Homework 6

Exercise 1 Show that if

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

is a polynomial, such that n is odd and $a_n \neq 0$ then there exists $c \in \mathbb{R}$ with p(c) = 0.

Proof. Suppose that $a_n > 0$. From Homework 5 we have $\lim_{x \to \infty} p(x)/(a_n x^n) = 1$. Let $\varepsilon = 1/2$. Then there exists $m \in \mathbb{R}$ such that for all x > m we have $|p(x)/(a_n x^n) - 1| < 1/2$. Thus there exists $x_1 > 0$ such that $1/2 < p(x_1)/(a_n x_1^n)$. Since $x_1, a_n > 0$ and n is odd we have $0 < (a_n x_1^n)/2 < p(x_1)$. Thus $p(x_1)$ is positive. Similarly take $\lim_{x \to -\infty} p(x)/(a_n x^n) = 1$ and let $\varepsilon = 1/2$. Then there exists $m \in \mathbb{R}$ such that for all x < m we have $|p(x)/(a_n x^n) - 1| < 1/2$. Then there exists $x_2 < 0$ such that $1/2 < p(x)/(a_n x^n)$. But since $x_2 < 0$ and $a_n > 0$ we have $a_n x^n < 0$ so then $p(x) < (a_n x^n)/2 < 0$. Thus $p(x_2) < 0$. Therefore there exist $x_1, x_2 \in \mathbb{R}$ with $p(x_2) < 0$ and $p(x_1) > 0$ so there must exist $c \in (x_2; x_1)$ with p(c) = 0 by the Intermediate Value Theorem. A very similar proof holds if $a_n < 0$ where the limits give values of opposite signs as in this proof.

First we prove a lemma showing that for $a \in \mathbb{R}$, $a^2 \geq 0$.

Proof. Let
$$a \in \mathbb{R}$$
. If $a = 0$ then $a^2 = 0 \cdot 0 = 0$. If $a > 0$ then $a^2 = a \cdot a > 0$. If $a < 0$ then $a^2 = a \cdot a = -|a| \cdot -|a| = (-1)^2 \cdot |a| \cdot |a| = |a| \cdot |a| > 0$. In all cases $a^2 \ge 0$.

Exercise 2 Show that if $a, b \ge 0$ then

$$\sqrt{ab} \le \frac{a+b}{2}$$

and equality holds if and only if a = b.

Proof. Note that $0 \le (a-b)^2 = a^2 - 2ab + b^2$ so $4ab \le a^2 + 2ab + b^2 = (a+b)^2$. Then $ab \le (a+b)^2/4$ and since $a, b \ge 0$ we have $\sqrt{ab} \le (a+b)/2$. To show equality suppose $\sqrt{ab} = (a+b)/2$. Then $4ab = (a+b)^2 = a^2 + 2ab + b^2$ and so then $(a-b)^2 = 0$ which means a-b = 0 and a = b. Conversely we assume a = b so a - b = 0 and $0 = (a-b)^2 = a^2 - 2ab + b^2$. Then $4ab = a^2 + 2ab + b^2 = (a+b)^2$ so $ab = (a+b)^2/4$ and since ab > 0 we have $\sqrt{ab} = (a+b)/2$. □

Exercise 3 Show that if $a, b \in \mathbb{R}$ then

$$\frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}}$$

and equality holds if and only if a = b.

Proof. Again note that $0 \le (a-b)^2 = a^2 - 2ab + b^2$ so we have $2ab \le a^2 + b^2$ and $2(a^2 + b^2) \ge a^2 + 2ab + b^2 = (a+b)^2$. Then $(a+b)^2/4 \le (a^2 + b^2)/2$ and since both of these terms are positive, we have $(a+b)/2 \le \sqrt{(a^2 + b^2)/2}$. To show equality we assume $(a+b)/2 = \sqrt{(a^2 + b^2)/2}$. Then $(a^2 + 2ab + b^2)/4 = (a^2 + b^2)/2$ so $a^2 + 2ab + b^2 = 2(a^2 + b^2)$. Thus, $0 = a^2 - 2ab + b^2 = (a-b)^2$ so a - b = 0 and a = b. Conversely assume that a = b. Then $0 = a - b = (a - b)^2 = a^2 - 2ab + b^2$ and $2ab = a^2 + b^2$ so $a^2 + 2ab + b^2 = 2(a^2 + b^2)$. Thus $(a + b)^2/4 = (a^2 + b^2)/2$. Since these terms are positive we have $(a + b)/2 = \sqrt{(a^2 + b^2)/2}$. □

Exercise 4 Show that if a, b > 0 then

$$\frac{2}{\frac{1}{a} + \frac{1}{b}} \le \sqrt{ab}$$

and equality holds if and only if a = b.

Proof. Once again note that $0 \le (a-b)^2 = a^2 - 2ab + b^2$ so $4ab \le a^2 + 2ab + b^2 = (a+b)^2$. Then since $(a+b)^2 \ne 0$ we have $4ab/(a+b)^2 \le 1$. Since ab > 0 we have $(2ab)^2/(a+b)^2 \le ab$ and also

$$\sqrt{ab} \ge \frac{2ab}{a+b} = \frac{2}{\frac{a+b}{ab}} = \frac{2}{\frac{1}{a} + \frac{1}{b}}.$$

To show equality assume

$$\sqrt{ab} = \frac{2}{\frac{1}{a} + \frac{1}{b}}.$$

Then

$$ab = \left(\frac{2}{\frac{1}{a} + \frac{1}{b}}\right)^2 = \left(\frac{2}{\frac{a+b}{ab}}\right)^2 = \left(\frac{2ab}{a+b}\right)^2 = \frac{4a^2b^2}{a^2 + 2ab + b^2}.$$

Then (ab), $(a+b)^2 > 0$ so $1 = 4ab/(a^2 + 2ab + b^2)$ and $4ab = a^2 + 2ab + b^2$. Then $0 = (a-b)^2 = a - b$ so a = b. Conversely assume that a = b. Then $0 = a - b = (a - b)^2 = a^2 - 2ab + b^2$. Thus $4ab = a^2 + 2ab + b^2$ and since $(a^2 + 2ab + b^2) > 0$ we have $(4ab)/(a+b)^2 = 1$ and $(2ab)^2/(a+b)^2 = ab$. Then

$$ab = \frac{4a^2b^2}{a^2 + 2ab + b^2} = \left(\frac{2ab}{a+b}\right)^2 = \left(\frac{2}{\frac{a+b}{ab}}\right)^2 = \left(\frac{2}{\frac{1}{a} + \frac{1}{b}}\right)^2$$

and since both of these quantities are greater than zero we have

$$\sqrt{ab} = \frac{2}{\frac{1}{a} + \frac{1}{b}}.$$

Exercise 5 Show that if $a, b, c \in \mathbb{R}$ then

$$\frac{a+b+c}{3} \leq \sqrt{\frac{a^2+b^2+c^2}{3}}$$

and equality holds if and only if a = b = c.

Proof. Note that $0 \le (a-b)^2 + (b-c)^2 + (a-c)^2 = 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac$ so $2ab + 2bc + 2ac \le 2a^2 + 2b^2 + 2c^2$. Then $3(a^2 + b^2 + c^2) \ge a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = (a+b+c)^2$ and so $(a+b+c)^2/9 \le (a^2+b^2+c^2)/3$. Since both of these values are positive we have $(a+b+c)/3 \le \sqrt{(a^2+b^2+c^2)/3}$. To show equality, assume that

$$\frac{a+b+c}{3}=\sqrt{\frac{a^2+b^2+c^2}{3}}.$$

Then we have $3(a^2+b^2+c^2)=(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac$. Then $2ab+2bc+2ac=2a^2+2b^2+2c^2$ so $0=2a^2+2b^2+2c^2-2ab-2bc-2ac=(a-b)^2+(b-c)^2+(a-c)^2$. But these three terms are all greater than or equal to zero so each must be equal to zero. Then a=b=c. Conversely, assume that a=b=c. Then $0=(a-b)=(b-c)=(a-c)=(a-b)^2=(b-c)^2=(a-c)^2=(a-c)^2=(a-b)^2+(b-c)^2+(a-c)^2=2a^2+2b^2+2c^2-2ab-2bc-2ac$. Thus $2a^2+2b^2+2c^2=2ab+2bc+2ac$ and $3(a^2+b^2+c^2)=a^2+b^2+c^2+2ab+2bc+2ac=(a+b+c)^2$. Then $(a+b+c)^2/9=(a^2+b^2+c^2)/3$ and since both of these terms are positive we have

$$\frac{a+b+c}{3} = \sqrt{\frac{a^2+b^2+c^2}{3}}.$$

Exercise 6 Is there are real function $f: \mathbb{R} \to \mathbb{R}$ that takes on every real number an even number of times?

Yes.

Proof. Let $f: \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x) = \begin{cases} |x| & \text{if } x \notin \mathbb{N} \\ 1 & \text{if } x = 0 \\ x + 1 & \text{if } x \in \mathbb{N}. \end{cases}$$

We see that f(x)>0 for all $x\in\mathbb{R}$ so for $y\leq 0$, f takes on y zero times. Consider y>0. If $y\in\mathbb{N}$ and $y\neq 1$ then $y-1\in\mathbb{N}$ so we have f(y-1)=(y-1)+1=y and also f(-y)=|-y|=y. Note that by definition of absolute value, for $a\in\mathbb{R}$ with $a\neq 0$ there are only two real numbers a,-a which will have an absolute value of |a|. Also there is only one number $z\in\mathbb{R}$ such that z+1=y. Thus, there are exactly two elements of \mathbb{R} which map to y. If y=1 then f(0)=y and f(-1)=|-1|=1=y. We have every natural number mapping to something greater than 1, and the only other element of \mathbb{R} with an absolute value of 1 is 1 and f(1)=2. Thus, there are exactly two elements of \mathbb{R} which map to y. Finally, if $y\notin\mathbb{N}$ then f(y)=|y|=y since y>0 and f(-y)=|-y|=y. There are no other elements of \mathbb{R} with an absolute value of y so there are exactly two elements of \mathbb{R} which map to y. In all cases we have f taking on every value of \mathbb{R} either 0 or 2 times.