Esercizi Laboratorio Calcolo Numerico 1 - Settimana 12 -

Nota: per i comandi non esplicitamente introdotti nel video di spiegazione si può utilizzare help oppure doc dei comandi stessi

1. Data $f(x) = 5\cos(x)\sin(x)$, si approssimi il suo valor medio integrale

$$M = \frac{1}{\frac{3}{2}\pi} \int_0^{\frac{3}{2}\pi} f(t) dt$$

con la formula dei trapezi composta, utilizzando N sottointervalli di uguale ampiezza. Sia $M_T^{(N)}$ il valore approssimato ottenuto.

- 1.1) Implementare, per $N=1,2,\ldots$ una procedura che si arresti quando l'errore assoluto $|M-M_T^{(N)}|$ risulta minore od uguale a ϵ , con $\epsilon=10^{-2},10^{-3},10^{-4}$
- 2. Si vuole approssimare il valore dell'integrale

$$I = \int_0^\infty e^{-\frac{x^2}{2}} dx = \frac{\sqrt{2\pi}}{2},$$

applicando la formula dei trapezi composita all'integrale

$$I_b = \int_0^b e^{-\frac{x^2}{2}} dx,$$

con M sottointervalli di ampiezza uguale a 1. Sia I_b^M il valore approssimato ottenuto.

- 2.1) Implementare una procedura che calcoli I_b^M per b=2,3,4,..., e si arresti quando l'errore assoluto $|I-I_b^M|$ risulta minore o uguale a 10^{-8} .
- 3. Si vuole approssimare l'integrale improprio

$$I = \int_{-1}^{1} \frac{e^x - 1}{x} \, dx$$

con il metodo dei trapezi compositi applicato ai due integrali I_1 e I_2 :

$$I_1 = \int_{-1}^{-\epsilon} \frac{e^x - 1}{x} dx, \quad I_2 = \int_{\epsilon}^{1} \frac{e^x - 1}{x} dx$$

tali che $I \approx I_1 + I_2$.

- 3.1) Calcolare il valore approssimato per $\epsilon = 0.01, 0.001, 0.0001$, utilizzando m = 250, 500 sottointervalli su ciascuno dei due sottointervalli $[-1, -\epsilon]$ e $[\epsilon, 1]$.
- 4. Approssimare l'integrale definito

$$I = \int_0^1 \sqrt{1 - x^2} \, \mathrm{d}x = \frac{\pi}{4}$$

rispettivamente con il metodo dei trapezi e il metodo di Cavalieri Simpson compositi, utilizzando $m=2^n$ sottointervalli, $n\geq 1$. Siano I_m^T e I_m^C i rispettivi valori ottenuti.

1

4.1) Determinare l'intero M, definito come il minimo valore di m tale per cui si verifica

$$E_M = |I_M^T - I_M^C| < 10^{-4}.$$

4.2) Determinare l'intero N, definito come il minimo valore di m tale per cui si verifica

$$E_N = |I_N^T - I| < 10^{-4}.$$

5. Per il calcolo degli integrali

$$I_k = \int_0^1 x^k e^{x-1} dx, \quad k = 1, 2, 3, \dots$$

si considerino:

- 5.1) la formula ricorsiva $I_k=1-kI_{k-1}$, con $I_1=1/\mathrm{e}$. Per K=12,14,16,18, si calcolino i valori I_K con la formula ricorsiva proposta
- 5.2) la formula di quadratura dei trapezi compositi. Per gli stessi valore K di sopra, si calcolino i valori I_K utilizzando M=100,200 sottointervalli

Esercizio consigliato: nr. 3 T.E. 27/04/2017