Process Mining

COMP9313: Big Data Management

What's process mining?

Wikipedia:

"Process mining is a family of techniques in the field of process management that support the analysis of business processes based on event logs. During process mining, specialized data mining algorithms are applied to event log data in order to identify trends, patterns and details contained in event logs recorded by an information system"

processmining.org

"Process mining techniques allow for extracting information from event logs. For example, the audit trails of a workflow management system or the transaction logs of an enterprise resource planning system can be used to discover models describing processes, organizations, and products."

What's process mining?

Process mining is about discovering what people really do in practice.

HTNG Check In Process

image: wiki.htng.org

What can I do with process mining?

What can I do with process mining?

What can I do with process mining?

Data mining vs. Process mining

Data mining

- association rules
- graphs
- sequences (of items)
- clusters

Process mining

- process models
- control flows
- decision points
- process execution data

In this lecture...

process discovery

conformance checking

decision point mining

Petri nets for business process modeling

What's a Petri net?

"A Petri net, also known as a place/transition (PT) net, is one of several mathematical modeling languages for the description of distributed systems" (*)

Relation to BPMN

Relation to BPMN

BPMN Petri Net sequential В routing В conditional routing В В parallel Α routing 13

Process Discovery

recall...

Event logs

Case ID	Activity	Timestamp
1	Α	2019-03-25 11:15:01
1	С	2019-03-25 11:15:05
1	D	2019-03-25 11:15:10
1	F	2019-03-25 11:15:18

Event logs

InstanceID	Activity	Timestamp	
107	J	2015-02-13 21:22	
111	С	2015-02-23 15:29	
114	Н	2015-02-14 15:17	
117	D	2015-02-20 18:30	
118	Е	2015-02-24 22:28	
145	D	2015-02-11 16:14	
159	G	2015-02-12 17:20	
163	Н	2015-02-21 17:11	
166	В	2015-02-21 20:14	
170	F	2015-02-18 18:27	
173	D	2015-02-13 23:57	
188	F	2015-02-22 13:32	
190	G	2015-02-26 16:47	
194	D	2015-02-18 16:48	
205	Е	2015-02-25 16:36	
216	J	2015-02-14 12:59	
223	G	2015-02-27 21:52	
243	Н	2015-02-25 24:25	
246	С	2015-02-28 21:12	
249	G	2015-02-20 18:22	
267	J	2015-02-12 16:14	
268	F	2015-02-16 15:20	
275	Н	2015-02-25 23:11	
289	G	2015-02-16 17:48	
294	Α	2015-02-24 16:37	
299	В	2015-02-25 21:12	
302	J	2015-02-19 20:35	
308	D	2015-02-15 18:31	
329	Н	2015-02-20 17:59	
329	С	2015-02-23 24:23	
340	J	2015-02-21 15:16	
341	D	2015-02-12 21:23	

Traces:

case 1: A B C D E F

case 2: A B D C F I

case 3: A D E F G H J

Example:α - Algorithm

Event log

```
instance 1 : task A
instance 2 : task A
instance 3 : task A
instance 3 : task B
instance 1 : task B
instance 1 : task C
instance 2 : task C
instance 4 : task A
instance 2 : task B
instance 2 : task D
instance 5 : task E
instance 4 : task C
instance 1 : task D
instance 3 : task C
instance 3 : task D
instance 4 : task B
instance 5
          : task F
instance 4 : task D
```

- <u>Direct succession</u>: x>y iff for some case x is directly followed by y.
- Causality: $x \rightarrow y$ iff x > y and not y > x
- Parallel: x | y iff x>y and y>x
- Choice: x#y iff not x>y and not y>x

```
trace1: A B C D
trace2: A C B D
trace3: A B C D
trace4: A C B D
trace5: E F
```


Example:α - Algorithm

Conformance Checking

recall...

to what extent?

Main idea of conformance checking

trace 1: A C D F

trace 2: A D F

Trace 3: A B D F

Main idea of conformance checking

trace 1: A C D F trace 2: A D F

Trace 3: A B D F

Main idea of conformance checking

trace 1: A C D F

trace 2: A D F

Trace 3: A B D F

Metrics for conformance checking

Fitness

How well is model able to replay the log?

Behavioral appropriateness (precision)

How much extra-behavior is allowed by the model?

Structural appropriateness

How many "unnecessary" redundant and invisible tasks are there in the model?

conformant? not conformant? so what?

Decision Point Mining

recall...

How does it work?

Case ID	amount	origin	trip type	branch
1	243	Europe	Leisure	Pay with cash
2	325	Europe	Business	Pay with cash
3	1021	Asia	Business	Provide info about credit card
4	560	Asia	Leisure	Pay with cash

Decision point mining with decision trees

Decision point mining with decision trees

Thanks