Linear algebra II

Linear transformation

place x on original grid
 transform x onto A grid
 read transformed x
 on original grid (=b)

$$\begin{bmatrix} 0.9 & -0.4 \\ 0.4 & 0.9 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 1.3 \end{bmatrix}$$

$$\begin{bmatrix}
 0.9 & -0.4 \\
 0.4 & 0.9
 \end{bmatrix}$$

basis vector

1.25 0.25 0.25 1

basis vector basis vector

1 0.5 0.25 0.125

basis vectors

Detransformation: Inverse matrix

$$\begin{bmatrix} 0.9 & -0.4 \\ 0.4 & 0.9 \end{bmatrix}^{-1} \begin{bmatrix} 0.5 \\ 1.3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix}
 0.9 & -0.4 \\
 0.4 & 0.9
 \end{bmatrix}$$

basis vector

0.5 1.3

1.25 0.25 0.25 1

basis vector basis vector

	1.5 1.25

example 3

original grid

1 0.5 0.25 0.125

basis vectors

A (transformation) grid

1.5 0.375

eigenvector

Av=b A transforms v to b

$$\begin{bmatrix} 1.25 & 0.25 \\ 0.25 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 1.25 \end{bmatrix}$$

$$x \text{ space}$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$b \text{ space}$$

Among all v, some v is parallel to Av. that v is eigenvector

 $Av = \lambda v$

v:eigenvectors

 λ : eigenvalues

Visualizing eigenvectors

http://setosa.io/ev/eigenvectors-and-eigenvalues/

