

System-Theoretic Process Analysis (STPA): Engineering for Humans

Dr. John Thomas

Any questions? Please email: jthomas4@mit.edu

Past Applications, Progression

Acknowledgements
Mark A. Vernacchia
Charles A. Green
Padma Sundaram
Joseph D'Ambrosio
Matt Boesch
Megan France
Jeramiah Robertson

Controller model

Figure 3. Sheridan's (1992) Supervisory Control Model. 2

Figure 2. Representation of two resources, supplying the different stages of information processing. Sensory processing, the operation of the peripheral visual and auditory systems, is assumed to be relatively resource-free (after Wickens and Hollands 2000).

Resources

Resources

Response selection

Working memory

Fig. 3. The diagram illustrates how the same required mental function can be 6 served by different information processes - each with particular error mechanisms.

"This is really complicated, just doesn't make sense to me"

Fredrik Matheson, "Promoting trust in Al applications"

complexity

Tradeoff¹

Usability, ³ Learnability

Complexity²

STPA Human Model

Control Action Selection

- What were the operator's goals?
- What alternatives was the operator choosing between?
- How automatic or novel was the behavior?
- How might the operator's mental models affect their decision?
- What external factors (eq. time pressure) might affect their decision?

Control Action Selection

What does the operator believe about the system?

What does the operator believe about the system?

Mental Model of Controlled Process States 4

- Controlled processes: directly or indirectly controlled (e.g. automation, aircraft, engines, etc.)
- Beliefs about modes and mode changes
- Believes about the current process stage, for processes with multiple stages
- Beliefs about system variables (eg. true/false)

Mental Model of Controlled Process Behavior 4

- Beliefs about what processes can do
- Beliefs about how processes will behave in a particular mode or stage of operation
- Beliefs about if-then relationships between operator input and process output

Mental Model of Other Process States 4

- Changes in environmental conditions
- Familiar or unfamiliar environments
- State of outside controllers (e.g. other pilots, ATC)
- Social and organizational conditions

Mental Model of Other Process States 4

- Behavior and expectations of environment⁵
- Capabilities of outside controllers (e.g. other pilots, ATC)
- Social and organizational expectations

Mental Model updates

- Mental Model Updates (and Initial Formation!)³
 - Consider initial formation of mental model vs. later updates
 - Consider non-feedback inputs such as training programs and documentation
 - Consider whether input/feedback was observed (salience, expectations)
 - Consider whether input/feedback was correctly perceived & interpreted

ENGINEERING/ANALYSIS METHOD

- Losses, Hazards
- Control structure
- UCAs
- Build scenarios
 - Identify Mental Model variables
 - Identify Mental Model Flaws
 - Identify flaws in Mental Model Updates
 - Identify unsafe decisions (Control Action Selections)

BENEFITS1

Human Controller ²							
	Control action selection	Controlled Processes Other Processes		els Behaviors		Update Mental Models	3
	Other Factors						

- The new Engineering for Humans approach is simple to apply, and each part of the new model provides important insight into human behavior
- It provides additional guidance human scenarios, and can be used early in the design process
- Most importantly, it fits well into existing processes and provides a "common language" for engineers across disciplines to discuss issues

Automated parking assist

KEY ASSUMPTIONS ABOUT OUR SYSTEM

- The automation is capable of steering, braking, shifting, and accelerating.
- The <u>driver is expected to monitor the system</u> to respond to unexpected events and obstacles.
- The driver may <u>temporarily override</u> the APA computer's actions by braking or accelerating for short periods of time.
- If the driver 4
 - grabs the wheel 5
 - accelerates above a given maximum speed⁶
 - brakes for more than 2 seconds
 - or presses the APA button
 the <u>automation will be fully disabled.</u>

ACCIDENTS AND HAZARDS

System Level Accidents ¹				
A-I	Death, injury, or property damage resulting from a collision with a person, vehicle, object, or terrain.			
A-2	Injury or property damage occurring within the vehicle, without a collision.			
A-3	Loss of customer satisfaction with automated parking, without injury or property damage.			

System Level Hazards					
H-I	The vehicle does not maintain a safe minimum distance between itself and obstacles such as pedestrians, vehicles, objects, and terrain. [A-I]				
H-2	Occupants or cargo are subjected to sudden high forces that may result in injury or property damage. [A-2]				
H-3	The vehicle parks inappropriately, either in an unsuitable space (e.g. blocking a fire hydrant) or in violation of parking guidelines (e.g. excessively far from the curb). [A-3]				

UNSAFE CONTROL ACTIONS

	Not Provided	Provided	Too early, too late, out of order	Stopped too soon, applied too long
Brake	UCA-I: Driver does not brake when autoparking and computer doesn't react to an obstacle			

Identify UCAs²

- UCA-1: Driver does not brake when auto-parking and computer doesn't react to an obstacle
- Identify Mental Model variables 4
 - MM-I:APA is enabled/disabled 5
 - MM-2: APA computer reacting appropriately/inappropriately
 - MM-3: Obstacle on collision path ⁷
- Identify Mental Model Flaws 8
- Identify flaws in Mental Model Updates 9
- Identify unsafe Control Action Selections 10

Identify UCAs 1

Identify Mental Model variables³

- MM-I:APA is enabled/disabled 4
- MM-2: APA computer reacting appropriately/inappropriately 5
- MM-3: Obstacle on collision path ⁶

Identify Mental Model Flaws

- Identify flaws in Mental Model Updates
- Identify unsafe Control Action Selections

Identify UCAs ²

Identify Mental Model variables ³

- MM-I:APA is enabled/disabled
- MM-2: APA computer reacting appropriately/inappropriately
- MM-3: Obstacle on collision path

Identify Mental Model Flaws	5
Identify unsafe decisions (Control Action Selections)	
Identify inadequate Montal Model Lindates	

Identify inadequate Mental Model Updates

Mental Models			
	States	Behaviors	
Controlled	1.	2.	
Processes Other			
Processes	3.	4.	

Type of MM flaw	Examples
I) Incorrect beliefs about controlled process state (including modes)	Driver thinks APA is enabled when APA is really disabled
2) Incorrect beliefs about controlled process behaviors	Driver thinks APA is reacting properly and will brake automatically
3) Incorrect beliefs about other process state (e.g. environment)	Driver thinks there is no obstacle when there is one
4) Incorrect beliefs about other process behavior (e.g. environment)	Driver knows there is an obstacle, but thinks it won't move on a collision path

Identify UCAs 1

Identify Mental Model variables³

- MM-1:APA is enabled/disabled ⁴
- MM-2:APA computer reacting appropriately/inappropriately
- MM-3: Obstacle on collision path ⁶

Identify flaws in Mental Model Updates

Identify unsafe Control Action Selections

NEW PROCESS¹

Identify UCAs ³

 UCA-I: Driver does not brake for an obstacle when computer does not react appropriately to the obstacle

- Identify Mental Model variables 5
- MM-I:APA reacting appropriately/inappropriately⁶
- MM-2: Obstacle on collision path ⁷
- Identify Mental Model Flaws 8
- Identify flaws in Mental Model Updates 9
- Identify unsafe Control Action Selections 10

- Identify unsafe Control Action Selections²
 - Consider whether the driver is aware they can control X³
 - Consider alternative driver controls/actions
 - Consider other driver goals

- Identify UCAs
- Identify Mental Model variables
- Identify Mental Model Flaws
- Identify flaws in Mental Model Updates
- Identify unsafe decisions (Control Action Selections)

Can it work for other systems?

VOLVO CITY SAFETY SYSTEM

From Volvo website: 1

- System designed to help the driver avoid low speed collisions when driving in slow-moving, stop-and-go traffic.
- City Safety triggers brief, forceful braking if a low-speed collision is imminent.

VOLVO CITY SAFETY PREVENTING AN ACCIDENT

VOLVO CITY SAFETY PREVENTING AN ACCIDENT

ACCIDENT WITH CITY SAFETY

VOLVO RESPONSE

- "The Volvo XC60 comes with City Safety as a standard feature
- "however this does not include the Pedestrian detection functionality ... this is sold as a separate package."
- Optional pedestrian detection functionality costs
 \$3,000

Driver does not brake for pedestrian (UCA-1)

Control

Actions

Driver believes City Safety System can automatically brake for pedestrians (it can't)

Human Controller

Control action selection

Update Mental Models

Other Factors⁴

04

Driver does not brake for pedestrian (UCA-1)

Driver thinks City Safety
System is on (it is really off)

VOLVO RESPONSE

- "The Volvo XC60 comes with City Safety as a standard feature ...
- "however this does not include the Pedestrian detection functionality ... this is sold as a separate package."
- Optional pedestrian detection functionality costs³
 \$3,000
- Even with pedestrian detection, it mostly likely would not have worked because the driver accelerated

Driver does not brake for pedestrian (UCA-1)

Driver thinks City Safety System can intervene during acceleration (it can't)

Human Controller

Control
Actions

Control
action
selection

Mental Models
States Behaviors
Controlled Processes
Other Processes

Update Mental Models

Other Factors⁴

07

TESLA SUMMON

This feature will park Model S while the driver is outside the vehicle. Please note that the vehicle may not detect certain obstacles, including those that are very narrow (e.g., bikes), lower than the fascia, or hanging from the ceiling. As such, Summon requires that you continually monitor your vehicle's movement and surroundings while it is in progress and that you remain prepared to stop the vehicle at any time using your key fob or mobile app or by pressing any door handle.

2

MONOSTABLE SHIFTER DESIGN

Audi A8: Similar design, but SW will automatically activate electronic park brake if driver exits

- Park
- Reverse
- Neutral
- Drive
- Etc.

Driver exits vehicle when vehicle is not in park (UCA-1)

Old System

New System

AUTOMATED PARKING

Features of each system considered for this analysis: 2

	Level 0*	Level I	Level 2a	Level 2b	Level 3
	No Driving Automation	"Driver Assistance"	"Partial Automation"	"Partial Automation"	"Conditional Automation"
Steering	-	✓	\checkmark	✓	✓
Braking	-	-	\checkmark	\checkmark	✓
Shifting and Acceleration	-	-	-	✓	√
Object and Event Detection and Response	-	-	-	-	✓

^{*}System numbering is consistent with SAE definitions for levels of automation, while "a" and "b" indicate different 4 implementations which are classified within the same SAE level.

Analysis reuse

AUTOMATED PARKING

	Level I "Driver Assistance"	Level 2a "Partial Automation"	Level 2b "Partial Automation"	Level 3 "Conditional Automation"
Driver UCAs	42	41	38	44
APA Computer UCAs	5	13	28	28
Total				

AUTOMATED PARKING

	Level I "Driver Assistance"	Level 2a "Partial Automation"	Level 2b "Partial Automation"	Level 3 "Conditional Automation"
Driver UCAs	35 in co	ommon 41	38	ommon 44
APA Computer UCAs	5 in common 5 13		28 in common 28 28	
	40 in common			ommon
Total	47	54	66	72

	Level I	Level 2a	Level 2b	Level 3
Driver UCAs	42	41	38	44
APA Computer UCAs	5	13	28	28
Total	47	54	66	72

CONCLUSIONS

New human engineering process strengths:³

- Easy for engineers to learn, use
- Drive engineering requirements and concepts from the start
- Can be used earlier in design process than detailed simulations or prototypes
- Successful in industry, adoption

3: