Secondary School Examination

March — 2008

Marking Scheme — Mathematics (Foreign) 30/2/1, 30/2/2, 30/2/3

General Instructions

- The Marking Scheme provides general guidelines to reduce subjectivity and maintain uniformity among large number of examiners involved in the marking. The answers given in the marking scheme are the best suggested answers.
- Marking is to be done as per instructions provided in the marking scheme. (It should not be done according to one's own interpretation or any other consideration.) Marking Scheme should be strictly adhered to and religiously followed.
- 3. Alternative methods are accepted. Proportional marks are to be awarded.
- 4. Some of the questions may relate to higher order thinking ability. These questions will be indicated to you separately by a star mark. These questions are to be evaluated carefully and the students' understanding / analytical ability may be judged.
- 5. The Head-Examiners have to go through the first five answer-scripts evaluated by each evaluator to ensure that the evaluation has been carried out as per the instruction given in the marking scheme. The remaining answer scripts meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 6. If a question is attempted twice and the candidate has not crossed any answer, only first attempt is to be evaluated. Write EXTRA with second attempt.
- 7. A full scale of marks 0 to 80 has to be used. Please do not hesitate to award full marks if the answer deserves it

OUESTION PAPER CODE 30/2/1

EXPECTED ANSWERS/VALUE POINTS

SECTION - A

$$\frac{1}{2} + \frac{1}{2} \text{ m}$$

3.
$$(-3)^2 + 6(-3) + 9 = 9 - 18 + 9 = 0$$

 $\therefore x = -3$ is a solution of $x^2 + 6x + 9 = 0$

4.
$$p + 9q$$

5.
$$\frac{17}{12}$$

9.
$$\frac{2}{6}$$
 or $\frac{1}{3}$

1 m

$$\frac{1}{2} + \frac{1}{2}$$
 m

SECTION - B

11. (x+2), (x-2) are factors of given polynomal

Getting
$$\frac{x^4 + x^3 - 34x^2 - 4x + 120}{x^2 - 4} = x^2 + x - 30$$

$$x^2 + x - 30 = (x + 6)(x - 5)$$

$$\therefore$$
 The zeroes are 2, -2 , -6 , 5

12. Total number of element in the sample space = 36

Favourable event = 6

Probability (getting same number on each dice) =
$$\frac{6}{36} = \frac{1}{6}$$

$$\frac{1}{2}$$
 m

$$\frac{1}{2}$$
 m

$$\frac{1}{2}$$
 m

$$\frac{1}{2}$$
 n

13.
$$\sec 4A = \csc (90^{\circ} - 4A)$$

$$\Rightarrow \qquad \operatorname{cosec} (90^{\circ} - 4A) = \operatorname{cosec} (A - 20^{\circ})$$

 $90^{\circ} - 4A = A - 20^{\circ}$

$$\frac{1}{2}$$
 m

 $\frac{1}{2}$ m

$$\Rightarrow A = 22^{\circ}$$
or
$$\tan A = \frac{1}{\sqrt{3}} = \tan 30^{\circ} \Rightarrow A = 30^{\circ}$$

$$\frac{1}{2}$$
 m

 $A + B = 90^{\circ} \Rightarrow B = 60^{\circ}$ As

Sin A cos B + cos A sin B = $\frac{1}{2} \cdot \frac{1}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}$

$$= \frac{1}{4} + \frac{3}{4} = 1$$
14. The points are collinear if the area of triangle

14. The points are collnear if the area of triangle formed by the points is zero.

Area of triangle formed by the point (k, 3), (6, -2), (-3, 4) is zero. i.e., k(-2-4)+6(4-3)-3(3+2)=0

or
$$-6k-9=0 \Rightarrow k=-\frac{3}{2}$$
15. fig.

In $\triangle s$ ABE and CFB
C

∴
$$\triangle$$
 ABE \sim \triangle CFB

 $\angle 3 = 4 [Alt. \angle s]$

 $\angle 1 = \angle 2$ (opposite angles of a \parallel^{gm})

16. Let x be any positive integer, then it is of the form 3q, 3q + 1, 3q + 2

$$x^{2} = (3q)^{2} = 3 \cdot 3q^{2} = 3m$$
or,
$$x^{2} = (3q+1)^{2} = 3 \cdot (3q^{2} + 2q) + 1 = 3m+1$$
or,
$$x^{2} = (3q+2)^{2} = 3 \cdot [3q^{2} + 4q + 1] + 1 = 3m+1$$

l m

1 m

1 m

1 m

1 m

Or,

17.	Drawing correct lines Point of intersection with <i>y</i> -axis	1 + 1 = 2 n
	(0, 2) and $(0, -4)$	$\frac{1}{2} + \frac{1}{2} = 1 \text{ m}$
18.	<i>n</i> th term of A.P. 63, 65, 67, = $63 + 2 (n-1)$	1 m
	<i>n</i> th term of A.P. 3, 10, 17, = $3 + 7(n-1)$	1 m
	$\therefore 63 + 2n - 2 = 3 + 7n - 7$	$\frac{1}{2}$ m
	\Rightarrow $n = 13$	$\frac{1}{2}$ m
OR	$\Rightarrow n = 13$	$\frac{1}{2}$ m
	Let first term = a and common difference = d	1
	Tm = a + (m-1) d	$\frac{1}{2}$ m
	Tn = a + (n-1) d	$\frac{1}{2}$ m
	m [a + (m-1)d] = n [a + (n-1)d] $\Rightarrow (m-n) [a + (m+n-1)d] = 0$ As $m \ne n, a + (m+n-1)d = 0$	1 m
or 19.	Tm + n = 0 Let common difference be d \therefore 8 + (n-1) d = 33 \Rightarrow (n-1) d = 25	1 m
	And, $\frac{n}{2} [16 + (n-1)d] = 123$	
	$\Rightarrow \frac{n}{2} (16+25) = 123 \Rightarrow n = 6$	1 m
	Also $ (n-1) d = 25 \Rightarrow d = 5 $	1 m
20.	LHS = $\left(1 + \frac{\cos A}{\sin A} + \frac{\sin A}{\cos A}\right) (\sin A - \cos A)$	$\frac{1}{2}$ m
	$= \frac{(\sin A \cos A + \cos^2 A + \sin^2 A)(\sin A - \cos A)}{\sin A \cos A}$	$\frac{1}{2}$ m
	$= \frac{\sin^3 A - \cos^3 A}{\sin A \cos A} = \frac{\sin^2 A}{\cos A} - \frac{\cos^2 A}{\sin A}$	$1+\frac{1}{2}$ m
=	sin A tan A – cos A cot A	$\frac{1}{2}$ m
OR	$\cos 58^{\circ} = \cos (90 - 32)^{\circ} = \sin 32^{\circ}, \csc 52^{\circ} = \sec 38^{\circ}$	

 $\tan 75^\circ = \cot 15^\circ$, $\tan 60^\circ = \sqrt{3}$

21.
$$\frac{3}{A(2,-2)} \frac{4}{P(x,y)} = \frac{3}{A(2,-2)}$$
 or $AP : PB = 3.4$ 1 m

∴ P divides the join of $(-2, -2)$ and $(2, -4)$ in the ratio of $3 : 4$

∴ Coordinates of P are $\left(-\frac{2}{7}, -\frac{20}{7}\right)$ 2 m

22. Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ be the vertices of the given triangle The mid-point of AB, BC and CA are $(3, 4)$, $(4, 6)$ and $(5, 7)$ respectively

∴ $x_1 + x_2 = 6$, $x_2 + x_3 = 8$, $x_3 + x_1 = 10$

$$y_1 + y_2 = 8$$
, $y_2 + y_3 = 12$, $y_3 + y_1 = 14$

Solving to get the vertices of Δ ABC as $(4, 5)$, $(2, 3)$, $(6, 9)$

1 $\frac{1}{2}$ m

23. Correct construction of right triangle with sides containing the right angle as 5cm and 4cm

Constructing correct similar triangle to the given triangle

24. Correct Figure

$$AS = AP$$
, $DS = DR$, $CQ = CR$, $BQ = BP$

 $\therefore \text{ Given expression becomes } 2 - \sqrt{3} \cdot \frac{1}{\sqrt{3}} = 1$

Adding we get

Adding we get

$$(AS + DS) + (BQ + QC) = (AP + BP) + (CR + DR)$$

 $\Rightarrow AD + BC = AB + CD$

$$\Rightarrow AD + BC = AB + CD$$
As ABCD is a $||^{gm} \Rightarrow 2AB = 2AD$ [: AD = BC, AB = DC]

$$\Rightarrow AD + BC = AB + As ABCD \text{ is a } ||^{gm} \Rightarrow AB = AD$$

As ABCD is a
$$||^{girt} \Rightarrow$$

 \Rightarrow AB = AD

$$\Rightarrow$$
 AB = AD

 $1\frac{1}{2}$ m

$$\Rightarrow AB = AD$$

$$\frac{1}{2}$$
 m

ABCD is a rhombus

$$ADC = AD^2 + DC^2 \rightarrow AD^2 - AC^2 - DC^2$$

In right
$$\triangle ADC$$
, $AC^2 = AD^2 + DC^2 \Rightarrow AD^2 = AC^2 - DC^2$ (i)
Similarly, in right $\triangle ADB$, $AB^2 = AD^2 + BD^2 \Rightarrow AD^2 = AB^2 - BD^2$ (ii)

In right
$$\triangle ADC$$
, $AC^2 = AD^2 + DC^2 \Rightarrow AD^2 = AC^2 - DC^2$ (i) 1 m
Similarly, in right $\triangle ADB$, $AB^2 = AD^2 + BD^2 \Rightarrow AD^2 = AB^2 - BD^2$ (ii) 1 m
From (i) and (ii), to get

$$AC^2 - DC^2 = AB^2 - BD^2$$

$$\Rightarrow AB^2 + CD^2 = BD^2 + AC^2$$

$$= 154 \text{ cm}^2$$

$$= 154 \text{ cm}^2$$

$$= 154 \text{ cm}^2$$

$$\therefore \text{ Area of segment formed with BC} = \left(\frac{1}{2} \times 14 \times 14\right) \text{ cm}^2 = 98 \text{ cm}^2$$

$$\therefore \text{ Area of segment formed with BC} = \left(154 - 98\right) \text{ cm}^2 = 56 \text{ cm}^2$$

$$\Rightarrow \text{ Finding BC} = 14\sqrt{2} \text{ cm}$$

$$\therefore \text{ Area of semi-circle on BC as diameter}$$

$$= \left(\frac{1}{2} \times \frac{22}{7} \times 7\sqrt{2} \times 7\sqrt{2}\right) \text{ cm}^2 = 154 \text{ cm}^2$$

$$\Rightarrow \text{ Area of shaded region} = \left(154 - 56\right) \text{ cm}^2 \text{ or } 98 \text{ cm}^2$$

$$\Rightarrow \text{ SECTION - D}$$
26. Correct figure

$$\Rightarrow \text{ Correct figure}$$

$$\Rightarrow \text{ CD} = \text{ AD} = x \text{ (Say)}$$

$$\Rightarrow \text{ and } \text{ BD} = 27 - x$$

$$\Rightarrow \text{ Im}$$

$$\Rightarrow \text{ BD} = 27 - x$$

BD = 27 - x

From right triangle ABC, $9^2 + (27 - x)^2 = x^2$

54x = 810 or x = 15 \Rightarrow

AD = 15m and BD = 12m

:. Snake is caught at a distance of 12m from its hole

Let the two numbers be x, x + 4

OR

 $\frac{1}{r} \cdot \frac{1}{r+4} = \frac{4}{21}$

1 m

1 m

1 m

l m

2 m

$$\Rightarrow x^{2} + 4x - 21 = 0$$

$$\Rightarrow x = -7 \text{ or } 3$$

$$\therefore \text{ The numbers are } (3, 7) \text{ or } (-7, -3)$$

$$1 \text{ m}$$

$$1 \text{ m}$$

$$27. \text{ Figure}$$

$$AC = 3600$$

$$AC = 3600$$

$$AC = 3600$$

$$1 \text{ m}$$

In
$$\triangle$$
 ADE, $\frac{3600\sqrt{3}}{\triangle E} = \tan 30^{\circ}$

⇒ AE =
$$10800 \text{m}$$

∴ CE = BD = $(10800 - 3600) \text{ m} = 7200 \text{ m}$

$$\therefore \qquad \text{Speed (in km/hour)} = \frac{7200 \times 60 \times 60}{30 \times 1000}$$

Correct Proof

$$AB \parallel DE \Rightarrow \frac{OA}{AD} = \frac{OB}{OE}$$

1 m

1 m

2 m

Total surface area = $\left[\frac{22}{7} \times 20 (20+8) + \frac{22}{7} \times 8 \times 8\right] \text{ cm}^2$

 $= 1961.15 \text{cm}^2$

30. Classes 0-20 20-40 40-60 60-80 80-100 100-120 120-140 Total mid-value (xi) 10 30 50 70 90 110 130 cum. freq. 6 8 10 12 6 5 3 50 =
$$\sum fi$$
 fixi 60 240 500 840 540 550 390 3120 = $\sum fi$ fixi Correct Table as above

$$\overline{x} = A f e a n - \frac{\sum f i x a}{\sum f i} = \frac{3120}{50} = 62.4$$

Median =
$$60 + \frac{25 - 24}{12} \times 20 = 60 + 1.67 = 61.67$$

Mode =
$$60 + \frac{12 - 10}{24 - 10 - 6} \times 20 = 65.0$$
 $\frac{1}{2}$ m

Note: If a candidate finds any two two of the measures of central tendency and finds the third by using empirical formula, give full credit.

30/2/2

SECTION - A

1. $\frac{1}{3}$

2. 7

3. $\frac{1}{9}$

4. 17.5, 45 $\frac{1}{2} + \frac{1}{2}$ m

5. $\frac{1}{2} + \frac{1}{2} \text{ m}$

6. α = 2

7. $2(-3)^2 + 6(-3) + 9 = 0 = RHS$

8. p + 9q

10, 25cm

SECTION - B

- Same as Q No. 15 of 30/2/1
- 12. Same as Q No. 14 of 30/2/1

3.
$$\sec 2 A = \sec [90^{\circ} - (A - 42^{\circ})]$$

= $\sec [132^{\circ} - A]$
 $\Rightarrow 2 A = 132^{\circ} - A$

OR

$$\angle C = 60^{\circ}, \angle B = 30^{\circ} [\because \angle A = 90^{\circ}]$$
 $\frac{1}{2}$ m
$$\sin B \cos C + \cos B \sin C = \frac{1}{2} \cdot \frac{1}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = 1$$
 $1\frac{1}{2}$ m

- 14. Same as Q.No. 11 of 30/2/1
- 15. Total number of balls in the bag = 12

(i)
$$P$$
 (yellow ball) = $\frac{3}{12} = \frac{1}{4}$ $\frac{1}{2}$ n

1 m

2 m

1 m

(ii)
$$P$$
 (not of red colour) = $\frac{8}{12} = \frac{2}{3}$

SECTION - C

- 16. Same as Q.No. 25 fo 30/2/1
- 17. Same as Q.No. 24 of 30/2/1
- 18. Same as Q.No. 23 fo 30/2/1
- 19. Same as Q.No. 22 fo 30/2/1

20. AB =
$$\sqrt{53}$$
, BC = $\sqrt{53}$, CD = $\sqrt{53}$, DA = $\sqrt{53}$
 \Rightarrow AB = BC = CD = DA
or ABCD is a rhombus

- 21. Same as Q.No. 20 fo 30/2/1
- 22. Same as Q.No. 16 of 30/2/1
- 23. Same as Q.No. 17 of 30/2/1
- 24. Same as Q.No. 18 fo 30/2/1
- 25. Let common difference is d

Here
$$a = 25, t_n = -17, S_n = 60$$

 $\therefore -17 = 25 + (n-1) d \Rightarrow (n-1) d = -42 \dots (i)$ 1 m
 $\therefore 60 = \frac{n}{2} [50 + (n-1)d] = \frac{n}{2} [50 - 42] = 4n$ 1 m

$$\Rightarrow n = 15$$

$$\frac{1}{2} \text{ m}$$
From (i), $d = -3$

SECTION - D

26. Classes 0-50 50-100 100-150 150-200 200-250 250-300 300-350 class marks (xi) 25 75 125 175 225 275 325
$$fi$$
 2 3 5 6 5 3 1: $\sum f = 25$ cum fi 2 5 10 16 21 24 25 fi 325 fi 325 fi 326 fi 327 fi 328 fi 329 fi 320 fi

fixi 50 225 625 1050 1125 825 325:
$$\sum fixi = 4225$$

 $\therefore \quad \overline{x} = \frac{\sum fixi}{\sum fi} = \frac{4225}{25} = 169$ 1 m

find the third, full credit is to be given. Same as Q. No. 29 of 30/2/1

- 27.
- Same as Q. No. 26 of 30/2/1 28. 29. Same as Q. No. 28 of 30/2/1
- Correct Figure 30.

Writing trigonometric equations

$$\frac{3000}{DC} = \tan 60^{\circ} = \sqrt{3}$$

$$\Rightarrow$$
 DC = $1000\sqrt{3} = 1732$ m

Also,
$$\frac{x}{DC} = \tan 45^\circ = 1$$

$$x = DC = 1732 \text{ m}$$

$$\therefore$$
 Distance between aeroplanes = $(3000 - 1732)$ m = 1268 m

1 m

1 m

1 m

1 m

SECTION - A

$$\frac{1}{2} + \frac{1}{2}$$
 m

2.
$$\frac{17}{12}$$

1 m

1 m 1 m

$$\frac{1}{2} + \frac{1}{2}$$
 m

7.
$$a = 2$$

8.
$$3(-2)^2 + 13(-2) + 14 = 12 - 26 + 14 = 0 = RHS$$

9. $n + 4a$

9.
$$p + 4q$$

10.
$$\frac{1}{6}$$

SECTION - B

14. Product of two factors =
$$x^2 - 2$$

Finding
$$\frac{2x^4 + 7x^3 - 19x^2 - 14x + 30}{x^2 - 2} = 2x^2 + 7x - 15$$

Now
$$2x^2 + 7x - 15 = (2x - 3)(x + 5)$$

$$\therefore$$
 Zeroes of the given polynomial are $\sqrt{2}$, $-\sqrt{2}$, -5 , $\frac{3}{2}$

$$\frac{1}{2}$$
 m

15. Number of tickets in the bag =
$$20$$

$$\frac{1}{2}$$
 m

P (multiple of 7) =
$$\frac{3}{20}$$

$$\frac{1}{2}$$
 m

P (greater than 15 and multiple of 5) =
$$\frac{3}{20}$$

$$1 \, \mathrm{m}$$

SECTION - C

16. Here
$$a = 22$$
, $t_n = -11$ and $s_n = 66$, $n = ?$, $d = ?$
 $-11 = 22 + (n-1) d \Rightarrow (n-1) d = -33$

$$66 = \frac{n}{2} \left[44 + (n-1)d \right] = \frac{n}{2} \left(44 - 33 \right)$$

1 m 1 m

$$66 = \frac{n}{2} \left[44 + (n-1)d \right] = \frac{n}{2} \left(44 - 33 \right)$$

$$\Rightarrow n = 12$$

from (*i*),
$$d = -3$$

- 17. Same as O. No. 18 of 30/2/1
- Same as Q. No. 17 of 30/2/1 Same as Q. No. 16 of 30/2/1
- Same as Q. No. 25 of 30/2/1
- Same as O. No. 24 of 30/2/1 21.
- Same as Q. No. 23 of 30/2/1
- 23. Same as Q. No. 22 of 30/2/1
- **24.** Let the rato be k:1

Let P (x, y) divide the line segment joining (1, 3) and (2, 7) in the ratio of k : 1

$$x = \frac{2k+1}{k+1}, y = \frac{7k+3}{k+1}$$

1 m

The point P (x, y) lies on the line 3x + y - 9 = 0 \Rightarrow (6k+3)+(7k+3)-9(k+1)=0

1 m

$$4k - 3 = 0 \Rightarrow k = \frac{3}{4}$$

1 m

- ... The ratio is 3:4
- Same as Q. No. 20 of 30/2/1

SECTION - D

26. Correct figure

1 m

The distance covered by car in 6 seconds = QRGetting trigonometric equations

$$\frac{x}{y} = \tan 60^\circ = \sqrt{3}$$

111

$$\Rightarrow \qquad x = y\sqrt{3}$$

$$\text{Again} \qquad \frac{x}{y+z} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \qquad \sqrt{3} \ y \cdot \sqrt{3} = y+z \Rightarrow z = 2y$$

$$\Rightarrow \qquad y = \frac{1}{2} \ z$$

$$1 \text{ m}$$

$$\Rightarrow \qquad y = \frac{1}{2} \ z$$

For distance QR (z), time taken is 6 seconds

For half the distance (y), it will be 3 seconds

 $1\frac{1}{2}$ m

- 27. Same as Q. No. 28 of 30/2/1
- 28. Same as Q. No. 29 of 30/2/1
- 29. Same as Q. No. 26 of 3012/1

30. Classes 0-10 10-20 20-30 30-40 40-50 50-60 60-70
$$xi$$
 5 15 25 35 45 55 65 fi 6 8 10 15 5 4 $2:\sum fi = 50$ $cum fi$ 6 14 24 39 44 48 50 $fixi$ 30 120 250 525 225 220 130: $\sum fixi = 1500$ $Correct Table$ 2 m

Mean $=\frac{\sum fixi}{\sum fi} = \frac{1500}{50} = 30$

Mode =
$$30 + \frac{15 - 10}{30 - 15} \times 10 = 33.33$$
 $1\frac{1}{2}$ m

Note: If a candidate finds any two of the measures of central tendency correctly and uses empirical formula to find the third, full credit is to be given.