Redkejši grafi z velikim kromatičnim številom

Matija Kocbek

mentor: prof. dr. Riste Škrekovski

2. december 2024

Kromatično in neodvisnostno število

Definicija

Naj bo G=(V,E) neusmerjen graf. Pravilno k-barvanje grafa G je preslikava $c:V\to 1,\ldots,k$, za katero velja $u\sim v\implies c(u)\neq c(v)$ oziroma c ne pobarva nobeni sosednji vozlišči enako. Najmanjšemu k, za katero obstaja pravilno k-barvanje G pravimo kromatično število grafa G in ga označimo s $\chi(G)$.

Kromatično in neodvisnostno število

Definicija

Naj bo G=(V,E) neusmerjen graf. Pravilno k-barvanje grafa G je preslikava $c:V\to 1,\ldots,k$, za katero velja $u\sim v\implies c(u)\neq c(v)$ oziroma c ne pobarva nobeni sosednji vozlišči enako. Najmanjšemu k, za katero obstaja pravilno k-barvanje G pravimo kromatično število grafa G in ga označimo s $\chi(G)$.

Definicija

Naj bo G=(V,E) in $H\subseteq V$. Če nobeni dve vozlišči iz H nista med seboj povezani, pravimo, da je H neodvisna množica. Velikost neodvisne množice z največjo močjo imenujemo neodvisnostno število grafa G in ga označimo z $\alpha(G)$.

Kromatično in neodvisnostno število

Trditev

Za vsak graf G na n vozliščih velja $\alpha(G)\chi(G) \geq n$.

Zakaj nas zanima kromatično (in tudi neodvisnostno) število grafov brez trikotnikov? Preučujemo, kako odsotnost trikotnikov vpliva na globalne lastnosti grafa.

Zakaj nas zanima kromatično (in tudi neodvisnostno) število grafov brez trikotnikov? Preučujemo, kako odsotnost trikotnikov vpliva na globalne lastnosti grafa.

 Kolikšen delež grafov brez trikotnikov je dvodelen ali skoraj dvodelen?

Zakaj nas zanima kromatično (in tudi neodvisnostno) število grafov brez trikotnikov? Preučujemo, kako odsotnost trikotnikov vpliva na globalne lastnosti grafa.

- Kolikšen delež grafov brez trikotnikov je dvodelen ali skoraj dvodelen?
- Ali je kromatično število grafov brez trikotnikov omejeno z neko konstanto?

Zakaj nas zanima kromatično (in tudi neodvisnostno) število grafov brez trikotnikov? Preučujemo, kako odsotnost trikotnikov vpliva na globalne lastnosti grafa.

- Kolikšen delež grafov brez trikotnikov je dvodelen ali skoraj dvodelen?
- Ali je kromatično število grafov brez trikotnikov omejeno z neko konstanto?
- Kako zgraditi graf z globalno čim večjim kromatičnim številom, ki je lokalno neodvisen, tj. ima minimalno kromatično število?

Trditev

Naj bo T_n število grafov brez trikotnikov z vozlišči $\{1,\ldots,n\}$, S_n pa število dvodelnih grafov z vozlišči $\{1,\ldots,n\}$. Tedaj je $T_n=S_n(1+o(\frac{1}{n}))$.

Trditev

Naj bo T_n število grafov brez trikotnikov z vozlišči $\{1, \ldots, n\}$, S_n pa število dvodelnih grafov z vozlišči $\{1, \ldots, n\}$. Tedaj je $T_n = S_n(1 + o(\frac{1}{n}))$.

Trditev (Mycielski)

Naj bo G_3 cikel dolžine 5. Naj bo $G_{k+1}=M(G_k)$ za vsak $k\geq 3$, kjer z M(G) označimo graf Mycielskega grafa G. Tedaj je G_k brez trikotnikov in $\chi(G_k)=k$ za vsak $k\geq 3$.

Trditev

Imejmo končno projektivno ravnino s k^2+k+1 točkami. Zgradimo graf G_k tako, da za vozlišča vzamemo vse urejene pare točk in premic (p,L), za katere velja, da p leži na L. Vozlišča opremimo s poljubno linearno urejenostjo <. Vozlišči (p,L) in (p',L') povežemo, če velja, da je (p,L)<(p',L'), da sta p in p' različni ter L in L' različni in da p leži na L'. Tedaj velja, da G ne vsebuje trikotnikov in da je $\alpha(G_k) \leq 2 \cdot (k^2+k+1)$ ter $\chi(G_k) \geq \frac{k+1}{2}$.

Trditev

Za vsak graf G brez trikotnikov na n vozliščih za dovolj velike n velja $\chi(G) \leq (2+o(1))\sqrt{\frac{n}{\log n}}$ in $\alpha(G) \geq \frac{1}{2+o(1)}\sqrt{n\log n}$. Za vsak dovolj velik n obstaja graf G brez trikotnikov na n vozliščih z neodvisnostnim številom $\alpha(G) \leq 9\sqrt{n\log n}$ in $\chi(G) \geq \frac{1}{9}\sqrt{\frac{n}{\log n}}$.

Kromatično število grafov z veliko ožino

Posplošimo problem in lastnosti, ki smo jih opazovali pri grafih brez trikotnikov, opazujemo na grafih s poljubno veliko ožino.

Izrek (Erdos)

Za vsaka k in l obstaja graf G, da je $\chi(G) \ge k$ in girth(G) > l.