第三章复习题解答

- 1. (B) 对.
- 2. (D)对. 反例: $f(x) = \begin{cases} \frac{1}{2}x + x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, 有 $f'(x) = \begin{cases} \frac{1}{2} + 2x \sin \frac{1}{x} \cos \frac{1}{x}, & x \neq 0 \\ \frac{1}{2}, & x = 0 \end{cases}$. 其中 $f'(0) = \frac{1}{2} > 0$,但在 x = 0 的任何邻域是剧烈振荡的.
- 3. (C) 对. 因为 $e^x > 1 + x (x \neq 0)$ 恒成立.
- 4. (D) 对. $f'''(x_0) = \lim_{x \to x_0} \frac{f''(x) f''(x_0)}{x x_0} = \lim_{x \to x_0} \frac{f''(x)}{x x_0} > 0$,由保号性,在某邻域 $U(x_0)$ 内 $\frac{f''(x)}{x x_0} > 0$,从而 f''(x) 在点 x_0 两侧变号.
- 5. (B) 对. 因为 $\lim_{x\to 0} \frac{f''(x)}{|x|} = 1$,由保号性,在某邻域 $U(x_0)$ 内 $\frac{f''(x)}{|x|} > 0$,故f''(x) > 0,得到f'(x)是递增函数,又因为f'(0) = 0,故f'(x)在点 x_0 左负右正,从而f(0)是一个极小值。
- 6. $f'(\xi) = 3\xi^2 1 = \frac{7-1}{2-1}$, $3\xi^2 = 7$, $\xi = \sqrt{\frac{7}{3}}$
- 7. $\lim_{x \to 0^+} x (\ln x)^2 = \left(\lim_{x \to 0^+} \frac{\ln x}{\frac{1}{\sqrt{x}}}\right)^2 = \left(\lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{2\sqrt{x^3}}}\right)^2 = \left(\lim_{x \to 0^+} (-2\sqrt{x})\right)^2 = 0$. 所以答案为 $\underline{0}$.
- **8.** $\underline{2}$. $y' = a \cos x + \cos 3x$, $y'|_{x=\frac{\pi}{3}} = \frac{a}{2} 1 = 0$.

此时, $y'' = -2\sin x - 3\sin 3x$, $y''|_{x=\frac{\pi}{3}} = -\sqrt{3} < 0$,故有极(大)值.

9.
$$y' = \frac{2x}{3\sqrt[3]{(x^2-4)^2}}$$
, $y'' = \frac{-2(x^2+12)}{9\sqrt[3]{(x^2-4)^5}}$, 在 $x = \pm 2$ 的两侧变号,所以有两个拐点. (±2,0).

10.
$$\frac{1}{3+x} = \frac{1}{3} \cdot \frac{1}{1+\frac{x}{3}} = \frac{1}{3} \left(1 - \frac{x}{3} + (\frac{x}{3})^2 - (\frac{x}{3})^3 + \dots + (-1)^n (\frac{x}{3})^n + o(x^n) \right), \quad \text{If } \forall \lambda,$$

$$\frac{1}{3+x} = \frac{1}{3} - \frac{x}{3^2} + \frac{x^2}{3^3} - \frac{x^3}{3^4} + \dots + (-1)^n \frac{x^n}{3^{n+1}} + o(x^n)$$

11.
$$\lim_{x \to 0} \frac{f(x) - x}{x^2} = \lim_{x \to 0} \frac{f'(x) - 1}{2x} = \lim_{x \to 0} \frac{f'(x) - f'(0)}{2x} = \frac{f''(0)}{2} = 1$$
.

12.
$$\lim_{x \to \infty} x^2 \left(1 - x \sin \frac{1}{x} \right) = \lim_{t \to 0} \frac{t - \sin t}{t^3} = \lim_{t \to 0} \frac{1 - \cos t}{3t^2} = \frac{1}{6}$$
.

13.
$$\Leftrightarrow f(x) = \frac{\sqrt{x}}{x+100}$$
, $\lim_{x \to 100} f'(x) = \frac{\frac{x+100}{2\sqrt{x}} - \sqrt{x}}{(x+100)^2} = \frac{100-x}{2\sqrt{x}(x+100)^2}$, $x = 100$ 是唯一的极值点,

且是极大值点,故x=100是函数的最大值,数列的最大项为 a_{100} .

$$\lim_{x \to 0} \theta = \lim_{x \to 0} \frac{x - \ln(1+x)}{x \ln(1+x)} = \lim_{x \to 0} \frac{x - \ln(1+x)}{x^2} = \lim_{x \to 0} \frac{1 - \frac{1}{1+x}}{2x} = \frac{1}{2}.$$

15. (B) 正确. 令 F(x) = f(x) - g(x), 因为 f'(x) > g'(x), F'(x) > 0, F(x) 在 [a,b] 递增,

$$F(x) > F(a)$$
, $P(x) = P(a) + P(a) + P(a) = P(a) + P(a) + P(a) = P(a) + P(a) + P(a) + P(a) = P(a) + P(a) +$

16. 令
$$f(x) = \frac{\ln x}{x}$$
,则 $f'(x) = \frac{1 - \ln x}{x^2}$, $f(x)$ 在 $x > e$ 时递减,在 $x < e$ 时递增,在 $x = e$ 时达到最大值 $\frac{1}{e}$,又因为 $\lim_{x \to 0^+} \frac{\ln x}{x} = -\infty$, $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$,所以原方程:

当
$$a > \frac{1}{e}$$
时无根,当 $a = \frac{1}{e}$ 或 $a \le 0$ 时有唯一根,当 $0 < a < \frac{1}{e}$ 时有两个根.

17. (1)
$$y' = \frac{3x^2(x-1)^2 - 2x^3(x-1)}{(x-1)^4} = \frac{x^2(x-3)}{(x-1)^3}$$
,函数在 $(-\infty,1)$ 和 $(3,+\infty)$ 上递增,在 $(1,3)$

上递减. 故在点 x=3 处取极小值 $\frac{27}{4}$.

- (2) $y'' = \frac{6x}{(x-1)^4}$, 曲线 y = f(x)在 $(-\infty,0)$ 内凸的; 在(0,1)和 $(1,+\infty)$ 内凹,拐点(0,0).
- (3) 铅垂渐近线 x = 1; 又因为 $\lim_{x \to \infty} \frac{x^3}{x(x-1)^2} = 1$, $\lim_{x \to \infty} \left(\frac{x^3}{(x-1)^2} 1 \cdot x \right) = 2$, 故有斜渐近线 y = x + 2.
- **18.** 由于 $\lim_{x\to 0} \frac{f(x)}{x} = 0$,就有 f(0) = 0, $f'(0) = \lim_{x\to 0} \frac{f(x) f(0)}{x} = 0$,又因为 f(1) = 0,由 罗尔中值定理,存在 $\xi_1 \in (0,1)$,使得 $f'(\xi_1) = 0$.函数 f'(x) 在区间 $[\xi_1,1]$ 也满足罗尔中值定理,存在 $\xi \in (\xi_1,1)$,使得 $f''(\xi) = 0$.
- **19**. (1) 由介值定理,存在 $c \in (0,b)$ 使 f(c) = A,再由拉格朗日中值定理,存在 $\xi \in (0,c)$,使得 $f'(\xi)(c-0) = f(c) f(0)$.
- (2) 因 $\varphi(0) = 0$, $\varphi(1) = 1$,由介值定理,存在 $a \in (0,1)$,使得 $\varphi(a) = \frac{1}{3}$,再由拉格朗日中值定理, $\exists \xi \in (0,a)$, $\exists \eta \in (a,1)$,使得

$$\varphi(a) - \varphi(0) = \varphi'(\xi)(a - 0)$$
, $\varphi(1) - \varphi(a) = \varphi'(\eta)(1 - a)$,

变形为
$$\frac{\varphi(a)-\varphi(0)}{\varphi'(\xi)}=(a-0)$$
, $\frac{\varphi(1)-\varphi(a)}{\varphi'(\eta)}=(1-a)$,两式相加即得 $\frac{1}{\varphi'(\xi)}+\frac{2}{\varphi'(\eta)}=3$.

第三章总复习题