6.6 On considère une sphère Σ de centre $C(x_0; y_0; z_0)$ et de rayon r, un point $T(x_1; y_1; z_1)$ situé sur la sphère Σ , le plan tangent τ à la sphère Σ au point T et P(x; y; z) un point de l'espace.

Les conditions suivantes sont équivalentes :

- 1) $P \in \tau$
- 2) $\overrightarrow{CT} \perp \overrightarrow{TP}$
- 3) $0 = \overrightarrow{CT} \cdot \overrightarrow{TP}$

4)
$$0 = \overrightarrow{CT} \cdot (\overrightarrow{CP} - \overrightarrow{CT}) = \overrightarrow{CT} \cdot \overrightarrow{CP} - \overrightarrow{CT} \cdot \overrightarrow{CT}$$

5)
$$\overrightarrow{CT} \cdot \overrightarrow{CP} = \overrightarrow{CT} \cdot \overrightarrow{CT} = ||\overrightarrow{CT}||^2 = r^2$$

6)
$$\begin{pmatrix} x_1 - x_0 \\ y_1 - y_0 \\ z_1 - z_0 \end{pmatrix} \cdot \begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix} = (x_1 - x_0)(x - x_0) + (y_1 - y_0)(y - y_0) + (z_1 - z_0)(z - z_0) = r^2$$

En conclusion, l'équation du plan tangent en un point $T(x_1; y_1; z_1)$ de la sphère de centre $C(x_0; y_0; z_0)$ et de rayon r est donnée par la formule :

$$(x_1 - x_0)(x - x_0) + (y_1 - y_0)(y - y_0) + (z_1 - z_0)(z - z_0) = r^2$$