Санкт-Петербургский государственный политехнический университет Петра Великого Кафедра компьютерных систем и программных технологий

Отчет по лабораторной работе

Дисциплина: Телекоммуникационные технологии Тема: Система верстки Т_ЕХ и расширения №Т_ЕХ (Шаблон для отчётов)

Выполнил студент гр. 33501/3	Д. А. Зобков (подпись)
Преподаватель	(подпись) Н. В. Богач
	"" 2016 г

Санкт-Петербург 2016 г.

Содержание

1	Цель работы							
2	2 Постановка задачи							
3 Теоретический раздел								
4	Ход работы							
5	Выводы							
6	Сложные случаи из практики							
	5.1 Пример картинки							
	5.2 Листинг с помощью listings							
	5.3 Картинки с подкартинками							
	5.4 Длинная подпись							
	6.5 Русские буквы в формулах							
	5.6 Отрицание-подчёркивание в мат. режиме							
	8.7 No line here to end при использовании $\setminus \setminus$							
	5.8 Таблица с картинкой							
	3.9 Таблица с склееными и битыми ячейками							
	5.10 Графики с TikZ/PGF							
	3.11 Надписи на стрелках							
	S.12 Случай с матрицей, где проверялся знак							
	3.13 Скобочка							
	6.14 Сторона прижатия в выражениях							
	3.15 Графы							
	6.16 ИИИЛИТНЫЕ зачёркивания							
	6.17 Создание списка литературы							
\mathbf{C}_{1}	исок литературы	1						
Π	иложение А Ещё один пример листинга	1						
Π	иложение Б Новое приложение на новой странице	1						
	5.1 Одна подсекция	1						
	5.2 Ешё одна подсекция	1						

1 Цель работы

Какая-то цель

2 Постановка задачи

Какая-то задача

3 Теоретический раздел

Содержит основные соотношения между наблюдаемыми в работе явлениями

4 Ход работы

Что-то нажимаем, всё ломается

5 Выводы

Содержат пояснения моделируемых явлений

6 Сложные случаи из практики

6.1 Пример картинки

Рандомный граф (рис. 6.1).

Для насильной привязки к месту использовать опцию [H].[1]

Рис. 6.1. Граф

6.2 Листинг с помощью listings

Ад на земле. Пакет listings имеет кучу мелких и не очень проблем, из-за которых пропадает желание его использовать.

Описание схемы на языке VHDL приведено в листинге 1. См. приложение A для ещё одного примера.

```
| entity lab2 is
  port(
3 SW0, SW1, SW2, SW3, SW4: in bit;
  LED0, LED1, LED2: out bit;
 LED3, LED4, LED5: out boolean);
  end lab2:
 architecture rtl of lab2 is
    signal TEMP: bit := '0';
  begin
  LED2 <= '0';
_{11} temp<=SW0 or SW1;
  LED1<=TEMP and SW2;
13 LED0<=not TEMP;
  LED3<=not(SW3>SW4);
15 LED4<=not (SW3=SW4);
  LED5 \le not(SW3 \le SW4);
17 end rtl;
```

Листинг 1. Описание схемы

6.3 Картинки с подкартинками

Данные о максимальной частоте и минимальных временных задержках представлены на рис. 6.2 (а так же рис. 6.2а и рис. 6.2б).[2]

Рис. 6.2. Описание без оптимизации

6.4 Длинная подпись

Результат моделирования синтезированной схемы представлен на рис. 6.3. А вот и пример такого случая (см. табл. 6.1).

Рис. 6.3. Результат моделирования схемы в редакторе диаграмм (Коэффициент деления частоты = 3)

Таблица 6.1. Результат моделирования схемы в редакторе диаграмм (Коэффициент деления частоты = 3)

∞	27	13	7	45	35
21	∞	14	20	19	12
10	14	∞	6	32	25
7	18	5	∞	38	28
32	16	23	27	∞	23
30	10	24	28	18	∞

6.5 Русские буквы в формулах

Пока только такой вариант (1).

6.6 Отрицание-подчёркивание в мат. режиме

Просто над под

Ещё пример (в двух вариантах форматирования кода, на мой взгляд, оба отстойны):

$$y = \overline{\overline{x_3} x_4} \overline{\overline{x_1} \overline{x_2}} \overline{x_5} \overline{x_2} \overline{\overline{x_1} \overline{x_4} x_5} \overline{x_3} \overline{\overline{x_1} \overline{x_4}} \overline{\overline{x_2}} \overline{\overline{x_5}}$$

$$y = \overline{\overline{x_3} x_4} \overline{\overline{\overline{x_1}} \overline{x_2}} \overline{\overline{x_5}} \overline{x_2} \overline{\overline{x_1}} \overline{\overline{x_4}} \overline{\overline{x_5}} \overline{\overline{x_3}} \overline{\overline{\overline{x_1}}} \overline{\overline{x_4}} \overline{\overline{\overline{x_2}}} \overline{\overline{x_5}}$$

6.7 No line here to end при использовании \setminus

Способ в формуле выше, создать минимальное пространство с помощью $\tilde{\ }$ перед $\backslash\backslash$, или использовать \bigvee

6.8 Таблица с картинкой

Пример в табл. 6.2.

Таблица 6.2. Логические выражения для выходов RS-триггера

6.9 Таблица с склееными и битыми ячейками

Пример в табл. 6.3. Для склеивания строк требуется пакет multirow.[3]

Ŋoౖ	Частота, МГц	Пориол не	Энергопотребление, мВт			
] 1		Период, не	Полное	Динамическое		
1	1	1000	64.79	0.05		
2	10	100	65.45	0.51		
3	50	20	68.38	2.53		
4	100	10	72.05	5.06		
5	150	6.667	75.71	7.59		
6	200	5	79.38	10.13		
7	250	4	83.05	12.66		

Таблица 6.3. Зависимость энергопотребления от частоты

6.10 Графики с TikZ/PGF

Слишком потно, надо очень хорошо знать, что делаешь, иначе можно потратить день и не добиться результата. В документации 1200 страниц, Карл!!![4]

 $\frac{B}{6}$

7.2 4.2 $\overline{6}$

6.11 Надписи на стрелках

Использует пакет mathtools.[5]

	x_3	x_2	B			x_5	x_2
x_1	-1	-0.3	10.2	делим на 2.5	x_1	-0.4	-0.4
x_4	-1	-0.7	11.4		x_4	-0.4	-0.8
x_5	2.5	-0.25	-10.5		x_3	0.4	0.1
f	-1	-2.3	10.2		f	-0.4	-2.4

Рис. 6.4. Зависимость энергопотребления от частоты

6.12 Случай с матрицей, где проверялся знак

Текущие матрицы
$$P=\begin{bmatrix}0&1\\1&-1\end{bmatrix},\, C^B=\begin{bmatrix}0&1\end{bmatrix}$$
 Допустимость: $X^B=P^{-1}B=\begin{bmatrix}11.4\\10.2\end{bmatrix}>0$ — допустимый

6.13 Скобочка

$$\begin{cases}
\max(x_1 - 2x_2), \\
x_1 + 0.3x_2 \le 10.2, \\
-x_1 + 0.4x_2 \le 1.2, \iff \begin{cases}
x_1 + 0.3x_2 + x_3 = 10.2, \\
-x_1 + 0.4x_2 + x_4 = 1.2, \\
x_1 \ge 0, \\
x_2 \ge 0; \\
x_3 \ge 0, \\
x_4 \ge 0;
\end{cases}$$

6.14 Сторона прижатия в выражениях

Прижатие контролируется символом &.

Условия Куна-Такера:

$$\begin{cases}
\nabla f(X^*) + \sum_{j=1}^{J} u_j \nabla g_j(X^*) = 0, \\
u_j g_j(X^*) = 0, \quad j = 1..J, \\
u_j \leq 0, \quad j = 1..J;
\end{cases} \tag{2}$$

Подставим в формулу (2):

$$\begin{cases}
-62x_1 + 4x_2 + 286 + 7u_1 + 10u_2 - u_3 &= 0, \\
-68x_2 + 4x_1 + 388 + 12u_1 + 8u_2 - u_4 &= 0, \\
u_1(7x_1 + 12x_2 - 84) &= 0, \\
u_2(10x_1 + 8x_2 - 80) &= 0, \\
u_3(-x_1) &= 0, \\
u_4(-x_2) &= 0, \\
u_1 &\leq 0, \\
u_2 &\leq 0, \\
u_3 &\leq 0, \\
u_4 &\leq 0;
\end{cases}$$

6.15 Графы

Безумно неудобно, не делать так. Лучше, быстрее и выгоднее заюзать уЕd или что-нибудь в таком духе и вставить картинку. Есть способ делать удобнее с LuaTeX, но LuaTeX сам по себе ещё без релизной версии, ну его к чёрту.

Наибольший путь 1-2-4-5-6-7-8 с весом 39 представлен на рис. 6.5.

Рис. 6.5. Наибольший путь

6.16 ИИИЛИТНЫЕ зачёркивания

Пример:

Нельзя использовать зачёркивания пакета cancel[6] с самого первого слова:

Ещё такие вот[7] иногда есть. варианты

6.17 Создание списка литературы

Для этого можно использовать BiBLaTeX+Biber.[8]

Создаёт и нумерует ссылки в порядке их упоминания.[9] Стиль по ГОСТу (gost-numeric в данном шаблоне) и его использование можно прочитать в описании стиля.[10]

Список литературы

- 1. Float package [Электронный ресурс]. URL: https://www.ctan.org/pkg/float (дата обр. 22.02.2016).
- 2. Subcaption package [Электронный ресурс]. URL: https://www.ctan.org/pkg/subcaption (дата обр. 22.02.2016).
- 3. Multirow package [Электронный ресурс]. URL: https://www.ctan.org/pkg/multirow (дата обр. 22.02.2016).
- 4. The TikZ & PGF Packages [Электронный ресурс] / ed. by T. Tantau. Version 3.0.1a. 2015. URL: http://ftp.fau.de/ctan/graphics/pgf/base/doc/pgfmanual.pdf (visited on 02/22/2016).
- 5. Mathtools package [Электронный ресурс]. URL: https://www.ctan.org/pkg/mathtools (дата обр. 22.02.2016).
- 6. Cancel package [Электронный ресурс]. URL: https://www.ctan.org/pkg/cancel (дата обр. 22.02.2016).
- 7. Soul package [Электронный ресурс]. URL: https://www.ctan.org/pkg/soul (дата обр. 22.02.2016).
- 8. BiBLaTeX package [Электронный ресурс]. URL: http://ctan.org/pkg/biblatex?cm_mc_uid=07091937238314501670452&cm_mc_sid_50200000=1456061704 (дата обр. 22.02.2016).
- 9. *Карпов Ю. Г.* Model Checking. Верификация параллельных и распределенных программных систем. СПб. : БХВ Петербург, 2010.-560 с.
- 10. Стиль ГОСТ для BiBLaTeX [Электронный ресурс]. URL: https://www.ctan.org/pkg/biblatex-gost (дата обр. 21.02.2016).

Приложение А Ещё один пример листинга

```
function [] = Main ()
      clc;
 3 clear all;
      close all;
     initialX = [3; 8]; % Начальная точка
     index = [-31, -34, 4, 286, 388]; % Значения всех аргументов
     e = 0.1;
     H = [index(1)*2, index(3); index(3), index(2)*2];
     % Открытие файла вывода для записи результатов
     fileID = fopen('results.txt', 'wt');
     if (fileID == -1)
                 error('He удалось открыть файл вывода.');
                 return;
     end
     % Функция построение графика метода
_{18} function [] = PlotGraph (v)
     % Область построения
     \times 1 = 2:.1:6;
     \times 2 = 5:.1:9;
     \% \times 1 = 4:.1:12; \%\%\%\% Для второй начальной точки
_{23} | % × 2 = 3:.1:9;
     [x 1,x 2] = meshgrid(x 1,x 2);
     w=(index(1)*x_1.^2 + index(2)*x_2.^2 + index(3)*x_1.*x_2 + index(4)*x_1 + index(4)*x_2 + index(4)*x_3 + index(4)*x_4 + index(4)*x_5 + index
                 index(5)*x 2);
     figure;
28 hold on;
     contour(x_1,x_2,w,30);
      plot(x, y, '.-k');
      contour(x 1, x 2, w, v);
xlabel('x1');
ylabel('x2');
     hold off;
     end
     % Функция построения графика сравнения кол—ва итераций
_{38} function [] = PlotIterCountGraph ()
      figure:
      surf (from:1:2*to,from:1:2*to,N);
     xlabel('x1');
     ylabel('x2');
43 zlabel ( 'Кол—во итераций');
     colorbar
      figure:
      contourf (from:1:2*to,from:1:2*to,N)
48 xlabel('x1');
ylabel('x2');
     c = colorbar;
```

```
c. Label. String = 'Кол—во итераций';
  end
53
 % Вычисление функции и значение её производной
  function [fX, dfX] = derivative(X)
 % Вычисление значения функции от Х
  fX = index(1) * X(1)^2 + index(2) * X(2)^2 + index(3) * X(1) * X(2) +
     index(4) * X(1) + index(5) * X(2);
_{58}|\% Вычисление частных производных по X1 и X2 соответственно
  dfX = [index(1)*2 * X(1) + index(3) * X(2) + index(4); index(2)*2 * X(2)
     + index(3) * X(1) + index(5);
  end
 %%
63 % Метод релаксационный
 X=initialX;
  [fX, dfX] = derivative(X);
  i = 1;
  j = 1;
68 clear x y;
  x(i) = X(1);
  y(i) = X(2);
  v(1,1) = fX;
 K = [dfX(1); 0];
_{73} t=-(dfX'*K)/(K'*H*K);
  fprintf(fileID, 'Релаксационный метод\n\n'); fprintf(fileID, 'i x1 x2
                                                   gradf(X)1 gradf(X)2
                                                   || df(X)||\n');
                                        fX
              K2
  fprintf(fileID, '%-4d %-10.4f %-10.4f %-10.4f %-10.4f %-10.4f
     f \%-10.4f \%-10.4f \%-10.4f n', i, X, dfX, K, t, fX, norm(dfX));
  while (norm(dfX) > e)
      X = X+t*K;
78
      [fX, dfX] = derivative(X);
      i = i + 1;
      x(i) = X(1);
      y(i) = X(2);
      v(1,i) = fX;
83
      K=dfX;
      t = -(dfX'*K)/(K'*H*K);
  fprintf(fileID, '\%-4d \%-10.4f \%-10.4f \%-10.4f \%-10.4f \%-10.4f
     f \%-10.4f \%-10.4f \%-10.4f n', i, X, dfX, K, t, fX, norm(dfX));
  end
 PlotGraph(v);
  legend ('Линии равного уровня', 'Релаксационный метод');
  fprintf(fileID , '\n\n');
  clear v;
```

Приложение Б Новое приложение на новой странице

Б.1 Одна подсекция

Вот она!

Б.2 Ещё одна подсекция

