Linear Algebra I HW6

B13902024 張沂魁

October 13, 2025

Problem 0.0.1. Let W_1, W_2 be subspaces of a finite dimensional vector space V.

- (a) Prove that $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$.
- (b) Prove that $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$.

Proof.

- (a) If $f \in (W_1 + W_2)^0$, then $f(w_1 + w_2) = 0$ for all $w_1 \in W_1$ and $w_2 \in W_2$. Now since $0 \in W_1$ and $0 \in W_2$, so we can pick $w_2 = 0$ so obtain $f(w_1) = 0$ for all $w_1 \in W_1$ and similarly we can obtain $f(w_2) = 0$ for all $w_2 \in W_2$. Hence, $f \in W_1^0 \cap W_2^0$. This means $(W_1 + W_2)^0 \subseteq W_1^0 \cap W_2^0$. Now if $g \in W_1^0 \cap W_2^0$, then since $g(w_1) = 0$ and $g(w_2) = 0$ for all $w_1 \in W_1$ and $w_2 \in W_2$, so we know $g(w_1 + w_2) = 0$ for all $w_1 \in W_1$ and $w_2 \in W_2$, and this means g(w) = 0 for all $w \in W_1 + W_2$. Hence, $g \in (W_1 + W_2)^0$, which gives $W_1^0 \cap W_2^0 \subseteq (W_1 + W_2)^0$. Hence, $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$.
- (b) We first claim that $\dim(W_1 \cap W_2)^0 = \dim(W_1^0 + W_2^0)$:

$$\dim (W_1 \cap W_2)^0 = \dim V - \dim(W_1 \cap W_2)$$

$$\dim (W_1^0 + W_2^0) = \dim W_1^0 + \dim W_2^0 - \dim (W_1^0 \cap W_2^0)$$

$$= (\dim V - \dim W_1) + (\dim V - \dim W_2) - \dim (W_1 + W_2)^0 \quad \text{(by (a))}$$

$$= 2 \dim V - \dim W_1 - \dim W_2 - (\dim V - \dim(W_1 + W_2))$$

$$= \dim V + \dim(W_1 + W_2) - \dim W_1 - \dim W_2$$

$$= \dim V - \dim(W_1 \cap W_2).$$

Hence, we've prove it. Now we prove that $W_1^0 + W_2^0 \subseteq (W_1 \cap W_2)^0$. If $f \in W_1^0 + W_2^0$, then f = g + h for some $g \in W_1^0$ and $h \in W_2^0$. Hence, we know for all $w \in W_1 \cap W_2$, f(w) = g(w) + h(w) = 0, which means $f \in (W_1 \cap W_2)^0$, so $W_1^0 + W_2^0 \subseteq (W_1 \cap W_2)^0$.

Now since we know

$$\begin{cases} \dim (W_1 \cap W_2)^0 = \dim (W_1^0 + W_2^0) \\ W_1^0 + W_2^0 \subseteq (W_1 \cap W_2)^0, \end{cases}$$

so we know $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$.

Problem 0.0.2. Let V be a finite-dimensional vector space over the field F and let W be a subspace of V. If f is a linear functional on W, prove that there is a linear functional g on V such that $g(\alpha) = f(\alpha)$ for each α in the subspace W.

Proof. Suppose $B = \{w_1, \dots, w_n\}$ is a basis of W, and extend it to

$$C = \{w_1, \dots, w_n, v_{n+1}, \dots, v_m\},\$$

and makes C a basis of V, then if we take dual of C, say

$$C^* = \{w_1^*, \dots, w_n^*, v_{n+1}^*, \dots, v_m^*\},\$$

then we know $f = \sum_{i=1}^{n} \alpha_i w_i^*$ for some α_i 's in F since

$$\{w_1^*, w_2^*, \dots, w_n^*\}$$

is a basis W^* and $f \in W^*$, and thus if we pick $g = \sum_{i=1}^n \alpha_i w_i^* + \sum_{i=n+1}^m v_i^*$, then since we know

for all $w \in W$, $v_i^*(w) = 0$ for all $n + 1 \le j \le m$, so

$$g(w) = \sum_{i=1}^{n} \alpha_i w_i^*(w) = f(w).$$

Problem 0.0.3. Let S be a set, F a field, and V(S;F) the space of all functions from S into F:

$$(f+g)(x) = f(x) + g(x)$$
$$(cf)(x) = cf(x).$$

Let W be any n-dimensional subspace of V(S; F). Show that there exist points x_1, \ldots, x_n in S and functions f_1, \ldots, f_n in W such that $f_i(x_j) = \delta_{ij}$.

Proof. Suppose $B = \{g_1, g_2, \dots, g_n\}$ is a basis of W, then we define

$$L_x: W \to F, \quad L_x(g) = g(x)$$

where $x \in S$.

Claim 0.0.1. $\exists x_1, x_2, \dots, x_n \in S$ s.t. $\mathcal{L} = \{L_{x_1}, L_{x_2}, \dots, L_{x_n}\}$ is linearly independent in W^* .

Proof. Suppose by contradiction, for all x_1, x_2, \ldots, x_n , $\{L_{x_1}, L_{x_2}, \ldots, L_{x_n}\}$ is linearly dependent, then we know

$$\dim (\operatorname{span} \{L_x : x \in S\}) < n,$$

otherwise, we can pick $\left\{\sum_{x\in S}\alpha_{ji}L_x\right\}_{j=1}^n$ s.t. this set is linearly independent, but notice that

$$\sum_{x \in S} \alpha_{ji} L_x = L_{\sum_{x \in S} \alpha_{ji} x}$$

by the definition of L_x , and this means we can pick n points $\{y_j = \sum_{x \in S} \alpha_{ji} x\}_{j=1}^n$ s.t. $\{L_{y_j}\}_{j=1}^n$ is linearly independent, which is a contradiction.

Now since dim (span $\{L_x : x \in S\}$) < n, and dim $W^* = \dim W = n$, so we know

$$\dim (\operatorname{span} \{L_x : x \in S\})^0 = \dim W^* - \dim (\operatorname{span} \{L_x : x \in S\}) \ge 1,$$

so we can pick $T \neq 0$ s.t. $T \in (\text{span}\{L_x : x \in S\})^0$. Now since we know

$$\mathcal{J}: W \to W^{**}, \quad \mathcal{J}(w)(\varphi) = \varphi(w) \quad \varphi \in W^*$$

is an isomorphism, so we know there exists $w \in W$ s.t. $\mathcal{J}(w) = T$, and since $T \neq 0$, so $w \neq 0$. Also, since $T \in (\text{span}\{L_x : x \in S\})^0$, so for all $x \in S$ we have

$$0 = T(L_x) = J(w)(L_x) = L_x(w) = w(x),$$

which means w is the zero function in W, which is a contradiction. Hence, there must exists $x_1, x_2, \ldots, x_n \in S$ s.t. $\{L_{x_1}, L_{x_2}, \ldots, L_{x_n}\}$ is linearly independent.

By the claim above, we can pick $\mathcal{L} = \{L_{x_1}, L_{x_2}, \dots, L_{x_n}\}$ s.t. \mathcal{L} is linearly independent. Now suppose

$$A = \begin{pmatrix} L_{x_1}(g_1) & L_{x_1}(g_2) & \cdots & L_{x_1}(g_n) \\ L_{x_2}(g_1) & L_{x_2}(g_2) & \cdots & L_{x_2}(g_n) \\ \vdots & \vdots & \ddots & \vdots \\ L_{x_n}(g_1) & L_{x_n}(g_2) & \cdots & L_{x_n}(g_n) \end{pmatrix},$$

and we will show that A is invertible. Suppose

$$v_i = (L_{x_i}(g_1), L_{x_i}(g_2), \dots, L_{x_i}(g_n)) = (g_1(x_i), g_2(x_i), \dots, g_n(x_i)), \quad \forall 1 \le i \le n,$$

and suppose $\sum_{i=1}^{n} v_i = 0$, then we have

$$\alpha_1 g_i(x_1) + \alpha_2 g_i(x_2) + \dots + \alpha_n g_i(x_n) = 0 \quad \forall 1 \le i \le n.$$

However, since we know \mathcal{L} is linearly independent, so

$$\beta_1, \beta_2, \dots, \beta_n = 0 \Leftrightarrow \beta_1 L_{x_1} + \beta_2 L_{x_2} + \dots + \beta_n L_{x_n} = 0$$
$$\Leftrightarrow \beta_1 p(x_1) + \beta_2 p(x_2) + \dots + \beta_n p(x_n) = 0 \quad \forall p \in W$$
$$\Leftrightarrow \beta_1 g_i(x_1) + \beta_2 g_i(x_2) + \dots + \beta_n g_i(x_n) = 0 \quad \forall 1 \le i \le n.$$

Hence, we know $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$, and thus $\{v_1, v_2, \dots, v_n\}$ is linearly independent, which shows all rows of A is linearly independent, so A is invertible.

Now since A is invertible, so we can do row operations to make A becomes I_n , and suppose

$$I_n = A' = E_1 E_2 \dots E_k A,$$

where E_1, E_2, \ldots, E_k are some elementary matrices, then if $A' = (a'_{ij})_{n \times n}$, then

$$a'_{ij} = \sum_{k=1}^{n} \beta_{ki} L_{x_k}(g_j)$$
 for some constants β_{ki} 's $\forall 1 \leq i \leq n$.

Hence, we know

$$a'_{ij} = L_{\sum_{k=1}^{n} \beta_{ki} x_k}(g_j),$$

and since $A' = I_n$, so $a'_{ij} = \delta_{ij}$, which means if we pick $y_i = \sum_{k=1}^n \beta_{ki} x_k$ and then we have

$$g_i(y_i) = \delta_{ij}$$
.