Problem Sheet #4

Symplectic geometry. 2024 Winter Term. Heidelberg University Course taught by J.-Pr. Agustín Moreno*

November 4, 2024

Please solve the following problems. Show all your work and justify your answers. The dagger † denotes optional exercises.

Please, hand in this property before **Friday Nov. 8** (either in person at the exercise class, or by email at alimoge@mathi.uni-heidelberg.de)

Problems

Exercise 1. Show that the exponential map

$$\exp \colon \mathfrak{sp}(2n) \to \operatorname{Sp}(2n)$$

is not surjective.

Hint: consider the matrix $\begin{pmatrix} -2 & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} \in SL(2, \mathbb{R}) = Sp(2)$.

Exercise 2. Show that if $A \in \operatorname{Sp}(2n)$ is diagonalizable, then it is symplectically diagonalizable, i.e. there exists $N \in \operatorname{Sp}(2n)$ such that NAN^{-1} is diagonal.

Exercise 3. A contact structure on a (2n+1)-dimensional manifold M is a smooth 1-form α such that $\alpha \wedge (d\alpha)^{2n}$ is a volume form on M. The kernel $\xi = \ker \alpha$ is a maximally nonintegrable 2-plane distribution on M, i.e. it is nowhere integrable, not even locally (recall the Frobenius integrability condition: $\alpha \wedge d\alpha = 0$). α is called a contact form and (M, ξ) is called a contact structure. When we want to make the 1-form α explicit we write (M, α) .

Let (M, ξ) be a contact manifold.

- 1. Show that the 1-form $\alpha_0 = dx_{2n+1} + \sum_{i=1}^n x_i dx_{n+i}$ makes \mathbb{R}^{2n+1} into a contact manifold.
- 2. Show that the contact condition does not depend on the the contact form.
- 3. Let α be a contact form and consider the subbundle $\xi \to M$ of TM. Show that the restriction

$$d\alpha|_{\xi} \colon \xi \times \xi \to \mathbb{R}$$

is nondegenerate.

 $^{^*}For\ comments,\ questions,\ or\ potential\ corrections\ on\ the\ exercise\ sheets,\ please\ email\ alimoge@mathi.uni-heidelberg.de,\ or\ ruscelli.francesco1@gmail.com$

4. Show that there exists a unique vector field R_{α} such that

$$\begin{cases} i_{R_{\alpha}} d\alpha = 0, \\ \alpha(R_{\alpha}) = 1. \end{cases}$$

 R_{α} is called the *Reeb vector field* of α .

Exercise 4. (Contact Darboux Theorem) The goal of this exercise is to show that, much like symplectic manifolds, contact manifolds do not have local invariants. Let α be a contact form on \mathbb{R}^{2n+1} .

1. Show that you can choose linear coordinates around 0 such that on $T_0\mathbb{R}^{2n+1}$:

$$\begin{cases} \alpha(\partial_z) = 1, & i_{\partial_z} d\alpha = 0, \\ \partial_{x_j}, \partial_{y_j} \ \forall \ 1 \le j \le n, & d\alpha = \sum_{j=1}^n dx_j \wedge dy_j. \end{cases}$$

2. Define $\alpha_0 = dz + \sum_{j=1}^n x_j dy_j$ and consider the family

$$\alpha_t = (1 - t)\alpha_0 + t\alpha$$

for $t \in [0,1]$. Show that α_t is a contact form for all t small enough.

3. Use the Moser trick to find an isotopy ψ_t of a neighborhood of the origin such that $\psi_t^* \alpha_t = \alpha_0$ (**Hint:** write the vector field generating ψ_t as $X_t = H_t R_{\alpha_t} + Y_t$ with $Y_t \in \ker \alpha_t$. What conditions do we need on Y_t and H_t ?)