ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 4

ЧИСЛЕННОЕ ИНТЕРПОЛИРОВАНИЕ И ДИФФЕРЕНЦИРОВАНИЕ (Вариант 9)

Выполнил студент 3 курса ПМиИ Кондратьев Виталий

Условие:

1 часть

1)
$$y = lg x, x=7,2$$

x_k	7,0	7,5	8,0	8,5
y_k	0,8451	0,8751	0,9031	0,9294

2) x*=1,028

2 часть

No 9
$$f(x) = e^{\frac{x}{2}}, a=3,4, b=4,3, m=3,6.$$

Задание:

Пусть на отрезке [a;b] заданы точки x_0, x_1, \ldots, x_n и значения функции y=f(x) в этих точках: $y_0=f(x_0), \ldots y_n=f(x_n)$.

Интерполяционный многочлен Лагранжа:

$$L_n(x) = \sum_{i=0}^n y_i \frac{(x-x_0)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)}{(x_i-x_0)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_n)}.$$

Оценка погрешности формулы Лагранжа:

$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |(x-x_0) \cdot (x-x_1) \dots (x-x_n)|,$$

где
$$M_{n+1} = \max_{[x_0, x_n]} |f^{(n+1)}(x)|$$

Если надо вычислить не общее выражение $L_n(x)$, а лишь его значение на конкретном x, то используется интерполяционная схема Эйткена:

конкретном
$$x$$
, то используется интерполяционная схема Эйткена:
$$L_{i,i+1}(x) = \frac{1}{x_{i+1}-x_i} \begin{vmatrix} y_i & x_i-x \\ y_{i+1} & x_{i+1}-x \end{vmatrix},$$

$$L_{i,i+1,i+2}(x) = \frac{1}{x_{i+2}-x_i} \begin{vmatrix} L_{i,i+1} & x_i - x \\ L_{i+1,i+2} & x_{i+2} - x \end{vmatrix},$$

$$L_{i,i+1,i+2,i+3}(x) = rac{1}{x_{i+3}-x_i}igg|egin{matrix} L_{i,i+1,i+2} & x_i-x \ L_{i+1,i+2,i+3} & x_{i+3}-x \end{matrix}igg|$$
 и т.д.

Задания. Первая часть

1) Известная функция y = f(x) задана таблицей, в которой приведены значения в узлах с некоторой точностью. Составить по таблице интерполяционный многочлен Лагранжа. Вычислить значение функции в заданной точке x аналитически и с помощью многочлена Лагранжа. Найти левую, правую и центральную производную в этой точке и ее точное значение. Оценить погрешности полученных результатов.

2) Функции y = f(x) задана таблицей (одинаковой для всех вариантов):

	,	ĺ	,	,	,	1,38
y_k	1,17520	1,30254	1,50946	1,21730	1,22361	1,23470

Пользуясь интерполяционной схемой Эйткена найти $f(x^*)$, в заданной точке x^* последовательно, используя все значения из таблицы

Точность вычислений определяется числом значащих цифр в условии.

Вторая часть. Численное дифференцирование

Во второй части задания вычислить таблицу на отрезке [a,b] на равномерной сетке (5 узлов), и в этих узлах и в точке **m** найти значение первой производной функции по формулам 1-го (левая и правая) и 2-го порядка точности и значение второй производной по формулам 2-го порядка точности, где это возможно. Значение функции в точке m получить интерполированием по всем 5 точкам. Во всех точках найти точные значения производных. Оценить погрешность. Результаты свести в таблицу. Точность — 4 значащих цифры.

		точно				
x_k, m	<i>f'(x)</i> слева	<i>f'(x)</i> справа	<i>f'(x)</i> центр	f''(x)	f'(x)	f''(x)

Для точки m, кроме этого, указать значение функции и интерполированное значение.

Решение:

Задание 1

Дано:

№ 9

1)
$$y = lg x, x=7,2$$

x_k	7,0	7,5	8,0	8,5
y_k	0,8451	0,8751	0,9031	0,9294

2)
$$x*=1,028$$

1)

Значение в точке х по многочлену Лагранжа: 0.8574
Аналитическое значение в точке х: 1.9741
Ошибка метода Лагранжав точке х: 1.0977524091715587e-08
Левая производная в точке х 0.1389
Средняя производная в точке х 0.1389

2)

x*=1,028

Значение в точке х по Эйткену: 0.96644

Задание 2

Дано:

No 9
$$f(x) = e^{\frac{x}{2}}, a=3,4, b=4,3, m=3,6.$$

	Численно				Точно		
x_k , m	f'(x) слева	f'(x)	f'(x)	f''(x)	f'(x)	f''(x)	
		справа	центр				
3.4	-	2.737	-	-	2.737	1.3685	
3.58	2.9947	2.9948	2.9947	1.4974	2.9947	1.4974	
3.76	3.2767	3.2768	3.2768	1.6384	3.2768	1.6384	
3.94	3.5852	3.5854	3.5853	1.7927	3.5853	1.7927	
4.12	3.9229	3.9231	3.923	1.9615	3.923	1.9615	
4.3	4.2923	-	-	-	4.2924	2.1462	
m = 3.6	3.0247	3.0249	3.0248	1.5124	3.0248	1.5124	

Интерполированное значение m: 6.0496 Аналитическое значение m: 6.0496

ПРИЛОЖЕНИЕ

```
X = 7.2
x=[7.0, 7.5, 8.0, 8.5]
h=0.0001
n=4
def errorLagrange(X):
def fact(x):
def leftDeriative(x):
```

```
def midleDeriative(x):
print('Значение в точке х по многочлену Лагранжа:', round(lagrange(X),4))
print('Ошибка метода Лагранжав точке х:', errorLagrange(X))
print('Левая производная в точке x', round(leftDeriative(X),4))
print('Правая произвдная в точке x', round(rightDeriative(X),4))
print('Средняя производная в точке х', round(midleDeriative(X),4))
x = [1.0, 1.08, 1.20, 1.27, 1.31, 1.38]
y= [1.17520, 1.30254, 1.50946, 1.21730, 1.22361, 1.23470]
X=1.028
n=6
X)))/(x[k2]-x[k1])
def f(x):
a = 3.4
m = 3.6
x=[3.4, 3.58, 3.76, 3.94, 4.12, 4.3]
def midleDeriative(x):
```

```
def secondDeriative(x):
    return (f(x-h)-2*f(x)+f(x+h))/h**2
def lagrange(X):
    print('Вторая производная (аналитически):', round(f2(x[i]),4))
print('Средняя производная:', round(midleDeriative(m),4))
print('Вторая производная (численно):', round(secondDeriative(m),4))
print('Первая производная (аналитически):', round(f1(m),4)) print('Вторая производная (аналитически):', round(f2(m),4))
```

Результат программы:

Значение в точке х по многочлену Лагранжа: 0.8574

Аналитическое значение в точке х: 1.9741

Ошибка метода Лагранжав точке х: 1.0977524091715587e-08

Левая производная в точке х 0.1389

Правая произвдная в точке х 0.1389

Средняя производная в точке х 0.1389

Значение в точке х по Эйткену: 0.96644

X = 3.4

Левая производная: 2.7369

Правая производная: 2.737

Средняя производная: 2.737

Вторая производная (численно): 1.3685

Первая производная (аналитически): 2.737

Вторая производная (аналитически): 1.3685

X = 3.58

Левая производная: 2.9947

Правая производная: 2.9948

Средняя производная: 2.9947

Вторая производная (численно): 1.4974

Первая производная (аналитически): 2.9947

Вторая производная (аналитически): 1.4974

X = 3.76

Левая производная: 3.2767

Правая производная: 3.2768

Средняя производная: 3.2768

Вторая производная (численно): 1.6384

Первая производная (аналитически): 3.2768

Вторая производная (аналитически): 1.6384

X= *3.94*

Левая производная: 3.5852

Правая производная: 3.5854

Средняя производная: 3.5853

Вторая производная (численно): 1.7927

Первая производная (аналитически): 3.5853

Вторая производная (аналитически): 1.7927

X = 4.12

Левая производная: 3.9229

Правая производная: 3.9231

Средняя производная: 3.923

Вторая производная (численно): 1.9615

Первая производная (аналитически): 3.923

Вторая производная (аналитически): 1.9615

X = 4.3

Левая производная: 4.2923

Правая производная: 4.2925

Средняя производная: 4.2924

Вторая производная (численно): 2.1462

Первая производная (аналитически): 4.2924

Вторая производная (аналитически): 2.1462

m = 3.6

Левая производная: 3.0247

Правая производная: 3.0249

Средняя производная: 3.0248

Вторая производная (численно): 1.5124

Первая производная (аналитически): 3.0248

Вторая производная (аналитически): 1.5124

Интерполированное значение т: 6.0496

Аналитическое значение т: 6.0496