Market Segmentation

Task done as part of Feynn Labs Internship Analysing the Electric Vehicle market in India using Segmentation analysis for an Electric Vehicles Startup and coming up with a feasible strategy to enter the market, targeting the segments most likely to use Electric vehicles.

Importing Libraries

```
In [1]:
```

```
# Importing Important Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
```

Data Preprocessing

Data columns (total 13 columns):

Column

```
In [6]:
```

```
# Importing consumer buying behavior study dataset
df = pd.read_csv('Indian automoble buying behavour study 1.0.csv')
df.head()
```

```
Out[6]:
```

	Age	Profession	Marrital Status	Education	No of Dependents	Personal loan		Wife Working	Salary	Wife Salary	Total Salary	Make	Price
0	27	Salaried	Single	Post Graduate	0	Yes	No	No	800000	0	800000	i20	800000
1	35	Salaried	Married	Post Graduate	2	Yes	Yes	Yes	1400000	600000	2000000	Ciaz	1000000
2	45	Business	Married	Graduate	4	Yes	Yes	No	1800000	0	1800000	Duster	1200000
3	41	Business	Married	Post Graduate	3	No	No	Yes	1600000	600000	2200000	City	1200000
4	31	Salaried	Married	Post Graduate	2	Yes	No	Yes	1800000	800000	2600000	SUV	1600000
4													

```
In [7]:

df.shape
Out[7]:
(99, 13)
In [8]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99 entries, 0 to 98
```

Non-Null Count Dtype

```
Profession
                       99 non-null
 1
                                         object
   Marrital Status
                       99 non-null
                                         object
    Education
                        99 non-null
                                         object
    No of Dependents 99 non-null
                                         int64
 5
    Personal loan
                        99 non-null
                                         object
    House Loan
                         99 non-null
                                         object
 7
    Wife Working
                        99 non-null
                                         object
     Salary
                                         int64
 8
                         99 non-null
 9
     Wife Salary
                        99 non-null
                                          int64
 10 Total Salary
                        99 non-null
                                         int64
 11 Make
                         99 non-null
                                        object
 12 Price
                         99 non-null
                                         int64
dtypes: int64(6), object(7)
memory usage: 10.2+ KB
In [9]:
df.describe()
Out[9]:
          Age No of Dependents
                                  Salary
                                          Wife Salary
                                                     Total Salary
                                                                     Price
count 99.000000
                    99.000000 9.900000e+01 9.900000e+01 9.900000e+01 9.900000e+01
mean 36.313131
                     2.181818 1.736364e+06 5.343434e+05 2.270707e+06 1.194040e+06
  std
      6.246054
                     1.335265 6.736217e+05 6.054450e+05 1.050777e+06 4.376955e+05
  min 26.000000
                     0.000000 2.000000e+05 0.000000e+00 2.000000e+05 1.100000e+05
 25% 31.000000
                     2.000000 1.300000e+06 0.000000e+00 1.550000e+06 8.000000e+05
 50% 36.000000
                     2.000000 1.600000e+06 5.000000e+05 2.100000e+06 1.200000e+06
 75% 41.000000
                     3.000000 2.200000e+06 9.000000e+05 2.700000e+06 1.500000e+06
 max 51.000000
                     4.000000 3.800000e+06 2.100000e+06 5.200000e+06 3.000000e+06
In [10]:
df.columns
Out[10]:
Index(['Age', 'Profession', 'Marrital Status', 'Education', 'No of Dependents',
       'Personal loan', 'House Loan', 'Wife Working', 'Salary', 'Wife Salary',
       'Total Salary', 'Make', 'Price'],
      dtype='object')
In [11]:
# Observing unique value for object dtype columns
for col in ['Profession', 'Marrital Status', 'Education', 'Personal loan', 'House Loan', 'Wife
Working', 'Make']:
  print(col, ':', df[col].unique())
Profession : ['Salaried' 'Business']
Marrital Status : ['Single' 'Married']
Education : ['Post Graduate' 'Graduate']
Personal loan : ['Yes' 'No']
House Loan : ['No' 'Yes']
Wife Working : ['No' 'Yes' 'm']
Make : ['i20' 'Ciaz' 'Duster' 'City' 'SUV' 'Baleno' 'Verna' 'Luxuray' 'Creata']
In [12]:
# Observing Column entries
for col in df.columns:
  print(df[col].value counts())
Age
```

0

36

13

Age

99 non-null

int.64

```
35
      10
31
      8
      7
41
34
      7
27
      6
37
      6
42
      5
30
       5
39
      4
44
      4
29
      4
51
       3
49
       3
28
       3
      2
43
      2
33
32
45
46
      1
50
      1
26
      1
Name: count, dtype: int64
Profession
           64
Salaried
           35
Business
Name: count, dtype: int64
Marrital Status
Married 84
         15
Single
Name: count, dtype: int64
Education
                56
Post Graduate
Graduate
               43
Name: count, dtype: int64
No of Dependents
    34
2
    29
0
     22
     14
Name: count, dtype: int64
Personal loan
No
    67
      32
Name: count, dtype: int64
House Loan
    62
No
Yes
      37
Name: count, dtype: int64
Wife Working
Yes 52
No
      46
       1
Name: count, dtype: int64
Salary
1400000
900000
           7
1800000
          6
2700000
1300000
           6
1100000
           6
           5
1600000
           5
1900000
2200000
           5
800000
2000000
           4
3100000
           4
           3
1200000
           3
1700000
           3
2400000
           2
2900000
2100000
1500000
```

```
2500000
            2
200000
            1
2600000
            1
2300000
            1
2800000
            1
3800000
            1
Name: count, dtype: int64
Wife Salary
0
800000
            8
            7
1300000
700000
            6
600000
            5
           5
1100000
           5
900000
1800000
           5
500000
           3
1400000
           3
           1
400000
2000000
           1
1000000
           1
2100000
           1
Name: count, dtype: int64
Total Salary
1400000
           7
2000000
2200000
           6
1900000
           5
2100000
           5
1600000
           5
           4
1800000
2600000
           4
900000
           4
1300000
           4
2400000
2700000
           3
800000
           3
1100000
           3
3100000
3600000
           3
           3
2900000
           3
1700000
           2
2500000
           2
4500000
4000000
           2
1500000
           1
2800000
           1
4900000
           1
4100000
           1
5200000
           1
3200000
        1
        1
3000000
1200000
4700000
         1
3800000
           1
4300000
           1
200000
           1
2300000
           1
3700000
           1
5100000
           1
Name: count, dtype: int64
Make
SUV
           19
Baleno
           19
           14
Creata
i20
           12
Ciaz
           12
City
           10
           7
Duster
Verna
           4
           2
Luxuray
Name: count, dtype: int64
```

```
Price
1600000
           18
700000
           18
1500000
           16
800000
           13
1200000
           13
1100000
           12
1300000
3000000
1000000
           1
110000
            1
Name: count, dtype: int64
```

Cleaning Data

```
In [13]:
```

```
## Double checking the percentage of empty entries column wise
df.isnull().sum() / df.shape[0] * 100.00
```

Out[13]:

Age	0.0
Profession	0.0
Marrital Status	0.0
Education	0.0
No of Dependents	0.0
Personal loan	0.0
House Loan	0.0
Wife Working	0.0
Salary	0.0
Wife Salary	0.0
Total Salary	0.0
Make	0.0
Price	0.0
dtype: float64	

There are no null entries.

```
In [14]:
```

```
df.loc[df['Wife Working'] == 'm']
```

Out[14]:

	Age	Profession	Marrital Status	Education	No of Dependents	Personal loan	House Loan	Wife Working	Salary	Wife Salary	Total Salary	Make	Price
11	35	Salaried			4	Yes	Yes		1400000	0	1400000	Baleno	700000

We can see that Wife Salary has been mentioned as 0, so it is safe to change 'm' with 'no' under Wife Working for simplication of data.

```
In [15]:
```

```
df=df.replace(to_replace ="m", value ="No")
df.loc[11]
```

Out[15]:

```
Age
Profession
Profession
Marrital Status
                   Salaried
                    Married
Education
                   Graduate
No of Dependents
                          4
Personal loan
                         Yes
House Loan
                         Yes
Wife Working
                          No
                     1400000
Salary
```

Wife Salary 0
Total Salary 1400000
Make Baleno
Price 700000
Name: 11, dtype: object

Behavioral and Psychographic Analysis

```
In [16]:
```

```
plt.figure(1, figsize=(15,7))
n = 0
for cols in ['Age','No of Dependents','Salary','Wife Salary','Total Salary','Price']:
n += 1
plt.subplot(1,6,n)
sns.set(style = 'whitegrid')
plt.subplots_adjust(hspace=0.5, wspace=0.5)
sns.violinplot(x= cols, y = 'Make', data=df)
plt.ylabel("Make" if n==1 else '')
plt.title('Violin Plot')
```


Observations:

- Age: Younger consumers purchase less expensive vehicles.
- Number of Dependents: Greater number of dependents makes the consumer buy a vehicle with more seats and so they prefer SUVs.
- Salary: If you overlap the normalised salary plots with price plot, you would observe the median of salary violin plot matches that of the price of the vehicle indicating a very direct relationship.

1. Relation between consumers' age and the vehicles they tend to purchase

Make of vehicles they tend to purchase

In [17]:

```
plt.figure(figsize=(20,6))
sns.countplot(x="Make", data=df, hue="Age")
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
```

Ouc[1/].

<matplotlib.legend.Legend at 0x7d61947f3280>

Price of vehicle owned

In [18]:

```
plt.xlabel('Age')
plt.ylabel('Price of car owned')
plt.scatter(df['Age'], df['Price'])
```

Out[18]:

<matplotlib.collections.PathCollection at 0x7d6194c9fd30>

2. Relation between consumers' total salary and the vehicles they tend to purchase

• Make of vehicles they tend to purchase

In [19]:

```
plt.figure(figsize=(20,6))
sns.countplot(x="Make", data=df, hue="Total Salary")
```

```
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
```

Out[19]:

<matplotlib.legend.Legend at 0x7d6194b047c0>

· Price of vehicle owned

In [20]:

```
plt.xlabel('total salary')
plt.ylabel('Price of car owned')
plt.scatter(df['Total Salary'], df['Price'])
```

Out[20]:

<matplotlib.collections.PathCollection at 0x7d6194a75150>

3. Relation between number of dependents on a consumer and the vehicles they tend to purchase

. Make of vehicles they tend to purchase

In [21]:

```
plt.figure(figsize=(20,6))
sns.countplot(x="Make", data=df, hue="No of Dependents")
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
```

Out[21]:

<matplotlib.legend.Legend at 0x7d6194ab24a0>

Price of vehicle owned

In [22]:

```
plt.xlabel('No of Dependents')
plt.ylabel('Price of car owned')
plt.scatter(df['No of Dependents'], df['Price'])
```

Out[22]:

<matplotlib.collections.PathCollection at 0x7d619493d690>

4. Relation between consumers' marital status and the vehicles they tend to purchase

. Make of vehicles they tend to purchase

In [23]:

```
plt.figure(figsize=(20,6))
sns.countplot(x="Make", data=df, hue="Marrital Status")
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
```

Out[23]:

<matplotlib.legend.Legend at 0x7d6194c4c040>

· Price of vehicle owned

In [24]:

```
plt.xlabel('Marrital Status')
plt.ylabel('Price of car owned')
plt.scatter(df['Marrital Status'], df['Price'])
```

Out[24]:

<matplotlib.collections.PathCollection at 0x7d6192c8a9b0>

5. Relation between consumers profession and the vehicles they tend to purchase

Make of vehicles they tend to nurchase

In [25]:

```
plt.figure(figsize=(20,6))
sns.countplot(x="Make", data=df, hue="Profession")
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
```

Out[25]:

<matplotlib.legend.Legend at 0x7d6192adc040>

· Price of vehicle owned

In [26]:

```
plt.xlabel('Profession')
plt.ylabel('Price of car owned')
plt.scatter(df['Profession'], df['Price'])
```

Out[26]:

<matplotlib.collections.PathCollection at 0x7d6192b9fdc0>

6. Relation between consumers education and the vehicles they tend to purchase

. Make of vehicles they tend to purchase

In [27]:

```
plt.figure(figsize=(20,6))
sns.countplot(x="Make", data=df, hue="Education")
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
```

Out[27]:

<matplotlib.legend.Legend at 0x7d6192b3ad10>

· Price of vehicle owned

In [28]:

```
plt.xlabel('Education')
plt.ylabel('Price of car owned')
plt.scatter(df['Education'], df['Price'])
```

Out[28]:

<matplotlib.collections.PathCollection at 0x7d6192aaeb30>

7. Relation between consumers loan status (indicator of

purchasing power) and the vehicles they tend to purchase

• Make of vehicles they tend to purchase (based on personal loan)

In [29]:

```
plt.figure(figsize=(20,6))
sns.countplot(x="Make", data=df, hue="Personal loan")
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
```

Out[29]:

<matplotlib.legend.Legend at 0x7d61928f8460>

Price of vehicle owned (based on personal loan)

In [30]:

```
plt.xlabel('Personal loan')
plt.ylabel('Price of car owned')
plt.scatter(df['Personal loan'],df['Price'])
```

Out[30]:

<matplotlib.collections.PathCollection at 0x7d61927dd1b0>

• Make of vehicles they tend to purchase (based on house loan)

In [31]:

```
plt.figure(figsize=(20,6))
sns.countplot(x="Make", data=df, hue="House Loan")
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
```

Out[31]:

<matplotlib.legend.Legend at 0x7d6192806a40>

• Price of vehicle owned (based on house loan)

In [32]:

```
plt.xlabel('House Loan')
plt.ylabel('Price of car owned')
plt.scatter(df['House Loan'], df['Price'])
```

Out[32]:

<matplotlib.collections.PathCollection at 0x7d61926e6560>

Demographic Analysis

```
In [33]:
# Plotting for int64 dtype columns
plt.figure(1, figsize=(15,6))
for x in ['Age', 'No of Dependents' ,'Salary' ,'Wife Salary' ,'Total Salary' ,'Price'
 n += 1
 plt.subplot(1,6,n)
 plt.subplots adjust(hspace=0.5, wspace=0.5)
 sns.distplot(df[x], bins = 20)
 plt.title('Distplot of {}'.format(x))
plt.show()
<ipython-input-33-528108f5ef9c>:8: UserWarning:
'distplot' is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(df[x], bins = 20)
<ipython-input-33-528108f5ef9c>:8: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(df[x], bins = 20)
<ipython-input-33-528108f5ef9c>:8: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(df[x], bins = 20)
<ipython-input-33-528108f5ef9c>:8: UserWarning:
'distplot' is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a quide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(df[x], bins = 20)
<ipython-input-33-528108f5ef9c>:8: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(df[x], bins = 20)
<ipython-input-33-528108f5ef9c>:8: UserWarning:
'distplot' is a deprecated function and will be removed in seaborn v0.14.0.
```

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(df[x], bins = 20)
```


Observations:

- People between the age group of 25 to 50 create the most of the consumer market.
- Most people having an average total salary of around 30 lakh tend to purchase vehicles more.
- Most people spent around 10 to 20 lakhs for vehicles.

```
In [34]:
```

Heatmap of Correlation

```
sns.heatmap(df.corr(), annot=True)
ValueError
                                           Traceback (most recent call last)
<ipython-input-34-9c70fce8a3a5> in <cell line: 2>()
      1 # Heatmap of Correlation
---> 2 sns.heatmap(df.corr(), annot=True)
/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py in corr(self, method, min pe
riods, numeric only)
  10052
                cols = data.columns
 10053
                idx = cols.copy()
> 10054
                mat = data.to numpy(dtype=float, na value=np.nan, copy=False)
  10055
                if method == "pearson":
  10056
/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py in to numpy(self, dtype, cop
y, na value)
  1836
                if dtype is not None:
  1837
                    dtype = np.dtype(dtype)
-> 1838
                result = self. mgr.as array(dtype=dtype, copy=copy, na value=na value)
   1839
                if result.dtype is not dtype:
   1840
                    result = np.array(result, dtype=dtype, copy=False)
/usr/local/lib/python3.10/dist-packages/pandas/core/internals/managers.py in as array(sel
f, dtype, copy, na value)
   1730
                        arr.flags.writeable = False
  1731
                else:
-> 1732
                    arr = self. interleave(dtype=dtype, na value=na value)
  1733
                    # The underlying data was copied within interleave, so no need
   1734
                    # to further copv if copv=True or setting na value
```

ValueError: could not convert string to float: 'Salaried'

Observations: There isn't any striking new relation found, but it confirms our previous observations.

In [35]:

```
# Pair Plot
sns.pairplot(df)
```

Out[35]:

<seaborn.axisgrid.PairGrid at 0x7d619289fdf0>

acogi aprilic Arialysis

```
In [36]:
```

```
# Importing state-wise sales dataset
data = pd.read_csv('Indian automoble buying behavour study 1.0.csv')
data
```

Out[36]:

	Age	Profession	Marrital Status	Education	No of Dependents	Personal loan	House Loan	Wife Working	Salary	Wife Salary	Total Salary	Make	Pric
0	27	Salaried	Single	Post Graduate	0	Yes	No	No	800000	0	800000	i20	80000
1	35	Salaried	Married	Post Graduate	2	Yes	Yes	Yes	1400000	600000	2000000	Ciaz	100000
2	45	Business	Married	Graduate	4	Yes	Yes	No	1800000	0	1800000	Duster	120000
3	41	Business	Married	Post Graduate	3	No	No	Yes	1600000	600000	2200000	City	120000
4	31	Salaried	Married	Post Graduate	2	Yes	No	Yes	1800000	800000	2600000	SUV	160000
94	27	Business	Single	Graduate	0	No	No	No	2400000	0	2400000	SUV	160000
95	50	Salaried	Married	Post Graduate	3	No	No	Yes	3800000	1300000	5100000	suv	160000
96	51	Business	Married	Graduate	2	Yes	Yes	No	2200000	0	2200000	Ciaz	110000
97	51	Salaried	Married	Post Graduate	2	No	No	Yes	2700000	1300000	4000000	Creata	150000
98	51	Salaried	Married	Post Graduate	2	Yes	Yes	No	2200000	0	2200000	Ciaz	110000

99 rows × 13 columns

4

Model Deployment

K-Means Clustering

```
In [49]:
```

```
X = df.iloc[:,df.columns!='Make']
X.head()
```

Out[49]:

	Age	Profession	Marrital Status	Education	No of Dependents	Personal loan	House Loan	Wife Working	Salary	Wife Salary	Total Salary	Price
0	27	Salaried	Single	Post Graduate	0	Yes	No	No	800000	0	800000	800000
1	35	Salaried	Married	Post Graduate	2	Yes	Yes	Yes	1400000	600000	2000000	1000000
2	45	Business	Married	Graduate	4	Yes	Yes	No	1800000	0	1800000	1200000
3	41	Business	Married	Post Graduate	3	No	No	Yes	1600000	600000	2200000	1200000
4	31	Salaried	Married	Post Graduate	2	Yes	No	Yes	1800000	800000	2600000	1600000

In [50]:

ongoding = ("Drofoggion" ("Colonied" · A "Duginogg" · 1)

```
"Marrital Status":{"Single": 0, "Married": 1},

"Education":{"Graduate": 0, "Post Graduate": 1},

"Personal loan":{"No": 0, "Yes": 1},

"House Loan":{"No": 0, "Yes": 1},

"Wife Working":{"No": 0, "Yes": 1}

}
```

In [51]:

```
obj_df = X.replace(encoding)
obj_df.head()
```

Out[51]:

	Age	Profession	Marrital Status	Education	No of Dependents	Personal Ioan	House Loan	Wife Working	Salary	Wife Salary	Total Salary	Price
0	27	0	0	1	0	1	0	0	800000	0	800000	800000
1	35	0	1	1	2	1	1	1	1400000	600000	2000000	1000000
2	45	1	1	0	4	1	1	0	1800000	0	1800000	1200000
3	41	1	1	1	3	0	0	1	1600000	600000	2200000	1200000
4	31	0	1	1	2	1	0	1	1800000	800000	2600000	1600000

K - Means Algorithm

In [52]:

```
# Importing Important Libraries
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
```

In [53]:

Out[53]:

	Age	Profession	Marrital Status	Education	No of Dependents	Personal loan	House Loan	Wife Working	Salary	Wife Salary	Total Salary	P
0	- 1.498630	-0.739510	2.366432	0.876275	-1.642313	1.446980	0.772512	- 1.051847	1.397118	0.887055	1.406760	0.904
1	0.211304	-0.739510	0.422577	0.876275	-0.136859	1.446980	1.294479	0.950708	0.501877	0.108995	0.258937	0.445
2	1.397855	1.352247	0.422577	-1.141195	1.368594	1.446980	1.294479	- 1.051847	0.094950	0.887055	- 0.450240	0.013
3	0.754191	1.352247	0.422577	0.876275	0.615867	0.691095	- 0.772512	0.950708	0.203464	0.108995	0.067633	0.013
4	- 0.854967	-0.739510	0.422577	0.876275	-0.136859	1.446980	- 0.772512	0.950708	0.094950	0.441012	0.314975	0.932
94	- 1.498630	1.352247	- 2.366432	-1.141195	-1.642313	0.691095	- 0.772512	- 1.051847	0.990190	- 0.887055	0.123671	0.932
95	2.202434	-0.739510	0.422577	0.876275	0.615867	0.691095	- 0.772512	0.950708	3.079085	1.271054	2.706274	0.932

```
Wife
                                                          P.94899881
                                                                                                               Total
                         0Mazzita/
                                                -0.136859
                                                                                       0.6941777
             Profession
                                   Education
                                                                                                                     0.215
                                                                              W51847
                                             Dependents
                           Status
                                                                       Loan
                                                              loan
              -0.739510 0.422577
                                                                              0.950708 1.437811 1.271054 1.654102 0.702
   2.363350
                                    0.876275
                                                -0.136859
                                                          0.691095 0.772512
                                                                             1.051847 0.691777
                                                -0.136859 1.446980 1.294479
98 2.363350
              -0.739510 0.422577
                                    0.876275
                                                                                                 0.887055 0.067633 0.215
```

99 rows × 12 columns

1

In [54]:

In [55]:

```
plt.plot(range(1, 11), wcss)
plt.title('Elbow Method Plot')
plt.xlabel('Number of Clusters')
plt.ylabel('Within-Cluster Sum of Square') # Within cluster sum of squares
plt.tight_layout()
plt.show()
```


K = 3

In [56]:

Out[56]:

```
▼ KMeans

KMeans (n. alustone-2 n. init-10 nondem atote-42)
```

In [57]:

```
y = kmeans.predict(X_scaled)
y_df = pd.DataFrame(y,columns=['Class'])
```

In [58]:

```
final_data = pd.concat([df,y_df],axis=1)
final_data
```

Out[58]:

	Age	Profession	Marrital Status	Education	No of Dependents	Personal loan	House Loan	Wife Working	Salary	Wife Salary	Total Salary	Make	Pric
0	27	Salaried	Single	Post Graduate	0	Yes	No	No	800000	0	800000	i20	80000
1	35	Salaried	Married	Post Graduate	2	Yes	Yes	Yes	1400000	600000	2000000	Ciaz	100000
2	45	Business	Married	Graduate	4	Yes	Yes	No	1800000	0	1800000	Duster	120000
3	41	Business	Married	Post Graduate	3	No	No	Yes	1600000	600000	2200000	City	120000
4	31	Salaried	Married	Post Graduate	2	Yes	No	Yes	1800000	800000	2600000	SUV	160000
94	27	Business	Single	Graduate	0	No	No	No	2400000	0	2400000	SUV	160000
95	50	Salaried	Married	Post Graduate	3	No	No	Yes	3800000	1300000	5100000	SUV	160000
96	51	Business	Married	Graduate	2	Yes	Yes	No	2200000	0	2200000	Ciaz	110000
97	51	Salaried	Married	Post Graduate	2	No	No	Yes	2700000	1300000	4000000	Creata	150000
98	51	Salaried	Married	Post Graduate	2	Yes	Yes	No	2200000	0	2200000	Ciaz	110000

99 rows × 14 columns

In [59]:

sns.pairplot(final_data,x_vars = ['Age','Salary', 'Wife Salary','Total Salary','Price'],
y_vars = ['Age','Salary', 'Wife Salary','Total Salary','Price'], hue='Class')

Out[59]:

<seaborn.axisgrid.PairGrid at 0x7d618a127010>

K = 5

In [60]:

Out[60]:

```
KMeans
KMeans(n_clusters=5, n_init=10, random_state=42)
```

In [61]:

```
y1 = kmeans1.predict(X_scaled)
y1_df = pd.DataFrame(y1,columns=['Class'])
```

In [62]:

```
final_data1 = pd.concat([df,y1_df],axis=1)
final_data1
```

Out[62]:

	Age	Profession	Marrital Status	Education	No of Dependents	Personal loan	House Loan	Wife Working	Salary	Wife Salary	Total Salary	Make	Pric
0	27	Salaried	Single	Post Graduate	0	Yes	No	No	800000	0	800000	i20	80000
1	35	Salaried	Married	Post Graduate	2	Yes	Yes	Yes	1400000	600000	2000000	Ciaz	100000
2	45	Business	Married	Graduate	4	Yes	Yes	No	1800000	0	1800000	Duster	120000
3	41	Business	Married	Post Graduate	3	No	No	Yes	1600000	600000	2200000	City	120000
4	31	Salaried	Married	Post Graduate	2	Yes	No	Yes	1800000	800000	2600000	SUV	160000
		***		•••	•••								
94	27	Business	Single	Graduate	0	No	No	No	2400000	0	2400000	SUV	160000

95	Age	Salaried Profession	Marrital Status	Post Education	No of Dependents	Perso n al Ioan		Wife Working	3800000 Salary	130 000	510 00000 Salary	SUV Make	160000 Pri c
96	51	Business	Married	Graduate	2	Yes	Yes	No	2200000	0	2200000	Ciaz	110000
97	51	Salaried	Married	Post Graduate	2	No	No	Yes	2700000	1300000	4000000	Creata	150000
98	51	Salaried	Married	Post Graduate	2	Yes	Yes	No	2200000	0	2200000	Ciaz	110000

99 rows × 14 columns

1

In [63]:

sns.pairplot(final_data1,x_vars = ['Age','Salary', 'Wife Salary','Total Salary','Price'],
y_vars = ['Age','Salary', 'Wife Salary','Total Salary','Price'], hue='Class')

Out[63]:

<seaborn.axisgrid.PairGrid at 0x7d618967edd0>

In []: