Comparison tables: BBOB 2015 function testbed with BBOB 2009 as reference

The BBOBies
July 16, 2015

Abstract

This document provides tabular results of the workshop on Black-Box Optimization Benchmarking held at GECCO 2015, see http://coco.gforge.inria.fr/doku.php?id=bbob-2015. Overall, 18 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. Only three of them have been tested on the optional instances in dimension 40. A description of the used objective functions can be found in [7, 5]. The experimental set-up is described in [6].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [2]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT $_{\rm best}$ is noted as infinite). See [6] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at GECCO 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbed

testbed algorithm short	paper	reference
name	pupor	rotoronoo
BSifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
BSif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
BSqi	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
- 20	Box Optimization of Separable Continuous Functions	[0]
BSrr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
CMA-CSA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-MSR	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-TPA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
GP1-CMAES	SBenchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
GP5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
IPOPCMAv3p61	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
LHD-10xDefault- MATSuMoT	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
LHD-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RAND-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RF1-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
RF5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
Sifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Sif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Srr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-Box Optimization of Separable Continuous Functions	[9]

Table 2: 02-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	1.8	5.7	5.7	6.2	6.2	6.2	6.2	15/15
BSifeg	1.5 (1)	1.5(0.6)	1.8(0.2)	1.7(0.2)	1.7(0.3)	1.7(0.2)	1.7(0.2)	15/15
BSif	1.5 (1)	1.5(0.9)	1.8(0.2)	1.7(0.2)	1.7(0.2)	1.7(0.2)	1.7(0.2)	15/15
BSqi	1.5 (1)	1.5(0.9)	1.8(0.3)	1.7(0.2)	1.7(0.2)	1.7(0.2)	1.7(0.2)	15/15
BSrr	1.5 (1)	1.5(0.5)	1.8(0.2)	1.7(0.2)	1.7(0.2)	1.7(0.3)	1.7(0.2)	15/15
CMA-CSA	2.7(4)	2.8 (3)	9.2(5)	14(6)	18(4)	26(6)	37(6)	15/15
CMA-MSR	3.4(1)	3.4(2)	10(5)	17(4)	29(6)	44(7)	63(9)	15/15
CMA-TPA	3.0 (3)	5.7(5)	10(4)	13(11)	19(8)	31(9)	38(7)	15/15
GP1-CMAES	1.7(0.6)	2.7 (2)	5.7(4)	7.0(2)	10(5)	14(4)	20(6)	15/15
GP5-CMAES	2.7(2)	1.9(0.8)	2.8 (1.0)	3.8(0.6)	4.2(1)	6.3(2)	12(6)	15/15
IPOPCMAv3p	4.4(5)	4.0(4)	10(4)	14(8)	18(6)	28(7)	39(3)	15/15
LHD-10xDef	2.6(2)	4.4(3)	10(2)	10(0.4)	11(0.6)	44(105)	∞ 100	0/15
LHD-2xDefa	2.3(2)	2.2 (0.1)	3.0(0.4)	3.7(1)	4.9(1)	33(48)	∞ 100	0/15
RAND-2xDef	2.9 (3)	2.2 (0.1)	3.1(0.7)	4.0(0.8)	5.1(0.8)	42(38)	∞ 100	0/15
RF1-CMAES	3.2(4)	3.6(4)	6.6(3)	8.6(3)	15(4)	34(5)	62(35)	12/15
RF5-CMAES	3.1(4)	14(46)	41(65)	90(62)	116(122)	1168(1666)	1220(914)	1/15
Sifeg	1.5 (1)	1.6(0.9)	2.2 (0.3)	2.9 (0.4)	3.4(0.5)	4.8(0.8)	5.7(0.5)	15/15
Sif	1.5 (1)	1.6 (0.6)	2.2 (0.3)	3.1(0.6)	3.5(0.6)	4.9(0.8)	5.7(0.2)	15/15
Srr	1.5 (1)	1.6(0.9)	2.2 (0.1)	2.7 (0.1)	3.2(0.2)	4.2(0.3)	5.3(0.2)	15/15

Table 3: 02-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f2	16	19	25	25	26	28	29	15/15
BSifeg	1.2(0.3)	1.2(0.3)	1.0(0.3)	1.0(0.2)	1.1(0.2)	1.1(0.2)	1.2(0.3)	15/15
BSif	1.2(0.4)	1.2(0.4)	1.0(0.4)	1.0(0.3)	1.0(0.2)	1.1(0.2)	1.2(0.2)	15/15
BSqi	1.0(0.2)	0.98 (0.2)	0.82 (0.1)	0.82 (0.1)	0.87 (0.1)	0.92 (0.1)	1.1(0.3)	15/15
BSrr	1.2(0.2)	1.2(0.2)	1.0(0.3)	1.0(0.2)	1.1(0.2)	1.1(0.1)	1.3(0.1)	15/15
CMA-CSA	11(8)	15(4)	13(3)	15(3)	15(2)	16(2)	18(2)	15/15
CMA-MSR	15(9)	17(5)	14(4)	16(3)	18(3)	20(2)	23(3)	15/15
CMA-TPA	10(7)	12(6)	11(3)	13(3)	15(3)	15(2)	17(3)	15/15
GP1-CMAES	8.8(7)	13(8)	12(4)	12(2)	13(2)	15(2)	17(11)	13/15
GP5-CMAES	4.2(3)	5.3(2)	4.6(1)	4.9(1)	5.3(0.8)	5.3(0.9)	7.0(5)	15/15
IPOPCMAv3p	11(11)	18(7)	20(12)	24(16)	31(30)	67(85)	$\infty 506$	0/15
LHD-10xDef	29(44)	∞	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	14(30)	∞	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	16(26)	∞	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	29(31)	180(228)	295(425)	288(344)	∞	∞	$\infty 506$	0/15
RF5-CMAES	35(24)	115(77)	∞	∞	∞	∞	∞ 502	0/15
Sifeg	1.6(0.3)	1.5(0.3)	1.3(0.3)	1.4(0.3)	1.4(0.2)	1.6(0.4)	1.7(0.3)	15/15
Sif	1.5(0.4)	1.5(0.3)	1.3(0.3)	1.3(0.3)	1.4(0.2)	1.6(0.5)	1.7(0.5)	15/15
Srr	1.5(0.2)	1.4(0.3)	1.3(0.1)	1.4(0.1)	1.5(0.2)	1.6(0.2)	1.8(0.2)	15/15

Table 4: 02-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

Cacii uiiis van	ac aiviac	a by am	ichsion.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f3	15	271	445	446	450	454	464	15/15
BSifeg	1.0(0.7)	0.19(0.1)	0.21 (0.1)	0.21 (0.1)	0.22 (0.1)	0.22 (0.1)	0.22 (0.1)	15/15
BSif	0.99 (0.3)	0.19(0.1)	0.21 (0.2)	0.21 (0.1)	0.21 (0.1)	0.22 (0.2)	0.21 (0.1)	15/15
BSqi	0.96 (0.6)	0.19(0.1)	0.20 (0.1)	15/15				
BSrr	1.0(0.9)	0.18(0.1)	0.19(0.1)	0.20 (0.1)	0.20 (0.1)	0.21 (0.1)	0.21 (0.1)	15/15
CMA-CSA	2.6 (2)	2.7 (2)	4.4(7)	4.9(6)	5.0(2)	5.2(5)	5.4(5)	15/15
CMA-MSR	3.7(2)	3.8(6)	4.4(2)	6.0(7)	6.3(2)	6.7(5)	7.1(12)	15/15
CMA-TPA	7.1(15)	4.7(4)	10(7)	10(16)	10(7)	11(9)	11(8)	15/15
GP1-CMAES	2.5(2)	2.9 (3)	5.3(9)	5.4(5)	5.4(4)	8.2(17)	16(31)	1/15
GP5-CMAES	5.1(4)	2.3 (3)	∞	∞	∞	∞	$\infty 508$	0/15
IPOPCMAv3p	3.0 (2)	1.9(2)	3.5(5)	3.6(5)	3.6(5)	3.7(3)	3.8(3)	4/15
LHD-10xDef	3.8(6)	5.5(8)	3.4(3)	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	1.5(0.8)	0.74 (0.4)	1.6 (3)	∞	∞	∞	∞ 100	0/15
RAND-2xDef	2.4 (2)	1.6 (3)	1.6(2)	3.3(4)	∞	∞	∞ 100	0/15
RF1-CMAES	11(18)	13(15)	∞	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	17(23)	13(10)	∞	∞	∞	∞	$\infty 506$	0/15
Sifeg	1.3(0.6)	0.23 (0.1)	0.20 (0.1)	0.21 (0.0)	0.24 (0.1)	0.25 (0.0)	0.26 (0.0)	15/15
Sif	1.3(0.6)	0.24 (0.1)	0.21 (0.1)	0.22 (0.0)	0.24 (0.0)	0.25 (0.1)	0.25 (0.0)	15/15
Srr	1.3(0.5)	0.19 (0.1)	0.18 (0.0)	0.19 (0.1)	0.22 (0.0)	0.24 (0.0)	0.26 (0.0)	15/15

Table 5: 02-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f4	22	344	459	496	523	544	566	15/15
BSifeg	0.91 (0.4)	0.17(0.1)	0.21(0.1)	0.20(0.1)	0.20(0.1)	0.22 (0.1)	0.28(0.1)	15/15
BSif	0.91(0.5)	0.17(0.1)	0.22(0.1)	0.21 (0.1)	0.21(0.1)	0.22 (0.1)	0.27(0.1)	15/15
BSqi	0.98(0.5)	0.17(0.1)	0.22(0.1)	0.21 (0.1)	0.20(0.1)	0.22 (0.1)	0.27(0.1)	15/15
BSrr	0.93 (0.3)	0.18(0.1)	0.21(0.1)	0.21 (0.1)	0.21(0.1)	0.24 (0.1)	0.31(0.1)	15/15
CMA-CSA	2.3 (2)	5.6(5)	21(17)	66(45)	75(40)	77(62)	76(39)	14/15
CMA-MSR	6.1(12)	9.3(8)	242(174)	533(660)	1634(1484)	2409(2591)	2315(2138)	2/15
CMA-TPA	2.9 (3)	6.2(12)	34(62)	110(213)	109(293)	134(203)	131(483)	12/15
GP1-CMAES	2.2 (1)	3.5(4)	3.6(4)	3.4(5)	6.8(4)	14(15)	$\infty 506$	0/15
GP5-CMAES	6.4(5)	2.6 (4)	∞	∞	∞	∞	$\infty 508$	0/15
IPOPCMAv3p	2.9 (2)	4.8(3)	16(31)	15(14)	14(7)	14(23)	$\infty 506$	0/15
LHD-10xDef	2.7 (3)	4.3(3)	3.2(3)	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	1.8(0.8)	4.3(5)	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	1.7 ₍₁₎	∞	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	3.3(2)	∞	∞	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	16(18)	21(31)	∞	∞	∞	∞	∞ 504	0/15
Sifeg	0.96(0.4)	0.27(0.1)	0.38(0.2)	0.44(0.2)	0.55(0.1)	0.63(0.2)	0.73(0.2)	15/15
Sif	0.95 (0.7)	0.28(0.1)	0.39(0.2)	0.45 (0.2)	0.55 (0.2)	0.61(0.1)	0.71(0.2)	15/15
Srr	0.96 (0.6)	0.24(0.1)	0.36 (0.1)	0.44 (0.1)	0.56 (0.1)	0.68 (0.2)	0.82(0.3)	15/15

Table 6: 02-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f5	3.7	4.4	4.4	4.4	4.4	4.4	4.4	15/15
BSifeg	1.7(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSif	1.7(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSqi	1.7(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
$_{\mathrm{BSrr}}$	1.7(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
CMA-CS	A 2.9(2)	4.5(5)	4.8(5)	4.8(4)	4.8(2)	4.8(4)	4.8(2)	15/15
CMA-MS	R 3.1(2)	5.7(2)	6.1(1)	6.2(3)	6.2(3)	6.2(4)	6.2(4)	15/15
CMA-TP.	A 2.1(1)	3.5(2)	4.0(2)	4.0(2)	4.0(2)	4.0(1)	4.0(1)	15/15
GP1-CMA	ES 2.5 (2)	6.9(21)	9.3(7)	9.3(12)	9.3(15)	9.3(4)	9.3(6)	15/15
GP5-CMA	ES 2.0 (0.9)	3.7(1.0)	4.2(3)	4.4(3)	4.4(3)	4.4(3)	4.4(2)	15/15
IPOPCMA	v3p4.4(3)	12(16)	13(9)	13(17)	13(20)	13(22)	13(12)	15/15
LHD-10xI	Def 3.3(3)	14(0)	14(0.6)	14(0.6)	14(0.6)	14(0)	14(0.6)	15/15
LHD-2xD	efa 2.5 (1)	3.2(0.3)	3.3(0.6)	3.3(0.6)	3.3(0.6)	3.3(0.6)	3.3(0.6)	15/15
RAND-2x	Def 2.5 (2)	3.1(0.3)	3.5(1)	3.6(0.9)	3.6(0.9)	3.6(0.6)	3.6(0.6)	15/15
RF1-CMA	ES 1.8(2)	20(21)	21(24)	22(24)	22(27)	22(26)	22(29)	15/15
RF5-CMA	ES 3.1(4)	58(99)	60(69)	61(65)	61(46)	61(71)	61(90)	12/15
Sifeg	1.7 (0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
Sif	1.7 (0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
Srr	1.7 (0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15

Table 7: 02-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	# succ
f6	13	23	41	54	67	95	124	15/15
BSifeg	379(727)	416(774)	318(489)	538(706)	871(884)	1397(726)	2212(3487)	1/15
BSif	304(732)	442(618)	761(744)	1186(1753)	∞	∞	∞ 2e4	0/15
BSqi	306(266)	344(578)	397(683)	400(1255)	515(735)	1415(927)	2241(2313)	1/15
BSrr	371(695)	403(413)	319(404)	436(441)	686(626)	1407(1775)	2201(2432)	1/15
CMA-CSA	3.7(6)	4.3(2)	3.9 (1)	4.2 (1)	4.1(0.9)	4.2(0.7)	4.1(0.8)	15/15
CMA-MSR	3.1(2)	5.3(2)	4.8(2)	5.0(1)	5.3(1)	5.3(0.9)	5.2(0.7)	15/15
CMA-TPA	1.6(1)	3.6 (4)	3.8(2)	3.8(2)	3.8 (1)	3.8 (1)	3.9 (1)	15/15
GP1-CMAES	3.5(2)	4.9(2)	7.7(6)	19(17)	112(142)	∞	$\infty 506$	0/15
GP5-CMAES	2.7 (7)	9.2(17)	17(15)	44(58)	∞	∞	$\infty 506$	0/15
IPOPCMAv3p	3.2(1)	4.6 (1)	3.8 (1)	4.1(2)	4.2(2)	4.8(0.9)	12(10)	5/15
LHD-10xDef	1.5(1)	9.0(8)	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	2.0(3)	12(11)	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	2.0(2)	6.3(5)	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	12(20)	67(87)	∞	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	9.4(9)	40(35)	∞	∞	∞	∞	$\infty 508$	0/15
Sifeg	274(100)	271(150)	245(443)	316(356)	890(783)	2857(2247)	2205(1639)	1/15
Sif	354(367)	318(987)	395(822)	551(617)	1261(1899)	2870(4586)	∞ 2e4	0/15
Srr	267(144)	242(563)	246(355)	301(401)	506(463)	1339(1664)	2152(2487)	1/15

Table 8: 02-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f7	3.2	21	60	193	217	217	241	15/15
BSifeg	1.7 ₍₁₎	480(588)	1418(1329)	680(805)	1297(2015)	1297(1390)	1165(2122)	1/15
BSif	1.7 ₍₁₎	471(494)	453(432)	711(797)	1297(1529)		1165(916)	1/15
BSqi	1.7 ₍₁₎	254(330)	546(324)	711(589)	1297(996)	1297(1205)	1165(791)	1/15
BSrr	1.7 ₍₁₎	557(565)	570(357)	701(532)	1297(463)	1297(2641)	1165(874)	1/15
CMA-CSA	4.0(3)	5.7(9)	2.9 (2)	1.2(0.8)	1.3 (1)	1.3 (1)	1.5(2)	15/15
CMA-MSR	4.4(4)	1.9(2)	2.3 (3)	1.1(0.1)	1.2(0.3)	1.2(0.3)	1.3(0.3)	15/15
CMA-TPA	3.7(2)	1.9(2)	1.9 (1)	0.91(0.5)	0.88(0.7)	0.88(0.6)	1.0 (0.4)	15/15
GP1-CMAES	4.2(3)	2.2 (2)	1.8(1.0)	1.1(1)	1.1(0.8)	1.1(1)	1.4 (1)	13/15
GP5-CMAES	3.3(3)	2.2 (2)	2.5 (0.8)	1.1(1)	1.1(1)	1.1(2)	1.7(1)	12/15
IPOPCMAv3p	3.9(3)	4.5(4)	3.2(3)	1.8(2)	1.7(1)	1.7(2)	2.1 (1)	11/15
LHD-10xDef	7.6(8)	2.6 (0.6)	4.8(4)	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	3.0(3)	1.2(1)	1.5(2)	1.7(2)	2.1 (0.6)	2.1 (4)	2.9 (2)	2/15
RAND-2xDef	3.8(1)	1.5(0.9)	1.1(0.6)	1.3(1)	6.7(7)	6.7(5)	6.0(8)	1/15
RF1-CMAES	4.1(5)	4.2(4)	4.7(2)	2.2 (3)	2.7(4)	2.7 (2)	3.8(7)	7/15
RF5-CMAES	3.8(5)	3.4(6)	12(15)	42(48)	∞	∞	∞ 550	0/15
Sifeg	1.8 (1)	362(494)	964(989)	690(568)	1372(1552)	1372(1691)	1232(1727)	1/15
Sif	1.8(2)	320(377)	699(690)	718(581)	∞	∞	∞ 2e4	0/15
Srr	1.8 (2)	378(706)	566(374)	722(911)	∞	∞	∞ 2e4	0/15

Table 9: 02-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COCCII CIIID FOI	are arrive		TIOIIDIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f8	5.4	12	37	46	86	94	112	15/15
BSifeg	2.1 (0.7)	309(423)	2235(2549)	∞	∞	∞	∞ 2e4	0/15
BSif	2.1 (0.6)	275(380)	2262(1672)	5971(4564)	3193(3049)	∞	∞ 2e4	0/15
BSqi	2.1 (0.6)	408(742)	1538(1599)	5812(3002)	∞	∞	∞ 2e4	0/15
BSrr	2.1 (0.6)	308(385)	3350(5164)	5712(9431)	∞	∞	∞ 2e4	0/15
CMA-CSA	7.6(13)	17(23)	9.1(10)	10(4)	5.8(3)	6.1 (3)	5.5(1)	15/15
CMA-MSR	3.7(5)	15(25)	8.7(9)	8.9 ₍₅₎	5.1 (3)	5.6 (2)	5.6 (3)	15/15
CMA-TPA	5.2(3)	7.7 (7)	5.4 (3)	5.6 (2)	3.6 (1)	3.9 (1)	4.0(0.7)	15/15
GP1-CMAES	4.7(1)	8.5(21)	7.0(10)	13(26)	10(17)	10(6)	16(27)	4/15
GP5-CMAES	3.3(2)	11(20)	9.0(14)	10(7)	5.7(9)	6.7(13)	6.0(3)	9/15
IPOPCMAv3p	5.5(5)	10(2)	6.7 (6)	8.0(6)	5.6 (3)	9.0(10)	11(8)	6/15
LHD-10xDef	6.0(5)	10(13)	20(17)	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	3.4(1)	4.0(0.3)	4.4(7)	15(20)	17(13)	∞	∞ 100	0/15
RAND-2xDef	3.8(0.9)	3.9 (3)	19(8)	∞	∞	∞	∞ 100	0/15
RF1-CMAES	11(3)	13(7)	15(18)	47(53)	44(41)	∞	$\infty 506$	0/15
RF5-CMAES	25(66)	74(53)	92(137)	∞	∞	∞	$\infty 506$	0/15
Sifeg	2.4 (0.6)	355(727)	1078(1160)	1755(1276)	∞	∞	∞ 2e4	0/15
Sif	2.5 (0.5)	337(684)	1385(1274)	1749(2341)	2918(3548)	∞	∞ 2e4	0/15
Srr	2.5 (0.8)	266(422)	1819(948)	5100(4599)	∞	∞	∞ 2e4	0/15

Table 10: 02-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f9	1	18	30	44	68	81	92	15/15
BSifeg	76(432)	154(211)	311(797)	682(434)	1947(1694)	∞	∞ 2e4	0/15
BSif	50(73)	131(169)	445(610)	1446(1993)	1965(909)	∞	∞ 2e4	0/15
BSqi	73(213)	105(16)	483(602)	2777(3373)	3875(4553)	3218(2464)	$\infty~2e4$	0/15
BSrr	62(186)	141(226)	502(623)	1838(2274)	3939(8007)	∞	$\infty~2e4$	0/15
CMA-CSA	30(16)	5.8(3)	8.4(6)	8.1(4)	5.9(1)	5.7 (2)	5.8 (3)	15/15
CMA-MSR	26(14)	7.1(5)	10(6)	8.9(5)	6.3(2)	6.4(2)	6.5(2)	15/15
CMA-TPA	26(26)	6.8(12)	8.2(8)	7.2 (4)	5.6 (3)	5.4(0.9)	5.7(0.7)	15/15
GP1-CMAES	29(18)	7.8(4)	14(11)	17(23)	19(27)	21(39)	26(35)	3/15
GP5-CMAES	19(14)	3.4(12)	5.3 (3)	5.9 (3)	4.4 (4)	5.0 (5)	4.8(5)	11/15
IPOPCMAv3p	23(19)	3.5(2)	6.6 (6)	8.2(6)	6.0(5)	6.4(7)	11(6)	7/15
LHD-10xDef	25(21)	4.0(4)	49(52)	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	15 (16)	2.5 (1)	5.1(4)	11(14)	∞	∞	∞ 100	0/15
RAND-2xDef	16 (10)	2.4 (0.7)	12(12)	11(12)	∞	∞	∞ 100	0/15
RF1-CMAES	20(24)	19(21)	30(22)	83(72)	111(206)	∞	$\infty 506$	0/15
RF5-CMAES	172(383)	34(35)	113(80)	165(144)	∞	∞	∞ 504	0/15
Sifeg	22(38)	67(177)	373(639)	1292(784)	1792(2315)	3206(2154)	∞ 2e4	0/15
Sif	16 (6)	122(178)	442(696)	974(1863)	3836(3551)	3212(3982)	∞ 2e4	0/15
Srr	19(14)	80(207)	432(689)	5454(9109)	3534(4476)	∞	∞ 2e4	0/15

Table 11: 02-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f10	30	46	54	61	68	82	98	15/15
BSifeg	38(69)	199(134)	1916(1795)	∞	∞	∞	∞ 5883	0/15
BSif	71(101)	197(111)	1084(364)	2036(2892)	1814(1959)	∞	∞ 8444	0/15
BSqi	135(69)	467(501)	1535(1254)	∞	∞	∞	∞ 1e4	0/15
BSrr	46(79)	240(189)	543(1409)	1622(1430)	∞	∞	∞ 6681	0/15
CMA-CSA	7.5(5)	6.5(2)	6.3(1)	6.0(1)	5.8 (1)	5.6(0.8)	5.3(0.9)	15/15
CMA-MSR	7.4(4)	6.1(2)	5.8 (2)	6.4(0.8)	6.3(1)	6.5(0.6)	6.6(1)	15/15
CMA-TPA	6.3 (4)	5.6 (3)	5.9(2)	6.0(0.7)	5.8(2)	5.6(0.8)	5.3(1)	15/15
GP1-CMAES	4.6(3)	4.6 (3)	4.7 (1)	4.6 (1)	4.5(1.0)	4.7(2)	4.8(2)	13/15
GP5-CMAES	1.6 (0.9)	1.8(1)*2	2.0 (0.7)	2.0 (0.2)	1.9(0.3)	1.8(0.3)	1.9(0.4)	15/15
IPOPCMAv3p	8.3(5)	8.7(5)	11(10)	17(17)	18(28)	23(14)	$\infty 506$	0/15
LHD-10xDef	16(15)	33(23)	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	6.9(4)	∞	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	10(13)	∞	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	19(17)	34(50)	∞	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	14(13)	77(151)	141(282)	∞	∞	∞	$\infty 502$	0/15
Sifeg	8.6(6)	80(75)	110(46)	310(620)	276(224)	∞	∞ 2159	0/15
Sif	12(9)	95(102)	323(431)	613(652)	546(326)	∞	∞ 2178	0/15
Srr	7.9(11)	70(111)	224(215)	643(433)	∞	∞	∞ 2193	0/15

Table 12: 02-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f11	35	45	50	62	67	81	97	15/15
BSifeg	58(51)	209(271)	431(513)	1500(1712)	1373(1477)	∞	∞ 6926	0/15
BSif	45(113)	240(361)	1887(2063)	1544(1651)	1413(1804)	∞	∞ 5430	0/15
BSqi	60(156)	196(306)	267(387)	549(432)	1596(1424)	∞	$\infty 5998$	0/15
BSrr	59(105)	302(303)	631(606)	1628(2636)	1489(989)	∞	$\infty 6000$	0/15
CMA-CSA	4.9(3)	6.4(2)	6.7(2)	5.9(2)	5.9(1)	5.6(0.7)	5.3(1)	15/15
CMA-MSR	5.1(3)	5.7 (2)	6.3(2)	5.7 (2)	6.1(0.8)	6.5(1)	6.7(0.5)	15/15
CMA-TPA	5.4(3)	6.0(1)	6.1 (1)	5.7(0.9)	5.6(0.7)	5.6(0.6)	5.2(1)	15/15
GP1-CMAES	4.4(4)	4.9 (3)	5.8 (2)	5.0(0.9)	4.9(0.9)	4.6(1.0)	4.7 (1.0)	14/15
GP5-CMAES	1.5(0.6)	2.2 (0.6)	2.5 (0.3)	2.1 (0.3)	2.2 (0.3)	2.0(0.4)	2.1(0.2)	15/15
IPOPCMAv3p	7.3(6)	10(6)	11(9)	11(10)	13(12)	46(47)	$\infty 506$	0/15
LHD-10xDef	42(37)	∞	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	21(26)	16(48)	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	7.1(7)	10(8)	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	14(23)	36(63)	72(40)	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	8.7(13)	79(222)	∞	∞	∞	∞	$\infty 508$	0/15
Sifeg	22(9)	65(39)	223(156)	183(215)	263(391)	463(459)	∞ 2391	0/15
Sif	13(38)	40(59)	97(97)	185(106)	540(1035)	∞	∞ 2405	0/15
Srr	22(36)	89(70)	167(102)	588(843)	538(429)	∞	∞ 2357	0/15

Table 13: 02-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f12	35	46	75	94	105	153	195	15/15
BSifeg	93(26)	156(240)	217(413)	294(340)	283(159)	254(481)	199(344)	4/15
BSif	78(340)	132(130)	192(216)	232(238)	353(185)	243(410)	190(152)	4/15
BSqi	91(116)	132(128)	162(211)	248(320)	307(400)	306(276)	240(429)	3/15
BSrr	61(56)	148(320)	161(422)	204(307)	313(278)	295(271)	232(239)	3/15
CMA-CSA	8.0(3)	11(12)	8.9(2)	8.6(10)	8.4(0.9)	7.3 (13)	6.2 (5)	15/15
CMA-MSR	8.8(16)	12(7)	8.7(5)	9.0(1)	9.0(6)	7.4(9)	6.7 (3)	15/15
CMA-TPA	5.2 (4)	7.0 (7)	6.9(6)	6.9(7)	6.8 (0.6)	5.7(4)	5.4(0.7)	15/15
GP1-CMAES	6.2(10)	7.0 (8)	6.5 (8)	7.3 (7)	11(5)	50(115)	39(49)	1/15
GP5-CMAES	2.9 (1)	7.5(9)	4.9(11)	6.5 (3)	7.6 (7)	11(6)	18(25)	2/15
IPOPCMAv3p	4.4(5)	7.4 (6)	6.5 (9)	7.9(8)	17(20)	25(42)	$\infty 506$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	7.1(6)	31(50)	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	6.9(7)	∞	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	11(14)	20(22)	97(121)	77(66)	∞	∞	$\infty 506$	0/15
RF5-CMAES	12(11)	80(48)	100(81)	∞	∞	∞	∞ 504	0/15
Sifeg	17(35)	45(80)	39(57)	66(75)	73(156)	82(119)	64(67)	4/15
Sif	28(32)	66(82)	49(39)	71(78)	79(136)	90(121)	71(132)	4/15
Srr	11(38)	44(86)	45(84)	85(95)	119(64)	83(88)	65(34)	4/15

Table 14: 02-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COLOTT CITIES 1 COL	ac ar ira	J	OIIDIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f13	23	35	46	60	71	95	122	15/15
BSifeg	541(1088)	802(1017)	1350(1088)	4694(1e4)	∞	∞	$\infty~2e4$	0/15
BSif	789(771)	1789(2615)	5953(8420)	∞	∞	∞	$\infty~2e4$	0/15
BSqi	430(450)	1042(1206)	2829(4552)	4857(5674)	∞	∞	$\infty~2e4$	0/15
BSrr	491(550)	1250(1781)	2940(4540)	4875(4005)	4136(2903)	∞	$\infty~2e4$	0/15
CMA-CSA	2.9 (3)	4.2 (2)	4.6 (1)	4.6 (1.0)	4.6(0.8)	4.9 (1)	4.8(0.7)	15/15
CMA-MSR	3.7(2)	4.7(2)	5.7(1.0)	5.6(0.5)	5.7(0.6)	6.3 (1)	6.3(0.8)	15/15
CMA-TPA	4.5(4)	4.9(1)	5.1 (1)	4.9(2)	5.5 (1)	5.2(1)	5.3(0.5)	15/15
GP1-CMAES	2.7(2)	3.7 (2)	5.2(4)	7.7(2)	11(18)	19(19)	$\infty 506$	0/15
GP5-CMAES	3.8(7)	4.6(2)	4.4(2)	4.4 (6)	4.3 (1)	8.5(12)	$\infty 506$	0/15
IPOPCMAv3p	3.9(2)	5.6(4)	6.1(2)	7.3(8)	12(9)	∞	$\infty 506$	0/15
LHD-10xDef	2.9 (0.7)	21(31)	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	1.4(0.4)	4.2(3)	32(26)	∞	∞	∞	∞ 100	0/15
RAND-2xDef	1.4(0.9)	4.0(7)	31(11)	∞	∞	∞	∞ 100	0/15
RF1-CMAES	7.9(12)	17(18)	21(33)	22(22)	53(86)	∞	$\infty 506$	0/15
RF5-CMAES	11(11)	62(49)	159(132)	∞	∞	∞	$\infty 508$	0/15
Sifeg	563(612)	1461(1049)	∞	∞	∞	∞	∞ 2e4	0/15
Sif	410(309)	760(519)	1726(1588)	4333(6653)	∞	∞	∞ 2e4	0/15
Srr	428(1103)	1059(860)	2567(2279)	4077(5292)	3464(6129)	∞	∞ 2e4	0/15

Table 15: 02-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f14	1.4	7.4	16	24	38	67	90	15/15
BSifeg	2.6 (3)	8.5(15)	5.4(7)	15(18)	695(867)	4153(3633)	∞ 2e4	0/15
BSif	2.6 (3)	8.7(11)	5.4(5)	15(33)	1128(1649)	4153(5635)	∞ 2e4	0/15
BSqi	2.6 (3)	5.7(4)	3.8(10)	7.9(13)	1172(1059)	∞	∞ 2e4	0/15
BSrr	2.6 (3)	8.4(8)	5.3(12)	7.9(10)	577(529)	4152(4893)	3108(4717)	1/15
CMA-CSA	1.3(2)	1.9(2)	3.6(1.0)	4.0(2)	4.3(2)	5.0 (0.9)	5.4(0.7)	15/15
CMA-MSR	2.7 (1)	2.8 (2)	4.5(2)	6.2(1)	5.8(2)	5.7(0.7)	6.2(0.7)	15/15
CMA-TPA	2.8 (4)	3.5(1)	4.8(2)	5.3(2)	4.8(2)	5.0 (0.6)	5.5(0.9)	15/15
GP1-CMAES	1.7(0.7)	1.9(2)	2.1 (1)	2.9 (2)	4.8(5)	9.2(4)	84(105)	1/15
GP5-CMAES		2.3 (0.5)	1.8 (1)	1.9(0.7)	2.4 (2)	4.2 (1)	41(66)	2/15
IPOPCMAv3p	2.0 (0.7)	3.1(2)	3.3(0.6)	4.6(2)	5.5(3)	6.6(4)	27(27)	3/15
LHD-10xDef	1.6 (1)	3.1(2)	4.4(0.4)	12(7)	39(22)	∞	∞ 100	0/15
LHD-2xDefa	1.6(0.5)	1.4 (1)	1.6(0.3)	3.5 (3)	∞	∞	∞ 100	0/15
RAND-2xDef	1.2(1)	1.9(0.4)	1.7(0.5)	4.8(2)	12(16)	∞	∞ 100	0/15
RF1-CMAES	1.9 (3)	6.3(9)	6.3(8)	10(6)	37(29)	∞	$\infty 506$	0/15
RF5-CMAES	1.3(0.7)	48(69)	56(58)	146(180)	∞	∞	$\infty 506$	0/15
Sifeg	2.6 (0.7)	2.3 (1)	2.2 (2)	7.1(2)	1252(2232)	4153(3485)	∞ 2e4	0/15
Sif	2.6(2)	2.4(2)	2.2 (2)	10(7)	2256(2504)	4153(5560)	∞ 2e4	0/15
Srr	2.6 (3)	2.1(1)	1.9(1.0)	3.8(3)	643(529)	4153(5116)	∞ 2e4	0/15

Table 16: 02-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f15	37	291	1033	1066	1113	1231	1412	5/5
BSifeg	27(92)	116(254)	56(63)	55(56)	54(52)	71(80)	∞ 2e4	0/15
BSif	22(2)	77(80)	80(90)	81(78)	79(84)	112(110)	∞ 2e4	0/15
BSqi	3.3(5)	49(69)	45(59)	44(54)	42(47)	50(84)	64(31)	3/15
BSrr	4.2(12)	47(65)	44(21)	55(54)	54(60)	107(50)	192(194)	1/15
CMA-CSA	1.1(1)	1.4(0.6)	1.5(2)	1.6(2)	1.6(2)	1.5 (1)	1.4 (1)	15/15
CMA-MSR	0.86(0.3)	2.3 (0.9)	2.6 (1)	2.7 (2)	2.7 (2)	2.6 (2)	2.4 (1)	15/15
CMA-TPA	1.5(0.7)	3.8(2)	2.3 (3)	2.5 (2)	2.4(2)	2.3 (2)	2.2 (0.7)	15/15
GP1-CMAES	1.3(2)	2.8 (3)	1.6 (4)	1.6(2)	1.6 (3)	1.5(2)	1.7(2)	3/15
GP5-CMAES	0.75(0.4)	1.6(2)	0.81(0.7)	0.93(1)	0.90 (0.4)	0.83 (0.9)	0.90 (0.8)	5/15
IPOPCMAv3p	1.3 (1)	2.3 (2)	2.2 (1)	2.2 (3)	2.1 (3)	1.9 (1)	1.7(1)	3/15
LHD-10xDef	2.2 (2)	∞	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	0.90 (0.6)	∞	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	1.4(0.7)	2.4 (4)	1.4(0.7)	∞	∞	∞	∞ 100	0/15
RF1-CMAES	1.9 (7)	5.5(5)	7.0(8)	6.8(5)	∞	∞	$\infty 506$	0/15
RF5-CMAES	6.1(7)	24(17)	∞	∞	∞	∞	$\infty 506$	0/15
Sifeg	1.7(4)	31(23)	37(106)	36(48)	35(42)	32(57)	30(33)	5/15
Sif	1.7 (0.6)	35(67)	27(47)	26(33)	26(29)	37(40)	89(109)	2/15
Srr	1.6 (0.4)	29(16)	39(62)	38(78)	37(60)	44(44)	86(71)	2/15

Table 17: 02-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f16	9.1	50	174	326	358	409	538	15/15
BSifeg	3.2(4)	18(63)	32(54)	46(50)	57(33)	149(63)	257(410)	2/15
BSif	3.0(2)	8.6(56)	29(33)	37(51)	45(80)	150(206)	249(199)	2/15
BSqi	2.9 (2)	5.9(2)	28(49)	41(92)	72(131)	142(112)	251(199)	2/15
BSrr	3.8(0.7)	6.9(21)	20(56)	36(82)	55(63)	146(169)	161(192)	3/15
CMA-CSA	10(4)	5.9(10)	3.0 (3)	2.0(2)	2.3 (1)	2.4 (3)	2.0 (0.9)	15/15
CMA-MSR	13(36)	11(12)	10(14)	5.4(7)	5.2(4)	4.9(6)	4.0(5)	15/15
CMA-TPA	2.9 (4)	4.2(3)	3.9(7)	2.5 (2)	2.7 (4)	2.8 (4)	2.3 (2)	15/15
GP1-CMAES	3.4(2)	6.4(8)	8.5(17)	6.8(4)	6.5(5)	5.9(5)	$\infty 506$	0/15
GP5-CMAES	8.2(9)	14(24)	4.8(6)	5.4(3)	6.7(8)	∞	$\infty 506$	0/15
IPOPCMAv3p	2.4 (0.7)	3.9(3)	2.8 (3)	2.1(2)	2.9 (5)	3.2 (4)	2.6 (3)	5/15
LHD-10xDef	3.1(4)	3.1 (3)	8.5(15)	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	2.2 (1)	2.1 (3)	2.6 (2)	∞	∞	∞	∞ 100	0/15
RAND-2xDef	2.6 (5)	1.2(1)	1.9 (1)	∞	∞	∞	∞ 100	0/15
RF1-CMAES	2.1(2)	8.1(5)	12(12)	11(10)	20(12)	18(18)	14(20)	1/15
RF5-CMAES	4.3(2)	10(20)	12(23)	∞	∞	∞	$\infty 502$	0/15
Sifeg	2.3 (1)	14(49)	21(23)	31(53)	33(62)	69(54)	89(98)	5/15
Sif	2.3 (1)	27(85)	29(114)	34(81)	35(55)	89(93)	242(338)	2/15
Srr	2.3 (1)	17(45)	21(30)	19(15)	37(47)	102(185)	153(149)	3/15

Table 18: 02-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f17	2.7	61	133	275	396	1086	1657	5/5
BSifeg	2.2 (2)	6.2(3)	48(125)	59(52)	130(68)	∞	∞ 2e4	0/15
BSif	2.2 (0.8)	35(64)	37(45)	73(60)	160(187)	∞	∞ 2e4	0/15
BSqi	2.2 (2)	27(18)	33(15)	41(72)	64(67)	∞	∞ 2e4	0/15
BSrr	2.2 (2)	32(9)	78(116)	88(128)	102(75)	∞	∞ 2e4	0/15
CMA-CSA	3.1(1)	2.0(5)	2.0(1)	1.5(1)	1.6 (1)	1.8 (1)	1.4 (1)	15/15
CMA-MSR	20(4)	4.6(5)	3.3(3)	2.6 (1)	2.2 (1)	1.9(0.9)	1.5(0.6)	15/15
CMA-TPA	3.6(4)	1.1(0.5)	2.1 (3)	2.0(2)	2.0 (1)	1.8(0.3)	1.4(0.7)	15/15
GP1-CMAES	3.8(4)	4.2(5)	5.1(6)	5.8(6)	18(43)	∞	$\infty 506$	0/15
GP5-CMAES	7.6(13)	5.6(5)	5.1(6)	5.8(2)	9.0(11)	∞	$\infty 508$	0/15
IPOPCMAv3p	2.5 (3)	3.0(7)	3.1 (7)	2.6 (2)	2.8 (2)	∞	$\infty 506$	0/15
LHD-10xDef	1.8(1)	1.3 (1)	11(8)	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	1.5(2)	1.1(2)	5.3(3)	∞	∞	∞	∞ 100	0/15
RAND-2xDef	1.9(2)	0.69(0.6)	3.5(6)	∞	∞	∞	∞ 100	0/15
RF1-CMAES	2.6 (5)	3.8(9)	6.5(4)	8.5(12)	9.2(9)	∞	$\infty 506$	0/15
RF5-CMAES	50(49)	16(19)	55(29)	∞	∞	∞	∞ 502	0/15
Sifeg	2.2(2)	1.9 ₍₃₎	6.6(10)	18(27)	34(55)	∞	∞ 2e4	0/15
Sif	2.2(2)	4.1(6)	7.9(14)	10(11)	45(62)	264(369)	∞ 2e4	0/15
Srr	2.2(2)	1.8(5)	3.8(5)	22(12)	31(19)	∞	∞ 2e4	0/15

Table 19: 02-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f18	19	134	666	1249	1708	2438	2858	15/15
BSifeg	0.77 (0.3)	121(140)	137(252)	∞	∞	∞	∞ 2e4	0/15
BSif	0.78(0.1)	149(135)	209(265)	∞	∞	∞	∞ 2e4	0/15
BSqi	0.77 (0.2)	123(77)	74(51)	∞	∞	∞	∞ 2e4	0/15
BSrr	0.76(0.1)	113(106)	135(113)	∞	∞	∞	∞ 2e4	0/15
CMA-CSA	1.5(2)	3.9(4)	1.3(0.7)	0.94 (0.9)	0.78(0.5)	1.1(0.5)	1.1(1)	15/15
CMA-MSR	5.0(1)	5.8(8)	1.7(1)	1.2(1.0)	1.0(0.4)	1.1(2)	1.3(2)	15/15
CMA-TPA	1.7 (1)	3.8(8)	1.3(2)	0.91 (0.4)	0.78(0.3)	1.0(0.7)	1.1(0.7)	15/15
GP1-CMAES	2.7 (8)	5.4(7)	2.5 (5)	6.0(8)	4.4(3)	∞	$\infty 506$	0/15
GP5-CMAES	13(11)	7.1(5)	∞	∞	∞	∞	$\infty 502$	0/15
IPOPCMAv3p	1.3 (1.0)	3.4(6)	1.8 (3)	1.4(0.6)	2.2 (3)	∞	$\infty 506$	0/15
LHD-10xDef	1.9(2)	2.7 (3)	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	1.3(0.5)	1.3(0.8)	2.2 (2)	∞	∞	∞	∞ 100	0/15
RAND-2xDef	1.1 (0.4)	2.0(2)	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	1.4(0.6)	8.4(7)	∞	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	7.1(6)	12(14)	∞	∞	∞	∞	$\infty 502$	0/15
Sifeg	0.88(0.7)	90(134)	94(104)	∞	∞	∞	∞ 2e4	0/15
Sif	0.86(0.8)	141(233)	85(252)	∞	∞	∞	∞ 2e4	0/15
Srr	0.88(0.8)	148(258)	125(105)	233(160)	∞	∞	∞ 2e4	0/15

Table 20: 02-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f19	1	1	26	216	227	252	276	15/15
BSifeg	4.7(3)	23(23)	4.0 (3)	15(15)	70(31)	533(655)	∞ 2e4	0/15
BSif	4.7(4)	22(16)	4.2(2)	33(49)	117(240)	234(280)	1041(654)	1/15
BSqi	4.7(4)	23(29)	3.7 (3)	35(69)	66(98)	245(205)	1027(1907)	1/15
BSrr	4.7(4)	21(30)	3.6 (3)	28(31)	124(154)	351(350)	∞ 2e4	0/15
CMA-CSA	5.5(5)	29(48)	21(31)	13(19)	13(12)	17(14)	15 (10)	15/15
CMA-MSR	4.5(4)	31(32)	12(16)	13(11)	18(14)	32(13)	126(191)	13/15
CMA-TPA	3.3 (5)	38(50)	6.2(9)	6.2 (6)	7.1(5)	7.9 (6)	7.7 (3)	15/15
GP1-CMAES	5.6(5)	34(30)	11(9)	16(18)	16(24)	∞	$\infty 506$	0/15
GP5-CMAES	4.0(2)	164(181)	17(16)	16(26)	16(18)	29 (30)	∞ 504	0/15
IPOPCMAv3p	5.2(3)	29(38)	14(22)	34(40)	∞	∞	$\infty 506$	0/15
LHD-10xDef	4.1(3)	35(36)	18(13)	6.9 (10)	∞	∞	∞ 100	0/15
LHD-2xDefa	3.9 (3)	41(24)	8.3(14)	∞	∞	∞	∞ 100	0/15
RAND-2xDef	3.7 (4)	42(54)	16(17)	6.6 (5)	∞	∞	∞ 100	0/15
RF1-CMAES	8.6(5)	46(89)	19(35)	10(4)	15(11)	∞	$\infty 506$	0/15
RF5-CMAES	6.6(6)	51(102)	12(5)	∞	∞	∞	∞ 504	0/15
Sifeg	5.9(8)	20 (20)	6.8(6)	31(46)	61(69)	245(352)	539(471)	2/15
Sif	5.8(4)	20 (15)	6.2(5)	25(21)	116(237)	339(240)	∞ 2e4	0/15
Srr	5.8(8)	19 (18)	5.1(4)	28(44)	110(110)	231(277)	∞ 2e4	0/15

Table 21: 02-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f20	3.7	61	365	366	366	370	375	15/15
BSifeg	15(14)	62(101)	19(14)	20(16)	21(24)	23(16)	36(21)	12/15
BSif	16(1)	141(230)	30(55)	32(28)	40(27)	56(66)	80(82)	8/15
BSqi	13(7)	34(39)	13(8)	14(34)	15(25)	18(41)	28(23)	12/15
BSrr	14(38)	40(125)	26(38)	26(52)	27(2)	29(89)	34(51)	11/15
CMA-CSA	2.8(2)	5.5 (6)	8.2(10)	9.2(10)	10 (7)	10 (10)	10 (6)	15/15
CMA-MSR	2.1(2)	12(8)	28(28)	45(23)	70(24)	98(32)	102(246)	15/15
CMA-TPA	4.3(4)	19(27)	13(11)	15(17)	16(19)	17(15)	17(14)	15/15
GP1-CMAES	2.0(2)	8.2(11)	4.2(5)	4.3(4)	6.2 (4)	6.3 (4)	9.5(10)	2/15
GP5-CMAES	2.1(2)	13(21)	9.3(13)	9.4(11)	9.4(12)	9.3(6)	9.4(25)	2/15
IPOPCMAv3p	2.3(2)	25(29)	20(21)	20(13)	20(22)	20(33)	20(23)	1/15
LHD-10xDef	3.4(2)	12(9)	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	2.4 (1)	25(21)	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	2.4(2)	7.7 (8)	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	2.3 (3)	19(26)	∞	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	35(75)	40(76)	20(16)	∞	∞	∞	∞ 504	0/15
Sifeg	4.9(1)	36(52)	11(12)	12(11)	13(13)	20(20)	32(52)	13/15
Sif	5.0(6)	44(44)	18(20)	19(19)	20(23)	25(16)	35(23)	13/15
Srr	4.0(5)	36(162)	16(27)	16(21)	17(26)	22(19)	37(54)	11/15

Table 22: 02-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f21	1.7	51	174	276	290	324	330	15/15
BSifeg	2.1(2)	25(77)	26(35)	17(38)	17(56)	19(33)	34(57)	11/15
BSif	2.1(2)	90(101)	38(86)	28(36)	30(87)	40(67)	48(61)	9/15
BSqi	2.1(2)	19(64)	32(39)	21(54)	21(22)	23(47)	39(88)	11/15
BSrr	2.1(2)	41(1)	38(115)	25(73)	24(35)	24(31)	35(42)	11/15
CMA-CSA	1.5 (0.9)	2.6 (6)	3.3(6)	3.0(4)	3.4(3)	3.2(5)	3.3 (5)	15/15
CMA-MSR	1.9 (1)	11(26)	120(97)	82(71)	229(152)	315(315)	309(1069)	10/15
CMA-TPA	1.5(0.8)	59(189)	49(162)	32(4)	62(3)	131(104)	136(458)	13/15
GP1-CMAES	1.8 (3)	10(12)	3.8(8)	3.1(2)	3.1(0.9)	2.9 (3)	4.6(7)	4/15
GP5-CMAES	1.5(2)	8.4(6)	5.4(7)	4.3(6)	5.2(7)	4.8(4)	6.8(10)	3/15
IPOPCMAv3p	1.6(2)	3.6(6)	4.7(6)	5.4(5)	5.2(3)	4.8(9)	4.8(10)	4/15
LHD-10xDef	1.4 (1)	1.0(0.7)	0.68 (0.4)	0.68(1)	1.2(0.7)	∞	∞ 100	0/15
LHD-2xDefa	1.4(0.9)	0.58(0.6)	0.34 (0.2)	0.38 (0.3)	0.77 (0.3)	2.3(2)	∞ 100	0/15
RAND-2xDef	1.5(0.6)	0.72 (0.3)	0.32 (0.3)	0.41(0.1)	0.44 (0.4)	1.1(2)	∞ 100	0/15
RF1-CMAES	1.2(0.6)	16(15)	19(23)	12(8)	11(12)	10(9)	10(20)	2/15
RF5-CMAES	1.7 (1)	4.2(3)	6.9(7)	7.9(5)	7.6(6)	6.9(10)	11(15)	2/15
Sifeg	2.1 (1)	77(130)	55(87)	35(52)	35(63)	36(76)	42(32)	10/15
Sif	2.1(2)	91(161)	59(84)	38(60)	38(51)	36(36)	45(69)	10/15
Srr	2.1(2)	78(67)	65(75)	48(85)	46(116)	43(26)	62(106)	8/15

Table 23: 02-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f22	5.1	27	168	218	249	289	306	15/15
BSifeg	2.2(4)	23(10)	94(179)	150(439)	196(286)	∞	∞ 2e4	0/15
BSif	2.0 (1)	61(23)	80(47)	263(229)	230(171)	∞	∞ 2e4	0/15
BSqi	2.7(2)	24(4)	91(149)	154(212)	235(194)	∞	∞ 2e4	0/15
BSrr	2.5 (1)	50(117)	85(70)	151(188)	144(263)	971(727)	∞ 2e4	0/15
CMA-CSA	2.2 (3)	16(50)	14(37)	12(2)	10(6)	15(3)	15(3)	15/15
CMA-MSR	2.3 (4)	21(26)	18(9)	75(250)	74(48)	115(347)	115(1)	13/15
CMA-TPA	1.2(0.6)	13(5)	7.6(15)	65(218)	63(385)	111(363)	105(348)	13/15
GP1-CMAES	8.6(27)	6.0(10)	6.8(21)	5.3(3)	4.7(5)	5.6(4)	5.7 (7)	4/15
GP5-CMAES	1.4 (1)	4.0(4)	2.1(2)	1.7(2)	1.6(2)	2.3 (3)	4.1(3)	5/15
IPOPCMAv3p	1.5(2)	4.6(6)	4.2(3)	4.2(8)	3.9 (2)	3.6(4)	3.6 (2)	6/15
LHD-10xDef	1.1(0.6)	1.9(2)	0.81(0.5)	1.7(1)	6.0(7)	∞	∞ 100	0/15
LHD-2xDefa	1.6 (1)	1.5(2)	1.9(2)	2.1(2)	6.0(7)	∞	∞ 100	0/15
RAND-2xDef	1.0(0.5)	1.6(2)	0.58 (0.5)	1.0(0.5)	1.4(2)	5.1 (5)	∞ 100	0/15
RF1-CMAES	1.1(0.7)	15(21)	12(29)	9.5(10)	8.5(7)	7.3(7)	24(15)	1/15
RF5-CMAES	1.7(2)	19(18)	12(14)	16(21)	∞	∞	$\infty 502$	0/15
Sifeg	2.2 (2)	16(58)	84(113)	144(191)	182(172)	969(588)	∞ 2e4	0/15
Sif	2.3 (1)	28(93)	103(171)	133(277)	360(641)	966(758)	∞ 2e4	0/15
Srr	2.1(2)	29(82)	89(203)	159(194)	266(237)	969(675)	∞ 2e4	0/15

Table 24: 02-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f23	7.8	193	234	263	299	348	379	15/15
BSifeg	1.9(2)	1.5(2)	22(19)	1073(2479)	∞	∞	∞ 2e4	0/15
BSif	1.9(2)	1.7 ₍₁₎	34(42)	253(191)	∞	∞	∞ 2e4	0/15
BSqi	1.8(1)	2.2 (2)	36(35)	340(238)	∞	∞	∞ 2e4	0/15
BSrr	2.1(2)	2.1(2)	24(52)	504(612)	947(1104)	816(908)	748(1069)	1/15
CMA-CSA	3.2(3)	4.5(10)	10 (16)	9.3(12)	8.5(8)	7.8 (6)	7.6 (6)	15/15
CMA-MSR	2.2(2)	7.7(14)	9.3(9)	9.0(7)	10 (11)	9.2(5)	9.3(9)	15/15
CMA-TPA	1.9(2)	8.8(8)	21(47)	19(24)	18(34)	17 (5)	16(27)	15/15
GP1-CMAES	2.2 (3)	18(31)	32(36)	29(47)	∞	∞	$\infty 506$	0/15
GP5-CMAES		2.5(4)	3.0 (2)	4.6(7)	4.2 (6)	∞	$\infty 502$	0/15
IPOPCMAv3p	0.99 (3)	6.8(7)	16(13)	14(31)	∞	∞	$\infty 506$	0/15
LHD-10xDef	1.5(2)	∞	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	2.4 (3)	∞	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	2.0(2)	7.7(10)	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	1.8(1)	8.7(8)	∞	∞	∞	∞	$\infty 502$	0/15
RF5-CMAES	1.5(2)	4.9(5)	31(49)	∞	∞	∞	∞ 504	0/15
Sifeg	1.9 (1)	3.3(3)	59(79)	1118(981)	∞	∞	∞ 2e4	0/15
Sif	1.8(2)	3.5(2)	93(132)	∞	∞	∞	∞ 2e4	0/15
Srr	1.9(2)	3.4(3)	57(62)	1111(1904)	∞	∞	∞ 2e4	0/15

Table 25: 02-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f24	18	857	8515	23399	24113	24721	24721	5/15
BSifeg	1.7 (1)	46(77)	∞	∞	∞	∞	∞ 2e4	0/15
BSif	1.7(0.4)	32(19)	31(26)	∞	∞	∞	∞ 2e4	0/15
BSqi	2.7 (5)	25(47)	30 (18)	11 (9)	∞	∞	∞ 2e4	0/15
BSrr	1.9(2)	34(43)	30(29)	∞	∞	∞	∞ 2e4	0/15
CMA-CSA	1.4(0.8)	161(203)	153(212)	∞	∞	∞	$\infty~2e5$	0/15
CMA-MSR	4.5(23)	94(36)	37(53)	57(71)	55 (56)	54(47)	54(34)	2/15
CMA-TPA	1.5(1)	94(178)	154(194)	57 (86)	118 (116)	115(120)	115(122)	1/15
GP1-CMAES	3.2(0.8)	4.0 (6)	0.88(1)	∞	∞	∞	$\infty 506$	0/15
GP5-CMAES		2.7 (1)	0.84(1.0)	∞	∞	∞	$\infty 506$	0/15
IPOPCMAv3p	1.1 (1.0)	8.6(11)	∞	∞	∞	∞	$\infty 506$	0/15
LHD-10xDef	1.7(2)	∞	∞	∞	∞	∞	∞ 100	0/15
LHD-2xDefa	2.1(1)	∞	∞	∞	∞	∞	∞ 100	0/15
RAND-2xDef	1.4(2)	∞	∞	∞	∞	∞	∞ 100	0/15
RF1-CMAES	0.88(1.0)	8.5(14)	∞	∞	∞	∞	$\infty 506$	0/15
RF5-CMAES	3.2(7)	8.4(12)	∞	∞	∞	∞	$\infty 508$	0/15
Sifeg	1.5 ₍₁₎	26(13)	∞	∞	∞	∞	∞ 2e4	0/15
Sif	1.5(1)	35(41)	31(21)	∞	∞	∞	∞ 2e4	0/15
Srr	1.5(2)	31(36)	32(46)	∞	∞	∞	∞ 2e4	0/15

Table 26: 03-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

 CCCII CIIID (CII	ar arrive		TITO TENTO I	•				
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	3.6	8.0	8.0	8.0	8.0	8.0	8.0	15/15
BSifeg	1.5(1)	1.8(0.3)	1.9(0.2)	2.0 (0.2)	2.1(0.3)	2.1 (0.2)	2.1(0.2)	15/15
BSif	1.5 ₍₁₎	1.8(0.3)	1.9(0.3)	2.0 (0.2)	2.1(0.2)	2.1 (0.3)	2.1 (0.3)	15/15
BSqi	1.5(1)	1.8(0.2)	1.9(0.3)	2.0 (0.2)	2.1(0.2)	2.1 (0.3)	2.1 (0.3)	15/15
BSrr	1.5(1)	1.8(0.3)	1.9(0.2)	2.0 (0.2)	2.1(0.3)	2.1 (0.3)	2.1 (0.3)	15/15
CMA-CSA	5.6(4)	6.1(5)	13(5)	18(5)	24(3)	36(3)	46(4)	15/15
CMA-MSR	2.4(2)	5.8(7)	16(6)	27(6)	38(8)	57(6)	74(7)	15/15
CMA-TPA	3.4(2)	7.9(5)	14(4)	19(4)	23(6)	37(15)	49(18)	15/15
GP1-CMAES	3.2(2)	4.4(3)	7.3(2)	10(2)	13(2)	19(4)	27(5)	15/15
GP5-CMAES	2.8 (1)	2.7 (0.8)	3.7(0.8)	4.6(0.7)	5.6(1)	7.7(1)	25(19)	15/15
IPOPCMAv3p	2.8(2)	6.5(4)	12(3)	18(5)	23(6)	34(4)	46(3)	15/15
LHD-10xDef	3.6(4)	9.3(3)	10(0.2)	12(1)	13(0.9)	66(98)	∞ 150	0/15
LHD-2xDefa	2.2 (2)	2.4 (0.3)	3.2(0.6)	4.7(0.8)	6.3(2)	∞	∞ 150	0/15
RAND-2xDef	2.3(2)	2.5 (0.3)	3.6(0.9)	5.0(1)	6.5(0.3)	276(239)	∞ 150	0/15
RF1-CMAES	2.3(2)	4.8(2)	8.4(2)	14(5)	21(10)	60(14)	102(127)	10/15
RF5-CMAES	11(2)	22(39)	94(147)	306(461)	1331(968)	∞	∞ 753	0/15
Sifeg	1.5 (1)	1.9(0.3)	2.4 (0.3)	3.5(0.4)	4.2(0.8)	5.8(0.9)	6.8(0.4)	15/15
Sif	1.5(2)	1.9(0.2)	2.4 (0.2)	3.7(0.9)	4.7(0.9)	5.9(0.4)	6.8(0.4)	15/15
Srr	1.5(2)	1.9(0.2)	2.4 (0.2)	3.1(0.2)	3.7(0.2)	5.0(0.2)	6.2(0.3)	15/15

Table 27: 03-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	$1e\overset{\circ}{0}$	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f2	38	42	43	44	45	47	48	15/15
BSifeg	0.65 (0.1)	0.69 (0.2)	0.76 (0.3)	0.84(0.2)	0.98 (0.1)	1.0(0.1)	1.2(0.2)	15/15
BSif	0.66 (0.1)	0.73 (0.2)	0.79 (0.3)	0.86(0.2)	0.99 (0.2)	1.0(0.1)	1.2 (0.1)	15/15
BSqi	0.60 (0.0)	0.59 (0.1)	0.60(0.1)	0.66(0.1)	0.75(0.1)	2 0.83 (0.1)	*3 0.96 (0.2)	*15/15
BSrr	0.66(0.2)	0.68(0.2)	0.71(0.1)	0.79 (0.2)	0.92 (0.1)	1.0(0.2)	1.2(0.2)	15/15
CMA-CSA	9.3(3)	12(3)	13(3)	14(2)	15(2)	16(2)	17(1)	15/15
CMA-MSR	10(2)	12(3)	13(3)	15(2)	16(3)	18(3)	21(2)	15/15
CMA-TPA	8.4(5)	12(4)	13(3)	14(3)	15(3)	17(3)	18(2)	15/15
GP1-CMAES	8.0(4)	10(5)	12(3)	13(2)	14(5)	16(9)	28(24)	8/15
GP5-CMAES	3.4(0.8)	4.1(1)	4.6(0.8)	5.0(2)	5.3(2)	5.6(0.8)	13(12)	11/15
IPOPCMAv3p	13(9)	25(8)	41(90)	64(69)	∞	∞	∞ 751	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	279(393)	261(267)	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 760	0/15
Sifeg	1.1(0.2)	1.1(0.4)	1.2(0.2)	1.3(0.3)	1.4(0.2)	1.4(0.1)	1.6(0.2)	15/15
Sif	1.1(0.2)	1.1(0.2)	1.2(0.2)	1.2(0.2)	1.3(0.2)	1.4(0.2)	1.5(0.2)	15/15
Srr	1.0(0.2)	1.0(0.1)	1.1(0.1)	1.2(0.1)	1.3(0.1)	1.4(0.1)	1.6(0.1)	15/15

Table 28: 03-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f3	38	822	830	835	842	847	853	15/15
BSifeg	0.80(0.5)	0.12 (0.0)	0.18(0.0)	0.18(0.1)	0.18(0.1)	0.18(0.0)	0.18(0.1)	15/15
BSif	0.83(0.7)	0.12 (0.0)	0.18(0.0)	0.18(0.1)	0.18(0.1)	0.18(0.1)	0.18(0.1)	15/15
BSqi	0.80(0.6)	0.12 (0.0)	0.17 (0.1)	0.17(0.1)	0.17(0.1)	0.17 (0.1)	0.17 (0.0)	15/15
BSrr	0.74(0.5)	0.12 (0.0)	0.16(0.0)	0.17 (0.1)	0.17 (0.0)	0.17 (0.1)	0.18(0.1)	15/15
CMA-CSA	8.1(13)	2.9 (4)	8.7(5)	9.4(6)	10(5)	10(8)	10(8)	15/15
CMA-MSR	8.0(10)	3.5(3)	10(8)	11(5)	11(18)	12(16)	13(7)	15/15
CMA-TPA	3.5(4)	2.9 (2)	13(6)	13(10)	13(9)	14(10)	14(9)	15/15
GP1-CMAES	4.7(6)	1.6(2)	4.3(4)	6.4(4)	6.5(6)	6.5(5)	13(17)	1/15
GP5-CMAES	2.4(2)	13(16)	∞	∞	∞	∞	∞ 760	0/15
IPOPCMAv3p	5.1(2)	4.1(2)	13(19)	13(15)	13(24)	13(15)	13(11)	1/15
LHD-10xDef	5.1(7)	2.7 (3)	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	2.1(0.7)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	3.0(2)	2.7 (1)	2.7 (4)	∞	∞	∞	∞ 150	0/15
RF1-CMAES	8.5(18)	∞	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	26(26)	∞	∞	∞	∞	∞	∞ 760	0/15
Sifeg	0.98(0.4)	0.14(0.0)	0.18(0.1)	0.19(0.1)	0.21 (0.0)	0.23 (0.0)	0.23 (0.0)	15/15
Sif	0.99(0.5)	0.15(0.1)	0.18(0.1)	0.19(0.0)	0.21 (0.0)	0.23 (0.0)	0.23 (0.0)	15/15
Srr	0.99(0.5)	0.12 (0.0)	0.17 (0.1)	0.18(0.0)	0.19 (0.0)	0.22 (0.0)	0.23 (0.0)	15/15

Table 29: 03-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f4	40	808	866	921	952	1015	1044	15/15
BSifeg	1.4(0.5)	0.18(0.1) 0.28(0.2	2) 0.27 (0	0.2) 0.2	7 (0.1) 0.27 (0.1) 0.31(0.1	15/15
BSif	1.4 (0.6)	0.18(0.1) 0.29 (0.1	1) 0.28 (0	0.1) 0.28	8 (0.1) 0.28 (0.1) 0.31(0.1	15/15
BSqi	1.4 (0.6)	0.20(0.1) 0.26 (0.1	1) 0.25 (0	0.1) 0.2	5 (0.1) 0.25 (0.1) 0.31(0.1	15/15
BSrr	1.4(0.4)	0.18(0.0) 0.23 (0.1	1) 0.22 (0	0.1) 0.2 3	3 (0.1) 0.26 (0.1) 0.34(0.1	15/15
CMA-CSA	5.7(7)	359(572)	4871(5997)	4579(5558) 4431(59	32) 4157(549)	2) 4043(3894)	1/15
CMA-MSR	8.5(10)	632(874)	∞	∞	∞	∞	$\propto 3e5$	0/15
CMA-TPA	7.2(3)	269(390)	5064(8878)	∞	∞	∞	$\propto 3e5$	0/15
GP1-CMAES	8.2(12)	∞	∞	∞	∞	∞	∞ 751	0/15
GP5-CMAES	8.3(7)	∞	∞	∞	∞	∞	∞ 755	0/15
IPOPCMAv3p	11(10)	14(12)	∞	∞	∞	∞	∞ 751	0/15
LHD-10xDef	11(7)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	18(30)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	7.6(8)	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	124(144)	∞	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	267(140)	∞	∞	∞	∞	∞	∞ 753	0/15
Sifeg	1.2(0.5)	0.26(0.1) 0.44 (0.2	2) 0.55 (0	0.2) 0.70	0 (0.2) 0.99 (0.2) 1.0 (0.2)	15/15
Sif	1.2(0.5)	0.26(0.1) 0.47(0.2	2) 0.58 (0	0.2) 0.72	2(0.2) 0.97 (
Srr	1.2 (0.3)	0.26 (0.1	0.41 (0.2	2) 0.52 (0	0.2) 0.64	1 (0.1) 0.96 (0.2) 1.1 (0.2)	15/15

Table 30: 03-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f5	6.6	6.6	6.6	6.6	6.6	6.6	6.6	15/15
BSifeg	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.1)	15/15
BSif	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSqi	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSrr	1.4 (0.1)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.1)	1.4(0.2)	15/15
CMA-CSA	3.0(2)	5.1(4)	5.5(4)	5.5(2)	5.5(2)	5.5(2)	5.5(2)	15/15
CMA-MSR	2.8(1)	4.9(2)	4.9(2)	4.9(3)	4.9(3)	4.9(1)	4.9(2)	15/15
CMA-TPA	2.5 (2)	3.7(2)	3.9(2)	3.9(1)	3.9(1)	3.9(2)	3.9(2)	15/15
GP1-CMAES	2.4(2)	17(14)	24(8)	24(32)	24(60)	24(10)	24(57)	14/15
GP5-CMAES	2.2(1)	3.8(2)	4.6(4)	4.7(4)	4.7(1)	4.7(2)	4.7(4)	15/15
IPOPCMAv3p	4.1(7)	7.9(10)	10(10)	10(8)	10(8)	10(11)	10(10)	15/15
LHD-10xDef	10(4)	12(0.2)	13(0.4)	13(0.4)	13(0.4)	13(0.4)	13(0.4)	15/15
LHD-2xDefa	2.5 ₍₀₎	2.9 (0.4)	3.1(0.8)	3.1(0.8)	3.1(0.8)	3.1(0.8)	3.1(0.8)	15/15
RAND-2xDef	2.6 (0)	2.9 (0.1)	3.1(0.8)	3.1(0.4)	3.1(0.2)	3.1(0.4)	3.1(0.8)	15/15
RF1-CMAES	2.9 (2)	18(28)	19(40)	19(40)	19(40)	19(31)	19(22)	15/15
RF5-CMAES	16(35)	101(192)	150(232)	150(167)	150(181)	150(123)	150(257)	7/15
Sifeg	1.4 (0.1)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
Sif	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
Srr	1.4 (0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15

Table 31: 03-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

1 6	la a			1 0	1 0			.,
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f6	34	56	90	117	149	215	265	15/15
BSifeg	146(334)	413(407)	562(810)	1057(744)	1339(1627)	∞	∞ 3e4	0/15
BSif	209(149)	609(573)	768(1013)	1729(2219)	∞	∞	∞ 3e4	0/15
BSqi	231(650)	329(1004)	342(358)	486(535)	672(341)	∞	∞ 3e4	0/15
BSrr	114(322)	504(381)	574(386)	811(787)	1387(1449)	∞	∞ 3e4	0/15
CMA-CSA	1.5(0.6)	2.6 (0.7)	2.3 (0.5)	2.6 (0.7)	2.7 (0.6)	2.7 (0.4)	2.9 (0.5)	15/15
CMA-MSR	2.8 (1)	3.8(2)	3.5(0.9)	3.7(1)	3.7(1)	3.7(0.5)	3.9(0.3)	15/15
CMA-TPA	3.1(1)	3.5 (1)	3.1 (0.6)	3.2(0.7)	3.1(0.7)	2.9 (0.5)	3.0(0.6)	15/15
GP1-CMAES	2.7(2)	4.9(9)	14(10)	97(195)	∞	∞	∞ 751	0/15
GP5-CMAES	2.5 (3)	15(20)	124(109)	∞	∞	∞	∞ 760	0/15
IPOPCMAv3p	2.8(2)	3.7 (1)	3.4 (1)	3.5 (0.9)	3.3 (0.8)	3.6 (2)	∞ 751	0/15
LHD-10xDef	4.2(5)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	4.8(4)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	3.1(2)	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	13(14)	58(67)	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	42(39)	∞	∞	∞	∞	∞	∞ 760	0/15
Sifeg	81(172)	293(459)	456(270)	598(246)	847(547)	1979(2668)	∞ 3e4	0/15
Sif	106(32)	325(189)	1006(1749)	1688(2500)	∞	∞	$\propto 3e4$	0/15
Srr	75(68)	188(161)	418(575)	528(508)	578(859)	1820(2334)	∞ 3e4	0/15

Table 32: 03-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f7	11	65	342	464	482	482	535	15/15
BSifeg	49(45)	302(621)	131(298)	201(457)	901(986)	901(469)	812(1268)	1/15
BSif	61(273)	315(496)	199(517)	425(325)	∞	∞	∞ 3e4	0/15
BSqi	167(1)	280(365)	206(244)	285(334)	442(520)	442(602)	398(595)	2/15
BSrr	131(708)	317(364)	197(148)	442(601)	∞	∞	∞ 3e4	0/15
CMA-CSA	2.8(2)	1.8(0.8)	0.75 (0.8)	0.75 (0.6)	0.93(0.6)	0.93(0.6)	0.91(0.4)	15/15
CMA-MSR	3.5(3)	1.7 (0.8)	1.2(0.9)	1.3 (1)	1.3 (1)	1.3 (1)	1.4 (1)	15/15
CMA-TPA	3.8(4)	3.0(3)	1.0(0.8)	0.87 (0.5)	0.99 (0.7)	0.99 (0.7)	1.0(0.5)	15/15
GP1-CMAES	2.0(2)	1.2(1)	0.89(0.8)	0.98(1)	1.4(0.9)	1.4(2)	1.7(0.5)	9/15
GP5-CMAES	2.0(2)	0.96(0.8)	0.49(0.2)	0.69(0.6)	1.2(1)	1.2(0.6)	1.6(2)	9/15
IPOPCMAv3p	4.9(2)	2.8 (2)	1.2(2)	1.1(2)	1.1(0.9)	1.1(0.6)	1.2(0.3)	12/15
LHD-10xDef	3.7(3)	2.5 (0.7)	3.2(4)	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	1.9 ₍₁₎	1.7(3)	1.8(3)	∞	∞	∞	∞ 150	0/15
RAND-2xDef	2.4 (1)	1.2(0.5)	3.2(2)	4.7(4)	4.5(7)	4.5(3)	∞ 150	0/15
RF1-CMAES	7.5(16)	4.2(8)	2.9 (2)	7.5(5)	11(8)	11(28)	21(10)	1/15
RF5-CMAES	10(9)	26(37)	∞	∞	∞	∞	∞ 755	0/15
Sifeg	37(134)	165(442)	132(152)	205(358)	417(313)	417(626)	376(972)	2/15
Sif	61(269)	204(349)	115(81)	276(184)	419(579)	419(452)	378(266)	2/15
Srr	97(359)	249(564)	116(119)	286(266)	∞	∞	∞ 3e4	0/15

Table 33: 03-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f8	27	45	152	179	188	198	208	15/15
BSifeg	7.4(0.7)	99(211)	398(268)	1164(990)	2257(2220)	∞	∞ 3e4	0/15
BSif	5.7(12)	114(150)	266(301)	∞	∞	∞	$\propto 3e4$	0/15
BSqi	6.3(14)	178(223)	789(928)	2198(2090)	∞	∞	$\propto 3e4$	0/15
BSrr	3.7(2)	210(390)	595(607)	716(797)	1048(1364)	∞	$\propto 3e4$	0/15
CMA-CSA	3.3(2)	6.3 (4)	3.3 (0.6)	3.5 (1)	3.7 (0.9)	4.0 (1)	4.3(0.6)	15/15
CMA-MSR	3.2(2)	10(4)	4.5(3)	4.5 (3)	4.7 (2)	5.1 (2)	5.5 (2)	15/15
CMA-TPA	3.7(3)	8.3(5)	3.7(4)	3.9 (2)	4.1 (1)	4.5 (2)	4.7 (2)	15/15
GP1-CMAES	2.6(2)	13(17)	13(8)	19(19)	28(37)	28(28)	53(81)	1/15
GP5-CMAES	2.2(1)	6.5 (16)	4.4(3)	8.9(11)	18(11)	26(29)	25(33)	2/15
IPOPCMAv3p	3.4(1)	7.9 (6)	5.5(5)	6.1(4)	7.9(7)	19(17)	27(24)	2/15
LHD-10xDef	8.8(11)	50(64)	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	2.7(2)	12(12)	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	2.7 ₍₄₎	9.0(7)	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	8.3(15)	113(167)	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	31(56)	238(190)	∞	∞	∞	∞	∞ 753	0/15
Sifeg	1.2(0.6)	67(78)	123(68)	254(119)	∞	∞	$\propto 3e4$	0/15
Sif	1.4 (1)	156(331)	261(200)	2121(1139)	2017(2925)	∞	∞ 3e4	0/15
Srr	1.2(1)	123(288)	211(278)	655(730)	1959(3566)	∞	∞ 3e4	0/15

Table 34: 03-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f9	21	65	127	149	159	169	178	15/15
BSifeg	14(5)	152(96)	∞	∞	∞	∞	∞ 3e4	0/15
BSif	12(21)	947(860)	3287(6988)	∞	∞	∞	∞ 3e4	0/15
BSqi	8.5(11)	107(97)	1510(1681)	1291(1421)	2519(4021)	∞	∞ 3e4	0/15
BSrr	8.0(9)	109(115)	3044(5576)	∞	∞	∞	∞ 3e4	0/15
CMA-CSA	3.8(2)	4.8(4)	4.0 (3)	4.2(2)	4.5(2)	4.8(1)	5.1 (2)	15/15
CMA-MSR	5.8(3)	8.5(7)	6.1(3)	6.0 (3)	5.9 (2)	6.3 (3)	7.0 (3)	15/15
CMA-TPA	4.3(2)	6.9(6)	5.4 (3)	5.4 (3)	5.5 (2)	5.8 (2)	6.1 (2)	15/15
GP1-CMAES	3.5(2)	15(7)	26(17)	36(22)	33(54)	64(68)	61(61)	1/15
GP5-CMAES	2.4(1)	5.3 (9)	8.8(11)	12(19)	21(27)	20(18)	19(21)	3/15
IPOPCMAv3p	3.5(3)	4.7 (2)	5.1 (3)	8.3(6)	13(10)	16(15)	31(26)	2/15
LHD-10xDef	10(9)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	2.5 (0.5)	17(18)	18(8)	∞	∞	∞	∞ 150	0/15
RAND-2xDef	2.6 (0.8)	11(10)	18(16)	∞	∞	∞	∞ 150	0/15
RF1-CMAES	8.1(12)	35(52)	84(78)	∞	∞	∞	∞ 751	0/15
RF5-CMAES	37(47)	77(101)	∞	∞	∞	∞	∞ 753	0/15
Sifeg	1.9(0.6)	75(91)	1591(1466)	∞	∞	∞	∞ 3e4	0/15
Sif	1.8(1)	152(343)	3106(4404)	∞	∞	∞	∞ 3e4	0/15
Srr	1.5 (1)	116(735)	905(636)	∞	∞	∞	∞ 2e4	0/15

Table 35: 03-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f10	114	152	168	180	194	218	242	15/15
BSifeg	806(845)	1211(1521)	1156(1333)	1075(1088)	∞	∞	∞ 1e4	0/15
BSif	784(799)	1253(3056)	∞	∞	∞	∞	∞ 1e4	0/15
BSqi	442(487)	725(1620)	∞	∞	∞	∞	∞ 2e4	0/15
BSrr	733(603)	1155(1080)	∞	∞	∞	∞	∞ 1e4	0/15
CMA-CSA	3.3 (1)	3.0 (1)	3.0 (0.9)	3.2 (0.6)	3.3(0.4)	3.3(0.7)	3.4(0.3)	15/15
CMA-MSR	3.8(1)	3.4(1)	3.5(0.9)	3.7(0.9)	3.8(0.9)	4.0(0.9)	4.4(0.9)	15/15
CMA-TPA	3.3(1)	3.1(0.7)	3.4(0.6)	3.5(0.4)	3.5(0.6)	3.5(0.6)	3.5(0.4)	15/15
GP1-CMAES	2.5 (1)	2.8 (0.8)	3.1 (0.6)	3.1 (0.3)	3.3 (2)	3.8(1)	4.9(3)	9/15
GP5-CMAES	1.2(0.3)*	2 1.1 (0.3)	1.2(0.2)	1.3(0.4)	1.2(0.3)	1.2(0.4)	1.9 (1)	14/15
IPOPCMAv3p	3.9(3)	4.4(3)	6.1(5)	10(13)	19(21)	∞	∞ 751	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	47(28)	∞	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 753	0/15
Sifeg	286(264)	467(531)	∞	∞	∞	∞	∞ 4486	0/15
Sif	285(272)	482(489)	∞	∞	∞	∞	∞ 4482	0/15
Srr	161(135)	194(327)	414(463)	∞	∞	∞	∞ 3648	0/15

Table 36: 03-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f11	67	105	227	263	277	302	327	15/15
BSifeg	124(270)	400(373)	∞	∞	∞	∞	∞ 1e4	0/15
BSif	163(158)	420(920)	879(1096)	∞	∞	∞	∞ 1e4	0/15
BSqi	218(410)	1149(764)	∞	∞	∞	∞	∞ 2e4	0/15
BSrr	147(250)	537(857)	810(1127)	∞	∞	∞	∞ 1e4	0/15
CMA-CSA	4.6(2)	4.5 (1)	2.5 (0.5)	2.3 (0.5)	2.3 (0.4)	2.5 (0.4)	2.5 (0.4)	15/15
CMA-MSR	5.8(4)	4.6(0.9)	2.5 (0.4)	2.4 (0.3)	2.5 (0.5)	2.8(0.5)	3.1(0.3)	15/15
CMA-TPA	4.8(3)	4.5(1)	2.5 (0.4)	2.4 (0.5)	2.5 (0.5)	2.6(0.3)	2.6(0.2)	15/15
GP1-CMAES	4.8(3)	4.3(0.9)	2.3 (0.4)	2.2 (0.6)	2.4 (0.9)	3.1(1)	5.5(5)	6/15
GP5-CMAES	2.1(0.6)	1.8(0.3)	0.95 (0.2)	0.90 (0.4)	0.91 (0.2)	0.92 (0.3)	1.6 (1)	12/15
IPOPCMAv3p		12(9)	16(12)	42(19)	40(68)	∞	∞ 751	0/15
LHD-10xDef	33(42)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	16(22)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	11(7)	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	46(84)	100(116)	46(36)	∞	∞	∞	∞ 751	0/15
RF5-CMAES	34(48)	∞	∞	∞	∞	∞	∞ 753	0/15
Sifeg	51(110)	358(320)	∞	∞	∞	∞	∞ 7533	0/15
Sif	76(102)	364(528)	∞	∞	∞	∞	∞ 7579	0/15
Srr	68(187)	306(288)	227(458)	∞	∞	∞	∞ 6563	0/15

Table 37: 03-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f12	65	168	338	401	445	696	790	15/15
BSifeg	59(25)	48(27)	75(173)	171(236)	332(369)	∞	∞ 8987	0/15
BSif	62(169)	80(54)	108(108)	381(444)	∞	∞	∞ 9690	0/15
BSqi	70(40)	71(98)	107(67)	488(1280)	440(315)	∞	∞ 1e4	0/15
BSrr	61(283)	46(68)	44(119)	152(106)	∞	∞	∞ 7634	0/15
CMA-CSA	6.7 (3)	5.1(3)	3.8 (5)	4.0 (4)	4.0 (4)	3.7 (5)	3.8 (7)	15/15
CMA-MSR	10(4)	6.7(7)	4.6(2)	4.6 (3)	4.7 (1)	3.9 (2)	4.0 (4)	15/15
CMA-TPA	7.6 (6)	5.0 (7)	3.2 (2)	3.0 (0.6)	3.0 (2)	2.4 (2)	2.7 (1.0)	15/15
GP1-CMAES	5.8(2)	4.3 (3)	3.4 (2)	5.2(6)	8.2(11)	∞	∞ 751	0/15
GP5-CMAES	7.7(15)	4.9(5)	6.7(11)	8.1(11)	12(10)	∞	∞ 753	0/15
IPOPCMAv3p	7.7(8)	5.9(7)	15(13)	28(28)	∞	∞	∞ 751	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	11(7)	13(15)	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	11(10)	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	14(17)	20(15)	33(46)	28(44)	25(26)	∞	∞ 751	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 753	0/15
Sifeg	8.4(18)	20(69)	36(34)	132(184)	∞	∞	∞ 3495	0/15
Sif	10(47)	20(62)	26(51)	∞	∞	∞	∞ 3248	0/15
Srr	14(25)	19(22)	35(45)	62(34)	112(205)	∞	∞ 3419	0/15

Table 38: 03-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

Cacii tiiis vai	ac aiviac	a by aiiii	CIDIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f13	49	85	108	136	215	281	365	15/15
BSifeg	291(273)	554(408)	1551(1340)	∞	∞	∞	$\propto 3e4$	0/15
BSif	300(394)	706(627)	1552(2828)	2703(2600)	∞	∞	∞ 3e4	0/15
BSqi	183(81)	407(673)	1052(672)	2770(3413)	∞	∞	$\propto 3e4$	0/15
BSrr	170(431)	662(787)	1568(1938)	1261(1323)	∞	∞	$\infty~2e4$	0/15
CMA-CSA	4.5(3)	4.5(2)	4.4 (1)	4.2(0.8)	3.1(0.8)	3.4(0.4)	3.2(0.4)	15/15
CMA-MSR	4.0(0.9)	4.2 (1)	4.7(1)	4.8(0.6)	3.6(0.6)	3.7 (0.5)	3.6(0.4)	15/15
CMA-TPA	3.5(1)	3.6(0.8)	4.3(0.8)	4.6(0.3)	3.6(0.5)	3.5(0.3)	3.4(0.9)	15/15
GP1-CMAES	5.1(5)	5.7(6)	11(7)	18(13)	51(31)	∞	∞ 751	0/15
GP5-CMAES	1.2(0.4)	2.6 (3)	3.4 (1)	3.4(2)	4.0(6)	∞	∞ 753	0/15
IPOPCMAv3p	7.3(14)	6.7(8)	8.6(5)	11(10)	13(10)	∞	∞ 751	0/15
LHD-10xDef	4.0(3)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	2.7 (2)	4.6(4)	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	2.8 (3)	26(25)	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	12(12)	60(60)	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	39(55)	126(76)	∞	∞	∞	∞	∞ 760	0/15
Sifeg	217(436)	479(862)	1445(1754)	2428(1905)	∞	∞	∞ 2e4	0/15
Sif	140(318)	776(1278)	1351(1177)	2339(1854)	∞	∞	∞ 2e4	0/15
Srr	131(220)	633(773)	924(1264)	1200(1416)	∞	∞	∞ 2e4	0/15

Table 39: 03-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f14	2.2	17	28	43	71	110	194	15/15
BSifeg	1.8(2)	4.7(5)	4.3(4)	32(20)	1324(3102)	∞	$\propto 3e4$	0/15
BSif	1.8(2)	5.3(11)	4.9(5)	187(232)	6262(1e4)	∞	$\propto 3e4$	0/15
BSqi	1.8(2)	3.9(4)	3.3(7)	15(18)	1018(851)	∞	$\propto 3e4$	0/15
BSrr	1.8(2)	5.4(10)	4.5(3)	28(40)	776(638)	∞	$\propto 3e4$	0/15
CMA-CSA	3.8(3)	2.3 (2)	3.7(2)	4.1(2)	4.4(1)	5.1(0.7)	4.2(0.5)	15/15
CMA-MSR	2.5(2)	3.1(2)	4.4(2)	5.8(1)	5.1(0.7)	5.6(0.8)	4.5(0.8)	15/15
CMA-TPA	4.4(4)	3.4(4)	4.4(0.8)	4.2(2)	3.9(0.7)	4.9 (1.0)	4.1(0.6)	15/15
GP1-CMAES	3.9(2)	2.5 (1)	2.7 (1)	3.5 (1)	6.2(2)	23(47)	∞ 751	0/15
GP5-CMAES	3.3(3)	1.8(2)	1.8(0.4)	2.2 (0.9)	3.6 (2)	31(70)	∞ 753	0/15
IPOPCMAv3p	2.2 (0.7)	3.1(2)	3.5(1)	3.9(0.7)	4.3(1)	8.9(6)	∞ 751	0/15
LHD-10xDef	1.5(2)	4.1(2)	3.8(0.5)	8.2(9)	∞	∞	∞ 150	0/15
LHD-2xDefa	1.9 (0.9)	1.4(0.4)	1.7(0.4)	24(30)	∞	∞	∞ 150	0/15
RAND-2xDef	2.3 (3)	1.4(0.4)	1.9 ₍₁₎	12(10)	∞	∞	∞ 150	0/15
RF1-CMAES	2.9(4)	7.6(8)	14(13)	24(41)	70(153)	∞	∞ 751	0/15
RF5-CMAES	1.9 (1)	24(41)	40(37)	71(44)	150(326)	∞	∞ 753	0/15
Sifeg	1.8(2)	1.6(0.7)	2.1 (2)	12(13)	616(1029)	∞	$\propto 3e4$	0/15
Sif	1.8 (1)	1.6 (1)	2.4(2)	21(45)	2761(4211)	∞	∞ 3e4	0/15
Srr	1.8 (1)	1.4(0.5)	1.6(0.8)	12(12)	1289(1363)	∞	$\propto 3e4$	0/15

Table 40: 03-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f15	121	1372	6285	8282	8429	8787	9041	15/15
BSifeg	50(85)	84(72)	30(25)	23(20)	23(30)	22(29)	46(78)	1/15
BSif	62(106)	291(178)	∞	∞	∞	∞	∞ 3e4	0/15
BSqi	84(96)	60(61)	63(53)	48(62)	47(76)	45(24)	45(85)	1/15
BSrr	80(141)	47(46)	31(36)	23(30)	23(23)	22(22)	22(22)	2/15
CMA-CSA	1.2(0.7)	1.3 (1)	0.83 (0.8)	0.64(0.5)	0.65 (0.6)	0.65 (0.5)	0.66 (0.5)	15/15
CMA-MSR	2.7 (5)	1.8(2)	0.72 (0.8)	0.56 (0.4)	0.57 (0.3)	0.58 (0.3)	0.60 (0.4)	15/15
CMA-TPA	0.99 (0.6)	1.6 (1)	1.1(0.4)	0.91 (0.5)	0.91 (0.4)	0.91 (0.5)	0.92 (0.3)	15/15
GP1-CMAES	2.1 (0.5)	1.7(2)	1.7(2)	1.3(0.9)	1.3(1)	1.3 (1)	1.2(1.0)	1/15
GP5-CMAES	0.74(0.5)	3.8(3)	∞	∞	∞	∞	∞ 760	0/15
IPOPCMAv3p	0.97 (0.2)	1.4 (1)	∞	∞	∞	∞	∞ 751	0/15
LHD-10xDef	1.6 (1)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	1.1(0.6)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	0.72 (0.7)	1.6 (2)	0.35 (0.5)	∞	∞	∞	∞ 150	0/15
RF1-CMAES	1.0(0.3)	∞	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	4.7(8)	∞	∞	∞	∞	∞	∞ 760	0/15
Sifeg	32(62)	41(24)	21(17)	16(8)	16(25)	24(22)	47(47)	1/15
Sif	51(103)	88(124)	∞	∞	∞	∞	∞ 3e4	0/15
Srr	25(40)	33(15)	∞	∞	∞	∞	∞ 3e4	0/15
	•							

Table 41: 03-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f16	41	319	582	789	1864	3204	3361	15/15
BSifeg	1.6 (1)	20(55)	74(114)	163(219)	108(126)	∞	$\propto 3e4$	0/15
BSif	2.0(2)	24(35)	57(54)	168(238)	∞	∞	$\propto 3e4$	0/15
BSqi	2.0(1)	26(56)	63(141)	164(250)	217(215)	∞	$\propto 3e4$	0/15
BSrr	1.5(2)	19(33)	144(173)	161(141)	107(112)	∞	$\propto 3e4$	0/15
CMA-CSA	1.7(2)	3.1(1)	3.5 (4)	2.7 (3)	1.2(1)	0.74 (0.8)	0.75 (0.6)	15/15
CMA-MSR	6.7(19)	7.1(14)	5.3(4)	4.4(2)	3.0(4)	1.9(2)	1.9(0.4)	15/15
CMA-TPA	3.2(5)	4.8(10)	3.6(3)	3.9(7)	1.7(1)	1.1(2)	1.1 (1)	15/15
GP1-CMAES	1.3(0.6)	3.1(5)	3.2 (6)	6.6(5)	2.8(2)	1.7(1)	∞ 751	0/15
GP5-CMAES	0.78(0.4)	3.6(4)	4.1(4)	4.4(9)	2.9 (6)	3.4(3)	∞ 760	0/15
IPOPCMAv3p	1.6 (2)	1.7 (1)	1.8(2)	2.0 (4)	1.1(2)	0.66 (0.3)	1.1(0.9)	3/15
LHD-10xDef	0.99(1)	1.2(0.8)	3.8(2)	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	1.0(0.8)	1.00(1)	3.7(4)	∞	∞	∞	∞ 150	0/15
RAND-2xDef	1.4 (1)	1.0(1)	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	1.1 (1.0)	3.5(2)	4.0(7)	4.3(7)	∞	∞	∞ 751	0/15
RF5-CMAES	2.8 (8)	4.6(13)	9.1(11)	∞	∞	∞	∞ 760	0/15
Sifeg	1.1(0.6)	10(17)	28(34)	265(246)	112(71)	∞	$\propto 3e4$	0/15
Sif	1.0 (0.6)	12(34)	36(51)	91(86)	111(181)	∞	∞ 3e4	0/15
Srr	1.2 (1.0)	19(31)	47(70)	257(399)	∞	∞	$\propto 3e4$	0/15

Table 42: 03-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f17	3.6	78	282	491	1134	2347	3469	15/15
BSifeg	3.6(7)	47(275)	304(478)	879(1188)	384(212)	∞	∞ 3e4	0/15
BSif	2.9(2)	54(147)	143(192)	267(163)	385(441)	∞	∞ 3e4	0/15
BSqi	3.0 (7)	69(115)	73(82)	180(223)	187(152)	∞	∞ 3e4	0/15
BSrr	5.2(2)	52(3)	116(193)	248(181)	374(325)	∞	∞ 3e4	0/15
CMA-CSA	2.3 (3)	1.2(0.5)	0.94 (0.2)	1.3(0.6)	0.78 (0.9)	0.86(0.4)	0.81(0.5)	15/15
CMA-MSR	3.1(2)	3.3(4)	2.4(2)	1.9 (1)	0.97 (0.6)	1.1(0.4)	1.0(0.6)	15/15
CMA-TPA	4.5(8)	1.4(0.4)	0.85 (0.2)	0.78 (0.3)	0.77 (0.6)	1.2 (1)	1.2(0.8)	15/15
GP1-CMAES	2.3 (5)	2.4 (3)	1.5(2)	3.0 (2)	3.2(3)	∞	∞ 751	0/15
GP5-CMAES	3.2(3)	4.2(6)	3.5(3)	22(32)	∞	∞	∞ 753	0/15
IPOPCMAv3p	5.4(7)	1.6(0.8)	0.94 (0.2)	0.92 (0.6)	0.74 (0.6)	4.8(5)	∞ 751	0/15
LHD-10xDef	2.8 (4)	1.7 (0.6)	8.0(13)	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	2.4(2)	1.4(0.9)	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	2.6(2)	1.0(0.3)	2.6 (2)	∞	∞	∞	∞ 150	0/15
RF1-CMAES	4.1(4)	6.2(9)	8.2(13)	22(10)	∞	∞	∞ 751	0/15
RF5-CMAES	22(35)	12(18)	40(46)	∞	∞	∞	∞ 760	0/15
Sifeg	3.8(7)	47(124)	48(36)	193(220)	∞	∞	∞ 3e4	0/15
Sif	4.7(2)	29(105)	69(47)	268(233)	∞	∞	∞ 3e4	0/15
Srr	3.7(2)	15(20)	51(175)	184(186)	378(238)	∞	∞ 3e4	0/15

Table 43: 03-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f18	40	145	1289	3084	3523	4738	5527	15/15
BSifeg	1.6 (1)	132(207)	324(202)	∞	∞	∞	$\propto 3e4$	0/15
BSif	1.3 (3)	210(264)	149(251)	∞	∞	∞	$\propto 3e4$	0/15
BSqi	1.1(0.4)	127(146)	332(229)	∞	∞	∞	$\propto 3e4$	0/15
BSrr	17(118)	72(89)	151(232)	∞	∞	∞	$\propto 3e4$	0/15
CMA-CSA	1.4 (0.9)	3.1 (9)	1.2(1)	0.71 (0.6)	0.81(0.7)	0.85 (0.5)	0.95 (0.5)	15/15
CMA-MSR	1.4(0.7)	5.1(14)	1.1(1)	0.73 (0.6)	0.96(1)	0.96 (0.8)	1.0(0.5)	15/15
CMA-TPA	1.7(0.9)	4.2(7)	1.0(0.9)	0.55 (0.5)	0.75 (0.6)	0.85 (0.5)	0.93 (0.4)	15/15
GP1-CMAES	1.3(1)	3.7(5)	2.6 (3)	3.6(2)	∞	∞	∞ 751	0/15
GP5-CMAES	5.6(5)	3.3(4)	2.5 (3)	3.5(6)	∞	∞	∞ 760	0/15
IPOPCMAv3p	1.7 (1)	4.2(4)	2.0 (3)	1.2(1)	1.6 (2)	∞	∞ 751	0/15
LHD-10xDef	2.1 (0.7)	15(15)	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	0.93(0.7)	2.4 (3)	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	0.97 (0.4)	2.7 (3)	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	7.7(23)	12(22)	4.1(7)	∞	∞	∞	∞ 751	0/15
RF5-CMAES	5.1(7)	16(13)	∞	∞	∞	∞	∞ 760	0/15
Sifeg	1.5(2)	74(96)	93(165)	∞	∞	∞	∞ 3e4	0/15
Sif	3.7(2)	110(115)	142(191)	∞	∞	∞	∞ 3e4	0/15
Srr	1.2(2)	90(100)	93(105)	∞	∞	∞	$\propto 3e4$	0/15

Table 44: 03-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

CCCCII CIIID	restate est .	1404 o, 41.	LII OII OII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f19	1	1	109	6764	7367	7399	7441	15/15
BSifeg	8.3(6)	220(292)	17 (30)	61(84)	∞	∞	∞ 3e4	0/15
BSif	8.3(7)	242(374)	36(38)	30(40)	57(117)	∞	∞ 3e4	0/15
BSqi	8.3(6)	253(216)	45(83)	10 (9)	55(113)	∞	∞ 3e4	0/15
BSrr	8.3(6)	237(109)	33(28)	66(40)	∞	∞	∞ 3e4	0/15
CMA-CS	A 11(6)	352(550)	39(29)	2.1 (3)	2.4(2)	2.5 (2)	2.5 (1)	15/15
CMA-MS	SR 8.8(7)	251(339)	96(103)	46(33)	94(151)	122(160)	122(103)	4/15
CMA-TF	PA 8.7(6)	172(383)	41(55)	2.3 (3)	2.8 (4)	2.9 (4)	2.9 (4)	15/15
GP1-CM	AES 6.1 (8)	154(191)	48(48)	∞	∞	∞	∞ 753	0/15
GP5-CM	AES 10(11)	282(468)	104(142)	∞	∞	∞	∞ 762	0/15
IPOPCM.	Av3p 9.4(10)	189 (395)	∞	∞	∞	∞	∞ 751	0/15
LHD-10x	Def $8.9(8)$	522(528)	∞	∞	∞	∞	∞ 150	0/15
LHD-2xD	efa 8.1 (8)	229(126)	∞	∞	∞	∞	∞ 150	0/15
RAND-2x	Def 8.3(13)	455(675)	∞	∞	∞	∞	∞ 150	0/15
RF1-CMA	AES 10(10)	210(242)	24(18)	∞	∞	∞	∞ 751	0/15
RF5-CMA	AES 8.1(9)	456(378)	∞	∞	∞	∞	∞ 755	0/15
Sifeg	8.7(7)	289(466)	19 (14)	63(62)	59(19)	∞	∞ 3e4	0/15
Sif	8.7(5)	338(282)	36(48)	63(70)	∞	∞	∞ 3e4	0/15
Srr	8.7(8)	433(128)	21 (8)	19(22)	∞	∞	$\propto 3e4$	0/15

Table 45: 03-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f20	8.3	385	2291	2398	2481	2573	2776	15/15
BSifeg	4.9(2)	13(5)	17(22)	16(13)	16(12)	16(29)	18 (7)	7/15
BSif	3.8(1)	17(17)	87(80)	84(177)	81(89)	80(51)	76(82)	2/15
BSqi	3.0(4)	11(16)	31(31)	30(53)	29(34)	37(29)	35(41)	4/15
BSrr	2.3 (1)	14(13)	19(13)	19(19)	18(10)	24(25)	23(35)	6/15
CMA-CSA	2.3(2)	4.5(5)	3.6 (4)	3.7(4)	3.6 (4)	3.7(2)	3.5(2)	15/15
CMA-MSR	2.8 (2)	13(19)	151(261)	269(230)	261(267)	253(192)	235(160)	5/15
CMA-TPA	3.8(3)	7.6(6)	10 (4)	10 (10)	10 (7)	10 (16)	10 (5)	15/15
GP1-CMAES	2.7 (3)	3.7 (6)	∞	∞	∞	∞	∞ 751	0/15
GP5-CMAES	1.7(1)	2.0 (0.7)	∞	∞	∞	∞	∞ 760	0/15
IPOPCMAv3p	3.5(2)	4.5(4)	∞	∞	∞	∞	∞ 751	0/15
LHD-10xDef	4.2(4)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	2.1 (1)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	2.0 (1)	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	8.4(19)	5.9(9)	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	38(20)	∞	∞	∞	∞	∞	∞ 760	0/15
Sifeg	2.9(2)	7.3(21)	19(31)	18(25)	17(19)	21(23)	25(56)	5/15
Sif	3.2(2)	10(26)	20(20)	20(32)	19(17)	22(21)	26(23)	5/15
Srr	2.6 (1)	9.0(35)	17 (20)	16(18)	16 (15)	15(17)	20(21)	6/15

Table 46: 03-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f21	5.9	184	425	439	458	469	482	15/15
BSifeg	1.6 (1.0)	106(226)	55(92)	55(44)	60(14)	74(77)	148(121)	5/15
BSif	1.6 (1)	104(144)	114(165)	145(107)	143(113)	192(257)	265(202)	3/15
BSqi	1.6 (2)	167(286)	120(54)	118(182)	114(100)	142(157)	188(441)	4/15
BSrr	1.6 (2)	141(171)	145(177)	142(136)	137(173)	141(156)	268(553)	3/15
CMA-CSA	1.3 (1)	6.7(9)	5.9(2)	6.5(8)	6.8(10)	7.0 (12)	7.1 (8)	15/15
CMA-MSR	2.1 (1)	17(39)	154(143)	251(355)	240(490)	235(322)	229(154)	11/15
CMA-TPA	1.6 (2)	2.1(2)	17(2)	20(51)	20(19)	59(34)	58(159)	14/15
GP1-CMAES	0.93(1)	17(29)	25(28)	24(22)	23(25)	23(24)	∞ 751	0/15
GP5-CMAES	1.4(0.8)	4.0(8)	5.6(5)	5.5(8)	5.3(8)	7.2(2)	22(35)	1/15
IPOPCMAv3p	1.9(2)	4.4(5)	7.2(8)	11(21)	11(10)	11(12)	11 (13)	2/15
LHD-10xDef	1.7(2)	0.75 (0.6)	0.66 (0.3)	1.2(0.6)	1.6(2)	4.8(6)	∞ 150	0/15
LHD-2xDefa	1.3 (1.0)	1.2(0.8)	1.7(1)	2.5(2)	4.9 (3)	∞	∞ 150	0/15
RAND-2xDef	1.2(0.3)	1.0(0.9)	1.2(0.9)	2.5 (2)	∞	∞	∞ 150	0/15
RF1-CMAES	2.1(2)	5.0(7)	5.0(7)	5.0(6)	5.0 (3)	6.8 (7)	7.1(5)	3/15
RF5-CMAES	1.9 (1)	8.0(10)	13(19)	26(27)	∞	∞	∞ 760	0/15
Sifeg	1.9(2)	111(135)	77(156)	76(84)	74(62)	113(157)	159(221)	5/15
Sif	2.1(2)	106(186)	142(141)	138(87)	134(165)	147(164)	258(295)	3/15
Srr	1.9 (2)	163(233)	195(265)	190(292)	183(345)	184(160)	408(421)	2/15

Table 47: 03-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f22	18	170	354	362	384	401	414	15/15
BSifeg	7.6(6)	87(143)	73(65)	144(290)	240(220)	335(812)	1079(2735)	1/15
BSif	10(8)	219(227)	245(229)	373(474)	1094(854)	1047(688)	1019(956)	1/15
BSqi	4.8(7)	130(80)	108(67)	210(165)	359(491)	526(772)	$\propto 3e4$	0/15
BSrr	3.9(11)	146(183)	187(180)	344(907)	525(430)	1068(3017)	1058(1808)	1/15
CMA-CSA	1.4(0.9)	11(6)	227(199)	363(386)	399(407)	704(744)	682(873)	7/15
CMA-MSR	2.0 (3)	5.9(8)	36(11)	107(295)	207(190)	198(542)	193(193)	12/15
CMA-TPA	1.8 (3)	19(13)	267(524)	305(305)	424(604)	645(1186)	1334(2798)	5/15
GP1-CMAES	1.7(2)	3.8(5)	4.6(2)	6.4(4)	6.2 (7)	8.9(22)	13 (23)	2/15
GP5-CMAES	4.2(2)	10(16)	10(18)	10 (9)	9.2 (12)	27(23)	26 (32)	1/15
IPOPCMAv3p	2.1 (2)	10(7)	15(12)	14(7)	14 (19)	13 (16)	13 (14)	2/15
LHD-10xDef	1.7 (1)	0.88(0.7	') 3.0 (3)	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	1.4 (0.6)	2.2 (2)	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	0.97(0.7	1.1 (0.6)	3.1 (6)	∞	∞	∞	∞ 150	0/15
RF1-CMAES	1.7(1)	5.5(10)	14(14)	29(47)	28(16)	27(17)	∞ 751	0/15
RF5-CMAES	6.9(17)	11(12)	15(24)	31(29)	∞	∞	∞ 753	0/15
Sifeg	1.8 (3)	61(32)	77(110)	105(122)	192(156)	1058(1496)	∞ 3e4	0/15
Sif	3.2(2)	67(91)	181(112)	377(318)	1100(800)	1117(784)	∞ 3e4	0/15
Srr	1.5 (0.7)	66(86)	50(46)	84(177)	243(235)	526(715)	$\propto 3e4$	0/15

Table 48: 03-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f23	2.6	407	906	1215	2214	2293	2393	15/15
BSifeg	3.8(5)	1.5 (1)	220(224)	∞	∞	∞	∞ 3e4	0/15
BSif	3.8(4)	2.1 (1)	158(173)	∞	∞	∞	∞ 3e4	0/15
BSqi	3.7(5)	2.1(2)	56(113)	∞	∞	∞	$\propto 3e4$	0/15
BSrr	3.9(5)	1.6 (2)	486(265)	∞	∞	∞	$\propto 3e4$	0/15
CMA-CSA	3.3 (9)	6.2(4)	14(55)	11 (11)	6.1 (6)	6.1(14)	6.0 (6)	15/15
CMA-MSR	2.6(2)	4.2(6)	3.3 (3)	2.7 (2)	1.6 (1)	1.7(0.9)	1.8(1)	15/15
CMA-TPA	4.2(3)	9.4(6)	13 (31)	11 (8)	5.9 (15)	5.9 (3)	5.9(24)	15/15
GP1-CMAES	3.3 (4)	13(21)	∞	∞	∞	∞	∞ 753	0/15
GP5-CMAES	5.7(6)	1.1(0.9)	2.7 (3)	∞	∞	∞	∞ 753	0/15
IPOPCMAv3p	4.3(3)	6.3(7)	∞	∞	∞	∞	∞ 751	0/15
LHD-10xDef	6.4(8)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	4.0(4)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	4.5(6)	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	5.1(5)	∞	∞	∞	∞	∞	∞ 753	0/15
RF5-CMAES	3.5(4)	8.1(17)	∞	∞	∞	∞	∞ 762	0/15
Sifeg	3.7(4)	2.5 (1.0)	146(180)	∞	∞	∞	∞ 3e4	0/15
Sif	3.7(4)	2.7 (2)	111(119)	∞	∞	∞	∞ 3e4	0/15
Srr	3.7(2)	1.9 (1)	493(415)	∞	∞	∞	∞ 3e4	0/15

Table 49: 03-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f24	97	10391	1.0e5	3.6e5	3.6e5	3.6e5	3.6e5	2/15
BSifeg	4.1(5)	39(37)	∞	∞	∞	∞	$\propto 3e4$	0/15
BSif	4.5(6)	12 (9)	∞	∞	∞	∞	$\propto 3e4$	0/15
BSqi	5.0(6)	39(33)	∞	∞	∞	∞	$\propto 3e4$	0/15
BSrr	3.0(3)	18(35)	∞	∞	∞	∞	$\propto 3e4$	0/15
CMA-CSA	1.8 (3)	116(224)	∞	∞	∞	∞	$\propto 3e5$	0/15
CMA-MSR	2.4 (4)	45(109)	19 (29)	∞	∞	∞	$\propto 3e5$	0/15
CMA-TPA	2.5 (1)	117(95)	∞	∞	∞	∞	$\propto 3e5$	0/15
GP1-CMAES	1.5(1)	∞	∞	∞	∞	∞	∞ 751	0/15
GP5-CMAES	1.5(2)	1.0(2)	∞	∞	∞	∞	∞ 760	0/15
IPOPCMAv3p	2.0 (2)	∞	∞	∞	∞	∞	∞ 751	0/15
LHD-10xDef	11(11)	∞	∞	∞	∞	∞	∞ 150	0/15
LHD-2xDefa	3.5(3)	∞	∞	∞	∞	∞	∞ 150	0/15
RAND-2xDef	11(14)	∞	∞	∞	∞	∞	∞ 150	0/15
RF1-CMAES	2.6 (5)	∞	∞	∞	∞	∞	∞ 751	0/15
RF5-CMAES	6.1(7)	∞	∞	∞	∞	∞	∞ 755	0/15
Sifeg	2.3 (0.3)	8.9(10)	∞	∞	∞	∞	$\propto 3e4$	0/15
Sif	2.4 (2)	18(23)	∞	∞	∞	∞	∞ 3e4	0/15
Srr	1.8 (3)	39(23)	3.9(4)	∞	∞	∞	$\propto 3e4$	0/15

Table 50: 05-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	11	12	12	12	12	12	12	15/15
BSifeg	1.6 (0.4)	1.9(0.2)	2.1 (0.2)	2.2 (0.2)	2.2 (0.2)	2.2 (0.2)	2.2 (0.2)	15/15
BSif	1.6(0.2)	1.9(0.2)	2.1 (0.1)	2.2 (0.2)	2.2 (0.2)	2.2 (0.2)	2.2 (0.0)	15/15
BSqi	1.6 (0.3)	1.9(0.2)	2.1 (0.2)	2.2 (0.2)	2.2 (0.2)	2.2 (0.1)	2.2 (0.2)	15/15
BSrr	1.6(0.2)	1.9(0.2)	2.1 (0.2)	2.2 (0.2)	2.2 (0.2)	2.2 (0.1)	2.2 (0.1)	15/15
CMA-CSA	3.8(2)	10(3)	16(2)	22(4)	28(2)	40(4)	52(5)	15/15
CMA-MSR	3.6(3)	12(3)	21(6)	31(4)	41(5)	62(6)	82(8)	15/15
CMA-TPA	3.2(3)	9.2(3)	14(5)	20(4)	24(4)	36(9)	47(6)	15/15
GP1-CMAES	2.3 (0.8)	6.0(1)	9.1(1.0)	12(2)	15(3)	21(4)	30(4)	15/15
GP5-CMAES	1.7 (0.9)	2.9 (0.7)	3.9(0.7)	5.1(0.4)	6.2(0.6)	8.3(1)	44(19)	14/15
IPOPCMAv3p	2.5 (3)	10(2)	15(4)	21(3)	26(6)	38(6)	51(5)	15/15
LHD-10xDef	5.6(4)	10(0.2)	12(0.7)	13(0.7)	15(1)	∞	∞ 250	0/15
LHD-2xDefa	2.1 (0.2)	3.4(0.6)	4.9(0.9)	8.8(7)	28(31)	∞	∞ 250	0/15
RAND-2xDef	2.0 (1.0)	3.0(0.7)	4.6(0.5)	8.1(3)	64(72)	∞	∞ 250	0/15
RF1-CMAES	2.8 (1.0)	7.5(1)	13(2)	28(6)	51(69)	225(359)	1483(1882)	1/15
RF5-CMAES	2.4 (1)	42(39)	91(73)	1515(1363)	∞	∞	∞ 1252	0/15
Sifeg	1.6(0.4)	2.1(0.2)	2.8 (0.1)	4.0(1.0)	5.0(0.9)	6.7(0.8)	7.8(0.4)	15/15
Sif	1.6 (0.3)	2.1 (0.2)	2.8 (0.2)	4.4(0.9)	5.3(0.8)	6.8(1)	7.7(0.3)	15/15
Srr	1.6(0.4)	2.1(0.2)	2.8(0.2)	3.5(0.1)	4.2(0.2)	5.6(0.2)	6.8(0.3)	15/15

Table 51: 05-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COOL CILD VOI	ac arriaco	1 O., GIIII	CIIDIOII.					
$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f2	83	87	88	89	90	92	94	15/15
BSifeg	0.64(0.3) _{\$\psi 3}	0.66 (0.1)↓	$_{.4}$ 0.72 (0.2) $_{\downarrow}$	30.77(0.2)	3 0.84 (0.1)	0.96 (0.1)	1.0(0.2)	15/15
BSif		0.66 (0.1)					1.0(0.1)	15/15
BSqi	0.45 (0.0) ₁₄	0.46 (0.0)	$_{4}^{\star}$ 0.49 (0.1) $_{1}^{\star}$	${}^{2}_{4}$ 0.54 (0.1)	$\binom{2}{4}$ 0.59 (0.1)	$^{k3}_{4}$ 0.70 (0.1) i	$\binom{2}{4}$ 0.83 (0.1)	15/15
BSrr	0.56(0.2) ₁₄	0.59 (0.1)	$_{4}$ 0.63 (0.1) \downarrow	4 0.72 (0.2)	3 0.79 (0.1)	$\lfloor 20.90 (0.2) \rfloor$	1.0(0.2)	15/15
CMA-CSA	11(2)	13(2)	14(1)	14(1)	15(1)	16(2)	17(2)	15/15
CMA-MSR	12(2)	13(2)	14(2)	15(2)	16(2)	18(3)	20(2)	15/15
CMA-TPA	10(2)	12(3)	14(1)	15(3)	15(2)	17(3)	18(2)	15/15
GP1-CMAES	9.2(4)	15(8)	27(21)	28(33)	33(29)	67(49)	200(130)	1/15
GP5-CMAES	3.8(1)	4.4(1)	5.0(2)	5.3(2)	5.6(1)	6.5(2)	12(8)	11/15
IPOPCMAv3p	26(12)	214(313)	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	0.75 (0.1) \downarrow 2	0.90 (0.2)	0.96 (0.2)	1.1(0.2)	1.1(0.2)	1.3(0.1)	1.3(0.1)	15/15
Sif	0.74(0.2)\pm2	0.96 (0.3)	0.99 (0.3)	1.1(0.2)	1.1(0.2)	1.3(0.1)	1.3(0.1)	15/15
Srr	0.72 (0.1) \downarrow 4	0.81 (0.0)↓	.30.88 (0.1)	0.97 (0.1)	1.1(0.1)	1.2(0.1)	1.4(0.1)	15/15

Table 52: 05-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f3	716	1622	1637	1642	1646	1650	1654	15/15
BSifeg	0.11(0.1)	0.13(0.0)	0.18(0.1)	0.19 (0.1)	0.19 (0.1)	0.19 (0.1)	0.19(0.1)	15/15
BSif	0.11(0.1)	0.14(0.0)	0.19 (0.1)	0.19 (0.1)	0.19 (0.1)	0.19 (0.1)	0.19(0.0)	15/15
BSqi	0.10(0.1)	0.13(0.0)	0.18(0.1)	0.18(0.1)	0.18(0.1)	0.18(0.1)	0.18(0.1)	15/15
BSrr	0.09(0.0)	0.13(0.0)	0.16 (0.0)	0.17 (0.0)	0.17 (0.1)	0.18(0.0)	0.18(0.1)	15/15
CMA-CSA	1.4 (0.9)	32(19)	623(2223)	622(535)	621(381)	619(1066)	618(607)	5/15
CMA-MSR	1.7(2)	5.7(3)	36(14)	36(88)	36(156)	37(85)	38(83)	14/15
CMA-TPA	0.81(1)	9.3(5)	632(993)	630(912)	629(918)	628(1143)	627(1141)	5/15
GP1-CMAES	1.6 (1)	∞	∞	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	2.6 (3)	∞	∞	∞	∞	∞	∞ 1262	0/15
IPOPCMAv3p	1.1 (1.0)	5.5(6)	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	1.0 (1.0)	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	2.5(2)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	0.58(0.4)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	3.0(6)	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	6.1(7)	∞	∞	∞	∞	∞	∞ 1252	0/15
Sifeg	0.13(0.1)	0.14(0.0)	0.16(0.0)	0.18 (0.0)	0.19 (0.0)	0.20 (0.0)	0.21 (0.0)	15/15
Sif	0.13(0.1)	0.15(0.0)	0.17 (0.0)	0.19 (0.0)	0.20 (0.0)	0.20 (0.0)	0.21 (0.0)	15/15
Srr	0.12(0.1)	0.12(0.0)	0.14 (0.0)	0.15 (0.0)	0.16 (0.0)	0.17 (0.0)	0.20 (0.0)	15/15

Table 53: 05-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f4	809	1633	1688	1758	1817	1886	1903	15/15
BSifeg	$0.15(0.0)_{\downarrow 4}$	0.22(0.1)	$_{4}$ 0.38 (0.2)	0.37 (0.1)	0.36(0.1)	0.36 (0.1)	0.38 (0.1)	15/15
BSif	0.15 (0.1) $\downarrow 4$	0.23(0.1)	$_{4}$ 0.37 (0.2)	0.36(0.1)	0.35 (0.1)	0.35 (0.1)	0.37 (0.1)	15/15
BSqi	0.17 (0.1) $\downarrow 4$	0.21(0.1)	$_{4}$ 0.33 (0.1)	0.32 (0.1)	0.31(0.1)	0.31 (0.0)	0.37 (0.1)	15/15
BSrr	0.15 (0.1) $\downarrow 4$	0.21(0.1)	$_{4}$ 0.29 (0.1)	0.29 (0.1)	0.30(0.1)	0.32 (0.1)	0.40(0.1)	15/15
CMA-CSA	2.2 (2)	∞	∞	∞	∞	∞	$\infty~5e5$	0/15
CMA-MSR	2.2 (3)	∞	∞	∞	∞	∞	$\infty~5e5$	0/15
CMA-TPA	2.7 (1)	∞	∞	∞	∞	∞	$\infty~5e5$	0/15
GP1-CMAES	4.4(3)	∞	∞	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 1254	0/15
IPOPCMAv3p	2.5 (2)	∞	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	11(9)	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 1252	0/15
Sifeg	$0.15(0.1)_{\downarrow 4}$	0.26(0.1)	0.44 (0.1)	0.60(0.2)	0.69(0.2)	0.91 (0.1)	0.94 (0.2)	15/15
Sif	0.15 (0.1) $\downarrow 4$	0.27 (0.2)	0.46(0.1)	0.63 (0.2)	0.71 (0.2)	0.92 (0.1)	$0.94_{(0.1)}$	15/15
Srr	0.14(0.0) ₁₄	0.24(0.1)	$_{4}$ 0.40 (0.1)	0.53 (0.2)	0.61(0.2)	0.88(0.1)	$0.94_{(0.1)}$	15/15
		·						

Table 54: 05-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f5	10	10	10	10	10	10	10	15/15
BSifeg	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
BSif	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
BSqi	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
BSrr	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
CMA-CSA	3.6(1)	5.0(2)	5.2(2)	5.2(2)	5.2(2)	5.2(2)	5.2(3)	15/15
CMA-MSR	4.2(2)	5.8(3)	5.9(2)	5.9(3)	5.9(3)	5.9(3)	5.9(3)	15/15
CMA-TPA	4.0(1)	5.0(2)	5.1(2)	5.1(2)	5.1(2)	5.1(2)	5.1(2)	15/15
GP1-CMAES	4.0(4)	15(29)	25(10)	26(36)	26(34)	26(48)	26(23)	15/15
GP5-CMAES	2.8 (0.8)	6.1(4)	6.4(2)	6.4(3)	6.4(3)	6.4(2)	6.4(4)	15/15
IPOPCMAv3p	8.6(5)	17(9)	21(12)	21(18)	21(15)	21(10)	21(21)	15/15
LHD-10xDef	12(0.1)	13(0.3)	13(0.1)	13(0.1)	13(0.2)	13(0)	13(0.1)	15/15
LHD-2xDefa	2.6 (0.2)	3.0(0.3)	3.0(0.5)	3.1(0.5)	3.5(0.7)	3.5(0.6)	3.5(3)	15/15
RAND-2xDef	2.6 (0.1)	3.1(0.1)	3.1(0.1)	3.1(0.2)	3.1(0.2)	3.1(0.1)	3.1(0.2)	15/15
RF1-CMAES	9.0(1)	36(14)	42(35)	44(31)	45(38)	45(27)	45(26)	15/15
RF5-CMAES	15(10)	94(131)	123(139)	124(127)	137(149)	137(203)	137(116)	10/15
Sifeg	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
Sif	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15
Srr	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	1.5(0.1)	15/15

Table 55: 05-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f6	114	214	281	404	580	1038	1332	15/15
BSifeg	77(271)	122(184)	346(215)	∞	∞	∞	∞ $5e4$	0/15
BSif	159(142)	485(648)	2383(1877)	∞	∞	∞	∞ $5e4$	0/15
BSqi	68(7)	108(59)	346(593)	821(966)	1219(2062)	∞	∞ $5e4$	0/15
BSrr	59(154)	107(99)	270(337)	1697(5077)	∞	∞	∞ $5e4$	0/15
CMA-CSA	2.0 (0.8)	1.9(0.4)	2.0 (0.3)	1.8(0.2)	1.5(0.2)	1.2(0.2)	1.1(0.2)	15/15
CMA-MSR	2.5(0.7)	2.0 (0.6)	2.1(0.3)	1.9(0.3)	1.6(0.2)	1.2(0.2)	1.2(0.2)	15/15
CMA-TPA	2.2 (0.8)	1.9(0.4)	1.9(0.3)	1.7(0.5)	1.4(0.3)	1.0(0.1)	1.0(0.1)	15/15
GP1-CMAES	2.5 (0.6)	10(11)	67(88)	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	6.4(11)	∞	∞	∞	∞	∞	∞ 1260	0/15
IPOPCMAv3p	2.1(1)	2.2(0.7)	2.2 (0.6)	1.9(0.4)	1.9 (1)	2.9(5)	∞ 1258	0/15
LHD-10xDef	16(27)	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	9.4(10)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	32(62)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	16(19)	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	37(103)	91(109)	176(271)	858(1186)	1217(1128)	∞	∞ $5e4$	0/15
Sif	76(118)	219(129)	716(875)	∞	∞	∞	∞ 5e4	0/15
Srr	43(174)	55(53)	130(246)	∞	∞	∞	∞ 4e4	0/15

Table 56: 05-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	$1e\overset{\circ}{0}$	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f7	24	324	1171	1451	1572	1572	1597	15/15
BSifeg	735(603)	754(436)	∞	∞	∞	∞	∞ $5e4$	0/15
BSif	565(980)	1037(973)	∞	∞	∞	∞	∞ $5e4$	0/15
BSqi	376(1139)	726(616)	∞	∞	∞	∞	∞ $5e4$	0/15
BSrr	263(541)	1050(1401)	∞	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	4.8(2)	1.3(1)	0.87 (0.9)	0.80(0.7)	0.80(0.8)	0.80(0.7)	0.86(0.7)	15/15
CMA-MSR	5.3(4)	1.1(1)	0.94 (0.6)	0.90 (0.2)	0.90 (0.4)	0.90 (0.6)	0.92 (0.2)	15/15
CMA-TPA	4.1(2)	0.98 (0.7)	0.93 (0.5)	0.86(0.2)	0.82(0.4)	0.82 (0.4)	0.83 (0.4)	15/15
GP1-CMAES	3.9(4)	1.4 (1)	0.80(0.5)	2.2 (3)	3.7(4)	3.7(3)	5.6(7)	2/15
GP5-CMAES	2.2 (0.9)	0.82(1.0)	0.61(0.8)	∞	∞	∞	∞ 1260	0/15
IPOPCMAv3p	5.1(3)	1.5(0.9)	1.6 (3)	1.8 (1)	2.6 (3)	2.6 (5)	3.5(2)	3/15
LHD-10xDef	6.2(4)	5.5(5)	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	5.0(4)	11(9)	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	4.1(3)	11(13)	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	11(22)	10(19)	∞	∞	∞	∞	∞ 1260	0/15
RF5-CMAES	20(42)	17(19)	∞	∞	∞	∞	∞ 1270	0/15
Sifeg	183(177)	276(191)	620(355)	∞	∞	∞	∞ $5e4$	0/15
Sif	128(248)	204(329)	∞	∞	∞	∞	∞ 5e4	0/15
Srr	60(23)	306(220)	621(850)	502(591)	∞	∞	∞ 5e4	0/15

Table 57: 05-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f8	73	273	336	372	391	410	422	15/15
BSifeg	24(29)	94(180)	594(491)	541(942)	1721(2049)	∞	∞ $5e4$	0/15
BSif	77(114)	74(47)	364(279)	∞	∞	∞	∞ $5e4$	0/15
BSqi	12(17)	57(90)	951(715)	∞	∞	∞	$\infty~5e4$	0/15
BSrr	19(11)	52(65)	403(407)	815(822)	∞	∞	∞ 4e4	0/15
CMA-CSA	3.0 (0.8)	5.1(4)	5.3 (5)	5.4(4)	5.5(4)	5.7 (2)	6.0 (3)	15/15
CMA-MSR	4.6(3)	3.6 (2)	4.1 (1)	4.3(0.7)	4.3(2)	4.7 (2)	5.1(0.5)	15/15
CMA-TPA	4.0(3)	6.0(4)	6.1 (4)	6.2 (3)	6.3 (3)	6.5 (3)	6.7 (2)	15/15
GP1-CMAES	3.2(0.5)	10(12)	56(81)	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	10(10)	∞	∞	∞	∞	∞	∞ 1260	0/15
IPOPCMAv3p	4.0(1)	5.6 (5)	18(19)	50(60)	48(39)	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	16(10)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	8.7(7)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	10(5)	68(64)	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	254(364)	∞	∞	∞	∞	∞	∞ 1252	0/15
Sifeg	3.0 (3)	61(69)	163(290)	570(597)	1698(2451)	1621(1344)	∞ 4e4	0/15
Sif	4.5(2)	93(164)	172(180)	854(1759)	∞	∞	∞ $5e4$	0/15
Srr	2.1 (0.7)	54(68)	178(126)	1660(1249)	∞	∞	∞ 4e4	0/15

Table 58: 05-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f9	35	127	214	263	300	335	369	15/15
BSifeg	14(7)	663(486)	3062(3652)	∞	∞	∞	∞ $5e4$	0/15
BSif	36(208)	1130(2007)	3088(1712)	∞	∞	∞	∞ $5e4$	0/15
BSqi	11(39)	453(373)	1405(1833)	∞	∞	∞	∞ $5e4$	0/15
BSrr	15(30)	811(766)	2783(2627)	∞	∞	∞	∞ 4e4	0/15
CMA-CSA	5.7 (1)	10(0.7)	7.7 (7)	7.1(5)	6.7 (3)	6.5(4)	6.4(4)	15/15
CMA-MSR	7.2(1)	9.4(3)	7.5 (8)	6.8 (6)	6.3 (5)	6.3(0.5)	6.4(0.7)	15/15
CMA-TPA	5.4 (2)	5.8 (3)	5.2(2)	5.0 (2)	4.8(1)	4.9 (1)	4.8(1)	15/15
GP1-CMAES	8.2(8)	47(37)	88(100)	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	13(9)	67(79)	83(157)	68(48)	60(64)	53(35)	49(45)	1/15
IPOPCMAv3p	7.5(2)	7.3 (2)	14(29)	35(18)	63(41)	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	25(22)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	20(27)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	30(31)	145(136)	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	257(370)	∞	∞	∞	∞	∞	∞ 1252	0/15
Sifeg	5.8(10)	500(356)	3141(2802)	∞	∞	∞	∞ $5e4$	0/15
Sif	24(3)	1540(1281)	∞	∞	∞	∞	∞ 5e4	0/15
Srr	4.5 (3)	327(342)	2886(3593)	∞	∞	∞	∞ 4e4	0/15

Table 59: 05-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f10	349	500	574	607	626	829	880	15/15
BSifeg	∞	∞	∞	∞	∞	∞	∞ 3e4	0/15
BSif	∞	∞	∞	∞	∞	∞	$\propto 3e4$	0/15
BSqi	∞	∞	∞	∞	∞	∞	$\propto 3e4$	0/15
BSrr	∞	∞	∞	∞	∞	∞	∞ 2e4	0/15
CMA-CSA	2.5 (0.4)	2.1 (0.2)	2.0 (0.2)	2.0(0.1)	2.1(0.1)	1.8(0.1)	1.8 (0.1)	15/15
CMA-MSR	2.6 (0.6)	2.1(0.4)	2.1 (0.3)	2.2 (0.3)	2.3(0.2)	2.0 (0.2)	2.2 (0.2)	15/15
CMA-TPA	2.5 (0.2)	2.2 (0.2)	2.1(0.2)	2.1(0.2)	2.2(0.1)	1.8(0.1)	1.8 (0.1)	15/15
GP1-CMAES	2.7 ₍₂₎	2.8 (2)	3.7(2)	4.1(4)	4.1(3)	11(13)	21(21)	1/15
GP5-CMAES	0.95 (0.4)	0.86(0.1)	0.83 (0.1)	0.84(0.2)	0.86(0.3)	0.70 (0.2)	1.5(0.5)	10/15
IPOPCMAv3p	6.7(7)	7.0(6)	16(55)	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	∞	∞	∞	∞	∞	∞	∞ 1e4	0/15
Sif	∞	∞	∞	∞	∞	∞	∞ 1e4	0/15
Srr	∞	∞	∞	∞	∞	∞	∞ 1e4	0/15

Table 60: 05-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f11	143	202	763	977	1177	1467	1673	15/15
BSifeg	919(654)	∞	∞	∞	∞	∞	∞ 3e4	0/15
BSif	499(670)	∞	∞	∞	∞	∞	∞ 3e4	0/15
BSqi	891(776)	∞	∞	∞	∞	∞	∞ 4e4	0/15
BSrr	633(791)	∞	∞	∞	∞	∞	$\propto 3e4$	0/15
CMA-CSA	4.9(2)	4.3 (1)	1.3(0.2)	1.1(0.1)	1.00(0.1)	0.91 (0.1)	0.88 (0.1)	15/15
CMA-MSR	5.9(1)	5.0(1)	1.5(0.2)	1.3(0.2)	1.2(0.1)	1.1(0.1)	1.1(0.1)	15/15
CMA-TPA	5.1 (0.9)	4.6(0.4)	1.3(0.1)	1.1(0.1)	1.0(0.1)	0.91 (0.1)	0.89 (0.1)	15/15
GP1-CMAES	5.4(1)	6.6(3)	4.7(4)	6.3(5)	8.0(6)	∞	∞ 1258	0/15
GP5-CMAES	3.2 (3)	3.3 (2)	1.2(1)	1.3(1.0)	1.1 (1)	0.92(1)	1.4(2)	7/15
IPOPCMAv3p	12(16)	∞	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	25(17)	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	62(50)	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	130(143)	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	313(255)	∞	∞	∞	∞	∞	∞ 2e4	0/15
Sif	1013(412)	1493(2875)	∞	∞	∞	∞	∞ 2e4	0/15
Srr	379(683)	∞	∞	∞	∞	∞	∞ 2e4	0/15
	•							

Table 61: 05-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COCCII CIIID (CC	care carrie	aca 2, an	TICITOTIC.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f12	108	268	371	413	461	1303	1494	15/15
BSifeg	75(62)	144(291)	390(435)	∞	∞	∞	∞ 2e4	0/15
BSif	91(125)	157(137)	791(984)	710(202)	∞	∞	∞ 2e4	0/15
BSqi	66(14)	42(18)	120(91)	392(620)	721(917)	∞	∞ 2e4	0/15
BSrr	50(68)	51(77)	210(123)	∞	∞	∞	∞ 2e4	0/15
CMA-CSA	10(9)	7.1(6)	6.9 (5)	7.2 (4)	7.4(8)	3.5(0.7)	3.5 (5)	15/15
CMA-MSR	7.7 (6)	5.4(2)	5.5 (5)	5.8 (5)	6.0 (3)	2.7 (2)	2.8 (2)	15/15
CMA-TPA	8.3(5)	6.1(4)	6.0(8)	6.2 (6)	6.2 (5)	2.7 (2)	2.9 (4)	15/15
GP1-CMAES	4.8(3)	6.2 (7)	16(19)	46(58)	∞	∞	∞ 1258	0/15
GP5-CMAES	16(13)	8.5(9)	15(14)	∞	∞	∞	∞ 1258	0/15
IPOPCMAv3 ₁	7.6 (9)	10(17)	15(15)	22(31)	40(33)	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	34(57)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	13(5)	22(9)	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	25(23)	50(40)	∞	∞	∞	∞	∞ 6082	0/15
Sif	34(63)	56(67)	∞	∞	∞	∞	∞ 6044	0/15
Srr	7.7(4)	21(29)	33(29)	100(30)	∞	∞	∞ 5870	0/15

Table 62: 05-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	$1\mathrm{e}\overset{\circ}{0}$	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f13	132	195	250	319	1310	1752	2255	15/15
BSifeg	325(264)	1566(1460)	2522(2627)	∞	∞	∞	∞ 4e4	0/15
BSif	463(310)	3275(2682)	∞	∞	∞	∞	∞ 4e4	0/15
BSqi	380(533)	979(1259)	2439(4439)	∞	∞	∞	∞ 4e4	0/15
BSrr	370(382)	1465(810)	1179(995)	∞	∞	∞	∞ 4e4	0/15
CMA-CSA	3.3(1)	3.4(2)	4.1(2)	3.9 (0.9)	1.1(0.2)	1.1(0.2)	1.1(0.2)	15/15
CMA-MSR	3.2(0.8)	3.6(0.7)	3.8 (0.6)	4.0(0.5)	1.2(0.1)	1.2(0.1)	1.1(0.1)	15/15
CMA-TPA	2.9 (1)	3.8(1)	4.2(1)	4.0 (1)	1.2(0.3)	1.3(0.2)	1.2(0.5)	15/15
GP1-CMAES	3.2(5)	20(15)	74(96)	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	1.4 (1)	3.5 (5)	10(15)	27(12)	∞	∞	∞ 1260	0/15
IPOPCMAv3p	4.2(2)	8.1(7)	10(15)	59(67)	∞	∞	∞ 1258	0/15
LHD-10xDef	2.2 (1)	6.4(7)	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	3.0 (3)	5.9(4)	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	3.6(2)	5.9(5)	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	16(22)	44(21)	73(55)	58(72)	∞	∞	∞ 1258	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 1252	0/15
Sifeg	170(363)	660(378)	2385(1486)	∞	∞	∞	∞ 4e4	0/15
Sif	237(165)	492(375)	∞	∞	∞	∞	∞ 4e4	0/15
Srr	181(123)	513(401)	1160(1596)	∞	∞	∞	∞ 4e4	0/15

Table 63: 05-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f14	10	41	58	90	139	251	476	15/15
BSifeg	1.5(1)	6.5(7)	11(8)	30(15)	2532(2043)	∞	∞ 5e4	0/15
BSif	1.5(0.9)	6.5(6)	12(12)	416(354)	5293(5506)	∞	∞ 5e4	0/15
BSqi	1.5(1)	4.6(5)	6.7(4)	24(24)	5089(7040)	∞	∞ 5e4	0/15
BSrr	1.5(0.8)	5.7(6)	10(6)	29(27)	∞	∞	∞ 5e4	0/15
CMA-CSA	1.7(2)	2.7 (1.0)	3.6(0.9)	3.7 (1)	3.8 (0.9)	3.9 (0.3)	3.0 (0.3)	15/15
CMA-MSR	2.5 (3)	3.4(2)	4.7(0.6)	5.0(1)	4.4(0.7)	4.1(0.5)	3.1 (0.3)	15/15
CMA-TPA	2.1(4)	3.3(2)	3.7(2)	3.9(1)	3.9 (1)	4.0(0.7)	3.1(0.2)	15/15
GP1-CMAES	1.6(2)	1.9(0.7)	2.8(0.4)	3.4(2)	6.4(4)	∞	∞ 1258	0/15
GP5-CMAES	1.8(1)	1.5(0.5)	1.7(0.8)	2.2(1)	8.9(9)	∞	∞ 1260	0/15
IPOPCMAv3p	2.4 (2)	3.5(0.9)	4.1(1)	4.2(0.8)	4.6(2)	24(31)	∞ 1258	0/15
LHD-10xDef	1.2(2)	3.3(0.3)	3.4(0.4)	42(22)	∞	∞	∞ 250	0/15
LHD-2xDefa	1.5(1)	1.6(0.5)	3.6(1)	41(41)	∞	∞	∞ 250	0/15
RAND-2xDef	1.4 (1)	2.2 (3)	4.9(9)	∞	∞	∞	∞ 250	0/15
RF1-CMAES	2.1(2)	3.6(5)	5.7(13)	12(10)	30(25)	∞	∞ 1258	0/15
RF5-CMAES	1.2(1.0)	40(37)	152(124)	∞	∞	∞	∞ 1260	0/15
Sifeg	1.5(1.0)	1.8(0.6)	3.0(3)	34(18)	5138(8484)	∞	∞ $5e4$	0/15
Sif	1.5 (1)	1.9(0.8)	2.9 (1)	92(90)	∞	∞	∞ 5e4	0/15
Srr	1.5 (1)	1.5(0.6)	2.0 (0.8)	12(10)	2358(2262)	∞	∞ 5e4	0/15

Table 64: 05-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f15	511	9310	19369	19743	20073	20769	21359	14/15
BSifeg	176(319)	∞	∞	∞	∞	∞	∞ 5e4	0/15
BSif	226(298)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
BSqi	213(332)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
$_{\mathrm{BSrr}}$	372(312)	∞	∞	∞	∞	∞	∞ 5e4	0/15
CMA-CSA	1.1(0.6)	1.1(0.7)	0.91 (0.3)	0.92 (0.4)	0.92 (0.5)	0.92 (0.5)	0.92 (0.3)	15/15
CMA-MSR	1.9(2)	0.95 (0.8)	0.89(0.6)	0.89 (0.5)	0.91 (0.8)	0.93 (0.8)	0.95 (0.5)	15/15
CMA-TPA	1.9(2)	0.90 (0.8)	0.87 (0.4)	0.88 (0.6)	0.88 (0.7)	0.88 (0.6)	0.89(0.4)	15/15
GP1-CMAES	2.9 (7)	∞	∞	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	4.6(6)	∞	∞	∞	∞	∞	∞ 1262	0/15
IPOPCMAv3p	1.2(0.9)	∞	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	1.7(3)	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	1.2(2)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	1.7(2)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	1.0(2)	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	11(8)	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	51(41)	∞	∞	∞	∞	∞	∞ 5e4	0/15
Sif	98(131)	∞	∞	∞	∞	∞	∞ 4e4	0/15
Srr	72(73)	∞	∞	∞	∞	∞	∞ 5e4	0/15

Table 65: 05-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f16	120	612	2662	10163	10449	11644	12095	15/15
BSifeg	1.3(1)	158(253)	271(187)	∞	∞	∞	∞ $5e4$	0/15
BSif	10(1)	63(72)	247(102)	∞	∞	∞	∞ $5e4$	0/15
BSqi	2.5 (6)	93(140)	264(242)	∞	∞	∞	∞ $5e4$	0/15
BSrr	1.4 (1)	67(58)	262(237)	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	2.2 (3)	1.9(2)	1.4 (1)	0.49 (0.5)	0.54 (0.4)	0.55 (0.2)	0.56 (0.2)	15/15
CMA-MSR	5.9(2)	5.8(5)	4.7(2)	1.6(1.0)	1.6 (2)	1.5 (1)	1.5 ₍₁₎	15/15
CMA-TPA	1.7(2)	3.1 (3)	1.8(0.4)	0.56 (0.8)	0.62(0.8)	0.62 (0.6)	0.65 (0.6)	15/15
GP1-CMAES	1.2(0.7)	3.8(4)	6.8(11)	1.8(2)	1.8 (4)	∞	∞ 1258	0/15
GP5-CMAES	1.3(3)	4.7(9)	1.5(2)	1.8(3)	∞	∞	∞ 1260	0/15
IPOPCMAv3p	2.4(2)	6.8(4)	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	1.5(0.7)	6.1(10)	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	2.2 (3)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	1.7(2)	6.0(7)	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	1.8 (1)	3.6 (2)	3.2(2)	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	1.7(4)	9.0(5)	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	0.62 (0.4)	46(61)	47(77)	∞	∞	∞	∞ $5e4$	0/15
Sif	0.69 (0.4)	52(58)	268(296)	∞	∞	∞	∞ 5e4	0/15
Srr	0.68 (0.6)	28(52)	132(162)	∞	∞	∞	∞ $5e4$	0/15

Table 66: 05-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

CCCCII CIIIO				TIOI OII.					
$\Delta f_{ m opt}$;	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f17		5.2	215	899	2861	3669	6351	7934	15/15
BSifeg		6.3(12)	174(143)	∞	∞	∞	∞	∞ 5e4	0/15
BSif		7.0(3)	174(235)	793(1110)	∞	∞	∞	∞ 5e4	0/15
BSqi		4.1(4)	142(407)	779(486)	∞	∞	∞	∞ $5e4$	0/15
$_{\mathrm{BSrr}}$		4.3(3)	314(641)	408(849)	∞	∞	∞	∞ $5e4$	0/15
CMA-CS	A	4.2(5)	0.98 (0.2)	0.53 (0.3)	1.0(0.7)	1.2(0.5)	1.1(0.4)	1.3(0.5)	15/15
CMA-MS	$^{\mathrm{SR}}$	4.2(5)	0.93 (0.2)	0.97 (1)	0.83 (0.3)	0.82(0.5)	0.96 (0.8)	1.1(0.1)	15/15
CMA-TP	'A	24(78)	2.6 (0.5)	1.6(0.9)	0.97 (0.4)	0.94 (0.3)	0.88 (0.8)	1.0(0.7)	15/15
GP1-CMA	AES	4.5(5)	0.67 (0.2)	0.80 (0.9)	0.89(1)	∞	∞	∞ 1258	0/15
GP5-CMA	AES	3.6(4)	1.8(4)	10(11)	∞	∞	∞	∞ 1258	0/15
IPOPCMA	Av3p	4.1(3)	1.1(0.4)	0.66 (0.6)	0.46 (0.4)	0.95 (0.9)	∞	∞ 1258	0/15
LHD-10xl	Def	2.1(2)	2.6 (2)	∞	∞	∞	∞	∞ 250	0/15
LHD-2xD	efa	2.4 (1)	2.5 (3)	∞	∞	∞	∞	∞ 250	0/15
RAND-2x	Def	2.3 (3)	5.3(7)	∞	∞	∞	∞	∞ 250	0/15
RF1-CMA	AES	3.0(2)	4.0(3)	10(9)	∞	∞	∞	∞ 1258	0/15
RF5-CMA	AES	4.8(1)	13(16)	∞	∞	∞	∞	∞ 1252	0/15
Sifeg	İ	3.9(3)	128(344)	172(184)	∞	∞	∞	∞ $5e4$	0/15
Sif		3.9(3)	136(256)	360(550)	∞	∞	∞	∞ 5e4	0/15
Srr		3.9(3)	239(208)	226(330)	∞	∞	∞	∞ 5e4	0/15

Table 67: 05-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f18	103	378	3968	8451	9280	10905	12469	15/15
BSifeg	103(145)	159(169)	∞	∞	∞	∞	∞ $5e4$	0/15
BSif	94(165)	229(359)	∞	∞	∞	∞	∞ $5e4$	0/15
BSqi	129(257)	553(417)	∞	∞	∞	∞	∞ 4e4	0/15
BSrr	168(301)	213(308)	166(121)	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	1.3(2)	2.4 (0.2)	0.61 (0.6)	0.54 (0.5)	0.74(0.5)	0.77 (0.4)	0.90 (0.7)	15/15
CMA-MSR	1.1(0.5)	5.0(7)	1.0(0.8)	0.70 (0.7)	1.0(0.5)	1.2(0.6)	1.3(0.9)	15/15
CMA-TPA	0.92 (0.5)	1.8 (4)	0.67 (0.4)	0.59 (0.3)	0.69(0.3)	0.70(0.1)	0.85 (0.4)	15/15
GP1-CMAES	1.0(0.4)	1.8 (3)	1.4(2)	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	2.0 (3)	14(22)	∞	∞	∞	∞	∞ 1260	0/15
IPOPCMAv3p	1.2(0.3)	1.3(0.9)	0.47 (0.4)	1.1 (1)	2.0 (2)	∞	∞ 1258	0/15
LHD-10xDef	1.4(0.2)	10(11)	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	1.5(2)	9.4(10)	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	1.6(0.5)	10(5)	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	0.74 (0.5)	5.6(6)	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	5.2(11)	24(34)	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	22(12)	189(364)	∞	∞	∞	∞	∞ $5e4$	0/15
Sif	27(13)	194(281)	169(129)	∞	∞	∞	∞ 5e4	0/15
Srr	80(353)	85(125)	∞	∞	∞	∞	∞ 5e4	0/15

Table 68: 05-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COLOTE CITED (CC)	ac arra	ou o, um.	LIDIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f19	1	1	242	1.0e5	1.2e5	1.2e5	1.2e5	15/15
BSifeg	17(13)	2964(3040)	909(899)	∞	∞	∞	∞ $5e4$	0/15
BSif	16(10)	3125(2054)	694(847)	∞	∞	∞	∞ $5e4$	0/15
BSqi	22(10)	3284(2630)	1440(2280)	∞	∞	∞	∞ $5e4$	0/15
BSrr	17(26)	4781(1994)	925(408)	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	19(11)	2971(2324)	153(229)	0.86 (0.6)	0.83 (0.6)	0.83 (0.4)	$0.84_{(0.4)}$	15/15
CMA-MSR	31(96)	2573(1170)	306 (581)	67 (86)	∞	∞	$\infty~5e5$	0/15
CMA-TPA	25(18)	959 (846)	84(57)	0.68(0.6)	0.78(0.4)	0.80 (0.5)	0.80(0.8)	15/15
GP1-CMAES	25(18)	2568(1779)	∞	∞	∞	∞	∞ 1260	0/15
GP5-CMAES	15(10)	1496(2424)	∞	∞	∞	∞	∞ 1262	0/15
IPOPCMAv3p	23(25)	3070(5658)	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	39(56)	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	23(14)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	20(10)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	24(20)	1868(3073)	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	18(15)	1379(1685)	∞	∞	∞	∞	∞ 1262	0/15
Sifeg	14 (12)	5045(2270)	477(576)	∞	∞	∞	∞ $5e4$	0/15
Sif	14 (13)	3090(583)	1385(1390)	∞	∞	∞	∞ $5e4$	0/15
Srr	14 (12)	3069(523)	671(1401)	∞	∞	∞	∞ 5e4	0/15

Table 69: 05-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f20	16	851	38111	51362	54470	54861	55313	14/15
BSifeg	2.2 (3)	9.3(5)	18(23)	13(24)	13(9)	13(10)	13(22)	1/15
BSif	2.1(2)	23(19)	5.8(5)	4.3(3)	6.5(6)	6.5(13)	6.5(4)	2/15
BSqi	1.8(1)	8.7(0.5)	8.8(7)	6.6(7)	6.2(8)	6.2(9)	13(20)	1/15
BSrr	1.9(0.7)	11(15)	9.3(17)	7.0(8)	6.6(9)	13(20)	∞ $5e4$	0/15
CMA-CSA	3.7(2)	9.2(4)	1.1(0.2)	0.83 (0.6)	0.80 (0.3)	0.82 (0.2)	0.84(0.6)	15/15
CMA-MSR	4.8(2)	1666(1484)	∞	∞	∞	∞	$\infty~5e5$	0/15
CMA-TPA	3.9(2)	17(19)	2.0 (1.0)	1.5(0.8)	1.5(0.6)	1.5(0.8)	1.5(0.6)	15/15
GP1-CMAES	3.1(1)	11(9)	∞	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	2.2 (0.7)	∞	∞	∞	∞	∞	∞ 1260	0/15
IPOPCMAv3p	4.2(2)	21(14)	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	6.4(2)	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	2.5 (0.8)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	2.5 (0.9)	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	4.0(2)	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	31(24)	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	1.9 (1)	3.1 (0.6)	3.9(5)	2.9 (2)	2.7 (2)	2.8 (4)	2.9 (7)	4/15
Sif	1.9 (1)	6.6 (8)	3.7(5)	2.9 (1)	2.7 (2)	3.7(3)	3.8(9)	3/15
Srr	1.8(1)	2.8 (6)	3.1 (3)	2.3 (3)	2.2 (3)	2.8 (5)	4.0(2)	3/15

Table 70: 05-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

٠,	CCCII CIIID (CII	are arrived		LICIIOI OII.					
	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
	f21	41	1157	1674	1692	1705	1729	1757	14/15
	BSifeg	9.3(6)	90(66)	63(156)	62(83)	63(60)	67 (89)	92 (123)	4/15
	BSif	77(561)	174(184)	125(217)	196(110)	197(112)	202(355)	208(249)	2/15
	BSqi	14(47)	121(176)	84(97)	84(127)	84(139)	121(109)	210(364)	2/15
	BSrr	11(6)	67(54)	56(92)	67(52)	67(108)	72(87)	203(240)	2/15
	CMA-CSA	1.9 (1)	55(221)	119(181)	148(117)	147(120)	145(106)	143(256)	9/15
	CMA-MSR	5.3(0.7)	206(104)	388(710)	384(517)	382(496)	377(803)	371(674)	6/15
	CMA-TPA	2.2 (2)	88(108)	116(126)	115(112)	114(116)	113(109)	112(144)	10/15
	GP1-CMAES	1.3(0.7)	1.9 (1)	1.7(3)	1.7 ₍₁₎	2.2 (3)	2.3 (3)	2.4 (1)	4/15
	GP5-CMAES	1.4 (4)	1.4(2)	1.5(0.8)	1.9(1)	1.9(3)	10 (15)	∞ 1252	0/15
	IPOPCMAv3p	4.3(2)	15(18)	∞	∞	∞	∞	∞ 1258	0/15
	LHD-10xDef	2.0 (1)	1.0 (1)	2.2 (2)	∞	∞	∞	∞ 250	0/15
	LHD-2xDefa	1.3(0.9)	0.94 (0.7)	2.1(2)	∞	∞	∞	∞ 250	0/15
	RAND-2xDef	1.4 (0.8)	1.5(2)	2.1 (3)	∞	∞	∞	∞ 250	0/15
	RF1-CMAES	3.5(8)	4.5(3)	3.2(5)	5.1 (4)	11 (8)	∞	∞ 1258	0/15
	RF5-CMAES	3.7(9)	7.8(11)	∞	∞	∞	∞	∞ 1260	0/15
	Sifeg	1.1(1)	80(115)	56(37)	55(100)	55(101)	71(61)	94(85)	4/15
	Sif	1.2(1)	96(54)	84(127)	84(37)	84(51)	129(61)	206(266)	2/15
	Srr	1.1(1)	93(54)	85(97)	84(121)	84(88)	88(80)	129(319)	3/15

Table 71: 05-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f22	71	386	938	980	1008	1040	1068	14/15
BSifeg	34(109)	80(68)	129(228)	341(574)	710(881)	∞	∞ $5e4$	0/15
BSif	102(7)	236(315)	236(320)	739(1032)	∞	∞	∞ $5e4$	0/15
BSqi	31(7)	55(155)	85(107)	335(307)	333(255)	∞	∞ $5e4$	0/15
BSrr	37(178)	110(184)	129(55)	350(255)	709(633)	∞	∞ $5e4$	0/15
CMA-CSA	4.1(11)	135(99)	345(112)	426(457)	535(719)	519(721)	507(749)	6/15
CMA-MSR	14(30)	457(826)	531(923)	508(335)	494(626)	479(531)	467(720)	7/15
CMA-TPA	2.5 (5)	223(480)	323(743)	310(258)	301(336)	292 (243)	285 (532)	8/15
GP1-CMAES	3.6(5)	9.3(12)	19 (13)	18 (17)	18(22)	17 (13)	17 (22)	1/15
GP5-CMAES	4.3(6)	10(13)	9.2(12)	8.8(11)	8.6 (6)	∞	∞ 1254	0/15
IPOPCMAv3p	5.8(9)	5.6(4)	20 (25)	19 (7)	18 (21)	18 (32)	18 (33)	1/15
LHD-10xDef	1.9(0.5)	2.3 (4)	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	1.4(0.5)	3.0 (2)	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	0.79(0.5) 4.5(3)	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	5.5(0.4)	3.0 (4)	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	7.3(12)	21(22)	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	123(174)	103(130)	129(49)	724(804)	∞	∞	∞ $5e4$	0/15
Sif	117(348)	131(118)	350(574)	754(868)	∞	∞	∞ 5e4	0/15
Srr	62(208)	67(74)	67(82)	237(281)	738(769)	∞	∞ 5e4	0/15

Table 72: 05-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f23	3.0	518	14249	27890	31654	33030	34256	15/15
BSifeg	2.6 (2)	4.3(6)	50(54)	∞	∞	∞	∞ 5e4	0/15
BSif	2.6 (2)	3.3(4)	∞	∞	∞	∞	∞ 5e4	0/15
BSqi	2.6 (3)	6.6(5)	50(91)	∞	∞	∞	∞ 5e4	0/15
BSrr	2.6 (3)	3.7(6)	50(53)	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	2.3(2)	13(14)	4.7 (8)	2.5 (2)	2.2 (2)	2.2 (4)	2.1(2)	15/15
CMA-MSR	2.5(2)	3.2(3)	0.91(1)	0.52 (0.4)	0.48(0.2)	0.51 (0.7)	0.53 (0.3)	15/15
CMA-TPA	3.2(3)	16(12)	8.1(37)	4.2 (6)	3.8 (2)	3.8 (5)	3.7 (8)	13/15
GP1-CMAES	1.9 (1)	4.9(3)	∞	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	2.4 (2)	2.2 (1)	∞	∞	∞	∞	∞ 1252	0/15
IPOPCMAv3p	2.3 (2)	12(6)	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	3.9(5)	6.8(5)	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	3.1(2)	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	2.5 (1)	7.1(8)	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	1.8(2)	∞	∞	∞	∞	∞	∞ 1260	0/15
RF5-CMAES	2.4 (2)	∞	∞	∞	∞	∞	∞ 1288	0/15
Sifeg	3.4(5)	2.7 (2)	50(45)	∞	∞	∞	∞ 5e4	0/15
Sif	3.4(2)	2.8 (1)	∞	∞	∞	∞	∞ 5e4	0/15
Srr	3.4(5)	2.5 (1)	∞	∞	∞	∞	∞ $5e4$	0/15

Table 73: 05-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	$1e\overset{\circ}{0}$	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f24	1622	2.2e5	6.4e6	9.6e6	9.6e6	1.3e7	1.3e7	3/15
BSifeg	21(24)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
BSif	41(28)	∞	∞	∞	∞	∞	∞ 4e4	0/15
BSqi	38(103)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
BSrr	29(31)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	2.0(2)	∞	∞	∞	∞	∞	$\infty~5e5$	0/15
CMA-MSR	1.3(2)	33(27)	1.1(2)	∞	∞	∞	$\infty~5e5$	0/15
CMA-TPA	1.3(2)	10(9)	∞	∞	∞	∞	$\infty~5e5$	0/15
GP1-CMAES	2.1(3)	∞	∞	∞	∞	∞	∞ 1258	0/15
GP5-CMAES	1.1(1)	∞	∞	∞	∞	∞	∞ 1260	0/15
IPOPCMAv3p	2.0 (1)	∞	∞	∞	∞	∞	∞ 1258	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 250	0/15
RF1-CMAES	5.5(7)	∞	∞	∞	∞	∞	∞ 1258	0/15
RF5-CMAES	5.2(8)	∞	∞	∞	∞	∞	∞ 1260	0/15
Sifeg	15(21)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
Sif	15(19)	∞	∞	∞	∞	∞	∞ 4e4	0/15
Srr	21(33)	∞	∞	∞	∞	∞	∞ 5e4	0/15

Table 74: 10-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	22	23	23	23	23	23	23	15/15
BSifeg	1.8(0.1)	2.2 (0.1)	2.3 (0.2)	2.3 (0.1)	2.3 (0.3)	2.3 (0.2)	2.4 (0.2)	15/15
BSif	1.8(0.1)	2.2 (0.1)	2.3 (0.2)	2.3 (0.2)	2.3 (0.3)	2.3 (0.2)	2.4 (0.2)	15/15
BSqi	1.8(0.1)	2.2 (0.1)	2.3 (0.1)	2.3 (0.2)	2.3 (0.2)	2.3 (0.2)	2.4 (0.2)	15/15
BSrr	1.8(0.1)	2.2 (0.1)	2.3 (0.1)	2.3 (0.3)	2.3 (0.3)	2.3 (0.3)	2.4 (0.3)	15/15
CMA-CSA	6.4(2)	12(3)	18(4)	25(4)	31(4)	44(4)	56(4)	15/15
CMA-MSR	7.0(2)	15(2)	24(3)	34(2)	42(3)	60(5)	78(6)	15/15
CMA-TPA	6.2(2)	11(2)	16(2)	21(3)	26(4)	36(4)	46(2)	15/15
GP1-CMAES	3.7(1)	7.0(2)	10(1)	13(2)	16(1)	24(3)	34(2)	15/15
GP5-CMAES	2.3 (0.3)	3.3(0.2)	4.4(0.3)	5.6(0.4)	6.7(0.6)	9.0(0.7)	39(21)	14/15
IPOPCMAv3p	6.5(1)	13(4)	19(4)	26(4)	32(4)	45(5)	59(4)	15/15
LHD-10xDef	10(0.1)	11(0.3)	12(0.7)	14(0.8)	15(0.8)	∞	$\infty 500$	0/15
LHD-2xDefa	2.9(0.5)	6.5(0.9)	9.0(5)	27(46)	101(134)	∞	$\infty 500$	0/15
RAND-2xDef	3.1(0.3)	5.4(0.9)	7.7(5)	22(17)	74(106)	∞	$\infty 500$	0/15
RF1-CMAES	5.1(1)	11(2)	18(4)	28(18)	41(12)	81(75)	246(232)	6/15
RF5-CMAES	3.8(1)	29(26)	221(379)	∞	∞	∞	∞ 2514	0/15
Sifeg	1.9(0.2)	2.5 (0.1)	3.3(0.1)	4.5(0.7)	5.5(0.5)	7.3(0.8)	8.8(0.4)	15/15
Sif	1.9(0.1)	2.5 (0.1)	3.3(0.2)	5.1(0.8)	6.2(0.6)	7.6(0.6)	8.7(0.3)	15/15
Srr	1.9 (0.1)	2.5 (0.2)	3.2(0.2)	3.9(0.1)	4.7(0.1)	6.1(0.1)	7.5(0.2)	15/15

Table 75: 10-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

cacii ciiib vai	ac arriac	a of ann	comprom.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f2	187	190	191	191	193	194	195	15/15
BSifeg	0.63(0.2) ₁	4 0.70(0.2)	3 0.74(0.1)	3 0.82(0.1)	2 0.86 (0.1)	20.96(0.1)	1.0(0.1)	15/15
BSif			4 0.77(0.1)				1.0(0.1)	15/15
BSqi	0.42 (0.0)	4 0.43(0.0)	3_4 0.45 (0.0) *_1	4 0.49(0.0)	4 0.54 (0.0)	$^4_4 0.69 {\scriptstyle (0.1)}^{\star}_1$	$^{3}_{4}$ 0.86 (0.2)*	15/15
BSrr			4 0.67(0.2)				1.0(0.2)	15/15
CMA-CSA	14(3)	16(2)	17(1)	18(1)	19(2)	21(2)	22(2)	15/15
CMA-MSR	16(3)	18(1)	20(2)	21(2)	22(1)	24(1)	25(2)	15/15
CMA-TPA	15(3)	17(4)	19(2)	20(2)	21(1)	22(0.7)	23(2)	15/15
GP1-CMAES	33(17)	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	6.1(2)	8.5(4)	12(7)	13(7)	13(13)	14(7)	95(100)	2/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	0.78(0.2)	0.83 (0.2)	1.00(0.3)	1.1(0.2)	1.2(0.2)	1.3(0.2)	1.4(0.1)	15/15
Sif	0.83 (0.3)	0.89 (0.2)	1.1(0.2)	1.1(0.3)	1.2(0.3)	1.3(0.1)	1.4(0.1)	15/15
Srr	$0.69(0.1)_{\downarrow}$	$_{4}0.76$ $_{(0.1)}$	40.87 (0.1)	20.94 (0.1)	1.0(0.1)	1.2 (0.1)	1.4(0.1)	15/15

Table 76: 10-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

 COLL CLIED FOLL	are carrie	aca o, an	LIIOIIDI OII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f3	1739	3600	3609	3636	3642	3646	3651	15/15
BSifeg	0.16 (0.	$0)_{\downarrow 4} 0.16 (0.0)$	$0)_{\downarrow 4} 0.19 (0.1)$	1) ₄ 0.19 (0.0	0.19(0.0)	0.19(0.0)	$0)_{\downarrow 4} 0.19 (0.1)$	15/15
BSif	0.15 (0.	$0)_{\downarrow 4} 0.16 (0.0)$	0.19(0.0)	0.19(0.0)	0.19(0.0)	0.19(0.0)	$0)_{\downarrow 4} 0.19 (0.0)$	15/15
BSqi	0.16 (0.	0.14(0.0)	0.18(0.0)	0.18(0.0)	0.18(0.0)	0.18(0.0)	0.18(0.0)	15/15
BSrr	0.15 (0.	0.14(0.0)	0.17(0.0)	0.17(0.0)	0.17(0.0)	0.18(0.0)	$0)_{\downarrow 4} 0.19 (0.0)$	15/15
CMA-CSA	3.9(3)	1132(3000)	∞	∞	∞	∞	∞ 1e6	0/15
CMA-MSR	4.1(2)	20(9)	35(7)	36(41)	37(7)	39(49)	41(50)	15/15
CMA-TPA	2.7(1)	278(355)	3905(6326)	3876(2897)	3870(3030)	3866(3990)	3861(3778)	1/15
GP1-CMAES	4.9(8)	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2526	0/15
IPOPCMAv3p	4.7(3)	∞	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	21(18)	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	0.15 (0.	0.15(0.0	0.16(0.0)	0.17(0.0)	0.18(0.0)	0.19(0.0)	0) ₄ 0.19 (0.0	15/15
Sif							0) ₁₄ 0.20 (0.0	
Srr							$0)_{\downarrow 4} 0.20 (0.0)$	

Table 77: 10-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f4	2234	3626	3660	3695	3707	3744	28767	12/15
BSifeg	0.14 (0.1) $\downarrow 4$	$0.27(0.1)_{\downarrow 4}$	$0.35(0.1)_{\downarrow 4}$	$0.35(0.1)_{\downarrow 4}$	$0.35(0.1)_{\downarrow 4}$	$0.35(0.1)_{\downarrow 4}$	0.05 (5e-3)	15/15
BSif	0.14 (0.0) $\downarrow 4$	0.28(0.1) ₁₄	$0.37(0.1)_{\downarrow 4}$	$0.36(0.1)_{\downarrow 4}$	$0.36(0.1)_{\downarrow 4}$	$0.36(0.1)_{\downarrow 4}$	0.05(0.0)	15/15
BSqi	$0.16(0.1)_{\downarrow 4}$	0.24(0.1) _{1.4}	0.32(0.1) ₄	0.32(0.1) ₁₄	$0.32(0.1)_{\downarrow 4}$	0.32(0.1) ₁₄	$0.05(0.0)_{\downarrow 4}$	15/15
BSrr	0.13 (0.0) $\downarrow 4$	0.22(0.1) ₁₄	$0.28(0.1)_{\downarrow 4}$	0.29 (0.1) $_{\downarrow 4}$	$0.30(0.1)_{\downarrow 4}$	$0.34(0.1)_{\downarrow 4}$	0.06(0.0)	15/15
CMA-CSA	7.7(4)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15
CMA-MSR	10(12)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15
CMA-TPA	4.9(3)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2516	0/15
IPOPCMAv3p	8.0(9)	∞	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	0.14 (0.1) $\downarrow 4$	$0.34(0.2)_{\downarrow 4}$	0.46(0.1)	0.59(0.1)	0.73(0.1)	0.84(0.1)	0.11(0.0)	15/15
Sif	$0.14(0.0)_{\downarrow 4}$	0.35 (0.1) $\downarrow 4$	0.47(0.1)	0.61(0.2)	0.77(0.1)	0.87(0.0)	0.12(0.0)	15/15
Srr	0.12 (0.0) $\downarrow 4$	0.29 $(0.1)_{\downarrow 4}$	0.42(0.1)	0.54(0.1)	0.68(0.1)	0.82(0.1)	0.12(1e-2)	15/15

Table 78: 10-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f5	20	20	20	20	20	20	20	15/15
BSifeg	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSif	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSqi	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0)	1.5(0.0)	1.5(0.0)	15/15
BSrr	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
CMA-CSA	4.8(1)	6.0(0.8)	6.1(3)	6.1(2)	6.1(2)	6.1(2)	6.1(2)	15/15
CMA-MSR	3.8(1)	5.2(0.5)	5.4(1)	5.4(0.7)	5.4(2)	5.4(0.8)	5.4(2)	15/15
CMA-TPA	4.2(2)	4.9(2)	4.9(2)	5.0(2)	5.0(2)	5.0(2)	5.0(2)	15/15
GP1-CMAES	5.3(3)	35(31)	41(56)	42(34)	42(31)	42(34)	42(28)	15/15
GP5-CMAES	2.9 (1)	5.1(1)	5.4(4)	5.4(1)	5.4(4)	5.4(3)	5.4(4)	15/15
IPOPCMAv3p	12(4)	23(5)	28(12)	29(11)	29(10)	29(11)	29(11)	15/15
LHD-10xDef	11(0.1)	12(0.2)	12(0.2)	12(0.4)	12(0.2)	12(0.3)	12(0.3)	15/15
LHD-2xDefa	2.6 (0.1)	2.9 (0.2)	3.0(0.2)	3.0 (0.3)	3.0 (0.3)	3.0(0.2)	3.0(0.4)	15/15
RAND-2xDef	2.7 (0.2)	2.9 (0.2)	3.1(0.4)	3.1(0.2)	3.1(0.2)	3.1(0.4)	3.1(0.3)	15/15
RF1-CMAES	17(46)	30(33)	34(47)	34(12)	34(17)	35(44)	35(27)	15/15
RF5-CMAES	18(27)	61(38)	79(90)	105(131)	120(186)	120(68)	120(162)	10/15
Sifeg	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
Sif	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
Srr	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15

Table 79: 10-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f6	412	623	826	1039	1292	1841	2370	15/15
BSifeg	291(398)	2076(2205)	∞	∞	∞	∞	$\propto 9e4$	0/15
BSif	705(464)	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
BSqi	225(150)	467(413)	∞	∞	∞	∞	$\propto 9e4$	0/15
BSrr	372(372)	890(913)	∞	∞	∞	∞	$\propto 9e4$	0/15
CMA-CSA	1.9(0.5)	1.9(0.3)	1.9(0.3)	1.9(0.3)	1.8(0.3)	1.7(0.2)	1.6(0.1)	15/15
CMA-MSR	1.5(0.3)	1.7(0.4)	1.7(0.2)	1.8(0.4)	1.7(0.3)	1.6(0.4)	1.6(0.2)	15/15
CMA-TPA	1.8(0.5)	1.7(0.4)	1.7(0.4)	1.7(0.5)	1.6(0.3)	1.5(0.4)	1.5(0.2)	15/15
GP1-CMAES	3.0(4)	9.0(12)	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2516	0/15
IPOPCMAv3p	1.7(0.5)	1.8(0.5)	1.8(0.4)	2.0 (0.9)	2.4 (1)	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	43(39)	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2518	0/15
Sifeg	85(115)	477(370)	∞	∞	∞	∞	∞ 9e4	0/15
Sif	199(323)	486(349)	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	81(33)	170(119)	692(475)	∞	∞	∞	∞ 8e4	0/15

Table 80: 10-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f7	172	1611	4195	5099	5141	5141	5389	15/15
BSifeg	1100(1595)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	882(934)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	931(858)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSrr	894(1324)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	2.3 (0.7)	1.2(0.7)	0.68(0.5)	0.78 (0.4)	0.78 (0.5)	0.78 (0.4)	0.76 (0.3)	15/15
CMA-MSR	1.9(0.8)	1.6(0.7)	0.88 (0.5)	0.86(0.2)	0.86(0.2)	0.86(0.3)	0.83(0.2)	15/15
CMA-TPA	1.7(0.5)	1.2(1)	0.85 (0.4)	0.77 (0.3)	0.78 (0.3)	0.78 (0.4)	0.88 (0.3)	15/15
GP1-CMAES	1.6 (0.3)	0.99 (0.8)	4.4(7)	7.4(6)	7.3(10)	7.3(9)	∞ 2514	0/15
GP5-CMAES	1.0(0.2)*	1.1 (1)	∞	∞	∞	∞	∞ 2516	0/15
IPOPCMAv3p	2.6 (3)	1.6 (1)	4.1(3)	∞	∞	∞	∞ 2504	0/15
LHD-10xDef	10(21)	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	43(42)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	13(26)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	13(10)	∞	∞	∞	∞	∞	∞ 2516	0/15
RF5-CMAES	31(18)	∞	∞	∞	∞	∞	∞ 2526	0/15
Sifeg	281(100)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	166(85)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	217(169)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15

Table 81: 10-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f8	326	921	1114	1217	1267	1315	1343	15/15
BSifeg	22(13)	73(116)	355(460)	527(659)	1077(1394)	∞	∞ 9e4	0/15
BSif	75(50)	729(822)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	15(12)	75(84)	239(287)	1084(890)	1046(984)	∞	$\propto 9e4$	0/15
BSrr	21(26)	68(31)	97(120)	1057(678)	∞	∞	$\propto 9e4$	0/15
CMA-CSA	3.1(3)	5.1 (5)	5.0 (4)	4.9 (3)	4.9(0.6)	5.0 (3)	5.1 (3)	15/15
CMA-MSR	2.7 (1)	5.4(5)	5.2(8)	5.1 (8)	5.1 (4)	5.2(0.4)	5.4(7)	15/15
CMA-TPA	3.4(3)	5.4(1)	5.2 (3)	5.1 (3)	5.1 (2)	5.2 (3)	5.3 (3)	15/15
GP1-CMAES	3.1(1)	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2516	0/15
IPOPCMAv3p	2.1 (0.4)	∞	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	23(29)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	5.8(10)	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	3.6(4)	110(162)	273(233)	∞	∞	∞	∞ 9e4	0/15
Sif	7.4(5)	71(66)	199(170)	1085(398)	∞	∞	∞ 9e4	0/15
Srr	2.8 (3)	110(196)	354(360)	503(296)	1019(1098)	∞	∞ 9e4	0/15

Table 82: 10-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f9	200	648	857	993	1065	1138	1185	15/15
BSifeg	47(101)	956(1336)	∞	∞	∞	∞	$\propto 9e4$	0/15
BSif	247(351)	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
BSqi	37(24)	904(1809)	∞	∞	∞	∞	$\propto 9e4$	0/15
BSrr	37(136)	874(690)	∞	∞	∞	∞	$\propto 9e4$	0/15
CMA-CSA	3.3(2)	5.0 (1.0)	4.7(0.8)	4.4(0.8)	4.4(0.5)	4.4(0.6)	4.5(0.5)	15/15
CMA-MSR	4.0(1)	5.3 (3)	4.9(2)	4.6 (1)	4.5(0.7)	4.6(0.7)	4.8(3)	15/15
CMA-TPA	3.7(5)	4.7 (2)	4.7(2)	4.5(2)	4.4(0.8)	4.4 (1)	4.4 (1.0)	15/15
GP1-CMAES	4.3(1)	57(87)	44(70)	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	84(142)	∞	∞	∞	∞	∞	∞ 2526	0/15
IPOPCMAv3p	3.5 (0.9)	∞	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	16(12)	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	46(223)	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
Sif	37(40)	2158(1993)	∞	∞	∞	∞	∞ 9e4	0/15
Srr	22(80)	∞	∞	∞	∞	∞	$\propto 9e4$	0/15

Table 83: 10-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f10	1835	2172	2455	2728	2802	4543	4739	15/15
BSifeg	∞	∞	∞	∞	∞	∞	∞ 7e4	0/15
BSif	∞	∞	∞	∞	∞	∞	∞ 7e4	0/15
BSqi	∞	∞	∞	∞	∞	∞	∞ 8e4	0/15
BSrr	∞	∞	∞	∞	∞	∞	∞ 5e4	0/15
CMA-CSA	1.5(0.1)	1.4(0.2)	1.4(0.2)	1.3(0.1)	1.3(0.1)	0.88(0.1)	0.90 (0.1)	15/15
CMA-MSR	1.5(0.4)	1.6(0.2)	1.5(0.1)	1.4(0.1)	1.5(0.0)	1.00(0.1)	1.0(0.0)	15/15
CMA-TPA	1.5(0.3)	1.5(0.2)	1.5(0.2)	1.4(0.1)	1.4(0.1)	0.93 (0.0)	0.94 (0.1)	15/15
GP1-CMAES	4.0(5)	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	0.82(0.7)	0.97 (0.7)	1.0(0.9)	0.96(1)	0.96 (0.9)	0.62(0.2)	2.6 (2)	3/15
IPOPCMAv3p	20(27)	17(36)	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	∞	∞	∞	∞	∞	∞	∞ 4e4	0/15
Sif	∞	∞	∞	∞	∞	∞	∞ 4e4	0/15
Srr	∞	∞	∞	∞	∞	∞	$\propto 3e4$	0/15

Table 84: 10-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f11	266	1041	2602	2954	3338	4092	4843	15/15
BSifeg	∞	∞	∞	∞	∞	∞	∞ 7e4	0/15
BSif	∞	∞	∞	∞	∞	∞	∞ 8e4	0/15
BSqi	∞	∞	∞	∞	∞	∞	∞ 8e4	0/15
BSrr	∞	∞	∞	∞	∞	∞	∞ 4e4	0/15
CMA-CSA	6.8 (0.5)	2.0 (0.2)	0.87(0.0)	0.82(0.1)	0.78(0.1)	0.71(0.0)	0.67(0.1)	15/15
CMA-MSR	7.3 (0.9)	2.3 (0.3)	1.0(0.1)	0.97 (0.1)	0.92 (0.1)	0.84(0.1)	0.80(0.1)	15/15
CMA-TPA	6.6 (0.8)	2.1 (0.2)	0.93 (0.1)	0.89(0.1)	0.84(0.1)	0.75 (0.0)	0.69(0.0)	15/15
GP1-CMAES	27(48)	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	7.9(3)	6.7(7)	4.6(11)	4.1(4)	3.7(2)	3.0(4)	7.7(5)	1/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	∞	∞	∞	∞	∞	∞	$\infty~6e4$	0/15
Sif	∞	∞	∞	∞	∞	∞	∞ 6e4	0/15
Srr	∞	∞	∞	∞	∞	∞	$\propto 3e4$	0/15

Table 85: 10-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f12	515	896	1240	1390	1569	3660	5154	15/15
BSifeg	262(247)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
BSif	353(528)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
BSqi	42(34)	83(153)	148(147)	634(780)	∞	∞	$\infty~6e4$	0/15
BSrr	62(73)	346(263)	∞	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	4.2(2)	4.6 (5)	4.9(2)	5.1 (2)	5.1 (2)	2.7 (1.0)	2.2 (1)	15/15
CMA-MSR	4.9(4)	5.4(4)	5.3(2)	5.4 (3)	5.3 (2)	2.7 (1)	2.2 (0.7)	15/15
CMA-TPA	3.6 (2)	4.2 (4)	4.6 (3)	4.7 (1)	4.6(2)	2.4 (0.9)	1.9(0.6)	15/15
GP1-CMAES	2.9 (1)	3.8 (4)	6.6(7)	26(32)	23(30)	∞	∞ 2502	0/15
GP5-CMAES	21(38)	19(20)	29(41)	∞	∞	∞	∞ 2514	0/15
IPOPCMAv3p	2.8 (3)	5.5(11)	5.1 (5)	13(14)	23(40)	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	4.2(0.7)	5.9(5)	10(5)	13(11)	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	74(97)	∞	∞	∞	∞	∞	∞ 2e4	0/15
Sif	99(124)	∞	∞	∞	∞	∞	∞ 2e4	0/15
Srr	20(39)	53(71)	84(76)	∞	∞	∞	∞ 2e4	0/15

Table 86: 10-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f13	387	596	797	1014	4587	6208	7779	15/15
BSifeg	59(82)	216(254)	∞	∞	∞	∞	∞ 9e4	0/15
BSif	453(420)	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
BSqi	42(75)	270(411)	1573(1211)	∞	∞	∞	$\propto 9e4$	0/15
BSrr	49(60)	358(474)	1569(2249)	∞	∞	∞	$\propto 9e4$	0/15
CMA-CSA	3.2(2)	3.3 (1)	3.6 (1)	3.7 (2)	1.0(0.6)	1.1(0.5)	1.2(0.4)	15/15
CMA-MSR	2.2(0.4)	2.8 (1)	4.3(2)	4.1 (1)	1.00(0.2)	0.98 (0.1)	1.1(0.2)	15/15
CMA-TPA	2.5(2)	3.7 (2)	4.4 (1)	4.3 (1)	1.1(0.3)	1.2(0.5)	1.3(0.5)	15/15
GP1-CMAES	2.5 (0.8)	8.1(7)	8.1(9)	12(15)	∞	∞	∞ 2502	0/15
GP5-CMAES	1.9 ₍₁₎	8.0(9)	10(17)	17(13)	∞	∞	$\infty 2506$	0/15
IPOPCMAv3p	3.1(5)	7.0(4)	46(49)	36(24)	∞	∞	∞ 2502	0/15
LHD-10xDef	2.3(0.7)	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	2.0(2)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	2.0(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	7.8(8)	29(43)	46(30)	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	23(22)	218(227)	1592(696)	∞	∞	∞	∞ 8e4	0/15
Sif	21(32)	170(116)	∞	∞	∞	∞	∞ 8e4	0/15
Srr	27(30)	120(135)	216(241)	∞	∞	∞	∞ 9e4	0/15

Table 87: 10-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f14	37	98	133	205	392	687	4305	15/15
BSifeg	1.4(2)	10(6)	14(11)	39(26)	∞	∞	$\infty~1e5$	0/15
BSif	1.4 (1)	21(55)	90(573)	767(1921)	∞	∞	$\infty~1e5$	0/15
BSqi	1.3(0.2)	5.4(5)	7.9(7)	27(21)	∞	∞	$\infty~1e5$	0/15
BSrr	1.3(0.8)	8.5(10)	12(12)	30(17)	3805(3828)	∞	$\infty~1e5$	0/15
CMA-CSA	2.7 ₍₁₎	3.2(0.7)	4.0(0.4)	4.0(0.5)	3.3 (0.2)	3.5(0.2)	0.85 (0.1)	15/15
CMA-MSR	3.1(0.9)	3.4(0.6)	4.3(0.8)	4.2(0.4)	3.4(0.3)	3.5(0.2)	0.90 (0.1)	15/15
CMA-TPA	3.0(1)	3.0(0.4)	3.5(0.7)	3.5(0.4)	3.0 (0.6)	3.5(0.3)	0.92 (0.1)	15/15
GP1-CMAES	2.0(1)	2.2 (0.8)	3.1 (0.6)	3.6 (1)	4.4(1)	∞	∞ 2502	0/15
GP5-CMAES	1.6(0.4)	1.6(0.4)	3.3(0.8)	4.0(4)	27(40)	∞	∞ 2526	0/15
IPOPCMAv3p	2.4 (2)	3.2(0.7)	3.9(0.7)	4.2(0.8)	3.8(0.6)	∞	∞ 2502	0/15
LHD-10xDef	5.8(1)	4.1(0.5)	9.0(7)	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	2.1(1)	4.2(7)	55(60)	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	1.8(0.3)	4.3(6)	17(13)	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	2.2 (1)	3.4(2)	5.2(3)	8.8(3)	94(117)	∞	∞ 2502	0/15
RF5-CMAES	5.8(4)	33(36)	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	1.3(0.3)	1.6(0.7)	2.7 (0.5)	19(19)	∞	∞	$\infty~1e5$	0/15
Sif	1.3(0.3)	1.9(1.0)	3.7(3)	63(64)	∞	∞	$\infty~1e5$	0/15
Srr	1.2(0.1)	1.4(0.4)	2.2 (0.9)	9.3(8)	3734(2680)	∞	$\infty~1e5$	0/15

Table 88: 10-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

Λ. Γ.	14 4	1 0		1 0	1 0	1 -	1 -	11
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f15	4774	39246	73643	74669	75790	77814	79834	12/15
BSifeg	∞	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
BSqi	∞	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
BSrr	∞	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
CMA-CSA	0.95 (0.5)	1.0(0.3)	1.00(0.6)	1.0(0.7)	1.0(0.5)	1.0(0.5)	1.0(0.6)	15/15
CMA-MSR	1.2(0.8)	0.98 (0.4)	0.92 (0.6)	0.94 (0.5)	0.96 (0.5)	0.99 (0.9)	1.0(0.6)	15/15
CMA-TPA	0.82(1)	1.1(0.4)	1.0(0.5)	1.0(0.4)	1.0(0.6)	1.0(0.5)	1.0(0.5)	15/15
GP1-CMAES	3.7(4)	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2516	0/15
IPOPCMAv3p	2.4 (3)	∞	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	7.5(7)	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	∞	∞	∞	∞	∞	∞	∞ 9e4	0/15
Sif	∞	∞	∞	∞	∞	∞	∞ 9e4	0/15
Srr	∞	∞	∞	∞	∞	∞	∞ 9e4	0/15

Table 89: 10-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f16	425	7029	15779	45669	51151	65798	71570	15/15
BSifeg	36(39)	201(172)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	38(48)	96(71)	∞	∞	∞	∞	∞ 9e4	0/15
BSqi	60(95)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSrr	18(27)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	1.8(0.5)	0.82 (0.8)	1.0(0.3)	0.61(0.2)	0.59 (0.4)	0.50 (0.2)	0.48(0.4)	15/15
CMA-MSR	1.5(0.5)	1.0(0.7)	1.2(0.8)	1.1(1)	2.6 (5)	2.2(4)	2.1(0.8)	15/15
CMA-TPA	3.1(2)	1.0(0.7)	1.0(0.8)	0.54 (0.2)	0.70 (1)	0.58 (0.8)	0.56 (0.2)	15/15
GP1-CMAES	1.1(0.6)	2.4 (4)	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	$0.39(0.2)_{\downarrow}$	4 1.6 (2)	∞	∞	∞	∞	∞ 2514	0/15
IPOPCMAv3p	2.4 (0.8)	0.63 (0.4)	2.4 (2)	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	1.6 (0.6)	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	5.4(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	1.8(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	1.3(0.8)	2.4(2)	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	3.6(3)	∞	∞	∞	∞	∞	∞ 2528	0/15
Sifeg	5.9(12)	206(293)	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	4.2(6)	205(275)	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	4.5(7)	212(207)	∞	∞	∞	∞	$\infty~1e5$	0/15

Table 90: 10-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f17	26	429	2203	6329	9851	20190	26503	15/15
BSifeg	1.4 (1)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	1.4(0.9)	3323(2792)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	1.4(0.8)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
$_{\mathrm{BSrr}}$	1.4(0.9)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	3.4(1)	2.1(4)	1.0(0.1)	0.72 (0.6)	0.81(0.7)	0.86(0.2)	1.1(0.4)	15/15
CMA-MSR	2.0(1)	3.1(0.3)	1.3 (1)	1.4 (1)	1.2(0.6)	1.0(0.6)	1.4(0.5)	15/15
CMA-TPA	2.4(2)	0.93 (0.4)	1.3 (3)	1.2(2)	1.1(0.3)	0.99 (0.8)	1.3(0.6)	15/15
GP1-CMAES	S 1.7(0.7)	0.84 (0.8)	2.6 (4)	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	S 1.7(1)	6.7(7)	∞	∞	∞	∞	∞ 2526	0/15
IPOPCMAv3	3p 2.4 (2)	1.2(0.5)	0.64 (0.4)	0.60(0.6)	1.8(2)	∞	∞ 2502	0/15
LHD-10xDef	3.5(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	1.6 (0.8)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDe	f 1.8 (0.9)	17(19)	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	1.7 (0.8)	13(3)	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	1.6 (0.8)	21(22)	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	1.3(1)	1669(1320)	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	1.3 (1)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	1.3(0.7)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15

Table 91: 10-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	$\tilde{1}e0$	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f18	238	836	7012	15928	27536	37234	42708	15/15
BSifeg	644(1716)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	1179(1873)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	808(1058)	∞	∞	∞	∞	∞	∞ 9e4	0/15
BSrr	607(1204)	∞	∞	∞	∞	∞	∞ 9e4	0/15
CMA-CSA	1.3(0.4)	1.0(0.3)	0.64(0.5)	0.79 (0.5)	0.70 (0.2)	0.78 (0.3)	0.90 (0.4)	15/15
CMA-MSR	1.1(0.3)	2.1(2)	1.2(0.6)	0.77 (0.4)	0.74(0.3)	0.76(0.2)	0.81(0.6)	15/15
CMA-TPA	1.1(0.3)	1.9(3)	0.73 (0.4)	0.82(0.2)	0.66 (0.5)	0.66 (0.3)	0.71(0.3)	15/15
GP1-CMAES	0.97 (0.4)	2.3(2)	5.2(7)	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	1.2(0.3)	13(15)	∞	∞	∞	∞	∞ 2514	0/15
IPOPCMAv3p	1.3(0.8)	1.7(2)	1.2(1)	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	3.4(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	5.6(3)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	15(15)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	1.1(0.4)	20(13)	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	7.5(10)	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	299(410)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	399(898)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	324(179)	∞	∞	∞	∞	∞	$\propto 9e4$	0/15

Table 92: 10-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f19	1	1	10609	9.8e5	1.4e6	1.4e6	1.4e6	15/15
BSifeg	35 (13)	1.4e6(1e6)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	35 (21)	6.6e5(5e5)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	35 (7)	4.5e5(5e5)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSrr	35 (4)	3.3e5(2e5)	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	85(57)	1.1e4(3695)	12 (7)	0.42 (0.2)	0.33 (0.2)	0.33 (0.2)	0.33 (0.2)	15/15
CMA-MSR	87(32)	5820(2971)	21 (51)	∞	∞	∞	$\infty~1e6$	0/15
CMA-TPA	73(50)	1.2e4(6908)	12 (7)	0.49 (0.2)	0.51(0.2)	0.51(0.4)	0.51(0.1)	13/15
GP1-CMAES	59(14)	1.8e4(6903)	∞	∞	∞	∞	∞ 2504	0/15
GP5-CMAES	42(11)	∞	∞	∞	∞	∞	∞ 2528	0/15
IPOPCMAv3p	92(32)	3.8e4(9e4)	∞	∞	∞	∞	∞ 2504	0/15
LHD-10xDef	182(106)	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	61(25)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	67(8)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	69(20)	6979(6888)	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	64(45)	∞	∞	∞	∞	∞	∞ 2516	0/15
Sifeg	45(14)	1.2e5(1e5)	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	44(22)	1.1e5(1e5)	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	45(30)	1.1e5(1e5)	∞	∞	∞	∞	$\infty~1e5$	0/15

Table 93: 10-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f20	32	15426	5.5e5	5.7e5	5.7e5	5.8e5	5.9e5	15/15
BSifeg	1.9(2)	3.2(5)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	2.0 (1)	3.5(4)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	1.8(0.4)	3.4(7)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSrr	1.9(0.2)	2.8 (4)	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	5.3(0.9)	1.8(1.0)	0.39 (0.2)	0.39 (0.2)	0.39 (0.2)	0.40(0.2)	0.40(0.2)	15/15
CMA-MSR	6.0(2)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15
CMA-TPA	5.1(2)	18(33)	27 (30)	26 (10)	26 (36)	26 (31)	25 (13)	1/15
GP1-CMAES	4.0(0.6)	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	2.3 (0.4)	∞	∞	∞	∞	∞	∞ 2526	0/15
IPOPCMAv3p	6.5(2)	2.3 (1.0)	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	7.7(0.5)	∞	∞	∞	∞	∞	∞ 500	0/15
LHD-2xDefa	2.9 (0.8)	∞	∞	∞	∞	∞	∞ 500	0/15
RAND-2xDef	3.4(1)	∞	∞	∞	∞	∞	∞ 500	0/15
RF1-CMAES	5.5(2)	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	21(31)	∞	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	2.0 (1)	1.4 (1)	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	2.0 (1.0)	0.87(2)	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	1.9(0.5)	1.9(2)	∞	∞	∞	∞	$\infty~1e5$	0/15

Table 94: 10-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f21	130	2236	4392	4487	4618	5074	11329	8/15
BSifeg	171(613)	308(369)	337(382)	330(401)	320(363)	293(311)	$\infty~1e5$	0/15
BSif	331(579)	301(145)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	151(394)	188(269)	331(199)	325(619)	316(330)	292(207)	$\infty~1e5$	0/15
BSrr	159(477)	196(237)	161(174)	158(192)	154(179)	282(251)	127(183)	1/15
CMA-CSA	7.7(2)	166(362)	184(567)	181(239)	176(254)	161(182)	73(64)	7/15
CMA-MSR	10(6)	331(371)	219(138)	215(651)	209(271)	190(209)	85(93)	7/15
CMA-TPA	4.8(9)	132(334)	118(199)	116(132)	113(217)	103(201)	46 (104)	8/15
GP1-CMAES	2.4(5)	2.4 (4)	8.1(10)	7.9 (12)	7.7(7)	7.1(6)	3.2 (3)	1/15
GP5-CMAES	3.7(5)	4.8(5)	3.9 (4)	3.8 (6)	3.9 (7)	∞	$\infty 2506$	0/15
IPOPCMAv3p	10(6)	4.7(11)	8.1(16)	8.0(15)	7.8 (18)	7.1 (9)	3.2 (5)	1/15
LHD-10xDef	2.7 (0.1)	3.3(3)	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	1.3(3)	3.2(5)	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	1.2(2)	1.00(1)	1.7(2)	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	9.1(20)	5.0(5)	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	13(11)	∞	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	79(82)	187(157)	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	110(0.9)	304(284)	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	78(193)	141(149)	104(83)	101(104)	99(120)	91 (63)	63(51)	2/15

Table 95: 10-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f22	98	2839	6353	6620	6798	8296	10351	6/15
BSifeg	646(1278)	77(97)	49 (38)	105(105)	210(357)	∞	$\infty~1e5$	0/15
BSif	959(2045)	151(134)	222(398)	∞	∞	∞	$\infty~1e5$	0/15
BSqi	525(811)	76(156)	107(197)	213(219)	209 (265)	∞	$\infty~1e5$	0/15
BSrr	644(1171)	66(59)	105(96)	213(230)	209 (114)	∞	$\infty~1e5$	0/15
CMA-CSA	19(32)	327(267)	1309(706)	1257(2141)	1224(830)	1003(960)	804 (968)	1/15
CMA-MSR	45(113)	583(873)	1826(3089)	1753(2271)	1707(2007)	1399(1122)	1121(811)	1/15
CMA-TPA	454(13)	307(714)	1269(1436)	1218(1049)	1186(1270)	972(953)	779 (948)	1/15
GP1-CMAES	3.7(2)	1.9(1)	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	12(13)	1.6(3)	2.9 (7)	5.7 (4)	5.5 (5)	∞	∞ 2516	0/15
IPOPCMAv3p	16(26)	13(6)	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	4.2(4)	1.3(1)	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	3.0(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	3.4(2)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	13(39)	5.9(6)	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	18(29)	5.9(4)	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	309(292)	38(56)	50(38)	215(336)	∞	∞	$\infty~1e5$	0/15
Sif	633(933)	98(99)	104(107)	∞	∞	∞	$\infty~1e5$	0/15
Srr	553(695)	60(87)	38 (45)	212(249)	∞	∞	$\infty~1e5$	0/15

Table 96: 10-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f23	2.8	915	16425	1.8e5	2.0e5	2.1e5	2.1e5	15/15
BSifeg	2.5 (3)	13(12)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	2.5(2)	12(25)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	2.5 (3)	13(13)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSrr	2.5(2)	11(19)	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	3.0(3)	23(24)	7.0 (3)	7.5 (9)	8.7 (9)	8.5 ₍₁₀₎	8.3 (11)	6/15
CMA-MSR	4.7(5)	2.9 (4)	1.4 (1)	0.43 (0.7)	0.41 (0.5)	0.44 (0.7)	0.47(0.1)	15/15
CMA-TPA	2.5(2)	12(28)	4.9(7)	3.8 (9)	3.5 (5)	3.4 (2)	3.4 (9)	10/15
GP1-CMAES	2.2 (5)	2.7 (3)	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	1.8(1)	0.92 (0.1)	∞	∞	∞	∞	∞ 2514	0/15
IPOPCMAv3p	2.2 (3)	∞	∞	∞	∞	∞	∞ 2514	0/15
LHD-10xDef	1.6(2)	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	2.0(2)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	1.3 (1)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	2.5 (3)	∞	∞	∞	∞	∞	$\infty 2506$	0/15
RF5-CMAES	2.0 (3)	∞	∞	∞	∞	∞	∞ 2548	0/15
Sifeg	2.5 (5)	4.6(5)	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	2.5 (3)	6.4(11)	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	2.5 (2)	5.7(5)	∞	∞	∞	∞	$\propto 1e5$	0/15

Table 97: 10-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f24	98761	1.0e6	7.5e7	7.5e7	7.5e7	7.5e7	7.5e7	1/15
BSifeg	∞	∞	∞	∞	∞	∞	∞ 9e4	0/15
BSif	∞	∞	∞	∞	∞	∞	∞ 9e4	0/15
BSqi	∞	∞	∞	∞	∞	∞	∞ 9e4	0/15
BSrr	∞	∞	∞	∞	∞	∞	∞ 8e4	0/15
CMA-CSA	20 (13)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15
CMA-MSR	42 (23)	6.4(7)	∞	∞	∞	∞	$\infty~1e6$	0/15
CMA-TPA	72 (79)	6.8 (10)	∞	∞	∞	∞	$\infty~1e6$	0/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	∞ 2514	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2528	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 500	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 500	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 500	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	∞	∞	∞	∞	∞	∞	∞ 9e4	0/15
Sif	∞	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
Srr	∞	∞	∞	∞	∞	∞	$\propto 9e4$	0/15

Table 98: 20-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	43	43	43	43	43	43	43	15/15
BSifeg	1.9(0.2)	2.3 (0.1)	2.5 (0.2)	2.5 (0.3)	2.5 (0.2)	2.5 (0.2)	2.5 (0.3)	15/15
BSif	1.9(0.1)	2.3 (0.1)	2.5 (0.2)	15/15				
BSqi	1.9(0.1)	2.3 (0.1)	2.5 (0.2)	2.5 (0.2)	2.5 (0.3)	2.5 (0.3)	2.5 (0.2)	15/15
BSrr	1.9(0.1)	2.3 (0.1)	2.5 (0.3)	2.5 (0.2)	2.5 (0.3)	2.5 (0.2)	2.5 (0.3)	15/15
CMA-CSA	7.7(2)	14(1)	20(0.9)	26(2)	32(3)	45(3)	57(5)	15/15
CMA-MSR	9.2(1)	16(0.9)	23(2)	30(3)	38(3)	53(4)	68(4)	15/15
CMA-TPA	6.4(1)	11(1.0)	15(0.5)	19(0.8)	24(3)	32(2)	41(3)	15/15
GP1-CMAES	5.1(0.6)	9.2(0.8)	14(2)	17(2)	21(3)	32(3)	48(5)	15/15
GP5-CMAES	2.8 (0.2)	3.9(0.4)	5.2(0.3)	6.7(0.6)	7.9(0.7)	54(34)	567(570)	3/15
IPOPCMAv3p	8.6(2)	15(2)	21(2)	27(2)	34(2)	46(1)	58(2)	15/15
LHD-10xDef	10(0.1)	11(0.3)	14(0.8)	15(1)	17(2)	∞	∞ 1000	0/15
LHD-2xDefa	4.5(1)	38(51)	78(169)	343(390)	∞	∞	∞ 1000	0/15
RAND-2xDef	4.2(0.6)	20(16)	26(32)	63(63)	346(192)	∞	∞ 1000	0/15
RF1-CMAES	6.9(1)	12(1)	18(3)	24(4)	30(3)	43(5)	61(12)	15/15
RF5-CMAES	6.8(2)	69(110)	1669(873)	∞	∞	∞	$\infty 5006$	0/15
Sifeg	2.1 (0.1)	2.8 (0.1)	4.1(0.3)	5.6(0.4)	6.7(0.7)	8.7(0.8)	10(0.8)	15/15
Sif	2.1 (0.1)	2.8 (0.1)	4.3(0.3)	6.0(0.8)	7.4(1)	8.8(0.6)	10(0.5)	15/15
Srr	2.1 (0.1)	2.8 (0.1)	3.6(0.1)	4.4(0.2)	5.1(0.1)	6.7(0.1)	8.3(0.1)	15/15

Table 99: 20-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f2	385	386	387	388	390	391	393	15/15
BSifeg	0.66(0.1)	$_{4}0.74_{(0.1)}$	4 0.80(0.1)	4 0.90(0.0)	20.94 (0.1)	1.0(0.1)	1.1(0.1)	15/15
BSif	0.70(0.2)	4 0.79(0.1)	4 0.80(0.1)	4 0.90 (0.1)	0.94 (0.1)	1.00(0.0)	1.1(0.1)	15/15
BSqi	0.40(0.0)	$^{4}_{4}$ 0.44 (0.0) $^{\star}_{1}$	$^{4}_{4}$ 0.47 (0.1) $^{\star}_{\perp}$	$^4_40.52_{(0.0)}^{\star}_{\perp}$	$^{4}_{4}$ 0.57 (0.0) $^{\star}_{1}$	${}^{4}_{4}$ 0.69 (0.1) ${}^{\star}_{J}$	$^{4}_{14}$ 0.85 (0.1)*	15/15
BSrr	0.59(0.1)	$_{4}0.65_{(0.1)}$	4 0.69(0.1)	4 0.79(0.1)	4 0.87(0.1)	3 1.0 (0.1)	1.1(0.1)	15/15
CMA-CSA	23(2)	27(1)	29(1)	30(1)	31(1)	32(2)	33(1)	15/15
CMA-MSR	27(3)	32(2)	35(4)	36(1)	37(2)	38(0.9)	39(2)	15/15
CMA-TPA	25(1)	30(4)	33(2)	35(2)	36(1)	37(1)	37(2)	15/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	46(65)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	0.83(0.1)	41.0(0.2)	1.2(0.2)	1.2(0.1)	1.4(0.3)	1.4(0.2)	1.6(0.3)	15/15
Sif	0.96 (0.1)	1.1(0.2)	1.2(0.2)	1.2(0.1)	1.3(0.2)	1.4(0.2)	1.6(0.2)	15/15
Srr	0.69(0.0) _↓	$_{4}0.78_{(0.1)}$	$_{4}0.88$ $_{(0.1)}$	0.95 (0.1)	1.1(0.1)	1.2(0.1)	1.4(0.1)	15/15

Table 100: 20-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

cacii uiib var	ac arviac	a by anne.	iibiOii.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	# succ
f3	5066	7626	7635	7637	7643	7646	7651	15/15
BSifeg	0.14(0.0) _↓	4 0.18 (0.0)	40.22(0.1)	40.22(0.1)	40.22(0.1)	4 0.22 (0.1)	40.22(0.1)	15/15
BSif	0.14(0.0)	4 0.18 (0.0)	4 0.22 (0.1)	4 0.22 (0.1)	4 0.22 (0.1)	4 0.22 (0.1)	4 0.22 (0.1)	15/15
BSqi	0.14(0.0)	4 0.16 (0.0)	40.20(0.1)J	4 0.20 (0.0)	40.20(0.1)	4 0.20 (0.0)	40.20(0.0) L	15/15
BSrr	0.14(0.0)	4 0.16 (0.0)	40.19(0.1)J	4 0.20 (0.0)	40.20(0.1)	.4 0.21 (0.1)	4 0.21 (0.0)	15/15
CMA-CSA	10(7)	∞	∞	∞	∞	∞	∞ 2e6	0/15
CMA-MSR	6.4(5)	38(19)	70(58)	73(72)	76(37)	81(58)	86(94)	15/15
CMA-TPA	8.8(6)	1756(1991)	∞	∞	∞	∞	∞ 2e6	0/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 5034	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	0.15(0.0)	4 0.17 (0.0)	4 0.23 (0.1)	4 0.23 (0.0)	4 0.23 (0.0)	4 0.24 (0.0)	4 0.24 (0.0)	15/15
Sif	0.16(0.0)	4 0.18 (6e-3)	Q.23 (0.0)	4 0.24 (0.0)	4 0.24 (0.0)	4 0.24 (0.0)	4 0.24 (0.0)	15/15
Srr	0.12 (0.0)	4 0.15 (0.0)↓	4 0.19 (0.0)	4 0.20 (0.1)↓	40.21 (0.0)↓	4 0.22 (0.0)	4 0.23 (0.0)	45/15

Table 101: 20-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f4	4722	7628	7666	7686	7700	7758	1.4e5	9/15
BSifeg	0.21 (0.1)	$\downarrow 4$ 0.35 (0.1)	$\downarrow 4$ 0.40 (0.0)	$\downarrow 4$ 0.40 (0.1) \downarrow	40.40(0.1)	40.40(0.1)	4 0.02 (3e-3)	15/15
BSif	0.22(0.1)	$\downarrow 4$ 0.36 (0.0)	$\downarrow 4$ 0.42 (0.1)	$\downarrow 40.42(0.1) \downarrow$	40.42(0.1)	40.42(0.1)	4 0.02 (3e-3)	15/15
BSqi	0.21(0.0)	$\downarrow 4$ 0.30 (0.0)	$\downarrow 4$ 0.34 (0.1)	$\downarrow 4$ 0.34 (0.1) \downarrow	$_{4}$ 0.34 (0.1) $_{\downarrow}$	$_{4}$ 0.35 (0.1) $_{\downarrow}$	4 0.02 (3e-3)	15/15
BSrr	0.18(0.0)	$_{\downarrow 4}^{0.29}$ (0.0)	$\downarrow 4$ 0.31 (0.1)	\downarrow_4 0.32 (0.0)	40.34(0.1)	4 0.37 (0.0)	4 0.03 (5e-3)	15/15
CMA-CSA	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
CMA-MSR	5792(2066)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
CMA-TPA	∞	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5046$	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 5022	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	0.21(0.0)	$_{\perp 4}$ 0.35 (0.0)	140.52(0.1)	14 0.70 (0.1)	0.79 (0.1)	0.94(0.2)	0.05(0.0)	15/15
Sif	0.22(0.0)	$_{\perp 4}$ 0.35 (0.1)	$_{\perp 4}$ 0.52 (0.1)	14 0.72 (0.1)	0.81(0.1)	0.95 (0.2)	0.05(8e-3)	15/15
Srr	0.19(0.0)	$_{\downarrow 4}^{\bullet}$ 0.30 (0.0)	$\downarrow 4$ 0.46 (0.1)	↓4 0.60 (0.0)	0.72 (0.0)	0.86(0.1)	0.05(4e-3)	15/15

Table 102: 20-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

cacii tiiib vai	ac aivia	.ca by ai	iiiciibicii.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f5	41	41	41	41	41	41	41	15/15
BSifeg	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSif	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSqi	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSrr	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
CMA-CSA	4.9(0.8)	5.8(1)	6.0(1)	6.0(1)	6.0(1)	6.0(1)	6.0(0.7)	15/15
CMA-MSR	5.0(1)	5.5(2)	5.6(1)	5.6(0.5)	5.6(1)	5.6(2)	5.6(2)	15/15
CMA-TPA	4.3(0.7)	4.9(0.9)	4.9(1)	4.9(0.9)	4.9(1)	4.9(1)	4.9(1)	15/15
GP1-CMAES	12(8)	69(109)	91(112)	92(83)	92(129)	92(100)	92(68)	11/15
GP5-CMAES	3.3(0.7)	4.4(1)	4.7(2)	4.7(1)	4.8(0.8)	4.8(1)	4.8(2)	15/15
IPOPCMAv3p	16(6)	31(16)	34(19)	36(17)	36(14)	36(14)	36(13)	15/15
LHD-10xDef	11(0.3)	11(0.4)	11(0.2)	11(0.2)	11(0.2)	11(0.2)	11(0.2)	15/15
LHD-2xDefa	2.7 (0.1)	2.9 (0.1)	3.0(0.2)	3.0 (0.1)	3.0(0.2)	3.0(0.1)	3.0(0.2)	15/15
RAND-2xDef	2.7 (0.1)	2.9 (0.2)	3.0(0.2)	3.0(0.2)	3.0(0.2)	3.4(0.2)	3.4(2)	15/15
RF1-CMAES	22(8)	44(21)	48(24)	50(23)	50(29)	50(20)	50(23)	15/15
RF5-CMAES	42(38)	97(96)	169(298)	226(188)	265(140)	265(308)	265(261)	6/15
Sifeg	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
Sif	1.5 (0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
Srr	1.5 (0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15

Table 103: 20-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f6	1296	2343	3413	4255	5220	6728	8409	15/15
BSifeg	962(1827)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	750(899)	∞	∞	∞	∞	∞	$\infty~2e5$	0/7
BSrr	812(984)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	1.6(0.3)	1.3(0.2)	1.1(0.2)	1.1(0.1)	1.1(0.2)	1.1(0.1)	1.1(0.1)	15/15
CMA-MSR	1.5(0.8)	1.9(0.7)	2.4(2)	3.9(3)	5.7 (7)	11 (7)	13 (2)	15/15
CMA-TPA	1.6(0.4)	1.3(0.2)	1.2(0.3)	1.3(0.3)	1.4(0.3)	1.5(0.2)	1.6(0.5)	15/15
GP1-CMAES	8.5(7)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 5024	0/15
IPOPCMAv3p	1.5(0.1)	1.2(0.1)	1.1(0.1)	1.9(2)	14(18)	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	56(44)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	193(288)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	644(684)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	277(548)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 104: 20-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COCCII CIIID FOIL	ac arrage.	a ~, am	OIIDIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f7	1351	4274	9503	16523	16524	16524	16969	15/15
BSifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSrr	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	1.7 (1)	2.3 (1)	1.7(0.5)	1.1(0.3)	1.1(0.4)	1.1(0.3)	1.0(0.4)	15/15
CMA-MSR	2.1(1.0)	4.2 (5)	2.4 (1)	1.6 (2)	1.6(0.6)	1.6(0.5)	1.5(1)	15/15
CMA-TPA	2.1 (1)	2.7 (1)	1.6(0.8)	1.0(0.4)	1.0(0.4)	1.0(0.4)	1.0(0.4)	15/15
GP1-CMAES	3.0(4)	∞	∞	∞	∞	∞	∞ 5010	0/15
GP5-CMAES	1.6(0.7)	∞	∞	∞	∞	∞	∞ 5022	0/15
IPOPCMAv3p	1.3 (1)	∞	∞	∞	∞	∞	$\infty 5008$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
	54(57)	∞	∞	∞	∞	∞	∞ 5022	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 5034	0/15
Sifeg	∞	∞	∞	∞	∞	∞	∞ 2e5	0/15
Sif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 105: 20-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COCCII CIIID (CCI	ac arrage	a 0, am	TIOIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f8	2039	3871	4040	4148	4219	4371	4484	15/15
BSifeg	76(69)	358(191)	689(366)	∞	∞	∞	$\infty~2e5$	0/15
BSif	401(275)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	30(54)	325(348)	∞	∞	∞	∞	$\infty~2e5$	0/8
BSrr	79(70)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	3.4(0.7)	3.4(0.4)	3.6(0.4)	3.7 (0.2)	3.8 (0.3)	3.8 (0.3)	3.8 (0.2)	15/15
CMA-MSR	3.6 (0.8)	4.6(2)	4.8(3)	4.8(2)	4.8(3)	4.8(2)	4.9 (3)	15/15
CMA-TPA	3.1 (0.7)	3.5(0.4)	3.8 (2)	3.9(0.4)	3.9 (1)	3.9(0.3)	3.9(0.3)	15/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	12(10)	∞	∞	∞	∞	∞	$\infty 5010$	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	51(56)	94(182)	219(148)	∞	∞	∞	$\infty~2e5$	0/15
Sif	87(30)	327(235)	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	61(105)	141(118)	304(555)	606(584)	∞	∞	$\infty~2e5$	0/15

Table 106: 20-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COLOTT CITIES 1 COL	ac ar ira	ou o, un	iioiioioii.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f9	1716	3102	3277	3379	3455	3594	3727	15/15
BSifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/5
BSrr	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	3.8 (0.5)	4.1(0.2)	4.3(0.3)	4.4(0.3)	4.4(0.2)	4.5(0.2)	4.5(0.3)	15/15
CMA-MSR	3.8 (0.7)	4.5(4)	4.8(2)	4.8(2)	4.8(2)	4.8(0.5)	4.8(0.5)	15/15
CMA-TPA	3.8 (0.6)	5.5(2)	5.8 (0.3)	5.8(0.3)	5.8 (2)	5.8 (4)	5.8 (1)	15/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 5020	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 107: 20-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

LOTED CO L COCCIL	CIIIO (CII.	ac arrace	a 0, am	OIIDIOII.				
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f10	7413	8661	10735	13641	14920	17073	17476	15/15
BSifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	∞	∞	∞	∞	∞	∞	∞ 2e5	0/15
BSrr	∞	∞	∞	∞	∞	∞	∞ 9e4	0/15
CMA-CSA	1.2(0.2)	1.2(0.1)	1.0(0.1)	0.86(0.0)	0.81(0.0)	0.74(0.0)	0.76 (0.0)	15/15
CMA-MSR	1.3(0.2)	1.3(0.2)	1.2(0.1)	0.99 (0.1)	0.93 (0.0)	0.86(0.0)	0.88(0.1)	15/15
CMA-TPA	1.4(0.2)	1.4(0.2)	1.2(0.1)	1.0(0.1)	0.95 (0.0)	0.86(0.0)	0.86(0.0)	15/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	3.4(3)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	∞	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	∞	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	∞	∞	∞	∞	∞	∞	∞ 7e4	0/15

Table 108: 20-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

ions to reach	CIIID VOI	ac aiviac	a by aiii	CIDIOII.				
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f11	1002	2228	6278	8586	9762	12285	14831	15/15
BSifeg	∞	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSrr	∞	∞	∞	∞	∞	∞	∞ 8e4	0/15
CMA-CSA	4.6 (0.3)	2.3 (0.1)	0.86(0.0)	0.67(0.0)	0.63(0.0)	0.55 (0.0)	0.50 (0.0)	15/15
CMA-MSR	4.7 (0.3)	2.6 (0.1)	1.0(0.1)	0.80(0.1)	0.74(0.0)	0.65 (0.0)	0.58 (0.0)	15/15
CMA-TPA	4.5(0.4)	2.3 (0.1)	0.89(0.0)	0.69(0.0)	0.65(0.0)	0.57 (0.0)	0.51 (0.0)	15/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5008$	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5008$	0/15
Sifeg	∞	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	∞	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	∞	∞	∞	∞	∞	∞	∞ 7e4	0/15

Table 109: 20-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

LOTED CO LOCKEL	CILID COLC	ac arraca	0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	IOIOII.				
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f12	1042	1938	2740	3156	4140	12407	13827	15/15
BSifeg	∞	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	173(186)	1151(1006)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSrr	677(1003)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	3.6 (2)	3.5 (2)	3.8 (2)	3.9 (1)	3.5 (1)	1.4(0.4)	1.5(0.3)	15/15
CMA-MSR	3.7(3)	3.3 (2)	3.5 (2)	3.6 (2)	3.2 (1)	1.3(0.5)	1.4(0.3)	15/15
CMA-TPA	3.8(3)	4.1(2)	3.8 (2)	3.9 (3)	3.3 (2)	1.4(0.3)	1.4(0.7)	15/15
GP1-CMAES	2.4(0.2)	2.7 (3)	6.1(5)	23(17)	18(17)	∞	$\infty 5006$	0/15
GP5-CMAES	21(34)	18(16)	26(18)	23(17)	∞	∞	$\infty 5020$	0/15
IPOPCMAv3p	3.8(1)	5.1(5)	27(40)	23(28)	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	3.0 (3)	11(13)	26(39)	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	∞	∞	∞	∞	∞	∞	∞ 4e4	0/15
Sif	∞	∞	∞	∞	∞	∞	∞ $5e4$	0/15
Srr	∞	∞	∞	∞	∞	∞	∞ 4e4	0/15

Table 110: 20-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f13	652	2021	2751	3507	18749	24455	30201	15/15
BSifeg	137(232)	193(182)	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	103(37)	182(76)	∞	∞	∞	∞	$\infty~2e5$	0/15
BSrr	120(126)	221(350)	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	3.2 (3)	4.2 (4)	4.0 (1)	4.5(2)	0.93 (0.4)	1.1(0.5)	1.3(0.7)	15/15
CMA-MSR	4.4(3)	3.3 (4)	4.9 (3)	4.2 (2)	0.87 (0.5)	1.0(0.4)	1.5(0.5)	15/15
CMA-TPA	4.7(5)	4.7(2)	5.0 (2)	5.4(4)	1.1(0.2)	1.3(0.3)	1.5(0.5)	15/15
GP1-CMAES	22(19)	∞	∞	∞	∞	∞	∞ 5046	0/15
GP5-CMAES	5.5(12)	4.9(6)	13(7)	∞	∞	∞	∞ 5022	0/15
IPOPCMAv3p	8.3(8)	7.9(5)	26(38)	21(37)	4.0(8)	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	23(18)	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	8.1(6)	6.4(2)	27(40)	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	44(46)	102(61)	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	64(55)	282(361)	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	57(48)	109(92)	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 111: 20-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f14	75	239	304	451	932	1648	15661	15/15
BSifeg	1.5 (0.8)	11(10)	17(8)	46(15)	∞	∞	$\infty~2e5$	0/15
BSif	1.5(0.4)	12(10)	50(82)	864(887)	∞	∞	$\infty~2e5$	0/15
BSqi	1.5 (0.5)	5.0(3)	8.5(2)	37(15)	∞	∞	$\infty~2e5$	0/4
BSrr	1.4(0.7)	7.1(8)	12(7)	34(15)	∞	∞	$\infty~2e5$	0/15
CMA-CSA	4.2(2)	2.9 (0.5)	3.7(0.6)	4.1(0.5)	3.3 (0.3)	3.9(0.3)	0.67 (0.0)	15/15
CMA-MSR	4.2(1)	2.8 (0.6)	3.4(0.5)	3.6(0.4)	2.9 (0.4)	3.9(0.2)	0.73 (0.0)	15/15
CMA-TPA	3.5(1)	2.3 (0.6)	2.8 (0.4)	3.1(0.2)	2.8 (0.3)	3.8(0.4)	0.71 (0.0)	15/15
GP1-CMAES	3.0 (0.8)	2.3 (0.7)	2.9 (0.6)	3.5 (0.8)	4.0(0.6)	∞	$\infty 5006$	0/15
GP5-CMAES	2.1(0.5)	1.7(0.2)	1.9(0.5)	8.0(6)	79(80)	∞	$\infty 5020$	0/15
IPOPCMAv3p	3.7(1)	2.8 (0.3)	3.6(0.3)	4.3(0.3)	4.1(0.2)	∞	$\infty 5006$	0/15
LHD-10xDef	6.9(0.7)	10(3)	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	3.1(1)	5.3(2)	12(14)	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	3.3(0.6)	9.4(12)	24(37)	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	3.5(0.9)	3.2(0.9)	4.0(0.9)	4.9(2)	15(23)	∞	$\infty 5006$	0/15
RF5-CMAES	3.7(1)	300(455)	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	1.3(0.5)	1.4(0.7)	2.8 (1)	23(19)	∞	∞	$\infty~2e5$	0/15
Sif	1.3(0.5)	1.6 (0.6)	3.5(2)	79(59)	∞	∞	$\infty~2e5$	0/15
Srr	1.3(0.3)	1.2(0.3)	2.0 (0.6)	14(12)	∞	∞	$\infty~2e5$	0/15

Table 112: 20-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

LOTED CO L COCCIL	CIIIO (CII)	ac carriac	a ~, am	OILDIOIL.				
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f15	30378	1.5e5	3.1e5	3.2e5	3.2e5	4.5e5	4.6e5	15/15
BSifeg	∞	∞	∞	∞	∞	∞	∞ 2e5	0/15
BSif	∞	∞	∞	∞	∞	∞	∞ 2e5	0/15
BSqi	∞	∞	∞	∞	∞	∞	∞ 2e5	0/11
BSrr	∞	∞	∞	∞	∞	∞	∞ 2e5	0/15
CMA-CSA	0.83 (0.6)	0.99 (0.3)	0.64(0.3)	0.65 (0.3)	0.65 (0.3)	0.49 (0.3)	0.49(0.1)	15/15
CMA-MSR	0.98 (0.3)	0.95 (0.1)	0.54 (0.4)	0.55 (0.2)	0.56(0.2)	0.43 (0.3)	0.45 (0.3)	15/15
CMA-TPA	0.94 (0.5)	1.1(0.4)	0.63 (0.3)	0.64(0.4)	0.64(0.1)	0.48(0.2)	0.49(0.2)	15/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5048$	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 113: 20-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f16	1384	27265	77015	1.4e5	1.9e5	2.0e5	2.2e5	15/15
BSifeg	123(161)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	178(95)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	98(127)	∞	∞	∞	∞	∞	$\infty~2e5$	0/13
BSrr	119(147)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	1.9(0.6)	0.64(0.7)	0.84(0.2)	1.2(2)	1.4 (1)	1.5(0.8)	1.4(2)	15/15
CMA-MSR	0.80 (0.1)	0.84(0.5)	1.1(1)	1.3(0.5)	3.3 (1)	4.7 (10)	4.3 (4)	12/15
CMA-TPA	1.2(0.6)	0.78(0.6)	0.80 (0.5)	0.67 (0.5)	0.63 (0.2)	0.66 (0.2)	0.62(0.2)	15/15
GP1-CMAES	0.90 (0.1)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	0.57 (0.2) $_{\downarrow}$	∞	∞	∞	∞	∞	∞ 5022	0/15
IPOPCMAv3p	1.4(0.4)	0.63 (0.6)	∞	∞	∞	∞	$\infty 5006$	0/15
LHD-10xDef	3.4(4)	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	5.1(6)	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	11(7)	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	0.79 (0.2)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	1.0(3)	∞	∞	∞	∞	∞	$\infty 5008$	0/15
Sifeg	15(12)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	12(8)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	14(8)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 114: 20-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f17	63	1030	4005	12242	30677	56288	80472	15/15
BSifeg	493(1588)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	488(800)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	1.7(0.6)	∞	∞	∞	∞	∞	$\infty~2e5$	0/3
BSrr	476(0.7)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
CMA-CSA	3.0(2)	1.0(0.3)	1.4(2)	1.2(0.6)	0.74(0.6)	0.88 (0.4)	0.88(0.2)	15/15
CMA-MSR	2.7 (0.6)	6.5(5)	3.5(1)	1.9(0.7)	0.97 (0.6)	0.88 (0.3)	0.81(0.4)	15/15
CMA-TPA	2.7 (0.6)	1.4(2)	1.5(0.9)	0.94 (0.1)	0.74 (0.3)	0.71 (0.4)	0.80 (0.3)	15/15
GP1-CMAES	1.4(0.7)	3.4(5)	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	1.6(0.8)	11(10)	∞	∞	∞	∞	∞ 5022	0/15
IPOPCMAv3p	2.0 (0.8)	0.99 (0.3)	0.93(1)	1.1(1)	∞	∞	$\infty 5006$	0/15
LHD-10xDef	7.3(3)	∞	∞	∞	∞	∞	$\infty 1000$	0/15
LHD-2xDefa	2.6 (1)	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	2.7 (1)	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	1.9 ₍₁₎	4.2(5)	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	2.7 (2)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	230(797)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	7.1(15)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	3.8(2)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 115: 20-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

- `	JIID CO I CCCCII	orres (cores	ar , raca	~, ~	IDIOII.				
	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
	f18	621	3972	19561	28555	67569	1.3e5	1.5e5	15/15
	BSifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/14
	BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
	BSqi	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/4
	BSrr	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
	CMA-CSA	0.96 (0.2)	0.72(1)	0.81(0.6)	1.1(0.9)	0.83 (0.3)	1.1 (1)	1.0(1)	15/15
	CMA-MSR	2.8 (14)	2.8 (2)	1.4(0.8)	2.0 (2)	1.2(0.5)	0.83 (0.1)	0.87 (0.4)	15/15
	CMA-TPA	1.6 (6)	1.3(0.9)	0.77 (0.4)	0.96 (0.3)	0.57 (0.3)	0.58 (0.5)	0.74(0.2)	15/15
	GP1-CMAES	0.93 (0.3)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
	GP5-CMAES	2.8(2)	∞	∞	∞	∞	∞	$\infty 5020$	0/15
	IPOPCMAv3p	1.1(0.2)	0.90(1)	3.7(3)	∞	∞	∞	$\infty 5006$	0/15
	LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
	LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
	RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
	RF1-CMAES	1.0(0.7)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
	RF5-CMAES	53(44)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
	Sifeg	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
	Sif	4564(5711)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
	Srr	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 116: 20-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

TOTIS TO LCCCII	onio varac	aiviaca	by diffic	1101011.				
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f19	1	1	3.4e5	4.7e6	6.2e6	6.7e6	6.7e6	15/15
BSifeg	161(160)	∞	∞	∞	∞	∞	∞ 2e5	0/15
BSif	603(70)	∞	∞	∞	∞	∞	∞ 2e5	0/15
BSqi	171(61)	∞	∞	∞	∞	∞	∞ 2e5	0/8
BSrr	151 (116)	∞	∞	∞	∞	∞	∞ 2e5	0/15
CMA-CSA	221(80)	3.3e4(3e4	0.82 (0.3)	0.56(0.7)	2.4 (3)	4.5(4)	4.5 (6)	1/15
CMA-MSR	212(60)	3.5e4(5e4)	1.2(0.3)	∞	∞	∞	∞ 2e6	0/15
CMA-TPA	177(33)	1.9e4(948	61). 6 (0.7)	1.2(0.7)	4.7 (7)	4.3(2)	4.3 (4)	1/15
GP1-CMAES	153 (29)	3.6e4(5e4)	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	97 (16)	1.6e4(3e4)∞	∞	∞	∞	∞ 5020	0/15
IPOPCMAv3p	229(64)	∞	∞	∞	∞	∞	$\infty 5008$	0/15
LHD-10xDef	507(504)	∞	∞	∞	∞	∞	$\infty 1000$	0/15
LHD-2xDefa	185(70)	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	165(139)	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	177(22)	3.7e4(8e4)	∞	∞	∞	∞	$\infty 5008$	0/15
RF5-CMAES	182(95)	∞	∞	∞	∞	∞	∞ 5034	0/15
Sifeg	164(166)	∞	∞	∞	∞	∞	∞ 2e5	0/15
Sif	176(223)	∞	∞	∞	∞	∞	∞ 2e5	0/15
Srr	166(42)	∞	∞	∞	∞	∞	∞ 2e5	0/15

Table 117: 20-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

	IID CO I COCII	OIIIO TOIL	ac car race.		OIIDIOII.				
	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
	f20	82	46150	3.1e6	5.5e6	5.5e6	5.6e6	5.6e6	14/15
	BSifeg	1.7(1.0)	0.83 (0.5)	∞	∞	∞	∞	$\infty~2e5$	0/15
	BSif	1.7(0.3)	2.8 (1)	∞	∞	∞	∞	$\infty~2e5$	0/15
	BSqi	1.3(0.6)	5.7(7)	∞	∞	∞	∞	$\infty~2e5$	0/4
	BSrr	1.6(0.5)	2.1 (3)	∞	∞	∞	∞	$\infty~2e5$	0/15
	CMA-CSA	5.0(1.0)	2.5 (1)	0.35 (0.1)	0.29 (0.0)	0.29 (0.0)	0.29 (0.0)	0.30 (0.0)	15/15
	CMA-MSR	5.1(0.8)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
	CMA-TPA	4.0(0.7)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
	GP1-CMAES	3.2(0.8)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
	GP5-CMAES	2.3 (0.4)	∞	∞	∞	∞	∞	∞ 5022	0/15
1	POPCMAv3p	5.5(1)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
	LHD-10xDef	7.6(0.6)	∞	∞	∞	∞	∞	∞ 1000	0/15
	LHD-2xDefa	4.1(1)	∞	∞	∞	∞	∞	∞ 1000	0/15
	RAND-2xDef	4.5(2)	∞	∞	∞	∞	∞	∞ 1000	0/15
	RF1-CMAES	4.9(1)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
	RF5-CMAES	15(26)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
	Sifeg	1.8(0.3)	0.73(2)	∞	∞	∞	∞	$\infty~2e5$	0/15
	Sif	1.8(1)	1.0 (1)	∞	∞	∞	∞	$\infty~2e5$	0/15
	Srr	1.6(0.6)	$0.74_{(0.9)}$	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 118: 20-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f21	561	6541	14103	14318	14643	15567	17589	15/15
BSifeg	91(290)	430(536)	∞	∞	∞	∞	$\infty~2e5$	0/15
BSif	90(178)	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSqi	153(212)	∞	∞	∞	∞	∞	$\infty~2e5$	0/4
BSrr	96(87)	137(302)	211(309)	208(245)	203(226)	192(203)	$\infty~2e5$	0/15
CMA-CSA	113(4)	159(519)	95(173)	94(157)	92(158)	87(72)	77(108)	7/15
CMA-MSR	24(168)	278(777)	449(528)	442(223)	433(269)	407(584)	360(854)	3/15
CMA-TPA	63(227)	248(332)	115(225)	114(261)	111(287)	105(119)	93(91)	6/15
GP1-CMAES	2.5(4)	2.2 (3)	5.0(5)	5.0 (7)	4.9(6)	4.6(4)	4.1 (4)	1/15
GP5-CMAES	2.3 (1)	11(24)	∞	∞	∞	∞	∞ 5046	0/15
IPOPCMAv3p	4.8(7)	2.5 (3)	5.1(8)	5.1 (6)	5.0 (3)	4.7 (3)	4.2 (5)	1/15
LHD-10xDef	2.6(2)	2.2(2)	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	1.2(1.0)	2.3(1)	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	0.46(0.4	$)_{\downarrow 2} 0.67 (0.3)$	7) 1.0 (2)	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	7.4(14)	2.4 (3)	2.5(2)	2.5 (3)	2.5 (2)	4.7 (4)	4.2 (3)	1/15
RF5-CMAES	7.3(9)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
Sifeg	65(118)	137(83)	210(291)	207(168)	203(195)	191(183)	$\infty~2e5$	0/15
Sif	103(307)	102(109)	68(67)	67(65)	66(72)	190(148)	170(296)	1/15
Srr	81(86)	130(191)	100(131)	99(128)	97(68)	92(111)	$\infty~2e5$	0/15

Table 119: 20-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

•	TID OU LOCKOIL	CIIIO (CIIC	io di l'ideodi	0, 0,1111011	01011.				
	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
	f22	467	5580	23491	24163	24948	26847	1.3e5	12/15
	BSifeg	129(214)	77(93)	124(130)	124(87)	∞	∞	$\infty~2e5$	0/15
	BSif	130(272)	233(592)	∞	∞	∞	∞	$\infty~2e5$	0/15
	BSqi	297(544)	133(266)	∞	∞	∞	∞	$\infty~2e5$	0/5
	BSrr	131(223)	61(105)	∞	∞	∞	∞	$\infty~2e5$	0/15
	CMA-CSA	22(38)	145(197)	∞	∞	∞	∞	$\infty~1e6$	0/15
	CMA-MSR	254(5)	249(352)	∞	∞	∞	∞	$\infty~2e6$	0/15
	CMA-TPA	162(11)	216(93)	∞	∞	∞	∞	$\infty~1e6$	0/15
	GP1-CMAES	6.9(11)	1.4(2)	∞	∞	∞	∞	$\infty 5008$	0/15
	GP5-CMAES	3.9(11)	3.9(5)	∞	∞	∞	∞	∞ 5022	0/15
	IPOPCMAv3p	4.9(4)	13(10)	∞	∞	∞	∞	$\infty 5006$	0/15
	LHD-10xDef	3.2 (3)	0.63 (0.9)	∞	∞	∞	∞	∞ 1000	0/15
	LHD-2xDefa	1.4(2)	2.7 (4)	∞	∞	∞	∞	∞ 1000	0/15
	RAND-2xDef	1.2(0.5)	2.6 (3)	∞	∞	∞	∞	∞ 1000	0/15
	RF1-CMAES	3.5(3)	6.2(3)	∞	∞	∞	∞	$\infty 5006$	0/15
	RF5-CMAES	11(19)	∞	∞	∞	∞	∞	$\infty 5006$	0/15
	Sifeg	213(624)	83(50)	∞	∞	∞	∞	$\infty~2e5$	0/15
	Sif	120(536)	107(143)	126(181)	∞	∞	∞	$\infty~2e5$	0/15
	Srr	132(536)	77(62)	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 120: 20-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f23	3.2	1614	67457	3.7e5	4.9e5	8.1e5	8.4e5	15/15
BSifeg	2.8 (3)	60(58)	∞	∞	∞	∞	∞ 2e5	0/15
BSif	2.8 (4)	37(43)	∞	∞	∞	∞	$\infty~2e5$	0/15
BSrr	2.8(2)	54(56)	∞	∞	∞	∞	∞ 2e5	0/15
CMA-CSA	6.1(5)	93(494)	13 (11)	16(21)	58 (78)	35 (58)	34(25)	1/15
CMA-MSR	6.8(6)	2.0(2)	0.79 (0.6)	0.74(0.2)	0.73 (0.1)	0.49 (0.1)	0.51 (0.0)	15/15
CMA-TPA	6.5(8)	23(41)	4.8(11)	3.0 (5)	9.3(13)	5.6 (3)	5.5(7)	5/15
GP1-CMAES	2.5 (3)	1.6(0.7)	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES		0.84 (0.8)	∞	∞	∞	∞	∞ 5010	0/15
IPOPCMAv3p	2.0 (2)	∞	∞	∞	∞	∞	∞ 5020	0/15
LHD-10xDef	1.8(2)	∞	∞	∞	∞	∞	∞ 1000	0/15
LHD-2xDefa	1.9(2)	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	2.0 (3)	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	1.6 (1)	∞	∞	∞	∞	∞	∞ 5010	0/15
RF5-CMAES	2.3 (0.9)	∞	∞	∞	∞	∞	$\infty 5086$	0/15
Sifeg	2.8(2)	6.5(6)	∞	∞	∞	∞	$\infty~2e5$	0/15
Sif	2.8(2)	11(12)	∞	∞	∞	∞	$\infty~2e5$	0/15
Srr	2.8 (2)	5.2(4)	∞	∞	∞	∞	$\infty~2e5$	0/15

Table 121: 20-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension. $\frac{\Delta f_{\text{opt}}}{L_{\text{eq}}} = \frac{|\text{1e}|}{L_{\text{eq}}} = \frac{|\text$

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f24	1.3e6	7.5e6	5.2e7	5.2e7	5.2e7	5.2e7	5.2e7	3/15
BSifeg	∞	∞	∞	∞	∞	∞	∞ 2e5	0/15
BSif	∞	∞	∞	∞	∞	∞	$\infty~2e5$	0/15
BSrr	∞	∞	∞	∞	∞	∞	∞ 2e5	0/15
CMA-CSA	6.0 (15)	∞	∞	∞	∞	∞	$\infty~2e6$	0/15
CMA-MSR	4.1 (7)	1.8 (1)	0.55 (1.0)	0.55 (0.7)	0.55 (0.4)	0.55 (0.8)	0.55(1)	1/15
CMA-TPA	6.2 (10)	3.9 (2)	∞	∞	∞	∞	$\infty~2e6$	0/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 5026	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	$\infty 5008$	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	$\infty 5006$	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 5034	0/15
Sifeg	∞	∞	∞	∞	∞	∞	∞ 2e5	0/15
Sif	∞	∞	∞	∞	∞	∞	∞ 2e5	0/15
Srr	∞	∞	∞	∞	∞	∞	∞ 2e5	0/15

Table 122: 40-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	83	83	83	83	83	83	83	30/30
CMA-CSA	10(0.7)	16(1)	22(1)	28(1)	34(3)	46(2)	58(2)	15/15
CMA-MSR	10(0.8)	16(1.0)	23(1)	29(0.9)	35(2)	48(2)	60(3)	15/15
CMA-TPA	6.7 (0.6)*4	11 (1.0)*4	$14(0.8)^{*4}$	18 (1)*4	$22(2)^{*4}$	31 (2)*4	39 (2)*4	15/15

Table 123: 40-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f2	796	797	799	799	800	802	804	15/15
CMA-CSA	37 (2)	$43(2)^{*2}$	47 (3)*3	51 (3)*3	54 (3)*3	$57(2)^{*4}$	$59_{(2)}^{\star 4}$	15/15
CMA-MSR	45(6)	53(3)	58(4)	62(4)	64(4)	67(3)	68(1)	15/15
CMA-TPA	41(6)	50(5)	56(4)	61(5)	65(4)	67(2)	68(2)	15/15

125

Table 124: 40-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f3	15526	15602	15612	15641	15646	15651	15656	15/15
CMA-CSA		∞	∞	∞	∞	∞		0/15
CMA-MSR	11(10)*4	66 (78)*4	142 (116)*4	$144(223)^{*4}$	$147 (197)^{*4}$	$154(82)^{*4}$	160 (140)*4	12/15
CMA-TPA	1829(1740)	∞	∞	∞	∞	∞	∞ 4e6	0/15

126

Table 125: 40-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f4	15536	15601	15659	15678	15703	15733	2.8e5	9/15
CMA-CSA	∞	∞	∞	∞	∞	∞	∞ 4e6	0/15
CMA-MSR	∞	∞	∞	∞	∞	∞	∞ 4e6	0/15
CMA-TPA	$ \infty $	∞	∞	∞	∞	∞	∞ 4e6	0/15

Table 126: 40-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f5	98	116	120	121	121	121	121	15/15
CMA-CSA	4.6(0.5)	4.5(0.4)	4.4(0.2)	4.4(0.4)	4.4(0.4)	4.4(0.3)	4.4(0.5)	15/15
CMA-MSF	3.9(0.7)	3.7(0.4)	3.6(0.6)	3.6(0.5)	3.6(0.4)	3.6(0.8)	3.6(0.7)	15/15
CMA-TPA	3.8 (0.6)	3.6(0.6)	3.5 (0.6)	3.5 (0.5)	3.6(0.6)	3.6(0.5)	3.6(0.6)	15/15

128

Table 127: 40-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f6	3507	5523	7168	9470	11538	15007	19222	15/15
${ m CMA\text{-}CSA}$	1.6(0.1)	1.5(0.1)	1.4(0.1)	$1.3_{(0.1)}^{*3}$	$1.3_{(0.1)}^{\star 4}$	$1.3_{(0.1)}^{*4}$	$1.3(0.1)^{*4}$	15/15
CMA-MSR	3.7(2)	7.4(4)	28(21)	43(1)	36(0.8)	31(1)	27(1)	15/15
${ m CMA-TPA}$	1.6(0.4)	1.6(0.5)	1.8(0.4)	1.9(0.4)	2.0(0.6)	2.5(0.4)	2.8(0.7)	15/15
	f6 CMA-CSA CMA-MSR	Jope	f6 3507 5523 CMA-CSA 1.6(0.1) 1.5(0.1) CMA-MSR 3.7(2) 7.4(4)	f6 3507 5523 7168 CMA-CSA 1.6(0.1) 1.5(0.1) 1.4(0.1) CMA-MSR 3.7(2) 7.4(4) 28(21)	f6 3507 5523 7168 9470 CMA-CSA 1.6(0.1) 1.5(0.1) 1.4(0.1) 1.3(0.1)*3 CMA-MSR 3.7(2) 7.4(4) 28(21) 43(1)	f6 3507 5523 7168 9470 11538 CMA-CSA 1.6(0.1) 1.5(0.1) 1.4(0.1) 1.3(0.1)*3 1.3(0.1)*4 CMA-MSR 3.7(2) 7.4(4) 28(21) 43(1) 36(0.8)	f6 3507 5523 7168 9470 11538 15007 CMA-CSA 1.6(0.1) 1.5(0.1) 1.4(0.1) 1.3(0.1)*3 1.3(0.1)*4 1.3(0.1)*4 CMA-MSR 3.7(2) 7.4(4) 28(21) 43(1) 36(0.8) 31(1)	f6 3507 5523 7168 9470 11538 15007 19222 CMA-CSA 1.6(0.1) 1.5(0.1) 1.4(0.1) 1.3(0.1)*3 1.3(0.1)*4 1.3(0.1)*4 1.3(0.1)*4 1.3(0.1)*4 CMA-MSR 3.7(2) 7.4(4) 28(21) 43(1) 36(0.8) 31(1) 27(1)

Table 128: 40-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f7	10698	17839	41037	66294	66294	66294	68145	15/15
CMA-CSA	1.2 (0.6)	2.8 (0.1)	1.5(0.5)	0.97 (0.3)	0.97 (0.2)	0.97 (0.3)	0.95 (0.3)	15/15
CMA-MSR	3.0(1)	3.9(1)	2.1(0.6)	1.4(0.5)	1.4(0.3)	1.4(0.4)	1.4(0.4)	15/15
CMA-TPA	3.9(9)	3.7(0.2)	1.8(2)	1.2(2)	1.2(3)	1.2(3)	1.2(0.2)	15/15

Table 129: 40-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f8	7080	10655	11012	11265	11430	11701	11969	15/15
CMA-CSA	5.4 (1)	5.5(2)	5.6(4)	5.6 (3)	5.7(0.8)	5.6(2)	5.6(3)	15/15
CMA-MSR	5.8(0.8)	5.5 (2)	5.6 (2)	5.6(1)	5.6(0.8)	5.6(0.3)	5.6 (2)	15/15
CMA-TPA	5.7(0.7)	5.8(1)	5.9(0.3)	5.9(0.3)	5.9(0.4)	5.9(3)	5.8(2)	15/15

Table 130: 40-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

Δ	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
	f9	6122	12982	13300	13496	13651	13909	14142	15/15
$_{\rm CM}$	A-CSA	6.3 (0.8)	4.2 (2)	4.4 (2)	4.4 (2)	4.5 (2)	4.5(2)	4.5 (2)	15/15
$_{\rm CM}$	A-MSR	6.9(0.5)	4.6(0.1)	4.8(0.2)	4.8(2)	4.8(2)	4.8(0.1)	4.8(1)	15/15
$_{\rm CM}$	A-TPA	6.4(1)	4.8(0.3)	4.9(3)	4.9(3)	4.9(2)	4.9(3)	4.9(3)	15/15

Table 131: 40-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#sı	ıcc
f10	25890	30368	36796	51579	56007	65128		15/	
CMA-CSA	1.2(0.1)	$1.2_{(0.1)}^{*2}$	$1.0(0.1)^{*3}$	$0.79(0.0)^{*4}$	$0.77(0.0)^{*4}$	$0.70(0.0)^{*4}$	$0.67(0.0)^{*4}$	15/	15
CMA-MSR	1.3(0.1)	1.3(0.1)	1.2(0.1)	0.95(0.1)	0.93(0.1)	0.83(0.0)	0.78(9e-3)	15/	15
CMA-TPA	1.3(0.2)	1.3(0.2)	1.2(0.1)	0.94(0.1)	0.91(0.1)	0.84(0.0)	0.78(0.0)	15/	15

Table 132: 40-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f11	2368	4855	11681	25315	29749	38949	48211	15/15
CMA-CSA	5.0(0.1)	2.6(0.1)	1.2(0.0)	0.57(0.0)	0.51(0.0)	0.42(0.0)	0.37(0.0)	15/15
CMA-MSR	4.9(0.2)	2.8(0.1)	1.3(0.0)	0.64(0.0)	0.57(0.0)	0.48(0.0)	0.42(0.0)	15/15
CMA-TPA	4.6(0.2)*2	$2.5_{(0.1)}^{*2}$	1.1(0.0)	0.56 (8e-3)	0.50(0.0)	0.41 (5e-3)	0.36 (7e-3)	15/15

Table 133: 40-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f12	4169	7452	9174	10751	13146	22758	25192	15/15
CMA-CSA	1.1 (0.0)	1.1(1)	1.8(0.7)	1.9(0.7)	1.9(0.5)	1.4(0.2)	1.4(0.3)	15/15
CMA-MSR	2.0(1)	2.4(2)	2.7(0.6)	2.6(0.8)	2.5(0.9)	1.8(0.2)	1.8(0.6)	15/15
CMA-TPA	1.7(2)	1.7(2)	1.9(2)	2.0(0.8)	1.9(0.7)	1.4(0.5)	1.4(0.4)	15/15

Table 134: 40-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f13	2029	6916	8734	11861	71936	98467	1.2e5	15/15
CMA-CSA	2.5(4)	2.5(1)	4.6 (3)	6.0(4)	1.2(0.4)	1.3(0.7)	1.7(0.4)	15/15
CMA-MSR	2.8(3)	4.3(2)	5.4(1)	5.3 (3)	1.4(0.6)	1.2(0.5)	1.4(0.5)	15/15
${ m CMA-TPA}$	2.3 (3)	2.1 (2)	5.7(4)	6.1(2)	1.2(0.3)	1.2(0.5)	1.5(1)	15/15

Table 135: 40-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
304	616	777	1105	2207	4825	57711	15/15
2.8(0.4)	2.6(0.3)	3.1(0.4)	3.8(0.2)	3.6(0.3)	4.0(0.3)	$0.59(0.0)^*$	15/15
2.4(0.5)	2.1(0.2)	2.4(0.2)	2.8(0.3)	2.5 (0.3)	3.6(0.2)	0.65(0.0)	15/15
2.2 (0.3)	1.9(0.1)	$2.2_{(0.2)}^{\star 2}$	2.7 (0.2)	2.6(0.2)	3.6(0.2)	0.63(0.0)	15/15
		304 616 2.8(0.4) $2.6(0.3)32.4(0.5)$ $2.1(0.2)$	304 616 777 $2.8(0.4)$ $2.6(0.3)$ $3.1(0.4)$ $2.4(0.5)$ $2.1(0.2)$ $2.4(0.2)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	304 616 777 1105 2207 4825 57711 $2.8(0.4)$ $2.6(0.3)$ $3.1(0.4)$ $3.8(0.2)$ $3.6(0.3)$ $4.0(0.3)$ $0.59(0.0)^*$ $2.4(0.5)$ $2.1(0.2)$ $2.4(0.2)$ $2.8(0.3)$ $2.5(0.3)$ $3.6(0.2)$ $0.65(0.0)$

Table 136: 40-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f15	1.9e5	7.9e5	1.0e6	1.1e6	1.1e6	1.1e6	1.1e6	15/15
CMA-CSA	0.91(0.2)	0.65 (0.2)	0.66(0.2)	0.67(0.2)	0.67 (0.3)	0.69 (0.2)	0.70 (0.2)	15/15
CMA-MSR	0.81(0.3)	0.81(0.3)	0.72(0.2)	0.74(0.2)	0.76(0.2)	0.80(0.2)	0.83(0.2)	15/15
CMA-TPA	$0.62_{(0.3)}$	0.69(0.3)	0.66 (0.2)	0.67 (0.2)	0.67(0.2)	0.69(0.2)	0.70(0.2)	15/15

Table 137: 40-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f16	5244	72122	3.2e5	7.1e5	1.4e6	2.0e6	2.0e6	15/15
CMA-CSA	1.0(0.3)	1.3(1.0)	0.69(0.4)	0.51 (0.6)	0.34(0.3)	0.44(0.2)	0.47(0.4)	15/15
CMA-MSR	$0.43_{(0.1)}^{*2}$	1.3(0.3)	1.2(0.4)	1.3(1)	1.1(0.9)	1.0(0.6)	1.2(0.6)	14/15
CMA-TPA	1.3(0.1)	0.93 (0.5)	0.50 (0.4)	0.52(0.3)	0.31 (0.2)	0.32 (0.2)	0.33 (0.2)	15/15

Table 138: 40-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f17	399	4220	14158	34948	51958	1.3e5	2.7e5	14/15
${ m CMA\text{-}CSA}$	1.3(0.4)	0.56 (0.1)	0.95 (0.9)	1.1(0.3)	1.3(0.9)	0.82(0.1)	0.60 (0.3)	15/15
CMA-MSR	0.96(0.4)	7.3(8)	3.0(2)	1.4(1)	1.4(0.7)	1.00(0.4)	0.67(0.4)	15/15
CMA-TPA	0.93(0.1)	5.0(7)	1.9(1)	1.1(0.6)	1.1(0.7)	0.82(0.4)	0.64(0.3)	15/15

140

Table 139: 40-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f18	1442	16998	47068	1.3e5	1.9e5	6.7e5	9.5e5	6/15
CMA-CSA	1.0(0.3)	$0.47_{(0.8)}^{\star}$	0.98(0.4)	0.65(0.3)	0.67(0.5)	0.53(0.3)	0.40(0.2)	15/15
CMA-MSR	13(30)	1.8(2)	1.7(0.4)	1.0(0.7)	0.95(0.6)	1.0(3)	1.1(1)	13/15
CMA-TPA	1.5(3)	0.91(0.2)	0.87(0.1)	0.57(0.2)	0.59 (0.0)	0.34(0.2)	0.30(0.1)	15/15

14

Table 140: 40-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

-				· · · · · · · · · · · · · · · · · · ·					
	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
	f19	1	1	1.4e6	1.7e7	2.6e7	4.5e7	4.5e7	8/15
	CMA-CSA	435(146)	1.4e5(2e5)	1.0(0.7)	3.5 (8)	∞	∞	∞ 4e6	0/15
	CMA-MSR	428(36)	2.2e5(2e5)	1.4(0.6)	∞	∞	∞	∞ 4e6	0/15
	${ m CMA-TPA}$	317 (77)*	1.4e5(2e5)	1.0(0.5)	3.6(3)	∞	∞	∞ 4e6	0/15

142

Table 141: 40-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f20	222	1.3e5	1.6e8	∞	∞	∞	∞	0
CMA-CSA	4.2(0.6)	$4.3_{(2)}^{*4}$	$0.04_{(0.0)}^{*4}$	5.8e7(4e7)	5.8e7(8e7)	5.8e7 (3e7)	5.9e7 (1e8)	1/15
CMA-MSR		∞	∞					0/15
CMA-TPA	$ 2.7_{(0.2)} ^{*2}$	∞	∞					0/15

Table 142: 40-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#suc
f21	1044	21144	1.0e5	1.0e5	1.0e5	1.0e5	1.0e5	26/30
CMA-CSA	4.3(2)	233(204)	158(189)	158(189)	158(188)	157(240)	156(347)	2/15
CMA-MSR	229(796)	312(194)	66 (82)	66 (98)	66 (97)	66 (48)	65 (56)	5/15
CMA-TPA	3.6(7)	224 (136)	153(141)	152(217)	152(366)	151(255)	150(57)	2/15

144

Table 143: 40-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f22	3090	35442	6.5e5	6.5e5	6.5e5	6.5e5	6.5e5	8/30
CMA-CSA	87(93)	139(123)	∞	∞	∞	∞	$\infty~2e6$	0/15
CMA-MSR	77(0.7)	106(70)	∞	∞	∞	∞	$\propto 3e6$	0/15
CMA-TPA	1.6 (3)	80 (234)	∞	∞	∞	∞	$\infty~2e6$	0/15

145

Table 144: 40-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f23	7.1	11925	75453	6.6e5	1.3e6	3.2e6	3.4e6	15/15
CMA-CSA	13(9)	5.7(6)	5.7(10)	3.7(0.4)	46(65)	18(9)	17(11)	1/15
CMA-MSR	12 (8)	0.11(0.0)*4	1.8(2)	1.5(1)	$1.6(0.4)^{\star 2}$	0.75 (0.2)	0.79 (0.0)	15/15
CMA-TPA	13(7)	5.7(2)	4.6(4)	2.6(0.9)	14(10)	5.6(7)	5.4(7)	3/15

146

Table 145: 40-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ	
f24	5.8e6	9.8e7	3.0e8	3.0e8	3.0e8	3.0e8	3.0e8	1/15	
CMA-CSA	4.5(3)	∞	∞	∞	∞	∞	∞ 4e6	0/15	
CMA-MSR	1.9 ₍₂₎	0.28 (0.3)	∞	∞	∞	∞	∞ 4e6	0/15	
CMA-TPA	4.5(5)	∞	∞	∞	∞	∞	∞ 4e6	0/15	
	f24 CMA-CSA CMA-MSR		$\begin{array}{cccc} \textbf{f24} & 5.8e6 & 9.8e7 \\ \text{CMA-CSA} & 4.5(3) & \infty \\ \text{CMA-MSR} & \textbf{1.9}(2) & \textbf{0.28}(0.3) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

References

- [1] Asma Atamna. Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB noiseless testbed. In Laredo et al. [8], pages 1135–1142.
- [2] Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [3] Lukás Bajer, Zbynek Pitra, and Martin Holena. Benchmarking gaussian processes and random forests surrogate models on the BBOB noiseless testbed. In Laredo et al. [8], pages 1143–1150.
- [4] Dimo Brockhoff, Bernd Bischl, and Tobias Wagner. The impact of initial designs on the performance of matsumoto on the noiseless BBOB-2015 testbed: A preliminary study. In Laredo et al. [8], pages 1159–1166.
- [5] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010.
- [6] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [7] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [8] Juan Luis Jiménez Laredo, Sara Silva, and Anna Isabel Esparcia-Alcázar, editors. Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material Proceedings. ACM, 2015.
- [9] Petr Posík and Petr Baudis. Dimension selection in axis-parallel brent-step method for black-box optimization of separable continuous functions. In Laredo et al. [8], pages 1151–1158.