

## Polynomial Preconditioners

Ferdinand Vanmaele

### Introduction

- Discretization of partial differential equations
  - Solve Ax = b with A matrix of high dimension n
- Common in science and industry
  - Fluid dynamics
  - Astrophysics
  - Biochemistry
  - Economics
  - etc...

## Example: Model problem

- Problem
  - -u''(x) = f(x) for  $x \in (0,1)$ u(0) = u(1) = 0
- Discretization
  - $x_i = i \times h$ , i = 0, ..., n + 1, where h = 1/(n + 1)
- Central difference approximation

• 
$$-u_{i-1} + 2u_i - u_{i+1} = h^2 f(x_i)$$

- Linear system
  - Ax = f with  $A \in \mathbb{R}^{n \times n}$

$$A = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2 \end{pmatrix}$$

### Introduction

- Matrix A
  - Possible non-symmetric or indefinite
  - Sparse!
- Iterative solvers
  - Goal: Reduce storage and complexity requirements
  - Series  $(x_i) \rightarrow x$  of approximate solutions to Ax = b
- Preconditioned system  $M^{-1}Ax = M^{-1}b$ 
  - Goal: Improve convergence rate of  $(x_i)$
  - $M^{-1}$  as low-degree polynomial
  - Same solution as Ax = b

## Example: Circle Eigenvalue Matrix

• *A* block diagonal, size n = 2000

• 2 × 2 blocks 
$$\begin{bmatrix} 1 + \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & 1 + \cos(\alpha) \end{bmatrix}, \alpha \in \left\{0, \frac{2\pi}{n}, \frac{4\pi}{n}, \dots, \frac{1998\pi}{n}\right\}$$

- Eigenvalues on unit circle in complex plane
- Condition number  $K(A) \approx 637$
- Difficult problem without preconditioning

1:  $K(A) = ||A^{-1}|| ||A||$  denotes how sensitive the solution x is to perturbations in the matrix A or the right-hand side b.

## Example: Circle Eigenvalue Matrix





- Polynomial  $M^{-1} = s(A)$
- $\deg(s) = 10$
- $K(M^{-1}A) \approx 69.9$
- Eigenvalues of  $M^{-1}$  in  $\mathbb{C}$

- Most entries of A are zero
  - Store *A* as a *sparse matrix*
  - Multiple formats available, e.g. CSR
- Direct methods
  - Decomposition A = LU
  - *L* and *U* may become dense: *fill-in*
  - High storage and complexity requirements for large *n*
- Alternative: Iterative methods

- Starting approximation  $x_0$
- Method  $x_i \to x_{i+1}$ 
  - $x_{i+1} = x_i + \alpha N^{-1} r_i$  where  $r_i = A x_i b$  (stationary)
  - $x_{i+1} = x_i + constant_i * search direction_i$  (non-stationary)
- Stopping criterion
  - Relative residual:  $\frac{\|Ax_i b\|}{\|b\|} \le \epsilon$ 
    - $\bullet \quad \underline{\wedge} \quad ||Ax_i b|| \le ||A|| ||x_i x||$
  - Typically  $\epsilon = 10^{-1} \dots 10^{-12}$
- Optimality condition?

- Idea: Let N = I,  $\alpha = 1$ ,  $x_0 = 0$ . Write out  $x_i \rightarrow x_{i+1}$ :
  - $x_1 = x_0 + r_0 = r_0$
  - $x_2 = x_1 + r_1 = r_0 + (b Ax_0)$ =  $2r_0 - Ar_0$
  - $x_3 = x_2 + r_2 = \cdots$ =  $3r_0 - 3Ar_0 + A^2r_0$
  - ...
- Implication:

#### • GMRES

- Construct orthonormal basis  $(v_1 \cdots v_i)$  of  $\mathcal{K}_i$
- Minimize  $||b Ax_i||$  for  $x_i \in x_0 + \mathcal{K}_i$
- Works for general matrices A

#### • Step amount

- After n steps,  $\mathcal{K}_n = \mathbb{R}^n$  and the solution is exact
- We want  $i \ll n$  in practice

#### Limitations

- No short recurrence for general matrices ②
- After m steps, set  $x_m = x_0$  and restart algorithm: GMRES(m)

- Building blocks
  - Vector updates (SAXPY)
    - Easy to parallelize ✓
  - Inner products
    - Parallelization: synchronization between all processes ©
  - Sparse matrix-vector products (SpMV)
    - Parallelization: synchronization between neighbours 😂
  - Matrix-matrix product
    - Determine preconditioner (before iteration start)

## Preconditioning

- Solve  $M^{-1}Ax = M^{-1}b$ 
  - Same solution as original system Ax = b
- Extreme cases
  - M = A: equally hard to solve problem  $x = A^{-1}b$
  - M = I: original system Ax = b
- *M* "in between" *A* and *I*:
  - Matrix norm  $||I M^{-1}A||$  small
  - Eigenvalues of  $M^{-1}A$  close to 1
- Goal:  $M^{-1}$  as a polynomial
  - Parallelization properties (SpMVs)

## Preconditioning

- $M^{-1}$  matrix polynomial of degree d
  - $M^{-1} = y_{d+1}A^d + y_dA^{d-1} + \dots + y_2A + y_1I$
  - Coefficients  $y = (y_1 \cdots y_{d+1})$  determined by A and some  $v_0 \neq 0$
- Minimize  $||(I M^{-1}A)v_0||$ 
  - Choose  $v_0$ 
    - A random vector, e.g.  $v_0 \sim \mathcal{N}(-1,1)$  gives good results in practice
  - Construct power basis  $Y = \{v_0, Av_0, ..., A^dv_0\}$ 
    - A Columns of Y lose linear independence!
  - Solve least squares problem  $\min \|v_0 s(A)Av_0\|$ 
    - Solve normal equations  $(AY)^T AYy = (AY)v_0$

## Preconditioning

- Practical considerations
  - Do not store  $M^{-1} = s(A)$  explicitly (vector products)

• 
$$z^{(1)} = y_{d+1}Av + y_dv$$
  
•  $z^{(2)} = A * z^{(1)} + y_{d-1}v$   
•  $z^{(3)} = A * z^{(2)} + y_{d-2}v$   
•  $z^{(d)} = A * z^{(d-1)} + y_1v$ 

- Set degree of the polynomial
  - Cost of multiplication  $(AY)^T AY \rightarrow$  lower degree
  - Difficulty of problem  $Ax = b \rightarrow$  higher degree
- Can be combined with other preconditioners, e.g. ILU(k)

## Example: Model problem (n = 5)

• 
$$A = \frac{1}{36} \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2 \end{pmatrix}$$
 for  $n = 5$ . Choose "random"  $v_0 = \begin{pmatrix} 1/3 \\ -1 \\ 0 \\ -1 \end{pmatrix}$  and set  $d = 2$ .

$$\bullet \ Y = (v_0 A v_0 A^2 v_0) = \begin{pmatrix} \frac{1}{3} & \frac{5}{108} & \frac{17}{3888} \\ -1 & -\frac{7}{108} & -\frac{25}{3888} \\ 0 & \frac{1}{18} & \frac{11}{1944} \\ -1 & -\frac{1}{36} & -\frac{1}{432} \\ -1 & -\frac{1}{36} & -\frac{1}{1296} \end{pmatrix}, \ AY = \begin{pmatrix} \frac{5}{108} & \frac{17}{3888} & \frac{59}{139968} \\ -\frac{7}{108} & \frac{25}{3888} & -\frac{43}{67625} \\ \frac{1}{18} & \frac{11}{1944} & \frac{13}{23328} \\ -\frac{1}{36} & -\frac{1}{432} & -\frac{12}{45395} \\ -\frac{1}{36} & -\frac{1}{1296} & \frac{1}{46656} \end{pmatrix}$$

- Solve system  $(AY)^T AYy = (AY)^T v_0$  (e.g. Gauss)
- Solution:  $s(A) = 11232 \cdot A^2 \frac{38767}{19} \cdot A + \frac{6574}{65}I$ .  $spec(s(A)A) \approx \{0.64, 0.76, 1.48, 1.25, 1.07\}$

 $spec(A) \approx \{0.01, 0.03, 0.56, 0.08, 0.10\}$ 



#### Circle Eigenvalue Matrix

• 
$$b \sim N(0,1)$$

- GMRES(100)
- 5000 Iterations

• 
$$\epsilon = 10^{-8}$$

• Gradual improvement with raised degree





- Circle Eigenvalue Matrix
- K(s(A)A) (estimated)
- 1 order of magnitude improvement



- E20R0100
- Counter-example for classical preconditioners
- $b \sim N(0,1)$
- GMRES(100)
- 5000 Iterations

• 
$$\epsilon = 10^{-8}$$

• Achieved by deg 10 polynomial



### References

- Iterative Methods for Sparse Linear Systems
   <a href="https://www-users.cs.umn.edu/~saad/IterMethBook\_2ndEd.pdf">https://www-users.cs.umn.edu/~saad/IterMethBook\_2ndEd.pdf</a>
- Templates for the Solutions of Linear Systems: Building Blocks for Iterative Methods <a href="https://www.netlib.org/templates/templates.pdf">https://www.netlib.org/templates/templates.pdf</a>
- Polynomial Preconditioned GMRES to Reduce Communication in Parallel Computing <a href="https://arxiv.org/abs/1907.00072">https://arxiv.org/abs/1907.00072</a>
- Seminar report (3) https://github.com/fvanmaele/polynomial-preconditioning

# Thank you for your attention!



20