The perceptron algorithm

Christos Dimitrakakis

October 4, 2024

Outline

The Perceptron

Introduction
The algorithm

Gradient methods

Gradients for optimisation
The perceptron as a gradient algorithm

Lab and Assignment

The Perceptron

Introduction The algorithm

Gradient methods

Gradients for optimisation

The perceptron as a gradient algorithm

Lab and Assignment

Guessing gender from height

- ightharpoonup Feature space $\mathcal{X} \subset \mathbb{R}$: e.g. height
- ▶ Label space $\mathcal{Y} = \{-1, 1\}$: e.g. gender
- lacktriangle Can we find some $eta_1\in\mathbb{R}$ and a direction $eta_0\in\{-1,+1\}$ so as to separate the genders?

Online learning: At time t

- \triangleright We choose a separator β_0^t, β_1^t
- \triangleright We observe a new datapoint x_t, y_t
- We make a mistake at time t if:

$$\beta^t x_t - \beta_0^t \le 0.$$

If we stop making mistakes, then we are classifying everything perfectly.

Can you find a threshold that makes a small number of mistakes?

./src/Perceptron/perceptron_simple.py

Non-separable classes

More complex example

- ▶ Feature space $\mathcal{X} \subset \mathbb{R}^n$: e.g. height and weight for n=2
- ▶ Label space $\mathcal{Y} = \{-1, 1\}$: e.g. gender
- ► Can we find some line so as to separate the genders?
- -./src/Perceptron/show_class_data_labels.py

More complex example

- ▶ Feature space $\mathcal{X} \subset \mathbb{R}^n$: e.g. height and weight for n=2
- ▶ Label space $\mathcal{Y} = \{-1, 1\}$: e.g. gender
- Can we find some line so as to separate the genders?
- -./src/Perceptron/show_class_data_labels.py

Linear separator

We now have parameters $\beta_0 \in \mathbb{R}$ and $\beta \in \mathbb{R}^n$ defining a hyperplane f(x) = 0 in \mathbb{R}^n

$$f(x) = \beta_0 + \beta^{\top} x = \beta_0 + \sum_{i=1}^{n} \beta_i x_i.$$

- ▶ Feature space $\mathcal{X} \subset \mathbb{R}^n$: e.g. height and weight for n=2
- ▶ Label space $\mathcal{Y} = \{-1, 1\}$: e.g. gender
- Can we find some line so as to separate the genders?
- -./src/Perceptron/show_class_data_labels.py

Linear separator

We now have parameters $\beta_0 \in \mathbb{R}$ and $\beta \in \mathbb{R}^n$ defining a hyperplane f(x) = 0 in \mathbb{R}^n

$$f(x) = \beta_0 + \beta^{\top} x = \beta_0 + \sum_{i=1}^{n} \beta_i x_i.$$

- ▶ The perceptron decision rule is $\pi(x) = sign(f(x))$
- ▶ If f(x) > 0, we assign class +1
- ▶ If f(x) < 0, we assign class -1

More complex example

- Feature space $\mathcal{X} \subset \mathbb{R}^n$: e.g. height and weight for n=2
- ▶ Label space $\mathcal{Y} = \{-1, 1\}$: e.g. gender
- Can we find some line so as to separate the genders?
- -./src/Perceptron/show_class_data_labels.py

Linear separator

We now have parameters $\beta_0 \in \mathbb{R}$ and $\beta \in \mathbb{R}^n$ defining a hyperplane f(x) = 0 in \mathbb{R}^n

$$f(x) = \beta_0 + \beta^{\top} x = \beta_0 + \sum_{i=1}^{n} \beta_i x_i.$$

- ▶ The perceptron decision rule is $\pi(x) = \text{sign}(f(x))$
- If f(x) > 0, we assign class +1
- ▶ If f(x) < 0, we assign class -1

If we augment x an additional component $x_0 = 1$, we can write

$$f(x) = \beta^{\top} x = \sum_{\substack{i=0 \\ \text{The perceptron algorithm}}}^{n} \beta_{i} x_{i}.$$
October 4, 2024 6/22

The perceptron algorithm

Input

- ▶ Feature space $X \subset \mathbb{R}^n$.
- ▶ Label space $Y = \{-1, 1\}$.
- ▶ Data (x_t, y_t) , $t \in [T]$, with $x_t \in X, y_t \in Y$.

Algorithm

- $\triangleright \beta^0 \sim \text{Normal}^n(0, I)$. % Initialise parameters
- ▶ For t = 1, ..., T
 - $ightharpoonup a_t = \operatorname{sgn}(\beta^t \cdot x_t)$. % Classify example
 - \blacktriangleright If $a_t \neq y_t$
 - $\beta^t = \beta^{t-1} + v_t x_t \%$ Move hyperplane
 - ► Flse
 - $\triangleright \beta^t = \beta^{t-1}$ % Do nothing for correct examples
 - ► EndIf
- ▶ Return β^T

Perceptron examples

Example 1: One-dimensional data

- Done on the board
- Shows how the algorithm works.
- Demonstrates the idea of a margin

Example 2: Two-dimensional data

See in-class programming exercise

Margins and the perceptron theorem

- \triangleright The hyperplane β^* separates the examples
- ightharpoonup The margin ρ is the minimum distance ρ between β^* and any point.

Theorem (Perceptron theorem)

The number of mistakes is bounded by ρ^{-2} , where $||x_t|| \leq 1$, $\rho \leq y_t(x_t^\top \beta^*)$ for some margin ρ and hyperplane β^* with $\|\beta^*\| = 1$.

▶ Scale data: $||x|| \le 1$

- ► Scale data: $||x|| \le 1$
- ▶ Separating plane: $y_t(x_t^\top \beta^*) > 0$, $\|\beta^*\| = 1$.

- ► Scale data: $||x|| \le 1$
- Separating plane: $y_t(x_t^{\top}\beta^*) > 0$, $\|\beta^*\| = 1$.
- ▶ When we make an update: $y_t(x_t^{\top}\beta_t) \leq 0$.

- ► Scale data: $||x|| \le 1$
- ▶ Separating plane: $y_t(x_t^{\top}\beta^*) > 0$, $\|\beta^*\| = 1$.
- ▶ When we make an update: $y_t(x_t^{\top}\beta_t) \leq 0$.
- \blacktriangleright At each mistake, $\beta^{\top}\beta^*$ grows *by at least ρ

- Scale data: $||x|| \le 1$
- Separating plane: $y_t(x_t^\top \beta^*) > 0$, $\|\beta^*\| = 1$.
- ▶ When we make an update: $y_t(x_t^{\top}\beta_t) \leq 0$.
- ▶ At each mistake, $\beta^{\top}\beta^*$ grows *by at least ρ

- ▶ Scale data: $||x|| \le 1$
- ► Separating plane: $y_t(x_t^\top \beta^*) > 0$, $\|\beta^*\| = 1$.
- ▶ When we make an update: $y_t(x_t^{\top}\beta_t) \leq 0$.
- ▶ At each mistake, $\beta^{\top}\beta^*$ grows *by at least ρ

$$(\beta + yx)^{\top} \beta^* = \beta^{\top} \beta^* + y(x^{\top} \beta^*) \ge \beta^{\top} \beta^* + \rho$$

- ▶ Scale data: $||x|| \le 1$
- ► Separating plane: $y_t(x_t^{\top}\beta^*) > 0$, $\|\beta^*\| = 1$.
- ▶ When we make an update: $y_t(x_t^{\top}\beta_t) \leq 0$.
- ▶ At each mistake, $\beta^{\top}\beta^*$ grows *by at least ρ

$$(\beta + yx)^{\top} \beta^* = \beta^{\top} \beta^* + y(x^{\top} \beta^*) \ge \beta^{\top} \beta^* + \rho$$

▶ At each mistake, $\beta^{\top}\beta$ grows by at most 1.

$$(\beta + yx)^{\top}(\beta + yx) = \beta^{\top}\beta + 2y(\beta^{\top}x) + y^{2}(x^{\top}x) \leq \beta^{\top}\beta + 1$$

- ▶ Scale data: $||x|| \le 1$
- ► Separating plane: $y_t(x_t^{\top}\beta^*) > 0$, $\|\beta^*\| = 1$.
- ▶ When we make an update: $y_t(x_t^{\top}\beta_t) \leq 0$.
- ▶ At each mistake, $\beta^{\top}\beta^*$ grows *by at least ρ

$$(\beta + yx)^{\top} \beta^* = \beta^{\top} \beta^* + y(x^{\top} \beta^*) \ge \beta^{\top} \beta^* + \rho$$

▶ At each mistake, $\beta^{\top}\beta$ grows by at most 1.

$$(\beta + yx)^{\top}(\beta + yx) = \beta^{\top}\beta + 2y(\beta^{\top}x) + y^{2}(x^{\top}x) \leq \beta^{\top}\beta + 1$$

Putting it together

After M mistakes:

- ▶ Scale data: $||x|| \le 1$
- ▶ Separating plane: $y_t(x_t^{\top}\beta^*) > 0$, $\|\beta^*\| = 1$.
- ▶ When we make an update: $y_t(x_t^{\top}\beta_t) \leq 0$.
- ▶ At each mistake, $\beta^{\top}\beta^*$ grows *by at least ρ

$$(\beta + yx)^{\top} \beta^* = \beta^{\top} \beta^* + y(x^{\top} \beta^*) \ge \beta^{\top} \beta^* + \rho$$

▶ At each mistake, $\beta^{\top}\beta$ grows by at most 1.

$$(\beta + yx)^{\top}(\beta + yx) = \beta^{\top}\beta + 2y(\beta^{\top}x) + y^{2}(x^{\top}x) \le \beta^{\top}\beta + 1$$

Putting it together

After M mistakes:

- $\triangleright \beta^{\top} \beta^* \geq M \rho$
- $\triangleright \beta^{\top}\beta \leq M$

- ▶ Scale data: $||x|| \le 1$
- ▶ Separating plane: $y_t(x_t^{\top}\beta^*) > 0$, $\|\beta^*\| = 1$.
- ▶ When we make an update: $y_t(x_t^{\top}\beta_t) \leq 0$.
- ▶ At each mistake, $\beta^{\top}\beta^*$ grows *by at least ρ

$$(\beta + yx)^{\top} \beta^* = \beta^{\top} \beta^* + y(x^{\top} \beta^*) \ge \beta^{\top} \beta^* + \rho$$

▶ At each mistake, $\beta^{\top}\beta$ grows by at most 1.

$$(\beta + yx)^{\top}(\beta + yx) = \beta^{\top}\beta + 2y(\beta^{\top}x) + y^{2}(x^{\top}x) \le \beta^{\top}\beta + 1$$

Putting it together

After M mistakes:

- $\triangleright \beta^{\top} \beta^* \geq M \rho$
- $\triangleright \beta^{\top}\beta \leq M$

- ▶ Scale data: $||x|| \le 1$
- ► Separating plane: $y_t(x_t^\top \beta^*) > 0$, $\|\beta^*\| = 1$.
- ▶ When we make an update: $y_t(x_t^{\top}\beta_t) \leq 0$.
- \blacktriangleright At each mistake, $\beta^{\top}\beta^*$ grows *by at least ρ

$$(\beta + yx)^{\top} \beta^* = \beta^{\top} \beta^* + y(x^{\top} \beta^*) \ge \beta^{\top} \beta^* + \rho$$

▶ At each mistake, $\beta^{\top}\beta$ grows by at most 1.

$$(\beta + yx)^{\top}(\beta + yx) = \beta^{\top}\beta + 2y(\beta^{\top}x) + y^{2}(x^{\top}x) \le \beta^{\top}\beta + 1$$

Putting it together

After *M* mistakes:

- $\triangleright \beta^{\top} \beta^* \geq M \rho$
- $\triangleright \beta^{\top}\beta \leq M$

So $M\rho \leq \beta^{\top}\beta^* \leq \|\beta\| = \sqrt{\beta^{\top}\beta} \leq \sqrt{M}$.

▶ Thus, $M < \rho^{-2}$.

The Perceptron Introduction The algorithm

Gradient methods
Gradients for optimisation
The perceptron as a gradient algorithm

Lab and Assignment

The gradient descent method: one dimension

- ▶ Function to minimise $f: \mathbb{R} \to \mathbb{R}$.
- ▶ Derivative $\frac{d}{d\beta}f(\beta)$

Gradient descent algorithm

- lnput: initial value β^0 , learning rate schedule α_t
- ▶ For t = 1, ..., T
- \triangleright Return β^T

Properties

If $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$, it finds a local minimum β^T , i.e. there is $\epsilon > 0$ so that

$$f(\beta^T) < f(\beta), \forall \beta : ||\beta^T - \beta|| < \epsilon.$$

Gradient methods for expected value

Estimate the expected value

$$x_t \sim P$$
 with $\mathbb{E}_P[x_t] = \mu$.

Gradient methods for expected value

Estimate the expected value

$$x_t \sim P$$
 with $\mathbb{E}_P[x_t] = \mu$.

Objective: mean squared error

Here
$$\ell(x,\beta) = (x-\beta)^2$$
.

$$\min_{\beta} \mathbb{E}_{P}[(x_t - \beta)^2].$$

Gradient methods for expected value

Estimate the expected value

 $x_t \sim P$ with $\mathbb{E}_P[x_t] = \mu$.

Objective: mean squared error

Here
$$\ell(x,\beta) = (x-\beta)^2$$
.

$$\min_{\beta} \mathbb{E}_{P}[(x_t - \beta)^2].$$

Derivative

Idea: at the minimum the derivative should be zero.

$$d/d\beta \mathbb{E}_P[(x_t - \beta)^2] = \mathbb{E}_P[d/d\beta(x_t - \beta)^2] = \mathbb{E}_P[-(x_t - \beta)] = \mathbb{E}_P[x_t] - \beta.$$

Setting the derivative to 0, we have $\beta = \mathbb{E}_P[x_t]$. This is a simple solution.

Real-world setting

- The objective function does not result in a simple solution
- ► The distribution P is not known.
- ightharpoonup We can sample $x \sim P$. Christos Dimitrakakis

The gradient method

- ▶ Function to minimise $f: \mathbb{R}^n \to \mathbb{R}$.
- Derivative $\nabla_{\beta} f(\beta) = \left(\frac{\partial f(\beta)}{\partial \beta_1}, \dots, \frac{\partial f(\beta)}{\partial \beta_n}\right)$, where $\frac{\partial f}{\partial \beta_n}$ denotes the partial derivative, i.e. varying one argument and keeping the others fixed.

Gradient descent algorithm

- ▶ Input: initial value β^0 , learning rate schedule α_t
- For $t = 1, \dots, T$
- \triangleright Return β^T

Properties

If $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$, it finds a local minimum β^T , i.e. there is $\epsilon > 0$ so that

$$f(\beta^T) < f(\beta), \forall \beta : \|\beta^T - \beta\| < \epsilon.$$

Stochastic gradient method

This is the same as the gradient method, but with added noise:

- $\beta^{t+1} = \beta^t \alpha_t [\nabla_{\beta} f(\beta^t) + \omega_t]$
- $ightharpoonup \mathbb{E}[\omega_t] = 0$ is sufficient for convergence.

Stochastic gradient method

This is the same as the gradient method, but with added noise:

- $ightharpoonup \mathbb{E}[\omega_t] = 0$ is sufficient for convergence.

Example (When the cost is an expectation)

In machine learning, the cost is frequently an expectation of some function ℓ ,

$$f(\beta) = \int_X dP(x)\ell(x,\beta)$$

This can be approximated with a sample

$$f(\beta) \approx \frac{1}{T} \sum_{t} \ell(x_t, \beta)$$

The same holds for the gradient:

$$\nabla_{\beta} f(\beta) = \int_{X} dP(x) \nabla_{\beta} \ell(x, \beta) \approx \frac{1}{T} \sum_{t} \nabla_{\beta} \ell(x_{t}, \beta)$$

4 D > 4 D > 4 E > 4 E > E 9 9 0

Gradient for mean estimation

▶ The gradient is zero when the parameter is the expected value

$$\frac{d}{d\beta} \mathbb{E}_{P}[(x-\beta)^{2}] = \int_{-\infty}^{\infty} dP(x) \frac{d}{d\beta} (x-\beta)^{2}$$
$$= \int_{-\infty}^{\infty} dP(x) 2(x-\beta)$$
$$= 2 \mathbb{E}_{P}[x] - 2\beta.$$

Stochastic gradient for mean estimation

Theorem (Sampling)

For any bounded random variable f,

$$\mathbb{E}_P[f] = \int_X dP(x)f(x) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^I f(x_t) = \mathbb{E}_P \left[\frac{1}{T} \sum_{t=1}^I f(x_t) \right], \qquad x_t \sim P$$

Example (Sampling)

 \blacktriangleright If we sample x we approximate the gradient:

$$\frac{d}{d\beta} \mathbb{E}_{P}[(x-\beta)^{2}] = \int_{-\infty}^{\infty} dP(x) \frac{d}{d\beta} (x-\beta)^{2} \approx \frac{1}{T} \sum_{t=1}^{T} \frac{d}{d\beta} (x_{t}-\beta)^{2} = \frac{1}{T} \sum_{t=1}^{T} 2(x_{t}-\beta)$$

Christos Dimitrakakis

Stochastic gradient for mean estimation

Theorem (Sampling)

For any bounded random variable f,

$$\mathbb{E}_{P}[f] = \int_{\mathcal{X}} dP(x)f(x) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} f(x_t) = \mathbb{E}_{P} \left[\frac{1}{T} \sum_{t=1}^{T} f(x_t) \right], \qquad x_t \sim P$$

Example (Sampling)

If we sample x we approximate the gradient:

$$\frac{d}{d\beta} \mathbb{E}_P[(x-\beta)^2] = \int_{-\infty}^{\infty} dP(x) \frac{d}{d\beta} (x-\beta)^2 \approx \frac{1}{T} \sum_{t=1}^{T} \frac{d}{d\beta} (x_t - \beta)^2 = \frac{1}{T} \sum_{t=1}^{T} 2(x_t - \beta)$$

▶ If we update β after each new sample x_t , we obtain:

$$\beta^{t+1} = \beta^t + 2\alpha_t(x_t - \beta^t)$$

Perceptron algorithm as gradient descent

Target error function

$$\mathbb{E}_{\mathbf{P}}^{\beta}[\ell] = \int_{\mathcal{X}} d\mathbf{P}(x) \sum_{\mathbf{y}} \mathbf{P}(\mathbf{y}|\mathbf{x}) \ell(\mathbf{x}, \mathbf{y}, \beta)$$

Minimises the error on the true distribution.

Perceptron algorithm as gradient descent

Target error function

$$\mathbb{E}_{\mathbf{P}}^{\beta}[\ell] = \int_{\mathcal{X}} d\mathbf{P}(x) \sum_{\mathbf{y}} \mathbf{P}(\mathbf{y}|\mathbf{x}) \ell(\mathbf{x}, \mathbf{y}, \beta)$$

Minimises the error on the true distribution.

Empirical error function

$$\mathbb{E}_{\mathbf{D}}^{\beta}[\ell] = \frac{1}{T} \sum_{t=1}^{T} \ell(x_{t}, y_{t}, \beta), \qquad \mathbf{D} = (x_{t}, y_{t})_{t=1}^{T}, \quad x_{t}, y_{t} \sim P.$$

Minimises the error on the empirical distribution.

Perceptron cost function

The cost of each example

$$\ell(x, y, \beta) = \underbrace{\mathbb{I}\left\{y(x^{\top}\beta) < 0\right\}}^{\text{misclassified?}} \underbrace{\left[-y(x^{\top}\beta)\right]}$$
(1)

where the indicator function $\mathbb{I}\{A\}$ is 1 when A is true and 0 otherwise. «««< variant A

»»»> variant B

Perceptron cost function

The cost of each example

$$\ell(x, y, \beta) = \underbrace{\mathbb{I}\left\{y(x^{\top}\beta) < 0\right\}}^{\text{misclassified?}} \underbrace{\left[-y(x^{\top}\beta)\right]}$$
(1)

where the indicator function $\mathbb{I}\{A\}$ is 1 when A is true and 0 otherwise. « « < variant A

»»» > variant B ===== end

Reminder: The chain rule

Let z = g(y), y = f(x) so that z = g(f(x)). Then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$ « « < variant A »»» > variant B

Perceptron cost function

The cost of each example

$$\ell(x, y, \beta) = \underbrace{\mathbb{I}\left\{y(x^{\top}\beta) < 0\right\}}^{\text{misclassified?}} \underbrace{\left[-y(x^{\top}\beta)\right]}$$
(1)

where the indicator function $\mathbb{I}\left\{A\right\}$ is 1 when A is true and 0 otherwise. « « < variant A

Reminder: The chain rule

Let
$$z = g(y)$$
, $y = f(x)$ so that $z = g(f(x))$. Then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$ « « < variant A » » > variant B ==== end

Derivative: Chain rule

«««< variant A

$$\blacktriangleright \ \frac{\partial \beta}{\partial \beta_i} [y(x_t^{\top} \beta)] = y x_{t,i}$$

Perceptron cost function

The cost of each example

$$\ell(x, y, \beta) = \underbrace{\mathbb{I}\left\{y(x^{\top}\beta) < 0\right\}}^{\text{misclassified?}} \underbrace{\left[-y(x^{\top}\beta)\right]}$$
(1)

where the indicator function $\mathbb{I}\left\{A\right\}$ is 1 when A is true and 0 otherwise. « « < variant A

Reminder: The chain rule

Let
$$z = g(y)$$
, $y = f(x)$ so that $z = g(f(x))$. Then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$ « « < variant A » » > variant B ==== end

Derivative: Chain rule

«««< variant A

$$\blacktriangleright \ \frac{\partial \beta}{\partial \beta_i} [y(x_t^{\top} \beta)] = y x_{t,i}$$

Perceptron cost function

The cost of each example

$$\ell(x, y, \beta) = \underbrace{\mathbb{I}\left\{y(x^{\top}\beta) < 0\right\}}^{\text{misclassified?}} \underbrace{\left[-y(x^{\top}\beta)\right]}$$
(1)

where the indicator function $\mathbb{I}\left\{A\right\}$ is 1 when A is true and 0 otherwise. « « < variant A

Reminder: The chain rule

Let
$$z = g(y)$$
, $y = f(x)$ so that $z = g(f(x))$. Then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$ « « < variant A » » > variant B ==== end

Derivative: Chain rule

«««< variant A

$$\blacktriangleright \ \frac{\partial \beta}{\partial \beta_i} [y(x_t^{\top} \beta)] = y x_{t,i}$$

Margins and confidences

We can think of the output of the network as a measure of confidence

Margins and confidences

We can think of the output of the network as a measure of confidence

By applying the logit function, we can bound a real number x to [0,1]:

$$f(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

Logistic regression

Output as a measure of confidence, given the parameter β

$$P_{\beta}(y=1|x) = \frac{1}{1 + \exp(-x_t^{\top}\beta)}$$

The original output $x_t^{\top} \beta$ is now passed through the logit function.

Logistic regression

Output as a measure of confidence, given the parameter β

$$P_{\beta}(y=1|x) = \frac{1}{1 + \exp(-x_t^{\top}\beta)}$$

The original output $x_t^{\top} \beta$ is now passed through the logit function.

Negative Log likelihood

$$\ell(x_t, y_t, \beta) = -\ln P_{\beta}(y_t|x_t) = \ln(1 + \exp(-y_t x_t^{\top}\beta))$$

$$\begin{split} \nabla_{\beta}\ell(x_t, y_t, \beta) &= \frac{1}{1 + \exp(-yx_t^{\top}\beta)} \nabla_{\beta} [1 + \exp(-yx_t^{\top}\beta)] \\ &= \frac{1}{1 + \exp(-yx_t^{\top}\beta)} \exp(-yx_t^{\top}\beta) [\nabla_{\beta}(-y_tx_t^{\top}\beta)] \\ &= -\frac{1}{1 + \exp(x_t^{\top}\beta)} (x_{t,i})_{i=1}^n e \end{split}$$

$$\blacktriangleright \mathbb{E}_{P}(\ell) = \int_{X} dP(x) \sum_{y \in Y} P(y|x) P_{\beta}(y_t + x_t)$$

The Perceptron

Introduction
The algorithm

Gradient methods

Gradients for optimisation
The perceptron as a gradient algorithm

Lab and Assignment

The Perceptron and Gradients

- $./{\tt src/Perceptron/Perceptron_gd.ipynb}$
 - Perceptron implemenation to fill in
 - Gradient descent implementation
 - Experiment on the learning rate with sklearn