Lecture 9

August 18, 2016

Language Modeling and POS Tagging

Reminder: start the recording

Announcements

- Assignment 3
 - due now
- Project 3: Thai FST
 - due Tuesday 11:45 pm
- Project 4: due Thursday, 9/1
- Writing Assignment: due Tuesday, 9/6
- Project 5 (final one): now posted, due Thurs. 9/8
 - Bayesian language classifier
 - Theory partially covered today
- Questions?

Project 2: Zipf's Law

- The frequency of a word in a natural language corpus is inversely proportional to its tally rank
- This follows a geometric distribution

Project 2

```
Dictionary < String, int > tallies = new Dictionary < string, int > ();
IEnumerable<String> words =
    Directory.GetFiles(args[0])
             .SelectMany(f => new Regex(@"\<.*?\>").Replace(File.ReadAllText(f), " ")
                               .ToLower()
                               .Select(ch => ('a' <= ch && ch <= 'z') || ch == '\'' ? ch : ' ')
                               .NewString()
                               .Split(new Char[] { ' ' }, StringSplitOptions.RemoveEmptyEntries)
              .Select(w => w.Trim('\''));
foreach (String wrd in words)
    if (tallies.ContainsKey(wrd))
        tallies[wrd]++;
    else
        tallies.Add(wrd, 1);
foreach (var tal in tallies.OrderByDescending(t => t.Value))
    Console.WriteLine("{0}\t{1}", tal.Key, tal.Value);
```

```
using System;
using System.Collections.Generic;
                                                            Declarative programming with C#/LINQ
using System.IO;
                                                            Compose elaborate vector
using System.Linq;
                                                            manipulations without procedural
using System.Text.RegularExpressions;
                                                            constructs like loops
static class Program
   static void Main(string[] args)
       foreach (IGrouping < String, int > grp in Directory.GetFiles(args[0])
                               .SelectMany(f => new Regex(@"\<.*?\>").Replace(File.ReadAllText(f), " ")
                                                  .ToLower()
                                                  .Select(ch => ('a' <= ch && ch <= 'z') || ch == '\'' ? ch : ' ')
                                                  .NewString()
                                                  .Split(new Char[] { ' ' }, StringSplitOptions.RemoveEmptyEntries))
                               .GroupBy(w => w.Trim('\''))
                               .OrderByDescending(g => g.Count()))
           Console.WriteLine("{0}\t{1}", grp.Key, grp.Count());
   static String NewString(this IEnumerable<Char> ie) { return new String(ie.ToArray()); }
```

Linguistics 473: Computational Linguistics Fundamentals

Assignment 3

Consider weighted dice—one white, and one red. For each die, and are twice as likely to show as the other four values. What is the probability that the total showing on the two dice will be 7?

The cartesian product has 64 cases.

$$\frac{12}{64} = \frac{3}{16} = .1875$$

What is the probability that the total showing on the two dice will be 9 or higher?

$$(3,6) (4,5) (4,6) (5,4) (5,5) (5,6) (6,3) (6,4) (6,5) (6,6)$$

$$2 \quad 1 \quad 2 \quad 1 \quad 2 \quad 2 \quad 2 \quad 2 \quad 4$$

$$\frac{19}{64} = .296875$$

What is the probability that the red die will show a higher number than the white one?

- •
- _
- •
- ••
- •
- •••

- •
- _
- •
- ••
- •
- •••

- •
- -
- •
- •

•••

•••

••

- _

- ••
- _

- _
- -

There are 26 cases $\frac{26}{64} = \frac{13}{32} = .40625$

How many bigrams does the sample contain?

$$158 - 1 = 157$$

PP(. | NN)

PRP VBI	D DT	NN C	WP	VBD	RB		IND	TNN	IN	DT	NNP	NNP		CC	PRP	VBD	VBN	CD			NNS	RB	IN		VBC	i D	TNN
he was	s an c	old ma	who	fish	ed al	one :	ina	ski	ffin	the	gulf	stre	am	and	he	had	gone	eig	hty-	four	days	now	wi	thou	t tak	cing a	fish
IN DT	כנ	CD	NNS	DT	NN V	BD VI	BN	IN	PRP .	СС	IN	CD		NNS	IN		DT	NN	DT	NN	POS	NNS		VBD	VBN	PRP 3	N D
in the	firs	t fort	y day	's a	boy h	ad b	een	with	him .	but	afte	r for	ty	days	s wit	thou	t a	fish	the	boy	's	oare	nts	had	told	him t	hat t
JJ NN	VBD	RB RI	3		CC R	RB	- Iv	/BN	, WD	T V	BZ D1	-]]		NN	IN	נכוו		, cc	DT	NN	VBD	VBN	IN	PRPS	\$ NN	S	IN
old mar	n was	now d	efini	tely	and f	inal	lly s	salao	, wh	ichi	s th	ne wo	rst	for	m of	unl	uck	, and	the	boy	had	gone	at	the:	ir or	ders	in
DT	NN	WDT	VBI		D CD	כנ	NN	DT	JJ	N	١.	PRP	VBD	DT	NN	JJ	то	VB	DT :	ו ככ	IN V	В	INC	T	NN :	IN F	PRP\$
anothe	r boa	twhic	h cau	ught t	three	good	d fi	sh th	e fir	st we	eek .	it	mad	e th	e bo	y sa	d to	see	the	old n	nan c	ome	ine	each	day	with	nis
NN :	JJ	ССР	RP RE	3	VBD	IN	то	VB	PRP \	/B	DT	D.	тΙ	/BD	IN.	INS	cc	T TD	NN N	сс	NN		CC	DT	NN	WDT	VBD
skiff	empty	and h	e al	.ways	went	dowr	n to	help	him	carry	eith	ner t	he d	coil	ed 1	ines	or	the {	gaff	and	harpo	oon a	and	the	sail	that	was
VBD	IN	DT	NN	. DT	NN	VB	DVE	BN	IN	NN	NN	IS (CC	۷ ,	BD	1,1	PRP	/BD	IN	D.	T NN	I	N J:	J		NN	
furled	larou	nd the	mast				_		dwit	h flo					0.00	-11			ed li	_			_		nent	defea	it .

$$\frac{4}{24} = \frac{1}{6} = .1667$$

PR(DT JJ)

"How common is the bigram DT JJ in the sample?"

PRP VBD	DT JJ	NN	WP	VBD	RE	В [INC	NN TO	I	NDT	NNP	NN	Р	СС	PR	PVBD	VB	N	CD			NNS	RB	IN	١	VBG	i D	TNN	
he was	anol	dmar	who	fish	ned a	lone	in	ski	ff i	nthe	gul	fst	ream	and	he	had	go	ne	eigh	ty-	four	days	nov	iw v	ithou	t tak	ing a	fi	.sh
INDT	JJ	CD	NNS	DT	NN \	VBD VE	BN	IN	PRP	. cc	IN	C	D	NNS	5 11	N		ТТ	NN	DT	NN	POS	NNS		VBD	VBN	PRP 3	ΕN	DT
in the	first	forty	day	s a	boy l	had be	een	with	him	. but	afte	er f	orty	day	/S W	itho	ut a	a -	fish	the	boy	's	pare	nts	had	told	him t	that	the
JJ NN	VBD R	B RE	}		СС	RB		VBN	, WE	T \	/BZ D	T J	IJ	NN]	ככ אב		,	СС	DT	NN	VBD	VBN	IN	PRP:	\$ NN	S	IN	
old mar	was n	ow de	fini	tely	and	final	.ly	salac	, wh	nich	s t	he v	orst	fo	rmc	fun	luc	k,	and	the	boy	had	gone	at	the	ir or	ders	in	
DT	NN	WDT	VBD)	CD	JJ	NN	DT	JJ	NI	v .	PRI	VBC) D	T N	IN J	J .	то	VB C	т [ו ככ	NN V	В	IN	DT	NN :	IN F	PRP\$]
anothe	boat	whic	h cau	ight	three	good	d fi	sh th	e fi	rst w	eek .	it	mac	le t	he b	oy s	ad ·	to	see t	he d	old r	nan c	ome	in	each	day	with h	nis	
NN J	J C	C PI	RP RB		VBD	IN	то	VB	PRP	VB	DT		DT	VBD	(NNS	Ic	CD	IN TO	V	сс	NN		CC	DT	NN	WDT	VBD	
skiffe		_	_		went	down	to	help	him	carry	eit	her	-				-	-		-		harp	oon	and	the			-	
VBD	IN	DT	NN	. D	T NN	VB	D VE	3N	IN	NN	- N	INS	СС	1,1	VBD	Τ,	PR	PV	BD	IN	D	T NN	,	IN 3]]		NN	 T.l	
furled	around	the	mast	. t	he sa	il wa	s pa	atche	dwit	_				-			_			d li	ke t	he f]	_	_		nent	defea	at .	

$$\frac{6}{157} = .0382$$

PR(NN | DT JJ)

"How often does the unigram NN follow the bigram DT JJ?"

"Out of all the DT JJ bigrams, how many of them are followed by NN?"

PRP VB	BD DT :	IJ N	IN	WP	VBD		RB	IN	DT N	NN	IN	I DT	NN	P N	INP		сс	PRP	VBD	VBN	CD			NNS	RB	IN	ı	VBC	G [NI TC	١
he wa	as an d	old m	an	who	fish	ned	alone	in	a s	ski	ffir	the	gu	lf s	trea	am a	and	he	had	gone	eeig	hty-	four	days	now	wi	thou	tal	cing	a f:	ish
IN DT	JJ	CD		NNS	DT	NN	VBD	VBN	IN	I	PRP .	СС	IN		CD	1	NNS	IN		DT	NN	DT	NN	POS	NNS		VBD	VBN	PRP	IN	DT
in the	firs	t for	rty	day	s a	boy	had	beer	nwi	th	nim .	but	af	ter	fort	у	days	wi	thou	t a	fis	the	boy	's	pare	nts	had	told	him	that	th
JJ NN	VBD	RB	RB			СС	RB		VBN	V	, WD	Т	VBZ	DT	JJ		NN	IN	כנו		, cc	DT	NN	VBD	VBN	IN	PRP:	\$ NN	IS	IN	
old ma	an was	now	def	ini	tely	and	fina	ally	sal	lao	, wh	ich:	is	the	wor	st	for	n of	un1	uck	, an	d the	boy	had	gone	at	the	ir or	ders	in	
DT	NN	WD.	Т	VBD		CD	JJ	N	IN	DT	JJ	N	N	. Р	RP V	'BD	DT	NN	J	ТС	VB	DT	כנ	NN V	'B	IN	DT	NN	IN	PRP\$;]
anothe	er boa	t wh	ich	cau	ght	thre	ee go	od f	ish	the	fir	stw	eek	. i	t m	ade	e th	e bo	y sa	d to	see	the	old	man c	ome	in	each	day	with	his]
NN	כנ	СС	PRF	RB		VBD) IN	Т	O VB	3	PRP	/B	DI	Ī.	DT	· V	/BD	N	INS	СС	DT	NN	СС	NN		CC	DT	NN	WDT	VBD	
skiff	empty	and	he	alı	ways	wer	nt dov	vn t	o he	lp	him	carry	y ei	ithe	r th	e c	oil	ed 1	ines	or	the	gaff	and	harp	oon	and	the	sail	that	was	
VBD	IN	D.	T	NN	. D	T N	IN V	/BD \	/BN		IN	NN		NNS	C	С	, VE	BD	,	PRP	VBD	II	N D	T N	ı I	Z N J	IJ		NN	Τ.	1
furle	darou	nd t	he r	nast	. t	he s	ailw	ıas p	patc	hec	wit	h flo	our	sac	ks a	nd	, fu	ırle	d,	it	look	ed 1:	ike t	he f	Lag	of p	erma	nent	defe	at .	1

$$\frac{5}{6} = .833$$

Estimate PP(DT JJ | NN)

"How often would we expect to see DT JJ following NN in the corpus, based on the prior probabilities of unigram NN and bigram DT JJ, and the measured conditional probability PP(NNNN | DDDD)] "])?"

$$PP(DDDD JJJJ|NNNN) = \frac{PP(NNNN|DDDD JJJJ)PP(DDDD JJJJ)}{PP(NNNN)}$$

$$=\frac{\frac{5}{6} \times \frac{6}{157}}{\frac{12}{79}} = \frac{395}{1884} = .20966$$

Note: the observed value in the sample is: $\frac{1}{24} = .042$

$$A = \{ gnat, beet \} B = \{ loon, fee \} C = \{ peel, pool, he, sand \} \}$$

$$PP(hiiiih|AA) = \frac{1}{2}$$

PR(hiiiih|BB) = 1

$$PR(hiiiih|CC) = \frac{3}{4}$$

PR(hiiiih) = PP(hiiiih | AA)PP(AA) + PP(hiiiih | BB)PP(BB) + PP(hiiiih | CC)PP(CC)

$$PP(hiiih) = \frac{3}{4}$$

Lecture 9: Language Modeling, POS Tagging

classification result:

$$PP(DD|SS) = \frac{PP(SS|DD)PP(DD)}{PP(SS)}$$

$$PP(DD|SS) = \frac{\frac{2}{3} \times \frac{2}{6}}{\frac{4}{9}}$$

$$PP(DD|SS) = \frac{1}{2}$$

Today's lecture

- Overview of corpus linguistics
- Corpus annotation
- An important tool for automatic annotation: Hidden Markov Model (HMM)
- Case study: HMM Part-of-speech tagger
- Practical issues:
 - Using log-probs to avoid underflow
 - Smoothing unseen values

Corpus linguistics

The fundamental goal of analysis is to maximize the probability of the observed data.

John Goldsmith, Univ. of Chicago

- Data is important
- It makes (machine) learning possible
- In computational linguistics, our data is organized into corpora. This word is the plural of corpus.

Corpora

- What is a corpus?
 - A collection of text or recorded speech—typically in machine-readable form—compiled to be representative of a particular kind of language.
 - Used as a starting point for quantitative, empirical linguistic research or language description
- Corpus characteristics:
 - Raw
 - Tagged/Annotated (i.e. Penn Treebank)
 - Automatic tagging
 - Human annotation
 - Hybrid approach: automated system refers cases it is unsure of to human annotation

Annotation

- In Project 2 (unigram tallies), we gathered statistics from a raw corpus
- In Project 4 (DNA targets), we are searching a raw corpus, a basic form of Information Extraction (IE)
- In Project 1 (PTB constituents), we gathered statistics from an annotated corpus
- Annotation adds value to a corpus by increasing the number of statistical dimensions we can attempt to correlate. This applies to both
 - automatic methods (machine learning)
 - rule-based (analytical methods)

Annotating audio corpora

- Phonetic transcription
- Phonemic transcription
- Text transcription

- Speaker ascription (discourse/dialogue)
- Formant analysis (vowel resonances)
- Prosody
- Start/stop timings
- FFT analysis (frequencies)
- Gesture correlation

PRAAT is an amazing free tool for phonetic analysis of human speech http://www.fon.hum.uva.nl/praat/

Annotating text corpora

- Sentence identification (sentence breaking)
- Word identification (tokenization, wordbreaking)
- Part-of-speech (POS)

http://cst.dk/online/pos_tagger/uk/index.html

Named entities (NER)

http://alias-i.com/lingpipe/web/demo-ne.html

- Anaphora resolution
- Semantic analysis

http://redwoods.stanford.edu/

Example: annotating information structure

- Linguistic information structure is concerned with the management of elaboration between speaker and hearer in discourse
- This sub-field introduces the notions of:
 - topic (what a proposition is "about")
 - focus (the new information that is being asserted about the topic)

Glenn Slayden. 2010. <u>An Information Structure Annotation of Thai Narrative Fiction</u>. In *University of Washington Working Papers in Linguistics* (UWWPL) (*in press*).

Example: annotating information structure

(I hope Sandy likes the iPod Kim gave her.) "It's a [BOOK_F] that Kim gave Sandy." (not an iPod) (correctional focus) (What's in the bag?) "It's [a book that Kim gave Sandy_F]." topic (argument focus) (What did Allie do?) "She [went to the cricket match_F]." (predicate focus)

Part-of-speech (POS) tagging

- Automatic POS-tagging of a corpora is a fundamental task in computational linguistics
- This task is a prerequisite for building many types of statistical models

Corpus priors POS n-grams lemma n-grams |, |CC RB DT **VBG** VBD DT NN **VBD** DT NA **VBD** NNS וועון וע TIV the cold passed reluctantly from the earth, and the **ev**ealed|an|army stretched IN DT NNS TOVB NN VBG . IN DT NN VBN ΙN JJ , DT **VBN** out|on|the|hills|,|resting|.|as|the|landscape|changed|from|brown|to|green|,|the|army|awakened CC VBD TOVB IN NN INIDT NN ININNS and|began|to|tremble|with|eagerness|at|the|noise|of|rumors

POS tagging

Objective: given sentence

$$S = (ww_0, ww_1, \dots ww_{nn}),$$

determine tags

$$T = (tt_0, tt_1, \dots tt_n).$$

DT	NN	١	√BD	RB	3		IN		TC	NN	,	СС	DT	VBG		NNS	VBD		DT	NN	VBD
the	со	ld p	passed	re	lucta	antly	/ fr	om t	the	eart	h,	an	the	retir	ing	fogs	reveal	Led	an	army	stretched
	1	I	I	_	I		1	I	1	_		1		1	I		- I			I	
IN	IN	DT	NNS	,	VBG		. IN	DT	NN			VE	N	IN	33	T	VB	,	DT	NN	VBN
out	on	the	ehills	,	rest	ing	. as	the	e la	andso	саре	ch	ange	d from	bro	wn to	green	٠	the	army	awakened
$\overline{}$	<u> </u>		ITOLV			TNI	NINI			TNI				I NNC		1					_

,	CC	VBD	ТО	V B	IN	NN	IN	DT	NN	IN	NNS	•
,	and	began	to	tremble	with	eagerness	at	the	noise	of	rumors	

Human annotation

How to proceed with human tagging is obvious

If cost is no object, is this certainly the "best" thing to do?

- Not necessarily. It is very hard to get consistent results
 - Clear standards and procedures must be defined
 - Empirical quality control sampling is advisable
 - Automatic methods are likely to be more consistent

Automatic tagging does not "pollute" the corpus

Note on notation

"probability that a noun follows a determiner"

Before, when we looked at n-gram probabilities such as PP(NN|DT), the conditional "given" symbol '|' meant "reading left-to-right," more precisely:

$$PP(tt_{ii} \mid tt_{ii-1})$$

• We can also refer to the probability of a tag given its word, $PP(tt_{ii} \mid ww_{ii})$ or the reverse, $PP(ww_{ii} \mid tt_{ii})$.

 So we need to pay careful attention to the variables and the subscripts

Deciphering subscript-less notation

PP(NNNN)	Probability of a noun (versus all POS unigrams)
PP(NNNN DDDD)	Probability that a noun follows a determiner
PP(NNNN DDD) sometimes you'll see: PP(NNNN, DDDD)	Probability of the POS bigram "NN DT" (versus all POS bigrams) $PP(tt_{ii}-1, tt_{ii})$
PP(the DDDD)	Probability of a determiner being the word "the"
PP(DDDD the)	(i.e.) Probability of tagging the word "the" as a determiner
PP(NNNN DDDD JJJJ)	Probability of a noun following the bigram "DT JJ"

I don't like the PP(NNNN, DDDD) notation (with a comma), because it implies joint probability, which is normally *commutative*, but we have an ordering constraint such that $PP(NN(NNDDDD)) \neq PP(DDDD, NNNN)$. This problem is avoided by using subscripts in $PP(tt_{ii-1}, tt_{ii})$, where the comma is ok. In either case, terms should always be written in sentence appearance order.

- This type of notation can refer to either:
 - a corpus prior, that is the observed (counted) probability of tag tt in the corpus, restricted by word ww.

i.e. appearing on the **right** side of Bayes' theorem

 a model term, which is typically used as part of the model's maximized objective function.

i.e. appearing on the **left** side of Bayes' theorem

 What's a maximized objective function? First, let's define a handy math notation helper, called argmax...

$\operatorname{argmax}_{\chi\chi}ff(\chi\chi)$

The result of this expression is:

the value (or values) xx such that ff(xx) is maximized.

argmin works in a similar way

- **(**
- We don't care about the actual evaluation result of the function f f(xx). It is discarded.
- **(**

You will see this notation often in computational linguistics

ArgMax<TSrc,TArg>

```
public static TSrc ArgMax<TSrc, TArg>(this IEnumerable<TSrc> seq, Converter<TSrc, TArg> objective)
   where TArg : IComparable<TArg>
{
   IEnumerator<TSrc> e = seq.GetEnumerator();
    if (!e.MoveNext())
       throw new InvalidOperationException("Sequence has no elements.");
   TSrc t = e.Current;
   if (e.MoveNext())
        TArg v, max_val = objective(t);
        do
            TSrc t try = e.Current;
            v = objective(t_try);
            if (v.CompareTo(max val) > 0)
                t = t try;
                max val = v;
        while (e.MoveNext());
   return t;
```

example

$$ff(xx) = (xx - 3)^2$$

In[3]:=

$$\underset{\text{or}}{\operatorname{argmin}_{\chi\chi}} ff(\chi\chi) = 3$$

 $\operatorname{argmin}_{xx}(xx-3)^2 = 3$

The value of ff(xx) at 3 is 0, but argmin doesn't care about that, so long as it's the minimum value

$$Plot[(x-3)^2, \{x, -4, 10\}]$$

Lecture 9: Language Modeling, POS Tagging

argmax example #1

XX ={ the total showing on two fair dice }
What is the value of:

$$\operatorname{argmax}_{\chi\chi} PP(\chi\chi = \chi\chi)$$

7

argmax example #2

$$XX = \{ \text{ a sample of English language text } \}$$

 $f(xx) = |(XX|xx), xx \in \{'a', 'b', 'c', ... 'z'\}$

What is the value of:

 $\operatorname{argmax}_{xx} ff(xx)$

'e'

Tagging objective function

Predict a sequence of tags tt based on the probability of tags andwords $PP(tt_{ti}|ww)_{ii}$. Given sentence

$$S = (ww_0, ww_1, \dots ww_{nn})$$

$$tt = \operatorname{argmax}_{tt_{ii}} PP(tt_{ii} \mid ww_{ii}).$$

"tt is the best sequence of tags that match a tag tt_{ii} to its word ww_{ii} ."

This material is also covered in section 5.5 (p.139) of Jurafsky & Martin, 2nd ed.

Simplistic tagger

$$S = (ww_0, ww_1, ... ww_{nn})$$

 $tt = argmax_{tt_{ii}} PP(tt_{ii} | ww_{ii})$ repeated from last slide

This is surely the function we want to maximize, but it's not clear how to calculate the probabilities PP(tt|ww).

Simplistic tagger: Why don't we use probabilities calculated from a corpus?

like you did for Assignment 3

Simplistic tagger

D.	Т	NN	V	BD	F	RB		IN	[TC	NN	,	C	CC	DT	VBG		NNS	VBD		DT	NN	VBD
t	he	co]	ld p	asse	d r	reluct	antly	fr	om ⁻	the	eart	h,	a	and	the	retir	ing	fogs	reveal	led	an	army	stretched
I	N	IN	DT	NNS		, VBG		IN	DT	NI	١		١	VBN		IN	IJ	T	VB	,	DT	NN	VBN
0	ut	on	the	hill	Ls	, rest	ing.	as	th	e la	andso	сар	е	chai	nged	from	bro	wn to	green	,	the	army	awakened
,	CC	: V	/BD	ТО	VB	3	IN	NN			IN	DT	N	N	IN	NNS							
,	an	d b	ega	n to	tr	emble	with	eag	err	ness	at	the	n	ois	e of	rumo	rs .						

$$\operatorname{argmax}_{tt} PP(tt|the) = DT$$

$$\operatorname{argmax}_{tt} PP(tt|\operatorname{cold}) = JJ$$

How well does the simplistic tagger work?

Such a POS tagger is not really usable

Language Modeling, POS Tagging

Linguistics 473: Computational Linguistics Fundamentals

Use Bayes Theorem

Of course, you have this memorized

$$PP(AA|BB) = \frac{PP(BB|AA)PP(AA)}{PP(BB)}$$

Remember, this was our objective function

$$tt = \operatorname{argmax}_{tt} PP(tt_{ii} | ww_{ii})$$

$$tt = \operatorname{argmax}_{tt} \frac{PP(w_{ii} | tt_{ii}) PP(tt_{ii})}{PP(w_{ii})}$$

This is one of the most important slides of this entire class

For each evaluated value of ii, $PP(ww_{ii})$ will be the same. We can cancel it.

$$tt = \operatorname{argmax}_{tt} \frac{PP(w_{ii} | tt_{ii}) PP(tt_{ii})}{PP(w_{ii})}$$

$$tt = \operatorname{argmax}_{tt} PP(w_{ii} | tt_{ii}) PP(tt_{ii})$$

The best sequence of tags is determined by the probability of each word given its tag and also the probability of that tag.

"We compute the most probable tag sequence... by multiplying the **likelihood** and the **prior probability** for each tag sequence and choosing the tag sequence for which this product is greatest.

"Unfortunately, this is still too hard to compute directly..."

Jurafsky & Martin (paraphrase) p.140

We still need to make some assumptions.

Assumption 1: If we want to use corpus probabilities to estimate $PR(w\psi_{ii})t_{ii}$, we need to formally note that we're assuming

$$PP'(ww_{ii} | tt_{ii}) \approx PP'(ww_{ii}) tt_{ii}$$

"The only POS tag a word depends on is its own."

Any progress?

- So wait: if we're assuming the only POS tag a word depends on is its own, how is this going to be better than the simplistic tagger from before, which assumed that the only word a POS tag depends on is its own?
- In other words, Why is PP(ww|tt) going to work better than *PP*(*tt*|*ww*)?
- Hint: $|\Omega|$ Hint: $|T| \ll |W|$

Answer: because there are a lot more distinct words than tags, conditioning on tags rather than words increases the resolution of the corpus measurements

example

$$PP(\text{cold}|NN) = .00002$$

 $PP(\text{cold}|JJ) = .00040$

$$PR(JJ|cold) = .97$$

 $PR(NN|cold) = .03$

This value will drown out our calculation and we'd never tag "cold" as a noun!

$$tt = \operatorname{argmax}_{tt} PP'(ww_{ii} | tt_{ii}) PP(tt_{ii})$$

Assumption 2: The only tags that a tag tt_{ii} depends on are the m previous tags, $tt_{ii-m-1} \dots tt_{ii-1}$. For example, in a POS bigram model:

$$PP'(tt_{ii}) \approx PP(tt_{ii} tt_{ii})$$

This is known as the bigram assumption: "The only POS tag(s) a POS tag depends on are the ones immediately preceding it."

Putting it together

Reminder: estimating $PP(ww_{ii}|tt_{ii})$ from a corpus

Definition of conditional probability
$$\longrightarrow PP(AABB) = \frac{PP(AA,BB)}{PP(BB)}$$

$$PR(AABB) = \frac{\frac{\text{count}(AA, BB)}{|\Omega|}}{\frac{\text{count}(BB)}{|\Omega|}}$$

word likelihood

$$PP(ww_i|tt_{ii}) = \frac{\text{count}(ww_{ii}, tt_{ii})}{\text{count}(tt_{ii})}$$

Reminder: estimating $PP(tt_{ii}|tt_{ii}-1)$ from a corpus

Definition of conditional probability
$$PP(AABB) = \frac{PP(AA,BB)}{PP(BB)}$$

$$PR(AABB) = \frac{\frac{\text{count}(AA, BB)}{|\Omega|}}{\frac{\text{count}(BB)}{|\Omega|}}$$

$$PP(tt_{ii}|tt_{ii-1}) = \frac{count(tt_{ii-1}, tt_{ii})}{count(tt_{ii-1})}$$

POS tagging objective function

This might seem a little backwards (especially if you aren't familiar with Bayes' theorem). We're trying to find the best *tag sequence*, but we're using PP(ww|tt), which seems to be predicting *words*.

This compares: "If we are expecting an **adjective** (based on the tag sequence), how likely is it that the adjective will be 'cold?" **versus** "If we are expecting a **noun**, how likely is it that the noun will be 'cold?"

DT		VBD	RB	IN	DT	NN	,
the	cold	passed	reluctantly	from	the	earth	,

"If we are expecting an **adjective**, how likely is it that the adjective will be 'cold?'" (high) **WEIGHTED BY** our chance of seeing the sequence **DT JJ** (medium)

versus

"If we are expecting a **noun**, how likely is it that the noun will be 'cold?'" (medium) **WEIGHTED BY** our chance of seeing the sequence **DT NN** (very high)

THE WINNER: NN

Multiplying probabilities

- We're multiplying a whole lot of probabilities together
- What do we know about probability values?

$$0 \le pp \le 1$$

- What happens when you multiply a lot of these together?
- This is an important consideration in computational linguistics. We need to worry about underflow.

Underflow

- When multiplying many probability terms together, we need to prevent underflow
 - Due to limitations in the computer's internal representation of floating point numbers, the product quickly becomes zero
- We usually work with the logarithm of the probability values
- This is known as the "log-prob"

$$=\log_{10} pp$$

IEEE 754 floating point

• 32-bit "single" "float"

$$1.2 \times 10^{-38} ttnn 3.4 \times 10^{38}$$

64-bit "double"

$$\approx \pm 1.8 \times 10^{308}$$

logarithms refresher

definition:

$$\log_{bb} xx = yy$$
: $xx = bb^{yy}$

$$bb^{xx} \times bb^{yy} = bb^{xx+yy}$$

$$\log xxyy = \log xx + \log yy$$

$$\log xx_{ii} = \log xx_{ii}$$

$$\frac{bb^{xx}}{bb^{yy}} = bb^{xx-yy}$$

$$\log \frac{xx}{yy} = \log xx - \log yy$$

Write an expression for Bayes' theorem as log-probabilites

Bayes' theorem as log-prob

$$PP(AA|BB) = \frac{PP(BB|AA)PP(AA)}{PP(BB)}$$

$$\log PP(AA|BB) = \log PP(BB|AB) + \log PP(AB) - \log PP(BB)$$

Remember this?

$$tt = \operatorname{argmax}_{tt} \underbrace{\frac{\operatorname{count}(ww_{ii}, tt_{ii})}{\operatorname{count}(tt_{ii})}}_{ii} \times \frac{\operatorname{count}(tt_{ii-1}, tt_{ii})}{\operatorname{count}(tt_{ii-1})}$$

$$tt = \operatorname{argmax}_{tt} \underbrace{\log \frac{\operatorname{count}(ww_{ii}, tt_{ii})}{\operatorname{count}(tt_{ii})} + \log \frac{\operatorname{count}(tt_{ii-1}, tt_{ii})}{\operatorname{count}(tt_{ii-1})}}_{ii}$$

Wait, how can you do that, there was no "log" outside of the \prod !

argmax magic

- Doesn't matter. Since argmax doesn't care about the actual answer, but rather just the sequence that gives it, we can drop the overall log
 - this is valid so long as $\log xx$ is a monotonically increasing function
- argmax will find the same "best" tag sequence when looking at either probabilities or log-probs because both functions will peak at the same point

$$tt = \operatorname{argmax}_{tt} + \log \mathbb{P} \quad | \quad) \text{ ww}_{ii} tt_{ii} \quad (+|\log \mathbb{P}) \quad tt_{ii} tt_{ii-1}$$

Hidden Markov Model

- This is the foundation for the Hidden Markov Model (HMM) for POS tagging
- To proceed further and solve the argmax is still a challenge

$$tt = \underset{ii}{\operatorname{argmax}_{tt}} \underbrace{\hspace{1cm}} \log RP \hspace{1cm} | \hspace{1cm}) \hspace{1cm} ww_{ii} \hspace{1cm} tt_{ii} \hspace{1cm} (+|\log P) \hspace{1cm} tt_{ii} \hspace{1cm} tt_{ii-1}$$

• Computing this naïvely is still $OO(|DD|^{nn})$

Dynamic programming

- The Viterbi algorithm is typically used to decode Hidden Markov Models
 - You might get to implement it in Ling 570
- It is a dynamic programming technique
 - We maintain a trellis of partial computations
- This approach reduces the problem to $00(|DD|^2nn)$ time

POS Trigram model

Recall the bigram assumption:

$$PP'(tt_{ii}) \approx P(tt_{ii}|tt_{ii-1})$$

We can improve the tagging accuracy by extending to a trigram (or larger) model

$$PP'(tt_{ii}) \approx PP(tt_{ii} | tt_{ii-2}, tt_{ii-1})$$

Data sparsity

• However, we might start having a problem if we try to get a value for $PP(tt_i|tt_{ii-2},tt_{ii-1})$ by counting in the corpus

$$\frac{\operatorname{count}(tt_{ii-2}, tt_{ii-1}, tt_{ii})}{\operatorname{count}(tt_{ii-2}, tt_{ii-1})}$$

...it was a butterfly in distress that she...

The count of this in our training set is likely to be zero

Unseens

- Our model will predict zero probability for something that we actually encounter
 - This counts as a failure of the model
- This is a pervasive problem in corpus linguistics
 - At runtime, how do you deal with observations that you never encountered during training (unseen data)?

Smoothing

- We don't want our model to have a discontinuity between something infrequent and something unseen
- Various techniques address this problem:
 - add-one smoothing
 - Good-Turing method
 - Assume unseens have probability of the rarest observation
 - Ideally, smoothing preserves the validity of your probability space

Next time

- Formal grammars
- Context-free grammars
 - Production rules
 - Lexical rules
- Chomsky normal form
- Parsing

Lecture 9: Language Modeling, POS Tagging

C# Tutorial (continued...)

Interfaces

 IEnumerable<T> is one of many system-defined interfaces that a class can elect to implement

An interface is a named set of zero or more function signatures with no implementation(s)

- To implement an interface, a class defines a matching implementation for every function in the interface
- Interfaces are sometimes described as contracts
- You can define and use a reference to an interface just like any other object reference

```
interface IPropertyGetter
{
    String GetColor();
}

class Strawberry : IPropertyGetter
{
    public String GetColor() { return "red"; }
}

class Ferrari : IPropertyGetter
{
    public String GetColor() { return "yellow"; }
}
```

- This looks like C++ class inheritance
 - yes, but it's more ad-hoc
 - C# classes can have single inheritance of other classes, and multiple inheritance of interfaces
 - Interfaces can inherit from other interfaces (not shown)

IEnumerable<T>

- This is one of the simplest interfaces defined in the BCL (base class libraries)
- This interface provides just one thing: a way to iterate over elements of type T
- All of the system arrays, collections, dictionaries, hash sets, etc. implement IEnumerable<T>
 - Implementing IEnumerable<T> on your own classes can be very useful, but you don't need to worry about that
 - For now, what's important is that you get to use it, because it's available on all of the system collections

IEnumerator<T>

- IEnumerable<T> has only one function, which allows a caller or caller(s) to obtain an enumerator object which is able to iterate over elements
 - The actual enumerator object is an object that implements a different interface, called IEnumerator<T>
 - This "factory" design allows a caller to initiate and maintain several simultaneous iterations if needed
 - The enumerator object, IEnumerator<T> can only:
 - Get the current element
 - Move to the next element
 - Tell you if you've reached the end
 - Note: There's no count
 - ICollection inherits from IEnumerable to provide this

Interfaces as function arguments

- Using interfaces as function arguments allows you to require the absolute minimum functionality the function actually needs
- In this way, the ad-hoc nature of interfaces allows us to comply with the maxim

```
void ProcessSomeStrings(IEnumerable<String> the_strings)
{
    foreach (String s in the_strings)
        Console.WriteLine(s);
}
```

Now, this function is exposing the weakest (most general) requirement possible for the processing it has to do. This provides more flexibility to callers since they can choose whatever level of specificity is convenient. The function can be used in the widest possible variety of situations.

Example

```
String[] d1 = { "able", "bodied", "cows", "don't", "eat", "fish" };
ProcessSomeStrings(d1);
List<String> d2 = new List<String> { "clifford", "the", "big", "red", "dog" };
ProcessSomeStrings(d2);
HashSet<String> d3 = new HashSet<String> { "these", "must", "be", "distinct" };
ProcessSomeStrings(d3);
Dictionary<String, int> d4 =
        new Dictionary<String, int> { "the", 334596 }, { "in", 153024 } };
ProcessSomeStrings(d4.Keys);
                                                            Python users might not
void ProcessSomeStrings(IEnumerable<String> the_strings)
                                                            be impressed, but the
{
                                                            difference is that this is
    foreach (String s in the_strings)
                                                            all 100% strongly typed
        Console.WriteLine(s);
}
```

Iteration is efficient

- That's cool, IEnumerable<T> lets a function not care about where a sequence of elements is coming from
 - We don't copy the elements around
 - Iterators let us access elements right from their source
- All of those examples iterate over elements that already exist somewhere
- Is there a way to iterate over data that's generated on-the-fly, doesn't exist yet, or is never persisted at all?
- Yes!

Iterating over on-the-fly data

```
IEnumerable<String> GetNewsStories(int desired_count)
    for (int i = 0; i < desired_count; i++)</pre>
         yield return RealtimeNewswireSource.GetLatestStory();
            see next slide
                                                  This is exactly the same
                                                  as before, but this time
IEnumerable<String> d5 = GetNewsStories(7);
                                                  there's no "collection" of
ProcessSomeStrings(d5);
                                                  elements sitting
// ...
                                                  anywhere
void ProcessSomeStrings(IEnumerable<String> the strings)
    foreach (String s in the_strings)
                                                 This function doesn't care.
        Console.WriteLine(s);
                                                 In fact, it can't even tell.
```

yield keyword

- The yield keyword makes it easy to define your own custom iterator functions
- Any function that contains the yield keyword becomes special
 - It must be declared as returning an IEnumerable<T>
 - Deferred execution means that the function's body is not necessarily invoked when you "call" it
 - It must deliver zero or more elements of type T using:
 yield return t;
 - Sometime later, control may continue immediately after this statement to allow you to yield additional elements
 - It may signal the end of the sequence by using:
 yield break;

Custom iterator function example

```
IEnumerable<String> GetNewsStories(int desired count)
     for (int i = 0; i < desired_count; i++)</pre>
         yield return RealtimeNewswireSource.GetLatestStory();
                                    code from this custom iterator function is not
                                    executed at this point.
IEnumerable<String> d5 = GetNewsStories(7);
ProcessSomeStrings(d5);
                                     d5 refers to an iterator that "knows how" to
// ...
                                     get a certain sequence of strings when asked
void ProcessSomeStrings(IEnumerable<String> the strings)
    foreach (String s in the_strings)
                                            This finally demands the strings,
                                            causing our custom iterator function to
         Console.WriteLine(s);
                                            execute—interleaved with this loop!
```