Bucket Sort When You Know The Distribution.

David Ponarovsky

January 20, 2023

Abstract

We propose a new simple construction based on Tanner Codes, which yields a good LDPC code with testability query complexity of $\Theta\left(n^{1-\varepsilon}\right)$ for any $\varepsilon > 0$.

The problem. Let $f:[0,1] \to [0,1]$ a fixed distribution function. Write an algorithm that sort n draws $x_1...x_n$ at linear expectation time.

Solution. We will define a partition of the input into a seira of n buckets $\mathcal{B} = \{B_k = [t_k, t_{k+1}] : k \in [n]\}$ such that $\mathbf{Pr}[x \in B_i] = \frac{1}{n}$ for any bucket.

Claim. The probability that the size of the *i*th bucket exceeds $t \in \mathbb{N}$ is bounded by: $\Pr[B_i \geq t] \leq \frac{e}{t^k}$ for every intrger $k \leq n$.

Proof. Let the X_{ij} be the indecator of the event that x_j belongs to B_i . Then we have:

$$\mathbf{E}\left[B_{i}^{k}\right] = \mathbf{E}\left[\left(\sum_{j}X_{ij}\right)^{k}\right] = \mathbf{E}\left[\sum_{J\in[n]^{k}}\prod_{l\in[k]}X_{iJ_{l}}\right]$$

$$= \mathbf{E}\left[\sum_{l\in[k]}\sum_{\substack{J\subset[n]\\|J|=l}}\prod_{j\in J}\binom{n}{l}\frac{l!}{n^{l}}\right]$$

$$= \sum_{j\neq j'}\mathbf{E}\left[X_{ij}\right]\mathbf{E}\left[X_{ij'}\right] + \sum_{j}\mathbf{E}\left[X_{ij}\right]$$

$$= \sum_{l\in[4]}\frac{1}{n^{l}}\binom{n}{l} = O\left(1\right)$$

$$\mathbf{V}\left[B_{i}^{2}\right] = \sum_{l\in[4]}\binom{n}{l}\left(\frac{1}{n^{l}} - \frac{1}{n^{4}}\right) \leq e$$

$$\mathbf{E}\left[\left(B_{i}^{2}\right)^{k}\right] \leq \left(1 + \frac{1}{n}\right)^{n} \leq e$$

$$\mathbf{Pr}\left[B_{i} \geq t\right] \leq \frac{e}{t^{k}}$$

$$\frac{1}{n} = \mathbf{Pr}\left[x \in B_{k}\right] = f\left(t_{k+1}\right) - f\left(t_{k}\right)$$

$$\Rightarrow t_{k+1} \leftarrow f^{-1}\left(\frac{1}{n} + f\left(t_{k}\right)\right)$$