

Prof. Luca Ferrarini Tel. 02-2399-3672

e-mail luca.ferrarini@polimi.it http://www.elet.polimi.it/upload/ferrarin/ miai2004/corso.html

Aspetti organizzativi

Docente
 LUCA FERRARINI
 Dipartimento di Elettronica e Informazione
 Politecnico di Milano
 Tel 02 - 23 99 36 72
 email luca.ferrarini@polimi.it

Orario e modalità di ricevimento
 Preferibilmente, subito prima o dopo le lezioni;
 in alternativa, martedì 11.30-13.30

Aspetti organizzativi

Orario del corso

Lunedì 8.15 - 10.15 T.1.1 Martedì 8.15 - 11.15 T.1.1

• Esercitazioni (12÷13 ore) (Lezioni: 32-33 ore) svolte non in giorni fissi, ma secondo necessita' da ADAMO CASTELNUOVO castelnu@elet.polimi.it

Laboratori
 non obbligatori, ma consigliati
 4 sedute, da 2-3 ore
 presso l'edificio di Via Golgi

3

Aspetti organizzativi

- Sito web ufficiale del corso http://www.elet.polimi.it/upload/ferrarin/ miai2004/corso.html
- Materiale didattico del corso
 Libri, eserciziari, materiale informatico, fotocopie, temi d'esame risolti
 Il corso e' interamente coperto!
- Materiale didattico dei laboratori
 Cartaceo (PPT) e informatico esercizi svolti in Isagraf)
 messi sul web a tempo debito
- Esami: 2 prove in itinere (compitini)
 Date da fissare (di solito il primo lunedi' disponibile)

Aspetti organizzativi

• Tesi e dintorni

Sono disponibili elaborati di tesi, progetti, tirocini e stage

A breve sarà disponibile un portale con l'elenco dei progetti di ricerca e di argomenti possibili di tesi

Tale portale sarà accessibile dal sito ufficiale del corso:

http://www.elet.polimi.it/upload/ferrarin/miai2004/corso.html

5

Cos'è l'Automazione Industriale?

Automazione Industriale:

insieme di discipline (modelli, metodi e strumenti) che permettono di analizzare e progettare sistemi automatici di controllo di impianti e processi industriali

Sistema automatico di controllo:

sistema che permette la funzione di governo di impianti, processi, macchine, o sistemi di altra natura (sistemi economici, sistemi ambientali, ecc.) in maniera indipendente dall'operatore umano

6

Cos'è l'Automazione Industriale?

Nell'industria

- robotica e meccatronica
- linee di produzione automatizzate

• supervisione e controllo di processo

magazzinaggio

1

Cos'è l'Automazione Industriale?

Nei servizi

- reti di distribuzione dell'energia
- automazione del sistema ferroviario
- controllo del traffico

Cos'è l'Automazione Industriale?

Altri settori

- medicina
- applicazioni aerospaziali
- controllo di sistemi ambientali
- "domotica" e controllo attivo delle strutture

 elettrodomestici ed elettronica di consumo

agricoltura

Cos'è l'Automazione Industriale?

Cosa differenzia l'Automazione Industriale dall'Automatica?

- "industriale"
 - tra i vari sistemi che possono dare origine a "problemi di controllo" qui ci si concentra solo su sistemi provenienti dal mondo industriale;
 - inoltre, qualche attenzione è posta sull'aspetto tecnologico derivante dal problema industriale e non solo sull'aspetto "metodologico".

Cos'è l'Automazione Industriale?

Cosa differenzia l'Automazione Industriale dall'Automatica?

- strumenti matematici
 - i modelli matematici sono a stati discreti (numero finito di valori) e transizioni discrete (eventi), detti sistemi dinamici ad eventi discreti, quindi molto diversi dai sistemi "guidati dal tempo" (sistemi dinamici a tempo continuo o a tempo discreto) visti in Automatica

11

Cos'è l'Automazione Industriale?

Cosa differenzia l'Automazione Industriale dall'Automatica?

- impianti da controllare
 - impianti di produzione discreta, cioè dove si lavorano materie prime per arrivare a prodotti finiti (i "pezzi") dopo una serie di lavorazioni successive attraverso macchine, sistemi di trasporto e di immagazzinamento

Esempio di sistema da controllare

Esempio di sistema da controllare (con blocco del sistema)

...e quindi? cosa possiamo dedurre sul comportamento di questi sistemi?

13

Esempio di sistema da controllare

Per tali sistemi occorre:

- <u>coordinare</u> e <u>sincronizzare</u> le attività dei vari componenti del sistema
- evitare <u>occupazioni contemporanee</u> di macchine e dispositivi
- evitare situazioni di blocco
- limitare sprechi di risorse, tempo, materiale,...
- gestire situazioni anomale e <u>disturbi</u> (guasti a un sensore, prodotti non conformi o rotti, ...)

... grazie al sistema di automazione!

15

Esempio di sistema da controllare

Impianto di bugnatura e foratura di cerchi moto

Esempio di sistema da controllare

Impianto di bugnatura e foratura di cerchi moto

17

Esempio di sistema da controllare

Come si realizza?

- calcolatori dedicati
 - PLC, Programmable Logic Controller
- sensori (logici)
- attuatori (elettrici, pneumatici, idraulici)
- sistemi di comunicazione
 - punto-punto, fieldbus, wireless...

Automazione Industriale

Ma cosa serve, dunque, per progettare e realizzare un sistema di automazione industriale? TRE competenze:

- applicative: cosa produce l'impianto che devo controllare? impianto chimico? elettrico? meccanico? idraulico? termico?
- tecnologiche: quali architetture hardware e software devo adottare? sistemi di controllo distribuiti? sistemi di comunicazione e protocolli? quali sensori e attuatori?
- **metodologiehe**: come si sincronizzano *n* attività? come si gestisce una risorsa condivisa? come si evitano situazioni di blocco?

19

Automazione Industriale

Di tali aspetti, nel corso noi vedremo i seguenti aspetti:

- applicativo: sistemi di produzione discreti (centri lavorazione meccanica, impianti robotizzati, ecc.), e batch
- tecnologico: PLC, normative, cenni al fieldbus
- metodologico: sistemi dinamici ad eventi discreti (reti di Petri), con metodi di sintesi e di analsi per reti di Petri

Automazione Industriale

Proporzione degli argomenti trattati nel corso:

- applicativo: sistemi di produzione discreti
- tecnologico: PLC
- metodologico: reti di Petri

21

Automazione Industriale

Proporzione degli argomenti trattati nel corso:

• applicativo: sistemi di produzione discreti 10%

• tecnologico: PLC 25%

• metodologico: reti di Petri 65%

Problema del controllo

- impianto \Rightarrow modello del sistema da controllare (P)
- dato P e data una specifica del comportamento del sistema in anello chiuso, determinare un controllore C in modo tale che il sistema in anello chiuso si comporti "il più possibile" in modo simile a quanto specificato
- trovato C, lo realizzeremo con dispositivi industriali (PLC)

23