Appendix

 $\textbf{Table 3.} \ \ \text{Pairwise comparisons of systems and the number on how many of the 16} \ \ \text{datasets the system in the row outperformed the system in the column.}$

	BL	Elasticsearch	FaissHNSW	Hnswlib	LuceneKNN	N2	NGT-PANNG	NGT-QG	NN-Descent	OpenSearch-kNN	pg-embedding	PyNNDescent	QSGNGT	Vald	Vespa	Voyager	Weaviate	FLANN	MRPT	Scann	FaissIVF	FaissIVFPQ	TinyKNN	$\# {f Better}$
BL		16	0	0	3	0	0	0	0	8	6	0	0	1	0	0	6	0	0	0	0	0	4	44
Elasticsearch	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FaissHNSW	0	16		0	5	4	0	0	0	7	3	0	0	0	0	0	7	1	3	0	1	0	8	55
Hnswlib	4	16	6		14	5	2	0	4	9	5	6	0	11	9	7	11	7	6	4	1	0	11	138
LuceneKNN	0	16	0	0		0	0	0	0	6	3	0	0	0	0	0	0	0	0	0	0	0	2	27
N2	0	8	3	0	8		0	0	0	8	0	0	1	4	6	5	6	0	0	0	1	0	5	55
NGT-PANNG	0	16	0	0	4	3		0	0	6	1	0	0	0	0	0	2	4	3	0	1	0	13	53
NGT-QG	0	16	4	0	13	6	3		2	13	5	5	0	8	9	10	12	5	7	2	1	0	14	135
NN-Descent	0	16	0	0	12	1	0	0		15	8	2	0	0	0	0	9	5	6	0	1	0	16	91
OpenSearch k-NN	0	16	0	0	0	0	0	0	0		2	0	0	0	0	0	0	0	0	0	0	0	0	18
pg-embedding	0	6	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	6
PyNNDescent	0	16	0	0	7	1	0	0	0	9	0		0	0	0	0	5	2	1	0	1	0	14	56
QSGNGT	0	16	1	0	11	5	1	0	0	9	4	3		5	3	3	9	5	6	1	1	0	13	96
Vald	0	16	0	0	1	0	0	0	0	4	0	0	0		0	0	2	1	1	0	0	0	10	35
Vespa	0	16	0	0	14	0	0	0	0	9	6	0	0	0		0	10	2	2	0	1	0	11	71
Voyager	0	16	0	0	13	1	0	0	0	10	8	0	0	0	0		10	3	2	0	0	0	11	74
Weaviate	0	16	0	0	0	0	0	0	0	8	3	0	0	0	0	0		0	0	0	0	0	1	28
FLANN	3	12	0	0	5	0	0	0	0	6	3	0	0	2	0	0	4		0	0	0	0	9	44
MRPT	0	13	1	0	6	0	0	0	0	7	1	0	0	4	0	0	6	0		0	0	0	10	48
Scann	0	15	1	0	1	3	2	0	0	1	0	0	0	6	1	1	0	5	6		1	0	8	51
FaissIVF	10	12	7	7	11	4	8	8	9	12	4	8	6	9	8	8	10	8	9	7		0	11	176
FaissIVFPQ	1	15	8	5	8	14	6	7	2	8	0	4	6	9	7	8	8	5	8	5	2		14	150
TinyKNN	0	10	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		11
#Worse	18	315	31	12	136	47	22	15	17	156	62	28	13	59	43	42	117	53	60	19	12	0	185	

Fig. 5. The best configurations for all tested systems and the performance of the baseline on the FB15k-237 DistMult embeddings with angular distance. The best configurations for this dataset have been encircled (\bigcirc).

Fig. 6. The best configurations for all tested systems and the performance of the baseline on the FB15k-237 QuatE embeddings with angular distance. The best configurations for this dataset have been encircled (\bigcirc) .

Fig. 7. The best configurations for all tested systems and the performance of the baseline on the FB15k-237 OMult embeddings with angular distance. The best configurations for this dataset have been encircled (\bigcirc) .

Fig. 8. The best configurations for all tested systems and the performance of the baseline on the FB15k-237 Keci embeddings with angular distance. The best configurations for this dataset have been encircled (○).

Fig. 9. The best configurations for all tested systems and the performance of the baseline on the Yago3-10 DistMult embeddings with angular distance. The best configurations for this dataset have been encircled (\bigcirc) .

Fig. 10. The best configurations for all tested systems and the performance of the baseline on the Yago3-10 QuatE embeddings with angular distance. The best configurations for this dataset have been encircled (\bigcirc).

Fig. 11. The best configurations for all tested systems and the performance of the baseline on the Yago3-10 OMult embeddings with angular distance. The best configurations for this dataset have been encircled (\bigcirc).

Fig. 12. The best configurations for all tested systems and the performance of the baseline on the Yago3-10 Keci embeddings with angular distance. The best configurations for this dataset have been encircled (\bigcirc) .

Fig. 13. The best configurations for all tested systems and the performance of the baseline on the FB15k-237 DistMult embeddings with Euclidean distance. The best configurations for this dataset have been encircled (\bigcirc) .

Fig. 14. The best configurations for all tested systems and the performance of the baseline on the FB15k-237 QuatE embeddings with Euclidean distance. The best configurations for this dataset have been encircled (\bigcirc) .

Fig. 15. The best configurations for all tested systems and the performance of the baseline on the FB15k-237 OMult embeddings with Euclidean distance. The best configurations for this dataset have been encircled (\bigcirc) .

Fig. 16. The best configurations for all tested systems and the performance of the baseline on the FB15k-237 Keci embeddings with Euclidean distance. The best configurations for this dataset have been encircled (\bigcirc) .

Fig. 17. The best configurations for all tested systems and the performance of the baseline on the Yago3-10 DistMult embeddings with Euclidean distance. The best configurations for this dataset have been encircled (\bigcirc) .

Fig. 18. The best configurations for all tested systems and the performance of the baseline on the Yago3-10 QuatE embeddings with Euclidean distance. The best configurations for this dataset have been encircled \bigcirc .

Fig. 19. The best configurations for all tested systems and the performance of the baseline on the Yago3-10 OMult embeddings with Euclidean distance. The best configurations for this dataset have been encircled (\bigcirc) .

Fig. 20. The best configurations for all tested systems and the performance of the baseline on the Yago3-10 Keci embeddings with Euclidean distance. The best configurations for this dataset have been encircled (\bigcirc).