NP-полнота алгоритмических игр

Sameer Tantry

December 2022

В данном проекте мы формализуем некоторые классические алгоритмические игры и приведем доказательства их ${\bf NP}$ -полноты.

1 Основные определения

Определение 1. Класс **NP**. Язык $A \in \mathbf{NP}$, если $\exists V(x,s)$, работающая за poly(|x|): $\forall x \in A \iff \exists s : V(x,s) = 1$.

Определение 2. Пусть А и В — два языка. Тогда А сводится по Карпу к В, если существует всюду определенная функция $f:\{0,1\}^* \to \{0,1\}^*$, вычислимая за полиномиальное время, такая что $x \in A \iff f(x) \in B$. Обозначение: $A \leq_p B$. Рассмотрим некоторые простые свойства такой сводимости:

Утверждение. Имеют место следующие факты:

- Сводимость по Карпу рефлексивна: $A \leq_p A$;
- Сводимость по Карпу транзитивна: $(A \leq_p B \land B \leq_p C) \rightarrow (A \leq_p C);$
- Если $B \in \mathbf{NP}$ и $A \leq_p B$, то $A \in \mathbf{NP}$.

Определение 3. NP-полнота. Язык А **NP**-труден, если $\forall B \in \mathbf{NP} \hookrightarrow B \leq_p A$. Язык А **NP**-полон, если А **NP**-труден и $A \in \mathbf{NP}$.

Доказательство \mathbf{NP} -полноты по определению часто является крайне трудной задачей, поэтому в большинстве случаев в доказательстве используется сведение другой \mathbf{NP} -полной задачи к данной. Стоит отметить, что мы говорим про \mathbf{NP} -полноту задач, но определение \mathbf{NP} -полноты ввели для языков.

Замечание. Будем называть задачу **NP**-полной, если язык, состоящий из слов, определенным образом кодирующих входные данные нашей задачи, для которых существует решение задачи, является **NP**-полным.

Рассмотрим некоторые наиболее популярные NP-полные задачи:

- KNAPSACK = $\{(n_1,...,n_k,m_1,...,m_k,N,M)\mid \exists \alpha\in\{0,1\}^k \sum_{i=1}^k \alpha_i n_i \leq N$ и $\sum_{i=1}^k \alpha_i m_i \geq M\};$
- SAT = $\{\varphi \mid \varphi$ выполнимая булева формула $\}$;
- CLIQUE = $\{(G, k) \mid$ в графе G есть клика из k вершин $\}$;
- INDSET = $\{(G, k) \mid$ в графе G есть вершинное покрытие из k вершин $\}$;
- VERTEXCOVER $= \{$ в графе G есть вершинное покрытие из к вершин $\};$
- DHAMPATH = $\{(G, s, t) \mid$ в ориентированном графе G есть ориентированный путь из s в t, проходящий ровно один раз через каждую вершину $\}$;
- TSP = $\{(G, w, s, t, l) \mid$ во взвешенном графе (G, w) есть путь коммивожёра из s в t длины не больше $l\}$;
- $3COL = \{G \mid \text{вершины графа можно правильно раскрасить в 3 цвета}\};$
- INTPROG = $\{(A, b) \in \mathbb{Z}^{n \times m} \times \mathbb{Z}^n \mid \exists x \in \mathbb{N}^m \ Ax = b\};$
- THEOREMS = $\{(\varphi, 1^n) \mid y$ арифметической формулы φ есть доказательство в аксиоматике Пеано длины не больше $n\}$.

2 NP-полные игры

 ${f NP}$ -полные задачи считаются наиболее сложными задачами среди задач из ${f NP}$. Для них, вероятно, не будет найдено быстрого решения дающего точный, а не приближенный ответ. Необходимо упомянуть гипотезу ${f P}={f NP}$? Задача заключается в установлении равенства или неравенства между этими двумя классами. Данная проблема является одной из семи задач тысячелетия, за решение которой Математический институт Клэя назначил премию в миллион долларов.

2.1 Пятнашки

Пятнашки, или игра в 15, такен — популярная головоломка, придуманная в 1878 году Ноем Чепмэном. Головоломка представляет собой набор из 15 одинаковых квадратных костяшек с нанесёнными на них числами, лежащих в квадратной коробке. Длина стороны коробки в четыре раза больше длины стороны костяшки, поэтому в коробке остаётся незаполненным одно квадратное поле. Цель игры — упорядочить костяшки по возрастанию номеров, перемещая их внутри коробки, желательно сделав как можно меньше перемещений.

Рассмотрим задачу нахождения оптимального решения и покажем ее \mathbf{NP} -полноту. Эта задача является частым примером использования алгоритмов с приближенным решением и эвристических функций и предлагается в некоторых алгоритмических курсах.

В данной работе мы лишь рассмотрим идею доказательства **NP**-полноты, так как полное доказательство довольно сложное. Для этого попробуем формализовать игру:

Моделировать игру мы будем в общем случае.

Определение 1. Доска — неориентированный граф G(V,E), где $V=\{1,\ ...,\ n^2\}$ и ребра определим следующим образом: $V_1=\{1,\ 2,\ ...,\ n\},\ V_2=\{1,\ n+1,\ ...,\ n(n-1)+1\},\ V_3=\{n,\ 2n,\ ...,\ n^2\},\ V_4=\{n(n-1)+1,\ n(n-1)+2,\ ...,\ n^2\}.$ Тогда

$$\forall v \in V \setminus V_1 \hookrightarrow \{v, \ v - n\} \in E,$$

$$\forall v \in V \setminus V_2 \hookrightarrow \{v, \ v - 1\} \in E,$$

$$\forall v \in V \setminus V_3 \hookrightarrow \{v, \ v + 1\} \in E,$$

$$\forall v \in V \setminus V_4 \hookrightarrow \{v, \ v + n\} \in E.$$

Определение 2. Конфигурация — биекция $F:V \to \{0,...,|V|-1\}$, где для пустой клетки $v \hookrightarrow F(v) = 0$

Конфигурацию назовем правильной, если в каждой вершине графа кроме одной находится уникальное число от 1 до |V|-1. Иначе говоря,

 $\exists!v\in V: F(v)=0, \forall u,w\in V\setminus\{v\}\hookrightarrow F(u), F(w)\in\{1,...,|V|-1\},$ причем $F(u)\neq F(w).$

 $u,v\in V.$ Определим ход игры как переход от конфигурации Fв конфигурацию F',где

 $F(u) \neq 0 \land F(v) = 0 \land F'(u) = 0 \land F'(v) \neq 0 \land \forall w \in V \setminus \{u,v\} \hookrightarrow F(w) = F'(w)$ Финальную конфигурацию определим следующим образом:

 $F_t: \forall n \in \{1, ..., |V| - 1\} \hookrightarrow F_t(n) = n, F_t(16) = 0$

Постановка задачи. Дан граф G(V, E), правильные конфигурации F_s , F_t и целое число k. Существует ли последовательность из $\leq k$ правильных ходов, которая переводит конфигурацию F_s в F_t ?

Теорема. Данная задача является **NP**-полной. **Доказательство:**

Докажем, что данная задача лежит в классе \mathbf{NP} . Заметим, что в качестве сертификата можно предложить саму последовательность конфигураций $F_s, F_1, F_2, ..., F_{m-1}, F_t$. Тогда проверка правильности каждой конфигурации будет полиномиальной. Значит, задача принадлежит классу \mathbf{NP} .

В доказательстве полноты сведем некоторую **NP**-полную задачу к данной. Рассмотрим задачу 3XC (задача о точном покрытии 3-множествами).

Задача. Дано множество $U=\{e_i\}_{i=1...3n}$ и семейство множеств $S=\{s_j\}_{j=1...m}$, где $\forall j\in\{1,...,m\}\hookrightarrow |s_j|=3, s_j\subset U$. Существует ли подмножество $S'\subset S$, все множества которого покрывают U таким образом, что каждое e_i лежит ровно в одном s_i ?

Ричардом Карпом было доказано, что эта задача является **NP**-полной [4]. Сводимость приведена в статье [2].

Решения, которые применяются на практике:

Можно рассмотреть граф игры и искать в нем кратчайший путь. Для поиска кратчайшего пути часто используется алгоритм A^* [5]. Данный алгоритм является эвристической версией алгоритма поиска в ширину на графе. Вершины для обхода выбираются в соответствии с эвристикой — предполагаемым количеством ходов до цели. Эвристики:

Манхэттенское расстояние (Manhattan distance)
Манхэттенское расстояние — это сумма расстояний по строкам и столбцам от текущего расположения костяшки до ее правильной позиции. Пример: на Рис. 1 манхэттенское расстояние равно 4.

• Линейный конфликт (Linear conflict)

Считается, что костяшка I и костяшка J находятся в линейном конфликте по строке, если они обе стоят в своей строке, но костяшка I находится левее костяшки J, хотя на самом деле должна быть справа. Пример: На Рис. 2 I = 15, J = 13.

Мы должны подвинуть одну из костяшек со строки, поэтому можем добавить 2 к манхэттенскому расстоянию. Аналогичным образом рассматривается линейный конфликт по столбцу.

• Угловые фишки (Corner tiles)

Рассмотрим правый верхний угол на Рис. 3. Пусть «3» или «8» стоит на своей позиции, а на месте «4» — любая другая костяшка. В таком случае, чтобы поставить «4» на место, костяшки придется подвинуть. Для этого добавим 2 к манхэттенскому расстоянию. Если «3» или «8» участвует в линейном конфликте (linear conflict), то двойка уже добавлена.

Рис. 1: Манхэттенское расстояние

Рис. 2: Линейный конфликт

Рис. 3: Угловые фишки

Список литературы

- [1] Daniil Musatov: Compl-book
- [2] Oded Goldreich: Finding the Shortest Move-Sequence in the Graph-Generalized 15-Puzzle is ${\bf NP}\text{-Hard}$
- [3] Solving Sliding Tiles
- [4] Richard M. Karp: Reducibility Among Combinatorial Problems
- [5] A-star