Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра электроники

Методические указания и контрольные задания по курсу

ЭЛЕКТРОННЫЕ, КВАНТОВЫЕ ПРИБОРЫ И МИКРОЭЛЕКТРОНИКА

для студентов специальности T.12.01 – «Телекоммуникационные системы» заочной формы обучения

Минск 2001

Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра электроники

Методические указания и контрольные задания по курсу ЭЛЕКТРОННЫЕ, КВАНТОВЫЕ ПРИБОРЫ И МИКРОЭЛЕКТРОНИКА

для студентов специальности T.12.01 – «Телекоммуникационные системы» заочной формы обучения УДК 621.382(075.8) ББК 32.85я73 М54

Составители: А.Я. Бельский, С.В. Дробот, В.Б. Рожанский, Ф.А. Ткаченко, М.С. Хандогин

Методические указания и контрольные задания по курсу «Электронные, М54 квантовые приборы и микроэлектроника» для студентов специальности Т.12.01 — «Телекоммуникационные системы» заочной формы обучения / Сост. А.Я. Бельский, С.В. Дробот, В.Б. Рожанский и др. — Мн.: БГУИР, 2001. — 51 с.

Методические указания и контрольные задания соответствуют курсу «Электронные, квантовые приборы и микроэлектроника». В курсе изучаются компоненты радиоэлектронной аппаратуры, приборы СВЧ и их использование в различных схемах.

Рекомендованы для студентов-заочников специальностей «Телекоммуникационные системы», «Радиотехника».

Курс «Электронные, квантовые приборы и микроэлектроника» является базовым курсом для специальностей «Телекоммуникационные системы», «Радиотехника». В результате изучения курса студент должен знать физические процессы в электронных приборах, а также научиться использовать их в конкретных схемах.

Программа курса охватывает три раздела: электронные компоненты, аналоговую и цифровую схемотехнику, электронные и квантовые приборы СВЧ.

Помимо изучения теоретического материала предусматривается выполнение контрольных заданий. Приводится примерный перечень лабораторных работ и практических занятий. С целью облегчения изучения материала в каждом разделе приводятся методические указания и рекомендуемая литература.

Изучение курса опирается на знания, полученные в результате изучения таких дисциплин, как «Математика», «Физика», «Электротехника», «Программирование».

Раздел 1. Электронные компоненты РЭА

1.1. Введение

Определение термина «Электронные приборы». Классификация электронных приборов по характеру рабочей среды (вакуум, разреженный газ, твердое тело), принципу действия и диапазону рабочих частот. Основные свойства и особенности электронных приборов.

Краткий исторический очерк развития отечественной и зарубежной электронной техники. Роль электронных приборов в радиоэлектронике, телекоммуникационных системах, вычислительных комплексах и других областях науки и техники. Значение курса как одной из базовых дисциплин радиотехнических специальностей.

1.2. Физические основы полупроводниковой электроники

Свойства полупроводников. Основные материалы полупроводниковой электроники (кремний, германий, арсенид галлия), их основные электрофизические параметры. Процессы образования свободных носителей заряда.

Концентрация свободных носителей в собственных и примесных полупроводниках, ее зависимость от температуры. Время жизни и диффузионная длина носителей. Уровень Ферми, его зависимость от температуры и концентрации примесей.

Кинетические процессы в полупроводниках. Тепловое движение и его средняя скорость. Дрейфовое движение, подвижность носителей заряда и ее зависимость от температуры и концентрации примесей. Плотность дрейфового тока, удельная проводимость полупроводников и ее зависимость от температуры и концентрации примесей. Движение носителей в сильных электриче-

ских полях, зависимость дрейфовой скорости от напряженности электрического поля. Диффузионное движение носителей, коэффициент диффузии, плотность диффузионного тока. Соотношение Эйнштейна. Появление электрического поля в полупроводнике при неравномерном распределении примесей.

Физические процессы у поверхности полупроводника. Поверхностные энергетические состояния, особенности движения носителей вблизи поверхности, поверхностная рекомбинация. Полупроводник во внешнем электрическом поле, длина экранирования. Обедненный, обогащенный и инверсионный слои.

Контактные явления в полупроводниках. Физические процессы в электронно-дырочном переходе. Образование обедненного слоя, условие равновесия. Уравнение Пуассона. Энергетическая диаграмма, распределение потенциала, напряженности электрического поля и объемного заряда в переходе. Высота потенциального барьера и ширина перехода.

Вольт-амперная характеристика (ВАХ) идеализированного электроннодырочного перехода. Распределение неравновесных носителей. Тепловой ток, его зависимость от ширины запрещенной зоны, концентрации примесей и температуры. Математическая модель идеализированного p-n—перехода. Барьерная и диффузионная емкости перехода, их зависимость от приложенного напряжения. Пробой p-n—перехода.

Контакт металл-полупроводник. Выпрямляющий и невыпрямляющий (омический) контакты.

Гетеропереходы. Энергетические диаграммы. Особенности физических процессов. Особенности ВАХ.

1.3. Полупроводниковые диоды

Классификация полупроводниковых диодов по технологии изготовления, мощности, частоте и функциональному применению: выпрямительные, стабилитроны, варикапы, импульсные диоды, диоды с накоплением заряда, диоды Шоттки, туннельные и обращенные диоды. Принцип работы, характеристики, параметры, схемы включения. Система обозначения полупроводниковых диодов. Влияние температуры на ВАХ.

1.4. Биполярные транзисторы

Устройство и принцип действия. Схемы включения. Основные режимы работы: активный, отсечки, насыщения, инверсный. Принцип действия транзистора: физические процессы в эмиттерном переходе, базе и коллекторном переходе; распределение неосновных носителей в базе при различных режимах. Эффект модуляции ширины базы. Токи в транзисторе; коэффициенты передачи тока в схемах с ОБ и ОЭ.

Физические параметры транзистора: коэффициент передачи тока, дифференциальные сопротивления и емкости переходов, объемные сопротивления областей.

Статические характеристики транзистора. Модель идеализированного транзистора (модель Эберса-Молла). Характеристики реального транзистора в схемах с ОБ и ОЭ. Влияние температуры на характеристики транзистора.

Транзистор как линейный четырехполюсник. Понятие малого сигнала. Системы Z-, Y-, H- параметров и схемы замещения транзистора. Связь h-параметров с физическими параметрами транзистора. Определение h-параметров по статическим характеристикам. Зависимость h-параметров от режима работы и температуры. Т- и П-образные эквивалентные схемы транзисторов.

Работа транзистора с нагрузкой. Построение нагрузочной прямой. Принцип усиления.

Особенности работы транзистора на высоких частотах. Физические процессы, определяющие частотные параметры транзистора. Предельная и граничная частоты, максимальная частота транзистора на высоких частотах.

Работа транзистора в импульсном режиме. Физические процессы накопления и рассасывания носителей заряда. Импульсные параметры транзистора.

Разновидности и перспективы развития биполярных транзисторов.

1.5. Полевые транзисторы

Полевой транзистор с управляющим p-n—переходом. Устройство, схемы включения. Принцип действия, физические процессы, влияние напряжений электродов на ширину p-n—перехода и форму канала. Статические характеристики, области отсечки, насыщения и пробоя p-n—перехода.

Полевой транзистор с барьером Шоттки. Устройство, принцип действия. Характеристики и параметры.

Полевые транзисторы с изолированным затвором. МДП-транзисторы со встроенным и индуцированным каналами. Устройство, схемы включения. Режимы обеднения и обогащения в транзисторе со встроенным каналом и его статические характеристики.

Полевой транзистор как линейный четырехполюсник. Система Y-параметров полевых транзисторов и их связь с физическими параметрами. Зависимость характеристик и параметров полевых транзисторов от температуры.

Работа полевых транзисторов на высоких частотах и в импульсном режиме. Факторы, определяющие частотные свойства. Предельная частота. Эквивалентная схема на высоких частотах. Области применения полевых транзисторов. Сравнение полевых и биполярных транзисторов. Перспективы развития и применения полевых транзисторов.

1.6. Переключающие приборы

Устройство, принцип действия, ВАХ, разновидности тиристоров, диодные тиристоры, триодные тиристоры, симисторы, области применения. Параметры и система обозначения переключающих приборов.

1.7. Физические основы электровакуумных приборов

Электронная эмиссия. Виды эмиссии. Катоды электровакуумных приборов, основные типы катодов. Прохождение тока в вакууме, ток переноса, ток смещения, полный ток. Понятие о наведенном токе.

1.8. Электронно-управляемые лампы

Вакуумный диод. Принцип действия. Понятие об объемном заряде. Режим насыщения и режим ограничения тока объемным зарядом. Идеализированная и реальная анодные характеристики диода. Статические параметры. Основные типы диодов, области применения.

Трехэлектродная лампа. Устройство, роль сетки в триоде. Понятие о действующем напряжении и проницаемости сетки. Токораспределение в триоде. Статические характеристики триода. Статические параметры и определение их по характеристикам. Междуэлектродные емкости. Режим работы триода с нагрузкой, нагрузочные характеристики, параметры режима работы с нагрузкой.

Тетроды и пентоды. Роль сеток. Действующее напряжение. Токораспределение. Статические характеристики и параметры многоэлектродных ламп; междуэлектродные емкости. Эквивалентные схемы электронных ламп на низких и высоких частотах.

Мощные генераторные и модуляторные лампы.

1.9. Электронно-лучевые приборы

Устройство электронно-лучевой трубки. Элементы электронной оптики. Управление плотностью электронного луча. Электростатическая система фокусировки и отклонения луча. Магнитная система фокусировки и отклонения луча. Параметры экранов. Осциллографические, индикаторные трубки. Кинескопы. Устройство и принцип работы кинескопов. Цветные кинескопы.

1.10. Оптоэлектронные приборы и устройства

Классификация элементов оптоэлектроники. Полупроводниковые источники оптического излучения. Электролюминесценция. Светодиоды, устройство, принцип работы, характеристики, параметры. Полупроводниковые при-

емники излучения: фоторезисторы, фотодиоды, фототранзисторы, фототиристоры. Принцип работы, характеристики, параметры.

Фотоэлементы, устройство, принцип работы. Оптроны, их разновидности. Классификация, принцип действия, входные и выходные параметры оптопар.

1.11. Электронные индикаторные приборы

Физические эффекты, пригодные для создания индикаторов. Полупроводниковые, жидкокристаллические, газоразрядные, электролюминесцентные и другие индикаторы. Сравнение различных индикаторов и их применение.

1.12. Шумы электронных приборов

Источники шумов: тепловое движение, дробовой эффект, процессы генерации и рекомбинации, токораспределение, поверхностные явления. Спектральная характеристика шумов. Методы оценки шумовых свойств. Эквивалентные шумовые схемы полупроводниковых приборов и электронных ламп.

1.13. Эксплуатационные режимы и надежность электронных приборов

Номинальный и предельно допустимый режимы и их параметры. Механический и климатический режимы и их параметры. Герметизация, термостатирование и температурная стабилизация. Влияние ионизирующих излучений на работу электронных приборов. Долговечность и экономичность. Надежность полупроводниковых и электровакуумных приборов.

1.14. Элементы интегральных микросхем

Общие сведения о микроэлектронике. Пассивные элементы интегральных микросхем: резисторы, конденсаторы. Биполярные транзисторы. Диоды полупроводниковых ИМС. Биполярные транзисторы с инжекционным питанием. Полупроводниковые приборы с зарядовой связью (ПЗС). Применение ПЗС. Параметры элементов ПЗС.

Примерный перечень тем практических занятий

- 1. Электропроводность полупроводников (собственных и примесных). Контактная разность потенциалов.
- 2. Полупроводниковые диоды: выпрямительные, стабилитроны, варакторы, импульсные. Расчет простейших схем.
- 3. Биполярные транзисторы. Режимы работы, схемы включения, дифференциальные параметры, эквивалентные схемы.

- 4. Полевые транзисторы. Разновидности, режимы работы: обогащения и обеднения. Статические параметры, эквивалентные схемы.
- 5. Задание режима по постоянному току в схемах с биполярными и полевыми транзисторами.
 - 6. Работа электронных приборов с нагрузкой.
 - 7. Оптоэлектронные приборы.

Примерный перечень тем лабораторных занятий

- 1. Исследование характеристик и параметров полупроводниковых диодов (выпрямительного, стабилитрона, варикапа, туннельного и др.).
- 2. Исследование характеристик и параметров биполярных транзисторов в схемах с общей базой и общим эмиттером.
- 3. Исследование малосигнальных, импульсных и частотных параметров биполярных транзисторов и их зависимостей от рабочего режима и температуры.
 - 4. Исследование характеристик и параметров полевых транзисторов.
- 5. Исследование малосигнальных, импульсных и частотных параметров полевых транзисторов и их зависимости от рабочего режима и температуры.
 - 6. Исследование характеристик и параметров тиристоров.
- 7. Исследование характеристик и параметров полупроводниковых оптоэлектронных приборов (светодиоды, фотодиоды, фототранзисторы).
 - 8. Исследование оптронов.
 - 9. Исследование характеристик и параметров триода и пентода.

ЛИТЕРАТУРА

Основная

- 1. Булычев А.Л., Лямин П.М., Тулинов Е.С.. Электронные приборы: Учебник. Мн.: Выш. шк., 1999.
 - 2. Гусев В.Г., Гусев Ю.М. Электроника. М.: Высш. шк., 1991.
- 3. Ткаченко Ф.А. Техническая электроника: Учеб. пособие. Мн.: Дизайн ПРО, 2000.
- 4. Ткаченко Ф.А., Хандогин М.С. Электронные приборы: Учеб. пособие. Мн.: БГУИР, 1997.
- 5. Валенко В.С., Хандогин М.С. Электроника и микросхемотехника: Учеб. пособие. Мн.: Беларусь, 2000.

Дополнительная

6. Тугов Н.М., Глебов Б.А., Чарыков Н,А. Полупроводниковые приборы. – М.: Энергоатомиздат, 1990.

- 7. Аваев Н.А., Наумов Ю.Е, Фролкин В.Т. Основы микроэлектроники. М.: Радио и связь, 1991.
- 8. Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы. М.: Высш. шк., 1987.
- 9. Полупроводниковые приборы. Транзисторы: Справочник / Под общ. ред. Н.Н. Горюнова. М.: Энергоатомиздат, 1986.
- 10. Справочник по интегральным микросхемам / Под ред. Б.В. Тарабрина. М.: Энергия, 1981.
- 11. Пляц О.М. Справочник по электровакуумным, полупроводниковым приборам и интегральным схемам. Мн.: Выш. шк., 1982.

Методические указания

Полупроводниковые приборы. Физические основы полупроводниковых приборов [1, c.5-46; 2, c.46-79; 3, c.24-40]

При изучении данного материала необходимо получить чёткие представления о процессе электропроводности в чистых (собственных) и примесных полупроводниках, особенностях кристаллической структуры полупроводника, энергетических уровнях электронов в атоме.

Необходимо разобраться в явлениях электропроводности собственных и примесных полупроводников, знать выражения для дрейфовых и диффузионных составляющих тока в полупроводнике, иметь представления о явлении рекомбинации носителей заряда и их времени жизни, уметь вывести уравнение непрерывности для одномерного случая и дать объяснение его физической сущности. Необходимо уяснить, что электронно-дырочный переход является основой при создании различных полупроводниковых приборов. Уметь объяснить при помощи энергетических и потенциальных диаграмм явления, происходящие в p-n-переходе в равновесном состоянии и при подаче на него напряжения в прямом и обратном направлениях.

Надо знать контактную разность потенциалов в p-n-переходе, инжекцию и экстракцию носителей через переход, ёмкостные свойства и виды пробоев p-n-перехода, BAX p-n-перехода и параметры перехода: R_0 и $R_{\text{ДИ}\Phi}$.

Вопросы для самопроверки

- 1. Какой полупроводник называется: а) собственным; б) примесным?
- 2. Примеси какой валентности обеспечивают получение полупроводника: а) n-типа; б) p-типа?
- 3. Где располагается уровень Ферми у примесных полупроводников: а) n-типа; б) p-типа?
 - 4. Что такое диффузия носителей в полупроводнике?

- 5. Что такое дрейф носителей в полупроводнике?
- 6. Чем определяется электропроводность полупроводника: a) n-типа; б) p-типа?
 - 7. Чем определяется величина дрейфового тока в полупроводнике?
- 8. Что такое равновесная, неравновесная и избыточная концентрация носителей заряда?
- 9. Что такое рекомбинация носителей заряда в полупроводнике и от чего она зависит?
 - 10. Что такое время жизни неравновесных носителей заряда?
 - 11. Что такое р-п-переход?
- 12. Чем объясняется изменение толщины p-n-перехода при включении внешнего источника?
- 13.Почему с ростом прямого напряжения ток через p-n-переход растёт по экспоненциальному закону?
 - 14. Чем отличается реальная ВАХ р-п-перехода от теоретической?
 - 15. Какие виды пробоя р-п-перехода существуют?
- 16.Как зависит напряжение пробоя p-n-перехода от удельного сопротивления полупроводника?
 - 17. Что такое зарядная ёмкость?
 - 18. Что такое диффузионная ёмкость?
 - 19. Нарисуйте эквивалентную схему р-п-перехода.

Полупроводниковые диоды [1, с.47-78; 2, с.79-90; 3, с.41-55]

В результате изучения материала необходимо ознакомиться с назначением, классификацией и системой обозначений, устройством полупроводниковых диодов. Изучить ВАХ и статические параметры реальных диодов, обратив особое внимание на электрические и эксплутационные параметры, а также схемы включения диодов.

Вопросы для самопроверки.

- 1. Дайте классификацию диодов по конструкции, технологии и их применению.
 - 2. Нарисуйте ВАХ германиевого и кремниевого выпрямительных диодов.
 - 3. Параметры выпрямительных диодов.
- 4. Каковы конструктивные особенности выпрямительных, высокочастотных и сверхвысокочастотных диодов?
 - 5. Параметры импульсных диодов.
 - 6. Какие виды пробоев используются в стабилитронах?
 - 7. Параметры стабилитрона.
 - 8. От чего зависит напряжение стабилизации стабилитрона?

- 9. Нарисуйте схему включения стабилитрона. На чём основано его стабилизирующее действие?
 - 10.Основные параметры варикапов.
 - 11. При каком смещении перехода используются варикапы?
- 12. Что такое добротность варикапов? Чем она определяется? Её физический смысл.
 - 13. Пути повышения добротности варикапов.
- 14.В чём заключается явление туннельного эффекта? При каких условиях имеет место туннельный механизм прохождения тока через p-n-переход?
 - 15. Параметры туннельного диода.
 - 16. Что такое обращённый туннельный диод?
 - 17. Приведите примеры туннельных диодов.
- 18. Какие требования предъявляются к конструкции СВЧ-диодов? Перечислите области применения СВЧ-диодов.

Биполярные транзисторы [1, с.79-179; 2, с.91-112; 3, с.56-81]

При изучении данного материала основное внимание следует уделить физическим процессам, протекающим в транзисторе, а также режимам работы.

Необходимо ознакомиться с классификацией транзисторов по различным признакам и знать систему обозначений в соответствии с ГОСТ. Знать схемы включения транзисторов.

Изучение статических характеристик транзистора при включении с общей базой и с общим эмиттером необходимо производить, хорошо зная принцип работы транзистора.

Знать причины, вызывающие смещение характеристик при изменении температуры.

Для описания усилительных свойств транзистора в режиме малого сигнала вводят малосигнальные параметры, рассматривая транзистор как четырёхполюсник. Особое внимание следует уделить системам гибридных Н-параметров, методике определения этих параметров по статическим характеристикам. Уметь составить эквивалентные схемы и объяснить частотные свойства транзисторов.

При изучении транзистора в схеме усилителя необходимо овладеть методикой построения нагрузочных характеристик на семействах входных и выходных характеристик, необходимо знать физический смысл параметров режима усиления.

Вопросы для самопроверки

- 1. Дайте классификацию транзисторов.
- 2. Расскажите об устройстве и принципе действия биполярного транзистора.
- 3. В какой из областей транзистора концентрация примеси выше: в области базы или в области эмиттера?
- 4. С какой целью площадь коллекторного перехода обычно делают существенно большей по сравнению с площадью эмиттерного перехода?
 - 5. Назовите три основных режима работы транзистора.
- 6. Что такое коэффициент инжекции (эффективность эмиттера)? Почему он должен быть как можно более близок к единице?
- 7. Что такое коэффициент переноса? От каких параметров базы зависит его величина?
- 8. Как связаны между собой коэффициент усиления по току, эффективность эмиттера и коэффициент переноса?
- 9. Нарисуйте три схемы включения биполярного транзистора. Каковы особенности каждой из этих схем?
- 10. Нарисуйте семейства входных и выходных характеристик транзистора в схеме с общей базой.
- 11. Нарисуйте семейства входных и выходных характеристик транзистора в схеме с общим эмиттером.
 - 12.Определите h-параметры транзистора по статическим характеристикам.
 - 13. Что называется предельной частотой усиления по току?
- 14. Как зависит коэффициент передачи тока от частоты в схеме с общей базой и в схеме с общим эмиттером?
- 15. Дайте определение максимальной частоты генерации транзистора. Как она связана с \mathbf{f}_{rp} ?
- 16.В какой схеме: с общей базой или с общим эмиттером выше предельная частота коэффициента передачи тока и примерно во сколько раз?
- 17. Как влияет время рассасывания носителей заряда в базе на частотные свойства транзистора?
 - 18. Чем характеризуется ключевой ражим работы транзистора?

Полевые транзисторы [1, с.180-213; 2, с.120-136; 3, с.82-99]

В результате изучения данного материала необходимо знать устройство и принцип действия полевых транзисторов с управляющим p-n-переходом, МДП-транзисторов с индуцированным и встроенным каналами, их характеристики и параметры, уметь определять малосигнальные параметры по статическим характеристикам, иметь чёткие представления о влиянии режима работы и температуры на характеристики и параметры полевых транзисторов. Области применения полевых транзисторов.

Вопросы для самопроверки

- 1. Поясните устройство и принцип действия полевого транзистора с управляющим p-n-переходом.
- 2. Нарисуйте сток-затворную характеристику полевого транзистора с управляющим p-n—переходом и поясните её ход.
- 3. Для чего канал полевого транзистора с управляющим p-n-переходом изготавливают из слаболегированного полупроводника?
- 4. В чём состоит различие между МДП-транзистором с индуцированным и встроенным каналами?
- 5. Почему входное дифференциальное сопротивление полевого транзистора с изолированным затвором больше, чем у полевого транзистора с управляющим p-n—переходом?
- 6. Какие основные отличия стоковых характеристик МДП-транзистора с индуцированным каналом от аналогичных характеристик:
 - а) полевого транзистора с управляющим р-п-переходом;
 - б) МДП-транзистора со встроенным каналом?
 - 7. Назовите дифференциальные параметры полевого транзистора.
 - 8. Что такое режим обеднения и обогащения?
 - 9. Почему уровень шума полевых транзисторов меньше, чем биполярных?

Переключающие приборы [1, c.214-220; 2, c.113-120; 3, c.100-106]

При изучении данного материала необходимо знать устройство и принцип действия динисторов, тиристоров, симисторов, их характеристики и параметры, области применения.

Вопросы для самопроверки

- 1. Объясните работу динистора. Нарисуйте ВАХ.
- 2. Объясните механизм управления процессом переключения в тиристоре.
- 3. Назовите параметры тиристора.
- 4. Чем отличается механизм включения тиристора от механизма включения динистора?
 - 5. Симистор, его устройство. Характеристики.
 - 6. Система обозначения и маркировка переключающих приборов.

Электровакуумные приборы [1, с.224-230]

Необходимо знать устройство электронных ламп, назначение их отдельных элементов, принцип управления анодным током. Обратить внимание на конструкции, основные параметры термокатодов и их типы.

Двухэлектродные лампы [1, с.230-236]

Необходимо тщательно разобраться в механизме влияния пространственного заряда электронов на величину анодного тока диода и на этой основе уяснить сущность режимов пространственного заряда и насыщения.

Из-за наличия между катодом и анодом пространственного (объёмного) заряда, созданного электронами, движущимися к аноду, анодный ток не прямо пропорционален анодному напряжению, а подчиняется закону «степени трёх вторых».

При изучении параметров диодов основное внимание следует уделять физическому смыслу и математической записи формул статических параметров. Необходимо чётко представлять разницу между сопротивлением диода постоянному току и переменному току. Нужно уметь определять параметры диода по статическим характеристикам лампы и аналитически. Достоинства и недостатки двухэлектродных ламп по сравнению с полупроводниковыми диодами.

В заключение необходимо ознакомиться с основными конструкциями и областями применения.

Вопросы для самопроверки

- 1. Как устроена и работает двухэлектродная лампа?
- 2. Как распределён потенциал в диоде с плоскопараллельными электродами? Как изменяется это распределение при изменении потенциала анода и напряжения накала катода?
- 3. Напишите формулу закона «степени 3/2» и объясните смысл входящих в неё величин. При каких условиях выполняется этот закон в диоде?
- 4. Изобразите BAX диода с катодом из чистого металла и с оксидированным катодом.
- 5. Дайте определение основных статических параметров диода. Каков их физический смысл?
 - 6. Чем ограничен максимальный анодный ток диода?
 - 7. Чем отличаются детекторные диоды от кенотронов?
 - 8. Какие факторы влияют на работу диода на высоких частотах?

Трёхэлектродные лампы [1, с.236-247]

Изучить принцип электростатического управления тока с помощью сетки и понятие действующего потенциала.

Необходимо подробно разобраться в вопросах токораспределения в триодах при положительной сетке, чётко представить связь токораспределения в режимах прямого перехвата и возврата электронов.

Уделить особое внимание изучению статических характеристик и параметров триода. В результате изучения необходимо понимать физический смысл,

знать соотношение между основными статическими параметрами $S,\ R_i,\ \mu$, а также уметь определять их по характеристикам.

Вопросы для самопроверки

- 1. Какую роль играет сетка в триоде?
- 2. Что такое действующий потенциал в триоде и как он определяется? Напишите формулу закона «степени 3/2».
- 3. Нарисуйте анодные, анодно-сеточные, сеточные и сеточно-анодные характеристики. Поясните ход характеристик.
 - 4. Расскажите о токораспределении в триоде.
 - 5. Что такое режим прямого перехвата и режим возврата?
- 6. Дайте определение статических параметров триода, поясните их физический смысл.
 - 7. Что такое рабочий режим триода?
- 8. Как графически построить рабочую (динамическую) анодно-сеточную характеристику, используя семейство статических анодных характеристик и уравнение нагрузочной прямой?
 - 9. Что такое режим неискажённого усиления?
- 10. Как выбирается режим неискажённого усиления усилительного триода с активной нагрузкой в анодной цепи?
- 11. Какими параметрами характеризуется работа триода в режиме усиления напряжения?
- 12. Какие требования предъявляются к триодам, предназначенным для усиления напряжения и мощности?
 - 13. Какие междуэлектродные ёмкости существуют в триоде?

Многоэлектродные лампы [1, c.247-281]

В многоэлектродных лампах устраняется основной недостаток триода — большая проходная ёмкость и малый статический коэффициент усиления. При изучении многосеточных ламп надо иметь в виду, что принцип электростатического управления является общим для ламп с любым количеством сеток.

Важным вопросом при рассмотрении тетродов и пентодов является то-кораспределение в лампах, оказывающее влияние на их параметры. Следует подробно разобраться в вопросах возникновения динатронного эффекта и способах его устранения.

Дифференциальные параметры тетродов и пентодов определяются по статическим характеристикам (за исключением статического коэффициента μ) по методике, рассмотренной применительно к триоду. Знать конструктивные особенности и типы мощных генераторных и модуляторных ламп.

Вопросы для самопроверки

- 1. Для чего предназначена экранирующая сетка в тетроде?
- 2. Напишите выражение для действующего потенциала тетрода и формулу закона «степени 3/2».
 - 3. Как подавляется динатронный эффект в лучевом тетроде?
 - 4. Каковы особенности его конструкции?
- 5. Изобразите семейство анодных характеристик лучевого тетрода. Поясните ход характеристик. Возможен ли динатронный эффект в лучевом тетроде?
 - 6. Объясните назначение сеток в пентоде.
 - 7. Напишите выражение закона «степени 3/2» для пентода.
- 8. Назовите основные статические параметры пентода, дайте их определение и поясните физический смысл.
 - 9. Что такое пентод с переменной крутизной?
- 10. Расскажите о двойном управлении анодным током в пентоде. Каков механизм управляющего действия первой и третьей сеток?

Электронно-лучевые приборы [1, с.282-336; 2, с.201-213; 3, с.107-124]

Изучить принцип действия, конструкции прожекторов ЭЛТ с электростатической фокусировкой и прожектора с магнитной фокусировкой луча.

В результате изучения отклоняющих систем трубок необходимо освоить расчёт чувствительности электромагнитной и электростатической систем отклонения луча, изучить достоинства и недостатки каждой из систем, экраны: устройство и их параметры.

Необходимо изучить электронно-лучевые трубки специального назначения: радиолокационные осциллографические, запоминающие, индикаторные, кинескопы. Пассивные индикаторы (ЖКИ).

Вопросы для самопроверки

- 1. Расскажите об устройстве трубки с электростатической фокусировкой и электростатическим отклонением луча.
- 2. Расскажите об устройстве трубки с электромагнитной фокусировкой и с магнитным отклонением луча.
 - 3. Как устроен прожектор современной осциллографической трубки?
- 4. Какие преимущества и недостатки системы магнитной фокусировки по сравнению с системой электростатической фокусировки?
 - 5. Как отводится электрический заряд с экрана трубки?
 - 6. Назовите основные параметры экранов ЭЛТ?
 - 7. Как устроен кинескоп?

Приборы оптоэлектроники [1, с.328-351; 2, с.148-200, 3, с.125-150]

Изучение этого материала необходимо начать с явлений внутреннего и внешнего фотоэффектов, которые лежат в основе работы всех фотоэлектрических приборов. После этого необходимо изучить принцип работы и параметры фоторезисторов, фотоэлементов, фотодиодов, фототранзисторов.

В последнее время широко начали применяться излучающие полупроводниковые приборы, использующие явления инжекционной электролюминесценции, — люминесцентные индикаторы и светодиоды. Сочетание фотоприёмников и излучателей позволило создать новые приборы — оптроны. Необходимо знать устройство и принцип действия простейших разновидностей оптронов.

Вопросы для самопроверки

- 1. Назовите основные законы фотоэффекта.
- 2. На чём основан принцип действия фоторезистора?
- 3. Назовите параметры фоторезистора.
- 4. Чем определяется величина темнового тока у фоторезистора?
- 5. Для чего служит фотоэлемент и в каких областях науки и техники он применяется?
 - 6. Что такое ЭДС холостого хода и короткого замыкания фотоэлемента?
 - 7. Чем отличается фотодиод от фотоэлемента?
 - 8. Основные параметры фотодиода в фотодиодном и вентильном режимах.
 - 9. Устройство и принцип действия фототранзистора.
- 10. Характеристики фототранзистора, включённого по схеме с общим эмиттером и плавающей базой.
 - 11. Преимущества фототранзисторов по сравнению с фотодиодами.
 - 12. Какие полупроводниковые приборы относятся к излучательным?
 - 13. Объясните принцип работы светодиода.
 - 14. Что такое оптрон?
- 15. Назовите простейшие разновидности оптронов. Характеристики и параметры простейших оптронов.

Элементы интегральных микросхем. [1, с.367-392; 2, с.136-148; 3, с.153-173]

При изучении материала необходимо ознакомиться с принципами построения интегральных микросхем и выяснить особенности активных и пассивных элементов.

Для лучшего усвоения материала необходимо ознакомиться с технологическими процессами, используемыми при изготовлении микросхем (фотолитографии, диффузия, окисление).

Важным звеном при создании микросхем является изоляция элементов интегральных схем, а также изготовление пассивных элементов интегральных схем – диффузионных резисторов и конденсаторов.

Необходимо также ознакомиться с особенностями биполярных интегральных транзисторов, способами получения диодов из транзисторных структур и структурами полевых транзисторов. Приборы с зарядовой связью.

Вопросы для самопроверки

- 1. Охарактеризуйте требования, предъявляемые к современным микросхемам.
 - 2. Технологические этапы изготовления интегральной схемы.
 - 3. Способы изоляции элементов полупроводниковой интегральной схемы.
 - 4. Какими методами создаются плёночные элементы интегральных схем?
- 5. Какие навесные элементы используются в гибридных интегральных схемах?
 - 6. Принцип работы приборов с зарядовой связью.
 - 7. Параметры ПЗС.
 - 8. Области применения ПЗС.

Методические указания по выполнению контрольной работы № 1

Задача № 1

Рассчитать и построить вольт-амперную характеристику идеального диода при комнатной температуре (300 K), если тепловой ток $I_0 = 10$ мкA.

Расчет вольт-амперной характеристики проведем в соответствии с урав-

нением $I = I_0(e^{\frac{qu}{kT}} - 1)$, в котором величина I_0 представляет тепловой ток p-n-перехода, называемый также током насыщения. Для комнатной температуры $\frac{kT}{q} = 0,026$ В. Результаты расчета прямой ветви (U>0) вольт-амперной характеристики представим в виде

U_{np} ,B	0	0,005	0,1	0,15	0,2
$I_{\text{пр}}, MA$	0	0,057	0,44	3,15	20

а результаты расчета обратной ветви (U<0) – в виде

U _{oбp} ,B	0	0,1	1	5	7
І _{обр} ,мкА	0	9,8	10	10	10

Построенная по этим значениям вольт-амперная характеристика изображена на рис.1.

Рис.1

Для определения дифференциального сопротивления $R_{\mu u \varphi} = \frac{dU}{dI}$ линейного участка, выбрав на прямой ветви вольтамперной характеристики рабочую точку A и задав небольшое приращение напряжения ΔU , получают приращение тока ΔI . Тогда

$$R_{\mu \mu \varphi} = \frac{\Delta U}{\Delta I} = \frac{0.03}{10 \cdot 10^{-3}} = 3 \text{ Om.}$$

Взяв производную $\frac{dU}{dI}$ из выражения для вольт-амперной характеристи-

ки диода
$$I=I_0\!\left(e^{rac{qU}{kT}}-1
ight)$$
, получим $R_{\,\mu\mu\varphi}=rac{kT}{q}rac{1}{\left(I_0+I
ight)}\!pprox\!rac{kT}{qI}\,.$

Сопротивление диода постоянному току в рабочей точке A определяется как $R_0 = \frac{U}{I} = \frac{0.17}{10\cdot 10^{-3}} = 17\,$ Ом. При этом всегда $R_0 > R_{\text{диф}}$.

Задача № 2

Стабилитрон подключен для стабилизации напряжения к резистору нагрузки R_H , как показано на рис.2.

Известны параметры стабилитрона U_{cr} ; $I_{cr\ min}$; $I_{cr\ max}$ и сопротивление нагрузки R_H . Необходимо определить сопротивление ограничительного резистора R_{orp} , если напряжение на входе изменяется от E_{min} до E_{max} . Будет ли обеспечена стабилизация во всем диапазоне изменения входного напряжения?

Выберем средний ток стабилизации из условия

$$I_{ct} = \frac{I_{ct max} + I_{ct min}}{2}.$$

При этом необходимая величина напряжения питания будет равна $E_0 = U_{cr} + R_{orp} (I_H + I_{cr}).$

Отсюда можно найти необходимую величину ограничительного резистора:

$$R_{orp} = \frac{E_0 - U_{cr}}{I_H + I_{cr}}.$$

Допустимый диапазон изменения питающего напряжения определяем по формулам

$$E_{\min} = U_{cT} + (I_{cT\min} + I_H) \cdot R_{orp};$$

$$E_{\max} = U_{cT} + (I_{cT\max} + I_H) \cdot R_{orp};$$

и сравниваем с заданным диапазоном изменения питающего напряжения.

Пусть, например, сопротивление нагрузки $R_{\rm H}$ =2,2 кОм; $I_{\rm cr\ max}$ =20 мA; $I_{\rm cr\ min}$ =1 мA; $E_{\rm min}$ =16 B; $E_{\rm max}$ =24 B; $U_{\rm cr}$ =13 B.

По вышеприведённым выражениям находим:

$$I_{cT} = (20+1)/2 = 10,5 \text{ MA}.$$

Средняя величина питающего напряжения

$$E_0 = (24+16)/2 = 20 \text{ B}.$$

Ток нагрузки

$$I_H = U_{cr}/R_H = 13/2,2 = 5,9 \text{ MA}.$$

Отсюла

$$R_{\text{огр}} = (20-13)/(10,5-5,9) \approx 0,43$$
 кОм.

Диапазон изменения напряжения будет равным

$$E_{min} = 13 + (1 + 5.9) \cdot 0.43 \approx 16 B;$$

$$E_{\text{max}} = 13 + (20 + 5.9) \cdot 0.43 \approx 24.1 \text{ B}.$$

Отсюда видно, что стабилизация получается во всём диапазоне изменения напряжения питания.

Задача № 3

Определить h-параметры по характеристикам.

Статические характеристики позволяют определить основные параметры транзистора. Для описания свойств транзистора по переменному току чаще всего используется система h-параметров, которая представляется следующими уравнениями:

$$dU_1 = h_{11}dI_1 + h_{12}dU_2;$$

$$dI_2 = h_{21}dI_1 + h_{22}dU_2$$
.

При нахождении h-параметров по статическим характеристикам дифференциалы заменяются конечными приращениями, тогда:

$$\begin{split} h_{11} &= \frac{\Delta U_1}{\Delta I_1} \bigg|_{U_2 = const} - \text{входное сопротивление;} \\ h_{12} &= \frac{\Delta U_1}{\Delta U_2} \bigg|_{I_1 = const} - \text{коэффициент обратной связи по напряжению;} \\ h_{21} &= \frac{\Delta I_2}{\Delta I_1} \bigg|_{U_2 = const} - \text{коэффициент передачи по току;} \\ h_{22} &= \frac{\Delta I_2}{\Delta U_2} \bigg|_{I_1 = const} - \text{выходная проводимость.} \end{split}$$

Для определения h-параметров воспользуемся семействами входных и выходных характеристик для схемы с ОЭ (рис.3, а, б соответственно). В заданной точке A на линейном участке семейства входных характеристик строим треугольник, проведя прямые параллельно оси абсцисс и ординат до пересечения со следующей характеристикой.

Приращения токов и напряжений позволяют определить параметры h_{113} и h_{123} :

$$\begin{split} h_{113} &= \frac{\Delta U_{63}}{\Delta I_{6}} \bigg|_{U_{69} = const} = \frac{U_{69}" - U_{69}'}{I_{6}" - I_{6}'} \bigg|_{U_{69} = U_{69}"}; \\ h_{129} &= \frac{\Delta U_{63}}{\Delta U_{\kappa 9}} \bigg|_{I_{6} = const} = \frac{U_{69}" - U_{69}'}{U_{\kappa 9}" - U_{\kappa 9}'} \bigg|_{I_{6} = I_{6}'}. \end{split}$$

Параметры h_{219} , h_{229} определяются по выходным характеристикам. Обратите внимание на различие в обозначении статического коэффициента передачи по току в схеме с ОЭ h_{219} и дифференциального параметра h_{219} . Через точку A', режим которой соответствует точке A, проводим вертикальную

прямую до пересечения с соседней характеристикой. Задавая приращения напряжения $U_{\kappa 9}$, находим:

$$\begin{split} h_{219} &= \frac{\Delta I_{\kappa}}{\Delta I_{\delta}} \bigg|_{U_{\kappa 9} = const} = \frac{I_{\kappa} " - I_{\delta}"}{I_{\delta}" - I_{\delta}"} \bigg|_{U_{\kappa 9} = U_{\kappa 9}"}; \\ h_{229} &= \frac{\Delta I_{\kappa}}{\Delta U_{\kappa 9}} \bigg|_{I_{\delta} = const} = \frac{I_{\delta}' - I_{\delta}"}{U_{\delta 9}' - U_{\delta 9}"} \bigg|_{I_{\kappa} = I_{\kappa}'}. \end{split}$$

Аналогично определяются h-параметры для схемы с ОБ.

По вычисленным h-параметрам можно получить параметры Т-образной эквивалентной схемы транзистора, элементы которой достаточно полно отражают свойства реального транзистора на низких частотах, что необходимо для анализа транзисторных схем.

Эквивалентная Т-образная схема биполярного транзистора, включенного в схему с общей базой, для низких частот представлена на рис.4, где

$$U_{\kappa\delta}$$
 $r_{\kappa} = \frac{1}{h_{22\delta}}; \ r_{\delta} = \frac{h_{12\delta}}{h_{22\delta}};$ $r_{\delta} = h_{11\delta} - (1 + h_{21\delta})r_{\delta}.$

Задача № 4

Необходимо знать, что такое предельная частота коэффициента передачи по току транзистора для схемы включения с общей базой и общим эмиттером. Нужно уяснить, что на высоких частотах получается фазовый сдвиг между входным и выходным токами, что приводит к изменению коэффициентов передачи по току $|\mathbf{h}_{216}|$ и $|\mathbf{h}_{219}|$. Модуль и фаза коэффициентов передачи по току характеризуются выражениями:

$$\begin{split} \left|h_{216}\right| &= \frac{h_{2160}}{\sqrt{1 + \left(\frac{f}{f_{h_{216}}}\right)^2}}; \quad \phi_{h_{216}} = arctg \left(\frac{f}{f_{h_{216}}}\right); \\ \left|h_{219}\right| &= \frac{h_{2190}}{\sqrt{1 + \left(\frac{f}{f_{h_{219}}}\right)^2}}; \quad \phi_{h_{219}} = arctg \left(\frac{f}{f_{h_{219}}}\right), \end{split}$$

где h_{2160} , h_{2190} – соответствующие коэффициенты передачи по току на низкой частоте; $f_{h_{216}}$, $f_{h_{219}}$ – предельные частоты коэффициентов передачи по току для схемы с ОБ и ОЭ соответственно.

Причем связь между этими частотами определяется выражением

$$f_{h_{219}} = \frac{f_{h_{216}}}{1 + h_{2190}}.$$

Пусть, например, $f_{h_{216}}$ =5 МГц; h_{2160} =0,98; f=200 кГц. Определим коэффициент передачи по току на низкой частоте для схемы с ОЭ:

$$h_{2190} = \frac{h_{2160}}{1 - h_{2160}} = \frac{0.98}{1 - 0.98} = 49.$$

Предельную частоту коэффициента передачи по току находим из выражения

$$f_{h_{219}} = \frac{h_{2150}}{1 + h_{2150}} = \frac{5 \cdot 10^6}{1 + 49} = 100 \text{ к}\Gamma\text{ц},$$

а модуль коэффициента передачи по току в схеме с ОЭ – из выражения

$$\left| h_{219} \right| = \frac{49}{\sqrt{1 + \left(\frac{200}{100}\right)^2}} \approx 22.$$

Фазу коэффициента передачи по току находим следующим образом:

$$\phi_{h_{219}} = arctg \left(\frac{f}{f_{h_{219}}} \right) = arctg2; \ \phi_{h_{219}} \approx 63,4^{\circ}.$$

Задача № 5

Указано, что усилительный каскад выполнен по схеме с общим истоком и напряжение смещения задаётся автоматически за счёт включения в цепь истока резистора $R_{\rm u}$ (рис.5).

Уравнение нагрузочной прямой будет выглядеть следующим образом:

$$\begin{split} E_c &= U_{cu0} + I_{c0} \big(R_c + R_u \big) = U_{cu0} + I_{c0} R_c + U_{3u0}, \text{ откуда} \\ I_{c0} &= \frac{E_c - U_{cu0} - U_{3u0}}{R_c}. \end{split}$$

Пример построения нагрузочной прямой показан на рис.6.

Положение рабочей точки находим, проведя нагрузочную прямую через точку, соответствующую E_c на оси напряжений, и точку $I_{c0} = \frac{\left(E_c - U_{3u0}\right)}{R_c}$ на оси токов. Пересечение нагрузочной прямой с характеристикой, соответствующей заданному значению U_{3u0} , даст положение рабочей точки «О». Эта рабочая точка соответствует току стока в рабочей точке I_{c0} и напряжению U_{cu0} .

Сопротивление резистора в цепи истока находим следующим образом: R_u = U_{3u0}/I_{c0} . Малосигнальные параметры S, R_i и μ определяются как

$$S = \frac{dI_c}{dU_{3u}}\bigg|_{U_n} = const; \ R_i = \frac{dU_{cu}}{dI_c}\bigg|_{U_{3u}} = const; \ \mu = \frac{dU_{cu}}{dI_3}\bigg|_{I_c} = const.$$

Кроме этого, полезно пользоваться выражением $\mu = \frac{U_{cum}}{U_{aum}}$.

При определении графическим методом рабочей крутизны S_p необходимо помнить, что при этом R_H = const. Её расчёт показан также на рис.6:

$$S_p = \frac{\Delta I_p}{U_{3u0} - U_{3u1}}.$$

Коэффициент усиления по напряжению $K = \frac{U_{cum}}{U_{sum}}$, а выходная мощность

переменного сигнала находится из выражения: $P_{\text{вых}} = \frac{1}{2} U_{\text{cum}} \cdot I_{\text{cm}}$.

Задача № 6

Электронно-лучевая трубка с электростатическим отклонением луча имеет длину отклоняющих пластин L, с расстоянием между пластинами d, расстояние от экрана до ближайшего к нему края пластин l_2 . Напряжение на втором аноде равно U_{a2} , а постоянное напряжение, приложенное к отклоняющим пластинам, равно $U_{\text{откл}}$.

Необходимо определить:

- а) чувствительность ЭЛТ;
- б) отклонение электронного луча на экране от оси трубки;
- в) угол отклонения луча в точке выхода его из поля пластин.

Решение проводим в следующей последовательности.

1. Полное отклонение пятна на экране можно получить из выражения

$$h = h_1 + h_2 = \frac{U_{OTKJ}}{4U_{a2} \cdot d} l_1^2 + l_1 tg\alpha$$
 или $h = \frac{U_{OTKJ} \cdot l_1}{2U_{a2} \cdot d} \left(\frac{l_1}{2} + l_2\right).$

2. Основным параметром электростатической отклоняющей системы является чувствительность к отклонению, показывающая, на сколько миллиметров отклонится луч на экране при изменении напряжения на 1 В:

$$h' = \frac{h}{U_{OTKJI}} = \frac{l_1}{2U_{a2} \cdot d} \left(\frac{l_1}{2} + l_2\right).$$

3. Угол отклонения луча в точке выхода его из поля пластин определяет-

ся из выражений
$$tg\alpha = \frac{U_y \cdot l_1}{2U_{a2} \cdot d}$$
; $\alpha = arctg \left(\frac{U_y \cdot l_1}{2U_{a2} \cdot d} \right)$.

Задача № 7

Фотодиоды могут работать в одном из двух режимов:

- 1) без внешнего источника электрической энергии (вентильный, фотогенераторный или фотогальванический режим);
- 2) с внешним источником электрической энергии (фотодиодный или фотопреобразовательный режим) (рис.8).

Ток, протекающий через фотодиод, можно записать в следующем виде:

$$I_{\text{общ}} = I_{\dot{\Phi}} - I_0 \left(e^{\frac{qU}{kT}} - 1 \right),$$

где: I_{φ} – фототок;

 I_0 – тепловой ток p-n-перехода;

U − напряжение на диоде.

При разомкнутой внешней цепи $R_H = \infty$, $I_{\text{обш}} = 0$ легко получить напря-

жение при холостом ходе, которое равно фото-ЭДС $U_{xx} = \frac{kT}{q} ln \left(1 + \frac{I_{\varphi}}{I_0}\right)$.

Статическая интегральная токовая чувствительность при монохроматическом световом потоке определяется отношением $S_I = \frac{I_{\varphi}}{\varphi}$ (мкА/лм). Для фотодиода, работающего в фотодиодном режиме удобно использовать вольтовую чувствительность $S_u = S_i \cdot R$, (В/лм).

Контрольная работа № 1 Задача № 1

Рассчитать и построить вольт-амперную характеристику идеализированного кремниевого диода в пределах изменения напряжения от -5 до +0.7 В при T=300 К и обратном токе насыщения, равном I_0 . Величина константы $\frac{kT}{q}$ для T=300 К будет 0.026 В.

Определить дифференциальное сопротивление $R_{\text{диф}}$, сопротивление диода постоянному току R_0 для заданных значений $U_{\text{пр}}$. Величины I_0 , $U_{\text{пр}}$ приведены в табл.1.

					_	_				Табл	ица 1	
Последняя	1	2	3	4	5	6	7	8	9	0		
цифра шифра												
I_0 , мк A	0,1	0,2	0,25	0,3	0,5	0,8	1,2	1,5	2,0	3,0		
Предпоследня	я 1	2	3	4	5	6	7	8	9	0		
цифра шифр												
U_{np} , B	0,2	0,3	3 0,8	0,5	0,1	0,8	0,6	0,1	0,4	0,1		

Задача № 2

Стабилитрон подключён для стабилизации напряжения параллельно резистору нагрузки R_H . Параметры стабилитрона U_{cm} ; $I_{cm\ min}$; $I_{cm\ max}$ и сопротивление нагрузки R_H приведены в табл.2. Определите величину сопротивления ограничительного резистора R_{orp} , если напряжение источника E_0 изменяется от E_{min} =20 B до E_{max} =30 B. Будет ли обеспечена стабилизация во всём диапазоне изменений напряжения источника E?

Таблица 2

Последняя цифра шифра	0	1	2	3	4	5	6	7	8	9
I _{ст min} , мА	1	1	3	3	5	5	5	5	1	5
$I_{c_{T} max}$, мА	20	20	25	25	25	25	30	30	20	30
	•			•	•	•	•	•	•	•
Предпоследняя	0	1	2	3	4	5	6	7	8	9
цифра шифра										
R_H , к O м	1	1	1,5	1,5	2	2	2,5	2,5	3	4

Задача № 3

10

 U_{cT} , B

13

12

Пользуясь справочными данными, приведите семейство выходных и входных характеристик биполярного транзистора. В качестве независимых переменных возьмите входной ток и выходное напряжение. Схему включения и тип транзистора определите по табл.3 в соответствии с шифром. Объясните ход входных и выходных характеристик транзистора.

Таблица 3

Последняя	1	2	3	4	5	6	7	8	9	10
цифра										
Тип тран-	КТ	ГТ	КТ	ГТ	ГΤ	КТ	ГΤ	КТ	КТ	КТ
зистора	603	308	301	311	403	601	701	201	802	807
Схема	ОБ	ОЭ	Э	Э						
включения										

По справочнику установите предельно допустимую мощность транзистора. На семейство выходных характеристик нанесите кривую предельно допустимой мощности.

В рабочей точке по характеристикам определите значение h-параметров транзистора. На основании полученных числовых значений параметров рассчитайте параметры T-образной эквивалентной схемы транзистора и постройте ее.

Задача № 4

Предельная частота передачи тока эмиттера в схеме с ОБ f_{h21E} транзистора и значение параметра h_{21E} на низкой частоте указаны в табл.4. Рассчитать модуль и фазу коэффициента передачи тока в схеме с ОЭ на частоте f, указанной для заданного варианта в этой же табл.4.

Таблица 4

										I acomi	
Предпоследня	я ()]	1 2	. 3	4	5	6	7	8	9	
цифра шифра	l										
$f_{h21Б}$, М Γ ц	1	3 1	4 1:	5 16	17	18	19	20	21	22	
f, кГц	4	0 5	0 6	70	80	90	100	110	120	130	
Последняя	0	1	2	3	4	5	6	7	8	9	
цифра шифра											
h ₂₁₅	0,98	0,975	0,973	0,978	0,95	0,965	0,959	0,983	0,976	0,985	

Задача № 5

Усилительный каскад выполнен на полевом транзисторе типа $2\Pi 302A$ по схеме с общим источником и резистором нагрузки R_c в цепи стока. Напряжение смещения на затворе создаётся за счет включения в цепь истока резистора R_u . Значения сопротивления резистора R_c , напряжения на затворе в режиме покоя U_{3uo} и ЭДС источника E_c .

Таблица 5

										1 aon	ица
Предпоследняя	0	1	2	3	4	5	6	7	8	9	
цифра шифра											
R_c , к O м	0,3	0,35	0,4	0,45	0,5	0,55	0,6	0,65	0,8	0,9	
U _{3uo} , B	-0,5	-0,5	-0,75	-0,75	-1	-1	-1	-1,25	-1,25	-1,4	
											="
Последняя	0	1	2	3	4	5	6	7	8	9	
цифра шифра											
E _c , B	9	10	11	12	13	14	15	16	17	18	

Необходимо:

- а) нарисовать принципиальную схему усилителя;
- б) пользуясь статическими характеристиками транзистора, определить положение рабочей точки;
- в) в найденной рабочей точке определить сопротивление резистора в цепи истока R_u и малосигнальные параметры S, R_i и μ ;
- г) графоаналитическим методом определить параметры режима усиления S_P , K и P при амплитуде входного сигнала U_{msu} =0,25 B.

Задача № 6

Электронно-лучевая трубка с электростатическим отклонением луча имеет длину отклоняющих пластин (табл.6) l_1 , с расстоянием между пластинами d, расстояние от экрана до ближайшего к ней края пластин l_2 . Напряжение на втором аноде равно U_{a2} , а приложенное постоянное напряжение к отклоняющим пластинам равно $U_{\text{отк}}$. Необходимо определить:

а) чувствительность ЭЛТ;

Последняя

- б) отклонение электронного луча на экране от оси трубки;
- в) угол отклонения луча в точке выхода его из поля пластин.

Таблица 6

										таоли
Предпоследня	ія 1	2	3	4	5	6	7	8	9	0
цифра шифра	a									
U _{a2} , кВ	2,	$6 \mid 2,$	5 2,3	3 2,1	1,5	1,7	1,9	2,0	2,4	1,8
U _{otk} , B	4() 45	5 50	65	95	85	75	70	60	80
				-	-	*			•	
Последняя цифра	1	2	3	4	5	6	7	8	9	0
1 ₁ , мм	20	20	25	30	35	30	28	26	24	22
1 ₂ , мм	190	170	120	180	200	240	160	140	190	150
d, мм	8	9	10	9	13	12	7,5	9,5	11	10

Задача № 7

Фотодиод включен последовательно с источником питания и нагрузочным резистором R_H . Обратный ток насыщения затемненного фотодиода (темновой ток) равен I_0 .

Фототок диода в фотогальваническом режиме при коротком замыкании перехода составляет $I_{\varphi 1}$ при потоке световой энергии Φ_1 ; $I_{\varphi 2}$ при потоке световой энергии Φ_2 ; $I_{\varphi 3}=0$ при потоке световой энергии $\Phi_3=0$.

Вычислить и построить семейство ВАХ идеализированного фотодиода для световых потоков Φ_1 , Φ_2 и Φ_3 в области напряжений U от 0 до -10 В (при расчетах принять, что фототок не зависит от напряжения на запертом переходе; T = 300 K).

Определить напряжение холостого хода U_{xx} перехода диода для Φ_1 , Φ_2 и Φ_3 и значения $\Phi_{1,2}$ (лм), считая токовую чувствительность при монохроматическом световом потоке равной $S_i = 1,5 \cdot 10^{-2}$ мкА/лм.

Описать принцип работы, характеристики и параметры фотодиода. Значения R_H , I_0 , $I_{\varphi 1}$, $I_{\varphi 2}$ приведены в табл.7.

Таблица 7

цпфра												
I ₀ , мкА	2	0,:	5	1	3	10)	7	20	1	10	20
Предпоследи	няя	1	2	3	4	,	5	6	7	8	9	0
цифра												
R _H , кОм		30	40	50	60)	70	80	90	100	110	120
$I_{\phi 1}$, мк A		20	30	40	5()	40	30	20	30	40	50
I _{ф2} , мкА		100	90	30	12	0	80	60	50	70	110	130
-		•										

Раздел 2. Аналоговая и цифровая схемотехника

2.1. Введение

Изучение этого раздела базируется на знаниях, полученных при рассмотрении электронных компонентов, а также основных положений теории цепей, большое внимание уделяется цифровой технике, наряду с рассмотрением аналоговых схем. Это должно подготовить студентов к решению задач, связанных с разработкой и эксплуатацией устройств аналоговой и цифровой техники, используемой в устройствах телекоммуникаций, вычислительной технике, различной радиоэлектронной аппаратуре.

2.2. Аналоговые устройства [1, с.135-145; 3, с.245-248]

Общие сведения об усилителях электрических сигналов. Функциональное назначение усилителей. Основные характеристики усилителей, их параметры. Коэффициент усиления (коэффициент передачи), линейные и нелинейные искажения, динамический диапазон и шумовые характеристики. Методы анализа усилительных устройств. Особенности импульсных усилителей.

2.3. Усилительные каскады с RC-связями на биполярных и полевых транзисторах [1, с.183-220; 3 с.248-260; 3, с.275-291]

Схемы включения и режимы работы. Обеспечение режима по постоянному току в усилителе на биполярных и полевых транзисторах.

Методы термостабилизации режима рабочей точки. Однокаскадные транзисторные усилители с RC-связями. Схемотехнические решение и эквивалентные схемы усилительных каскадов по переменному току. Коэффициенты усиления по напряжению, току, мощности. Входные и выходные импедансы, коэффициент нелинейных искажений. Частотные свойства однокаскадных усилителей с RC-связями.

Схемы усилителей на ПТ. Обеспечение режима по постоянному току в усилителях на транзисторах с p-n-переходом и МДП-транзисторах. Стабилизация рабочей точки. Эквивалентные схемы для переменного тока. Коэффициент усиления, входные и выходные импедансы. Частотные характеристики и нелинейные искажения.

2.4. Обратные связи в усилителях [1, с.157-184; 3, с.260-368]

Виды обратных связей и их влияние на основные параметры усилителей. Устойчивость усилителей с обратными связями. Режимы работы усилительных каскадов.

2.5. Оконечные каскады усиления [1, c.263-272]

Однотактные и двухтактные трансформаторные и бестрансформаторные усилительные каскады. Режимы работы. Коэффициент усиления и коэффициент полезного действия для режимов А и В. Нелинейные искажения, режим АВ. Схемные методы повышения коэффициента полезного действия. Усилители на комплементарных транзисторах. Предельные режимы работы и максимальная выходная мощность.

Интегральные усилители мощности.

2.6. Усилители постоянного тока [1, с.221-237; 3, с.288-291]

Схемные решения, согласование уровней напряжений в УПТ. Температурная нестабильность. Дифференциальные усилительные каскады на биполярных и полевых транзисторах. Коэффициенты усиления и входные сопротивления для синфазного и дифференциального сигналов. Методы уменьшения дрейфа характеристик и увеличения динамического диапазона. Симметричный и несимметричный выходы дифференциальных усилителей. Нелинейные искажения.

2.7. Операционные усилители [1, с.238-245; 1, с.273-328; 3, с.292-328]

Основные определения и параметры. Структура ОУ. Особенности дифференциальных каскадов интегральных усилителей, динамическая нагрузка, источники стабильного тока. Схемы и методы согласования уровней, выходные каскады ОУ.

Области применение ОУ. Способы подачи питающих напряжений, компенсация напряжения смещения и разности входных токов.

Инвертирующий и неинвертирующий усилители, их коэффициенты усиления, входные и выходные сопротивления. Дифференциальное включение ОУ. Интеграторы и дифференциаторы, логарифмирующие и антилогарифмирующие схемы на ОУ.

Суммирование и вычитание сигналов на ОУ. Управляющие источники тока и напряжения.

Компараторы напряжения на ОУ. Интегральные компараторы. Применение компараторов.

2.8. Основные элементы цифровой техники [1, с.509-517; 3, с.188-199]

Основные понятия алгебры логики. Функционально полный набор логических связей. Законы и аксиомы алгебры логики. Логические выражения и их преобразования. Карты Карно. Минимизация переключательных функций, их реализация в базисах «И-НЕ», «ИЛИ-НЕ».

2.9. Ключи [3, c.174-188]

Схемы и статические характеристики диодных ключей. Быстродействие диодного ключа, процессы переключения. Применение диодных ключей.

Ключевые свойства биполярных транзисторов. Статические режимы работы транзисторных ключей. Процессы переключения и быстродействие. Способы увеличения быстродействия. Насыщенные ключи, ключи на переключателях тока.

Виды нагрузок транзисторных ключей на полевых транзисторах. Ключи на МДП-транзисторах с дополнительной симметрией. Переходные процессы, быстродействие ключей на МДП-транзисторах и КМДП-структурах.

2.10. Логические элементы [1, с.631-372; 3, с.199-227]

Параметры и характеристики логических элементов. Виды сигналов, потенциальные и импульсные логические элементы. Классификационные статические параметры и параметры быстродействия. Основные параметры режима универсальных логических элементов.

Базовые схемы ДТЛ и ТТЛ. Входные и выходные каскады. Помехоустойчивость и быстродействие ДТЛ и ТТЛ элементов. ТТЛ с диодами Шоттки.

Базовый элемент ЭСЛ. Принцип работы, статические режимы, параметры быстродействия. Особенности ЭСЛ элементов различных серий.

Схемы и принцип действия n-MДП- и p-MДП-логических элементов. Особенности схемотехники логических элементов на МДП-транзисторах. Логические элементы на МДП-транзисторах с взаимодополняющими структурами. Быстродействие логических элементов на МДП-транзисторах и КМДП-структурах. Интегральная инжекционная логика.

2.11. Мультивибраторы и триггеры [1, с.553-578; 3, с.227-244]

Назначение мультивибраторов, способы запуска и параметры. Статические режимы работы, временные диаграммы и основные расчетные соотношения. Мультивибраторы на ОУ и цифровых интегральных схемах. Формирователи импульсов на цифровых интегральных схемах.

Триггеры. Термины и определения. Структурная схема, классификация по виду выполняемых функций и способу записи информации, асинхронный и синхронный режимы работы.

Закон функционирования, таблицы истинности асинхронных триггеров. Структурный анализ RS-триггеров в различных базисах. Характеристическое уравнение. Анализ триггерных устройств. Синхронные RS-триггеры, их разновидности. М-S-триггеры.

Закон функционирования D-триггера. Схемные решения триггеров, управляемых уровнем. Динамический D-триггер. Быстродействие и состязания в схемах. Т-триггер.

Закон функционирования, таблицы переходов. Схемные решения ЈКтриггеров различных типов. Области применения. ЈК-триггеры как устройство пересчета. Особенности ЈК-триггеров различных серий интегральных микросхем.

2.13. Цифроаналоговые преобразователи (ЦАП)

ЦА-преобразователи с электронными ключами. Преобразователи: коднапряжение, код-перемещение, код-время (частота). Области применения. Интегральные ЦА-преобразователи, состав и основные параметры.

2.14. Аналого-цифровые преобразователи (АЦП) [1, c.736-761; 3, c.329-343]

Основные принципы построения. Точность АЦ-преобразователей, статическая и динамическая погрешность. Преобразователи параллельного типа. Преобразователи напряжение-частота и напряжение-время. АЦ-преобразователи, построение на основе этих преобразователей. АЦ-преобразователи с двойным интегрированием и поразрядным взвешиванием. Интегральные схемы АЦП.

ЛИТЕРАТУРА

Основная

- 1. Опадчий Ю.Ф., Глудкин О.П., Гуров А.И. Аналоговая и цифровая электроника / Под ред. О.П. Глудкина: Учебник для вузов. М.: Радио и связь, 1999.
 - 2. Гусев В.Г., Гусев Ю.М. Электроника. М.: Высш. шк., 1991.
- 3. Ткаченко Ф.А. Техническая электроника: Учеб. пособие. Мн.: Дизайн ПРО, 2000.
- 4. Электронные, квантовые приборы и микроэлектроника / Под ред. Н.Д. Федорова. – М.: Радио и связь, 1998.
- 5. Игумнов Д.В., Костюнина Г.П. Полупроводниковые усилительные устройства. М.: Радио и связь, 1997.

Дополнительная

- 6. Титце У., Шенк К. Полупроводниковая схемотехника. М.: Мир, 1983.
- 7. Изъюрова Г.И. и др. Расчет электронных схем. М.: Высш. шк., 1987.

- 8. Расчет элементов цифровых устройств. / Под ред. Преснухина Л.Н. М.: Высш. шк., 1991.
 - 9. Манаев Е.И. Основы радиоэлектроники. М.: Радио и связь, 1985.
 - 10. Ерофеев Ю.М. Импульсная техника. М.: Высш. шк., 1989.

Методические указания по выполнению контрольной работы № 2

Задача № 1

Рассчитать одиночный усилительный каскад в схеме с ОЭ. Приведем схему усилительного каскада с ОЭ и эмиттерной стабилизацией (рис.1, вариант № 3). При этом необходимо учесть, что рабочая точка может быть задана фиксированным током базы, фиксированным напряжением база—эмиттер. Кроме того, может быть дополнительно применена стабилизация режима по постоянному току: эмиттерная, коллекторная или комбинированная (пункт «а» задания).

Рис.1

Так как каскад работает в режиме класса «А», то рабочая точка выбирается примерно посредине нагрузочной прямой, и тогда U_{un} = $2U_{\kappa 0}$. Падение напряжения на резисторе $R_{\scriptscriptstyle 3}$ рекомендуется выбирать в пределах порядка $(0,05...0,1)U_{un}$. Исходя из этого, определяем падение напряжения на резисторах $R_{\scriptscriptstyle 3}$ и $R_{\scriptscriptstyle K}$. $R_{\scriptscriptstyle 3}$ = $(0,05...0,1)U_{un}/I_{\scriptscriptstyle 30}$ = $=(0,05...0,1)U\alpha/I_{\kappa 0}$, где α – статический коэффициент передачи по току для схемы с общей базой ($\alpha \approx h_{215}$).

Причем $\beta=\alpha/(1-\alpha)$, β — статический коэффициент передачи по току в схеме с ОЭ ($\beta\approx h_{219}$), или $\alpha=\beta/(\beta+1)$. Тогда $R_\kappa\approx \frac{U_{\text{ип}}}{2I_{\kappa0}}$. Ток делителя в цепи базы

 $I_{\it d}$ должен составлять величину $(2...5)I_{\it 60}$ для хорошей стабильности режима по постоянному току. Поэтому:

$$R_1 = (U_{\text{ип}} - U_{60})/(2\dots 5)I_{60}; \quad I_{60} = \frac{I_{\kappa 0}}{\beta}; \quad U_{60} = U_{690} + I_{90}R_9.$$

Величина напряжения U_{690} для германиевых транзисторов 0,2...0,4 В, для кремниевых – 0,6...0,8 В. Нижний резистор в цепи делителя: $R_2=U_{60}/I_{0}$.

В пунктах «б» и «в» задания обратить внимание на то, каким образом и в каких пределах изменяются входное и выходное сопротивления в зависимости от внутреннего сопротивления источника сигнала и сопротивления нагрузки, каковы особенности усилительных свойств рассчитанных схем.

При расчете одиночных каскадов усилителей целесообразно пользоваться известными выражениями, в которые входят либо h-параметры транзисто-

ра, либо физические параметры. Кроме того, известными величинами являются сопротивление источника сигнала и сопротивление нагрузки. Основные параметры рассчитываются следующим образом

Входное сопротивление:
$$R_{BX} = h_{11} - \frac{h_{21} \cdot h_{12}}{1 + R_H \cdot h_{22}} \cdot R_H$$
.

Выходное сопротивление:
$$R_{BHX} = \frac{1}{h_{22} - h_{21} \cdot h_{12} / (R_{\Gamma} + h_{11})}$$
.

Коэффициент усиления по напряжению:

$$K_{u} = \frac{h_{21}}{h_{12} \cdot h_{21} - h_{11} \cdot \left(h_{22} + \frac{1}{R_{H}}\right)}.$$

Коэффициент усиления по току: $K_i = \frac{h_{21}}{1 + R_H \cdot h_{22}}$.

С другой стороны, коэффициент усиления по напряжению может быть рассчитан следующим образом: $K_u = K_i \cdot \frac{R_H}{R_{PV}}$.

Коэффициент усиления по мощности:
$$K_p = K_i \cdot K_u = K_i^2 \cdot \frac{R_H}{R_{BX}}$$
.

Используя приведенные выше формулы, можно рассчитать и построить зависимости:

$$R_{BX} = f(R_H); R_{BbIX} = f(R_r); K_i = f(R_H); K_u = f(R_H)$$
 и $K_p = f(R_H)$.

Одиночный каскад усилителя включен по схеме с общим эмиттером. Параметры транзистора и схемы таковы: $h_{119}=1000$ Ом; $h_{129}=2\cdot10^{-4}$; $h_{219}=100$; $h_{229}=5\cdot10^{-5}$ См. Сопротивление резистора нагрузки $R_H=3$ кОм, источник сигнала имеет внутреннее сопротивление $R_r=1000$ Ом. Определить коэффициент усиления по току, напряжению и мощности, величину входного и выходного сопротивлений.

РЕШЕНИЕ. Определяем входное сопротивление:

$$R_{BX} \approx h_{119} - h_{219} \cdot h_{129} \cdot R_{H} = 1000 - 100 \cdot 2 \cdot 10^{-4} \cdot 3 \cdot 10^{3} = 940 \text{ Ом.}$$
Выходное сопротивление:

$$R_{\rm BHX} = \frac{1}{h_{229} - \frac{h_{219} \cdot h_{129}}{R_{\,\Gamma} + h_{119}}} = \frac{1}{5 \cdot 10^{-5} - \frac{100 \cdot 2 \cdot 10^{-4}}{1000 + 1000}} = 0,25 \cdot 10^5 \, \, \text{Om}.$$

Коэффициент усиления по току находим, используя выражение

$$K_i = \frac{h_{219}}{1 + R_H \cdot h_{229}} = \frac{100}{1 + 3 \cdot 10^3 \cdot 5 \cdot 10^{-5}} \approx 100$$
.

Коэффициент усиления по напряжению: $K_u = K_i \frac{R_H}{R_{BX}} = 100 \frac{3000}{940} \approx 319$.

Коэффициент усиления по мощности: $K_p = K_i \cdot K_u = 100 \cdot 319 = 31900$.

В результате графоаналитического расчета необходимо определить максимальную величину неискаженного сигнала: амплитуды тока и напряжения, мощности в нагрузке и КПД каскада.

Графоаналитический расчет проводится следующим образом. Записываются предельные параметры транзистора I_{κ} $_{max}$, $U_{\kappa 9}$ $_{max}$ и P_{κ} $_{max}$. На выходных характеристиках транзистора (рис.2) строится кривая допустимой мощности, P_{κ} $_{max}$.

Затем определяется область безопасных режимов работы, ограниченная кривой допустимой мощности, $I_{\kappa \ max}, U_{\kappa 9 \ max}.$

Уравнение нагрузочной прямой имеет вид
$$I_K = \frac{U_{un} - U_{K \ni A}}{R_{\kappa}}$$
.

Амплитуды полуволн максимальной величины неискаженного сигнала соответствуют пересечению нагрузочной прямой со статическими характеристиками в точке «С» – режим насыщения и в точке «В» – режим отсечки. Рабочая точка «А» выбирается на середине линейного участка нагрузочной

прямой
$$\left(U_{K \ni A} \approx \frac{U_{U\Pi}}{2}\right)$$
, тогда $U_{Km} = \frac{U_{Km1} + U_{Km2}}{2}$; $I_{Km} = \frac{I_{Km1} + I_{Km2}}{2}$.

Максимальная мощность неискаженного сигнала: $P_{Km} = \frac{1}{2} \, U_{Km} \cdot I_{Km}$.

Коэффициент полезного действия:
$$\eta_A = \frac{P_{Km}}{P_{KA}} = \frac{U_{Km} \cdot I_{Km}}{2 \cdot U_{K \ni \ni} \cdot I_{KA}}$$
.

Задача № 2

Схема транзисторного ключа приведена на рис.3. Для построения передаточной характеристики строим нагрузочную прямую на выходных статических

характеристиках (рис.4, а)и пользуемся входной характеристикой для расчета уровня входного сигнала (рис.4, б):

$$\begin{split} &U_{H\Pi \ 9KB}=U_{H\Pi} \, \frac{R_H}{R_K+R_H}; \\ &U_{BX}=U_{B3}+I_B \cdot R_6; \\ &R_{9KB}=\frac{R_H \cdot R_K}{R_H+R_K}. \end{split}$$

Рис.4 $\text{Величина тока } I_{\text{кm}} = \frac{U_{\text{ИП экв}}}{R_{\text{экв}}};$ $U_{\text{вых}} \approx U_{\text{ИП экв}} - \beta I_{\delta} R_{\text{экв}}, \quad \text{где } \beta -$ коэффициент усиления по току.

На рис.5 изображена передаточная характеристика ключа $U_{\text{вых}} = f(U_{\text{вх}})$. Таким образом, на передаточных характеристиках ключа имеется область отсечки при малых

входных сигналах — «О», активная область — «А» и область насыщения при больших уровнях входного напряжения — «Н». Для более точного расчета передаточной характеристики ключа необходимо учитывать зависимость $\beta = f(I_{\delta})$.

Пусть требуется разработать асинхронный триггер с инверсными входами. Решение производим следующим образом.

Триггер является элементарной ячейкой памяти и может находиться в двух состояниях: «0» или «1». Для описания работы триггера используют таблицы истинности, которые называют таблицами переключений. Эти таблицы иллюстрируют переход уровней выходного сигнала от предыдущего Q_n к последующему Q_{n+1} . Установка триггера в состояние «1» осуществляется по входу, обозначаемому «Sn», а в состояние «0» — по входу «Rn».

Таблицу переключения электронного триггера можно представить в сле-

дующем виде:

1024011 211401			
S_n	R_n	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

Здесь Х обозначает неопределенное состояние триггера.

Карта Карно выглядит следующим образом:

$Q_n \setminus S_n, R_n$	00	01	11	10
0	0	0	X	1
1	1	0	X	1

В зависимости от того, как реализуется состояние неопределенности «XX», различают следующие разновидности простейших триггеров:

«11» – RS-триггер с инверсными входами;

«00» – RS-триггер с прямыми входами;

«01» – Е-триггер;

«10» – JK-триггер.

Анализ работы, уравнения триггеров и составление схем осуществим, используя карты Карно.

Для RS-триггера с инверсными входами карта Карно имеет вид таблицы, приведенной ниже.

1						•
	$Q_n \setminus S_n, R_n$	00	01	11	10	
	0 1	0	0 0			a
		$\downarrow_{\sigma}\downarrow$			\downarrow $_{6}$ \downarrow	

Объединяя единицы в этой карте, получим два контура "а" и "б", а минимально дизъюнктивная форма записи будет такова: $Q_{n+1} = S_n + Q_n R_n$. Используя правило де-Моргана, получим $Q_{n+1} = \overline{S_n} \overline{\overline{Q_n R_n}}$.

Из уравнения видно, что принципиальная схема триггера наиболее просто может быть реализована на логических элементах "И - НЕ" (рис.6, а принципиальная схема, рис.6, 6 – условное обозначение).

Аналогичным образом проектируются триггеры других типов.

Контрольная работа № 2

Задача № 1

а) Нарисовать схему включения одиночного усилительного каскада с ОЭ в соответствии с табл.1 и рассчитать режимы по постоянному току. Каскад работает в режиме класса А.

Таблица 1

Данн	ые		Варианты задания								
		01	02	03	04	05	06	07	08	09	10
Тиі	П	КТ	ГΤ	ГΤ	КТ	КТ	КТ	ГΤ	ГΤ	КТ	ГΤ
транзис	стора	315A	402A	403A	601	603A	801A	703	322A	312A	308A
Рабочая	U_{κ} ,B	5	5	4	20	5	10	12	4	10	4
точка	I_{κ} , MA	1,5	100	2	11	67	70	400	5	10	22
Способы	і зада-	1	2	3	4	1	2	3	4	1	2
ния реж	гимов										

Примечание: 1 — фиксированным током базы; 2 — фиксированным напряжением база—эмиттер; 3 — с эмиттерной стабилизацией; 4 — с коллекторной стабилизацией.

б) Провести аналитический расчет усилительного каскада и построить графические зависимости входного сопротивления от сопротивления нагрузки

 $R_{\rm BX}=f(R_{\rm H})$ и выходного сопротивления от сопротивления источника сигнала $R_{\rm BMX}=f(R_{\rm T})$, если $R_{\rm T}$ и $R_{\rm H}$ изменяются в пределах от 10 Ом до 10 МОм. Статические характеристики транзисторов выбираются из справочника и в заданной рабочей точке определяются h-параметры.

- в) Провести расчет и построить графические зависимости коэффициентов усиления по току, напряжению и мощности от величины сопротивления нагрузки для схем включения (п.«а»). R_H изменяется от 10 Ом до 10 МОм.
- г) Выполнить графоаналитический расчет усилительного каскада в режиме класса «А» для схемы включения с общим эмиттером. При расчетах использовать выходные статические характеристики транзистора.

Задача № 2

Нарисовать схему и построить передаточную характеристику ключа $U_{\text{вых}} = f(U_{\text{вх}})$ по схеме с ОЭ, если сопротивление источника сигнала $R_6 = h_{113}$, сопротивление нагрузки $R_H = 0.5 \ R_K$. Тип транзистора и все необходимые данные использовать из табл.1 (задача N_2 1).

Задача № 3

Разработать схему триггера, описать его функционирование в соответствии с данными, приведенными в табл.2.

Таблица 2

Данные		Варианты заданий								
	01	02	03	04	05	06	07	08	09	10
Триггер	RS	RS	Е	jК	D	RS	jК	jК	D	RS
Управление	С	С	A	A	Д	MS	Сч	С	MS	Сч

Примечание: С – синхронный; А – асинхронный; MS – двухступенчатый; Д – динамический; Сч – счетный.

Схему триггера изображать подробно, используя принципиальную схему логических элементов.

Раздел 3. Электронные и квантовые приборы СВЧ

3.1. Введение

Особенности диапазонов сверхвысоких частот и оптического, их роль в развитии радиоэлектроники. Краткий исторический очерк развития отечественной и зарубежной электроники СВЧ и квантовой электроники. Области применения СВЧ и квантовых приборов. Классификация электронных приборов СВЧ и квантовых приборов.

Особенности устройства и работы электронных приборов СВЧ: неразрывность электронной и колебательной систем, влияние времени пролета электронов и паразитных реактивностей, динамическое управление электронным потоком.

Устройство узкополосных колебательных систем, их особенности. Принцип действия замедляющих систем, их устройство, понятие о пространственных гармониках, прямых и обратных бегущих волнах. Дисперсия в замедляющих системах.

3.2. Клистроны

Пролетный клистрон: принцип динамического управления — модуляция электронов по скорости, группирование электронов, пространственно—временная диаграмма, параметр группирования, закон изменения плотности тока, энергетическое взаимодействие электронных сгустков с полем резонатора. Параметры, характеристики пролетных клистронов, особенности конструкций, области применения.

Устройство и принцип действия отражательного клистрона: группирование электронов в тормозящем поле, пространственно—временная диаграмма, баланс фаз и баланс мощностей. Области колебаний, условия самовозбуждения, электронная настройка частоты. Особенности конструкции и области применения отражательных клистронов.

3.3. Лампы бегущей и обратной волны типа «О»

Принцип длительного взаимодействия электронов с бегущей электромагнитной волной. Устройство усилителя на ЛБВ, принцип действия: группирование электронов в поле бегущей волны, энергетическое взаимодействие с полем бегущей волны. Параметры и характеристики ЛБВ, особенности конструкции и применение.

Конструкция и принцип действия генератора на ЛОВ: баланс фаз и баланс мощностей, электромагнитная перестройка частоты. Режим регенеративного усиления. Основные характеристики, параметры и области применения ЛОВ.

3.4. Электронные приборы типа «М»

Принцип действия приборов со скрещенными электрическими и магнитными полями. Многорезонаторный магнетрон: устройство и принцип действия, виды колебаний в магнетроне, режимы работы магнетрона, образование электронных спиц и условия синхронизации их движения, основные характеристики магнетрона и его параметры. ЛБВ и ЛОВ типа «М»: устройство, принцип действия, основные характеристики и параметры. Платинотрон: принцип действия, режимы работы (амплитрон, стабилотрон), основные характеристики и параметры.

3.5. Твердотельные СВЧ-приборы

Полупроводниковые диоды СВЧ: смесительные, переключательные, туннельные, умножительные, – основные особенности и назначение.

Транзисторы СВЧ: биполярные и полевые, – особенности их конструкций, методы повышения граничной и рабочей частот, области применения в СВЧ-устройствах.

Диод Ганна: принцип действия, режимы работы, генератор на диоде Ганна, конструкция, характеристики и параметры.

Лавинно-пролетный диод: принцип действия, режимы работы, основные характеристики и параметры, генераторы и усилители на лавинно-пролетных диодах.

3.6. Квантовые приборы

Физические основы квантовых приборов, квантовые переходы, инверсия населенности, характеристика квантового излучения.

Устройство и принцип действия квантовых генераторов на пучке атомов водорода и молекул аммиака. Квантовые парамагнитные усилители (КПУ): типы КПУ, их основные параметры и характеристики.

Устройство и принцип действия лазеров: газовых, твердотельных, полупроводниковых, – их основные параметры и характеристики.

Примерный перечень лабораторных работ

- 1. Исследование пролетного клистрона.
- 2. Исследование лампы бегущей волны О-типа.
- 3. Исследование лампы обратной волны О-типа.
- 4. Исследование твердотельного СВЧ-генератора на диоде Ганна.
- 5. Исследование многорезонаторного магнетрона.
- 6. Исследование газового лазера.
- 7. Исследование полупроводникового лазера.

ЛИТЕРАТУРА

Основная

- 1. Электронные, квантовые приборы и микроэлектроника / Под ред. Н.Д. Федорова. – М.: Радио и связь, 1998.
- 2. Андрушко Л.М., Федоров Н.Д. Электронные и квантовые приборы СВЧ. М.: Радио и связь, 1981.
- 3. Федоров Н.Д. Электронные приборы СВЧ и квантовые приборы. М.: Атомиздат, 1975.

Дополнительная

- 4. Рожанский В.Б. Электронные приборы СВЧ: Учеб. пособие. Мн.: БГУИР, 1997.
 - 5. Березин В.М. Электронные СВЧ приборы. М.: Радио и связь, 1981.
- 6. Рябов С.Г., Трошкин Г.П. и др. Приборы квантовой электроники. М.: Сов. радио, 1985.

Методические пособия

- 1. Рожанский В.Б. Лабораторные работы по курсу "Электронные приборы СВЧ и квантовые приборы". Ч.1. Мн.: МРТИ, 1990.
- 2. Рожанский В.Б. Лабораторные работы по курсу "Электронные приборы СВЧ и квантовые приборы". Ч.2. Мн.: МРТИ, 1995.

Методические указания

3.1. Введение [1, с.322-331; 2, с.4-13, 47-52; 3, с.5-8, 64-67]

При изучении темы необходимо особое внимание обратить на отличие работы электронных приборов от приборов более низкочастотных диапазонов. Необходимо получить четкое представление о принципе работы замедляющей системы, о прямых и обратных гармониках.

Вопросы для самопроверки

- 1. Почему с ростом частоты уменьшается выходная мощность?
- 2. В чем сущность динамического управления электронным потоком?
- 3. Что такое замедляющая система?
- 4. Напишите формулу для коэффициента замедления.
- 5. Что такое нормальная и аномальная дисперсии?

3.2. Клистроны [1, с.372-398; 2, с.23-45; 3, с.18-62]

При изучении данной темы основное внимание необходимо уделять процессу преобразования модуляции электронов по скорости в модуляцию по плотности, пространственно—временным диаграммам. Необходимо уяснить принцип усиления СВЧ—колебаний в клистроне за счет уменьшения кинетической энергии электронов.

В отражательном клистроне особое внимание следует уделить условию баланса фаз и мощностей, а также принципу электронной перестройки частоты.

Вопросы для самопроверки

- 1. Какой из электронов является центром образования сгустка и почему?
- 2. Что такое параметр группирования?
- 3. Что такое оптимальный параметр группирования для двухрезонаторного пролетного клистрона и чему он равен?
 - 4. Зачем нужен промежуточный резонатор в многорезонаторном клистроне?
- 5. Как связано напряжение на отражателе в отражательном клистроне с номером зоны?
 - 6. Как зависит мощность отражательного клистрона от номера зоны?
- 7. Как зависит частота отражательного клистрона от напряжения на отражателе?
 - 8. Каким образом производится механическая перестройка частоты клистрона?

3.3. Лампа бегущей и обратной волны типа «О» [1, с.399-422; 2, с.45-67; 3, с.62-67]

При изучении ЛБВ и ЛОВ типа «О» особое внимание необходимо уделить уяснению механизма взаимодействия с полем бегущей или обратной волны. Длительное взаимодействие обусловливает такие важнейшие свойства усилителей на ЛБВ, как широкополосность, большой коэффициент усиления, низкий коэффициент шума. Необходимо понять назначение устройств согласования ламп со входом и выходом.

При изучении ЛОВ обратить внимание на условия самовозбуждения ЛОВ и на электронную перестройку частоты, что является важнейшей особенностью ЛОВ.

Вопросы для самопроверки

- 1. Каково должно быть соотношение между скоростью электронов и фазовой скоростью волны в ЛБВ?
 - 2. Как изменяется амплитуда высокочастотного поля вдоль оси лампы?
 - 3. Что такое параметр усиления?
 - 4. Каково назначение поглотителя в ЛБВ?
 - 5. Что является источником собственных шумов ЛБВ?
 - 6. Запишите условие баланса фаз для ЛОВ.
 - 7. Что такое режим регенеративного усиления в ЛОВ?
 - 8. Чем объясняется изрезанность АЧХ ЛОВ?
 - 9. Что такое пусковой ток?

3.4. Электронные приборы типа «М» [2, с.70-85; 3, с.106-135]

При изучении приборов со скрещенными электрическим и магнитным полями обратить внимание на траекторию движения электронов в таких полях, уяснить, что в этих приборах происходит изменение потенциальной, а не кинетической энергии электрона, разобраться в механизме фазовой фокусировки и образования электронных спиц.

При излучении ЛБВ–М и ЛОВ–М необходимо уяснить отличие этих ламп от аналогичных ламп типа «О».

При излучении платинотронов необходимо выяснить сходство и различие этих приборов с другими приборами типа «М». Следует обратить внимание на схему включения платинотрона в качестве стабилотрона и назначение ее элементов.

Вопросы для самопроверки

- 1. Нарисуйте траекторию движения электронов в скрещенных электрическом и магнитном полях при различных значениях магнитной индукции.
- 2. Почему переносная скорость электронов при взаимодействии с СВЧ-полем не изменяется?
 - 3. Зачем нужен поглотитель в ЛОВ-М?
 - 4. Почему ЛБВ–М имеет более широкую полосу частот, чем ЛБВ–О?
 - 5. Что такое синфазный и противофазный вид колебаний в магнетроне?
 - 6. Каково назначение связок в магнетроне?
 - 7. Объясните процесс формирования спиц в магнетроне.
 - 8. Запишите формулу КПД магнетрона.
 - 9. Какая пространственная гармоника используется в платинотроне?
 - 10.Зачем нужен резонатор в стабилотроне?

3.5. Твердотельные СВЧ-приборы [1, с.425-441; 2, с.87-138; 3, с.142-187]

При изучении полупроводниковых диодов и транзисторов СВЧ необходимо уделять внимание особенностям этих приборов в диапазоне СВЧ, методам повышения рабочей частоты этих приборов.

Для диодов Ганна и ЛПД очень важным является наличие отрицательного дифференциального сопротивления, причинам его возникновения следует уделить особое внимание. Необходимо получить представление о колебательных системах, которые используются для создания генераторов и усилителей на основе этих приборов.

Вопросы для самопроверки

- 1. Какие диоды используются в качестве смесительных и почему?
- 2. Что такое переключающий диод?
- 3. Чем ограничена граничная частота биполярного транзистора?
- 4. Из какого материала изготавливают полевые СВЧ-транзисторы?
- 5. Чем вызвано наличие отрицательной дифференциальной проводимости в диоде Ганна?
 - 6. Что такое пролетная частота диода Ганна?
 - 7. Конструкция генератора на диоде Ганна.
 - 8. Нарисуйте структуру ЛПД.
- 9. Чем обусловлено возникновение отрицательной дифференциальной проводимости в ЛПД?
 - 10. Чем обусловлен высокий уровень шумов в ЛПД?

3.6. Квантовые приборы [1, с.480-535; 2, с.155-200; 3, с.188-274]

При изучении данной темы необходимо уяснить динамику квантовых переходов, получить четкое представление о возможности усиления в активной квантовой среде при наличии инверсии населенности на рабочем переходе.

Необходимо обратить особое внимание на метод создание инверсии населенностей в парамагнитном веществе. Следует четко уяснить различие в устройстве и характеристиках КПУ бегущей волны и резонаторного типа.

При изучении лазеров уделить особое внимание оптическим резонаторам и их назначению в лазерах. Необходимо уяснить условия самовозбуждения лазера и изучить характеристики излучения.

Вопросы для самопроверки

- 1.Запишите выражение для частоты квантового перехода.
- 2. Что такое вынужденный переход?
- 3. Чем вызвано уширение спектральной линии?
- 4. Как получить инверсию населенностей в трехуровневой системе?
- 5.Объясните назначение и принцип действия квадрупольного конденсатора.
 - 6. Изобразите схематически устройство отражательного и проходного КПУ.
 - 7. Что такое продольная и поперечная мода оптического резонатора?
 - 8.Зачем нужна смесь газов в гелий-неоновом лазере?
 - 9. Какая разница между газовым и ионным лазером?
 - 10.Почему КПД молекулярных лазеров выше, чем ионных?
- 11. Назовите методы получения инверсии населенностей в полупроводниковом лазере.

Контрольная работа № 3

В процессе изучения курса каждый студент должен выполнить одну контрольную работу, номер варианта которой определяется последней цифрой номера зачетной книжки или, в отдельных случаях, преподавателем, рецензирующим контрольные работы. Каждый вариант содержит 4 контрольных вопроса. Варианты сведены в табл.1.

Таблица 1

Номер	Номер вопроса					
варианта	Тема 1	Тема 2	Тема 3	Тема 4		
1	1	11	21	31		
2	2	12	22	32		
3	3	13	23	33		
4	4	14	24	34		
5	5	15	25	35		
6	6	16	26	36		
7	7	17	27	37		
8	8	18	28	38		
9	9	19	29	39		
0	10	20	30	40		

Основными целями, которые ставятся перед студентом-заочником при выполнении контрольной работы, являются следующие:

- 1) приобретение навыков работы с литературой;
- 2) проверка умения подготовить технически грамотный и исчерпывающий ответ на поставленный вопрос;
- 3) приобретение умения самостоятельно излагать изучаемый материал и правильно использовать техническую терминологию;
- 4) контроль со стороны кафедры знаний студентом отдельных ключевых тем, относящихся к внеаудиторному зачету.

Контрольные вопросы

- 1. Применение приборов со статическим управлением токопрохождением на СВЧ.
- 2. Принцип динамического управления электронным потоком и его применение в приборах СВЧ. Необходимые и достаточные условия энергообмена между электронами и полем СВЧ в таких приборах.
- 3. Электродинамические системы, используемые в электронных приборах СВЧ, их назначение, основные типы, характеристики и параметры.
- 4. Замедляющие системы. Назначение, принцип действия, характеристики, параметры.

- 5. Устройство и принцип работы двухрезонаторного пролетного клистрона.
- 6. Модуляция электронного потока по скорости и по плотности; параметр группировки, конвекционный ток, максимальная и оптимальная группировка в пролетных клистронах.
- 7. Основные параметры и характеристики пролетных клистронов; их возможные режимы работы.
- 8. Отражательный клистрон: устройство, принцип работы, группировка электронов в тормозящем поле отражателя, условия самовозбуждения колебаний, обратный конвекционный ток в отражательном клистроне.
- 9. Условия самовозбуждения колебания в отражательном клистроне, пусковой ток, зона генерации, электронный гистерезис.
- 10.Основные параметры и характеристики отражательного клистрона, электронная перестройка частоты.
- 11. Устройство и принцип действия ЛБВ—О: пространственно-временные диаграммы для движущихся электронов, энергообмен между СВЧ—полем и электронными сгустками.
- 12.Основные характеристики и параметры ЛБВ-0, особенности их применения.
- 13. Устройство и принцип работы лампы обратной волны (ЛОВ–О); характеристики, параметры, области применения ЛОВ–О.
- 14. Движения электронов в скрещенных однородных электрическом и магнитном полях. Особенности взаимодействия электронов с неоднородным СВЧ-полем в приборах типа «М».
- 15. Устройство и принцип действия многорезонаторного магнетрона. Виды колебаний в резонаторе, образование электроных спиц, особенности энергообмена между электронами и СВЧ—полем резонатора.
- 16. Рабочий режим магнетрона. Основные характеристики и параметры магнетрона. Области применения.
- 17. Устройство и принцип работы ЛБВ–М: ее основные параметры и характеристики, области применения.
- 18. Устройство, принцип действия, основные характеристики и параметры ЛОВ–М.
- 19. Устройство, принцип действия, основные области применения платинотронов (амплитрона и стабилотрона).
- 20. Устройство и принцип действия митрона и краткая характеристика других приборов магнетронного типа.
- 21. Классификация и общая сравнительная характеристика твердотельных приборов СВЧ. Анализ факторов, мешающих продвижению обычных типов и конструкций полупроводниковых приборов диапазона СВЧ, пути их преодоления.
- 22. Детекторные и смесительные диоды СВЧ. Устройство, принцип действия, эквивалентные параметры, характеристики, области применения.

- 23.Переключательные диоды: назначение, устройство, принцип работы, параметры, области применения.
 - 24. Умножительные диоды, диоды с накоплением заряда (ДНЗ).
- 25.Варакторные диоды: устройство, принцип работы, параметры, характеристики, области применения.
- 26. Лавинно-пролетные диоды (ЛПД): устройство, принцип работы, режимы работы и их характеристика, схема включения, параметры и характеристики, области применения.
- 27. Диод Ганна (ДГ): устройство, механизм образования отрицательной дифференциальной проводимости, режимы работы ДГ.
- 28.Схемы включения ДГ. Особенности применения ДГ в генераторах и усилителях.
- 29. Биполярные СВЧ-транзисторы: устройство, принцип работы, конструктивные и технологические особенности, граничная частота, параметры и характеристики, уровень достижений.
- 30.Полевые СВЧ-транзисторы. Устройство, принцип действия, технологические и конструктивные особенности полевых транзисторов с барьером Шоттки (ПТШ). Режим работы. Области применения. Достижения.
- 31. Классификация квантовых приборов. Основные особенности и общие принципы функционирования квантовых приборов. Усиление и генерация сигналов в квантовых системах.
- 32. Квантовые парамагнитные усилители (КПУ): активные вещества, методы издания инверсии населенностей, типы КПУ, их параметры и характеристики; применения КПУ.
- 33. Квантовые стандарты частоты (КСЧ): устройство и характеристики пассивных и активных КСЧ.
- 34. Устройство и принцип работы генератора на аммиаке, основные характеристики и параметры.
- 35. Резонаторные устройства лазеров: типы резонаторов, нормальные типы колебаний (моды), условия возбуждения и мощность излучения их резонатора.
- 36. Устройство, принцип работы и основные параметры и характеристики газовых лазеров.
- 37. Устройство, принцип работы и основные характеристики и параметры твердотельных лазеров.
- 38. Устройство, принцип работы, характеристики и параметры полупроводниковых лазеров.
- 39. Устройство, физические принципы работы, характеристики, параметры жидкостных и химических лазеров.
 - 40. Модуляция излучения лазеров, области применения лазеров.

СОДЕРЖАНИЕ

Раздел 1. Электронные компоненты РЭА	3
Методические указания по выполнению контрольной работы № 1	18
Контрольная работа № 1	26
Раздел 2. Аналоговая и цифровая схемотехника	30
Методические указания по выполнению контрольной работы № 2	34
Контрольная работа № 2	39
Раздел 3. Электронные и квантовые приборы СВЧ	40
Контрольная работа № 3	47

Учебное издание

Методические указания и контрольные задания по курсу ЭЛЕКТРОННЫЕ, КВАНТОВЫЕ ПРИБОРЫ И МИКРОЭЛЕКТРОНИКА

для студентов специальности T.12.01 – «Телекоммуникационные системы» заочной формы обучения

Составители: Бельский Алексей Якимович,

Дробот Сергей Викторович, Рожанский Виктор Борисович, Ткаченко Федор Алексеевич, Хандогин Михаил Степанович

Редактор Т.А. Лейко Корректор Е.Н. Батурчик

Подписано в печать		Формат 60×84 1/16
Бумага	Печать офсетная	Усл. печ.л.
Учизд.л.	Тираж 150 экз.	Заказ

Учреждение образования

"Белорусский государственный университет информатики и радиоэлектроники" Отпечатано в БГУИР. Лицензия ЛП № 156. 220013, Минск, П. Бровки, 6