第四届广东省大学生数学竞赛试卷(高职高专类)

考试时间: 2014年10月25日上午9:00-11:30

题号	_	=	Ξ	四	五.	六	七	八	九	总分
分数										
评阅	-Jr-4									
审核										

- 一、(本题共15分,每小题3分)单项选择题(将正确答案的字母填在题后的括号内)
- 1. 以下语句可以作为函数极限 $\lim_{x\to x} f(x) = A$ 的定义的是【 】.
 - (A) 对任何正数 δ , 存在正数 ε , 当 $x \in (x_0 \varepsilon, x_0 + \varepsilon)$ 时都有 $|f(x) A| < \delta$
 - (B) 对任何正数 δ , 存在正数 ε , 当 $x \in (x_0 \delta, x_0 + \delta)$ 时都有 $|f(x) A| < \varepsilon$
 - (C) 存在正数 ε , 对任何正数 δ , 当 $x \in (x_0 \varepsilon, x_0 + \varepsilon)$ 时都有 $|f(x) A| < \varepsilon$
 - (D) 存在正数 δ , 对任何正数 ε , 当 $x \in (x_0 \varepsilon, x_0 + \varepsilon)$ 时都有 $|f(x) A| < \delta$
- 2. 设 $f(x) = \int_0^{\sin x} \sin(t^2) dt$, $g(x) = x^3 + x^4$, 当 $x \to 0$ 时 f(x), g(x) 都是无穷小, 则【】.
 - (A) f(x), g(x)等价
- (B) f(x), g(x) 同阶非等价
- (C) f(x) 是 g(x) 的高阶无穷小 (D) f(x) 是 g(x) 的低阶无穷小
- 3. 函数 f(x) 在 $(x_0 \varepsilon, x_0 + \varepsilon)$ 上单调,则 $f(x_0 0)$, $f(x_0 + 0)$ 【 】.
 - (A) 都存在且相等
- (B) 都存在不一定相等
- (C) 只有一个存在
- (D) 都不存在
- 4. 函数 $f(x) = (x^2 x 2)|x^3 x|$ 的不可导点的个数为【 】.
 - (A) 0
- (B) 1
- (C)2
- (D)3
- 5. 设 $\lim_{n\to\infty}(x_{n+1}-x_n)=0$,则还需满足以下哪一条件才能断定 $\{x_n\}$ 收敛【 】.
 - (A) $\{x_n\}$ 是单调的
- (B) $\{x_n\}$ 是有界的
- (C) $\{x_{2n}\}$ 和 $\{x_{2n+1}\}$ 分别是单调的 (D) $\{x_{2n}\}$ 和 $\{x_{2n+1}\}$ 之一是收敛的

二、(本题共15分,每小题3分)填空题

1.
$$\int_{-1}^{+1} x \sin(e^x + e^{-x}) dx = \underline{\qquad}.$$

2.
$$\int \frac{1 - \ln x}{(x - \ln x)^2} dx = \underline{\hspace{1cm}}$$

3.
$$\lim_{n \to \infty} \left(\frac{\cos \frac{\pi}{2n}}{n+1} + \frac{\cos \frac{2\pi}{2n}}{n+\frac{1}{2}} + \dots + \frac{\cos \frac{n\pi}{2n}}{n+\frac{1}{n}} \right) = \underline{\hspace{1cm}}$$

4. 读
$$f(x) = \int_1^x \frac{\ln t}{1+t^2} dt$$
,则 $f(x) - f\left(\frac{1}{x}\right) =$ _______.

5. 设f(x)和g(x)均在 $(x_0 - \delta, x_0 + \delta)$ 内有定义且在 x_0 可导,且

答: _____

三、(本题10分) 求不定积分
$$\int \frac{1}{\sin(x+a)\sin(x+b)} dx$$
.

四、(本题10分) 设 $f(x) = \arctan x$, 求 $f^{(n)}(0)$.

五、(本题 10 分)设
$$a_1=1$$
, $a_2=2$, 且 $a_{n+2}=\frac{2a_na_{n+1}}{a_n+a_{n+1}}$ $(n=1,2,\cdots)$,证明
$$\lim_{n\to\infty}a_n$$
存在并求极限值.

六、(本题 10 分) 设函数 f(x) 及 g(x) 在 $(-\infty, +\infty)$ 内可导,且对一切 x 都有 $f'(x)g(x) \neq f(x)g'(x)$,证明:方程 f(x) = 0 的任何两个不同根之间必有 g(x) = 0 的根.

七、(本题 10 分)斜边为定长的直角三角形薄板,垂直放置水中,并使一直角边与水面相齐,问三角形的一锐角为多大时,薄板所受的水压力为最大?