Feature Extraction

degreedata.xlsx

Count of branchpoints

```
# Count of branchpoints
nrow(p2_degree)

## [1] 481

nrow(p3_degree)

## [1] 910

nrow(p4_degree)

## [1] 1444
```

```
nrow(p5_degree)

## [1] 2723

nrow(p6_degree)

## [1] 3238

nrow(p7_degree)

## [1] 3956
```

Spatial density of nodes (Branching number per node)

```
# Branching number per node
# Spatial density of nodes
deg_spatial_density = data.frame(miceage = c(), degree = c(), density = c())
degree = p2_degree$degree
deg_density = table(degree) [max(degree):1] %>%
 prop.table() %>%
  cumsum() %>%
  rev()
deg_spatial_density = rbind(deg_spatial_density,
                            data.frame(miceage = rep("p2",max(degree)), degree = 1:max(degree), density
degree = p3_degree$degree
deg_density = table(degree) [max(degree):1] %>%
 prop.table() %>%
  cumsum() %>%
 rev()
deg_spatial_density = rbind(deg_spatial_density,
                            data.frame(miceage = rep("p3",max(degree)), degree = 1:max(degree), density
degree = p4_degree$degree
deg_density = table(degree) [max(degree):1] %>%
  prop.table() %>%
  cumsum() %>%
  rev()
deg_spatial_density = rbind(deg_spatial_density,
                            data.frame(miceage = rep("p4",max(degree)), degree = 1:max(degree), density
degree = p5_degree$degree
deg_density = table(degree)[max(degree):1] %>%
  prop.table() %>%
  cumsum() %>%
 rev()
deg_spatial_density = rbind(deg_spatial_density,
                            data.frame(miceage = rep("p5", max(degree)), degree = 1:max(degree), density
```

```
degree = p6_degree$degree
deg_density = table(degree)[max(degree):1] %>%
  prop.table() %>%
  cumsum() %>%
  rev()
deg_spatial_density = rbind(deg_spatial_density,
                            data.frame(miceage = rep("p6",max(degree)), degree = 1:max(degree), density
degree = p7_degree$degree
deg_density = table(degree)[max(degree):1] %>%
  prop.table() %>%
  cumsum() %>%
  rev()
deg_spatial_density = rbind(deg_spatial_density,
                            data.frame(miceage = rep("p7",max(degree)), degree = 1:max(degree), density
deg_spatial_density$miceage = as.factor(deg_spatial_density$miceage)
deg_spatial_density$degree = as.factor(deg_spatial_density$degree)
ggplot(deg_spatial_density, aes(x = degree, y = density, color = miceage, group = miceage)) +
  geom_line() +
  geom_point() +
  labs(x = "Number k of vessels branching out for one node",
      y = "% of branching points with node density >= k") +
  scale_colour_discrete("Mice age")
```


Reference: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6076630

alldata.xlsx

```
p2_all = read_excel(path = "feature/p2-fro_alldata.xlsx", col_names = TRUE)
p3_all = read_excel(path = "feature/p3-fro_alldata.xlsx", col_names = TRUE)
p4_all = read_excel(path = "feature/p4-fro_alldata.xlsx", col_names = TRUE)
p5_all = read_excel(path = "feature/p5-fro_alldata.xlsx", col_names = TRUE)
p6_all = read_excel(path = "feature/p6-fro_alldata.xlsx", col_names = TRUE)
p7_all = read_excel(path = "feature/p7-fro_alldata.xlsx", col_names = TRUE)
```

Vessel segment - the number of vessel edges

```
nrow(p2_all)
## [1] 598
nrow(p3_all)
## [1] 1178
nrow(p4_all)
## [1] 1601
nrow(p5_all)
## [1] 3627
nrow(p6_all)
## [1] 4411
nrow(p7_all)
## [1] 5561
It certainly increases as it gets older.
```

Vessel length & Tortuosity & Width

```
mean(p2_all$length)
```

```
## [1] 11.86584
```

```
mean(p3_all$length)
## [1] 11.79226
mean(p4_all$length)
## [1] 12.09268
mean(p5_all$length)
## [1] 11.68207
mean(p6_all$length)
## [1] 11.56996
mean(p7_all$length)
## [1] 11.62666
sum(p2_all$length)
## [1] 7095.773
sum(p3_all$length)
## [1] 13891.28
sum(p4_all$length)
## [1] 19360.39
sum(p5_all$length)
## [1] 42370.87
sum(p6_all$length)
## [1] 51035.11
sum(p7_all$length)
## [1] 64655.84
```

```
mean(p2_all$tortuosity)
## [1] 1.101782
mean(p3_all$tortuosity)
## [1] 1.099792
mean(p4_all$tortuosity)
## [1] 1.142496
mean(p5_all$tortuosity)
## [1] 1.096093
mean(p6_all$tortuosity)
## [1] 1.092839
mean(p7_all$tortuosity)
## [1] 1.085495
mean(p2_all$width)
## [1] 2.862876
mean(p3_all$width)
## [1] 2.736418
mean(p4_all$width)
## [1] 2.404747
mean(p5_all$width)
## [1] 2.60863
mean(p6_all$width)
## [1] 2.665949
```

```
mean(p7_all$width)
```

```
## [1] 2.4893
```

Sum of vessel length increases as it gets older Couldn't find any other interesting facts (differences) for length and tortuosity. Maybe Vessel width (diameter) gets smaller as it gets older? (perform t-test?)

Summary

	p2	p3	p4	p5	p6	p7
Number of Branchpoints	481.000	910.000	1444.000	2723.000	3238.000	3956.000
Number of Vessel Edges	598.000	1178.000	1601.000	3627.000	4411.000	5561.000
Mean of Vessel Length	11.866	11.792	12.093	11.682	11.570	11.627
Mean of Vessel Tortuosity	1.102	1.100	1.143	1.096	1.093	1.085
Mean of Vessel Width	2.863	2.736	2.405	2.609	2.666	2.489

Area

```
## Install EBImage package
### http://bioconductor.org/packages/release/bioc/html/EBImage.html
library(EBImage)

## Warning: package 'EBImage' was built under R version 4.0.3

## ## Attaching package: 'EBImage'
```

p2	p3	p4	p5	p6	p7
0.0185	0.0339	0.0437	0.1015	0.1193	0.1419

VAD: ratio of the total image area occupied by blood vessel area https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901200/pdf/JBO-021-066008.pdf (page 4)

Bar plots

```
library(gridExtra)
## Attaching package: 'gridExtra'
## The following object is masked from 'package: EBImage':
##
##
       combine
## The following object is masked from 'package:dplyr':
##
##
       combine
library(cowplot)
## VAD: ratio of the total image area occupied by blood vessel area
f6 = c(mean(my_image2), mean(my_image3), mean(my_image4),
       mean(my_image5), mean(my_image6), mean(my_image7))
f7 = c(max(p2_degree$distance), max(p3_degree$distance), max(p4_degree$distance),
       max(p5_degree$distance), max(p6_degree$distance), max(p7_degree$distance))
df <- data.frame(miceage=c("p2","p3","p4","p5","p6","p7"),</pre>
                 f1 = f1, f2 = f2, f3 = f3, f4 = f4, f5 = f5, f6 = f6, f7 = f7)
```

```
p1 <- ggplot(data=df, aes(x=miceage, y=f1, fill = miceage)) +
  geom_bar(stat="identity", width=0.8, show.legend=FALSE) +
  scale fill brewer(palette="Blues") +
  labs(x = "Mice Age", y = "Number of Branchpoints")
p2 <- ggplot(data=df, aes(x=miceage, y=f2, fill = miceage)) +</pre>
  geom bar(stat="identity", width=0.8, show.legend=FALSE) +
  scale fill brewer(palette="Blues") +
  labs(x = "Mice Age", y = "Number of Vessel Edges")
p3 <- ggplot(data=df, aes(x=miceage, y=f3, fill = miceage)) +
  geom_bar(stat="identity", width=0.8, show.legend=FALSE) +
  scale_fill_brewer(palette="Blues") +
  labs(x = "Mice Age", y = "Mean of Vessel Length")
p4 <- ggplot(data=df, aes(x=miceage, y=f4, fill = miceage)) +
  geom_bar(stat="identity", width=0.8, show.legend=FALSE) +
  scale_fill_brewer(palette="Blues") +
  labs(x = "Mice Age", y = "Mean of Vessel Tortuosity")
p5 <- ggplot(data=df, aes(x=miceage, y=f5, fill = miceage)) +
  geom bar(stat="identity", width=0.8, show.legend=FALSE) +
  scale_fill_brewer(palette="Blues") +
  labs(x = "Mice Age", y = "Mean of Vessel Width")
p6 <- ggplot(data=df, aes(x=miceage, y=f6, fill = miceage)) +
  geom_bar(stat="identity", width=0.8, show.legend=FALSE) +
  scale_fill_brewer(palette="Blues") +
  labs(x = "Mice Age", y = "VAD")
p7 <- ggplot(data=df, aes(x=miceage, y=f7, fill = miceage)) +
  geom_bar(stat="identity", width=0.8, show.legend=FALSE) +
  scale_fill_brewer(palette="Blues") +
  labs(x = "Mice Age", y = "Distance from center to end")
#grid.arrange(p1, p2, p3, p4, p5, p6, p7, ncol = 1)
\#plot\_grid(p1,p2,p3,p4,p5,p6,p7, nrow = 4, labels = "AUTO")
p1
```


p2

рЗ


```
ggplot(data=df, aes(x=c("p2","p3","p4","p5","p6","p7"), y=c(0,f1[2:6]/f1[1:5]-1), group = 1)) +
  geom_point() +
  geom_line() +
  labs(x = "Mice Age", y = "Increase rate") +
  ylim(-0.5,1.5)
```



```
ggplot(data=df, aes(x=c("p2","p3","p4","p5","p6","p7"), y=c(0,f2[2:6]/f2[1:5]-1), group = 1)) +
  geom_point() +
  geom_line() +
  labs(x = "Mice Age", y = "Increase rate") +
  ylim(-0.5,1.5)
```



```
ggplot(data=df, aes(x=c("p2","p3","p4","p5","p6","p7"), y=c(0,f3[2:6]/f3[1:5]-1), group = 1)) +
  geom_point() +
  geom_line() +
  labs(x = "Mice Age", y = "Increase rate") +
  ylim(-0.5,1.5)
```



```
ggplot(data=df, aes(x=c("p2","p3","p4","p5","p6","p7"), y=c(0,f4[2:6]/f4[1:5]-1), group = 1)) +
  geom_point() +
  geom_line() +
  labs(x = "Mice Age", y = "Increase rate") +
  ylim(-0.5,1.5)
```



```
ggplot(data=df, aes(x=c("p2","p3","p4","p5","p6","p7"), y=c(0,f5[2:6]/f5[1:5]-1), group = 1)) +
  geom_point() +
  geom_line() +
  labs(x = "Mice Age", y = "Increase rate") +
  ylim(-0.5,1.5)
```



```
ggplot(data=df, aes(x=c("p2","p3","p4","p5","p6","p7"), y=c(0,f6[2:6]/f6[1:5]-1), group = 1)) +
  geom_point() +
  geom_line() +
  labs(x = "Mice Age", y = "Increase rate") +
  ylim(-0.5,1.5)
```



```
ggplot(data=df, aes(x=c("p2","p3","p4","p5","p6","p7"), y=c(0,f7[2:6]/f7[1:5]-1), group = 1)) +
  geom_point() +
  geom_line() +
  labs(x = "Mice Age", y = "Increase rate") +
  ylim(-0.5,1.5)
```

