HW 11 2.7.2,6,10,14 2.8.2,4,11

2.7.2. Let X and Y be normed spaces. Assume that a linear operator $T \colon X \to Y$ is bounded. Let $A \subseteq X$ be a set that is bounded. So for all $a \in A$, $\|a\| \le M$ for some $M \in \mathbb{R}$ (or \mathbb{C} . The same proof follow either way). Let $b \in B$ such that T(A) = B. Thus, there exists an $a \in A$ such that T(a) = b. We know that $\|T(a)\| \le c\|a\|$ for some c. Thus, $\|b\| \le c\|a\|$. Since A is bounded, then $\|b\| \le c\|a\| \le cM$. Since $cM \in \mathbb{R}$ and is constant, then $\|b\|$ is bounded. Since b was arbitrary, b must be bounded. So b maps bounded sets into bounded sets.

Now assume that $T \colon X \to Y$ maps bounded sets in X to bounded sets in Y. Let $x \in X$. Then ||Tx|| = ||y|| where $y \in Y$. If x is in some bounded set of X, then $||Tx|| \le c$ for some c since y must be in a bounded set. Let $d = \frac{c}{||x||}$. Then $||Tx|| \le d||x||$.

Now assme that x is not in some bounded set of X.

2.7.6. Let $T: l^{\infty} \to l^{\infty}$ defined on $y = (y_i) = Tx$, $y_i = \frac{x_i}{i}$ and $x = (x_i)$. We first show that T is linear and bounded.

1. (Linear): Let $a, b \in l^{\infty}$ be denoted $a = (a_i), b = (b_i)$. Let $\alpha, \beta \in \mathbb{R}$. Then

$$T(\alpha a + \beta b) = T((\alpha a_i) + (\beta b_i)) \tag{1}$$

$$=T((\alpha a_i + \beta b_i)) \tag{2}$$

$$= \left(\frac{\alpha a_i + \beta b_i}{i}\right) \tag{3}$$

$$= \left(\frac{\alpha a_i}{i}\right) + \left(\frac{\beta b_i}{i}\right) \tag{4}$$

$$=\alpha(\frac{a_i}{i}) + \beta(\frac{b_i}{i}) \tag{5}$$

$$= \alpha T(a) + \beta T(b). \tag{6}$$

So T is linear.

2. (Bounded): Note that $||Tx|| = ||(\frac{x_i}{i})||$ Since $(\frac{x_i}{i}) \in l^{\infty}$, each $\frac{x_i}{i}$ is bounded by some M. Thus, $||(\frac{x_i}{i})|| = \sup_i ||\frac{x_i}{i}|| \le M$. Let $c = \frac{M}{||x||}$. Then $||Tx|| = ||(\frac{x_i}{i})|| = \sup_i |\frac{x_i}{i}| \le M = c||x||$. So $||Tx|| \le c||x||$. So T is bounded.

Thus we know that T is a bounded linear operator. We now consider R(T). We know every sequence in R(T) is of the form $\left(\frac{x_i}{i}\right)$. Consider the sequence of sequences (x_i) where $(x_i) = ()$