Exploratory Data Analysis with R

Matthew Renze

@matthewrenze

#hdc15

Motivation

The ability to take data—to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it—that's going to be a hugely important skill in the next decades, ... because now we really do have essentially free and ubiquitous data. So the complimentary scarce factor is the ability to understand that data and extract value from it.

Hal Varian, Google's Chief Economist The McKinsey Quarterly, Jan 2009

The New York Times

For Today's Graduate, Just One Word: Statistics

Published: August 5, 2009

MOUNTAIN VIEW, Calif. — At Harvard, Carrie Grimes majored in anthropology and archaeology and ventured to places like Honduras, where she studied Mayan settlement patterns by mapping where artifacts were found. But she was drawn to what she calls "all the computer and math stuff" that was part of the job.

★ TWITTER	
In LINKEDIN	
₽ COMMENTS	
(58)	
SIGN IN TO E- MAIL	

AVERAGE SALARY FOR High Paying Skills and Experience

SKILL	2013	YR/YR CHANGE
R	\$ 115,531	n/a
NoSQL	\$ 114,796	1.6%
MapReduce	\$ 114,396	n/a
PMBok	\$ 112,382	1.3%
Cassandra	\$ 112,382	n/a
Omnigraffle	\$ 111,039	0.3%
Pig	\$ 109,561	n/a
SOA (Service Oriented Architecture)	\$ 108,997	-0.5%
Hadoop	\$ 108,669	-5.6%
Mongo DB	\$ 107,825	-0.4%

Source: Dice 2014 Tech Salary Survey Results

A Flood of Data is Coming...

Sink

or

Swim

Source: http://www.dot.gov.nt.ca/

Source: Wikipedia

Overview

- Introduction to R
- Data Munging
- Descriptive Statistics
- Data Visualization
- Beyond R and EDA

How Does This Apply to Me?

- As a software developer, I often:
 - ☑ Perform log file analysis
 - ☑ Analyze software performance
 - ☑ Analyze code metrics for code quality
 - ☑ Detect anomalies in source data
 - ☑ Transform or clean data files to make them usable
 - ☑ Help decision makers make decisions based on data

About Me

- Independent software consultant
- Education
 - B.S. in Computer Science (ISU)
 - B.A. in Philosophy (ISU)
- Training
 - Kimball Group Data Warehousing
 - ESRI ArcGIS, ArcSDE, and ArcGIS Server
 - Data Science Specialization (Johns Hopkins) [In progress]

Introduction to R

What is R?

- Open source
- Implementation of S
- Language and environment
- Numerical and graphical analysis
- Cross platform

Source: www.r-project.org

What is R?

- Active development
- Large user community
- Modular and extensible
- 6700+ extensions

and best of all...

Code Demo

Data Munging

Data Munging

- Transforming data
- Raw data to usable data
- Data must be cleaned first

Source: Wikimedia

Data Munging Tasks

- Renaming variables
- Data type conversion
- Encoding, decoding, or recoding data
- Merging data sets
- Transforming data
- Handling missing data (imputing)
- Handling anomalous values

Loading Data in R

- File-based data
- Web-based data
- Databases
- Statistical data
- And many more...

Cleaning Data

- This step is often the:
 - Most difficult
 - Most time consuming
- TIP: Record all steps

Source: Wikimedia

Code Demo: Lending Club Dataset

- Peer-to-peer loans
- Problem: Data are not ready for analysis
- Goal: Prepare the data for analysis

Source: www.lendingclub.com

Code Demo

Descriptive Statistics

Descriptive Statistics

- Describe data
- Provides a summary
- aka: Summary statistics

Interest Rate			
Statistic	Value		
Minimum	5.42		
1 st Quartile	10.16		
Median	13.11		
Mean	13.07		
3 rd Quartile	15.80		
Maximum	24.89		
Variance	17.45		
Standard Deviation	4.17		

Statistical Terms

- Observations
- Variables
- Qualitative variable
- Quantitative variable

ID	Date	Customer	Product	Quantity
1	2012-10-27	John	Pizza	2
2	2012-10-27	John	Soda	2
3	2012-10-27	Jill	Salad	1
4	2012-10-27	Bob	Milk	1
5	2012-10-28	Sue	Soda	3
6	2012-10-28	Bob	Pizza	2
7	2012-10-28	Jill	Pizza	1
8	2012-10-28	Jill	Soda	3

Types of Numerical Analysis

- Type of variables
 - Qualitative
 - Quantitative
- Number of variables
 - Univariate
 - Bivariate
 - Multivariate

Old Faithful Eruptions

Univariate Analysis

- One variable
- Measures include:
 - Central tendency
 - Dispersion

Source: Wikipedia

Bivariate Analysis

- Two variables
 - Predictor
 - Outcome
- Measures include
 - Covariance
 - Correlation

Old Faithful Eruptions

Source: Wikipedia

Code Demo: Movies Data Set

- Movies from 2003
- Goal: What movies made the most money

Source: http://www.rossmanchance.com/iscam2/files.html

Code Demo

Data Visualization

Data Visualization

- Visual data representation
- For human pattern recognition
- Map dimensions to visual characteristics

ID	Date	Customer	Product	Quantity
1	2012-10-27	John	Pizza	2
2	2012-10-27	John	Soda	2
3	2012-10-27	Jill	Salad	1
4	2012-10-27	Bob	Milk	1
5	2012-10-28	Sue	Soda	3
6	2012-10-28	Bob	Pizza	2
7	2012-10-28	Jill	Pizza	1
8	2012-10-28	Jill	Soda	3

Sales by Product

Types of Data Visualizations

- Type of variable(s)
 - Qualitative
 - Quantitative
- Number of variables
 - Univariate
 - Bivariate
 - Multivariate

Old Faithful Eruptions

Source: Wikipedia

Code Demo: Movies Data Set

 Goal: Visualize what types of movies make the most money

Source: http://www.rossmanchance.com/iscam2/files.html

Code Demo

Beyond R and EDA

This is just the tip of the iceberg!

Advanced Visualizations with R

Source: Flowing Data

Advanced Data Analysis with R

- Cluster Analysis
- Statistical Modeling
- Dimensionality Reduction
- Analysis of Variance (ANOVA)

Data Mining and Machine Learning with R

Alternatives to R for EDA

Source: Microsoft

Source: IBM SPSS

Source: SAS

Code Demo

Where to Go Next...

- R website: http://www.cran.r-project.org
- R Studio: http://www.rstudio.com
- Pluralsight: http://www.pluralsight.com
- Coursera: https://www.coursera.org
- Revolutions: http://blog.revolutionanalytics.com
- Flowing Data: http://flowingdata.com
- R-Blogger: http://www.r-bloggers.com

Conclusion

Conclusion

- Introduction to R
- Data munging
- Descriptive statistics
- Data visualization
- Beyond R & EDA

Feedback

- Feedback is very important to me
- One thing you liked?
- One thing I could improve?

Contact Info

Matthew Renze
@matthewrenze
matthew@renzeconsulting.com

Renze Consulting www.renzeconsulting.com

Data Explorer http://www.data-explorer.com