1 Continuité

1.1 Définition de la continuité

Definition 1.1. Soit $D \subset \mathbb{R}^d$, $f: D \to \mathbb{R}$ et $x_0 \in D$. On dit que f est continue en x_0 si

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Plus précisément, pour tout $\epsilon > 0$, il existe $\alpha > 0$ tel que pour tout $x \in D$ avec $||x - x_0|| \le \alpha$, on a $|f(x) - f(x_0)| \le \epsilon$.

1.2 Opérations sur les fonctions continues

Si $f, g: D \to \mathbb{R}$ sont continues sur D, alors:

- f + g est continue sur D.
- $f \cdot g$ est continue sur D.
- Si $g(x) \neq 0$ pour tout $x \in D$, alors $\frac{f}{g}$ est continue sur D.
- Si $\varphi: I \to \mathbb{R}$ est continue sur $I \subset \mathbb{R}$ et $f(D) \subset I$, alors $\varphi \circ f$ est continue sur D.

1.3 Continuité et compacité

Theorem 1.2. Soit $K \subset \mathbb{R}^d$ un compact et $f: K \to \mathbb{R}^p$ une application continue. Alors f(K) est compact dans \mathbb{R}^p .

Proposition 1.3. Si $f: K \to \mathbb{R}$ est continue et $K \subset \mathbb{R}^d$ est compact, alors f est bornée et atteint ses bornes.

1.4 Continuité uniforme

Definition 1.4. Une fonction $f: D \to \mathbb{R}^p$ est uniformément continue sur D si pour tout $\epsilon > 0$, il existe $\alpha > 0$ tel que pour tout $x, y \in D$ avec $||x - y|| \le \alpha$, on a $||f(x) - f(y)|| \le \epsilon$.

1.5 Lien avec la compacité

Theorem 1.5. Soit $F: \mathbb{R}^n \to \mathbb{R}^p$ continue et $K \subset \mathbb{R}^n$ compact. Alors F(K) est compact dans \mathbb{R}^p .

Remark 1.6. Alors F(K) compact dans \mathbb{R}^p donc borné et atteint ses bornes.

1.6 Continuité partielle

Definition 1.7. Soit $D \subset \mathbb{R}^n$ ouvert et $f: D \to \mathbb{R}$. On dit que f est partiellement continue en $a = (a_1, \ldots, a_n) \in D$ si les fonctions partielles $f_i(t) = f(a_1, \ldots, a_{i-1}, t, a_{i+1}, \ldots, a_n)$ sont continues en a_i pour tout $1 \le i \le n$. On dit que f est partiellement continue sur D si f est partiellement continue en tout point de D.

Non continuité et continuité partielle: Considérons la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x_1, x_2) = \begin{cases} \frac{x_1 x_2}{x_1^2 + x_2^2} & \text{si } (x_1, x_2) \neq (0, 0) \\ 0 & \text{si } (x_1, x_2) = (0, 0) \end{cases}$$

- f est continue sur $\mathbb{R}^2 \setminus \{(0,0)\}.$
- f est partiellement continue en (0,0). En effet, les fonctions partielles sont

$$-f(x_1,0) = \frac{x_1 \cdot 0}{x_1^2 + 0^2} = 0$$
 si $x_1 \neq 0$ et $f(0,0) = 0$. Donc $f(x_1,0) = 0$ pour tout $x_1 \in \mathbb{R}$.

$$-f(0,x_2) = \frac{0 \cdot x_2}{0^2 + x_2^2} = 0$$
 si $x_2 \neq 0$ et $f(0,0) = 0$. Donc $f(0,x_2) = 0$ pour tout $x_2 \in \mathbb{R}$.

Les fonctions partielles sont constantes nulles, donc continues en 0.

• f n'est pas continue en (0,0). En coordonnées polaires $x_1 = r \cos \theta$, $x_2 = r \sin \theta$, pour $(x_1, x_2) \neq (0,0)$, on a

$$f(r\cos\theta, r\sin\theta) = \frac{r\cos\theta \cdot r\sin\theta}{r^2\cos^2\theta + r^2\sin^2\theta} = \frac{r^2\cos\theta\sin\theta}{r^2} = \cos\theta\sin\theta.$$

Si θ est constant, alors $\lim_{r\to 0} f(r\cos\theta, r\sin\theta) = \cos\theta\sin\theta$ dépend de θ . Par exemple:

$$- \sin \theta = 0$$
, $\lim_{r \to 0} f(r \cos 0, r \sin 0) = 0$.

- si
$$\theta = \pi/4$$
, $\lim_{r\to 0} f(r\cos(\pi/4), r\sin(\pi/4)) = \cos(\pi/4)\sin(\pi/4) = \frac{1}{2}$.

La limite $\lim_{(x_1,x_2)\to(0,0)} f(x_1,x_2)$ n'existe pas.

Figure 1: Discontinuité en (0,0)

Remark 1.8. La continuité implique la continuité partielle. La réciproque est fausse.

2 Dérivation des fonctions de plusieurs variables

2.1 Dérivabilité selon une direction

Definition 2.1. Soit $D \subset \mathbb{R}^n$ un ouvert, $f: D \to \mathbb{R}$ et $x_0 \in D$, $u \in \mathbb{R}^n$. On dit que f est dérivable au point x_0 dans la direction u si la fonction $g(t) = f(x_0 + tu)$ est dérivable en t = 0.

2.2 Dérivées partielles

Definition 2.2. On dit que f admet des dérivées partielles en x_0 si f est dérivable en x_0 dans les directions de la base canonique e_1, \ldots, e_n . On pose

$$\frac{\partial f}{\partial x_i}(x_0) = \frac{d}{dt}f(x_0 + te_i)\Big|_{t=0}.$$

Notation:

$$\frac{\partial f}{\partial x_i}(x_0) = \partial_i f(x_0) = D_i f(x_0).$$

2.3 Différentiabilité

Definition 2.3. Soit $D \subset \mathbb{R}^n$ un ouvert et $f: D \to \mathbb{R}$. On dit que f est différentiable en $x_0 \in D$ s'il existe une application linéaire $L: \mathbb{R}^n \to \mathbb{R}$ telle que

$$f(x_0 + h) = f(x_0) + L(h) + ||h|| \epsilon(h)$$

avec $\lim_{h\to 0} \epsilon(h) = 0$. On note $L = df(x_0) = Df(x_0)$.

Remark 2.4. L'application linéaire L est unique.

Gradient: L'application linéaire L est de la forme $L(h) = \nabla f(x_0) \cdot h$ où $\nabla f(x_0)$ est le gradient de f en x_0 .

Lemma 2.5. Si f est différentiable en x_0 , alors f est continue en x_0 et f est dérivable dans toutes les directions en x_0 et

$$\nabla f(x_0) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x_0) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x_0) \end{pmatrix}.$$

2.4 Plan tangent

Soit $S = \{(x, y, z) \in \mathbb{R}^3 : F(x, y, z) = 0\}$ une surface dans \mathbb{R}^3 et $x_0 \in S$. Le plan tangent à S en x_0 est donné par l'équation

$$\nabla F(x_0) \cdot (x - x_0) = 0$$

si $\nabla F(x_0) \neq 0$.

2.5 Fonctions de classe C^1

Definition 2.6. On dit que f est de classe C^1 sur D si f est différentiable en tout point de D et les fonctions $x \mapsto \frac{\partial f}{\partial x_i}(x)$ sont continues sur D pour tout $1 \le i \le n$.

Theorem 2.7. Si f est de classe C^1 sur D, alors f est différentiable sur D.

Remark 2.8. La réciproque est fausse. Une fonction peut être différentiable sans être C^1 .