C lié à un seul hétéroatome

- Composés halogénés R-X (X= CI, Br, I)
- Composés oxygénés ou soufrés
 - Alcools R-OH
 - Phénols Ar-OH
 - Thiols R-SH
 - Éthers R-O-R'
- Composés azotés
 - Amines R-NR₁,R₂
 - Sels d'ammonium R,R₁,R₂,R₃N+X⁻
 - Sels de diazonium R-N₂+X⁻

Analogie structurale

C: - hybridation sp³

- hétéroatome plus électronégatif que C ⇒C porteur de +δ
- lié à un hétéroatome porteur d'1 ou plusieurs doublets

$$-C \xrightarrow{+\delta} \bar{X} | \qquad -C \xrightarrow{+\delta} \bar{D} | \qquad -C \xrightarrow{+\delta} \bar{N} |$$

Réactivité

Si on considère le C

- très faciles avec dérivés halogénés
- plus difficiles avec dérivés oxygénés
- impossibles avec dérivés azotés

Réactivité

Si on considère l'hétéroatome

$$-\overset{|}{C}-\overset{-}{Y}+\overset{|}{E}^{\oplus}$$

$$-\overset{|}{C}-\overset{|}{Y}-\overset{|}{E}$$

- les amines réagissent très facilement
- les dérivés oxygénés réagissent plus difficilement
- dérivés halogénés pas de réaction

$$N\bar{u} \ominus -C - \bar{X} E^+$$

$$N\bar{u} \ominus - C - \bar{X} = C - \bar{N} =$$

Les dérivés halogénés

- I Généralités
- II Substitutions nucléophiles
- III Réactions d'élimination
- IV Préparation des halogénoalcanes
- V Composés organo-magnésiens

R-X ou Ar-X avec X = CI, Br, (rarement I ou F)

Nomenclature:

- Halogéno + nom de l'hydrocarbure
- Halogénure de + nom du radical de l'hydrocarbure

2-chloropentane ou chlorure de 2-pentyle

bromobenzène

Structure:

C: - hybridation sp³

- halogène plus électronégatif que C ⇒liaison polarisée

$$-C \xrightarrow{\delta^+} X$$

- température d'ébullition + élevée que celle de l'hydrocarbure correspondant

Réactivité:

$$-C -C \xrightarrow{\delta^{+}} X$$

Substitutions nucléophiles sur le C électrophile

$$N\bar{u}^{\ominus}$$
 + $-C$ $X^{\delta-}$ $X^{\delta-}$ $X^{\delta-}$ $X^{\delta-}$ $X^{\delta-}$ $X^{\delta-}$ $X^{\delta-}$

• Réaction d'élimination avec I'H en position β

$$-C \xrightarrow{H\delta+} C \xrightarrow{\delta+} X \xrightarrow{Base} C = C + HX$$

Compétition substitution / élimination

$$R-CH_2-X$$
 + $A-X$ $R-CH_2-Y$ + $A-X$

- Y^{δ-} plus nucléophile que X^{δ-}
- e⁻ de Y^{δ-} plus disponibles que ceux de X^{δ-}
- Y^{δ−} base plus forte que X^{δ−}
- HY acide plus faible que HX

2 mécanismes différents : SN₁ et SN₂

Réaction favorisée en présence de composés réagissant avec X⁻ (Précipitation ou complexation de X⁻ : Ag⁺,....)

Substitution nucléophile S_{N2}

- Inversion de configuration
- Réaction bimoléculaire

$$V = k[R_1R_2R_3CX][Nu^-]$$

Substitution nucléophile S_{N1}

- Si substrat actif optiquement ⇒perte de l'activité optique (mélange racémique)
- Réaction monomoléculaire $V = k[R_1R_2R_3CX]$

Dérivés oxygénés

H₂O (HO⁻)
Alcoolate (R'O⁻Na⁺)
Sel d'acide organique (R'COO⁻Na⁺)

R-OH (alcool) R-OR' (éther) R'COO-R (ester)

Dérivés soufrés

H₂S (HS⁻)
Thiolate (R'S-Na+)

R-SH (thiol) R-OR' (thioéther)

Dérivés azotés

Ammoniac (NH₂-H+) Amine 1^{aire} (R'NH-H+) R-NH₂ (amine 1^{aire}) R-NHR' (amine 2^{aire})

Dérivés carbonés

Organo-magnésiens (R'-MgX+)
Cyanure (CN-Na+)
Acétylure (R'C=C-Na+)

R-R' (alcane) R-CN (nitrile) R'C≡C-R (alcyne)

III - Réactions d'élimination

$$R_1$$
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2

III - Réactions d'élimination

Elimination E₂

- Réaction stéréospécifique
- Réaction bimoléculaire
 V = k[B-][RX]

$$V = k[B^{-}][RX]$$

$$H_3C$$
 H_3C
 H

$$C = C$$
 H

$$C = C$$
 CH_3

III - Réactions d'élimination

Elimination E₁

$$C - C \longrightarrow C = C \longrightarrow C + H^+$$

Réaction monomoléculaire

$$V = k[RX]$$

Mélange de 2 alcènes E et Z

Compétition substitution / élimination

Elimination favorisée par:

- élévation de la température
- encombrement stérique
- la basicité

IV- Voies de préparation

- Halogénation des alcanes
 - Mécanisme radicalaire
 - Mélange de composés
- Addition d'acides halogénés sur les alcènes

$$CH_{3} - CH_{2} - CH_{3} - CH_{3} - CH_{2} - CH_{3} - CH_{2} - CH_{3}$$

$$CH_{3} - CH_{2} - CH_{3} - CH_{2} - CH_{3} - CH_{2} - CH_{3} - CH_{2} - C$$

- Réaction régiosélective (règle de Markonikov)
- Mélange de composés difficilement séparables
- Substitution sur un alcool

$$R-OH + HX \longrightarrow R-X + H_2O$$

Alcool, éther, ester, nitrile, alcane, dérivé nitré, amine primaire, amine secondaire, arène halogéné

Obtention

Action des métaux (Li et Mg) sur dérivés halogénés Insertion de Mg sur la liaison C-X

$$R-X + Mg \longrightarrow R-Mg-X$$

Intérêt : transformer un site électrophile en un site nucléophile

$$R-CH_2-X + Mg \longrightarrow R-CH_2-MgX$$

Nomenclature

R-Mg-X halogénure de radical-magnésium

 C_2H_5MgCI = chlorure d'éthyle-magnésium

Réactivité

substrats nucléophiles ⇒ réactions avec réactifs électrophiles,

- réactions de substitution
- réactions d'addition sur C électrophile insaturé (C=O)

Substitution électrophile

Substitution électrophile

$$R-Y = R-X$$

Réaction d'addition

$$R_1 = R_2 = H$$
 (aldéhyde formique H_2CHO) — alcool 1^{aire}

$$R_1 = H \text{ (aldéhyde,} R_2CHO)$$
 alcool 2^{aire}

$$R_1, R_2$$
 (cétone, R_1COR_2) alcool 3^{aire}

$$R_1 + R_2 = O (O=C=O)$$
 acide

Halogénure d'alkyle ou d'aryle

Mg

ORGANOMAGNESIENS (R - MgX ou Ar - MgX)

Composés oxygénés et soufrés

Alcools - Phénols - Thiols

- I Généralités
- II Réactivité
 - Caractère nucléophile
 - Caractère électrophile
 - Réactions d'oxydo-réduction
- III Préparation des alcools
- IV Phénols
- V Thiols

R-OH Ar-OH

R-SH Ar-SH

Dérivés de H-OH

3 classes d'alcool:

primaire
$$R-CH_2-OH$$

tertiaire
$$\begin{array}{ccc} R'' \\ | & | \\ R-C-OH \\ | & R' \end{array}$$

Nomenclature:

Suffixe -ol au nom de l'hydrocarbure

Préfixe hydroxy si non prioritaire

Butan-1-ol

3-hydroxy-butanal

Structure:

$$--C \xrightarrow{+\delta'} O \xrightarrow{+\delta'} H$$

Liaison hydrogène :

- température d'ébullition plus élevée que les hydrocarbures de même masse molaire (liquides à température ambiante → C₁₂)
 - Viscosité plus élevée
 - Solubilité totale dans l'eau des 1ers termes

Propriétés acido-basiques :

Composés amphotères

R—OH + H⁺
$$\longrightarrow$$
 R—OH — \longrightarrow R—OH

Ne réagiront qu'avec des acides et des bases fortes

Rupture de la liaison RO-H : caractère nucléophile des alcools

$$RO-H \stackrel{base}{\longleftarrow} RO^- + H^+$$

Tous les substrats électrophiles peuvent réagir avec les alcools

Dérivés halogénés (R'X)

Acide organique (R'COOH)

Chlorure d'acide (R'COCI)

Périvés carbonylés (R'CHO)

R'-OR (éther)

R'-OR (éther)

R'-OR (éther)

R'-OR (éther)

R'-OR (éther)

R'-OR (éther)

Rupture de la liaison R-O-H : caractère électrophile

$$R - OH + H^{+} \longrightarrow R^{-} - H \longrightarrow R^{+} + H_{2}O$$

Acides halogénés (HX) — dérivés halogénés (R-X) Alcools (ROH) éthers (R-O-R)

Déshydratation des alcools

$$R-CH_2-CH_2-OH + H^+ - R-CH_2-CH_2-OH_2-OH_1$$

Déshydratation des alcools

Réaction régiosélective : formation de l'alcène le plus substitué

Règle de Saytzev : l'élimination d'une molécule d'eau se fait avec un H fourni par le C le plus substitué

$$R \longrightarrow CH_2 \longrightarrow CH \longrightarrow CH_3 \longrightarrow R \longrightarrow CH \longrightarrow CH_3 + H_2O$$

Réactions d'oxydo-réduction

Réduction des alcools pratiquement impossible

Oxydation des alcools :

Alcools 1^{aires} (RCH₂OH): aldéhydes (RCHO)

Alcools 2^{aires} (RR'CHOH): cétones (RR'CO)

Alcools 3^{aires}: produits de dégradation

III - Préparation des alcools

Hydratation d'un alcène (addition électrophile)

$$R - CH = CH - R' + H_2O \xrightarrow{H_2SO_4} R - CH_2 - CHOH - R'$$

Substitution nucléophile sur dérivés halogénés

$$R \longrightarrow CH_2Cl + KOH \longrightarrow R \longrightarrow CH_2OH + KCl$$

Réduction de dérivés carbonylés

III - Préparation des alcools

Addition d'un organo-magnésien sur un composé carbonylé

Au niveau industriel

$$CH_3OH$$
 $CO + 2 H_2 \longrightarrow CH_3OH$

$$C_6H_{12}O_6 \longrightarrow 2 CH_3-CH_2OH + 2 CO_2$$

IV - Phénols

⇒ Caractère acide plus marqué : réagissent avec NaOH

Réactions avec substrats électrophiles

Dérivés halogénés (R'X)		R'-OC ₆ H ₅ (éther)
Acide organique (R'COOH)		R'CO-OC ₆ H ₅ (ester)
Chlorure d'acide (R'COCI)		R'CO OC ₆ H ₅
Dérivés carbonylés (R'CHO)		R'-CH(OH) OC ₆ H ₅
		(éther-alcool)

IV - Phénols

Pas de réaction faisant intervenir la coupure C-O:

pas de caractère électrophile pour les phénols

Pas d'oxydation simple

$$HO \longrightarrow O \longrightarrow O \longrightarrow O$$

hydroquinone

benzoquinone

V - Thiols

Polarisation plus faible des liaisons

S plus volumineux que O ⇒ H plus mobile, thiols plus acides

Thiols plus acides ($pK_a = 10 - 12$) réagissent avec NaOH

Caractère nucléophile plus marqué

mêmes réactions qu'avec les alcools - réactions plus rapides

Différence avec les alcools : oxydation en disulfures

$$R \longrightarrow SH + R \longrightarrow SH \xrightarrow{1/2} O_2 \qquad R-S \longrightarrow S-R + H_2O$$

V - Polyols

Polyalcools

Ethylène glycol (1,2-éthanediol) anti-gel

Glycérol employé en pharmacie

Sorbitol édulcorant

V - Polyols

Alcools et phénols d'importance biologique

Géraniol

Phénols

 $R = OCH_3$ Alcool coniférylique

R' = H

Alcool sinapylique

 $R = R' = OCH_3$

Alcool p-coumarylique R = R' = H

$$CH_2OH$$
 CH_2OH
 CH_2OH
 CH_2OH
 CH_2OH
 CH_2OH
 CH_2OH
 CH_2OH
 OCH_3
 OCH_3
 OCH_3
 OCH_3

Lignine

Composés azotés

3 classes d'amines : dérivés de NH₃

Amines 1^{aires}: R-NH₂

Amines 2 aires: RR'-NH

Amines 3 aires: RR'R"-N

Amines aromatiques

Nomenclature:

Radical + amine

 CH_3 — CH_2 — CH_2 — NH_2

propylamine

 CH_3 — CH_2 —NH— CH_2 — CH_3

diéthylamine

N-méthyl-propylamine

N-éthyl-N-méthyl-butylamine

phénylamine

Propriétés physiques :

Liquides à température ambiante

Température d'ébullition diminue des amines primaires aux tertiaires

$$t_{eb} I > II > III$$
 C_3H_7 -NH₂ 48°C $(CH_3)C_2H_5$ -NH 36,5°C $(CH_3)_3$ -N 2,9°C

Structure:

Liaisons C-N et C-H peu polarisées

Doublet d'électrons n ⇒ caractère basique et nucléophile

Caractère basique :

Amines aliphatiques plus basiques que NH₃ (effet donneur des chaînes carbonées)

Amines aromatiques moins basiques (délocalisation du doublet d'e-)

$$NH_2$$
 NH_2

Caractère nucléophile :

Disponibilité du doublet d'e-

Réactions avec substrats électrophiles :

Dérivés halogénés R-X

Dérivés carbonylés

Chlorures d'acide

$$R-C < \binom{O}{Cl}$$

Chlorures de sulfonyle R-SO₂-Cl

Dérivés halogénés : alkylation de l'amine

Réaction d'Hoffman

$$NH_3 + RX \longrightarrow [H_3NR^+]X^- \longrightarrow H_2NR + HX$$
 $H_2NR + RX \longrightarrow [H_2NRR^+]X^- \longrightarrow HNRR$
 $HNRR + RX \longrightarrow [HNR_3^+]X^- \longrightarrow NR_3$
 $NR_3 + RX \longrightarrow [NR_4^+]X^-$

Intérêts de ces sels :

- passage d'une amine 1^{aire} à une amine 3^{aire}
- obtention de bases fortes

$$[NRR'R''R''']^+X^- + AgOH \longrightarrow [NRR'R''R''']^+OH^- + AgX$$

Base forte décomposée par la chaleur

$$R-CH_2-CH_2-NR'R''R''' \longrightarrow R-CH=CH_2 + NR'R''R'''$$

- Amine conserve les 3 substituants les plus petits
- Obtention de l'alcène le plus substitué

Dérivés carbonylés :

Amine primaire

Imine base de schiff

Amine secondaire

Chlorures d'acide : acylation des amines

$$R-NH_2 + R_1-CO-CI \longrightarrow R-NH-CO-R_1 + HCI$$

Importance biologique (peptides) et industrielle (polyamide)

$$HO \longrightarrow NH_2 + O \longrightarrow C-CH_3 \longrightarrow HO \longrightarrow NH-C-CH_3$$

Paracétamol

Chlorures de sulfonyle : SO₂CI

Sulfamide

Intérêt pharmaceutique avec amine aromatique

HNO₂ instable ⇒ préparé in situ

$$O = \bar{N} - OK + HC1 \longrightarrow O = \bar{N} - OH + KC1$$
 $O = \bar{N} - OH + H^+ \longrightarrow O = \bar{N} - OH - H \longrightarrow O = \bar{N}^{\oplus} + H_2O$

Ion nitrosonium

Réaction différente selon la classe de l'amine

Amines 3aires aliphatiques : sels d'ammonium quaternaire

$$R_3N + HNO_2 \longrightarrow R_3N^+H,NO_2^-$$

Amines 3^{aires} aromatiques : substitution électrophile sur le noyau

$$\begin{array}{c} CH_3 \\ CH_3 \end{array} N \longrightarrow \begin{array}{c} CH_3 \\ CH_3 \end{array} N \longrightarrow \begin{array}{c} CH_3 \\ CH_3 \end{array} N \longrightarrow \begin{array}{c} N = O \\ \end{array} + \begin{array}{c} H^{\dagger} \end{array}$$

Amines 2aires: nitrosamine

$$R_1$$
 R_2
 $N-H + N=0$
 R_2
 $N-N=0$

(CH₃)₂N-N=O inhalée par un rat → cancer du foie

Amines 1aires aliphatiques: formation d'un alcool

$$R-NH_2 \xrightarrow{NaNO_2, HCI} R-OH$$

$$H_2O$$

Désamination nitreuse

$$R - NH_2 + N = 0 \longrightarrow R - NH_2 - N = 0 \longrightarrow R - N = N$$

$$R - N = N \longrightarrow R^+ + N_2$$
Ion diazonium

$$R^+ + H_2O \longrightarrow R-OH + H^+$$

Amines 1 aires aromatiques:

 $-\mathring{\mathbf{h}} = \mathbf{N}$ Stabilisation par résonance

$$\langle \overline{} \rangle - \dot{N} \equiv N$$

 $-\mathring{\mathbf{N}} = \mathbf{N}$ Peuvent réagir avec un noyau benzénique activé

azoïque

Colorant jaune 44

IV - Préparations

A l'état naturel:

Formation par décomposition des organismes morts

Cadavérine 1,5-diaminopentane

Putrescine 1,4-diaminopentane

Nicotine

$$N$$
 CH_3

IV - Préparations

A l'état naturel:

Formation par décomposition des organismes morts

Cadavérine 1,5-diaminopentane

Putrescine 1,4-diaminopentane

$$N$$
 CH_3

IV - Préparations

Alkylation de NH₃ ou des amines :

```
NH<sub>3</sub> amine 1<sup>aire</sup>
```

R-NH₂ amine 2^{aire}

RR'-NH amine 3aire

Réduction de fonctions azotées :

```
R-NO<sub>2</sub>
```

R-C=N

R-CO-NH₂

$$H_2N - (CH_2)_6 - NH_2 + O C - (CH_2)_4 - CO OH$$

Nylon 6-6

$$- \boxed{ HN - \bigcirc \\ NH - \boxed{ } \bigcirc \\ - \boxed{ } \bigcirc \\ - \boxed{ } \bigcirc \\ - \boxed{ } \boxed{ Kevlar}$$

Amphétamine