Practice3 Heteroschedasticity

Federica Romei

November 19, 2012

1. Set M, numbers of Montecarlo simulation equal to 100 and N, numbers of random draws equal to 100. Define

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

where

- $\{y_i, x_i\}$ are i.i.d;
- $E[x_i, u_i] = 0;$
- $E[x_i'x_i]$ is full rank;
- $Var(x_iu_i) = f(x_i) < \infty$.
- (a) Estimate β_1 assuming that $Var(x_iu_i) = f(x_i) = \sigma^2 E(x_i'x_i)$ where σ^2 is the variance of u_i using heteroschedastic and homoschedastic variance estimator. Build a 95% and a 90% c.i. and count the number of times that β is within the interval;
- (b) Do the same under the assumption that $Var(x_iu_i) = f(x_i)$. (HINT: Write $u_i = u_i * \sqrt{x_i^2}$). What does it change? What do you learn?

```
Solution:
\begin{footnotesize}
clear;
clc;
%% Second Practice
%% Answer to the questions:
%
g=1; % Define the numbers of random draws and Montecarlo simulations
test=5; % This define the C.I.
s='homo'; % Define homoschedasticity or heteroschedasticity
if strcmp('heteroschedastic', s)
    display('Heteroschedasticity')
```

```
else
   display('Homoschedasticity')
end
if g==1;
N=1000; % Number of sample draw
M=1000; % Number of time we do the loop- Number of MonteCarlo
else
   N=100;
   M=100;
end
k=1; % Number of coefficient we want to estimate excluding the constant
%% Initialize the Vector and Matrices
   beta=NaN(2,1);
   Sigma=NaN(2,2);
%% IF:
\mbox{\%} We do not want to loose time changing everywhere the name of
% distribution.
    distribution='norm';
    Parameters = [0,1];
%% Beta
% We decide which are going to be the exact value of beta. The first is the
\% constant while the second is the one that multiply x-vector.
   Real_Beta= [1 ; 5];
   %% Initialize the Confidence Interval
   Intervarl_hom=NaN(M,2);
   Intervarl_het =NaN(M,2);
   %%
```

```
if test==5;
   Number=1.96;
   else
       Number=1.64;
   end
   %% Loop
for m=1:M
    %% Matrix of x:
    % We create a matrix of x where in the first column there will be all
    % ones while in the second column there will be data distributed as a
    % Normal with mean 5 and wariance equal to 1.
 x=[ones(N,1) normrnd(0,1,N,1)]; % X-Data-Vector
 %% u-vector:
 % U vector should be a vector N*1 with zero mean.
 % We want that E[u|x]=0 then E[u]=0 too. Indeed we can apply Law of
 % Iterated Mean to prove that E_x[E[u|x]]=E[u].
    % We know that if E[u|x]=0 \rightarrow E[u]=0 that is not equivalent to say if
    % E[u]=0 ->E[u|x]=0. But we know that if E[u] different from 0
    % \rightarrow E[u|x] different from zero too.
 u= randraw(distribution, Parameters, [N 1]);
 if strcmp('heteroschedastic', s)
    u= u .*sqrt(x(:,2).^2); % Heteroschedastic Variance
 else
     u=u; % Homoschedastic Case
 end
%% Y
% We build y as y=x * beta+ u where u is orthogonal to x (independent).
y = x* Real_Beta+ u;
```

```
% We estimate beta as :
beta= inv(transpose(x)*x)*transpose(x)*y;
%% Estimation of u_hat
u_hat= y - x *beta;
%% Variance
%% Estimation of u_hat variance
variance=(u_hat'*u_hat)/(N-k-1);
%% Variance
% Under Homoschedasticity we estimate the variance matrix of variance-covariance as:
Sigma_hom(:,:)=variance*inv(transpose(x)*x);
%% Heteroschedastic case
XE=x.*[u_hat u_hat]; % TEHERE IS a BETTER WAY TO WRITE THIS- UP TO YOU!
Sigma_het (:,:)=(x'*x)\setminus(XE'*XE)/(x'*x);
%% Build the C.I.
Intervarl_hom(m,:)=[(beta(2,1)-Number*sqrt(Sigma_hom(2,2)))...
 (beta(2,1)+Number*sqrt(Sigma_hom(2,2)))];
Intervarl_het(m,:)=[(beta(2,1)-Number*sqrt(Sigma_het(2,2)))...
 (beta(2,1)+Number*sqrt(Sigma_het(2,2)))];
end
%% Count the Numbers of time that Real Beta is in the C.I.
%i=0;
```

```
%j=0;
Hom=find(Intervarl_hom(:,2)<Real_Beta(k+1,1) | Intervarl_hom(:,1)>(Real_Beta(k+1,1))
Hom_Prob=1-length(Hom)/ size(Intervarl_hom,1);

Het=find(Intervarl_het(:,2)<Real_Beta(k+1,1) | Intervarl_het(:,1)>(Real_Beta(k+1,1))
Het_Prob=1-length(Het)/ size(Intervarl_het,1);

%% Display the Result
display('Homoschedastic C. I.')
display(Hom_Prob)
display('Heteroschedastic C. I.')
display(Het_Prob)
\end{footnotesize}
```

1 Problem Set 3

2. A stardard stata output gives to you the following informations: l

Linear regression				Number of obs = 706	
					F(1, 704) = 65.69
					Prob > F = 0.0000
					R-squared = 0.1033
					Root MSE = 421.14
1		Robust			
sleep	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
+-					
totwrk	1507458	.0185992	-8.10	0.000	18726231142294
_cons	3586.377	41.98156	85.43	0.000	3503.953 3668.801

(a) Write a function in Matlab with the same output (exept for F, Prob > F and Root MSE). (Remember that it should be as flexible as possible).

3. (a) Show analytically and graphically that if n, observations is equal to k+1, numbers of coefficients, then $\mathbb{R}^2=1$.