$\it I_{\rm 2}$ Regularization

l₂ Regularization

• For l_2 regularization we have,

$$\tilde{\mathcal{L}}(\mathbf{w}) = \mathcal{L}(\mathbf{w}) + \frac{1}{2}\alpha \|\mathbf{w}\|^2$$

For SGD (or its variants), we are interested in

$$\nabla \tilde{\mathcal{L}}(\mathbf{w}) = \nabla \mathcal{L}(\mathbf{w}) + \alpha \mathbf{w}$$

Update rule:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \nabla \tilde{\mathcal{L}}(\mathbf{w}^t) = \mathbf{w}^t - \nabla \mathcal{L}(\mathbf{w}^t) - \alpha \mathbf{w}^t$$

4 Let us see the geometric interpretation of this

l₂ Regularization : Continue

- **1** Assume $\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathcal{L}(\mathbf{w})$
- ② thus, $\nabla \mathcal{L}(\mathbf{w}^*) = \mathbf{0}$
- 3 Consider $\mathbf{u} = \mathbf{w} \mathbf{w}^*$
- lacktriangledown Using Taylor series approximation of $\mathcal{L}(\mathbf{w})$ around \mathbf{w}^* (upto 2 order)

$$\mathcal{L}(\mathbf{w}) = \mathcal{L}(\mathbf{u} + \mathbf{w}^*) = \mathcal{L}(\mathbf{w}^*) + \mathbf{u}^T \nabla \mathcal{L}(\mathbf{w}^*) + \frac{1}{2} \mathbf{u}^T H \mathbf{u}$$

$$= \mathcal{L}(\mathbf{w}^*) + (\mathbf{w} - \mathbf{w}^*)^T \nabla \mathcal{L}(\mathbf{w}^*) + \frac{1}{2} (\mathbf{w} - \mathbf{w}^*)^T H (\mathbf{w} - \mathbf{w}^*)$$

$$= \mathcal{L}(\mathbf{w}^*) + \frac{1}{2} (\mathbf{w} - \mathbf{w}^*)^T H (\mathbf{w} - \mathbf{w}^*), \qquad (\because \mathcal{L}(\mathbf{w}^*) = \mathbf{0})$$

where H is hessian of $\mathcal{L}(\mathbf{w})$ evaluated at \mathbf{w}^* .

l_2 Regularization : Continue

- $\nabla \tilde{\mathcal{L}}(\mathbf{w}) = \nabla \mathcal{L}(\mathbf{w}) + \alpha \mathbf{w} = H(\mathbf{w} \mathbf{w}^*) + \alpha \mathbf{w}$
- **3** If H is symmetric and positive semidefinite, we have $H = Q\Lambda Q^T$, where $QQ^T = Q^TQ = I$ and Λ is a diagonal matrix having eigenvalues of H.

l₂ Regularization : Continue

• Minimizer of $\tilde{\mathcal{L}}$ is as follows.

$$\tilde{\mathbf{w}} = (H + \alpha I)^{-1} H \mathbf{w}^*$$

$$= (Q \Lambda Q^T + \alpha I)^{-1} Q \Lambda Q^T \mathbf{w}^*$$

$$= (Q \Lambda Q^T + \alpha Q I Q^T)^{-1} Q \Lambda Q^T \mathbf{w}^*$$

$$= (Q (\Lambda + \alpha I) Q^T)^{-1} Q \Lambda Q^T \mathbf{w}^*$$

$$= (Q^T)^{-1} (\Lambda + \alpha I)^{-1} Q^{-1} Q \Lambda Q^T \mathbf{w}^*$$

$$= Q (\Lambda + \alpha I)^{-1} \Lambda Q^T \mathbf{w}^*$$

$$= Q D Q^T \mathbf{w}^*$$

where $D = (\Lambda + \alpha I)^{-1} \Lambda$.

l_2 Regularization : Continue

We see that

$$D = \begin{bmatrix} \frac{\lambda_1}{\lambda_1 + \alpha} & 0 & 0 & \cdots & 0\\ 0 & \frac{\lambda_2}{\lambda_2 + \alpha} & 0 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & \frac{\lambda_d}{\lambda_d + \alpha} \end{bmatrix}$$

- \mathbf{w}^* first gets rotated by Q^T to give $Q^T\mathbf{w}^*$
- However if $\alpha = 0$ then Q rotates $Q^T \mathbf{w}^*$ back to \mathbf{w}^*
- If $\alpha \neq 0$, then each element i of $Q^T \mathbf{w}^*$ gets scaled by λ_i before it is rotated back by Q.
- If $\lambda_i >> \alpha$, then $\frac{\lambda_i}{\lambda_i + \alpha} = 1$. If $\lambda_i << \alpha$, then $\frac{\lambda_i}{\lambda_i + \alpha} = 0$.
- Thus only significant directions (larger eigen values) will be retained.
- Effective parameters = $\sum_{i=1}^{n} \frac{\lambda_i}{\lambda_i + \alpha} < n$

←□ → ←□ → ← □ → ← □ →

Regularization

Use complex models, but penalize large coefficient values:

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Regularization on 9th Order Polynomial

 $\ln \lambda = -\inf$

Too small λ – no regularization effect

Regularization on 9th degree polynomial:

$$\ln \lambda = -18$$

Regularization:

$$\ln \lambda = 0$$

Regularization: $E_{\rm RMS}$ vs. $\ln \lambda$

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

The Bias-Variance Decomposition (5)

Example: 100 data sets, each with 25 data points from the sinusoidal $h(x) = \sin(2px)$, varying the degree of regularization, λ.

The Bias-Variance Decomposition (6)

• Regularization constant $\lambda = \exp\{-0.31\}$.

The Bias-Variance Decomposition (7)

Regularization constant $\lambda = \exp\{-2.4\}$.

The Bias-Variance Trade-off

- From these plots, we note that;
 - \square an over-regularized model (large λ) will have a high bias
 - \square while an under-regularized model (small λ) will have a high variance.

Minimum value of bias²+variance is around λ =-0.31 This is close to the value that gives the minimum error on the test data.

Objective function for neural networks

Desired output of network: d_t

Error on i-th training input: $Div(Y_t, d_t; W_1, W_2, ..., W_K)$

Batch training error:

$$Err(W_1, W_2, ..., W_K) = \frac{1}{T} \sum_{t} Div(Y_t, d_t; W_1, W_2, ..., W_K)$$

Conventional training: minimize the total error:

$$\widehat{W}_1, \widehat{W}_2, \dots, \widehat{W}_K = \underset{W_1, W_2, \dots, W_K}{\operatorname{argmin}} \operatorname{Err}(W_1, W_2, \dots, W_K)$$

Regularizing the weights

$$L(W_1, W_2, \dots, W_K) = \frac{1}{T} \sum_t Div(Y_t, d_t) + \frac{1}{2} \lambda \sum_k ||W_k||_2^2$$

Batch mode:

$$\Delta W_k = \frac{1}{T} \sum_t \nabla_{W_k} Div(Y_t, d_t)^T + \lambda W_k$$

• SGD:

$$\Delta W_k = \nabla_{W_k} Div(Y_t, d_t)^T + \lambda W_k$$

Minibatch:

$$\Delta W_k = \frac{1}{b} \sum_{\tau=t}^{t+b-1} \nabla_{W_k} Div(Y_{\tau}, d_{\tau})^T + \lambda W_k$$

• Update rule:

$$W_k \leftarrow W_k - \eta \Delta W_k$$

Incremental Update: Mini-batch update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, ..., W_K$; j = 0
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For t = 1:b:T
 - j = j + 1
 - For every layer k:

$$-\Delta W_k = 0$$

- For t' = t:t+b-1
 - For every layer k:
 - » Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - $> \Delta W_k = \Delta W_k + \nabla_{W_k} Div(Y_t, d_t)$
- Update
 - For every layer k:

$$W_k = W_k - \eta_j (\Delta W_k + \lambda W_k)$$

Until Err has converged