Exploring the role of VIP interneurons in (novel) image detection

VIP response dynamics to novel versus familiar

Garret et al 2020, eLife

Feedback inhibition

Dippopa et al 2018, Neuron

Our dataset

Do VIP neurons contain information to decode the novelty or familiarity of an image or the identity of the image itself?

<u>Hypothesis</u>: VIP neurons, but not SST neurons, would have sufficient information to decode novel vs familiar and image identities.

VIP population average dF/F is higher to novel versus familiar stimuli

Approaches: Logistic Regression Model & Multilayer Perceptron (MLP)

Logistic Regression

VIP population activity is affected by image change but not by reward acquisition

VIP neurons contain information to decode novel and familiar images

SST neurons contain sufficient information to decode novel and familiar images

SST neurons were as capable as VIP neurons in decoding familiar and novel stimuli

Cross-validation accuracy using SST interneurons only

Using MLP to decode novel versus familiar with the mean z-scored activity from VIP or SST

VIP does not contain sufficient information to decode image identity

Preliminary analysis of SST neurons also suggested that they did not contain sufficient information to decode image identity

Conclusions

- Both VIP and SST neurons contain information to decode novel and familiar images.
- VIP neurons did not contain sufficient information to decode image identity.
- We were limited by our small dataset (and time).