Oppgaver for kapittel 0

0.2.1

Finn lengden til vektorene:

a)
$$[-2, 1, 5]$$

a)
$$[-2, 1, 5]$$
 b) $[\sqrt{3}, 2, \sqrt{2}]$

0.2.2

Hvilket av punktene B = (3, -2, 1) og C = (0, 5, 6) ligger nærmest punktet A = (1, -1, -2)?

0.2.3

Gitt vektoren

$$\vec{u} = [ad, bd, cd]$$

a) Vis at

$$|\vec{u}| = d\sqrt{a^2 + b^2 + c^2}$$

når d > 0.

b) Forklar at

$$|\vec{u}| = |d|\sqrt{a^2 + b^2 + c^2}$$

når d < 0.

0.3.1

Gitt vektorene

$$\vec{u} = [ad, bd, cd] \text{ og } \vec{v} = [eh, fh, gh]$$

Vis at

$$\vec{u} \cdot \vec{v} = dh(ae + bf + cg)$$

0.3.2

Finn skalarproduktet av vektorene:

a)
$$\vec{a} = [2, 4, 6]$$
 og $\vec{b} = [-5, 0, -1]$

b)
$$\vec{a} = [-9, 1, 5]$$
 og $\vec{b} = [-2, 1, -2]$

c) $\vec{a} = \left[\frac{1}{5}, \frac{3}{5}, -\frac{1}{5}\right]$ og $\vec{b} = [512, -128, 64]$. Tips: Bruk resultatet fra opg. 0.3.1.

0.3.3

Finn skalarproduktet av \vec{a} og \vec{b} , som utspenner vinkelen θ , når du vet at

a)
$$|\vec{a}| = 5$$
, $|\vec{b}| = 2$ og $\theta = 60^{\circ}$

b)
$$|\vec{a}| = 5$$
, $|\vec{b}| = 2$ og $\theta = 150^{\circ}$

0.3.4

Finn vinkelen mellom \vec{a} og \vec{b} når

a)
$$\vec{a} = [5, -5, 2]$$
 og $\vec{b} = [3, -4, 5]$

b)
$$\vec{a} = [2, -1, -3]$$
 og $\vec{b} = [-1, -3, -2]$

c)
$$\vec{a} = [-1, -2, 2]$$
 og $\vec{b} = [-3, 5, -4]$

0.3.5

Forkort uttrykkene når du vet at $|\vec{a}|=1,$ $|\vec{b}|=2,$ $|\vec{c}|=5,$ $\vec{a}\cdot\vec{b}=0$ og $\vec{b}\cdot\vec{c}=0.$

a)
$$\vec{b} \cdot (\vec{a} + \vec{c}) + 3(\vec{a} + \vec{b})^2$$

b)
$$(\vec{a} + \vec{b} + \vec{c})^2$$

0.4.1

Sjekk om \vec{a} og \vec{b} er ortogonale når

a)
$$\vec{a} = [2, 4, -2]$$
 og $\vec{b} = [3, 1, 1]$

b)
$$\vec{a} = [-18, 12, 9] \text{ og } \vec{b} = [1, -2, 1]$$

c)
$$\vec{a} = [5, 5, -1] \text{ og } \vec{b} = [5, -4, 5]$$

0.4.2

Gitt vektoren

$$\vec{u} = [-5, -1, 6]$$

Finn tslik at $\vec{u} \perp \vec{v}$ når

a)
$$\vec{v} = [t, 3t, 2]$$

b)
$$\vec{v} = [t, t^2, 1]$$

0.4.3

Sjekk om $\vec{a} \parallel \vec{b}$ når

- a) $\vec{a} = [8, 4, -2]$ og $\vec{b} = [4, 2, 4]$
- **b)** $\vec{a} = [-3, 5, 2] \text{ og } \vec{b} = \left[-\frac{9}{7}, \frac{15}{7}, \frac{6}{7}\right]$

0.4.4

Gitt vektoren

$$\vec{a} = [-3, 1, 8]$$

Om mulig, finn t slik at $\vec{a} \parallel \vec{b}$ når

a)
$$\vec{b} = [t+3, 1-t, -16]$$

b)
$$\vec{b} = [t^2 + 2, t, -(5t^2 + 3)]$$

0.4.5

Finn s og t slik at $\vec{u}=[4,6+s,-(s+t)]$ og $\vec{v}=\left[\frac{12}{7},\frac{2t-9s}{7},\frac{3s-t}{7}\right]$ er parallelle.

0.5.1

Vis at

$$\begin{vmatrix} ae & be \\ cf & df \end{vmatrix} = ef \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

0.5.2

Vis at hvis $\vec{u}||\vec{v}$, så er $\vec{u} \times \vec{v} = 0$

0.5.3

For to vektorer \vec{u} og \vec{v} er Lagranges identitet gitt som

$$|\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2 - (\vec{u} \cdot \vec{v})^2$$

Bruk identiteten og definisjonen av skalarproduktet til å vise at

$$|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|\sin\angle(\vec{u}, \vec{v})$$

0.5.4

Et tetraeted er utspent av vektorene $\vec{a} = [2, -2, 1], \ \vec{b} = [3, -3, 1]$ og $\vec{c} = [2, -3, 2]$, hvor \vec{a} og \vec{b} utspenner grunnflaten.

- a) Vis at arealet av grunnflaten er $\frac{\sqrt{2}}{2}$.
- **b)** Vis at volumet av tetraetedet er $\frac{1}{6}$.

0.5.5

Løs gruble 1 a) ved å

- a) bruke likning (??)
- b) bruke den klassiske formelen for volumet til en pyramide (se MB).

0.5.6

Et parallellepipedet er utspent av vektorene \vec{a} , \vec{b} og \vec{c} . Vi har at $|a|=3, |\vec{b}|=4, \vec{a}\cdot\vec{b}=0$, og at grunnflaten er utspent av \vec{a} og \vec{b} .

a) Finn lengden av diagonalen til grunnflaten.

La θ være vinkelen mellom $\vec{a} \times \vec{b}$ og \vec{c} og la $\theta \in [0^{\circ}, 90^{\circ}]$.

b) Lag en tegning og forklar hvorfor høyden h i parallellepipedet er gitt som

$$h = |\vec{c}| \cos \theta$$

d) Forklar hvor
for volumet ${\cal V}$ av parallellepipedetet kan skrives som

$$V = |\vec{a} \times \vec{b}||c|\cos\theta$$

0.5.7

Gitt vektorene $\vec{u} = [a, b, c], \vec{v} = [d, e, f]$ og $\vec{w} = [g, h, i]$. Vis at

$$\vec{u} \times \vec{v} \cdot \vec{w} = \vec{w} \times \vec{u} \cdot \vec{v}$$

Tre pyramider er utspent av vektorene $\vec{u} = [a, b, c], \vec{v} = [d, e, f]$ og $\vec{w} = [g, h, i]$. Grunnflatene til pyramidene er henholdsvis utspent av \vec{u} og \vec{v} , \vec{u} og \vec{v} og \vec{v} og \vec{v} . Hva er uttrykket til volumet av pyramidene?

Gruble 1

(R2V23D1)

Punktene $A=(0,0,0),\,B=(0,5,0),\,C=(4,2,0)$ og T=(0,0,5) danner en pyramide, slik figuren viser.

- a) Regn ut volumet til pyramiden.
- b) Regn ut arealet til $\triangle BCT$.
- c) Bestem avstanden fra punktet A til planet som går gjennom $B,\,C$ og T.