

Multiple linear regression

We extend the 'model' part to include more than one explanatory variables

outcome = (model) + error

■ For two explanatory variables we have:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + e_i$$
model

■ In general for *p* explanatory variables, we have:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + ... + b_p x_p + e_i$$

School of IT & Mathematical Sciences

3

Goals of multiple regression

- Describe:
 - □ Develop a model to describe the relationship between the explanatory variables and the response variable.
- Predict:
 - ☐ Use sample data to make predictions of response values from explanatory variables.
- Confirm theories:
 - ☐ Which variables, or combination of variables, need to be included in the model?
 - ☐ How much does each explanatory variable contribute towards capturing the variability in the response variable?
- Techniques used depend on the objectives of the analysis.

School of IT & Mathematical Sciences

Example: Fitness study

- We have data for 50 subjects based on the following variables:
 - ☐ Age of subject (years)
 - ☐ Maximum number of push-ups
 - ☐ Resting pulse rate (bpm)
 - ☐ Maximum pulse rate (bpm)
 - □ Pulse rate while running (bpm)

■ We want to build a model that can predict how many push-ups a person can do.

School of IT & Mathematical Sciences

5

Example: Correlations

Pearson Correlation (Prob > r unde	
	Pushups
Age	-0.49191
	0.0003
Rest_Pulse	-0.49639
	0.0002
Max_Pulse	-0.45010
	0.0010
Run_Pulse	-0.34555
	0.0140

All four variables are significantly correlated with *Pushups* at 5% significance level.

All four variables are good candidates for explanatory variables.

School of IT & Mathematical Sciences

Recall: Sums of squares $SS_T = SS_M + SS_R$

- SS_T
 - □ Total variability (variability between actual data and the mean)

- SS_R
 - ☐ Residual/error variability (variability between the regression model and the actual data)

- SS_M
 - ☐ Model variability (difference in variability between the model and the mean)

Significance of a regression model

Overall test of model adequacy (Analysis of Variance table):

$$H_0: \beta_1 = \beta_2 = ... = \beta_p = 0$$

 H_1 : at least one of the coefficients in not zero

The test statistic is

$$F = \frac{MS_M}{MS_R} = \frac{SS_M / p}{SS_R / (n - p - 1)}$$

 $F = \frac{MS_{\scriptscriptstyle M}}{MS_{\scriptscriptstyle R}} = \frac{SS_{\scriptscriptstyle M} \ / \ p}{SS_{\scriptscriptstyle R} \ / (n-p-1)} \quad \begin{array}{l} p \text{ is the number of predictors} \\ (\text{excluding the intercept}) \text{ and } n \\ \text{is the number of observations} \end{array}$

■ Note that the intercept, β_0 , is not included in the hypotheses.

School of IT & Mathematical Sciences

■ Model 1 that relates *Pushups* to *Age* and *Max_Pulse*:

Root MSE	10.47079	R-Square	0.3517
Dependent Mean	25.30000	Adj R-Sq	0.3241
Coeff Var	41.38652		

 $R^2 = 35.17\%$

- Age and Max_Pulse together explain 35% of variability in Pushups.
- Use adjusted R² to answer the following question:
 - ☐ How well does the model generalise?

School of IT & Mathematical Sciences

11

R² vs adjusted R²

- In multiple regression, R² is the square of the multiple correlation coefficient between the dependent variable and the predictors.
- The adjusted R² indicates the loss of predictive power or shrinkage.
 - ☐ How much variance in y would be accounted for if the model was derived from the population?
 - ☐ What is the loss in predictive power?
 - \square We want this value to be close to our \mathbb{R}^2 value.

Adjusted
$$R^2 = 1 - \left(\frac{n-1}{n-p-1}\right)\left(1 - R^2\right)$$

School of IT & Mathematical Sciences

Stein's formula

- How well does the model predict data from a different sample?
 - ☐ How well does the model cross-validate?

Adjusted
$$R^2 = 1 - \left[\left(\frac{n-1}{n-p-1} \right) \left(\frac{n-2}{n-p-2} \right) \left(\frac{n+1}{n} \right) \right] (1 - R^2)$$

For our Model 1, this formula gives 0.2806, which is much lower than R^2 = 0.3517 so there is room for improvement.

School of IT & Mathematical Sciences

13

Example: Coefficients

■ Model 1 that relates *Pushups* to *Age* and *Max Pulse*:

		Parameter	Estimates		
Variable	DF	Parameter Estimate	o torrerer	t Value	Pr > t
Intercept	1	96.65502	18.89988	5.11	<.0001
Age	1	-0.31605	0.09613	-3.29	0.0019
Max_Pulse	1	-0.47750	0.16929	-2.82	0.0070

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2$$

On average, for a *fixed maximum pulse*, the number of push-ups decreases by 0.316 for each 1 year increase in age.

On average, for a *fixed age*, the number of push-ups decreases by 0.478 for each 1 bpm increase in maximum pulse.

School of IT & Mathematical Sciences

• Example: Regression Inference for β_1 and β_2

■ Model 1 that relates *Pushups* to *Age* and *Max_Pulse*:

Parameter Estimates							
Variable	DF	Parameter Estimate		t Value	Pr > t		
Intercept	1	96.65502	18.89988	5.11	<.0001		
Age	1	-0.31605	0.09613	-3.29	0.0019		
Max_Pulse	1	-0.47750	0.16929	-2.82	0.0070		

H₀: β_1 = 0 t_{48} = -3.29, p-value = 0.0019 < 0.05 thus there is a relationship H₁: $\beta_1 \neq 0$ between *Pushups* and *Age*.

School of IT & Mathematical Sciences

15

Example: Regression Inference for β_1 and β_2

We are 95% confident that the population value of the slope for Age is between -0.509 and -0.123.

We are 95% confident that the population value of the slope for Max_Pulse is between -0.818 and -0.137.

School of IT & Mathematical Sciences

Performing hypothesis tests

- There are no model assumptions needed about the error terms to calculate estimates of the coefficients.
- However, all the model assumptions should be checked before conducting a hypothesis test.
- Assumptions for linear regression:
 - ☐ Error terms must be Normally distributed.

School of IT & Mathematical Sciences

17

Linearity, Independence, Error Variance:

The residual-versus-fitted values plot shows no apparent pattern so linearity and independence are OK.

There is no evidence unequal vertical spread, so constant error variance is also OK.

Normality:

Normal probability plot of residuals shows no curved pattern.

Diagnostic measures - Outliers

- Studentized residuals:
 - ☐ Residuals divided by an estimate of their standard deviation.
 - □ To facilitate interpretation across different models.
 - ☐ Cause for concern:
 - Studentized residuals with absolute value greater than 3.
 - More than 1% of sample cases with an absolute value of 2.5.
 The model is a fairly poor fit to the sample data.
 - More than 5% of cases with an absolute value greater than 2.
 The model is a poor representation of the actual data.

School of IT & Mathematical Sciences

19

Diagnostic measures – Influence

- Adjusted predicted value for a case:
 - ☐ Predicted value for a case from a model estimated without that case.
- DFFit:
 - □ Difference between the adjusted predicted value and the original predicted value.
 - Reported in standardized form.
 - For a non-influential case the value should be zero.
 - Cause for concern: absolute values greater than 1.
 - Rule of thumb: absolute value greater than $2 \times \sqrt{\frac{p+1}{n}}$

School of IT & Mathematical Sciences

Diagnostic measures - Influence

- Cook's distance:
 - ☐ Measure of overall influence of a case on the model.
 - Impact a case has on the model's ability to predict all cases.
 - □ Cause for concern: values greater than 1.
 - \square Rule of thumb: values greater than 4/n.
- PRESS residuals:
 - □ Differences between adjusted predicted values and original observed values.
 - Influence of case on the ability of the model to predict that case.

School of IT & Mathematical Sciences

0.4

Diagnostic measures - Influence

- Studentized deleted residuals (Rstudent in SAS):
 - ☐ Standardized values of the PRESS (prediction sum of squares) residuals.
 - \square PRESS residuals divided by the standard error.
- DFBeta (standardized):
 - □ Difference between a parameter estimated using all observations and when one observation is excluded.
 - □ Cause for concern: absolute value greater that 1.
 - \square Rule of thumb: absolute value greater than $\frac{2}{\sqrt{n}}$

School of IT & Mathematical Sciences

Diagnostic measures – Influence

- Leverage (hat value):
 - ☐ Influence of the observed value of the outcome variable over the predicted values.
 - ☐ The average leverage is (p+1)/n and values lie between 0 (no influence) and 1 (complete influence).
 - ☐ Cause for concern: values greater than 2 or 3 times the average hat value, so greater than

$$\frac{2(p+1)}{n}$$

School of IT & Mathematical Sciences

Example: Model diagnostics

				Outp	ut Statis	tics			
				Hat Diag	Cov			DFBETA	S
Obs	Subj	Residual	RStudent	Н	Ratio	DFFITS	Intercept	Age	Max_Pulse
1	1	3.0465	0.2958	0.0513	1.1179	0.0687	-0.0365	0.0352	0.0297
2	2	10.6648	1.0520	0.0605	1.0572	0.2670	0.1566	0.1653	-0.1816
3	3	-6.7225	-0.6625	0.0721	1.1172	-0.1846	-0.0145	-0.1569	0.0462
4	4	5.2537	0.5047	0.0271	1.0784	0.0843	0.0406	-0.0248	-0.0275
5	5	-0.3597	-0.0344	0.0213	1.0898	-0.0051	-0.0006	-0.0012	0.0006
6	6	-6.8626	-0.6609	0.0283	1.0670	-0.1128	0.0502	-0.0187	-0.0510
7	7	-4.8127	-0.4717	0.0662	1.1258	-0.1256	-0.0780	-0.0764	0.0896
8	8	15.2615	1.5214	0.0566	0.9758	0.3725	0.0483	-0.2975	0.0452
9	9	-9.5007	-0.9297	0.0503	1.0621	-0.2139	-0.1342	0.1087	0.0921
10	10	-6.7510	-0.6938	0.1460	1.2106	-0.2869	0.2444	0.0858	-0.2660

Diagnostic statistics for the first ten cases

School of IT & Mathematical Sciences

Rules of thumb for identifying observations worthy of further investigation Measure Studentised residual (absolute value) > 2 DFFTS (absolute value) > 2 x sqrt((p+1)/n) DFBETA (absolute value) > 2 / sqrt(n) Leverage > 2 x (p+1)/n Cook's D > 4 / n

School of IT & Mathematical Sciences

Model selection methods

■ R-squared method:

□ Choose the model with highest R² out of all possible regression models.

■ Mallow's Cp:

- \Box Choose the first model in which Cp is less than or equal to p+1, if the goal is prediction.
- □ Hocking: Choose the first model with Cp less than or equal to $2(p+1) (p_{full} + 1) + 1$, if the goal is to explain relationships.
- ☐ To avoid overfitting.

School of IT & Mathematical Sciences

31

Model selection methods

■ Stepwise methods:

☐ Decisions about the order in which predictors enter into the model are based on some mathematical criterion.

■ Forward method:

- ☐ Starts with a model based on the intercept only.
- □ Variables are added based on largest semi-partial correlation with the outcome and contribution to the model predictive power.

School of IT & Mathematical Sciences

Model selection methods

- Backward method:
 - ☐ Starts with a model based on all predictors.
 - □ Variables are deleted based on a criterion linked to their significance.
 - ☐ Preferred to forward method.
- Stepwise method:
 - ☐ In SAS it is the same as the forward method, except the model is reassessed each time to see whether any redundant predictors can be removed.

School of IT & Mathematical Sciences

33

Example: Model selection

Model Index	Number in Model	R-Square	Adjusted R-Square	C(p)	Variables in Model		
1	1	0.2464	0.2307	10.4785	Rest_Pulse		
2	1	0.2420	0.2262	10.8103	Age		
3	1	0.2026	0.1860	13.7615	Max_Pulse		
4	1	0.1194	0.1011	19.9961	Run_Pulse		
5	2	0.3517	0.3241	4.5862	Age Max_Pulse		
6	2	0.3283	0.2997	6.3423	Age Rest_Pulse		
7	2	0.2946	0.2646	8.8650	Age Run_Pulse		
8	2	0.2510	0.2191	12.1369	Max_Pulse Rest_Pulse		
9	2	0.2493	0.2174	12.2591	Max_Pulse Run_Pulse		
10	2	0.2489	0.2169	12.2914	Rest_Pulse Run_Pulse		
11	3	0.3995	0.3603	3.0068	Age Max_Pulse Run_Pulse		
12	3	0.3527	0.3105	6.5096	Age Max_Pulse Rest_Pulse		
13	3	0.3284	0.2846	8.3329	Age Rest_Pulse Run_Pulse		
14	3	0.2901	0.2439	11.1998	Max_Pulse Rest_Pulse Run_Pulse		
15	4	0.3996	0.3462	5.0000	Age Max_Pulse Rest_Pulse Run_Pulse		

Multicollinearity

- Exists when there is a strong correlation between two or more predictors in a multiple regression model.
- The following problems arise:
 - \square Standard errors of regression coefficients increase.
 - \square Limited improvement in \mathbb{R}^2 .
 - ☐ It is difficult to assess the individual importance of a predictor.

School of IT & Mathematical Sciences

Multicollinearity

- Variance inflation factor (VIF):
 - ☐ Indicates whether a predictor has a strong linear relationship with the other predictors.
 - □ Cause for concern: a value of 10 or higher.
- Tolerance statistic:
 - □ Reciprocal of VIF (or 1/VIF).
 - □ Cause for concern: values below 0.1 indicate serious problems, values below 0.2 are worthy of concern.

School of IT & Mathematical Sciences

Example: Multicollinearity

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation		
Intercept	1	93.56536	21.33252	4.39	<.0001	0		
Age	1	-0.31264	0.10918	-2.86	0.0063	1.43496		
Max_Pulse	1	-1.26238	0.54665	-2.31	0.0256	11.59795		
Rest_Pulse	1	-0.02608	0.31565	-0.08	0.9345	4.34454		
Run_Pulse	1	0.84388	0.45045	1.87	0.0675	8.19934		

We have large VIF values for *Max_Pulse* and *Run_Pulse*. We could either leave one of these variables out, or else create a new variable that is a linear combination of these two variables.

School of IT & Mathematical Sciences

. .

The extra sum of squares F-test

Test the contribution of a specific set of variables by comparing the residuals of a full and a reduced model.

$$H_0: \beta_{p+1} = \beta_{p+2} = \dots = \beta_m = 0$$

 H_1 : at least one of the coefficients in not zero

■ The test statistic is

$$F = \frac{(SS_M^{full} - SS_M^{reduced})/(m-p)}{MS_R^{full}}$$

In our case, the comparison between the full model and Model 1 gives F = 7.17, which is statistically significant

p is the number of predictors in the reduced model, m is the number of predictors in the full model (excluding the intercept) and n is the number of observations

School of IT & Mathematical Sciences

SAS code – regression with diagnostics

School of IT & Mathematical Sciences

13

SAS code - model selection

```
proc reg data=mydata.exercise
    plots(only)=(rsquare adjrsq cp);
    model Pushups=Age Max_Pulse Rest_Pulse Run_Pulse
            / selection=rsquare cp adjrsq;
    run;
proc reg data=mydata.exercise;
    Forward: model Pushups=Age Max_Pulse Rest_Pulse
      Run_Pulse / selection=forward;
    Backward: model Pushups=Age Max_Pulse Rest_Pulse
      Run_Pulse / selection=backward;
    Stepwise: model Pushups=Age Max_Pulse Rest_Pulse
      Run_Pulse / selection=stepwise;
    run;
quit;
                   School of IT & Mathematical Sciences
                                                      44
```


Dummy coding

- For any categorical explanatory variable with g groups, only g - 1 terms should be included in the regression model:
 - ☐ Create g 1 variables.
 - □ Choose one group as baseline, which is a group against which all other groups will be compared, so a control group or a group representing majority.
 - ☐ Assign the baseline group a value of 0 in all dummy variables.
 - ☐ For the first dummy variable, assign the first group the value of 1 and 0 for all the other groups. For the second dummy variable, assign the second group the value of 1 and 0 for all the other groups, and so on.

School of IT & Mathematical Sciences

45

Example: Pulse rates

- Recall the pulse rates data set from Week 2.
- Suppose we wish to predict a person's pulse rate from their age and how often they exercise.
 - □ One predictor is numerical, the other categorical.
- Variable *Exercise* has three levels, coded 1 for 'high', 2 for 'moderate' and 3 for 'low'.
 - ☐ Make the low exercise group the baseline.
 - ☐ We need to create two dummy variables, which we will call *High* and *Moderate*.

School of IT & Mathematical Sciences

SAS code: Dummy coding

```
/* Create dummy variable for level of exercise */
```

```
data work.pulse_rates_dummies;
    set mydata.pulse_rates;
    if exercise=1 then High=1;
    else High=0;
    if exercise=2 then Moderate=1;
    else Moderate=0;
run;
```


School of IT & Mathematical Sciences

17

SAS code: Dummy coding

var Exercise High Moderate;

run;

To be sure the program worked correctly, PROC PRINT lists the first 10 observations

	Exercise	High	Moderate	
	2	0	1	
	2	0	1	
	1	1	0	
	1	1	0	
	3	0	0	
\	3	0	0	
	2	0	1	
	2	0	1	
	1	1	0	
	2	0	1	

School of IT & Mathematical Sciences

Example: Pulse rates

Pulse = 90.67 - 0.59 Age -10.56 High -2.96 Moderate

■ For the low exercise group, the relationship between pulse rate and age is:

Pulse = 90.67 - 0.59 Age

- For the high exercise group, the pulse rate is on average 10.56 bpm lower than for the low exercise group.
- For the moderate exercise group, the pulse rate is on average 2.96 bpm lower than for the low exercise group.
 - ☐ This difference is however not statistically significant (P-value = 0.2801).

School of IT & Mathematical Sciences

51

Multiple regression – some comments

- A great deal of care should be taken in selecting predictors for a model.
 - □ Values of regression coefficients depend on the variables in the model.
- Techniques used may depend upon the objectives of the analysis.
 - ☐ The focus when using iterative variable selection techniques is not the significance of each explanatory variable, but how well the overall model fits.
 - ☐ However, if the goal is to confirm a theory, other methods should be used.

School of IT & Mathematical Sciences

Multiple regression – some comments

- Model selection decisions should never be left to a computer.
 - ☐ Models derived by a computer often take advantage of random sampling variation and there is also a danger of over-fitting as well as under-fitting.
- Diagnostic statistics should always be examined but it should be remembered that they are a way of assessing a model.
 - ☐ They should never be used to justify removing data points to achieve desirable change in regression parameters!

School of IT & Mathematical Sciences

53

Multiple regression – some comments

- Checking assumptions is important if we want to generalise our regression model.
 - ☐ If assumptions have been violated, findings cannot be generalised beyond the sample.
 - ☐ It is still OK to use the model to draw conclusions about the sample even if assumptions are violated.

School of IT & Mathematical Sciences