Lecture-4 notes for SSY150: Multimedia and Video Communications

Video compression

Irene Y.H. Gu

Chalmers University of Technology, Sweden

April 16, 2020

1

Contents

- 1. Fundamental of video compression: MC
- 2. Video coding modes
- 3. Block matching for motion compensation (MC)
- 4. I,P,B image frames, and uni-directional versus bi-directional MC
- 5. A typical video codec
- 6. Tradeoff: select inter and intra modes
- 7. Video coding standards
- 8. Video communications: brief introduction+ examples
- 9. Lab.2 descriptions and demonstration
- 10. References

1. Fundamental of video compression: how late compression rate is achieved?

High redundancy in consecutive video frames: only small parts of images change due to the motion

encode and send change parts to the channel (using motion compensation techniques)

2. Video coding modes

Switch between 2 modes:

- Intra mode (= 2D still image compression):
 - + (DCT) encoding of an image frame is independent of other frames.
 - + Applied to: 1st frame + refreshing frames (Intra and I frames)
- Inter mode:
 - a simple and effective method
 - block matching for motion compensation (MC)

Apply MC to **P** (predicted) frames and **B** (bidirectional predicted) frames

Inter mode: block matching for MC Find the "best" matching blocks within the searching region Target frame Anchor frame Current block (Courtesy from Dr. Y.Wang)

3. Block matching for MC

The block-matching scheme for motion compensation:

$$I_{t}(x, y) = I_{t-k}(x - d_{x}, y - d_{y})$$

need to find the 'best' displacement vector (d_x, d_y) for each block

Commonly used objective criteria:

(a) Mean Square Error (MSE)

For *i*-th block B_i , size (M_x, M_y)

$$MSE(d_x, d_y) = \frac{1}{M_x M_y} \sum_{(x,y) \in B_t} \left[I_t(x, y) - I_{t-k}(x - d_x, y - d_y) \right]^2$$

$$(d_x^*, d_y^*) = \arg\min_{(d_x, d_y)} MSE(d_x, d_y)$$

(b) Mean Absolute Error (MAE)

$$MAE(d_x, d_y) = \frac{1}{M_x M_y} \sum_{(x,y) \in B_i} |I_t(x, y) - I_{t-k}(x - d_x, y - d_y)|$$

$$(d_x^*, d_y^*) = \arg\min_{(d_x, d_y)} MAE(d_x, d_y)$$

7

4. I,P,B image frames, uni-directional, bi-directional MC

I,B,P frames in video coding:

(courtesy Dr.Y.Wang)

MC can be performed by forward and backward prediction using one or more frames

Uni-directional and bidirectional MC:

Unidirectional MC

MC is done by using weighted sum of one directional predicted blocks from one/several previous frames:

$$I_t(x,y) = \sum_{k>0} w_k I_{t-k}(x - d_{x_k}, y - d_{y_k})$$

Bi-directional MC

MC is done by weighted sum of forward/backward predicted blocks from one/several previous frames and one/several future frames:

$$I_t(x,y) = \sum_k w_k I_{t-k}(x - d_{x_k}, y - d_{y_k})$$

9

5. A typical video codec

A typical encoder using block matching MC:

(courtesy Dr. Y. Wang)

6. Tradeoff: choosing inter or intra modes

Intra mode: apply to the 1st frame and refreshing (I) frames;

- low compression ratio 🙁
- purely dependent on the current frame

Inter mode: apply to P frames and B frames, and only encode motion vectors (and large residuals in the DCT domain);

- high compression ratio 😊

Selection of inter or intra mode:

tradeoff between rate and performance

7. Video coding standards (brief)

H.26x (ITU-T video coding standards):

(ITU-T: the ITU Telecommunication Standardization Sector)

H261, H263, H.264/AVC (advanced video coding standards)

MPEG-x: (MPEG audio and video coding & compression standards) (MPEG: Moving Picture Experts Group)

MPEG-1, 2, 4, 7, 21 (for multimedia applications, especially object-based coding)

13

Basic features of video coding standards

	MPEG-1 (1993)	MPEG-2 (1995)	MPEG-4 (2000)	H.261 (1993)	H.263 (1995)	H.264/ MPEG-4 AVC (2002)
Transform	8x8 DCT	8x8 DCT	8x8 DCT	8x8 DCT	8x8 DCT	4x4
MC Block Size	16 x 16	16 x 16 8x16	8 x 8, 16 x 16	16 x 16	8 x 8, 16 x 16	16x16, 16x8, 8x8, 8x4, 4x4
MC Accuracy	pel	pel	pel	1-pel	pel	1/8 -pel
Additional Motion Prediction Modes	- B-Frames	- B-Frames - Interlace	- B-Frames - Interlace - GMC (Global MC) - SPRITE Coding	*	- B-Frames	- B-Frames - Long term frame memory - in-loop deblocking filter - CAVLC/CABAC

MPEG-4: multimedia applications, object-based coding

Ref: T.Sikora, proc.IEEE, Vol.93, No.1, 2005

Video Compression: H.264 / MPEG-4 AVC standard

• Integer transform (4x4 blocks, to replace 8x8 DCT!)

Zigzag scanning, alternative scanning

Two types of DCT and two types of scan pattern:

- Frame DCT: divides an MB into 4 blocks for Lum, as usual
- Field DCT: reorder pixels in an MB into top and bottom fields.

Zigzag scan

Alternate scan

Figure 13.19 The zigzag scan as known from H.261, H.263, and MPEG-1 is augmented by the alternate scan in MPEG-2, in order to code interlaced blocks that have more correlation in the horizontal than in the vertical direction.

(Courtesy Dr. Y.Wang)

"Scalabilities" in the codec

- SNR scalability
- Spatial scalability
- Temporal scalability

Temporal scalability: option-1

(courtesy Dr. Y.Wang)

- Use the base layer to predict B image frames in the enhanced layer.
- Errors in the enhanced layer do not propagation.

21

Temporal scalability: option-2

(courtesy Dr. Y.Wang)

Use both the base layer and the enhanced layer for image prediction in the enhanced layer

Visual Descriptors

Color:

Histogram, dominant color, etc.

Texture:

- + Homogeneity: energy in different orientation and frequency bands (Gabor transform)
- + Coarseness, directionarity, regularity
- + Histogram of intensity, histogram of oriented gradient (HoG)

Motion:

- + Camera motion
- + Motion trajectory of feature points in a non-rigid object
- + Motion parameters of a rigid object
- + Motion activity

Shape:

Boundary-based vs. region-based

8. Why video communications: brief introduction + examples

Applications:

Video phone

Video conferencing

Video streaming

Distance learning

. . .

9: Lab-2: Video compression and coding using transforms, subband filters and motion compensation

Task-1: Learn how to handle video data in Matlab

e.g. read /save *.avi video files, play movies, extract video frames, convert image formats in Matlab.

Task-2. Intra-mode compression

Apply block-based 2D DCT and

2D wavelet transform for single frame image compression

Task-3. Inter-mode compression based on MC

- + Compute motion blocks (apply a threshold to the difference image from frames)
- + Estimate motion vectors: Apply block matching with MSE/MAE criterion
- + Inter-frame compression through MC use matched blocks from previous frames specified by MVs

Task-4: Compression of whole image frame:

Copy non-motion blocks from previous frame + MC image areas.

Task-5: Objective quality measures using PSNR, MSSIM

31

10. References

- J.W.Woods, Subband image coding, Kluwer Academic Publisher,1991.
- D.S. Taubman, M.W.Marcellin, JPEG 2000, Kluwer Academic Pub., 2002.
- JVT /H.26L/ AVC Standards
- K.G.Nganm C.W.Yap, K.T.Tan,
 Video coding for wireless communication systems, Marcel Dekker Inc., 2001
- B.G. Haskell, A.Puri, A.N. Netraval,
 Digital Video: an introduction to MPEG 2, Chapman & hall, 1997.
- Proceedings of the IEEE, Vol.93, No.1, 2005:
 Special Issue on advances in video coding and delivery