INTRODUCTION

S6B0708 is a single-chip LCD driver IC for liquid crystal dot-matrix graphic display systems. It incorporates 192 driver circuit for 64 common and 128 segment and 64 x 128-bit bit-map RAM. It is capable of interfacing with the microprocessor, accepting 8-bit parallel display data directly from it, and storing data in an one chip display data RAM. And it generates internal signals for using LCD driving independent of microprocessor clock.

FEATURES

- 64-channel common & 128-channel segment driver for dot matrix LCD
- On-chip display data RAM: 64 × 128 = 8192bits
- Display data is stored in display data RAM from MPU

 RAM bit data: ON(4), OFF(0)
 - RAM bit data: ON(1), OFF(0)
- Internal timing generator circuit for dynamic display
- 8-bit parallel bi-directional data bus
- Applicable LCD duty: 1/64
- Power supply voltages: Power supply voltage range: 4.5 5.5V (VDD)
- LCD driving voltage range: 8.0 17.0V (VLCD = VDD-VEE)
- Wide operating temperature range: Ta = -30°C 85°C
- High voltage CMOS process
- · Gold bumped chip available

BLOCK DIAGRAM

PAD CONFIGURATION

ltem	Pad No.	Si	Unit	
		Х	Y	
Chip size	-	12590	3630	μm
Pad pitch	-	90 (r	min.)	
Bumped pad size	1 - 53	56	140	
	54 - 85	140	56	
	86 - 218	56	140	
	219 - 250	140	56	
Bumped pad height	All Pad	17 (typ.)	

PAD CENTER COORDINATES

Pad No.	Pad Name	Coor	dinate	Pad No.	Pad Name	Coor	dinate	Pad No.	Pad Name	Coor	dinate
		х	Υ			х	Y			Х	Υ
1	Dummy	-6115	-1600	35	CS2B	1343	-1600	69	C16	6115	-36.5
2	Dummy	-6025	-1600	36	С	1563	-1600	70	C17	6115	53.5
3	Dummy	-5935	-1600	37	CR	1783	-1600	71	C18	6115	143.5
4	VEE	-5477	-1600	38	R	2003	-1600	72	C19	6115	233.5
5	VEE	-5257	-1600	39	DB0	2175	-1600	73	C20	6115	323.5
6	VEE	-5037	-1600	40	DB1	2467	-1600	74	C21	6115	413.5
7	V5	-4817	-1600	41	DB2	2759	-1600	75	C22	6115	503.5
8	V5	-4597	-1600	42	DB3	3051	-1600	76	C23	6115	593.5
9	V5	-4377	-1600	43	DB4	3343	-1600	77	C24	6115	683.5
10	V4	-4157	-1600	44	DB5	3635	-1600	78	C25	6115	773.5
11	V4	-3937	-1600	45	DB6	3927	-1600	79	C26	6115	863.5
12	V4	-3717	-1600	46	DB7	4219	-1600	80	C27	6115	953.5
13	V3	-3497	-1600	47	RS	4559	-1600	81	C28	6115	1043.5
14	V3	-3277	-1600	48	RW	4779	-1600	82	C29	6115	1133.5
15	V3	-3057	-1600	49	Е	4999	-1600	83	C30	6115	1223.5
16	V2	-2837	-1600	50	CS1B	5219	-1600	84	C31	6115	1313.5
17	V2	-2617	-1600	51	RESETB	5439	-1600	85	C32	6115	1403.5
18	V2	-2397	-1600	52	Dummy	6025	-1600	86	Dummy	6115	1635
19	V1	-2177	-1600	53	Dummy	6115	-1600	87	Dummy	6025	1635
20	V1	-1957	-1600	54	C1	6115	-1386.5	88	S1	5715	1635
21	V1	-1737	-1600	55	C2	6115	-1296.5	89	S2	5625	1635
22	V0	-1517	-1600	56	C3	6115	-1206.5	90	S3	5535	1635
23	V0	-1297	-1600	57	C4	6115	-1116.5	91	S4	5445	1635
24	V0	-1077	-1600	58	C5	6115	-1026.5	92	S5	5355	1635
25	VDD	-857	-1600	59	C6	6115	-936.5	93	S6	5265	1635
26	VDD	-637	-1600	60	C7	6115	-846.5	94	S7	5175	1635
27	VDD	-417	-1600	61	C8	6115	-756.5	95	S8	5085	1635
28	VSS	-197	-1600	62	C9	6115	-666.5	96	S9	4995	1635
29	VSS	23	-1600	63	C10	6115	-576.5	97	S10	4905	1635
30	VSS	243	-1600	64	C11	6115	-486.5	98	S11	4815	1635
31	PCLK2	463	-1600	65	C12	6115	-396.5	99	S12	4725	1635
32	FS	683	-1600	66	C13	6115	-306.5	100	S13	4635	1635
33	SHL	903	-1600	67	C14	6115	-216.5				
34	ADC	1123	-1600	68	C15	6115	-126.5				

64COM/128SEG GRAPHICDRIVER FOR DOT MATRIX LCD S6B0708

Table 1. Pad Center Coordinates (Continued)

Pad No.	Pad Name	Coor	dinate	Pad No.	Pad Name	Coor	dinate	Pad No.	Pad Name	Coordinate	
		Х	Υ			Х	Υ			Х	Y
101	S14	4545	1635	135	S48	1485	1635	169	S82	-1575	1635
102	S15	4455	1635	136	S49	1395	1635	170	S83	-1665	1635
103	S16	4365	1635	137	S50	1305	1635	171	S84	-1755	1635
104	S17	4275	1635	138	S51	1215	1635	172	S85	-1845	1635
105	S18	4185	1635	139	S52	1125	1635	173	S86	-1935	1635
106	S19	4095	1635	140	S53	1035	1635	174	S87	-2025	1635
107	S20	4005	1635	141	S54	945	1635	175	S88	-2115	1635
108	S21	3915	1635	142	S55	855	1635	176	S89	-2205	1635
109	S22	3825	1635	143	S56	765	1635	177	S90	-2295	1635
110	S23	3735	1635	144	S57	675	1635	178	S91	-2385	1635
111	S24	3645	1635	145	S58	585	1635	179	S92	-2475	1635
112	S25	3555	1635	146	S59	495	1635	180	S93	-2565	1635
113	S26	3465	1635	147	S60	405	1635	181	S94	-2655	1635
114	S27	3375	1635	148	S61	315	1635	182	S95	-2745	1635
115	S28	3285	1635	149	S62	225	1635	183	S96	-2835	1635
116	S29	3195	1635	150	S63	135	1635	184	S97	-2925	1635
117	S30	3105	1635	151	S64	45	1635	185	S98	-3015	1635
118	S31	3015	1635	152	S65	-45	1635	186	S99	-3105	1635
119	S32	2925	1635	153	S66	-135	1635	187	S100	-3195	1635
120	S33	2835	1635	154	S67	-225	1635	188	S101	-3285	1635
121	S34	2745	1635	155	S68	-315	1635	189	S102	-3375	1635
122	S35	2655	1635	156	S69	-405	1635	190	S103	-3465	1635
123	S36	2565	1635	157	S70	-495	1635	191	S104	-3555	1635
124	S37	2475	1635	158	S71	-585	1635	192	S105	-3645	1635
125	S38	2385	1635	159	S72	-675	1635	193	S106	-3735	1635
126	S39	2295	1635	160	S73	-765	1635	194	S107	-3825	1635
127	S40	2205	1635	161	S74	-855	1635	195	S108	-3915	1635
128	S41	2115	1635	162	S75	-945	1635	196	S109	-4005	1635
129	S42	2025	1635	163	S76	-1035	1635	197	S110	-4095	1635
130	S43	1935	1635	164	S77	-1125	1635	198	S111	-4185	1635
131	S44	1845	1635	165	S78	-1215	1635	199	S112	-4275	1635
132	S45	1755	1635	166	S79	-1305	1635	200	S113	-4365	1635
133	S46	1665	1635	167	S80	-1395	1635				
134	S47	1575	1635	168	S81	-1485	1635				

Table 1. Pad Center Coordinates (Continued)

Pad No.	Pad Name	Coor	dinate	Pad No.	Pad Name	Coor	dinate	Pad No.	Pad Name	Coo	dinate
		Х	Υ			Х	Υ			Х	Υ
201	S114	-4455	1635	235	C48	-6115	-36.5				
202	S115	-4545	1635	236	C47	-6115	-126.5				
203	S116	-4635	1635	237	C46	-6115	-216.5				
204	S117	-4725	1635	238	C45	-6115	-306.5				
205	S118	-4815	1635	239	C44	-6115	-396.5				
206	S119	-4905	1635	240	C43	-6115	-486.5				
207	S120	-4995	1635	241	C42	-6115	-576.5				
208	S121	-5085	1635	242	C41	-6115	-666.5				
209	S122	-5175	1635	243	C40	-6115	-756.5				
210	S123	-5265	1635	244	C39	-6115	-846.5				
211	S124	-5355	1635	245	C38	-6115	-936.5				
212	S125	-5445	1635	246	C37	-6115	-1026.5				
213	S126	-5535	1635	247	C36	-6115	-1116.5				
214	S127	-5625	1635	248	C35	-6115	-1206.5				
215	S128	-5715	1635	249	C34	-6115	-1296.5				
216	Dummy	-5935	1635	250	C33	-6115	-1386.5				
217	Dummy	-6025	1635								
218	Dummy	-6115	1635								
219	C64	-6115	1403.5								
220	C63	-6115	1313.5								
221	C62	-6115	1223.5								
222	C61	-6115	1133.5								
223	C60	-6115	1043.5								
224	C59	-6115	953.5								
225	C58	-6115	863.5								
226	C57	-6115	773.5								
227	C56	-6115	683.5								
228	C55	-6115	593.5								
229	C54	-6115	503.5								
230	C53	-6115	413.5								
231	C52	-6115	323.5								
232	C51	-6115	233.5								
233	C50	-6115	143.5								
234	C49	-6115	53.5								

PAD DESCRIPTION

POWER SUPPLY

Name	I/O Type	Description
VDD	Supply	Power supply. connect to MPU power supply pin VCC
VSS	Supply	Ground
VEE	Supply	For LCD driver circuit
V0, V1 V2, V3 V4, V5	Supply	LCD driver supply voltages The voltages must satisfy the following relationship $VDD \ge V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge V5 \ge VEE$

OSCILLATOR

Name	I/O Type	Description
C	0	RC oscillator - Internal clock S6B0708 R CR Cf C
R	0	- External clock S6B0708 R CR C Open External Open clock
FS	I	Frequency selection When the frame frequency is 70Hz, the oscillation frequency should be as the following table. FS Oscillation Frequency H Fosc = 430kHz L Fosc = 215kHz

MICROPROCESSOR INTERFACE

Name	I/O Type	Description								
CS1B	I	rst chip(S1 ~ S64) select input. ata input/output is enabled via E, RS, RW, and DB[0:7]when CS1B = Low.								
CS2B	I	Second chip(S65 ~ S128) select input. Data input/output is enabled via E, RS, RW, and DB[0:7] when CS2B = Low.								
RS	I	Register selection								
		RS Description								
		H The data in DB[7:0] is display data.								
		L The data in DB[7:0] is control data.								
RW	1	Read or write								
		RW Description								
		H Data appears at DB[7:0] when E = high.								
		L Display data DB[7:0] can be written at falling edge of								
Е		Enable signal.								
		E Description								
		H Read data in DB[7:0] appears while E = high.								
		L Display data DB[7:0] is latched at falling edge of E.								
DB0 - DB7	I/O	Data bus [0 - 7] Bi-directional data bus								

64COM/128SEG GRAPHICDRIVER FOR DOT MATRIX LCD S6B0708

RESET

Name	I/O Type	Description
RESETB	I	Reset input
		Chip is initialized when RESETB is low

LCD DRIVER OUTPUTS

Name	I/O Type	Description							
C1 - C64	0	LCD driver common output							
S1 - S128	0	CD driver segment output							
PCLK2	I	ase of internal shift clock (CLK2)							
		PCLK2 Phase of Internal Shift Clock (CLK2)							
		H Data shift at the rising edge of CLK2							
		L Data shift at the falling edge of CLK2							
ADC		Address control signal of Y address counter.							
		ADC Segment Output Direction							
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
		$ L \hspace{0.5cm} \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
SHL	I	Selection of data shift direction							
		SHL Data Shift Direction							
		$ H \hspace{0.5cm} \text{C1} \rightarrow \text{C2} \rightarrow \hspace{0.1cm} \text{C3} \hspace{0.1cm} \hspace{0.1cm} \text{C62} \rightarrow \hspace{0.1cm} \text{C63} \rightarrow \hspace{0.1cm} \text{C64} $							

FUNCTIONAL DESCRIPTON

CHIP SELECT INPUT

The S6B0708 has two chip select pins, CS1B and CS2B. It can interface with a microprocessor when these pins (CS1B or CS2B) are low. When both of these pins are set to high, DB0 to DB7 are at high impedance and RS, RW, and E inputs are disabled. CS1B pin controls the display status of S1 to S64, and CS2B does that of S65 to S128. When CS1B and CS2B are low at the same time, it is impossible to execute read operation. Therefore one of CS1B or CS2B should be set to low ((CS1B = H & CS2B = L) or (CS1B = L & CS2B = H)) in read operation. The RESETB signal is entered independent of the status of chip select.

Table 2. Relationship Between Chip Select Pins and Read/Write Operation

CS1B	CS2B	Read C	peration	Write Operation		
		CS1	CS2	CS1	CS2	
Н	Н	Х	Х	Х	Х	
L	Н	0	Х	0	X	
Н	L	Х	0	Х	0	
L	L	-	-	0	0	

^{(-:} Not recommended, O: Operation, X: No operation)

MICROPROCESSOR INTERFACE

S6B0708 transfers 8-bit parallel in either direction between the controlling microprocessor and the S6B0708 through the 8-bit I/O buffer (DB0 to DB7). RS, RW and E identify the type of parallel data transfer to be made as shown below in Table 3.

Table 3. Microprocessor Interface

RS	RW	Description
Н	Н	Read display data
Н	L	Write display data
L	Н	Status read
L	L	Write to internal register (instruction)

BUSY FLAG

Busy flag indicates whether S6B0708 is operating or not. When it is high, S6B0708 is in internal operation. When it is low, S6B0708 can accept the data or instruction. DB7 indicates busy flag of the S6B0708.

Figure 1. Busy Timing

DISPLAY TIMING GENERATOR CIRCUIT

This section explains how the timing generation circuit operates.

- · Signal generation to display start line counter and display data latch circuit.
- The display clock (CLK2) generates a clock to the line counter. The display start line address
 of the display RAM is synchronized with the display clock. 128-bit display data is latched by
 the display data latch circuit in synchronization with the display clock and output to the
 segment LCD drive output pin.
- · LCD AC signal (M) generation.

DISPLAY DATA RAM (DDRAM)

The display data RAM stores pixel data for the LCD. It is a 128-column x 64-row addressable array as shown in Table 4. The 64 rows are divided into 8 pages of 8 lines. Data is read from or written to the 8 lines of each page directly through DB0 to DB7. The microprocessor reads data from and writes data to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written to RAM at the same time as the data is being displayed, without causing a LCD flicker.

Figure 2. RAM to LCD Panel Data Transfer

64COM/128SEG GRAPHICDRIVER FOR DOT MATRIX LCD S6B0708

Table 4. Display Data RAM

Page Address	Line Address		Segm (S	nent (Outpu		Data Bus		Seg	ment S6-S1	Outpu (28)	ıt	Line Address	Page Addres
		S 1	S2	•••	S63	S64		S65	S66		S127	S128		s
000	00	<u> </u>			-		DB0	000	-		0.2.	0.20	00	000
000	01						DB0 DB1						01	000
	02						DB2						02	
	03						DB3						03	
	04						DB4						04	
	05						DB5						05	
	06						DB6						06	
	07						DB7						07	
001	08						DB0						08	001
	09						DB1						09	
	10						DB2						10	
	11						DB3						11	
	12						DB4						12	
	13						DB5						13	
	14						DB6						14	
	15						DB7						15	
010	16						DB0						16	010
	17						DB1						17	
	18 19						DB2 DB3						18 19	
	20						DB3 DB4						20	
	21						DB4 DB5						21	
	22						DB6						22	
	23						DB7						23	
011	24						DB0						24	011
	25						DB1						25	
	26						DB2						26	
	27						DB3						27	
	28						DB4						28	
	29						DB5						29	
	30						DB6						30	
	31						DB7						31	
100	32						DB0						32	100
	33						DB1						33	
	34						DB2						34	
	35						DB3						35	
	36						DB4						36	
	37						DB5						37	
	38						DB6						38	
	39						DB7						39	

Table 4. Display Data RAM (Continued)

Page Address	Line Address		_	nent (81-86	-		Data Bus			ment S6-S1	Output 28)		Line Address	Page Address
		S1	S2	•••	S63	S64	DB0	S65	S66		S127	S128		
101	40						DB0						40	101
	41						DB1						41	
	42						DB2						42	
	43						DB3						43	
	44						DB4						44	
	45						DB5						45	
	46						DB6						46	
	47						DB7						47	
110	48						DB0						48	110
	49						DB1						49	
	50						DB2						50	
	51						DB3						51	
	52						DB4						52	
	53						DB5						53	
	54						DB6						54	
	55						DB7						55	
111	56						DB0						56	111
	57						DB1						57	
	58						DB2						58	
	59						DB3						59	
	60						DB4						60	
	61						DB5						61	
	62						DB6						62	
	63						DB7						63	
ADC	1	0	1		62	63		0	1		62	63	1	ADC
	0	63	62		1	0		63	62		1	0	0	
	Column Address						Column Address							
	Chip Select (CS1B)								Chip Select (CS2B)					

Figure 3. Write Timing

Figure 4. Read Timing

DATA TRANSFER

To match the timing of the display data RAM and registering to that of the controlling microprocessor, S6B0708 uses an internal data bus and bus buffer. When the microprocessor reads the contents of display data RAM, the data for the initial read cycle is first stored in the bus buffer (dummy read cycle). On the next read cycle, the data is read from the bus buffer onto the microprocessor bus. At the same time, the next block of data is transferred from RAM to the bus buffer. Otherwise, when the microprocessor write data to display data RAM, the data is written to RAM after the falling edge of "E". Therefore, it is necessary to check busy flag to write or read the next data. (refer to Figure 3, 4)

PAGE ADDRESS REGISTER

The 3-bit page address register provides the page address to display data RAM (refer to Table 4). The micro-processor issues set page address instruction to change the page and to access another page.

COLUMN ADDRESS COUNTER

The column address counter is a 6-bit pre-settable counter that provides column address to display data RAM (refer to Table 4). It is incremented by 1 automatically after execution of each read/write data instruction. The column address counter loops the values 0 to 127, and it is independent of page address register. The ADC pin is issued to change the relationship between RAM column address and display segment output.

DISPLAY START LINE ÆGISTER

The display start line register stores the line address of display data RAM that corresponds to the first (normally the top) line (COM1) of liquid crystal display (LCD) panel. When displaying contents in display data RAM on the LCD panel, 6-bit data (DB[5:0]) of the set display start line is latched in display start line register. latched data are transferred to the line address counter just before COM1 is high, pre-setting the line address counter. The line counter is then incremented on the display latch clock signal once for every display line. It is used for vertical scrolling of the liquid crystal display screen.

LCD DRIVER

LCD driver circuit has 192 outputs of 128 segment outputs, 64 common outputs for LCD driving. Each common output has a shift register. LCD driving output voltage is determined by the combination of display data and internal AC signal.

Display Data	Common Output	Segment Output
0	V1	V2
	V4	V3
1	V5	V0
	V0	V5
Display Off	-	V2 or V3

RESET CIRCUIT

Reset function can initialize system by setting RESETB terminal at low level. When RESETB becomes low, following procedure occurs.

Display start line: 0 (first)

Display on/off: Off

While RESETB is in low level, no instruction except status read can be accepted. Reset status appears at DB4. Refers to read status of "instruction description"

The conditions of power supply at initial power up are shown in table 5.

Table 5. Power supply initial conditions.

Item	Symbol	Min	Тур	Max	Unit
Reset time	tRESETB	1.0	-	-	S
Rise time	tr	-	-	200	ns

Figure 5. Reset timing

INSTRUCTION DESCRIPTION

Table 6. Instruction Table

Instruction	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Function
Read display data	1	1				Read	Data				Reads data (DB[0:7]) from display data RAM to the data bus.
Write display data	1	0				Write Data					Writes data(DB[0:7]) into display data RAM. After writing instruction, column address is incremented by1 automatically.
Status read	0	1	busy	0	on/ off	reset	0	0	0	0	Reads status BUSY 0: Ready 1: In operation ON/OFF 0: Display ON 1: Display OFF RESET 0: Normal 1: Reset
Set column address	0	0	0	1		Colun	nn Add	dress ((0-63)		Sets the column address at the column address counter
Set display start line	0	0	1	1		Displa	y Star	t Line (0-63)			Indicates the display data RAM displayed at the top of the screen.
Set page address	0	0	1	0	1	1	1	Page (0-7)		.7)	Sets the page address at the Page address register.
Display on/off	0	0	0	0	1	1	1	1 1 0/1		0/1	Controls the display on or off. Internal status and display RAM data is not affected. 0: OFF 1: ON

DETAILED INSTRUCTIONDESCRIPTIONS

Read Display Data

Reads 8-bit data in the display data RAM area specified by column address and page address. As the column address is incremented by 1 automatically after each read operation, the microprocessor can continue to read data of multiple words.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1				Read	Data			

Write Display Data

Writes 8-bit data to the display data RAM

As the column address is incremented by 1 automatically after each write operation, the microprocessor can continue to write data of multiple words.

ĺ	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Ī	1	0				Write	Data			

Read Status

Indicates the internal status conditions of the device to the microprocessor.

R	S	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	1	Busy	0	On/Off	RESET	0	0	0	0

Flag	Description
Busy	The device is busy due to internal operation or reset. Any instruction is rejected until BUSY goes low.
On/Off	Indicates whether the display is on or off. When low, the display is on. When high, the display is off. This is the opposite of Display ON/OFF instruction.
RESET	Indicates the initialization is in progress by RESETB signal. When low, the chip is in active. When high, the chip is being reset.

Set Page Address

Sets the page address of display RAM from the microprocessor into the page address register. Along with column address register, Page address register assigns the address of the display RAM to be written to or read from display data. Changing the address doesn't affect the display status.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	1	1	X2	X1	X0

X2	X1	X0	Page
0	0	0	0
0	0	1	1
:	:	:	:
1	1	1	7

Set Column Address

Sets the column address of display RAM from the microprocessor into the column address register. When the microprocessor reads or writes display data to or from display RAM, the address are automatically incremented.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	Y5	Y4	Y3	Y2	Y1	Y0

Y5	Y4	Y3	Y2	Y1	Y0	Column Address
0	0	0	0	0	0	0
0	0	0	0	0	1	1
:	:	:	:	:	:	:
1	1	1	1	1	0	62
1	1	1	1	1	1	63

64COM/128SEG GRAPHICDRIVER FOR DOT MATRIX LCD S6B0708

Set Display Start Line

Sets the line address of display RAM to determine the display start line. The display data on the specified line of the display RAM is displayed at the top row COM1 of LCD panel. It is followed by the higher number of lines in ascending order corresponding to the determined duty cycle. When this instruction changes the display start line address, the LCD panel can be scrolled.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	Z5	Z4	Z3	Z2	Z1	Z0

Z 5	Z4	Z 3	Z2	Z 1	Z0	Line Address
0	0	0	0	0	0	0
0	0	0	0	0	1	1
:	:	:	:	:	:	:
1	1	1	1	1	0	62
1	1	1	1	1	1	63

Display ON / OFF

Turns the display ON or OFF

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	1	1	1	1	D0

D0 = 1: Display ON D0 = 0: Display OFF

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATNGS

Parameter	Symbol	Rating	Unit	Note
Operating voltage	V_{DD}	-0.3 - +7.0	V	(1)
Supply voltage	V _{EE}	VDD-19.0 - VDD+0.3		(4)
Driver supply voltage	V _B	-0.3 - VDD+0.3		(1), (3)
	V _{LCD}	VEE-0.3 - VDD+0.3		(2)

NOTES:

- 1. Based on Vss = 0V
- 2. VLCD = VDD VEE
- 3. Applies to SHL, FS, PCLK2, CR, RESETB, ADC, CS1B, CS2B, E, RW, RS and DB0 DB7.
- 4. Voltage level VDD \geq V0 \geq V1 \geq V2 \geq V3 \geq V4 \geq V5 \geq VEE

TEMPERATURE CHARACTERISTICS

Parameter	Symbol	Rating	Unit	Note
Operating temperature	Topr	-30 - +85	°C	
Storage temperature	Tstg	-55 - +125		

64COM/128SEG GRAPHICDRIVER FOR DOT MATRIX LCD S6B0708

ELECTRICAL CHARACTERSTICS

DC Characteristic \sqrt[4]{DD} = 4.5 \text{ to } 5.5\text{V}, Ta = -30 to +85°C)

Item		Symbol	Condition	Min	Тур	Max	Unit	Note
Operating voltage		V_{DD}	-	4.5	-	5.5	V	
Input high voltage		V _{IH1}	-	0.7VDD	-	VDD		(1)
		V _{IH2}	-	2.0	-	VDD		(2)
Input low voltage		V _{IL1}	-	0	-	0.3VDD		(1)
		V _{IL2}	-	0	-	0.8		(2)
Output high voltage		V _{OH}	IOH = -200uA	2.4	-	-		(3)
Output low voltage		V _{OL}	IOL = 1.6mA	-	-	0.4		
Input leakage current	Input leakage current		VIN = VSS - VDD	-1.0	-	+1.0	μΑ	(4)
Tri-state leakage curre	ent	I _{TSL}	VIN = VSS - VDD	-5.0	-	+5.0		(5)
Driver input leakage co	urrent	I _{DLKG}	VIN = VEE - VDD	-10	-	+10		(6)
Operating current		I _{DD1}	During display	-	-	0.8	mA	(7)
		I _{DD2}	During access	-	-	1.0		(8)
On resistance	On resistance COM		ILOAD = \pm 0.1mA	-	-	1.5	kΩ	(9)
SEG		R _{ONS}		-	-	7.5		(10)
Oscillation frequency		fosc	Ta = 25°C, VDD = 5V	315	450	585	kHz	
			$Rf = 47k\Omega \pm 2\%$					
			Cf = 20pF ± 5%					

NOTES:

- 1. FS, CR, ADC, SHL, PCLK2, RESETB
- CS1B, CS2B, E, RW, RS, DB0 DB7
 DB0 DB7
- 4. Excepted DB0 DB7
- 5. DB0 DB7 at high impedance
- 6. V0, V1, V2, V3, V4, V5
- 7. C = 20pF, $R = 47k\Omega$, fose = 450kHz, DB0 DB7 = VDD, output = No load
- 8. External clock = 430kHz, RAM access cycle = 1MHz
- 9. V0 = 5V, V1 = 3.2V, V2 = 1.4V, V3 = -8.4V, V4 = -10.2V, V5 = -12V, C1 C64
- 10. V0 = 5V, V1 = 3.2V, V2 = 1.4V, V3 = -8.4V, V4 = -10.2V, V5 = -12V, S1 S128

AC Characteristic $\sqrt[4]{DD} = 4.5$ to 5.5V, Ta = -30 to +85°C)

Mode	Item	Symbol	Min	Тур	Max	Unit
Write mode	E cycle time	t _{cyc}	1000	-	-	ns
(refer to figure 6)	E rise/fall time	t _r , t _f	-	-	25	
	E pulse width high	t _{PWH}	450	-	-	
	RW and RS setup time	t _{AS}	140	-	-	
	RW and RS hold time	t _{AH}	10	-	-	
	Data setup time	t _{DS}	200	-	-	
	Data hold time	t _{DH}	10	-	-	
Read mode	E cycle time	t _{cyc}	1000	-	-	ns
(refer to figure 7)	E rise/fall time	t _r , t _f	-	-	25	
	E pulse width high	t _{PWH}	450	-	-	
	RW and RS setup time	t _{AS}	140	-	-	
	RW and RS hold time	t _{AH}	10	-	-	
	Data setup time	t _{DS}		-	320	
	Data hold time	t _{DH}	20	-	-	

Figure 6. Write Mode Timing Diagram

64COM/128SEG GRAPHICDRIVER FOR DOT MATRIX LCD S6B0708

Figure 7. Read Mode Timing Diagram

APPLICATION DIAGRAM1 (ADC = H, SHL = H)

APPLICATION DIAGRAM2 (ADC = H, SHL = H)

Note: When ADC=L, connects chip select pins (CS1B, CS2B) as follows.

- CS1B (MPU) -> CS2B (S6B0708)
- CS2B (MPU) -> CS1B (S6B0708)

APPLICATION DIAGRAM3 (ADC = H, SHL = H)

Note: When ADC=L, connects chip select pins (CS1B, CS2B) as follows.

- CS1B (MPU) -> CS2B (S6B0708)
- CS2B (MPU) -> CS1B (S6B0708)

APPLICATION DIAGRAM4 (ADC = H, SHL = H)

