

NoSQL -Datenbanken NOSQL

Datenmodell

SQL

- Relationales Datenmodell, das auf Tabellen basiert
- In tabellenartigen Formen organisiert, und Beziehungen zwischen den Tabellen werden durch Fremdschlüssel definiert

- Verschiedene Datenmodelle
- Key-Value-Stores (wie Redis)
- Graphenmodelle (wie Neo4j)

Skalierbarkeit

SQL

 Skalieren oft vertikal, indem mehr Leistung (CPU, RAM) auf einem einzelnen Server hinzugefügt wird

- Oft bessere horizontale
 Skalierbarkeit, indem sie auf mehrere Server verteilt werden
- Erleichtert das Hinzufügen von Servern bei Bedarf, um die Datenbankleistung zu verbessern

Schema

SQL

- Haben ein festes Schema, das die Struktur der Datenbank und die Art der Daten, die gespeichert werden können, definiert
- Änderungen am Schema erfordern oft aufwändige Migrationen.

- Sind oft schemafrei oder haben ein flexibleres Schema, das es ermöglicht, Daten ohne vorherige Definition von Tabellenstrukturen zu speichern
- Dies erleichtert die Anpassung an sich ändernde Anforderungen

BASE vs. ACID

BASE

- Basically Available, Soft state, Eventually consistent
- Basically Available (Grundlegend verfügbar): Das System bleibt auch unter widrigen Bedingungen (z. B. Netzwerkausfall oder Datenbankpartition) grundlegend verfügbar
 - → Es gibt keine Garantie für sofortige Konsistenz.

- Eventually Consistent (Schließlich konsistent): Das System wird schließlich in einen konsistenten Zustand übergehen, wenn es keine weiteren Änderungen gibt
 - → Es akzeptiert vorübergehend inkonsistente Zustände

BASE vs. ACID

ACID

- Atomicity, Consistency, Isolation, Durability
- Atomicity (Atomarität): Eine
 Transaktion wird als eine atomare
 Einheit betrachtet, die entweder
 vollständig ausgeführt wird oder gar
 nicht. Es gibt keinen
 Zwischenzustand
- Consistency (Konsistenz): Eine Transaktion bringt die Datenbank von einem konsistenten Zustand in einen anderen konsistenten Zustand

- Isolation (Isolation): Die Ausführung einer Transaktion ist unabhängig von anderen Transaktionen
 → Jede Transaktion sieht die Datenbank, als ob sie die einzige Transaktion wäre.
- Durability (Dauerhaftigkeit): Nach Abschluss einer Transaktion bleiben die Ergebnisse dauerhaft, auch wenn es zu einem Systemausfall kommt

Transaktionen

SQL

- Bieten oft ACID-Transaktionen (Atomicity, Consistency, Isolation, Durability),
 - → stellen sicher, dass Datenbankoperationen konsistent und zuverlässig sind

- Bieten im Allgemeinen eine flexiblere Herangehensweise an Konsistenz und Transaktionen.
- Einige NoSQL-Datenbanken priorisieren Verfügbarkeit und Partitionstoleranz (CAP-Theorem) und opfern möglicherweise etwas Konsistenz.

Anwendungsbereiche

SQL

Werden oft in traditionellen Unternehmensanwendungen verwendet, bei denen komplexe Abfragen und Transaktionen erforderlich sind.

NoSQL

Werden häufig in Big Data-Anwendungen, Webanwendungen, Echtzeit-Analytik und anderen Szenarien eingesetzt, in denen eine flexible Datenmodellierung und Skalierbarkeit wichtig sind.

Habt ihr Ideen für Anwendungsfälle SQL vs. NoSQL?

Mehr zu SQL vs NoSQL

Mehr zu SQL vs. NoSQL

