

Capstone Project – 3

Cardiovascular Disease Risk Prediction

by - Puneet Suthar

What are we talking about ?

Content:

- Introduction to Cardiovascular diseases
- Problem Statement
- General overview of the dataset
- Exploratory Data Analysis
- Model building
- Conclusion

How our dataset Look like?

17 Columns

&

3390 Rows

17 Columns

- 1. Sex : male or female ("M" or "F")
- 2. Education : 1,2,3,4 it could be the level of education , higher no. means higher edu.
- 3. Age : Age of the patient (Continuous Although the recorded ages have been truncated to whole numbers, the concept of age is continuous)
- 4. is_smoking : whether or not the patient is a current smoker.
- 5. Cigs Per Day : the number of cigarettes that the person smoked on average in one day. (Can be considered continuous as one can have any number of cigarettes, even half a cigarette.)
- 6. BP Meds : whether or not the patient was on blood pressure medication (Nominal)

17 Columns

7.	Prevalent Stroke	: whether or not the patient had previously had a stroke
		(Nominal)

- 8. Prevalent Hyp : whether or not the patient was hypertensive (Nominal)
- 9. Diabetes : whether or not the patient had diabetes (Nominal)
- 10. Tot Chol : total cholesterol level (Continuous)
- 11. Sys BP : systolic blood pressure (Continuous)
- 12. Dia BP : diastolic blood pressure (Continuous)
- 13. BMI : Body Mass Index (Continuous)
- 14. Heart Rate : heart rate (Continuous -In medical research, variables such as heart rate though in fact discrete, yet are considered continuous because of a large number of possible values.)

17 Columns

15. Glucose : glucose level (Continuous)

16. TenyearCHD :10-year risk of coronary heart disease CHD(binary: "1",

means "Yes", "0" means "No") – DV)

17. Id : unique id for every entry in the data

- 1. From above graph we can see that some of features are highly skewed which can effect our model.
- 2. First we check for outlier, if still skewness is not solved the we apply some transformation on them to normalize them.

Outliers

(Exploratory Data Analysis)

EDA

```
num_col = ['age','cigsPerDay','totChol', 'sysBP','diaBP', 'BMI', 'heartRate', 'glucose']
wskr_df = whiskers_df(df,num_col)
```

Oracle No. of rows in dataframe - 3390
Percentage of total outliers in data - 4.81%

Percentage	upper_whisker data_above_upper_whisker		indices_above_upper_whisker	lower_whisker	data_below_lower_whisker	indices_below_lower_whisker	outlier_%
feature							
age	77.00	0	0	21.00	0		0.00
cigsPerDay	NaN	0	0	NaN	0		0.00
totChol	NaN	0	0	NaN	0	0	0.00
sysBP	184.50	105	[6,10,37,71,163,168,190,324,359,413,	76.50	0		3.10
diaBP	113.25	55	[5, 6, 10, 14, 168, 171, 190, 324, 478, 684, 7	51.25	3	[783, 1339, 3373]	1.71
ВМІ	NaN	0	0	NaN	0		0.00
heartRate	NaN	0	0	NaN	0		0.00
glucose	NaN	0		NaN	0		0.00

EDA

Before outlier treatment

EDA

Before outlier removal

After outlier removal using KNN Imputation

Change in skewness after outliers

Change in skewness after outliers

Change in skewness after outliers

Bar Plot

(Exploratory Data Analysis)

EDA

Bar Plot

- 1. Less educated people have high percentage of CDH.
- 2. Male are more prone to CHD than female.
- 3. Smokers have high ratio of CHD than Non smokers.
- 4. Patients having BPmeds are more prone to CHD.
- People have prevalant stroke have very high chances of CHD.
- 6. People have hypertension have very high chances of CHD.
- 7. People have diabetes have very high chances of CHD.

No. of cigrates per day is high amoung youngsters and it decreases as age increases but after 65 it increases again.

Person having highest risk who is consuming around 12 Cigs per day

More Distribution plots

More Distribution plots

1. Both Women and Men lying in Age group of 50-52 have high risk of heart disease.

EDA

- 2. Men lying in age group 40-42 are at risk.
- 3. Men having age more than 65 are also at risk.
- 4. Risk is High in same age group despite they are Smokers or not.

Correlation heatmap

Sys BP and Dia BP is correlated to hypertension, and also correlated with each other

Model Building

Fixing imbalanced data

0 are 1945 1 are 336

0 are 19451 are 1945

SMOTE: Synthetic Minority Over-sampling Technique

Hyperparameter tuning


```
para_df = ModelSelection(X_train, y_train, list_of_models, model_hyperparameters,10, 'precision')

[91]

Python
```

Defined a function to perform hyperparameter tuning using grid search cv as a brain with takes in some arguments as shown and returns a data frame with best parameter for every model

	model used	highest precision score	best hyperparameters
0	LogisticRegression(max_iter=10000)	0.667935	{'C': 1}
1	SVC(probability=True)	0.819131	{'C': 50}
2	KNeighborsClassifier()	0.793518	{'n_neighbors': 3}
3	RandomForestClassifier()	0.975003	{'n_estimators': 180}
4	DecisionTreeClassifier()	0.867793	{'max_depth': 320}
5	XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=100, n_jobs=None, num_parallel_tree=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=100, n_jobs=None, random_state=None,)	0.927100	{'max_depth': 20, 'n_estimators': 100}

Model comparison

Model comparison

Al

For best recall for class (1) we have logistic regression

Blue are highest Red are Lowest							
		0	1	accuracy	macro avg	weighted avg	
	Models						
	LogisticRegression	0.909864	0.253846		0.581855	0.807906	
	SVC	0.860645	0.216749		0.538697	0.760571	
	KNeighborsClassifier	0.875350	0.238636		0.556993	0.776393	
precision	RandomForestClassifier	0.847619	0.242424		0.545022	0.753560	
	DecisionTreeClassifier	0.852518	0.201389		0.526953	0.751320	
	XGBClassifier	0.860647	0.333333		0.596990	0.778692	
	LogisticRegression	0.647700	0.651316		0.649508	0.648262	
	SVC	0.807506	0.289474		0.548490	0.726994	
recall	KNeighborsClassifier	0.756659	0.414474		0.585566	0.703476	
recall	Random Forest Classifier	0.969734	0.052632		0.511183	0.827198	
	DecisionTreeClassifier	0.860775	0.190789		0.525782	0.756646	
	XGBClassifier	0.934625	0.177632		0.556128	0.816973	
	LogisticRegression	0.756719	0.365314	0.648262	0.561016	0.695887	
	SVC	0.833229	0.247887	0.726994	0.540558	0.742256	
f1-score	KNeighborsClassifier	0.811688	0.302885	0.703476	0.557286	0.732610	
11-score	RandomForestClassifier	0.904574	0.086486	0.827198	0.495530	0.777427	
	DecisionTreeClassifier	0.856627	0.195946	0.756646	0.526286	0.753944	
	XGBClassifier	0.896111	0.231760	0.816973	0.563936	0.792858	
	LogisticRegression	826.000000	152.000000		978.000000	978.000000	
	SVC	826.000000	152.000000		978.000000	978.000000	
support	KNeighborsClassifier	826.000000	152.000000		978.000000	978.000000	
support	RandomForestClassifier	826.000000	152.000000		978.000000	978.000000	
	DecisionTreeClassifier	826.000000	152.000000		978.000000	978.000000	
	XGBClassifier	826.000000	152.000000		978.000000	978.000000	

Web application

10 Year Heart Disease Prediction

You likely will NOT DEVELOP heart disease in 10 years.

Conclusion

Conclusion

- 1. The dataset has a high class imbalance, with significantly fewer cases of CHD than non-CHD cases.
- 2. The dataset contains null values, which were imputed using techniques like KNN imputation.
- 3. Men are more likely to suffer from CHD than women, and risk increases with age. Both men and women aged 50-52 have a higher risk, and men aged 40-42 and over 65 are also at risk.
- 4. Smoking does not appear to significantly affect CHD risk, but having diabetes or hypertension does increase the risk.
- 5. The percentage of people with CHD is almost equal between smokers and nonsmokers.
- 6. The logistic regression model had the best performance in terms of minimizing false negatives (Type 2 errors), precision, and recall, with an AUROC of 0.708.

Conclusion

- 7. Based on these metrics, the logistic regression model would be the best choice for predicting CHD in this dataset.
- 8. Overall, our project has succeeded in developing and refining machine learning models that can make accurate predictions about cardiovascular heart disease risk prediction. These models can help doctors to get idea of heart disease for every individual patient.

Q&A