Scientific Computing HW 4

Ryan Chen

September 24, 2024

1. We follow the notation of the lecture notes. Assume A is $n \times n$ with distinct eigenvalues hence diagonalizable, with eigendecomposition

$$A = R\Lambda R^{-1}$$

Then the columns r_j of R are right eigenvectors, while the rows l_k of $L := R^{-1}$ are left eigenvectors. Moreover, $l_k r_j = 0$ for $k \neq j$. Write \dot{r}_j in the basis of r_j 's,

$$\dot{r}_j = \sum_{l=1}^n m_{jl} r_l$$

From the lecture notes,

$$\dot{A}r_j + A\dot{r}_j = \dot{\lambda}_j r_j + \lambda_r \dot{r}_j$$

Left-multiply both sides by l_k with $k \neq j$.

$$l_k \dot{A} r_j + \lambda_k m_{jk} = \lambda_j m_{jk} \implies m_{jk} = \frac{l_k \dot{A} r_j}{\lambda_j - \lambda_k}$$

We can assume $m_{jj} = 0$. Then

$$\Delta r_{j} = \dot{r}_{j} \Delta t + O(\|\Delta A\|^{2})$$
 from lecture notes
$$= \sum_{k \neq j} m_{jk} r_{k} \Delta t + O(\|\Delta A\|^{2})$$

$$= \sum_{k \neq j} \frac{l_{k} \dot{A} r_{j}}{\lambda_{j} - \lambda_{k}} r_{k} \Delta t + O(\|\Delta A\|^{2})$$

$$= \sum_{k \neq j} \frac{l_{k} \Delta A r_{j}}{\lambda_{j} - \lambda_{k}} r_{k} + O(\|\Delta A\|^{2})$$

Then

$$\|\Delta r_{j}\| \leq \sum_{k \neq j} \frac{|l_{k} \Delta A r_{j}|}{|\lambda_{j} - \lambda_{k}|} \|r_{k}\| + O(\|\Delta A\|^{2})$$

$$\leq \|\Delta A\| \|r_{j}\| \sum_{k \neq j} \frac{\|l_{k}\| \|r_{k}\|}{|\lambda_{j} - \lambda_{k}|} + O(\|\Delta A\|^{2})$$

$$\leq \|\Delta A\| \kappa(R) \|r_{j}\| \sum_{k \neq j} \frac{1}{|\lambda_{j} - \lambda_{k}|} + O(\|\Delta A\|^{2})$$

$$\|l_{k}\| \|r_{k}\| \leq \kappa(R)$$

Thus

$$\kappa(r_j; A) = \lim_{\epsilon \to 0} \max_{\|\Delta A\| = \epsilon} \frac{\|\Delta r_j\| \|A\|}{\epsilon \|r_j\|} \le \|A\| \kappa(R) \sum_{k \neq j} \frac{1}{|\lambda_j - \lambda_k|}$$

We see that $\kappa(r_j; A) \gg 1$ if $\kappa(R) \gg 1$ or $\lambda_k \approx \lambda_j$ for some $k \neq j$.

2. Before answering each part, we cite the following

$$\nabla(x^T A x) = (A + A^T)x, \quad \nabla(x^T x) = 2x$$

We compute

$$\boldsymbol{\nabla}Q(x) = \frac{(x^Tx)(A + A^T)x - (x^TAx)2x}{(x^Tx)^2}$$

Thus

$$\boldsymbol{\nabla}Q(x) = 0 \iff (x^Tx)(A+A^T)x = 2(x^TAx)x \iff (A+A^T)x = \frac{2x^TAx}{x^Tx}x$$

(a) Under the condition A is symmetric, the above computation gives

$$\boldsymbol{\nabla}Q(x) = 0 \iff Ax = \frac{x^TAx}{x^Tx}x \iff \left(\frac{x^TAx}{x^Tx},x\right) \text{ is an eigenpair of } A$$

(b) If A is asymmetric, the above calculation says $\nabla Q(x) = 0$ iff $\left(\frac{2x^TAx}{x^Tx}, x\right)$ is an eigenpair of $A + A^T$.

3. (a) Lemma: If A is nonsingular and (λ, v) is an eigenpair of A then (λ^{-1}, v) is an eigenpair of A^{-1} . Proof of lemma: From A being nonsingular, $\lambda \neq 0$. Then

$$Av = \lambda v \implies v = \lambda A^{-1}v \implies A^{-1}v = \lambda^{-1}v \quad \Box$$

Since μ is not an eigenvalue of A, we know $A - \mu I$ is nonsingular. Then

$$(A - \mu I)v = Av - \mu Iv = \lambda v - \mu v = (\lambda - \mu)v$$

hence $((\lambda - \mu), v)$ is an eigenpair of $A - \mu I$. By the lemma, $((\lambda - \mu)^{-1}, v)$ is an eigenpair of $(A - \mu I)^{-1}$.

(b) We assume A is symmetric with distinct eigenvalues, so we can pick orthonormal eigenvectors v_i . First write

$$\kappa((A - \mu I)^{-1}, v) = \|(A - \mu I)^{-1}\| \frac{\|v\|}{\|(A - \mu I)^{-1}v\|}$$

Now we calculate each RHS factor. By construction, ||v|| = 1.

Since A has eigenpairs (λ_i, v_i) , by part (a), $(A - \mu I)^{-1}$ has eigenpairs $((\lambda_i - \mu)^{-1}, v_i)$. From $\mu \approx \lambda_1$ and A having distinct eigenvalues, the eigenvalue of $(A - \mu I)^{-1}$ with largest absolute value is $(\lambda_1 - \mu)^{-1}$, hence $\|(A - \mu I)^{-1}\| = |\lambda_1 - \mu|^{-1}$.

Since $(A - \mu I)^{-1}$ has eigenpairs $((\lambda_i - \mu)^{-1}, v_i)$,

$$(A - \mu I)^{-1}v = \left[1 - \sum_{i=2}^{n} \delta_i^2\right]^{1/2} (\lambda_1 - \mu)^{-1} v_1 + \sum_{i=2}^{n} \delta_i (\lambda_i - \mu)^{-1} v_i$$

Thus

$$\|(A - \mu I)^{-1}v\| = \left\{ \left[1 - \sum_{i=2}^{n} \delta_i^2 \right] (\lambda_1 - \mu)^{-2} + \sum_{i=2}^{n} \delta_i^2 (\lambda_i - \mu)^{-2} \right\}^{1/2} \qquad v_i \text{'s are orthonormal}$$

$$= \left\{ (\lambda_1 - \mu)^{-2} - (\lambda_1 - \mu)^{-2} \sum_{i=2}^{n} \delta_i^2 + \sum_{i=2}^{n} \delta_i^2 (\lambda_i - \mu)^{-2} \right\}^{1/2}$$

$$= \left\{ (\lambda_1 - \mu)^{-2} - \sum_{i=2}^{n} \delta_i^2 \left[(\lambda_1 - \mu)^{-2} - (\lambda_i - \mu)^{-2} \right] \right\}^{1/2}$$

Putting together the calculations,

$$\kappa((A - \mu I)^{-1}, v) = \left((\lambda_1 - \mu)^2 \right)^{-1/2} \left\{ (\lambda_1 - \mu)^{-2} - \sum_{i=2}^n \delta_i^2 \left[(\lambda_1 - \mu)^{-2} - (\lambda_i - \mu)^{-2} \right] \right\}^{1/2}$$

$$= \left\{ 1 - \sum_{i=2}^n \delta_i^2 \left[1 - \left(\frac{\lambda_1 - \mu}{\lambda_i - \mu} \right)^2 \right] \right\}^{-1/2}$$

$$\approx \left\{ 1 - \sum_{i=2}^n \delta_i^2 \right\}^{-1/2}$$

$$\mu \approx \lambda_1$$

(c) Code: https://github.com/RokettoJanpu/scientific-computing-1-redux/blob/main/hw4.ipynb

Indeed, we do not have enough iterates to observe an eventual "leveling out" of the sequence $\frac{e_{j+1}}{e_j^3}$ as promised by cubic convergence.