		1
8		ulation for checking statistical procedures and model fits	155
	8.1	Fake-data simulation	155
	8.2	Example: using fake-data simulation to understand residual plots	157
	8.3	Simulating from the fitted model and comparing to actual data	158
	8.4	Using predictive simulation to check the fit of a time-series model	163
	8.5 8.6	Bibliographic note Exercises	$\begin{array}{c} 165 \\ 165 \end{array}$
	0.0		100
9		sal inference using regression on the treatment variable	167
	9.1	Causal inference and predictive comparisons	167
	9.2	The fundamental problem of causal inference	170
	9.3	Randomized experiments	172
	9.4	Treatment interactions and poststratification	178

CONTE	NTS	xi
	Observational studies	181
$9.5 \\ 9.6$		186
$9.0 \\ 9.7$	Understanding causal inference in observational studies Do not control for post-treatment variables	188
9.7	-	190
9.8	Intermediate outcomes and causal paths	190 194
	Bibliographic note Exercises	194 194
9.10	Likercises	134
10 Cau	sal inference using more advanced models	199
10.1	Imbalance and lack of complete overlap	199
10.2	Subclassification: effects and estimates for different subpopulations	204
10.3	Matching: subsetting the data to get overlapping and balanced	
	treatment and control groups	206
10.4	Lack of overlap when the assignment mechanism is known:	
	regression discontinuity	212
10.5	Estimating causal effects indirectly using instrumental variables	215
	Instrumental variables in a regression framework	220
10.7	Identification strategies that make use of variation within or between	
	groups	226
10.8	Bibliographic note	229
10.9	Exercises	231
** ·		
Part 2	A: Multilevel regression	235
11 Mul	tilevel structures	237
	Varying-intercept and varying-slope models	237
	Clustered data: child support enforcement in cities	237
	Repeated measurements, time-series cross sections, and other	
	non-nested structures	241
11.4	Indicator variables and fixed or random effects	244
	Costs and benefits of multilevel modeling	246
	Bibliographic note	247
	Exercises	248
8		
	tilevel linear models: the basics	251
	Notation	251
12.2	Partial pooling with no predictors	252
12.3	Partial pooling with predictors	254
	Quickly fitting multilevel models in R	259
	Five ways to write the same model	262
	Group-level predictors	265
	Model building and statistical significance	270
	Predictions for new observations and new groups	272
12.9	How many groups and how many observations per group are	
637	needed to fit a multilevel model?	275
	Dibliographic note	276
12.1	1 Exercises	277
13 Mu	tilevel linear models: varying slopes, non-nested models, and	
	er complexities	279
	Varying intercepts and slopes	279
	Varying slopes without varying intercepts	283

xii CONTENTS

į×	13.3	Modeling multiple varying coefficients using the scaled inverse-	
υď		Wishart distribution	284
		Understanding correlations between group-level intercepts and	
		slopes	287
		Non-nested models	289
	13.6	Selecting, transforming, and combining regression inputs	293
	13.7	More complex multilevel models	297
		Bibliographic note	297
	13.9	Exercises	298
14	Mult	ilevel logistic regression	301
		State-level opinions from national polls	301
		Red states and blue states: what's the matter with Connecticut?	310
		Item-response and ideal-point models	314
		Non-nested overdispersed model for death sentence reversals	320
		Bibliographic note	321
		Exercises	322
	11.0	LIKO OLOGO	0
15	Mult	ilevel generalized linear models	325
		Overdispersed Poisson regression: police stops and ethnicity	325
		Ordered categorical regression: storable votes	331
		Non-nested negative-binomial model of structure in social networks	332
		Bibliographic note	342
		Exercises	342
	10.0		
Pa	rt 2B	3: Fitting multilevel models	343
16	Mult	tilevel modeling in Bugs and R: the basics	345
		Why you should learn Bugs	345
		Bayesian inference and prior distributions	345
		Fitting and understanding a varying-intercept multilevel model	0 10
		using R and Bugs	348
	16.4	Step by step through a Bugs model, as called from R	353
		Adding individual- and group-level predictors	359
		Predictions for new observations and new groups	361
		Fake-data simulation	363
		The principles of modeling in Bugs	366
		Practical issues of implementation	369
		Open-ended modeling in Bugs	370
		Bibliographic note	373
		Exercises	373
			0.0
17	Fitti	ng multilevel linear and generalized linear models in Bugs	
-•	and		375
		Varying-intercept, varying-slope models	375
		Varying intercepts, varying stope models Varying intercepts and slopes with group-level predictors	379
		Non-nested models	380
		Multilevel logistic regression	381
		Multilevel Poisson regression	382
	-1.0	-	
	17.6	Multilevel ordered categorical regression	383

17.8 Bibliographic note 385 17.9 Exercises 385 18 Likelihood and Bayesian inference and computation 387 18.1 Least squares and maximum likelihood estimation 387 18.2 Uncertainty estimates using the likelihood surface 390 18.3 Bayesian inference for classical and multilevel regression 392 18.4 Gibbs sampler for multilevel linear models 397 18.5 Likelihood inference, Bayesian inference, and the Gibbs sampler: the case of censored data 402 18.6 Metropolis algorithm for more general Bayesian computation 408 18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis algorithm in R 409 18.8 Bibliographic note 413 18.9 Exercises 413 19 Debugging and speeding convergence 415 19.1 Debugging and confidence building 415 19.2 General methods for reducing computational requirements 418 19.3 Simple linear transformations 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters and intentionally nonidentifiable models 419 19.7 Bibliographic note 427 19.8 Exerc	CO	ONTE	NTS	xiii
17.9 Exercises 18 Likelihood and Bayesian inference and computation 18.1 Least squares and maximum likelihood estimation 18.2 Uncertainty estimates using the likelihood surface 390 18.3 Bayesian inference for classical and multilevel regression 392 18.4 Gibbs sampler for multilevel linear models 18.5 Likelihood inference, Bayesian inference, and the Gibbs sampler: the case of censored data 18.6 Metropolis algorithm for more general Bayesian computation 18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis algorithm in R 18.8 Bibliographic note 18.9 Exercises 413 19 Debugging and speeding convergence 19.1 Debugging and confidence building 19.2 General methods for reducing computational requirements 19.3 Simple linear transformations 19.4 Redundant parameters and intentionally nonidentifiable models 19.5 Parameter expansion: multiplicative redundant parameters 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 19.7 Bibliographic note 19.8 Exercises Part 3: From data collection to model understanding to model checking 20 Sample size and power calculations 20.1 Choices in the design of data collection 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 20.3 Classical power calculations for continuous outcomes 20.4 Multilevel power calculation for cluster sampling 20.5 Multilevel power calculation for cluster sampling 20.6 Bibliographic note 20.7 Exercises 21 Understanding and summarizing the fitted models 21.1 Uncertainty and variability 21.2 Superpopulation and finite-population variances 21.3 Contrasts and comparisons of multilevel coefficients 21.4 Average predictive comparisons 466 21.5 R ² and explained variance 21.6 Summarizing the amount of partial pooling 21.7 Adding a predictor can increase the residual variance! 21.8 Multiple comparisons and statistical significance 21.8 Bibliographic note		17.8	Bibliographic note	385
18 Likelihood and Bayesian inference and computation 387 18.1 Least squares and maximum likelihood estimation 387 18.2 Uncertainty estimates using the likelihood surface 390 18.3 Bayesian inference for classical and multilevel regression 392 18.4 Gibbs sampler for multilevel linear models 397 18.5 Likelihood inference, Bayesian inference, and the Gibbs sampler: the case of censored data 402 18.6 Metropolis algorithm for more general Bayesian computation 408 18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis algorithm in R 409 18.8 Bibliographic note 413 18.9 Exercises 413 19 Debugging and speeding convergence 415 19.1 Debugging and confidence building 415 19.2 General methods for reducing computational requirements 418 19.3 Simple linear transformations 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters and intentionally nonidentifiable models 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters and intentionally nonidentifiable models 427				
18.1 Least squares and maximum likelihood estimation 387 18.2 Uncertainty estimates using the likelihood surface 390 18.3 Bayesian inference for classical and multilevel regression 392 18.4 Gibbs sampler for multilevel linear models 397 18.5 Likelihood inference, Bayesian inference, and the Gibbs sampler: the case of censored data 402 18.6 Metropolis algorithm for more general Bayesian computation 408 18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis algorithm in R 409 18.8 Bibliographic note 413 18.9 Exercises 413 19 Debugging and speeding convergence 415 19.1 Debugging and confidence building 415 19.2 General methods for reducing computational requirements 418 19.3 Simple linear transformations 419 19.4 Redundant parameters and intentionally nonidentifiable models 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 20.1 Choices in the design of data collection 437 20.2 Cla		11.0		000
18.2 Uncertainty estimates using the likelihood surface 390 18.3 Bayesian inference for classical and multilevel regression 392 18.5 Likelihood inference, Bayesian inference, and the Gibbs sampler: the case of censored data 402 18.6 Metropolis algorithm for more general Bayesian computation 408 18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis algorithm in R 409 18.8 Bibliographic note 413 18.9 Exercises 413 19 Debugging and speeding convergence 415 19.1 Debugging and confidence building 415 19.2 General methods for reducing computational requirements 418 19.3 Simple linear transformations 419 19.4 Redundant parameters and intentionally nonidentifiable models 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 20.2 Classical power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations general principles, as illustrated by estimates of proportions 439	18	Like	lihood and Bayesian inference and computation	387
18.3 Bayesian inference for classical and multilevel regression 392 18.4 Gibbs sampler for multilevel linear models 397 18.5 Likelihood inference, Bayesian inference, and the Gibbs sampler: the case of censored data 402 18.6 Metropolis algorithm for more general Bayesian computation 408 18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis algorithm in R 409 18.8 Bibliographic note 413 18.9 Exercises 413 19 Debugging and speeding convergence 415 19.1 Debugging and confidence building 415 19.2 General methods for reducing computational requirements 418 19.3 Simple linear transformations 419 19.4 Redundant parameters and intentionally nonidentifiable models 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 437				387
18.4 Gibbs sampler for multilevel linear models 397 18.5 Likelihood inference, Bayesian inference, and the Gibbs sampler: the case of censored data 402 18.6 Metropolis algorithm for more general Bayesian computation 408 18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis algorithm in R 409 18.8 Bibliographic note 413 18.9 Exercises 413 19 Debugging and speeding convergence 415 19.1 Debugging and confidence building 415 19.2 General methods for reducing computational requirements 418 19.3 Simple linear transformations 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 19.8 Exercises 434 20 Sample size and power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 439 20.3 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449		18.2	Uncertainty estimates using the likelihood surface	390
18.5 Likelihood inference, Bayesian inference, and the Gibbs sampler: the case of censored data 402 18.6 Metropolis algorithm for more general Bayesian computation 408 18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis algorithm in R 409 18.8 Bibliographic note 413 18.9 Exercises 413 19 Debugging and speeding convergence 415 19.1 Debugging and confidence building 415 19.2 General methods for reducing computational requirements 418 19.3 Simple linear transformations 419 19.4 Redundant parameters and intentionally nonidentifiable models 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 19.8 Exercises 434 20 Sample size and power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations: general principles, as illustrated by estimates of propo		18.3	Bayesian inference for classical and multilevel regression	392
the case of censored data 18.6 Metropolis algorithm for more general Bayesian computation 18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis algorithm in R 18.8 Bibliographic note 18.9 Exercises 19.1 Debugging and speeding convergence 19.1 Debugging and confidence building 19.2 General methods for reducing computational requirements 19.3 Simple linear transformations 19.4 Redundant parameters and intentionally nonidentifiable models 19.5 Parameter expansion: multiplicative redundant parameters 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 19.7 Bibliographic note 19.8 Exercises 20 Sample size and power calculations 20.1 Choices in the design of data collection 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 20.3 Classical power calculation for cluster sampling 20.4 Multilevel power calculation for cluster sampling 20.5 Multilevel power calculation using fake-data simulation 20.6 Bibliographic note 20.7 Exercises 21 Understanding and summarizing the fitted models 21.1 Uncertainty and variability 21.2 Superpopulation and finite-population variances 21.3 Contrasts and comparisons of multilevel coefficients 21.4 Average predictive comparisons of multilevel coefficients 21.5 R² and explained variance 21.6 Summarizing the amount of partial pooling 21.7 Adding a predictor can increase the residual variance! 21.8 Multiple comparisons and statistical significance 482 21.9 Bibliographic note		18.4	Gibbs sampler for multilevel linear models	397
18.6 Metropolis algorithm for more general Bayesian computation 408 18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis algorithm in R 409 18.8 Bibliographic note 413 18.9 Exercises 413 19 Debugging and speeding convergence 415 19.1 Debugging and confidence building 415 19.2 General methods for reducing computational requirements 418 19.3 Simple linear transformations 419 19.4 Redundant parameters and intentionally nonidentifiable models 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 19.8 Exercises 434 20.1 Choices in the design of data collection 435 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 437 20.2 Classical power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation <		18.5	Likelihood inference, Bayesian inference, and the Gibbs sampler:	
18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis algorithm in R 409 18.8 Bibliographic note 413 18.9 Exercises 413 19 Debugging and speeding convergence 415 19.1 Debugging and confidence building 415 19.2 General methods for reducing computational requirements 418 19.3 Simple linear transformations 419 19.4 Redundant parameters and intentionally nonidentifiable models 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 19.8 Exercises 434 20 Sample size and power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 439 20.3 Classical power calculation for continuous outcomes 443 20.4 Multilevel power calculation of cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 21. Uncertainty and variability 457 <td></td> <td></td> <td>the case of censored data</td> <td>402</td>			the case of censored data	402
algorithm in R		18.6	Metropolis algorithm for more general Bayesian computation	408
algorithm in R		18.7	Specifying a log posterior density, Gibbs sampler, and Metropolis	
18.8 Bibliographic note 413 18.9 Exercises 413 19 Debugging and speeding convergence 415 19.1 Debugging and confidence building 415 19.2 General methods for reducing computational requirements 418 19.3 Simple linear transformations 419 19.4 Redundant parameters and intentionally nonidentifiable models 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 19.8 Exercises 434 20 Sample size and power calculations 435 20 Sample size and power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 439 20.3 Classical power calculation for continuous outcomes 443 20.4 Multilevel power calculation using fake-data simulation 449 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 21 Understanding and summarizing the fitted models 457				409
18.9 Exercises 413 19 Debugging and speeding convergence 415 19.1 Debugging and confidence building 415 19.2 General methods for reducing computational requirements 418 19.3 Simple linear transformations 419 19.4 Redundant parameters and intentionally nonidentifiable models 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 19.8 Exercises 434 Part 3: From data collection to model understanding to model checking 435 20 Sample size and power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 439 20.3 Classical power calculation for cluster sampling 447 20.4 Multilevel power calculation using fake-data simulation 449 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 21 Understanding and summarizing the fitted models 457 21.1 Uncertainty and variability		18.8	9	413
19.1 Debugging and confidence building 415 19.2 General methods for reducing computational requirements 418 19.3 Simple linear transformations 419 19.4 Redundant parameters and intentionally nonidentifiable models 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 19.8 Exercises 434 Part 3: From data collection to model understanding to model checking 435 20 Sample size and power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 439 20.3 Classical power calculations for continuous outcomes 443 20.4 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462				413
19.1 Debugging and confidence building 415 19.2 General methods for reducing computational requirements 418 19.3 Simple linear transformations 419 19.4 Redundant parameters and intentionally nonidentifiable models 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 19.8 Exercises 434 Part 3: From data collection to model understanding to model checking 435 20 Sample size and power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 439 20.3 Classical power calculations for continuous outcomes 443 20.4 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462				
19.2 General methods for reducing computational requirements 418 19.3 Simple linear transformations 419 19.4 Redundant parameters and intentionally nonidentifiable models 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 19.8 Exercises 434 Part 3: From data collection to model understanding to model checking 435 20 Sample size and power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 439 20.3 Classical power calculations for continuous outcomes 443 20.4 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 20.7 Exercises 454 21 Understanding and summarizing the fitted models 457 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons	19	Deb	ugging and speeding convergence	415
19.3 Simple linear transformations 419 19.4 Redundant parameters and intentionally nonidentifiable models 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 19.8 Exercises 434 20 Sample size and power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 439 20.3 Classical power calculation for continuous outcomes 443 20.4 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 20.7 Exercises 454 21 Understanding and summarizing the fitted models 457 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R ² and explained variance 473		19.1	Debugging and confidence building	415
19.4 Redundant parameters and intentionally nonidentifiable models 419 19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 19.8 Exercises 434 Part 3: From data collection to model understanding to model checking 20 Sample size and power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 439 20.3 Classical power calculation for continuous outcomes 443 20.4 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 20.7 Exercises 454 21 Understanding and summarizing the fitted models 457 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R ² and explained varia		19.2	General methods for reducing computational requirements	418
19.5 Parameter expansion: multiplicative redundant parameters 424 19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 19.8 Exercises 434 Part 3: From data collection to model understanding to model checking 20 Sample size and power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 439 20.3 Classical power calculations for continuous outcomes 443 20.4 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 20.7 Exercises 454 21 Understanding and summarizing the fitted models 457 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R² and explained variance 473 21.6 Summarizing the amount of partial pooling 477 <		19.3	Simple linear transformations	419
19.6 Using redundant parameters to create an informative prior distribution for multilevel variance parameters 427 19.7 Bibliographic note 434 19.8 Exercises 434 Part 3: From data collection to model understanding to model checking 435 20 Sample size and power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 439 20.3 Classical power calculations for continuous outcomes 443 20.4 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 20.7 Exercises 454 21 Understanding and summarizing the fitted models 457 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R² and explained variance 473 21.6 Summarizing the amount of partial pooling 477 21.8 Multiple comparisons and statistical significance 481 <		19.4	Redundant parameters and intentionally nonidentifiable models	419
distribution for multilevel variance parameters 19.7 Bibliographic note 19.8 Exercises 434 Part 3: From data collection to model understanding to model checking 20 Sample size and power calculations 20.1 Choices in the design of data collection 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 20.3 Classical power calculations for continuous outcomes 20.4 Multilevel power calculation for cluster sampling 20.5 Multilevel power calculation using fake-data simulation 20.6 Bibliographic note 20.7 Exercises 454 21 Understanding and summarizing the fitted models 21.1 Uncertainty and variability 21.2 Superpopulation and finite-population variances 21.3 Contrasts and comparisons of multilevel coefficients 21.4 Average predictive comparisons 21.5 R^2 and explained variance 21.6 Summarizing the amount of partial pooling 21.7 Adding a predictor can increase the residual variance! 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note		19.5	Parameter expansion: multiplicative redundant parameters	424
19.7 Bibliographic note 19.8 Exercises 434 Part 3: From data collection to model understanding to model checking 435 20 Sample size and power calculations 20.1 Choices in the design of data collection 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 20.3 Classical power calculations for continuous outcomes 443 20.4 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 20.7 Exercises 454 21 Understanding and summarizing the fitted models 21.1 Uncertainty and variability 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R² and explained variance 473 21.6 Summarizing the amount of partial pooling 477 21.7 Adding a predictor can increase the residual variance! 480 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note		19.6	Using redundant parameters to create an informative prior	
Part 3: From data collection to model understanding to model checking 20 Sample size and power calculations 20.1 Choices in the design of data collection 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 20.3 Classical power calculations for continuous outcomes 20.4 Multilevel power calculation for cluster sampling 20.5 Multilevel power calculation using fake-data simulation 20.6 Bibliographic note 20.7 Exercises 21 Understanding and summarizing the fitted models 21.1 Uncertainty and variability 21.2 Superpopulation and finite-population variances 21.3 Contrasts and comparisons of multilevel coefficients 21.4 Average predictive comparisons 21.5 R ² and explained variance 21.6 Summarizing the amount of partial pooling 21.7 Adding a predictor can increase the residual variance! 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note			distribution for multilevel variance parameters	427
Part 3: From data collection to model understanding to model checking20 Sample size and power calculations43720.1 Choices in the design of data collection43720.2 Classical power calculations: general principles, as illustrated by estimates of proportions43920.3 Classical power calculations for continuous outcomes44320.4 Multilevel power calculation for cluster sampling44720.5 Multilevel power calculation using fake-data simulation44920.6 Bibliographic note45420.7 Exercises45421 Understanding and summarizing the fitted models45721.1 Uncertainty and variability45721.2 Superpopulation and finite-population variances45921.3 Contrasts and comparisons of multilevel coefficients46221.4 Average predictive comparisons46621.5 R^2 and explained variance47321.6 Summarizing the amount of partial pooling47721.7 Adding a predictor can increase the residual variance!48021.8 Multiple comparisons and statistical significance48121.9 Bibliographic note484		19.7	Bibliographic note	434
checking 435 20 Sample size and power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 439 20.3 Classical power calculations for continuous outcomes 443 20.4 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 20.7 Exercises 454 21 Understanding and summarizing the fitted models 457 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R² and explained variance 473 21.6 Summarizing the amount of partial pooling 477 21.7 Adding a predictor can increase the residual variance! 480 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note 484		19.8	Exercises	434
checking 435 20 Sample size and power calculations 437 20.1 Choices in the design of data collection 437 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 439 20.3 Classical power calculations for continuous outcomes 443 20.4 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 20.7 Exercises 454 21 Understanding and summarizing the fitted models 457 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R² and explained variance 473 21.6 Summarizing the amount of partial pooling 477 21.7 Adding a predictor can increase the residual variance! 480 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note 484	Da	m+ 9.	From data collection to model understanding to model	
20 Sample size and power calculations 20.1 Choices in the design of data collection 20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 20.3 Classical power calculations for continuous outcomes 443 20.4 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 20.7 Exercises 454 21 Understanding and summarizing the fitted models 457 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R ² and explained variance 473 21.6 Summarizing the amount of partial pooling 477 21.7 Adding a predictor can increase the residual variance! 480 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note	Гč			
20.1 Choices in the design of data collection43720.2 Classical power calculations: general principles, as illustrated by estimates of proportions43920.3 Classical power calculations for continuous outcomes44320.4 Multilevel power calculation for cluster sampling44720.5 Multilevel power calculation using fake-data simulation44920.6 Bibliographic note45420.7 Exercises45421 Understanding and summarizing the fitted models45721.1 Uncertainty and variability45721.2 Superpopulation and finite-population variances45921.3 Contrasts and comparisons of multilevel coefficients46221.4 Average predictive comparisons46621.5 R^2 and explained variance47321.6 Summarizing the amount of partial pooling47721.7 Adding a predictor can increase the residual variance!48021.8 Multiple comparisons and statistical significance48121.9 Bibliographic note484		CHEC	ring	400
20.1 Choices in the design of data collection43720.2 Classical power calculations: general principles, as illustrated by estimates of proportions43920.3 Classical power calculations for continuous outcomes44320.4 Multilevel power calculation for cluster sampling44720.5 Multilevel power calculation using fake-data simulation44920.6 Bibliographic note45420.7 Exercises45421 Understanding and summarizing the fitted models45721.1 Uncertainty and variability45721.2 Superpopulation and finite-population variances45921.3 Contrasts and comparisons of multilevel coefficients46221.4 Average predictive comparisons46621.5 R^2 and explained variance47321.6 Summarizing the amount of partial pooling47721.7 Adding a predictor can increase the residual variance!48021.8 Multiple comparisons and statistical significance48121.9 Bibliographic note484	20	Sam	nle size and nower calculations	437
20.2 Classical power calculations: general principles, as illustrated by estimates of proportions 20.3 Classical power calculations for continuous outcomes 443 20.4 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 20.7 Exercises 457 21 Understanding and summarizing the fitted models 457 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R^2 and explained variance 21.6 Summarizing the amount of partial pooling 477 21.7 Adding a predictor can increase the residual variance! 480 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note	20			
estimates of proportions 439 20.3 Classical power calculations for continuous outcomes 443 20.4 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 20.7 Exercises 454 21 Understanding and summarizing the fitted models 457 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R^2 and explained variance 473 21.6 Summarizing the amount of partial pooling 477 21.7 Adding a predictor can increase the residual variance! 480 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note			y v	101
20.3 Classical power calculations for continuous outcomes 20.4 Multilevel power calculation for cluster sampling 20.5 Multilevel power calculation using fake-data simulation 20.6 Bibliographic note 20.7 Exercises 454 20.7 Exercises 455 21 Understanding and summarizing the fitted models 21.1 Uncertainty and variability 21.2 Superpopulation and finite-population variances 21.3 Contrasts and comparisons of multilevel coefficients 21.4 Average predictive comparisons 21.5 R^2 and explained variance 21.6 Summarizing the amount of partial pooling 21.7 Adding a predictor can increase the residual variance! 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note		20.2		430
20.4 Multilevel power calculation for cluster sampling 447 20.5 Multilevel power calculation using fake-data simulation 449 20.6 Bibliographic note 454 20.7 Exercises 454 21 Understanding and summarizing the fitted models 457 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R^2 and explained variance 473 21.6 Summarizing the amount of partial pooling 477 21.7 Adding a predictor can increase the residual variance! 480 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note 484		20.3		
20.5 Multilevel power calculation using fake-data simulation 20.6 Bibliographic note 20.7 Exercises 454 21 Understanding and summarizing the fitted models 21.1 Uncertainty and variability 21.2 Superpopulation and finite-population variances 21.3 Contrasts and comparisons of multilevel coefficients 21.4 Average predictive comparisons 21.5 R^2 and explained variance 21.6 Summarizing the amount of partial pooling 21.7 Adding a predictor can increase the residual variance! 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note			- · · · · · · · · · · · · · · · · · · ·	
20.6 Bibliographic note 454 20.7 Exercises 454 21 Understanding and summarizing the fitted models 457 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R^2 and explained variance 473 21.6 Summarizing the amount of partial pooling 477 21.7 Adding a predictor can increase the residual variance! 480 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note 484				
20.7 Exercises 454 21 Understanding and summarizing the fitted models 457 21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R^2 and explained variance 473 21.6 Summarizing the amount of partial pooling 477 21.7 Adding a predictor can increase the residual variance! 480 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note			=	
21 Understanding and summarizing the fitted models45721.1 Uncertainty and variability45721.2 Superpopulation and finite-population variances45921.3 Contrasts and comparisons of multilevel coefficients46221.4 Average predictive comparisons46621.5 R^2 and explained variance47321.6 Summarizing the amount of partial pooling47721.7 Adding a predictor can increase the residual variance!48021.8 Multiple comparisons and statistical significance48121.9 Bibliographic note484			O 1	
21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R^2 and explained variance 473 21.6 Summarizing the amount of partial pooling 477 21.7 Adding a predictor can increase the residual variance! 480 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note 484		20.1	LIACICISCS .	101
21.1 Uncertainty and variability 457 21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R^2 and explained variance 473 21.6 Summarizing the amount of partial pooling 477 21.7 Adding a predictor can increase the residual variance! 480 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note 484	21	Und	erstanding and summarizing the fitted models	457
21.2 Superpopulation and finite-population variances 459 21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R^2 and explained variance 473 21.6 Summarizing the amount of partial pooling 477 21.7 Adding a predictor can increase the residual variance! 480 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note 484			<u> </u>	
21.3 Contrasts and comparisons of multilevel coefficients 462 21.4 Average predictive comparisons 466 21.5 R^2 and explained variance 473 21.6 Summarizing the amount of partial pooling 477 21.7 Adding a predictor can increase the residual variance! 480 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note 484			· ·	
21.4 Average predictive comparisons 466 21.5 R^2 and explained variance 473 21.6 Summarizing the amount of partial pooling 477 21.7 Adding a predictor can increase the residual variance! 480 21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note 484				
21.5 R² and explained variance47321.6 Summarizing the amount of partial pooling47721.7 Adding a predictor can increase the residual variance!48021.8 Multiple comparisons and statistical significance48121.9 Bibliographic note484				
21.6 Summarizing the amount of partial pooling47721.7 Adding a predictor can increase the residual variance!48021.8 Multiple comparisons and statistical significance48121.9 Bibliographic note484				
21.7 Adding a predictor can increase the residual variance!48021.8 Multiple comparisons and statistical significance48121.9 Bibliographic note484			•	
21.8 Multiple comparisons and statistical significance 481 21.9 Bibliographic note 484				
21.9 Bibliographic note 484				
0 1				
				485

	CONTENTE
xiv	CONTENTS

22	Ana	lysis of variance	487
	22.1	Classical analysis of variance	487
	22.2	ANOVA and multilevel linear and generalized linear models	490
	22.3	Summarizing multilevel models using ANOVA	492
		Doing ANOVA using multilevel models	494
		Adding predictors: analysis of covariance and contrast analysis	496
		Modeling the variance parameters: a split-plot latin square	498
		Bibliographic note	501
		Exercises	501
23	Cau	sal inference using multilevel models	503
	23.1	Multilevel aspects of data collection	503
	23.2	Estimating treatment effects in a multilevel observational study	506
	23.3	Treatments applied at different levels	507
	23.4	Instrumental variables and multilevel modeling	509
	23.5	Bibliographic note	512
	23.6	Exercises	512
24		lel checking and comparison	513
	24.1	Principles of predictive checking	513
	24.2	Example: a behavioral learning experiment	515
	24.3	Model comparison and deviance	524
		Bibliographic note	526
	24.5	Exercises	527
25		sing-data imputation	529
	25.1	Missing-data mechanisms	530
	25.2	Missing-data methods that discard data	531
	25.3	Simple missing-data approaches that retain all the data	532
	25.4	Random imputation of a single variable	533
		Imputation of several missing variables	539
	25.6	Model-based imputation	540
		Combining inferences from multiple imputations	542
		Bibliographic note	542
	25.9	Exercises	543
ΑĮ	pen	lixes	545
A	Six	quick tips to improve your regression modeling	547
	A.1	Fit many models	547
	A.2	Do a little work to make your computations faster and more reliable	547
	A.3	Graphing the relevant and not the irrelevant	548
	A.4	Transformations	548
	A.5	Consider all coefficients as potentially varying	549
	A.6	Estimate causal inferences in a targeted way, not as a byproduct	
		of a large regression	549
В		istical graphics for research and presentation	551
	B.1	Reformulating a graph by focusing on comparisons	552
	B.2	Scatterplots	553
	B.3	Miscellaneous tips	559

CC	ONTE	NTS	xv
	B.4	Bibliographic note	562
	B.5	Exercises	563
\mathbf{C}	Software		565
	C.1	Getting started with R, Bugs, and a text editor	565
	C.2	Fitting classical and multilevel regressions in R	565
	C.3	Fitting models in Bugs and R	567
	C.4	Fitting multilevel models using R, Stata, SAS, and other software	568
	C.5	Bibliographic note	573
Re	References		575
Αι	ıthor	index	601
Su	bject	index	607