HOCHSCHULE ESSLINGEN

Sommersemes	ster 22	Zahl der Blätter: 8 Blatt 1 von 8			
Studiengang: Dozent:	SWB: Strecker	Semester:	SWB2		
Prüfungsfach:	Diskrete Mathematik	Prüfungsnummer:	1052034		
Hilfsmittel:	Literatur; Manuskript; ausgegebener Taschenrechner Casio FX-87DE PLUS oder Casio FX-87DE PLUS 2nd Edition	Zeit: 90 min. 60 Punkte			

Aufgabe 1 (8 Punkte)

Gegeben sei die zweistellige natürliche Zahl 10a+b mit $a,b\in\{1,2,...,9\}$ Man zeige: Wenn $a+b\mid 10a+b$ gilt, dann gilt $3\mid 10a+b$

Hinweis: $a + b \mid 10a + b \Leftrightarrow 10a + b \equiv 0 \mod (a + b)$

Schließen Sie daraus auf $9a \equiv 0 \mod (a + b)$ und nutzen Sie Ihre Kenntnisse über Teilbarkeit.

Sommersemester 22	Blatt 2 von 8			
Prüfungsfach: Diskrete Mathematik	Prüfungsnummer: 1052034			

Aufgabe 2 (7 Punkte)

weste

citypleson

Gegeben sei die Kongruenz

 $4x \equiv 6 \mod 122$

Begründen Sie, ob diese Kongruenz lösbar ist, und berechnen Sie ggf. eine Lösung. Ansah:

Sommersemester 22	Blatt 3 von 8				
Prüfungsfach: Diskrete Mathematik	Prüfungsnummer: 1052034				

Aufgabe 3 (8 Punkte)

Berechnen Sie die Prüfsumme XY für die IBAN

DEXY 1001 0000 1000 0000 01

<u>Hinweis</u>, falls Sie auf einen TR verzichten, nutzen Sie im Skript 5.2.3 und die Ergebnisse $3^7 \equiv 53 \mod 97, 3^{10} \equiv -24 \mod 97, 3^{11} \equiv 25 \mod 97$

							Bla	att 4	ł vc	n 8	3							
Prüfungsfach: Diskrete Mathematik	,	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59
Tulungsiach. Diskrete Mathematik		61 6	67	71	73	79	83	89	97	101	103	107	109	113	127	131	137	139
alle Primzulla O bis 100:	1.	49 1	.51	157	163	167	173	179	181	191	193	197	199	211	223	227	229	233
ufgabe 4 (7 Punkte)		39 2	:41	251	257	263	269	271	277	281	283	293	307	311	313	317	331	337
argabe 4 (7 1 unkte)	3	47 3	149	353	359	367	373	379	383	389	397	401	409	419	421	431	433	439
erechnen Sie $\varphi(20570)$	4.	43 4		457	461	463	467	479	487	491	499		509		523	541	547	557
ποσιμού στο φ (2007 σ)				571	577	587	593	599	601	607	613		619		641	643	647	653
inweis: Bekannte Teilbarkeitsregeln				673	677	683	691	701	709	719	727				751	757	761	769
•				797 911	919	929	937	941	947	953	839 967				991	997	881	883
		67 3	107	911	313	323	937	541	347	933	307	9/1	377	903	991	337		
bevali:			\perp		\perp		\perp	\perp	\perp					\perp			_	
		_	\perp	_	\perp	\perp	\perp		_				4		1		_	
C> Printablor Enlegues:		\perp	_	_	_	_	\perp		_			_	_	\perp	_		_	
		_	\perp	_	\perp	\perp	_	_	-			_	_	_	-		_	_
) 20570 in Prindolpharen terleyen:		\perp	+	+	+	+	+	+	\vdash			_	_	+	-		\dashv	_
1070 0 1000		+	+	+	+	+	+	+	-			_	+	+	-		+	-
-> 20570 = 2. W285	\vdash	+	+	+	+	+	+	+	-		\square	-	+	+	+	$\vdash \vdash$	\dashv	-
= 2 5.2057		+	+	+	+	+	+	-	-			-	+	+	+		-	
- 12, 3, 6, 03, 4	\vdash	+	+	+	+	+	+	+	\vdash			\dashv	+	+	+	\vdash	\dashv	+
= 2 · 5 · 11 · 187		+	+	+	+	+	+	+	+				+	+	+		\dashv	+
2 9 7(7) 7/6 1	\vdash	+	+	+	+	+	+	+	+			\dashv	+	+	+	\vdash	\dashv	+
= 7.5.11.17.1	1/1		+	+	+	+	+						+	+	+		\dashv	
		\dashv	\top	+	+	\top	+		+				+	+	+		\dashv	\top
- 2.5.11.17			\top	+	+	\top	+		+				\dagger	+			\dashv	
	\Box	\top	\top	\top	\top	\top	\top	\top	\top		П	\top	\top	\top	\top	\Box	\dashv	\top
) P(20570) durch P(Printalber) both	40;		\top	\top	\top	\top	\top		\top		П		\top	\top			\neg	
) f(20570) durch f (frindallour) borch f(20570) = f(2). f(5). f(112).	_ gr	wds	sathic	th g	ill:	4(p*)	- p	4-1	u-1	د ۸	12-	1.1	2-4	11 ²	11		
1(20870) = P(2) · 1(5) · 1(111) ·	9(h	.71																
$= 1 \cdot 4 \cdot (11^2 - 11^4) \cdot$	16																	
= 1.4.110.16																		
			\perp	\perp		\perp	\perp		\perp				_	\perp			\perp	\perp
= 7040 = (mult gentry)	ober	des	Wei	е	tre	ahl	de -	teile	rher	den)	_	4	\perp	-		\perp	_
		_	\perp	4	\perp	\perp	\perp	+	_		\square	_	4	\perp	-		_	_
		+	\perp	+	+	+	+	+	+		\square	\perp	+	+	+	\square	\dashv	_
		+	+	+	+	+	+	+	-		\square	_	+	+	+		\dashv	_
+++++++++++++++++++++++++++++++++++++++		+	+	+	+	+	+	_	+		$\vdash \vdash$	_	+	+	+		_	-
+++++++++++++++++++++++++++++++++++++++		+	+	+	+	+	+	+	+		$\vdash \vdash$	+	+	+	+	$\vdash \vdash$	\dashv	+
+++++++++++++++++++++++++++++++++++++++		+	+	+	+	+	+	+					+	+	+		_	
+++++++++++++++++++++++++++++++++++++++		+	+	+	+	+	+	+	+			+	+	+	+		+	-
+++++++++++++++++++++++++++++++++++++++		+	+	+	+	+	+	+	-		$\vdash \vdash$	+	+	+	+	\vdash	\dashv	_
+++++++++++++++++++++++++++++++++++++++		+	+	+	+	+	+	+	_		$\vdash \vdash$	-	+	+	+	$\vdash \vdash$		_
+++++++++++++++++++++++++++++++++++++++		+	+	+	+	+	+	+	+		\vdash	_	+	+	+		+	
+++++++++++++++++++++++++++++++++++++++		+	+	+	+	+	+	+				-	+	+	+	H		
+++++++++++++++++++++++++++++++++++++++		+	+	+	+	+	+	+	+		\vdash	+	+	+	+	\vdash	\dashv	+
 		+	+	+	+	+	+	+	+		\vdash	+	+	+	+	Н	+	+

Sommersemester 22	Blatt 5 von 8			
Prüfungsfach: Diskrete Mathematik	Prüfungsnummer: 1052034			

Aufgabe 5 (8 Punkte)

Geben Sie eine primitive Wurzel von \mathbb{Z}_{37}^{\times} an.

Sommersemester 22	Blatt 6 von 8			
Prüfungsfach: Diskrete Mathematik	Prüfungsnummer: 1052034			

Aufgabe 6 (7 Punkte)

Berechnen Sie zum Primzahlpaar (p,q) = (17,41) ein RSA-Schlüsselpaar mit öffentlichem e und privatem Schlüssel d so, dass $d \not\equiv e \mod \varphi(pq)$ ist.

Sommersemester 22	Blatt 7 von 8			
Prüfungsfach: Diskrete Mathematik	Prüfungsnummer: 1052034			

Aufgabe 7 (8 Punkte)

Wir betrachten das Galois-Feld $GF(2^4)$ und das irreduzible Polynom $q(X) := X^4 + X + \overline{1} \in \mathbb{Z}_2[X]$

- a) Berechnen Sie für $a := (1,0,0,1) \in GF(2^4)$ und $b := (0,1,1,0) \in GF(2^4)$ das Produkt $ab \mod g(X)$
- b) Wie lautet das zu $a := (1, 0, 0, 1) \in GF(2^4)$ Inverse a^{-1} ?

Hinweis: Die Irreduzibilität von q braucht nicht gezeigt zu werden.

GF(22):

 $q(X) = X^2 + X + 1. \bot$

Sommersemester 22

Prüfungsfach: Diskrete Mathematik

Polynom	Tupel	Binär	Exponent von X	Exponent von $X + 1$
0	(0,0)	00	_	_
1	(0, 1)	01	0	0
X	(1,0)	10	1	2
X+1	(1, 1)	11	2	1

Für n=4 können wir zunächst wie bereits bekannt die Elemente des Körpers $GF(2^4)$ in einer $\overline{q(X)=X^3+X+1}$ Tabelle notieren.

Polynom	Tupel	Binär	Exponent von X
0	(0,0,0,0)	0000	_
1	(0,0,0,1)	0001	0
X	(0,0,1,0)	0010	1
X + 1	(0,0,1,1)	0011	4
X ²	(0, 1, 0, 0)	0100	2
$X^2 + 1$	(0, 1, 0, 1)	0101	8
$X^2 + X$	(0, 1, 1, 0)	0110	5
$X^2 + X + 1$	(0, 1, 1, 1)	0111	
X ³	(1,0,0,0)	1000	3
$X^3 + 1$	(1,0,0,1)	1001	
$X^3 + X$	(1,0,1,0)	1010	9
$X^3 + X + 1$	(1,0,1,1)	1011	
$X^3 + X^2$	(1, 1, 0, 0)	1100	
$X^3 + X^2 + 1$	(1, 1, 0, 1)	1101	
$X^3 + X^2 + X$	(1, 1, 1, 0)	1110	
$X^3 + X^2 + X + 1$	(1, 1, 1, 1)	1111	

GF(23):

Polynom	Tupel	Binär	Exponent von X
0	(0,0,0)	000	_
1	(0,0,1)	001	0
X	(0, 1, 0)	010	1
X+1	(0, 1, 1)	011	3

	X^2	(1,0,0)	100	2
	$X^2 + 1$	(1,0,1)	101	6
	$X^2 + X$	(1, 1, 0)	110	4
Г	$X^2 + X + 1$	(1, 1, 1)	111	5

Für die Addition in $GF(2^3)$ gilt beispielsweise

$$(0,1,1) + (1,0,1) = (0+1,1+0,1+1) \equiv (1,1,0) \mod 2$$

 $\Leftrightarrow (X+1) + (X^2+1) = X^2 + X + 2 \equiv X^2 + X \mod 2$
 $011 \ XOR \ 101 = 110$

