```
In [21]: # Predict Student Marks on the Basis of Number of Hours Studied

# Load the Dataset
import pandas as pd
data = pd.read_csv('C:\\Users\\Apeh\\Desktop\\CODE\\DATASET\\Grade_Set_1.csv')
data
Out[21]: Hours_Studied Test_Grade Status Result
```

```
0
                        2
                                  57
                                         fail
                                                 D
          1
                        3
                                  66
                                         fail
                                                 D
          2
                        4
                                                 C
                                  73
                                        pass
          3
                        5
                                  76
                                                 C
                                        pass
                        6
                                  79
                                                 C
                                        pass
                        7
          5
                                  81
                                                 В
                                        pass
          6
                        8
                                  90
                                        pass
                                                 В
          7
                        9
                                  96
                                        pass
                                                 Α
                       10
                                  100
                                                 Α
                                        pass
In [22]:
           # Explore Data
           data.columns
Out[22]: Index(['Hours_Studied', 'Test_Grade', 'Status', 'Result'], dtype='object')
In [23]:
           data.shape
Out[23]: (9, 4)
In [24]:
           # Missing Value?
           data.isnull().sum()
          Hours_Studied
                            0
Out[24]:
                            0
          Test Grade
          Status
                            0
          Result
                            0
          dtype: int64
In [25]:
           # Convert the Categorical Value
           from sklearn.preprocessing import LabelBinarizer
           lb = LabelBinarizer()
           data.Status = lb.fit_transform(data.Status)
In [26]:
           data
```

Out[26]:

Hours_Studied Test_Grade Status Result

	Hours_Studied	Test_Grade	Status	Result
	0 2	57	0	D
	1 3	66	0	D
	2 4	73	1	С
	3 5	76	1	С
	4 6	79	1	С
	5 7	81	1	В
	6 8	90	1	В
	7 9	96	1	Α
	8 10	100	1	Α
[n [27]: [n [28]:	<pre># Dependent & import numpy a x = data.Hours x = x.reshape(</pre>	s np _Studied.va		uces
out[28]:	x.shape x array([[2],	type=int64))	
n [29]:	y = data.Test_ y	Grade.valu∈	?S	
ut[29]:	array([57, 66	, 73, 76,	, 79,	81, 9
In [30]:	<pre># Train the Da from sklearn.l lin_reg = Line</pre>	inear_model		t Linea
n [31]:	<pre>lin_reg.fit(x,</pre>	y)		
Out[31]:	LinearRegressio	n()		
In [32]:	<pre>pred_val = ling pred_val</pre>	_reg.predic	ct(x)	

```
machine_learning_linear_regression
11/9/21, 7:53 AM
    Out[32]: array([59.71111111, 64.72777778, 69.74444444, 74.76111111, 79.7777778,
                      84.79444444, 89.81111111, 94.82777778, 99.84444444])
    In [34]:
               # Compare the predicted val with original val
               data['predicted values'] = pred val
               data[['Hours_Studied','predicted_values','Test_Grade']]
    Out[34]:
                 Hours_Studied predicted_values Test_Grade
              0
                             2
                                      59.711111
                                                       57
                             3
               1
                                      64.727778
                                                       66
               2
                             4
                                      69.744444
                                                       73
               3
                             5
                                      74.761111
                                                       76
                             6
                                      79.777778
                                                       79
               5
                             7
                                      84.794444
                                                       81
               6
                             8
                                      89.811111
                                                       90
              7
                             9
                                      94.827778
                                                       96
               8
                            10
                                      99.844444
                                                      100
    In [35]:
               # Evaluate Model Performance
               from sklearn.metrics import r2 score
               accuracy = r2 score(y,pred val)
               print('Accuracy : ', accuracy)
              Accuracy: 0.9757431074095347
    In [36]:
               # Final Prediction
```

```
hrs = float(input('How many hours have you studied? : '))
marks = lin_reg.predict([[hrs]])
print('Student who strudies for', hrs,
      'hours will going to score', marks, 'marks.')
```

How many hours have you studied? : 4.5 Student who strudies for 4.5 hours will going to score [72.25277778] marks.