

University of Victoria Exam 3 Fall 2022

Course	Name:	ECE 260
Course		

Course Title: Continuous-Time Signals and Systems

Section(s): A01, A02

CRN(s): A01 (CRN 11002), A02 (CRN 11003)

Instructor: Michael Adams

Duration: 50 minutes

Family Name:	
Given Name(s):	
Student Number:	

This examination paper has **7 pages**, all of which are numbered.

Students must count the number of pages in this examination paper before beginning to write, and report any discrepancy immediately to the invigilator.

All questions are to be answered on the examination paper in the space provided.

Total Marks: 25

This examination is **closed book**.

The use of a crib sheet is **not** permitted.

The use of a calculator is **not** permitted.

You must show all of your work!

You must **clearly define any new quantities** introduced in your answers (such as variables, functions, operators, and so on).

Question 1.

Consider the periodic function x with fundamental period T=8 and fundamental frequency ω_0 shown in the figure. Using the Fourier series analysis equation, find the Fourier series coefficient sequence c for the function x. Your solution must consider the single period of x(t) for $0 \le t < T$. Your final answer must be **fully simplified**. You must express your final answer **in terms of** cos **and/or** sin to whatever extent is possible. [8 marks]

Question 2. Using the MATLAB programming language, write a function called evaluate_polynomial that takes a vector $c = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix}$ of complex numbers and a complex number z as input (in that order) and returns the value f, where

$$f = \sum_{k=1}^{n} c_{n-k+1} z^{k-1}.$$

Your code must not call any other functions other than length. (For a vector v, length (v) returns the number of elements in v.) Your code must use proper indentation and must not exceed 12 lines in length. Be sure to use correct syntax in your answer, since syntax clearly matters here. [2 marks]

Line #	Line of Code
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

Question 3. A LTI system has the frequency response H given by $H(\omega) = \frac{1}{4+j\omega}$. Using Fourier series techniques, find the response y of the system to the input $x(t) = 8 + \cos(3t)$. Your final answer for y must be **fully simplified**. **Do not skip any steps** in your solution and **show all of your work**. You must **make clear** the approach being used in your answer. You must express your final answer **in terms of** \cos **and/or** \sin to the extent that this simplifies the answer. [Hint: To reduce the amount of simplification work, express $H(\omega)$ in polar form.] [8 marks]

Question 4. Consider the periodic function x with fundamental period T=2, where

$$x(t) = \begin{cases} t^2 + 1 & 0 \le t < 1 \\ e^{-t} & 1 \le t < 2. \end{cases}$$

Suppose that x has the Fourier series representation $y(t) = \sum_{k=-\infty}^{\infty} c_k e^{j(2\pi/T)kt}$. Find y(0) and y(1). Show all of your work, and briefly justify any formulas/relationships used in your answer. [3 marks]

ECE 260 (Continuous-Time	Signals and	Systems);	A01,	A02
Page 6				

Question 5. Let x denote a periodic function with fundamental period $T=2\pi$, fundamental frequency ω_0 , and the Fourier series coefficient sequence c, where $c_k=\frac{e^{j3k}(jk+3)^2}{(jk-3)^{10}}$.

(A) Find a fully-simplified expression for the (Fourier series) magnitude spectrum of x. [3 marks]

(B) Determine the frequency (or frequencies) at which x has the most spectral information. You **must justify** your answer. [1 mark]

END

USEFUL FORMULAE AND OTHER INFORMATION

$e^{j\theta} = \cos\theta + j\sin\theta$
$\cos\theta = \frac{1}{2} \left(e^{j\theta} + e^{-j\theta} \right)$
$\sin \theta = \frac{1}{2i} \left(e^{j\theta} - e^{-j\theta} \right)$

$ $ ϵ)			
Degrees	Radians	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90	$\frac{\pi}{2}$	1	0	undefined
135	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1
180	π	0	-1	0
225	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1
270	$\frac{3\pi}{2}$	-1	0	undefined
315	$\frac{7\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

$$c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

Fourier Series Properties

Property	Time Domain	Fourier Domain
Linearity	$\alpha x(t) + \beta y(t)$	$\alpha a_k + \beta b_k$

Property	
Even Symmetry	x is even $\Leftrightarrow a$ is even
Odd Symmetry	x is odd $\Leftrightarrow a$ is odd
Real / Conjugate Symmetry	x is real \Leftrightarrow a is conjugate symmetric

$$H(\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt$$