

PACE OF THE PROPERTY OF THE P

1.1 Describe the Dataset and Its Features

This dataset contains historical football match results from Somali Football Federation.

Features:

- date: The match date.
- home: The home team.
- score: The match result in format home_goals: away_goals.
- away : The away team.

Target Variable:

• score: The final match score.

```
In [1]: # Import necessary libraries
        import pandas as pd
        # Load the dataset
        file name = "sff somaliFootball historical data.csv"
        df = pd.read_csv(file_name)
        # Display dataset structure
        print("\n ◆ Dataset Overview:")
        print(df.info())
        # Display first few rows
        print("\n ◆ First 5 Rows:")
        print(df.head())
```

```
Dataset Overview:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 885 entries, 0 to 884
Data columns (total 4 columns):
    Column Non-Null Count Dtype
   -----
   date 885 non-null object
   home 885 non-null object
    score 885 non-null object
    away 885 non-null
3
                       object
dtypes: object(4)
memory usage: 27.8+ KB
None
First 5 Rows:
        date
                           home score
                                               away
                                 3:1
0 04/06/2012
                      Elman FC
                                        Badbaado FC
1 05/06/2012
                     Sahafi FC
                                 1:1 Jeenyo FC
                     Heegan S.C 1:1
2 07/06/2012
                                        Dekedda SC
3 08/06/2012 Mogadishu City Club 1:1 Horseed S.C
4 11/06/2012
                                 1:1
                                           Elman FC
                     Jeenyo FC
```

1.2 Explore Basic Statistics and Summary

This section provides:

- The number of matches in the dataset.
- The number of unique teams.
- Missing values in each column.
- Basic statistics of the dataset.

```
In [2]: # Dataset shape
print("\n * Dataset Shape:")
print(f"Rows: {df.shape[0]}, Columns: {df.shape[1]}")

# Count unique teams
print("\n * Unique Teams:")
print(f"Home Teams: {df['home'].nunique()}, Away Teams: {df['away'].nunique()}")

# Check for missing values
print("\n * Missing Values:")
print(df.isnull().sum())

# Summary statistics
print("\n * Basic Summary:")
print(df.describe(include="all"))

# Explore unique match scores
print("\n * Unique Scores:")
print(df["score"].value_counts().head(10))
```

```
Dataset Shape:
Rows: 885, Columns: 4
Unique Teams:
Home Teams: 25, Away Teams: 25
Missing Values:
date
home
score
away
dtype: int64
Basic Summary:
             date
                          home
                                score
                                             away
count
              885
                           885
                                   885
                                              885
unique
              839
                            25
                                    50
                                               25
       27/03/2017
                   Horseed S.C
                                 1:1 Elman FC
top
freq
                            77
                                   113
                                               76
Unique Scores:
score
1:1
        113
1:0
         72
0:0
         70
0:1
         60
1 : 2
         59
2:1
         55
0:2
         53
2:2
         41
2:0
         40
3:0
Name: count, dtype: int64
```

QUESTION 2: DATA EXPLORATION

2.1 Visualize the Distribution of Key Features

We visualize the distribution of home score and away score using histograms.

```
In [4]: # Import necessary libraries
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Extract numeric scores
        df['home score'] = df['score'].str.extract(r'(\d+) : \d+').astype(float)
        df['away_score'] = df['score'].str.extract(r'\d+ : (\d+)').astype(float)
        # Plot score distribution
        plt.figure(figsize=(12, 6))
        plt.hist(df['home_score'], bins=10, alpha=0.7, label='Home Score')
        plt.hist(df['away_score'], bins=10, alpha=0.7, label='Away Score')
        plt.title("Distribution of Home and Away Scores")
```

```
plt.xlabel("Scores")
plt.ylabel("Frequency")
plt.legend()
plt.show()
```


2.2 Identify Correlations Between Features

A heatmap is used to visualize the correlation between home and away scores.

```
In [5]: # Compute correlation
    correlation = df[['home_score', 'away_score']].corr()

# Visualize correlations
    plt.figure(figsize=(8, 6))
    sns.heatmap(correlation, annot=True, cmap='coolwarm', fmt=".2f")
    plt.title("Correlation Between Home and Away Scores")
    plt.show()
```

2/1/25, 2:05 PM DS Final Project

★ QUESTION 3: DATA PREPROCESSING

3.1 Handle Missing Values & 3.2 Remove Duplicates

We check for missing values and remove duplicate records.

```
In [6]: # Handle missing values
missing_values = df.isnull().sum()

# Remove duplicate rows
duplicate_count = df.duplicated().sum()
df_cleaned = df.drop_duplicates().copy()

print("Data Preprocessing Summary:")
print(f"- Missing values per column:\n{missing_values}")
print(f"- Duplicate rows removed: {duplicate_count}")
```

```
Data Preprocessing Summary:
- Missing values per column:
date
home
              0
              0
score
              0
away
home_score
              0
away_score
dtype: int64
- Duplicate rows removed: 1
```

3.3 Handle Outliers in the score Column

We clean extra spaces in the score column.

```
In [7]: df cleaned.loc[:, 'score'] = df cleaned['score'].str.strip()
        # Save cleaned data
        df cleaned.to csv("sff somaliFootball cleaned data.csv", index=False)
        print("Cleaned dataset saved as: sff_somaliFootball_cleaned_data.csv")
```

Cleaned dataset saved as: sff_somaliFootball_cleaned_data.csv

QUESTION 4: MODEL TRAINING

4.1 Split Data & Train Model

The dataset is split into training and testing sets.

A Logistic Regression model is trained.

```
In [8]: from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import LabelEncoder
        from sklearn.linear model import LogisticRegression
        from imblearn.over_sampling import SMOTE
        import pickle
        # Encode categorical features
        label encoder home = LabelEncoder()
        label encoder away = LabelEncoder()
        df['home_encoded'] = label_encoder_home.fit_transform(df['home'])
        df['away_encoded'] = label_encoder_away.fit_transform(df['away'])
        # Convert `score` into `Win`, `Loss`, `Draw`
        def simplify score(score):
            home goals, away goals = map(int, score.split(":"))
            return "Win" if home goals > away goals else "Loss" if home goals < away goals
        df['match result'] = df['score'].apply(simplify score)
        # Split dataset
        X = df[['home_encoded', 'away_encoded']]
```

```
y = df['match result']
X train, X test, y train, y test = train test split(X, y, test size=0.2, random sta
# Balance classes
smote = SMOTE(random state=42)
X resampled, y resampled = smote.fit resample(X train, y train)
# Train model
model = LogisticRegression(max iter=1000, class weight="balanced")
model.fit(X resampled, y resampled)
# Save model
pickle.dump(model, open("trained_model.pkl", "wb"))
pickle.dump((X_test, y_test), open("test_data.pkl", "wb"))
print("\nModel Training Completed!")
```

Model Training Completed!

QUESTION 5: MODEL EVALUATION

5.1 Evaluate Model & 5.2 Visualize Performance

```
In [11]: # ★ QUESTION 5: MODEL EVALUATION
         ## 5.1 Evaluate Model & 5.2 Visualize Performance
         # Import necessary libraries
         import pickle
         import matplotlib.pyplot as plt
         import seaborn as sns
         import pandas as pd
         from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
         # Load trained model and test data
         model = pickle.load(open("trained_model.pkl", "rb"))
         X_test, y_test = pickle.load(open("test_data.pkl", "rb"))
         # Make predictions
         y pred = model.predict(X test)
         # 5.1: Use Appropriate Metrics
         accuracy = accuracy_score(y_test, y_pred)
         report = classification_report(y_test, y_pred, zero_division=0)
         print("\nModel Evaluation Summary:")
         print(f"- Accuracy: {accuracy:.4f}")
         print("- Classification Report:\n", report)
         # 5.2: Provide Visualizations of Model Performance
         # 1 **Confusion Matrix Plot**
         conf_matrix = confusion_matrix(y_test, y_pred)
         plt.figure(figsize=(6,4))
         sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=["Draw", "L
```

```
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
plt.show()
# 2 **Bar Plot of Class-wise F1-score**
labels = ["Draw", "Loss", "Win"]
precision, recall, f1, _ = precision_recall_fscore_support(y_test, y_pred, zero_div
# Create DataFrame for visualization
eval_df = pd.DataFrame({"Class": labels, "Precision": precision, "Recall": recall,
eval_df.set_index("Class", inplace=True)
# Plot F1-score for each class
eval_df.plot(kind="bar", figsize=(8,5))
plt.title("Model Performance by Class")
plt.ylabel("Score")
plt.ylim(0, 1)
plt.xticks(rotation=0)
plt.show()
print("\nEvaluation Completed! Check the visualizations.")
```

Model Evaluation Summary:

- Accuracy: 0.3220
- Classification Report:

	precision	recall	f1-score	support
Draw	0.26	0.20	0.23	46
Loss	0.37	0.45	0.40	67
Win	0.30	0.28	0.29	64
accuracy			0.32	177
macro avg	0.31	0.31	0.31	177
weighted avg	0.31	0.32	0.32	177

Evaluation Completed! Check the visualizations.

In []: