线性卷积计算方法总结

定义两个序列分别为 x[m] = [5,2,3], h[k] = [2,4]; 求两者的线性卷积 <math>y[n]。有如下方法:

1. 根据定义计算

公式如下:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$

带入数据,得:

y[0] = x[0]h[0-0]+x[1]h[0-1]+x[2]h[0-2] = 10

y[1] = x[0]h[1-0]+x[1]h[1-1]+x[2]h[1-2] = 24

y[3] = x[0]h[2-0]+x[1]h[2-1]+x[2]h[2-2] = 14

y[4] = x[0]h[3-0]+x[1]h[3-1]+x[2]h[3-2] = 12

即: y[n] = {10, 24, 14, 12}

2. 不进位乘法

方法如下:

x[0] h[0]	x[1] h[1]	x[2]		
x[0]h[0]	x[1]h[0] x[0]h[1]	x[2]h[0] x[1]h[1]	x[2]h[1]	
y[0]	y[1]	y[2]	y[3]	

得到:

$$y[n] = \{10, 24, 14, 12\}$$

3. 翻转平移法

公式如下:

=	n] [n]	x[0] h[0]	x[1] h[1]	
———————	列转 h[-n] h[1]	h[0]	y[0] :	= x[0]h[0]
———————	对转后平移 h[1-	n] h[1] h	[0] y	y[1]=x[0]h[1]+x[1]h[0]
	羽转后平移 h[2	-n] h	= =	h[0] y[2]=x[1]h[1]+x[2]h[0]

翻转后平移 h[3-n] h[1] h[0] y[3] = x[2]h[1]

带入数据得: y[n] = {10, 24, 14, 12}

4. 基于 DFT 的线性卷积方法

将 g $\{n\}$,h $\{n\}$ 做相应的 DFT 变换,将变换后得到的 G $\{k\}$,H $\{k\}$ 由卷积性质相乘的结果做 IDFT 变换得到 y[n].示意图如下:

5. 斜线切割法

h[0] y[0]	X[0]	X[1]	X[2]
h[0]	X[0]h[0]	X[1]h[0]	X[2]h[0]
h[1]	X[0]h[1]	X[1]h[1]	X[2]h[1]
y[0]	y[1]	y[2]	y[3]

绘图如下:

分别计算两条斜线之间表格的和,得到

 $y[n] = \{10, 24, 14, 12\}$