EIC Structure Function

Plot Overview

Richard Trotta

TDIS Cross Section vs xBj

- The TDIS cross section has the expected behavior once f2π was corrected with proper f2p.
- Versus xBj

TDIS Cross Section vs Q² (no cuts)

- The TDIS cross section has the expected behavior once f2π was corrected with proper f2p.
- Versus Q²

F2π vs x_π (no cuts)

- $F2\pi$ with an input of x_{π}
- According to J. Lan et. al., arXiv preprint (2019)
 arXiv:1907.01509
 - Results of BLFQ-NJL deviates from the data at low x
 - As x increases the agreement with the data gets better
- It is difficult to see this agreement in a linear scale

F2π at low $x_π$ vs high $x_π$

- Deviation from the data at low x due to
 - Dominated by sea quark contributions
- As x increases the valence quarks contribute more as the gluon contribution vanishes

$F2\pi vs x_{\pi}$ (no cuts)

• If we now log the x axis we can see a similar trend

$F2\pi$ with GRV fit/DESY-HERA-H1 data [Q²= 10(7/11) GeV]

- DESY-HERA-H1 data and GRV fit (for three points) were eyeballed from plots
- There is a fair agreement between the data points, fit, and MC points

F2 π with GRV fit/DESY-HERA-H1 data [Q²= 30(30/24) GeV]

F2 π with GRV fit/DESY-HERA-H1 data [Q²= 50(60/55) GeV]

F2 π with GRV fit/DESY-HERA-H1 data [Q²= 70(60/82) GeV]

Q² dependence

- The Q² increasing does drop the f2π, but it is not expected to drop by much until at higher Q² settings
- The previous few slides show a small decrease in $f2\pi$ but not by very much, which is expected

$F2\pi$ estimates and uncertainties

- The calculated values for $f2\pi$, xpi, and the stat uncertainty are very similar especially at low x.
- The high x comparison falls off as my calculated stat uncertainties stay below 1%

Richard	Q2=10 GeV2	no cuts							
F2pi	nan	0.114	0.089	0.063	0.034	0.015	0.009	0.002	0.011
xpi	nan	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95
stat uncern %	nan	0.45%	0.51%	0.54%	0.64%	0.69%	0.67%	0.71%	0.82%
Rik	Q2=9 GeV2	no cuts							
F2pi	0.152	0.140	0.110	0.088	0.060	0.039	0.020	0.008	nan
xpi	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	nan
stat uncern %	0.42%	0.45%	0.50%	0.55%	0.28%	0.80%	1.90%	3.00%	nan

Extra

F2π vs xBj

• A similar behavior is seen for xBj as the input

