MAXIMILIAN PIERZYNA

Rotterdam, The Netherlands m.pierzyna@tudelft.nl, mpier.eu

Passionate about solving physical problems with data-driven methods. Currently developing machine learning models of atmospheric turbulence.

EDUCATION

Delft University of Technology PhD Student, expected graduation 2026-08	2022-08 – ongoing Delft, The Netherlands
Technical University of Braunschweig	2019-10 - 2022-07
Aerospace Engineering, Master of Science (with honours)	Braunschweig, Germany
KTH Royal Institute of Technology Aerospace Engineering, Erasmus+ Exchange	2020-08 - 2021-01 Stockholm, Sweden
Technical University of Braunschweig	2015-10 – 2019-09
Mechanical Engineering, Bachelor of Science	Braunschweig, Germany

PUBLICATIONS

- [5] M. Pierzyna, S. Basu, and R. Saathof, "OTCliM: Generating a near-surface climatology of optical turbulence strength (C_n^2) using gradient boosting," Artificial Intelligence for the Earth Systems, 2025, accepted. Preprint: 10.48550/arXiv.2408.00520.
- [4] M. Pierzyna, O. Hartogensis, S. Basu, and R. Saathof, "Intercomparison of flux, gradient, and variance-based optical turbulence (C_n^2) parameterizations," *Applied Optics*, vol. 63, no. 16, Jun. 2024. DOI: 10.1364/A0.519942.
- [3] M. Pierzyna, R. Saathof, and S. Basu, "II-ML: A dimensional analysis-based machine learning parameterization of optical turbulence in the atmospheric surface layer," Optics Letters, vol. 48, no. 17, Sep. 2023. DOI: 10.1364/OL.492652.
- [2] M. Pierzyna, R. Saathof, and S. Basu, "A multi-physics ensemble modeling framework for reliable C_n^2 estimation," in *Proceedings of Environmental Effects on Light Propagation and Adaptive Systems VI*, vol. 12731, SPIE, Oct. 19, 2023, pp. 185–191. DOI: 10.1117/12.2680997.
- [1] M. Pierzyna, D. A. Burzynski, S. E. Bansmer, and R. Semaan, "Data-driven splashing threshold model for drop impact on dry smooth surfaces," *Physics of Fluids*, vol. 33, no. 12, Dec. 2021. DOI: 10.1063/5.0076427.

AWARDS AND HONOURS

Best Student Paper Award

2024-07

Optica Imaging Congress 2024

Highlighting of Pierzyna et al. [3] as "Editors' pick"

2023-09

Optica Publishing Group

Best Student Paper Award

2023-09

SPIE Remote Sensing 2023 – Environmental Effects on Light Propagation and Adaptive Systems

MACHINE LEARNING COMPETITIONS

Kelp Wanted: Segmenting Kelp Forests

2024-02

Finished #38/671; resulting KelpNet presented at ESA/ECMWF ML4EOPS as poster

DrivenData

RESEARCH VISITS

University at Albany Visiting Scientist	2024-09 – 2024-11 Albany, NY, USA
Fraunhofer Institute of Optronics, System Technologies, and Image Exploitation (IOSB) Visiting Scientist	2024-01-10-12 Ettlingen, Germany
National Center of Atmospheric Research (NCAR) Participant, NCAR Advance Study Program, Summer Colloquium 2023	2023-07-17 – 28 Boulder, CO, USA

PRESENTATIONS AND CONFERENCES

- Airforce Institute of Technology, Dayton, OH, USA (virtual talk) 2024-08 Generating a near-surface climatology of optical turbulence strength (C_n^2) using gradient boosting
- Optica Imaging Congress 2024, Toulouse, France (talk) 2024-07 Generating a near-surface climatology of optical turbulence strength (C_n^2) using gradient boosting
- ESA/ECMWF ML4EOPS, Frascati, Italy (poster)

 (Machine Learning for Earth System Observation and Prediction)

 KelpNet: Probabilistic Multi-Task Learning for Satellite-Based Kelp Forest Monitoring
- Dutch Meteorological Society, Annual Meeting, Utrecht, The Netherlands (talk) 2023-11 Π-ML: A Dimensional Analysis-Based Machine Learning Parameterization of Optical Turbulence in the Atmospheric Surface Layer
- TMT International Observatory, Pasadena, CA, USA (virtual talk) 2023-09 Π-ML: A Dimensional Analysis-Based Machine Learning Parameterization of Optical Turbulence in the Atmospheric Surface Layer
- SPIE Remote Sensing 2023, Amsterdam, The Netherlands (talk) 2023-09 A multi-physics ensemble modeling framework for reliable C_n^2 estimation
- COAT 2023, Durham, UK (talk) 2023-03 (Communications and Observations through Atmospheric Turbulence) Parametrizing optical turbulence (C_n^2) in the atmospheric surface layer with gradient boosting

REVIEWING ACTIVITIES

Quarterly Journal of the Royal Meteorological Society, Journal of the European Meteorological Society

VOLUNTARY WORK

Erasmus Student Network Germany Multiple managing positions, currently, International Coordinator	2021-03 - ongoing Germany
L.G. Snellius (study association)	2023-04 - 2024-03
Board member	Delft. The Netherlands

OTHER QUALIFICATIONS

- Language skills: German (native), English (proficient, CEFR C2), Dutch (independent, CEFR B2)
- IT skills: Linux administration, networking, Python, PyTorch, Keras, Tensorflow, jax, git, IATEX, handling large datasets (version controlled)
- Weather Research and Forecasting (WRF) modeling on HPC