Q.N	Question	
0.		
1.	The value of $\sqrt{5+2\sqrt{6}}$	$\sqrt{5 - \frac{1}{\sqrt{5 + 2\sqrt{6}}}}$ is:
	(a) $2\sqrt{2}$	(b) $2\sqrt{3}$
	(c) $1 + \sqrt{5}$	(d) $\sqrt{5}-1$
2.	The simplified form of	$\left(16^{\frac{3}{2}} + 16^{-\frac{3}{2}}\right)$ is:
	(a) 0	(b) $\frac{4097}{64}$
	(c) 1	(d) $\frac{16}{4097}$
3.	$(16^{0.16} \times 2^{0.36})$ is equal t	to
	(a) 2	(b) 16
	(c) 32	(d) 64
4.	The	value of
	$\left(\sqrt[3]{3.5} + \sqrt[3]{2.5}\right) \left\{ \left(\sqrt[3]{3.5}\right)^2 - \sqrt[3]{8.75} + \left(\sqrt[3]{2.5}\right)^2 \right\} \text{ is:}$	
	(a) 5.375	(b) 1
	(c) 6	(d) 5
5.	The	value of
	1 +	1 1
	$\frac{1}{\sqrt{3.25} + \sqrt{2.25}} + \frac{1}{\sqrt{4.25} + \sqrt{3.25}} + \frac{1}{\sqrt{5.25} + \sqrt{4.25}}$	
	is:	
	(a) 1.00	(b) 1.25
	(c) 1.50	(d) 2.25
6.	The simplified	
	$\frac{2}{\sqrt{7} + \sqrt{5}} + \frac{7}{\sqrt{12} - \sqrt{5}}$	$-\frac{5}{\sqrt{12}-\sqrt{7}}$ is:
	(a) 5	(b) 2
	(c) 1	(d) 0
7.	$\frac{1}{\sqrt{3} + \sqrt{4}} + \frac{1}{\sqrt{4} + \sqrt{5}} + \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{4}$	$\frac{1}{\sqrt{5} + \sqrt{6}} + \frac{1}{\sqrt{6} + \sqrt{7}} + \frac{1}{\sqrt{7} + \sqrt{10}}$
	equal to	
	(a) $\sqrt{3}$ (c) $3 - \sqrt{3}$	(b) $3\sqrt{3}$
	(c) $3 - \sqrt{3}$	(d) $5 - \sqrt{3}$
8.	$3 + \frac{1}{\sqrt{3}} + \frac{1}{3 + \sqrt{3}} + \frac{1}{\sqrt{3}}$	$\left(\frac{1}{3-3}\right)$ is equal to

	(a) 1	(b) 3
	(c) $3 + \sqrt{3}$	(d) $3 - \sqrt{3}$
9.	$\sqrt{8-2\sqrt{15}}$ is equal to:	
	(a) $\sqrt{5} + \sqrt{3}$	(b) $5 - \sqrt{3}$
	(c) $\sqrt{5} - \sqrt{3}$	(d) $3 - \sqrt{5}$
10.	Simplify: $\left(\frac{\frac{3}{2+\sqrt{3}} - \frac{3}{2}}{2-5\sqrt{3}}\right)$	$\left(\frac{2}{-\sqrt{3}}\right)$
	(a) $\frac{1}{2} - 5\sqrt{3}$	(b) $2-5\sqrt{3}$
	(c) 1	(d) 0
11.	$\left(\frac{2+\sqrt{3}}{\sqrt{2}-\sqrt{3}} + \frac{2-\sqrt{3}}{2+\sqrt{3}} + \frac{\sqrt{3}}{\sqrt{3}}\right)$	$\frac{\sqrt{3}-1}{\sqrt{3}+1}$ simplifies to:
	(a) $2 - \sqrt{3}$	(b) $2 + \sqrt{3}$
	(c) $16 - \sqrt{3}$	(d) $40 - \sqrt{3}$
12.	$\left[8 - \left(\frac{4^{\frac{9}{4}}\sqrt{2.2^2}}{2\sqrt{2^{-2}}}\right)^{\frac{1}{2}}\right] \text{ is easy }$	qual to
	(a) 32	(b) 8
	(c) 1	(d) 0
13.		$\frac{1}{\sqrt{7} - \sqrt{6}} - \frac{1}{\sqrt{6} - \sqrt{5}} + \frac{1}{\sqrt{5} - \sqrt{5}}$
	is equal to	
	(a) 5	(b) 1
4.4	(c) 3	(d) 0
14.	Simplified form of $\left[\begin{pmatrix} 5/2 \\ \sqrt{2} \end{pmatrix}\right]$	$(x^{-3/5})^{-5/3}$ is
	(a) x ⁵	(b) x^{-5}
	(c) x	(d) $\frac{1}{x}$
15.	$\left(\sqrt{2} + \sqrt{7 - 2\sqrt{10}}\right) \text{ is eq}$ (a) $\sqrt{2}$ (c) $\sqrt{5}$	qual to
	(a) $\sqrt{2}$	(b) $\sqrt{7}$
	(c) $\sqrt{5}$	(d) $2\sqrt{5}$

1.6	1	
16.	$\left[\left\{ \left(-\frac{1}{2} \right)^2 \right\}^{-2} \right]^{-1} $ is equ	ual to:
	(a) $\frac{1}{16}$ (c) $-\frac{1}{16}$	(b) 16
	(c) $-\frac{1}{16}$	(d) - 16
17.	The value of $\sqrt[3]{0.0001}$	25 is
	(a) 0.005	(b) 0.05
	(c) 0.5	(d) 0.0005
18.		$\frac{1}{\sqrt{8}} + \frac{1}{4 - \sqrt{15}}$. Then we
	have	(1.) -> 10
	(a) $a < 18$ but $a \neq 9$	
19.	(c) a = 18	(d) a = 9 value of
19.		
	$\frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}+\sqrt{2}} + \frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{4} + \sqrt{3}} + \ldots + \frac{1}{\sqrt{100} + \sqrt{99}}$
	is	
	(a) 1	(b) 9
	(c) √99	(d) $\sqrt{99} - 1$
20.	$2 + \frac{6}{\sqrt{3}} + \frac{1}{2 + \sqrt{3}} + \frac{1}{\sqrt{3}}$	$\frac{1}{-2}$ equal to
	$(a) + \left(2\sqrt{3}\right)$	(b) $-(2+\sqrt{3})$
	(c) 1	(d) 2
21.	$If \frac{4+3\sqrt{3}}{\sqrt{7}+4\sqrt{3}} = A + \sqrt{I}$	\overline{B} , then $B - A$ is
	(a) – 13	(b) $2\sqrt{13}$
	(c) 13	(d) $3\sqrt{3} - \sqrt{7}$
22.	Find the simplest va	lue of $2\sqrt{50} + \sqrt{18} - \sqrt{72}$
	(given $\sqrt{2} = 1.414$).	
	(a) 4.242	(b) 9.898
	(c) 10.312	(d) 8.484
	<u> </u>	

QUESTIONS BASED ON FINDING THE LARGEST/GREATEST AND LEAST/SMALLEST VALUE

	AND LEAST/SWALLEST VALUE	
Q.N	Question	
0.		
1.	Which of the following is the biggest?	
	$\sqrt[3]{4}$, $\sqrt[4]{6}$, $\sqrt[6]{15}$, and $\sqrt[12]{245}$,	
	(a) $\sqrt[3]{4}$ (b) $\sqrt[4]{6}$	
	(c) $\sqrt[6]{15}$ (d) $\sqrt[12]{245}$	
2.	Arrange the following in descending order:	
	$\sqrt[3]{4}, \sqrt{2}, \sqrt[6]{3}, \sqrt[4]{5}$	
	(a) $\sqrt[3]{4} > \sqrt[4]{5} > \sqrt{2} > \sqrt[6]{3}$	
	(b) $\sqrt[4]{5} > \sqrt[3]{4} > \sqrt[6]{3} > \sqrt{2}$	
	(c) $\sqrt{2} > \sqrt[6]{3} > \sqrt[3]{4} > \sqrt[4]{5}$	
	(d) $\sqrt[6]{3} > \sqrt[4]{5} > \sqrt[3]{4} > \sqrt{2}$	
3.	The smallest of	
	$\sqrt{8} + \sqrt{5}$, $\sqrt{7} + \sqrt{6}$, $\sqrt{10} + \sqrt{3}$ and $\sqrt{11} + 2$ is:	
	(a) $\sqrt{8} + \sqrt{5}$ (b) $\sqrt{7} + \sqrt{6}$	
	(c) $\sqrt{10} + \sqrt{3}$ (d) $\sqrt{11} + \sqrt{2}$	
4.	Which is the greatest among	
	$\left(\sqrt{19}-\sqrt{17}\right), \left(\sqrt{13}-\sqrt{11}\right), \left(\sqrt{7}-\sqrt{5}\right) \text{ and } \left(\sqrt{5}\right)$	
	(a) $\sqrt{19} - \sqrt{17}$ (b) $\sqrt{13} - \sqrt{11}$	
	(c) $\sqrt{7} - \sqrt{5}$ (d) $\sqrt{5} - \sqrt{3}$	
5.	The greatest among	
	$\sqrt{7} - \sqrt{5}, \sqrt{5} - \sqrt{3}, \sqrt{9} - \sqrt{7}, \sqrt{11} - \sqrt{9}$ is	
	(a) $\sqrt{7} - \sqrt{5}$ (b) $\sqrt{5} - \sqrt{3}$	
	(c) $\sqrt{9} - \sqrt{7}$ (d) $\sqrt{11} - \sqrt{9}$	
6.	The least one of $2\sqrt{3}$, $2\sqrt[4]{5}$, $\sqrt{8}$ and $3\sqrt{2}$ is	
	(a) $2\sqrt{3}$ (b) $2\sqrt[4]{5}$	
	(c) $\sqrt{8}$ (d) $3\sqrt{2}$	
7.	The greatest number among 2 ⁶⁰ , 3 ⁴⁸ , 4 ³⁶ and 5 ²⁴	
	is	
	(a) 2^{60} (b) 3^{48}	
	(c) 4^{36} (d) 5^{24}	

8.	The smallest among	$\sqrt[6]{12}$, $\sqrt[3]{4}$, $\sqrt[4]{5}$, $\sqrt{3}$ is
	(a) $\sqrt[6]{12}$	(b) $\sqrt[3]{4}$
	(c) $\sqrt{3}$	(d) $\sqrt[4]{5}$
9.	The greatest among th	e numbers $\sqrt{0.09}$, $\sqrt[3]{0.064}$
	$0.5 \text{ and } \frac{3}{5} \text{ is}$	
	(a) $\sqrt{0.09}$	(b) $\sqrt[3]{0.064}$
	(c) 0.5	(d) $\frac{3}{5}$
10.	Among the	following numbers
	$\sqrt[6]{12}$, $\sqrt[3]{4}$, $\sqrt[4]{5}$, $\sqrt{3}$ the	least one is:
	(a) $\sqrt[6]{12}$	(b) $\sqrt[3]{4}$
	(c) $\sqrt[4]{5}$	(d) $\sqrt{3}$
11.	Out of the numbers	0.3, 0.03, 0.9, 0.09 the
	number that is nearest	to the value of $\sqrt{0.9}$ is
	(a) 0.3	(b) 0.03
	(c) 0.9	(d) 0.09

IF $\sqrt{x}=$ A IS GIVEN (WHERE X = 1, 2, 3..., AND 'A' IS THE CORRECT VALUE OF \sqrt{x}), FIND THE VALUE OF GIVEN EQUATION

Q.No.	Question	
1.	Given $\sqrt{2} = 1.414$. The value of	
	$\sqrt{8} + 2\sqrt{32} - 3\sqrt{128} + 4\sqrt{50}$ is	
	(a) 8.484 (b) 8.526	
	(c) 8.426 (d) 8.876	
2.	If $\sqrt{15} = 3.88$, then what is the value of $\sqrt{\frac{5}{3}}$	
	(a) $1.29\overline{3}$ (b) 1.2934	
	(c) 1.29 (d) 1.295	
3.	If $\sqrt{3} = 1.732$, then what is the value of	
	$\frac{4+3\sqrt{3}}{\sqrt{7+4\sqrt{3}}}$ upto three places of decimal?	
	(a) 0.023 (b) 0.464	

	(c) 2.464	(d) 3.023
4.	Evaluate: $16\sqrt{\frac{3}{4}} - 9\sqrt{\frac{4}{3}}$	if $\sqrt{12} = 3.46$
	(a) 3.46	(b) 10.38
	(c) 13.84	(d) 24.22

QUESTIONS BASED ON RATIONALISING OR PRIME FACTOR

Q.No.	Question	
1.	A rationalising factor of $(\sqrt[3]{9} - \sqrt[3]{3} + 1)$ is	
	(a) $\sqrt[3]{3} - 1$	(b) $\sqrt[3]{3} + 1$
	(c) $\sqrt[3]{9} + 1$	(d) $\sqrt[3]{9} - 1$
2.	The total number of prime factors in $4^{10} \times 7^3 \times 7^3$	
	$16^2 \times 11 \times 10^2 \text{ is}$	
	(a) 34	(b) 35
	(c) 36	(d) 37
3.	The number of prime factors in $6^{333} \times 7^{222} \times 8^{111}$	
	(a) 1221	(b) 1222
	(c) 1111	(d) 1211

QUESTIONS BASED ON SQUARE AND SQUARE ROOT

Q.No.	Question	
1.	When $(4 + \sqrt{7})$ is presented in the form of	
	perfect square it will be equal to	
	(a) $(2+\sqrt{7})^2$ (b) $\left(\frac{\sqrt{7}}{2}+\frac{1}{2}\right)^2$	
	(c) $\left\{ \frac{1}{\sqrt{2}} (\sqrt{7} + 1) \right\}^2$ (d) $\left(\sqrt{3} + \sqrt{4} \right)^2$	
2.	The square root of $\left(\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\right)$ is	
	(a) $\sqrt{3} + \sqrt{2}$ (b) $\sqrt{3} - \sqrt{2}$ (c) $\sqrt{2} \pm \sqrt{3}$ (d) $\sqrt{2} - \sqrt{3}$	
	(c) $\sqrt{2} \pm \sqrt{3}$ (d) $\sqrt{2} - \sqrt{3}$	

3. The square root of $14 + 6\sqrt{5}$ is

(a) $2 + \sqrt{5}$ (b) $3 + \sqrt{5}$ (c) $5 + \sqrt{3}$ (d) $3 + 2\sqrt{5}$

QUESTIONS BASED ON POSITIVE AND NEGATIVE EXPONENT

Q.No.	Question	
1.	Simplify: $\left[\sqrt[3]{6\sqrt{5^9}}\right]^4 \left[\sqrt[3]{6\sqrt{5^9}}\right]^4$	
	(a) 5^2	(b) 5 ⁴
	(c) 5 ⁸	(d) 5^{12}
2.	If $3^{x+8} = 27^{2x+1}$, the value	ue of x is:
	(a) 7	(b) 3
	(c) -2	(d) 1
3.	1	
	$(36)^{\frac{1}{6}}$ is equal to:	
	(a) 1	(b) 6
	(c) $\sqrt{6}$	(d) $\sqrt[3]{6}$
4.	$(4)^{0.5} \times (0.5)^4$ is equal t	0:
	(a) 1	(b) 4
	(c) $\frac{1}{8}$	(d) $\frac{1}{32}$
	G G	32
5.	If $(2000)^{10} = 1.024 \times 1$	0 ^k , then the value of k is
	(a) 33	(b) 30
	(c) 34	(d) 31
6.	If $3^{x+y} = 81$ and 81^{x-y}	= 3, then the value of x is
	(a) 42	(b) $\frac{15}{8}$
	(c) $\frac{17}{8}$	(d) 39

7. If
$$a = 7 - 4\sqrt{3}$$
, the value of $a^{\frac{1}{2}} + a^{-\frac{1}{2}}$ is

(a) $3\sqrt{3}$ (b) 4

(c) 7 (d) $2\sqrt{3}$

QUESTION LIKE
$$\sqrt{x+\sqrt{x+\sqrt{x+--}}}$$
 AND
$$\sqrt{x\sqrt{x\sqrt{x\sqrt{x----}}}}$$

Q.No.	Question	
1.	$\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}$	
	(a) equal 1	
	(b) lies between 0 and	1
	(c) lies between 1 and	2
	(d) is greater than 2	
2.	$\sqrt{2+\sqrt{2+\sqrt{2+\dots}}} \text{ is }$	equal to
	(a) $\sqrt{2}$	(b) $2\sqrt{2}$
	(c) 2	(d) 3
3.	$\sqrt{12 + \sqrt{12 + \sqrt{12 + \dots}}}$	is equal to
	(a) 3	(b) 4
	(c) 6	(d) 2
4.	$\sqrt{3\sqrt{3\sqrt{3}}}$ is equal to	
	(a) $\sqrt{3}$	(b) 3
	(c) $2\sqrt{3}$	(d) $3\sqrt{3}$
5.	Find the value of $\sqrt{30}$	$+\sqrt{30+\sqrt{30+}}$
	(a) 5	(b) $3\sqrt{10}$
	(c) 6	(d) 7
6.	The value of $\sqrt{2\sqrt[3]{4\sqrt{2\sqrt[3]{4}}}}$ is	
	(a) 2	(b) 2 ²
	(a) 2 (c) 2 ³	(d) 2^5

7.	The value of $\sqrt{40 + \sqrt{9\sqrt{81}}}$ is	
	(a) $\sqrt{111}$	(b) 9
	(c) 7	(d) 11

MISCELLANEOUS QUESTIONS

Q.No.	Question	
1.	By how much does	$5\sqrt{7} - 2\sqrt{5}$ exceed
	$3\sqrt{7}-4\sqrt{5}$?	
)	$(5) \sqrt{7} + \sqrt{5}$
	$ (c) 2(\sqrt{7} + \sqrt{5}) $	$1) 7\left(\sqrt{2} + \sqrt{5}\right)$
2.	If $x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}$ and $y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}$ then $(x + y)$	
	equals:	
	(a) 8 (b)) 16
	(c) $2\sqrt{15}$ (d)	$1) \ 2\left(\sqrt{5} + \sqrt{3}\right)$
3.	If $a = \frac{\sqrt{3}}{2}$, then the value of $\sqrt{1+a} + \sqrt{1-a}$ is	
	(a) $\sqrt{3}$ (b)	$)) \frac{\sqrt{3}}{2}$
	(c) $2 + \sqrt{3}$	1) $2 - \sqrt{3}$
4.	By how much does $(\sqrt{12} + \sqrt{18})$ exceed $(2\sqrt{3} + 2\sqrt{2})$?	
	(a) 2 (b)	o) $\sqrt{3}$
	(c) $\sqrt{2}$	1) 3
5.	If $x + \frac{1}{x} = -2$ then the value of $x^{2n+1} + \frac{1}{x^{2n+1}}$	
	where n is a positive integer, is	
		o) 2
	$(c) -2 \qquad (c)$	l) –5

The number, which multiplied with $(\sqrt{3} + \sqrt{2})$ gives $(\sqrt{12} + \sqrt{18})$, is

(a) $3\sqrt{2} - 2\sqrt{3}$ (b) $3\sqrt{2} + 2\sqrt{3}$ (c) $\sqrt{6}$ (d) $2\sqrt{3} - 3\sqrt{2}$