Courbes algébriques

Alexandre Guillemot

20 septembre 2022

Table des matières

1	Ensembles algébriques affines	3
	1.1 Définition	3

Introduction

ana-maria.castravet@uvsq.fr k un corps, on considère $P_1, \dots, P_r \in k[x_1, \dots, x_n]$. $V(P_1, \dots, P_r) \subseteq \mathbb{A}^n_k$ sont les zéros de P_1, \dots, P_r . Courbe algébrique = variété algébrique de dimension 1. Les courbes elliptiques sont des cas particuliers de courbes algébriques.

Chapitre 1

Ensembles algébriques affines

1.1 Définition

k un corps, $n \in \mathbb{Z}$.

Définition 1.1.1. (Espace affine) $\mathbb{A}^n_k := k^n$ est l'espace affine sur le corps k de dimension n.

Rq 1.1.1. Ce n'est pas vraiment la définition de l'espace affine, c'est la définition de l'ensemble sous-jacent à l'espace affine, sachant que les espaces affines sont des variétés algébriques.

Ex 1.1.1. Si n = 1, c'est une "droite". Si n = 2, c'est un "plan".

Définition 1.1.2. Soit $S \subseteq k[x_1, \dots, x_n]$, on définit

$$V(S) := \{ a \in \mathbb{A}^n_k \mid \forall P \in S, P(a) = 0 \}$$

On appelle de tels ensembles des ensembles algébriques affines.

Rq 1.1.2. Si $S = \{P_1, \dots, P_r\}$, on écrit $V(P_1, \dots, P_r) := V(S)$.

Ex 1.1.2. 1. $V(\emptyset) = \mathbb{A}^n_k$

- 2. $V(1) = \emptyset$
- 3. $P = X^4 1 \in k[X]$, si $k = \mathbb{R}$, $V(P) = \{1, -1\}$. Si $k = \mathbb{C}$, $V(P) = \{1, -1, i, -i\}$. Si $k = \mathbb{F}_2$, $V(P) = \{1\}$.
- 4. $P = X^2 + Y^2 + 1 \in k[X, Y]$, si $k = \mathbb{R}$, $V(P) = \emptyset$. Si $k = \mathbb{C}$, V(P) est isomorphe (en tant que variété algébrique, même si cela n'a pour le moment aucun sens) au cercle complexe (en considérant le changement de variables $a_i = ib_i$).

5.
$$P_i = \sum a_{ij} x_j - b_i \in k[x_1, \dots, x_n], i \in [1, r].$$

$$V(P_i) = \{x \in k^n \mid (a_{ij})x = b\} \simeq \mathbb{A}_k^n$$
 ou \emptyset

Exercice. Les ensembles algébriques de \mathbb{A}^1_k sont : \emptyset , \mathbb{A}^1_k , tous les sous-ensembles finis.

Ex 1.1.3. Les sous-ensembles algébriques de \mathbb{A}^2_k sont \emptyset , tout le plan, les sous-ensembles finis et des réunions finies des sous-ensembles finis avec des courbes planes, i.e. $V(P) \neq \emptyset$ les zéros d'un seul polynôme non constant. Donnons des exemples de courbes planes :

- 1. Les droites $V(ax + by + c) \in \mathbb{A}^2_k$, avec $a \neq 0$ ou $b \neq 0$.
- 2. Les coniques $V(ax^2 + by^2 + cxy + dx + ey + f) \subseteq \mathbb{A}^2_k$ $(a \neq 0 \text{ ou } b \neq 0 \text{ ou } c \neq 0)$. Dans $\mathbb{P}^2_{\mathbb{C}}$, toutes les coniques sont de type cercle, droite ou droites qui se croisent.
- 3. $y^2 = x^3 + ax + b$, $a, b \in k$ définissent ce qu'on appelle des courbes elliptiques.

Rq 1.1.3. V(S) = V(T) n'implique pas que S = T. Par exemple $V(x^2 + y^2 + 1) = V(x^4 + 1) \subseteq \mathbb{A}^2_{\mathbb{R}}$. Plus généralement, sur n'importe quel corps, $V(P^2) = V(P)$ avec $P = k[x_1, \dots, x_n]$.

Proposition 1.1.1. 1. Si $S \subseteq T \subseteq k[x_1, \dots, x_n]$, alors $V(T) \subseteq V(S) \subseteq \mathbb{A}^n_k$.

- 2. $S \subseteq k[x_1, \dots, x_n], I = (S)$ idéal engendré par S, alors V(S) = V(I)
- 3. $S \subseteq k[x_1, \cdots, x_n]$, alors

$$V(S) = \bigcap_{p \in S} V(P)$$

4.

$$\bigcap_{j \in J} V(S_j) = V\left(\bigcup_{j \in J} S_j\right), S_j \subseteq k[x_1, \cdots, x_n]$$

- 5. $V(PQ) = V(P) \cup V(Q)$ pour $P, Q \in k[x_1, \dots, x_n]$
- 6. Plus généralement, $V(IJ) = V(I) \cup V(J) = V(I \cap J)$ avec $I, J \stackrel{\text{id}}{\subseteq} k[x_1, \cdots, x_n]$

Démonstration. Prouvons $6: IJ \subseteq I \cap J \subseteq I$ donc $V(I) \subseteq V(I \cap J) \subseteq V(IJ)$ et donc par symétrie $V(I) \cup V(J) \subseteq V(I \cap J) \subseteq V(IJ)$. Supposons qu'il existe $x \in V(IJ)$ tq $x \notin V(I) \cup V(J)$. Alors $\exists P \in I, \ Q \in J \ \text{tq} \ P(x) \neq 0$ et $Q(x) \neq 0$. Mais $PQ \in IJ$ donc PQ(x) = 0, contradiction. Les autres points sont en exercice.

Corollaire 1.1.1. Les ensembles algébriques de \mathbb{A}^n_k forment les fermés d'une topologie. On appelera cette topologie la topologie de Zariski.

Définition 1.1.3. Soit $E \subseteq \mathbb{A}^n_k$. On définit

$$I(E) = \{ P \in k[x_1, \cdots, x_n] \mid P(a) = 0, \forall a \in E \}$$

Ex 1.1.4. 1. $I(\emptyset) = k[x_1, \dots, x_n]$

- 2. $I(a) = (x_1 a_1, \dots, x_n a_n) =: \mathfrak{m}_a$. Remarquons que cet idéal est un idéal maximal.
- 3. $I(\mathbb{A}^n_k) = \{0\}$ si le corps est infini.

Définition 1.1.4. $I \stackrel{\text{id}}{\subseteq} A$, alors

$$\sqrt{I} = \{ f \in A \mid \exists n > 0, \ f^n \in I \}$$

est le radical de I.~I est un idéal radical si $I=\sqrt{I}$

Proposition 1.1.2. 1. $E \subseteq E' \subseteq \mathbb{A}_k^n$, alors $I(E') \subseteq I(E)$

- 2. $I(E \cup E') = I(E) \cap I(E')$
- 3. $J \subseteq I(V(J))$ pour tout $J \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$.
- 4. $E \subseteq V(I(E))$ pour tout $E \subseteq \mathbb{A}_k^n$.
- 5. $V(I) = V(\sqrt{I}) \subseteq \mathbb{A}^n_k$, pour tout $I \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$

Démonstration. Exercice

Lemme 1.1.1. $E = V(I(E)) \iff E \text{ est un ensemble alg\'ebrique}.$

Démonstration. Montrons $V(I(E)) \subseteq E$: Supposons que E = V(J), $J \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$. ALors $J \subseteq I(V(J))$ et ainsi $V(I(E)) \subseteq E$.

Ex 1.1.5. Le segment ouvert $(0,1) \subseteq \mathbb{A}^1_{\mathbb{R}}$ n'est pas un ensemble algébrique.

Théorème 1.1.1. (Nullstellensatz, 1) Si $k = \bar{k}$, alors on a $I(V(J)) = \sqrt{J}$ pour tout $J \subseteq k[x_1, \dots, x_n]$

Ex 1.1.6. Si $k = \mathbb{R}$, $P = x^2 + y^2 + 1 \in \mathbb{R}[x, y]$ irréductible. I = (P) est un idéal premier, donc radical, mais $I(V(P)) = I(\emptyset) = \mathbb{R}[x, y] \neq (P)$.

Théorème 1.1.2. Pour tout $n \ge 1$, $k[x_1, \dots, x_n]$ est un anneau noéthérien.

Corollaire 1.1.2. Chaque ensemble algébrique $V \subseteq \mathbb{A}^n_k$ est de la forme $V = V(P_1, \dots, P_r)$ avec $P_i \in k[x_1, \dots, x_n]$

Ainsi V et I nous donnent des applications entre les idéaux radicaux de $k[x_1, \dots, x_n]$ et les sous espaces algébriques de \mathbb{A}^n_k . Vérifier que I(E) est un idéal radical. De plus, si k est algébriquement clos, d'après le nullstellensatz I et V sont inverses l'une de l'autre. Par cette bijection, les idéaux premiers vont correspondre aux ensembles irréductibles. Les idéaux maximaux vont correspondre à des points.

Définition 1.1.5. $V \subseteq \mathbb{A}_k^n$ ensemble algébrique. V est irréductible si pour toute décomposition $V = V_1 \cup V_2$ avec V_1, V_2 ensembles algébriques, on a $V = V_1$ ou $V = V_2$. On dit sinon que V est réductible.

Proposition 1.1.3. $V \subseteq \mathbb{A}^n_k$ ensemble algébrique. Alors tfae

- 1. V est irréductible
- 2. I(V) est un idéal premier
- 3. $k[x_1, \dots, x_n]/I(V)$ est un anneau intègre

 $D\'{e}monstration.$ $1 \Rightarrow 2$: Soient $f, g \in k[x_1, \dots, x_n]$ tq $fg \in I(V)$. Mais $V(fg) = V(f) \cup V(g)$, puis soit $V_1V \cap V(f)$, $V_2 = V \cap V(g)$, alors $V_1 \cup V_2 = V \cap V(fg) = V$. Ainsi $V_1 = V$ ou $V_2 = V$, donc $f \in V$ ou $g \in V$.

 $2 \Rightarrow 1$: Soit $V \subseteq \mathbb{A}^n_k$ ensemble algébrique tq I(V) est un idéal premier. Supposons que V est réductible, alors $V = V_1 \cup V_2$ avec $V \neq V_1, V \neq V_2$. Comme V_1, V_2 sont algébriques, alors V(I(V)) = V, $V(I(V_i)) = V_i$, et ainsi $V(I(V)) \neq V(I(V_1))$ et $I(V) \subseteq I(V_1)$. Donc il existe $f_1 \in I(V_1)$ tq $f \notin I(V)$. De même, il existe $f_2 \in I(V_2)$ tq $f_2 \notin I(V)$. Mais $f_1 f_2 \in I(V_1) \cap I(V_2) = I(V)$ et ainsi I(V) n'est pas premier.

Théorème 1.1.3. Soit $V \subseteq \mathbb{A}^n_k$ un ensemble algébrique. Alors $\exists V_1, \dots, V_m \subseteq \mathbb{A}^n_k$ irréductibles tels que

- 1. $V = V_1 \cup V_2 \cup \cdots \cup V_m$
- 2. $\forall i \neq j, \ V_i \not\subseteq V_i$

Les $\{V_i\}_{i\in [\![1,m]\!]}$ avec ces propriétés sont uniques à ordre près, on les appelle les composantes irréductibles de V.

Ex 1.1.7. Soit $V := V(xy, (x-1)z) \subseteq \mathbb{A}_k^n$, k de caractéristique 0. Sur V, on a

$$(x = 0 \lor z = 0) \land (x = 1 \lor y = 0)$$

$$\iff (x = 0 \land y = 0) \lor (z = 0 \land x = 1) \lor (z = 0 \land y = 0)$$

Ainsi $V=V_1\cup V_2\cup V_3$ avec $V_1=V(x,y),\ V_2=V(x-1,z)$ et $V_3=V(y,z).$ On peut alors prouver que ce sont les composantes irréductibles de V.

 $D\'{e}monstration$. Soit $V\subseteq \mathbb{A}^n_k$ un ensemble algébrique. Si V est irréductible, on a terminé. Sinon il existe des sous-ensembles algébriques propres de $V_1, V_2 \nsubseteq V$ tels que $V = V_1 \cup V_2$. Si V_1, V_2 sont irréductibles, alors on a finit. Sinon on itère le procédé sur V_1 et V_2 . Alors supposons que le procédé ne termine pas, il va exister une suite strictement décroissante $\cdots \not\subseteq W_2 \not\subseteq W_1 \not\subseteq V$ d'ensembles algébriques. Ainsi on obtiens une suite croissante

$$I(W) \subseteq I(W_1) \subseteq I(W_2) \subseteq \cdots$$

Remarquons alors qu'elle es strictement croissante puisque $V(I(W_i)) = W_i$ et la suite des W_i est strictement décroissante. Ainsi on obtiens une contradiction avec le fait que $k[x_1, \cdots, x_n]$ est noéthérien.

Occupons nous maintenant de l'unicité : Supposons que

$$V = \bigcup_{i=1}^{s} V_i = \bigcup_{i=1}^{t} W_i$$

On veut montrer que l'ensemble $\{V_i\}_{i\in \llbracket 1,s\rrbracket}$ est égal à l'ensemble $\{W_i\}_{i\in \llbracket 1,t\rrbracket}$. On va montrer une inclusion : montrons qu'il existe $j \in [1, t]$ tel que $V_i = W_j$, avec $i \in [1, s]$. Comme $V_i \subseteq \bigcup_{j \in [1,t]} W_j$, on a

$$V_i \subseteq \bigcup_{j \in [\![1,t]\!]} W_j \cap V_i$$

Mais V_i est irréductible, donc $\exists j \in [1, t]$ tel que $V_i = W_j \cap V_j$, et en particulier $V_i \subseteq W_j$. Maintenant de la même manière on peut prouver qu'il existe $i' \in [1, s]$ tel que $W_i \subseteq V_{i'}$. Mais alors $V_i \subseteq W_j \subseteq V_{i'}$ et donc i = i', d'où $V_i = W_j$.

Donnons 2 reformulations du Nullstellensatz

Proposition 1.1.4. (Nullstellensatz 2,3) Considérons l'anneau $k[x_1, \dots, x_n]$. Tfae :

- 1. Pour tout $J \stackrel{\text{id}}{\subseteq} k[x_1, \cdots, x_n], \ I(V(J)) = \sqrt{J}$ 2. Pour tout $J \stackrel{\text{id}}{\subseteq} k[x_1, \cdots, x_n], \ J \ propre \ implique \ que \ V(J) \neq \emptyset$

3. Les idéaux maximaux de $k[x_1, \dots, x_n]$ sont exactement les idéaux

$$\mathfrak{m}_a = (x_1 - a_1, \cdots, x_n - a_n)$$

 $D\'{e}monstration$. $2 \Rightarrow 3$: Soit $\mathfrak{m} \stackrel{\max}{\subseteq} k[x_1, \cdots, x_n]$. C'est un idéal propre, donc $V(\mathfrak{m}) \neq \emptyset$. Alors soit $a \in V(\mathfrak{m})$, remarquons que pour tout $f \in \mathfrak{m}$, f(a) = 0 donc $f \in \mathfrak{m}_a$ (vu que l'on peut écrire $f = Q_1(x_1 - a_1) + \cdots + Q_i(x_i - a_i) + c$). Ainsi $\mathfrak{m} \subseteq \mathfrak{m}_a$ mais \mathfrak{m} est maximal donc $\mathfrak{m} = \mathfrak{m}_a$ ce qui prouve simultanément que $(x_1 - a_1, \cdots, x_n - a_n)$ est un idéal maximal et que \mathfrak{m} est cet idéal.

 $1 \Rightarrow 2$: Soit $J \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_n]$ idéal propre. On a $\sqrt{J} = I(V(J))$. Supposons que $V(J) = \emptyset$, alors $\sqrt{J} = I(V(J)) = k[x_1, \dots, x_n]$ et donc $J = k[x_1, \dots, x_n]$, contradiction.

 $3\Rightarrow 1$: Soit $I\stackrel{\mathrm{id}}{\subseteq} k[x_1,\cdots,x_n]$, on veut mq $\sqrt{I}=I(V(I))$. Comme $I\subseteq I(V(I))$, on a directement le première inclusion du fait que $\sqrt{I(V(I))}=I(V(I))$. Dans l'autre sens, si $I=k[x_1,\cdots,x_n]$, l'égalité est claire. Sinon soit $f\in I(V(I))$, écrivons $I=(P_1,\cdots,P_r)$. Maintenant considérons l'anneau $k[x_1,\cdots,x_n,x_{n+1}]$, puis l'idéal

$$(P_1, \dots, P_r, 1 - x_{n+1}f) =: J \stackrel{\text{id}}{\subseteq} k[x_1, \dots, x_{n+1}]$$

Si J est un idéal propre, alors d'après le théorème de Krull il existe $\mathfrak{m} \stackrel{\max}{\subseteq} k[x_1, \cdots, x_{n+1}]$ tel que $J \subseteq \mathfrak{m}$. Maintenant par hypothèse il existe $(a_1, \cdots, a_n, b) \in \mathbb{A}_k^{n+1}$ tel que

$$\mathfrak{m} = (x_1 - a_1, \cdots, x_n - a_n, x_{n+1} - b)$$

Mais alors pour tout $i \in [1, r]$, $P_i(a) = 0$ et 1 - bf(a) = 0. Mais alors la première série d'égalités nous indique que $a \in V(I)$, et comme $f \in I(V(I))$, f(a) = 0, ce qui est absurde. Ainsi J est $k[x_1, \dots, x_{n+1}]$ tout entier, donc en particulier il existe $Q_1, \dots, Q_n, Q \in k[x_1, \dots, x_{n+1}]$ tels que

$$1 = P_1 Q_1 + \dots + P_r Q_r + Q(1 + x_{n+1} f)$$
(1.1)

Maintenant le morphisme de localisation $k[x_1, \cdots, x_n] \to k[x_1, \cdots, x_n, 1/f]$ et le choix de l'élément 1/f induit un morphisme d'évaluation

$$k[x_1, \cdots, x_n] \xrightarrow{} k[x_1, \cdots, x_n, 1/f] \longleftrightarrow k(x_1, \cdots, x_n)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Ainsi au travers de ce morphisme l'égalité 1.1 deviens

$$1 = P_1(x_1, \dots, x_n)Q_1(x_1, \dots, x_n, 1/f) + \dots + P_r(x_1, \dots, x_n)Q_r(x_1, \dots, x_n, 1/f)$$

CHAPITRE 1. ENSEMBLES ALGÉBRIQUES AFFINES

Alors écrivons les Q_i comme des éléments de $k[x_1, \dots, x_n][x_{n+1}]$,

$$Q_{i} = \sum_{l=0}^{d_{i}} R_{i,l}(x_{1}, \cdots, x_{n}) x_{n+1}^{l}$$

En les passant au travers du morphisme d'évaluation précédent on peut les réécrire

$$Q_i = \frac{R_i(x_1, \cdots, x_n)}{f^{d_i}}$$

et alors 1.1 deviens

$$1 = \sum_{i=1}^{r} \frac{P_i R_i}{f^{d_i}}$$

et ainsi en notant $d = \max\{d_i\}$

$$f^d = \sum_{i=1}^r P_i R_i f^{d-d_i}$$

dans $k(x_1, \dots, x_n)$ donc dans $k[x_1, \dots, x_n]$. Finalement si d=0, alors $1 \in I$ absurde puisque l'on avait supposé I propre. Sinon, $f^d \in I$ et donc $f \in \sqrt{I}$.