

Nonlinear kernel-based fMRI activation detection

Chendi Han, Zhengshi Yang, Xiaowei Zhuang, and Dietmar Cordes* Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106 *cordesd@ccf.org

Introduction

Kernel Canonical Correlation Analysis (KCCA) is an efficient way to detect brain activation globally with less computational complexity. However, the current KCCA is limited to the linear kernel, and the performance for other more general types of kernels is not completely understood due to a lack of inverse mapping i.e. Back Construction (BC) methods. This study aims to expand the current KCCA method to arbitrary nonlinear kernels.

	Multi variable	Global method	Nonlinear relationship
Single voxel smoothing [1]	No	No	No
Canonical Correlation Analysis (CCA) [2]	Yes	No	Nonlinear constraints [3]
Linear Kernel Canonical Correlation Analysis (KCCA) [4]	Yes	Yes	No
Nonlinear KCCA	Yes	Yes	Nonlinear kernels

Method

> Processing

Voxel specific activation

$$\mathbf{Y} \in \mathfrak{R}^{T \times Q} \longrightarrow \tilde{\mathbf{Y}} = \mathbf{Y} \mathbf{A} \longrightarrow K_{\mathbf{Y}} \mathbf{Y} \longrightarrow K_{\mathbf{Y}} \mathbf{v}_{\mathbf{Y}} \longrightarrow \boldsymbol{\alpha} \in \mathfrak{R}^{Q \times 1}$$
fMRI data

$$s = \operatorname{sign} \left[\operatorname{corr}(\mathbf{X}_{\text{eff}}, K_{\mathbf{Y}} \mathbf{v}_{\mathbf{Y}}) \right]$$

$$\underset{\mathbf{v}_{\mathbf{Y}}, \mathbf{v}_{\mathbf{X}}}{\operatorname{max}} \frac{\mathbf{v}_{\mathbf{Y}}^{T} K_{\mathbf{Y}} K_{\mathbf{X}} \mathbf{v}_{\mathbf{X}}}{\sqrt{\mathbf{v}_{\mathbf{Y}}^{T} (K_{\mathbf{Y}}^{2} + \gamma K_{\mathbf{Y}}) \mathbf{v}_{\mathbf{Y}}} \sqrt{\mathbf{v}_{\mathbf{X}}^{T} (K_{\mathbf{X}}^{2} + \gamma K_{\mathbf{X}}) \mathbf{v}_{\mathbf{X}}}$$

$$\mathbf{X} \in \mathfrak{R}^{T \times D}$$
 [5] $\mathbf{X}_{\mathrm{eff}} \longrightarrow K_{\mathbf{X}} = \mathbf{X}_{\mathrm{eff}} \mathbf{X}_{\mathrm{eff}}^{T}$ Design signal

A: spatial filter

- Q: number of voxels
- T: number of time points
- D: number of design signals

➤ Back construction algorithm

$$Y\alpha \equiv K_{\mathbf{Y}}\mathbf{v}_{\mathbf{Y}}$$

Back construction 1:
$$\alpha = s \sum_{t} \frac{\partial (K_{\mathbf{Y}} \mathbf{v}_{\mathbf{Y}})_{t}}{\partial \mathbf{Y}_{t}}$$

Back construction 2: $\alpha = s\mathbf{A}\tilde{\mathbf{Y}}^T \left(\tilde{\mathbf{Y}}\tilde{\mathbf{Y}}^T\right)^\dagger K_{\mathbf{Y}}\mathbf{v}_{\mathbf{Y}}$

Nonlinear kernels

Name	Expression	Number of hyperparame ters
Linear	$K_{\mathbf{Y}} = \tilde{\mathbf{Y}}\tilde{\mathbf{Y}}^T$	1
Parabolic	$K_{\mathbf{Y}} = (\tilde{\mathbf{Y}}\tilde{\mathbf{Y}}^T + b^2)^2$	2
Gaussian	$K_{\mathbf{Y}} = \exp\left(-\ \tilde{\mathbf{Y}} - \tilde{\mathbf{Y}}^T\ /\sigma^2\right)$	2
Inverse square	$K_{\mathbf{Y}} = 1/\sqrt{\ \tilde{\mathbf{Y}} - \tilde{\mathbf{Y}}^T\ + b^2}$	2
Bounded Linear	$K_{\mathbf{Y}} = \min\left(C, \tilde{\mathbf{Y}} \tilde{\mathbf{Y}}^T\right)$	2
Square	$K_{\mathbf{Y}} = \ \tilde{\mathbf{Y}} - \tilde{\mathbf{Y}}^T\ $	1
Tanh	$K_{\mathbf{Y}} = \tanh\left(b\tilde{\mathbf{Y}}\tilde{\mathbf{Y}}^T + c\right)$	3
Mixed Tanh	$K_{\mathbf{Y}} = \tanh\left(b_1 \tilde{\mathbf{Y}} \tilde{\mathbf{Y}}^T + b_2 \ \tilde{\mathbf{Y}} - \tilde{\mathbf{Y}}^T\ + c\right)$	4

> Hyperparameter optimization

p: unknown hyperparameters for KCCA

 α : Activation before shuffling α' : Activation after shuffling

Isolated activated voxels are rare. A good method will try to maintain the prediction results even after the voxel location has changed

Shuffling rule

- 10% of voxels with higher α values are activated, others are nonactivated
- In the activated cluster, we exchange the location between voxels with the **highest** α and lowest α , then between voxels with the second highest and second lowest α , and so on
- The same shuffling is repeated for nonactivated clusters

Simulated fMRI

➤ Generate simulation Choose 6 AAL regions as activated, adding signal linearly with contrast β [6]

$$\mathbf{Y}_{ ext{simulated}} = \mathbf{Y}_{ ext{resting state}} +
ho \sum_{i=1}^{6} \mathbf{X} oldsymbol{eta}_i \mathbf{M}_i \qquad \mathbf{M}_i \in \mathfrak{R}^{1 imes Q}_{ ext{:mask}}$$

> Activation pattern

➤ Group level analysis

Using result from single voxel smoothing as reference

$$r = \frac{\text{AUC}_{\text{FPR}<0.1}(\text{KCCA})}{\text{AUC}_{\text{FPR}<0.1}(\text{Single Voxel Smoothing})}$$

Mean and standard deviation for 87 subjects

Linear	1.12 ± 0.27	Bounded Linear	1.39 ± 0.37
Parabolic	1.09 ± 0.31	Square	0.99 <u>±</u> 0.40
Gaussian	1.21 ± 0.27	Tanh	1.39 ± 0.37
Inverse	1.14 ± 0.30	Mixed Tanh	1.42 ± 0.36

Real fMRI

Human Connectome Project (HCP) [7]

Activation pattern

> AUC Curve

True positive: Activation appears in the Gray matter. False positive: Activation not in the Gray matter.

> Group analysis

AUC_{FPR<0.1}(Single Voxel Smoothing)

Acknowledge

This work was funded by NIH-R01AG071566-02 and NIH-P20GM109025-08

Reference

- 1. Friman, O., et al. NeuroImage, 19, 837-845. (2003)
- 2. Friman, O., et al. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resoance in Medicine, **45**, 323-330. (2001)
- 3. Xiaowei, Z., et al. NeuroImage, **149**, 63-84. (2017)
- 4. Hardoon, D., et al. Neural computation, **16**, 2639-2664. (2004) 5. Cordes, D., et al. Human Brain Mapping 33, 2611-2626. (2012)
- 6. Yang, Z., et al. Medical Image Analysis, **60**, 101622. (2020)
- 7. Barch, D., et al. Neuroimage, **80**, 169-189. (2013)