

LOI DE LAPLACE-GAUSS

Presenté par :

Deodat AGANON

Candy AHO

Morel KOUHOSSOUNON

Encadre par:

Pr. A. GHAZDALI

DOMAINES D'UTILISATION

S'il y avait une seule loi a connaître, ce serait la loi normale. Elle est importamte en pratique car elle est utilisee dans de nombreuses applications comme:

- □ Economie
- ☐ Traitement de signal et mesures physiques
- ■Anatomie humaine
- □Quotient intellectuel

Un filtre gaussien a été appliqué à l'image du haut, issue d'un journal, pour obtenir l'image du bas, plus lisse, moins granuleuse.

DEFINITION

On dit qu'une variable aléatoire continue suit la loi normale ou la loi de Laplace-Gauss $X \sim \mathcal{N}(\mu, \sigma^2)$, si sa densité de probabilité est:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)}{2\sigma^2}}, x \in \mathbb{R}.$$

Avec $\mu \in \mathbb{R}$ et $\sigma > 0$

On utilise donc la notation $X \sim \dots \Leftrightarrow X$ suit la loi \dots

REPRESENTATION GRAPHIQUE

De manière générale, le graphe de la densité f est symetrique par rapport a μ . Celui ci est en forme de "cloche" plus ou moins arrondie selon les valeurs de σ .

En outre, ce graphe a:

Un point maximum de coordonnées:

$$(\mathbf{x},\mathbf{y})=(\mu,\frac{1}{\sqrt{2\pi\sigma^2}})$$

Deux points d'inflexion de coordonnées:

$$(\mathbf{x}_{0},\mathbf{y}_{0})=(\mu-\sigma,\frac{1}{\sqrt{2\pi\sigma^{2}}}e^{-\frac{1}{2}})$$
 et $(\mathbf{x}_{1},\mathbf{y}_{1})=(\mu+\sigma,\frac{1}{\sqrt{2\pi\sigma^{2}}}e^{-\frac{1}{2}})$.

LES PARAMETRES

Esperance, ecart-type et variance

Soit X une variable aleatoire continue. L'esperance mathematique et la variance de X sont respectivement:

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$
 et $V(X) = E\left(\left(X - E(X)\right)^2\right)$

Par consequent, les paramètres de $X \sim \mathcal{N}(\mu, \sigma^2)$ sont donc

$$E(X) = \mu$$
, $V(X) = \sigma^2$, $\sigma(X) = \sigma$.

Combinaisons linéaires:

Soit $n \in \mathbb{N}_{2}^{*}$, $a_{0,}a_{1}$, a_{n} , n+1 reels et X_{1} , , X_{n} , n variables aléatoires indépendantes avec $X_{i} \sim \mathcal{N}(\mu, \sigma_{i}^{2})$ pour tout $i \in \{1, \ldots, n\}$. On pose

$$Y_n = a_0 + \sum_{i=1}^n a_i X_i .$$

Alors on a

$$Y_n \sim \mathcal{N}(a_0 + \sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2)$$

Applications:

Soit $X \sim \mathcal{N}(\mu, \sigma^2)$, Pour tout $a \in \mathbb{R}$, on a $X + a \sim \mathcal{N}(a + \mu, \sigma^2)$.

Soit $X \sim \mathcal{N}(\mu, \sigma^2)$, Pour tout $b \in \mathbb{R}^*$, on a $X \sim \mathcal{N}(b\mu, (b\sigma)^2)$.

Soit $X \sim \mathcal{N}(\mu, \sigma^2)$, Alors on a:

$$z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

CAS PARTICULIER: LOI CENTREE NORMALE REDUITE

Densite

On dit qu'une var X suit la loi normale centree reduite $\mathcal{N}(0,1)$ si elle possede la densité:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad , \qquad x \in \mathbb{R}$$

On a E(X) = 0 d'où le nom "centrée" et V(X) = 1 d'où "réduite".

Proprietes:

Comme f est paire, X symetrique. Cela implique :

- $\forall x \in \mathbb{R}$, on a $P(-X \le x) = P(X \le x)$,
- $\forall x \in \mathbb{R}$, on a $P(X \le -x) = 1 P(X \le x)$,
- $\forall x \ge 0$, on a $P(|X| \le x) = 2P(X \le x) 1$.

Regle des 4σ :

Si $X \sim \mathcal{N}(\mu, \sigma^2)$, alors on a $P(\mu - 4\sigma \le X \le \mu + 4\sigma) \approx 1$. Ainsi, la plupart des réalisations d'une var $X \sim \mathcal{N}(\mu, \sigma^2)$ sont contenues dans l'intervalle $[\mu - 4\sigma, \mu + 4\sigma]$.

Moments:

Soit $X \sim \mathcal{N}(0,1)$. Pour tout $k \in \mathbb{N}$, on a $E(X^{2k}) = \prod_{i=1}^k (2i-1)$ et $E(X^{2k+1}) = 0$.

On peut dresser le tableau des moments suivants:

r	1	2		3		4		5		6		7		8		9
$\mathbb{E}(X^r)$	0	1	×K	0	\ <u>_</u> =	3	×K	0	\ <u>_</u> =	15	×K	0	\ <u>_</u> =	105	×K	945

Les flèches précisent que les moments non nuls peuvent se calculer avec un produit croise

Fonctions de repartitions et table de valeurs

Soit $X \sim \mathcal{N}(0,1)$. La fonction de repartition de X est :

$$F(x) = P(x \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$
, $x \in \mathbb{R}$.

On a $F(x) = F(y) \Leftrightarrow x = y$ et f(x) = F'(x), $x \in \mathbb{R}$. La fonction F ne peut pas s'écrire sous forme analytique. On utilise une table de valeurs donnant F(x) avec $x \in [0,3.99]$ et $x = x_1 + x_2$.

x_1 x_2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

EXERCICE

Enonce

Si la glycémie à jeun est distribuée normalement dans une certaine population chez les sujets (hommes, adultes) non diabétiques avec une moyenne de 5,5 mmol/L et un écart type de 0,2 mmol/L et chez les sujets dont le diabète a été découvert récemment avec une moyenne de 6,0 mmol/L et un écart type de 0,3 mmol/L, quel % des sujets normaux et quel % des sujets diabétiques ont une glycémie supérieure à 6 mmol/L?

Correction

Chez les non-diabétiques $z_{nd}=\frac{x-5,5}{0,2}$ et chez les diabétiques $z_d=\frac{x-6}{0,3}$. Quand x vaut 6, z_{nd} vaut 2,5 et la probabilité cherchée vaut 1-0,9938=0,0062. Comme 6 est la moyenne chez les diabétiques, la probabilité, chez eux, de dépasser 6, est 50 %.


```
33
               self.logdupes
34
               self.debug
35
               self.logger =
36
                   path:
 37
                    self.file
                     self.file.seek(0)
 38
                     self.fingerprints.
             classmethod
   IPLEMENTATION
             def request_seen(self, request);
    fp = self.request_fingerprints;
    if fp in self.fingerprints;
                         eturn True
                   self.fingerprints.add(fp)
                        self.file.write(fp + os.limens
                       self.file:
                request fingerprint(self,
```


On considère l'expérience suivante:

On lance 100 fois un dé et on désigne par succès l'évènement << apparition d'un nombre pair>>.. X suit donc une loi de Bernoulli B avec p=1/2 la probabilité du succès. D'après le théorème limite centrale ,la variable aléatoire Z_n est $Z_n = \sqrt{n} \times \frac{M_n - \mu}{\sigma}$ avec $M_n = \frac{S_n}{100}$, S_n etant le nombre de succès obtenu après les 100 lancers.

$$Z_n = 10 \times \frac{M_n - 0.5}{0.5}$$

$$Z_n = \frac{S_n}{5} - 10$$

La simulation ici consiste a montrer que la fonction de répartition associée a la variable aléatoire converge vers une loi normale centrée réduite.

Simulation

On remarque ainsi que l'expérience tend vers une loi normale avec une fonction densité en forme de cloche.

MERCI POUR VOTRE ATTENTION

