# Cost-parity games and Cost-Streett games FSTTCS'2012

#### Nathanaël Fijalkow, Martin Zimmermann

Institute of Informatics, Warsaw University – Poland

LIAFA, Université Paris 7 Denis Diderot – France

December 15th, 2012

# Cost-parity games and Cost-Streett games FSTTCS'2012

#### Nathanaël Fijalkow, Martin Zimmermann

Institute of Informatics, Warsaw University – Poland LIAFA, Université Paris 7 Denis Diderot – France

December 15th, 2012

### Framework

This paper is about two-player games over finite graphs, as used in automata theory and verification (synthesis problem).

We are after efficient algorithms to:

- decide the winner, and
- synthesize a winning strategy.

### Framework

This paper is about two-player games over finite graphs, as used in automata theory and verification (synthesis problem).

We are after efficient algorithms to:

- decide the winner, and
- synthesize a winning strategy.

Starting point: good understanding of  $\omega$ -regular specifications.

Objective: add boundedness specifications.

# Games











controlled by Adam













# Games





# Parity conditions







- Parity conditions allow to express all  $\omega$ -regular specifications.
- Both players have positional winning strategies.
- Deciding the winner is in  $NP \cap coNP$ .

Finitary specifications: proposed by Alur and Henzinger, games studied by Chatterjee, Henzinger and Horn.

#### Parity:

Almost all requests are answered.

#### Finitary parity:

There exists a bound *b*, s.t. almost all requests are answered *within b steps*.

#### Parity:

Almost all requests are answered.

#### Finitary parity:

There exists a bound *b*, s.t. almost all requests are answered *within b steps*.



Eve wins for the parity condition,

but loses for the finitary parity condition!

#### Parity:

Almost all requests are answered.

- Both players have positional winning strategies.
- Deciding the winner is in NP ∩ coNP.

#### Finitary parity:

There exists a bound *b*, s.t. almost all requests are answered *within b steps*.

- Eve has positional winning strategies.
- Adam needs infinite memory.
- Deciding the winner is in PTIME.

# Cost-parity games





## Cost-parity games



#### Parity:

Almost all requests are answered.

#### **Finitary parity:**

There exists a bound *b*, s.t. almost all requests are answered *within b steps*.

#### Parity:

Almost all requests are answered.

#### Finitary parity:

There exists a bound *b*, s.t. almost all requests are answered *within b steps*.

#### **Cost-parity:**

There exists a bound *b*, s.t. almost all requests are answered *with cost at most b*.

## Costs







# Positional determinacy for Eve



Objective: strategy optimization

Assume  $\sigma$  is a winning strategy.

How to construct a memoryless winning strategy  $\sigma'$  from  $\sigma$ ?

# Positional determinacy for Eve



Objective: strategy optimization

Assume  $\sigma$  is a winning strategy. How to construct a memoryless winning strategy  $\sigma'$  from  $\sigma$ ?

Tool: scoring functions

"à la Müller and Schupp" past-oriented proof

## A general framework



Consider a winning strategy  $\sigma: V^* \to V$ .

Define a scoring function  $Sc: V^* \to (S, \leq)$  satisfying:

Consider a winning strategy  $\sigma: V^* \to V$ .

Define a scoring function  $Sc : V^* \to (S, \leq)$  satisfying:

①  $(S, \leq)$  is a total order and Sc is a congruence: if  $Sc(w) \leq Sc(w')$ , then  $Sc(w \cdot v) \leq Sc(w' \cdot v)$ .

Consider a winning strategy  $\sigma: V^* \to V$ .

Define a scoring function  $Sc : V^* \to (S, \leq)$  satisfying:

- ①  $(S, \leq)$  is a total order and Sc is a congruence: if  $Sc(w) \leq Sc(w')$ , then  $Sc(w \cdot v) \leq Sc(w' \cdot v)$ .
- ② If there exists a bound b such that the scores of all prefixes of a play  $\rho$  are bounded by b, then  $\rho$  is winning.

Consider a winning strategy  $\sigma: V^* \to V$ .

Define a scoring function  $Sc : V^* \to (S, \leq)$  satisfying:

- ①  $(S, \leq)$  is a total order and Sc is a congruence: if  $Sc(w) \leq Sc(w')$ , then  $Sc(w \cdot v) \leq Sc(w' \cdot v)$ .
- ② If there exists a bound b such that the scores of all prefixes of a play  $\rho$  are bounded by b, then  $\rho$  is winning.
- 3 Assume a play  $\rho$  is consistent with  $\sigma$ , then the scores of all prefixes of  $\rho$  are (uniformly) bounded.

## A general framework



Consider a winning strategy  $\sigma: V^* \to V$ .

Define a scoring function  $Sc : V^* \to (S, \leq)$  satisfying:

- ①  $(S, \leq)$  is a total order and Sc is a congruence: if  $Sc(w) \leq Sc(w')$ , then  $Sc(w \cdot v) \leq Sc(w' \cdot v)$ .
- ② If there exists a bound b such that the scores of all prefixes of a play  $\rho$  are bounded by b, then  $\rho$  is winning.
- 3 Assume a play  $\rho$  is consistent with  $\sigma$ , then the scores of all prefixes of  $\rho$  are (uniformly) bounded.

Construct a memoryless strategy  $\sigma'$ :

"play according to  $\sigma$  assuming the worst play prefix".

# Deciding the winner in cost-parity games



*n*: number of vertices

m: number of edges

d: number of colors

#### Theorem

Given a parity games solver of complexity T(n, m, d), there exists a cost-parity games solver of complexity

$$O(n \cdot T(n \cdot d, m \cdot d, d + 2))$$
.

## Results



| winning condition                           | complexity                                      | Eve                                    | Adam                         |
|---------------------------------------------|-------------------------------------------------|----------------------------------------|------------------------------|
| parity<br>finitary parity<br>cost-parity    | NP ∩ coNP<br>PTIME<br>NP ∩ coNP                 | memoryless<br>memoryless<br>memoryless |                              |
| Streett<br>finitary Streett<br>cost-Streett | coNP-complete EXPTIME-complete EXPTIME-complete | finite finite finite                   | memoryless infinite infinite |

## Towards $\omega$ B-conditions



