

# TABLE OF CONTENTS

1. MOTIVATION

4. RESULTS

2. LITERATURE

CONCLUSION

3. METHODOLOGY

### MOTIVATION

- Robotics is the multidisciplinary branch of engineering of building devices that
  physically interact with their environment, and are used in automobile industries,
  medical institutes, food processing companies.
- We are entering a new era of Industry 4.0. Robotics and automation are important aspects of it.
- Almost every industry is adopting intelligent robots which perform their tasks on their own. These autonomous robots are helping industries to revolutionize faster.
- This paper shows the different softwares and algorithms used to implement holonomic natural navigation.

# LITERATURE

|                                                                                                            | Name of Author                                                                    | Proposed methodology                                                                                                                                                                 | Publication year                                  |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Holonomic Implementation of Three Wheels<br>Omnidirectional Mobile Robot using<br>DC Motors                | Riky Tri Yunardi, Deny Arifianto,<br>Farhan Bachtiar, Jihan Intan<br>Prananingrum | The inverse kinematics of 3-wheeled omnidirectional robot's movement is studied.                                                                                                     | Journal of Robotics<br>and Control(JRC)<br>(2021) |
| Global and Local Path Planning Study in a<br>ROS-Based Research Platform for<br>Autonomous Vehicles        | Pablo Marin-Plaza , Ahmed<br>Hussein , David Martin, Arturo<br>de la Escalera     | The concepts of Global and Local Planner are explained and the Dijkstra and TEB planner algorithms are studied.                                                                      | Journal of Advanced<br>Transportation<br>(2018)   |
| Navigation and Control System of Mobile<br>Robot Based on ROS                                              | Li Zhi, Mei Xuesong                                                               | This paper discusses the different parameters of<br>Navigation Stack of ROS and how to tune these<br>parameters.                                                                     | IEEE (IAEAC 2018)                                 |
| A Quantitative Study of Tuning ROS GMapping<br>Parameters and Their Effect on Performing<br>Indoor 2D SLAM | Yassin Abdelrasoul, Abu Bakar<br>Sayuti HM Saman, Patrick<br>Sebastian            | In this paper, 2D Mapping is carried using GMapping algorithm. The paper explains the different parameters of the algorithm in ROS and how to tune those parameters.                 | IEEE (ROMA 2017)                                  |
| A Study of Monte Carlo Localization on Robot<br>Operating System                                           | Fitria Romadhona Quratul Aini,<br>Agung Nugroho Jati, Unang<br>Sunarya            | In this paper, SLAM implementation using Monte Carlo<br>algorithm on a mobile robot is studied. This localization<br>algorithm is implemented using Robot Operating System<br>(ROS). | ICITSI (2017)                                     |
| SLAM Algorithm Analysis of Mobile Robot<br>Based on Lidar                                                  | Zhang Xuexi, Lu Guokun, Fu<br>Genping, Xu Dongliang, Liang<br>Shiliu              | In this paper, SLAM implementation on a mobile robot is studied.                                                                                                                     | Chinese Control<br>Conference<br>(CCC) (2019)     |

#### 1. Hardware:

- Computer Laptop (Ubuntu 20.04)
- Microcontroller Arduino Mega 2560
- Wheels Omni wheels of radius 50mm
- o Motors RS775 DC motors
- Battery LiPo 4 cell of 8000mAh
- Motor Drivers BTS motor drivers
- Tracking Camera Intel RealSense T265
- Laser Sensor RPLIDAR A1M8



#### 2. Software:

#### 1. ROS Navigation Stack:

- Set of packages of mapping and path planning algorithms. The ROS Navigation Stack consists of different stages of working as
  - a. Mapping
  - b. Localization
  - c. Path Planning
  - d. Global Planner (Dijkstra)
  - e. Local Planner (Timed Elastic Band (TEB))
  - f. Move Base



Robot Base Controller

#### 2. Software:

#### 2. Microcontroller:

- We have used an Arduino microcontroller to control our robot and pass the commands from the ROS server to an Arduino using rosserial to the robot wheel.
- ROS has official support to connect an Arduino to ROS and has its official package called rosserial.
- We have used the rosserial python package on PC side. This package creates a ROS node called *serial\_node* that publishes the linear and angular speed data through the "/cmd\_vel" topic and an Arduino subscribe to this topic and sends commands to the motors connected to the wheels accordingly.



3. Execution:

1. ROS Rviz:



### 3. Execution:

2. Goal: Foxglove Studio



## RESULTS

• A comparison of the total time taken to travel between two fixed points using the different navigation methods is shown in the Table

| Navigation Method        | Approx. Time Taken<br>(in sec.) |
|--------------------------|---------------------------------|
| Manual Non-Holonomic     | 15                              |
| Autonomous Non-Holonomic | 11                              |
| Manual Holonomic         | 10                              |
| Autonomous Holonomic     | 9                               |

### CONCLUSION

- Using autonomous navigation is faster than manual navigation in both holonomic and non-holonomic movement.
- Using Tracking Camera for Odometry is more accurate than using encoder sensors on motor.
- GMapping SLAM procedure is used to build an incremental map using a laser sensor.
- Quality of localization and navigation of the robot depends a lot on the motors and LiDAR sensor.
- Used move base to configure global and local planner parameters specific for this robot for optimum path planning and locomotion.

# THANK YOU!