Testing Hypotheses

Testing Hypotheses

- 1. Hypotheses and Testing Philosophies
- 2. Introducing the Frequentist P-Value
- 3. Test Statistics and All That
- 4. You're Doing it Wrong (or are you)

What is a Hypothesis? (in a statistical sense)

• Point: Mean Fingernail Length == 5cm

Model: If I increase Kelp, Biodiversity increases

 Explanatory: Fertilizers explain more variation in the data than Pesticides

Three Flavors of Statistical Inference

- 1. Frequentist: What's the chance we observed something like the data given our hypothesis?
- **2. Likelihoodist:** What's the likelihood of our hypothesis relative to others?
- 3. Bayesian: How much do we believe our hypothesis given our data?

Frequentist Inference: the probability of observing this data, or more extreme data, given that a hypothesis is true

P-value or Confidence Interval

Our Hypothesis

'Extreme' fingernail lengths are not different from standard fingernail lengths

Testing Hypotheses

- 1. Hypotheses and Testing Philosophies
- 2. Introducing the Frequentist P-Value
- 3. Test Statistics and All That
- 4. You're Doing it Wrong (or are you)

Our Sample

Fingernail Length (cm)

Assume a Distribution of Fingernail Sizes

Fingernail Length

Our Hypothesis

'Extreme' fingernail lengths are from a distribution with mean of 5 and SD of 2.

Is our size extreme?

Fingernail Length

What about even more extreme values?

Fingernail Length

P-Values: Fisher

R.A. Fisher

The probability of observing a value or more extreme value given a specified hypothesis.

Testing Hypotheses

- 1. Hypotheses and Testing Philosophies
- 2. Introducing the Frequentist P-Value
- 3. Test Statistics and All That
- 4. You're Doing it Wrong (or are you)

Null Hypothesis Testing

 Frequentist testing of whether something is different from a null expectation

- Example uses:
 - An estimate is not different from 0
 - The difference between two groups is not different from zero
 - A predictor provides no additional explanation of patterns in the data

Test Statistics: Making the World Sensible (and Null)

1. Create a null distribution

2. Use your data to calculate a test score

- 3. Calculate the p-value for your data in the context of that null distribution
 - $P(D | H_0)$:

Testing Fingernails Against a Normal

 H_0 = Mean of sample is not different from the rest of the population

- 1. Assume a normal distribution with an SD of 2
- 2. Calculate the difference between the mean of our sample and 5 = 4.5
- 3. Assess the p-value of 4.5 against the normal distribution with mean 0

But...this is my data

The Arrival of a Test Statistic

 H_0 = Mean of sample is not different from the rest of the population

- 1. Assume a normal distribution with an SD of 1 (standard normal curve)
- 2. Calculate the difference between the mean of our sample and 5 = 4.5
- Divide by the Standard Deviation of the population and the square root of the sample size (assumed SE of a population Sample) – z score!

• Z-Score

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

$$z = 4.5 / (2/sqrt(30))$$

$$= 12.32$$

$$p(12.32 | \mu=0) < 0.0001$$

Z-Test

There Are Two Tails

What do you do with a p-value?

- P-values give the evidence for the probability of your data, or more extreme data, given a hypothesis
- As the scientist, you decide whether it is grounds for rejecting a hypothesis
- In a frequentist framework, you can only reject a hypothesis – never `accept`

Testing Hypotheses

- 1. Hypotheses and Testing Philosophies
- 2. Introducing the Frequentist P-Value
- 3. Test Statistics and All That
- 4. You're Doing it Wrong (or are you)

How We Can Screw This Up

Is the Hypothesis True or False?			
		True	False
Test Result Against Hypothesis	Hypothesis Not Rejected	\odot	Type I error
	Hypothesis Rejected	Type II error	

Probability of a type I error = α

Probability of a type II error = β

Null Hypothesis Significance Testing

Problem: What is an acceptable α ?

Answer: 0.05. You have a 1 in 20 chance of committing a type I error

Problems with NHST

- A realistic alpha can depend on your study design
 - E.g., Large sample size = lower p value
- Ignores β
 - Tradeoff between α and β
- Conflation of scientific significance and statistical significance
 - File-drawer effect
- We are human
 - If p ≤ 0.05 makes your career, you will do a lot to obtain it!