WaveFunctions

Postulate 1: The state of a particle/system is completely specified by the wave function.

Is it possible to observe a wave function? Is any function a valid wave function?

Question #21 Average (Expectation) Values

34 total people

Question #21 Average (Expectation) Values

34 total people

What is the <u>average</u> number of post-high-school years in school?

- a) 7.26
- b) 6.74
- c) 6.23
- d) 6.52
- e) 6.85

uestion #21 Average (Expectation) Values

34 total people

What is the <u>average</u> number of posthigh-school years in school?

$$\langle N \rangle = \sum_{i} N_i P(N_i)$$

- 7.26
- 6.74
- 6.23
- 6.52
- 6.85

Question #22. Continuous Probability Distributions

$$\psi(x) = \frac{1}{\sqrt{6.84592}} \cos(\frac{x}{10}) \left(\sin(\frac{2\pi x}{a}) + \sin(\frac{6\pi x}{a}) + \sin(\frac{8\pi x}{a}) \right)$$

Question #22. Continuous Probability Distributions

$$\psi(x) = \frac{1}{\sqrt{6.84592}} \cos(\frac{x}{10}) \left(\sin(\frac{2\pi x}{a}) + \sin(\frac{6\pi x}{a}) + \sin(\frac{8\pi x}{a}) \right)$$

2.65

0.56

2.35

Question #23 Continuous Probability Distributions

$$\psi(x) = \frac{1}{\sqrt{6.84592}} \cos(\frac{x}{10}) \left(\sin(\frac{2\pi x}{a}) + \sin(\frac{6\pi x}{a}) + \sin(\frac{8\pi x}{a}) \right)$$

$$\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2$$

What is the uncertainty (σ^2) in x?

Question #23. Continuous Probability Distributions

$$\psi(x) = \frac{1}{\sqrt{6.84592}} \cos(\frac{x}{10}) \left(\sin(\frac{2\pi x}{a}) + \sin(\frac{6\pi x}{a}) + \sin(\frac{8\pi x}{a}) \right)$$

$$\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2$$

- What is the uncertainty (σ^2) in x?
 - a) 5.5
 - b) 3.54
 - c) 1.98
 - d) 6.11
 - e) 2.95

Operators

Postulate 2: For every physical observable there is a corresponding operator in Quantum Mechanics.

$$\hat{p} = -i\hbar \frac{d}{dx}$$

 $\hat{p} = -i\hbar \frac{d}{dx}$ If you were guessing, what would you say the kinetic energy operator is?

Hint: Can you write kinetic energy in terms of momentum?

$$\hat{K} =$$

a)
$$\hat{K} = \frac{\hbar^2}{2m} \frac{d}{dx}$$
b)
$$\hat{K} = \frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$

b)
$$\hat{K} = \frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$

c)
$$\hat{K} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$

Operators

Postulate 2: For every physical observable there is a corresponding operator in Quantum Mechanics.

$$\hat{p} = -i\hbar \frac{d}{dx}$$

 $\hat{p} = -i\hbar \frac{d}{dx}$ If you were guessing, what would you say the kinetic energy operator is?

Hint: Can you write kinetic energy in terms of momentum?

$$\hat{K} =$$

a)
$$\hat{K} = \frac{\hbar^2}{2m} \frac{d}{dx}$$

$$\hat{K} = \frac{\hat{K}}{2m} \frac{d}{dx}$$
a) $\hat{K} = \frac{\hbar^2}{2m} \frac{d}{dx}$
b) $\hat{K} = \frac{\hbar^2}{2m} \frac{d^2}{dx^2}$

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)$$
c) $\hat{K} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$

b)
$$\hat{K} = \frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$

$$\hat{K} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$

Operators

$$\hat{p} = -i\hbar \frac{d}{dx}$$

$$-i\hbar \frac{d}{dx} \psi(x) = p \psi(x)$$
 Eigenvalue problem

a)
$$\psi(x) = e^{ikx}$$

Hint: The eigenvalue must be real!

b)
$$\psi(x) = e^{kx}$$

c)
$$\psi(x) = e^{-kx}$$

$$\langle x \rangle = \int x \psi^*(x) \psi(x) dx$$

$$\text{actually...}$$

$$\langle x \rangle = \int \psi^*(x) x \psi(x) dx$$

$$\langle p \rangle =$$

$$\langle x \rangle = \int x \psi^*(x) \psi(x) dx$$
 actually...
$$\langle x \rangle = \int \psi^*(x) x \psi(x) dx$$

$$\langle p \rangle = \int \psi^*(x) \ \hat{p} \ \psi(x) dx$$

A 0

 $\langle x \rangle \qquad \qquad \frac{5\hbar^2}{2a^2}$

 $\langle x^2 \rangle$ $\frac{a}{\sqrt{7}}$

 $\langle p \rangle \qquad \qquad \sqrt{\frac{5}{2}} \frac{\hbar}{a}$

 $\langle p^2
angle \qquad rac{a^2}{7}$

 σ_x 0

 σ_p $\sqrt{rac{15}{16a^5}}$

$$egin{array}{ccccc} A & \sqrt{rac{15}{16a^5}} & 0 \ \langle x
angle & 0 & rac{5\hbar^2}{2a^2} \ \langle x^2
angle & rac{a^2}{7} & rac{a}{\sqrt{7}} \ \langle p
angle & 0 & \sqrt{rac{5}{2}}rac{\hbar}{a} \ \langle p^2
angle & rac{5\hbar^2}{2a^2} & rac{a^2}{7} \ \sigma_x & rac{a}{\sqrt{7}} & 0 \ \sigma_p & \sqrt{rac{5}{2}}rac{\hbar}{a} & \sqrt{rac{15}{16a^5}} \ \end{array}$$

