只限教師參閱

FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
1. (a) $(1+ax)^{\frac{1}{3}} = 1 + \frac{1}{3}ax + \frac{\frac{1}{3}(\frac{1}{3}-1)}{2\cdot 1}(ax)^2 + \dots$	1A+1A	1A for the 1st & 2nd term 1A for the 3rd term
$=1+\frac{1}{3}ax-\frac{a^2}{9}x^2+$	1A	
(b) $-\frac{a^2}{9} = -1$ a = 3 or -3	lA	
	(4)	
2. (a) Range = $(26 - 18)$ °C = 8 °C	1 A	
(b) (i) Median = $21.5 ^{\circ}\text{C}$ = $\left[\frac{9}{5}(21.5) + 32\right] ^{\circ}\text{F}$		
= 70.7 °F	lA	
Interquartile range = $\left\{ \left[\frac{9}{5}(22.5) + 32 \right] - \left[\frac{9}{5}(20) + 32 \right] \right\}$ °F	1A	for 22.5–20
= 4.5 °F	1A	
(ii) Mean = $\left[\frac{9}{5}(22) + 32\right] \text{ °F} = 71.6 \text{ °F}$	lA	
Standard deviation = $\frac{9}{5} \times 2 \text{ °F} \approx 3.6 \text{ °F}$	1A	
	(6)	
3		
(0, 1)	1A	for the 2 vertical asymtotes
-3 3 x	14+14+14	for each part of the curves
	1A	for the local minimur
	(5)	
97-AS-M&S-3		

<u> </u>		Solution	Marks	Remarks
4.	(a)	$V(t) = \int 200(t - 15) dt$	1A	
		$= 100h^2 \cdot 3000t + c$	1A	
		∴ V(0) = 20000, ∴ c = 20000	IA	,
		Hence $V(t) = 100t^2 - 3000t + 20000$ for $0 \le t \le k$.		i
		10.000 V() = 1000 120000 101 V21211.		
	(b)	V(k) = 0	:	
		$\therefore 100k^2 - 3000k + 20000 = 0$	IM	
		$k^2 - 30k + 200 = 0$		
		(k-20)(k-10) = 0	1A	
		k = 10 or 20 (rejected) k = 10	17	
				1
	(¢)	V(5) - V(0)	IM	
		$= 100(5)^2 - 3000(5) + 20000 - 20000$		
		= -12500 Alternatively,		+
			1M	
		$\int_0^3 200(t-15) dt$	1141	
		$= \left[100x^2 - 3000x\right]_0^5$		
		= -12500		<u> </u>
		The total depreciation in the first 5 years is \$12 500.	<u>IA</u>	
5.	(a)	Number of ways in which the 10 students can take the scats $\frac{10!}{2!4!4!}$	1A	
	(b)	= 3150 Number of ways in which the 10 students can take the seats with the 2 students from school A are next to each other	'^	
		$= \frac{9!}{4! \cdot 4!}$ $= 630$	1A	
		The probability that the 2 students from school A are next to each other = $\frac{630}{3150}$	1M	
		3150		1
		= - 1 3	IA	
		Alternatively, The probability that the 2 students from school A are next to each other		
		$= 2 \cdot \frac{1}{10} \cdot \frac{1}{9} + 8 \cdot \frac{1}{10} \cdot \frac{2}{9} \qquad \text{(or } \frac{9!2!}{10!} \text{)}$	2A	Marks can be awarde
		$=\frac{1}{5}$	1	independent of part (a
		5	IA	
			(5)	
				1

Solution	Marks	Remarks
 (a) Let X be the number of cars passing through the auto-toll in a minute, then X ~ Po(5). P(X ≥ 5) 	1M	
$= 1 - \sum_{x=0}^{3} \frac{5^{x} e^{-5}}{x!}$	1A	
≈ 0.3840	1A	a - 1 for r.t. 0,384
(b) Out of the next 4 minutes, let Y be the number of minutes in which more than 5 cars will pass through the auto-toll, then Y ~ B(4, 0.3840). P(Y = 3)	1M	
$\approx C_3^4 (0.3840)^3 (1 - 0.3840)$	lM	For binomial formula
= 0.1395 (or 0.1396)	- <u>lA</u> (6)	a-1 for r.t. 0.140
 Let A₁ be the event that the original motor breaks down, A₂ be the event that the backup motor breaks down and W be the even that the machine is working. 		
(a) $P(A_1 A_2)$		
$= 0.15 \times 0.24$ = 0.036	1A	
	1A	
(b) $P(W) = 1 - P(A_1A_2)$ = 1 - 0.036	1M	
= 0.964	1 1101	
Alternatively,		
$P(W) = P(\overline{A_1}) + P(A_1 \overline{A_2})$	1	
= 0.85 + 0.15×0.76 = 0.964	I IM	
The probability that the machine is operated by the original motor $= \frac{P(\overline{A_1})}{P(U)}$		
_ 085	IM	
- 0.964 ≈ 0.8817	IA	a-1 for r.t 0.882
	'^	a=1 10(1)(0,662
(c) The prob. that the 1st break down of the machine occurs on the 10th day = $(0.036)(1-0.036)^{10-1}$	1 ,,,	
≈ 0.0259	IM 1A	a-1 for r.t. 0.026
	<u> </u>	11011.1.0.0020
	(7)	
	1	

只限教師參閱

FOR TEACHERS' USE ONLY

只以实际多阅 FUR TEACHERS	, n2F n	MLY
Solution	Marks	Remarks
8. (a) $N(0) = 16$		
$\therefore \frac{40}{1+h} = 16$	IM	
b = 1.5	1A	
N/7) 37.4		
14106	IM):
$e^{-7} = \frac{1}{15} \left(\frac{40}{174} - 1 \right)$		
1,[1(40,)]		
$r = \frac{1}{-7} \ln \left[\frac{1}{1.5} \left(\frac{40}{17.4} - 1 \right) \right]$	IM	
= 0.02	1A	ı.
(b) $N(t) = \frac{40}{1+be^{-t}}$ (or $\frac{40}{1+15e^{-0.02t}}$)		
$N'(t) = \frac{-40(-bre^{-rt})}{(1+be^{-rt})^2} \qquad \text{(or } \frac{-40(-15)(0.02)e^{-0.02t}}{(1+1.5e^{-0.02t})^2} \text{)}$	IM+IA	
$(1+1)^{2}$ $(1+1$		
$= \frac{40bre^{-0.02t}}{(1+be^{-rt})^2} \qquad \text{(or } \frac{1.2e^{-0.02t}}{(1+1.5e^{-0.02t})^2} \text{)}$		
> 0	,	
\therefore N(t) is increasing.	1	
(c) $\therefore \lim_{\ell \to \infty} e^{-r\ell} = 0$		
$N_a = \lim_{t \to \infty} \frac{40}{1 + be^{-rt}} \qquad \text{(or } \lim_{t \to \infty} \frac{40}{1 + 15e^{-0.02t}} \text{)}$	lМ	
= 40	1A	
(d) (i) N "(t)		
$= \frac{[(1+15e^{-0.02t})(12)-12e^{-0.02t}(2)(15)](1+15e^{-0.02t})(-0.02)e^{-0.02t}}{(1+15e^{-0.02t})^4}$	134	
•	IM	
$=\frac{0.012e^{-0.02t}(3e^{-0.02t}-2)}{(1+1.5e^{-0.02t})^3}$	1A	
(1+15e ****)		
> 0 when $t < t_0$		
(ii) From (i). N "(t) $\begin{cases} > 0 & \text{when } t < t_0 \\ = 0 & \text{when } t = t_0 \\ < 0 & \text{when } t > t_0 \end{cases}$	1M	For Solving N "(t) = 0
where $t_0 = -\frac{1}{0.02} \ln \frac{2}{3} \approx 20.2733$		
\therefore The rate of increase is the greatest when $t = t_0 \approx 20.2733$	IM	For checking maximum
·· N'(20) ≈ 0.199999		
N '(21) ≈ 0.199989 ∴ The company should start to advertise on the 20th day after	1	
the first week	IA	
97-AS-M&S-6	-	.

Solution	Marks	Remarks
7.49 ~ 7.95		
9. (a) $b \approx \frac{7.49 - 7.95}{8 - 3.4}$	j	
= −0.1 /	1A	1
Sub. (8, 7.49) into $\ln N(x) = -0.1x + \ln a$.	i	
$7.49 \approx \ln a - 0.8$	1M	
a ≈ 4000	IA	1
(b) (i) $N(x) = ae^{bx} = 4000e^{-0.1x}$	IM	
Daily profit (in dollars) of selling $N(x)$ clams:		
$P(x) = N(x) \cdot x - (2N(x) + 5000)$	IA	for 2N(x)+5000
= (x-2) N(x) - 5000		1
$= 4000(x-2)e^{-0.1x} - 5000$	1A	
213 P. G. C.		
(ii) $P'(x) = 4000[(x-2)(-0.1e^{-0.1x}) + e^{-0.1x}]$	1A	
$= 400e^{-0.1x}(12-x)$	ľ	
$P'(x)$ $\begin{cases} > 0 & \text{if } 0 < x < 12 \\ = 0 & \text{if } x = 12 \end{cases}$	- 1	
P'(x) = 0 if x = 12	1	
<0 if $x>12$		
•		
$\therefore P(x) \text{ attains its maximum when } x = 12.$ Hence, the selling price of each close = \$13.		
Hence the selling price of each clam = $$12$ the number of clams sold per day = $N(12)$	IA	1
= 4000e ^{-0.1(12)}	,,	
≈ 1205	1A	
(c) The difference between the numbers of clams sold on the <i>n</i> -th and $(n-1)$ -th days after the launch of the promotion programme $= M(n) - M(n-1)$ $= \left[1500 + 1000(1 - e^{-0.1n})\right] - \left[1500 + 1000(1 - e^{-0.1(n-1)})\right]$	114	
$= \frac{1000(-e^{-0.1n} + e^{-0.1n} \cdot e^{0.1})}{1000(-e^{-0.1n} + e^{-0.1n} \cdot e^{0.1})}$	1M	
$= 1000(-e^{-1/4}(e^{0.1} - 1))$		
- 1000e (e - i)	1A	
$If \qquad M(n) - M(n-1) \le 15$	1M	1
then $e^{-0.\ln} < \frac{15}{1000(e^{0.1} - 1)}$		1
• •	1	1
n > 19.475	1M	1
The promotion programme should run for 20 days.	1A	
	-	
	i	
		i
	l l	
		1
	I	i

	只限教師參閱 FOR TEACHERS'	USE 0	NLY
	Solution	Marks	Remarks
10. (a)	$y = x^{x}$ $\ln y = x \ln x$ $\frac{1}{y} \frac{dy}{dx} = 1 + \ln x$	1 A	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{\kappa} (1 + \ln x)$	1 A	
(ъ)	$\frac{d^2 \nu}{dx^2} = x^x \frac{d}{dx} (1 + \ln x) + (1 + \ln x) \frac{d}{dx} x^x$		
	$= x^{x} \cdot \frac{1}{x} + (1 + \ln x)x^{x}(1 + \ln x)$ $= x^{x-1} + x^{x}(1 + \ln x)^{2}$	1A	
	> 0 for $1 \le x \le 2$ y is concave upward (or convex) for $1 \le x \le 2$	1A	
	I would be overestimated if the trapezoidal rule is used to estimate I.	1	
(c)	$I + J = \int_1^2 x^x (1 + \ln x) dx$	1A	
	$= \left[x^{x}\right]_{1}^{2} \qquad \text{by (a)}$ $= 3$	1	
		•	
	j		
97-AS-М&	.S-&		

Solution	Marks	Remarks
(d) (i) x 1 1.2 1.4 1.6 1.8 2	<u> </u> 	
	IA IM	
= 0.9685	IA	
	1/1	
(ii) <i>y</i> 3.5 		
3.3		
3.0		
2.5		
2.0		
1.5		
1.0		
0.5	1A+IM	
0		
1 1.2 1.4 1.6 1.8 2		
From the plotted graph, $y = x^x \ln x$ is concave upward (or convex) for $1 \le x \le 2$.		
$\therefore J_0 \text{ is an overestimate of } J.$	1M	
(iii) The estimation can be improved by increasing the number of sub-intervals.	1	
(iv) I_0 is an underestimate of I because the value 3 for $I + J$ is exact		
and J_0 is an overestimate of J .	1	
	j	
-AS-M&S-9	ı J	

97-7

· · · · · · · · · · · · · · · · · · ·	Solution	Marks	Remarks
11. (a)	Let X be the number of FICs per day, then $X \sim Po(4)$.	}	
	$P(X=0) = \frac{4^{9}e^{-4}}{9!}$	IM	
	≈ 0.0183	l IA	
(b)	Let Y be the number of FICs which are related to house fires in 5 FICs, then $Y = B(5, 0.6)$.		
	$P(Y \ge 2) = 1 - P(Y = 0) - P(Y = 1)$		
	$= 1 - C_0^3(0.4)^5 - C_1^3(0.6)(0.4)^4$ = 0.9130	IM+1A	
		IA	
(c)	Let H and L be the events of "a FiC is related to a house fire" and "a FiC is $large$ ". Let A be the amount of a FiC. (i) $P(L^{\parallel}H) = P(A \ge 20\ 000)$		
	$= P(Z > \frac{200000 - 1000000}{500000})$	1M	
	≃ P(Z > 2) ≈ 0.0228	1A	
	$P(I \overline{II}) = P(A > 20000)$ $= P(Z > \frac{200000 - 150000}{20000})$:	
	$= P(Z > 2.5)$ ≈ 0.0062	1A	
	$P(L) = P(L H)P(H) + P(L \overline{H})P(\overline{H})$		
	≈ 0.0228(0.6) + 0.0062(0.4) ≈ 0.0162	IM IA	
	(ii) $P(H L) = \frac{P(I H)P(II)}{P(L)}$ 00228 x 06		
	$\approx \frac{0.0228 \times 0.6}{0.0162}$	1M	
	≈ 0.8444	iA	
	(iii) P(5 FICs and at least 2 of them are large) = P(2 or more out of 5 FICs are large)P(X=5)		
	$= [1 - (1 - 0.0162)^{3} - 5(0.0162)(1 - 0.0162)^{4}] \frac{e^{-4}4^{3}}{5!}$	IM+IA	
	≈ 0.0004	1A	•
		1	
97-AS-M&S	-10		

		S	olution			Marks	Remarks
(a) & (b)	Note: Under	r B(5, 0,4).	spected freq. = 0	50 x C ⁵ (04)*/	06) ^{5-x}		
(, (.,	Merit	Observed		requency *	1	i	
	Points	Frequency	Binomial	Normal	-	1	
	0	4	4.67	4.00	1		
	ı					1A+1A	For the 3rd column 1A for any one being
		14	15.55	14,50			correct 1A for the remaining
	2	23	20.74	22.98			two
	3	15	13.82	14.50		1A+1A	For the 4th column 1A for any one being
	4	4	4.61	3.64	•		correct
	5	0	0.61	0.37			1A for the remaining two
	* Correct to	2 decimal place	5.				
(b) X ~	$N(\mu, \sigma^2)$						
	P(X < 9000)	= 4.00					
		00					
	$P(Z \le \frac{9000}{1000})$	$(\frac{-\mu}{60}) = \frac{4.00}{60}$ (=	0.06667)				
		00					
	$\frac{9000-\mu}{\sigma} \approx$	-1.50	(1)		1A	
	D(3) ~ 13000)	$= \frac{1450 + 4.00}{60}$					
	P(A < 12000)) =					
	$P(7 < \frac{12000}{}$	$(-\mu) = \frac{18.50}{60}$	(o 0 30833)				
	σ	60	(< 0.30033)				İ
	$\frac{12000 - \mu}{\pi} =$	-0.50	(2)		1A	
Solv	் ம் (1) and (2)), we have μ	≈ 13500 .			lA	
	0 (- / (-		≈ 3000			IA	
(c) N(1	3500, 3000 ²) is	s used to model	the sales volum	es.			
(i)	1 he probab = $P(\lambda=0)^3 + 3$	olity that a sales $SP(X=0)^2 P(X=1)^2$	man will get a v) + 3P(X=0)P(X	warning =1)² + 3P(X=0)	² P(V=2)	1M	
		$3\left(\frac{4.00}{60}\right)^2\left(\frac{14.50}{60}\right)$				IA	
	60 J ≈0.0203	₹60 / ₹60	/ 160八6	07 (607	(607)	IA	
(ii)	The	ilim that a!		de manage i			
(11)		ility that a sales. The previous 3 :		n points in			
	$\approx 1 - \frac{3P(X=0)}{0}$	0203				IM	
	(4,00)	(14.50)					
	1 (60)	60					
	0,0	0203				IA	
	≈0 4246						
	The number	r of salasaum !	na nea avecat-4	to got no manife	noine		
		r of salesmen who of the previous		to get no mera	points		
	≈ 10×0,4246				ı	IM	

		Solution	Marks	Remarks
13. Let	L cm be the length of the fro	nt portion of Mr. Wong's necktie.		
(a)	P(44 < L < 45)			
	$= P(\frac{44 - 44.6}{1.2} < Z < \frac{45 - 44.6}{1.2})$	5	1M	
		,		
	$\approx P(-0.5 \le Z \le 0.3333)$ $\approx 0.1915 + 0.1293$	(or 0.1915 + 0.1306)	IA	For either
	≈ 0.3208	(or 0.3221)	IA	I or criner
	that The state of the state of			
(0)	then $Y \sim \text{Geometric}(p)$, when	s that Mr. Wong gets the first perfect tying,		
	p ≈ 0.3208	(or 0.3221)		
	$E(1) = \frac{1}{2}$		1M	
	p ~ 3.1172	(3 1046)	1 14	
	≈ 3.1172	(or 3.1046)	1A	
(c)	P(not more than 3 trials)			
	= $P(1 \text{ trial}) + P(2 \text{ trials}) + P(3 \text{ trials})$	finals)	,,,	
	$= p + p(1-p) + p(1-p)^{2}$ = 0.6867	(0 cope)	IM	or $1-(1-p)^3$
	≈ 0.0807	(or 0.6885)	lA.	
(d)	Let T be the event that Mr.	Wong has to go to work by taxi.		
	(i) $P(7) \approx 1 \sim 0.6867$	(or 1 – 0.6885)		
	= 0.3133	(or 0.3115)		
	P(less than 2T out of 6	i dave)		
	$\approx C_0^6 (0.6867)^6 + C_1^6 (0.6867)^6$	667) ³ (0.3133)	lM+IA	
	.0((or $C_0^6(0.6885)^6 + C_1^6(0.6885)^5(0.3115)$)		
	≈ 0.3919	(or 0.3957)	IA.	
		,		
	(ii) $P(Y=5 T) \approx \frac{(1-p)^4 p}{P(T)}$		1M	
	P(1) ≈ 0.2179	(or 0.2184)	lA	
	~ 0.2177	(01 0.2104)	'^	
	(iii) Probability required			
		(or 5(0.3115) ² (0.6885) ⁴)	1M+1A	
	≈ 0.1091	(or 0.1090)	1A	
			1	
97-AS-M	&S-12		1	I