Física 2 (Físicos) ©DF, FCEyN, UBA

OSCILADOR ARMÓNICO AMORTIGUADO Y FORZADO

Los ejercicios con (*) entrañan una dificultad adicional y puede considerarlos opcionales.

Oscilador armónico amortiguado

- 1. Una pesa de masa m está sujeta a un resorte de constante elástica k, por lo que la frecuencia natural de oscilación es $\omega_0 = \sqrt{\frac{k}{m}}$. Actúa en este sistema un amortiguador que provee una amortiguación lineal con la velocidad de constante de amortiguamiento c que por unidad de masa es $\Gamma = c/m$.
 - a) Proponga la siguiente solución homogénea: $x_h(t) = Ce^{-t/2\tau}\cos(\omega_1 t + \theta)$ y halle los valores de τ y de ω_1 . ¿De qué depende los valores de C y θ ? ¿Porqué no es lícito imponer las condiciones iniciales a la solución homogénea?
 - b) Repase las condiciones de Γ y ω_0 en que se obtienen soluciones:
 - sub-amortiguadas,
 - críticamente amortiguadas, y
 - sobre-amortiguadas,

graficando x(t) para distintos valores de estos parámetros.

c) Verifique que la solución general para el oscilador libre sobre-amortiquado

$$x(t) = e^{-\Gamma t/2} \left\{ x(0) \cosh\left(|\omega|t\right) + \left[\dot{x}(0) + \frac{1}{2} \Gamma x(0)\right] \frac{\sinh\left(|\omega|t\right)}{|\omega|} \right\},\,$$

puede obtenerse a partir de esta para el sub-amortiguado

$$x(t) = e^{-\Gamma t/2} \left\{ x(0)\cos(\omega t) + \left[\dot{x}(0) + \frac{1}{2}\Gamma x(0) \right] \frac{\sin(\omega t)}{\omega} \right\},\,$$

donde $\omega = \pm i|\omega|, |\omega| = \sqrt{\frac{1}{4}\Gamma^2 - \omega_0^2}$. Aproveche las identidades $\cos(ix) = \cosh(x)$ y $\sin(ix) = i \sinh(x)$.

- d) Para la condición inicial $x(0) = x_0$ que parte del reposo, es decir $\dot{x}(0) = 0$, escriba las expresiones de la trayectoria x(t) y calcule la energía en x(0).
- e) A partir de la solución general para el sub-amortiguado, muestre que la solución para el amortiguamiento crítico es

$$x(t) = e^{-\Gamma t/2} \left\{ x(0) + \left[\dot{x}(0) + \frac{1}{2} \Gamma x(0) \right] t \right\}.$$

Verifique que también podría haberle obtenido a partir de la solución para oscilaciones sobre-amortiguadas.

- 2. (*) Si Ψ_1 y Ψ_2 son soluciones de la ecuación del oscilador armónico libre la combinación lineal $\Psi = A\Psi_1 + B\Psi_2$ también lo es.
 - a) Verifique que esto tambiénn es valido si actua una fuerza disipativa proporcional a la velocidad.
 - b) ¿Vale si es un rozamiento constante?
- 3. (*) Para un péndulo con fuerza de disipación proporcional a la velocidad calcule el trabajo que realiza la fuerza de rozamiento y compárelo con la pérdida de energía.

Oscilador armónico forzado

4. Cualquier oscilador armónico sub-amortiguado de cierta frecuencia natural ω_0 tras someterle a un forzado externo y esperar cierto tiempo ajustará su dinámica que responde solo a la forma del forzado. Siempre la amplitud de la solución homogénea decae pasado un transitorio.

Ya veremos más adelante que cualquier forzado lo podremos descomponer en componentes armónicas, es decir en sumas de términos de senos y cosenos. Por ahora analizaremos un forzado perféctamente armónico $F(t) = F_0 \cos(\Omega t)$.

El movimiento resultante tras el transitorio responde a la solución particular $x_p(t) = A \operatorname{sen}(\Omega t) + B \operatorname{cos}(\Omega t)$. Los coeficientes dependerán de la relación entre Ω y ω_0 .

- a) Obtenga expresiones $A(\Omega)$ y $B(\Omega)$.
- b) Grafique $A(\Omega)$ y $B(\Omega)$. ¿Qué sucede con ambas funciones cuando $\Omega \simeq \omega_0$? ¿Es justo para la igualdad que esto sucede? ¿Que haría que no fuera así?
- c) Grafique cualitativamente la posición de la masa en función del tiempo.
- d) (*) Calcule la potencia media que se consume en el estado estacionario y la potencia media de pérdida por fricción. Verifique la igualdad de ambas potencias.
- e) (*) Proponga ahora como solución particular la solución compleja $x_p(t) = A e^{-i\omega t}$ y explique porque se denoniman así $A_{\text{elástico}} = \mathbb{R}(A)$ y $A_{\text{absorbente}} = \mathbb{I}(A)$.