

User Manual

SIS GmbH Harksheider Str. 102A 22399 Hamburg Germany

Phone: ++49 (0) 40 60 87 305 0 Fax: ++49 (0) 40 60 87 305 20

email: info@struck.de http://www.struck.de

Version: sis3350-M-0101-1-v102 as of 28.01.2009

Revision Table:

Revision	Date	Modification					
0.00TH	27.04.07	Generation					
0.01	24.09.07	Power Consumption					
0.02	26.10.07	Front panel, silk, DAC registers					
0.03	28.10.07	VGA Gain registers, update frequency synthesizer register					
0.04	29.10.07	On Board					
0.05	30.10.07	JP80 Vision drawing					
0.06	26.11.07	Temporary release					
1.00	04.09.08	Initial release for 0x0101 firmware					
1.01	29.09.08	Bug fix in ring/DDR memory diagram, gate chaining diagram					
1.02	28.01.09	N Divider frequency range setting table					
		ADC DAC Data register explanation					

- Table of contents

-	Tab	ble of contents	3
1	Intr	oduction	5
	1.1	Related documents.	
2	Tec	chnical Properties/Features	6
_	2.1	Key functionality	
	2.2	Module design	
	2.2.		
	2.2.2	<u> </u>	
	2.2.3		
	2.3	Modes of Operation	
	2.3.1		
	2.3.2	· · · · · · · · · · · · · · · · · · ·	
	2.3.3	· · · · · · · · · · · · · · · · · · ·	
	2.3.4	·	
	2.3.5		
	2.3.0	· · ·	
	2.4	·	
	2.4.		
	2.4.2		
	2.5	Trigger control (pre/post, start/stop and gate mode)	
	2.6	Internal Trigger generation.	
	2.7	VME Interrupts	
3		IE Addressing	
3			
	3.1	Address Map	
4	_	gister Description	
	4.1	Control/Status Register(0x0, write/read)	
	4.2	Module Id. and Firmware Revision Register (0x4, read)	
	4.2.	J	
	4.3	Interrupt configuration register (0x8)	
	4.3.		
	4.4	Interrupt control register (0xC)	
	4.5	Acquisition control register (0x10, read/write)	
	4.6	Direct Memory Trigger Delay register (0x14, read/write)	
	4.7	Direct Memory Start Mode Sample Length register (0x18, read/write)	
	4.8	Frequency Synthesizer register (0x1C, read/write)	
	4.9	MultiEvent Max Nof Events register (0x20, read/write)	
	4.10	MultiEvent Event_Counter (0x24, read)	
	4.11	Gate Synch Mode Event Length Limit register (0x28, read/write)	
	4.12	Gate Synch Mode Event Length Extend register (0x2C, read/write)	
	4.13	CBLT/Broadcast setup register	
	4.14	ADC Memory Page register	
	4.15	Trigger Output Select register 0x38	
	4.16	External Clock/Trigger Input DAC Control Registers	
	4.16		
	4.16		
	4.16	1	
	4.16	_ 0	
	4.16		
	4.16		
	4.17	Temperature register (0x70, read/only)	
	4.18	ADC Serial Interface (SPI) register (0x74, read/write)	
	4.19	Key address general reset (0x400 write only)	
	4.20	Key address VME arm sampling logic (0x410 write only)	
	4.21	Key address VME disarm sampling logic (0x414 write only)	
	4.22	Key address VME Trigger	
	4.23	Key address VME Timestamp Clear	42

	4.24	Event configuration registers(0x01000000, 0x02000000, 0x03000000 read/write)	43
	4.25	Direct Memory Stop Mode Sample Wrap Length register	44
	4.26	Sample Start address register	
	4.27	ADC Next Sample address register	
	4.28	Ringbuffer Sample Length register	
	4.29	Ringbuffer Pre Delay register	
	4.30	End Address Threshold registers	
	4.31	Trigger setup registers (0x02000030, 0x02000038, 0x03000030, 0x03000038)	
	4.32	Threshold registers (0x02000034, 0x0200003C, 0x0300003C)	
	4.32		
	4.32		
	4.32		
	4.33	ADC Input tap delay registers (0x2000030, 0x2000034, 0x3000030 0x3000034)	
	4.34	VGA/gain registers (0x2000048, 0x200004C, 0x3000048 0x300004C)	
	4.35	ADC DAC Control Registers	
	4.35		
	4.35		55
	4.35	5.3 ADC Sample Counter TN setup register (0x2000070, 0x2000074, 0x20000078, 0x200007C,	
	0x30	000070, 0x3000074, 0x30000078, 0x300007C read/write)	56
	4.36	ADC memory	57
	4.36	· · · · · · · · · · · · · · · · · · ·	
	4.36		
	4.36		
5		ard layout	
		· · · · · · · · · · · · · · · · · · ·	
6		nt panel	
	6.1	Control In/Outputs	
	6.1.	1 Trigger (Gate) Lemo input	62
	6.1.2	2 Trigger (Gate) Lemo output	62
	6.1.3	3 Clock BNC input	63
	6.1.4	4 Clock BNC output	64
	6.1.5		
	6.2	LED's	
	6.3	Channel LED's L1-L4.	
	6.4	PCB LEDs.	
7		npers/Configuration	
/			
	7.1	JP80 VME addressing mode/reset behaviour	
	7.2	CON100B JTAG	
	7.3	JP101 JTAG chain	
	7.4	SW1 and SW2, VME base address	
	7.5	JTAG source	70
8	Get	ting started	71
	8.1	SIS3350 base program	
	8.2	SIS3350 visual start	
9			
フ		pendix	
	9.1	Power consumption	
	9.2	Operating conditions	
	9.2.	S C C C C C C C C C C C C C C C C C C C	
	9.2.2	ı	
	9.3	Connector types	
	9.4	P2 row A/C pin assignments	74
	9.5	Row d and z Pin Assignments	75
	9.6	Firmware upgrade	
	9.6.		
	9.6.2	* *	
1		ndex	
1	· 11	114VA	•• / /

1 Introduction

The SIS3350 is the extension of our 12-bit digitizer family (so far consisting of the 100 MHz SIS3300 and the 250 MHz SIS3320-250) towards higher sampling speed and deeper memory. The unit has 4 digitizer channels sampling at up to 500 MSamples/s each, and a default memory depth of 128 MSamples per channel (i.e. acquisition of ¼ s at full sampling rate). The use of 512 MSamples per channel (allowing for 1s acquisition at full sampling speed) is prepared also.

An offset DAC per channel in combination with a variable gain amplifier (VGA) gives you oscilloscope like input stage behaviour in combination with superior resolution.

The module was designed in a fashion, that it can be operated in any 6U standard VME enclosure/crate, i.e. no non standard voltages going beyond +5, -12V and +12 V are required. The card is a single slot (4TE) design which is available with standard and VME64x lever handles.

Besides VME bus readout functionality a 4 GBit optical link and a 10/100/1000 raw Ethernet are available as data transfer options with given interest in the corresponding firmware implementation. The 4 GBit LC-LC SFF (small form factor) link medium connection is foreseen to be used in combination with the SIS1100-eCMC PCI Express card.

Applications comprise but are not limited to:

- digitization of fast detector signals
- accelerator/machine controls

As we are aware, that no manual is perfect, we appreciate your feedback and will try to incorporate proposed changes and corrections as quickly as possible. The most recent version of this manual can be obtained by email from info@struck.de, the revision dates are online under http://www.struck.de/manuals.htm.

1.1 Related documents

A list of available firmware designs can be retrieved from http://www.struck.de/sis3350firm.htm

2 Technical Properties/Features

2.1 Key functionality

Find below a list of key features of the SIS3350 digitizer.

- 4 channels
- 12-bit resolution
- 128 MSamples/channel memory
- special clock modes (clock prescaling, external "arbitrary" clock)
- Variable gain amplifiers (VGA)
- offset DACs
- external/internal clock
- external random clock
- multi event mode
- read on the fly (actual sample value)
- pre/post trigger option
- readout in parallel to acquisition
- trigger generation (FIR trigger)
- 4 NIM control inputs/4 NIM control outputs
- A32 D32/BLT32/MBLT64/2eVME
- Hot swap (in conjunction with VME64x backplane)
- VME64x Connectors
- VME64x Front panel
- VME64x extractor handles (on request)
- F1002 compatible P2 row A/C assignment
- +5 V, +12V and -12 V VME standard voltages
- Optical 4-Gigabit link connection
- Ethernet connection

Note: The SIS3350 shall not be operated on P2 row A/C extensions, like VSB e.g. due to the compatibility to the F1001 FADC modules clock and start/stop distribution scheme. The P2 row A/C connections can be removed on request.

2.2 Module design

The SIS3350 consists of two identical groups of 2 ADC channels each and a control section as shown in the simplified block diagram below.

2.2.1 Dual channel group

Two ADC channels form a group, which memory is handled by one Field Programmable Gate Array (FPGA). A dual channel group has block memory, which resides in the FPGA, and external DDR2 memory (128 MSamples/channel default). The block memory holds a ring buffer with a "length" of 16 K samples per channel.

2.2.2 Memory philosophy

The DDR2 memory of the SIS3350 is controlled by the sample start address during acquisition. The default memory of 128 MSamples/channel is divided into 16 pages of 16 MByte each. The memory page register defines which page can be accessed over the VME bus. Full memory is accessible during acquisition however with the option to restrict the use to part of the memory, or to divide the memory into smaller events.

2.2.3 Internal memory handling

The stream of digitized data from the ADC chips is always recorded to the block memory of the FPGA chips. This mechanism facilitates DDR2 memory refresh handling and the implementation of parallel acquisition and readout.

We distinguish two basic memory modes

- Ring buffer acquisition
- Direct memory acquisition

Ring buffer acquisition is limited to events that fit completely into the 16K block memory and the complete event is transferred to DDR2 memory upon completion. In direct memory acquisition blocks of data are streamed to DDR2 memory during acquisition.

This internal memory handling implementation enables on board data rearrangement prior to readout in all modes of operation except for "Direct Memory Trigger Stop".

Note: please refer to the PDF in case of black print

2.3 Modes of Operation

The implemented modes of operation of this generic SIS3350 firmware implementation are listed in this section.. The FPGA based design of the card allows to meet the requirements of many readout applications with dedicated firmware designs in the future.

6 modes of operation are implemented

- Ring buffer asynchronous
- Ring buffer synchronous
- Direct memory gate asynchronous
- Direct memory gate synchronous
- Direct memory stop
- Direct memory start

Note: the individual channels acquire data asynchronously in the two asynchronous modes of operation. This implies, that the user will want to use the address counter and/or the address threshold to decide on which channel(s) has/have to be read out.

2.3.1 Ring buffer asynchronous Mode

Trigger sources:

- internal Threshold Trigger (each channel individual)
- internal FIR Trigger Trigger (each channel individual)
- no external Trigger!
- no Trigger delay!

Used Parameters:

- programmable Ringbuffer PRE length (up to 16380 in steps of 2 samples)
- programmable Ringbuffer Sample length (up to 16384 in steps of 8 samples)

End of acquisition condition:

- Address Threshold

No explicit Multievent

2.3.2 Ring buffer synchronous Mode

Trigger source:

- internal Threshold Trigger (or of all channels)
- internal FIR Trigger (or of all channels)
- internal VME Key
- external Trigger (LEMO, LVDS)
- no Trigger delay!

End of acquisition condition:

- Single Event
- Multi Event (programmable nof_events)
- (Address Threshold!)
- Address Counter

Used Parameters:

- programmable Ringbuffer PRE length (up to 16380 in steps of 2 samples)
- programmable Ringbuffer Sample length (up to 16384 in steps of 8 samples)

2.3.3 Direct Memory Gate asynchronous Mode

Gate source:

- internal Threshold Gate (On,Off) (each channel individual)
- no Gate (Trigger) delay!

Used Parameters:

- programmable Ringbuffer PRE length (up to 16380 in steps of 2 samples)
- programmable Max Length
- programmable Gate Extend Length

End of acquisition condition:

- Address Threshold!
- Address Counter

2.3.4 Direct Memory Gate synchronous Mode

Gate source:

- internal Threshold Gate (On,Off) (or of all channels)
- external Gate (Trigger) (LEMO, LVDS)
- no Gate (Trigger) delay!

Used Parameters:

- programmable Ringbuffer PRE length (up to 16380 in steps of 2 samples)
- programmable Max Length
- programmable Gate Extend Length

End of acquisition condition:

- Single Event
- Multi Event (programmable nof_events)
- Address Threshold

Find below a illustration for gate mode. Besides gate chaining you can see the effect of the pre length (pre) and gate extend length (extend) parameters. This mode of operation can be used for sparsified data acquisition also.

2.3.5 Direct Memory Stop Mode

Trigger source:

- internal Threshold Trigger (or of all channels)
- internal FIR Trigger (or of all channels)
- internal VME Key
- external Trigger (LEMO, LVDS)
- Trigger delay

End of acquisition condition:

- Single Event
- Multi Event (programmable nof_events)
- Address Threshold

Used Parameters:

- programmable Ringbuffer PRE length (up to 16380 in steps of 2 samples)

2.3.6 Direct Memory Start Mode

Trigger source:

- internal Threshold Trigger (or of all channels)
- internal FIR Trigger (or of all channels)
- internal VME Key
- external Trigger (LEMO, LVDS)
- Trigger delay

End of acquisition condition:

- Single Event
- Multi Event (programmable nof_events)
- Address Threshold

Used Parameters:

- Tbd.

2.4 Clock sources

The SIS3350 features following clock modes

- Internal fixed clock
- Internal frequency synthesizer
- External analog
- External LVDS

2.4.1 Internal clock

The internal clock is generated from an on board 100 MHz quartz or a frequency synthesizer.

Internal clock speeds					
100 MHz fixed					
Synthesizer 31.25 – 500 MHz					

2.4.2 External clock (BNC analog or LVDS)

A analog (symmetric) external clock (ratio between 45:55 and 55:45) can be fed to the module through the BNC connector. The clock that is distributed to the digitizer chips is derived with the clock DAC and a comparator. The BNC clock output can be used to verify that the resulting meets symmetry requirements.

Alternatively a LVDS clock can be fed to the module over the HDMI connector (Pins 1-3).

Min. sym. clock	Max sym. clock
1 MHz	500 MHz

2.5 Trigger control (pre/post, start/stop and gate mode)

The SIS3350 features pre/post trigger capability as well as start/stop mode acquisition and a gate mode (in which start and stop are derived from the leading and trailing edge of a single control input signal).

2.6 Internal Trigger generation

The trigger output of the SIS3350 can be either used to interact with external trigger logic or to base start/stop on a threshold (i.e. one individual threshold per ADC channel) of the digitized data.

The user can select between triggering on the conditions above and below threshold A FIR trigger mode is implemented as second trigger alternative..

2.7 VME Interrupts

Two registers, the Interrupt configuration and the Interrupt control register, are implemented for interrupt setup and control.

Four interrupt sources are implemented:

- Reached End Address Threshold (level sensitive)
- Reached End Address Threshold (edge sensitive)
- End of event
- End of last event in multi event mode

3 VME Addressing

As the SIS3350 VME FADC features memory options with up to 4 times 512 MSamples, A32 addressing was implemented as the only option for the time being. The module occupies an address space of 0x7FFFFFF Bytes, i.e. 128 MBytes are used by the module.

The base address is defined by the selected addressing mode, which is selected by jumper array JP80 and SW1 and SW2 (in non geographical mode).

The table below summarises the possible base address settings.

JI	P80 Sett	ing	Bits					
A32	A16	GEO	31	30	29	28	27	
X				SV	V1		S	5W2=07
								Bit 27=0
X			SW1				S	W2=8F
								Bit 27=1
	X		Not implemente			ente	ed in	this design
		X	Not implemente			ente	ed in	this design

Shorthand	Explanation
SW1/SW2	Setting of rotary switch SW1 or SW2 respective

Notes:

- This concept allows the use of the SIS3350 in standard VME as well as in VME64x environments, i.e. the user does not need to use a VME64x backplane.
- The factory default setting is EN_A32 closed, SW1=3, SW2=0 (i.e. the module will react to A32 addressing under address 0x30000000). With more than one unit shipped in one batch a set of addresses (like 0x10000000, 0x20000000, 0x300000000,...) may be used also.
- The A16 jumper allows for a future changed addressing scheme with different resource allocation

3.1 Address Map

The SIS3350 resources and their locations are listed in the table below.

Note: Write access to a key address (KA)with arbitrary data invokes the respective action

Offset	Size in	BLT	Access	Function
	Bytes			
0x00000000	4	-	W/R	Control/Status Register (J-K register)
0x00000004	4	-	R only	Module Id. and Firmware Revision register
0x00000008	4	-	R/W	Interrupt configuration register
0x000000C	4	-	R/W	Interrupt control register
0x00000010	4	-	R/W	Acquisition control/status register (J-K register)
0x00000014	4	-	R/W	Direct Memory Trigger Delay register
0x0000018	4	-	R/W	Direct Memory Start Mode Sample Length register
0x000001C	4	-	R/W	Frequency Synthesizer register
0x00000020			R/W	MultiEvent Max Nof Events register
0x00000024			R only	MultiEvent Event Counter
0x00000028			R/W	Gate Synch Mode Event Length Limit register
0x0000002C			R/W	Gate Synch Mode Event Length Extend register
0×00000030	4	-	R/W	CBLT/Broadcast Setup register
0x00000034	4	-	R/W	ADC Memory Page register
0x00000038	4	-	R/W	Trigger Output Select register
0x00000050	4	-	R/W	Clock and Trigger Input DAC Control Status register
				(input threshold)
0x00000054	4	-	R/W	Clock and Trigger Input DAC Data register
				(input threshold)
0.0000000			D/XX	VII DIV ITA O TEOTE/ITA O DATA INI
0x00000060			R/W	XILINX JTAG_TEST/JTAG_DATA_IN
0x00000064			W only	XILINX JTAG_CONTROL
0x00000070			R only	Temperature Register
0x00000074			W only	ADC Serial Interface (SPI) register
0x00000400	4	-	KA	General Reset
0x00000410	4	_	KA	Arm Sampling Logic
0x00000410	4	_	KA	Disarm Sampling Logic
0x00000414	4	_	KA	Trigger
0x00000418	4	_	KA	Timestamp Clear
070000110	+ 4	_	INA	Timestamp Cical

Event information all ADC groups								
0x01000000	4	-	W	Event configuration register (all ADCs)				
0x01000004	4		W	Direct Memory Stop Mode Sample Wrap Length register (all ADCs)				
0x01000008	4	-	W	Sample Start address register (all ADCs)				
0x01000020	4	-	W	Ringbuffer Sample Length (all ADCs)				
0x01000024	4	-	W	Ringbuffer PRE Delay (all ADCs)				
0x01000028	4	-	W	End Address Threshold (all ADCs)				

Event information AI	OC group 1			
0x02000000	4	-	R/W	Event configuration register (ADC1, ADC2)
0x02000004	4		R/W	Direct Memory Stop Mode Sample Wrap Length register (ADC1, ADC2)
0x02000008	4	-	R/W	Sample Start address register (ADC1, ADC2)
0x02000010	4	-	R	Next Sample address register ADC1
0x02000014	4	-	R	Next Sample address register ADC2
0x02000020	4	-	R/W	Ringbuffer Sample Length (ADC1, ADC2)
0x02000024	4	-	R/W	Ringbuffer PRE Delay (ADC1, ADC2)
0x02000028	4	-	R/W	End Address Threshold (ADC1, ADC2)
0x02000030	4		R/W	ADC1 Trigger setup register
0x02000034	4		R/W	ADC1 Trigger Threshold register
0x02000038	4		R/W	ADC2 Trigger setup register
0x0200003C	4		R/W	ADC2 Trigger Threshold register
0x02000040	4		R/W	ADC1 Input Tap Delay register
0x02000044	4		R/W	ADC2 Input Tap Delay register
0x02000048	4		R/W	ADC1 VGA register
0x0200004C	4		R/W	ADC2 VGA register
0x02000050	4	-	R/W	ADC1/ADC2 DAC Control Status register
0x02000054	4	-	R/W	ADC1/ADC2 DAC Data register
0x02000070	4		R/W	ADC1 Sample Counter T1/T2 setup register
0x02000074	4		R/W	ADC1 Sample Counter T3/T4 setup register
0x02000078	4	İ	R/W	ADC2 Sample Counter T1/T2 setup register
0x0200007C	4		R/W	ADC2 Sample Counter T3/T4 setup register

0x03000000 0x03000004	4	_		
0~0300004		-	R/W	Event configuration register (ADC3, ADC4)
07000004	4		R/W	Direct Memory Stop Mode Sample Wrap Length register
				(ADC3, ADC4)
0x03000008	4	-	R/W	Sample Start address register (ADC3, ADC4)
0x03000010	4	-	R	Next Sample address register ADC3
0x03000014	4	-	R	Next Sample address register ADC4
0x03000020	4	-	R/W	Ringbuffer Sample Length (ADC3, ADC4)
0x03000024	4	-	R/W	Ringbuffer PRE Delay (ADC3, ADC4)
0x03000028	4	-	R/W	End Address Threshold (ADC3, ADC4)
0x03000030	4		R/W	ADC3 Trigger setup register
0x03000034	4		R/W	ADC3 Trigger Threshold register
0x03000038	4		R/W	ADC4 Trigger setup register
0x0300003C	4		R/W	ADC4 Trigger Threshold register
0x03000040	4		R/W	ADC3 Input Tap Delay register
0x03000044	4		R/W	ADC4 Input Tap Delay register
0x03000048	4		R/W	ADC3 VGA register
0x0300004C	4		R/W	ADC4 VGA register
0x03000050	4	-	R/W	ADC3/ADC4 DAC Control Status register
0x03000054	4	-	R/W	ADC3/ADC4 DAC Data register
0.02000000			D/IV	ADG2G L.G. (TITT)
0x03000070	4		R/W	ADC3 Sample Counter T1/T2 setup register
0x03000074	4		R/W	ADC3 Sample Counter T3/T4 setup register
0x03000078	4		R/W	ADC4 Sample Counter T1/T2 setup register
0x0300007C	4		R/W	ADC4 Sample Counter T3/T4 setup register

ADC memory pages								
0x04000000	16 MByte	X	R	ADC 1 memory page				
0x05000000	16 MByte	X	R	ADC 2 memory page				
0x06000000	16 MByte	X	R	ADC 3 memory page				
0x07000000	16 MByte	X	R	ADC 4 memory page				

Note 2: MBLT64 read access is supported from memory (i.e. not from register space) only.

4 Register Description

The function of the individual registers is described in detail in this section. The first line after the subsection header (in Courier font) like:

 $\label{thm:control_status} $$0x0 / * read/write; D32 */refers to the SIS3350.h header file.$

4.1 Control/Status Register(0x0, write/read)

The control register is implemented as a selective J/K register, a specific function is enabled by writing a 1 into the set/enable bit, the function is disabled by writing a 1 into the clear/disable bit (which location is 16-bit higher in the register). An undefined toggle status will result from setting both the enable and disable bits for a specific function at the same time. The only function at this point in time is user LED on/off.

On read access the same register represents the status register.

Bit	write Function	read Function
31	Clear reserved 15 (*)	0
30	Clear reserved 14 (*)	0
29	Clear reserved 13 (*)	0
28	Clear reserved 12 (*)	0
27	Clear reserved 11 (*)	0
26	Clear reserved 10 (*)	0
25	Clear reserved 9 (*)	0
24	Clear reserved 8 (*)	0
23	Clear reserved 7 (*)	0
22	Clear reserved 6 (*)	0
21	Clear reserved 5 (*)	0
20	Clear Invert Bit for external Lemo TRG IN (*)	0
19	Clear reserved 3 (*)	0
18	Clear reserved 2 (*)	0
17	Clear reserved 1 (*)	0
16	Switch off user LED (*)	0
15	Set reserved 15	Status reserved 15
		C4 - 4 1 1 4
14	Set reserved 14	Status reserved 14
13	Set reserved 14 Set reserved 13	Status reserved 14 Status reserved 13
13	Set reserved 13	Status reserved 13
13 12	Set reserved 13 Set reserved 12	Status reserved 13 Status reserved 12
13 12 11 10 9	Set reserved 13 Set reserved 12 Set reserved 11 Set reserved 10 Set reserved 9	Status reserved 13 Status reserved 12 Status reserved 11
13 12 11 10	Set reserved 13 Set reserved 12 Set reserved 11 Set reserved 10	Status reserved 13 Status reserved 12 Status reserved 11 Status reserved 10
13 12 11 10 9	Set reserved 13 Set reserved 12 Set reserved 11 Set reserved 10 Set reserved 9	Status reserved 13 Status reserved 12 Status reserved 11 Status reserved 10 Status reserved 9
13 12 11 10 9 8	Set reserved 13 Set reserved 12 Set reserved 11 Set reserved 10 Set reserved 9 Set reserved 8	Status reserved 13 Status reserved 12 Status reserved 11 Status reserved 10 Status reserved 9 Status reserved 8
13 12 11 10 9 8 7	Set reserved 13 Set reserved 12 Set reserved 11 Set reserved 10 Set reserved 9 Set reserved 8 Set reserved 7 Set reserved 6 Set reserved 5	Status reserved 13 Status reserved 12 Status reserved 11 Status reserved 10 Status reserved 9 Status reserved 8 Status reserved 7
13 12 11 10 9 8 7 6	Set reserved 13 Set reserved 12 Set reserved 11 Set reserved 10 Set reserved 9 Set reserved 8 Set reserved 7 Set reserved 6	Status reserved 13 Status reserved 12 Status reserved 11 Status reserved 10 Status reserved 9 Status reserved 8 Status reserved 7 Status reserved 6
13 12 11 10 9 8 7 6 5	Set reserved 13 Set reserved 12 Set reserved 11 Set reserved 10 Set reserved 9 Set reserved 8 Set reserved 7 Set reserved 6 Set reserved 5	Status reserved 13 Status reserved 12 Status reserved 11 Status reserved 10 Status reserved 9 Status reserved 8 Status reserved 7 Status reserved 6 Status reserved 4
13 12 11 10 9 8 7 6 5	Set reserved 13 Set reserved 12 Set reserved 11 Set reserved 10 Set reserved 9 Set reserved 8 Set reserved 7 Set reserved 6 Set reserved 5 Set Invert Bit for external Lemo TRG IN	Status reserved 13 Status reserved 12 Status reserved 11 Status reserved 10 Status reserved 9 Status reserved 8 Status reserved 7 Status reserved 6 Status reserved 4 Status Set Invert bit for external Lemo TRG IN
13 12 11 10 9 8 7 6 5 4	Set reserved 13 Set reserved 12 Set reserved 11 Set reserved 10 Set reserved 9 Set reserved 8 Set reserved 7 Set reserved 6 Set reserved 5 Set Invert Bit for external Lemo TRG IN	Status reserved 13 Status reserved 12 Status reserved 11 Status reserved 10 Status reserved 9 Status reserved 8 Status reserved 7 Status reserved 6 Status reserved 4 Status Set Invert bit for external Lemo TRG IN

(*) denotes power up default setting

Invert bit	function
for external Lemo TRG IN	
0	Don't invert:
	Use for high active TTL signal (rising edge)
1	Invert:
	Use for low active TTL signals (falling edge)
	Use for NIM signals (leading edge)

4.2 Module Id. and Firmware Revision Register (0x4, read)

This register reflects the module identification of the SIS3350 and its minor and major firmware revision levels. The major revision level will be used to distinguish between substantial design differences and experiment specific designs, while the minor revision level will be used to mark user specific adaptations.

Bit	Function	Reading
31	Module Id. Bit 15	
30	Module Id. Bit 14	
29	Module Id. Bit 13	
28	Module Id. Bit 12	
27	Module Id. Bit 11	
26	Module Id. Bit 10	
25	Module Id. Bit 9	<u> </u>
24	Module Id. Bit 8	
23	Module Id. Bit 7	
22	Module Id. Bit 6	5
21	Module Id. Bit 5	\mathcal{J}
20	Module Id. Bit 4	
19	Module Id. Bit 3	
18	Module Id. Bit 2	\bigcap
17	Module Id. Bit 1	U
16	Module Id. Bit 0	
15	Major Revision Bit 7	
14	Major Revision Bit 6	
13	Major Revision Bit 5	
12	Major Revision Bit 4	
11	Major Revision Bit 3	
10	Major Revision Bit 2	
9	Major Revision Bit 1	
8	Major Revision Bit 0	
7	Minor Revision Bit 7	
6	Minor Revision Bit 6	
5	Minor Revision Bit 5	
4	Minor Revision Bit 4	
3	Minor Revision Bit 3	
2	Minor Revision Bit 2	
1	Minor Revision Bit 1	
0	Minor Revision Bit 0	

4.2.1 Major revision numbers

Find below a table with major revision numbers used to date

Major revision number	Application/user
0x01	Generic designs

4.3 Interrupt configuration register (0x8)

This read/write register controls the VME interrupt behaviour of the SIS3350 ADC. Four interrupt sources are foreseen, for the time being three of them are associated with an interrupt condition, the fourth condition is reserved for future use.

The interrupter type is DO8.

4.3.1 IRQ mode

In RORA (release on register access) mode the interrupt will be pending until the IRQ source is cleared by specific access to the corresponding disable VME IRQ source bit. After the interrupt is serviced the source has to be activated with the enable VME IRQ source bit again.

In ROAK (release on acknowledge) mode, the interrupt condition will be cleared (and the IRQ source disabled) as soon as the interrupt is acknowledged by the CPU. After the interrupt is serviced the source has to be activated with the enable VME IRQ source bit again.

Bit	Function	Default
31		0
		0
16		0
15		0
14		0
13		0
12	RORA/ROAK Mode (0: RORA; 1: ROAK)	0
11	VME IRQ Enable (0=IRQ disabled, 1=IRQ enabled)	0
10	VME IRQ Level Bit 2	0
9	VME IRQ Level Bit 1	0
8	VME IRQ Level Bit 0 (0 always)	0
7	IRQ Vector Bit 7; placed on D7 during VME IRQ ACK cycle	0
6	IRQ Vector Bit 6; placed on D6 during VME IRQ ACK cycle	0
5	IRQ Vector Bit 5; placed on D5 during VME IRQ ACK cycle	0
4	IRQ Vector Bit 4; placed on D4 during VME IRQ ACK cycle	0
3	IRQ Vector Bit 3; placed on D3 during VME IRQ ACK cycle	0
2	IRQ Vector Bit 2; placed on D2 during VME IRQ ACK cycle	0
1	IRQ Vector Bit 1; placed on D1 during VME IRQ ACK cycle	0
0	IRQ Vector Bit 0; placed on D0 during VME IRQ ACK cycle	0

The power up default value reads 0x 00000000

4.4 Interrupt control register (0xC)

This register controls the VME interrupt behaviour of the SIS3350 ADC. Eight interrupt sources are foreseen, for the time being two of them are associated with an interrupt condition, the others are reserved for future use.

Bit	Function (w)	(r)	Default
31	Update IRQ Pulse	Status IRQ source 7 (reserved)	0
30	unused	Status IRQ source 6 (reserved)	0
29	unused	Status IRQ source 5 (reserved)	0
28	unused	Status IRQ source 4 (reserved)	0
27	unused	Status IRQ source 3 (End Address Threshold Flag; level sensitive)	0
26	unused	Status IRQ source 2 (End Address Threshold Flag; edge sensitive)	0
25	unused	Status IRQ source 1 (End of last Event; edge sensitive)	0
24	unused	Status IRQ source 0 (End of Event; edge sensitive)	0
23	Disable/Clear IRQ source 7	Status flag source 7	0
22	Disable/Clear IRQ source 6	Status flag source 6	0
21	Disable/Clear IRQ source 5	Status flag source 5	0
20	Disable/Clear IRQ source 4	Status flag source 4	0
19	Disable/Clear IRQ source 3	Status flag source 3	0
18	Disable/Clear IRQ source 2	Status flag source 2	0
17	Disable/Clear IRQ source 1	Status flag source 1	0
16	Disable/Clear IRQ source 0	Status flag source 0	0
15	unused	Status VME IRQ	0
14	unused	Status internal IRQ	0
13	unused	0	0
12	unused	0	0
11	unused	0	0
10	unused	0	0
9	unused	0	0
8	unused	0	0
7	Enable IRQ source 7	Status enable source 7 (read as 1 if enabled, 0 if disabled)	0
6	Enable IRQ source 6	Status enable source 6 (read as 1 if enabled, 0 if disabled)	0
5	Enable IRQ source 5	Status enable source 5 (read as 1 if enabled, 0 if disabled)	0
4	Enable IRQ source 4	Status enable source 4 (read as 1 if enabled, 0 if disabled)	0
3	Enable IRQ source 3	Status enable source 3 (read as 1 if enabled, 0 if disabled)	0
2	Enable IRQ source 2	Status enable source 2 (read as 1 if enabled, 0 if disabled)	0
1	Enable IRQ source 1	Status enable source 1 (read as 1 if enabled, 0 if disabled)	0
0	Enable IRQ source 0	Status enable source 0 (read as 1 if enabled, 0 if disabled)	0

The power up default value reads 0x 00000000

IRQ source 3: reached Address Threshold (level sensitive) IRQ source 2: reached Address Threshold (edge sensitive)

IRQ source 1: end of last event (disarm)

IRQ source 0: end of event

4.5 Acquisition control register (0x10, read/write)

The acquisition control register is in charge of most of the settings related to the actual configuration of the digitization process.

Like the control register it is implemented in a J/K fashion.

Bit	Write Function	Read
31	Clear reserved 15 (*)	0
30	Clear reserved 14 (*)	0
29	Clear Clock Source Bit1	0
28	Clear Clock Source Bit0	0
27	Clear reserved 11 (*)	0
26	Clear reserved 10 (*)	0
25	Clear external LVDS TRG IN as Gate/Trigger (*)	0
24	Disable external Lemo TRG IN as Gate/Trigger (*)	0
23	Clear reserved 7 (*)	0
22	Disable internal trigger as Gate/Trigger (*)	0
21	Disable Multi Event mode (*)	0
20	Clear reserved 4 (*)	0
19	Clear reserved 3 (*)	Status of End Address Threshold Flag
18	Clear Operation Mode Bit 2 (*)	0
17	Clear Operation Mode Bit 1 (*)	ADC Sampling Busy
16	Clear Operation Mode Bit 0 (*)	ADC Sampling Logic Armed
15	Set reserved 15	Status reserved 15
14	Set reserved 14	Status reserved 14
13	Set clock source Bit 1	Status clock source Bit 1
12	Set clock source Bit 0	Status clock source Bit 0
11	Set reserved 11	Status reserved 11
10	Set reserved 10	Status reserved 10
9	Enable external LVDS TRG IN as Gate/Trigger	Status reserved 9
8	Enable external Lemo TRG IN as Gate/Trigger	Status reserved 8
7	Set reserved 7	Status reserved 7
6	Enable internal channel triggers as Gate/Trigger	Status enable internal channel triggers as Gate/Trigger
5	Enable Multi Event mode	Status Multi Event mode
4	Set reserved 4	
3	Set reserved 3	Status reserved 3
2	Set Mode of Operation Bit 2	Status Mode of Operation Bit 2
1	Set Mode of Operation Bit 1	Status Mode of Operation Bit 1
0	Set Mode of Operation Bit 0	Status Mode of Operation Bit 0

The power up default value reads 0x0

Operation Mode bit setting table:

Mode of	Mode of	Mode of	Mode of Operation
Operation	Operation	Operation	
Bit 2	Bit 1	Bit 0	
0	0	0	Ringbuffer Asynchronous Mode
0	0	1	Ringbuffer Synchronous Mode
0	1	0	Direct Memory Gate Asynchronous Mode
0	1	1	Direct Memory Gate Synchronous Mode
1	0	0	Direct Memory Trigger Stop Mode
1	0	1	Direct Memory Trigger Start Mode
1	1	0	reserved
1	1	1	reserved

Multi Event mode bit:

- 0 : Sampling Logic Armed state will be cleared at end of event
- Sampling Logic Armed state will be cleared at end of last event (defined with MultiEvent Max Nof Events register)

Clock source bit setting table:

Clock Source Bit1	Clock Source Bit0	Clock Source
0	0	Frequency Synthesizer (up to 500 MHz)
0	1	internal 100 MHz
1	0	external LVDS
1	1	external BNC

4.6 Direct Memory Trigger Delay register (0x14, read/write)

The external trigger signals (LVDS, LEMO) and the internal trigger signal will be delayed by the value of the trigger delay register (in samples) in conjunction with the modes of operation "Direct Memory Trigger Stop Mode" and "Direct Memory Trigger Start Mode".

The maximum programmable delay is 64M samples (i.e. half memory depth). (Pretrigger function!)

Bit	
31	unused, read as 0
26	unused, read as 0
25	TRIGGER_DELAY_BIT25
••	
1	TRIGGER_DELAY_BIT1
0	"0"

The power up default value is 0

4.7 Direct Memory Start Mode Sample Length register (0x18, read/write)

This register defines the number of samples in conjunction with the mode of operation "Direct Memory Trigger Start Mode".

The maximum programmable sample length is 128M - 8.

Bit	
31	unused, read as 0
27	unused, read as 0
26	SAMPLE_LENGTH_BIT26
3	SAMPLE_LENGTH_BIT3
2	"0"
1	"0"
0	"0"

The power up default value is 0

4.8 Frequency Synthesizer register (0x1C, read/write)

The frequency is defined by the expression: Frequency = 25 MHz * $M / 2^{N}$

Bit	Function
31	unused, read as 0
•••	
11	unused, read as 0
10	N1 (bit 1 of N Divider)
9	N0 (bit 0 of N Divider)
8	M8 (bit 8 of M)
••	
0	M0 (bit 0 of M)

The power up default value is $0x14 (20 -> 20 \times 25MHz = 500MHz)$

Note: The N Divider setting has to be chosen in accordance with the frequency limits specified in the table below

Valid N Divider frequency range setting table

Inputs		N Divider	Output Frequency (MHz)	
N1	N0	Value	Minimum	Maximum
0	0	1	250	500
0	1	2	125	350
1	0	4	62.5	175
1	1		31.25	87.5

4.9 MultiEvent Max Nof Events register (0x20, read/write)

#define SIS3350_MULTIEVENT_MAX_NOF_EVENTS 0x20 /* read/write; D32
*/

The Sampling Logic will be disarmed in Multi Event mode as soon as the Event counter reaches the value of the MultiEvent_Max_Nof_Events register.

Bit	
31	unused, read as 0
20	unused, read as 0
19	MAX NOF Events Bit19
0	MAX NOF Events Bit 0

The power up default value is 0

4.10 MultiEvent Event_Counter (0x24, read)

This register holds the actual number of events in multi event mode.

The Event Counter is cleared when the Sampling Logic is armed and it is incremented with every start sampling.

Bit	
31	unused, read as 0
20	unused, read as 0
19	Actual Event counter Bit 19
0	Actual Event counter Bit 0

The power up default value is 0

4.11 Gate Synch Mode Event Length Limit register (0x28, read/write)

This register defines the maximum number of samples in conjunction with the mode of operation "Direct Memory Gate Synchronous Mode".

The maximum programmable limit length is 64M - 8.

The limit logic is disabled if the value is 0.

Bit	
31	unused, read as 0
•••	
26	unused, read as 0
25	GATE_LIMIT_LENGTH_BIT25
3	GATE_LIMIT_LENGTH _BIT3
2	"0"
1	"0"
0	"0"

The power up default value is 0

4.12 Gate Synch Mode Event Length Extend register (0x2C, read/write)

This register defines the additional sample length to the gate length in conjunction with the mode of operation "Direct Memory Gate Synchronous Mode".

In combination with the ringbuffer Delay register it is possible program the PreGate and PostGate length.

The maximum programmable extend length is 248.

Bit	
31	unused, read as 0
•••	
26	unused, read as 0
7	GATE_EXTEND_LENGTH_BIT7
3	GATE_ EXTEND _LENGTH _BIT3
2	"0"
1	"0"
0	"0"

The power up default value is 0

4.13 CBLT/Broadcast setup register

This read/write register defines, whether the SIS3350 will participate in a Broadcast. The configuration of this register and the registers of other participating modules is essential for proper Broadcast behaviour.

Bit	Function
31	CBLT/Broadcast address bit 31
30	CBLT/Broadcast address bit 30
29	CBLT/Broadcast address bit 29
28	CBLT/Broadcast address bit 28
27	CBLT/Broadcast address bit 27
26	CBLT/Broadcast address bit 26
25	CBLT/Broadcast address bit 25
24	CBLT/Broadcast address bit 24
23	reserved
22	reserved
21	reserved
20	reserved
19	reserved
18	reserved
17	reserved
16	reserved
15	reserved
14	reserved
13	reserved
12	reserved
11	reserved
10	0
9	0
8	0
7	0
6	0
5	Enable Broadcast Master
4	Enable Broadcast
3	0
2	reserved
1	reserved
0	reserved

Broadcast functionality is implemented for all Key address cycles.

Modules which are supposed to participate in a broadcast have to get the same broadcast address. The broadcast address is defined by the upper 8 bits of the broadcast setup register. One module has to be configured as broadcast master, the enable broadcast bit has to be set for the others as illustrated below.

Broadcast setup example (broadcast address 0x34000000):

Module	Broadcast Setup Register	Comment
1	0x34000020	Broadcast Master
2	0x34000010	Broadcast enable
3	0x34000010	Broadcast enable
4	0x34000010	Broadcast enable

All 4 modules will participate in a key reset (A32/D32 write) to address 0x34000400.

Note: Do not use a broadcast address that is an existing VME address of a VME card in the crate.

4.14 ADC Memory Page register

The SIS3350 default memory size per channel is 256 MByte (i.e. 128 MSample).

The VME address space window per ADC is limited to 16 MByte (8 MSample) however. The read/write ADC memory page register is used to select one of the 16 memory subdivisions (pages).

Bit	Function
31	Reserved
4	reserved
3	Page register bit 3
2	Page register bit 2
1	Page register bit 1
0	Page register bit 0

Example: readout routine for 128MSample readout (see CVI/..../sis3350_configuration_readout_lib.c)

ADC Memory Sample Address table:

ADC Welloty Sample Address table.	α 1	D ' / VINTE OCC '
Samples / Bytes	Sample	Page register / VME Offset
	Address	Address
0 / 0	0	0
1 / 2	1	0 / 0x2
8 MSample - 1 / 16 MByte -2	0x007F FFFF	0 / 0x00FF FFFE
8 MSample / 16 MByte	0x0080 0000	1 / 0x0
8 MSample + 8 / 16 MByte + 0x10	0x0080 0008	1 / 0x10
		1 / 0x00FF FFFE
16 MSample / 32 MByte	0x0100 0000	2 / 0x0
1 3		
24 MSample / 48 MByte	0x0180 0000	3 / 0x0
2 i ii sumpre / io ii ii syte	0.10100 0000	or one
32 MSample / 64 MByte	0x0200 0000	4 / 0x0
32 Mountpie / 64 Mbyte	0.0200 0000	T / UAU
40 MSample / 80 MByte	0x0280 0000	5 / 0x0
40 MSample / 80 MByte	0x0280 0000	3 / 0x0
18 MSample / 06 MPvta	0x0300 0000	6 / 0x0
48 MSample / 96 MByte	0x0300 0000	0 / 0x0
56 MC1- / 110MD	00200 0000	7 / 00
56 MSample / 112MByte	0x0380 0000	7 / 0x0
(A) (G) 1 (100) (D)	0.0400.0000	
64 MSample / 128 MByte	0x0400 0000	8 / 0x0
	0.0100.000	0.40.0
72 MSample / 144 MByte	0x0480 0000	9 / 0x0
80 MSample / 160 MByte	0x0500 0000	10 / 0x0
88 MSample / 176 MByte	0x0580 0000	11 / 0x0
96 MSample / 192 MByte	0x0600 0000	12 / 0x0
104 MSample / 208 MByte	0x0680 0000	13 / 0x0
112 MSample / 224 MByte	0x0700 0000	14 / 0x0
1		
120 MSample / 240 MByte	0x0780 0000	15 / 0x0
=== -/20 mpre / = 10 m2/10		
128 MSample - 1 / 256 MByte - 2	0x07FF FFFF	15 / 0x00FF FFFE
120 Mounipie 1 / 200 Milbyte 2	VAV/11 1111	IU / UNUUII IIIL

4.15 Trigger Output Select register 0x38

This register is used to program on board trigger routing.

Bit	meaning	Function
31	reserved	
		no
16	reserved	
15	ADC4 _Trigger	1: ADC4 _Trigger is ored to LVDS Trigger OUT
		(EXTERNAL_CONTROL2_LVDS_OUT)
14	ADC3 _Trigger	1: ADC3 _Trigger is ored to LVDS Trigger OUT
13	ADC2 _Trigger	1: ADC2 _Trigger is ored to LVDS Trigger OUT
12	ADC1 _Trigger	1: ADC1 _Trigger is ored to LVDS Trigger OUT
11	reserved	
10	reserved	
9	LVDS _Trigger_IN	1: LVDS_Trigger_IN is ored to LVDS Trigger OUT
8	LEMO_Trigger_IN	1: LEMO_Trigger_IN is ored to LVDS Trigger OUT
7	ADC4 _Trigger	1: ADC4 _Trigger is ored to LEMO OUT
6	ADC3 _Trigger	1: ADC3 _Trigger is ored to LEMO OUT
5	ADC2 _Trigger	1: ADC2 _Trigger is ored to LEMO OUT
4	ADC1 _Trigger	1: ADC1 _Trigger is ored to LEMO OUT
3	reserved	
2	reserved	
1	LVDS _Trigger_IN	1: LVDS_Trigger_IN is ored to LEMO OUT
0	LEMO_Trigger_IN	1: LEMO_Trigger_IN is ored to LEMO OUT

4.16 External Clock/Trigger Input DAC Control Registers

The external clock and trigger inputs of the SIS3350 accept analog input signals for maximum flexibility. The internal logic signals are generated on the card by comparing the input signal to a digital to analog converter (DAC) output value.

Example routine:

```
(see CVI/..../sis3350_configuration_readout_lib.c)
```

4.16.1 Clock/Trigger DAC Control/Status register (0x50 read/write)

#define SIS3350_EXT_CLOCK_TRIGGER_DAC_CONTROL_STATUS 0x50

/* read/write; D32 */

Bit	Write Function	Read Function
31	None	0
16	None	0
15	None	DAC Read/Write/Clear Cycle BUSY
14	None	0
8	None	0
7	None	0
6	None	0
5	None	0
4	DAC Selection Bit	status of DAC selection Bit
3		
2	none	0
1	DAC Command Bit 1	DAC Command Bit 1 Status
0	DAC Command Bit 0	DAC Command Bit 0 Status

DAC Selection Bit

Bit	Function
0	Clock Input DAC
1	Trigger Input DAC

DAC Command Bit

Bit 1	Bit 0	Function
0	0	No function
0	1	Load shift register of selected DAC
1	0	Load selected DAC
1	1	Clear all DACs

A "Clear DAC" command sets the value of all DACs to analog ground

4.16.2 Clock/Trigger DAC Data register (0x 54 read/write)

#define SIS3350_EXT_CLOCK_TRIGGER_DAC_DATA

0x54 /* read/write; D32 */

Bit	Write Function	Read Function
31	none	DAC Input Register Bit 15 (from DAC)
••		
16	none	DAC Input Register Bit 0
15	DAC Output Register Bit 15	DAC Output Register Bit 15
••		0
		0
0	DAC Output Register Bit 0	DAC Output Register Bit 0

The table below lists a set of DAC values and their corresponding threshold voltage.

The table below lists a set of DAC values and their corresponding threshold voltage. The maximum positive threshold value is +4,00V and the maximum negative threshold value is -2,75 V.

Clock and Trigger Input threshold setting table.

Value	Threshold Voltage
23700	- 2,75 V
30000	- 836 mV
31500	- 370 mV (NIM)
37500	+ 1,45 V (TTL)
40000	+ 2,2 V
46500	+ 4,00 V

4.16.3 DAC load sequence

The load sequence for the Analog Devices AD5570 DAC chip (please refer to the documentation of the chip for more details) is illustrated below. The sequence is identical for trigger/clock and ADC offset DACs (i.e. the same component is used in all places).

Sequence to load offset of channel N, N=[0,1] (Clock, Trigger), (ADC offset 1, 2/3, 4 respective)

4.16.4 XILINX JTAG_TEST register

#define SIS3350_XILINX_JTAG_TEST

0x60 /* write only; D32 */

This register is used in the firmware upgrade process over VME only. A TCK is generated upon a write cycle to the register.

Bit	write Function
31	none
4	none
3	none
2	none
1	TMS
0	TDI

4.16.5 XILINX JTAG_DATA_IN register

#define SIS3350_XILINX_JTAG_DATA_IN

0x60 /* read only; D32 */

This register is used in the firmware upgrade process over VME only. It is at the same address as the JTAG_TEST register and is used in read access. It operates as a shift register for TDO. The contents of the register is shifted to the right by one bit with every positive edge of TCK and the status of TDO is transferred to Bit 30. Bit 31 reflects the current value of TDO during a read access.

4.16.6 XILINX JTAG_CONTROL register

#define SIS3350_XILINX_JTAG_CONTROL

0x64 /* write only; D32 */

This register is used in the firmware upgrade process over VME only.

Bit	Function	write
31	31	none
4	4	none
3	3	none
2	2	none
1	MUX_CMC_JTAG	0: tbd for VME/JTAG over CON100
		1: tbd for VME/JTAG over CON100
0	JTAG_OUT_EN	0: Disable JTAG output
		1: Enable JTAG output

4.17 Temperature register (0x70, read/only)

The SIS3350 is equipped with a serial 10-bit Analog Devices AD7314 temperature sensor. The temperature reading is stored in two complement format.

Refer to the AD7314 data sheet for more detailed information.

Bit	
31	unused, read as 0
•••	
10	unused, read as 0
9	Data Bit 9 (MSB)
1	Data Bit 1
0	Data Bit 0 (LSB)

The operating temperature ranges from -35 $^{\rm O}$ C to +85 $^{\rm O}$ C and is covered by the table below

Temperature	Data Bit 9 Bit 0
−50 °C	11 0011 1000
−25 °C	11 1001 1100
−0.25 °C	11 1111 1111
0 °C	00 0000 0000
+0.25 °C	00 0000 0001
+10 °C	00 0010 1000
+25 °C	00 0110 0100
+50 °C	00 1100 1000
+75 °C	01 0010 1100
+100 °C	01 1001 0000

Note: The Celsius temperature reading is obtained by casting the read data to signed short and dividing the obtained value by 4.0 after float conversion.

4.18 ADC Serial Interface (SPI) register (0x74, read/write)

Several parameters of the 12-bit 500 MS/s ADC AT85AS001 chip (like duty cycle stabilization e.g.) can be configured with the SPI (serial Peripheral Interface). The SPI register is the interface between the SIS3350 front end FPGAs and the ADC SPIs.

Please refer to the documentation of the AT85AS001 ADC chip for details.

Bit	
31	unused, read as 0
•••	
•••	
24	unused, read as 0
23	reserved
22	reserved
21	ADC Select Bit 1
20	ADC Select Bit 0
19	reserved
18	Address Bit 2
17	Address Bit 1
16	Address Bit 0
15	Data Bit 15 (MSB)
14	Data Bit 14
••	
1	Data Bit 1
-	Data Bit 1

4.19 Key address general reset (0x400 write only)

A write with arbitrary data to this register (key address) resets the SIS3350 to it's power up state.

4.20 Key address VME arm sampling logic (0x410 write only)

A write with arbitrary data to this register (key address) will arm the sampling logic.

4.21 Key address VME disarm sampling logic (0x414 write only)

A write with arbitrary data to this register (key address) will disarm the sampling logic.

4.22 Key address VME Trigger

A write with arbitrary data to this register (key address) will generate an trigger.

4.23 Key address VME Timestamp Clear

A write with arbitrary data to this register (key address) will clear the 48-bit timestamp counter.

4.24 Event configuration registers(0x01000000, 0x020000000, 0x030000000 read/write)

This register is implemented for each channel group and it has to be written with the same value, the best way is to make use of the address SIS3350_EVENT_CONFIG_ALL_ADC to write to the registers of all channel groups simultaneously.

Bit	Function
31	unused; read 0
25	unused; read 0
24	ADC group (0=group 0 [ADC 1 and 2], 1=group 1 [ADC 3 and 4])
23	unused; read 0
16	unused; read 0
15	ADC Memory Write via VME Test Enable
14	unused; read 0
13	unused; read 0
12	unused; read 0
11	unused; read 0
10	unused; read 0
9	unused; read 0
8	unused; read 0
7	unused; read 0
6	unused; read 0
5	unused; read 0
4	unused; read 0
3	unused; read 0
2	unused; read 0
1	unused; read 0
0	Extra Header Enable bit

4.25 Direct Memory Stop Mode Sample Wrap Length register

#define SIS3350_DIRECT_MEMORY_SAMPLE_WRAP_LENGTH_ALL_ADC	0×01000004
<pre>#define SIS3350_DIRECT_MEMORY_SAMPLE_WRAP_LENGTH_ADC12</pre>	0×02000004
#define SIS3350_DIRECT_MEMORY_SAMPLE_WRAP_LENGTH_ADC34	0×03000004

This register defines the number of samples of each event in conjunction with the mode of operation "Direct Memory Trigger Stop Mode".

The maximum programmable sample wrap length is 128M - 8.

Bit	
31	unused, read as 0
•••	
25	unused, read as 0
26	Sample Wrap Length Register BIT26
3	Sample Wrap Length Register BIT3
2	Unused
1	Unused
0	Unused

4.26 Sample Start address register

#define SIS3350_SAMPLE_START_ADDRESS_ALL_ADC	0x01000008
#define SIS3350_SAMPLE_START_ADDRESS_ADC12	0x02000008
<pre>#define SIS3350_SAMPLE_START_ADDRESS_ADC34</pre>	0x03000008

These registers define the memory start address.

The value is given in samples (i.e. number of 16-bit words)

Only Sample Start addresses on a 8 16-bit (sample) boundary (i.e. 16 bytes) are valid.

Bit	
31	unused, read as 0
•••	
25	unused, read as 0
26	Sample Start Address Register Bit 26
3	Sample Start Address Register Bit 3
2	unused
1	unused
0	unused

The power up default value is 0

Explanation (sample start address)

The contents of the start sample register is assigned as memory data storage address with the arm command (key address arm sampling).

4.27 ADC Next Sample address register

#define	SIS3350_ACTUAL_SAMPLE_ADDRESS_ADC1	$0 \times 0 = 2000010$
#define	SIS3350_ACTUAL_SAMPLE_ADDRESS_ADC2	$0 \times 0 = 2000014$
#define	SIS3350_ACTUAL_SAMPLE_ADDRESS_ADC3	0x03000010
#define	SIS3350_ACTUAL_SAMPLE_ADDRESS_ADC4	0x03000014

These 4 read only registers hold the next sampling address for the given channel.

Bit	Function
31	unused, read as 0
25	unused, read as 0
26	Sample Address Bit 26
3	Sample Address Bit 3
2	0
1	0
0	

4.28 Ringbuffer Sample Length register

<pre>#define SIS3350_RINGBUFFER_SAMPLE_LENGTH_ALL_ADC</pre>	0×01000020
<pre>#define SIS3350_RINGBUFFER_SAMPLE_LENGTH_ADC12</pre>	0x02000020
<pre>#define SIS3350_RINGBUFFER_SAMPLE_LENGTH_ADC34</pre>	0x03000020

This register defines the number of samples in conjunction with the modes of operation "Ringbuffer Asynchronous Mode" and "Ringbuffer Synchronous Mode".

The maximum programmable sample length is 16376 (16K - 8).

It defines also the additional sample length to the gate length in conjunction with the mode of operation "Direct Memory Gate Asynchronous Mode".

In combination with the Ringbuffer Delay register it is possible program the PreGate and PostGate length.

The maximum programmable sample length is 65328 (64K - 8).

Bit	
31	unused, read as 0
•••	
16	unused, read as 0
15	RINGBUFFER_SAMPLE_LENGTH_BIT15*
14	RINGBUFFER_SAMPLE_LENGTH_BIT14*
13	RINGBUFFER_SAMPLE_LENGTH_BIT13
3	RINGBUFFER_SAMPLE_LENGTH_BIT3
2	"0"
1	"0"
0	"0"

^{*} only in conjunction with the mode of operation "Direct Memory Gate Asynchronous Mode"

4.29 Ringbuffer Pre Delay register

#define	SIS3350_R	INGBUFFER_	_PRE_	_DELAY_	_ALL_ADC	0×01000024
#define	SIS3350_R	INGBUFFER_	PRE_	_DELAY_	_ADC12	0×02000024
#define	SIS3350_R	INGBUFFER_	PRE_	DELAY	_ADC34	0×03000024

This register defines the number of pre trigger delay samples in conjunction with all modes! The maximum pretrigger delay is 16376 (16K - 8).

Bit	
31	unused, read as 0
14	unused, read as 0
13	RINGBUFFER_PRETRIGGER_DELAY_BIT13
1	RINGBUFFER_PRETRIGGER_DELAY_BIT1
0	"0"

The power up default value is 0

4.30 End Address Threshold registers

#define	SIS3350_END_ADDRESS_THRESHOLD_ALL_ADC	0x01000004
• •	SIS3350_END_ADDRESS_THRESHOLD_ADC12 SIS3350_END_ADDRESS_THRESHOLD_ADC34	0x02000004 0x03000004

These registers define the "End Address Threshold" values for the ADC channel groups.

The value of the Actual Next Sample address counter will be compared with value of the End Address Threshold register.

The value is given in samples (i.e. number of 16-bit words)

Bit	
31	unused, read as 0
•••	
24	unused, read as 0
23	Sample Start Address Register Bit 23
2	Sample Start Address Register Bit 2
1	unused, read as 0
0	unused, read as 0

4.31 Trigger setup register registers (0x02000030, 0x02000038, 0x03000030, 0x03000038)

#define	SIS3350_TRIGGER_SETUP_ADC1	0×02000030
#define	SIS3350_TRIGGER_SETUP_ADC2	0×02000038
#define	SIS3350_TRIGGER_SETUP_ADC3	0x03000030
#define	SIS3350 TRIGGER SETUP ADC4	0x03000038

These read/write registers hold the 8-bit wide trigger pulse length (in samples). These read/write registers hold the Peaking and Gap Time of the trapezoidal FIR filter. (Gap Time = SumG Time – Peaking Time)

Bit	Function			
31	Reserved			
26	Enable Trigger			
25	GT trigger condition			
24	FIR Trigger Mode			
23	Puls Length bit 7			
22	Puls Length bit 6			
21	Puls Length bit 5			
20	Puls Length bit 4	· · · · · · · · · · · · · · · · · · ·		
19	Puls Length bit 3			
18	Puls Length bit 2			
17	Puls Length bit 1			
16	Puls Length bit 0			
15	reserved			
14	reserved			
13	reserved	SumG time (only FIR trigger)		
12	SumG bit 4	(time between both sums)		
11	SumG bit 3	(time between both sums)		
10	SumG bit 2			
9	SumG bit 1			
8	SumG bit 0			
7	reserved			
6	reserved	Peaking time P (only FIR trigger)		
5	reserved			
4	P bit 4	x+P		
3	P bit 3	Σ Si		
2	P bit 2	i = x		
1	P bit 1			
0	P bit 0			

The power up default value reads 0x 00000000

Si: Sum of ADC input sample stream from x to x+P

P: Peaking time (number of values to sum)

SumG: SumGap time (distance in clock ticks of the two running sums)

The maximum SumG time: 16 (clocks)
The minimun SumG time: 1 (clocks)

Values > 16 will be set to 16 Value = 0 will be set to 1

The maximum Peaking time: 16 (clocks)
The minimun Peaking time: 1 (clocks)

Values > 16 will be set to 16 Value = 0 will be set to 1

4.32 Threshold registers (0x02000034, 0x0200003C, 0x03000034, 0x0300003C)

#define	SIS3350_TRIGGER_THRESHOLD_ADC1	0×02000034
#define	SIS3350_TRIGGER_THRESHOLD_ADC2	0x0200003C
#define	SIS3350_TRIGGER_THRESHOLD_ADC3	0x03000034
#define	SIS3350_TRIGGER_THRESHOLD_ADC4	0x0300003C

These read/write registers hold the threshold values for the 4 ADC channels.

4.32.1 Threshold Trigger

Bit	31-28	27-16	15-12	11-0
Function	None	none	None	Threshold value

default after Reset: 0x0

A Trigger Output pulse is generated on two conditions:

- GT is set (GT) in trigger setup register: the Trigger Out Pulse will be issued if the actual sampled ADC value **goes** above the threshold value
- GT is cleared (LT) in trigger setup register: the Trigger Out Pulse will be issued if the actual sampled ADC value **goes** below the threshold value.

GT: greater than LT: lower than

4.32.2 Threshold FIR Trigger

Bit	31-28	27-16	15-0
Function	None	none	Trapezoidal threshold value

default after Reset: 0x0

The value of the Sum (trapezoidal value) depends on the peaking time P. Therefore the selection of the value of the Trapezoidal threshold depends on P also.

Trapezoidal value calculation:

Trapezoidal value = (SUM2 - SUM1)

Where

$$SUM1 = \sum_{i=x}^{x+P} Si$$

$$i = x$$

$$x+P+sumG$$

$$SUM2 = \sum_{j=x+sumG} Sj$$

The FIR Filter logic generates the Trapezoidal by subtraction of the two running sums. This implies, that the internal value of the trapezoid is on average 0.

A Trigger Output pulse is generated: 1GT is set (GT=1):

- GT is set (GT):
 - the Trigger Out Pulse will be issued if the actual trapezoidal value **goes** above the programmable trapezoidal threshold value
- GT is cleared (LT):
 - the Trigger Out Pulse will be issued if the actual trapezoidal value **goes** below the **negative** programmable trapezoidal threshold value

4.32.3 Threshold Gate

Bit	31-28	27-16	15-12	11-0
Function	None	Threshold value OFF	None	Threshold value ON

default after Reset: 0x0

A valid Gate Output is generated on two conditions:

- GT is set (GT) in trigger setup register: the Gate output signal will be set if the actual ADC value **goes** above the programmable threshold value ON **and** OFF and it is valid until the actual ADC value goes below the threshold value OFF.
- GT is cleared (LT) in trigger setup register: the Gate output signal will be set if the actual ADC value **goes** below the programmable threshold value ON **and** OFF and it is valid until the actual ADC value goes above the threshold value OFF.

4.33 ADC Input tap delay registers (0x2000030, 0x2000034, 0x3000030 0x3000034)

Internal use only.

#define S	SIS3350_AI	C_INPUT_	TAP_DELAY_	_ADC1	0x02000040
#define S	SIS3350_AI	C_INPUT_	TAP_DELAY_	_ADC2	0x02000044
#define S	SIS3350_AI	C_INPUT_	TAP_DELAY_	_ADC3	0x03000040
#define S	SIS3350 AI	C INPUT	TAP DELAY	ADC4	0×03000044

4.34 VGA/gain registers (0x2000048, 0x200004C, 0x3000048 0x300004C)

These 4 read/write registers are used to set the gain of the four variable gain amplifiers (VGA).

The VGA setting is 7-bit wide.

#define	SIS3350_ADC_VGA_ADC1	0x02000048
#define	SIS3350_ADC_VGA_ADC2	0x0200004C
#define	SIS3350_ADC_VGA_ADC3	0×03000048
#define	SIS3350_ADC_VGA_ADC4	0x0300004C

Bit	Write Function	Read Function
31	None	0
7	None	0
6	VGA setting Bit 6	VGA setting Bit 6
1	VGA setting Bit 1	VGA setting Bit 1
0	VGA setting Bit 0	VGA setting Bit 0

Note: The resulting ADC input range depends on stuffing options and the offset DAC setting.

Find below a coarse range table with default stuffing.

VGA setting	Input range in V
10	7,992
11	7,414
12	6,884
13	6,554
14	6,113
15	6,068
22	4,000
31	2,960
47	1,940
63	1,430
79	1,160
95	0,950
111	0,816
127	0,720
162	0,376
178	0,260
194	0,200
210	0,160
226	0,130
242	0,110

Note: The maximum input voltage is 8V

4.35 ADC DAC Control Registers

This set of 4 registers is used to shift the input of the 4 ADC channels.

Example routine:

int sis3350_write_dac_offset(unsigned int module_dac_control_status_addr, unsigned int dac_select_no, unsigned int dac_value) ;

The sequence to load the DACs can be found in section 4.16.3

Note: The actual sample registers provide a good way to monitor offset shift during a DAC ramp

4.35.1 ADC DAC Control/Status registers (0x0x2000050, 0x0x3000050 read/write)

#define SIS3350_ADC12_DAC_CONTROL_STATUS 0x02000050 /* read/write; D32 */
#define SIS3350_ADC34_DAC_CONTROL_STATUS 0x03000050 /* read/write; D32 */

Bit	Write Function	Read Function
31	None	0
16	None	0
15	None	DAC Read/Write/Clear Cycle BUSY
14	None	0
8	None	0
7	None	0
6	None	0
5	None	0
4	DAC Selection Bit	status of DAC selection Bit
3		
2	none	0
1	DAC Command Bit 1	DAC Command Bit 1 Status
0	DAC Command Bit 0	DAC Command Bit 0 Status

DAC Selection Bit

Bit	Function
0	ADC 1/3 respective
1	ADC 2/4 respective

4.35.2 ADC DAC Data registers (0x0x2000054, 0x0x3000054 read/write)

These registers are used to hold the data send the offset DACs of the 4 ADC channels. The DAC is selected via the DAC Selection Bit in the ADC DAC Control registers.

Bit	Write Function	Read Function
31	none	DAC Input Register Bit 15 (from DAC)
16	none	DAC Input Register Bit 0
15	DAC Output Register Bit 15	DAC Output Register Bit 15
		0
		0
0	DAC Output Register Bit 0	DAC Output Register Bit 0

4.35.3 ADC Sample Counter TN setup register (0x2000070, 0x2000074, 0x20000078, 0x200007C, 0x3000070, 0x3000074, 0x30000078, 0x300007C read/write)

000070
000074
000078
00007C
000070
000074
000078
00007C
3

Five 12-bit counters named T1 to T5 counter are implemented for the individual ADC channel. The table below illustrates under which condition the 5 counters are incrementing their content with every sampling clock tick. The output of the counter values to the event data stream is activated by setting bit 0 (extra header enable bit) of the event configuration register.

The thresholds T1 through T4 are defined in the ADC sample counter Tn/Tm registers as shown in the table below..

Register	Bit [31:16]	Bit [15:0]
THRESHOLD_T2T1_ADCN	Threshold T2	Threshold T1
THRESHOLD_T4T3_ADCN	Threshold T4	Threshold T3

Counter	Count Condition
1	ADC value less than or equal T1
2	$T1 < ADC $ value $\leq T2$
3	$T2 < ADC \text{ value} \le T3$
4	$T3 < ADC \text{ value} \le T4$
5	$T4 < ADC \text{ value} \le 4095$

4.36 ADC memory

#define SIS3350_ADC1_OFFSET	0×04000000
#define SIS3350_ADC2_OFFSET	0×05000000
#define SIS3350_ADC3_OFFSET	0×06000000
#define SIS3350_ADC4_OFFSET	0×07000000

The 256 MByte ADC memory per channel can be address in pages of 16 MByte. The page is selected with the ADC Memory page register. One 32-bit word holds 2 ADC samples as shown in the table below.

4.36.1 Event Data format 1:

(used for all modes except "Direct Memory Trigger Stop Mode")

31	16	15	(0		
0000	Timestamp [47:36]	0000	Timestamp [35:24]			
0000	Timestamp [23:12]	0000	Timestamp [11:0]			
				_		
0000	Information [47:36]	0000	Sample Length*[26:24]			
0000	Sample Length* [23:12]	0000	Sample Length* [11:0]			
				_		
					sample 2	sample 1
ADC raw data buffer				sample 4	sample 3	
N = Sample Length						
					sample N	sample N-1

Note: The data representation of the ADC is shown below

Digitized Value	Analog input voltage
0xFFF	Highest input voltage (+2.5 V e.g.)
•••	
0x000	Lowest input voltage (-2.5 V e.g.)

4.36.2 Event Data format 2:

(used in "Direct Memory Trigger Stop Mode" only)

Information bit table_

Bit	47	46	45-44	43-40	39-36
Function	Wrap	reserved	Stop delay counter	Trigger counter	Extra Header words

Trigger counter:

Counts the internal triggers.

Stop delay counter:

The Sample Stop Address stops on an 8 sample boundary.

With the help of the Stop delay counter (multipy by 2) it is possible to rearange the trigger point.

Wrap (around) bit:

This bit is cleared at start of sampling and it is set when the number of samples reached the value of the Sample Wrap Length register.

See also "Direct Memory Stop Mode Sample Wrap Length register".

Wrap = 0: data are only valid from offset 0 to (Sample_Stop_Addr - 2).

no wrap, event N stops at end of page

wrap, event N stopped, stop pointer at "arbitrary" position within event

4.36.3 Extra Header

An extra header consisting of four 32-bit words is generated with bit 0 of the event configuration register set to 1. The extra header holds the 12-bit wide T1-T5 counter information as illustrated below.

31	16	15		0
0000	T1 counter [11:0]	0000	T2 Counter [11:0]	
0000	T3 counter [11:0]	0000	T4 Counter [11:0]	
0000	T5 counter [11:0]	0000	reserved	
0000	reserved	0000	reserved	

5 Board layout

A printout of the silk screen of the component side of the PCB is shown below.

6 Front panel

The SIS3350 is a single width (4TE) 6U VME module. A sketch of the SIS3350 front panel (without handles) is shown below.

6.1 Control In/Outputs

6.1.1 Trigger (Gate) Lemo input

The trigger (gate) input is a LEMO00 connector (CON60A) with programmable threshold level. The programmable threshold level range is from -2.75V to +4.0V and an input impedance of 50 Ohm.

6.1.2 Trigger (Gate) Lemo output

The trigger (gate) output is a LEMO00 connector (CON70A) with NIM logic level.

6.1.3 Clock BNC input

The clock input is a BNC connector (CON50A) with programmable threshold level. The programmable threshold level range is from -2.75V to +4.0V and the input impedance is 50 Ohm.

6.1.4 Clock BNC output

The clock output signal is available on a BNC connector for diagnosis purposes.

The output level in DC-coupling mode is 300mVpp and the offset is DC 1.1V into 50 Ohm termination.

The output level in AC-coupling mode is 560mVpp without an offset into 50 Ohm termination.

DC coupling mode (R700G stuffed with 50 Ohm resistor) DC coupling is factory default

Note: the footprint of R700G is 0603

AC coupling mode (R700G stuffed with 100 nF capacitor)

6.1.5 LVDS in/output

The control I/O section features one HDMI connector with LVDS levels.

PIN	Input Signal	Function
1	EXTERN_CONTROL1_LVDS_IN_L	
2	DGND	Clock Input
3	EXTERN_CONTROL1_LVDS_IN_H	
4	EXTERN_CONTROL2_LVDS_IN_L	
5	DGND	Trigger (Gate) Input
6	EXTERN_CONTROL2_LVDS_IN_H	

PIN	Output Signal	Function
7	EXTERNAL_CONTROL1_LVDS_OUT_H	
8	DGND	Clock Output
9	EXTERNAL_CONTROL1_LVDS_OUT_L	
10	EXTERNAL_CONTROL2_LVDS_OUT_H	
11	DGND	Trigger (Gate) Output
12	EXTERNAL_CONTROL2_LVDS_OUT_L	
13		
14		
15	EXTERNAL_CONTROL3_LVDS_OUT_H	BUSY Output
16	EXTERNAL_CONTROL3_LVDS_OUT_L	
17	DGND	
18	N/C	
23	N/C	

6.2 LED's

The SIS3350 has 6 front panel LEDs to visualise part of the modules status. The access LED is a good way to check first time communication/addressing with the module.

Color	Designator	Function
Yellow	A	Access to SIS3350 VME slave port
Red	P	Power
Green	R	Ready, on board logic configured
Yellow	U1	Sample Logic armed
Red	U2	Sample Logic Busy
Green	U3	User, to be set/cleared under program control

The on duration of the access, sample logic armed and sample logic busy LEDs is stretched to guarantee visibility even under low rate conditions.

6.3 Channel LED's L1-L4

The 4 card edge surface mounted LEDs L1, ..., L4 can be seen through the corresponding holes in the front panel. They visualize the trigger status of the corresponding channel. The on duration is stretched for better visibility of short pulses.

6.4 PCB LEDs

Surface mounted red LEDs are used to signal power status, trigger status and FPGA debug information (the use of the debug LEDs is firmware design dependent). A table with the SMD LEDs is given below.

Designator	Function
D140A	Front panel trigger LED L1
D140B	Front panel trigger LED L2
D140C	Front panel trigger LED L3
D140D	Front panel trigger LED L4
D140E	VME_FPGA_DEBUG_INTERN_LED1
D140F	VME_FPGA_DEBUG_INTERN_LED2
D140G	VME_FPGA_DEBUG_INTERN_LED3
D140H	VME_FPGA_DEBUG_INTERN_LED4
D141A	FPGA1_DEBUG_INTERN_LED1
D141B	FPGA1_DEBUG_INTERN_LED2
D141C	FPGA1_DEBUG_INTERN_LED3
D141D	FPGA1_DEBUG_INTERN_LED4
D141E	FPGA2_DEBUG_INTERN_LED1
D141F	FPGA2_DEBUG_INTERN_LED2
D141G	FPGA2_DEBUG_INTERN_LED3
D141H	FPGA2_DEBUG_INTERN_LED4
D300A	Power D+2.5V
D301A	Power D+3.3V
D309A	Power_Fault_Sequencer
D309B	Power_Sequence_OK
D400A	Power A+12V
D410A	Power A-12V
D500B	Power D+1,8V
D600B	Power D+1,2V

7 Jumpers/Configuration

7.1 JP80 VME addressing mode/reset behaviour

This 8 position jumper array is used to select the addressing mode and the reset behaviour of the SIS3350.

Pos	Function	Factory default
1	A32	closed
2	A16 (not supported)	open
3	GEO (not supported)	open
4	VIPA (not supported)	open
5	connect VME SYSRESET IN to FPGA reset	closed
6	unused	open
7	unused	open
8	connect VME SYSRESET to board reset	closed

The enable watchdog jumper has to be removed during (initial) JTAG firmware load.

NOTE: avoid a power up deadlock situation by not setting Pos. 5 and 8 at the same time

7.2 CON100B JTAG

The SIS3350 on board logic can load its firmware from a serial PROMs, via the JTAG port on connector CON100B or over VME. A list of firmware designs can be found under http://www.struck.de/sis3350firm.htm.

Hardware like the HW-USB-II-G-JTAG in connection with the appropriate software will be required for in field JTAG firmware upgrades. The JTAG chain configuration is selected with jumper JP101, Xilinx JTAG control register is used to select VME or CON100B as JTAG source.

CON100B is a 2mm (i.e. metric) 14 pin header that allows you to reprogram the firmware of the SIS3350 with a JTAG programmer. The pinout is shown in the schematic below. It is compatible with the cable that comes with the XILINX HW-USB platform cable.

Note: The SIS3350 has to be powered for reprogramming over JTAG.

7.3 JP101 JTAG chain

The JTAG chain on the SIS3350 can be configured to comprise the serial PROM only (short JTAG chain) or to comprise the serial PROM and the 3 Virtex FPGAs (long chain). The configuration is selected with the 6-pin array JP101 as sketched below:

Long Chain (1-3 and 2-4 closed):

In the Impact software you will see:

Short Chain (3-5 and 4-6 closed, factory default):

In the Impact software you will see:

7.4 SW1 and SW2, VME base address

These 2 rotary switches are used to define 2 nibbles of the VME base address in non geographical addressing (refer to section base address also).

Switch	Function
SW1	ADR_LO
SW2	ADR_UP

7.5 JTAG source

The JTAG chain can be connected to VME or to the JTAG connector CON100B The source is programmable via the XILINX JTAG Control register

8 Getting started

The directory SIS3350\software of the Struck Innovative Systeme DVD holds example code for VisualC++ and National Instruments Labwindows CVI. The source code can be used as a base for ports to other environments.

The SIS3350.h header file can be found in the directory SIS3350\software.

The routine ConfigurationSetup_SIS3350_Adc(void) in the file SIS3350_adc_test1.c (CVI directory) can be used as starting point for a setup routine for the SIS3350.

8.1 SIS3350 base program

The runtime version of the SIS3350 base program in combination with a SIS3150 USB to VME interface provides access to all implemented SIS3350 features without the need for coding in the first step under Windows. Feel free to inquire about the possibility for a loaner in case you are working with another VME master.

An example screen shot of the SIS3350 base program (a signal acquired in ring buffer synchronous mode of operation).

8.2 SIS3350 visual start

A minimum VisualC++ program to see first data can be found in the directory software\visual\application

The board is set up without VGA and DAC setting, what results in an input range of about -2.5, ...,+2.5 V and operated in VME triggered mode in the example. Typical screen output is shown below.

9 Appendix

9.1 Power consumption

The SIS3350 uses standard VME voltages only.

Voltage	Current
+ 5V	9A
+12 V	100 mA
- 12 V	400 mA

9.2 Operating conditions

9.2.1 Cooling

Although the SIS3350 is mainly a 2.5 and 3.3 V low power design, substantial power is consumed by the Analog to Digital converter chips and linear regulators however. Hence forced air flow is required for the operation of the board. The board may be operated in a non condensing environment at an ambient temperature between 10 and 25 Celsius. A power up warm up time of some 10 minutes is recommended to ensure equilibrium on board temperature conditions.

9.2.2 Hot swap/live insertion

Please note, that the VME standard does not support hot swap by default. The SIS3350 is configured for hot swap in conjunction with a VME64x backplane. In non VME64x backplane environments the crate has to be powered down for module insertion and removal.

9.3 Connector types

The table below lists the connectors used on the SIS3350.

Connector/Purpose	Part number	Manufacturer
Analog in 1-4	Tyco 5413631-1	TYCO
Ethernet	HFJ11-1G01E-L12RL	HALO
External Clock	Tyco 5413631-1	TYCO
JTAG	87831-1420	Molex
LVDS bus	HDMI-19-02-S-SM-R	SAMTEC
Optical Link	FTLF8524E2KNL	FINISAR
Trigger input	EPL.00.250.NTN	LEMO
Trigger output	EPL.00.250.NTN	LEMO
VME (P1/P2) 160 pin zabcd	02 01 160 2101	HARTING

9.4 P2 row A/C pin assignments

The P2 connector of the SIS3350 has several connections on rows A and C for the F1002 compatible use at the DESY H1 FNC subdetector. This implies, that the module can not be operated in a VME slot with a special A/C backplane, like VSB e.g.. The pin assignments of P2 rows A/C of the SIS3350 is shown below:

P2A	Function	P2C	Function
1	not connected	1	not connected
2	not connected	2	not connected
3	not connected	3	not connected
4	not connected	4	not connected
5	not connected	5	not connected
6	DGND	6	DGND
7	P2_CLOCK_H	7	P2_CLOCK_L
8	DGND	8	DGND
9	P2_START_H	9	P2_START_L
10	P2_STOP_H	10	P2_STOP_L
11	P2_TEST_H	11	P2_TEST_L
12	DGND	12	DGND
13	DGND	13	DGND
14	not connected	14	not connected
15	not connected	15	not connected
16	not connected	16	not connected
•••		17	
31	not connected	18	not connected

Note: The P2 ECL signals are bussed and terminated on the backplane of F1002 crates. The user has to insure proper termination if a cable backplane or add on backplane is used.

9.5 Row d and z Pin Assignments

The SIS3350 is prepared for the use with VME64x and VME64xP backplanes. Foreseen features include geographical addressing and live insertion (hot swap). The prepared pins on the d and z rows of the P1 and P2 connectors are listed below.

Position	
1	
2	
3	
4	
5	
6	
7	
2 3 4 5 6 7 8	
9	
10	
11	
12	
13	
13 14	
15	
16	
17	
18	
19	
19 20 21 22	
21	
22	
23	
23 24	
25	
26	
26 27	
28	
29	
30	
31	
32	
J ==	

P1/J1		
Row z	Row d	
	VPC (1)	
GND	GND (1)	
GND		
GND		
GND		
	GAP*	
GND	GA0*	
RESP*	GA1*	
GND		
	GA2*	
GND		
	GA3*	
GND		
	GA4*	
GND		
GND		
GND		
GND		
CNT.		
GND		
CND		
GND		
CND		
GND	GND (1)	
CND	GND (1)	
GND	VPC (1)	

P2/J2		
Row z	Row d	
GND		
CND		
GND		
GND		
01.12		
GND		
GND		
GND		
GIVE		
GND		
GND		
GND		
OND		
GND		
GND		
GND		
UND		
GND		
GND		
CND		
GND	GND (1)	
GND	VPC (1)	
0.10	, 1 0 (1)	

Note: Pins designated with (1) are so called MFBL (mate first-break last) pins on the installed 160 pin connectors, VPC(1) pins are connected via inductors.

9.6 Firmware upgrade

The firmware of the SIS3350 can be upgraded over JTAG. The upgrade options are VME (on units that have intact firmware) and the JTAG connector CON100. The VME upgrade option is not tested for the current firmware release yet.

9.6.1 Upgrade over CON100

The firmware can be upgraded with the Xilinx Impact software, which is part of the Webpack that can be downloaded from the Xilinx web page for free.

A Xilinx JTAG parallel cable or USB (Xilinx part number HW-USB) cable can be used to roll in the firmware.

Configure the SIS3350 for short JTAG chain (refer to section 7.3 JP101). CON 100 is JTAG source by default (unless programmed for VME with the Xilinx JTAG control register.

With your hard- and software properly set up you should see a screen as illustrated below after executing the initialize chain command.

Load the mcs file to the serial PROM (shown as xcf32p).

9.6.2 Upgrade over VME

Not supported with current SIS3350 firmware yet (i.e. JTAG source hard coded to CON100)

10 Index

060364	data representation	57
2eVME6	DESY	74
4TE5, 61	DO8	23
6U5, 61	duty cycle	
A/C6	DVD	
A16	edge	, 1
A32	leading	14
AD5570	trailing	
AD7314	extra header	
Address Map	FIR	33
<u> </u>	trigger	6
address space		
addressing	FIR trigger	
geographical	firmware	
arm	firmware upgrade	
AT85AS001	FNC	
backplane6, 73	format	,
BLT326	FPGA	,
board layout	frequency range	
broadcast	frequency synthesizer	
address	front panel	6, 61
CBLT31	GA	16
clock6	gain	53
external BNC14, 26	gate	12
external LVDS14, 26	gate chaining	12
external random 6	gate input	62
frequency synthesizer14, 26	gate mode	
internal	gate output	
clock input	geographical addressing	
clock mode	getting started	
clock output	GND	
clock source	H1	
Clock/Trigger DAC data	HDMI	
CON100	header	,
CON100B	hot swap	
configuration	HW-USB68	
connector	input	3, 70
connector types	clock	3. 65
control	control	,
input	gate	
output	LVDS	
control input	trigger	
cooling	trigger (gate)	
counter		
	input range	
stop delay	internal trigger	
trigger 58	interrupter mode	
Counter 56	interrupter type	
crate	introduction Invert Bit for external Lemo TRG IN 20	
		J, Z1
D32	IRQ	24
DAC	bank full	
ADC	End Address Threshold	
clock	end of event	
load sequence	IRQ mode	
offset	ROAK	
selection bit54, 55	RORA	
trigger	J/K	
data format	JP10168	5, 69
	Do 77	-£ 7 <u>C</u>

JP8016, 68	programmable	
JTAG68, 76	PROM 68,	76
JTAG chain 69	R700G	64
JTAG source70	register	
jumper	acquisition control	
reset	actual address register	46
KA	actual sample	54
arm sampling 42	ADC DAC control54,	55
disarm sampling	ADC DAC data	55
general reset	ADC IOB delay	52
Timestamp Clear	ADC memory page33,	
Trigger	ADC Sample Counter setup	
key address	ADC serial interface	
L166	broadcast setup	
LC-LC5	CBLT/broadcast setup	
LED	Clock /Trigger DAC control	
A 66	Clock/Trigger DAC control	
access	control	
P 66	DAC status	
PCB67	description	
R 66	direct memory sample length	
U1 66	end address threshold	
U2	event configuration	
U3	firmware revision	
user	frequency synthesizer	
LEDs 20		
	gate synch mode event extend length register	
channel 66	gate synch mode event length limit register	
front panel	interrupt configuration	
PCB	JTAG_CONTROL	
live insertion	JTAG_DATA_IN	
LVDS input	JTAG_TEST	
LVDS output	module Id	
M49	MultiEvent event counter	
MBLT646, 19	MultiEvent max nof events	
memory 6, 8, 19, 57	ringbuffer pretrigger delay	
internal handling9	ringbuffer sample length	
mode	sample start address	
start/stop14	sample wrap length	
module design7	temperature	
Multi Event mode	threshold	
N Divider	trigger delay	
NIM	Trigger output select	
offset DAC53	trigger setup49, 50,	
operating conditions	VGA/gain	
operation mode	Xilinx JTAG control	76
operation modes	reset	
output	ROAK	23
busy 65	RORA	23
clock64, 65	serial PROM	69
gate62	SFF	5
LVDS 65	SIS1100-eCMC	5
trigger14, 62	SIS3150USB	
trigger (gate)	SIS3300	
P 49	SIS3350	
P1	SIS3350 base program	
P26, 75	SIS3350 visual start	
pin assignments	sparsify	
termination	SPI	
PCI Express 5	SW1	
power consumption	SW2	
Poster communitymons	5 ,, 2 10,	, 0

SIS Documentation

SIS3350 500 MHz 12-bit Digitizer

T1	56, 59
counter	59
T2	56
T3	56
T4	
T5	
TCK	
TDI	
TDO	
Technical Properties/Features	
termination	
P2	74
threshold	
TMS	39, 68
trigger	,
FIR	6, 14
post	
pre	
trigger control	14
triagar ganaration	

urigger input	04
trigger output	62
TTL	
USB	
user	
LED	20
VCC	68
VGA	5, 6, 53
Virtex	69
VME	73
interrupt	
VME addressing	16
VME bus	
VME64x	5, 6, 73, 75
VME64xP	75
VSB	6, 74
wrap	44, 59
wrap bit	
XILINX	