3.2 Ganzheit 25

Satz 3.13. Jeder faktorielle Ring ist ganzabgeschlossen.

Beweis. Sei $\alpha \in K$ mit $\alpha^n + c_{n-1}\alpha^{n-1} + \cdots + c_0 = 0$, wobei $c_0, \ldots, c_{n-1} \in A$. Z.z.: $\alpha \in A$. Sei $\alpha = \frac{a}{b}$, $a, b \in A$, ggT(a, b) = 1. Dann gilt

$$a^{n} + c_{n-1}ba^{n-1} + \dots + c_{0}b^{n} = 0.$$

Ist nun $p \in A$ ein Primelement mit $p \mid b$, so folgt $p \mid a^n$, also $p \mid a$ WID. Also existiert so ein p nicht und es gilt $b \in A^{\times}$. Folglich gilt $\alpha \in A$.

Bemerkung 3.14. Wir sehen somit, dass $\mathbb{C}[X,Y]/(X^2-Y^3)$ ein nullteilerfreier, nicht faktorieller Ring ist.

Satz 3.15. Sei A ganzabgeschlossen und L|K endlich. Sei $x \in L$ und

$$f = X^r + a_{r-1}X^{r-1} + \dots + a_0$$

das Minimalpolynom von x über K. Dann gilt

$$x \in A_L \iff a_{r-1}, \dots, a_0 \in A.$$

 $Beweis. \iff per definitionem$

 $\implies L|K$ normal. Sei $x \in A_L$ und $g \in A[X]$ normiert mit g(x) = 0. Dann gilt f|g in K[X], also g(y) = 0 für jede Nullstelle y von f, d.h. diese liegen alle in A_L . Die Koeffizienten von f sind die elementarsymmetrischen Polynome in den Nullstellen $\Rightarrow a_{r-1}, \ldots, a_0 \in A_L \cap K = A$.

Erinnerung: Sei L|K endlich, $x \in L$. Dann ist

$$\varphi_x: L \to L, \ y \mapsto xy$$

ein Endomorphismus des endlichdimensionalen K-Vektorraums L.

Definition 3.16.

$$\operatorname{Sp}_{L|K}(x) = \operatorname{Sp}(\varphi_x) \in K$$

 $N_{L|K}(x) = \det(\varphi_x) \in K.$

Satz 3.17. Sind $\sigma_1, \ldots, \sigma_n$ die endlich vielen K-Einbettungen $L \to \overline{K}$ in einen festen algebraischen Abschluss von K, so gilt

$$\operatorname{Sp}_{L|K}(x) = [L:K]_i \cdot \sum_{i=1}^n \sigma_i x$$

$$N_{L|K}(x) = \left(\prod_{i=1}^{n} \sigma_i x\right)^{[L:K]_i}$$

Beweis. Siehe Algebra 1, 4.62.

Korollar 3.18. A ganzabgeschlossen, K = Q(A), L|K endlich, $x \in A_L \Longrightarrow \operatorname{Sp}_{L|K}(x)$, $N_{L|K}(x) \in A$.

Beweis. $N_{L|K}(x) = N_{K(x)/K}(x)^{[L:K(x)]} = \pm a_0^{[L:K(x)]}$ wobei $X^r + a_{r-1}X^{r-1} + \cdots + a_0$ das Minimalpolynom von x über K ist. Desweiteren gilt

$$\operatorname{Sp}_{L|K}(x) = [L : K(x)] \cdot \operatorname{Sp}_{K(x)/K}(x)$$

$$\parallel$$

$$-a_{r-1}.$$

Schließlich gilt $a_0, a_{r-1} \in A$.

Erinnerung: (Algebra 1, 4.64) L|K endlich, separabel. Dann ist die Spurform

$$\operatorname{Sp}: L \times L \longrightarrow K,$$

$$(x, y) \longmapsto \operatorname{Sp}_{L \mid K}(xy),$$

eine nicht-ausgeartete Bilinearform.

Definition 3.19. Für eine K-Basis $\alpha_1, \ldots, \alpha_n, n = [L : K]$, von L ist die **Diskriminante** definiert durch

$$d(\alpha_1, \ldots, \alpha_n) = \det(\operatorname{Sp}(\alpha_i \alpha_i)).$$

Mit $\operatorname{Hom}_K(L, \overline{K}) = \{\sigma_1, \dots, \sigma_n\}$ gilt

$$\operatorname{Sp}(\alpha_i \alpha_j) = \sum_k \sigma_k(\alpha_i) \sigma_k(\alpha_j)$$

Daher gilt die Gleichheit von Matrizen

$$(\operatorname{Sp}(\alpha_i \alpha_j))_{ij} = (\sigma_k \alpha_i)_{k,i}^t \cdot (\sigma_k \alpha_j)_{k,j},$$

und wir erhalten

Lemma 3.20.

$$d(\alpha_1, \ldots, \alpha_n) = (\det(\sigma_i \alpha_j)_{ij})^2.$$

Im Spezialfall $(\alpha_1, \ldots, \alpha_n) = (1, \alpha, \ldots, \alpha^{n-1})$ erhält man

$$d(1, \alpha, \dots, \alpha^{n-1}) = \prod_{i < j} (\sigma_j(\alpha) - \sigma_i(\alpha))^2.$$

Beweis. Die erste Aussage haben wir schon. Die zweite folgt aus

$$\det \begin{pmatrix} 1, \sigma_1(\alpha), \sigma_1(\alpha)^2, \dots, \sigma_1(\alpha)^{n-1} \\ \ddots \\ 1, \sigma_n(\alpha), \sigma_n(\alpha)^2, \dots, \sigma_n(\alpha)^{n-1} \end{pmatrix} = \prod_{i < j} (\sigma_i(\alpha) - \sigma_j(\alpha))$$

(Vandermondsche Matrix).

3.2 Ganzheit 27

Sei L|K endlich separabel, A ganzabgeschlossen mit K = Q(A) und sei $B = A_L$. Jedes $x \in L$ erfüllt eine Gleichung

$$x^n + a_{n-1}x^{n-1} + \dots + a_0.$$

Durch Multiplikation erhalten wir $ax \in A_L$ für $a \in A$ geeignet. Insbesondere existieren in B enthaltene K-Basen von L.

Satz 3.21. A ganzabgeschlossen, K = Q(A), L|K endlich separabel, $B = A_L$. Sei $\alpha_1, \ldots, \alpha_n$ eine in B gelegene K-Basis von L. Dann gilt

$$d(\alpha_1, \dots, \alpha_n) \cdot B \subset A\alpha_1 + \dots + A\alpha_n.$$

Insbesondere ist B ein Untermodul eines e.e. A-Moduls.

Beweis. Sei $\alpha \in B$ beliebig. $\alpha = a_1 \alpha_1 + \dots + a_n \alpha_n, a_1, \dots, a_n \in K$.

Dann gilt $\operatorname{Sp}_{L|K}(\alpha_i \alpha) = \sum_{j=1}^n \operatorname{Sp}_{L|K}(\alpha_i \alpha_j) a_j$.

Also sind die a_i Lösungen eines linearen Gleichungssystems der Form

$$M\left(\begin{array}{c} a_1\\ \vdots\\ a_n \end{array}\right) = \left(\begin{array}{c} b_1\\ \vdots\\ b_n \end{array}\right)$$

mit $b_i \in A$, $M = (m_{ij}) \in M_{n,n}(A)$.

Cramersche Regel: $\det(M)a_i \in A$ (multipliziere mit Adjunkter von M). Es gilt $\det M = d(\alpha_1, \ldots, \alpha_n) =: d$. Also gilt $d\alpha = da_1\alpha_1 + \cdots + da_n\alpha_n \in B$. Schließlich erhalten wir die Inklusion

$$B \subset A\frac{\alpha_1}{d} + \dots + A\frac{\alpha_n}{d} ,$$

was das "Insbesondere" zeigt.

Korollar 3.22. Ist A ein Hauptidealring, so ist B ein freier A-Modul vom Rang n = [L : K].

Beweis. Sei $\alpha_1, \ldots, \alpha_n$ eine in B enthaltene K-Basis von L und $d = d(\alpha_1, \ldots, \alpha_n)$. Dann gilt nach 3.21

$$B \subset A \frac{\alpha_1}{d} + \dots + A \frac{\alpha_n}{d}$$
.

Die Elemente $\frac{\alpha_i}{d}$ sind K-linear unabhängig, also auch A-linear unabhängig. Daher ist B Untermodul eines freien A-Moduls vom Rang n und somit frei vom Rang $\leq n$. Jede A-Basis von B ist auch K-Basis von $L \Rightarrow \operatorname{Rang}_A B = n$.

Definition 3.23. Eine A-Basis von B (wenn sie existiert) heißt **Ganzheitsbasis** von B über A.

3.3 Dedekindringe

Satz 3.24 (Algebra 2, 19.1). Für einen A-Modul M sind die folgenden Eigenschaften äquivalent.

- (i) Jede aufsteigende Kette $M_1 \subset M_2 \subset \cdots \subset M$ von Untermoduln in M wird stationär.
- (ii) jeder Untermodul von M ist endlich erzeugt.

Definition 3.25. Ein Modul M der den Bedingungen von 3.24 genügt heißt **noetherscher** A-Modul. A heißt **noetherscher Ring**, wenn A noethersch als A-Modul ist (d.h. jedes Ideal ist endlich erzeugt).

Beispiel 3.26. Jeder Hauptidealring ist noethersch.

Satz 3.27 (Algebra 2, 19.10). Sei A ein noetherscher Ring. Dann ist ein A-Modul M genau dann noethersch, wenn er endlich erzeugt ist.

Satz 3.28 (Hilbertscher Basissatz, Algebra 2, 19.15). Ist A noethersch und B eine endlich erzeugte A-Algebra, so ist auch B ein noetherscher Ring.

Satz 3.29. Sei A ein nullteilerfreier ganzabgeschlossener noetherscher Ring, K = Q(A) und L|K endlich separabel. Dann ist $B = A_L$ eine endliche A-Algebra und insbesondere selbst wieder noethersch.

Beweis. Nach 3.21 ist B Untermodul eines e.e. $A\text{-}\mathrm{Moduls},$ also selbst e.e. $A\text{-}\mathrm{Modul}.$ \Box

Definition 3.30 (Algebra 2, 26.10). Die **Dimension** dim A eines Ringes ist das Supremum über alle $n \in \mathbb{N}_0$ mit der Eigenschaft: es existiert eine Kette (der Länge n)

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n \subset A$$

von Primidealen in A.

Bemerkungen 3.31. • A Körper $\Rightarrow \dim A = 0$

- A nullteilerfrei und dim $A = 0 \Rightarrow A$ Körper
- $n \in \mathbb{N}, \ n \ge 2 \Rightarrow \dim \mathbb{Z}/n\mathbb{Z} = 0$
- A Hauptidealring $\Rightarrow \dim A \leq 1$.

Grund: z.z.: jedes Primideal $\neq 0$ ist maximal: Gilt $\mathfrak{p}_1 \subsetneq \mathfrak{p}_2$, so gilt $\mathfrak{p}_i = (\pi_i)$ für Primelemente $\pi_1, \pi_2 \in A$. Es folgt $\pi_2 \mid \pi_1$. Da die π_i prim, insbesondere irreduzibel sind, folgt $\pi_1 = \pi_2 \Rightarrow \mathfrak{p}_1 = \mathfrak{p}_2$. Widerspruch.

• es gibt noethersche Ringe der Dimension ∞ .

Definition 3.32. Ein nullteilerfreier, ganzabgeschlossener noetherscher Ring der Dimension ≤ 1 heißt **Dedekindring**.

29

Beispiel 3.33. Jeder Hauptidealring ist ein Dedekindring.

Satz 3.34. Sei A ein Dedekindring, K = Q(A), L|K endlich separabel, und $B = A_L$. Dann ist B ein Dedekindring und es gilt dim $B = \dim A$.

Bemerkung 3.35. Die Separabilitätsforderung ist entbehrlich, dann wird aber der Beweis schwerer.

Beweis von 3.34. B ist ganzabgeschlossen und noethersch nach 3.29. Bleibt z.z.: $\dim B = \dim A$.

1. Fall: $\dim A = 0$. Dann ist A ein Körper. B ist endliche nullteilerfreie A-Algebra. Für $b \in B$, $b \neq 0$, ist $b : B \to B$ ein injektiver Endomorphismus des e.d. A-Vektorraums B, also ein Isomorphismus. Folglich ist jedes $b \neq 0$ invertierbar und somit B ein Körper.

- 2. Fall: $\dim A = 1$. Z.z.:
 - a) es gibt in B ein Primideal $\neq 0$.
 - b) jedes Primideal $\neq 0$ in B ist maximal.

Zu a) Sei $a \in A \setminus (\{0\} \cup A^{\times})$. Dann gilt $a \in B \setminus (\{0\} \cup B^{\times})$.

Grund: Offenbar gilt $a \neq 0$ trivial. Angenommen es existiert $b \in B$ mit ba = 1. Dann gilt $b \in B \cap K = A$ im Widerspruch zu $a \notin A^{\times}$. Folglich gilt $(0) \subsetneq aB \subsetneq B$ und aB ist in einem Maximalideal $\neq (0)$ enthalten.

Zu b) Sei $\mathfrak{P} \subset B$ ein Primideal $\neq 0$. Dann ist das Primideal $\mathfrak{p} := \mathfrak{P} \cap A$ ungleich 0: Grund: Sei $b \in \mathfrak{P}$, $b \neq 0$. Dann existiert eine Gleichung

$$b^r + a_{r-1}b^{r-1} + \dots + a_0 = 0, \ a_i \in A, \ a_0 \neq 0$$

 $\Rightarrow a_0 \in \mathfrak{P} \cap A = \mathfrak{p}.$

Nun ist B, also auch B/\mathfrak{P} eine endliche A-Algebra. Daher ist B/\mathfrak{P} ist endliche Algebra über dem Körper A/\mathfrak{p} . Außerdem ist B/\mathfrak{p} nullteilerfrei $\Rightarrow B/\mathfrak{P}$ ist Körper (siehe oben).

Definition 3.36. Ein **Zahlkörper** ist ein endlicher Erweiterungskörper $K|\mathbb{Q}$. Der Ganzabschluss \mathcal{O}_K von \mathbb{Z} in K heißt **Ring der ganzen Zahlen** von K.

Korollar 3.37. Für jeden Zahlkörper K ist \mathcal{O}_K ein Dedekindring.

Beweis. Z ist Hauptidealring also Dedekindring. Das Ergebnis folgt aus 3.34.

Beispiel 3.38. Gilt $[K:\mathbb{Q}]=2$, so heißt K quadratischer Zahlkörper. Es gilt $K=\mathbb{Q}(\sqrt{d}), d\in\mathbb{Q}^\times\setminus\mathbb{Q}^{\times 2}$. Stillschweigend nehmen wir d stets als ganzzahlig und quadratfrei an.

Jedes Element von K hat eine eindeutige Darstellung $x=a+b\sqrt{d},\,a,b\in\mathbb{Q}.$ Es gilt

$$N_{K|Q}(x) = (a + b\sqrt{d})(a - b\sqrt{d}) = a^2 - db^2,$$

$$\operatorname{Sp}_{K|\mathbb{Q}}(x) = (a + b\sqrt{d}) + (a - b\sqrt{d}) = 2a.$$

Da x Nullstelle des Polynoms $X^2 - \operatorname{Sp}(x)X + N(x)$ ist gilt

$$x \in \mathcal{O}_K \iff N(x), \operatorname{Sp}(x) \in \mathbb{Z}.$$

Satz 3.39. Sei $K = \mathbb{Q}(\sqrt{d})$ ein quadratischer Zahlkörper.

Ist $d \not\equiv 1 \mod 4$ so gilt $\mathcal{O}_K = \mathbb{Z} + \mathbb{Z}\sqrt{d}$.

 $F\ddot{u}r \ d \equiv 1 \mod 4 \ gilt$

$$\mathcal{O}_K = \mathbb{Z} + \mathbb{Z}\left(\frac{1+\sqrt{d}}{2}\right) = \left\{\frac{a+b\sqrt{d}}{2} \mid a, b \in \mathbb{Z}, \ a \equiv b \bmod 2\right\}$$

Beweis. Sei $x=a+b\sqrt{d},\,a,b\in\mathbb{Q}.$ Nach den obigen Bemerkungen gilt

$$x \in \mathcal{O}_K \iff 2a, a^2 - db^2 \in \mathbb{Z}$$

Für $a, b \in \mathbb{Z}$, d beliebig folgt $x \in \mathcal{O}_K$.

Sei $d \equiv 1 \mod 4$ und $a = \frac{1}{2}A$, $b = \frac{1}{2}B$, $A, B \in \mathbb{Z}$, $A \equiv B \mod 2$. Dann ist $a^2 - db^2 = \frac{1}{4}(A^2 - dB^2) \in \mathbb{Z}$ und $2a = A \in \mathbb{Z}$. Die angegebenen Elemente sind daher ganz.

Umgekehrt: Wegen $2a \in \mathbb{Z}$ ist $4db^2 = (2a)^2 - 4(a^2 - db^2) \in \mathbb{Z}$. Da d quadratfrei ist, folgt $2b \in \mathbb{Z}$. Also existieren $A, B \in \mathbb{Z}$, 2a = A, 2b = B. Aus $a^2 - db^2 \in \mathbb{Z}$ folgt $4 \mid (A^2 - dB^2)$. Für $d \not\equiv 1 \mod 4$ ist dies nur für gerades A, B möglich, also $a, b \in \mathbb{Z}$. Ist $d \equiv 1 \mod 4$ folgt $A \equiv B \mod 2$.

Bemerkung 3.40. Für d = -5 erhalten wir $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$. Dieser Ring ist nicht faktoriell, insbesondere kein Hauptidealring, aber ein Dedekindring.

Sei nun K wieder ein beliebiger Zahlkörper. Da \mathbb{Z} ein Hauptidealring ist, existiert eine Ganzheitsbasis von \mathcal{O}_K (über \mathbb{Z}) der Länge $n = [K : \mathbb{Q}]$. Sei

$$\mathcal{O}_K = \mathbb{Z}\alpha_1 + \cdots + \mathbb{Z}\alpha_n.$$

Definition/Lemma 3.41. Die Diskriminante $d(\alpha_1, \ldots, \alpha_n)$ hängt nicht von der Wahl der Basis ab. Sie heißt die **Diskriminante des Zahlkörpers** K. Bezeichnung $d_K = d(\alpha_1, \ldots, \alpha_n)$.

Beweis. Es gilt

$$d(\alpha_1, \dots, \alpha_n) = \det(\sigma_i \alpha_j)^2,$$

wobei $\{\sigma_1,\ldots,\sigma_n\}=\operatorname{Hom}_{\mathbb{Q}}(K,\overline{\mathbb{Q}})$. Sei $(\alpha'_1,\ldots,\alpha'_n)$ eine andere Ganzheitsbasis und M die Übergangsmatrix. Es gilt $M\in Gl_n(\mathbb{Z})$, also gilt $\det(M)\in\mathbb{Z}^\times=\{\pm 1\}$ und

$$d(\alpha'_1, \dots, \alpha'_n) = \det(M)^2 \cdot d(\alpha_1, \dots, \alpha_n)$$

= $d(\alpha_1, \dots, \alpha_n)$

31

Beispiel 3.42. Ist $K = \mathbb{Q}(\sqrt{d})$ ein quadratischer Zahlkörper so gilt

$$d_K = \begin{cases} 4d, & d \not\equiv 1 \bmod 4, \\ d, & d \equiv 1 \bmod 4. \end{cases}$$

(Man benutze die angegebene Ganzheitsbasis).

3.4 Primzerlegung in Dedekindringen

Sei A ein Dedekindring. A ist nicht notwendig ein Hauptidealring. Aber wir werden im Laufe dieses Abschnitts das folgende Theorem zeigen:

Theorem 3.43. Jedes Ideal $\mathfrak{a} \subset A$, $\mathfrak{a} \neq 0$ hat eine bis auf Reihenfolge eindeutige Zerlegung

$$\mathfrak{a} = \mathfrak{p}_1 \cdots \mathfrak{p}_n$$

in das Produkt von Primidealen $\neq 0$.

Konvention: Wenn nicht explizit anders gesagt, meinen wir von jetzt an mit Primideal stets Primideal $\neq 0$.

Lemma 3.44. Jedes Ideal $\mathfrak{a} \neq 0$ umfaßt ein Produkt von Primidealen.

Beweis. Angenommen $\mathfrak{a} \neq 0$ sei ein Ideal für das die Aussage falsch ist. Offenbar gilt $\mathfrak{a} \neq A$ und \mathfrak{a} ist kein Primideal. Daher existieren $b_1, b_2 \in A$, $b_1, b_2 \notin \mathfrak{a}$, aber $b_1b_2 \in \mathfrak{a}$. Setze

$$\mathfrak{a}_1 = \mathfrak{a} + (b_1) \underset{\neq}{\supseteq} \mathfrak{a}$$
 $\mathfrak{a}_2 = \mathfrak{a} + (b_2) \underset{\neq}{\supseteq} \mathfrak{a}.$

Es gilt

$$\mathfrak{a}_1\mathfrak{a}_2 = (\mathfrak{a} + (b_1))(\mathfrak{a} + (b_2))$$
$$= \mathfrak{a}^2 + \mathfrak{a}(b_1) + \mathfrak{a}(b_2) + (b_1b_2)$$
$$\subset \mathfrak{a}$$

Enthalten \mathfrak{a}_1 und \mathfrak{a}_2 ein Produkt von Primidealen, so auch $\mathfrak{a}_1\mathfrak{a}_2$, also auch \mathfrak{a} . Daher ist die Aussage des Lemmas für mindestens eines der Ideale \mathfrak{a}_1 , \mathfrak{a}_2 auch falsch. Wir erhalten induktiv eine nicht stationär werdende aufsteigende Folge von Idealen. Widerspruch zu A noethersch.

Lemma 3.45. Sei \mathfrak{p} ein Primideal und $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ Ideale mit

$$\mathfrak{a}_1 \cdots \mathfrak{a}_n \subset \mathfrak{p}$$
.

Dann gilt $\mathfrak{a}_i \subset \mathfrak{p}$ für ein i.

Beweis. Anderenfalls können wir für jedes i = 1, ..., n ein $a_i \in \mathfrak{a}_i \setminus \mathfrak{p}$ wählen und es würde $a_1 \cdots a_n \in \mathfrak{p}$ gelten. Aber \mathfrak{p} ist prim. Widerspruch.

Lemma 3.46. Für einen A-Untermodul M von K = Q(A) sind äquivalent

- (i) M ist endlich erzeugter A-Modul.
- (ii) es existiert ein $\alpha \in A$, $\alpha \neq 0$, mit $\alpha M \subset A$.

Beweis. (i) \Rightarrow (ii). Ist $M = Am_1 + \cdots + Am_n$ und $\alpha \in A$ so gewählt, dass $\alpha m_i \in A$, $i = 1, \ldots, n$, so gilt $\alpha M \subset A$.

(ii)
$$\Rightarrow$$
 (i). Gilt $\alpha M \subset A$ so ist αM als Ideal in A e.e. Sei $\alpha M = Aa_1 + \cdots + Aa_n$. Dann gilt $M = A\frac{a_1}{\alpha} + \cdots + A\frac{a_n}{\alpha}$.

Definition 3.47. Ein A-Untermodul $M \subset K$, der die äquivalenten Bedingungen von 3.46 erfüllt heißt **gebrochenes Ideal** in K.

Bemerkung 3.48. Jedes Ideal $\mathfrak{a} \subset A$ ist ein gebrochenes Ideal. Zur besseren Unterscheidung werden wir diese oft als "ganze Ideale" bezeichnen.

Definition 3.49. Für $x \in K$ heißt

$$xA = \{xa \mid a \in A\}$$

das zu x assoziierte gebrochene Hauptideal.

Operationen auf gebrochenen Idealen:

$$\begin{array}{rcl} \mathfrak{a}_1 + \mathfrak{a}_2 & = & \{a_1 + a_2 \mid a_1 \in \mathfrak{a}_1, a_2 \in \mathfrak{a}_2\} \\ \mathfrak{a}_1 \cap \mathfrak{a}_2 & = & \text{was sonst} \\ \mathfrak{a}_1 \mathfrak{a}_2 & = & \{\sum_{\text{endl}} a_i b_i \mid a_i \in \mathfrak{a}_1, b_i \in \mathfrak{a}_2\} \end{array}$$

d.h. genauso wie für gewöhnliche Ideale. Für Hauptideale gilt

$$(xA)(yA) = (xy)A.$$

Insbesondere gilt für $x \neq 0$:

$$(xA)(x^{-1}A) = A = (1).$$

d.h. von 0 verschiedene gebrochene Hauptideale haben ein Inverses bzgl. Multiplikation.

Definition 3.50. Für ein gebrochenes Ideal $\mathfrak{a} \subset K$, $\mathfrak{a} \neq 0$, sei $\mathfrak{a}^* = \{a \in K \mid a\mathfrak{a} \subset A\}$.

Lemma 3.51. \mathfrak{a}^* ist ein gebrochenes Ideal.

Beweis. Zunächst ist $\mathfrak{a}^* \subset K$ ein A-Untermodul. Sei $x \in \mathfrak{a}, x \neq 0$, beliebig gewählt. Dann gilt $x\mathfrak{a}^* \subset A$.