8.3.3 Steady-state Analysis of DFIG WECS with PFs = 1

For steady-state analysis of DFIG, equivalent circuit can be rearranged such that : $(Rr+Req)+(Rr+Req)\times(1-s)/s=(Rr/s+Req/s)$

Mechanical power Pm, rotor power Pr, & stator & rotor winding losses, Pcu₁ and Pcu₂, can be easily calculated by a general equation of $P = 3I^2R$. • Rotor power Pr is power transferred from or to rotor-side converter.

Fig. shows power flow of DFIG operating under super & sub-synchronous modes with rotor-side converter represented by Req & Xeq

Neglecting rotational losses *Prot* of turbine, power transferred or dissipated in generator can be calculated

Power delivered to grid, *Pg*, is the sum of stator and rotor power, given by

$$\left|P_{g}\right| = \begin{cases} \left|P_{s}\right| + \left|P_{r}\right| & \text{for super - synchronou mode} \\ \left|P_{s}\right| - \left|P_{r}\right| & \text{for sub - synchronou mode} \end{cases}$$

In super-synchronous operating mode, equivalent resistance Req of RSC has a +ve value & rotor power Pr is +ve. This implies that resistance Req consumes power similar to winding resistances Rr & Rs.

• In reality, rotor power *Pr* is not dissipated in *Req*, but transferred from rotor to grid through converters.

In sub-synchronous mode, *Req* has a -ve value & rotor power *Pr* is also -ve. This indicates that rotor circuit receives power from grid through

Case Study 8-2 Steady-state Analysis of DFIG WECS with PFs = 1

- •This case study is a continuation of Case Study 8-1, where equivalent impedance for rotor-side converter of a 1.5MW/690V DFIG wind energy system was developed.
- •Steady-state operation of above system at supersynchronous, synchronous, & sub-synchronous speeds is analysed below.

i) DFIG Operation at Rotor Speed of 1750rpm (Super-synchronous Mode)

 At rated rotor speed of 1750 rpm, rotor current calculated in Case Study 8-1 is 1125.6 A, from which mechanical power of generator is calculated.

$$P_m = 3I_r^2 (R_{eq} + R_r)(1-s)/s$$

$$= 3 \times 1125.6^2 (0.05375 + 0.00263)(1+0.1667)/(-0.1667)$$

$$= -1500 \text{ kW}$$

 $\leq (R_r + R_{eq})(1-s)/s$ (a) Super-synchronous mode

(To grid) P_r

or
$$P_m = T_m \omega_m = -8185.1 \times 1750 \times 2\pi / 60 = -1500 \text{ kW}$$

Rotor power is $P_r = 3(I_r)^2 R_{eq} = 3 \times 1125.6 \times 0.05375 = 204.29 \text{ kW}$

 Rotor & stator winding losses are:

$$P_{cu2} = 3(I_r)^2 R_r = 10.0 \text{ kW},$$

$$P_{cu1} = 3(I_r)^2 R_s = 9.07 \text{ kW}$$

Stator active power

$$P_s = 3V_s I_s \cos \varphi_s = 690 / \sqrt{3} \times 1068.2 \times \cos(180^\circ) = -1276.64 \text{ kW}$$

where stator power factor angle $\varphi s = 180^{\circ}$

- since DFIG operates in generating mode with a unity power factor.
- Total power delivered to grid is

$$|P_g| = |P_s| + |P_r| = 1276.64 + 204.29 = 1480.93 \text{ kW}$$

Difference between *Pm* and *Pg* is losses on stator and rotor windings:

$$|P_m| - |P_g| = P_{cu2} + P_{cu1} = 19.07 \text{ kW}$$

Efficiency of DFIG is then

$$\eta = P_g / P_m = 1480.93 / 1500 = 98.7\%$$

ii) DFIG Operation at Synchronous and Subsynchronous Speeds

• Following same procedure, operation of DFIG in synchronous & subsynchronous modes is tabulated.

Operating Mode		Sub-synchronous	Synchronous	Super-synchronous	
		Operation	Operation	Operation	
ω_m	[rpm]	1200	1500	1750 (rated)	
S	Slip	0.2	0	-0.1667 (rated)	
$ T_m $	[kN.m]	3.849	6.014	8.1851	
R_{eq}	[Ω]	-0.126989	-0.002630	0.053751	
X_{eq}	[Ω]	-0.074293	0	0.027513	
I_s	[A]	504.16	786.28	1068.22	
I_r	[A]	569.29	843.28	1125.57	
V_r	[V]	83.76	2.22	67.97	
$ P_m $	[kW]	483.64	944.61	1500.0	
$ P_r $	[kW]	123.47	5.61	204.29	
P_{cu2}	[kW]	2.56	5.61	10.0	
P_{cu1}	[kW]	2.02	4.92	9.07	
$ P_s $	[kW]	602.53	939.69	1276.64	
$ P_{\mathcal{g}} $	[kW]	479.06	934.08	1480.93	

It is noted that in sub-synchronous mode rotor circuit receives power from grid through converters. Therefore, power delivered to grid is Pa = Pc - Pr

$$|P_{g}| = \begin{cases} |P_{s}| + |P_{r}| & \text{for super - synchronou mode} \\ |P_{g}| = \begin{cases} |P_{s}| + |P_{r}| & \text{for sub - synchronou mode} \end{cases}$$

Fig. 8.3-7 shows relationship between stator, rotor and mechanical power of 1.5MW/690V DFIG WECS through rotor speed range.

• Stator power $|Ps| \approx |Pm| - |Pr|$ in super-synchronous operating mode, whereas in sub-synchronous operating mode, $|Ps| \approx |Pm| + |Pr|$.

8.3.4 Simplified Calculations

- In large megawatt wind generators, stator resistance of generator is normally very small (< 0.01 pu).
- To simplify analysis, the stator resistance can be neglected.
- When generator operates with unity stator power factor, its air-gap power can be calculated by

$$P_{ag} = 3(V_s - I_s R_s) I_s \approx 3 V_s I_s$$

Stator current *Is* can be calculated by comparing equations

$$P_{ag} = 3V_s I_s \qquad P_{ag} = \frac{\omega_s T_m}{P}$$

$$I_s = \frac{T_m \omega_s / P}{3V_s}$$

With stator current *Is* known, equivalent impedance of rotor-side converter can be calculated, and steady-state performance of the DFIG can be analysed.

$$I_s = \frac{T_m \omega_s / P}{3V_s}$$

Comparsion with stator current given in (8.3-7), calculation of stator current by (8.3-48) is simpler.

$$I_{s} = \frac{V_{s} \pm \sqrt{V_{s}^{2} - \frac{4R_{s}\omega_{s}T_{m}}{3P}}}{2R_{s}} \qquad I_{s} = \frac{T_{m}\omega_{s}/P}{3V_{s}}$$

More importantly, this method can facilitate analysis of DFIG wind energy systems with non-unity stator power factor

Table 8.3-3 gives calculation results for 1.5MW/690V DFIG operating at 1200 rpm & 1750 rpm based on 2 methods:

Method 1 - accurate calculation of stator current *Is* based on (8.3-7),

$$I_s = \frac{V_s \pm \sqrt{V_s^2 - \frac{4R_s \omega_s T_m}{3P}}}{2R_s}$$

Method 2 – simplified calculation of *Is* using (8.3-48).

$$I_s = \frac{T_m \omega_s / P}{3V_s}$$

Results shown in Table 8.3-3 illustrate that errors generated by simplified method are minimal (less than 1.5%).

Operating Mode		Sub-synchronous			Super-synchronous		
		Operation			Operation		
ω_m	[mm]	1200 rpm			1750 rpm		
	[rpm]	Method 1	Method 2	Error %	Method 1	Method 2	Error %
S	Slip	0.2	0.2	N/A	-0.1667	-0.1667	N/A
$ T_m $	[kN.m]	3.849	3.849	N/A	8.185	8.185	N/A
R_{eq}	$[\Omega]$	-0.12699	-0.12671	0.22	0.05375	0.05339	0.26
X_{eq}	$[\Omega]$	-0.07429	-0.07398	0.31	0.02751	0.02735	0.57
I_s	[A]	504.2	505.8	0.32	1068.2	1075.8	0.71
I_r	[A]	569.3	570.9	0.28	1125.6	1133.2	0.68
V_r	[V]	83.6	83.7	0.12	67.9	68.0	0.15
$ P_m $	[kW]	483.6	485.3	0.35	1500	1510.7	0.71
$ P_r $	[kW]	123.5	123.9	0.34	204.3	205.7	0.68
P_{cu2}	[kW]	2.557	2.571	0.55	9.996	10.13	1.3
P_{cu1}	[kW]	2.020	2.034	0.69	9.071	9.201	1.4
$ P_s $	[kW]	602.5	604.5	0.34	1276.6	1285.7	0.71
$ P_g $	[kW]	479.0	480.6	0.33	1480.9	1491.4	0.77

8.4 Leading and Lagging Power Factor Operation

• When generator operates with a leading or lagging power factor, stator current can be calculated by

$$I_{s} = \frac{T_{m}\omega_{s}/P}{3V_{s}\cos\varphi_{s}} \qquad I_{s} = \frac{T_{m}\omega_{s}/P}{3V_{s}}$$

where φs is power factor angle of stator.

With stator current calculated, equivalent impedance of rotor-side converter can be obtained following same procedures given in Case Study

8-1.

impedance for DFIG operating under super- and sub-synchronous modes with 0.95 leading and lagging nower factor.

Stator	$\omega_m(\text{rpm})$	1200	1350	1500	1650	1750
Power Factor	s (Slip)	0.2	0.1	0	-0.1	-0.1667
Leading PF	$\overline{V_r}$ [V]	86.89∠5.7°	45.02∠6.3°	2.514∠ – 31.6°	42.83∠−165.7°	73.67∠−165.3°
(0.95)	\bar{I}_r [A]	659.3∠142.2°	798.2∠145.7°	955.9∠148.4°	1131.9∠150.5°	1259.3∠151.7°
$\varphi_s = -161.8^{\circ}$	$R_{eq}\left[\Omega ight]$	-0.0957	-0.0428	-0.00263	0.02731	0.04277
	$X_{eq}\left[\Omega\right]$	-0.0906	-0.03667	0	0.02620	0.03992
Lagging PF	\overline{V}_r [V]	80.65∠6.9°	41.16∠8.6°	2.146∠2.5°	36.59∠−165.7°	62.30∠−164.1°
(0.95)	\bar{I}_r [A]	525.2∠173.3°	660.5∠178.6°	815.9∠−177.5°	990.5∠ –174.7°	1117.2∠−173.3°
$\varphi_s = 161.8^{\circ}$	$R_{eq}\left[\Omega\right]$	-0.1493	-0.0614	-0.00263	0.0365	0.0550
	$X_{eq}\left[\Omega\right]$	-0.0360	-0.0108	0	0.0058	0.0089

 Once converter equivalent impedance is determined for a given operating condition, steady-state performance of DFIG wind energy system can be analysed using same procedure presented in previous section.

Fig. 8.4-1 shows calculated converter equivalent impedance as well as the torque-slip curves of DFIG with a leading power factor of 0.95.

Torque-slip curves are similar except that maximum torque values differ.

Fig. illustrates torque-slip curves of generator with a lagging power factor of 0.95.

Problems

Topic: Steady-state Analysis of DFIG WECS with *PFs*=1

- **8-7 (Solved Problem)** A 5.0MW/950V/50Hz/1170rpm DFIG is employed in a variable-speed WECS. Parameters of generator are given in Table B-7 of Appendix B.DFIG WECS is connected to a grid (line-line voltage VAB=950V, 50Hz). Generator operates with an MPPT scheme & its stator power factor is unity. Corresponding equivalent resistance & reactance for RSC when DFIG operates at sub-synchronous speed of 670 rpm are -0.13059 Ω & -0.2624 Ω , respectively. Calculate following:
- a) generator mechanical torque and power,
- b) rms stator and rotor currents,
- c) stator and rotor winding losses,
- d) stator and rotor active powers,
- e) net power delivered to the grid and efficiency of the DFIG, and
- f) fundamental grid current.

Generator Type	DF1G, 5.0MW/950V/50H	DFIG, 5.0MW/950V/50Hz		
Rated Mechanical Power	5.0 MW	1.0 pu		
Rated Stator Line-to-line Voltage	950 V (rms)			
Rated Stator Phase Voltage	548.48 V (rms)	1.0 pu		
Rated Rotor Phase Voltage	381.05 V (rms)	0.6947 pu		
Rated Stator Current	2578.4 A (rms)	0.8485 pu		
Rated Rotor Current	3188.7 A (rms)	1.0494 pu		
Rated Stator Frequency	50 Hz	1.0 pu		
Rated Rotor Speed	1170 rpm	1.0 pu		
Nominal Rotor Speed Range	670–1170 rpm	0.573-1.0pu		
Rated Slip	-0.17			
Number of Pole Pairs	3			
Rated Mechanical Torque	40.809 kN.m	1.0 pu		
Stator Winding Resistance R_s	1.552 mΩ	0.0086 pu		
Rotor Winding Resistance R_r	$1.446~\mathrm{m}\Omega$	0.008 pu		
Stator Leakage Inductance L_{ls}	1.2721 mH	2.2141 pu		
Rotor Leakage Inductance L_{lr}	1.1194 mH	1.9483 pu		
Magnetizing Inductance L_m	5.5182 mH	9.6044 pu		
Base Current $I_B = 5 \text{MW} / (\sqrt{3} \times 950 \text{V})$	3038.7 A (rms)	1.0 pu		
Base Flux Linkage Λ_B	1.7459 Wb (rms)	1.0 pu		
Base Impedance Z_B	0.1805 Ω	1.0 pu		
Base Inductance L_B	0.5746 mH	1.0 pu		
Base Capacitance C_B	17634.9 μF	1.0 pu		

Solution:

a) Rotor mechanical speed:

$$\omega_m = 670 \times (2\pi/60) = 70.162 \text{ rad/sec}$$

Rotor electrical speed:

$$\omega_r = \omega_m \times P = 70.16 \times 3 = 210.48 \text{ rad/sec}$$

Rated rotor mechanical speed:

$$\omega_{m,R} = 1170 \times (2\pi/60) = 122.52 \text{ rad/sec}$$

Stator frequency:

$$\omega_s = 2\pi \times 50 = 314.16 \text{ rad/sec}$$

The pu rotor speed

$$\omega_{m,pu} = \omega_m/\omega_{m,R} = 70.162/122.52 = 0.5727 \,\mathrm{pu}$$

Generator mechanical torque at 0.5727 pu rotor speed:

$$T_m = T_{m,R} \times (\omega_{m,pu})^2 = -40809 \times (0.5727)^2 = -13382.4 \text{ N.m}$$

Rated mechanical power:

$$P_{m,R} = \omega_{m,R} \times T_{m,R} = -122.52 \times 40809 = -5000 \times 10^3 \text{ W}$$

Generator mechanical power at 0.5727pu rotor speed:

$$P_m = P_{m,R} \times (\omega_{m,pu})^3 = -5000 \times 10^3 \times (0.5727)^3 = -938.94 \times 10^3 \text{ W}$$

b) Rms stator current using conventional expression:

$$I_s = \frac{V_s \pm \sqrt{V_s^2 - \frac{4R_s T_m \omega_s}{3P}}}{2R_s} = -849.64 \text{ A (rms)} \quad (I_s = 35.43 \times 10^4 \text{ A omitted})$$

where
$$V_s = 950/\sqrt{3} \text{ V}$$
, $T_m = -13382.4 \text{ N.m}$, $\omega_s = 314.16 \text{ rad/sec}$, $R_s = 1.552 \text{ m}\Omega$ and $P = 3$

From the steady-state equivalent circuit of DFIG with the rotor-side converter as shown, rotor current can be calculated by

$$\overline{I}_{r} = \frac{jX_{m}\overline{I}_{s}}{jX_{m} + \left(\frac{R_{r}}{s} + jX_{lr}\right) + \left(\frac{R_{eq}}{s} + j\frac{X_{eq}}{s}\right)} = 1092.55 \angle 163.13^{\circ} \text{ A (rms)}$$

where $s = (\omega_s - \omega_r)/\omega_s = (314.16 - 210.48)/314.16 = 0.33$

Alternatively, the rms rotor current can be found from the mechanical torque equation:

$$T_m = \frac{1}{\omega_s / P} \times 3I_r'^2 \left(R_{eq} + R_r \right) / s \text{ N.m}$$

from which

$$I_r = \sqrt{\frac{T_m \times (\omega_s / P)}{3(R_{eq} + R_r)/s}} = 1092.55 \text{ A (rms)}$$

c) The stator and rotor winding losses:

$$P_{cu,s} = 3(I_s)^2 R_s = 3 \times 849.64^2 \times 1.552 \times 10^{-3} = 3.361 \times 10^3 \text{ W}$$

 $P_{cu,r} = 3(I_r)^2 R_r = 3 \times 1092.55^2 \times 1.446 \times 10^{-3} = 5.178 \times 10^3 \text{ W}$

d) The stator and rotor active powers:

$$P_s = 3V_s I_s \cos \varphi_s = 3 \times 950 / \sqrt{3} \times 849.64 \times \cos(180^\circ) = -1398 \times 10^3 \text{ W}$$

 $P_r = 3(I_r)^2 R_{eq} = 3 \times 1092 \times -0.13059 = -467.64 \times 10^3 \text{ W}$

e) The net power delivered to the grid:

$$|P_g| = |P_s| - |P_r| = 1398 \times 10^3 - 467.64 \times 10^3 = 930.4 \times 10^3 \text{ W}$$

The difference between *Pm* & *Pg* is the losses on the stator and rotor windings, that is,

$$|P_m| - |P_g| = P_{cu,s} + P_{cu,r} = 8.539 \times 10^3 \text{ W}$$

The efficiency of the DFIG neglecting rotational and core losses is then

$$\eta = P_g / |P_m| = 930.4/938.94 = 99.09\%$$

f) The fundamental grid current:

$$\left|I_g\right| = \frac{\left|P_g\right|}{3V_g} = \frac{930.4 \times 10^3}{3 \times 950 / \sqrt{3}} = 565.44 \text{ A (rms)}$$

Cross Check:

$$T_m = \frac{1}{\omega_s / P} \times 3I_r^2 \left(R_{eq} + R_r \right) / s = -13382 \text{ N.m., verified.}$$

$$P_m = 3I_r^2 (R_{eq} + R_r)(1-s)/s = -938.9 \times 10^3$$
 W, verified.

8-8 Repeat Problem 8-7 when DFIG operates at super-synchronous speed of 1050 rpm. Corresponding equivalent resistance and reactance for RSC are given 0.00718 Ω & 0.0349 Ω , respectively.

Answers:

a)
$$T_m = -32867 \text{ N.m}$$
, $P_m = -3613.9 \times 10^3 \text{ W}$

b)
$$I_s = -2079.5 \text{ A (rms)}, I_r = 2578.8 \text{ A (rms)}$$

c)
$$P_{cus} = 20.134 \times 10^3 \text{ W}$$
, $P_{cus} = 28.848 \times 10^3 \text{ W}$

d)
$$P_s = -3421.71 \times 10^3 \text{ W}$$
, $P_r = 143.24 \times 10^3 \text{ W}$

e)
$$|P_g| = 3564.96 \times 10^3 \text{ W}, \quad \eta = 98.65\%$$

f)
$$I_g = 2166.6 \text{ A (rms)}$$

8-9 Repeat Problem 8-7 when DFIG operates at supersynchronous speed of 1170 rpm (rated). Corresponding equivalent resistance & reactance for RSC are given $0.02237 \Omega \& 0.11739 \Omega$, respectively.

Answers:

a)
$$T_m = -40809 \text{ N.m}$$
, $P_m = -5000 \times 10^3 \text{ W}$

c)
$$P_{cu,s} = 30.95 \times 10^3 \text{ W}$$
, $P_{cu,r} = 44.109 \times 10^3 \text{ W}$

e)
$$|P_g| = 4924.9 \times 10^3 \text{ W}, \quad \eta = 98.5\%$$

b)
$$I_s = -2578.4 \text{ A (rms)}$$
, $I_r = 3188.7 \text{ A (rms)}$

d)
$$P_s = -4242.5 \times 10^3 \text{ W}$$
, $P_r = 682.4 \times 10^3 \text{ W}$

f)
$$I_g = 2993.1 \,\text{A} \,\text{(rms)}$$