Microeconometría I

Maestría en Econometría

Lecture 4

Agenda

- M-Estimation
 - Introduction
 - Identification, Uniform Convergence, and Consistency
 - Asymptotic Normality
- Two-Step M-Estimation
 - Consistency
 - Asymptotic Normality of Two-Step M-Estimators
 - Estimating the Asymptotic Variance
 - Adjustments for when we cannot ignore the first-stage estimation

Agenda

- M-Estimation
 - Introduction
 - Identification, Uniform Convergence, and Consistency
 - Asymptotic Normality
- 2 Two-Step M-Estimation
 - Consistency
 - Asymptotic Normality of Two-Step M-Estimators
 - Estimating the Asymptotic Variance
 - Adjustments for when we cannot ignore the first-stage estimation

- M-estimation methods include maximum likelihood, nonlinear least squares, least absolute deviations, quasi-maximum likelihood, and many other procedures used by econometricians.
- In a nonlinear regression model, we have a random variable, y, and we would like to model E(y|x) as a function of the explanatory variables x, a K-vector.
- We already know how to estimate models of E(y|x) when the model is linear in its parameters: OLS produces consistent, asymptotically normal estimators.
- What happens if the regression function is nonlinear in its parameters?

- Generally, let $m(x; \theta)$ be a parametric model for E(y|x), where m is a known function of x and θ , and θ is a $P \times 1$ parameter vector.
- This is a parametric model because $m(x; \theta)$ is assumed to be known up to a finite number of parameters.
- The dimension of the parameters, P, can be less than or greater than K. The parameter space, Θ , is a subset of \mathbb{R}^P
- This is the set of values of y that we are willing to consider in the regression function. Unlike in linear models, for nonlinear models the asymptotic analysis requires explicit assumptions on the parameter space

- An example of a nonlinear regression function is the logistic function, $m(x;\theta) = \exp(x\theta)/[1 + \exp(x\theta)]$. The logistic function is nonlinear in θ .
- We say that we have a correctly specified model for the conditional mean, E(y|x), if, for some $\theta_o \in \Theta$,

$$E(y \mid \mathbf{x}) = m(\mathbf{x}, \boldsymbol{\theta}_{o}) \tag{1}$$

- We introduce the subscript "o" on theta to distinguish the parameter vector appearing in E(y|x) from other candidates for that vector.
- Often, the value θ_0 is called the true value of theta.

- Equation (1) is the most general way of thinking about what nonlinear least squares is intended to do: estimate models of conditional expectations.
- As a statistical matter, equation (1) is equivalent to a model with an additive, unobservable error with a zero conditional mean:

$$y = m(\mathbf{x}, \boldsymbol{\theta}_{\circ}) + u, \quad \mathbf{E}(u \mid \mathbf{x}) = 0,$$
 (2)

- Given equation (1), we obtain equation (2) by defining the error to be $u \equiv y m(\mathbf{x}, \theta_0)$.
- We formalize the first nonlinear least squares (NLS) assumption as follows: Assumption NLS.1: For some $\theta_o \in \Theta$, $E(y \mid \mathbf{x}) = m(\mathbf{x}, \theta_o)$.

- If we let $\mathbf{w} \equiv (\mathbf{x}, y)$, then $\boldsymbol{\theta}_{\text{o}}$ indexes a feature of the population distribution of \mathbf{w} , namely, the conditional mean of y given x.
- More generally, let w be an M-vector of random variables with some distribution in the population.
- We let \mathcal{W} denote the subset of \mathbb{R}^M representing the possible values of \mathbf{w} .
- Let θ_o denote a parameter vector describing some feature of the distribution of **w** (i.e. a conditional mean).
- ullet We assume that $oldsymbol{ heta}_{
 m o}$ belongs to a known parameter space $oldsymbol{\Theta}\subset\mathbb{R}^P$.
- We assume that our data come as a random sample of size N from the population; we label this random sample $\{\mathbf{w}_i : i = 1, 2, ...\}$, where each \mathbf{w}_i is an M-vector.

- What allows us to estimate θ_0 when it indexes E(y|x)? It is the fact that θ_0 is the value of θ that minimizes the expected squared error between y and $m(x;\theta)$.
- ullet That is, $oldsymbol{ heta}_{
 m o}$ solves the population problem

$$\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \mathrm{E}\left\{ [y - m(\mathbf{x}, \boldsymbol{\theta})]^2 \right\}, \tag{3}$$

where the expectation is over the joint distribution of (\mathbf{x}, y) .

• Because θ_o solves the population problem in expression (3), the analogy principle suggests estimating θ_o by solving the sample analogue.

- In other words, we replace the population moment $E\{[(y-m(\mathbf{x},\boldsymbol{\theta})]^2\}$ with the sample average.
- The NLS estimator of θ_0 , $\hat{\theta}$, solves

$$\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} N^{-1} \sum_{i=1}^{N} \left[y_i - m(\mathbf{x}_i, \boldsymbol{\theta}) \right]^2 \tag{4}$$

For now, we assume that a solution to this problem exists.

• The NLS objective function in expression (3) is a special case of a more general class of estimators. Let $q(\mathbf{w}, \boldsymbol{\theta})$ be a function of the random vector \mathbf{w} and the parameter vector $\boldsymbol{\theta}$.

• An M-estimator of θ_0 solves the problem

$$\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} N^{-1} \sum_{i=1}^{N} q(\mathbf{w}_{i}, \boldsymbol{\theta}), \qquad (5)$$

assuming that a solution, call it $\hat{\boldsymbol{\theta}}$, exists. The estimator clearly depends on the sample $\{\mathbf{w}_i: i=1,2,\ldots\}$, but we suppress that fact in the notation.

ullet The parameter vector $oldsymbol{ heta}_{
m o}$ is assumed to uniquely solve the population problem

$$\min_{\boldsymbol{\theta} \in \Theta} \mathrm{E}[q(\mathbf{w}, \boldsymbol{\theta})],\tag{6}$$

Agenda

- M-Estimation
 - Introduction
 - Identification, Uniform Convergence, and Consistency
 - Asymptotic Normality
- Two-Step M-Estimation
 - Consistency
 - Asymptotic Normality of Two-Step M-Estimators
 - Estimating the Asymptotic Variance
 - Adjustments for when we cannot ignore the first-stage estimation

- How do we translate the fact that $\theta_{\rm o}$ solves the population problem (6) into consistency of the M-estimator $\hat{\theta}$ that solves problem (5)?
- Heuristically, the argument is as follows. Since for each $\theta \in \Theta$, $\{q(\mathbf{w}_i, \theta) : i = 1, 2, ...\}$ is just an i.i.d. sequence, the law of large numbers implies that

$$N^{-1} \sum_{i=1}^{N} q(\mathbf{w}_{i}, \boldsymbol{\theta}) \stackrel{p}{\to} E[q(\mathbf{w}, \boldsymbol{\theta})], \tag{7}$$

under very weak finite moment assumptions.

• Since $\hat{\theta}$ minimizes the function on the left hand side of (7) and $\theta_{\rm o}$ minimizes the function on the right, it seems plausible that $\hat{\theta} \stackrel{p}{\to} \theta_{\rm o}$.

- There are essentially two issues to address.
- The first is identifiability of θ_0 , which is purely a population issue.
- The second is the sense in which the convergence in equation (7) happens across different values of θ in Θ .
- For nonlinear regression, we showed how θ_o solves the population problem (3). However, we did not argue that θ_o is always the unique solution to problem (3).
- Whether or not this is the case depends on the distribution of **x** and the nature of the regression function:

Assumption NLS.2:
$$\mathrm{E}\left\{\left[m\left(\mathbf{x}, \boldsymbol{\theta}_{\mathrm{o}}\right) - m(\mathbf{x}, \boldsymbol{\theta})\right]^{2}\right\} > 0$$
, all $\boldsymbol{\theta} \in \boldsymbol{\Theta}, \boldsymbol{\theta} \neq \boldsymbol{\theta}_{\mathrm{o}}$

• Assumption NLS.2 plays the same role as the assumption of no multicollinearity in OLS.

- For the general M-estimation case, we assume that $q(\mathbf{w}, \theta)$ has been chosen so that θ_0 is a solution to problem (6).
- Identification requires that $\theta_{\rm o}$ be the unique solution:

$$\mathrm{E}\left[q\left(\mathbf{w}, \boldsymbol{\theta}_{\mathrm{o}}\right)\right] < \mathrm{E}\left[q\left(\mathbf{w}, \boldsymbol{\theta}\right)\right], \quad \text{all } \boldsymbol{\theta} \in \boldsymbol{\Theta}, \quad \boldsymbol{\theta} \neq \boldsymbol{\theta}_{\mathrm{o}},$$
 (8)

- The second component for consistency of the M-estimator is convergence of the sample average $N^{-1} \sum_{i=1}^{N} q(\mathbf{w}_i, \theta)$ to its expected value.
- $oldsymbol{eta}$ It is not enough to simply invoke the usual weak law of large numbers at each $oldsymbol{ heta} \in oldsymbol{\Theta}$.

• Instead, uniform convergence in probability is sufficient. Mathematically,

$$\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left| N^{-1} \sum_{i=1}^{N} q(\mathbf{w}_{i}, \boldsymbol{\theta}) - \mathbb{E}[q(\mathbf{w}, \boldsymbol{\theta})] \right| \stackrel{p}{\to} 0, \tag{9}$$

- Uniform convergence clearly implies pointwise convergence, but the converse is not true: it is possible for equation (7) to hold but equation (9) to fail.
- To state a formal result concerning uniform convergence, we need to be more careful in stating assumptions about the function $q(\cdot, \cdot)$ and the parameter space Θ .
- ullet Technically, we should assume that $q(\cdot, oldsymbol{ heta})$ is a Borel measurable function on \mathscr{W} for each $oldsymbol{ heta} \in oldsymbol{\Theta}$.

- \bullet The next assumption concerning q is practically more important.
- We assume that, for each $\mathbf{w} \in \mathcal{W}, q(\mathbf{w}, \cdot)$ is a continuous function over the parameter space $\mathbf{\Theta}$.
- We can now state a theorem concerning uniform convergence appropriate for the random sampling environment. This result, known as the uniform weak law of large numbers (UWLLN), dates back to LeCam (1953). Theorem 1 (Uniform Weak Law of Large Numbers): Let \mathbf{w} be a random vector taking values in $\mathscr{W} \subset \mathbb{R}^M$, let $\mathbf{\Theta}$ be a subset of \mathbb{R}^P and let $q: \mathscr{W} \times \mathbf{\Theta} \to \mathbb{R}$ be a real valued function. Assume that (a) $\mathbf{\Theta}$ is compact; (b) for each $\mathbf{\theta} \in \mathbf{\Theta}$, $q(\cdot, \mathbf{\theta})$ is Borel measurable on \mathscr{W} ; (c) for each $\mathbf{w} \in \mathscr{W}$, $q(\mathbf{w}, \cdot)$ is continuous on $\mathbf{\Theta}$; and (d) $|q(\mathbf{w}, \mathbf{\theta})| \leq b(\mathbf{w})$ for all $\mathbf{\theta} \in \mathbf{\Theta}$, where b is a nonnegative function on \mathscr{W} such that $\mathrm{E}[b(\mathbf{w})] < \infty$. Then equation (9) holds.

- Theorem 2 (Consistency of M-Estimators): Under the assumptions of Theorem 1, assume that the identification assumption (8) holds. Then a random vector, $\hat{\boldsymbol{\theta}}$, solves problem (5), and $\hat{\boldsymbol{\theta}} \stackrel{p}{\to} \boldsymbol{\theta}_{o}$.
- Lemma 1: Suppose that $\hat{\theta} \stackrel{P}{\to} \theta_0$, and assume that $r(\mathbf{w}, \theta)$ satisfies the same assumptions on $q(\mathbf{w}, \theta)$ in Theorem 2. Then

$$N^{-1} \sum_{i=1}^{N} r\left(\mathbf{w}_{i}, \hat{\boldsymbol{\theta}}\right) \stackrel{p}{\to} \mathrm{E}\left[r\left(\mathbf{w}, \boldsymbol{\theta}_{o}\right)\right], \tag{10}$$

That is $N^{-1} \sum_{i=1}^{N} r(\mathbf{w}_i, \hat{\boldsymbol{\theta}})$ is a consistent estimator of $E[r(\mathbf{w}, \boldsymbol{\theta}_0)]$.

Agenda

- M-Estimation
 - Introduction
 - Identification, Uniform Convergence, and Consistency
 - Asymptotic Normality
- Two-Step M-Estimation
 - Consistency
 - Asymptotic Normality of Two-Step M-Estimators
 - Estimating the Asymptotic Variance
 - Adjustments for when we cannot ignore the first-stage estimation

- The simplest asymptotic normality proof proceeds as follows.
- Assume that $\theta_{\rm o}$ is in the interior of Θ , which means that Θ must have nonempty interior (this assumption is true in most applications). Then, since $\hat{\theta} \stackrel{p}{\to} \theta_{\rm o}, \hat{\theta}$ is in the interior of Θ with probability approaching one.
- If $q(\mathbf{w}, \cdot)$ is continuously differentiable on the interior of Θ , then (with probability approaching one) $\hat{\theta}$ solves the first-order condition

$$\sum_{i=1}^{N} s\left(\mathbf{w}_{i}, \hat{\boldsymbol{\theta}}\right) = \mathbf{0}, \tag{11}$$

where $\mathbf{s}(\mathbf{w}, \boldsymbol{\theta})$ is the $P \times 1$ vector of partial derivatives of $q(\mathbf{w}, \boldsymbol{\theta})$: $\mathbf{s}(\mathbf{w}, \boldsymbol{\theta})' = \nabla_{\boldsymbol{\theta}} q(\mathbf{w}, \boldsymbol{\theta}) \equiv [\partial q(\mathbf{w}, \boldsymbol{\theta})/\partial \theta_1, \partial q(\mathbf{w}, \boldsymbol{\theta})/\partial \theta_2, \dots, \partial q(\mathbf{w}, \boldsymbol{\theta})/\partial \theta_P]$. (That is, $\mathbf{s}(\mathbf{w}, \boldsymbol{\theta})$ is the transpose of the gradient of $q(\mathbf{w}, \boldsymbol{\theta})$).

• We call $s(w, \theta)$ the score of the objective function $q(w, \theta)$.

• If $q(\mathbf{w}, \theta)$ is twice continuously differentiable, then each row of the left-hand side of equation (11) can be expanded about θ_o in a mean-value expansion:

$$\sum_{i=1}^{N} \mathbf{s} \left(\mathbf{w}_{i}, \hat{\boldsymbol{\theta}} \right) = \sum_{i=1}^{N} \mathbf{s} \left(\mathbf{w}_{i}, \boldsymbol{\theta}_{o} \right) + \left(\sum_{i=1}^{N} \ddot{\mathbf{H}}_{i} \right) \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{o} \right), \tag{12}$$

• The notation $\ddot{\mathbf{H}}_i$ denotes the $P \times P$ Hessian of the objective function, $q(\mathbf{w}_i, \boldsymbol{\theta})$, with respect to $\boldsymbol{\theta}$, but with each row of $\mathbf{H}(\mathbf{w}_i, \boldsymbol{\theta}) \equiv \partial^2 q(\mathbf{w}_i, \boldsymbol{\theta}) / \partial \boldsymbol{\theta} \partial \hat{\boldsymbol{\theta}}' \equiv \nabla_{\boldsymbol{\theta}}^2 q(\mathbf{w}_i, \boldsymbol{\theta})$ evaluated at a different mean value.

ullet Combining equations (11) and (12) and multiplying through by $1/\sqrt{N}$ gives

$$\mathbf{0} = N^{-1/2} \sum_{i=1}^{N} \mathbf{s} \left(\mathbf{w}_{i}, \boldsymbol{\theta}_{o} \right) + \left(N^{-1} \sum_{i=1}^{N} \ddot{\mathbf{H}}_{i} \right) \sqrt{N} \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{o} \right), \tag{13}$$

- Using Lemma 1 we get $N^{-1} \sum_{i=1}^{N} \ddot{\mathbf{H}}_{i} \stackrel{P}{\rightarrow} \mathrm{E} [\mathbf{H} (\mathbf{w}, \boldsymbol{\theta}_{\mathrm{o}})].$
- If $\mathbf{A}_{o} \equiv \mathrm{E}\left[\mathbf{H}\left(\mathbf{w}, \boldsymbol{\theta}_{o}\right)\right]$ is nonsingular, then $N^{-1} \sum_{i=1}^{N} \ddot{\mathbf{H}}_{i}$ is nonsingular w.p.a. 1 and $\left(N^{-1} \sum_{i=1}^{N} \ddot{\mathbf{H}}_{i}\right)^{-1} \stackrel{p}{\rightarrow} \mathbf{A}_{o}^{-1}$.
- Therefore, we can write

$$\sqrt{N}\left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{o}\right) = \left(N^{-1} \sum_{i=1}^{N} \ddot{\mathbf{H}}_{i}\right)^{-1} \left[-N^{-1/2} \sum_{i=1}^{N} \mathbf{s}_{i} \left(\boldsymbol{\theta}_{o}\right)\right], \tag{14}$$

where $\mathbf{s}_i(\boldsymbol{\theta}_{\mathrm{o}}) \equiv \mathbf{s}(\mathbf{w}_i, \boldsymbol{\theta}_{\mathrm{o}})$.

• Since $o_p(1) \cdot O_p(1) = o_p(1)$ we have,

$$\sqrt{N}\left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{o}\right) = \mathbf{A}_{o}^{-1} \left[-N^{-1/2} \sum_{i=1}^{N} \mathbf{s}_{i} \left(\boldsymbol{\theta}_{o}\right) \right] + o_{p}(1), \tag{15}$$

- This is an important equation. It shows that $\sqrt{N} (\theta \theta_{\rm o})$ inherits its limiting distribution from the average of the scores, evaluated at $\theta_{\rm o}$. The matrix \mathbf{A}_0^{-1} simply acts as linear transformation.
- ullet Absorbing this linear transformation into ${f s}_i\left(heta_{
 m o}
 ight)$, we can write

$$\sqrt{N}\left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{o}\right) = N^{-1/2} \sum_{i=1}^{N} \mathbf{e}_{i}\left(\boldsymbol{\theta}_{o}\right) + o_{p}(1), \tag{16}$$

where $\mathbf{e}_i(\theta_o) \equiv -\mathbf{A}_o^{-1}\mathbf{s}_i(\theta_o)$; this is sometimes called the **influence function** representation of θ , where $\mathbf{e}(\mathbf{w}, \theta)$ is the influence function.

• THEOREM 3 (Asymptotic Normality of M-Estimators): In addition to the assumptions in Theorem 2, assume (a) θ_o is in the interior of Θ ; (b)s(w,·) is continuously differentiable on the interior of Θ for all $\mathbf{w} \in \mathcal{W}$; (c) Each element of $\mathbf{H}(\mathbf{w}, \theta)$ is bounded in absolute value by a function $b(\mathbf{w})$, where $\mathrm{E}[b(\mathbf{w})] < \infty$; (d) $\mathbf{A}_0 \equiv \mathrm{E}\left[\mathbf{H}\left(\mathbf{w}, \theta_o\right)\right]$ is positive definite; (e) $\mathrm{E}\left[\mathbf{s}\left(\mathbf{w}, \theta_o\right)\right] = \mathbf{0}$; and (f) each element of $\mathbf{s}\left(\mathbf{w}, \theta_o\right)$ has finite second moment. Then

$$\sqrt{N} \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{o} \right) \stackrel{d}{\to} \text{Normal} \left(0, \mathbf{A}_{o}^{-1} \mathbf{B}_{0} \mathbf{A}_{o}^{-1} \right),$$
 (17)

where $\mathbf{A_o} \equiv \mathrm{E}\left[\mathbf{H}\left(\mathbf{w}, \boldsymbol{\theta}_\mathrm{o}\right)\right]$ and $\mathbf{B}_\mathrm{o} \equiv \mathrm{E}\left[\mathbf{s}\left(\mathbf{w}, \boldsymbol{\theta}_\mathrm{o}\right)\mathbf{s}\left(\mathbf{w}, \boldsymbol{\theta}_\mathrm{o}\right)'\right] = \mathrm{Var}\left[\mathbf{s}\left(\mathbf{w}, \boldsymbol{\theta}_\mathrm{o}\right)\right]$

Thus,

$$Avar(\hat{\boldsymbol{\theta}}) = \mathbf{A}_o^{-1} \mathbf{B}_o \mathbf{A}_o^{-1} / N, \tag{18}$$

- Sometimes applications of M-estimators involve a first-stage estimation (an example is OLS with generated regressors).
- Let $\hat{\gamma}$ be a preliminary estimator, usually based on the random sample $\{\mathbf{w}_i: i=1,2,\ldots,N\}$.
- ullet A two-step M-estimator θ of θ_0 solves the problem

$$\min_{\boldsymbol{\theta} \in \Theta} \sum_{i=1}^{N} q(\mathbf{w}_{i}, \boldsymbol{\theta}; \hat{\gamma}), \qquad (19)$$

where q is now defined on $\mathcal{W} \times \mathbf{\Theta} \times \mathbf{\Gamma}$, and $\mathbf{\Gamma}$ is a subset of \mathbb{R}^J .

Agenda

- M-Estimation
 - Introduction
 - Identification, Uniform Convergence, and Consistency
 - Asymptotic Normality
- Two-Step M-Estimation
 - Consistency
 - Asymptotic Normality of Two-Step M-Estimators
 - Estimating the Asymptotic Variance
 - Adjustments for when we cannot ignore the first-stage estimation

- ullet For the general two-step M-estimator, when will $\hat{m{ heta}}$ be consistent for $m{ heta}_{
 m o}$?
- In practice, the important condition is the identification assumption.
- ullet To state the identification condition, we need to know about the asymptotic behavior of $\hat{\gamma}$.
- A general assumption is that $\hat{\gamma} \stackrel{p}{\rightarrow} \gamma^*$, where γ^* is some element in Γ.
- The identification condition for the two-step M-estimator is

$$\mathbb{E}\left[q\left(\mathbf{w},\boldsymbol{\theta}_{\mathrm{o}};\boldsymbol{\gamma}^{*}\right)\right] < \mathbb{E}\left[q\left(\mathbf{w},\boldsymbol{\theta};\boldsymbol{\gamma}^{*}\right)\right] \text{ all } \boldsymbol{\theta} \in \boldsymbol{\Theta}, \quad \boldsymbol{\theta} \neq \boldsymbol{\theta}_{\mathrm{o}}, \tag{20}$$

• The consistency argument is essentially the same as that underlying Theorem 2. If $q(\mathbf{w}_i, \boldsymbol{\theta}; \gamma)$ satisfies the UWLLN over $\boldsymbol{\Theta} \times \boldsymbol{\Gamma}$ then expression (19) can be shown to converge to $\mathrm{E}\left[q(\mathbf{w}, \boldsymbol{\theta}; \gamma^*)\right]$ uniformly over $\boldsymbol{\Theta}$. Along with identification, this result can be shown to imply consistency of $\hat{\boldsymbol{\theta}}$ for $\boldsymbol{\theta}_{\mathrm{o}}$.

Agenda

- M-Estimation
 - Introduction
 - Identification, Uniform Convergence, and Consistency
 - Asymptotic Normality
- Two-Step M-Estimation
 - Consistency
 - Asymptotic Normality of Two-Step M-Estimators
 - Estimating the Asymptotic Variance
 - Adjustments for when we cannot ignore the first-stage estimation

- With the two-step M-estimator, there are two cases worth distinguishing.
- The first occurs when the asymptotic variance of $\sqrt{N}\left(\hat{\theta}-\theta_{\rm o}\right)$ does not depend on the asymptotic variance of $\sqrt{N}\left(\hat{\gamma}-\gamma^*\right)$.
- The second occurs when the asymptotic variance of $\sqrt{N}\left(\hat{\theta}-\theta_{\rm o}\right)$ should be adjusted to account for the first-stage estimation of γ^* .
- We first derive conditions under which we can ignore the first-stage estimation error.

- first derive conditions under which we can ignore the first-stage estimation error.
- Using arguments similar to those used to derive the asymptotic normality of M-estimators, it can be shown that, under standard regularity conditions,

$$\sqrt{N}\left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{o}\right) = \mathbf{A}_{o}^{-1}\left(-N^{-1/2}\sum_{i=1}^{N}\mathbf{s}_{i}\left(\boldsymbol{\theta}_{o};\hat{\gamma}\right)\right) + o_{p}(1), \tag{21}$$

where now $\mathbf{A_o} = \mathrm{E}\left[\mathbf{H}\left(\mathbf{w}, \boldsymbol{\theta_o}; \boldsymbol{\gamma}^*\right)\right]$.

• In obtaining the score and the Hessian, we take derivatives only with respect to θ ; γ^* simply appears as an extra argument.

Now if,

$$N^{-1/2} \sum_{i=1}^{N} \mathbf{s}_i \left(\boldsymbol{\theta}_{o}; \hat{\boldsymbol{\gamma}} \right) = N^{-1/2} \sum_{i=1}^{N} \mathbf{s}_i \left(\boldsymbol{\theta}_{o}; \boldsymbol{\gamma}^* \right) + o_p(1), \tag{22}$$

- Then $\sqrt{N}\left(\hat{\theta}-\theta_{\rm o}\right)$ behaves the same asymptotically whether we used $\hat{\gamma}$ or its plim in defining the M-estimator.
- When does equation (22) hold?

- Assuming that $\sqrt{N}(\hat{\gamma} \gamma^*) = O_p(1)$ (which is standard).
- A mean value expansion similar to (12) gives

$$N^{-1/2} \sum_{i=1}^{N} \mathbf{s}_{i} \left(\boldsymbol{\theta}_{o}; \hat{\gamma}\right) = N^{-1/2} \sum_{i=1}^{N} \mathbf{s}_{i} \left(\boldsymbol{\theta}_{o}; \gamma^{*}\right) + \mathbf{F}_{o} \sqrt{N} \left(\hat{\gamma} - \gamma^{*}\right) + o_{\rho}(1), \quad (23)$$

where \mathbf{F}_0 is the $P \times J$ matrix $\mathbf{F}_0 \equiv \mathrm{E}\left[\nabla_{\gamma}\mathbf{s}\left(\mathbf{w}, \boldsymbol{\theta}_0; \boldsymbol{\gamma}^*\right)\right]$.

• Therefore if

$$E\left[\nabla_{\gamma} \mathbf{s}\left(\mathbf{w}, \boldsymbol{\theta}_{o}; \boldsymbol{\gamma}^{*}\right)\right] = \mathbf{0}, \tag{24}$$

then equation (22) holds.

ullet And the asymptotic variance of the two-step M-estimator is the same as if γ^* were plugged in.

- There are many problems for which assumption (24) does not hold.
- These problems include some the methods for correcting for endogeneity in Probit and Tobit models.
- ullet In such cases we need to make an adjustment to the asymptotic variance of $\sqrt{N}\left(\hat{m{ heta}}-m{ heta}_{
 m o}
 ight)$.
- Assume

$$\sqrt{N}\left(\hat{\gamma} - \gamma^*\right) = N^{-1/2} \sum_{i=1}^{N} \mathbf{r}_i\left(\gamma^*\right) + o_p(1), \tag{25}$$

where $\mathbf{r}_{i}\left(\gamma^{*}\right)$ is a $J \times 1$ vector with $\mathrm{E}\left[\mathbf{r}_{i}\left(\gamma^{*}\right)\right] = \mathbf{0}$.

• Now using equation (23) we can write

$$\sqrt{N}\left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{o}\right) = \mathbf{A}_{o}^{-1} N^{-1/2} \sum_{i=1}^{N} \left[-\mathbf{g}_{i}\left(\boldsymbol{\theta}_{o}; \boldsymbol{\gamma}^{*}\right)\right] + o_{p}(1), \tag{26}$$

where $\mathbf{g}_{i}\left(\boldsymbol{\theta}_{\mathrm{o}};\boldsymbol{\gamma}^{*}\right)\equiv\mathbf{s}_{i}\left(\boldsymbol{\theta}_{\mathrm{o}};\boldsymbol{\gamma}^{*}\right)+\mathbf{F}_{\mathrm{o}}\mathbf{r}_{i}\left(\boldsymbol{\gamma}^{*}\right)$.

- Since $\mathbf{g}_i(\theta_0; \gamma^*)$ has zero mean, the standardized partial sum in equation (26) can be assumed to satisfy the central limit theorem.
- Define the $P \times P$ matrix

$$\mathbf{D}_{o} \equiv E\left[\mathbf{g}_{i}\left(\boldsymbol{\theta}_{o}; \boldsymbol{\gamma}^{*}\right) \mathbf{g}_{i}\left(\boldsymbol{\theta}_{o}; \boldsymbol{\gamma}^{*}\right)'\right] = Var\left[\mathbf{g}_{i}\left(\boldsymbol{\theta}_{o}; \boldsymbol{\gamma}^{*}\right)\right], \tag{27}$$

Then

Avar
$$\sqrt{N} \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{o} \right) = \mathbf{A}_{o}^{-1} \mathbf{D}_{o} \mathbf{A}_{o}^{-1},$$
 (28)

Agenda

- M-Estimation
 - Introduction
 - Identification, Uniform Convergence, and Consistency
 - Asymptotic Normality
- Two-Step M-Estimation
 - Consistency
 - Asymptotic Normality of Two-Step M-Estimators
 - Estimating the Asymptotic Variance
 - Adjustments for when we cannot ignore the first-stage estimation

- ullet We first consider estimating the asymptotic variance of $\hat{m{ heta}}$ in the case where there are no nuisance parameters.
- Under regularity conditions that ensure uniform converge of the Hessian, the estimator

$$N^{-1} \sum_{i=1}^{N} \mathbf{H} \left(\mathbf{w}_{i}, \hat{\boldsymbol{\theta}} \right) \equiv N^{-1} \sum_{i=1}^{N} \hat{\mathbf{H}}_{i}, \tag{29}$$

is consistent for \mathbf{A}_{α} , by Lemma 1.

• By Lemma 1, under standard regularity conditions we have

$$N^{-1} \sum_{i=1}^{N} \mathbf{s} \left(\mathbf{w}_{i}, \hat{\boldsymbol{\theta}} \right) \mathbf{s} \left(\mathbf{w}_{i}, \hat{\boldsymbol{\theta}} \right)' \equiv N^{-1} \sum_{i=1}^{N} \hat{\mathbf{s}}_{i} \hat{\mathbf{s}}_{i}' \stackrel{P}{\to} \mathbf{B}_{o}.$$
 (30)

ullet Combining equations (29) and (30) we can consistently estimate Avar $\sqrt{N}\left(\hat{m{ heta}}-m{ heta}_{ ext{o}}
ight)$ by

Avar
$$\sqrt{N} \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{o} \right) = \hat{\mathbf{A}}^{-1} \hat{\mathbf{B}} \hat{\mathbf{A}}^{-1},$$
 (31)

• The asymptotic standard errors are obtained from the matrix

$$\hat{\mathbf{V}} \equiv \widehat{\mathsf{Avar}(\hat{\boldsymbol{\theta}})} = \hat{\mathbf{A}}^{-1} \hat{\mathbf{B}} \hat{\mathbf{A}}^{-1} / \mathcal{N}. \tag{32}$$

• Which can be expressed as

$$\left(\sum_{i=1}^{N} \hat{\mathbf{H}}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \hat{\mathbf{s}}_{i} \hat{\mathbf{s}}_{i}^{\prime}\right) \left(\sum_{i=1}^{N} \hat{\mathbf{H}}_{i}\right)^{-1}.$$
 (33)

Agenda

- M-Estimation
 - Introduction
 - Identification, Uniform Convergence, and Consistency
 - Asymptotic Normality
- Two-Step M-Estimation
 - Consistency
 - Asymptotic Normality of Two-Step M-Estimators
 - Estimating the Asymptotic Variance
 - Adjustments for when we cannot ignore the first-stage estimation

- When assumption (24) is violated, the asymptotic variance estimator of $\hat{\theta}$ must account for the asymptotic variance of $\hat{\gamma}$.
- We need to estimate equation (28).
- We already know how to consistently estimate \mathbf{A}_{o} using equation (29).
- \bullet Estimation of \mathbf{D}_{o} is also straightforward.
- First we need to estimate \mathbf{F}_{o} ,

$$\hat{\mathbf{F}} = N^{-1} \sum_{i=1}^{N} \nabla_{\gamma} \mathbf{s}_{i}(\hat{\boldsymbol{\theta}}; \hat{\gamma}), \tag{34}$$

- Next, replace $\mathbf{r}_i(\gamma^*)$ with $\hat{\mathbf{r}}_i \equiv \mathbf{r}_i(\hat{\gamma})$.
- Then

$$\hat{\mathbf{D}} \equiv N^{-1} \sum_{i=1}^{N} \hat{\mathbf{g}}_{i} \hat{\mathbf{g}}_{i}^{\prime} \stackrel{p}{\to} \mathbf{D}_{o}, \tag{35}$$

where $\hat{\mathbf{g}}_i = \hat{\mathbf{s}}_i + \hat{\mathbf{F}}\hat{\mathbf{r}}_i$.

• The asymptotic variance of the two-step M-estimator is,

$$\left(\sum_{i=1}^{N} \hat{\mathbf{H}}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \hat{\mathbf{g}}_{i} \hat{\mathbf{g}}_{i}'\right) \left(\sum_{i=1}^{N} \hat{\mathbf{H}}_{i}\right)^{-1}.$$
 (36)