# Enhancing Lightweight Neural Networks by Modifying Reference Image Selection for Improved Head Pose Estimation

Nguyen Quang Khai

Instructors

Prof. Wen-Nung Lie

DEPARTMENT OF ELECTRICAL ENGINEERING
NATIONAL CHUNG CHENG UNIVERSITY

7th January 2025

#### Table of Contents

- Topic Introduction
- Related Works
- Conclusion

#### Table of Contents

- Topic Introduction
- Related Works
- 3 Conclusion

## Introduction

















#### Contributions

- A lightweight neural network is designated for head pose estimation from a single RGB image.
- A novel training strategy based on deep metric learning (DML) is proposed for head pose estimation. Thus, our method is called Metric Head Pose Estimation (MHPE).
- We propose to include a plug-in module, called Separated-Concentration Matrix Fisher distribution Estimation (SCME), to support the backpropagation procedure.
- A new metric called Cost-Error Product (CEP) is proposed to measure the efficiency of a head pose estimation.
- The comprehensive experimental results are demonstrated by following the two common protocols on three public datasets: 300W-LP, AFLW2000, and BIWI.

### Training Architecture









#### Distance Module

The triple vector  $\mathbf{z}$  is computed by reshaping to a  $m \times 3$  matrix and normalizing each column vector. Let  $\mathbf{z}^{in}$  and  $\mathbf{z}^{ref}$  be the triple-vectors of the input image and the reference image respectively, the distance between these two triple-vectors is defined as:

$$d(\mathbf{z}^{in}, \mathbf{z}^{ref}) = \sqrt{2(3 - \operatorname{trace}(\mathbf{z}^{ref})^T \mathbf{z}^{in})}.$$
 (1)

where  $trace(\cdot)$  is the trace function.

To avoid the problem of class collapse, a uniform distributed noise  $\epsilon \sim U[-1,1]$  is added to the computed distance as expressed in Equation 1.

$$d'(\mathbf{z}^{in}, \mathbf{z}^{ref}) = d(\mathbf{z}^{in}, \mathbf{z}^{ref}) + \epsilon \cdot c \cdot d(\mathbf{z}^{in}, \mathbf{z}^{ref})$$
(2)

where c is a scaling factor.



#### Inference Architecture



Figure 1.1: Inference phase

- Only the input stream is required to estimate the pose.
- The distance module is ignored in this phase.
- Only the rotation estimator from SCME is used to compute the mean of the predicted rotation matrix.

#### Encoder



Figure 1.2: The architecture of the encoder.



Figure 1.3: Design of a convolution block.



Figure 1.4: The architecture of CBAM.

## Modified CBAM (MCBAM)



Figure 1.5: The architecture of Modified CBAM.



Figure 1.6: Design of Modified Spatial Attention.

#### Loss Function

#### **Rotation matrix loss**

$$\mathcal{L}_{vector} = \frac{1}{3} (\|\widehat{v}_1 - v_1\|_2^2 + \|\widehat{v}_2 - v_2\|_2^2 + \|\widehat{v}_3 - v_3\|_2^2)$$
 (4)

$$\mathcal{L}_{vector\_ortho} = (\boldsymbol{v}_1^T \boldsymbol{v}_2)^2 + (\boldsymbol{v}_2^T \boldsymbol{v}_3)^2 + (\boldsymbol{v}_1^T \boldsymbol{v}_2)^2 + (\|\boldsymbol{v}_1\|_2 - 1)^2 + (\|\boldsymbol{v}_2\|_2 - 1)^2 + (\|\boldsymbol{v}_3\|_2 - 1)^2$$
(5)

where  $\hat{R} = [\hat{v}_1 \quad \hat{v}_2 \quad \hat{v}_3]$  is the predicted rotation matrix,  $R = [v_1 \quad v_2 \quad v_3]$  is the ground truth,  $\|.\|_2$  is the L<sup>2</sup> norm.

#### Feature orthonormality loss

$$\mathcal{L}_{feat\_ortho} = \left\| \hat{\mathbf{z}} \hat{\mathbf{z}}^T - I_3 \right\|_F^2 \tag{6}$$

#### Negative log likelihood loss

$$\mathcal{L}_{nll} = -\log(c(F)) + trace(F^T R)$$
(7)

#### Loss Function

#### Distance loss

$$\mathcal{L}_{dist} = \frac{1}{K} \sum_{k=0}^{K-1} \left( \hat{d} \left( \hat{\boldsymbol{z}}^{in}, \hat{\boldsymbol{z}}_{k}^{ref} \right) - d \left( R^{in}, R_{k}^{ref} \right) \right)^{2} \tag{8}$$

Where  $R^{in}$  and  $R_k^{ref}$  are the rotation matrix ground truth,  $d(R^{in}, R_k^{ref}) = \sqrt{2(3 - trace(R^{in})^T R_k^{ref})}$ ,

 $\hat{d}(.)$  is defined as in Equation 2.

#### **Total loss**

$$\mathcal{L}_{total} = \alpha \mathcal{L}_{vector} + \beta \mathcal{L}_{vector\_ortho} + \gamma \mathcal{L}_{dist} + \eta \mathcal{L}_{nll} + \mu \mathcal{L}_{feat\_ortho}$$
(9)

where  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\eta$ ,  $\mu$  are the weights for the corresponding sub-losses.



#### Research Methods

• The primary objective of this research is to enhance the accuracy of head pose estimation (HPE) by using new methods for reference image selection, specifically Gaussian distribution and Uniform distribution, as opposed to the original method of random sampling. By adopting these new reference selection methods, the goal is to reduce the Mean Absolute Error (MAE) and improve the robustness of HPE models across various challenging scenarios.

### Table of Contents

- 1 Topic Introduction
- Related Works
- 3 Conclusion

#### Methods

- Reference images in bins: When selecting reference images, the yaw angle of the input image determines the bin from which reference images are drawn.
- Gaussian distribution: A method for selecting reference images based on their proximity to a given input yaw angle. This approach aims to give more weight to images whose yaw angles are closer to the input angle, providing a more focused and representative set of reference images.
- Reverse Gaussian Distribution: This approach aims to give more weight to images whose yaw angles are further to the input angle, reverse with Gaussian distribution.
- *Uniform Distribution:* In this method, sample reference images from each bin.

#### Result in thesis

| Hyperparameter | MHPE/MHPE-PB                                                      |
|----------------|-------------------------------------------------------------------|
| Batch size     | 100                                                               |
| Optimizer      | Adam                                                              |
| Learning rate  | 0.01 (multiplied by 0.1 at                                        |
|                | 20 <sup>th</sup> , 50 <sup>th</sup> , and 80 <sup>th</sup> epoch) |
| Weight decay   | 1e-6                                                              |

Table 1. Hyperparameters in Tai's implementation.

| Protocol   | Method | Euler angle errors |       |      |      |      | Vector a | ngle err | ors  |
|------------|--------|--------------------|-------|------|------|------|----------|----------|------|
|            |        | Yaw                | Pitch | Roll | MAE  | Left | Down     | Front    | MAEV |
| Protocol 1 | MHPE   | 3.99               | 5.19  | 3.06 | 4.08 | 5.29 | 5.60     | 6.76     | 5.88 |
| Protocol 2 | MHPE   | 3.65               | 5.88  | 4.23 | 4.58 | 5.12 | 5.29     | 5.95     | 5.45 |

Table 2: MAE research results of Tai

Protocol 1: Training on 300W-LP and testing on BIWI.

**Protocol 2**: Training on 300W-LP and testing on AFLW2000.

## Impact of Using reference images in bins

## Using reference images in bins



## Using reference images in bins

#### • Identify the bin:

- Determine the bin corresponding to the yaw angle of the input image.
- For example, if the input image has yaw =  $-10^{\circ}$ , and the bins are divided as  $[-20^{\circ},0^{\circ}]$ ,  $[0^{\circ},20^{\circ}]$ , etc., the image belongs to the bin  $[-20^{\circ},0^{\circ}]$ .

#### • Retrieve reference images:

- Select reference images from the identified bin.
- If the identified bin does not contain enough reference images, retrieve additional images from the neighboring bins.
- For example, if the bin  $[-20^\circ,0^\circ]$  is insufficient, additional images can be retrieved from  $[0^\circ,20^\circ]$  or  $[-40^\circ,-20^\circ]$ .
- This approach ensures that the selected reference images are as relevant as possible while maintaining robustness in cases where certain bins lack sufficient data.

## Comparison of MAE Results

Comparison of MAE results between Tai's thesis, Original code and Experiment using reference images in bins.

| Result        | Range of bins | Protocol   | Yaw  | Pitch         | Roll      | MAE  |
|---------------|---------------|------------|------|---------------|-----------|------|
| Tai Thesis    |               | Protocol 1 | 3.99 | 5.19          | 3.06      | 4.08 |
|               |               | Protocol 2 | 3.65 | 5.88          | 4.23      | 4.58 |
| Original code |               | Protocol 1 | 4.01 | 5.16          | 3.28      | 4.13 |
|               |               | Protocol 2 | 3.85 | 6.12          | 4.62      | 4.71 |
|               | 10            | Protocol 1 | 3.64 | 5.90          | 3.16      | 4.23 |
|               |               | Protocol 2 | 3.76 | 6.19          | 4.45      | 4.83 |
| Experiment    | 20            | Protocol 1 | 3.93 | 5.22          | 3.37      | 4.17 |
|               |               | Protocol 2 | 3.74 | 5.97          | 4.39      | 4.71 |
|               | 40            | Protocol 1 | 4.23 | 4.96          | 3.20      | 4.13 |
|               |               | Protocol 2 | 3.74 | 6.12          | 4.41      | 4.78 |
|               | 60            | Protocol 1 | 4.06 | 5.11          | 3.19      | 4.11 |
|               |               | Protocol 2 | 3.79 | 6.14          | 4.63      | 4.81 |
| ·             | ·             | ·          | 4 □  | ) + 4 (F) + 4 | 3 + 4 3 1 |      |

7th January 2025

## Impact of Using Gaussian Weights

## Using Gaussian Distribution (1/2)

#### Motivation:

- In head pose estimation, it is effective to sample reference images closer to the input yaw angle.
- The Gaussian distribution assigns higher weights to images near the input angle, ensuring relevance and focus.

#### • Gaussian Distribution Formula:

$$W(x) = e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

#### where:

- W(x): weight assigned to the yaw angle x,
- $\mu$ : mean (input yaw angle),
- $\sigma$ : standard deviation (controls spread of weights).

## Using Gaussian Distribution (2/2)

#### Steps:

- ① Divide the yaw range  $[-180^{\circ}, 180^{\circ}]$  into discrete bins.
- 2 Compute weights for each bin using the Gaussian formula, with the bin center as x.
- **3** Normalize weights: Normalized Weight(x) =  $\frac{W(x)}{\sum W(x)}$ .
- ① Determine references per bin: References from Bin = Normalized Weight(x)  $\times$  k, where k is the total required references.
- Sample references proportional to normalized weights, concentrating around the input angle.

## Gaussian Distribution Lookup Table Example

**Example:** The lookup table divides the yaw angle range  $[-180^{\circ}, 180^{\circ}]$  into  $20^{\circ}$  bins. For an input yaw angle  $\mu=10^{\circ}$ , Gaussian weights are computed, and references are sampled accordingly.

#### Step 1: Setting the Mean ( $\mu$ ) and Standard Deviation ( $\sigma$ ):

- $\mu=10^\circ$  (Gaussian mean),  $\sigma=30^\circ$  (standard deviation).
- Compute weights using:  $W(x) = e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ .

## Gaussian Weights for Each Bin

Step 2: Computing Gaussian Weights for Each Bin:

| Bin Range                            | Center (x) | Gaussian Weight                                 |
|--------------------------------------|------------|-------------------------------------------------|
| $-20^{\circ}  ightarrow 0^{\circ}$   | -10°       | $e^{-\frac{(-10-10)^2}{2(30)^2}} \approx 0.800$ |
| $0^{\circ}  ightarrow 20^{\circ}$    | 10°        | $e^{-\frac{(10-10)^2}{2(30)^2}} = 1.000$        |
| $20^{\circ}  ightarrow 40^{\circ}$   | 30°        | $e^{-\frac{(30-10)^2}{2(30)^2}} \approx 0.800$  |
| 40° → 60°                            | 50°        | $e^{-\frac{(50-10)^2}{2(30)^2}} \approx 0.367$  |
| $-40^{\circ}  ightarrow -20^{\circ}$ | −30°       | $e^{-\frac{(-30-10)^2}{2(30)^2}} \approx 0.367$ |

## Normalizing Gaussian Weights

#### **Step 3: Normalizing the Weights:**

- Total weight: 0.367 + 0.800 + 1.000 + 0.800 + 0.367 = 3.334.
- Normalized weights:

| Bin Range                            | Weight | Normalized Weight           |
|--------------------------------------|--------|-----------------------------|
| $-20^{\circ}  ightarrow 0^{\circ}$   | 0.800  | $0.800/3.334 \approx 0.240$ |
| $0^{\circ}  ightarrow 20^{\circ}$    | 1.000  | $1.000/3.334 \approx 0.300$ |
| $20^{\circ}  ightarrow 40^{\circ}$   | 0.800  | $0.800/3.334 \approx 0.240$ |
| $40^{\circ}  ightarrow 60^{\circ}$   | 0.367  | $0.367/3.334 \approx 0.110$ |
| $-40^{\circ}  ightarrow -20^{\circ}$ | 0.367  | $0.367/3.334 \approx 0.110$ |

## Sampling References

#### **Step 4: Sampling References:**

• For k = 10 references, the number of images sampled per bin is:

Images from Bin = Normalized Weight  $\times k$ .

• Distribution:

| Bin Range                            | Normalized Weight | Images to Sample ( $k=10$ ) |
|--------------------------------------|-------------------|-----------------------------|
| $-20^{\circ}  ightarrow 0^{\circ}$   | 0.240             | $0.240 \times 10 \approx 2$ |
| $0^{\circ}  ightarrow 20^{\circ}$    | 0.300             | $0.300 \times 10 \approx 3$ |
| $20^{\circ}  ightarrow 40^{\circ}$   | 0.240             | $0.240 \times 10 \approx 2$ |
| $40^{\circ}  ightarrow 60^{\circ}$   | 0.110             | 0.110 	imes 10 pprox 1      |
| $-40^{\circ}  ightarrow -20^{\circ}$ | 0.110             | 0.110 	imes 10 pprox 1      |

## Final Sampling

#### **Step 5: Final Sampling:**

- 3 references from  $0^{\circ} \rightarrow 20^{\circ}$ ,
- 2 references each from  $-20^{\circ} \rightarrow 0^{\circ}$  and  $20^{\circ} \rightarrow 40^{\circ}$ ,
- 1 reference each from  $40^{\circ} \rightarrow 60^{\circ}$  and  $-40^{\circ} \rightarrow -20^{\circ}$ .

## Comparison of MAE Results by Gaussian Distribution

Comparison of MAE results between Tai's thesis, Original code and Experiment using reference images by Gaussian distribution.

| Result        | Range of bins | Std Dev | Protocol   | Yaw       | Pitch         | Roll    | MAE  |
|---------------|---------------|---------|------------|-----------|---------------|---------|------|
| Tai Thesis    |               |         | Protocol 1 | 3.99      | 5.19          | 3.06    | 4.08 |
|               |               |         | Protocol 2 | 3.65      | 5.88          | 4.23    | 4.58 |
| Original code |               |         | Protocol 1 | 4.01      | 5.16          | 3.28    | 4.13 |
|               |               |         | Protocol 2 | 3.85      | 6.12          | 4.62    | 4.71 |
|               | 20            | 15      | Protocol 1 | 3.72      | 5.41          | 3.30    | 4.14 |
|               |               |         | Protocol 2 | 4.09      | 6.30          | 4.60    | 4.95 |
| Experiment    | 20            | 20      | Protocol 1 | 3.65      | 5.49          | 3.14    | 4.09 |
|               |               |         | Protocol 2 | 3.91      | 6.10          | 4.58    | 4.71 |
|               | 20            | 30      | Protocol 1 | 3.58      | 5.30          | 3.10    | 3.98 |
|               |               |         | Protocol 2 | 3.91      | 6.09          | 4.52    | 4.69 |
|               | 20            | 37.5    | Protocol 1 | 3.60      | 5.39          | 3.11    | 4.03 |
|               |               |         | Protocol 2 | 3.90      | 6.09          | 4.58    | 4.78 |
|               | 20            | 45      | Protocol 1 | 3.83      | 5.39          | 3.34    | 4.22 |
|               |               |         | Protocol 2 | 3.83      | 6.36          | 4.61    | 4.92 |
| ·             | ·             |         | ·          | 4 11 15 1 | 4 4 1 4 1 4 1 | F 4 = F | = 00 |

## Impact of Using Inverse Gaussian Weights

## Inverse Gaussian Weights

- In the inverse Gaussian method, weights are computed such that the weight distribution is the opposite of the standard Gaussian distribution.
- Bins farther from the mean value  $(\mu)$  have higher weights, while bins closer to the mean have lower weights.
- Given yaw bins with a mean  $(\mu)$  of  $10^{\circ}$  and a standard deviation  $(\sigma)$  of  $30^{\circ}$ , the weights for each bin are computed using the inverse Gaussian formula:

$$W(x) = e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

## Yaw Bin Weights

• Below is the weight table for the yaw bins:

| Bin Range                            | Weight (Inverse Gaussian) |
|--------------------------------------|---------------------------|
| $-20^{\circ}  ightarrow 0^{\circ}$   | 1.56                      |
| $0^{\circ}  ightarrow 20^{\circ}$    | 1.00                      |
| $20^{\circ}  ightarrow 40^{\circ}$   | 1.56                      |
| $40^{\circ}  ightarrow 60^{\circ}$   | 5.93                      |
| $-40^{\circ}  ightarrow -20^{\circ}$ | 5.93                      |

## Normalized Weight Table

- After normalizing the weights to ensure their sum equals 1, we get the following normalized weight table:
- Total weight = 1.56 + 1.00 + 1.56 + 5.93 + 5.93 = 16.98

| Bin Range                            | Normalized Weight | Number of References ( $k=10$ ) |
|--------------------------------------|-------------------|---------------------------------|
| $-20^{\circ}  ightarrow 0^{\circ}$   | 0.092             | 1                               |
| $0^{\circ}  ightarrow 20^{\circ}$    | 0.059             | 1                               |
| $20^{\circ}  ightarrow 40^{\circ}$   | 0.092             | 1                               |
| $40^{\circ}  ightarrow 60^{\circ}$   | 0.349             | 3                               |
| $-40^{\circ}  ightarrow -20^{\circ}$ | 0.349             | 3                               |

• References are sampled more heavily from bins farther from the mean value  $(\mu)$  and less from bins closer to it.

## Comparison of MAE Results by Reverse Gaussian Distribution

Comparison of MAE results between Tai's thesis, Original code and Experiment using reference images by Reverse Gaussian distribution.

| Result        | Range of bins | Std Dev | Protocol   | Yaw   | Pitch | Roll | MAE  |
|---------------|---------------|---------|------------|-------|-------|------|------|
| Tai Thesis    |               |         | Protocol 1 | 3.99  | 5.19  | 3.06 | 4.08 |
|               |               |         | Protocol 2 | 3.65  | 5.88  | 4.23 | 4.58 |
| Original code |               |         | Protocol 1 | 4.01  | 5.16  | 3.28 | 4.13 |
|               |               |         | Protocol 2 | 3.85  | 6.12  | 4.62 | 4.71 |
|               | 20            | 20      | Protocol 1 | 9.85  | 7.05  | 4.48 | 7.13 |
|               |               |         | Protocol 2 | 11.45 | 8.85  | 7.39 | 9.24 |
|               | 20            | 30      | Protocol 1 | 6.29  | 10.55 | 4.44 | 7.09 |
|               |               |         | Protocol 2 | 10.09 | 8.71  | 7.46 | 8.75 |
|               | 20            | 45      | Protocol 1 | 5.37  | 8.16  | 4.56 | 6.03 |
|               |               |         | Protocol 2 | 6.23  | 8.01  | 6.62 | 6.96 |

## Impact of Using Uniform Distribution

## Using Uniform Distribution

- In this method, we use a uniform distribution to sample reference images from each bin.
- Unlike the Gaussian distribution where weights are calculated based on distance from the mean, here we simply select one image from each bin until the required number of references (k) is reached.
- If there are fewer bins than the required references, the process repeats, sampling from the bins again until the total number of references is collected.

## Steps for Uniform Distribution Sampling

- **Step 1:** Divide the yaw angle range  $[-180^{\circ}, 180^{\circ}]$  into equal-sized bins.
- Step 2: From each bin, one reference image is selected. This means
  that for each bin, you choose one image that corresponds to the yaw
  angle within the range of that bin.
- Step 3: If the number of bins is insufficient to meet the required references (k), the process repeats, sampling from the bins in the same order until k references are collected.

## Example of Uniform Distribution Sampling

- Bins: Bin 1, Bin 2, Bin 3, Bin 4, Bin 5
- References Sampled:
  - lacktriangle Bin  $1 o \mathsf{Reference}\ 1$
  - 2 Bin  $2 \rightarrow \text{Reference } 2$
  - 3 Bin 3  $\rightarrow$  Reference 3
  - Bin 4 → Reference 4
  - $\bigcirc$  Bin 5  $\rightarrow$  Reference 5
  - **6** Bin  $1 \rightarrow \text{Reference } 6$
  - $\bigcirc$  Bin 2  $\rightarrow$  Reference 7
  - **3** Bin  $3 \rightarrow \text{Reference } 8$
  - $\bigcirc$  Bin 4  $\rightarrow$  Reference 9

## Comparison of MAE Results by Uniform Distribution

Comparison of MAE results between Tai's thesis, Original code and Experiment using reference images in bins.

| Result        | Range of bins | Protocol   | Yaw   | Pitch | Roll | MAE   |
|---------------|---------------|------------|-------|-------|------|-------|
| Tai Thesis    |               | Protocol 1 | 3.99  | 5.19  | 3.06 | 4.08  |
|               |               | Protocol 2 | 3.65  | 5.88  | 4.23 | 4.58  |
| Original code |               | Protocol 1 | 4.01  | 5.16  | 3.28 | 4.13  |
|               |               | Protocol 2 | 3.85  | 6.12  | 4.62 | 4.71  |
|               | 20            | Protocol 1 | 18.57 | 14.67 | 7.57 | 13.61 |
|               |               | Protocol 2 | 18.91 | 13.62 | 9.54 | 14.03 |

#### Table of Contents

- Topic Introduction
- 2 Related Works
- Conclusion

### Conclusion Results

| Result                        | Range of bins | Std Dev | Protocol   | Yaw   | Pitch | Roll | MAE   |
|-------------------------------|---------------|---------|------------|-------|-------|------|-------|
| Tai Thesis                    | -             | -       | Protocol 1 | 3.99  | 5.19  | 3.06 | 4.08  |
|                               |               |         | Protocol 2 | 3.65  | 5.88  | 4.23 | 4.58  |
| Original code                 | -             | -       | Protocol 1 | 4.01  | 5.16  | 3.28 | 4.13  |
|                               |               |         | Protocol 2 | 3.85  | 6.12  | 4.62 | 4.71  |
| Reference images in bins      | 20            | -       | Protocol 1 | 4.21  | 5.13  | 3.16 | 4.17  |
|                               |               |         | Protocol 2 | 3.61  | 6.07  | 4.34 | 4.71  |
| Gaussian distribution         | 20            | 30      | Protocol 1 | 3.58  | 5.30  | 3.10 | 3.98  |
|                               |               |         | Protocol 2 | 3.91  | 6.09  | 4.58 | 4.69  |
| Reverse Gaussian distribution | 20            | 45      | Protocol 1 | 5.37  | 8.16  | 4.56 | 6.03  |
|                               |               |         | Protocol 2 | 6.23  | 8.01  | 6.62 | 6.69  |
| Uniform distribution          | 20            | -       | Protocol 1 | 18.57 | 14.67 | 7.57 | 13.61 |
|                               |               |         | Protocol 2 | 18.91 | 16.62 | 9.54 | 14.03 |

#### Conclusion

- Replacing random sampling with Gaussian distribution showed significant improvement in results.
- Optimal performance was achieved with a standard deviation of 30 across both protocols.
- The inverse Gaussian distribution led to worse results, indicating the importance of selecting reference images based on proximity to the input yaw angle.
- Uniform distribution, where one image is selected per bin, resulted in inefficient learning due to lack of focus on critical yaw angles.
- Grouping reference images into bins based on proximity to the input yaw angle showed similar accuracy to the original results, but lacked diversity.
- A combination of both similar and diverse features in reference images leads to optimal model performance.

Thank you for your attention!