ROBOTICS

Lecture notes

Simone Carletti

A.Y. 2023/2024

Indice

1	Con	ntrollo
	1.1	Attuatori elettrici
		1.1.1 Derivazione modello
		1.1.2 Amplificatore di potenza
		1.1.3 Torque generator
		1.1.4 Velocity generator
		1.1.5 Torque generator vs. Velocity generator
	1.2	Trasmissions aka motoriduttori
	1.3	Controllo decentralizzato a giunti indipendenti
		Decentralized Joint Space Control
		1.3.1 Controllo del singolo giunto
		1.3.2 Struttura del controllo
		1.3.3 Attuatori saturanti
		1.3.4 Feedforward compensation
		1.3.5 Computed torque feedworward control
	1.4	Controllo centralizzato

Capitolo 1

Controllo

Il problema del controllo del moto di un manipolatore consiste nella **determinazione** dell'andamento temporale delle coppie generalizzate (**generalized torque**), che gli attuatori devono applicare ai giunti **affinché venga eseguito il compito assegnato**, rispettando specifiche sul transitorio e sul comportamento in regime permanente.

Lo schema di controllo può essere sviluppato:

- 1. Nello spazio dei giunti
- 2. Nello spazio operazionale

tenendo conto che la descrizione del compito è solitamente elaborata nello spazio operazionale, mentre le azioni di controllo esercitate dagli attuatori sono definite nello spazio dei giunti.

Joint space control

Figura 1.1: Schema generale di joint space control

L'azione di controllo fa sì che q(t) insegua il vettore $q_d(t)$ della traiettoria desiderata ai giunti, ricavato dalla cinematica inversa (che è comodamente disaccoppiata dal controllo).

Svantaggio: Non si ha nè un feedback, nè un controllo diretto sulla variabile dello spazio operazionale $\mathbf{p} \implies$ dobbiamo avere una cinematica inversa perfetta (ma tolleranze di costruzione, elasticità ai giunti, giochi nei motoriduttori potrebbero causare imprecisioni nella posa della punta operativa).

Operational space control

Qui cerchiamo di fare inseguire un vettore \mathbf{p}_d definito nello spazio operazionale. Con questa tecnica introduciamo una **complessità maggiore**, visto che la cinematica inversa è ora inclusa

Figura 1.2: Schema generale di operational space control

nel controllore. Il **vantaggio** però è quello di poter operare direttamente nello spazio operazionale.

Anche se in primo luogo potrebbe non sembrare un vantaggio (la "misura" di \mathbf{p} è spesso ricavata indirettamente da misure ai giunti per mezzo della cinematica diretta \implies sembra come se si "ritorni" allo stesso svantaggio di imprecisione della cinematica inversa che c'era nel controllo sui giunti): questo controllo è però utile (ad esempio) come base per il controllo dell'interazione con l'ambiente.

Cosa vedremo

Vedremo che la presenza di **motoriduttori** con elevato rapporto di trasformazione tende a **linearizzare la dinamica** del manipolatore e quindi a disaccoppiare i giunti, grazie alla riduzione degli effetti non lineari \implies si giustifica in tal caso l'adozione di una strategia di **controllo decentralizzato**, a giunti indipendenti.

Questo però introduce uno svantaggio: i motoriduttori introducono possibili fenomeni di elasticità, gioco ed attriti non lineari, talora più "fastidiosi" degli effetti di accoppiamento fra i giunti. L'utilizzo di motori ad azione diretta elimina questi problemi ma mantiene rilevanti gli effetti non lineari e di accoppiamento fra i giunti, che non possono essere trascurati o considerati come disturbi \implies diventa opportuno in tal caso utilizzare una strategia di controllo centralizzato, che tenga conto della dinamica non lineare del manipolatore. Svantaggio: la legge di controllo è necessariamente non lineare e computazionalmente pesante.

1.1 Attuatori elettrici

Prima di introdurre i sistemi di controllo, iniziamo parlando di come poter modellare gli attuatori elettrici che andremmo ad utilizzare.

Gli attuatori maggiormente impiegati sono motori elettrici in corrente continua comandati in armatura, corredati di un amplificatore di potenza e di un eventuale anello di retroazione della corrente di armatura: a seconda delle caratteristiche del regolatore inserito, il comportamento dell'attuatore può essere assimilato:

- Ad un generatore di velocità controllata (velocity controlled)
- Ad un generatore di coppia controllata (torque controlled)

In fig. 1.3 possiamo vedere il modello del motore.

Dove:

• ω_m e θ_m sono la velocità e la posizione angolare dell'albero motore

Figura 1.3: Modello del motorore comandato in armatura

- $\bullet\ V_a$ e I_a sono la tensione e la corrente del circuito di armatura
- τ_m è la coppia motrice, mentre τ_r è la coppia dovuta al carico

1.1.1 Derivazione modello

Partendo dal modello illustrato in fig. 1.4, possiamo derivare il circuito mostrato in fig. 1.3.

Figura 1.4: Modello circuitale del motore

Il bilancio elettrico dell'armatura è definito da:

$$L\frac{dI_a}{dt} + RI_a = V_a - V_b \quad \stackrel{\mathcal{L}}{\Longrightarrow} \quad \begin{array}{c} V_a = (R_a + sL_a)I_a + V_g \\ V_g = K_\omega \omega_m \end{array}$$
 (1.1)

Dove V_g è la **back-emf**, ovvero la ogni talvolta che un conduttore si muove in un campo magnetico, ai suoi terminali viene generata una tensione V_b proporzionale alla velocità del conduttore nel campo (cioè proporzionale a ω_m). Questa tensione, chiamata back-emf, tenderà ad opporsi al flusso di corrente nel conduttore.

Mentre il bilancio meccanico è definito da:

$$\tau_m = (s\Gamma_m + \beta_m)\omega_m + \tau_r \tag{1.2}$$

$$\tau_m = K_i \Gamma_a \tag{1.3}$$

Dove Γ_m e β_m sono rispettivamente il momento d'inerzia e il coefficiente di attrito viscoso dell'albero motore.

Questo deriva da:

1. Ricordando da fisica 1: $F=ma \iff \tau=I\alpha$ dove I, α sono il momento di inerzia e l'accellerazione angolare

- 2. Considerando il motore: $\tau_m = \Gamma_m \dot{\omega}_m$
- 3. Ora aggiungiamo l'attrito viscoso (che come ricordiamo è proporzionale alla velocità): $\tau_m \beta_m \omega_m = \Gamma_m \dot{\omega}_m$
- 4. Passiamo a Laplace: $\tau_m = \beta_m \omega_m + \Gamma_m s \omega_m \implies \tau_m = (s \Gamma_m + \beta_m) \omega_m$

1.1.2 Amplificatore di potenza

Visto che solitamente V_a ha valori elevati, si tende ad utilizzare un **amplificatore di potenza** per poter comandare il motore con una tensione $V_c \ll V_a$: il nuovo circuito è illustrato in fig. 1.5.

 G_v è il guadagno di tensione, mentre T_v è una costante di tempo trascurabile (poiché nell'ordine di 10-100 kHz), di conseguenza il blocco dell'amplificatore di potenza può essere assimilato al solo guadagno G_v .

Figura 1.5: Modello motore con amplificatore di potenza

1.1.3 Torque generator

Possiamo ora completare il circuito aggiungendo una retroazione sulla corrente I_a e un compensatore che utilizzi tale feedback. Questo è illustrato in fig. 1.6.

Figura 1.6: Circuito motore in modalità torque generator

In questa modalità, come accennato, il motore si comporta come un torque-controlled generator. Questo perchè, con $K_i \neq 0$, se si sceglie $K_i \gg R_a$ otteniamo il seguente steady-state:

$$\tau_m \approx \frac{K_t}{K_i} (V_c^{'} - \frac{K_\omega}{G_v} \omega_m) \approx \frac{K_t}{K_i} V_c^{'}$$

(supponendo $G_v \gg 1 \implies \frac{K_\omega}{G_v} \to 0$). Questo significa che possiamo impostare il torque del motore giocando sul voltaggio di controllo V_c' , che sarà dipendente solo da quest'ultimo (e non, e.g., dalla velocità angolare).

Velocity generator 1.1.4

Se invece rimuoviamo il feedback di corrente, ovvero $K_i = 0$, possiamo vedere come sia possibile impostare a piacimento la velocità del motore (invece della coppia come in precedenza).

Figura 1.7: Circuito motore in modalità velocity generator

Analizzando questo caso, ricordandoci che il coefficiente di atttrito viscoso meccanico β_m è trascurabile rispetto al coefficiente di attrito viscoso elettrico:

$$\beta_m \ll \frac{K_\omega K_t}{R_a}$$

Supponendo $C_i(s) = 1$ e $\tau_r = 0$, otteniamo:

$$\omega_m \approx \frac{G_v}{K_\omega} V_c'$$

Ovvero, in questo caso, possiamo impostare la velocità angolare a piacere.

1.1.5Torque generator vs. Velocity generator

Quando ci conviene utilizzare uno invece che l'altro? In seguito vedremo che in tutte le applicazioni in cui è necessario ottenere un'elevata reiezione di coppie di disturbo, come nel caso del controllo decentralizzato a giunti indipendenti, è opportuno NON inserire l'anello di controllo in corrente ed utilizzare i motori come generatori di velocità.

Al contrario, in caso di strategie di controllo centralizzate, è consigliabile introdurre l'anello di retroazione in corrente ed utilizzare i motori come generatori di coppie (opportuni accorgimenti vengono adottati in entrambi i casi per limitare la corrente ed evitare danni ai dispositivi).

E' possibile vedere questa differenza calcolando le relazioni input/output fra ω_m e V_c' , τ_r . Da queste equazioni si può vedere che senza feedback di corrente (i.e. velocity-controlled generator) si ha una reiezione migliore della coppia di disturbo τ_r : i coefficienti legati a τ_r in questo caso sono molto minori del caso torque-controlled (\Longrightarrow riduciamo di più gli effetti dei disturbi).

Semplificando:

$$\omega_m^{\text{velocity}} = \alpha_{\text{velocity}} V_c' + \lambda_{\text{velocity}} \tau_r$$

$$\omega_m^{\text{torque}} = \alpha_{\text{torque}} V_c' + \lambda_{\text{torque}} \tau_r$$
(1.4)

$$\omega_m^{\text{torque}} = \alpha_{\text{torque}} V_c' + \lambda_{\text{torque}} \tau_r \tag{1.5}$$

se il primo è per il caso velocity-controlled, mentre il secondo per il caso torque-controlled abbiamo che $\lambda_{\text{velocity}} \ll \lambda_{\text{torque}}$.

1.2 Trasmissions aka motoriduttori

Vediamo ora in dettaglio gli effetti che i motoriduttori utilizzati nel motore hanno sul sistema.

Figura 1.8: Motoriduttore

In generale, se indichiamo con k_r il rapporto di trasformazione (gear-ratio) di un motoriduttore ideale, abbiamo che:

$$\theta_m = k_r \theta$$

ove θ_m è la posizione angolare dell'albero motore e θ è la posizione angolare sul secondario (giunto). Dove k_r è definito come il rapporto fra i due gears:

$$k_r = \frac{r}{r_m} = \frac{\theta_m}{\theta} = \frac{\omega_m}{\omega}$$

Considerando attriti viscosi e coppie, possiamo scrivere le equazioni di equilibrio:

$$\tau_{m} = \Gamma_{m}\dot{\omega}_{m} + \beta_{m}\omega_{m} + fr_{m}$$
$$fr = \Gamma\dot{\omega} + \beta_{\sigma}\omega + \tau_{d}$$

(La forza f scambiata tra i due ingranaggi genera una coppia di reazione fr_m per il moto all'asse del motore ed una coppia motrice fr per il moto di rotazione del carico). Dopo alcuni passaggi si ottiene:

$$\tau_m = \left(\Gamma_m + \frac{\Gamma}{k_r^2}\right)\dot{\omega}_n + \left(\beta_m + \frac{\beta_g}{k_r^2}\right)\omega_m + \frac{\tau_d}{k_r}$$

Notiamo che qualunque coppia applicata sul secondario è riportata sul primario ridotta del fattore k_r (e viceversa).

Poiché $\mathbf{k_r}$ è elevato, l'effetto di coppie di disturbo agenti sul secondario risulta fortemente ridotto sul primario. Se tali coppie dipendono non-linearmente da θ , allora la presenza di un alto fattore di riduzione tende a linearizzare il sistema.

Nel caso vettoriale (molteplici giunti), possiamo riscrivere alcune utili relazioni:

$$\mathbf{q}_m = \mathbf{K}_r \mathbf{q} \tag{1.6}$$

$$\boldsymbol{\tau}_m = \mathbf{K}_r^{-1} \boldsymbol{\tau} \tag{1.7}$$

Dove quest'ultima deriva dal fatto che con l'aumentare del *gear-ratio* si diminiusce la velocità angolare ma si aumenta il torque (e viceversa).

1.3 Controllo decentralizzato a giunti indipendenti

Decentralized Joint Space Control

Nel controllo decentralizzato a giunti indipendenti **ogni** singolo **giunto** attuato è considerato come un **sottosistema SISO disaccoppiato e indipendente**, descritto da un modello dinamico approssimato. Gli **effetti di accoppiamento** non-lineari presenti nella dinamica propria del robot sono **considerati come disturbi**.

Lo schema di controllo complessivo è formato da n controllori (uno per ogni giunto), basati su reti di compensazione classiche, ciascuno agente in modo indipendente dagli altri. Ricordiamo che il nostro obiettivo è quello di far eseguire una sequenza $\mathbf{q}(t)$ in modo che $\mathbf{q}(t) \to \mathbf{q}_d(t)$.

Figura 1.9: Schema generale del controllo a giunti indipendenti

Come accennato in precedenza, in questo caso andremo a controllare gli attuatori in velocità. È possibile dimostrare (vedi dopo) la seguente assunzione:

$$\mathbf{G}_v \mathbf{v}_c pprox \mathbf{K}_\omega \mathbf{K}_r \dot{\mathbf{q}}$$

L'importante di questa espressione è la proporzionalità fra \mathbf{G}_v e $\dot{\mathbf{q}}$ (velocità), che notiamo essere indipendente dai parametri del manipolatore. Inoltre questa proporzione è tanto più valida quanto velocità/accellerazioni sono piccole (per questa cosa viene in aiuto anche il gearreduction ratio).

Partendo dal modello dinamico $B(q)\ddot{q} + C(q,\dot{q})\dot{q} + F_v\dot{q} + g(q) = \tau$ introduciamo in esso la frizione viscosa elettrica. Ovvero poniamo $F_v = F_{v.\ mech.} + F_{v.\ electr.} = F_{v.\ mech.} + K_r K_t R_a^{-1} K_\omega K_r$. Inoltre dal modello del motore possiamo ottenere una forma per τ : $\tau_m = K_r^{-1}\tau = K_t I_a \implies \tau = K_r K_t I_a$. Sappiamo anche che $V = Ri \implies i = \frac{V}{R}$ e quindi, ricordando che $V_c = G_v V_c'$, otteniamo $I_a = R_a^{-1} G_v V_c$. Unendo il tutto otteniamo $\tau = K_r K_t R_a^{-1} G_v V_c$.

Inserendo tutto nella formula del modello dinamico otteniamo:

$$B(q)\ddot{q}+C(q,\dot{q})\dot{q}+F_{v.\;\;mech.}\dot{q}+g(q)=K_rK_tR_a^{-1}G_vV_c-K_rK_tR_a^{-1}K_\omega K_r$$

Ovvero, raccogliendo i termini a destra (ricordando che originalmente quello era tau):

$$\tau = K_r K_t R_a^{-1} (G_v V_c - K_\omega K_r \dot{q})$$

Quello che otteniamo fra le parentesi è l'espressione ipotizzata inizialmente. (la quasi uguaglianza viene dal fatto che $K_r \gg 1$, R_a molto piccolo, τ non troppo grosso).

Richiamando i capitoli precedenti, ricordiamo che il modello dinamico del manipolatore in assenza di forze scambiate con l'ambiente esterno è espresso da:

$$B(q)\ddot{q} + C(q,\dot{q})\dot{q} + F_v\dot{q} + g(q) = \tau = K_r\tau_m \tag{1.8}$$

L'ultima uguaglianza deriva dall'utilizzo dei motoriduttori (vedi (1.7)).

Per elaborare uno schema di controllo decentralizzato ai giunti è opportuno riportare le equazioni dinamiche a monte del motoriduttore (sul primario, i.e. lato motore):

$$K_r^{-1}B(q)K_r^{-1}\ddot{q}_m + K_r^{-1}C(q,\dot{q})K_r^{-1}\dot{q}_m + K_r^{-1}F_vK_r^{-1}\dot{q} + K_r^{-1}g(q) = au_m$$

(Questa equazione è ottenuta semplicemente applicando (1.6) e (1.7) a (1.8)).

Procediamo con un'osservazione:

 $\mathbf{B}(q)$ può essere decomposta in $\mathbf{B}(q) = \bar{\mathbf{B}} + \Delta \mathbf{B}(q)$, dove $\bar{\mathbf{B}}$ è una matrice diagonale costante e $\Delta \mathbf{B}(q)$ è una matrice configuration-dependent. Possiamo quindi riscrivere l'ultima equazione come:

$$(\bar{B} + \Delta B(q))K_r^{-1}\ddot{q} + C(q,\dot{q})K_r^{-1}\dot{q} + F_vK_r^{-1}\dot{q} + g(q) = K_r\tau_m \\ \downarrow \downarrow \\ K_r^{-1}\bar{B}K_r^{-1}\ddot{q}_m + \underbrace{K_r^{-1}\Delta B(q)K_r^{-1}\ddot{q}_m + K_r^{-1}C(q,\dot{q})K_r^{-1}\dot{q}_m + K_r^{-1}g(q)}_{disturbances} + K_r^{-1}F_vK_r^{-1}\dot{q}_m = \tau_m$$

E, come evidenziato nell'equazione, possiamo considerare gli effetti degli altri giunti su quello corrente come disturbi.

Inoltre, visto che questi termini sono moltiplicati per \mathbf{K}_r^{-1} , più alto è il gear-ratio e meno questi termini influenzeranno il nostro sistema, portandoci così ad un sistema sempre più lineare e disaccoppiato (ovviamente c'è un limite, visto che gear-ratio altissimi non produrrebbero praticamente alcune velocità).

Riassumendo:

$$K_r^{-1}\bar{B}K_r^{-1}\ddot{q}_m + F_m\dot{q}_m + d = \tau_m$$
 (1.9)

Figura 1.10: Circuito relativo a (1.9)

dove

$$d = K_r^{-1} \Delta B(q) K_r^{-1} \ddot{q}_m + K_r^{-1} C(q, \dot{q}) K_r^{-1} \dot{q}_m + K_r^{-1} g(q)$$
(1.10)

 $e F_m \triangleq K_r^{-1} F_v K_r^{-1}$. Quindi $d \downarrow$ quando $K_r \uparrow$.

Detto questo, per la parte lineare possiamo ora far riferimento alla nota teoria del controllo LTI per sistemi SISO.

1.3.1 Controllo del singolo giunto

Partendo da (1.9) possiamo estrarre la relazione per un singolo giunto:

$$\Gamma \ddot{q}_m + \beta \dot{q}_m + d = \tau_m \tag{1.11}$$

dove Γ e β sono rispettivamente il momento di inerzia totale equivalente ed il coefficiente di attrito viscoso totale equivalente, definiti come segue ¹:

$$\Gamma = \frac{1}{\mathbf{K}_{ri}^2} \bar{\mathbf{B}}_{ii} \quad , \quad \beta = \frac{1}{\mathbf{K}_{ri}^2} \mathbf{F}_{mi},$$

Passando a Laplace (con condizioni iniziali nulle):

$$(s\Gamma + \beta)\omega_m(s) = \tau_m(s) - d(s)$$
(1.12)

e considerando $\omega_n(s)$ come uscita possiamo ottenere il circuito di fig. 1.11 (da notare che questo è equivalente al modello mostrato in fig. 1.7 con $C_i(s) = 1$).

Cerchiamo ora di semplificare un po' il modello mostrato in fig. 1.11. Possiamo iniziare supponendo L_a trascurabile, dato che le perdite ad essa associate sono solitamente molto piccole. Da (1.1) possiamo quindi rimuovere L_a e otteniamo:

$$V_a - R_a I_a = K_{\omega} \omega_m$$

 $V_a - R_a I_a = K_\omega \omega_m$ ¹notando che $\mathbf{K}_{r_i}^{-1} \alpha \mathbf{K}_{r_i}^{-1} = (1/\mathbf{K}_{r_i}^2)\alpha$

Figura 1.11: Schema a blocchi del singolo giunto

Allora ricordando che $I_a = \tau_m K_t^{-1}$ e sostituendo τ_m con l'espressione (1.12) otteniamo

$$V_a - R_a K_t^{-1} \tau_m = K_\omega \omega_m \implies V_a - R_a K_t^{-1} ((s\Gamma + \beta)\omega_m + d) = K_\omega \omega_m$$

Riorganizzando i termini, e ignorando il termine relativo a β (visto che è trascurabile rispetto a ω_m), otteniamo:

$$\left(\frac{R_a\Gamma}{K_tK_\omega}s+1\right)\omega_m = \frac{1}{K_\omega}V_a - \frac{R_a}{K_tK_\omega}d$$

Da qui possiamo identificare 2 funzioni di trasferimento (a seconda di cosa consideriamo ingresso):

$$G_{\omega}(s) \triangleq \frac{\omega_m(s)}{V_a(s)} = \frac{1}{K_{\omega}(1+sT)}$$
(1.13)

$$G_d(s) \triangleq \frac{\omega_m(s)}{d(s)} = -\frac{T}{\Gamma(1+sT)} = -K_d G_\omega(s)$$
 (1.14)

dove:

$$T = \frac{R_a \Gamma}{K_t K_\omega} \quad , \quad K_d = \frac{R_a}{K_t}$$

Da queste equazioni possiamo quindi passare allo schema a blocchi di fig. 1.12.

Figura 1.12: Schema a blocchi semplificato

Comparazione con le slide di Rizzo

Nelle slide è presente il seguente circuito. Anche se a prima vista potrebbe sembrare diverso è in realtà identico a quello di figura 1.12.

Ricordando la differente notazione: $I \equiv \Gamma$, $k_v \equiv K_\omega$, possiamo unire i 3 blocchi in uno unico. Partiamo dal forward path:

$$F(s) = \frac{k_t}{R_a s I}$$

Poi, incorporando il feedback, otteniamo

$$\frac{F(s)}{1 + F(s)k_v} = \frac{\frac{k_t}{R_a s I}}{1 + \frac{k_v k_t}{R_a s I}} = \frac{1}{k_v (1 + sT)}$$

Ovvero la stessa forma di quanto mostrato in fig. 1.12.

1.3.2 Struttura del controllo

In fig. 1.13 possiamo vedere lo schema di controllo generale, con retroazione su posizione, velocità e accelerazione (nota: per semplicità G_v è stato incluso nell'anello di controllo più interno).

In generale, il controllore viene progettato modo che si abbia un guadagno elevato nel blocco a monte del punto di ingresso del disturbo (per ottenere un elevato fattore di attenuazione) e in modo che ci sia un'azione integrale, affinché gli effetti della coppia di gravità vengano cancellati in regime permanente.

Figura 1.13: Schema generale del controllo

Queste richieste portano alla scelta di un **controllore PI (proporzionale-integrale)** della forma:

$$C(s) = K_p \frac{1 + sT_p}{s} \tag{1.15}$$

Retroazione sulla posizione

Possiamo partire dal caso più semplice, ovvero introducento un controllo con solo la retroazione k_{TP} su θ_m . Poniamo $C_v(s) = C_A(s) = 1$ e $k_{TV} = k_{TA} = 0$, mentre mettiamo $C_p(s)$ nella forma (1.15).

Figura 1.14: Solo position feedback

La funzione di trasferimento del ramo diretto risulta (richiamando (1.15) e (1.13)):

$$G(s) = \underbrace{C_p(s)}_{(1.15)} \underbrace{\frac{1}{K_{\omega}(1+sT)}}_{G_{\omega}(s)=(1.13)} \frac{1}{s} = \frac{K_p(1+sT_p)}{s^2 K_{\omega}(1+sT)}$$

da cui si ricava la funzione di trasferimento ad anello chiuso:

$$W(s) = \frac{K_p(1 + sT_p)}{s^2 K_{\omega}(1 + sT) + K_P K_{TP}(1 + sT_P)}$$

Da qui è possibile analizzarne la stabilità, ad esempio tramite il luogo delle radici (vedi fig. 1.15).

I parametri K_P e T_P devono essere scelti in modo da:

Figura 1.15: Root locus per W(s) con solo retroazione sulla posizione

- Garantire l'asintotica stabilità del sistema in catena chiusa
- Evitare oscillazioni significative nella sua risposta
- Garantire un elevato fattore di attenuazione del disturbo

Per calcolare meglio i requirements è possibile esprimere W(s) in funzione di ω_n e ζ :

$$W(s) = \frac{(1+sT_P)/K_{TP}}{\left(1+\frac{2\zeta}{\omega_n} + \frac{s^2}{\omega_n^2}\right)(1+\tau s)}$$

Come possiamo vedere anche dal root locus:

- Deve essere $T_P > T$ affinché si abbia asintotica stabilità
- Se $T_P \gg T$ si velocizza la risposta del sistema (diventano dominanti i poli complessi coniugati)
- Per $T_P \gg T$ ed elevati valori del guadagno K_P la pulsazione del polo reale di W(s) tende a quella dello zero ($\tau \approx T_P$) e quindi il sistema risulta rappresentato in prima approssimazione dalla sola dinamica del II° ordine associata ai poli complessi coniugati
- La parte reale dei poli dominanti non può comunque essere inferiore a -1/(2T)

Applicando le regole dell'algebra dei blocchi, è possibile ricavare la funzione di trasferimento fra il disturbo D e l'uscita θ_m del sistema: $\Theta_m(s)/D(s)$.

Il fattore di attenuazione del disturbo vale K_PK_{TP} . Valori troppo elevati di K_P possono però portare ad avere oscillazioni inaccettabili sull'uscita (lo smorzamento ζ risulta troppo piccolo).

Il tempo necessario per avere un'attenuazione significativa del disturbo è approssimabile come $T_R = max\{T_P, \frac{1}{\zeta\omega_n}\}$

Retroazione di posizione e velocità

Per questo secondo caso consideriamo il seguente setup (qua $C_A(s) = 1, k_T A = 0$):

$$C_P(s) = K_P$$
 $C_V(s) = K_V \frac{1 + sT_V}{s}$

Ovvero un'azione solo proporzionale per la posizione, mentre un'azione PI per la velocità.

Figura 1.16: Circuito con retroazione su posizione e velocità

Di nuovo, possiamo analizzare la stabilità del sistema tramite il root-locus della funzione di trasferimento in ciclo chiuso W(s) e gli effetti dei disturbi con la funzione di trasferimento $\Theta_m(s)/D(s)$.

$$W(s) = \frac{K_P K_V}{K_{\omega} s^2 + K_V K_{TV} s + K_{TP} K_P K_V}$$

Saltando nuovamente la forma esplicita di $\Theta_m(s)/D(s)$, possiamo dire che in questo caso il **fattore di attenuazione del disturbo** è dato dal prodotto $\mathbf{K_P}\mathbf{K_{TV}}\mathbf{K_V}$, ormai completamente definito, avendo imposto K_P e K_V per imporre i poli desiderati.

Aumentando il guadagno del feedback di posizione K_P , è possibile confinare i poli dell'anello chiuso in una regione del piano complesso con grandi valori assoluti della parte reale. Poi, la posizione effettiva può essere stabilita mediante una scelta adeguata di K_V .

Figura 1.17: Root-locus con retroazione di velocità e posizione

Retroazione di posizione, velocità ed accelerazione

Per concludere vediamo il controllo con tutti e 3 i feedback:

$$C_P(s) = K_P$$
 $C_V(s) = K_V$ $C_A(s) = K_A \frac{1 + sT_A}{s}$

Avendo a disposizione un parametro libero in più, sarebbe possibile in questo caso:

- Assegnare la dinamica desiderata al sistema ad anello chiuso
- Imporre il fattore di attenuazione del disturbo

Figura 1.18: Root-locus con retroazione di accelerazione, velocità e posizione

Problema: La misura dell'accelerazione però non è solitamente disponibile. Per implementare uno schema di controllo comprendente la retroazione dell'accelerazione risulterebbe necessario ricavarla indirettamente dalle misure disponibili.

Avendo a disposizione la misura diretta della velocità, è possibile **stimare l'accelerazione** per mezzo di un filtro del primo ordine (vedi fig. 1.19), purché avente banda sufficientemente ampia. Scegliendo questa larghezza di banda sufficientemente ampia, gli effetti dovuti ai ritardi di misurazione non sono un problema, e quindi è possibile prendere l'uscita del filtro di accelerazione come quantità per il feedback. Problemi possono comunque incorrere a causa del rumore presente sul segnale di accelerazione così ottenuto.

Figura 1.19: Filtro del I° ordine per la stima dell'accelerazione

1.3.3 Attuatori saturanti

In un'applicazione reale, il comportamento del sistema può allontanarsi da quello del suo modello teorico a causa di dinamiche "parassite" o non lineari, non incluse nella descrizione considerata, con evidenti conseguenze sulle prestazioni del controllo. Una di queste è ad esempio la presenza di attuatori saturanti.

Quest'ultima però può essere modellata semplicemente aggiugendo sul ramo diretto dell'anello di controllo un blocco che rappresenta la seguente relazione:

$$\begin{cases} y_{max} &, u(t) > u_{max} \\ ku(t) &, u_{min} \le u(t) \le u_{max} \\ y_{min} &, u(t) < u_{min} \end{cases}$$

L'inserimento di blocchi di saturazione è solitamente legato a necessità di sicurezza e di salvaguardia del sistema.

Quando le grandezze coinvolte (correnti, tensioni) raggiungono il valore massimo consentito ed entra in azione il blocco di saturazione, l'inseguimento della traiettoria non è più realizzato con le caratteristiche e l'accuratezza prevista. In caso di movimenti PTP non è inusuale che vengano raggiunte situazioni di saturazione: in tal caso infatti è solitamente prioritario raggiungere il più rapidamente possibile la configurazione finale desiderata, anziché rispettare la traiettoria prefissata in ogni istante.

1.3.4 Feedforward compensation

Quando è richiesto l'inseguimento di traiettorie con elevati valori di velocità e di accelerazione, è possibile ridurre l'errore di inseguimento utilizzando i valori del riferimento in velocità (ed in accelerazione) per calcolare termini di compensazione in avanti (feedforward compensation), da sommare all'azione del controllore posto sul ramo diretto.

Si noti che, in generale, calcolare derivate non è possibile (perchè dovremmo "predire il futuro"). In questo caso però essendo la traiettoria nota a priori, non ci sono problemi.

Figura 1.20: Schema a blocchi del controllo con feedback di posizione e feedforward compensation decentralizzato

1.3.5 Computed torque feedworward control

È possibile aggiungere un altro blocco di feedforward. Richiamando (1.9):

$$K_r^{-1}ar{B}K_r^{-1}\ddot{q}_m+F_m\dot{q}_m+d= au_m$$

se vogliamo reiettare perfettamente il disturbo d potremmo provare a calcolarci in anticipo il valore di d, per poi sommarlo nel lato destro dell'equazione.

$$K_r^{-1}ar{B}K_r^{-1}\ddot{q}_m+F_m\dot{q}_m+ extcolor{d}= au_m+ extcolor{d}$$

Ponendo $q \equiv q_d$ ci basta usare (1.10) per calcolarci d (offline).

Figura 1.21: Circuit with computed torque feedworward control

1.4 Controllo centralizzato