Data Mining in Action

Матричные разложения

Виктор Кантор

$$X \approx U \cdot V^T$$

$$l \times n \quad l \times k \quad k \times n$$

$$X \approx U \cdot V^{T}$$

$$| |X - U \cdot V^{T}| \rightarrow min$$

$$X \approx U \cdot V^{T}$$

$$||X - U \cdot V^{T}|| \rightarrow min$$

$$||A||_{F} = \sqrt{\sum_{i,j} a_{ij}^{2}}$$

$$X \approx U \cdot V^{T}$$

$$| \times n \quad | \times k \quad k \times n$$

$$| |X - U \cdot V^{T}| | \rightarrow min$$

$$\sum_{i,j} (x_{ij} - \langle u_i, v_j \rangle)^2 \rightarrow min$$

Разбираемся с обозначениями

Разбираемся с обозначениями

$$x_{ij} \approx \langle u_i, v_j \rangle$$

SVD в линейной алгебре

 $X = U\Sigma V^T$

U - ортогональная

Σ - диагональная

V - ортогональная

SVD в линейной алгебре

 $X = U\Sigma V^T$

U - ортогональная

Σ - диагональная

V - ортогональная

$$X \approx U \cdot V^{T}$$

$$l \times n \quad l \times k \quad k \times n$$

$$||X - U \cdot V^{T}|| \rightarrow min$$

$$X \approx U \cdot V^{T}$$

$$l \times n \quad l \times k \quad k \times n$$

$$||X - U \cdot V^{T}|| \rightarrow min$$

$$X = \widetilde{U}\Sigma\widetilde{V}^T$$

$$X \approx U \cdot V^{T}$$

$$l \times n \quad l \times k \quad k \times n$$

$$||X - U \cdot V^{T}|| \rightarrow min$$

$$X = \widetilde{U}\Sigma\widetilde{V}^T$$

$$X \approx U \cdot V^{T}$$

$$l \times n \quad l \times k \quad k \times n$$

$$||X - U \cdot V^{T}|| \rightarrow min$$

$$X = \widetilde{U}\Sigma\widetilde{V}^T$$

 \widetilde{U}_k , Σ_k , \widetilde{V}_k -усеченные матрицы из SVD

$$U = \widetilde{U}_k \Sigma_k$$
, $V = \widetilde{V}_k$

$$X \approx U \cdot V^{T}$$

$$l \times n \quad l \times k \quad k \times n$$

$$||X - U \cdot V^{T}|| \rightarrow min$$

$$X = \widetilde{U}\Sigma\widetilde{V}^T$$

 \widetilde{U}_k , Σ_k , \widetilde{V}_k -усеченные матрицы из SVD

$$U = \widetilde{U}_k$$
, $V = \widetilde{V}_k \Sigma_k$

$$X \approx U \cdot V^{T}$$

$$l \times n \quad l \times k \quad k \times n$$

$$||X - U \cdot V^{T}|| \rightarrow min$$

$$X = \widetilde{U}\Sigma\widetilde{V}^T$$

 \widetilde{U}_k , Σ_k , \widetilde{V}_k -усеченные матрицы из SVD

$$U = \widetilde{U}_k \sqrt{\Sigma_k}, \quad V = \widetilde{V}_k \sqrt{\Sigma_k}$$

"SVD" в машинном обучении

$$X \approx U \cdot V^T$$

$$l \times n \quad l \times k \quad k \times n$$

$$\sum_{i,j} \left(x_{ij} - \left\langle u_i, v_j \right\rangle \right)^2 \to min$$

 u_i - «профили» объектов v_i - «профили» исходных признаков

Матрица рейтингов и SVD

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля	5	5	2	
Вова			3	5
Коля	3		4	5
Петя				4
Ваня		5	3	3

Матрица рейтингов и SVD

j

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля	5	5	2	
Вова			3	5
Коля	3		4	5
Петя				4
Ваня		5	3	3

Матрица рейтингов и SVD

j

	Пила	Улица Вязов	Ванильное небо	1+1
Маша	5	4	1	2
Юля	5	5	2	
Вова			3	5
Коля	3		4	5
Петя				4
Ваня		5	3	3

$$x_{ij} \approx \langle u_i, v_j \rangle$$

 u_i - «интересы пользователей»

 v_i - «параметры фильмов»

Матрица частот слов и SVD

	database	SQL	index	regression	likelihood	linear
d1	24	21	9	0	0	3
d2	32	10	5	0	3	0
d3	12	16	5	0	0	0
d4	6	7	2	0	0	0
d5	43	31	20	0	3	0
d6	2	0	0	18	7	16
d7	0	0	1	32	12	0
d8	3	0	0	22	4	2
d9	1	0	0	34	27	25
d10	6	0	0	17	4	23

Матрица частот слов и SVD

j

	database	SQL	index	regression	likelihood	linear
d1	24	21	9	0	0	3
d2	32	10	5	0	3	0
d3	12	16	5	0	0	0
d4	6	7	2	0	0	0
d5	43	31	20	0	(3)	0
d6	2	0	0	18	7	16
d7	0	0	1	32	12	0
d8	3	0	0	22	4	2
d9	1	0	0	34	27	25
d10	6	0	0	17	4	23

i

Матрица частот слов и SVD

j

	database	SQL	index	regression	likelihood	linear
d1	24	21	9	0	0	3
d2	32	10	5	0	3	0
d3	12	16	5	0	0	0
d4	6	7	2	0	0	0
d5	43	31	20	0	(3)	0
d6	2	0	0	18	7	16
d7	0	0	1	32	12	0
d8	3	0	0	22	4	2
d9	1	0	0	34	27	25
d10	6	0	0	17	4	23

$$x_{ij} \approx \langle u_i, v_j \rangle$$

 u_i - «темы» документов

 v_i - «темы» слов

Постановка задачи

$$Q = \sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 \to \min_{u_i, v_j}$$

Градиентный спуск (GD)

$$Q = \sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 \to \min_{u_i, v_j}$$

$$\frac{\partial Q}{\partial u_i} = \sum_{\tilde{i},j} \frac{\partial}{\partial u_i} \left(\langle u_{\tilde{i}}, v_j \rangle - x_{\tilde{i}j} \right)^2 = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_i, v_j \rangle - x_{ij} \right) \frac{\partial \langle u_i, v_j \rangle}{\partial u_i} = \sum_j 2 \left(\langle u_$$

$$=\sum_i 2ig(ig\langle u_i,v_jig
angle -x_{ij}ig)v_j$$
 $arepsilon_{ij}=ig(ig\langle u_i,v_jig
angle -x_{ij}ig)$ - ошибка на x_{ij}

$$u_i^{(t+1)} = u_i^{(t)} - \gamma_t \sum_j \varepsilon_{ij} v_j$$

Стохастический градиентный спуск (SGD)

GD:

$$u_i^{(t+1)} = u_i^{(t)} - \gamma_t \sum_j \varepsilon_{ij} v_j$$

$$v_j^{(t+1)} = v_j^{(t)} - \eta_t \sum_{i}^{j} \varepsilon_{ij} u_i$$

SGD:

$$u_i^{(t+1)} = u_i^{(t)} - \gamma_t \varepsilon_{ij} v_j$$

$$v_j^{(t+1)} = v_j^{(t)} - \eta_t \varepsilon_{ij} u_i$$

Для случайных і, ј

Плюсы и минусы SGD

- +Простота реализации
- +Сходимость
- Медленно сходится
- Сложность выбора шага градиентного спуска (γ_t и η_t)
- При константном шаге сходится очень медленно

Идея ALS

$$Q \rightarrow \min_{u_i, v_j}$$

Повторяем до сходимости:

$$\frac{\partial Q}{\partial u_i} = 0 \qquad \qquad \frac{\partial Q}{\partial v_j} = 0 \qquad \qquad v_j$$

Выписываем шаг в ALS

$$Q = \sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 \to \min_{u_i, v_j}$$

$$\frac{\partial Q}{\partial u_i} = \sum_{i} 2(\langle u_i, v_j \rangle - x_{ij})v_j = 0 \qquad \sum_{i} v_j \langle v_j, u_i \rangle = \sum_{i} x_{ij}v_j$$

$$\sum_{j} v_{j} v_{j}^{T} u_{i} = \sum_{j} x_{ij} v_{j} \qquad \left(\sum_{j} v_{j} v_{j}^{T}\right) u_{i} = \sum_{j} x_{ij} v_{j}$$

ALS: итоговый алгоритм

Повторяем по случайным і, ј до сходимости:

$$\left(\sum_{j}v_{j}v_{j}^{T}\right)u_{i}=\sum_{j}x_{ij}v_{j}$$
 ф и (решение системы линейных уравнений) $\left(\sum_{i}u_{i}u_{i}^{T}\right)v_{j}=\sum_{i}x_{ij}u_{i}$ ф v_{j}

Регуляризация

$$Q = \sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 + \alpha \sum_i ||u_i||^2 + \beta \sum_j ||v_j||^2 \to \min_{u_i, v_j}$$

lpha и eta - небольшие положительные числа (0.001, 0.01, 0.05)

Оптимизируемый функционал

$$x_{ij} \approx \langle u_i, v_j \rangle$$

$$\sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 \to min$$

Сдвиг

$$x_{ij} \approx \mu + \langle u_i, v_j \rangle$$

$$\sum_{i,j} \left(\frac{\mu}{\mu} + \left\langle u_i, v_j \right\rangle - x_{ij} \right)^2 \to min$$

Базовые предикторы

$$x_{ij} \approx \mu + b_i^u + b_j^v + \langle u_i, v_j \rangle$$

$$\sum_{i,j} \left(\mu + b_i^{u} + b_j^{v} + \langle u_i, v_j \rangle - x_{ij} \right)^2 \to min$$

Регуляризация

$$\sum_{i,j} (\mu + b_i^u + b_j^v + \langle u_i, v_j \rangle - x_{ij})^2 + \alpha \sum_i ||u_i||^2 + \beta \sum_j ||v_j||^2 + \gamma \sum_i b_i^{u^2} + \delta \sum_j b_j^{v^2} \to min$$

И снова рекомендации: implicit разложения

	Вечернее платье	Поднос для писем	iPhone 6s	Шуба D&G
Маша	1		1	
Юля	1	1		1
Вова		1	1	
Коля	1	?	1	
Петя		1	1	
Ваня			1	1

Почему нужно что-то менять

j

	Вечернее платье	Поднос для писем	iPhone 6s	Шуба D&G
Маша	1		1	
Юля	1	1		1
Вова		1	1	
Коля	1	(?)	1	
Петя		1	1	
Ваня			1	1

$$\chi_{ij} = 1 \approx \langle u_i, v_j \rangle
\sum_{i: \chi_{ij} \neq 0} (\langle u_i, v_j \rangle - \chi_{ij})^2 \rightarrow min$$

$$u_i = \frac{1}{\sqrt{d}} (1 \quad \cdots \quad 1)
v_j = \frac{1}{\sqrt{d}} (1 \quad \cdots \quad 1)$$

Explicit u implicit

- Explicit feedback: есть положительные и отрицательные пример (например, низкие и высокие оценки фильмов, лайки и дислайки и т.д.)
- Implicit feedback: есть только положительные (покупки, просмотры, лайки) или только отрицательные примеры (дислайки)

Implicit matrix factorization

$$\sum_{i,j} w_{ij} (\langle u_i, v_j \rangle - x_{ij})^2 \to min$$

Сумма по всем индексам (не только по известным элементам матрицы)

 w_{ij} принимает большие значения для $x_{ij} \neq 0$ и значительно меньшие для $x_{ij} = 0$

Implicit ALS

$$\sum_{i,j} w_{ij} (\langle u_i, v_j \rangle - x_{ij})^2 \to min$$

$$w_{ij} = 1 + \alpha |x_{ij}|$$
 $\alpha = 10, 100, 1000$

 u_i , v_i оцениваем с помощью ALS

Постановка задачи в "SVD"

$$Q = \sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 \to \min_{u_i, v_j}$$

Нормальное распределение

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Связь "SVD" и нормального распределения

$$x_{ij} = \langle u_i, v_j \rangle + \varepsilon \qquad \varepsilon \sim \mathcal{N}(0, \sigma^2)$$
$$x_{ij} \sim \mathcal{N}(\langle u_i, v_j \rangle, \sigma^2)$$

$$\prod_{i,j} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\left(x_{ij} - \langle u_i, v_j \rangle\right)^2}{2\sigma^2}} \to max$$

$$\sum_{i,j} \frac{\left(x_{ij} - \langle u_i, v_j \rangle\right)^2}{2\sigma^2} - \frac{1}{2} \ln 2\pi\sigma^2 \to min$$

$$\sum_{i,j} (x_{ij} - \langle u_i, v_j \rangle)^2 \to min$$

Какое распределение подходит больше

	database	SQL	index	regression	likelihood	linear
d1	24	21	9	0	0	3
d2	32	10	5	0	3	0
d3	12	16	5	0	0	0
d4	6	7	2	0	0	0
d5	43	31	20	0	3	0
d6	2	0	0	18	7	16
d7	0	0	1	32	12	0
d8	3	0	0	22	4	2
d9	1	0	0	34	27	25
d10	6	0	0	17	4	23

Распределение Пуассона

Распределение Пуассона и матричные разложения

$$x_{ij} \sim Poiss(\langle u_i, v_j \rangle) \qquad P(x_{ij}) = \frac{\langle u_i, v_j \rangle^{x_{ij}}}{x_{ij}!} e^{-\langle u_i, v_j \rangle}$$

$$\prod_{i,j} \frac{\langle u_i, v_j \rangle^{x_{ij}}}{x_{ij}!} e^{-\langle u_i, v_j \rangle} \rightarrow max$$

$$\sum_{i,j} \langle u_i, v_j \rangle - x_{ij} \ln \langle u_i, v_j \rangle + \ln x_{ij}! \rightarrow min$$

$$\sum_{i,j} \langle u_i, v_j \rangle - x_{ij} \ln \langle u_i, v_j \rangle \rightarrow min$$

SGD для NMF (Non-negative matrix factorization)

$$Q = \sum_{i,j} \langle u_i, v_j \rangle - x_{ij} \ln \langle u_i, v_j \rangle \to min$$

$$\frac{\partial Q}{\partial u_i} = \sum_j v_j - \frac{x_{ij}}{\langle u_i, v_j \rangle} v_j = \sum_j \frac{\langle u_i, v_j \rangle - x_{ij}}{\langle u_i, v_j \rangle} v_j \to min$$

$$\tilde{\varepsilon}_{ij} \text{- «относительная ошибка» прогноза}$$

SGD:
$$u_i^{(t+1)} = u_i^{(t)} - \gamma_t \tilde{\varepsilon}_{ij} v_j$$
$$v_j^{(t+1)} = v_j^{(t)} - \eta_t \tilde{\varepsilon}_{ij} u_i$$

Другие неотрицательные матричные разложения

Можно использовать норму Фробениуса, но добавить ограничения неотрицательности для U и V:

$$Q = \sum_{i,j} (\langle u_i, v_j \rangle - x_{ij})^2 \to \min_{\substack{u_i, v_j: \\ u_{ik} \ge 0 \\ v_{jk} \ge 0}}$$