Maximum matchings minimalement colorés

Jonas Sénizergues, Johanne Cohen, Yannis Manoussakis

13 Novembre 2019

Graphes colorés

Graphe sommet-coloré (resp. arête-coloré)

Un graphe coloré $G^c = (G, c)$ est un couple composé d'un graphe G = (V, E) et d'une coloration c sur les sommets (resp. arêtes).

Objectif

Résoudre des problèmes (d'optimisation ou de structure) avec des contraintes sur les couleurs.

Graphes colorés

Graphe sommet-coloré (resp. arête-coloré)

Un graphe coloré $G^c = (G, c)$ est un couple composé d'un graphe G = (V, E) et d'une coloration c sur les sommets (resp. arêtes).

Objectif

Résoudre des problèmes (d'optimisation ou de structure) avec des contraintes sur les couleurs.

Graphe colorés

Graphes colorés

Graphe sommet-coloré (resp. arête-coloré)

Un graphe coloré $G^c = (G, c)$ est un couple composé d'un graphe G = (V, E) et d'une coloration c sur les sommets (resp. arêtes).

Objectif

Résoudre des problèmes (d'optimisation ou de structure) avec des contraintes sur les couleurs.

Definition

Une partie tropicale d'un graphe coloré G^c est une partie qui contient toutes les couleurs de G^c

Théorème (Cohen, Manoussakis, Phong, Tuza)

Maximum matching tropical est polynomial.

Definition

Une partie tropicale d'un graphe coloré G^c est une partie qui contient toutes les couleurs de G^c

Théorème (Cohen, Manoussakis, Phong, Tuza)

Maximum matching tropical est polynomial.

Corollaire

Maximum matching maximalement coloré est polynomial.

Théorèmes

Théorème 1

Maximum Matching minimalement coloré (MCMM) paramétré par le nombre de couleurs de l'optimum est W[2]-difficile sur les arbres.

Théorème 2

MCMM n'est pas log(k+1)(1-o(1)) approximable sur les arbres où k est le nombre de noeuds internes.

Théorème 3

MCMM paramétré par la taille d'un matching maximum est FPT

Théorèmes Théorème 3 en détails Construction de l'arbre Pourquoi ça marche

Théorème 3

MCMM paramétré par la taille k d'un matching maximum peut être résolu en temps $O(|E|\sqrt{|V|}) + O(k^4T_kB_kk!2^k|V|)$

Théorème 3

MCMM paramétré par la taille k d'un matching maximum peut être résolu en temps $O(|E|\sqrt{|V|}) + O(k^4T_kB_kk!2^k|V|)$

- B_k: Nombre de Bell, nombre de partitions d'un ensemble à k éléments.
- T_k: Nombre téléphonique, nombre de matchings distincts possibles sur une clique à k sommets.

Théorème 3

MCMM paramétré par la taille k d'un matching maximum peut être résolu en temps $O(|E|\sqrt{|V|}) + O(k^4T_kB_kk!2^k|V|)$

- B_{k} : Nombre de Bell, nombre de partitions d'un ensemble à k éléments.
- T_k : Nombre téléphonique, nombre de matchings distincts possibles sur une clique à k sommets.
- Pour tout $\epsilon > 0$, $k^4 T_k B_k k! 2^k = O((\frac{k}{a})^{(3/2+\epsilon)k})$

Théorème 3

MCMM paramétré par la taille k d'un matching maximum peut être résolu en temps $O(|E|\sqrt{|V|}) + O(k^4T_kB_kk!2^k|V|)$

- $O(|E|\sqrt{|V|})$: Construction d'un maximum matching quelconque
- $O(k^4 T_k B_k k! 2^k |V|)$: Construction d'un arbre d'exploration des matchings possible "presque exhaustif".

Etage 1 : On prend M_0 matching quelconque de G^c .

Théorèmes Théorème 3 en détails <mark>Construction de l'arbr</mark>e Pourquoi ça marche

Etage 1 : On prend M_0 matching quelconque de G^c .

Etage 1 : On prend M_0 matching quelconque de G^c .

Etage 1 : On prend M_0 matching quelconque de G^c .

On crée une branche par couple (M_{in}, S_{out}) possible.

Etage 2:

Etage 2:

Etage 2:

Etage 2 : On crée une branche par partition $\mathcal{S}_{out} = \{s_1, s_2, ..\}$ de S_{out}

Théorèmes
Théorème 3 en détails
Construction de l'arbre
Pourquoi ca marche

Pour chaque s_i ,

- Soit on lui attribue une couleur c_i de $c(S_{out}) \cup c(M_{in})$
- Soit on décide qu'il sera lié à une couleur externe à cet ensemble

On crée une branche par possibilité.

Théorèmes Théorème 3 en détails Construction de l'arbre Pourquoi ça marche

Pour chaque s_i on calcule un ensemble \mathcal{M}_i , de matchings de taille $|s_i|$:

- Si une couleur c_i a été attribuée, on cherche un matching m entre s_i et $c^{-1}(c_0) \setminus V(M_0)$
- Sinon, on cherche un matching par couleur de $im(c) \setminus (c(M_{in}) \cup c(S_{out}))$

Construction de l'arbre

Pour chaque s_i on calcule un ensemble \mathcal{M}_i , de matchings de taille $|s_i|$:

- Si une couleur c; a été attribuée, on cherche un matching m entre s_i et $c^{-1}(c_0) \setminus V(M_0)$
- Sinon, on cherche un matching par couleur de $im(c) \setminus (c(M_{in}) \cup c(S_{out}))$ et on n'en garde que k+1 si on en trouve plus

Construction de l'arbre

Pour chaque s_i on calcule un ensemble \mathcal{M}_i , de matchings de taille $|s_i|$:

- Si une couleur c; a été attribuée, on cherche un matching m entre s_i et $c^{-1}(c_0) \setminus V(M_0)$
- Sinon, on cherche un matching par couleur de $im(c) \setminus (c(M_{in}) \cup c(S_{out}))$ et on n'en garde que k+1 si on en trouve plus ← on perd l'exhaustivité de l'exploration ici

On prend le graphe biparti avec d'un côté les s_i , de l'autre les couleurs, avec une arrête de s_i vers une couleur c_0 si il y a un matching "de couleur c_0 à droite" dans $\mathcal{M}_i = \{m_1, m_2, ...\}$.

Théorèmes Théorème 3 en détails Construction de l'arbo Pourquoi ça marche

On prend le graphe biparti avec d'un côté les s_i , de l'autre les couleurs, avec une arrête de s_i vers une couleur c_0 si il y a un matching "de couleur c_0 à droite" dans $\mathcal{M}_i = \{m_1, m_2, ...\}$.

On prend le graphe biparti avec d'un côté les s_i , de l'autre les couleurs, avec une arrête de s_i vers une couleur c_0 si il y a un matching "de couleur c_0 à droite" dans $\mathcal{M}_i = \{m_1, m_2, ...\}$.

On prend un matching de taille $|\mathcal{S}|$ de ce graphe et on reconstitue un maximum matching de G^c à partir des "petits" matchings correpondants

On prend le graphe biparti avec d'un côté les s_i , de l'autre les couleurs, avec une arrête de s_i vers une couleur c_0 si il y a un matching "de couleur c_0 à droite" dans $\mathcal{M}_i = \{m_1, m_2, ...\}$.

On prend un matching de taille |S| de ce graphe et on reconstitue un maximum matching de G^c à partir des "petits" matchings correpondants S'il n'en existe pas, la branche échoue et ne calcule rien.

Γhéorèmes Γhéorème 3 en détails Construction de l'arbre Pourquoi ça marche

Deux arguments-clés :

 Tous les maximum matchings correspondant aux mêmes choix faits dans l'aborescence ont le même nombre de couleurs

Fhéorèmes Fhéorème 3 en détail: Construction de l'arbi Pourquoi ça marche

Deux arguments-clés :

- Tous les maximum matchings correspondant aux mêmes choix faits dans l'aborescence ont le même nombre de couleurs
 - ↑ Par construction

Théorèmes Théorème 3 en détail Construction de l'arbi Pourquoi ça marche

Deux arguments-clés :

- Tous les maximum matchings correspondant aux mêmes choix faits dans l'aborescence ont le même nombre de couleurs
 ↑ Par construction
- S'il existe un maximum matching correspondant à un ensemble de choix faits dans l'arborescence, alors la feuille est habitée

Cloture

cloture.jpg