Aprendizaje Automatizado: Introducción

IIA - LCC

Trata problemas que pueden ser simples de "entender o reconocer" pero muy difíciles de "definir" y convertir en algoritmo

- Ejemplo: Detectar una sonrisa en una cara, reconocer un gato, interpretar una secuencia de sonidos para traducirlo en palabras
- El Aprendizaje Automatizado introduce métodos que pueden resolver alguna de esas tareas "aprendiendo" la solución a partir de ejemplos de cómo se realizan

Problemas en AA

- Clasificación
- Regresión
- Ranking-Retrieval
- Detección de novedades
- Clustering
- Etc.

Clasificación

Problema:

Dado un objeto (descripto por un conjunto de características medidas de alguna forma) asignarle una (o varias) etiqueta/s de un conjunto finito.

Ejemplo:

 Asignar un símbolo alfanumérico a una secuencia de movimientos del lápiz en la pantalla táctil

Regresión

Problema:

Dado un objeto asignarle un número real.

Ejemplos: predecir...

- la relación euro-dolar de mañana.
- niveles de stock/ventas a futuro.
- cuestiones climáticas...

Búsqueda-recomendación

Problema:

Dado un objeto (necesidad de información/query), asignarle y ordenar las respuestas más adecuadas dentro de una base de datos.

Ejemplo:

- Buscadores en Internet
- Sistemas de recomendación

Detección de novedades

Problema:

Detectar "outliers", objetos que son diferentes a los demás.

Ejemplos:

- Alarmas de comportamiento en compras con tarjeta.
- Detección de fallas en equipos críticos.

Cuándo un programa aprende?

"Se dice que un programa aprende si mejora su performance en una cierta tarea al incorporar experiencia"

- ✓ Memorizar no es aprender
- ✓ Generalizar es aprender

Cómo generalizar?

Tengo estos datos:

T - 8

2-T

5 - F

9 - F

4-T

13 - F

Cual es la respuesta para 12?

Y si agrego los datos:

14 – F

16 - T

Cómo generalizar?

- Para generalizar incorporamos "algo" a los datos: un bias.
- En general usamos la "navaja de Occam": La respuesta más simple que explica las observaciones es la válida
- Distintos métodos de ML usan distintos bias
 «en igualdad de condiciones, la explicación más sencilla suele ser la más probable».

- Programas que mejoran "su comportamiento" con la experiencia.
- Dos formas de adquirir experiencia:
 - A partir de ejemplos suministrados por un usuario (un conjunto de ejemplos clasificados o etiquetados).
 APRENDIZAJE SUPERVISADO.
 - Mediante exploración autónoma (ej. software que aprende a jugar al ajedrez mediante la realización de miles de partidas contra sí mismo). APRENDIZAJE NO SUPERVISADO.

AA: Supervisado / No supervisado

AA: Supervisado / No supervisado

Tipos de Aprendizaje

- Aprendizaje inductivo.
 - Datos de entrada específicos: un usuario provee un subconjunto de todas las posibles situaciones.
 - Datos de salida generales: regla o modelo que puede ser aplicada a una nueva situación.
- Aprendizaje por refuerzo.
 - Sistemas que aprenden mediante prueba y error.
 - Exploración autónoma para inferir reglas de comportamiento.
- Otros: Aprendizaje deductivo (EBL),
 Razonamiento basado en casos (CBR)...

Aprendizaje por Refuerzo

- No hay fuente de información (no hay datos de entrada).
- El sistema aprende mediante prueba y error.
- Se realiza una exploración autónoma para inferir reglas de comportamiento (aprendizaje no supervisado).
- El sistema realiza una determinada tarea repetidamente, para adquirir experiencia y mejorar su comportamiento.
- Se requiere un número de repeticiones muy elevado.

EXPLORACIÓN AUTÓNOMA -> MODELOS

Aprendizaje por Refuerzo

Aplicaciones: en procesos que se realizan como una secuencia de acciones:

- Robots móviles: aprendizaje de la forma de escapar de un laberinto.
- Juego de ajedrez: aprendizaje de la mejor secuencia de movimientos para ganar un juego.
- Brazo robot: aprendizaje de la secuencia de acciones a aplicar a las articulaciones para conseguir un cierto movimiento.
- Separación de imágenes de grandes grupos: caras de personas – animales – ninguno de ellos

Aprendizaje Inductivo

- El objetivo es generar un modelo a partir de ejemplos.
- El conjunto de ejemplos usados se llama conjunto de entrenamiento.
- Cuatro elementos fundamentales: modelo resultante (hipótesis), instancias, atributos y clases.

EJEMPLOS ESPECÍFICOS -> MODELO GENERAL

Aprendizaje Inductivo

Machine Learning

Definiciones

- Resultado: modelo que se infiere a partir de los ejemplos.
- Instancia: cada uno de los ejemplos.
- Atributo: cada una de las propiedades que se miden (observan) de un ejemplo.
- Clase: el atributo que debe ser deducido a partir de los demás.

Ejemplo

Modelado de la estimación de fallo de una máquina.

- Clases: la máquina fallará / no fallará.
- Atributos:
 - Temperatura.
 - Nivel de vibraciones.
 - Horas de funcionamiento.
 - Meses desde la última revisión.

Ejemplo

- Instancias: ejemplos pasados (situaciones conocidas). [Temp = alta, Nivel vibrac. = bajo, horas = 800, meses = 2, fallo = SÍ]
- Resultado: por ej. relación entre los valores de las variables y la clase resultante.
 - Regla: SI nivel_vibraciones = alto Y temp = alta
 ENTONCES fallará.
 - Red Neuronal para clasificación

Atributos

Hay múltiples tipos de atributos:

- Real: puede tomar cualquier valor dentro de un cierto rango. Ej. temperatura como un número real [grados].
- Discreto: Ej. horas de funcionamiento como un número natural.
- Categórico: Ej. color como {azul, rojo, amarillo}
 - Se puede pensar como 'discreto no ordenado'.

Resultados

- Los modelos pueden ser de diversas formas:
 - Árboles de decisión.
 - Listas de reglas.
 - Redes neuronales.
 - Modelos bayesianos o probabilísticos.
 - Etc.

AA pipeline

Prediction

Input Data Machine Learning
Algorithm

Fuente: Tech LLC

AA pipeline

Train: Iterate till you find the best model

Predict: Integrate trained models into applications

Fuente: The MathWorks, Inc.

Cómo resolver un problema de ML?

- Identificar el problema
- Conseguir datos, muchos datos!
- Elegir un método adecuado (o varios)
- Entrenar varios modelos con el conjunto de entrenamiento, evaluarlos con el conjunto de validación
- Estimar el error con el conjunto de testeo

Criterios de selección del modelo

- Dos decisiones fundamentales:
 - El tipo de modelo (árboles de decisión, redes neuronales, modelos probabilísticos, etc.)
 - El algoritmo utilizado para construir o ajustar el modelo a partir de las instancias de entrenamiento (existen varias maneras de construir árboles de decisión, varias maneras de construir redes neuronales, etc.)

ÁRBOLES DE DECISIÓN

Cómo dividir una región en bloques...

A Decision Tree with six separate regions

The resulting partition of the subset of $\ensuremath{\mathbb{R}}^2$ into six regional "blocks"

 Ejemplo: modelado de la posible falla de una máquina.

- Compuestos de nodos y ramas.
- Representan reglas lógicas (if then).
- Nodos internos = atributos (atributo-valor).
- Nodos hoja = clases.
- Nodo raíz = nodo superior del árbol.
- Objetivo en AA: Obtener un árbol de decisión (resultado) a partir de un conjunto de instancias o ejemplos.
- Bias: árbol mínimo

• Ejemplo de un conjunto de entrenamiento.

Temperatura	Nivel de vibraciones	Horas de funcionamiento	Meses desde revisión	Probabilidad de fallo
ALTA	ALTO	< 1000	> 1 MES	fallará
BAJA	BAJO	< 1000	< 1 MES	no fallará
ALTA	BAJO	>1000	> 1 MES	no fallará
ALTA	BAJO	< 1000	> 1 MES	no fallará
BAJA	ALTO	< 1000	> 1 MES	no fallará
BAJA	ALTO	>1000	> 1 MES	fallará
ALTA	ALTO	< 1000	< 1 MES	fallará

Crearemos un árbol a partir de los ejemplos de entrenamiento anteriores. ¿Qué atributo elegir para el primer nodo?

ATRIBUTO	VALORES	CLASE	
		fallará	no fallará
Temperatura	Alto	2	2
	Bajo	1	2
Nivel de	Alto	3	1
vibraciones	Bajo	0	3
Horas	< 1000	2	3
defuncionamien to	>1000	1	1
Meses desde	> 1 mes	2	3
revisión	< 1 mes	1	1

• Árbol construido hasta el momento:

 ¿Qué atributo usamos en el siguiente nivel del árbol (rama izquierda)?

 Sólo aquellos ejemplos de entrenamiento que llegan al nodo (nivel_vibracion = alto) se utilizan para elegir el nuevo atributo:

ATRIBUTO	VALORES	CLASE	
		fallará	No fallará
Temperatura	Alta	2	0
	BAja	1	1
Horas de funcionamiento	< 1000	2	1
	>1000	1	0
Meses desde	> 1 mes	2	1
revisión	< 1 mes	1	0

• Árbol construido hasta el momento:

• ¿Qué atributo usamos en el siguiente nivel del árbol (rama derecha)?

Otros modelos

- Los árboles de decisión son sólo uno de los posibles modelos.
- Dependiendo de la aplicación se deberá elegir un modelo u otro.

Selección del modelo y/o algoritmo

- Capacidad de representación.
- Legibilidad.
- Tiempo de cómputo on-line.
- Tiempo de cómputo off-line.
- Dificultad de ajuste de parámetros.
- Robustez ante el ruido.
- Sobreajuste.
- Minimización del error.