Package 'jordan'

July 4, 2024

Type Package
Title A Suite of Routines for Working with Jordan Algebras
Version 1.0-6
Maintainer Robin K. S. Hankin hankin.robin@gmail.com
Description A Jordan algebra is an algebraic object originally designed to study observables in quantum mechanics. Jordan algebras are commutative but non-associative; they satisfy the Jordan identity. The package follows the ideas and notation of K. McCrimmon (2004, ISBN:0-387-95447-3) ``A Taste of Jordan Algebras". To cite the package in publications, please use Hankin (2023) <doi:10.48550 arxiv.2303.06062="">.</doi:10.48550>
License GPL (>= 2)
Suggests knitr,rmarkdown
Depends onion (>= 1.4-0), Matrix
VignetteBuilder knitr
Imports quadform,methods
<pre>URL https://github.com/RobinHankin/jordan</pre>
<pre>BugReports https://github.com/RobinHankin/jordan/issues</pre>
NeedsCompilation no
Author Robin K. S. Hankin [aut, cre] (https://orcid.org/0000-0001-5982-0415)
Repository CRAN
Date/Publication 2024-07-04 12:00:02 UTC
Contents
jordan-package Arith c coerce Compare-methods

2 jordan-package

	extract	 														 	9
	id	 														 	 10
	jordan	 														 	 11
	jordan-class	 														 	 12
	misc	 														 	 13
	random	 														 	 13
	r_to_n	 														 	 14
	show	 														 	 15
	valid	 														 	16
	zero	 														 	17
Index																	19

Description

jordan-package

A Jordan algebra is an algebraic object originally designed to study observables in quantum mechanics. Jordan algebras are commutative but non-associative; they satisfy the Jordan identity. The package follows the ideas and notation of K. McCrimmon (2004, ISBN:0-387-95447-3) "A Taste of Jordan Algebras". To cite the package in publications, please use Hankin (2023) <doi:10.48550/arXiv.2303.06062>.

A Suite of Routines for Working with Jordan Algebras

Details

A *Jordan algebra* is a non-associative algebra over the reals with a multiplication that satisfies the following identities:

$$xy = yx$$

$$(xy)(xx) = x(y(xx))$$

(the second identity is known as the Jordan identity). In literature one usually indicates multiplication by juxtaposition but one sometimes sees $x \circ y$. Package idiom is to use an asterisk, as in x*y. There are five types of Jordan algebras:

- 1. Real symmetric matrices, class real_symmetric_matrix, abbreviated in the package to rsm
- 2. Complex Hermitian matrices, class complex_herm_matrix, abbreviated to chm
- 3. Quaternionic Hermitian matrices, class quaternion_herm_matrix, abbreviated to qhm
- 4. Albert algebras, the space of 3×3 octonionic matrices, class albert
- 5. Spin factors, class spin

jordan-package 3

(of course, the first two are special cases of the next). The jordan package provides functionality to manipulate jordan objects using natural R idiom.

Objects of all these classes are stored in dataframe (technically, a matrix) form with columns being elements of the jordan algebra.

The first four classes are matrix-based in the sense that the algebraic objects are symmetric or Hermitian matrices (the S4 class is "jordan_matrix"). The fifth class, spin factors, is not matrix based.

One can extract the symmetric or Hermitian matrix from objects of class jordan_matrix using as.list(), which will return a list of symmetric or Hermitian matrices. A function name preceded by a "1" (for example as.lmatrix() or vec_to_qhm1()) means that it deals with a single (symmetric or Hermitian) matrix.

Algebraically, the matrix form of jordan_matrix objects is redundant (for example, a real_symmetric_matrix of size $n \times n$ has only n(n+1)/2 independent entries, corresponding to the upper triangular elements).

Author(s)

Robin K. S. Hankin [aut, cre] (https://orcid.org/0000-0001-5982-0415)

Maintainer: Robin K. S. Hankin hankin.robin@gmail.com

References

K. McCrimmon 1978. "Jordan algebras and their applications". *Bulletin of the American Mathematical Society*, Volume 84, Number 4.

```
rrsm()
           # Random Real Symmetric matrices
rchm()
           # Random Complex Hermitian matrices
rqhm()
         # Random Quaternionic Hermitian matrices
ralbert() # Random Albert algebra
rspin()
          # Random spin factor
x <- rqhm(n=1)
y < - rqhm(n=1)
z \leftarrow rqhm(n=1)
x/1.2 + 0.3*x*y
                    # Arithmetic works as expected ...
x*(y*z) - (x*y)*z
                  # ... but '*' is not associative
## Verify the Jordan identity for type 3 algebras:
LHS \leftarrow (x*y)*(x*x)
RHS \leftarrow x*(y*(x*x))
diff <- LHS-RHS # zero to numerical precision
diff[1,drop=TRUE] # result in matrix form
```

4 Arith

Arith

Methods for Function Arith in package Jordan

Description

Methods for Arithmetic functions for jordans: +, -, *, /, ^

Usage

```
jordan_negative(z)
jordan_plus_jordan(e1,e2)
jordan_plus_numeric(e1,e2)
jordan_prod_numeric(e1,e2)
jordan_power_jordan(e1,e2)
albert_arith_albert(e1,e2)
albert_arith_numeric(e1,e2)
albert_inverse(e1)
albert_power_albert(...)
albert_power_numeric(e1,e2)
albert_power_single_n(e1,n)
albert_prod_albert(e1,e2)
chm_arith_chm(e1,e2)
chm_arith_numeric(e1,e2)
chm_inverse(e1)
chm_power_numeric(e1,e2)
chm_prod_chm(e1,e2)
numeric_arith_albert(e1,e2)
numeric_arith_chm(e1,e2)
numeric_arith_qhm(e1,e2)
numeric_arith_rsm(e1,e2)
qhm_arith_numeric(e1,e2)
qhm_arith_qhm(e1,e2)
qhm_inverse(x)
qhm_power_numeric(e1,e2)
qhm_prod_qhm(e1,e2)
rsm_arith_numeric(e1,e2)
rsm_arith_rsm(e1,e2)
rsm_inverse(e1)
rsm_power_numeric(e1,e2)
rsm_prod_rsm(e1,e2)
spin_plus_numeric(e1,e2)
spin_plus_spin(e1,e2)
spin_power_numeric(e1,e2)
spin_power_single_n(e1,n)
spin_power_spin(...)
spin_prod_numeric(e1,e2)
spin_prod_spin(e1,e2)
```

Arith 5

```
spin_inverse(...)
spin_negative(e1)
vec_albertprod_vec(x,y)
vec_chmprod_vec(x,y)
vec_qhmprod_vec(x,y)
vec_rsmprod_vec(x,y)
```

Arguments

z, e1, e2	Jordan objects or numeric vectors
n	Integer for powers
	Further arguments (ignored)
x, y	Numeric vectors, Jordan objects in independent form

Details

The package implements the Arith group of S4 generics so that idiom like A + B*C works as expected with jordans.

Functions like jordan_inverse() and jordan_plus_jordan() are low-level helper functions. The only really interesting operation is multiplication; functions like jordan_prod_jordan().

Names are implemented and the rules are inherited (via onion::harmonize_oo() and onion::harmonize_on()) from rbind().

Value

generally return jordans

Author(s)

Robin K. S. Hankin

```
x <- rspin()
y <- rspin()
z <- rspin()

x*(y*(x*x)) - (x*y)*(x*x) # should be zero
x + y*z</pre>
```

c

С

Concatenation

Description

Combines its arguments to form a single jordan object.

Usage

```
## S4 method for signature 'jordan' c(x,...)
```

Arguments

```
x, ... Jordan objects
```

Details

Returns a concatenated jordan of the same type as its arguments. Argument checking is not performed.

Value

Returns a Jordan object of the appropriate type (coercion is not performed)

Note

Names are inherited from the behaviour of cbind(), not c().

Author(s)

Robin K. S. Hankin

```
c(rqhm(),rqhm()*10)
```

coerce 7

coerce Coercion

Description

Various coercions needed in the package

Usage

```
as.jordan(x,class)
vec_to_rsm1(x)
vec_to_chm1(x)
vec_to_qhm1(x)
vec_to_albert1(x)
rsm1_to_vec(M)
chm1_to_vec(M)
qhm1_to_vec(M)
albert1_to_vec(H)
as.real_symmetric_matrix(x,d,single=FALSE)
as.complex_herm_matrix(x,d,single=FALSE)
as.quaternion_herm_matrix(x,d,single=FALSE)
as.albert(x,single=FALSE)
numeric_to_real_symmetric_matrix(x,d)
numeric_to_complex_herm_matrix(x,d)
numeric_to_quaternion_herm_matrix(x,d)
numeric_to_albert(e1)
as.list(x,...)
matrix1_to_jordan(x)
```

Arguments

x, e1	Numeric vector of independent entries
M, H	A matrix
d	Dimensionality of algebra
single	Boolean, indicating whether a single value is to be returned
class	Class of object
• • •	Further arguments, currently ignored

Details

The numeral "1" in a function name means that it operates on, or returns, a single element, usually a matrix. Thus function as .1matrix() is used to convert a jordan object to a list of matrices. Length one jordan objects are converted to a matrix.

Functions vec_to_rsm1() et seq convert a numeric vector to a (symmetric, complex, quaternion, octonion) matrix, that is, elements of a matrix-based Jordan algebra.

8 Compare-methods

Functions rsm1_to_vec() convert a (symmetric, complex, quaternion, octonion) matrix to a numeric vector of independent components. The upper triangular components are used; no checking for symmetry is performed (the lower triangular components, and non-real components of the diagonal, are discarded).

Functions as.real_symmetric_matrix(), as.complex_herm_matrix(), as.quaternion_herm_matrix() and as.albert() take a numeric matrix and return a (matrix-based) Jordan object.

Functions numeric_to_real_symmetric_matrix() have not been coded up yet.

Function matrix1_to_jordan() takes a matrix and returns a length-1 (matrix based) Jordan vector. It uses the class of the entries (real, complex, quaternion, octonion) to decide which type of Jordan to return.

Value

Return a coerced value.

Author(s)

Robin K. S. Hankin

Examples

```
vec_to_chm1(1:16) # Hermitian matrix
as.1matrix(rchm())
as.complex_herm_matrix(matrix(runif(75),ncol=3))
matrix1_to_jordan(cprod(matrix(rnorm(35),7,5)))
matrix1_to_jordan(matrix(c(1,1+1i,1-1i,3),2,2))
matrix1_to_jordan(Oil + matrix(1,3,3))
```

Compare-methods

Methods for compare S4 group

Description

Methods for comparison (equal to, greater than, etc) of jordans. Only equality makes sense.

Usage

```
jordan_compare_jordan(e1,e2)
```

Arguments

e1, e2

Jordan objects

extract 9

Value

Return a boolean

Examples

```
# rspin() > 0 # meaningless and returns an error
```

extract

Extract and replace methods for jordan objects

Description

Extraction and replace methods for jordan objects should work as expected.

Replace methods can take a jordan or a numeric, but the numeric must be zero.

Value

Generally return a jordan object of the same class as the first argument

Methods

```
[ signature(x = "albert", i = "index", j = "missing", drop = "logical"): ...
[ signature(x = "complex_herm_matrix", i = "index", j = "missing", drop = "logical"): ...
[ signature(x = "jordan", i = "index", j = "ANY", drop = "ANY"): ...
[ signature(x = "jordan", i = "index", j = "missing", drop = "ANY"): ...
[ signature(x = "quaternion_herm_matrix", i = "index", j = "missing", drop = "logical"):
[ signature(x = "real_symmetric_matrix", i = "index", j = "missing", drop = "logical"):
[ signature(x = "spin", i = "index", j = "missing", drop = "ANY"): ...
[ signature(x = "spin", i = "missing", j = "index", drop = "ANY"): ...
[<- signature(x = "albert", i = "index", j = "missing", value = "albert"): ...</pre>
[<- signature(x = "complex_herm_matrix", i = "index", j = "ANY", value = "ANY"): ...
[<- signature(x = "complex_herm_matrix", i = "index", j = "missing", value = "complex_herm_matrix"):</pre>
[<- signature(x = "jordan_matrix", i = "index", j = "missing", value = "numeric"): ...</pre>
[<- signature(x = "quaternion_herm_matrix", i = "index", j = "missing", value = "quaternion_herm_matrix")</pre>
[<- signature(x = "real_symmetric_matrix", i = "index", j = "missing", value = "real_symmetric_matrix"):</pre>
[<- signature(x = "spin", i = "index", j = "index", value = "ANY"): ...</pre>
[<- signature(x = "spin", i = "index", j = "missing", value = "numeric"): ...</pre>
[<- signature(x = "spin", i = "index", j = "missing", value = "spin"): ...</pre>
```

10 id

Author(s)

Robin K. S. Hankin

Examples

```
showClass("index") # taken from the Matrix package
a <- rspin(7)
a[2:4] <- 0
a[5:7] <- a[1]*10
a</pre>
```

id

Multiplicative identities

Description

Multiplying a jordan object by the identity leaves it unchanged.

Usage

```
as.identity(x)
rsm_id(n,d)
chm_id(n,d)
qhm_id(n,d)
albert_id(n)
spin_id(n=3,d=5)
```

Arguments

n Length of vector to be created

d Dimensionality

x In function as.identity(), a jordan object. Return value will be a jordan object of the same dimensionality but entries equal to the identity

Details

The identity object in the matrix-based classes (jordan_matrix) is simply the identity matrix. Function as.identity() takes an object of any of the five types (rsm, chm, qhm, spin, or albert) and returns a vector of the same length and type, but comprising identity elements.

Class spin has identity $(1, \mathbf{0})$.

Value

A jordan object is returned.

jordan 11

Author(s)

Robin K. S. Hankin

Examples

```
x <- as.albert(matrix(sample(1:99,81,replace=TRUE),nrow=27))
I <- as.identity(x)
x == x*I  # should be TRUE
rsm_id(6,3)</pre>
```

jordan

Create jordan objects

Description

Creation methods for jordan objects

Arguments

М	A matrix with columns representing independent entries in a matrix-based Jordan algebra
a, V	Scalar and vector components of a spin factor

Details

The functions documented here are the creation methods for the five types of jordan algebra.

- quaternion_herm_matrix()
- complex_herm_matrix()
- real_symmetric_matrix()
- albert()
- spin()

(to generate quick "get you going" Jordan algebra objects, use the rrsm() family of functions, documented at random.Rd).

Value

Return jordans or Boolean as appropriate

jordan-class

Author(s)

Robin K. S. Hankin

See Also

random

Examples

```
A <- real_symmetric_matrix(1:10)  # vector of length 1
as.1matrix(A)  # in matrix form

complex_herm_matrix(cbind(1:25,2:26))
quaternion_herm_matrix(1:15)

albert(1:27)
spin(-6,cbind(1:12,12:1))

x <- rrsm() ; y <- rrsm() ; z <- rrsm()  # also works with the other Jordans

x*(y*z) - (x*y)*z  # Jordan algebra is not associative...
(x*y)*(x*x) - x*(y*(x*x))  # but satisfies the Jordan identity
```

jordan-class

Classes in the "jordan" package

Description

Various classes in the jordan package.

Author(s)

Robin K. S. Hankin

References

K. McCrimmon 1978. "Jordan algebras and their applications". *Bulletin of the American Mathematical Society*, Volume 84, Number 4.

```
showClass("jordan")
```

misc 13

misc

Miscellaneous Jordan functionality

Description

Miscellaneous Jordan functionality that should be documented somewhere

Usage

```
harmonize_spin_numeric(e1,e2)
harmonize_spin_spin(e1,e2)
```

Arguments

e1, e2

Objects to harmonize

Details

Miscellaneous low-level helper functions.

The harmonize functions harmonize_spin_numeric() and harmonize_spin_spin() work for spin objects for the matrix-based classes onion::harmonize_oo() and onion::harmonize_on() are used.

Value

These are mostly low-level helper functions; they not particularly user-friendly. They generally return either numeric or Jordan objects.

Author(s)

Robin K. S. Hankin

random

Random Jordan objects

Description

Random jordan objects with specified properties

Usage

```
ralbert(n=3)
rrsm(n=3, d=5)
rchm(n=3, d=5)
rqhm(n=3, d=5)
rspin(n=3, d=5)
```

Arguments

n Length of random object returned

d Dimensionality of random object returned

Details

These functions give a quick "get you going" random Jordan object to play with.

Value

Return a jordan object

Author(s)

Robin K. S. Hankin

Examples

```
rrsm()
ralbert()
rspin()
```

r_to_n

Sizes of Matrix-based Jordan algebras

Description

Given the number of rows in a (matrix-based) Jordan object, return the size of the underlying associative matrix algebra

Usage

```
r_to_n_rsm(r)
r_to_n_chm(r)
r_to_n_qhm(r)
r_to_n_albert(r=27)
n_to_r_rsm(n)
n_to_r_chm(n)
n_to_r_qhm(n)
n_to_r_albert(n=3)
```

Arguments

n Integer, underlying associative algebra being matrices of size $n \times n$

r Integer, number of rows of independent representation of a matrix-based jordan object

show 15

Details

These functions are here for consistency, and the albert ones for completeness.

For the record, they are:

- Real symmetric matrices, rsm, r = n(n+1)/2, $n = (\sqrt{1+4r}-1)/2$
- Complex Hermitian matrices, chm, $r = n^2$, $n = \sqrt{r}$
- Quaternion Hermitian matrices, qhm, r = n(2n-1), $n = (1 + \sqrt{1+8r})/4$
- Albert algebras, r = 27, n = 3

Value

Return non-negative integers

Note

I have not been entirely consistent in my use of these functions.

Author(s)

Robin K. S. Hankin

Examples

```
r_{to_n_qhm(nrow(rqhm()))}
```

show

Print methods

Description

Show methods, to display objects at the prompt

Usage

```
albert_show(x)
spin_show(x)
jordan_matrix_show(x)
description(x,plural=FALSE)
```

Arguments

x Jordan object

plural Boolean, indicating whether plural form is to be given

16 valid

Details

The special algebras use a bespoke show method, jordan_matrix_show() or spin_show(). If the number of elements is small, they display a concise representation and modify the row and column names of the underlying matrix slightly; spin factors are displayed with the scalar component offset from the vector component.

Print methods for special algebras are sensitive to the value of option head_and_tail, a twoelement integer vector indicating the number of start lines and end lines to print.

Function description() gives a natural-language description of its argument, used in the print method.

Value

Returns the argument

Author(s)

Robin K. S. Hankin

Examples

rspin()
rqhm()
rchm()

valid

Validity methods

Description

Validity methods, to check that objects are well-formed

Usage

```
valid_rsm(object)
valid_chm(object)
valid_qhm(object)
valid_albert(object)
is_ok_rsm(r)
is_ok_chm(r)
is_ok_qhm(r)
is_ok_albert(r)
is_ok_rsm(r)
```

zero 17

Arguments

object Putative jordan object

r Integer, number of rows in putative jordan object

Details

Validity methods. The validity_foo() functions test for an object to be the right type, and the is_ok_foo() functions test the number of rows being appropriate for a jordan object of some type; these functions return an error if not appropriate, or, for jordan_matrix objects, the size of the matrix worked with.

Value

Return a Boolean

Author(s)

Robin K. S. Hankin

Examples

```
is_ok_qhm(45)  # 5x5 Hermitian quaternionic matrices  #is_ok_qhm(46)  # FALSE
```

zero

The zero Jordan object

Description

Package idiom for the zero Jordan object, and testing

Usage

```
is.zero(x)
is_zero_jordan(e1,e2=0)
```

Arguments

x, e1	Jordan object to test for zeroness
e2	Dummy numeric object to make the Arith method work

Details

One often wants to test a jordan object for being zero, and natural idiom would be rchm()==0. The helper function is is_zero_jordan(), and the generic is is.zero().

18 zero

Value

Returns a Boolean

Author(s)

Robin K. S. Hankin

Index

```
* classes
                                                [<-,real_symmetric_matrix,index,missing,real_symmetric_mat
    extract, 9
                                                         (extract), 9
                                                [<-, spin, ANY, missing, ANY-method
    jordan-class, 12
                                                         (extract), 9
* math
                                                [<-,spin,index,index,ANY-method
    Arith, 4
                                                         (extract), 9
    Compare-methods, 8
                                                [<-, spin, index, missing, numeric-method
* methods
                                                         (extract), 9
    Arith. 4
                                                [<-,spin,index,missing,spin-method
    Compare-methods, 8
                                                         (extract), 9
* package
                                                [<-, spin, missing, ANY, numeric-method
    jordan-package, 2
                                                         (extract), 9
[,albert,index,missing,logical-method
                                                [<-, spin, missing, missing, numeric-method
        (extract), 9
                                                         (extract), 9
\hbox{\tt [,complex\_herm\_matrix,index,missing,logical-method]}
                                                 [<-,spin,missing,missing,spin-method
        (extract), 9
                                                         (extract), 9
[,jordan,index,ANY,ANY-method
        (extract), 9
                                                albert (jordan), 11
[,jordan,index,missing,ANY-method
                                                albert-class (jordan-class), 12
        (extract), 9
                                                albert1_to_vec (coerce), 7
[,quaternion_herm_matrix,index,missing,logical_method_rith_albert(Arith),4
        (extract), 9
                                                albert_arith_numeric(Arith), 4
[,real_symmetric_matrix,index,missing,logical_amethod_id(id), 10
        (extract), 9
                                                albert_inverse (Arith), 4
[,spin,index,missing,ANY-method
                                                albert_power_albert (Arith), 4
        (extract), 9
                                                albert_power_numeric (Arith), 4
[,spin,missing,index,ANY-method
                                                albert_power_single_n (Arith), 4
        (extract), 9
                                                albert_prod_albert (Arith), 4
[,spin,missing,missing,ANY-method
                                                albert_show(show), 15
        (extract), 9
                                                Arith, 4
[<-,albert,index,missing,albert-method
                                                Arith, ANY, jordan-method (Arith), 4
        (extract), 9
                                                Arith, jordan, ANY-method (Arith), 4
[<-,complex_herm_matrix,index,ANY,ANY-method Arith,jordan,jordan-method(Arith),4
        (extract), 9
                                                Arith, jordan, missing-method (Arith), 4
[<-,complex_herm_matrix,index,missing,complex_herm_flotdix;menteredc-method(Arith),4
        (extract), 9
                                                Arith-methods (Arith), 4
[<-,jordan_matrix,index,missing,numeric-methods.1matrix(coerce),7
        (extract), 9
                                                as.1matrix,albert-method(coerce),7
[<-,quaternion_herm_matrix,index,missing,quatersnineatherm_omatrix-method
        (extract), 9
                                                         (coerce), 7
```

20 INDEX

as.Imatrix,quaternion_nerm_matrix-method (coerce),7	dim, spin-method (misc), 13
as.1matrix,real_symmetric_matrix-method (coerce).7	extract, 9
as.1matrix,spin-method(coerce),7	harmonize_on(Arith),4
as.albert (coerce), 7	harmonize_oo(Arith), 4
as.complex_herm_matrix (coerce), 7	harmonize_spin_numeric(misc), 13
as.id(id), 10	harmonize_spin_spin (misc), 13
as.id(10), 10 as.identity(id), 10	head_and_tail (show), 15
as.jordan(coerce), 7	(3 37)
as.list (coerce), 7	id, 10
as.list,albert-method(coerce),7	identity (id), 10
as.matrix, jordan-method (coerce), 7	index (jordan-class), 12
as.one (id), 10	index-class (extract), 9
as.quaternion_herm_matrix(coerce), 7	is.albert(jordan), 11
as.real_symmetric_matrix (coerce), 7	<pre>is.complex_herm_matrix(jordan), 11</pre>
as.spin (jordan), 11	is.id(id), 10
43.5pin (jor dan), 11	is.identity(id), 10
c, 6	is.jordan(jordan), 11
c, jordan-method (c), 6	is.quaternion_herm_matrix(jordan), 11
c. jordan (c), 6	is.real_symmetric_matrix(jordan), 11
chm1_to_vec(coerce), 7	is.rsm(jordan), 11
chm_arith_chm (Arith), 4	is.spin(jordan), 11
chm_arith_numeric (Arith), 4	is.zero(zero), 17
chm_id (id), 10	is.zero,jordan-method(zero),17
chm_inverse (Arith), 4	is_ok_albert (valid), 16
chm_power_numeric (Arith), 4	is_ok_chm(valid), 16
chm_prod_chm(Arith), 4	is_ok_qhm(valid), 16
coerce, 7	is_ok_rsm(valid), 16
coercion (coerce), 7	is_zero_jordan(zero), 17
Compare, ANY, jordan-method	
(Compare-methods), 8	jordan, 11
Compare, jordan, ANY-method	jordan-class, 12
(Compare-methods), 8	jordan-package, 2
Compare, jordan, jordan-method	<pre>jordan_arith_jordan(Arith), 4</pre>
(Compare-methods), 8	<pre>jordan_arith_numeric(Arith), 4</pre>
Compare, jordan, numeric-method	<pre>jordan_compare (Compare-methods), 8</pre>
(Compare-methods), 8	jordan_compare_jordan
Compare, numeric, jordan-method	(Compare-methods), 8
(Compare-methods), 8	<pre>jordan_compare_numeric(misc), 13</pre>
Compare-methods, 8	jordan_compare_single
complex_herm_matrix(jordan), 11	(Compare-methods), 8
complex_herm_matrix-class	<pre>jordan_equal_jordan (Compare-methods), 8</pre>
(jordan-class), 12	<pre>jordan_equal_single (Compare-methods), 8</pre>
conc (c), 6	jordan_inverse (Arith), 4
conc_pair (c), 6	jordan_matrix-class(jordan-class), 12
concatenate (c), 6	jordan_matrix_show(show), 15
· //	jordan_negative(Arith),4
description (show), 15	<pre>jordan_plus_jordan(Arith), 4</pre>

INDEX 21

<pre>jordan_plus_numeric(Arith), 4</pre>	quaternion_prod_quaternion(Arith), 4
<pre>jordan_power_jordan(Arith), 4</pre>	
<pre>jordan_power_numeric (Arith), 4</pre>	r1 (misc), 13
<pre>jordan_power_singleinteger(Arith), 4</pre>	r_to_n, 14
<pre>jordan_prod_jordan(Arith), 4</pre>	r_to_n_albert (r_to_n), 14
<pre>jordan_prod_numeric(Arith), 4</pre>	r_to_n_chm (r_to_n), 14
<pre>jordan_special-class(jordan-class), 12</pre>	r_to_n_qhm (r_to_n), 14
	r_to_n_rsm(r_to_n), 14
length, jordan-method (misc), 13	ralbert (random), 13
	random, 12, 13
matrix1_to_jordan (coerce), 7	rchm (random), 13
misc, 13	<pre>real_symmetric_matrix(jordan), 11</pre>
mymatrixpower (misc), 13	real_symmetric_matrix-class
<pre>mymatrixpower_onion(misc), 13</pre>	(jordan-class), 12
n to n(n to n) 14	rjordan (random), 13
n_to_r (r_to_n), 14	rn (misc), 13
n_to_r_albert (r_to_n), 14	rqhm (random), 13
n_to_r_chm (r_to_n), 14	rrsm (random), 13
n_to_r_qhm (r_to_n), 14	rsm1_to_vec (coerce), 7
n_to_r_rsm(r_to_n), 14	rsm_arith_numeric(Arith), 4
names, jordan-method (misc), 13	rsm_arith_rsm(Arith),4
names<-,jordan-method(misc), 13	rsm_id (id), 10
numeric_arith_albert (Arith), 4	rsm_inverse (Arith), 4
numeric_arith_chm (Arith), 4	rsm_power_numeric (Arith), 4
numeric_arith_jordan (Arith), 4	rsm_prod_rsm (Arith), 4
numeric_arith_qhm (Arith), 4	rspin (random), 13
numeric_arith_rsm (Arith), 4	1 Spin (1 andom), 15
numeric_compare_jordan(jordan), 11	show, 15
numeric_to_albert (coerce), 7	spin (jordan), 11
numeric_to_complex_herm_matrix	spin-class (jordan-class), 12
(coerce), 7	spin_equal_spin (Compare-methods), 8
numeric_to_quaternion_herm_matrix	spin_id (id), 10
(coerce), 7	spin_inverse (Arith), 4
numeric_to_real_symmetric_matrix	spin_negative (Arith), 4
(coerce), 7	spin_plus_numeric (Arith), 4
actionder and actionder (Amith) 1	spin_plus_spin (Arith), 4
octjordan_prod_octjordan(Arith), 4	spin_power_numeric(Arith), 4
one (id), 10	spin_power_single_n (Arith), 4
qhm1_to_vec(coerce), 7	, , , , , , , , , , , , , , , , ,
qhm_arith_numeric (Arith), 4	spin_power_spin (Arith), 4
qhm_arith_qhm (Arith), 4	spin_prod_numeric (Arith), 4
qhm_id (id), 10	<pre>spin_prod_spin (Arith), 4 spin_show (show), 15</pre>
qhm_inverse (Arith), 4	* * * * * * * * * * * * * * * * * * * *
qhm_power_numeric (Arith), 4	sum, jordan-method (misc), 13
qhm_prod_qhm (Arith), 4	top and bottom (show) 15
quadraticform (misc), 13	top_and_bottom(show), 15
quaternion_herm_matrix (jordan), 11	valid, 16
	valid_albert (valid), 16
<pre>quaternion_herm_matrix-class (jordan-class), 12</pre>	valid_chm (valid), 16
(Jul uali Ciass), 12	variu_ciiii (variu), 10

22 INDEX

```
valid_qhm (valid), 16
valid_rsm (valid), 16
validity (valid), 16
vec_albertprod_vec (Arith), 4
vec_chmprod_vec (Arith), 4
vec_qhmprod_vec (Arith), 4
vec_rsmprod_vec (Arith), 4
vec_to_albert1 (coerce), 7
vec_to_chm1 (coerce), 7
vec_to_qhm1 (coerce), 7
vec_to_rsm1 (coerce), 7
```