ECE750T-28: Computer-aided Reasoning for Software Engineering

Lecture 11: Theory of Equality with Uninterpreted Functions

Vijay Ganesh (Original notes from Isil Dillig)

Review

ightharpoonup Previous lecture: talked about signature and axioms of $T_{=}$

$$\Sigma_{=}: \{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}$$

Review

• Previous lecture: talked about signature and axioms of $T_{=}$

$$\Sigma_{=}: \{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}$$

Axioms:

1.
$$\forall x. \ x = x$$
 (reflexivity)

2.
$$\forall x, y. \ x = y \rightarrow y = x$$
 (symmetry)

3.
$$\forall x, y, z. \ x = y \ \land \ y = z \ \rightarrow \ x = z$$
 (transitivity)

4.
$$\forall x_1, \dots, x_n, y_1, \dots, y_n$$
. $\bigwedge_i x_i = y_i$ $\rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$ (congruence)

5. for each positive integer n and n-ary predicate symbol p,

$$\forall x_1, \dots, x_n, y_1, \dots, y_n. \bigwedge_i x_i = y_i \rightarrow (p(x_1, \dots, x_n) \leftrightarrow p(y_1, \dots, y_n))$$
 (equivalence)

 \blacktriangleright Today: look at decision procedures for deciding satisfiability in the quantifier-free fragment of $T_{=}$

- \blacktriangleright Today: look at decision procedures for deciding satisfiability in the quantifier-free fragment of $T_{=}$
- ▶ However, our decision procedure has two "restrictions":

- \blacktriangleright Today: look at decision procedures for deciding satisfiability in the quantifier-free fragment of $T_{=}$
- ▶ However, our decision procedure has two "restrictions":
 - formulas consist of conjunctions of literals

- \blacktriangleright Today: look at decision procedures for deciding satisfiability in the quantifier-free fragment of $T_{=}$
- ▶ However, our decision procedure has two "restrictions":
 - formulas consist of conjunctions of literals
 - we'll allow functions, but no predicates

- \blacktriangleright Today: look at decision procedures for deciding satisfiability in the quantifier-free fragment of $T_{=}$
- ▶ However, our decision procedure has two "restrictions":
 - formulas consist of conjunctions of literals
 - we'll allow functions, but no predicates
- ▶ However, these "restrictions" are not real restrictions

- \blacktriangleright Today: look at decision procedures for deciding satisfiability in the quantifier-free fragment of $T_{=}$
- However, our decision procedure has two "restrictions":
 - formulas consist of conjunctions of literals
 - we'll allow functions, but no predicates
- However, these "restrictions" are not real restrictions
- ► For formulas with disjunctions, can convert to DNF and check each clause separately (will consider efficient methods later)

- \blacktriangleright Today: look at decision procedures for deciding satisfiability in the quantifier-free fragment of $T_{=}$
- However, our decision procedure has two "restrictions":
 - formulas consist of conjunctions of literals
 - we'll allow functions, but no predicates
- ▶ However, these "restrictions" are not real restrictions
- For formulas with disjunctions, can convert to DNF and check each clause separately (will consider efficient methods later)
- Furthermore, any formula containing predicates can be converted to equisatisfiable formula containing only functions!

► Simple transformation yields equisatisfiable formula with only functions

- ▶ Simple transformation yields equisatisfiable formula with only functions
- ▶ The trick: For each relation constant *p*:
 - 1. introduce a fresh function constant f_p

- ► Simple transformation yields equisatisfiable formula with only functions
- ▶ The trick: For each relation constant *p*:
 - 1. introduce a fresh function constant f_p
 - 2. rewrite $p(x_1, \ldots, x_n)$ as $f_p(x_1, \ldots, x_n) = t$

where t is a fresh object constant

- ► Simple transformation yields equisatisfiable formula with only functions
- ▶ The trick: For each relation constant *p*:
 - 1. introduce a fresh function constant f_p
 - 2. rewrite $p(x_1, \ldots, x_n)$ as $f_p(x_1, \ldots, x_n) = t$ where t is a fresh object constant
- ▶ Example: How do we transform $x = y \rightarrow (p(x) \leftrightarrow p(y))$ to equisat formula?

- ▶ Simple transformation yields equisatisfiable formula with only functions
- ▶ The trick: For each relation constant *p*:
 - 1. introduce a fresh function constant f_p
 - 2. rewrite $p(x_1,\ldots,x_n)$ as $f_n(x_1,\ldots,x_n)=t$ where t is a fresh object constant
- **Example:** How do we transform $x = y \to (p(x) \leftrightarrow p(y))$ to equisat formula? $x = y \rightarrow (f_p(x) = t \leftrightarrow f_p(y) = t)$

$T_{=}$ without Predicates

Signature without predicates:

$$\Sigma_{=}:\ \{=,\ a,\ b,\ c,\ \dots,\ f,\ g,\ h,\ \dots\}$$

T_{-} without Predicates

Signature without predicates:

$$\Sigma_{=}$$
: $\{=, a, b, c, \ldots, f, g, h, \ldots\}$

Axioms:

1.
$$\forall x. \ x = x$$
 (reflexivity)

2.
$$\forall x, y. \ x = y \rightarrow y = x$$
 (symmetry)

3.
$$\forall x,y,z. \ x=y \ \land \ y=z \ \rightarrow \ x=z$$
 (transitivity)

4.
$$\forall x_1,\ldots,x_n,y_1,\ldots,y_n.$$
 $\bigwedge_i x_i=y_i$ $\rightarrow f(x_1,\ldots,x_n)=f(y_1,\ldots,y_n)$ (congruence)

▶ Let's consider some examples

- ▶ Let's consider some examples
- ▶ Is the formula $x = y \land f(x) \neq f(y)$ sat, unsat, valid?

- ▶ Let's consider some examples
- Is the formula $x=y \wedge f(x) \neq f(y)$ sat, unsat, valid? unsat

- ▶ Let's consider some examples
- ▶ Is the formula $x = y \land f(x) \neq f(y)$ sat, unsat, valid? unsat
- ▶ What about $x \neq y \land f(x) = f(y)$?

- ▶ Let's consider some examples
- ▶ Is the formula $x = y \land f(x) \neq f(y)$ sat, unsat, valid? unsat
- ▶ What about $x \neq y \land f(x) = f(y)$? sat

- ▶ Let's consider some examples
- ▶ Is the formula $x = y \land f(x) \neq f(y)$ sat, unsat, valid? unsat
- ▶ What about $x \neq y \land f(x) = f(y)$? sat
- ▶ What about $x = g(y, z) \rightarrow f(x) = f(g(y, z))$?

- ▶ Let's consider some examples
- ▶ Is the formula $x = y \land f(x) \neq f(y)$ sat, unsat, valid? unsat
- ▶ What about $x \neq y \land f(x) = f(y)$? sat
- ▶ What about $x = g(y, z) \rightarrow f(x) = f(g(y, z))$? valid

- ▶ Let's consider some examples
- ▶ Is the formula $x = y \land f(x) \neq f(y)$ sat, unsat, valid? unsat
- ▶ What about $x \neq y \land f(x) = f(y)$? sat
- ▶ What about $x = g(y, z) \rightarrow f(x) = f(g(y, z))$? valid
- ▶ What about $f(a) = a \land f(f(a)) \neq a$?

- ▶ Let's consider some examples
- ▶ Is the formula $x = y \land f(x) \neq f(y)$ sat, unsat, valid? unsat
- ▶ What about $x \neq y \land f(x) = f(y)$? sat
- ▶ What about $x = g(y, z) \rightarrow f(x) = f(g(y, z))$? valid
- ▶ What about $f(a) = a \land f(f(a)) \neq a$? unsat

▶ What about $f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$?

- ▶ What about $f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$? unsat
- ▶ Reasoning: Substitute a for f(f(f(a))) in second equality, this yields: f(f(a)) = a

- ▶ What about $f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$? unsat
- ▶ Reasoning: Substitute a for f(f(f(a))) in second equality, this yields: f(f(a)) = a
- ▶ Since f(f(a)) = a, by congruence f(f(f(a))) = f(a)

- ▶ What about $f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$? unsat
- ▶ Reasoning: Substitute a for f(f(f(a))) in second equality, this yields: f(f(a)) = a
- ▶ Since f(f(a)) = a, by congruence f(f(f(a))) = f(a)
- ▶ By first equality, we have $f(a) = a \Rightarrow$ contradiction!

 Decision procedure for theory of equality known as congruence closure algorithm

- ▶ Decision procedure for theory of equality known as congruence closure algorithm
- But need to understand what congruence closure is first ⇒ new terminology and concepts

- Decision procedure for theory of equality known as congruence closure algorithm
- ▶ But need to understand what congruence closure is first ⇒ new terminology and concepts
- lacktriangle A binary relation R over a set S is an equivalence relation if

- Decision procedure for theory of equality known as congruence closure algorithm
- ▶ But need to understand what congruence closure is first ⇒ new terminology and concepts
- ▶ A binary relation R over a set S is an equivalence relation if
 - 1. reflexive: $\forall s \in S. \ sRs$

- Decision procedure for theory of equality known as congruence closure algorithm
- ▶ But need to understand what congruence closure is first ⇒ new terminology and concepts
- ▶ A binary relation R over a set S is an equivalence relation if
 - 1. reflexive: $\forall s \in S. \ sRs$
 - 2. symmetric: $\forall s_1, s_2 \in S. \ s_1 R s_2 \rightarrow s_2 R s_1$;

- Decision procedure for theory of equality known as congruence closure algorithm
- ▶ But need to understand what congruence closure is first ⇒ new terminology and concepts
- lacktriangle A binary relation R over a set S is an equivalence relation if
 - 1. reflexive: $\forall s \in S. \ sRs$
 - 2. symmetric: $\forall s_1, s_2 \in S. \ s_1 R s_2 \rightarrow s_2 R s_1$;
 - 3. transitive: $\forall s_1, s_2, s_3 \in S. \ s_1Rs_2 \ \land \ s_2Rs_3 \ \rightarrow \ s_1Rs_3.$

▶ Equality predicate = is equivalence relation over real numbers

- ► Equality predicate = is equivalence relation over real numbers
- ► The relation "has same birthday as" is an equivalence relation over set of people

- ▶ Equality predicate = is equivalence relation over real numbers
- ► The relation "has same birthday as" is an equivalence relation over set of people
- ▶ The relation \equiv_2 is equivalence relation over $\mathbb Z$

- ▶ Equality predicate = is equivalence relation over real numbers
- ► The relation "has same birthday as" is an equivalence relation over set of people
- ▶ The relation \equiv_2 is equivalence relation over \mathbb{Z}
- ▶ A relation R is congruence relation over set S if it is an equivalence relation and for every n'ary function f:

$$\forall \vec{s}, \vec{t}. \bigwedge_{i=1}^{n} s_i R t_i \rightarrow f(\vec{s}) R f(\vec{t}) .$$

ightharpoonup For a given equivalence relation over S, every member of S belongs to an equivalence class

- ightharpoonup For a given equivalence relation over S, every member of S belongs to an equivalence class
- ▶ The equivalence class of $s \in S$ under R is the set:

$$[s]_R \stackrel{\mathsf{def}}{=} \{s' \in S : sRs'\} .$$

- ightharpoonup For a given equivalence relation over S, every member of S belongs to an equivalence class
- ▶ The equivalence class of $s \in S$ under R is the set:

$$[s]_R \stackrel{\mathsf{def}}{=} \{ s' \in S : sRs' \} .$$

ightharpoonup If R is a congruence relation, then this set is called congruence class

- ightharpoonup For a given equivalence relation over S, every member of S belongs to an equivalence class
- ▶ The equivalence class of $s \in S$ under R is the set:

$$[s]_R \stackrel{\mathsf{def}}{=} \{ s' \in S : sRs' \} .$$

- lacktriangleright If R is a congruence relation, then this set is called congruence class
- **Example:** What is the equivalence class of 1 under \equiv_2 ?

- ightharpoonup For a given equivalence relation over S, every member of S belongs to an equivalence class
- ▶ The equivalence class of $s \in S$ under R is the set:

$$[s]_R \stackrel{\mathsf{def}}{=} \{s' \in S : sRs'\} .$$

- ightharpoonup If R is a congruence relation, then this set is called congruence class
- ▶ Example: What is the equivalence class of 1 under \equiv_2 ? odd numbers

- ightharpoonup For a given equivalence relation over S, every member of S belongs to an equivalence class
- ▶ The equivalence class of $s \in S$ under R is the set:

$$[s]_R \stackrel{\mathsf{def}}{=} \{s' \in S : sRs'\} .$$

- ightharpoonup If R is a congruence relation, then this set is called congruence class
- **Example:** What is the equivalence class of 1 under \equiv_2 ? odd numbers
- ▶ What is the equivalence class of 6 under \equiv_3 ?

- ▶ For a given equivalence relation over S, every member of S belongs to an equivalence class
- ▶ The equivalence class of $s \in S$ under R is the set:

$$[s]_R \stackrel{\mathsf{def}}{=} \{s' \in S : sRs'\} .$$

- \triangleright If R is a congruence relation, then this set is called congruence class
- Example: What is the equivalence class of 1 under \equiv_2 ? odd numbers
- ▶ What is the equivalence class of 6 under \equiv_3 ? multiples of 3

ightharpoonup A binary relation R_1 is a refinement of another binary relation R_2 , written $R_1 \prec R_2$, if

$$\forall s_1, s_2 \in S. \ s_1 R_1 s_2 \ \to \ s_1 R_2 s_2 \ .$$

▶ A binary relation R_1 is a refinement of another binary relation R_2 , written $R_1 \prec R_2$, if

$$\forall s_1, s_2 \in S. \ s_1 R_1 s_2 \rightarrow s_1 R_2 s_2 \ .$$

▶ Example 1: Consider set $S = \{a, b\}$, and relations $R_1 = \{\langle a, b \rangle\}$ and $R_2 = \{\langle a, b \rangle, \langle b, b \rangle\}$

▶ A binary relation R_1 is a refinement of another binary relation R_2 , written $R_1 \prec R_2$, if

$$\forall s_1, s_2 \in S. \ s_1 R_1 s_2 \rightarrow s_1 R_2 s_2 \ .$$

- ▶ Example 1: Consider set $S = \{a, b\}$, and relations $R_1 = \{\langle a, b \rangle\}$ and $R_2 = \{\langle a, b \rangle, \langle b, b \rangle\}$
- ▶ Do either of these hold? $R_1 \prec R_2$ or $R_2 \prec R_1$?

▶ A binary relation R_1 is a refinement of another binary relation R_2 , written $R_1 \prec R_2$, if

$$\forall s_1, s_2 \in S. \ s_1 R_1 s_2 \rightarrow s_1 R_2 s_2 \ .$$

- ▶ Example 1: Consider set $S = \{a, b\}$, and relations $R_1 = \{\langle a, b \rangle\}$ and $R_2 = \{\langle a, b \rangle, \langle b, b \rangle\}$
- ▶ Do either of these hold? $R_1 \prec R_2$ or $R_2 \prec R_1$? $R_1 \prec R_2$

 \triangleright A binary relation R_1 is a refinement of another binary relation R_2 , written $R_1 \prec R_2$, if

$$\forall s_1, s_2 \in S. \ s_1 R_1 s_2 \ \to \ s_1 R_2 s_2 \ .$$

- **Example 1:** Consider set $S = \{a, b\}$, and relations $R_1 = \{\langle a, b \rangle\}$ and $R_2 = \{\langle a, b \rangle, \langle b, b \rangle\}$
- ▶ Do either of these hold? $R_1 \prec R_2$ or $R_2 \prec R_1$? $R_1 \prec R_2$
- **Example 2:** Consider set \mathbb{Z} and the relations: $R_1: \{xR_1y : x \bmod 2 = y \bmod 2\}$ $R_2: \{xR_2y : x \bmod 4 = y \bmod 4\}$

 \triangleright A binary relation R_1 is a refinement of another binary relation R_2 , written $R_1 \prec R_2$, if

$$\forall s_1, s_2 \in S. \ s_1 R_1 s_2 \rightarrow s_1 R_2 s_2 \ .$$

- **Example 1:** Consider set $S = \{a, b\}$, and relations $R_1 = \{\langle a, b \rangle\}$ and $R_2 = \{\langle a, b \rangle, \langle b, b \rangle\}$
- ▶ Do either of these hold? $R_1 \prec R_2$ or $R_2 \prec R_1$? $R_1 \prec R_2$
- **Example 2:** Consider set \mathbb{Z} and the relations: $R_1: \{xR_1y : x \bmod 2 = y \bmod 2\}$ $R_2: \{xR_2y : x \bmod 4 = y \bmod 4\}$
- ▶ What is the refinement relationship between R_1 and R_2 ?

▶ A binary relation R_1 is a refinement of another binary relation R_2 , written $R_1 \prec R_2$, if

$$\forall s_1, s_2 \in S. \ s_1 R_1 s_2 \rightarrow s_1 R_2 s_2 \ .$$

- ▶ Example 1: Consider set $S = \{a, b\}$, and relations $R_1 = \{\langle a, b \rangle\}$ and $R_2 = \{\langle a, b \rangle, \langle b, b \rangle\}$
- ▶ Do either of these hold? $R_1 \prec R_2$ or $R_2 \prec R_1$? $R_1 \prec R_2$
- ▶ Example 2: Consider set \mathbb{Z} and the relations: $R_1:\{xR_1y:x\bmod 2=y\bmod 2\}$ $R_2:\{xR_2y:x\bmod 4=y\bmod 4\}$
- ▶ What is the refinement relationship between R_1 and R_2 ? $R_2 \prec R_1$

lacktriangleright The equivalence closure R^E of a binary relation R over S is the equivalence relation such that:

- ▶ The equivalence closure R^E of a binary relation R over S is the equivalence relation such that:
 - 1. R refines R^E , i.e. $R \prec R^E$;

- ▶ The equivalence closure R^E of a binary relation R over S is the equivalence relation such that:
 - 1. R refines R^E , i.e. $R \prec R^E$;
 - 2. for all other equivalence relations R' s.t. $R \prec R',$ either $R' = R^E$ or $R^E \prec R'$

- ▶ The equivalence closure R^E of a binary relation R over S is the equivalence relation such that:
 - 1. R refines R^E , i.e. $R \prec R^E$;
 - 2. for all other equivalence relations R' s.t. $R \prec R',$ either $R' = R^E$ or $R^E \prec R'$
- ▶ Thus, R^E is the smallest equivalence relation that includes R.

▶ Consider set $S = \{a, b, c, d\}$ and binary relation

$$R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$$

 \blacktriangleright Consider set $S=\{a,b,c,d\}$ and binary relation

$$R:\{\langle a,b\rangle,\langle b,c\rangle,\langle d,d\rangle\}$$

▶ Is R an equivalence relation?

▶ Consider set $S = \{a, b, c, d\}$ and binary relation

$$R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$$

▶ Is R an equivalence relation? No

▶ Consider set $S = \{a, b, c, d\}$ and binary relation

$$R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$$

- ▶ Is R an equivalence relation? No
- \blacktriangleright We want to compute the equivalence closure R^E , i.e., smallest equivalence relation including R

▶ Consider set $S = \{a, b, c, d\}$ and binary relation

$$R:\{\langle a,b\rangle,\langle b,c\rangle,\langle d,d\rangle\}$$

- ▶ Is R an equivalence relation? No
- lackbox We want to compute the equivalence closure R^E , i.e., smallest equivalence relation including R
- ► Thus, R^E needs to include all tuples in R and must obey reflexivity, symmetry, and transitivity.

 $\blacktriangleright R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$

- $\blacktriangleright \ R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$
- ▶ Since R^E must include R, which elements are in R^E ?

- $\blacktriangleright R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$
- ▶ Since R^E must include R, which elements are in R^E ? $\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle$

- $\blacktriangleright R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$
- ▶ Since R^E must include R, which elements are in R^E ? $\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle$
- Since R^E equivalence relation, it must obey reflexivity. What other elements in R^E due to reflexivity?

- $R: \{\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle \}$
- ▶ Since R^E must include R, which elements are in R^E ? $\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle$
- ▶ Since R^E equivalence relation, it must obey reflexivity. What other elements in R^E due to reflexivity? $\langle a,a\rangle, \langle b,b\rangle, \langle c,c\rangle$

- $\blacktriangleright R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$
- ▶ Since R^E must include R, which elements are in R^E ? $\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle$
- ▶ Since R^E equivalence relation, it must obey reflexivity. What other elements in R^E due to reflexivity? $\langle a,a\rangle, \langle b,b\rangle, \langle c,c\rangle$
- ▶ What elements in R^E due to symmetry?

- $\blacktriangleright R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$
- ▶ Since R^E must include R, which elements are in R^E ? $\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle$
- ▶ Since R^E equivalence relation, it must obey reflexivity. What other elements in R^E due to reflexivity? $\langle a,a\rangle, \langle b,b\rangle, \langle c,c\rangle$
- ▶ What elements in R^E due to symmetry? $\langle b, a \rangle, \langle c, b \rangle$

- $R: \{\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle \}$
- ▶ Since R^E must include R, which elements are in R^E ? $\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle$
- ▶ Since R^E equivalence relation, it must obey reflexivity. What other elements in R^E due to reflexivity? $\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle$
- ▶ What elements in R^E due to symmetry? $\langle b, a \rangle, \langle c, b \rangle$
- ▶ What elements in R^E due to transitivity?

- $\blacktriangleright \ R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$
- ▶ Since R^E must include R, which elements are in R^E ? $\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle$
- ▶ Since R^E equivalence relation, it must obey reflexivity. What other elements in R^E due to reflexivity? $\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle$
- ▶ What elements in R^E due to symmetry? $\langle b, a \rangle, \langle c, b \rangle$
- ▶ What elements in R^E due to transitivity? $\langle a, c \rangle, \langle c, a \rangle$

- $R: \{\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle \}$
- ▶ Since R^E must include R, which elements are in R^E ? $\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle$
- ▶ Since R^E equivalence relation, it must obey reflexivity. What other elements in R^E due to reflexivity? $\langle a,a\rangle,\langle b,b\rangle,\langle c,c\rangle$
- ▶ What elements in R^E due to symmetry? $\langle b, a \rangle, \langle c, b \rangle$
- lackbox What elements in R^E due to transitivity? $\langle a,c \rangle, \langle c,a \rangle$
- ▶ What is R^E ?

- $ightharpoonup R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$
- ▶ Since R^E must include R, which elements are in R^E ? $\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle$
- ightharpoonup Since R^E equivalence relation, it must obey reflexivity. What other elements in R^E due to reflexivity? $\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle$
- ▶ What elements in R^E due to symmetry? $\langle b, a \rangle, \langle c, b \rangle$
- ▶ What elements in R^E due to transitivity? $\langle a, c \rangle, \langle c, a \rangle$
- \blacktriangleright What is R^E ?

$$R^E = \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle, \langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle, \langle b,a\rangle, \langle c,b\rangle, \langle a,c\rangle, \langle c,a\rangle\}$$

- $\blacktriangleright \ R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$
- $\blacktriangleright \ R^E = \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle, \langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle, \langle b,a\rangle, \langle c,b\rangle, \langle a,c\rangle, \langle c,a\rangle\}$

- $ightharpoonup R: \{\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle\}$
- $R^E = \{ \langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle, \langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle, \langle b, a \rangle, \langle c, b \rangle, \langle a, c \rangle, \langle c, a \rangle \}$
- ▶ Consider relation $R' = R^E \cup \{\langle c, d \rangle, \langle d, c \rangle, \langle b, d \rangle, \langle d, b \rangle, \langle a, d \rangle, \langle d, a \rangle\}$

- $ightharpoonup R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$
- $R^E = \{ \langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle, \langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle, \langle b, a \rangle, \langle c, b \rangle, \langle a, c \rangle, \langle c, a \rangle \}$
- ▶ Consider relation $R' = R^E \cup \{\langle c, d \rangle, \langle d, c \rangle, \langle b, d \rangle, \langle d, b \rangle, \langle a, d \rangle, \langle d, a \rangle\}$
- ightharpoonup R' is also an equivalence relation and covers R

- $ightharpoonup R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$
- $R^E = \{ \langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle, \langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle, \langle b, a \rangle, \langle c, b \rangle, \langle a, c \rangle, \langle c, a \rangle \}$
- ▶ Consider relation $R' = R^E \cup \{\langle c, d \rangle, \langle d, c \rangle, \langle b, d \rangle, \langle d, b \rangle, \langle a, d \rangle, \langle d, a \rangle\}$
- ightharpoonup R' is also an equivalence relation and covers R
- ightharpoonup Is R' also an equivalence closure of R?

- $ightharpoonup R: \{\langle a,b\rangle, \langle b,c\rangle, \langle d,d\rangle\}$
- $R^E = \{ \langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle, \langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle, \langle b, a \rangle, \langle c, b \rangle, \langle a, c \rangle, \langle c, a \rangle \}$
- ▶ Consider relation $R' = R^E \cup \{\langle c, d \rangle, \langle d, c \rangle, \langle b, d \rangle, \langle d, b \rangle, \langle a, d \rangle, \langle d, a \rangle\}$
- ightharpoonup R' is also an equivalence relation and covers R
- ▶ Is R' also an equivalence closure of R? No!

Congruence Closure

lacktriangle Given a set S and binary relation R, we also define congruence closure of R

Congruence Closure

- ightharpoonup Given a set S and binary relation R, we also define congruence closure of R
- \blacktriangleright Congruence closure is similar to equivalence closure, but it is the smallest congruence relation that covers R

Congruence Closure

- ightharpoonup Given a set S and binary relation R, we also define congruence closure of R
- \blacktriangleright Congruence closure is similar to equivalence closure, but it is the smallest congruence relation that covers R
- \blacktriangleright Formally, the congruence closure R^{C} of a binary relation R over S is the congruence relation such that:
 - 1. R refines R^C , i.e. $R \prec R^C$;
 - 2. for all other congruence relations R' s.t. $R \prec R',$ either $R' = R^C$ or $R^C \prec R'$

▶ The decision procedure for $T_{=}$ computes congruence closure of equality over the subterm set of formula

- ightharpoonup The decision procedure for $T_{=}$ computes congruence closure of equality over the subterm set of formula
- ▶ Subterm set S_F of F is the set of all subterms of F

- ▶ The decision procedure for $T_{=}$ computes congruence closure of equality over the subterm set of formula
- ▶ Subterm set S_F of F is the set of all subterms of F
- ▶ Example: Consider formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$

- ► The decision procedure for $T_{=}$ computes congruence closure of equality over the subterm set of formula
- ▶ Subterm set S_F of F is the set of all subterms of F
- **Example:** Consider formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- \blacktriangleright What is S_F ?

- ► The decision procedure for $T_{=}$ computes congruence closure of equality over the subterm set of formula
- ▶ Subterm set S_F of F is the set of all subterms of F
- **Example:** Consider formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- ▶ What is S_F ? $\{a, b, f(a, b), f(f(a, b), b)\}$

 \blacktriangleright We can now define satisfiability of a $\Sigma_{=}$ formula in terms of congruence closure over subterm set

- ▶ We can now define satisfiability of a $\Sigma_{=}$ formula in terms of congruence closure over subterm set
- ▶ Consider Σ = formula F:

$$F: s_1 = t_1 \wedge \ldots s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_n \neq t_n$$

- ▶ We can now define satisfiability of a $\Sigma_{=}$ formula in terms of congruence closure over subterm set
- ▶ Consider Σ = formula F:

$$F: s_1 = t_1 \wedge \ldots s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_n \neq t_n$$

▶ Theorem: F is satisfiable iff there exists a congruence relation \sim over the subterm set S_F of F such that:

- ▶ We can now define satisfiability of a $\Sigma_{=}$ formula in terms of congruence closure over subterm set
- ▶ Consider Σ = formula F:

$$F: s_1 = t_1 \wedge \ldots s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_n \neq t_n$$

- ▶ Theorem: F is satisfiable iff there exists a congruence relation \sim over the subterm set S_F of F such that:
 - 1. For each i in [1, m], $s_i \sim t_i$

- ▶ We can now define satisfiability of a $\Sigma_{=}$ formula in terms of congruence closure over subterm set
- ▶ Consider Σ = formula F:

$$F: s_1 = t_1 \wedge \ldots s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_n \neq t_n$$

- ▶ Theorem: F is satisfiable iff there exists a congruence relation \sim over the subterm set S_F of F such that:
 - 1. For each i in [1, m], $s_i \sim t_i$
 - 2. For each i in [m+1,n], $s_i \not\sim t_i$

Congruence closure algorithm decide satisfiability of

$$F: s_1 = t_1 \wedge \ldots s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_n \neq t_n$$

Congruence closure algorithm decide satisfiability of

$$F: s_1 = t_1 \wedge \ldots s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_n \neq t_n$$

1. Construct the congruence closure \sim of

$$\{s_1=t_1,\ldots,s_m=t_m\}$$

over the subterm set S_F .

Congruence closure algorithm decide satisfiability of

$$F: s_1 = t_1 \wedge \ldots s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_n \neq t_n$$

1. Construct the congruence closure \sim of

$$\{s_1=t_1,\ldots,s_m=t_m\}$$

over the subterm set S_F .

2. If $s_i \sim t_i$ for any i in [m+1,n], F is unsatisfiable

Congruence closure algorithm decide satisfiability of

$$F: s_1 = t_1 \wedge \ldots s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_n \neq t_n$$

1. Construct the congruence closure \sim of

$$\{s_1=t_1,\ldots,s_m=t_m\}$$

over the subterm set S_F .

- 2. If $s_i \sim t_i$ for any i in [m+1,n], F is unsatisfiable
- 3. Otherwise, F is satisfiable

▶ Consider the formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$

- \blacktriangleright Consider the formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- ▶ We'll represent \sim as a set of congruence classes, i.e., if t_1 and t_2 are in the same set, this means $t_1 \sim t_2$, otherwise $t_1 \not\sim t_2$

- ▶ Consider the formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- \blacktriangleright We'll represent \sim as a set of congruence classes, i.e., if t_1 and t_2 are in the same set, this means $t_1 \sim t_2$, otherwise $t_1 \not\sim t_2$
- \triangleright First, construct subterm set S_F and place each subterm in a separate set:

- ▶ Consider the formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- \blacktriangleright We'll represent \sim as a set of congruence classes, i.e., if t_1 and t_2 are in the same set, this means $t_1 \sim t_2$, otherwise $t_1 \not\sim t_2$
- \triangleright First, construct subterm set S_F and place each subterm in a separate set:

$$\{\{a\},\{b\},\{f(a,b)\},\{f(f(a,b),b)\}\}$$

- ▶ Consider the formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- \blacktriangleright We'll represent \sim as a set of congruence classes, i.e., if t_1 and t_2 are in the same set, this means $t_1 \sim t_2$, otherwise $t_1 \not\sim t_2$
- \triangleright First, construct subterm set S_F and place each subterm in a separate set:

$$\{\{a\},\{b\},\{f(a,b)\},\{f(f(a,b),b)\}\}$$

▶ Because of equality f(a, b) = a, merge congruence classes of f(a, b) and a:

- ▶ Consider the formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- \blacktriangleright We'll represent \sim as a set of congruence classes, i.e., if t_1 and t_2 are in the same set, this means $t_1 \sim t_2$, otherwise $t_1 \not\sim t_2$
- \triangleright First, construct subterm set S_F and place each subterm in a separate set:

$$\{\{a\},\{b\},\{f(a,b)\},\{f(f(a,b),b)\}\}$$

▶ Because of equality f(a, b) = a, merge congruence classes of f(a, b) and a:

$$\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$$

- Formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- Current congruence classes:

$$\{\{a,f(a,b)\},\{b\},\{f(f(a,b),b)\}\}$$

- $\blacktriangleright \ \ \mathsf{Formula} \ F: f(a,b) = a \land f(f(a,b),b) \neq a$
- Current congruence classes:

$$\{\{a,f(a,b)\},\{b\},\{f(f(a,b),b)\}\}$$

▶ Using $a \sim f(a, b)$ and $b \sim b$, what does function congruence imply?

- Formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- Current congruence classes:

$$\{\{a,f(a,b)\},\{b\},\{f(f(a,b),b)\}\}$$

▶ Using $a \sim f(a,b)$ and $b \sim b$, what does function congruence imply? f(f(a,b),b) = f(a,b)

- Formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- Current congruence classes:

$$\{\{a,f(a,b)\},\{b\},\{f(f(a,b),b)\}\}$$

- ▶ Using $a \sim f(a, b)$ and $b \sim b$, what does function congruence imply? f(f(a, b), b) = f(a, b)
- ▶ Thus, merge congruence classes of f(a, b) and f(f(a, b), b):

$$\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\}$$

- Formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- Current congruence classes:

$$\{\{a,f(a,b)\},\{b\},\{f(f(a,b),b)\}\}$$

- ▶ Using $a \sim f(a, b)$ and $b \sim b$, what does function congruence imply? f(f(a, b), b) = f(a, b)
- ▶ Thus, merge congruence classes of f(a, b) and f(f(a, b), b):

$$\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\}$$

▶ This represents the congruence closure over S_F .

- $\blacktriangleright \ \ \mathsf{Formula} \ F: f(a,b) = a \land f(f(a,b),b) \neq a$
- $\blacktriangleright \ \, {\sf Congruence\ closure:} \quad \{\{a,f(a,b),f(f(a,b),b)\},\{b\}\}$
- ▶ Is *F* satisfiable?

Example, cont

- Formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- ▶ Congruence closure: $\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\}$
- ▶ Is F satisfiable? No
- ▶ Since a and f(f(a,b),b) are in same congruence class, we have $a \sim f(f(a,b),b)$
- ▶ This contradicts $f(f(a, b), b) \neq a!$

► Consider formula:

$$F: f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

► Consider formula:

$$F: f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

▶ What is the subterm set S_F ?

► Consider formula:

$$F: f(f(f(a))) = a \wedge f(f(f(f(f(a))))) = a \wedge f(a) \neq a$$

▶ What is the subterm set S_F ?

$$\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}$$

Consider formula:

$$F: f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

▶ What is the subterm set S_F ?

$${a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)}$$

▶ Initially, place each subterm in its own congruence class:

$$\{\{a\},\{f(a)\},\{f^2(a)\},\{f^3(a)\},\{f^4(a)\},\{f^5(a)\}\}$$

Consider formula:

$$F: f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

▶ What is the subterm set S_F ?

$${a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)}$$

Initially, place each subterm in its own congruence class:

$$\{\{a\},\{f(a)\},\{f^2(a)\},\{f^3(a)\},\{f^4(a)\},\{f^5(a)\}\}$$

▶ Because of equality $f^3(a) = a$, $f^3(a)$ and a are placed in same congruence class:

Consider formula:

$$F: f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

 \blacktriangleright What is the subterm set S_F ?

$${a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)}$$

Initially, place each subterm in its own congruence class:

$$\{\{a\},\{f(a)\},\{f^2(a)\},\{f^3(a)\},\{f^4(a)\},\{f^5(a)\}\}$$

▶ Because of equality $f^3(a) = a$, $f^3(a)$ and a are placed in same congruence class:

$$\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$$

- Formula $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- Current congruence classes:

$$\{\{a,f^3(a)\},\{f(a)\},\{f^2(a)\},\{f^4(a)\},\{f^5(a)\}\}$$

- Formula $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- Current congruence classes:

$$\{\{a,f^3(a)\},\{f(a)\},\{f^2(a)\},\{f^4(a)\},\{f^5(a)\}\}$$

▶ From $a = f^3(a)$, what can we infer using function congruence?

- Formula $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- Current congruence classes:

$$\{\{a,f^3(a)\},\{f(a)\},\{f^2(a)\},\{f^4(a)\},\{f^5(a)\}\}$$

From $a = f^3(a)$, what can we infer using function congruence? $f(a) = f^4(a)$ and $f^2(a) = f^5(a)$

- Formula $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- Current congruence classes:

$$\{\{a,f^3(a)\},\{f(a)\},\{f^2(a)\},\{f^4(a)\},\{f^5(a)\}\}$$

- From $a = f^3(a)$, what can we infer using function congruence? $f(a) = f^{4}(a)$ and $f^{2}(a) = f^{5}(a)$
- Resulting congruence classes:

$$\{\{a,f^3(a)\},\{f(a),f^4(a)\},\{f^2(a),f^5(a)\}\}$$

- Formula $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- Current congruence classes:

$$\{\{a,f^3(a)\},\{f(a),f^4(a)\},\{f^2(a),f^5(a)\}\}$$

- Formula $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- Current congruence classes:

$$\{\{a,f^3(a)\},\{f(a),f^4(a)\},\{f^2(a),f^5(a)\}\}$$

Now, process equality $f^5(a) = a$; which classes do we merge?

- Formula $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- Current congruence classes:

$$\{\{a,f^3(a)\},\{f(a),f^4(a)\},\{f^2(a),f^5(a)\}\}$$

Now, process equality $f^5(a) = a$; which classes do we merge?

$$\{\{a, f^3(a), f^2(a), f^5(a)\}, \{f(a), f^4(a)\}\}$$

- Formula $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- Current congruence classes:

$$\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$$

▶ Now, process equality $f^5(a) = a$; which classes do we merge?

$$\{\{a,f^3(a),f^2(a),f^5(a)\},\{f(a),f^4(a)\}\}$$

From $a = f^2(a)$, what can we infer via function congruence?

- Formula $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- Current congruence classes:

$$\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$$

Now, process equality $f^5(a) = a$; which classes do we merge?

$$\{\{a, f^3(a), f^2(a), f^5(a)\}, \{f(a), f^4(a)\}\}$$

From $a = f^2(a)$, what can we infer via function congruence? $f(a) = f^3(a)$

- Formula $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- Current congruence classes:

$$\{\{a,f^3(a)\},\{f(a),f^4(a)\},\{f^2(a),f^5(a)\}\}$$

Now, process equality $f^5(a) = a$; which classes do we merge?

$$\{\{a, f^3(a), f^2(a), f^5(a)\}, \{f(a), f^4(a)\}\}$$

- From $a = f^2(a)$, what can we infer via function congruence? $f(a) = f^3(a)$
- ▶ Thus, merge the two congruence classes:

$$\{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\}$$

- $\qquad \qquad \mathbf{Formula} \ F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- ► Currenct congruence classes:

$$\{\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\}\}$$

- Formula $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- Currenct congruence classes:

$$\{\{a,f(a),f^2(a),f^3(a),f^4(a),f^5(a)\}\}$$

Is the formula satisfiable?

- Formula $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- Currenct congruence classes:

$$\{\{a, f(a), f^{2}(a), f^{3}(a), f^{4}(a), f^{5}(a)\}\}$$

- Is the formula satisfiable? No
- ▶ Since f(a) and a are in same congruence class, this contradicts $f(a) \neq a$

▶ Consider formula $F: f(x) = f(y) \land x \neq y$

- $lackbox{ Consider formula } F: f(x) = f(y) \land x \neq y$
- ▶ What is the subterm set?

- ▶ Consider formula $F: f(x) = f(y) \land x \neq y$
- ▶ What is the subterm set? $\{x, y, f(x), f(y)\}$

- ▶ Consider formula $F: f(x) = f(y) \land x \neq y$
- ▶ What is the subterm set? $\{x, y, f(x), f(y)\}$
- ► Each subterm starts in its own congruence class: $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$

- ▶ Consider formula $F: f(x) = f(y) \land x \neq y$
- ▶ What is the subterm set? $\{x, y, f(x), f(y)\}$
- ► Each subterm starts in its own congruence class: $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$
- ▶ Process equality $f(x) = f(y) \Rightarrow$

- ▶ Consider formula $F: f(x) = f(y) \land x \neq y$
- ▶ What is the subterm set? $\{x, y, f(x), f(y)\}$
- ► Each subterm starts in its own congruence class: $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$
- ▶ Process equality $f(x) = f(y) \Rightarrow \{\{x\}, \{y\}, \{f(x), f(y)\}\}$

- ▶ Consider formula $F: f(x) = f(y) \land x \neq y$
- ▶ What is the subterm set? $\{x, y, f(x), f(y)\}$
- ► Each subterm starts in its own congruence class: $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$
- ▶ Process equality $f(x) = f(y) \Rightarrow \{\{x\}, \{y\}, \{f(x), f(y)\}\}$
- ▶ What new equalities can we infer from congruence?

- ▶ Consider formula $F: f(x) = f(y) \land x \neq y$
- ▶ What is the subterm set? $\{x, y, f(x), f(y)\}$
- ► Each subterm starts in its own congruence class: $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$
- ▶ Process equality $f(x) = f(y) \Rightarrow \{\{x\}, \{y\}, \{f(x), f(y)\}\}$
- What new equalities can we infer from congruence? None!

- ▶ Consider formula $F: f(x) = f(y) \land x \neq y$
- ▶ What is the subterm set? $\{x, y, f(x), f(y)\}$
- ► Each subterm starts in its own congruence class: $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$
- ▶ Process equality $f(x) = f(y) \Rightarrow \{\{x\}, \{y\}, \{f(x), f(y)\}\}$
- What new equalities can we infer from congruence? None!
- ▶ Is the formula satisfiable?

- ▶ Consider formula $F: f(x) = f(y) \land x \neq y$
- ▶ What is the subterm set? $\{x, y, f(x), f(y)\}$
- ► Each subterm starts in its own congruence class: $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$
- ▶ Process equality $f(x) = f(y) \Rightarrow \{\{x\}, \{y\}, \{f(x), f(y)\}\}$
- What new equalities can we infer from congruence? None!
- ▶ Is the formula satisfiable? Yes

▶ So far, we described how to decide satisfiability using congruence closure

- ▶ So far, we described how to decide satisfiability using congruence closure
- ▶ But we haven't discussed an algorithm for efficiently computing congruence closure

- ▶ So far, we described how to decide satisfiability using congruence closure
- But we haven't discussed an algorithm for efficiently computing congruence closure
- There is a very efficient algorithm called Union-Find for computing congruence classes

- ▶ So far, we described how to decide satisfiability using congruence closure
- But we haven't discussed an algorithm for efficiently computing congruence closure
- There is a very efficient algorithm called Union-Find for computing congruence classes
- ▶ Next: Talk about Union-Find algorithm for computing congruence closures

Representing Subterms

➤ To compute congruence closure efficiently, we'll represent the subterm set of the formula as a DAG

Representing Subterms

 To compute congruence closure efficiently, we'll represent the subterm set of the formula as a DAG

► Each node corresponds to a subterm and has unique id

Representing Subterms

 To compute congruence closure efficiently, we'll represent the subterm set of the formula as a DAG

- Each node corresponds to a subterm and has unique id
- ▶ Edges point from function symbol to arguments

Representing Subterms

 To compute congruence closure efficiently, we'll represent the subterm set of the formula as a DAG

- ► Each node corresponds to a subterm and has unique id
- ▶ Edges point from function symbol to arguments
- Question: What subterm does node labeled 1 represent?

Representing Subterms

 To compute congruence closure efficiently, we'll represent the subterm set of the formula as a DAG

- ► Each node corresponds to a subterm and has unique id
- ▶ Edges point from function symbol to arguments
- Question: What subterm does node labeled 1 represent? f(f(a,b), b)

▶ To compute congruence closure, we need to merge congruence classes

- ▶ To compute congruence closure, we need to merge congruence classes
- ► To do this efficiently, each congruence class has a representative: When merging two classes, only need to update the representative

- ▶ To compute congruence closure, we need to merge congruence classes
- ► To do this efficiently, each congruence class has a representative: When merging two classes, only need to update the representative
 - ► Thus, for a given subterm, we need to be able to find the representative of its class

- ▶ To compute congruence closure, we need to merge congruence classes
- ► To do this efficiently, each congruence class has a representative: When merging two classes, only need to update the representative

- ➤ Thus, for a given subterm, we need to be able to find the representative of its class
- ► Each subterm contains a pointer that eventually leads to the representative of its congruence class

- ▶ To compute congruence closure, we need to merge congruence classes
- ► To do this efficiently, each congruence class has a representative: When merging two classes, only need to update the representative

- ► Thus, for a given subterm, we need to be able to find the representative of its class
- Each subterm contains a pointer that eventually leads to the representative of its congruence class
- ▶ In this example, a, f(a, b), f(f(a, b), b) are in same congruence class; a is the representative

▶ In addition to efficiently finding representative, also need to efficiently find parents of terms

- In addition to efficiently finding representative, also need to efficiently find parents of terms
- ▶ Why? Because if $x_1 = y_1, ..., x_k = y_k$, function congruence implies $f(\vec{x}) = f(\vec{y})$

- In addition to efficiently finding representative, also need to efficiently find parents of terms
- ▶ Why? Because if $x_1 = y_1, ..., x_k = y_k$, function congruence implies $f(\vec{x}) = f(\vec{y})$
- ▶ Thus, when each x_i, y_i pair is in same conguence class, need to merge congruence classes of their parents $f(\vec{x})$ and $f(\vec{y})$

- In addition to efficiently finding representative, also need to efficiently find parents of terms
- ▶ Why? Because if $x_1 = y_1, ..., x_k = y_k$, function congruence implies $f(\vec{x}) = f(\vec{y})$
- ▶ Thus, when each x_i, y_i pair is in same conguence class, need to merge congruence classes of their parents $f(\vec{x})$ and $f(\vec{y})$
- Thus, keep pointer from representative of congruence class to parents of all subterms in the congruence class

Represent subterms as a DAG

- ▶ Represent subterms as a DAG
- ▶ Each node in the DAG corresponds to a subterm

- Represent subterms as a DAG
- ▶ Each node in the DAG corresponds to a subterm
- ▶ Each node stores its unique id, name of function or variable, and list of argument subterms

- Represent subterms as a DAG
- Each node in the DAG corresponds to a subterm
- Each node stores its unique id, name of function or variable, and list of argument subterms
- lacktriangle Each node n has a find pointer field that leads to its representative

- Represent subterms as a DAG
- ▶ Each node in the DAG corresponds to a subterm
- Each node stores its unique id, name of function or variable, and list of argument subterms
- lacktriangle Each node n has a find pointer field that leads to its representative
- ▶ The find field of a representative points to itself

- Represent subterms as a DAG
- Each node in the DAG corresponds to a subterm
- Each node stores its unique id, name of function or variable, and list of argument subterms
- ▶ Each node *n* has a find pointer field that leads to its representative
- ▶ The find field of a representative points to itself
- ▶ Each representative stores the set of parents for all subterms in that class

- Represent subterms as a DAG
- Each node in the DAG corresponds to a subterm
- Each node stores its unique id, name of function or variable, and list of argument subterms
- ightharpoonup Each node n has a find pointer field that leads to its representative
- ▶ The find field of a representative points to itself
- ▶ Each representative stores the set of parents for all subterms in that class
- ▶ If a term is not a representative, then its parents field is empty

ightharpoonup Given a term t, we need to find representative for that term

- lacktriangle Given a term t, we need to find representative for that term
- ightharpoonup If t's find field points to itself, then t is the representative of its congruence class

- lacktriangle Given a term t, we need to find representative for that term
- ightharpoonup If t's find field points to itself, then t is the representative of its congruence class
- lackbox Otherwise, we follow the chain of find references until we find a node t^\prime that points to itself

- lacktriangle Given a term t, we need to find representative for that term
- ightharpoonup If t's find field points to itself, then t is the representative of its congruence class
- lackbox Otherwise, we follow the chain of find references until we find a node t^\prime that points to itself
- ▶ In this case, t' is t's representative

▶ Using this data structure, how do we merge congruence classes of two terms t_1 and t_2 ?

- Using this data structure, how do we merge congruence classes of two terms t₁ and t₂?
- ightharpoonup First find representatives of t_1 and t_2 as decribed earlier

- Using this data structure, how do we merge congruence classes of two terms t₁ and t₂?
- ightharpoonup First find representatives of t_1 and t_2 as decribed earlier
- ▶ Want to make $Rep(t_2)$ new representative for merged class

- Using this data structure, how do we merge congruence classes of two terms t₁ and t₂?
- ightharpoonup First find representatives of t_1 and t_2 as decribed earlier
- Want to make $Rep(t_2)$ new representative for merged class
- ▶ Thus, change find field of $Rep(t_1)$ to point to $Rep(t_2)$

- Using this data structure, how do we merge congruence classes of two terms t₁ and t₂?
- ightharpoonup First find representatives of t_1 and t_2 as decribed earlier
- Want to make $Rep(t_2)$ new representative for merged class
- ▶ Thus, change find field of $Rep(t_1)$ to point to $Rep(t_2)$
- ▶ Update parents: add parent terms stored in $Rep(t_1)$ to those of $Rep(t_2)$, and remove parents stored in $Rep(t_1)$

▶ How do we process an equality $t_1 = t_2$?

- ▶ How do we process an equality $t_1 = t_2$?
- ightharpoonup Need to merge equivalence classes of t_1 and t_2

- ▶ How do we process an equality $t_1 = t_2$?
- ▶ Need to merge equivalence classes of t_1 and t_2
- \blacktriangleright Might potentially also need to merge t_1 and t_2 's parents due to function congruence

- ▶ How do we process an equality $t_1 = t_2$?
- lacktriangleright Need to merge equivalence classes of t_1 and t_2
- ightharpoonup Might potentially also need to merge t_1 and t_2 's parents due to function congruence
- ▶ Given parent p_1 of t_1 and p_2 of t_2 , when do we merge p_1 and p_2 's congruence classes?

- ▶ How do we process an equality $t_1 = t_2$?
- ▶ Need to merge equivalence classes of t_1 and t_2
- \blacktriangleright Might potentially also need to merge t_1 and t_2 's parents due to function congruence
- Given parent p_1 of t_1 and p_2 of t_2 , when do we merge p_1 and p_2 's congruence classes?
- ▶ If they have the same function name and all of their arguments are congruent (i.e., have same representative)

Processing Equalities, cont

To process equality $t_1 = t_2$:

1. Find representatives of t_1 and t_2

Processing Equalities, cont

To process equality $t_1 = t_2$:

- 1. Find representatives of t_1 and t_2
- 2. Merge equivalence classes

Processing Equalities, cont

To process equality $t_1 = t_2$:

- 1. Find representatives of t_1 and t_2
- 2. Merge equivalence classes
- 3. Retrieve the set of parents P_1 , P_2 stored in $Rep(t_1), Rep(t_2)$

Processing Equalities, cont

To process equality $t_1 = t_2$:

- 1. Find representatives of t_1 and t_2
- 2. Merge equivalence classes
- 3. Retrieve the set of parents P_1 , P_2 stored in $Rep(t_1), Rep(t_2)$
- 4. For each $(p_i,p_j)\in P_1\times P_2$, if p_i and p_j are congruent, process equality $p_i=p_j$

Processing Equalities, cont

To process equality $t_1 = t_2$:

- 1. Find representatives of t_1 and t_2
- 2. Merge equivalence classes
- 3. Retrieve the set of parents P_1 , P_2 stored in $Rep(t_1), Rep(t_2)$
- 4. For each $(p_i,p_j) \in P_1 \times P_2$, if p_i and p_j are congruent, process equality $p_i = p_j$

Observe: Processing one equality creates new equalities, which in turn might generate other new equalities!

▶ Recall: The representative stores parents of all terms in the congruence class

- ▶ Recall: The representative stores parents of all terms in the congruence class
- ▶ Thus, when we process equality $t_1 = t_2$, we might also merge terms that are not t_1 and t_2 's parents

- Recall: The representative stores parents of all terms in the congruence class
- ightharpoonup Thus, when we process equality $t_1=t_2$, we might also merge terms that are not t_1 and t_2 's parents
- ▶ Is this correct/necessary?

- Recall: The representative stores parents of all terms in the congruence class
- lacktriangle Thus, when we process equality $t_1=t_2$, we might also merge terms that are not t_1 and t_2 's parents
- ► Is this correct/necessary? Yes!

- Recall: The representative stores parents of all terms in the congruence class
- lacktriangle Thus, when we process equality $t_1=t_2$, we might also merge terms that are not t_1 and t_2 's parents
- ▶ Is this correct/necessary? Yes!
- ▶ If s_1 , s_2 are in t_1 , t_2 's congruence class, $t_1 = t_2$ implies $s_1 = s_2$

- Recall: The representative stores parents of all terms in the congruence class
- ▶ Thus, when we process equality $t_1=t_2$, we might also merge terms that are not t_1 and t_2 's parents
- ▶ Is this correct/necessary? Yes!
- ▶ If s_1 , s_2 are in t_1 , t_2 's congruence class, $t_1 = t_2$ implies $s_1 = s_2$
- lacktriangle Thus, also need to process equality between s_1 , s_2 's parents

- ▶ Recall: The representative stores parents of all terms in the congruence class
- ▶ Thus, when we process equality $t_1 = t_2$, we might also merge terms that are not t_1 and t_2 's parents
- Is this correct/necessary? Yes!
- ▶ If s_1 , s_2 are in t_1 , t_2 's congruence class, $t_1 = t_2$ implies $s_1 = s_2$
- \triangleright Thus, also need to process equality between s_1 , s_2 's parents
- ▶ That's why representative stores all parents for cong. class

$$F: s_1 = t_1 \wedge \ldots s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_n \neq t_n$$

Algorithm to decide satisfiability of $\mathit{T}_{=}$ formula

$$F: s_1 = t_1 \wedge \ldots s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_n \neq t_n$$

 Compute subterms and construct initial DAG (each node's representative is itself)

$$F: s_1 = t_1 \wedge \ldots s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_n \neq t_n$$

- Compute subterms and construct initial DAG (each node's representative is itself)
- 2. For each $i \in [1, m]$, process equality $s_i = t_i$ as described

$$F: s_1 = t_1 \wedge \ldots s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_n \neq t_n$$

- Compute subterms and construct initial DAG (each node's representative is itself)
- 2. For each $i \in [1, m]$, process equality $s_i = t_i$ as described
- 3. For each $i \in [m+1, n]$, check if $Rep(s_i) = Rep(t_i)$

$$F: s_1 = t_1 \wedge \ldots s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_n \neq t_n$$

- 1. Compute subterms and construct initial DAG (each node's representative is itself)
- 2. For each $i \in [1, m]$, process equality $s_i = t_i$ as described
- 3. For each $i \in [m+1, n]$, check if $Rep(s_i) = Rep(t_i)$
- 4. If there exists some $i \in [m+1, n]$ for which $Rep(s_i) = Rep(t_i)$, return **UNSAT**

$$F: s_1 = t_1 \wedge \ldots s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \ldots s_n \neq t_n$$

- Compute subterms and construct initial DAG (each node's representative is itself)
- 2. For each $i \in [1, m]$, process equality $s_i = t_i$ as described
- 3. For each $i \in [m+1, n]$, check if $Rep(s_i) = Rep(t_i)$
- 4. If there exists some $i \in [m+1,n]$ for which $Rep(s_i) = Rep(t_i)$, return UNSAT
- 5. If for all i, $Rep(s_i) \neq Rep(t_i)$, return SAT

▶ Consider formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$

- $\blacktriangleright \ \ \text{Consider formula} \ F: f(a,b) = a \land f(f(a,b),b) \neq a$
- ▶ Subterms: a, b, f(a, b), f(f(a, b), b)

- ▶ Consider formula $F: f(a, b) = a \land f(f(a, b), b) \neq a$
- ▶ Subterms: a, b, f(a, b), f(f(a, b), b)

- ▶ Consider formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- ▶ Subterms: a, b, f(a, b), f(f(a, b), b)

- ► Construct initial DAG
- ▶ Process equality f(a, b) = a

- ▶ Consider formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- ▶ Subterms: a, b, f(a, b), f(f(a, b), b)

- Construct initial DAG
- ▶ Process equality f(a, b) = a

- ▶ Consider formula $F: f(a, b) = a \land f(f(a, b), b) \neq a$
- ▶ Subterms: a, b, f(a, b), f(f(a, b), b)

- Construct initial DAG
- ▶ Process equality f(a, b) = a
- ▶ Are parents f(a, b) and f(f(a, b), b) congruent?

- ▶ Consider formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- ▶ Subterms: a, b, f(a, b), f(f(a, b), b)

- Construct initial DAG
- ▶ Process equality f(a, b) = a
- Are parents f(a, b) and f(f(a, b), b) congruent?
- Yes, so process equality f(a, b) = f(f(a, b), b)

- ▶ Consider formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- ▶ Subterms: a, b, f(a, b), f(f(a, b), b)

- Construct initial DAG
- ▶ Process equality f(a, b) = a
- ▶ Are parents f(a, b) and f(f(a, b), b) congruent?
- ▶ Yes, so process equality f(a, b) = f(f(a, b), b)

- ▶ Consider formula $F: f(a,b) = a \land f(f(a,b),b) \neq a$
- ▶ Subterms: a, b, f(a, b), f(f(a, b), b)

- Construct initial DAG
- ▶ Process equality f(a, b) = a
- Are parents f(a, b) and f(f(a, b), b) congruent?
- Yes, so process equality f(a,b) = f(f(a,b),b)
- Formula unsatisfiable because f(f(a, b), b) and a have same representative!

▶ Consider formula: $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$

- ► Consider formula: $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- ▶ Initial DAG:

- ► Consider formula: $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- ▶ Initial DAG:

Process equality $f^3(a) = a$:

- ▶ Consider formula: $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- ► Initial DAG:

Process equality $f^3(a) = a$:

- ► Consider formula: $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- ► Initial DAG:

▶ Process equality $f^3(a) = a$:

► Are parents congruent?

- ► Consider formula: $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- ► Initial DAG:

Process equality $f^3(a) = a$:

► Are parents congruent? Yes

- ► Consider formula: $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$
- ► Initial DAG:

▶ Process equality $f^3(a) = a$:

- ► Are parents congruent? Yes
- ▶ Process equality $f^4(a) = f(a)$

► After merging classes:

After merging classes:

• Are $f^4(a)$'s and f(a)'s parents congruent?

► After merging classes:

• Are $f^4(a)$'s and f(a)'s parents congruent? Yes

After merging classes:

- $\,\blacktriangleright\,$ Are $f^4(a)$'s and f(a) 's parents congruent? Yes
- ▶ Process equality $f^5(a) = f^2(a)$

▶ Formula: $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$

 $\qquad \qquad \textbf{Formula:} \ \ F:f^3(a)=a \wedge f^5(a)=a \wedge f(a) \neq a$

▶ Process equality $f^5(a) = a$:

 $\qquad \qquad \textbf{Formula:} \ \ F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$

▶ Process equality $f^5(a) = a$:

Formula: $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$

▶ Process equality $f^5(a) = a$:

Now, parents $f^3(a)$ and f(a) congruent; process equality $f^3(a) = f(a)$

Formula: $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$

▶ Formula: $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$

Now, everything in same congruence class; so we are done.

► Formula: $F: f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$

- Now, everything in same congruence class; so we are done.
- lacktriangle Formula UNSAT because a and f(a) have same representative

ightharpoonup Congruence closure algorithm is used for determining satisfiability of $T_{=}$ formulas (without disjunction)

- lacktriangle Congruence closure algorithm is used for determining satisfiability of $T_{=}$ formulas (without disjunction)
- Our algorithm for computing congruence closures is called Union-Find, also used in other applications

- ightharpoonup Congruence closure algorithm is used for determining satisfiability of $T_=$ formulas (without disjunction)
- Our algorithm for computing congruence closures is called Union-Find, also used in other applications
- ▶ Deciding conjuctive $T_{=}$ formulas is inexpensive: our algorithm is $O(e^2)$, but can be solved in $O(e \log(e))$

- ightharpoonup Congruence closure algorithm is used for determining satisfiability of $T_=$ formulas (without disjunction)
- Our algorithm for computing congruence closures is called Union-Find, also used in other applications
- ▶ Deciding conjuctive $T_{=}$ formulas is inexpensive: our algorithm is $O(e^2)$, but can be solved in $O(e \log(e))$
- ▶ To decide satisfiability of formulas containing disjunctions, can either convert to DNF or use $\mathrm{DPLL}(\mathcal{T})$ (more on this later)

- ightharpoonup Congruence closure algorithm is used for determining satisfiability of $T_{=}$ formulas (without disjunction)
- Our algorithm for computing congruence closures is called Union-Find, also used in other applications
- ▶ Deciding conjuctive $T_{=}$ formulas is inexpensive: our algorithm is $O(e^2)$, but can be solved in $O(e \log(e))$
- ▶ To decide satisfiability of formulas containing disjunctions, can either convert to DNF or use $\mathrm{DPLL}(\mathcal{T})$ (more on this later)
- Next lecture: Decision procedure for qff theory of rationals (Simplex algorithm)

- \triangleright Congruence closure algorithm is used for determining satisfiability of $T_{=}$ formulas (without disjunction)
- Our algorithm for computing congruence closures is called Union-Find, also used in other applications
- ▶ Deciding conjuctive $T_{=}$ formulas is inexpensive: our algorithm is $O(e^2)$, but can be solved in $O(e \log(e))$
- ▶ To decide satisfiability of formulas containing disjunctions, can either convert to DNF or use $DPLL(\mathcal{T})$ (more on this later)
- ▶ Next lecture: Decision procedure for qff theory of rationals (Simplex algorithm)
- Reminder: Homework due next lecture!!