Evolutionary Programming

- · One glance overview
- Purpose
- · Historical background: FSM evolution
- · Selection, mutation
- · Self-adaptation in modern EP
- Empirical findings, experimental comparison

Evolutionary Computing

Evolutionary Programming

Evolutionary programming

- Developed: USA in the 1960's
- Early names: D. Fogel
- · Typically applied to:
 - traditional EP: machine learning tasks by finite state machines
 - contemporary EP: (numerical) optimization
- · Attributed features:
 - very open framework: any representation and mutation op's OK
 - crossbred with ES (contemporary EP)
 - consequently: hard to say what "standard" EP is
- · Special:
 - no recombination
 - self-adaptation of parameters standard (contemporary EP)

Evolutionary Computing

Evolutionary Programming

Purpose

Simulate Evolution as a Learning Process to Generate Artificial Intelligence

- Intelligence defined as the capability of a system to adapt its behaviour to meet its goals in a range of environments (D. Fogel 1995)
- Intelligence viewed as adaptive behaviour
- Prediction of the environment is a prerequisite to intelligent behaviour (prediction and response in the light of a given goal)
- Adaptation is not possible without a capability to predict

Evolutionary Computing

Evolutionary Programming

Historical EP

Developed by L. Fogel (1962):

- Evolve a population of finite state machines (FSMs)
- FSMs provide successively better predictions of an environmental sequence
- Predictions in light of a given goal

Evolutionary Computing

Evolutionary Programming

Example of a Finite State Machine • States $S = \{A, B, C\}$ • Inputs $I = \{0, 1\}$, output $O = \{a, b, c\}$ • Transition function $\delta: S \times I \to S \times O$ • Transforms input stream into output stream O/b A 1/c Evolutionary Computing Evolutionary Programming 5

Search operators

Mutation: Representation "naturally" determines the mutation operators

- Change an output symbol
- Change a state-transition
- Add a state
- Delete a state
- Change the start state

Crossover: None

"no crossover between species"

Evolutionary Computing

Evolutionary Programming

Selection

P(t): μ parents,

 $P^{\prime}(t){:}\;\mu$ offspring

Selection by conducting pairwise competitions in round-robin format:

- Each solution ā ∈ P(t) ∪ P'(t) is evaluated against q other randomly chosen solutions from the population
- For each comparison, a "win" is assigned if ā is better than its opponent
- The $\boldsymbol{\mu}$ solutions with the greatest number of wins are retained to be parents of the next generation

Typically: q = 10

This stochastic variant of (μ + μ)-selection allows for less fit solutions to propagate

Evolutionary Computing

Evolutionary Programming

Experiments on predicting primes (1)

Fogel et. al. (1966)

- $X_{prime}: \mathbb{N} \rightarrow \{0, 1\}$
- $X_{prime}(n) = \begin{cases} 1 \text{ if } n \text{ is prime} \\ 0 \text{ otherwise} \end{cases}$
- Input alphabet = output alphabet = {0, 1}
- Input string is $X_{prime}(1)$, $X_{prime}(2)$,...
- · Payoff (fitness) function:
 - 1 point for correct prediction of next input
 - 0 for incorrect prediction
 - penalty for `too much' states

Evolutionary Computing

Evolutionary Programming

Philosophical view of EP

- Evolution as a process of adaptive behaviour
- Benefits of optimised behavior accumulate to the reproductive population
- Solution is an abstraction of a reproductive population
- Representation follows from the task at hand
- Mutation operations follow from the representation (requirement: behavioural link between parent and offspring)
- Selection should be made probabilistic

Evolutionary Computing

Evolutionary Programming

11

Modern EP

Applied for continuous parameter optimisation

Similar to evolution strategy, with:

- Self-adaptation of \emph{n} standard deviations (meta-EP)
- Self-adaptation of covariances (Rmeta-EP)
- $-\mu = \lambda$ (i.e., parent and offspring population size are identical)
- No analogue of recombination
- Probabilistic ($\mu + \mu$)-selection

Evolutionary Computing

Evolutionary Programming

Evolutionary Programming

12

Mutation operator (1)

Self-adaptation in general:

- adds strategy parameters to candidates
- evolves strategy parameters with object variables i.e., they both undergo variation and selection

Self-adaptation in EP:

- $\langle x_1,...,x_n \rangle$ becomes $\langle x_1,...,x_n,\sigma_1,...,\sigma_n \rangle$
- mutation: Gaussian random variable \cdot step size σ

$$\sigma'_{i} = \sigma_{i} \cdot (1 + \alpha \cdot N_{i}(0, 1))$$

 $x'_{i} = x_{i} + \sigma'_{1} \cdot N_{i}(0, 1)$

• the order (mutate σ 1st, then x) is important

Evolutionary Computing

Evolutionary Programming

Mutation operator (2)

Results by Beyer (1995):

- For $au_0=\alpha$ (small), $n_\sigma=1$, the evolution strategy and the evolutionary programming method behave identically
- (ES works by so-called lognormal σ mutation mechanism, EP uses a normal distribution)
- Self-adaptation works for a variety of different pdf's for the modification of step sizes

(e.g. Cauchy instead of Gaussian)

Evolutionary Computing

Evolutionary Programming

Empirical findings on self-adaptation

- Often, lognormal modifications outperform normal modifications.
 ⇒ EP typically uses the ES method.
 - (Saravanan 1994, Saravanan, Fogel 1994, Saravanan, Fogel, Nelson 1995)
- On noisy objective functions, this behaviour inverts. (Angeline 1996)
- It is important to modify σ_i first and use σ_i' to modify the object variables. (Gehlhaar, Fogel 1996)
- ? Self-adaptation works also with $(\mu + \lambda)$ -selection.
- ? Self-adaptation works also with μ = λ .
- ? Self-adaptation works also without recombination. The last three results from (Gehlhaar, Fogel 1996).
- ⇒ Careful check of the last three statements required!

Evolutionary Computing

Evolutionary Programming

17