°C

AO4422

N-Channel Enhancement Mode Field Effect Transistor

General Description

The AO4422 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$ and low gate charge. This device is suitable for use as a load switch or in PWM applications. The source leads are separated to allow a Kelvin connection to the source, which may be used to bypass the source inductance.

Features

 $V_{DS}(V) = 30V$

 $I_{D} = 11A$

 $R_{DS(ON)}$ < 15m Ω (V_{GS} = 10V)

 $R_{DS(ON)}$ < 24m Ω (V_{GS} = 4.5V)

-55 to 150

Absolute Maximum starrigs = 2 cultiless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V _{DS}	30	V				
Gate-Source Voltage		V_{GS}	±20	V				
Continuous Drain	T _A =25°C		11					
Current ^A	T _A =70°C	I _D	9.3	А				
Pulsed Drain Current ^B		I _{DM}	50	7				
	T _A =25°C	P _D	3	W				
Power Dissipation	T _A =70°C	LD	2.1	v				

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	31	40	°C/W			
Maximum Junction-to-Ambient ^A	Steady-State	$\kappa_{\theta JA}$	59	75	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	16	24	°C/W			

 T_J , T_{STG}

Junction and Storage Temperature Range

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V
I _{DSS} Zero Gate V	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V			1	μА
		T _J =55°C			5	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage $V_{DS}=V_{GS}\ I_{D}=250\mu A$		1	1.8	3	V
$I_{D(ON)}$	On state drain current	V _{GS} =4.5V, V _{DS} =5V				Α
R _{DS(ON)}		V _{GS} =10V, I _D =11A		12.6	15	mΩ
	Static Drain-Source On-Resistance	T _J =125°C		16.8	21	11122
		V_{GS} =4.5V, I_D =10A		19.6	24	mΩ
g FS	Forward Transconductance V _{DS} =5V, I _D =11A			25		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.75	1	V
Is	Maximum Body-Diode Continuous Curr			4.3	Α	
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			1040		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz		180		pF
C _{rss}	Reverse Transfer Capacitance			110		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.7		Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			19.8		nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =11A		9.8		nC
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -13V, I _D -11A		2.5		nC
Q_{gd}	Gate Drain Charge] [3.5		nC
t _{D(on)}	Turn-On DelayTime			4.5		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =1.35 Ω ,		3.9		ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		17.4		ns
t _f	Turn-Off Fall Time]		3.2		ns
t _{rr}	Body Diode Reverse Recovery Time	Diode Reverse Recovery Time I _F =11A, dI/dt=100A/μs		17.5		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =11A, dI/dt=100A/μs		7.6		nC

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature. C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.