MATH 601 (DUE 11/22)

HIDENORI SHINOHARA

Contents

1.	THE THEOREM	ON SYMMETRIC POLYNOMIALS	

1

2. Galois Theory VI

1

1. THE THEOREM ON SYMMETRIC POLYNOMIALS

Exercise. (Problem 1) By substituting $u_4 = 0$, we get $u_1^2 u_2 u_3 + u_1 u_2^2 u_3 + u_1 u_2 u_3^2 = s_3 s_1$. $s_3 s_1$ with 4 variables expands to $u_1^2 u_2 u_3 + u_1^2 u_2 u_4 + u_1^2 u_3 u_4 + u_1 u_2^2 u_3 + u_1 u_2^2 u_4 + u_1 u_2 u_3^2 + 4u_1 u_2 u_3 u_4 + u_1 u_2 u_4^2 + u_1 u_3^2 u_4 + u_1 u_3 u_4^2 + u_2^2 u_3 u_4 + u_2 u_3^2 u_4 + u_2 u_3 u_4^2$. Then $s_3 s_1 - f$ where f is the original polynomial gives us $4u_1 u_2 u_3 u_4 = 4s_4$. Therefore, $f = s_3 s_1 - 4s_4$.

Exercise. (Problem 2) We are given that $|M-xI|=x^3-ax^2+bx-c$. This implies that $|M-(-x)I|=-x^3-ax^2-bx-c$. Since the determinant function preserves multiplication, $|M-xI||M-(-x)I|=|M^2-x^2I|$. This implies $|M^2-x^2I|=-x^6+(a^2-2b)x^4+(b^2+2ac)x^2+c^2$. Therefore, the characteristic polynomial of M is $-x^3+(a^2-2b)x^2+(b^2+2ac)x+c^2$.

2. Galois Theory VI

Exercise. (Problem 3)

- (a) $\{(123), (132), e\}$ is clearly a subgroup of the stabilizer group S_v of v. Since $(12) \notin S_v$, $3 \le |S_v| \le 5$. By Lagrange's Theorem, $S_v = \langle (123) \rangle$.
- (b) By (i), S_3v contains only $[S_3:S_v]=2$ elements. Thus $v'=(12)\cdot v=u_2u_1^2+u_1u_3^2+u_3u_2^2$.