

Machine Learning

Dr. Mehran Safayani safayani@iut.ac.ir safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/machine_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Stochastic Gradient Descent

$$L(\theta) = \frac{1}{m} \sum_{i=1}^{m} L_i(\theta) \quad \text{(cost function)} \qquad L_i = (\hat{y}_i - y_i)^2$$

 $L_i(\theta)$ = cost of ith training sample

SGD:

$$\theta^{t+1} = \theta^t - \alpha \nabla L_i(\theta^t)$$

 $abla L_i(heta^t)$: است و محاسباتش کم هزینه تر $abla L_i(heta^t)$ است.

مى توان نشان داد:

$$E[\nabla L_i(\theta)] = \nabla L(\theta)$$

Mini_Batch SGD

$$L = \frac{1}{|B|} \sum_{i \in B} L_i(\theta^t) \qquad (B: 2)$$

$$\theta^{t+1} = \theta^t - \alpha g \qquad g = \frac{dL}{d\theta}$$

- یک مجموعه تصادفی به اندازه |B| از داده های آموزشی انتخاب می کنیم.
 - امکان موازی سازی با Mini_Batch SGD بیشتر از SGD است.
 - O(|B|.n) : حجم محاسبات

Saddle Points

به کمک SGD میتوان از نقطه زین اسبی فرار کرد

GD

Repeat{

 $d\theta = 0$

for i = 1 to m:

compute $d\theta^i$

 $d\theta += d\theta^i$

 $\theta = \theta - \alpha \frac{1}{m} d\theta$

} until convergence

mini_batch SGD

 $T = \frac{m}{B}$; B = batch_size

Repeat{

for j= 1 to T: $d\theta = 0$

for i = 1 to B: compute $d\theta^i$

 $d\theta$ += $d\theta^i$

$$\theta = \theta - \alpha \frac{1}{B} d\theta$$

}until convergence

SGD

Repeat{ for i = 1 to m: compute $d\theta^i$

 $\theta = \theta - \alpha \, \mathrm{d}\theta^{\mathrm{i}}$

} until convergence

Comparison

SGD

از روش های vectorization به خوبی استفاده نمی شود. سرعت الگوریتم کاهش می یابد. خیلی نویزی است.

Mini_Batch GD

آموزش سريعتر

Batch GD

هر تکرار خیلی طول می کشد.

ماتریس ها خیلی بزرگ هستند.

موازی سازی مشکل است.

 $m \le 2000$: Batch

Mini_Batch: 64, 128, 256, 512

Comparison

Robbines_Monro Algorithm:

$$\sum \alpha^t = \infty$$

$$\sum \alpha^t = \infty$$
 $\sum_{t=1}^{\infty} (\alpha^t)^2 < \infty$ $\alpha^t = \frac{1}{(t+1)^r}$ $r \in (0.5, 1)$

$$\alpha^t = \frac{1}{(t+1)^r}$$

$$r \in (0.5, 1)$$

$$\{x^1, x^2, \dots, x^{1000}\} , \quad x^1 = x^2 = \dots = x^{1000}$$

$$\frac{1}{1000} \sum_{i=1}^{1000} L(\hat{y}_i, y_i) = \frac{1}{1000} * 1000 L(\hat{y}_i, y_i)$$

Subgradient Method

این روش برای توابعی که در برخی نقاط مشتق پذیر نیستند بکار می رود.

$$\mathcal{L}(\mathbf{u}) \geq \mathcal{L}(\mathbf{w}) + \nabla \mathcal{L}(\mathbf{w})^{\top}(\mathbf{u} - \mathbf{w}) \quad \forall \mathbf{u}, \mathbf{w}$$
 ہرای توابع محدب مشتق پذیر داریم:

بدین معنی که تابع همیشه بزرگتر از تخمین خطی اش است.

Subgradient Method

Subgradient:

A vector $\mathbf{g} \in \mathbb{R}^D$ such that

$$\mathcal{L}(\mathbf{u}) \ge \mathcal{L}(\mathbf{w}) + \mathbf{g}^{\top}(\mathbf{u} - \mathbf{w}) \quad \forall \mathbf{u}$$

is called a subgradient to the function \mathcal{L} at \mathbf{w} .

است.
$$g = \Delta L(w)$$
 اگر تابع (ω) مشتق پذیر باشد

Subgradient Descent:

$$\mathbf{w}^{(t+1)} := \mathbf{w}^{(t)} - \gamma \, \mathbf{g}$$

Subgradient Method

$$|x| \longrightarrow g = \begin{cases} 1 & x > 0 \\ [-1,1] & x = 0 \\ -1 & x < 0 \end{cases}$$

$$f(x_1) + g_1^T(x - x_1)$$
 $f(x_2) + g_2^T(x - x_2)$
 $f(x_2) + g_3^T(x - x_2)$
 $f(x_2) + g_3^T(x - x_2)$
 $f(x_3) + g_3^T(x - x_2)$
 $f(x_3) + g_3^T(x - x_3)$
 $f(x_3) + g_3^T(x - x_3)$
 $f(x_3) + g_3^T(x - x_3)$

$$g(x_i) = [g_3, g_2]$$