Algorytmy metaheurystyczne - Lista 2

Jakub Jasków

19 grudnia 2023

Opis algorytmów

Symulowane wyżarzanie

W każdym kroku algorytmu wybierane jest rozwiązanie z otoczenia aktualnego rozwiązania. Jeżeli rozwiązanie to jest lepsze od aktualnego, to staje się ono aktualnym rozwiązaniem. W przeciwnym wypadku, rozwiązanie to staje się aktualnym rozwiązaniem z pewnym prawdopodobieństwem. Prawdopodobieństwo wybrania gorszego rozwiązania zmniejsza się podczas kolejnych iteracji.

Początkowa temperatura ustalana jest jako $T:=\alpha N$, gdzie N to liczba wierzchołków. Szukanie rozwiązania podzielone jest na epoki o ustalonej liczbie iteracji równej $S:=\gamma T$. Po każdej epoce aktualna temperatura jest zmniejszana o ustalony czynnik: $T':=\beta T$. Rozwiązanie szukane jest do momentu gdy od ustalonej liczby iteracji $M:=\delta N$ nie udało się znaleźć lepszego rozwiązania.

Działanie algorytmu można opisać następująco:

- 1. Wylosuj rozwiązanie początkowe X.
- 2. Wybierz losowe rozwiązanie X' znajdujące się w sąsiedztwie X.
- 3. Jeśli X' jest lepsze to je przyjmij (X := X'). W przeciwnym razie, wyznacz prawdopodobieństwo przyjęcia nowego rozwiązania używając wzoru e(f(X) f(X'))/T i z tym prawdopodobieństwem X := X'.
- 4. Jeśli nie wykonano jeszcze odpowiedniej liczby prób w obrębie danej epoki, wróć do punktu 2.
- 5. Zmniejsz temperaturę.
- 6. Jeśli nie osiągnięto jeszcze warunku stopu, wróć do punktu 2.

Tabu Search

W każdym kroku algorytmu wybierane jest takie rozwiązanie z otoczenia aktualnego rozwiązania aby było ono najlepsze spośród wszystkich rozwiązań w otoczeniu oraz nie znajdowało się na liście tabu. Jeżeli rozwiązanie to jest lepsze od aktualnego, to staje się ono aktualnym rozwiązaniem. Każde rozwiązanie dodawane jest do listy tabu na określoną liczbę iteracji. W ten sposób algorytm może wyjść z lokalnego minimum.

Maksymalna długość listy tabu ustalana jest jako $L := \alpha N$, gdzie N to liczba wierzchołków. Gdy lista tabu jest pełna, to usuwane jest z niej najstarsze rozwiązanie. Rozwiązanie szukane jest do momentu gdy od ustalonej liczby iteracji $M := \beta N$ nie udało się znaleźć lepszego rozwiązania.

Działanie algorytmu można opisać następująco:

- 1. Wybierz rozwiązanie początkowe (np. wylosuj).
- 2. Przeszukaj otoczenie bieżącego rozwiązania (deterministycznie lub losowo) i wybierz najlepsze którego nie ma na liście.
- 3. Umieść je na liście i przyjmij jako bieżące rozwiązanie.
- 4. Sprawdź warunek stopu i jeśli nie zachodzi to wróć do punktu 2 (warunkiem stopu może być np. koniec pojemności listy, lub liczba iteracji bez znalezienia nowego najlepszego rozwiązania).

Poszukiwanie dogodnych parametrów

W celu wyznaczenia najbardziej optymalnych wartości dla naszych heurystyk przeprowadzimy testy dla różnych wartości zmiennych $\alpha, \beta, \delta, \gamma$.

Wykresy poniżej zostały wyznaczone na podstawie 10 uruchomień heurystyki dla każdej kombinacji parametrów.

Symulowane wyżarzanie

Temperatura początkowa - średnia długość cyklu

Temperatura początkowa - minimalna długość cyklu

Temperatura początkowa - średni czas działania

Chłodzenie - średnia długość cyklu

Chłodzenie - minimalna długość cyklu

Chłodzenie - średni czas działania

Średnia długosć cyklu

Przykład	Losowe rozwiązania początkowe		Rozwiązanie początkowe bazujące na MST		
	Otoczenie pełne	Otoczenie losowe	Otoczenie pełne	Otoczenie losowe	
xqf131	610	638	602	615	
xqg237	1116	1152	1089	1138	
pma343	1487	1547	1454	1519	

Minimalna długość cyklu

Przykład	Losowe rozwiązania początkowe		Rozwiązanie początkowe bazujące na MST		
	Otoczenie pełne	Otoczenie losowe	Otoczenie pełne	Otoczenie losowe	
xqf131	582	602	594	596	
xqg237	1070	1132	1060	1093	
pma343	1433	1467	1428	1439	

Średni czas działania

Przykład	Losowe rozwiązania początkowe		Rozwiązanie początkowe bazujące na MST		
	Otoczenie pełne	Otoczenie losowe	Otoczenie pełne	Otoczenie losowe	
xqf131	0.18	0.009	0.06	0.006	
xqg237	1.9	0.04	0.5	0.03	
pma343	7.4	0.11	2.1	0.05	

Wyniki

Przykład	Optimum	Local Search		Sumulowane Wyżarzanie		Tabu Search	
		śr. waga	min. waga	śr. waga	min. waga	śr. waga	min. waga
xqf131	564	620.79	578	590.25	567	604.69	594
xqg237	1019	1111.17	1062	1071.57	1036	1098.06	1060
pma343	1368	1452.93	1424	1369.19	1378	1455.45	1428
pka379	1332	1443.34	1399	1391.45	1360	1402.36	1376
bcl380	1621	1834.46	1728	1725.17	1685	1735.09	1707
pbl395	1281	1432.16	1359	1335.08	1317	1337.37	1352
pbk411	1343	1482.24	1426	1485.94	1397	1425.27	1405
pbn423	1365	1535.68	1454	1476.04	1412	1472.93	1440
pbm436	1443	1623.38	1535	1497.92	1481	1576.97	1535
xql662	2513	2829.16	2707	2700.47	2617	2693.88	2673
xit1083	3558	4062.82	3919	3810.48	3746	3953.64	3768
icw1483	4416	5031.55	4839	4745.15	4628	4759.97	4733
djc1785	6115	6792.91	6697	6527.46	6460	6471.76	6450
dcb2086	6600	7516.67	7313	7137.46	7074	7172.16	7153
pds2566	7643	8659.21	8506	8245.51	8151	8305.68	8255

Parametry

Symulowane wyżarzanie

 $\alpha=0.5$ (temperatura początkowa)

 $\beta = 0.95$ (chłodzenie)

 $\delta = 0.1$ (max. iteracji)

 $\gamma=0.2$ (długość epoki)

Otoczenie: pełne

Rozwiązanie początkowe: losowe

Tabu Search

 $\alpha = 0.1$ (długość listy tabu)

 $\beta=0.2$ (max. iteracji)

Otoczenie: pełne

Rozwiązanie początkowe: MST