## **EE2020 Tutorial 4 - Solutions**

1.

| <u>Truth Table</u> |   |   |   |   |  |  |
|--------------------|---|---|---|---|--|--|
| Α                  | В | С | D | F |  |  |
| 0                  | 0 | 0 | 0 | 1 |  |  |
| 0                  | 0 | 0 | 1 | 1 |  |  |
| 0                  | 0 | 1 | 0 | 1 |  |  |
| 0                  | 0 | 1 | 1 | 1 |  |  |
| 0                  | 1 | 0 | 0 | 1 |  |  |
| 0                  | 1 | 0 | 1 | 1 |  |  |
| 0                  | 1 | 1 | 0 | 1 |  |  |
| 0                  | 1 | 1 | 1 | 0 |  |  |
| 1                  | 0 | 0 | 0 | 1 |  |  |
| 1                  | 0 | 0 | 1 | 1 |  |  |
| 1                  | 0 | 1 | 0 | 0 |  |  |
| 1                  | 0 | 1 | 1 | 0 |  |  |
| 1                  | 1 | 0 | 0 | 1 |  |  |
| 1                  | 1 | 0 | 1 | 0 |  |  |
| 1                  | 1 | 1 | 0 | 0 |  |  |
| 1                  | 1 | 1 | 1 | 0 |  |  |

$$Z_{SOP} = \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} C \overline{D} + \overline{A} \overline{B} C \overline{D} + \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{C} \overline{D} + \overline{A}$$

$$Z_{POS} = (A + \bar{B} + \bar{C} + \bar{D}).(\bar{A} + B + \bar{C} + D).(\bar{A} + B + \bar{C} + \bar{D}).(\bar{A} + \bar{B} + C + \bar{D}).(\bar{A} + \bar{B} + \bar{C} + \bar{D})$$
$$+ D).(\bar{A} + \bar{B} + \bar{C} + \bar{D})$$



$$Z_{MSOP} = \bar{A}\bar{B} + \bar{C}\bar{D} + \bar{A}\bar{C} + \bar{A}\bar{D} + \bar{B}\bar{C}$$

2.

| Tru | th Table |   |   |
|-----|----------|---|---|
| Α   | В        | С | F |
| 0   | 0        | 0 | 0 |
| 0   | 0        | 1 | 0 |
| 0   | 1        | 0 | 0 |
| 0   | 1        | 1 | 1 |
| 1   | 0        | 0 | 0 |
| 1   | 0        | 1 | 1 |
| 1   | 1        | 0 | 1 |
| 1   | 1        | 1 | 1 |

$$\begin{split} Z_{SOP} &= \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC \\ Z_{POS} &= (A+B+C).\,(A+B+\bar{C}).\,(A+\bar{B}+C).\,(\bar{A}+B+C) \end{split}$$



$$Z_{MSOP} = AC + BC + AB$$

3. (a) 
$$Z = \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} \overline{C} D + A \overline{B} \overline{C} D + A \overline{B} \overline{C} \overline{D}$$
 with 'X' for  $ABCD = 1010$ 



| \ AE | 3  |    |    |            |
|------|----|----|----|------------|
| CD   | 00 | 01 | 11 | 10         |
| 00   | 0  | 0  | 0  | 1          |
| 01   | 1  | 1  | 1  | 1          |
| 11   | 0  | 0  | 0  | 6          |
| 10   | Q  | 0  | 0  | <u>X</u> / |

MSOP  $Z = \overline{C}D + A\overline{B}\overline{C}$ 

$$\begin{aligned} & \text{MPOS} \\ & Z = \overline{C}(A+D) \cdot (\overline{B}+D) \end{aligned}$$

(b)  $Z = (\overline{A} + B + \overline{C})(A + B + \overline{C})$  with don't cares for ABC = 111 and 110

| A    |   |   |
|------|---|---|
| BC \ | 0 | 1 |
| 00   | 1 | 1 |
| 01   | 0 | 0 |
| 11   | 1 | X |
| 10   | 1 | X |



$$\begin{array}{ccc} MSOP & & MPOS \\ Z = B + \overline{C} & & Z = (B + \overline{C}) \end{array}$$

(c)  $f(x_1, \dots, x_4) = \sum m(0,4,5,6,7) + D(1,12,13,14,15)$ , where D is the set of don't cares and m is the set for which f = 1 (this alternate shorthand notation is also used to express min terms).





$$MSOP \\ Z = (x_2 + \overline{x}_1 \overline{x}_3)$$

$$MPOS Z = (x_2 + \overline{x_3}) \cdot (\overline{x_1})$$

4.



$$MSOP$$

$$Z = ACD+BCD+ABC+ABD$$

$$Z = ACD + BCD + ABC + ABD$$

$$\overline{C} \cdot H \qquad \overline{D} \cdot H$$



Z.H = ACD + BCD + ABC + ABD.H