

Modeling Local Dependence in Natural Language with Multi-Channel Recurrent Neural Networks

Chang Xu, Weiran Huang, Hongwei Wang, Gang Wang and Tie-Yan Liu

Nankai University, Tsinghua University, Shanghai Jiao Tong University, Microsoft Research Asia

Presented by: Chang Xu

- Motivation
 - Background of Modeling Natural Sentences
 - Challenges in Capturing Semantic Structure Information
- Our Method: Multi-Channel Recurrent Neural Networks
 - Capturing Rich Patterns with Multiple Channels
 - Aggregating Patterns by an Attention Module
- Experimental Results
- Analysis
 - Case Study and Visualization
 - Performance on Long Sentences
 - Impact of Model Size
- Conclusion

Modeling Natural Sentences

- Structure Information is Essential
 - Natural languages exhibit strong local structures in terms of semantics such as phrases.
 - E.g. We must find the missing document at all costs.
 - Phrase structures are important for understanding the meaning of sentences

- Conventional Recurrent Neural Networks
 - Usually treat each token in a sentence uniformly and equally
 - May *miss the rich semantic structure* information of a sentence.

Challenges in Capturing Semantic Structure Information

- Requiring Flexibility
 - There are diverse word dependence patterns
 - Flexible and learnable structure modeling method is preferred than predefined connections or fixed topology.

Hard to Parameterize

- The local structures and word dependence patterns in sentences are discrete symbols rather than regular learnable model parameters.
- It is non-trivial to capture and parameterize them.

- Motivation
 - Background of Modeling Natural Sentences
 - Challenges in Capturing Semantic Structure Information
- Our Method: Multi-Channel Recurrent Neural Networks
 - Capturing Rich Patterns with Multiple Channels
 - Aggregating Patterns by an Attention Module
- Experimental Results
- Analysis
 - Case Study and Visualization
 - Performance on Long Sentences
 - Impact of Model Size
- Conclusion

Multi-Channel Recurrent Neural Networks (MC-RNN)

Illustration of the structure of one-layer MC-RNN with 3 channels.

- Each channel in the MC-RNN layer contains several blocks
- Local connections are built in each block
- Solid lines with the same color (red/blue/black) share the same parameter matrices
- Channels can be computed in parallel.

Capturing Rich Patterns with Multiple Channels

 m_t^k denotes the number of predecessors connected to node (t, k).

Define the temporal input at step t in channel k as

$$s_{t-1}^{k} = \frac{1}{m_{t}^{k}} \sum_{j=1}^{m_{t}^{k}} W_{j} h_{t-j}^{k}.$$

Then apply the recurrent computation f to get the output:

$$\boldsymbol{h_t^k} = f(\boldsymbol{s_{t-1}^k}, \boldsymbol{x_t})$$

Learnable parameters including RNN internal parameters and weights in blocks are *shared* among different channels.

The indegree m_t^2 of Channle2 at time t in this figure is 2

- The inputs of each recurrent unit include
 - not only its immediate predecessor

Microsoft

- but also from the historical units within a certain distance.
- MC-RNN can capture a strong dependence between words in a phrase, and make compact representations for the phrased
- Different Connection Mechanism for Different Channels
 - Set the blocks of neighboring channels has one step staggered with each other in a progressive way
 - All possible local structures or dependency patterns whose length is no more than the block size can be enumerated

At time step t, the red lines in channel 1, 2, 3 represent 4-word/ 3-word/ 2-word dependence patterns respectively

Aggregating Patterns by an Attention Module

- Combining Channels by Dynamically Adjusting Weights
 - MC-RNN is designed to have different topological connections representing different dependence patterns.
 - We use the attention mechanism to obtain the weighted average of each channel's hidden as the input to next layer, which is denoted as

$$h_t^{att} = \sum_{k=1}^n \alpha_t^k h_t^k$$

The attention weight is calculated by

$$\alpha_t^k = \frac{\exp(e_t^k)}{\sum_{i=1}^n \exp(e_t^i)}$$

• e_t^k is defined as

$$e_t^k = r^T \operatorname{tanh}(\mathbf{V} \cdot \begin{bmatrix} h_t^k \\ x_t \end{bmatrix})$$

- Motivation
 - Background of Modeling Natural Sentences
 - Challenges in Capturing Semantic Structure Information
- Our Method: Multi-Channel Recurrent Neural Networks
 - Capturing Rich Patterns with Multiple Channels
 - Aggregating Patterns by an Attention Module
- Experimental Results
- Analysis
 - Case Study and Visualization
 - Performance on Long Sentences
 - Impact of Model Size
- Conclusion

Experimental Results

Machine Translation

- 2-layer encoder, 2-layer decoder
- 256-d bpe embedding, 256-d hidden size
- Beam search with width 5
- Test on IWLST 2014 De-En task

 Compared 	with
------------------------------	------

- Baseline-RNN: the most widely used sequence to sequence framework RNNSearch (Bahdanau, Cho, and Bengio 2015)
- HO-RNN: changed the topological structure of RNN (Soltani and Jiang 2016)
- HM-RNN: modifies the recurrent computations (Chung, Ahn, and Bengio 2017)
- Actor-critic: an approach to training neural networks to generate sequences using reinforcement learning (Bahdanau et al. 2017)
- NPMT-LM: a neural phrasebased machine translation system that models phrase structures in the target language (Huang et al. 2018)

Methods	Params	BLEU
Actor-critic	-	28.53
NPMT-LM	-	29.16
HM-RNN	25M	30.60
HO-RNN	30M	31.29
Baseline-RNN	25M	31.03
MC-RNN-2	28M	31.98
MC-RNN-3	29M	32.23
MC-RNN-4	31M	32.09

Experimental Results

Abstractive Summarization

- The task is to generate the headline of the given article
- The dataset we use is Gigaword corpus (Graff et al. 2003):
 - 3.8M training article-headline pairs, 190k for validation and 2000 for test
- MC-RNN follows the settings of Baseline-RNN:
 - Using LSTM as the recurrent unit
 - encoder and the decoder have 4 layers
 - Embedding size: 256
 - Hidden size: 256

Methods	Params	RG-1	RG-2	RG-L
HM-RNN	35M	34.68	16.11	32.22
HO-RNN	46M	35.86	16.99	33.38
Baseline-RNN	36M	34.65	16.13	32.24
MC-RNN-2	38M	36.21	17.30	33.60
MC-RNN-3	40M	36.55	17.58	33.72
MC-RNN-4	42M	36.50	17.44	33.68

Experimental Results

- Language Modeling
 - Evaluate on Penn Treebank corpus which contains about 1 million words
 - Evaluation metric: perplexity
 - The network structure follow the state-of-the-art model AWD-LSTM (Merity, Keskar, and Socher 2018)
 - 1150 units in the hidden layer
 - 400-d word embedding
 - DropConnect is used on the hidden-to-hidden weight matrices

Methods	Validation	Test
Variational LSTM + augmented loss (Inan, Khosravi, and Socher 2017)	71.1	68.5
Variational RHN (Zilly et al. 2016)	67.9	65.4
NAS Cell (Zoph and Le 2017)	-	62.4
Skip Connection LSTM(Melis, Dyer, and Blunsom 2018)	60.9	58.3
AWD-LSTM w/o finetune (baseline) (Merity, Keskar, and Socher 2018)	60.7	58.8
MC-RNN	59.2	56.9

- Motivation
 - Background of Modeling Natural Sentences
 - Challenges in Capturing Semantic Structure Information
- Our Method: Multi-Channel Recurrent Neural Networks
 - Capturing Rich Patterns with Multiple Channels
 - Aggregating Patterns by an Attention Module
- Experimental Results
- Analysis
 - Case Study and Visualization
 - Performance on Long Sentences
 - Impact of Model Size
- Conclusion

Case Studies and Visualization

Visualization of attention scores of the sentence "Home-grown champions have been few and far between at the Italian Open."

- Local dependence patterns and local structures are captured, such as:
 - "home-grown champions"
 - "champions have been"
 - "few and far between"
 - "Italian Open"

Performance on Long Sentences

- Conducted on IWSLT-14 De-En translation task
- Long sentences are more difficult to handle than short ones
 - Both our method and the baseline-RNN model perform worse as the lengths of the sentences increase, indicating
- Our model brings much more improvement on long sentences
 - when the sentence length is greater than 61, our model outperforms baselines by a larger margin
- MC-RNN enables short-cut connections across timestep and directly passes error signal through blocks

Impact of Model Size and Time Cost

- We tried several runs for Baseline-RNN
 - Baseline-RNN-large: increase the size of the hidden state from 256 to 286
 - Baseline-RNN-deep: Increase the number of layers from 2 to 3
- No significant improvement of performance on Baseline-RNN
- Better performance of our MC-RNN is caused by model design rather than larger model size
- Owing to parallel computation, MC-RNN can achieve almost the same time cost as the conventional RNN

Methods	Params	BLEU
Baseline-RNN	25M	31.03
Baseline-RNN-large	29M	30.93
Baseline-RNN-deep	29M	30.98
MC-RNN-2	28M	31.98
MC-RNN-3	29M	32.23
MC-RNN-4	31M	32.09

- Motivation
 - Background of Modeling Natural Sentences
 - Challenges in Capturing Semantic Structure Information
- Our Method: Multi-Channel Recurrent Neural Networks
 - Capturing Rich Patterns with Multiple Channels
 - Aggregating Patterns by an Attention Module
- Experimental Results
- Analysis
 - Case Study and Visualization
 - Performance on Long Sentences
 - Impact of Model Size
- Conclusion

Conclusions

- We proposed a new RNN model with multichannel multi-block structure to better capture and utilize local patterns in sequential data for language-related tasks
- Experiments on machine translation, abstractive summarization, and language modeling validated the effectiveness of the proposed model
 - Achieved new state-of-the-art results on Gigaword on text summarization and Penn Treebank on language modeling

Thanks!

Contact info

Chang Xu

Email: changxu@nbjl.nankai.edu.cn

Homepage: https://chang-xu.github.io

5-th year student of Joint Ph.D Program with Microsoft Research Asia