Atividade de Laboratório 7.1

Números Inteiros e Criptografia - Prof. Luis Menasché Schechter

Objetivo

O objetivo desta atividade é que o aluno implemente o método para encontrar inversos multiplicativos modulares visto em sala de aula. Executamos o Algoritmo Euclidiano Estendido entre a e n, construindo a tradicional tabela com quatro colunas. Em seguida utilizamos os valores obtidos para d = MDC, α e β para calcular o inverso multiplicativo de a módulo n. Por exemplo, para o cálculo do inverso de 2 módulo 5, temos

R	Q	x	у
2	-	1	0
5	-	0	1
2	0	1	0
1	2	-2	1
0	2	-	-

Esta tabela será seguida então da solução: 3 é o inverso multiplicativo de 2 módulo 5.

O objetivo do programa que será realizado é ler **duplas** de números inteiros positivos e imprimir na tela para o usuário a réplica da tabela gerada, como a tabela acima, seguida, na linha abaixo, pelo inverso multiplicativo do primeiro número da dupla módulo o segundo número da dupla.

Entrada

Inicialmente, o programa deverá ler um número inteiro n. Este número irá indicar quantas **duplas** de números inteiros positivos o programa deverá ler na sequência. Isto é, se n=6, o programa deverá ler, em seguida, seis duplas de números inteiros positivos. Cada dupla de números será lida de uma vez, estando os dois números da dupla separados por vírgulas.

Abaixo, é apresentado um exemplo de uma possível entrada para o programa.

Saída

Cada dupla de inteiros lida representa um inteiro e um módulo. O programa deverá imprimir uma réplica da tabela gerada pelo Algoritmo Euclidiano Estendido executado e, em seguida, na linha abaixo, o inverso multiplicativo do primeiro número da dupla módulo o segundo número da dupla. Caso o inverso multiplicativo em questão não exista, o programa deverá imprimir apenas o número 0. Após o inverso multiplicativo, o programa deverá imprimir uma linha com apenas três traços: ---.

Abaixo, é apresentado um exemplo de uma saída para o programa. Esta é justamente a saída que deve ser produzida caso o programa receba a entrada fornecida no exemplo.

Exemplo

Este exemplo contém o caso descrito no início do enunciado.

Entrada	Saída
3	2 - 1 0 5 - 0 1 2 0 1 0 1 2 -2 1 0 2 3
2,5 2,40 3,104	2 - 1 0 40 - 0 1 2 0 1 0 0 20
	3 - 1 0 104 - 0 1 3 0 1 0 2 34 -34 1 1 1 35 -1 0 2 35