1

GATE Questions 7

EE24BTECH11012 - Bhavanisankar G S

1) The maximum value o is	f the function $f(x, y, z) = z$	xyz subject to the constra	aint xy + yz + xz - a = 0, a > 0					
a) $a^{\frac{3}{2}}$	b) $\frac{a^{\frac{3}{2}}}{3}$	c) $\frac{3}{a}^{\frac{3}{2}}$	d) $\frac{3a^{\frac{3}{2}}}{2}$					
2) The function $\int_0^1 \left(y^2 + 4y + 8ye^x \right) ds$, $y(0) = \frac{-4}{3}$, $y(1) = \frac{-4e}{3}$ possesses:								
a) strong minima on $y = \frac{-1}{3}e^x$ b) strong minima on $y = \frac{-4}{3}e^x$		c) strong maxima on $y = \frac{-4}{3}e^x$ d) weak maxima on $y = \frac{-1}{3}e^x$						
its vertical diameter wand g is the acceleration	ith a constant agular veloc on due to gravity. If θ be	Exity ω . Assume that the inertial the inclination of the	which itself is rotating about initial angular veloity is zero radius vector of the particle to t, then the Lagrangian of					
a) $\frac{1}{2}ma^{2}(\theta^{2} + \omega \sin \theta^{2})$ - b) $\frac{1}{2}ma^{2}(\theta^{2} + 2\omega \sin \theta^{2})$	$+ mga\cos\theta - mga\cos\theta$	c) $\frac{1}{2}ma^2(\theta^2 + \omega\cos\theta)$ d) $\frac{1}{2}ma^2(\theta^2 + \omega\sin2\theta)$	$+ mga \cos \theta + mga \sin \theta$					
4) For the matrix	$M = \begin{pmatrix} 2\\ 3 - 2i\\ -4 \end{pmatrix}$	$ \begin{array}{ccc} 3+2i & -4 \\ 5 & 6i \\ -6i & 3 \end{array} $						
P: M is skew-symmet								
a) P and R only	b) Q and R only	c) P and S only	d) Q and S only					
			of T relative to the standard matrix M, then $M + M'$ is					
a) $ \begin{pmatrix} 0 & -1 & -1 \\ -1 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} $	$\begin{pmatrix} -1 \\ 0 \\ 0 \\ 2 \end{pmatrix}$	c) $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \\ -1 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$					

b)
$$\begin{pmatrix} -1 & 0 & 0 & 2 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 2 & 0 & 2 & -1 \end{pmatrix}$$
 d)
$$\begin{pmatrix} -1 & 0 & -1 & 0 \\ 0 & 2 & 2 & 2 \\ 2 & -1 & 0 & 0 \\ 2 & 0 & -1 & 0 \\ 2 & 0 & 0 & -1 \end{pmatrix}$$

6) Using Euler's method taking step size = 0.1, the approximate value of Yy obtained using corresponding to x = 0.2 for the initial value problem $\frac{dy}{dx} = x^2 + y^2$ and y(0) = 1 is

a) 1.322 b) 1.122

c) 1.222 d) 1.110

7) The following table gives the unit transportation costs, the supply at each origin and the demand of each destination for a transportation problem. Let x_0 denote the number of units to be transported from origin i to destination j. If the u-v method is applied to improve the basic feasible solution given by $X_{12} = 60$, $x_{22} = 10$, $x_{23} = 50$, $x_{24} = 20$, $x_{31} = 40$ and $x_{34} = 60$, the the variables entering the leaving the basis respectively are

TABLE 7 Table 2

3	4	8	7
7	3	7	6
3	9	3	4

a) x_{21} and x_{24}

c) x_{14} and x_{24}

b) x_{13} and x_{23}

d) x_{33} and x_{24}

8) Consider the system of equations

$$\begin{pmatrix} 5 & -1 & 1 \\ 2 & 4 & 0 \\ 1 & 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 10 \\ 12 \\ -1 \end{pmatrix}$$

y(0) z(0) = (2.0 3.0 0.0), the approx-Using Jacobi's method with the initial guess $(x^{(0)})$ imate solution $(x^{(2)} y^{(2)} z^{(2)})$ after two iterations, is

a)
$$(2.64 -1.70 -1.12)$$

b) $(2.64 -1.70 1.12)$

b)
$$(2.64 -1.70 1.12)$$

The optimal table for the primal linear programming problem:

Maximize $z = 6x_1 + 12x_2 + 12x_3 - 6x_4$ Subject to

$$x_1 + x_2 + x_3 = 4$$

$$x_1 + 4x_2 + x_4 = 8$$

 $x_1, x_2, x_3, x_4 \ge 0$

TABLE 8 Table 1

Basic Variables	x_1	x_2	<i>x</i> ₃	x_4	RHS Constants
<i>x</i> ₃	$\frac{3}{4}$	0	1	$\frac{-1}{4}$	2
x_2	$\frac{1}{4}$	1	0	$\frac{1}{4}$	2
$z_j - c_j$	6	0	0	6	z = 48

- 9) If y_1 and y_2 ate the dual variables corresponding to the first and second primal constraints, then their values values in the optimal solutions of the dual problem are respectively
 - a) 0 and 6

c) 6 and 3

b) 12 and 0

d) 4 and 4

- 10) If the right hand side of the second constraint is changed from 8 to 20, then in the optimal solution of the primal problem, the basic variables will be
 - a) x_1 and x_2

c) x_2 and x_3

b) x_1 and x_3

d) x_2 and x_4

Consider the Fredholm integral equation

$$u(x) = x + \lambda \int_0^1 x e^t u(t) dt$$

11) The resolvent kernel $R(x,t, \lambda)$ for this integral equation is

a)
$$\frac{xe^t}{1-\lambda}4$$

b)
$$\frac{\lambda x e^t}{1+\lambda}$$

c)
$$\frac{xe^t}{1+\lambda^2}$$

d)
$$\frac{xe^t}{1-\lambda^2}$$

12) The solution of this integral equation is

a)
$$\frac{x+1}{1-\lambda}$$

b)
$$\frac{x^2}{1-\lambda^2}$$

c)
$$\frac{x}{1+\lambda^2}$$

d)
$$\frac{x}{1-\lambda}$$

The joint probability density function of two random variables X and Y is given as

$$f(x.y) = \begin{cases} \frac{6}{5} \left(x + y^2 \right), & 0 \le x \le 1, 0 \le y \le 1\\ 0, & elsewhere \end{cases}$$

13) E(X) and E(Y) are, respectively

a)
$$\frac{2}{5}$$
 and $\frac{3}{5}$

b)
$$\frac{3}{5}$$
 and $\frac{3}{5}$ c) $\frac{3}{5}$ and $\frac{6}{5}$ d) $\frac{4}{5}$ and $\frac{6}{5}$

c)
$$\frac{3}{5}$$
 and $\frac{6}{5}$

d)
$$\frac{4}{5}$$
 and $\frac{6}{5}$

14) Cov(X,Y) is