Homework 3

$\mathbf{NAME/S:}$ \mathbf{SCC})RE:
-----------------------------------	------

Subject: Quantum Mechanics I

Deadline: Friday 29 July 2022 (until 7pm)

Credits: 20 points Number of problems: 5

Type of evaluation: Formative Evaluation

- This homework consists of problems related to units 1 and 2 of the course.
- You may submit this assignment either individually or in pairs. Submitted assignments should have maximum two authors.
- Unless stated otherwise, write your answers in SI units, and consider all bolded quantities as vector quantities. Please highlight the answers.

1. (4 points) Quantum experiments: photoelectric effect

In a photoelectric effect experiment, a piece of sodium (Na) metal is illuminated by light beams with two different wavelengths $\lambda_1 = 300 \,\mathrm{nm}$ and $\lambda_2 = 600 \,\mathrm{nm}$. If a piece of sodium (Na) metal has a cutoff wavelength of $\lambda_{\mathrm{cutoff}} = 504 \,\mathrm{nm}$, calculate:

- (a) The work function, ϕ , for the sodium metal.
- (b) The maximum kinetic energy and speed of the electrons ejected from the metal piece for each beam.
- (c) The de Broglie wavelength of the ejected electrons.
- (d) Use programming tools to make two plots: one of K_{max} versus λ , and another one of K_{max} versus ν including the data points for both light beams.

Recall that the Planck constant is $h=6.626\times 10^{-34}\,\mathrm{J}\,\mathrm{s}$, the speed of light is $c=3\times 10^8\,\mathrm{m\,s^{-1}}$, and the electron mass is $m_e=9.11\times 10^{-31}\,\mathrm{kg}$.

2. (4 points) Infinite square well potential and expectation values

In class we solved the Schrödinger equation for an infinite square well potential of width a. Such potential allows for bound solutions only as the particle cannot escape from the well. The solutions we found had the following functional form:

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \tag{1}$$

For the n-th state given by the function above, calculate:

- (a) The expectation values associated with the position $x: \langle x \rangle, \langle x^2 \rangle$.
- (b) The expectation values associated with the momentum $p: \langle p \rangle, \langle p^2 \rangle$.
- (c) The dispersions σ_x and σ_p , and their product $\sigma_x \sigma_p$.
- (d) Use programming tools to make a plot of $(\sigma_x \sigma_p)$ vs. n. Is the uncertainty principle satisfied? Which of the $\psi_n(x)$ states comes closest to the uncertainty limit?

3. (5 points) Free particles: Gaussian wave packets

We studied free particles in class and showed that they are represented by wave packets. Consider the case of a free particle whose initial wave function is given by:

$$\Psi(x,0) = \alpha e^{-\beta x^2},\tag{2}$$

where α and β are real and positive constants.

- (a) Find α by normalising the initial wave function, $\Psi(x,0)$.
- (b) Find $\Psi(x,t)$. Hint: compute $\phi(k)$ via Fourier analysis first, and then plug it into the wave packet function.
- (c) Find $|\Psi(x,t)|^2$. Then, plug some fiducial numbers, and sketch $|\Psi(x,t)|^2$ versus x for t=0 and two later times. Qualitatively, what happens to $|\Psi(x,t)|^2$ as time progresses?
- (d) Calculate $\langle x \rangle$, $\langle x^2 \rangle$, $\langle p \rangle$, $\langle p^2 \rangle$, σ_x , and σ_p .

piecewise function:

(e) Does the uncertainty principle hold? At what time t does the system come closest to the uncertainty limit?

4. (5 points) Square potential barrier: transmission and reflection coefficients Let us consider a time-independent square potential barrier, V(x), given by the following

$$V(x) = \begin{cases} 0, & x < 0 \\ V_0, & 0 \le x \le L \\ 0, & x > L, \end{cases}$$

$$V(x) = \begin{cases} V_0, & 0 \le x \le \\ 0, & x > L, \end{cases}$$

- (a) Sketch V(x), labelling the three regions of interest as I, II, and III.
- (b) Find the stationary states that describe particles arriving from $x = -\infty$ with energy $E > V_0$, and sketch the solutions using programming tools.
- (c) Analyse the boundary conditions to compute the transmission and reflection coefficients. Sketch these coefficients versus the barrier width, L, and briefly discuss the results.
- (d) Find the stationary states that describe particles arriving from $x = -\infty$ with energy $E < V_0$, and sketch the solutions using programming tools.
- (e) Compute the transmission coefficient, and discuss how this quantum result differs with respect to classical expectations.

5. (2 points) The Schrödinger equation and potential energy

A particle of mass m with null energy is described by the following time-independent wave function:

$$\Psi(x) = C x e^{-\frac{x^2}{L^2}}$$

where C and L are constants.

- (a) Normalise $\Psi(x)$. Then, plug some fiducial numbers and sketch $\Psi(x)$ versus x.
- (b) Calculate the potential energy V(x) of the particle, and sketch V(x) versus x.