Lecture 13

Quick Sort: Overview, and Worst, Best & Average Case analysis Randomized Quicksort; Heap Sort: Overview, and Worst, Best & Average Case Analysis

Best case Complexity: Quick Sort

11

 $+\infty$

45

20

```
T(n)=T(n/2) + T(n/2) + cn
        =2T(n/2) + cn
   =2[2T(n/2^2) cn/2] + cn
\Rightarrow =2<sup>2</sup> T(n/2^2) + 2cn
                                        15
                                              34
\Rightarrow =2<sup>3</sup> T(n/2^3) + cn + 2cn
  =2^3 T(n/2^3) + 3cn
   =2^{k} T(n/2^{k}) + kcn
   =n.T(1) + log_2 n *cn
        =n.1 + cn* log_2 n=n log_2 n=\Omega(n log n)
```


Worst-Case Complexity: Quick Sort

+∞

90

Graphical View: Worst Case and Best case

Average Case Complexity: Quick Sort

	Recurrence Relation:									
T(n)=T(n-1) + T(0) +n										
Input:	10	11	12	13	14	15				
Input:	15	14	13	12	11	10				
Input:	8	8	8	8	8	8				

В	aland	ced	Partiti P	onir	ıg	
		In	put			
8	6	7	3	4	5	pivot
3	6	7	8	4	5	pivot
3	4	7	8	6	5	pivot
3	4	2	8	6	5	pivot
3	4	2	5	6	8	
			pivot			

Worst case analysis

Worst case: unbalanced partitioning

Input: 10,11, 12, 13, 14, 15

→15 pivot

(10, 11, 12, 13, 14)15 14 pivot

Produces 0 and n-1 elements

Quick sort

 \rightarrow Sort an array A[p...r]

> Divide

- Partition the array A into 2 subarrays A[p..q] and A[q+1..r], such that each element of A[p..q] is smaller than or equal to each element in A[q+1..r]
- *Need to find index q to partition the array*

Quick sort

- Recursively sort A[p..q] and A[q+1..r] using Quicksort

> Combine

- Trivial: the arrays are sorted in place
- No additional work is required to combine them
- The entire array is now sorted

QUICK SORT

Alg.: QUICKSORT(A, p, r)

Initially: p=1, r=n

if p < r then $q \leftarrow PARTITION(A, p, r)$

QUICKSORT (A, p, q)

QUICKSORT (A, q+1, r)

$$Q(n)=Q(q)+Q(n-q)+f(n)$$
 ($f(n)$ depends on $Split()$) **PARTITION**())

Recurrence:

$$T(n) = T(q) + T(n - q) + f(n)$$

Partitioning the Array

- > Choosing **PARTITION**()
 - There are different ways to do this
 - Each has its own advantages/disadvantages
- > Hoare partition
 - Select a pivot element **x** around which to partition
 - Grows two regions

$$A[p...i] \leq x$$

$$x \leq A[j...r]$$

Partitioning the Array

Alg. PARTITION (A, p, r)

- 1. $x \leftarrow A[p]$
- 2. $i \leftarrow p-1$
- $j \leftarrow r + 1$
- 4. while TRUE
- 5. do repeat $j \leftarrow j-1$
- 6. $until A[j] \leq x$
- 7. **do repeat** $i \leftarrow i + 1$
- 8. $until A[i] \ge x$
- 9. **if** i < j
- 10. then exchange $A[i] \leftrightarrow A[j]$
- 11. else return j

Each element is visited once!

Running time: $\Theta(n)$ n = r - p + 1

Recurrence

Alg.: QUICKSORT(A, p, r)

Initially: p=1, r=n

if p < r then $q \leftarrow PARTITION(A, p, r)$

QUICKSORT(A, p, q)

QUICKSORT(A, q+1, r)

Recurrence: T(n) = T(q) + T(n-q) + n

Worst Case Partitioning

- > Worst-case partitioning
 - One region has one element and the other has n-1 elements
 - Maximally unbalanced
- > Recurrence: q=1

$$T(n) = T(1) + T(n-1) + n,$$

$$T(1) = \Theta(1)$$

$$T(n) = T(n-1) + n$$

$$= n + \left(\sum_{k=1}^{n} k\right) - 1 = \Theta(n) + \Theta(n^2) = \Theta(n^2)$$
When does the worst case happen?

Best Case Partitioning

- > Best-case partitioning
 - Partitioning produces two regions of size n/2
- > Recurrence: q=n/2

$$T(n) = 2T(n/2) + \Theta(n)$$

 $T(n) = \Theta(nlgn)$ (Master theorem)

Case Between Worst and Best

> 9-to-1 proportional split

$$Q(n) = Q(9n/10) + Q(n/10) + n$$

 $\Theta(n \lg n)$

- Using the recursion tree:

longest path:
$$Q(n) \le n \sum_{i=0}^{\log_{10/9} n} 1 = n(\log_{10/9} n + 1) = c_2 n \lg n$$

shortest path:
$$Q(n) \ge n \sum_{i=0}^{\log_{10} n} 1 = n \log_{10} n = c_1 n lgn$$

Thus,
$$Q(n) = \Theta(nlgn)$$

How does partition affect performance?

- Any splitting of constant proportionality yields $\Theta(nlgn)$ time !!!
- Consider the (1: n-1) splitting:

ratio=
$$1/(n-1)$$
 not a constant !!!

- Consider the (n/2 : n/2) splitting:

ratio=
$$(n/2)/(n/2) = 1$$
 it is a constant !!

- Consider the (9n/10 : n/10) splitting:

```
ratio=(9n/10)/(n/10) = 9 it is a constant !!
```


- Any ((a-1)n/a:n/a) splitting: ratio=((a-1)n/a)/(n/a) = a-1 it is a constant !!

Performance of Quick sort

- > Average case
 - All permutations of the input numbers are equally likely
 - On a random input array, we will have a **mix** of well balanced and unbalanced splits
 - Good and bad splits are randomly distributed across throughout the tree

Alternate of a good and a bad split

Nearly well-balanced split

• Running time of Quicksort when levels alternate between good and bad splits is O(nlgn)

Summary

- > Merge and quick sort are both divide and conquer based sorting technique.
 - Partitioning of array (Problem divide into sub problems)
 - recursive calling for each sub problems.
 - Combining result of each sub problem
- > Merge sort is not in place sort because t need extra space to combine or merge values
- > In quick sort focus is on pivot element which help to divide the array/problem into sub problems.
- > Complexity of quick sort vary because it depends on good selection of pivot element.

It is a comparison-based sorting technique based on binary heap data structure

- > 20 25 15 60 30
- > Build Max or Min Heap as binary tree
- > Child as left as possible

- > Max heap Property:
 - Parent Node > Child node
 - Leaf node either be min or max heap no problem

> 20

25

15

60

30

- Build Max or Min Heap as binary tree
- Max heap Property:
 - Parent Node > Child node

Build Max heap

Index	1	2	3	4	5
Value	60	20	15	25	30
9		e			
1			-	. 33	
2 9				- 2	

- Latest Element 30 added to tree,
 will be replaced with root element 60.
- > New root node: 30, Delete 60 as it is the maximum element.

Index	1	2	3	4	5
Value	60	20	15	25	30
Value	30	20	15	25	60

> 20

25

15

60

30

- > Build Max or Min Heap as binary tree
- Max heap Property:
 - Parent Node > Child node

Build Max heap

Array Representation of Binary Tree

Index	1	2	3	4	5
Value	60	20	15	25	30
2					
		B 15	-	. 33	
		× ×	- 2		

> Last element is now at the right place, delete it from the tree.

Index	1	2	3	4	5
Value	60	20	15	25	30
Value	30	20	15	25	60

> 20

25

15

60

30

- > Build Max or Min Heap as binary tree
- > Max heap Property:
 - Parent Node > Child node

Build Max heap

Array Representation of Binary Tree

Index	1	2	3	4	5
Value	60	20	15	25	30
			- 9		
-				. 10	
22		8 X	- 9	3 (2)	

Now check for Max heap, if not then swap 2nd and 4th node values

Index	1	2	3	4	5
Value	60	20	15	25	30
Value	30	20	15	25	60
Value	30	25	15	20	60

- > 20
- 25
- 15
- 60

30

- › Build Max or Min Heap as binary tree
- Max heap Property:
 - Parent Node > Child node

Build Max heap

Index	1	2	3	4	5
Value	60	20	15	25	30
9					
		9 19	-	- 120	
2		× ×		3 8	

- Delete root element with the most recent added element to perform swap operation on 2nd and 4th element.
- The new tree after deletion of a node and array (RHS)

Index	1	2	3	4	5
Value	60	20	15	25	30
Value	30	20	15	25	60
Value	20	25	15	30	60

- > 20
- 25
- 15

30

60

- › Build Max or Min Heap as binary tree
- Max heap Property:
 - Parent Node > Child node

- To make the tree as max heap, swap root and 2nd node
- > Delete root node by replacing it with the last node.

Build Max heap

Index	1	2	3	4	5
Value	60	20	15	25	30
			3	PA	
			3	. 10	

- > 20
- 25
- 15
- 60
- 30
- > Build Max or Min Heap as binary tree
- Max heap Property:
 - Parent Node > Child node

- Build Max heap to bring max elements at root
- Delete root element by Swapping elements (Tree and Array)

Build Max heap

			-		
Index	1	2	3	4	5
Value	60	20	15	25	30
			3) (A)	
			- 3	. 2	

Index	1	2	3	4	5	
Value	60	20	15	25	30	Ir
Value	30	20	15	25	60	
Value	25	20	15	30	60	
Value	20	15	25	30	60	
Value	15	20	25	30	60	

How to Start from the tree?

- > Leaf nodes: 6, 7, 8, 9, 10 (either max or min heap)
- > Heapify: Non-Leaf Nodes
- > Total Nodes: n=10
- > Formula to use
 - $-\left|\frac{n}{2}\right|+1 \ to \ n$ are leaf nodes
 - $-\frac{n}{2}$ to 1 are non leaf nodes

Heap Sort Algorithm

```
Step-1: Build\_MAX\_HEAP(A)
```

A.
$$heap_size = A. length$$

 $FOR \ i = \left \lfloor \frac{A. length}{2} \right \rfloor \ to \ 1 / loop for non-leaf nodes$

 $Max_heapify(A, i)$

$Step - 2: Max_heapify(A, i)$

l = 2i; // left child

r = 2i + 1 / / right child

IF
$$(l \le A. heap_size \&\& A[l] > A[i])$$
 THEN $largest = l$

ELSE

$$largest = i$$

END IF

IF
$$(r \le A. heap_size \&\& A[r] > A[largest])$$
 THEN $largest = r$

END IF

IF $(largest \neq i)$ THEN

Exchange A[i] with A[largest]

 $\max_heapify(A, largest)$

END IF

$Step - 3: HEAP_SORT(A, i)$

Swap
$$(A[l], A[i])$$
 // Delete Operation performed max $heapify(A, l)$

Number of Nodes of tree can be determined if height of the tree is given i. e. $h = \left[\frac{n}{2^{h+1}}\right]$

$$Total\ Time = \sum_{h=0}^{\log n} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(n) = \sum_{h=0}^{\log n} \left\lceil \frac{n}{2^{h}*2} \right\rceil O(cn)$$

harmoni progression which result is equal to 2.

$$=\frac{cn}{2}\sum_{h=0}^{\log n}\left[\frac{n}{2^h}\right]==\frac{cn}{2}*2=O(n)-\rightarrow to\ build\ heap$$

To heapify: $T(n) = O(\log n)$

 \therefore Overall Time Complexity is $O(n \log n)$

Thank You!!!

Have a good day

