DM 2 LM 121 PCME14.2

à rendre le lundi 28 Novembre.

1. Trouver
$$u, v$$
 et w tels que $\begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} u & 3 & 0 \\ v & -1 & -1 \\ w & 1 & 2 \end{pmatrix} = \begin{pmatrix} -3 & 5 & 3 \\ -2 & 8 & 5 \\ -5 & 6 & 5 \end{pmatrix}$

2. Soit
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & -2 \\ 3 & -2 & 1 \end{pmatrix}$$
.

- (a) Calculer Det(A).
- (b) A est-elle inversible? Si oui, calculer A^{-1} .
- (c) Résoudre le système

$$\begin{array}{ccccc}
x & -y & +2z & = & 3 \\
2x & +y & -2z & = & 6 \\
3x & -2y & +z & = & 6
\end{array}$$

3. Résoudre le système

$$x +2y +z = 0$$

$$2x -y +z = 4$$

$$3x +y +2z = 4$$

$$5x +3z = 8$$

4. (a) Soit $M=\begin{pmatrix} 3 & -30 \\ 0 & 2 \end{pmatrix}$. Pour $n\in\mathbb{N}^*$, on note $M^n=M.M\dots M$ (n fois).

Trouver une formule simple pour M^n .

(indication :
$$3^n + 2.3^{n-1} + 2^2.3^{n-2} + \ldots + 2^{n-1}.3 + 2^n = \sum_{i=0}^n 3^{n-i} 2^i = 3^n (\sum_{i=0}^n (\frac{2}{3})^i)$$
 et reconnaître alors une série géométrique).

- (b) On considère une population de poules et de renards. Au temps $n \in \mathbb{N}$ on a p_n poules et r_n renards. Leur population évolue ainsi :
 - (1) Au temps n+1 on a trois fois plus de poules qu'au temps n , mais entre temps chaque renard a mangé 30 poules.
 - (2) Au temps n+1 on a deux fois plus de renards qu'au temps n.

Cela se traduit par les relations :

(1)
$$p_{n+1} = 3p_n - 30r_n$$

(2)
$$r_{n+1} = 2r_n$$

(1) $p_{n+1} = 3p_n - 30r_n$ (2) $r_{n+1} = 2r_n$ Initialement il y a 59 poules et 2 renards ($p_0 = 59$ et $r_0 = 2$). Question: existe-t-il un moment où les renards auront mangé toutes les poules? (dit autrement, existe-t-il un $n \in \mathbb{N}$ tel que $p_n \leq 0$).

indication : considérer la multiplication matricielle $M. \begin{pmatrix} p_n \\ r_n \end{pmatrix}$ et la question présédente. question précédente.

Pour info:

n=	p_n	r_n
0	59	2
1	117	4
2	231	8
3	453	16
4	879	32