Self-Validated Computations for the Probabilites of the Central Bivariate Chi-Square Distribution

Kevin Wright Iowa State University October, 1997

Ph.D. advisor: William Kennedy

Iowa State Dept of Statistics 50th Anniversary Conference October, 1997

Outline

- Introduction to Interval Analysis
- Bivariate Chi-Square Distributions
- Interval Bracket-Secant/Bisection
- Numerical results

Motivation

- Error analysis
- Cancellation
- Rounding errors

Solution? Interval analysis

Goal: Guaranteed error bounds

Interval Anaylsis (Moore, 1966, 1979)

A real interval x is defined $x = [\underline{x}, \overline{x}]$ where $\underline{x} \in \Re, \overline{x} \in \Re, \underline{x} \leq \overline{x}$.

Let
$$\mathbf{x} = [\underline{x}, \overline{x}]$$
 and $\mathbf{y} = [\underline{y}, \overline{y}]$.

Arithmetic operations for intervals are defined:

$$\mathbf{x} * \mathbf{y} = \{x * y : x \in \mathbf{x}, y \in \mathbf{y}\} \text{ for } * \in \{+, -, \times, \div\}$$

Equivalently:

$$\mathbf{x} + \mathbf{y} = [\underline{x} + y, \overline{x} + \overline{y}]$$

$$\mathbf{x} - \mathbf{y} = [\underline{x} - \overline{y}, \overline{x} - \underline{y}]$$

$$\mathbf{x} \cdot \mathbf{y} = [\min(\underline{x}y, \underline{x}\overline{y}, \overline{x}y, \overline{x}\overline{y}), \max(\underline{x}y, \underline{x}\overline{y}, \overline{x}y, \overline{x}\overline{y})]$$

$$1/\mathbf{y} = [1/\overline{y}, 1/y], \quad 0 \notin \mathbf{y}$$

$$x/y = x * (1/y), \notin y$$

Examples:

$$[1,1] + [-2,5] = [-1,6]$$

$$[-2,3] * [1,4] = [-8,12]$$

Note: Subtraction and division are not the inverse of addition and multiplication.

$$[0,1] - [0,1] = [-1,1]$$

$$[1,2]/[1,2] = [0.5,2]$$

Theorem: Rational interval functions are inclusion monotone, i.e. $f(x) \subseteq f(y)$ whenever $x \subseteq y$.

• IEEE Floating Point Specifications

Round to zero

Round to nearest

Round to $+\infty$

Round to $-\infty$

Compute
$$[1,1]/[3,3]$$
: $[\nabla(1/3), \triangle(1/3)] = [0.333, 0.334] = [0.33\frac{4}{3}]$

- Ensures guaranteed enclosure for rational interval functions.
- \bullet C++ BIAS/PROFIL (O. Knuppel, 1993) Operator overloading : $\mathbf{x}+\mathbf{y}$ Rounding mode control

Dependency difficulties

Reduce the number of occurrences of a given interval in an expression.

• Ex: Suppose
$$x = [-1, 2]$$
.
 $x^2 = x \cdot x = [-1, 2] \cdot [-1, 2] = [-2, 4]$

Fix this with an appropriate definition of \mathbf{x}^2 $\mathbf{x}^2 = \{x^2 : x \in \mathbf{x}\}$ $\mathbf{x}^2 = [0, 4]$

• Ex: Two extensions of $f(x) = x^2 - x$ are:

$$f_1(x) = x^2 - x$$

 $f_2(x) = (x - \frac{1}{2})^2 - \frac{1}{4}$
 $f_3(x) = x(x - 1)$

$$\begin{split} \mathbf{f}_1([0,2]) &= [-2,4] \\ \mathbf{f}_2([0,2]) &= [-\frac{1}{4},2] \\ \mathbf{f}_3([0,2]) &= [-2,2] \\ \text{The range of } f \text{ over } [0,2] \text{ is } [-\frac{1}{4},2]. \end{split}$$

Replacing each occurrence of x by x is called the *natural interval extension* of f(x).

Bivariate Chi-Square Applications

- Simultaneous inferences for variances
- Simultaneous tests in ANOVA
- Simultaneous tests for goodness of fit
- ullet Distribution of larger of correlated χ^2 -variates
- \bullet Density of linear combination of independent χ^2 -variates

See Gunst & Webster, 1973; Jensen & Howe, 1968

Bivariate Chi-square distribution : Case I Gunst, 1973

$$(Z_{1i}, Z_{2i}), i = 1, ..., m$$
 independent $Z_{ij} \sim N(0, 1)$ $Corr(Z_{1i}, Z_{2i}) = \rho, 1 = 1, ..., m$ $Y_i = \sum_{j=1}^m Z_{ij}^2, i = 1, 2$

$$(Y_1, Y_2) \sim Biv\chi^2(m, m, m)$$

Density

$$f(y_1, y_2) = (1 - \rho^2)^{m/2} \sum_{j=0}^{\infty} \frac{\Gamma(\frac{m}{2} + j)\rho^{2j}}{j!\Gamma(\frac{m}{2})} \times \frac{(y_1 y_2)^{(m/2) + j - 1} \exp[-(y_1 + y_2)/2(1 - \rho^2)]}{[2^{(m/2) + j}\Gamma(\frac{m}{2} + j)(1 - \rho^2)^{(m/2 + j)/2}]^2}$$

Bivariate Chi-square distribution: Case I

Distribution

$$P[Y_1 \le d_1, Y_2 \le d_2] = (1 - \rho^2)^{m/2} \times \sum_{j=0}^{\infty} \frac{\Gamma(\frac{m}{2} + j)}{j! \Gamma(\frac{m}{2})} \rho^{2j} \gamma(\frac{m}{2} + i, d_1^*) \gamma(\frac{m}{2} + i, d_2^*)$$

$$\gamma(\alpha, d) = \int_0^d \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} dx$$

$$d_j^* = d_j/(1 - \rho_{12}^2).$$

Let P_t be the sum truncated at t

Truncation error (Gunst, 1973)

$$0 \le R_t \le 1 - (1 - \rho^2)^{m/2} \sum_{j=0}^t \frac{\Gamma(\frac{m}{2} + j)}{j! \Gamma(\frac{m}{2})} \rho^{2j} \quad (1)$$

 $\mathbf{p}_t, \mathbf{r}_t$ interval extensions of P_t, R_t

$$P[Y_1 \le d_1, Y_2 \le d_2] = P_t + R_t$$
 for all t

$$\in [\underline{\mathbf{p}}_t,\,\overline{\mathbf{p}}_t+\overline{\mathbf{r}}_t]$$
 for all t

- ullet t determined by machine/software precision
- Stopping rules

$$\mathbf{r}_{t-1} = \mathbf{r}_t$$
$$width(\mathbf{r}_t) < \epsilon$$

Bivariate Chi-square distribution: Case II

$$(Z_{1i}, Z_{2i}), i = 1, \dots, m$$
 independent $Z_{2i}, i = m + 1, \dots, m + n$ $Z_{ij} \sim N(0, 1)$ $Corr(Z_{1i}, Z_{2i}) = \rho, 1 = 1, \dots, m$ $Y_1 = \sum_{j=1}^m Z_{1j}^2, Y_2 = \sum_{j=1}^{m+n} Z_{2j}^2$ $(Y_1, Y_2) \sim Biv\chi^2(m, m+n, m)$

Distribution

$$P[Y_{1} \leq d_{1}, Y_{2} \leq d_{2},] = (1 - \rho^{2})^{(m+n)/2} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{\Gamma(\frac{m}{2} + j) \Gamma(\frac{n}{2} + k)}{j! \Gamma(\frac{m}{2})} \times \rho^{2(j+k)} \gamma(\frac{m}{2} + j, d_{1}^{*}) \gamma(\frac{n}{2} + k, d_{2}^{*})$$

Truncation error

$$R_{t_1,t_2} \le 1 - (1 - \rho^2)^{m/2 + n/2} \times \sum_{j=0}^{t_1} \sum_{k=0}^{t_2} \frac{\Gamma(\frac{m}{2} + j)}{j! \Gamma(\frac{m}{2})} \frac{\Gamma(\frac{n}{2} + k)}{k! \Gamma(\frac{n}{2})} \rho^{2(j+k)}$$

 $P[Y_1 \leq d_1, Y_2 \leq d_2] \in [\underline{\mathbf{p}}_{t_1, t_2}, \overline{\mathbf{p}}_{t_1, t_2} + \overline{\mathbf{r}}_{t_1, t_2}]$ for all pairs (t_1, t_2) .

Bivariate Chi-square distribution: Case III

$$(Z_{1i}, Z_{2i}), i = 1, \dots, m \text{ independent}$$
 $Z_{1i}, i = m + 1, \dots, m + n$
 $Z_{2i}, i = m + 1, \dots, m + p$
 $Z_{ij} \sim N(0, 1)$
 $Corr(Z_{1i}, Z_{1i}) = \rho, 1 = 1, \dots, m$
 $Y_1 = \sum_{j=1}^{m+n} Z_{1j}^2, Y_2 = \sum_{j=1}^{m+p} Z_{2j}^2$
 $(Y_1, Y_2) \sim Biv\chi^2(m + n, m + p, m)$

Distribution

$$P[Y_{1} \leq d_{1}, Y_{2} \leq d_{2},] = (1 - \rho^{2})^{(m+n+p)/2} \times \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{\Gamma(\frac{m}{2}+j)}{j!\Gamma(\frac{m}{2})} \frac{\Gamma(\frac{n}{2}+k)}{k!\Gamma(\frac{n}{2})} \frac{\Gamma(\frac{p}{2}+l)}{l!\Gamma(\frac{p}{2})} \times \rho^{2(j+k+l)} \gamma(\frac{m}{2} + \frac{n}{2} + k + j, d_{1}^{*}) \gamma(\frac{m}{2} + \frac{p}{2} + j + l, d_{2}^{*})$$

Truncation error

$$R_{t} \leq 1 - (1 - \rho^{2})^{m/2 + n/2 + p/2} \times \sum_{j=0}^{t_{1}} \sum_{k=0}^{t_{2}} \sum_{l=0}^{t_{3}} \frac{\Gamma(\frac{m}{2} + j)}{j! \Gamma(\frac{m}{2})} \frac{\Gamma(\frac{n}{2} + k)}{k! \Gamma(\frac{n}{2})} \frac{\Gamma(\frac{p}{2} + l)}{l! \Gamma(\frac{p}{2})} \rho^{2(j+k+l)}$$

$$P[Y_1 \le d_1, Y_2 \le d_2] \in [\underline{\mathbf{p}}_{t_1, t_2, t_3}, \, \overline{\mathbf{p}}_{t_1, t_2, t_3} + \overline{\mathbf{r}}_{t_1, t_2, t_3}]$$
 for all triples (t_1, t_2, t_3)

Critical points of distributions

$$P(Y_1 \le x, Y_2 \le x) - \alpha = 0$$

- Intervalized Newton methods
- ullet Interval extension of F, f

Alternative: Derivative free method

- Bracket-Secant / Illinois Modification
 Bracket-Secant stops too soon
- Bisection

Termination of the bracket-secant

Termination of the bisection portion

Upper 0.05 Percentile points of the Bivriate Chi-Square Distribution : Case I $(Y_1,Y_2) \sim Biv\chi^2(m,m,m)$

ρ	m = 2	m = 12
0.1	7.348735242636 ⁹⁴ ₆₂	23.291675614644 ⁹ ₃
0.2	7.337736654468_{52}^{73}	23.279893907495 ⁵ ₀
0.3	7.318116097295_{00}^{33}	23.257752618706 ⁸ ₃
0.4	$7.28777721964_{197}^{231}$	23.22124105410 ₁₃
0.5	7.243389878426_{04}^{35}	23.1640530992480
0.6	7.179739084402_{01}^{47}	23.07634122520_{07}^{18}
0.7	7.088168635581_{23}^{73}	22.94173918779_{10}^{26}
0.8	$6.95217862545_{462}^{561}$	22.72905146810 ²⁸ ₀₃
0.9	6.73002568707 ⁶⁹⁵	22.35957467992 ₀

Upper 0.05 Percentile points of the Bivariate Chi-Square Distribution : Case II $(Y_1,Y_2) \sim Biv\chi^2(m,m+n,m)$

m	m+n	$\rho = 0.2$	$\rho = 0.4$
8	10	19.25562949840 ⁸³	$19.2145575272_{051}^{118}$
8	12	21.43987191019_{01}^{31}	$21.4161617406_{244}^{313}$
8	14	$23.8527709314_{093}^{125}$	$23.8412410690_{086}^{154}$
8	16	26.3613220302 ⁷⁰⁰ ₆₆₅	26.356264614 ⁸⁰²⁸ ₇₉₄₂
8	18	28.89382780550 ⁹³ ₅₇	28.8917353286 ⁷⁶⁸ ₆₅₇
m	m+n	$\rho = 0.6$	$\rho = 0.8$
<u>m</u> 8	m+n	$\rho = 0.6$ $19.1173225955_{268}^{464}$	$\rho = 0.8$ $18.90189596_{29503}^{30341}$
			<u>'</u>
8	10	19.1173225955 ⁴⁶⁴ ₂₆₈	18.9018959630341
8	10 12	19.1173225955 ⁴⁶⁴ 21.3604107620 ⁶²⁵ 460	18.90189596 ³⁰³⁴¹ ₂₉₅₀₃ 21.243609643 ⁹¹⁶³ ₈₃₈₈

Upper 0.05 Percentile points of the Bivariate Chi-Square Distribution: Case III $(Y_1,Y_2) \sim Biv\chi^2(m+n,m+p,m)$

	I	l		•
m	n	p	$\rho = 0.4$	$\rho = 0.6$
7	1	11	28.892120984 ⁷²³⁵ ₆₄₈₇	28.887920316 ⁷⁴⁶¹ ₃₄₅₀
6	2	12	28.8924903043 ⁹²⁸ ₁₉₀	28.88907530 ⁴²⁹¹⁴
5	3	13	28.892843220 ⁴²³³ ₃₅₀₆	$28.890155051_{1105}^{4641}$
4	4	14	$28.893179676_{7852}^{8562}$	$28.891157355_{1279}^{6196}$
3	5	15	$28.893499628_{8498}^{9161}$	28.89208036 ⁹³²⁶⁹
2	6	16	28.893803042 <mark>8767</mark>	28.892922583 ³⁸⁸⁶
1	7	17	28.894089895 ⁹⁰⁴⁵	$28.89368281_{09926}^{14038}$

Conclusions

- Theoretical error analysis
- Rounding errors
- Cancellation
- Interval analysis
- Guaranteed error bound
- Improved Bivariate Chi-Square values
- Corrections to previous tables
- Further research in statistics
- Univariate Distributions : Wang & Kennedy,
 1994