

Classification Models in Machine Learning

Presented By Alireza Doustmohammadi

Graduate Student in Bioinformatics

January 2021

Contents

Introduction

Supervised & Unsupervised Learning

Classification

Outline Supervised Learning Unsupervised Learning Ensemble Learning

3 of 23

ML - 2021

5 of 23

Supervised Learning

Classification

Classification Algorithms

Naïve Bayes
Nearest Neighbor
Parzen Window

❖ NB assign each observation to the most likely class

$$maxPr(Y = j|X)$$

[https://www.saedsayad.com/naive bayesian.htm]

Observation: sunny outlook

Frequency Table

		Play Golf					
		Yes	No				
	Sunny	3	2				
Outlook	Overcast	4	0				
	Rainy	2	3				

$$P(C|X) = \frac{P(X|C)P(C)}{P(X)} \begin{cases} P(NO|Sunny) = \frac{\frac{2}{5} \times \frac{5}{14}}{\frac{5}{14}} = \frac{2}{5} \\ P(YES|Sunny) = \frac{\frac{3}{9} \times \frac{9}{14}}{\frac{5}{14}} = \frac{3}{9} \end{cases} \rightarrow maxPr(Y = j|x) = P(NO|Sunny)$$

Observation: sunny outlook & Normal Humidity

Frequency Table

		Play Golf					
		Yes	No				
	Sunny	3	2				
Outlook	Overcast	4	0				
	Rainy	2	3				

		Play Golf					
		Yes No					
Urranialita	High	3	4				
Humidity	Normal	6	1				

Finding Neighbors & Voting for Labels

15 of 23

Distance Measures:

Euclidean distance
$$(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Manhattan distance
$$(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

Camberra distance
$$(x, y) = \sum_{i=1}^{n} \frac{|x_i - y_i|}{|x_i + y_i|}$$

Chebyshev distance
$$(x, y) = max_{i=1}^{n} |x_i - y_i|$$

Minkowski distance
$$(x, y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

							i			ı					1	ı	i		
		volume.m		number.m	1	intensity.m	I	polydisper				Ispr.index.		lspr.peak.p	l				
z.average.s	_				1							1 '			l	l	I	num.protei	
ynthesized	erum	sized	ean.serum	sized	ean.serum	sized	ean.serum	ynthesized	erum	sized	tial.serum	d	serum	thesized	sity.protot	sity.autot	total.spc	n.id	ation
22.36	57.53	21.94	21.75	23.49	18.38	23.49	70.97	0.084	0.27	-21.78	-9.11	0.18253	0.454404	518.77	2.927	255.443	2028	94	Medium
30.95	90.06	11.76	67.79	47.5	53.87	47.5	106.7	0.399	0.215	15.22	-8.79	0.45821	0.525747	526.28	4.602	240.7288	2683	81	High
22.64	44.43	22.32	44.8	35.03	34.07	35.03	63.72	0.147	0.184	-24.08	-6.73	0.223534	0.274761	518.33	4.79	247.0191	1260	51	Medium
23.09	23.75	21.22	74.66	23.04	31.4	23.04	68.92	0.15	0.207	-20.27	-8.29	0.27362	0.327264	518.57	3.552	240.1767	1286	58	Medium
23.8	55.98	4.11	221.93	29.49	25.25	29.49	83.34	0.326	0.273	16.35	-7.95	0.365436	0.389573	523.23	5.741	244.2281	2401	81	High
25.22	38.8	21.32	36.99	23.12	34.38	23.12	41.33	0.144	0.154	-21.42	-6.54	0.20691	0.265327	519.87	2.976	259.0438	1557	71	Low
18.65	54.03	19.47	38.58	28.3	32.35	28.3	64.47	0.138	0.217	-25.26	-8.5	0.210431	0.292836	517.68	5.488	272.7686	1855	78	Medium
45.72	44.6	46.42	43.94	50.95	41.77	50.95	46.96	0.115	0.093	-12.29	-7.48	0.25094	0.280491	520.6	0.142	241.5201	1215	72	Low
19.85	38.69	20.14	33.52	21.49	30.34	21.49	40.44	0.086	0.154	-6.33	-5.91	0.211466	0.263698	519.07	1.67	258.6099	1717	91	Low
15.6	59.7	2.75	69.66	35.99	17.68	35.99	105.1	0.465	0.231	-5.01	-9.26	0.326142	0.365811	518.9	4.008	213.3235	1453	116	Medium
23.15	47.03	22.84	175.14	27.78	23.34	27.78	140.15	0.187	0.336	13.49	-9.7	0.266579	0.317134	520.23	0.3	234.6106	1098	75	Low
20.53	48.4	19.51	113.66	23.23	25.62	23.23	99.43	0.191	0.308	19.6	-6.52	0.275461	0.324751	519.23	1.215	247.7433	1431	87	Low
28.17	47.34	28.17	62.91	31.58	34.51	31.58	83.76	0.193	0.223	13.92	-6.23	0.276498	0.297223	522.1	2.107	235.4843	1577	73	High
33.6	58.95	16.66	33.85	28.99	26.12	28.99	87.33	0.268	0.346	25.83	-5.46	0.309989	0.367331	521.43	0.412	257.8317	231	28	Medium
82.41	59.93	27.08	33.04	55.31	27.7	55.31	86.81	0.249	0.367	-29.23	-6.1	0.395907	0.320779	534.13	0.526	249.1523	1706	53	Medium
27.94	100.13	16.05	124.61	35.19	29.7	35.19	142.63	0.302	0.23	-21.68	-5.71	0.465011	0.359906	550.6	0.463	208.3178	1366	85	Low
23.58	60.27	22.67	45.24	25.16	32.93	25.16	81.13	0.108	0.248	-24.32	-10.42	0.241281	0.413864	522.73	5.883	271.1633	1723	83	Medium
42.05	46.63	31.55	57	36.47	38.14	36.47	72.78	0.216	0.197	-8.96	-6.63	0.175809	0.244867	519.23	2.921	238.2519	2295	104	Medium
77.02	55.39	26.46	45.34	38.3	35.75	38.3	74.16	0.211	0.236	-17.77	-5.68	0.261762	0.402932	518.6	4.049	243.9545	1321	56	Medium

ML - 2021

Number of Neighbors:

✓ Selecting Appropriate k

Relation between k and Flexibility:

Weighted K Nearest Neighbor (WKNN) Classifier

Distance-weighted voting

Closer neighbors receive a higher weight and more influence to derive the output value

- Lazy Learning
- Instance-based Learning

Parzen Window Classifier

"Machine learning is the next internet"

-Anthony Tether

Director, DARPA (Defense Advanced Research Projects Agency, USA).