

Распределенные системы хранения и обработки данных

Владислав Белогрудов, ЕМС

vlad.belogrudov@gmail.com

Лекция 11

Программно определяемые сети

Содержание лекции

- Предпосылки
- История
- Принципы
- Технологии
- Области применения

Тренды в ИТ

- Виртуализация
- Облачные технологии
- Software Defined ***
 - Программно-определяемые сети
 - Программно-определяемые СХД
 - Программно-определяемые ЦОД
 - _ ..

Тренд? ...

.. Необходимость!

- Виртуализация
 - двигатель торговли эффективности
- Вычисления
 - в «облаках» (дата-центрах)
- Вычислительные центры
 - нужны "плоские" сети
 - виртуальные машины хотят перемещаться
- Смартфоны хотят большего

2013

2016

Источник: IDC

Традиционный интернет

Традиционные модификации

payload

ethertype src address dst address

> 802.1 1995

payload

ethertype C-tag src address dst address

802.1Q 1995

payload

ethertype C-tag S-tag src address dst address

802.1ad QinQ

payload ethertype C-tag C-SA C-DA I-SID Flags B-tag B-SA B-DA

802.1ah

MACinMAC

payload ethertype C-tag C-SA C-DA **Ingress Egress Nicknames** B-tag B-SA B-DA

C-tag C-SA C-DA VNI UDP(VXLAN) Outer IP SA Outer IP DA Ethertype B-tag B-SA B-DA

payload

ethertype

TRILL **VXLAN** 2010 2011

Немного истории

2006

– старый интернет стал слишком сложен, надо переписать с нуля! Martin Casado, Nick McKeown, Scott Shenker..

2007

– Nicira, первый коммерческий проект, реализующий SDN

2011

- Open Networking Foundation (Google, Yahoo, Deutsche Telecom..)

Определение

Программно-определяемая сеть —

сеть передачи данных, в которой уровень управления сетью отделён от устройств передачи данных и реализуется программно, одна из форм виртуализации вычислительных ресурсов.

ВикипедиЯ

Основные принципы

- Разделение функций передачи и управления
- Единый, стандартный, открытый интерфейс между устройствами управления и передачи
- Централизованное управление сетью
- Виртуализация физических ресурсов сети.

Open Networking Foundation

Развитие и коммерциализация SDN

Движущая сила

Статические сети, отсутствие гибкости, поддержки новых моделей бизнеса, роста, необходимой динамики

программируемые сети, гибкость, скорость, настраиваемость на новые протоколы, сервисы, рост, динамики

Трансформация

SDN затрагивает многие стороны сетей: технологии, продукты, сервисы, модели бизнеса, поставщиков, клиентов...

Взгляд с высоты птичьего полета

Приложения:

протоколы, политики, маршрутизация, балансировка

Контроль:

топология, общее управление ресурсами, абстракция

Данные:

Пересылка пакетов в соответствии с правилами в таблицах, сбор статистик

Обычные сетевые устройства

- Контроль
- Данные
- Менеджмент

CLI/SSH/SNMP/XML

MANAGEMENT PLANE

> FORWARDING PLANE

OSPF/BGP/LDP

Протоколы маршрутизации сейчас

Обмен информацией между устройствами, алгоритмы

Плюсы и минусы «настоящего»

- надежны
- проверены временем
- детерминированы
- исправляют проблемы сети
- автономны
- ?масштабируются?

- тесно связаны
- не склонны к изменению
- плохо конфигурируются из вне
- пересылка пакетов только по адресу назначения
- потеря пакетов при изменении конфигурации сети

А что если...

OpenFlow – язык общения в SDN

- Типичный коммутатор
- Сложное ПО BGP/LDP/OSPF/Multicast ..

- Коммутатор "OpenFlow", минимальный образ системы (OC). Простейшие функции
- Вся сложность в контроллере

OpenFlow: топологии

Магистральный канал до и после

Спецификация OpenFlow

OpenFlow Switch Specification Version 1.1.0 Implemented (Wire Protocol 0x02) February 28, 2011 Contents 1 Introduction 2 Switch Components 3 Glossary 4 OpenFlow Tables 5 OpenFlow Channel

OpenFlow: таблицы

Таблица состоит из правил:

Поля для сравнения	Счетчики	Инструкции		
dst port = 22, *, *	123	Send to Port 1		
Byte $5 = xAF$	25	Send to Port 3, 4		

- Поля что сравниваем (порты, заголовки, что угодно)
- Счетчики количество подходящих пакетов
- Инструкции что делать с пакетом

Пример SDN клиента

Controller

Примеры таблиц

Switching

Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	ТСР	ТСР	Action
Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	ACTION
*	*	00:1f	*	*	*	*	*	*	*	port6

Flow Switching

Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	TCP	TCP	Action
Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	ACTION
										port6

Firewall

Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	TCP	TCP	Action
Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	ACTION
										drop

Еще примеры таблиц

Routing

Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	ТСР	ТСР	Action
Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	
*	*	*	*	*	*	5.6.7.8	*	*	*	port6

VLAN Switching

Switch Port	MAC src	MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
*	*	00:1f	*	vlan1	*	*	*	*	*	port6, port7, port9

Пример - балансировка нагрузки

Пример – VDC VLAN (Virtual Network 3) Hypervisor VM Virtual Network 1 **NVP Controller** VM Cluster API Open vSwitch Virtual Network 2 **NVP** Gateway Virtual Network 3 The Intelligent **NVP Manager** Edge Virtual Network n физические Hypervisor сети VM Hypervisor VM Open vSwitch **IP BACKPLANE** VM Open vSwitch openstack*

Области применения

- Большие дата-центры
- Виртуализация, IaaS
- Мобильные сети (VMs, smartphones)
- Безопасность
- Распределение нагрузки
- Управление энергопотреблением

OpenFlow Hardware Switches

OpenFlow Open Switches

Название	ЯП	Платформа	Лицензия	Авторы
OpenFlow Reference	С	Linux	OpenFlow License	Stanford/Nicira
Open vSwitch	C/Python	Linux/BSD	Apache 2.0	Ben Pfaff/Nicira
Indigo	C/Lua	Linux-based Hardware Switches	GPL v2	Dan Talayco/BigSwitch
P-xxxx	Open vSwitch inside	Linux-based Hardware Switches	Free-license	Pica8

Open vSwitch

- HV
 - XEN
 - KVM
 - VirtualBox
- Apache/GPL
- Linux/BSD

NOS и Языки программирования?

- C
- C++
- Java
- Python
- Ruby
- •

http://trema.github.com/trema/

OpenFlow tutorial Ссылка!

- VirtualBox
- Controller
 - Java
 - Python
 - Ruby

Литература?

- Блог А
- Блог В
- Блог С

•

SDN Central

Спасибо!

##