IMPORTANT FORMULAE OF TRIGONOMETRY

1 right angle = 90 degrees (= 90°). 1° = 60 minutes (= 60°). 1' = 60 seconds (= 60°). 1° = $(180/\pi)^{\circ}$. 1° = $(\pi/180)^{\circ}$.

									*		
Degrees	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π

Trigonometric ratios

$\sin \theta =$	Opposite side	0	Adjacent side	
	Hypotenuse	$\cos \theta =$	Hypotenuse '	
$\tan \theta =$		Opposite side	$\cot \theta =$	Adjacent side
	=	Adjacent side	corb =	Opposite side '

 $\sec \theta = \frac{\text{Hypotenuse}}{\text{Adjacent side}}; \quad \csc \theta = \frac{\text{Hypotenuse}}{\text{Opposite side}}$

Reciprocal Relations

$\sin \theta = \frac{1}{\csc \theta};$	$\csc \theta = \frac{1}{\sin \theta};$
$\cos\theta = \frac{1}{\sec\theta};$	$\sec \theta = \frac{1}{\cos \theta};$
$\tan \theta = \frac{1}{\cot \theta};$	$\cot \theta = \frac{1}{\tan \theta}$.
Duotient Relations	
$\sin \theta$	$\cos \theta$

$\tan\theta = \frac{\sin\theta}{\cos\theta};$ Pythagoren Relations (or Squared Relations)

 $\sin^2\theta + \cos^2\theta = 1$. $\sin^2\theta = 1 - \cos^2\theta$. $\cos^2\theta = 1 - \sin^2\theta.$

 $\sec^2 \theta - \tan^2 \theta = 1$, $\tan^2 \theta + 1 = \sec^2 \theta$, $\tan^2 \theta = \sec^2 \theta_{-1}$, $\csc^2 \theta - \cot^2 \theta = 1$, $1 + \cot^2 \theta = \csc^2 \theta$, $\cot^2 \theta = \csc^2 \theta_{-1}$ etric Functions of some standard angles

0	00	$30^{\circ} - \frac{\pi}{6}$	$45^\circ = \frac{\pi}{4}$	$60^{\circ} = \frac{\pi}{3}$	$90^{\circ} = \frac{\pi}{2}$	180° = 2π	$270^\circ = \frac{3\pi}{2}$	360° = 2a
$\sin \theta$	0	1/2	1/√2	√3/2	1	0	-1	0
$\cos \theta$	1	√3/2	1/√2	1/2	0	-1	0	1
tan θ	0	1/√3	1	√3	not defined	0	not defined	0
cotθ	not defined	√3	1	1/√3	0	not defined	0	not defined
secθ	1	2/√3	√2	2	not defined	-1	not defined	1
osec θ	not defined	2	$\sqrt{2}$	2/√3	1	not defined	-1	not defined

ASTC Rule

Quadrant →	1	II	Ш	IV	
t-functions	All	Sine		Cosine	
which are positive	t-functions	Cosecant		Secant	

Subtraction Formulae

Reduction formulae for $(-\theta)$

$\sin(-\theta) = -\sin\theta$,	$\cos(-\theta) = \cos\theta$,
$\tan(-\theta) = -\tan\theta$,	$\cot(-\theta) = -\cot\theta$,
$\sec(-\theta) = \sec\theta$,	$\csc(-\theta) = -\csc\theta$

ction formulae for (90° -θ)

$\sin\left(90^{\circ}-\theta\right)=\cos\theta,$	$\cos(90^{\circ} - \theta) = \sin\theta,$
$\tan (90^{\circ} - \theta) = \cot \theta,$	$\cot(90^{\circ} - \theta) = \tan \theta$,
$sec(90^{\circ} - \theta) = cosec\theta$.	$\csc(90^{\circ} - \theta) = \sec \theta$.

ction formulae for (90° +0)

duction formulae for (20	
$\sin(90^{\circ} + \theta) = \cos\theta,$	$\cos\left(90^{\circ} + \theta\right) = -\sin\theta,$
$\tan\left(90^{\circ} + \theta\right) = -\cot\theta,$	$\cot (90^{\circ} + \theta) = -\tan \theta,$
(000 . (0) (1	$cosec(90^{\circ} + \theta) = sec \theta$

Reduction formulae for (180° -0)

$\sin\left(180^{\circ} - \theta\right) = \sin\theta,$	$\cos(180^{\circ} - \theta) = -\cos\theta,$
$\tan (180^{\circ} - \theta) = -\tan \theta,$	$\cot (180^{\circ} - \theta) = -\cot \theta,$
$\sec (180^{\circ} - \theta) = -\sec \theta,$	$\csc(180^{\circ} - \theta) = \csc \theta$

Reduction formulae for (180° +0)

$\sin\left(180^{\circ} + \theta\right) = -\sin\theta,$	$\cos\left(180^{\circ} + \theta\right) = -\cos\theta,$
$\tan(180^{\circ} + \theta) = \tan\theta,$	$\cot (180^{\circ} + \theta) = \cot \theta,$
$\sec (180^{\circ} + \theta) = -\sec \theta,$	$\csc(180^{\circ} + \theta) = -\csc\theta$

Reduction formulae for (270° -θ)

$\sin\left(270^{\circ}-\theta\right)=-\cos\theta,$	$\cos(270^{\circ} - \theta) = -\sin\theta,$
$\tan\left(270^{\circ}-\theta\right)=\cot\theta,$	$\cot (270^{\circ} - \theta) = \tan \theta,$
$sec(270^{\circ} - \theta) = -csec\theta$	$\cos (270^{\circ} - \theta) = -\sec \theta$

Reduction formulae for (270° +0)

$\sin(270^{\circ} + \theta) = -\cos\theta,$	$\cos\left(270^{\circ} + \theta\right) = \sin\theta,$
$\tan\left(270^{\circ} + \theta\right) = -\cot\theta,$	$\cot (270^{\circ} + \theta) = -\tan \theta$
$sec(270^{\circ} + \theta) = csec\theta$	$\csc(270^{\circ} + \theta) = -\sec\theta$.

Reduction formulae for (360° -θ)

Reduction formulae for (360°	+θ)
$sec(360^{\circ} - \theta) = sec\theta$,	$\csc(360^{\circ} - \theta) = -\csc\theta.$
$\tan (360^{\circ} - \theta) = -\tan \theta,$	$\cot (360^{\circ} - \theta) = -\cot \theta,$
$\sin(360^{\circ} - \theta) = -\sin\theta,$	$\cos\left(360^{\circ}-\theta\right) = \cos\theta,$
And the second s	

duction formulae for (300 +0)		
$\sin\left(360^{\circ} + \theta\right) = \sin\theta,$	$\cos(360^{\circ} + \theta) = \cos\theta,$	
$\tan (360^{\circ} + \theta) = \tan \theta,$	$\cot (360^{\circ} + \theta) = \cot \theta,$	
(0.000 m -	(2508 - 0) 0	

$\sec (360^{\circ} + \theta) = \sec \theta$, $\csc (360^{\circ} + \theta) = \csc \theta$.

Multiple and Submultiple Angl	es es
$\sin 2A = 2\sin A\cos A.$	$\cos 2A = \cos^2 A - \sin^2 A.$
$\cos 2A = 1 - 2\sin^2 A.$	$\cos 2A = 2\cos^2 A - 1.$
$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}.$	$\sin 2A = \frac{2\tan A}{1 + \tan^2 A}.$
$\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}.$	$\sin^2 A = \frac{1 - \cos 2A}{2}.$
$\cos^2 A = \frac{1 + \cos 2A}{2}.$	$\tan^2 A = \frac{1 - \cos 2A}{1 + \cos 2A}.$
$\sin 3A = 3\sin A - 4\sin^3 A.$	$\cos 3A = 4\cos^3 A - 3\cos A$
$\tan 3A = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}.$	$\sin\frac{A}{2} = \sqrt{\frac{1 - \cos A}{2}}.$
$\cos\frac{A}{2} = \sqrt{\frac{1 + \cos A}{2}}.$	$\tan\frac{A}{2} = \sqrt{\frac{1-\cos A}{1+\cos A}}.$

Product Formulae

$$\begin{aligned} \sin C + \sin D &= 2 \sin \frac{C + D}{2} \cos \frac{C - D}{2}, \\ \sin C - \sin D &= 2 \cos \frac{C + D}{2} \sin \frac{C - D}{2}, \\ \cos C + \cos D &= 2 \cos \frac{C + D}{2} \cos \frac{C - D}{2}, \\ \cos D - \cos C &= 2 \sin \frac{C + D}{2} \sin \frac{C - D}{2}, \\ \cos C - \cos D &= -2 \sin \frac{C + D}{2} \sin \frac{C - D}{2}. \end{aligned}$$

Converse of Product formulae

$$2 \sin A \cos B = \sin (A + B) + \sin (A - B),$$

$$2 \cos A \sin B = \sin (A + B) - \sin (A - B),$$

$$2 \cos A \cos B = \cos (A + B) + \cos (A - B),$$

$$2 \sin A \sin B = \cos (A - B) - \cos (A + B),$$

CHAPTER SUMMARY

- Vertical line: Equation of a vertical line at a distance h from y-axis is
- Horizontal line: Equation of a horizontal line at a distance k from x-axis is y = k.
- Slope-Intercept form: Equation of a line having slope m and y-intercept c is y = mx + c.
- Point-Slope form: Equation of a line having slope m and passing through
 (x₁, y₁) is y y₁ = m (x x₂).
- Two-Point form: Equation of a line passing through the points (x₁, y₁) and (x₂, y₂) is

$$\frac{x-x_1}{x} = \frac{y-y_1}{x}$$

 $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}.$ • Intercept form: Equation of a straight line having x-intercept a and y-intercept b is

$$\frac{x}{x} + \frac{y}{x} = 1$$

• General Equation to a line: ax + by = c.

General equation in the slope-intercept form:

General equation in the slope-intercept
$$y = \left(-\frac{a}{b}\right)x + \left(-\frac{c}{b}\right).$$
 General equation in the intercept form
$$\frac{x}{-c/a} + \frac{y}{-c/b} = 1.$$

Angle between two lines: If m₁ and m₂ are the slopes of two lines and if θ is the angle between the lines, then

$$\tan \theta = \frac{m_1 - m_2}{1 - m_2}$$

In σ is the angle between the lines, then $\tan \theta = \frac{m_1 - m_2}{1 - m_{B^+}}.$ Two lines are parallel if $m_1 - m_2$ and perpendicular if $m_1 m_2 = 1$. The equation to a line parallel to a given line can be obtained by changing the constant term. The equation to a line perpendicular to a given line can be obtained by interchanging the coefficient of x and y with a change of sign between them and changing (not essentially the constant term. The point of intersection: The point of intersection: The point of intersection is two lines is obtained by solving their equations.

Perpendicular Distance Formula: $v = -m_1$

- Perpendicular Distance Formula : Perpendicular distance of the point (x_1, y_1) from the straight line ax + by + c = 0 is

$$\frac{|ax_1+by_1+c|}{\sqrt{a^2+b^2}}$$
.

CHAPTER SUMMARY Function: If to each value of a variable x (within a certain range), there corresponds one definite value of another variable y, then y is function of x, or in functional notation y = f(x).

Properties of Limits: Let f (x) and g (x) be two functions of x, such

Then (i)
$$\lim_{x\to a} f(x) = A$$
 and $\lim_{x\to a} g(x) = B$.

Then (i) $\lim_{x\to a} f(x) + g(x) = A + B = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$.

(ii) $\lim_{x\to a} f(x) - g(x) = A - B = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$.

(iii) $\lim_{x\to a} f(x) - g(x) = A - B = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$.

(iv) $\lim_{x\to a} \left[\frac{f(x)}{g(x)} \right] = A + B = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$.

(iv) $\lim_{x\to a} \left[\frac{f(x)}{g(x)} \right] = A + \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$, provided $B \neq 0$.

- Algebraic Limit; $\lim_{x\to a} \frac{x^n a^n}{x a} = n a^{n-1}$, for all rational values of n.
- Trigonometrical Limit: $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$, θ being in radian measure

CHAPTER SUMMARY

Derivative:
$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
.

Standard Results of Differentiation

Function	Derivative
x"	nx ⁿ⁻¹
sin x	cos x
cos x	-sin x
tan x	sec ² x
cot x	-cosec ² x
sec x	sec x tan x
cosec x	-cosec x cot x
ex	e ^x
$\log x$	$\frac{1}{x}$

Function	Derivative
sin ⁻¹ x	$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1} x$	$\frac{-1}{\sqrt{1-x^2}}$
tan-1"x	$\frac{1}{1+x^2}$
cot ⁻¹ x	$\frac{-1}{1+x^2}$
$sec^{-1} x$	$\frac{1}{x\sqrt{x^2-1}}$
cosec ⁻¹ x	$\frac{-1}{x\sqrt{x^2-1}}$

Rules of Differentiation

Rule 1. If c is a constant, then
$$\frac{d}{dx}c = 0$$
.

Rule 2. If
$$u$$
 is a differentiable function of x and c is a constant, then
$$\frac{dx}{dx}(cu) = c\frac{du}{dx}.$$
Rule 3. (Sum Rule) If u and v are differentiable functions of x ,

$$\frac{d}{dx}(cu) = c \frac{du}{dx}$$
.

Sume 3. (Sum Rule) If u and v are differentiable functions of x. e.,
$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}.$$

i. e.,
$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$$
.

In general, $\frac{d}{dx}(u\pm v\pm w\pm \cdots) = \frac{du}{dx} \pm \frac{dv}{dx} \pm \frac{dw}{dx} \pm \cdots$.

Rule 4. (Product Rule) If u , v and w are differentiable functions of x ,

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$

$$\frac{d}{dx}(uvw) = uv\frac{dw}{dx} + uw\frac{dv}{dx} + vw\frac{du}{dx}$$

Rule 5. (Quotient Rule) If u and v are differentiable functions of x,

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}.$$

Rule 6. (Function of a function Rule) If y = f(u) where $u = \phi(x)$,

of a function Rule)
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}.$$

If y = f(u) where $u = \phi(v)$ and $v = \psi(x)$, then

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dv} \times \frac{dv}{dx}.$$
$$\frac{dx}{dy} = 1 / \frac{dy}{dx}.$$

$$\frac{d}{dx}\left\{ \left[f(x)\right]^{n}\right\} = n\left[f(x)\right]^{n-1}\frac{d}{dx}\left[f(x)\right].$$

$$\frac{d}{d} \{ g(f(x)) \} = g'(f(x)) \times f'(x)$$

$$\frac{d}{dx} \left\{ g(f(x)) \right\} = g'(f(x)) \times f'(x).$$
If $x = f(t)$ and $y = g(t)$, where t is the parameter,

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{dy}{dt} / \frac{dx}{dt} = \frac{f'(t)}{g'(t)}$$

Successive Differentiation:

Second derivative:
$$y' = \frac{dy'}{dx} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$

Third derivative:
$$y'' = \frac{dy''}{dx} = \frac{d}{dx} \left(\frac{d^2y}{dx^2} \right) = \frac{d^3y}{dx^3}$$
.

$$n^{th} derivative: y^{(n)} = \frac{d}{dx} y^{(n-1)} = \frac{d^n y}{dx^n}.$$

CHAPTER SUMMARY

- number of the form z = x + iy, where x and y are real numbers and i he imaginary unit is called a *complex number*. The real number x = x + iy is called the *real part* of z and the real number y is called *imaginary part* of z, written x = Re (z) and y = Im (z).
- Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$. Then (i) $z_1 = z_2 \Leftrightarrow x_1 = x_2 \& y_1 = y_2$. (ii) $z_1 + z_2 = x_1 + x_2 + i(y_1 + y_2)$. (iii) $z_1z_2 = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$.
- (iii) $z_1z_2 = (x_1z_2 y_1y_2) + i(x_1y_2 + z_2y_1)$, (iv) $\frac{z_1}{z_2} = \frac{z_2^2z_1^2 + y_1y_2^2}{z_2^2 + y_2^2} + \frac{z_2y_1^2 z_1y_2}{z_2^2 + y_2^2}$. For any zon-zero complex number z = + iy, there exists a complex number denoted by z^4 or 1/z called its *multiplicative lawares* such that $z^{-1} = \frac{z}{x^2 + y^2} + i\frac{z}{x^2 + y^2}$ and $z^{-1}z = 1 + i \ 0 = 1$.
- For any integer k, $i^{4k} = 1$, $i^{4k+1} = i$, $i^{4k+2} = -1$ and $i^{4k+3} = -i$.
- For any integer k, t = 1,
 The complex conjugate or simply the conjugate, of a complex number z = x + i y is defined as the complex number z = x iy.
- The conjugate of a complex number satisfies the properties:

(i)
$$\frac{z_1 + \overline{z_1}}{2} = \text{Re } z_1; \frac{z_1 - \overline{z_1}}{2i} = \text{Im } z_1.$$

(ii)
$$\overline{\left(\overline{z_1}\right)} = z_1$$
.

(ii)
$$\overline{(\overline{z_1})} = z_1$$
. (iii) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$.

(iv)
$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$
. (v) $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{z_2}$.

• The *modulus* of a complex number
$$z = x + iy$$
 is defined by $|z| = \sqrt{x^2 + y^2}$.

(i)
$$|\overline{z_1}| = |z_1|$$
. (ii) $|z_1 z_2| = |z_1| \cdot |z_2|$.

(i)
$$\left| \overline{z_1} \right| = \left| z_1 \right|$$
.
(iii) $\left| \frac{z_1}{z_2} \right| = \left| \frac{z_1}{z_2} \right|$

(iv)
$$|z_1 + z_2| \le |z_1| + |z_2|$$

(iii)
$$\frac{1}{|z_2|} = \frac{1}{|z_2|}$$

(v)
$$\begin{vmatrix} z_1 + z_2 \end{vmatrix} \ge |z_1| - |z_2|$$
 (vi) $|z_1 - z_2| \ge ||z_1| - |z_2||$.
The polar form of the complex number $z = x + iy$ is $r(\cos \theta + i \sin \theta)$