A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 4EA

Bookmark

Show all steps: ON

Problem

In each of the following, use the fundamental homomorphism theorem to prove that the two given groups are isomorphic. Then display their tables.

 P_2 and P_3/K , where $K = \{0, \{c\}\}$. [HINT: Consider the function $f(C) = C \cap \{a, b\}$. P_3 is the group of subsets of $\{a, b, c\}$, and P_2 of $\{a, b\}$.]

Step-by-step solution

Step 1 of 4

Consider that P_D is the power set of set D, that is, P_D is set of all subsets of D. Let $A, B \in P_D$, then the addition and multiplication in $P_{\scriptscriptstyle D}$ will be defined as follows:

$$A+B=(A-B)$$
 $(B-A)$.

Note that, P_D is a commutative ring with unity. The zero element in P_D is an empty set ϕ .

Next consider the two groups P_2 and P_3 / K , where $K = \{0, \{c\}\}$. Objective is to prove that these two groups are isomorphic by using the fundamental homomorphism theorem.

Comment

Step 2 of 4

According to the fundamental homomorphism theorem, if $f: G \to H$ is a homomorphism of Gonto H, with kernel K then

$$H \cong G/K$$

The elements of groups P_2 and P_3 are:

$$P_2 = \{\phi, a, b, ab\},\$$

$$P_3 = \{\phi, a, b, c, ab, bc, ca, abc\}.$$

Consider the function $f: P_3 \rightarrow P_2$ defined by

f(x) = x	$\{a,b\}$
for all x in	P_3 . Then,

,				
x	f(x)			
φ	$\phi \{a,b\} = \phi$			
{a}	$\{a\}$ $\{a,b\}=a$			
{b}	$\{b\}$ $\{a,b\}=b$			
$\{c\}$	$\{c\}$ $\{a,b\}=\phi$			
{ab}	$\{a,b\}$			
$\{bc\}$	{b}			
{ca}	{a}			
$\{abc\}$	$\{a,b\}$			

Comment

Step 3 of 4

Since empty set ϕ is the zero element in P_D , therefore the elements of kernel will be: $K = \{0, \{c\}\}.$

From the table it implies that map f is onto, also the intersection operator preserves the define addition. Therefore, the map f is homomorphism from P_3 onto P_2 with kernel K.

Here, the addition in P_2 is the symmetric difference of two sets. Consider the two elements $\{a,b\}$, $\{a\}$ of P_2 . Then their sum will be:

$${a,b}+{a}=({a,b}-{a}) ({a}-{a,b})$$

= ${b} \phi$
= ${b}$

Consider the following addition table of $\ P_2$ as:

A + B	φ	{a}	{b}	$\{a,b\}$
φ	φ	{a}	{b}	$\{a,b\}$

{a}	{a}	φ	$\{a,b\}$	{b}
{b}	{b}	$\{a,b\}$	φ	{a}
$\{a,b\}$	$\{a,b\}$	{b}	{a}	φ

Comment

Step 4 of 4

Hence, by the fundamental homomorphism theorem it concludes that

$$P_2 \cong P_3 / K$$

Since both the groups are isomorphic therefore tables for the groups will have the same properties.

Comment