Name: - Lubayer Ahmed Zidhan Laskar, Roll: -200710007062 Branch: Computer Science & Engineering, Date: 28/20/2021 Subject :- Digital Systems

CIE-1

$$\begin{array}{c|cccc}
2/37 \\
2/18-1 \\
2/9-0 \\
2/4-1 \\
2/2-0 \\
1-0
\end{array}$$

$$0^{\circ}$$
, $-37_{10} = 011010$ (1s complement)
 0° , $-37_{10} = 1011011$ (2s complement)

0.875 × 2 = 1.750 1

0°75 x 2 = 1°50 > 1

0.2 × x = 1.0 > 1

000875,0 =0111

$$-37_{10} = 111111 011011 (25 complexed)$$

$$2.(c)$$
 Sol4: $2/65$
 $2/32-1$
 $2/6-0$
 $2/8-0$
 $2/4-0$
 $2/2-0$
 $1-0$

0111110.0 (1s complement)

2. a
$$\frac{2}{197}$$
 $\frac{2}{98-1}$
 $\frac{2}{49-0}$
 $\frac{2}{49-0}$
 $\frac{2}{49-0}$
 $\frac{2}{49-0}$
 $\frac{2}{49-0}$
 $\frac{2}{49-0}$
 $\frac{2}{198-1}$
 $\frac{2}{198-1}$

0011101000 (1s complement

$$3 \rangle Sel^{-2} 2/47$$
 $2/23-1$
 $2/11-1$
 $2/5-1$
 $2/2-1$

$$0.25 + 2 = 0.5$$
 $0.5 + 2 = 1.0$
 1.0
 $0.5 + 2 = 0.01$

$$\begin{array}{r}
 2/55 \\
 2/27 - 1 \\
 2/3 - 1 \\
 2/6 - 1 \\
 2/3 - 0 \\
 1 - 1
 \end{array}$$

$$0.75 \times 2 = 1.5$$
 $0.5 \times 2 = 1.0$
 1
 $0.5 \times 2 = 1.0$
 1
 $0.5 \times 2 = 0.11$

Thata table?

12	В	C	D .	
0	0	0	٥	
0	0	0	1	
0		1	0	
0	0	1 —	1	
0	1	\	0	
2	0	0	0	
1	O	0	1	
2	0	1	0	
1	1	0	No.	

Touth Table

	1	1	1	i	ı	1	1	1		i	1, ,
A	B	C		O A	1 A'B		' CA	o' A e	3C	A'BI CD'IAB	C (A'B+CD'HABC)
0	0	0	5	- 1	1	1	0	· c	- 1	0	1
0	0	0		1 1	1	0	1	0	- 1	1	0
0	0	1	0) 1	0	1	0	0		0	1
0	0	1	1	1	0	0	0	0		1	0
0	91	0	0	1	401	1		0		1	0
0	1	0	1	1	1	0	0			1	0
	1	1	0	1	1	1	1	0			
6	1	1	1	1	1	0	0	0		1	0
0	1	1			0	1	0	0		٥	1
1	0	0	0	0	0	0	0	0		0	1
1 1	0	0	1	0	1		1	0		1	0
1	0	1	0	0	6	1	0	0		O	1
1	o	1	1	0	0	0					1
1	1	0	0	0	0	1	0	0		0	т ,
7						0	0	0	1	0	1
1	1	0	1	0	0	O			-	.	
1	1	1	0	0	0	1	1	1		1	0
1	1	1	1	0	0	0	0	1	:	1	0
			1,11							9,000	

Scanned with CamScanner

5) (1) Sol":
$$A B + (AO' + AB'C (AB+C))$$

= $AB + A' + C' + AB'C AB + AB'CC$ [($ACO' = A' + C', AE | AB'A B | AB'CC$]

= $AB + A' + C' + AB'C$

= $AB + A' + C' + AB'C$

= $AB + A' + C' + AB'C$

= $A(B + B'C) + A' + C'$

= $A(B + B'C) + A' + C'$

= $A(B + C) + A' + C'$

= $AB + AC + AC'$

= $AB + AC' + AB + C'$

= $AB + AC' + AB'C + A$

5. (ii) Sol", A + B+ A'B'C"

= A(B+B')(C+C') + B(A+B) B + A'B'C"

= (AB+AB')(C+C') + B + A'B'C

'= ABC + ABC' + AB'C + AB'C' + B+ A'B'C

= B + ABC + ABC' + AB'C' + B'C (A+A')

= B + ABC + ABC' + AB'C' + B'C

= B + BC + ABC' + AB'C' + B'C

= B + BC + ABC' + B'C' + B'C

= B + BC + ABC' + B'C' + B'C

= B + BC + ABC' + B'C' + B'C

= B + BC + ABC' + B'C' + B'C

= B + BC + BC' + B'C' + B'C

= (B+AB) + B'C' + B'C' + B'C'

= (B+AB) + B'C' + B'C' + B'C'

= (B+AB) + B'C' + B'C

5. (ii) Sol= (Nx + WY') (x+W) + WX (x'+Y')

= NXX + WNX + NXY '+WNY' + WXX' + NXY'

= WX + WX + WXX' + WY' + W· O + WXY' Lixx = X

= WX + WXY' + WY'

= Wx + Wy/(1+x)

= Wx + WY . 1 [1:2+x=1]

= Wx+wy'

= w(x+y')