Mean ShiftTheory and Applications

Slide credit: Yaron Ukrainitz & Bernard Sarel

Agenda

Mean Shift Theory

- What is Mean Shift?
- Density Estimation Methods
- Deriving the Mean Shift
- Mean shift properties

Applications

- Clustering
- Discontinuity Preserving Smoothing
- Object Contour Detection
- Segmentation
- Object Tracking

Mean Shift Theory

Distribution of identical billiard balls

What is Mean Shift?

A tool for:

Finding modes in a set of data samples, manifesting an underlying probability density function (PDF) in R^N

PDF in feature space

- Color space
- Scale space
- Actually any feature space you can conceive

•

DF Representation

Data

Non-parametric
Density **GRADIENT** Estimation
(Mean Shift)

PDF Analysis

Non-Parametric Density Estimation

<u>Assumption</u>: The data points are sampled from an underlying PDF

Assumed Underlying PDF

Real Data Samples

Non-Parametric Density Estimation

Non-Parametric Density Estimation

Assumed Underlying PDF

Real Data Samples

Parametric Density Estimation

Assumption: The data points are sampled from an underlying PDF

Assumed Underlying PDF

Real Data Samples

Kernel Density Estimation

Parzen Windows - Function Forms

$$P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_{i})$$

 $P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_i)$ A function of some finite number of data points $X_1...X_n$

Data

In practice one uses the forms:

$$K(\mathbf{x}) = c \prod_{i=1}^{d} k(x_i)$$
 or $K(\mathbf{x}) = ck(\|\mathbf{x}\|)$

Same function on each dimension Function of vector length only

Kernel Density Estimation

Various Kernels

$$P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_{i})$$

A function of some finite number of data points

 $X_1...X_n$

Examples:

• Epanechnikov Kernel
$$K_E(\mathbf{x}) = \begin{cases} c(1 - \|\mathbf{x}\|^2) & \|\mathbf{x}\| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Uniform Kernel

$$K_U(\mathbf{x}) = \begin{cases} c & \|\mathbf{x}\| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Normal Kernel

$$K_N(\mathbf{x}) = c \cdot \exp\left(-\frac{1}{2}\|\mathbf{x}\|^2\right)$$

Kernel Density Estimation

Gradient

$$\nabla P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \nabla K(\mathbf{x} - \mathbf{x}_{i})$$

Give up estimating the PDF! Estimate **ONLY** the gradient

Using the Kernel form:

$$K(\mathbf{x} - \mathbf{x}_i) = ck \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

We get:

Size of window

$$\nabla P(\mathbf{x}) = \frac{c}{n} \sum_{i=1}^{n} \nabla k_{i} = \frac{c}{n} \left[\sum_{i=1}^{n} g_{i} \right] \left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g_{i}}{\sum_{i=1}^{n} g_{i}} - \mathbf{x} \right]$$

Kenneu Deg Sihe Este iana Sloift Gradient

$$\nabla P(\mathbf{x}) = \frac{c}{n} \sum_{i=1}^{n} \nabla k_i = \frac{c}{n} \left[\sum_{i=1}^{n} g_i \right] \left[\frac{\sum_{i=1}^{n} \mathbf{x}_i g_i}{\sum_{i=1}^{n} g_i} - \mathbf{x} \right]$$

Computing The Mean Shift

$$\nabla P(\mathbf{x}) = \frac{c}{n} \sum_{i=1}^{n} \nabla k_{i} = \frac{c}{n} \left[\sum_{i=1}^{n} g_{i} \right] \left[\left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g_{i}}{\sum_{i=1}^{n} g_{i}} - \mathbf{x} \right] \right]$$

Yet another Kernel density estimation!

Simple Mean Shift procedure:

• Compute mean shift vector

$$\mathbf{m}(\mathbf{x}) = \begin{bmatrix} \frac{\sum_{i=1}^{n} \mathbf{x}_{i} g\left(\frac{\|\mathbf{x} - \mathbf{x}_{i}\|^{2}}{h}\right)}{\sum_{i=1}^{n} g\left(\frac{\|\mathbf{x} - \mathbf{x}_{i}\|^{2}}{h}\right)} - \mathbf{x} \end{bmatrix}$$

•Translate the Kernel window by **m(x)**

Mean Shift Mode Detection

<u>Updated Mean Shift Procedure:</u>

- Find all modes using the Simple Mean Shift Procedure
- Prune modes by perturbing them (find saddle points and plateaus)
- Prune nearby take highest mode in the window

Mean Shift Properties

- Automatic convergence speed the mean shift vector size depends on the gradient itself.
- Near maxima, the steps are small and refined
- Convergence is guaranteed for infinitesimal steps only → infinitely convergent, (therefore set a lower bound)
- For Uniform Kernel (), convergence is achieved in a finite number of steps
- Normal Kernel (
) exhibits a smooth trajectory, but is slower than Uniform Kernel (
).

Adaptive Gradient Ascent

Real Modality Analysis

Tessellate the space with windows

Run the procedure in parallel

Real Modality Analysis

The blue data points were traversed by the windows towards the mode

Real Modality Analysis

An example

Window tracks signify the steepest ascent directions

Mean Shift Strengths & Weaknesses

Strengths:

- Application independent tool
- Suitable for real data analysis
- Does not assume any prior shape (e.g. elliptical) on data clusters
- Can handle arbitrary feature spaces
- Only ONE parameter to choose
- h (window size) has a physical meaning, unlike K-Means

<u>Weaknesses</u>:

- The window size (bandwidth selection) is not trivial
- Inappropriate window size can cause modes to be merged, or generate additional "shallow" modes → Use adaptive window size

Mean Shift Applications

Clustering

<u>Cluster</u>: All data points in the *attraction basin* of a mode

<u>Attraction basin</u>: the region for which all trajectories lead to the same mode

ClusteringSynthetic Examples

Simple Modal Structures

Clustering

Real Example

Feature space:

L*u*v representation

'nitial window enters

N

pruning

Clustering Real Example

L*u*v space representation

Clustering

Real Example

Final clusters

Discontinuity Preserving Smoothing

Meaning: treat the image as data points in the spatial and gray level domain

Discontinuity Preserving Smoothing

Discontinuity Preserving Smoothing

The effect of window size in spatial and range spaces

Discontinuity Preserving Smoothing Example

Discontinuity Preserving Smoothing Example

Ray Propagation

Accurately segment various objects (rounded in nature) in medical images

Ray Propagation

Use displacement data to guide ray propagation

Discontinuity preserving smoothing

Displacement vectors

Ray Propagation

Speed $(x, y) = \alpha f(\nabla disp(x, y)) + \beta \kappa(x, y)$

Original image

Gray levels along red line

Gray levels after smoothing

Displacement vectors

Displacement vectors' derivative

Speed
$$(x, y) = \alpha f(\nabla disp(x, y)) + \beta \kappa(x, y)$$

Object Contour Detection Example

Importance of smoothing by curvature

<u>Segment</u> = Cluster,

or Cluster of Clusters

Algorithm:

- Run Filtering (discontinuity preserving smoothing)
- Cluster the clusters which are closer than window size

...when feature space is only gray levels...

Non-Rigid Object Tracking

··· -----

General Framework: Target Representation

General Framework: Target Localization

Find best candidate by maximizing a similarity func.

Repeat the same process in the next pair of frames

Target Representation

PDF Representation

Target Model (centered at 0)

Target Candidate (centered at y)

$$\overrightarrow{q} = [q_u]_{u=1..m} \qquad \sum_{u=1}^m q_u = 1$$

Similarity Function:

$$f(y) = f[q, p(y)]$$

$$\overrightarrow{p}(y) = \left\{ p_u(y) \right\}_{u=1..m} \qquad \sum_{u=1}^m p_u = 1$$

Finding the PDF of the target model

Target pixel locations

A differentiable, isotropic, convex, monotonically decreasing kernel

• Peripheral pixels are affected by occlusion and background interference

b(x)

The color bin index (1..m) of pixel x

Probability of feature u in model

Probability of feature u in candidate

Similarity Function

Target model: $q = (q_1, ..., q_m)$

Target candidate: $p(y) = (p_1(y), \dots, p_m(y))$

Similarity function: f(y) = f[p(y),q] = ?

The Bhattacharyya Coefficient

$$q' = (\sqrt{q_1}, \dots, \sqrt{q_m})$$

$$\vec{p}'(y) = \left(\sqrt{p_1(y)}, \dots, \sqrt{p_m(y)}\right)$$

$$f(y) = \cos \theta_y = \frac{p'(y)^T q'}{\|p'(y)\| \cdot \|q'\|} = \sum_{u=1}^m \sqrt{p_u(y) q_u}$$

Target Localization Algorithm

Approximating the Similarity Function

$$f(y) = \sum_{u=1}^{m} \sqrt{p_u(y) q_u}$$

Model location: y_0

Candidate location: \mathcal{Y}

Linear approx. (around y_0)

$$f(y) \approx \frac{1}{2} \sum_{u=1}^{m} \sqrt{p_u(y_0) q_u} + \frac{1}{2} \sum_{u=1}^{m} p_u(y) \sqrt{\frac{q_u}{p_u(y_0)}}$$

$$\frac{C_h}{2} \sum_{i=1}^n w k \left(\left\| \frac{y - x_i}{h} \right\|^2 \right)$$

Density
estimate!
(as a function of
y)

Maximizing the Similarity Function

The mode of
$$\frac{C_h}{2} \sum_{i=1}^n w_i k \left(\left\| \frac{y - x_i}{h} \right\|^2 \right) = \text{sought maximum}$$

Applying Mean-Shift

The mode of
$$\frac{C_h}{2} \sum_{i=1}^n w_i k \left(\left\| \frac{y - x_i}{h} \right\|^2 \right) = \text{sought maximum}$$

Original Mean-Shift:

Find mode of
$$c \sum_{i=1}^{n} k \left(\left\| \frac{y - x_i}{h} \right\|^2 \right)$$

$$y_{1} = \frac{\sum_{i=1}^{n} x_{i} g\left(\left\|\frac{y_{0} - x_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n} g\left(\left\|\frac{y_{0} - x_{i}}{h}\right\|^{2}\right)}$$

Extended Mean-Shift:

Find mode of
$$c \sum_{i=1}^{n} v_{i}$$

$$c\sum_{i=1}^{n} \overline{w_{i}} k \left(\left\| \frac{y - x_{i}}{h} \right\|^{2} \right)$$
 using

$$y_{1} = \frac{\sum_{i=1}^{n} x w_{i} g \left(\left\| \frac{y_{0} - x_{i}}{h} \right\|^{2} \right)}{\sum_{i=1}^{n} w_{i} g \left(\left\| \frac{y_{0} - x_{i}}{h} \right\|^{2} \right)}$$

About Kernels and Profiles

A special class of radially symmetric kernels:

Choosing the Kernel

A special class of radially symmetric kernels:

$$K(x) = ck(||x||^2)$$

Epanechnikov kernel:

Uniform kernel:

$$g(x) = -k(x) = \begin{cases} 1 & \text{if } ||x|| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$y_{1} = \frac{\sum_{i=1}^{n} x_{i} w_{i} g\left(\left\|\frac{y_{0} - x_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n} w_{i} g\left(\left\|\frac{y_{0} - x_{i}}{h}\right\|^{2}\right)}$$

$$y_{1} = \frac{\sum_{i=1}^{n} x_{i} w_{i}}{\sum_{i=1}^{n} w_{i}}$$

Adaptive Scale

Problem:

The scale of the target changes in time

The scale (h) of the kernel must be adapted

Solution:

Feature space: 16×16×16 quantized RGB

Target: manually selected on 1st frame

Average mean-shift iterations: 4

Partial occlusion

Distraction

Motion blur

Feature space: 128×128 quantized RG

The Scale Selection Problem

Tracking Through Scale Space

Motivation

Spatial localization for several scales

Simultaneous localization in space and scale

Previous method

This method

Mean-shift Blob Tracking through Scale Space, by R. Collins

Lindeberg's Theory

Selecting the best scale for describing image features

Lindeberg's Theory

The Laplacian operator for selecting blob-like features

Lindeberg's Theory

Multi-Scale Feature Selection Process

Tracking Through Scale Space

Approximating LOG using DOG

Gaussian pyramids are created faster

Tracking Through Scale Space

Using Lindeberg's Theory

Tracking Through Scale Space Example

Tracking Through Scale Space

Applying Mean-Shift

Use interleaved spatial/scale mean-shift

Tracking Through Scale Space Results

Fixed-scale

± 10% scale adaptation

Tracking through scale space

Thank You