

ĐẠI HỌC ĐÀ NẰNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

VIETNAM - KOREA UNIVERSITY OF INFORMATION AND COMMUNICATION TECHNOLOGY

한-베정보통신기술대학교

Nhân bản – Phụng sự – Khai phóng

Graphs

CONTENT

- Terminology
- Graph Representations
- Graph Traversals

CONTENT

- Terminology
- Graph Representations
- Graph Traversals

• A graph G=(V,E), V and E are two sets

- V: finite non-empty set of vertices
- E: set of edges (pairs of vertices)

Undirected graph

• The pair of vertices representing any edge is unordered. Thus, the pairs (u,v) and (v,u) represent the same edge

Directed graph

each edge is represented by an ordered pair <u,v>

Examples

Graph G1=(V,E):

- V(G1)={0,1,2,3}
- E(G1)={(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)}

• Examples

Graph G2=(V,E):

- V(G2)={0,1,2,3,4,5,6}
- E(G2)={(0,1), (0,2), (1,3), (1,4), (2,5), (2,6)}

G, is also a tree

Tree is a special case of graph

Examples

Graph G3=(V,E):

- V(G3)={0,1,2}
- E(G3)={<0,1>,<1,0>,<1,2>}

Directed graph (digraph)

Examples

Directed graph

a graph with 5 vertices and 6 edges:

$$V(G) = {A, B, C, D, E}$$
 and

$$E(G) = \{ \langle A, B \rangle, \langle C, B \rangle, \langle A, D \rangle, \langle B, D \rangle, \langle D, E \rangle, \langle E, C \rangle \}.$$

Complete Graph

- Complete Graph is a graph that has the maximum number of edges
- For undirected graph with n vertices, the maximum number of edges is n(n-1)/2
- For directed graph with n vertices, the maximum number of edges is n(n-1)

Example:

Adjacent and Incident

- If (u,v) is an edge in an undirected graph,
 - Adjacent: u and v are adjacent
 - Incident: The edge (u,v) is incident on vertices u and v

- If <u,v> is an edge in a directed graph
 - Adjacent: u is adjacent to v, and v is adjacent from u
 - Incident: The edge <u,v> is incident on u and v

Subgraph

- A subgraph of G is a graph G' such that
 - V(G') ⊆ V(G)
 - $E(G') \subseteq E(G)$
- Some of the subgraph of G₁

• Some of the subgraphs of G₃

Path

- Path from u to v in G
 - a sequence of vertices u, i₁, i₂,...,i_k, v
 - If G is undirected: (u,i_1) , (i_1,i_2) ,..., $(i_k,v) \in E(G)$
 - If G is directed: $\langle u, i_1 \rangle, \langle i_1, i_2 \rangle, ..., \langle i_k, v \rangle \in E(G)$

Length

- The length of a path is the number of edges on it.
- Length of 0,1,3,2 is 3

Simple Path

• is a path in which all vertices except possibly the first and last are distinct.

 \Rightarrow 0,1,3,2 is simple path 0,1,3,1 is path but not simple

• Cycle

–a simple path, first and last vertices are same.

 \Rightarrow 0,1,2,0 is a cycle

Acyclic graph

No cycle is in graph

Connected

 Two vertices u and v are connected if in an undirected graph G, ∃ a path in G from u to v

 A graph G is connected, if any vertex pair u,v is connected

connected

connected

Connected Component

• a maximal connected subgraph.

Tree is a connected acyclic graph

Strongly Connected

- u, v are strongly connected if in a directed graph (digraph) G, ∃ a path in G from u to v.
- A directed graph G is strongly connected, if any vertex pair u,v is connected

Strongly Connected Component

a maximal strongly connected subgraph

Degree of Vertex

- is the number of edges incident to that vertex
- Degree in directed graph
 - Indegree
 - Outdegree
- Summation of all vertices' degrees are 2 | E |

16

directed graph in-degree out-degree

Weighted Edge

- In many applications, the edges of a graph are assigned weights
- These weights may represent the distance from one vertex to another
- A graph with weighted edges is called a network

CONTENT

- Terminology
- Graph Representations
- Graph Traversals

- Graph Representations
 - Adjacency Matrix
 - Adjacency Lists
 - Adjacency Multi-lists

- Let G = (V, E) with n vertices, $n \ge 1$. The adjacency matrix of G is a 2-dimensional $n \times n$ matrix, A
 - A(i, j) = 1 iff $(v_i, v_j) \in E(G)$ $(\langle v_i, v_j \rangle \text{ for a digraph})$
 - A(i, j) = 0 otherwise
- The adjacency matrix for an undirected graph is symmetric
- The adjacency matrix for a digraph need not be symmetric

...Graph Representations - Adjacency Matrix

Example

undirected: n²/2

directed: n²

symmetric

Merits of Adjacency Matrix

- From the adjacency matrix, to determine the connection of vertices is easy
- The degree of a vertex is $\sum_{j=0}^{n-1} adj_mat[i][j]$
- For a digraph, the row sum is the out_degree, while the column sum is the in_degree

$$ind(vi) = \sum_{j=0}^{n-1} A[j,i]$$
 $outd(vi) = \sum_{i=0}^{n-1} A[i,j]$

(a) Directed graph

(b) Directed graph with loop

(c) Undirected graph

(d) Weighted graph

•

	a b	J	n	m	n	K
L 0	1	3	7	0	0	07
1	0	4	12	0	0	0
						0
7	12	0	0	10	0	13
	0	8	10	0	0	20
0	0	0	0	0	0	16
L_0	0	0	13	20	16	0
	[0 1 3 7 0	$ \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 3 & 4 \\ 7 & 12 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} $	[0 1 3 1 0 4 3 4 0 7 12 0 0 0 8 0 0 0	[0] 1 3 7 1 0 4 12 3 4 0 0 7 12 0 0 0 0 8 10 0 0 0 0	[0] 1 3 7 0 1 0 4 12 0 3 4 0 0 8 7 12 0 0 10 0 0 8 10 0 0 0 0 0 0	3 4 0 0 8 0 7 12 0 0 10 0 0 0 8 10 0 0 0 0 0 0 0 0

Graph Representations - Adjacency Lists

Adjacency List

- Replace *n* rows of the adjacency matrix with *n* linked list
- Example (1)

- Replace n rows of the adjacency matrix with n linked list
- -Example (2)

An undirected graph with n vertices and e edges => n head nodes and 2e list nodes

- Adjacency List
 - Data Structures
 - Each row in adjacency matrix is represented as an adjacency list

```
#define MAX_VERTICES 50

typedef struct node *node_pointer;

typedef struct node {
     int vertex;
     struct node *link;
};

node_pointer graph[MAX_VERTICES];
int n=0;     /* vertices currently in use */
```


Graph G and its adjacency list

Adjacency List

Adjacency List

Adjacency List

Adjacency Multi-lists

A multi-lists representation basically consists of two parts:

- nodes' information
- linked lists storing information about edges.

VERTEX	LIST OF EDGES
0	Edge 1, Edge 2
1	Edge 1, Edge 3
2	Edge 2, Edge 4
3	Edge 3, Edge 4, Edge 5
4	Edge 5, Edge 6, Edge 7
5	Edge 6
6	Edge 7

CONTENT

- Terminology
- Graph Representations
- Graph Traversals

Traversal

Given G = (V, E) and vertex v, find or visit all $w \in V$, such that w connects v

- Depth First Search (DFS)
- Breadth First Search (BFS)

Applications

- Connected component
- Spanning trees
- Biconnected component

Depth-First Search (DFS)

 like depth-first search in a tree, we search as deeply as possible by visiting a node, and then recursively performing depth-first search on each adjacent node

Breadth-First Search (BFS)

 like breadth-first search in a tree, we search as broadly as possible by visiting a node, and then immediately visiting all nodes adjacent to that node

Depth First Search (DFS)

- Begin the search by visiting the start vertex v
 - If v has an unvisited neighbor, traverse it recursively
 - Otherwise, backtrack
- Very similar to preorder traversal of a binary tree (node, left, right)

• Example: Preorder

Algorithm

- Time is O(n + e) for adjacency lists
- Time is $O(n^2)$ for adjacency matrices


```
#define FALSE 0
#define TRUE 1
short int visited[MAX VERTICES];
/* graph is represented as an adjacency list */
void dfs(int v){
       node_pointer w;
       visited[v]= TRUE;
       printf("%5d", v);
       for (w=graph[v]; w; w=w->link)
               if (!visited[w->vertex])
                      dfs(w->vertex);
```


Vertex Adjacent Vertices

H

A B C D

G

F

E

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A_F \longrightarrow B, H$$

$$B F \longrightarrow A, C, G, F, H$$

$$C F \longrightarrow B, D, F$$

$$D_F \longrightarrow C, E, F$$

$$E_F \longrightarrow D, F$$

$$F F \longrightarrow B, C, D, E, G$$

$$G F \longrightarrow B, F, H$$

$$H_F \longrightarrow A, B, G$$


```
Depth_First_Search (VERTEX V)
{
Visit V;
Set the visit flag for the vertex V to TRUE;
For all adjacent vertices Vi (i = 1, 2, ...., n) of V
    if (Vi has not been previously visited)
        Depth_First_Search (Vi)
}
```

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A_F \longrightarrow B, H$$

$$B F \longrightarrow A, C, G, F, F$$

$$C F \longrightarrow B, D, F$$

$$D F \longrightarrow C, E, F$$

$$\mathsf{E}_{\mathsf{F}} \longrightarrow \mathsf{D}, \mathsf{F}$$

$$F_F \longrightarrow B, C, D, E, G$$

$$G F \longrightarrow B, F, H$$

$$H_F \longrightarrow A, B, G$$


```
Depth_First_Search (VERTEX V)
{
    Visit V;

Set the visit flag for the vertex V to TRUE;

For all adjacent vertices Vi (i = 1, 2, ...., n) of V
    if (Vi has not been previously visited)
        Depth_First_Search (Vi)
}
```

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A F \longrightarrow B, H$$
 $B F \longrightarrow A, C, G, F, H$
 $C F \longrightarrow B, D, F$
 $D F \longrightarrow C, E, F$
 $E F \longrightarrow D, F$
 $F F \longrightarrow B, C, D, E, G$
 $G F \longrightarrow B F H$

 $H_F \longrightarrow A, B, G$


```
Depth_First_Search (VERTEX V) {
Visit V;
```

Set the visit flag for the vertex V to TRUE;

For all adjacent vertices Vi (i = 1, 2,, n) of V if (Vi has not been previously visited)

Depth_First_Search (Vi)
}

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $F au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$
 $H au \longrightarrow A, B, G$


```
Depth_First_Search (VERTEX V)
{
Visit V;

Set the visit flag for the vertex V to TRUE;

For all adjacent vertices Vi (i = 1, 2, ...., n) of V
    if (Vi has not been previously visited)
        Depth_First_Search (Vi)
}
```

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$E F \longrightarrow D, F$$
 $F F \longrightarrow B, C, D, E, G$
 $G F \longrightarrow B, F, H$
 $H F \longrightarrow A, B, G$

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $F au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$

 $H_F \longrightarrow A, B, G$

Д


```
Depth_First_Search (VERTEX V)
{
    Visit V;

Set the visit flag for the vertex V to TRUE;

For all adjacent vertices Vi (i = 1, 2, ...., n) of V
    if (Vi has not been previously visited)
        Depth_First_Search (Vi)
}
```

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $F au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$
 $H au \longrightarrow A, B, G$


```
Depth_First_Search (VERTEX V)
{
Visit V;

Set the visit flag for the vertex V to TRUE;

For all adjacent vertices Vi (i = 1, 2, ...., n) of V
    if (Vi has not been previously visited)
        Depth_First_Search (Vi)
}
```

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $F au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$
 $H au \longrightarrow A, B, G$

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $F au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$
 $H au \longrightarrow A, B, G$

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au_{} \longrightarrow B, H$$
 $B au_{} \longrightarrow A, C, G, F, H$
 $C au_{} \longrightarrow B, D, F$
 $D au_{} \longrightarrow C, E, F$
 $E au_{} \longrightarrow D, F$
 $F au_{} \longrightarrow B, C, D, E, G$
 $G au_{} \longrightarrow B, F, H$
 $H au_{} \longrightarrow A, B, G$


```
Depth_First_Search (VERTEX V)
{
    Visit V;

Set the visit flag for the vertex V to TRUE;

For all adjacent vertices Vi (i = 1, 2, ...., n) of V
    if (Vi has not been previously visited)
        Depth_First_Search (Vi)
}
```

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $E au \longrightarrow D, F$
 $E au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$
 $H au \longrightarrow A, B, G$


```
Depth_First_Search (VERTEX V)
{
Visit V;

Set the visit flag for the vertex V to TRUE;

For all adjacent vertices Vi (i = 1, 2, ....., n) of V
    if (Vi has not been previously visited)
        Depth_First_Search (Vi)
}
```

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $F au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$
 $H au \longrightarrow A, B, G$

ABC

...Graph Traversals - Depth First Search

Vertex

Adjacent Vertices

(label, visited?)

$$A au \longrightarrow B, H$$
 $B au \longrightarrow A, C, G, F, H$
 $C au \longrightarrow B, D, F$
 $D au \longrightarrow C, E, F$
 $E au \longrightarrow D, F$
 $F au \longrightarrow B, C, D, E, G$
 $G au \longrightarrow B, F, H$
 $H au \longrightarrow A, B, G$

ABCDEFGH

- Breadth First Search (BFS)
 - Very similar to level-order traversal of a binary tree (left, node, right)

- Use a *queue* to track unvisited nodes
- For each node that is deleted from the queue,
 - add each of its children to the queue
 - until the queue is empty

Level-Order

Queue

Output

Level-Order

Queue Output Init [A] -

Level-Order

Queue Output
Init [A] Step 1 [B,C] A

Dequeue A
Print A
Enqueue children of A

Level-Order

Queue Output
Init [A] Step 1 [B,C] A
Step 2 [C,D] A B

Dequeue B
Print B
Enqueue children of B

Level-Order

Init	Queue [A]	Output -
Step 1	[B,C]	Α
Step 2	[C ,D]	АВ
Step 3	[D, E,F]	А В С

Dequeue C Print C Enqueue children of C

. . .

Level-Order

Init	Queue [A]	Output -
Step 1	[B,C]	Α
Step 2	[C,D]	ΑВ
Step 3	[D,E,F]	ABC
Step 4	[E,F, G ,H]	A B C [

Level-Order

Init	Queue [A]	Output -
Step 1	[B,C]	Α
Step 2	[C,D]	AB
Step 3	[D,E,F]	ABC
Step 4	[E,F,G,H]	ABCD
Step 5	[F,G,H]	A B C D E

Level-Order

Init	Queue [A]	Output -
Step 1	[B,C]	Α
Step 2	[C,D]	АВ
Step 3	[D,E,F]	ABC
Step 4	[E,F,G,H]	ABCD
Step 5	[F ,G,H]	ABCDE
Step 6	[G,H, I]	A B C D E F

Level-Order

Init	Queue [A]	Output -
Step 1	[B,C]	Α
Step 2	[C,D]	AB
Step 3	[D,E,F]	ABC
Step 4	[E,F,G,H]	ABCD
Step 5	[F,G,H]	ABCDE
Step 6	[G ,H,I]	ABCDEF
Step 7	[H,I]	A B C D E F G

Algorithm

```
bfs(v) { /* v is the starting vertex */
  push v into an empty queue Q;
  while Q is not empty do
         v = delete(Q);
         if v is not visited {
                  mark v as visited;
                  push v's neighbors into Q;
```

• Time is O(e) for adjacency lists and $O(n^2)$ for adjacency matrices

Data Structures & Algorithms 73


```
typedef struct queue *queue_pointer;
typedef struct queue {
    int vertex;
    queue_pointer link;
};
void addq(queue_pointer *, queue_pointer *, int);
int deleteq(queue_pointer *);
```

Data Structures & Algorithms 74


```
void bfs(int v){
       node_pointer w;
       queue pointer front, rear;
       front = rear = NULL;
       printf("%5d", v);
       visited[v] = TRUE;
       addq(&front, &rear, v);
       while (front) {
               v = deleteq(&front);
               for (w=graph[v]; w; w=w->link)
                      if (!visited[w->vertex]) {
                              printf("%5d", w->vertex);
                              addq(&front, &rear, w->vertex);
                              visited[w->vertex] = TRUE;
```

/5

Vertex

Adjacent Vertices

Data Structures & Algorithms 70

Visit [F, F, F, F, F, F, F]

Q: []

V:

Vertex

Adjacent Vertices

B, F, H

A, B, G

Adjacent Vertices

Visit [**T**, F, F, F, F, F, F]

Q: [**A**]

V:

4

Vertex

Visit [T, F, F, F, F, F, F]

Q: []

v: A

Vertex

Adjacent Vertices

В, Н A, C, G, F, H B, D, F C, E, F D, F B, C, D, E, G B, F, H A, B, G

4

Visit [T, F, F, F, F, F, F]

Q: []

 $V: A \rightarrow B, H$

Vertex

Adjacent Vertices

Д

Q: []

v: $A \rightarrow B$, H

Vertex

Adjacent Vertices

4

Visit [T, T, F, F, F, F, F]

Q: [B]

v: $A \rightarrow B$, H

Vertex

Adjacent Vertices

A B

Vertex

Adjacent Vertices

Visit [T, T, F, F, F, F, F, F]

Q: [B]

v: A → B, H

A B

A B C D H G F E

Visit [T, T, F, F, F, F, F, T]

Q: [B, **H**]

v: $A \rightarrow B$, H

Vertex

Adjacent Vertices

A B **H**

Visit [T, T, F, F, F, F, T]

Q: [H]

v: **B**

Vertex

Adjacent Vertices

ABH

Visit [T, T, F, F, F, F, T]

Q: [H]

v: $B \rightarrow A$, C, G, F, H

Vertex

Adjacent Vertices

A B H

A B C D H G F E

Visit [T, T, F, F, F, F, T]

Q: [H]

v: $B \rightarrow A$, C, G, F, H

Vertex

Adjacent Vertices

ABH

Visit [T, T, E, F, F, F, T]

Q: [H]

v: $B \rightarrow A, C, G, F, H$

Vertex

Adjacent Vertices

ABH

A B C D H G F E

Visit [T, T, T, F, F, F, T]

Q: [H, C]

v: $B \rightarrow A, C, G, F, H$

Vertex

Adjacent Vertices

ABHC

Adjacent Vertices

A, C, G, F, H

B, H

Vertex

Visit [T, T, T, F, F, F, F, T]
Q: [H, C]
v: B → A, C, G, F, H

ABHC

A, B, G

A B C D H G F E

Visit [T, T, T, F, F, F, T, T]

Q: [H, C, G]

v: $B \rightarrow A$, C, G, F, H

Vertex

Adjacent Vertices

A B C D H G F E

Visit [T, T, T, F, F, F, T, T]

Q: [H, C, G]

v: $B \rightarrow A$, C, G, F, H

Vertex

Adjacent Vertices

A B C D H G F E

Visit [T, T, T, F, F, T, T, T]

Q: [H, C, G, F]

v: $B \rightarrow A$, C, G, F, H

Vertex

Adjacent Vertices

Vertex

В, Н A, C, G, F, H B, D, F C, E, F D, F B, C, D, E, G B, F, H A, B, G

Adjacent Vertices

Visit [T, T, T, F, F, T, T, T]

Q: [H, C, G, F]

v: B → A, C, G, F, H

A B C D H G F E

Visit [T, T, T, F, F, T, T, T]

Q: [C, G, F]

v: H

Vertex

Adjacent Vertices

A B C D H G F E

Visit [T, T, T, F, F, T, T, T]

Q: [C, G, F]

v: $H \rightarrow A, B, G$

Vertex

Adjacent Vertices

Vertex

Adjacent Vertices

A B C D H G F E

Visit [T, T, T, F, F, T, T, T]

Q: [C, G, F]

V:

Vertex

Adjacent Vertices

A B C D H G F E

Visit [T, T, T, F, F, T, T, T]

Q: [G, F]

v: $C \rightarrow B, D, F$

Vertex

Adjacent Vertices

Vertex

Adjacent Vertices

Q: [G, F]

v: $C \rightarrow B, D, F$

Vertex

Adjacent Vertices

A B C D H G F E

Visit [T, T, T, T, F, T, T, T]

Q: [G, F, D]

v: $C \rightarrow B, D, F$

Vertex

Adjacent Vertices

Vertex

ABHCGFD

B, H

Adjacent Vertices

Visit [T, T, T, T, F, T, T, T]

Q: [G, F, D]

v: C → B, D, F

Data Structures & Algorithms 105

A B C D H G F E

Visit [T, T, T, T, T, T, T]

Q: []

V:

Adjacent Vertices

ABHCGFDE

SUMMARY

- Terminology
- Graph Representations
- Graph Traversals

Data Structures & Algorithms 107

ĐẠI HỌC ĐÀ NẰNG

ĐẠI HỌC ĐÀ NANG TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

Nhân bản - Phụng sự - Khai phóng

Enjoy the Course...!

Data Structures & Algorithms