D Ynpasicue me 14 za 1,2 n 3 rpyrra Втора «новна граница: lim (1+1)=e. Cuegosbre: $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e. (X)$ D-bo: $\lim_{x\to 0} (1+x)^{\frac{1}{x}} \stackrel{t=\frac{1}{x}}{=} \lim_{x\to +\infty} (1+\frac{1}{t})^{t} = e$ $\lim_{x\to 0} (1+x)^{\frac{1}{x}} \stackrel{t=\frac{1}{x}}{=} \lim_{t\to +\infty} (1+\frac{1}{t})^{t} = e$ $\lim_{x\to 0} (1+x)^{\frac{1}{x}} \stackrel{t=\frac{1}{x}}{=} \lim_{t\to -\infty} (1+\frac{1}{t})^{t} = e$ Cu. $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$. Jo-gang c (!) rye oghazabane spannynte, konto ce rynousbat zecto. 3ag. 1 (!) Dokasnete, ze: (ln = loge) a) $\lim_{x\to 0} \frac{\ln(1+x)}{x} = \lim_{x\to 0} \frac{\ln y}{y-1} = 1$; δ) $\lim_{x\to 0} \frac{e^x-1}{x} = 1$; δ) $\lim_{x\to 0} \frac{a^x-1}{x} = \ln a \ (a>0)$; 2) $\lim_{x\to 0} \frac{(1+x)^2-1}{x} = \lambda$ (LER). Perue rue: a) lim $\ln(1+x) \stackrel{(1+x)}{=} \lim_{x\to 0} \ln \frac{\ln (1+x)}{x}$.

lim $\ln(1+x) = \lim_{x\to 0} \ln(1+x) \stackrel{(1+x)}{=} = \ln e = 1$. δ) Jouarane $y=e^{x}$. $x\rightarrow 0 \Rightarrow y\rightarrow 1$. lim e-1 = lim y-1 = 1. 6) Ipu $a \neq 1$ lim $\frac{\alpha}{x} = 1$ lim $\frac{\alpha}{x} = 1$ = $\lim_{x\to 0} \left(\frac{e^{x \ln a} - 1}{x \ln a} \cdot \ln a \right) = 1 \cdot \ln a = \ln a$. $\lim_{x\to 0} \frac{e^{x \ln a} - 1}{x \ln a} \cdot \ln a = \ln a$. Jipu a=1 lim a=1=0=lna.

2 2)
$$\sqrt{19}$$
 $\sqrt{19}$ $\sqrt{19}$

32) L = lim lencosax. cosax-1.
$$\frac{x^2}{x^2} \cdot \frac{\cos 6x-1}{\cos 6x-1} = \frac{\cos 6x-1}{x^2} \cdot \frac{\cos 6x-1}{x^2} \cdot \frac{\cos 6x-1}{x^2} = \frac{\cos 6x-1}{x^$$