Fundamentals of Computing Coursework 1

Birkbeck, University of London

Baran Buluttekin ID No. 13153116

I have read and understood the sections of plagiarism in the College Policy on assessment offences and confirm that the work is my own, with the work of others clearly acknowledged. I give my permission to submit my report to the plagiarism testing database that the College is using and test it using plagiarism detection software, search engines or meta-searching software.

1. (a) Truth table for F.

We can use ABB = TAVB to transform the F.

In this case F:

F=7(B>A)V((ANBAC)V(¬BAC)) F=7(¬B *A)V((ANBAC)V(¬BAC))

we can transform one more time with De Morgan laws $7(9/4) \equiv 79 \Lambda 74$ then;

$$F = (B \Lambda \neg A) \vee ((A \Lambda B \Lambda C) \vee (\neg B \Lambda C))$$

I divide and labelled sub logic tas 1,2,3 to make it easier in the truth table.

ABC	7A	78	1	3	2_	2V3	F
0 0 0	t	l	0	0	0	0	0
001	١	1	9	Ţ	9	1	1
0 1 0	1	0	i	0	0	9	11
011	1	0	1	0	0	0	\
100	0	1	0	0	0	0	0
101	0	1	\bigcirc	1	Ð	I	1
(()	0	0	0 -	0	0	0	0
1 1	0	0	0	0	ı	1	\

(b) Function F can be realised as a disjunction of five conjunctions!

(TANTBNC)V(TANBNTC)V(TANBNC)V(ANTBNC)V(ANBNC)

(() We can costruct a truth table to examine the argument. We can call additional argument N. $N = (C \rightarrow A) \Lambda (A \rightarrow B)$

ABC	C->A	A -> B	2	F	FAN
000	t		ł	Ð	0
001	0	1	0	l	0
(0 N) 0		1	1		
011	۵	and the second s	0	1	0
(0)	1	Ð	0	0	0
101	· 1	Ð	8	t	0
110	1	1	1	0	0
(1 (1) 1		· ·	(1	

As we can see B is I where the argument is thre. We can conclude that argument is logically correct.

2. Truth table for Az, A, Ao is i

 A2	1	\triangle_{\circ}	Less than 3
0	0	0	1
0	0	ŧ	ł
Ð	1	9	•
1	0	į	0
0	J	(Ð
- [0	0	0
,	- 1	0	
1	ι	- 	
ĺ	l	1	1

Function for less than 3: L3 = (7A2 N7A, N7Ao)V(7A2N7A, NAo)V(7A2NA, NAo)

3. Functions from the statements;

we can transform them with De Morgan lows.

- 1. TAV(BVC)
- 2. BV (AND)
- 3.70V(BVC)

The argument is not correct. We can construct a boolean table and we can find that.

holds true. Therefore we can say not all B=1 sotisfies the three condition, which is required to say that argument is correct.

4. (a) $N=1100\ 0001\ 1011\ 0000\ 0000\ 0000\ 0000\ 0000$ As a first alterative, we can use the formula in page 10 of the FoC-2. pdf. We will get following computation. $N=-2^{31}+2^{30}+2^{4}+2^{4}+2^{4}+2^{2}+2^{2}$

Alternatively, we can calculate it with inverting the bits and adding I.

1111 1111 1111 0010 0111 1100

Then, $-N = 2^{29} + 2^{28} + 2^{12} +$

$$(b)$$
 $2^{31} + 2^{30} + 2^{24} + 2^{23} + 2^{21} + 2^{20}$

= -1.24,1.0112

= -1.101102

= -2210

5. (a) First we will find unsigned binary equal of the number by continuously.

$$107/2 = 53$$

Remaider

 $53/2 = 26$
 $26/2 = 13$
 $13/2 = 6$
 $6/2 = 3$
 $1/2 = 0$
 $1/2 = 0$

We can write as 32 bit bloomy as !

0000 0000 0000 0000 0000 0110 1011

substract I from the number;

0000 0000 0000 0000 0000 0110 1010

invert the bits!

1010 1001 1111 1111 1111 1111

(6) From section (a) we know 107,0 = 11010112

Since the number is negative S should be -1.

11010112 = 1,101011 x 2 then

E = 127+6=133 = 100001012

$$f(x) = \begin{cases} 3^{-x}, & x < 0 \\ 2^{x}, & x > 0 \end{cases}$$

$$f(x) = \begin{cases} -2x - 1, & x < 0 \\ 0, & x = 0 \\ 2x, & x > 0 \end{cases}$$

- 7. (a) for X=2 it's not defined as it will give diviston by zero. Not a function
 - (b) It is onto but not one-to-one because f(m,n) = f(n,m)
 - (c) Also onto but not one-to-one because f(m,n) = f(-m,-n)

(b) G, and G2 graphs are isomorphic and G3 is not. G2 and G, share 3 node subgraph property but this property is not present in the G3 graph.

9. (a) input: bb (5,66), (p,66), (q,6), (p,5), (q, 2) accepted (s, bb), (q, b), (p, b), (q, E) occepted input! aq (s, aa), (s, a), (s, e) stuck Stuck (S, aq), (p,a), input! ab (s, ab), (s, b), (q, E) occepted (s, ab), (p, ab) stuck (s, ab), (s, b), (p, b) (q, E) accepted input! abq (s, aba), (s, ba), (p, ba), (q, a), (q, E) occepted (s, aba), (p, aba) strck (s, aba), (s, ba), (9,9), (9, E) accepted input: E (s, 2) stuck (s, e), (p, E) stick (Not occepted)

9. (b) The new states are \emptyset , $\{53, \{p\}, \{q\}, \{s, p\}, \{s, q\}, \{s, q\}, \{s, q\}, \{s, q\}, \{s, p\}, \{s, p\}, \{s, p\}, \{s, q\}, \{s, q\}, \{s, p\}, \{s, p\}, \{s, p\}, \{s, p\}, \{s, p\}, \{s, q\}, \{s, p\}, \{s, p\},$

The fororible states are Eq3, 2s, q3, 2p, q3 and 2s, p, q3

if we remove unreachable states, we will obtain;

(C) Regular expression: L(A) = L[a*b(aUb)*]

(d) Context-Free!

S -> AbB, A-> E, A-> Aa, B-> E, B-> Ba, B-> Bb

(6)

(b) This language does not sotisfies pumping lemma rules and not a regular language. It doesn't boold (xyv/SP rule for context-free pumping lemma rule.

§ a'b'a' | 1>0, 1>33

14. (i) (A, D) (

(ii) According to machine if input starts with 0 it halts. If the first input is 1 then machine reads the next inputs untill it finds is (empty) symbol, if previous symbol of empty input is 1, it changes it to 0 and halts. Otherwise it will change purpty string to 0 and halts. In any case where the first item in the tape is empty symbol, machine will go to infinite loop and does not stops.

It computes $f(x) = \begin{cases} 2x & \text{for } x \text{ is even} \\ x-1 & \text{for } x \text{ is odd} \end{cases}$

13.

