Loi de groupe sur une hyperbole

Le plan usuel $\,\mathcal{P}\,$ est muni d'un repère orthonormé $\,\mathcal{R}=(O;\vec{i}\,,\vec{j})$.

On note \mathcal{H} l'hyperbole d'équation cartésienne $x^2 - 3y^2 = 1$.

- 1. (Etude de \mathcal{H})
- 1.a Préciser les coordonnées des sommets A et A' de l'hyperbole \mathcal{H} (A désignant le sommet d'abscisse positive et A' l'autre).
- 1.b Déterminer l'excentricité e de l'hyperbole \mathcal{H} .
- 2. (*Une loi de composition interne sur le plan*)

On munit le plan \mathcal{P} d'une loi de composition interne notée \star qui aux points M et M' de coordonnées (x,y)

et
$$(x',y')$$
 associe le point $N=M\star M'$ de coordonnées (α,β) définies par :
$$\begin{cases} \alpha=xx'+3yy'\\ \beta=xy'+yx' \end{cases}.$$

- 2.a Montrer que la loi ★ est associative, commutative et qu'elle possède un élément neutre qu'on précisera.
- 2.b On considère l'application F de \mathcal{P} vers \mathbb{R} qui au point M de coordonnées (x,y) associe $F(M) = x^2 3y^2$. Quel est l'ensemble des points M du plan tels que F(M) = 0? F(M) = 1?.
- 2.c Soit M et M' deux points du plan. Etablir que $F(M \star M') = F(M)F(M')$. En déduire que si M et M' appartiennent à \mathcal{H} , il en est de même de $M \star M'$.
- 3. (Structure de groupe sur \mathcal{H})
- 3.a Montrer que la loi \star munit l'ensemble $\mathcal H$ d'une structure de groupe commutatif et que le symétrique d'un point M de $\mathcal H$ pour la loi \star est le symétrique de M par rapport à l'axe (Ox).
- 3.b On note \mathcal{H}^+ l'ensemble formé des points de \mathcal{H} d'abscisse strictement positive et $\mathcal{H}^- = \mathcal{H} \setminus \mathcal{H}^+$. \mathcal{H}^+ est-il un sous groupe de \mathcal{H} ? Même question pour \mathcal{H}^- .
- 4. (Construction du composé de deux points de \mathcal{H})
- 4.a Soit M et M' deux points distincts de \mathcal{H} , non symétriques par rapport à (Ox) et $N = M \star M'$. Montrer que la droite (MM') est parallèle à la droite (AN).
- 4.b Soit M un point de \mathcal{H} et $N=M\star M$. Montrer que la droite (AN) est parallèle à la tangente en M à \mathcal{H} .
- 4.c En déduire un procédé géométrique de construction du composé par \star de deux points de \mathcal{H} .