Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation

The Chinese University of Hong Kong, etc

ECCV 2020 (Oral Paper)

2021.07.22

CONTENTS

- Background
- Methodology of Deep Generative Prior
- Experiment / Result
- Conclusion

Background

01. Background

Previous work : Deep Image Prior

Limitation: Still exist gaps toward image prior that captures rich image semantics. (e.g. color, textures, high-level concepts)

Background

Methodology of Deep Generative Prior

Goal: exploiting generic image prior of GAN

Degraded image (left side)

GAN

Restored image (right side)

Main Contribution

- 1. Training Generator through relaxed GAN-Inversion methods.
- Allow the generator to be fine-tuned on-the-fly in a progressive manner regularized by feature
 distance obtained by the discriminator in GAN.

"Restore missing semantics and enable diverse image manipulation"

1) Relax the Generator for GAN-Inversion

Updated objective :
$$\boldsymbol{\theta}^*, \mathbf{z}^* = \operatorname*{arg\ min}_{\boldsymbol{\theta}, \mathbf{z}} \mathcal{L}(\hat{\mathbf{x}}, \phi(G(\mathbf{z}; \boldsymbol{\theta}))), \quad \mathbf{x}^* = G(\mathbf{z}^*; \boldsymbol{\theta}^*).$$

2) Discriminator Guided Progressive Reconstruction – Feature Matching loss

$$\mathcal{L}(\mathbf{x}_1, \mathbf{x}_2) = \sum_{i \in \mathcal{I}} \|D(\mathbf{x}_1, i), D(\mathbf{x}_2, i)\|_{1}$$

- $D(x_1, i)$ 는 discriminator의 i 번째 block에서의 x의 feature
- I는 사용한 block의 index set

2) Discriminator Guided Progressive Reconstruction

Fig. 4. Progressive reconstruction of the generator can better preserves the consistency between missing and existing semantics in comparison to simultaneous fine-tuning on all the parameters at once. Here the list of images shown in the middle are the outputs of the generator in different fine-tuning stages.

The generator can better **preserve the consistency** between missing and existing semantics.

2) Discriminator Guided Progressive Reconstruction

Fig. 3. Comparison of different loss types when fine-tuning the generator to reconstruct the image

Experiment / Result

03. Experiment

1) Task

Image Restoration

- Inpainting
- SR
- Colorization
- Adversarial defense

Image Manipulation

- Random jittering
- Image morphing
- Category transfer
- 2) Architecture: BigGAN (Pretrained on ImageNet / Test on 1K images from ImageNet Validation set)
- 3) Initialization of Z: randomly sample 500 images using the GAN, select the neighbor of the target image under the discriminator feature metric as the starting point.
- 4) Fine-tuning: a little differences for each tasks

1) Image Restoration

Colorization

Fig. 5. Colorization. Qualitative comparison of Autocolorize [25], other GAN-inversion methods [5][4], and our DGP

Inpainting

Fig. 6. Inpainting. Compared with DIP and [5][4], the proposed DGP could preserve the spatial coherence in image inpainting with large missing regions

Fig. 7. Super-resolution ($\times 4$) on 64×64 size images. The comparisons of our method with DIP, SinGAN, and [4] are shown, where DGP produces sharper super-resolution results

1) Image Restoration : Adversarial defense

Fig. 10. Adversarial defense. DGP is capable of filtering out unnatural perturbations in the adversarial samples by reconstructing them

Table 5. Adversarial defense evaluation. We reported the classification accuracy of a ResNet50. The results are evaluated on the 1k ImageNet validation set

method	clean image	adversarial	DefenceGAN	DIP	Ours
top1 acc. (%)	74.9	1.4	0.2	37.5	41.3
top5 acc. (%)	92.7	12.0	1.4	61.2	65.9

Pros 1: Flexibility of DGP

Fig. 8. (a) Colorizing an image under different class conditions. (b) Simultaneously conduct colorization, inpainting, and super-resolution $(\times 2)$

(b) Hybrid degradation : $\beta(x) = \beta a(\beta b(\beta c(x)))$

Pros 2: Generalization of DGP

Fig. 9. Evaluation of DGP on non-ImageNet images, including (a) 'Raccoon', a category not belonging to ImageNet categories, (b) image from Places dataset [44], (c) image without foreground object, and (d) windows. (a)(c)(d) are scratched from Internet

2) Image Manipulation: random jittering

Fig. 11. Comparison of random jittering using SinGAN (above) and DGP (below)

^{*} Random jittering? add Gaussian noise to the latent vector z*

2) Image Manipulation: image morphing, category transfer

Fig. 12. Image morphing. Our method achieves visually realistic image morphing effects

Fig. 13. Category transfer. DGP enables the editing of semantics of objects in images

Cons: Failure Case

Conclusion

04. Conclusion

Conclusion

- GAN generator trained on massive natural images could be used as a generic image prior (DGP).
- DGP could be used to restore the missing information of a degraded image by progressively reconstructing it under the discriminator metric.
- Show the potential of a universal image prior captured by a GAN in image restoration and manipulation.

Future work?

References

[Research Papers]

- Deep Image Prior, CVPR 2018
 https://openaccess.thecvf.com/content_cvpr_2018/papers/Ulyanov_Deep_Image_Prior_CVPR_2018_paper.pdf
- GAN-Inversion in domain, ECCV 2020 https://arxiv.org/pdf/2004.00049.pdf
- Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation, ECCV 2020 https://arxiv.org/pdf/2003.13659.pdf

[참고 자료]

- Pytorch code : https://github.com/XingangPan/deep-generative-prior
- 2020 ECCV Presentation video : https://www.youtube.com/watch?v=p7ToqtwfVko

Q & A

감사합니다.

E-mail: kka1132@hanyang.ac.kr

Github: https://github.com/Kyeonga-Kim/