Devoir Surveillé Première Le second degré

Exercice 1:

- 1) Soit f la fonction définie sur \mathbb{R} par $f(x) = 3x^2 12x + 19$
 - a) Déterminer la forme canonique de la fonction f
 - b) En déduire le tableau de variation de la fonction f
- 2) Soit g la fonction définie sur \mathbb{R} par : $g(x) = -2x^2 7x + 15$
 - a) Déterminer les racines de g
 - b) En déduire une factorisation de g(x)
 - c) L'équation g(x) = -70 admet-elle des solutions ? Si oui, lesquelles.

Exercice 2 : Résoudre les équations suivantes dans IR.

1)
$$-x^2+4x+5=0$$

2)
$$2x^2 - 5x + 7 = 0$$

3)
$$-\frac{1}{3}x^2+2x-3=0$$

4)
$$3x^2 - 2x - 7 = 2$$

Exercice 3 : Résoudre dans IR les inéquations suivantes :

1)
$$x^2 - 2x < 0$$

2)
$$6x^2 - 15x + 6 \ge 0$$

2)
$$6x^2 - 15x + 6 \ge 0$$
 3) $\frac{-3x^2 - 4x + 7}{2x + 1} \ge 0$

Exercice 4: Soit l'équation (E_m) : $(m+3)x^2+mx+1=0$ avec $m \in \mathbb{R}$.

- 1) Si m = -3 que peut-on dire de l'équation ? Résoudre alors cette équation (E_{-3}) .
- 2) Dans cette question, $m \neq -3$. Montrer que Δ peut s'écrire : $\Delta = (m+2)(m-6)$
- 3) En déduire les valeurs de m pour lesquelles l'équation (E_m) admet une seule solution

Exercice 5 : Une équation bicarrée est une équation de la forme : $ax^4 + bx^2 + c = 0$

- 1) On veut résoudre l'équation bicarrée (E) : $x^4 6x^2 + 8 = 0$. On pose $X = x^2$
 - a) Quelle condition doit vérifier X?
 - b) Résoudre l'équation $X^2-6X+8=0$
 - c) En déduire les solutions de (E)
- 2) En appliquant la même méthode, résoudre $x^4 8x^2 9 = 0$

Exercice 6 (facultatif): Déterminer les réels x et y vérifiant les deux conditions suivantes :

$$\begin{cases} x + y = 29 \\ xy = 198 \end{cases}$$