

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level In Further Pure Mathematics F2 (WFM02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2024

Question Paper Log Number P73487A

Publications Code WFM02_01_2401_MS

All the material in this publication is copyright

© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and completing an attempt to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- ft follow through
- cao correct answer only
- cso correct solution only. There must be no clear errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent
- dM dependent method mark
- dp decimal places
- sf significant figures
- * The answer is given on the paper apply cso

- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out provided it is not cursory.
 - If either all attempts are crossed out or none are crossed out, score for their best attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer unless the mark scheme indicates otherwise.
- 8. Mark question parts separately unless the scheme indicates otherwise.

<u>Usual rules for the method mark for solving a 3 term quadratic:</u>

(Note: There may be schemes where the below does not apply)

If no method is shown then one root must be obtained that is consistent with their equation.

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$, where $|pq|=|c|$ and $|mn|=|a|$, leading to $x=...$

2. Formula

Complete attempt to use the correct formula with values for a, b and c leading to x = ... (may be unsimplified).

3. Completing the square (where a = 1, otherwise must divide by a first – allow equivalent work if a is a square number)

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

January 2024 WFM02 Further Pure Mathematics F2 Mark Scheme

Question Number	Scheme	Notes	Marks
1	$\frac{1}{x+2} > 2x+3$		
		2 7 5 0	
	$\frac{1 - (x+2)(2x+3)}{x+2} > 0 \Rightarrow 2x$	$x^2 + 7x + 5 = 0$	
	x+2 > (2x+3)(x-1)	$(+2)^2$	
	$\Rightarrow (x+2)(2x^2+7x+5)=0 \text{ or } 2x^3$	$+11x^2 + 19x + 10 = 0$	
	$\frac{1}{x+2} = 2x+3 \Longrightarrow (2x+3)(x+2)$	$-1 = 2x^2 + 7x + 5 = 0$	M1
	Uses algebra to obtain a 3TQ, $(x + 2)$ multiplied leads condone incorrect inequality signs but the first a appropriate so do not accept work with e.g., $(2x + 2)$	by a 3TQ or a 4TC. Allow slips and algebraic step should be otherwise	
	implied by solutions. Graphical attempts real algebraically. Squaring first is acceptable so $(4x^4 + 28x^3 + 73x^2 + 84x^3 + 73x^2 + 84x^3 +$	allow M1 for obtaining a 5TQ	
	e.g., $(2x+5)(x+1)=0 \Rightarrow$ Both -1 and $-\frac{5}{2}$ from	om appropriate work and no extra	
	· · · · · · · · · · · · · · · · · · ·	y only be seen in the solution set. ng a 3TQ etc. by calculator.	A1
	x = -2 solution set. This is to algebraic manipul	ritical value. May only be seen in he only mark available if there is no ation seen. Allow from any or no ., from $(2x+3)(x+2)=0$	B1
	$\Rightarrow x < -\frac{5}{2}, -2 < x < -1 \text{ or e.g.}, (-\frac{5}{2})$	$-\infty, -2.5$), $(-2, -1)$	
	M1: For the regions $x < a$, $-2 < x < b$ with real cvs $a < -2$ and $b > -2$ but condone		
	b < x < -2 as a notational sli		
	Condone any non-strict inequality signs and particle dependent but must follow an attempt at A1: Correct solution set in any form. Do not is subsequently incorrectly amended. Allow all materials sign was seen earlier in the	at algebraic manipulation. sw if the correct inequalities are arks even if an incorrect inequality	M1 A
	Examples:	5	
	$-\frac{5}{2} > x \text{ or } -2 < x < -1 \text{ M1 A1}$ $x < -\frac{5}{2} \text{ and } -2 < x < -1 \text{ M1 A1}$		
	(Accept any word between the two correct regions) $x < -\frac{5}{2}, -1 < x < -2$ M1 A0 (notational slip)		
	$\left[\left(-\infty, -\frac{5}{2} \right) \cap \left(-2, -1 \right) \text{ M1A0 (incorrect symbol - allow "and")} \left[-\infty, -\frac{5}{2} \right] \cup \left[-2, -1 \right] \text{ M1A0} \right]$		
	$x < -\frac{5}{2} - 2 < x x < -1 M0$		
			(5)
			Total 5

Question Number	Scheme	Notes	Marks
2(a)	(i) $z = 6 - 6\sqrt{3}i \Rightarrow z = \sqrt{6^2 + (6\sqrt{3})^2} = 12$	+12 only. Accept if just stated	B1
	(ii) e.g., $\arg z = -\arctan \frac{6\sqrt{3}}{6}$		
	Attempts an expression for a relevant angle. Look for ±arc	$\tan\left(\pm\frac{6\sqrt{3}}{6}\right)$ or e.g., $\pm\tan^{-1}\left(\pm\frac{1}{\sqrt{3}}\right)$	M1
	If arctan is not seen allow e.g., $\tan \alpha = \frac{6\sqrt{3}}{6} \Rightarrow \alpha = \frac{6\sqrt{3}}{6}$	5	
	If using sin or cos the hypotenuse		
	arg z or arg or $argument$ (of	$z = -\frac{\pi}{3}$	
	A correct proof with no incorrect work/statements consistent , e.g., $\theta = -\frac{\pi}{3}$ cannot follow		A1*
	$z = 12\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 12\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) \text{ or } 12e^{-\frac{\pi}{3}i} \text{ or } \cos\theta = \frac{1}{2} \text{ or } \sin\theta = -\frac{\sqrt{3}}{2}[\text{M1}] \Rightarrow \arg z = -\frac{\pi}{3}[\text{A1*}]$		
(ii) Way 2	M1: Factorises out 12 and writes in trig or exp form or	identifies $\cos \theta = \frac{1}{2}$ and $\sin \theta = -\frac{\sqrt{3}}{2}$	
	A1: Acceptable statement with a $z = 12\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$ or $12e^{-\frac{\pi}{3}i}$ or $12\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 12e^{-\frac{\pi}{3}i}$		
(ii) Way 3	M1: Assumes result, writes correctly for their A1: Obtains $6-6\sqrt{3}i$ and makes acceptable st	12 and attempts $a + ib$ form	
	711. Obtains 0 Oy 31 and makes acceptable st	atement with an work correct	(3)
(b)	$z = "12" \left(\cos \left(-\frac{\pi}{3} \right) + i \sin \left(-\frac{\pi}{3} \right) \right) \text{ or } "12" e^{-\frac{\pi}{3}i} \text{ [n]}$	o missing "i" unless recovered]	(-)
	Correct trig or exp. form with their 12. Could be implied		M1
	$("12"e^{-\frac{\pi}{3}i})^4$ Allow equivalent values of θ e.g. $\frac{5\pi}{3}$	and use of e.g., $\sin(-\frac{\pi}{2}) = -\sin(\frac{\pi}{2})$.	
	Condone poor bracketing. Allow this mark if $+2k\pi$,		
	$z^{4} = 20736 \left(\cos \left(-\frac{4\pi}{3} \right) + i \sin \left(-\frac{4\pi}{3} \right) \right) \text{ or } 20736 \left(\cot \left(-\frac{4\pi}{3} \right) \right)$		
	Correct z^4 in any form. 12^4 evaluated and arg. of $-\frac{4\pi}{3}$	(not just $4 \times -\frac{\pi}{3}$) or $\frac{2\pi}{3}$ only although	A1
	may use e.g., $\sin\left(-\frac{4\pi}{3}\right) = -\sin\left(\frac{4\pi}{3}\right)$. No "k"s. Co		AI
	Only accept $-10368 + 10368\sqrt{3}i$ or $20736\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right)$		
			(2)

Allow work with argument of $\frac{5\pi}{3}$ for $-\frac{\pi}{3}$ and use of e.g., $\sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right)$. Condone poor bracketing. M0 if z^4 used for z . Allow this mark if $+2k\pi$, $-2k\pi$, $\pm 2k\pi$ appears with argument $w = 3 - \sqrt{3}i$, $-3 + \sqrt{3}i$ oe Alft: One correct exact root in $a + ib$ or $c(a + ib)$ form (a, b, c) may be unsimplified but not numerical trig expressions) ft their 12 only i.e. $(\pm)\sqrt{12}!\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)$ Al: Both exact roots (no others) correct in $a + ib$ form $-a$ and b may be unsimplified (but not numerical trig expressions) e.g. accept $a = (\pm)\sqrt{12}\frac{\sqrt{3}}{2}$, $(\pm)\frac{\sqrt{36}}{2}$ $b = (\mp)\frac{\sqrt{12}}{2}$, $(\mp)\frac{2\sqrt{3}}{2}$ Accept $\pm (3 - \sqrt{3}i)$ but just $\pm 3 - \sqrt{3}i$ is A1 A0. Just $\pm \sqrt{3}\left(\sqrt{3} - i\right)$ is A1 A0	Marks	Notes	Scheme	Question Number
Alf: One correct exact root in $a + ib$ or $c(a + ib)$ form (a, b, c) may be unsimplified but not numerical trig expressions) ft their 12 only i.e. $(\pm)\sqrt{12}$ $(\pm \frac{\sqrt{3}}{2} - \frac{1}{2}i)$ A1: Both exact roots (no others) correct in $a + ib$ form $-a$ and b may be unsimplified (but not numerical trig expressions) e.g. accept $a = (\pm)\sqrt{12}\frac{\sqrt{3}}{2}, (\pm)\frac{\sqrt{36}}{2} b = (\mp)\frac{\sqrt{12}}{2}, (\mp)\frac{2\sqrt{3}}{2}$ Accept $\pm(3-\sqrt{3}i)$ but just $\pm 3-\sqrt{3}i$ is A1 A0. Just $\pm\sqrt{3}(\sqrt{3}-i)$ is A1 A0 Note: $w^2 = r^2(\cos 2\theta + i\sin 2\theta) = z \Rightarrow r, \theta, w =$ is an acceptable approach Alt $w^2 = z \Rightarrow (a+ib)^2 = a^2 - b^2 + 2abi = 6 - 6\sqrt{3}i \Rightarrow a^2 - b^2 = 6, 2ab = -6\sqrt{3}$ $b = -\frac{3\sqrt{3}}{a} \Rightarrow a^2 - \frac{27}{a^2} = 6 \Rightarrow a^4 - 6a^2 - 27 = (a^2 - 9)(a^2 + 3) = 0 \Rightarrow a^2 = 9, a = \pm 3, b = \mp\sqrt{3}$ M1: From a correct starting point, expands and equates real and imaginary parts to form two equations in a and b and obtains at least one value for both a and b $w = 3 - \sqrt{3}i, -3 + \sqrt{3}i$ A1: One correct exact root in $a + ib$ or $c(a + ib)$ form (a, b, c) may be unsimplified)	M1	[no missing "i" unless recovered] Correct use of de Moivre's theorem with $-\frac{\pi}{3}$ and their 12 to attempt one square root. Allow work with argument of $\frac{5\pi}{3}$ for $-\frac{\pi}{3}$ and use of e.g., $\sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right)$. Condone		
A1ft: One correct exact root in $a+ib$ or $c(a+ib)$ form (a,b,c) may be unsimplified but not numerical trig expressions) ft their 12 only i.e. $(\pm)\sqrt{"12"}\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\mathrm{i}\right)$ A1: Both exact roots (no others) correct in $a+ib$ form $-a$ and b may be unsimplified (but not numerical trig expressions) e.g. accept $a=(\pm)\sqrt{12}\frac{\sqrt{3}}{2}, (\pm)\frac{\sqrt{36}}{2} b=(\mp)\frac{\sqrt{12}}{2}, (\mp)\frac{2\sqrt{3}}{2}$ Accept $\pm(3-\sqrt{3}\mathrm{i})$ but just $\pm 3-\sqrt{3}\mathrm{i}$ is A1 A0. Just $\pm\sqrt{3}\left(\sqrt{3}-\mathrm{i}\right)$ is A1 A0 Note: $w^2=r^2\left(\cos 2\theta+i\sin 2\theta\right)=z\Rightarrow r, \theta, w=$ is an acceptable approach Alt $w^2=z\Rightarrow(a+\mathrm{i}b)^2=a^2-b^2+2ab\mathrm{i}=6-6\sqrt{3}\mathrm{i}\Rightarrow a^2-b^2=6, 2ab=-6\sqrt{3}$ $b=-\frac{3\sqrt{3}}{a}\Rightarrow a^2-\frac{27}{a^2}=6\Rightarrow a^4-6a^2-27=(a^2-9)(a^2+3)=0\Rightarrow a^2=9, a=\pm3, b=\mp\sqrt{3}$ M1: From a correct starting point, expands and equates real and imaginary parts to form two equations in a and b and obtains at least one value for both a and b $w=3-\sqrt{3}\mathrm{i}, -3+\sqrt{3}\mathrm{i}$ A1: One correct exact root in $a+\mathrm{i}b$ or $c(a+\mathrm{i}b)$ form (a,b,c) may be unsimplified)		$2k\pi$, $-2k\pi$, $\pm 2k\pi$ appears with argument	M0 if z^4 used for z. Allow this mark if $+2$	
Alt $w^2 = z \Rightarrow (a+ib)^2 = a^2 - b^2 + 2abi = 6 - 6\sqrt{3}i \Rightarrow a^2 - b^2 = 6, \ 2ab = -6\sqrt{3}$ $b = -\frac{3\sqrt{3}}{a} \Rightarrow a^2 - \frac{27}{a^2} = 6 \Rightarrow a^4 - 6a^2 - 27 = (a^2 - 9)(a^2 + 3) = 0 \Rightarrow a^2 = 9, \ a = \pm 3, \ b = \mp \sqrt{3}$ M1: From a correct starting point, expands and equates real and imaginary parts to form two equations in a and b and obtains at least one value for both a and b $w = 3 - \sqrt{3}i, -3 + \sqrt{3}i$ A1: One correct exact root in $a + ib$ or $c(a + ib)$ form (a, b, c) may be unsimplified)	A1ft A1	A1ft: One correct exact root in $a + ib$ or $c(a + ib)$ form (a, b, c) may be unsimplified but not numerical trig expressions) ft their 12 only i.e. $(\pm)\sqrt{"12"}\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)$ A1: Both exact roots (no others) correct in $a + ib$ form $-a$ and b may be unsimplified (but not numerical trig expressions) e.g. accept $a = (\pm)\sqrt{12}\frac{\sqrt{3}}{2}, (\pm)\frac{\sqrt{36}}{2} b = (\mp)\frac{\sqrt{12}}{2}, (\mp)\frac{2\sqrt{3}}{2}$		
$b = -\frac{3\sqrt{3}}{a} \Rightarrow a^2 - \frac{27}{a^2} = 6 \Rightarrow a^4 - 6a^2 - 27 = (a^2 - 9)(a^2 + 3) = 0 \Rightarrow a^2 = 9, \ a = \pm 3, \ b = \mp \sqrt{3}$ M1 : From a correct starting point, expands and equates real and imaginary parts to form two equations in a and b and obtains at least one value for both a and b $w = 3 - \sqrt{3}i, -3 + \sqrt{3}i$ A1 : One correct exact root in $a + ib$ or $c(a + ib)$ form (a, b, c) may be unsimplified)	(3)	Note: $w^2 = r^2 (\cos 2\theta + i \sin 2\theta) = z \Rightarrow r, \theta, w =$ is an acceptable approach		
Tr.	Total 8	$b = -\frac{3\sqrt{3}}{a} \Rightarrow a^2 - \frac{27}{a^2} = 6 \Rightarrow a^4 - 6a^2 - 27 = (a^2 - 9)(a^2 + 3) = 0 \Rightarrow a^2 = 9, \ a = \pm 3, \ b = \mp \sqrt{3}$ M1 : From a correct starting point, expands and equates real and imaginary parts to form two equations in <i>a</i> and <i>b</i> and obtains at least one value for both <i>a</i> and <i>b</i> $w = 3 - \sqrt{3}i, -3 + \sqrt{3}i$ A1 : One correct exact root in <i>a</i> +i <i>b</i> or $c(a + ib)$ form (a, b, c) may be unsimplified)		Alt

Question Number	Scheme	Notes	Marks
3(a)	$\frac{r}{\sqrt{r(r+1)} + \sqrt{r(r-1)}} \times \frac{\sqrt{r(r+1)} - \sqrt{r(r+1)}}{\sqrt{r(r+1)} - \sqrt{r(r+1)}}$	A correct multiplier to rationalise the denominator seen or implied by correct work	M1
	$= \frac{r\left(\sqrt{r(r+1)} - \sqrt{r(r-1)}\right)}{r(r+1) - r(r-1)} = \frac{\sqrt{r(r+1)} - \sqrt{r(r-1)}}{2} \text{ or } A = \frac{1}{2}$ Correct expression or correct value for A . Condone poor notation if intention clear. There must be (minimal) correct supporting working.		
	$A = \frac{r}{\left(\sqrt{r(r+1)} + \sqrt{r(r-1)}\right)\left(\sqrt{r(r+1)} - \sqrt{r(r-1)}\right)}$	ernative: $\frac{r}{r} = \frac{r}{r(r+1)-r(r-1)} \text{ or } \frac{r}{r^2+r-r^2+r} \text{ or } \frac{r}{2r} \Rightarrow A = \frac{1}{2}$ errect completion with one intermediate fraction	
			(2)
(b)	$ \sum_{r=1}^{n} \frac{r}{\sqrt{r(r+1)} + \sqrt{r(r-1)}} = \frac{1}{2} \frac{1}{2} \frac{1}{1} \frac{1}{2} \frac$		M1 M1
	provided there are at least an i.e., " $\frac{1}{2}$ " ($\sqrt{n(n+1)}$) Note: row 3 is " $\frac{1}{2}$ " ($\sqrt{12}$ (or $2\sqrt{3}$) – $\sqrt{6}$)	ect final expression with or without their <i>A</i> by two correct rows of differences $(n-1) = 0$ or $(n-1) = 0$ o	
	$\frac{\sqrt{2}}{2}$, $\frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}$, $\frac{\sqrt{12}}{2}$ (or $\sqrt{3}$)	$\frac{\sqrt{6}}{2}, \frac{\sqrt{20}}{2} (\text{or } \sqrt{5}) - \frac{\sqrt{12}}{2} (\text{or } \sqrt{3}), \dots$ $\frac{\sqrt{(n-1)}}{2} - \frac{\sqrt{(n-1)(n-2)}}{2}, \frac{\sqrt{n(n+1)}}{2} - \frac{\sqrt{n(n-1)}}{2}$	
		Correct expression in terms of n . No correct terms seen in differences work even cancelled but condone the occasional poor bracket. There should be no "0" so e.g., $\frac{1}{2} \left(\sqrt{n(n+1)} - 0 \right) \text{ is A0}$	A1
		Does not require marks in (a)	(3)

Question Number	Scheme	Notes	Marks
3(c)	$\sum r = \frac{1}{2} n(n+1) \text{ e.g., sight of } k \times = \sqrt{\frac{1}{2} n(n+1)}$	States or uses the correct summation formula for integers	M1
	$\frac{k}{2}\sqrt{n(n+1)} = \sqrt{\frac{1}{2}n(n+1)} \Rightarrow \frac{k}{2} = \sqrt{\frac{1}{2}} \Rightarrow k = \sqrt{2}$	$\sqrt{2}$ only (Not \pm). $k = \sqrt{2}$ must not come from a clearly incorrect equation.	A1
			(2)
			Total 7

Question Number	Scheme		Notes	Marks
4(a)	$y = \tan\left(\frac{3x}{2}\right) \Rightarrow y' = \frac{3}{2}\sec^2\left(\frac{3x}{2}\right)$		Any correct first derivative. Not implied by $y'(\frac{\pi}{6}) = 3$	B1
	$\Rightarrow y'' = 2 \times \frac{3}{2} \sec\left(\frac{3x}{2}\right) \times \sec\left(\frac{3x}{2}\right) \tan\left(\frac{3x}{2}\right) \times \frac{3}{2}$ $\left[= \frac{9}{2} \sec^2\left(\frac{3x}{2}\right) \tan\left(\frac{3x}{2}\right) \right]$	ks	inpts the second derivative achieving $\sec^2\left(\frac{3x}{2}\right)\tan\left(\frac{3x}{2}\right)$ or unsimplified ivalent. Not implied by $y''\left(\frac{\pi}{6}\right) = 9$	M1
	$\Rightarrow y''' = \frac{9}{2}\sec^2\left(\frac{3x}{2}\right)\sec^2\left(\frac{3x}{2}\right) \times \frac{3}{2} + \frac{9}{2}\tan\left(\frac{3x}{2}\right) \times 2 \times \frac{3}{2}\sec^2\left(\frac{3x}{2}\right)$ $= \frac{27}{4}\sec^4\left(\frac{3x}{2}\right) + \frac{27}{2}\sec^2\left(\frac{3x}{2}\right)\tan^2\left(\frac{3x}{2}\right)$, (<i>)</i>	dM1: Attempts third derivative using the product rule, achieving $P\sec^4\left(\frac{3x}{2}\right) + Q\sec^2\left(\frac{3x}{2}\right)\tan^2\left(\frac{3x}{2}\right)$ or unsimplified equivalent. Requires previous M mark. A1: Correct differentiation. Accept unsimplified. Not implied by $y'''\left(\frac{\pi}{6}\right) = 54$	dM1 A1
	If $\sec^2\left(\frac{3x}{2}\right) = \tan^2\left(\frac{3x}{2}\right) + 1$ is used the identity			
	expressions of consistent Note that replacing $\sec^2\left(\frac{3x}{2}\right)$ in $y'' \Rightarrow y'$			
	$y\left(\frac{\pi}{6}\right) = 1, y'\left(\frac{\pi}{6}\right) = 3, y'$ Attempts values (but allow numerical trig expression in stated values or insertion in	essions) f	For y and their 3 derivatives at $\frac{\pi}{6}$ - accept	M1
	$(y =)1 + 3\left(x - \frac{\pi}{6}\right) + \frac{9}{2!}$ Applies Taylor's correctly about $\frac{\pi}{6}$ with their v seen separately the work should imply a correct for following the correct general formul	$\left(x - \frac{\pi}{6}\right)^2$ alues/numula bu	$+\frac{54}{3!}\left(x-\frac{\pi}{6}\right)^3 + \dots$ merical trig expressions. If values are not at allow a recognisable attempt at the series	dM1
	$(y =)1 + 3\left(x - \frac{\pi}{6}\right) + \frac{9}{2}\left(x - \frac{\pi}{6}\right)^2 + 9\left(x - \frac{\pi}{6}\right)^3 + \dots$	Co	errect expression with coeffs in simplest	A1
	If e.g. $y'''(\frac{\pi}{6})$ is found by calculator but $y'(x)$	(x) and y	1	(7)
	Note: With responses that work in sin and composes of form when differentiating (sign a errors with product/quotient formulae). $y = \tan\left(\frac{3x}{2}\right) = \frac{\sin\left(\frac{3x}{2}\right)}{\cos\left(\frac{3x}{2}\right)} \Rightarrow$	nd coef Any use	ficient errors only, also allowing sign of identities must be correct. E.g:	
	$y''' = \frac{\frac{9}{2}\cos^{3}\left(\frac{3x}{2}\right)\sin\left(\frac{3x}{2}\right) + \frac{9}{2}\cos\left(\frac{3x}{2}\right)\sin^{3}\frac{3x}{2}}{\cos^{4}\left(\frac{3x}{2}\right)}$ $y''' = \frac{\frac{27}{4}\cos^{8}\left(\frac{3x}{2}\right) + 27\cos^{6}\left(\frac{3x}{2}\right)\sin^{2}\left(\frac{3x}{2}\right) + \frac{81}{4}\cos^{4}\frac{3x}{2}}{\cos^{8}\left(\frac{3x}{2}\right)}$		()	

Question Number	Scheme	Notes	Marks
4(b)	$\left\{y\left(\frac{\pi}{4}\right) = \right\}1 + 3\left(\frac{\pi}{4} - \frac{\pi}{6}\right) + \frac{9}{2}\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$	$-\frac{\pi}{6}\bigg)^2 + 9\bigg(\frac{\pi}{4} - \frac{\pi}{6}\bigg)^3$	
	or $1+3\left(\frac{\pi}{12}\right)+\frac{9}{2}\left(\frac{\pi}{12}\right)^2$	$+9\left(\frac{\pi}{12}\right)^3$	
	Substitutes $\frac{\pi}{4}$ into their expression for y of the	correct form with at least the first	M1
	three terms (series about $\frac{\pi}{6}$). Must have values	(not unevaluated trig expressions).	
	If only a decimal value is given then it must be (2.255314325		
	If there is no working they must obtain an expre	ession with at least $a + b\pi + c\pi^2$ and	
	correct exact ft a, b and c for their series or 1	$+\frac{\pi}{4} + c\pi^2$ with correct exact ft c	
	$=1+\frac{\pi}{4}+\frac{\pi^2}{32}+\frac{\pi^3}{192} \text{ or } 1+\frac{1}{4}\pi+\frac{1}{32}\pi^2+\frac{1}{192}\pi^3$	Correct answer or values for <i>A</i> (32) and <i>B</i> (192). Can be awarded if full marks were not scored in (a).	A1
			(2)
			Total 9

$\frac{1}{2}\int_{0}^{\frac{\pi}{2}}r^{2}d\theta = \left\{\frac{1}{2}\right\}\int_{0}^{\frac{\pi}{2}}\left[100\cos^{2}\theta + 20\sin\theta + \tan^{2}\theta\right] \frac{1}{2}d\theta + \left\{\frac{1}{2}\right\}\int_{0}^{\frac{\pi}{2}}\left[100\cos^{2}\theta + 20\sin\theta + \tan^{2}\theta\right]\left\{d\theta\right\} \frac{1}{2}d\theta + \left\{\frac{1}{2}\right\}\int_{0}^{\frac{\pi}{2}}\left[100\cos^{2}\theta + 20\sin\theta + \tan^{2}\theta\right]\left\{d\theta\right\} \frac{1}{2}d\theta + \left[\frac{1}{2}\right]\int_{0}^{\frac{\pi}{2}}\left[100\cos^{2}\theta + 20\sin\theta + \tan^{2}\theta\right]\left\{d\theta\right\} \frac{1}{2}d\theta + \left[\frac{1}{2}\right]\int_{0}^{\frac{\pi}{2}}\left[100\cos^{2}\theta + 20\sin\theta + \tan^{2}\theta\right]\left\{d\theta\right\} \frac{1}{2}d\theta + \left[\frac{1}{2}\right]\int_{0}^{\frac{\pi}{2}}\left[100\cos^{2}\theta + 20\sin\theta + \sec^{2}\theta - 1\right]\left\{d\theta\right\} \frac{1}{2}d\theta + \left[\frac{1}{2}\right]\int_{0}^{\frac{\pi}{2}}\left[100\cos\theta + 20\sin\theta + \sec^{2}\theta - 1\right]\left\{d\theta\right\} \frac{1}{2}d\theta + \left[\frac{1}{2}\right]\int_{0}^{\frac{\pi}{2}}\left[100\cos\theta + \frac{1}{2}\right]d\theta + \left[\frac{1}{2}\right]\int_{0}^{\frac{\pi}{2}}\left[100\cos\theta + \frac{1}{2}\right]d\theta + \left[\frac{1}{2}\right]d\theta + \left[$	Question Number	Scheme	Notes	Marks
$ \begin{cases} \frac{1}{2} \right\} \int_{0}^{\frac{\pi}{2}} r^{2} d\theta = \left\{ \frac{1}{2} \right\} \int_{0}^{\frac{\pi}{2}} \left\{ 100\cos^{2}\theta + 20\sin\theta + \tan^{2}\theta \right\} \left\{ d\theta \right\} \\ \text{ be expanded } \\ \text{ Condone missing } \frac{1}{2} \text{ and limits } \\ \text{ not required} \end{cases} $ M1: Uses $\cos^{2}\theta = \pm \frac{1}{2} \pm \frac{1}{2}\cos 2\theta \text{ or } \tan^{2}\theta = \pm \sec^{2}\theta \pm 1 \text{ in their } r^{2} $ M1: Uses both $\cos^{2}\theta = \pm \frac{1}{2} \pm \frac{1}{2}\cos 2\theta \text{ and } \tan^{2}\theta = \pm \sec^{2}\theta \pm 1 \text{ in their } r^{2} $ M1: Uses both $\cos^{2}\theta = \pm \frac{1}{2} \pm \frac{1}{2}\cos 2\theta \text{ and } \tan^{2}\theta = \pm \sec^{2}\theta \pm 1 \text{ in their } r^{2} $ M1: Orange mixed variables. A1: Correct integral following $\cos^{2}\theta = \frac{1}{2} \pm \frac{1}{2}\cos 2\theta \text{ and } \tan^{2}\theta = \pm \sec^{2}\theta \pm 1 \text{ in their } r^{2} $ M1 A1 A1: Correct integral following $\cos^{2}\theta = \frac{1}{2} \pm \frac{1}{2}\cos 2\theta \text{ and } \tan^{2}\theta = \sec^{2}\theta - 1 \text{ . The } \cos\theta \tan\theta \text{ must be written as } \sin\theta \text{ (implied if appropriately integrated later).} $ The $\frac{1}{2}$ is required (it may be seen later) but limits $d\theta$ are not needed. Allow mixed variables if subsequent work recovers this. $ = \frac{1}{2} \left[49\theta + 25\sin 2\theta - 20\cos\theta + \tan\theta \right]_{0}^{\frac{\pi}{2}} \text{ or } \left[\frac{4\theta}{2}\theta + \frac{25}{2}\sin 2\theta - 10\cos\theta + \frac{1}{2}\tan\theta \right]_{0}^{\frac{\pi}{2}} $ M1: Achieves three of the following four integrated forms: $k \to k\theta$ (at least once), $\cos 2\theta \to\sin 2\theta$, $\sin \theta \to\cos\theta$, $\sec^{2}\theta \to\tan\theta$. Ignore other terms if 3 of the above are satisfied. No $\frac{\pi}{2}$ or limits required. Condone mixed variables. A1: Correct integration including the $\frac{1}{2}$ (may be seen later). Limits not required. May be unsimplified e.g., 49θ seen as $50\theta - \theta$. Allow mixed variables if subsequent work recovers this. $ = \frac{1}{2} \left(\frac{49\pi}{3} + 25\sin\frac{2\pi}{3} - 20\cos\frac{\pi}{3} + \tan\frac{\pi}{3} - (0 + 0 - 20 + 0) \right)$ $ = \frac{1}{2} \left(\frac{49\pi}{3} + 25\sin\frac{2\pi}{3} - 20\cos\frac{\pi}{3} + \tan\frac{\pi}{3} - (0 + 0 - 20 + 0) \right)$ Applies the correct limits to an expression of the form $p\theta + q\sin 2\theta + r\cos\theta + s\tan\theta$ ($p, q, r, r, s \neq 0$) Allow slips but there must be a clear attempt to substitute, and they must only subtract the value of their $r, c, g, \text{ if } r = -20 \text{ work must have or imply } \dots - (-20) \text{ or } + 20$. Allow mixed variables if the s		$r^2 = 100\cos^2\theta + 20\cos\theta\tan\theta + \tan^2\theta$	Any correct expression for r^2	B1
M1: Uses $\cos^2\theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ or $\tan^2\theta = \pm \sec^2\theta \pm 1$ in their r^2 M1: Uses both $\cos^2\theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ and $\tan^2\theta = \pm \sec^2\theta \pm 1$ in their r^2 Both M marks can be scored without the integral and the $\frac{1}{2}$. Condone mixed variables. A1: Correct integral following $\cos^2\theta = \frac{1}{2} + \frac{1}{2} \cos 2\theta$ and $\tan^2\theta = \sec^2\theta - 1$. The $\cos\theta$ tan θ must be written as $\sin\theta$ (implied if appropriately integrated later). The $\frac{1}{2}$ is required (it may be seen later) but limits/ $d\theta$ are not needed. Allow mixed variables if subsequent work recovers this. $= \frac{1}{2} \left[49\theta + 25\sin 2\theta - 20\cos\theta + \tan\theta \right]_0^{\frac{\pi}{3}} \text{ or } \left[\frac{49}{2}\theta + \frac{25}{2}\sin 2\theta - 10\cos\theta + \frac{1}{2}\tan\theta \right]_0^{\frac{\pi}{3}}$ M1: Achieves three of the following four integrated forms: $k \to k\theta$ (at least once), $\cos 2\theta \to\sin 2\theta$, $\sin \theta \to\cos\theta$, $\sec^2\theta \to\tan\theta$. Ignore other terms if 3 of the above are satisfied. No $\frac{1}{2}$ or limits required. Condone mixed variables. A1: Correct integration including the $\frac{1}{2}$ (may be seen later). Limits not required. May be unsimplified e.g., 49θ seen as $50\theta - \theta$. Allow mixed variables if subsequent work recovers this. $= \frac{1}{2} \left(\frac{49\pi}{3} + 25\sin\frac{2\pi}{3} - 20\cos\frac{\pi}{3} + \tan\frac{\pi}{3} - (0 + 0 - 20 + 0) \right)$ $= \frac{1}{2} \left(\frac{49\pi}{3} + 25\sin\frac{2\pi}{3} - 20\cos\frac{\pi}{3} + \tan\frac{\pi}{3} - (0 + 0 - 20 + 0) \right)$ Applies the correct limits to an expression of the form $p\theta + q\sin 2\theta + r\cos\theta + s\tan\theta$ ($p,q,r,s\neq 0$) Allow slips but there must be a clear attempt to substitute, and they must only subtract the value of their $r, e.g.$ if $r = -20$ work must have or imply $-(-20)$ or $+20$. Allow mixed variables if the substitution recovers this. $= \frac{1}{12} (98\pi + 81\sqrt{3} + 60)$ Correct answer or values for $a, b, \delta \in C$ A1 Note that there are other viable routes through the integration e.g., use of integration by parts		$\left\{\frac{1}{2}\right\} \int_0^{\frac{\pi}{3}} r^2 d\theta = \left\{\frac{1}{2}\right\} \int_0^{\frac{\pi}{3}} \left(100\cos^2\theta + 20\sin\theta + \tan^2\theta\right) \left\{d\theta\right\}$	with their r^2 which may not be expanded Condone missing $\frac{1}{2}$ and limits	M1
M1: Achieves three of the following four integrated forms: $k \to k\theta$ (at least once), $\cos 2\theta \to \sin 2\theta$, $\sin \theta \to \cos \theta$, $\sec^2 \theta \to \tan \theta$. Ignore other terms if 3 of the above are satisfied. No $\frac{1}{2}$ or limits required. Condone mixed variables. A1: Correct integration including the $\frac{1}{2}$ (may be seen later). Limits not required. May be unsimplified e.g., 49θ seen as $50\theta - \theta$. Allow mixed variables if subsequent work recovers this. $= \frac{1}{2} \left(\frac{49\pi}{3} + 25\sin\frac{2\pi}{3} - 20\cos\frac{\pi}{3} + \tan\frac{\pi}{3} - (0 + 0 - 20 + 0) \right)$ $\left\{ = \frac{1}{2} \left(\frac{49\pi}{3} + 25\sqrt{3} - 10 + \sqrt{3} + 20 \right) \text{ or } \frac{49\pi}{6} + \frac{25\sqrt{3}}{4} - 5 + \frac{\sqrt{3}}{2} + 10 \right\}$ Applies the correct limits to an expression of the form $p\theta + q \sin 2\theta + r \cos \theta + s \tan \theta$ ($p,q,r,s\neq 0$) Allow slips but there must be a clear attempt to substitute, and they must only subtract the value of their r , e.g. if $r = -20$ work must have or imply–(-20) or +20. Allow mixed variables if the substitution recovers this. $= \frac{1}{12} \left(98\pi + 81\sqrt{3} + 60 \right)$ Correct answer or values for $a, b \& c$ A1 Note that there are other viable routes through the integration e.g., use of integration by parts		M1: Uses $\cos^2 \theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ or $\tan^2 \theta = \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ or $\tan^2 \theta = \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ and $\tan^2 \theta = \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ and $\tan^2 \theta = \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ and $\tan^2 \theta = \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ Both M marks can be scored without the Condone mixed variable A1: Correct integral following $\cos^2 \theta = \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ $\cos \theta \tan \theta$ must be written as $\sin \theta$ (implied if approximately 1) and 1). The $\frac{1}{2}$ is required (it may be seen later) but limits/d8.	$= \pm \sec^2 \theta \pm 1$ in their r^2 $t^2 \theta = \pm \sec^2 \theta \pm 1$ in their r^2 integral and the $\frac{1}{2}$. es. $t^2 \theta$ and $tan^2 \theta = \sec^2 \theta - 1$. The propriately integrated later).	M 1
$= \frac{1}{2} \left(\frac{49\pi}{3} + 25\sin\frac{2\pi}{3} - 20\cos\frac{\pi}{3} + \tan\frac{\pi}{3} - (0 + 0 - 20 + 0) \right)$ $= \frac{1}{2} \left(\frac{49\pi}{3} + \frac{25\sqrt{3}}{2} - 10 + \sqrt{3} + 20 \right) \text{ or } \frac{49\pi}{6} + \frac{25\sqrt{3}}{4} - 5 + \frac{\sqrt{3}}{2} + 10 \right)$ Applies the correct limits to an expression of the form $p\theta + q\sin 2\theta + r\cos \theta + s\tan \theta$ ($p,q,r,s \neq 0$) Allow slips but there must be a clear attempt to substitute, and they must only subtract the value of their r , e.g. if $r = -20$ work must have or imply– (-20) or $+20$. Allow mixed variables if the substitution recovers this. $= \frac{1}{12} \left(98\pi + 81\sqrt{3} + 60 \right)$ Correct answer or values for $a, b \& c$ Note that there are other viable routes through the integration e.g., use of integration by parts (9)		M1: Achieves three of the following four $k \rightarrow k\theta$ (at least once), $\cos 2\theta \rightarrow \sin 2\theta$, $\sin \theta$. Ignore other terms if 3 of the above are satisfied. No mixed variables. A1: Correct integration including the $\frac{1}{2}$ (may be see May be unsimplified e.g., 49θ seen as $50\theta - \theta$	ar integrated forms: $\rightarrow\cos\theta$, $\sec^2\theta \rightarrow\tan\theta$. $\frac{1}{2}$ or limits required. Condone en later). Limits not required. Allow mixed variables if	
$= \frac{1}{12} \left(98\pi + 81\sqrt{3} + 60 \right)$ Correct answer or values for $a, b \& c$ Note that there are other viable routes through the integration e.g., use of integration by parts (9)		$\begin{cases} = \frac{1}{2} \left(\frac{49\pi}{3} + \frac{25\sqrt{3}}{2} - 10 + \sqrt{3} + 20 \right) & \text{or } \frac{49\pi}{6} \end{cases}$ Applies the correct limits to an expression of the form $(p,q,r,s \neq 0)$ Allow slips but there must be a clear must only subtract the value of their r , e.g. if $r = -1$	$+\frac{25\sqrt{3}}{4} - 5 + \frac{\sqrt{3}}{2} + 10$ If $p\theta + q \sin 2\theta + r \cos \theta + s \tan \theta$ attempt to substitute, and they $20 \text{ work must have or imply}$	M1
		$=\frac{1}{12}\Big(98\pi+81\sqrt{3}+60\Big)$	Correct answer or values for <i>a</i> , <i>b</i> & <i>c</i>	
		Note that there are other viable routes through the integration	on e.g., use of integration by parts	· · ·

Question Number	Scheme	Notes	Marks
6	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 6\frac{\mathrm{d}x}{\mathrm{d}t} + 13x = 8\mathrm{e}^{-3}$	t0	
(a)	$m^{2} + 6m + 13 = 0 \Rightarrow m = \frac{-6 \pm \sqrt{36 - 52}}{2}$ $\left\{ = -3 \pm 2i \right\}$	Forms correct auxiliary equation and obtains a correct numerical expression for at least one root by formula or uses CTS (apply usual CTS rule below). One correct root if no working	M1
	CTS rule: $m^2 + 6m + 13 = 0 \Rightarrow \left(m \pm \frac{6}{2}\right)$	$\int_{0}^{2} \pm q \pm 13 = 0, \ q \neq 0 \Rightarrow m = \dots$	
	CF examples: $(x =) e^{-3t} \left(A\cos 2t + B\sin 2t \right)$ or $(x =) Ae^{-3t} \cos(-2t) + Be^{-3t} \sin(-2t)$ or $(x =) Pe^{(-3+2i)t} + Qe^{(-3-2i)t}$ or $(x =) e^{-3t} \left(Pe^{2it} + Qe^{-2it} \right)$	Correct complementary function in any form, allow if the "x =" is missing or wrong and accept for this mark if the CF is given fully in terms of x instead of t.	A1
	$PI: \left\{ x = \right\} \lambda e^{-3t}$	Correct form for the particular integral selected. Must include λe^{-3t} but accept with any extra terms that correctly disappear when coefficients found. Accept "PI=". If λe^{pt} is used $p = -3$ must be seen later.	B1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -3\lambda \mathrm{e}^{-3t} \ ; \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 9\lambda \mathrm{e}^{-3t}$ $\Rightarrow 9\lambda \mathrm{e}^{-3t} + 6\left(-3\lambda \mathrm{e}^{-3t}\right) + 13\lambda \mathrm{e}^{-3t} = 8\mathrm{e}^{-3t}$	Differentiates a PI of any form twice (provided it has at least one constant and is a function of <i>t</i>) and substitutes into the equation. Allow only sign/coefficient errors only in the differentiation. Their PI must lead to non-zero derivatives.	M1
	$\Rightarrow 9\lambda - 18\lambda + 13\lambda = 8 \Rightarrow \lambda = \dots (2)$	Proceeds to find the value of the constant following use of a PI of the correct form. Any unnecessary extra terms in the PI must be found to be zero	dM1
	$x = "e^{-3t} \left(A\cos 2t + B\sin 2t \right) " + 2e^{-3t}$	Correct general solution ft on their CF only – any CF provided it has at least one constant and is in terms of t. Must have x = Do not allow if their CF is miscopied or mathematically changed	A1ft
	Work with a PI of the form λte^{-3t} is B0M1dN Only condone incorrect variables if they are refirst A1.		(6)

Question Number	Scheme		Notes	Marks
6(b)	$x = \frac{1}{2} \text{ at } t = 0$ $\Rightarrow \frac{1}{2} = A + 2 \left(\Rightarrow A = -\frac{3}{2}\right)$	to find a linear constants. Allow	ondition for x in their GS equation in one or two y for GS = CF or CF + PI t may come from the +PI	M1
	$\frac{dx}{dt} = e^{-3t} \left(-2A \sin 2t + 2B \cos 2t \right)$ Uses the product rule to differentiate terms of t of the correct form for their C not allow e.g., $e^{pt} \rightarrowe^{qt}$). Allow for include If they work with a complex function e. is un. This mark is not s	e their real GS obtoes their real GS obtoes (sign and coeffice GS = CF or CF constants. e.g., $x = Pe^{(-3+2i)t}$ enlikely. cored for work in	$B \sin 2t$) – $6e^{-3t}$ raining an expression in ficient errors only – so do + PI and does not have to + $Qe^{(-3-2i)t} + 2e^{-3t}$ progress	M 1
		ues for the 2 cons	tants (no others) in their onstant must be found to	ddM1
	Examples: $x = e^{-3t} \left(-\frac{3}{2} \cos 2t + \sin 2t \right) + 2$ or $x = e^{-3t} \left(-\frac{3}{2} \cos 2t + \sin 2t + \cos 2t \right)$ or $x = 2e^{-3t} \left(-\frac{3}{2} \cos 2t + \sin 2t + \cos 2t \right)$	$2e^{-3t}$	Correct particular solution in any form in terms of t. Must be $x =$ unless this was the only reason for final A0 in part (a) due to omission or e.g, " $y =$ " was used	A1 (4)
(c)	$\frac{dx}{dt} = e^{-3t} \left(3\sin 2t + 2\cos 2t \right) - 3$ Sets an expression for $\frac{dx}{dt} = 0$. Accept with		,	M1
	$(3\sin 2t + 2\cos 2t) - 3\left(-\frac{3}{2}\cos 2t + \sin 2t\right) - 6 = 0$ Achieves an equation of the form $a\sin bt + c\cos bt + d = 0$ or equivalent with terms uncollected. One of a and c non-zero and b and d non-zero. Must follow a GS = CF + PI where two constants were found for the CF and one for the PI. Requires previous M mark.		dM1	
	$\cos 2t = \frac{12}{13} \Rightarrow t = 0.1973955598 \Rightarrow x \text{ or } a = 0.197395598 \Rightarrow x \text{ or } a = 0.197395598 \Rightarrow x \text{ or } a = 0.1973959999999999999999999999999999999999$	$= \frac{1}{2} e^{-3(0.1973)} \left(4 - 3 \times \frac{1}{2} e^{-3(0.1973)} \right) \left(4 - 3 \times \frac{1}{2} e^{-3(0.1973)} \right)$	$\left(\frac{12}{13} + 2\sin(2 \times 0.1973)\right) =$ es their positive (or made cept a pair of stated values.	ddM1
	x or a = 0.553(1164729)		awrt 0.553	A1 (4)
				Total 14

Question Number	Scheme	Notes	Marks
7(a) Way 1	$w = \frac{z-3}{2i-z} \Rightarrow 2iw - wz = z-3 \Rightarrow z = \dots$	Attempts to make z the subject and obtains any $f(w)$	M1
	$z = \frac{3+2iw}{w+1} \text{ or } \frac{-3-2iw}{-w-1}$ $= \frac{3+2iu-2v}{u+iv+1} \times \frac{u+1-iv}{u+1-iv}$	Any correct expression for z in terms of w	A1
	$= \frac{3 + 2iu - 2v}{u + iv + 1} \times \frac{u + 1 - iv}{u + 1 - iv}$ Applies $w = u + iv$ and a correct multiplier for their z see result from their z. Denominator must have had a "w". No		M1
	$x+iy = \frac{3+2iu-2v}{u+iv+1} \times \frac{u+1-iv}{u+1-iv} = \frac{(3-2v)(u+1)+2uv+2u(u-1)^2+v}{(u+1)^2+v}$ $y = x+3 \text{ oe } \Rightarrow \frac{2u(u+1)-(3-2v)v}{(u+1)^2+v^2} = \frac{(3-2v)(u+1)^2+v}{(u+1)^2+v^2}$ Multiplies, extracts real and imaginary parts and uses them in the produce an equation in u and v only – no "i"s. Condone v = slips with multiplier but denominator of v must have Note: Just v Just	$\frac{(u+1)+2uv}{1)^2+v^2}+3$ the equation $y=x+3$ (oe) to a if recovered. Can follow ave had a "w" as M0 (lost denominators)	M1
	$2u(u+1) - (3-2v)v = (3-2v)(u+1) + 2uv + 3(u+1)^{2} + 3v^{2}$ $\Rightarrow u^{2} + 7u + v^{2} + v + 6 = 0$	Expands and simplifies to obtain an equation of a circle with 4 or 5 real unlike terms. All previous Ms required.	dddM1
	Alternative for the above 3 marks (note this could be done by $x + iy = \frac{3 + 2iu - 2v}{u + iv + 1} \Rightarrow \left(x + i\left(x + 3\right)\right)\left(u + 1 + iv\right)$ M1: Applies $z = x + iy$, uses $y = x + 3$ and cross $x(u+1) - v(x+3) + (x+3)(u+1)i + xvi = 3$ $\Rightarrow ux + x - vx - 3v = 3 - 2v, ux + x + 3u + 3$ $\Rightarrow x = \frac{3 + v}{u + 1 - v}, x = \frac{-u - 3}{u + 1 + v}$ M1: Equates real and imaginary parts and makes $x = (3 + v)(u + 1 + v) = -(u + 3)(u + 1 - v) \Rightarrow 3u + 3 + 3v + uv + v + v = 3u^2 + v^2 + 7u + v + 6 = 0$	3 + 2ui - 2v ss multiplies $3 - 2v + 2ui$ $3 + xv = 2u$ the subject twice	
	M1: Equates expressions for x to obtain a circle equation with $\Rightarrow \left(u + \frac{7}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre: } \left(-\frac{7}{2}, -\frac{7}{2}\right)^2$ M1: Extracts the centre and/or radius from their circle equation or 5 real unlike terms. Circle equation must not be in terms of correct coordinate (but condone wrong sign) or the correct May use $u^2 + v^2 + 2gu + 2fv + c = 0 \Rightarrow \text{centre: } (-g, -f)$ A1: For a correct centre or radius from a correct A1: For correct centre and radius from a correct Centre as coordinates, $x/u =, y/v =$ or as $-\frac{7}{2} - \frac{1}{2}$. Allow exact equivalents for coordinates	radius: $\frac{\sqrt{26}}{2}$ or $\sqrt{\frac{13}{2}}$ or, however obtained, with 4 is z or w. They must get one tradius for their circle. They radius = $\sqrt{g^2 + f^2 - c}$ is circle equation and allow $\left(-\frac{7}{2}, -\frac{1}{2}i\right)$	M1 A1 A1
	*		(8)

Question Number	Scheme	Notes	Marks
7(a) Way 2	$w = \frac{z-3}{2i-z} = \frac{x+iy-3}{2i-x-iy} = \frac{x-3+i(x+3)}{2i-x-i(x+3)}$ [Note that it is possible to replace x with y - 3]	M1: Uses $z = x + iy$ and $y = x + 3$ in the given transformation A1: Correct expression for w in terms of x	M1 A1
	$\frac{x-3+i(x+3)}{-x-i(x+1)} = u+iv \Rightarrow x-3+i(x+3) = -xu+v(x+1)-iu(x+1)-iv$	Applies $w = u + iv$ and multiplies	M1
	$x-3 = -ux + vx + v, x+3 = -ux - u - vx$ $x = \frac{3+v}{1+u-v}, x = \frac{-3-u}{1+u+v}$	Equates real and imaginary parts and makes <i>x</i> the subject twice	M1
	$3+3u+3v+v+uv+v^{2} = -3-3u+3v-u-u^{2}+uv$ $\Rightarrow u^{2}+v^{2}+7u+v+6=0$	Equates expressions for x to obtain a circle equation with 4 or 5 real unlike terms. All previous Ms required.	dddM1
	$\Rightarrow \left(u + \frac{7}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre: } \left(-\frac{1}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre: } \left(-\frac{1}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre: } \left(-\frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{2}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{2}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{2}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{4}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{4}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{4}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{4}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{4}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{4}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{4}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{4}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{4}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{4}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{4}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{4}\right)^2 = \frac{13}{4} + \frac{1}{4} - \frac{1}{4} = \frac{13}{4} \Rightarrow \text{centre: } \left(-\frac{1}{4}\right)^2 = \frac{13}{4} \Rightarrow \frac{1}{4} \Rightarrow $	$\left(-\frac{7}{2}, -\frac{1}{2}\right)$ radius: $\frac{\sqrt{26}}{2}$ or $\sqrt{\frac{13}{2}}$	
	M1: Applies a correct process to extract the centre equation, however obtained, with 4 or 5 real unlike to (but condone wrong sign) or radius correct	erms. One correct coordinate	M1 A1
	May use $u^2 + v^2 + 2gu + 2fv + c = 0 \Rightarrow \text{centre} : (-g, -g)$		A1 A1
	A1: For correct centre or radius from a corr A1: For correct centre and radius from a cor	•	
	Centre as coordinates, $x/u =, y/v =$ or as $-\frac{7}{2} - \frac{1}{2}i$	and allow $\left(-\frac{7}{2}, -\frac{1}{2}i\right)$ (8)	
Way 3	e.g., 3 points on line are $(0,3)$, $(1,4)$ and $(2,5)$ or $z_1 = 3i$, $z_2 = 1 + 4i$, $z_3 = 2 + 5i$	Attempts three points/complex numbers on $y = x + 3$ with 2 correct	M1
	$w = \frac{z - 3}{2i - z} \Rightarrow w_1 = \frac{3i - 3}{-i} w_2 = \frac{-2 + 4i}{-1 - 2i} w_3 = \frac{-1 + 5i}{-2 - 3i}$ $w_1 = \frac{3i - 3}{-i} \times \frac{i}{i} w_2 = \frac{-2 + 4i}{-1 - 2i} \times \frac{-1 + 2i}{-1 + 2i} w_3 = \frac{-2i}{-1 - 2i}$	Correct transformed complex numbers	A1
	$w_1 = \frac{3i-3}{-i} \times \frac{i}{i} w_2 = \frac{-2+4i}{-1-2i} \times \frac{-1+2i}{-1+2i} w_3 = \frac{-2+4i}{-1+2i} \times \frac{-1+2i}{-1+2i} $ At least two correct multipliers to remove "i" from denor (-1, 2) used). Requires 2 correct points/compl	ninator seen or implied (one if	M1
	$w_1 = -3 - 3i$ $w_2 = -\frac{6}{5} - \frac{8}{5}i$ $w_3 = -1 - i$	Two correct complex numbers in $a + ib$ form or as points	M1
	e.g., $x^2 + y^2 + 2gx + 2fy + c = 0 \Rightarrow \frac{12}{5}g + \frac{16}{5}f - c = 0$ 2g + 2f - c = 0	Uses a correct general equation of a circle to form three simultaneous equations. All previous Ms required.	dddM1
	\Rightarrow $g = \frac{7}{2}$, $f = \frac{1}{2}$, $c = 6 \Rightarrow$ centre $(-g, -f): \left(-\frac{7}{2}, -\frac{1}{2}\right)$ radiu M1 : Solves and obtains at least one correct coordinate radius for their constants A1 : Correct centre or radius from co	(but condone wrong sign) or	M1 A1 A1
	A1: Correct centre and radius from co		

Question Number	Scheme	Notes	Marks
7(b) (i) & (ii)		M1: Any circle with the whole interior indicated. Ignore any inconsistencies with their stated centre, value for radius (which may have been negative) or circle equation. If shaded, consider the shaded area but if not allow any credible indication such as an "R" inside the circle unless they have clearly indicated a segment. A1: Correct circle drawn in the correct position with whole interior shaded. Entirely in quadrants 2 & 3 and centre if marked in Q3 (if not marked then more than half of the circle in Q3). Condone if it appears that the area above the x-axis is greater than the area below provided the centre is indicated in Q3. Must be shaded but does not require a label. Circumference may be dotted/dashed line. Ignore incorrect labelling of centre/axes/intersections but requires full marks in (a).	M1 (B1 on ePen) A1 (B1 on ePen)
			(2)
			Total 10

Question Number	Scheme	Notes	Marks
8(a)	Allow "single fraction" to be implied by sum/difference of fractions with same denominator or a product of fractions. No further fractions in numerator/denominator.		

	$\cos 2x \left(\sin x\right)$	2 2	
	$\cot 2x \left\{ + \tan x \right\} = \frac{\cos 2x}{\sin 2x} \left\{ + \frac{\sin x}{\cos x} \right\}$	Uses $\cot 2x = \frac{\cos 2x}{\sin 2x}$ or e.g., $\frac{\cos 2x}{2\sin x \cos x}$	M1
	$\frac{\cos 2x + 2\sin^2 x}{2\sin x \cos x} \Rightarrow$ e.g., $\frac{1 - 2\sin^2 x + 2\sin^2 x}{2\sin x \cos x} \text{ or } \frac{\cos^2 x - \sin^2 x + 2\sin^2 x}{2\sin x \cos x}$ $\frac{2\cos^2 x - 1 + 2\sin^2 x}{\sin 2x} \text{ or } \frac{\cos 2x + 1 - \cos 2x}{\sin 2x}$ $OR \frac{\cos 2x + \tan x \sin 2x}{\sin 2x} \Rightarrow$ $\Rightarrow \frac{\cos 2x + \frac{\sin x}{\cos x} \times 2\sin x \cos x}{\sin 2x} \Rightarrow \text{e.g., } \frac{1 - 2\sin^2 x + 2\sin^2 x}{\sin 2x}$ $OR \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow$ $\frac{\cos x}{\sin 2x \cos x} \text{ or } \frac{\cos^3 x - \sin^2 x \cos x + 2\sin^2 x \cos x}{\sin 2x \cos x}$	Uses sufficient correct identities e.g., $\cos 2x = 1 - 2\sin^2 x$ $\cos 2x = \cos^2 x - \sin^2 x$ $\cos 2x = 2\cos^2 x - 1$ $2\sin^2 x = 1 - \cos 2x$ $\cos 2x \cos x + \sin x \sin 2x = \cos(2x - x)$ to obtain a correct single fraction with numerator in terms of $\sin x$ and/or $\cos x$ or " $\cos 2x + 1 - \cos 2x$ ". A qualifying fraction must be seen before $\frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ Condone poor notation.	A1 (M1 on ePen)
	$= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$	Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark.	A1*
			(3)
Alt	$\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x} \left\{ + \tan x \right\}$	Uses $\cot 2x = \frac{1 - \tan^2 x}{2 \tan x}$	M1
	$\frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow$ e.g., $\frac{\tan^2 x + 1}{2 \tan x} \Rightarrow \frac{\left(\frac{\sin x}{\cos x}\right)^2 + 1}{2 \frac{\sin x}{\cos x}} \Rightarrow \frac{\cos x \left(\sin^2 x + \cos^2 x\right)}{2 \cos^2 x \sin x}$ or $\frac{\tan^2 x + 1}{2 \tan x} \left\{ \times \frac{\cos x}{\cos x} \right\} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ or $\frac{\sec^2 x}{2 \tan x}$ or $\frac{\cos x}{2 \cos^2 x \sin x}$	Uses correct identities e.g., $\tan x = \frac{\sin x}{\cos x} \text{ oe}$ to obtain a correct single fraction in $\sin x$ and $\cos x$ but $\text{allow } \frac{\sec^2 x}{2 \tan x} \text{ following use of}$ $\sec^2 x = 1 + \tan^2 x$ A qualifying fraction must be seen before $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ Condone poor notation. Fully correct proof with one of	A1 (M1 on ePen)
	$\frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$	the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark.	A1*
			(3)

Question Number	Scheme	Notes	Marks
8(b)	Examples:		M1 A1

$y^2 = w \sin 2x \Rightarrow 2y \frac{dy}{dx} = \frac{dw}{dx}$	$\sin 2x + 2w \cos 2x$
or $y = w^{\frac{1}{2}} (\sin 2x)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{1}{2} w^{\frac{1}{2}} (\sin 2x)^{-\frac{1}{2}}$	$\frac{1}{2}(2\cos 2x) + \frac{1}{2}w^{-\frac{1}{2}}\frac{dw}{dx}(\sin 2x)^{\frac{1}{2}}$
or $w = \frac{y^2}{\sin 2x} \Rightarrow \frac{dw}{dx} = \frac{2y\sin x}{\sin 2x}$	$\frac{2x\frac{dy}{dx} - y^2.2\cos 2x}{\sin^2 2x}$
or $w = y^2 \csc 2x \Rightarrow 2y \frac{dy}{dx} \csc 2x$	$2x - 2y^2 \csc 2x \cot 2x$
M1: Attempts the differentiation of the	e given substitution using the
product/quotient and chain rules and obtains	
correct form (sign/coefficient errors on quotient/product	=
This mark is not available for work in $\frac{dy}{dw}$ or $\frac{d}{d}$	
achieve an equation in $\frac{dy}{dx}$ and $\frac{dy}{dx}$	
A1: Correct differ	
$y\frac{dy}{dx} + y^2 \tan x = \sin x \to e.g., \frac{1}{2} \left(\frac{dw}{dx} \sin 2x\right)$,
A recognisable attempt to eliminate <i>y</i> from	the original equation to obtain an M1
equation involving $\frac{dw}{dx}$, w and x	only . Not dependent.
$\Rightarrow \frac{\mathrm{d}w}{\mathrm{d}x} + 2w(\cot 2x + \tan x)$	$(\ln x) = \frac{2\sin x}{\sin 2x}$
$\Rightarrow \frac{\mathrm{d}w}{\mathrm{d}x} + 2w \csc 2x$	$x = \sec x *$
Fully correct work leading to the given equa	tion with $2w(\cot 2x + \tan x)$ or e.g., A1*
$2w\cot 2x + 2w\tan x$ clearly replaced by $2w\cot 2x + 2w\tan x$	
$\frac{1}{\tan 2x} \operatorname{or} \frac{\cos 2x}{\sin 2x} \text{ and/or } \tan x$	x written as $\frac{\sin x}{\cos x}$
If the result in (a) is not clearly used ther Allow use of "c.	<u> -</u>
·	(4)

Question	Scheme	Notes	Marks
Number			i

9 (a)		Γ ()	
8(c)	$\frac{\mathrm{d}w}{\mathrm{d}x} + 2w\csc 2x = \sec x \Rightarrow \mathrm{IF} = \mathrm{e}^{2\int \csc 2x \mathrm{d}x} = \tan x$ $\operatorname{er} \mathrm{e}^{-\ln(\csc 2x + \cot 2x)} \Rightarrow 1 \qquad \text{or} 1$	M1: $e^{2\int \csc 2x(dx)}$ condoning omission of one or both "2"s A1: $\tan x$ oe	M1 A1
	or $e^{-\ln(\csc 2x + \cot 2x)} \Rightarrow \frac{1}{\csc 2x + \cot 2x}$ or $\frac{1}{\cot x}$ or $\tan x$	Allow $k \tan x$ e.g., $e^{2c} \tan x$ Not just $e^{\ln(\tan x)}$	
		Correctly applies their integrating factor to the equation, i.e.,	
	$\Rightarrow w"\tan x" = \int "\tan x" \sec x \left\{ dx \right\}$	$\Rightarrow \text{IF} \times w = \int \text{IF} \times \sec x \left\{ dx \right\}$ Allow equivalents for $\sec x$. Condone "y" used for "w"	M1
	$\Rightarrow w \tan x = \sec x (+c)$	for this mark. Correct equation oe with or without constant.	A1
	Using IF = $\frac{1}{\csc 2x + \cot 2x}$ \Rightarrow RHS of $\int \frac{\sec x}{\csc 2x + \cot 2x} dx$ which is		
	Note that IBP on $\sec x \tan x$ by writing it as $\sec^2 x \sin x$ ca Use Review for any attempts at integration y	ou are unsure about.	
	e.g., $y^2 = w \sin 2x$ and $w \tan x = \sec x + c \Rightarrow \frac{1}{s}$ $\Rightarrow y^2 = \dots \left\{ \frac{\sin 2x}{\tan x} \left(\sec x + \frac{1}{s} \right) \right\}$ Substitutes for w correctly and reaction followed their integration	$c)$ hes $y^2 = \dots$ in w and x that immediately	ddM1
	This mark requires both previous M marks and an attempt at integration that includes a "+ c " A further example is: $c = c \sin 2x$		
	$w = \csc x + \frac{c}{\tan x} \Rightarrow y^2 = \csc x \sin x$ $\begin{cases} e.g., \ y^2 = \frac{2\sin x \cos^2 x}{\sin x} \left(\frac{1}{\cos x} + c \right) \end{cases}$	tanx	
	$y^{2} = 2\cos x + A\cos^{2} x$ Any correct $y^{2} = \dots$ equation with RHS fully in te	erms of $\cos x$. E.g. accept	A1
	$y^{2} = 2\cos x + 2c\cos^{2} x y^{2} = \cos x (2 + A\cos x)$ Ignore any inconsistencies with the constant e.s	$y^2 = 2\cos^2 x \left(\frac{1}{\cos x} + c\right)$	
	15hore any meonoisteneres with the constant c.	5., 20 idioi wiittoii d5 0	(6)
			Total 13