TUTORIAL-3

EE 101: Basic Electronics

DEPARTMENT OF ELECTRONICS & ELECTRICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

(First question is the **Pre-Tutorial Assignment problem** to be solved in the space provided.)

Name: Roll No. Tutorial Group:

1. Find current through the Galvanometer (G, from terminal a to terminal b) which has an internal resistance of 40 Ω .

- 2. Find Norton's equivalent resistance in the following circuit as seen by the terminal a-b by the
- a). conventional method and
- b). open-circuit voltage and short-circuit current method.

Give reasons, if any, for differences between the two estimated values.

3. Find the maximum power delivered to the load resistor R_L.

4. In the two circuits shown below, the transistors have β =100. Assume V_{BE} =0.7 V when the B-E junction is forward biased and V_{CE} =0.1 V if the transistor is in saturation

Find the Q-point for the transistors in (i) and (ii), i.e. V_{CE} , I_{C} and I_{B}

5. In the circuit of (ii), R_1 is changed to be $20K\Omega$ while everything else remains the same. What will be the state of the transistor in this case?