# Advanced Systems Lab Tutorial III Statistics and Analysis

G. Alonso

Systems Group

http://www.systems.ethz.ch

# Reading assignment

- Read chapters 10, 11, 12, and 13
- Read chapters 17 to 22

#### **Basic statistics**

- Not a course on statistics
  - You have done that already
  - We assume familiarity with the basics
- Focus on experimental aspects
  - What and when to measure
  - Side effects and different performance patterns
  - Data distributions
  - Sampling
  - Mean, Average, Outliers, deviation, plotting
  - Confidence intervals

#### Accuracy vs. Precision

Accuracy = how close to the real value (often unknown)
Precision = similarity of the results of repeated experiments



# When to measure

#### What and when to measure

- Decide on the parameters to measure:
  - Throughput, response time, latency, etc.
- Design your experiment
  - Configuration, data, load generators, instrumentation, hypothesis
- Run the experiment and start measuring:
  - When to measure (life cycle of an experiment)
  - What to measure (sampling)

# Life cycle of an experiment



#### Warm up phase

- Warm up phase
  - Time until clients are all up, caches full (warm), data in main memory, etc.
  - Throughput lower than steady state throughput
  - Response time better than in steady state
- Detect by watching measured parameter changing with time
- Measure only in steady state

# Cool down phase

- Cool down phase
  - Clients start finishing, resulting in less load in the system
  - Throughput is lower than in steady state
  - Response time better than in steady state
- Detect by observing when measured parameter suddenly changes behavior
- Stop measuring when clients no longer generate a steady load

#### **QUESTIONS TO ASK:**

- IS THIS A BUG OR A FEATURE?
- IS IT MY SYSTEM OR AN INTERFERENCE?
- SHOULD BE INCLUDED IN MEASUREMENTS OR EXCLUDED?

**TIME** 

#### Patterns to watch for - trends



# Patterns to watch for - periodic



TIME

# Why are these pattern relevant?

- Too few measurements and too short experiments are meaningless
  - May not capture system behavior
  - May not show pathological behavior
  - May not reflect real values
- Statistics are a way to address some of these issues by providing more information from the data and a better idea of the system behavior
  - but applying statistics to the wrong data will not help!

# **Data distributions**

# What are we measuring?

- When measuring, we are trying to estimate the value of a given parameter
- The value of the parameter is often determined by a complex combination of many effects and is typically not a constant
- Thus, the parameter we are trying to measure can be seen as a RANDOM VARIABLE
- The assumption is that this random variable has a NORMAL (GAUSSIAN) DISTRIBUTION

#### Central limit theorem

- Let X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, ... X<sub>n</sub> be a sequence of independently and identically distributed random variables with finite values of
  - Expectation ( $\mu$ )
  - Variance ( $\sigma^2$ )

as the sample size n increases, the distribution of the sample average of the n random variables approaches the normal distribution with a mean  $\mu$  and variance  $\sigma^2/n$  regardless of the shape of the original distribution.

#### How does it work?



http://en.wikipedia.org/wiki/File:Central\_limit\_thm.png

#### Normal or Gaussian distribution



### Meaning of standard deviation

- The standard deviation gives an idea of how close are the measurements to the mean
  - important in defining service guarantees
  - important to understand real behavior



Mean is 50 but standard deviation is 20, indicating that there is a large variation in the value of the parameter

# Mean of a sample

- To interpret a given measurement, we need to provide complete information
  - The mean
  - The standard deviation around the mean



#### Mean and standard deviation

- The standard deviation defines margins around the mean:
  - -64% of the values are within  $\mu \pm \sigma$
  - -95% of the values are within  $\mu \pm 2\sigma$
  - -99.7% of the values are within  $\mu \pm 3\sigma$
- For a real system is very important to understand what happens when the values go beyond those margins (delays, overload, thrashing, system crash, etc.)

# Calculating the standard deviation

Mean and standard deviation:

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N} \qquad \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

In practice, use:

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

#### Comparisons

What is better?



Deterministic behavior is often more important than good performance



#### In practice

- In many systems, the standard deviation is almost more important than the mean:
  - 90% of the queries need to be answered in less than X seconds
  - No web request can take longer than 5 seconds
  - Changes have to be propagated in less than 10 seconds
  - Guaranteed bandwidth higher than X 90% of the time
- Achieving determinism is often done at the cost of performance

# **Confidence intervals**

# Background

- When measuring in software system, we typically do know neither the value of the parameter we are measuring ( $\mu$ ) nor its standard deviation ( $\sigma$ )
- Instead, we work with mean of the sample  $\overline{x}$  and the estimated standard deviation (s)
  - the result is no longer a normal distribution but a tdistribution
  - The t-distribution depends on n, the amount of samples
  - For large n, the t.distribution tends to a normal distribution

#### Confidence interval

- Since typically we are not measuring an absolute value (unlike in the natural sciences), the notion of confidence interval is particularly useful in computer science
- A confidence interval is a range (typically around the mean) where we can say that if we repeat the experiment 100 times, the value observed will be within the confidence interval m times (e.g., m=95, leading to a 95% confidence interval)

#### Calculation

 The confidence interval is calculated as follows:

$$CI = \bar{x} \pm t \cdot \frac{s}{\sqrt{n}}$$

Where s is the sample standard deviation, n the number of samples and t the critical value of the t-distribution

#### T in a table

#### Look up the value for the desired confidence interval and (n-1)

| One<br>Sided | 75%   | 80%   | 85%   | 90%   | 95%   | 97.5% | 99%   | 99.5% | 99.75% | 99.9% | 99.95% |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|
| Two<br>Sided | 50%   | 60%   | 70%   | 80%   | 90%   | 95%   | 98%   | 99%   | 99.5%  | 99.8% | 99.9%  |
| 1            | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 31.82 | 63.66 | 127.3  | 318.3 | 636.6  |
| 2            | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 14.09  | 22.33 | 31.60  |
| 3            | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 7.453  | 10.21 | 12.92  |
| 4            | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 5.598  | 7.173 | 8.610  |
| 5            | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 4.773  | 5.893 | 6.869  |
| 6            | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 4.317  | 5.208 | 5.959  |
| 7            | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.029  | 4.785 | 5.408  |
| 8            | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 3.833  | 4.501 | 5.041  |
| 9            | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 3.690  | 4.297 | 4.781  |

#### Some observations

- For a fixed n
  - Increasing the confidence (100%(1- $\alpha$ )) implies to extend the confidence interval
- To reduce the confidence interval
  - we decrease the confidence or,
  - we increase the number of examples
- For experiments, fix a target (typically 95% confidence in a 5-10% interval around the mean) and repeat the experiments until the level of confidence is reached –if ever ...

# Example

- Mean = 122
- s = 9
- n = 30
- t (two sided, 29, 95%) = 2.045
- CI =  $122 \pm (2.045 \cdot 9/30^{-2})$
- In 95 out of 100 runs, the mean will be between 119 and 125

# Putting it all together

#### Look at all the data

- Make sure you are looking at the complete picture of the experiment and your measurements do not include side effects (warm up, cool down, repetition effects)
- Once you are sure you have identified the valid data and that it looks reasonable, then apply statistics to it

#### Standard deviation

- All measurements and graphs have to be accompanied by the standard deviation, otherwise they are meaningless
  - Provides an idea of the precision
  - Provides an idea of what will happen in practice
  - Provides an idea of how predictable performance is
- Repeat the experiments until you get a reasonable standard deviation (enough values are close enough to the mean)

# How long to run?

- Until you reach a reasonable confidence level that the value lies within a reasonable margin of the mean
- Confidence intervals are the way to quantify how often the reported result is going to be observed in practice
  - "we repeated the experiments until we reached a 95% level confidence for an interval 5% around the mean"

#### Advice

- It is a good idea to run a long experiment to make sure you have seen all possible behavior of the system:
  - Glitches only every 3 hours
  - Memory leaks after 1 M transactions
- In reality, tests have to resemble how the system will be used in practice

# Designing an experiment

# Experiments, but which ones?

- What does it mean to design an experiment?
- Performance is affected by a large number of factors
  - Workloads
  - Systems
  - Knobs
- We are interested in:
  - Which ones are the most important?
  - Which ones are related?
- Goal: get the most information with least effort (minimum number of experiments)

### **Definitions**

- A response variable is the outcome of an experiment typically the measured performance of the system (e.g., throughput, response time)
- A factor is any variable that affects the response, and which has several alternatives (amount of memory, number of cores, data sizes)

- Levels are the values that a given factor can assume – the alternatives for a factor.
- Primary factors are those whose effects need to be quantified
- Secondary factors are those that impact performance but whose effect we are not interested in quantifying
- Replications are the number of times each experiment is to be repeated with particular levels for each factor.

# An experiment

- An experimental design consists of:
  - the number of different experiments
  - the factor level combinations for each experiment
  - the number of replications of each experiment
- An experimental unit is any entity used for the experiment

#### Interaction

- Two factors interact if the effect of one depends on the level of the other.
- Interaction considerably complicates the business of interpreting experimental results

| Non-Interacting |       |       |  |  |  |
|-----------------|-------|-------|--|--|--|
| *               | $A_1$ | $A_2$ |  |  |  |
| $B_1$           | 3     | 5     |  |  |  |
| $B_2$           | 6     | 8     |  |  |  |



#### Avoid mistakes

- Try to avoid the following:
  - Ignoring the variation due to experimental errors
  - Not controlling important parameters (secondary factors)
  - Not isolating the effects of different factors
  - Overly simple (and very inefficient designs)
  - Ignoring interactions between factors
  - Conducting too many experiments
    - Take it slowly!
    - Break up the project into steps

# Exploring the space

- Given a number of factors, what to do?
- Bad idea:
  - Vary one factor at a time
  - Find best value, fix it
  - Repeat for each factor
- Why is this a bad idea?: too many experiments, will get stuck in local mimimum

# 2<sup>k</sup> Factorial Designs

- Experimental technique to find the relative weight of different factors
  - Pick K factors
  - Pick two levels for each factor
  - Behavior of factors must be unidirectional or monotonic in the range explored (!)

# Example 2<sup>2</sup> Factorial Design

Observation: can update book examples by multiplying by 1000!

|                 | Memory size |      |
|-----------------|-------------|------|
| Cache size (MB) | 4GB         | 16GB |
| 1               | 15          | 45   |
| 2               | 25          | 75   |

Define variables  $x_A$  and  $x_b$  to represent levels for each factor:

$$x_A = \begin{cases} -1 & \text{if 4 GB main memory;} \\ 1 & \text{if 16 GB main memory.} \end{cases}$$
 $x_B = \begin{cases} -1 & \text{if 1 MB cache,} \\ 1 & \text{if 2 MB cache.} \end{cases}$ 

# Solving the model

A useful fiction: non-linear regression model for performance:

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$

This means we can write:

$$15 = q_0 - q_A - q_B + q_{AB}$$

$$45 = q_0 + q_A - q_B - q_{AB}$$

$$25 = q_0 - q_A + q_B - q_{AB}$$

$$75 = q_0 + q_A + q_B + q_{AB}$$

## Relative weights on response variable

#### Solving:

$$y = 40 + 20x_A + 10x_B + 5x_Ax_B$$

What does this mean?

- ▶ Mean performance is 40
- Effect of memory is 20
- Effect of cache is 10
- Interaction between the two accounts for 5

## In the form of a table

The same calculation can be done using a sign table:

| - 1 | Α  | В  | AB | У       |
|-----|----|----|----|---------|
| 1   | -1 | -1 | 1  | 15      |
| 1   | 1  | -1 | -1 | 45      |
| 1   | -1 | 1  | -1 | 25      |
| 1   | 1  | 1  | 1  | 75      |
| 160 | 80 | 40 | 20 | Total   |
| 40  | 20 | 10 | 5  | Total/4 |

## Repetitions and errors

- Look in the book
  - How to allocate variation
  - How to consider repetitions of the experiments to look for errors

 For the milestone and analysis, please use repetitions to get meaningful results.