1. 极性 石层为一次 C/CTT 辽网文档 https://developer.xilinx.com/en/products/vitis.html https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/index.html 产生与处理重要一周行港力 上的,FIFO/PIPO 后的有储与处理方式 循弧状化 pipeline / unroll 数据成数一新行化 C/CH 伤衷洞法· 游竹流道。 report Sty Stelle C synthesize RTL CIRTL 协同编型 发证RTLight 102 XO/GY, RTL IP

2. HI S \$ 22 设计的数 ①洞度:决定对科国期内的行对与收存 自定义任何 日郑定:洞底后接作一角子 eg: mult > (13)人。 東海 ①控制状态提取:创具 FSM 根据调度序列的 J= xxa+btc 里网数道: 代码主创

https://github.com/Xilinx/HLS-Tiny-Tutorials/tree/master https://github.com/Xilinx/Vitis_Accel_Examples https://github.com/Xilinx/Vitis-Tutorials 代码子例 工具教育 概念教育

3. 流海角世	
3. 流档简佳. C/CH 缩含:	
D 成层函数参数 > 2/0 取决了自由流	
战战之向	
长龄美型	
INTERFACE parma	
O 33 th - RTL black	
内强 inline pragma JUIDIA ALLOCATION pragma	
日山敦河用: ALLO CATION pragma	
(闷风逻辑)	
① TORRATE MARKE	
Keeped unroll:展前的一次比代 思思执行	
UNROLL pragma	
日 数据结合。	
/ 1	
使剂 Vivado IF流 使剂 Vita 内核流	
使附 Vitis 内域流	

