Exp	lorato	ory
Factor	Ana	lysis

Today

- ExamplesMethod comparison

The example data set comes from a sample of 538 university students who completed the Schwartz Values Inventory (1992). Participants rated the importance of 46 values representing 10 basic groups of values:

- UniversalismBenevolenceTraditionPowerAchievementHedonism

- Conformity Stimulation Security

 - Self-Direction

Please rate the importance of these values as guiding principles in your life using the 7-point scale below.

- 1 = not at all important
- 2 = slightly important
- 3 = somewhat important
- 4 = moderately important
- 5 = very important
- 6 = extremely important
- 7 = completely important

The correlation heat map is a bit of a Rorschach. One big factor? Four, perhaps correlated, factors?

Factor rotation might provide some help.

The analysis begins in the same way as principal components analysis. It would make little sense to search for common factors in an identity matrix:

Kaiser-Meyer-Olkin factor adequacy Call: KMO(r = SVI[, 2:47]) Overall MSA = 0.92

cortest.bartlett(SVI[, 2:47])

\$chisq

[1] 10344

\$p.value [1] 0

\$df [1] 1035

Rotation takes place in a subspace defined by the number of factors retained. Different "meanings" will result with different numbers of factors extracted.

Factors can be expected to replicate and hold their meaning to the extent they are dominating the correlation matrix, defined strongly by relatively large numbers of variables.

Generally it is a good idea to be conservative in factor extraction unless cross-validation will be conducted to verify the presence of weak factors.

The MAP index is a function of the average partial correlation among variables controlling for factors. The minimum indicates the optimal number of factors.

 Unlike principal components analysis, factor analysis will not attempt to explain all of the variance in each variable. Only common factor variance is

of interest. For similar numbers of linear combinations, factor analysis will account for less variance.

To the extent there is random error in the measures (always) or there are systematic but specific sources of variance (usually), the eigenvalues for factor analysis will be smaller than the corresponding eigenvalues in principal components analysis.

They are guided by the same general goals but there is less to work with in factor analysis.

	PA1	PA2	PA3	PA4	h2
Equality	0.55	-0.48	0.07	-0.13	0.549
World_Peace	0.50	-0.33	0.00	0.05	0.361
Unity_With_Nature	0.36	-0.21	0.16	0.57	0.523
Wisdom	0.55	0.01	0.01	0.05	0.308
World_Of_Beauty	0.44	-0.21	0.30	0.37	0.458
Social_Justice	0.52	-0.42	0.00	-0.01	0.446
Broad_Minded	0.48	-0.39	0.18	-0.16	0.442
Protect_Enviroment	0.36	-0.27	0.24	0.38	0.405
Loyal	0.56	-0.08	-0.20	-0.21	0.409
Honest	0.63	-0.23	-0.20	-0.25	0.553
Helpful	0.59	-0.41	-0.16	-0.05	0.539
Responsible	0.63	0.03	-0.20	-0.17	0.472
Forgiving	0.51	-0.29	-0.17	0.07	0.385
Respect_For_Tradition	0.40	0.23	-0.33	0.37	0.458
Moderate	0.11	0.09	-0.13	0.16	0.061
Humble	0.50	-0.19	-0.29	0.06	0.373
Accept_My_Life	0.29	0.11	-0.22	0.30	0.232
Devout	0.21	0.11	-0.43	0.27	0.317
Self-Discipline	0.57	0.07	-0.23	0.12	0.391
Respect_Elders	0.59	0.08	-0.41	0.06	0.517
Obedient	0.48	0.14	-0.34	0.17	0.389
Politeness	0.61	0.05	-0.31	-0.06	0.472

The unrotated solution does not suggest a meaningful interpretation beyond an initial "values are important" dimension. A single dominant factor is a typical result.

·	PA1	PA2	PA3	PA4	h2
Social_Order	0.40	0.29	-0.05	0.12	0.262
National_Security	0.50	0.22	-0.10	0.04	0.311
Reciprocity	0.43		-0.13		0.258
Family_Security	0.55	-0.06	-0.21	-0.18	0.380
Clean	0.42	0.21	-0.12	0.14	0.254
Social_Power	0.13	0.60	0.26	0.12	0.463
Wealth	0.14	0.63	0.09	-0.18	0.464
Authority	0.39	0.45	-0.01	0.11	0.369
Public_Image	0.36	0.49	-0.06	0.01	0.372
Ambitious	0.63	0.08	-0.04	-0.26	0.468
Influential	0.51	0.19	0.06	0.04	0.305
Capable	0.58	0.18	0.04	-0.17	0.396
Successful	0.60	0.30	0.07	-0.29	0.535
Pleasure	0.37	0.30	0.33	-0.14	0.351
Enjoy_Life	0.44	0.07	0.32	-0.27	0.377
Self-Indulgent	0.10	0.43	0.19	0.07	0.240
Exciting_Life	0.51	0.09	0.48	-0.04	0.500
Varied_Life	0.45	-0.01	0.47	0.08	0.435
Daring	0.36	0.08	0.37	0.22	0.323
Freedom	0.65	-0.11	0.18	-0.21	0.504
Creativity	0.48	-0.12	0.37	0.20	0.419
Independent	0.48	0.04	0.15	-0.15	0.277
Choose_Own_Goals	0.52	-0.03	0.17	-0.19	0.343
Curious	0.46	-0.10	0.39	0.23	0.436

The unrotated solution does not suggest a meaningful interpretation beyond an initial "values are important" dimension. A single dominant factor is a typical result.

PA1	
PA1	
PA1	

Respect_For_Tradition	PA1 0.07	PA2 0.12		PA4 0.66		
Respect_Elders	0.45		-0.01	0.56		
Devout				0.55		
Obedient	0.27			0.55		
Self-Discipline	0.37		0.14	0.47		
Accept_My_Life	0.05			0.46		
What could we	nam	e thi	s fac	tor?		
What could we	nam	e thi	s fac	tor?		
What could we	nam	e thi	s fac	tor?		
What could we	nam	e thi	s fac	tor?		

	$\Lambda^* = \Lambda T$ Insformation matrix of cosines that indicate of the new axes compared to the original
axes.	PA1* PA2* PA3* PA4* PA1 0.7403 0.3418 0.4106 0.4081 PA2 -0.3650 0.8289 -0.3146 0.2843 PA3 -0.1708 0.3873 0.6313 -0.6498 PA4 -0.5381 -0.2148 0.5778 0.5748
In terms of	angles: PA1* PA2* PA3* PA4* PA1 42.24 70.01 65.76 65.92 PA2 111.41 34.02 108.33 73.49 PA3 99.83 67.22 50.85 130.53
	PA4 122.56 102.40 54.70 54.91

Scores on the underlying common factors can be obtained in much the same way as in principal components analysis. The key difference is that variables are assumed to be measured with error in factor analysis.

$$\Xi = XB$$

$$\frac{1}{N-1}X'\Xi = \frac{1}{N-1}X'XB$$

$$\Lambda = RB$$

$$B = R^{-1}\Lambda$$

$$\Xi = XR^{-1}\Lambda$$
These are often referred to as

regression-based factor scores.

Because they are estimated, not exact calculations, factor scores can have small correlations despite the orthogonal nature of the factors.

PA1 1.00000 0.01892 PA3 PA4
PA1 1.00000 0.01892 0.0664423 0.0629665
PA2 0.01892 1.000000 0.0176323 0.0350169
PA3 0.06644 0.01763 1.0000000 -0.0008299
PA4 0.06297 0.03502 -0.0008299 1.0000000

It is rare for the different rotational criteria to produce quite different results:

	PA1	PA2	PA3	PA4	PA1 PA	2 PA4	PA3	PA1	PA2	PA4	PA3
Equality	0.64	-0.15	0.34	-0.03	0.62 -0.2	8 0.24	-0.18	0.62	-0.28	0.24	-0.18
World_Peace	0.46	-0.11	0.34	0.14	0.50 -0.1	9 0.26	0.02	0.50	-0.19	0.26	0.02
Unity_With_Nature	0.01	-0.11	0.64	0.31	0.17 -0.1	0.64	0.27	0.17	-0.10	0.64	0.27
Wisdom	0.38	0.19	0.26	0.25	0.48 0.1	4 0.21	0.11	0.48	0.14	0.21	0.11
World_Of_Beauty	0.15	0.01	0.65	0.14	0.27 -0.0	2 0.62	0.05	0.27	-0.02	0.62	0.05
Social_Justice	0.55	-0.17	0.33	0.09	0.56 -0.2	6 0.25	-0.04	0.56	-0.26	0.25	-0.04
Broad_Minded	0.55	-0.05	0.35	-0.12	0.53 -0.1	8 0.25	-0.26	0.53	-0.18	0.25	-0.26
Protect_Enviroment	0.12	-0.10	0.60	0.13	0.21 -0.1	2 0.58	0.07	0.21	-0.12	0.58	0.07
Loyal	0.59	0.10	0.01	0.21	0.63 0.0		0.05	0.63	0.01	-0.08	0.05
Honest	0.72	0.00	0.06	0.18	0.73 -0.1	1 -0.05	0.00	0.73	-0.11	-0.05	0.00
Helpful	0.64	-0.19	0.24	0.20	0.66 -0.2	8 0.15	0.05	0.66	-0.28	0.15	0.05
Responsible	0.59	0.20	0.03	0.30	0.66 0.1	2 -0.05	0.12	0.66	0.12	-0.05	0.12
Forgiving	0.48	-0.15	0.24	0.28	0.53 -0.2	1 0.17		0.53	-0.21	0.17	0.16
Respect_For_Tradition	0.07	0.12	0.10	0.66	0.27 0.1	7 0.11	0.59	0.27	0.17	0.11	0.59
Moderate	-0.02	0.03	0.03	0.24	0.05 0.0			0.05	0.06	0.04	0.23
Humble	0.45	-0.11	0.11	0.37	0.53 -0.1	5 0.05	0.26	0.53	-0.15	0.05	0.26
V/					<u> </u>						

Varimax Quartamax Equamax

Because factor analysis requires iterative methods, there are quite a number of ways to derive the factors. Among the most common are: • Principal axes factoring • Minimum residual • Weighted least squares • Maximum likelihood	
Principal axes factoring uses the method we described originally. It replaces the main diagonal of the correlation matrix with an initial estimate of variable communalities, extracts principal components from this modified matrix, produces new communality estimates which are substituted into the main diagonal of the correlation matrix, and the process is repeated until estimates no longer change (below some change criterion).	
Minimum residual factoring (sometime also called ordinary least squares factoring) derives factors that minimize the residual correlation matrix, the difference between the original correlation matrix and the correlation matrix that is reproduced by a given number of factors.	

Weighted least squares factoring derives factors	
that also minimize the residual correlation matrix, but weights the variables by their uniqueness. Variables with higher uniqueness are weighted less	
than variables with lower uniqueness.	
Maximum likelihand factoring upon the maximum	
Maximum likelihood factoring uses the maximum likelihood method to find factor loadings (and later factor correlations) that maximize the likelihood of	
the data. It provides standard errors (and confidence intervals) for estimates, tests of	
significance, and goodness of fit tests. It also rests on an assumption of multivariate normality.	
	- <u></u>
	- <u>-</u>
PA1 PA2 PA3 PA4 SS loadings 6.73 3.91 3.74 3.72 SS loadings 6.73 3.91 3.74 3.72	
Proportion Var 0.15 0.09 0.08 0.08 Cumulative Var 0.15 0.23 0.31 0.39 Proportion Explained 0.37 0.22 0.21 0.21 Cumulative Proportion 0.37 0.59 0.79 1.00 Cumulative Proportion 0.37 0.	
Principal Axes Minimum Residual	-
VLS1 VLS2 VLS3 VLS4 SS loadings 6.73 3.92 3.74 3.72 SS loadings 6.66 3.99 3.76 3.70	
Proportion Var 0.15 0.09 0.08 0.08 Cumulative Var 0.15 0.23 0.31 0.39 Proportion Explained 0.37 0.22 0.21 0.21 Cumulative Proportion Explained 0.37 0.22 0.21 0.21 Cumulative Proportion 0.37 0.59 0.79 1.00 Cumulative Proportion 0.37 0.59 0.80 1.00	
Weighted Least Squares Maximum Likelihood	-

Advocates of factor analysis often claim that it is inappropriate to apply principal components procedures in the search for meaning or latent constructs. But, does it really matter all that much?

To the extent that the communalities for all variables are high, the two procedures should give very similar results. When the commonalities are very low, then factor analysis results may depart from principal components.

Next time . . .

- Oblique rotation
- Cross-validation