Семинар 5

Задачи:

- 1. Какие из следующих матриц сопряжены? Если они сопряжены, то укажите с помощью какой матрицы:
 - (a) $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ и $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
 - (b) $\begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$ и $\begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$
 - (c) $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ $\mathbf{H} \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$
- 2. Пусть $\phi \colon \mathbb{R}^3 \to \mathbb{R}^2$ линейное отображение, заданное в стандартном базисе матрицей $A = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$. Пусть

$$f_1=egin{pmatrix}1\\1\\1\end{pmatrix},\ f_2=egin{pmatrix}1\\1\\2\end{pmatrix},\ f_3=egin{pmatrix}1\\2\\3\end{pmatrix}$$
 вектора в $\mathbb{R}^3,\quad g_1=egin{pmatrix}1\\2\end{pmatrix},\ g_2=egin{pmatrix}1\\1\end{pmatrix}$ вектора в \mathbb{R}^2

Найти матрицу отображения ϕ в базисах f_1, f_2, f_3 и g_1, g_2 .

3. Пусть в \mathbb{R}^3 заданы следующие векторы:

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 5 \\ 8 \\ 2 \end{pmatrix}, v_4 = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}, v_5 = \begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix}$$

Существует ли линейное отображение $\phi \colon \mathbb{R}^3 \to \mathbb{R}^2$ такое, что $\phi(v_i) = u_i$, где

$$u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, u_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, u_3 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, u_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, u_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- 4. Пусть $\mathbb{R}[x]_n$ множество всех многочленов с вещественными коэффициентами степени не больше n и пусть $\frac{d}{dx}: \mathbb{R}[x]_n \to \mathbb{R}[x]_n$ отображение дифференцирования по переменной x. Найти матрицу отображения в базисе $(1, x, \ldots, x^n)$.
- 5. Задачник. §39, задача 39.15 (и).
- 6. Привести пример или доказать, что такого примера не существует:
 - (a) $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ такой, что $\operatorname{Im} \phi = \ker \phi$
 - (b) $\phi \colon \mathbb{R}^4 \to \mathbb{R}^4$ такой, что $\operatorname{Im} \phi = \ker \phi$
- 7. Найти матрицу какого-нибудь линейного оператора $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ такого, что выполнены следующие условия: $\ker \phi = \langle \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \rangle$, $\operatorname{Im} \phi = \langle \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \rangle$.

1

- 8. Задачник. §39, задача 39.20.
- 9. Задачник. §40, задача 40.15 (a, г).
- 10. Задачник. §40, задача 40.1 (в, е).
- 11. Задачник. §40, задача 40.10 (б).
- 12. Найдите собственные значения матрицы vv^t , где $v \in \mathbb{R}^n$.
- 13. Задачник. §40, задача 40.14.
- 14. Задачник. §40, задача 40.16 (а, в).
- 15. Пусть $A = \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix}$.

- (a) Представить матрицу A в виде $A=C^{-1}\left(\begin{smallmatrix}\lambda&0\\0&\mu\end{smallmatrix}\right)C$, где $C\in\mathrm{M}_2(\mathbb{R})$ невырожденная матрица, $\lambda,\mu\in\mathbb{R}$.
- (b) Найти A^n для произвольного натурального n.
- 16. Пусть $a_n \in \mathbb{R}$ последовательность чисел с натуральными индексами, удовлетворяющая соотношению $a_n = a_{n-1} + a_{n-2}$ и $a_0 = a_1 = 1$.
 - (а) Пусть $x_n = \binom{a_{n+1}}{a_n} \in \mathbb{R}^2$. Найдите матрицу $A \in M_2(\mathbb{R})$ такую, что $x_n = Ax_{n-1}$.
 - (b) Найдите формулу для элемента a_n .
- 17. Пусть $A \in M_n(\mathbb{Z})$ матрица с целочисленными коэффициентами. Покажите, что любое рациональное собственное значение является целым.
- 18. Пусть $\phi \colon \mathbb{R}^n \to \mathbb{R}^n$ линейное отображение, для которого существует n+1 собственных векторов таких, что любые n из них линейно независимы. Найдите всевозможные матрицы, которые могли бы задавать такое отображение.
- 19. Пусть $A \in \mathrm{M}_n(\mathbb{R})$ такая, что для каждого ее столбца сумма его элементов равна числу λ . Покажите, что λ является собственным значением A.
- 20. Покажите, что у матрицы $A \in \mathrm{M}_n(\mathbb{Z})$ число $\frac{1}{4}(-3+i\sqrt{5})$ не может является собственным значением.
- 21. Пусть $A \in \mathrm{M}_n(\mathbb{R})$ такая матрица, что она не изменяется при повороте на 90° градусов.
 - (a) Покажите, что для любого набора чисел $\lambda_1, \dots, \lambda_k$ можно найти n, что λ_i будут собственными значениями A.
 - (b) Пусть v собственный вектор для A отвечающий ненулевому собственному значению. Покажите, что $v_i = v_{n-i+1}$.
- 22. Пусть $A, B \in \mathcal{M}_n(\mathbb{C})$ рассмотрим линейное отображение $\phi \colon \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ по правилу $X \mapsto AXB$. Пусть $\operatorname{spec}_{\mathbb{C}} A = \{\lambda_1, \dots, \lambda_k\}$ и $\operatorname{spec}_{\mathbb{C}} B = \{\mu_1, \dots, \mu_r\}$. Покажите, что $\operatorname{spec}_{\mathbb{C}} \phi = \{\lambda_i \mu_j \mid 1 \leqslant i \leqslant k, 1 \leqslant j \leqslant r\}$.
- 23. Пусть $A \in \mathrm{M}_n(\mathbb{R})$ имеет n различных собственных значений $\lambda_1, \dots, \lambda_n$. Найти все комплексные собственные значения матрицы $\begin{pmatrix} 0 & -A \\ A & 0 \end{pmatrix}$.
- 24. Для двух квадратных матриц A и B одного и того же размера n обозначим через $A\star B$ матрицу, определяемую следующим образом:

$$(A\star B)_{ij} = egin{cases} (AB)_{ij}, & ext{если } i \text{ нечетно,} \\ b_{ij}, & ext{иначе} \end{cases}$$

Для матрицы A определим оператор $\Phi_A \colon \mathrm{M}_n(\mathbb{R}) \to \mathrm{M}_n(\mathbb{R})$ по правилу $\Phi_A(B) = A \star B$.

- (a) Может ли этот оператор иметь собственное значение 2 для какой-либо матрицы A?
- (b) Какое наибольшее число различных собственных значений может иметь такой оператор (при фиксированном n)?
- 25. Линейный оператор $A \colon \mathbb{R}^n \to \mathbb{R}^n$ таков, что A^3 это оператор проекции. Какие собственные значения может иметь A? Верно ли, что A будет иметь диагональную матрицу в каком-либо базисе \mathbb{R}^n ?
- 26. Решить матричное уравнение $X^2 = A$, где (a) $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (b) $A = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$, $\lambda \neq \mu$. (c) $A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$. Все матрицы из $M_2(\mathbb{C})$.