

https://iedib.net/

Matemàtiques I

Lliurament 3: Trigonometria

Josep Mulet Àmbit Científic IEDIB

Aquesta obra està subjecta a les condicions de llicència CREATIVE COMMONS no comercial i compartir igual.

Edició LATEX:

B Josep Mulet

Versió: 28-09-2020

Reconeixement-NoComercial-CompartirIgual 4.0 Internacional

Índex

1	Les raons trigonomètriques				
2	Raons d'angles qualssevol	7			
3	Resolució de triangles 3.1 Teorema del sinus				
4	Funcions trigonomètriques	17			
5	Identitats trigonomètriques				
6	Equacions trigonomètriques	24			

1. Les raons trigonomètriques

Introducció

Existeixen situacions com les mostrades en la figura 1a) i 1b) que són relativament fàcils de resoldre, simplement aplicant semblança de triangles (Teorema de *Thales*) o mitjançant el teorema de Pitàgores. En canvi, la situació 1c) no es pot resoldre amb aquests teoremes perquè ens fan falta dades de costats.

Figura 1: Les situacions a) i b) es poden resoldre sense trigonometria. La situació c) requereix de les raons trigonomètriques

D'aquest darrer exemple, ens adonam que necessitam d'alguna eina que permeti relacionar els costats amb els angles d'un triangle. Aquesta eina són les **raons trigonomètriques** que estudiarem en aquest lliurament.

La trigonometria té nombroses aplicacions, entre les que es troben: les tècniques de triangulació, en la mesura de distàncies entre punts geogràfics (topografia), i en sistemes globals de navegació

per satèl·lits (GPS).

Figura 2: Tres exemples on s'empra la triangulació

Raons d'un angle agut

Definim les raons trigonomètriques a partir del **triangle rectangle** de la figura. Anomenam H la hipotenusa del triangle. Si ens fixam en un **angle agut** α , designam C.O. el catet oposat i C.C. el catet contigu a aquest angle. Definim les raons sinus, cosinus i tangent de l'angle α com:

sinus:
$$\sin \alpha = \frac{C.O.}{H}$$
, cosinus: $\cos \alpha = \frac{C.C.}{H}$ i tangent: $\operatorname{tg} \alpha = \frac{C.O.}{C.C.}$

De les definicions del sinus i cosinus podem aïllar els catets

$$C.O. = H \sin \alpha \tag{1}$$

$$C.C. = H\cos\alpha \tag{2}$$

També definim les raons recíproques (1 dividit) com

cosecant:
$$\csc \alpha = \frac{1}{\sin \alpha}$$
, secant: $\sec \alpha = \frac{1}{\cos \alpha}$ i cotangent: $\cot \alpha = \frac{1}{\tan \alpha}$.

És important remarcar que les raons trigonomètriques només depenen de l'angle i són independents de la mida del triangle.

Relacions trigonomètriques

Si aplicam el teorema de Pitàgores al triangle rectangle de la figura

$$C.O.^2 + C.C.^2 = H^2$$
 (3)

Dividim tots els termes d'aquesta relació entre H^2

$$\left(\frac{C.O.}{H}\right)^2 + \left(\frac{C.C.}{H}\right)^2 = 1 \tag{4}$$

Finalment identificam cada expressió entre parèntesi com la definició del sinus i el cosinus.

Relació fonamental de la trigonometria

$$\sin^2 \alpha + \cos^2 \alpha = 1 \tag{5}$$

D'aquesta relació veim que si coneixem el sinus podem calcular el cosinus de l'angle i viceversa. A més, se'n desprèn que els valors del sinus i cosinus estan compresos entre -1 i 1.

Utilitzant les definicions de les raons trigonomètriques, demostram la segona relació fonamental

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha} \tag{6}$$

La comprovació d'aquesta relació es fa a partir de la definició de les raons $\frac{\sin \alpha}{\cos \alpha} = \frac{\frac{CO}{H}}{\frac{CC}{H}} = \frac{CO}{CC} =$ tg α .

Si dividim tots els termes de la relació fonamental (5) entre $\cos^2 \alpha$ trobam

$$\frac{\sin^2 \alpha}{\cos^2 \alpha} + \frac{\cos^2 \alpha}{\cos^2 \alpha} = \frac{1}{1\cos^2 \alpha}$$

$$tg^2 \alpha + 1 = \frac{1}{\cos^2 \alpha}$$
(7)

Atenció

No és el mateix $\sin^2 \alpha$ que $\sin \alpha^2$. En el primer cas el resultat del sinus està al quadrat. En el segon, es fa el sinus de l'angle al quadrat. Són coses diferents.

Alerta

Quan escriguis una raó no t'oblidis l'angle. $\sin = 0,5$ està mal expressat; cal dir l'angle. Mentre que $\sin \alpha = 0,5$ està ben escrit.

La circumferència goniomètrica

Podem representar les raons trigonomètriques sobre una circumferència de radi 1. Donat que la hipotenusa és 1, els catets són directament els valors del sinus i el cosinus. La tangent s'obté d'allargar el radi (vegeu la figura següent).

Figura 3: Representació de les raons trigonomètriques per un angle agut. Les raons no depenen de la mida del triangle; només de l'angle.

Vídeo 3.1: Raons d'un angle agut https://www.youtube.com/watch?v=ltdGl1Dh1MQ

Raons d'angles notables aguts

Hi ha una sèrie d'angles dels quals sabem calcular exactament el valor de les raons. Aquests es coneixen com angles notables. La taula següent recull el valor de les raons per aquests angles

Taula 1:

Angle $lpha$ ($^{\circ}$)	Angle α (rad)	$\sin \alpha$	$\cos \alpha$	$\operatorname{tg} \alpha$
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90	$\frac{\pi}{2}$	1	0	_

És interessant memoritzar aquests valors ja que apareixen amb bastanta freqüència al llarg del tema. Si tens una calculadora científica de darrera generació, aquestes tenen un mode entrada/sortida matemàtic. Això vol dir, que si li demanam sin 60 = contestarà exactament $\sqrt{3}/2$ en comptes del valor decimal. Si estau interessats a conèixer la demostració d'aquests valors, podeu visualitzar el següent vídeo.

Vídeo 3.2: Ampliació: Demostració de les raons dels angles notables 0, 30, 45, 60 i 90 graus https://www.youtube.com/watch?v=PAzHtamk3m8

EXERCICI RESOLT 1

Sabent que $\cos \alpha = \frac{2}{3}$ i que α és un angle agut, calcula exactament (sense emprar la calculadora), el valor de $\sin \alpha$ i tg α .

Utilitzam la relació fonamental (5)

$$\sin^2\alpha + \cos^2\alpha = 1 \Rightarrow \sin\alpha = \pm\sqrt{1-\cos^2\alpha} = \sqrt{1-\left(\frac{2}{3}\right)^2} = \sqrt{1-\frac{4}{9}}$$

= $\frac{\sqrt{5}}{3}$. Hem pres el signe positiu de l'arrel perquè totes les raons d'un angle agut són.

Per trobar la tangent, utilitzam la relació (6). $tg \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{\sqrt{5}}{3}}{\frac{2}{3}} = \frac{\sqrt{5}}{2}$

Ens adonam que per aquest angle la tangent val més que 1. Això implica que aquest angle és major de 45° .

EXERCICIS PROPOSATS

1. Ens diuen que la tangent de l'angle β en el triangle de la figura val 1,7857. És això correcte? Per què?

2. Calcula el sinus, cosinus i tangent dels angles α i β del triangle rectangle de la figura. Utilitza

les seves definicions.

3. Sabem que $\sin \alpha = 0, 8$. Empra la relació fonamental (5) per calcular els valors de $\cos \alpha$ i $\operatorname{tg} \alpha$.

2. Raons d'angles qualssevol

Els angles dins d'una volta (360 graus) es classifiquen en quadrants:

- I quadrant: entre 0 i 90 grausII quadrant: entre 90 i 180 graus
- III quadrant: entre 180 i 270 graus
- IV quadrant: entre 270 i 360 graus

Ampliació del concepte d'angle

Per conveni prenem angles positius aquells que s'obtenen de girar en sentit contrari a les agulles del rellotge. Per contra, un angle de -45° significa girar 45 graus en sentit horari. Sempre és possible convertir un angle negatiu en un de positiu sumant voltes completes $-45^\circ = -45 + 360 = 315^\circ$ és un angle del IV quadrant.

Angles de més de 360 graus signifiquen una o més voltes completes més una fracció d'una volta. Per exemple l'angle de $1240^\circ=3\cdot360+160$ correspon a 3 voltes completes més 160 graus. És, per tant, un angle del segon quadrant.

Signe de les raons trigonomètriques segons el quadrant:

Les raons trigonomètriques tenen diferent signe segons el quadrant de l'angle. Si representam la raó sobre la circumferència goniomètrica i aquesta cau sobre els semi-eixos positius (negatius), la raó serà positiva (negativa). Anam a veure com són les raons d'un angle de cada quadrant.

Angles del primer quadrant

Ja hem vist que en el primer quadrant totes les raons són positives.

Angles del segon quadrant

La simulació anterior mostra les raons de l'angle 150° del segon quadrant i la relació amb l'angle de 30° .

La primera cosa que veim és que el sinus és positiu i el cosinus negatiu. Llavors el seu quocient, que és la tangent, també és negativa. Si anomenam α a un angle del primer quadrant, també podem deduir

- $\sin(180 \alpha) = \sin \alpha$
- $\cos(180 \alpha) = -\cos\alpha$
- $\operatorname{tg}(180 \alpha) = -\operatorname{tg}\alpha$

Angles del tercer quadrant

La gràfica mostra les raons de l'angle 210° del tercer quadrant i la relació amb l'angle de 30° .

Al tercer quadrant el sinus i el cosinus són negatius. Llavors el seu quocient, que és la tangent és positiva. Si anomenam α a un angle del primer quadrant, deduïm

- $\sin(180 + \alpha) = -\sin\alpha$
- $\cos(180 + \alpha) = -\cos\alpha$
- $\operatorname{tg}(180 + \alpha) = \operatorname{tg} \alpha$

Aquesta darrera relació ens assegura que si a un angle li sumam o resta 180 graus, la tangent no canvia.

Angles del quart quadrant

La gràfica mostra les raons de l'angle 330° del quart quadrant i la relació amb l'angle de 30°.

La primera cosa que veim és que el sinus és negatiu i el cosinus positiu. Llavors el seu quocient, que és la tangent, és negatiu. Si anomenam α a un angle del primer quadrant, també podem deduir $\sin(360-\alpha)=-\sin\alpha,\,\cos(360-\alpha)=\cos\alpha$ i $\tan(360-\alpha)=-\tan\alpha$. A l'angle $\tan(360-\alpha)=-\tan\alpha$. A l'angle $\tan(360-\alpha)=-\tan\alpha$.

Acabam que trobar les identitats de l'angle oposat

- $\sin(-\alpha) = -\sin \alpha$
- $\cos(-\alpha) = \cos \alpha$
- $\operatorname{tg}(-\alpha) = -\operatorname{tg}\alpha$

Diem que el cosinus és una **funció parell** (no es veu modificada quan canviam el signe a l'angle) mentres que el sinus i la tangent són **funcions senars** perquè queden modificades per un signe.

Figura 4: Quadre resum del signe de les raons trigonomètriques.

Trobar l'angle sabent la raó

Les funcions trigonomètriques inverses (no confondre amb les recíproques) són $\arcsin x$, $\arccos x$ i $\arctan x$. Aquestes funcions serveixen per trobar l'angle si coneixem el valor de sinus, cosinus i tangent respectivament. Per utilitzar aquestes funcions amb la calculadora necessitareu pitjar la tecla [SHIFT].

Preparau la vostra calculadora i anem a fer una pràctica sobre el tema.

La calculadora té dos modes per manejar angles, **DEG** graus i **RAD** radiants. Per aquesta activitat assegura't que el tens en mode **DEG** (graus).

Les funcions trigonomètriques inverses de la calculadora donen només un dels possibles valors de l'angle. L'angle que dóna la calculadora es troba entre:

 $\arcsin x$: -90° a 90°

 $\arccos x$: 0° a 180°

arctg x: $-90^{\circ} a 90^{\circ}$

L'altre angle l'has d'obtenir raonant amb l'ajuda de la circumferència goniomètrica.

Quins angles tenen per sinus 0,5?

Una resposta l'obtenim de la calculadora $\stackrel{\text{SHIFT}}{=}$ $\stackrel{\text{sin}}{=}$ 0,5 $\stackrel{\text{}}{=}$ $\stackrel{\text{}}{=}$ $\stackrel{\text{}}{=}$ $\stackrel{\text{}}{=}$ 0.

L'altre angle es troba al segon quadrant, i l'obtenim fent $180^{\circ}-30^{\circ}=150^{\circ}$

Quins angles tenen per tangent -2?

Una resposta l'obtenim de la calculadora SHIFT tan -2 = $\begin{bmatrix} -63.4349... \end{bmatrix}$. Aquest angle es troba al quart quadrant i en realitat és l'angle -63,4349+360=296.5651.

L'altre angle s'ha de trobar al segon quadrant, on també la tangent és negativa. El trobam fent $180^\circ-63,3349^\circ=116,5651^\circ$

Vídeo 3.3: Raons trigonomètriques d'angles qualssevol https://www.youtube.com/watch?v=LyVmNUqxiGU

EXERCICI RESOLT 2

Calcula tots els angles dins d'una volta ($0^{\circ} - 360^{\circ}$) que compleixen:

a)
$$\sin x = -\frac{1}{2}$$

b)
$$\cos x = \frac{\sqrt{2}}{2}$$

c)
$$\operatorname{tg} x = -1$$

d) $\operatorname{cosec} x = 3$

Indicació: Troba un angle amb la calculadora i l'altre dedueix-lo a partir de la circumferència goniomètrica.

EXERCICIS PROPOSATS

Digues a quin quadrant es troben aquests angles i quin és el signe de les seves raons trigonomètriques.

a)
$$\hat{A} = 245^{\circ}$$

a)
$$\hat{A}=245^{\circ}$$
 b) $\hat{B}=\frac{5\pi}{6}$ rad c) $\hat{C}=$

c)
$$\hat{C}$$
 =

$$-300^{\circ}$$
 d) $\hat{D}=2100^{\circ}$

5. Calcula tots els angles x compresos entre 0° i 360° tals que $\cos x = -0.75$.

3. Resolució de triangles

Resoldre un triangle significa trobar els costats i angles que falten. Per resoldre un triangle, necessitam com a mínim

- · 2 angles i 1 costat
- 1 angle i 2 costats
- · 3 costats

Notau que sabent només els 3 angles és impossible trobar cap costat.

Els vèrtexs d'un triangle els representarem amb lletres majúscules, començant l'alfabet (A, B, C). El **costat oposat** a cada vèrtex ho representarem amb la lletra minúscula corresponent a aquest vèrtex (a, b, c). L'angle corresponent a cada vèrtex ho podem representar amb el nom del vèrtex amb un *capell* (\hat{A} , \hat{B} , \hat{C}) o amb la lletra grega que li pertoca (α , β , γ).

Començarem fent un petit repàs de com es resolen els triangles rectangles. En les properes seccions veurem dos teoremes que ens permetran resoldre triangles qualssevol més ràpidament.

Triangles rectangles

En un triangle rectangle, sempre utilitzarem el següent conveni per anomenar els costats i angles. L'angle recte és $\hat{A}=90^{\circ}$.

Podrem utilitzar les següents relacions

$$\hat{B} = 90 - \hat{C}, \qquad a^2 = b^2 + c^2$$
 (8)

$$b = a\cos\hat{C}, \quad c = a\sin\hat{C}, \quad \operatorname{tg}\hat{C} = \frac{c}{b}$$
 (9)

A continuació mostram uns exemples d'aplicació d'aquestes relacions. Convé sempre fer un dibuix aproximat del triangle, indicar les dades i deixar clares les incògnites.

EXERCICI RESOLT 3

Resol el triangle rectangle del qual sabem que $\hat{B}=50^{\circ}$ i el catet c=15 cm.

L'angle \hat{C} s'obté de $\hat{C}=90-50=40^{\circ}$.

Tot seguit, utilitzam la raó trigonomètrica $\operatorname{tg} 40 = \frac{15}{b} \to b = \frac{15}{\operatorname{tg} 40^\circ} = 17,87.$

Del teorema de Pitàgores,
$$a^2 = b^2 + c^2$$
, $a = \sqrt{15^2 + 17,87^2} = 23,34$

EXERCICI RESOLT 4

D'un triangle rectangle coneixem els dos catets $b=47\ \mathrm{m}$ i $c=62\ \mathrm{m}$. Calcula la hipotenusa i els angles.

La hipotenusa la trobam aplicant el teorema de Pitàgores, $a^2=b^2+c^2$, $a=\sqrt{47^2+62^2}=77,80$

L'angle \hat{C} s'obté a partir de la tangent $\lg\hat{C}=\frac{62}{47}.$ Aleshores $\hat{C}= {\rm arctg}\,\frac{62}{47}=52,84^\circ$

L'altre angle agut s'obté simplement de $\hat{B}=90^{\circ}-52,84^{\circ}=37,16^{\circ}$

3.1 Teorema del sinus

Sempre utilitzarem el següent conveni per anomenar els costats i angles d'un triangle qualsevol.

D'una banda sabem que els angles compleixen $\hat{A}+\hat{B}+\hat{C}=180^{\circ}$. D'altra banda, el teorema del sinus relaciona els costats i els angles d'un triangle

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}$$

EXERCICI RESOLT 5

En un triangle coneixem dos dels seus angles i un costat: $A=55\,^{\circ}$, $B=98\,^{\circ}$, $a=7,5\,$ cm. Resol el triangle.

L'angle $\hat{C}=180^{\circ}-(55^{\circ}+98^{\circ})=27^{\circ}$ Amb el teorema del sinus trobam els costats que falten

$$\frac{b}{\sin 98^{\circ}} = \frac{7.5}{\sin 55^{\circ}} \rightarrow b = \frac{7.5 \sin 98^{\circ}}{\sin 55^{\circ}} = 9.1 \, \text{cm} \tag{10}$$

$$\frac{c}{\sin 27^{\circ}} = \frac{7.5}{\sin 55^{\circ}} \rightarrow c = \frac{7.5 \sin 27^{\circ}}{\sin 55^{\circ}} = 4.2 \,\text{cm}$$
 (11)

De vegades, a l'aplicar el teorema del sinus, poden aparèixer dues solucions i, fins i tot, no trobar-

ne cap. En el següent document podeu trobar un exemple de cada cas [Vegeu el document [https://piworld.es/iedib/pdf/TeoremaSinus.pdf]].

Vídeo 3.4: Trigonometria: Teorema del sinus https://www.youtube.com/watch?v=nCum6yM5Fqg

EXERCICIS PROPOSATS

- **6.** D'un triangle coneixem $c=63,~\hat{B}=42^{\circ}$ i $\hat{A}=83^{\circ}.$ Calcula els costats i l'angle que falta.
- 7. Calcula la base \overline{DC} del trapezi ABCD de la figura.

3.2 Teorema del cosinus

Hi ha situacions en les quals el teorema del sinus no permet resoldre el triangle.

Un cas és quan no tenim cap angle o quan tenim dos costats i l'angle que formen (és el que anomenam situació tipus compàs: sabem les cames i l'angle que formen). En tots aquests casos aplicarem el teorema del cosinus.

Figura 5: Casos en què cal aplicar el teorema del cosinus. Les incògnites estan marcades en vermell.

El teorema es pot formular en tres versions diferents:

$$a^{2} = b^{2} + c^{2} - 2b \cdot c \cdot \cos \hat{A}$$

$$b^{2} = a^{2} + c^{2} - 2a \cdot c \cdot \cos \hat{B}$$

$$c^{2} = a^{2} + b^{2} - 2a \cdot b \cdot \cos \hat{C}$$
(12)

Fixeu-vos que si el triangle fos rectangle, l'angle $\hat{A}=90^\circ$ i $\cos\hat{A}=0$. La primera relació quedaria $a^2=b^2+c^2$ que segurament et recorda al teorema de Pitàgores. Aleshores, podem pensar que el teorema del cosinus és una generalització del teorema de Pitàgores pel cas de triangles no rectangles.

EXERCICI RESOLT 6

En un triangle coneixem dos costats i l'angle comprès entre ells $\hat{A}=35^{\circ}$, b=20 cm, c=14 cm. Resol-ho.

Aplicam el teorema del cosinus per trobar el costat oposat a l'angle A que ens donen. $a^2=20^2+14^2-2\cdot20\cdot14\cos35^\circ$. D'aquí aïllam el costat a=11,72 cm.

Tornam a aplicar el teorema del cosinus ara pel costat $b.~20^2=11,72^2+14^2-2\cdot 11,72\cdot 14\cos\hat{B}$. D'aquesta fórmula cal aïllar el $\cos\hat{B}$,

$$\cos \hat{B} = \frac{20^2 - 11,72^2 - 14^2}{-2 \cdot 11,72 \cdot 14} = -0,203 \tag{13}$$

L'angle $\hat{B}=\arccos-0,203=101,7^{\circ}$, i finalment l'angle \hat{C} = 180-35-101,7= $43,28^{\circ}$.

EXERCICI RESOLT 7

Si els braços d'un compàs fan 12 cm de llarg i formen un angle de 60 °, calcula el radi de la circumferència que podem traçar amb el compàs. Aplicam el teorema el cosinus

$$a^2 = 12^2 + 12^2 - 2 \cdot 12 \cdot 12 \cos 60^{\circ} \tag{14}$$

D'aquí s'obté que el costat oposat a l'angle de 60 $^\circ$ és de a=12, que correspon al radi de la circumferència que podem dibuixar. Es tracta d'un triangle isòsceles.

Vídeo 3.5: Trigonometria: Teorema del cosinus https://www.youtube.com/watch?v=Syv7Zu2VOTA

EXERCICIS PROPOSATS

- **8.** Resol el triangle b = 22, a = 7, $\hat{C} = 40^{\circ}$.
- **9.** Des d'un punt P, observam dues cases A i B

situades a l'altra banda d'un riu, sota un angle de 68° . Sabem que $\overline{PA}=70$ m i $\overline{PB}=115$ m. Calcula la distància \overline{AB} entre les dues cases.

4. Funcions trigonomètriques

Radiant

Existeixen altres formes de mesurar angles a part dels graus sexagesimals. Aquesta unitat prové de l'antiga Babilònia on suposaren que la Terra al Sol girava al voltant del Sol en aproximadament 360 dies. El radiant és una unitat d'angle més adient en el sentit matemàtic. Un **radiant** és l'angle pel qual el radi de la circumferència coincideix amb el seu arc; això passa aproximadament per $57,30^{\circ}$.

Un angle de 1 rad $\approx 57,3^{\circ}$. A la pràctica, utilitzam el factor de conversió

$$2\pi \text{ rad} = 360^{\circ}.$$
 (15)

EXERCICI RESOLT 8

a) Expressa en radiants 60 °

b) Expressa en graus sexagesimals
$$\frac{2\pi}{3}$$
 rad

a)
$$60^{\circ} \cdot \frac{2\pi \text{ rad}}{360^{\circ}} = \frac{60}{180}\pi = \frac{\pi}{3} \text{ rad}$$

b)
$$\frac{2\pi}{3}\operatorname{rad}\cdot\frac{360^\circ}{2\pi\operatorname{rad}}=120^\circ$$

Per representar gràficament les raons sinus, cosinus i tangent haurem de construir una taula de valors.

Quan dibuixam funcions trigonomètriques, l'angle x que representam a l'eix horitzontal sempre ve donat en **radiants.**

Aquesta simulació mostra com es genera la gràfica $y=\sin x$. Recorda que el valor del sinus és la longitud del catet oposat en la circumferència goniomètrica. Per començar a graficar pitjau en botó [reset] i [start]

Simulació 6: https://www.geogebra.org/m/P44t2re3

D'aquesta gràfica podem remarcar que el sinus

• És una funció periòdica que es va repetint cada 2π rad.

- Els seus valors oscil·len entre -1 i 1
- És contínua
- Passa per l'origen de coordenades

Aquesta simulació mostra com es genera la gràfica $y = \cos x$. Pitjau [reset] i [start]

- Simulació 6: https://www.geogebra.org/m/KPaJVrRw
- El cosinus una funció periòdica que es va repetint cada 2π rad.
- Els seus valors oscil·len entre -1 i 1
- · És contínua
- Si la desplaçam $\pi/2$ (90 graus) cap a la dreta trobam el sinus, és a dir, $\sin x = \cos(x \pi/2)$.

Aquesta simulació mostra com es genera la gràfica $y = \operatorname{tg} x$. Pitjau [reset] i [start]

- Simulació 6: https://www.geogebra.org/m/DYzxYNWa
- La tangent és una funció periòdica que es va repetint cada π rad.
- Els seus valors oscil·len entre -1 i 1

• És discontínua en els moment en què el $\cos x = 0$ és a dir $x = \frac{\pi}{2} + n\pi$

■ Significat de l'angle meitat, doble, etc.

La següent gràfica ens permet entendre com canvia la funció sinus quan l'angle x està multiplicat (dividit) per un nombre donant llocs als harmònics (subharmònics). Desplaça el punt lliscant n a la simulació i treu-ne conclusions.

Simulació 6: https://www.geogebra.org/m/mgffa2r6

S'observa que $\sin 2x$ oscil·la el doble de ràpid (té un període de π rad). En canvi $\sin \frac{x}{2}$ oscil·la la meitat de ràpid (té un període de 4π rad).

5. Identitats trigonomètriques

En primer lloc, cal entendre la diferència entre una identitat i una equació. Una identitat és una expressió que és sempre certa, sigui quin sigui el valor de x. En canvi, una equació és una expressió en la qual volem trobar què ha de valor x perquè la igualtat sigui certa.

Convé tenir clara aquesta distinció perquè en aquest apartat estudiarem les identitats i en el següent les equacions trigonomètriques. Com que de moment no resoldrem equacions, **no hem de trobar cap valor de** x.

Diferència entre identitat i equació

Identitat:

$$(x+1)^2 = x^2 + 2x + 1$$
$$\sin^2 x + \cos^2 x = 1$$

És certa sempre, per qualsevol x

Equació

$$x^2 - x = 2$$
$$\sin^2 x = \frac{1}{2}$$

Volem trobar els valors de x pels quals es compleix l'igual

Les identitats fonamentals ja les varem veure al començament del tema. Recordem-les

$$\sin^2 \alpha + \cos^2 \alpha = 1 \tag{16}$$

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha} \tag{17}$$

Demostració d'identitats

Per fer una demostració d'una identitat cal partir del terme de l'esquerre i, aplicant altres relacions que sabem que són certes, arribar al terme de la dreta que volem demostrar.

EXERCICI RESOLT 9

Demostra $\sin^2 \alpha \cdot \cos \alpha + \cos^3 \alpha = \cos \alpha$. Treu factor comú $\cos \alpha$ i utilitza la relació fonamental.

En aquest exemple partirem de $\sin^2\alpha\cdot\cos\alpha+\cos^3\alpha$ i traurem factor comú $\cos\alpha$, obtenint

 $\sin^2 \alpha \cdot \cos \alpha + \cos^3 \alpha = \cos \alpha \cdot (\sin^2 \alpha + \cos^2 \alpha)$ ara utilitzam la relació fonamental que $\sin^2 \alpha + \cos^2 \alpha = 1$, aleshores trobam $\sin^2 \alpha \cdot \cos \alpha + \cos^3 \alpha = \cos \alpha$ que era el resultat que volíem demostrar.

AMPLIACIÓ

Suma i resta d'angles

Moltes vegades és d'utilitat poder calcular les raons trigonomètriques d'una suma de angles a partir de les raons trigonomètriques dels angles notables del primer quadrant. L'objectiu del present apartat és expressar les raons sin(a+b), cos(a+b) i tg(a+b) en funció de sin(a), sin(b), cos(a), cos(b), tg(a) i tg(b).

Si ens demanam que val $\sin(30+60)$, algú podria pensar que és $\sin 30 + \sin 60$. Però, si feim els càlculs veim que

$$1 = \sin(90) \neq \sin 30 + \sin 60 = \frac{1 + \sqrt{3}}{2} = 1.366 \tag{18}$$

Arribam a un absurd. El sinus mai pot ésser major que 1.

Donam tot seguit les identitats de la suma i la diferència d'angles. La justificació la trobareu en el vídeo de sota.

Identitats de la suma d'angles:

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$tg(\alpha + \beta) = \frac{tg \alpha + tg \beta}{1 - tg \alpha \cdot tg \beta}$$

Diferència d'angles:

$$\sin(\alpha - \beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\operatorname{tg}(\alpha - \beta) = \frac{tg \alpha - tg \beta}{1 + tg \alpha \cdot tg \beta}$$

Vídeo 3.7: Identitats trigonomètriques 2: Diferència d'angles https://www.youtube.com/watch?v=Q-TaYLqOVnU

EXERCICI RESOLT 10

Calcula les raons de 75° exactament, a partir de les raons de 30° i 45° .

Per exemple, si utilitzam la relació de la suma d'angles i expressam $75^{\circ} = 45^{\circ} + 30^{\circ} \sin(75^{\circ}) = \sin(45^{\circ} + 30^{\circ}) = \sin(45^{\circ}) \cdot \cos(30^{\circ}) + \cos(45^{\circ}) \cdot \sin(30^{\circ}) = \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \frac{\sqrt{1}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$

De forma similar, podem obtenir el cosinus $\cos(75^\circ) = \cos(45^\circ + 30^\circ) = \cos(45^\circ) \cdot \cos(30^\circ) - \sin(45^\circ) \cdot \sin(30^\circ) = \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \frac{\sqrt{1}}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$

i finalment, la tangent $\operatorname{tg}(75^\circ) = \operatorname{tg}(45^\circ + 30^\circ) = \frac{\operatorname{tg}45^\circ + \operatorname{tg}30^\circ}{1 - \operatorname{tg}45^\circ \cdot \operatorname{tg}30^\circ} = \frac{1 + \frac{\sqrt{3}}{3}}{1 - 1 \cdot \frac{\sqrt{3}}{2}} = 2 + \sqrt{3}$

Angle doble

Com varem veure a l'apartat anterior, l'angle doble $\sin 2x$ és l'harmònic del sinus i correspon a una oscil·lació el doble de ràpida. Aleshores aquesta funció té un període de π rad o el que és el mateix, es repeteix cada 180° .

EXERCICI RESOLT 11

Demostra les relacions de l'angle 2α a partir de la suma $\alpha+\alpha$

Utilitzarem les identitats de la suma d'angles fent que $2\alpha=\alpha+\alpha$.

$$\sin 2\alpha = \sin(\alpha + \alpha) = \sin \alpha \cos \alpha + \cos \alpha \sin \alpha = 2\sin \alpha \cos \alpha$$
 (19)

$$\cos 2\alpha = \cos(\alpha + \alpha) = \cos \alpha \cos \alpha - \sin \alpha \sin \alpha = \cos^2 \alpha - \sin^2 \alpha$$
(20)

Finalment, la tangent de l'angle doble és

$$tg 2\alpha = tg (\alpha + \alpha) = \frac{tg \alpha + tg \alpha}{1 - tg \alpha \cdot tg \alpha} = \frac{2tg \alpha}{1 - tg^2 \alpha}$$
 (21)

Vídeo 3.8: Identitats trigonomètriques 3: L'angle doble https://www.youtube.com/watch?v=OS6gO0QdxLg

Angle meitat

Identitats de l'angle meitat:

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

$$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

$$tg\,\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$$

El signe \pm segons el quadrant de $\alpha/2$.

EXERCICI RESOLT 12

Troba expressions exactes pel l'angle de $22,5^{\circ}$

L'angle de $22,5^{\circ}$ és la meitat de 45:

$$\sin 22, 5 = \sin \frac{45}{2} = \sqrt{\frac{1 - \cos 45}{2}} = \sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{2}} = \sqrt{\frac{2 - \sqrt{2}}{2}}$$
(22)

De forma simular el cosinus és

$$\cos 22, 5 = \frac{\sqrt{2 + \sqrt{2}}}{2} \tag{23}$$

I la tangent

$$tg 22, 5 = \frac{\sin 22, 5}{\cos 22, 5} = \sqrt{\frac{2 - \sqrt{2}}{2 + \sqrt{2}}}$$
 (24)

Vídeo 3.9: Identitats trigonomètriques 4: L'angle meitat https://www.youtube.com/watch?v=vp8jAOvg0F8

Resum d'identitats trigonomètriques

Com hem vist en aquest apartat, hi ha moltes identitats trigonomètriques. En general només cal memoritzar les relacions bàsiques [1]-[4]. Tota la resta, basta entendre com s'utilitzen. Si les heu de menester les tindreu escrites a l'examen.

En el següent apartat aprendrem a resoldre equacions trigonomètriques. En alguna d'elles serà necessari utilitzar les identitats **Relacions fonamentals:**

$$[1] \quad \sin^2 \alpha + \cos^2 \alpha = 1$$

[2]
$$\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$[3] \quad 1 + \operatorname{tg}^2 \alpha = \frac{1}{\cos^2 \alpha}$$

Angle oposat:

[4]
$$\sin(-\alpha) = -\sin \alpha$$
, $\cos(-\alpha) = \cos \alpha$, $\operatorname{tg}(-\alpha) = -\operatorname{tg} \alpha$

Suma d'angles:

[5]
$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

[6]
$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

[7]
$$\operatorname{tg}(\alpha + \beta) = \frac{\operatorname{tg} \alpha + \operatorname{tg} \beta}{1 - \operatorname{tg} \alpha \cdot \operatorname{tg} \beta}$$

Diferència d'angles:

[8]
$$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

[9]
$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

[10]
$$\operatorname{tg}(\alpha - \beta) = \frac{\operatorname{tg} \alpha - \operatorname{tg} \beta}{1 + \operatorname{tg} \alpha \cdot \operatorname{tg} \beta}$$

Angle doble:

[11]
$$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$$

[12]
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

[13]
$$\operatorname{tg} 2\alpha = \frac{2\operatorname{tg} \alpha}{1 - \operatorname{tg}^2 \alpha}$$

Angle meitat:

[14]
$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

[15]
$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

[16]
$$\operatorname{tg} \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$$

El signe \pm s'agafa segons el quadrant de l'angle lpha/2

Sumes i diferències a productes:

[17]
$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

[18]
$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$

[19]
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

[20]
$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$

6. Equacions trigonomètriques

S'anomena **equació trigonomètrica** a aquella en la qual la incògnita x apareix com a angle d'alguna raó trigonomètrica.

Un característica d'aquest tipus d'equacions és que solen tenir infinites solucions. Vegem-ho amb un exemple senzill. Ens demanam per quins angles x el seu sinus val 1/2. Això equival a plantejar l'equació $\sin x = 1/2$. Anem a resoldre gràficament dibuixant la gràfica del sinus i la recta constant y = 1/2

Figura 6: Solució gràfica de sin x=1/2

Donat el sinus és una funció periòdica, hi ha infinits valors de x en els quals les gràfiques de les dues funcions es tallen. Tots aquests punts d'intersecció són solucions de l'equació.

A la pràctica, es cerquen les solucions dins d'una volta $0-360^\circ$ i després es sumen a l'angle voltes completes com a múltiples de 360° graus.

Equacions senzilles

Ens referim a equacions trigonomètriques senzilles a aquelles de la forma raó= número:

$$\sin x = \sqrt{2}/2; \quad \cos x = -1; \quad \text{tg } x = 1; \quad \cdots$$
 (25)

Aquestes equacions es resolen a partir de les funcions trigonomètriques inverses: $x = \arcsin\sqrt{2}/2$, $x = \arccos-1$, $x = \arctan 1$ respectivament. La calculadora sempre us donarà una solució dins d'una volta. L'altra solució la podreu trobar amb l'ajuda de la circumferència goniomètrica.

Si x_1 és un angle del primer quadrant, la segona solució s'obté de:

$$x_1 = \arcsin a$$
 i $x_2 = 180 - x_1$
 $x_1 = \arccos a$ i $x_2 = 360 - x_1$
 $x_1 = \arctan a$ i $x_2 = x_1 \pm 180$ (26)

EXERCICI RESOLT 13

Resol les equacions:

a)
$$\sin x = \sqrt{2}/2$$

b)
$$\cos x = -1$$

$$c) \operatorname{tg} x = 1$$

a)
$$x = \begin{cases} 45^{\circ} + n360^{\circ} \\ 135^{\circ} + n360^{\circ} \end{cases}$$

b)
$$x = 180^{\circ} + n360^{\circ}$$

c)
$$x = \begin{cases} 45^{\circ} + n360^{\circ} \\ 225^{\circ} + n360^{\circ} \end{cases}$$

També es pot expressar com $x = 45^{\circ} + n180^{\circ}$

Desgraciadament no existeix cap regla màgica que permeti resoldre automàticament les equacions trigonomètriques. En certa manera, requereix una mica d'intuïció i pràctica. No obstant això podem donar una sèrie de recomanacions bàsiques:

Recomanacions per resoldre equacions trigonomètriques

- Assegurar-se que només apareix una única raó (sin, cos o tg). En cas que aparegui més d'una raó, cal utilitzar les identitats. Les que solen utilitzar-se amb més freqüència són $\sin^2 x + \cos^2 x = 1$ i tg $x = \frac{\sin x}{\cos x}$.
- Assegurar-se que només apareix un únic angle. En cas que apareguin angles dobles o meitat, utilitzarem les identitats de l'apartat anterior.

Equacions de tipus I

EXERCICI RESOLT 14

Resol l'equació $\sin x + \cos x = 0$

Per tal que només aparegui una única raó, dividim tota l'equació entre

$$\frac{\sin x}{\cos x} + 1 = 0 \tag{27}$$

identificam la tangent. Si l'aïllam

$$tg x = -1 (28)$$

Aquesta ja és una equació de nivell I. Una solució la dóna la calculadora $x=\arctan -1=-45=315^\circ$. L'altra quadrant on la tangent és negativa i val -1 és el segon quadrant $x=135^\circ$

Solutions
$$x = \begin{cases} 135 + n360 \\ 315 + n360 \end{cases}$$

Hem trobat infinites solucions, una per cada valor de $n=0,\pm 1,\pm 2,\cdots$. En aquest exemple, les solucions es poden simplificar dient que per passar d'una a l'altra sumam mitja volta 180°

$$x = 135^{\circ} + n180^{\circ} \tag{29}$$

Vídeo 3.10: Equacions trigonomètriques nivell 1 https://www.youtube.com/watch?v=ibtUAXtuHIE

AMPLIACIÓ

La resta d'aquesta secció vos la deixo com ampliació. A l'examen, només us demanarem equacions com a molt de tipus I.

Equacions II

EXERCICI RESOLT 15

Resoleu $3\sin^2 x + \cos^2 x + \cos x = 0$

Ens interessa que només surti $\cos x$. Per això utilitzarem la relació fonamental $\sin^2 x + \cos^2 x = 1 \to \sin^2 x = 1 - \cos^2 x$ i substituïm dins l'equació original

$$3(1 - \cos^2 x) + \cos^2 x + \cos x = 0 \tag{30}$$

Ara eliminam els parèntesi i simplificam

$$2\cos^2 x - \cos x - 3 = 0 \tag{31}$$

Aquesta equació s'assembla molt a una de segon grau. Efectuam un canvi de nom $t=\cos x$, i resolem l'equació $2t^2-t-3=0$. Té solucions t=3/2,-1. Ara es tracta de trobar la x.

- Si $t=3/2 \to \cos x=1.5$ Cosa que és impossible. No trobam solucions d'aquí.
- Si $t=-1 \to \cos x = -1$ Només hi ha un angle dins d'una volta $x=180^{\circ}$.

En conclusió, l'equació té solucions $x=180^{\circ}+n360^{\circ}$

Vídeo 3.11: Equacions trigonomètriques nivell 2 https://www.youtube.com/watch?v=C01vi2Ep3VI

EXERCICIS PROPOSATS

- **10.** Resoleu l'equació trigonomètrica $tg x = -\sqrt{3}$.
- **11.** Resoleu l'equació trigonomètrica $2\sin^2 x \sin x = 0$. Indicació: treu factor comú $\sin x$ i resol dues equacions trigonomètriques senzilles.

