## 1 Multilinear Algebra

From Guillemin and Haine (2018).

## Chapter 1

**1.2.iv.** Let U, V, and W be vector spaces and let  $A: V \to W$  and  $B: U \to V$  be linear mappings. Show that  $(AB)^* = B^*A^*$ .

*Proof.* Clearly, both  $(AB)^*$  and  $B^*A^*$  send  $W^*$  to  $U^*$ . Thus, we need only verify that both maps have the same action on every element of  $W^*$ .

Let  $\ell \in W^*$  be arbitrary. Then

$$(AB)^*\ell = \ell \circ AB = (\ell \circ A) \circ B = A^*\ell \circ B$$

where  $A^*\ell \in V^*$ . It follows in a similar fashion that

$$A^*\ell \circ B = B^*(A^*\ell) = (B^*A^*)\ell$$

where we have the last equality above by the associativity of the composition operation. Transitivity between the first and second equations above finishes the proof.  $\Box$ 

**1.2.v.** Let  $V = \mathbb{R}^2$  and let W be the  $x_1$ -axis, i.e., the one-dimensional subspace

$$\{(x_1,0) \mid x_1 \in \mathbb{R}\}$$

of  $\mathbb{R}^2$ .

(1) Show that the W-cosets are the lines  $x_2 = a$  parallel to the  $x_1$ -axis.

*Proof.* Let  $v + W \in V/W$  be arbitrary. Let  $v = (v_1, v_2)$ . Then

$$v + W = \{v + w \mid w \in \{(x_1, 0) \mid x_1 \in \mathbb{R}\}\}\$$

$$= \{v + (x_1, 0) \mid x_1 \in \mathbb{R}\}\$$

$$= \{(v_1 + x_1, v_2) \mid x_1 \in \mathbb{R}\}\$$

$$= \{(x_1, v_2) \mid x_1 \in \mathbb{R}\}\$$

Since every line  $x_2 = a$  is a set of the form  $\{(x_1, a) \mid x_1 \in \mathbb{R}\}$ , we have that v + W is equal to the line  $x_2 = v_2$ , as desired.

(2) Show that the sum of the cosets  $x_2 = a$  and  $x_2 = b$  is the coset  $x_2 = a + b$ .

*Proof.* By part (1), every line  $x_2 = a$  is a set of the form (0, a) + W. Therefore, by the definition of addition on V/W,

$$[(0,a) + W] + [(0,b) + W] = [(0,a) + (0,b)] + W$$
$$= (0,a+b) + W$$

as desired.

(3) Show that the scalar multiple of the coset  $x_2 = c$  by the number  $\lambda$  is the coset  $x_2 = \lambda c$ .

*Proof.* Proceeding in a similar manner to part (2), we have that

$$\lambda[(0,c) + W] = [\lambda(0,c)] + W$$
$$= (0,\lambda c) + W$$

as desired.  $\Box$ 

**1.2.vi.** (1) Let  $(V^*)^*$  be the dual of the vector space  $V^*$ . For every  $v \in V$ , let  $\operatorname{ev}_v : V^* \to \mathbb{R}$  be the **evaluation function**  $\operatorname{ev}_v(\ell) = \ell(v)$ . Show that the  $\operatorname{ev}_v$  is a linear function on  $V^*$ , i.e., an element of  $(V^*)^*$ , and show that the map  $\operatorname{ev} = \operatorname{ev}_{(-)} : V \to (V^*)^*$  defined by  $v \mapsto \operatorname{ev}_v$  is a linear map of V into  $(V^*)^*$ .

*Proof.* Let  $v \in V$ ,  $\ell_1, \ell_2, \ell \in V^*$ , and  $\lambda \in \mathbb{R}$  be arbitrary. Then

$$\begin{aligned}
\operatorname{ev}_{v}(\ell_{1} + \ell_{2}) &= (\ell_{1} + \ell_{2})(v) & \operatorname{ev}_{v}(\lambda \ell) &= (\lambda \ell)(v) \\
&= \ell_{1}(v) + \ell_{2}(v) & = \lambda \ell(v) \\
&= \operatorname{ev}_{v}(\ell_{1}) + \operatorname{ev}_{v}(\ell_{2}) & = \lambda \operatorname{ev}_{v}(\ell)
\end{aligned}$$

so  $ev_v$  is linear, as desired.

Let  $v_1, v_2, v \in V$ ,  $\ell \in V^*$ , and  $\lambda \in \mathbb{R}$  be arbitrary. Then

Thus,  $\operatorname{ev}(v_1+v_2)$  and  $\operatorname{ev}(v_1)+\operatorname{ev}(v_2)$ , and  $\operatorname{ev}(\lambda v)$  and  $\lambda\operatorname{ev}(v)$  have the same action pairwise on every  $\ell\in V^*$ . Consequently, the two pairs of functions in  $V^*$  are both equal pairwise. Therefore, ev itself is linear.

(2) If V is finite dimensional, show that the map ev is bijective. Conclude that there is a natural identification of V with  $(V^*)^*$ , i.e., that V and  $(V^*)^*$  are two descriptions of the same object. (Hint:  $\dim(V^*)^* = \dim V^* = \dim V$ , so since  $\dim(V) = \dim(\ker(A)) + \dim(\operatorname{im}(A))$ , it suffices to show that ev is injective.)

*Proof.* Taking the hint, we seek to show that ev is injective. Suppose  $v_1 \neq v_2$ . WLOG let  $v_2 \neq 0$ . Let  $\ell: V \to \mathbb{R}$  be defined by

$$\ell(v) = \begin{cases} ||v|| & v = \lambda v_2 \\ 0 & \text{otherwise} \end{cases}$$

Then

$$\ell(v_1) \neq \ell(v_2)$$

$$\operatorname{ev}_{v_1}(\ell) \neq \operatorname{ev}_{v_2}(\ell)$$

$$\operatorname{ev}(v_1)(\ell) \neq \operatorname{ev}(v_2)(\ell)$$

as desired.

- **1.2.xi.** Let V be a vector space.
  - (1) Let  $B: V \times V \to \mathbb{R}$  be an inner product on V. For all  $v \in V$ , let  $\ell_v: V \to \mathbb{R}$  be the function  $\ell_v(w) = B(v, w)$ . Show that  $\ell_v$  is linear, and show that the map  $L: V \to V^*$  defined by  $v \mapsto \ell_v$  is a linear mapping.

Proof. Since

$$\ell_{v}(w_{1} + w_{2}) = B(v, w_{1} + w_{2}) \qquad \qquad \ell_{v}(\lambda w) = B(v, \lambda w)$$

$$= B(w_{1} + w_{2}, v) \qquad \qquad = B(\lambda w, v)$$

$$= B(w_{1}, v) + B(w_{2}, v) \qquad \qquad = \lambda B(w, v)$$

$$= B(v, w_{1}) + B(v, w_{2}) \qquad \qquad = \lambda B(v, w)$$

$$= \ell_{v}(w_{1}) + \ell_{v}(w_{2}) \qquad \qquad = \lambda \ell_{v}(w)$$

we have that  $\ell_v$  is linear, as desired. Note that each step follows either from the definition of  $\ell_v$  or one of the three inner product properties (bilinearity, symmetry, and positivity). Since

$$\begin{split} [L(v_1+v_2)](w) &= \ell_{v_1+v_2}(w) & [L(\lambda v)](w) = \ell_{\lambda v}(w) \\ &= B(v_1+v_2,w) &= B(\lambda v,w) \\ &= B(v_1,w) + B(v_2,w) &= \lambda B(v,w) \\ &= \ell_{v_1}(w) + \ell_{v_2}(w) &= \lambda \ell_v(w) \\ &= L(v_1)(w) + L(v_2)(w) &= \lambda L(v)(w) \\ &= [L(v_1) + L(v_2)](w) &= [\lambda L(v)](w) \end{split}$$

we know that the functions  $L(v_1+v_2)$  and  $L(v_1)+L(v_2)$  have the same action on every  $w \in V$ . Thus they are equal. A symmetric statement holds for  $L(\lambda v)$  and  $\lambda L(v)$ .

(2) If V is finite dimensional, prove that L is bijective. Conclude that if V has an inner product, one gets from it a natural identification of V with  $V^*$ . (Hint: Since  $\dim V = \dim V^*$  and  $\dim(V) = \dim(\ker(A)) + \dim(\operatorname{im}(A))$ , it suffices to show that  $\ker(L) = 0$ . Now note that if  $v \neq \mathbf{0}$ , then  $\ell_v(v) = B(v, v)$  is a positive number.)

*Proof.* Taking the hint, suppose  $L(v) = 0 \in V^*$  for some  $v \in V$ . Thus, for all  $w \in V$  (and, in particular, for v), we have that

$$0 = L(v)(v) = \ell_v(v) = B(v, v)$$

But then by the positivity of the inner product, v = 0, as desired.

**1.3.i.** Verify that there are exactly  $n^k$  multi-indices of length k.

*Proof.* Let  $(i_1, \ldots, i_k)$  be a multi-index of n of length k. We independently pick each  $i_j$  to be any one of the n numbers between 1 and n, inclusive. Thus, for each of the n values of  $i_1$ , there are n possible values of  $i_2$ . For each of the  $n^2$  values of  $(i_1, i_2)$ , there are n possible values of  $i_3$ . Continuing on in this fashion inductively confirms that there are always exactly  $n^k$  multi-indices of length k.

**1.3.ii.** Prove that the map  $A^*: \mathcal{L}^k(W) \to \mathcal{L}^k(V)$  defined by  $T \mapsto A^*T$  is linear.

*Proof.* We have that

$$[A^*(T_1 + T_2)](v_1, \dots, v_k) = (T_1 + T_2)(Av_1, \dots, Av_k)$$

$$= T_1(Av_1, \dots, Av_k) + T_2(Av_1, \dots, Av_k)$$

$$= A^*T_1(v_1, \dots, v_k) + A^*T_2(v_1, \dots, v_k)$$

$$= [A^*T_1 + A^*T_2](v_1, \dots, v_k)$$

and

$$[A^*(\lambda T)](v_1, \dots, v_k) = (\lambda T)(Av_1, \dots, Av_k)$$

$$= \lambda T(Av_1, \dots, Av_k)$$

$$= \lambda (A^*T)(v_1, \dots, v_k)$$

$$= [\lambda (A^*T)](v_1, \dots, v_k)$$

as desired.

1.3.iii. Verify that

$$A^*(T_1 \otimes T_2) = A^*(T_1) \otimes A^*(T_2)$$

*Proof.* Let  $T_1 \in \mathcal{L}^k(W)$  and  $T_2 \in \mathcal{L}^{\ell}(W)$ . Then

$$[A^*(T_1 \otimes T_2)](v_1, \dots, v_{k+\ell}) = (T_1 \otimes T_2)(Av_1, \dots, Av_{k+\ell})$$

$$= T_1(Av_1, \dots, Av_k)T_2(Av_{k+1}, \dots, Av_{k+\ell})$$

$$= (A^*T_1)(v_1, \dots, v_k)(A^*T_2)(v_{k+1}, \dots, v_{k+\ell})$$

$$= [A^*(T_1) \otimes A^*(T_2)](v_1, \dots, v_{k+\ell})$$

as desired.

1.3.iv. Verify that

$$(AB)^*T = B^*(A^*T)$$

*Proof.* Let U, V, W be vector spaces,  $A: V \to W, B: U \to V$ , and  $T \in \mathcal{L}^k(W)$ . Then

$$[(AB)^*T](v_1, \dots, v_k) = T(ABv_1, \dots, ABv_k)$$
  
=  $A^*T(Bv_1, \dots, Bv_k)$   
=  $[B^*(A^*T)](v_1, \dots, v_k)$ 

as desired.

**1.3.vii.** Let T be a k-tensor and v be a vector. Define  $T_v: V^{k-1} \to \mathbb{R}$  by

$$T_v(v_1, \dots, v_{k-1}) = T(v, v_1, \dots, v_{k-1})$$

Show that  $T_v$  is a (k-1)-tensor.

*Proof.* For the sake of space and ease of notation, I will show only that  $T_v$  is linear in its 1<sup>st</sup> variable. However, a symmetric argument would work in the generalized  $i^{\text{th}}$  case. This being established, it will follow that  $T_v$  is (k-1)-linear and thus a (k-1)-tensor, as desired. Let's begin.

We have that

$$T_v(v_1 + v'_1, \dots, v_{k-1}) = T(v, v_1 + v'_1, \dots, v_{k-1})$$

$$= T(v, v_1, \dots, v_{k-1}) + T(v, v'_1, \dots, v_{k-1})$$

$$= T_v(v_1, \dots, v_{k-1}) + T_v(v'_1, \dots, v_{k-1})$$

and

$$T_v(\lambda v_1, \dots, v_{k-1}) = T(v, \lambda v_1, \dots, v_{k-1})$$
$$= \lambda T(v, v_1, \dots, v_{k-1})$$
$$= \lambda T_v(v_1, \dots, v_{k-1})$$

as desired.  $\Box$ 

**1.3.viii.** Show that if  $T_1$  is an r-tensor and  $T_2$  is an s-tensor, then if r > 0,

$$(T_1 \otimes T_2)_v = (T_1)_v \otimes T_2$$

*Proof.* We have that

$$[(T_1 \otimes T_2)_v](v_1, \dots, v_{r+s-1}) = (T_1 \otimes T_2)(v, v_1, \dots, v_{r+s-1})$$

$$= T_1(v, v_1, \dots, v_{r-1})T_2(v_r, \dots, v_{r+s-1})$$

$$= (T_1)_v(v_1, \dots, v_{r-1})T_2(v_r, \dots, v_{r+s-1})$$

$$= [(T_1)_v \otimes T_2](v_1, \dots, v_{r+s-1})$$

as desired.  $\Box$ 

**1.3.ix.** Let  $A: V \to W$  be a linear map, let  $v \in V$ , and let w = Av. Show that for all  $T \in \mathcal{L}^k(W)$ ,

$$A^*(T_w) = (A^*T)_v$$

*Proof.* We have that

$$[A^*(T_w)](v_1, \dots, v_{k-1}) = T_w(Av_1, \dots, Av_{k-1})$$

$$= T(w, Av_1, \dots, Av_{k-1})$$

$$= T(Av, Av_1, \dots, Av_{k-1})$$

$$= (A^*T)(v, v_1, \dots, v_k)$$

$$= [(A^*T)_v](v_1, \dots, v_k)$$

as desired.  $\Box$ 

**1.4.i.** Show that there are exactly k! permutations of order k. (Hint: Induction on k: Let  $\sigma \in S_k$ , and let  $\sigma(k) = i \ (1 \le i \le k)$ . Show that  $\tau_{i,k}\sigma$  leaves k fixed and hence is, in effect, a permutation of  $\Sigma_{k-1}$ .)

Proof. We induct on k. For the base case k = 1, there is clearly only 1! = 1 possible bijection from a singleton set to itself. Now suppose inductively that we have proven the claim for k - 1. Let  $\sigma \in S_k$  be arbitrary. Suppose  $\sigma(k) = i$ . It follows that  $(\tau_{i,k}\sigma)(k) = \tau_{i,k}(i) = k$ . Thus, since  $\tau_{i,k}\sigma$  is a bijection on  $\Sigma_k$ ,  $(\tau_{i,k}\sigma)|_{\Sigma_{k-1}} \in S_{k-1}$ . Consequently, by the inductive hypothesis, there are (k-1)! possible permutations  $(\tau_{i,k}\sigma)|_{\Sigma_{k-1}}$ . Furthermore, to each of these permutations, there correspond k distinct permutations in  $S_k$  (i.e., those obtained by iterating i from 1 through k). Thus, there are  $k \cdot (k-1)! = k!$  permutations of order k, as desired.

**1.4.ii.** Prove that if  $\tau \in S_k$  is a transposition,  $(-1)^{\tau} = -1$ . Deduce from this that if  $\sigma$  is the product of an odd number of transpositions, then  $(-1)^{\sigma} = -1$ , and if  $\sigma$  is the product of an even number of transpositions, then  $(-1)^{\sigma} = +1$ .

*Proof.* We induct on k.

For the base case k=2, the only possible transposition is  $\tau_{1,2}$ . For this transposition, we have

$$(-1)^{\tau_{1,2}} = \prod_{i < j} \frac{x_{\tau_{1,2}(i)} - x_{\tau_{1,2}(j)}}{x_i - x_j} = \frac{x_{\tau_{1,2}(1)} - x_{\tau_{1,2}(2)}}{x_1 - x_2} = \frac{x_2 - x_1}{x_1 - x_2} = -1$$

as desired.

Now suppose inductively that we have proven the claim for k-1. Let  $\tau_{p,q} \in S_k$  with p < q WLOG. We divide into two cases  $(q \neq k \text{ and } q = k)$ .

If  $q \neq k$ , then as in Exercise 1.4.i, we can identify  $\tau_{p,q}$  with an element  $\tau'_{p,q} \in S_{k-1}$ . By the inductive hypothesis,

$$-1 = (-1)^{\tau'_{p,q}} = \prod_{\substack{i < j \\ j \neq k}} \frac{x_{\tau_{p,q}(i)} - x_{\tau_{p,q}(j)}}{x_i - x_j}$$

It follows that

$$(-1)^{\tau_{p,q}} = \prod_{i < j} \frac{x_{\tau_{p,q}(i)} - x_{\tau_{p,q}(j)}}{x_i - x_j} = \prod_{\substack{i < j \\ j \neq k}} \frac{x_{\tau_{p,q}(i)} - x_{\tau_{p,q}(j)}}{x_i - x_j} \cdot \prod_{i=1}^{k-1} \frac{x_{\tau_{p,q}(i)} - x_{\tau_{p,q}(k)}}{x_i - x_k} = -1 \cdot 1 = -1$$

where we evaluate

$$\begin{split} \prod_{i=1}^{k-1} \frac{x_{\tau_{p,q}(i)} - x_{\tau_{p,q}(k)}}{x_i - x_k} &= \prod_{i=1}^{k-1} \frac{x_{\tau_{p,q}(i)} - x_k}{x_i - x_k} \\ &= \prod_{\substack{i=1\\i \neq p,q}}^{k-1} \frac{x_{\tau_{p,q}(i)} - x_k}{x_i - x_k} \cdot \frac{x_{\tau_{p,q}(p)} - x_k}{x_p - x_k} \cdot \frac{x_{\tau_{p,q}(q)} - x_k}{x_q - x_k} \\ &= \prod_{\substack{i=1\\i \neq p,q}}^{k-1} \frac{x_i - x_k}{x_i - x_k} \cdot \frac{x_q - x_k}{x_p - x_k} \cdot \frac{x_p - x_k}{x_q - x_k} \\ &= 1 \end{split}$$

If q = k, then we divide into two subcases  $(p = k - 1 \text{ and } p \neq k - 1)$ . If p = k - 1, then  $\tau_{p,q} = \tau_{k-1,k}$ . Therefore,

$$\begin{split} & (-1)^{\tau_{p,q}} \\ & = \prod_{i < j} \frac{x_{\tau_{k-1,k}(i)} - x_{\tau_{k-1,k}(j)}}{x_i - x_j} \\ & = \prod_{i < j} \frac{x_{\tau_{k-1,k}(i)} - x_{\tau_{k-1,k}(j)}}{x_i - x_j} \cdot \prod_{i=1}^{k-2} \frac{x_{\tau_{k-1,k}(i)} - x_{\tau_{k-1,k}(k-1)}}{x_i - x_{k-1}} \cdot \prod_{i=1}^{k-2} \frac{x_{\tau_{k-1,k}(i)} - x_{\tau_{k-1,k}(k)}}{x_i - x_k} \cdot \frac{x_{\tau_{k-1,k}(k)} - x_{\tau_{k-1,k}(k)}}{x_{i-1} - x_k} \\ & = \prod_{i < j} \frac{x_i - x_j}{x_i - x_j} \cdot \prod_{i=1}^{k-2} \frac{x_i - x_k}{x_i - x_{k-1}} \cdot \prod_{i=1}^{k-2} \frac{x_i - x_{k-1}}{x_i - x_k} \cdot \frac{x_k - x_{k-1}}{x_{k-1} - x_k} \\ & = \prod_{i < j} \frac{x_i - x_j}{x_i - x_j} \cdot \prod_{i=1}^{k-2} \left( \frac{x_i - x_{k-1}}{x_i - x_{k-1}} \frac{x_i - x_k}{x_i - x_k} \right) \cdot \frac{x_k - x_{k-1}}{x_{k-1} - x_k} \\ & = 1 \cdot 1 \cdot -1 \\ & = -1 \end{split}$$

If  $p \neq k-1$ , then  $\tau_{p,q} = \tau_{p,k} = \tau_{k-1,k}\tau_{p,k-1}\tau_{k-1,k}$ . By our argument for the case  $q \neq k$ , we know that  $(-1)^{\tau_{p,k-q}} = -1$ , and by our argument for the case q = k and p = k-1, we know that  $(-1)^{\tau_{k-1,k}} = -1$ . Therefore, by Claim 1.4.9,

$$(-1)^{\tau_{p,q}} = (-1)^{\tau_{k-1,k}\tau_{p,k-1}\tau_{k-1,k}} = (-1)^{\tau_{k-1,k}}(-1)^{\tau_{p,k-1}}(-1)^{\tau_{k-1,k}} = -1 \cdot -1 \cdot -1 = -1$$

as desired.

It follows by Claim 1.4.9 that if  $\sigma \in S_k$  can be decomposed into  $\sigma = \tau_1 \cdots \tau_n$  where n|2=1, then

$$(-1)^{\sigma} = (-1)^{\tau_1 \cdots \tau_n} = (-1)^{\tau_1} \cdots (-1)^{\tau_n} = \underbrace{(-1) \cdots (-1)}_{n \text{ times}} = -1$$

as desired.

The proof is symmetric for even permutations.

**1.4.iii.** Prove that the assignment  $T \mapsto T^{\sigma}$  is a linear map  $\mathcal{L}^k(V) \to \mathcal{L}^k(V)$ .

*Proof.* We have that

$$(T_1 + T_2)^{\sigma}(v_1, \dots, v_k) = (T_1 + T_2)(v_{\sigma^{-1}(1)}, \dots, v_{\sigma^{-1}(k)})$$

$$= T_1(v_{\sigma^{-1}(1)}, \dots, v_{\sigma^{-1}(k)}) + T_2(v_{\sigma^{-1}(1)}, \dots, v_{\sigma^{-1}(k)})$$

$$= T_1^{\sigma}(v_1, \dots, v_k) + T_2^{\sigma}(v_1, \dots, v_k)$$

and

$$(\lambda T)^{\sigma}(v_{1}, \dots, v_{k}) = (\lambda T)(v_{\sigma^{-1}(1)}, \dots, v_{\sigma^{-1}(k)})$$
$$= \lambda T(v_{\sigma^{-1}(1)}, \dots, v_{\sigma^{-1}(k)})$$
$$= \lambda T^{\sigma}(v_{1}, \dots, v_{k})$$

as desired.

**1.4.vi.** Show that every one of the six elements of  $S_3$  is either a transposition or can be written as a product of two transpositions.

*Proof.* The six elements  $\sigma_1, \ldots, \sigma_6 \in S_3$  are the permutations



It follows that we may write

$$\sigma_1 = \tau_{1,2}\tau_{1,2}$$
  $\sigma_2 = \tau_{1,2}$   $\sigma_3 = \tau_{1,3}$   $\sigma_4 = \tau_{2,3}$   $\sigma_5 = \tau_{1,2}\tau_{2,3}$   $\sigma_6 = \tau_{1,2}\tau_{1,3}$ 

**1.4.ix.** Let  $A: V \to W$  be a linear mapping. Show that if  $T \in \mathcal{A}^k(W)$ , then  $A^*T \in \mathcal{A}^k(V)$ .

*Proof.* Since  $T \in \mathcal{A}^k(W)$ , we know that  $T^{\sigma} = (-1)^{\sigma}T$  for all  $\sigma \in S_k$ . It follows that

$$(A^*T)^{\sigma}(v_1, \dots, v_k) = (A^*T)(v_{\sigma^{-1}(1)}, \dots, v_{\sigma^{-1}(k)})$$

$$= T(Av_{\sigma^{-1}(1)}, \dots, Av_{\sigma^{-1}(k)})$$

$$= T^{\sigma}(Av_1, \dots, Av_k)$$

$$= (-1)^{\sigma}T(Av_1, \dots, Av_k)$$

$$= (-1)^{\sigma}A^*T(v_1, \dots, v_k)$$

as desired.  $\Box$ 

**1.5.i.** A k-tensor  $T \in \mathcal{L}^k(V)$  is **symmetric** if  $T^{\sigma} = T$  for all  $\sigma \in S_k$ . Show that the set  $\mathcal{S}^k(V)$  of symmetric k-tensors is a vector subspace of  $\mathcal{L}^k(V)$ .

*Proof.* To prove that  $S^k(V) \leq \mathcal{L}^k(V)$ , it will suffice to show that it contains the additive identity of  $\mathcal{L}^k(V)$  (i.e., the zero tensor), and that it is closed under addition and scalar multiplication. Since we clearly have

$$0^{\sigma}(v_1,\ldots,v_k) = 0(v_{\sigma^{-1}(1)},\ldots,v_{\sigma^{-1}(k)}) = 0(v_1,\ldots,v_k)$$

we know that  $S^k(V)$  contains the additive identity. Now suppose  $T_1, T_2 \in S^k(V)$ . Then since

$$(T_1 + T_2)^{\sigma} = T_1^{\sigma} + T_2^{\sigma} = T_1 + T_2$$

where the first equality holds because of the linearity of  $\sigma: \mathcal{L}^k(V) \to \mathcal{L}^k(V)$  and the second equality holds since  $T_1, T_2 \in \mathcal{S}^k(V), \mathcal{S}^k(V)$  is closed under addition. Similarly, the fact that

$$(\lambda T)^{\sigma} = \lambda T^{\sigma} = \lambda T$$

confirms that  $S^k(V)$  is closed under scalar multiplication.

**1.6.i.** Verify the following three equations, where  $\lambda \in \mathbb{R}$ .

(1) 
$$\lambda(\omega_1 \wedge \omega_2) = (\lambda \omega_1) \wedge \omega_2 = \omega_1 \wedge (\lambda \omega_2).$$

*Proof.* We have that

$$\lambda(\omega_1 \wedge \omega_2) = \lambda \pi(T_1 \otimes T_2)$$
$$= \pi[(\lambda T_1) \otimes T_2]$$
$$= (\lambda \omega_1) \wedge \omega_2$$

It follows by a symmetric argument that  $\lambda(\omega_1 \wedge \omega_2) = \omega_1 \wedge (\lambda \omega_2)$ .

(2)  $(\omega_1 + \omega_2) \wedge \omega_3 = \omega_1 \wedge \omega_3 + \omega_2 \wedge \omega_3$ .

*Proof.* We have that

$$(\omega_1 + \omega_2) \wedge \omega_3 = \pi[(T_1 + T_2) \otimes T_3]$$
$$= \pi[T_1 \otimes T_3 + T_2 \otimes T_3]$$
$$= \omega_1 \wedge \omega_3 + \omega_2 \wedge \omega_3$$

as desired.

(3)  $\omega_1 \wedge (\omega_2 + \omega_3) = \omega_1 \wedge \omega_2 + \omega_1 \wedge \omega_3$ .

*Proof.* We have that

$$\omega_1 \wedge (\omega_2 + \omega_3) = \pi [T_1 \otimes (T_2 + T_3)]$$
$$= \pi [T_1 \otimes T_2 + T_1 \otimes T_3]$$
$$= \omega_1 \wedge \omega_2 + \omega_1 \wedge \omega_3$$

as desired.  $\Box$ 

1.6.ii. Verify the following multiplicative law for the wedge product.

$$\omega_1 \wedge \omega_2 = (-1)^{rs} \omega_2 \wedge \omega_1$$

*Proof.* As per Guillemin and Haine (2018), it suffices to prove this claim for decomposable elements. As such, let  $\omega_1 = \ell_1 \wedge \cdots \wedge \ell_r$  and let  $\omega_2 = \ell'_1 \wedge \cdots \wedge \ell'_s$ . Let  $\sigma \in S_{r+s}$  be the permutation

$$\sigma(x) = \begin{cases} x+s & x \le r \\ x-r & x > r \end{cases}$$

We can write  $\sigma$  as a product of elementary transpositions in a systematic manner as follows.

$$\sigma = \prod_{j=s-1}^{0} \prod_{i=1}^{r} \tau_{i+j, i+j+1}$$

Clearly, there are rs of these transpositions, so  $(-1)^{\sigma} = (-1)^{rs}$ . Therefore, we have that

$$\omega_1 \wedge \omega_2 = (\ell_1 \wedge \dots \wedge \ell_r) \wedge (\ell'_1 \wedge \dots \wedge \ell'_s)$$
$$= (-1)^{\sigma} (\ell'_1 \wedge \dots \wedge \ell'_s) \wedge (\ell_1 \wedge \dots \wedge \ell_r)$$
$$= (-1)^{rs} \omega_2 \wedge \omega_1$$

**1.6.iv.** If  $\omega, \mu \in \Lambda^r(V^*)$ , prove that

$$(\omega + \mu)^k = \sum_{\ell=0}^k \binom{k}{\ell} \omega^\ell \wedge \mu^{k-\ell}$$

(Hint: As in freshman calculus, prove this binomial theorem by induction using the identity  $\binom{k}{\ell} = \binom{k-1}{\ell-1} + \binom{k-1}{\ell}$ .)

*Proof.* We induct on k.

For the base case k = 1, we have that

$$\sum_{\ell=0}^{1} {1 \choose \ell} \omega^{\ell} \wedge \mu^{1-\ell} = {1 \choose 0} \omega^{0} \wedge \mu^{1-0} + {1 \choose 1} \omega^{1} \wedge \mu^{1-1}$$
$$= \mu + \omega$$
$$= (\omega + \mu)^{1}$$

as desired.

Now suppose inductively that we have proven the claim for k-1. Then

$$\begin{split} (\omega + \mu)^k &= (\omega + \mu)^1 (\omega + \mu)^{k-1} \\ &= (\omega + \mu) \sum_{\ell=0}^{k-1} \binom{k-1}{\ell} \omega^{\ell} \wedge \mu^{(k-1)-\ell} \\ &= \sum_{\ell=0}^{k-1} \binom{k-1}{\ell} \omega^{\ell+1} \wedge \mu^{(k-1)-\ell} + \sum_{\ell=0}^{k-1} \binom{k-1}{\ell} \omega^{\ell} \wedge \mu^{k-\ell} \\ &= \sum_{\ell=1}^{k} \binom{k-1}{\ell-1} \omega^{\ell} \wedge \mu^{k-\ell} + \sum_{\ell=0}^{k-1} \binom{k-1}{\ell} \omega^{\ell} \wedge \mu^{k-\ell} \\ &= \binom{k-1}{k-1} \omega^{k-1} \wedge \mu^1 + \sum_{\ell=1}^{k-1} \left[ \binom{k-1}{\ell-1} + \binom{k-1}{\ell} \right] \omega^{\ell} \wedge \mu^{k-\ell} + \binom{k-1}{0} \omega^0 \wedge \mu^k \\ &= \binom{k}{k} \omega^{k-1} \wedge \mu^1 + \sum_{\ell=1}^{k-1} \binom{k}{\ell} \omega^{\ell} \wedge \mu^{k-\ell} + \binom{k}{0} \omega^0 \wedge \mu^k \\ &= \sum_{\ell=0}^{k} \binom{k}{\ell} \omega^{\ell} \wedge \mu^{k-\ell} \end{split}$$

as desired.

**1.7.i.** Prove that if T is the decomposable k-tensor  $\ell_1 \otimes \cdots \otimes \ell_k$ , then

$$\iota_v T = \sum_{r=1}^k (-1)^{r-1} \ell_r(v) \ell_1 \otimes \cdots \otimes \hat{\ell}_r \otimes \cdots \otimes \ell_k$$

where the hat over  $\ell_r$  means that  $\ell_r$  is deleted from the tensor product.

Proof. We have that

$$(\iota_{v}T)(v_{1},\ldots,v_{k-1}) = \sum_{r=1}^{k} (-1)^{r-1}T(v_{1},\ldots,v_{r-1},v,v_{r},\ldots,v_{k-1})$$

$$= \sum_{r=1}^{k} (-1)^{r-1}[\ell_{1}\otimes\cdots\otimes\ell_{r-1}\otimes\ell_{r}\otimes\ell_{r+1}\otimes\cdots\otimes\ell_{k}](v_{1},\ldots,v_{r-1},v,v_{r},\ldots,v_{k-1})$$

$$= \sum_{r=1}^{k} (-1)^{r-1}\ell_{1}(v_{1})\cdots\ell_{r-1}(v_{r-1})\ell_{r}(v)\ell_{r+1}(v_{r})\cdots\ell_{k}(v_{k-1})$$

$$= \sum_{r=1}^{k} (-1)^{r-1}\ell_{r}(v)\ell_{1}(v_{1})\cdots\ell_{r-1}(v_{r-1})\ell_{r+1}(v_{r})\cdots\ell_{k}(v_{k-1})$$

$$= \sum_{r=1}^{k} (-1)^{r-1}\ell_{r}(v)[\ell_{1}\otimes\cdots\otimes\ell_{r}\otimes\cdots\otimes\ell_{k}](v_{1},\ldots,v_{k-1})$$

as desired.  $\Box$ 

**1.7.ii.** Prove that if  $T_1 \in \mathcal{L}^p(V)$  and  $T_2 \in \mathcal{L}^q(V)$ , then

$$\iota_v(T_1 \otimes T_2) = \iota_v T_1 \otimes T_2 + (-1)^p T_1 \otimes \iota_v T_2$$

Proof. We have that

$$\begin{split} [\iota_v(T_1 \otimes T_2)](v_1, \dots, v_{p+q-1}) &= \sum_{r=1}^{p+q} (-1)^{r-1} (T_1 \otimes T_2)(v_1, \dots, v_{r-1}, v, v_r, \dots, v_{p+q-1}) \\ &= \sum_{r=1}^p (-1)^{r-1} (T_1 \otimes T_2)(v_1, \dots, v_{r-1}, v, v_r, \dots, v_{p+q-1}) \\ &+ \sum_{r=p+1}^{p+q} (-1)^{r-1} (T_1 \otimes T_2)(v_1, \dots, v_{r-1}, v, v_r, \dots, v_{p+q-1}) \\ &= \sum_{r=1}^p (-1)^{r-1} T_1(v_1, \dots, v_{r-1}, v, v_r, \dots, v_{p-1}) T_2(v_p, \dots, v_{p+q-1}) \\ &+ \sum_{r=p+1}^{p+q} (-1)^{r-1} T_1(v_1, \dots, v_p) T_2(v_{p+1}, \dots, v_{r-1}, v, v_r, \dots, v_{p+q-1}) \\ &= \left[ \sum_{r=1}^p (-1)^{r-1} T_1(v_1, \dots, v_{r-1}, v, v_r, \dots, v_{p-1}) \right] \cdot T_2(v_p, \dots, v_{p+q-1}) \\ &+ T_1(v_1, \dots, v_p) \cdot \sum_{r=p+1}^{p+q} (-1)^{r-1} T_2(v_{p+1}, \dots, v_{r-1}, v, v_r, \dots, v_{p+q-1}) \\ &= \left[ \sum_{r=1}^p (-1)^{r-1} T_1(v_1, \dots, v_{r-1}, v, v_r, \dots, v_{p-1}) \right] \cdot T_2(v_p, \dots, v_{p+q-1}) \\ &+ T_1(v_1, \dots, v_p) \cdot (-1)^p \sum_{r=1}^q (-1)^{r-1} T_2(v_{p+1}, \dots, v_{p+r-1}, v, v_{p+r}, \dots, v_{p+q-1}) \\ &= (\iota_v T_1)(v_1, \dots, v_{p-1}) \cdot T_2(v_p, \dots, v_{p+q-1}) \\ &+ (-1)^p T_1(v_1, \dots, v_p) \cdot (\iota_v T_2)(v_{p+1}, \dots, v_{p+q-1}) \\ &= (\iota_v T_1 \otimes T_2)(v_1, \dots, v_{p+q-1}) + (-1)^p (T_1 \otimes \iota_v T_2)(v_1, \dots, v_{p+q-1}) \\ &= [\iota_v T_1 \otimes T_2 + (-1)^p T_1 \otimes \iota_v T_2](v_1, \dots, v_{p+q-1}) \end{aligned}$$

as desired.  $\Box$ 

**1.7.iii.** Show that if  $T \in \mathcal{A}^k(V)$ , then  $\iota_v T = kT_v$ , where  $T_v$  is defined as in Exercise 1.3.vii. In particular, conclude that  $\iota_v T \in \mathcal{A}^{k-1}(V)$ . (See Exercise 1.4.viii, which asserts that  $T \in \mathcal{A}^k(V)$  implies  $T_v \in \mathcal{A}^{k-1}(V)$ .)

*Proof.* Suppose  $T \in \mathcal{A}^k(V)$ . Let  $\sigma \in S_k$  be the permutation that moves the  $r^{\text{th}}$  index to the first place and shifts all r-1 indices to its left up one. For example, if r=4 and  $\sigma \in S_6$ ,  $\sigma(1,2,3,4,5,6)=(4,1,2,3,5,6)$ . More relevant to our situation would be the ability of  $\sigma$  to do the following.

$$\sigma(v_1, v_2, v_3, v, v_4, v_5) = \sigma(v, v_1, v_2, v_3, v_4, v_5)$$

Going back to the general case, since we have

$$\sigma = \prod_{i=1}^{r-1} \tau_{i,i+1}$$

we can determine that

$$(-1)^{\sigma} = (-1)^{r-1}$$

Therefore, by the above and since  $T^{\sigma} = (-1)^{\sigma}T$  as an alternating k-tensor,

$$(\iota_{v}T)(v_{1},\ldots,v_{k-1}) = \sum_{r=1}^{k} (-1)^{r-1}T(v_{1},\ldots,v_{r-1},v,v_{r},\ldots,v_{k-1})$$

$$= \sum_{r=1}^{k} (-1)^{\sigma}T(v_{1},\ldots,v_{r-1},v,v_{r},\ldots,v_{k-1})$$

$$= \sum_{r=1}^{k} T^{\sigma}(v_{1},\ldots,v_{r-1},v,v_{r},\ldots,v_{k-1})$$

$$= \sum_{r=1}^{k} T(v,v_{1},\ldots,v_{k-1})$$

$$= \sum_{r=1}^{k} T_{v}(v_{1},\ldots,v_{k-1})$$

$$= kT_{v}(v_{1},\ldots,v_{k-1})$$

as desired.

As stated in the question, we may invoke Exercise 1.4.vii to determine that  $\iota_v T = kT_v \in \mathcal{A}^{k-1}(V)$ .

**1.8.i.** Verify the following assertions.

(1) The map  $A^*: \Lambda^k(W^*) \to \Lambda^k(V^*)$  sending  $\omega \mapsto A^*\omega$  is linear.

Proof. We have that

$$A^{*}(\omega_{1} + \omega_{2}) = \pi(A^{*}(T_{1} + T_{2})) \qquad A^{*}(\lambda\omega) = \pi(A^{*}(\lambda T))$$

$$= \pi(A^{*}T_{1} + A^{*}T_{2}) \qquad = \pi(\lambda A^{*}T)$$

$$= \pi(A^{*}T_{1}) + \pi(A^{*}T_{2}) \qquad = \lambda\pi(A^{*}T)$$

$$= A^{*}\omega_{1} + A^{*}\omega_{2} \qquad = \lambda A^{*}\omega$$

as desired.

(2) If  $\omega_i \in \Lambda^{k_i}(W^*)$  (i = 1, 2), then

$$A^*(\omega_1 \wedge \omega_2) = A^*(\omega_1) \wedge A^*(\omega_2)$$

*Proof.* We have that

$$A^{*}(\omega_{1} \wedge \omega_{2}) = A^{*}(\pi(T_{1} \otimes T_{2}))$$

$$= \pi(A^{*}(T_{1} \otimes T_{2}))$$

$$= \pi(A^{*}T_{1} \otimes A^{*}T_{2})$$

$$= \pi(A^{*}T_{1}) \wedge \pi(A^{*}T_{2})$$

$$= A^{*}(\omega_{1}) \wedge A^{*}(\omega_{2})$$

as desired.

(3) If U is a vector space and  $B: U \to V$  is a linear map, then for  $\omega \in \Lambda^k(W^*)$ ,

$$B^*A^*\omega = (AB)^*\omega$$

*Proof.* We have that

$$B^*A^*\omega = B^*(\pi(A^*T))$$
$$= \pi(B^*A^*T)$$
$$= \pi((AB)^*T)$$
$$= (AB^*)\omega$$

as desired.

**1.8.ii.** Deduce from the fact " $A: V \to V$  not surjective implies  $\det(A) = 0$ " a well-known fact about determinants of  $n \times n$  matrices: If two columns are equal, the determinant is zero.

*Proof.* If an  $n \times n$  matrix has two identical columns, then the dimension of its range space is at most n-1. Thus, A is not surjective, and hence has  $\det(A) = 0$ .

**1.8.iv.** Deduce from Exercise 1.8.i another well-known fact about determinants of  $n \times n$  matrices: If  $(b_{i,j})$  is the inverse of  $[a_{i,j}]$ , its determinant is the inverse of the determinant of  $[a_{i,j}]$ .

*Proof.* Let  $(b_{i,j}) = [a_{i,j}]^{-1}$ . Then

$$(b_{i,j})[a_{i,j}] = \mathrm{id}_V$$

It follows from Propositions 1.8.7 and 1.8.8 (which in turn follow from Exercise 1.8.i) that

$$\begin{split} \det(b_{i,j}) \det[a_{i,j}] &= \det(\mathrm{id}_V) = 1 \\ \det(b_{i,j}) &= \frac{1}{\det[a_{i,j}]} \end{split}$$

as desired.  $\Box$ 

**1.8.v.** Extract from the formula  $\det([a_{i,j}]) = \sum_{\sigma \in S_n} (-1)^{\sigma} a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}$  the following well-known formula for determinants of  $2 \times 2$  matrices.

$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

*Proof.* The two elements of  $S_2$  are the identity permutation (which we will refer to as  $\sigma_1$ ) and  $\tau_{1,2}$  (which we will refer to as  $\sigma_2$ ). It follows that for the n=2 case,

$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \sum_{\sigma \in S_2} (-1)^{\sigma} a_{1,\sigma(1)} a_{2,\sigma(2)}$$

$$= (-1)^{\sigma_1} a_{1,\sigma_1(1)} a_{2,\sigma_1(2)} + (-1)^{\sigma_2} a_{1,\sigma_2(1)} a_{2,\sigma_2(2)}$$

$$= (1) a_{1,1} a_{2,2} + (-1) a_{1,2} a_{2,1}$$

$$= a_{1,1} a_{2,2} - a_{1,2} a_{2,1}$$

as desired.  $\Box$ 

**1.9.i.** Prove that if  $e_1, \ldots, e_n$  is a positively oriented basis of V, then the basis  $e_1, \ldots, e_{i-1}, -e_i, e_{i+1}, \ldots, e_n$  is negatively oriented.

*Proof.* Since  $e_1, \ldots, e_n$  is a positively oriented basis of V, we know that  $e_1^* \wedge \cdots \wedge e_n^* \in \Lambda^n(V^*)_+$ . This combined with the fact that

$$e_1 \wedge \cdots \wedge e_{i-1}, -e_i, e_{i+1} \wedge \cdots \wedge e_n = -e_1^* \wedge \cdots \wedge e_n^* \notin \Lambda^n(V^*)$$

implies that the given basis is negatively oriented, as desired.

**1.9.ii.** Show that the argument in the proof of Theorem 1.9.9 can be modified to prove that if V and W are oriented, then these orientations induce a natural orientation on V/W.

Proof. Let  $W \leq V$ , dim V = n > 1, dim W = k < n, and r = n - k. WLOG choose  $e_1, \ldots, e_n$  a positively oriented basis of V such that  $e_{r+1}, \ldots, e_n$  is a positively oriented basis of W. It follows that  $\pi(e_1), \ldots, \pi(e_r)$  for a basis of V/W. Assign to V/W the orientation associated with this basis.

Now suppose  $\pi(f_1), \ldots, \pi(f_r)$  is another basis of V/W.