Use this document as a template

My PhD Thesis

Customise this page according to your needs

Tobias Hangleiter*

April 28, 2025

^{*} A LaTeX lover/hater

The kaobook class

Disclaimer

You can edit this page to suit your needs. For instance, here we have a no copyright statement, a colophon and some other information. This page is based on the corresponding page of Ken Arroyo Ohori's thesis, with minimal changes.

No copyright

6 This book is released into the public domain using the CC0 code. To the extent possible under law, I waive all copyright and related or neighbouring rights to this work.

To view a copy of the CC0 code, visit:

http://creativecommons.org/publicdomain/zero/1.0/

Colophon

This document was typeset with the help of KOMA-Script and LATEX using the kaobook class.

The source code of this book is available at:

https://github.com/fmarotta/kaobook

(You are welcome to contribute!)

Publisher

First printed in May 2019 by

Contents

Co	ontents	V				
Ι	A FLEXIBLE PYTHON TOOL FOR FOURIER-TRANSFORM NOISE SPECTROSCOPY	1				
1	1 Introduction					
2	Theory of spectral noise estimation 2.1 Spectrum estimation from time series 2.2 Window functions 2.3 Welch's method 2.4 Parameters & Properties of the PSD	5 6 8 9				
3	The python_spectrometer software package 3.1 Package design and implementation 3.1.1 Data acquisition 3.1.2 Data processing 3.2 Feature overview 3.2.1 Serial spectrum acquisition 3.2.2 Live spectrum acquisition	13 13 13 15 16 17 20				
4	Conclusion and outlook	23				
II	CHARACTERIZATION AND IMPROVEMENTS OF A MILLIKELVIN CONFOCAL MICROSCOPE	27				
5 6	Introduction Characterization of electrical performance	29 31				
7	Characterization and improvements of the optical path	33				
8	Vibration performance	35				
9	Conclusion & outlook	37				
Ш	Optical Measurements of Electrostatic Exciton Traps in Semiconductor Membranes	39				
IV	A FILTER-FUNCTION FORMALISM FOR UNITAL QUANTUM OPERATIONS	41				
Aı	PPENDIX	43				
Lic	et of Terms	45				

Part I

A FLEXIBLE PYTHON TOOL FOR FOURIER-TRANSFORM NOISE SPECTROSCOPY

Part II

CHARACTERIZATION AND IMPROVEMENTS OF A MILLIKELVIN CONFOCAL MICROSCOPE

Introduction 5

OISE

Characterization of electrical performance

Characterization and improvements of the optical path

OISE

Vibration performance 8

Conclusion & outlook

OISE OISE

Part III

OPTICAL MEASUREMENTS OF ELECTROSTATIC EXCITON TRAPS IN SEMICONDUCTOR MEMBRANES

Part IV

A FILTER-FUNCTION FORMALISM FOR UNITAL QUANTUM OPERATIONS

Special Terms

P PSD power spectral density. v