2.10 LIMITING AND EXCESS REAGENTS

PRACTICE

(Page 153)

Understanding Concepts

1. (a)
$$m_{H_2} = 10.0 \text{ g H}_2$$

 $N_{O_2} = 32.00 \text{ g O}_2$

Balanced equation	2 H _{2(g)}	+ O _{2(g)}	\rightarrow 2 $H_2O_{(I)}$
Before reaction	10.0 g	32.00 g	0 g
Reaction according to balanced equation	2 mol 4.04 g	1 mol 32.00 g	2 mol
After reaction	5.96 g	0 g	? g

According to the chart, oxygen is the limiting reagent, and hydrogen is the excess reagent.

(b)

$$n_{\rm O_2} = 32.00 \text{ g} \Omega_2 \times \frac{1 \text{ mol O}_2}{32.00 \text{ g} \Omega_2}$$

$$n_{\rm O_2} = 1.000 \; {\rm mol} \; {\rm O_2}$$

$$n_{\rm H_2O} = 1.000 \text{ mol } O_2 \times \frac{2 \text{ mol H}_2O}{1 \text{ mol } O_2}$$

$$n_{\rm H_2O} = 2.000 \; {\rm mol} \; {\rm H_2O}$$

$$m_{\rm H_2O} = 2.000 \text{ mol H}_2O \times \frac{18.02 \text{ g H}_2O}{1 \text{ mol H}_2O}$$

$$m_{\rm H_2O} = 36.04 \text{ g H}_2\text{O}$$

Therefore, 36.04 g of water is produced.

The combined calculation is as follows:

$$m_{\rm H_2O} = 32.00 \text{ g} \cdot 0.00 \times \frac{1 \text{ mol} \cdot 0.00}{32.00 \text{ g} \cdot 0.00} \times \frac{2 \text{ mol} \cdot \text{H}_2O}{1 \text{ mol} \cdot 0.00} \times \frac{18.02 \text{ g} \cdot \text{H}_2O}{1 \text{ mol} \cdot \text{H}_2O}$$

$$m_{\rm H_2O} = 36.04~{\rm g~H_2O}$$

Therefore, 36.04 g of water is produced.

2.
$$m_{CH_4} = 32.1 \text{ g CH}_4$$

$$m_{\rm O_2}$$
 = 160.0 g $\rm O_2$

Balanced equation	2 CH _{4(g)} +	$3 O_{2(g)} \longrightarrow$	2 CO _(g)	+ 4 H ₂ O _(g)
Before reaction	32.1 g	160.0 g	0 g	0 g
Reaction according to balanced equation	2 mol (32.10 g)	3 mol (96.00 g)		
After reaction	0 g	64.0 g	?	

According to the chart, methane is the limiting reagent and oxygen is the excess reagent.

$$n_{\text{CH}_4} = 32.1 \text{ g CH}_4 \times \frac{1 \text{ mol CH}_4}{16.05 \text{ g CH}_4}$$

$$n_{\rm CH_4} = 2.00 \; {\rm mol} \; {\rm CH_4}$$

$$n_{\text{CO}} = 2.00 \text{ mol-eH}_4 \times \frac{2 \text{ mol-CO}}{2 \text{ mol-eH}_4}$$

$$n_{\rm CO} = 2.00 \; {\rm mol} \; {\rm CO}$$

$$m_{\rm CO} = 2.00$$
 met $CO \times \frac{28.01 \text{ g CO}}{1 \text{ met CO}}$

$$m_{\rm CO} = 56.0 \; {\rm g} \; {\rm CO}$$

Therefore, 56.0 g of carbon monoxide is produced during incomplete combustion.

The combined calculation is as follows:

$$m_{\rm CO} = 32.1~{\rm g.CH_4} \times \frac{1~{\rm mol.CH_4}}{16.05~{\rm g.CH_4}} \times \frac{2~{\rm mol.CO}}{2~{\rm mol.CH_4}} \times \frac{28.01~{\rm g.CO}}{1~{\rm mol.CO}}$$

$$m_{\rm CO} = 56.0 \text{ g CO}$$

Therefore, 56.0 g of carbon monoxide is produced during incomplete combustion.

3. (a)
$$m_{SO_2} = 192.18 \text{ g SO}_2$$

$$m_{\rm O_2} = 32.00 \, {\rm g} \, {\rm O}_2$$

Balanced equation	2 SO _{2(g)} +	$O_{\scriptscriptstyle 2(g)} \qquad o$	2 SO _{3(g)}
Before reaction	192.18 g	32.00 g	0 g
Reaction according to balanced equation	2 mol (128.00 g)	1 mol (32.00 g)	
After reaction	64.18 g	0 g	?

According to the chart, oxygen is the limiting reagent and sulfur dioxide is the excess reagent.

(b)

$$n_{\rm O_2} = 32.00 \text{ g } \Theta_2 \times \frac{1 \text{ mol } O_2}{32.00 \text{ g } \Theta_2}$$

$$n_{O_2} = 1.000 \text{ mol } O_2$$

$$n_{SO_3} = 1.000 \text{ mol } O_2 \times \frac{2 \text{ mol } SO_3}{1 \text{ mol } O_2}$$

$$n_{SO_3} = 2.00 \text{ molSO}_3$$

Therefore, 2.00 mol sulfur trioxide is produced.

(c)
$$m_{SO_3} = 2.00 \text{ mol-} SO_3 \times \frac{80.06 \text{ g } SO_3}{1 \text{ mol-} SO_3}$$

 $m_{SO_3} = 160.1 \text{ g } SO_3$

Therefore, 160.1 g of sulfur trioxide is produced.

4.
$$m_{P_4} = 123.88 \text{ g P}_4$$

 $m_{Cl_2} = 1.00 \text{ kg Cl}_2 \times \frac{1000 \text{ g Cl}_2}{1 \text{ kg Cl}_2}$
 $m_{Cl_2} = 1.00 \times 10^3 \text{ g Cl}_2$

Balanced equation	P _{4(s)} +	10 Cl _{2(g)} →	4 PCI _{5(s)}
Before reaction	123.88 g	354.5 g	0 g
Reaction according to balanced equation	1mol (123.88 g)	10 mol (709.0 g)	
After reaction	0 g	354.5 g	?

$$n_{P_4} = 123.88 \text{ g.P}_4 \times \frac{1 \text{ mol P}_4}{123.88 \text{ g.P}_4}$$

$$n_{\rm P_4} = 1.000 \; {\rm mol} \; {\rm P_4}$$

$$n_{\text{PCl}_5} = 1.000 \text{ molP}_4 \times \frac{4 \text{ mol PCl}_5}{1 \text{ molP}_4}$$

$$n_{PCl_5} = 4.000 \text{ mol PCl}_5$$

$$m_{\rm PCl_5} = 4.000 \text{ mol-PCl}_5 \times \frac{208.22 \text{ g PCl}_5}{1 \text{ mol-PCl}_5}$$

$$m_{PCl_s} = 832.9 \text{ g PCl}_5$$

The mass of phosphorus pentachloride produced from the reaction is 832.9 g.

The combined calculation is as follows:

$$m_{\rm PCl_5} = 123.88~{\rm g.P_4} \times \frac{1~{\rm mol.P_4}}{123.88~{\rm g.P_4}} \times \frac{4~{\rm mol.PCl_5}}{1~{\rm mol.P_4}} \times \frac{208.22~{\rm g.PCl_5}}{1~{\rm mol.PCl_5}}$$

$$m_{\rm PCl_5} = 832.9 \ {\rm g \ PCl_5}$$

The mass of phosphorus pentachloride produced from the reaction is 832.9 g.

SECTION 2.10 QUESTIONS

(Page 153)

Understanding Concepts

- 1. The excess reagent is the reactant that is not completely consumed in a chemical reaction. The limiting reagent is the reactant that is completely consumed in a chemical reaction. The limiting reagent limits the amount of product that can be formed.
- 2. No, there does not need to be a limiting reagent in a chemical reaction. If reactants are mixed in amounts equal to, or proportional to, the coefficients in the balanced reaction equation, then all reagents will be completely consumed.

- 3. Substance A must be the limiting reagent, and substance B must be in excess. All of substance A must react to determine the amount of product formed and, therefore, the initial amount of substance A. The only way to be sure that all of substance A has reacted is to use an excess of substance B.
- $m_{\rm CH_*} = 6.4 \, \rm g \, CH_4$

$$m_{O_2} = ?$$

Balanced equation	2 CH ₄ → _(g) +	$3 O_{2(g)} \longrightarrow$	2 CO _(g) +	4 H ₂ O _(g)
Given mass (g)	6.4 g	?		
Molar mass (g/mol)	16.05 g/mol	32.00 g/mol	28.01 g/mol	

$$n_{\text{CH}_4} = 6.4 \text{ g.CH}_4 \times \frac{1 \text{ mol CH}_4}{16.05 \text{ g.CH}_4}$$

$$n_{\rm CH_4} = 0.40 \; {\rm mol} \; {\rm CH_4}$$

$$n_{\rm O_2} = 0.40 \text{ moleH}_4 \times \frac{3 \text{ mol O}_2}{2 \text{ moleH}_4}$$

$$n_{\rm O_2} = 0.60 \; {\rm mol} \; {\rm O_2}$$

$$m_{\rm O_2} = 0.60 \text{ mol } O_2 \times \frac{32.00 \text{ g } O_2}{1 \text{ mol } O_2}$$

$$m_{\rm O_2} = 19 {\rm g} {\rm O}_2$$

The mass of oxygen required to react with 6.4 g of methane is 19 g.

The combined calculation is as follows:

$$m_{\rm O_2} = 6.4 \text{ g.CH}_4 \times \frac{1 \text{ mol-CH}_4}{16.05 \text{ g.CH}_4} \times \frac{3 \text{ mol-O}_2}{2 \text{ mol-CH}_4} \times \frac{32.00 \text{ g O}_2}{1 \text{ mol-O}_2}$$

$$m_{\rm O_2} = 19~{\rm g}~{\rm O}_2$$

The mass of oxygen required to react with 6.4 g of methane is 19 g.

(b)
$$m_{CH_4} = 6.4 \text{ g CH}_4$$

 $m_{CO} = ?$

Balanced chemical equation	2 CH _{4(g)} +	3 O _{2(g)} —	>	2 CO _(g)	+	4 H ₂ O _(g)
Given mass (g)	6.4 g	?				
Molar mass (g/mol)	16.05 g/mol	32.00 g/mol		28.01 g/mol		

$$n_{CH_4} = 0.40 \text{ mol CH}_4$$

$$n_{\text{CO}} = 0.40 \text{ moleH}_4 \times \frac{2 \text{ mol CO}}{2 \text{ moleH}_4}$$

$$n_{\rm CO} = 0.40 \; {\rm mol} \; {\rm CO}$$

$$m_{\rm CO} = 0.40 \text{ mol CO} \times \frac{28.01 \text{ g eO}}{1 \text{ mol CO}}$$

$$m_{\rm CO}$$
 = 11 g CO

The mass of carbon monoxide formed is 11 g.

The combined calculation is as follows:

$$m_{\rm CO} = 6.4 \text{ g.CH}_4 \times \frac{1 \text{ mol-CH}_4}{16.05 \text{ g.CH}_4} \times \frac{2 \text{ mol-CO}}{2 \text{ mol-CH}_4} \times \frac{28.01 \text{ g.CO}}{1 \text{ mol-CO}}$$

$$m_{\rm CO} = 11 \, \rm g \, CO$$

The mass of carbon monoxide formed is 11 g.

5. $m_{AI} = 6.71 \,\mathrm{g} \,\mathrm{AI}$

$$m_{\mathsf{Al}_2(\mathsf{SO}_4)_3} = ?$$

Balanced chemical equation	2 Al _(s) +	$3 \text{ H}_{\scriptscriptstyle 2}\text{SO}_{\scriptscriptstyle 4(aq)} \rightarrow $	$Al_2(SO_4)_{3(aq)}$ +	3 H _{2(g)}
Given mass (g)	6.71 g		?	
Molar mass (g/mol)	26.98 g/mol		342.14 g/mol	

$$n_{\rm Al} = 6.71 \text{ g/Al} \times \frac{1 \text{ mol Al}}{26.98 \text{ g/Al}}$$

$$n_{\Delta l} = 0.2487 \text{ mol Al}$$

$$n_{\text{Al}_2(\text{SO}_4)_3} = 0.2487 \text{ mot Al} \times \frac{1 \text{ mol Al}_2(\text{SO}_4)_3}{2 \text{ mot Al}}$$

$$n_{\text{Al}_2(\text{SO}_4)_3} = 0.1244 \text{ mol Al}_2(\text{SO}_4)_3$$

$$m_{\text{Al}_2(\text{SO}_4)_3} = 0.1244 \ \ \, \underline{\text{mol Al}_2(\text{SO}_4)_3} \times \frac{342.14 \text{ g Al}_2 (\text{SO}_4)_3}{1 \ \, \underline{\text{mol Al}_2(\text{SO}_4)_3}}$$

$$m_{\text{Al}_2(\text{SO}_4)_3} = 42.5 \text{ g Al}_2(\text{SO}_4)_3$$

The mass of aluminum sulfate formed is 42.5 g.

The combined calculation is as follows:

$$m_{\text{Al}_2(\text{SO}_4)_3} = 6.71 \text{ gAI} \times \frac{1 \text{ motAI}}{26.98 \text{ gAI}} \times \frac{1 \text{ molAl}_2(\text{SO}_4)_3}{2 \text{ motAI}} \times \frac{342.14 \text{ gAl}_2(\text{SO}_4)_3}{1 \text{ molAl}_2(\text{SO}_4)_3}$$

$$m_{\text{Al}_2(\text{SO}_4)_3} = 42.5 \text{ gAl}_2(\text{SO}_4)_3$$

The mass of aluminum sulfate formed is 42.5 g.

6.
$$m_{Cu} = ?$$

$$m_{\text{Cu}_2\text{O}} = 286.2 \text{ g Cu}_2\text{O}$$

$$m_{\text{Cu}_2\text{S}} = 286.2 \text{ g Cu}_2\text{S}$$

Balanced chemical equation	2 Cu ₂ O _(s) +	$Cu_{2}S_{(s)} \rightarrow$	6 Cu _(s) +	SO _{2(g)}
Before reaction	286.2 g	286.2 g	0 g	0 g
Reaction according to balanced chemical equation	2 mol (286.20 g)	1 mol (159.16 g)	6 mol (381.30 g)	1 mol (64.06 g)
After reaction	0 g	127.0 g	?	

From the table, the limiting reagent is $Cu_2O_{(s)}$ and the excess reagent is $Cu_2S_{(s)}$.

$$n_{\text{Cu}_2\text{O}} = 286.2 \text{ g Cu}_2\text{O} \times \frac{1 \text{ mol Cu}_2\text{O}}{143.1 \text{ g Cu}_2\text{O}}$$

$$n_{\text{Cu}_2\text{O}} = 2.000 \text{ mol Cu}_2\text{O}$$

$$n_{\text{Cu}} = 2.000 \text{ mol Cu}_2\text{O} \times \frac{6 \text{ mol Cu}}{2 \text{ mol Cu}_2\text{O}}$$

$$n_{\rm Cu} = 6.000 \; {\rm mol} \; {\rm Cu}$$

$$m_{\text{Cu}} = 6.000 \text{ mol Cu} \times \frac{63.55 \text{ g Cu}}{1 \text{ mol Cu}}$$

$$m_{\rm Cu} = 381.3 \text{ g Cu}$$

The mass of copper obtained from the reaction is 381.3 g.

The combined calculation is as follows:

$$m_{\text{Cu}} = 286.2 \text{ g Ctt}_2\text{O} \times \frac{1 \text{ mol Ctt}_2\text{O}}{143.1 \text{ g Ctt}_2\text{O}} \times \frac{6 \text{ mel Ctu}}{2 \text{ mol Ctt}_2\text{O}} \times \frac{63.55 \text{ g Ctu}}{1 \text{ mel Ctu}}$$

$$m_{\rm Cu} = 381.3 \ {\rm g \ Cu}$$

The mass of copper obtained from the reaction is 381.3 g.

2.11 INVESTIGATION: THE LIMITING REAGENT IN A CHEMICAL **REACTION**

(Page 154)

Prediction

(a) According to the stoichiometric method, 2.32 g of strontium sulfate precipitate will be produced from the reaction of 2.00 g of strontium chloride with excess copper(II) sulfate. The reaction equation is shown below.