Name:	

MIDTERM EXAM

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 3 & -1 & 0 & 1 & 5 \\ -1 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 0 & -3 \end{bmatrix}$$

E2. Find RREF A, where

$$A = \begin{bmatrix} 2 & -1 & 5 & | & 4 \\ -1 & 0 & -2 & | & -1 \\ 1 & 3 & -1 & | & -5 \end{bmatrix}$$

E3. Solve the system of linear equations.

$$2x + y - z + w = 5$$

$$3x - y - 2w = 0$$

$$-x + 5z + 3w = -1$$

 ${f E4.}$ Find a basis for the solution set to the homogeneous system of equations

$$4x_1 + 4x_2 + 3x_3 - 6x_4 = 0$$

$$-2x_3 - 4x_4 = 0$$

$$2x_1 + 2x_2 + x_3 - 4x_4 = 0$$

V1. Let V be the set of all points on the parabola $y = x^2$ with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 2x_1x_2)$$

 $c \odot (x_1, y_1) = (cx_1, c^2y_1)$

- (a) Show that the vector **addition** \oplus is **associative**: $(x_1, y_1) \oplus ((x_2, y_2) \oplus (x_3, y_3)) = ((x_1, y_1) \oplus (x_2, y_2)) \oplus (x_3, y_3).$
- (b) Determine if V is a vector space or not. Justify your answer.

V2. Determine if $\begin{bmatrix} 1\\4\\3 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 3\\0\\-1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1\\4 \end{bmatrix}$, and $\begin{bmatrix} 5\\1\\-6 \end{bmatrix}$.

V3. Determine if the vectors
$$\begin{bmatrix} 1\\0\\2\\1 \end{bmatrix}$$
, $\begin{bmatrix} 3\\1\\0\\-3 \end{bmatrix}$, $\begin{bmatrix} 0\\3\\0\\-2 \end{bmatrix}$, and $\begin{bmatrix} -1\\1\\-1\\-1 \end{bmatrix}$ span \mathbb{R}^4 .

V4. Let W be the set of all polynomials of the form $ax^3 + bx$. Determine if W is a subspace of \mathcal{P}^3 .

S1. Determine if the vectors $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\1 \end{bmatrix}$, and $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$ are linearly dependent or linearly independent

S2. Determine if the set $\left\{ \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\-1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^4 .

S3. Let $W = \operatorname{span}\left(\left\{\begin{bmatrix} -3\\-8\\0\end{bmatrix},\begin{bmatrix} 1\\2\\2\end{bmatrix},\begin{bmatrix} 0\\-1\\3\end{bmatrix}\right\}\right)$. Find a basis for W.

S4. Let $W = \text{span}\{2x^2 - x + 3, 2x^2 + 2, -x^2 + 4x + 1\}$. Find the dimension of W.

E1:	V3:	
E2:	V4:	
E3:	S1:	
E4:	S2:	
V1:	S3:	
V2:	S4:	