# Tutorial: Setting up a Reinforcement Learning pipeline for a Telco Core Network (part 2)

 $27^{th}$  Conference on Innovation in Clouds, Internet and Networks ICIN 2024

Shantanu Verma \*

Guillaume Fraysse §

\*Orange Innovation Networks, Gurgaon, India §Orange Innovation Networks, Châtillon, France

March  $11^{th}$ , 2024





# Installing the Gym environment and pipeline

| Operating System                            | Linux                                   | macOS | Windows |  |  |
|---------------------------------------------|-----------------------------------------|-------|---------|--|--|
| Repository access                           | Git command or download zip from GitHub |       |         |  |  |
| Package installer and dependency management | pip , Miniconda or Anaconda             |       |         |  |  |
| Virtual environment                         | venv or Poetry                          |       |         |  |  |
| Interpreter                                 | CPython 3.9+                            |       |         |  |  |

A possible alternative is to use Google Colab, but you would miss the fun animation of the examples.





# Installing the Gym environment and pipeline

Requires around 10GB to install and compile all dependencies

#### Installation, follow instructions from README.md

- git clone https://github.com/gfraysse/icin2024\_tutorial.git
- python -m venv <your virtual env>
- source <your virtual env>/bin/activate
- pip install -r requirements.txt





**Role**: provides standard interface for RL algorithms to interact with actual environment

- Gymnasium: Open-source python library for developing & comparing reinforcement learning algorithms
  - Provides standard API for learning algorithms and environment to communicate
  - Set of environments. E.g. Classic Control, Atari, MuJoCo etc.
  - Drop-in replacement of OpenAl Gym since 2021





- MagmaEnv: Environment definition complying with Gym
  - a way to manage the environment while adhering to MDP
  - helps the learning algorithm to control the environment
  - implements the crucial methods like step() and reset()





- step(): accepts an 'action' and transitions the environment to a new state. It then returns:
  - a new state: in which agent finds itself after executing the action
  - reward: feedback for taking the action
  - terminated: indicates whether environment reached terminal state.
  - info: general info about environment
- reset(): Moves the environment to an initial state.



 TelcoCoreScalingEnv: simulation environment mimicking Magma





## Finilizing the installation the Gym environment and pipeline

Requires around 10GB to install and compile all dependencies

#### Installation, follow instructions from README.md

- git clone https://github.com/gfraysse/icin2024\_tutorial.git
- python -m venv <your virtual env>
- source <your virtual env>/bin/activate
- pip install -r requirements.txt





## Running an experiment

#### Adjust the configuration

- Configuration of the pipeline config\_per.yaml
- Configuration of the environment telco\_core\_scaling/envs/config/config\_env.yaml

#### Run an experiment

python pipeline-exp\_d3qn\_per\_sim.py







### Number of calls dropped:

- Computed by the pipeline
- Measures the number of sessions that could not be initiated





S. Verma, G. Fraysse



#### UE attach rate:

- Metric collected from Magma NMS
- Attach rate of the User Equipments (UEs) connecting to the Access Gateways (AGWs)







#### Crash count:

- Measured by the pipeline
- Detect when something is wrong with the environment during the training (usually a crash, or an issue when starting a new instance)
- Initiate a reset





S. Verma, G. Fraysse



#### UEs connected:

- Metric collected from Magma NMS
- Number of UEs connected on all the AGWs currently running
- Different from Normalized UEs connected metric





S. Verma, G. Fraysse



#### VM count:

- Metric collected from Magma NMS
- Measure the number of active instances of AGW(s)





### Reward function

| Metric | Definition                 |  |  |  |  |
|--------|----------------------------|--|--|--|--|
| U      | Number of UEs connected    |  |  |  |  |
| M      | Memory usage, in MB        |  |  |  |  |
| D      | Number of dropped sessions |  |  |  |  |

- Maximum reward value is 1
- Encourages the Network Functions (NFs) to use resources optimally around 70%
- Resource usage above 80% or crashes are penalized with lowest reward value -1.

$$r = \begin{cases} 1 - (0.7 - \max(M, U) - D) & \text{if M, U} \in [0, 80] \\ \max(-\max(M, U) - 10 * D, -1) \text{otherwise.} \end{cases}$$





## Number of sessions dropped







cenano (b) D3QN PER scenan

(c) D3QN PER+AM scenario

Evolution of the number D of dropped sessions, during the three experiments





## Average values of metrics during the experiments

| Experiment                                            | Steps | DUR | Metric (average) |     |      |      |      |  |  |  |
|-------------------------------------------------------|-------|-----|------------------|-----|------|------|------|--|--|--|
|                                                       |       | (h) | U                | M   | P    | C    | D    |  |  |  |
| buffer filling + $\epsilon$ decay + pure exploitation |       |     |                  |     |      |      |      |  |  |  |
| D3QN PER                                              | 10k   | 154 | 345              | 78  | 5.76 | 3.25 | 0.60 |  |  |  |
| D3QN PER+AM                                           | 10k   | 187 | 368              | 59  | 4.81 | 3.96 | 0.49 |  |  |  |
| $\epsilon$ decay + pure exploitation                  |       |     |                  |     |      |      |      |  |  |  |
| D3QN PER                                              | 6k    | 63  | 382              | 61  | 4.48 | 3.57 | 0.25 |  |  |  |
| D3QN PER+AM                                           | 6k    | 76  | 408              | 41  | 3.11 | 4.63 | 0.12 |  |  |  |
| pure exploitation                                     |       |     |                  |     |      |      |      |  |  |  |
| D3QN PER                                              | 4k    | 29  | 407              | 51  | 3.65 | 3.80 | 0.03 |  |  |  |
| D3QN PER+AM                                           | 4k    | 34  | 420              | 33  | 2.60 | 4.84 | 0.01 |  |  |  |
| Threshold-based                                       | 4k    | 145 | 247              | 119 | 9.72 | 2.16 | 1.73 |  |  |  |





### Lessons learned

Reinforcement Learning (RL) is complex:

- Not your typical network or software engineer skill
- Very active area of research







### Lessons learned

#### RL is complex:

- Not your typical network or software engineer skill
- Very active area of research

#### Automation of Network Core scaling:

- Development is required
- Probably better to use Infrastructure as Code framework to be laaS-independent





### Lessons learned

#### RL is complex:

- Not your typical network or software engineer skill
- Very active area of research

#### Automation of Network Core scaling:

- Development is required
- Probably better to use Infrastructure as Code framework to be laaS-independent

#### Load generation is always tricky:

- Commercial products exist
- Lack of open source tools to generate traffic in a consistent way for a long time
- Traffic needs to be balanced across all instances





Q & A

• Any questions left ?