命题1: 如果 Γ 一致且 $\Gamma \vdash A$,那么 $\Gamma \cup \{\neg A\}$ 也一致。证明: 用反证法。假设 $\Gamma \cup \{\neg A\}$ 不一致,则必有公式 B,使得 $\Gamma \cup \{\neg A\} \vdash B$ 并且 $\Gamma \cup \{\neg A\} \vdash \neg B$,由演绎定理知 $\Gamma \vdash \neg A \to B$ 并且 $\Gamma \vdash \neg A \to \neg B$,此两演绎式对应的演绎序列加上公式 $(\neg A \to B) \to ((\neg A \to \neg B) \to A), (\neg A \to \neg B) \to A, A$ 得到一个以 Γ 为前提对 Λ 的演绎过程。从而 $\Gamma \vdash A$.与 $\Gamma \vdash A$ 相矛盾。从而 $\Gamma \cup \{\neg A\}$ 也一致。

命题2: 如果 Γ 一致且 Γ \vdash A ,那么 Γ \cup $\{A\}$ 也一致。证明: 用反证法。假设 Γ \cup $\{A\}$ 不一致,则必有公式 B ,使得 Γ \cup $\{A\}$ \vdash B 并且 Γ \cup $\{A\}$ \vdash \neg B ,由演绎定理知 Γ \vdash $A \to B$ 并且 Γ \vdash $A \to \neg$ B ,此两演绎式对应的演绎序列加上公式 $(A \to B) \to ((A \to \neg B) \to \neg A)$, $(A \to \neg B) \to \neg A$ $(A \to \neg B) \to \neg A$