Teaching Thermodynamic Cycles

DLR ThermoFluidStream Community Event 19. 6. 2024

Peter Junglas

Content

- Using Modelica models for teaching thermodynamics
- Example Models
- Problems and Challenges
- Conclusions

Using Modelica models for teaching thermodynamics

Cyclic processes:

- Otto, Diesel
- Joule-Brayton, Ericsson (ideal gas, dry air)
- Clausius-Rankine (standard water)

Very simple static models:

- turbo machines with linear characteristic ($\dot{m}=K\omega$)
- mass flow is given explicitly
- reproduce results from lecture and exercises
- old version with own simple Thermolib
- rebuilt with DLR TFS-Lib 1.0.0

Example Models

Clausius-Rankine Process:

- looks like simple Joule-Brayton model
- uses IAPWS-IF97 water from MSL media
- compressor (ideal gas) → pump (incompressible fluid)
 - uses simple nominal pump instead of centrifugal pump

Ericsson Process with Ideal Gas:

- simple compressor → line of compressors with intermediate coolers
- · similar for turbine
- · using excess heat with heat exchanger from ThermoDLR

Problems and Challenges

Special components necessary:

- cylinder model = volume with a mechanical flange
- compressor uses constant cp
 - instead use constant entropy with c_p(T)
 - needs inversion of nonlinear function
- turbine using water (TFS-Lib turbine only uses ideal gas)

Parameter Tuning:

- · reverse logic
 - p, T, *m* given
 - compressor, turbine and heater parameters needed
- arbitrary guess values → "Failed to solve nonlinear system"
- solution methods
 - use turbine equations to compute ω or τ manually
 - start with smaller state changes
 - use known state values as initial values
- · model runs at least for a short time
 - → apply parameter changes and monitor results
 - → final values can be reached
- · more details in
 - "Implementing Thermodynamic Cyclic Processes Using the DLR Thermofluid Stream Library",

SNE 33/4 (2023), 175-182.

Conclusions

experiments with MSL Thermo/Fluid library unsuccessful with DLR TFS library still non-trivial but clear path to find working parameters