

University of Milano-Bicocca Master's Degree in Data Science Digital Signal and Image Management Academic Year 2022-2023

MEDICAL DATA MANAGEMENT: COVID-19 DETECTION USING COUGH RECORDINGS, CHEST X-RAYS CLASSIFICATION AND GENERATION

Authors:

Giorgio CARBONE matricola n. 811974 Gianluca CAVALLARO matricola n. 826049 Remo MARCONZINI matricola n. 883256

PROCESSING OF ONE-DIMENSIONAL SIGNALS

Dataset: COUGHVID

- Crowdsource dataset
- □ Recordings collected between April 1st, 2020 and December 1st, 2020
- □ 34,434 recordings and their metadata
 - One .json for each recording
 - One .csv file containing all metadata
- Most relevant attributes
 - **uuid** → Name of the recording
 - cough_detected → Probability of being cough sound
 - **status** → Self-reported health condition

uuid 00039425-7f3a-42aa-ac13-834aaa2b6b92

document 2020-04-

13T21:30:59.801831+00:00

cough_detected 0.9754

age [0, ..., 99, NaN]

gender [Male, Female, NaN]

respiratory_condition [True, False, NaN]

fever_muscle_pain [True, False, NaN]

status [Healthy, Symptomatic,

COVID-19, NaN]

Data Cleaning

- ☐ Removing rows with unknown **status**
- □ Filter for recordings with cough_detected > 0.8
 - Value recommended by the authors
- Number of recordings after cleaning: 12119
- Recordings distribution:
 - Healthy: 9631
 - Symptomatic: **2622**
 - COVID-19: **634**
- ☐ The dataset is **imbalanced**

	N° recordings
Healthy	9167
Symptomatic	2339
COVID-19	613
Total	12119

Preprocessing

- □ Noise reduction
 - Spectral gating using noisereduce
- Silence removal
 - To maintain only relevant audio patterns
 - Silence > 1s is removed
 - 0.5s of silence maintained at the beginning and the end of the recording
- □ Length standardization
 - Need for a fixed dimensions of the audio features
 - Trade-off between information loss and amount of sparse values

Duration	N° recordings
< 2s	1439
<3s	3461
< 4s	5826
< 5s	7892
< 6s	9468
< 7s	10680
< 8s	11470
< 9s	11941

Noise reduction

Silence removal

Class imbalance problem

- Binary classification problem
 - COVID-19 Positive vs. COVID-19 Negative
 - 613 recordings vs. 11506 recordings
- Data augmentation to deal with class imbalance
 - Generation of synthetic audio tracks belonging to the minority class
- Data augmentation on raw signal
 - Time Stretch
 - Pitch Shift
 - Shift
 - Gain

		N° recordings		
Healthy	Nogativo	9167	11506	
Symptomatic	Negative	2339	11506	
COVID-19	Positive	613	613	
Total		12119		

Data augmentation

Feature extraction

- Cough sounds contain more energy in lower frequencies
- MFCCs are a suitable representation for cough recordings
 - 15 MFCCs per frame
- ☐ Audio samples have a duration of **6 seconds**
 - MFCC matrices 15x259
- \square Also MFCC- Δ and MFCC- $\Delta\Delta$ were considered
 - Features dimension 3x15x259

Network architecture

- ☐ Convolution layer, 64 filters, kernel size 3x3, ReLU activation function, input shape 259x15x3
- Max pooling layer, pool size 2x2
- ☐ Convolution layer, 32 filters, kernel size 2x2, ReLU activation function
- Batch normalization layer
- ☐ Flatten layer
- ☐ Fully connected layer, 256 units, ReLU activation function
- Dropout layer, rate 0.5
- Fully connected layer, 128 units, ReLU activation function
- Dropout layer, rate 0.3
- ☐ Output layer, 1 neuron, Sigmoid activation

Training & Results

- Standard procedure with augmentation only on training set:
 - Balanced training set (positive:negative = 1:3)
 - Unbalanced validation and test set
- ☐ Terrible results for validation and test set
- ☐ The model don't recognize actual positive recordings

Loss		Accuracy		Prec	ision
Val	Test	Val Test		Val	Test
3.80	3.81	0.91	0.89	0.07	0.04

Recall		AUC	
Val	Test	Val Test	
0.07	0.05	0.48	0.52

Confusion matrix on test set

Training & Results

- Procedure followed in various papers:
 - Data augmentation on full dataset, before splitting
- Much better performances
- Questions:
 - Is the classifier recognizing the positives or the augmented audio?
 - Is this approach reliable in evaluating real audio?

Loss		Accuracy		Prec	ision
Val	Test	Val	Test	Val	Test
0.42	0.41	0.94	0.94	0.96	0.95

Recall		AUC	
Val	Test	Val Tes	
0.79	0.81	0.91	0.92

Confusion matrix on test set

PROCESSING OF BI-DIMENSIONAL SIGNALS

Dataset: COVIDx CXR-3

- ☐ Create by COVID-NET team
 - 8 different data sources
 - Last release: 06/02/2022
- 2 different datasets:
 - Training Set
 - Test Set
- ☐ 3 classes: COVID-19, Pneumonia, Normal
- ☐ Two .txt file (train, test) containing metadata
 - Patient ID
 - File name
 - Class
 - Data Source

Patient ID	101
filename	pneumocystis-jirovecii- pneumonia-3-1.jpg
class	pneumonia
Data source	cohen

Data exploration

- ☐ Training set: 29.404 CXR images:
 - COVID-19: 15.774 images
 - Normal (no pathology): 8.085 images
 - Pneumonia: 5.545 images
- ☐ Test set: 400 CXR images:
 - COVID-19: 200 images
 - Normal (no pathology): 100 images
 - Pneumonia: 100 images
- ☐ The dataset is **imbalanced**

Training Set Distribution

Test Set distribution

Images Exploration

- ☐ Images are 1024x1024 pixels with 3 channel:
- ☐ Only Posterior-Anterior (PA) CXR
- Many images contain:
 - Noise
 - Undesirable parts
- Preliminary operations:
 - Resized to 112x122x3
 - Reduced computational cost
 - Data Splitted
 - Data Normalization

CXR «Pneumonia»

CXR «Normal»

CXR «COVID-19»

Image Pre-Processing

☐ Image Enhancement:

- Techniques used to improve the information interpretability in images
 - For radiologists and automated systems

□ Pre-Processing

 Removal of textual information commonly embedded in CXR images

Common textual items

Noisy CXR-image

Improved Adaptive Gamma Correction

- Adaptive Gamma Correction tool
 - AGC (Adaptive Gamma Correction) is a tool for image contrast
 - AGC relates the gamma parameter with the cumulative distribution function (CDF) of the pixel gray levels
 - good for most dimmed images, but fails for globally bright images
- Improved Adaptive Gamma Correction
 - new AGC algorithm
 - enhance bright images with the use of negative images
 - enhance dimmed images with the use of gamma correction modulated by truncated CDF

Flowchart of Improved AGC tool

Improved Adaptive Gamma Correction

No ACG applied

ACG applied (too bright)

ACG applied (too dim)

Pre-Processing:

- ☐ The chest CXR images were cropped
 - □ top 8% of the image
 - ☐ Commonly embedded textual information
 - □ Central crop
 - ☐ To Centre the cropped image

Some pre-processing examples

Class imbalance problem

- □ Different techniques explored to handle unbalanced classes
 - ☐ Under-sampling of the dataset
 - Rebalancing with respect to the least populated class
 - □ Class-weights
 - Assigns higher weights to samples from underrepresented classes
 - ☐ Over-sampling of the dataset
 - Data augmentation on minority classes
 - Positional-based Data Augmentation
 - GAN

<u>Classes</u>	<u>Nr. images</u>
COVID-19	15.774
Pneumonia	5.545
Normal	8.085
<u>Total</u>	29.904

Data Augmentation

- A data augmentation technique was adopted to balance the classes, in particular was:
 - ☐ Implemented **after under-sampling** (performing it on all classes)
 - ☐ Implemented to increase minority classes (not performing it on the most populated class)
- ☐ Data augmentation was exploited with the **following types of augmentation**:
 - Translation (± 10% in x and y directions)
 - Rotation (± 10)
 - Horizontal flip, zoom (± 15%)
 - Intensity shift (± 10%)

Some augmentation examples

CNN: Network Architecture

Params: 2,416,611 Trainable: 2,416,451 Non-trainable: 160

- Input layer (112x112x3)
- 2 convolutional blocks, with:
 - Convolutional layers
 - Batch Normalization layers
 - ReLu
- 2 convolutional blocks with: Convolutional layer, ReLu
- 2 Max Pooling layers
- 2 Dropout layers (rate 0,2)
- Output of feature extractor is passed to Flatten layer
- ☐ Fully connected layer (128 neurons), ReLu
- □ **Dropout** layer (rate 0,5)
- ☐ Output layer, 3 neurons, Softmax activation function

	Conv+ReLu+Batch Norm	Conv+ReLu	Conv+Rel Max Pooling Nor Dropout	Conv+Re u+Batch m	Lu Max Pooling	FLATTEN (18432) Dropout	DENSE 3 Dropout	COVID-19 PNEUMONIA NORMAL ACTIVATION
112x112x3	112x112x16	112x112x32	37x37x32	37x37x64	37x37x128	12x12x128		P

<u>Parameters</u>	<u>Value</u>
Max Epoch	50
Optimizer	Adam
Learning rate	0.0001 (fixed)
Batch Size	32
Step per epoch	1035

Overview

Over-Sampling w\Positional Augmentation Results

- ☐ The solution that produced the **best results** turned out to be the one:
 - without preprocessing
 - and Over-Sampling of minority classes with positional augmentation

```
> Correct Predictions: 365
> Wrong Predictions: 32
              precision
                           recall f1-score
                             0.92
                                       0.95
       COVID
                   0.98
                                                  199
      NORMAL
                   0.84
                             0.95
                                       0.89
                             0.89
                                       0.89
   PNEUMONIA
                   0.89
                                       0.92
                                                  397
    accuracy
                             0.92
                                       0.91
                                                  397
                   0.90
   macro avg
weighted avg
                   0.92
                             0.92
                                       0.92
                                                  397
```


Confusion matrix on test set

Under-sampling

DCCN - Undersampling

> Accuracy on train: 0.87 Loss on train: 0.36
> Accuracy on test: 0.85 Loss on test: 0.45

.....

> Correct Predictions: 336

> Wrong Predictions: 61

	precision	recall	f1-score	support		
COVID	0.94	0.93	0.93	199		
NORMAL	0.94	0.61	0.74	99		
PNEUMONIA	0.67	0.92	0.77	99		
accuracy			0.85	397		
macro avg	0.85	0.82	0.82	397		
weighted avg	0.87	0.85	0.85	397		

Class-Weights

DCCN - Class Weights

.....

- > Correct Predictions: 351
- > Wrong Predictions: 46

	precision	recall	f1-score	support
COVID	0.98	0.87	0.93	199
NORMAL	0.80	0.91	0.85	99
PNEUMONIA	0.81	0.88	0.84	99
accuracy			0.88	397
macro avg	0.86	0.89	0.87	397
weighted avg	0.89	0.88	0.89	397

AC-GAN Augmentation

DCCN - Oversampling w\AC-cGAN

> Accuracy on train: 0.99 Loss on train: 0.02 > Accuracy on test: 0.87 Loss on test: 0.6

- > Correct Predictions: 345
- > Wrong Predictions: 52

support	f1-score	recall	precision	F
199	0.91	0.86	0.96	COVID
99	0.82	0.98	0.71	NORMAL
99	0.85	0.77	0.95	PNEUMONIA
397	0.87			accuracy
397	0.86	0.87	0.87	macro avg
397	0.87	0.87	0.89	weighted avg

Image Processing

DCCN - Image Processing

> Accuracy on train: 0.98 Loss on train: 0.05 > Accuracy on test: 0.88 Loss on test: 0.97

-----.....

> Correct Predictions: 349

> Wrong Predictions: 48

precision recall f1-score support COVID 0.91 0.91 0.91 199 NORMAL 0.80 0.83 0.81 PNEUMONIA 0.91 0.89 0.88 397 accuracy 0.87 0.87 397 0.87 macro avg weighted avg 0.88 0.88 0.88 397

Image Enhancement

DCCN - Oversampling - Image Enanchment

> Accuracy on train: 0.96 Loss on train: 0.1 > Accuracy on test: 0.88 Loss on test: 0.43

______

> Correct Predictions: 349

> Wrong Predictions: 48

	precision	recall	f1-score	support
COVID	0.91	0.91	0.91	199
NORMAL	0.80	0.83	0.81	99
PNEUMONIA	0.91	0.87	0.89	99
accuracy			0.88	397
macro avg	0.87	0.87	0.87	397
weighted avg	0.88	0.88	0.88	397

Explainable AI: Class activation Heat-Map

- We developed an **explainability algorithm** based on the use of Gradient-weighted Class Activation Mapping (**Grad-CAM**)
 - It provides a visual output of the most interesting areas found by the proposed CNN models
 - Grad-CAM uses the gradients of any target concept, flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept.

Pneumonia CXR, Activation Map

SYNTHETIC CHEST X-RAY IMAGES GENERATION USING AC-GAN

Conditional Generation of Synthetic Chest X-Ray Images

- Objectives:
 - ☐ Train an AC-GAN to synthesize chest x-rays images
 - Conditional generation of healthy, covid-19 and pneumonia patients x-rays
 - Data augmentation on the class-imbalanced COVIDx dataset to improve classification performances
- Dataset → COVIDx
 - Simple image pre-processing $\rightarrow 112x112$ resizing and [0,1] pixel scaling
 - □ Data augmentation → shearing and zooming

Auxiliary Classifier Generative Adversarial Network (AC-GAN)

- AC-GAN → extension of the GAN architecture
- The generator is class conditional as with cGANs
 - □ Input → randomly sampled 100-dimensional noise vector and a label,
 - Output → conditionally generating a 112x112x3 image
 - □ The classes \rightarrow coded by integers (0,1,2).
- ☐ The discriminator → comes with an auxiliary classifier
 - ☐ trained to reconstruct the input image class label.
 - □ Input → 112x112x3 image (real or synthesised)
 - Output → predicts its source (real/fake) and class (0,1,2)

Generator

- l. Two **inputs**:
 - random 100-dimensional noise vector
 - 2. integer **class label** c (0, 1, 2)
- 2. Class label \rightarrow embedding layer \rightarrow dense layer \rightarrow 7 × 7 × 1
- 3. Noise vector \rightarrow dense layer \rightarrow 7 × 7 × 1024
- 4. These two tensors are then **concatenated** \rightarrow 7 × 7 × 1025
- 5. Four transposed convolutional layers (kernel size = 5, stride = 2) \rightarrow 112 \times 112 \times 3
 - The first three are paired with batch normalization and a Rectified Linear Unit (ReLU) activation
 - Last one with tanh activation
- 6. Output: **fake image** with size $112 \times 112 \times 3$

Discriminator

Params: 1,672,900 Trainable: 1,670,916 Non-trainable: 1,984

Real / Fake Image

- Input: 112 × 112 × 3 image → dataset (real) or synthetic (fake)
- 2. Four blocks:
 - Sequence of: **convolutional** layer, **batch normalization** layer, **LeakyReLU** activation (slope = 0.2) and **dropout** layer (p = 0.5).
 - ☐ Image size: $112 \times 112 \times 3 \rightarrow 7 \times 7 \times 512$
- 3. The tensor is **flattened** \rightarrow fed into two dense layers
- 4. First dense layer + sigmoid activation
 - Binary classifier → outputs a probability indicating whether the image is from the original dataset (as "real") or generated by the generator (as "fake").
- 5. Second **dense layer** + softmax activation
 - Multiclass classifier → outputs a 1D tensor of probabilities of each class

Training and regularization

■ Adam optimizer → both the generator and the discriminato	r
--	---

- Two loss functions, one for each output layer of the discriminator
 - \square First output layer \rightarrow binary cross-entropy loss (source loss L_s)
 - Second output layer \rightarrow sparse categorical cross entropy (auxiliary classifier loss L_c)
- ightharpoonup Minimize the overall loss $L=L_s+L_c o$ during the generator training as well as the discriminator training
 - **Label flipping** (generator training) → all the fake (0) images generated are passed to discriminator labelled as real (1)
- Labels smoothing (discriminator training) → applied to the binary vectors describing the origin of the image (0/real 1/fake) as a regularization method

Parameters	Value
Max Epoch	388
Optimizer	Adam
Learning rate	0.0002 (fixed)
Adam $oldsymbol{eta}_1$	0.5 (fixed)
Batch Size	64
Steps per epoch	460

Source Loss L_s

Auxiliary Loss L_c

Total Loss L

Training

Discriminator

Generator

Testing Discriminator

- Overall Accuracy
- Real Accuracy
- Fake Accuracy

Choosing the best AC-GAN model weights for data augmentation

- → visual quality qualitative evaluation of sample images generated during each epoch
- lacktriangle lacktriangle generator losses
- \[
 \int \text{discriminator accuracy} in correctly classifying fake images as fake.
 \]
- 2. Trained a **classifier** on synthetic images only → evaluated the classification accuracy on real COVIDx images
 - epoch 288 → best model
- 3. Generated Images Quality Evaluation
 - □ ↓ FID, ↓ Intra-FID and ↑ Inception Score (IS) →
 Inception V3
- 4. 2D t-SNE embedding visualization of generated and real images

Epoch 0

Evaluation

Metric	Value
Generator loss L	0.44
Discriminator accuracy (fake images)	0.13
Qualitative appearance	Realistic
CNN Accuracy (on real images)	0.63

	Our AC-GAN	Paper AC- GAN [6]
IS ↑	2.71 (± 1.70)	2.51 (± 0.12)
FID ↓	123.26 (± 0.02)	50.67 (± 8.13)
Intra FID	136 (± 0.02)	

Real and Synthetic chest x-ray sample

Real Fake Normal Pneumonia COVID-19

/ Bibliography

- I. Fakhry, A., Jiang, X., Xiao, J., Chaudhari, G., Han, A., & Khanzada, A. (2021). Virufy: A multi-branch deep learning network for automated detection of COVID-19.
- 2. Hamdi, S., Oussalah, M., Moussaoui, A., & Saidi, M. (2022). Attention-based hybrid CNN-LSTM and spectral data augmentation for COVID-19 diagnosis from cough sound. *Journal of Intelligent Information Systems*, 59(2), 367-389.
- 3. Mahanta, S. K., Kaushik, D., Van Truong, H., Jain, S., & Guha, K. (2021, December). Covid-19 diagnosis from cough acoustics using convnets and data augmentation. In 2021 First International Conference on Advances in Computing and Future Communication Technologies (ICACFCT) (pp. 33-38). IEEE.
- 4. COUGHVID: A cough based COVID-19 fast screening project. https://c4science.ch/diffusion/10770/
- 5. Orlandic, L., Teijeiro, T., & Atienza, D. (2021). The COUGHVID crowdsourcing dataset, a corpus for the study of large-scale cough analysis algorithms. *Scientific Data*, 8(1), 156.
- 6. Odena, A., Olah, C., & Shlens, J. (2017). Conditional Image Synthesis With Auxiliary Classifier GANs (arXiv:1610.09585). arXiv. https://doi.org/10.48550/arXiv.1610.09585
- 7. Christi Florence, C. (2021). Detection of Pneumonia in Chest X-Ray Images Using Deep Transfer Learning and Data Augmentation With Auxiliary Classifier Generative Adversarial Network. 14.

/ Bibliography

- 8. Karbhari, Y., Basu, A., Geem, Z. W., Han, G.-T., & Sarkar, R. (2021). Generation of Synthetic Chest X-ray Images and Detection of COVID-19: A Deep Learning Based Approach. Diagnostics, 11(5), Article 5. https://doi.org/10.3390/diagnostics11050895.
- 9. DeVries, T., Romero, A., Pineda, L., Taylor, G. W., & Drozdzal, M. (2019). On the Evaluation of Conditional GANs (arXiv:1907.08175). arXiv. https://doi.org/10.48550/arXiv.1907.08175
- 10. Borji, A. (2018). Pros and Cons of GAN Evaluation Measures (arXiv:1802.03446). arXiv. https://doi.org/10.48550/arXiv.1802.03446
- 11. Goel S, Kipp A, Goel N, et al. (November 22, 2022) COVID-19 vs. Influenza: A Chest X-ray Comparison. Cureus 14(11): e31794. doi:10.7759/cureus.31794
- 12. Kim, S.-H.; Wi, Y.M.; Lim, S.; Han, K.-T.; Bae, I.-G. Differences in Clinical Characteristics and Chest Images between Coronavirus Disease 2019 and Influenza-Associated Pneumonia. Diagnostics 2021, 11, 261. https://doi.org/10.3390/diagnostics11020261

/ Bibliography

- 13. Wang, L., Lin, Z.Q. & Wong, A. COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci Rep 10, 19549 (2020). https://doi.org/10.1038/s41598-020-76550-z
- 14. Gang Cao, Lihui Huang, Huawei Tian, Xianglin Huang, Yongbin Wang, Ruicong Zhi, Contrast enhancement of brightness-distorted images by improved adaptive gamma correction, Computers & Electrical Engineering, Volume 66, 2018, Pages 569-582, ISSN 0045-7906, https://doi.org/10.1016/j.compeleceng.2017.09.012.
- 15. Ait Nasser, A.; Akhloufi, M.A. A Review of Recent Advances in Deep Learning Models for Chest Disease Detection Using Radiography. Diagnostics 2023, 13, 159. https://doi.org/10.3390/diagnostics13010159
- 16. Huang, W., Song, G., Li, M., Hu, W., Xie, K. (2013). Adaptive Weight Optimization for Classification of Imbalanced Data. In: Sun, C., Fang, F., Zhou, ZH., Yang, W., Liu, ZY. (eds) Intelligence Science and Big Data Engineering. IScIDE 2013. Lecture Notes in Computer Science, vol 8261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42057-3 69
- 17. Elshennawy, N.M.; Ibrahim, D.M. Deep-Pneumonia Framework Using Deep Learning Models Based on Chest X-Ray Images. Diagnostics 2020, 10, 649. https://doi.org/10.3390/diagnostics10090649
- 18. Chetoui, M.; Akhloufi, M.A.; Yousefi, B.; Bouattane, E.M. Explainable COVID-19 Detection on Chest X-rays Using an End-to-End Deep Convolutional Neural Network Architecture. Big Data Cogn. Comput. 2021, 5, 73. https://doi.org/10.3390/bdcc5040073

