Decision Trees--- An introduction

Guowei Wei Department of Mathematics Michigan State University

References:
Duc D. Nguyen's lecture notes
Wikipedia

Introduction

- Decision tree is a basic machine learning method
- Given training set to set up a model and then
 - Classification
 - Regression

Introduction

Node 2

Introduction

 Decision tree represents the attribute of the data using a flowchart-like structure

Decision trees include

Root node, nodes (non-leaf nodes), and leaf nodes.

 Each node represents a condition to split the data

 In leaf node, we stop splitting the data and choose a label to represent all the data in the Leaf node

Leaf Node Predicted label

Node 1

Example -- A Test

How to Split Data at Each Node

Binary split

Multi-way split

Tree Induction

- Hunt's algorithm (earliest one)
- CART (Classification And Regression Tree)
- ID3, C4.5, C5.0 (use information gain)
- CHAID (CHi-squared Automatic Interaction Detection)
- MARS (Improvement for numerical features)
- SLIQ, SPRINT
- Conditional Inference Trees (recursive partition using statistical tests)

Impurity of a Node

Node 1:

Label 0: 5

Label 1: 5

Node 1 has a high degree of impurity

Node 2:

Label 0: 9

Label 1: 1

Node 2 has a low degree of impurity

We prefer a node with a low degree of impurity

How to Measure Node's Impurity

Classification

- Gini
- Cross-entropy
- Misclassification

Regression

- Mean squared error (standard deviation)
- Mean absolute error

Decision Tree Classification

- Classification
 - Gini
 - Cross-entropy
 - Misclassification

Measure Node Impurity by GINI

Gini index for a given node t

GINI(t) =
$$\sum_{j} p(j|t)(1 - p(j|t))$$
$$= 1 - \sum_{j} p(j|t)^{2}$$

Where p(j|t) is considered as the relative frequency of class j in node t (i.e., the probability of label j being chosen). Here (1 - p(j|t)) is probability that the choice is incorrect.

Measure Node Impurity by GINI

Node 1: Label 0: 5 Label 1: 5

$$p(0|1) = \frac{5}{10} = 0.5$$

$$p(1|1) = \frac{5}{10} = 0.5$$

$$GINI(1) = 1 - 0.5^{2} - 0.5^{2} = 0.5$$

Node 2: Label 0: 9 Label 1: 1

$$p(0|1) = \frac{9}{10} = 0.9$$

$$p(1|1) = \frac{1}{10} = 0.1$$

$$GINI(2) = 1 - 0.9^2 - 0.1^2 = 0.18$$

We prefer a node with a lower GINI index

Day	Outlook	Temperature	Humidity	Wind	Play ball
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Cool	Normal	Weak	Yes

Summary:

- Outlook has 3 values: sunny, overcast, rain
- Temperature has 3 values: hot, mild, cool
- Humidity has 2 values: normal, high
- Wind has 2 values: weak, strong
- 2 Labels: No, Yes

Define the best split

Gain Defines Best Split

$$\begin{aligned} \text{Gain} &= \text{Gini}(\text{Parent}) - \frac{n_1}{\sum n_i} \text{Gini}(\text{Node 1}) - \\ &\frac{n_2}{\sum n_i} \text{Gini}(\text{Node 2}) - \dots - \frac{n_k}{\sum n_i} \text{Gini}(\text{Node k}) \end{aligned}$$

> To be continue, ...

Measure Node Impurity by Entropy

Entropy at a given node t

Entropy(t) =
$$-\sum_{j} p(j|t) \log_2 p(j|t)$$

Where p(j|t) is considered as the relative frequency of class j in node t

- Entropy is originally is used to measure the uncertainty of a variable or information of a message
- $-0 \log_2 0 = 0$
- The split the highest entropy will be taken at each step, until entropy is zero (i.e., children notes are pure).

Measure Node Impurity by Classification Error

• Classification error at a given node t $\mathbf{Error}(t) = \mathbf{1} - \max p(\mathbf{j}|t)$

Where p(j|t) is considered as the relative frequency of class j in node t

Decision Tree Regression

Day	Outlook	Temperature	Humidity	Wind	Mins Played
D1	Sunny	Hot	High	Weak	25
D2	Sunny	Hot	High	Strong	30
D3	Overcast	Hot	High	Weak	48
D4	Rain	Mild	High	Weak	50
D5	Rain	Cool	Normal	Weak	60
D6	Rain	Cool	Normal	Strong	28
D7	Overcast	Cool	Normal	Strong	52
D8	Sunny	Cool	Normal	Weak	55

Use standard deviation to measure node impurity

When to Stop Splitting

- Stop splitting when all entries belong to the same class
- Stop splitting when all entries have the same features used for splitting conditions
- Termination criterion: Pre-Pruning and Post-Pruning

Pre-Pruning and Post-Pruning

Pre-Pruning

- Stop if number of entries in this node less than some user-specified threshold
- Stop if class distribution is independent of the available features (use χ^2 test)
- Stop if splitting does not improve impurity measures

Post-Pruning

- 1. Grown the decision tree fully
- 2. Try trimming (pruning) the sub-tree of decision from bottom to up
- 3. If after trimming a sub-tree then the generalization error becomes smaller, replace that sub-tree by leaf-node

Discussions

Advantages of decisions trees:

- > Are simple to understand and easy to interpret
- Have value even with small data size to gain important insights
- Help determine the worst, the best and expected values for different scenarios
- Can be easily generated to more advanced methods, such as random forest and gradient boosting

Disadvantages of decision trees:

- Unstable --- noise sensitive
- > Relatively inaccurate due to biases or high dimensions
- Calculations can be complex due to high dimensions, data uncertain and correlated outcomes.
- Does not work well for non-rectangular regions (linear restriction)