STAT 534 - Lecture 22:

Hypothesis Tests for CSR

• With a spatial point process,

- Hypothesis tests and Monte Carlo simulation procedures allow testing for departures from Complete Spatial Randomness (CSR).
- Devise and implement a Monte Carlo-based test for CSR. First detail your test statistic and implementation, then assess the results with the four data sets from Lecture 21.

G and F Functions

- One way to describe a spatial point process, is to consider the probability of being a certain distance from a point or similarly, the number of points expected in a distance from a point.
- \bullet Define

• Then we can compute the probability that more than one point exists with a distance d of an observed point.

$$E_{\boldsymbol{S}}\left(\sum_{\boldsymbol{s}_i \in \boldsymbol{S}} 1(Num(\boldsymbol{s}_i), d; \boldsymbol{S}) > 0\right) = \lambda |\boldsymbol{D}| P(Num_d(\boldsymbol{s}, d; \boldsymbol{S}) > 0)$$

- The term $P(Num_d(\mathbf{s}, d; \mathbf{S}) > 0$ is referred to as G(d). G(d) increases in d.
- The G(d) function

- A similar statistic is the F(d) function. Whereas G(d) is centered at the observed s_i , F(d) is defined at any arbitrary point.
- QUESTION: Assume a CSR Poisson process with constant intensity λ , calculate F(d) or G(d) (they are the same).

• Di	scuss how to create an empirical estimate of $\hat{G}(d)$, given a realization of a point process.
• W	th bounded area, edge correction procedures are necessary.
• Tl	e empirical estimates of G or H can be compared with G or F using a QQ-plot.
• D	scuss: What would be the implications of shorter tails or longer tails than expected under CSR
• De	scribe