$$L = \int_{F}^{B} dS = \int_{A}^{B} m \cdot \overline{a}^{\circ} dS = \int_{A}^{B} m \cdot \frac{d\overline{v}^{\circ}}{dt} dS = m \int_{A}^{B} v dv = \frac{1}{2} m v_{f}^{2} - \frac{1}{2} m v_{o}^{2} = G_{F} - G_{I}$$

$$f(x_0) = 0$$
 $d = 0 - \frac{dU}{dS} \Big|_{=0} = 0$ Da Analisi mat $\frac{dU}{dS} = 0 = 0$ Punto di $\frac{dU}{dS} = 0 = 0$

Punto Stabile $\sum_{i} f_i(x_0) = 0$

• Punto A
$$T - 0 \frac{dU}{dS} > 0$$
 - 0 crescente , $T(x_0^+) - 0 \frac{dU}{dS} < 0$ - 0 decrescente $x = x_0^+$ - 0 EQUILI BRIO INSTABILE

- · Punto B EQUILIBRIO STABILE
- · Punto C EQUILIBRIO INSTABILE
- · SEZIONE 5 -D TUTTI i punti sono punti di EQUILIBRIO INDIFFERENTE

