TECHNISCHE UNIVERSITÄT DRESDEN

FAKULTÄT ELEKTROTECHNIK UND INFORMATIONSTECHNIK

Elemente der Modellbildung und Simulationstechnik

PRAKTIKUMSAUFGABE II

Gruppe 11

Cao, Bozhi Gao, Yue Jia, Xuehua Zhu, Jinyao

1. Aufgabe

1.1 Signalflussplan

siehe Programm: A1_Hydropulszylinder.mdl

1.2 Servoventil testen:

siehe Programm: A1_Servoventil_Test.mdl

1.3 Verifikation:

siehe Programm: a1_main.m

2. Aufgabe

2.1 Berechnung der Transitionsmatrix und diskrete Eingangsmatrix:

siehe Programm: a2_main.m

2.2 Vergleichen(mit nichtlineares kontinuierliches Modell):

siehe Programm: a2_main.m und A2_compare_c_d.mdl

3. Aufgabe

3.1 Dimensionierung der Reglerverstärkung:

siehe Programme: a3_main.m und A3_control_loop_tune.mdl

3.2 Geschlossener Regelkreis mit linearem zeit-diskreten Streckenmodell:

siehe Programm: $a3_main.m$ und $A3_control_loop_lin_d_model.mdl$

Kritische Reglerverstärkung: $K_{\rm I,krit} \approx 2.215$.

4. Aufgabe

4.1 Geschlossener Regelkreis mit nichtlinearem kontinuierlichem Streckenmodell:

siehe Programm: a4_main.m und A4_control_loop_nlin_c_model.mdl

4.2 Vergleichen mit dem linearen zeit-diskreten Streckenmodell:

Abbildung 1: (a) $u_{\text{soll}} = 0.1$; (b) $u_{\text{soll}} = 0.5$; (c) $u_{\text{soll}} = 0.8$;

Bemerkung:

je weiter der $u_{\rm soll}$ von Null entfernt ist, desto größer sind die Differenzen(auch Linearisierungsfehler) zwischen dem linearen zeit-diskreten und dem nichtlinearen zeit-kontinuierlichen Modell.

4.3 Kritische Reglerverstärkungen:

u_{soll}	0.1	0.5	0.8
$K_{ m I,krit}$	2.46	4.9	15