Assignment-Regression Algorithm

Problem Statement or Requirement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same.

As a data scientist, you must develop a model which will predict the insurance charges.

- 1.) Identify your problem statement
- 2.) Tell basic info about the dataset (Total number of rows, columns)
- 3.) Mention the pre-processing method if you're doing any (like converting string to number nominal data)
- 4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.
- 5.) All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)
- 6.) Mention your final model, justify why u have chosen the same.

1.) 3 Stages of Problem Statement

- Stage 1 Domain *Machine Learning* (inputs number)
- **Stage 2** Learning *Supervised Learning* (clear requirements and both input and output present)
 - Stage 3 numerical value Supervised Regression Learning output numerical value

Project Name: "InsureCast": Forecasting Insurance Charges with ML

2.) Dataset basic information

Total number of rows - 1338

Total number of columns - 6

3.) Data Preprocessing: One-Hot Encoding for Categorical Values

When working with machine learning models, especially regression models, it's important to **convert categorical variables into a numerical format** because most algorithms require numerical input. For categorical data, we use techniques like One-Hot Encoding.

Categorical Variables:

Column like "Sex" and "Smoker" have categorical values.

• Sex: Male, Female

• Smoker: Yes, No

These categorical values are **nominal** - represent distinct categories without any inherent order.

One-Hot Encoding:

Nominal data → One Hot Encoding → convert string to number

One-Hot Encoding is a method to convert categorical variables into a numerical format.

1. Identify the Categorical Values:

- "Sex": Male, Female
- "Smoker": Yes, No

2. Create New Binary Columns:

For each unique value in the categorical column, create a new binary (0 or 1) column:

- For "Sex": Create two new columns, "Sex Male" and "Sex Female".
- For "Smoker": Create two new columns, "Smoker Yes" and "Smoker No".

3. Assign Binary Values:

- In the "Sex_Male" column, assign 1 if the original value is "Male" and 0 if it's "Female".
- In the "Sex_Female" column, assign 1 if the original value is "Female" and 0 if it's "Male".
- Similarly, for "Smoker Yes" and "Smoker No".

4.) Develop Good Model

Source code for Developed Model:

https://github.com/Marudhanayagam4/Assignment_Regression

Model Creation / Learning Phase

- Data collection
- Data preprocessing
- Input / Output split
- Split train set and test set
- Train set → model creation
- Test set → evaluation metrics → save the best model

Deployment Phase / End User

- Load the saved model
- Get inputs
- Predicts
- Call to action

5.) R² score for many models

Algorithm – Multiple Linear Regression - R² score – 0.78

Algorithm – Support Vector Machine Regression – R² score – 0.86

SVMR R2 score

S No	kernel	Regularization parameter C	R2 score
1	rbf	1	-0.08
2	rbf	10	-0.03
3	rbf	100	0.32
4	rbf	1000	0.81
5	rbf	2000	0.85
6	rbf	3000	0.86
7	linear	1	-0.01
8	linear	10	0.46
9	linear	100	0.62
10	linear	1000	0.76
11	linear	2000	0.74
12	linear	3000	0.74
13	poly	1	-0.07
14	poly	10	0.03
15	poly	100	0.61
16	poly	1000	0.85
17	poly	2000	0.86
18	poly	3000	0.85
19	sigmoid	1	-0.07
20	sigmoid	10	0.03
21	sigmoid	100	0.52
22	sigmoid	1000	0.28
23	sigmoid	2000	-0.59
24	sigmoid	3000	-2

Algorithm – Decision Tree Regression – R² score – 0.75

Decision Tree R2 score

S No	criterion	splitter	max_features	R2 score
1	squared_error	best	None	0.7
2	squared_error	random	None	0.71
3	squared_error	best	sqrt	0.67
4	squared_error	random	sqrt	0.69
5	squared_error	best	log2	0.67
6	squared_error	random	log2	0.69
7	friedman_mse	best	None	0.71
8	friedman_mse	random	None	0.71
9	friedman_mse	best	sqrt	0.67
10	friedman_mse	random	sqrt	0.69
11	friedman_mse	best	log2	0.67
12	friedman_mse	random	log2	0.69
13	absolute_error	best	None	0.67
14	absolute_error	random	None	0.7506
15	absolute_error	best	sqrt	0.69
16	absolute_error	random	sqrt	0.64
17	absolute_error	best	log2	0.69
18	absolute_error	random	log2	0.64
19	poisson	best	None	0.7288
20	poisson	random	None	0.7
21	poisson	best	sqrt	0.7591
22	poisson	random	sqrt	0.62
23	poisson	best	log2	0.7591
24	poisson	random	log2	0.62

Algorithm –Random Forest Regression – R² score – 0.75

Random Forest R2 score

S No	criterion	n_estimators	max_features	R2 score
1	squared_error	100	sqrt	0.871
2	squared_error	50	sqrt	0.86
3	squared_error	100	log2	0.871
4	squared_error	50	log2	0.86
5	squared_error	100	None	0.85
6	squared_error	50	None	0.84
7	absolut_error	100	None	0.85
8	absolute_error	50	None	0.85
9	absolute_error	100	sqrt	0.8711
10	absolute_error	50	sqrt	0.8708
11	absolute_error	100	log2	0.8711
12	absolute_error	50	log2	0.8708
13	friedman_mse	100	sqrt	0.871
14	friedman_mse	50	sqrt	0.87
15	friedman_mse	100	log2	0.8702
16	friedman_mse	50	log2	0.8702
17	friedman_mse	100	None	0.85
18	friedman_mse	50	None	0.85
19	poisson	100	sqrt	0.86
20	poisson	50	sqrt	0.86
21	poisson	100	log2	0.86
22	poisson	50	log2	0.86
23	poisson	100	None	0.85
24	poisson	50	None	0.84

6.) Final Model – Random Forest Regression

R2 Score:

- shows how good the model's predictions are compared to the actual data.
- Value Range: The R2 score ranges from 0 to 1.

Algorithm	R2 score
Multiple Linear Regression (MLR)	0.78
Support Vector Machine Regression	
(SVMR)	0.86
Decision Tree Regression	0.75
Random Forest Regression	0.87

Justification:

Highest R2 Score:

• Random Forest Regression: 0.87 (closest to 1)

Model Stability:

Ensemble learning method reduces overfitting

Handling Non-linearity and Interactions:

• Captures complex relationships better than linear models

Reduced Variance:

Averaging multiple decision trees leads to more reliable predictions

Conclusion:

- Random Forest Regression is the most accurate, reliable, and robust model for predicting insurance charges based on the R2 score and its numerous advantages over other models
- R2 score is 0.87, it means the model explains 87% of the variability in the target variable.
 This indicates a very good fit, with predictions that are quite accurate.