

Dynamic Programming Quiz

Reinforcement Learning - Move 37 [Week2]

Quiz on Policy Iteration, Policy Improvement, Policy Evaluation, Value Iteration (5 Questions, 4 Possible Answers)

Collected by Kurt (Dean, Seoul School of Al, Korea)

V 1.4 9/16/2018

#Policy Evaluation

r = -1 on all transitions

Undiscounted episodic MDP ($\gamma = 1$)

Nonterminal states 1, ..., 14

One terminal state (shown twice as shaded squares)

Actions leading out of the grid leave state unchanged

Reward is -1 until the terminal state is reached

Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

truncate to 1 decimal place

	v_k for the Random Policy	Greedy Policy w.r.t. υ_k
<i>k</i> = 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	random policy
<i>k</i> = 1	0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0	
<i>k</i> = 2	0.0 A -2.0 -2.0 B -2.0 -2.0 -2.0 C -2.0 -1.7 -2.0 -2.0 -1.7 0.0	$\begin{array}{c c} \leftarrow \leftarrow \leftarrow \leftrightarrow \\ \uparrow \leftarrow \downarrow \rightarrow \downarrow \\ \hline \uparrow \leftarrow \downarrow \downarrow \\ \hline D \rightarrow \rightarrow \end{array} \qquad \begin{array}{c} \text{optimal} \\ \text{policy} \end{array}$

Q1. Choose all that apply. (4 possible answers)

- 1. A=-1.0
- 2. B=-2.0
- 3. C=-2.0
- 4. D= +

Q1 Explanation>

1. [x] A= -1.7 (truncated to one decimal place)

$$V = 1 \times 0.25 \times (-1 + 0) + 3 \times 0.25 \times (-1 + -1)$$

2. [x] B= -1.7 (truncated to one decimal place)

$$v = 1 \times 0.25 \times (-1 + 0) + 3 \times 0.25 \times (-1 + -1)$$

3. [o] C= -2.0

$$v = 4 \times 0.25 \times (-1 + -1)$$

4. [o] same values of -2.0

Reference> Policy Evaluation

#Policy Improvement #Policy Evaluation

Q2. Choose all that apply. (4 possible answers)

- 1. Policy π can be evaluated by $v_{\pi}(s) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + ... | S_t = s\right]$
- 2. Process of policy iteration always converges.
- 3. Bellman expectation equation is used for Policy Improvement.
- 4. Policy evaluation $\mathbf{v}_{k+1} = \max_{\mathbf{a} \in \mathcal{A}} \mathcal{R}^{\mathbf{a}} + \gamma \mathcal{P}^{\mathbf{a}} \mathbf{v}_{k}$

Q2 Explanation>

- 1. [o]
- 2. [o]
- 3. [x] Bellman optimality equation is used for Policy Improvement.

Bellman expectation equation is
$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a)$$

Bellman optimality equation is
$$v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

4. [x] value iteration

Policy iteration is
$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$
$$\mathbf{v}^{k+1} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k$$

.

Reference> Policy Evaluation, Policy Iteration

#Value Iteration

Gray g is the goal. start with final rewards and work backwards using value iteration.

Basic rule is same as Q1

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Problem

 V_1

 V_2

		e.
	٧	3

0	-1	-2	-3
-1	-2	-3	-3
-2	-3	-3	-3
-3	-3	-3	-3

Q3. Choose all that apply. (4 possible answers)

- 1. A = -5
- 2. B = -6
- 3. C =-5
- 4. D = -6

Q3 Explanation>

Max(-1+Up, -1+Left, -1+Down, -1+Right) (using own value when it blocked to wall)

Reference> Value Iteration

Q4. Choose all that apply. (4 possible answers)

- 1. If we know the solution to subproblems v*(s') then solution v*(s) can be found by **just** one-step lookahead
- 2. To find optimal policy π , use iterative application of Bellman Expectation Equation.
- 3. there is no explicit policy in the value iteration.
- 4. Value iteration is $\mathbf{v}_{k+1} = \max_{\mathbf{a} \in \mathcal{A}} \mathcal{R}^{\mathbf{a}} + \gamma \mathcal{P}^{\mathbf{a}} \mathbf{v}_{k}$

Q4 Explanation>

1. [o]
$$v_*(s) \leftarrow \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

- 2. [x] Bellman optimality equation is used [see Q2]
- 3. [o]

4. [o] Value iteration
$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$

$$\mathbf{v}_{k+1} = \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k$$

Policy Iteration
$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$

$$\mathbf{v}^{k+1} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k$$

Reference> Value Iteration

Q5. Choose all that apply. (4 possible answers)

Algorithm	Bellman Equation
Policy Evaluation	Α
Policy Iteration	B + C
Value Iteration	D

- 1. A = Bellman Expectation Equation
- 2. B = Bellman Expectation Equation
- 3. C = Greedy Policy Improvement
- 4. D = Bellman Optimality Equation

Q5 Explanation >

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

- Algorithms are based on state-value function v_π(s) or v_{*}(s)
- Complexity O(mn²) per iteration, for m actions and n states
- Could also apply to action-value function q_π(s, a) or q_{*}(s, a)
- Complexity O(m²n²) per iteration
- 1. [o]
- 2. [o]
- 3. [o]
- 4. [o]

Reference> Value Iteration