

C3 : Analyse temporelle des systèmes asservis C3-1 : Analyse temporelle des systèmes asservis du 1er ordre

Émilien DURIF

Lycée La Martinière Monplaisir Lyon Classe de MPSI 16 Octobre 2018

Plan

- Système du premier ordre
 - Définitions
 - Caractérisations de la réponse d'un système du premier ordre

Plan

- Système du premier ordre
 - Définitions
 - Caractérisations de la réponse d'un système du premier ordre

Système du premier ordre

On appelle système du premier ordre tout système linéaire, continu et invariant régi par une équation différentielle du premier degré de la forme :

$$\tau \frac{ds(t)}{dt} + s(t) = K e(t).$$
 (1)

Remarque

Pour la suite du cours, on considérera que les <mark>conditions initiales de s(t) sont</mark>

• pour une équation différentielle du premier ordre : s(t=0)=0 ;

Système du premier ordre

On appelle système du premier ordre tout système linéaire, continu et invariant régi par une équation différentielle du premier degré de la forme :

$$\tau \frac{ds(t)}{dt} + s(t) = K e(t).$$
 (1)

Remarque

Pour la suite du cours, on considérera que les conditions initiales de s(t) sont toujours nulles :

- pour une équation différentielle du premier ordre : s(t=0)=0 ;
- pour une équation différentielle du deuxième ordre : s'(t=0)=0

Système du premier ordre

On appelle système du premier ordre tout système linéaire, continu et invariant régi par une équation différentielle du premier degré de la forme :

$$\tau \frac{ds(t)}{dt} + s(t) = K e(t).$$
 (1)

Remarque

Pour la suite du cours, on considérera que les conditions initiales de s(t) sont toujours nulles :

- pour une équation différentielle du premier ordre : s(t=0)=0 ;
- pour une équation différentielle du deuxième ordre : s'(t=0)=0

Propriété

La fonction de transfert de ces systèmes peut s'écrire sous la forme canonique suivante:

$$H(p) = \frac{K}{1 + \tau p} \tag{2}$$

où:

- τ : constante de temps (en s);
- K : gain statique (unité selon l'application).

Propriété

La fonction de transfert de ces systèmes peut s'écrire sous la forme canonique suivante :

$$H(p) = \frac{K}{1 + \tau p} \tag{2}$$

où:

• τ : constante de temps (en s);

• K : gain statique (unité selon l'application).

Propriété

La fonction de transfert de ces systèmes peut s'écrire sous la **forme canonique** suivante :

$$H(p) = \frac{K}{1 + \tau p} \tag{2}$$

où:

• τ : constante de temps (en s);

• K : gain statique (unité selon l'application).

Exemple : ressort de raideur k et amortisseur de coefficient c

On déplace l'extrémité A d'une longueur e(t). Le point B répond à ce déplacement en se déplaçant d'une longueur s(t).

Système du premier ordre : exemple

Exemple : ressort de raideur k et amortisseur de coefficient c

On déplace l'extrémité A d'une longueur e(t). Le point B répond à ce déplacement en se déplaçant d'une longueur s(t).

On impose un échelon sur le déplacement e(t):

$$e(t=0)=0$$

Système du premier ordre : exemple

Exemple : ressort de raideur k et amortisseur de coefficient c

On déplace l'extrémité A d'une longueur e(t). Le point B répond à ce déplacement en se déplaçant d'une longueur s(t).

On impose un échelon sur le déplacement e(t):

$$e(t = 0^+) = e0$$

Exemple : ressort de raideur k et amortisseur de coefficient c

Question : Comment le système va répondre ?

Système oscillant

Système amorti

Exemple : ressort de raideur k et amortisseur de coefficient c

On déplace l'extrémité A d'une longueur e(t). Le point B répond à ce déplacement en se déplaçant d'une longueur s(t). En isolant le solide S_1 de masse (m), on obtient le bilan des actions mécaniques extérieurs suivant \overrightarrow{x} :

• Le ressort S_2 de raideur k exerce un effort de rappel donné par sa valeur algébrique suivant \overrightarrow{x} .

$$F_r = -k(s(t) - e(t)).$$

• L'amortisseur S_0 de coefficient de viscosité c exerce un effort de rappel donné par sa valeur algébrique suivant $\overrightarrow{\chi}$,

$$F_c = -c \cdot \frac{ds(t)}{dt}$$

• On néglige le poids du solide S_1 .

Exemple : ressort de raideur k et amortisseur de coefficient c

On déplace l'extrémité A d'une longueur e(t). Le point B répond à ce déplacement en se déplaçant d'une longueur s(t). En isolant le solide S_1 de masse (m), on obtient le bilan des actions mécaniques extérieurs suivant \overrightarrow{x} :

• Le ressort S_2 de raideur k exerce un effort de rappel donné par sa valeur algébrique suivant \overrightarrow{x} ,

$$F_r = -k(s(t) - e(t)).$$

 L'amortisseur S₀ de coefficient de viscosité c exerce un effort de rappel donné par sa valeur algébrique suivant X ,

$$F_c = -c \cdot \frac{ds(t)}{dt}.$$

On néglige le poids du solide S_1 .

Exemple : ressort de raideur k et amortisseur de coefficient c

On déplace l'extrémité A d'une longueur e(t). Le point B répond à ce déplacement en se déplaçant d'une longueur s(t). En isolant le solide S_1 de masse (m), on obtient le bilan des actions mécaniques extérieurs suivant \overrightarrow{x} :

• Le ressort S_2 de raideur k exerce un effort de rappel donné par sa valeur algébrique suivant \overrightarrow{x} .

$$F_r = -k(s(t) - e(t)).$$

 L'amortisseur S₀ de coefficient de viscosité c exerce un effort de rappel donné par sa valeur algébrique suivant X,

$$F_c = -c \cdot \frac{ds(t)}{dt}$$
.

• On néglige le poids du solide S_1 .

Exemple : ressort de raideur k et amortisseur de coefficient c

 \bullet En appliquant le Principe Fondamental de la Dynamique suivant la direction $\overrightarrow{x},$ on obtient :

$$F_r + Fc = m \frac{d^2s(t)}{dt^2}.$$

• En négligeant la masse m (ce qui revient à négliger l'inertie), on obtient alors,

$$c\frac{ds(t)}{dt} + ks(t) = ke(t).$$
(3)

• Cette équation différentielle de degré 1 caractérise un système du premier ordre.

• On considère que les conditions initiales sont nulles (s(t=0)=0).

Exemple : ressort de raideur k et amortisseur de coefficient c

 \bullet En appliquant le Principe Fondamental de la Dynamique suivant la direction $\overrightarrow{x},$ on obtient :

$$F_r + Fc = m \frac{d^2s(t)}{dt^2}.$$

• En négligeant la masse m (ce qui revient à négliger l'inertie), on obtient alors,

$$c\frac{ds(t)}{dt} + ks(t) = ke(t).$$
(3)

• Cette équation différentielle de degré 1 caractérise un système du premier ordre.

• On considère que les conditions initiales sont nulles (s(t=0)=0).

Exemple : ressort de raideur k et amortisseur de coefficient c

ullet En appliquant le Principe Fondamental de la Dynamique suivant la direction \overrightarrow{x} , on obtient :

$$F_r + Fc = m \frac{d^2s(t)}{dt^2}.$$

 \bullet En négligeant la masse m (ce qui revient à négliger l'inertie), on obtient alors,

$$c\frac{ds(t)}{dt} + ks(t) = ke(t).$$
(3)

- Cette équation différentielle de degré 1 caractérise un système du premier ordre.
- On considère que les conditions initiales sont nulles (s(t=0)=0).

Exemple : ressort de raideur k et amortisseur de coefficient c

ullet En appliquant le Principe Fondamental de la Dynamique suivant la direction \overrightarrow{x} , on obtient :

$$F_r + Fc = m \frac{d^2s(t)}{dt^2}.$$

 \bullet En négligeant la masse m (ce qui revient à négliger l'inertie), on obtient alors,

$$c\frac{ds(t)}{dt} + ks(t) = ke(t).$$
(3)

- Cette équation différentielle de degré 1 caractérise un système du premier ordre.
- On considère que les conditions initiales sont nulles (s(t = 0) = 0).

Détermination dans le domaine de Laplace de la fonction de transfert associée

• Dans le domaine de Laplace on obtient :

$$c \cdot p \cdot S(p) + kS(p) = kE(p)$$

On obtient alors,

$$H(p) = \frac{S(p)}{E(p)} = \frac{k}{k + c \cdot p}$$

• qui s'écrit sous la forme canonique :

$$H(p) = \frac{S(p)}{E(p)} = \frac{1}{1 + \frac{c}{L} \cdot p}$$

• On peut alors identifier la forme canonique avec les coefficients :

•
$$\tau = \frac{c}{k}$$

Émilien DURIF

Détermination dans le domaine de Laplace de la fonction de transfert associée

• Dans le domaine de Laplace on obtient :

$$c \cdot p \cdot S(p) + kS(p) = kE(p).$$

On obtient alors,

$$H(p) = \frac{S(p)}{E(p)} = \frac{k}{k + c \cdot p}$$

• qui s'écrit sous la forme canonique :

$$H(p) = \frac{S(p)}{E(p)} = \frac{1}{1 + \frac{c}{L} \cdot p}$$

• On peut alors identifier la forme canonique avec les coefficients :

•
$$\tau = \frac{c}{k}$$

Émilien DURIF

Détermination dans le domaine de Laplace de la fonction de transfert associée

Dans le domaine de Laplace on obtient :

$$c \cdot p \cdot S(p) + kS(p) = kE(p).$$

· On obtient alors,

$$H(p) = \frac{S(p)}{E(p)} = \frac{k}{k + c \cdot p};$$

• qui s'écrit sous la forme canonique :

$$H(p) = \frac{S(p)}{E(p)} = \frac{1}{1 + \frac{c}{L} \cdot p}$$

• On peut alors identifier la forme canonique avec les coefficients :

•
$$\tau = \frac{c}{k}$$

Détermination dans le domaine de Laplace de la fonction de transfert associée

• Dans le domaine de Laplace on obtient :

$$c \cdot p \cdot S(p) + kS(p) = kE(p).$$

On obtient alors,

$$H(p) = \frac{S(p)}{E(p)} = \frac{k}{k + c \cdot p};$$

• qui s'écrit sous la forme canonique :

$$H(p) = \frac{S(p)}{E(p)} = \frac{1}{1 + \frac{c}{k} \cdot p};$$

• On peut alors identifier la forme canonique avec les coefficients :

•
$$\tau = \frac{c}{k}$$

Émilien DURIE

Détermination dans le domaine de Laplace de la fonction de transfert associée

• Dans le domaine de Laplace on obtient :

$$c \cdot p \cdot S(p) + kS(p) = kE(p).$$

On obtient alors.

$$H(p) = \frac{S(p)}{E(p)} = \frac{k}{k + c \cdot p};$$

• qui s'écrit sous la forme canonique :

$$H(p) = \frac{S(p)}{E(p)} = \frac{1}{1 + \frac{c}{L} \cdot p};$$

- On peut alors identifier la forme canonique avec les coefficients :
 - $\tau = \frac{c}{k}$ K = 1

Émilien DURIF

Réponse indicielle

$$e(t) = e_0 \cdot u(t).$$

Si $e_0 = 1$, la réponse e(t) est appelée **réponse indicielle**.

Équation de la réponse

On cherche à calculer s(t) à partir de H(p) et E(p) :

$$E(p) = \frac{e_0}{p}$$

$$S(p) = H(p) \cdot E(p)$$

$$= \left(\frac{K}{1 + \tau p}\right) \frac{e_0}{p}$$

Émilien DURIE

• Transformée inverse de :

$$S(p) = H(p) \cdot E(p) = \left(\frac{K}{1 + \tau p}\right) \frac{e_0}{p}$$

• La décomposition en élément simple donne :

$$S(p) = \frac{K \cdot e_0}{p} - \frac{K \cdot e_0}{\frac{1}{\tau} + p}$$

• La transformée inverse donne :

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau} \right) \cdot u(t)$$

• On en déduit :

Réponse à un échelor

La réponse d'un système du 1^{er} ordre à un échelon est de la forme

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau} \right) \cdot u(t). \tag{4}$$

• Transformée inverse de :

$$S(p) = H(p) \cdot E(p) = \left(\frac{K}{1 + \tau p}\right) \frac{e_0}{p}$$

• La décomposition en élément simple donne :

$$S(p) = \frac{K \cdot e_0}{p} - \frac{K \cdot e_0}{\frac{1}{\tau} + p}$$

• La transformée inverse donne :

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau} \right) \cdot u(t)$$

• On en déduit :

Réponse à un échelor

La réponse d'un système du 1^{er} ordre à un échelon est de la forme

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau} \right) \cdot u(t). \tag{4}$$

• Transformée inverse de :

$$S(p) = H(p) \cdot E(p) = \left(\frac{K}{1 + \tau p}\right) \frac{e_0}{p}$$

• La décomposition en élément simple donne :

$$S(p) = \frac{K \cdot e_0}{p} - \frac{K \cdot e_0}{\frac{1}{\tau} + p}$$

• La transformée inverse donne :

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau}\right) \cdot u(t)$$

• On en déduit :

Réponse à un échelor

La réponse d'un système du 1^{er} ordre à un échelon est de la forme

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau} \right) \cdot u(t). \tag{4}$$

Système du premier ordre : caractérisation de la réponse à un échelon

• Transformée inverse de :

$$S(p) = H(p) \cdot E(p) = \left(\frac{K}{1 + \tau p}\right) \frac{e_0}{p}$$

• La décomposition en élément simple donne :

$$S(p) = \frac{K \cdot e_0}{p} - \frac{K \cdot e_0}{\frac{1}{\tau} + p}$$

• La transformée inverse donne :

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau}\right) \cdot u(t)$$

• On en déduit :

Réponse à un échelon

La réponse d'un système du 1^{er} ordre à un échelon est de la forme :

$$s(t) = K \cdot e_0 \left(1 - e^{-t/\tau} \right) \cdot u(t).$$
 (4)

Au voisinage de $+\infty$:

$$\lim_{t\to+\infty} s(t) = \dots$$

Au voisinage de 0 :

$$\lim_{t\to 0} s(t) = \dots$$

$$\lim_{t \to +\infty} s(t) = \lim_{p \to 0} p \cdot S(p)$$

$$= Ke_0$$

$$\lim_{t \to +\infty} \frac{ds(t)}{dt} = \lim_{p \to 0} p^2 \cdot S(p)$$

$$= 0$$

$$\lim_{t \to 0} s(t) = \lim_{p \to +\infty} p \cdot S(p)$$

$$= 0$$

$$\lim_{t \to 0} \frac{ds(t)}{dt} = \lim_{p \to +\infty} p^2 \cdot S(p)$$

$$= \frac{K \cdot e_0}{e^{-\frac{t}{2}}}$$

Système du premier ordre : caractérisation de la réponse à un échelon

Propriétés

- une asymptote horizontale au voisinage de $+\infty$ d'ordonnée à l'origine $K \cdot e_0$,
- une tangente à l'origine de coefficient directeur $\frac{K \cdot e_0}{\pi}$.

Émilien DURIF

Rapidi<u>té</u>

La rapidité d'une réponse à un échelon peut se caractériser par rapport au **temps de réponse** à 5% (noté t_r).

$$s_{(t_r)} = K e_0 \left(1 - e^{-t_r/\tau} \right) = 0,95 K e_0$$

 $\Leftrightarrow t_r = -\tau \ln(0,05) \approx 3 \cdot \tau$

Ainsi le temps de réponse à 5% d'un système du 1^{er} ordre soumis à un échelon vaut (environ) :

$$t_r \approx 3 \ au$$
 (5)

(7)

Système du premier ordre : caractérisation de la réponse à un échelon

Précision

La précision de la réponse à un échelon peut être indiquée par l'erreur statique, noté ε_s . Elle s'obtient en recherchant l'écart au voisinage de $+\infty$:

$$\varepsilon_{s} = \lim_{t \to +\infty} \left(e(t) - s(t) \right). \tag{6}$$

Attention

Verifier l'homogénéité!!!

$$arepsilon_{s} = \lim_{t o +\infty} \left(K \; e(t) - s(t)
ight).$$

Dans tous les cas

$$\varepsilon_s = 0.$$
 (8)

Système du premier ordre : caractérisation de la réponse à un échelon

Réponse à une rampe :

Dans ce cas. l'entrée est une rampe :

$$e(t) = a t u(t)$$

Équation de la réponse

On cherche à calculer s(t) à partir de H(p) et E(p):

$$E(p) = \frac{a}{p^2}$$

$$S(p) = H(p)E(p) = \left(\frac{K}{1+\tau p}\right)\frac{a}{p^2} = K a\left(\frac{1}{p^2} - \frac{\tau}{p} + \frac{\tau^2}{1+\tau p}\right)$$

Après transformée inverse, on obtient :

La réponse d'un système du 1^{er} ordre soumis à une rampe est de la forme :

$$s(t) = K a \left(t + \tau \left(e^{-t/\tau} - 1\right)\right) u(t). \tag{9}$$

Au voisinage de $+\infty$:

$$\lim_{t\to+\infty} s(t) = \dots$$

Au voisinage de 0 :

$$\lim_{t\to 0} s(t) = \dots$$

Au voisinage de $+\infty$:

$$\lim_{t \to +\infty} s(t) = \lim_{p \to 0} p S(p)$$

$$= \lim_{p \to 0} \frac{K a}{p (1 + \tau p)}$$

$$= +\infty$$

$$\lim_{t\to +\infty} \frac{ds(t)}{dt} = K \ a$$

Au voisinage de 0 :

$$\lim_{t \to 0} s(t) = \lim_{p \to +\infty} p S(p)$$

$$= \lim_{p \to +\infty} \frac{K a}{p (1 + \tau p)}$$

$$= 0$$

$$\lim_{t \to 0} \frac{ds(t)}{ds(t)} = 0$$

Propriétés

- une tangente horizontale au voisinage de 0,
- une asymptote oblique, de coefficient directeur K a.

Rapidité retard de traînage r_t :

 $r_t = \tau. \tag{11}$

Propriété

- une asymptote oblique d'équation $y_{(t)} = a(t \tau)$ au voisinage de $+\infty$.
- une tangente horizontale au voisinage de 0.

 $\epsilon_{v} = a\tau. \tag{10}$

Rapidité

retard de traînage r_t :

$$r_t = \tau. \tag{11}$$

Propriétés

- ullet une asymptote oblique d'équation $y_{(t)}=a\ (t- au)$ au voisinage de $+\infty$.
- une tangente horizontale au voisinage de 0.