2024 NOIP模拟赛

题目名称	迷宫	玩具	权重	周长
题目类型	传统型	传统型	传统型	传统型
目录	maze	toy	weight	perimeter
可执行文件名	maze	toy	weight	perimeter
输入文件名	maze.in	toy.in	weight.in	perimeter.in
输出文件名	maze.out	toy.out	weight.out	perimeter.out
每个测试点时限	1.5秒	1.0秒	1.0秒	1.0秒
内存限制	512M	512M	512M	512M
测试点数目	20	20	20	25
测试点是否等分	是	是	是	是

提交源程序文件名

对于C++语言	maze.cpp	toy.cpp	weight.cpp	perimeter.cpp	

编译选项

对于C++语言	-O2 -std=c++14 -static
---------	------------------------

注意事项 (请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题, 申诉时一律不予受理。
- 5. 若无特殊说明, 结果的比较方式为全文比较(过滤行未空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @3.70GHz, 内存 32GB。上述时限以此配置为准。
- 9. 只提供 Linux 格式附加样例文件。
- 10. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

T1 迷宫 (maze)

题目背景

在一个遥远的魔法世界里,有一个名叫小 H 的年轻法师。他住在一座神秘的迷宫城堡中,这座城堡由无尽的走廊和房间构成,墙壁上布满了奇异的符文和闪烁的光点。小 H 非常喜欢探索这个迷宫,然而,这次他的冒险却与众不同。

问题描述

一天,小 H 收到了来自城堡另一端的信件,信中提到他的好友小 M 被困在一个古老的陷阱中,急需帮助。小 H 的心中充满了焦虑,他决定立刻前往救援。然而,迷宫的结构复杂,通道曲折,让他不得不面对艰难的挑战。

小 H 站在迷宫的起点 S 处,四周是一片宁静的黑暗,只有微弱的光线透过石缝洒落在地面上。他深吸一口气,开始了他的冒险。迷宫的墙壁上布满了不可穿越的障碍物(用字符 # 表示),而那些可以通行的道路则是光滑的地面(用字符 # 表示)。小 H 记得在迷宫的另一端,有一个神秘的终点 # ,那里正是他的好友小 M 被困的地方。

小 H 的移动方式非常灵活,他可以花费 1 的时间选择向上、下、左、右移动一步。然而,迷宫中的障碍物让他每一步都需要谨慎考虑。为了加快速度,小 H 还拥有一种强大的魔法能力,他可以在自己的位置上施展魔法,花费 t 的时间到以距离当前格子不超过 k 的任意位置。这让他在面对复杂的迷宫时,能够迅速穿越障碍,寻找出路。

随着小 H 的不断探索,他发现迷宫中的每一个转角都藏着未知的危险与机遇。有时他会遇到迷宫中的守卫,他们是由魔法构成的生物,阻挡着他的去路;有时他会发现隐藏的宝藏,给予他额外的力量来应对接下来的挑战。

小 H 明白,时间紧迫,他必须尽快找到通往终点 T 的道路。他开始思考,怎样才能尽可能花费最短的时间,顺利到达小 M 的身边。每一次魔法的施展都需要谨慎计算,因为他知道,只有在关键时刻才能发挥出最大的效果。

在这场充满挑战的冒险中,小 H 不仅要依靠自己的智慧和勇气,还要善用他的魔法,才能最终打破迷宫的束缚,救出他的好友。时间在流逝,迷宫的秘密等待着他去揭开,而小 H 的旅程才刚刚开始......

输入格式

从文件 maze.in 中读入数据。

第一行,四个正整数 n, m, k, t。

接下来n行,每行m个字符描述迷宫。

其中 # 表示障碍, . 表示平地, S 表示起点, T 表示终点。

输出格式

输出到文件 maze.out 中。

如果无解,请输出-1,否则输出一个正整数表示最短的时间。

样例1

输入样例

```
1 | 4 4 3 4 2 | S.#. 3 | ..#. 4 | .#.. 5 | .#.T
```

输出样例

1 7

样例2

见选手目录下的 maze/maze2.in 与 maze/maze2.ans。

这个样例满足测试点4的约束条件。

数据范围

对于所有数据,满足 $1 \leq n, m \leq 2000$, $1 \leq k \leq 8$, $1 \leq t \leq 10^9$,保证 S 和 T 只出现一次。

测试点	$n,m \leq$	特殊性质
$1\sim 3$	5	无
$4\sim 6$	10	无
$7\sim 10$	100	无
$11\sim14$	2000	t = 1
15, 16	2000	保证不存在#
17	2000	保证 S 和 T 相邻
18, 19	2000	$t=10^9$
20	2000	无

T2 玩具(toy)

问题描述

小 T 买了一个毛毛虫玩具。毛毛虫的构造非常简单,由上下两部分组成:

- 上半部分是毛毛虫的身体, 长度为 a;
- 下半部分是毛毛虫的脚,每只脚占一个单位长度,毛毛虫共有 b只脚。

一开始毛毛虫的身体在最左边 a 个位置,脚在最左边 b 个位置。最终,毛毛虫的身体要在最右边 a 个位置,脚要在最右边 b 个位置。

图 1: 示例

现在,毛毛虫要从木板的左边爬到右边。木板的长度为n,由于小 T 比较穷,用了很多年的木板在某些位置已经破了。毛毛虫不能将脚放在这些破的位置。

众所周知, 毛毛虫是通过蠕动爬行的, 因此, 毛毛虫的运动分为 2 种操作:

- 1. 将某一只脚向右移动若干距离,要求最后的落脚点的木板不能是破的,并且,要严格在前一只脚的 左边;
- 2. 将上半部分身体向右移动 1 个距离,要求移动后所有的脚仍然在身体下方。

这两种的操作均需要花费 1 的时间。现在,小 T 希望聪明的你告诉他,毛毛虫爬到最右边(即身体的的最右一格在 n 号位置,并且所有的脚也在最右边)最少需要多少时间。当然,有的时候,小 T 家的木板已经残破不堪,毛毛虫无法到达最右边,那么请输出 T MPOSSIBLE 。

问题保证最开始的 b 个位置和最后的 b 个位置木板都是好的。

输入格式

从文件 toy.in 中读入数据。

第一行包含三个正整数 b, a, n,分别表示身体长度、脚的长度和木板长度。

第二行包含 n 个 01 字符,其中 0 表示当前位置木板是破的, 1 表示当前位置木板完好。

输出格式

输出到文件 toy.out 中。

一行一个数,表示毛毛虫花费的最少时间,无解输出 IMPOSSIBLE。

样例1

输入样例

```
1 | 1 3 5
2 | 11011
```

输出样例

1 | 5

样例2

见选手目录下的 toy/toy2.in 与 toy/toy2.ans。

这个样例满足测试点 12 的约束条件。

样例3

见选手目录下的 toy/toy3.in 与 toy/toy3.ans。

这个样例满足测试点 16 的约束条件。

数据范围

对于所有数据,满足 $1 \le b \le a \le n \le 3 \times 10^6$ 。

测试点	$n \le$	特殊性质
$1\sim 4$	10	无
$5\sim 8$	$3 imes10^6$	b = 1
$9\sim11$	$3 imes10^6$	没有破地板
$12\sim16$	10^4	无
$17\sim 20$	$3 imes 10^6$	无

T3 权重(weight)

题目背景

夜里,应该已经过了12点,你因为之前小睡了一会,现在非常精神,于是决定再做点什么。回想起白天老师对你的建议:想清楚自己的目标。

于是你决定来总结一下。

问题描述

你根据自己掌握的技能之间的关系,绘制出了一棵 n 个节点的技能树,树的节点代表一个技能,而树上的任意一条简单路径则代表了一个发展方向。

每个点有一个权重 w_i ,代表这个点的技能的效果。一条路径的价值则是其包含的点的权重按位异或的结果。

现在你需要根据这幅图决定发展方向的起点。受困于现实情况,你认为每个点会在以他为端点的 n 条路径中随机选取一条,称为该点的实际路径,这条路径的价值就是这个点的实际价值。你将通过接下来一个阶段的研究搞明白每个点的实际价值,并从中选择任意一个实际价值最大的点作为发展的起点,该点的实际价值就是这棵技能树的价值。

虽然你现在还不知道每个点的具体实际价值,但是你假设每个点的实际路径将在n个候选方案中等概率随机。你希望知道最终技能树的价值大于等于t的概率。

请输出概率乘 n^n 后对 998244353 取模的结果。

输入格式

从文件 weight.in 中读入数据。

输入第一行,包含一个正整数 n ,表示树的节点个数。

接下来一行,每行两个正整数 u, v,表示树中的一条边 (u, v)。

接下来一行 n 个非负整数,第 i 个是 w_i 代表节点 i 的权重。

接下来一行一个非负整数t,含义如题目描述所示。

输出格式

输出到文件 weight.out 中。

输出一个非负整数,表示概率乘 n^n 对 998244353 取模的结果。

样例1

输入样例

输出样例

```
1 | 0
```

样例1解释

没有任何路径的价值 ≥ 4 ,因此概率为 0。

样例2

输入样例

```
      1
      4

      2
      1
      2

      3
      2
      3

      4
      1
      4

      5
      1
      3
      2

      6
      3
```

输出样例

```
1 | 148
```

样例2解释

考虑从每个点出发的路径:

```
1. 结点 1 价值 \geq t 概率: \frac{1}{4} (到 4);
2. 结点 2 价值 \geq t 概率: \frac{1}{4} (到 2);
3. 结点 3 价值 \geq t 概率: \frac{0}{4};
4. 结点 4 价值 \geq t 概率: \frac{1}{4} (到 1)。
```

总概率为 $\frac{37}{64}$, 故答案为 148。

样例3

输入样例

```
1 | 5
2 | 5 | 3
3 | 2 | 1
4 | 4 | 2
5 | 1 | 3
6 | 2827309828 | 1072955396 | 267871571 | 670894092 | 2402751778
7 | 2218918831
```

输出样例

1 | 3053

样例4

见选手目录下的 weight/weight4.in 与 weight/weight4.ans。

这个样例满足测试点5的约束条件。

样例5

见选手目录下的 weight/weight5.in 与 weight/weight5.ans。

这个样例满足测试点 18 的约束条件。

数据范围

对于所有测试数据保证: $1 \leq n \leq 3 \times 10^5, 1 \leq u,v \leq n$ 。保证输入为一棵树,即满足无环、连通。 $0 \leq w_i, t < 2^{32}$ 。

测试点	$n \le$	特殊性质
1	3	无
2,3	10^{2}	无
4	10^{3}	A
5,6	10^{3}	无
7,8	$5 imes 10^4$	A
$9\sim11$	$5 imes 10^4$	无
12,13	10^{5}	A
14	$3 imes10^5$	A
$15\sim17$	$3 imes10^5$	В
$18\sim 20$	$3 imes10^5$	无

• 特殊性质 A: 保证对于任意 $1 \le i < n$, 满足 i 和 i+1 之间有边;

• 特殊性质 B: 保证对于任意 $1 < i \le n$,满足 1 和 i 之间有边。

T4 周长

问题描述

有 n 位同学站在一个 $w \times h$ 的二维平面上,第 i 个同学在 (X_i, Y_i) 。

对于第i个同学,他可以选择进行以下4种操作之一:

- 1. 摧毀二维平面 $x < X_i$ 的部分;
- 2. 摧毀二维平面 $x > X_i$ 的部分;
- 3. 摧毀二维平面 $y < Y_i$ 的部分;
- 4. 摧毀二维平面 $y > Y_i$ 的部分。

请最大化所有同学完成操作后平面剩余部分的周长。

输入格式

从文件 perimeter.in 中读入数据。

第一行包括三个整数 n, w 和 h.

接下来的 n 行,每行两个整数 X_i 和 Y_i ,表示第 i 个同学的坐标。

输出格式

输出到文件 perimeter.out 中。

输出一个整数,表示所有同学完成操作后平面剩余部分的最大周长。

样例1

输入样例

```
1 | 5 5 4 2 0 0 0 3 1 1 4 2 2 5 4 3 6 | 5 4
```

输出样例

1 12

样例2

见选手目录下的 perimeter/perimeter2.in 与 perimeter/perimeter2.ans。

这个样例满足测试点 4 的约束条件。

样例3

见选手目录下的 perimeter/perimeter3.in 与 perimeter/perimeter3.ans。

数据范围

对于所有测试数据保证: $1 \leq w, h \leq 10^8$, $1 \leq n \leq 3 \times 10^5$, $0 \leq X_i \leq w$, $0 \leq Y_i \leq h$ 。

测试点	$n \le$	特殊性质
1	500	AB
2	500	A
3	500	В
4, 5	500	无
6,7	5000	A
8,9	5000	В
$10\sim12$	5000	无
$13\sim15$	10^5	无
16, 17	$3 imes10^5$	AB
$18\sim 20$	$3 imes10^5$	A
$21\sim24$	$3 imes10^5$	В
25	$3 imes10^5$	无

• 特殊性质 A: $1 \le w, h \le 100$;

• 特殊性质 B: 保证 $X_i < \frac{w}{2}$ 。