Maisammaguda, Kompally, Medchal - Malkajgiri DistrictHyderabad - 500100, Telangana

School of Engineering Question Bank I Year B. Tech – I Semester – 2023-24

G.O.Ms.No.14, HigherEducation (UE) Department)

I Year B. Tech - I Semester - 2023-24 APPLIED PHYSICS (MR23-1BS0121)

Q. No	Question	Course Outcome	Question Level	Mark s	Section	Unit
1	Explain the processes of absorption, spontaneous and stimulated emission of light and derive the expression for relation between Einstein's coefficients	CO1	Easy	8	Section-I	1
2	Explain the construction of Ruby Laser and its working principle with the help of energy level diagram.	CO1	Easy	8	Section-I	1
3	Explain the construction of Helium-Neon Laser and its working principle with the help of energy level diagram.	CO1	Medium	8	Section-I	1
4	Define and deduce the expression for acceptance angle and numerical aperture of an optical fiber.	CO1	Easy	8	Section-I	1
5	Classify optical fibers, describe the structure and light propagation in step and graded index optical fibers.	CO1	Medium	8	Section-I	1
6	i.) What is pumping in LASER, explain its importance in the production of LASERii.) What is population inversion and metastable state, explain their need in the production of LASER.	CO1	complex	8	Section-I	1
7	Explain the construction and working of Semiconductor diode laser using neat energy level diagram.	CO1	Medium	8	Section-I	1
8	i.)Explain the basic structure and working principle of an optical fiber.ii.)With neat block diagram explain the working of optical fiber communication system.	CO1	Easy	8	Section-I	1
9	 i.) State de-Broglie hypothesis and derive the expression of de-Broglie wavelength in different forms. ii.) A proton is moving with a speed of 2.5 × 10¹⁰ m/s. Find the wavelength of Matter wave associated with it. (Mass of proton m = 1.67 × 10⁻²⁷kg). 	CO2	Easy	5	Section-II	2

MALLA REDDY UNIVERSITY

(TelanganaStatePrivateUniversitiesActNo.13of2020& G.O.Ms.No.14,HigherEducation(UE)Department) Maisammaguda, Kompally, Medchal - Malkajgiri DistrictHyderabad - 500100, Telangana

	G.O.Ms.No.14, Higher Education (U	DEJDepartment		1		
10	Describe Davisson and Germer's experiment to verify the existence of matter waves.	CO2	Medium	8	Section-II	2
11	State Heisenberg's uncertainty principle, using Heisenberg's uncertainty principle prove the non-existence of electron inside the nucleus.	CO2	Easy	8	Section-II	2
12	Derive the Schrodinger time-independent wave equation for matter waves. What is the physical significance of wave function?	CO2	complex	8	Section-II	2
13	(i) What is meant by wave-particle duality, what led de-Broglie to suggest that matter has wave characteristics?(ii) What are matter waves, explain their characteristics and prove that matter waves can move faster than speed of light.	CO2	Medium	8	Section-II	2
14	State Heisenberg uncertainty principle, calculate the uncertainty with which we can locate the position of electron if the electron is moving with speed of 600 m/s with an accuracy of 0.005%.	CO2	complex	8	Section-II	2
15	 (i) Obtain the expression for energy levels of a particle enclosed in a one-dimensional infinitely deep potential well. (ii) An electron is bound in one dimensional infinite well of width 1 Å, find the energy values of ground state and first two excited energy states. 	CO2	Easy	8	Section-II	2
16	What is normalization of wave function? Derive the wave function expression for a particle enclosed in a one-dimensional infinitely deep potential well.	CO2	complex	8	Section-II	2
17	State Hall effect and derive Hall coefficient for an n-type semiconductor. Mention few applications of Hall effect.	CO3	Easy	8	Section-III	3
18	What is meant by p-n junction, explain its formation and discuss the biasing and V-I characteristics of p-n junction diode.	CO3	Medium	8	Section-III	3
19	Explain the processes of wafer cleaning, lithography and etching in the fabrication of semiconductor devices.	CO3	Medium	8	Section-III	3
20	What is LED? Explain the construction and working of LED with neat diagrams, mention few applications of it.	CO3	Medium	8	Section-III	3

MALLA REDDY UNIVERSITY

(TelanganaStatePrivateUniversitiesActNo.13of2020& G.O.Ms.No.14,HigherEducation(UE)Department) Maisammaguda, Kompally, Medchal - Malkajgiri DistrictHyderabad - 500100, Telangana

_	G.O.Ms.No.14, Higher Education (C	DEJDepartment			•	
21	What is Solar cell? Explain the construction and working of Solar cell with suitable diagrams.	CO3	Medium	8	Section-III	3
22	What is photodiode? Explain the construction and working of photodiode with suitable diagrams.	CO3	Easy	8	Section-III	3
23	(i) What is thin film, explain its role in semiconductor devices, and discuss different thin film deposition techniques.(ii) What is metallization, explain its role in semiconductor device fabrication.	CO3	complex	8	Section-III	3
24	(i) Distinguish between direct and indirect bandgap semiconductors (ii) Classify semiconductor based on its purity, discuss about the p-type and n-type semiconductors	CO3	Medium	8	Section-III	3
25	Explain classical and quantum computing, and distinguish between the classical bit and quantum bit (qubit).	CO4	Easy	8	Section-IV	4
26	Define complex vector space, explain its axioms using Dirac notation.	CO4	complex	8	Section-IV	4
27	Define linear combination, span, basis and dimension of a complex vector space.	CO4	Medium	8	Section-IV	4
28	Explain inner, outer and tensor products using dirac notation.	CO4	complex	8	Section-IV	4
29	Discuss the postulates of quantum mechanics.	CO4	Medium	8	Section-IV	4
30	What is Hilbert space and its importance in quantum computing, mention its key features and characteristics.	CO4	complex	8	Section-IV	4
31	Discuss quantum states and state vectors.	CO4	Medium	8	Section-IV	4
32	Explain the geometrical representation of a qubit with a neat diagram of the Bloch's sphere.	CO4	Medium	8	Section-IV	4
33	Discuss the representation of single and multiple qubits using Dirac notation.	CO5	Medium	8	Sectionn-V	5
34	Explain the superposition and entanglement of qubit states.	CO5	complex	8	Sectionn-V	5
35	Describe the process of quantum measurement.	CO5	complex	8	Sectionn-V	5

MALLA REDDY UNIVERSITY

(TelanganaStatePrivateUniversitiesActNo.13of2020& G.O.Ms.No.14,HigherEducation(UE)Department) Maisammaguda, Kompally, Medchal - Malkajgiri DistrictHyderabad - 500100, Telangana

36	i) Write the differences between the classical and quantum logic gatesii) Explain XOR, NAND & NOR gates along with their truth tables.	CO5	complex	8	Sectionn-V	5
37	What is quantum logic gate? Explain the operation of quantum gate with matrix representation using Hadamard gate as example.	CO5	complex	8	Sectionn-V	5
38	What is single qubit gate? Discuss the operation of Pauli-X, Pauli-Y, Pauli-Z on qubits with truth tables.	CO5	Easy	8	Sectionn-V	5
39	What is multiple qubit gate? Discuss the operation of CNOT gate on two qubits with truth table.	CO5	Easy	8	Sectionn-V	5
40	What is multiple qubit gate? Discuss the operation of Toffoli (CCNOT) gate on three qubits with truth table.	CO5	complex	8	Sectionn-V	5