11027149 資訊三甲 游婕歆

1. 開發環境

C++

2. 實作流程和方法

FCFS:

排序 process:根據 process 的到達時間對所有 process 進行排序。 遍歷每個 process:對排序後的 process 列表進行遍歷,並對每個進程進行 計算 waiting 時間和 turnaround 時間,因為是先到先做所以輪到他的時候 就直接做完不用管其他事情。

RR:

使用 queue 來模擬等待執行的進程,並使用了 vector 來儲存已完成的 process。再根據 process 的到達時間對所有 process 進行排序。遍歷每個 process:對排序後的 process 列表進行遍歷,並對每個 process 進行以下操作:將進程加入 queue:如果當前時間大於或等於 process 的到達時間,且該進程還未被加入 queue,則將該進程加入隊列。處理 queue 中的進程:當 queue 不為空時,取出 queue 前面的 proces。如果該進程的剩餘時間大於 timrslice,則讓該進程執行一個 timeslice 的時間,並將其剩餘時間減去 timeslice。然後,將該 proces 放回 queue 的尾部。如果該 proces 的剩餘時間小於或等於 timeslice,則讓該 proces 執行其剩餘的時間,並將該 proces 從 queue 中移除,加入到已完成的 proces 列表中。 SJF:

遍歷每個 process:對排序後的 process 列表進行遍歷,並對每個 process 進行以下操作:將 process 加入等待列表:如果當前時間大於或等於 process 的到達時間,且該 process 還未完成,則將該 process 加入等待 列表。處理等待列表中的進程:當等待列表不為空時,找出 CPUburst 時間最短的進程。如果該 process 的到達時間大於當前時間,則輸出 "-" 並增加當前時間,直到該 process 的到達時間。然後,將該 process 標記 為已完成,並將其從等待列表中移除。最後,根據該進程的 CPUburst 時間來生成輸出結果。

SRTF:

將 process 加入等待列表:如果當前時間大於或等於 process 的到達時間,且該 process 還未完成,則將該 process 加入等待列表。處理等待列表中的 process:當等待列表不為空時,找出剩餘時間最短 process。如果該 process 的到達時間大於當前時間,則輸出 "-" 並增加當前時間,直到該 process 的到達時間。然後,將該 process 標記為已完成,並將其從等待列表中移除。最後,根據該 process 的 CPUburst 時間來生成輸出結果。

HRRN:

將 process 加入等待列表:如果當前時間大於或等於 process 的到達時間,且該 process 還未完成,則將該 process 加入等待列表。處理等待列表中的 process:當等待列表不為空時,計算每個 process 的反應速率,並找出反應速率最高的 process。反應速率是由等待時間加上 CPUburst 時間,然後除以 CPU burst 時間得到的。然後,將該 process 標記為已完成,並將其從等待列表中移除。最後,根據該 process 的 CPU burst 時間來生成輸出結果。

PPRR:

跟 rr 作法差不多只不過多了要比 priority。

3. 不同排程法的比較

以 inputl 來說明

or impact of the or											
Waitin	_										
ID	FCFS	RR	SJF	SRTF	HRRN	PPRR					
0	19	18	5	0	19	0					
1	13	8	5	0	5	0					
2	22	19	2	2	16	14					
3	18	25	6	6	14	0					
4	13	19	7	0	13	11					
5	20	27	19	19	23	21					
6	0	15	5	6	0	11					
7	15	2	2	0	3	55					
8	21	14	0	0	11	9					
9	5	13	0	1	6	0					
10	8	37	49	49	18	45					
13	18	3	4	0	4	0					
20	13	17	5	0	13	40					
27	16	28	9	19	9	10					
29	14	31	15	19	20	4					

FCFS 平均等待了 14.333 秒

RR 平均等待了 18.4 秒

SJF 平均等待了 8.8 秒

SRTF 平均等待了 7. 86 秒

HRRN 平均等待了 11.6 秒

PPRR 平均等待了 14.66 秒

Turnaround Time												
ID	FCFS	RR	SJF	SRTF	HRRN	PPRR						
0	23	22	9	4	23	4						
1	15	10	7	2	7	2						
2	25	22	5	5	19	17						
3	22	29	10	10	18	4						
4	16	22	10	3	16	14						
5	26	33	25	25	29	27						
6	5	20	10	11	5	16						
7	16	3	3	1	4	56						
8	23	16	2	2	13	11						
9	9	17	4	5	10	4						
10	16	45	57	57	26	53						
13	19	4	5	1	5	1						
20	16	20	8	3	16	43						
27	22	34	15	25	15	16						
29	20	37	21	25	26	10						

以工作完成時間來看

FCFS 273 秒

RR 334 秒

SJF 191 秒

SRTF 179 秒

HRRN 232 秒

PPRR 278 秒

4. 結果與討論

1. FCFS (First Come First Served):按照process到達的順序進行排程,先到先處理。

優點:實現簡單,無須對process進行優先級別排序,適用於短process。

缺點:無法優先處理重要的process,可能會發生長process佔用資源時間過長的問題。

2. RR (Round Robin):時間片輪轉法,按照時間片輪流執行每個process。

優點:公平,適用於多個process佔用資源的情況,能夠確保每個process都有執行的機會。

缺點:可能會出現過多的上下文切換,增加了系統開銷。

3. SJF (Shortest Job First):按照process所需的處理時間進行排序,先處理處理時間最短的process。

優點:能夠最大程度地減少平均等待時間和平均周轉時間。

缺點:可能會出現長作業等待時間過長的問題。

4. SRTF (Shortest Remaining Time First):按照process還需處理的時間進行排序,先處理還需處理時間最短的process。

優點:能夠更加準確地估計每個process所需的時間,從而更好地優化系統性

能。

缺點:可能會出現長作業等待時間過長的問題。

5. HRRN (Highest Response Ratio Next):按照反應時間進行排序,先處理反應時間最高的process。

優點:能夠優先處理等待時間較長的作業,避免長作業佔用資源時間過長。

缺點:計算複雜,需要考慮作業等待時間和作業執行時間的比例。

6. PPRR: 適用於需要優先處理高優先級 process, 高優先級 process 能夠優先 執行,從而提高系統效率。

一開始寫 rr 的時候卡住了很久,所以先跳到 hrrn 寫完再寫 sjf 發現其實跟 hrrn 的寫法差不多只不過比較的東西不一樣而已,所以 sjf 不到 10 分鐘就 寫完了,寫完 rr 的時候寫 pprr 本來想說可以直接用 rr 來改,但我發現我偷吃步時間不是一秒一秒加,所以會一直錯過時間,後來一秒一秒加才很快 改完 pprr。