Nome e cognome:	 Classe:	Data:	Griglia
1 101110 0 00811011101			

Risposte (variante 97)

1	2	3	4	5	6	7	8	9	10
11	19	13	1/1	15	16	17	18	10	20
11	12	10	14	10	10	11	10	13	20

- Come si calcola l'energia di legame (E_B) di un nucleo, noto il difetto di massa Δm ?

- (a) $E_B = (\Delta m)/c^2$. (b) $E_B = (\Delta m)c^2$. (c) $E_B = m_{nucleo}c^2$. (d) $E_B = (\sum m_{costituenti})c^2$.
- Secondo l'esperimento mentale di Schrödinger, cosa determina il passaggio del gatto da uno stato di sovrapposizione a uno stato definito (vivo o morto)?
 - (a) Il tempo trascorso dall'inizio dell'esperimento.
 - (b) L'atto di osservazione o misurazione (apertura della scatola).
 - (c) Il decadimento dell'atomo radioattivo all'interno della scatola.
 - (d) La volontà del gatto.
- Nel range di energie tipico della radiodiagnostica (es. 30-150 keV), quale interazione tra fotoni X e tessuti biologici (a basso Z) è generalmente dominante e più rilevante per la formazione dell'immagine?
 - (a) Scattering di Rayleigh (coerente).

(c) Effetto Compton.

(b) Effetto fotoelettrico.

- (d) Produzione di coppie (e^+/e^-) .
- Identificare il prodotto mancante nel decadimento alfa dell'Uranio-238: $^{238}_{92}$ U $\rightarrow X + \alpha$

- (a) $X = {}^{234}_{88}$ Ra (Radio- (b) $X = {}^{234}_{92}$ U (Uranio- (c) $X = {}^{238}_{90}$ Th (Torio- 234) (d) $X = {}^{234}_{90}$ Th (Torio- 234) 234)
- Una radiazione di frequenza $f=1.0\times 10^{15}\,\mathrm{Hz}$ colpisce un metallo con lavoro di estrazione $W=2.0\,\mathrm{eV}$. Sapendo che $h\approx 6.63\times 10^{-34}\,\mathrm{J\cdot s}$ e 1 eV $\approx 1.6\times 10^{-19}\,\mathrm{J}$, qual è circa l'energia cinetica massima K_{max} degli elettroni emessi? (Suggerimento: calcola prima hf in eV, $hf \approx 4.14 \,\text{eV}$)

- (a) $K_{max} \approx 4.14 \,\text{eV}$ (b) $K_{max} \approx 6.14 \,\text{eV}$ (c) $K_{max} \approx 2.0 \,\text{eV}$ (d) $K_{max} \approx 2.14 \,\text{eV}$
- Come spiega il modello di Bohr l'emissione di luce a frequenze discrete (spettro a righe) da parte degli atomi?
 - (a) Il nucleo atomico vibra emettendo fotoni.
 - (b) L'elettrone emette un fotone di energia definita (E = hf) quando salta da un'orbita permessa a energia superiore a una a energia inferiore.
 - (c) Gli urti tra atomi eccitati producono lo spettro.
 - (d) L'elettrone emette luce continuamente mentre orbita, ma solo a certe frequenze.
- 7. Il principio di indeterminazione è una conseguenza fondamentale:
 - (a) Della teoria della relatività di Einstein.
 - (b) Del modello atomico di Bohr.
 - (c) Degli errori sperimentali inevitabili negli strumenti di misura.
 - (d) Della natura ondulatoria della materia (dualismo onda-corpuscolo) e dei limiti intrinseci alla misurazione nel mondo quantistico.
- Nel paradosso del gatto di Schrödinger, cosa rappresenta lo stato del gatto PRIMA che la scatola venga aperta, secondo un'interpretazione strettamente quantistica?

	non veng	o la spiegazione di Einsteir gono emessi elettroni, indip		-	enza di soglia" al di sotto della quale		
	(a)	Perché l'interazione tra lu	ice e materia richiede un te	empo minimo che dipend	e dalla frequenza.		
	(b)	Perché a basse frequenze	la luce si comporta solo co	me un'onda.			
	(c)	Perché l'energia del singol	o fotone (hf) deve essere al	meno pari al lavoro di est	razione (W) per liberare un elettrone.		
	(d)	Perché l'intensità della lu	ce non è sufficiente a "scale	lare" abbastanza gli elett	roni.		
11.		perimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda $(\Delta \lambda = \lambda' - \lambda)$ e diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?					
	(a)	Quando l'angolo di diffus	ione è $\theta = 0^{\circ}$ (nessuna diff	usione).			
	(b)	La variazione è indipende	nte dall'angolo θ .				
	(c)	Quando l'angolo di diffus	ione è $\theta = 90^{\circ}$.				
	(d)	Quando l'angolo di diffus	ione è $\theta=180^\circ$ (diffusione	all'indietro).			
12.		opo radioattivo ha un temp nilligrammi rimarranno dop		$_2 = 5$ giorni. Se inizialmen	nte abbiamo 16 mg di questo isotopo,		
	(a)	8 mg	(b) 2 mg	(c) 1 mg	(d) 4 mg		
13.	Cosa di	mostra in modo sorprende	nte l'esperimento della dop	pia fenditura con elettro	ni singoli?		
	(a)	Che il principio di indeter	rminazione non è valido.				
	(b)	Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.					
	(c)	Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.					
	(d)	Che la luce è composta d	a particelle (fotoni).				
14.	La "cata	astrofe ultravioletta" è un p	roblema sorto nello studio d	ella radiazione di corpo n	ero perché la fisica classica prevedeva:		
	(a)	(a) Che l'energia emessa fosse quantizzata fin dall'inizio.					
	(b)	Un'intensità energetica nulla per lunghezze d'onda molto piccole.					
	(c)	Un'intensità energetica infinita per lunghezze d'onda molto piccole (alte frequenze).					
	(d)	Che l'intensità massima si spostasse verso il rosso (frequenze basse) all'aumentare della temperatura.					
15.	Quale t	e tipo di decadimento radioattivo consiste nell'emissione di un nucleo di Elio $\binom{4}{2}$ He)?					
	(a)	Decadimento Beta più $(\beta$	+)	(c) Decadimento	Alfa (α)		
	(b)	Emissione Gamma (γ)		(d) Decadimento	Beta meno (β^-)		
16.	La legge	e del decadimento radioatt	ivo $N(t) = N_0 e^{-\lambda t}$ descrive	e:			
	(a)	Il numero di nuclei decad	uti al tempo t .				
	(b)	L'attività del campione a	l tempo t .				
	(D)	-					
	(c)	Il tempo di dimezzamento	del campione.				
	()	_	_	luti presenti al tempo t , p	partendo da N_0 nuclei al tempo $t=0$.		

Completare la seguente reazione di decadimento beta più (β^+) o cattura elettronica (EC), sapendo che il Fluoro-18 $(^{18}_{9}\text{F})$

(c) $^{19}_{9}$ F

(d) $^{18}_{10}$ Ne

(a) Uno stato indeterminato che non è né vivo né morto.

(c) Lo stato "gatto vivo".(d) Lo stato "gatto morto".

può decadere β^+ : ${}_{9}^{18}\text{F} \rightarrow ? + e^+ + \nu_e$

(a) ${}_{9}^{17}$ F

(b) Una sovrapposizione quantistica degli stati "gatto vivo" e "gatto morto".

(b) ${}^{18}_{8}$ O

(a)	$_{7}^{14}\mathrm{N}$	(b) ${}_{6}^{14}C$	(c) ${}^{14}_{5}B$	(d) $^{13}_{6}$ C
(a)	7-1N	(b) $\bar{6}$ C	(c) $\bar{s}^{-}\mathbf{D}$	(a) 6

- 18. Cosa postula il modello di Bohr riguardo all'emissione di radiazione da parte di un atomo?
 - (a) Un atomo emette radiazione solo quando viene ionizzato.
 - (b) Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario.
 - (c) Un atomo emette radiazione continuamente mentre l'elettrone orbita attorno al nucleo.
 - (d) Un atomo emette radiazione (un fotone) solo quando un elettrone salta da un'orbita permessa a un'altra orbita permessa di energia inferiore.
- 19. Nell'effetto Compton, un fotone X interagisce con un elettrone libero (o debolmente legato). Cosa succede al fotone?
 - (a) Viene assorbito completamente dall'elettrone.
 - (b) Passa attraverso l'elettrone senza interagire.
 - (c) Viene diffuso (scatterato) con una frequenza minore (lunghezza d'onda maggiore).
 - (d) Viene diffuso con una frequenza maggiore (lunghezza d'onda minore).
- 20. Il nucleo di Deuterio (²H) è formato da 1 protone ($m_p \approx 1.0073\,\mathrm{u}$) e 1 neutrone ($m_n \approx 1.0087\,\mathrm{u}$). La sua massa misurata è $m_D \approx 2.0141\,\mathrm{u}$. Qual è approssimativamente il difetto di massa Δm ?
 - (a) $\Delta m \approx 2.0141 (1.0073 + 1.0087) = -0.0019 \,\mathrm{u}$
- (c) $\Delta m \approx 2.0141 \,\mathrm{u}$
- (b) $\Delta m \approx (1.0073 + 1.0087) 2.0141 = 0.0019 \,\mathrm{u}$
- (d) $\Delta m \approx 1.0073 + 1.0087 + 2.0141 \approx 4.0301 \,\mathrm{u}$