

probability transition function

Canonical name ProbabilityTransitionFunction

Date of creation 2013-03-22 16:12:37 Last modified on 2013-03-22 16:12:37 Owner mcarlisle (7591) Last modified by mcarlisle (7591)

Numerical id 8

Author mcarlisle (7591)

Entry type Definition Classification msc 60J35

Defines probability transition function

Defines homogeneous probability transition function

Defines Chapman-Kolmogorov equation

A probability transition function (p.t.f., or just t.f. in context) on a measurable space (Ω, \mathcal{F}) is a family $P_{s,t}$, $0 \le s < t$ of transition probabilities on (Ω, \mathcal{F}) such that for every three real numbers s < t < v, the family the Chapman-Kolmogorov equation

$$\int P_{s,t}(x,dy)P_{t,v}(y,A) = P_{s,v}(x,A)$$

for every $x \in \Omega$ and $A \in \mathcal{F}$. The t.f. is said to be if $P_{s,t}$ depends on s and t only through their t-s. In this case, we write $P_{t,0} = P_t$ and the family $\{P_t, t \geq 0\}$ is a semigroup, and the Chapman-Kolmogorov equation reads

$$P_{t+s}(x,A) = \int P_s(x,dy)P_t(y,A).$$

References

[1] D. Revuz & M. Yor, Continuous Martingales and Brownian Motion, Third Edition Corrected. Volume 293, Grundlehren der mathematischen Wissenschaften. Springer, Berlin, 2005.