

Akademia Górniczo-Hutnicza

im. Stanisława Staszica

w Krakowie.

Wydział Informatyki, Elektroniki i Telekomunikacji

Tomasz Bednorz Jakub Rajs

Metody projektowania i modelowania systemów 1

Raport z projektu

4 rok, Systemy wbudowane, Elektronika i telekomunikacja

Temat:

Mikroprocesorowy krokomierz z komunikacją bezprzewodową

1. Cel projektu	2
1.1 Platforma wbudowana	2
1.2 GUI	3
2. Realizacja projektu	3
3. Oprogramowanie	4
3.1 Platforma wbudowana	4
3.1.1 Architektura oprogramowania	4
3.1.2 Szczegółowy opis oprogramowania	5
3.1.2.1 BLE	5
3.1.2.2 Pedometer	5
3.1.2.3 Gpio	5
3.1.2.4 Spi	6
3.1.2.5 LSM6DSO	6
3.1.3 Przepływ informacji	7
3.2 GUI	7
4. Odnośniki	8
5. Źródła	8

1. Cel projektu

Projekt składa się z dwóch części. Pierwsza z nich obejmuje oprogramowanie na platformę wbudowaną, a druga graficzny interfejs użytkownika.

1.1 Platforma wbudowana

Układem SoC wykorzystywanym w projekcie jest nRF52840 znajdujący się na płytce rozwojowej (rys 1.). Zawiera rdzeń Arm Cortex-M4, 1MB pamięci Flash oraz 256KB pamięci RAM. Peryferia komunikacyjne wykorzystywane w projekcie to SPI oraz Bluetooth Low Energy 5.

Rys 1. nRF52840 DK

Do detekcji kroków wykorzystany został układ LSM6DSO (IMU). Komunikacja z nim odbywała się przy pomocy szeregowego interfejsu SPI.

Rys 2. LSM6DSO

Funkcjonalności aplikacji na platformę wbudowaną:

- pobór danych z IMU (przyspieszenie ziemskie, prędkość kątowa, temperatura i liczba kroków),
- transmisja surowych danych poprzez protokół BLE (po zdalnym połączeniu z innym urządzeniem). Każda z pobieranych danych posiada własną charakterystykę GATT (Generic Attribute Profile).

1.2 GUI

W celu zbierania i przetwarzania danych na stacji roboczej zdecydowano się na zastosowanie interfejsu graficznego. Do jego przygotowania wykorzystano język Python razem z biblioteką *Bleak* oraz *Tkinter*. Ze względu na specyfikę komunikacji przez BLE zdecydowano się na asynchroniczną akwizycję danych przez moduł bluetooth komputera z wykorzystaniem biblioteki *Bleak*. Następnie surowe dane są przetwarzane na odpowiedni format. Kolejnym krokiem jest utworzenie okna na ekranie, które umożliwi wyświetlanie otrzymanych danych. Do tego celu została wykorzystana biblioteka *Tkinter*, która choć nie jest najbardziej estetyczną biblioteką, to w zupełności wystarczy do wykonania zaplanowanego zadania. Ostatnim elementem jest wyświetlenie na stworzonym oknie zebranych danych.

2. Realizacja projektu

W celu realizacji projektu zespół zdecydował się na spotkania odbywające się co dwa tygodnie, co było sumiennie realizowane.

- Pierwsze spotkanie uzgodnienie tematu projektu oraz podział ról w zespole.
- Drugie spotkanie doprecyzowanie funkcjonalności realizowanego krokomierz.
- Trzecie spotkanie dobór platformy sprzętowej oraz sposobu wykonania interfejsu graficznego.
- Czwarte spotkanie ustalenie formatu przesyłanych surowych danych.
- Piąte spotkanie pierwsze uruchomienie platformy sprzętowej.
- Szóste spotkanie pierwsze połączenie przez bluetooth interfejsu graficznego do platformy sprzętowej.
- Siódme spotkanie Ostatnie testy i weryfikacja działania całego zestawu.
- Ósme spotkanie Przygotowanie raportu i podsumowanie pracy.

3. Oprogramowanie

3.1 Platforma wbudowana

3.1.1 Architektura oprogramowania

Rys 3. Architektura oprogramowania

Rysunek 3 przedstawia schemat blokowy architektury oprogramowania na platformę wbudowaną. Aplikacja posiada trzy warstwy:

- warstwę aplikacji,
- warstwę abstrakcji sprzętu,
- sterowniki (peryferii oraz urządzeń).

Niższe warstwy nie zaciągają oprogramowania z wyższych warstw w celu ułatwienia portowalności oprogramowania na inne urządzenia.

3.1.2 Szczegółowy opis oprogramowania

3.1.2.1 BLE

Rys 4. Struktura oraz interfejsy (+: publiczne, -: prywatne) modułu BLE

Moduł BLE odpowiada za bezprzewodową komunikację przy pomocy technologii Bluetooth Low Energy 5.

3.1.2.2 Pedometer

Rys 5. Struktura oraz interfejsy modułu Pedometer

Moduł Pedometer jest warstwą abstrakcji dla danych z krokomierza.

3.1.2.3 Gpio

Rys 6. Struktura oraz interfejsy modułu Gpio

Moduł Gpio jest driverem do wejść/wyjść układu nRF52840.

3.1.2.4 Spi

Rys 7. Struktura oraz interfejsy modułu Spi

Moduł Spi jest driverem do szeregowego interfejsu SPI. Plik spi_cfg.h umożliwia konfigurację długości buforów rx/rx, częstotliwość transmisji oraz długość pojedynczej transmisji w bitach.

3.1.2.5 LSM6DSO

Rys 8. Struktura oraz interfejsy modułu LSM6DSO

Moduł LSM6DSO jest driverem do IMU. Funkcjonalności poszczególnych podmodułów:

- Ism6dso cb konfiguracja callbacków do przerwań z IMU.
- lsm6dso_cfg konfiguracja funkcji transmitującej SPI, rejestrów mapujących przerwania na poszczególne piny, akcelerometru (rozdzielczość, częstotliwość) oraz żyroskopu (rozdzielczość, częstotliwość),
- lsm6dso_com komunikacja z IMU,
- Ism6dso_regs definicje rejestrów IMU,
- lsm6dso_tasks taski obsługujące przerwania od IMU (odczyt danych),
- lsm6dso types dedykowane struktury danych,
- Ism6dso API dla użytkownika.

3.1.3 Przepływ informacji

Rys 9. Interakcja pomiędzy poszczególnymi modułami aplikacji

3.2 GUI Przepływ danych na stacji roboczej wygląda następująco:

Rys.10. Schemat przepływu danych GUI

Po połączeniu się przez bibliotekę *Bleak* z modułem bluetooth na platformie wbudowanej asynchronicznie były uruchamiane dwie metody - *start_notify()*, która była odpowiedzialna za odczyt surowych danych i przekazanie ich do handlera. Ten następnie je przetwarzał i przekazywał do funkcji, która z kolei przekazywała je do metod użytych przy tworzeniu samego interfejsu graficznego. Tam tworzony był ekran z danymi oraz następowało jego odświeżanie, aby widoczne dane cały czas były aktualne.

Rys.11. Okno interfejsu graficznego

4. Odnośniki

Repozytorium oprogramowania:

https://github.com/TomaszBednorz/Pedometer

5. Źródła

- https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
- https://botland.com.pl/czujniki-9dof-imu/19708-lsm6dso-3-osiowy-akcelerometr-i-zyroskop-i2cspi-sparkfun-sen-18020-5904422347185.html
- https://docs.zephyrproject.org/latest/index.html
- https://bleak.readthedocs.io/en/latest/
- https://realpython.com/async-io-python/