1. Первичный анализ данных (Fastqc до тримминга)

Fastqc прямого прочтения:

Measure	Value		
Filename	13_1.fastq.gz		
File type	Conventional base calls		
Encoding	Sanger / Illumina 1.9		
Total Sequences	52789607		
Total Bases	7.9 Gbp		
Sequences flagged as poor quality	0		
Sequence length	151		
%GC	53		

Per base sequence quality

②Per sequence GC content

FastQc обратного прочтения:

₩Adapter Content

3. Тримминг

Триммирую с помощью инструмента fastp:

 $fastp \hbox{--}i \hbox{--}13_1. fastq. gz \hbox{--}I \hbox{--}13_2. fastq. gz \hbox{--}o \hbox{--}13_1_trimmed. fastq. gz \hbox{--}O \hbox{--}13_2_trimmed. fastq. gz \hbox{--}O \hbox{--$

4. Анализ данных после тримминга

Результаты Fastqc после тримминга для прямого прочтения:

Результаты Fastqc после тримминга для обратного прочтения:

5. Картирование

hisat 3 из таблицы не подходит для картирования прочтений из illumina. Поэтому полный скрипт для картирования я писал для bowtie2.

Скрипт состоит из нескольких этапов:

- 1. Картирование с помощью bowtie2
- 2. Сортировка с помощью samtools
- 3. Построение графиков по bam файлу с помощью plot-bamstats
- 4. Препроцессинг ридов:
 - a. gatk ReadGroups
 - b. gatk MarkDuplicates
- 5. Variant calling с помощью bcftools mpileup | bcftools call
- 6. Фильтрация vcf файла

7. Аннотация VCF с помощью ANNOVAR по RefGene и ClinVar

Полный скрипт (Blackbox.ai красиво его переписал, чтобы было читаемо):

Step 1: Input Parameters

- Write the path to bowtie2 index: \$1
- read BOWTIE2 INDEX
- Write the path to your fastq file 1: read FASTQ FILE 1
- Write the path to your fastq file 2: read FASTQ FILE 2
- Write number of threads for bowtie2: read THREADS
- Write path to output directory: read OUTPUT DIR
- Write the name for output SORTED BAM file (without.bam at the end, just name): read OUTPUT FILE NAME
- Write the path to your ref sequence fasta: read REFERENCE FASTA

Step 2: Create Output Directory

mkdir "./\${OUTPUT DIR}/"

Step 3: Run Bowtie2 and Samtools

- bowtie2 --threads \$THREADS -x \$BOWTIE2_INDEX --sensitive -1
 \$FASTQ_FILE_1 -2 \$FASTQ_FILE_2 | samtools view -@ \$THREADS -S -b
 -F 4 | samtools sort -@ \$THREADS >
 "\${OUTPUT_DIR}/\${OUTPUT_FILE_NAME}_sorted.bam"
- samtools index -@ \$THREADS

 "\${OUTPUT DIR}/\${OUTPUT FILE NAME} sorted.bam"

Step 4: Generate BAM File Stats

- mkdir "\${OUTPUT DIR}/bam file stats"
- samtools stats -@ \$THREADS

 "\${OUTPUT_DIR}/\${OUTPUT_FILE_NAME}_sorted.bam" >

 "\${OUTPUT_DIR}/bam_file_stats/\${OUTPUT_FILE_NAME}_stats_file.stat
 s"
- plot-bamstats -p
 "\${OUTPUT_DIR}/bam_file_stats/\${OUTPUT_FILE_NAME}_stats_file_grap
 h"
 "\${OUTPUT_DIR}/bam_file_stats/\${OUTPUT_FILE_NAME}_stats_file.stat
 s"

Step 5: Generate Coverage File

• samtools coverage "\${OUTPUT_DIR}/\${OUTPUT_FILE_NAME}_sorted.bam"
>
 "\${OUTPUT_DIR}/bam_file_stats/\${OUTPUT_FILE_NAME}_coverage_file.t
xt"

Step 6: Variant Calling

- mkdir "\${OUTPUT DIR}/variant calling"
- gatk AddOrReplaceReadGroups -I

 "\${OUTPUT_DIR}/\${OUTPUT_FILE_NAME}_sorted.bam" -0

 "\${OUTPUT_DIR}/variant_calling/\${OUTPUT_FILE_NAME}_sorted_rg.bam"

 --RGID 1 --RGLB lib1 --RGPL ILLUMINA --RGPU unit1 --RGSM 20
- gatk MarkDuplicates -I

 "\${OUTPUT_DIR}/variant_calling/\${OUTPUT_FILE_NAME}_sorted_rg.bam"
 -O

 "\${OUTPUT_DIR}/variant_calling/\${OUTPUT_FILE_NAME}_sorted_markdup
 .bam" -M "\${OUTPUT_DIR}/variant_calling/markdup info.txt"
- bcftools mpileup -f \$REFERENCE_FASTA

 "\${OUTPUT_DIR}/variant_calling/\${OUTPUT_FILE_NAME}_sorted_markdup
 .bam" -Ou -@ \$THREADS | bcftools call --threads \$THREADS --ploidy
 2 -mv -Oz -o

 "\${OUTPUT_DIR}/variant_calling/\${OUTPUT_FILE_NAME}.vcf.gz"
- bcftools filter -sLowQual -g3 -G10 -e'%QUAL<10 || (RPB<0.1 &&
 %QUAL<15) || (AC<2 && %QUAL<15) || %MAX(DV)<=3 ||
 %MAX(DV)/%MAX(DP)<=0.3'
 "\${OUTPUT_DIR}/variant_calling/\${OUTPUT_FILE_NAME}.vcf.gz"</pre>

Step 7: Annotate Variants

- perl convert2annovar.pl
 "\${OUTPUT_DIR}/variant_calling/\${OUTPUT_FILE_NAME}.vcf.gz" >
 output.avinput
- table_annovar.pl example/ex1.avinput humandb/ -buildver hg38 -out myanno -remove -protocol refGene, ClinVar -operation gx -nastring. -csvout -polish

ПОЧЕМУ НЕ ИСПОЛЬЗОВАЛ Octopus?

У меня получилось установить и составить скрипт для запуска Variant Callinga именно в Octopus'e:

С ним бы точно получилось интереснее, но команда для его запуска обязательно требует файл с random_forest. Видимо он необходим для работы нейросети Octopus'a:

```
$ octopus \
    -R data/reference/hs38DH.fa \
    -I data/reads/mapped/CHM1-CHM13.hs38DH.bwa-mem.bam \
    -T chr1 to chrM \
    --sequence-error-model PCRF.X10 \
    --forest resources/forests/germline.v0.8.0.forest \
    -o results/calls/CHM1-CHM13.hs38DH.bwa-mem.octopus.vcf.gz \
    --threads 16
```

Однако в ходе установки самого Octopus'а директория resources/forests у меня вообще была пустая. Сам осториs устанавливается через исполняемый .py файл, который уже сам при запуске подкачивает нужные файлы по ссылкам (запуска установщика прошёл без ошибок). Поэтому я не могу найти forest-файл в исходниках на github, потому что его там просто нет. Отдельно этот файл для запуска загуглить тоже не получилось(

6. Статистика картирования

Описание статистики картирования, используемые команды и инструменты.

Графики из samtools coverage:

```
endpos numreads
                                                                       meandepth
#rname
             startpos
                                             covbases
                                                          coverage
      meanbaseq
                   meanmapq
chr6
      1
             170805979
                          5406622
                                       46481896
                                                    27.2133
                                                                 4.76502
35.9
      30.7
```


Видно, что большинство делеций/инсерций находится на концах ридов, что соответсвует необрезанным адаптерам и снижению качетсва прочтения в начале и конце рида

9. Заключение

Annovar выдает следующие строки:

Chr	Start	End	Ref	Alt	Func.refGene
chr6	60113	60113	Т	G	intergenic
chr6	60720	60720	С	G	intergenic
chr6	60858	60858	С	Т	intergenic
chr6	68927	68927	G	Т	intergenic
chr6	70495	70495	Α	G	intergenic
chr6	70764	70765	TG	-	internenic

Gene.refGene	GeneDetail.refGene	ExonicFunc.refGene	AAChange.refGene	CLNALLELEID	CLNDN
NONE;LINC00266-3	dist=NONE;dist=80151				
NONE;LINC00266-3	dist=NONE;dist=79544				
NONE;LINC00266-3	dist=NONE;dist=79406				
NONE;LINC00266-3	dist=NONE;dist=71337				
NONE;LINC00266-3	dist=NONE;dist=69769				
NONE;LINC00266-3	dist=NONE;dist=69499				
NONE;LINC00266-3	dist=NONE;dist=8297				
NONE;LINC00266-3	dist=NONE;dist=7980				
NONE;LINC00266-3	dist=NONE;dist=6659				
NONE;LINC00266-3	dist=NONE;dist=6581				

CLNDN	CLNDISDB	CLNREVSTAT	CLNSIG

По вкладке CLNSIG только 1 мутация оценивается как Pathologic:

11568 chr6	31593133	31593133	С	G	upstream	NCR3	dist=127
_	. 1591	5					

 $Malaria \ x2c_mild \ x2c_susceptibility_to \ | Malaria \ x2c_severe \ x2c_susceptibility_to$ $MONDO: MONDO: 0012202 \setminus x2cMedGen: C1836721 \setminus x2cOMIM: 609148 \mid MedGen: C1970029 \mid MONDO: M$ no_assertion_criteria_provided Pathogenic|risk_factor

Найденная мутация в ClinVar:

VCV000000876.4 - ClinVar - NCBI (nih.gov)

NM_001145466.1(NCR3):c.-412G>C

Classification (Last evaluated)	Review status ② (Assertion criteria)	Condition @	Submitter @	More information @	~
risk factor (Feb 01, 2007)	☆☆☆ Method: literature only	MALARIA, MILD, SUSCEPTIBILITY TO Affected status: not provided Allele origin: germline	OMIM Accession: SCV000021074.1 First in ClinVar: Apr 04, 2013 Last updated: Apr 04, 2013	Publications: PubMed (1)	~
Pathogenic (Dec 06, 2022)	☆ ☆ ☆ Method: research	Malaria, severe, susceptibility to Affected status; yes Allele origin: germline	Center for Global Health, University of New Mexico Health Sciences Center, University of New Mexico Accession: SCV002762724.1 First in ClinVar: Dec 17, 2022 Last updated: Dec 17, 2022		^

CC is wild type in the Luo (Kenya) population, GG is homozygous mutant. Additive model of inheritance shows increased susceptibility to longitudinal (over 36 months) severe malarial anemia (Hb-5.0 g/dL with any density Plasmodium falciparum parasitemia) in children <48 months of age. (less)

Number of individuals with the variant: 753

Age: 1-40 months
Sex: mixed
Ethnicity/Population group: Luo
Geographic origin: Kenya

Скорее всего мутация снижает устойчивость к малярийным горячкам, однако слишком мало исследований по этой мутации. Замечена только ассоциация

Открываю общий файл .vcf в IGV и ищу нужную координату:

ID: . Chr: chr6

Position: 31 593 133

Reference: C* Alternate: G Qual: 222 Type: SNP Is Filtered Out: No

Alleles:

Alternate Alleles: G Allele Count: 1 Total # Alleles: 2 Variant Attributes Allele Count: 1 Mapping Quality: 41 RPB: 0.330443

ICB: 1

DP4: [35, 18, 22, 8]

Depth: 109 Total Alleles: 2 SGB: -0.693097 BQB: 0.893768 VDB: 0.00240868 MQSB: 0.815761 HOB: 0.5 MQ0F: 0 MQB: 0.950834

Видно, что данная позиция имеет хорошее покрытие (109) и качество картирования. За отсутствием других патогенных вариантов в файле, считаю это главным патогенным вариантом