EVALUATING TRIPARTITE RECOMMENDATIONS IN DATA MARKETS

DOMINIK KOWALD, MATTHIAS TRAUB, DIETER THEILER, HEIMO GURSCH, EMANUEL LACIC, STEFANIE LINDSTAEDT, ROMAN KERN, ELISABETH LEX KNOW-CENTER GMBH & GRAZ UNIVERSITY OF TECHNOLOGY (AUSTRIA)

PROBLEM

- Most of the research in recommender systems is focused on the bipartite relationship between users and items.
- We extend this to the tripartite relationship between users, datasets and services that is present in data markets.
- There is **no open dataset and method- ology** available to evaluate this kind of recommendations.

META KAGGLE DATASET

- This dataset allows **simulating a real-world data market** by providing data of users, datasets, and services (i.e., kernels in Kaggle terms).
- To get interactions between datasets and services, we establish a **collaboration network** (i.e., set a link when a user has interacted with both).

Feature	#
Users	6,108
Datasets	45
Services	3,334
User/dataset interactions	2,962
User/service interactions	18,593
Dataset/service interactions	95,249

CONCLUSION

- There is no one-size-fits-all solution for recommendations in data markets.
- There is a need for more sophisticated algorithms that also incorporate other sources, e.g., content-based filtering.
- For future work, we want to validate our evaluation results in an (online) DMA setting and investigate further use cases for the Meta Kaggle dataset.

DATA MARKET AUSTRIA

The Data Market Austria (DMA) is an initiative (FFG flagship project) to bring together various **stakeholders of Austria's data economy** (https://datamarket.at/):

SCAR FRAMEWORK

The ScaR framework is a scalable recommendation-as-a-service framework based on microservices. It supports (i) multiple heterogeneous **data sources**, (ii) processing and considering **streaming data** immediately for the recommendation process, (iii) **scaling the recommender system** to be suitable for cloud-based environments, and (iv) combining (near) **real-time recommendation algorithms** with context-dependent data:

EVALUATION

We evaluate a **MostPopular (MP)** and a user-based **Collaborative Filtering (CF)** algorithm for 4 recommendation use cases using the Meta Kaggle dataset:

Algorithm	P@1	F1@5	R@10	MRR@10	MAP@10	nDCG@10
UC1: MP	0.823	0.470	0.717	0.217	0.597	0.729
UC1: CF	0.705	0.431	0.611	0.192	0.484	0.635
UC2: MP	0.103	0.050	0.066	0.023	0.026	0.072
UC2: CF	0.137	0.086	0.114	0.037	0.054	0.121
UC3: MP	1.000	0.411	0.707	0.232	0.580	0.750
UC3: CF	1.000	0.636	0.934	0.281	0.925	0.948
UC4: MP	0.000	0.000	0.000	0.000	0.000	0.000
UC4: CF	0.022	0.006	0.006	0.003	0.004	0.009