ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

SEMESTER FINAL EXAMINATION TIME: 3 HOURS

WINTER SEMESTER, 2015-2016

FULL MARKS: 150

CSE 4307: Database Management Systems

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 8 (eight) questions. Answer any 6 (six) of them.

Figures in the right margin indicate marks.

Question 1.(a) and 2.(a) are based on the following database schema. The underlined attributes are primary keys of relations.

customers (customer_id, customer_name, address, age, sex)

products (product id, product name, unit price)

orders (order_id, product_id, quantity)

transactions (customer id, order id, total amount, date)

The *customers* relation holds customer related information like id, name, address, age and sex of a customer. The *products* relation gives the product id, name and unit price of a product. The *orders* relation holds data about all orders which include products and their quantity in suitable units. The *transactions* relations give further details about an order like who ordered it (customer), when the order was processed (date) and what was the total amount of that order. A database snapshot is shown in Appendix for your convenience.

1. a) Write expressions in relational algebra to answer the following queries.

3×5

- i. Find all product names and quantity ordered by customer 'C-001'.
- ii. Find all customer names who live in 'Agargaon' and age is in between 35 and 40.
- iii. Find the total amount paid by each customer.
- iv. Increase unit price of 'Rice' by 15% and update the products relation accordingly.
- v. Find the name of the highest priced product.
- b) Explain how division (÷) operator works using a suitable example.

5 3+2

- c) What are the conditions that must be fulfilled to apply set operations over relations in relational algebra? If there are m records in relation r and n records in relation s, how many records can be there at most in relation r ∩ s?
- 2. a) Write SQL statements to perform the following queries.

3×5

- i. Find all female customers and display their name, address and age.
- ii. Find customers id, name and address who ordered either 'Rice' or 'Flour'. (must use set operation).
- iii. Find the customer ids and names that have placed at most one order. (must use unique keyword).
- iv. Find the customer names and address who ordered the highest quantity of 'Rice'.
- v. Find the quantity in stock for each product.
- b) Suppose there are two relations r (A,B,C) and s (C,D). Write **SQL statements** to perform 2×3 the following DDL queries.
 - i. Write statement to add a new attribute E that holds date value in relation s.

- Write statement to add a foreign key constraint in relation s on attribute C that references attribute C: ii. references attribute C in relation r.
- Write statement to rename the attribute A to Z in relation r. iii.
- Write the equivalent SQL statement for the relational algebra expression $r \bowtie_{r,B='b'} s$ based on the schema provided in Question 2.(b).
- 10 Construct an E-R diagram for a database recording information about football teams, 3. a) football players, and their fans, including the following: Each player has his/her name and playing position. Note that, a player can play at different positions. Each player could play for a team and the database has to maintain the starting and ending date of the contract of a player to a team. A team has its name, year of establishment and color of its jersey. Further, each team has many players and a team captain. A team and a player could have many fans. Each fan has his/her name, gender, date of birth and age. 10
 - b) In Question 3.(a), you have designed an E-R diagram. Transform your E-R diagram into a set of relational schemas with appropriate reasoning.
 - What do you understand by the term 'Aggregation' in the context of database design? Explain using an appropriate example. Your example must be different than those discussed in the textbook.
- What is Functional dependency? How is the concept of functional dependency being used 4. to illustrate the definition of super keys and candidate keys?
 - b) A database schema named PROJECT contains the following relations which are already in 1NF.

Project (project_code, project_title, project_manager, project_budget)

Project Employee Department (project code, employee no, employee name, dept no, dept_name, hourly_rate)

You have to decompose the following relations in such a way so that the resulting relations are in 3NF. Justify your answer at each step and identify the primary keys as necessary. A sample dataset is given below for these two relations.

Project Code	Project Title	Project Manager	Project Budget
PC010	Pensions System	M Phillips	24500
PC045	Salarles System	H Marlin	17400
PC064	HR System	K Lewis	12250

Project Code	Employee No.	Employee Name	Department No.	Department Name	Hourly Rate
PC010	\$10001	A Smith	L004	IT	22.00
PC010	\$10030	L Jones	L023	Pensions	18.50
PC010	S21010	P Lewis	L004	IT	21.00
PC045	S10010	B Jones	L004	IT	21.75
PC045	S10001	A Smith	· L004	П	18.00
PC045	S31002	T Gilbert	L028	Database	25.50
PC045	S13210	W Richards	L008	Salary	17.00
PC064	\$31002	T Gilbert	L028	Database	23.25
PC064	821010	P Lewis	L004	IT	17.50
PC064	\$10034	B James	L009	HR	16.50

Figure 1: Database snapshot for Question 4.(b)

- c) Explain the term 'Multivalued Dependency' using a suitable example. Your example must be different than those which were discussed in the class.
- 5. a) What are the ACID properties of a transaction? Explain briefly.
 - How do you differentiate between the term 'Serial schedule' and 'Serializable schedule'?

Scanned by CamScanner

4

4

5

2+4

15

7

c) Consider the following schedule S.

T_1	T_2	T_3
write(X)	read(X)	umito(V)
		write(X) read(Y)
read(Y)	write(Y)	

Is S conflict serializable? If yes, what is the equivalent serial schedule to S? Explain your answer by accompanying a precedence graph for the aforesaid schedule.

- d) Write the distinction between a 'Recoverable schedule' and a 'Cascadeless schedule'. Which one of them is more preferable?
- 6. a) What is concurrent access anomalies? Explain using a suitable example.

 5

 10

 Explain 2PL protocol for concurrency control.

 5+5
 - c) What are the deadlock prevention strategies? How can you detect a deadlock?
- 7. a) Discuss the different levels of Isolation.b) What are the advantages and disadvantages of graph-based concurrency control protocol?
 - b) What are the advantages and disadvantages of graph-based concurrency control protocol.
 c) How can you transform generation/specialization of an E-R diagram into a set of relational
 - d) What is the major difference between RAID Level 1 and RAID Level 5?
 - 8. a) The following figure shows a B⁺ tree with n = 4 (a node can contain at most 4 pointers) where the search-key values are: 2, 3, 5, 7, 11, 17, 19, 23, 29, 31. Show the form of the tree after each of the following operations. Remember that operations are performed sequentially over the result of the previous operation.
 - i. Insert 9
 - ii. Insert 10
 - iii. Delete 23
 - iv. Delete 19

- b) What is the major difference between clustering index and non-clustering index? Is it possible to create a non-clustering sparse index? Justify your answer.
- c) Assume that you have a relation r that consists of 10000 records and consumes 1000000 bytes of disk space. You want to create a sparse index on r that has an index entry for every block of data of relation r. The given block size is 4 KB and a record cannot be stored in index?

8

5

7

6

6

6

5+5

APPENDIX

customers				
customer id	customer name	address	age	sex
C-001	Alice	Agargaon	38	M
C-002	Bob	Bashundhara	42	F
C-003	Christina	Chakbazar	72	

products		
roduct id	product_name	unit_price
P-001	Rice	60.50
P-002	Flour	90.50
P-003	Pran Spice	150.75
P-004	Pran Cola	20
P-005	Kitkat	50

order_id	product_id	quantity
OR-001	P-001	10
OR-001	P-005	20
OR-002	P-002	5
DR-003	P-003	5
R-003	P-004	25
R-003	P-001	20
R-004	P-005	10

transactions		total amount	date
customer_id	order_id	1605	15-MAY-2015
C-001	OR-001		01-JUN-2015
C-002	OR-002	452.50	02-JUN-2015
C-003	OR-003	2443.75	09-JUN-2015
C-001	OR-004	500	07-3011 2010