CS6320, Fall 2018 Dr. Mithun Balakrishna Homework 2 Due Sunday, September 30th, 2018 11:59pm

A. Submission Instructions:

- Submit your solutions via eLearning.
- Please submit a single zip file with the following files:
 - o For programming questions:
 - Source code file(s) in C/C++, Java, or Python. For using any other programming language, please get prior approval from the TA.
 - A ReadMe file with instructions on how to compile/run the code.
 - o For all other questions, a PDF/Doc/PS/Image file with the solutions.
- Late Submission Penalty:
 - o up to 2 hours late 10% deduction
 - o 2 4 hours late 20% deduction
 - o 4 12 hours late 35% deduction
 - o 12 24 hours late 50% deduction
 - o 24 48 hours late 75% deduction
 - o more than 48 hours late 100% deduction (zero credit)

B. Problems:

1. NFSA to Regular Expression (20 points)

Write a regular expression for the language accepted by the NFSA:

2. Bigram Probabilities (40 points):

Write a computer program to compute the bigram model (counts and probabilities) on the given corpus (*HW2_F17_NLP6320-NLPCorpusTreebank2Parts-CorpusA.txt* provided as Addendum to this homework on eLearning) under the following three (3) scenarios:

- i. No Smoothing
- ii. Add-one Smoothing
- iii. Good-Turing Discounting based Smoothing

Note: Please use whitespace (i.e. space, tab, and newline) to tokenize the corpus into words/tokens that are required for the bigram model. Do NOT perform any type of word/token normalization (i.e. stem, lemmatize, lowercase, etc.). Creation and matching of bigrams should be exact and case-sensitive. Do NOT split the corpus into sentences. Please consider the entire corpus as a single string for tokenization and computation of bigrams.

Input Sentence: The president wants to control the board 's control

Given the bigram model (for each of the three (3) scenarios) computed by your computer program, **hand** compute the total probability for the above input sentence. Please provide all the required computation details.

Note: Do NOT include the unigram probability P("The") in the total probability computation for the above input sentence.

3. Transformation Based POS Tagging (40 points)

For this question, you have been given a POS-tagged training file, HW2_F17_NLP6320_POSTaggedTrainingSet.txt (provided as Addendum to this homework on eLearning), that has been tagged with POS tags from the Penn Treebank POS tagset (Figure 1).

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	**	left quote	' or "
POS	possessive ending	's	"	right quote	or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

Figure 1. Penn Treebank POS tagset

Use the POS tagged file to perform:

- a. Transformation-based POS Tagging: Implement Brill's transformation-based POS tagging algorithm using ONLY the previous word's tag to extract the best five (5) transformation rules to:
 - i. Transform "NN" to "VB"
 - ii. Transform "VB" to "NN"

Using the learnt rules, fill out the missing POS tags (for the word "control") in the following sentence:

The_DT president_NN wants_VBZ to_TO control_??? the_DT board_NN 's_POS control_???

b. Naïve Bayesian Classification (Bigram) based POS Tagging:

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n) \approx \operatorname*{argmax}_{t_1^n} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$

Using the given corpus, write a computer program to compute the bigram models (counts and probabilities) required by the above Naïve Bayesian Classification formula.

Using the created bigram models, **hand** compute the missing POS tags (for the word "control") in the following sentence:

The_DT president_NN wants_VBZ to_TO control_??? the_DT board_NN 's_POS control_???