Вариант Е

github.com/andy489/DEA

Задача 1. Решете задачата на Коши

$$\begin{cases} xy'' = (y'+3)(1-x) \\ y(-1) = 2, y'(-1) = -2 \end{cases}$$

Решение:

Уравнението е от втори ред и позволява понижаване на реда, тъй като y не участва в него. Следователно, нека $z(x) = y'(x) \Rightarrow z'(x) = y''(x)$. Тогава уравнението придобива вида: $z' = (z+3) \cdot \frac{1-x}{x}$, което е уравнение с разделящи се променливи.

1.) Очевидно $z \equiv -3$ е решение.

2.) При
$$z \neq -3$$
: $\frac{dz}{z+3} = \frac{(1-x)dx}{x} \left| \int; \ln|z+3| = \int \frac{1}{x} dx - \int 1 dx = \ln|x| - x + c.$

 $e^{ln|z+3|}=e^{ln|x|-x+c}; \quad |z+3|=e^c \,.\, |x| \,.\, e^{-x}$, което може да запишем по следния начин:

 $z+3=c_1$. x . e^{-x} , където c_1 е произволна константа. По този начин освен че отстраняваме модула, включваме и първото решение от 1.)

$$y'=z=-3+c_1xe^{-x}$$
 \int ; $y(x)=-3x+c_1\int xe^{-x}dx=-3x-c_1\int xe^{-x}d(-x)=-3x-c_1\int xde^{-x}==-3x-c_1\big(xe^{-x}-\int e^{-x}dx\big)=-3x-c_1xe^{-x}-c_1e^{-x}+c_2$, където c_2 е произволна

константа.

Остана само да приложим началните условия, за да намерим константите. За целта трябва да пресметнем: $y'(x) = -3 - c_1 e^{-x} + c_1 x e^{-x} + c_1 e^{-x} = -3 + c_1 x e^{-x}$.

$$y(-1)=3+c_1e-c_1e+c_2=2\Rightarrow c_2=-1$$
 $y'(-1)=-3-c_1e=-2\Rightarrow c_1=-e^{-1}$ Окончателно: $y(x)=-3x+xe^{-x-1}+e^{-x-1}-1$.

Задача 2. Решете уравнението

$$x(x+1)y' = 2(x+1)y + x^4$$

Решение:

Изразяваме y', за да може по-лесно да определим какъв е вида на уравнението.

$$y' = \frac{2}{x}y + \frac{x^3}{x+1}$$
. Получихме линейно уравнение от първи ред. $y(x) = e^{\int a(x)dx} \Big(c + \int b(x)e^{-\int a(x)dx} dx \Big)$, където $a(x) = \frac{2}{x}$ и $b(x) = \frac{x^3}{x+1}$.
$$\int a(x)dx = 2ln|x| = lnx^2; \quad \int b(x)e^{-lnx^2} dx = \int b(x)x^{-2} dx = \int \frac{x}{x+1} dx = \int \frac{x}{x+1} dx$$

$$= \int \frac{x+1-1}{x+1} dx = x - \ln|x+1|$$

$$\Rightarrow y(x) = e^{\ln x^2} (c + x - \ln|x-1|) = cx^2 + x^3 - x^2 \ln|x-1|.$$