Math 143, Spring 2021

Contents

1	Wee	ek 1	3
	1.1	Logistics	3
		1.1.1 Grading	3
		1.1.2 Textbook Used	3
	1.2	What is Algebraic Geometry?	3
	1.3	Notation	4

1 Week 1

1.1 Logistics

- Asynchronous lectures are available Monday Wednesday night on Boourse under "Media Gallery"
- The course website can be found at https://math.berkeley.edu/~braggdan/143
- Zoom meetings / Office Hour from 9-10 MTWth to answer any questions.

1.1.1 Grading

- Weekly Homework (15%)
- 2 Midterms (25 % each)
- Final (35 %)

1.1.2 Textbook Used

- "Elementary Algebraic Geometry" by Hulek. (Official Book)
- "Algebraic Curves: An Introduction to Algebraic Geometry" by Fulton. (Supplement material)

1.2 What is Algebraic Geometry?

Let k denote a field.

Recall that Linear Algebra is the study of solutions to systems of equations, for example

$$f_1 = a_1 x_1 + a_2 x_2 + \dots + a_x x_n$$

$$f_2 = b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

:

Then algebraic geometry can be described as the study of solutions to systems of polynomial equations, for example

$$f_1(x_1, x_2, \dots x_n) = 0$$

$$f_2(x_1, x_2, \dots x_n) = 0$$

$$\vdots$$

$$f_m(x_1, x_2, \dots x_n) = 0$$

where $f_i \in k[x_1, x_2, \dots x_n]$ (polynomials in the variables $x_1, x_2, \dots x_n$ with coefficients in k). This gets much much harder than the linear case because

- 1. Higher dimension (more variable) gets more complex really quickly
- 2. k might not be a nice field (e.g. let $k = \mathbb{Q}$ and find solutions of $x^n + y^n = z^n$)

1.3 Notation

Definition 1.1

Let
$$\mathbb{A}^n_k=\mathbb{A}^n=\{(a_1,a_2,\dots a_n)\mid a_i\in k\}=k^n$$

Definition 1.2

Given f $ink[x_1, x_2, \dots x_n]$, we denote the **vanishing set of** f $V(f) \subset \mathbb{A}^n$ as

$$V(f) = \{a_1, a_2, \dots a_n \in \mathbb{A}^n \mid f(a_1, a_2, \dots a_n) = 0\}$$

Example 1.3

Take $k = \mathbb{R}$, and $f(x, y) = y - x^2$, then can vanish set V(f) can be describe by the following parabola graph

Example 1.4

Now consider $f=z-x^2-y^2,$ then V(f) in \mathbb{A}^3 looks like this

Definition 1.5

Given $f_1, f_2, ..., f_m \in k[x_1, x_2, ..., x_n]$, we let

$$V(f_1, f_2, \dots f_n) = V(f_1) \cap V(f_2) \cdots V(f_n)$$

= $\{(a_1, a_2, \dots a_n) \in \mathbb{A}^n \mid f_1(a_1, a_2, \dots a_n) = 0 \text{ and } \dots \text{ and } f_m(a_1, a_2, \dots a_n) = 0\}$

Example 1.6

Now consider $f = y - x^2$ and g = y - x - 2, then V(f) and V(g) are the following:

and the intersection of V(f) and V(g) is preciously $V(f,g) = \{(-1,1),(2,4)\}$

Lemma 1.7

Let $S \subset k[x_1, x_2, \dots x_n]$,

- 1. If $f \in S$ and $h \in k[x_1, x_2, ... x_n]$, then if $(a_1, a_2, ... a_n) \in V(f)$, then $(a_1, a_2, ... a_n) \in V(hf)$.
- 2. If $f, g \in S$, then if $(a_1, a_2, \dots a_n) \in V(f) \cap V(g)$, then $(a_1, a_2, \dots a_n) \in V(f+g)$

Proof. Since $f(a_1, a_2, \dots a_n) = 0$, then

$$(hf)(a_1, a_2, \dots a_n) = h(a_1, a_2, \dots a_n) f(a_1, a_2, \dots a_n) = h(a_1, a_2, \dots a_n) \cdot 0 = 0.$$

Since $f(a_1, a_2, ... a_n) = 0$ and $g(a_1, a_2, ... a_n) = 0$, then

$$(f+g)(a_1,a_2,\ldots a_n)=f(a_1,a_2,\ldots a_n)+g(a_1,a_2,\ldots a_n)=0+0=0$$

Definition 1.8

If $S = k[x_1, x_2, \dots x_n]$, we write I_S as the **ideal generated by** S.

$$I_S = \{h_1 f_1 + h_2 f_2 + \dots + h_m f_m \mid f_1, f_2, \dots f_m \in S, h_1, h_2, \dots h_m \in k[x_1, x_2, \dots x_n]\}$$

Corollary 1.9

If $S \subset k[x_1, x_2, \dots x_n]$, then $V(S) = V(I_S)$, then vanishing set of S is equal to the vanishing set of I_S , the ideal generated by S.

Definition 1.10

Let (f) denote the ideal generated by f, and let $(f_1, f_2, \dots f_n)$ denote the ideal generated by $f_1, f_2, \dots f_n$, i.e.

$$(f) = I_{\{f\}}, (f_1, f_2, \dots f_n) = I_{\{f_1, f_2, \dots f_n\}}.$$

Corollary 1.11

$$V(f) = V((f))$$

Definition 1.12

An algebraic subset of \mathbb{A}^n is a subset of the form V(I) for some ideal $I \subset k[x_1, x_2, \dots x_n]$.

Example 1.13

The zero ideal $0 = (0) = \{0\} \subset k[x_1, x_2, \dots x_n]$. Thue

$$V(0) = \{(a_1, a_2, \dots a_n) \mid (0)(a_1, a_2, \dots a_n) = 0\} = \mathbb{A}^n$$

$$V(1) = \{(a_1, a_2, \dots a_n) \mid (1)(a_1, a_2, \dots a_n) = 0\} = \emptyset$$

where (0) and (1) are polynomials evaluated at $(a_1, a_2, \dots a_n)$.

Example 1.14

For any point $(a_1, a_2, \dots a_n) \in \mathbb{A}^n$, the point itself is an algebraic subset. This can be done by construction. Consider the vanishing set of the following polynomial:

$$V(x_1 - a_1, x_2 - a_2, \dots, x_n - a_n) = \{(b_1, b_2, \dots b_n) \in \mathbb{A}^n \mid b_1 - a_1 = 0, \dots, b_n - a_n = 0\}$$
$$= \{(a_1, a_2, \dots a_n)\}$$

Proposition 1.15

Recall

If I and J are ideals of $k[x_1, x_2, \dots x_n]$, then

$$I+J:=\{f+g\mid f\in I,g\in J\}\ \text{ and }I\cap J:=\{f\mid f\in I\text{ and }f\in J\}$$

and both I + J and $I \cap J$ are ideals.

Proof. It's easy to see that I + J and $I \cap J$ are subrings of $k[x_1, x_2, \dots x_n]$. Now take $f \in I + J$, and let $f_I \in I$ and $f_J \in J$ such that $f_I + f_J = f$ and $h \in k[x_1, x_2, \dots x_n]$ we have

$$f \cdot h = (f_I + f_J) \cdot h = f_J \cdot h + f_J \cdot h \in I + J$$

Now take $g \in I \cap J$, then

$$g \cdot h \in I, g \cdot h \in J \implies g \cdot h \in I \cap J$$

Proposition 1.16 (Properties of Ideals)

Let $I, J \in k[x_1, x_2, \dots x_n]$ be ideals.

- 1. $I \subset J \implies V(J) \subset V(I)$
- 2. $V(I \cap J) = V(I) \cup V(J)$
- 3. $V(I + J) = V(I) \cap V(J)$

Proof. 1. Say $p = (a_1, a_2, \dots a_n) \in V(J)$. Then for all $f \in J$ we have f(p) = 0. Take any $g \in I \subset J$ we have g(P) = 0, therefore $V(J) \subset V(I)$.

- 2. (\subset) Say $P \notin V(I) \cup V(J)$, then there exists $f \in I, g \in J$ such that $f(p) \neq 0, g(p) \neq 0$. We then have $fg(p) = f(p)g(p) \neq 0$. Since $fg \in I \cap J$, therefore $p \notin V(I \cap J)$, taking the contrapositive we have $p \in V(I \cap J) \implies p \in V(I) \cup V(J) \implies V(I \cap J) \subset V(I) \cup V(J)$
 - (\supset) Take $p \in V(I) \cup V(J)$, then without the loss of generality say $p \in V(I)$, then for all $f \in I, f(p) = 0$. Then for all $q \in I \cap J, f(q) = 0 \implies f \in V(I \cap J)$.
- $3. (\subset) (\supset)$

Example 1.17

Let I=(x) and J=(y), and $I,J\in k[x,y]$. Then we can visualize then on \mathbb{A}^2 in the following figure

where the red line denotes V(x) and the blue line denotes V(y).

We have $I \cap J = (x) \cap (y) = (xy)$ (all polynomial divisible by xy). Then

$$V(xy) = \{(x_0, y_0) \mid x_0 y_0 = 0\}$$

by inspection we can see that indeed $V(xy) = V(I) \cup V(J)$.

We have I + J = (x) + (y), all polynomials of zero constant terms. Then it's clear to see that

$$V((x) + (y)) = \{(0,0)\}\$$

Since there are no constant term in any of the polynomials in (x) + (y). We can also see this is preciously $V(I) \cap V(J)$ too.