Quantum Radar for Battleship Game

Álvaro NodarTechnical Lead
Global Data Quantum

Ángel RodríguezPhD Student
Material Physics Center

Benjamin Tirado PhD Student Centro de Física de Materiales (CSIC – UPV/EHU)

Raúl Guerrero
Researcher in Quantum Tech.
Tecnalia: Research &
Innovation

Joaquim Jornet-Somoza
Scientific Computing Specialist
University of the Basque
Country

Battleship game

The game of **Battleship** is a two-player strategy game where each player secretly arranges a fleet of ships on a grid (typically 10×10 in size)

Ships vary in length and are placed either horizontally or vertically, without overlapping.

Players take turns calling out grid coordinates (for example, "B7") to target their opponent's hidden ships. The opponent responds with "hit" if the chosen square contains part of a ship or "miss" if it does not.

Elitzur-Vaidman interaction-free bomb-tester

Elitzur-Vaidman bomb tester

First proposed in 1993, the Elitzur–Vaidman bomb tester is a landmark thought experiment—later confirmed experimentally—that demonstrates how core principles of quantum physics, such as superposition and entanglement, can be harnessed to perform interaction-free measurements.

Century of Quantum

Mach-Zehnder interferometer

https://lab.quantumflytrap.com

Elitzur-Vaidman bomb tester

First proposed in 1993, the Elitzur–Vaidman bomb tester is a landmark thought experiment—later confirmed experimentally—that demonstrates how core principles of quantum physics, such as superposition and entanglement, can be harnessed to perform interaction-free measurements.

Mach-Zehnder interferometer

Place a bomb = collapse superposition

First proposed in 1993, the Elitzur–Vaidman bomb tester is a landmark thought experiment—later confirmed experimentally—that demonstrates how core principles of quantum physics, such as superposition and entanglement, can be harnessed to perform interaction-free measurements.

Century of Quantum

There's a chance of detecting a bomb without hittingit

Elitzur Vaidman at Qiskit

Mach-Zehnder interferometer

Bomb placement

QISKIT

E.V. score = Detection (25%) / Explosion (50%) = 50%

Original experiment

Upgrade by changing angle

Let's play battleship

###