CS3102 Theory of

NCAA men's basketball · Today, 9:00 PM

Notre Dame Fighting Irish

at

NAND(9,79)

Virginia Cavaliers

(15 - 7)

Nowing:

Warm up:

Is this function computable with a NAND-Circuit?

$$f(a) = \begin{cases} 1 \\ 0 \end{cases}$$

if UVA wins against ND tonight otherwise

Logistics

- Quiz 3 out
 - Due Thursday
- Exercise 3 is out
 - Last exercise before midterm

Last Time

- Showing that NAND/AON can compute any finite function
- Started showing how we could have a function that simulates programs

How are programs run?

- Have a table of variables
- Execute code in sequence
- Update values in table

NAND-STraight'inc Programs as Bits

- To evaluate a program with another program, we need to convert the first program into bits
- \rightarrow 1. Number each variable (first n go to input, last m to outputs)
 - 2. Represent each line as 3 numbers (outvar, in1, in2) <--
 - Represent program as (n,m,[Lines])

0 1
def OR(a, b):
def OR(a, b): \rightarrow temp1 = NAND(a,a) \rightarrow (2,0,0)
$3temp2 = NAND(b,b) \longrightarrow (3,1,1)$
return NAND(temp1, temp2) (4,2,3)
(2,1,[(2,0,0),(3,1,1),(4,2,3)])

Variable	Number
a ->	0
b ->	1
temp1	2
temp2 —>	3
return —>	4

def XOR(a,b): $u = NAND(a,b) \begin{pmatrix} (2,0,1) \\ (2,0,1) \end{pmatrix}$	Variable
v = NAND(a, b) (3, 0)	9
NAND/L\ /))	5
n = NAND(D, u) (a, 1, 2) $return NAND(v, w) (5, 3, 4)$ $n = 2$	U
$\underline{n} = \lambda$	V
m =	4
s = 4 n m ess	Return
Total bits = 2 + 1 + 3 - 5 - 109a (n+5)]

Variable	Number
9	\mathcal{O}
5	(
U	2
V	3
4	4
Return	5

XOR to bits

```
def XOR(a,b):
    u = NAND(a,b)
    v = NAND(a, u)
    w = NAND(b, u)
    return NAND(v,w)
n = 2
m = 1
s = 4
```

Variable	Number
а	0
b	1
u	2
V	3
W	4
return	5

Total bits = 3 [numbers per line] \cdot 3 [bits per number] \cdot 4[lines] + 6 [length of n + m]

- How big is this?

 Number each variable [109, (145)]

 Number each variable [109, (145)]

 Number each variable [109, (145)]

 Number each variable [109, (145)]
- Represent each line as 3 numbers (outvar, in1, in2)
- Represent program as (n,m,[Lines])

$$3s \cdot \lceil \log_2 3s \rceil$$
 bits

$$S(s) = Size of the program of Slines, in 6.45$$

$$S(s) \leq 4s \lceil \log_2 3s \rceil \qquad \qquad 4 \leq s \cdot \log_2 s$$

$$\ell = \lceil \log_2 3s \rceil$$

EVAL_{s,n,m}: $\{0,1\}^{S(s)}+n \rightarrow \{0,1\}^{m \leftarrow m}$ Outputs

Input: bit string representing a program (first S(s) bits) plus input values (remaining n bits)

Output: the result of running the represented program on the provided input, or m 0's if there's a "compile error"

$$n=2$$

Defining the EVAL function m = 1

Representation: $\times \mathcal{OR}$ (2, 0, 1),

/ (3, 0, 2), (4, <u>1</u>, <u>2</u>), (5, 3, 4)

Input:

> 0, :

Variable	Value
0	0
1)
2	1
3	
4	0
5	ſ

Psuedocode for EVAL

- Table *T* :
 - holds variables and their values
- $\bullet GET(T,i)$
 - Returns the bit of T associated with variable \underline{i}
- UPDATE(T, i, b)
 - Returns a new table such that variable i's value has been changed to b

Psuedocode for EVAL

Input: \rightarrow Let T be table of size t Numbers n, m, s, t \subseteq For i in range(n): $<\!\!<$ representing the number of control x $T = \mathsf{UPDATE}(T, i, x[i])$ inputs, outputs, variables, ผ gexs assigned NAUD; +) and lines respectively \bigotimes_{ea} a = GET(T, j)L, a list of triples $b = GET(T, k) \subset$ representing the program + 45 /e $T = \mathsf{UPDATE}(T, i, \mathsf{NAND}(a,b))$ A string x to be given as input For i in range(m): to the program Y[i] = GET(T, t - m + i)Output: Return Y

Evaluation of the program

on input *x*

represented by L when run

EVAL in NAND

• Next we implement $\underline{EVAL_{s,n,m}}$ using NAND

Get the bit at "row" i of T

• Look familiar? 100 tup (T, i)

How many gates to implement?

100 Kup 1

UPDATE

$$UPDATE_{\ell}: \{0,1\}^{2^{\ell}+\ell+1} \to \{0,1\}^{2^{\ell}}$$

- To change index i of table T to bit b
- For every index except i, return the same value
- For index i, return b instead
- Define $EQUAL_j$: $\{0,1\}^\ell \to \{0,1\}$ which returns 1 if the input binary number is equal to j

Note: $EQUAL_i$ can be done in $c \cdot \ell$ gates

UPDATE pseudocode

```
For j in range(2^{\ell}):
    a = EQUALS_{\underline{j}}(i)
                                        Runs 2^{\ell} times
    newT[j] = IF(a, b, T[j])
Return <u>new</u>T
                         GET = 100xup
```

Conclusion

- What we know:
 - We can compute any finite function with circuits
 - We can compute a function to evaluate programs of a certain size
- Big question:
 - How expensive are functions?
 - Some are more expensive than others, how big could they get?
 - If I wanted to be able to evaluate a program for any function $\{0,1\}^n \to \{0,1\}$, how big would the eval circuit need to be?

Complexity

- The "complexity" of a function:
 - Measure of the resources required to compute that function
- Complexity Class:
 - A set of functions defined by a complexity measure

Categorizing Functions by Circuit Size

- No functions require more than $cm2^n$ gates
 - Proved last class
- Some functions require much less
 - E.g. IF
- Observation: some functions are more "complicated" than others!
- Idea: categorize functions by resources required to implement them using a particular computing model

SIZE

• SIZE(s): The set of all functions that can be implemented by a circuit of at most s NAND gates

 $SIZE(1000m2^n)$ Contains all functions $f: \{0,1\}^n \rightarrow \{0,1\}^m$

- TCS also uses:
 - $SIZE_{n,m}(s)$: The set of all n-input, m-output functions that can be implemented with at most s NAND gates
 - $SIZE_n(s)$: The set of all n-input, 1-output functions that can be implemented with at most s NAND gates

Comparing Classes

Theorem

 Let SIZE^{AON}(s) represent the set of all functions that can be computed using at most s AND/OR/NOT gates

$$SIZE\left(\frac{S}{2}\right) \subseteq SIZE^{AON}(s) \subseteq SIZE(3s)$$

Proof

$$SIZE\left(\frac{s}{2}\right) \subseteq SIZE^{AON}(s) \subseteq SIZE(3s)$$

Ο, Ω, Θ

- Groups functions together
- Each uses a function as a bound for other functions
- O (Big-Oh):
 - O(f(n)) = the set of all functions "asymptotically upper-bounded" by f
- Ω (Big-Omega):
 - $-\Omega(f(n))$ = the set of all functions "asymptotically lower-bounded" by f
- Θ (Big-Theta):
 - $-\Theta(f(n))$ = the set of all functions "asymptotically tight-bounded" by f

Definitions

- O(g(n))
 - At most within constant of g for large n
 - $\{f: \mathbb{R} \to \mathbb{R} | \exists \text{ constants } c, n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \le c \cdot g(n) \}$
- $\Omega(g(n))$
 - At least within constant of g for large n
 - $\{f: \mathbb{R} \to \mathbb{R} | \exists \text{ constants } c, n_0 > 0 \text{ s.t. } \forall n > n_0, f(n) \ge c \cdot g(n) \}$
- $\Theta(g(n))$
 - "Tightly" within constant of g for large n
 - $\Omega(g(n)) \cap O(g(n))$

Showing Big-Oh

• To show: $n \log n \in O(n^2)$

Showing Big-Omega

• To Show: $2^n \in \Omega(n^2)$

Showing Big-Theta

• To Show: $\log_x n = \Theta(\log_y n)$