Homework 9

Jim Zieleman

November 2, 2020

- 1. Each of the following sequences converges. Identify the limit of each one. Prove one of your answers.
 - (a) $(1/n^2)_{n=1}^{\infty}$ converges to 0.

proof

Let $\epsilon > 0$.

Take
$$N \in \mathbb{N}$$
 such that $\frac{1}{N^2} < \epsilon$.
For all $n > N$ we have,
 $\left| \frac{1}{n^2} - 0 \right| = \left| \frac{1}{n^2} \right| = \frac{1}{n^2} < \frac{1}{N^2} < \epsilon$
then $\lim_{n \to \infty} a_n = 0$.

- (b) $(2^{1/n})_{n=1}^{\infty}$ converges to 1. (c) $(\sqrt{n^2+1}-n)_{n=1}^{\infty}$ converges to 0.

- 3. Assume $(a_n)_n$ and $(b_n)_n$ are sequences that converge to a and b, respectively. Prove two of the following:
 - (a) $\lim_{n\to\infty} a_n + b_n = a + b$.

proof

The problem states we have two known limits.

For all ϵ_1 , there exists N_1 s.t if $n > N_1$, then $0 \le |a_n - a| \le \epsilon_1$.

For all ϵ_2 , there exists N_2 s.t if $n > N_2$, then $0 \le |b_n - b| \le \epsilon_2$.

Suppose $\epsilon_1 = \epsilon_2 = \epsilon/2$, then there exists a N_1 and N_2 .

Choose $N = \min\{N_1, N_2\}$ s.t for $n > N_1$ and $n > N_2$ we have n > N.

This implies that $|a_n - a| \le \epsilon/2$ and $|b_n - b| \le \epsilon/2$

So $|a_n - a| + |b_n - b| < \epsilon$

Then by triangle inequality

$$|(a_n + b_n) - (a + b)| = |a_n - a + b_n - b| \le |a_n - a| + |b_n - b| < \epsilon$$

Thus $\lim_{n\to\infty} a_n + b_n$ exists and it is equal to a+b.

(b) $\lim_{n\to\infty} a_n b_n = ab$

proof

The problem states we have two known limits.

For all ϵ_1 , there exists N_1 s.t if $n > N_1$, then $0 \le |a_n - a| \le \epsilon_1$.

For all ϵ_2 , there exists N_2 s.t if $n > N_2$, then $0 \le |b_n - b| \le \epsilon_2$.

Suppose we have,

$$\epsilon_1 = min(\frac{\epsilon}{3(b+1)}, (\frac{\epsilon}{3})(\frac{1}{2}))$$

$$\epsilon_2 = min(\frac{\epsilon}{3(a+1)}, (\frac{\epsilon}{3})(\frac{1}{2}))$$

Then there exists a corresponding N_1 and N_2 .

Choose $N = max\{N_1, N_2\}$ so $n > N_1$ and $n > N_2$ then n > N.

Then,

$$\begin{aligned} |a_n b_n - ab| &= |(a_n - a)b + (b_n - b)a + (a_n - a)(b_n - b)| \leq \\ |a_n - a||b| + |b_n - b||a| + |a_n - a||b_n - b| &\leq \frac{\epsilon b}{3(b+1)} + \frac{\epsilon a}{3(a+1)} + \frac{\epsilon}{3} \leq \epsilon. \end{aligned}$$

Thus the $\lim_{n\to\infty} a_n b_n$ exists and is equal to ab.

6. (a) Prove that if a sequence $(a_n)_{n=n_0}^{\infty}$ converges, then it is bounded.

proof

Let a_n be a sequence which converges to l.

Let let $\epsilon = 1$ so $\epsilon > 0$.

$$|a_n - l| < \epsilon$$

$$-\epsilon < a_n - l < \epsilon$$

$$l - 1 < a_n < l + 1$$

$$l \le |l| \\ l+1 \le |l|+1$$

$$\begin{aligned} -l &\leq |l| \\ -|l| &\leq l \\ -|l| -1 &\leq l-1 \end{aligned}$$

$$\begin{aligned} -|l| - 1 &\leq l - 1 < a_n < l + 1 \leq |l| + 1 \\ -|l| - 1 &< a_n < |l| + 1 \\ |a_n| &\leq |l| + 1 \end{aligned}$$

Let $M = max\{|a_1|, |a_2|, ..., |a_{N-1}|, |l| + 1\}$

Then given any a_n , if n < N, $|a_n| \le M$

If $n \geq N$, then $|a_n| < |l| + 1 \leq M$.

Hence if the sequence converges to some arbitrary l then it is bounded by some M so it is bounded.

(b) Give a counterexample showing that the converse of the statement in (a) is false.

proof

Consider the sequence $\{a_n\}$, $a_n = (-1)^n$. So it is bounded in [-1,1] since $a_n = \{-1,1\}$ for all $a_n \in \{a_n\}$

Suppose $\{a_n\}$ converges.

Let $\epsilon = 1$

If n > N is odd then |-1 - L| = |-(1 + L)| = |L + 1| < 1 so -2 < L < 0

If n > N is even then |1-L| = |-(-1+L)| = |L-1| < 1 so 0 < L < 2.

Since (-2,0) and (0,2) are disjoint sets then we have a contradiction since L cannot be in both.

Thus $\{a_n\}$ does not converge.

So we have proved the converse of (a) does not necessarily hold.

7. Suppose that $\{a_n\}$ is monotone. Prove that $\{a_n\}$ converges if and only if it is bounded. (This is called the Monotone Convergence Theorem.)

Suppose $\{a_n\}$ is monotone and bounded.

W.L.O.G we will assume that the sequence is increasing.

The sequence has a set of points $\{a_n : n \in \mathbb{N}\}$ which is bounded by the supposition.

As (a_n) is increasing, let our limit be $s = \sup\{a_n : n \in \mathbb{N}\}.$

Because s is the supremum of $\{a_n : n \in \mathbf{N}\}$, the number $s - \epsilon$ is not an upper bound, so there is a number a_N in the sequence where $s - \epsilon < a_N$.

Since (a_n) is increasing, we know that $a_N \leq a_n$ for all $n \geq N$.

Since s is a supremum we can obtain $s - \epsilon < a_N \le a_n \le s < s + \epsilon$ for all $n \ge N$.

So $|a_n - s| < \epsilon$ for all $n \ge N$. So we have found that the sequence converges.

For the other direction suppose $\{a_n\}$ is monotone and convergent.

We proved in problem 6 if a sequence $(a_n)_{n=n_0}^{\infty}$ converges, then it is bounded.

So $\{a_n\}$ is bounded.

Thus we have proved that given $\{a_n\}$ is monotone, $\{a_n\}$ converges if and only if it is bounded.