集合論と位相空間論における有用で基礎的 な事実のリスト

七条 彰紀

平成31年8月2日

基礎的な集合論・位相空間論を一通り学び終えてより発展的な命題を扱っていても、時々「アレが使えると思うんだけど、正確な命題を忘れてしまったな」ということがある。以下ではそういった事柄を列挙する。いずれも、証明は集合論・位相空間論を一通り学び終えていれば簡単なものである。

以下, X,Y,\dots 等の大文字は集合あるいは位相空間とし, f,g,\dots 等小文字はそれらの間の写像とする.

1 集合論

1.1 射

写像 $f: X \to Y, g: Y \to Z$ を考える.

- 1. 合成 $g \circ f$ が全射ならば g も全射.
- 2. 合成 $g \circ f$ が単射ならば f も単射.

また, 部分集合に関しては次も成立する.

- 1. f が単射ならば、X の任意の部分集合 S について $f^{-1}(f(S)) = S$.
- 2. f が全射ならば、Y の任意の部分集合 T について $f(f^{-1}(T)) = T$.

2 位相空間論

2.1 射

写像 $f: X \to Y, g: Y \to Z$ を考える.

1. 写像 f が連続であることと $f(\operatorname{cl}_X(A)) \subseteq \operatorname{cl}_Y(f(A))$ が成立することは同値.

2.2 閉包 cl

位相空間の部分集合 A,B と部分集合の族 $\{S_{\lambda}\}_{\lambda\in\Lambda}$ について次が成立する.

$$\operatorname{cl}(A \cap B) \subseteq \operatorname{cl}(A) \cap \operatorname{cl}(B), \qquad \operatorname{cl}\left(\bigcap S_{\lambda}\right) \subseteq \bigcap \operatorname{cl}\left(S_{\lambda}\right)$$
 (1)

$$cl(A \cap B) \subseteq cl(A) \cap cl(B), \qquad cl\left(\bigcap S_{\lambda}\right) \subseteq \bigcap cl(S_{\lambda})$$

$$cl(A \cup B) = cl(A) \cup cl(B), \qquad cl\left(\bigcup S_{\lambda}\right) \supseteq \bigcup cl(S_{\lambda})$$
(2)