

SEQUENCE LISTING

<110> THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
GILL, Gordon N.
YEO, Michele
LIN, Patrick S.
DAHMUS, Michael E.

<120> PHOSPHATASE REGULATION OF NUCLEIC ACID TRANSCRIPTION

<130> 00015-041US1

<140> US/10/552,298
<141> 2005-09-30

<150> US 60/459,786
<151> 2003-04-01

<160> 68

<170> PatentIn version 3.5

<210> 1
<211> 783
<212> DNA
<213> Homo sapiens

<400> 1
atggacagct cggccgtcat tactcagatc agcaaggagg aggctcgaaa cccgctgcgg 60
ggcaaaggta accagaagtc agcagcttcc cagaagcccc gaagccgggg catcctccac 120
tcactttct gctgtgtctg ccggatgtat ggggaggccc tgcctgctca cagcggggcg 180
ccctgcttg tggaggagaa tggcgccatc cctaagaccc cagtccaata cctgctccct 240
gaggccaagg cccaggactc agacaagatc tgcgtggta tcgacctgga cgagaccctg 300
gtgcacagct cttcaagcc agtgaacaac gcggacttca tcattccctgt ggagattgtat 360
ggggtgtcc accaggtcta cgtgttgaag cgtcctcatg tggatgagtt cctgcagcga 420
atgggcgagc tcttgaatg tgtgtgttc actgcttagcc tcgccaagta cgcagaccca 480
gtagctgacc tgctggacaa atggggggcc ttccggggcc ggctgttgc agagtcctgc 540
gtttccacc ggggaaacta cgtgaaggac ctgagccgt tgggtcgaga cctgcggcgg 600
gtgctcatcc tgacaattc acctgcctcc tatgtttcc atccagacaa tgctgtaccg 660
gtggcctcgt gtttgacaa catgagtgac acagagctcc acgacccctt ccccttcttc 720
gagcaactca gccgtgtgga cgacgtgtac tcagtgctca ggcagccacg gccaggagc 780
tag 783
<210> 2
<211> 260
<212> PRT
<213> Homo sapiens

<400> 2

Met Asp Ser Ser Ala Val Ile Thr Gln Ile Ser Lys Glu Glu Ala Arg
 1 5 10 15
 Gly Pro Leu Arg Gly Lys Gly Asp Gln Lys Ser Ala Ala Ser Gln Lys
 20 25 30
 Pro Arg Ser Arg Gly Ile Leu His Ser Leu Phe Cys Cys Val Cys Arg
 35 40 45
 Asp Asp Gly Glu Ala Leu Pro Ala His Ser Gly Ala Pro Leu Leu Val
 50 55 60
 Glu Glu Asn Gly Ala Ile Pro Lys Thr Pro Val Gln Tyr Leu Leu Pro
 65 70 75 80
 Glu Ala Lys Ala Gln Asp Ser Asp Lys Ile Cys Val Val Ile Asp Leu
 85 90 95
 Asp Glu Thr Leu Val His Ser Ser Phe Lys Pro Val Asn Asn Ala Asp
 100 105 110
 Phe Ile Ile Pro Val Glu Ile Asp Gly Val Val His Gln Val Tyr Val
 115 120 125
 Leu Lys Arg Pro His Val Asp Glu Phe Leu Gln Arg Met Gly Glu Leu
 130 135 140
 Phe Glu Cys Val Leu Phe Thr Ala Ser Leu Ala Lys Tyr Ala Asp Pro
 145 150 155 160
 Val Ala Asp Leu Leu Asp Lys Trp Gly Ala Phe Arg Ala Arg Leu Phe
 165 170 175
 Arg Glu Ser Cys Val Phe His Arg Gly Asn Tyr Val Lys Asp Leu Ser
 180 185 190
 Arg Leu Gly Arg Asp Leu Arg Arg Val Leu Ile Leu Asp Asn Ser Pro
 195 200 205
 Ala Ser Tyr Val Phe His Pro Asp Asn Ala Val Pro Val Ala Ser Trp
 210 215 220
 Phe Asp Asn Met Ser Asp Thr Glu Leu His Asp Leu Leu Pro Phe Phe
 225 230 235 240
 Glu Gln Leu Ser Arg Val Asp Asp Val Tyr Ser Val Leu Arg Gln Pro
 245 250 255
 Arg Pro Gly Ser
 260
 <210> 3
 <211> 852
 <212> DNA
 <213> Homo sapiens

 <400> 3
 atggaacacg gctccatcat cacccaggcg cgagggaaag acgccttgtt gctcaccaag 60
 caaggcctgg tctccaagtc ctctcctaag aagcctcggt gacgtaacat cttcaaggcc 120
 cttttctgct gtttcgcgc ccagcatgtt ggccagtcaa gttcctccac tgagctcgct 180
 gcgtataagg aggaagcaaaccattgct aagtccgatc tgctccagtgt tctccagtac 240
 cagttctacc agatcccagg gacctgcctg ctcccagagg tgacagagga agatcaagga 300
 aggatctgtt tggtcattga cctcgatgaa acccttgtgc atagctcctt taagccaaatc 360
 aacaatgctt acttcatagt gcctatagag attgagggaa ccactcacca ggtgtatgtt 420
 ctcaagaggc cttatgttggaa tgagttcctg agacgcatgg gggactctt tgaatgtgtt 480
 ctcttcactg ccagcctggc caagtatgcc gaccctgtga cagacctgtt ggaccgggtgt 540
 ggggtgttcc gggcccgccct attccgtgag tcttgcgtgt tccaccaggg ctgctacgtc 600

aaggacctca	gccgcctggg	gagggacctg	agaaaagaccc	tcatcctgga	caactcgccct	660
gcttcttaca	tattccaccc	cgagaatgca	gtgcctgtgc	agtccctggtt	tgatgacatg	720
gcagacactg	agttgctgaa	cctgatccca	atcttgagg	agctgagcgg	agcagaggac	780
gtctcacacca	gccttggggc	agctgcggc	cccttagcct	gccctgcttc	caagcgacgg	840
ccatcccagt ag						852
<210>	4					
<211>	283					
<212>	PRT					
<213>	Homo sapiens					
<400> 4						
Met Glu His Gly Ser Ile Ile Thr Gln Ala Arg Arg Glu Asp Ala Leu						
1	5	10	15			
Val Leu Thr Lys Gln Gly Leu Val Ser Lys Ser Ser Pro Lys Pro						
20	25	30				
Arg Gly Arg Asn Ile Phe Lys Ala Leu Phe Cys Cys Phe Arg Ala Gln						
35	40	45				
His Val Gly Gln Ser Ser Ser Ser Thr Glu Leu Ala Ala Tyr Lys Glu						
50	55	60				
Glu Ala Asn Thr Ile Ala Lys Ser Asp Leu Leu Gln Cys Leu Gln Tyr						
65	70	75	80			
Gln Phe Tyr Gln Ile Pro Gly Thr Cys Leu Leu Pro Glu Val Thr Glu						
85	90	95				
Glu Asp Gln Gly Arg Ile Cys Val Val Ile Asp Leu Asp Glu Thr Leu						
100	105	110				
Val His Ser Ser Phe Lys Pro Ile Asn Asn Ala Asp Phe Ile Val Pro						
115	120	125				
Ile Glu Ile Glu Gly Thr Thr His Gln Val Tyr Val Leu Lys Arg Pro						
130	135	140				
Tyr Val Asp Glu Phe Leu Arg Arg Met Gly Glu Leu Phe Glu Cys Val						
145	150	155	160			
Leu Phe Thr Ala Ser Leu Ala Lys Tyr Ala Asp Pro Val Thr Asp Leu						
165	170	175				
Leu Asp Arg Cys Gly Val Phe Arg Ala Arg Leu Phe Arg Glu Ser Cys						
180	185	190				
Val Phe His Gln Gly Cys Tyr Val Lys Asp Leu Ser Arg Leu Gly Arg						
195	200	205				
Asp Leu Arg Lys Thr Leu Ile Leu Asp Asn Ser Pro Ala Ser Tyr Ile						
210	215	220				
Phe His Pro Glu Asn Ala Val Pro Val Gln Ser Trp Phe Asp Asp Met						
225	230	235	240			
Ala Asp Thr Glu Leu Leu Asn Leu Ile Pro Ile Phe Glu Glu Leu Ser						
245	250	255				
Gly Ala Glu Asp Val Tyr Thr Ser Leu Gly Ala Ala Ala Gly Pro Leu						
260	265	270				
Ala Cys Pro Ala Ser Lys Arg Arg Pro Ser Gln						
275	280					
<210>	5					
<211>	798					
<212>	DNA					
<213>	Homo sapiens					
<400> 5						
atggacggcc	cggccatcat	cacccaggtg	accaacccca	aggaggacga	gggcccggttg	60
ccggggcgccgg	gcgagaaaagc	ctccccagtgc	aacgtcagct	taaagaagca	gaggagccgc	120

agcatcctta	gctccttctt	ctgctgcttc	cgtgattaca	atgtggaggc	ccctccaccc	180
agcagccccca	gtgtgcttcc	gccactggtg	gaggagaatg	gtgggcttca	gaagccacca	240
gctaagtacc	ttttccaga	ggtgacggtg	cttgactatg	gaaagaaaatg	tgtggtcatt	300
gattnagatg	aaacatttgtt	gcacagttcg	tttaagccta	ttagtaatgc	tgatTTTATT	360
gttccggttt	aaatcgatgg	aactatacat	caggtgtatg	tgctgaagcg	gccacatgtg	420
gacgagttcc	tccagaggat	ggggcagctt	tttgaatgtg	tgctcttac	tgccagcttg	480
gccaagtatg	cagaccctgt	ggctgacctc	ctagaccgct	ggggtgtgtt	ccggggcccgg	540
ctcttcagag	aatcatgtgt	ttttcatcgt	gggaactacg	tgaaggacct	gagtcgcctt	600
gggcgggagc	ttagcaaagt	gatcattgtt	gacaattccc	ctgcctcata	catttccat	660
cctgagaatg	cagtgcctgt	gcagtcctgg	ttcgtatgaca	tgacggacac	ggagctgctg	720
gacctcatcc	ccttcttga	gggcctgagc	cgggaggacg	acgtgtacag	catgctgcac	780
agactctgca	ataggtag					798
<210>	6					
<211>	265					
<212>	PRT					
<213>	Homo sapiens					
<400>	6					

Met	Asp	Gly	Pro	Ala	Ile	Ile	Thr	Gln	Val	Thr	Asn	Pro	Lys	Glu	Asp
1					5				10					15	
Glu	Gly	Arg	Leu	Pro	Gly	Ala	Gly	Glu	Lys	Ala	Ser	Gln	Cys	Asn	Val
					20				25					30	
Ser	Leu	Lys	Lys	Gln	Arg	Ser	Arg	Ser	Ile	Leu	Ser	Ser	Phe	Phe	Cys
					35				40					45	
Cys	Phe	Arg	Asp	Tyr	Asn	Val	Glu	Ala	Pro	Pro	Pro	Ser	Ser	Pro	Ser
					50				55					60	
Val	Leu	Pro	Pro	Leu	Val	Glu	Glu	Asn	Gly	Gly	Leu	Gln	Lys	Pro	Pro
					65				70					75	
Ala	Lys	Tyr	Leu	Leu	Pro	Glu	Val	Thr	Val	Leu	Asp	Tyr	Gly	Lys	Lys
					85				90					95	
Cys	Val	Val	Ile	Asp	Leu	Asp	Glu	Thr	Leu	Val	His	Ser	Ser	Phe	Lys
					100				105					110	
Pro	Ile	Ser	Asn	Ala	Asp	Phe	Ile	Val	Pro	Val	Glu	Ile	Asp	Gly	Thr
					115				120					125	
Ile	His	Gln	Val	Tyr	Val	Leu	Lys	Arg	Pro	His	Val	Asp	Glu	Phe	Leu
					130				135					140	
Gln	Arg	Met	Gly	Gln	Leu	Phe	Glu	Cys	Val	Leu	Phe	Thr	Ala	Ser	Leu
					145				150					155	
Ala	Lys	Tyr	Ala	Asp	Pro	Val	Ala	Asp	Leu	Leu	Asp	Arg	Trp	Gly	Val
					165				170					175	
Phe	Arg	Ala	Arg	Leu	Phe	Arg	Glu	Ser	Cys	Val	Phe	His	Arg	Gly	Asn
					180				185					190	
Tyr	Val	Lys	Asp	Leu	Ser	Arg	Leu	Gly	Arg	Glu	Leu	Ser	Lys	Val	Ile
					195				200					205	
Ile	Val	Asp	Asn	Ser	Pro	Ala	Ser	Tyr	Ile	Phe	His	Pro	Glu	Asn	Ala
					210				215					220	
Val	Pro	Val	Gln	Ser	Trp	Phe	Asp	Asp	Met	Thr	Asp	Thr	Glu	Leu	Leu
					225				230					235	
															240

Asp	Leu	Ile	Pro	Phe	Phe	Glu	Gly	Leu	Ser	Arg	Glu	Asp	Asp	Val	Tyr
						245				250				255	
Ser	Met	Leu	His	Arg	Leu	Cys	Asn	Arg							
						260				265					
<210>	7														
<211>	642														
<212>	DNA														
<213>	Homo sapiens														
<400>	7														
atgatgggga	ggccctgcct	gctcacagcg	gggcgcctt	gcttgtggag	gagaatggcg									60	
ccatccctaa	ggcagacccc	agtccaatac	ctgctccctg	aggccaaggc	ccaggactca									120	
gacaagatct	gcgtggtcat	cgacctggac	gagaccctgg	tgcacagctc	cttcaagcca									180	
gtgaacaacg	cggacttcat	catccctgtg	gagattgatg	gggtggtcca	ccaggtctac									240	
gtgttgaagc	gtcctcacgt	ggatgagttc	ctgcagcgaa	tgggcgagct	ctttgaatgt									300	
gtgctgttca	ctgcttagcct	cgccaagtagc	gcagacccag	tagctgacct	gctggacaaa									360	
tggggggcct	tccgggcccc	gctgtttcga	gagtcctgcg	tcttccaccg	gggaaactac									420	
gtgaaggacc	ttagccgggtt	gggtcgagac	ctgcggcggg	tgctcatcct	ggacaattca									480	
cctgcctcct	atgtcttcca	tccagacaat	gctgtaccgg	tggcctcgtg	gttgacaac									540	
atgagtgaca	cagagctcca	cgacccctc	cccttcttcg	agcaactcag	ccgtgtggac									600	
gacgtgtact	cagtgctcag	gcagccacgg	ccagggagct	ag										642	
<210>	8														
<211>	213														
<212>	PRT														
<213>	Homo sapiens														
<400>	8														
Met	Met	Gly	Arg	Pro	Cys	Leu	Leu	Thr	Ala	Gly	Arg	Pro	Cys	Leu	Trp
1						5				10					15
Arg	Arg	Met	Ala	Pro	Ser	Leu	Arg	Gln	Thr	Pro	Val	Gln	Tyr	Leu	Leu
									20					25	30
Pro	Glu	Ala	Lys	Ala	Gln	Asp	Ser	Asp	Lys	Ile	Cys	Val	Val	Ile	Asp
									35					40	45
Leu	Asp	Glu	Thr	Leu	Val	His	Ser	Ser	Phe	Lys	Pro	Val	Asn	Asn	Ala
									50					55	60
Asp	Phe	Ile	Ile	Pro	Val	Glu	Ile	Asp	Gly	Val	Val	His	Gln	Val	Tyr
									65					70	75
Val	Leu	Lys	Arg	Pro	His	Val	Asp	Glu	Phe	Leu	Gln	Arg	Met	Gly	Glu
									85					90	95
Leu	Phe	Glu	Cys	Val	Leu	Phe	Thr	Ala	Ser	Leu	Ala	Lys	Tyr	Ala	Asp
									100					105	110
Pro	Val	Ala	Asp	Leu	Leu	Asp	Lys	Trp	Gly	Ala	Phe	Arg	Ala	Arg	Leu
									115					120	125
Phe	Arg	Glu	Ser	Cys	Val	Phe	His	Arg	Gly	Asn	Tyr	Val	Lys	Asp	Leu
									130					135	140
Ser	Arg	Leu	Gly	Arg	Asp	Leu	Arg	Arg	Val	Leu	Ile	Leu	Asp	Asn	Ser
									145					150	155
Pro	Ala	Ser	Tyr	Val	Phe	His	Pro	Asp	Asn	Ala	Val	Pro	Val	Ala	Ser
									165					170	175
Trp	Phe	Asp	Asn	Met	Ser	Asp	Thr	Glu	Leu	His	Asp	Leu	Leu	Pro	Phe

180	185	190
Phe Glu Gln Leu Ser Arg Val Asp Asp Val Tyr Ser Val		Leu Arg Gln
195	200	205
Pro Arg Pro Gly Ser		
210		
<210> 9		
<211> 783		
<212> DNA		
<213> Drosophila		
 <400> 9		
atggacagct cggccgtcat tactcagatc agcaaggagg aggctcgaaa cccgctgcgg	60	
ggcaaagggtg accagaagtc agcagcttcc cagaagcccc gaagccgggg catcctccac	120	
tcactttct gctgtgtctg ccggatgtat ggggaggccc tgcctgctca cagcggggcg	180	
cccctgcttg tgaggagaa tggcgcattc cctaagaccc cagtccaata cctgctccct	240	
gaggccaagg cccaggactc agacaagatc tgcgtggtca tcgarctgaa cgagaccctg	300	
gtgcacagct cttcaagcc agtgaacaac goggacttca tcatccctgt ggagattgtat	360	
ggggtgttcc accaggtcta cgtgttgaag cgtcctcatg tggatgagtt cctgcagcga	420	
atgggcgagc tctttaatg tgcgtgttc actgctagcc tcgccaagta cgcagaccca	480	
gtagctgacc tgctggacaa atggggggcc ttccggggcc ggctgtttcg agagtcctgc	540	
gtcttcacc gggggaacta cgtgaaggac ctgagccgt tgggtcgaga cctgcggcgg	600	
tgctcatcc tggacaattc acctgcctcc tatgtcttcc atccagacaa tgctgtaccg	660	
gtggcctcgt gtttgacaa catgagtgac acagagctcc acgacccctt ccccttcttc	720	
gagcaactca gccgtgtgga cgacgtgtac tcagtgctca ggcagccacg gccagggagc	780	
tag		783
<210> 10		
<211> 260		
<212> PRT		
<213> Drosophila		
 <400> 10		
Met Asp Ser Ser Ala Val Ile Thr Gln Ile Ser Lys Glu Glu Ala Arg		
1 5 10 15		
Gly Pro Leu Arg Gly Lys Gly Asp Gln Lys Ser Ala Ala Ser Gln Lys		
20 25 30		
Pro Arg Ser Arg Gly Ile Leu His Ser Leu Phe Cys Cys Val Cys Arg		
35 40 45		
Asp Asp Gly Glu Ala Leu Pro Ala His Ser Gly Ala Pro Leu Leu Val		
50 55 60		
Glu Glu Asn Gly Ala Ile Pro Lys Thr Pro Val Gln Tyr Leu Leu Pro		
65 70 75 80		
Glu Ala Lys Ala Gln Asp Ser Asp Lys Ile Cys Val Val Ile Glu Leu		
85 90 95		
Asn Glu Thr Leu Val His Ser Ser Phe Lys Pro Val Asn Asn Ala Asp		
100 105 110		
Phe Ile Ile Pro Val Glu Ile Asp Gly Val Val His Gln Val Tyr Val		
115 120 125		

Leu Lys Arg Pro His Val Asp Glu Phe Leu Gln Arg Met Gly Glu Leu
 130 135 140
 Phe Glu Cys Val Leu Phe Thr Ala Ser Leu Ala Lys Tyr Ala Asp Pro
 145 150 155 160
 Val Ala Asp Leu Leu Asp Lys Trp Gly Ala Phe Arg Ala Arg Leu Phe
 165 170 175
 Arg Glu Ser Cys Val Phe His Arg Gly Asn Tyr Val Lys Asp Leu Ser
 180 185 190
 Arg Leu Gly Arg Asp Leu Arg Arg Val Leu Ile Leu Asp Asn Ser Pro
 195 200 205
 Ala Ser Tyr Val Phe His Pro Asp Asn Ala Val Pro Val Ala Ser Trp
 210 215 220
 Phe Asp Asn Met Ser Asp Thr Glu Leu His Asp Leu Leu Pro Phe Phe
 225 230 235 240
 Glu Gln Leu Ser Arg Val Asp Asp Val Tyr Ser Val Leu Arg Gln Pro
 245 250 255
 Arg Pro Gly Ser
 260
 <210> 11
 <211> 642
 <212> DNA
 <213> Drosophila

 <400> 11
 atgatgggga ggcctgcct gtcacagcg gggcgccct gttgtggag gagaatggcg 60
 ccatccctaa ggcagacccc agtccaatac ctgctccctg aggccaaggc ccaggactca
 gacaagatct gcgtggtcat cgarctgaac gagaccctgg tgcacagctc cttaagcca 120
 gtgaacaacg cgacttcat catccctgtg gagattgatg ggttggtcca ccaggtctac
 gtgttgaagc gtcctcacgt ggatgagttc ctgcagcgaa tggcgagct cttgaatgt 180
 gtgctgttca ctgcttagcct cgccaagtac gcagacccag tagctgacct gctggacaaa
 tggggggcct tccgggcccq gctgttcga gagtcctgcg tcttccaccc ggggaactac
 gtgaaggacc tgagccggtt ggtcgagac ctgcggcggt tgctcatcct ggacaattca
 cctgcctcct atgtcttcca tccagacaat gctgtaccgg tggcctcgtg gttgacaac 240
 atgagtgaca cagagctcca cgacccctc cccttctcg agcaactcag ccgtgtggac
 gacgtgtact cagtgctcag gcagccacgg ccagggagct ag 300
 <210> 12
 <211> 213
 <212> PRT
 <213> Drosophila

 <400> 12

 Met Met Gly Arg Pro Cys Leu Leu Thr Ala Gly Arg Pro Cys Leu Trp
 1 5 10 15
 Arg Arg Met Ala Pro Ser Leu Arg Gln Thr Pro Val Gln Tyr Leu Leu
 20 25 30
 Pro Glu Ala Lys Ala Gln Asp Ser Asp Lys Ile Cys Val Val Ile Glu
 35 40 45
 Leu Asn Glu Thr Leu Val His Ser Ser Phe Lys Pro Val Asn Asn Ala
 50 55 60
 Asp Phe Ile Ile Pro Val Glu Ile Asp Gly Val Val His Gln Val Tyr

65	70	75	80
Val	Leu	Lys	Arg
Pro	His	Val	Asp
Glu	Phe	Leu	Gln
Arg	Met	Arg	Gly
85	90	95	
Leu	Phe	Glu	Cys
Val	Leu	Phe	Thr
Ala	Ser	Leu	Ala
Lys	Tyr	Ala	Asp
100	105	110	
Pro	Val	Ala	Asp
Leu	Leu	Asp	Lys
Trp	Gly	Ala	Phe
Arg	Arg	Ala	Arg
Leu	115	120	125
Phe	Arg	Glu	Ser
Cys	Val	Phe	His
Arg	Gly	Asn	Tyr
Gly	130	135	140
Ser	Arg	Leu	Gly
Arg	Asp	Leu	Arg
Arg	145	150	155
Val	Leu	Ile	Leu
Asp	Asn	Asn	Ser
160	165	170	175
Pro	Ala	Ser	Tyr
Val	Phe	His	Pro
Asp	Asn	Ala	Val
Val	Pro	Val	Ala
Ser	180	185	190
Trp	Phe	Asp	Asn
Met	Ser	Asp	Thr
Glu	195	200	205
Phe	Gln	Leu	Ser
Arg	Val	Asp	Asp
Val	Tyr	Ser	Val
Leu	Arg	Gln	
Pro	Arg	Pro	Gly
Gly	210	Ser	
<210>	13		
<211>	7020		
<212>	DNA		
<213>	Drosophila		
<400>	13		
ctggagcgcg	gcaggaaccc	ggcccgcccc	gcctccca
		gcctcccagt	ccgcctagcc
		gcgtccgtcc	gcgtccgtcc
cagaagtggc	gaaaagccgca	gccgagttcca	ggtcacgccc
		aagccgttgc	ccttttaagg
gggagccttg	aaacggcgcc	tgggttccat	gttgtcatcc
		gcctcgcccc	gcctcgcccc
catgttgtaa	caaagttcc	tccgcgcccc	ctccctcccc
		ctccccccta	gaacctggct
cccctccct	ccggagctcg	cggggatccc	tccctcccac
		ccctcccttc	ccccccgcgc
cccgattccg	gccccagccg	ggggggaggc	cgggcgcccc
		ggccagagtc	cggccggagc
ggagcgcgccc	cggcccccattg	gacagctcg	ccgtcattac
		tcaagatcagc	aaggaggagg
ctcggggccc	gctgcggggc	aaaggtaccg	gggctgcggg
		gagggggccg	aagccggggc
gccgtggag	gagagaaggg	gccgggatct	tccccagggg
		agccgcccgc	gccgccccgg
gcggccgcct	tagctgtgcc	cgaagctccc	agcccgagag
		ggagcaggga	gagagttga
actcagagga	ggctcagaga	cgcgggcgg	ggcctggcgc
		ctttggggcg	ctctgtccg
ctcgagggtga	ggaaactgag	gcaggaatag	ctttcggggg
		agagggaaact	tttcctggca
ggcattgcgt	ggtgcatggg	cgccccccca	ccattggcgc
		caatggggct	aatggggct
ggagctgagg	agggcgccta	tgggccaccc	gctgagactc
		cgccccaccc	cccacccca
cccccccccgg	ctgcggtccg	gtagggtctt	gggagggggc
		gccgaggtga	cagcaggctg
gggaggcttg	gagggatctc	ccgccaacac	acagctacgt
		tccccacaaa	tttcgcgtca
cgcgtggagg	cggcgacccc	ctcgaggca	cagagaggac
		ggccggcact	tccaagagtc
gcttggcgcc	cgcggggaga	gtcgtgcgcc	tagtgggcac
		gcaccacccc	gcaaagcctc
			1080

gccgccccga	cgaggctgcg	tcccccagcg	tggctggcc	gggggtggggg	ggtctgtctt	1140
ctcctttcc	ccgtgtggac	ctcaggatct	ggacgctgcc	cccaggctcg	cccaccctcg	1200
cctgggtctg	gctgccccgg	aactgagggc	aaggtggaaa	ggctagttgc	agggggccgg	1260
aggggggtgg	ggtgggaggg	gtatctgtca	atcaggctgc	tgggctccag	gtcggaggtc	1320
tgggcggggc	agggcaaaca	gatggccact	ggacactggc	cccaggccgc	gggactgcac	1380
ccctgcctct	gggcccagcc	gcagtgagga	cttcgtaccc	acgggggtgg	agaggatgga	1440
gggagggcag	gggtggactg	ccctgggtcc	cagggcctgg	ctgtcctgag	caggggtgct	1500
caggttaaggt	ggggtcagga	ggcacccgcaa	tggggctgat	cagcagcagt	catggaggct	1560
gtgagaggca	gggagagagc	accccaggac	ctccttctcc	aggccacgca	ctccctatgt	1620
gggcgcctta	atacctgcta	gacctatttg	tctgggagct	gcaggagcct	tggagttgat	1680
tgtggagccc	tgacaggggc	gtttcagaga	aagtcaggag	ctgccttcgt	gtgtctggat	1740
gaaggggcca	cggcaagatc	ctcctggccc	aggggttcac	acctgggcac	acatgcagga	1800
ttctgcaggc	cagtgtgcac	cgagcctcca	acttgtgcct	ccctacttca	ggtgaccaga	1860
agttagcagc	ttcccagaag	ccccgaagcc	ggggcatcct	ccactcaactc	ttctgctgtg	1920
tctgccggga	tgtatggggag	gccctgcctg	ctcacagcgg	ggcgccccctg	cttgtggagg	1980
agaatggcgc	catccctaag	gtgcgtgggg	gccaggtggg	gccacggggg	cacctggact	2040
cagtcttcag	ggctttaggg	gaaggggctc	ctgactgagc	ttttcaggat	ggacttgcag	2100
acctgaaagt	gcagagtagg	agggtggcag	cctccctgc	cagggcctgc	ccactgtggg	2160
gaaactgaat	tctccctcat	aagtggaaagc	tttttctac	cttggttttt	agagaggtct	2220
caaagagcca	agaggcctac	ccaagcccta	gagctggcag	gggcaaagct	gggaaggggg	2280
aagtatctgt	tcctggggcc	tggggttcct	ctggagacgg	ctagggggag	aagcctgcgt	2340
gggaggaagg	accaggcccg	gagagaggca	ccccagccag	ccccgcctc	cctacagcag	2400
accccagtcc	aatacctgct	ccctgaggcc	aaggcccagg	actcagacaa	gatctgcgtg	2460
gtcatcgacc	tggacgagac	cctggtgac	agctccttca	aggtgggccc	tgctcaacag	2520
ccctcagccc	gggtctcggg	gggcatcccc	caccctggcc	tgggagggag	gtgtgtgctg	2580
gaccccatgc	cctggggctc	ctcctccaac	tccagcagct	cttttcccc	cacagccagt	2640
gaacaacgcg	gacttcatca	tccctgtgga	gattgatggg	gtggtccacc	aggtgagggc	2700
caggaagagg	cagtggtgaa	cttggcatct	gcctccagac	cctaggctct	tcccaccaat	2760
ccggagcgcc	tcggatggga	attggataca	tgtggaatgt	cagaggccca	gagagggtgt	2820
gagacttgtc	ccaaagtac	acagaacctc	aagggtttgt	gctgactcca	agcctgcaga	2880
gtgggctcct	cctctaggct	ccccctgtct	gtgctccctc	gccccacccct	gcccgggacc	2940

cagttcaagt aattcaggat aggttgtgtg ctgtccagcc tggggccat	tacttggctc	3000
ggggaccggc gcccgcgc cttggggtaa gggggctgcc cctggattcc	tgcacttaggc	3060
tgaggttgag gcaggggaag ggattggaa tttagggacct cgtgaggtag	gactggccag	3120
tggagtgaa gtttgatcg ttttctggcg ggggggtgggt acagttccc	cagcagtggt	3180
cagggtagct ggccaagcgg agectgcggg cccagtcctcc ttccctgtgcg	cctctgcctc	3240
cctggcccat gccctgccag ccctcgccca cccccacact gccccactgg	ccgcagccc	3300
cctcaactggc ccggggggca ggtctacgtg ttgaagcgtc ctcatgtgga	tgagttcctg	3360
cagcgaatgg gcgagcttt tgaatgtgtg ctgttcaactg ctgcctcgc	caaggtgagc	3420
cccacagggg tcccggggca accctggccct cctacctacc tcccgcatgc	agcccaagtga	3480
acctgcgggc cccaggatga cccacccct gctcccagta cgccagacca	gtagctgacc	3540
tgctggacaa atggggggcc ttccgggccc ggctgtttcg agagtcctgc	gtcttccacc	3600
gggggaacta cgtgaaggac ctgagccggt tggtcgaga cctgcggcgg	gtgctcatcc	3660
tggacaattc acctgcctcc tatgtcttcc atccagacaa tgctgtgagt	gcgggctgga	3720
ctgggactgg gacaggagct gagacccagg aaggggtcag tccattcagg	ccacccctggc	3780
ctcttgatc cccaggatggg ggggtgggtgc cctcccaagtc ctgcctgc	tcattgcctg	3840
tgcctgccgc ccactccct catccacctg ccctgtagcc atatggtctt	ttccctcgc	3900
acaaagcaga gcatctgcca tgcacagggg ccccccacagg gcaacggagt	ttgaaagtt	3960
tcaattttc gaattgccag ttgtgaccta ctgatggccc acagaattaa	tttagtggt	4020
tctgattggg aatttaaca aaatgaaata gaatagaaaa tatccggtcg	ggtgcagtgg	4080
ctcatgcctg taatcccagc actttggaa gctgaggtagg gcaggtagct	gagcccaagta	4140
gttcaagacc agcctcgca acatagtgaa accttatgtc tacaaaaaat	acaaaaacta	4200
gccaggcgtg gtggcgcatg cctggagtcc cggctatgca gaaggctgag	gtaggagtagt	4260
cgcttgagcc ctggaggcag aggctgtggt gagccaagat tgcactgc	cactctagcc	4320
tggcaacag agcaagaccc tgcctcaaaa aaaaaaaaaa gtatccaagt	gcttcgcaca	4380
gataaggta ggaattgtga agctttgca ttgttacgtt ataaatgtgt	tttcctgggg	4440
attgctgtca aaaaagttt aacactgtgg gtgagggtt ttcagaaact	gcatgatctg	4500
agtagtggtc acataggct ggcctgaaa ttctgcaccc aggaccaccc	gccccccctca	4560
tcttcctaca cccacttccc caggtaccgg tggcctcggt gtttgacaac	atgagtgaca	4620
cagagctcca cgaccccttc cccttcttcg agcaactcag ccgtgtggac	gacgtgtact	4680
cagtgctcag gcagccacgg ccaggagct agtgagggtg atggggccag	gacccctggccc	4740

tgaccaatga tacccacacc tcctccagg aagactgccc aggccttgt tagaaaacc	4800
catggggccgc cgccacactc agtgcctatgg ggaagcgggc gtctccccca ccagccccac	4860
caggcggtgt agggcagca ggctgcactg aggaccgtga gctccaggcc ccgtgtcagt	4920
gccttcaaacc ctccctccct atttcaggg gacctgggg gccctgcctg ctgctccctt	4980
tttctgtctc tgtccatgct gccatgttc tctgctgcca aattggggcc cttggccct	5040
tccggttctg ctccctgggg gcagggttcc tgccctggac cccagtcgt ggaacgggtgg	5100
acatcaagtgc ttgcatacg agccccctct tcccgccca gcttccca gggcacagct	5160
ctaggctggg aggggagaac cagccctcc ccctgccccca cctccctccct tggactgag	5220
agggcccta ccaacctttg cctctgcctt ggagggaggg gaggtctgtt accactgggg	5280
aaggcagcag gagtctgtcc ttccaggcccc acagtgcagc ttctccaggg ccgacagctg	5340
agggctgctc cctgcatacat ccaagcaatg acctcagact tctgcctaa ccagccccgg	5400
ggcttggctc cccagctct gagcgtgggg gcataggcag gaccccccgt gtggtgcct	5460
ataaatatgt acatgtgtat atagattttt agggaaagga gagagggaaag ggtcagggt	5520
gagacacccc tcccttgccc ctccctggg cccagaagtt ggggggaggg agggaaagga	5580
tttttacatt tttaaactg ctatttctg aatggaaaca gctggggccaa ggggccagg	5640
ccctgtcctc tgtccctcac accccttgc tccgttcatt cattcaaaaa aacatttctt	5700
gagcaccttc tgtgcccagc atatgctagg cccaccagct aagtgtgtgt ggggggtctc	5760
tacgccagct catcagtgcc tccttgccc tccttcaccg gtgccttgg gggatctgt	5820
ggaggtggga ccttctgtgg ggtttggga tctccaggaa gcccgaccaa gctgtccc	5880
tcccctgtgc caaccatct cctacagccc cctgcctgat cccctgctgg ctggggcag	5940
ctcccaggat atcctgcctt ccaactgttt ctgaagcccc tcctcctaacc atggcgattc	6000
cggaggtcaa ggcttgggc tctcccccagg gtctaacggta taaggggacc cacataccag	6060
tgccaagggg gatgtcaagt ggtgatgtcg ttgtgtccc ctccccaga gcgggtggc	6120
ggggggtgaa tatggttggc ctgcatacagg tggccttccc atttaagtgc cttctgt	6180
actgagagcc ctatgtgtat gagaactaaa gagaaagcca gaccctatc ctgcttctgt	6240
ggttattgcg gggacttca gcaagtgggg tgtgtgcctt gcacctgcgg ctggcgtgg	6300
cccccccccc gcttcagcac accttagaggg ctgttggtgg agggagggc tgccggccc	6360
tcgacacttc aggtggaaag ggcagcgtca gagcacaat ttgagcctcc aggctgtgct	6420
cgtctacgtc ttcccgccctc gggtatgtgg tctgcaaaaat ggagatgtgc cctattggca	6480
ggactaatta agtgcctgga cacagacgac aggatactag tagctggaaa gcaaattcg	6540
aaggcctggg tagggcagt cctggaaatgc ggcggggag gggcgtggc ctctgccc	6600

gagcagaggg	gcggggcttg	tgcggtccg	aaggcagagg	cggggagcgg	ggcgaggctc	6660
tgggtggagg	ctccagcggc	agaacttgtt	ggcctgggtg	cggcgggctc	cggcgctgg	6720
ctctgccggg	cggcctgggt	ggggccggcg	ccggggctcg	cccccccccg	cccctctgcg	6780
gcctctgagc	agccattggc	cgcgcggccg	ccccacttcc	cgcggccccc	cgcgtccggg	6840
aggcacttcc	tttgcgaaac	cgcgcggccc	caggcggccgg	caggaaatgc	cctcccgccg	6900
tccccagcca	gcctttgctt	gcttcccacg	ccagccgcta	gaggcctccc	tgtcctcgcg	6960
gacgcaggaa	ctccccgggg	gctggaaaga	tggggcccac	ctcaactcacc	cctttcccg	7020
<210>	14					
<211>	4833					
<212>	DNA					
<213>	Homo sapiens					
<400>	14					
gccatttcct	cctcttgttt	tcactccgga	ttctccatgt	tggaccaaa	ctgaggagcc	60
cggagctgcc	gctggggat	cggggccggg	ggcacccggg	ggagccgctg	cccgccgcgc	120
ccgccccttg	tacaggccgc	ctcccttccc	ggtccgggga	ggaaacgaga	ggggggatgt	180
gaacagctgt	ggaagtccgga	gtctcggag	ccggagcggg	ccccgcucca	ggccccccag	240
cccagccag	cccgcgccgc	cgcccgctct	cccggtccagc	cagcccgggc	ccgcgggatt	300
gttagatgga	acacggctcc	atcatcaccc	aggcgcggag	ggaagacgcc	ctggtgctca	360
ccaagcaagg	cctggtctcc	aagtcccttc	ctaagaagcc	tcgtggacgt	aacatcttca	420
aggccctttt	ctgctgtttt	cgcgcccagc	atgttggcca	gtcaagttcc	tccactgagc	480
tcgctgcgta	taaggaggaa	gcaaacacca	ttgctaagtc	ggatctgctc	cagtgtctcc	540
agtaccagtt	ctaccagatc	ccagggacct	gcctgctccc	agaggtgaca	gaggaagatc	600
aaggaaggat	ctgtgtggtc	attgacctcg	atgaaaccct	tgtgcatagc	tcctttaagc	660
caatcaacaa	tgctgacttc	atagtgccta	tagagattga	ggggaccact	caccaggtgt	720
atgtgctcaa	gaggccttat	gtggatgagt	tcctgagacg	catggggaa	ctcttgaat	780
gtgttctctt	cactgccagc	ctggccaagt	atgcccaccc	tgtgacagac	ctgctggacc	840
ggtgtgggt	gttccgggcc	cgcctattcc	gtgagtcctg	cgtgttccac	cagggctgct	900
acgtcaagga	cctcagccgc	ctggggaggg	acctgagaaa	gaccctcatc	ctggacaact	960
cgcctgcttc	ttacatattc	caccccgaga	atgcagtgcc	tgtgcagtcc	tggtttgatg	1020
acatggcaga	cactgagttg	ctgaacctga	tcccaatctt	tgaggagctg	agcggagcag	1080
aggacgtcta	caccagcctt	ggggcagctg	cgggcccctt	agcctgcctt	gcttccaagc	1140
gacggccatc	ccagtagggg	actttccac	actgtgcctt	tacgatcagc	gtgacagagt	1200
agaagctgga	gtgcctcacc	acacggcccg	gaaacagcgg	gaagtaactg	gaaagagctt	1260

taggacagct tagatgccga gtgggcgaat gccagaccaa tgataccca agctacctgc 1320
cgccaacttg ttgagatgtg tggactgt tgagagagt gttgttgg tttgtgttt 1380
gccatgaact gtggccccag tgtatagtgt ttcagtgggg gagaagctga aagaccaaga 1440
ctcttcccaa gttagcttgt ctccctccct gtcaccctaa gagccactga gttgtgttagg 1500
gatgaaract attgaagact ccattgcca accatggcct ttcctcagtg ttgttaaggcc 1560
tatgccaagg ataaaggaag ggtatgcctt tgggtactcc aggcatcac ctttctgaaa 1620
tccttctcca gccagctgct gcagacaaaa gatcacattt ctgggaagat gagaacttgt 1680
ttccagacca gcatccagtg gccatcaggt cttgtggccc aaaggctatg cttgcctccg 1740
gctgagtgcc tggataggc ctttctatg tctcccaag gctgggtgc tgagcctgcc 1800
ttcctcacca cctagccata gtctcaaacc tgtgggaag gaggtttctt ccctgcccgg 1860
gaagaggaca gataactgat ttccgttctt ttgactgtgt tttaaaattc tcttctaaa 1920
cacagagtgt tggcctgggt ttgttctga caaagttaca gtcctggcc tgtaatgaat 1980
gtcggcggcg ctgggggtgc agggaaaaga caaatcctca aagcgtggac gtgtgtcccc 2040
atggcttgtg gatcagctaa gtcgggatc atttccataa gtctgcttt caggattct 2100
ctgctggtgc tggcaagg acttctgttc caaaggctgg gaaaaactaa gctgtcccg 2160
cccctccat ttctggca gggctcttt cctgtgtgt ctcccccaag ggcctgtcct 2220
gtaccgagct ctgtctgttc cagcctacat cttcctggg tggctttt cctcttaagg 2280
gcctcagaac tctgcttctt cttgggtga gggaaatga gtgttctga catgtgacag 2340
cctaattgcgc atgcttctg cctctggtaa caggagttag tgagccctc agacctgcac 2400
tctgggtgtc tcctgcttac aaaggcttt aatagtgaat gctttaaaat taaagtcatc 2460
acgaaatgga agtttccca gggtgaaaa taagaggaag tgctgctgta attggagca 2520
caaggggcct cccaaaaagg agccccaccc cagcatcact gccttaatcg tggcccccct 2580
gggtgggtg gggctcttc ctccctccct ccctcctt ggggtggag ggcgtcctg 2640
ttcccatctc tgggttccct ggaggcaggt atcacaaagc atttgtgaat tgcttaggt 2700
gcagggacac caccactca ggactcttcc ccatcatccc ttccattgcc acaccctaga 2760
tccagcctca ggaactaaca agttktgaga aaagcagggt gtagagcagc agcttcgtgc 2820
tctcagcggt ggctggctgg cattttctc tagcgttgg tggccaccc ttccatttgc 2880
cccaaggta taaggccttg tcttcttcc tggaaatcata aagtggaaaca gagtccccag 2940
aactcatgtg ghcatttccg acagcatcac tccccgggtgc ctatgggtgc ccgggtgtacc 3000
taaagggaga aggacccat gtgcttagcca gaaatatact gtcttggaa gggaaagcagg 3060

agctcagact cttagagcca gctgtggctt cggacccaag gcctgaccta ggctgctatc	3120
ctaataattgg aggagggggcc tctcttccaa gcccccacct aagggttagc cttggacaa	3180
atcttgcc gtctaggccc agccaggctt ttctgactaa ataagcaata agaggctcta	3240
agctgactga gttgcaagga ccctttccgc cctcccttgg atctccatgt ttctccagat	3300
ggcgaaagag catgtgccac ccccttcct aacagacttg tccaagtgt tggcgtggga	3360
cccatgacca aagcccagga tggcttggtg ggagtgtccc tgctgcatct gcatgaagcc	3420
cctgctttt aggccctact cccatcagaa ccctgcctgc ccacctgcaa ctccccccca	3480
acaatgccat tcccacttgc cccagagaag ctactcggcc aaacctagcc agggctgttt	3540
cttgtggacc agagccagcc tagtcattat ttgctgtcgg gttccagtt tcaccgtgt	3600
ttagggtgag ggatgattgt aaaatttgc cctcaaagga atcaggccag actcaatttt	3660
gggagggcaa gacagggagg aggccgcttc atcccagact ctcttctagg gcttcccacc	3720
atcagcccct cccacttgcgactggcttt gggaggcaat aggccaccat gcctggtcag	3780
caccaattca agccatgccca ggaatctgcc tacctgccag gttcagttct tttaaggtgc	3840
ctcttcaggg acacagtgtg tctctctgat tgggcttcta aatcaaagc ctgatgttcg	3900
tgtccctctc atagggggag ctttggacac aggaccagtt tggaaaaggg tcaggttaagg	3960
gtttccactc tgcacattgt agagggaaaca ctctgttagc ccatgggtcc cttactagag	4020
aggtttagtg aatttgcctt cagttAACat gggaccttct gtttagcttc ctcttgcttc	4080
ccaaagattt taagcatttt gtAAATgttat aaactcacct ctggtaacag tggcccagac	4140
gctgcttgcgt gctaaaagca tggaaatgt aaaggcagtc tttctctggg aaatggatgc	4200
tattctattc tgctgcccct acctgttcct gagggcctcat ttagaaagaa aatcccctca	4260
gaaggctgtc tggcacccag tgccttagcc aggccaagta tatgagaaag gtaagtccat	4320
tttcccttc aggtcctcag tggattactt aaccactgtc gtccctcggt cccttttcc	4380
taaacgggtt tagttctgtc tttttctcc tttttctaa atgctggtaa atatttacat	4440
tcagccaggg aagaggaggc cagaggtcgg gccagctgcc ccattcttt aacgtttag	4500
ggcctgccc tggagcggac ctccttcctt gggcctcggt agctttttg cttatcatgt	4560
tccatttcgt gccgcttcc cccttcaaga tgccatttgg agggtagggg atctgcttcc	4620
cactgtgact gggctatggg attctgacta cttgttttac agattcatgg tttgataaat	4680
ttgttgatt ccaaaaacttg aaatgcagga cgccattaag tgtctgttta tattttggaa	4740
atatttgtat tacttacaat taattaataa aagtgggttt aaaaaacctt tccagggaaaa	4800
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa	4833
<210> 15	
<211> 859	

<212> DNA
 <213> Homo sapiens

<400> 15
 atggacggcc cgccatcat cacccaggtg accaacccta aggaggacga gggccgggtg 60
 ccgggcgcgg gcgagaaagc ctcccagtgc aacgtcagct taaagaagca gaggagccgc 120
 agcatcctta gtccttctt ctgtgtttc cgtgattaca atgtggaggc ccctccaccc 180
 agcagccca gtgtgcttcc gccactggtg gaggagaatg gtgggcttca gaagccacca 240
 gctaagtacc ttcttccaga ggtgacggtg cttgactatg gaaagaaatg tgtggtcatt 300
 gattnagatg aaacatttgt gcacagttcg tttaagccta ttagtaatgc tgattttatt 360
 gttccgggtt gaatcgatgg aactatacat caggtgtatg tgctgaagcg gccacatgtg 420
 gacgagttcc tccagaggat gggcagctt tttgaatgtg tgctcttac tgccagctt 480
 gccaagtatg cagaccctgt ggctgacccctc ctagaccgct ggggtgtgtt ccggggccgg 540
 ctcttcagag aatcatgtgt ttttcatcgt gggactacg tgaaggacct gagtcgcctt 600
 gggcgggagc ttagcaaagt gatcatgtt gacaattccc ctgcctcata catttccat 660
 cctgagaatg cagtgcctgt gcagtcctgg ttcatgaca tgacggacac ggagctgctg 720
 gacccatcc cttctttga gggcctgagc cgggaggacg acgtgtacag catgctgcac 780
 agactctgca ataggttagcc ctggcctctg ctcgcctccc gcctgtgcac tctggAACCT 840
 ctggcctcag gggacactgc 859
 <210> 16
 <211> 754
 <212> DNA
 <213> Homo sapiens

<400> 16
 atgatgggga ggcctgcct gtcacagcg gggcgccccct gcttggag gagaatggcg 60
 ccatccctaa ggagacccc agtccaatac ctgtccctg aggccaaggc ccaggactca 120
 gacaagatct gcgtggtcat cgaccctggac gagaccctgg tgcacagctc cttcaagcca 180
 gtgaacaacg cgacttcat catccctgtg gagattgtg gggtggtcca ccaggtctac 240
 gtgttgaagc gtcctcacgt ggtgagttc ctgcagcgaa tggcgagct cttgaatgt 300
 gtgctgttca ctgctagcct cgccaagttac gcagacccag tagctgaccc gctggacaaa 360
 tggggggccct tcggggcccg gctgtttcga gagtcctgcg tcttccaccc ggggaactac 420
 gtgaaggacc tgagccgggtt gggtcgagac ctgcggcggg tgctcatcc ggacaattca 480
 cctgcctcct atgtcttcca tccagacaat gctgtaccgg tggcctcg tttgacaac 540
 atgagtgaca cagagctcca cgaccctctc cccttcttcg agcaactcag ccgtgtggac 600
 gacgtgtact cagtgcctcag gcagccacgg ccagggagct agtgagggtg atggggccag 660

gacctgcccc tgaccaatga tacccacacc tcctcccagg aagactgccc aggctttgt	720
taggaaaacc catggccgc cgccacactc agtg	754
<210> 17	
<211> 27	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic construct: polymerase binding site	
<400> 17	
gaattaatac gactcactat agggaga	27
<210> 18	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 18	
atggggcgaac tatacgagtg cgttc	25
<210> 19	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 19	
atcaacgaca acttcgagat cgtcg	25
<210> 20	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 20	
atgtcgctct tgcaaaaact aagc	24
<210> 21	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 21	
tgaagatcct caccgagcgc ggcta	25
<210> 22	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	

<400> 22		
cagctggtgc gggagtacgg cttcc		25
<210> 23		
<211> 22		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 23		
gagctgtcgt ttagctttgg cg		22
<210> 24		
<211> 23		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 24		
actgggccta ttactactgg ctc		23
<210> 25		
<211> 25		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 25		
caacgaagcc gagcgagcca tccag		25
<210> 26		
<211> 26		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 26		
gcaacaactg ggccaagggt cattac		26
<210> 27		
<211> 26		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 27		
gccttccaag agcacgacgt acaaag		26
<210> 28		
<211> 26		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 28		

ctcgccaaatc aagtaccttg tgctgc	26
<210> 29	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 29	
cttcgctcgc acctcagaaa cgatc	25
<210> 30	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 30	
caacggaaact aacggccgct ccgag	25
<210> 31	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 31	
ctcgccattg ttctcctggt gg	22
<210> 32	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 32	
cttgcgtcgct gctggttcaa catgg	25
<210> 33	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 33	
gcgggtggag tagccaaact cgttg	25
<210> 34	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 34	
ttataggata tcttcgattt tcggc	25

<210> 35	
<211> 26	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 35	
gaccggactc gtcatactcc tgcttg	26
<210> 36	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 36	
tgcgcagctc gcccatgtag acctg	25
<210> 37	
<211> 23	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 37	
cgcgtggatt gggagaagaag gtc	23
<210> 38	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 38	
ccgtaaaacc gcgcgcatta aagt	24
<210> 39	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 39	
tggtcatggt cacgaatccg aatc	24
<210> 40	
<211> 27	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 40	
cttggcatcg aacatctgct gggtcag	27
<210> 41	

<211> 26	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 41	
cgatcagaag tggatcgccg tcctta	26
<210> 42	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 42	
ccctggctga agcagaactt catg	24
<210> 43	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 43	
tatggcataa aaggtgtggc cattc	25
<210> 44	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 44	
gttctcgcca tcgttgagat ctgc	24
<210> 45	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 45	
cgtacatgag gtagaccctg ga	22
<210> 46	
<211> 27	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 46	
cggccgtcat tactcagatc agcaagg	27
<210> 47	
<211> 22	

<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	47	
tccaccaccc	tgtgttgctg ta	22
<210>	48	
<211>	27	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	48	
catctctgat	ctcgactgct ccagcag	27
<210>	49	
<211>	30	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	49	
tgcgcctcacc	caaggctct gacactgtgg	30
<210>	50	
<211>	30	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	50	
ctgtggccat	ggagggaaac agtggcttcc	30
<210>	51	
<211>	28	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	51	
gcaaccgcag	gcacgactgt ttacggag	28
<210>	52	
<211>	29	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	52	
ccatcgccctg	cgaaacctcc ccaggtaga	29
<210>	53	
<211>	28	
<212>	DNA	

<213> Artificial sequence	
<220>	
<223> Primer	
<400> 53	
gcagtgaaca gcacacattc aaagagct	28
<210> 54	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 54	
accacagtcc atgccccatcac	20
<210> 55	
<211> 27	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 55	
gggtcagaga gtgggtatgc cacagtg	27
<210> 56	
<211> 28	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 56	
cttgaacagc tcctggatgg cagtgcgt	28
<210> 57	
<211> 28	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 57	
agaagtccag gagcagctga gggagcac	28
<210> 58	
<211> 30	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 58	
agatgaccat ccgaaagaag ttggccttgt	30
<210> 59	
<211> 30	
<212> DNA	
<213> Artificial sequence	

```

<220>
<223> Primer

<400> 59
agccaaactca gctggactct ctccagcttc
<210> 60
<211> 30
<212> DNA
<213> Artificial sequence

30

<220>
<223> Primer

<400> 60
tgcggtttat attatcctgc acgccggag
<210> 61
<211> 27
<212> DNA
<213> Artificial sequence

30

<220>
<223> Primer

<400> 61
ggagccctat gcaggtaag ggaataa
<210> 62
<211> 28
<212> DNA
<213> Artificial sequence

27

<220>
<223> Primer

<400> 62
aactatttct gggtaactcc ttagacac
<210> 63
<211> 30
<212> DNA
<213> Artificial sequence

28

<220>
<223> Primer

<400> 63
ctggataagt tactgaagag tgggcttg
<210> 64
<211> 29
<212> DNA
<213> Artificial sequence

30

<220>
<223> Primer

<400> 64
caccgggttcg agtccccgga gagatatc
<210> 65
<211> 28
<212> DNA
<213> Artificial sequence

29

```

<220>		
<223> Primer		
<400> 65		
gggccttgat tttggagcc accttgtg		28
<210> 66		
<211> 29		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 66		
gctggggagga atgctttcta atgcatttg		29
<210> 67		
<211> 25		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 67		
cagacgacaa gttacatgca acatg		25
<210> 68		
<211> 150		
<212> PRT		
<213> Homo Sapiens		
<400> 68		
Asn Arg Lys Leu Val Leu Met Val Asp Leu Asp Gln Thr Leu Ile His		
1 5 10 15		
Thr Thr Glu Gln His Cys Gln Gln Met Ser Asn Lys Gly Ile Phe His		
20 25 30		
Phe Gln Leu Gly Arg Gly Glu Pro Met Leu His Thr Arg Leu Arg Pro		
35 40 45		
His Cys Lys Asp Phe Leu Glu Lys Ile Ala Lys Leu Tyr Glu Leu His		
50 55 60		
Val Phe Thr Phe Gly Ser Arg Leu Tyr Ala His Thr Ile Ala Gly Phe		
65 70 75 80		
Leu Asp Pro Glu Lys Lys Leu Phe Ser His Arg Ile Leu Ser Arg Asp		
85 90 95		
Glu Cys Ile Asp Pro Phe Ser Lys Thr Gly Asn Leu Arg Asn Leu Phe		
100 105 110		
Pro Cys Gly Asp Ser Met Val Cys Ile Ile Asp Asp Arg Glu Asp Val		
115 120 125		
Trp Lys Phe Ala Pro Asn Leu Ile Thr Val Lys Lys Tyr Val Tyr Phe		
130 135 140		
Gln Gly Thr Gly Asp Met		
145 150		