2 Familles de variables aléatoires

Dans tout ce chapitre Ω désigne un univers $\underline{\text{fini}}$. Ainsi, les variables aléatoires réelles considérées ne prennent qu'un nombre fini de valeurs.

I – Couples de variables aléatoires finies

1 – Loi d'un couple de variables aléatoires

Définition 2.1 – On appelle **couple de variables aléatoires**, tout couple (X, Y) où X et Y désignent deux variables aléatoires définies sur un même espace.

Exemple 2.2 -

- 1. On lance deux dés équilibrés à 6 faces (l'un est bleu, l'autre blanc). On appelle X (respectivement Y) le numéro obtenu avec le dé bleu (respectivement blanc). Comme X et Y sont des variables aléatoires, alors (X,Y) est un couple de variables aléatoires.
- 2. On lance les mêmes dés que dans l'exemple précédent. Cette fois, on appelle *X* le plus petit des deux numéros obtenus et *Y* le plus grand numéro obtenu (si les numéros sont égaux, *X* et *Y* prennent la valeur commune). Comme *X* et *Y* sont des variables aléatoires, alors (*X*, *Y*) est un couple de variables aléatoires.

Définition 2.3 – Soit (X, Y) un couple de variables aléatoires. On appelle **loi conjointe** du couple (X, Y) la donnée des probabilités $P([X = x] \cap [Y = y])$ pour tout $(x, y) \in X(\Omega) \times Y(\Omega)$.

Méthode 2.4 - Déterminer la loi conjointe d'un couple de variables aléatoires

- On donne les ensembles $X(\Omega)$ et $Y(\Omega)$ des valeurs prises par X et Y.
- On calcule toutes les probabilités $P([X = x] \cap [Y = y])$ pour tout $(x, y) \in X(\Omega) \times Y(\Omega)$.

On résume souvent les résultats sous la forme d'un tableau.

Exemple 2.5 – Donner la loi conjointe des couples (X, Y) pour les deux exemples ci-dessus.

1.

2.

Remarque 2.6 -

- On abrège souvent « loi conjointe du couple » en « loi du couple ».
- On note parfois P([X = x], [Y = y]) au lieu de $P([X = x] \cap [Y = y])$, ou plus simplement P(X = x, Y = y).

2 - Lois marginales

Définition 2.7 – Soit (X, Y) un couple de variables aléatoires. La loi de X est appelée **première loi** marginale du couple, et celle de Y est appelée **deuxième loi marginale** du couple.

Proposition 2.8

Soient X et Y deux variables aléatoires définies sur Ω . On a les résultats suivants.

• Pour tout réel $x \in X(\Omega)$, on a

$$P(X=x) = \sum_{y \in Y(\Omega)} P(X=x, Y=y).$$

• Pour tout réel $y \in Y(\Omega)$, on a

$$P(Y = y) = \sum_{x \in X(\Omega)} P(X = x, Y = y).$$

Méthode 2.9 - Déterminer les lois marginales avec la loi du couple

Une fois que l'on a déterminé la loi du couple, on peut déterminer les lois marginales. La loi de X s'écrit par exemple

$$\forall x \in X(\Omega), \quad P(X=x) = \sum_{y \in Y(\Omega)} P(X=x, Y=y).$$

Lorsque la loi d'un couple (X, Y) est donnée sous la forme d'un tableau à double entrée, on obtient les lois de X et de Y en sommant les éléments d'une même ligne ou d'une même colonne, selon les cas.

Exemple 2.10 – Déterminer les lois marginales des variables aléatoires *X* et *Y* pour les deux exemples ci-dessus.

1.

2.

Remarque 2.11 – On ne peut en revanche pas obtenir, en général, la loi conjointe du couple (X, Y) à partir des lois de X et Y.

3 - Lois conditionnelles

Définition 2.12 – Soit (X, Y) un couple de variables aléatoires.

Pour tout $y \in Y(\Omega)$ tel que $P(Y = y) \neq 0$, on appelle loi de X conditionnellement à l'évènement [Y = y] la donnée, pour tout $x \in X(\Omega)$, de

$$P_{[Y=y]}([X=x]) = \frac{P([X=x] \cap [Y=y])]}{P(Y=y)}.$$

Remarque 2.13 -

- On dit aussi « loi conditionnelle de X sachant que [Y = y] est réalisé », ou plus simplement « loi de X sachant [Y = y] ».
- On définit de manière similaire la loi conditionnelle de Y sachant [X = x].

Exemple 2.14 – Dans les deux exemples ci-dessus, on a $P(Y = 1) \neq 0$. Déterminer alors la loi conditionnelle de X sachant [Y = 1] dans les deux cas.

1.

2.

Proposition 2.15 – Loi marginale et loi conditionnelle

Soit (X, Y) un couple de variables aléatoires. Si l'on connaît la loi marginale de Y, ainsi que la loi conditionnelle de X sachant [Y = y], alors la loi de X est déterminé par

$$\forall x \in X(\Omega), \quad P(X=x) = \sum_{y \in Y(\Omega)} P(Y=y) P_{[Y=y]}(X=x).$$

Exemple 2.16 – On a calculé la loi conditionnelle de X sachant [Y=1]. Si on calculait les lois conditionnelles de X sachant [Y=2], [Y=3], etc., dans les deux exemples précédents, alors on pourrait retrouver la loi marginale de X grâce à la proposition ci-dessus.

4 - Indépendance de deux variables aléatoires

Définition 2.17 – On dit que deux variables aléatoires finies *X* et *Y* sont **indépendantes** lorsque

$$\forall (x,y) \in X(\Omega) \times Y(\Omega), \qquad P(X=x,Y=y) = P(X=x)P(Y=y).$$

Remarque 2.18 – Ainsi, dans le cas de deux variables aléatoires indépendantes, on peut déterminer la loi du couple (X, Y) à partir des lois de X et de Y.

Exemple 2.19 – Tester l'indépendance des variables aléatoires *X* et *Y* pour les exemples précédents.

1.

2.

Proposition 2.20

Si l'une des deux variables aléatoires X ou Y est constante, alors X et Y sont indépendantes.

II - Espérance

1 – Espérance d'une somme

Proposition 2.21

Soient X et Y deux variables aléatoires définies sur Ω . On a l'égalité

$$E(X + Y) = E(X) + E(Y).$$

Exemple 2.22 – Soit X une variable aléatoire qui suit la loi uniforme sur [1;9] et Y une variable aléatoire qui suit la loi binomiale $\mathcal{B}\left(8,\frac{1}{4}\right)$. Calculer l'espérance de la variable aléatoire Z=X+Y.

Proposition 2.23 – Linéarité de l'espérance

Soient X et Y deux variables aléatoires définies sur Ω et a et b deux réels. On a l'égalité

$$E(aX + bY) = aE(X) + bE(Y).$$

Exemple 2.24 – Soit X une variable aléatoire qui suit la loi uniforme sur [1;12] et Y une variable aléatoire qui suit la loi binomiale $\mathcal{B}\left(7,\frac{1}{3}\right)$. Calculer l'espérance de la variable aléatoire Z=2X-Y.

2 – Espérance d'un produit

Proposition 2.25

Soient X et Y deux variables aléatoires définies sur Ω . On a l'égalité

$$E(XY) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} xy P(X=x,Y=y).$$

Exemple 2.26 –

• Un sac contient 4 boules numérotées de 1 à 4. On effectue deux tirages successifs d'une boule, avec remise. On note X_1 le numéro de la première boule, X_2 le numéro de la deuxième boule et Y le plus grand des deux numéros obtenus. Compléter les tableaux suivants, donnant les lois des couples (X_1, X_2) et (X_1, Y) .

	$X_2 = 1$	$X_2 = 2$	$X_2 = 3$	$X_2 = 4$		Y = 1	Y = 2	Y = 3	Y = 4
$X_1 = 1$					$X_1 = 1$				
$X_1 = 2$					$X_1 = 2$				
$X_1 = 3$					$X_1 = 3$				
$X_1 = 4$					$X_1 = 4$				

En déduire $E(X_1X_2)$ et $E(X_1Y)$.

• Soit (*X*, *Y*) un couple de variables aléatoires finies tel que

$$\forall (i,j) \in [1;2]^2, \quad P(X=i,Y=j) = \begin{cases} \frac{i}{4} & \text{si } i=j \\ \frac{1}{4} & \text{si } i < j \\ 0 & \text{si } i > j \end{cases}$$

Calculer E(XY).

Proposition 2.27

Soient X et Y deux variables aléatoires **indépendantes**. On a l'égalité

$$E(XY) = E(X)E(Y)$$
.

Exemple 2.28 – On reprend l'exemple ci-dessus : un sac contient 4 boules numérotées de 1 à 4. On effectue deux tirages successifs d'une boule, avec remise. On note X_1 le numéro de la première boule, X_2 le numéro de la deuxième boule et Y le plus grand des deux numéros obtenus.

1. Déterminer les lois marginales de X_1 , X_2 et Y.

2. En déduire les valeurs de $E(X_1)$, $E(X_2)$ et E(Y).

3. Les variables aléatoires X_1 et X_2 sont-elles indépendantes? Et les variables X_1 et Y?

ATTENTION! L'égalité E(XY) = E(X)E(Y) peut être vérifiée sans que les variables aléatoires X et Y ne soient indépendantes.

III - Covariance, corrélation linéaire

1 - Covariance de deux variables aléatoires

Définition 2.29 – Soit (X, Y) un couple de variables aléatoires. On appelle **covariance de** X **et** Y, le réel, noté Cov(X, Y), défini par

$$Cov(XY) = E((X - E(X))(Y - E(Y))).$$

Théorème 2.30 - Formule de Huygens

Soit (X, Y) un couple de variables aléatoires. On a

$$Cov(X, Y) = E(XY) - E(X)E(Y).$$

Démonstration.

Méthode 2.31 - Calculer directement une covariance

Pour calculer la covariance de deux variables aléatoires *X* et *Y*,

- 1. on calcule E(XY), E(X) et E(Y),
- 2. on applique la formule de Huygens.

Exemple 2.32 – On reprend les deux exemples de l'exemple 2.26.

1. Calculer $Cov(X_1, X_2)$ et $Cov(X_1, Y)$.

2. Calculer Cov(X, Y).

Proposition 2.33 - Propriétés de la covariance

• La covariance est symétrique.

$$Cov(X, Y) = Cov(Y, X).$$

• La covariance d'une variable aléatoire avec elle-même est sa variance.

$$Cov(X, X) = V(X)$$

• Si a est un réel, alors

$$Cov(X, a) = 0.$$

Proposition 2.34 – Linéarité à gauche et à droite de la covariance

Pour tout couple $(a, b) \in \mathbb{R}^2$, on a

$$Cov(aX_1 + bX_2, Y) = aCov(X_1, Y) + bCov(X_2, Y),$$

$$Cov(X, aY_1 + bY_2) = aCov(X, Y_1) + bCov(X, Y_2).$$

Proposition 2.35

Si X et Y sont deux variables aléatoires **indépendantes**, alors Cov(X, Y) = 0.

Remarque 2.36 -

- C'est une conséquence directe de la Proposition 2.27.
- La réciproque est fausse. On peut avoir Cov(X, Y) = 0 sans que X et Y ne soient indépendantes.

2 - Variance d'une somme

Proposition 2.37

Soient X et Y deux variables aléatoires. On a

$$V(X + Y) = V(X) + V(Y) + 2 \operatorname{Cov}(X, Y).$$

Méthode 2.38 - Calculer la variance d'une somme

Il y a deux options.

• Si on connaît la loi de la somme X + Y, on peut utiliser la **formule de König-Huygens** :

$$V(X + Y) = E((X + Y)^{2}) - E(X + Y)^{2}.$$

• Si on ne connaît pas la loi de la somme X + Y, on utilise la formule précédente :

$$V(X + Y) = V(X) + V(Y) + 2 \text{Cov}(X, Y).$$

Exemple 2.39 – On reprend les deux exemples de l'exemple 2.26.

1. Calculer $V(X_1 + X_2)$ et $V(X_1 + Y)$.

2. Calculer V(X + Y)).

Remarque 2.40 – À noter que l'on peut également calculer la covariance de X et Y à l'aide de V(X+Y), V(X) et de V(Y) puisque

 $Cov(X, Y) = \frac{V(X+Y) - V(X) - V(Y)}{2}.$

Proposition 2.41

Soit (X, Y) un couple de variables aléatoires **indépendantes**. Alors

$$V(X+Y) = V(X) + V(Y).$$

3 - Coefficient de corrélation linéaire

Proposition 2.42

On appelle **coefficient de corrélation linéaire** de X et Y, le réel, noté $\rho(X,Y)$, défini par

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}}.$$

Exemple 2.43 – On reprend les deux exemples de l'exemple 2.26.

1. Calculer $\rho(X_1, X_2)$ et $\rho(X_1, Y)$.

2. Calculer $\rho(X, Y)$.

Proposition 2.44

Soient X et Y deux variables aléatoires. Alors

$$\left| \rho(X,Y) \right| \leq 1.$$

Remarque 2.45 – Le coefficient de corrélation mesure la dépendance linéaire entre deux variables.

- S'il est égal à 1 ou −1, *X* et *Y* sont corrélées linéairement.
- S'il est égal à 0, X et Y sont dites non-corrélées.

IV – Suites de variables aléatoires discrètes finies

1 - Indépendance d'une famille de variables aléatoires

Définition 2.46 – Soit $n \ge 2$ un entier. Soient $X_1, X_2, ..., X_n$ des variables aléatoires définies sur Ω . On dit que les variables aléatoires $X_1, X_2, ..., X_n$ sont **mutuellement indépendantes** lorsque pour tout $(x_1, x_2, ..., x_n) \in X_1(\Omega) \times X_2(\Omega) \times \cdots \times X_n(\Omega)$,

$$P([X_1 = x_1] \cap [X_2 = x_2] \cap \dots \cap [X_n = x_n]) = P(X_1 = x_1) \times P(X_2 = x_2) \times \dots \times P(X_n = x_n).$$

Définition 2.47 – Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires définies sur Ω . On dit que la suite $(X_n)_{n\geq 1}$ est une suite de variables aléatoires mutuellement indépendantes si et seulement si pour tout m de \mathbb{N}^* , les variables aléatoires X_1, X_2, \ldots, X_m sont mutuellement indépendantes.

Exemple 2.48 – On lance une pièce équilibrée jusqu'à obtenir « Pile ». Pour tout n de \mathbb{N}^* , on note X_n la variable aléatoire égale à 1 si on a obtenu « Pile » au n-ième lancer et égale à 0 sinon. Alors, la suite $(X_n)_{n\geq 1}$ est une suite de variables aléatoires indépendantes.

2 - Espérance et variance d'une famille de variables aléatoires

Théorème 2.49

Soit $n \ge 2$ un entier. Soient X_1, X_2, \dots, X_n des variables aléatoires définies sur Ω . On a l'égalité

$$E\left(\sum_{k=1}^{n} X_k\right) = \sum_{k=1}^{n} E(X_k).$$

Autrement dit,

$$E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n).$$

Exemple 2.50 – On considère une suite $(X_k)_{k \in \mathbb{N}^*}$ de variables aléatoires indépendantes, dont la loi (commune) est donnée, pour tout $k \in \mathbb{N}^*$, par :

$$P(X_k = 1) = \frac{1}{3}$$
 et $P(X_k = 2) = \frac{2}{3}$.

Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n X_k$. Calculer $E(S_n)$.

Théorème 2.51

Soit $n \ge 2$ un entier. Soient X_1, X_2, \dots, X_n des variables aléatoires **indépendantes** définies sur Ω . On a l'égalité

$$V\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} V(X_i).$$

Autrement dit,

$$V(X_1 + X_2 + \dots + X_n) = V(X_1) + V(X_2) + \dots + V(X_n).$$

Exemple 2.52 – On reprend l'exemple précédent. Calculer $V(S_n)$.