Union-Find

Definicja problemu

Dany jest skończony zbiór U oraz ciąg σ instrukcji UNION i FIND:

- Union(A, B, C); gdzie A, B rozłączne podzbiory U; wynikiem instrukcji jest utworzenie zbioru C takiego, że $C \leftarrow A \cup B$, oraz usunięcie zbiorów A Oparta na dwóch trickach: i B;
- FIND(i); gdzie $i \in U$; wynikiem instrukcji jest nazwa podzbioru, do którego aktualnie należy i.

Problem polega na zaprojektowaniu struktury danych umożliwiającej szybkie wykonywanie ciągów σ . Początkowo każdy element U tworzy jednoelementowy podzbiór.

 Często nazwy podzbiorów są nieistotne, a instrukcja FIND służy jedynie do stwierdzenia czydane elementy należą do tego samego podzbioru.

Przykładowe rozwiązanie $T \leftarrow \emptyset$ konstrukcja minimalnego drzewa rozpinającego grafu for each $v \in V$ do wstaw zbiór $\{v\}$ do VSwhile |VS| > 1 do wybierz $\langle u, w \rangle$ z E o najmniejszym koszcie usuń $\langle u,w\rangle$ z E $A \leftarrow FIND(u); B \leftarrow FIND(w)$ if $A \neq B$ then UNION(A, B, X)wstaw $\langle u, w \rangle$ do T

ładny dowód czasu zamortyzow anego u Pawła na githubie!!!

3.1 Proste rozwiązanie

Do reprezentowania rodziny zbiorów używamy tablicy R[1..n] takiej, że

 $\forall_i \ R[i]$ jest nazwą zbioru zawierającego i.

Koszt: Find - $\Theta(1)$; Union - $\Theta(n^2)$.

3.2 Modyfikacja prostego rozwiązania

3.2.1 Idea

- Wprowadzamy nazwy wewnętrzne zbiorów (niewidoczne dla użytkownika).
- Podczas wykonywania Union(A, B, C) zbiór mniejszy przyłączany jest do większego.

3.2.2 Realizacja

```
Używamy tablic: R, ExtName, IntName, List, Next i Size takich, że:

    nazwa wewnętrzna zbioru zawierającego i,

    nazwa zewnętrzna zbioru o nazwie wewnętrznej j,

    ExtName[j]
                      nazwa wewnętrzna zbioru o nazwie zewnętrznej j,
    IntName[k]
    List[j]
                      wskaźnik na pierwszy element w liście elementów zbioru o
                       nazwie wewnętrznej j,
                      następny po i element w liście elementów zbioru R[i],
    Next[i]
    Size[j]

    liczba elementów w zbiorze o nazwie wewnętrznej j.
```

```
procedure Find(i)
    return (ExtName(R[i]))
procedure UNION(I, J, K)
    A \leftarrow IntName[I]
    B \leftarrow IntName[J]
   Niech Size[A] \leq Size[B]; w p.p. zamień A i B rolami
    el \leftarrow List[A]
    while el \neq 0 do R[el] \leftarrow B
                         last \leftarrow el
                          el \leftarrow Next[el]
   Next[last] \leftarrow List[B]
    List[B] \leftarrow List[A]
    Size[B] \leftarrow Size[A] + Size[B]
    IntName[K] \leftarrow B
   ExtName[B] \leftarrow K
```

Twierdzenie 1 Używając powyższego algorytmu można wykonać dowolny ciąg σ o długości O(n) w czasie $O(n \log n)$.

4 Struktury drzewiaste dla problemu Union-Find 4.

4.1 Elementy składowe struktury danych

- Las drzew.
 Każdy podzbiór reprezentowany jest przez drzewo z wyróżnionym korzeniem. Wierzchołki wewnętrzne zawierają wskaźnik na ojca (nie ma wskaźników na dzieci!).
- Tablica *Element*[1..n]:

Element[i] = wskaźnik na wierzchołek zawierający i.

Tablica Root:

Root[I] =wskaźnik na korzeń drzewa odpowiadającego zbiorowi I

(nazwy zbiorów są dla nas nieistotne; będą one liczbami z [1,..,n]).

4.2 Realizacja instrukcji

Union(A, B, C) polega na połączeniu drzew odpowiadających zbiorom A i B w jedno drzewo i umieszczeniu w jego korzeniu nazwy C.

Find(i) polega na przejściu ścieżki od wierzchołka wskazywanego przez Element(i) do korzenia drzewa i odczytaniu pamiętanej tam nazwy drzewa.

Przy wykonywaniu tych instrukcji stosujemy następującą strategię:

- instrukcję Union wykonujemy w sposób zbalansowany korzeń mniejszego (w sensie liczby wierzchołków) drzewa podwieszamy do korzenia drzewa większego (a dokładniej drzewa nie większego do korzenia drzewa nie mniejszego),
- podczas instrukcji Find(i) wykonujemy kompresję ścieżki prowadzącej od i do korzenia wszystkie wierzchołki leżące na tej ścieżce podwieszamy bezpośrednio pod korzeń.

4.3 Implementacja

Każdy wierzchołek v zawiera pola:

- Father[v] wskaźnik na ojca (równy NIL, gdy v jest korzeniem),
- Size[v] liczba wierzchołków w drzewie o korzeniu v,
- Name[v] nazwa drzewa o korzeniu v

Zawartość pól Size[v] i Name[v] ma znaczenie tylko wówczas, gdy v jest korzeniem.

$\begin{aligned} \textbf{procedure } & InitForest \\ \textbf{for } i \leftarrow 1 \textbf{ to } n \textbf{ do } v \leftarrow Allocate - Node() \\ & Size[v] \leftarrow 1 \\ & Name[v] \leftarrow i \\ & Father[v] \leftarrow \text{NIL} \\ & Element[i] \leftarrow v \\ & Root[i] \leftarrow v \end{aligned}$

$\begin{array}{l} \mathbf{procedure} \; Union(i,j,k) \\ \text{Niech } Size[Root[i]] \leq Size[Root[j]]; \ \text{w p.p. zamień } i \text{ oraz } j \text{ rolami} \\ large \leftarrow Root[j] \\ small \leftarrow Root[i] \\ Father[small] \leftarrow large \\ Size[large] \leftarrow Size[large] + Size[small] \\ Name[large] \leftarrow k \\ Root[k] \leftarrow large \end{array}$

procedure Find(i)

 $v \leftarrow Element[i]$

return Name[v]

 $list \leftarrow NIL$

4.4.1 Górne ograniczenie

Twierdzenie 2 Niech c będzie dowolną stałą. Wówczas istnieje inna stała c' (zależna od c) taka, że powyższe procedury wykonują dowolny ciąg σ złożony z cn instrukcji Union i Find w czasie c'n $\log^* n$.

Idea dowodu: Instrukcje Union wykonują się w czasie stałym. Wystarczy więc oszacować koszt instrukcji Find.

Koszt każdej instrukcji Find(v) jest proporcjonalny do liczby wierzchołków na ścieżce od v do korzenia. Obarczymy tym kosztem niektóre z odwiedzanych wierzchołków jak i samą instrukcję Find(v). Stosujemy przy tym następującą strategię:

- $\bullet\,$ za odwiedzenie wierzchołka wjednostkowym kosztem obarczamy instrukcję Find(v), jeśli:
 - w jest korzeniem drzewa lub
 w jest synem korzenia drzewa lub

tem nie większym niż $\log^* n + 1$.

while $Father[v] \neq NIL$ do wstaw v na list

for each $w \in list$ do $Father[w] \leftarrow v$

 $v \leftarrow Father[v]$

- w i jego ojciec mają rzędy w innych grupach.
- w pozostałych przypadkach jednostkowym kosztem obarczamy odwiedzany wierzchołek.
 Tezę otrzymujemy na podstawie dwóch spostrzeżeń:

Ponieważ grup rzędów jest nie więcej niż log* n, każda instrukcja Find zostanie obciążona kosz

 \bullet Pokazujemy dla każdej grupy rzędów, że sumaryczne obciążenie wszystkich wierzchołków, któ rych rzędy należą do niej, jest O(n).

4.4.2 Dolne ograniczenie

Otrzymane ograniczenie jest bliskie liniowemu, ale nie liniowe. Powstaje więc naturalne pytanie, czy tego ograniczenia nie można poprawić. Okazuje się, że można. Funkcja $\log^* n$ może zostać zastąpiona przez odwrotną funkcję Ackermanna, która rośnie jeszcze wolniej niż $\log^* n$. Kolejne twierdzenie pokazuje jednak, że zaprezentowana strutura drzewiasta nie osiąga złożoności liniowej. Nie wiadomo czy istnieją struktury danych pozwalające na osiągnięcie czasu liniowego.

Twierdzenie 3 Algorytm realizujący ciągi instrukcji Union i Find przy użyciu powyższych procedur ma złożoność większą niż cn dla dowolnej statej c.

4.4 Analiza algorytmu

Lemat 1 Jeśli instrukcje Union wykonujemy w sposób zbalansowany, to każde powstające drzewo o wysokości h ma co najmniej 2^h wierzchołków.

Definicja 1 Niech $\tilde{\sigma}$ będzie ciągiem instrukcji Union powstałym po usunięciu wszystkich instrukcji Find z ciągu σ . Rzędem wierzchołka v względem σ nazywamy jego wysokość w lesie powstałym po wykonaniu ciągu $\tilde{\sigma}$.

Lemat 2 Jest co najwyżej $\frac{n}{2r}$ wierzchołków rzędu r.

Wniosek 1 Każdy wierzchołek ma rząd co najwyżej $\log n$.

Lemat 3 Jeśli w trakcie wykonywania ciągu σ wierzchołek w staje się potomkiem wierzchołka v, to rząd w jest mniejszy niż rząd v.

Definicja 2

$$\log^*(n) \stackrel{df}{=} \min\{k \mid F(k) \ge n\},\$$

 $|gdzie\ F(0) = 1\ i\ F(i) = 2^{F(i-1)}\ dla\ i > 0.$

Rzędy wierzchołków dzielimy na grupy. Rząd r umieszczamy w grupie $\log^* r$.

Jaki byłby koszt wykonania ciągu δ złożonego z O(n) operacji UNION i FIND, gdyby w operacji UNION zbiory były łączone w dowolny (niekoniecznie zrównoważony sposób), a operacja FIND nadal byłaby wykonywana z kompresją ścieżek?

Przy zastosowaniu tylko kompresji ścieżki, koszt uniona pozostaje O(1), a amortyzowany koszt finda to $O(\log n)$. W najgorszym przypadku, koszt, to pewnie $O(n \log n)$.

Podaj definicję pojęć: rząd wierzchołka, grupa rzędu.

▼ Rozwiązanie

Definicja 18 Niech $\tilde{\sigma}$ będzie ciągiem instrukcji Union powstałym po usunięciu wszystkich instrukcji Find z ciągu σ . Rzędem wierzchołka v względem σ nazywamy jego wysokość w lesie powstałym po wykonaniu ciągu $\tilde{\sigma}$.

grupa rzędu - Dla rzędu r, jego grupa $g = log^*(r)$

W jakim czasie można wykonać ciąg n operacji **union** i **find**, w którym wszystkie operacje **union** poprzedzają operacje **find**? Odpowiedź uzasadnij.

▼ Rozwiazanie

Ciąg n operacji **Union** wykonujemy każdą operację w czasie stałym. Następnie operacje **Find** wykonujemy w czasie stałym zamortyzowanyn dzięki kompresji ścieżek po których idziemy z wierzchołka do korzenia.

Łączna suma czasu wykonywania n operacji jest równa cn gdzie c to jakaś mała stała.

W analizie problemu Union Find wykorzystywaliśmy pojęcia rzędu wierzchołka oraz grupy rzędu.

Przypomnij definicje tych pojęć.

Ile maksymalnie bitów potrzebujemy przeznaczyć na pamiętanie rzędu w każdym wierzchołku?

Podaj jaki jest pesymistyczny czas wykonywania operacji find, gdy operacja union wykonywana jest w sposób:

- (a) zbalansowany, analizie problemu Union-find wykorzystaliśmy pojęcie rzędu wierzchołka oraz grupy rzęc
- (b) niezbalansowany. maksymalnie rzędów może należeć do tej samej grupy, gdy liczba elementów jest równa aj sensowne ograniczenie górne na najwięksżą wysokość drzewa, które może powstać w wyniku wykonania w sposób zbalansowar racji *union* na rozłącznych zbiorach (początkowo zbiory te są jednoelementowe).

wodnij swoje stwierdzenie.

ozwiązanie

-

- 1. (1pkt) Niech σ będzie ciągiem instrukcji Union i Find, w którym wszystkie instrukcje Union występują przed instrukcjami Find. Udowodnij, że algorytm oparty na strukturach drzewiastych wykonuje σ w czasie proporcjonalnym do długości σ .
- 2. (2pkt) Rozważamy ciągi operacji Insert(i), DeleteMin oraz Min(i) wykonywanych na S pod-zbiorze zbioru {1,...,n}. Obliczenia rozpoczynamy z S = ∅. Instrukcja Insert(i) wstawia liczbę i do S. Instrukcja DeleteMin wyznacza najmniejszy element w S i usuwa go z S. Natomiast wykonanie Min(i) polega na usunięciu z S wszystkich liczb mniejszych od i.

Niech σ będzie ciągiem instrukcji Insert(i), DeleteMin oraz Min(i) takim, że dla każdego i, $1 \leq i \leq n$, instrukcja Insert(i) występuje co najwyżej jeden raz. Mając dany ciąg σ naszym zadaniem jest znależć ciąg liczb usuwanych kolejno przez instrukcje DeleteMin. Podaj algorytm rozwiązujący to zadanie.

Uwaga: Zakładamy, że cały ciąg σ jest znany na początku, czyli interesuje nas wykonanie go off-line.

WSKAZóWKA: Rozdział 4.8 z książki Aho,... .

3. (2pkt) Rozważamy ciągi instrukcji: Link(r,v) oraz Depth(v) wykonywanych na lesie rozłącznych drzew o wierzchołkach z etykietami ze zbioru $\{0,...,n-1\}$ (różne wierzchołki mają różne etykiety). Operacja Link(r,v) czyni r, korzeń jednego z drzew, synem v, wierzchołka innego drzewa. Depth(v) oblicza głębokość wierzchołka v.

Naszym celem jest napisanie algorytmu, który dla danego ciągu σ wypisze w sposób on-line wyniki instrukcji Depth (tzn. wynik każdej instrukcji Depth ma być obliczony przed wczytaniem kolejnej instrukcji z ciągu σ). Pokaż jak zastosować drzewiastą strukturę danych dla problemu Union-Find do rozwiązania tego problemu.

WSKAZóWKA: Rozdział 4.8 z książki Aho,...

- 4. (1pkt) Rozważ taką wersję wykonywania kompresji ścieżek, w której wierzchołki wizytowane podczas wykonywania operacji Find podwieszane są pod własnego dziadka. Czy analiza złożoności przeprowadzona na wykładzie da się zastosować w tym przypadku?
- 5. (1,5pkt) Dany jest graf G=(V,E), wyróżniony wierzchołek v oraz ciąg jego krawędzi $e_i=\{v_i,u_i\},\ (i=1,2,\ldots,m)$. Ułóż algorytm, który dla każdego wierzchołka u wyznaczy minimalną wartość j, taką że po usunięciu z grafu G krawędzi e_1,\ldots,e_j , nie istnieje ścieżka łącząca wierzchołki u i v.

Teza.

Drzewo budowane przez operację UNION o wysokości n, ma co najmniej 2^n wierzchołków.

D-d. przez indukcję po n.

- 1. Podstawa
- n = 0, zachodzi
- n = 1, zachodzi
- 2. Załóżmy, że zachodzi dla n
- 3. Pokażę, że zachodzi dla n+1

Aby stworzyć drzewo o wysokości n+1 musimy połączyć dwa drzewo o wysokości co najmniej n(bo inaczej nie zwiększyłaby się wysokość) i o wysokości nie większej niż n(bo gdyby jedno drzewo miało wysokość większą niż n, to drugie mniejsze drzewo zostałoby podpięte pod to drzewo - ponieważ mam zbalansowany UNION).

Więc łącząc dwa drzewa o wysokości n i korzystając z założenia dostajemy 2^n + 2^n = 2^n+1 Stąd zachodzi teza indukcyjna.