Analisi post-ottimale

Ricerca operativa

Giovanni Righini

Analisi post-ottimale

Dopo aver calcolato la soluzione ottima di un problema, ma prima di prendere una decisione conseguente, è molto importante valutare la robustezza della soluzione.

Infatti, i dati sono spesso affetti da errori, approssimazioni, incertezza, arrotondamenti,...

La domanda cui risponde l'analisi post-ottimale è: quanto è robusta la soluzione ottima rispetto a possibili (piccoli) cambiamenti nel valore dei data che sono stati usati per calcolarla?

Analisi di sensitività

Input: *A*, *b*, *c*.

Output: \mathcal{B}^* , x^* , z^* .

Lo scopo dell'analisi di sensitività è di valutare l'intervallo nel quale può variare ogni coefficiente c_j e b_i senza che cambi la base ottima \mathcal{B}^* .

La base \mathcal{B}^* rimane ottima finché valgono le condizioni di ammissibilità e di ottimalità:

- Ammissibilità: $x_B = B^{-1}b \ge 0$.
- Ottimalità: $\overline{c}_N = c_N c_B B^{-1} N \ge 0$.

Le condisioni di ammissibilità dipendono solo da b. Le condizioni di ottimalità dipendono solo da c.

Variazione di un coefficiente c_i

(3)

(4)

(5)

Variazione di un coefficiente c_i

Quando c_1 decresce, la f.o. ruota in senso antiorario, finché la base ottima cambia per $c_1 = 1$, quando le linee di livello diventano parallele al vincolo (5).

Quando c_1 aumenta, la f.o. ruota in senso orario e le curve di livello tendono a diventare verticali per $c_1 \to \infty$. La base ottima in questo caso non cambia.

Quindi, $\mathcal{B}^* = \{1, 2, 3\}$ è ottima per $1 \leq \frac{c_1}{c_1} < \infty$.

Sebbene \mathcal{B}^* non cambi e x^* non cambi, z^* cambia perché dipende da c_1 :

$$z^*(c_1) = x_1^*c_1 + x_2^* = 9c_1 + 3.$$

Variazione di un coefficiente c_j

Tutti i dati (c^* e a^*) necessari per l'analisi di sensitività sono contenuti nel tableau all'ottimo.

Supponiamo di analizzare un problema che nella forma alle disuguaglianze ha

- · funzione obiettivo da massimizzare,
- vincoli di disuguaglianza ≤.

Consideriamo una colonna \overline{j} .

Caso 1: $\overline{j} \in \mathcal{B}$ e \overline{r} è la riga corrispondente.

$$\max\left\{-\infty, \max_{j \in \mathcal{N}} \left\{\frac{-c_j^*}{a_{\overline{\imath}j}^{*+}}\right\}\right\} \leq \Delta c_{\overline{j}} \leq \min\left\{\min_{j \in \mathcal{N}} \left\{\frac{-c_j^*}{a_{\overline{\imath}j}^{*-}}\right\}, +\infty\right\}.$$

Caso 2:
$$\overline{j} \in \mathcal{N}$$

$$\Delta c_{\overline{i}} \leq c_{\overline{i}}^*$$

Variazione di un coefficiente c_i

Tableau all'ottimo:

21	0	0	0	1/4	5/4
15	0	0	1	3/4	-5/4
9	1	0	0	1/4	1/4
3	0	1	0	-1/4	3/4

 $\overline{j} = 1$, variabile in base, $\overline{r} = 2$.

$$\max\{\frac{-1/4}{1/4},\frac{-5/4}{1/4}\} \leq \Delta c_1 < +\infty$$

$$-1 \leq \Delta c_1 < +\infty$$

maximize
$$z = 2x_1 + x_2$$

s.t.
$$-x_1 + 2x_2 \le 12$$
 (3)

$$3x_1 - x_2 \le 24$$
 (4)

$$x_1 + x_2 \le 12$$
 (5) $x > 0$

$$\mathcal{B}^* = \{1, 2, 3\}.$$

 $\mathbf{x}^* = [9\ 3\ 15\ 0\ 0]^T.$

 $z^* = 21.$

Quando b_3 decresce, il vincolo (3) trasla verso il basso e a sinistra, finché il vincolo $x_2 \ge 0$ diventa attivo per $b_3 = 8$. Quando b_3 aumenta, il vincolo (3) trasla verso l'alto e a destra, finché il vincolo (1) diventa attivo per $b_3 = 24$.

Quindi, $\mathcal{B}^* = \{1, 2, 3\}$ è ottima per $8 \le \frac{b_3}{2} \le 24$.

Benché \mathcal{B}^* non cambi, x^* e z^* cambiano perché dipendono da b_3 : $X_1^*(b_3) = 6 + \frac{1}{4}b_3$. $X_2^*(b_3) = -6 + \frac{3}{4}b_3$. $z^*(b_3) = 6 + \frac{5}{4}b_3$.

Tutti i dati (b^* e a^*) necessari per l'analisi di sensitività sono contenuti nel tableau all'ottimo.

Supponiamo di analizzare un problema che nella forma alle disuguaglianze ha

- funzione obiettivo da massimizzare,
- vincoli di disuguaglianza ≤.

Consideriamo una riga \bar{i} e sia \bar{j} è la colonna della variabile di slack corrispondente.

Caso 1: i attivo.

$$\max\left\{-\infty, \max_i \left\{\frac{-b_i^*}{a_{i\bar{j}}^{*+}}\right\}\right\} \leq \Delta b_{\bar{i}} \leq \min\left\{\min_i \left\{\frac{-b_i^*}{a_{i\bar{j}}^{*-}}\right\}, +\infty\right\}.$$

Caso 2: \overline{i} non attivo.

$$\Delta b_{\overline{i}} \geq -x_{\overline{i}}^*$$
.

Tableau all'ottimo:

21	0	0	0	1/4	5/4
	0			3/4	-5/4
		0	_	1/4	1/4
3	0	1	0	-1/4	3/4

 $\overline{i} = 3$, vincolo attivo, $\overline{j} = 5$.

$$\max\{\frac{-9}{1/4}, \frac{-3}{3/4}\} \le \Delta b_3 \le \frac{-15}{-5/4}$$
$$-4 \le \Delta b_3 \le 12$$

Analisi parametrica

L'analisi parametrica studia come z^* dipende dal valore del termine noto di un vincolo prescelto.

Il risultato è una funzione lineare a tratti: ogni suo segmento corrisponde ad una base ottima ed ogni punto di discontinuità ad un cambio di base.

Analisi parametrica

maximize
$$z=6x_1+14x_2+13x_3$$
 s.t. $0.5x_1+2x_2+x_3\leq 24$ $x_1+2x_2+4x_3\leq 60$ $x_1,x_2,x_3\geq 0$

Interpretazione economica:

- tre prodotti richiedono due risorse;
- le variabili rappresentano le quantità prodotte;
- i coefficienti della f.o. rappresentano i profitti unitari;
- i termini noti rappresentano le quantità di risorsa disponibili.

Tableau all'ottimo:

Se diminuisse di un'unità la quantità di risorsa 1 disponibile, *z* peggiorerebbe di 11 unità.

I c.c.r. delle colonne di slack all'ottimo indicano i prezzi-ombra delle corrispondenti risorse, cioè il massimo prezzo a cui conviene comprare la risorsa e il minimo prezzo a cui conviene venderla.

Il prezzo-ombra di risorse non scarse è nullo.

Se si volesse produrre un'unità di prodotto 2, si avrebbe

- un ricavo marginale pari a 14 (valore di c₂)
- un consumo di risorse pari a [2 2], che si traduce in un costo pari a $2 \times 11 + 2 \times \frac{1}{2} = 23$

e quindi un profitto marginale pari a -9 (non conveniente), che è infatti il costo ridotto di x_2 .

Il coefficiente di costo ridotto di variabili basiche è nullo, perché i ricavi marginali e i costi marginali risultano uguali.

Per esempio, per la variabile x_1 si ha:

$$6=\frac{1}{2}\times 11+1\times \frac{1}{2}.$$

Costi ridotti

Il costo ridotto \overline{c}_j di ogni variabile x_j è dato da

$$\overline{c}_j = c_j - \sum_i a_{ij} \lambda_i,$$

dove

- c_j è il coefficiente di x_j nella f.o.,
- a_{ji} è il coefficiente sulla riga i e colonna j nella matrice dei vincoli;
- λ_i è il prezzo-ombra del vincolo *i*.