Intégrale d'une fonction continue positive et croissante sur [a,b] Intégrale d'une fonction continue sur [a,b] Formule de la moyenne Intégrale et primitive Deux méthodes pratiques pour le calcule d'intégrales Intégrale d'une fonction sur un intervalle infini

Chapitre 1 - Intégrale à une seule variable

Stolfi Noelle - Leo Donati noelle.stolfi@unice.fr - leo.donati@unice.fr

Université Nice Sophia Antipolis IUT Nice Côte d'Azur

25 août 2016

- $lue{1}$ Intégrale d'une fonction continue positive et croissante sur [a,b]
 - Définition
 - Propriétés
- 2 Intégrale d'une fonction continue sur [a, b]
- Formule de la moyenne
- 4 Intégrale et primitive
- 5 Deux méthodes pratiques pour le calcule d'intégrales
 - Intégration par parties
 - Changement de variable
 - Primitive de fractions rationnelles
- 6 Intégrale d'une fonction sur un intervalle infini

Définition

On appelle subdivision de [a, b] une suite de points x_0, x_1, \ldots, x_n avec $n \in \mathbb{N}^*$ tels que $x_0 = a$, $x_1 = a + \frac{b-a}{n}$, $x_2 = a + 2\frac{b-a}{n}$, ..., $x_n = b$.

On construit ainsi deux types de rectangles

- R_k^- rectangle de base $[x_{k-1}, x_k]$ et de hauteur $f(x_{k-1})$
- R_k^+ rectangle de base $[x_{k-1}, x_k]$ et de hauteur $f(x_k)$

Aire de
$$R_k^- = |x_k - x_{k-1}| f(x_{k-1}) = \frac{b-a}{n} f(x_{k-1})$$

Rectangles R_k^+

Aire de
$$R_k^+ = |x_k - x_{k-1}| f(x_k) = \frac{b-a}{n} f(x_k)$$

On définit deux suites :

$$S_n^- = \sum_{k=1}^n \text{Aire } R_k^- = \sum_{k=1}^n \frac{b-a}{n} f(x_{k-1}) = \frac{b-a}{n} \sum_{k=1}^n f(x_{k-1})$$

$$S_n^+ = \sum_{k=1}^n \text{Aire } R_k^+ = \sum_{k=1}^n \frac{b-a}{n} f(x_k) = \frac{b-a}{n} \sum_{k=1}^n f(x_k)$$

La suite $(S_n^-)_n$ est croissante et majorée par l'aire engendrée par la courbe.

Les deux suites sont convergentes. On montre qu'elles ont la même limite, on la note $S=\int_a^b f(x)dx$. C'est l'intégrale de f sur l'intervalle [a,b]

Exemple

Calculons par cette méthode $\int_a^b 1 dx$.

$$S_n^- = \frac{b-a}{n} \sum_{k=1}^n f(x_{k-1})$$

$$S_n^- = \frac{b-a}{n}(f(x_0) + f(x_1) + \dots + f(x_n)) = \frac{b-a}{n}n = b-a$$

Proposition

•
$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

•
$$\int_a^b \lambda f(x) dx = \lambda \int_a^b f(x) dx$$

•
$$\int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$$

•
$$\left| \int_a^b f(x) dx \right| \leq \int_a^b |f(x)| dx$$

Intégrale d'une fonction continue sur [a, b]

- 1) Si f est décroissante et positive sur [a, b], on procède de même en échangeant les rôles de R_k^+ et R_k^- .
- 2) Si f est positive sur [a, b], on découpe [a, b] en sous-intervalles sur lesquels f est monotone.
- 3) Si f est négative sur [a, b], $\int_a^b f(x)dx = -\int_a^b -f(x)dx$.

Formule de la moyenne

Théorème

Soit $f:[a,b] \to \mathbb{R}$ continue, alors $\exists c \in [a,b]$ tel que

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Preuve:

Intégrale et primitive

On pose
$$F(x) = \int_a^x f(t)dt$$

Théorème

$$F'(x) = f(x)$$

Preuve: $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$ $F(x+h) - F(x) = \int_a^{x+h} f(t) dt - \int_a^x f(t) dt = \int_a^{x+h} f(t) dt + \int_x^a f(t) dt = \int_x^{x+h} f(t) dt$. On utilise la formule de la moyenne, donc $\exists c \in [x, x+h]$ tel que

$$\int_{x}^{x+h} f(t)dt = (x+h-x)f(c) = f(c)$$

En faisant tendre h verx 0, on obtient F'(x) = f(x)

Deux méthodes pratiques pour le calcule d'intégrales Intégrale d'une fonction sur un intervalle infini

Soit G une autre primitive de f. Alors F(x) = G(x) + C, $\forall x$, $C \in \mathbb{R}$.

- Si x = a, alors F(a) = G(a) + C, or F(a) = 0, donc G(a) = -C et F(x) = G(x) G(a)
- Si x = b, alors F(b) = G(b) G(a)

Donc

$$\int_{a}^{b} f(x)dx = G(b) - G(a) = [G(x)]_{a}^{b}$$

Exemple

Calculer
$$\int_0^1 x^2 dx$$
 et $\int_0^{\pi/2} \cos(2x) dx$

Primitives usuelles

Fonction f	$\int f(x)dx$
$u'u^n$ avec $n \neq -1$	$\frac{u^{n+1}}{n+1}$
$u'u^{-1}$	In u
u'e ^u	e ^u
u' cos u	cos u
u' sin u	sin <i>u</i>
$\frac{u'}{u^2+1}$	arctan u
$\frac{u'}{\sqrt{u^2+1}}$	arcsin u
$\frac{-u'}{\sqrt{u^2+1}}$	arccos u

Intégration par parties Changement de variable Primitive de fractions rationnelles

Intégration par parties

On connait la formule (fg)' = f'g + fg', donc (fg)' - f'g = fg'. On en déduit la formule de l'intégration par parties.

Proposition

$$\int_{a}^{b} fg'dx = [fg]_{a}^{b} - \int_{a}^{b} f'gdx$$

Exemple

Calculer $\int_0^{\pi} x \sin x dx$

Changement de variable

On veut calculer $I=\int_1^4 rac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} dx$

Intégrale d'une fonction sur un intervalle infini

Posons $t = \sqrt{x} \Leftrightarrow t^2 = x$

On déduit que : 2t dt = dx

Remplaçons dans

$$I = \frac{1}{2} \frac{\sqrt{1+t}}{t} 2t \ dt = 2\frac{1}{2} \sqrt{1+t} \ dt$$

Donc

$$I = 2\left[\frac{(1+t)^{3/2}}{3/2}\right]_1^2 = \frac{4}{3}(3^{3/2} - 2^{3/2})$$

Primitive de fractions rationnelles

• Pour
$$f(x) = \frac{N(x)}{(x-a)(x-b)} = E(x) + \frac{A}{x-a} + \frac{B}{x-b}$$

$$\int f(x)dx = \int E(x)dx + A\ln|x-a| + B\ln|x-b|$$

• Pour
$$f(x) = \frac{N(x)}{(x-a)^n} = E(x) + \frac{A_n}{(x-a)^n} + \frac{A_{n-1}}{(x-a)^{n-1}} + \dots + \frac{A_1}{(x-a)}$$

Or $\int \frac{dx}{(x-a)^p} = \frac{1}{1-p}(x-a)^{-p+1}$ et $\int \frac{dx}{(x-a)} = \ln|x-a|$

On cherche à calculer $I = \int_1^\infty \frac{dx}{x^2}$. On pose

$$I_A = \int_1^A \frac{dx}{x^2} = \int_1^A x^{-2} dx = \left[\frac{-1}{x}\right]_1^A$$

On fait tendre A vers $+\infty$

$$lim_{A\to +\infty}I(A)=1=I$$