Nome e cognome:	Classe:	Data:	Griglia

Risposte (variante 46)

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20

- 1. La legge del decadimento radioattivo $N(t) = N_0 e^{-\lambda t}$ descrive:
 - (a) Il numero di nuclei decaduti al tempo t.
 - (b) L'attività del campione al tempo t.
 - (c) Il numero N(t) di nuclei radioattivi non ancora decaduti presenti al tempo t, partendo da N_0 nuclei al tempo t = 0.
 - (d) Il tempo di dimezzamento del campione.
- 2. Completare la seguente reazione di decadimento beta più (β^+) o cattura elettronica (EC), sapendo che il Fluoro-18 $({}^{18}F)$ può decadere β^+ : ${}^{18}F \rightarrow ? + e^+ + \nu_e$
 - (a) $^{18}_{10}$ Ne

(b) ${}_{9}^{19}F$

(c) ${}^{18}_{8}$ O

- (d) ${}_{9}^{17}$ F
- 3. Nel paradosso del gatto di Schrödinger, cosa rappresenta lo stato del gatto PRIMA che la scatola venga aperta, secondo un'interpretazione strettamente quantistica?
 - (a) Lo stato "gatto morto".
 - (b) Lo stato "gatto vivo".
 - (c) Uno stato indeterminato che non è né vivo né morto.
 - (d) Una sovrapposizione quantistica degli stati "gatto vivo" e "gatto morto".
- 4. In un esperimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda $(\Delta \lambda = \lambda' \lambda)$ del fotone diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?
 - (a) Quando l'angolo di diffusione è $\theta = 0^{\circ}$ (nessuna diffusione).
 - (b) Quando l'angolo di diffusione è $\theta = 90^{\circ}$.
 - (c) Quando l'angolo di diffusione è $\theta=180^\circ$ (diffusione all'indietro).
 - (d) La variazione è indipendente dall'angolo θ .
- 5. Nell'effetto Compton, un fotone X interagisce con un elettrone libero (o debolmente legato). Cosa succede al fotone?
 - (a) Passa attraverso l'elettrone senza interagire.
 - (b) Viene diffuso con una frequenza maggiore (lunghezza d'onda minore).
 - (c) Viene diffuso (scatterato) con una frequenza minore (lunghezza d'onda maggiore).
 - (d) Viene assorbito completamente dall'elettrone.
- 6. Una radiazione di frequenza $f = 1.0 \times 10^{15}$ Hz colpisce un metallo con lavoro di estrazione $W = 2.0 \,\text{eV}$. Sapendo che $h \approx 6.63 \times 10^{-34} \,\text{J} \cdot \text{s}$ e 1 eV $\approx 1.6 \times 10^{-19} \,\text{J}$, qual è circa l'energia cinetica massima K_{max} degli elettroni emessi? (Suggerimento: calcola prima hf in eV, $hf \approx 4.14 \,\text{eV}$)
 - (a) $K_{max} \approx 6.14 \,\text{eV}$
- (b) $K_{max} \approx 2.0 \,\text{eV}$
- (c) $K_{max} \approx 4.14 \, \text{eV}$
- (d) $K_{max} \approx 2.14 \, \text{eV}$
- 7. Secondo l'esperimento mentale di Schrödinger, cosa determina il passaggio del gatto da uno stato di sovrapposizione a uno stato definito (vivo o morto)?
 - (a) Il tempo trascorso dall'inizio dell'esperimento.
 - (b) Il decadimento dell'atomo radioattivo all'interno della scatola.
 - (c) L'atto di osservazione o misurazione (apertura della scatola).
 - (d) La volontà del gatto.

8.	Cosa pos	sa postula il modello di Bohr riguardo all'emissione di radiazione da parte di un atomo?								
	(a)	Un atomo emette radiazione continuamente mentre l'elettrone orbita attorno al nucleo.								
	(b)	Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario.								
	(c)	(c) Un atomo emette radiazione solo quando viene ionizzato.								
	(d)	(d) Un atomo emette radiazione (un fotone) solo quando un elettrone salta da un'orbita permessa a un'altra orbita permessa di energia inferiore.								
9.	Il princip	pio di indeterminazione è una conseguenza fondamentale:								
	(a)	Della natura ondulatoria della materia (dualismo onda-corpuscolo) e dei limiti intrinseci alla misurazione nel mondo quantistico.								
	(b)	Degli errori sperimentali i	nevit	abili negli strumenti di mi	isura.					
	(c)	Della teoria della relativita	à di l	Einstein.						
	(d)	Del modello atomico di Bo	ohr.							
10.		i calcola l'energia di legame								
	(a)	$E_B = (\sum m_{costituenti})c^2.$	(b)	$E_B = (\Delta m)/c^2.$	(c)	$E_B = m_{nucleo}c^2.$	(d)	$E_B = (\Delta m)c^2.$		
11.	Quale t	ipo di decadimento radioate	ivo (consiste nell'emissione di u	ın nu	cleo di Elio $\binom{4}{2}$ He)?				
	(a)	Decadimento Beta più (β^{-1})	-)		(c)	Decadimento Beta meno	(β^-)			
	(b)	Emissione Gamma (γ)			(d)	Decadimento Alfa (α)				
12.	12. Un isotopo radioattivo ha un tempo di dimezzamento di $T_{1/2}=5$ giorni. Se inizialmente abbiamo 16 mg di questo isotopo, quanti milligrammi rimarranno dopo 20 giorni?									
	(a)	$8\mathrm{mg}$	(b)	$1\mathrm{mg}$	(c)	$2\mathrm{mg}$	(d)	$4\mathrm{mg}$		
13.	13. Completare la seguente reazione di decadimento beta meno (β^-) : ${}_6^{14}{\rm C} \rightarrow ? + e^- + \bar{\nu}_e$									
	(a)	$_{5}^{14}\mathrm{B}$	(b)	$^{13}_{6}\mathrm{C}$	(c)	$^{14}_{7}\mathrm{N}$	(d)	$^{14}_{6}\mathrm{C}$		
14.	. Nel range di energie tipico della radio diagnostica (es. $30-150\mathrm{keV}$), quale interazione tra fotoni X e tessuti biologici (a basso Z) è generalmente dominante e più rilevante per la formazione dell'immagine?									
	(a)	Effetto Compton.			(c)	Scattering di Rayleigh (coerente).				
	(b)	Effetto fotoelettrico.			(d)	Produzione di coppie (e^+	$/e^{-})$			
15.										
	(a)	$X = ^{234}_{90}$ Th (Torio-234)	(b)	$X=^{234}_{92}$ U (Uranio-234)	(c)	$X = ^{238}_{90}$ Th (Torio-238)	(d)	$X=^{234}_{88}$ Ra (Radio-234)		
16.		Secondo la spiegazione di Einstein dell'effetto fotoelettrico, perché esiste una "frequenza di soglia" al di sotto della quale non vengono emessi elettroni, indipendentemente dall'intensità della luce?								
	(a)	Perché a basse frequenze l	a luc	e si comporta solo come u	ın'ono	la.				
	(b)	Perché l'interazione tra lu	ce e	materia richiede un tempo	mini	mo che dipende dalla freq	uenza	ı.		
	(c)									
	(d) Perché l'intensità della luce non è sufficiente a "scaldare" abbastanza gli elettroni.									
17.	Cosa di	dimostra in modo sorprendente l'esperimento della doppia fenditura con elettroni singoli?								

(a) Che il principio di indeterminazione non è valido.(b) Che la luce è composta da particelle (fotoni).

- (c) Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.
- (d) Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.
- 18. Come spiega il modello di Bohr l'emissione di luce a frequenze discrete (spettro a righe) da parte degli atomi?
 - (a) L'elettrone emette luce continuamente mentre orbita, ma solo a certe frequenze.
 - (b) L'elettrone emette un fotone di energia definita (E = hf) quando salta da un'orbita permessa a energia superiore a una a energia inferiore.
 - (c) Gli urti tra atomi eccitati producono lo spettro.
 - (d) Il nucleo atomico vibra emettendo fotoni.
- 19. Il nucleo di Deuterio (2_1 H) è formato da 1 protone ($m_p \approx 1.0073\,\mathrm{u}$) e 1 neutrone ($m_n \approx 1.0087\,\mathrm{u}$). La sua massa misurata è $m_D \approx 2.0141\,\mathrm{u}$. Qual è approssimativamente il difetto di massa Δm ?
 - (a) $\Delta m \approx 1.0073 + 1.0087 + 2.0141 \approx 4.0301 \,\mathrm{u}$
- (c) $\Delta m \approx 2.0141 \,\mathrm{u}$
- (b) $\Delta m \approx 2.0141 (1.0073 + 1.0087) = -0.0019 \,\mathrm{u}$
- (d) $\Delta m \approx (1.0073 + 1.0087) 2.0141 = 0.0019 \,\mathrm{u}$
- 20. La "catastrofe ultravioletta" è un problema sorto nello studio della radiazione di corpo nero perché la fisica classica prevedeva:
 - (a) Che l'intensità massima si spostasse verso il rosso (frequenze basse) all'aumentare della temperatura.
 - (b) Un'intensità energetica infinita per lunghezze d'onda molto piccole (alte frequenze).
 - (c) Un'intensità energetica nulla per lunghezze d'onda molto piccole.
 - (d) Che l'energia emessa fosse quantizzata fin dall'inizio.