

明細書

結晶性ポリエステルポリオール及び溶融接着剤

<技術分野>

本発明は、結晶性ポリエステルポリオール、及び該ポリエステルポリオールを用いて得られるウレタンプレポリマー、並びに該ウレタンプレポリマーを用いて製造される溶融接着剤に関する。

<背景技術>

ポリエステルは産業上良く知られた化合物であり、様々なものが使用されている。特に、ポリエステルポリオールは種々の架橋剤、例えばイソシアネート化合物によって架橋、硬化させることが可能で、塗料、接着剤、インク及びシーラントとして多用されている。

これらのうち、結晶性のポリエステルポリオールは、力学的性質に優れていることに加え、融点以上の温度では比較的低粘度の液体として扱うことができるここと、結晶化温度以下に冷却すると再結晶化のため短い時間で固化するという特性有している。この特性のゆえ、反応性ホットメルト接着剤やホットメルト用インクジェットインク等の成分として利用が拡大している。

反応性ホットメルトは、大気中の水分を吸収し、架橋が起こることで高い接着強度を示す。さらに、接着速度にも優れ、組み立て産業におけるライン化適正が高いことから、脱溶剤化や省エネルギー化が図れるという社会的要請にも適合するために急速に伸長している。それと共に、継続作業性の向上の要求も強く、より速い固化速度（高速セット性）を有する反応性ホットメルト接着剤が求められている。

ポリエステルポリオールの結晶化度がその固化速度に影響を与えることは、非特許文献1や非特許文献2等の記載にあるように公知の事実であり、すなわち、固化速度向上のためには結晶化度の高いポリエステルポリオールが極めて有利で

ある。例えば、特許文献1には、改善された固化速度を持つ反応性ホットメルト接着剤の製造原料としてドデカン二酸と1, 6-ヘキサンジオール、デカン二酸と1, 6-ヘキサンジオール、ドデカン二酸とエチレングリコールを用いたポリエステルポリオール等があるが、これら以上に高速セット性を有するポリエステルポリオールの要求が強まっている。

さらに、上記の反応性ホットメルト接着剤には冷却固化直後の硬度が高いこと、また、高い生産性、低コスト化により、低温にて製造及び使用可能のこと及び溶融時に低粘度であることが強く望まれている。

[非特許文献1] 「接着」 1984年、28巻、8号、5頁

[非特許文献2] 「ADHESIVES AGE」 1987年、11月号、32頁

[特許文献1] 特開平2-88686号公報

<発明の開示>

本発明は、高速セットを可能とし、冷却固化後の硬度が高く、製造及び使用時の作業性が優れている溶融接着剤を提供することを課題とする。

本発明の課題は、(1) 芳香族ジカルボン酸85~99モル%及び(2) $\text{HOOC-(CH}_2\text{)}_n-\text{COOH}$ でnが8~10である脂肪族ジカルボン酸15~1モル%からなるジカルボン酸成分と(3) $\text{HO-(CH}_2\text{)}_m-\text{OH}$ でmが11~20である脂肪族ジオール成分とを重縮合させて得られる結晶性ポリエステルポリオール及びそれから誘導される溶融接着剤により達成される。ここで、(1)芳香族ジカルボン酸と(2)脂肪族ジカルボン酸の合計は100モル%である。

<発明を実施するための最良の形態>

本発明で使用する(1)芳香族ジカルボン酸は、芳香環にカルボキシル基を2個有する化合物であり、具体的には、テレフタル酸、イソフタル酸、フタル酸、1、4-フェニレン二酢酸、4、4'-ビフェニルジカルボン酸、2、6-ナフタレンジカルボン酸等が挙げられる。好ましくは、テレフタル酸、4、4'-ビ

フェニルジカルボン酸であり、さらに好ましくは、テレフタル酸である。また、芳香族ジカルボン酸のジエステルを原料として使用することもできる。好ましいジエステル化合物は、炭素数1～4の脂肪族アルコールが挙げられ、具体的には、テレフタル酸ジメチル、イソフタル酸ジメチル、フタル酸ジメチル、テレフタル酸ジエチル、イソフタル酸ジエチル、フタル酸ジエチルが挙げられる。

本発明で使用する(2)脂肪族ジカルボン酸は、 $\text{HOOC} - (\text{CH}_2)_n - \text{COOH}$ で表され、nが8～10である。具体的には、セバシン酸、ドデカン二酸が挙げられる。好ましくは、ドデカン二酸である。また、脂肪族ジカルボン酸のジエステル化合物も原料として使用することもできる。具体的にはジメチルエステルやジエチルエステル化合物が挙げられる。

なお、nが、8より小さい脂肪族ジカルボン酸を使用した場合では、セットタイムが長くなり、目的を達成することができない。nが10より大きい場合には、特に支障はないが、原料としての入手が困難となる場合がある。

本発明で使用する(1)芳香族ジカルボン酸と(2)脂肪族ジカルボン酸の使用割合は、芳香族ジカルボン酸85～99モル%に対し、脂肪族ジカルボン酸15～1モル%であり、好ましくは、芳香族ジカルボン酸90～95モル%に対し、脂肪族ジカルボン酸10～5モル%である。ここで、(1)芳香族ジカルボン酸と(2)脂肪族ジカルボン酸の合計は100モル%である。

芳香族ジカルボン酸の使用量が85モル%未満では表面硬度とセットタイムの調和が不十分となる。また、芳香族ジカルボン酸のみでは、作業性が極めて悪くなる。

本発明のポリエステルポリオールの成分である(3)の $\text{HO} - (\text{CH}_2)_m - \text{OH}$ でmが11～20である脂肪族ジオールとしては、具体的には1,12-ドデカンジオールが挙げられる。

mが、10以下の脂肪族ジオールを使用した場合では、セットタイムが長くなり、目的を達成することができない。mが20より大きい場合には、特に支障はないが、原料としての入手が困難となる場合がある。

本発明で得られる結晶性ポリエステルポリオールは、(1)芳香族ジカルボン酸

及び脂肪族ジカルボン酸と脂肪族ジオールを公知の脱水重縮合によりエステル化させて得ること、あるいは（1）芳香族ジカルボン酸のジエステル体及び脂肪族ジカルボン酸のジエステル体と脂肪族ジオールを、公知のエステル化反応より得ることもできる。前者は、具体的には所定量のジカルボン酸と脂肪族ジオールを、触媒の存在下または不存在下に150～250℃程度の温度範囲で、3～20時間程度、脱水重縮合することによりエステル化を行う。この際の触媒としては、たとえば、チタンテトラブトキシドなどのチタン系触媒、ジブチルスズオキサイドなどのスズ系触媒の存在下に行なうことも脱水重縮合を促進し、好ましい。一方、後者は、具体的には所定量のジカルボン酸ジメチル体と脂肪族ジオールとを、同様のエステル化触媒の存在下、反応温度150～220℃、9時間、脱メタノールすることによるエステル交換反応で得ることができる。

本発明で得られる結晶性ポリエステルポリオールは、融点が90℃以上120℃以下であることが好ましい。この範囲より小さい場合は、ポリエステルポリオールから得られたウレタンプレポリマーはセットタイムが遅くなり、耐熱性も劣る場合がある。この範囲より大きい場合は、ウレタンプレポリマーの製造時及び溶融接着剤使用時の作業性が著しく低下する傾向が顕著となる。

本発明で得られる結晶性ポリエステルポリオールの物性としては、示差走査熱分析（DSC）を用いて、10℃/minの冷却速度で測定される結晶化でのエンタルピーが55J/g以上であることが好ましい。55J/g未満であると結晶性が著しく低下し、セットタイムの遅延、表面硬度の低下を引き起こす場合がある。

本発明で得られるポリエステルポリオールの数平均分子量は、特に制限はないが、1000から20000のポリエステルポリオールである。好ましくは2000から10000である。この範囲より小さい場合は、耐熱性、耐薬品性や硬化時の強度が不十分となる場合があり、この範囲より大きい場合は、溶融時の粘度が高くなり扱い難くなる場合がある。

本発明で使用されるポリイソシアネートは、通常よく知られている芳香族、脂肪族および環式脂肪族ジイソシアネートや高官能性もしくは高分子ポリイソシア

ネートが使用される。具体的には、1, 5-ナフチレンジイソシアネート、4, 4'-ジフェニルメタンジイソシアネート、4, 4'-ジフェニルジメチルメタンジイソシアネート、4, 4'-ジベンジルジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1, 3-フェニレンジイソシアネート、1, 4-フェニレンジイソシアネート、トリレンジイソシアネート、ブタン-1, 4-ジイソシアネート、ヘキサメチレンジイソシアネート、2, 2, 4-トリメチルヘキサメチレンジイソシアネート、シクロヘキサン-1, 4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4, 4'-ジイソシアネート、1, 3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネートおよびその誘導体が挙げられる。

結晶性ポリエステルポリオールとポリイソシナネートの使用範囲は、特別な制限はなく、通常の範囲内で使用される。即ち、ポリエステルポリオールのOH基対ポリイソシアネートのNCO基のモル比(ポリエステルポリオールのOH基のモル数:ポリイソシアネートのNCO基のモル数)が1:1, 2~1:3, 0, 好ましくは1:1, 5~1:2, 5である。

反応条件も特別な制限はなく、通常の範囲内で実施される。好ましくは、50~150°C、1~5時間である。なお、反応は、有機溶媒中で行うこともできる。具体的にはメチルエチルケトン、ジメチルホルムアミド、シクロヘキサン等が挙げられる。

本発明で得られたウレタンプレポリマーの粘度については、特に制限はないが、120°Cで100000mPa·s以下、好ましくは10000~80000mPa·sである。

本発明のウレタンプレポリマーは、そのまま溶融接着剤として使用することもできるが、通常、溶融接着剤に使用される可塑剤、熱可塑性ポリマー、粘着付与剤、充填剤、安定剤、酸化防止剤、紫外線吸収剤、着色剤等を添加して使用することもできる。

本発明で得られる溶融接着剤は、接着時間が極めて短いため、連続作業での接

着工程に向いている。例えば、製靴工業、材木加工工業、製紙工業、金属工業、樹脂加工工業が挙げられる。

<実施例>

以下、本発明を実施例挙げて具体的に説明するが、これらに制限されるものではない。

実施例 1

テレフタル酸ジメチル 142.8 g (0.735 mol)、ドデカン二酸ジメチル 33.5 g (0.130 mol) および 1,12-ドデカンジオール 250.0 g (1.236 mol) を蒸留装置を備えた 500 ml のフラスコに仕込み、フラスコ内を窒素置換した。内容物が溶融した時点で、チタンテトラブトキシド 11.2 mg を加えた。150～180°C で 3 時間攪拌の後、フラスコ内を 300 mmHg の減圧にして 1 時間、更に 100 mmHg の圧力で 5 時間攪拌した。この後、180～220°C、1 mmHg の減圧下でポリエステルポリオールを抜き出した。得られたポリエステルポリオールは、後述の物性測定方法で測定し、水酸基価は 30 mg KOH/g であり、数平均分子量は 3700 であった。

比較例 2

ドデカン二酸 185.0 g (0.900 mol) および 1,12-ドデカンジオール 182.1 g (0.803 mol) を蒸留装置を備えた 500 ml のフラスコに仕込み、フラスコ内を窒素置換した。このフラスコを 160°C まで加熱すると水が留出し始めた。そのまま 160°C で 1 時間攪拌の後、170°C で 2 時間、180°C で 3 時間攪拌し、この後、フラスコ内を 100 mmHg の減圧にして 1 時間、50 mmHg で 1 時間、更に 10 mmHg の圧力で 3 時間攪拌した。一旦、常圧に戻した後、チタンテトラブトキシド 10 mg を加え、再び 10 mmHg の減圧下で 6 時間攪拌し、脱水重縮合を終了した。前述の方法で測定した水酸基価は 40 mg KOH/g で分子量は 2800 であった。

得られた物性結果を表 1 に示した。

実施例 2～3 および比較例 1、3～8

表 1 で示した組成割合にて、実施例 1 及び比較例 2 に準じて各種の結晶性ポリエステルポリオールを合成した。得られた結晶性ポリエステルポリオールの物性値も表 1 にまとめて示した。

表1
実施例1～3及び比較例1～8の結晶性ポリエスチルポリオールの物性値

	ジカルボン酸(モル%)			ジオール(モル%)			結晶性ポリエスチルポリオールの物性		
	DDA	AA	TPA	DDL	HD	水酸基価(KOHmg/g)	数平均分子量	融点(°C)	結晶化エンタルピー(J/g)
実施例1	15	85	100			30	3700	115	90
実施例2	10	90	100			37	3000	116	94
実施例3	5	95	100			30	3700	120	98
比較例1	20	80.	100			33	3400	111	88
比較例2	100		100			40	2800	81	69
比較例3		100	100			28	4000	123	100
比較例4	10	90		100		42	2700	131	105
比較例5	20	80		100		29	3900	119	85
比較例6	100			100		32	3500	71	58
比較例7		20	80			29	3900	122	92
比較例8	40	60		100		33	3400	95	65
									21.8

DDA:ドテカシニ酸 AA:アジピン酸 TPA:テレフタル酸

DDL:1, 12-ドテカシジオール HD:1, 6-ヘキサンジオール

実施例 4

実施例 1 で得られた結晶性ポリエステルポリオール 90.0 g を 300 ml のセパラブルフラスコに入れ、窒素置換し、これを 120 °C で加熱融解した。続いて 1/10 N の磷酸ジブチルートルエン溶液をポリエステルポリオール合成に使用したチタンテトラブトキシドの量の 1.2 倍モル添加して、130 °C で 2 時間攪拌した。その後、250 rpm で攪拌しながら 120 °C、50 mmHg で 1 時間脱水処理し、10 分間の窒素置換を行い、あらかじめ 60 °C に加温しておいた 4,4'-ジフェニルメタンジイソシアネート (MDI と略記する) (ポリエステルポリオールに対して 2.2 倍モル使用) を一度に添加し、窒素雰囲気下、さらに 120 °C で 1.5 時間攪拌し、ウレタンプレポリマーを合成した。得られたウレタンプレポリマーについて、物性値 (溶融粘度、融点、結晶化温度および結晶化エンタルピー) を表 2 にまとめて示し、さらに、そのまま溶融接着剤として使用した場合のセットタイム、冷却固化直後の硬度および作業性の結果を表 3 に示した。

実施例 5～6 および比較例 9～16

実施例 2～3 および比較例 1～8 で合成したポリエステルポリオールを用い、実施例 4 に準じてウレタンプレポリマーおよび接着剤を合成した。得られたウレタンプレポリマーと接着剤の物性値をそれぞれ、表 2 および表 3 にまとめて示した。

表2
実施例4～6及び比較例9～16のウレタンプレポリマーの物性値

	ジカルボン酸(モル%)			ジオール(モル%)			ウレタンプレポリマーの物性		
	DDA	AA	TPA	DDL	HD	粘度(120°C) (mPa·s)	融点 (°C)	結晶化温度 (°C)	結晶化エンタルピー (J/g)
実施例4	15		85	100		43600	110	80	44.5
実施例5	10		90	100		24800	112	82	45.9
実施例6	5		95	100		76800	115	86	48.2
比較例9	20		80	100		32400	106	77	44.2
比較例10	100			100		4400	74	60	89.1
比較例11			100	100		48000	※1	120	93
比較例12	10		90			22000	※1	122	84
比較例13	20		80			127200		113	84
比較例14	100					100		73	29.5
比較例15			20	80		6000		65	52
比較例16			40	60		100	28400	※1	114
								74	27.6
							87	26	31.1

DDA:ドデカシニ酸 AA:アジピン酸 TPA:テレフタル酸

※1 140°Cでの溶融粘度 120°Cでは一部固化

DDL:1, 12-ドデカンジオール HD:1, 6-ヘキサンジオール

表3
ウレタンプレポリマーを使用した溶融接着剤の特性

	ジカルボン酸(モル%)		ジオール(モル%)		溶融接着剤の特性			
	DDA	AA	TPA	DDL	HD	セットタイム(秒)	硬度ショアD	作業性
実施例4	15		85	100		5	44	○
実施例5	10		90	100		3	45	○
実施例6	5		95	100		3~4	51	○
比較例9	20		80	100		5~6	41	○
比較例10	100			100		8~10	50	○
比較例11			100	100		3~4	53	×
比較例12	10		90		100	20	45	×
比較例13	20		80		100	12~13	40	△
比較例14	100				100	15	46	○
比較例15			20	80	100	110	45	△
比較例16			40	60	100	150	33	○

DDA:ドデカン二酸 AA:アジピン酸 TPA:テレフタル酸

DDL:1,12-ドデカシジオール HD:1,6-ヘキサンジオール

表3に示されるように、本発明で得られるウレタンプレポリマーは（実施例4～6）、溶融接着剤として、高速セット性、高い硬度、優れた作業性を有する。

これに対し、テレフタル酸が85モル%未満（比較例9）では、セットタイムは短く、作業性は優れているが、表面硬度が低下してしまう。また、テレフタル酸を含有しないポリエステルポリオールから得られたウレタンプレポリマー（比較例10）では、セットタイムが長くなる。さらに、ドデカン二酸を含有していないポリエステルポリオールから得られたウレタンプレポリマー（比較例11）は、セットタイムは短かく表面硬度も十分であるが、溶融時の粘度が高すぎるため、作業性が著しく低下する。脂肪族ジカルボン酸にアジピン酸あるいは、脂肪族ジオールに1、6-ヘキサンジオールを用いた場合（比較例12～16）では、セットタイムが長くなる。

なお、物生測定方法は以下のとおりである。

（1）水酸基価および数平均分子量

ポリエステルポリオールの水酸基価は、JIS K 1557に準拠して測定し、数平均分子量はこの水酸基価から算出した。

（2）セットタイム

120～150°Cで溶融したウレタンプレポリマーを厚さ1.6mmのアルミ板に直径20mm、厚さ2mmに塗布し同様のアルミ板で挟み圧締めして固まるまでの時間を測定した。実験は室温23°Cで行った。

（3）硬度

100mm×100mm、厚さ1mmのプレスシートを作製し、10分後にショアD硬度計を用いて硬度を測定した。

（4）作業性

ここでの作業性とは、ウレタンプレポリマーの製造及び使用時の取り扱い易さである。つまり、低温でウレタンプレポリマーが製造及び使用でき、その際の溶融粘度が低いことが、高生産性・低コストにつながるので、判断基準として、ウレタンプレポリマーの融点と溶融粘度を比較した。

ウレタンプレポリマーの融点が115°C以下、溶融粘度が120°Cで80,0

0.0 mPa·s以下のものは○、融点あるいは溶融粘度がどちらか一方が前述の範囲内ものは△、融点、溶融粘度の両方が前述範囲外のものは×とした。ただし、粘度測定において120°Cで完全に溶融しないものも前述の範囲外とした。

(5) 融点、結晶化温度及び結晶化エンタルピー

ポリエステルポリオール及びウレタンプレポリマーの融点、結晶化温度、結晶化エンタルピーは Parkin Elmer 製の示差走査熱量計 (DSC) を用い、昇温・冷却速度10°C/分で昇温・冷却したときの吸熱ピーク・発熱ピーク温度で示した。

(6) 粘度測定

BH型粘度計、ローターNo. 7 ($\Phi 3.175\text{ mm}$ 、 $L = 50\text{ mm}$)、回転数10 rpm、温度120°C又は140°Cにて測定した。

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることは当業者にとって明らかである。

本出願は、2003年11月11日出願の日本特許出願（特願2003-381222）に基づくものであり、その内容はここに参考として取り込まれる。

<産業上の利用可能性>

本発明により、高速セットを可能とし、高硬度で、製造及び使用時の作業性が優れている溶融接着剤を提供することができる。

請 求 の 範 囲

1. (1) 芳香族ジカルボン酸 85～99モル%

 (2) HOOC- $(CH_2)_n-COOH$ でnが8～10である脂肪族ジカルボン酸 15～1モル%

 からなるジカルボン酸成分と、

 (3) HO- $(CH_2)_m-OH$ でmが11～20である脂肪族ジオール成分とを、

 重縮合させて得られる結晶性ポリエステルポリオール。

2. (2) の脂肪族ジカルボン酸がドデカン二酸であり、

 (3) の脂肪族ジオールが1、12-ドデカンジオールである、

 請求の範囲第1項記載の結晶性ポリエステルポリオール。

3. 融点が90°C以上120°C以下である請求の範囲第1項～第2項のいずれか1項記載の結晶性ポリエステルポリオール。

4. 示差走査熱分析(DSC)において結晶化でのエンタルピーが55J/g以上である請求の範囲第1項～第3項のいずれか1項記載の結晶性ポリエステルポリオール。

5. 数平均分子量が1000～20000である請求の範囲第1項～第4項のいずれか1項記載の結晶性ポリエステルポリオール。

6. 請求の範囲第1項～第5項のいずれか1項記載の結晶性ポリエステルポリオールとポリイソシアネートとを反応して得られるウレタンプレポリマー。

7. 請求の範囲第6項記載のウレタンプレポリマーを用いる溶融接着剤。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/015543

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ C08G63/181, C08G18/42, C09J175/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ C08G63/00-63/91

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1926-2004	Toroku Jitsuyo Shinan Koho	1994-2004
Kokai Jitsuyo Shinan Koho	1971-2004	Jitsuyo Shinan Toroku Koho	1996-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 1149850 A1 (UBE INDUSTRIES, LTD.), 31 October, 2001 (31.10.01), Claim 1; Par. Nos. [0001], [0016] & JP 2002-12656 A Claim 1; Par. Nos. [0001], [0008] & US 2003/18157 A1	1-7

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
02 November, 2004. (02.11.04)Date of mailing of the international search report
22 November, 2004 (22.11.04)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Telephone No.

Facsimile No.

A. 発明の属する分野の分類 (国際特許分類 (IPC))
Int. C1' C08G 63/181, C08G 18/42, C09J 175/04

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))
Int. C1' C08G 63/00 - 63/91

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1926-2004年
日本国公開実用新案公報 1971-2004年
日本国登録実用新案公報 1994-2004年
日本国実用新案登録公報 1996-2004年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	EP 1149850 A1 (UBE INDUSTRIES LTD.) 2001. 10. 31, 【請求項1】、段落【0001】、【00 16】 & JP 2002-12656 A, 【請求項1】、段落【000 1】、【0008】 & US 2003/18157 A1	1-7

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

02. 11. 2004

国際調査報告の発送日

22.11.2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官 (権限のある職員)

森川 聰

4 J 9268

電話番号 03-3581-1101 内線 3456

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.