Théorème de Weierstrass:

I Le développement

Le but de ce développement est de démontrer le théorème de Weierstrass qui permet d'obtenir un résultat de densité dans l'ensemble $\mathcal{C}^0([a;b],\mathbb{R})$.

Lemme 1: [Deschamps, p.994]

Soient f une fonction continue de [0;1] dans \mathbb{R} , $x \in [0;1]$, $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées de loi $\mathcal{B}(x)$ et $Y_n = \frac{1}{n} \sum_{k=1}^n X_k$.

Pour tout $\varepsilon > 0$, il existe $M \in \mathbb{R}^+$ tel que :

$$\forall (t, u) \in [0; 1]^2, |f(t) - f(u)| \le M(t - u)^2 + \varepsilon$$

En particulier, on a $|\mathbb{E}(f(Y_n)) - f(x)| \le M \operatorname{Var}(Y_n) + \varepsilon \le \frac{M}{4n} + \varepsilon$

Preuve:

Soient f une fonction continue de [0;1] dans \mathbb{R} , $x \in [0;1]$, $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées de loi $\mathcal{B}(x)$ et $Y_n = \frac{1}{n} \sum_{k=1}^n X_k$.

Soit $\varepsilon > 0$.

Par le théorème de Heine, f est uniformément continue sur [0;1] et donc il existe $\eta>0$ tel que :

$$\forall (t, u) \in [0; 1]^2, |t - u| \le \eta \implies |f(t) - f(u)| \le \varepsilon$$

Soit $(t, u) \in [0; 1]^2$.

- * Si $|t u| \le \eta$, alors $|f(t) f(u)| \le \varepsilon$.
- * Si $|t-u| > \eta$, alors on a $\frac{(t-u)^2}{\eta^2} > 1$ et donc :

$$|f(t) - f(u)| \le 2 ||f||_{\infty} \le \frac{2 ||f||_{\infty} (t - u)^2}{n^2}$$

Comme ces majorants sont positifs, on a a fortiori, dans les deux cas :

$$|f(t) - f(u)| \le \frac{2 \|f\|_{\infty} (t - u)^2}{\eta^2} + \varepsilon$$

On a alors l'inégalité voulue avec $M = \frac{2\|f\|_{\infty}}{\eta^2}$.

Et puisque la variable aléatoire réelle Y_n est la moyenne empirique de variables aléatoires réelles suivant des loi de bernoulli, elle est donc à valeurs dans [0;1] et

vérifie ainsi l'inégalité:

$$|f(Y_n) - f(x)| \le M(Y_n - x)^2 + \varepsilon$$

De plus, la variable aléatoire réelle Y_n est finie, il en est donc de même de $f(Y_n)$ et $(Y_n - x)^2$ (qui sont donc d'espérance finie). Par croissance, puis linéarité de l'espérance, on obtient :

$$|\mathbb{E}(f(Y_n)) - f(x)| \le \mathbb{E}(|f(Y_n) - f(x)|) \le \mathbb{E}\left(M(Y_n - x)^2 + \varepsilon\right) = M\mathbb{E}\left((Y_n - x)^2\right) + \varepsilon$$

De plus, par linéarité de l'espérance et le fait que les X_n sont identiquement distribuées et de loi commune $\mathcal{B}(x)$, on a $\mathbb{E}(Y_n) = \frac{1}{n} \sum_{k=1}^n \mathbb{E}(X_k) = x$. On en déduit que l'on a $\mathbb{E}\left((Y_n - x)^2\right) = \operatorname{Var}(Y_n)$ et donc :

$$|\mathbb{E}(f(Y_n) - f(x))| \le M \operatorname{Var}(Y_n) + \varepsilon$$

D'autre part, par indépendance et le fait que les X_n sont identiquement distribuées et de loi commune $\mathcal{B}(x)$, on a :

$$\operatorname{Var}(Y_n) = \frac{1}{n^2} \operatorname{Var}\left(\sum_{k=1}^n X_k\right) = \frac{nx(1-x)}{n^2} = \frac{x(1-x)}{n} \le \frac{1}{4n}$$

D'où la deuxième inégalité.

Théorème ${\bf 2}$: Théorème de Weierstrass [Deschamps, p.994]

Si l'on considère les polynômes de Bernstein définis par :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ B_n(f)(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{k}{n} x^k (1-x)^{n-k}$$

alors la suite $(B_n(f))_{n\in\mathbb{N}}$ converge uniformément vers f sur [0;1].

Preuve:

On considère la variable aléatoire $S_n = \sum_{i=1}^n X_i$ qui suit la loi binomiale de paramètres (n, x) (en tant que somme de n variables aléatoires réelles indépendantes de loi de Bernoulli de paramètre x).

On a alors $f(Y_n) = f\left(\frac{S_n}{n}\right)$ et par la formule de transfert appliquée à la variable aléatoire réelle S_n (qui suit la loi $\mathcal{B}(n,x)$), on obtient :

$$\mathbb{E}(f(Y_n)) = \mathbb{E}\left(f\left(\frac{S_n}{n}\right)\right) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \mathbb{P}(S_n = k) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{k}{n} x^k (1-x)^{n-k}$$
$$= B_n(f)(x)$$

On a donc, pour tout $n \in \mathbb{N}^*$ et tout $x \in [0;1]$, $|B_n(f)(x) - f(x)| \leq \frac{M}{4n} + \varepsilon$. Or, on a $\lim_{n \to +\infty} \frac{M}{4n} = 0$, donc il existe donc $n_0 \in \mathbb{N}^*$ tel que pour tout entier naturel $n \geq n_0$, $\frac{M}{4n} \leq \varepsilon$. Pour tout $n \geq n_0$, on a alors:

$$\forall x \in [0;1], |B_n(f)(x) - f(x)| \le 2\varepsilon$$

Finalement, la suite de fonctions polynomiale $(B_n(f))_{n\in\mathbb{N}}$ converge uniformément vers f sur [0;1].

Corollaire 3: [Deschamps, p.530]

Soit $f \in C^0([0;1], \mathbb{R})$. Si pour tout $n \in \mathbb{N}$, $\int_0^1 f(x) x^n dx = 0$, alors f est nulle sur [0;1].

Preuve:

Soit $f \in \mathcal{C}^0([0;1],\mathbb{R})$.

On suppose que pour tout $n \in \mathbb{N}$, $\int_0^1 f(x)x^n dx = 0$.

Par linéarité de l'intégrale, on a alors :

$$\forall P \in \mathbb{R}[X], \ \int_0^1 P(x)f(x)\mathrm{d}x = 0$$

D'après le théorème de Weierstrass, il existe une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes de $\mathbb{R}[X]$ qui converge uniformément vers f. Et puisque la fonction f est bornée (car continue sur un segment), la suite $(P_n f)_{n \in \mathbb{N}}$ converge uniformément vers f^2 . Par conséquent :

$$\int_0^1 P_n(x)f(x)dx \begin{cases} = 0 \\ \underset{n \to +\infty}{\longrightarrow} \int_0^1 f^2(x)dx \end{cases}$$

Puisque f^2 est une fonction positive, continue et d'intégrale nulle, la fonction f^2 est nulle et donc f est également nulle sur [0;1].

Remarques sur le développement

II.1 Résultat(s) utilisé(s)

Dans ce développement, on a utilisé quelque résultats classiques de probabilités (somme de lois de Bernoulli, linéarité et croissance de l'espérance, etc.). On a également utilisé en tout début de la démonstration de théorème de Heine.

II.2 Pour aller plus loin...

Il existe de nombreuses preuves du théorème de Weierstrass et on a choisi ici d'en donner une probabiliste. Il en existe une autre due à Henri Lebesgue dont on donne ici les principales étapes de la démonstration :

- * On montre que toute fonction $f \in \mathcal{C}^0([a;b],\mathbb{R})$ peut être approchée uniformément par des fonctions affines.
- * On montre que la famille $(f_a)_{a \in [0,1]}$ est génératrice de l'espace des fonctions continues par morceaux définies sur [0; 1] (où f_a est la fonction définie sur [0; 1] par $t \mapsto |t-a|$).
- * On considère ensuite une certaine suite de fonctions polynomiales sur [0; 1] qui converge uniformément vers la fonction f définie sur [0;1] par $t \longrightarrow 1 - \sqrt{1-t}$.
- * On montre ensuite qu'il existe une suite de fonctions polynomiales $(Q_n)_{n\in\mathbb{N}}$ qui converge uniformément vers [-1;1] vers la fonction valeur absolue.
- * On passe enfin à la démonstration (dont on donne la preuve ci-dessous) du théorème en montrant qu'on peut se limiter au cas [a;b] = [0;1]:

Soit $\varepsilon > 0$.

Par le premier point, il existe une fonction affine par morceaux g telle que $||f - g||_{\infty} \leq \frac{\varepsilon}{2}$. Fixons g qui est de la forme $g: x \longmapsto \sum_{i=0}^n \lambda_i |x-a_i|$ par le deuxième point.

Avec les notations du troisième point, pour tout $a \in [0,1]$, la suite de fonctions polynomiales $(R_{n,a})_{n\in\mathbb{N}}$ (où $R_{n,a}(x)=Q_n(x-a)$) converge uniformément vers f_a . En effet, pour tout $x \in [0, 1]$, on a $x - a \in [-a, 1 - a] \subseteq [-1, 1]$ et le troisième point permet alors de conclure.

Par combinaisons linéaires, d'après le troisième point, la suite $\left(\sum_{i=0}^{n} \lambda_i R_{n,a_i}\right)_{n \in \mathbb{N}}$ converge uniformément vers g. Il existe donc $Q \in \mathbb{R}[X]$ tel que $\|g - Q\|_{\infty} \leq \frac{\varepsilon}{2}$.

On a donc $||f - Q||_{\infty} \le ||f - g||_{\infty} + ||g - Q||_{\infty} \le \varepsilon$ et ainsi la densité des fonctions polynomiales dans $(C^0([a;b],\mathbb{R}), ||\cdot||_{\infty})$.

Enfin, on remarque que le théorème de Weierstrass est un cas particulier d'un théorème plus général : le théorème de Stone-Weierstrass.

Théorème 4 : Théorème de Stone-Weierstrass [Hassan, p.293] :

```
Soit \mathcal{A} une sous-algèbre de \mathcal{C}^0(X,\mathbb{R}).
Si (X,d) est compact et que \mathcal{A} vérifie :
* Pour tout x \in X, il existe f \in \mathcal{A} telle que f(x) \neq 0.
* \mathcal{A} sépare les points de X.
alors \mathcal{A} est dense dans \left(\mathcal{C}^0(X,\mathbb{R}), \|\cdot\|_{\infty}\right).
```

II.3 Recasages

```
Recasages: 201 - 203 - 209 - 228 - 261 - 264 - 266.
```

III Bibliographie

- Claude Deschamps, Maths MP/MP* Tout-en-un.
- Nawfal El Hage Hassan, Topologie générale et espaces normés.