Lecture 2: Optimality conditions for constrained optimization – KKT conditions

- Brief recap; optimization problems and convexity
- Motivating examples for KKT conditions
- KKT conditions

Reference: Chapter 12.1, 12.2 in N&W

Administrative information

- Check announcements on Blackboard regularly.
- Assignments posted every Monday, due two weeks later (Wednesdays). Deliver on Blackboard or to room D238.
- The lab will start in week 5 and end in week 11. Make groups of 2 or 3 people. More information on Blackboard.
- Must complete 7/10 assignments and the lab to attend the exam.
 - Exercise 0 does not count

General optimization problem

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \quad \begin{aligned} c_i(x) &= 0, & i \in \mathcal{E}, \\ c_i(x) &\geq 0, & i \in \mathcal{I}. \end{aligned}$$

• Example: $\min (x_1 - 2)^2 + (x_2 - 1)^2$ subject to $\begin{cases} x_1^2 - x_2 \le 0, \\ x_1 + x_2 \le 2. \end{cases}$

• What if we add equality-constraint $x_1 = 0$?

Definitions

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad \begin{cases} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \ge 0, & i \in \mathcal{I} \end{cases}$$
 (P)

- Feasible set: $\Omega = \{x \in \mathbb{R}^n \mid c_i(x) = 0, i \in \mathcal{E}; c_i(x) \geq 0, i \in \mathcal{I}\}$
- A vector x^* is a global solution to (P) if $x^* \in \Omega$ and $f(x) \ge f(x^*)$ for $x \in \Omega$.
- A vector x^* is a local solution to (P) if $x^* \in \Omega$ and there is a neighborhood \mathcal{N} of x^* such that $f(x) \geq f(x^*)$ for $x \in \mathcal{N} \cap \Omega$.
- A vector x^* is a *strict local solution* to (P) if $x^* \in \Omega$ and there is a neighborhood \mathcal{N} of x^* such that $f(x) > f(x^*)$ for $x \in \mathcal{N} \cap \Omega$ with $x \neq x^*$.

Convexity

If the line segment between any two points within a set is inside the set, the set is **convex**.

A function is **convex** if the epigraph is a convex set.

- A convex optimization problem: Both f(x) and the feasible set convex
- Convex optimization problems are preferable!
 - For convex optimization problems, every local minimum is also a global minimum. Sufficient to search for a local minimum! Which is much easier than searching for global minimum.
 - For many convex optimization problems, it is easy to find derivatives, exploit structure, etc. making them easier to solve.
 - They typically have "guaranteed complexity".

Convexity, cont'd

When is

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad \begin{cases} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \ge 0, & i \in \mathcal{I} \end{cases}$$

convex?

- Condition:
 - f(x) is a convex function:

$$\forall x, y \in \Omega, \ \forall \alpha \in [0, 1]: \quad f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

The feasible set

$$\Omega = \{ x \in \mathbb{R}^n | c_i(x) = 0, \ i \in \mathcal{E}, \ c_i(x) \ge 0, \ i \in \mathcal{I} \}$$

is convex:

$$\forall x, y \in \Omega, \ \forall \alpha \in [0, 1]: \quad \alpha x + (1 - \alpha)y \in \Omega$$

- When is the feasible set convex?
 - $-c_i(x), i \in \mathcal{E}$ are linear
 - $-c_i(x), i \in \mathcal{I}$ are concave

Types of constrained optimization problems

- Linear programming
 - Convex problem
 - Feasible set polyhedron

minimize
$$c^{\mathsf{T}}x$$

subject to $Ax \leq b$
 $Cx = d$

- Quadratic programming
 - Convex problem if $P \ge 0$
 - Feasible set polyhedron

minimize $\frac{1}{2}x^{\mathsf{T}}Px + q^{\mathsf{T}}x$ subject to $Ax \leq b$ Cx = d

- Nonlinear programming
 - In general non-convex!

minimize
$$f(x)$$

subject to $g(x) = 0$
 $h(x) \ge 0$

$$f(x) = 100 (x_2 - x_1^2)^2 + (1 - x_1)^2$$

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \quad \begin{aligned} c_i(x) &= 0, & i \in \mathcal{E}, \\ c_i(x) &\geq 0, & i \in \mathcal{I}. \end{aligned}$$

Necessary conditions for unconstrained optimization problems

Theorem 2.2 (First-Order Necessary Conditions).

If x^* is a local minimizer and f is continuously differentiable in an open neighborhood of x^* , then $\nabla f(x^*) = 0$.

What about constrained problems?

KKT conditions

 $\min_{x \in \mathbb{R}^n} f(x)$ subject to

 $c_i(x) = 0, \quad i \in \mathcal{E},$ $c_i(x) \ge 0, \quad i \in \mathcal{I}.$

Lagrangian

$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(x)$$

KKT conditions:

$$\nabla_{x} \mathcal{L}(x^{*}, \lambda^{*}) = 0,$$

$$c_{i}(x^{*}) = 0, \quad \forall i \in \mathcal{E},$$

$$c_{i}(x^{*}) \geq 0, \quad \forall i \in \mathcal{I},$$

$$\lambda_{i}^{*} \geq 0, \quad \forall i \in \mathcal{I},$$

$$\lambda_{i}^{*} c_{i}(x^{*}) = 0, \quad \forall i \in \mathcal{E} \cup \mathcal{I}.$$

Example 12.1

$$\min x_1 + x_2$$

min
$$x_1 + x_2$$
 s.t. $x_1^2 + x_2^2 - 2 = 0$

Example 12.2

Active set

The active set $\mathcal{A}(x)$ at any feasible point x consists of the equality constraint indices from \mathcal{E} together with the indices of the inequality constraints i for which $c_i(x) = 0$. That is,

$$\mathcal{A}(x) = \mathcal{E} \cup \left\{ i \in \mathcal{I} \middle| c_i(x) = 0 \right\}$$

Set of feasible directions

Given a feasible point x and the active constraint set $\mathcal{A}(x)$, the set of linearized feasible directions $\mathcal{F}(x)$ is

$$\mathcal{F}(x) = \left\{ d \mid \begin{array}{l} d^{\top} \nabla c_i(x) = 0, & \text{for all } i \in \mathcal{E}, \\ d^{\top} \nabla c_i(x) \ge 0, & \text{for all } i \in \mathcal{A}(x) \cap \mathcal{I} \end{array} \right\}$$

Example 12.3

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \begin{cases} c_i(x) = 0, & i \in \mathcal{E}, \\ c_i(x) \ge 0, & i \in \mathcal{I}, \end{cases}$$
 (12.1)

Theorem 12.1 (First-Order Necessary Conditions).

Suppose that x^* is a local solution of (12.1), that the functions f and c_i in (12.1) are continuously differentiable, and that the LICQ holds at x^* . Then there is a Lagrange multiplier vector λ^* , with components λ_i^* , $i \in \mathcal{E} \cup \mathcal{I}$, such that the following conditions are satisfied at (x^*, λ^*)

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \lambda^*) = 0, \tag{12.34a}$$

$$c_i(x^*) = 0$$
, for all $i \in \mathcal{E}$, (12.34b)

$$c_i(x^*) \ge 0$$
, for all $i \in \mathcal{I}$, (12.34c)

$$\lambda_i^* \ge 0, \quad \text{for all } i \in \mathcal{I},$$
 (12.34d)

$$\lambda_i^* c_i(x^*) = 0, \quad \text{for all } i \in \mathcal{E} \cup \mathcal{I}.$$
 (12.34e)

LICQ

Given the point x and the active set $\mathcal{A}(x)$, we say that the linear independence constraint qualification (LICQ) holds if the set of active constraint gradients $\{\nabla c_i(x), i \in \mathcal{A}(x)\}$ is linearly independent.

Why are KKT-conditions so important?

- Most algorithms for constrained optimization look for candidate solutions that fulfill KKT conditions
 - These are iterative algorithms that stop when KKT conditions fulfilled

And:

- When faced with a problem that you don't know how to handle, write down the optimality conditions
- Often you can learn a lot about a problem, by examining the properties of its optimal solutions.