Further analysis of the Cartan abelian core

Sarah Reznikoff Kansas State University

joint work with Jonathan Brown, Gabriel Nagy, Carla Farsi, Elizabeth Gillaspy, Aidan Sims, and Dana Williams

NIFAS 2018 Creighton University

Plan

- Introduction
- II. Graph and k-graph algebras
- III. Uniqueness theorems
- IV. Cartan subalgebras

Uniqueness Theorems: Under what conditions is a *-homomorphism $\phi: C^*(\mathscr{G}) \to B(H)$ injective?

Uniqueness Theorems: Under what conditions is a *-homomorphism $\phi: C^*(\mathscr{G}) \to B(H)$ injective?

Theorem (Brown-Nagy-R-Sims-Williams) There is a canonical subalgebra $\mathscr{M}\subseteq C^*(\mathscr{G})$ from which injectivity lifts.

Uniqueness Theorems: Under what conditions is a *-homomorphism $\phi: C^*(\mathscr{G}) \to B(H)$ injective?

Theorem (Brown-Nagy-R-Sims-Williams) There is a canonical subalgebra $\mathscr{M}\subseteq C^*(\mathscr{G})$ from which injectivity lifts.

• \mathscr{M} captures the forced periodicity in \mathscr{G} .

Uniqueness Theorems: Under what conditions is a *-homomorphism $\phi: C^*(\mathscr{G}) \to B(H)$ injective?

Theorem (Brown-Nagy-R-Sims-Williams) There is a canonical subalgebra $\mathscr{M}\subseteq C^*(\mathscr{G})$ from which injectivity lifts.

- \mathscr{M} captures the forced periodicity in \mathscr{G} .
- M is in certain cases a Cartan subalgebra.

Goal Analyze the pair $(C^*(\mathscr{G}), \mathscr{M})$ in the context of Renault's theory of Cartan inclusions.

Graph Algebras

Graph Algebras C^* -algebras defined from directed graphs Let $E=(E^0,E^1,r,s)$ be a directed graph with vertex set E^0 , edge set E^1 , and range and source maps $r,s:E^1\to E^0$.

Let $E=(E^0,E^1,r,s)$ be a directed graph with vertex set E^0 , edge set E^1 , and range and source maps $r,s:E^1\to E^0$.

A *Cuntz-Krieger system* associates the pieces of E to operators on a Hilbert space H, as follows:

Let $E=(E^0,E^1,r,s)$ be a directed graph with vertex set E^0 , edge set E^1 , and range and source maps $r,s:E^1\to E^0$.

A *Cuntz-Krieger system* associates the pieces of E to operators on a Hilbert space H, as follows:

 $E^0 \ni v \mapsto T_v$ mutually orthogonal projections

 $E^1 \ni e \mapsto T_e \qquad \text{partial isometries} \quad T_e: T_e^* T_e H \to T_e T_e^* H$

Let $E=(E^0,E^1,r,s)$ be a directed graph with vertex set E^0 , edge set E^1 , and range and source maps $r,s:E^1\to E^0$.

A *Cuntz-Krieger system* associates the pieces of E to operators on a Hilbert space H, as follows:

$$E^0 \ni v \mapsto T_v$$
 mutually orthogonal projections

$$E^1 \ni e \mapsto T_e$$
 partial isometries $T_e: T_e^*T_eH \to T_eT_e^*H$

satisfying the Cuntz-Krieger relations

Let $E=(E^0,E^1,r,s)$ be a directed graph with vertex set E^0 , edge set E^1 , and range and source maps $r,s:E^1\to E^0$.

A *Cuntz-Krieger system* associates the pieces of E to operators on a Hilbert space H, as follows:

$$E^0 \ni v \mapsto T_v$$
 mutually orthogonal projections

$$E^1 \ni e \mapsto T_e$$
 partial isometries $T_e: T_e^*T_eH \to T_eT_e^*H$

satisfying the Cuntz-Krieger relations

$${\sf CK1} \qquad \qquad T_e^*T_e = T_v, \qquad \qquad {\sf where} \; v = s(e).$$

CK2
$$\sum_{r(e)=w} T_e T_e^* = T_w \quad \text{(assuming } 0 < |r^{-1}(w)| < \infty).$$

More generally, for $k \in \mathbb{N}^+$, a k-graph is a graded category $\Lambda = (\Lambda^n \,,\, n \in \mathbb{N}^k)$ with degree map $d: \Lambda \to \mathbb{N}^k$, $\Lambda^n := d^{-1}(n)$, satisfying the *Unique Factorization Property*:

More generally, for $k \in \mathbb{N}^+$, a k-graph is a graded category $\Lambda = (\Lambda^n \,,\, n \in \mathbb{N}^k)$ with degree map $d: \Lambda \to \mathbb{N}^k$, $\Lambda^n := d^{-1}(n)$, satisfying the *Unique Factorization Property*:

If $\lambda \in \Lambda^{m+n}$ then there are unique $\mu \in \Lambda^m$, $\nu \in \Lambda^n$ s.t. $\lambda = \mu \nu$.

More generally, for $k \in \mathbb{N}^+$, a k-graph is a graded category $\Lambda = (\Lambda^n \,,\, n \in \mathbb{N}^k)$ with degree map $d: \Lambda \to \mathbb{N}^k$, $\Lambda^n := d^{-1}(n)$, satisfying the *Unique Factorization Property*:

If $\lambda \in \Lambda^{m+n}$ then there are unique $\mu \in \Lambda^m$, $\nu \in \Lambda^n$ s.t. $\lambda = \mu \nu$.

A Cuntz-Krieger system for a k-graph Λ is a family $\{T_{\lambda}, \lambda \in \Lambda\}$ of partial isometries satisfying Cuntz-Krieger relations.

More generally, for $k \in \mathbb{N}^+$, a k-graph is a graded category $\Lambda = (\Lambda^n \,,\, n \in \mathbb{N}^k)$ with degree map $d: \Lambda \to \mathbb{N}^k$, $\Lambda^n := d^{-1}(n)$, satisfying the *Unique Factorization Property*:

If $\lambda \in \Lambda^{m+n}$ then there are unique $\mu \in \Lambda^m$, $\nu \in \Lambda^n$ s.t. $\lambda = \mu \nu$.

A Cuntz-Krieger system for a k-graph Λ is a family $\{T_\lambda, \lambda \in \Lambda\}$ of partial isometries satisfying Cuntz-Krieger relations.

 $C^*(\Lambda)=$ the algebra generated by a universal C-K system.

More generally, for $k \in \mathbb{N}^+$, a k-graph is a graded category $\Lambda = (\Lambda^n \,,\, n \in \mathbb{N}^k)$ with degree map $d: \Lambda \to \mathbb{N}^k$, $\Lambda^n := d^{-1}(n)$, satisfying the *Unique Factorization Property*:

If $\lambda \in \Lambda^{m+n}$ then there are unique $\mu \in \Lambda^m$, $\nu \in \Lambda^n$ s.t. $\lambda = \mu \nu$.

A *Cuntz-Krieger system* for a k-graph Λ is a family $\{T_{\lambda}, \lambda \in \Lambda\}$ of partial isometries satisfying Cuntz-Krieger relations.

 $C^*(\Lambda)=$ the algebra generated by a universal C-K system. $=\operatorname{span}\{t_{\alpha}t_{\beta}^*\,|\,s(\alpha)=s(\beta)\}$

More generally, for $k \in \mathbb{N}^+$, a k-graph is a graded category $\Lambda = (\Lambda^n \,,\, n \in \mathbb{N}^k)$ with degree map $d: \Lambda \to \mathbb{N}^k$, $\Lambda^n := d^{-1}(n)$, satisfying the *Unique Factorization Property*:

If $\lambda \in \Lambda^{m+n}$ then there are unique $\mu \in \Lambda^m$, $\nu \in \Lambda^n$ s.t. $\lambda = \mu \nu$.

A Cuntz-Krieger system for a k-graph Λ is a family $\{T_{\lambda}, \lambda \in \Lambda\}$ of partial isometries satisfying Cuntz-Krieger relations.

 $C^*(\Lambda)=$ the algebra generated by a universal C-K system. $=\operatorname{span}\{t_{\alpha}t_{\beta}^*\,|\,s(\alpha)=s(\beta)\}$

Q: When is the natural map $\pi: C^*(\Lambda) \to C^*(T_{\lambda})$ injective?

Coburn's Theorem ('67):

$$\stackrel{e}{\longrightarrow} \stackrel{e}{\longleftarrow} f$$

$$C^*(T_\lambda) \cong \mathcal{T}$$

Coburn's Theorem ('67):

$$C^*(T_\lambda) \cong \mathcal{T}$$

Cuntz ('77):

$$C^*(T_\lambda) \cong \mathscr{O}_n$$

Cuntz algebras

Coburn's Theorem ('67):

$$C^*(T_\lambda) \cong \mathcal{T}$$

Cuntz ('77):

$$C^*(T_\lambda)\cong \mathscr{O}_n$$

Cuntz algebras

Cuntz-Krieger ('80): Cuntz-Krieger algebras \mathcal{O}_A .

Coburn's Theorem ('67):

$$C^*(T_\lambda) \cong \mathcal{T}$$

Cuntz ('77):

 $C^*(T_\lambda)\cong \mathscr{O}_n$ Cuntz algebras

Cuntz-Krieger ('80): Cuntz-Krieger algebras \mathcal{O}_A .

Example where uniqueness fails:

Coburn's Theorem ('67):

$$C^*(T_\lambda) \cong \mathcal{T}$$

Cuntz ('77):

$$C^*(T_\lambda) \cong \mathscr{O}_n$$

Cuntz algebras

Cuntz-Krieger ('80): Cuntz-Krieger algebras \mathcal{O}_A .

Example where uniqueness fails:

$$T_{v_i} = \varepsilon_{ii}, \ T_{e_{i,j}} = \varepsilon_{ji}$$
 (matrix units) $C^*(T_\lambda) = M_3(\mathbb{C}) \ncong C(\mathbb{T}, M_3(\mathbb{C})) = C^*(E).$ The graph has a cycle without entry

The graph has a cycle without entry.

(Kumjian-Pask-Raeburn-Fowler, et. al. ('90's))

(Kumjian-Pask-Raeburn-Fowler, et. al. ('90's)) If every cycle in E has an entry (L), then uniqueness holds; i.e., $\pi:C^*(E)\to C^*(T_\lambda)$ is injective iff it is injective on the diagonal

$$\mathscr{D} := C^*(\{t_\alpha t_\alpha^* \mid \alpha \in E^*\}).$$

(Kumjian-Pask-Raeburn-Fowler, et. al. ('90's)) If every cycle in E has an entry (L), then uniqueness holds; i.e., $\pi: C^*(E) \to C^*(T_\lambda)$ is injective iff it is injective on the diagonal

$$\mathscr{D} := C^*(\{t_\alpha t_\alpha^* \mid \alpha \in E^*\}).$$

Theorem (Nagy-R, 2012) $\pi: C^*(E) \to C^*(T_\lambda)$ is injective iff it is injective on the *cycline subalgebra*

(Kumjian-Pask-Raeburn-Fowler, et. al. ('90's))

If every cycle in E has an entry (L), then uniqueness holds; i.e., $\pi:C^*(E)\to C^*(T_\lambda)$ is injective iff it is injective on the diagonal

$$\mathscr{D} := C^*(\{t_\alpha t_\alpha^* \mid \alpha \in E^*\}).$$

Theorem (Nagy-R, 2012) $\pi: C^*(E) \to C^*(T_\lambda)$ is injective iff it is injective on the *cycline subalgebra*

$$\mathscr{M} = \, C^*(\{t_\alpha t_\alpha^* \,,\, \alpha \in E^*\} \cup \{t_{\alpha \circ \lambda} t_\alpha^* \,|\, \lambda \text{ a cycle without entry}\})$$

(Kumjian-Pask-Raeburn-Fowler, et. al. ('90's))

If every cycle in E has an entry (L), then uniqueness holds; i.e., $\pi:C^*(E)\to C^*(T_\lambda)$ is injective iff it is injective on the diagonal

$$\mathscr{D} := C^*(\{t_\alpha t_\alpha^* \mid \alpha \in E^*\}).$$

Theorem (Nagy-R, 2012) $\pi: C^*(E) \to C^*(T_\lambda)$ is injective iff it is injective on the *cycline subalgebra*

$$\mathscr{M} = \, C^*(\{t_\alpha t_\alpha^* \,,\, \alpha \in E^*\} \cup \{t_{\alpha \circ \lambda} t_\alpha^* \,|\, \lambda \text{ a cycle without entry}\})$$

2014 (Brown-Nagy-R) Extension of result to k-graph algebras.

(Kumjian-Pask-Raeburn-Fowler, et. al. ('90's))

If every cycle in E has an entry (L), then uniqueness holds; i.e., $\pi:C^*(E)\to C^*(T_\lambda)$ is injective iff it is injective on the diagonal

$$\mathscr{D} := C^*(\{t_\alpha t_\alpha^* \mid \alpha \in E^*\}).$$

Theorem (Nagy-R, 2012) $\pi: C^*(E) \to C^*(T_\lambda)$ is injective iff it is injective on the *cycline subalgebra*

$$\mathscr{M} = \, C^*(\{t_\alpha t_\alpha^* \,,\, \alpha \in E^*\} \cup \{t_{\alpha \circ \lambda} t_\alpha^* \,|\, \lambda \text{ a cycle without entry}\})$$

2014 (Brown-Nagy-R) Extension of result to k-graph algebras.

2016 (Brown-Nagy-R-Sims-Williams) Groupoid algebras.

(Kumjian-Pask-Raeburn-Fowler, et. al. ('90's))

If every cycle in E has an entry (L), then uniqueness holds; i.e., $\pi:C^*(E)\to C^*(T_\lambda)$ is injective iff it is injective on the diagonal

$$\mathscr{D} := C^*(\{t_\alpha t_\alpha^* \mid \alpha \in E^*\}).$$

Theorem (Nagy-R, 2012) $\pi: C^*(E) \to C^*(T_\lambda)$ is injective iff it is injective on the *cycline subalgebra*

$$\mathscr{M} = \, C^*(\{t_\alpha t_\alpha^* \,,\, \alpha \in E^*\} \cup \{t_{\alpha \circ \lambda} t_\alpha^* \,|\, \lambda \text{ a cycle without entry}\})$$

2014 (Brown-Nagy-R) Extension of result to k-graph algebras.

2016 (Brown-Nagy-R-Sims-Williams) Groupoid algebras.

Uniqueness theorems for other combinatorial algebras:

(Kumjian-Pask-Raeburn-Fowler, et. al. ('90's))

If every cycle in E has an entry (L), then uniqueness holds; i.e., $\pi: C^*(E) \to C^*(T_\lambda)$ is injective iff it is injective on the diagonal

$$\mathscr{D} := C^*(\{t_\alpha t_\alpha^* \mid \alpha \in E^*\}).$$

Theorem (Nagy-R, 2012) $\pi: C^*(E) \to C^*(T_\lambda)$ is injective iff it is injective on the *cycline subalgebra*

$$\mathscr{M} = \, C^*(\{t_\alpha t_\alpha^* \,,\, \alpha \in E^*\} \cup \{t_{\alpha \circ \lambda} t_\alpha^* \,|\, \lambda \text{ a cycle without entry}\})$$

2014 (Brown-Nagy-R) Extension of result to k-graph algebras.

2016 (Brown-Nagy-R-Sims-Williams) Groupoid algebras.

Uniqueness theorems for other combinatorial algebras:

Inverse semigroups (LaLonde, Milan), Steinberg algebras (Clark-Exel-Pardo), ultragraph algebras (Gonçalves, Li, Royer).

History
Renault's theorem
Groupoids
more on k-graphs

Cartan subalgebras

Recall: abelian operator algebras are well-understood.

Recall: abelian operator algebras are well-understood.

- von Neumann algebras: L^{∞} spaces
- C^* -algebras: C(X) for l.c. Hausdorff spaces X.

Recall: abelian operator algebras are well-understood.

- von Neumann algebras: L^{∞} spaces
- C^* -algebras: C(X) for l.c. Hausdorff spaces X.

Recall: abelian operator algebras are well-understood.

- von Neumann algebras: L^{∞} spaces
- C^* -algebras: C(X) for l.c. Hausdorff spaces X.

To study nonabelian operator algebras, examine nice abelian subalgebras, such as Cartan subalgebras. A brief history:

1971 Vershik: notion of Cartan sub-von Neumann algebra.

Recall: abelian operator algebras are well-understood.

- von Neumann algebras: L^{∞} spaces
- C^* -algebras: C(X) for l.c. Hausdorff spaces X.

- 1971 Vershik: notion of Cartan sub-von Neumann algebra.
- 1977 Feldman-Moore: Cartan von Neumann pairs arise from measured countable equivalence relations.

Recall: abelian operator algebras are well-understood.

- von Neumann algebras: L^{∞} spaces
- C^* -algebras: C(X) for l.c. Hausdorff spaces X.

- 1971 Vershik: notion of Cartan sub-von Neumann algebra.
- 1977 Feldman-Moore: Cartan von Neumann pairs arise from measured countable equivalence relations.
- 1980 Renault's definition of Cartan C^* -subalgebra. Corresponds to a nice groupoid with a twist.

Recall: abelian operator algebras are well-understood.

- von Neumann algebras: L^{∞} spaces
- C^* -algebras: C(X) for l.c. Hausdorff spaces X.

- 1971 Vershik: notion of Cartan sub-von Neumann algebra.
- 1977 Feldman-Moore: Cartan von Neumann pairs arise from measured countable equivalence relations.
- 1980 Renault's definition of Cartan C^* -subalgebra. Corresponds to a nice groupoid with a twist.
- 1986 Kumjian: notion of C^* -diagonal subalgebra pair arising from a twisted equivalence relation.

 $\bullet \; \exists \; \text{a faithful conditional expectation} \; \mathcal{A} \to \mathcal{B},$

- ullet \exists a faithful conditional expectation $\mathcal{A} \to \mathcal{B}$,
- The normalizer of \mathcal{B} in \mathcal{A} generates \mathcal{A} ,

- ullet \exists a faithful conditional expectation $\mathcal{A} \to \mathcal{B}$,
- ullet The normalizer of $\mathcal B$ in $\mathcal A$ generates $\mathcal A$, and

- ullet \exists a faithful conditional expectation $\mathcal{A} \to \mathcal{B},$
- ullet The normalizer of ${\cal B}$ in ${\cal A}$ generates ${\cal A}$, and
- ullet ${\cal B}$ contains an approximate unit of ${\cal A}$.

- ullet \exists a faithful conditional expectation $\mathcal{A} \to \mathcal{B},$
- ullet The normalizer of ${\cal B}$ in ${\cal A}$ generates ${\cal A}$, and
- \bullet ${\cal B}$ contains an approximate unit of ${\cal A}.$

Thm (Nagy-R, 2012)

The cycline subalgebra of a graph algebra is Cartan.

- ullet \exists a faithful conditional expectation $\mathcal{A} \to \mathcal{B},$
- ullet The normalizer of ${\cal B}$ in ${\cal A}$ generates ${\cal A}$, and
- $\mathcal B$ contains an approximate unit of $\mathcal A$.

Thm (Nagy-R, 2012)

The cycline subalgebra of a graph algebra is Cartan.

Theorem (Renault, '80)

- ullet \exists a faithful conditional expectation $\mathcal{A} \to \mathcal{B},$
- ullet The normalizer of ${\cal B}$ in ${\cal A}$ generates ${\cal A}$, and
- \bullet ${\cal B}$ contains an approximate unit of ${\cal A}.$

Thm (Nagy-R, 2012)

The cycline subalgebra of a graph algebra is Cartan.

Theorem (Renault, '80)

Given a Cartan subalgebra $B \subseteq A$, there exists an étale, $2^{\rm nd}$ countable, locally compact Hausdorff, topologically principal groupoid $\mathcal G$ and a twist Σ s.t. $(C_r^*(\mathcal G,\Sigma),C_0(\mathcal G^{(0)}))\cong (A,B)$.

- $\bullet \ \exists \ a \ faithful \ conditional \ expectation \ \mathcal{A} \to \mathcal{B},$
- ullet The normalizer of ${\cal B}$ in ${\cal A}$ generates ${\cal A}$, and
- \bullet ${\cal B}$ contains an approximate unit of ${\cal A}.$

Thm (Nagy-R, 2012)

The cycline subalgebra of a graph algebra is Cartan.

Theorem (Renault, '80)

Given a Cartan subalgebra $B \subseteq A$, there exists an étale, $2^{\rm nd}$ countable, locally compact Hausdorff, topologically principal groupoid $\mathcal G$ and a twist Σ s.t. $(C_r^*(\mathcal G,\Sigma),C_0(\mathcal G^{(0)}))\cong (A,B)$.

Q: What is the Weyl groupoid \mathcal{G} of $(C^*(E), \mathcal{M})$?

- $\bullet \ \exists \ a \ faithful \ conditional \ expectation \ \mathcal{A} \to \mathcal{B},$
- ullet The normalizer of ${\cal B}$ in ${\cal A}$ generates ${\cal A}$, and
- \bullet ${\cal B}$ contains an approximate unit of ${\cal A}.$

Thm (Nagy-R, 2012)

The cycline subalgebra of a graph algebra is Cartan.

Theorem (Renault, '80)

Given a Cartan subalgebra $B \subseteq A$, there exists an étale, $2^{\rm nd}$ countable, locally compact Hausdorff, topologically principal groupoid $\mathcal G$ and a twist Σ s.t. $(C_r^*(\mathcal G,\Sigma),C_0(\mathcal G^{(0)}))\cong (A,B)$.

Q: What is the Weyl groupoid \mathcal{G} of $(C^*(E), \mathcal{M})$?

The *path groupoid* of a directed graph E is defined from the infinite path space E^{∞} (paths with range, no source).

$$\mathcal{G}_E = \{ (\alpha y, m, \beta y) \mid y \in E^{\infty}, \ \alpha, \beta \in E^*, \ m = d(\alpha) - d(\beta) \}$$

$$(x, m, y)(y, m', z) = (x, m + m', z) \quad (x, m, y)^{-1} = (y, -m, x)$$

The *path groupoid* of a directed graph E is defined from the infinite path space E^{∞} (paths with range, no source).

$$\mathcal{G}_E = \{ (\alpha y, m, \beta y) \mid y \in E^{\infty}, \ \alpha, \beta \in E^*, \ m = d(\alpha) - d(\beta) \}$$

$$(x, m, y)(y, m', z) = (x, m + m', z) \quad (x, m, y)^{-1} = (y, -m, x)$$

Isotropy subgroupoid: Iso $(\mathcal{G}_E) = \{(\alpha y, m, \beta y) \in \mathcal{G}_E \mid \alpha y = \beta y\}$

The path groupoid of a directed graph E is defined from the infinite path space E^{∞} (paths with range, no source).

$$\mathcal{G}_E = \{ (\alpha y, m, \beta y) \mid y \in E^{\infty}, \ \alpha, \beta \in E^*, \ m = d(\alpha) - d(\beta) \}$$

$$(x, m, y)(y, m', z) = (x, m + m', z) \quad (x, m, y)^{-1} = (y, -m, x)$$

Isotropy subgroupoid: Iso
$$(\mathcal{G}_E) = \{(\alpha y, m, \beta y) \in \mathcal{G}_E \mid \alpha y = \beta y\}$$

Unit space: $\mathcal{G}_E^{(0)} = \{(x, 0, x) \mid x \in E^{\infty}\}.$

The *path groupoid* of a directed graph E is defined from the infinite path space E^{∞} (paths with range, no source).

$$\mathcal{G}_E = \{ (\alpha y, m, \beta y) \mid y \in E^{\infty}, \ \alpha, \beta \in E^*, \ m = d(\alpha) - d(\beta) \}$$

$$(x, m, y)(y, m', z) = (x, m + m', z) \quad (x, m, y)^{-1} = (y, -m, x)$$

Isotropy subgroupoid: Iso
$$(\mathcal{G}_E) = \{(\alpha y, m, \beta y) \in \mathcal{G}_E \mid \alpha y = \beta y\}$$

Unit space: $\mathcal{G}_E^{(0)} = \{(x, 0, x) \mid x \in E^{\infty}\}.$

Basis for topology:

cylinder sets
$$Z(\alpha, \beta) = \{(\alpha y, d(\alpha) - d(\beta), \beta y) \in \mathcal{G}_E\}.$$

History
Renault's theorem
Groupoids
more on k-graphs

 $C^*(\mathcal{G})$: For a topological groupoid \mathcal{G} , $C^*(\mathcal{G})$ is defined to be a completion of $C_c(\mathcal{G})$, and $C_r^*(\mathcal{G})$ is the image of $C^*(\mathcal{G})$ under the direct sum of the left regular representations.

k-graph case:

$$C_r^*(\mathcal{G}_{\Lambda}) = C^*(\mathcal{G}_{\Lambda}) \cong C^*(\Lambda) \text{ with } C^*(\mathrm{Iso}(\mathcal{G}_{\Lambda})^{\circ}) \cong \mathscr{M}.$$

k-graph case:

$$C^*_r(\mathcal{G}_\Lambda) = \ C^*(\mathcal{G}_\Lambda) \cong C^*(\Lambda) \ \ \text{with} \ \ C^*(\mathrm{Iso}(\mathcal{G}_\Lambda)^\circ) \cong \mathscr{M}.$$

Q: What is the Weyl groupoid \mathcal{G} of $(C^*(E), \mathcal{M})$?

k-graph case:

$$C^*_r(\mathcal{G}_\Lambda) = \ C^*(\mathcal{G}_\Lambda) \cong C^*(\Lambda) \ \ \text{with} \ \ C^*(\mathrm{Iso}(\mathcal{G}_\Lambda)^\circ) \cong \mathscr{M}.$$

Q: What is the Weyl groupoid \mathcal{G} of $(C^*(E), \mathcal{M})$?

• When Condition (L) holds, \mathcal{G} equals the path groupoid \mathcal{G}_E .

k-graph case:

$$C^*_r(\mathcal{G}_\Lambda) = \ C^*(\mathcal{G}_\Lambda) \cong C^*(\Lambda) \ \ \text{with} \ \ C^*(\mathrm{Iso}(\mathcal{G}_\Lambda)^\circ) \cong \mathscr{M}.$$

Q: What is the Weyl groupoid \mathcal{G} of $(C^*(E), \mathcal{M})$?

- When Condition (L) holds, \mathcal{G} equals the path groupoid \mathcal{G}_E .
- When (L) fails, the Weyl groupoid cannot be the path groupoid G_E, which fails to be topologically principal:

k-graph case:

$$C^*_r(\mathcal{G}_\Lambda) = \ C^*(\mathcal{G}_\Lambda) \cong C^*(\Lambda) \ \ \text{with} \ \ C^*(\mathrm{Iso}(\mathcal{G}_\Lambda)^\circ) \cong \mathscr{M}.$$

Q: What is the Weyl groupoid \mathcal{G} of $(C^*(E), \mathcal{M})$?

- When Condition (L) holds, \mathcal{G} equals the path groupoid \mathcal{G}_E .
- When (L) fails, the Weyl groupoid cannot be the path groupoid G_E, which fails to be topologically principal:

Topological principality requires $(\alpha y, m, \beta y) \in \mathrm{Iso}(\mathcal{G}_E) \Rightarrow m = 0$

k-graph case:

$$C^*_r(\mathcal{G}_\Lambda) = \ C^*(\mathcal{G}_\Lambda) \cong C^*(\Lambda) \ \ \text{with} \ \ C^*(\mathrm{Iso}(\mathcal{G}_\Lambda)^\circ) \cong \mathscr{M}.$$

Q: What is the Weyl groupoid \mathcal{G} of $(C^*(E), \mathcal{M})$?

- When Condition (L) holds, \mathcal{G} equals the path groupoid \mathcal{G}_E .
- When (L) fails, the Weyl groupoid cannot be the path groupoid G_E, which fails to be topologically principal:

Topological principality requires $(\alpha y, m, \beta y) \in \mathrm{Iso}(\mathcal{G}_E) \Rightarrow m = 0$ which fails here because $(\alpha \lambda \lambda^{\infty}, 1, \alpha \lambda^{\infty}) \in \mathrm{Iso}(\mathcal{G}_E)$.

Theorem (Farsi-Gillaspy-R-Sims, 2017) [Description of the Weyl groupoid for the pair $(C^*(E), \mathscr{M})$ for E a directed graph.]

Theorem (Farsi-Gillaspy-R-Sims, 2017) [Description of the Weyl groupoid for the pair $(C^*(E), \mathcal{M})$ for E a directed graph.]

Idea of proof: make all elements in the isotropy subgroupoid into units by removing evidence that they are not and distinguishing them with distinct indices from \mathbb{T} .

Theorem (Farsi-Gillaspy-R-Sims, 2017) [Description of the Weyl groupoid for the pair $(C^*(E), \mathscr{M})$ for E a directed graph.]

Idea of proof: make all elements in the isotropy subgroupoid into units by removing evidence that they are not and distinguishing them with distinct indices from \mathbb{T} .

The general case is in progress. Considerations:

Theorem (Farsi-Gillaspy-R-Sims, 2017) [Description of the Weyl groupoid for the pair $(C^*(E), \mathscr{M})$ for E a directed graph.]

Idea of proof: make all elements in the isotropy subgroupoid into units by removing evidence that they are not and distinguishing them with distinct indices from \mathbb{T} .

The general case is in progress. Considerations:

Theorem (Brown-Nagy-R-Sims-Williams, 2016) The cycline subalgebra $C^*(\operatorname{Iso}(\mathcal{G})^\circ)$ of a groupoid algebra is Cartan iff $\operatorname{Iso}(\mathcal{G})^\circ$ closed and abelian.

Theorem (Farsi-Gillaspy-R-Sims, 2017) [Description of the Weyl groupoid for the pair $(C^*(E), \mathcal{M})$ for E a directed graph.]

Idea of proof: make all elements in the isotropy subgroupoid into units by removing evidence that they are not and distinguishing them with distinct indices from \mathbb{T} .

The general case is in progress. Considerations:

Theorem (Brown-Nagy-R-Sims-Williams, 2016) The cycline subalgebra $C^*(\operatorname{Iso}(\mathcal{G})^\circ)$ of a groupoid algebra is Cartan iff $\operatorname{Iso}(\mathcal{G})^\circ$ closed and abelian.

Brown, Li, Yang: Concrete necessary and sufficient conditions on a k-graph for $\text{Iso}(\mathcal{G})^{\circ}$ to be closed. It's not always!

Introduction Graph algebras Uniqueness theorems Cartan subalgebras History Renault's theorem Groupoids more on k-graphs

History Renault's theorem Groupoids more on k-graphs

Think of elements of degree ε_i as edges of color i.

Think of elements of degree ε_i as edges of color i. A morphism of degree $\varepsilon_i + \varepsilon_j = \varepsilon_j + \varepsilon_i$ has factorizations Think of elements of degree ε_i as edges of color i.

A morphism of degree $\varepsilon_{\pmb{i}}+\varepsilon_{\pmb{j}}=\varepsilon_{\pmb{j}}+\varepsilon_{\pmb{i}}$ has factorizations $\alpha\beta=\beta'\alpha'$, where $d(\alpha')=d(\alpha)=\varepsilon_{\pmb{i}}$ and $d(\beta)=d(\beta')=\varepsilon_{\pmb{j}}$

These "commuting squares" determine all factorization rules of the k-graph. Example:

Think of elements of degree ε_i as edges of color i.

A morphism of degree $\varepsilon_i + \varepsilon_j = \varepsilon_j + \varepsilon_i$ has factorizations $\alpha\beta = \beta'\alpha'$, where $d(\alpha') = d(\alpha) = \varepsilon_i$ and $d(\beta) = d(\beta') = \varepsilon_j$

These "commuting squares" determine all factorization rules of the k-graph. Example:

Commutation rules

$$e_b\beta_r = e_r\beta_b$$

$$\beta_bg_r = \beta_rg_b \qquad \beta_bh_r = \beta_rh_b,$$

$$g_bg_r = g_rg_b \qquad g_bh_r = h_rg_b,$$

$$h_bg_r = g_rh_b \qquad h_bh_r = h_rh_b$$

Think of elements of degree ε_i as edges of color i.

A morphism of degree $\varepsilon_i + \varepsilon_j = \varepsilon_j + \varepsilon_i$ has factorizations $\alpha\beta = \beta'\alpha'$, where $d(\alpha') = d(\alpha) = \varepsilon_i$ and $d(\beta) = d(\beta') = \varepsilon_j$

These "commuting squares" determine all factorization rules of the k-graph. Example:

Commutation rules

$$e_b\beta_r = e_r\beta_b$$

$$\beta_bg_r = \beta_rg_b \qquad \beta_bh_r = \beta_rh_b,$$

$$g_bg_r = g_rg_b \qquad g_bh_r = h_rg_b,$$

$$h_bg_r = g_rh_b \qquad h_bh_r = h_rh_b$$

Example of 2-graph Λ with $(\mathrm{Iso}(\mathcal{G}_{\Lambda}))^{\circ}$ not closed:

Example of 2-graph Λ with $(\operatorname{Iso}(\mathcal{G}_{\Lambda}))^{\circ}$ not closed:

Commutation rules:

$$e_b\alpha_r = e_r\alpha_b \qquad e_b\beta_r = e_r\beta_b$$

$$\beta_bg_r = \beta_rg_b \qquad \beta_bh_r = \beta_rh_b,$$

$$g_bg_r = g_rg_b \qquad g_bh_r = h_rg_b,$$

$$h_bg_r = g_rh_b \qquad h_bh_r = h_rh_b$$

$$\alpha_bf_r = \alpha_rf_b \qquad f_bf_r = f_rf_b$$

Example of 2-graph Λ with $(\operatorname{Iso}(\mathcal{G}_{\Lambda}))^{\circ}$ not closed:

Commutation rules:

$$e_b \alpha_r = e_r \alpha_b$$
 $e_b \beta_r = e_r \beta_b$
 $\beta_b g_r = \beta_r g_b$ $\beta_b h_r = \beta_r h_b$,
 $g_b g_r = g_r g_b$ $g_b h_r = h_r g_b$,
 $h_b g_r = g_r h_b$ $h_b h_r = h_r h_b$
 $\alpha_b f_r = \alpha_r f_b$ $f_b f_r = f_r f_b$

Here
$$(e_r(e_be_r)^{\infty}, (1, -1), e_b(e_be_r)^{\infty}) \in \overline{\mathrm{Iso}(\mathcal{G}_{\Lambda})^{\circ}} \setminus \mathrm{Iso}(\mathcal{G})^{\circ}$$
.

Thank you!

A groupoid twist is a groupoid extension

$$\mathbb{T} \times \mathcal{G}^{(0)} \longleftrightarrow \Sigma \twoheadrightarrow \mathcal{G}$$

defined via a 2-cocycle $\omega:\mathcal{G}^{(2)}\to\mathbb{T}$ on the set of composable pairs in \mathcal{G} , with product topology and $r(z,\gamma)=(1,r(\gamma))$, $s(z,\gamma)=(1,s(\gamma))$, and

$$(s,\eta)(t,\gamma) = (st\omega(\eta,\gamma),\eta\gamma) \quad (z,\eta)^{-1} = (z^{-1}\omega(\eta,\eta^{-1}),\gamma^{-1})$$

For $f, g \in C_c(\mathcal{G}, \Sigma)$, define

$$f * g(\gamma) = \int_{\mathcal{G}} f(\eta)g(\eta^{-1}\gamma)\omega(\eta, \eta^{-1}\gamma)d\lambda^{r(\gamma)}(\eta)$$

and

$$f^*(\gamma) = \overline{f(\gamma^{-1})\omega(\gamma, \gamma^{-1})}$$

Again, $C^*(\mathcal{G},\Sigma)$ is the completion of $C_c(\mathcal{G},\Sigma)$ in the usual norm.

To prove $C^*_r(\mathcal{G})\cong C^*(\mathcal{G}_E)$:

To prove $C_r^*(\mathcal{G}) \cong C^*(\mathcal{G}_E)$:

1. Identify Cuntz-Krieger E-system in $C_r^*(\mathcal{G})$.

1. Identify Cuntz-Krieger E-system in $C_r^*(\mathcal{G})$.

To each $e \in E^1 \cup E^0$, let

$$t_e = \begin{cases} \chi_{Z_{\mathcal{G}}(e,s(e))} & \text{if } e \notin E^1_{\circ} \\ \sum_{z \in \mathbb{T}} z \chi_{Z_{\mathcal{G}_E}(e,s(e)) \times \{z\}} & \text{if } e \in E^1_{\circ} \end{cases}$$

where $E^1_{\circ} \subseteq E^1$ consists of exactly one edge from each cycle without entry.

1. Identify Cuntz-Krieger E-system in $C_r^*(\mathcal{G})$.

To each $e \in E^1 \cup E^0$, let

$$t_e = \begin{cases} \chi_{Z_{\mathcal{G}}(e,s(e))} & \text{if } e \notin E^1_{\circ} \\ \sum_{z \in \mathbb{T}} z \chi_{Z_{\mathcal{G}_E}(e,s(e)) \times \{z\}} & \text{if } e \in E^1_{\circ} \end{cases}$$

where $E^1_\circ\subseteq E^1$ consists of exactly one edge from each cycle without entry.

2. Prove that $\pi:C^*(E)\to C^*(t_\alpha)$ is injective – for this we use GIUT.

- 1. Identify Cuntz-Krieger E-system in $C_r^*(\mathcal{G})$.
- To each $e \in E^1 \cup E^0$, let

$$t_e = \begin{cases} \chi_{Z_{\mathcal{G}}(e,s(e))} & \text{if } e \notin E^1_{\circ} \\ \sum_{z \in \mathbb{T}} z \chi_{Z_{\mathcal{G}_E}(e,s(e)) \times \{z\}} & \text{if } e \in E^1_{\circ} \end{cases}$$

where $E^1_{\circ} \subseteq E^1$ consists of exactly one edge from each cycle without entry.

- 2. Prove that $\pi:C^*(E)\to C^*(t_\alpha)$ is injective for this we use GIUT.
- 3. Prove that $C^*_r(\mathcal{G}) = C^*(t_\alpha)$.

1. Identify Cuntz-Krieger E-system in $C_r^*(\mathcal{G})$.

To each $e \in E^1 \cup E^0$, let

$$t_e = \begin{cases} \chi_{Z_{\mathcal{G}}(e,s(e))} & \text{if } e \notin E^1_{\circ} \\ \sum_{z \in \mathbb{T}} z \chi_{Z_{\mathcal{G}_E}(e,s(e)) \times \{z\}} & \text{if } e \in E^1_{\circ} \end{cases}$$

where $E^1_{\circ} \subseteq E^1$ consists of exactly one edge from each cycle without entry.

- 2. Prove that $\pi:C^*(E)\to C^*(t_\alpha)$ is injective for this we use GIUT.
- 3. Prove that $C_r^*(\mathcal{G}) = C^*(t_\alpha)$.

Step 1. $C_0(\mathcal{G}^{(0)}) \subseteq C^*(\{t_\alpha\})$ (use Stone-Weierstrass on the \mathcal{G}_U part and then a compactness argument)

1. Identify Cuntz-Krieger E-system in $C_r^*(\mathcal{G})$.

To each $e \in E^1 \cup E^0$, let

$$t_e = \begin{cases} \chi_{Z_{\mathcal{G}}(e,s(e))} & \text{if } e \notin E_{\circ}^1 \\ \sum_{z \in \mathbb{T}} z \chi_{Z_{\mathcal{G}_E}(e,s(e)) \times \{z\}} & \text{if } e \in E_{\circ}^1 \end{cases}$$

where $E^1_{\circ} \subseteq E^1$ consists of exactly one edge from each cycle without entry.

- 2. Prove that $\pi:C^*(E)\to C^*(t_\alpha)$ is injective for this we use GIUT.
- 3. Prove that $C_r^*(\mathcal{G}) = C^*(t_\alpha)$.
- Step 1. $C_0(\mathcal{G}^{(0)}) \subseteq C^*(\{t_\alpha\})$ (use Stone-Weierstrass on the \mathcal{G}_U part and then a compactness argument)
- Step 2. $C_c(\mathcal{G}) \subseteq C^*(\{t_\alpha\})$ (use the above and the fact that the C^* -algebra is closed under convolution).

Introduction Graph algebras Uniqueness theorems Cartan subalgebras History Renault's theorem Groupoids more on k-graphs

Goal: $(C_r^*(\mathcal{G}), C_0(\mathcal{G}^{(0)}) \cong (C^*(\mathcal{G}_E), C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ))$

Goal:
$$(C_r^*(\mathcal{G}), C_0(\mathcal{G}^{(0)}) \cong (C^*(\mathcal{G}_E), C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ))$$

Last page sketched $C_r^*(\mathcal{G}) \cong C^*(\mathcal{G}_E)$.

Goal:
$$(C_r^*(\mathcal{G}), C_0(\mathcal{G}^{(0)}) \cong (C^*(\mathcal{G}_E), C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ))$$

Last page sketched $C_r^*(\mathcal{G}) \cong C^*(\mathcal{G}_E)$.

To prove
$$\mathcal{M} := C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ) = C_0(\mathcal{G}^{(0)})$$
:

Goal:
$$(C_r^*(\mathcal{G}), C_0(\mathcal{G}^{(0)}) \cong (C^*(\mathcal{G}_E), C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ))$$

To prove
$$\mathcal{M} := C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ) = C_0(\mathcal{G}^{(0)})$$
:

Recall:
$$\mathcal{G}^{(0)} = (U \times \mathbb{T}) \cup K$$
, where

$$U = \{\alpha \lambda^{\infty} \mid \alpha \in E^*, \lambda \text{ is a cycle without entry in } E\}$$

$$K = E^{\infty} \setminus U$$

Goal:
$$(C_r^*(\mathcal{G}), C_0(\mathcal{G}^{(0)}) \cong (C^*(\mathcal{G}_E), C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ))$$

To prove
$$\mathcal{M} := C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ) = C_0(\mathcal{G}^{(0)})$$
:

Recall:
$$\mathcal{G}^{(0)} = (U \times \mathbb{T}) \cup K$$
, where

$$U = \{\alpha\lambda^{\infty} \mid \alpha \in E^*, \lambda \text{ is a cycle without entry in } E\}$$

$$K = E^{\infty} \setminus U$$

Any irreducible representation of $C^*((\operatorname{Iso}(\mathcal{G}))^\circ)$ factors through an irrep. of exactly one fiber algebra $C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ)_x$, $x \in E^\infty$.

Goal:
$$(C_r^*(\mathcal{G}), C_0(\mathcal{G}^{(0)}) \cong (C^*(\mathcal{G}_E), C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ))$$

To prove
$$\mathcal{M} := C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ) = C_0(\mathcal{G}^{(0)})$$
:

Recall:
$$\mathcal{G}^{(0)} = (U \times \mathbb{T}) \cup K$$
, where

$$U = \{\alpha \lambda^{\infty} \mid \alpha \in E^*, \lambda \text{ is a cycle without entry in } E\}$$

$$K = E^{\infty} \setminus U$$

Any irreducible representation of $C^*((\operatorname{Iso}(\mathcal{G}))^\circ)$ factors through an irrep. of exactly one fiber algebra $C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ)_x$, $x \in E^\infty$.

Fibers over $x \in K$ are singletons; each fiber over an $x \in U$ is isomorphic to $C^*(\mathbb{Z})$. Hence

Goal:
$$(C_r^*(\mathcal{G}), C_0(\mathcal{G}^{(0)}) \cong (C^*(\mathcal{G}_E), C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ))$$

To prove
$$\mathcal{M} := C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ) = C_0(\mathcal{G}^{(0)})$$
:

Recall:
$$\mathcal{G}^{(0)} = (U \times \mathbb{T}) \cup K$$
, where

$$U = \{\alpha \lambda^{\infty} \mid \alpha \in E^*, \lambda \text{ is a cycle without entry in } E\}$$

$$K = E^{\infty} \setminus U$$

Any irreducible representation of $C^*((\operatorname{Iso}(\mathcal{G}))^\circ)$ factors through an irrep. of exactly one fiber algebra $C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ)_x$, $x \in E^\infty$.

Fibers over $x \in K$ are singletons; each fiber over an $x \in U$ is isomorphic to $C^*(\mathbb{Z})$. Hence

$$C^*((\operatorname{Iso}(\mathcal{G}_E))^\circ)^\wedge = (\widehat{\operatorname{Iso}(\mathcal{G}_E)})^\circ = (U \times \mathbb{T}) \cup K.$$

Abstract Uniqueness Theorem (Brown-Nagy-R)

Abstract Uniqueness Theorem (Brown-Nagy-R) Let A be a C*-algebra and $M\subset A$ a C^* -subalgebra. Suppose there is a set $\mathcal S$ of pure states on M satisfying

Abstract Uniqueness Theorem (Brown-Nagy-R)

Let A be a C*-algebra and $M\subset A$ a C^* -subalgebra. Suppose there is a set $\mathcal S$ of pure states on M satisfying

(i) each $\psi \in \mathcal{S}$ extends uniquely to a state $\tilde{\psi}$ on A, and

Abstract Uniqueness Theorem (Brown-Nagy-R)

Let A be a C*-algebra and $M\subset A$ a C^* -subalgebra. Suppose there is a set $\mathcal S$ of pure states on M satisfying

- (i) each $\psi \in \mathcal{S}$ extends uniquely to a state $\tilde{\psi}$ on A, and
- (ii) the direct sum $\bigoplus_{\psi \in S} \pi_{\tilde{\psi}}$ of the GNS representations associated to the extensions to A of elements in S is faithful on A.

Abstract Uniqueness Theorem (Brown-Nagy-R)

Let A be a C*-algebra and $M\subset A$ a C^* -subalgebra. Suppose there is a set $\mathcal S$ of pure states on M satisfying

- (i) each $\psi \in \mathcal{S}$ extends uniquely to a state $\tilde{\psi}$ on A, and
- (ii) the direct sum $\bigoplus_{\psi \in S} \pi_{\tilde{\psi}}$ of the GNS representations associated to the extensions to A of elements in S is faithful on A.

Then a *-homomorphism $\Phi:A\to B$ is injective iff $\Phi|_M$ is injective.

Our proof of the main theorem applies the AUT to the set S of pure states of $C^*_r(\operatorname{Iso}(\mathcal{G})^\circ)$ that factor through some $C^*_r(\mathcal{G}^u_u)$ with $\mathcal{G}^u_u = \operatorname{Iso}(\mathcal{G})^\circ_u$ (where $\mathcal{G}^u_u = \operatorname{Iso}(\mathcal{G}) \cap r^{-1}(u)$).

Bibliography I

Cartan Subalgebras of Topological Graph algebras and k-graph C^* -algebras arxiv

J.H. Brown, G. Nagy, and S. Reznikoff

A generalized Cuntz-Krieger uniqueness theorem for higher-rank graphs.

J. Funct. Anal. 266 (2014), 2590-2609.

Bibliography II

J.H. Brown, G. Nagy, S. Reznikoff, A. Sims, and D. Williams

Cartan subalgebras in C^* -Algebras of Hausdorff étale groupoids.

Integral Equations and Operator Theory

Clark, Exel, Pardo.

A generalized uniqueness theorem and the graded ideal structure of Steinberg algebras

Forum Mathematicum

Bibliography III

- Crytser, Nagy
- Gonçalves, Li, Royer (2016)

 Branching systems and general Cuntz-Krieger uniqueness theorem for ultragraph C*-algebras

 International Journal of Mathematics 27, 1650083 (2016).
- A. Kumjian and D. Pask Graphs, groupoids and Cuntz-Krieger algebras J. Funct. Anal. 144 (1997), 505–541
- Scott Lalonde and David Milan Amenability and uniqueness for groupoids associated with inverse semigroups Semigroup Forum

Bibliography IV

- G. Nagy and S. Reznikoff

 Abelian core of graph algebras

 J. Lond. Math. Soc. (2) 85 (2012), no. 3, 889–908.
- G. Nagy and S. Reznikoff

 Pseudo-diagonals and uniqueness theorems

 Proc. AMS
- D. Yang Periodic higher rank graphs revisited Journal of the Australian Math Society