

API Workshop - Disease section

Phenodigm core

Diego Pava – Bioinformatician QMUL

Human – mouse matching

- Data analysis of the data generated by the IMPC pipeline
- Predict human diseases associated with a gene
- Aid in finding novel disease models
- PhenoDigm algorithm implementation

PhenoDigm and application within IMPC

- Phenotype comparisons for **DI**sease **G**enes and Models (PhenoDigm)
- This quantitative measure can tell us how well our mouse models recapitulate the clinical features of a disease 1
- Ontologies: Mammalian Phenotype Ontology (MP) and Human Phenotype Ontology (HPO)
- Disease HPO terms aligned with MP terms and produce a percentage similarity score

JOURNAL ARTICLE

PhenoDigm: analyzing curated annotations to associate animal models with human diseases 3

Damian Smedley

✓, Anika Oellrich, Sebastian Köhler, Barbara Ruef, Sanger Mouse Genetics Project, Monte Westerfield, Peter Robinson, Suzanna Lewis, Christopher Mungall Author Notes

Database, Volume 2013, 2013, bat025, https://doi.org/10.1093/database/bat025 Published: 09 May 2013 Article history ▼

Phenodigm

Phenotyping pipeline

Mendelian diseases

Novel disease models **PhenoDigm**

Novel gene discovery

Phenotype matching using orthologous human disease genes

PhenoDigm

score

Fatty liver disease model

Creating a comprehensive catalogue of mammalian gene function.

Where does the data come from?

PhenoDigm implementation within IMPC

Website

- **Left**: OMIM or Orphanet annotated gene-disease associations
- Right: No gene-disease association in **OMIM** or Orphanet

Additional resource - Disease Models Portal: https://diseasemodels.research.its.gmul .ac.uk

PhenoDigm scoring within IMPC and examples

Phenodigm core

Information available in the core: type

- disease_model_summary
- gene
- ontology_ontology
- mouse_model
- ontology
- gene_gene
- disease
- disease_search
- disease_gene_summary

• Types are categories/subsets within the core

1. Core overview

- Querying the **phenodigm core**
- Tips:
 - Use keyword type
 - Single quotation marks

```
"type":"disease_model_summary",
"disease id":"OMIM:227645",
"disease term": "Fanconi Anemia, Complementation Group C",
"model_id":"MGI:3696114",
"model_source":"MGI",
"model_description": "Clgalt1<pt11>/Clgalt1<pt11>",
"model_genetic_background": "C57BL/6-C1galt1<pt11>",
"marker_id":"MGI:2151071",
"marker_symbol":"Clgalt1",
"marker_locus":"6:7845224-7872042",
"marker num models":6.
"disease model avg raw":0.64,
"disease_model_avg_norm":28.23,
"disease_model_max_raw":2.32,
"disease_model_max_norm":73.31,
"association_curated":false,
"disease_matched_phenotypes":["HP:0001903 Anemia",
  "HP:0000086 Ectopic kidney"
  "HP:0000081 Duplicated collecting system",
"HP:0001876 Pancytopenia",
  "HP:0001896 Reticulocytopenia",
  "HP:0000104 Renal agenesis",
  "HP:0005528 Bone marrow hypocellularity",
  "HP:0001873 Thrombocytopenia",
  "HP:0001518 Small for gestational age",
  "HP:0000085 Horseshoe kidney",
  "HP:0001909 Leukemia",
"HP:0001875 Neutropenia"]
"model_matched_phenotypes":["MP:0003179 thrombocytopenia",
  "MP:0000228 abnormal thrombopoiesis",
  "MP:0002828 abnormal renal glomerular capsule morphology",
  "MP:0001859 kidney inflammation",
  "MP:0004756 abnormal proximal convoluted tubule morphology",
  "MP:0002599 increased mean platelet volume",
  "MP:0002962 increased urine protein level",
  "MP:0011402 renal cast",
  "MP:0004505 decreased renal glomerulus number",
  "MP:0002871 albuminuria",
  "MP:0011423 kidney cortex atrophy",
  "MP:0005325 abnormal renal glomerulus morphology",
  "MP:0001262 decreased body weight".
  "MP:0002743 glomerulonephritis"]},
```

```
num_found, df = solr_request(
    core='phenodigm',
    params={
        'q': 'type:disease_model_summary',
```

Your request:

https://www.ebi.ac.uk/mi/impc/solr/phenodigm/select?q=type%3Adisease_model_summary

Number of found documents: 8444376

	type	disease_id	disease_term	model_id	model_source	model_description	model_genetic_background
0	disease_model_summary	OMIM:227645	Fanconi Anemia, Complementation Group C	MGI:3696039	MGI	Fign <fi>/Fign<fi></fi></fi>	mixed 1
1	disease_model_summary	OMIM:227645	Fanconi Anemia, Complementation Group C	MGI:3696114	MGI	C1galt1 <pt 1>/C1galt1<pt 1></pt 1></pt 1>	C57BL/6-C1galt1 <ptl1></ptl1>
2	disease_model_summary	OMIM:227645	Fanconi Anemia, Complementation Group C	MGI:3696354	MGI	Ercc2 <tm3jhjh>/Ercc2<tm3jhjh></tm3jhjh></tm3jhjh>	involves: 129P2/OlaHsd * C57BL/6 * FVB
3	disease_model_summary	OMIM:227645	Fanconi Anemia, Complementation Group C	MGI:3696370	MGI	Khdrbs1 <tm1rchd>/Khdrbs1<tm1rchd></tm1rchd></tm1rchd>	involves: 129S1/Sv * 129X1/SvJ * C57BL/6
4	disease_model_summary	OMIM:227645	Fanconi Anemia, Complementation Group C	MGI:3696775	MGI	Kat6a <tm1lki>/Kat6a<tm1lki></tm1lki></tm1lki>	Not Specified 1

Disease_model_summary - fields | filters

- disease_id: "OMIM:218330"
- disease_term: "Cranioectodermal Dysplasia 1"
- model_id: "MGI:3587410"
- model source: "MGI"
- model_description: "Idua<tm1Clk>/Idua<tm1Clk>"
- model_genetic_background: "involves: 129S1/Sv * 129X1/SvJ"
- marker_symbol: "Idua"
- marker locus: "5:108808197-108832423"

- marker num models: 7
- disease model avg raw: 0.93
- disease_model_avg_norm: 42.36
- disease_model_max_raw: 2.32
- disease model max norm: 72.57
- association curated: false
- disease_matched_phenotypes: [HP terms of disease]
- model_matched_phenotypes: [MP terms of model]

2. Query by fields | filters

- The fields available within the core can be used to filter the queries
- Use the boolean operators (AND/OR)
- In this example we filter for models from IMPC only and gene mouse ID MGI:1929872
- We use identifiers from MGI because they are stable (compared to gene symbols)

```
num_found, df = solr_request(
    core='phenodigm',
    params={
        'q': 'type:disease_model_summary AND model_source:"IMPC" AND marker_id:"MGI:1929872"'
    }
)
```

Disease_model_summary - fields

- disease_id: "OMIM:218330"
- disease_term: "Cranioectodermal Dysplasia 1"
- model id: "MGI:3587410"
- model source: "MGI"
- model description: "Idua<tm1Clk>/Idua<tm1Clk>"
- model_genetic_background: "involves: 129S1/Sv * 129X1/SvJ"
- marker id: "MGI:96418"
- marker_symbol: "Idua"
- marker locus: "5:108808197-108832423"

- marker_num_models: 7
- disease_model_avg_raw: 0.93
- disease_model_avg_norm: 42.36
- disease_model_max_raw: 2.32
- disease_model_max_norm: 72.57
- association_curated: false
- disease_matched_phenotypes: [HP terms of disease]
- model_matched_phenotypes: [MP terms of model]

Documentation at: https://www.ebi.ac.uk/mi/impc/solrdoc/phenodigm.html

Exercises: 1-3

Additional skills with Solr

Disease_model_summary - fields of interest

- disease_id: "OMIM:218330"
- disease_term: "Cranioectodermal Dysplasia 1"
- model_id: "MGI:3587410"
- model source: "MGI"
- model_description: "Idua<tm1Clk>/Idua<tm1Clk>"
- model_genetic_background: "involves: 129S1/Sv * 129X1/SvJ"
- marker id: "MGI:96418"
- marker_symbol: "Idua"
- marker_locus: "5:108808197-108832423"

- marker num models: 7
- disease model avg raw: 0.93
- disease_model_avg_norm: 42.36
- disease_model_max_raw: 2.32
- disease_model_max_norm: 72.57
- association_curated: false
- disease_matched_phenotypes: [HP terms of disease]
- model_matched_phenotypes: [MP terms of model]

Documentation at: https://www.ebi.ac.uk/mi/impc/solrdoc/phenodigm.html

3. Calculations on the fly

- Solr allows us to perform calculations
- We create a custom field: 'max_avg_diff'
- Use the sub() function to subtract two fields
- Tip: you can use '\' to make your queries more readable

Your request:

https://www.ebi.ac.uk/mi/impc/solr/phenodigm/select?q=type%3Adisease_model_summary+AND+model_source%3A%22IMPC%22+AND+marker_id%3A%22MGI%3A191 4217%22&fl=disease_id%2Cmodel_id%2C+++++++++++++++++ max_avg_diff%3Asub%28disease_model_max_norm%2Cdisease_model_avg_norm%29&rows=5

Number of found documents: 109

diff	max_avg_c	model_id	disease_id	
004	64.2700	MGI:6162234#het#early	OMIM:229200	0
995	27.7799	MGI:6162234#het#early	OMIM:250500	1
997	25.1099	MGI:6162234#het#early	OMIM:241520	2
005	67.1300	MGI:6162234#het#early	OMIM:242840	3
001	15.1100	MGI:6162234#het#early	OMIM:155950	4

4. Sorting

- Sort existing fields using the sort parameter:
 - 'sort': field asc or desc
 - 'sort': 'disease_term desc'
- Sort on values calculated on the fly

```
num_found, df = solr_request(
    core='phenodigm',
    params={
        'q': 'type:disease_model_summary AND model_source:"IMPC" AND marker_id:"MGI:1914217"\
        'fl': 'disease_id,model_id\
        max_avg_diff:sub(disease_model_max_norm,disease_model_avg_norm)',
        'sort':'sub(disease_model_max_norm,disease_model_avg_norm) asc'
}
```

Your request:

	disease_id	model_id	max_avg_diff
0	ORPHA:1410	MGI:6162234#het#early	12.299999
1	OMIM:259690	MGI:6162234#het#early	14.300003
2	OMIM:155950	MGI:6162234#het#early	15.110001
3	OMIM:166260	MGI:6162234#het#early	20.909996
4	OMIM:278150	MGI:6162234#het#early	21.299995

Disease_model_summary - fields of interest

- disease_id: "OMIM:218330"
- disease_term: "Cranioectodermal Dysplasia 1"
- model_id: "MGI:3587410"
- model source: "MGI"
- model_description: "Idua<tm1Clk>/Idua<tm1Clk>"
- model_genetic_background: "involves: 129S1/Sv * 129X1/SvJ"
- marker id: "MGI:96418"
- marker_symbol: "Idua"
- marker_locus: "5:108808197-108832423"

- marker num models: 7
- disease model avg raw: 0.93
- disease_model_avg_norm: 42.36
- disease_model_max_raw: 2.32
- disease_model_max_norm: 72.57
- association_curated: false
- disease_matched_phenotypes: [HP terms of disease]
- model_matched_phenotypes: [MP terms of model]

Documentation at: https://www.ebi.ac.uk/mi/impc/solrdoc/phenodigm.html

Calculating Phenodigm score

 \gg Phenodigm score = AVG(disease_model_max_norm, disease_model_avg_norm)

Advanced Exercises: 4-6

Important information

1. The JupyterHub service will be available for a week after the workshop to allow you to review the exercises after the workshop

2. To access the presentations and the Jupyter notebook remember to

bookmark: https://github.com/mpi2/impc-data-api-workshop

How to get help https://www.mousephenotype.org/contact-us/

