Week 5: Nonparametric Regression MATH-517 Statistical Computation and Visualization

Tomas Masak

Oct 21, 2022

KDE

One-dimensional KDE (from last week):

$$\widehat{f}(x) = \frac{1}{nh_n} \sum_{i=1}^n K\left(\frac{X_i - x}{h_n}\right)$$

Multidimensional generalization (separable) when $X_1, \ldots, X_n \in \mathbb{R}^d$:

$$\widehat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{X_{i,1} - x_1}{h}\right) \cdot \ldots \cdot K\left(\frac{X_{i,d} - x_d}{h}\right)$$

Non-parametric Regression Setup

- we observe i.i.d. copies of a bivariate random vector $(X, Y)^{\top}$ • a random sample $(X_1, Y_1)^{\top}, \dots, (X_n, Y_n)^{\top}$
- we are interested in modeling the conditional expectation of the response variable Y given the single predictor variable X, i.e. the regression function

$$m(x) := \mathbb{E}[Y|X = x]$$

we want to avoid parametric assumptions

Data Example

```
library(MASS)
data(mcycle)
plot(mcycle$times,mcycle$accel)
```


 head acceleration Y depending on time X in a simulated motorcycle accident use to crash test helmets

Naive Non-parametric Regression

Goal: estimate $m(x) := \mathbb{E}[Y|X=x]$ from $(X_1, Y_1)^\top, \dots, (X_n, Y_n)^\top$ i.i.d.

Since $m(x) = \int_{\mathbb{R}} y f_{Y|X}(y|x) dy = \frac{\int_{\mathbb{R}} y f_{X,Y}(x,y) dy}{f_X(x)}$ and we can now estimate densities, let's plug in those estimators

$$\widehat{f}_{X}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_{i} - x}{h}\right)$$

$$\widehat{f}_{X,Y}(x,y) = \frac{1}{nh^{2}} \sum_{i=1}^{n} K\left(\frac{X_{i} - x}{h}\right) K\left(\frac{Y_{i} - y}{h}\right)$$

to obtain

$$\widehat{m}(x) = \frac{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right) Y_{i}}{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)}$$

Local Constant Regression

$$\widehat{m}(x) = \frac{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right) Y_{i}}{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)}$$

Since this is a weighted average, it must be a solution to weighted least squares:

$$\widehat{m}(x) = \operatorname*{arg\;min}_{\beta_0 \in \mathbb{R}} \sum_{i=1}^{\infty} K\left(\frac{X_i - x}{h}\right) (Y_i - \beta_0)^2$$

For a fixed x, this is a weighted intercept-only regression, with weights given by the kernel.

What if we went for better than intercept-only regression? We have at least one covariate X...

Local Polyomial Regression

$$\arg\min_{\beta\in\mathbb{R}^{p+1}}\sum_{i=1}^n[Y_i-\beta_0-\beta_1(X_i-x)-\ldots-\beta_p(X_i-x)^p]^2K\left(\frac{X_i-x}{h}\right)$$

Taylor expansion:

$$m(X_i) \approx m(x) + (X_i - x)m'(x) + \frac{(X_i - x)^2}{2!}m''(x) + \ldots + \frac{(X_i - x)^p}{p!}m^p(x)$$

$$\widehat{eta}_j(x)$$
 estimates $rac{m^{(j)}(x)}{j!}$ $\Rightarrow \widehat{m}(x) = \widehat{eta}_0(x)$

Vizualization

Manual 10 Shiny App

(rather an example than a manual)

Local Linear Regression

Choosing the order p=1 leads to the local linear estimator

$$(\widehat{\beta}_0(x), \widehat{\beta}_1(x)) = \arg\min_{\mathbf{b} \in \mathbb{R}^2} \sum_{i=1}^n [Y_i - \beta_0 - \beta_1(X_i - x)]^2 K\left(\frac{X_i - x}{h}\right),$$

- $\widehat{m}(x) = \widehat{\beta}_0(x)$
- $\bullet \ \widehat{m}'(x) = \widehat{\beta}_1(x)$

Can be shown (blackboard calculations) that $\widehat{\beta}_0(x) = \sum_{i=1}^n w_{ni}(x) Y_i$, where

$$w_{ni}(x) = \frac{\frac{1}{nh}K\left(\frac{X_i - x}{h}\right) \left[S_{n,2}(x) - (X_i - x)S_{n,1}(x)\right]}{S_{n,0}(x)S_{n,2}(x) - S_{n,1}^2(x)}$$

with
$$S_{n,k}(x) = \frac{1}{nh} \sum_{i=1}^{n} \left(\frac{X_i - x}{h} \right)^k K\left(\frac{X_i - x}{h} \right)$$

• $\sum_{i=1}^{n} w_{ni}(x) = 1$ (but not necessarily $w_{ni}(x) \ge 0$)

Bias and Variance

For local linear regression, similarly to (but more tediously than) KDE:

$$\operatorname{bias}(\widehat{m}(x)) = \frac{1}{2}m''(x)h_n^2 \int z^2 K(z)dz + o_P(h_n^2)$$
$$\operatorname{var}(\widehat{m}(x)) = \frac{\sigma^2(x) \int [K(z)]^2 dz}{f_X(x)nh_n} + o_P\left(\frac{1}{nh_n}\right)$$

where $\sigma^2(x) = \text{var}(Y_1|X_1 = x)$ is the local variance.

• for other orders, similar expressions can be obtained

Bandwidth Selection

Similarly to what we did last week with KDEs, we consider

$$MSE(\widehat{m}(x)) = var(\widehat{m}(x)) + [bias(\widehat{m}(x))]^2$$

and, dropping the little-o terms, we obtain

$$AMSE(\widehat{m}(x)) = \frac{\sigma^2(x) \int [K(z)]^2 dz}{f_X(x) n h_n} + \frac{1}{4} [m''(x)]^2 h_n^4 \left(\int z^2 K(z) dz \right)^2.$$

Now, a local bandwidth choice can be obtained by optimizing AMSE. Taking derivatives and setting them to zero, we obtain

$$h_{opt}(x) = n^{-1/5} \left[\frac{\sigma^2(x) \int [K(z)]^2 dz}{m''(x) f_X(x) \int z^2 K(z) dz} \right]^{1/5}.$$

Bandwidth Selection

$$h_{opt}(x) = n^{-1/5} \left[\frac{\sigma^2(x) \int [K(z)]^2 dz}{\left[m''(x) \int z^2 K(z) dz \right]^2 f_X(x)} \right]^{1/5}.$$

This is somewhat more complicated compared to the KDE case, because we have to estimate

- the marginal density $f_X(x)$,
 - let's say that we already know how to do this, e.g. by KDE even though that requires a choice of yet another bandwidth
- the local variance function $\sigma^2(x)$, and
- the second derivative of the regression functions m''(x).

Again, like in the case of KDEs, the global bandwidth choice can be obtained by integration:

- calculate $AMISE(\widehat{m}) = \int AMSE(\widehat{m}(x))f_X(x)dx$, and
- set $h_{opt} = \arg\min_{h>0} AMISE(\widehat{m})$.

Rule of Thumb Algorithm

starting from some initial bandwidth:

- use a higher order p (e.g. p=3) to estimate m''(x) with an inflated value of your current bandwidth
- assume that $\sigma^2(x) = \sigma^2$ is constant and estimate it from the residuals as $\frac{1}{n-d} \sum_{i=1}^n [Y_i \tilde{m}''(X_i)]$, where \tilde{m}'' is the estimator from the previous step and d is the degrees of freedom of \tilde{m}''
 - defined the same as last week
- update the current bandwidth by the $h_{opt}(x)$ formula above

and iterate the steps above couple of times

- it is not possible to prove convergence
- showcases the importance of computational considerations
 - similar situation to KDEs, local linear regression is a *linear smoother*, FFT can be used to speed up computations

Why Local Linear?

Bias and variance can be calculated similarly also for higher order local polynomial regression estimators. In general:

- bias decreases with an increasing order
- variance increases with increasing order, but only for $p=2k+1 \to p+1$, i.e. when increasing an odd order to an even one

For this reason, odd orders are preferred to even ones

- ullet p=1 is easy to grasp as it corresponds to locally fitted simple regression line
- ullet increasing p has a similar effect to decreasing the bandwidth h
 - hence p = 1 is usually fixed and only h is tuned

Section 1

Other Smoothers (Informatively)

loess() and lowess()

loess() (LOcal regrESSion) should be local linear regression with tricube kernel

lowess() (LOcally WEighted Scatterplot Smoothing) is an iterative algorithm:

- fit loess()
- repeat
 - calculate residuals of the current fit
 - calculate weights based on the residuals
 - fit weighted loess()
- until convergence (or just 3-times)

The goal of lowess() is to improve loess() by making it *robust* (immune) to outliers.

Smoothing Splines

$$\arg\min_{g\in C^2} \sum_{i=1}^n \left[Y_i - m(X_i) \right]^2 + \lambda \int \left[m''(x) \right]^2 dx$$

- Gaussian likelihood + smoothness penalty
- $\lambda > 0$ controls the trade-off between fit and smoothness

Unique solution: the natural cubic spline

- piece-wise polynomial of degree three between
- knots at X_i , $i = 1, \ldots, n$
- two continuous derivatives at the knots

Smoothing Spline: Example

Smoothing Splines

A natural cubic spline g with n knots can be expressed w.r.t. the natural spline basis $\{e_j\}$ (something specific, doesn't matter what it is) as

$$m(x) = \sum_{j=1}^{n} \gamma_j e_j(x)$$

Let

- $\gamma = (\gamma_i) \in \mathbb{R}^n$
 - $E := (e_{ij}) := (e_j(x_i))_{i,i=1}^n \in \mathbb{R}^{n \times n}$ and
 - $\Omega = (\omega_{ij}) \in \mathbb{R}^{n \times n}$ with $\omega_{ij} = \int e_i''(x) e_j''(x) dx$

Then

$$\sum_{i=1}^{n} [Y_i - m(X_i)]^2 + \lambda \int [m''(x)]^2 dx \equiv (Y - E\gamma)^{\top} (Y - E\gamma) + \lambda \gamma^{\top} \Omega \gamma$$

Smoothing Splines

$$\sum_{i=1}^{n} [Y_i - m(X_i)]^2 + \lambda \int [m''(x)]^2 dx \equiv (Y - E\gamma)^{\top} (Y - E\gamma) + \lambda \gamma^{\top} \Omega \gamma$$

- $\hat{\gamma} = (E^{T}E + \lambda\Omega)E^{T}Y$
- $\widehat{Y} = \widehat{B}\widehat{\gamma} = S_{\lambda}Y$ with $S_{\lambda} = (E^{\top}E + \lambda\Omega)E^{\top}$
- ⇒ smoothing splines are linear smoothers
 - degrees of freedom: $df = tr(S_{\lambda})$
 - ullet 1-1 correspondence between df and λ
 - \bullet specifying df easier for interpretation
 - bias-variance trade-off

Orthogonal Series

- take a pre-defined set of orthogonal functions $\{e_j\}_{j=1}^{\infty}$
 - customarily some basis (for some space), e.g. Fourier basis, B-splines, etc.
- truncate it to $\{e_j\}_{j=1}^p$
- approximate $m(x) \approx \sum_{j=1}^{p} \gamma_j e_j(x)$

Then estimate m by least-squares:

$$\arg\min_{\gamma\in\mathbb{R}^p}\sum_{i=1}^n\left[Y_i-\gamma_1e_1(x)-\ldots-\gamma_pe_p(x)\right]^2$$

- just a single linear regression
- no penalty term, simplicity achieved via truncation
 - bias-variance trade-off controlled by the choice of p
 - can be related to smoothness when e_j 's get more wiggly with increasing j (which is typical for most bases)
 - choices = assumptions

Assignment [5 %]

Create a Shiny App or (alternatively) an R Markdown report exploring the (local, asymptotically optimal) bandwidth choice $h_{opt}(x)$ on slides 11 and 12 on simulated data example:

- locations X from beta distribution rbeta(n,shape1,shape2)
- response values $Y = m(X) + \epsilon$ where
 - the regression function m is given by sin(1/(x/3+0.1))
 - $\epsilon \sim \mathcal{N}(0, \sigma^2)$
- fix σ^2 at some visually appealing value (e.g. $\sigma^2=1$ should be fine)
- explore how $h_{opt}(x)$ behaves depending on the following parameters (in case of a Shiny App, these will be sliders for the user to tweak):
 - sample size n
 - location x
 - beta parameters shape1 and shape2
- visualize (local, asymptotically optimal) bandwidth
 - also find a way to visually incorporate the beta density