Cheatsheet WuS

Nicolas Wehrli

June 2023

1 Grundbegriffe

1.1 Wahrscheinlichkeitsraum

Axiome von Kolmogorov

Das Tuple $(\Omega, \mathcal{A}, \mathbb{P})$ ist ein Wahrscheinlichkeitsraum mit

- I. Grundraum Ω mit $\Omega \neq \emptyset$, wobei $\omega \in \Omega$ ein Elementarereignis ist.
- II. σ -Algebra $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ wobei gilt:
 - 1. $\Omega \in \mathcal{A}$
 - 2. $A \in \mathcal{A} \implies A^{\complement} \in \mathcal{A}$
 - 3. $A_1, A_2, \dots \in \mathcal{A} \implies \bigcup_i A_i \in \mathcal{A}$
- III. Wahrscheinlichkeitsmass \mathbb{P} auf (Ω, \mathcal{A}) ist eine Abbildung $\mathbb{P}: \mathcal{A} \mapsto [0, 1]$, wobei gilt:
 - 1. $\mathbb{P}(\Omega) = 1$
 - 2. $A_1, A_2, \dots \in \mathcal{A}, \forall i \neq j : A_i \cap A_j = \emptyset$ $\Longrightarrow \mathbb{P}(\bigcup_i A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$

De-Morgan

Sei $(A_i)_{i\geq 1}$ eine Folge von beliebigen Mengen. Dann gilt

$$\left(\bigcup_{i=1}^{\infty} A_i\right)^{\mathfrak{C}} = \bigcap_{i=1}^{\infty} (A_i)^{\mathfrak{C}}$$

Daraus folgt

- 1. $A_1, A_2, \dots \in \mathcal{A} \implies \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$
- 2. $A, B \in \mathcal{A} \implies (A \cup B), (A \cap B) \in \mathcal{A}$

und für $A, B \in \mathcal{A}$

- 1. $\mathbb{P}(A^{\complement}) = 1 \mathbb{P}(A)$
- $2. \ A \subseteq B \implies \mathbb{P}(A) \le \mathbb{P}(B)$
- 3. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

Sei $A_1, A_2, \dots \in \mathcal{A}$, dann gilt:

Union Bound

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$

Siebformel

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} \mathbb{P}(A_{i_{1}} \cap \dots \cap A_{i_{k}})$$

Atom

Sei Ω nicht leer und diskret. Sei \mathcal{F} eine beliebige σ -Algebra über Ω . Eine nichtleere Menge $A \in \mathcal{F}$ heisst **atomare** Mengee von \mathcal{F} falls für alle $B \in \mathcal{F}$ gilt:

$$B \subseteq A \implies B = \emptyset \lor B = A$$

(Intuitiv: A ist die kleinste nichtleere Menge bezüglich der Inklusion in \mathcal{F})

Die Menge der atomaren Mengen von \mathcal{F} bezeichnen wir mit Atom (\mathcal{F}) . Jedes Element von \mathcal{F} lässt sich als abzählbare Vereinigung von Elementen aus Atom (\mathcal{F}) schreiben.

1.2 Bedingte Wahrscheinlichkeiten

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum.

Bedingte Wahrscheinlichkeit

Sei $A,B\in\mathcal{A}$ und $\mathbb{P}(B)>0$, dann ist die bedingte Wahrscheinlichkeit von A gegeben B

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Satz der totalen Wahrscheinlichkeit

Sei $(B_i)_{i\in I}$ eine Partition von Ω . Dann gilt für jedes beliebige $A\in\mathcal{A}$

$$\mathbb{P}(A) = \sum_{i: \mathbb{P}(B_i) > 0} \mathbb{P}(A|B_i)\mathbb{P}(B_i)$$

Satz von Bayes

Aus der Definition der bedingten W'keit folgt sofort die Bayessche Formel, welche den Zusammenhang zwischen $\mathbb{P}(A|B)$ und $\mathbb{P}(B|A)$ beschreibt:

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}$$

Mit dem Satz der totalen W'keit können wir $\mathbb{P}(A)$ umschreiben und kommen auf folgende Form:

Sei $(B_i)_{i\in I}$ eine **Partition** von Ω . Dann gilt für jedes beliebige $A\in\mathcal{A}, \mathbb{P}(A)>0$

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i)}{\sum_{j: \ \mathbb{P}(B_j) > 0} \mathbb{P}(A|B_j) \cdot \mathbb{P}(B_j)}$$

Intuition Bayessche Statistik

In dieser Form würde man A als das eingetretene Ereignis und die B_i als die verschiedene **Hypothesen** verstehen.

In der Bayesschen Statistik versucht man die Hypothese zu finden, so dass $\mathbb{P}(B_i|A)$ maximiert wird.

(Wurde in der Vorlesung nicht weiter behandelt)

..3 Unabhängigkeit

Zwei Ereignisse $A, B \in \mathcal{A}$ heissen **unabhängig**, wenn

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

- $\mathbb{P}(A) \in \{0,1\} \implies A$ zu jedem Ereignis unabhängig
- A zu sich selbst unabhängig $\implies \mathbb{P}(A) \in \{0,1\}$
- A, B unabhängig $\implies A, B^{\complement}$ unabhängig

Wenn $\mathbb{P}(A) > 0, \mathbb{P}(B) > 0$ gilt:

$$A, B$$
 unabhängig $\iff \mathbb{P}(A|B) = \mathbb{P}(A) \iff \mathbb{P}(B|A) = \mathbb{P}(B)$

Wir können die Definition der Unabhängigkeit auf beliebige Mengen von Ereignissen erweitern.

Eine Kollektion von Ereignissen $(A_i; i \in I)$ heisst (stochastisch) unabhängig, wenn

$$J \subseteq I$$
 endlich $\implies \mathbb{P}\left(\bigcap_{i \in J} A_i\right) = \prod_{i \in J} \mathbb{P}(A_i)$

2 Zufallsvariablen

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum.

Zufallsvariable

Eine (reellwertige) **Zufallsvariable** auf Ω ist eine messbare Funktion $X: \Omega \to \mathbb{R}$.

$$X: \Omega \to \mathbb{R}$$
 messbar $\iff \forall B \subset \mathbb{R}$ closed. $X^{-1}(B) \in \mathcal{A}$

Die Eigenschaft **messbar** ist bezüglich dem Wahrscheinlichkeitsmass $\mathbb{P}:\mathcal{A}\to [0,1]$ relevant. Dann ist $\mathbb{P}(X\in B):=\mathbb{P}(\{\omega\in\Omega\mid X(\omega)\in B\})$ wohldefiniert.

Bei diskretem Ω , können wir die rechte Seite vom ' \iff ' durch $\forall x \in \mathbb{R} : X^{-1}(\{x\}) \in \mathcal{A}$ (1) ersetzen.

Für die Messbarkeit von X ist nur $X(\Omega)\subseteq\mathbb{R}$ entscheidend und jede Teilmenge $A\subseteq X(\Omega)$ ist abzählbar (da Ω abzählbar). Somit kann $X^{-1}(A)$ als abzählbare Vereinigung von $\bigcup_{x\in A}X^{-1}(\{x\})$ geschrieben werden.

(1) $\implies X^{-1}(A) \in \mathcal{A}$ per Def. σ -Algebra

2.1 Verteilungsfunktion

Die **Verteilungsfunktion** ist die Abbildung $F_X : \mathbb{R} \to [0, 1]$ definiert durch:

$$F_X(t) := \mathbb{P}(X < t), \forall t \in \mathbb{R}$$

Die Funktion erfüllt folgende Eigenschaften:

- 1. F_X ist monoton wachsend
- 2. F_X ist rechtsstetig, i.e. $\lim_{h\downarrow 0} F_X(x+h) = F_X(x)$

3.
$$\lim_{x\to-\infty} F_X(x) = 0$$
 und $\lim_{x\to\infty} F_X(x) = 1$

4.
$$\forall a, b \in \mathbb{R}, a < b : \mathbb{P}(a < X < b) = F_X(b) - F_X(a)$$

Linksstetigkeit

Die Verteilungsfunktion ist nicht immer linksstetig. Sei $F_X(a-):=\lim_{h\downarrow 0}F_X(a-h)$ für $a\in\mathbb{R}$ beliebig. Dann gilt:

$$\mathbb{P}(X = a) = F_X(a) - F_X(a-)$$

Intuitiv folgt daraus

- Wenn F_X in einem Punkt $a \in \mathbb{R}$ nicht stetig ist, dann ist die "Sprunghöhe" $F_X(a) F_X(a-)$ gleich der Wahrscheinlichkeit $\mathbb{P}(X=a)$.
- Falls F_X stetig in einem Punkt $a \in \mathbb{R}$, dann gilt $\mathbb{P}(X=a) = 0$.

Seien $X_1,...,X_n$ Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$. Dann heissen $X_1,...,X_n$ unabhängig, falls

$$\forall x_1,...,x_n \in \mathbb{R}$$
:

$$\mathbb{P}(X_1 \le x_1, ..., X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \cdot ... \cdot \mathbb{P}(X_n \le x_n).$$

2.2 Diskrete Zufallsvariablen

Sei $A \in \mathcal{F}$ ein Ereignis.

Wir sagen A tritt fast sicher (f.s.) ein, falls $\mathbb{P}(A) = 1$.

Seien $X, Y: \Omega \to \mathbb{R}$ Zufallsvariablen:

$$X \leq Y$$
 f.s. $\iff \mathbb{P}(X \leq Y) = 1$

Eine Zufallsvariable $X:\Omega\to\mathbb{R}$ heisst **diskret**, falls eine endliche oder abzählbare Menge $W\subset\mathbb{R}$ existiert, sodass

$$\mathbb{P}(X \in W) = 1$$

Falls Ω endlich oder abzählbar ist, dann ist X immer diskret.

Die **Verteilungsfunktion** einer diskreten ZV X:

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{y \in W} p(y) \cdot \mathbb{1}_{y \le x}$$

Die **Gewichtsfunktion** einer diskreten ZV X:

$$\forall x \in X(\Omega): p(x) = \mathbb{P}(X=x)$$
wobei $\sum_{x \in X(\Omega)} p(x) = 1$

2.3 Diskrete Verteilungen

Bernoulli-Verteilung $(X \sim Ber(p))$:

 $X(\Omega) = \{0,1\}$ und die Gewichtsfunktion ist definiert durch

$$p(1) := \mathbb{P}(X = 1) = p \text{ und } p(0) := \mathbb{P}(X = 0) = 1 - p.$$

Binomialverteilung ($X \sim Bin(n, p)$):

Wiederholung von n unabhängigen Bernoulli-Experimenten mit gleichem Parameter p.

$$p(k) := \mathbb{P}(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k} \quad \forall k \in \{0, 1, \dots, n\}$$

Geometrische Verteilung $(X \sim \text{Geo}(p))$:

Warten auf den 1-ten Erfolg.

$$p(k) := \mathbb{P}(X = k) = (1 - p)^{k - 1} \cdot p \quad \forall k \in \mathbb{N} \setminus \{0\}$$

Poisson-Verteilung ($X \sim \text{Poisson}(\lambda)$):

Grenzwert der Binomialverteilung für grosse n und kleine p.

$$p(k) := \mathbb{P}(X = k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda} \quad \forall k \in \mathbb{N}_0, \lambda > 0$$

- 1. Für $X_n \sim \text{Bin}(n, \frac{\lambda}{n})$ gilt $\lim_{n \to \infty} \mathbb{P}(X_n = k) = \mathbb{P}(Y = k)$ wobei $Y \sim \text{Poisson}(\lambda)$.
- 2. Seien $X_1 \sim \text{Poisson}(\lambda_1)$ und $X_2 \sim \text{Poisson}(\lambda_2)$ unabhängig. Dann gilt $(X_1 + X_2) \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

2.4 Stetige Zufallsvariablen

Eine Zufallsvariable $X:\Omega\to\mathbb{R}$ heisst **stetig**, wenn ihre Verteilungsfunktion F_X wie folgt geschrieben werden kann

$$F_X(a) = \int_{-\infty}^a f(x) dx = \text{ für alle } a \in \mathbb{R}.$$

wobei $f: \mathbb{R} \to \mathbb{R}^+$ eine nicht-negative Funktion ist. f wird dann als **Dichte** von X benannt.

Wenn $f:(\mathbb{R},\mathcal{B})\to(\mathbb{R},\mathcal{B})$ messbar ist, ist die Zufallsvariable X absolut stetig.

Intuition: f(x) dx ist die Wahrscheinlichkeit, dass $X \in [x, x + dx]$.

Von F_X zu f:

Sei X eine Zufallsvariable mit stetiger Verteilungsfunktion F_X und F_X stückweise \mathcal{C}^1 , d.h. es gibt $x_0 = -\infty < \ldots < x_{n-1} < x_n = +\infty$, sodass F_X auf jedem Intervall (x_i, x_{i+1}) Element von \mathcal{C}^1 ist.

Dann ist X eine stetige Zufallsvariable und die Dichte f kann wie folgt konstruiert werden:

$$\forall x \in (x_i, x_{i+1}) \quad f(x) = F_X'(x).$$

Bedingte Dichte

Seien X, Y ZV auf $(\Omega, \mathcal{A}, \mathbb{P})$ mit gemeinsamer Dichte $f_{X,Y}(x,y)$ und Randdichte $f_Y(y) \neq 0$. Dann ist die bedingte Dichte von X bedingt durch Y:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

2.5 Stetige Verteilungen

Gleichverteilung $(X \sim \mathcal{U}([a,b]))$:

Die Dichte ist auf dem Intervall [a, b] gleich.

$$f_{a,b}(x) = \begin{cases} 0 & x \notin [a,b] \\ \frac{1}{b-a} & x \in [a,b] \end{cases}$$

Exponentialverteilung $(T \sim \text{Exp}(\lambda))$:

Lebensdauer oder Wartezeit eines allg. Ereignisses (Stetiges Äquivalent zur Geometrischen Verteilung).

$$f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0, \\ 0 & x < 0. \end{cases}$$

Normalverteilung $(X \sim \mathcal{N}(m, \sigma^2))$:

Häufig verwendete Verteilung. Undefiniert für $\sigma = 0$

$$f_{m,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

1. Seien X_1, \ldots, X_n unabhängige normalverteilte ZV mit Parametern $(m_1, \sigma_1^2), \ldots, (m_n, \sigma_n^2)$, dann ist

$$Z = m_0 + \lambda_1 X_1 + \ldots + \lambda_n X_n$$

eine normalverteilte ZV mit Parametern $m = m_0 + \lambda_1 m_1 + \dots + \lambda_n m_n$ und $\sigma^2 = \lambda_1^2 \sigma_1^2 + \dots + \lambda_n^2 \sigma_n^2$.

2. Sei $Z \sim \mathcal{N}(0,1)$ eine **standardnormalverteilte** Zufallsvariable. Dann gilt für $X \sim \mathcal{N}(m,\sigma^2)$

$$X = m + \sigma \cdot Z$$

3 Erwartungswert

Erwartungswert - Diskrete ZV

Sei $X: \Omega \to \mathbb{R}$ eine diskrete Zufallsvariable, $W_X := X(\Omega)$ und $\phi: \mathbb{R} \to \mathbb{R}$ eine Abbildung. Falls die Summe wohldefiniert ist, gilt:

$$\mathbb{E}(\phi(X)) := \sum_{x \in W_X} \phi(x) \cdot \mathbb{P}(X = x)$$

Wenn $X: \Omega \to \mathbb{N}_0$, kann man auch den Erwartungswert als

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} \mathbb{P}(X > n)$$

schreiben.

Erwartungswert - Stetige ZV

Sei $X:\Omega\to\mathbb{R}$ eine stetige Zufallsvariable mit Dichte f. Sei $\phi:\mathbb{R}\to\mathbb{R}$ eine Abbildung, sodass $\phi(X)$ eine Zufallsvariable ist. Dann gilt

$$\mathbb{E}(\phi(X)) = \int_{-\infty}^{\infty} \phi(x) f(x) \, dx,$$

solange das Integral wohldefiniert ist.

Sei X eine stetige ZV mit $X \ge 0$ f.s., dann gilt:

$$\mathbb{E}(X) = \int_0^\infty \mathbb{P}(X > x) \, dx$$

3.1 Rechnen mit Erwartungswerten

Linearität des Erwartungswertes:

Seien $X,Y:\Omega\to\mathbb{R}$ ZV mit $\lambda\in\mathbb{R}$, Falls die Erwartungswerte wohldefiniert sind, gilt:

$$\mathbb{E}(\lambda \cdot X + Y) = \lambda \cdot \mathbb{E}(X) + \mathbb{E}(Y)$$

Falls X, Y unabhängig, dann gilt auch:

$$\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$$

Eine generellere Form wäre folgende Äquivalenz:

 $X_1, X_2, ..., X_n$ unabhängig

 \iff

Für jede $\phi_1: \mathbb{R} \to \mathbb{R}, \dots, \phi_n: \mathbb{R} \to \mathbb{R}$ stückweise stetig, beschränkt gilt

$$\mathbb{E}(\phi_1(X_1)\cdots\phi_n(X_n)) = \mathbb{E}(\phi_1(X_1))\cdots\mathbb{E}(\phi_n(X_n))$$

3.2 Ungleichungen

Monotonie

Seien X, Y ZV mit $X \leq Y$ f.s., dann gilt:

$$\mathbb{E}(X) \leq \mathbb{E}(Y)$$

Markov Ungleichung

Sei X eine ZV und ferner $g:X(\Omega)\to [0,+\infty)$ eine wachsende Funktion. Für jedes $c\in\mathbb{R}$ mit g(c)>0 gilt dann

$$\mathbb{P}(X \ge c) \le \frac{\mathbb{E}(g(X))}{g(c)}$$

Einfache Version:

Sei X eine ZV mit X > 0 f.s., dann gilt für jedes t > 0:

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}$$

Chebyshev Ungleichung

Sei Y eine ZV mit endlicher Varianz. Für jedes b>0 gilt dann

$$\mathbb{P}(|Y - \mathbb{E}(Y)| \ge b) \le \frac{\operatorname{Var}(Y)}{b^2}$$

Jensen Ungleichung

Sei X eine ZV und $\phi: \mathbb{R} \to \mathbb{R}$ eine konvexe Funktion, dann gilt:

$$\phi(\mathbb{E}(X)) < \mathbb{E}(\phi(X))$$

3.3 Varianz

Varianz

Sei X eine ZV, sodass $\mathbb{E}(X^2) < \infty$. Die **Varianz** von X ist definiert durch

$$Var(X) = \sigma_X^2 = \mathbb{E}((X - m)^2) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

wobei $m = \mathbb{E}(X)$. Dabei wird σ_X als **Standardabweichung** von X bezeichnet und beschreibt den Erwartungswert für die Distanz von X zu $\mathbb{E}(X)$.

1. Sei X ein ZV, sodass $\mathbb{E}(X^2) < \infty$ und $\lambda \in \mathbb{R}$:

$$Var(a \cdot X + b) = a^2 \cdot Var(X)$$

2. Seien $X_1, ..., X_n$ paarweise unabhängig. Dann gilt

$$Var(X_1 + \ldots + X_n) = Var(X_1) + \ldots + Var(X_n)$$

Kovarianz

Seien X,Y ZV mit $\mathbb{E}(X^2) < \infty, \mathbb{E}(Y^2) < \infty$. Wir definieren die **Kovarianz** zwischen X und Y durch

$$Cov(X, Y) := \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

- 1. Cov(X, X) = Var(X)
- 2. X, Y unabhängig \implies Cov(X, Y) = 0 (Die Umkehrung ist falsch!)
- 3. Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

3.4 Bedingter Erwartungswert

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein diskreter Wahrscheinlichkeitsraum und $X: \Omega \to \mathbb{R}$ eine Zufallsvariable.

Für ein beliebiges $B \in A$, $\mathbb{P}(B) > 0$ definieren wir den **bedingten Erwartungswert** X bedingt durch B als

$$\mathbb{E}(X \mid B) = \frac{\mathbb{E}(\mathbb{1}_B X)}{\mathbb{P}(B)} = \sum_{x \in X(\Omega)} x \mathbb{P}(X = x \mid B)$$
$$= \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\} \mid B)$$

Bedingter Erwartungswert als Zufallsvariable

Wir betrachten eine Partition $\mathcal{B} = (B_i)_{i \in I}$ von Ω (B_i sind disjunkt und nichtleer, I abzählbar).

Dann definieren wir die Zufallsvariable

$$\mathbb{E}(X\mid\mathcal{B})(\omega) = \sum_{i\in I, \mathbb{P}(B_i>0)} \mathbb{E}(X\mid B_i)\mathbb{1}_{B_i}(\omega)$$

- 1. **Intuition:** Die Information, die durch die Partition gegeben ist, ist dass eines der B_i eintreten wird. Bei der Realisierung durch das Eintreten des Elementarereignisses ω wird $\mathbb{E}(X \mid \mathcal{B})$ zu dem $\mathbb{E}(X \mid B_i)$ realisiert, bei welchem $\omega \in B_i$.
- 2. Bemerkung: Das $\mathcal B$ hat in der Vorlesung 2 verschiedene Bedeutungen. Es wird als Variable für sowohl die Borelsche σ -Algebra als auch die Partition von Ω verwendet.

4 Mehrere Zufallsvariablen

Die gemeinsame Verteilungsfunktion von n Zufallsvariablen X_1,\ldots,X_n (stetig oder diskret) ist die Abbildung $F:\mathbb{R}^n\to[0,1],$

$$(x_1,\ldots,x_n)\mapsto F(x_1,\ldots,x_n):=\mathbb{P}(X_1\leq x_1,\ldots,X_n\leq x_n)$$

4.1 Diskreter Fall - Gewichtsfunktion

Für n diskrete ZV X_1, \ldots, X_n definieren wir ihre **gemeinsame** Gewichtsfunktion $p: \mathbb{R}^n \to [0,1]$ durch

$$p(x_1,...,x_n) := \mathbb{P}(X_1 = x_1,...,X_n = x_n)$$

Aus der gemeinsamen Gewichtsfunktion p bekommt man die gemeinsame Verteilungsfunktion mit

$$F(x_1, \dots, x_n) = \mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n)$$

$$= \sum_{y_1 \le x_1, \dots, y_n \le x_n} \mathbb{P}(X_1 = y_1, \dots, X_n = y_n)$$

$$= \sum_{y_1 \le x_1, \dots, y_n \le x_n} p(y_1, \dots, y_n)$$

Seien X_1, \ldots, X_n diskrete Zufallsvariablen in $(\Omega, \mathcal{F}, \mathbb{P})$, sodass $X_1 \in W_1, \ldots, X_n \in W_n$ f.s. für $W_1, \ldots, W_n \subset \mathbb{R}$ endlich oder abzählbar.

Für $\phi: \mathbb{R}^n \to \mathbb{R}$ beliebig, ist $Z = \phi(X_1, \dots, X_n)$ eine diskrete Zufallsvariable mit $Z \in W = \phi(W_1 \times \dots \times W_n)$ f.s. .

Die Gewichtsfunktion von Z ist gegeben durch $p_Z:W\to [0,1]$:

$$p_Z(t) := \mathbb{P}(Z=t) = \sum_{\substack{x_1 \in W_1, \dots, x_n \in W_n \\ \phi(x_1, \dots, x_n) = t}} p(x_1, \dots, x_n)$$

 Mit dem vorherigen Satz können wir aus der gemeinsamen Verteilung die Randverteilung einer Zufallsvariablen extrahieren (wegsummieren). Wir verwenden dafür einfach die Funktion

$$\phi(x_1,\ldots,x_n)=x_i$$

2. Der Erwartungswert des Bildes der Funktion $\phi: \mathbb{R}^n \to \mathbb{R}$ ist

$$\mathbb{E}(\phi(X_1,\ldots,X_n)) = \sum_{x_1,\ldots,x_n} \phi(x_1,\ldots,x_n) p(x_1,\ldots,x_n)$$

3. Wir haben eine Äguvalenz:

$$X_1, \dots, X_n$$
unabhängig
 \iff

$$\forall x_1 \in W_1, \dots, x_n \in W_n$$

$$p(x_1, \dots, x_n) = \mathbb{P}(X_1 = x_1) \cdot \dots \cdot \mathbb{P}(X_n = x_n)$$

4.2 Stetiger Fall - Gemeinsame Dichte

Gemeinsame Dichte

Falls die gemeinsame Verteilungsfunktion von n Zufallsvariablen X_1,\dots,X_n sich schreiben lässt als

$$F(x_1,\ldots,x_n) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f(t_1,\ldots,t_n) dt_n \ldots dt_1$$

für eine Funktion $f: \mathbb{R}^n \to [0, \infty)$, so heisst $f(x_1, \dots, x_n)$ die gemeinsame Dichte von $X_1, \dots X_n$.

1. $f(x_1, \ldots, x_n) \ge 0$, und = 0 ausserhalb von $\mathcal{W}(X_1, \ldots, X_n)$.

2.

$$\mathbb{P}((X_1,\ldots,X_n)\in A)=\int \cdots \int_{(x_1,\ldots,x_n)\in A} f(x_1,\ldots,x_n)\,dx_n\ldots dx_1$$

für $A \subseteq \mathbb{R}^n$ beliebig.

3. Haben X, Y die gemeinsame Verteilungsfunktion $F_{X,Y}$, so ist $F_X : \mathbb{R} \to [0,1]$,

$$F_X(x) := \mathbb{P}(X \le x) = \mathbb{P}(X \le x, Y \le \infty) = \lim_{y \to \infty} F_{X,Y}(x,y)$$

die Verteilungsfunktion der Randverteilung von X. Analoges gilt für ${\cal F}_Y.$

4. Falls X,Y eine gemeinsame Dichte f(x,y) haben, so haben auch die Randverteilungen von X und Y Dichten $f_X:\mathbb{R}\to [0,\infty)$ und $F_Y:\mathbb{R}\to [0,\infty)$.

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 bzw. $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$

Die **Dichtefunktion** einer Randverteilung (Randdichte) entsteht aus der gemeinsamen Dichtefunktion durch "Wegintegrieren" der anderen Variable(n).

Wenn X_1, \ldots, X_n stetige ZV mit Dichten f_1, \ldots, f_n , dann sind die folgenden Aussagen äquivalent:

- X_1, \ldots, X_n unabhängig
- (X_1, \ldots, X_n) ist stetig mit gemeinsamer Dichte

$$f(x_1,\ldots,x_n)=f_1(x_1)\cdot\ldots\cdot f_n(x_n)$$

• Für alle $\phi_1: \mathbb{R} \to \mathbb{R}, \dots, \phi_n: \mathbb{R} \to \mathbb{R}$ die stückweise stetig und beschränkt sind, gilt

$$\mathbb{E}(\phi_1(X_1)\cdot\ldots\cdot\phi_n(X_n))=\mathbb{E}(\phi_1(X_1))\cdot\ldots\cdot\mathbb{E}(\phi_n(X_n))$$

4.3 Transformation von Zufallsvariablen

linearer Transformationssatz

Sei Z ein n-dimensionaler Zufallsvektor und $g:(\mathbb{R}^n,\mathcal{B}^n)\to (\mathbb{R}^m,\mathcal{B}^m)$ eine messbare Abbildung. Dann ist

$$H(\omega) = g(Z(\omega))$$

ein m-dimensionaler Zufallsvariable und ferner gilt

$$\mathbb{P}(H \in A) = \mathbb{P}(Z \in g^{-1}(A)).$$

Wenn g linear und umkehrbar (i.e. g(x)=m+Bx mit $\det(B)\neq 0$) und unter Vorraussetzung, dass die Verteilung von Z absolut stetig ist, dann ist H auch absolut stetig und es gilt:

$$f_H(x) = \frac{1}{|\det(B)|} f_Z(B^{-1}(x-m)).$$

Beispielrechnung

Z=(X,Y)2-dim Zufallsvektor. Wir wollen die Dichte von X+Y berechnen.

Man wäre versucht die Matrix B und den Vektor m wie folgt zu definieren:

$$B = \begin{pmatrix} 1 & 1 \end{pmatrix} \text{ und } m = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\Longrightarrow g((X,Y)) = \begin{pmatrix} 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \end{pmatrix} = X + Y$$

Dann wäre aber B (und somit g) nicht invertierbar! Deshalb wollen wir B so wählen, dass q((X,Y)) = (X,X+Y):

$$\begin{pmatrix} X \\ X+Y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$
$$\det(B) = 1 \neq 0 \implies B \text{ invertierbar}$$
$$B^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

Nach dem linearen Transformationssatz gilt

$$f_{X,X+Y}(x,z) = \frac{1}{|\det(B)|} f_{X,Y} \left(B^{-1} \cdot {x \choose z} \right)$$
$$= 1 \cdot f_{X,Y} \left({1 \choose -1} \quad {1 \choose z} \right)$$
$$= f_{X,Y} (x, z - x)$$

Aus der gemeinsamen Dichte $f_{X,X+Y}$ können wir die Dichte f_{X+Y} bestimmen.

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_{X,X+Y}(x,z) dx$$
$$= \int_{-\infty}^{\infty} f_{X,Y}(x,z-x) dx$$

Falls X und Y unabhängig

$$= \int_{-\infty}^{\infty} f_X(x) \cdot f_Y(z - x) \, dx$$

4.3.1 Charakterisierung der Dichte durch \mathbb{E}

Sei $\phi: \mathbb{R}^n \to \mathbb{R}$ eine Abbildung und X_1, \ldots, X_n ZV mit gemeinsamer Dichte f. Dann lässt sich $\mathbb{E}(Z)$ für die Zufallsvariable $Z = \phi(X_1, \ldots, X_n)$ mit

$$\mathbb{E}(Z) = \int \cdots \int_{\mathbb{R}^n} \phi(x_1, \dots, x_n) \cdot f(x_1, \dots, x_n) \, dx_n \dots dx_1$$

berechnen.

Dies reicht aber nicht, um die Dichte einer transformierten ZV zu berechnen. Mehrere Zufallsvariablen mit unterschiedlichen Dichten können den gleichen Erwartungswert haben.

Sei $f: \mathbb{R} \to \mathbb{R}_+$ eine Abblidung, sodass $\int_{-\infty}^{\infty} f(z) dz = 1$. Dann sind folgende Aussagen äquivalent

- \bullet Z ist stetig mit Dichte f
- Für jede stückweise stetige, beschränkte Abbildung $\psi: \mathbb{R} \to \mathbb{R}$ gilt

$$\mathbb{E}(\psi(Z)) = \int_{-\infty}^{\infty} \psi(z) f(z) \, dz$$

Beispielrechnung

Wir können diese Erkenntnis nutzen, um die Dichte einer transformierten Zufallsvariable zu berechnen.

Seien X und Y zwei Zufallsvariablen mit gemeinsamer Dichtefunktion

$$f(x,y) = \begin{cases} \frac{1}{x^2 y^2} & \text{für } x \ge 1, y \ge 1\\ 0 & \text{sonst.} \end{cases}$$

Bestimme die Dichtefunktion f_V der Zufallsvariable V=XY. Sei $\psi: \mathbb{R} \to \mathbb{R}$ stückweise stetig und beschränkt. Wir definieren $\phi(x,y) = \psi(xy) = \psi(v)$ und berechnen

$$\mathbb{E}(\psi(V)) = \mathbb{E}(\phi(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi(x,y) f(x,y) \, dx \, dy$$

$$= \int_{1}^{\infty} \int_{1}^{\infty} \psi(xy) \frac{1}{x^{2}y^{2}} \, dx \, dy$$
Substition $v = xy, dv = y \, dx$

$$= \int_{1}^{\infty} \int_{y}^{\infty} \psi(v) \frac{1}{v^{2}} \frac{dv}{y} \, dy$$

$$A = \{(v,y) \in \mathbb{R}^{2} \mid 1 \leq y < \infty, y \leq v < \infty\}$$

$$= \{(v,y) \in \mathbb{R}^{2} \mid 1 \leq y \leq v, 1 \leq v < \infty\}$$
Zeichnung hilft;)
$$= \int_{1}^{\infty} \int_{1}^{v} \psi(v) \frac{1}{v^{2}y} \, dy \, dv$$

$$= \int_{1}^{\infty} \psi(v) \frac{\ln(v)}{v^{2}} \, dv$$

$$= \int_{-\infty}^{\infty} \psi(v) \cdot \frac{\ln(v)}{v^{2}} \mathbbm{1}_{v \in [1,\infty)} \, dv$$

$$\implies f_{V}(t) = \frac{\ln(v)}{v^{2}} \mathbbm{1}_{v \in [1,\infty)}$$

genereller Transformationssatz

Sei Z ein n-dimensionaler Zufallsvektor mit Dichtefunktion $f_Z: \mathbb{R}^n \to \mathbb{R}_+$ und $\phi: \mathbb{R}^n \to \mathbb{R}^n$ stetig differenzierbar mit stetig differenzierbarer Umkehrabbildung ϕ^{-1} . Dann gilt für die Dichte f_U von $U = \phi(Z)$:

$$f_U(\vec{u}) = f_Z(\phi^{-1}(\vec{u})) \cdot |\det(J_{\phi^{-1}}(\vec{u}))|$$

Beweisidee. Für $A \subset \mathbb{R}^n$ gilt

$$\int_{A} f_{U}(\vec{u}) \, d\vec{u} = \mathbb{P}(U \in A) = \mathbb{P}(Z \in \phi^{-1}(A)) = \int_{\phi^{-1}(A)} f_{Z}(\vec{z}) \, d\vec{z}$$

Aus der mehrdimensionalen Integralrechnung folgt dann

$$\int_{\phi^{-1}(A)} f_Z(\vec{z}) d\vec{z} = \int_A f_Z\left(\phi^{-1}\left(\vec{u}\right)\right) \cdot \left| \det(J_{\phi^{-1}}\left(\vec{u}\right)) \right| d\vec{u}$$

Beispielrechnung

Wir haben Z=(X,Y), wobei X,Y unabhängig und exponential-verteilt mit $\lambda>0$. Berechne die Dichtefunktion f_U von

$$U:=\frac{X}{X+Y}$$

Wir definieren ϕ , so dass $(U,Y) = \phi(X,Y)$.

$$\phi(x,y) = \begin{pmatrix} \frac{x}{x+y} \\ y \end{pmatrix}$$
 und $\phi^{-1}(u,y) = \begin{pmatrix} \frac{uy}{1-u} \\ y \end{pmatrix}$

Check:
$$\phi^{-1}\left(\frac{x}{x+y},y\right) = \left(\frac{\frac{x}{x+y}y}{1-\frac{x}{x+y}},y\right) = \left(\frac{xy}{x+y-x},y\right) = (x,y)$$
.

We then have

$$\begin{split} \left| \det \left(J_{\phi^{-1}}(u,y) \right) \right| &= \left| \det \left(\frac{\frac{y}{1-u} + \frac{uy}{(1-u)^2}}{\frac{u}{1-u}} \quad 1 \right) \right| \\ &= \left| \frac{y(1-u) + uy}{(1-u)^2} \right| = \left| \frac{y}{(1-u)^2} \right| \end{split}$$

Per genereller Transformationssatz gilt

$$f_{U,Y}(u,y) = f_{X,Y}\left(\frac{uy}{1-u},y\right) \left| \frac{y}{(1-u)^2} \right|$$

$$= \begin{cases} \lambda^2 e^{-\lambda \left(\frac{uy}{1-u}+y\right)} \left| \frac{y}{(1-u)^2} \right| & \text{if } \frac{uy}{1-u} \ge 0 \land y \ge 0\\ 0 \cdot \left| \frac{y}{(1-u)^2} \right| & \text{sonst.} \end{cases}$$

$$f_U(u) = \int_{-\infty}^{\infty} f_{U,Y}(u, y) \, dy$$
$$= \int_{0}^{\infty} \frac{\lambda^2}{(1 - u)^2} e^{-\frac{\lambda}{1 - u} y} y \mathbb{1}_{u \in [0, 1]} \, dy$$

per partielle Integration

$$=\mathbb{1}_{u\in[0,1]}$$

5 Konvergenz in Wahrscheinlichkeitsräumen

Unabhängigkeit einer Folge und iid./uiv.

Eine Folge von ZV X_1, X_2, \ldots ist unabhängig, wenn X_1, \ldots, X_n unabhängig ($\forall n \in \mathbb{N}$, nach der Definition in 2.1). Sie ist zudem **uiv./iid.**, falls $F_{X_i} = F_{X_j}, \forall i, j \in \mathbb{N}$.

In einem Wahrscheinlichkeitsraum können wir für eine Folge von Zufallsvariablen X_1,X_2,\ldots und einer ZV Z zwischen 3 Arten von Konvergenz unterscheiden:

1. schwache Konvergenz / Konvergenz in Verteilung

Wir definieren $X_n \xrightarrow{d} Z$ (d for distribution) als

$$\lim_{n \to \infty} \mathbb{P}(X_n \le x) = \lim_{n \to \infty} F_{X_n}(x) = F_Z(x) = \mathbb{P}(Z \le x)$$

für jede Stetigkeitsstelle $x \in \mathbb{R}$ von F_Z .

2. Konvergenz in Wahrscheinlichkeit

Wir definieren $X_n \stackrel{\mathbb{P}}{\longrightarrow} Z$ als

$$\forall \varepsilon > 0 \quad \lim_{n \to \infty} \mathbb{P}(|X_n - Z| > \varepsilon) = 0$$

3. Fast-sichere Konvergenz

Wir definieren $X_n \xrightarrow{\mathbf{f.s.}} Z$ als

$$\mathbb{P}(\{\omega \in \Omega \mid \lim_{n \to \infty} X_n(\omega) = Z(\omega)\}) = 1$$

Wir haben dann auch

$$X_n \xrightarrow{\mathbf{f.s.}} Z \implies X_n \xrightarrow{\mathbb{P}} Z \implies X_n \xrightarrow{d} Z$$

Die Umkehrung der Implikationen gilt nicht, wie folgende Beispiele zeigen:

1. $X_n \xrightarrow{d} Z \implies X_n \xrightarrow{\mathbb{P}} Z$

$$\mathbb{P}(X_n = 0) = \mathbb{P}(X_n = 1) = \frac{1}{2}, \ X_n(\omega) = \begin{cases} 0 & \omega = 0\\ 1 & \omega = 1 \end{cases}$$

und

$$\mathbb{P}(Z=0) = \mathbb{P}(Z=1) = \frac{1}{2}, \ Z(\omega) = \begin{cases} 1 & \omega = 0 \\ 0 & \omega = 1 \end{cases}$$

Aus $F_{X_n} = F_Z$ folgt direkt $X_n \stackrel{d}{\longrightarrow} Z$.

Da aber $|X_n(\omega) - Z(\omega)| = 1, \forall \omega \in \Omega$ und demzufolge $\lim_{n \to \infty} \mathbb{P}(|X_n - Z| > \epsilon) \not\longrightarrow 0$ für $n \to \infty$, gilt

$$X_n \xrightarrow{\mathbb{P}} Z$$

2. $X_n \xrightarrow{\mathbb{P}} Z \implies X_n \xrightarrow{\mathbf{f.s.}} Z$

Wir betrachten den Wahrscheinlichkeitsraum ([0,1], \mathcal{B} , \mathbb{P}). Für ein beliebiges $n \in \mathbb{N}$ sei $k = \lfloor \log_2(n) \rfloor$ und $j \in \{0, \dots, 2^k - 1\}$, sodass $n = 2^k + j$.

Dann definieren wir

$$X_n(\omega) = \mathbb{1}_{\left[\frac{j}{2^k}, \frac{j+1}{2^k}\right]}(\omega).$$

und

$$Z(\omega) = 0 \quad \forall \omega \in \Omega = [0, 1]$$

Zur Visualisierung würde die Folge so aussehen

$$X_1 = \mathbb{1}_{[0,1]}, X_2 = \mathbb{1}_{\left[0,\frac{1}{2}\right]}, X_3 = \mathbb{1}_{\left[\frac{1}{2},1\right]}, X_4 = \mathbb{1}_{\left[0,\frac{1}{4}\right]}$$
 etc.

Wir hätten dann

$$\forall \varepsilon > 0 \quad \lim_{n \to \infty} \mathbb{P}(|X_n - Z| > \varepsilon) = 0 \implies X_n \stackrel{\mathbb{P}}{\longrightarrow} Z$$

Aber für jedes $\omega \in [0,1]$ finden wir unendlich viele X_n mit $X_n(\omega) = 1$ und deshalb

$$\mathbb{P}(\{\omega \in [0,1] \mid \lim_{n \to \infty} X_n(\omega) = Z(\omega)\}) = 0 \implies X_n \xrightarrow{\mathbf{f.s.}} Z$$

5.1 Gesetz der grossen Zahlen

starkes Gesetz der grossen Zahlen

Sei X_1,X_2,\ldots eine Folge von uiv. Zufallsvariablen. Sei $\mathbb{E}(|X_1|)<\infty$ und $\mu=\mathbb{E}(X_1)$. Für

$$\overline{X}_n = \frac{1}{n} S_n = \frac{1}{n} \sum_{i=1}^n X_i$$

gilt dann

$$\overline{X}_n \longrightarrow \mu$$
 f.s.

Dies ist eine fast-sichere Konvergenz.

schwaches Gesetz der grossen Zahlen

Sei $X_1,X_2,...$ eine Folge von paarweise unkorrelierten Zufallsvariablen, die alle den gleichen Erwartungswert $\mathbb{E}(X_i)=\mu$ und die gleiche Varianz $\mathrm{Var}(X_i)=\sigma^2$ haben. Sei

$$\overline{X}_n = \frac{1}{n} S_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Dann konvergiert \overline{X}_n für $n\to\infty$ in Wahrscheinlichkeit gegen $\mu=\mathbb{E}(X_i),$ d.h.

$$\forall \varepsilon > 0 \quad \lim_{n \to \infty} \mathbb{P}(|\overline{X}_n - \mu| > \varepsilon) = 0 \text{ i.e. } \overline{X}_n \stackrel{\mathbb{P}}{\longrightarrow} \mu$$

Bemerkung:

Zur Erinnerung:

$$X_i, X_j$$
 unkorreliert \iff $Cov(X_i, X_j) = 0$

Wir haben auch

$$X_i, X_i$$
 unabhängig $\Longrightarrow X_i, X_i$ unkorreliert

5.2 Zentraler Grenzwertsatz

Zentraler Grenzwertsatz

Sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von iid. Zufallsvariablen mit $\mathbb{E}(X_i) = \mu < \infty$ und $\operatorname{Var}(X_i) = \sigma^2 < \infty$. Dann gilt

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right) = \Phi(x) \quad \forall x \in \mathbb{R}$$

also

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

Bemerkungen:

Man verwendet auch oft die Form für $\overline{X}_n = \frac{1}{n}S_n$ als

$$\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

beziehungsweise

$$S_n \xrightarrow{d} \mathcal{N}(n\mu, n\sigma^2) \text{ und } \overline{X}_n \xrightarrow{d} \mathcal{N}\left(\mu, \frac{1}{n}\sigma^2\right)$$

Beispielrechnung:

Seien $(X_i)_{i\geq 1}, (Y_i)_{i\geq 1}$ und $(Z_i)_{i\geq 1}$ Folgen von iid. ZV mit

$$\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = \frac{1}{2}$$

und analog für Y_1 und Z_1 . Wir definieren

$$S_n^{(x)} := \sum_{i=1}^n X_i, \quad S_n^{(y)} := \sum_{i=1}^n Y_i, \quad S_n^{(z)} := \sum_{i=1}^n Z_i$$

Die Folge $\left((S_n^{(x)},S_n^{(y)},S_n^{(z)})\right)_{n\geq 1}$ wird zufällige Irrfahrt in \mathbb{Z}^3 genannt. Sei $\alpha>\frac{1}{5}$. Zeige, dass

$$\mathbb{P}\left(\left\|(S_n^{(x)},S_n^{(y)},S_n^{(z)})\right\|_2 \leq n^{\alpha}\right) \longrightarrow 1 \text{ für } n \to \infty,$$

wobei $||(x,y,z)||_2 := \sqrt{x^2 + y^2 + z^2}$ die euklidische Norm ist. Schritt 1: Für alle $\alpha > 1/2$ zeigen wir $\mathbb{P}(|S_n^{(x)}| \leq n^{\alpha}) \stackrel{n \to \infty}{\longrightarrow} 1$. Da $\mathbb{E}(X_i) = 0$ und $\mathrm{Var}(X_i) = 1$ folgt für $a \in \mathbb{R}$ beliebig per ZGS

$$\mathbb{P}\left(S_n^{(x)} \le a\sqrt{n}\right) = \mathbb{P}\left(\frac{S_n^{(x)}}{\sqrt{n}} \le a\right) \xrightarrow{n \to \infty} \Phi(a)$$

und somit auch

$$\mathbb{P}\left(|S_n^{(x)}| \le a\sqrt{n}\right) = \mathbb{P}\left(S_n^{(x)} \le a\sqrt{n}\right) - \mathbb{P}\left(S_n^{(x)} \le -a\sqrt{n}\right)$$

$$\stackrel{n \to \infty}{\longrightarrow} \Phi(a) - \Phi(-a) = 2\Phi(a) - 1$$

Sei $\alpha = 1/2 + \beta, \beta > 0$. Dann instanzieren wir mit $a = n^{\beta}$.

$$\mathbb{P}\left(|S_n^{(x)}| \leq n^{\alpha}\right) = \mathbb{P}\left(|S_n^{(x)}| \leq n^{\beta}\sqrt{n}\right) \longrightarrow \lim_{n \to \infty} (2\Phi(n^{\beta}) - 1) = 1$$

Dies gilt analog für $S_n^{(y)}$ und $S_n^{(z)}$. $Schritt\ 2: \ \forall \alpha > 1/2, \mathbb{P}\left(\left\|\left(S_n^{(x)}, S_n^{(y)}, S_n^{(z)}\right)\right\|_2 \leq n^{\alpha}\right) \stackrel{n \to \infty}{\longrightarrow} 1.$ Sei $\alpha' \in (1/2, \alpha)$. Dann folgt

$$\begin{split} \left\{ |S_n^{(x)}| & \leq n^{\alpha'} \wedge |S_n^{(y)}| \leq n^{\alpha'} \wedge |S_n^{(z)}| \leq n^{\alpha'} \right\} \\ & \subseteq \left\{ \left\| \left(S_n^{(x)}, S_n^{(y)}, S_n^{(z)} \right) \right\|_2 \leq \sqrt{3} \cdot n^{\alpha'} \right\} \end{split}$$

Da $n^{\alpha} \geq \sqrt{3}n^{\alpha'}$ für grosse n, folgt

$$\begin{split} &\lim_{n \to \infty} \mathbb{P}\left(\left\|\left(S_n^{(x)}, S_n^{(y)}, S_n^{(z)}\right)\right\|_2 \le n^{\alpha}\right) \\ &\ge \lim_{n \to \infty} \mathbb{P}\left(\left\|\left(S_n^{(x)}, S_n^{(y)}, S_n^{(z)}\right)\right\|_2 \le \sqrt{3} \cdot n^{\alpha'}\right) \\ &\ge \lim_{n \to \infty} \mathbb{P}\left(\left|S_n^{(x)}\right| \le n^{\alpha'}, \left|S_n^{(y)}\right| \le n^{\alpha'}, \left|S_n^{(z)}\right| \le n^{\alpha'}\right) = 1 \end{split}$$

6 Schätzer

Wir treffen folgende Annahmen:

- Parameterraum $\Theta \subset \mathbb{R}^m$
- Familie von Wahrscheinlichkeitsmassen (P_θ)_{θ∈Θ} auf (Ω, F);
 für jedes Element im Parameterraum existiert ein Modell /
 Wahrscheinlichkeitsraum (Ω, F, P_θ).
- Zufallsvariablen X_1, \ldots, X_n auf (Ω, \mathcal{F})

Wir nennen die Gesamtheit der beobachteten Daten x_1, \ldots, x_n (wobei $x_i = X_i(\omega)$) und die ZV X_1, \ldots, X_n Stichprobe.

Definition Schätzer

Ein Schätzer ist eine Zufallsvariable $T:\Omega\mapsto\mathbb{R}$ von der Form

$$T = t(X_1, \dots, X_n), \quad t : \mathbb{R}^n \mapsto \mathbb{R}$$

Ein Schätzer T ist **erwartungstreu**, falls für alle $\theta \in \Theta$ gilt:

$$\mathbb{E}_{\theta}[T] = \theta$$

Sei $\theta \in \Theta$ und T ein Schätzer. Der **Bias** (erwartete Schätzfehler) von T im Modell \mathbb{P}_{θ} ist definiert als:

$$\mathbb{E}_{\theta}[T] - \theta$$

Der mittlere quadratische Schätzfehler (MSE) von T im Modell \mathbb{P}_{θ} ist definiert als:

$$MSE_{\theta}[T] = \mathbb{E}_{\theta}[(T - \theta)^{2}]$$

$$MSE_{\theta}[T] = Var_{\theta}(T) + (\mathbb{E}_{\theta}[T] - \theta)^{2}$$

6.1 Maximum-Likelihood-Methode

6.1.1 Likelihood-Funktion, ML-Schätzer

Die Likelihood-Funktion ist definiert als

$$L(x_1, \dots, x_n; \theta) = \begin{cases} p(x_1, \dots, x_n; \theta) & \text{(diskret)} \\ f(x_1, \dots, x_n; \theta) & \text{(stetig)} \end{cases}$$

Für jedes $x_1,\ldots,x_n\in W$ sei $t_{ML}(x_1,\ldots,x_n)$ der Wert, welcher die Funktion $\Theta\mapsto L(x_1,\ldots,x_n;\theta)$ maximiert. Ein Maximum-Likelihood-Schätzer ist dann definiert als

$$T_{ML} = t_{ML}(X_1, \ldots, X_n)$$

6.1.2 Anwendung der Methode

Die Maximum-Likelihood-Methode ist ein Weg, um systematisch einen Schätzer zu bestimmen.

- 1. Gemeinsame Dichte/Verteilung der ZV finden
- 2. Bestimme davon die Log-Likelihood-Funktion $f(\theta) := \ln(L(x_1, \dots, x_n; \theta))$
- 3. $f(\theta)$ nach θ ableiten
- 4. Nullstelle von $f'(\theta)$ finden
- 5. $f''(\theta) < 0$ oder anderes Argument, dass wir das Maximum gefunden haben (evtl. Randstellen überprüfen!).

Beispielrechnung mit Randstelle:

Wir betrachten den Parameterraum $\Theta = \mathbb{R}_+ \times R_+$ mit $\theta = (\theta_1, \theta_2)$ und die Modellfamilie $(\mathbb{P}_{\theta})_{\theta \in \Theta}$, wobei die ZV X_1, \ldots, X_n iid. mit

und die Modellfamilie
$$(\mathbb{F}_{\theta})_{\theta \in \Theta}$$
, wobei di $f_{\theta_1,\theta_2}(x) = \begin{cases} \theta_2 e^{\theta_1 \theta_2 - \theta_2 x} & \text{falls } x \geq \theta_1, \\ 0 & \text{sonst.} \end{cases}$

Bestimme den ML-Schätzer für $\theta = (\theta_1, \theta_2)$:

Die Likelihood-Funktion ist

$$L(x_1, \dots, x_n; \theta_1, \theta_2) = \prod_{i=1}^n f_{\theta_1, \theta_2}(x_i) = \prod_{i=1}^n \theta_2 e^{\theta_1 \theta_2 - \theta_2 x_i} \mathbb{1}_{x_i \in [\theta_1, \infty)}$$

$$= \theta_2^n \exp\left(n\theta_1 \theta_2 - \theta_2 \sum_{i=1}^n x_i\right) \prod_{i=1}^n \mathbb{1}_{x_i \in [\theta_1, \infty)}$$

$$= \theta_2^n \exp\left(n\theta_1 \theta_2 - \theta_2 \sum_{i=1}^n x_i\right) \mathbb{1}_{\min(x_i) \ge \theta_1}$$

Wenn wir davon jetzt die Log-Likelihood Funktion nehmen würden, und diese ableiten, kommen wir auf etwas undefiniertes. Das liegt daran, dass sobald $\theta_1 > \min(x_i)$ gibt es einen Sprung zu 0. Da $\theta_2 > 0$ folgt

$$L(x_1,...,x_n;\theta_1,\theta_2) > 0 \iff \forall i \in \{1,...,n\} : x_i > \theta_1$$

Um $L(x_1,...,x_n;\theta_1,\theta_2)$ zu maximieren, schränken wir den Ursprungsraum mit $\theta_1 \leq \min_{1 \leq i \leq n}(x_i)$ ein und bestimmen die Log-Likelihood Funktion als

$$f(\theta_1, \theta_2) = \log(L(x_1, ..., x_n; \theta_1, \theta_2)) = n\log(\theta_2) + n\theta_1\theta_2 - \theta_2 \sum_{i=1}^n x_i$$

Da $\theta_2 > 0$ ist (unter der Einschränkung) die Log-Likelihood Funktion für $\theta_1 = \min_{1 \leq i \leq n}(x_i)$ maximal (unabhängig von θ_2). Somit können wir θ_1 so fixieren und $\log(L)$ separat nach θ_2 maximieren.

$$\frac{\delta f}{\delta \theta_2} = \frac{n}{\theta_2} + n\theta_1 - \sum_{i=1}^n x_i = 0$$

$$n\theta_1 - \sum_{i=1}^n x_i = -\frac{n}{\theta_2}$$

$$\theta_2 = \frac{n}{\sum_{i=1}^n x_i - n\theta_1}$$

Überprüfen des kritischen Punktes:

$$\frac{\delta^2}{\delta^2 \theta_2^2} f\left(\theta_1, \frac{n}{\sum_{i=1}^n x_i - n\theta_1}\right) = -\frac{n}{\left(\sum_{i=1}^n x_i - n\theta_1\right)^2}$$
$$= -\left(\sum_{i=1}^n x_i - n\theta_1\right)^2 < 0$$

Daraus erhalten wir die Maximimum-Likelihood-Schätzer für θ_1 und θ_2 :

$$T_1 = \min_{1 \le i \le n} X_i \text{ und } T_2 = \frac{n}{\sum_{i=1}^n X_i - nT_1}$$

7 Tests

Null- und Alternativhypothese

Die Nullhypothese H_0 und die Alternativhypothese H_A sind zwei Teilmengen $\Theta_0 \subseteq \Theta, \Theta_A \subseteq \Theta$ wobei $\Theta_0 \cap \Theta_A = \emptyset$. Falls keine explizite Alternativhypothese spezifiziert ist, so hat man $\Theta_A = \Theta \setminus \Theta_0$.

Eine Hypothese heisst *einfach*, falls die Teilmenge aus einem einzelnen Wert besteht; sonst *zusammengesetzt*.

Definition Test

Ein Test ist ein Tupel (T,K), wobei T eine ZV der Form $T=t(X_1,\ldots,X_n)$ und $K\subseteq\mathbb{R}$ eine deterministische Teilmenge von \mathbb{R} ist. Wir nennen T die Teststatistik und K den Terwerfungsbereich oder kritischen Bereich.

Wir wollen nun anhand der Daten $(X_1(\omega),\ldots,X_n(\omega))$ entscheiden, ob die Nullhypothese akzeptiert oder verworfen wird. Zuerst berechnen wir die Teststatistik $T(\omega)=t(X_1(\omega),\ldots,X_n(\omega))$ und gehen dann wie folgt vor:

- Die Hypothese H_0 wird verworfen, falls $T(\omega) \in K$.
- Die Hypothese H_0 wird akzeptiert, falls $T(\omega) \notin K$.

Fehler 1. und 2. Art

Ein Fehler 1. Art ist, wenn H_0 fälschlicherweise verworfen wird, obwohl sie richtig ist.

$$\mathbb{P}_{\theta}(T \in K), \quad \theta \in \Theta_0$$

Ein Fehler 2. Art ist, wenn H_0 fälschlicherweise akzeptiert wird, obwohl sie falsch ist.

$$\mathbb{P}_{\theta}(T \notin K) = 1 - \mathbb{P}_{\theta}(T \in K), \quad \theta \in \Theta_{A}$$

Bemerkung: Da T eine ZV und somit bezüglich dem Mass \mathbb{P}_{θ} : $\mathcal{F} \to [0,1]$ messbar ist, gilt $\{T \in K\} \in \mathcal{F}$ und somit ist $\mathbb{P}_{\theta}(T \in K)$ wohldefiniert.

7.1 Signifikanzniveau und Macht

Ein Test hat Signifikanzniveau $a \in [0, 1]$ falls

$$\forall \theta \in \Theta_0 \quad \mathbb{P}_{\theta}(T \in K) < a$$

Es ist meist unser primäres Ziel, die Fehler 1. Art zu minimieren. Das sekundäre Ziel ist, Fehler 2. Art zu vermeiden. Hierfür definieren wir die Macht eines Tests als Funktion:

$$\beta: \Theta_A \mapsto [0,1], \quad \theta \mapsto \mathbb{P}_{\theta}(T \in K)$$

Zu beachten ist, dass eine kleine Wahrscheinlichkeit für einen Fehler 2. Art einem $grossen~\beta$ entspricht.

7.2 Konstruktion von Tests

Wir nehmen an, dass X_1, \ldots, X_n diskret oder gemeinsam stetig unter \mathbb{P}_{θ_0} und \mathbb{P}_{θ_A} sind, wobei $\Theta_0 \cap \Theta_A = \emptyset$ einfach sind $(\theta_0 \in \Theta_0 \wedge \theta_A \in \Theta_A)$.

Der Likelihood-Quotient ist somit wohldefiniert:

$$R(x_1, \dots, x_n) = \frac{L(x_1, \dots, x_n; \theta_A)}{L(x_1, \dots, x_n; \theta_0)}$$

(Falls $L(x_1,\ldots,x_n;\theta_0)=0$ setzen wir $R(x_1,\ldots,x_n)=+\infty$.) Für zusammengesetzte Θ_0 und Θ_A können wir den verallg. Likelihood-Quotient definieren:

$$R(x_1, ..., x_n) := \frac{\sup_{\theta \in \Theta_A} L(x_1, ..., x_n; \theta)}{\sup_{\theta \in \Theta_0} L(x_1, ..., x_n; \theta)}$$

Wenn $R \gg 1$, so gilt $H_A > H_0$ und analog $R \ll 1 \implies H_A < H_0$.

${\bf Likelihood\text{-}Quotient\text{-}Test}$

Der Likelihood-Quotient-Test (LQ-Test) mit Parameter $c \ge 0$ ist definiert durch:

$$T = R(x_1, \dots, x_n)$$
 und $K = (c, \infty]$

Neyman-Pearson-Lemma

Der LQ-Test ist optimal, da jeder andere Test mit kleinerem (oder gleichem) Signifikanzniveau auch eine kleinere (oder gleiche) Macht hat.

7.3 Häufige Fälle

Normalverteilt - μ unbekannt, σ^2 bekannt (z-Test)

Erwartungstreuer Schätzer: $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ Verteilung unter $\mathbb{P}_{\theta} : \frac{\overline{X}_n - \theta_0}{\sqrt{\sigma^2 / n}} \sim \mathcal{N}(0, 1)$

- 1. Modell $X_1, \ldots, X_n \sim \mathcal{N}(\theta, \sigma^2)$ iid. unter \mathbb{P}_{θ}
- 2. Hypothesen $H_0: \theta = \theta_0$ und $H_A: \theta > \theta_0$, $H_A: \theta < \theta_0$ (einseitig) oder $H_A: \theta \neq \theta_0$ (zweiseitig)
- 3. Test $T = \frac{\overline{X}_n \mu}{\sqrt{\sigma^2/n}} \sim \mathcal{N}(0,1)$ unter \mathbb{P}_{θ_0}
- 4. Verwerfungsbereich $K_>=(c_>,\infty),\ K_<=(-\infty,-c_<)$ oder $K_{\neq}=(-\infty,-c_{\neq})\ \cup\ (c_{\neq},\infty)$
- 5. Fall $\mathbf{1} \alpha = \mathbb{P}_{\theta_0}(T \in K_>) = \mathbb{P}_{\theta_0}(T > c_>)$ Fall $\mathbf{2} \alpha = \mathbb{P}_{\theta_0}(T \in K_<) = \mathbb{P}_{\theta_0}(T < -c_<) = 1 - \mathbb{P}_{\theta_0}(T \le c_<)$ Fall $\mathbf{3} \alpha = \mathbb{P}_{\theta_0}(T \in K_{\neq}) = \mathbb{P}_{\theta_0}(T < -c_{\neq}) + \mathbb{P}_{\theta_0}(T > c_{\neq}) = \mathbb{P}_{\theta_0}(T < -c_{\neq}) + 1 - \mathbb{P}_{\theta_0}(T \le c_{\neq})$

Normalverteilt - μ , σ^2 unbekannt (t-Test)

Wir definieren $\vec{\theta}=(\mu,\sigma^2)$ und den Varianz-Schätzer $S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X}_n)^2.$

1. Modell $X_1, \ldots, X_n \sim \mathcal{N}(\theta, \sigma^2)$ iid. unter $\mathbb{P}_{\vec{\theta}}$

- 2. Hypothesen: $\Theta_0 = \{\mu_0\} \times (0, \infty)$, für die Alternativhypothese gibt es wieder die drei Fälle mit $\mu_A > \mu_0$, $\mu_A < \mu_0$ und $\mu_A \neq \mu_0$.
- 3. Teststatistik $T = \frac{\overline{X}_n \mu_0}{\sqrt{S^2/n}} \sim t_{n-1}$
- 4. Verewerfungsbereich: $K_>$, $K_<$ oder K_{\neq}
- 5. Für Signifikanzniveau α , können wir die kritischen Werte als $c_>=t_{n-1,1-\alpha}, c_<=t_{n-1,1-\alpha}$ und $c_{\neq}=t_{n-1,1-\frac{\alpha}{2}}$ wählen. Hierbei bezeichnen wir mit $t_{m,\gamma}$, das γ -Quantil einer t_m -Verteilung (i.e. derjenige Wert $z=t_{m,\gamma}$, so dass für $X\sim t_m$ $\mathbb{P}(X\leq z)=\gamma$ gilt).

Gepaarter Zweistichprobentest: μ_X, μ_Y , gleiche Varianz σ^2

Sei $X_1, ..., X_n$ iid. $\sim \mathcal{N}(\mu_X, \sigma^2)$ und $Y_1, ..., Y_n$ iid. $\sim \mathcal{N}(\mu_Y, \sigma^2)$, wobei X_i, Y_i unabhängig.

Dann ist für $Z_i := X_i - Y_i$ die ZV Z_1, \ldots, Z_n iid. $\sim \mathcal{N}(\mu_X - \mu_Y, 2\sigma^2)$.

Für bekanntes σ können wir auf den Z_i dann den z-Test ausführen, wenn unbekannt dann der t-Test.

Ungepaarter Zweistichprobentest: μ_X, μ_Y , gleiche Varianz σ^2

Sei $X_1, ..., X_n$ iid. $\sim \mathcal{N}(\mu_X, \sigma^2)$ und $Y_1, ..., Y_m$ iid. $\sim \mathcal{N}(\mu_Y, \sigma^2)$, wobei $m \neq n, X_1, ..., X_n$ und $Y_1, ..., Y_m$ unabhängig.

1. σ^2 bekannt. Dann haben wir folgende Teststatistik

$$T := \frac{(\overline{X}_n - \overline{Y}_m) - (\mu_X - \mu_Y)}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim \mathcal{N}(0, 1) \text{ unter jedem } \mathbb{P}_{\theta}$$

Mit dem können wir dann den z-Test ausführen.

2. σ^2 unbekannt. Empirische Varianzen der einzelnen beiden Datensätzen

$$S_X^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 \text{ und } S_Y^2 := \frac{1}{m-1} \sum_{j=1}^m (Y_j - \overline{Y}_m)^2$$

kombinieren wir zu einer empirischen Varianz

$$S^{2} := \frac{1}{m+n-2}((n-1)S_{X}^{2} + (m-1)S_{Y}^{2})$$

Daraus die Teststatistik

$$T := \frac{(\overline{X}_n - \overline{Y}_m) - (\mu_X - \mu_Y)}{S\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{m+n-2} \text{ unter jedem } \mathbb{P}_{\theta}$$

In diesem Fall machen wir damit ein t-Test.

7.4 p-Wert

Sei $T=t(X_1,\ldots,X_n)$ eine Teststatistik und $(T,K_t)_{t\geq 0}$ eine Familie von Tests.

Geordnete Teststatistik

Eine Familie von Tests heisst geordnet bzgl. T falls $K_t \subset \mathbb{R}$ und $s \leq t \implies K_t \subseteq K_s$. Beispiele:

- $K_t = (t, \infty)$ (rechtsseitiger Test)
- $K_t = (-\infty, -t)$ (linksseitiger Test)
- $K_t = (-\infty, -t) \cup (t, \infty)$ (beidseitiger Test)

Definition p-Wert

Sei $H_0: \theta = \theta_0$ eine einfache Nullhypothese. Sei $(T, K_t)_{t\geq 0}$ eine geordnete Familie von Tests. Der p-Wert ist definiert als ZV $G(\omega)$, wobei

$$G: \Omega \mapsto [0,1], \quad G(\omega) = \mathbb{P}_{\theta_0}[T \in K_{t(X_1(\omega),...,X_n(\omega))}]$$

Intuitiv: Wenn wir den Verwerfungsbereich mit dem realisierten Wert der Teststatistik bestimmen würden; was wäre das Signifikanzniveau (i.e. Fehler 1. Art)?

Der p-Wert hat folgende Eigenschaften:

- 1. Sei T stetig und $K_t=(t,\infty).$ Dann ist der p-Wert unter \mathbb{P}_{θ_0} auf [0,1] gleichverteilt.
- 2. Für einen p-Wert γ gilt, dass alle Tests mit Signifikanzniveau $\alpha > \gamma$ die Nullhypothese verwerfen.

Insgesamt gilt also:

kleiner p-Wert $\implies H_0$ wird wahrscheinlich verworfen

8 Konfidenzintervalle

Definition Konfidenzintervall

Sei $\alpha \in [0,1]$. Ein Konfidenzintervall für θ mit Niveau $1-\alpha$ ist ein Zufallsintervall $I(\omega) = [A(\omega), B(\omega)]$, sodass gilt

$$\forall \theta \in \Theta \quad \mathbb{P}_{\theta}[A \le \theta \le B] \ge 1 - \alpha$$

wobei A und B Zufallsvariablen der Form $A = a(X_1, \ldots, X_n), B = b(X_1, \ldots, X_n)$ mit $a, b : \mathbb{R}^n \to \mathbb{R}$ sind.

Wenn wir einen Schätzer $T = T_{ML} \sim \mathcal{N}\left(\theta, \mathrm{Var}(X)\right)$ haben, suchen wir ein Konfidenzintervall der Form

$$I = \left[T - c\sqrt{\operatorname{Var}(X)}, T + c\sqrt{\operatorname{Var}(X)} \right]$$

Hierbei gilt:

$$\mathbb{P}_{\theta} \left(T - c\sqrt{\operatorname{Var}(X)} \le \theta \le T + c\sqrt{\operatorname{Var}(X)} \right)$$

$$= \mathbb{P}_{\theta} \left(-c \le Z \le c \right)$$

$$= \mathbb{P}_{\theta} \left(Z \le c \right) - \mathbb{P}_{\theta} \left(Z < -c \right)$$

$$= \mathbb{P}_{\theta} \left(Z \le c \right) - \left(1 - \mathbb{P}_{\theta} \left(Z \le c \right) \right)$$

$$= 2\Phi(c) - 1$$

wobei
$$Z = \frac{T-\theta}{\sqrt{\operatorname{Var}(X)}} \sim \mathcal{N}(0,1)$$
 ist.

8.1 Approximatives Konfidenzintervall

Wir können den zentralen Grenzwertsatz benutzen, um eine standardnormalverteilte ZV zu erhalten, und damit die Konfidenzintervalle zu bestimmen.

9 Aufgaben

9.1 Multiple Choice

Seien X,Y zwei ZV mit gemeinsamer Dichte $f_{X,Y}$. Welche Aussage ist korrekt?

- $\checkmark X, Y \text{ sind immer stetig}$
- ☐ Die ZV sind nicht notwendigerweise stetig.

Seien $(X_i)_{i=1}^n$ uiv. mit Verteilungsfunktion $F_{X_i}=F$. Was ist die Verteilungsfunktion von $M=\max(X_1,...,X_n)$?

- $\checkmark F_M(a) = F(a)^n$
- $\Box F_M(a) = 1 F(a)^n$
- $\Box F_M(a) = (1 F(a))^n$

Seien X,Y unabhängig und lognormalverteilt (l
n $X,\ln Y$ sind normalverteilt). Welche Aussage ist korrekt?

- $\checkmark XY$ ist lognormal verteilt
- \square XY ist normal verteilt
- $\Box e^{X+Y}$ ist normalverteilt

9.2 Aufgaben Wahrscheinlichkeit

Dichte von $\max(X_1, X_2)$

Seien $X_1, X_2 \sim \mathcal{U}[0, 1]$ unabhängige ZV und sei $X = \max(X_1, X_2)$. Berechne die Dichtefunktion von X und $\mathbb{P}[X_1 \leq x \mid X \geq y]$.

$$\begin{split} F_X(t) &= \mathbb{P}[\max(X_1, X_2) \le t] \\ &= \mathbb{P}[X_1 \le t] \cdot \mathbb{P}[X_2 \le t] = F_{X_1}(t) \cdot F_{X_2}(t) \end{split}$$

$$f_X(t) = \frac{d}{dt} F_{X_1}(t) \cdot F_{X_2}(t) = \frac{d}{dt} t^2 \cdot \mathbb{I}_{0 \leq t \leq 1} = 2t \cdot \mathbb{I}_{0 \leq t \leq 1}$$

Für die Wahrscheinlichkeit brauchen wir eine Fallunterscheidung:

1. x < 0 oder 1 < x:

$$\mathbb{P}[X_1 \le x \mid X \ge y] = 0$$

2. $0 \le x \le y \le 1$:

$$\frac{\mathbb{P}[X_1 \le x \cap X \ge y]}{\mathbb{P}[X \ge y]} = \frac{x(1-y)}{1-y^2}$$

3. $0 \le y \le x \le 1$:

$$\frac{\mathbb{P}[X_1 \le x \cap X \ge y]}{\mathbb{P}[X \ge y]} = \frac{x - y^2}{1 - y^2}$$

Gemeinsame Dichte

Bestimme die gemeinsame Dichte von $P \sim \mathcal{U}[0, 1]$ und $H \sim \mathcal{U}[0, P]$. Wir wissen:

$$f_P(p) = \mathbb{I}_{p \in [0,1]} \quad f_{H|P}(h \mid p) = \frac{1}{p} \cdot \mathbb{I}_{h \in [0,p]}$$

Somit ist:

$$f_{P,H}(p,h) = f_P(p) \cdot f_{H|P}(h \mid p) = \frac{1}{p} \cdot \mathbb{I}_{0 \le h \le p \le 1}$$

10 Tabellen

10.1 Grenzwerte

$\lim_{x \to \infty} \frac{e^x}{x^m} = \infty$	$\lim_{x \to -\infty} x e^x = 0$
$\lim_{x \to \infty} (1+x)^{\frac{1}{x}} = 1$	$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$
$\lim_{x \to \infty} (1 + \frac{1}{x})^b = 1$	$\lim_{x \to \infty} n^{\frac{1}{n}} = 1$
$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to \infty} (1 - \frac{1}{x})^x = \frac{1}{e}$
$\lim_{x \to \pm \infty} (1 + \frac{k}{x})^{mx} = e^{km}$	$\lim_{x \to \infty} \left(\frac{x}{x+k}\right)^x = e^{-k}$
$\lim_{x \to 0} \frac{\log 1 - x}{x} = -1$	$\lim_{x \to 0} x \log x = 0$
$\lim_{x \to 0} \frac{e^{ax} - 1}{x} = a$	$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$
$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1$	$\lim_{x \to \infty} \frac{\log(x)}{x^a} = 0$

Partielle Integration

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

- Meist gilt: Polynome ableiten (g(x)), wo das Integral periodisch ist $(\sin, \cos, e^x,...)$ integrieren (f'(x))
- Teils: mit 1 multiplizieren, um partielle Integration anwenden zu können (z.B. im Fall von $\int \log(x) \, dx$)

Substitution

Um $\int_a^b f(g(x)) dx$ zu berechnen: Ersetze g(x) durch u und integriere $\int_{q(a)}^{g(b)} f(u) \frac{du}{q'(x)}$.

- q'(x) muss sich herauskürzen, sonst nutzlos.
- Grenzen substituieren nicht vergessen.
- Alternativ: unbestimmtes Integral berechnet werden und dann u wieder durch x substituieren.
- Man kann auch das Theorem in die andere Richtung anwenden:

$$\int_{a}^{b} f(u) du = \int_{g^{-1}(a)}^{g^{-1}(b)} f(g(x))g'(x) dx$$

• Sei $\overline{\underline{X}}, Y$ kompakt, $f: Y \subset \mathbb{R}^n \to \mathbb{R}$ stetig. Sei $\gamma: \overline{\underline{X}} \to Y$ mit $\overline{\underline{X}} = \overline{\underline{X}}_0 \cup B, Y = Y_0 \cup C$ $(B, C \text{ Rand von } \overline{X}, Y)$.

Wenn $\gamma:\overline{\underline{X}}_0\to Y_0$ bijektiv und C^1 mit $\det(J_\gamma(x))\neq 0, \forall x\in\overline{\underline{X}}_0,$ dann gilt

$$\int_{Y} f(y) \, dy = \int_{\overline{X}} f(\gamma(x)) |\det(J_{\gamma}(x))| \, dx$$

10.2 Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	$\mathbf{f'}(\mathbf{x})$
$\frac{x^{-a+1}}{-a+1}$	$\frac{1}{x^a}$	$\frac{a}{x^{a+1}}$
$\frac{x^{a+1}}{a+1}$	$x^a \ (a \neq 1)$	$a \cdot x^{a-1}$
$\frac{1}{k\ln(a)}a^{kx}$	a^{kx}	$ka^{kx}\ln(a)$
$\ln x $	$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{2}{3}x^{3/2}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$\frac{1}{2}(x - \frac{1}{2}\sin(2x))$	$\sin^2(x)$	$2\sin(x)\cos(x)$
$\frac{1}{2}(x+\frac{1}{2}\sin(2x))$	$\cos^2(x)$	$-2\sin(x)\cos(x)$
$-\ln \cos(x) $	$\tan(x)$	$\frac{1}{\cos^2(x)}$ $1 + \tan^2(x)$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$\log(\cosh(x))$	tanh(x)	$\frac{1}{\cosh^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$\frac{1}{c} \cdot e^{cx}$	e^{cx}	$c \cdot e^{cx}$
$x(\ln x -1)$	$\ln x $	$\frac{1}{x}$
$\frac{1}{2}(\ln(x))^2$	$\frac{\ln(x)}{x}$	$\frac{1 - \ln(x)}{x^2}$
$\frac{x}{\ln(a)}(\ln x -1)$	$\log_a x $	$rac{1}{\ln(a)x}$

10.3 Weitere Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos(x)$	$\frac{-1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1+x^2}$
$x^x (x > 0)$	$x^x \cdot (1 + \ln x)$

9

10.4 Integrale

$\mathbf{f}(\mathbf{x})$	$\mathbf{F}(\mathbf{x})$
$\int f'(x)f(x)dx$	$\frac{1}{2}(f(x))^2$
$\int \frac{f'(x)}{f(x)} dx$	$\ln f(x) $
$\int_{-\infty}^{\infty} e^{-x^2} dx$	$\sqrt{\pi}$
$\int (ax+b)^n dx$	$\frac{1}{a(n+1)}(ax+b)^{n+1}$
$\int x(ax+b)^n dx$	$\frac{(ax+b)^{n+2}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}$
$\int (ax^p + b)^n x^{p-1} dx$	$\frac{(ax^p+b)^{n+1}}{ap(n+1)}$
$\int (ax^p + b)^{-1} x^{p-1} dx$	$\frac{1}{ap}\ln ax^p+b $
$\int \frac{ax+b}{cx+d} dx$	$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln cx + d $
$\int \frac{1}{x^2 + a^2} dx$	$\frac{1}{a} \arctan \frac{x}{a}$
$\int \frac{1}{x^2 - a^2} dx$	$\frac{1}{2a}\ln\left \frac{x-a}{x+a}\right $
$\int \sqrt{a^2 + x^2} dx$	$\frac{x}{2}f(x) + \frac{a^2}{2}\ln(x+f(x))$

10.5 Diskrete Verteilungen

Verteilung	Parameter	$\mathbb{E}[X]$	$\operatorname{Var}(X)$	$p_X(t)$	$F_X(t)$
Gleichverteilung	n : Anzahl Ereignisse x_i : Ereignisse	$\frac{1}{n} \sum_{i=1}^{n} x_i$	$\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n^2} \left(\sum_{i=1}^{n} x_i \right)^2$	$\frac{1}{n}$	$\frac{ \{k{:}x_k{\le}t\} }{n}$
Bernoulli	$p: {\bf ErfolgsWK}$	p	$p\cdot (1-p)$	$p^t(1-p)^{1-t}$	$1-p$ für $0 \le t < 1$
Binomial	n: Anzahl Versuche p : ErfolgsWK	np	np(1-p)	$\binom{n}{t}p^t(1-p)^{n-t}$	$\sum_{k=0}^{t} \binom{n}{k} p^k (1-p)^{n-k}$
Geometrisch	p: ErfolgsWK t : Anzahl Versuche	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$p(1-p)^{t-1}$	$1 - (1 - p)^t$
Poisson	λ : Erwartungswert und Varianz	λ	λ	$\frac{\lambda^t}{t!}e^{-\lambda}$	$e^{-\lambda} \sum_{k=0}^{t} \frac{\lambda^k}{k!}$

10.6 Stetige Verteilungen

Verteilung	Parameter	$\mathbb{E}[X]$	$\operatorname{Var}(X)$	$f_X(t)$	$F_X(t)$
Gleichverteilung	[a,b]: Intervall	$\frac{a+b}{2}$	$\frac{1}{12}(b-a)^2$	$\begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{sonst} \end{cases}$	$\begin{cases} 0 & x \le a \\ \frac{t-a}{b-a} & a < x < b \\ 1 & x \ge b \end{cases}$
Exponentialverteilung	$\lambda:rac{1}{\mathbb{E}[X]}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\begin{cases} \lambda e^{-\lambda t} & t \ge 0\\ 0 & t < 0 \end{cases}$	$\begin{cases} 1 & x \ge b \\ 1 - e^{-\lambda t} & t > 0 \\ 0 & t \le 0 \end{cases}$
Normalverteilung	σ^2 : Varianz $\mu : \mathbb{E}[X]$	μ	σ^2	$\begin{cases} 0 & t < 0 \\ \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-\mu)^2}{2\sigma^2}} \end{cases}$	$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{1}{2} \left(\frac{y-\mu}{\sigma}\right)^2} \mathrm{d}y$
χ^2 -Verteilung	n: Freiheitsgrad	n	2n	$\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}t^{\frac{n}{2}-1}e^{-\frac{t}{2}} \text{ für } t > 0$	$P\left(\frac{n}{2},\frac{t}{2}\right)$
t-Verteilung	n: Freiheitsgrad	$\begin{cases} 0 & n > 1 \\ \text{undef.} & \text{sonst} \end{cases}$	$\begin{cases} \frac{n}{n-2} & n > 2\\ \infty & 1 < n \le 2\\ \text{undef. sonst} \end{cases}$	$\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\cdot\Gamma\left(\frac{n}{2}\right)}\left(1+\frac{t^2}{n}\right)^{-\frac{n+1}{2}}$	I'd rather not

Gamma-Funktion

$$\Gamma(v) := \int_0^\infty t^{v-1} e^{-t} dt, v \ge 0.$$

Es gilt $\Gamma(n) = (n-1)!$ für $n \in \mathbb{N}$.

11 Quellen

Dieses Cheatsheet wurde von vorherigen (Julian Steinmann, Danny Camenisch) inspiriert (vor allem Kapitel 6-10). Definitionen und Aufgaben stammen aus den Slides von Prof. Teichmann, dem Skript (M. Schweizer, 2021) und den Übungsserien vom Frühlingssemester 2023.