Information Visualization

User tasks and infovis techniques

Marco Winckler

Université Nice Sophia (Polytech) | I3S | SPARKS team | bureau 446 winckler@unice.fr

http://www.i3s.unice.fr/~winckler/

User tasks

Approach "what-why-how"

- It is a way to analyze visualization techniques using three questions:
- What
 - Which data are represented
- Why
 - Why users are using the visualization technique
- How
 - Which are the visual codification and which are the interaction techniques implemented

Standard visualization model

Foundations

- Data characterization
- Interaction and user tasks
- Perception

Interaction

- Changing the display
 - Selection
 - Navigation
 - Reorder/reorganize
 - Changing the visual coding
 - Remove/include elements using filtering, clustering, etc
- Latency
- Feedback
- Costs
 - Time and user attention

User tasks

Keller & Keller (1994)

- Identify
- Localize
- Distinguish
- Categorize
- Cluster
- Order
- Compare
- Associate
- Correlate

Keller, P. e Keller, M. *Visual Cues: Practical Data Visualization*. IEEE Computer Society Press, 1994

Shneiderman (1996)

- Overview
- "Zoom"
- Filtering
- Details on demand
- Relate
- History
- Export (data)

Shneiderman, Ben *The Eyes Have it: A Task by Data Type Taxonomy for Information Visualization*. 1996 IEEE Symposium on Visual Language, pp336-343

User tasks

- Wehrend and Lewis, 1990
- Springmeyer, 1990
- Shneiderman, 1996
- Zhou and Feiner, 1998
- Morse et al., 2000
- Amar and Stasko, 2004
- Amar et al., 2005
- Valiati et al., 2006

Low level analytical tasks

- Find value
- Filter data
- Compute value
- Find limits
- Classify/order
- Determine threshold
- Characterize distribution
- Find anomalies
- Cluster
- Correlate

Visual strategies for user tasks

 Two levels of abstraction to explain the relationship between user tasks and interaction with infovis techniques

Visual tasks

- Are characterized by two dimensions
 - Visual goals)
 - Goals that should be accomplished with the infovis technique
 - Visual implications
 - The visual actions the infovis technique implements

Visual goals & visual tasks

Visual goal and visual tasks

Why people are using vis in terms of actions and targets

High-level actions: Analyze

- Consume
 - Discover vs Present
 - classical split
 - explore vs explain
 - Enjoy
 - newcomer
 - casual, social
- Produce
 - Annotate, Record
 - Derive
 - crucial design choice

Actions: Mid-level search, low-level query

- what does user know?
 - target, location
- how much of the data matters?
 - one, some, all

	Target known	Target unknown
Location known	·.·· Lookup	••• Browse
Location unknown	⟨`ฺ⊙ੑ∙> Locate	₹ Explore

Why: Targets

→ Distribution

→ Extremes

→ All Data
 → Trends
 → Outliers
 → Features
 ✓ ✓
 → Attributes
 → One
 → Many

→ Dependency → Correlation → Similarity

- Network Data
 → Topology
 → Paths
- → Spatial Data
 → Shape

Interaction

- Distinguishes infovis from static paper visualizations.
- Analysis is a process, often iterative, with branches and sideways paths.

Acceptable Response Times

- .1 second
 - Animation, visual continuity, sliders
- 1 second
 - System response, pause in conversation
- 10 seconds
 - Cognitive response

Basic Interaction Techniques

- Selecting
 - Mouse click
 - Mouseover / hover / tooltip
 - Lasso / drag
- Rearrange
 - Move
 - Sort
 - Delete

Selecting

Strategies for interactive visualization

How to exhibit large data sets?

details

zoom

O+D

F+C

transformation

How to ensure overview: by scalability

- Small datasets are easy
 - "Just show everything"
- Large datasets...
 - · What to exhibit?

Strategies for scalability

- Compress information
 - Reduce size (geometric zoom)
- Reduce amount of information
 - Compress without losing data (semantic zoom)
 - Increase density

Example: SeeSoft

• 1 pixel line per line of code

Reduce the amount of data

- Example
 - Reduce # attributes
 - Reduce # items
 - Reduce range of values
- Two ways
 - Remove
 - Grouping

http://exposedata.com/parallel/

Remove= cut/ prunning

Remove items

- Remove attributes
 - Scatterplots:
 - · Select 2 or 3 attributes, ignore the others
 - Spotfire:
 - · Use the query to select attributes
 - · And show details on demand
- Problem: loosing information

Grouping= clustering

- Clustering (grouping many items in a one entity)
 - · What to group?
 - By category (SQL "group by")
 - Spatial (TableLens)
 - By algorithm (clustering)
 - Defined by the user ("folders")
 - What are the values associated to a group?
 - Mathematic functions (SQL "group by")
 - · Counting, average, min, max
 - · Semantic abstraction
 - Grouping many levels = trees
 - · Navigation:
 - · Parallel visualizations
 - · Semantic zooming

Clustering

Advanced Interaction Techniques

- Overview + Detail (O+D)
- Focus + Context (F+C)
- Brushing and Linking
- Zoom: Panning and Zooming
- Transformation: distortion-based Views

Overview + Details

- Separate views
 - No distortion
 - Shows both overview and details simultaneously
 - Drawback: requires the viewer to consciously shift there focus of attention.

Overview

http://www.gapminder.org/

Overview

- It provides
 - Maps, spatial orientation
 - Contextual information, relationships
 - Which information is (or not) present in the display
- Detection of patterns
- Direct access
- Reduce searching process
- Enforce exploration, help to select the next move
- HCI metric improve user performance, time of learning and satisfaction

- It is the result of a cleaning data process (data that are of the scope/focus)
- It provides details about part of data
- Semantic zooming

Overview+Detail: Treemaps

Treemaps: overview + detail (time separation)

Overview+Detail: Seesoft

Spatial separation

Focus + Context

- A single view shows information in context
 - Contextual info is near to focal poin
 - Distortion may make some parts hard to interpret
 - Distortion may obscure structure in data
 - We'll have a lecture on distortion later
- Examples from Xerox PARC:
 - TableLens
 - Perspective Wall
 - Hyperbolic Tree Browser

Focus + Context: TableLens from PARC/Inxight

2) what day of the week has the most delays: least delays:

3) Can you see that United flights tended to get later and later as the day went on?

http://www.inxight.com/products/sdks/tl/ http://www.inxight.com/demos/tl_calcrisis/tl_calcrisis.html

Focus + Context (+ Distortion): Perspective Wall from PARC/Inxight

Focus + Context: Hyperbolic Tree from PARC/Inxight

Highlighting / Brushing and Linking / Dynamic Queries

- Spotfire, by Ahlberg & Shneiderman
 - http://hcil.cs.umd.edu/video/1994/1994 visualinfo.mpg
 - Now a very sophisticated product:
 - http://spotfire.tibco.com/products/gallery.cfm

Highlighting and Brushing: Parallel Coordinates by Inselberg

- Free implementation: Parvis by Ledermen
 - http://home.subnet.at/flo/mv/parvis/

Pan and Zoom

How to show a lot of information in a small space?

- Multiple Levels of Resolution
 - The view changes depending on the "distance" from the viewer to the objects
- Distortion-based techniques
 - Keep a steady overview, make some objects larger while simultaneously shrinking others

Zooming

- Standard Zooming
 - Get close in to see information in more detail
 - Example: Google earth zooming in
- Intelligent Zooming
 - Show semantically relevant information out of proportion
 - Smart speed up and slow down
 - Example: speed-dependent zooming, Igarishi & Hinkley
- Semantic Zooming
 - Zooming can be conceptual as opposed to simply reducing pixels
 - Example tool: Pad++ and Piccolo projects
 - http://hcil.cs.umd.edu/video/1998/1998_pad.mpg

Speed-dependent Zooming by Igarashi & Hinkley 2000

http://www-ui.is.s.u-tokyo.ac.jp/~takeo/video/autozoom.mov http://www-ui.is.s.utokyo.ac.jp/~takeo/java/autozoom/autozoom.htm

Standard vs. Semantic Zooming

- Geometric (standard) zooming:
 - The view depends on the physical properties of what is being viewed
- Semantic Zooming:
 - When zooming away, instead of seeing a scaled-down version of an object, see a different representation
 - The representation shown depends on the meaning to be imparted.

Examples of Semantic Zoom

- Information Maps
 - zoom into restaurant
 - see the interior
 - see what is served there
 - maybe zoom based on price instead!
 - see expensive restaurants first
 - keep zooming till you get to your price range
- Browsing an information service
 - Charge user successively higher rates for successively more detailed information

Examples of Semantic Zoom

- Infinitely scalable painting program
 - close in, see flecks of paint
 - farther away, see paint strokes
 - farther still, see the holistic impression of the painting
 - farther still, see the artist sitting at the easel

Pad++

- An infinite 2D plane
- Can get infinitely close to the surface too
- Navigate by panning and zooming
- Pan:
 - move around on the plane
- Zoom:
 - move closer to and farther from the plane
 - http://hcil.cs.umd.edu/video/1998/1998 pad.mpg

start...

The street one only one that no street in

How to Pan While Zooming?

How to Pan While Zooming?

Distortion

Mapping the information to a surface of exhibition

Mapping function

Identity function = normal overview

Bifocal

Perspective Wall / Document Lens

Contexto diminui gradualmente

Perspective

"Bubble"

Inconvenient: local context is smaller

Non linear

"Fisheye", "wide-angle lens"

Inconvenient: don't have a plain area

Summary

- Bifocal
- Perspective
- Bubble
- Wide-angle

60

Shneiderman's Taxonomy of Information Visualization Data Types

- 1-D Linear Document Lens, SeeSoft
- **2-D Map** GIS, Medical imagery
- 3-D World CAD, Medical, Molecules, Architecture
- Multi-Dim Parallel Coordinates, Spotfire, Influence Explorer, TableLens
- **Temporal** Perspective Wall, LifeLines, Lifestreams
- **Tree** Cone/Cam/Hyperbolic, TreeBrowser, Treemap
- **Network** Netmap, netViz, Multi-trees

Shneiderman's Taxonomy of Information Visualization Tasks

- Overview: see overall patterns, trends
- Zoom: see a smaller subset of the data
- Filter: see a subset based on values, etc.
- Details on demand: see values of objects when interactively selected
- Relate: see relationships, compare values
- History: keep track of actions and insights
- Extract: mark and capture data

Shneiderman's Visualization Mantra

- Overview, zoom & filter, details on demand

Project

Required tasks for the project

- Analyze the data set WASABI;
- Describe the visualization pipeline allowing to create a visual representation of data (from row data to visual variables);
- Describe the target users;
- Describe the visualization goals and user tasks;
- Propose 1 visualization techniques using D3JS including by student:
 - WASABI data
 - Include interactive tasks (ex. navigation, selection, filters, etc.);
 - Include two levels of visualization (overview + details);
 - Allow to change the dataset;
 - Provide an executable demonstration;

Evaluation

- A report ~15 pages (max);
- A demo of the project;
- The source code of your project
- A written examination via Moodle;

Classifications of visualization techniques

- Types of visualization (examples for the project)
 - Hierarquie (ex. treemaps, sunburst)
 - Location (ex: Choropleth, map of dots)
 - Graph (ex. network, attributes on networks of edges and nodes)
 - Multiariate (ex. parallel coordinates, parallel set)

https://datavizcatalogue.com/

Exercise

- Work in group (2 (min) to 4 (max) students per project)
- Check the web site : https://datavizcatalogue.com/
- Analyze the data set
 - Find suitable structures of data (ex. trees, tables, etc)
 - Select attributes you are going to use in the project
 - Identify user tasks and goals
 - Identify suitable information infovis techniques
- Round table about the project

Data for the project

- JSON file available at Team and also at:
 https://drive.google.com/file/d/1MbMgIB4D2fy LLn PAg22pdW alyjWfb/view?usp=sharing
- Description of the DATASET WASABI: https://github.com/micbuffa/WasabiDataset
- Description of the API WASABI: https://wasabi.i3s.unice.fr/apidoc/

Tasks for the next class

- Things to prepare for the next class
- A paragraph describing the users.
- The list of visual tasks supported by users and the visualization goals.
- The list of (raw) attributes you will need from the WASABI dataset you are going to use.
- The informal description of the processing of the row data in order to make it to fit in the visualization technique. This might include calculated variables you must add in the process.
- The name of visualization technique and the name of the member of the group who is going to implement it. Associate the visualization technique with the visual goal.
- A visual mapping of variables available in your data set (after data processing) and the visual variable available in the visualization technique you have chosen.