

STATISTICS 10 Introduction to Statistical Reasoning

LINEAR REGRESSION

Modeling Linear Relationship with a Line

The **regression line** is a statistical model that summarizes the linear trend of the observations. It also represents our prediction for any new or future observations.

The equation for a straight line has the form:

$$y = a + bx$$

y – the response variable; x – the explanatory variable;

a – the intercept; b – the slope

Finding the Regression Line of "Best" fit

Blue dots: observed (x, y) values

Red line: fitted regression line

Orange dots: predicted values (x, \hat{y})

Residual: $y_i - \hat{y}_i$, the vertical distance between each observation and the line

Criterion

The line with the smallest sum of squared residuals minimize $\sum (y_i - \hat{y}_i)^2$.

-- least squares regression line

Interpreting the Regression Line

The mathematical expression of the regression line:

$$\hat{y} = a + bx$$

Statistics needed for calculating *a* and *b*:

- \bar{x} , s_x -- the mean and the standard deviation of the explanatory variable
- \bar{y} , s_v -- the mean and the standard deviation of the response variable
- r -- the correlation coefficient

The slope:
$$b = r \frac{s_y}{s_x}$$

Interpretation: the average change in y when x increases by 1 unit

- When *b* is positive, *y* is expected to increase as *x* increases
- When b is negative, y is expected to decrease as x increases **Interpretation**: the predicted value of y when x is 0

The intercept: $a = \bar{y} - b\bar{x}$

• The y-intercept is meaningful only if it makes sense for x to be 0.

Regression Line Example

	Age (X)	Distance (Y)	
Mean	51	423	
SD	21.78	82.8	
Correlation	-0.793		

- 1. Find the least squares regression line.
- 2. Predict the maximum distance at which a sign is legible for a 60-year-old.

MODEL EVALUATION

Measure the Goodness of Fit -- R^2

R^2 -- The Coefficient of Determination

- Range: $0 \le r^2 \le 1$, Often converted to a percentage (0% 100%).
- Measures how much the variation in response variable y is explained by the predictor x.
- The larger r^2 , the smaller the amount of variation about the regression line.

None of the variation in y is explained by x.

64% of the variation in y is explained by x.

The variation in y is perfectly explained by x.

Measure the Goodness of Fit -- Residual Plot

A residual plot shows how close each data point is vertically from the regression line.

- The horizontal axis -- the explanatory variable.
- The vertical axis -- the residuals [observed value y predicted value \hat{y}]

Scatterplot of data with fitted regression line

Good fit:

- The points are randomly scattered around 0.
- There is no apparent pattern in the plot.

Goodness of fit -- Residual Plot

Cautionary Notes

- Do not fit linear models to nonlinear relationships.
- Do not extrapolate! -- The linear trend may not continue to hold beyond the range of the data.
- Beware of outliers!
- Correlation is not causation!

ASSOCIATION VS. CAUSATION

Association and Causation

Association: one variable provides information about another.

Two variables are associated if there is a relationship between them.

Caution! Association does NOT mean Causation!

Confounding Variable

A third variable that influences the variables of interest.

- Causes a difference between the two groups
- Causes the two variables of interest to falsely appear to be causal related

Example -- Fire Damage

The scatterplot illustrates how the number of firefighters sent to fires (X) is related to the amount of damage caused by fires (Y) in a certain city.

Example - Hospital Death Rates

The following two-way table summarizes the data about the status of patients who were admitted to two hospitals in a certain city (Hospital A and Hospital B).

The purpose of the study is to examine whether there is a hospital effect on patients' status.

		Patient's Status		
		Died	Survived	Total
Hospital	Hospital A	63	2037	2100
	Hospital B	16	784	800
	Total	79	2821	2900

Example - Hospital Death Rates

		Patient's Status		
		Died	Survived	Total
_	Hospital A	63	2037	2100
Hospita	Hospital B	16	784	800
	Total	79	2821	2900

		Patient's Status		
		Died	Survived	Total
_	Hospital A	57	1443	1500
Hospital	Hospital B	8	192	200
	Total	65	1635	1700

Patients not severly ill

		Patient's Status		
		Died	Survived	Total
1	Hospital A	6	594	600
Hospital	Hospital B	8	592	600
	Total	14	1186	1200

Establishing Causality

We want to answer whether the treatment variable causes the changes in the outcome variable

- **Treatment group**: subjects who receive the treatment of interest
- Control group: subjects who do not receive the treatment

In order to conclude causality from a study, it is important to have both treatment and control groups, and for subjects in both groups to be identical in every way except for the treatment.