2ª Ley de la Termodinámica

(1)
$$t_1$$
 Carnot CICLO

 2^{α} Ley: 5i W<0 \Rightarrow Qin>0 y Qout<0

 1^{α} Ley: W+ Qout + Qin = 0

 t_2 eficiencia

 $t_1>t_2$ $\eta=\frac{|w|}{Q_{in}}=\frac{Q_{in}-|Q_{out}|}{Q_{in}}\Rightarrow \gamma=1-\frac{|Q_{out}|}{Q_{in}}$
 1^{α} Ley $\eta \leq 1$, $|w|=Q_{in}-|Q_{out}|$
 $\eta=1$, si Qout = 0 2^{α} Ley $\eta \leq 1$

Carnot REVERSIBLE

Carnot No necesariamente

leorema. Sean 2 fuentes de calor y 2 máguinas de Carnot: una reversible tal que Q es el intercambio con la caliente, Qz con la fria y W es trabajo. Una irreversible Q_i' , Q_2' , W' operada normal: $Q_i' > 0$, $Q_i' < 0$, W = 0.

Resultados

(a)
$$\frac{Q_1}{|Q_2|} \ge \frac{Q_1'}{|Q_2'|}$$
 si solo 1 es

(a)
$$\frac{Q_1}{|Q_2|} \ge \frac{Q_1'}{|Q_2'|}$$
 si solo 1 es reversible (b) $\frac{Q_1}{|Q_2|} = \frac{Q_1'}{|Q_2'|}$ Si 1 y 2 son reversibles

Suponga que $\frac{|Q_i|}{|Q_i'|} \simeq \frac{N'}{N}$. Sea un proceso de N' ciclos de C' y N ciclos de C en REVERSA.

1° Ley - Balance de enegía

Sabemos | W = | Qin | - | Qout |, | W' | = Qin - | Qout |. De donde

$$W_{T} = N'W' + NW$$

$$Q_{1} > 0 \qquad Q_{1} < 0$$

$$Q_{1} = N'Q_{1} + NQ_{1} \leftarrow \text{fuente 1}$$

$$Q_{2} < 0 \qquad Q_{2} > 0$$

$$Q_{2} = N'Q_{2}' + NQ_{2} \leftarrow \text{fuente 2}$$
"normal" "reversa"
$$Q_{1} < 0 \qquad Q_{1} < 0 \qquad Q_{2} > 0$$

$$Q_{2} < 0 \qquad Q_{2} > 0 \qquad Q_{3} > 0$$

Por hipótesis $\frac{|Q_1|}{Q_1'} = \frac{N'}{N} \Rightarrow N|Q_1| = N'Q_1' \Leftrightarrow 0 = N'Q_1' - N|Q_1|$. Pero $Q_{17} = N'Q_1' + NQ_1$, entonces Q1T = 0. Por lo cual,

$$\begin{aligned} Q_{z\tau} &= - |N'| |Q_{z}'| + |N| Q_{z} \\ W_{\tau} &= - |N'| |W'| + |N| W \end{aligned} \Rightarrow W_{\tau} = - |Q_{z\tau}|$$

:. WT20 > Q2T <0 (Ide lo contrario contradecimos la 2º Ley!).

$$Q_{2T} = N'Q_2' + NQ_2 \le 0 \Rightarrow -N'|Q_2'| + NQ_2 \le 0 \Rightarrow \frac{Q_2}{|Q_2'|} \le \frac{N'}{N}$$

por hipótesis, $\frac{Q_2}{|Q_1|} \leq \frac{N'}{N} \approx \frac{|Q_1|}{|Q_2|} \left\{ \frac{Q_1}{|Q_2|} \geq \frac{Q_1'}{|Q_2'|} \right\}$

si C es reversible y C' No necesariamente.

Supongamos que C' también es reversible. Puedo repetir "TODO"... pero con C' en reversa y C "normal"... todos los signos se invierten y obtenemos

$$\frac{Q_z}{Q_1} \ge \frac{|Q_2|}{Q_1}$$

y como se cumple:
$$\frac{Q_1}{|Q_2|} \ge \frac{Q_1'}{|Q_2'|}$$
 y $\frac{Q_1}{|Q_2|} \le \frac{Q_1'}{|Q_2'|} \Rightarrow \frac{Q_1}{|Q_2|} = \frac{Q_1'}{|Q_2'|}$

Si \exists una tercera máquina tenemos entonces que $\frac{Q_1}{|Q_2|} = \frac{Q_1'}{|Q_2'|} = \frac{Q_1''}{|Q_2''|}$.

< si C' es irreversible

= si C' es reversible

Partiendo que
$$\frac{|Q_1|}{|Q_2|} \ge \frac{|Q_1'|}{|Q_2'|} \Rightarrow \frac{|Q_2|}{|Q_1|} \le \frac{|Q_2'|}{|Q_1'|}$$
 se signe que $1 - \frac{|Q_2|}{|Q_1|} \ge -\frac{|Q_2'|}{|Q_1'|} + 1$,
$$\therefore \quad \eta \ge \eta'$$

Si tenemos que $t_1 + t_2$ Todas reversibles $|Q_1| = |Q_1'|$, $t_1 > t_2$... No puede depender de la sustancia de la máquina... I deponde de las fuentes!

Supóngase ahora que se tiere una sene de procesos reversibles

N=cte
$$\frac{|Q_1|}{|Q_2|} = f(t_1, t_2)$$
 de las temp. de las fuentes t_1 traemos un baño térmico a t_0 $(t_1 > t_0 > t_2)$ t_1 t_2 máquinas t_1 una entre t_0 y t_1 y otra entre t_0 y t_2 .

- (1) opera normal. $Q_1>0$, $Q_0<0\Rightarrow \frac{Q_1}{|Q_0|}=f(t_1,t_0)$
- (2) opera en reversa. $Q_2 > 0$, $Q_0 < 0 \Rightarrow \frac{Q_2}{|Q_0|} = f(t_2, t_0)$

Caso (B) las dos en la misma dirección

$$\frac{Q_1}{|Q_0|} = f(t_1, t_0) \qquad y \qquad \frac{Q_0}{|Q_2|} = f(t_0, t_2)$$

- (1) Sede calor de Qol a to
- (2) Absorbe calor de |Qol a to

$$\frac{|Q_1|}{|Q_2|} \frac{|Q_0|}{|Q_0|} = f(t_1, t_2)$$

Como $\frac{Q_2}{|Q_0|} = f(t_2, t_0)$ y $\frac{Q_0}{|Q_2|} = f(t_0, t_2)$ entonces $f(t_0, t_2) = \frac{f(t_1, t_0)}{f(t_2, t_0)}$