

Università degli Studi di Brescia, Facoltà di Ingegneria Corso di Elaborazione Numerica dei Segnali con Laboratorio Esercitazioni di Laboratorio con Matlab, A.A. 2010/2011 Esercitazione N.8

[Es. 1] Utilizzo della DFT per il filtraggio FIR con tecnica Overlap-add

Si vuole filtrare una sequenza lunga di campioni mediante un filtro digitale implementato nel dominio delle frequenze. Si scriva il codice Matlab per:

- i. Simulare il segnale da filtrare costruendo un vettore \bar{s} di 930 campioni casuali con media zero, varianza unitaria e distribuzione delle ampiezze gaussiana (funzione randn()).
- ii. Sia la risposta all'impulso del filtro \overline{h} pari a un triangolo lungo 15 campioni con il massimo di ampiezza unitaria posizionato nell'ottavo campione (funzione Matlab "triang"). Mostrare graficamente la risposta in frequenza del filtro in modulo e fase, utilizzando le funzioni predefinite in Matlab, o alternativamente scrivendo la funzione che calcola la DTFT di \overline{h} .
- iii. Costruire un vettore \overline{a} contenente il vettore \overline{s} filtrato nel dominio dei tempi, utilizzando la funzione Matlab che realizza la convoluzione lineare. Visualizzare i vettori \overline{s} , \overline{h} e \overline{a} .
- iv. Utilizzando le funzioni Matlab "fft" e "ifft", costruire un vettore \bar{b} contenente il vettore \bar{s} filtrato nel dominio delle frequenze, ottenuto mediante il metodo di "overlap & add" (presentato nella Figura alla pagina seguente) con L=186 ed M pari alla durata del filtro.
- v. Visualizzare i vettori \bar{s} , \bar{h} , \bar{b} e mostrare graficamente i primi 930 campioni del vettore differenza $\bar{d} = \bar{a} \bar{b}$ allo scopo di controllare il funzionamento dell'algoritmo di filtraggio nelle frequenze.

