Proofs and Programs

Phillipe Audebaud * ENS de Lyon

Contents

l (Pure) λ -Calculus	2
1 Computing with functions?	2
2 Church λ -calculus (informally)	2
3 A toolbox on λ -calculus	3
II Calcul propositionnel et correspondance de Curry-Howard	6
Éléments de langage (informels)	6
2 Fragments $\lambda_{ ightarrow}$	7
B Interprétation BHK	7
III λ -calcul simplement typé	8
1 Quelques Lemmes	8

 $^{^*} https://perso.ens-lyon.fr/philippe.audebaud/PnP/$

Basis

• Lecture: Tue 8h-10h (Philippe Audebaud)

• Tutorial: We 8h-10h (Aurore)

10 Weeks of courses (3x3), which is really low.

$$Final\ mark = 50\% \cdot CC + 50\% \cdot Exam$$

No mid-time exam, but weekly homework.

Warning Presence at the courses and tutorial will have an impact on the marks.

Prerequisites

- L2.2 \rightarrow Logical (Natacha P., Chapter 1 & 2):
 - Proof theory
 - Formal system for logic inference.
- λ -calculus
- Category theory

Part I

(Pure) λ -Calculus

1 Computing with functions?

How do we do mathematics?

- A Having structures: numbers, spaces (points, vectors, functions) \rightarrow Eilenberg-Mac Lane (\sim 1942) Category theory
- B Build, explore, transform structures \rightarrow Church (~ 1930) λ -Calculus
- C Compare "stuff": equality \to Voevoski (\sim 2006) Algebraic topology \to search HoTT (Hight order Type Theory)
- D Provide a framework (rules) to reasoning on all that! \rightarrow 1st point

2 Church λ -calculus (informally)

$$f: A \to B$$
$$x \mapsto e$$

Given $a \in A$, f(a) is the "replacement of the occurrence of x in e by a"

$$f \stackrel{\text{def}}{=} \lambda x.e$$
 (λ -abstraction)
 $f \ a = (\lambda a.e) \ a$ (Application)

Notation

$$e\langle a/x\rangle$$

is the replacement in e of all the occurrences of a by x.

Example

1.

$$\lambda x.x$$

$$x \mapsto x$$

is the identity function

2.

$$\lambda x.y$$

$$x \mapsto y$$

Here x and y are variables, $x \neq y$. $(\lambda x.y)$ a leads to $y\langle a/x\rangle \equiv y$

$$(\lambda x.a) \ b \rightarrow_{\beta} a\langle b/x \rangle$$

 \rightarrow_{β} is a binary relation on lambda-terms \Rightarrow idea of computation on terms.

Notion of α -equivalence

$$\lambda x.a \stackrel{?}{=}_{\alpha} \lambda y.b$$

Pick a fresh variable, let say z,

$$a\langle z/x\rangle =_{\alpha} b\langle z/y\rangle$$

All the results and proofs will be done up to α -equivalence (no difference made between $\lambda x.x$ and $\lambda y.y$).

3 A toolbox on λ -calculus

λ-calculus: Syntax and Semantics, Herk Barendregt (1977)

Let \mathcal{X} be a measurable set of variables, ranged over by x, y, z, ...

Definition 1. A λ -term e is generated by the grammar:

$$a, b, e... := x \in \mathcal{X} \mid \lambda x.e \mid a b$$

The set of λ -terms is denoted Λ .

Definition 2 (Free variable). The set of free variables in e, denoted FV(e) is defined inductively:

- if $e \equiv x \in \mathcal{X}$, $FV(x) \equiv \{x\}$
- if $e \equiv \lambda x.a_0$, $FV(\lambda x.a_0) \equiv FV(a_0) \setminus \{x\}$
- if $e \equiv a_1 \ a_2$, $FV(a_1 \ a_2) \equiv FV(a_1) \cup FV(a_2)$

A term e is closed if $FV(e) = \emptyset$

Definition 3 (Substitution). Given $x \in \mathcal{X}$, $a \in \Lambda$, the substitution of (all the) occurrences of a in $e \in \Lambda$, denoted $e\langle a/x \rangle$ is:

- if $y \in \mathcal{X} \setminus \{x\}$, $y\langle a/x \rangle \equiv y$ and $x\langle a/x \rangle \equiv a$
- $(\lambda y.e)\langle a/x\rangle = \lambda y.e\langle a/x\rangle$
- $(e f)\langle a/x\rangle = (e\langle a/x\rangle) f\langle a/x\rangle$

Definition 4 (\rightarrow_{β} reduction).

Example

1.

$$\underbrace{(\lambda x.(\lambda y.y) \ a)}_{\Rightarrow_{\beta}(\lambda y.y) \ b} \ b) \rightarrow_{\beta} ((\lambda y.y) \ a) \ \langle b/x \rangle \equiv ((\lambda y.y) \ \langle b/x \rangle) a \langle b/x \rangle$$
$$\equiv (\lambda y.y) \ a \langle b/x \rangle$$

2.

$$(\lambda x.y) \ a \rightarrow_{\beta} y$$

3.

$$(\lambda x.x \ x)(\lambda x.x \ x) \to_{\beta} (x \ x)\langle \lambda x.x \ x/x \rangle \text{ or } (x \ x)\langle \lambda y.y \ y/x \rangle$$
$$(\lambda x.x \ x)(\lambda x.x \ x)$$

Russell paradox: we get an infinite β -reduction!

$$\rightarrow_{\beta} \subseteq \beta_0 \subseteq \underbrace{\beta}_{\beta-\text{reduction}} = \beta_0^*$$

 \rightarrow_{β}^{*} is the β -reduction, noted \rightarrow_{β}

Definition 5 (β_0 -contraction). Let $a, b \in \Lambda$. $a \beta_0 b$ is defined by cases:

- $x \beta_0 x$
- $(\lambda x.u)v \beta_0 u\langle v/x\rangle$
- $(\lambda x.u) \beta_0 (\lambda x.v)$ if $u \beta_0 v$
- $(u \ v) \ \beta_0 \ (u' \ v) \ if \ u \ \beta_0 \ u'$
- $(u \ v) \ \beta_0 \ (u \ v') \ if \ v \ \beta_0 \ v'$

Maintenant en français!

Remarque: β_0 est réflexive.

Definition 6. La β -réduction est la clôture transitive de β_0 :

$$\beta = \beta_0^*$$

Remarque Si $a, b \in \Lambda$, alors $a \beta b$ si il existe $n \ge 0$ et $(e_k)_{0 \le k \le n} \lambda$ -termes tels que :

- $a = e_0$ et $b = e_n$
- pour tout k < n, $e_k \beta_0 e_{k+1}$

Definition 7. Soit \mathcal{R} une relation binaire sur Λ . On dit que \mathcal{R} est λ -compatible si elle satisfait les propriétés suivantes:

- $x \mathcal{R} x$
- $si\ a\ \mathcal{R}\ b\ et\ c\ \mathcal{R}\ d\ alors\ a\ c\ \mathcal{R}\ b\ d$
- $si\ a\ \mathcal{R}\ b\ alors\ \lambda x.a\ \mathcal{R}\ \lambda x.b$

Propriety 1. La β -réduction est la plus petite relation λ -compatible et transitive contenant \rightarrow_{β}

 $Proof. \star On vérifie d'abord :$

$$\rightarrow_{\beta} \subseteq \beta_0 \subseteq \beta_0^* = \beta$$

D'autre part, β_0 est λ -compatible :

- par réflexivité, $x \beta x$
- soit $a \beta b$; par définition, il existe $n \ge 0$, $(e_k)_{0 \le k \le n}$ tel que $a = e_0, b = e_n$ et pour tout k < n, $e_k \beta_0 e_{k+1}$. Du coup, par définition de β_0 , pour tout k < n, $\lambda x.e_k \beta_0 \lambda x.e_{k+1}$. Ainsi, $\lambda x.a \beta \lambda x.b.$
- * Soit \mathcal{R} une autre relation λ -compatible et transitive contenant \to_{β} . Montrons que $\beta \subseteq \mathcal{R}$. Il "suffit" de vérifier que $\beta_0 \subseteq \mathcal{R}$ (laissé en exercice).

Propriétés essentielles de la β -réduction

Remarque (Λ, β_0) est un système de réduction abstrait¹.

Definition 8 (Forme normale, Relation normalisante). Soit \mathcal{R} une relation binaire sur Λ ,

- On dit que a est une forme normale (relativement à \mathcal{R}) s'il n'existe pas $b \in \Lambda$ tel que a \mathcal{R} b.
- On dit que a a une forme normale (relativement à \mathcal{R}) s'il existe $b \in \Lambda$ tel que b est une forme normale et a \mathcal{R}^* b
- On dit que \mathcal{R} est normalisante si tout $a \in \Lambda$ a une forme normale

Exemple

- $\lambda x.x$ est une forme normale relativement à β_0
- β_0 n'est pas normalisante!

$$\Omega \equiv (\lambda x.x \ x) \ (\lambda x.x \ x)$$

$$\Omega \to_{\beta} \Omega$$

Definition 9 (Confluence). Soit \mathcal{R} une relation binaire sur Λ . On dit que \mathcal{R} est confluente si pour tout $(a,b,c) \in \Lambda^3$ tel que

$$a \mathcal{R}^* b et a \mathcal{R}^* c$$

alors il existe $d \in \Lambda$, tel que

$$b \mathcal{R}^* d et c \mathcal{R}^* d$$

Theorem 1. La β_0 -réduction est confluente.

Corollary 1. Tout λ -terme admet au plus une forme normale, relativement à β_0

 $^{^{1}\}mathrm{Cf}\ \mathrm{ThPr}$

Notion d'égalité sur les λ -termes

Definition 10. La β -équivalence sur Λ est la relation binaire notée $=_{\beta}$, définie comme la clôture réflexive symétrique transitive de β_0 :

 $a =_{\beta} b \text{ s'il existe } n \geq 0 \text{ et } (e_k)_{0 \leq k \leq n} \text{ tel que } a = e_0 \text{ et } b = e_n \text{ et } \forall k < n, \text{ soit } e_k \beta_0 e_{k+1} \text{ soit } e_{k+1} \beta_0 e_k$

Definition 11 (λ -congruence). Une relation binaire \mathcal{R} (sur Λ) est une λ -congruence si c'est une relation d'équivalence et qu'elle est λ -compatible.

Theorem 2 (Church-Rosser). Pour tout $(a,b) \in \Lambda^2$, $a =_{\beta} b$ si et seulement si il existe $c \in \Lambda$ tel que $a \beta b$ et $b \beta c$

Proof. La condition est suffisante

Réciproquement, pour la condition nécessaire, on introduit $R \subseteq \Lambda \times A$ défini par : $a \mathcal{R} b$ s'il existe c tel que $a \beta c$ et $b \beta c$.

On remarque, par définition de \mathcal{R} ,

- R est réflexive et symétrique
- \mathcal{R} est transitive

De plus, \mathcal{R} contient β (ou β_0). Donc, si $a =_{\beta} b$, alors a R b.

Theorem 3. La relation d'équivalence $=_{\beta}$ est la plus petite λ -congruence contenant \rightarrow_{β}

Proof. En exo. \Box

Notation On note \equiv pour une définition ($\stackrel{\text{def}}{=}$), mais aussi pour l' α -équivalence ($=_{\alpha}$). On peut utiliser la notation de Bruijn (cf références).

Part II

Calcul propositionnel et correspondance de Curry-Howard

1 Éléments de langage (informels)

- Théorie de la démonstration (prouvabilité)
- Thème des modèles

Quelques "ingrédients" :

• énoncés (logiques) : ici les familles du calcul propositionnel:

$$A ::= x \mid \top \mid \bot \mid A \Rightarrow B \mid A \land B \mid A \lor B \mid \neg A^2 \tag{*}$$

La notation "A propriété" signifie que A est engendrée par la grammaire (\star)

- On parle de jugements sur ces énoncés : "A true"
- On introduit aussi des jugements hypothétiques : A_1 true, A_2 true, ..., A_n true $\vdash B$ true

 $^{^2 \}neg A$ signifie en fait $A \Rightarrow \bot$

Commentaires sur les différentes règles de (NJ):

- $\bullet\,$ Le vrai
- L'implication (/!\: $A \Rightarrow B \neq \neg A \lor B$ dans (NJ))
- Le faux
- La négation
- La disjonction

2 Fragments λ_{\rightarrow}

On peut associer des règles au typages de λ -termes en raisonnant sur $\lambda x.t:T$

Theorem 4 (Curry-Howard). Le fragment NJ_{\rightarrow} et λ_{\rightarrow} sont en correspondance via:

1. Si
$$\Delta \vdash t : T \ dans \ \lambda_{\rightarrow}$$

$\lambda_{ ightarrow}$	$NJ_{ ightarrow}$
type	proposition
variable de type	proposition atomique
type flèche	implication
terme	$d\grave{e}rivation$
variable de terme	hypothèse
λ -abstraction	règle d'introduction
application	règle d'élimination
β -redex	coupure
β -réduction	transformation sur les dérivations
forme normale	dérivation sans coupure

Figure 1: Correspondance de Curry-Howard

3 Interprétation BHK

L'interprétation de Brouwer-Heyting-Kolmogorov consiste à construire un témoin (une preuve) d'une proposition selon le protocole suivant :

- Un témoin pour $A \wedge B$ est une paire formée par un témoin pour A et un témoin pour B
- $\bullet\,$ Il y a un témoin unique pour \top
- Un témoin pour $A \vee B$ est soit un témoin pour A, soit un témoin pour B
- $\bullet\,$ Il n'y a pas de témoin pour \bot
- Un témoin pour $A \Rightarrow B$ est une application de témoins pour A vers des témoins pour B
- Un témoin pour $\neg A$ est un témoin de $A \Rightarrow \bot$

Avec A, B engendrés par la grammaire

$$A ::= X \mid A \Rightarrow A \mid A \vee A \mid A \wedge A \mid \top \mid \bot$$

Definition 12 (Produit (paire)). Soit A,B. Le produit de A par B est le damier de $A \times B$, et de la propriété universelle suivante :

Pour tout $f: D \to A$ et $g: D \to B$, il existe $h: D \to A \times B$ tel que $\pi_1 \circ h = f$ et $\pi_2 \circ h = g^3$. De plus, h est unique et ne dépend que de f et de g,

$$h = \langle f, g \rangle$$

Par ailleurs, si $e: D \to A \times B$, alors

$$\begin{cases} \pi_1 \circ e : D \to A \\ \pi_2 \circ e : D \to B \end{cases}$$

Pour ce couple, il existe $\langle \pi_1 \circ e, \pi_2 \circ e \rangle : D \to A \times B$

Du coup, par unicité, on a nécessairement

$$\langle \pi_1 \circ e, \pi_2 \circ e \rangle = e$$

Cette observation donne lieu à :

- une transformation sur les dérivations
- une autre forme de réduction sur les λ -termes

On parle alors d' η -réduction.

On rajoute alors les règles de typage du produit (\times_i) et $(\times_{E,k})$ pour $k \in \{1,2\}$.

Definition 13 (Somme (coproduit)). Soit A, B. C'est la donné de A + B avec la propriété universelle suivante :

 $Si\ f:A\to C,\ et\ g:B\to C,\ il\ existe\ k:A+B\to C\ unique,\ ne\ dépendant\ que\ de\ f\ et\ de\ g\ noté\ \{f,g\},\ tel\ que$

$$\begin{cases} k \circ in_l = f \\ k \circ in_r = g \end{cases}$$

Par ailleurs, si on se donne

$$e: A + B \to C$$

Alors

$$\begin{cases} e \circ in_l : A \to C \\ e \circ in_r : B \to C \end{cases}$$

Donc

$$\{e \circ \in_l, e \circ in_r\} = e$$

On rajoute alors trois règles : (+Ig), (+Id) et (+E)

Part III

λ -calcul simplement typé

1 Quelques Lemmes

Lemma 1. Si $\Delta \vdash t : T$ clos, $FV(t) \subseteq FV(\Delta)$, où $FV(\emptyset) = \emptyset$, et $FV(\Delta, x : S) = FV(\Delta) \cup \{x\}$.

Attention : Un contexte de typage $\Delta \equiv x_1: S,...,x_p: S_p$ où $p \geq 0$ est valide si les variables $x_1,...,x_p$ sont distinctes deux à deux.

 $^{^3}$ Ces égalité correspondent à des β -réduction dans le λ -calcul

On peut rajouter des règles sur la validité de Δ en tant que contexte.

Ø contexte valide

$$\frac{\Delta \text{ contexte valide} \qquad T \text{ type} \qquad x \notin FV(\Delta)}{\Delta, x : T \text{ contexte valide}}$$

Et on augmente (Hyp).

$$\frac{\Delta \text{ contexte valide} \qquad x: T \in \Delta}{\Delta, x: T \text{ contexte valide}} \text{ (Hyp)}$$

Lemma 2 (Affaiblissement). Si $\Delta \vdash t : T$ et si $\Delta \subseteq \Delta'$, avec Δ' contexte valide, alors $\Delta' \vdash t : T$.

Proof. Par induction sur la dérivation principale, c'est-à-dire $\Delta \vdash t : T$. Le seul cas "délicat" est lorsque

$$\Delta, x: U \vdash a: V$$

Theorem 5. Si $\Delta \vdash t : T$, alor t est fortement normalisant.

Proof. Deux parties : poser la notation générale, puis l'adapter à \rightarrow_{λ} .

- 1. Définition générale : Si $e \in \Lambda$, $e \equiv \lambda \overline{x}.\Delta \overline{u}$ avec $|\overline{x}| > 0$, $|\overline{u}| > 0$ et $\Delta \in \mathcal{X}$ ou bien Δ est un β -redex
 - e est en forme normale si $\Delta \in \mathcal{X}$ et chaque u_i est en forme normale
 - e est une forme normale de tête (HNF) si $\Delta \in \mathcal{X}$
 - si e n'est pas en HNF, c'est-à-dire Δ est un β -redex, Δ est appelé redex de tête.

Definition 14. $e \in \Lambda$ est fortement normalisant (SN) s'il n'existe pas de β -réduction infinie issue de e

Exemple

- Ω n'est pas SN
- $(\lambda x.\lambda y.y\Omega$ n'est pas SN (il existe une dérivation infinie) \rightarrow attention : la β -équivalence n'est pas compatible avec la propriété d'être fortement normalisant.

Par contre, si $a =_{\beta} b$ et b a une NF (resp HNF), alors a a une NF (resp HNF) De plus :

- Si e a une NF (resp HNF), $\lambda x.e$ a une NF (resp HNF)
- Si e est SN, $\lambda x.e$ est SN

Soit \mathcal{N} l'ensemble des termes SN, et $\mathcal{N}_0 \equiv \{x\overline{u} \mid x\overline{u} \in \mathcal{N}\} \subseteq \mathcal{N}$

Notation

- $e \in \Lambda$, $Succ(e) = \{e' \in \Lambda \mid e\beta_0 e'\}$, et cet ensemble est fini (réduction à branchements fini)
- Lemme de Koenig : si un arbre est infini et que cet arbre est a branchement fini, alors il existe un chemin infini

Si $e \in \mathcal{N}, \bigcup_{p \geq 0} Succ^p(e)$ est fini, de sorte que la définition suivante est bien fondée :

Definition 15. Pour $e \in \mathcal{N}$, $\ell(e)$ désigne la somme des longueurs des chemins de tout réduction issue de e.

Lemma 3. Sont immédiats :

- $Si\ e \in \mathcal{N}$, $alors\ \lambda x.e \in \mathcal{N}$
- Si de plus $e' \in \mathcal{N}$ et $e\beta e'$, alors $e' \in \mathcal{N}$
- $Si\ e \in \Lambda\ tel\ que\ Succ(e) \subseteq \mathcal{N},\ alors\ e \in \mathcal{N}$

Proof. Pour le troisième point, soit $e \in \Lambda$ tel que $Succ(e) \subseteq \mathcal{N}$, pour tout $e' \in Succ(e)$, $\ell(e') < \ell(e) \to$ une récurrence simple sur $\ell(e)$ permet d'établir $\mathcal{P}(e) \equiv \text{``Succ}(e) \subseteq \mathcal{N}$ implique $e \in \mathcal{N}$ "