Recordemos que una superficie regular (hablando de manera informal) es aquella que no presenta esquinas ni rupturas.

En el resto de este capítulo y en el siguiente, consideraremos solo superficies regulares a trozos que son uniones de imágenes de superficies parametrizadas Φ_i : $D_i \to \mathbb{R}^3$ para las que:

- (I) D_i es una región elemental en el plano;
- (II) $\boldsymbol{\Phi}_i$ es de clase C^1 e inyectiva, excepto posiblemente en la frontera de D_i y
- (III) S_i , la imagen de Φ_i , es regular, excepto posiblemente en un número finito de puntos.

Definición Área de una superficie parametrizada Definimos el $\acute{a}rea^{10}$ A(S) de una superficie parametrizada mediante

$$A(S) = \iint_D \|\mathbf{T}_u \times \mathbf{T}_v\| \, du \, dv, \tag{1}$$

donde $\|\mathbf{T}_u \times \mathbf{T}_v\|$ es la norma de $\mathbf{T}_u \times \mathbf{T}_v$. Si S es una unión de superficies S_i , su área es la suma de las áreas de las S_i .

Como podemos verificar fácilmente,

$$\|\mathbf{T}_{u} \times \mathbf{T}_{v}\| = \sqrt{\left[\frac{\partial(x,y)}{\partial(u,v)}\right]^{2} + \left[\frac{\partial(y,z)}{\partial(u,v)}\right]^{2} + \left[\frac{\partial(x,z)}{\partial(u,v)}\right]^{2}},$$
 (2)

donde

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix},$$

y así sucesivamente. Por tanto, la Ecuación (1) se convierte en

$$A(S) = \iint_{D} \sqrt{\left[\frac{\partial(x,y)}{\partial(u,v)}\right]^{2} + \left[\frac{\partial(y,z)}{\partial(u,v)}\right]^{2} + \left[\frac{\partial(x,z)}{\partial(u,v)}\right]^{2}} du dv.$$
 (3)

Justificación de la fórmula del área

Podemos justificar la definición del área de una superficie analizando la integral $\iint_D \|\mathbf{T}_u \times \mathbf{T}_v\| du dv$ en términos de sumas de Riemann. Con el fin de simplificar, supongamos que D es un rectángulo; considera-

 $^{{}^{10}}$ Como aún no hemos hablado de la independencia de la parametrización, puede parecer que A(S) depende de la parametrización Φ . En la Sección 7.6 estudiaremos la independencia de la parametrización; el uso de esta notación aquí no debe producir confusión.