

Areas Related to Circles Ex 15.1 Q7 Answer:

It is given that a horse is tethered to one corner of a rectangular field (40 m \times 36 m) by a 14 m long rope.

Let r m be the radius of a circle. Then area A of circle is

A =
$$\pi r^2$$
 cm²
= $\frac{22}{7} \times 14 \times 14$ cm²
= 616 cm²

Since the horse can graze inside the rectangular field only, the required area is quadrant of circle. So,

The required area =
$$\frac{A}{4}$$

= $\frac{616}{4}$ cm²
= $\boxed{154 \text{ cm}^2}$
Hence the horse can graze $\boxed{154 \text{ cm}^2}$ area.

Areas Related to Circles Ex 15.1 Q8

Answer:

The length and width of rectangle *ABCD* is given by AB = 40 cm and AD = 28 cm respectively. Now, we will find the area of rectangle.

Area of rectangle =
$$l \times w$$

= 40×28

$$=1120 \text{ cm}^2$$

It is given that a semicircular portion with BC as diameter is cutoff from rectangle. So,

radius of semicircle =
$$\frac{BC}{2}$$

= $\frac{28}{2}$
= 14 cm

= 14 cm Now, The area of semicircle = $\frac{1}{2} \pi r^2$

Substituting the value of r,

The area of semicircle
$$=\frac{1}{2} \times \frac{22}{7} \times 14 \times 14$$

The area A of remaining paper is

A = Area of rectangle - Area of semicircle

$$= 1120 - 308$$

 $= 812 \text{ cm}^2$

Thus, the area of remaining paper is 812 cm²

Areas Related to Circles Ex 15.1 Q9

Answer:

Let the radius of two circles be r_1 cm and r_2 cm respectively. Then their circumferences are $C_1=2\pi r_1$ cm and $C_2=2\pi r_2$ cm respectively and their areas are $A_1=\pi r_1^2$ cm² and $A_2=\pi r_2^2$ cm² respectively.

It is given that,

$$\frac{C_1}{C_2} = \frac{2}{3}$$

$$\frac{2\pi r_1}{2\pi r_2} = \frac{2}{3}$$

$$\frac{r_1}{r_2} = \frac{2}{3}$$

Now we will calculate the ratio of their areas,

$$\frac{A_1}{A_2} = \frac{\pi r_1^2}{\pi r_2^2}$$
$$= \frac{r_1^2}{r_2^2}$$
$$= \left(\frac{r_1}{r}\right)^2$$

Substituting the value of $\frac{r_1}{r_2}$,

$$\frac{A_1}{A_2} = \left(\frac{2}{3}\right)^2$$
$$= \left[\frac{4}{9}\right]$$

Hence the ratio of their Areas is 4:9

********* END *******