

Reinforcement Learning

- Learning to interact with an environment
 - Robots, games, process control
 - With limited human training
 - Where the 'right thing' isn't obvious
- Supervised Learning:
 - lacksquare Goal: f(x) = y
 - Data: $[< x_1, y_1 >, ..., < x_n, y_n >]$
- Reinforcement Learning:
 - Goal:

Maximize $\sum_{i=1}^{\infty} Reward(State_i, Action_i)$

Data:

 $Reward_i$, $State_{i+1} = Interact(State_i, Action_i)$

Supervised vs. Unsupervised Learning

Supervised learning (classification)

- Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
- New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

How Reinforcement Learning is Different

- Delayed Reward
- Agent chooses training data
- Explore vs Exploit (Life long learning)
- Very different terminology (can be confusing)
 - Reward
 - Utility
 - Policy
 - State-Action Mapping

Reinforcement Learning

- Reinforcement learning:
 - Still assume an MDP:
 - \blacksquare A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
 - ightharpoonup A discount factor γ (could be 1)
 - ightharpoonup Still looking for a policy $\pi(s)$
 - New twist: don't know T or R
 - i.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Reinforcement Learning

M = 0.8 in direction you want to go 0.2 in perpendicular 0.1 left Policy: mapping from states to actions 0.1 right

utilities of states:

An optimal	3		1		+1
policy for the stochastic	2	†		†	-1
environment:	1	†	+	+	
		1	2	3	4

Environment Cobservable (accessible): percept identifies the state Partially observable

Markov property: Transition probabilities depend on state only, not on the path to the state. Markov decision problem (MDP).

Partially observable MDP (POMDP): percepts does not have enough info to identify transition probabilities.

Passive vs. Active learning

- Passive learning
 - The agent has a fixed policy and tries to learn the utilities of states by observing the world go by
 - Analogous to policy evaluation
 - Often serves as a component of active learning algorithms
 - Often inspires active learning algorithms
- Active learning
 - The agent attempts to find an optimal (or at least good) policy by acting in the world
 - Analogous to solving the underlying MDP, but without first being given the MDP model

Passive Learning

- Simplified task
 - ➤ You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - ightharpoonup You are given a policy $\pi(s)$
 - Goal: learn the state values
 - ... what policy evaluation did
- In this case:
 - Learner "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We'll get to the active case soon
 - This is NOT offline planning! You actually take actions in the world and see what happens...

Model-Based vs. Model-Free RL

- *Model based approach to RL*:
 - learn the MDP model, or an approximation of it
 - use it for policy evaluation or to find the optimal policy
- ► Model free approach to RL:
 - derive the optimal policy without explicitly learning the model
 - useful when model is difficult to represent and/or learn

Model-Based Learning

- Idea:
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct
- Simple empirical model learning
 - Count outcomes for each s,a
 - Normalize to give estimate of T(s,a,s')
 - Discover R(s,a,s') when we experience (s,a,s')

■ Iterative policy evaluation, for example

Passive RL

11

- Estimate $U^{\pi}(s)$
- Not given
 - transition matrix, nor
 - reward function!
- Follow the policy for many epochs giving training sequences.

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,4) +1$$

 $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (3,4) +1$
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) -1$

- Assume that after entering +1 or -1 state the agent enters zero reward terminal state
 - ■So we don't bother showing those transitions

Approach 1: Direct Estimation

- Direct estimation (also called Monte Carlo)
 - Estimate $U^{\pi}(s)$ as average total reward of epochs containing s (calculating from s to end of epoch)
- **Reward to go** of a state s

the sum of the (discounted) rewards from that state until a terminal state is reached

- Key: use observed reward to go of the state as the direct evidence of the actual expected utility of that state
- Averaging the reward-to-go samples will converge to true value at state
- Convert the problem into supervised learning problem
 - Learn / Estimate utilities from the list of utilities in training sequences
 - Can average utilities for one sequence if the same state appears multiple times

Direct Estimation

- Converge very slowly to correct utilities values (requires more sequences than perhaps necessary)
- Doesn't exploit Bellman constraints on policy values

$$U^{\pi}(s) = R(s) + \beta \sum_{s'} T(s, \pi(s), s') U^{\pi}(s')$$

■ It is happy to consider value function estimates that violate this property badly.

How can we incorporate the Bellman constraints?

Approach 2: Adaptive Dynamic Programming (ADP)

- ADP is a model based approach
 - ► Follow the policy for awhile
 - Estimate transition model based on observations
 - Learn reward function
 - Use estimated model to compute utility of policy

$$U^{\pi}(s) = R(s) + \beta \sum_{s'} T(s, a, s') U^{\pi}(s')$$

learned

- How can we estimate transition model T(s,a,s')?
 - Simply the fraction of times we see s' after taking a in state s.

Adaptive DP (ADP)

Use the constraints (state transition probabilities) between states to speed learning.

Solve

$$U(i) = R(i) + \sum_{j} M_{ij}U(j)$$

= value determination.

No maximization over actions because agent is passive unlike in value iteration.

using DP

Too many linear equations to solve

One equation for each state \rightarrow Large state space

e.g. Backgammon: 10^{50} equations in 10^{50} variables

Temporal-Difference Learning

- Use the observed transitions to adjust the values of the observed states so that they agree with the constraint equations.
- Learn from every experience!
 - Update U(s) each time we experience (s,a,s',r)
 - Likely s' will contribute updates more often
- Temporal difference learning
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

Sample of U(s):
$$sample = R(s, \pi(s), s') + \gamma \cup^{\pi}(s')$$

Update to U(s):
$$U^{\pi}(s) \leftarrow (1-\alpha)U^{\pi}(s) + (\alpha)sample$$

Same update:
$$U^{\cdot \pi}(s) \leftarrow U^{\cdot \pi}(s) + \alpha(sample - U^{\cdot \pi}(s))$$

Temporal Difference (TD) Learning

Do ADP backups on a per move basis, not for the whole state space.

$$U(i) \leftarrow U(i) + \alpha [R(i) + U(j) - U(i)]$$

Thrm: Average value of U(i) converges to the correct value.

Thrm: If α is appropriately decreased as a function of times a state is visited (α = α [N[i]]), then U(i) itself converges to the correct value

Comparing Convergence between ADP and TD

- **Tradeoff:** requires more training experience (epochs) than ADP but much less computation per epoch
- Choice depends on relative cost of experience vs. computation

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation
- We want to turn values into a (new) policy

$$\pi(s) = \arg\max_{a} Q^*(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma U^{*}(s') \right]$$

- Idea: learn Q-values directly
- Makes action selection model-free too!

Passive RL: Comparisons

- Monte-Carlo Direct Estimation (model free)
 - Simple to implement
 - Each update is fast
 - Does not exploit Bellman constraints
 - Converges slowly
- Adaptive Dynamic Programming (model based)
 - Harder to implement
 - Each update is a full policy evaluation (expensive)
 - ► Fully exploits Bellman constraints
 - Fast convergence (in terms of updates)
- Temporal Difference Learning (model free)
 - Update speed and implementation similiar to direct estimation
 - Partially exploits Bellman constraints---adjusts state to 'agree' with observed successor
 - Not all possible successors as in ADP
 - Convergence in between direct estimation and ADP