Linear Algebra and Applications

Sartaj UI Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 10

(Aug 08, 2019)

Sets

Definition of Set

A set is the collection of "well-defined" objects.

Note that this is merely a "working definition" of a set. The word 'well-defined' means that there should not be any ambiguity in determining the fact the whether the object belongs to set or not.

- A set is denoted by Capital Letters.
- Objects that belongs to set are called "elements".
- Elements are denoted by small letters.
- If a is an element of set A, then mathematically it can be represented by $a \in A$ and read as "a belongs to set A".

Standard Notations

• The set of natural numbers consists of the positive whole numbers:

$$\mathbb{N} = \{1, 2, 3, \cdots\}$$

 The set of integers consists of zero and the positive and negative whole numbers:

$$\mathbb{Z} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}$$

- The set of rational numbers contains all fractions of the form a/b where a and b are integers and $b \neq 0$. Two rational numbers a/b and c/d are equal exactly when ad = bc. The set of rational numbers will be denoted by \mathbb{Q} .
- Two other sets of importance: the set of real numbers $\mathbb R$ and the set of complex numbers $\mathbb C.$
- $ullet \mathbb{Q}^* := \mathbb{Q} \{0\}, \mathbb{R}^* := \mathbb{R} \{0\}, \text{ and } \mathbb{C}^* := \mathbb{C} \{0\}.$
- $\mathbb{Z}_p := \{0, 1, 2, \cdots, p-1\}$ and $\mathbb{Z}_p^* := \mathbb{Z}_p \{0\}$, p is a prime number.

Cartesian Product of Sets

Let A and B be two sets. The set $A \times B$ which is collection of all ordered pair (a, b) such that $a \in A$ and $b \in B$ is called Cartesian product of set A and B.

Example Let
$$A := \{1, 2, 3\}$$
 and $B := \{a, b, c\}$ then $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)(3, a), (3, b)(3, c)\}.$

Definition of Binary operation

Let S be a set. The rule of assigning elements of $S \times S$ to unique elements of set S is called *binary operation*.

 $*: S \times S \rightarrow S$ is called binary operation.

Example: Addition, multiplication, subtraction are binary operation on set \mathbb{Z} .

- The rule of assigning the elements of a set A to elements of set B in such a way that no two elements of set B are assigned to an element of set A is called *mapping*.
- The fact that image of $(s,t) \in S \times S$ must be in set S is known as closure property

Algebraic structure or algebraic system

A set S together with one or more operations on S is called *Algebraic structure or algebraic system*. Mathematically it can be represented by tuples like (set, operations).

Example: $(\mathbb{Z}, +)$ and (\mathbb{N}, \cdot) .

Groupoid, Semigroup, Monoid

An algebraic structure consisting of a non-empty set and a binary operation defined on it is called *groupoid*.

An algebraic structure consisting of a non-empty set with associative binary operation is called *semigroup*.

A semi group is called *monoid* if there exist unique identity element.

Properties of Operations

Properties of Operations on a Set S: Let * be an operation on a set S.

- * is said to be **closed** on S provided $a * b \in S$ for all $a, b \in S$. (NB: if * is closed on S, it will be called a composition on S.)
- **②** * is said to be **associative** on A provided (a*b)*c = a*(b*c) for all $a,b,c \in S$.
- \bullet * is said to be **commutative** on A provided a*b=b*a for all $a,b\in S$.
- **3** An element $e \in S$ is said to be an **identity element** (or **neutral element**) for * provided a * e = e * a = a for all $a \in S$.
 - **Remark:** There can be at most one identity element for an operation * on a set S.
- **3** Suppose that the operation * on the set S has an identity element e, and suppose that $a \in S$. An element b is said to be an inverse of a provided a*b=b*a=e.

Groups

- **Definition**: Let * be an operation on a non-empty set G. We call the pair (G,*) a group provided:
 - **1** The operation * is closed on G, that is, $g * h \in G$ for all $g, h \in G$.
 - 2 The operation * is associative, that is, (g * h) * k = g * (h * k) for all $g, h, k \in G$.
 - **3** There is an identity element $e \in G$ such that g * e = e * g = g for all $g \in G$.
 - **4** For every element $g \in G$, there is an inverse element $h \in G$, such that g * h = h * g = e.
- Notation: To have a group, we need to have both a set G and an operation on G. We can use any suitable symbol for the operation; if it is a previously known operation, we may use the standard symbol. If we are talking about general groups, we will use either * or · or no symbol at all.
- Definition: Let (G,*) be a group. If the operation * is also commutative, the group will be called an abelian group. Groups which are not abelian are sometimes referred to as nonabelian.

Properties of Groups

Proposition

Let (G, *) be a group.

- (a) The identity element of G is unique.
- (b) The inverse element of any element of ${\it G}$ is unique.

[Remarks: In view of uniqueness of the inverse, we may use the notation a^{-1} for the inverse of a.]

- (c) Cancellation Law: for $a, b, c \in G$, if a * b = a * c, then b = c.
- (d) The equations a * x = b and x * a = b, where $a, b \in G$, have the solutions $x = a^{-1} * b$ and $x = b * a^{-1}$ respectively.
- (e) For $a \in G$, and n a positive integer, define $a^n := a * a * \cdots * a$ (n times), $a^{-n} := a^{-1} * a^{-1} * \cdots * a^{-1}$ (n times) and $a^0 := e$ (identity element of the group G). Then the usual exponentiation laws hold, i.e. $a^m * a^n = a^{m+n}$, $a^m * a^{-n} = a^{m-n}$ and $(a^m)^n = a^{mn}$.
- (d) For $a, b \in G, (a * b)^{-1} = b^{-1} * a^{-1}$

Examples of Groups

- \bullet $(\mathbb{Z},+)$ is an abelian group.
- $(\mathbb{Q},+)$ is an abelian group.
- \bullet $(\mathbb{C},+)$ is an abelian group.
- **5** $(\mathbb{Q} \{0\}, \times)$ is an abelian group.
- **1** $(\mathbb{R} \{0\}, \times)$ is an abelian group.

Remark: All of the above are groups which are familiar from before - in all these groups, the underlying set is infinite. Such groups are known as infinite groups.

- Note that: (\mathbb{Z}, \times) is NOT a group.
- Note that: (\mathbb{Q}, \times) is NOT a group.
- Note that: (\mathbb{R}, \times) is NOT a group.
- Note that: (\mathbb{C}, \times) is NOT a group.