Non-life — Assignment NL1

Niels Keizer* and Robert Jan Sopers[†]

September 17, 2016

Generating multinormal and multi-student r.v.'s

Q1

First we run the following script:

```
> set.seed(1)
> sum(duplicated(runif(1e6))) ## = 120
[1] 120
> sum(duplicated(rnorm(1e8))) ## = 0
[1] 0
```

The function duplicated returns a logical array where unique numbers are marked with 0 and duplicates are marked with 1 (the first occurrence of the number is marked with a 0). Summming this array thus gives the total number of duplicates. The uniform distribution gives 120 duplicates in a much smaller sample size than the normal distribution, which gives 0 duplicates.

In the assignment, the expected number of different numbers is derived to be

$$\mathbb{E}[N_n] = \frac{1 - f^n}{1 - f}$$

The number of duplicates is then given by $n - \mathbb{E}[N_n]$ We run the following script:

```
> m <- 2^32;n <- 1e6
> f <- 1 - 1/m
> num_dup_unif <- n - (1-f^n)/(1-f)
> num_dup_unif
[1] 116.3988
```

The expected result of 116.4 is quite close to the generated result. The outcome of 120 is therefore consistent with the assumption that runif produces different values uniformly.

^{*}Student number: 10910492 †Student number: 99999999

The resolution of rnorm is somewhere in the 2^{50} 's. Directly calculating $1 - f^n$ will give 1, because f is so close to 1. First, we use to approximation given in the assignment.

$$f^{n} = \left(1 - \frac{1}{m}\right)^{n} \approx 1 - \frac{n}{m} + \frac{n^{2}}{2m^{2}}$$

Inserting this into our equation for the number of different numbers gives

$$\frac{1-f^n}{1-f} \approx \frac{1-1+\frac{n}{m}-\frac{n^2}{2m^2}}{1-\left(1-\frac{1}{m}\right)} = \frac{\frac{n}{m}-\frac{n^2}{2m^2}}{\frac{1}{m}} = n-\frac{n^2}{2m}$$

This results in the following equation for the expected number of duplicates.

$$n - \left(n - \frac{n^2}{2m}\right) = \frac{n^2}{2m}$$

Next we check in R if the number of duplicates is consistent with values for m of 10^{15} , 10^{16} , 10^{17} or 10^{18} , when n is 10^{8}

- > n_norm <- 1e8
 > m_norm <- c(1e15,1e16,1e17,1e18)
 > num_dup_norm <- n_norm^2/(2*m_norm)
 > num_dup_norm
- [1] 5.000 0.500 0.050 0.005

The obtained result seems to be consistent with a resolution of 10^{16} or higher.

$\mathbf{Q2}$

The following code is executed in R.

- > n <- 200; p <- 0.52
- > x <- c(0, cumsum(2*rbinom(n,1,p)-1))
- > plot(x, type="l", lwd=1, ylab="state", xlab="step", main="1-dimensional random walk")

This gives the following biased random walk:

1-dimensional random walk

Given that $X, Y \sim N(0,1)$, we want to transform (X,Y) into (X,Y^*) , with $Y^* = aX + bY$, with a, b chosen in such a way that $Var[Y^*] = 1$ and $r(X,Y^*) = 0.8$.

$$r(X,Y^*) = \frac{\mathbb{E}[XY^*] - \mathbb{E}[X]\mathbb{E}[Y^*]}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y^*]}} = \frac{\mathbb{E}[aX^2 + bXY] - 0 \cdot \mathbb{E}[Y^*]}{\sqrt{1*1}}$$
$$= a * \mathbb{E}[X^2] + b * \mathbb{E}[XY] = a(\operatorname{Var}[X] - \mathbb{E}[X]^2) = a$$

Here we use that $\mathbb{E}[X] = 0$, $\text{Var}[X] = \text{Var}[Y] = \text{Var}[Y^*] = 1$. Also $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0$, because X and Y are independent. Next we use the condition that the variance of Y^* must also be 1.

$$Var[Y^*] = Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab Cov[X, Y] = a^2 + b^2 = 1$$

We can conclude from this that a = 0.8 and $b = \sqrt{1 - a^2} = 0.6$.

In R code:

$\mathbf{Q4}$

The variance-covariance matrix Σ of the random vector (X, Y^*) is equal to the correlation matrix because $\text{Var}[X] = \text{Var}[Y^*] = 1$. It is given by the following expression.

$$\Sigma = \begin{pmatrix} \operatorname{Cov}[X, X] & \operatorname{Cov}[X, Y^*] \\ \operatorname{Cov}[Y^*, X] & \operatorname{Cov}[Y^*, Y^*] \end{pmatrix} = \begin{pmatrix} \operatorname{Var}[X] & r(X, Y^*) \\ r(X, Y^*) & \operatorname{Var}[Y^*] \end{pmatrix} = \begin{pmatrix} 1 & 0.8 \\ 0.8 & 1 \end{pmatrix}$$

 Q_5

If A is to be the Cholesky decomposition of Σ , it should be a lower triangular matrix with real and positive entries and $AA^* = \Sigma$, where A^* is the conjugate transpose of A. Checking this gives

$$\begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} = \begin{pmatrix} 1 & a \\ a & a^2 + b^2 \end{pmatrix} = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0.8 \\ 0.8 & 1 \end{pmatrix} = \Sigma$$

Q6

We execute the following R code.

The means of X and Y^* are close to 0. The variances close to 1 and the correlation is close to 0.8. This resembles the theoretical values quite close.

Let (X, Y) be bivariate Normal with $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, Var[X] = Var[Y] = 1 and r(X, Y) = r. W is independent of (X, Y). Then

$$\begin{split} r(XW,YW) &= \frac{\mathbb{E}[XWYW] - \mathbb{E}[XW]\,\mathbb{E}[YW]}{\sqrt{\operatorname{Var}[XW]\,\operatorname{Var}[YW]}} \\ &= \frac{\mathbb{E}[W^2]\,\mathbb{E}[XY] - \mathbb{E}[W]^2\,\mathbb{E}[X]\,\mathbb{E}[Y]}{\sqrt{(\mathbb{E}[W^2]\,\mathbb{E}[X^2] - \mathbb{E}[W]^2\,\mathbb{E}[X]^2)\,(\mathbb{E}[W^2]\,\mathbb{E}[Y^2] - \mathbb{E}[W]^2\,\mathbb{E}[Y]^2)}} \\ &= \frac{\mathbb{E}[W]^2\,\mathbb{E}[XY] - 0}{\sqrt{(\mathbb{E}[W^2]\,\mathbb{E}[X^2] - 0)\,(\mathbb{E}[W^2]\,\mathbb{E}[Y^2] - 0)}} \\ &= \frac{\mathbb{E}[W^2]}{\sqrt{\mathbb{E}[W^2]^2}} \frac{\mathbb{E}[XY]}{\operatorname{Var}[X]\,\operatorname{Var}[Y]} = r \cdot \frac{\mathbb{E}[W^2]}{\sqrt{\mathbb{E}[W^2]^2}} = r \end{split}$$

When $\mathbb{E}[W^2]$ is finite, the final step in the derivation is allowed. This is equivalent with demanding Var[W] to be finite.

Q8

We take X and Y* as defined earlier. $V \sim \chi_k^2$ and $W = \sqrt{k/V}$ with k = 5. The population mean of XW is 0 because $\mathbb{E}[XW] = \mathbb{E}[X]\mathbb{E}[W] = 0$. The same holds for Y^*W . $r(XW, Y^*W) = 0.8$ has been proven in question 7. Next we determine the variance of XW.

$$Var[XW] = \mathbb{E}[X]^2 Var[W] + Var[X] \mathbb{E}[W]^2 + Var[X] Var[W]$$
$$= 0 + Var[X] (\mathbb{E}[W]^2 + Var[W]) = Var[X] \mathbb{E}[W^2]$$
$$= 1 \cdot \mathbb{E}[k/V] = k \mathbb{E}[1/V] = \frac{k}{k-2}$$

Here we use that $\mathbb{E}[1/V] = 1/(k-2)$, which we will derive below, $f_{\chi^2}(x;k)$ is the probability density function of the chi-squared distribution with k degrees of freedom.

$$\mathbb{E}[1/V] = \int_0^\infty \frac{1}{x} f_{\chi^2}(x;k) dx = \int_0^\infty \frac{1}{x} \frac{x^{(k/2-1)} e^{-x/2}}{2^{k/2} \Gamma(k/2)} dx = \int_0^\infty \frac{x^{(k/2-2)} e^{-x/2}}{2^{k/2} \Gamma(k/2)} dx$$

$$= \int_0^\infty \frac{x^{((k-2)/2-1)} e^{-x/2}}{2^{k/2} \Gamma(k/2)} dx = \int_0^\infty \frac{x^{((k-2)/2-1)} e^{-x/2}}{2 \cdot 2^{(k-2)/2} \frac{k-2}{2} \Gamma(\frac{k-2}{2})} dx$$

$$= \frac{1}{k-2} \int_0^\infty f_{\chi^2}(x;k-2) dx = \frac{1}{k-2}$$

In the derivation, we use $\Gamma(k/2) = \Gamma(\frac{k-2}{2}+1) = \frac{k-2}{2}\Gamma(\frac{k-2}{2})$.

Now we execute the following R code.

```
> chi5 <- sqrt(rchisq(1000, df=5)/5)
> X <- X/chi5; Y <- Y/chi5
> c(mean(X), var(X), mean(Y), var(Y), cor(X,Y))
[1] 0.038 1.525 0.068 1.528 0.786
```

We see that the means are close to 0, as expected, the variances differ by about 0.1 and the correlation is quite close to 0.8.

$\mathbf{Q8}$

As instructed in an earlier example, we execute the following R code to obtain side by side scatterplots.

```
> par(mfrow=c(1,2))
> plot(X,Y, pch="*")
> d <- -2.2
> abline(v=d, col="red")
>
> bad <- (X < d)
> plot(X[bad], Y[bad], ylim=range(Y))
> abline(v=d, col="red")
> cor(X[bad],Y[bad])
[1] 0.44
```


We can see a tail dependence for the multiStudent distribution in the plot on the right hand side. The tail correlation of 0.44 is lower than 0.8, but is a lot larger than 0. This means that there is a tail dependence.