4-IF-FD - Projet de fouille de données

Fouille de données du Web : Découverte de points d'intérêts à partir de medias sociaux géo-localisés

Mehdi Kaytoue – Jean François Boulicaut – 2013/2014

Contexte

Depuis quelques années, les applications Web ou smart-phones fleurissent pour fournir des services divers et variés. En exemple récent, le service Mapado permet à un utilisateur de trouver des activités dans une ville donnée. Encore en version béta, le service Tapastreet permet à tout utilisateur géo-localisé de trouver des photos de points d'intérêt à visiter à sa proximité. Dans un tel cas, on imagine un système capable de récupérer des informations à partir du Web (crawling, scraping), comme des photos géo-taguées. Il faut alors trouver de manière automatique les points d'intérêt principaux à partir d'une large collection de photographies géo-localisées. En effet, 3000 photos prises autour de la tour Eiffel correspondent à un unique point d'intérêt.

Concepts principaux (mais non limité à !)

- Clustering
 - o Partitionnements avec K-means, clustering hiérarchique
 - o Approches « densité » : DBSCAN et Mean Shift
- Evaluation de clusterings
- Motifs fréquents et règles d'associations
- Visualisation
- Knime, Sci-Kit Learn (python), Web Api (Google, Bing, Yahoo, ...)

Objectifs et résultats attendus

Dans un souci d'améliorer ses transports en communs et la vie des touristes visitant Lyon, le Grand Lyon vous demande de trouver de manière non-intrusive les zones à fortes densités de touristes à moindre cout. Pour cela, vous avez déjà réalisé une collecte de médias géo-localisés (photos) à travers l'API du service Flickr de Yahoo. Vous disposez donc d'une base NoSQL (Cassandra) de plus de 80 000 photos prises au cours des 3 dernières années. Chaque photo est décrite comme un tuple :

<id_photo,id_photographe,latitude,longitude,tags, description, dates>

A partir de l'exportation de cette base, votre mission est de

- Préparer, nettoyer, décrire les données (doublons, incohérences, distributions...)
- 2. Analyser : trouver de bons clusters caractérisant des points d'intérêts.
- 3. Evaluer, comparer les résultats de clustering
- Décrire les clusters obtenus : non plus par extension, mais par intension.
 Motifs fréquents et règles à partir des tags et descriptions seront utiles.
 Il est même possible d'utiliser d'autres services Web (e.g. Google Places)
- 5. **Visualisation des résultats** : Projection des clusters sur une carte (Google maps, Bing, ou manuelle)
- **6. Interprétation des résultats** : Comment votre analyse peut-elle aider le Grand Lyon ? Quelles connaissances lui apporte-t-elle ?
- 7. Aller plus Ioin: Passage à l'échelle? Tâches prédictives? Analyse dynamique et non statique? Autres sources? (Tweets, Instagram,...)

Conseils: Utiliser Knime pour 1. Utiliser Knime(+Weka) et Sci-Kit pour 2.

Utiliser Knime/Weka/SciKit pour **3.** mais une discussion est primordiale Utiliser Knime ou LCMv5.3 (http://research.nii.ac.jp/~uno/) pour **4.**

Utiliser Javascript/Google maps pour 5. (http://gis.yohman.com/up206b/tutorials/api-access-flickr/)