Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 9 по дисциплине «Функциональные и логические языки программирования»

Тема Лисп. Функции mapcar и reduce.

Студент Одинцов Е.В.

Группа ИУ7-53БВ

Преподаватель Строганов Ю.В.

Содержание

1	Аналитич	еская часть	
	1.0.1	Векторное произведение векторов	
	1.0.2	Декартово произведение множеств	
	1.0.3	Перевод числа из N -ричной системы счисления в деся-	
		тичную	
2			
	2.0.1	Листинг функций	,
	2.0.2	Примеры использования и результаты тестов	,
3 A	АКЛЮЧЕН	ие	
J.	МИЛИО ЧЕП	PIE	

ВВЕДЕНИЕ

Целью данной работы является разработка и реализация функций на языке программирования Common Lisp, предназначенных для выполнения следующих операций: векторного произведения двух векторов, декартова произведения двух векторов, и перевода числа из N-ричной системы счисления в десятичную.

1 Аналитическая часть

В данном разделе рассматриваются теоретические сведения по задачам, для которых требуется разработать программные реализации.

1.0.1 Векторное произведение векторов

Векторное произведение двух векторов **A** и **B** в трёхмерном пространстве является вектором, перпендикулярным к обоим исходным векторам. Пусть $\mathbf{A} = (a_1, a_2, a_3)$ и $\mathbf{B} = (b_1, b_2, b_3)$, тогда результат векторного произведения можно выразить как новый вектор **C**, координаты которого вычисляются по следующим формулам:

$$c_1 = a_2 \cdot b_3 - a_3 \cdot b_2,$$

 $c_2 = a_3 \cdot b_1 - a_1 \cdot b_3,$
 $c_3 = a_1 \cdot b_2 - a_2 \cdot b_1.$

Векторное произведение имеет широкое применение в физике, инженерии и компьютерной графике, например, для вычисления нормалей к поверхностям.

1.0.2 Декартово произведение множеств

Декартово произведение двух множеств A и B — это множество всех возможных упорядоченных пар (a,b), где $a\in A$ и $b\in B$. Декартово произведение обозначается как $A\times B$ и определяется по формуле:

$$A \times B = \{(a,b) \mid a \in A, \ b \in B\}.$$

Декартово произведение полезно в различных задачах теории множеств, реляционных баз данных и комбинаторных вычислений.

1.0.3 Перевод числа из N-ричной системы счисления в десятичную

Для перевода числа из N-ричной системы счисления в десятичную применяется следующая формула. Пусть число в N-ричной системе представле-

но в виде набора цифр (d_0,d_1,\ldots,d_{k-1}) , тогда его значение в десятичной системе определяется как:

decimal =
$$d_0 \cdot N^{k-1} + d_1 \cdot N^{k-2} + \ldots + d_{k-1} \cdot N^0$$
.

Этот метод позволяет представлять числа в различных системах счисления и переводить их в стандартную десятичную систему.

2 Технологическая часть

В данном разделе приведены листинги программного кода, реализующего задачи, рассмотренные в аналитическом разделе, а также примеры использования функций с выводом полученных результатов.

2.0.1 Листинг функций

2.0.2 Примеры использования и результаты тестов

Пример 1: Векторное произведение

Рассмотрим результат выполнения функции для вычисления векторного произведения двух векторов:

```
Листинг 2.1 — Векторное произведение
```

```
(cross-product '(1 2 3) '(4 5 6))
```

Результат: (-3 6 - 3).

Пример 2: Декартово произведение множеств

Рассмотрим результат выполнения функции для вычисления декартова произведения множеств (1,2) и (3,4):

Листинг 2.2 — Декартово произведение

(cartesian-product '(1 2) '(3 4))

Результат: ((1 3) (1 4) (2 3) (2 4)).

Пример 3: Перевод числа из N-ричной системы счисления в десятичную

Рассмотрим перевод числа 1011 из двоичной системы в десятичную:

Листинг 2.3 — Перевод числа в десятичную систему счисления

(base-n-to-decimal '(1 0 1 1) 2)

Результат: 11.

ЗАКЛЮЧЕНИЕ

В результате проделанной работы были разработаны и протестированы функции для выполнения операций с векторами и списками в языке Common Lisp. Полученные функции успешно выполняют векторное произведение, декартово произведение и перевод чисел из произвольной системы счисления в десятичную, что подтверждается примерами тестов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Graham, P. (1995). ANSI Common Lisp. Prentice Hall.
- 2. Канатников А.Н., Крищенко А.П. Аналитическая геометрия (2 изд. 2000)
- 3. Канатников А.Н., Крищенко А.П. Линейная алгебра.
- 4. Фомин С.В. Системы счисления. 1975 г.