Automatic Differentiation

Suma Dodmani

Why Automatic Differentiation

- Several numerical algorithms require the computation of derivatives.
 - Minimize objective function
 - To solve nonlinear system of equations
 - Systems of differential equations

Big Idea: Calculate a function's rate of change and its value all at once.

Understanding Computational Graphs

$$f(x) = (x_1 x_2 \sin x_3 + e^{x_1 x_2})/x_3$$

Modes

Forward Mode

Evaluate and carry forward a directional derivative of each intermediate variable

Reverse Mode

Reverse sweep of the computational graph

The Forward Mode

$$Z = x * y + \sin(x)$$

$$x = ?$$

$$y = ?$$

$$a = x * y$$

$$b = \sin(x)$$

$$z = a + b$$

$$\frac{\partial w}{\partial t} = \sum_{i} \left(\frac{\partial w}{\partial u_{i}} \cdot \frac{\partial u_{i}}{\partial t} \right)$$

$$= \frac{\partial w}{\partial u_{i}} \cdot \frac{\partial u_{1}}{\partial t} + \frac{\partial w}{\partial u_{i}} \cdot \frac{\partial u_{2}}{\partial t} + \cdots$$

$$\begin{aligned}
\frac{\partial x}{\partial t} &= ? \\
\frac{\partial y}{\partial t} &= ? \\
\frac{\partial a}{\partial t} &= y \cdot \frac{\partial x}{\partial t} + x \cdot \frac{\partial y}{\partial t} \\
\frac{\partial b}{\partial t} &= \cos(x) \cdot \frac{\partial x}{\partial t} \\
\frac{\partial z}{\partial t} &= \frac{\partial a}{\partial t} + \frac{\partial b}{\partial t}
\end{aligned}$$

Reverse mode

Reverse Mode(Continued)

- The extra aritl the arithmetic
- In forward mc than to comp
- Drawback: Ste

$$\begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \bar{x}_3 \end{bmatrix} = \nabla f(x) = \begin{bmatrix} (4+4e^2)/\pi \\ (2+2e^2)/\pi \\ (-8-4e^2)/\pi^2 \end{bmatrix}$$

ı is four or five times

ompute the gradient

everse sweep.

Vector functions and Partial Separability

Partially Separable: A function f is called partially separable if there exists a family of n x n diagonal matrices U_i , such that the function f can be represented as

$$f(x) = \sum f_i(U_i x)$$

 Many residual functions are partially separable as they are sum of residuals from various components of the model.

$$\nabla f(x) = J(x)^T e$$

Vector functions and Partial Separability

- **Constrained optimization:** Evaluating the objective function and constraint functions simultaneously.
- Exploring the shared intermediate nodes to reduce the workload.

Calculating Jacobians of Vector functions (Reverse Mode)

 Choose seed vector and applying the reverse mode to the scalar functions to get vector.

$$\nabla[r(x)^T q] = \nabla\left[\sum_{j=1}^m q_j r_j(x)\right] = J(x)^T q.$$

- Forward Mode: Jacobian Vector Product
- Reverse Mode: Jacobian-transpose-vector product

Calculating Hessians: Forward mode

$$D_{pq}x_i = p^T(\nabla^2 x_i)q,$$

- We define another scalar quantity for each node i in the computational graph.
- Evaluate these values during forward sweep alongside the function values and the first derivatives.
- Total increase factor for the number of arithmetic operations compared with the amount of arithmetic to evaluate f alone is a multiple of:

$$1+n+N_z(\nabla^2 f)$$

Calculating Hessians: Reverse mode

Forward Mode: Evaluation of function and the gradient.

Reverse Mode: We apply the reverse sweep to the computed function. At the end of the reverse sweep, the nodes of the computation graph will have the values:

$$\frac{\partial}{\partial x_i} (\nabla f(x)^T q) = \left[\nabla^2 f(x) q \right]_i, \quad i = 1, 2, \dots, n.$$

Conclusion

- Enhances Optimization algorithms
- Helps extract more information from the results of the computation

Thank You