Mathematik für Informatiker I im $\mathrm{WS}08/09$

Klausur				19.02.2009		
Name: .						
Matrikel	nummer:					
Aufgabe	1	2	3	4	5	Gesamt
Punkte	/6	/7	/4 + 4	/8	/9	/34 -
			\Box Jan S		ummer auf ei	ner FU-
			NEIN ()	ummer aur er	ner 1 0-
Wichtige	Hinweise:					
,	lie Lösung ein daneben pass	_		_	n Zettel bzw. geben.	auf die
2) Bitte nu	ır mit Kugelso	hreiber oder	Γinte schreibe	n und keine re	ote Farbe verw	venden.
3) Alle Löstieren!	sungen sind k	urz (stichpun	ktartig), aber	inhaltlich aus	sreichend zu k	ommen-
, –	s erlaubtes Hil n und Formeln			nandschriftli	ch gefülltes A	A4-Blatt

a) Untersuchen Sie, ob die Formel
n $\alpha=(x\leftrightarrow y)\to z$ und $\beta=(x\to z)\leftrightarrow (y\to z)$ logisch äquivalent sind. Sie können dazu die folgende vorbereitete Tabelle verwenden:

\boldsymbol{x}	y	z	
	9		
0			
0	0	0	
0	0	1	
0	1	0	
0	1	0	
0	1	1	
1	0	0	
	0	-	
1	0	1	
1	1	0	
	_		
_			
1	1	1	

 α und β $\,$ sind / sind nicht (nichtzutreffendes Streichen) logisch äquivalent, weil $\dots\dots$

b) Bilden Sie zur Formel α die äquivalente kanonische DNF und die äquivalente kanonische KNF. Vereinfachen Sie beide Normalformen durch Termzusammenfassung soweit das möglich ist.

Aufgabe 2: Äquivalenzrelationen und Matchings

Bezeichne $K_n = (V_n, E_n)$ den vollständigen Graphen über der Knotenmenge $V_n = \{1, 2, \dots, n\}$ und $\sim_n \subseteq E_n \times E_n$ die wie folgt definierte Äquivalenzrelation auf E_n :

$$\{i,j\} \sim_n \{k,l\} \iff i+j=k+l$$
 für alle $\{i,j\}, \{k,l\} \in E_n$.

- a) Wieviele Äquivalenzklassen hat die Relation \sim_{12} und wie groß sind die Äquivalenzklassen $[\{3,8\}]_{\sim_{12}}$, $[\{3,7\}]_{\sim_{12}}$ und $[\{4,11\}]_{\sim_{12}}$.
- b) Zeigen Sie, dass jede Äquivalenzklasse der Relation \sim_n ein Matching von K_n ist und dass es für alle geraden n eine Äquivalenzklasse gibt, die ein perfektes Matching ist (d.h. alle Knoten sind saturiert).

4+3 Punkte

Aufgabe 3: Induktion und Rekursion 4 Punkte, 4 Zusatzpunkte

- a) Beweisen Sie mit vollständiger Induktion, dass die ganze Zahl $a_n=n^3-4n$ für alle $n\in\mathbb{N}$ durch 3 teilbar ist.
- b) **Zusatzaufgabe:** Was zählt die Stirling–Zahl $S_{n,2}$? Beweisen Sie die Formel $S_{n,2}=2^{n-1}-1$ für alle $n\geq 2$ mit vollständiger Induktion.

Der Graph G_n habe die Knotenmenge $V_n = \{1, 2, ..., n\}$ und alle Kanten $\{i, j\}$, für die $max(i, j) \leq 2 \cdot min(i, j)$ gilt.

a) Zeichnen Sie den Graphen G_8 in das folgende Schema und bilden Sie den BFS–Baum von G_8 mit Startknoten 1 und aufsteigend geordneten Adjazenzlisten.

 G_8 1 $BFS(G_8)$ 1 \bullet 2 8 \bullet 2

7 • • 3 • 3

b) Zeigen Sie, dass für die Anzahl der Kanten von G_n die folgende Formel gilt:

 $|E_n| = \begin{cases} \frac{n^2}{4} & \text{falls } n \text{ gerade} \\ \\ \frac{n^2 - 1}{4} & \text{falls } n \text{ ungerade} \end{cases}$

Hinweis: Man kann die Formel mit Abzählargumenten oder mit vollständiger Induktion beweisen.

Aufgabe 5: Kombinatorik und Wahrscheinlichkeiten 2+2+2+3 Punkte

Alle Antworten auf die folgenden Fragen können in Form von Ausdrücken wie z.B. 2^{100} oder $100^6 \cdot \binom{100}{6}$ gegeben werden. Stichwortartige Begründungen reichen aus.

In einer Klausur mit 100 Teilnehmern (T_1 bis T_{100}) werden 8 Aufgaben gestellt, von denen sich jeder Teilnehmer 6 zum Lösen aussuchen kann.

- a) Wie viele Möglichkeiten der Verteilung der Aufgaben auf die 100 Teilnehmer gibt es? Zeigen Sie, dass bei jeder Verteilung mindestens 4 Teilnehmer die gleiche Auswahl getroffen haben.
- b) Wie viele Möglichkeiten der Verteilung der Aufgaben auf die 100 Teilnehmer gibt es, wenn alle Teilnehmer die Aufgaben 1 und 2 wählen? Auf welchen Wert erhöht sich jetzt die Anzahl der Teilnehmer, die garantiert die gleiche Auswahl getroffen haben?
- c) Wir nehmen jetzt an, dass die Aufgabenverteilung von einem Zufallsgenerator übernommen wurde (weiterhin 6 Aufgaben pro Teilnehmer gleichverteilt und unabhängig). Wie groß ist die erwartete Anzahl von Teilnehmern, welche die Aufgaben 1 bis 6 erhalten haben?
- d) Sei bei der zufälligen Verteilung A das Ereignis, dass Teilnehmer T_1 die Aufgabe 1 erhält und B das Ereignis, dass Teilnehmer T_1 nicht die Aufgabe 8 erhält. Bestimmen Sie Pr(A), Pr(B) und $Pr(A \cap B)$ und stellen Sie fest, ob A und B unabhängige Ereignisse sind!

Wie groß ist die Wahrscheinlichkeit, dass jeder Teilnehmer die Aufgabe 1, aber keiner die Aufgabe 8 erhält?