

PARTY CONJUGATED POLYMERS WITH SPIRO CENTRES AND THEIR USE AS **ELECTRO-LUMINESCENT MATERIALS**

Patent number:

WO9731048

Publication date:

1997-08-28

Inventor:

KREUDER WILLI [DE]; SPREITZER HUBERT [DE]

Applicant:

HOECHST AG [DE];; KREUDER WILLI [DE];;

SPREITZER HUBERT [DE]

Classification:

- international:

C08G61/00; C09K11/06

- european:

C08G61/00; C09K11/06

Application number: WO1997EP00551 19970207 Priority number(s): DE19961006511 19960222

Also published as:

EP0882082 (A1)

US6361884 (B1) DE19606511 (A1)

EP0882082 (B1)

Cited documents:

EP0707020

Abstract of WO9731048

A partly conjugated polymer contains repetitive units of formula (I) in which A is the same or different with zero to eight identical or different arylene and/or heteroarylene and/or vinylene and/or acetylene groups which, like the spiro-bifluorene structure, may be substituted. Polymers with repetitive units of formula (I) are suitable, for example, as electroluminescent materials. They are distinguished by high emission colour uniformity, good film-forming properties and high solubility.

Data supplied from the esp@cenet database - Worldwide

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C08G 61/00, C09K 11/06

(11) Internationale Veröffentlichungsnummer: WO 97/31048

(43) Internationales Veröffentlichungsdatum:

28. August 1997 (28.08.97)

(21) Internationales Aktenzeichen:

PCT/EP97/00551

A1

DE

(22) Internationales Anmeldedatum: 7. Februar 1997 (07.02.97)

(81) Bestimmungsstaaten: CN, JP, KR, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Prioritätsdaten:

196 06 511.9

22. Februar 1996 (22.02.96)

Veröffentlicht

Mit internationalem Recherchenbericht.

(71) Anmelder (für alle Bestimmungsstaaten ausser US): [DE/DE]; AKTIENGESELLSCHAFT HOECHST Brüningstrasse 50, D-65929 Frankfurt am Main (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): KREUDER, Willi [DE/DE]; Sertoriusring 13, D-55126 Mainz (DE). SPREITZER, Hubert [DE/DE]; Inselbergstrasse 10, D-65926 Frankfurt am Main (DE).

(54) Title: PARTY CONJUGATED POLYMERS WITH SPIRO CENTRES AND THEIR USE AS ELECTRO-LUMINESCENT **MATERIALS**

(\$4) Bezeichnung: TEILKONJUGIERTE POLYMERE MIT SPIROZENTREN UND IHRE VERWENDUNG ALS ELEKTROLUMI-NESZENZMATERIALIEN

(57) Abstract

A partly conjugated polymer contains repetitive units of formula (I) in which A is the same or different with zero to eight identical or different arylene and/or heteroarylene and/or vinylene and/or acetylene groups which, like the spiro-bifluorene structure, may be substituted. Polymers with repetitive units of formula (I) are suitable, for example, as electroluminescent materials. They are distinguished by high emission colour uniformity, good film-forming properties and high solubility.

(57) Zusammenfassung

Ein teilkonjugiertes Polymer enthält Wiederholeinheiten der Formel (I), wobei die Symbole folgende Bedeutungen haben: A is gleich oder verschieden jeweils null bis acht gleiche oder verschiedene Arylen-und/oder Heteroarylen- und/oder Vinylen- und/oder Acetylengruppen, (1)

die, wie auch das Spirobifluorengerüst, gegebenenfalls substituiert sein können. Polymere mit Wiederholeinheiten der Formel (I) eignen sich beispielsweise als Elektrolumineszenzmaterialien. Sie zeichnen sich u.a. durch eine hohe Farbeinheit der Emission, gute Filmbildungseigenschaften und eine hohe Löslichkeit aus.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Osterreich	GE	Georgien	NE	Niger
AU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungaro	NZ	Neuseeland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Beain	JP	Japan	RO	Rumanien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	u	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TTD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG .	Togo
CZ	Techechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
ñ	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Prankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		

Beschreibung

Teilkonjugierte Polymere mit Spirozentren und ihre Verwendung als Elektrolumineszenzmaterialien

Es besteht ein hoher industrieller Bedarf an großflächigen Festkörper-Lichtquellen für eine Reihe von Anwendungen, überwiegend im Bereich von Anzeigeelementen, der Bildschirmtechnologie und der Beleuchtungstechnik. Die an diese Lichtquellen gestellten Anforderungen können zur Zeit von keiner der bestehenden Technologien völlig befriedigend gelöst werden.

Als Alternative zu herkömmlichen Anzeige- und Beleuchtungselementen, wie Glühlampen, Gasentladungslampen und nicht selbstleuchtenden Flüssigkristallanzeigeelementen, sind bereits seit einiger Zeit Elektrolumineszenz(EL)materialien und -vorrichtungen, wie lichtemittierende Dioden (LED), in Gebrauch.

In der DE-A 25 45 784 (entspricht US-A 3,995,299) ist eine Elektrolumineszenzvorrichtung mit einer Strahlungsquelle beschrieben, die aus einer Schicht eines amorphen oder überwiegend amorphen Polymermaterials mit merklicher elektrischer Ladungsbeweglichkeit und niedrigem Ionisationspotential, einem starken Elektronendonor, einem starken Elektronenakzeptor und vorzugsweise zumindest einem Iumineszierenden Additiv besteht, wobei elektrische Anschlüsse vorgesehen sind, durch die ein elektrischer Strom durch die Dicke der Schicht zur Anregung von Strahlung daraus geleitet werden kann.

Als Polymermaterialien sind konjugierte Polymere, wie Poly(p-phenylenvinylen) (siehe z.B. WO-A 90/13148), wie auch nicht konjugierte Polymere eingesetzt worden (siehe z.B. I. Sokolik et al., J. Appl. Phys. 1993, 74, 3584), wobei

WO 97/31048

PCT/EP97/00551

konjugierte Materialien im allgemeinen den Vorteil einer höheren Ladungsträgerbeweglichkeit und damit besserer Effizienzen und niedrigerer Einsatzspannungen haben. Zudem ist bei letzteren Polymeren die thermische Stabilität keinesfalls befriedigend. Auch führt diese Art von Polymeren zu breiten Emissionsbanden, welche mit geringer Farbreinheit identisch sind.

Neben Vorrichtungen auf Basis von Polymeren sind seit längerem auch Elektrolumineszenzvorrichtungen auf Basis von niedermolekularen organischen Verbindungen bekannt. In der EP-A-O 676 461 sind solche Vorrichtungen mit Spiroverbindungen als Elektrolumineszenzmaterialien beschrieben.

Obwohl mit diesen Materialien gute Ergebnisse erzielt wurden, ist das Eigenschaftsprofil solcher Verbindungen noch durchaus verbesserungsfähig.

Da zudem die Entwicklung von Elektrolumineszenzmaterialien, insbesondere auf Grundlage von Polymeren, noch in keiner Weise als abgeschlossen betrachtet werden kann, sind die Hersteller von Beleuchtungs- und Anzeigevorrichtungen an den unterschiedlichsten Elektrolumineszenzmaterialien für solche Vorrichtungen interessiert.

Dies liegt unter anderem auch daran, daß erst das Zusammenwirken der Elektrolumineszenzmaterialien mit den weiteren Bauteilen der Vorrichtungen Rückschlüsse auf die Qualität auch des Elektrolumineszenzmaterials zuläßt.

Aufgabe der vorliegenden Erfindung war es daher, neue Elektrolumineszenzmaterialien bereitzustellen, die bei Verwendung in Beleuchtungs- oder Anzeigevorrichtungen geeignet sind, das Eigenschaftsprofil dieser Vorrichtungen zu verbessern.

Es wurde nun überraschend gefunden, daß sich bestimmte teilkonjugierte Polymere mit Spirozentren in besonderer Weise als

Elektrolumineszenzmaterialien eignen und insbesondere eine exzellente Verarbeitbarkeit aufweisen.

Gegenstand der Erfindung ist daher ein teilkonjugiertes Polymer, enthaltend Wiederholeinheiten der Formel (I),

wobei die Symbole folgende Bedeutungen haben:

A ist gleich oder verschieden jeweils null bis acht gleiche oder verschiedene Arylen- und/oder Heteroarylen- und/oder Vinylen- und/oder Acetylengruppen, die, wie auch das Spirobifluorengerüst, gegebenenfalls substituiert sein können.

Die erfindungsgemäßen Polymere enthalten vorzugsweise 2 bis 1000, besonders bevorzugt 2 bis 100, insbesondere 2 bis 40, Wiederholeinheiten der Formel (I).

Vorzugsweise bestehen die erfindungsgemäßen Polymere aus Wiederholeinheiten der Formel (I).

Bevorzugt sind Homopolymere, ebenso bevorzugt aber auch Copolymere, das heißt, solche Polymere, in denen die Gruppe A in einzelnen Wiederholeinheiten verschiedene Bedeutungen hat oder das Spirobifluorengerüst verschieden substituiert ist. Vorzugsweise enthalten solche Copolymere 2 bis 5 verschiedene Monomere, besonders bevorzugt 2 bis 3.

Solche Copolymere, die neben Struktureinheiten der Formel (I) weitere

Struktureinheiten aufweisen, enthalten vorzugsweise mindestens 50 Gew.-% an Strukturelementen der Formel (I).

Die Arylen- oder Heteroaryleneinheiten sind im allgemeinen aromatische Systeme mit 2 bis 20 C-Atome.

Bevorzugt als Substituenten sind eine geradkettige, cyclische oder verzweigte Alkyl-, Alkoxy- oder Estergruppe mit 1 bis 22 C-Atomen, Aryl- und/oder Aryloxygruppen, mit vorzugsweise 2 bis 20 C-Atomen, vorzugsweise Phenyl- und/oder Phenyloxygruppen, wobei der Aromat mit C_1 - C_{22} -Alkyl, C_1 - C_{22} -Alkoxy, Br, Cl, F, CN, CO_2R , SO_3R und/oder $P(O)(OR)_2$ substituiert sein kann, Br, Cl, F, CN CO_2R , SO_3R , $P(O)(OR)_2$ und CF_3 . R ist dabei H oder eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen oder ein einfach geladenes Kation, vorzugsweise Alkali, wie Na, K, oder eine Tetraalkylammoniumgruppe, wie $N(Butyl)_4$.

Vorzugsweise enthalten die Aryl- und Heteroarylgruppen der Gruppe A null, einen oder zwei Substituenten. Die einzelnen Sechsringe des Spirobifluorens weisen vorzugsweise null oder einen Substituenten auf.

Die Gruppe A besteht vorzugsweise aus 1 bis 6, besonders bevorzugt 2 bis 4, der oben angegebenen Gruppen.

Die erfindungsgemäßen Polymere zeichnen sich insbesondere durch eine hohe Farbreinheit der Emission, gute Filmbildungseigenschaften und eine gute Löslichkeit in mindestens einem organischen Lösungsmittel mit einem Siedepunkt zwischen 30 und 300°C aus.

Polymer bedeutet im Sinne der Erfindung eine Verbindung, deren Elektrolumineszenzspektrum bei Anfügen weiterer Wiederholeinheiten im wesentlichen gleich bleibt.

Bevorzugt sind weiterhin solche Polymere, bei denen die Gruppe A der allgemeinen Formel (I) folgende Molekülbausteine enthält:

$$S_1$$
 S_1
 S_2
 S_3
 S_4
 S_2
 S_2
 S_3
 S_4
 S_2
 S_2
 S_3
 S_4
 S_5
 S_5

wobei S_1 , S_2 , S_3 und S_4 gleich oder verschieden H oder die oben beschriebenen bevorzugten Substituenten sind;

X, Y sind gleich oder verschieden CS_1 , N;

Z ist gleich oder verschieden -O-, -S-, -NS 1 -, -CS 1 S 2 -, -CS 1 = CS 1 -, -CS 1 = N-, wobei S $_1$, S $_2$ H oder die oben beschriebenen bevorzugten Substituenten bedeuten.

Besonders bevorzugt sind Polymere, bei denen die Gruppe A in der allgemeinen Formel (I) folgende Bedeutungen hat:

PCT/EP97/00551

 ${\rm S_1}$ und ${\rm S_2}$ sind wie oben definiert und können auch H bedeuten.

X, Y sind gleich oder verschieden CS₁, N;

Z ist gleich oder verschieden -O-, -S-, -NS 1 -, -CS 1 S 2 -, -CS 1 =CS 1 -, -CS 1 =N-.

Ganz besonders bevorzugt sind Polymere, welche folgende Struktur aufweisen:

wobei X folgende Bedeutung zukommt:

und wobei S_1 und S_2 wie oben definiert sind und auch H bedeuten können; n ist eine natürliche Zahl von 2 bis 1000.

Solche Polymere sind besonders zur Erzielung blauer Elektrolumineszenz gut geeignet.

Die Herstellung der erfindungsgemäßen Polymere kann nach an sich literaturbekannten Methoden, wie sie in Standardwerken zur Organischen Synthese, z.B. Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart oder J. March, Advanced Organic Chemistry, Fourth Ed., John Wiley & Sons, New York 1992, beschrieben werden, erfolgen.

Die Herstellung erfolgt dabei unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch gemacht werden.

Als Ausgangsverbindungen für die Herstellung der erfindungsgemäßen Polymere kommen im allgemeinen Monomere mit einem 9,9'-Spirobifluoren-Zentrum zum Einsatz, die in 2,2'-Position zur Polyreaktion befähigende Substituenten und gegebenenfalls weitere, diese Reaktion nicht beeinträchtigende Substituenten in beliebigen anderen Positionen.

Methoden zur Synthese dieser Monomere beruhen bevorzugt auf der Synthese des 9,9'-Spirobifluorens, die in den oben genannten Literaturstellen beschrieben wird, und auf weiteren allgemein üblichen und für den Fachmann ohne Probleme durchführbaren Substitutionsreaktionen an diesem Grundkörper.

Weniger bevorzugt, jedoch natürlich auch möglich, ist der Aufbau schon geeignet funktionalisierter Spirobifluorenderivate, ausgehend von geeignet substituierten Vorstufen.

Funktionalisierungen von 9,9'-Spirobifluoren sind beispielsweise beschrieben in J. H. Weisburger, E. K. Weisburger, F. E. Ray, J. Am. Chem. Soc. 1959, 72, 4253; F. K. Sutcliffe, H. M. Shahidi, D. Paterson, J. Soc. Dyers Colour 1978, 94, 306; und G. Haas, V. Prelog, Helv. Chim. Acta 1969, 52, 1202.

Die darin beschriebenen elektrophilen aromatischen Substitutionsreaktionen führen bei geeignet gewählten Bedingungen und Stöchiometrien zur Synthese von 2,2'-bifunktionalisierten Spirobifluorenderivaten (z. B. 2,2'-Dihalogen-9,9'-spirobifluoren, 2,2'-Diacetyl-9,9'-spirobifluoren, 2,2'-Diformyl-9,9'-spirobifluoren, 2,2'-Dinitro-9,9'-spirobifluoren). Diese können dann nach dem Fachmann bekannten Methoden weiter derivatisiert werden (z. B. Halogen zu Cyano (S. 594f.), Nitro zu Amino (S. 1103f.), Acetyl zu Carboxy (S. 1065f.) und weiter zum Carbonsäurechlorid (S. 388f.) (wobei sich die Seitenangaben auf J. March, Advanced Organic Chemistry, Third Ed., John Wiley & Sons, New York beziehen). Durch anschließende Umsetzungen kann dann weiter substituiert werden, vorzugsweise in 7,7'- und 4,4'-Position.

Für die Synthese der Gruppe A sei beispielsweise verwiesen auf DE-A 23 44 732, 24 50 088, 24 29 093, 25 02 904, 26 36 684, 27 01 591 und 27 52 975 für Verbindungen mit 1,4-Phenylen-Gruppen; DE-A 26 41 724 für Verbindungen mit Pyrimidin-2,5-diyl-Gruppen; DE-A 40 26 223 und EP-A 0 391 203 für Verbindungen mit Pyridin-2,5-diyl-Gruppen; DE-A 32 31 462 für Verbindungen mit Pyridazin-3,6-diyl-Gruppen; N. Miyaura, T. Yanagi und A. Suzuki, Synthetic Communications 1981, 11, 513; DE-C 39 30 663; M. J. Sharp, W. Cheng, V. Snieckus, Tetrahedron Letters 1987, 28, 5093; G. W. Gray, J.Chem.Soc. Perkin Trans II 1989, 2041 und Mol. Cryst. Liq. Cryst. 1989, 172, 165; Mol. Cryst. Liq. Cryst. 1991, 204, 43 und 91; EP-A 0 449 015; WO 89/12039; WO 89/03821; EP-A 0 354 434 für die direkte

Verknüpfung von Aromaten und Heteroaromaten.

Die Herstellung disubstituierter Pyridine, disubstituierter Pyrazine, disubstituierter Pyrimidine und disubstituierter Pyridazine findet sich beispielsweise in den entsprechenden Bänden der Serie "The Chemistry of Heterocyclic Compounds" von A. Weissberger und E. C. Taylor (Herausgeber).

Ausgehend von den oben angegebenen Monomeren ist die Polymerisation zu den erfindungsgemäßen Polymeren nach mehreren Methoden möglich.

Beispielsweise können Derivate des 9,9'-Spirobifluorens oxidativ (z.B. mit FeCl₃, siehe u.a. P. Kovacic, N. B. Jones, *Chem. Ber.* 1987, 87, 357; M. Weda, T. Abe, H. Awano, *Macromolecules* 1992, 25, 5125) oder elektrochemisch (siehe z.B. N. Saito, T. Kanbara, T. Sato, T. Yamamoto, *Polym. Bull.* 1993, 30, 285) polymerisiert werden.

Ebenso können die erfindungsgemäßen Polymere aus 2,2'-difunktionalisierten 9,9'-Spirobifluoren-Derivaten hergestellt werden.

Dihalogenaromaten lassen sich unter Kupfer/Triphenylphosphan-Katalyse (siehe z.B. G. W. Ebert, R. D. Rieke, J. *Org. Chem.* 1988, *53*, 4482) polymerisieren.

Aromatische Diboronsäuren und aromatische Dihalogenide oder gemischte aromatische Halogen-Boronsäuren lassen sich unter Palladiumkatalyse durch Kupplungsreaktionen polymerisieren (siehe z.B. M. Miyaura, T. Yanagi, A. Suzuki, *Synth. Commun.* 1981, *11*, 513; R. B. Miller, S. Dugar, *Organometallics* 1984, *3*, 1261).

Aromatische Distannane lassen sich, wie z.B. bei J. K. Stille, *Angew. Chem. Int. Ed. Engl.* 1986, 25, 508 angegeben, unter Palladiumkatalyse polymerisieren.

Weiterhin können die oben erwähnten Dihalogenverbindungen in die Dilithiooder Digrignardverbindungen übergeführt werden, die dann mit weiterer
Dihalogenverbindung mittels CuCl₂ (siehe z.B. G. Wittig, G. Klar, *Liebigs Ann. Chem.* 1967, 704, 91; H. A. Staab, F. Bunny, *Chem. Ber.* 1967, 100, 293;
T. Kaufmann, *Angew. Chem.* 1974, 86, 321 - 354) oder durch
Elektronentransfer ungesättigter 1,4-Dihalogenverbindungen (siehe z.B.
S. K. Taylor, S. G. Bennett, K. J. Harz, L. K. Lashley, *J. Org. Chem.* 1981, 46, 2190) polymerisiert werden.

Bevorzugt ist die Herstellung von Polymeren mit Wiederholeinheiten der Formel (I) durch Polymerisation von entsprechenden Dihalogenverbindungen unter Ni°-Katalyse. Diese Methode zur Polymerisation ist beispielsweise beschrieben bei M. Kreyenschmidt et al., Macromolecules 1995, 28, 4577.

Gegenstand der Erfindung ist daher auch ein Verfahren zur Herstellung von teilkonjugierten Polymeren, enthaltend Wiederholeinheiten der Formel (I),

wobei die Symbole die oben angegebenen Bedeutungen haben, welches dadurch gekennzeichnet ist, daß man eine oder mehrere Verbindungen der Formel (II)

wobei

X CI, Br, I ist und die übrigen Symbole die gleichen Bedeutungen wie in der Formel (I) haben,

in einem inerten organischen Lösungsmittel in Gegenwart von Ni° bei einer Temperatur von 30 bis 150°C polymerisiert.

Als Katalysatoren eignen sich Ni°-Verbindungen, wie Ni $(cod)_2$ (cod = 1,5). Cyclooctadien), Ni $(PPh_3)_4$, oder Nickel(II)salze in Verbindung mit einem Reduktionsmittel, wie NiCl $_2$ /Zn/PPh $_3$ oder NiCl $_2$ (PPh $_3$) $_2$ /Zn.

Der Katalysator wird im allgemeinen in Mengen von 0,1 - 20 mol.-%, bezogen auf die Dihalogenverbindung, eingesetzt, bevorzugt sind 5 bis 15 mol.-%, besonders bevorzugt sind etwa 10 mol.-%.

Als Lösungsmittel eignen sich schwach polare oder polar aprotische organische Lösungsmittel oder Mischungen aus diesen. Bevorzugt sind Ether, wie THF und Diphenylether, aromatische Kohlenwasserstoffe, wie Toluol, Dialkylamide, wie Dimethylformamid und Dimethylacetamid und Mischungen derselben.

Die Reaktion wird im allgemeinen bei Temperaturen von 30 bis 150°C, vorzugsweise 50 bis 120°C durchgeführt. Die Reaktionsdauer beträgt im allgemeinen 1 bis 7 Tage.

Die Aufarbeitung kann nach den üblichen, dem Fachmann bekannten Methoden

PCT/EP97/00551

erfolgen.

Die Synthese der erfindungsgemäßen Polymere kann aber auch durch Polymerisation eines 2,2'-difunktionalisierten 9,9'-Spirobifluorenderivates mit einer weiteren, geeignet difunktionalisierten Verbindung erfolgen.

So kann z.B. 2,2'-Dibrom-9,9'-spirobifluoren mit 4,4'-Biphenylbisboronsäure polymerisiert werden. Auf diese Weise ist gleichzeitig mit dem Polymerisationsschritt der Aufbau verschiedener heterocyclischer Einheiten möglich, wie die Bildung von Oxadiazoleinheiten aus difunktionellen Carbonsäurehalogeniden und difunktionellen Carbonsäurehydraziden, aus der entsprechenden Dicarbonsäure und Hydrazinsulfat (B. Schulz, E. Leibnitz, *Acta Polymer* 1992, *43*, 343; JP-A 05/178990) oder aus Dicarbonsäurehalogeniden und Bistetrazolen (C. A. Abshire, C. S. Marvel, *Makromol. Chem.* 1961, 44, 388).

Zur Herstellung von Copolymeren können beispielsweise unterschiedliche Verbindungen mit Strukturelementen der Formel (I) gemeinsam oder auch eine oder mehrere Verbindungen mit Strukturelementen der Formel (I) mit einer oder mehreren weiteren difunktionellen Molekülen ausgewählt aus den Gruppen der Oligovinylene, Oligoacetylene, Oligoarylene, Oligoheteroarylene, Oligoarylenvinylene oder Oligoarylenacetylene polymerisiert werden.

Die Aufarbeitung erfolgt nach bekannten, dem Fachmann geläufigen Methoden, wie sie beispielsweise bei D. Braun, H. Cherdron, W. Kern, Praktikum der makromolekularen organischen Chemie, 3. Aufl. Hüthig Verlag, Heidelberg, 1979, S. 87 ff. oder R. J. Young, P. A. Lovell, Introduction to Polymers, Chapman & Hall, London 1991 beschrieben sind. Beispielsweise kann man die Reaktionsmischung filtrieren, mit wäßriger Säure verdünnen, extrahieren und das nach Trocknen und Abdampfen des Lösungsmittels erhaltene Rohprodukt durch Umfällen weiter reinigen.

Endständige Bromatome können beispielsweise mit LiAlH $_4$ reduktiv entfernt werden (siehe z.B. J. March, Advanced Organic Chemistry, Third Ed., John Wiley & Sons, S. 510).

Die erfindungsgemäßen Polymere können als Elektrolumineszenzmaterialien Verwendung finden.

Gegenstand der Erfindung ist daher auch die Verwendung von Polymeren, enthaltend Wiederholeinheiten der Formel (I), als Elektrolumineszenzmaterial.

Als Elektrolumineszenzmaterial im Sinne der Erfindung gelten Stoffe, die als aktive Schicht in einer Elektrolumineszenzvorrichtung Verwendung finden können. Aktive Schicht bedeutet, daß die Schicht befähigt ist, bei Anlegen eines elektrischen Feldes Licht abzustrahlen (lichtemittierende Schicht) und/oder daß sie die Injektion und/oder den Transport der positiven und/oder negativen Ladungen verbessert (Ladungsinjektions- oder Ladungstransportschicht).

Gegenstand der Erfindung ist daher auch ein Elektrolumineszenzmaterial, enthaltend ein oder mehrere Polymere, die Wiederholeinheiten der Formel (I) enthalten.

Üblicherweise enthält das erfindungsgemäße Elektrolumineszenzmaterial ein oder mehrere erfindungsgemäße Polymere entweder als Hauptkomponente, d.h. zu größer als 50 Gew.-%, oder als Additiv.

Um als Elektrolumineszenzmaterialien Verwendung zu finden, werden die erfindungsgemäßen Polymere aus Lösungen im allgemeinen nach bekannten, dem Fachmann geläufigen Methoden, wie Gießen (Casting), Eintauchen (Dipping), Drucken (Printing) oder Aufschleudern (Spincoating), in Form eines Films auf ein Substrat aufgebracht. Dieser Prozeß findet in der Regel im Temperaturbereich von -20 bis +300°C, bevorzugt im Bereich von 10 bis

100°C und besonders bevorzugt zwischen 15 und 50°C statt.

Weiterhin Gegenstand der Erfindung ist daher auch ein Verfahren zur Herstellung eines Elektrolumineszenzmaterials, dadurch gekennzeichnet, daß man ein Polymer, enthaltend Wiederholeinheiten der Formel (I), in Form eines Films auf ein Substrat aufbringt.

Gegenstand der Erfindung ist zudem eine Elektrolumineszenzvorrichtung mit einer oder mehreren aktiven Schichten, wobei mindestens eine dieser aktiven Schichten ein oder mehrere erfindungsgemäße Polymere enthält. Die aktive Schicht kann beispielsweise eine lichtemittierende Schicht und/oder eine Transportschicht und/oder eine Ladungsinjektionsschicht sein.

Der allgemeine Aufbau solcher Elektrolumineszenzvorrichtungen ist beispielsweise in US 4,539,507 und US 5,151,629 beschrieben. Polymere enthaltende Elektrolumineszenzvorrichtungen sind beispielsweise in WO 90/13148 oder EP-A 0 443 861 beschrieben.

Sie enthalten üblicherweise eine elektrolumineszierende Schicht zwischen einer Kathode und einer Anode, wobei mindestens eine der Elektroden transparent ist. Zusätzlich können zwischen der elektrolumineszierenden Schicht und der Kathode eine oder mehrere Elektroneninjektions- und/oder Elektronentransportschichten eingebracht sein und/oder zwischen der elektrolumineszierenden Schicht und der Anode eine oder mehrere Lochinjektions- und/oder Lochtransportschichten eingebracht sein. Als Kathode können vorzugsweise Metalle oder metallische Legierungen, z.B. Ca, Mg, Al, In, Mg/Ag dienen. Als Anode können Metalle, z.B. Au, oder andere metallisch leitende Stoffe, wie Oxide, z.B. ITO (Indiumoxid/Zinnoxid) auf einem transparentem Substrat, z.B. aus Glas oder einem transparenten Polymer, dienen.

Im Betrieb wird die Kathode auf negatives Potential gegenüber der Anode gesetzt. Dabei werden Elektronen von der Kathode in die Elektroneninjektionsschicht-/Elektronentransportschicht bzw. direkt in die lichtemittierende Schicht injiziert. Gleichzeitig werden Löcher von der Anode in die Lochinjektionsschicht/ Lochtransportschicht bzw. direkt in die lichtemittierende Schicht injiziert.

Die injizierten Ladungsträger bewegen sich unter dem Einfluß der angelegten Spannung durch die aktiven Schichten aufeinander zu. Dies führt an der Grenzfläche zwischen Ladungstransportschicht und lichtemittierender Schicht bzw. innerhalb der lichtemittierenden Schicht zu Elektronen/Loch-Paaren, die unter Aussendung von Licht rekombinieren.

Die Farbe des emittierten Lichtes kann durch die als lichtemittierende Schicht verwendeten Materialien variiert werden.

Elektrolumineszenzvorrichtungen finden Anwendung z.B. als selbstleuchtende Anzeigeelemente, wie Kontrollampen, alphanumerische Displays, Hinweisschilder, und in optoelektronischen Kopplern.

In der vorliegenden Anmeldungen sind verschiedene Dokumente zitiert, beispielsweise um das technische Umfeld der Erfindung zu illustrieren. Auf alle diese Dokumente wird hiermit ausdrücklich Bezug genommen, sie gelten durch Zitat als Bestandteil der vorliegenden Anmeldung.

Auf den Inhalt der deutschen Patentanmeldung 196 065 11.9, deren Priorität die vorliegende Anmeldung beansprucht, sowie auf die Zusammenfassung der vorliegenden Anmeldung wird hiermit ausdrücklich Bezug genommen; sie gelten durch Zitat als Bestandteil der vorliegenden Anmeldung.

Die Erfindung wird durch die Beispiele näher erläutert, ohne sie dadurch beschränken zu wollen.

16

Beispiele

A Monomersynthesen

Beispiel 1 Synthese von 2,2'-Dibrom-9,9'-spirobifluoren

3,26 g 9,9'-Spirobifluoren (10,3 mmol), gelöst in 50 ml CH₂Cl₂, werden bei Raumtemperatur mit 1,12 ml Brom (21,8 mmol) und einer Spatelspitze SnCl₂ versetzt. Man läßt bis zur Reaktionsbeendigung (ca. 8 Stunden) am Rückfluß sieden. Die nahezu entfärbte Reaktionslösung wird nach Abkühlen mit wäßrigen Lösungen von Na₂SO₃, NaHCO₃ und schließlich reinem Wasser ausgeschüttelt, anschließend auf ca. 20 ml eingeengt. Beim Stehen in der Kälte kristallisiert das Produkt in Form weißer Plättchen aus. Weitere Reinigung ist durch Umkristallisation mit CH₂Cl₂/n-Pentan möglich. Ausbeute: 70-85%. Schmelzpunkt: 240°C.

¹H-NMR (CDCl₃, ppm): 6.65 (d, J = 7.8 Hz, 2 H, H-8,8'); 6.87 (d, J = 1.9 Hz, 2 H, H-1,1'); 7.15 (dt, J = 7.7, 1.1 Hz., 2 H, H-7,7'); 7.35 (dt, J = 7.6, 1.2 Hz, 2 H, H-6,6'); 7.55 (dd, J = 8.2, 1.9 Hz, 2 H, H-3,3'); 7,75 (d, J = 7.9 Hz, 2 H; H-5,5'); 7.90 (d, J = 7.7, 2 H, H-4,4')₄

Beispiel 2 Synthese von 4,4'-Stilbendiboronsäure

Ein Grignardreagenz aus 20,0 g 4,4'-Dibromstilben (59,2 mmol) wird unter Ar in THF einer Lösung von 16,0 g Borsäuretrimethylester (154 mmol) in THF bei -78°C zugetropft. Man läßt die Reaktionsmischung unter Rühren über Nacht auf Raumtemperatur kommen und gießt dann auf ca. 100 g Eis, 5 ml H₂SO₄. Es wird mehrfach mit CHCl₃ ausgeschüttelt, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und eingeengt. Das Rohprodukt kann aus Ethanol/H₂O umkristallisiert werden. Ausbeute: 60-70%.

Der Schmelzpunkt variiert stark in Abhängigkeit vom Wassergehalt.

¹H-NMR (CD₃OD, ppm): 7.12 (s, 2 H, H-vinyl), 7.38 (d, 4 H, H-phenyl), 8.03 (d, 4 H, H-phenyl)

Analog zu der gegebenen Vorschrift lassen sich auch 4,4'-Tolandiboronsäure und 4,4'-Biphenyldiboronsäure herstellen. Letztere ist auch kommerziell erhältlich, z.B. von Lancaster Synthesis GmbH, Mühlheim, Deutschland.

B Polymerisationen

WO 97/31048

Beispiel 3 Polymerisation von 2,2'-Dibrom-9,9'-spirobifluoren mit Ni(0) nach Yamamoto zu Poly-2,2'-(9,9'-spirobifluoren)ylen (Polymer 1)

Unter Argon wird eine Lösung von 1,50 g 2,2'-Dibrom-9,9'-spirobifluoren in 300 ml trockenem THF bereitet und auf 60°C erwärmt. Die warme Lösung wird rasch, unter Schutzgas zu einer ebenfalls unter Schutzgas am Rückfluß kochenden Mischung aus 825 mg Ni(cod)₂, 470 mg 2,2'-Bipyridyl und 0,4 ml 1,5-Cyclooctadien (COD) in 50 ml trockenem THF gegeben. Die Polymerisation startet sofort, wobei sich die tiefblaue Reaktionsmischung gelb färbt. Man läßt 6 Stunden am Rückfluß weiterkochen und kühlt anschließend auf Raumtemperatur ab. Die Reaktionslösung wird auf 50 ml eingeengt. Das gelbgefärbte Polymer wird abgesaugt und mit THF, sowie verdünnter Salzsäure und Wasser gewaschen.

Durch Extraktion mit 200 ml 1-Chlornaphthalin wird daraus die lösliche Polymerfraktion gewonnen, die durch Ausschütteln mit Ethylendiamintetraessigsäure (3x mit Ammoniak auf pH 7 bis 8 eingestellte wäßrige Lösung,

1x pH 3) und nachfolgendem Ausschütteln mit verdünnter Salzsäure und Wasser gereinigt wird. Die getrocknete 1-Chlornaphthalinlösung wird im Vakuum auf 50 ml eingeengt und das Polymer durch Eintropfen in 250 ml Methanol ausgefällt. Das erhaltene Polymer ist fast farblos (ca. 0,5 g). 1 H-NMR ($C_{2}D_{2}Cl_{4}$, 363 K, ppm): 6.60 - 6.90 (4 H , H-1,1',8,8'); 7.00 - 7.10 (2H, H-7,7'); 7.20 - 7.50 (4H, H-3,3',6,6'); 7.60-7.90 (4H, H-4,4',5,5').

Beispiel 4 Polymerisation von 2,2'-Dibrom-9,9'-spirobifluoren mit 4,4'-Stilbendiboronsäure zu Poly[2,2'-(9,9'-spirobifluorenylen)-4,4'-stilben] (Polymer 2)

In eine Mischung aus 100 ml THF und 40 ml Ethanol, werden 948 mg (2 mmol) 2,2'-Dibromo-9,9'-spirobifluoren und 536 mg (2 mmol)

4,4'-Stilbendiboronsäure gegeben. Dazu werden 20 ml 1 molare wäßrige Kaliumcarbonatlösung gegeben. Die Mischung wird unter Stickstoff am Rückfluß gekocht und 50 mg Tetrakis(triphenylphosphin)palladium(0), gelöst in 5 ml THF werden zugegeben. Nach 24 Stunden Kochen am Rückfluß wird auf Raumtemperaur abgekühlt. Das gebildete blaßgelbe Polymer wird abgesaugt, mit verdünnter Salzsäure 2 Stunden gekocht und nach erneutem Absaugen mit Wasser säurefrei gewaschen. Durch Extraktion mit heißem 1,1,2,2-Tetrachlorethan wird eine lösliche Polymerfraktion gewonnen (ca. 0,4 - 0,6 g). ¹H-NMR (C₂D₂Cl₄, 363 K, ppm): 6.70 - 6.95 (4 H, H-1,1',8,8'); 7.10 - 7.25 (2H, H-7,7'); 7.25 - 7.50 (14H, H-phenyl, H-vinyl, H-3,3',6,6'); 7.60-8.00 (4H, H-4,4',5,5').

Eine Lösung aus Poly-2,2'-(9,9'-spirobifluoren)ylen in Chlorbenzol (2 mg/ml) wird durch Spincoating bei 1000 upm auf einen Quarzträger aufgebracht. Bei Anregung mit Licht einer Wellenlänge von 366 nm zeigt der Polymerfilm blaue Lumineszenz ($\lambda_{em}=415$ nm). Ein Vergleich mit dem Fluoreszenzspektrum des Polymers 1 in verdünnter Lösung (< 10^{-5} mol/l in Chlorbenzol) ergibt für den Film eine bathochrome Verschiebung um 10 nm unter Erhalt der spektralen Charakteristik der verdünnten Lösung.

Beispiel 6 Photolumineszenzmessung an Poly[2,2'-(9,9'-spirobifluorenylen)-4,4'-stilben] (Polymer 2)

Eine Lösung aus Poly[2,2'-(9,9'-spirobifluorenylen)-4,4'-stilben] in Tetrachlorethan (3 mg/ml) wird durch Spincoating bei 1000 upm auf einen Quarzträger aufgebracht. Bei Anregung mit Licht einer Wellenlänge von 366 nm zeigt der Polymerfilm blaue Lumineszenz ($\lambda_{em}=445$ nm). Ein Vergleich mit dem Flyoreszenzspektrum des Polymers 2 in verdünnter Lösung (< 10^{-5} mol/l in Tetrachlorethan) ergibt für den Film eine bathochrome Verschiebung um 5 nm unter Erhalt der spektralen Charakteristik der verdünnten Lösung.

Beispiel 7 Elektrolumineszenz-Vorrichtung

Eine Lösung des zu vermessenden Polymers in Chlorbenzol oder Tetrachlorethan (Konzentration: 3 mg/ml) wird unter Stickstoff durch Spincoating bei 1000 upm auf einen mit ITO (Indium-Zinn-Oxid) beschichteten Glasträger (strukturiert, Streifen 2 mm breit) aufgebracht. Der Glasträger wird über eine Schleuse unter Beibehaltung der Schutzgasatmosphäre in eine Hochvakuum-Bedampfungsanlage überführt. Bei 2x10⁻⁵ mbar werden quer zu den ITO-Streifen unter Verwendung einer Maske Ca-Streifen (oder andere

Metalle oder Legierungen mit geeigneten Austrittsarbeiten) (2 mm breit, 230 nm dick) auf die Polymerschicht aufgedampft. Die so erhaltene Vorrichtung, ITO/Polymer/Metall, wird in einen Probenhalter gegeben und die Elektroden über Federkontakte mit einer Stromquelle verbunden, wobei ein ITO-Streifen positiv und ein Ca-Streifen negativ gepolt werden. Beim Anlegen einer genügend hohen Spannung, wird an dem entsprechenden Matrixelement eine Elektrolumineszenz beobachtet.

Patentansprüche:

1. Teilkonjugiertes Polymer, enthaltend Wiederholeinheiten der Formel (I),

21

worin die Symbole folgende Bedeutungen haben:

A ist gleich oder verschieden jeweils null bis acht gleiche oder verschiedene Arylen- und/oder Heteroarylen- und/oder Vinylen- und/oder Acetylengruppen, die, wie auch das Spirobifluorengerüst, gegebenenfalls substituiert sein können.

2. Polymer nach Anspruch 1, dadurch gekennzeichnet, daß die Gruppe A in der allgemeinen Formel (I) folgende Bedeutung hat:

wobei die Symbole folgende Bedeutungen haben:

X, Y sind gleich oder verschieden CS₁, N;

Z ist gleich oder verschieden -O-, -S-, -N S_1 -, -C S_1 S $_2$ -, -CS $_1$ = CS $_1$ -, -CS $_1$ = N-; S_1 , S_2 , S_3 und S_4 sind gleich oder verschieden H oder eine geradkettige, cyclische oder verzweigte Alkyl-, Alkoxy- oder Estergruppe mit 1 bis 22 C-Atomen, Aryl- und/oder Aryloxygruppen, mit 2 bis 20 C-Atomen, wobei der Aromat mit C_1 - C_{22} -Alkyl, C_1 - C_{22} -Alkoxy, Br, Cl, F, CN, CO_2 R, SO_3 R und/oder $P(O)(OR)_2$ substituiert sein kann, Br, Cl, F, CN, CO_2 R, SO_3 R, $P(O)(OR)_2$ und CF_3 ; R ist H oder eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen oder ein einfach geladenes Kation.

3. Polymer nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß die Gruppe A in der allgemeinen Formel (I) folgende Bedeutung hat:

$$S_1$$
 $X-Y$
 S_1
 S_2
 S_2
 S_2
 S_1
 S_2
 S_2

wobei die Symbole folgende Bedeutungen haben:

X, Y sind gleich oder verschieden CS₁, N;

Z ist gleich oder verschieden -O-, -S-, -NS 1 -, -CS 1 S 2 -, -CS 1 CS 1 -, -CS 1 =N-.

 S_1 und S_2 sind gleich oder verschieden H oder eine geradkettige, cyclische oder

verzweigte Alkyl-, Alkoxy- oder Estergruppe mit 1 bis 22 C-Atomen, Arylund/oder Aryloxygruppen, mit 2 bis 20 C-Atomen, wobei der Aromat mit C_1 - C_{22} -Alkyl, C_1 - C_{22} -Alkoxy, Br, Cl, F, CN, CO_2 R, SO_3 R und/oder $P(O)(OR)_2$ substituiert sein kann, Br, Cl, F, CN, CO_2 R, SO_3 R, $P(O)(OR)_2$ und CF_3 ; R ist H oder eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen oder ein einfach geladenes Kation.

4. Polymer nach einem oder mehreren der vorhergehenden Ansprüche, gekennzeichnet durch die folgende Struktur,

wobei die Symbole folgende Bedeutungen haben:

X ist

chem. Bindung
$$\longrightarrow$$
 S_1 S_2

 $\rm S_1$ und $\rm S_2$ sind gleich oder verschieden H oder eine geradkettige, cyclische oder verzweigte Alkyl-, Alkoxy- oder Estergruppe mit 1 bis 22 C-Atomen, Aryl-und/oder Aryloxygruppen, mit 2 bis 20 C-Atomen, wobei der Aromat mit

 C_1 - C_{22} -Alkyl, C_1 - C_{22} -Alkoxy, Br, Cl, F, CN, CO_2 R, SO_3 R und/oder $P(O)(OR)_2$ substituiert sein kann, Br, Cl, F, CN, CO₂R, SO₃R, P(O)(OR)₂ und CF₃; R ist H oder eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen oder ein einfach geladenes Kation;

n ist eine natürliche Zahl von 2 bis 1000.

- Polymer nach einem oder mehreren der vorhergehenden Ansprüche, 5. dadurch gekennzeichnet, daß es ein Copolymer ist.
- Verfahren zur Herstellung eines Polymers nach einem oder mehreren der 6. Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man eine oder mehrere Verbindungen der Formel (II),

wobei X Cl, Br, I ist und die übrigen Symbole die in der Formel (I) in den Ansprüchen 1 bis 5 angegebenen Bedeutungen haben, in einem inerten organischen Lösungsmittel in Gegenwart von Niº bei einer Temperatur von 30 bis 150°C polymerisiert.

- Verwendung eines Polymers nach einem oder mehreren der Ansprüche 1 7. bis 5 als Elektrolumineszenzmaterial.
- Elektrolumineszenzmaterial, enthaltend ein Polymer nach einem oder 8. mehreren der Ansprüche 1 bis 5.

- Verfahren zur Herstellung eines Elektrolumineszenzmaterials, dadurch gekennzeichnet, daß ein Polymer nach einem oder mehreren der Ansprüche 1 bis 5 in Form eines Films auf ein Substrat aufgebracht wird.
- 10. Elektrolumineszenzvorrichtung mit einer oder mehreren aktiven Schichten, dadurch gekennzeichnet, daß mindestens eine dieser aktiven Schichten ein Polymer gemäß einem oder mehreren der Ansprüche 1 bis 5 als Elektrolumineszenzmaterial enthält.

Int:	Application No	
PUTTEP	97/00551	

A CLASS	SEICATION OF SUBJECT MATTER		
ÎPC 6	FICATION OF SUBJECT MATTER C08G61/00 C09K11/06		
A	o International Patent Classification (IPC) or to both national class	fication and IPC	
	S SEARCHED		
	ocumentation searched (classification system followed by classification	non symbols)	
IPC 6	C08G C09K		
Documental	tion searched other than minimum documentation to the extent that	such documents are included in the fields s	earched
Electronic d	iata base consulted during the international search (name of data ba	se and, where practical, search terms used)	
		·	
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the r	clevant passages	Relevant to claim No.
P,X	EP 0 707 020 A (HOECHST AG) 17 A	pril 1996	1-10
	see claims 1-10		
		1	
			•
	·		
Furt	her documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
* Special ca	tegories of cited documents:	"T" later document published after the int	emational filing date
"A" docum	ent defining the general state of the art which is not	or priority date and not in conflict wi cited to understand the principle or the	in the application out.
consid	ered to be of particular relevance document but published on or after the international	invention "X" document of particular relevance; the	claimed invention
filing		cannot be considered novel or cannot involve an inventive step when the do	be considered to
which	ent when may throw bolds on priority daints) or is cited to establish the publication date of another in or other special reason (as specified)	"Y" document of particular relevance; the cannot be considered to involve an ir	claimed invention
O' docum	ent referring to an oral disclosure, use, exhibition or	document is combined with one or ments, such combination being obvious	ore other such docu-
other i	means ent published prior to the international filing date but	in the art.	
	han the priority date claimed	"&" document member of the same patent	
Date of the	actual completion of the international search	Date of mailing of the international se	aren report
	2 May 1007	26. 05.	97
1	3 May 1997		
Name and r	mailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	-	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Stienon, P	

INTI ATIONAL SEARCH REPORT

ln	64	plication No	
PL	:T/E	P 97/00551	

Patent document cited in search report	Publication date	Patent fan member	nily (s)	Publication date
EP 0707020 A	17-04-96	DE 44367 CN 11297 JP 81886 US 56211	773 A 714 A 541 A	18-04-96 28-08-96 23-07-96 15-04-97
		•		
	•			•
	,			
	•	•		
·				
	,			•

A. KLASS	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C08G61/00 C09K11/06		
IPK 6	C08G01/00 C09K11/00		
	ternationalen Patentklassifikation (IPK) oder nach der nationalen K	Jassifikation und der IPK	
	RCHIERTE GEBIETE ter Mindestprüfstoff (Klassifikabonssystem und Klassifikationssymb	ole)	
IPK 6	COSG COSK	,	
Recherchier	te aber meht zum Mindestprüfstoff gehörende Veröffentlichungen, s	owest diese unter die recherchierten Gebiete	fallen
Während de	r internationalen Recherche konsultierte elektronische Datenbank (N	lame der Datenbank und evil, verwendete	Suchbegnife)
		•	
C. ALS W	ESENTLICH ANGESEHENE UNTERLAGEN	,	
Kategone*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angal	ne der in Betracht kommenden Teile	Betr. Anspruch Nr.
	(10,000,000,000,000,000,000,000,000,000,	:1 1000	1-10
P,X	EP 0 707 020 A (HOECHST AG) 17.Ap	Dril 1996	1-10
	siehe Ansprüche 1-10		
	•		.
		·	
	·		
	tere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patentfamilie	
	transferrer von mit allegen en e	"T" Spätere Veröffentlichung, die nach dem oder dem Priontätedatum veröffentlich	t worden ist und mit der
aber n	entlichung, die den allgemeinen Stand der Technik definiert, icht als besonders bedeutsam anzusehen ist	Armeldung meht kollidiert, sondern nu Erfindung zugrundeliegenden Prinzips	ir zumVerständnis des der
"E" älteres Anme	Dokument, das jedoch erst am oder nach dem internationalen dedatum veröffentlicht worden ist	Theone angegeben ist "X" Veröffentlichung von besonderer Bedet	itung die beanspruchte Erfindung
"L" Veröffe	mtlichung, die geeignet ist, einen Priontätsanspruch zweifelhaft er- en zu lassen, oder durch die das Veröffentlichungsdatum einer	kann allein aufgrund dieser Veröffentli erfinderischer Tätigkeit beruhend betra	chung meht als neu oder auf
andere	in im Recherchenbericht genannten Veröffentlichung belegt werden der die aus einem anderen besonderen Grund angegeben ist (wie	"Y" Veröffentlichung von besonderer Bedei kann nicht als auf erfinderischer Tätigi	nung die beanspruchte Erfindung
ausgef	ührt) entichung, die sich auf eine mündliche Offenbarung.	werden, wenn die Veröffentlichung mit Veröffentlichungen dieser Kategone in	einer oder mehreren anderen
eine R	enutzung, eine Ausstellung oder andere Maßnahmen bezieht	diese Verbindung für einen Fachmann	naheliegend ist
dem b	eanspruchten Prioritätsdatum veröffentlicht worden ist	'&' Veröffentlichung, die Mitglied derselbe Absendedatum des internationalen Rec	
Datum des	Abschlusses der internationalen Recherche		
1	3.Mai 1997	26. 05.	. 97
		Bevollmächtigter Bediensteter	
Name und I	Postanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2	Petralitimena Promotoroma	
	NI 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.	Stienon, P	

1

INTERNATIONAL RECHERCHENBERICHT

Angaben zu Veröffentlik gen ur selben Patentfamilie gehören

In' 1 ktenzeichen
PUT/E: 97/00551

Im Recherchenbericht	Datum der	Mitglied(er) der	Datum der	
angeführtes Patentdokument	Veröffendichung	Patentfamilie	Veröffentlichung	
EP 0707020 A	17-04-96	DE 4436773 A CN 1129714 A JP 8188641 A US 5621131 A	18-04-96 28-08-96 23-07-96 15-04-97	