Market Analysis with Econometrics and Machine Learning

1a Introduction: Bob's Ice Cream Business

Uni Ulm

Prof. Dr. Sebastian Kranz

SoSe 2020

Bob's Ice Cream Business

2 / 18

- Bob just started his career as an entrepreneur by taking over a small ice cream truck
- The previous owner, Emma, drove to different locations each day and used a little blackboard, on which every morning she wrote down how much a portion of ice cream shall cost today
- ullet Emma left Bob a small collection of sales data, in which she noted for each day t
 - \circ the price p_t she had set
 - \circ the number of ice portions q_t she sold
 - $\circ~$ the wholesale price w_t she had to pay for a big box of ice cream from the wholesale store
- You are a young consultant who shall help Bob to optimize his ice cream business. How would you proceed to find an optimal pricing rule?

The data

t	W	р	q
1	31.73	26.84	53.05
2	15.58	26.32	52.33
3	86.08	26.11	50.50
4	98.91	23.10	44.23
5	55.00	27.68	54.25
6	73.19	27.08	52.70
7	74.85	23.81	46.13
8	85.80	26.03	50.34
9	53.25	25.14	49.21
10	54.65	24.50	47.91

Relationship between price and sold quantity

A model of the data generating process with a profit-maximizing ^{5 / 18} firm

- We now present a simple model:
 - Downward sloping demand function, with random demand shocks
 - Firm sets profit maximizing prices
 - We can find a positive relationship between prices and output.

Demand Function

6 / 18

ullet The sales in period t shall be given by the following demand function

$$q_t = a_t - bp_t$$

 $\circ~$ The market size parameter a_t shall be given by

$$a_t = a_0 + \varepsilon_t$$

- $\circ \ \ arepsilon_t$ is a random variable that measures a "demand shock" in period t.
- \circ Example: Good weather -> higher ε
- $\circ~$ The demand shock shall not be influenced by the price (but the price may depend on $\varepsilon)$
- $\circ \;\; b$ and a_0 are exogenously given numerical parameters with

$$a_0 > 0 \text{ and } b > 0$$

· The firm's profits shall be given by

$$\pi_t = p_t q_t - c_t q_t - F$$

- \circ $c_t \geq 0$ is a constant marginal cost of production in period t (cost of one portion of ice cream)
- \circ F are some fixed costs that don't depend on the price.
- Assume the firm knows in each period t its cost c_t , the demand shock ε_t and the parameters a_0 and b in period t and chooses a price p_t that maximizes its expected profits.

Optimal Prices and Corresponding Output

8 / 18

Exercise: Show that the profit-maximizing price and corresponding sold quantity are given by:

$$p_t^* = rac{a_0 + arepsilon_t}{2b} + rac{c_t}{2}$$

and

$$q_t^* = rac{a_0 + arepsilon_t}{2} - rac{bc_t}{2}$$

Solution

The optimal price p_t^* maximizes the profit function.

$$egin{aligned} \pi(p_t) &= q_t(p_t)(p-c_t) - F \ &= (a_t - bp_t)(p_t - c_t) - F \ &= a_t p - a_t c_t - bp_t^2 + bp_t c_t - F \end{aligned}$$

The first order condition is given by

$$\pi'(p_t^*) = a_t - 2bp_t^* + bc_t = 0 \Leftrightarrow
onumber \ p_t^* = rac{a_t}{2b} + rac{c_t}{2}$$

If we plug in $a_t=a_0+arepsilon_t$, we get

$$p_t^* = rac{a_0 + arepsilon_t}{2b} + rac{c_t}{2}$$

We get the equilibrium quantity as

$$egin{aligned} q_t^* &= a_0 + arepsilon_t - b p_t^* \ &= rac{a_0 + arepsilon_t}{2} - rac{b c_t}{2} \end{aligned}$$

- To get intuition about this economic model, we want to simulate in R.
- Here and in other places I will show you some R code in the class and the steps are roughly described in the slides.
- You will repeat similar steps in more detail in the corresponding RTutor problem sets (here the problem set for Chapter 1a).
 - For that reason you won't get the R code from class. Look at the RTutor problem set instead.

Simulating the model in R

10 / 18

- Open a new R script in RStudio and write a program that numerically simulates the model above
 - \circ Choose some values for the parameters $a_0>0$ and b>0 and pick a total number of periods T
 - $\circ~$ Assume demand shocks are independently, identically normally distributed with standard deviation σ_{ε}

$$arepsilon_t \overset{iid}{\sim} N(0,\sigma_arepsilon^2)$$

- \circ Assume costs c_t are uniformely distributed on an interval.
- Compute the values of q and p for each period and show a scatter plot of both variables.

Analysing the Model with Simulation and Theory

11 / 18

- Is the plotted relationship between prices and quantity just a noisy version of the demand curve?
- Try to find parameter constellations such that prices are positively correlated with sold quantities.
- Why can prices be positively correlated with sold quantities? Try to explain intuitively.
- Study with your simulation how the correlation between q and p changes if you reduce the standard deviation of the demand shocks σ_{ε} to a very small value.

Insights from the analysis so far

12 / 18

- It is really useful to think about how a data set is created: Form a model about the data generating process!
- A positive correlation between prices and output does not imply that higher prices cause higher output.
 - A positive correlation can arise if prices are set systematically higher in markets with high demand.
- Here, the observed *relationship* between prices and output is *not* a noisy version of a demand function.
- The demand function describes how, ceteris paribus, higher prices *cause* lower quantities sold.
- To set profit maximizing prices it would be really helpful to estimate such a demand function.

- You convinced Bob that the data could have been generated by the model described above. He asks you to estimate the the demand function.
- · You propose a "randomized pricing experiment"
 - \circ Bob shall choose for T periods in each period t some randomly selected price p_t and observe the resulting sales q_t

R Simulation of Pricing Experiment

14 / 18

(You do this in the corresponding RTutor problem set)

- Adapt your R code such that prices are now randomly selected.
- Plot the resulting relationship between p and q. Does it look like a noisy version of the demand curve?

Estimating the demand function

15 / 18

• Use the R function Im (stands for linear model) to estimate the following linear regression model of the demand function

$$egin{array}{ll} q_t = & eta_0 & +eta_1 p_t & +arepsilon_t \ (= & a_0 & +(-b)p_t & +arepsilon_t) \end{array}$$

via ordinary least squares (OLS).

- \circ Compare the true values of β_0 and β_1 with the OLS estimates.
- \circ Does the OLS estimator seem to be **consistent** in the sense that the estimated coefficients are close to to their true values when we have a very large number T of observations? (We will formally define consistency later)
- Repeat the previous exercise for the case that the data is generated by the model with profit maximizing prices.

What have we done so far?

16 / 18

- Policy Question: We want to find a rule to set profit maximizing prices for Bob's ice cream business.
- **Model for decision:** We discussed how to set profit maximizing prices based on an economic model with a downward sloping "demand function". To find optimal prices, we need to know / estimate a demand function for ice cream.
- **Data:** We got a historical data set of prices and output. Interestingly, prices are positively correlated with quantity sold.
- Model of data generating process: We wrote down and studied a simple model of how the data could have been generated. Similar to our decision model, we assume the model has a downward sloping demand function and prices have been set in a profit maximizing fashion. Importantly, there are also random demand shocks ε (incorporating conditions like weather) that have been known by the price setter.

- **Simulation:** To get better intuition about the data generating process, we simulated it in R.
 - We found that the model can indeed generate a positive correlation between equilibrium prices and output, even though the demand function is downward sloping. The reason is that positive demand shocks increase both prices and output.
 - We also simulated an alternative model in which prices are set randomly.
- **Estimation**: We estimated a linear regression of our demand function with the simulated data.
 - When prices were set randomly, it looked as if we had a consistent estimator of the true parameters of the demand function
 - When prices were set in a profit maximizing fashion, our estimator of the demand function was inconsistent.

What will we do next?

18 / 18

- 1. We will review some basic concepts of econometrics, focusing on the linear regession model
 - Key idea in econometrics: there is a true model with random variables that generated the data.
 - Econometric tools, like estimation procedures or statistical tests, only make sense if the model satisfies certain conditions.
 - · We study some important tools and concepts.
- 2. We will study instrumental variable (IV) estimation
 - IV estimation is a very prominent method to consistently estimate coefficients in cases in which OLS estimation does not work.
 - IV estimation will allow us to consistently estimate the demand function for our example data set, in which prices have not been set randomly.