

More Generally for X a Question: v-sheaf xe |x| what is spex)? Reduction. / Perf = perfect schemes in / sch = characteristic p enjoyed with scheme - theoretic V-1000057 Sch S v Shesves ? Spa(A) = spd(A,A), continuous admits right adjoint (-) hed Hom (Spec (A), Fred)= Hon (Spec(A), F) $\mathcal{E}_{\mathsf{X}}: \cdot (\mathsf{X}^{\mathsf{a}})^{\mathsf{red}} = \mathsf{X}$ · B - adic ris over to Spd (B,R) = spec (B/I)

(R,R) Perfect toid, then tauget of special isotion.

]	[mj	eti	er	94	ne		-								
				,		1	1	•	Ge	neru	1	Set	P			
			SSPE				3	(where		Spec(ાંવી 'રે	9/10	1		
) _V -	sh	sves	-			h	9	8	Je 1	-inc	.		
							'							\		
								{.	We	95	K 1	•	k de	ed		
		()) ~e~	Y:	60							er (9 Ve		e —		
		<u> </u>			0~11							7		~fa	L	
		1		\bigcirc								ead				
		~		[l l)	<u> </u>	-							
	(me				5		l .			-		gen	<i>γ</i> ί c	
			Ki	MG	e~\1	103						to		\		
		1		(\	1		well		sehq	we.)		
				UI.			1		5					•		
		(-	K i	m6	e	ite	5)		7.			9SF			.L	
		S					5				•	tic				
		-					(L	C	e	wel	- (ye bi q	ve d	
				\bigvee				1	(٢.	We	, 9	8K	£	> /	
			SP	at	<u>i</u> બ)			1	1	s no		466	-			
		7		V Š.			tes	1				ert				
		1						1	1		<i>\\</i>		1 ~ 2			
				U	5			*								
	/	,	For	nal	-		7	\$								
	(لرور	, o ^c		7									
		}		•••	, ,)									

Theorem 1: (smalled - 10 imberlife) If x is a kinderlite, the specialization map is continuous to the contractible topology of Xnd and Xan Moreover it is a closed map. strategy - To prove xan is connected we can prove xred is connected and sprice (x) is connected. - sp'(x) has somethic - 25 Sp-1(x) = sp-1(x) | Jense 7 constructible topology is key to settle this.

special zation triples: Given a kinderlite Je me can attack a triple (zan zres, sp) (AGLR)
FULFERINH Specialization / Theorem 2 (Louves 50) Fill-Faithful * Westly normal, topologically of finite tope, flat formal schemes. 3) . ap point are donce and formlizable, - xred is perfectly finite type | X is that (weather but simile to spatial)

