Homework 1

Mengxiang Jiang CSEN 5336 Analysis of Algorithms

September 1, 2022

Problem 1. Some functions are given below. Sort them in ascending order of asymptotic growth (big-O). (lg is log function with base 2)

- 1. $5 \lg n$
- $2. 6n \lg n$
- 3. $n^{n/8}$
- 4. $7 \lg \lg n$
- 5. $n^{0.6}$
- 6. $2n^{\lg n}$
- 7. $\lg^{12} n [\text{or } (\lg n)^{12}]$
- 8. $(n/2)^n$
- 9. $n^{0.5} \lg n$
- 10. 3n

$$7\lg\lg n < 5\lg n < \lg^{12} n < n^{0.5}\lg n < n^{0.6} < 3n < 6n\lg n < 2n^{\lg n} < n^{n/8} < (n/2)^n$$

Problem 2. Solve the recurrence relations using the master method

- a) T(n) = 2T(n/2) + 3n
- b) $T(n) = 2T(n/4) + 4n^{0.3}$
- c) $T(n) = 2T(n/2) + 2n^2$
- d) $T(n) = 3T(n/3) + 3n \lg n$
- e) $T(n) = 2T(n/2) + \Theta(n)$

a)
$$a=2,\,b=2,\,f(n)=3n,\,\log_b a=\log_2 2=1,\,n^{\log_b a}=n^1=\Theta(n)=\Theta(f(n))$$
 since $f(n)$ is the same size as $n^{\log_b a}$, case 2 applies and $T(n)=\Theta(n^{\log_b a}\log n)=\Theta(n\log n)$

b)
$$a = 2$$
, $b = 4$, $f(n) = 4n^{0.3}$, $\log_b a = \log_4 2 = 0.5$ $n^{\log_b a} = n^{0.5} = \Theta(n^{0.5}) > \Theta(f(n)) = \Theta(n^{0.3})$ since $f(n)$ is polynomially smaller than $n^{\log_b a}$, case 1 applies and $T(n) = \Theta(n^{\log_b a}) = \Theta(n^{0.5})$

c)
$$a=2,\,b=2,\,f(n)=2n^2,\,\log_b a=\log_2 2=1,\,n^{\log_b a}=n^1=\Theta(n)<\Theta(f(n))=\Theta(n^2)$$
 since $f(n)$ is polynomially larger than $n^{\log_b a}$, case 3 applies and $T(n)=\Theta(n^2)$

d)
$$a = 3$$
, $b = 3$, $f(n) = 3n \lg n$, $\log_b a = \log_3 3 = 1$

 $n^{\log_b a} = n^1 = \Theta(n) < \Theta(f(n)) = \Theta(n \log n)$

since f(n) is larger but not polynomially larger than $n^{\log_b a}$, T(n) is not solvable by the master theorem

e)
$$a=2,\ b=2,\ f(n)=\Theta(n),\ \log_b a=\log_2 2=1,\ n^{\log_b a}=n^1=\Theta(n)=\Theta(f(n))$$
 since $f(n)$ is the same size as $n^{\log_b a}$, case 2 applies and $T(n)=\Theta(n^{\log_b a}\log n)=\Theta(n\log n)$

Problem 3. Calculate the running time of the algorithms using big-O notation:

a)

```
for (i = 1; i*i<n; i++)
    printf(\%d\n", i)</pre>
```

b)

```
for (i = n; i > 1; i = ceil(i/8))
printf(\%f\n", i);
```

- a) Since n is compared with $i * i = i^2$, and as i grows linearly, i^2 grows quadratically, so the time it will take for i^2 to reach n is \sqrt{n} , so $T(n) = O(\sqrt{n}) = O(n^{0.5})$
- b) Since i is divided by 8 each iteration, starting with i=n, the amount of time for i to reach 1 or lower is $\log_8 n$, so $T(n) = O(\log(n))$