*** *** *** *** *** *** *** *** *** **	Shoots.	4 example: 3 = []	8.30 50 50 50 50	= 18 30 710 3 3 = 7 50 710 5 3 = 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ofer and denominate		2.9, $\frac{18}{48}$ 41, $\frac{6}{12}$ 53, $\frac{33}{38}$ 30, $\frac{21}{54}$ 42, $\frac{18}{24}$ 54, $\frac{18}{54}$ 54, $\frac{18}{54}$ 31, $\frac{14}{21}$ 43, $\frac{21}{24}$ 55, $\frac{18}{54}$	44. 6. 45. 12 30 55. 12 30 57. 47. 27. 27. 30 59. 59. 59. 59. 59. 59. 59. 59. 59. 59.	Soluthans 12.24 3.8 12.24 13.40 1 12.23 23.15 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2
And and submaning received fractions of the municipal fractions of the mun	fractions or squal	112	issing numeral: $7. \frac{2}{3} = \frac{8}{7} \qquad 13. \frac{3}{5} = \frac{24}{7} \qquad 19. \frac{18}{20} = \frac{7}{10} \qquad 25.$ $8. \frac{5}{6} = \frac{?}{24} \qquad 14. \frac{4}{5} = \frac{12}{?} \qquad 20. \frac{2}{3} = \frac{24}{7} \qquad 26.$ $9. \frac{3}{4} = \frac{?}{12} \qquad 15. \frac{3}{5} = \frac{?}{30} \qquad 21. \frac{30}{42} = \frac{?}{7} \qquad 27.$	$\frac{7}{12} \qquad 10. \frac{30}{48} = \frac{5}{7} \qquad 16. \frac{2}{5} = \frac{7}{30} \qquad 22. \frac{2}{5} = \frac{14}{7} \qquad 28. \frac{27}{12}$ $11. \frac{18}{24} = \frac{7}{4} \qquad 17. \frac{32}{48} = \frac{2}{7} \qquad 29. \frac{3}{4} = \frac{7}{20} \qquad 29. \frac{1}{4} = \frac{1}{2}$ $12. \frac{5}{6} = \frac{20}{7} \qquad 18. \frac{28}{36} = \frac{7}{9} \qquad 24. \frac{4}{5} = \frac{7}{20} \qquad 30. \frac{36}{54}$	e dwided by the same winter of the run. B. Give the simplest equivalent 13. 20	10 2 6 4 4 4 4 4 12 16.		3×7 = 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	======================================		专 等限	= 12.3 derominators = 12.3 derominators = 12.3 MwHyph	Multiplying fraction	1 1 Marche 6-4	1 - H - S 22 25 37 37 37 37 37 37 37 37 37 37 37 37 37	Therefore 8 +3 = 11	718 @1- 016 - 01a
3 8 8 8 9 9 4 10 7 5 7 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	w w	(a) (b) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	examples: 1) 3 FL	(a) 10 10 10 10 10 10 10 10 10 10 10 10 10	(h) 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(f) $\frac{7}{10} - \frac{1}{5}$ (f) $\frac{3}{4} + \frac{1}{16}$ 2. Give the answer in simplest form: (a) $\frac{3}{4} - \frac{1}{2}$ (f) $\frac{5}{6} - \frac{1}{3}$ (b) $\frac{3}{4} - \frac{1}{5}$ (g) $\frac{3}{2} - \frac{1}{6}$	(a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) $\frac{1}{4}$ (e) $\frac{1}{4}$ (f) $\frac{1}{4}$ (Ractions to quive each the son (bottom). Cot the numerators (top) and with the numerator where possible. I answer where possible.

$$a \frac{1}{2} + \frac{1}{5} \times \frac{1}{2}$$

b
$$\frac{7}{10} - \frac{1}{5} \times \frac{1}{2}$$

c
$$\frac{4}{9} \times \frac{9}{12} + \frac{1}{5}$$

d
$$2 \times \frac{1}{3} + \frac{1}{3}$$

$$e^{-\left(\frac{1}{2}+\frac{1}{3}\right)} \div 5$$

$$f \frac{1}{2} + \frac{1}{3} \div 4$$

g
$$2 \times \frac{1}{3} + \frac{2}{3}$$

h
$$(\frac{1}{4} + 2) \times \frac{1}{3}$$

$$\frac{1}{5} + \frac{4}{5} \times 3$$

$$\mathbf{j} \quad \left(\frac{3}{4} + \frac{1}{8}\right) \times \frac{1}{3}$$

$$\mathbf{k} \quad 12 \times \left(\frac{1}{2} + \frac{1}{4}\right)$$

$$7 \div \left(1\frac{5}{7} + \frac{2}{7}\right)$$

m
$$6 \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{2}$$

n
$$2 \div \frac{1}{2} \times \frac{1}{4}$$

o
$$1\frac{1}{5} \div 2 + 3$$

$$p \left(14 - \frac{2}{3}\right) \times \frac{1}{4}$$

Example

Simplify
$$\frac{2}{5} + \frac{3}{4} + \frac{3}{5}$$

$$\frac{\frac{2}{5} + \frac{3}{4} + \frac{3}{5} = \frac{2}{5} + \frac{3}{5} + \frac{3}{4}}{= \frac{5}{5} + \frac{3}{4}}$$
$$= 1 + \frac{3}{4}$$

Ouestions can often be answered quickly by rearranging the numbers—but only additions (and multiplications) can be done in any order.

Simplify:

a
$$\frac{1}{3} + \frac{1}{4} \times 2$$

b
$$3 \times \frac{2}{5} + \frac{1}{5}$$

c
$$\frac{1}{2} + \frac{1}{3} \times 6$$

d
$$2 + \frac{1}{3} \times \frac{1}{5}$$

e
$$\frac{1}{2} \div \frac{1}{3} \times 4$$

f
$$\frac{1}{8} + \frac{3}{2} \times \frac{1}{2}$$
 g $(1\frac{1}{2} + \frac{1}{4}) \times 2$

g
$$(1\frac{\pi}{2} + \frac{\pi}{4}) \times 2$$

h
$$3 \div \frac{1}{5} \times \frac{1}{2}$$

$$\frac{2}{3} \times \frac{1}{2} + \frac{1}{4}$$

k
$$(2 - \frac{1}{5}) \times \frac{1}{3}$$

o $6 \div \frac{1}{2} + \frac{1}{3} \div \frac{1}{4}$

$$\mathbf{p} = \frac{3}{5} + \frac{2}{5} + \frac{1}{8} \times 8$$

Simplify:

a
$$\frac{7}{10} + \frac{4}{5} + \frac{3}{10}$$

b
$$\frac{2}{3} \times 0 \times \frac{7}{11}$$

c
$$8 \times \frac{3}{13} \times \frac{1}{8}$$

d
$$\frac{4}{5} + 3\frac{1}{2} + \frac{1}{5}$$

e
$$\frac{3}{8} \times 1 \times \frac{4}{9}$$

f
$$\frac{5}{6} \times 1\frac{3}{4} \times 0$$

$$\mathbf{g} \quad 1\frac{3}{10} + 5\frac{4}{5} + \frac{7}{10}$$

h
$$\frac{1}{4} + \frac{9}{10} + 1\frac{3}{4}$$

i
$$\frac{5}{7} \times \frac{5}{8} \times 1\frac{2}{5}$$

m $\frac{1}{2} \times 2\frac{1}{4} \times 2$

j
$$6\frac{1}{2} + \frac{1}{3} + \frac{2}{3}$$

n $6 \div \frac{1}{2} \div 2$

k
$$\frac{4}{5} + \frac{2}{3} - \frac{4}{5}$$

o $\frac{5}{8} \div 3 \times 6$

$$1 \quad \frac{3}{4} \times 2\frac{1}{4} \div \frac{3}{4}$$

$$p \quad \frac{2}{3} \times \frac{5}{8} \times 1\frac{1}{2}$$

q
$$4 + \frac{1}{4} \times 3$$

$$r \quad 5 \div \frac{5}{8} + \frac{3}{8}$$

s
$$3 - \frac{1}{5} \times \frac{5}{8}$$

t
$$\frac{4}{3} \div \frac{1}{2} \times 4$$

$$\frac{1}{8} + 2\frac{1}{3} + \frac{7}{8}$$

$$v 18 \div \frac{1}{5} \times \frac{2}{3}$$

$$w^{\frac{3}{8} + \frac{1}{5} \times 2 + \frac{1}{5}}$$

$$\mathbf{w} \ \frac{3}{8} + \frac{1}{5} \times 2 + \frac{1}{5} \qquad \mathbf{x} \ \frac{9}{10} + \frac{5}{8} \times 2 - \frac{1}{8}$$

Simplify:

a
$$\frac{1}{2} \times \frac{2}{5} + \frac{3}{8} \times \frac{8}{15}$$

b
$$5 \times (\frac{3}{5} - \frac{2}{5}) \times 2$$

e $\frac{2}{3} \times \frac{1}{8} \times \frac{2}{3} \times 0$

c
$$\frac{3}{8} \times 3 - \frac{1}{8} + \frac{2}{3}$$

d
$$1\frac{1}{2} \div \frac{2}{3} \div \frac{1}{8} \div 2$$

g $2 \times \frac{1}{4} \div \frac{1}{2} + \frac{1}{2}$

$$e \quad \frac{2}{3} \times \frac{1}{8} \times \frac{2}{3} \times 0$$

f
$$(2 \times 6\frac{1}{4} + \frac{3}{4}) + \frac{1}{4}$$

g
$$2 \times \frac{1}{4} \div \frac{1}{2} + \frac{1}{2}$$

h
$$\frac{1}{8} + \frac{2}{3} \times \frac{1}{5} + \frac{7}{8}$$

i
$$6\frac{1}{4} \div \frac{5}{8} \div \frac{1}{2} + 1$$

j
$$6\frac{1}{2} + (\frac{1}{2} + \frac{1}{4}) + 3$$

m $\frac{3}{5} \div \frac{1}{2} \times \frac{1}{4} \div \frac{1}{8}$

k
$$\frac{2}{3} \times (1 - \frac{1}{3}) - \frac{1}{5}$$

n $\frac{2}{3} \times \frac{3}{5} + (2 - \frac{3}{5})$

1
$$3 \times (\frac{1}{2} + \frac{7}{8} - \frac{1}{4})$$

o $123 \div \frac{1}{2} \div 2 \div 123$

2 a
$$\frac{3}{5}$$
 i $\frac{3}{5}$ ii $\frac{23}{5}$ a $\frac{6}{5}$ i $\frac{12}{5}$ a $\frac{6}{5}$ i $\frac{12}{5}$ i $\frac{$