



# LSCP: Locally Selective Combination in Parallel Outlier Ensembles

Yue Zhao, Zain Nasrullah
Department of Computer Science
University of Toronto

Maciej K. Hryniewicki

Data Analytics & Assurance

Zheng Li
Toronto Campus
Northeastern University









### **Outlier Ensembles**



Outlier ensembles are designed to **combine** the results (scores) of either **independent** or **dependent** outlier detectors for better performance [1].



Parallel Learning (Bagging [2, 3]) Sequential Learning (Boosting [4, 5])

Stacking [6,7]

### **Merits of Outlier Ensembles**



**The ground truth** (label), whether a data object is abnormal, is often **absent** in outlier detection.

- Improved stability: robust to uncertainties in complex data, e.g., highdimensional data
- Enhanced detection quality: capable of leveraging the strength of underlying models
- **Confidence**: practitioners usually feel more **confident** to use an ensemble framework with a group of base detectors, than a single model.

### **Parallel Combination Models**



Due to their unsupervised nature, **most of outlier ensemble combination frameworks are parallel learning**.



**Examples of Parallel Detector Combination** 

### **Limitations in Parallel Outlier Score Combination**

- Generic process: all based detectors are considered for a new test object, even the underperforming ones. The selection process is absent.
- Global assumption: the importance of the data locality is underestimated, if not ignored, in the combination process.

**Generic** & **Global** (**GG**) methods combine **all** base models generically on the **global** scale with all data objects considered, leading to mediocre performance.



### **Research Objective**



Design an *unsupervised* combination framework to *select performing detectors* by emphasizing *data locality*, for each test instance.

For each test object, best base detector(s) can be different.

LSCP: Locally Selective Combination in Parallel Outlier Ensembles

#### **LSCP Flowchart**



LSCP first generates a set of base detectors. For each test object  $X_j$ , LSCP (i) **defines the local region**  $\Psi(X_j)$ ; (ii) creates **pseudo ground truth** on  $\Psi(X_j)$  and (iii) evaluates, selects, and **combines most competent detector(s)**.



# P1: Local Region Definition



The **local region of an test instance**  $X_j$  is defined by kNN ensemble (consensus of k nearest neighbors of  $X_j$  in t random selected subspaces)

- 1. generate t subspaces by randomly selecting  $\left[\frac{d}{2}, d\right]$  features
- 2. Find  $X_i$ 's k nearest neighbors in each of these t subspaces
- 3. the local region is defined as  $\psi_j = \{x_i \mid x_i \in X_{train}, x_i \in kNN_{ens}^j\}$

### P2: Pseudo Ground Truth Generation

Two simple approaches are taken to generate the pseudo ground truth for  $X_{train}$  with detectors  $D_1, D_2, ..., D_r$ 

- 1. target\_A: averages base detector scores on training samples
- 2. target\_M: maximum scores across detectors on training samples

Note: it is the combination of training scores, i.e.  $D_j(X_{train})$ , not of test scores  $D_j(X_{test})$ .

# P3: Model Competency Evaluation

The  $i_{th}$  detector performance is evaluated as the **Pearson** correlation between the output of  $D_i(\Psi_j)$  and the pseudo ground truth  $target^{\Psi_j}$  on the local region  $\Psi_j$  defined by test object  $X_j$ .  $competency(D_i) = \rho(D_i(\Psi_j), target^{\Psi_j})$ 

Notably, competent base detectors are assumed to have higher Pearson correlation scores.

### **LSCP Variants**



#### Original (select one detector as output):

LSCP\_A: select one base detector with the highest Pearson score to target\_A

LSCP\_M: select one base detector with the highest Pearson score to target\_M

#### Second phase combination (select s base detectors):

LSCP\_AOM: average s base detectors with highest Pearson scores to target\_M

LSCP\_MOA: report maximum of s base detectors with highest scores to target\_A

## **Experiment Design**



| Dataset    | Pts   | Dim | Outliers | %Outlier |
|------------|-------|-----|----------|----------|
| Annthyroid | 7200  | 6   | 534      | 7.41     |
| Arrhythmia | 452   | 274 | 66       | 14.60    |
| Breastw    | 683   | 9   | 239      | 34.99    |
| Cardio     | 1831  | 21  | 176      | 9.61     |
| Letter     | 1600  | 32  | 100      | 6.25     |
| MNIST      | 7603  | 100 | 700      | 9.21     |
| Musk       | 3062  | 166 | 97       | 3.17     |
| PageBlocks | 5393  | 10  | 510      | 9.46     |
| Pendigits  | 6870  | 16  | 156      | 2.27     |
| Pima       | 768   | 8   | 268      | 34.90    |
| Satellite  | 6435  | 36  | 2036     | 31.64    |
| Satimage-2 | 5803  | 36  | 71       | 1.22     |
| Shuttle    | 49097 | 9   | 3511     | 7.15     |
| SpameSpace | 4207  | 57  | 1679     | 39.91    |
| Stamps     | 340   | 9   | 31       | 9.12     |
| Thyroid    | 3772  | 6   | 93       | 2.47     |
| Vertebral  | 240   | 6   | 30       | 12.50    |
| Vowels     | 1456  | 12  | 50       | 3.43     |
| WBC        | 378   | 30  | 21       | 5.56     |
| Wilt       | 4819  | 5   | 257      | 5.33     |

- Tested on 20 outlier benchmark datasets
- Each dataset is split to 60% for training and 40% for testing
- Compared with 7 widely used detector combination methods, such as averaging, average-of-maximum, and feature bagging\*
- Used a pool of 50 LOF base detectors
- The average of 30 independent trials is reported and analyzed

### Results & Discussions – Overall Performance

Table 2: ROC-AUC scores (average of 30 independent trials, highest score highlighted in bold)

| Deteret    | $LSCP_{-}$ | $LSCP_{-}$ | $LSCP_{-}$   | $LSCP_{-}$ | $GG_{-}$ | $GG_{-}$ | $GG_{-}$     | $GG_{-}$ | $GG_{-}$ | $GG_{-}$ | $GG_{-}$ |
|------------|------------|------------|--------------|------------|----------|----------|--------------|----------|----------|----------|----------|
| Dataset    | A          | MOA        | $\mathbf{M}$ | AOM        | A        | MOA      | $\mathbf{M}$ | AOM      | WA       | TH       | FB       |
| Annthyroid | 0.7548     | 0.7590     | 0.7849       | 0.7520     | 0.7642   | 0.7660   | 0.7769       | 0.7730   | 0.7632   | 0.7552   | 0.7854   |
| Arrhythmia | 0.7746     | 0.7715     | 0.7729       | 0.7763     | 0.7758   | 0.7749   | 0.7656       | 0.7690   | 0.7758   | 0.7313   | 0.7709   |
| Breastw    | 0.6553     | 0.7044     | 0.7236       | 0.7845     | 0.7362   | 0.7140   | 0.6590       | 0.6838   | 0.7453   | 0.6285   | 0.3935   |
| Cardio     | 0.8691     | 0.8908     | 0.8491       | 0.9013     | 0.8770   | 0.8865   | 0.8798       | 0.8903   | 0.8782   | 0.8830   | 0.8422   |
| Letter     | 0.7818     | 0.7954     | 0.8361       | 0.7867     | 0.7925   | 0.8031   | 0.8434       | 0.8300   | 0.7908   | 0.8001   | 0.7640   |
| MNIST      | 0.8576     | 0.8623     | 0.7812       | 0.8633     | 0.8557   | 0.8588   | 0.8349       | 0.8553   | 0.8563   | 0.8272   | 0.8468   |
| Musk       | 0.9950     | 0.9970     | 0.9931       | 0.9981     | 0.9937   | 0.9960   | 0.9960       | 0.9970   | 0.9953   | 0.9958   | 0.7344   |
| PageBlocks | 0.9349     | 0.9343     | 0.8687       | 0.9488     | 0.9443   | 0.9440   | 0.9240       | 0.9371   | 0.9453   | 0.9418   | 0.9284   |
| Pendigits  | 0.8238     | 0.8656     | 0.7238       | 0.8744     | 0.8378   | 0.8509   | 0.8488       | 0.8622   | 0.8425   | 0.8548   | 0.8034   |
| Pima       | 0.7059     | 0.6991     | 0.6640       | 0.7061     | 0.7030   | 0.7003   | 0.6730       | 0.6856   | 0.7037   | 0.6349   | 0.6989   |
| Satellite  | 0.5814     | 0.6106     | 0.6006       | 0.6015     | 0.5881   | 0.5992   | 0.6258       | 0.6220   | 0.5876   | 0.6101   | 0.5818   |
| Satimage-2 | 0.9852     | 0.9931     | 0.9878       | 0.9935     | 0.9872   | 0.9907   | 0.9909       | 0.9925   | 0.9880   | 0.9881   | 0.9181   |
| Shuttle    | 0.5392     | 0.5551     | 0.5373       | 0.5514     | 0.5439   | 0.5504   | 0.5612       | 0.5602   | 0.5413   | 0.5561   | 0.3702   |
| SpamSpace  | 0.3792     | 0.4594     | 0.4305       | 0.4744     | 0.4487   | 0.4377   | 0.4060       | 0.4128   | 0.4580   | 0.4104   | 0.3312   |
| Stamps     | 0.8888     | 0.8719     | 0.8525       | 0.8985     | 0.8946   | 0.8927   | 0.8559       | 0.8763   | 0.8953   | 0.8904   | 0.8715   |
| Thyroid    | 0.9579     | 0.9624     | 0.9413       | 0.9700     | 0.9656   | 0.9647   | 0.9385       | 0.9510   | 0.9665   | 0.9644   | 0.8510   |
| Vertebral  | 0.3324     | 0.3662     | 0.4306       | 0.3478     | 0.3433   | 0.3467   | 0.3662       | 0.3614   | 0.3442   | 0.3678   | 0.3385   |
| Vowels     | 0.9276     | 0.9185     | 0.9238       | 0.9199     | 0.9265   | 0.9275   | 0.9313       | 0.9271   | 0.9261   | 0.9299   | 0.9148   |
| WBC        | 0.9379     | 0.9344     | 0.9242       | 0.9451     | 0.9421   | 0.9409   | 0.9321       | 0.9367   | 0.9420   | 0.9314   | 0.9407   |
| Wilt       | 0.5275     | 0.5517     | 0.6550       | 0.4286     | 0.5101   | 0.5358   | 0.6384       | 0.6056   | 0.5037   | 0.5586   | 0.5868   |

- LSCP frameworks
   outperform on 15 out of 20
   datasets for ROC\_AUC
- LSCP\_AOM performs best on 13 out of 20 datasets

### Results & Discussions – Overall Performance

Table 3: mAP scores (average of 30 independent trials, highest score highlighted in bold)

|            | LSCP_  | $LSCP_{-}$ | $LSCP_{-}$ | LSCP_  | $GG_{-}$      |
|------------|--------|------------|------------|--------|----------|----------|----------|----------|----------|----------|---------------|
| Dataset    | A      | MOA        | M          | AOM    | A        | MOA      | M        | AOM      | WA       | TH       | $\mathbf{FB}$ |
| Annthyroid | 0.2283 | 0.2375     | 0.2349     | 0.2453 | 0.2301   | 0.2395   | 0.2413   | 0.2516   | 0.2306   | 0.2277   | 0.1864        |
| Arrhythmia | 0.3780 | 0.3744     | 0.3790     | 0.3796 | 0.3766   | 0.3769   | 0.3690   | 0.3722   | 0.3766   | 0.3468   | 0.3707        |
| Breastw    | 0.4334 | 0.4766     | 0.4728     | 0.5655 | 0.4995   | 0.4849   | 0.4249   | 0.4577   | 0.5085   | 0.4366   | 0.2854        |
| Cardio     | 0.3375 | 0.3960     | 0.3197     | 0.4117 | 0.3516   | 0.3708   | 0.3666   | 0.3864   | 0.3535   | 0.3629   | 0.3643        |
| Letter     | 0.2302 | 0.2396     | 0.3346     | 0.2407 | 0.2388   | 0.2473   | 0.3160   | 0.2867   | 0.2372   | 0.2416   | 0.2193        |
| MNIST      | 0.3933 | 0.3974     | 0.3353     | 0.3979 | 0.3911   | 0.3941   | 0.3701   | 0.3896   | 0.3918   | 0.3836   | 0.3928        |
| Musk       | 0.8478 | 0.8773     | 0.8433     | 0.9240 | 0.8245   | 0.8718   | 0.8479   | 0.8806   | 0.8608   | 0.8629   | 0.5806        |
| PageBlocks | 0.5805 | 0.5707     | 0.4684     | 0.6360 | 0.6043   | 0.6016   | 0.5297   | 0.5733   | 0.6077   | 0.6064   | 0.6094        |
| Pendigits  | 0.0709 | 0.0893     | 0.0625     | 0.0944 | 0.0777   | 0.0823   | 0.0834   | 0.0895   | 0.0780   | 0.0832   | 0.0834        |
| Pima       | 0.5092 | 0.5045     | 0.4716     | 0.5142 | 0.5089   | 0.5054   | 0.4813   | 0.4920   | 0.5095   | 0.4599   | 0.5094        |
| Satellite  | 0.4077 | 0.4268     | 0.4223     | 0.4196 | 0.4047   | 0.4139   | 0.4385   | 0.4352   | 0.4047   | 0.4031   | 0.4049        |
| Satimage-2 | 0.3477 | 0.6248     | 0.3994     | 0.6249 | 0.3959   | 0.5089   | 0.5344   | 0.5922   | 0.4159   | 0.4114   | 0.4851        |
| Shuttle    | 0.1228 | 0.1296     | 0.1167     | 0.1330 | 0.1297   | 0.1316   | 0.1239   | 0.1294   | 0.1293   | 0.1316   | 0.0549        |
| SpamSpace  | 0.3326 | 0.3615     | 0.3592     | 0.3665 | 0.3572   | 0.3521   | 0.3379   | 0.3413   | 0.3612   | 0.3601   | 0.3079        |
| Stamps     | 0.3596 | 0.3310     | 0.3193     | 0.3779 | 0.3694   | 0.3660   | 0.3144   | 0.3387   | 0.3706   | 0.3638   | 0.3535        |
| Thyroid    | 0.3544 | 0.3955     | 0.2638     | 0.4651 | 0.4045   | 0.4123   | 0.2850   | 0.3488   | 0.4130   | 0.4071   | 0.1186        |
| Vertebral  | 0.0948 | 0.1020     | 0.1230     | 0.0988 | 0.0971   | 0.0975   | 0.1029   | 0.1000   | 0.0972   | 0.1067   | 0.0965        |
| Vowels     | 0.3913 | 0.3678     | 0.3482     | 0.3539 | 0.3783   | 0.3790   | 0.3760   | 0.3732   | 0.3784   | 0.3783   | 0.3340        |
| WBC        | 0.6033 | 0.5983     | 0.5472     | 0.6131 | 0.6097   | 0.6069   | 0.5579   | 0.5925   | 0.6105   | 0.6045   | 0.5933        |
| Wilt       | 0.0518 | 0.0557     | 0.0770     | 0.0423 | 0.0493   | 0.0523   | 0.0715   | 0.0633   | 0.0486   | 0.0537   | 0.0591        |

- LSCP frameworks
   outperform on 18 out of 20
   datasets for mAP (mean
   average precision)
- LSCP\_AOM performs best on 14 out of 20 datasets

### Results & Discussions – When does LSCP Work





Visualization by t-distributed stochastic neighbor embedding (t-SNE)

LSCP works well when data forms local patterns.



#### Conclusion



LSCP is an outlier ensemble framework to select the top-performing base detectors for each test instance relative to its local region.

Among all four LSCP variants, **LSCP\_AOM** demonstrates the best performance.

#### **Future Directions:**

- 1. Incorporate more sophisticated pseudo ground truth generation methods
- 2. Design more efficient and robust local region definition approaches
- 3. Test and extend LSCP framework with a group of heterogeneous detectors

## **Model Reproducibility**



LSCP's code, experiment results, and figures are openly shared:

https://github.com/yzhao062/LSCP

Production level implementation is available at Python Outlier Detection Toolbox (PyOD), which can be invoked as "pyod.models.lscp":

- LSCP examples:
   https://github.com/yzhao062/pyod/blob/master/examples/lscp\_example.py
- API reference: <a href="https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.lscp">https://pyod.readthedocs.io/en/latest/pyod.models.html#module-pyod.models.lscp</a>

## PyOD is for Everyone – Have Your Algorithms In!

PyOD has become the most popular Python Outlier Detection Toolkit:

- Downloads > 50,000 times
- GitHub stars > 1,800; forks > 350
- Featured by various tech blogs, e.g., KDnuggets
- Paper accepted by Journal of Machine Learning Research (JMLR) – appear soon

Interested in having your algorithms included in PyOD to be used by practitioners around the world? Let's connect © (Poster 86)



### LSCP: Locally Selective Combination in Parallel Outlier Ensembles Scores for Outlier Ensembles

https://github.com/yzhao062/LSCP

### **PyOD: Python Outlier Detection Toolbox**

https://github.com/yzhao062/pyod

Yue Zhao, Zain Nasrullah
Department of Computer Science
University of Toronto

Maciej K. Hryniewicki

Data Analytics & Assurance

Zheng Li Toronto Campus Northeastern University





#### Reference

- [1] Aggarwal, C.C. 2013. Outlier ensembles: position paper. ACM SIGKDD Explorations. 14, 2 (2013), 49–58.
- [2] Lazarevic, A. and Kumar, V. 2005. Feature bagging for outlier detection. ACM SIGKDD. (2005), 157.
- [3] Liu, F.T., Ting, K.M. and Zhou, Z.H. 2008. Isolation forest. *ICDM*. (2008), 413–422.
- [4] Rayana, S. and Akoglu, L. 2016. Less is More: Building Selective Anomaly Ensembles. TKDD. 10, 4 (2016), 1–33.
- [5] Rayana, S., Zhong, W. and Akoglu, L. 2017. Sequential ensemble learning for outlier detection: A bias-variance perspective. *ICDM*. (2017), 1167–1172.
- [6] Micenková, B., McWilliams, B. and Assent, I. 2015. Learning Representations for Outlier Detection on a Budget. arXiv Preprint arXiv:1507.08104.
- [7] Zhao, Y. and Hryniewicki, M.K. 2018. XGBOD: Improving Supervised Outlier Detection with Unsupervised Representation Learning. *IJCNN*. (2018).