

Two-Level Logic Optimization

- ◆ Two-level logic representations
 - ➤ Sum-of-product form
 - > Product-of-sum form
- ◆ Two-level logic optimization
 - Key technique in logic optimization
 - Many efficient algorithms to find a near minimal representation in a practical amount of time
 - > In commercial use for several years

= XY' + YZ

- Minimization criteria: number of product terms
- ♦ Example: F = XYZ + XY'Z' + XY'Z + X'YZ + XYY'Z

2024/4/2

Andy Yu-Guang Chen

5

Multi-Level Logic Optimization

- Translate a combinational circuit to meet performance or area constraints
 - > Two-level minimization
 - Common factors or kernel extraction
 - Common expression resubstitution
- ◆ In commercial use for several years
- ◆ Example:

$$f1 = bcd + \overline{bcd} + \overline{cde} +
\overline{ac} + cdf + abcde + abcdf$$

$$f1 = c(\overline{a} + x) + \overline{acx}$$

$$f2 = gx$$

$$f2 = bdg + \overline{bdfg} + \overline{bdg} + \overline{bdeg}$$

$$x = d(b + f) + \overline{d(b + e)}$$

2024/4/2

Andy Yu-Guang Chen

-

Technology Mapping

- ◆ Goal: translation of a technology independent representation (e.g. Boolean networks) of a circuit into a circuit in a given technology (e.g. standard cells) with optimal cost
- Optimization criteria:
 - Minimum area
 - > Minimum delay
 - Meeting specified timing constraints
 - Meeting specified timing constraints with minimum area
- ◆ Usage:
 - Technology mapping after technology independent logic optimization
 - > Technology translation

2024/4/2

Andy Yu-Guang Chen

7

Outline

- ◆ Logic optimization overview
- ◆Two-level logic optimization
- ◆ Multi-level logic optimization

2024/4/2

Andy Yu-Guang Chen

Two-Level Logic Optimization

Goals

- Primary goal is to reduce the number of product terms
 - All product terms have the same cost
 - Implicants correspond to PLA rows
- > Secondary goal is to reduce the number of literals
 - Literals correspond to transistors

2024/4/2

Andy Yu-Guang Chen

Two-Level Logic Optimization

- **Basic idea**: Boolean law x+x'=1 allows for grouping $x_1x_2+x_1 x_2 = x_1$
- Approaches to simplify logic functions:
 - ➤ Karnaugh maps [Kar53]
 - ➤ Quine-McCluskey [McC56]

Andy Yu-Guang Chen

Minimum Sum-of-Products

- ◆ Minimum number of prime implicants which cover all of the 1's
 - Minimum cover (global optimum)
- A sum-of-products expression containing a non-prime implicant cannot be minimum
 - Could be simplified by combining the non-prime term with additional minterm
- ◆ To find the minimum sum-of-products
 - Not every prime implicant is needed
 - ➤ If prime implicants are selected in the wrong order, a non-minimum solution may result
 - Essential prime implicants must be included

2024/4/2

Andy Yu-Guang Chen

13

Minimal Cover or Irredundant cover

- ◆A set of prime implicants that together cover all points in the on-set (and some or all points of the dcset) is called a prime cover
- ◆ A prime cover is irredundant when none of its prime implicants can be removed from the cover
 - Minimal cover (local optimum)
- ◆ Different from minimum cover (possibly same)

2024/4/2

Andy Yu-Guang Chen

ROBDDs and Satisfiability

- ◆ A Boolean function is **satisfiable** if an assignment to its variables exists for which the function becomes '1'
- ◆ Any Boolean function whose ROBDD is unequal to '0' is satisfiable.
- Suppose that choosing a Boolean variable x_i to be '1' costs c_i . Then, the **minimum-cost satisfiability** problem asks to minimize: $\sum_{i=1}^{n} c_i \mu(x_i)$

where $\mu(x_i) = 1$ when $x_i = '1'$ and $\mu(x_i) = 0$ when $x_i = '0'$.

- Solving minimum-cost satisfiability amounts to computing the shortest path in an ROBDD, which can be solved in linear time.
 - Weights: $w(v, \eta(v)) = c_i$, $w(v, \lambda(v)) = 0$, variable $x_i = \phi(v)$.

Brute Force Technique

◆ Brute force technique: Consider all possible elements

- ◆ Complete branching tree has 2 |P| leaves!!
 - > Need to prune it
- Complexity reduction
 - Essential primes can be included right away
 - If there is a row with a single "1" for the column
 - Keep track of best solution seen so far
 - Classic branch and bound

2024/4/2

Andy Yu-Guang Chen

Boolean Network: An Example

$$y1 = f_1(x2, x3) = x2' + x3'$$

 $y2 = f_2(x4, x5) = x4' + x5'$
 $y3 = f_3(x4, y1) = x4'y1'$
 $y4 = f_4(x1, y3) = x1 + y3'$
 $y5 = f_5(x6, y2, y3) = x6y2 + x6'y3'$

2024/4/2

Andy Yu-Guang Chen

35

Multi-Level v.s. Two-Level

♦Two-level:

Often used in control logic design

$$f_1 = x_1 x_2 + x_1 x_3 + x_1 x_4$$

$$f_2 = x_1' x_2 + x_1' x_3 + x_1 x_4$$

- \triangleright Only x_1x_4 shared
- Sharing restricted to common cube

◆ Multi-level:

- Datapath or control logic design
- \triangleright Can share $x_2 + x_3$ between the two expressions
- > Can use complex gates

$$g_1 = x_2 + x_3$$

 $g_2 = x_1 x_4$
 $f_1 = x_1 y_1 + y_2$
 $f_2 = x_1' y_1 + y_2$
(y_i is the output of gate g_i)

2024/4/2

Andy Yu-Guang Chen

Multi-Level Logic Optimization

- ◆Technology independent
- **♦** Decomposition/Restructuring
 - ➤ Algebraic
 - Polynomials
 - > Functional
 - Don't cares
- **♦**Node optimization
 - > Two-level logic optimization techniques are used

2024/4/2

Andy Yu-Guang Chen

27

Decomposition / Restructuring

- ◆Goal: given initial network, find best network
- **◆**Two problems:
 - > Find good common sub-functions
 - ➤ How to perform division
- **◆**Example:

$$f_1$$
 = $bcd + b'cd' + cd'e + a'c + cdf + $abc'd'e' + ab'c'df'$
 f_2 = $bdg + b'dfg + b'd'g + bd'eg$$

decompose:

$$f_1 = c(a' + x) + ac'x'$$
 $x = d(b + f) + d'(b' + e)$
 $f_2 = gx$ $\mathbf{f}_{dividend} = \mathbf{f}_{divisor}$ $\mathbf{f}_{quotient} + \mathbf{f}_{remainder}$

2024/4/2

Andy Yu-Guang Chen

Division

- **◆** Division: p is a Boolean divisor of f if $q \neq \phi$ and r exist such that f = pq + r
 - $\triangleright p$ is said to be a factor of f if in addition $r = \phi$:

$$f = pq$$

- > q is called the quotient
- r is called the remainder
- > q and r are not unique
- ◆ Weak division: the unique algebraic division such that r has as few cubes as possible
 - The quotient q resulting from weak division is denoted by f/p (it is **unique**)

2024/4/2

Andy Yu-Guang Chen

41

Weak Division Algorithm

Weak div(f, p):

 $U = \text{Set } \{u_i\}$ of cubes in f with literals not in p deleted

 $V = \text{Set } \{v_i\}$ of cubes in f with literals in p deleted

/* note that $u_i v_i$ is the j-th cube of f */

$$V^i = \{v_i \in V : u_i = p_i\}$$

$$q = \bigcap V^i$$

$$r = f - pq$$

return(q, r)

2024/4/2

Andy Yu-Guang Chen

Weak Division Algorithm

Example

common
$$f = acg + adg + ae + bc + bd + be + a'b$$

expressions $p = ag + b$
 $U = ag + ag + a + b + b + b + b$
 $V = c + d + e + c + d + e + a'$
 $V' = c + d$
 $V' = c + d + e + a'$
 $Q = c + d = f/p$

2024/4/2

Andy Yu-Guang Chen

43

Algebraic Divisor

◆Example:

$$X = (a + b + c)de + f$$

$$Y = (b + c + d)g + aef$$

$$Z = aeg + bc$$

- ◆Single-cube divisor: ae
- ◆ Multiple-cube divisor: b + c
- Extraction of common sub-expression is a global area optimization effort

2024/4/2

Andy Yu-Guang Chen

Some Definitions about Kernels

- ◆ Definition: An expression is *cube-free* if no cube divides the expression evenly (i.e., cannot be factored)
 - \rightarrow ab + c is cube-free
 - \rightarrow ab + ac = a (b + c) is not cube-free
- ◆ Note: a cube-free expression must have more than one cube ➤ abc is not cube-free
- Definition: The *primary divisors* of an expression f are the set of expressions

$$D(f) = \{f/c \mid c \text{ is a cube}\}$$

2024/4/2

Andy Yu-Guang Chen

40

Kernels

- ◆ Definition: The *kernels* of an expression *f* are the set of expressions
 - $K(f) = \{g \mid g \in D(f) \text{ and } g \text{ is cube free} \}$
- ightharpoonup The kernels of an expression f are K(f) = {f/c}, where
 - / denote algebraic polynomial division
 - > c is a cube
 - ➤ No cube divide f/c evenly (without any remainder)
- ◆ Naïve kernel computation method
 - Divide function by the elements of the power set of its support set
- ◆ The cube c used to obtain the kernel is the *co-kernel* for that kernel

2024/4/2

Andy Yu-Guang Chen

Co-Kernels

- ◆ Definition: A cube c used to obtain the kernel k = f/c is called a co-kernel of k. C(f) is used to denote the set of co-kernels of f.
- **♦** Example

$$x = adf + aef + bdf + bef + cdf + cef + g$$
$$= (a + b + c)(d + e)f + g$$

Kernel	Co-kernel
a+b+c	df, ef
d + e	af, bf, cf
(a+b+c)(d+e)f+g	1

2024/4/2

Andy Yu-Guang Chen

47

Kernels of Expressions

◆Example:

$$f = x_1 x_2 x_3 + x_1 x_2 x_4 + x_3' x_2$$

$$K = \{x_1 x_3 + x_1 x_4 + x_3', x_3 + x_4\}$$

 $> x_1 x_2$ is the co-kernel for the kernel $x_3 + x_4$

◆Kernels can be used to factor an expression

$$f = x_2(x_1(x_3 + x_4) + x_3')$$

◆ Key in finding *common divisors* between expressions

2024/4/2

Andy Yu-Guang Chen

Common Divisor

◆ Theorem (Brayton & McMullen):

f and g have a multiple-cube common divisor if and only if the intersection of a kernel of f and a kernel of g has more than one cube

$$\begin{split} f_1 &= x_1(x_2x_3 + x_2'x_4) + x_5 \\ f_2 &= x_1(x_2x_3 + x_2'x_5) + x_4 \\ K(f_1) &= \{x_2x_3 + x_2'x_4, \\ &\quad x_1(x_2x_3 + x_2'x_4) + x_5\} \\ K(f_2) &= \{x_2x_3 + x_2'x_5, \\ &\quad x_1(x_2x_3 + x_2'x_5) + x_4\} \\ K_1 &\cap K_2 &= \{x_2x_3, x_1x_2x_3\} \end{split}$$

 f₁ and f₂ have no multiplecube common divisor

$$\begin{split} f_1 &= x_1 x_2 + x_3 x_4 + x_5 \\ f_2 &= x_1 x_2 + x_3' x_4 + x_5 \\ K(f_1) &= \{ \ x_1 x_2 + x_3 x_4 + x_5 \} \\ K(f_2) &= \{ \ x_1 x_2 + x_3' x_4 + x_5 \} \\ K_1 &\cap K_2 &= \{ \ x_1 x_2 + x_5 \} \end{split}$$

f₁ and f₂ have multiple-cube common divisor

2024/4/2

Andy Yu-Guang Chen

49

Cube-Literal Matrix

◆ Cube-literal matrix

F = x1x2x3x4x7 + x1x2x3x4x8 + x1x2x3x5 + x1x2x3x6 + x1x2x9

	x_I	x_2	x_3	<i>x</i> ₄	x_5	x_6	x_7	x_8	X9
$x_1x_2x_3x_4x_7$	1	1	1	1	O	O	1	O	O
$x_1x_2x_3x_4x_8$	1	1	1	1	O	O	O	1	O
$x_1x_2x_3x_5$	1	1	1	O	1	0	O	O	О
$x_1x_2x_3x_6$	1	1	1	O	O	1	O	O	О
$x_1x_2x_9$	1	1	O	О	O	О	O	O	1

2024/4/2

Andy Yu-Guang Chen

Cube-Literal Matrix & Rectangles

◆ A rectangle (R, C) of a matrix A is a subset of rows R and columns C such that

$$A_{ij} = 1 \forall i \in R, j \in C$$

- > Rows and columns need not to be continuous
- ◆ A prime rectangle is a rectangle not contained in any other rectangle
 - ➤ A prime rectangle indicates a {co-kernel, kernel} pair

2024/4/2

Andy Yu-Guang Chen

51

Cube-Literal Matrix & Rectangles

◆Example:

$$R = \{\{1, 2, 3, 4\}, \{1, 2, 3\}\}$$

 \triangleright co-kernel: $x_1x_2x_3$

 \triangleright kernel: $x_4x_7 + x_4x_8 + x_5 + x_6$

	x_1	x_2	x_3	<i>x</i> ₄	x_5	x_6	x_7	<i>x</i> ₈	Хg
$x_1 x_2 x_3 x_4 x_7$	1	1	1	1	O	O	1	O	O
$x_1x_2x_3x_4x_8$	1	1	1	1	O	O	O	1	O
$x_1x_2x_3x_5$	1	1	1	О	1	O	O	O	O
$x_1x_2x_3x_6$	1	1	1	O	O	1	O	O	O
$x_1x_2x_9$	1	1	O	O	O	O	O	O	1

2024/4/2

Andy Yu-Guang Chen

Rectangles and Logic Synthesis

♦ Single cube extraction

	F = XC + XY + eg
N	G = Xfg
	H = Y + ef
	X = ab
	Y = bd

	a	Ь	c	đ	e	f	g
	1	2	3	4	5	6	7
abc 1	1	1	1	О	О	О	О
abd 2	1	1	О	1	О	О	O
eg 3	О	О	О	О	1	О	1
abfg 4	1	1	O	O	О	1	1
bd 5	О	1	О	1	О	О	O
ef 6	О	О	O	О	1	1	O

2024/4/2

Andy Yu-Guang Chen

53

Summary

- ◆Two-level logic optimization
 - ➤ Minimization criteria: number of product terms
 - ➤ Karnaugh maps [Kar53]
 - ➤ Quine-McCluskey [McC56]
- ◆ Multi-level logic optimization
 - ➤ Goal : given initial network, find best network
 - > Two problems:
 - Find good common sub-functions
 - How to perform division
 - > Weak Division Algorithm

2024/4/2

Andy Yu-Guang Chen

