

# Ostrich Legs

#### **Contributors**

Chloe Fox(Hannah Brown), Princess Colon, Deepit Arora, Arya Patel

# **Overview of Assignment 1**

- Project Definition
  - How the gait and stride of the ostrich can change by using two four-bar linkages to represent the knee and ankle.
    - Leg weight
    - Phase Differences
    - Frequency
- Background Research
  - Through the use of multiple sources we determined that the four-bar linkage can affect the overall gait and swing power of an ostrich-like robot.
  - Bipedal robots are not novel but being made from foldable materials is.
- Specifications Table
  - On the right.

| Parameter                       | Unit                         |           |           | Value Range      |
|---------------------------------|------------------------------|-----------|-----------|------------------|
| Total Mass                      | kg                           |           |           | 90-136           |
| Tibiotarsus Length              | mm                           |           |           | 500-530          |
| Tarsometatarsus Length          | mm                           |           |           | 450-490          |
| Hip Joint (X, Y, Z)             | Degrees                      | -45 to 45 | -45 to 45 | -65 to 10        |
| Knee Joint (X, Y, Z)            | Degrees                      | -45 to 45 | -45 to 45 | -180 to 10       |
| Ankle Joint (X, Y, Z)           | Degrees                      | -45 to 45 | -10       | -10 to 180       |
| Walking Force                   | Body Weight<br>Normalization |           |           | $1.12 \pm 0.290$ |
| Running Force                   | Body Weight<br>Normalization |           |           | $2.14 \pm 0.540$ |
| Functional Surface Area of Foot | cm^2                         |           |           | $144.9 \pm 7.6$  |

Fig.1: Specifications Table

# Overview of Assignment 1 cont

First Prototype



Fig.2: Vector Drawing of First Prototype



Fig.3: First Prototype

# System model evolution

- The ostrich legs is made up of two four-bar linkage
  - Version 1 and Version 2 are easier to see with this
  - Current version has the first linkage in the same spot, while the second one is now taller than the first
    - One motor will be where the black and red bar meets and the other will be using a string to lift as a knee joint on the four-bar.
      These two motors will be working at the
    - These two motors will be working at the same time for each leg



Fig.4: Past prototypes In the order of version 1, 2, and three





Fig. 6: Old Model of our ostrich

Fig. 5: Current Model of our ostrich

# System model continued



Fig.7 : Old Model of our ostrich moving



Fig.8: Logged data of X position

# Mujoco Model

# ❖ Leg Design:

- Legs are made using 3 four-bar structures connected with a "knee-like" joint.
- > Four-bar 1 corresponds to Knee
- ➤ Four-bar 2 corresponds to Ankle
- Four-bar 3 transfers movement of ankle to "hip"
- Design moves weight of servos closer to center of mass

#### \* Features:

- XML formatting for link lengths and key properties
- Displays distance traveled in x-axis as a function of time

#### Parameters:

- Experimental Friction constant applied to feet
- > Approximate dimensions of DXF file
- > Frictionless wheels

#### Plan and Execute the Manufacturing

- Plan of Action
  - Create the DXF file on LibreCAD
  - ➤ Follow the guide given to create the multi-layer manufacturing process
  - Use the laser cutter that we learned about in the innovation hub
  - ➤ Fold the laminated ostrich leg and attach the motors and the body
  - Start Testing immediately after connecting the ESP32
- What has actually happened
  - ➤ LibreCAD was used to create the DXF file
  - > Followed the code to generate the layers
  - Use the vinyl cutter to cut the rigid
  - Next day use the laser and complete the lamination process
  - Build the robot and attach the motors and ESP32
    - Setbacks happened when the small 4-bar would not move properly



Fig.6 : Final cut in JupyterLab



Fig.7: Layers 0 and 4 in JupyterLab code and in real life



Fig.8 : DXF in LibreCAD

# Plan and Execute the Manufacturing continued

**\*** Behold the Ostrich



Fig.: First Built Ostrich

- Before the changes of motor

  Went through 3 different adjustments



Fig.: Final Ostrich

- Final Change in the motor and horn
  Created the rod used to move
  - the small 4-bar

#### **Experimental Validation and Analysis**

- Plan of Action
  - ➤ Goal:
    - Design a gait which will allow the robot to travel the greatest amount of distance in a set period of time.
  - > Assumptions:
    - Motion of each joint can be simulated using trig functions
    - Joint movement operates at the same frequency
    - Gait is a phase-shift of each joint relative to each other
  - ➤ Methodology:
    - Place robot into controlled environment
    - Implement the use of a photo tracker to measure distance over time
    - Modify phase-shift of each joint, taking into account speed of distance traveled
    - Compare perceived optimized gait with simulated gait

# **Testing**



#### **Tracker**





















-2.0

6.8

7.0

7.2

x-position

7.8

8.0

-2.45

-0.45

-0.40

-0.30

x-position

-0.35

-0.25

-0.20





# Thank you