Tutorial 5: Solutions

- 1. Prove mathematically that convolution is
- (i) a commutative operation, i.e, x(t)*h(t) = h(t)*x(t).

Start with the convolution integral $x(t) * h(t) = \int_{0}^{\infty} x(\tau)h(t-\tau)d\tau$.

Let $\lambda = t - \tau$, $d\lambda = -d\tau$. We have

$$x(t) * h(t) = \int_{-\infty}^{\infty} x(t - \lambda)h(\lambda)(-d\lambda) = \int_{-\infty}^{\infty} h(\lambda)x(t - \lambda)d\lambda = h(t) * x(t).$$

Note that
$$\int_{b}^{a} x(t)dt = -\int_{a}^{b} x(t)dt$$

Therefore convolution is a commutative operation.

(ii) an associative operation, i.e, (x(t)*h(t))*g(t) = x(t)*(h(t)*g(t)).

LHS =
$$(x(t) * h(t)) * g(t) = \left[\int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau \right] * g(t)$$
.
= $g(t) * \left[\int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau \right]$

We need to introduce another constant to replace *t* to perform the second convolution step

$$(x(t)*h(t))*g(t) = \int_{-\infty}^{\infty} g(\sigma) \left[\int_{-\infty}^{\infty} x(\tau)h(t-\sigma-\tau)d\tau \right] d\sigma$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(\sigma)x(\tau)h(t-\sigma-\tau)d\tau d\sigma$$

$$RHS = x(t)*(h(t)*g(t)) = x(t)*(g(t)*h(t)).$$

$$= x(t)*\int_{-\infty}^{\infty} g(\sigma)h(t-\sigma)d\sigma = \int_{-\infty}^{\infty} x(\tau) \left[\int_{-\infty}^{\infty} g(\sigma)h(t-\tau-\sigma)d\sigma \right] d\tau$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(\sigma)x(\tau)h(t-\sigma-\tau)d\tau d\sigma = LHS.$$

Therefore convolution is an associative operation.

(iii) a distributive operation, i.e, x(t)*(h(t) + g(t)) = x(t)*h(t) + x(t)*g(t).

$$x(t) * (h(t) + g(t)) = \int_{-\infty}^{\infty} x(\tau) [h(t - \tau) + g(t - \tau)] d\tau$$

$$= \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau + \int_{-\infty}^{\infty} x(\tau) g(t - \tau) d\tau = x(t) * h(t) + x(t) * g(t).$$

2. An RC high-pass circuit has a step response $g(t)=u(t)\exp(-t/RC)$. Sketch and derive an equation for the impulse response.

We know that impulse response = $\frac{d}{dt}$ (step response).

Therefore the impulse response

$$h(t) = \frac{d}{dt} [g(t)] = \frac{d}{dt} [u(t) \exp(-t/RC)]$$
$$= \exp(-t/RC) \frac{d}{dt} [u(t)] + u(t) \frac{d}{dt} [\exp(-t/RC)]$$

$$= \exp(-t/RC)\delta(t) + u(t) \left[-\frac{1}{RC} \exp(-t/RC) \right] = \delta(t) \exp(-t/RC) - \frac{u(t)}{RC} \exp(-t/RC).$$

3. A system has an impulse response $h(t) = \exp(-t)u(t)$. Find the step response of this system.

The step response is

$$s(t) = \int_{-\infty}^{t} h(\tau) d\tau = \int_{-\infty}^{t} \exp(-\tau) u(\tau) d\tau = \int_{0}^{t} \exp(-\tau) d\tau = -\exp(-\tau) \Big|_{0}^{t} = 1 - \exp(-t).$$

Alternatively we can also use the convolution technique to compute the step response as follows

$$s(t) = h(t) * u(t) = \int_{-\infty}^{\infty} h(\tau)u(t-\tau)d\tau = \int_{-\infty}^{\infty} \exp(-\tau)u(\tau)u(t-\tau)d\tau.$$

Since $u(\tau)u(t-\tau)$ only has value between 0 and t we have

$$s(t) = \int_{0}^{t} \exp(-\tau) d\tau = -\exp(-\tau) \Big|_{0}^{t} = 1 - \exp(-t)$$

4. Compute and sketch y[n]=x[n]*z[n] where: x[n]=1,-1,2 for n=0,1,2

x[n] = 1,-1,2z[n] = 1,2,3,-1for n = -1,0,1,2

assume that each signal is zero elsewhere.

We can compute y[n] using a table as follows

	k	-3	-2	-1	0	1	2	3	4	5
	x[k]	0	0	0	1	-1	2	0	0	0
n =-1	z[-1-k]	-1	3	2	1	0	0	0	0	0
n = 0	z[-k]	0	-1	3	2	1	0	0	0	0
n = 1	z[1-k]	0	0	-1	3	2	1	0	0	0
n = 2	z[2-k]	0	0		-1	3	2	1	0	0
n = 3	z[3-k]	0	0	0	0	-1	3	2	1	0
n = 4	z[4-k]	0	0	0	0	0	-1	3	2	1
n = 5	z[5-k]	0	0	0	0	0	0	-1	3	2

	$y[n] = \sum x[k]z[n-k]$
n = -1	1×1=1
n = 0	$(2\times1)+(1\times(-1))=1$
n = 1	$(3\times1)+(2\times(-1))+(1\times2)=3$
n = 2	$((-1)\times1)+(3\times(-1))+(2\times2)=0$
n = 3	$((-1)\times(-1))+(3\times2)=7$
n = 4	$((-1)\times 2=-2$
<i>n</i> = 5	0

y[n] = x[n] *z[n].

5. The impulse response of a system is given by $h[n] = -\delta[n-1] + \delta[n]$. By considering the input signal x[n] = u[n-7], show that the system acts as an edge detector.

The response of the system can be obtained by performing a convolution between x[n] and h[n] as below:

$$k \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9 \qquad y[n] = \sum x[k]h[n-k]$$

$$x[k] \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 1 \qquad 1 \qquad 1 \qquad 1$$

$$n=6 \qquad h[6-k] \qquad 0 \qquad 0 \qquad -1 \qquad 1 \qquad 0 \qquad 0 \qquad 0 \qquad 0$$

$$n=7 \qquad h[7-k] \qquad 0 \qquad 0 \qquad 0 \qquad -1 \qquad 1 \qquad 0 \qquad 0 \qquad 1\times 1 = 1$$

$$n=8 \qquad h[8-k] \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad -1 \qquad 1 \qquad 0 \qquad (-1\times 1) + (1\times 1) = 0$$

$$n=9 \qquad h[9-k] \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad -1 \qquad 1 \qquad (-1\times 1) + (1\times 1) = 0$$

y[n] = x[n]*h[n] is zero everywhere except when n = 7. This shows that the system acts as an edge detector as it only has value at n = 7.

6. Find the output y(t) for the system shown below when a unit-step input, u(t) is applied.

$$x(t)=u(t) \qquad \text{sys.1} \qquad \text{sys.2}$$

$$h_1(t) = exp(-t)u(t) \qquad h_2(t) = exp(-t)u(t) \qquad y(t)$$

$$z(t) = h_1(t) * x(t) = \int_{-\infty}^{\infty} h_1(\tau)u(t-\tau)d\tau = \int_{-\infty}^{\infty} \exp(-\tau)u(\tau)u(t-\tau)d\tau$$
$$= \int_{0}^{t} \exp(-\tau)d\tau = 1 - \exp(-t), \text{ for } t \ge 0 \text{ or } [1 - \exp(-t)]u(t).$$

$$y(t) = h_2(t) * z(t) = \int_{-\infty}^{\infty} h_2(\tau) z(t - \tau) d\tau = \int_{-\infty}^{\infty} \exp(-\tau) u(\tau) [1 - \exp(-(t - \tau))] u(t - \tau) d\tau$$

$$= \int_{0}^{t} \exp(-\tau) [1 - \exp(-(t - \tau))] d\tau = \int_{0}^{t} [\exp(-\tau) - \exp(-t)] d\tau$$

$$= -\exp(-\tau) \Big|_{0}^{t} - \tau \exp(-t) \Big|_{0}^{t} = 1 - \exp(-t) - t \exp(-t) = 1 - \exp(-t)(1 + t).$$

7. Consider the signals x(t) and h(t) shown below. Compute y(t) = x(t) * h(t) using (i) the graphical method (ii) the analytical method and write down the analytical expressions for y(t).

(i) Graphical method

Interval I: For $t \le 0$, no area overlap, y(t) = 0.

Interval II: For $0 < t \le 2$ shaded area = $1 \times t = t$, y(t) = t.

Interval III: For $2 < t \le 3$, shaded area = $1 \times 2 = 2$, y(t) = 2.

Interval IV: For $3 < t \le 5$, shaded area = $1 \times (3 - (t-2)) = 5 - t$, y(t) = 5 - t.

Interval V: For t > 5, no area overlap, y(t) = 0.

In summary
$$y(t) = \begin{cases} 0 & t \le 0 \\ t & 0 < t \le 2 \\ 2 & 2 < t \le 3 \\ 5 - t & 3 < t \le 5 \\ 0 & t > 5 \end{cases}$$

(ii) Analytical method

Consider the following intervals:

Interval I: For $t \le 0$, $x(\tau)h(t-\tau) = 0$, y(t) = 0.

Interval II: For
$$0 < t \le 2$$
, $x(\tau)h(t-\tau) = 1$, $y(t) = \int_0^t x(\tau)h(t-\tau)d\tau = \int_0^t 1d\tau = t$.

Interval III: For $2 < t \le 3$, $x(\tau)h(t-\tau) = 1$,

$$y(t) = \int_{t-2}^{t} x(\tau)h(t-\tau)d\tau = \int_{t-2}^{t} 1d\tau = t - (t-2) = 2.$$

Interval IV: For $3 < t \le 5$, $x(\tau)h(t-\tau) = 1$,

$$y(t) = \int_{t-2}^{3} x(\tau)h(t-\tau)d\tau = \int_{t-2}^{3} 1d\tau = 3 - (t-2) = 5 - t.$$

Note that the upper integration limit is 3 as shown in the diagram above. Interval V: For $3 < t \le 5$, $x(\tau)h(t-\tau) = 0$, y(t) = 0.

In summary
$$y(t) = \begin{cases} 0 & t \le 0 \\ t & 0 < t \le 2 \\ 2 & 2 < t \le 3 \\ 5 - t & 3 < t \le 5 \\ 0 & t > 5 \end{cases}$$

8. Consider a signal y[n] = 3x[n] + x[n-2]. Obtain the impulse response and evaluate the response of the system to an input

$$x_{1}[n] = \begin{cases} 1 & n = 0 \\ 1 & n = 1 \\ 2 & n = 2 \\ 0 & otherwise \end{cases}.$$

To obtain the impulse response h[n] substituting $x[n] = \delta[n]$ gives

$$h[n] = 3\delta[n] + \delta[n-2]$$
 or

$$h[n] = \begin{cases} 3 & n=0\\ 0 & n=1\\ 1 & n=2\\ 0 & otherwise \end{cases}.$$

To compute the response due to $x_1[n]$, express $x_1[n]$ as a sum of weighted impulses, i.e $x_1[n] = \delta[n] + \delta[n-1] + 2\delta[n-2]$.

Now the response is $y_1[n] = h[n] + h[n-1] + 2h[n-2]$

$$n = 0$$
: $y_I[0] = h[0] + h[-1] + h[-2] = 3$

$$n = 1$$
: $y_I[1] = h[1] + h[0] + 2h[-1] = 3$

$$n = 2$$
: $y_1[2] = h[2] + h[1] + 2h[0] = 1 + 6 = 7$

$$n = 3$$
: $y_1[3] = h[3] + h[2] + 2h[1] = 1$

$$n = 4$$
: $y_1[4] = h[4] + h[3] + 2h[2] = 2$

 $y_1[n]$ can also be obtained using technique in Q8 and Q9.

9. The impulse response of the RC circuit shown below is given by

 $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. Derive the expression for the response of the circuit to the signal

p(t) shown below. Sketch and label the response signal.

The response is $y(t) = p(t) * h(t) = \int_{-\infty}^{\infty} p(\tau)h(t-\tau)d\tau$.

For
$$t < 0$$
, $p(\tau)h(t-\tau) = 0$.

For
$$0 < t < T$$
,

We need to integrate from 0 to t.

$$y(t) = \int_{-\infty}^{\infty} p(\tau)h(t-\tau)d\tau = \int_{0}^{t} \frac{1}{RC} e^{-(t-\tau)/RC} d\tau = \frac{RC}{RC} \left[e^{-(t-\tau)/RC} \right]_{0}^{t} = 1 - e^{-t/RC}$$

For $t \ge T$,

We need to integrate from 0 to T.

$$y(t) = \int_{0}^{T} \frac{1}{RC} e^{-(t-\tau)/RC} d\tau = \frac{RC}{RC} \left[e^{-(t-\tau)/RC} \right]_{0}^{T} = e^{-(t-T)/RC} - e^{-t/RC}$$

Therefore we have

$$y(t) = \begin{cases} 0 & t < 0 \\ 1 - e^{-t/RC} & 0 < t < T \\ e^{-(t-T)/RC} - e^{-t/RC} & t \ge T \end{cases}$$

10. Consider an LTI digital communication system, in which a bit "1" is represented by p(t) in Q.13 and a bit "0" is represented by -p(t). Evaluate the response of the circuit for a sequence "110" for cases where T = 1/RC and T = 1/(5RC). Hence comment how the intersymbol interference (ISI) of this digital communication system is affected by T.

[You may assume T = 1s]

The sequence "110" is represented by p(t) + p(t-1) - p(t-2) as shown below.

Therefore the response is y(t) + y(t-1) - y(t-2).

For T = 1 and RC = 1, we have

For T = 1 and RC = 1/5, we have

Therefore we can see that the inter-symbol interference (ISI) is more severe when the pulse width, T is comparable to RC. To minimise ISI it is important to make sure that T >> RC, i.e h(t) is much narrower than p(t). If RC > T, the bits will overlap making it difficult to differentiate between 1 and 0.