OPTI Assignment-3 Office Space Planning

Mayank Nagar MDS202334

April 9, 2025

1 Sets

 \bullet T: Set of teams

• D : Set of working days

 \bullet F: Set of floors

 \bullet S : Set of seats

• E_t : Set of employees in team $t \in T$

2 Parameters

• C_f : Capacity of floor $f \in F$ (adjusted for social distancing, e.g. $0.70 \times \text{Original Capacity}_f$)

• FS_t : Number of fixed seats allocated to team $t \in T$

• MinTeamSize: Minimum number of employees per team per floor per day (5 employees)

• MaxLoading: Maximum loading percentage constraint

• $P_t(d)$: Collaboration requirement of team t on day $d \in D$

• α: Minimum proportion of target collaboration requirement that must be allocated (e.g., 60

• β : Maximum deviation allowed for collaboration shifts (1 day)

 \bullet L_t : Maximum number of different floors that team t can occupy on a given day

3 Decision Variables

• $x_{t,d,f}$: Number of employees from team $t \in T$ assigned to floor $f \in F$ on day $d \in D$

• $y_{t,d}$: Binary variable; 1 if team t is assigned to multiple floors on day d, 0 otherwise

• $z_{f,d}$: Binary variable; 1 if floor f is occupied on day d, 0 otherwise

$$z_{f,d} \ge \frac{\sum_{t \in T} x_{t,d,f}}{C_f}, \quad \forall f \in F, d \in D$$

$$z_{f,d} \le \sum_{t \in T} x_{t,d,f} \quad \forall f \in F, d \in D$$

• $a_{t,d,f}$: Binary variable; 1 if team t is present on floor f on day d, 0 otherwise

$$a_{t,d,f} \ge \frac{x_{t,d,f}}{M}, \quad \forall t \in T, d \in D, f \in F$$

$$a_{t,d,f} \le x_{t,d,f}, \quad \forall t \in T, d \in D, f \in F$$

Where M is the max team size.

$$y_{t,d} \ge \frac{\sum_{f \in F} a_{t,d,f} - 1}{|F| - 1}, \quad \forall t \in T, d \in D$$

$$y_{t,d} \le \max\left(\sum_{f \in F} a_{t,d,f} - 1, 0\right), \quad \forall t \in T, d \in D$$

The second equation is a non-linear equation, this can be written to make it linear.

$$m_{t,d} \in \mathbb{Z}_{\geq 0}$$
 (auxiliary variable)
 $w_{t,d} \in \{0,1\}$ (binary switch)

The constraints are:

$$\begin{aligned} y_{t,d} &\leq m_{t,d}, & \forall t \in T, d \in D \\ m_{t,d} &\geq 0, & \forall t \in T, d \in D \\ m_{t,d} &\geq \sum_{f \in F} a_{t,d,f} - 1, & \forall t \in T, d \in D \\ m_{t,d} &\leq w_{t,d}, & \forall t \in T, d \in D \\ m_{t,d} &\leq \sum_{f \in F} a_{t,d,f} - 1 + (1 - w_{t,d}), & \forall t \in T, d \in D \end{aligned}$$

Explanation:

- $-\sum_{f\in F} a_{t,d,f} > 1 \implies$ team t is assigned more than one floor on the day d, this force $y_{t,d}$ to become 1.
- $-\sum_{f\in F} a_{t,d,f} = 1$ or $0 \implies$ team t is assigned only one floor or no floor on the day d, this force $y_{t,d}$ to become 0.

4 Objective Function

$$\max \sum_{t \in T} \sum_{d \in D} \sum_{f \in F} x_{t,d,f} - \lambda_1 \sum_{t \in T} \sum_{d \in D} P_t(d) \cdot y_{t,d} - \lambda_2 \sum_{d \in D} \sum_{f \in F} z_{f,d}$$
 (1)

where λ_1 and λ_2 are weights for penalizing multi-floor occupancy and minimizing the number of occupied floors. Teams with higher collaboration requirements are prioritized to be seated on a single floor by assigning a higher penalty when such teams are split across multiple floors..

5 Constraints

5.1 Capacity Constraint

$$\sum_{t \in T} x_{t,d,f} \le C_f, \quad \forall f \in F, d \in D$$
 (2)

Explanation: This ensures that the total number of employees assigned to a floor does not exceed its adjusted capacity.

5.2 Fixed Seat Allocation

$$\sum_{d \in D} \sum_{f \in F} x_{t,d,f} \ge FS_t, \quad \forall t \in T$$
(3)

Explanation: Ensures that teams with fixed seats are always allocated at least their predefined number of seats.

5.3 Collaboration Pattern and Shift Constraint

$$\sum_{d' \in \{d-1, d, d+1\}} \delta_{t, d'} = 1, \quad \forall t \in T, d \in D$$
(4)

$$\sum_{f \in F} x_{t,d',f} \ge \alpha \cdot P_t(d) \cdot \delta_{t,d'}, \quad \forall t \in T, \ d \in D, \ d' \in \{d-1, \ d, \ d+1\}$$
 (5)

Explanation:

- Guarantees that a minimum proportion (e.g., $\alpha = 60\%$) of the collaboration requirement is met for each team on its designated collaboration days.
- Allows shifting collaboration to an adjacent day within a given threshold to optimize seat allocation.

5.4 Fair Share Allocation of Floating Seats Across Teams

$$(1 - \epsilon) \frac{S_{t_1}}{|E_{t_1}|} \le \frac{S_{t_2}}{|E_{t_2}|} \le (1 + \epsilon) \frac{S_{t_1}}{|E_{t_1}|} \quad \forall t_1, t_2 \in T$$
(6)

where $S_t = \sum_{f \in F, d \in D} x_{t,d,f} - FS_t$ is remaining seats after assigning fixed seats assigned to team t. And ϵ is small slack (like 10%)

Explanation: If teams have different sizes, we can enforce that the allocated seats are proportional to team sizes.

5.5 Fair Share Allocation Across Days

$$\sum_{t \in T} \sum_{f \in F} x_{t,d,f} \ge \text{MinLoad}, \quad \forall d \in D$$
 (7)

$$\sum_{t \in T} \sum_{f \in F} x_{t,d,f} \le \text{MaxLoad}, \quad \forall d \in D$$
 (8)

$$MaxLoad \le (1 + MaxLoading) \cdot MinLoad$$
 (9)

Explanation: Ensures that the daily employee count does not vary too much across days, maintaining fairness in seat allocation.

5.6 Team Floor Allocation Consistency

$$\sum_{f \in F} a_{t,d,f} \le L_t, \quad \forall t \in T, d \in D \tag{10}$$

Explanation: The total number of distinct floors used by a team cannot exceed L_t .

5.7 Minimum Team Allocation Per Floor

$$x_{t,d,f} \ge \text{MinTeamSize}.a_{t,d,f}, \quad \forall t \in T, d \in D, f \in F$$
 (11)

$$x_{t,d,f} \ge M.a_{t,d,f}, \quad \forall t \in T, d \in D, f \in F$$
 (12)

where M is max team size.

Explanation: Ensures that if a team occupies a floor, at least a minimum number of employees (e.g., 5) must be present to maintain efficiency.

5.8 Night Shift Exclusion

Night shift employees are excluded since they can use the same seats vacated by day shift employees.

5.9 Minimizing Number of Floors Occupied on Low-Demand Days

$$\sum_{f \in F} z_{f,d} \le \text{TargetFloors}_d, \quad \forall d \in D$$
 (14)

Explanation: On holidays or low-occupancy days, fewer floors (lower $TargetFloors_d$) should be used to minimize operational costs.

6 Assumptions

- Each employee can only be assigned to one floor per day.
- Collaboration requirements are flexible within constraints.
- Night shift employees do not impact seating constraints.