

日 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年10月22日

REC'D 0 2 DEC 2004

WIPO

PCT

特願2003-362510

Application Number: [ST. 10/C]:

出

[JP2003-362510]

出 Applicant(s): 人

セイコーエプソン株式会社

COMPLIANCE WITH *** RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年11月19日

ページ: 1/E

特許願 【書類名】 15P338 【整理番号】

特許庁長官 殿 【あて先】 HO3H 9/145 【国際特許分類】

【発明者】

長野県諏訪市大和3丁目3番5号 セイコーエプソン株式会社内 【住所又は居所】

篠原 祐治 【氏名】

【発明者】

長野県諏訪市大和3丁目3番5号 セイコーエプソン株式会社内 【住所又は居所】

篠原 營 【氏名】

【特許出願人】

000002369 【識別番号】

セイコーエプソン株式会社 【氏名又は名称】

【代理人】

100091292 【識別番号】

【弁理士】

増田 達哉 【氏名又は名称】 3595-3251 【電話番号】

【選任した代理人】

100091627 【識別番号】

【弁理士】

朝比 一夫 【氏名又は名称】 3595-3251 【電話番号】

【手数料の表示】

007593 【予納台帳番号】 21,000円 【納付金額】

【提出物件の目録】

特許請求の範囲 1 【物件名】

明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】 0015134 【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

有機エレクトロルミネッセンス素子が備える正孔を輸送する機能を有する層に用いられ る高分子の正孔輸送材料であって、

該正孔輸送材料を2.0wt%となるよう液体に溶解または分散させたとき、該液体中 に含まれる分子量5000以下のノニオン性不純物の含有量が、40ppm以下であるこ とを特徴とする正孔輸送材料。

【請求項2】

前記ノニオン性不純物は、主に、前記正孔輸送材料を合成する際に生成および/または 混入するものである請求項1に記載の正孔輸送材料。

前記ノニオン性不純物は、多価アルコールおよび芳香族複素環化合物の少なくとも1種 である請求項1または2に記載の正孔輸送材料。

【請求項4】

前記正孔輸送材料は、チオフェン/スチレンスルホン酸系化合物、アリールシクロアル カン系化合物、アリールアミン系化合物、フェニレンジアミン系化合物、カルバゾール系 化合物、スチルベン系化合物、オキサゾール系化合物、トリフェニルメタン系化合物、ピ ラゾリン系化合物、ベンジン系化合物、トリアゾール系化合物、イミダゾール系化合物、 オキサジアゾール系化合物、アントラセン系化合物、フルオレノン系化合物、アニリン系 化合物、シラン系化合物、チオフェン系化合物、ピロール系化合物、フローレン系化合物 、ポルフィリン系化合物、キナクリドン系化合物、フタロシアニン系化合物、ナフタロシ アニン系化合物およびベンジジン系化合物よりなる群から選択される少なくとも1種であ る請求項1ないし3のいずれかに記載の正孔輸送材料。

【請求項5】

ポリ(チオフェン/スチレンスルホン酸)系化合物を主成分とする正孔輸送材料であっ て、

該正孔輸送材料を2.0wt%となるよう液体に溶解または分散させたとき、該液体中 に含まれる分子量5000以下のノニオン性不純物の含有量が、スチレンユニット100 0個に対して6個以下であることを特徴とする正孔輸送材料。

【請求項6】 前記ノニオン性不純物および前記スチレンユニットの個数は、それぞれ、前記液体を1 H-NMRで分析して得られるスペクトルのピーク面積から求められる請求項5に記載の 正孔輸送材料。

【請求項7】 前記ポリ(チオフェン/スチレンスルホン酸)系化合物は、チオフェンとスチレンスル ホン酸との比率が重量比で1:5~1:50である請求項5または6に記載の正孔輸送材 料。

【請求項8】 前記正孔輸送材料は、その体積抵抗率が10Ω・cm以上である請求項1ないし7のい ずれかに記載の正孔輸送材料。

【請求項9】

有機エレクトロルミネッセンス素子が備える正孔を輸送する機能を有する層であって、 該層中に含まれる分子量5000以下のノニオン性不純物の含有量が、2000ppm 以下であることを特徴とする層。

【請求項10】 有機エレクトロルミネッセンス素子が備える正孔を輸送する機能を有し、ポリ(チオフ ェン/スチレンスルホン酸)系化合物を主成分とする正孔輸送材料で構成される層であっ て、

該層中に含まれる分子量5000以下のノニオン性不純物の含有量が、スチレンユニッ ト1000個に対して6個以下であることを特徴とする層。

出証特2004-3105227

【請求項11】

前記ノニオン性不純物および前記スチレンユニットの個数は、それぞれ、前記層を1 H -NMRで分析して得られるスペクトルのピーク面積から求められる請求項10に記載の 層。

【請求項12】

有機エレクトロルミネッセンス素子が備える正孔を輸送する機能を有する層であって、 請求項1ないし8のいずれかに記載の正孔輸送材料を主材料として構成されることを特 徴とする層。

【請求項13】

請求項9ないし12のいずれかに記載の層を備えることを特徴とする有機エレクトロル ミネッセンス素子。

【請求項14】

請求項1ないし8のいずれかに記載の正孔輸送材料を得るための正孔輸送材料の精製方 法であって、

前記正孔輸送材料の溶液または分散液中から、分子量5000以下のノニオン性不純物 を分離または除去し得る除去手段により、前記ノニオン性不純物を除去した後、溶媒また は分散媒を除去して、前記正孔輸送材料の精製を行うことを特徴とする正孔輸送材料の精 製方法。

【請求項15】

0

前記除去手段として、限外ろ過膜を用いる請求項14に記載の正孔輸送材料の精製方法

【書類名】明細書

【発明の名称】正孔輸送材料、層、有機エレクトロルミネッセンス素子および正孔輸送材料の精製方法

【技術分野】

[0001]

本発明は、有機エレクトロルミネッセンス素子が備える正孔を輸送する機能を有する層に用いられる正孔輸送材料、正孔を輸送する機能を有する層、有機エレクトロルミネッセンス素子および正孔輸送材料の精製方法に関する。

【背景技術】

[0002]

少なくとも一層の発光性有機層(有機エレクトロルミネッセンス層)が陰極と陽極に挟まれている構造を特徴とする有機エレクトロルミネッセンス素子(以下、有機EL素子と称する。)は、無機EL素子に比べて印加電圧を大幅に低下させることができ、多彩な発光色の素子が作製可能である。

現在、より高性能な有機EL素子を得るため、材料の開発・改良をはじめ、様々なデバイス構造が提案されており、活発な研究が行われている。

[0003]

また、この有機EL素子については既に様々な発光色の素子、また高輝度、高効率の素子が開発されており、表示装置の画素としての利用や光源としての利用など多種多様な実用化用途が検討されている。

しかしながら、実用化において、長期間の使用に伴う有機EL素子の発光輝度の減衰が 問題となっており、対策技術の確立が望まれている。

[0004]

有機EL素子の発光輝度の減衰を抑制する方法として、高純度の有機化合物を使用する方法が報告されている(例えば、特許文献1参照。)。この特許文献1に記載の有機EL素子では、素子を構成する材料中のハロゲン含有化合物(不純物)の含有量を、1000pm未満に抑えることにより、素子の長期使用に伴う発光輝度の減衰を抑制しようというものである。

ところが、有機EL素子における発光輝度の減衰と、材料中に含まれる不純物の種類およびその含有量との関係については、明確な指針はできておらず、実用化に向けて、更なる検討がなされているのが現状である。

[0005]

【特許文献1】特開2002-175885号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明の目的は、有機EL素子の発光輝度の減衰を抑制することができる正孔輸送材料および層、有機エレクトロルミネッセンス素子、さらには正孔輸送材料の精製方法を提供することにある。

【課題を解決するための手段】

[0007]

このような目的は、下記の本発明により達成される。

本発明の正孔輸送材料は、有機エレクトロルミネッセンス素子が備える正孔を輸送する 機能を有する層に用いられる高分子の正孔輸送材料であって、

該正孔輸送材料を2.0 w t %となるよう液体に溶解または分散させたとき、該液体中に含まれる分子量5000以下のノニオン性不純物の含有量が、40ppm以下であることを特徴とする。

これにより、有機EL素子の発光輝度の減衰を抑制することができる正孔輸送材料とすることができる。

[0008]

本発明の正孔輸送材料では、前記ノニオン性不純物は、主に、前記正孔輸送材料を合成 する際に生成および/または混入するものであることが好ましい。

ノニオン性不純物を除去することにより、有機EL素子の発光輝度の減衰を、より確実 に抑制することができる正孔輸送材料とすることができる。

本発明の正孔輸送材料では、前記ノニオン性不純物は、多価アルコールおよび芳香族複 素環化合物の少なくとも1種であることが好ましい。

これらのノニオン性不純物は、いずれも、正孔輸送材料との反応性が極めて高く、正孔 輸送材料を特に劣化させ易いので、かかるノニオン性不純物を除去することにより、有機 EL素子の発光輝度の減衰を、より確実に抑制することができる正孔輸送材料とすること ができる。

[0009]

本発明の正孔輸送材料は、チオフェン/スチレンスルホン酸系化合物、アリールシクロ アルカン系化合物、アリールアミン系化合物、フェニレンジアミン系化合物、カルバゾー ル系化合物、スチルベン系化合物、オキサゾール系化合物、トリフェニルメタン系化合物 、ピラゾリン系化合物、ベンジン系化合物、トリアゾール系化合物、イミダゾール系化合 物、オキサジアゾール系化合物、アントラセン系化合物、フルオレノン系化合物、アニリ ン系化合物、シラン系化合物、チオフェン系化合物、ピロール系化合物、フローレン系化 合物、ポルフィリン系化合物、キナクリドン系化合物、フタロシアニン系化合物、ナフタ ロシアニン系化合物およびベンジジン系化合物よりなる群から選択される少なくとも1種 であることが好ましい。

これらのものは、いずれも、高い正孔輸送能力を有している。

本発明の正孔輸送材料は、ポリ(チオフェン/スチレンスルホン酸)系化合物を主成分 とする正孔輸送材料であって、

該正孔輸送材料を2.0wt%となるよう液体に溶解または分散させたとき、該液体中 に含まれる分子量5000以下のノニオン性不純物の含有量が、スチレンユニット100 0個に対して6個以下であることを特徴とする。

これにより、有機EL素子の発光輝度の減衰を抑制することができる正孔輸送材料とす ることができる。

[0011]

本発明の正孔輸送材料では、前記ノニオン性不純物および前記スチレンユニットの個数 は、それぞれ、前記液体を¹ HーNMRで分析して得られるスペクトルのピーク面積から 求められることが好ましい。

これにより、容易かつ正確、短時間に正孔輸送層中のノニオン性不純物の含有量を測定 することができる。

[0012]

本発明の正孔輸送材料では、前記ポリ(チオフェン/スチレンスルホン酸)系化合物は 、チオフェンとスチレンスルホン酸との比率が重量比で1:5~1:50であることが好

これにより、より高い正孔輸送能力を有するものとなる。

本発明の正孔輸送材料は、その体積抵抗率が10Ω·cm以上であることが好ましい。 これにより、発光効率のより高い有機EL素子を得ることができる。

[0013]

本発明の層は、有機エレクトロルミネッセンス素子が備える正孔を輸送する機能を有す る層であって、

該層中に含まれる分子量5000以下のノニオン性不純物の含有量が、2000ppm 以下であることを特徴とする。

これにより、有機EL素子の発光輝度の減衰を抑制することができる層とすることがで きる。

[0014]

本発明の層は、有機エレクトロルミネッセンス素子が備える正孔を輸送する機能を有し、ポリ (チオフェン/スチレンスルホン酸) 系化合物を主成分とする正孔輸送材料で構成される層であって、

該層中に含まれる分子量5000以下のノニオン性不純物の含有量が、スチレンユニット1000個に対して6個以下であることを特徴とする。

これにより、有機EL素子の発光輝度の減衰を抑制することができる層とすることができる。

[0015]

本発明の層では、前記ノニオン性不純物および前記スチレンユニットの個数は、それぞれ、前記層を 1 H-NMRで分析して得られるスペクトルのピーク面積から求められることが好ましい。

これにより、容易かつ正確、短時間に正孔輸送層中のノニオン性不純物の含有量を測定することができる。

[0016]

本発明の層は、有機エレクトロルミネッセンス素子が備える正孔を輸送する機能を有する層であって、

本発明の正孔輸送材料を主材料として構成されることを特徴とする。

これにより、有機EL素子の発光輝度の減衰を抑制することができる層とすることができる。

本発明の有機エレクトロルミネッセンス素子は、本発明の層を備えることを特徴とする

これにより、高性能の有機エレクトロルミネッセンス素子が得られる。

[0017]

本発明の正孔輸送材料の精製方法は、本発明の正孔輸送材料を得るための方法であって

前記正孔輸送材料の溶液または分散液中から、分子量5000以下のノニオン性不純物を分離または除去し得る除去手段により、前記ノニオン性不純物を除去した後、溶媒または分散媒を除去して、前記正孔輸送材料の精製を行うことを特徴とする。

かかる方法によれば、比較的容易かつ短時間で、正孔輸送材料中から前記ノニオン性不 純物の除去を行うことができる。

本発明の正孔輸送材料の精製方法では、前記除去手段として、限外ろ過膜を用いることが好ましい。

これにより、限外ろ過膜の種類を適宜選択するだけで、目的とするノニオン性不純物を 効率よくかつ確実に除去することができる。

【発明を実施するための最良の形態】

[0018]

まず、本発明の正孔輸送材料、層、有機エレクトロルミネッセンス素子および正孔輸送 材料の精製方法について説明する前に、本発明の正孔輸送材料を用いて形成される正孔輸 送層を備える有機EL素子(有機エレクトロルミネッセンス素子)の一例について説明す る。

<有機EL素子>

図1は、有機EL素子の一例を示した縦断面図である。

図1に示す有機EL素子1は、透明な基板2と、基板2上に設けられた陽極3と、陽極3上に設けられた有機EL層4と、有機EL層4上に設けられた陰極5と、各前記層3、4、5を覆うように設けられた保護層6とを備えている。

[0019]

基板2は、有機EL素子1の支持体となるものであり、この基板2上に各前記層が形成されている。

基板 2 の構成材料としては、透光性を有し、光学特性が良好な材料を用いることができる。

このような材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチルメタクリレート、ポリカーボネート、ポリアリレートのような各種樹脂材料や、各種ガラス材料等が挙げられ、これらのうちの少なくとも1種を用いることができる。

基板 2 の厚さ(平均)は、特に限定されないが、 $0.1 \sim 30$ mm程度であるのが好ましく、 $0.1 \sim 10$ mm程度であるのがより好ましい。

[0020]

陽極3は、有機EL層4(後述する正孔輸送層41)に正孔を注入する電極である。また、この陽極3は、有機EL層4(後述する発光層42)からの発光を視認し得るように、実質的に透明(無色透明、有色透明、半透明)とされている。

かかる観点から、陽極3の構成材料(陽極材料)としては、仕事関数が大きく、導電性 に優れ、また、透光性を有する材料を用いるのが好ましい。

[0021]

このような陽極材料としては、例えば、ITO (Indium Tin Oxide)、 SnO_2 、Sb含有 SnO_2 、Al含有ZnO等の酸化物、Au、Pt、Ag、Cuまたはこれらを含む合金等が挙げられ、これらのうちの少なくとも1種を用いることができる

陽極3の厚さ(平均)は、特に限定されないが、10~200nm程度であるのが好ましく、50~150nm程度であるのがより好ましい。陽極3の厚さが薄すぎると、陽極3としての機能が充分に発揮されなくなるおそれがあり、一方、陽極3が厚過ぎると、陽極材料の種類等によっては、光の透過率が著しく低下し、実用に適さなくなるおそれがある。

[0022]

なお、陽極材料には、例えば、ポリチオフェン、ポリピロール等の導電性樹脂材料を用いることもできる。

一方、陰極 5 は、有機 E L 層 4 (後述する電子輸送層 4 3) に電子を注入する電極である。

陰極5の構成材料(陰極材料)としては、仕事関数の小さい材料を用いるのが好ましい

[0023]

特に、陰極材料として合金を用いる場合には、Ag、Al、Cu等の安定な金属元素を含む合金、具体的には、MgAg、AlLi、CuLi等の合金を用いるのが好ましい。かかる合金を陰極材料として用いることにより、陰極5の電子注入効率および安定性の向上を図ることができる。

[0024]

陰極5の厚さ(平均)は、1 nm~1μm程度であるのが好ましく、100~400 nm程度であるのがより好ましい。陰極5の厚さが薄すぎると、陰極5としての機能が充分に発揮されなくなるおそれがあり、一方、陰極5が厚過ぎると、有機EL素子1の発光効率が低下するおそれがある。

陽極3と陰極5との間には、有機EL層4が設けられている。有機EL層4は、正孔輸送層41と、発光層42と、電子輸送層43とを備え、これらがこの順で陽極3上に形成されている。

[0025]

正孔輸送層41は、陽極3から注入された正孔を発光層42まで輸送する機能を有するものである。

正孔輸送層41の構成材料(正孔輸送材料)は、正孔輸送能力を有するものであれば、

いかなるものであってもよいが、共役系の化合物であるのが好ましい。共役系の化合物は、その特有な電子雲の広がりによる性質上、極めて円滑に正孔を輸送できるため、正孔輸送能力に特に優れる。

[0026]

また、正孔輸送材料は、常温で固形物、半固形物または液体であるもののいずれも使用可能である。かかる形態の正孔輸送材料は、取り扱いが容易であるため、このような正孔輸送材料を用いることにより、正孔輸送層41をより容易かつ確実に形成することができる。これにより、より高性能の有機EL素子1が得られる。

本発明では、正孔輸送材料として、以下に示すような化合物(モノマー)を主鎖または 側鎖に有する高分子(プレポリマーやポリマー)のうちの1種または2種以上を組み合わ せて用いられる。

[0027]

この化合物 (モノマー) としては、例えば、3,4-エチレンジオキシチオフェン/ス チレンスルホン酸のようなチオフェン/スチレンスルホン酸系化合物、1,1-ビス(4 ージーパラートリアミノフェニル)シクロヘキサン、1,1'ービス(4ージーパラート リルアミノフェニル) ー 4 -フェニル-シクロヘキサンのようなアリールシクロアルカン 系化合物、4, 4', 4', -トリメチルトリフェニルアミン、N, N, N', N'-テ トラフェニルー1, 1'ービフェニルー4, 4'ージアミン、N, N'ージフェニルーN , N' ービス (3-メチルフェニル) -1 , 1' ービフェニルー4 , 4'ージアミン (TPD1)、N, N'ージフェニルーN, N'ービス (4ーメトキシフェニル) -1, 1'ー ビフェニルー4, 4'ージアミン (TPD2)、N, N, N', N'ーテトラキス (4ーメ トキシフェニル) -1, 1'-ビフェニル-4, 4'-ジアミン (TPD3)、N, N'-ジ (1-ナフチル) - N, N'-ジフェニル-1, 1'-ビフェニル-4, 4'-ジアミン $(\alpha-{
m NPD})$ 、 ${
m TPTE}$ のようなアリールアミン系化合物、 ${
m N},\ {
m N}',\ {
m N}'-テトラ$ フェニルーパラーフェニレンジアミン、N, N, N', N'ーテトラ (パラートリル) ーパ ラーフェニレンジアミン、N, N, N', N'ーテトラ (メタートリル) ーメターフェニレ ンジアミン(PDA)のようなフェニレンジアミン系化合物、カルバゾール、N-イソプ ロピルカルバゾール、N·フェニルカルバゾールのようなカルバゾール系化合物、スチル ベン、4-ジーパラートリルアミノスチルベンのようなスチルベン系化合物、Ox Zのよ うなオキサゾール系化合物、トリフェニルメタンm-MTDATAのようなトリフェニル メタン系化合物、1-フェニル-3-(パラージメチルアミノフェニル)ピラゾリンのよ うなピラゾリン系化合物、ベンジン(シクロヘキサジエン)系化合物、トリアゾールのよ うなトリアゾール系化合物、イミダゾールのようなイミダゾール系化合物、1,3,4-ジアゾールのようなオキサジアゾール系化合物、アントラセン、9-(4-ジエチルアミ ノスチリル) アントラセンのようなアントラセン系化合物、フルオレノン、2, 4, 7, ートリニトロー9ーフルオレノン、2,7ービス(2ーヒドロキシー3ー(2ークロロフ ェニルカルバモイル)-1-ナフチルアゾ)フルオレノンのようなフルオレノン系化合物 、ポリアニリンのようなアニリン系化合物、シラン系化合物、ポリチオフェン、ポリ(チ オフェンビニレン)のようなチオフェン系化合物、ポリ(2,2'ーチエニルピロール) 、 1 , 4 -ジチオケト- 3 , 6 -ジフェニル-ピロロ-(3 , 4 - c)ピロロピロールの ようなピロール系化合物、フローレンのようなフローレン系化合物、ポルフィリシ、金属 テトラフェニルポルフィリンのようなポルフィリン系化合物、キナクリドンのようなキナ クリドン系化合物、フタロシアニン、銅フタロシアニン、テトラ(tープチル)銅フタロ シアニン、鉄フタロシアニンのような金属または無金属のフタロシアニン系化合物、銅ナ フタロシアニン、バナジルナフタロシアニン、モノクロロガリウムナフタロシアニンのよ うな金属または無金属のナフタロシアニン系化合物、N, N'ージ(ナフタレンー1ーイ ル) -N, N' -ジフェニルーベンジジン、N, N, N', N' -テトラフェニルベンジ ジンのようなベンジジン系化合物等が挙げられる。これらの化合物の高分子は、いずれも 、高い正孔輸送能力を有している。

[0028]

なお、本明細書中において、高分子とは、分子量が5000を上回る化合物のことを言 う。

これらの中でも、正孔輸送材料としては、特に、3,4-エチレンジオキシチオフェン /スチレンスルホン酸の重合体であるポリ(3,4-エチレンジオキシチオフェン/スチ レンスルホン酸)(以下、「PEDT/PSS」と略す。)のようなポリ(チオフェン/ スチレンスルホン酸)系化合物を主成分とするものが好適である。ポリ(チオフェン/ス チレンスルホン酸)系化合物は、特に高い正孔輸送能力を有している。

[0029]

また、ポリ(チオフェン/スチレンスルホン酸)系化合物は、チオフェンとスチレンス ルホン酸との比率が、重量比で1:5~1:50程度であるのが好ましく、1:10~1 : 25程度であるのがより好ましい。これにより、ポリ (チオフェン/スチレンスルホン 酸)系化合物は、より高い正孔輸送能力を有するものとなる。

なお、正孔輸送層41は、このような高分子を主材料として構成されるものであればよ いが、正孔輸送層41中には、例えば、前述したような化合物の低分子(モノマーやオリ ゴマー) が含まれていてもよい。

[0030]

また、このような正孔輸送材料は、その体積抵抗率が10Ω・cm以上であるのが好ま しく、 $10^2\Omega\cdot c$ m以上であるのがより好ましい。これにより、発光効率のより高い有 機EL素子1を得ることができる。

正孔輸送層41の厚さ(平均)は、特に限定されないが、10~150nm程度である のが好ましく、50~100 nm程度であるのがより好ましい。正孔輸送層41の厚さが 薄すぎると、ピンホールが生じるおそれがあり、一方、正孔輸送層 4 1 が厚過ぎると、正 孔輸送層41の透過率が悪くなる原因となり、有機EL素子1の発光色の色度(色相)が 変化してしまうおそれがある。

また、本発明の正孔輸送材料は、かかる比較的薄い正孔輸送層 4 1 を形成する場合に、 特に有用である。

電子輸送層43は、陰極5から注入された電子を発光層42まで輸送する機能を有する ものである。

[0031]

電子輸送層43の構成材料(電子輸送材料)としては、例えば、1,3,5-トリス[(3-フェニルー6-トリーフルオロメチル) キノキサリンー2-イル] ベンゼン (TP Q 1) 、 1 、 3 、 5 ートリス [$\{3$ ー (4 ー t ープチルフェニル) ー 6 ートリスフルオロ メチル キノキサリンー2ーイル] ベンゼン (TPQ2) のようなベンゼン系化合物 (ス ターバースト系化合物)、ナフタレンのようなナフタレン系化合物、フェナントレンのよ うなフェナントレン系化合物、クリセンのようなクリセン系化合物、ペリレンのようなペ リレン系化合物、アントラセンのようなアントラセン系化合物、ピレンのようなピレン系 化合物、アクリジンのようなアクリジン系化合物、スチルベンのようなスチルベン系化合 物、BBOTのようなチオフェン系化合物、プタジエンのようなプタジエン系化合物、ク マリンのようなクマリン系化合物、キノリンのようなキノリン系化合物、ビスチリルのよ うなビスチリル系化合物、ピラジン、ジスチリルピラジンのようなピラジン系化合物、キ ノキサリンのようなキノキサリン系化合物、ベンゾキノン、2, 5-ジフェニルーパラー ベンゾキノンのようなベンゾキノン系化合物、ナフトキノンのようなナフトキノン系化合 物、アントラキノンのようなアントラキノン系化合物、オキサジアゾール、2-(4-ビ フェニリル) -5- (4-t-プチルフェニル) -1, 3, 4-オキサジアゾール (PB D)、BMD、BND、BDD、BAPDのようなオキサジアゾール系化合物、トリアゾ ール、3, 4, 5-トリフェニルー1, 2, 4-トリアゾールのようなトリアゾール系化 合物、オキサゾール系化合物、アントロンのようなアントロン系化合物、フルオレノン、 1, 3, 8-トリニトローフルオレノン (TNF) のようなフルオレノン系化合物、ジフ ェノキノン、MBDQのようなジフェノキノン系化合物、スチルベンキノン、MBSQの

ようなスチルベンキノン系化合物、アントラキノジメタン系化合物、チオピランジオキシ ド系化合物、フルオレニリデンメタン系化合物、ジフェニルジシアノエチレン系化合物、 フローレンのようなフローレン系化合物、フタロシアニン、銅フタロシアニン、鉄フタロ シアニンのような金属または無金属のフタロシアニン系化合物、(8-ヒドロキシキノリ ン)アルミニウム(Alq3)、ベンゾオキサゾールやベンゾチアゾールを配位子とする 錯体のような各種金属錯体等が挙げられる。

[0032]

また、電子輸送材料は、以上のような化合物のうちの少なくとも1種を用いることがで きる。

電子輸送層43の厚さ(平均)は、特に限定されないが、1~100nm程度であるの が好ましく、20~50mm程度であるのがより好ましい。電子輸送層43の厚さが薄す ぎると、ピンホールが生じショートするおそれがあり、一方、電子輸送層43が厚過ぎる と、抵抗値が高くなるおそれがある。

[0033]

陽極3と陰極5との間に通電(電圧を印加)すると、正孔輸送層41中を正孔が、また 、電子輸送層43中を電子が移動し、発光層42において正孔と電子とが再結合する。そ して、発光層42では、この再結合に際して放出されたエネルギーによりエキシトン(励 起子)が生成し、このエキシトンが基底状態に戻る際にエネルギー(蛍光やりん光)を放 出(発光)する。

[0034]

この発光層42の構成材料(発光材料)としては、電圧印加時に陽極3側から正孔を、 また、陰極5側から電子を注入することができ、正孔と電子が再結合する場を提供できる ものであれば、いかなるものであってもよい。

このような発光材料には、以下に示すような、各種低分子の発光材料、各種高分子の発 光材料があり、これらのうちの少なくとも1種を用いることができる。

[0035]

なお、低分子の発光材料を用いることにより、緻密な発光層42が得られるため、発光 層42の発光効率が向上する。また、高分子の発光材料を用いることにより、比較的容易 に溶剤へ溶解させることができるため、インクジェット印刷法等の各種塗布法による発光 層42の形成を容易に行うことができる。さらに、低分子の発光材料と高分子の発光材料 とを組み合わせて用いることにより、低分子の発光材料および高分子の発光材料を用いる 効果を併有すること、すなわち、緻密かつ発光効率に優れる発光層42を、インクジェッ ト印刷法等の各種塗布法により、容易に形成することができるという効果が得られる。

[0036]

低分子の発光材料としては、例えば、ジスチリルベンゼン(DSB)、ジアミノジスチ リルベンゼン(DADSB)のようなベンゼン系化合物、ナフタレン、ナイルレッドのよ うなナフタレン系化合物、フェナントレンのようなフェナントレン系化合物、クリセン、 6-ニトロクリセンのようなクリセン系化合物、ペリレン、N, N' -ビス (2, 5-ジ - t - ブチルフェニル) - 3, 4, 9, 10-ペリレンージーカルボキシイミド (BPP C) のようなペリレン系化合物、コロネンのようなコロネン系化合物、アントラセン、ビ ススチリルアントラセンのようなアントラセン系化合物、ピレンのようなピレン系化合物 、4-(ジーシアノメチレン)-2-メチル-6-(パラージメチルアミノスチリル)-4 H-ピラン (DCM) のようなピラン系化合物、アクリジンのようなアクリジン系化合 物、スチルベンのようなスチルベン系化合物、2,5-ジベンゾオキサゾールチオフェン のようなチオフェン系化合物、ベンゾオキサゾールのようなベンゾオキサゾール系化合物 、ベンゾイミダゾールのようなベンゾイミダゾール系化合物、2,2'-(パラーフェニ レンジビニレン) ービスベンゾチアゾールのようなベンゾチアゾール系化合物、ビスチリ ル (1, 4-ジフェニル-1, 3-プタジエン)、テトラフェニルプタジエンのようなブ タジエン系化合物、ナフタルイミドのようなナフタルイミド系化合物、クマリンのような クマリン系化合物、ペリノンのようなペリノン系化合物、オキサジアゾールのようなオキ

サジアゾール系化合物、アルダジン系化合物、1,2,3,4,5-ペンタフェニルー1 , 3-シクロペンタジエン(PPCP)のようなシクロペンタジエン系化合物、キナクリ ドン、キナクリドンレッドのようなキナクリドン系化合物、ピロロピリジン、チアジアゾ ロピリジンのようなピリジン系化合物、2,2',7,7'ーテトラフェニルー9,9' -スピロビフルオレンのようなスピロ化合物、フタロシアニン (H2 Pc)、銅フタロシ アニンのような金属または無金属のフタロシアニン系化合物、フローレンのようなフロー レン系化合物、 (8-ヒドロキシキノリン) アルミニウム (Alq3)、トリス (4-メ チルー8キノリノレート)アルミニウム (III) (Almq3)、(8-ヒドロキシキノ リン) 亜鉛(Znq2)、(1,10-フェナントロリン)ートリスー(4,4,4-ト リフルオロー1- (2-チエニル) ーブタンー1, 3-ジオネート) ユーロピウム (III) (Eu (TTA) 3 (phen))、ファクトリス (2-フェニルピリジン) イリジウ ム (Ir (ppy) 3)、(2, 3, 7, 8, 12, 13, 17, 18-オクタエチルー 21H,23H-ポルフィン)プラチナム(II)のような各種金属錯体等が挙げられる。 [0037]

高分子の発光材料としては、例えば、トランス型ポリアセチレン、シス型ポリアセチレ ン、ポリ(ジーフェニルアセチレン) (PDPA) 、ポリ (アルキル, フェニルアセチレ ン) (PAPA) のようなポリアセチレン系化合物、ポリ (パラーフェンビニレン) (P PV)、ポリ(2, 5-ジアルコキシーパラーフェニレンビニレン)(RO-PPV)、 シアノー置換ーポリ(パラーフェンビニレン)(CN-PPV)、ポリ(2-ジメチルオ クチルシリルーパラーフェニレンビニレン) (DMOS-PPV) 、ポリ (2ーメトキシ , 5-(2'-エチルヘキソキシ)-パラ-フェニレンビニレン)(MEH-PPV)の ようなポリパラフェニレンビニレン系化合物、ポリ(3-アルキルチオフェン)(PAT)、ポリ(オキシプロピレン)トリオール(POPT)のようなポリチオフェン系化合物 、ポリ(9,9-ジアルキルフルオレン)(PDAF)、lpha, ω -ビス[N, N' -ジ(メチルフェニル) アミノフェニル] ーポリ [9, 9ービス (2ーエチルヘキシル) フルオ レン-2, 7-ジル] (PF2<math>/6am4)、ポリ(9, 9-ジオクチル<math>-2, 7-ジビニレンフルオレニルーオルトーコ (アントラセンー9, 10ージイル) のようなポリフル オレン系化合物、ポリ (パラーフェニレン) (PPP)、ポリ (1, 5-ジアルコキシー パラーフェニレン)(RO-PPP)のようなポリパラフェニレン系化合物、ポリ(N-ビニルカルバゾール)(PVK)のようなポリカルバゾール系化合物、ポリ(メチルフェ ニルシラン) (PMPS)、ポリ (ナフチルフェニルシラン) (PNPS)、ポリ (ビフ ェニリルフェニルシラン)(PBPS)のようなポリシラン系化合物等が挙げられる。

[0038]

発光層42の厚さ(平均)は、特に限定されないが、10~150 n m程度であるのが 好ましく、50~100mm程度であるのがより好ましい。発光層の厚さを前記範囲とす ることにより、正孔と電子との再結合が効率よくなされ、発光層42の発光効率をより向 上させることができる。

なお、本実施形態では、発光層42は、正孔輸送層41および電子輸送層43と別個に 設けられているが、正孔輸送層41と発光層42とを兼ねた正孔輸送性発光層や、電子輸 送層43と発光層42とを兼ねた電子輸送性発光層とすることもできる。この場合、正孔 輸送性発光層の電子輸送層43との界面付近が、また、電子輸送性発光層の正孔輸送層4 1との界面付近が、それぞれ、発光層 4 2 として機能する。

また、正孔輸送性発光層を用いた場合には、陽極から正孔輸送性発光層に注入された正 孔が電子輸送層によって閉じこめられ、また、電子輸送性発光層を用いた場合には、陰極 から電子輸送性発光層に注入された電子が電子輸送性発光層に閉じこめられるため、いず れも、正孔と電子との再結合効率を向上させることができるという利点がある。

また、各層3、4、5同士の間には、任意の目的の層が設けられていてもよい。例えば 、正孔輸送層41と陽極3との間には正孔注入層を、また、電子輸送層43と陰極5との 間には電子注入層等を設けることができる。このように、有機EL素子1に正孔注入層を

設ける場合には、この正孔注入層に、本発明の正孔輸送材料を用いることもできる。また 、有機EL素子1に電子注入層を設ける場合には、この電子注入層には、前述したような 電子輸送材料の他、例えばLiFのようなアルカリハライド等を用いることができる。

[0040]

保護層6は、有機EL素子1を構成する各層3、4、5を覆うように設けられている。 この保護層6は、有機EL素子1を構成する各層3、4、5を気密的に封止し、酸素や水 分を遮断する機能を有する。保護層6を設けることにより、有機EL素子1の信頼性の向 上や、変質・劣化の防止等の効果が得られる。

保護層6の構成材料としては、例えば、Al、Au、Cr、Nb、Ta、Tiまたはこ れらを含む合金、酸化シリコン、各種樹脂材料等を挙げることができる。なお、保護層 6 の構成材料として導電性を有する材料を用いる場合には、短絡を防止するために、保護層 6と各層3、4、5との間には、必要に応じて、絶縁膜を設けるのが好ましい。

[0041]

この有機EL素子1は、例えばディスプレイ用として用いることができるが、その他に も光源等としても使用可能であり、種々の光学的用途等に用いることが可能である。

また、有機EL素子1をディスプレイに適用する場合、その駆動方式としては、特に限 定されず、アクティブマトリックス方式、パッシブマトリックス方式のいずれであっても よい。

このような有機EL素子1は、例えば、次のようにして製造することができる。

[0042]

まず、基板2を用意し、この基板2上に陽極3を形成する。 [1]

陽極3は、例えば、プラズマCVD、熱CVD、レーザーCVDのような化学蒸着法(CVD)、真空蒸着、スパッタリング、イオンプレーティング等の乾式メッキ法、電解メ ッキ、浸漬メッキ、無電解メッキ等の湿式メッキ法、溶射法、ゾル・ゲル法、MOD法、 金属箔の接合等を用いて形成することができる。

[0043]

次に、陽極3上に正孔輸送層41を形成する。 [2]

正孔輸送層41は、例えば、前述したような正孔輸送材料を溶媒に溶解または分散媒に 分散してなる正孔輸送層材料 (正孔輸送層形成用材料) を、陽極3上に塗布して形成する ことができる。

この塗布には、スピンコート法、キャスティング法、マイクログラビアコート法、グラ ビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート 法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インク ジェット印刷法等の各種塗布法を用いることができる。かかる塗布法によれば、正孔輸送 層41を比較的容易に形成することができる。

[0044]

正孔輸送材料を溶解する溶媒または分散する分散媒としては、例えば、硝酸、硫酸、ア ンモニア、過酸化水素、水、二硫化炭素、四塩化炭素、エチレンカーボネイト等の無機溶 媒や、メチルエチルケトン (MEK)、アセトン、ジエチルケトン、メチルイソプチルケ トン (MIBK)、メチルイソプロピルケトン (MIPK)、シクロヘキサノン等のケト ン系溶媒、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレ ングリコール(DEG)、グリセリン等のアルコール系溶媒、ジエチルエーテル、ジイソ プロピルエーテル、1, 2 -ジメトキシエタン(DME)、1, 4 -ジオキサン、テトラ ヒドロフラン (THF)、テトラヒドロピラン (THP)、アニソール、ジエチレングリ コールジメチルエーテル (ジグリム) 、ジエチレングリコールエチルエーテル (カルビト ール)等のエーテル系溶媒、メチルセロソルプ、エチルセロソルプ、フェニルセロソルプ 等のセロソルプ系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の脂肪族炭化 水素系溶媒、トルエン、キシレン、ベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラ ジン、フラン、ピロール、チオフェン、メチルピロリドン等の芳香族複素環化合物系溶媒 、N, Nージメチルホルムアミド (DMF) 、N, Nージメチルアセトアミド (DMA)

等のアミド系溶媒、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化合物系溶媒、酢酸エチル、酢酸メチル、ギ酸エチル等のエステル系溶媒、ジメチルスルホキシド(DMSO)、スルホラン等の硫黄化合物系溶媒、アセトニトリル、プロピオニトリル、アクリロニトリル等のニトリル系溶媒、ギ酸、酢酸、トリクロロ酢酸、トリフルオロ酢酸等の有機酸系溶媒のような各種有機溶媒、または、これらを含む混合溶媒等が挙げられる。

得られた塗膜には、必要に応じて、例えば大気中、不活性雰囲気中、減圧(または真空)下等において熱処理を施すようにしてもよい。これにより、例えば、塗膜の乾燥(脱溶媒または脱分散媒)、正孔輸送材料の重合等を行うことができる。なお、塗膜は、熱処理によらず乾燥してもよい。

[0045]

[3] 次に、正孔輸送層41上に発光層42を形成する。

発光層42は、正孔輸送層41と同様にして形成することができる。すなわち、発光層42は、前述したような発光材料を用いて、正孔輸送層41で説明したような方法により 形成することができる。

[4] 次に、発光層42上に電子輸送層43を形成する。

電子輸送層43は、正孔輸送層41と同様にして形成することができる。すなわち、電子輸送層43は、前述したような電子輸送材料を用いて、正孔輸送層41で説明したような方法により形成することができる。

[0046]

[5] 次に、電子輸送層43上に陰極5を形成する。

陰極5は、例えば、真空蒸着法、スパッタリング法、金属箔の接合等を用いて形成する ことができる。

[6] 次に、陽極3、有機EL層4および陰極5を覆うように、保護層6を形成する。 保護層6は、例えば、前述したような材料で構成される箱状の保護カバーを、各種硬化 性樹脂(接着剤)で接合すること等により形成する(設ける)ことができる。

硬化性樹脂には、熱硬化性樹脂、光硬化性樹脂、反応性硬化樹脂、嫌気性硬化樹脂のいずれも使用可能である。

以上のような工程を経て、有機EL素子1が製造される。

[0047]

本発明では、有機EL素子を構成する正孔を輸送する機能を有する層、および正孔輸送 材料に特徴を有する。以下、この点(特徴)について説明する。

本発明者は、有機EL素子の発光輝度の減衰を抑制すべく、有機EL素子を構成する各層の中でも、特に、正孔を輸送する機能を有する層に着目して鋭意検討を重ねた。その結果、本発明者は、正孔を輸送する機能を有する層中に含まれる不純物、その中でも、分子量5000以下のノニオン性不純物(以下、単に「ノニオン性不純物」と言う。)の含有量を所定量以下に抑えることにより、有機EL素子の発光輝度の減衰を効果的に抑制し得ることを見出し、本発明を完成するに至った。

[0048]

なお、正孔を有する機能を有する層としては、前述したように、正孔輸送層の他、正孔 注入層等があるが、以下では、正孔輸送層で代表する。

ここで、正孔輸送層中のノニオン性不純物の含有量が多くなると、正孔輸送層中においてノニオン性不純物がトリガーとなり、正孔輸送層を構成する正孔輸送材料の構造変化 (例えば分解等) が生じて、正孔輸送層が経時的に劣化する。または、これらのノニオン性不純物が正孔 (電子) をトラップすることにより、抵抗として余分な発熱を引き起こし、正孔輸送層が経時的に劣化する。これが一要因となり、有機EL素子の発光輝度の低下が生じる。

[0049]

これに対して、ノニオン性不純物の含有量が下記に示す範囲のように低い正孔輸送層では、正孔輸送材料の構造変化が防止または抑制され、これにより、有機EL素子の発光輝

度の減衰を抑制することができる。その結果、有機EL素子は、長期間に亘って良好な発 光特性を維持することができるようになる。

具体的には、本発明では、正孔輸送層中のノニオン性不純物の含有量を2000ppm 以下、好ましくは1000ppm以下、より好ましくは250ppm以下とした。

[0050]

なお、アニオン性不純物、カチオン性不純物およびノニオン性不純物として、それぞれ 、複数種のものを含む場合には、前記含有量とは、それらの合計量(すなわち、総含有量) のことを言う。

また、正孔輸送層を、ポリ(チオフェン/スチレンスルホン酸)系化合物を主成分とす る正孔輸送材料で構成する場合には、正孔輸送層中に含まれるノニオン性不純物の含有量 を、スチレンユニットの個数に対する個数で設定(調整)するようにするのが好適である 。これにより、正孔輸送層中のノニオン性不純物の含有量を、より正確に前述したような 範囲に調整することができる。

[0051]

具体的には、正孔輸送層中に含まれるノニオン性不純物の個数を、スチレンユニット1 000個に対して6個以下とするのが好ましく、3個以下とするのがより好ましく、1個 以下とするのが特に好ましい。

ここで、正孔輸送層中に含まれるノニオン性不純物およびスチレンユニットの個数は、 各種の手法により測定することができるが、例えば、1 H-NMRのスペクトルより得ら れるそれぞれのピーク面積より求めるのが好ましい。かかる手法によれば、容易かつ正確 、短時間に正孔輸送層中のノニオン性不純物およびスチレンユニットの個数を測定するこ とができる。

さて、正孔輸送層中にノニオン性不純物が混入する原因としては、種々考えられるが、 [0052] 主たる原因は、正孔輸送層の主材料となる正孔輸送材料を合成する際に用いる各種物質(特に溶媒)や、合成過程において生成してくる各種物質(例えば、不本意に合成される物 質、分解物等)が十分に除去されないことによるものであると考えられる。

かかる物質(ノニオン性不純物)としては、例えば、ジエチレングリコール(DEG) 、エチレングリコール、グリセリンのような多価アルコール、N-メチルーピロリドンの ような芳香族複素環化合物等のうちの1種または2種以上が挙げられる。これらものは、 特に、正孔輸送材料の経時的な構造変化を引き起こす可能が高い物質であるため、これら を除去することにより、正孔輸送層が経時的に劣化するのをより確実に防止することがで きる。

[0053]

なお、除去すべきノニオン性不純物は、正孔輸送材料を合成する際に生成および/また は混入するものが主たるものと考えられるが、その他、例えば、正孔輸送材料の保存時に 、正孔輸送材料が分解して生じるものが挙げられる。

例えば、ポリ(チオフェン/スチレンスルホン酸)系化合物を主成分とする正孔輸送材 料で構成される正孔輸送層中に含まれるノニオン性不純物としては、主に、エチレングリ コールが挙げられる。

[0054]

このようなノニオン性不純物の含有量が少ない正孔輸送層は、例えば、次のような正孔 輸送材料を用いることにより、確実に形成することができる。

すなわち、正孔輸送材料としては、この正孔輸送材料を2.0wt%となるよう液体に 溶解または分散させたとき、この液体中のノニオン性不純物の含有量が、好ましくは40 ppm以下、より好ましくは20ppm以下、さらに好ましくは5ppm以下であるもの が好適である。

[0055]

また、ポリ(チオフェン/スチレンスルホン酸)系化合物を主成分とする正孔輸送材料 の場合では、上述したのと同様の理由から、正孔輸送層中に含まれるノニオン性不純物の

含有量を、スチレンユニットの個数に対する個数で設定(調整)するようにするのが好適 である。

なお、この場合も、ノニオン性不純物および前記スチレンユニットの個数は、 1 H-N MRのスペクトルより得られるそれぞれのピーク面積より求めるのが好適である。

[0056]

具体的には、前記液体中に含まれるノニオン性不純物の含有量が、スチレンユニット1 000個に対して6個以下とするのが好ましく、3個以下とするのがより好ましく、1個 以下とするのが特に好ましい。これにより、正孔輸送材料中のノニオン性不純物の含有量 を、より確実に前述したような範囲とすることができる。

このような正孔輸送材料を用いて正孔輸送層を形成することにより、正孔輸送層中のノ ニオン性不純物の含有量を、確実に前述したような範囲とすることができる。

[0057]

なお、正孔輸送層は、必ずしもこのような正孔輸送材料を用いて形成する必要はなく、 得られた層において、最終的にノニオン性不純物が前述のような範囲となっていればよい

このような正孔輸送材料は、次のようにして調製(精製)することができる。 以下、本発明の正孔輸送材料の精製方法について説明する。

[0058]

本発明の正孔輸送材料の精製方法は、正孔輸送材料の溶液または分散液中から、ノニオ ン性不純物を分離または除去し得る除去手段により、ノニオン性不純物を除去した後、溶 媒または分散媒を除去することにより行われる。

この除去手段には、例えば、限外ろ過膜、フィルタ、吸着剤、透析膜等のうちの1種ま たは2種以上を組み合わせて用いることができる。

[0059]

これらの中でも、除去手段としては、限外ろ過膜を用いるのが好ましい。除去手段とし て限外ろ過膜を用いることにより、比較的容易かつ短時間で、溶液または分散液中からノ ニオン性不純物の除去を行うことができる。また、限外ろ過膜は、分子量に応じた各種物 質の分離特性に優れており、用いる限外ろ過膜の種類を適宜選択するだけで、目的とする ノニオン性不純物を効率よくかつ確実に除去することができる。

[0060]

このため、除去手段として、限外ろ膜を用いることにより、特に精度の高いノニオン性 不純物の除去が可能となる。

以下、ノニオン性不純物の除去方法として、この限外ろ過膜を用いた限外ろ過法につい て代表的に説明する。

限外ろ過法では、正孔輸送材料を溶媒に溶解または分散媒に分散してなる精製用溶液ま たは精製用分散液(以下、これらを総称して、「精製用液」と言う。)を限外ろ過膜に通 し、精製用液中から限外ろ過膜によりノニオン性不純物を分離、除去した後、溶媒(また は分散媒)を除去して、正孔輸送材料の精製を行う。これにより、正孔輸送層中または正 孔輸送材料中におけるノニオン性不純物の含有量を、前述したような範囲となるように調 整する。

[0061]

精製用液の調製には、有機EL素子1の製造方法(正孔輸送層41の形成工程)で挙げ た溶媒(または分散媒)と同様のものを用いることができる。

限外ろ過法で用いる限外ろ過膜としては、除去するノニオン性不純物の分子量に応じて 限外ろ過膜の開口径を選択すればよい。

精製用液を限外ろ過膜に通す際の速度(通液速度)は、特に限定されないが、1~10 0mL/min程度であるのが好ましく、1~20mL/min程度であるのがより好ま しい。精製用液の通液速度を前記範囲とすることにより、ノニオン性不純物の除去をより 効率よく行うことができる。

[0062]

また、精製用液の温度(溶液温度)も、特に限定されないが、ノニオン性不純物の除去操作に支障をきたさない範囲で高い方がよく、0~80℃程度であるのが好ましく、10~25℃程度であるのがより好ましい。溶液温度を前記範囲とすることにより、ノニオン性不純物の除去をより効率よく行うことができる。

また、この場合、精製用液は、限外ろ過に1回だけ通すのではなく、複数回限外ろ過膜に通すようにしてもよいし、異なる種類の限外ろ過膜に通すようにしてもよいし、これらを組み合わせるようにしてもよい。これにより、ノニオン性不純物をより効率よく除去することができる。

[0063]

また、精製後の精製用液は、溶媒(または分散媒)を除去することなく、そのまま有機 EL素子の製造に供するようにしてもよいし、濃縮または希釈した後、有機EL素子の製 造に供するようにしてもよい。

以上、本発明の正孔輸送材料、層、有機エレクトロルミネッセンス素子および正孔輸送 材料の精製方法について説明したが、本発明は、これに限定されるものではない。

【実施例】

[0064]

次に、本発明の具体的実施例について説明する。

なお、各実施例において使用した超純水中には、ノニオン性不純物は、検出されなかった。

また、以下の各実施例および比較例において、有機EL素子を5個ずつ製造した。

[0065]

1. 有機EL素子の製造

(実施例1)

「正孔輸送材料の精製」

まず、精製用液として、正孔輸送材料であるポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)(バイエル社製、「バイトロンP」)の2.0 w t %水分散液を用意した。

なお、ポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)としては、3,4-エチレンジオキシチオフェンとスチレンスルホン酸との比率が、重量比で1:20のものを用いた。

次に、この精製用液を、超純水により10倍に希釈して溶液調製をした。

次に、この溶液調整した精製用液を、限外ろ過セル(ミリポア社製 攪拌式セル 8200 限外ろ過膜:分画分子量3000)中を通過させ、希釈前の精製用液と同量となるまで濃縮した。これにより、分子量3000以下のノニオン性不純物を除去した。

なお、精製用液の温度(溶液温度)は20℃、精製用液の限外ろ過セルへの通過速度(通液速度)は10mL/minとした。

以上のようにして、ノニオン性不純物を除去した後の精製用液を、正孔輸送層材料(正 孔輸送層形成用材料)として正孔輸送層の形成に用いた。

[0066]

[有機EL素子の作製]

まず、平均厚さ0.5mmの透明なガラス基板上に、真空蒸着法により、平均厚さ10 0nmのITO電極(陽極)を形成した。

次に、ITO電極上に、前記正孔輸送層材料を、スピンコート法により塗布した後、乾燥して、平均厚さ50nmの正孔輸送層を形成した。

[0067]

次に、正孔輸送層上に、ポリ (9,9-ジオクチルー2,7-ジピニレンフルオレニルーオルトーコ (アントラセンー9,10-ジイル) (重量平均分子量200000) の1.7 wt%キシレン溶液を、スピンコート法により塗布した後、乾燥して、平均厚さ50nmの発光層を形成した。

次に、発光層上に、3,4,5ートリフェニルー1,2,4ートリアゾールを真空蒸着

し、平均厚さ20nmの電子輸送層を形成した。

次に、電子輸送層上に、真空蒸着法により、平均厚さ300nmのAlLi電極(陰極)を形成した。

次に、形成した各層を覆うように、ポリカーボネート製の保護カバーを被せ、紫外線硬 化性樹脂により固定、封止して、有機EL素子を完成した。

[0068]

(実施例2)

超純水による精製用液の希釈倍率を20倍とした以外は、前記実施例1と同様にして、 正孔輸送材料の精製を行った後、有機EL素子を製造した。

(実施例3)

超純水による精製用液の希釈倍率を1.5倍とした以外は、前記実施例1と同様にして 、正孔輸送材料の精製を行った後、有機EL素子を製造した。

[0069]

(実施例4)

まず、精製用液として、正孔輸送材料であるポリ(3,4-エチレンジオキシチオフェ ン/スチレンスルホン酸)(バイエル社製、「バイトロンP」)の2.0wt%水分散液 を用意した。

なお、ポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)としては、 3,4-エチレンジオキシチオフェンとスチレンスルホン酸との比率が、重量比で1:2 0のものを用いた。

[0070]

次に、この精製用液を、限外ろ過セル(ミリポア社製 攪拌式セル8200 限外ろ過 膜:分画分子量3000)中を通過させ、精製用液の量が半分になるまで濃縮した。これ により、分子量3000以下のノニオン性不純物を除去した。

なお、精製用液の温度(溶液温度)は20℃、精製用液の限外ろ過セルへの通過速度(通液速度)は10mL/minとした。

次に、得られた濃縮液を超純水により2倍に希釈した。

次に、このものを、正孔輸送層材料(正孔輸送層形成用材料)として用いて、有機EL 素子を製造した。

[0071]

(実施例5)

限外ろ過セル(アミコン社製:分画分子量5000)を用いて、分子量5000以下の ノニオン性不純物を除去した以外は、前記実施例 1 と同様にして、正孔輸送材料の精製を 行った後、有機EL素子を製造した。

(実施例6)

限外ろ過セル(アミコン社製:分画分子量5000)を用いて、分子量5000以下の ノニオン性不純物を除去した以外は、前記実施例 2 と同様にして、正孔輸送材料の精製を 行った後、有機EL素子を製造した。

[0072]

(実施例7)

限外ろ過セル(アミコン社製:分画分子量5000)を用いて、分子量5000以下の ノニオン性不純物を除去した以外は、前記実施例 3 と同様にして、正孔輸送材料の精製を 行った後、有機EL素子を製造した。

(実施例8)

限外ろ過セル(アミコン社製:分画分子量5000)を用いて、分子量5000以下の ノニオン性不純物を除去した以外は、前記実施例 4 と同様にして、正孔輸送材料の精製を 行った後、有機EL素子を製造した。

[0073]

(比較例1) 超純水による精製用液の希釈倍率を1.3倍とした以外は、前記実施例1と同様にして

、正孔輸送材料の精製を行った後、有機EL素子を製造した。

(比較例 2)

超純水による精製用液の希釈倍率を1.1倍とした以外は、前記実施例1と同様にして 、正孔輸送材料の精製を行った後、有機EL素子を製造した。

[0074]

(比較例3)

前記実施例1と同様の正孔輸送材料を用意し、ノニオン性不純物の除去を省略した以外 は、前記実施例1と同様にして有機EL素子を製造した。

次に、このものを、正孔輸送層材料(正孔輸送層形成用材料)として用いて、有機EL 素子を製造した。

[0075]

2. 評価

2-1. ノニオン性不純物含有量の測定

各実施例で精製した正孔輸送材料および比較例の正孔輸送材料について、それぞれ、材 料中のノニオン性不純物の含有量を測定した。この測定には、¹ H-NMR法を用いた。 この 1 H-NMRによる測定の結果、 1 H-NMRのスペクトルからは、PEDT/PSSに由来するピークと、分子量5000以下のノニオン性不純物として、エチレングリ コールに由来するピークとが確認された。

[0076]

そして、確認されたピークのうち、スチレンユニットに由来するピークの面積と、エチ レングリコールに由来するピークの面積とを測定し、これらのピーク面積の比率から、ス チレンユニット1000個に対するエチレングリコールの個数(以下、単に「エチレング リコールの個数」と略す。)を求めた。

さらに、得られたエチレングリコールの個数および溶液中の正孔輸送材料(PEDT/ PSS) の濃度とPEDT/PSSの重量比から換算することにより、正孔輸送材料中の 含有量(ppm)を求めた。

また、有機EL素子の正孔輸送層中のノニオン性不純物の含有量は、ここで示した1 H - NMR法と同様の手法を用いて行った。

[0077]

2-2. 有機EL素子の発光輝度の減衰評価

各実施例および比較例の有機EL素子について、それぞれ、発光輝度を測定し、発光輝 度が初期値の半分になる時間(半減期)を測定した。

なお、発光輝度の測定は、ITO電極とAlLi電極との間に6Vの電圧を印加するこ とにより行った。

これらの評価2-1、2-2の結果を、それぞれ、以下の表1に示す。

[0078]

【表1】

表1(A表)

<2. 0wt% 水分散液中>

		ノニオン性不純物含有量		発光輝度減衰評価
	スチレンユニット	エチレングリコール	除去率(%)	半減期 [相対値]
実施例1	1000	1.0 (6.45ppm)	90. 2	1.75
実施例2	1000	0.4 (2.58ppm)	96. 1	1.90
実施例3	1000	5.0 (32.3ppm)	50.9	1.20
実施例 4	1000	2.0 (12.9ppm)	80.4	1.60
実施例 5	1000	1.2 (7.74ppm)	88. 2	1.70
実施例 6	1000	0.3 (1.94ppm)	97.1	1.95
実施例7	1000	5.2 (33.6ppm)	49.0	1.19
実施例8	1000	2.5 (16.1ppm)	75.5	1.54
比較例1	1000	6.7 (43.3ppm)	34.3	1.03
比較例 2	1000	9.1 (58.5ppm)	10.8	1.02
比較例3	1000	10.2 (65.8ppm)	0.0	1.00

表1 (B表)

<正孔輸送層中>

		ノニオン性不純物含有量		発光輝度減衰評価
!	スチレンユニット	エチレングリコール		半減期 [相対値]
実施例1	1000	1.0 (322ppm	90. 2	1.75
実施例 2	1000	0.4 (129ppm	96.1	1.90
実施例3	1000	5.0 (1615ppm	a) 50.9	1. 20
実施例4	1000	2.0 (645ppi	a) 80.4	1.60
実施例 5	1000	1.2 (387ppr		1.70
	1000	0.3 (97ppi		1.95
実施例 6	1000	5. 2 (1678pp)		1.19
実施例7		2.5 (805pp		1.54
実施例8	1000			1.03
比較例 1	1000			1.02
比較例 2	1000			1.00
比較例3	1000	10.2 (3291pp	U. U	1 1.00

[0079]

なお、表1において、それぞれ、A表には、2.0wt%水分散液中のエチレングリコ ールの含有量を、B表には、正孔輸送層中のエチレングリコールの含有量を示した。

また、表1中の各数値は、いずれも、5個の有機EL素子の平均値である。

また、表1中の除去率(%)は、比較例のエチレングリコールの個数を基準とし、この エチレングリコールを全て除去した場合を100%として算出した。

[0080]

また、有機EL素子の発光輝度の減衰評価結果は、比較例の正孔輸送材料を用いて製造 された有機EL素子の発光輝度の半減期を「1」とし、各実施例の正孔輸送材料を用いて 製造された有機EL素子の発光輝度の半減期を、それぞれ相対値で示した。

表1に示すように、各実施例では、いずれも、エチレングリコール (ノニオン性不純物

出証特2004-3105227

) の含有量は、2.0 w t %水分散液中においてスチレンユニット1000個に対して10個(60ppm)以下であり、また、正孔輸送層中においてもスチレンユニット1000個に対して10個(3000ppm)以下であった。

[0081]

すなわち、各実施例では、エチレングリコールが高い除去率で除去されていた。これに対して、比較例では、エチレングリコール(ノニオン性不純物)の含有量は、2.0 w t %水分散液中においてスチレンユニット1000個に対して10個(60ppm)を上回り、また、正孔輸送層中においてもスチレンユニット1000個に対して10個(3000ppm)を上回っていた。

[0082]

なお、各実施例における正孔輸送材料の体積抵抗率は、いずれも、比較例における正孔輸送材料の体積抵抗率より大きく、 $10^4\Omega\cdot c$ m以上であった。

また、各実施例(本発明)の有機EL素子は、いずれも、比較例の有機EL素子に比べ、発光輝度の半減期が長くなり、発光輝度の減衰が抑制された。この発光輝度の半減期は、エチレングリコールの含有量が少なくなるのにしたがって、長くなる傾向を示した。

以上のことより、ノニオン性不純物の含有量を所定量に抑えた正孔輸送層を有する有機 EL素子は、発光輝度の減衰が抑えられ、長期間に亘って良好な発光特性を維持すること ができ、優れたものとなることがわかった。

【図面の簡単な説明】

[0083]

【図1】有機EL素子の一例を示した縦断面図である。

【符号の説明】

[0084]

1 ······有機 E L 素子 2 ······基板 3 ······陽極 4 ······有機 E L 層 4 1 ······正孔輸送 層 4 2 ······発光層 4 3 ······電子輸送層 5 ······陰極 6 ······保護層

【書類名】図面【図1】

【書類名】要約書

【要約】

【課題】有機EL素子の発光輝度の減衰を抑制することができる正孔輸送材料および層、 有機エレクトロルミネッセンス素子、さらには正孔輸送材料の精製方法を提供すること。 【解決手段】有機EL素子1では、陽極3と陰極5との間に通電(電圧を印加)すると、 正孔輸送層41中を正孔が、また、電子輸送層43中を電子が移動し、発光層42におい て正孔と電子とが再結合する。そして、発光層42では、この再結合に際して放出された エネルギーによりエキシトン(励起子)が生成し、このエキシトンが基底状態に戻る際に エネルギー(蛍光やりん光)を放出(発光)する。本発明の正孔輸送材料は、正孔輸送層 4 1 に用いられるものであり、分子量 5 0 0 0 以下のノニオン性不純物の含有量が低く抑 えられている。これにより、有機EL素子1の発光輝度の減衰を抑制することができる。 【選択図】図1

ページ: 1/E

認定・付加情報

特許出願の番号 特願2003-362510

受付番号 50301754576

書類名 特許願

担当官 第七担当上席 0096

作成日 平成15年10月23日

<認定情報・付加情報>

【提出日】 平成15年10月22日

特願2003-362510

出願人履歴情報

識別番号

[000002369]

1. 変更年月日 [変更理由]

1990年 8月20日

更理由] 新規登録 住 所 東京都新

東京都新宿区西新宿2丁目4番1号

氏 名 セイコーエプソン株式会社