	Lecture L: Review
D	ata can be represented as a matrix.
Data	can be rep. as a mtx weight, weight, age
	meas heist,
EX	Data mtx on N=4
	(6. 00 0
	\ = 5.5 (50 20) for me have
	1 7.3 200 25 a NXP
	$\lfloor \frac{n}{2} \rfloor$
	height weight age (P=3)
	Wa Wer
Vieu	I a mtx as a collection of rows
	$\left(\begin{array}{c} \lambda_{1} \\ \gamma \end{array}\right)$ $\lambda_{n} \in \mathbb{R}^{P}$ is
	$\frac{1}{2}$
	X = an observation
	$\left(-\gamma \right)$
	Ex. $\chi_1 = (6,100,10)$
O	a collection of Cols
	a colderial of (015) where $\lambda_p \in \mathbb{R}^N$
	X = X, Xz Xp is a variable
	$\underline{\varepsilon}_{K}, \chi = (6.1, 5.5, 7.5, 6)$
	'
	is height var.

Inner Products; If a, b = RP then the inner prod is $a \cdot b = ab = aTb = \sum_{k=1}^{r} a_k b_k$ Norm! The norm/lensth $\|a\| = \sqrt{\sum_{k=1}^{p} a_k^2} = \sqrt{a_k^2}$ What about matrices? A = RMXM; B = RMXP

Then AB = R must match 4 ways to dofn AB! Inner product (AB) ij = Z Aik Bkj = row i of A · (o) j of B (2) LC of Cols of A B= [B, Bz...Bp] then AB = AB, ABz...ABp)

Projection: X, y & R Her the proj of y on to X y = UxUxy

in direction

y = UxUxy $= \frac{\chi}{\|\chi\|} \frac{\chi'}{\|\chi\|} y$ $||\chi|| = \sqrt{\chi^{T}\chi}$ $= \frac{\chi \chi}{\|\chi\|^2} y$ $\frac{\chi \chi^{\mathsf{T}} y}{\chi^{\mathsf{T}} \gamma}$ $=\chi(\chi^{T}\chi)^{-1}\chi^{T}y$ what about a mtx? X ŷ = proj of y onto col X (ol(X) closest vec. to y in Colx y = X(XTX)Xy

Orthogonality; both = ortho-normal Unit: || u| = 1 Brthogenal: UTV = 0 Orthogonal Mtx: QERNXN is called orthogonal it cols of B are mutually ortho-normal (1) cols are unit rectors (2) Cols are orthogonal Can show $Q^TQ = I = QQ^T$ i.e. $\varphi^{-1} = \varphi^{T}$. Eigen - Vectors/Valves If A a mtx then v is an e-vector
assoc. w/ e-val. & if $Av = \lambda v$

If A symmetric matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$$
Symmetric over main diag

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

Eigen-value Decomp (EVD)

If A is symmetric then square

$$A = ODOT$$

where
$$O = \begin{bmatrix} v_1 & v_2 & \cdots & v_N \\ v_1 & v_2 & \cdots & v_N \end{bmatrix}$$

$$O = \begin{bmatrix} v_1 & v_2 & \cdots & v_N \\ v_1 & v_2 & \cdots & v_N \end{bmatrix}$$

$$O = \begin{bmatrix} v_1 & v_2 & \cdots & v_N \\ v_1 & v_2 & \cdots & v_N \end{bmatrix}$$

$$O = \begin{bmatrix} v_1 & v_2 & \cdots & v_N \\ v_1 & v_2 & \cdots & v_N \\ v_2 & \cdots & v_N \end{bmatrix}$$

$$O = \begin{bmatrix} v_1 & v_2 & \cdots & v_N \\ v_1 & v_2 & \cdots & v_N \\ v_2 & \cdots & v_N \end{bmatrix}$$

$$O = \begin{bmatrix} v_1 & v_2 & \cdots & v_N \\ v_1 & v_2 & \cdots & v_N \\ v_2 & \cdots & v_N \end{bmatrix}$$

$$O = \begin{bmatrix} v_1 & v_2 & \cdots & v_N \\ v_1 & v_2 & \cdots & v_N \\ v_2 & \cdots & v_N \end{bmatrix}$$

$$O = \begin{bmatrix} v_1 & v_2 & \cdots & v_N \\ v_1 & v_2 & \cdots & v_N \\ v_2 & \cdots & v_N \end{bmatrix}$$

$$O = \begin{bmatrix} v_1 & v_2 & \cdots & v_N \\ v_1 & v_2 & \cdots & v_N \\ v_2 & \cdots & v_N \end{bmatrix}$$

$$O = \begin{bmatrix} v_1 & v_2 & \cdots & v_N \\ v_1 & v_2 & \cdots & v_N \\ v_2 & \cdots & v_N \end{bmatrix}$$

