Surveymetodik Föreläsning 9

Måns Magnusson

Avd. Statistik, LiU

Section 1

Bortfall

Allmänt om bortfall

- En del av (i princip) alla undersökningar med respondenter
- Har ökat kraftigt över tid

Figur: Bortfallsandel i AKU 1970-2013 (oviktat), SCB, 2012

Kvalitetsgränser för bortfall idag: SCB 60% (?), Ekot 50%

Allmänt om bortfall II

- lacksquare Skillnader i bortfall finns mellan olika datainsamlingsmetoder (*)
 - högst i web och telefon,
 - lägre i (bra) postala enkäter,
 - enkäter i skolan fortfarande lågt bortfall
- Bortfallet introducerar fel i vår undersökning
 - Svarsprocenten är i sig inte nödvändigtvis en bra indikator på bortfallsfel (*)
 - Det är vid en bortfallsanalys vi kan se om det finns risker för bortfallsfel
 - Vi behöver hjälpinformation för att både göra bortfallsanalyser och hantera uppkommet bortfall
- Använda bortfall som indikator på saker som inte fungerar

Högt bortfall = (troligtvis) dålig undersökning

Ramfel kan betraktas på (ungefär) samma sätt som bortfall

Vad är bortfall?

De element (objekt) i ramen som tillhör målpopulationen och man har planerat att undersöka, men som man ej fick något svar ifrån. - Dahmström (2011)

Bortfallstyper och antaganden

- Två typer av bortfall finns
 - Objektbortfall
 - Partiellt bortfall
- Antaganden om bortfall
 - Missing completely at random (MCAR)
 - Missing at random (MAR)
 - Not missing at random (NMAR)
- Vi gör ALLTID något av ovanstående antaganden!
 Säger någon att de inte gör ett antagande om bortfallet antar MCAR.

Diskussion: Bortfallsantaganden

- En av de ansvariga statistikerna tappar/råkar förstöra en låda med enkäter.
- I en levnadsnivåundersökning delar inte personer som inte kan språket.
- I en skolundersökning är en del elever sjuka vid datainsamlingstillfället.
- Cryptosporidiumstudie: Personer som inte har kommunalt vatten tycker att de inte berörs av studien.
- Sexualvanestudie på gymnaiset: Personer som inte har haft sex tycker att studien inte rör dem och deltar inte.

Bortfallets konsekvenser

- De direkta konsekvenserna av bortfall i undersökningar är
 - Bortfallet introducerar bortfallsfel i vår undersökning
 - Ett större slumpfel, p.g.a. mindre urval
 - Bias, som inte blir mindre då $n \rightarrow \infty$
- Både slumpfelet och biasen behöver hanteras

Bortfallets konsekvenser II

- Vi kan betrakta bortfallet som två strata: svarsstrata (R) och bortfallsstrata (M)
- Populationsmedelvärdet kan skrivas

$$\bar{y}_{\mathcal{U}} = \frac{N_R}{N} \cdot \bar{y}_{R\mathcal{U}} + \frac{N_M}{N} \cdot \bar{y}_{M\mathcal{U}}$$

• Om vi antar att $E(\hat{\bar{y}}) = \bar{y}_{RU}$ (ex. vid OSU) så kan vi räkna ut hur stor biasen blir (*)

$$\mathsf{Bias} = \frac{N_{M}}{N} \left(\bar{y}_{R\mathcal{U}} - \bar{y}_{M\mathcal{U}} \right)$$

- Felets storlek beror på två faktorer
 - Bortfallsandelen $\left(\frac{N_M}{N}\right)$
 - lacktriangle Skillnaden mellan svarande och icke-svarande $(\bar{y}_{RU} \bar{y}_{MU})$

Bortfallets orsaker

- Vad orsakar bortfall?
- Leverage-Salient-teorin för deltagande i studier
 - Det finns **fördelar** för respondenter att delta i studier som... ex. Bidra, komma till tals, belöningar m.m.
 - Det finns nackdelar f\u00f6r respondenter att delta i studier som...
 ex. Uppgiftsl\u00e4mnarb\u00f6rda, Oro f\u00f6r resultat/hantering, Misstro,
 Kr\u00e4nkande fr\u00e3gor
 - Det som påverkar är dels hur stora fördelarna/nackdelarna är och hur viktiga fördelarna/nackdelarna är för respondenten
 - Sammantaget avgör detta om folk deltar i studierna eller inte
- För mer information om denna teori se artikeln Groves et al. (2000).

Bortfallets orsaker II

Figur: Källa:Groves et al. (2000)

Subsection 5

Hantera bortfall

Att hantera bortfall

- Förebygga (och förbereda för) bortfall
- Genomföra en bortfallsanalys
- Hantera uppkommet bortfall

- Det billigaste (och mest kotsnadseffektiva) är ofta att försöka förebygga (eller förekomma) bortfallsproblem
- Olika datainsamlingsmetoder ger olika bortfall
 - Att kombinera metoder kan minska bortfallet (ex. web + telefon)
- Inkludera variabler för bortfallsanalys och bortfallshantering
- Bra litteratur för att förebygga bortfall är Japec et al. (1997); Edwards et al. (2009)

Figur: Metastudie om bortfall av Edwards et al. (2009)

Figur: Metastudie om bortfall av Edwards et al. (2009)

Figur: Metastudie om bortfall av Edwards et al. (2009)

Figur: Metastudie om bortfall av Edwards et al. (2009)

Figur: Metastudie om bortfall av Edwards et al. (2009)

Figur: Metastudie om bortfall av Edwards et al. (2009)

Figur: Metastudie om bortfall av Edwards et al. (2009)

Figur: Metastudie om bortfall av Edwards et al. (2009)

Figur: Metastudie om bortfall av Edwards et al. (2009)

Figur: Metastudie om bortfall av Edwards et al. (2009)

Figur: Metastudie om bortfall av Edwards et al. (2009)

Figur: Metastudie om bortfall av Edwards et al. (2009)

Figur: Metastudie om bortfall av Edwards et al. (2009)

Figur: Metastudie om bortfall av Edwards et al. (2009)

- För att förebygga problemet med att urvalet minskar på grund av bortfallet kan "översampla"
 - Ett större urval än det tänkta dras för att kompensera för det beräknade bortfallet.
- Det mest elementära sättet att göra detta är att bara räkna upp

$$n_* = \frac{n}{p_R}$$

där n_* är det urval man drar, n är det urval man vill ha och p_R är den svarsandel man uppskattar att man har.

Steg 2: Bortfallsanalys

- Identifiera vilka variabler som kan tänkas samvariera med bortfallet
 - Detta kräver att vi har hjälpvariabler.
 - Resonera, gärna tillsammans med ämnesexperter om detta
- Två situationer:
 - Vi har data för både svarande och icke-svarande: logistisk regression
 - Vi har bara data för svarande: tester mot populationsvärden
- För att reducera bortfallsfelet: identifiera variabler som både är korrelerade med y och med bortfallsannolikheten

Steg 3: Hantera uppkommet bortfall

- Hur vi hanterar bortfallet beror på vilket antagande vi kan göra om bortfallet
- Om vi antar MCAR
 - Går att bara lägga till nya respondenter (substitution)
 - Det är ofta bättre att göra detta innan studien drar igång
- Om vi antar MAR (den vanligaste situationen)
 - Omvägning/Kalibrering
 - (Multipel) imputering
 - Kräver en bortfallsmodell
- Om vi antar NMAR
 - Bortfallsuppföljning (Hansen-Hurwitz)
- GREG-estimatorn (regressionsestimatorn) så kalibrerar vi för bortfall och får en förbättrad precision samtidigt
 - Denna metod är standard idag i större undersökningar.

Steg 3: Hantera uppkommet bortfall II

- En vanlig praktisk lösning är:
 - Partiellt bortfall (Multipel imputering)
 - Objektbortfall (Kalibrering)
- Olika typer av imputation
 - Medelvärdesimputering
 - Regressionsimputering (samma modell som vid kalibreringen)
 - Hot/Cold-deckimputering
- Problem med imputation vi minskar vår osäkerhet
 - Lösningen: Multipel imputation

Subsection 6

Redovisa bortfall

Redovisa bortfall

- För att beräkna bortfall korrekt (för jämförbarhet) används Svensk standard för bortfallsberäkning (se Surveysektionen, 2005) som kan laddas ned [här]
- Bortfall kan både beräknas oviktat och viktat.
 - Vid översampling för bortfall blir det viktade bortfallsmåttet ofta lägre än det oviktade
- Bortfallet bör redovisas efter kön, ålder m.m. samt efter
 - Ej anträffade
 - Vägrare
 - Övrigt (t.ex. språksvårigheter, sjukdom)

Redovisa bortfall

För att beräkna oviktat bortfall används följande formel

$$BA_1(\textit{oviktat}) = 1 - \frac{n_S}{n_S + n_B + n_O}$$

där S är svarande, B är bortfall och O är okänd målpopulation och \emptyset är övertäckning.

■ För att beräkna viktat bortfall används

$$BA_1(\textit{viktat}) = 1 - rac{\sum_{S} d_k}{\sum_{S} d_k + \sum_{B} d_k + \sum_{O} d_k}$$

där d_k är designvikterna

Exempel

- En undersökning har genomförts för att studera väljaropinion i Linköping. Vi behöver ett urval på n = 800.
- För att kompensera för bortfallet (och för att ha som redovisningsgrupper) har undersökningen stratifierats i två strata:
 - Yngre personer (15-29 år) och
 - Äldre personer (30 89 år)
- År 2012 bodde 35 664 yngre personer och 81 681 äldre personer i Linköping.
- Tidigare undersökningar har visat att personer under 30 år har ett bortfall på cirka 50 % medan den äldre gruppen har ett bortfall på cirka 20 %.
- Beräkna urvalet med oversampling i det två strata.

Exempel II

Undersökningen genomförs med följande resultat

Resultat	Yngre medborgare	Äldre medborgare	Totalt
Svar (S)	241	509	740
Bortfall (B)	27	28	55
Okänd status (O)	159	52	211
Övertäckning (∅)	59	8	67

Beräkna studiens oviktade och viktade bortfall.

Referenser

- Dahmström, K., 2011. Från datainsamling till rapport: att göra en statistisk undersökning, 5th Edition. Studentlitteratur, Lund.
- Edwards, P., Roberts, I., Clarke, M., Diguiseppi, C., Wentz, R., Kwan, I., Cooper, R., Felix, L., Pratap, S., 2009. Methods to increase response to postal and electronic questionnaires (review). Cochrane Database of Systematic Reviews 3, 1–12.
- Groves, R., Singer, E., Corning, A., 2000. Leverage-saliency theory of survey participation: Description and an illustration. Public Opinion Quarterly, 299–308.
- Japec, L., Ahtiainen, A., Hörngren, J., Lindén, H., Lyberg, L., Nilsson, P., 1997. Minska bortfallet.
 - URL http://www.pubkat.scb.se/statistik/_publikationer/OV9999_2000I02_BR_X97%C3%96P9701.pdf
- SCB, 2012. Arbetskraftsundersökningarna 2011. Statistiska meddelanden AM12 SM1201, Statistiska centralbyrån, Stockholm.
- Surveysektionen, 2005. Standard för bortfallsberäkning. Stockholm. URL