Logarithm Intro

		Logarithm muro
	Index Form	$y = a^x$
	Logarithmic Form	$x = \log_a y$ $base \ a = \log_a, base \ 10 = \log$ $= \lg \ (by \ default)$ $power = x$
		value = y
	Example	$10^x = 40 \to x = lg40 \to x = 1.6$
		$3^2 = 9 \rightarrow 2 = \log_3 9 \rightarrow \frac{lg9}{lg3} = 2$
		$4^2 = 16 \to \log_4 16 = 2$
1*	Logarithm Base	$\log_a a = 1$
2*	Logarithm 1	$\log_a 1 = 0$
3*	Logarithm Product rule	$\log_b x + \log_b y = \log_b xy$
		Example 1 Solve: $\log_2 3 + \log_2 5 = \log_2 15$ $\log_2 3 + \log_2 5$ $= \log_2 15$ $= 3.9068905956085185293240583734372$ $Check \rightarrow 2^{3.9068905956085185293240583734372} = 15$
		Example 2: $\log_2 7 + \log_2 x = \log_2 7x$ Example 3: $\log_2 x(x+3) = \log_2 x + \log_2 (x+3)$
4*	Logarithm Quotient Rule	$\log_b x - \log_b y = \log_b \frac{x}{y}$ Example 1: $\log_2 \frac{x}{(x+3)} = \log_2 x - \log_2 (x+3)$
5*	Logarithm Power Rule	$\log_b x^r = \operatorname{rlog}_b x$

8	Logarithm Base Switch Rule	$\log_b a = \frac{1}{\log_a b}$
9*	Logarithm Base Change Rule	$\log_b a = \frac{\log_c a}{\log_c b}$
10	Logarithm 0	$\log_b 0 = undefined$
11	Logarithm Negative	$\log_b x = undefined, x \leq 0$
12	Common Logarithm	$lgy = x$ $y = 10^x$
10		lg10 = 1
12	Natural Logarithm	$ \ln y = x $
		$y = e^x$
		$\ln e = 1$