Spis treści

1.	<i>Wp</i> 1		enie]
			czenie	1
	1.2		acy]
	1.3	Układ	pracy	2
2.	Wst	ęp		•
	2.1	Proces	sy nowotworowe	
	2.2	Budow	va układu immunologicznego i jego znaczenie w procesie leczenia	
		nowoty	worów	Į.
		2.2.1	Limfocyty typu T	7
		2.2.2	Komórki NK	G
		2.2.3	Interferony	Ć
		2.2.4		11
3.	Spos	soby lec	zenia nowotworów	12
	3.1			12
		3.1.1	•	12
		3.1.2	<u>.</u>	12
		3.1.3	1	13
		3.1.4	v 1	13
	3.2			13
	3.3		•	14
	3.7	1 1		1 1
4.				15
	4.1			16
		4.1.1		16
		4.1.2	•	17
	4.2			18
		4.2.1	Równania i opis modelu	18
5.	Sym			23
	5.1		viedź układu immunologicznego na rozwijający się w organizmie wór – brak leczenia	24
		5.1.1		$\frac{2}{2}$
		0.1.1	Scenariusz II – symulacja wykonana dla modelu nieleczonego guza – Scenariusz II – symulacja wykonana dla modelu nieleczonego guza –	

α .		•
Snic	treści	11
OPID	01 C5C1	11

	5.2 Leczenie metodą chemioterapii	33
6.	Rezultaty	34
7.	Analiza wyników	35
8.	Podsumowanie	36
	Dodatek	

Spis rysunków

2.1	Podział limfocytów typu T [7]	8
5.1	Wykresy zmian liczby komórek badanych populacji – komórek nowotworowych $T(t)$, komórek NK $N(t)$, limfocytów T_{CD8+} $L(t)$ i limfocytów	
	krążących $C(t)$	26
5.2	Wyniki otrzymane na koniec symulacji, która trwała $T_k=120$ dni. Licz-	
	ba komórek nowotworowych na koniec symulacji $T(120)$ w zależności	
	od początkowej liczby komórek nowotworowych $T(0)$	27
5.3	Wyniki otrzymane na koniec symulacji, która trwała $T_k=120$ dni. Dłu-	
	gość promienia nowotworu [mm] na koniec symulacji w zależności od po-	
	czątkowej liczby krążących limfocytów $T(0)$	28
5.4	Wykresy zmian liczby komórek badanych populacji – komórek nowotwo-	
	rowych $T(t)$, komórek NK $N(t)$, limfocytów T_{CD8+} $L(t)$ i limfocytów	
	krążących $C(t)$	30
5.5	Wyniki otrzymane na koniec symulacji, która trwała $T_k=120$ dni. Licz-	
	ba komórek nowotworowych na koniec symulacji $T(120)$ w zależności	
	od początkowej liczby krążących limfocytów $C(0)$	31
5.6	Wyniki otrzymane na koniec symulacji, która trwała $T_k=120$ dni. Dłu-	
	gość promienia nowotworu [mm] na koniec symulacji w zależności od po-	
	ezatkowaj liezby krażacych limfocytów $C(0)$	39

Spis tabel

2.1	Mechanizmy obronne odporności nieswoistej i swoistej [7]	Ę
4.1	Parametry modelu odpowiedzi immunologicznej na rozwijający się nowotwór bez uwzględnienia procesu leczenia	21
4.2	Dodatkowe parametry modelu odpowiedzi immunologicznej na rozwijający się nowotwór z uwzględnieniem procesu leczenia.	22
5.1	Warunki początkowe dla modelu odpowiedzi immunologicznej na rozwi- jający się nowotwór bez uwzględnienia procesu leczenia	23
5.2	Początkowa liczba komórek nowotworowych $T(0)$, liczba komórek nowotworowych po symulacji w chwili $T_k=120$ dni $T(120)$ oraz szacowana objętość i długość promienia nowotworu po symulacji w chwili $T_k=120$	
5.3	dni	24 29
0.1	Skróty wykorzystane w pracy	40

1. Wprowadzenie

1.1 Streszczenie

W pracy przedstawiono model opisujący odpowiedź układu immunologicznego na rozwijający się w organizmie nowotwór. Model ten oparty jest na modelu de Pillis'a oraz modelu Isaeva i Osipov'a [1]. Obejmuje on rozwój komórek nowotworowych w organizmie oraz odpowiedź układu immunologicznego – w tym limfocytów naciekających nowotwór TIL (ang. Tumor Infiltrating Lymphocytes), tak zwanych "naturalnych zabójców", czyli komórek NK (ang. Natural Killer cells) oraz limfocytów T_{CD8+} . Następnie model został poddany modyfikacji polegającej na uwzględnieniu procesu leczenia nowotworu skojarzonymi metodami chemioterapii i immunoterapii z użyciem cytokin: interleukin-2 (IL-2) i interferonów alfa (IFN- α).

1.2 Cel pracy

Celem pracy było:

- utworzenie modelu rozwoju nowotworu w organizmie z uwzględnieniem leczenia skojarzonymi metodami chemioterapii i immunoterapii,
- przeprowadzenie symulacji leczenia nowotworu metodą chemioterapii, immunoterapii oraz skojarzonych metod chemioterapii i immunoterapii,
- analiza rozwiązań modelu opisującego leczenie wyłącznie metodą chemioterapii,
- analiza rozwiązań modelu opisującego leczenie wyłącznie metodą immunoterapii,
- analiza rozwiązań modelu opisującego leczenie zarówno metodą chemioterapii, jak i immunoterapii.

1. Wprowadzenie 2

1.3 Układ pracy

Praca składa się z następujących części:

• wstępu teoretycznego zawierającego informacje na temat rodzajów nowotworów i sposobów ich rozwoju oraz niektórych metod ich leczenia, a także dotyczących budowy i sposobu działania układu immunologicznego,

- przedstawienia zaimplementowanego modelu, na którym przeprowadzano symulacje,
- opisu dokonanych symulacji i scenariuszy, według których zostały przeprowadzone.
- analizy wyników symulacji i wynikających z nich wniosków,
- podsumowania.

2.1 Procesy nowotworowe

Nowotworem określa się nieprawidłowe komórki w organizmie, których wzrost odbywa się w sposób niekontrolowany [1,2]. Czasami, najczęściej w przypadku zmian zapalnych, naprzemiennie z pojęciem nowotwór, stosowane jest określenie guz [24]. W zdrowym organizmie występuje równowaga pomiędzy tempem podziałów komórkowych a utratą komórek. W przypadku nowotworu ginie mniej komórek niż przybywa [3]. W efekcie spontanicznej proliferacji komórek nowotworowych składająca się z nich struktura zaczyna niszczyć narząd, w którym wystąpił proces nowotworowy. Niektóre z tych komórek mogą oderwać się od pozostałych, przedostać do naczyń krwionośnych i limfatycznych, a w konsekwencji dawać przerzuty do innych narządów [2]. Powstawanie nowotworu wiąże się z wieloma zmianami materiału genetycznego. Rozpoczęcie tego procesu zależy zarówno od wagi, jak i miejsca, w którym dana zmiana wystąpiła.

Warto także zwrócić uwagę na zmiany systemów naprawy DNA oraz zmiany systemów regulujących podstawowe procesy komórkowe (na przykład wzrost, różnicowanie, apoptozę¹). Na skutek zmian systemów naprawczych dochodzi do szybkiej i dużej niestabilności genomu. Zmiany w systemach regulujących powodują natomiast powolny proces zaburzenia homeostazy komórki oraz stopniowo narastającą niestabilność genomu. Choroby nowotworowe w większości rozwijają się w tym drugim przypadku, dlatego od pojawienia się początkowej zmiany do klinicznego wykrycia guza mija zazwyczaj wiele lat [3].

Transformacja oznacza wielostopniowy proces, podczas którego komórki prawidłowe stają się złośliwe. Każdy etap tego procesu odpowiada zmianom genetycznym prowadzącym do zaburzeń wzrostu komórek prawidłowych. Dobrze poznany jest rozwój nowotworu w przypadku czerniaka skóry [24].

¹ Apoptoza – śmierć programowana, śmierć samobójcza komórki zachodząca w warunkach fizjologicznych [12].

Transformację melanocytów w kierunku czerniaka można podzielić, klinicznie i histopatologicznie, na pięć głównych etapów [24]

- 1. znamię barwnikowe,
- 2. znamię dysplastyczne,
- 3. faza radialna wzrostu czerniaka,
- 4. faza wertykalna wzrostu czerniaka,
- 5. czerniak rozsiany.

Zachodzące zmiany genetyczne związane są z różnymi zmianami fizjologicznymi komórki, w szczególności z [24]

- samowystarczalnością w wytwarzaniu sygnałów do wzrostu,
- niewrażliwością na inhibitory sygnałów wzrostu,
- unikaniem programowanej śmierci komórek,
- nieograniczonym potencjałem replikacyjnym,
- podtrzymywaniem angiogenezy,
- inwazją tkankową,
- przerzutami,
- unikaniem destrukcji immunologicznej.

Mechanizmy genetyczne leżące u podstaw wyżej wymienionych zmian fizjologicznych mogą różnić się między sobą dla poszczególnych nowotworów. Mimo to, zmiany fizjologiczne są wspólne dla większości nowotworów i odpowiadają zarówno za przeżycie, jak i ekspresję nowotworu [24].

2.2 Budowa układu immunologicznego i jego znaczenie w procesie leczenia nowotworów

Zasadnicze znaczenie w odporności organizmu mają przede wszystkim skóra, błony śluzowe, fagocyty, limfocyty typu T i B², komórki NK, przeciwciała oraz układ dopełniacza [28].

UKŁAD DOPEŁNIACZA W 1919 r. Jules Bordet (belgijski mikrobiolog; kierownik Instytutu Pasteura w Brukseli) otrzymał Nagrodę Nobla z dziedziny medycyny za odkrycie bakteriolitycznych właściwości surowicy. Zaobserwował on, że rozpad komórek bakteryjnych Vibrio cholerae zachodzi pod wpływem termolabilnych (inaktywacja w temp. powyżej 56°C) zwiazków surowicy – układu dopełniacza (complement system) [17]. Dopełniacz stanowi istotny element wrodzonej odporności immunologicznej [6]. Grupa około 40 białek tworząca układ dopełniacza zabezpiecza organizm przed atakami drobnoustrojów [48]. Działanie tego systemu wyraża się poprzez: 1. Opsonizacje mikroorganizmów (ułatwianie fagocytozy). 2. Chemotaksję komórek o właściwościach żernych do miejsca toczącego się procesu zapalnego. 3. Eliminację zmodyfi kowanych bądź też uszkodzonych komórek gospodarza. 4. Bezpośrednią lizę komórek bakteryjnych i wirusów. 5. Inicjacje reakcji zapalnej. 6. Hamowanie precypitacji kompleksów immunologicznych antygen-przeciwciało (ryc. 1) [30,48]. Ponadto, w miejscu objętym zakażeniem zwiększa się przepływ krwi oraz wzrasta przepuszczalność naczyń włosowatych, co ułatwia przechodzenie przez śródbłonek naczyń krwionośnych mediatorów istotnych z punktu widzenia trwającej reakcji zapalnej [30]. Aktywacja układu dopełniacza zachodzi w sposób kaskadowy co oznacza, że każdy kolejny składnik aktywuje następny. Wyróżniamy trzy drogi aktywacji dopełniacza: klasyczną, alternatywną i lektynowa (ryc. 2). Klasyczna droga aktywacji komplementu, opisana po raz pierwszy w 1890 r., zachodzi za pośrednictwem swoistych immunoglobulin związanych z powierzchnia drobnoustrojów, czyli stanowi element nabytej odporności immunologicznej [6,37].

Klasyczna droga aktywacji układu dopełniacza prowadzi do śmierci litycznej komórki docelowej (bakterioliza) [20]. Znacznie szybsza, bo kształtująca się od wniknięcia patogenu przez wrota zakażenia, jest droga alternatywna (properdynowa). Ta wrodzona i nieswoista ochrona polega na spontanicznej opsonizacji drobnoustrojów przez czasteczki C3b dopełniacza, co ułatwia ich pochłanianie przez komórki fagocytarne.

Trzecia z wymienionych dróg, tzw. lektynowa, jest związana z połączeniem cząsteczki cukru (mannoza, fruktoza bądź też N-acetyloglukozamina) obecnej na powierzchni bakterii z lektyną wiążącą mannozę tzw. MBL (mannose binding lectin) [28,37]. Ta interakcja czyni kompleks MBL wrażliwym na działanie proteaz serynowych MASP (mannose- binding lectin-associated serine protease) oraz prowadzi do rozkładu czynników C2 i C4 układu dopełniacza.

Wspomniana wcześniej alternatywna droga aktywacji dopełniacza jest podstawowym mechanizmem wrodzonego układu odpornościowego. Wniknięcie czynnika zakaźnego do organizmu gospodarza uruchamia wiele reakcji zmierzających do eradykacji

² Limfocyty typu B – wyspecjalizowane komórki układu immunologicznego, których główna funkcja polega na wytwarzaniu przeciwciał [28].

drobnoustroju. Zaletą tej drogi aktywacji jest oszczędność czasu. Organizm gospodarza, nie czekając na pojawienie się swoistych w stosunku do mikroorganizmu przeciwciał, uruchamia kaskadę nieswoistych reakcji obronnych. Niestety, alternatywna aktywacja układu dopełniacza, poza korzystnym z punktu widzenia gospodarza niszczeniem komórek drobnoustrojów, oddziałuje także na własne tkanki. Autoagresywny wpływ produktów aktywacji na organizm gospodarza ogranicza sprawne funkcjonowanie wielu regulatorów, np. czynnika H [28,30].

Na układ immunologiczny składają się mechanizmy odporności swoistej (nabytej) i nieswoistej (wrodzonej) [4,5,20]. Ich podział przedstawiono w Tab. 2.1.

Odporność			Działanie obronne
Nieswoista Humoralna		Lizozym	Bakterioliza bakterii Gram dodatnich, li-
(wrodzona)			za bakterii Gram-ujemnych po usunięciu
			warstwy liposacharydowej
		Laktoferyna	Pozbawienie bakterii dostępu do żelaza
			poprzez wiązanie go
		Transferyna	Pozbawienie bakterii dostępu do żelaza
			poprzez wiązanie go
		Białka ostrej fazy	Aktywacja limfocytów, makrofagów, do-
			pełniacza na drodze klasycznej
		Dopełniacz	Uaktywnienie układu dopełniacza
		Interferony	Hamowanie transformacji limfocytów
			pod wpływem mitogenów
	Komórkowa	Fagocyty	Fagocytoza
		Eozynofile	Produkcja prostoglandyn PGE1 i PGE2,
			które hamują uwalnianie mediatorów
			przez komórki tuczne i bazofile
		Komórki K	Cytotoksyczność zależna od przeciwciał
		Komórki NK	Spontaniczne niszczenie komórek zakażo-
			nych wirusem
Swoista	Humoralna	Immunoglobuliny	
(nabyta)		Limfocyty typu B	
	Komórkowa	Limfocyty typu T	

Tab. 2.1: Mechanizmy obronne odporności nieswoistej i swoistej [7].

Funkcjonowanie mechanizmów nieswoistych jest niezależne od wcześniejszej styczności organizmu z czynnikami patogennymi i pełni funkcję obronną przed infekcjami i chorobami będącymi skutkiem działania czynników środowiskowych. Mechanizmy te cechuje mniejsza precyzja, ale są one zdolne do szybkiego rozpoznawania i niszczenia wnikających drobnoustrojów. Odporność wrodzoną warunkują między innymi: komórki NK, makrofagi, granulocyty, monocyty [4].

Mechanizmy odporności nabytej są aktywowane, gdy mechanizmy odporności wrodzonej nie zapobiegną wnikaniu lub nie usuną patogenu [20].

2. Wstep 7

Odporność swoista rozpoznaje antygeny³ bardzo precyzyjnie. Jej ważnymi elementami są limfocyty typu T, limfocyty typu B, cytokiny oraz przeciwciała. Komórki te są zdolne do wytwarzania nieograniczonej liczby receptorów. Dodatkowo, jeśli dojdzie do ich kontaktu z antygenem wytwarza się pamięć immunologiczna [4], dzięki której przy ponownym zetknięciu komórki danego typu z odpowiednim antygenem wytwarzana odpowiedź immunologiczna jest szybsza i silniejsza [20]. W przypadku limfocytów typu T, typ odpowiedzi swoistej określany jest jako komórkowy (tj. związany z aktywnością komórek układu immunologicznego [13]), natomiast dla limfocytów typu B – humoralny (tj. związany z aktywnością immunoglobulin [13]).

Do mechanizmów swoistej odporności należą [6]:

- aktywność cytokin i chemokin,
- cytokinozależna wrodzona oporność leukocytów i innych komórek,
- zabijanie zakażonych lub nowotworowych komórek przez komórki NK, komplement⁴ aktywowany lektynami lub drogą alternatywną,
- opsonizacja i fagocytoza⁵.

Pomimo bardzo dużego znaczenia układu immunologicznego dla organizmu, wiele mechanizmów jego działania pozostaje jeszcze niewyjaśnionych [4].

Znaczącą rolę w oddziaływaniu układu immunologicznego na rozwijający się nowotwór pełnią, między innymi:

- limfocyty T_{CD8+} ,
- komórki NK,
- interferony,
- interleukiny.

W związku z ważną funkcją wyżej wymienionych komórek, ujęto je w opisywanym modelu, natomiast ich znaczenie opisano w dalszej części pracy.

³ Antygeny – związki wywołujące reakcje układu immunologicznego; najczęściej substancje wielkocząsteczkowe, rozpoznawane swoiście poprzez powierzchniowe receptory limfocytów [20].

⁴ Komplement – układ dopełniacza, system kaskadowo aktywowanych białek pełniących znaczącą rolę w walce przeciwko czynnikom patogennym, w utrzymywaniu stanu homeostazy oraz wzbudzaniu stanu zapalnego [17].

⁵ Fagocytoza – usuwanie kompleksów immunologicznych i uszkodzonych komórek (ułatwienie fagocytozy immunologicznej). Efektywne niszczenie drobnoustrojów przez fagocyty [13,14].

2.2.1 Limfocyty typu T

Jedną z grup limfocytów są limfocyty typu T, które stanowią odrębny rodzaj komórek układu immunologicznego. Ich wyspecjalizowaną funkcją jest bezpośrednie atakowanie obcych antygenów, na przykład wirusów, grzybów. Pełnią także funkcję regulatorową w obrębie układu immunologicznego [28]. Limfocyty typu T wytwarzane są w szpiku kostnym [7], a na wczesnym etapie życia płodowego trafiają do grasicy (limfocyty grasiczozależne), gdzie dojrzewają. Następnie opuszczają grasicę i przebywają w różnych narządach układu odpornościowego, na przykład śledzionie, węzłach chłonnych, szpiku kostnym oraz krwi obwodowej [28].

Limfocyty typu T oznaczane jako CD8+ dzielą się na limfocyty [7]:

- \bullet cytotoksyczne T_c , które odpowiadają za niszczenie komórek i odrzucanie przeszczepów,
- supresyjne T_s , które odpowiadają za hamowanie działania innych limfocytów, reakcji alergicznych i utrzymanie tolerancji immunologicznej na własne antygeny.

Na Rys. 2.1, na pomarańczowych, niebieskich i różowych polach przedstawiono kolejne podziały limfocytów typu T występujących w organizmie. Dodatkowo, na polach szarych krótko opisano funkcję, jaką one pełnią lub wymieniono ich charakterystyczne cechy.

Podstawą procesów immunologicznych jest prezentacja antygenów przez odpowiednie komórki pomocniczym limfocytom Th. Klasyczne komórki prezentujące antygen APC (ang. Antigen Presenting Cells) to limfocyty typu B, komórki dendryczne oraz makrofagi. Natomiast, nieklasycznymi komórkami są limfocyty typu T, eozynofile, fibroblasty oraz keranocyty [7].

Odpowiedź immunologiczna swoista typu komórkowego, w którą zaangażowane są subpopulacje limfocytów typu T, polega na wywołaniu reakcji zwalczania antygenu. Możliwe są dwa typy tej reakcji. W pierwszym z nich funkcję efektorów pełnią limfocyty CD4+, a makrofagi są komórkami pomocniczymi. Drugi typ reakcji zakłada, że limfocyt cytotoksyczny CD8+ jest komórką efektorową, a limfocyt CD4+ pomocniczą. Odporność komórkowa ma za zadanie, przede wszystkim walczyć z zakażeniami, ale również spełnia ważną rolę w reakcji kontaktowej ze związkami chemicznymi, w odrzuceniu przeszczepu czy tkanek zmienionych nowotworowo i w niektórych reakcjach autoimmunologicznych [4]. Między 5 a 6 dekadą życia ustaje czynność grasicy, czego skutkiem są zmiany w subpopulacjach limfocytów typu T. Z wiekiem głównie wzrasta liczba limfocytów CD4+, natomiast zmniejsza się liczba limfocytów supresorowych i cytotoksycznych CD8+ [4].

Rys. 2.1: Podział limfocytów typu T [7].

Komórki nowotworowe współdziałając z makrofagami TAMs M2 powodują immunosupresję⁶ układu immunologicznego. W początkowym etapie choroby można zaobserwować wzrost poziomu cytokin prozapalnych. Czynniki te hamują cytotoksyczną aktywność makrofagów. Komórki nowotworowe produkują również cytokiny (IL-10, IL-4) stymulujące polaryzację fenotypu w kierunku klasy M2. Makrofagi TAMs M2 wydzielają związki o działaniu przeciwzapalnym, czego efektem jest między innymi indukcja limfocytów T regulatorowych (T_{reg}) oraz supresja limfocytów T_{CD8+} [25]. Zwiększona ilość T_{reg} hamuje aktywność komórek NK, TCD4+ i TCD8+, co przyczynia się do rozrostu nowotworu [27].

2.2.2 Komórki NK

Swoją rolę w odpowiedzi immunologicznej mają także komórki NK, stanowiące populację odrębną od limfocytów typu B i T. [7]. Kómórki NK stanowią 10-15% limfocytów obecnych w krwi [5]. Ich zadaniem jest niszczenie komórek nowotworowych i zainfekowanych wirusami [5]. Charakterystyczną cechą komórek NK jest brak posiadania markerów czy receptorów antygenowych na powierzchni. Działanie komórek NK opiera się na rozpoznawaniu przez receptor pektynowy reszt cukrowych, co umożliwia im cytotoksyczne zniszczenie komórki docelowej, między innymi nowotworowej. Z kolei receptor hamujący komórki typu "zabójcy" KIR (ang. Killer cells Inhibitory Receptor) zmniejsza aktywność komórek NK, jeśli rozpoznają one prawidłowe komórki organizmu [4]. Z wiekiem aktywność komórek NK spada (ze względu na zwiększoną liczbę receptorów KIR [5]), co zwiększa ryzyko śmierci spowodowanej ciężką infekcją. Niekorzystnymi czynnikami mającymi wpływ na układ komórek NK są: stres, niska aktywność fizyczna oraz dieta wysokotłuszczowa [4]. Silna aktywność cytotoksyczna komórek NK może być uznana za oznakę dobrego zdrowia [5].

2.2.3 Interferony

Interferony to glikoproteiny wytwarzane przez limfocyty, fibroblasty i inne komórki, które biorą udział w odpowiedzi immunologicznej [21]. Należą do humoralnych mechanizmów obronnych odporności nieswoistej. Ich funkcją jest, między innymi hamowanie replikacji wirusów w komórce i proliferacji komórek (w szczególności nowotworowych), aktywowanie syntezy enzymów (rybonukleazy, syntetazy, kinazy białkowej) i cytotoksyczności makrofagów oraz limfocytów typu T, a także zwiększenie aktywności komórek cytotoksycznych [7].

Wśród interferonów można wyróżnić interferony [22]:

• α (leukocytarne) – produkowane głównie przez monocyty, makrofagi i limfocyty, zbudowane z białek zawierających od 165 do 166 aminokwasów. Istnieją 22 znane

⁶ Immunosupresja – stan charakteryzujący się osłabieniem bądź zahamowaniem odpowiedzi immunologicznej; dotyczy zarówno odpowiedzi typu humoralnego, jak i komórkowego. Wiąże się ze zmiennymi niedoborami poszczególnych klas przeciwciał (IgG, IgM, IgA) oraz spadkiem liczby i dysfunkcją komórek układu odpornościowego, głównie limfocytów T, ujawniającym się zahamowaniem wytwarzania cytokin [26].

2. Wstep 11

podtypy interferonów α . Są one kodowane przez co najmniej 23 geny zlokalizowane w chromosomie 9;

- β produkowane przez fibroblasty. Są podobne do interferonów α (posiadają 30% analogicznych aminokwasów). Odpowiadające sobie geny interferonów obu tych typów mieszczą się w krótszym ramieniu chromosomu 9;
- γ produkowane przez limfocyty typu T po stymulacji antygenami lub mitogenami. Gen kodujący interferony γ znajduje się w obrębie chromosomu 12.

Warunkiem koniecznym do działania interferonów jest ich połączenie ze swoistymi receptorami. Interferony α i β działają poprzez receptor typu I, natomiast interferon gamma poprzez receptor typu II. Liczba receptorów różni się zależnie od poszczególnych komórek (waha się od $2\cdot 10^2$ do $6\cdot 10^3$ [22]). Kompleks interferon – receptor aktywuje kinazę tyrozynową. Poprzez fosforylację odpowiednich białek kinaza tyrozynowa tworzy wraz z nimi czynnik transkrypcyjny. W jądrze komórkowym po połączeniu z elementem odpowiedzi stymulowanej przez interferon ISRE (ang. Interferon-Stimulated Response Element) wzrasta ekspresja genów, które są odpowiedzialne za produkcję białek efektorowych [22].

Interferon α (wykorzystywany, m. in. w procesie leczenia nowotworów) stymuluje układ immunologiczny ingerując w procesy różnicowania się komórek. Zwiększa również aktywność fagocytarną makrofagów i swoiste działanie cytotoksyczne limfocytów. Działa przeciwnowotworowo poprzez hamowanie angiogenezy i blokowanie syntezy białek. W chorobach nowotworowych dawki interferonu dochodzą do 900 MU w ciągu 6 dni [21].

Interferon posiada wyraźne powinowactwo do komórek nerwowych i w dużym stężeniu działa neurotoksycznie. Podczas leczenia interferonem mogą wystąpić niepożądane zaburzenia [21]:

- układu serotoninergicznego,
- układu noradrenergicznego,
- układu dopaminergicznego,
- układu glutaminianergicznego,
- układu opioidowego,
- hormonalne,
- metabolizmu mózgowego.

Zaburzenia psychiczne często pojawiają się u pacjentów leczonych przy pomocy interferonu. Mogą to być stany zmęczenia, pogorszenie koncentracji, uwagi i pamięci, ale także pełnoobjawowe epizody depresji, manii, zaburzenia lękowe czy zaburzenia świadomości [21].

2.2.4 Interleukiny

Interleukiny są jedną z grup cytokin⁷, która służy, między innymi do komunikacji pomiędzy komórkami układu odpornościowego. Komórki te dotyczą zarówno odporności wrodzonej, jak i nabytej. Interleukiny to białka produkowane głównie przez leukocyty. Ze względu na cechy biologiczne, w tym różnice w budowie molekularnej i strukturze, interleukiny zostały zgrupowane w trzy rodziny [8]:

- pierwszą podzieloną na podrodzinę interleukiny-2 i podrodzinę interferonów (reprezentowaną przez interferon- α i interferon- β),
- drugą rodzinę interleukiny-1,
- trzecią zawierającą interleukinę 17A, B, C, D, F oraz IL-8, 25 i 27, a także IL-31, 32 i 33.

⁷ Cytokiny – białka o niskiej masie cząsteczkowej biorące udział w przekazywaniu informacji pomiędzy komórkami; odgrywają istotną rolę w odpowiedzi zapalnej, apoptozie, wzroście i różnicowaniu komórek [16].

3. Sposoby leczenia nowotworów

3.1 Immunoterapia

Podczas immunoterapii dochodzi do ingerencji w układ odpornościowy, co ma na celu wzmocnienie lub modyfikację mechanizmów obronnych walczących z nowotworem. Immunoterapię można podzielić na bierną i czynną o charakterze swoistym albo nieswoistym [10].

3.1.1 Nieswoista bierna immunoterapia

Nieswoista bierna immunoterapia ma za zadanie wywołać nieswoistą aktywację układu immunologicznego, a w konsekwencji działanie przeciwnowotworowe na skutek podawania m.in. aktywowanych komórek efektorowych. Wykorzystuje się tu, na przykład cytokiny czy komórki zabójcze aktywowane limfokiną LAK (ang. Lymphokine Activated Killers). Aby wywołać efekt biologiczny konieczne jest połączenie cytokiny ze swoistym receptorem na komórkach docelowych (limfocytach typu T i B, komórkach NK, monocytach, makrofagach i granulocytach). Działanie przeciwnowotworowe cytokin polega na:

- bezpośrednim efekcie cytotoksycznym,
- modyfikacji migracji limfocytów,
- wzroście wrażliwości komórek nowotworowych na efekty cytotoksyczne różnych czynników biologicznych lub chemicznych,
- hamowaniu proliferacji komórek nowotworowych,
- aktywacja komórek NK.

IFN- α to pierwsza rekombinowana cytokina zarejestrowana do stosowania klinicznego [10].

3.1.2 Swoista bierna immunoterapia

Swoista bierna immunoterapia to metoda leczenia nowotworu, która polega na podawaniu pacjentowi m.in. komórek efektorowych swoiście ukierunkowanych na daną komórkę nowotworową. Do swoistej biernej immunoterapii zaliczamy [10]:

- przeciwciała podawane przeciwko antygenom, które występują na komórkach nowotworowych,
- terapie komórkowe, które wykorzystują limfocyty naciekające guz (TIL); są one izolowane, następnie namnożone i aktywowane, po czym ponownie przetaczane,
- limfocyty krwi obwodowej stymulowane in vitro komórkami prezentującymi antygen.

3.1.3 Nieswoista czynna immunoterapia

W nieswoistej czynnej immunoterapii pobudzany jest układ odpornościowy, a zwłaszcza odpowiedź komórkowa. Wykorzystywane są do tego antygeny, niewystępujące w komórkach nowotworu. Substancjami stymulującymi procesy odpornościowe są nieswoiste immunostymulatory (np. mikroorganizmy, elementy ściany komórkowej) i immunomodulatory (m. in. wyciągi z grasicy, syntetyczne hormony grasicy, tuftsyna, enkefaliny, endorfiny, wyciągi z limfocytów) [10].

3.1.4 Swoista czynna immunoterapia

Leczenie metodą swoistej czynnej immunoterapii polega na pobudzaniu odporności na antygeny swoiste dla danego typu nowotworu. Wykorzystuje się w niej immunizację przy użyciu tzw. terapeutycznych szczepionek nowotworowych. Są to szczepionki:

- niekomórkowe, na bazie białek szoku cieplnego HSP (ang. Heat Shock Protein), szczepionki DNA oraz szczepionki wirusowe,
- komórkowe, niemodyfikowane i modyfikowane genetycznie oraz komórki dendrytyczne DC (ang. Dendritic Cells) "karmione" antygenami nowotworowymi [10].

3.2 Chemioterapia

Chemioterapia to metoda leczenia, która polega na niszczeniu komórek nowotwo-rowych, drobnoustrojów oraz bakterii za pomocą środków chemicznych. W przypadku nowotworów, stosuje się różne grupy leków, tzw. cytostatyków. Zależnie od indywidualnych cech pacjenta chemioterapia ma ściśle określony przebieg. Leki mogą być stosowane w monoterapii (stosowanie jednego leku cytostatycznego) lub polichemioterapii (stosowanie kilku leków zgodnie z określonym schematem). Leki cytostatyczne podawane są w sekwencjach co kilka dni, tygodni lub stale, bez przerwy w leczeniu. Leki cytostatyczne działają w określonych fazach podziału komórek nowotworowych, zmniejszając lub spowalniając ich proliferację. Najczęściej podawane są w postaci dożylnych wlewów, lecz niektóre z nich mają formę tabletek. Skutki uboczne chemioterapii można zaobserwować już po kilku dniach terapii, a czasem nawet po kilku godzinach [9].

3.3 Leczenie skojarzone

Leczenie skojarzone polega na połączeniu u pacjenta kilku metod leczenia nowotworu. Ten sposób terapii posiada wiele zalet, między innymi umożliwia wykonanie zabiegu operacyjnego w wielu przypadkach pierwotnie nieoperacyjnych i pozwala zastąpić okaleczające zabiegi chirurgiczne równie skutecznym leczeniem zachowawczym. Ponadto, zmniejsza ryzyko wznowy miejscowej choroby i rozwoju odległych przerzutów, co wpływa na wydłużenie czasu przeżycia chorych. Pomimo wielu zalet, leczenie skojarzone ma również pewne wady, chociażby, znaczne zwiększenie toksyczności w porównaniu z monoterapią czy brak współpracy między specjalistami, co z kolei utrudnia wdrożenie optymalnej terapii.

Wśród metod leczenia skojarzonego można wyróżnić [11]:

- leczenie sekwencyjne poszczególne metody lecznicze stosowane jedna po drugiej, np.:
 - leczenie wstępne (neoadiuwantowe, indukcyjne) poprzedza leczenie radykalne. Jego celem jest wczesne oddziaływanie na mikroprzerzuty lub zmniejszenie masy guza u chorych z miejscowo zaawansowanym nowotworem i umożliwienie tym samym przeprowadzenia leczenia radykalnego;
 - uzupełniające (adiuwantowe) stosowane jest po leczeniu radykalnym, czyli u osób bez cech choroby nowotworowej. Jego celem jest zniszczenie potencjalnie istniejących mikroprzerzutów i zmniejszenie tym samym prawdopodobieństwa nawrotu nowotworu;
- leczenie równoczesne kojarzenie różnych metod leczenia w tym samym czasie, na przykład równoczesna chemioradioterapia oraz napromienianie śródoperacyjne;
- leczenie naprzemienne dotyczy kojarzenia radioterapii i chemioterapii.

W tej pracy omawiany jest przypadek leczenia skojarzoną metodą chemioterapii i immunoterapii, zwanej także biochemioterapią [1].

4. Model matematyczny

Model matematyczny wykorzystany w pracy to model będący połączeniem modelu de Pillis'a [19] oraz modelu Isaeva i Osipov'a [18] opisany w literaturze [1]. W pierwszym etapie rozważymy model bez uwzględnienia procesu leczenia, który obejmuje cztery populacje komórek, tj.:

- T populację komórek nowotworowych,
- \mathcal{N} populację komórek NK,
- \mathcal{L} populację limfocytów T_{CD8+} ,
- C populację limfocytów krążących,

W drugim etapie model zostaje poddany modyfikacji, uwzględnia proces leczenia i dodatkowo badane są zmiany stężenia w czasie trzech podawanych leków:

- I(t) funkcja stężenia interleukin-2 w czasie,
- $I_{\alpha}(\mathbf{t})$ funkcja stężenia interferonów- α w czasie,
- \bullet M(t) funkcja stężenia cytostatyku użytego w chemioterapii w czasie.

W równaniach modelu przed modyfikacją uwzględniono takie czynniki, jak:

- naturalny rozwój i śmierć komórek,
- \bullet śmierć komórek nowotworowych pod wpływem komórek NK, limfocytów T_{CD8+} ,
- wytwarzanie komórek NK i limfocytów T_{CD8+} ,
- dezaktywację komórek NK i limfocytów T_{CD8+} .

Natomiast w modelu zmodyfikowanym wzięto pod uwagę również:

- ilość podawanych leków i czas, w którym zostały podane,
- śmierć komórek nowotworowych pod wpływem podawanych leków.

4.1 Model nieuwzględniający procesu leczenia

4.1.1 Założenia modelu

Przyjęto założenia jak w modelu de Pillis'a, Isaeva i Osipov'a [1]:

- 1. W przypadku braku odpowiedzi układu immunologicznego liczba komórek nowotworowych wzrasta logistycznie.
- 2. Komórki NK i limfocyty T_{CD8+} są zdolne zniszczyć komórki nowotworu.
- 3. Pod wpływem komórek nowotworowych komórki NK i limfocyty T_{CD8+} ulegają szybszej proliferacji oraz wzrasta ich aktywność cytolityczna¹.
- 4. Komórki NK są zawsze obecne w organizmie, także w przypadku braku występowania komórek nowotworowych.
- 5. W organizmie występuje duża liczba aktywnych limfocytów T_{CD8+} , tylko w przypadku obecności komórek nowotworowych. Jest to specyficzna odpowiedź immunologiczna.
- 6. Komórki NK i limfocyty T_{CD8+} ulegają całkowitej dezaktywacji po pewnej liczbie interakcji z komórkami nowotworowymi.
- 7. Komórki nowotworowe dezaktywują się pod wpływem interferonów α .
- 8. Poziom krażacych limfocytów może służyć do oceny zdrowia pacjenta.
- 9. Odsetek komórek nowotworowych zniszczonych w wyniku chemioterapii zależy od ilości cytostatyku obecnego w organizmie. Maksymalny odsetek zniszczonych komórek wynosi mniej niż 1 ze względu na to,że pokonanie komórek nowotworowych wskutek chemioterapii jest możliwe tylko na niektórych etapach ich rozwoju.
- 10. Część komórek NK, limfocytów T_{CD8+} i limfocytów krążących jest niszczona podczas chemioterapii.
- 11. Komórki NK i limfocyty T_{CD8+} uczestniczą w procesie stymulacji i eliminacji aktywowanych komórek (efektorów); uproszczony model ma odzwierciedlać samoregulujący się charakter układu immunologicznego.

 $^{^1}$ Aktywność cytolityczna – jeden z mechanizmów cytotoksyczności limfocytów służący do niszczenia komórek zainfekowanych lub nowotworowych $[{\bf 15}].$

4.1.2 Równania i opis modelu

W modelu nieleczonego guza, rozważamy cztery populacje komórek, są to populacja komórek nowotworowych (\mathcal{T}) , populacja komórek NK (\mathcal{N}) , populacja limfocytów T_{CD8+} (\mathcal{L}) oraz populacja limfocytów krążących (\mathcal{C}) .

Model nieleczonego guza nowotworowego jest układem równań różniczkowych zwyczajnych 4.1. Równania tego modelu przedstawiają tempo zmian proliferacji komórek nowotworowych oraz tempo zmian liczby komórek układu immunologicznego (komórek NK, limfocytów T_{CD8+} oraz limfocytów krążących) w odpowiedzi na wzrost liczby komórek nowotworowych.

$$\begin{cases} \frac{dT}{dt} = aT(1 - bT) - cNT - DT, \\ \frac{dN}{dt} = eC - fN + g\frac{T^2}{h + T^2}N - pNT, \\ \frac{dL}{dt} = -mL + j\frac{D^2T^2}{k + D^2T^2}L - qLT + (r_1N + r_2C)T - uNL^2, \\ \frac{dC}{dt} = \alpha - \beta C, \end{cases}$$

$$(4.1)$$

gdzie:

- T(t) liczba komórek nowotworowych w chwili czasowej t,
- N(t) liczba komórek NK w chwili czasowej t,
- $\bullet\,$ L(t) liczba limfocytów T_{CD8+} w chwili czasowej t,
- C(t) liczba limfocytów krążących w chwili czasowej t,
- $D = d \frac{(\frac{L}{T})^l}{s + (\frac{L}{T})^l}$ liza nowotworu pod wpływem działania limfocytów T_{CD8+} .

Pierwsze z równań modelu 4.1 opisuje tempo zmian $\frac{dT}{dt}$ liczby komórek nowotworowych, w chwili czasowej t, uwzględniając zarówno proces proliferacji tych komórek, jak i efekt cytotoksyczności wywołany odpowiedzią układu immunologicznego.

Wyrażenie aT(1-bT) zwiększa prędkość zmian liczebności populacji komórek nowotworowych, gdyż określa liczbę komórek nowotworowych, które powstały w danej chwili czasowej t w wyniku ich proliferacji. Wyrażenia -cNT oraz -DT z kolei hamują tempo zmian liczebności komórek nowotworowych, gdyż przedstawiają odpowiednio:

liczbę komórek nowotworowych zniszczonych na skutek ich interakcji z komórkami NK oraz z limfocytami T_{CD8+} , w danej chwili czasowej t.

Drugie równanie modelu 4.1 określa tempo zmian $\frac{dN}{dt}$ liczebności populacji komórek NK, w chwili czasowej t, na które wpływa kilka składników.

Składnik eC to liczba komórek NK powstałych z krążących limfocytów w chwili czasowej t, -fN opisuje liczbę komórek NK zniszczonych w chwili czasowej t.

Składowa $g\frac{T^2}{h+T^2}N$ określa liczbę nowopowstałych komórek określonych jako NK w chwili czasowej t, natomiast -pNT to komórki NK dezaktywowane w chwili czasowej t na skutek interakcji z komórkami nowotworowymi.

Trzecim równaniem modelu 4.1 zostało opisane tempo zmian liczebności populacji limfocytów T_{CD8+} $\frac{dL}{dt}$.

Pierwsza składowa -mL określa liczbę limfocytów T_{CD8+} zniszczonych w chwili czasowej t na skutek obecności komórek nowotworowych. Kolejna $j\frac{D^2T^2}{k+D^2T^2}L$ to liczba limfocytów T_{CD8+} stymulowanych przez komórki nowotworowe, które są lizowane przez limfocyty T_{CD8+} w chwili czasowej t. Liczba dezaktywowanych limfocytów T_{CD8+} w chwili czasowej t na skutek interakcji z komórkami nowotworowymi jest opisana przy pomocy składowej -qLT. Przedostatnią składową w tym równaniu jest $(r_1N+r_2C)T$ odpowiadająca liczbie limfocytów T_{CD8+} stymulowanych przez komórki nowotworowe, które są lizowane przez komórki NK oraz limfocytów T_{CD8+} powstałych na skutek obecności komórek nowotworowych w chwili czasowej t. $-uNL^2$ wyznacza liczbę limfocytów T_{CD8+} dezaktywowanych w chwili czasowej t na skutek działania komórek NK.

Równanie czwarte określa tempo zmian liczebności populacji limfocytów krążących $\frac{dC}{dt}$, w chwili czasowej t, które jest modulowane poprzez różnicę między stałą liczbą α krążących limfocytów a stopniem ich degradacji $-\beta C$, gdzie β to stała określająca tempo wyniszczania krążących limfocytów.

4.2 Model uwzględniający proces leczenia

Przyjęto założenia dla modelu jak w rozdziale 4.1.1.

4.2.1 Równania i opis modelu

W modelu 4.2, poza czterema populacjami uwzględnionymi w modelu 4.1, rozważamy dodatkowo zmiany stężenia trzech podawanych leków, czyli interleukin-2 (I), interferonów- α (I_{α}) oraz cytostatyku użytego w chemioterapii (M).

Przedstawione w układzie 4.2 równania określają tempo zmian liczebności populacji, jak w modelu 4.1, ale także opisują wpływ podawanych leków na nowotwór oraz ich rozpad w organizmie. Modyfikacje wprowadzone do modelu, odpowiadające podawanym

lekom zaznaczono w układzie 4.2 na czerwono.

Parametry modelu leczonego guza 4.2, ukazano w tabeli 4.2.

$$\begin{cases} \frac{dT}{dt} = aT(1 - bT) - cNT - DT - K_T(1 - e^{-M})T - c'TL, \\ \frac{dN}{dt} = eC - fN + g\frac{T^2}{h + T^2}N - pNT - K_N(1 - e^{-M})N, \\ \frac{dL}{dt} = -mL + j\frac{D^2T^2}{k + D^2T^2}L - qLT + (r_1N + r_2C)T - uNL^2 - K_L(1 - e^{-M})L + \frac{p_iLI}{g_i} + \nu_L(t), \\ \frac{dC}{dt} = \alpha - \beta C - K_C(1 - e^{-M})C, \\ \frac{dM}{dt} = -\gamma M + \nu_M(t), \\ \frac{dI}{dt} = -\mu_i I - j'LI - k'TI + \nu_I(t), \\ \frac{dI_{\alpha}}{dt} = \nu_{\alpha}(t) - g'I_{\alpha}, \end{cases}$$

$$(4.2)$$

gdzie:

- T(t) liczba komórek nowotworowych w chwili czasowej t,
- N(t) liczba komórek NK w chwili czasowej t,
- L(t) liczba limfocytów T_{CD8+} w chwili czasowej t,
- C(t) liczba limfocytów krążących w chwili czasowej t,
- M(t) stężenie cytostatyku w chwili czasowej t,
- I(t) stężenie interleukin-2 w chwili czasowej t,
- $I_{\alpha}(t)$ stężenie interferonów- α w chwili czasowej t,
- $D = d \frac{(\frac{L}{T})^l}{s + (\frac{L}{T})^l}$ liza nowotworu pod wpływem działania limfocytów T_{CD8+} ,
- $c' = c_{CTL}(2 e^{\frac{I_{\alpha}}{I_{\alpha 0}}})$ wpływ stężenia interferonów- α na rozpoznawanie komórek nowotworowych przez limfocyty T_{CD8+} .

W odróżnieniu od modelu 4.1, w pierwszym równaniu modelu 4.2 występuje dodatkowo składowa $-K_T(1-e^{-M})T$, która opisuje liczbę komórek nowotworowych zniszczonych w danej chwili czasowej t na skutek działania cytostatyku podanego podczas chemioterapii. Kolejną modyfikacją jest -c'TL, opisująca liczbę komórek nowotworowych zniszczonych w danej chwili czasowej t na skutek interakcji pomiędzy IFN- α , limfocytami T_{CD8+} i komórkami nowotworu.

W drugim równaniu modele 4.1 i 4.2 różnią się tylko składową $-K_N(1-e^{-M})N$ określającą liczbę komórek NK zniszczonych w chwili czasowej t na skutek działania cytostatyku podanego podczas chemioterapii.

Trzecie równanie modelu 4.2, poza wyjaśnionymi wcześniej składowymi określa także $-K_L(1-e^{-M})L$ - liczbę limfocytów T_{CD8+} zniszczonych w chwili czasowej t na skutek działania cytostatyku podanego podczas chemioterapii oraz $\frac{p_iLI}{g_i}$ - liczbę limfocytów T_{CD8+} stymulowanych przez IL-2. Funkcją opisującą ilość i czas podania TIL jest $\nu_L(t)$.

Jedyną zmianą w równaniu czwartym w stosunku do modelu 4.1 jest wprowadzenie składowej $-K_C(1-e^{-M})C$ wyznaczającej liczbę limfocytów krążących zniszczonych w chwili czasowej t na skutek działania cytostatyku podanego podczas chemioterapii.

W modelu leczonego guza 4.2 dodano kolejne trzy równania różniczkowe opisujące tempo zmian stężeń podawanych leków.

Równanie piąte określa zmiany stężenia cytostatyku w organizmie $\frac{dM}{dt}$. Składowa $-\gamma M$ odpowiada spadkowi stężenia cytostatyku na skutek jego rozpadu, a $\nu_M(t)$ to wyrażenie opisujące ilość i czas podania cytostatyku.

Kolejne równanie układu określa tempo zmian stężenia IL-2 w organizmie $\frac{dI}{dt}$. Spadek stężenia IL-2 na skutek jej rozpadu określa składowa $-\mu_i L$. -j'LI jest liczbą komórek IL-2 wchłoniętych przez limfocyty T_{CD8+} w chwili czasowej t, natomiast -k'TI, liczbą komórek IL-2 dezaktywowanych przez prostaglandyny w chwili czasowej t. $\nu_I(t)$ to funkcja opisująca ilość i czas podania IL-2.

W siódmym równaniu określone jest tempo zmian stężenia IFN- α w organizmie $\frac{dI_{\alpha}}{dt}$. $-gI_{\alpha}$ określa spadek stężenia IFN- α na skutek jego rozpadu, a $\nu_{\alpha}(t)$ jest funkcją opisującą ilość i czas podania IFN- α .

 ${\bf Tab.~4.1:}$ Parametry modelu odpowiedzi immunologicznej na rozwijający się nowotwór bez uwzględnienia procesu leczenia.

Nazwa	Wartość	Jednostka	Opis
a	$4,31\cdot 10^{-1}$	dzień ⁻¹	Tempo wzrostu nowotworu
b	$1,02 \cdot 10^{-9}$	$kom \acute{o}rka^{-1}$	Odwrotność pojemności środowiska
С	$6,41 \cdot 10^{-11}$	$dzień^{-1} \cdot komórka^{-1}$	Liczba komórek nowotworu zabita przez
			komórki NK
d	2,34	$dzie\acute{n}^{-1}$	Współczynnik siły układu odpornościo-
			wego
е	$2,08 \cdot 10^{-7}$	dzień ^{−1}	Liczba krążących limfocytów, które stały
			się komórkami NK
1	2,9	bezwymiarowe	Współczynnik skalowania siły układu
			odpornościowego
f	$4,12\cdot 10^{-2}$	dzień ^{−1}	Tempo wyniszczania komórek NK
g	$1,25\cdot 10^{-2}$	dzień ⁻¹	Maksymalna liczba komórek NK wytwa-
			rzanych na skutek obecności komórek no-
			wotworowych
h	$2,02\cdot 10^7$	$kom \acute{o}rka^2$	Współczynnik stromości krzywej rekru-
			tacji komórek NK
j	$2,49 \cdot 10^{-2}$	dzień ^{−1}	Maksymalne tempo rekrutacji limfocy-
	_		tów T_{CD8+}
k	$3,66\cdot10^7$	$kom \acute{o}rka^2$	Współczynnik stromości krzywej rekru-
			tacji limfocytów T_{CD8+}
m	$2,04\cdot 10^{-1}$	dzień ⁻¹	Tempo wyniszczania limfocytów T_{CD8+}
q	$1,42 \cdot 10^{-6}$	$dzie\acute{n}^{-1} \cdot kom\acute{o}rka^{-1}$	Tempo dezaktywacji limfocytów T_{CD8+}
	0		przez komórki nowotworu
p	$3,42 \cdot 10^{-6}$	$dzie\acute{n}^{-1}\cdot kom\acute{o}rka^{-1}$	Tempo dezaktywacji komórek NK przez
			komórki nowotworu
S	$8,39 \cdot 10^{-2}$	bezwymiarowe	Wartość $\left(\frac{L}{T}\right)^l$ konieczna do osiągnięcia
			połowy maksymalnej wartości cytotok-
			syczności limfocytów T_{CD8+}
r_1	$1,1\cdot 10^{-7}$	$dzień^{-1} \cdot komórka^{-1}$	Tempo stymulacji wytwarzania limfocy-
			tów T_{CD8+} jako rezultat niszczenia komó-
			rek nowotworowych przez komórki NK
r_2	$6, 5 \cdot 10^{-11}$	$kom \acute{o}rka^{-1} \cdot dzie\acute{n}^{-1}$	Tempo stymulacji wytwarzania limfocy-
			tów T_{CD8+} jako rezultat interakcji komó-
			rek nowotworowych z krążącymi limfocy-
	2 15 10	1 1 1 1 1 1 1 1 1	tami
u	$3 \cdot 10^{-10}$	$kom \acute{o}rka^{-2} \cdot dzie\acute{n}^{-1}$	Współczynnik Funkcji regulacyjnej lim-
			focytów T_{CD8+} nadzorowanej przez ko-
	— • • • • • • • • • • • • • • • • • • •	1 / 1 1 . / 1	mórki NK
α	$7, 5 \cdot 10^8$ $1, 2 \cdot 10^{-2}$	komórka · dzień ⁻¹	Stała liczba krążących limfocytów
β	$1, 2 \cdot 10^{-2}$	$dzie\acute{n}^{-1}$	Tempo wyniszczania krążących limfocy-
			tów

Tab. 4.2: Dodatkowe parametry modelu odpowiedzi immunologicznej na rozwijający się nowotwór z uwzględnieniem procesu leczenia.

γ	$9 \cdot 10^{-1}$	dzień ^{−1}	Tempo rozpadu leku chemioterapeutycz-
			nego
p_i	$1,25\cdot 10^{-1}$	dzień ^{−1}	Maksymalne tempo rekrutacji limfocytów
			T_{CD8+} przez interleukiny-2
g_i	$2 \cdot 10^{2}$	komórka ²	Wartość stężenia interleukiny-2 konieczna
			do osiągnięcia połowy maksymalnej war-
			tości aktywności cytolitycznej limfocytów
			T_{CD8+}
μ_i	$1 \cdot 10^1$	dzień ^{−1}	Tempo rozpadu interleukiny-2 (leku)
C_{CTL} 4, 4 · 10 ⁻⁹ komórka ⁻¹ · dzień ⁻¹		komórka ⁻¹ · dzień ⁻¹	Tempo dezaktywacji nowotworu przez lim-
			focyty T_{CD8+}
g'	1,7	dzień ^{−1}	Tempo rozpadu terapeutycznego
			interferonu- α
j'	$3, 3 \cdot 10^{-9}$	komórka ⁻¹ · dzień ⁻¹	Tempo wchłaniania interleukiny-2 przez
			limfocyty T_{CD8+}
k'	$1,8\cdot 10^{-8}$	komórka ⁻¹ · dzień ⁻¹	Dezaktywacja molekuł interleukiny-2
			przez prostaglandyny
$I_{\alpha 0}$		jednostki	Początkowa ilość interferonu- α

W pracy przeprowadzono modelowanie odpowiedzi układu immunologicznego na rozwijający się nowotwór:

- bez uwzględnienia procesu leczenia,
- z uwzględnieniem leczenia wyłącznie metodą chemioterapii,
- z uwzględnieniem leczenia wyłącznie metodą immunoterapii,
- z uwzględnieniem leczenia skojarzonymi metodami chemioterapii i immunoterapii.

Warunki początkowe (Tab. 5.1) dla modelu 4.1 dobrano zgodnie z literaturą [1]. Dla większej czytelności, wielkość nowotworu określono również poprzez długość jego promienia, przyjmując, że nowotwór ma kształt zbliżony do kuli, a na 1 cm³ przypada 10⁹ komórek [23].

Tab. 5.1: Warunki początkowe dla modelu odpowiedzi immunologicznej na rozwijający się nowotwór bez uwzględnienia procesu leczenia.

Wartość [liczba komórek]	Rodzaj komórek	Promień nowotworu [mm]
$T(0) = 1 \cdot 10^6$	Komórki nowotworowe	0,62
$N(0) = 1 \cdot 10^5$	Komórki NK	
$L(0) = 1 \cdot 10^2$	Limfocyty T_{CD8+}	
$C(0) = 6 \cdot 10^{10}$	Limfocyty krążące	

5.1 Odpowiedź układu immunologicznego na rozwijający się w organizmie nowotwór – brak leczenia

5.1.1 Scenariusz I – symulacja wykonana dla modelu nieleczonego guza

Podejmowany problem:

Analiza zmian odpowiedzi układu immunologicznego w zależności od początkowej wielkości nowotworu (na podstawie wielkości nowotworu po zadanym czasie symulacji).

Warunki początkowe:

Wielkość (tj., liczbę komórek) nowotworu T(0), liczbę komórek NK N(0), liczbę limfocytów T_{CD8+} oraz liczbę limfocytów krążących C(0) dobrano jak w tabeli 5.1, a następnie doświadczalnie zmieniano wartość początkowej wielkości nowotworu T(0).

Przyjęte parametry:

Parametry dla modelu nieuwzględniającego leczenia jak w tabeli 4.1.

Czas symulacji:

 $T_k = 120 \text{ dni}$

W tabeli 5.2 przedstawiono początkową liczbę komórek nowotworu T(0), liczbę komórek nowotworu po symulacji w chwili $T_k = 120$ dni T(120) oraz szacowaną objętość i długość promienia nowotworu po symulacji w chwili $T_k = 120$ dni.

Tab. 5.2: Początkowa liczba komórek nowotworowych T(0), liczba komórek nowotworowych po symulacji w chwili $T_k = 120$ dni T(120) oraz szacowana objętość i długość promienia nowotworu po symulacji w chwili $T_k = 120$ dni.

T(0)	T(120)	Objętość	Promień
[liczba komórek]	[liczba komórek]	nowotworu $[mm^3]$	nowotworu $[mm]$
$1 \cdot 10^{6}$	$6,76 \cdot 10^{-8}$	$6,76 \cdot 10^{-14}$	$2,5 \cdot 10^{-5}$
$2 \cdot 10^{6}$	$8,15 \cdot 10^{-8}$	$8,15 \cdot 10^{-14}$	$2,7 \cdot 10^{-5}$
$5 \cdot 10^{6}$	$2,69 \cdot 10^{-8}$	$2,69 \cdot 10^{-14}$	$1,9 \cdot 10^{-5}$
$1 \cdot 10^{7}$	$3,44 \cdot 10^{-8}$	$3,44 \cdot 10^{-14}$	$2 \cdot 10^{-5}$
$1,5\cdot 10^7$	$4,41\cdot 10^{-8}$	$4,41 \cdot 10^{-14}$	$2, 2 \cdot 10^{-5}$
$1,7 \cdot 10^7$	$2,96 \cdot 10^{-8}$	$2,96 \cdot 10^{-14}$	$1,9 \cdot 10^{-5}$
$1,75 \cdot 10^7$	$3,67 \cdot 10^{-8}$	$3,67 \cdot 10^{-14}$	$2, 1 \cdot 10^{-5}$
$1,8 \cdot 10^7$	$9,8 \cdot 10^8$	980	6, 16
$2 \cdot 10^{7}$	$9,8 \cdot 10^8$	980	6, 16
$5 \cdot 10^7$	$9,8 \cdot 10^8$	980	6, 16

Przykładowe zmiany liczby komórek każdej z czterech badanych populacji - komórek nowotworowych T(t), komórek NK N(t), limfocytów T_{CD8+} L(t) i limfocytów krążących C(t) przedstawiono na poniższych wykresach (Rys. 5.1).

Na pierwszym wykresie (Rys. 5.1a) przedstawiono regresję nowotworu wskutek działania układu immunologicznego po około 7 dniach. Wykres drugi (Rys. 5.1b) obrazuje przypadek, w którym układ immunologiczny nie jest w stanie pokonać nowotworu – liczba jego komórek stabilizuje się po 24 dniach około wartości $9,8\cdot10^8$ (odpowiada to objętości $980~mm^3$ i długości promienia 6,16~mm).

Zmiany liczby komórek badanych populacji dla wartości początkowej liczby komórek nowotworowych $T(0) = 1 \cdot 10^6$. Regresja nowotworu po czasie $T_r \approx 7$ dni (168 godzin).

(b) Zmiany liczby komórek badanych populacji dla wartości początkowej liczby komórek nowotworowych $T(0)=1.8\cdot 10^7$. Stabilizacja liczby komórek nowotworowych po czasie $T_s\approx 24$ dni (576 godzin) około wartości $9,8\cdot 10^8$.

Rys. 5.1: Wykresy zmian liczby komórek badanych populacji – komórek nowotworowych T(t), komórek NK N(t), limfocytów T_{CD8+} L(t) i limfocytów krążących C(t).

Zmiany wielkości nowotworu otrzymane na koniec symulacji trwającej $T_k = 120$ dni w zależności od początkowej liczby komórek nowotworowych T(0) przedstawiono na wykresie (Rys. 5.2).

Rys. 5.2: Wyniki otrzymane na koniec symulacji, która trwała $T_k = 120$ dni. Liczba komórek nowotworowych na koniec symulacji T(120) w zależności od początkowej liczby komórek nowotworowych T(0).

Na wykresie (Rys. 5.3) pokazano zmiany długości promienia nowotworu otrzymane na koniec symulacji trwającej $T_k = 120$ dni w zależności od początkowej liczby komórek nowotworowych T(0).

Rys. 5.3: Wyniki otrzymane na koniec symulacji, która trwała $T_k = 120$ dni. Długość promienia nowotworu [mm] na koniec symulacji w zależności od początkowej liczby krążących limfocytów T(0).

Wnioski:

- zdrowy układ immunologiczny jest w stanie zniszczyć komórki nowotworowe przy wykorzystaniu wyłącznie komórek występujących naturalnie w organizmie (komórek NK, limfocytów T_{CD8+} , limfocytów krążących) bez ingerencji dodatkowych czynników (np. leczenia);
- przy zbyt dużej początkowej liczbie komórek nowotworu $(T(0) = 1, 8 \cdot 10^7)$ układ immunologiczny nie jest w stanie samoistnie pozbyć się nowotworu.

5.1.2 Scenariusz II – symulacja wykonana dla modelu nieleczonego guza

Podejmowany problem:

Analiza zmian odpowiedzi układu immunologicznego w zależności od początkowej liczby limfocytów krążących C(0) (badanie stanu układu immunologicznego na podstawie wielkości nowotworu po zadanym czasie symulacji).

Warunki początkowe:

Wielkość (tj., liczbę komórek) nowotworu T(0), liczbę komórek NK N(0), liczbę limfocytów T_{CD8+} oraz liczbę limfocytów krążących C(0) dobrano jak w tabeli 5.1, a następnie doświadczalnie zmieniano wartość początkowej liczby limfocytów krążących C(0).

Przyjęte parametry:

Parametry dla modelu nieuwzględniającego leczenia jak w tabeli 4.1.

Czas symulacji:

 $T_k = 120 \text{ dni}$

W tabeli 5.3 przedstawiono początkową liczbę limfocytów krążących C(0), liczbę komórek nowotworu po symulacji w chwili $T_k = 120$ dni T(120) oraz szacowaną objętość i długość promienia nowotworu po symulacji w chwili $T_k = 120$ dni.

Tab. 5.3: Początkowa liczba limfocytów krążących C(0), liczba komórek nowotworowych po symulacji w chwili $T_k = 120$ dni T(120) oraz szacowana objętość i długość promienia nowotworu po symulacji w chwili $T_k = 120$ dni.

C(0)	T(120)	Objętość	Promień
[liczba komórek]	[liczba komórek]	nowotworu $[mm^3]$	nowotworu [mm]
$6 \cdot 10^{10}$	$6,76 \cdot 10^{-8}$	$6,76 \cdot 10^{-14}$	$2,5 \cdot 10^{-5}$
$3 \cdot 10^{10}$	$1,69 \cdot 10^{-7}$	$1,69 \cdot 10^{-13}$	$3,4\cdot 10^{-5}$
$1 \cdot 10^{10}$	$3,09 \cdot 10^{-8}$	$1,33 \cdot 10^{-14}$	$1,5 \cdot 10^{-5}$
$6 \cdot 10^9$	$4,79 \cdot 10^{-8}$	$4,79 \cdot 10^{-14}$	$2,3\cdot 10^{-5}$
$4 \cdot 10^9$	$5,72 \cdot 10^{-8}$	$5,72 \cdot 10^{-14}$	$2,4\cdot 10^{-5}$
$3, 5 \cdot 10^9$	$9,8 \cdot 10^{8}$	980	6, 16
$3 \cdot 10^9$	$9,8 \cdot 10^8$	980	6, 16
$1 \cdot 10^{9}$	$9,8 \cdot 10^{8}$	980	6, 16
$6 \cdot 10^{8}$	$9,8 \cdot 10^{8}$	980	6, 16
$3 \cdot 10^{8}$	$9,8 \cdot 10^8$	980	6, 16

Zmiany liczby komórek badanych populacji - komórek nowotworowych T(t), komórek NK N(t), limfocytów T_{CD8+} L(t) i limfocytów krążących C(t) przedstawiono na wykresach (Rys. 5.4).

Zmiany liczby komórek badanych populacji dla wartości początkowej liczby limfocytów krążących $C(0)=6\cdot 10^{10}$. Regresja nowotworu po czasie $T_r\approx 7$ dni (168 godzin).

(b) Zmiany liczby komórek badanych populacji dla wartości początkowej liczby limfocytów krążących $C(0)=3,5\cdot 10^9$. Stabilizacja liczby komórek nowotworowych po czasie $T_s\approx 28$ dni (672 godziny) około wartości $9,8\cdot 10^8$.

Rys. 5.4: Wykresy zmian liczby komórek badanych populacji – komórek nowotworowych T(t), komórek NK N(t), limfocytów T_{CD8+} L(t) i limfocytów krążących C(t).

Na pierwszym z nich (Rys. 5.4a) przedstawiono regresję nowotworu wskutek działania odpowiednio silnego układu immunologicznego po około 7 dniach. Na drugim wykresie (Rys. 5.4b) liczba komórek nowotworowych stabilizuje się po 28 dniach około wartości $9,8\cdot 10^8$ (odpowiada to objętości $980~mm^3$ i długości promienia 6,16~mm). Układ immunologiczny ze względu na zmniejszoną liczbę krążących limfocytów jest zbyt słaby, by zniszczyć komórki nowotworu.

Zmiany wielkości nowotworu otrzymane na koniec symulacji trwającej $T_k = 120$ dni w zależności od początkowej liczby krążących limfocytów C(0) przedstawiono na wykresie (Rys. 5.5).

Rys. 5.5: Wyniki otrzymane na koniec symulacji, która trwała $T_k = 120$ dni. Liczba komórek nowotworowych na koniec symulacji T(120) w zależności od początkowej liczby krążących limfocytów C(0).

Na wykresie (Rys. 5.6) pokazano zmiany długości promienia nowotworu otrzymane na koniec symulacji trwającej $T_k = 120$ dni w zależności od początkowej liczby krążących limfocytów C(0).

Rys. 5.6: Wyniki otrzymane na koniec symulacji, która trwała $T_k = 120$ dni. Długość promienia nowotworu [mm] na koniec symulacji w zależności od początkowej liczby krążących limfocytów C(0).

Wnioski:

- przy odpowiednio dużej liczbie krążących limfocytów $(C(0) \approx 4 \cdot 10^9)$ układ immunologiczny jest w stanie zniszczyć komórki nowotworowe bez ingerencji zewnętrznych czynników (np. leczenia),
- przy zbyt małej liczbie krążących limfocytów (zły stan układu immunologicznego) organizm nie jest w stanie zniszczyć komórek nowotworowych.

- 5.2 Leczenie metodą chemioterapii
- 5.3 Leczenie metodą immunoterapii
- 5.4 Połączenie metod chemioterapii i immunoterapii

6. Rezultaty

7. Analiza wyników

8. Podsumowanie

Nowo odkryta odmiana limfocytów $\mathbf{T}...$

Bibliografia

- [1] Mustafa Mamat, Subiyanto i Agus Kartono, "Mathematical Model of Cancer Treatments Using Immunotherapy, Chemotherapy and Biochemotherapy",
- [2] R. Tadeusiewicz, "Biocybernetyka. Metodologiczne podstawy dla inżynierii biomedycznej.", PWN, 2013
- [3] Redaktor naukowy dr n. med. Janusz Meder, "Podstawy onkologii klinicznej", Centrum Medyczne Kształcenia Podyplomowego w Warszawie, 2011
- [4] Ewelina Dymarska, "Czynniki modulujące układ immunologiczny człowieka", Uniwersytet Ekonomiczny we Wrocławiu, Zeszyty Naukowe Państwowej Wyższej Szkoły Zawodowej im. Witelona w Legnicy nr 19(2)/2016
- [5] Nadzieja Drela, "Immunologiczna teoria starzenia", Wydział Biologii Uniwersytetu Warszawskiego, Instytut Zoologii, Zakład Immunologii, Warszawa, 23 kwietnia 2014
- [6] Marta Sochocka, Zofia Błach-Olszewska, "Mechanizmy wrodzonej odporności", Laboratorium Wirusologii Instytutu Immunologii i Terapii Doświadczalnej Polskiej Akademii Nauk im L. Hirszfelda we Wrocławiu, Postępy Hig Med Dośw., 59: 250-258, 2005
- [7] Emilia Kolarzyk, "Wybrane problemy higieny i ekologii człowieka", Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, 2008, wyd.1
- [8] Beata Tokarz-Deptuła, Tymoteusz Miller, Wiesław Deptuła, "Cytokiny z rodziny interleukiny-1", Katedra Mikrobiologii i Immunologii, Wydział Nauk Przyrodniczych, Uniwersytet Szczeciński
- [9] "Chemioterapia, Immunoterapia i Terapia Celowana Informacje dla Pacjenta", Centrum Onkologii Ziemi Lubelskiej im. św. Jana z Dukli, Lublin, 2011
- [10] Jacek Mackiewicz, Andrzej Mackiewicz, "Immunoterapia nowotworów i perspektywy jej rozwoju", Zakład Immunologii Nowotworów, Katedra Biotechnologii Medycznej, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, Wielkopolskie Centrum Onkologii w Poznaniu
- [11] Anna Świeboda-Sadlej, "Skojarzone leczenie nowotworów współpraca chirurga i onkologa klinicznego w zakresie leczenia raka piersi, jelita grubego i płuca", Klinika Hematologii, Onkologii i Chorób Wewnętrznych WUM

Bibliografia 39

[12] Ewa Sikora, "Cykl komórkowy i apoptoza: śmierć starej komórki", Polskie Towarzystwo Biochemiczne, "Postępy biochemii", tom 42, nr 2, 1996

- [13] Izabela Klaska, Jerzy Z. Nowak, "Rola układu dopełniacza w fizjologii i patologii", Łódź, 2007
- [14] dr hab. Krzysztof Bryniarski, "Immunologia", 2017
- [15] Włodzimierz Maśliński, Ewa Kontny, "Podstawy immunologii dla reumatologów", Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji, Warszawa, 2015
- [16] Aleksandra E. Tokarz, Iwona Szuścik, Agnieszka Żyłka, Ewa Stępień, "Wykorzystanie mikromacierzy w ocenie prozapalnych i proangiogennych cytokin w patomechanizmie retinopatii cukrzycowej", 2014
- [17] K. Morka, G. Bugla-Płoskońska, "Medycyna doświadczalna i mikrobiologia", 2017
- [18] O.G. Isaeva and V.A. Osipov, "Different strategies for cancer treatment: Mathematical modelling", 2009
- [19] L.G. de Pillisa, W. Gu, A.E. Radunskayb, "Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations", 2005
- [20] Krzysztof Wiktorowicz, Krzysztof Kaszkowiak, "Budowa i funkcja ludzkich antygenów zgodności tkankowej. Część 1. Kodowanie i budowa", Katedra Biologii i Ochrony Środowiska, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, 2018
- [21] Dominik Strzelecki, Tomasz Pawełczyk, Jolanta Rabe-Jabłońska, "Zaburzenia depresyjne w przebiegu leczenia przewlekłego wirusowego zapalenia wątroby interferonem α ", Postępy Psychiatrii i Neurologii, 2005
- [22] Waldemar Halota, Małgorzata Pawłowska, Michaił Andrejczyn, "Interferony alfa w leczeniu przewlekłych zakażeń HCV", Przegląd epidemiologiczny, 2004
- [23] Ugo Del Monte, "Does the cell number 10^9 still really fit one gram of tumor tissue?", Cell Cycle, 8:3, 505-506, 2009
- [24] Marcus C.B. Tan, Peter S. Goedegebuure, Timothy J. Eberlein, "Chirurgia onkologiczna część V", Chirurgia Sabistona, rozdział 29 "Biologia nowotworów i markery nowotworowe", 2012
- [25] Monika Olszówka, Kamil Maciąg, "Choroby nowotworowe: wybrane zagadnienia", Fundacja na rzecz promocji nauki i rozwoju TYGIEL, Lublin, 2015
- [26] Elżbieta Ograczyk, Magdalena Kowalewicz-Kulbat, Sebastian Wawrocki, Marek Fol, "Immunosupresja – wymagający sprzymierzeniec na trudne czasy", Uniwersytet Łódzki, Katedra Immunologii i Biologii Infekcyjnej, Łódź, 2015

Bibliografia 40

[27] Zdzisław Gliński, Krzysztof Kostro, "Immunoonkologia – nowe dane", Życie Weterynaryjne 91(11), Wydział Medycyny Weterynaryjnej w Lublinie, 2016

[28] Lek. med. Marta Adamczyk?Korbel, "Układ odpornościowy człowieka a probiotyki", Klinika Pneumonologii, Onkologii I Alergologii, Lublin, Medycyna i pasje, Medycyna zapobiegawcza, luty 2010

9. Dodatek

9.1 Tabela skrótów

 ${\bf Tab.~9.1:}$ Skróty wykorzystane w pracy

Skrót	Nazwa angielska	Nazwa polska
TIL	Tumor Infiltrating Lymphocytes	Limfocyty naciekające nowotwór
NK	Natural killers	Naturalni zabójcy
IL-2	Interleukina-2	-
INF-α	Interferon- α	-
KIR	Killer cells Inhibitory Receptor	Receptor hamujący zabójcze komórki
LAK	Lymphokine Activated Killers	Komórki zabójcze aktywowane limfokiną
HSP	Heat Shock Protein	Białka szoku cieplnego
DC	Dendritic cells	Komórki dendrytyczne
APC	Antigen Presenting Cells	Komórki prezentujące antygen
ISRE	Interferon-Stimulated	Element odpowiedzi
	Response Element	stymulowanej przez interferon