ОСА. Лекция

jdaslkda

15 октября 2024 г.

 $\underline{\mathrm{Def}}$! Ассоциативное коммутативное кольцо K с единицей называется полем , если $\forall k \in K$ обратим Examples 1) $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ - числовые

- 2) $\overline{\mathbb{Z}_p}$ поле вычетов по mod p конечное
- $3) \mathbb{Z}_2[x]/(x^2+x+1)$ поле из 4-х элементов

 $\mathbb{Z}_2[x]/(x^3+x+1)$ - поле из 8-и элементов

 $\mathbb{Z}_3[x]/(x^2+1)$ - поле из 9-и элементов

 $\mathbb{Z}_3[x]/(x^3+x^2+2x+\overline{1})$ - поле из 27-и элементов

4) $\mathbb{Q}(x) = \{\frac{f(x)}{g(x)} \mid 0 \neq g(x), f(x) \in \mathbb{Q}[x]\}$ - поле рациональных дробей Доказывали:

 ${
m F}$ - поле, ${^F[x]}/{(f(x))}$ — поле $\iff f(x)$ непреводим над ${
m F}$

Характеристика поля

B любом поле есть $1 \neq 0$

min натуральное n | $1+\cdots+1=0$ называется характеристикой поля K

обозн $charK = n \ (\equiv charK \ порядок 1 \ в \ (K, +))$

Если \sharp такого n, то charK = 0

 $char \mathbb{Q} = 0$

 $char\mathbb{Z}_p = p$

Предложение 1 Если charK=n, то n=p - простое

Proof Пусть $n = n_1 \cdot n_2$ - не простое, $1 < n_1 < n, 1 < n_2 < n$

$$\implies (1 + \dots + 1) \cdot (1 + \dots + 1) \stackrel{\text{def}}{=} (n_1 \cdot 1)(n_2 \cdot 1) = n \cdot 1 = 0 \mid \cdot (n_1 \cdot 1)^{-1} \implies n_2 \cdot 1 = 0$$

Противоречие $charK = n, n_2 < n$

? ∃ ∞ поле простой характеристики?

Предложение 2 1) $charK = 0 \implies K$ содержит подполе, изоморфное $\mathbb Q$

2) $\overline{char K = p} \implies K$ содержит подполе, изоморфное \mathbb{Z}_p

 $\underline{\text{Proof}} \ 1) \ charK = 0$

Рассмотрим $\phi: \mathbb{Z} \to K: n \mapsto n \cdot 1$ - гомоморфизм колец

$$n \in \ker \phi \implies \phi(n) = n \cdot 1 = 0 \implies n = 0$$
, т.к. $charK = 0 \implies \phi$ - иньективно $\implies \mathbb{Z} \hookrightarrow K \implies$ т.к. К поле, то $\forall 0 \neq a \in \phi(\mathbb{Z}) \; \exists a^{-1} \in K \implies$ в К \exists подполе $\cong \mathbb{Q}$

2) charK = p

Рассмотрим $\phi: \mathbb{Z} \to K: n \mapsto n \cdot 1$ - гомоморфизм колец

$$\forall n \in \ker \phi \implies \phi(n) = n \cdot 1 = 0 \implies p \mid n \implies \ker \phi = p\mathbb{Z}$$

1 th iso
$$\Longrightarrow \Im(\phi) \cong \mathbb{Z}/p\mathbb{Z} = \mathbb{Z}_p$$

<u>Предложение Если $|k|<\infty$ и $charK=p \implies |k|=p^n$, где p - простое <u>Proof Предл 2 $\implies K$ содержит \mathbb{Z}_p </u></u>

$$\implies K$$
 — в.п. над \mathbb{Z}_p

Пусть
$$\{e_1,\ldots,e_n\}$$
 — базис K над $\mathbb{Z}_p \implies \forall a \in K \; \exists ! \; \alpha_1,\ldots,\alpha_n \in \mathbb{Z}_p \; | \; a=\alpha_1e_1+\cdots+\alpha_ne_n$ $\implies |k|=p^n$

<u>Предложение 4</u> Пусть K - конечное поле, $charK=p\implies \phi:K\to K:x\mapsto x^p$ - автоморфизм (auto Фробениуса)

Proof

$$\phi(xy) = (xy)^p = x^p y^p = \phi(x)\phi(y)$$

$$\phi(x+y) = (x+y)^p \stackrel{?}{=} x^p + y^p = \phi(x) + \phi(y)$$

$$(x+y)^p = \sum_{i=0}^p C_p^i x^i y^{p-i} = x^p + y^p$$

$$C_p^i = \frac{p!}{i!(p-i)!}, \text{ kpome } i=0, \ i=p$$

 $\forall x \in \ker \phi: \ \phi(x) = x^p = 0 \implies x = 0 \implies \phi$ — иньективность $\stackrel{|K| < \infty}{\Longrightarrow} \phi$ — сюрьективно

Расширение полей

 $\underline{\mathrm{Def}}$ Поле K - расширение поля F, если $F\subset K$

Тогда K - векторное пространство над F, $\dim_F K \stackrel{df}{=} [K:F]$ - степень расширения $\underline{\operatorname{Ex}}$ 1) $\mathbb{R} \subset \mathbb{C} \implies [\mathbb{C}:\mathbb{R}] = 2$ с базисом $\{1,i\}$

$$2) \ \mathbb{Q} \subset \mathbb{R} \implies [\mathbb{R} : \mathbb{Q}] = \infty$$

Предл $5\ F\subset K\subset L$ - расширения полей $\Longrightarrow [L:F]=[K:F]\cdot [L:K]$ (finite)

$$\mathrm{Ech}\overline{\mathrm{Im}\;[K:F]} = \infty lor[L:K] = \infty \implies [L:F] = \infty$$

 $\underline{\mathrm{Proof}}\ [L:K]=m,\ [K:F]=n;\ \{e_1,\ldots,e_m\}$ б L над K; $\{f_1,\ldots,f_n\}$ - б K над F

1)
$$L = c < e_i f_i > i = \overline{1, m}, j = \overline{1, n}$$

$$\forall l \in L: \ l = k_1 e_1 + \dots + k_m e_m, \ k \in K, \ i = \overline{1, m}$$

$$\forall i: \ k_i = \sum_{j=1}^n \alpha_{ij} f_i, \ \alpha_{ij} \in F$$

$$l = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{ij} e_i f_j \right), \alpha_{ij} \in F \implies L = \langle e_i f_j \rangle_F$$

$$\sum_{i=\overline{1,m},j=\overline{1,n}} \implies \sum_{i=1}^m \left(\sum_{j=1}^n \alpha_{ij} f_j\right) e_i = 0 \implies \sum_{i=1}^n \alpha_{ij} f_j = 0 \implies \alpha_{ij} = 0 \implies \{e_i f_j\} - \text{ лнз над K}$$

1) и 2)
$$\implies \{e_i f_j\}$$
 - базис L над F $\implies [L:F] = n \cdot m$