

EEL 6935

Special Topics in Multimedia Communications and Networking

Scalable Video Transport over Wireless IP Networks

Dr. Dapeng Wu
University of Florida
Department of Electrical and Computer Engineering

Bandwidth Fluctuations

Challenges

- Unreliability
 - Fading
 - Noise
- Bandwidth fluctuations
 - Moving between different networks (LAN to WAN)
 - Hand-off
 - - ...
- Heterogeneity for multicast

Unicast vs. Multicast

Unicast Multicast

Three Independent Techniques

- Scalable video coding
- Network-aware adaptation of end systems
 - Network awareness
 - Adaptation
- Adaptive QoS support from networks: adaptive services

Scalable Video Representations

Layered video encoding/decoding. D denotes the decoder.

An Application: IP Multicast

Our Approach

Unify the three techniques:

an adaptive framework

Outline

- Challenges for video over wireless IP networks
- An adaptive framework for video over wireless IP networks
 - Scalable video representations
 - Network-aware end systems
 - Adaptive services
- Summary

Network-aware End Systems

- Why using network-aware end systems?
 - All layers may get corrupted with equal probability without awareness of channel status
- How?
 - Discard enhancement layers at the sender based on network status
- Network-aware adaptation:
 - Network monitoring: collect information
 - Adaptation: adapt video representations based on network status

Taxonomy of Network Monitoring

Criteria	Type of monitoring	
Method of monitoring	Active	Passive
Monitoring frequency	On demand	Continuous
Replication of information	Centralized	Distributed

Adaptation/Scaling

An architecture for transporting scalable video from a mobile terminal to a wired terminal.

12

Scaling

- The operations of a scaler
 - Drop the enhancement layers
 - Do not scale the video
- Scaling based on network status
 - Available bandwidth
 - Channel quality (BER)

Outline

- Challenges for video over wireless IP networks
- An adaptive framework for video over wireless IP networks
 - Scalable video representations
 - Network-aware end systems
 - Adaptive services
- Summary

Adaptive Services

Objective:

 achieve smooth change of perceptual quality in presence of bandwidth fluctuations.

• Functions:

- Reserve a minimum bandwidth for the base layer
- Adapt enhancement layers based on available bandwidth and the fairness policy

Adaptive Services (cont'd)

Provisioning

- End-to-end deployment (our focus)
- Local deployment

Components:

- Service contract
- Call admission control and resource reservation
- Substream scaling
- Substream scheduling
- Link-layer error control

Service Contract

- A service contract consists of multiple subcontracts
 - Bandwidth reservation for the base layer
 - No QoS guarantee for enhancement layers
- Enforcement
 - Shaping
 - Priority

Call Admission Control (CAC)

• Objective:

- Provide a QoS guarantee while efficiently utilizing network resources
- The operation of CAC: check
 - whether QoS for existing connections is violated
 - whether the incoming connection's QoS can be met

Resource Reservation

- Different from the counterpart in wired networks:
 - The reserved bandwidth may not be rigidly guaranteed in wireless networks
- Two parts of resource reservation
 - Reserve resources along the current path
 - Reserve resource on the paths from the current base station to neighboring base stations

Mobile multicast mechanism

- Objective:
 - Provide seamless QoS during a handoff
- Multicast mechanism:
 - Multicast the base layer to the neighboring base stations

Substream Scaling

- Objective:
 - Adapt video streams during bandwidth fluctuations and/or under poor channel conditions
- Scaling decision based on utility fairness or max-min fairness
 - Utility fairness is based on utility functions
 - Max-min fairness is based on revenue

Substream Scaling (cont'd)

An architecture for transporting scalable video from a wired terminal to a mobile terminal.

Utility Functions

BL: Base Layer

EL: fürst Enhancement Layer

E2: second Enhancement Layer

Substream Scheduling

Link-layer Error Control

- Forward error correction (FEC)
- Automatic repeat request (ARQ)
- Truncated type-II hybrid ARQ
- Delay constrained hybrid ARQ
 - A receiver sends request based on delay bound of the packet

Delay-constrained Hybrid ARQ

RCPC: Rate compatible punctured convolution

Summary

- Objective: end-to-end solution to providing QoS for video transport over wireless IP networks
- Our approach: an adaptive framework
 - Scalable video representations
 - Network-aware end systems
 - Adaptive services
- Advantages of the adaptive framework
 - Perceptual quality is changed gracefully
 - Resources are shared in a fair manner

Homework

• Reading assignment: Chap. 15