Programming Exercises 3: Package

Submissions only via Moodle (due to 23:55, Sep. 19)

September 11, 2014

In this assignment, you will have to implement a "package" of polynomials in one variable using the list data type.

type polynomial = float list;;

A polynomial p(x) of degree n in a single variable x is of the form:

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$$

- The (real) numbers c_i are called *co-efficients* of x^i .
- The powers of x in each term are called the *exponents*

We can also write p(x) as

$$c_0.x^0 + c_1.x^1 + \ldots + c_n.x^n = \sum_{i=0}^n c_i.x^i$$

The polynomial p(x) can be modelled as a list $[c_0; c_1; \ldots; c_n]$.

- The variable is implicit i.e. we only have to store the coefficients in the list.
- The exponent of each term is given by the position in the list i.e. if we have a list [0.5; 0.0; 2.1], we can interpret it as the polynomial $2.1x^2 + 0.5$ since 0.5 is in the 0th position in the list and 2.1 is in the 2nd position. The 1st position contains 0.0 and so the coefficient of x is 0 in this polynomial.
- Only the coefficient c_i is listed at position i in the list.
- $c_n \neq 0.0$ i.e. given a polynomial of degree n, the list representing that polynomial must have size exactly n+1. Any of these k+1 entries may be 0.0 except the last one i.e. c_n . This corresponds to the standard way of writing polynomials e.g. if we consider $2x^3 + 3$, it can be thought of as the same polynomial as $0x^5 + 2x^3 + 3$ but we write it only as $2x^3 + 3$.

Naively evaluating p(x) at x_0 involves about $n^2/2$ multiplications and n additions. Instead we can use *Horner's Rule*. Consider:

$$p(x_0) = (\dots((c_n.x_0 + c_{n-1}).x_0 + c_{n-2}).x_0 + \dots + c_1).x_0 + c_0$$

We can perform a tail recursive computation involving only n multiplications and n additions, by maintaining a partial product pp. At each stage, we multiply pp with x_0 and add the next lower coefficient..

You will need to write programs to perform the following operations on polynomials

- 1. Evaluation or finding out the value of a polynomial p(x) for some given value x_0 for x, using Horner's Rule. evaluate: polynomial \rightarrow float \rightarrow float finds the value of a given polynomial p(x) for the value x_0 . For example, the polynomial $3x^2 4x + 6$ has the value 4.75 at x = 0.5.
- 2. Addition. A function addpoly: polynomial \rightarrow polynomial \rightarrow polynomial which takes the representations of polynomials $p_1(x)$ and $p_2(x)$ and returns the representation of $p_1(x) + p_2(x)$. The two polynomials need not have the same degree. For example, the addition of $3x^4 x + 2$ and $2x^2 + x 7$ yields $3x^4 + 2x^2 5$.
- 3. Multiplication. A function multpoly: polynomial \rightarrow polynomial \rightarrow polynomial which takes the representations of polynomials $p_1(x)$ and $p_2(x)$ and returns the representation of $p_1(x) \times p_2(x)$. The two polynomials need not have the same degree. For example, the product of (x+3) and $4x^2-2$ yields $4x^3+12x^2-2x-6$.
- 4. Differentiation. A function derivpoly: polynomial \rightarrow polynomial that takes the representation of a polynomial p(x) and returns the representation of the polynomial $\frac{d}{dx}p(x)$ which is the derivative of p(x) with respect to variable x. For example, the derivative of $3x^2-4x+3$ is 6x-4.
- 5. (Bonus question. This part is not compulsory. Extra marks will be given for it if you attempt it correctly.) A function dividepoly: polynomial \rightarrow polynomial \ast polynomial takes the representations of polynomials $p_1(x)$ and $p_2(x)$ and returns the representation of the quotient and remainder of polynomial division $p_1(x)/p_2(x)$. The two polynomials need not have the same degree.