Machine Learning com Python

Prof. Luciano Galdino

Distribuições de probabilidades contínua

Distribuição de probabilidade é dada por uma função denominada função densidade de probabilidade (FDP).

Principal distribuição é a DISTRIBUIÇÃO NORMAL.

Gráfico é chamado de curva normal. É simétrico e tem formato

de sino.

A média indica a posição e o desvio padrão indica o formato do gráfico.

Média: $\mu = 3.5$

Desvio padrão: $\sigma = 1.5$

Média: $\mu = 3.5$

Desvio padrão: $\sigma = 0.7$

Média: $\mu = 1,5$

Desvio padrão: $\sigma = 0.7$

Distribuições Normal Padrão

Média zero e desvio padrão um (1).

Z-escore: número de desvio padrão de um valor a partir da média.

$$z = \frac{x - \mu}{\sigma}$$

Consultar a tabela das distribuições normal padrão para associar o z com a probabilidade ou a área associada

Pela tabela:

Z = 1.12 -> 0.8686.

Probabilidade de menor que 1,12: 86,86%

Probabilidade de ser maior que 1,12: 13,14%

Tabela das Distribuições Normal Padrão

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916

z	0,09	0,08	0,07	0,06	0,05	0,04	0,03	0,02	0,01	0,00
-3,4	0,0002	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003
-3,3	0,0003	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0005	0,0005	0,0005
-3,2	0,0005	0,0005	0,0005	0,0006	0,0006	0,0006	0,0006	0,0006	0,0007	0,0007
-3,1	0,0007	0,0007	0,0008	0,0008	0,0008	0,0008	0,0009	0,0009	0,0009	0,0010
-3,0	0,0010	0,0010	0,0011	0,0011	0,0011	0,0012	0,0012	0,0013	0,0013	0,0013
-2,9	0,0014	0,0014	0,0015	0,0015	0,0016	0,0016	0,0017	0,0018	0,0018	0,0019
-2,8	0,0019	0,0020	0,0021	0,0021	0,0022	0,0023	0,0023	0,0024	0,0025	0,0026
-2,7	0,0026	0,0027	0,0028	0,0029	0,0030	0,0031	0,0032	0,0033	0,0034	0,0035
-2,6	0,0036	0,0037	0,0038	0,0039	0,0040	0,0041	0,0043	0,0044	0,0045	0,0047
-2,5	0,0048	0,0049	0,0051	0,0052	0,0054	0,0055	0,0057	0,0059	0,0060	0,0062
-2,4	0,0064	0,0066	0,0068	0,0069	0,0071	0,0073	0,0075	0,0078	0,0080	0,0082
-2,3	0,0084	0,0087	0,0089	0,0091	0,0094	0,0096	0,0099	0,0102	0,0104	0,0107
-2,2	0,0110	0,0113	0,0116	0,0119	0,0122	0,0125	0,0129	0,0132	0,0136	0,0139
-2,1	0,0143	0,0146	0,0150	0,0154	0,0158	0,0162	0,0166	0,0170	0,0174	0,0179
-2,0	0,0183	0,0188	0,0192	0,0197	0,0202	0,0207	0,0212	0,0217	0,0222	0,0228
-1,9	0,0233	0,0239	0,0244	0,0250	0,0256	0,0262	0,0268	0,0274	0,0281	0,0287
-1,8	0,0294	0,0301	0,0307	0,0314	0,0322	0,0329	0,0336	0,0344	0,0351	0,0359
-1,7	0,0367	0,0375	0,0384	0,0392	0,0401	0,0409	0,0418	0,0427	0,0436	0,0446
-1,6	0,0455	0,0465	0,0475	0,0485	0,0495	0,0505	0,0516	0,0526	0,0537	0,0548
-1,5	0,0559	0,0571	0,0582	0,0594	0,0606	0,0618	0,0630	0,0643	0,0655	0,0668
-1,4	0,0681	0,0694	0,0708	0,0721	0,0735	0,0749	0,0764	0,0778	0,0793	0,0808
-1,3	0,0823	0,0838	0,0853	0,0869	0,0885	0,0901	0,0918	0,0934	0,0951	0,0968
-1,2	0,0985	0,1003	0,1020	0,1038	0,1056	0,1075	0,1093	0,1112	0,1131	0,1151
-1,1	0,1170	0,1190	0,1210	0,1230	0,1251	0,1271	0,1292	0,1314	0,1335	0,1357
-1,0	0,1379	0,1401	0,1423	0,1446	0,1469	0,1492	0,1515	0,1539	0,1562	0,1587
-0,9	0,1611	0,1635	0,1660	0,1685	0,1711	0,1736	0,1762	0,1788	0,1814	0,1841
-0,8	0,1867	0,1894	0,1922	0,1949	0,1977	0,2005	0,2033	0,2061	0,2090	0,2119
-0,7	0,2148	0,2177	0,2206	0,2236	0,2266	0,2296	0,2327	0,2358	0,2389	0,2420
-0,6	0,2451	0,2483	0,2514	0,2546	0,2578	0,2611	0,2643	0,2676	0,2709	0,2743
-0,5	0,2776	0,2810	0,2843	0,2877	0,2912	0,2946	0,2981	0,3015	0,3050	0,3085
-0.4	0,3121	0,3156	0,3192	0,3228	0,3264	0,3300	0,3336	0,3372	0,3409	0,3446
-0,3	0,3483	0,3520	0,3557	0,3594	0,3632	0,3669	0,3707	0,3745	0,3783	0,3821
-0,2	0,3859	0,3897	0,3936	0,3974	0,4013	0,4052	0,4090	0,4129	0,4168	0,4207

Exemplo: Um fabricante de automóveis garante que seus veículos podem ser utilizados por 4,8 anos, em média, sem ter que trocar nenhuma peça com desvio padrão de 0,5 anos. Um proprietário de um veículo desse fabricante é selecionado de forma aleatória. Qual a probabilidade de ele ter que trocar uma peça em menos de 4,5 anos? Considere esse problema com distribuição normal.

$$z = \frac{x - \mu}{\sigma}$$
 $z = \frac{4,5 - 4,8}{0,5}$ $z = -0,6$

Pela Tabela: P(z < -0.6) = 0.2743 = 27.43%

Teorema do limite central : Distribuição Amostral

A distribuição da média é uma distribuição aproximadamente normal, quando o tamanho amostral é suficientemente grande.

A distribuição amostral das médias das amostras é o equivalente da média de uma amostra.

Média das amostras

$$\mu_{\overline{X}} = \mu$$

Variância

$$\sigma^{\frac{2}{X}} = \frac{\sigma^2}{n}$$

Desvio padrão

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

Distribuição Binomial - Correção pela continuidade

Distribuição binomial é discreta, mas pode ser representada por um histograma.

Condições para a distribuição binomial ser aproximada pela normal

1)

n = número de tentativas.

p = probabilidade sucesso.

q = probabilidade fracasso.

 $\mu = n.p$

Desvio Padrão:

 $\sigma =$

