Ring Homomorphisms

A Homomorphism is a function P:R-R

such that

or simply
$$\mathcal{G}(a+b) = \mathcal{G}(a) + \mathcal{G}(b)$$
.

$$(3) \mathcal{P}(\underline{1}_{\mathcal{R}}) = \underline{1}_{\mathcal{R}},$$

For any ring R, there exists only I homomorphism from I to R.

For any
$$9: Z \rightarrow \mathbb{R}$$
, $9(1) = -1 \mathbb{R} = -1$

$$f(n) = f(1+\cdots+n+ims)$$

$$= f(1)+\cdots+n+ims$$

/ (-) · // // // // //

$$y(0) = y(1+(-1)) = y(1) + y(-1) = 1 + y(-1)$$

Using the value of 9(0),

Thus we will always have only I homomorphism $y: y \to R$

Kernel

 $\rightarrow \mathcal{K}_{\text{LT}}(\mathcal{Y})$ is a subgroup of $(\mathcal{R}, +)$. Let a & Ker(9) and r & R. $\mathcal{G}(ra) = \mathcal{G}(r) \mathcal{G}(a) = \mathcal{G}(r) \cdot 0 = 0$ => rat Ker(p) An ideal I of R is a subsit of R if (I, +) is a subgroup of R and if $a \in I$, $r \in \mathbb{R} \Rightarrow r a \in I$. Ker(9) is thus an ideal of R. Any ideal of I has the form n Z= {an n E Z} where n > 0. Proof Let I be the ideal of Z. When $I \neq \{0\}$, since (I, +) is a subgroup $\mathcal{G}(\mathcal{I}, +)$, for any $\alpha \in I$

and vice versa. Lit in be the smallest positive integer in I. Also, lets choose any other positive integer $m \in I$.

 $m \geq n$.

m = gn+r where Oxr<n

Notice That nEI => ng E I.

=>(m-ng) (-I

=> r ∈ I.

=> ~= (

since n is the smallest positive integer in I.

m = n q.

We can similarly show that all negative integers in I are multiples of n.

Thus I = n I where n > 0.

Let $a, b \in \mathbb{R}$ and $ab \in I$. I is called a frime ideal if $a \in I$ or $b \in I$ and $I \neq \mathbb{R}$

Remember, if p is a prime which divides $ab \in \mathbb{Z}$ then p must divide a or b. So if $ab \in \mathbb{Z}$

 $\Rightarrow a \in f \mathbb{Z}$ on $b \in p \mathbb{Z}$.

p Z is thus a prime ideal.

Now, consider a prime ideal no I when

n is not a prime number. Then

n = a b where O < a < n and O < b < n.

 $n = ab \in n \mathcal{I}$

=> a < n Z or b < n Z.

be a prime number.

__Integral Domains

R is called an integral domain if, when $a,b \in \mathbb{R}$ and ab = 0 $\Rightarrow \alpha = 0 \text{ or } \beta = 0$ If I is an ideal of R, then it is prime if R/I is an integral domain. Let I be a prime ideal of R.

We will choose (a+I) and $(b+I) \in R_{I}$ such that (a+I)(b+I)=I. => a b+ I = I Since The 2 cosits are => a/b E I \Rightarrow a $\in I$ or $b \in I$ Consider R = Q[x] I= {0} is a prime ideal. Because if ab= 0 then one of the polynomials (a or b) must be O. Any ideal generated by x(x) is also prime.

A. II . AFT I.

 $(x) = \{ f(x), x \mid f(x) \in \mathbb{Q}[2] \}$

= 3.711 polynomials in (x|x) which have

the constant term = 0 }

Suppose f(x), $g(x) \in \mathbb{Q}[x]$ such that $f(x)g(x) \in (x)$. One of the polynomials f(x)or g(x) must have the constant term = 0.

=> either f(x) ore $g(x) \in (x)$.

=> (x) is a prime ideal.

All ideals are not prime ideals. For example, consider I = (6)

Here 6=2.3 where 2# I and 3#I.

 \Rightarrow $\alpha+I=I$ or $\beta+I=I$.

=> R/I is thus an integral domain. I have
is the Oth element of R/T

If R is an integral domain, then R[x] is also an integral domain.

Let f(x) and $g(x) \in R[x]$ and both

I than are nonzero. We need to prove

that $f(x) g(x) \neq 0$. $f(x) = \sum_{n=1}^{\infty} a_n x^n \text{ where at least one}$ x = 0coefficient $a \neq 0$. Similarly, for g(x),

coefficient $a, \neq 0$ Similarly, for g(x), at least one coefficient $b, \neq 0$ In f(x)g(x) we will have a term with $a, b, \neq 0$ since R is an integral domain. So, $f(x)g(x) \neq 0$.

We can rasily prove that, if R is an integral domain, then any subring R'of it is also an integral domain.

Maximal Ideals

I is a maximal ideal if

U it is proper (1 + K) $^{(2)}$ if \mathcal{I} is an ideal such that $\mathcal{I}\subseteq\mathcal{I}\subseteq\mathcal{R}$, Then J = I or R. For any ring R, every maximal ideal is a prime ideal. Let $a,b \in R$ and I be a maximal ideal of R, such that $ab \in I$. Suppose a & I. We need to show b&I. Consider ideal J= I+(a) = \x + ar x \ T and r \ R Since I is generated by I and the principal ideal generated by a, I contains I. => I CJ. Here J+I since a EJ but not I. Now since I is maximal, J=R. $\Rightarrow \bot \in \mathcal{J} = \mathcal{R}$ > I x ∈ I and r ∈ R such that

1-x+ar

$$\Rightarrow b = (x + ar) \cdot b$$

$$\Rightarrow b = xb + arb$$

$$= xb + (ab) \cdot r$$

Now $ab \in I$ $\Rightarrow (ab) : r \in I$. Similarly, since $x \in I \Rightarrow x.b \in I$.

Thus I is a frime ideal.