ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Отчёт по лабораторной работы 3.3.5 Эффект Холла

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

Аннотация

Цель работы:

Измерение подвижности и концентрации носителей заряда в металлах.

В работе используются:

Электромагнит с источником питания, источник постоянного тока, микровольтметр, амперметры, милливеберметр или цифровой магнитометр, образцы из меди, серебра и цинка.

Теоретические сведения:

В работе изучаются особенности проводимости металлов в геометрии мостика Холла. Ток пропускается по плоской прямоугольной металлической пластинке, помещённой в перпендикулярное пластинке магнитное поле. Измеряется разность потенциалов между краями пластинки в поперечном к току направлении. По измерениям определяется константа Холла, тип проводимости (электронный или дырочный) и на основе соотношения (3.28) вычисляется концентрация основных носителей заряда.

Во внешнем магнитном поле В на заряды действует сила Лоренца:

$$F = qE + qU \times B$$

Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с Е. Действительно, траектории частиц будут либо искривляться, либо, если геометрия проводника этого не позволяет, возникнет дополнительное электрическое поле, компенсирующее магнитную составляющую силы Лоренца. Возникновение поперечного току электрического поля в образце, помещённом во внешнее магнитное поле, называют эффектом Холла.

Мостик Холла. В данной схеме ток вынуждают течь по оси х вдоль плоской пластинки (ширина пластинки а, толщина h, длина l). Сила Лоренца, действующая со стороны перпендикулярного пластинке магнитного поля, «прибивает» носители заряда к краям образца, что создаёт холловское электрическое поле, компенсирующее эту силу. Поперечное напряжение между краями пластинки (холловское напряжение) равно $U_{\perp}=E_y a$, где:

$$E_y = \rho_{yx} \cdot \jmath_x = \jmath_x B/nq$$

Плотность тока, текущего через образец, равна $j_x = I/ah$, где I — полный ток, аh — поперечное сечение. Таким образом, для холловского напряжения имеем

$$U_{\perp} = BnqhI = RHBhI$$

где константу RH=1/nq называют постоянной Холла. Знак постоянной Холла определяется знаком заряда носителей.

Экспериментальная установка:

В зазоре электромагнита создается постоянное магнитное поле, которое можно регулировать с помощью источника питания электромагнита.

Иногда контакты 2 и 4 вследствие неточности подпайки не лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим напряжением, вызванным протеканием основного тока через образец.

Неточности измерений можно избежать путем фиксирования этого омического напряжения при нулевом значении силы тока и отсчитывании от него Холловского напряжения.

$$U_{\perp} = U_{24} - U_0$$

Измерив ток в образце и напряжение U_{34} между контактами 3 и 4 в отсутствии магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

 $\sigma = \frac{IL_{34}}{U_{34}al} \tag{1}$

Рис. 1: Экспериментальная установка.

Результаты измерений и обработка данных:

Градуировка электромагнита

1. Измерим калибровочную кривую электромагнита — зависимость между индукцией В магнитного поля в его зазоре и током I_M через обмотки магнита. Полученные данные занесем в таблицу 1 и построим по ним график зависимости $B(I_M)$.

I_M ,	A	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	1,0	1,2
B, M'	Гл	18,7	150,2	276,8	386,3	540,0	614,5	751,8	900,0	1031,7	1153,6	1220,0

Таблица 1: Данные для калибровочной кривой магни-

та

Рис. 2: График зависимости B(I) для калибровочной кривой электромагнита.

Измерение ЭДС Холла

2. Получим зависимость напряжения U_{24} от тока электромагнита I_M при фиксированном токе I через образец меди, аналогично получим зависимость при других значениях тока I через образец. Аналогично для образца из цинка при одном значении тока I=1 Ам Полученные данные занесем в таблицы $2\text{-}8.\sigma_U=1$ дел =40 нВ

I_M, A	0,1	0,19	$0,\!39$	0,6	0,8	1,0	1,2
U, дел	4	5	6	7	8,5	9	10

Таблица 2: Зависимость $U(I_M)$ для меди при ${\rm I}=0,21$ А, $U_0=2$ дел

- 1	I_M , A									
	U, дел	5	6	8	9	10,5	13	14	16	17

Таблица 3: Зависимость $U(I_M)$ для меди при ${
m I}=0,4$ A, $U_0=3$ дел

I_M , A									
U, дел	6	8	10,5	12,5	15	17	19	22	23

Таблица 4: Зависимость $U(I_M)$ для меди при ${
m I}=0.6$ A, $U_0=4$ дел

I_M , A	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,9	1,1
U, дел	7	9,5	12,5	15,5	18	21	23	27	29

Таблица 5: Зависимость $U(I_M)$ для меди при ${
m I}=0.8$ A, $U_0=4$ дел

	I_M , A	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,9	1,1
ĺ	U, дел	7	11	15	18	22	25	28	32,5	35

Таблица 6: Зависимость $U(I_M)$ для меди при ${\rm I}=1$ A, $U_0=4$ дел

I_M, A									
U, дел	8	13	17,5	21,5	26	30	33	39	42,5

Таблица 7: Зависимость $U(I_M)$ для меди при ${\rm I}=1,2$ A, $U_0=4$ дел

I_M, A	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1	1,2
U, дел	18,5	14,5	10	6	3,5	0	-3	-6	-7,5	-9	-10,5	-11,5

 $\overline{ ext{Таблица 8: Зависимость }U(I_M)}$ для цинка при $\overline{ ext{I}}=1$ А, $\overline{ ext{U}}_0=23$ дел

3. При токе I=1 A через образец измерим падение напряжения между контактами 3 и 4 для каждого из двух образцов.

```
для цинка: U=310\pm 5 мкВ, L_{3,4}=3,5 мм, a=0,12 мм, l=9 мм для меди: U=470\pm 5 мкВ, L_{3,4}=6 мм, a=0,05 мм, l=8 мм
```

4. Построим графики зависимости U(B) для полученных значений. По коэффициентам полученных прямых построим график зависимости k(I) для меди.

Рис. 3: График зависимости U(B) для меди (сплошная) и цинка (пунктир).

Рис. 4: График зависимости k(I) для меди.

5. Для обоих образцов рассчитаем постоянную Холла R_H , концентрацию п носителей тока, удельное сопротивление $\rho_{\rm yg}$ и удельную проводимость σ_0 материалов.

 $Me\partial v$:

$$R_H = -\alpha \cdot a = -(5, 5 \pm 0, 5 \cdot 10^{-11}) \text{м}^3/\text{K}$$
л $n = \frac{1}{R_H e} = (1, 3 \pm 0, 3 \cdot 10^{29}) 1/\text{м}^3$
$$\sigma_0 = \frac{IL_{34}}{alU} = (0, 32 \pm 0, 06 \cdot 10^8) 1/\text{Om M}$$

Цинк:

$$R_H=k\cdot a/I=(12\pm 1\cdot 10^{-11}){
m M}^3/{
m K}$$
л
$$n=\frac{1}{R_He}=(0,5\pm 0,1\cdot 10^{29})1/{
m M}^3$$

$$\sigma_0=\frac{IL_{34}}{alU}=(0,11\pm 0,02\cdot 10^8)1/{
m Om}~{
m M}$$

6. . Используя найденные значения концентрации n и удельной проводимости $\sigma_0 = 1/\rho$ вычислим подвижность μ носителей тока. Сведем все результаты в таблицу.

Металл	R_H , м ³ /Кл	Табл. R_H , м ³ /Кл	n, 1/м ³	σ , 1/Om m	b, cm^2/Bc
Медь	$-5,5\pm0,5\cdot10^{-11}$	$-5, 5 \cdot 10^{-11}$	$1,3\pm0,3\cdot10^{29}$	$0,32 \pm 0,06 \cdot 10^8$	17 ± 1
Цинк	$12 \pm 1 \cdot 10^{-11}$	$10 \cdot 10^{-11}$	$0.5 \pm 0.1 \cdot 10^{29}$	$0,11 \pm 0,02 \cdot 10^8$	13 ± 1

Таблица 9: Сводная таблица всех полученных результатов

Обсуждение результатов и выводы:

В данной работе мы изучали эффект Холла и измерили подвижность, концентрацию и постоянную Холла для образцов меди и цинка. Полученные нами постоянные Холла близки к табличным значениям, однако удельные проводимости не совпадают $(0,56\cdot 10^8 \frac{1}{\text{Ом} \cdot \text{м}})$ для меди и $0,16\cdot 10^8 \frac{1}{\text{Ом} \cdot \text{м}}$ для цинка), есть предположение, что мы не правильно сняли значения напряжения между контактами 3 и 4, что стало причиной такого отклонения от табличного значения.