

Almacenes de datos

Grado en Ingeniería en Informática y programa conjunto MAT-INF

Curso 2023-2022

Fernando Tricas García (ftricas@unizar.es)

Raquel Trillo Lado (raqueltl@unizar.es)

Carlos Tellería Orriols (telleria@unizar.es)

Dpto. Informática e Ingeniería de Sistemas

Guion

Introducción

- Data Warehouses
- ☐ Características: entornos OLTP y OLAP

□Construcción de Data Warehouses

- Arquitecturas
- Procesos ETL
- Modelos multidimensionales

DReferencias

Problema

- Las organizaciones manejan enormes cantidades de datos...
 - ☐ ... en distintos formatos.
 - ... que residen en distintas bases de datos.
 - ... organizados utilizando distintos tipos de gestores de bases de datos

Onsecuencia

 Resulta difícil acceder y utilizar todos los datos en aplicaciones de análisis (las cuales requieren extraer, preparar e integrar los datos)

Data Warehouse (Def.):

- 1. Repositorio
- Datos estructurados
- 3. A nivel de empresa
- 4. Datos históricos y actuales
- 5. Facilita la toma de decisiones

Business Intelligence

Tipos de sistemas de información

Transaccionales (OLTP)	Analíticos (OLAP)
Datos operacionales	Datos consolidados (suelen provenir de distintas BD OLTP)
Muchas transacciones (INSERT, UPDATE, DELETE)	Pocas transacciones
Datos actuales	Datos actuales e históricos
Información detallada	Información detallada y resumida (integrada) (Consultas complejas – agregaciones Data mining)
Los datos cambian continuamente (volátiles)	Datos con mayor estabilidad y menos cambios (no volátiles)

Características de los almacenes de datos

Orientados a un aspecto concreto

- La información en base a un tema de interés para los directivos de la entidad y no para facilitar la operatividad diaria:
 - ☐ Ej. Para un empresa dedicada al comercio en torno a las ventas, productos y proveedores

Integrados

- ☐ El almacén de datos suele contener, entre otros, todos los datos de los sistemas operacionales de la organización (empresa)
- Dichos datos deben ser consistentes
 - ☐ Ej. Agrega los datos de los sistemas de ventas, compras de productos, campañas de *marketing*, recursos humanos, etc.

Características de los almacenes de datos

□No volátiles

- Una vez los datos han sido incorporados al sistema (registrados) estos no se borran ni actualizan. Además están pensados para un horizonte de tiempo mucho mayor que los datos operacionales
 - Inserciones/borrados/actualizaciones constantes vs. lectura/agregación de datos
 - La misma consulta sobre el mismo periodo temporal siempre produce el mismo resultado

Guion

Introducción

- Data Warehouses
- ☐ Características: entornos OLTP y OLAP

□Construcción de Data Warehouses

- Arquitecturas
- Procesos ETL
- Modelos multidimensionales

DReferencias

Construcción de Data Warehouses

Procesos ETL

Extracción

- Heterogeneidad en las fuentes de datos
 - Normalmente: BD relacionales (OLTP), ERP, CRM, incluso ficheros de texto plano
 - ☐ Datos: estructurados, semi-estructurados o no estructurados
- La extracción puede llevarse a cabo:
 - Para realizar una imagen inicial
 - ☐ Para actualizar una imagen ya existente
- Muy costoso en tiempo, puede afectar al rendimiento de los sistemas fuentes de datos

Procesos ETL

Procesos ETL

Carga

- Se cargan los datos de la fase anterior (*Transformación*)
- Dos métodos
 - Carga completa
 - Primera carga (imagen inicial)
 - Carga incremental
 - ☐ Carga en intervalos de tiempo regulares y planificados
 - ☐ Streaming (volúmenes pequeños de datos)
 - ☐ Por lotes (grandes volúmenes de datos)
 - Mantenimiento de históricos (se puede hacer el seguimiento temporal de un dato)

Procesos ETL

Staging Area

☐ Facilita los procesos de extracción y transformación de los datos antes de ser incluidos en el Data Warehouse

Modelos multidimensionales

O cómo organizar los datos en un DW

□Cubo (n-dimensionales, hipercubo)

- ☐ Estructura que se emplea para organizar los datos en el Data Mart. Tiene múltiples dimensiones.
- ☐ Ej. 3 dimensiones

Modelos multidimensionales

Diferente nivel de detalle en cada una de las dimesiones

Modelos multidimensionales

□Slice (loncha)

☐ El subconjunto de datos multidimensionales definidos por **seleccionar valores específicos** para cada uno de los atributos que definen las dimensiones

Modelos multidimensionales

Operación básica: la agregación

- ☐ ¿Qué cantidad de productos de la marca X se han vendido durante el mes actual en las diferentes tiendas?
- Cuántas ventas de los diferentes productos se han realizado en las tiendas de la región 1? Tiempo

Modelos multidimensionales

Implementación de los cubos

DVirtual

- Opción más simple:
 - Una sola tabla con múltiples columnas que representan o bien las dimensiones que se consideran o bien los datos de interés para el análisis (en nuestro ejemplo, el número de ventas de un producto)
 - ☐ Sigue un esquema en **estrella**

DFísica

- Bases de datos multidimensionales
 - Matriz n-dimensional almacenando los valores

Modelos multidimensionales

ARQUITECTURA EN ESTRELLA

■Una tabla central que contiene la información de los hechos que se desea analizar (p. ej. las ventas) conectada a diferentes tablas que representan las diferentes dimensiones

Modelos multidimensionales

□En general:

- ☐ Implementación ☐ Arquitectura de estrella
- ☐ Vista analítica ☐ Arquitectura de una sola tabla

Modelos multidimensionales: entorno analítico

GENERACIÓN DE INFORMES

☐Son configurables

☐ Información a mostrar / Periodicidad

□Operadores sobre los informes

- ☐ Drill down
 - Detallar los resultados obtenidos añadiendo un campo. Por ejemplo, el periodo temporal
- □ Roll up
 - Agregar los resultados obtenidos eliminando un campo. Por ejemplo, agregando por marca todos los productos

Modelos multidimensionales: entorno analítico

Modelos multidimensionales: entorno analítico

Dashboard (Tablero de Mandos)

FACTORES DE ÉXITO

Integrar datos externos con los datos de producción internos y gestionar historiales

□Considerar información útil, centrada en los objetivos de la empresa

□Emplear datos de calidad (coherentes, actualizados y documentados)

DArquitectura flexible para garantizar escalabilidad (tanto a nivel hardware como a nivel software). Considerar también más usuarios, herramientas, volumen de negocio, etc.

ERRORES COMUNES

- Incluir datos solamente porque están disponibles (podrían no ser útiles)
- ☐ Crear un esquema de **BD relacionales tradicional**
- ☐Crear el Data Warehouse **pensando en la tecnología** que se va a usar para su implementación
- □Creer que los Data Warehouses acaban su **ciclo de vida** una vez son cargados los datos e instalado el sistema (incluir herramientas para el diseño de informes)

Temas relacionados (Data lakes)

Data warehouse	VS	Data lake
estructurados, preprocesados	DATOS	estructurados, semi-estructurados , no estructurados
esquema al escribir	PROCESAMIENTO	esquema al leer
costoso para grandes volúmenes	ALMACENAMIENTO	Diseñado para bajo coste
menos ágil, configuración fija	AGILIDAD	muy ágil, configuración bajo demanda
madura	SEGURIDAD	en proceso
directivos	USUARIOS	analistas de datos (entre otros)

Temas relacionados (Data lakes)

Ejercicio

Ejercicio de modelado de la inteligencia de negocio para una empresa dedicada al servicio de música por Internet

- ☐ Modelo de negocio
- Información importante para la toma de decisiones
- ☐ Fuentes de datos
- Diseño del almacén de datos
- D ...

Guion

Introducción

- Data warehouses
- ☐ Características: entornos OLTP y OLAP

□Construcción de Data Warehouses

- Arquitecturas
- Procesos ETL
- Modelos multidimensionales

Proposition Referencias

Referencias

Ralph Stair y George Reynolds, Information Systems, 10th edición, International edition

Imhoff y otros, Mastering Data Warehouse Design: Relational and Dimensional Techniques, 2003, Wiley

□J. M. Franco, El data warehouse. El Data Mining, 1997, Eyrolles

Sistemas de información

Grado en Ingeniería en Informática y programa conjunto MAT-INF

Universidad Zaragoza

Curso 2023-2024

Fernando Tricas García (ftricas@unizar.es)

Raquel Trillo Lado (raqueltl@unizar.es)

Carlos Tellería Orriols (telleria@unizar.es)

Dpto. Informática e Ingeniería de Sistemas