# a) Grafique las restricciones del problema. Pinte con color rojo el área que define el espacio factible del problema

- Se graficará la cantidad de arreglos F2 y F1 en el eje vertical y horizontal respectivamente. Para ello, se creará una función para cada restricción que recibirán como input la cantidad de arreglos florales F1 y retornarán la cantidad de arreglos florales F2.
- Las variables  $x_1$  y  $x_2$  son las variables de decisión del problema y que corresponden a la cantidad de arreglos florales F1 y F2, respectivamente
- Para definir el valor que retornan las funciones, se expresará  $x_2$  en función de  $x_1$  en cada restricción del problema

```
In [1]: clear % eliminamos todas las variables creadas previamente en Octave/Matlab
```

## i) Restricciones

#### Disponibilidad de flores A

## Disponibilidad de flores B

## Disponibilidad de flores C

• En Matlab, las funciones deben ser definidas al final del script. Esto es poco intuitivo y es una de las diferencias con Octave

## Gráfico restricciones

```
In [5]: x1 = linspace(1,150); %Rango de valores de input de las funciones

plot(x1,floresA(x1),'b') %color azul para disponibilidad de flores A
hold on
 plot(x1,floresB(x1),'k') %color negro para disponibilidad de flores B
hold on
 plot(x1,floresC(x1),'g') %color verde para disponibilidad de flores C
title ('Restricciones asociadas a la disponibilidad de flores')
xlabel ('Numero de arreglos florales F1 (x1)')
ylabel ('Numero de arreglos florales F2 (x2)')
ylim([0 100])
xlim([0 150])
legend('Flores A','Flores B', 'Flores C')
hold off
```

# Restricciones asociadas a la disponibilidad de flores 100 Flores B Numero de arregios florales F2 (x2) 60 40 20 0 0 L 20 40 60 80 100 120 140 Numero de arreglos florales F1 (x1)

## ii) Región factible

- La región factible corresponde al área donde todas las restricciones se cumplen. Esto incluye las restricciones de no negatividad asociadas a  $x_1$  y  $x_2$
- Los vértices de la región factible son 5 y corresponden a intersecciones entre distintos pares de restricciones.

- Li primer vertice es ei origen (U,U) que denominaremos "V1". Los vertices "V2", "V3", "V4", "V5" son detinidos segun ei sentido del reioj.
- Los vértices v3 y v4 corresponden a intersecciones entre dos restricciones. La coordenada de cada vértice, se obtiene resolviendo sistemas de 2
  ecuaciones. Para resolverlos, utilizaremos una clásica fórmula de álgebra lineal:

$$Ax = b \to x = A^{-1}b$$

```
Vértices
```

### Creamos una matriz de dos columnas con las coordenadas x e y de los vertices

```
In [11]: v = [v1;v2;v3;v4;v5]
         v =
             0.00000
                        0.00000
             0.00000
                        40.00000
            15.00000
                       35.00000
            40.00000
                       10.00000
            45,00000
                        0.00000
In [12]: v(:,1)
         ans =
             0.00000
             0.00000
            15.00000
            40.00000
            45.00000
In [13]: v(:,2)
         ans =
             0.00000
            40.00000
            35.00000
            10.00000
             0.00000
```

## Gráfico de región factible

```
In [14]: x1 = linspace(1,150); %Rango de valores de input para las funciones

plot(x1,floresA(x1),'b') %color azul para disponibilidad de flores A
hold on
plot(x1,floresB(x1),'k') %color negro para disponibilidad de flores B
hold on
plot(x1,floresC(x1),'g') %color verde para disponibilidad de flores C
fill(v(:,1),v(:,2),'r')
title ('Region factible definida por la disponibilidad de flores y no negatividad de variables de decision')
xlabel ('Numero de arreglos florales F1 (x1)')
ylabel ('Numero de arreglos florales F2 (x2)')
ylim([0 100])
xlim([0 150])
legend('Flores A','Flores B', 'Flores C','Region Factible')
hold off
```

Region factible definida por la disponibilidad de flores y no negatividad de variables de decision



# b) Agregue 3 curvas de nivel de la función objetivo en el gráfico. Una de las curvas debe corresponder a la solución óptima del problema

## Definición de curvas de nivel

La forma en que se determina la ecuación para encontrar las curvas de nivel de la función objetivo fue revisada en clases.

#### Gráfico de las curvas de nivel

```
In [16]: x1 = linspace(1,150); %Rango de valores de input para las funciones

fill(v(:,1),v(:,2),'r')
hold on
   plot(x1,curvadenivel(100000,x1),'--k')
hold on
   plot(x1,curvadenivel(200000,x1),'--k')
hold on
   plot(x1,curvadenivel(270000,x1),'-k')
hold on
   title ('Curvas de nivel de la funcion objetivo')
   xlabel ('Numero de arreglos florales F1 (x1)')
   ylabel ('Numero de arreglos florales F2 (x2)')
   ylim([0 100]);
   legend('Region Factible','z = 100M$','z = 200M$', 'z = 270M$')
hold off
```



c) Considere un caso donde el precio de venta del arreglo floral tipo 1 aumenta en un 50% y el de tipo 2 se reduce en un 50%. Repita lo hecho en (b) y analice si varía la solución óptima

• Realizar la solución de forma personal