Recall

Summary of Lecture 20

NP-completeness of Independent Set, Vertex Cover, Hamiltonian cycle, TSP

What you should know from Lecture 20:

- how to prove appoint in the polynomial time many-one reduction

Next: https://powcoder.com

These are harder proofs.

Goal: appreciate trickier constructions; establish the results. this is a Math Faculty after all

Subset Sum.

Input: Numbers w_1, \ldots, w_n, W

Question: Is there a subset $S \subseteq \{1,\ldots,n\}$ such that $\sum_{i \in S} w_i = W$

Theorem. Subset Sum is NP-complete.

Proof.

- 1. Subset Sum is in NPsi (done in prepious lecture) xam Help
- 2. 3-SAT ≤_P Subset Sum

Assume we have a polynomial time algorithm for 3SAT.

Input: A 3-SAT formula $X_1 \cdots X_n$

Output: Is *F* satisfiable?

- construct an instance of Subset Sum such that

it has a solution iff F is satisfiable

- run the Subset Sum algorithm
- return its answer

We've seen how to turn 3-SAT into a packing problem (Independent Set) and into a sequencing problem (Hamiltonian cycle) and now we must turn it into a number problem.

Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$ Construct an instance of Subset Sum such that it has a solution iff F is satisfiable

Idea: Choosing numbers in Subset Sum will be choosing True/False. The bits of the numbers will encode information about the clauses.

Create a 0-1 matrix

	C1 C2	Assignment Project Examplelp $C_2 = (\neg x_1 \lor x_4 \lor x_5)$	
∞_1	10	$C_{7} = (7 \times 1 \times 2 \times 1 \times 2 \times 1)$	
7 7/	0 1	https://powcoder.com	
χ_2	0 0	The Reval while	
7762	10		
χ_3	10	Add WeChatlpowcoder Cj	We assume
7/2	0 0	$M[\neg x_i, c_j] = [if \neg x_i in c_j]$	contains the
0		$[N([1]\lambda_i,C_j]-[1]+[\lambda_i,W_j]$	literal twice
•		=0 otherwise	
		o o me with	

We assume no clause contains the same literal twice.

Regard the rows as binary (or other base) numbers.

Choosing a number = choosing a row. Adding numbers = adding up rows.

Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$ Construct an instance of Subset Sum such that it has a solution iff F is satisfiable

Idea: Choosing numbers in Subset Sum will be choosing True/False. The bits of the numbers will encode information about the clauses.

Create a 0-1 matrix

	C1 C2	Ass	ignment Project/Exam Help	
\mathcal{K}_1	10	g 9 0	$C_2 = (7 \times 1 \times 2 \times 1 \times 2 \times 2)$	
7 7,	ו ט		https://powcoder.com	
χ_2	0 0		General vale	
7 762	10		1 1 1 W/F (Cla 64] = h = f = 6 1 = 1 ()	We assume no clause
χ ₃	0 0		Add WeChat powcoder c	contains the same
7/23	0 0		$-$ M[$\neg x_i, c_j$]= if $\neg x_i$ in c_j	literal twice.
			1 (2 -0) - 1	
turaat sum	 - -	• • •	to ensure we pick >1 literal in each	clause
Twi get switt	-1-1		TO ENTAGE WE PROPERTY THE SECTION	

Regard the rows as binary (or other base) numbers.

Choosing a number = choosing a row. Adding numbers = adding up rows.

Input: A 3-SAT formula F with clauses $C_1 \ldots C_m$ on variables $x_1 \ldots x_n$ Construct an instance of Subset Sum such that it has a solution iff F is satisfiable

Idea: Choosing numbers in Subset Sum will be choosing True/False. The bits of the numbers will encode information about the clauses.

Create a 0-1 matrix

	C1 C2	Assignment Project Exam Help	
∞_1	1 0	$C_2 = (7 \times 1 \times 2 \times 4 \times 2 \times 5)$	
7 7/1	ו ט	https://powcoder.com	
χ_2	0 0	General ville	
7 762	10		We as
χ_3	טו	Add WeChat powcoder cj	contair
773	0 0	$M[\neg x_i, c_i] = [if \neg x_i in C_j]$	literal t
о •		Military Constitution	interari
			1

We assume no clause contains the same literal twice.

target sum >1>1 · · · · to ensure we pick >1 literal in each clause

Regard the rows as binary (or other base) numbers.

Choosing a number = choosing a row. Adding numbers = adding up rows.

Issues: (1) ensure we don't choose row x_i and row $\neg x_i$

(2) how can we ensure sum ≥1? What can the sum be? 1 or 2 or 3. Add slack rows of 1 and 2 so sum can always be 4.

Claim. Polynomial time.

Claim. *F* is satisfiable iff there is a subset of the numbers with sum W. **Proof.**

 \Rightarrow Suppose F is satisfiable. If x_i is True, pick row x_i . If x_i is False, pick row $\neg x_i$. Then column x_i adds up to its target 1, and column C_i adds to 1, 2, or 3. Next we choose some slack rows $s_{i,1}$ and $s_{i,2}$ to increase the sum to 4:

This gives a set of row (i.e. Whiteh) altapount to Wer

Note that any whole column sum is ≤ 6 , so no carries occur, and column sums must give the target digits.

Because x_i column sum is 1, we must have chosen row x_i or row $\neg x_i$ (not both) — set the variable accordingly.

Because column C_j sum is 4 and slacks sum to \leq 3, we must have chosen a literal to satisfy clause C_j . Thus F is satisfiable.

Summary of Lecture 21, Part 1

Subset Sum is NP-complete

What you should know from Lecture 21, Part 1:

- appreciate that NFI gardness prodiction be treely and that we can use numbers to encode things this should be second nature to work as a CS student recommendation.

Next:

Add WeChat powcoder Ind. Set
$$\leq_P$$
 Vertex Cover \leq_P Set Cover Circuit SAT \leq_P 3-SAT \leq_P Ham.cycle \leq_P TSP

Subset Sum

CS341-Lecture21 8 of 18

The first NP-completeness proofs.

example x=0x2=1 output 0 A circuit is a directed achticosaphoniw coder.com

- internal nodes

A circuit *computes an output* (in the obvious way) when values are given for the input variables.

Circuit Satisfiability

Input: A circuit *C*

Question: Is there an assignment of values to inputs such that the output is 1?

i.e., is *C* satisfiable?

Theorem. Circuit SAT is NP-complete. **Proof.**

- 1. Circuit SAT is in NP. (easy, details omitted)

 Assignment Project Exam Help

i.e. for every Y in NP, there is a circuit C s.t. y is a YES input iff C is satisfiable.

High level idea only.

What can we use? Just that $Y \in NP$, i.e., there is a poly time verification algorithm A for Y. A takes two inputs y, g, (g = certificate or "guess") and outputs YES/NO. Property of A:

y is a YES instance for Y iff $\exists g$ (of poly size) s.t. A(y,g) outputs YES

CS341-Lecture21

10 of 18

A. Lubiw, U. Waterloo

2. this is the first NP-completeness proof so we must prove that for every Y in NP, Y≤_P Circuit SAT

What can we use? Just that $Y \in NP$,

i.e., there is a poly time verification algorithm A for Y. A takes two inputs y, g, (g = certificate or "guess") and outputs YES/NO. Property of A:

y is a YES instance for Y iff $\exists g$ (of poly size) s.t. A(y,g) outputs YES

Idea: Convert algorithm in the line of the convert algorithm in the line of g to a circuit C with input variables = bits of g such that C is satisfiable iff g s.t. A(xg) outputs YES g s.t. A(xg) outputs g outputs

Write a program for algorithm A. Compile it. Assemble . . . At the hardware level, A is induction of the compile it. Assemble . . . We get a circuit *C*.

Lots of hand-waving here. Relying on your intuition as CS students.

Inputs to C: bits of y (known), bits of g (variables) Internal nodes of circuit: memory locations after each time step of algorithm A.

Because size(g) is polynomial and A runs in polynomial time, the circuit has polynomial size.

Is there an algorithm to convert A, y to C? Yes: compiler, assembler, etc. and this takes polynomial time.

CS341-Lecture21 11 of 18

Summary of Lecture 21, Part 2

Circuit SAT is NP-complete — the first NP-completeness proof (at least the idea)

Next:

Circuit SAT \leq_P 3-SAT $)\leq_P$ Ham.cycle \leq_P TSP

https://powcoder.com

Add WeChat powcoder

CS341-Lecture21 12 of 18

Theorem. 3-SAT is NP-complete. **Proof.**

- 1. 3-SAT is in NP. (easy, details omitted)
- 2. Circuit SAT ≤_P 3-SAT

Assume we have a polynomial time algorithm for 3-SAT. Make a polynomial time algorithm for Gire Project Exam Help

Input: A circuit *C*

Output: Is C satisfiable? //nowcoder.com

- construct a 3-SAT formula F such that C is satisfiable iff F is satisfiable

- run the 3-SAT algorithandd WeChat powcoder
- return its answer

Intuitively (or from CS 245), circuits and formulas are equivalent. Just convert circuit *C* to formula *F*.

Convert circuit C to formula F.

the obvious way:

Convert circuit C to formula F.

the better way: make a variable x_u for each node u in the circuit

$$\chi_{u} \equiv \chi_{v} \vee \chi_{w} \qquad \chi_{u} \vee_{\tau} (\chi_{v} \vee \chi_{w}) \chi_{u} \vee_{\tau} \chi_{v} \wedge_{\tau} \chi_{w})$$

$$\chi_{u} \vee_{\tau} \chi_{v} \wedge_{\tau} \chi_{w} \wedge_{\tau} \chi_$$

https://powcoder.com

Add WeChat powcoder

a=b means (Tavb) 1 (a VTb)

Claim. We can turn clauses of 2 literals into clauses of 3 literals.

Final formula: $F = \Lambda$ of all clauses $\Lambda x_{\text{output}}$

Convert circuit C to formula F.

the better way: make a variable x_{ij} for each node u in the circuit

$$x_u = x_v \vee x_w$$

as clauses:
 $(\neg x_u \vee x_v \vee x_w) \wedge (\neg x_u \vee \neg x_v) \wedge (\neg x_u \vee \neg x_w)$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

$$\chi_{u} \equiv \neg \chi_{\sigma}$$
 $(\chi_{u} \vee \chi_{\sigma}) \wedge (\neg \chi_{u} \vee \neg \chi_{\sigma})$

Note: a = b means $(\neg a \lor b) \land (a \lor \neg b)$

Claim. We can turn clauses of 2 literals into clauses of 3 literals.

Final formula: $F = \Lambda$ of all clauses $\Lambda x_{\text{output}}$

Claim 1. *F* has polynomial size and can be computed in polynomial time.

Claim 2. *F* is satisfiable iff *C* is satisfiable. **Proof**.

- \leftarrow Suppose C is satisfiable. Then assigning True/False to variables of F according to C's computation will satisfy F.
- \Rightarrow Suppose F is satisfiable. Then there is an assignment of True/False to the variables (original inputs + new variables for circuit nodes) that makes F True. For circuit C, use the same values for the input variables. By construction, the variables for the circuit nodes of the circuit nodes of the circuit nodes. And $x_{\text{output}} = 1$ (True). Therefore C is satisfiable.

Summary of Lecture 21

Ind. Set
$$\leq_P$$
 Vertex Cover \leq_P Set Cover

Circuit SAT \leq_P 3-SAT \leq_P Ham.cycle \leq_P TSP

Subset Sum

Assignment Project Exam Help
What you should know from Lecture 21.

Appreciate NP-complete problems.

Add WeChat powcoder

Next:

A glimpse of more recent results on NP-completeness.