Notes for Math 669

Yiwei Fu, Instructor: Alexander Barvinok

FA 2022

Contents

1			1
	1.1	Lattice and Its Basis	1
Office hours:		ours:	

Chapter 1

1.1 Lattice and Its Basis

Definition 1.1.1. A lattice $\Lambda \subset V$ is a discrete additive group.

Last time: $L \in V$ is a subspace if $L = \operatorname{span}(L \cap \Lambda)$

Theorem 1.1.1. *If* L *is a lattice subspace,* $L \neq V$ *, then* $\exists u \in L \setminus \Lambda$ *such that* $d(u, L) \leq d(x, L)$ *for all* $x \in L \setminus \Lambda$.

Say $L \in \text{span}\{u_1, \dots, u_m\}$ linearly independent vectors, $\Pi = \{\}$ There is $u \in \Lambda \setminus L$ such that $\text{dist}(u, \Pi) \leq \text{dist}(x, \Pi)$ for all $x \in \Lambda \setminus L$.

Proof. Take $\rho > 0$ large enough. Consider $\Pi_{\rho} = \{y, d(y, \Pi) \leq \rho\}$. It contains points from $\Lambda \setminus L$, choose the one in $\Pi_{\rho} \cap (\Lambda \setminus L)$ closet to Π .

<u>CLAIM</u> $u \in \Lambda \setminus L$ is what we need. Why? Pick any $x \in \Lambda \setminus L$. Let $y \in L$ be the closest to x.

$$dist(x, L) = ||x - y|| = ||(x - w) - (y - w)||.$$

$$y = \sum_{i=1}^{m} d_i u_i$$

Let $w = \sum_{i=1}^{m} \lfloor \alpha_i \rfloor u_i \in \Lambda \setminus L, y - w = \sum_{i=1}^{m} \{\alpha_i\} u_i \in \Pi$.

Theorem 1.1.2. *Every lattice has a basis.*

Proof. By induction on $n = \dim V$.

Base case: for n = 1, we have $V = \mathbb{R}$.

Let u > 0 be the lattice vector closet to 0, among all positive vectors in Λ .

Then u is a basis of Λ . Pick any $v \in \Lambda$. Assume v > 0 WLOG. Then $v = \alpha u$ for $\alpha > 0$. If

Lattice and Its Basis Yiwei Fu

 $\alpha \in \mathbb{Z}$ then we are done. If not, consider $w = \alpha u - \lfloor \alpha \rfloor u = \{\alpha\} u$, this is closer to 0 than u, a contradiction.

Induction hypothesis: suppose any lattice of dimension n-1 has a basis.

Induction step: pick a lattice hyperplane H (lattice subspace with $\dim = n-1$). Then $\Lambda_1 = H \cap \Lambda$ has a basis u_1, \ldots, u_{n-1} . Pick u_n such that $u_n \notin H$ and $\operatorname{dist}(u_n, H)$ is the smallest. We claim that $u_1, \ldots, u_{n-1}, u_n$ is a basis of Λ .

Let $u \in \Lambda$, $u = \sum_{i=1}^{n} \alpha_i u_i$ with $\alpha_i \in \mathbb{R}$. If $\alpha_n = 0$ then $u \in \Lambda_1$, then $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{Z}$. Suppose $\alpha_n \neq 0$. Consider $w = u - \lfloor \alpha_n \rfloor u_n$. $w \in \Lambda$ and $w = \{\alpha_n\} u_n + \sum_{i=1}^{n-1} \alpha_i u_i$. So

$$\operatorname{dist}(w, H) = \operatorname{dist}(\{\alpha_n\} u_n, H) = \{\alpha_n\} \operatorname{dist}(u_n, H)$$

If $\{\alpha_n\} > 0$ then $0 < \operatorname{dist}(w, H) < \operatorname{dist}(u_n, H)$, a contradiction.

So
$$\{\alpha_n\}=0 \implies \alpha_n \in \mathbb{Z}$$
. Then $w=\sum_{i=1}^{n-1}\alpha_iu_i \implies \alpha_1,\ldots,\alpha_{n-1}\in \mathbb{Z}$.

So we have constructed a basis for lattice of dimension n, thus finishing the proof.

This is called A.N.Korkin(e)-Zolotarev(öff) basis.

EXERCISE Suppose $u_1, \ldots, u_n \in V$ is a basis of subspace. The integer combinations form a lattice.

EXERCISE Suppose a 2-dimensional lattice. Then there exists a lattice basis u,v such that the angle α between u,v satisfies $\frac{\pi}{3} \leq \alpha \leq \frac{\pi}{2}$.

EXERCISE If Λ is a lattice and L is a lattice subspace. The orthogonal projection $PR: V \to L^{\perp}$. Then $PR(\Lambda) \subset L^{\perp}$ is a lattice.

Definition 1.1.2. Suppose u_1, \ldots, u_n be a basis of Λ .

$$\Pi = \left\{ \sum_{i=1}^{n} \alpha_i u_i : 0 \le \alpha_i < 1, i = 1, \dots, n \right\}$$

is the *fundamental parallelepiped* of a fundamental parallelepiped of Λ .

Theorem 1.1.3. The volume of a fundamental parallelepiped Π doesn't depend on Π . The volume is called the determinant of Λ . Furthermore, if $B_{\tau} = \{x : ||x|| \leq \tau\}$, then

$$\lim_{\tau \to \infty} = \frac{|B_{\tau} \cap \Lambda|}{\operatorname{vol} B_{\tau}} = \frac{1}{\det \Lambda}.$$

We start with a lemma:

Lemma 1.1.1. Let Π be a fundamental parallelepiped of $\Lambda \subset V$. Then every vector $x \in V$ is

Lattice and Its Basis Yiwei Fu

uniquely written as x = u + y where $u \in \Lambda, y \in \Pi$.

Proof. Existence: Π is the fundamental parallelepiped for u_1,\ldots,u_n . If $x=\sum_{i=1}^n\alpha_iu_i$ then $u=\sum_{i=1}^n\lfloor\alpha_i\rfloor\,u_i$ and $y=\sum_{i=1}^n\left\{\alpha_i\right\}u_i$

Uniqueness: suppose $x=u_1+y_1=u_2+y_2$ then $u_1-u_2=y_2-y_1$. Since $u_1-u_2\in\Lambda$ we have $y_2-y_1=\sum_{i=1}^n(\alpha_i-\beta_i)\mathbf{u}_i$. We have $(\alpha_i-\beta_i)\in\mathbb{Z}$. Since $-1<\alpha_i-\beta_i<1$, it has to be 0.

A geometry interpretation is that we can cover the whole space with fundamental parallelepipeds without overlaps.