

## **Art of Problem Solving** 2009 Romanian Masters In Mathematics

## Romanian Masters In Mathematics 2009

| 1 | For $a_i \in \mathbb{Z}^+$ , $i = 1,, k$ , and $n = \sum_{i=1}^k a_i$ , let $d = \gcd(a_1,, a_k)$ denote the greatest common divisor of $a_1,, a_k$ .<br>Prove that $\frac{d}{n} \cdot \frac{n!}{\sum_{i=1}^k (a_i!)}$ is an integer.  Dan Schwarz, Romania                                                                                     |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | A set $S$ of points in space satisfies the property that all pairwise distances between points in $S$ are distinct. Given that all points in $S$ have integer coordinates $(x,y,z)$ where $1 \le x,y,z \le n$ , show that the number of points in $S$ is less than min $\left((n+2)\sqrt{\frac{n}{3}},n\sqrt{6}\right)$ .  Dan Schwarz, Romania |
|   |                                                                                                                                                                                                                                                                                                                                                 |
| 3 | Given four points $A_1, A_2, A_3, A_4$ in the plane, no three collinear, such that                                                                                                                                                                                                                                                              |
|   | $A_1 A_2 \cdot A_3 A_4 = A_1 A_3 \cdot A_2 A_4 = A_1 A_4 \cdot A_2 A_3,$                                                                                                                                                                                                                                                                        |
|   | denote by $O_i$ the circumcenter of $\triangle A_j A_k A_l$ with $\{i, j, k, l\} = \{1, 2, 3, 4\}$ . Assuming $\forall i A_i \neq O_i$ , prove that the four lines $A_i O_i$ are concurrent or parallel.<br>Nikolai Ivanov Beluhov, Bulgaria                                                                                                    |
| 4 | For a finite set $X$ of positive integers, let $\Sigma(X) = \sum_{x \in X} \arctan \frac{1}{x}$ . Given a finite set $S$ of positive integers for which $\Sigma(S) < \frac{\pi}{2}$ , show that there exists at least one finite set $T$ of positive integers for which $S \subset T$ and $\Sigma(S) = \frac{\pi}{2}$ .                         |
|   | Kevin Buzzard, United Kingdom                                                                                                                                                                                                                                                                                                                   |

Contributors: orl