Sistemas Digitais

- PALs Sequenciais
- Parâmetros Temporais em PALs Sequenciais
- Registos
- Contadores
- Registos de Deslocamento ("Shift Registers")

PALs Sequenciais

• 16R8

Uma Saída de 16R8

- 8 termos produto na entrada de flip-flop D
 - "positive edge triggered", relógio comum a todos FFs
- Saída Q é acessível na matriz AND
 - Necessário, por ex:, para máquinas de estados
- Saídas com 3 estados

PAL16R6

- 6 saídas tipo "reg"
- 2 saídas combinacionais (como na 16L8's)

Sistemas Digitais 10^a aula 4-30

Parâmetros temporais de PLDs Sequenciais

- t_{su} -> t. setup
- t_{co} -> t. propagação desde clk
- t_H -> t. hold

Registos e Latches Multibit

• 74x175

Registo 8-bit (octal)

- 74x374
 - -3 estados

Sistemas Digitais 10^a aula 7-30

"Latch" Octal

- 74x373
 - "Output enable"
 - Entrada "Latch-enable", "C" ou "G"

Register vs. latch, qual a diferença?

Contadores

 Qualquer circuito sequencial cujo diagrama de estados é um ciclo.

	Current State				Next State						
CLR_L	LD_L	ENT	ENP	QD (c c	рв о	Α	QD*	QC∗	QB∻	QA∗
0	х	х	х	х	х	х	х	0	0	0	0
1	0	x	x	x	х	x	x	D	С	В	Α
1	1	0	x	х	X	X	х	QD	QC	QB	QA.
1	1	x	0	х	x	x	X	QD	QC	QB	QA
1	1	1	1	0	0	0	0	0	0	0	1
1	1	1	1	0	0	0	1	0	0	1	0
1	1	1	1	0	0	1	0	0	0	1	1
1	1	1	1	0	0	1	1	O	1	0	0
1	1	1	1	0	1	0	0	0	1	0	1
1	1	1	1	0	1	0	1	0	1	1	0
1	1	1	1	0	1	1	0	O	1	1	1
1	1	1	1	0	1	1	1	1	0	0	0
1	1	1	1	1	0	0	0	1	0	0	1
1	1	1	1	1	0	0	1	1	0	1	0
1	1	1	1	1	0	1	0	1	0	1	1
1	1	1	1	1	0	1	1	1	1	0	0
1	1	1	1	1	1	0	0	1	1	0	1
1	1	1	1	1	1	0	1	1	1	1	0
1	1	1	1	1	1	1	0	1	1	1	1
1	1	1	1	1	1	1	1	0	0	0	0

Contador MSI 4-bit 74x163

74x163

- Portas XOR formam a função "T"
- Estrutura como Mux para a carga

Sistemas Digitais 10^a aula 13-30

Operação do Contador

- Divisor por ÷16
- Conta se ENP e ENT activos.
- Carga se LD é activado
- Limpa se CLR é activado

- Saídas mudam após transição positiva do CLK.
- RCO é activado se ENT é activado e QD,QC,QB,QA = 15.

Contador 4-bit '163 ("Free-running")

Contador "divide-by-16"

Sequência de contagem modificada

- Carga 0101 (5) após Count = 15
- 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 5, 6, ...
- Contador "divide-by-11"

Outra solução

- Limpa após Count = 1010 (10)
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, ...
- Contador "modulo-11" or "divide-by-11"

Cascata de Contadores

 RCO ("ripple carry out") é activado no estado 15, se ENT está activo

Descodificação de estados

Formas de onda do Descodificador

• "Glitches" podem ser uma preocupação.

Saídas "Glitch-free"

• Saídas dos registos atrasadas um pulso de clk.

Sistemas Digitais 10^a aula 22-30

Registos de deslocamento "Shift Registers"

 Manipulação de bits em série, tal como: RS-232, transmissão e recepção via modem, Ethernet, USB, etc.

 Serial-in, Serial-out (SISO)

Conversão Série - Paralelo

 Usando um registo de deslocamento "serial-in, parallel-out" (SIPO)

Conversão Paralelo - Série

 Usando um registo de deslocamento "parallel-in, serial-out" (PISO)

Conversor Universal

 "Parallel-in, parallel-out" (PIPO)

74x194 Universal Shift - Register

- "Shift left"
- "Shift right"
- "Load"
- "Hold"

Sistemas Digitais 10^a aula 27-30

Um estágio do IC '194

Contadores "Shift-register"

 Contador em Anel "Ring counter"

Sistemas Digitais 10^a aula 29-30

Contador "Johnson"

Contador "Twisted ring"

Sistemas Digitais 10^a aula 30-30