Описание программной реализации

Разработка программы велась в Jupyter notebook из которого были сгенерированы 2 скрипта:

- 1. Загрузка данных с помощью модуля Pillow. Входные изображения хранятся в формате .jpeg и имеют 3 цветовых канала R,G,B. Преобразование входных данных: нормализация ([0..255] → [0..1]), приведение размера к 128х128, разбиение на тренировочную и тестовую выборки в соотношении 70% к 30%.
- 2. Загрузка основных модулей Keras для дальнейшей работы, установка начальных параметров. Описание тестируемых моделей глубоких сверточных сетей.

Тестовые конфигурации сетей

Были построены глубокие сверточные сети с различными конфигурациями. Варьировались количество слоев и вид активационных функций. Для всех моделей на выходном слое использовался SoftMax, а на предпоследнем tanh.

- 1. На 1 и 2 активационных слоях используется функция tanh
- 2. На 1 и 2 активационных слоях используется функция relu

- 3. На [1..4] активационных слоях используется функция relu
- 4. На 1 и 2 активационных слоях используется функция tanh, на 3 и 4 relu
- 5. На 1 и 2 активационных слоях используется функция relu, на 3 и 4 linear

- 6. На [1..4] активационных слоях используется функция relu, на 5 и 6 tanh
- 7. На 1 и 2 активационных слоях используется функция sigmoid, на 3 и 4 relu, на 5 и 6 tanh
- 8. На 1 и 2 активационных слоях используется функция relu, на 3 и 4 sigmoid, на 5 и 6 tanh
- 9. На [1..6] активационных слоях используется функция relu
- 10. На [1..6] активационных слоях используется функция tanh

Результаты экспериментов

Номер конфигурации	Общее время выполнения (c)	Точность на тестовом наборе (%)
1	715	0.0905
2	700	0.4994
3	666	0.5639
4	665	0.6137
5	665	0.5594
6	736	0.6228
7	735	0.0905
8	736	0.0905
9	736	0.5813
10	770	0.0905