ЛАБОРАТОРНА РОБОТА No3

В роботі досліджуються такі дані :

- 1. Середня величина субсидій
- 2. Кількість резидентів
- 3. Середня величина субсидій на людину

Підготовка даних

N_houses = 60 * 8 N_test = N_houses/2 real_x = DATA[, col_residents] real_y = DATA[, col_subsidies] data_sample = get_data(N_test) sample_x = data_sample\$residents sample_y = data_sample\$subsidies

Метод відношень

ratio = sum(sample_y)/sum(sample_x) estim_ratio = ratio * mean(real_x)

Метод лінійної регресії

model = Im(subsidies ~ residents, data = data.frame(residents = sample_x, subsidies = sample_y))

Im_coef = model\$coefficients

estim_Im = Im_coef[1] + Im_coef[2] * mean(real_x)

Справжнє	Оцінка за	Оценка лінійної	Вибіркове середнє
значення	відношенням	регресії	
2820	2802.501	2810.046	2871.346

Довірчі інтервали

 $\label{eq:norm_quantile} $$ norm_quantile = qnorm(0.975)$ $$ D_ratio = (1 - N_test/N_houses) * sd(sample_y - estim_ratio)^2 / N_test $$ D_lm = (1 - N_test/N_houses) * sd(model$residuals)^2 / N_test $$ left_ratio = estim_ratio - sqrt(D_ratio) * norm_quantile $$ right_ratio = estim_ratio + sqrt(D_ratio) * norm_quantile $$ left_lm = estim_lm - sqrt(D_lm) * norm_quantile $$$

right_lm = estim_lm + sqrt(D_lm) * norm_quantile

	left	predicted value	right
estimation by ratio	2360.78	2802.501	3244.221
linear regression	2377.38	2810.046	3242.712

Візуалізація результатів

plot(sample_x, sample_y, pch = 16, col = sample_y/5000 + 1, ylab = "sample subs", xlab = "sample residents", main = "Dependency") abline(0, ratio)

