МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа биологической и медицинской физики

Лабораторная работа по общей физике

5.1.2 Эффект Комптона.

Выполнили студенты группы Б06-103: Фитэль Алена Флоренская Лидия

1 Введение

Цель работы: С помощью сцинтилляционного спектрометра исследуется энергетический спектр γ -квантов, рассеянных на графите. Определяется энергия рассеяных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

Рассеяние γ -лучей в веществе относится к числу явления, в которых особенно ясно проявляется двойственная природа излучения. Волновая теория, хорошо объясняющая рассеяние длинноволонового излучения, испытывается трудности при описании рассеяния рентгеновских и γ -лучей. Эта теория, в частности, не может объяснить, почему в составе рассеянного излучения, измеренного Комптоном, кроме исходной волны с частотой ω_0 появляется дополнительная длинноволновая компонента, отсутствующая в спектре первичного излучения.

Появление этой компоненты легко объяснимо, если считать, что γ -излучение представляет собой поток квантов (фотонов), имеющих энергию $\hbar\omega$ и импульс $p=\hbar\omega/c$. Эффект Комптона – увеличение длинны волны рассеянного излучения по сравнению с падающим – интерпретируется как результат упругого соударения двух частиц: γ -кванта (фотона) и свободного электрона.

Рисунок 1: Векторная диаграмма рассеяния γ -кванта на электроне

Рассмотрим элементарную теорию эффекта Комптона. Пусть электрон до соударения (его энергия равна энергии покоя mc^2), а

 γ -квант имел начальную энергию $\hbar\omega_0$ и импульс $\hbar\omega_0/c$. После соударения электрон приобретает энергию γmc^2 и импульс γmv , где $\gamma=(1-\beta^2)^{-1/2},\ \beta=v/c$, а γ -квант рассеивается на некоторый угол θ по отношению к первоначальному направлению движения. Энергия и импульс γ -кванта становятся соответственно равными $\hbar\omega_1$ и $\hbar\omega_1/c$ (рис. 1).

Запишем для рассматриваемого процесса законы сохранения энергии и импульса:

$$mc^{2} + \hbar\omega_{0} = \gamma mc^{2} + \hbar\omega_{1},$$

$$\frac{\hbar\omega_{0}}{c} = \gamma mv \cos\varphi + \frac{\hbar\omega_{1}}{c}\cos\theta,$$

$$\gamma mv \sin\varphi = \frac{\hbar\omega_{1}}{c}\sin\theta.$$

Решая совместно эти уравнения и переходя от частот ω_0 и ω_1 к длинам волн λ_0 и λ_1 , нетрудно получить, что изменение длины волны рассеянного излучения равно

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_k (1 - \cos \theta), \qquad (1)$$

где λ_0 и λ_1 – длины волн γ -кванта до и посл рассеяния, а величина

$$\Lambda_k = \frac{h}{mc} = 2.42 \cdot 10^{-10} \text{ cm}$$

называется комптоновской длиной волны электрона. Из формулы (1) следует, что комптоновское смещение не зависит ни от длины волны первичного излучения, ни от рода вещества, в котором наблюдается рассеяние. В приведенном выводе электрон в атоме считается свободным. Для γ -квантов с энергией в несколько десятков, а тем более сотен килоэлектрон-вольт, связь электронов в атоме, действительно, мало существенна, так как энергия их связи в лег-ких атомах не превосходит нескольких килоэлектрон-вольт, а для большинства электронов еще меньше.

При рассеянии на связанных электронах изменение импульса кванта воспринимается атомом в целом. Поскольку масса атома очень велика, передача импульса не сопровождается скольконибудь заметной передачей энергии, и наблюдается несмещенная (по энергии) компонента в спектре рассеянного излучения. Таким образом, рассеяние γ -квантов на связанных электронах можно рассматривать как упругое столкновение квантов с атомами. В классике такое рассеяние называется рэлеевским и рассматривается как процесс, при котором связанные электроны атома приходят в резонансное колебание под действием падающего излучения, а затем сами излучают фотоны той же частоты. При рассеянии квантов не очень высокой энергии ($1 \div 10$ кэВ) часть электронов ведет себя, как свободные, а часть – как связанные. Оба типа рассеяния при этом наблюдаются одновременно.

При увеличении атомного номера Z рассеивателя сечение рэлеевского рассеяния растет как Z^2 , тогда как сечение комптоновского рассеяния на атоме пропорционально Z. Это происходит по следующей причине. При комптоновском рассеянии каждый электрон атома ведет себя независимо от других, поскольку рассеяние в этом случае происходит на каком-либо одном из атомных электронов. При рэлеевском рассеянии фотоны излучаются всеми (или почти всеми) электронами атомной оболочки, колеблющимися синфазно. Их излучение когерентно, так что складываются амплитуды, а не интенсивности излученных волн электронов.

Рисунок 2: Сечение взаимодействия фотонов с углеродом (Z=6) при энергиях фотона от 10 эВ до 1 МэВ; σ_{Φ} — сечение фотоэффектра, $\sigma_{\rm p}$ — сечение рэлеевского рассеяния; $\sigma_{\rm tot}$ — полное сечение взаимодействия фотнов с ядром углерода

Сечение комптоновского и рэлеевского рассеяний по-разному зависят и от энергии фотонов. С увеличением энергии сечение рэлеевского рассеяния уменьшается очень быстро, а сечение комптоновского рассеяния – незначительно.

Это различие в энергетической зависимости комптоновского $\sigma_{\rm k}$ и рэлеевского $\sigma_{\rm p}$ сечений рассеяний показано на рис. 2. Обратите внимание на то, что при рассеянии на углероде рентгеновских квантов с энергией $\simeq 20$ кэВ (как это было в эксперименте Комптона) $\sigma_{\rm k}$ порядка $\sigma_{\rm p}$, и поэтому наблюдаются две линии — смещенная и несмещенная. В то же время при рассеянии на углероде фотонов с энергией $\simeq 600$ кэВ (которые используются в данной работе) $\sigma_{\rm k} \gg \sigma_{\rm p}$, и поэтому наблюдается только смещенная компонента. Сечение рэлеевского рассеяния на атоме, при уменьшении длины волны уменьшается пропорционально λ^2 вследствие интерференции излучения, рассеянного от различных участков распределения.

В заключение укажем, что кроме рассеяния γ -кванты испытывают в среде поглощение, вызываемое фотоэффектом и рождение электрон-позитронных пар. Процесс рождения пар пороговых, он возможен лишь при энергии γ -квантов больше $2mc^2=1.02$ МэВ и в рассматриваемом энергетическом диапазоне не происходит. При фотоэффекте из атома выбивается электрон, а квант поглощается. Импульс кванта делится между вылетевшим электроном и атомом, а его энер-

гия частично передается электрону, а частично тратится на возбуждение атома. Атом практически мгновенно (за время порядка 10^{-8} с) возвращается в нормальное состояние. Его энергия возбуждения либо излучается в виде мягкого фотона, либо передается какому-нибудь другому электрону, который покидает атом (Оже-эффект). И в том, и в другом случае энергия возбуждения обычно поглощается соседними атомами рассеивателя.

Основной целью данной работы является проверка соотношения (1). Применительно к усло-

виям нашего опыта формулу (1) следует преобразовать от длин волн к энергии γ -квантов. Как нетрудно показать, соответствующее выражение имеет вид

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta. \tag{2}$$

Здесь $\varepsilon_0 = E_0/(mc^2)$ — выраженная в единицах mc^2 энергия γ -квантов, падающих на рассеиватель, $\varepsilon(\theta)$ — выраженная в тех же единицах энергии квантов, испытавших комптоновское рассеяние на угол θ , m — масса электрона.

2 Экспериментальная установка

Блок-схема установки изображена на рис. 3. Источником излучения 1 служит 137 Cs, испускающий γ -лучи с энергией 662 кэВ. Он помещен в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень 2 (цилиндр диаметром 40 мм и высотой 100 мм).

Рисунок 3: Блок-схема установки по изучению рассеяния γ -квантов

Кванты, испытавшие комптоновское рассеяние в мишени, регистрируются сцинтилляционным счетчиком. Счетчик состоит из фотоэлектронного умножителя 3 (далее Φ ЭУ) и сцинтиллятора 4. Сцинтиллятором служит кристалл NaI(Tl) цилиндрической формы диаметром 40 мм и высотой 40 мм, его выходное окно находится в оптическом контакте с фотокатодом Φ ЭУ. Сигналы, возникающие на аноде Φ ЭУ, подаются на ЭВМ для амлитудного анализа. Кристалл и Φ ЭУ расположены в светонепроницаемом блоке, укрепленном на горизонтальной штанге. Штанга вместе с этим блоком может вращаться относительно мишени, угол поворота отситывается по лимбу 6.

Головная часть сцинтилляционного блока закрыта свинцовым коллиматором 5, который формирует входной пучок и защищает детектор от постороннего излучения. Основной вклад в это излучение вносят γ -кванты, проходящие из источника 1 через 6-сантиметровые стенки защитного контейнера. Этот фон особенно заметен при исследовании комптоновского рассеяния на большие углы ($\simeq 120^{\circ}$), когда расстояние между детектором и источником уменьшается.

3 Ход работы

- 1. Включим все измерительные устройства и компьютер.
- 2. Запустим программу и войдем в режим измерения спектра.

- 3. Проверим функционировании установки в этом режиме при малом времени экспозиции (порядка 1 минуты):
 - (a) снимем спектр при $\theta = 0^{\circ}$;
 - (b) установим угол $\theta \simeq 30^\circ$ и снова снимем спектр, убедимся в том, что фотопик смещается влево, в сторону меньших энергий;
 - (с) определим положения фотопиков (номера канала) на экране дисплея.
- 4. Устанавливая сцинтилляционный счетчик под разными углами θ к первоначальному направлению полета γ -квантов и вводя значения этих углов в ЭВМ, снимем амплитудные спектры и определим положение фотопиков для каждого значения угла θ , аппроксимировав полученные функции распределения гауссовскими кривыми (Рисунок). Погрешность определения этих положений примем равной среднеквадратичной погрешности отклонения от полученного расперделения, соответсявующего даннному набору данных. Измерения проводим с шагом 10° в диапазоне от 0° до 120° . Результаты измерений и экстарполяций занесем в Таблицу 1.

Рисунок 4: Аппроксимация гистограмм числа импульсов от значений их модулей гауссовскими кривыми.

5. Используя экспериментальные результаты, построим график (рис. 5), откладывая по оси абсцисс величину $1-\cos\theta$, а по оси ординат величину $1/N(\theta)$. Проведем через полученные точки прямую методом взвешенного МНК.

N	σN	θ , град.	$1 - \cos(\theta)$	$\sigma(1-\cos(\theta))$
960	50	0	0.000	0.000
840	70	10	0.015	0.003
790	70	20	0.060	0.006
690	70	30	0.134	0.009
620	70	40	0.234	0.011
560	40	50	0.357	0.013
490	50	60	0.500	0.015
450	60	70	0.658	0.016
410	50	80	0.826	0.017
340	60	90	1.000	0.017
310	50	100	1.174	0.017

Таблица 1: Распределение номеров каналов N, соответствующих фотопикам для разных углов рассеяния θ

Рисунок 5: График зависимости $\frac{1}{N} = f \left(1 - \cos \theta \right)$

6. Заменим в формуле 2 энергию квантов, испытавших комптоновское рассеяние на угол θ , номером канала $N(\theta)$, соответствующего вершине фотопика при указанном угле θ . Обозначая буквой A неизвестный коэффициент пропорциональности между $\varepsilon(\theta)$ и $N(\theta)$, найдем:

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta). \tag{3}$$

Согласно формуле (3) экспериментальные точки должны лежать на одной прямой. Пере-

сечение этой прямой с осью ординат определяет наилучшее значение $N_{\text{наил}}(0)$. Это значение учитывает не только непосредственно измеренную величину N(0), но и измерения сделанные под другими углами, а пересечение линии с прямой $\cos\theta=0$ позволяет найти наилучшее значение $N_{\text{наил}}(90)$. Таким образом можно найти энергию покоя частиц, на которых происходит комптоновское рассеяние. Снова обратимся к формуле (2). Возвращаясь от переменной ε к энергии E, мы получаем, что при $\theta=90^\circ$ формула (2) принимает вид

 $mc^2\left(\frac{1}{E(90)} - \frac{1}{E(0)}\right) = 1,$

или

$$mc^2 = E(0)\frac{E(90)}{E(0) - E(90)} = E_\gamma \frac{N(90)}{N(0) - N(90)}.$$
 (4)

где $E(0) = E_{\gamma}$ – энергия электронов, рассеянных вперед – равна энергии γ -лучей, испускаемых источником ($^{137}\mathrm{Cs}$).

7. С помощью графика 5 и формулы 4 определим энергию покоя частицы, на которой происходит комптоновское рассеяние первичных γ -квантов: Уравнение графика 5:

$$\frac{1}{N} = \frac{1}{N(0)} + A(1 - \cos \theta), \frac{1}{N(0)} = (1.14 \pm 0.05) \cdot 10^{-3}, A = (1.73 \pm 0.05) \cdot 10^{-3}$$

Номера каналов $N_{\text{наил}}(0), N_{\text{наил}}(90)$:

$$N_{ ext{hall}}(0) = rac{1}{rac{1}{N(0)}} = 1140 \pm 40,$$
 $N_{ ext{hall}}(90) = rac{1}{rac{1}{N(0)} + A} = 348 \pm 12,$

Энергия покоя и масса частиц, на которых происходит Комптоновское рассеяние:

$$mc^2 = E_{\gamma} \frac{N(90)}{N(0) - N(90)} = E_{\gamma} \frac{N_{\text{наил}}(90)}{N_{\text{наил}}(0) - N_{\text{наил}}(90)} = 662 \cdot \frac{348}{792} = 291 \pm 15 \text{ к/Эв},$$

$$m = \frac{mc^2}{c^2} = (5.2 \pm 0.3) \cdot 10^{-31} \text{ кг}.$$

4 Обсуждение результатов и выводы

- В ходе работы наблюдалось рассеяние гамма-квантов на электронах графита. Был установлен вид диаграммы направленности излучения источника γ -квантов:при больших углах обнаруживаются фоновые γ -кванты, проходящие через боковую стенку источника.
- Было проведено измерение амплитудных спектров вылетающих вследствие эффекта Компнона электронов, и определено положение фотопиков для каждого значения угла θ , методом аппроксимации данных гауссовскими кривыми. По полученным значениям пиков была построена их зависимость от угла, в точности до нормировочного множителя совпадающая с зависимостью длины волны рассейнных гамма-квантов по прошествию эффекта Комптона от угла рассейяния.
- Проведена оценка массы покоя частиц, на которых происходит Комптоновское рассеяние в нашей установке: $m=(5.2\pm0.3)\cdot 10^{-31}$ кг.