Problem Set 5

Natasha Watkins

Exercise 6.6

$$Df(x,y) = \begin{bmatrix} 6xy + 4y^2 + y \\ 3x^2 + 8xy + x \end{bmatrix}$$

The critical points, where $Df(x,y) = \mathbf{0}$, are (0,0), $(-\frac{1}{9}, -\frac{1}{12})$, $(0, -\frac{1}{4})$ and $(-\frac{1}{3}, 0)$.

$$D^{2}f(x,y) = \begin{bmatrix} 6y & 6x + 8y + 1 \\ 6x + 8y + 1 & 8x \end{bmatrix}$$

Evaluating the second derivative at (0,0), we see

$$D^2 f(x,y)\big|_{(0,0)} = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$$

 $\lambda_1 = -1$ and $\lambda_2 = 1$, so (0,0) is a saddle point.

Evaluating the second derivative at $\left(-\frac{1}{9}, -\frac{1}{12}\right)$, we see

$$D^2 f(x,y)|_{(\frac{1}{9},-\frac{1}{12})} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{8}{9} \end{bmatrix}$$

This is a negative definite matrix, so $\left(-\frac{1}{9}, -\frac{1}{12}\right)$ is a maximizer.

Evaluating the second derivative at $(0, -\frac{1}{4})$, we see

$$D^2 f(x,y)\big|_{(0,-\frac{1}{4})} = \begin{bmatrix} -\frac{6}{4} & -1\\ -1 & 0 \end{bmatrix}$$

This matrix has mixed sign eigenvalues, so $(0, -\frac{1}{4})$ is a saddle point.

Evaluating the second derivative at $(-\frac{1}{3}, 0)$, we see

$$D^{2}f(x,y)\big|_{(-\frac{1}{3},0)} = \begin{bmatrix} 0 & -1\\ -1 & -\frac{8}{3} \end{bmatrix}$$

This matrix has mixed sign eigenvalues, so $\left(-\frac{1}{3},0\right)$ is a saddle point.

Exercise 6.11

Using Newton's method,

$$x_1 = x_0 - \frac{2ax_0 + b}{2a}$$
$$= \frac{2ax_0 - 2ax_0 - b}{2a}$$
$$= -\frac{b}{2a}$$

Substituting this value into f'(x), we find $f'(-\frac{b}{2a}) = 0$, confirming that this is a critical point of f. $f''(-\frac{b}{2a}) > 0$, so $-\frac{b}{2a}$ is a minimizer of f. We know this is the unique minimizer of f as f'(x) = 0 where $x = -\frac{b}{2a}$.

Exercise 7.1

Take two points, $\mathbf{x}, \mathbf{y} \in conv(S)$ such that $\mathbf{x} = \delta_1 \mathbf{x}_1 + \cdots + \delta_k \mathbf{x}_k$ and $\mathbf{y} = \gamma_1 \mathbf{x}_1 + \cdots + \gamma_k \mathbf{x}_k$, with $\sum_{i=1}^k \delta_i = 1$ and $\sum_{i=1}^k \gamma_i = 1$. We can write their convex combination as $\lambda \mathbf{x} + (1 + \lambda)\mathbf{y}$.

$$\lambda \mathbf{x} + (1+\lambda)\mathbf{y} = \lambda(\delta_1 \mathbf{x}_1 + \dots + \delta_k \mathbf{x}_k) + (1-\lambda)(\gamma_1 \mathbf{x}_1 + \dots + \gamma_k \mathbf{x}_k)$$
$$= (\lambda \delta_1 + (1-\lambda)\gamma_1)\mathbf{x}_1 + \dots + (\lambda \delta_k + (1-\lambda)\gamma_k)\mathbf{x}_k$$

We know that the convex combination of \mathbf{x} and \mathbf{y} are contained in conv(S) because

$$\sum_{i=1}^{k} (\lambda \delta_i + (1 - \lambda)\gamma_i) = \lambda \sum_{i=1}^{k} \delta_i + (1 - \lambda) \sum_{i=1}^{k} \gamma_i$$
$$= \lambda + (1 - \lambda) = 1$$

which satisfies the definition of a convex set.

Exercise 7.2

Part i)

Take two points, \mathbf{x} , \mathbf{y} , on the hyperplane described by $\langle \mathbf{a}, \mathbf{x} \rangle = b$, such that $a_1x_1 + \cdots + a_nx_n = b$

b and $a_1y_1 + \cdots + a_ny_n = b$. Taking their convex combination,

$$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} = \lambda(a_1x_1 + \dots + a_nx_n) + (1 - \lambda)a_1y_1 + \dots + a_ny_n$$
$$= \lambda b + (1 - \lambda)b = b$$

Therefore, the convex combination also lies on the hyperplane \implies the hyperplane is a convex set.

Part ii)

Take two points, \mathbf{x} , \mathbf{y} , in the half space described by $\langle \mathbf{a}, \mathbf{x} \rangle \leq b$, such that $a_1x_1 + \cdots + a_nx_n \leq b$ and $a_1y_1 + \cdots + a_ny_n \leq b$. Taking their convex combination,

$$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} = \lambda(a_1 x_1 + \dots + a_n x_n) + (1 - \lambda)a_1 y_1 + \dots + a_n y_n$$

$$\leq \lambda b + (1 - \lambda)b = b$$

Therefore, the convex combination also lies in the half space \implies the half space is convex.

Exercise 7.4

Part i)

$$\begin{aligned} \|\mathbf{x} - \mathbf{y}\|^2 &= \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle \\ &= \langle \mathbf{x} - \mathbf{p} + \mathbf{p} - \mathbf{y}, \mathbf{x} - \mathbf{p} + \mathbf{p} - \mathbf{y} \rangle \end{aligned}$$

Let $\mathbf{z} = \mathbf{x} - \mathbf{p}$ and $\mathbf{k} = \mathbf{p} - \mathbf{y}$.

$$\|\mathbf{x} - \mathbf{y}\|^{2} = \langle \mathbf{z} + \mathbf{k}, \mathbf{z} + \mathbf{k} \rangle$$

$$= \langle \mathbf{z}, \mathbf{z} \rangle + 2\langle \mathbf{z}, \mathbf{k} \rangle + \langle \mathbf{k}, \mathbf{k} \rangle$$

$$= \langle \mathbf{x} - \mathbf{p}, \mathbf{x} - \mathbf{p} \rangle + \langle \mathbf{p} - \mathbf{y}, \mathbf{p} - \mathbf{y} \rangle + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$

$$= \|\mathbf{x} - \mathbf{p}\|^{2} + \|\mathbf{p} - \mathbf{y}\|^{2} + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$

Part ii)

If 7.14 holds, we know

$$\|\mathbf{x} - \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{p}\|^2 - \|\mathbf{p} - \mathbf{y}\|^2 \ge 0$$

$$\implies \|\mathbf{x} - \mathbf{y}\|^2 - \|\mathbf{p} - \mathbf{y}\|^2 \ge \|\mathbf{x} - \mathbf{p}\|^2$$

$$\implies \|\mathbf{x} - \mathbf{y}\| > \|\mathbf{x} - \mathbf{p}\| \quad \text{as } \mathbf{y} \ne \mathbf{p}$$

Part iii)

$$\|\mathbf{x} - \mathbf{z}\|^2 = \langle \mathbf{x} - \mathbf{p} + \lambda \mathbf{p} - \lambda \mathbf{y}, \mathbf{x} - \mathbf{p} + \lambda \mathbf{p} - \lambda \mathbf{y} \rangle$$
$$= \|\mathbf{x} - \mathbf{p}\|^2 + \lambda^2 \|\mathbf{p} - \mathbf{y}\|^2 + 2\lambda \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$

Exercise 7.13

Suppose f is not constant, ie. $f(\mathbf{x}) > f(\mathbf{y})$ for some $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then,

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$
$$f(\mathbf{z}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$
$$\frac{f(\mathbf{z}) - (1 - \lambda)f(\mathbf{y})}{\lambda} \le f(\mathbf{x})$$

Exercise 7.20

f is convex so $f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \leq \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$. -f is also convex so

$$-f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le -\lambda f(\mathbf{x}) - (1 - \lambda)f(\mathbf{y})$$

$$\implies f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \ge \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

$$\implies f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

Therefore f is an affine function (this is the definition of an affine function with $L(\mathbf{x}) = f(\mathbf{x}) - f(\mathbf{0})$).

Exercise 7.21

 \mathbf{x}^* is a minimizer for the function $f(\mathbf{x})$. Suppose \mathbf{x}^* is not the minimizer for $\phi \circ f(\mathbf{x})$, ie. $\phi \circ f(\mathbf{x}) \leq \phi \circ f(\mathbf{x}^*)$ for some \mathbf{x} . As ϕ is strictly increasing, this implies $f(\mathbf{x}) \leq f(\mathbf{x}^*)$, which

contradicts the fact that \mathbf{x}^* is the minimizer of f.

 \mathbf{x}^* is a minimizer for the function $\phi \circ f(\mathbf{x})$. Suppose \mathbf{x}^* is not the minimizer for $f(\mathbf{x})$, ie. $f(\mathbf{x}) \leq f(\mathbf{x}^*)$ for some \mathbf{x} . Taking $\phi \circ f(\mathbf{x})$, as ϕ is strictly increasing, the previous inequality implies $\phi \circ f(\mathbf{x}) \leq \phi \circ f(\mathbf{x}^*)$, which contradict the fact that \mathbf{x}^* is the minimizer of $\phi \circ f(\mathbf{x})$.