Fundaments of Machine learning for and with engineering applications:

Filters NN RNN

Reidar B. Bratvold, Enrico Riccardi¹

Department of Energy Resources, University of Stavanger (UiS) 1

Apr 16, 2024

Filtering

Convolution

Convolution involves a window function that changes another function by *sliding* over it and performing local multiplications and additions. Depending on the shape of the convolution function we can perform

- Smoothings
- Deformations
- Differentiations

Convolution

$\mathbf{g} = \mathbf{f} * \mathbf{h} \qquad \mathbf{f}$ $\mathbf{h} \qquad 0 \quad 1 \quad 6 \quad 4 \quad 8 \quad 16 \quad 10 \quad 12 \quad 2 \quad 0$ $1 \quad 2 \quad 1 \quad \rightarrow 0 \qquad \qquad \mathbf{h}$ $1 \quad 2 \quad 1 \quad \rightarrow 8 \qquad \qquad 0$ $1 \quad 2 \quad 1 \quad \rightarrow 8 \qquad \qquad 0$ $\mathbf{g} \qquad 1 \quad 2 \quad 1 \quad \rightarrow 17 \qquad \qquad \mathbf{h}$ $\mathbf{g} \qquad 1 \quad 2 \quad 1 \quad \rightarrow 22 \qquad \qquad \mathbf{g}$ $0 \quad 1 \quad 8 \quad 17 \quad 22 \quad 36 \quad 50 \quad 48 \quad 36 \quad \cdots$

Convolution

In general we can write the convolution between a function f and a convolving (deforming) function h as:

$$g(t) = \sum_{m=-\infty}^{\infty} f(m)h(m-t)$$

Often we use a more compact notation:

$$g(t) = f(t) * h(t) = h(t) * f(t)$$

where * is the convolution operator

Convolution function

Peak broadening

Convolution operator properties

The convolution operator follows the distributive rule:

$$f_1(t) * [f_2(t) + f_3(t)] = f_1(t) * f_2(t) + f_1(t) * f_3(t)$$

It also follows the associative rule regarding order:

$$f_1(t) * [f_2(t) * f_3(t)] = [f_1(t) * f_2(t)] * f_3(t)$$

Convolution properties

Any signal convolved with itself repeated many times will converge to a Gaussian function:

Convolution operator properties

Repeated convolutions

Take any function g(t) and convolve it with any function f(t) multiple times:

$$a_1(t) = g(t) * f(t)$$

$$a_2(t) = g(t) * a_1(t)$$

$$a_3(t) = g(t) * a_2(t)$$

$$\vdots$$

$$a_n(t) \rightarrow \text{gaussian}(t)$$

i.e. the result with always converge to a Gaussian function

Mean Smooth operator

This is a very simple method which works as follows:

- Assume data vector x which contains n data points
- Start with the k first points, i.e. $[x_1, x_2, \cdots, x_k]$ and compute mean u_1 of these k points
- Take the next k points, $[x_{k+1}, x_{k+2}, \cdots, x_{2k}]$ and compute the mean u_2 of these k points
- Continue with this process until the data vector x is exhausted of points

There are two effects of this preprocessing:

- The new data vector u is of length approximately 1/k'th of compared to the original
- ullet Each element u_j has less noise due the cancelling effects of computing the mean

Mean Smooth operator

Running Average Smooth operator

Let f be the original data profile and g the smooth version of this profile. Then we have:

$$g(i) = \sum_{j=-m}^{m} \frac{f(i+j)}{2m+1}$$

where m is the number of points in the window

Running Average Smooth operator

This is similar to the mean smoother but moves in shorter steps than the whole window length

Convolution or Moving average?

If we have a window with 3 points (m = 1) and we want to calculate the new value of point no. 5 in the original profile:

$$g(5) = [0 \cdot f(3) + 1 \cdot f(4) + 1 \cdot f(5) + 1 \cdot f(6) + 0 \cdot f(7)] \cdot \frac{1}{3}$$

$$g(5) = \frac{1}{3}[0 \ 1 \ 1 \ 0] \cdot [f(3) \ f(4) \ f(5) \ f(6) \ f(7)]^T$$

Convolution or Moving average?

A moving average IS the convolution between the vector \mathbf{f} and a vector of ones (times a constant), i.e. :

moving average =
$$f * h = f * \frac{1}{n}[1 \ 1 \cdots 1 \ 1]$$

Moving average

Moving average problems

- Broadening of peaks
- Spike-noise affects the smoothed profile

A better alternative:

Use the median instead of the mean, then we don't have the problems with *spike-noise*. However, this filter is not linear

Running average example

Running mediam

Neural Network -NN-

One of the most famous models in Machine Learning is **Neural Network**.

The name comes from how the brain functions: a set of connected neurons that are either off or active.

In its essence,

NN is a large set of linear regressions executed both in parallel and in series.

Conventional NN are composed by:

- Input layer
- 4 Hidden layers
- Output layers

which, together, can approximately approximate any function in any dimension.

NN Architecture

Polynomial smoothing

deep Neural Network

NN Architecture

NN Architecture

Neural net suffers from overfitting problems.

Even more parameters

The number of nodes, the architecture, the number of hidden layer etc are NN hyperparameters

Unfortunately, at the current status of knowledge, the best architecture can be found only by trial and error.

The best fitting NN usually have a poor validation (generalizability).

 $\ensuremath{\mathsf{NN}}$ is a very expensive approach and it should be used only if really needed.

NN types

There are many tipes of NN:

- ANN (artificial NN), just another name for NN
- DNN (deep) deep neural network
- RNN (recurrent NN) for audio
- CNN (convolutional NN) for images
- Autoencoder (for PCA) to compress to a latent space and decompress data
- Deep autoencoder (for interpretability)
- Physics informed NN (to merge NN to differential equations)
- ... and more ...

tensorflow, pytorch and keras are the most popular and popular libraries for $\ensuremath{\mathsf{NN}}.$

Sequential Data

ORDER MATTERS

- Language Models
- Time series

Language model

- Prediction of the next word
- Prediction of next sentence

Time Series

- Weather data
- Stock market
- Monitoring
- Trajectories
- Etc

Feedforward (FF) vs Recurrent NN (RNN)

FF network

NN

- One set of input
- One set of output
- Different parameters at each layer
- Multiple input set
- Multiple output
- Same parameter set

NN

input weight bias output

NN NN

Activation Functions

Sigmoid $\sigma(x) = \frac{1}{1 + e^{-x}}$ tanh

tanh(x)

ReLU $\max(0, x)$

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^Tx + b_1, w_2^Tx + b_2) \end{array}$

NN

$$\begin{bmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \\ w_{13} & w_{23} \end{bmatrix} \cdot \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} (w_{11} \times i_1) + (w_{21} \times i_2) \\ (w_{12} \times i_1) + (w_{22} \times i_2) \\ (w_{13} \times i_1) + (w_{23} \times i_2) \end{bmatrix}$$

NN

RNN

RNN

Advantages

- Model size is fixed
- Each info is stored/learned
- The weights can be forwarded

Problems

- Computationally demanding: long training times
- Problematic with Long series
- It can diverge (explode) or gradient vanish
- It cannot be very deep
- Unable to handle long time dependencies

RNN problems

RNN problems

Exploding gradients

- Large weights updats
- Gradient descent diverge (solution method)

Vanishing gradients

- Weights get margnially upgraded
- Very slow convergence speed

LSTM: Long Short Term Memory

NB...

Filters forget data...

What about we porpousely forget data?

/pause LSTM includes Forget Gates

Automatic filter!

The forget gates learn to forget what is not interesting

This is extremely useful but also rather worryome: you have no control!

LSTM is an advanced version of GRU (Gated Recurrent Units)... what is GRU?

GRU

GRU

GRU

Reset gates

To capture short-term dependencies

Update gates

To capture Long-term dependencies

Each gate has its own weight

RNN

 x_t : input vector, h_t : hidden layer vector o_t : output vector

LSTM

 x_t : input vector, h_t , C_t : hidden layer vector o_t : output vector, r_t : reset factors, z_t : update factors

GRU

 x_t : input vector, h_t : hidden layer vector o_t : output vector, r_t : reset factors, z_t : update factors