RNA-Seq Mini Project

Peter Shamasha (A15857589)

Pathway Analysis from RNA-Seq Results

Steps for today:

- Read (i) countdata and (ii) coldata files
- check formats
- setup and run DESeq
- Annotate results
- save results as a csv file
- Visualize results
- Run pathway analysis

1. Read Files

```
metaFile <- "GSE37704_metadata.csv"
countFile <- "GSE37704_featurecounts.csv"

colData = read.csv(metaFile, row.names=1)
countData = read.csv(countFile, row.names=1)
head(colData)</pre>
```

condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd

head(countData)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

2. Checking and fixing the format

To remove the first column I can use the -1 trick for the columns

```
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

		SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENS	G00000186092	0	0	0	0	0	0
ENS	G00000279928	0	0	0	0	0	0
ENS	G00000279457	23	28	29	29	28	46
ENS	G00000278566	0	0	0	0	0	0
ENS	G00000273547	0	0	0	0	0	0
ENS	G00000187634	124	123	205	207	212	258

```
zerocounts <- rowSums(countData) == 0
head(zerocounts)</pre>
```

ENSG00000186092	ENSG00000279928	ENSG00000279457	ENSG00000278566	ENSG00000273547
TRUE	TRUE	FALSE	TRUE	TRUE
ENSG00000187634				
FALSE				

newcounts <- countData[!zerocounts,] head(newcounts)</pre>

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

nrow(newcounts)

[1] 15975

3. Setup and Run DESeq

#1 message: false
library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedMedians, rowWeightedMedians, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing</pre>
```

res <- results(dds)
head(res)</pre>

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

	baseMean	${\tt log2FoldChange}$	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215598	1.040744	2.97994e-01
	pao	lj			

pau

<numeric>

ENSG00000279457 6.86555e-01

ENSG00000187634 5.15718e-03

ENSG00000188976 1.76549e-35

ENSG00000187961 1.13413e-07

ENSG00000187583 9.19031e-01

ENSG00000187642 4.03379e-01

4. Annotate results

I need to add annotation to my results including gene symbols and entrezids etc. For this I will use the **AnnotationDbi** package

```
library("AnnotationDbi")
  library("org.Hs.eg.db")
  columns(org.Hs.eg.db)
 [1] "ACCNUM"
                    "ALIAS"
                                    "ENSEMBL"
                                                   "ENSEMBLPROT"
                                                                   "ENSEMBLTRANS"
 [6] "ENTREZID"
                                                   "EVIDENCEALL"
                    "ENZYME"
                                    "EVIDENCE"
                                                                   "GENENAME"
                    "GO"
[11] "GENETYPE"
                                    "GOALL"
                                                   "IPI"
                                                                   "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                    "ONTOLOGYALL"
                                                   "PATH"
                                                                   "PFAM"
                                    "REFSEQ"
                                                   "SYMBOL"
                                                                   "UCSCKG"
[21] "PMID"
                    "PROSITE"
[26] "UNIPROT"
  res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                       column="SYMBOL",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                       column="ENTREZID",
                      multiVals="first")
```

^{&#}x27;select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

head(res, 10)

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSH	E stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<pre> <numeric></numeric></pre>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	3 10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304	7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614	8.47261e-01
	padj	symbol	entrez		name
	<numeric></numeric>	<character> <cl< td=""><td>haracter></td><td>•</td><td><pre><character></character></pre></td></cl<></character>	haracter>	•	<pre><character></character></pre>
ENSG00000279457	6.86555e-01	NA	NA		NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alpl	ha motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like no	ucleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like	family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin l	homology
ENSG00000187642	4.03379e-01	PERM1	84808	PPARGC1 and	ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family 1	bHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiqua	itin like
ENSG00000188157	4.21963e-16	AGRN	375790		agrin
ENSG00000237330	NA	RNF223	401934	ring finger	protein

5. Save as a csv file

```
write.csv(res, file = "myresults.csv")
```

6. Visualize results

```
plot( res$log2FoldChange, -log(res$padj) )
```



```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"</pre>
```


7. Pathway Analysis

Focus in on the signaling pathways

#1 message: false
library(pathview)

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

library(gage)

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                        "10720"
                                           "151531" "1548"
                                                              "1549"
                                                                       "1551"
                                 "10941"
 [9] "1553"
              "1576"
                        "1577"
                                 "1806"
                                           "1807"
                                                    "1890"
                                                              "221223" "2990"
[17] "3251"
              "3614"
                        "3615"
                                 "3704"
                                           "51733"
                                                    "54490"
                                                              "54575"
                                                                       "54576"
[25] "54577"
              "54578"
                        "54579"
                                 "54600"
                                           "54657"
                                                    "54658"
                                                              "54659"
                                                                       "54963"
[33] "574537" "64816"
                        "7083"
                                 "7084"
                                           "7172"
                                                    "7363"
                                                              "7364"
                                                                       "7365"
[41] "7366"
              "7367"
                        "7371"
                                 "7372"
                                           "7378"
                                                    "7498"
                                                              "79799"
                                                                       "83549"
[49] "8824"
                        "9"
                                 "978"
              "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
               "10201"
                         "10606"
                                  "10621"
                                            "10622"
                                                     "10623"
                                                               "107"
                                                                        "10714"
  [9] "108"
               "10846"
                         "109"
                                  "111"
                                            "11128"
                                                     "11164"
                                                               "112"
                                                                        "113"
 [17] "114"
               "115"
                         "122481" "122622" "124583" "132"
                                                               "158"
                                                                        "159"
 [25] "1633"
               "171568" "1716"
                                  "196883" "203"
                                                     "204"
                                                               "205"
                                                                        "221823"
               "22978"
                         "23649"
                                  "246721" "25885"
                                                               "26289"
                                                                        "270"
 [33] "2272"
                                                     "2618"
 [41] "271"
               "27115"
                         "272"
                                  "2766"
                                            "2977"
                                                     "2982"
                                                               "2983"
                                                                        "2984"
 [49] "2986"
               "2987"
                                                               "318"
                                                                        "3251"
                         "29922"
                                  "3000"
                                            "30833"
                                                     "30834"
 [57] "353"
                                            "377841" "471"
                                                               "4830"
               "3614"
                         "3615"
                                  "3704"
                                                                        "4831"
 [65] "4832"
                         "4860"
                                            "4882"
                                                     "4907"
                                                               "50484"
                                                                        "50940"
               "4833"
                                  "4881"
 [73] "51082"
               "51251"
                         "51292"
                                  "5136"
                                            "5137"
                                                     "5138"
                                                               "5139"
                                                                        "5140"
 [81] "5141"
               "5142"
                         "5143"
                                  "5144"
                                            "5145"
                                                     "5146"
                                                               "5147"
                                                                        "5148"
 [89] "5149"
               "5150"
                         "5151"
                                  "5152"
                                            "5153"
                                                     "5158"
                                                               "5167"
                                                                        "5169"
```

```
[97] "51728" "5198"
                        "5236"
                                 "5313"
                                           "5315"
                                                    "53343"
                                                             "54107"
                                                                      "5422"
[105] "5424"
               "5425"
                        "5426"
                                 "5427"
                                           "5430"
                                                    "5431"
                                                             "5432"
                                                                      "5433"
[113] "5434"
               "5435"
                        "5436"
                                 "5437"
                                           "5438"
                                                    "5439"
                                                             "5440"
                                                                      "5441"
[121] "5471"
               "548644" "55276"
                                 "5557"
                                           "5558"
                                                    "55703"
                                                             "55811"
                                                                      "55821"
[129] "5631"
               "5634"
                                 "56953"
                                           "56985"
                                                    "57804"
                                                             "58497"
                                                                      "6240"
                        "56655"
[137] "6241"
               "64425"
                        "646625" "654364" "661"
                                                    "7498"
                                                             "8382"
                                                                      "84172"
[145] "84265"
               "84284"
                        "84618"
                                 "8622"
                                           "8654"
                                                    "87178"
                                                             "8833"
                                                                      "9060"
                        "953"
                                           "954"
                                                    "955"
                                                             "956"
                                                                      "957"
[153] "9061"
               "93034"
                                  "9533"
[161] "9583"
               "9615"
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
       < NA >
                 148398
                              26155
                                         339451
                                                       84069
                                                                   84808
 0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049
  # Get the results
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
$names
[1] "greater" "less"
                        "stats"
  # Look at the first three down (less) pathways
  head(keggres$less, 3)
                            p.geomean stat.mean
                                                        p.val
hsa04110 Cell cycle
                         8.995727e-06 -4.378644 8.995727e-06 0.001448312
hsa03030 DNA replication 9.424076e-05 -3.951803 9.424076e-05 0.007586381
                         1.246882e-03 -3.059466 1.246882e-03 0.066915974
hsa03013 RNA transport
                         set.size
                                           exp1
hsa04110 Cell cycle
                              121 8.995727e-06
                              36 9.424076e-05
hsa03030 DNA replication
hsa03013 RNA transport
                              144 1.246882e-03
```

pathview(gene.data=foldchanges, pathway.id="hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/peter/Desktop/BIMM 143/class13.1

Info: Writing image file hsa04110.pathview.png

Figure 1: Cell Cycle pathway from KEGG with our genes shown in color