Nichtdeterministische Endliche Automaten

Definition Nichtdeterministischer Endlicher Automat

Ein endlicher nichtdeterministischer Automat $A = (X, S, S_0, \delta, F)$ besteht aus:

 $X: Endliches\ Eingabealphabet$

 $S: Endliche\ Zustandsmenge$

 S_0 : Menge der Startzustände $\subseteq S$

 $\delta: Zustands \ddot{u}$ bergangs funktion : $\delta: S \times X \rightarrow P(S)$

 $F: Menge \ der \ Endzust \ddot{a}nde \subseteq S$

Aufgabe 1

Gegeben sei das Alphabet $X = \{a, b, c\}.$

Konstruieren sie einen nichtdeterministischen endlichen Automaten der alle Wörter akzeptiert, welche die Zeichenkette acab enthalten. Geben sie den Automaten in Form eines Übergangsgraphen und eines Tupels an.

Aufgabe 2

Gegeben sei folgender nichtdeterministischer endlicher Automat.

$$A = (\{a, b\}, \{S_0, S_1, S_2\}, \{S_0\}, \delta \text{ gem\"aß } Graph, \{S_2\})$$

Konstruieren sie entsprechend des Beweises in der Vorlesung den zugehörigen deterministischen endlichen Automaten. Geben sie also die Zustandsübergangsfunktion für jedes Element aus der Potenzmenge $P(\{S_0, S_1, S_2\})$ an.

Aufgabe 3

a) Gegeben sei folgender nichtdeterministischer endlicher Automat.

$$A = (\{a, b\}, \{S_0, S_1, S_2\}, \{S_0\}, \delta \text{ gem\"aB Tabelle}, \{S_2\})$$

δ	a	b
S_0	S_1	S_2
S_1	S_1, S_2	{}
S_2	{}	{}

Konstruieren sie den zugehörigen endlichen deterministischen Automaten. Geben sie diesen als Tupel und die Zustandsübergangsfunktion als Tabelle an.

b) Gegeben sei folgender nichtdeterministischer endlicher Automat.

$$A = (\{a, b\}, \{S_0, S_1, S_2, S_3\}, \{S_0, S_3\}, \delta \text{ gem\"{a}B Tabelle}, \{S_2, S_3\})$$

δ	a	b
$\overline{S_0}$	S_0, S_1	{}
S_1	{}	S_1, S_2
$\overline{S_2}$	S_0, S_2	{}
$\overline{S_3}$	{}	S_1

Konstruieren sie den zugehörigen endlichen deterministischen Automaten. Geben sie diesen als Tupel und die Zustandsübergangsfunktion als Tabelle an.

Aufgabe 4

Gegeben sei folgender nichtdeterministischer endlicher Automat.

$$A = (\{x, y\}, \{N_0, N_1, N_2, N_3\}, \{N_0, N_2\}, \delta \text{ gem \"{a}} \beta \text{ Graph}, \{N_1, N_3\})$$

Konstruieren sie den zugehörigen endlichen deterministischen Automaten. Geben sie diesen als Tupel und die Zustandsübergangsfunktion als Tabelle an (Angelehnt an SoSe17 Aufgabe 1. b)) .