

初识OpenHarmony开发板

■ 前言

- 本节主要介绍:
- BearPi-HM Nano开发板功能
- BearPi-HM Nano原理图
- BearPi-HM Nano开发板E53接口

■ 目录

- BearPi-HM Nano开发板功能介绍
- BearPi-HM Nano原理图解读
- BearPi-HM Nano开发板E53接口介绍
- BearPi-HM Nano开发板E53接口使用

BearPi-HM Nano开发板功能介绍

BearPi-HM Nano开发板是一块专门为OpenHarmony设计开发板,板载高度集成的 2.4GHz WLAN SoC芯片Hi3861,并板载NFC电路及标准的E53接口,标准的E53接口可 扩展智能家居、智能台灯、智能安防、智能烟感等案例

- 1、E53扩展板接口
- 5、复位按键
- 2. WiFi Soc Hi3861
- 6、用户按键
- 3、NFC芯片NT3H120
- 7、NFC天线
- 4、Type-C USB接口 8、TTL转USB芯片CH340E

按键电路原理图

BearPi-HM Nano开发板提供了一个复位按键和两个用户按键,原理 图中SW1对应的是复位按键,SW2和SW3分别对应F1和F2按键。

LED灯电路原理图

BearPi-HM Nano开发板提供了一个用户可控制的LED灯,可以用于GPIO输出、PWM输出等实验。

NFC电路原理图

BearPi-HM Nano开发板提供了可读写的NFC标签,可用于实现碰一碰联网,碰一碰拉起服务等实验。

E53接口电路原理图

BearPi-HM Nano开发板提供标准的E53接口,适配所有E53扩展板,并通过排针引出功能丰富的GPIO。

BearPi-HM Nano开发板E53接口介绍

1、E53名字的由来

E53接口标准为"物联网俱乐部"联合国内多家开发板厂家制定的物联网案例标准,E53接口的E取自扩展 (Expansion)的英文首字母,板子的尺寸为5×3cm,故采用E53作为前缀来命名尺寸为5×3cm 类型的案例 扩展板,任何一款满足标准设计的开发板均可直接适配E53扩展板。

2、E53扩展板命名规则

E53扩展板是根据不同的应用场景来设计的,以最大的程度在扩展板上还原真实应用场景,不同案例的扩展板根据不同的应用场景来命名后缀。

例如: E53_SC1, SC是智慧城市 (Smart City) 的缩写, SC1表示的是智慧城市中的智慧路灯, 再比如SC2则表示的是智慧城市中的智慧井盖。

BearPi-HM Nano开发板E53接口介绍

3、E53接口电气标准

针对于E53接口, 定义了以下标准, 凡是满足标准的主板及扩展板即可适配。

引脚号	名称	功能定义	引脚号	名称	功能定义	
1	SPI_SCK	SPI时钟引脚	11	VCC_5.0	5.0V电源,需保证能提供2A的电流	
2	SPI_NSS	SPI片选引脚,可以是硬件SPI片选,也可以 是软件SPI片选	12	GND	电源地	
3	NC	NC引脚,防呆设计,主板排座的该引脚需要 堵孔,扩展板排针的该引脚需要剪断	13	VCC_3.3	3.3V电源,需保证能提供2A的电流	
4	GPIO	普通GPIO引脚	14	GND	电源地	
5	ADC	ADC采集引脚	15	SPI_MISO	SPI主设备数据输入,从设备数据输出	
6	DAC	DAC模拟量输出引脚	16	SPI_MOSI	SPI主设备数据输出,从设备数据输入	
7	GPIO	普通GPIO引脚	17	GPIO	普通GPIO引脚,主板的该引脚必须有 PWM波功能	
8	GPIO	普通GPIO引脚,主板的该引脚必须有PWM 波功能	18	UART_TX	串口的数据发送引脚	
9	IIC_SCL	IIC的时钟引脚	19	UART_RX	串口的数据接收引脚	
10	IIC_SDA	IIC的数据引脚	20	GPIO	普通GPIO引脚,主板的该引脚必须有 PWM波功能	

1 2 3 4 5 6 7 8 9	SPI_SCK SPI_NSS NC GPIO ADC DAC GPIO/PWM IIC_SCL IIC_SDA	PWM/GPIO UART_RX UART_TX PWM/GPIO SPI_MOSI SPI_MISO GND VCC_3.3 GND VCC_5.0	20 19 18 17 16 15 14 13 12
	IIC_SDA	VCC_5.0	华为云社区

BearPi-HM Nano开发板E53接口使用

BearPi-HM Nano开发板 适配所有E53扩展板。

三 本节小结

- 1、了解BearPi-HM Nano开发板功能
- 2、熟悉BearPi-HM Nano开发板原理图
- 3、了解E53接口功能以及使用方法

谢谢观看

开源从小熊派开始 OPEN-SOURCE STARTED WITH THE BEARPI