Introduction to Analog Integrated Circuits (112), DECE, NTUST

Homework 1 (Due date: 09/26)

NMOS Model LEVEL = 1 NSUB = 9e+14 TOX = 9e-9	VTO = 0.7 LD = 0.08e-6 PB = 0.9	GAMMA = 0.45 UO = 350 CJ = 0.56e-3	PHI = 0.9 LAMBDA = 0.1 CJSW = 0.35e-11
MJ = 0.45	MJSW = 0.2	CGDO = 0.4e-9	JS = 1.0e - 8
PMOS Model			
$\begin{aligned} \text{LEVEL} &= 1 \\ \text{NSUB} &= 5\text{e}{+}14 \\ \text{TOX} &= 9\text{e}{-}9 \\ \text{MJ} &= 0.5 \end{aligned}$	VTO = -0.8 LD = 0.09e-6 PB = 0.9 MJSW = 0.3	GAMMA = 0.4 UO = 100 CJ = $0.94e-3$ CGDO = $0.3e-9$	PHI = 0.8 LAMBDA = 0.2 CJSW = 0.32e-11 JS = 0.5e-8

HW1.1: (30%)

- (a) 請寫出通道長度調變(channel length modulation, CLM)效應之成因。
- (b) 請解釋為何通道長度調變效應會使電晶體之電流公式修改為與 VDS 有關(如下式)。

$$I_D = \frac{1}{2} \mu_n Cox \left(\frac{W}{L}\right) (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

HW1.2: (20%)

請利用網路上找到的資源作為參考資料(並非是教科書或是上課講義),寫出 FinFET 的電流公式。 並針對一項非理想效應闡述對電流的影響。本題可以直接抄寫參考資料,但請註明出處。

HW1.3: (20%)

請畫出 pMOST 的小訊號模型。其中的電路參數需要描述,並考慮通道長度調變效應、基底效應 與寄生電容,愈完整愈好。(Note: 電路參數可根據電流公式得出。)

HW1.4: (30%)

Fig1.4 展示兩種 NMOS 的設計與布局方式。其中, Channel width (W) is 10μm, and diffusion width (E) is 0.8μm。請利用上方的 spice model table,寫出 C_{DB} 與 C_{SB} 的電容值是多少?

Fig 1.4

HWI

(A)

當MOSFET操作於saturation region時,當VDS上升時,將會讓Drain 端附近的空乏區變寬,進而擠壓到通道,使得通道的有效長度變短,造成電流上升。

J. 中國超可知當Viss上升時,將使得以及大 因此在考慮CLM後的电L流公式沒有 五二 立 UCOX L-AL VOV

HWN3 當Vos<<ZVov時,才可近似為線性小豆吃多样型

$$G \circ V_{GS} = V_{GS} \circ D$$

$$G \circ V_{GS} = V_{$$

$$= -\frac{1}{2\sqrt{245+1/56}}$$

$$= (\frac{1}{2\sqrt{245+1/56}}) \frac{1}{2\sqrt{245+1/56}}) \frac{1}{2\sqrt{245+1/56}}$$

$$= (\frac{1}{2\sqrt{245+1/56}}) \frac{1}{2\sqrt{245+1/56}}) \frac{1}{2\sqrt{245+1/56}}$$

$$= (\frac{1}{2\sqrt{245+1/56}}) \frac{1}{2\sqrt{245+1/56}}) \frac{1}{2\sqrt{245+1/56}}$$

表示 Boby effect 造成的勢响

$$70 = \left(\frac{\partial ZO}{\partial VOS}\right) = \frac{1+\lambda VOS}{\lambda ZD}$$

表示人人从所签的的等效电阻

CI=WLCox 表示 Polygate foxide 問的氧化層电容 Cz=WLJ ZGiNsub 表示 channel 与 Substrate 間的空生客 C3、C4=WLoCox=WCoV

表示的gote后的g的verlop氧化看电容 C5、C6中Ci及Cisw共同组成的空色电容

$$C = \frac{C_0}{(1 + \frac{\sqrt{R}}{\sqrt{R}})^{N_0}}$$

在能和區下的寄生虫宫 CGS=COXLDW+ZW(L-LD)COX 保险上还需要考虑辺陰电器 = WCG50+==W(L-LD)Cox 去詹诃隆电客下发 CGD = CGDOW CDB=ADXC)S + PDXC)SW Drain后的面積 Drain后的周期 CSB=ASXCjs+PsCjsw 實際上在反車云層开少成後Cisw会改变。 CGB = CGBO (L-LD)

poly gate 年 Field oxide 間範指書電

Figure 3.2-7 Voltage dependence of C_{GS} , C_{GD} , and C_{GB} as a function of V_{GS} with V_{DS} constant and $V_{BS} = 0$.

CMOS Analog Circuit Design

Phillip E. Allen Professor Emeritus, Georgia Institute of Technology

Douglas R. Holberg

Consultant

有興趣可以自己去看看 Phillip E.Allen 對於電容 的描述。

HW1.4

a

$$C_{SB} = C_{DB} = WXEC_{3} + 2CW+E_{3}C_{3SW}$$

= $4.48f + 0.015f = 4.555fF$

b.
$$COB = \frac{1}{2} \times E \times C_{3} + 2(\frac{1}{2} + E)C_{jsw}$$

 $= 2.24f + 0.04f = 2.28fF$
 $CGB = 2[\frac{1}{2} \times E(C_{j} + 2(\frac{1}{2} + E)C_{jsw}]$
 $= 4.56fF$