TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2020

Monte-Carlo Markov Chain (MCMC) Sampling

Notation

x is an input (e.g. an image).

 $\hat{\mathcal{Y}}[N]$ is a structured label for x — a vector $\hat{\mathcal{Y}}[0], \dots, \hat{\mathcal{Y}}[N-1]$. (e.g., n ranges over pixels where $\hat{\mathcal{Y}}[n]$ is a semantic label of pixel n.)

 $\hat{\mathcal{Y}}/n$ is the set of labels assigned by $\hat{\mathcal{Y}}$ at indeces (pixels) other than n.

 $\hat{\mathcal{Y}}[n=\ell]$ is the structured label identical to $\hat{\mathcal{Y}}$ except that it assigns label ℓ to index (pixel) n.

Sampling From the Model

For back-propagation of $-\ln P_s(\hat{\mathcal{Y}})$ through the exponential softmax defined by $P_s(\hat{\mathcal{Y}}) = \frac{1}{Z}e^{s(\hat{\mathcal{Y}})}$ we have

$$s^{N}$$
.grad $[n, \ell] = P_{\hat{\mathcal{Y}}' \sim P_{s}}(\hat{\mathcal{Y}}'[n] = \ell)$
 $-\mathbf{1}[\hat{\mathcal{Y}}[n] = y]$

$$s^{E}$$
.grad $[\langle n, m \rangle, \ell, \ell'] = P_{\hat{\mathcal{Y}}' \sim P_{s}}(\hat{\mathcal{Y}'}[n] = \ell \wedge \hat{\mathcal{Y}'}[m] = \ell')$
 $-\mathbf{1}[\hat{\mathcal{Y}}[n] = \ell \wedge \hat{\mathcal{Y}}[m] = \ell']$

MCMC Sampling

The model marginals, such as the node marginals $P_s(\hat{\mathcal{Y}}[n] = \ell)$, can be estimated by sampling $\hat{\mathcal{Y}}$ from $P_s(\hat{\mathcal{Y}})$.

There are various ways to design a Markov process whose states are the structured labels $\hat{\mathcal{Y}}$ and whose stationary distribution is P_s .

Given such a process we can sample $\hat{\mathcal{Y}}$ from P_s by running the process past its mixing time.

We will consider Metropolis MCMC and the Gibbs MCMC. But there are more (like Hamiltonian MCMC).

Metroplis MCMC

We assume a neighbor relation on the structured labels $\hat{\mathcal{Y}}$ and let $N(\hat{\mathcal{Y}})$ be the set of neighbors of structured label $\hat{\mathcal{Y}}$.

For example, $N(\hat{\mathcal{Y}})$ can be taken to be the set of assignments $\hat{\mathcal{Y}}'$ that differ form $\hat{\mathcal{Y}}$ on exactly one index (pixel) n.

For the correctness of Metropolis MCMC we need that all structured labels have the same number of neighbors and that the neighbor relation is symmetric — $\hat{\mathcal{Y}}' \in N(\hat{\mathcal{Y}})$ if and only if $\hat{\mathcal{Y}} \in N(\hat{\mathcal{Y}}')$.

Metropolis MCMC

Pick an initial state $\hat{\mathcal{Y}}_0$ and for $t \geq 0$ do

- 1. Pick a neighbor $\hat{\mathcal{Y}}' \in N(\hat{\mathcal{Y}}_t)$ uniformly at random.
- 2. If $s(\hat{\mathcal{Y}}') > s(\hat{\mathcal{Y}}_t)$ then $\hat{\mathcal{Y}}_{t+1} = \hat{\mathcal{Y}}'$
- 3. If $s(\hat{\mathcal{Y}}') \leq s(\hat{\mathcal{Y}})$ then with probability $e^{-\Delta s} = e^{-(s(\hat{\mathcal{Y}}) s(\hat{\mathcal{Y}}'))}$ do $\hat{\mathcal{Y}}_{t+1} = \hat{\mathcal{Y}}'$ and otherwise $\hat{\mathcal{Y}}_{t+1} = \hat{\mathcal{Y}}_t$

The Metropolis Markov Chain

We need to show that $P_s(\hat{\mathcal{Y}}) = \frac{1}{Z}e^{s(\hat{\mathcal{Y}})}$ is a stationary distribution of this process.

Let $Q(\hat{Y})$ be the distribution on states defined by drawing a state from P_s and applying one stochastic transition of the Metropolis process.

We must show that $Q(\hat{\mathcal{Y}}) = P_s(\hat{\mathcal{Y}})$.

The Stationary Distribution

Let $P_{\text{Trans}}(\hat{\mathcal{Y}} \to \hat{\mathcal{Y}}')$ denote the probability of transitioning from $\hat{\mathcal{Y}}$ to $\hat{\mathcal{Y}}'$, or more formally,

$$P_{\text{Trans}}(\hat{\mathcal{Y}} \to \hat{\mathcal{Y}}') = P(\hat{\mathcal{Y}}_{t+1} = \hat{\mathcal{Y}}' \mid \hat{\mathcal{Y}}_y = \hat{\mathcal{Y}})$$

We can then write $Q(\hat{\mathcal{Y}}')$ as

$$Q(\hat{\mathcal{Y}}') = \sum_{\hat{\mathcal{Y}}} P_s(\hat{\mathcal{Y}}) P_{\text{Trans}}(\hat{\mathcal{Y}} \to \hat{\mathcal{Y}}')$$

The Stationary Distribution

$$Q(\hat{\mathcal{Y}}') = \sum_{\hat{\mathcal{Y}}} P_s(\hat{\mathcal{Y}}) P_{\text{Trans}}(\hat{\mathcal{Y}} \to \hat{\mathcal{Y}}')$$

$$= P_s(\mathcal{Y}') P_{\text{Trans}}(\hat{\mathcal{Y}}' \to \hat{\mathcal{Y}}') + \sum_{\hat{\mathcal{Y}} \in N(\hat{\mathcal{Y}}')} P_s(\hat{\mathcal{Y}}) P_{\text{Trans}}(\hat{\mathcal{Y}} \to \hat{\mathcal{Y}}')$$

$$= \begin{cases} P_s(\hat{\mathcal{Y}}') \left(1 - \sum_{\hat{\mathcal{Y}} \in N(\hat{\mathcal{Y}}')} P_{\text{Trans}}(\hat{\mathcal{Y}}' \to \hat{\mathcal{Y}}) \right) \\ + \sum_{\hat{\mathcal{Y}} \in N(\hat{\mathcal{Y}}')} P_s(\hat{\mathcal{Y}}) P_{\text{Trans}}(\hat{\mathcal{Y}} \to \hat{\mathcal{Y}}') \end{cases}$$

The Stationary Distribution

$$Q(\hat{\mathcal{Y}}') = \begin{cases} P_s(\hat{\mathcal{Y}}') \left(1 - \sum_{\hat{\mathcal{Y}} \in N(\mathcal{Y}')} P_{\text{Trans}}(\hat{\mathcal{Y}}' \to \hat{\mathcal{Y}}) \right) \\ + \sum_{\hat{\mathcal{Y}} \in N(\hat{\mathcal{Y}}')} P_s(\hat{\mathcal{Y}}) P_{\text{Trans}}(\hat{\mathcal{Y}} \to \hat{\mathcal{Y}}') \end{cases}$$

$$= \begin{cases} P_s(\hat{\mathcal{Y}}') \\ - \sum_{\hat{\mathcal{Y}} \in N(\mathcal{Y}')} P_s(\hat{\mathcal{Y}}') P_{\text{Trans}}(\hat{\mathcal{Y}}' \to \hat{\mathcal{Y}}) \\ + \sum_{\hat{\mathcal{Y}} \in N(\hat{\mathcal{Y}}')} P_s(\hat{\mathcal{Y}}) P_{\text{Trans}}(\hat{\mathcal{Y}} \to \hat{\mathcal{Y}}') \end{cases}$$

$$= P_s(\hat{\mathcal{Y}}') - \text{flow out } + \text{flow in}$$

Detailed Balance

Detailed balance means that for each pair of neighboring assignments $\hat{\mathcal{Y}}$, $\hat{\mathcal{Y}}'$ we have equal flows in both directions.

$$P_s(\hat{\mathcal{Y}}')P_{\text{Trans}}(\hat{\mathcal{Y}}' \to \hat{\mathcal{Y}}) = P_s(\hat{\mathcal{Y}})P_{\text{Trans}}(\hat{\mathcal{Y}} \to \hat{\mathcal{Y}}')$$

If we can show detailed balance we have that the flow out equals the flow in and we get $Q(\mathcal{Y}') = P_s(\hat{\mathcal{Y}}')$ and hence P_s is the stationary distribution.

Detailed Balance

To show detailed balance we can assume without loss generality that $s(\hat{\mathcal{Y}}') \geq s(\hat{\mathcal{Y}})$.

We then have

$$P_{s}(\hat{\mathcal{Y}}')P_{\text{Trans}}(\hat{\mathcal{Y}}' \to \hat{\mathcal{Y}}) = \frac{1}{Z}e^{s(\hat{\mathcal{Y}}')} \left(\frac{1}{N}e^{-\Delta s}\right)$$
$$= \frac{1}{Z}e^{s(\hat{\mathcal{Y}})} \frac{1}{N}$$
$$= P_{s}(\hat{\mathcal{Y}})P_{\text{Trans}}(\hat{\mathcal{Y}} \to \hat{\mathcal{Y}}')$$

Gibbs Sampling

The Metropolis algorithm wastes time by rejecting proposed moves.

Gibbs sampling avoids this move rejection.

In Gibbs sampling we select a node n at random and change that node by drawing a new node value conditioned on the current values of the other nodes.

We let $\hat{\mathcal{Y}} \setminus n$ be the assignment of labels given by $\hat{\mathcal{Y}}$ except that no label is assigned to node n.

We let $\hat{\mathcal{Y}}[N(n)]$ be the assignment that $\hat{\mathcal{Y}}$ gives to the nodes (pixels) that are the neighbors of node n (connected to n by an edge.)

Gibbs Sampling

Markov Blanket Property:

$$P_{s}(\hat{\mathcal{Y}}[n] \mid \hat{\mathcal{Y}} \setminus n) = P_{s}(\hat{\mathcal{Y}}[n] \mid \hat{\mathcal{Y}}[N(n)])$$

Gibbs Sampling, Repeat:

- \bullet Select n at random
- draw y from $P_s(\hat{\mathcal{Y}}[n] \mid \hat{\mathcal{Y}} \setminus n) = P_s(\hat{\mathcal{Y}}[n] \mid \hat{\mathcal{Y}}[N(n)])$
- $\bullet \, \hat{\mathcal{Y}}[n] = y$

This algorithm does not require knowledge of Z.

The stationary distribution is P_s .

\mathbf{END}