Assignment # 1

Mujtaba SP22-BSE-036

Malaika SP22-BSE-025

Oct 9, 2022

Discrete Structures

Mam Memoona Malik

QUESTION.1

(A)

a. Membership Table

A	В	A - B	B - A	$A \oplus B$
0	0	0	0	0
0	1	0	1	1
1	0	1	0	1
1	1	0	0	0

b. Venn Diagram

c. Let A =
$$\{1,2,3,4\}$$
 and B = $\{3,4,5,6\}$ and C = $\{5,6,7,8\}$
B \oplus C = $\{3,4,7,8\}$
(A \oplus B) \oplus C = $\{1,2,7,8\}$

d. Let A
$$\oplus$$
 B = (A ∪ B) – (A ∩ B) By definition,

$$A \oplus B = \{x \mid (x \in A \lor x \in B) \land \neg (x \in A \land x \in B\})\}$$

= \{(A \underbrack{u} B) \lambda \neg (A \underbrack{n} B)\} \rightarrow \text{Answer}

e. Let
$$A \oplus B = (A - B) \cup (B - A)$$

We know that,

 $A \oplus B = \{x \mid (x \in A \lor x \in B) \land \neg (x \in A \land x \in B\})\}$
 $= \{(x \in A \land \neg x \in B) \cup (x \in B \land x \in A\})\}$
 $= (A - B) \cup (B - A)\}$ → Answer

<u>(C)</u>

<u>a.</u>		
A	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

<u>b.</u>

$$\frac{\mathbf{c.}}{A} = \{1,2,3,4\} B = \{3,4,5,6\} C = \{5,6,7,8\} B \oplus C = (B - C) \cup (C - B) = \{3,4\} A \oplus B \oplus C = \{1,2\}$$

$$\frac{\mathbf{d.}}{A \oplus B} = (A \cup B) - (A \cap B)$$

$$A \oplus B = (A - B) \cup (B - A)$$
Let $A \oplus B = (A \cup B) - (A \cap B)$
From de-morgan law
$$A - (B \cup C) = (A - B) n (A - C)$$
We can write it as $((A \cup B) - B \cup (B \cap A))$

$$= A$$

QUESTION.2

<u>(A)</u>

Draw the digraph of the relation.

i. The relation $R = \{(1, 2), (2, 3), (3, 4), (4, 1)\}$ on $\{1, 2, 3, 4\}$

ii. The relation $R = \{(1, 2), (2, 1), (3, 3), (1, 1), (2, 2)\}$ on $X = \{1, 2, 3\}$

- i. R = { (a,b), (b,a), (b,d), (c,d), (a,c), (c,c) } on { a, b, c, d}
 Domain = {a,b,c}?
 Range = {a,b,c,d}?
- ii. $\mathbf{R} = \{(1,1),(2,2),(3,3),(3,5),(5,5),(5,4),(4,4),(4,3)\}$ on $\{1,2,3,4,5\}$ Domain = $\{1,2,3,4,5\}$? Range = $\{1,2,3,4,5\}$?
- iii. R = {(b,c),(c,b),(d,d)} on {a,b,c,d}Domain = {b,c,d}?Range = {b,c,d}?

<u>(C)</u>

Let R_1 and R_2 be the relations on $\{1, 2, 3, 4\}$ given by

$$R_1 = \{(1, 1), (1, 2), (3, 4), (4, 2)\}\$$

 $R_2 = \{(1, 1), (2, 1), (3, 1), (4, 4), (2, 2)\}.$

List the elements of:

i. $R_1 \cup R_2$

$$\mathbf{R} = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,4), (4,2), (4,4)\}$$

ii. $R_1 \cap R_2$

$$\mathbf{R} = \{(1, 1)\}$$

<u>(D)</u>

- 1. **Reflexive:** YES. Given string $\alpha \in X$, α indeed has some common substring of size 2 with itself, say its substring consisting of the first two bits of α .
- 2. **Symmetric**: YES. If α , $\beta \in X$, and α has some substring of size 2 in

common with β , also β has that same substring in common with α .

4. **Transitive**: NO. Counterexample: 1110 R 1100 (both contain 11) and 1100 R 0001 (both contain 00), however 1110 R6 0001.

QUESTION.3

(A)

1.
$$\left(\sum_{i=1}^{3} y_i\right) \left(\sum_{i=1}^{3} z_i\right) = (y+2y+3y)(z+2z+3z)$$

=6y(6z)

2.
$$\sum_{i=-1}^{1} \sum_{j=0}^{2} (2i+3j) = \sum_{i=-1}^{1} (2i+2i+3+2i+6)$$

$$= 3 + 9 + 15 = 27$$

<u>(B)</u>

i.
$$\sum_{i=1}^{n} \sum_{j=1}^{i} (x+1)$$
 ii. $\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{i} (x+1)$

iii.
$$\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} (x+1)$$
 iv.
$$\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} \sum_{l=1}^{i} (x+1)$$

QUESTION.4

a)
$$F(x) = 75 + ((x-400)/100) * 0, 60), x > 9000$$

$$F(x) = \begin{cases} 75, x \le 4000 \\ 75 + \left[\left(\frac{x-4000}{100}\right) * 0,60\right], x > 4000 \end{cases}$$

b) Write the definition of "one-to-one" using logical notation (i.e., use, \exists , etc.)

A function $f: A \to B$ is injective (or one-to-one) if it does not map different elements of A to the same element of B. In logical notation: if $\forall x \in A$. $\forall y \in A$. $(f(x) = f(y) \Rightarrow x = y)$.

c) Write the definition of "onto" using logical notation (i.e., use, \exists , etc.). A function $f: A \to B$ is surjective (or onto) if every element in B is mapped to by an element in A.

In logical notation: if $\forall y \in B. \exists x \in A. (f(z) = y).$

d) Determine whether each of these functions is a bijection from R to R.

$$f(x) = 2x + 1$$

$$f(x) = x^2 + 1$$

Ans. No

$$f(x) = x3$$

Ans. Yes
 $f(x) = (x2 + 1) / (x2 + 2)$
Ans. No

e) Find at least three different sequences beginning with the terms 3, 5, 7 whose terms are generated by a simple formula or rule.

$$a_1 = 2(1) + 1$$
 $a_1 = 3$
 $a_2 = 2(2) + 1$
 $a_2 = 5$
 $a_3 = 2(3) + 1$
 $a_3 =$
 $a_4 = 2(4) + 1$
 $a_4 = 9$
 $a_5 = 2(5) + 1$
 $a_6 = 2(6) + 1$
 $a_6 = 13$
 $a_6 = 13$
 $a_6 = 13$

So we generalize the formula that:

$$a_n = 2(n) + 1$$

f) Find the first five terms of the sequence defined by each of these recurrence relations and initial conditions.

a) an = 6an-1, a0 = 2

$$a_n = 6a_{n-1}$$

 $\underline{a_0} = \underline{2}$

$$a_1 = 6a_{1-1}$$

 $=6a_0$, $=6(2)$
 $a_1=12$
 $a_2=6a_{2-1}$
 $=6a_1$, $=6(12)$
 $a_2=72$
 $a_3 = 6a_{3-1}$
 $=6a_2$, $=6(72)$
 $a_3=252$
 $a_4 = 6a_{4-1}$
 $=6a_3$, $=6(252)$
 $a_4 = 1512$
b) an = a^2n-1 , $a_1 = 2$
 $a_1=2$
 $a_2=a^2_{2-1}$
 $=a^2(1)$, $=(a_1)^2$, $=2^2$
 $a_2=4$
 $a_3=a^2_{3-1}$
 $=a^2(2)$, $=(a_2)^2$, $=4^2$
 $a_3=16$
 $a_4=a^2_{4-1}$
 $=a^2(3)$, $=(a_3)^2$, $=16^2$
 $a_4=256$
 $a_5=a^2_{5-1}$
 $=a^2(4)$, $=(a_4)^2$, $=256^2$
 $a_5=65536$

- g) Suppose that the number of bacteria in a colony triples every hour.
 - i. Set up a recurrence relation for the number of bacteria after n hours have elapsed.

According to the given condition: Initial condition is a0=1

We can use the iterative approach to find formula for an, in which bacteria triples every hour so,

```
a_1=3(a0), 3(1)

\underline{a_1}=3

a_2=3(a1), 3(3)

\underline{a_2}=9

a_3=3(a2), 3(9)

\underline{a_3}=27

:

:

:

:

:
```

ii. If 100 bacteria are used to begin a new colony, how many bacteria will be in the colony in 10 hours?

According to the given condition, we have to find a10 Here, we have given that a0=100

```
a_0=100
a_1=3(100)
a_1=300
a_2=3(300)
a_2=900
a_3=3(900)
a_3=2700
a_4=3(2700)
a_4=8100
a_5=3(8100)
a_5=24,300
```

 $a_6=3(24,300)$

 $\underline{a_6} = 72,900$

 $a_7 = 3(72,900)$

 $a_7 = 218,700$

 $a_8=3(218,700)$

 $a_8 = 656,100$

 $a_9 = 3(656,100)$

a₉=1,968,300

 a_{10} =3(1,968,300)

<u>a₁₀=5,904,900</u>

so, we generalize the formula that:

$$a_n = 3(a_{n-1})$$