Isogenies for the Cryptology: methods and applications

L. De Feo

École Polytechnique, Paris, France

February 25, 2009 dipartimento di Matematica Università di Pisa

1 / 28

Public key Cryptography

Doing crypto with no shared secret

Public key encryption

• decryption $D_{sk}(c) = m$.

Security

- ullet It must be *computationally hard* to deduce sk from pk ,
- it must be *computationally hard* to deduce m or sk from (c, pk),
- etc...
- Many hard problems come from number theory.

RSA

The protocol

- ullet p,q two equally large random primes, N=pq,
- Secret key p,q and $d \in (\mathbb{Z}/\varphi(N)\mathbb{Z})^*$,
- Public key N and $e = d^{-1} \mod \varphi(N)$.
- Encryption = Decryption = modular exponentiation : $m = c^d = (m^e)^d$,

Security

- $\bullet \ \ \mathsf{Factor} \ N \Rightarrow \mathsf{compute} \ \varphi(N) \Rightarrow \mathsf{compute} \ d = e^{-1} \ \ \mathrm{mod} \ \varphi(N) \Rightarrow \mathsf{break} \ \mathsf{RSA}.$
- Breaking RSA $\stackrel{?}{\Rightarrow}$ Factorisation.
- Factorisation is subexponential by MQS, ECM, NFS.
- RSA-576 broken in 2003, RSA-640 broken in 2005,
- currently many systems use RSA-1024
- RSA-2048 is currently recommended by RSA,
- NIST recommends to switch to ECC-256.

Diffie-Hellman key agreement

The protocol

Alice

Bob

A cyclic group
$$\mathcal{G} = \langle g \rangle$$
,

ullet picks a at random, computes g^a ullet picks b at random, computes g^b

$$g^b \leftarrow$$

• computes $K_{ab} = \left(g^b\right)^a$

• computes $K_{ab} = \left(g^a\right)^b$

Security

• Discrete $log \Rightarrow DH$,

- $DH \stackrel{?}{\Rightarrow} Discrete log$
- ullet # $\mathcal G$ must have a large prime factor,
- $O\left(\sqrt{\#\mathcal{G}}\right)$ attacks : Pollard rho, BSGS,
- subexponential attacks : NFS ($\mathcal{G} = (\mathbb{Z}/n\mathbb{Z})^*$),
- polynomial attacks: quantum computing.

Algebraic curves

Algebraic curves

- (Non-singular) Projective varieties of dimension 1,
- $\operatorname{Pic}^0(C)$ isomorphic to the *Jacobian* $\operatorname{Jac}(C)$,
- classified by topological genus g,
- ullet $C(\mathbb{C})$ is isomorphic to the complex g-torus.

Jacobians over finite fields

- Jac(C) is an abelian variety of dimension g,
- group law induced by group law on the divisors Div(C),
- the number of *rational points* over \mathbb{F}_q of $\operatorname{Jac}(C)$ is finite,
- $\operatorname{Jac}_{\mathbb{F}_q}(C)$ is a finite group.

Figure: the 2-torus

Hyperelliptic curves

Imaginary hyperelliptic curves

- Plane curves $(C \subset \mathbb{P}^2(\mathbb{K}))$ of genus g,
- $C : Y^2 = X^{2g+1} + h(X)Y + f(X)$
- efficient representation of $\mathrm{Jac}_{\mathbb{K}}(C)$ and group law via Mumford coordinates.

Special case: elliptic curves

- genus 1,
- $E: Y^2 = X^3 + aX + b$,
- $\operatorname{Jac}_{\mathbb{K}}(E) \simeq E(\mathbb{K})$,
- group law by chord-tangent.

Theorem (Hasse-Weil bound)

$$(\sqrt{q}-1)^{2g} \leqslant \#\operatorname{Jac}_{\mathbb{F}_q}(C) \leqslant (\sqrt{q}+1)^{2g}$$

Figure: point addition on an elliptic

Arithmetics of elliptic curves

j-invariant

$$j(E) = \frac{1728(4a)^3}{16(4a^3 + 27b^2)}$$

Two elliptic curves are isomorphic over $\mathbb C$ iff they have the same j-invariant.

Multiplication

$$\bullet \ [m]P = \underbrace{P + P + \dots + P}_{m \text{ times}} \qquad \qquad [m](X,Y) = \left(\frac{\phi_m(X,Y)}{\psi_m^2(X,Y)}, \frac{\omega_m(X,Y)}{\psi_m^3(X,Y)}\right)$$

• ψ_m is the m-division polynomial, $\deg_X \psi^2 \approx m^2$

Torsion

- ullet $E[m]\cong (\mathbb{Z}/m\mathbb{Z}) imes (\mathbb{Z}/m\mathbb{Z})$ if m prime to the characteristic p
- $E[p^k] \cong \begin{cases} \mathbb{Z}/p^k\mathbb{Z} & \textit{ordinary case} \\ \{\mathcal{O}\} & \textit{supersingular case} \end{cases}$

Counting points I: Schoof's algorithm

Theorem (Hasse)

- E defined over \mathbb{F}_q ,
- $\varphi: (X,Y) \mapsto (X^q,Y^q)$ is the Frobenius morphism,
- ullet its minimal polynomial is $arphi^2-[t]\circarphi+[q]$,
- then $\#E(\mathbb{F}_q) = q + 1 t$.

Computing t ([Schoof '95])

• Modular algorithm: compute $t \bmod \ell$ for small primes $\ell < O(\log q)$ and compose by CRT.

• Let
$$P\in E[\ell]$$
, then
$$\psi_\ell(P)=0$$

$$\varphi^2(P)+[q\bmod\ell]P=[t\bmod\ell]\varphi(P)$$

- ullet try all $t \in [0, \dots, \ell-1]$ until the equation is verified,
- to keep complexity low, work modulo the ℓ-division polynomial.
- Can be generalised to hyperelliptic jacobians.

$$E(\bar{\mathbb{K}}) \xrightarrow{\mathcal{I}} E'(\bar{\mathbb{K}})$$

Isogeny

- Rational map: $I(X,Y) = \left(\frac{a(X,Y)}{b(X,Y)}, \frac{c(X,Y)}{d(X,Y)}\right)$,
- ullet onto, finite kernel, $\deg \mathcal{I} = [\bar{\mathbb{K}}(E') : \mathcal{I}^*\bar{\mathbb{K}}(E)],$
- ullet separable, inseparable, purely inseparable like $ar{\mathbb{K}}(E')/\mathcal{I}^*ar{\mathbb{K}}(E)$,
- ullet group morphism: $I(P+Q)=\mathcal{I}(P)+\mathcal{I}(Q), \quad \mathcal{I}(\mathcal{O}_E)=\mathcal{O}_{E'}$

Examples

Multiplication

$$[m]: E(\bar{\mathbb{K}}) \to E(\bar{\mathbb{K}})$$

 $P \mapsto [m]P$

separable if (m,p)=1, $\deg[m]=m^2$, $\ker \mathcal{I}=E[m]$,

$$E(\bar{\mathbb{K}}) \xrightarrow{\mathcal{I}} E'(\bar{\mathbb{K}})$$

Isogeny

- Rational map: $I(X,Y) = \left(\frac{a(X,Y)}{b(X,Y)}, \frac{c(X,Y)}{d(X,Y)}\right)$,
- ullet onto, finite kernel, $\deg \mathcal{I} = [\bar{\mathbb{K}}(E') : \mathcal{I}^*\bar{\mathbb{K}}(E)],$
- ullet separable, inseparable, purely inseparable like $ar{\mathbb{K}}(E')/\mathcal{I}^*ar{\mathbb{K}}(E)$,
- group morphism: $I(P+Q) = \mathcal{I}(P) + \mathcal{I}(Q), \quad \mathcal{I}(\mathcal{O}_E) = \mathcal{O}_{E'}$

Examples

Small Frobenius map

$$\varphi_p: E(\bar{\mathbb{K}}) \to E^{(p)}(\bar{\mathbb{K}})$$

 $(X,Y) \mapsto (X^p, Y^p)$

where $E^{(p)}: Y^2+=X^3+a^pX+b^p$ if $p=\operatorname{char}(\mathbb{K})$, purely inseparable, $\deg \varphi_p=p$, $\ker \varphi_p=\{\mathcal{O}\}.$

$$E(\bar{\mathbb{K}}) \xrightarrow{\mathcal{I}} E'(\bar{\mathbb{K}})$$

Isogeny

- Rational map: $I(X,Y) = \left(\frac{a(X,Y)}{b(X,Y)}, \frac{c(X,Y)}{d(X,Y)}\right)$,
- ullet onto, finite kernel, $\deg \mathcal{I} = [\bar{\mathbb{K}}(E') : \mathcal{I}^*\bar{\mathbb{K}}(E)],$
- ullet separable, inseparable, purely inseparable like $ar{\mathbb{K}}(E')/\mathcal{I}^*ar{\mathbb{K}}(E)$,
- $\qquad \text{group morphism:} \qquad I(P+Q) = \mathcal{I}(P) + \mathcal{I}(Q), \quad \mathcal{I}(\mathcal{O}_E) = \mathcal{O}_{E'}$

Examples

Frobenius endomorphism

$$\varphi_q : E(\bar{\mathbb{K}}) \to E(\bar{\mathbb{K}})$$

 $(X, Y) \mapsto (X^q, Y^q)$

if $\mathbb{K} = \mathbb{F}_q$ then $E^{(q)} = E$, purely inseparable, $\deg \varphi_q = q$, $\ker \varphi_q = \{\mathcal{O}\}$.

$$E(\bar{\mathbb{K}}) \xrightarrow{\mathcal{I}} E'(\bar{\mathbb{K}})$$

Isogeny

- Rational map: $I(X,Y) = \left(\frac{a(X,Y)}{b(X,Y)}, \frac{c(X,Y)}{d(X,Y)}\right)$,
- ullet onto, finite kernel, $\deg \mathcal{I} = [\bar{\mathbb{K}}(E') : \mathcal{I}^*\bar{\mathbb{K}}(E)],$
- separable, inseparable, purely inseparable like $\bar{\mathbb{K}}(E')/\mathcal{I}^*\bar{\mathbb{K}}(E)$,
- ullet group morphism: $I(P+Q)=\mathcal{I}(P)+\mathcal{I}(Q), \quad \mathcal{I}(\mathcal{O}_E)=\mathcal{O}_{E'}$

Examples

Separable isogenies

$$\mathcal{I}(X,Y) = \left(\frac{g(X)}{h^2(X)}, Y\left(\frac{g(X)}{h^2(X)}\right)'\right)$$

separable, $\deg \mathcal{I} = \# \ker \mathcal{I} \approx \deg h$.

Dual isogeny

Theorem (Dual isogeny)

 ${\mathcal I}$ of degree m, there is an unique dual isogeny $\hat{{\mathcal I}}$ s.t.

$$\hat{\mathcal{I}}\circ\mathcal{I}=[m]_E$$

$$\mathcal{I}\circ\hat{\mathcal{I}}=[m]_{E'}$$

Examples

- $[p] = V \circ \varphi_p$, V separable,
- m prime to p, $[m] = \hat{\mathcal{I}} \circ \mathcal{I}$ separable.

Intermezzo: Index calculus (or why are large genus curves bad)

Mumford representation

Elements of Jac(C) are represented as

$$(a(X),b(X)) \; \in \; \mathbb{K}[X] \times \mathbb{K}[X], \qquad \qquad \deg b < \deg a \leqslant g$$

Let B be an integer, elements s.t. $\deg a \leqslant B$ are called B-smooth.

Index calculus

Given $D_1 \in \operatorname{Jac}(C)$, $D_2 \in \langle D_1 \rangle$, find λ s.t. $D_2 = [\lambda]D_1$.

- Chose B large enough,
- random walk $D_i = \alpha_i D_1 + \beta_i D_2$, store D_i if B-smooth,
- ullet when enough smooth divisors, compute by linear algebra $\, lpha D_1 + eta D_2 = 0$,
- then $\lambda = -\frac{\alpha}{\beta} \mod \# \langle D_1 \rangle$.

Theorem ([Enge, Stein '02])

If $B = O(\log L(\frac{1}{2}, \rho))$, then the ratio of B-smooth divisors is $L(1/2, O(-1/\rho))$.

Applications I : Breaking discrete logs

DLP reductions

- ullet A curve C_1 with hard DLP and an instance (g,h) ,
- ullet a curve C_2 with easy DLP,
- ullet an isogeny $\mathcal{I}:C_1 o C_2$ which kernel does not contain g,
- bring the DLP in C_2 via $\mathcal I$ and solve it.

GHS ([Gaudry, Hess, Smart '02])

- ullet E elliptic curve defined over $\mathbb{F}_{2^{nk}}$,
- $\operatorname{Res}(E)$ abelian variety of dimension n defined over \mathbb{F}_{2^k} , group isomorphic to E,
- ullet C hyperelliptic curve of genus g,
- $\phi: \operatorname{Jac}_{\mathbb{F}_{ak}}(C) \to \operatorname{Res}(E)$,
- lift DLP via ϕ , solve by index calculus.

Genus 3 curves ([Smith '08])

- H hyperelliptic curve of genus 3,
- $oldsymbol{\circ}$ C non-hyperelliptic smooth plane quartic of genus 3,
- $\phi: \operatorname{Jac}(H) \to \operatorname{Jac}(C)$,
- DLP in C is easier,
- works for 18.57% of all genus 3 hyperelliptic curves.

Applications II: key escrow cryptosystem

Key escrow

Time of escrow key decryption \gg time of secret key decryption.

Elliptic curve trapdoor system ([Teske '06])

- ullet Secret key: E_p , elliptic curve not vulnerable to GHS + ECC secret key
- ullet Public key: $E_p + {\sf ECC}$ public key,
- ullet Escrow key: E_s , vulnerable to GHS attack, $\mathcal{I}:E_s
 ightarrow E_p$.

Intermezzo: Modular polynomials

Theorem

Let H be a \mathbb{K} -rational finite subgroup of E, then there is an unique curve E' defined over \mathbb{K} and a separable isogeny $\mathcal{I}: E \to E'$ having kernel H.

$$0 \longrightarrow H \longrightarrow E \xrightarrow{\mathcal{I}} E' \longrightarrow 0$$

We note E/H for E'.

Modular polynomial $\Phi_{\ell}(X,Y)$

- $E[\ell] = \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$ contains $\ell+1$ cyclic subgroups of order ℓ ,
- ullet there are $\ell+1$ elliptic j-invariants (not necessarily in $\mathbb K$) ℓ -isogenous to E,
- $\Phi_{\ell}(X,Y)$: minimal polynomial of the modular function $j(\ell au)$,
- $\Phi_{\ell}(j(E),j(E'))=0$ iff E and E' are ℓ -isogenous,
- $\deg \Phi_\ell = \ell + 1$, (huge) integer coefficients, still useful modulo p.

Counting points II: SEA (see [Schoof '95])

Schoof

- $\varphi^2 [t] \circ \varphi + [q] = 0$, compute $t \mod \ell$ for primes $< O(\log q)$,
- computations done modulo division polynomial of degree $O(\ell^2)$.

Elkies

- $E[\ell]$ contains subgroups E_i of order ℓ ,
- ullet if E_1 defined over \mathbb{K} , find isogenous curve E/E_1 ,
- compute $\mathcal{I}: E \to E/E_1$, then $\deg \mathcal{I} = O(\ell)$,
- consider φ_{E_1} to find $t \mod \ell$, computations done modulo \mathcal{I} .
- Works for half of the primes.

Atkin

- Works for the other half of primes,
- uses simpler equation (in a field extension) $\varphi_{E_1} = [k]_{E_1}$.

Computing isogenies

Which problem?

- Velu's formulae: being given the points of the kernel, it is an easy task to compute the isogeny, than the curve E'.
- SEA case: harder to find the kernel (and the isogeny), being given E'.

Large characteristic (see [Bostan, Morain, Salvy, Schost 08])

'92 Elkies	$O(\ell^2)$
------------	-------------

- '92 Atkin $O(\ell M(\ell))$
- '98 Elkies $O(\ell^2)$ '08 Bostan, Morain, Salvy, Schost $O(\mathsf{M}(\ell))$

Small characteristic

- '94 Couveignes I $O(\ell^3)$
- 94 Couveignes I $O(\ell^3)$
- '96 p=2, Lercier $O(\ell^3)$ '96 Couveignes II (+ [D.F. '07]) $O(\ell M_{\rm pol}(\ell))$

Computing isogenies: Couveignes II

Interpolating an isogeny

- G a large enough subgroup,
- G' its image by \mathcal{I} ,
- interpolate over the points of *G*,
- deduce the isogeny by rational reconstruction.

$$E(\bar{\mathbb{F}}_q) \supset G \xrightarrow{\mathcal{I}} G' \subset E'(\bar{\mathbb{F}}_q)$$

$$A(X_P) = A(X_{P'}) \quad \text{for every } P \in G, \ P' = \mathcal{I}(P)$$

G is chosen to be $E[p^k]$

Intermezzo : p-torsion of ordinary elliptic curves

p^k -torsion

- $E[p^k]$ cyclic group isomorphic to $\mathbb{Z}/p^k\mathbb{Z}$,
- $\mathcal{I}(E[p^k]) = E'[p^k]$ if $(\ell, p) = 1$,
- \bullet points not necessarily defined over $\mathbb{K}.$

p^k -torsion tower

 $(\mathbb{K}=\mathbb{U}_0,\ldots,\mathbb{U}_k)$ is the tower of field extensions of minimal degree s.t. for any i

$$E[p^i] \subset E(\mathbb{U}_i).$$

Remark (Structure of $(\mathbb{U}_0,\ldots,\mathbb{U}_k)$)

There is a i_0 s.t. $\mathbb{U}_{i_0}=\mathbb{U}_0$ and for $i\geqslant i_0$

$$[\mathbb{U}_{i+1}:\mathbb{U}_i]=p,$$

Methods I: Artin-Schreier towers

Definition (Artin-Schreier polynomial)

 \mathbb{K} a field of characteristic p, $\alpha \in \mathbb{K}$

$$X^p - X - \alpha$$

is an Artin-Schreier polynomial.

Theorem

 \mathbb{K} finite. $X^p - X - \alpha$ irreducible $\Leftrightarrow \operatorname{Tr}_{\mathbb{K}/\mathbb{F}_p}(\alpha) \neq 0$. If $\eta \in \mathbb{K}$ is a root, then $\eta + 1, \ldots, \eta + (p-1)$ are roots.

Definition (Artin-Schreier extension)

 ${\cal P}$ an irreducible Artin-Schreier polynomial.

$$\mathbb{L} = \mathbb{K}[X]/\mathcal{P}(X).$$

 \mathbb{L}/\mathbb{K} is called an Artin-Schreier extension.

Methods I: Artin-Schreier towers

$$\mathbb{U}_{k} = \frac{\mathbb{U}_{k-1}[X_{k}]}{P_{k-1}(X_{k})}$$

$$\downarrow^{p}$$

$$\mathbb{U}_{k-1}$$

$$\downarrow^{l}$$

$$\mathbb{U}_{1} = \frac{\mathbb{U}_{0}[X_{1}]}{P_{0}(X_{1})}$$

$$\downarrow^{p}$$

$$\mathbb{U}_{0} = \mathbb{F}_{p^{d}} = \frac{\mathbb{F}_{p}[X_{0}]}{Q(X_{0})}$$

Towers over finite fields

$$P_i = X^p - X - \alpha_i$$

We say that $(\mathbb{U}_0,\ldots,\mathbb{U}_k)$ is defined by $(\alpha_0,\ldots,\alpha_{k-1})$ over $\mathbb{U}_0.$

ANY separable extension of degree p can be expressed this way

Voloch formulae

Given E, compute $(\alpha_0, \ldots, \alpha_{k-1})$ that define the p^k -torsion tower of E.

Methods II: Fast arithmetics in Artin-Schreier towers

Primitive towers ([D.F., Schost '09])

- Find special towers s.t. $\mathbb{U}_i = \mathbb{F}_p[X_i]$, where $X_i^p X_i \alpha_{i-1} = 0$,
- use polynomial basis to perform fast arithmetics (FFT multiplication, Newton inversion, etc.),
- generalise to any tower using isomorphism algorithms.

Level embedding ([D.F., Schost '09])

- Express the morphisms between the levels to switch back to the multivariate representation.
- Going down is easy: bivariate reduction modulo $X_i^p X_i \alpha_{i-1}$.
- Going up much harder:
 - trace formulae.
 - truncated power series arithmetics,
 - transposition principle.

Intermezzo: duality and transposition principle

"From every *linear algorithm* computing a linear application we can deduce another *linear algorithm* computing the transpose application using *about* the same space and time resources."

Category theory justification

Subproduct tree

 p^k -torsion tree

 p^k -torsion tree

 p^k -torsion tree

Some open problems

Computing isogenies for g > 1

- No analog of modular polynomials,
- no general formulas to compute isogenies.

Fast arithmetics for Artin-Schreier towers over function fields

- Analogous construction for primitive towers,
- level embeddings ?
- isomorphisms to general towers ?

Automatic deduction of transposed algorithms

- Semi-automatic techniques already used by hand,
- not yet know to hold for general programming languages,
- is it possible to write a transcompiler ?
- Generalise to other interesting dualities.

Bibliography

- I. Blake, G. Seroussi & N. Smart Elliptic Curves in Cryptography LMS 265, Cambridge University Press, 1999
- (edited by) I. Blake, G. Seroussi & N. Smart Advances in Elliptic Curve Cryptography LMS 317, Cambridge University Press, 2005
- J.S. Milne.

 Elliptic curves.

 BookSurge Publishers, ISBN 1-4196-5257-5, 2006.
- J.H. Silverman

 The Arithmetic of Elliptic Curves

 GTM 106, Springer-Verlag, 1986

Bibliography

A. Bostan, F. Morain, B. Salvy, É. Schost.

Fast algorithms for computing isogenies between elliptic curves.

Math. Comp. 77, 263, 1755-1778, 2008.

J.-M. Couveignes.

Computing ℓ -isogenies with the p-torsion.

Lecture Notes in Computer Science vol. 1122, pages 59–65, Springer-Verlag, 1996.

J.-M. Couveignes.

Isomorphisms between Artin-Schreier tower.

Math. Comp. 69(232): 1625–1631, 2000.

L. De Feo.

Calcul d'isogénies.

Master thesis. http://www.lix.polytechnique.fr/~defeo

🗎 L. De Feo & É. Schost.

Fast arithmetics in Artin-Schreier towers over finite fields.

Preprint, 2009.

Bibliography

A. Enge, A. Stein.

Smooth ideals in hyperelliptic function fields.

Math. Comp. 71:1219-1230, 2002.

P. Gaudry, F. Hess, N. P. Smart.

Constructive and destructive facets of Weil descent on elliptic curves.

J. Cryptology 15:19-46, 2002.

R. Schoof.

Counting points on elliptic curves over finite fields.

J. de Théorie des Nombres de Bordeaux, 7:219-254, 1995.

B. Smith.

Isogenies and the Discrete Logarithm Problem in Jacobians of genus 3 hyperelliptic curves.

In EUROCRYPT '08, LNCS, 2008.

E. Teske.

Elliptic curve trapdoor system.

J. Cryptology 19:115-133, 2006.