DAA UNIT 6 SOLUTION:-

1. Prove : $P \subseteq NP$.

Ans:-

- 1. Here are important key points on P subset NP.
- 1. P and NP are complexity classes in theoretical computer science.
- 2. P comprises problems solvable by deterministic Turing machines in polynomial time.
- 3. NP encompasses problems that can be verified in polynomial time by a nondeterministic Turing machine.
- 4. The statement " $P \subseteq NP$ " implies that every problem in P is also in NP.
- 5. This means that any problem whose solution can be efficiently verified is also efficiently solvable.
- 6. The inclusion of P in NP signifies that verification is inherently easier than solving for many problems.
- 7. The relationship between P and NP is one of the most significant unsolved problems in computer science.
- 8. The P versus NP problem addresses whether a polynomial-time algorithm can solve every problem in NP.
- 9. A positive resolution to the P versus NP problem would have profound implications for computational complexity.
- 10. The P versus NP problem remains a central open question in theoretical computer science, with ongoing research focused on exploring its implications.

2. Write non – deterministic algorithm to generate CLIQUE of size k from graph of n vertices.

Write non-deterministic algorithm to general CLIQUE of size k from graph of no vertical A dique a a maximal complete subgraph of a given graph G(V,E). The size of the clique is the One of vertices in it. The chaque decision problem Is to find out whether graph 9 contains a clique of size at least x for x ≤ n Algorithm Nclique (G, nix) being Ushfialize set s to empty set 5=0 11 compute set s -POT 1= 1 to x y= choice (1,n) If (yes) then Failure 11 otherwise add 5=50 {4} end for 11 check whether s torms dique for each pair (ijj) of vertices in 5 such that ies, jes, 1+j do it edge Kinj>E then failure (); Succes () The time complexity of this algo is O(n+22) = O(n2)

- 3.Explain the relationship between P, NP, NP complete and NP hard. OR
- 6. Write notes on: i) Deterministic Algorithm. ii) P class problem. iii) NP Hard. iv) NP complete.

Ans: -Here are important key points on this ...

1.Deterministic Algorithm

- 1. Definition: A deterministic algorithm is a step-by-step procedure that always produces the same output for a given input.
- 2. Characteristics: Deterministic algorithms follow a fixed sequence of instructions and produce predictable outcomes.
- 3. Examples: Sorting algorithms like bubble sort and insertion sort are examples of deterministic algorithms.
- 4. Advantages: Deterministic algorithms provide reliable and consistent results, making them suitable for tasks requiring g precision.
- 5. Limitations: Some problems, like finding the largest clique in a graph, may not have efficient deterministic algorithms.

2.P-class Problem

- 1. Definition: A P-class problem is a decision problem that can be solved by a deterministic Turing machine in polynomial time
- 2. Characteristics: P-class problems are efficiently solvable, meaning the solution time grows at a manageable rate as the problem size increases.
- 3. Examples: Finding the shortest path between two nodes in a graph is an example of a P-class problem.
- 4. Significance: P-class problems represent a subset of tractable problems that can be solved efficiently using known algorithms.
- 5. Relationship to NP: P-class problems are a subset of NP-problems, implying that any problem efficiently solvable by a deterministic machine is also efficiently verifiable by a nondeterministic machine.

3. NP-Hard Problem

- 1. Definition: An NP-hard problem is an optimization or search problem that is at least as hard as any problem in NP.
- 2. Characteristics: NP-hard problems are not known to have efficient algorithms, and their solutions can become intractable for large problem instances.
- 3. Examples: Finding the optimal solution to the traveling salesman problem and determining the satisfiability of a Boolean formula are examples of NP-hard problems.
- 4. Significance: NP-hard problems represent a class of computationally challenging problems that are believed to not have efficient solutions.
- 5. Relationship to NP-complete: NP-hard problems are at least as hard as NP-complete problems, but not all NP-hard problems are NP-complete.

4. NP-complete Problem

- 1. Definition: An NP-complete problem is an optimization or search problem in NP such that any problem in NP can be reduced to it in polynomial time.
- 2. Characteristics: NP-complete problems are the hardest problems in NP, and their solutions are considered intractable for large problem instances.
- 3. Examples: The Boolean satisfiability problem and the clique problem are examples of NP-complete problems.
- 4. Significance: NP-complete problems represent a benchmark for computational hardness, and their efficient solution would imply that all problems in NP can be solved efficiently.
- 5. Relationship to NP-hard: NP-complete problems are a subset of NP-hard problems, meaning that any NP-complete problem is also NP-hard.

Date / /
(40 NP- Complete
m NP complete problems can be solved
non-deterministic Algorithm / Twong Machine in
Tell (inclined)
@ To solve this problem, it must be both NP 4
All-hard exchirm
Time is known as it is fixed in NP-Hord
(9) MP- complete is exclusively a decision problem
S All NP- complete problems are NP-hard.
(i) example.
Deusion problems
© Regular graphs.
11 con could solve an NP-complete problem
in polymental time then are sould alle sal
in polynomial time, then one could also solve
any NP problem in polynomial time
(NP-Hard NP
\ \\ \(\((c) \)
NP complete C#
19: Relain bein P& NP.

- 4. Write a note on Polynomial reduction. Ans:-
- 1. **Definition:** Polynomial reduction, also known as Turing reduction, is a technique used to compare the computational difficulty of problems.
- 2. **Concept:** It involves transforming instances of one problem into instances of another problem in polynomial time.
- 3. **Significance:** If a problem A can be reduced to a problem B in polynomial time, then B is at least as hard as A.
- 4. **NP-Completeness:** The concept of polynomial reduction is crucial in establishing NP-completeness.
- 5. **Example:** The Cook-Levin theorem proves NP-completeness by reducing Boolean satisfiability to the circuit value problem in polynomial time.
- 6. **Implications:** Polynomial reduction allows us to infer the hardness of problems based on the hardness of known problems.
- 7. **Transitivity:** Polynomial reduction is transitive, meaning if A can be reduced to B and B can be reduced to C in polynomial time, then A can also be reduced to C in polynomial time.
- 8. **Limitations:** Polynomial reduction cannot determine whether a problem is in P, the class of efficiently solvable problems.
- 9. **Applications:** Polynomial reduction is widely used in theoretical computer science to classify problems based on their computational complexity.
- 10.**Role in Algorithm Design:** It guides the development of algorithms by identifying problems that are likely to share computational difficulty.

5. Write algorithm for Non-deterministic sorting.


```
Algorithm Moort (p.n)
      Usntiable groay
                          to 0
   for i= 1 to n
  QEIJ=0
  100 i= 1 ton
 begin
   x= choice (1,n)
    14 Q[x] = 0
    then
    CIJ9 = EXJP
   failure ();
    end 14
   end for
  Il check whether of is sorted
   tor 1= 1 to m-1
   ([Iti] p < [i] p) +1
   Failure ();
   end rf
   end tor
   success ();
end
   The computing time of this algorithm is
0 (n+n+n) = 0(8)
   where as the deterministic algorithms
 have minimum complexity omlogni.
```

8. Write the algorithm for non - deterministic searching.

```
Write the algorithm for non-deterministic searching?

Suppose ansorded input List L[1:n] is an array of size n 1 n > 1.

We want to search an element x in givey L[]. It element x is found its posit?

Should be cutput, othewise output is o.
```

```
The algorithm is as follows:
Algorith Nsearch (Lin, x
   11 it a is found at position p, print p,
   due print o.
  if (LIPJ=X)
    then
     brint b;
        Success ();
    end it
    print 0;
      Farlure ();
     The computing time of this algorithm
 is o(1) in both the cases of successful search
   unsuccustul search.
      Any deterministic search algorithm require
 oun) time.
```

9. What are decision and optimization problems?

7. What are decision and optimization problems.
1 What are decision 4 optimization problem?
12. Decision problems and optimization problems gr
two fundamental types of computational
problems? best continuence is sometiment
1) Decision problem.
(1) A deusion problem is a computational
problem where the answer is 4 simple
ayes" or "no" in response to a specific
question.
a framples of decision problems includes the
Boolean satisfiability problem (SAT), the
halling problem and the graph connectivity
a complexity theory
decision problems are often categorized into decision complexity classes, such as P. NP,
Narious complexity classes, such as P, NP,
NP-complete, & NP-hard.
Doptimization problems
1) a computational
problem where the goals is to find the best solution from all teasible solutions.
problem whose the jours solutions.
solution from all Jeasible solutions. Sophimization problems often involve maximizing or objective function, subject to a or minimizing on objective function, subject to a
optimization productive function, subject is
ST ASIMIRACIO
a set of constraints.
(8) example of optimizan problem includes the
travelling saluman problem (TSP), the
knapsack problem , and unear programming
problems
a optimization problems can be clossified based
on the nature of the objective function &
the constraints such as linear optimization
non-linear optimization and combinatorial
optimization
" While decision problems focus on
determining whether a solution exists
optimization problems are concerned with
la topo the best solution with

possible solutions.

real-coorld problems

& requirement of the problem.

as leither decision problems or optimizate problems, depending on the specific control

10. Illustrate COOK Theorem.

Ans:-

- 1. The Cook-Levin theorem is a fundamental result in computational complexity theory, proving that the Boolean satisfiability problem (SAT) is NP-complete.
- 2. SAT is a problem of determining whether a given Boolean formula can be satisfied by assigning truth values to its variables.
- 3. NP is the class of problems for which a solution can be verified in polynomial time, but no polynomial-time algorithm for finding the solution is known.
- 4. NP-complete problems are the hardest problems in NP, as any problem in NP can be reduced to an NP-complete problem in polynomial time.
- 5. The Cook–Levin theorem was independently proved by Stephen Cook and Leonid Levin in 1971 and 1973, respectively.
- 6. The theorem has had a profound impact on computational complexity theory, leading to many important results and the development of the field.
- 7. The theorem implies that if there exists a polynomial-time algorithm for solving SAT, then there also exists a polynomial-time algorithm for solving every problem in NP.
- 8. The theorem has been used to show that many other problems are also NP-complete, strengthening the understanding of computational complexity.
- 9. The Cook–Levin theorem is a powerful tool for proving that problems are NP-complete, demonstrating its significance in the field.
- 10. The theorem's simplicity and elegance have had a profound impact on our understanding of computational complexity, highlighting its importance.

- 7. Explain following NP-problems with respect to graph.
- i) CLIQUE ii) Independent set problem iii) Graph partitioned into triangle

Ans:

1. Clique Problem

- Definition: The clique problem involves finding the largest clique in a graph, where a clique is a subset of vertices in which every pair of vertices is connected by an edge.
- Characteristics: The clique problem is a decision problem, asking whether a graph contains a clique of a given size.
- Applications: The clique problem has applications in social network analysis, community detection, and optimization problems.
- Computational Complexity: The clique problem is NP-complete, indicating
 its computational difficulty and the lack of efficient algorithms for large
 graphs.
- Approximation Algorithms: Heuristic and approximation algorithms are often used to find approximate solutions to the clique problem due to its computational intractability.

2. Independent Set Problem

- Definition: The independent set problem involves finding the largest independent set in a graph, where an independent set is a subset of vertices in which no two vertices are connected by an edge.
- Characteristics: The independent set problem is an optimization problem, aiming to find the largest independent set in a given graph.
- Applications: The independent set problem has applications in conflict resolution, task scheduling, and resource allocation.
- Computational Complexity: The independent set problem is NP-complete, similar to the clique problem, indicating its computational difficulty.
- Approximation Algorithms: Heuristic and approximation algorithms are also commonly used for the independent set problem due to its computational challenges.

3.Graph Partition into Triangles:

- Goal: Divide a graph into the minimum number of subgraphs, each consisting of non-overlapping triangles.
- Difficulty: NP-complete, meaning efficient algorithms are unlikely to exist for large graphs.
- Approaches: Heuristic and approximation algorithms are commonly used for practical solutions.
- Applications: Data analysis, network optimization, pattern recognition.
- Significance: Uncovers cohesive subgroups, optimizes network structures, reveals underlying patterns.