EEL 3701C PI: Keith Khadar Section: 11195 April 9, 2025

# Lab 6 Quiz

### **Time Limit: 60 minutes**

### Part 1

Modify your Lab 6 Part 2 CPU to start program execution from address \$4200. Next you will write a short program based on the pseudocode below. On your scratch paper, hand assemble your program using the template table given in Lab 6 (check the documentation section below). You should make the necessary hardware modifications, create a MIF file, and simulate. Submit the Quartus archive for your updated Lab 6 Prelab (including your new assembly program through Canvas).

```
A = 6
B = 9
loop
{
    A = A * 4
    A = A + B
}
```

# Part 2

Imagine you want to add a new instruction to your CPU to occupy opcode 111 which will branch if the contents of RegA are negative when interpreted as a two's complement value. This new instruction is "BNEG". To implement this instruction, you may begin by modifying your ASM. On paper, draw the necessary modifications/new branches to your ASM. You DO NOT need to implement the instruction, just show the new ASM paths. This instruction works very similar to an JMP as it is followed by a branch location at the next address. You should only branch if the condition is true, otherwise, increment the PC to continue past the instruction. Here is an example:

\$1230: BNEG

\$1231: {address to take if A is neg}

\$1232: {instruction to execute next is A is not neg}

# **Documentation:**

Table 5: Program to assemble.

| Addr   |         | Mach<br>Codes | A | В | A | В | A | В | A | В |
|--------|---------|---------------|---|---|---|---|---|---|---|---|
| \$2B70 | LDAA #7 |               |   |   |   |   |   |   |   |   |
|        | TAB     |               |   |   |   |   |   |   |   | 1 |
|        | LDAA #3 |               |   |   |   |   |   |   |   |   |
|        | ABA     |               |   |   |   |   |   |   |   |   |
|        | SAR     |               |   |   |   |   |   |   |   |   |
|        | ABA     |               |   |   |   |   |   |   |   |   |
|        | ABA     |               |   |   |   |   |   |   |   |   |
|        | JMP 5   |               |   |   |   |   |   |   |   |   |
|        | ABA     |               |   |   |   |   |   |   |   |   |
|        | TAB     |               |   |   |   |   |   |   |   |   |

Table 1: Input source MUXs for Registers A and B.

| -            |              | _                                     |  |  |
|--------------|--------------|---------------------------------------|--|--|
| MSA/<br>MSB1 | MSA/<br>MSB0 | Bus Selected as Input<br>to REGA/REGB |  |  |
| 0            | 0            | INPUT Bus                             |  |  |
| 0            | 1            | REGA Bus                              |  |  |
| 1            | 0            | REGB Bus                              |  |  |
| 1            | 1            | OUTPUT Bus                            |  |  |

| MSC2:0 | Action                                     |
|--------|--------------------------------------------|
| 000    | REGA Bus to OUTPUT Bus                     |
| 001    | REGB Bus to OUTPUT Bus                     |
| 010    | complement of REGA Bus to OUTPUT Bus       |
| 011    | bit wise AND REGA/REGB Bus to OUTPUT Bus   |
| 100    | bit wise OR REGA/REGB Bus to OUTPUT Bus    |
| 101    | sum of REGA Bus & REGB Bus to OUTPUT Bus   |
| 110    | shift REGA Bus left one bit to OUTPUT Bus  |
| 111    | shift REGA Bus right one bit to OUTPUT Bus |
|        | without sign extension                     |

Table 4. Part 2 instructions.

| IR2:0 | Instruction | Function                                                        |  |  |
|-------|-------------|-----------------------------------------------------------------|--|--|
| 000   | TAB         | Copy A to B (transfer A to B)                                   |  |  |
| 001   | ABA         | Load A with A plus B plus Cin; update Cout                      |  |  |
| 010   | LDAA #data  | Load A with input data                                          |  |  |
| 011   | SAR         | Shift A right 1 bit, store in A (logical, not arithmetic shift) |  |  |
| 100   | SAL         | Shift A left 1 bit, store in A                                  |  |  |
| 101   | JMP Addr    | Load PC with input address                                      |  |  |
| 110   | Future use  |                                                                 |  |  |
| 111   | Future use  |                                                                 |  |  |

EEL 3701C PI: Keith Khadar Section: 11195 April 9, 2025



Figure 4. Controller flowchart (not an ASM).