The λ -calculus

© Vivian McPhail

1 September 2015

Definitions

Substitution

Named Terms

Reduction

Normal Form

Evaluation Strategies

Referential Transparency

Representing Data

Notation (Meta-variables)

An infinite supply of variables, V, are denoted by lower-case roman letters (x, y, z, ...) and λ -terms, Λ , are denoted by upper-case roman letters (M, N, O, ...).

Definition (Lambda Terms)

A λ -term is either a variable, an abstraction, or an application:

```
x \in V \Rightarrow x \in \Lambda Variable x \in V, M \in \Lambda \Rightarrow (\lambda x.M) \in \Lambda Abstraction M, N \in \Lambda \Rightarrow (MN) \in \Lambda Application
```

Notation (Bracketing)

- 1. $(M(NO)) \rightarrow M(NO)$ Outermost brackets may be discarded.
- 2. $(MN)O \rightarrow MNO$ Application associates to the left.
- 3. $\lambda x.(\lambda y.(\lambda z.M)) \rightarrow \lambda x.\lambda y.\lambda z.M$ Abstraction associates to the right.
- 4. $\lambda x.\lambda y.\lambda z.M \rightarrow \lambda x\,y\,z.M$ Consecutive abstractors can be abbreviated as one.

Definition (Bound Variables)

In a λ -term, $\lambda x.M$, the variable x is bound by the abstractor λ and is under the abstractor's scope.

Definition (Free Variables)

1. A variable occurring in a λ -term that is not bound is free. The set of free variables is defined inductively:

$$FV(x) = \{x\}$$

$$FV(\lambda x.M) = FV(M) \setminus \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

- 2. *M* is closed or a combinator if $FV(M) = \{\emptyset\}$.
- 3. $\Lambda^0 = \{ M \in \Lambda \mid Mis \ closed \}.$

Notation (Syntactic Equality)

For any two λ -terms M and N, $M \equiv N$ denotes syntactic equality.

Definition (α -conversion, Church 1941)

The renaming of bound variables is called α -conversion.

$$\lambda x.M \stackrel{\alpha}{\to} \lambda y.[y/x]M$$
 provided that y does not occur in M

Two terms that are the same up to renaming of variables are equivalent.

$$M \stackrel{\alpha}{\to} N \Rightarrow M \equiv N$$

De Bruijn terms, which label variables by position (distance from the closest left-hand abstractor) are a means of avoiding variable renaming issues Barendregt (1984).

Definitions

Substitution

Named Terms

Reduction

Normal Form

Evaluation Strategies

Referential Transparency

Representing Data

Definition (Substitution)

The expression [N/x]M is the term M with all free occurrences of x substituted for by N:

$$\begin{array}{ccc} [N/x]x & \to & N \\ [N/x]y & \to & y \\ [N/x](\lambda y.M) & \to & \lambda y.([N/x]M) \\ [N/x](M_1M_2) & \to & ([N/x]M_1)([N/x]M_2) \end{array}$$

Definitions

Substitution

Named Terms

Reduction

Normal Form

Evaluation Strategies

Referential Transparency

Representing Data

Definition (μ -conversion)

 λ -terms can be given names and the μ -conversion of a term involving these names is the term with the name replaced by the corresponding λ -term

$$\mathbf{name} := M \Rightarrow (\mathbf{name}\ N) \overset{\mu}{\rightarrow} MN$$

Definition (Standard Combinators)

$$\mathbf{I} := \lambda x.x$$

$$\mathbf{K} := \lambda x y.x$$

$$S := \lambda x y z.x z (y z)$$

Theorem

$$\forall M \in \Lambda, \mathbf{SK}M = \mathbf{I}$$

Definitions

Substitution

Named Terms

Reduction

Normal Form

Evaluation Strategies

Referential Transparency

Representing Data

Definition (β -reduction)

The principal axiom scheme is β -reduction:

$$(\lambda x.M)N \stackrel{\beta}{\to} [N/x]M \quad \forall M, N \in \Lambda$$

Theorem (FixedPoint Theorem)

- 1. $\forall F \in \Lambda, \exists X \in \Lambda : FX = X$
- 2. There is a fixed point combinator

$$\mathbf{Y} := \lambda f.(\lambda x. f(x x))(\lambda x. f(x x))$$

such that

$$\forall F \in \Lambda, F(\mathbf{Y}F) = \mathbf{Y}F$$

Definition (η -Reduction)

Redundant abstractions can be removed with η -reduction

$$\lambda x.Mx \stackrel{\eta}{\rightarrow} M \quad x \notin FV(M)$$

The theory λ extended with η -reduction is called λ_{η} .

Definition (Redex)

A redex is a reducible expression, which is an expression to which a reduction can be applied.

Example (Reducible Expressions)

Reducible expressions:

- 1. A variable, a, is **NOT** a redex.
- 2. The abstraction λx .My is a redex.
- 3. The application MN is a redex if M is an abstraction.

Definitions

Substitution

Named Terms

Reduction

Normal Form

Evaluation Strategies

Referential Transparency

Representing Data

Definition (β -Normal Form)

Let $M \in \Lambda$.

- 1. M is a β -normal form (β -nf or nf) if M has no subterm $(\lambda x.P)Q$.
- 2. M has a β -normal form if $\exists N: N=M$ and N is a β -normal form.
- 3. If M is a nf, it is also said that M is in nf.

Definition ($\beta\eta$ -Normal Form)

- 1. M is a $\beta\eta$ -normal form if M has no subterm $(\lambda x.P)Q$ or $(\lambda x.Rx)$ with $x \notin FV(R)$.
- 2. M has a $\beta\eta$ -normal form if

$$\exists N : \lambda_{\eta} \vdash M = N \land N \text{ is a } \beta \eta \text{-normal form}$$

Definition (Head and Arguments)

In a λ -term $\lambda \vec{x}.M\vec{N}$ where the x_i may occur in M, M is the head and the \vec{N} are the arguments.

Definition (Head Normal Form)

- 1. M is a head normal form (hnf) if M has the form $M \equiv \lambda \vec{x}.y \vec{N}$.
- 2. M has a hnf if $\exists N : M = N$ and N is a hnf.

Definition (Weak Head Normal Form)

- 1. M is a weak head normal form (whnf) if M has the form $M \equiv \lambda \vec{x}.M\vec{N}$ where in the λ -term all reductions to the function (the head, M) have been applied, but not all reductions to the parameter, N, have been applied. That is, M is a whnf if it is a hnf or a lambda abstraction.
- 2. M has a whnf if $\exists N : M = N$ and N is a whnf.

Definitions

Substitution

Named Terms

Reduction

Normal Form

Evaluation Strategies

Referential Transparency

Representing Data

Definition (Redexes)

- 1. The leftmost redex is the redex whose abstraction is to the left of all other redexes.
- 2. The rightmost redex is the redex whose abstraction is to the right of all other redexes.
- 3. The innermost redex is one that contains no other redexes.
- 4. The outermost redex is one that is contained within no other redexes.

Definition (Evaluation Order)

- 1. Applicative Order evaluates the leftmost, innermost redex.
- 2. Normal Order evaluates the leftmost, outermost redex.

Definition (Parameter Evaluation)

- 1. Call by value evaluates arguments before evaluating the head.
- 2. Call by name evaluates the head before evaluating arguments.

Definition (Evaluation Strategy)

- 1. In strict evaluation, the arguments are fully evaluated before the function is applied.
- 2. In non-strict (or lazy) evaluation, arguments to a function are not evaluated until they are used.

Definition (Church-Rosser)

1. Let **R** be a binary relation on Λ . Then **R** satisfies the diamond property (**R** $\models \diamond$) if

$$\forall M, M_1, M_2, (M, M_1) \in \mathbf{R} \land (M, M_2) \in \mathbf{R}$$

$$\Rightarrow \exists M_3 : (M_1, M_3) \in \mathbf{R} \land (M_2, M_3) \in \mathbf{R}$$

- 2. A notion of reduction **R** is said to be confluent if $\stackrel{\mathbf{R}}{\rightarrow}$ satisfies the diamond property.
- 3. A confluent notion of reduction **R** has the Church-Rosser property.

Theorem (Church-Rosser)

 $\beta\eta$ -reduction is confluent and so the λ_{η} theory is Church-Rosser.

Definitions

Substitution

Named Terms

Reduction

Normal Form

Evaluation Strategies

Referential Transparency

Representing Data

Definition (Referential Transparency)

A function is referentially transparent when given the same arguments, or their reductions, it returns the same result.

Definitions

Substitution

Named Terms

Reduction

Normal Form

Evaluation Strategies

Referential Transparency

Representing Data

Definition (Church Numerals)

The Church numerals $\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_n$ are defined by

$$\mathbf{c}_n := \lambda f \, x. f^n(x)$$

Lemma

- 1. $(\mathbf{c}_n x)^m(y) = x^{n*m}(y)$
- 2. $(\mathbf{c}_n)^m(x) = \mathbf{c}_{(n^m)}, \quad m > 0$

Proposition (J. B. Rosser)

Define

$$\mathbf{A}_{+} := \lambda x y p q. x p(y p q)$$

$$\mathbf{A}_{*} := \lambda x y z. x(y z)$$

 $\mathbf{A}_{exp} := \lambda x y.y x$

Then $\forall m, n \in \mathbb{N}$

- 1. $\mathbf{A}_{+}\mathbf{c}_{m}\mathbf{c}_{n}=\mathbf{c}_{m+n}$
- 2. $\mathbf{A}_* \mathbf{c}_m \mathbf{c}_n = \mathbf{c}_{m*n}$
- 3. $\mathbf{A}_{exp}\mathbf{c}_{m}\mathbf{c}_{n}=\mathbf{c}_{(m^{n})}, \ m\neq 0$

Definitions

Substitution

Named Terms

Reduction

Normal Form

Evaluation Strategies

Referential Transparency

Representing Data

```
S = (^x y z.x z(y z))
K = (^x y.x)
I = (S K K)
false = (S K)
true = K
zero = false
succ = (\hat{n} f x.f (n f x))
one = (succ zero)
if = T
isZero = (^n.n (^z.false) true)
mul = (^m n f.m (n f))
pred = (\hat{n} f x.n (\hat{g} h.h (g f)) (\hat{u}.x) (\hat{u}.u))
```

A lambda interpreter:

```
$ git clone https://github.com/amcphail/lambda
$ ghci
GHCi, version 7.10.2: http://www.haskell.org/ghc/ :? for help
Prelude> :1 Lambda
[1 of 3] Compiling Parsers (Parsers.hs, interpreted)
[2 of 3] Compiling Combinators (Combinators.hs, interpreted)
[3 of 3] Compiling Lambda (Lambda.hs, interpreted)
Ok. modules loaded: Lambda, Parsers, Combinators,
*Lambda> let fact n = if n == 0 then 1 else (n * (fact (n-1)))
*Lambda> fact 4
24
*Lambda> main
lambda term? fact four
lambda term?
```

- Barendregt, H. (1984). The Lambda Calculus: Its Syntax and Semantics, Vol. 103 of Studies in Logic, second, revised edn, North-Holland, Amsterdam.
- Barendregt, H. and Barendsen, E. (1994). Introduction to lambda calculus.
 - http://citeseer.ist.psu.edu/barendregt94introduction.html.