V-2 DERIVED CATEGORIES AND DERIVED EQUIVALENCES

k = k field and A finite dimensional k-algebra A-mod = category of fig A-modules

The cohomology of C. is
$$H^n(C_{\bullet}) = \text{Kerd}_n/\underline{I}_{\text{mol}_{n-1}}$$

C. can be shifted by any integer $r \in \mathbb{Z}$ by $(C.[r])_{:} = C_{:+r}$ An A-module M can be seen as a complex M[r]where Mis in degree - r and all the other terms are zero

- The (bounded) derived category D'(A) has

 objects: complexes of A-modules C. s.t. H(C.) = 0

 maphisms: ???

 for |n| >> 0

Examples of mexphisms (a) If $f: C. \rightarrow D$, is a morphism of complexes which induces isomorphisms $H^*(C.) \xrightarrow{\sim} H^*(D.)$ (i.e a quasi-isomorphism) => f includes an isomorphism in $D^*(A)$ In particular a projective resolution

In particular a projective resolution

... $\rightarrow P_n \rightarrow P_n \rightarrow \cdots \rightarrow P_n \rightarrow M$ P is only bounced below

yields an isomorphism $P \rightarrow M[o]$ in D(A)

117/11/11

But there are non-zero maps

111111

(c) If $H'(C) = 0 \forall n$ then $C \rightarrow 0$ is an iso. in D'(A)

(d) if H"(C) = 0 except for one n, say n = 0 [even though their are then C. ~ H°(C)[0]

no maps of complexes

 $C_{\bullet} \xrightarrow{d} C_{\bullet} C_{\bullet} \xrightarrow{d} C_{$

 $H^{\circ}(C)[O] \longrightarrow C$, inducing

... $O \rightarrow C_0 / Imd_1, \rightarrow C_1, \rightarrow \cdots$ an iso in general]

 $\cdots \circ \rightarrow H(C) \rightarrow \circ \rightarrow \cdots$

(e) It stops here: $C. \triangle \oplus H''(C)$ [-n] in general

if H'(C)=0 for n + 0, r (r>0)

then C. is determined by

* The A-modules H°(c) and H'(C)

* an eff of Extru (H(C), H(C))

rus in Db(A) a complex C is encoded by H(c) and extensions between $H^{1}(C)$ and $H^{7}(C)$ $i \neq j$

2) Derived equivalences
A, B, f.d algebras over k=k InA, InB the isomorphism classes of simple modules
· Mouita: A-mod ~ B-mod
=> 3 B-module T such that:
· Tis projective · Every PIM of B is a direct summand of T] progenerator
• Ena, (T) ≈ A
Then Top : A-mod ~ B-mod equivalence
• Derived: $D^{b}(A-mod) \simeq D^{b}(B-mod)$
=> 3 complex of B-modules s.t
. Tis bounded, with projective terms [perfect complex]
. Every perfect complex is obtained from T by
direct sums, direct summands and cones
• End $D^{L}(B)(T) \simeq A$ and $Hom_{D^{L}(B)}(T,T[i]) = 0$ if $i \neq 0$
La tilking complex
Then $T \otimes_{A}^{L} = D^{b}(A-mod) \simeq_{A} D^{b}(B-mod)$ equivalence

$\frac{R_{mk}}{s}$ if T is a perfect complex (bounded with projective term) such that $T = H^{\circ}(T)$ in $D^{b}(B-mod)$ then
such that To H°(T) in Db(B-mod) then
H°(T) is not recessarily projective. In that case Tis tilting => Vi>0 Extig(T,T)=0
In that case Tistilling (-> Vivo Exti(TI)-0
Jilling module
$\frac{Rmk}{mk}$: #IrA = rk_z K _o (A-mod) = rk_z K _o (D ^b (A)) is preserved under derived equivalences.
is preserved under derived equivalences.
_