2.4.1 SAMPLING A MULTIVARIATE GAUSSIAN

Define $x \in \mathbb{R}^d$, a multivariate Gaussian:

$$p(x) = (2\pi)^{-\frac{d}{2}} |\det \Sigma|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right),$$

where $\mu \in \mathbb{R}^d$ is the mean vector and $\Sigma \in \mathbb{R}^{d \times d}$ is a $d \times d$ symmetric positive definite matrix. Recall that, in the univariate case, $Y = \mu + \sigma X$ (where μ, σ are scalars) gave us a sample from $\mathcal{N}(\mu, \sigma^2)$. The same idea works here, however, since now we have the covariance instead of variance, we need to find a notion of a "square-root" of the covariance matrix Σ . This is done using a Cholesky decomposition⁵. The algorithm is provided below.

Algorithm 6 Sampling Multivarite Gaussian

- 1: Input: The number of samples n.
- 2: **for** i = 1, ..., n **do**
- 3: Compute L such that $\Sigma = LL^{\top}$. (Cholesky decomposition)
- 4: Draw d univariate independent normals $v_k \sim \mathcal{N}(0,1)$ to form the vector $v = [v_1, \dots, v_d]^\top$
- 5: Generate $x_i = \mu + Lv$.
- 6: end for

2.5 SOLVED EXAMPLES

Example 2.15 (Rejection sampling). Let us go back to Beta(2, 2) example we used to demonstrate the fundamental theorem of simulation. We can now formalise it. Let

$$p(x) = \operatorname{Beta}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) + \Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}.$$

Ignoring the normalising constant in front, we can choose

$$\bar{p}(x) = x^{\alpha - 1} (1 - x)^{\beta - 1},$$

and given that we used uniform "box" before, we choose:

$$q(x) = \text{Unif}(0, 1)$$

We would like to compute

$$M = \sup_{x} \frac{\bar{p}(x)}{q(x)},$$

as in our demonstration we have computed this quantity visually. For this, we compute

$$\log \bar{p}(x)/q(x) = (\alpha - 1)\log x + (\beta - 1)\log(1 - x)$$

⁵You do not need to know how to implement or compute this, it is perfectly fine to use numpy.linalg.cholesky.

The derivative

$$\frac{\mathrm{d}\log\bar{p}(x)/q(x)}{\mathrm{d}x} = \frac{\alpha - 1}{x} + \frac{1 - \beta}{1 - x}$$

The maximum is

$$x^* = \frac{\alpha - 1}{\alpha + \beta - 2}.$$

Finding x^* , we compute the supremum by plugging x^* into the ratio \bar{p}/q which is given as

$$M = \frac{\bar{p}(x^{\star})}{q(x^{\star})}.$$

This leads to

$$M = \frac{(\alpha - 1)^{\alpha - 1}(\beta - 1)^{\beta - 1}}{(\alpha + \beta - 2)^{\alpha + \beta - 2}}.$$

We can find our optimal M by plugging $\alpha = 2$ and $\beta = 2$. The procedure is then given by

- Sample $X' \sim q(x) = \text{Unif}(0, 1)$
- Sample $U \sim \text{Unif}(0, 1)$
- If $U \leq \bar{p}(X')/Mq(X')$,
 - Accept X'

Example 2.16 (Rejection sampling). Let us prove now the fact the average acceptance probability (acceptance rate) is given as

$$\hat{a} = \mathbb{E}[a(X')] = \frac{1}{M} \tag{2.9}$$

in the normalised case. Similarly, we will also prove

$$\hat{a} = \mathbb{E}[a(X')] = \frac{Z}{M} \tag{2.10}$$

for the unnormalised case where we use $\bar{p}(x)$ instead of p(x). For the first fact, we can prove (2.9) by noting

$$\hat{a} = \mathbb{E}[a(X')] = \int a(x')q(x')dx'$$

$$= \int \frac{p(x')}{Mq(x')}q(x')dx'$$

$$= \frac{1}{M}\int p(x')dx'$$

$$= \frac{1}{M}.$$

For the unnormalised case, we can prove (2.10) as For the unnormalised case:

$$\hat{a} = \mathbb{E}[a(X')] = \int a(x')q(x')dx'$$

$$= \int \frac{\bar{p}(x')}{Mq(x')}q(x')dx'$$

$$= \int Z \frac{p(x')}{Mq(x')}q(x')dx'$$

$$= \frac{Z}{M} \int p(x')dx'$$

$$= \frac{Z}{M}.$$

Example 2.17 (Rejection sampling). Consider the following example where we describe a sampling method for Gaussian using a Cauchy distribution. Let

$$\bar{p}(x) = e^{-x^2/2}$$
 $q(x) = \frac{1}{\pi} \frac{1}{1+x^2}.$

We need to compute

$$M = \sup_{x} \frac{\bar{p}(x)}{q(x)},$$

as usual. For this we compute

$$\log \bar{p}(x)/q(x) = -\frac{x^2}{2} + \log(1+x^2) + \log(1/\pi)$$

and find the roots Taking the derivative

$$\frac{d}{dx} \log \bar{p}(x)/q(x) = -x + \frac{2x}{1+x^2} = 0$$

$$x = 0, \pm 1.$$

We have three roots to decide. Which one is the maximum? To look at the answer, we need to check second derivatives. We compute the second derivative

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}\log\bar{p}(x)/q(x) = -1 + \frac{2(1-x^2)}{(1+x^2)^2} = 0$$

- When x = 0, the second derivative is positive which means x = 0 is a minimum.
- When $x=\pm 1$, the second derivative is negative which means $x=\pm 1$ is a maximum.
- $x^* = \pm 1$.

So we have

$$M = \frac{\bar{p}(1)}{q(1)} = 2\pi e^{-1/2}.$$

Example 2.18 (Marginalisation). Consider

$$p(x) = \mathcal{N}(x; \mu, \sigma_0^2)$$
$$p(y|x) = \mathcal{N}(y; x, \sigma^2).$$

We aim at computing p(y). The direct computation of the integral

$$p(y) = \int p(y|x)p(x)dx = \int \mathcal{N}(y; x, \sigma^2)\mathcal{N}(x; \mu, \sigma_0^2)dx.$$

could be tedious. Note that

$$y = (y - x) + x$$
$$y - x \sim \mathcal{N}(y - x; 0, \sigma^2)$$
$$x \sim \mathcal{N}(x; \mu, \sigma_0^2).$$

This is a sum of Gaussians. Therefore, p(y) is also a Gaussian with means and variances summed:

$$p(y) = \mathcal{N}(y; \mu, \sigma_0^2 + \sigma^2).$$

Example 2.19 (Proof of Fundamental Theorem of Simulation). This proof required the knowledge of marginalisation – we can now attempt at proving this theorem. For completeness, we state the theorem below.

Theorem. Drawing samples from one dimensional random variable X with a density $p(x) \propto \bar{p}(x)$ is equivalent to sampling uniformly on the two dimensional region defined by

$$A = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le \bar{p}(x)\}. \tag{2.11}$$

In other words, if (x', y') is uniformly distributed on A, then x' is a sample from p(x).

The proof idea: Start from a uniform distribution q(x,y) on A and show that the marginal in x is p(x).

Proof. Consider the pair (X, Y) uniformly distributed on the region A. We denote their joint density as q(x, y) as

$$q(x,y) = \frac{1}{|A|}, \quad \text{for } (x,y) \in A.$$
 (2.12)

where |A| is the area of the set A. We note that

$$p(x) = \frac{\bar{p}(x)}{|\mathsf{A}|}.$$

Figure 2.8: The data simulated from (2.15)–(2.16) using a=0.5 and b=0.5 with three different values for σ^2 . As can be seen from the figures, the generated (x,y) pairs exhibit a clear linear relationship (as intended) with variance changing depending on our modelling choice.

We use the standard formula for the joint density q(x,y) = q(y|x)q(x). Note that, since (X,Y) is uniform in A, for fixed x, we have

$$q(y|x) = \frac{1}{\bar{p}(x)}$$
 for $(x, y) \in A$.

We therefore write

$$q(x,y) = q(y|x)q(x) = \frac{q(x)}{\overline{p}(x)} \qquad \text{for } (x,y) \in \mathsf{A}. \tag{2.13}$$

We consider now (2.12) and (2.13) which are both valid on $(x, y) \in A$. Combining them gives

$$q(x) = \frac{\bar{p}(x)}{|\mathsf{A}|},$$

which means q(x) = p(x).

Example 2.20 (Linear Model). Linear models are of utmost importance in many fields of science. Assume that we would like to simulate (x,y) pairs that have a linear relationship. We know that we can sample $x,y \sim p(x,y)$ by sampling $x \sim p(x)$ and $y|x \sim p(y|x)$ from the last chapter. We will now use this for a linear example.

To start intuitively, a typical linear relationship is described as

$$y = ax + b, (2.14)$$

which describes a line where a is the slope and b is the intercept. In order to obtain a probabilistic model and generate data, we have to simulate both x and y variables. Since, from the equation, it is clear that y is generated *given* x, we should start from defining x.

Now this depends on the application. For example, x can be a variable that may be uniform or a Gaussian. We denote its density as p(x). The typical task is also to formulate p(y|x). The linear equation suggests a deterministic relationship, however, real data often contains *noise*. To generate realistic data, we will instead assume

$$y = ax + b + n$$

where $n \sim \mathcal{N}(0, \sigma^2)$ is *noise* (often with small σ^2 . Note that, given noise is zero mean and ax + b is a deterministic number (given x), we can then write our full model

$$p(x) = \text{Unif}(x; -10, 10) \tag{2.15}$$

$$p(y|x) = \mathcal{N}(y; ax + b, \sigma^2). \tag{2.16}$$

where we chose our p(x) distribution to be uniform on [-10, 10]. As a result, we have a full model to simulate variables with a linear relationship

$$X_i \sim p(x),$$

$$Y_i | X_i = x_i \sim p(y|x_i),$$

where p(x) could be a uniform, Gaussian, truncated Gaussian etc. depending on the nature of the modelled variable. The results of this generation can be seen in the scatter plot in Fig. 2.8.