

Analogno/Digitalni konvertori

- Analogno/Digitalna (A/D) konverzija signala se vrši na ulazu u svaki digitalni upravljački uređaj ili digitalni merni instrument
- Analogna vrednost signala se pretvara u odgovarajući broj
- Broj dobijen konverzijom se smešta na odgovarajuće mesto u memoriji uređaja
- Broj smesten u memoriju uređaja dalje se koristi u algoritmima za upravljanje ili prikaz merenog signala

Digitalni merni instrumenti

- Cifarski (digitalni) prikaz
- Prikazivanje iz konačnog skupa vrednosti (diskretne vrednosti)
- Prikazivanje vremenski diskretno
- Minimalna greške jednaka polovini minimalne promene najniže cifre

Vremenski diskretan signal

Elementi digitalnog mernog instrumenta

Senzorsko i prilagodno kolo

- Merenu veličinu pretvara u naponski signal i prilagođava opseg napona A/D konvertoru;
- Senzorski deo:
 - Strujni šant za merenje struje;
 - Sistem za merenje otpora;
 - Konvertor efektivne vrednosti;
- Prilagodni deo:
 - Naponski razdelnici (atenuatori);
 - Pojačavači sa podešljivim pojačanjem.

NF filter

- Ograničava spektar ulaznog signala;
- Granična učestanost filtra po Nikvistovoj teoremi mora biti manja od polovine učestanosti odmeravanja;

Nyquist-ova teorema

Učestanost semplovanja mora da bude bar dva puta veća od najveće učestanosti sadržane u signalu

$$f_s \ge 2f_m$$

 f_s - učestanost semplovanja

 f_m - najveša učestanost sadržana u signalu

Sinusni signal učestanosti 1Hz

Signal semplovan sa 2Hz $(f_s=2f_m)$

Signal semplovan sa 3Hz $(f_s=3f_m)$

Nyquist-ova teorema

Sinusni signal učestanosti 1Hz

Signal semplovan sa 1.5Hz ($f_s < 2f_m$)

Na osnovu signala koji je semplovan sa $f_s < 2f_m$ može se pomisliti kako originalni signal izgleda ovako (Ne

Nyquist-ova teorema

Još jedan aliasing primer - sinusni signal semplovan sa $0.95f_m$

Kolo odmeravanja i zadrške S/H kolo

- S/H kolo ima dva osnovna stanja:
 - Odmeravanje izlaz prati ulazni signal
 - Zadrška izlaz zadržava vrednost do sledećeg stanja praćenja
- Osnovna namena S/H kola je odmeravanje ulaznog signala i zadržavanje signala na ulazu A/D konvertora konstantnim u toku konverzije
 - Zašto: pokušajte fotografisati objekat koji se kreće

Kolo odmeravanja i zadrške

Kolo odmeravanja i zadrške

Osnovni elementi:

- Bafer sa jediničnim pojačanjem
- FET prekidač
- Kondezator
- Bafer sa FET ili CMOS ulazom

Kolo odmeravanja i zadrške

- IC1 obezbeđuje nisku izlaznu impedansu ulaznog signala
- Q1 propušta signal za vreme odmeravanja, a ne propušta signal za vreme zadrške
- C "čuva" vrednost odmerenog signala u toku trajanja zadrške
- IC2 obezbeđuje visoku ulaznu impedansu što je neophodno da se spreči pražnjenje C za vreme zadrške

Odziv S/H kola

Akvizicija više merenih veličina

Multiplekser

- Kolo koje
 omogućuje
 selektovanje
 analognog signala
 koji se digitalizuje
- Prekidači najčešće FET tranzistori

A/D konverzija terminologija

- Rezolucija broj bita digitalnog predstavnika
- MSB bit sa najvećom težinom
- LSB bit sa najmanjom težinom

Digitalizacija

$$n_{k} = \frac{V(t_{k}) - V_{\text{offset}}}{V_{\text{range}}} \times 2^{N}$$

Analogno/digitalni konvertor ADC

Tipovi ADC:

- ADC sa jednostrukom rampom (single slope ADC)
- ADC sa sukcesivnim aproksimacijama (successive approximation ADC)
- ADC sa dvostrukom rampom (dual slope ADC)
- Paralelni ADC (FLASH ADC)

ADC sa jednostrukom rampom

- Elementi
 - Binarni brojač
 - DAC
 - Analogni komparator
- Princip rada
 - Brojač resetovan
 - Ulaz odmeren
 - Brojač se inkrementira dok je Va>Vb
 - Za Va=Vb brojač se zaustavlja i njegovo stanje predstavlja rezultat konverzije
- Karakteristika
 - Mala brzina potrebno 2^N taktova za N-bitnu konverziju

ADC sa sukcesivnim aproksimacijama

Elementi

- Registar sukcesivnih aproksimacija (SAR)
- DAC
- Analogni komparator
- Kontrolna logika

Princip rada

- MSB SAR-a se postavlja na 1 ostali biti 0
- Ako je ulaz veći MSB ostaje 1, inače je 0
- Procedura se nastavlja za sledeći bit od MSB ka LSB, ne menjajući više bite od onog koji se trenutno određuje

Karakteristika

 Zahteva N taktova za Nbitnu konverziju, velika brzina

ADC sa dvostrukom rampom

- Osnovni elementi
 - Integrator
 - Detektor prolaska signala kroz nulu
 - Binarni brojač
 - Logička kola i prekidač
- Princip rada
 - Brojač je resetovan i prekidač dovodi ulazni signal na integrator
 - Integrator generiše negativnu rampu sa nagibom proporcionalnom ulaznom naponu i izlaz komparatora odlazi na 1 omogućujući brojanje brojača
 - Kad stanje brojača pređe sa svih jedinica na sve nule kontrolna logika prebacuje prekidač na negativnu naponsku referencu
 - Integrator generiše pozitivnu rampu čiji nagib ne zavisi od ulaznog napona, ali zavisi početno stanje integratora; brojač nastavlja da broji od nule
 - Kad izlaz integratora dostigne nulu izlaz komparatora odlazi na nulu i zaustavlja brojač
 - Stanje brojača predstavlja rezultat konverzije
- Karakteristike
 - Velika rezolucija, ali mala brzina; česti u digitalnim multimetrima; otporni na drift takta, drift komponenti i VF šum

Paralelni FLASH ADC

- Elementi
 - Višestruki naponski razdelnik
 - Set komparatora
 - Enkoder prioriteta
- Princip rada
 - Ulazni napon se dovodi na ulaze svih komparatora
 - Enkoder prioriteta pretvara stanje izlaza seta komparatora u binarni kod
- Karakteristike
 - Veoma velika brzina i do 20MSemplova/S
 - Skupi zbog velikog broja komparatora, 2^N-1 komparator za N-bitnu konverziju

Paralelni FLASH ADC

Digital outputs

Digitalno/Analogni konvertori

- Koriste se na digitalnim upravljačkim uređajima kako bi se izračunato upravljanje pretvorilo u analogni upravljački signal
- Koristi se i kod nekih vrsta A/D konvertora
- Postoji više vrsta D/A konvertora:
 - Sa binarnom težinskom otporničkom mrežom
 - Sa R-2R lestvičastom otporničkom mrežom
- Umesto D/A konvertora nekada može da se koristi i impulsno širinska modulacija

DAC sa binarnom težinskom otporničkom mrežom

- Svaki ulazni otpornik je dva puta veći od predhodnog
- Nepraktično za velik broj bita

DAC sa R-2R lestvičastom otporničkom mrežom

- Bit=0prekidač namasi
- Bit=1 prekidač na ref. naponu

Impulsna širinska modulacija PWM

- Digitalni signal konstantne frekvencije
- Odnos impuls/pauza (duty cycle) proporcionalan željenoj vrednosti analognog izlaza

Kvantizacioni šum

- Amplituda kvantizacionog šuma je ±1/2LSB
- Smanjuje se povećanjem rezolucije ADC-a

Figure 1. The Ideal Transfer Function (ADC)

Greška ofseta

Greška pojačanja

Greška diferencijalne nelinearnosti

Greška linearnosti

Glitch DAC-a

- Glitch se dešava kad više ulaza DAC-a menja stanja
- Ne može se ukloniti, NF filtar mu smanjuje amplitudu, ali proizvod V·T ostaje konstantan

 $0111 \to 1000$

