Lecture 3. tidyverse-ggplot2

Lazaro Alonso

6/2/2020

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)

```
##
        speed
                         dist
                              2.00
##
           : 4.0
                    Min.
                            :
    Min.
                    1st Qu.: 26.00
##
    1st Qu.:12.0
##
    Median:15.0
                    Median: 36.00
##
    Mean
           :15.4
                    Mean
                            : 42.98
    3rd Qu.:19.0
                    3rd Qu.: 56.00
##
            :25.0
                            :120.00
    Max.
                    Max.
```

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

Data distributions

Let's see one more time the mpg data set.

```
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.0 --
## v ggplot2 3.3.0
                    v purrr
                            0.3.4
## v tibble 3.0.1
                    v dplyr
                            0.8.5
## v tidyr
         1.1.0 v stringr 1.4.0
## v readr
                    v forcats 0.5.0
          1.3.1
                                             ## -- Conflicts -----
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
glimpse(mpg)
## Rows: 234
## Columns: 11
## $ manufacturer <chr> "audi", "audi", "audi", "audi", "audi", "audi", "audi", "audi"...
               <chr> "a4", "a4", "a4", "a4", "a4", "a4", "a4", "a4 quattro"...
## $ model
               <dbl> 1.8, 1.8, 2.0, 2.0, 2.8, 2.8, 3.1, 1.8, 1.8, 2.0, 2.0,...
## $ displ
## $ year
               <int> 1999, 1999, 2008, 2008, 1999, 1999, 2008, 1999, 1999, ...
## $ cyl
               <int> 4, 4, 4, 4, 6, 6, 6, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, ...
## $ trans
               <chr> "auto(15)", "manual(m5)", "manual(m6)", "auto(av)", "a...
               ## $ drv
## $ cty
               <int> 18, 21, 20, 21, 16, 18, 18, 18, 16, 20, 19, 15, 17, 17...
## $ hwy
               <int> 29, 29, 31, 30, 26, 26, 27, 26, 25, 28, 27, 25, 25, 25...
## $ fl
               ## $ class
               <chr> "compact", "compact", "compact", "compact", "compact", ...
help(mpg)
g <- ggplot(mpg, aes(displ)) + scale_fill_brewer(palette = "Spectral")
g + geom_histogram(binwidth = .1,
                col="black",
                size=.1) + # change binwidth
 labs(title="Histogram with Auto Binning",
      subtitle="Engine Displacement across Vehicle Classes")
```

Histogram with Auto Binning Engine Displacement across Vehicle Classes

Let's do it per class.

Histogram with Auto Binning Engine Displacement across Vehicle Classes

Histogram with Fixed Bins Engine Displacement across Vehicle Classes

Histogram on a categorical variable

```
g <- ggplot(mpg, aes(manufacturer))
g + geom_bar(aes(fill=class), width = 0.5) +
    theme(axis.text.x = element_text(angle=65, vjust=0.6)) +
    labs(title="Histogram on Categorical Variable",
        subtitle="Manufacturer across Vehicle Classes")</pre>
```

Histogram on Categorical Variable Manufacturer across Vehicle Classes

Density plot

```
g <- ggplot(mpg, aes(cty))
g + geom_density(aes(fill=factor(cyl)), alpha=0.5) +
    labs(title="Density plot",
        subtitle="City Mileage Grouped by Number of cylinders",
        caption="Source: mpg",
        x="City Mileage",
        fill="# Cylinders")</pre>
```

Density plot
City Mileage Grouped by Number of cylinders

Box plots

The dark line inside the box represents the median. The top of box is 75%ile and bottom of box is 25%ile. The end points of the lines (aka whiskers) is at a distance of 1.5*IQR, where IQR or Inter Quartile Range is the distance between 25th and 75th percentiles. The points outside the whiskers are marked as dots and are normally considered as extreme points.

```
g <- ggplot(mpg, aes(class, cty))
g + geom_boxplot(varwidth=T, fill="dodgerblue", alpha = 0.5) +
    labs(title="Box plot",
        subtitle="City Mileage grouped by Class of vehicle",
        caption="Source: mpg",
        x="Class of Vehicle",
        y="City Mileage")</pre>
```

Box plot City Mileage grouped by Class of vehicle

Setting varwidth=T adjusts the width of the boxes to be proportional to the number of observation it contains.

Box plot City Mileage grouped by Class of vehicle


```
\#\#\# Violin plot
```

Violin plot City Mileage vs Class of vehicle


```
g <- ggplot(mpg, aes(class, cty))
p <- g + geom_violin() +
   labs(title="Violin plot",
        subtitle="City Mileage vs Class of vehicle",
        caption="Source: mpg",
        x="Class of Vehicle",
        y="City Mileage")
p</pre>
```

Violin plot City Mileage vs Class of vehicle

g + geom_violin(TRIM=FALSE) + coord_flip()

Warning: Ignoring unknown parameters: TRIM

Add summary statistics on a violin plot

```
p + stat_summary(fun.y=median, geom="point", size=2, color="red")
```

Warning: `fun.y` is deprecated. Use `fun` instead.

Violin plot City Mileage vs Class of vehicle

Add median and quartile

p + geom_boxplot(width=0.1)

Violin plot City Mileage vs Class of vehicle


```
g <- ggplot(mpg, aes(class, cty, color = class))
pc <- g + geom_violin() +
   labs(title="Violin plot",
        subtitle="City Mileage vs Class of vehicle",
        caption="Source: mpg",
        x="Class of Vehicle",
        y="City Mileage")
pc</pre>
```

Violin plot City Mileage vs Class of vehicle

pc + scale_color_brewer(palette="Dark2")

Violin plot City Mileage vs Class of vehicle


```
\#\#\# More than one plot
```

```
# install.packages("gridExtra")
library("gridExtra")
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
p_data <- ggplot(mpg, aes(x = hwy))</pre>
p1 <- p_data + geom_histogram(binwidth = 1, color = "grey30", fill = "white") +
  labs(title="Bin width 1")
p2 <- p_data + geom_histogram(binwidth = 2, color = "dodgerblue",</pre>
                                fill = "blue", alpha = 0.4) +
  labs(title="Bin width 2")
p3 <- p_data + geom_histogram(binwidth = 2, color = "grey30",
                               fill = "red", alpha = 0.2) +
  labs(title="Bin width 3")
grid.arrange(p1, p2, p3, ncol = 3)
```


`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Bin width 1

Add Value Markers

ggplot(mpg, aes(x = hwy)) + geom_histogram(aes(y=..density..), color = "grey30", fill = "white") +geom_

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Bin width 1

To add lines for grouped data we need to do a little computation prior to plotting.

Density plot City Mileage Grouped by Number of cylinders

Error bars

A tibble: 15 x 7 ## manufacturer mean_cty sd_cty N_cty se upper_limit lower_limit ## <chr> <dbl> <dbl> <int> <dbl> <dbl> <dbl> 17.1 ## 1 audi 17.6 1.97 18 0.465 18.1 14.3 2 chevrolet 2.92 19 0.671 15.7 ## 15 ## 3 dodge 13.1 2.49 37 0.409 13.5 12.7 4 ford ## 14 1.91 25 0.383 14.4 13.6 ## 5 honda 24.4 1.94 9 0.648 25.1 23.8 18.6 1.50 14 0.401 19.0 18.2 ## 6 hyundai ## 13.5 2.51 8 0.886 14.4 12.6 7 jeep ## 8 land rover 11.5 0.577 4 0.289 11.8 11.2 3 0.333 11.7 ## 9 lincoln 11.3 0.577 11 ## 10 mercury 13.2 0.5 4 0.25 13.5 13 ## 11 nissan 18.1 3.43 13 0.950 19.0 17.1

```
## 12 pontiac
                                        5 0.447
                                                        17.4
                                                                    16.6
                        17
                              1
## 13 subaru
                                       14 0.244
                                                        19.5
                                                                    19.0
                        19.3
                              0.914
## 14 toyota
                        18.5
                              4.05
                                       34 0.694
                                                        19.2
                                                                    17.8
## 15 volkswagen
                        20.9
                             4.56
                                       27 0.877
                                                        21.8
                                                                    20.0
```

```
ggplot(mpg_means_se, aes(x=manufacturer, y=mean_cty, fill=manufacturer)) +
  geom_errorbar(aes(ymin=lower_limit, ymax=upper_limit), width = 0.3) +
  geom_bar(stat="identity", alpha= 0.5) +
  theme(axis.text.x = element_text(angle=65, vjust=0.6), legend.position = "none") +
  geom_line(aes(group = 1), size = 0.2, color = "red")
```


Reordering...

```
ggplot(mpg_means_se, aes(x=reorder(manufacturer, mean_cty), y=mean_cty, fill=manufacturer)) +
  geom_errorbar(aes(ymin=lower_limit, ymax=upper_limit), width = 0.3) +
  geom_bar(stat="identity", alpha= 0.5) +
  theme(axis.text.x = element_text(angle=65, vjust=0.6), legend.position = "none") +
  geom_line(aes(group = 1), size = 0.2, color = "red")
```


Now, use all these examples to explore the nycflights data set.

EXAMPLE:

```
library(nycflights13)
head(flights)
```

```
## # A tibble: 6 x 19
##
                    day dep_time sched_dep_time dep_delay arr_time sched_arr_time
      year month
                                                       <dbl>
##
     <int> <int> <int>
                            <int>
                                            <int>
                                                                 <int>
                                                                                  <int>
      2013
                                                                   830
                                                                                    819
## 1
                1
                      1
                              517
                                              515
                                                            2
                                               529
                                                                   850
                                                                                    830
      2013
                              533
                                                            4
##
                1
                       1
##
  3
      2013
                              542
                                               540
                                                            2
                                                                   923
                                                                                    850
                1
                      1
## 4
      2013
                1
                              544
                                               545
                                                           -1
                                                                  1004
                                                                                  1022
                       1
## 5
      2013
                              554
                                              600
                                                           -6
                                                                   812
                                                                                    837
                1
                       1
## 6
      2013
                1
                              554
                                              558
                                                           -4
                                                                   740
                                                                                    728
                       1
     ... with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
       tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
```

hour <dbl>, minute <dbl>, time_hour <dttm>

Data sets

```
ls("package:nycflights13")
```

```
## [1] "airlines" "airports" "flights" "planes" "weather"
airlines_data <- airlines
airports_data <- airports
flights_data <- flights</pre>
```

```
planes_data <- planes</pre>
weather_data <- weather</pre>
# Variables in flights dataset
?flights
head(weather)
## # A tibble: 6 x 15
##
     origin year month
                           day hour temp dewp humid wind_dir wind_speed wind_gust
##
     <chr> <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
                                                           <dbl>
                                                                       <dbl>
                                                                                 <dbl>
## 1 EWR
             2013
                       1
                             1
                                   1
                                      39.0
                                            26.1 59.4
                                                             270
                                                                       10.4
                                                                                    NA
## 2 EWR
             2013
                      1
                                      39.0
                                            27.0
                                                   61.6
                                                             250
                                                                        8.06
                                                                                    NA
                                                   64.4
## 3 EWR
             2013
                      1
                             1
                                   3
                                      39.0
                                            28.0
                                                             240
                                                                       11.5
                                                                                    NA
## 4 EWR
             2013
                      1
                             1
                                   4
                                      39.9
                                            28.0
                                                   62.2
                                                             250
                                                                       12.7
                                                                                    NA
                                                             260
## 5 EWR
             2013
                                   5
                                      39.0
                                            28.0
                                                   64.4
                                                                                    NA
                       1
                             1
                                                                       12.7
## 6 EWR
             2013
                             1
                                   6 37.9
                                            28.0 67.2
                                                             240
                                                                       11.5
                                                                                    NA
## # ... with 4 more variables: precip <dbl>, pressure <dbl>, visib <dbl>,
## # time_hour <dttm>
```

Warning: Removed 1 rows containing non-finite values (stat_bin).

New York City Airport Temperatures 2013

