

LM3303/LM3403 Quad Operational Amplifiers

General Description

The LM3303 and LM3403 are monolithic quad operational amplifiers consisting of four independent high gain, internally frequency compensated, operational amplifiers designed to operate from a single power supply or dual power supplies over a wide range of voltages. The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications.

Features

- Input common mode voltage range includes ground or negative supply
- Output voltage can swing to ground or negative supply

- Four internally compensated operational amplifiers in a single package
- \blacksquare Wide power supply range single supply of 3.0V to 36V dual supply of $\pm 1.5V$ to $\pm 18V$
- Class AB output stage for minimal crossover distortion
- Short circuit protected outputs
- High open loop gain 200k
- LM741 operational amplifier type performance

Applications

- Filters
- Voltage controlled oscillators

Connection Diagram

14-Lead DIP and SO-14 Package

TL/H/10064-1

Order Information

Device	Package	Package
Code	Code	Description
LM3303J	J14A	Ceramic DIP
LM3303N	N14A	Molded DIP
LM3303M LM3403J LM3403N LM3403M	J14A N14A	Molded Surface Mount Ceramic DIP Molded DIP Molded Surface Mount

Equivalent Circuit (1/4 of Circuit)

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range

 Ceramic DIP
 −65°C to +175°C

 Molded DIP and SO-14
 −65°C to +150°C

Operating Temperature Range

Lead Temperature

Ceramic DIP (Soldering, 60 sec.) 300°C
Molded DIP and SO-14
(Soldering, 10 sec.) 265°C

Internal Power Dissipation (Notes 1, 2)

 14L-Ceramic DIP
 1.36W

 14L-Molded DIP
 1.04W

 SO-14
 0.93W

 Supply Voltage between V+ and V 36V

 Differential Input Voltage (Note 3)
 ±30V

 Input Voltage
 (V-) - 0.3V to V+

ESD Tolerance (To Be Determined)

LM3303 and LM3403

Electrical Characteristics $T_A = 25^{\circ}C$, $V_{CC} = \pm 15V$, unless otherwise specified

Symbol	Parameter		Conditions	LM3303			LM3403			Units
Symbol				Min	Тур	Max	Min	Тур	Max	Units
V _{IO}	Input Offset Voltag	е			2.0	8.0		2.0	8.0	mV
I _{IO}	Input Offset Currer	nt			30	75		30	50	nA
I _{IB}	Input Bias Current				200	500		200	500	nA
Z _I	Input Impedance			0.3	1.0		0.3	1.0		МΩ
Icc	Supply Current		$V_O = 0V, R_L = \infty$		2.8	7.0		2.8	7.0	mA
CMR	Common Mode Rejection		$R_S \leq$ 10 k Ω	70	90		70	90		dB
V _{IR}	Input Voltage Rang	је		+12V to V-	+ 12.5V to V -		+ 13V to V -	+ 13.5V to V -		V
PSRR	Power Supply Rejection Ratio				30	150		30	150	μV/V
los	Output Short Circu (Per Amplifier) (No			±10	±30	± 45	±10	±30	± 45	mA
A _{VS}	Large Signal Volta	ge Gain	$V_{O}=\pm 10V,$ $R_{L}\geq 2.0~k\Omega$	20	200		20	200		V/mV
V _{OP} Output Voltage S		ng	$R_L = 10 \text{ k}\Omega$	±12	12.5		±12	+ 13.5		V
			$R_L = 2.0 k\Omega$	±10	12		±10	± 13		
TR	Transient Response	Rise Time/ Fall Time	$V_{O} = 50 \text{ mV},$ $A_{V} = 1.0, R_{L} = 10 \text{ k}\Omega$		0.3			0.3		μs
		Overshoot	$V_{O} = 50 \text{ mV},$ $A_{V} = 1.0, R_{L} = 10 \text{ k}\Omega$		5.0			5.0		%
BW	Bandwidth		$V_{O} = 50 \text{ mV},$ $A_{V} = 1.0, R_{L} = 10 \text{ k}\Omega$		1.0			1.0		MHz
SR	Slew Rate		$V_{I} = -10V \text{ to } + 10V,$ $A_{V} = 1.0$		0.6			0.6		V/µs

LM3303 and LM3403 (Continued)

Electrical Characteristics $T_A=25^{\circ}\text{C},\,V_{CC}=\,\pm\,15\text{V},\,\text{unless otherwise specified}$

The following specifications apply for $-40^{\circ}C \le T_{A} \le +85^{\circ}C$ for the LM3303, and $0^{\circ}C \le T_{A} \le +70^{\circ}C$ for the LM3403

Symbol	Parameter	Conditions	LM3303			LM3403			Units
Symbol	Faiametei		Min	Тур	Max	Min	Тур	Max	Oille
V _{IO}	Input Offset Voltage				10			10	mV
$\Delta V_{IO}/\Delta T$	Input Offset Voltage Temperature Sensitivity			10			10		μV/°C
I _{IO}	Input Offset Current				250			200	nA
$\Delta I_{IO}/\Delta T$	Input Offset Current Temperature Sensitivity			50			50		pA/°C
I _{IB}	Input Bias Current				1000			800	nA
A _{VS}	Large Signal Voltage Gain	$V_O = \pm 10V,$ $R_L \ge 2.0 \text{ k}\Omega$	15			15			V/mV
V _{OP}	Output Voltage Swing	$R_L = 2.0 \text{ k}\Omega$	±10			±10			V

LM3303 and LM3403

Electrical Characteristics $T_A = 25^{\circ}C$, V + = 5.0V, V - = GND, unless otherwise specified

Symbol	Parameter	Conditions	LM3303			LM3403			Units
			Min	Тур	Max	Min	Тур	Max	
V _{IO}	Input Offset Voltage				8.0		2.0	8.0	mV
I _{IO}	Input Offset Current				75		30	50	nA
I _{IB}	Input Bias Current				500		200	500	nA
Icc	Supply Current	-		2.5	7.0		2.5	7.0	mA
PSRR	Power Supply Rejection Ratio				150			150	μV/V
A _{VS}	Large Signal Voltage Gain	$R_L \ge 2.0 \text{ k}\Omega$	20	200		20	200		V/mV
V _{OP}	Output Voltage Swing (Note 5)	$R_L = 10 \text{ k}\Omega$	3.3			3.3			
		$\begin{array}{c} 5.0V \leq V + \leq 30V, \\ R_L = 10 \ k\Omega \end{array}$	(V+) -2.0			(V+) -2.0			V
CS	Channel Separation	$1.0 \text{ Hz} \le f \le 20 \text{ kHz}$ (Input Referenced)		-120			-120		dB

Note 1: $T_{J~Max} = 150^{\circ}C$ for the Molded DIP and SO-14, and 175°C for the Ceramic DIP.

Note 2: Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 14L-Ceramic DIP at 9.1 mW/°C, the 14L-Molded DIP at 8.3 mW/°C, and the SO-14 at 7.5 mW/°C.

Note 3: For supply voltage less than 30V between V+ and V-, the absolute maximum input voltage is equal to the supply voltage.

Note 4: Not to exceed maximum package power dissipation.

Note 5: Output will swing to ground.

Typical Performance Characteristics

Typical Applications

Multiple Feedback Bandpass Filter

TL/H/10064-4

fo = center frequency

 ${\sf BW} = {\sf Bandwidth}$ R in ${\sf k}\Omega$ C in $\mu{\sf F}$

$$Q=\frac{f_0}{BW}<10$$

$$C1 = C2 = \frac{Q}{3}$$

$$R1 = R2 = 1 R3 = 9Q^2 - 1$$
 Using scaling factors in these expressions.

If source impedance is high or varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Design example:

given: Q = 5,
$$f_0$$
 = 1 kHz
Let R1 = R2 = 10 k Ω
then R3 = 9(5)² - 10
R3 = 215 k Ω

$$C=\frac{5}{3}=\,1.6\,nF$$

Wein Bridge Oscillator

TL/H/10064-5

$$\begin{split} f_0 &= \frac{1}{2\pi RC} \text{for} \, f_0 = 1 \, \text{kHz} \\ R &= 16 \, \text{k}\Omega \\ C &= 0.01 \, \, \mu\text{F} \end{split}$$

Comparator with Hysteresis

$$V_{IL} = \frac{R1}{R1 + R2}(V_{OL} - V_{REF}) + V_{REF}$$

$$V_{IH} = \frac{R1}{R1 + R2}(V_{OH} - V_{REF}) + V_{REF}$$

$$H = \frac{R1}{R1 \,+\, R2} (V_{OH} - V_{OL}) \label{eq:hamiltonian}$$

High Impedance Differential Amplifier

TL/H/10064-7

$$V_{OUT} = C(1 + a + b)(V2 - V1)$$

$$\frac{R2}{R5} \equiv \frac{R6}{R7} \text{ for best CMRR}$$

Gain =
$$\frac{R6}{R5}$$
 $\left(1 + \frac{2R1}{R3}\right)$ = C (1 + a + b)

AC Coupled Non-Inverting Amplifier

$$A_V = 1 + \frac{R2}{R1}$$

A_V = 11 (as shown)

Typical Applications (Continued)

AC Coupled Inverting Amplifier

Voltage Reference

$$V_{O} = \frac{R1}{R1 + R2} \left(= \frac{V+}{2} \text{ as shown} \right)$$

$$A_V = \frac{HT}{R1}$$

 $A_V = 10$ (as shown)

Ground Referencing a Differential Input Signal

TL/H/10064-11

Pulse Generator

TL/H/10064-12

Voltage Controlled Oscillator

Note 1: Wide Control Voltage Range:

 $0V \leq \, V_{\hbox{\footnotesize CO}} \leq 2 \, \hbox{\footnotesize (V} \, \pm 1.5 \hbox{\small V)}$

Typical Applications (Continued)

Function Generator

Note 2: $f = \frac{R1 + R2}{4CR_fR1}$ if $R3 = \frac{R2R1}{R2 + R1}$

TL/H/10064-13

Bi-Quad Filter

TL/H/10064-15

 $Q = \frac{BW}{f_0}$

 $T_{BP} = Center Frequency Gain$ $T_{N} = Bandpass Notch Gain$

$$f_0 = \frac{1}{2\pi RC}, V_{REF} = \frac{1}{2}V_{CC}$$

R1 = QR

$$R2 = \frac{R1}{T_{BP}}$$

 $R3 = T_N R2$ C1 = 10 C

Example:

Example: $f_0 = 1000 \text{ Hz} \\ BW = 100 \text{ Hz} \\ BW = 100 \text{ Hz} \\ T_{BP} = 1 \\ T_N = 1 \\ R = 160 \text{ k}\Omega \\ R1 = 1.6 \text{ M}\Omega \\ R2 = 1.6 \text{ M}\Omega \\ R3 = 1.6 \text{ M}\Omega \\ C = 0.001 \text{ }\mu\text{F}$

Physical Dimensions inches (millimeters) (Continued)

14-Lead Molded Dual-In-Line Package (N) Order Number LM3303N or LM3403N NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408