P231 39

- a) In the worst case, the number of the most comparisons is 2n+2. When the size of the list doubles form n to 2n, the number becomes 4n+2.
- b) In the worst case, the number of the most comparisons is $2\log_2 n+2$. When the size of the list doubles form n to 2n, the number becomes $2\log_2 n+4$.

P245 41

From $a\equiv b\pmod{m}$ we can know that there exists an integer t such that a=b+tm.

We know that $a^k - b^k = (a - b)(a^{k-1} + a^{k-2}b + ... + b^{k-1}) = tm(a^{k-1} + a^{k-2}b + ... + b^{k-1})$ $(k \ge 2, k \in \mathbb{Z})$, so $(a^k - b^k)$ (mod m) = 0 and $a^k \equiv b^k$ (mod m) hold.

So $a^k \equiv b^k \pmod{m}$ holds.

P255 25

We can know that $644=(1010000100)_2$. Let's set x=1, i=0 and $power=7 \mod 645=7$. Following Algorithm 5 we have the steps followed:

i	X	power
0	1	7 ² mod 645=49
1	1	7 ⁴ mod 645=466
2	(466·1) mod 645=466	7 ⁸ mod 645=436
3	466	7 ¹⁶ mod 645=466
4	466	7 ³² mod 645=436
5	466	7 ⁶⁴ mod 645=466
6	466	7 ¹²⁸ mod 645=436
7	(436·466) mod 645=1	7 ²⁵⁶ mod 645=466
8	1	7 ⁵¹² mod 645=436
9	(436·1) mod 645=436	/

So 7664 mod 645=436.

P256 31

For an integer $k \ge 1$, $(10^k - 1) \pmod{3} = 99...9 \pmod{3} = 0$, so we know that $10^k \equiv 1 \pmod{3}$.

Let a positive integer be $A=(a_n...a_1a_0)_{10}$ as $A=a_n\cdot 10^n$ +...+ $a_1\cdot 10$ + a_0 . Then A **mod** $3=\sum_{i=0}^n a_i \mod 3$.

So $A\equiv\sum_{i=0}^n a_i\pmod 3$ holds. If A mod 3=0, then $\sum_{i=0}^n a_i\mod 3$ =0. If $\sum_{i=0}^n a_i\mod 3$ =0 then A mod 3=0.

So a positive integer is divisible by 3 iff the sum of its decimal digits is divisible by 3.