

2015 VCAA Specialist Mathematics Exam 1 Solutions © 2015 itute.com

Q1a
$$|\overrightarrow{OA}| = |\overrightarrow{OC}|$$
, $a = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$

Q1b
$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = (1 - \sqrt{3})\widetilde{i} + \widetilde{j} + \widetilde{k}$$

$$\overrightarrow{OB} = \overrightarrow{OC} + \overrightarrow{OA} = (1 + \sqrt{3})\widetilde{i} + \widetilde{j} + \widetilde{k}$$

$$\overrightarrow{AC}.\overrightarrow{OB} = (1 - \sqrt{3})(1 + \sqrt{3}) + 1 + 1 = 0$$
, .: $\overrightarrow{AC} \perp \overrightarrow{OB}$

Hence the diagonals are perpendicular.

Q2a Let R newtons be the reaction force.

$$R - 20 \times 9.8 = 20 \times 1.2$$
, $R = 220$

Q2b Let $a \text{ m s}^{-2}$ be the acceleration.

$$166 - 20 \times 9.8 = 20a$$
, $a = -1.5$

The downward acceleration is 1.5 m s⁻².

O3a
$$\tilde{r}(t) = (4t - 3)\tilde{i} + 2t\tilde{j} - 5\tilde{k}$$

$$\tilde{\mathbf{r}}(t) = (2t^2 - 3t)\tilde{\mathbf{i}} + t^2 \tilde{\mathbf{i}} - 5t \tilde{\mathbf{k}} + \tilde{\mathbf{c}}$$

$$\tilde{\mathbf{r}}(0) = \tilde{\mathbf{c}} = \tilde{\mathbf{i}} - 2\tilde{\mathbf{k}}, \dots \tilde{\mathbf{r}}(t) = (2t^2 - 3t + 1)\tilde{\mathbf{i}} + t^2\tilde{\mathbf{i}} - (5t + 2)\tilde{\mathbf{k}}$$

When
$$t = 2$$
, $\tilde{r}(2) = 3\tilde{i} + 4\tilde{j} - 12\tilde{k}$

$$|\tilde{r}(2)| = \sqrt{3^2 + 4^2 + (-12)^2} = 13$$

The distance from the origin = 13 metres

Q4a $z^3 = 8i$, $z^3 - 8i = 0$, -2i is a solution by inspection

$$z^3 - 8i = (z + 2i)(z^2 - 2iz - 4) = 0$$

$$z^2 - 2iz - 4 = 0$$
, $z = \frac{2i \pm \sqrt{-4 + 16}}{2} = \pm \sqrt{3} + i$

The solutions are: -2i, $\pm \sqrt{3} + i$

Q4b Let
$$z - 2i = -2i$$
, $z - 2i = \pm \sqrt{3} + i$

$$z = 0 \text{ or } z = \pm \sqrt{3} + 3i$$

Q5 $y = 2x^2 - 3$ cuts the y-axis at -3, $x^2 = \frac{y+3}{2}$

$$V = \int_{-3}^{5} \pi x^{2} dy = \int_{-3}^{5} \frac{\pi}{2} (y+3) dy = \frac{\pi}{2} \left[\frac{(y+3)^{2}}{2} \right]_{3}^{5} = 16\pi$$

Q6a
$$a = 4v^2$$
, $\frac{1}{2} \frac{dv^2}{dx} = 4v^2$, $\frac{dx}{dv^2} = \frac{1}{8} \times \frac{1}{v^2}$, $x = \frac{1}{8} \int \frac{1}{v^2} dv^2$

$$\therefore x = \frac{1}{8} \log_e v^2 + c$$
, when $x = 1$, $v = e$

$$c = \frac{3}{4}$$
 and $x = \frac{1}{8} \log_e v^2 + \frac{3}{4}$

When
$$x = 2$$
, $2 = \frac{1}{8} \log_e v^2 + \frac{3}{4}$, $\log_e v^2 = 10$, $v^2 = e^{10}$, $v = e^5$

Q7a $\sin(2x) = \sin x$, $2\sin x \cos x - \sin x = 0$

$$\sin x(2\cos x - 1) = 0$$
, .: $\sin x = 0$ or $\cos x = \frac{1}{2}$

$$x = 0, \pi, 2\pi \text{ or } x = \frac{\pi}{3}, \frac{5\pi}{3}$$

© 2015 itute.com

Q7b Sketch the graphs of $y = \csc(2x)$ and $y = \csc(x)$.

 $\csc(2x) < \csc(x)$ for

$$x \in \left(0, \frac{\pi}{3}\right) \cup \left(\frac{\pi}{2}, \pi\right)$$

Q8a
$$\int \tan(2x) dx = \int \frac{\sin(2x)}{\cos(2x)} dx$$

= $-\frac{1}{2} \int \frac{1}{u} du = -\frac{1}{2} \log_e |u| + c$
= $-\frac{1}{2} \log_e |\cos(2x)| + c = \frac{1}{2} \log_e |\sec(2x)| + c$

$$u = \cos(2x)$$

$$\frac{du}{dx} = -2\sin(2x)$$

$$\frac{1}{2} du = -2\sin(2x)$$

Q8bi
$$y = -\frac{\pi}{4}, \ y = \frac{\pi}{4}$$

Q8bii

Q8c
$$f(\sqrt{3}) = \frac{1}{2}\arctan(\sqrt{3}) = \frac{1}{2} \times \frac{\pi}{3} = \frac{\pi}{6}$$

Q8d Area of the required region = area of the shaded region

$$= \sqrt{3} \times \frac{\pi}{6} - \int_0^{\frac{\pi}{6}} \tan(2x) dx$$
$$= \frac{\sqrt{3}\pi}{6} - \left[\frac{1}{2} \log_e |\sec(2x)| \right]_0^{\frac{\pi}{6}}$$
$$= \frac{\sqrt{3}\pi}{6} - \log_e \sqrt{2}$$

Q9a
$$x^2 - xy + \frac{3}{2}y^2 = 9$$
 : $2x - y - x\frac{dy}{dx} + 3y\frac{dy}{dx} = 0$

$$\therefore 2x - y = (x - 3y)\frac{dy}{dx}, \frac{dy}{dx} = \frac{2x - y}{x - 3y}$$

Q9b At (3,0),
$$m = \frac{dy}{dx} = 2$$
. Tangent: $y = 2(x-3)$, $y = 2x-6$

At
$$(0, \sqrt{6})$$
, $m = \frac{1}{3}$. Tangent: $y = \frac{1}{3}x + \sqrt{6}$

Q9c
$$\beta = \tan^{-1} 2$$
, $\alpha = \tan^{-1} (\frac{1}{3})$, $\theta = \beta - \alpha = \tan^{-1} 2 - \tan^{-1} (\frac{1}{3})$

$$: \tan\theta = \tan(\tan^{-1}2 - \tan^{-1}(\frac{1}{3}))$$

$$= \frac{\tan(\tan^{-1}2) - \tan(\tan^{-1}(\frac{1}{3}))}{1 + \tan(\tan^{-1}2)\tan(\tan^{-1}(\frac{1}{3}))} = \frac{2 - \frac{1}{3}}{1 + 2 \times \frac{1}{3}} = 1$$

 $\theta = \frac{\pi}{4}$

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors