Слоения, железные дороги Терстона и гиперболическая геометрия на поверхностях.

Гаянэ Юрьевна Панина

22 июля 2021 г.

Определение 1. S_g — поверхность рода g, т.е. связная ориентируемая компактная поверхность. Говоря иначе, это сфера g ручками.

Лемма 1. $\chi(S_q) = 2 - 2g - xарактеристика Эйлера - есть полный инвариант.$

Определение 2. Поверхность рода g с n дырками — связная компактная ориентируемая поверхность с краем(-ями). Говоря иначе, сфера с g ручками и n дырками.

Лемма 2. $(\chi; n)$ (или же, что равносильно, (g; n)) есть полный инвариант.

Определение 3. Замкнутая кривая γ — непрерывное отображение $\gamma: S^1 \to S_q$, что

- γ без самопересечений,
- γ гладка,
- γ с точностью до изотопии (гомотопии).

без самопересечений.

Определение 4. Гомеоморфизм — отображение между топологическими пространствами

$$\varphi: X \to Y$$
,

ОТР

- φ биекция,
- φ непрерывна,
- φ^{-1} непрерывна.

Определение 5. Диффеоморфизм — гладкий гомеоморфизм.

Замечание 1. Для рассматриваемых пространств верно, что гомеоморфные пространства диффеоморфны.

 Π ример 1.

- 1. Тождественное отображение на X диффеоморфизм.
- 2. К диффеоморфизмам можно применять изотопии.

Задача 1. Любую неразбивающую кривую γ на X (т.е. $X \setminus \gamma$ линейно связно) можно перевести в любую другую неразбивающую.

Определение 6. *Изометрия* — гомеоморфизм, сохраняющий метрику (или, что равносильно, длины кривых).

Задача 2.

- 1. **Первый тор.** Рассмотрим квадрат $[0;1]^2$. Склеим его обычным способом в тор. Получим тор, снабженный плоской метрикой, т.е. у каждой точки есть окрестность изометричная диску.
- 2. **Второй тор.** Сделаем то же самое, но для параллелограмма натянутого на (1;0) и (1;1).
- 3. **Третий тор.** То же самое, но для параллелограмма натянутого на (1;0) и (0.5;1).

Изометричны ли торы?

Замечание 2. Нельзя склеить поверхность рода g из плоскости. Действительно, если, например, взять обычную развёртку $\prod_{i=1}^{n} (a_i b_i a_i^{-1} b_i^{-1})$. Все вершины будут склеены в одну и сумма углов банально не сойдётся (будет очень большой).

С другой стороны рассмотрим модель плоскости Лобачевского через ортогональные к окружности дуги внутри окружности. Если возьмём правильный 4g-угольник с центром в центре нашей плоскости очень малого размера, то её сумма углов будет больше 2π . Если же взять 4g-угольник, вершины которого бесконечно удалены (лежат на границе нашей плоскости), то сумма углов будет равна $0 < 2\pi$. Значит где-то "посередине" будет 4g-угольник с суммой углов 2π . В таком случае склеивая такой многоугольник таким же образом, мы получаем плоскую метрику. Она называется гиперболической метрикой с постоянной кривизной -1.

Определение 7. Модель Пуанкаре плоскости Лобачевского — $\mathbb{H}:=\{z\in\mathbb{C}\mid \mathrm{Im}(z)>0\}$, где прямые — окружности, перпендикулярные $\mathrm{Im}(z)=0$, а метрика порождается формулой

$$ds = \frac{\sqrt{dx^2 + dy^2}}{y}.$$

Множество изометрий модели Пуанкаре $\mathrm{Iso}^+(\mathbb{H})$ — дробно-рациональные функции с вещественными коэффициентами и положительным определителем, т.е. $\mathrm{PSL}(2,\mathbb{R})$.

Замечание 3. По теореме Брауера у всякой изометрии \mathbb{H} есть неподвижная в замыкании \mathbb{H} . Если она лежит в \mathbb{H} , то такая изометрия равносильно повороту относительно центра в представлении плоскости Лобачевского в качестве круга, где неподвижная точка — центр. Если же она лежит на границе, то это равносильно параллельному переносу на $a \in \mathbb{R}$ в модели плоскости Лобачевского, где неподвижная точка — бесконечно-удалённая точка.

Теорема 3. Рассмотрим на S_g замкнутую простую существенную (т.е. нестягиваемую) кривую с. Пусть на S_g есть гиперболическая метрика τ . Тогда

- 1. Существует и, если $g \neq 1$, единственна кривая $c' \approx c$ минимальной длины.
- 2. c' геодезическая.

Доказательство. В случае тора мы имеем, что он склеивается из квадрата $[0;1]^2$. Таким образом можно рассмотреть поднятие нашей кривой c на \mathbb{R}^2 . Рассмотрим её поднятие между двумя какими-нибудь эквивалентными (относительно \mathbb{Z}^2) соседними по c точками и натянем между ними. Получим c' минимальной длины, гомотопную c. Но также её можно подвигать параллельно, что означает неединственность минимальной кривой.

Точно также можно замостить Н.

Дописать.

Задача 3. Пусть на поверхности m выбрана простая кривая γ . Определим метрику, в которой длина кривой c есть

$$l_{\gamma}(c) := \min_{c' \approx c} |\gamma \cap c|.$$

Доказать, что c реализует рассматриваемое минимальное число пересечений тогда и только тогда, когда γ и c не образуют двуугольников (дисков, полвоина границы которых есть часть c, а другая половина — часть γ).

Определение 8.

- $\mathrm{Diff}(S_g)$ группа диффеоморфизмов S_g .
- $\mathrm{Diff}_0(S_g)$ группа диффеоморфизмов, изотопных id.
- $\operatorname{Mod}(S_g) := \operatorname{Diff}/\operatorname{Diff}_0$.

Определение 9. Пространство Тейхмюллера —

 $\operatorname{Teich}(S_g) := \{ \operatorname{гиперболическая структура на } S_g \} / \operatorname{Diff}_0.$

Теорема 4.

$$\operatorname{Teich}(S_q) = \mathbb{R}^{6g-6}.$$

Доказательство. Разрежем S_g по геодезическим кривым на "штаны" (сферы с 3 дырками). Итого "штанов" у нас 2g-2, а разрезов 3g-3. Далее у каждых штанов каждую пару краёв соединим минимальной кривой и разрежем по ней. Получим 6g-6 шестиугольников с прямыми углами. При этом пусть в одних штанах длины разрезов $-l_1$, l_2 и l_3 .

Лемма 5. Шестиугольник с прямыми углами со сторонами l_1 , x, l_2 , y, l_3 , z по циклу существуют и единственны.

Таким образом каждые штаны распадаются на двое одинаковых шестиугольника, а значит определяются по длинам трёх краёв. Таким образом множество штанов определяется по длинам разрезов, что даёт 3g-3 параметра (по 3g-3 разрезам). Далее мы можем склеить эти разрезы с любой закруткой $\in (-\infty; \infty)$. Таким образом

$$\operatorname{Teich}(S_g) \simeq (\mathbb{R}_{>0} \times \mathbb{R})^{3g-3} \simeq \mathbb{R}^{6g-6}.$$