Part I:
Optimization

Part II:
Constrained optimization

Part III: Piccolo.jl

Aaron Trowbridge

Staff, Robotics
Carnegie Mellon

Andy Goldschmidt

Postdoc, Comp Sci UChicago

Jack Champagne

MSc, Comp Sci Carnegie Mellon

Aditya Bhardwaj

PhD student, Caltech

Piccolo.jl

Piccolo.jl

- > QuantumCollocation.jl
- > NamedTrajectories.jl
- > TrajectoryIndexingUtils.jl
- > QuantumCalibration.jl*

Optimal control

Control affine: $\dot{\mathbf{x}}(t) = \mathbf{f}_0(\mathbf{x}(t)) + \sum_j u_j(t) \mathbf{f}_j(\mathbf{x}(t))$

Quantum optimal control

Control affine: $i\frac{d}{dt}|\psi(t)\rangle = \mathbf{H}_0|\psi(t)\rangle + \sum_j u_j(t)\mathbf{H}_j|\psi(t)\rangle$

(a) Neutral atoms 🕸

S. J. Evered et al., Nature 622, 268 (2023)

(b) Cat qubits 🙀

U. Réglade et al., Nature 629, 778 (2024)

- d) Ions 🔋
- (e) Spins 🥯

... and more!

M. Werninghaus et al., npj Quantum Info 7, (2021)

Quantum control by hand

Hamiltonians generate rotations.

- Commutators make orthogonal Hamiltonians.
- Computing all possible commutators reveals all possible rotations.

$$e^{t(X+Y)} = e^{tX} e^{tY} e^{-\frac{t^2}{2}[X,Y]} e^{\frac{t^3}{6}(2[Y,[X,Y]]+[X,[X,Y]])} \cdots$$

Part I

optimization

quantum optimal control

Optimization

$$\min_{\mathbf{x}} J(\mathbf{x})$$

Gradient descent & Newton's method

Necessary condition:
$$\nabla \mathbf{f}(\mathbf{x}^*) = 0$$

First-order methods: gradient.

Second-order methods: Hessian.

$$0 \stackrel{!}{=} \nabla \mathbf{f}(\mathbf{x} + \Delta \mathbf{x}) \approx \nabla \mathbf{f}(\mathbf{x}) + \nabla^2 \mathbf{f}(\mathbf{x}) \Delta \mathbf{x}$$
$$\Delta \mathbf{x} \stackrel{!}{=} -(\nabla^2 \mathbf{f}(\mathbf{x}))^{-1} \nabla \mathbf{f}(\mathbf{x})$$

$$\min_{\mathbf{x}} J(\mathbf{x})$$

Example I.1

Example I.1

Takeaway: How to evaluate Newton's method?

Regularization and line search.

GRadient Ascent Pulse Engineering

$$\min_{\mathbf{a}_{1:T}} 1 - \frac{1}{N} \mathcal{F}\left(\mathbf{U}_{goal}, \mathbf{U}_{T}(\mathbf{a}_{1:T})\right)$$

- $\bullet \quad \text{It's just } \min_{\mathbf{x}} J(\mathbf{x})$
- Indirect method

Example I.2

Example I.2

Takeaway: How to set up and solve a GRAPE problem?
Rollouts and Optim.jl.

Exercises

- Adding Piccolo
- Modifying GRAPE

Part II

constrained optimization

quantum collocation

Constrained optimization

min
$$J(\mathbf{x})$$
s.t. $\mathbf{f}(\mathbf{x}) = 0$
 $\mathbf{C}(\mathbf{x}) \leq 0$

Equality constraints

$$\min_{\mathbf{x}} \quad J(\mathbf{x})$$
s.t.
$$\mathbf{f}(\mathbf{x}) = 0$$

Equality constraints

Remember your classical mechanics: Lagrange multipliers!

$$\min_{\mathbf{x}} \quad J(\mathbf{x})$$
s.t.
$$\mathbf{f}(\mathbf{x}) = 0$$

Equality constraints

Remember your classical mechanics: Lagrange multipliers!

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = J(\mathbf{x}) + \left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}\right)^{\mathrm{T}} \boldsymbol{\lambda}$$

$$\min_{\mathbf{x}} \quad J(\mathbf{x})$$
s.t.
$$\mathbf{f}(\mathbf{x}) = 0$$

Necessary conditions

Compute both gradients of the Lagrangian

$$\nabla_{\mathbf{x}} \mathcal{L} = \nabla_{\mathbf{x}} J(\mathbf{x}) + \left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}\right)^{\mathrm{T}} \boldsymbol{\lambda}$$
$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} = \mathbf{f}(\mathbf{x}) = 0$$

$$\min_{\mathbf{x}} \quad J(\mathbf{x})$$
s.t.
$$\mathbf{f}(\mathbf{x}) = 0$$

Newton's method ⇒ KKT system

Compute the Newton step toward $\nabla \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$

Give it a try!

$$\nabla_{\mathbf{x}} \mathcal{L} = \nabla_{\mathbf{x}} J(\mathbf{x}) + \left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}\right)^{\mathrm{T}} \boldsymbol{\lambda} \qquad \min_{\mathbf{x}} \quad J(\mathbf{x})$$
$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} = \mathbf{f}(\mathbf{x}) = 0 \qquad \text{s.t.} \quad \mathbf{f}(\mathbf{x}) = 0$$

Newton's method ⇒ KKT system

Compute the Newton step toward $\nabla \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$

$$\begin{bmatrix} \Delta \mathbf{x} \\ \Delta \boldsymbol{\lambda} \end{bmatrix} = -\begin{bmatrix} \frac{\partial^2 \mathcal{L}}{\partial \mathbf{x}^2} & \left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right)^T \end{bmatrix}^{-1} \begin{bmatrix} \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) \\ \mathbf{f}(\mathbf{x}) \end{bmatrix}$$

$$\nabla_{\mathbf{x}} \mathcal{L} = \nabla_{\mathbf{x}} J(\mathbf{x}) + \left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}\right)^{T} \boldsymbol{\lambda} \qquad \min_{\mathbf{x}} \quad J(\mathbf{x})$$
$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} = \mathbf{f}(\mathbf{x}) = 0 \qquad \text{s.t.} \quad \mathbf{f}(\mathbf{x}) = 0$$

Example II.1

Example II.1

Takeaway: How the KKT conditions work

Inequality constraints

KKT conditions (necessary conditions)

1.
$$\nabla f(\mathbf{x}) + \left(\frac{\partial \mathbf{C}}{\partial \mathbf{x}}\right)^{\mathrm{T}} \boldsymbol{\lambda} = 0$$

2.
$$C(x) \le 0$$

3.
$$\lambda > 0$$

4.
$$\mathbf{C}(\mathbf{x}) \odot \boldsymbol{\lambda} = 0$$

$$\min_{\mathbf{x}} \quad J(\mathbf{x})$$

t.
$$\mathbf{C}(\mathbf{x}) \leq 0$$

Inequality constraints

KKT conditions (*necessary* conditions)

1.
$$\nabla f(\mathbf{x}) + \left(\frac{\partial \mathbf{C}}{\partial \mathbf{x}}\right)^{\mathrm{T}} \boldsymbol{\lambda} = 0$$
 Stationarity

- 2. $C(x) \le 0$ Primal feasibility
- 3. $\lambda > 0$ Dual feasibility
- 4. $C(x) \odot \lambda = 0$ Complementarity

$$\min_{\mathbf{x}} \quad J(\mathbf{x})$$
s.t.
$$\mathbf{C}(\mathbf{x}) \le 0$$

s.t.
$$\mathbf{C}(\mathbf{x}) \leq 0$$

Active set: Guess when constraints are active / inactive.

Active set: Guess when constraints are active / inactive.

Penalty methods: Add regularizers on constraints.

Active set: Guess when constraints are active / inactive.

Penalty methods: Add regularizers on constraints.

Active set: Guess when constraints are active / inactive.

Penalty methods: Add regularizers on constraints.

Augmented Lagrangian: Add Lagrange multipliers on constraints.

Active set: Guess when constraints are active / inactive.

Penalty methods: Add regularizers on constraints.

Augmented Lagrangian: Add Lagrange multipliers on constraints.

Interior-point: Add log-barriers on constraints.

Active set: Guess when constraints are active / inactive.

Penalty methods: Add regularizers on constraints.

Augmented Lagrangian: Add Lagrange multipliers on constraints.

Interior-point: Add log-barriers on constraints.

Quantum COLLOocation

 $\min_{\mathbf{x}_{1:\mathrm{T}},\mathbf{a}_{1:\mathrm{T}},\Delta t}$

s.t.

Objectives

$$J(\mathbf{x}_{1:\mathrm{T}}, \mathbf{a}_{1:\mathrm{T}}, \Delta t)$$

<u>Integrators</u>

$$\mathbf{f}(\mathbf{x}_{n+1}, \mathbf{x}_n, \mathbf{a}_n, \Delta \mathbf{t}) = 0$$

$$(\mathbf{C}(\mathbf{x}, \mathbf{a}, \Delta \mathbf{t}) \in C)$$

Constraints

Example II.2

Example II.2

Takeaway: How to interpret Piccolo outputs

Piccolo.jl

Exercises

- Gauss-Newton reminder
- Augmented Lagrangians

Part III

integrators

objectives

constraints

Parts of a QuantumControlProblem

Objectives, Constraints, and Losses

Trajectories

Objectives

$$J(\vec{\mathbf{Z}}), \nabla J(\vec{\mathbf{Z}})$$

Constraints

$$\mathbf{C}(\vec{\mathbf{Z}}), \ \frac{\partial \mathbf{C}}{\partial \vec{\mathbf{Z}}}$$

Knot points

Losses

$$L(oldsymbol{lpha},oldsymbol{eta},oldsymbol{\gamma},\dots),\
abla L(oldsymbol{lpha},oldsymbol{eta},oldsymbol{\gamma},\dots)$$

Explicit integrator:
$$\mathbf{U}_{t+1} = \exp(-i\Delta t_t \mathbf{H}(\mathbf{a}_t))\mathbf{U}_t$$

Explicit integrator:
$$\mathbf{U}_{t+1} = \exp(-i\Delta t_t \mathbf{H}(\mathbf{a}_t))\mathbf{U}_t$$

Implicit integrator:
$$\mathbf{U}_{t+1} - \exp(-i\Delta t_t \mathbf{H}(\mathbf{a}_t))\mathbf{U}_t = 0$$

Explicit integrator:
$$\mathbf{U}_{t+1} = \exp(-i\Delta t_t \mathbf{H}(\mathbf{a}_t))\mathbf{U}_t$$

Implicit integrator:
$$\mathbf{U}_{t+1} - \exp(-i\Delta t_t \mathbf{H}(\mathbf{a}_t))\mathbf{U}_t = 0$$

 $\mathbf{U}_{t+1} - \mathbf{B}^{-1}(\mathbf{a}_t, \Delta t_t)\mathbf{F}(\mathbf{a}_t, \Delta t_t)\mathbf{U}_t \approx 0$

Explicit integrator:
$$\mathbf{U}_{t+1} = \exp(-i\Delta t_t \mathbf{H}(\mathbf{a}_t))\mathbf{U}_t$$

Implicit integrator:
$$\mathbf{U}_{t+1} - \exp(-i\Delta t_t \mathbf{H}(\mathbf{a}_t))\mathbf{U}_t = 0$$

$$\mathbf{U}_{t+1} - \mathbf{B}^{-1}(\mathbf{a}_t, \Delta t_t)\mathbf{F}(\mathbf{a}_t, \Delta t_t)\mathbf{U}_t \approx 0$$

$$\mathbf{B}(a_t, \Delta t_t)\mathbf{U}_{t+1} - \mathbf{F}(a_t, \Delta t_t)\mathbf{U}_t \approx 0$$

Example III.1

Example III.1

Takeaway: How to build a quantum control problem

Problem templates

Packaging the creation of quantum control problems

```
function UnitarySmoothPulseProblem(
   system::AbstractQuantumSystem,
  operator::QuantumOperator,
  T:: Int,
   Δt::Union{Float64, Vector{Float64}};
   ipopt options::IpoptOptions=IpoptOptions(),
  piccolo options::PiccoloOptions=PiccoloOptions(),...
```

An applications toolbox

Unitary control

UnitarySmoothPulseProblem UnitaryBangBangProblem UnitaryRobustnessProblem UnitaryMinTimeProblem
UnitarySamplingProblem
UnitaryDirectSumProblem

Quantum state control

QuantumStateSmoothPulseProblem QuantumStateMinTimeProblem

Density matrix control

Flexible design patterns

Optimize

Smooth pulses

Bang-bang pulses

Specialize

Minimum time

Hamiltonian robustness

Coordinate

Direct sums

Sampling-based robustness

Exercises

- Inspect a gradient for correctness
- Exploring problem templates

What's next?

Piccolo.jl 1.0

