# **Regression for Pricing of LEGO Sets**

Phillip Busko & Sorin Luca



### The LEGO Dataset

#### Data Source

- <u>brickset.com</u>
- kaggle.com/lego-database

| Identifiers |
|-------------|
|-------------|

Set No#

Name

|   | Īa | r | 36 | <u> te</u> | S |
|---|----|---|----|------------|---|
| - |    | _ | _  |            |   |

Store Price

**Used Price** 

Popularity

#### **Features**

Year

Theme

**Total Parts** 

Different Parts

Different Colors

Primary Color

Secondary Color





# **Linear Regression First Pass**

| <u>Feature</u>   | <u>VIF</u> |
|------------------|------------|
| Year             | 19.2       |
| Theme            | ~1.9       |
| Total Parts      | 4.9        |
| Different Parts  | 14.6       |
| Different Colors | 16.7       |
| Primary Color    | ~1.3       |
| Secondary Color  | ~1.4       |
|                  |            |



### **Linear Regression Second Pass**

| <u>Feature</u>   | <u>VIF</u> |  |
|------------------|------------|--|
| Year             | _          |  |
| Theme            | ~1.7       |  |
| Total Parts      | 4.4        |  |
| Different Parts  | 6.9        |  |
| Different Colors | -          |  |
| Primary Color    | ~1.1       |  |
| Secondary Color  | ~1.2       |  |



### **Linear Regression Final Results**

#### Second Pass Winner

- Ridge with  $\lambda=10$
- CV Train R<sup>2</sup>-adj: 0.882
- CV Test R<sup>2</sup>-adj: 0.875
- Full Test R<sup>2</sup>-adj: 0.830

#### <u>Final Model</u>

store\_price =

- + 33.8 · total\_parts
- + 8.95 · different\_parts
- + 0.76 ~theme
- 0.23 · ~primary\_color
- 0.37 · ~secondary\_color
- 38.6



# Support Vector Regression (linear kernel)

R<sup>2</sup> train 0.875
R<sup>2</sup> test 0.867

C 1 epsilon 0.125



## Support Vector Regression (linear kernel)

R<sup>2</sup> train 0.875
R<sup>2</sup> test 0.867

C 1 epsilon 0.125



## **Support Vector Regression (RBF kernel)**

R<sup>2</sup> train 0.897
R<sup>2</sup> test 0.896

C 16.7 epsilon 0.05 gamma 0.002



## **Support Vector Regression (RBF kernel)**

R<sup>2</sup> train 0.897
R<sup>2</sup> test 0.896

C 16.7 epsilon 0.05 gamma 0.002



## **Support Vector Regression (RBF kernel)**

R<sup>2</sup> train 0.897
R<sup>2</sup> test 0.896

C 16.7 epsilon 0.05 gamma 0.002



### **Conclusions**

- 1. The <u>store price</u> of various LEGO sets was modeled by linear (accuracy R<sup>2</sup> of 0.83) and support vector regression algorithms (accuracy R<sup>2</sup> of 0.89) models.
- 2. The *total number of parts* and the *different number of parts* were the most important features.
- 3. The SVR model performed slightly better when the RBF kernel was employed compared to the linear kernel.
- 4. Future analysis can be done for the used price and popularity of LEGO sets.