LEVEL-I

(B) (1, -1) (C) (1, -2) (D) (-1, -1), (1, 1)

equation. (A) $ax^2 - 2hxy + by^2 = 0$ (B) $ay^2 + 2hxy + bx^2n = 0$ (C) $bx^2 + 2hxy + ay^2$ (D) $bx^2 - 2hxy + ay^2 = 0$

1.

2.

points. (A) (-1, 1)

range of m is

If $a^2 + b^2 - c^2 + 2ab = 0$, then family of straight lines ax + by + c = 0 is concurrent at the

The pair of straight lines perpendicular to the pair of lines $ax^2 + 2hxy + by^2 = 0$ has the

3.	If x_1 , x_2 , x_3 as well as y_1 , y_2 , y_1 , (x_2, y_2) and (x_3, y_3) .	y_3 are in G.P with same common ratio (\neq 1) then the points (x_1 ,			
	(A) lie on a straight line (C) lie on a circle	(B) lie on an e (D) are the ve	ellipse rtices of a triangl	е	
4.	If a, c, b are in A.P the family $(A) \left(\frac{1}{2}, \frac{1}{2}\right) \qquad (B) (1, -2)$	-	•	hrough the po	oint.
5.	The image of the point (3, -8 (A) (-8, 3) (B) (-3	3) in the line x+ 3, 8) (C) (8,		D) (3, 8)	
6.	The nearest point on the line		=		
	(A) $(3, -1/3)$ (B) $\left(\frac{10}{13}, \frac{15}{13}\right)$	(C) (0, 5/3)	(D) (1, 1)		
7.	A straight line through A(2,	l) is such that	its intercept betw	een the axis	is bisected at A. its
	equation is. (A) $2x + y - 4 = 0$ (B) $x + 4 = 0$	-2y - 4 = 0	(C) $x + 2y - 4 =$	0 (D) x +	2y - 2 = 0
8.	The incentre of the triangle v	vith vertices (1,	$\sqrt{3}$), (0, 0) and	(2, 0) is.	
	(A) $\left(1, \frac{\sqrt{3}}{2}\right)$ (B) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$	(C) $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$	(D) $\left(1, \frac{1}{\sqrt{3}}\right)$		
9.	It is desired to construct a rig are parallel to coordinates 3x+1 and y = mx +2 respectis /are,	axis and the	medians through	h A and B lie	on the lines y =
	(A) 12	(B) 3/4	(C) 4/3		(D) 1/12
10.	The equation of the line bise	ecting the obtu	use angle betwee	ən y −x =2 an	d $\sqrt{3}$ y +x =5 is
	(A) $\frac{y-x-2}{\sqrt{2}} = \frac{\sqrt{3}y+x-5}{2}$		$(B) \frac{y+x-2}{\sqrt{2}} = \frac{2}{3}$	$\frac{\sqrt{3}y + x - 5}{2}$	
	(C) $\frac{-y+x+2}{\sqrt{2}} = \frac{\sqrt{3}y-x-5}{2}$		(D) none of th	ese	
11.	If the intercept made on the	line y = mx by	the lines $x = 2$ ar	nd x=5 is le	ess then 5, then the

	(A) (-4/3 ,4/3)	(B) $(-\infty, -4/3) \cup (-\infty)$	4/3 , ∞)	(C) [-4/3, 4/3)	(D) none of these.
12.	The equations of three coordinates of the circu(A) (6,3)	_	angle are	5, y - 2 = 0 ar (6, -3)	x + y = 9. The
	(C) (-6, 3)		(D) none of these.	
13.	The equation of a straig equal length on the axes (A) $2x + y + 1 = 0$ (C) $x - y + 5 = 0$		ough the p (B) x -y = (D) none o	5	making intercepts of
14.	If the intercept made on	the line $y = mx$ by	,		less than 5 then the
	range of values of m is $(A) \left(-\infty, -\frac{4}{3}\right) \cup \left(\frac{4}{3}, \infty\right)$		(B) $\left(-\frac{4}{3},\right.$	$\frac{4}{3}$	
	$(C)\left(-\frac{3}{4},\frac{3}{4}\right)$		(D) none of	of these	
15.	If a, c, b are in G.P then (A) has a fixed direction (B) always passes throug (C) forms a triangle with (D) none of these	gh a fixed point			
16.	If a ray travelling along the line along which the (A) y = 0 (C) x = 0			1	1, then the equation
17.	The equations of the and $2x - 3y = 7$. The line (A) incentre (C) circumcentre			hrough the id	4x - 4y = 0, $x+y = 0$
18.	If the lines $x = a + m$, $y = (A) 0$ (C) $2\sqrt{2}$	-2 and y = mx are	(B) √2	the least value of None of these	f a is
19.	Equation of a line passi perpendicular to the line (A) $x - 2y = 0$ (C) $y - x = 0$		ersection of (B) x+ 2y (D) y+x	=0	3 and $x + y = 1$ and
20.	If the sum of the reciproof then the line always pass (A) (5, -5) (C) (-5, -5)	-	s made by (B) (-5, 5) (D) (5, 5)	5)	dinate axes is 1/5,
21.	If $4a^2 + 9b^2 - c^2 + 12ab$	$= 0, a, b, c \in R^+, th$,,,,,,		sax + by + c = 0 is
	concurrent at (A) (2, 3) (C) 2, -3)		(B) (-2, - (D) (-3, 2	- 3) 2)	

35.	The image of the point (A) (3, 5) (I	(1, 3) in the line x + y B) (5, 3)		(D) (-1, 3)
36.	The lines joining the $3x + y = 1$ given by (A) $x^2-y^2-5xy = 0$ (B)			$(2^{2} + 3xy - 4x + 1 = 0)$ and $(D) x^{2} + y^{2} + 5xy = 0$
37.	The distance between t (A) 3 /10 (C) 33 /5			
38.	The equations of the coordinates of the circu (A) (4, 0) (C) (0, 4)			+1=0 and x +2y =4. The
39.	If the lines $y - x = 5$, $3x = 6$ (A) 19/5 (C) 5/19	+4y =1 and y =mx +3	3 are concurrent then t (B) 1 (D) None of these	the value of m is
40.	A line passing through equation (A) x + 2y =0 (C) x =2y	the origin and maki	ing an angle $\pi/4$ with (B) $2x = y$ (D) $y - 2x = 0$	the line $y - 3x = 5$ has the
41.	The points (-1, 1) and (A) $y + x = 0$ (C) $x + y = 1$	(1, – 1) are symmet	rical about the line (B) y =x (D) None of these	
42.	The member of the far through the point (A) (3, -1) (C) (1, 1)	mily of lines (p +q)x	(x + (2p +q)y = p + 2q) (B) - 3, 1) (D) None of these	q , where $p \neq 0$, $q \neq 0$, pass
43.	The equation of straight $\cos^{-1}\left(-\frac{1}{3}\right)$ with the x- (A) $2\sqrt{2}x + y - 2\left(\sqrt{2} + \frac{1}{3}\right)$	axis is $ (1) = 0 $	(B) $2x + \sqrt{2}y - \sqrt{2} = 0$	-
44.	(C) $x + 2\sqrt{2}y - 2\sqrt{2} \left(\sqrt{2} \right)$ The quation of the line j (A) $x + y - 1 = 0$ (C) $x + y + 2 = 0$,	(D) none of these 1, 3) and (4, – 2) is (B) x + y +1 =0 (D) x + y - 2 =0	
45.	The equation of the line (A) $3x - y - 5 = 0$ (C) $3x + y + 5 = 0$	e through (3, 4) and p	parallel to the line $y = 3x$ (B) $3x + y - 5 = 0$ (D) $3x - y + 5 = 0$	x +5 is
46.	Locus of the point of int $x \cos \alpha + y \sin \alpha = a$ and (A) $x^2 + y^2 = a^2$ (C) $x^2 + y^2 + 2x + 2y = a$	I x sin α – y cos α =a	$a (\alpha \in R)$ is (B) $x^2 + y^2 = 2a^2$ (D) none of these	

(C) 0

(D) none of these

(A) -2

(B) 2

47.	The quadratic equation whose roots are (1, 1) and making a triangle of area A with $(A) x^2 + Ax + 2A = 0$ (C) $x^2 - Ax + 2A = 0$	the x and y intercepts of the line passing through axes is (B) $x^2 - 2Ax + 2A = 0$ (D) None of these
48.	The area of the quadrilateral formed by y = (A) 1 (C) 3/2	= $1 - x$, $y = 2 - x$ and the coordinate axes is (B) 2 (D) None of these
49.	The incentre of the triangle formed by the li (A) $(0, 2 - \sqrt{2})$ (C) $(2 + \sqrt{2}, 0)$	nes y = x and y = 1 is (B) $(2 - \sqrt{2}, 0)$ (D) $(0, 2 + \sqrt{2})$
50.	If one vertex of an equilateral triangle is a length of each side is $ \text{(A)} \sqrt{\frac{3}{2}} \qquad \qquad \text{(B)} \sqrt{\frac{2}{3}} $	at $(1, -2)$ and the base is $x + y + 2 = 0$, then the $(C) \frac{2}{3}$ $(D) \frac{3}{2}$
51.	Points on the line $x + y = 4$ that lie at a unit (A) (3, 1) and (-7, 11) (B) (-7, 11)	distance from the line 4x+ 3y-10=0 are 3, 7) and (2, 2) (D) none of these
52.	The locus of the mid-point of the port $x \cos \alpha + y \sin \alpha = p$, where p is a constant	ion intercepted between the axes by the line
	(A) $x^2 + y^2 = 4p^2$	(B) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$
	(C) $x^2 + y^2 = \frac{4}{p^2}$	(D) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$
53.	The straight lines of the family x(a+b) + y (a (A) not concurrent (C) Concurrent at (1, 1)	a-b) = 2a (a and b being parameters) are (B) Concurrent at (1, -1) (D) None of these
54.	If the sum of the distances of a point from its locus is	n two perpendicular lines in a plane is 1, then
	(A) square (C) straight line	(B) a circle(D) two intersecting lines
55.	If the line $y = mx$ meets the lines $x + 2y - 1$ m is equal to	= 0 and $2x - y + 3 = 0$ at the same point, then
	(A) 1 (C) 2	(B) -1 (D) -2
56.	The area inclosed by $3 x + 4 y \le 12$ is (A) 6 squar units (C) 24 square units	(B) 12 sq. units (D) 36 square units
57.	If a, b, c are in A.P. then line 2ax + 3by + (A) (2, -2) (C) (3/2, -2)	3c = 0 always passes through fixed point (B) (3/2, 2) (D) none of these

58.	Equation $(3a - 2b)x^2 + (c -2a)y^2 + 2b$ perpendicular to each other then $(a - b)$ (A) $b + c$ (C) $c - b$	xy = 0 represents pair of straight lines which are b) is equal to (B) b - c (D) 2c
59.	$ax + by + c = 0$ represents a line parall (A) $a = 0$, $b = 0$ (C) $a \neq 0$, $b = 0$	el to x–axis if (B) a = 0, b ≠ 0 (D) c = 0
60.	If the angle between the two straight line then m equals to (A) 1/5	es represented by $2x^2 + 5xy + 3y^2 + 7y + 4 = 0$ is $tan^{-1}m$ (B) 1
	(C) 7/5	(D) 7
61.	The diagonals of a parallelogram PC 4bx – 2ay =100. Then PQRS must be a	
	(A) rhombus (C) square	(B) rectangle (D) none of these
62.	The area enclosed by $ x + y = 1$ is (A) 1	(B) 2
	(C) 3	(D) 4
63.		is parallel to x-axis, then the value of k is
	(A) $-\frac{1}{3}$ (B) $\frac{1}{3}$	(C) -3 (D) 3
64.		pint of intersection of the straight lines $x - 3y + 1 = 0$
	and $2x + 5y - 9 = 0$ and having infinite sle (A) $x = 2$ (B) $3x + y - 1 = 0$	
65.	The equations of the lines through (-1, given by	-1) and making angle 45° with the line x + y = 0 are
	(A) $x^2 - xy + x - y = 0$ (C) $xy + x + y = 0$	$xy - y^2 + x - y = 0$ (D) $xy + x + y + 1 = 0$
66.	If a line is perpendicular to the line 5x - area 5 sq. units, then its equation is	y = 0 and forms a triangle with coordinate axes of
	(A) $x + 5y \pm 5\sqrt{2} = 0$ (B)	$x - 5y \pm 5 \sqrt{2} = 0$
	(C) $5x + y \pm 5\sqrt{2} = 0$ (D)	$5x - y \pm 5\sqrt{2} = 0$
67.		cular form the point (2, 4) on the line $x + y = 1$ are
	(A) $\left(\frac{1}{2}, \frac{3}{2}\right)$ (B) $\left(-\frac{1}{2}, \frac{3}{2}\right)$	(C) $\left(\frac{4}{3}, \frac{1}{2}\right)$ (D) $\left(\frac{3}{4}, -\frac{1}{2}\right)$
68.	The distance of the line $2x - 3y = 4$ from	the point $(1, 1)$ in the direction of the line $x + y = 1$ is
69.		s x + y = 1 and $2(x + y) = 5$, then a lies between
	and	
70	If mn = 1, then the lines my $\pm y = 1$ and y	y _ ny _ 2 will be

- 71. If the point $(2a 3, a^2 1)$ is on the same side of the line x + y 4 = 0 as that of the origin, then the set of values of a is
- 72. The set of lines ax + by + c = 0 where 3a + 2b + 4c = 0 is concurrent at the point
- 73. If the image of the point (-2, 1) by a line mirror be (2, -1) then the equation of the line mirror is
- 74. If the point (-2, 0), (-1, $1/\sqrt{3}$) and (cos θ , sin θ) are collinear then the cumber of values of $\theta \in [0, 2\pi]$.
 - (A) 0

(B) 1

(C) 2

- (D) infinite
- 75. If 'a' and 'b' are real numbers between 0 and 1 such that the points (a, 1), (1, b) and (0, 0) from an equilateral triangle then the values of 'a' and 'b' respectively
 - (A) $2 \sqrt{3}$, $2 \sqrt{3}$

(B) $-2 + \sqrt{3}$, $-2 + \sqrt{3}$

(C) $2 \pm \sqrt{3}$, $2 \pm \sqrt{3}$

- (D) none of these
- 76. If $f(x) = \begin{cases} \frac{\log(1 + ax) \log(1 bx)}{x}, & x \neq 0 \\ -c, & x = 0 \end{cases}$
 - is continuous at x = 0, then the line ax + by + c = 0 passes through the point
 - (A)(1, -1)

(B) (-1, 1)

(C) (1, 1)

(D)(0,0)

LEVEL-II

2. It t						
	the co– ordin circumcentre		es of a triangle	are (0, 5), (1, 4)	and (2, 5) the	en the co- ordinate
(A)	a) (1, 5)	(B) $\left(\frac{3}{2}, \frac{9}{2}\right)$	(C) (1, 4)	(D) none of thes	se	
(A)	ne equation o a) $ y = x + 2$ b) $y = x - 2 $	f the image of	pair of rays y =	= x by the line x (B) y + 2 = x (D) none of the		
the (A)	the line segme origin, then a) a, n, l are in b) l, m, n ² are	G.P		ed by the curve (B) I, m, n are ir (D) I, n ² , m are i		nds a right angle at
5. If t	the line $v = \sqrt{3}$	_ 3 x cuts the cu				3, C and D, then
OA	A.OB.OC.OD	(where O is	the origin) is			
(A)	a – 2b +c		(B) 2c ² d	(C) 96		(D) 6
ref eq	fraction it ent	ers the other e line along v	side of the x-	Fy = 1 is incline axis by turning action ray travel (B) $\sqrt{3}$ y + x +1	15° away fro s is	kis and after om the x-axis. The
(C)	(2) $\sqrt{3}$ y + x -1	= 0		(D) none of the	se.	
	ne coordinate nes x = y , is		(s) on the lin	e $x + y = 5$, v	which is/are e	quidistant from the
(A)	a) (5, 0)			(B) (1, 4)	
(C)	c) (-5, 0)			(D) (0, -	5)	
(A)	the point (a, a a) a = 2 b) a < 1	a) falls betwee	n the lines x +	y = 2, then (B) a =1 (D) a < 1/2		
(A)		s are rotated t b		ordinate axes. e same line has i (B) p = b, q = (D) p = b, q =	ntercepts p ar a	e origin fixed, the nd q, then
10. Tw	Two sides of a rhombus OABC (lying entirely in first quadrant or fourth quadrant) of area					
eq	qual to 2 sq.	units, are y =	$= \frac{x}{\sqrt{3}}, y = \sqrt{3}$	x . Then possil	ole coordinate	es of B is / are ('O'
	eing the original $(1+\sqrt{3}, 1+\sqrt{3})$ $(\sqrt{3}-1, \sqrt{3})$, v		(B) $\left(-1 - \sqrt{3}, -1\right)$	$-1 - \sqrt{3}$	

13.	Equation of the bisector of angle B of the triangle ABC is $y = x$. If A is $(2, 6)$ and B is $(1, 1)$; equation of side BC is		
	(A) $2x + y - 3 = 0$ (C) $x - 6y + 5 = 0$	(B) $x - 5y + 4 = 0$ (D) none of these	
14.	Vertex opposite to the side $x + y - 2 = 0$ of is	the equilateral triangle, with centroid at the origin;	
	(A) (-1, 1) (C) (-2, -2)	(B) (2, 2) (D) none of these	
15.		t) are two variable points where t is a parameter,	
	the locus of the middle point of AB is (A) a straight line (C) circle	(B) a pair of straight line (D) none of these	
16.	The ends of a diagonal of a square are (2 can be	2,-3) and (-1,1). Another vertex of the square	
	(A) (- 3/2, - 5/2) (C) (1/2, 5/2)	(B) (- 5/2, 3/2) (D) None of these	
17.	If the equations of the three sides of a trial then the orthocentre of the triangle lies on $(A) 13x + 13 y = 1$ (C) $169x + y = 0$	Ingle are $2x + 3y = 1$, $3x-2y + 6 = 0$ and $x + y = 1$, the line (B) $169x + 26y = -178$ (D) none of these.	
18.	The orthocentre of the triangle formed by t $4x + 5y - 3 = 0$ lies at (A) (3/5, 11/5) (B) (5/6, 11/5)	he lines $2x^2 + 3xy - 2y^2 - 9x + 7y - 5 = 0$ (B) (6/5, 11/5) (D) None of these	
19.		n the point (2, 3), so that its distance from (-1,	
	(A) 1 (C) 0	(B) 2 (D) infinite	
20.		origin and A is a point on the x-axis), then centroid	
	of the triangle will be (A) always rational (C) rational if A is rational (a point P(x, y) is said to be rational if bo	(B) rational if B is rational (D) never rational oth x and y are rational)	
21.		n the point (4, 5) and equally inclined to the lines	
	3x = 4y + 7 and $5y = 12x + 6$ is (A) $9x - 7y = 1$ (C) $7x - 9y = 73$	(B) $9x + 7y = 71$ (D) $7x - 9y + 17 = 0$	
22.	Two vertices of a triangle are (5, -1) and (-then the third vertex is	2, 3). If the orthocentre of the triangle is the origin,	
	(A) (-4, 7) (B) (-4, -7)	(C) (4, -7) (D) (4, 7)	
23.	Drawn from the origin are two mutually per the straight line $2x + y = a$. Then the area of	pendicular lines forming an isosceles triangle with f this triangle is	

LEVEL-III

1.

If the straight lines ax + by + p = 0 and $x \cos \alpha + y \sin \alpha = p$ are inclined at an angle $\pi/4$ and concurrent with the straight line $x \sin \alpha - y \cos \alpha = 0$, then the value of $a^2 + b^2$ is (A) 0 (B) 1 (C) 2 (D) none of these .

2.	If one vertex of an equilateral triangle of side 2 is the origin and another vertex lithe line $x=\sqrt{3}y$, then the third vertex can be		
	(A) (0, 2)	(B) $(-\sqrt{3}, -1)$	
	(C) (-2, -2)	(D) $(\sqrt{3}, 1)$	
3.	The locus of a point which divides a line segment $AB = 4cm$ in 1 : 2, where A lies on the $y = x$ and B lies on the $y = 2x$ is		
	(A) $234x^2 + 153y^2 - 378xy - 32 = 0$ (C) $234x^2 + 153y^2 + 378xy + 32 = 0$	(B) $234x^2 + 153y^2 - 378xy + 32 = 0$ (D) None of these	
4.	All points lying inside the triangle formed by (A) $3x + 2y \ge 0$ (C) $2x - 3y - 12 \ge 0$	the points (1, 3), (5, 0) and (-1, 2) satisfy (B) $2x + y - 13 \ge 0$ (D) $-2x + y \ge 0$	
5.	A family of lines is given by $(1 + 2\lambda)x + (belonging to this family at the maximum dis (A) 4x - y + 1(C) 13x + 12y + 9 = 0$	$(1 - \lambda)y + \lambda = 0$, λ being the parameter. The line tance from the point (1, 4) is (B) $12x + 33y = 7$ (D) none of these	
6.	If A = (0, 1) and B(2, 0) be two points and 'P ordinates of the point 'P' such that $ PA - PE $ (A) $\left(\frac{3}{20}, -\frac{14}{5}\right)$		
	(C) $\left(\frac{3}{20}, -\frac{12}{5}\right)$	(D) $\left(-\frac{24}{5}, \frac{17}{5}\right)$	
7.	Consider the points A (0, 1) and B (2, 0). 'P' be the point 'P' such that $ PA - PB $ is maximum, i	a point on the line $4 \times + 3 \times + 9 = 0$ Co-ordinates of	
	$(A)\left(\frac{-12}{5},\frac{17}{5}\right)$	$(B)\left(\frac{24}{5},\frac{-17}{5}\right)$	
	$(C)\left(\frac{-24}{5},\frac{17}{5}\right)$	(D) $\left(\frac{12}{5}, \frac{-17}{5}\right)$	
8.	A straight line passing through P (3, 1) meet the distance of this straight line from the origin 'O' is	s maximum. Area of Δ OAB is equal to	
	(A) $\frac{50}{3}$ sq. units	(B) $\frac{100}{3}$ sq. units	
	(C) $\frac{25}{3}$ sq. units	(D) 1 sq. units	
9.	Consider the points A (0, 1) and B (2, 0) P be a such that PA+ PB is minimum, is	point on the line $y = x$. Co-ordinates of the point 'P'	
	(A) (2/3, 2/3) (C) (1, ½)	(B) (3/2, 3/2) (D) (-2, 2)	

10.	Consider the points A (3, 4) and B (4, 13). If 'minimum, then 'P' is	P' be a point on the line $y = x$ such that PA + PB is
	(A) $\left(\frac{-31}{7}, \frac{-31}{7}\right)$	$(B)\left(\frac{31}{7},\frac{31}{7}\right)$
	$(C)\left(\frac{13}{7},\frac{13}{7}\right)$	$(D)\left(\frac{23}{7},\frac{23}{7}\right)$

11. Equation $ax^2 + 2bxy + by^2 = 0$ represents a pair of lines. Combined equation of lines that can be obtained by reflecting these lines about the x - axis is

(A) $bx^2 - 2bxy + ay^2 = 0$ (B) $ax^2 + 2bxy + by^2 = 0$

(A) b
$$x^2 - 2$$
 b x y + a $y^2 = 0$
(B) a $x^2 + 2$ b x y + b $y^2 = 0$
(C) b $x^2 + 2$ b x y + a $y^2 = 0$
(D) a $x^2 - 2$ b x y + b $y^2 = 0$

12. If the point P (a, a^2) lies completely inside the triangle formed by the lines x = 0, y = 0 and x + y = 2, then exhaustive range of 'a' is

(A)
$$a \in (0, 2)$$
 (B) $a \in (0, 1)$ (C) $a \in (1, \sqrt{2})$ (D) $a \in (-\sqrt{2}, 1)$

13. Equation of the straight line belonging to the family of lines $(x + y) + \lambda (2x - y + 1) = 0$, that is farthest from (1, -3) is

(A)
$$13 \text{ y} - 6 \text{ x} = 7$$
 (B) $13 \text{ y} + 6 \text{ x} = 0$ (C) $15 \text{ y} + 6 \text{ x} = 7$ (D) $15 \text{ y} - 6 \text{ x} = 7$

14. If a < b < c < d and 'k' is the number of real roots of the equation (x - a)(x - c) + 2(x - b)(x - d) = 0, then equation of the line parallel to y-axis and cutting an intercept 'k' on x-axis is, (A) x = 0 (B) x = 1

16. If a, b, c are in A. P. then the image of the point of intersection of the family of lines ax + by + c = 0 in the line y = 0 lies on the line

(D) Can't say

(A)
$$x + 2y - 5 = 0$$

(B) $2x = y = 0$
(C) $3x + 4y + 5 = 0$
(D) $3x + 4y - 11 = 0$

17. If $f(x) = \frac{\log(1+ax) - \log(1-bx)}{x}$, $x \ne 0$ and is continuous at x = 0,

then the line a x + b y + c = 0 passes through the point

18. If $m = \left(\frac{i + \sqrt{3}}{2}\right)^{200} + \left(\frac{i - \sqrt{3}}{2}\right)^{200}$, then equation of the image of the line having slope 'm' and passing

through (0, 0) in the x-axis is

(A)
$$x - y = 0$$

(C) $2x - 3y = 0$
(B) $x + y = 0$
(D) $2x + 3y = 0$

19. If 3a + 4b + 2c = 0, then the point of concurrent of the family of lines ax + by + c = 0 and (1, 2) are

(A) on the same sides of the line 4x - y + 1 = 0

(B) on the opposite side of the line 4x - y + 1 = 0

(C) are at equal distances from the origin.

(D) None of these

(C) are parallel

20. If a, b, c are three consecutive integers, then the family of lines a x + b y + c = 0 are concurrent at the point,

(A) (1, 2) (C) (1, -2)

(B) (-2, 1) (D) None of these

ANSWERS

3.

7.

11.

Α

С

Α

LEVEL -I

D	
С	
В	
С	
D	
В	
В	
С	
Α	
Α	
С	
В	
В	
Α	
Α	
В	
С	
	C B C D B B C A A C B B A A

4.

8.

12.

D

D

Α

72.
$$\left(\frac{3}{2}, \frac{1}{2}\right)$$

60.

64.

68.

72.
$$\left(\frac{3}{2}, \frac{1}{2}\right)$$

76. C

 $\sqrt{2}$

Α

D

-1, 1/2

57.

61.

65.

69.

LEVEL -II

23.
$$\frac{a^2}{5}$$
25. D

24.
$$\left(2-\sqrt{2}, \sqrt{2}-1\right)$$
 and $\left(2+\frac{4}{\sqrt{5}}, -1+\frac{2}{\sqrt{5}}\right)$

and
$$\left(2 + \frac{4}{\sqrt{5}}, -1 + \frac{2}{\sqrt{5}}\right)$$

LEVEL -III