# Manutenção de Hardware

PROFESSOR JESSE NERY FILHO

#### Sobre o laboratório

- •Cuidado em tudo que fazemos!
  - Utilizaremos alicates, estiletes, álcool, matérias metálicos e energia;
  - Precisamos nos prevenir: roupas, organização, líquidos, comida, conhecimento!!!!
  - Espere sempre as instruções do professor!!!!
  - Na dúvida pergunte ao professor!!!

#### Sobre nossas aulas

- Aulas práticas e teóricas;
- Continuação do que já foi visto em fundamentos da informática (Prof. Cleziel)
- •Revisão sobre partes do computador: Gabinete, placa-mãe, processador, memórias, conexões, periféricos de entrada e saída;
- •Aprender sobre eletricidade, tensão, corrente, potência, resistência, capacitores, instrumentos de medição (multímetro e amperímetro), aprender sobre os riscos com eletricidade e desmistificar algumas coisas;

#### Sobre nossas aulas

- ·Aulas sobre placas mães e seus tipos de memórias
- Aulas sobre placas mães e seus tipos de slots de processador;
- Aulas sobre os tipos de barramento;
- Aulas sobre os tipos de placas off boards;
- Aulas sobre os tipos de conexões internas e externas de um computador

#### Sobre nossas aulas

- Aulas sobre Fontes de computadores
- ·Aulas sobre instalação de periféricos
- Aulas sobre o setup do sistema

 Todo o conteúdo sempre terá abordagem prático/teórico, na perspectiva de conhecimento e a manutenção preventiva e corretiva.

### Sobre Eletricidade



#### Lei da resistência elétrica

Fórmula da lei de Ohm:

$$V \equiv I * R$$

Manipulando a fórmula temos suas variantes:

$$\begin{array}{ccc}
I = V & R = V \\
R & I
\end{array}$$

## Fórmula da potência elétrica

Fórmula da potência

#### Resistores



### Somas de resistores



# Resistores em paralelo



# Capacitores



## Carregando um capacitor



## Equipamentos de medição







### Como medir tensão de corrente contínua



# Como medir tensão de corrente alternada



### Como medir corrente



### Como medir resistências



# Como medir capacitor com um capacimetro



# Como medir capacitor com um multímetro digital com analógico



### O PONTEIRO SOBE E LOGO DESCE.

Se o ponteiro do multímetro sobe e logo desce podemos afirmar que o capacitor está em boas condições. Quando o ponteiro começa a subir, indica que o condensador esta se carregando. No momento que este para a leitura indica que chegou ao fim o carregamento e como já não circula mais corrente por este elemento o ponteiro volta ao inicio da escala ou seja infinito. Desde o ponto de vista prático quanto maior seja o valor da capacidade do condensador, maior também vai ser o tempo em que o ponteiro leva em subir e descer

# O PONTEIRO SOBE E PARA EM ALGUMA ESCALA DA LEITURA

Quando o ponteiro sobe mexe e fica estancado (parado) em algum lugar da escala mesmo que comece a descer e pare, o capacitor estará com fugas.

Em outras palavras sempre há uma corrente passando pelo capacitor que não se carrega.

# O PONTEIRO SOBE ATÉ O FINAL DA ESCALA E NÃO VOLTA

Isto indica que o capacitor estará em curto circuito, o capacitor se comporta como uma resistência de valor muito baixo, zero, então a corrente fornecida pelo multímetro passa pelo capacitor sem encontrar resistência alguma, aqui o ponteiro sobe para o valor 0 final da escala e ficará assim até retirar as pontas de seus pinos (terminais)

# O PONTEIRO NÃO SE MEXE, NÃO INDICA NENHUMA LEITURA

Quando medimos e o ponteiro não dá leitura alguma (não se mexe), fica no infinito, nos indica que o capacitor está aberto.

# Diodos



## Transistores



# Circuito Integrado





#### Exercícios

Um resistor, submetido à diferença de potencial de 8,0 V, é percorrido por uma corrente elétrica de intensidade i = 0,4 A. Determine:

- a) a potência dissipada por esse resistor;
- b) a potência dissipada por esse resistor quando ele é percorrido por uma corrente de intensidade i = 2,0 A, supondo que sua resistência seja constante.

#### Exercícios

Ao aplicarmos uma diferença de potencial 9,0 V em um resistor de 3,0 $\Omega$ , podemos dizer que a corrente elétrica fluindo pelo resistor e a potência dissipada, respectivamente, são:

- a) 1,0 A e 9,0 W
- b) 2,0 A e 18,0 W
- c) 3,0 A e 27,0 W
- d) 4,0 A e 36,0 W
- e) 5,0 A e 45,0 W

### Exercícios

Um laboratório possuem 20 maquinas que consomem 500W. Levando em consideração que a tensão nesse localidade é 220V. Qual será a corrente total a ser utilizada? Necessitaria de um disjuntor de quantos Amperes?

