IST-718: Lab #2

PROFESSOR FOX

Introduction

Property is often thought as one of the safer investment opportunities compared to various alternatives. This often brings to question: how does one analyze or predict investment property? Can linear regression, or time series analysis be implemented? To start, several Arkansas metro areas will be analyzed. Then, a national generalization will be made to gain a higher level understanding, before addressing whether specific zip codes can be identified as better investment opportunities. Using forecasting techniques, an ARIMA model will be used to predict mean and median estimates for successive months in 2017, through 2018.

Analysis

Data Preparation:

Multiple datasets were implemented, and version controlled with the codebase:

https://github.com/jeff1evesque/ist-718-lab/blob/master/data/

Specifically, a main <code>Zip_Zhvi_SingleFamilyResidence.csv</code> was collected from Zillow, then used to estimate housing worth per city and state. This dataset covers a time series between 1996-01 through 2017-09. However, additional FBI crime data was aggregated based on state county:

- maryland.xls
- new-hampshire.xls
- virginia.xls
- district-of-columbia.xls

This allowed the former data to be filtered based on specific crime criteria. In the case of this study, the sum of all offense types divided by the county population (i.e. crime ratio). The ratio was not allowed to exceed 3%. Any county that exceed this value was omitted from the data aggregation. However, since there was only one row of data in the DC FBI dataset, its use was omitted, and possibly left as future exercise. Next labor force data was collected from the Department of Labor:

❖ laucnty17.xlsx

When joined with the latter combined data, the composition allowed further filtering based on unemployment rate. For this study, unemployment was not allowed to exceed 3.5%. Finally, the adjusted data was filtered on select locations to reduce the modeling:

- Maryland
- Virginia
- Washington D.C.
- Massachusetts
- New Hampshire

Furthermore, it is important to note that any NaN cell from the previous datasets were converted to zero. Then, the zipcodes package was used to introduce an additional zipcode column:

```
def get zipcode(city, state):
   result = zipcodes.filter_by(
       zipcodes.list all(),
       active=True,
       city=city,
       state=state
   )
   if result and result[0] and result[0]['zip_code']:
       return(result[0]['zip code'])
   else:
       return(0)
df['zip_code'] = df[['City', 'State']].apply(
    lambda x: get_zipcode(
       x['City'].upper(),
       x['State'].upper()
   ),
   axis=1
)
```

Results

Time series models were generated for metro areas in Arkansas:

Figure 1. Time series plots for metro areas in Arkansas. The code used to generate the plot above can be reviewed in Appendix A below.

It appears that Fayetteville, Arkansas has the greatest increase of property value, followed by a visually difficult decision between Little Rock and Hot Springs Arkansas. Next, an ARIMA model was generated using a train dataset to determine whether a time series model could generalize housing data. This was done from 01/1997 to 01/2017:

		ARIMA	Model Res			
Dep. Variate Model: Method: Date: Time: Sample:		ARIMA(5, 1, css-m n, 18 Nov 20	0) Log le S.D. 18 AIC 45 BIC 97 HQIC	of innovations		239 -1992.196
	coef	std err	Z	P> z	[0.025	0.975]
ar.L2.D.y ar.L3.D.y ar.L4.D.y	0.7894 -0.0996 0.1331 0.0433	0.065 0.082 0.082 0.082	12.235 -1.211 1.625 0.527	0.038 0.000 0.227 0.106 0.598 0.946	0.663 -0.261 -0.027 -0.118	0.916 0.062 0.294 0.204
	Real	Ima		Modulus	5	Frequency
AR.1 AR.2 AR.3 AR.4 AR.5	1.1035 0.3177 0.3177 -5.8238 -5.8238	-0 -2 +2 -3	.0000j	2.1366 2.1366	9 9 7	-0.0000 -0.2262 0.2262 -0.4159 0.4159

Figure 2. Descriptive statistics for an overall ARIMA model between 01/1997 and 01/2017 (train set). The code used to generate the plot above can be reviewed in Appendix B below.

An overall residual (Figure 3), and kernel density estimation (kde) plot (Figure 4) were generated using the same train dataset:

Figure 3. Residual plot for an overall ARIMA model. The code used to generate the plot above can be reviewed in Appendix C below.

Figure 4. KDE plot for an overall ARIMA model. The code used to generate the plot above can be reviewed in Appendix C below.

Descriptive statistics for the overall ARIMA model:

	0
count	239.000000
mean	-2.069194
std	1008.618450
min	-2682.753851
25%	-675.706720
50%	9.156721
75%	595.122398
max	4625.965351

Figure 5. Descriptive statistics for the overall ARIMA model. The code used to generate the table above can be reviewed in Appendix C below.

The predicted values with error were computed for the remaining months in 2017, which were not in the train dataset (Figure 6), as well as for the 2018 months (Figure 7):

date: 2017-2

predicted=388813.576701, expected=39105
0.000000
prediction difference: 0.005719

predicted=388813.576701

date: 2017-3

```
predicted=390443.689396, expected=39290 0.000000 prediction difference: 0.006252 predicted=390443.689396 date: 2017-4 predicted=392003.290988, expected=39580 0.000000
```

prediction difference: 0.009592 _____ predicted=394958.772728 _____ predicted=392003.290988 _____ date: 2017-7 ______ date: 2017-5 predicted=396374.708561, expected=40225 predicted=393503.316512, expected=39885 prediction difference: 0.014606 0.000000 prediction difference: 0.013405 ______ predicted=396374.708561 _____ predicted=393503.316512 _____ date: 2017-8 _____ _____ date: 2017-6 predicted=397752.815045, expected=40340 _____ 0.000000 predicted=394958.772728, expected=40085 prediction difference: 0.013999 0.000000 prediction difference: 0.014697 ______ Test MSE: 22164768.684165

Figure 6. ARIMA prediction and error rate, from the remaining 2017 months not in train. The code used to generate the plot above can be reviewed in Appendix D below.

_____ date: 2017-9 predicted=431986.176158 predicted=409223.452509 _____ date: 2018-4 _____ date: 2017-10 predicted=435068.894530 _____ predicted=413533.867822 _____ date: 2018-5 date: 2017-11 predicted=437986.877565 predicted=417515.922014 ______ date: 2018-6 _____ date: 2017-12 predicted=440749.383756 predicted=421472.969033 _____ date: 2018-7 ______ ______ predicted=443369.575329 date: 2018-1 predicted=425233.650838 ______ date: 2018-8 date: 2018-2 predicted=445861.222357 predicted=428722.288873 _____ date: 2018-9 _____ date: 2018-3 predicted=448234.798712

date: 2018-10	predicted=452672.004600
predicted=450501.831974	date: 2018-12
	predicted=454753.750478
date: 2018-11	-

Figure 7. ARIMA predictions for 2018 months. The code used to generate the plot above can be reviewed in Appendix D below.

To visualize the difference between the predicted and actual values:

Figure 8. Comparison of the predicted (red) vs. actual mean (blue). The code used to generate the plot above can be reviewed in Appendix E below.

Upon reviewing the above train case, it is evident that none of the difference between the predicted with the actual test data exceed 1.5%. Therefore, the implementation of ARIMA (5,1,0) for the entire population, was extended for each individual zip code. However, since the internal statsmodels.tsa.arima_model does not allow d > 2^1 , the differencing was indirectly applied, by adapting the actual dataset only when the base implementation would not succeed.

Each zipcode data was passed to a custom <code>compute_arima</code> function. However, a direct implementation could sometimes fail. Specifically, the <code>statsmodels</code> package

¹ https://www.statsmodels.org/dev/ modules/statsmodels/tsa/arima model.html

could fail with LinAlgError: SVD did not converge² with unusual combination of data with arima arguments. This potential of this arising was reconciled by incrementing the difference factor until the error was eliminated.

A computed rolling prediction successfully generated n predictions after the train. Conveniently, earlier edge cases did not arise. Therefore, each computation succeeded with a standard non-iterative differencing strategy.

predictions: [441994.60672424873, 447533.39722298674, 452893.74103927833, 457767.27660728176, 462337.7806300529, 466176.1912943393, 468413.750851138 44, 470550.8847704935, 473187.8653109091, 475525.0143412446, 478662.498983 5472, 482899.99798691145, 487237.503724659, 491175.01066866284, 494912.514 4486477, 499150.0146820069, 504687.51469225716, 511125.0146084265, 517462. 5145216945, 523000.0144826223, 527837.5144814998, 532075.0144836435, 53521 2.5144869951]

Figure 10. Rolling prediction for a given zipcode in the aggregated list. Appendix F and Appendix G demonstrate the code to iterate all zipcode in the provided dataset.

An aggregated plot of the full original dataset duration indicates similar trends:

Figure 11. Zipcode trend for select zipcodes. The code used to generate the plot above can be reviewed in Appendix H below.

Based on the above plot, an iterative differencing would likely not provide large benefits. However, it is possible to further smooth the corresponding models. After models were generated from the train, 23 iterative months were predicted. The first seven months of this iterative process coincided with the test data and was used to validate the strength of the model. The successive 16 months were used for future forecasting.

_

² https://github.com/scipy/scipy/issues/4524

The most accurate model was found to be Grottoes, VA (24441). The rolling prediction for successive months starting 2017-02:

1.	\$161,484.18/0.01	9. \$169,725.05	17. \$168,958.52
2.	\$163,610.26/0.006	10. \$168,858.37	18. \$169,086.27
3.	\$166,112.94/0.005	11. \$168,488.13	19. \$168,713.98
4.	\$167,715.31/0.007	12. \$168,717.51	20. \$167,941.67
5.	\$167,951.84/0.01	13. \$168,446.43	21. \$168,869.34
6.	\$168,296.66/0.01	14. \$168,174.83	22.\$171,397.01
7.	\$169,441.690.008	15. \$168,702.87	23. \$175,124.68
8.	\$170,185.82	16. \$168,930.72	

Figure 11. Residuals plot for most accurate model (24441). The code used to generate the plot above can be reviewed in Appendix I below.

Figure 12. Most accurate model (red), against actual (blue) (01002). The code used to generate the plot above can be reviewed in Appendix I below.

Figure 13. KDE plot for most accurate model (24441). The code used to generate the plot above can be reviewed in Appendix I below.

Dep. Variable	::		O.y No. Ob	servations	:	238
Model:		ARIMA(5, 1,	0) Log Li			
Method:		css-r		f innovati	ons	5094.43
Date:	We	d, 21 Nov 20	918 AIC			4752.52
Time:		01:33	07 BIC			4776.82
Sample:			1 HQIC		С	
	coef	std err	z	P> z	[0.025	0.975
const	327.6580	387.529	0.846	0.399	-431.884	1087.200
ar.L1.D.y	0.0301	0.065	0.465	0.642	-0.097	0.15
ar.L2.D.y	0.0207	0.065	0.320	0.749	-0.106	0.14
ar.L3.D.y	0.0263	0.064	0.408	0.684	-0.100	0.15
ar.L4.D.y	0.0371	0.064	0.577	0.565	-0.089	0.16
ar.L5.D.y	0.0357	0.064	0.555	0.579	-0.090	0.162
			Roots			
	Real	Ima	aginary	Modu	lus	Frequency
AR.1	1.6773	-(0.0000j	1.6	773	-0.0000
AR.2	0.4120	-1	L.8837j	1.9	283	-0.2157
AR.3	0.4120	+1	L.8837j	1.9	283	0.2157
AR.4	-1.7709	-1	L.1664j	2.1	205	-0.4073
AR.5	-1.7709	+1	l.1664j	2.1	205	0.4073

Figure 14. Model summary for most accurate model (24441). The code used to generate the plot above can be reviewed in Appendix I below.

The second most accurate model was found to be Dayton, VA (22821). The rolling prediction for successive months starting 2017-02:

1.	\$198,827.60/0.01	8. \$205 , 962.23	16. \$219,249.22
2.	\$198,677.87/0.000	9. \$206,785.41	17. \$221,972.66
	6	10.\$204,108.72	18. \$222,996.10
3.	\$199,964.44/0.002	11. \$201,832.09	19. \$224,019.54
4.	\$201476.82/0.007	12. \$204,355.50	20. \$224,742.97
5.	\$201,596.99/0.006	13. \$208978.92	21. \$224,466.41
6.	\$202,217.43/0.01	14. \$212, 402.35	22. \$224,489.85
7.	\$203,639.40/0.02	15. \$215,625.79	23. \$225, 413.29

Note: the first seven months (test) above, provide a prediction significance against the corresponding test value.

Figure 15. Residuals plot for most accurate model (22821). The code used to generate the plot above can be reviewed in Appendix I below.

Figure 16. Most accurate model (red), against actual (blue) (22821). The code used to generate the plot above can be reviewed in Appendix I below.

Figure 17. KDE plot for most accurate model (22821). The code used to generate the plot above can be reviewed in Appendix I below.

Dep. Variab	le:	D	y No. Ob	servations	:	23
Model:		ARIMA(5, 1,	0) Log Li	kelihood		-2441.31
Method:		css-m	ile S.D. o	f innovati	ons	6895.63
Date:	Wed, 21 Nov 2018 AIC			4896.62		
Time:		01:33:	08 BIC			4920.93
Sample:			1 HQIC			4906.42
	coef	std err	z	P> z	[0.025	0.975
const	443.2773	516.590	0.858	0.392	-569.221	1455.77
ar.L1.D.y	0.0419	0.065	0.648	0.518	-0.085	0.16
ar.L2.D.y	0.0054	0.065	0.084	0.933	-0.121	0.13
ar.L3.D.y	0.0097	0.064	0.150	0.881	-0.117	0.13
ar.L4.D.y	0.0440	0.064	0.684	0.495	-0.082	0.17
ar.L5.D.y	0.0356	0.064	0.554	0.580	-0.090	0.16
			Roots			
	Real	Ima	ginary	Modu	lus	Frequency
AR.1	1.6971	-0	.0000j	1.6	971	-0.0000
AR.2	0.4014	-1	.8148j	1.8	586	-0.2154
AR.3	0.4014	+1	.8148j	1.8	586	0.2154
AR.4	-1.8671	-1	.1416j	2.1	885	-0.4127
AR.5	-1.8671	+1	.1416i	2.1	885	0.4127

Figure 18. Model summary for most accurate model (22821). The code used to generate the plot above can be reviewed in Appendix I below.

The third most accurate model was found to be Elkton, VA (22827). The rolling prediction for successive months starting 2017-02:

1.	\$175,100.62/0.03	9. \$178,073.80	17. \$192,251.99
2.	\$174,356.88/0.01	10. \$177,533.66	18. \$195,111.76
3.	\$174,299.22/0.002	11. \$176,793.45	19. \$198,171.53
4.	\$175,067.27/0.008	12. \$177,853.19	20.\$199,131.29
5.	\$175,429.34/0.009	13. \$180,512.94	21. \$198,691.06
6.	\$175,691.15/0.003	14. \$183,972.70	22. \$198,450.82
7.	\$176,753.34/0.005	15. \$187, 432.47	23. \$198,410.59
8	\$177.813 93	16 \$190.192 23	

Note: the first seven months (test) above, provide a prediction significance against the corresponding test value.

Figure 19. Residuals plot for most accurate model (22827). The code used to generate the plot above can be reviewed in Appendix I below.

Figure 20. Most accurate model (red), against actual (blue) (22827). The code used to generate the plot above can be reviewed in Appendix I below.

Figure 21. KDE plot for most accurate model (22827). The code used to generate the plot above can be reviewed in Appendix I below.

Dep. Variab Model: Method: Date:		ARIMA(5, 1,	∅) Log Li mle S.D. o			238 -2391.553 5594.612 4797.109
Time: Sample:	we		:10 BIC 1 HQIC			4821.411 4806.903
	coef	std err	z	P> z	[0.025	0.975
const	347.8992	445.693	0.781	0.436	-525.643	1221.442
ar.L1.D.y		0.065	1.018	0.310	-0.061	0.19
ar.L2.D.y	0.0335	0.065	0.518	0.605	-0.093	0.160
ar.L3.D.y	0.0250	0.065	0.387	0.699	-0.102	0.152
			0.525			0.160
ar.L5.D.y	0.0303	0.064	0.471 Roots	0.638	-0.096	0.156
	Real	Ima	aginary	Modu	lus	Frequency
AR.1	1.6809	-(0.0000j	1.6	809	-0.0000
AR.2	0.4560	-1	1.9495j	2.0	022	-0.2134
AR.3	0.4560	+1	1.9495j	2.0	022	0.2134
AR.4	-1.8550	-1	1.2095j	2.2		-0.4080
AR.5	-1.8550	+1	1.2095	2.2	144	0.4080

Figure 22. Model summary for most accurate model (22827). The code used to generate the plot above can be reviewed in Appendix I below.

The fourth most accurate model was found to be Ringe, NH (03461). The rolling prediction for successive months starting 2017-02:

1.	\$207,893.76/0.01	9. \$214,449.07	17. \$222,367.86
2.	\$207,011.27/0.008	10. \$216, 363.91	18. \$224,982.70
3.	\$206,969.19/0.002	11. \$217,078.79	19. \$227,997.55
4.	\$207,273.43/0.01	12. \$217,393.64	20. \$229,712.39
5.	\$208,090.60/0.01	13. \$217, 908.49	21. \$230,627.24
6.	\$209,303.86/0.01	14. \$218,723.33	22.\$230,142.08
7.	\$210,618.83/0.001	15. \$219,938.17	23. \$228,856.92
8.	\$212,134.11	16. \$221, 153.02	

Note: the first seven months (test) above, provide a prediction significance against the corresponding test value.

Figure 23. Residuals plot for most accurate model (03461). The code used to generate the plot above can be reviewed in Appendix I below.

Figure 24. Most accurate model (red), against actual (blue) (03461). The code used to generate the plot above can be reviewed in Appendix I below.

Figure 25. KDE plot for most accurate model (03461). The code used to generate the plot above can be reviewed in Appendix I below.

Dep. Variab				servations		2
Model:		ARIMA(5, 1,				-2442.8
Method:			ile S.D. o	f innovati	ons	6940.1
Date: Wed, 21 Nov 2018 AIC				4899.70		
Time:	01:33:11 BIC				4924.0	
Sample:			1 HQIC			4909.50
	coef	std err	Z	P> z	[0.025	0.97
const	439.9160	553.140	0.795	0.427	-644.219	1524.0
ar.L1.D.y	0.0880	0.065	1.361	0.175	-0.039	0.2
	0.0793					0.2
ar.L3.D.y	0.0454	0.065	0.700	0.484	-0.082	0.1
ar.L4.D.y	0.0061	0.065	0.095	0.924	-0.120	0.1
ar.L5.D.y	-0.0310	0.064	-0.483	0.629	-0.157	0.0
			Roots			
	Real	Ima	ginary	Modu	lus	Frequency
AR.1	1.7911	-6	.8555j	1.9	849	-0.070
AR.2	1.7911	+6	.8555j	1.9	849	0.070
AR.3	-0.6659	-1	.8824j	1.9	967	-0.304
AR.4	-0.6659	+1	.8824j	1.9	967	0.304
AR.5	-2.0527	-6	.0000i	2.0	527	-0.500

Figure 26. Model summary for most accurate model (03461). The code used to generate the plot above can be reviewed in Appendix I below.

When reviewing the top four performing models, it is evident that the first seven months for each model, never exceeded 3% difference between from the corresponding test value. Therefore, it is safe to assume the corresponding models are valid, and the successive 16 months are interesting.

Conclusions

In this study, Figure 1 shows amongst four Arkansas metro area, each depicting a similar trend, while Fayetteville having much greater recent value. Next, an overall ARIMA rolling model showed (Figure 6) a highly accurate model. Specifically, at each interval-step, the predicted value contained less than a 1% error. Therefore, this approach was adopted when attempting to aggregate the dataset by zipcode, then predicting successive months of prediction.

When reviewing the above results, it was found that the top four zipcodes aggregated by crime, unemployment, and by location (MD, VA, D.C., MA, NH) were three in Virginia, and one New Hampshire. Though the results are highly accurate, and succeeds to model the defined constraints, it would have been more interesting to model the most profit returning zipcode. Adjusting the necessary code to make this determination is trivial. Specifically, measuring a series of prediction with the greatest positive rolling difference could be one way to capture this information.

Overall, this study succeeded at demonstrating concepts of timeseries forecasting using ARIMA. Figures 11 - 26 visually demonstrate this. Furthermore, understanding other approaches, and algorithms could complement similar studies, by improving either the performance or modeling accuracy. However, adding an additional data source with respect to school district performance, or accessibility to public transportation by zipcode could likely improve the model.

Appendix A

Arkansas Metro Area

```
# metro areas
hot_springs = df.loc[(df['Metro'] == 'hot springs') & (df['State'] == 'ar')]
little rock = df.loc[(df['Metro'] == 'little rock') & (df['State'] == 'ar')]
fayetteville = df.loc[(df['Metro'] == 'fayetteville') & (df['State'] == 'ar')]
searcy = df.loc[(df['Metro'] == 'searcy') & (df['State'] == 'ar')]
# timeseries plot
fig, ax = plt.subplots()
ax.plot(hot springs[date columns].mean(), linestyle='solid')
ax.plot(little rock[date columns].mean(), linestyle='solid')
ax.plot(fayetteville[date_columns].mean(), linestyle='solid')
ax.plot(searcy[date_columns].mean(), linestyle='solid')
# decrease ticks
xmin, xmax = ax.get xlim()
ax.set xticks(np.round(np.linspace(xmin, xmax, 23), 2))
# rotate ticks + show legend
plt.xticks(rotation=90)
plt.gca().legend(('hot_springs', 'little_rock', 'fayetteville', 'searcy'))
# show overall plot
plt.show()
```

Appendix B

Overall ARIMA model descriptive statistics between 01/1997 through 01/2017:

```
# train: collapse column by median
train_start = df.columns.get_loc('1997-01')
train_stop = df.columns.get_loc('2017-01')
test_stop = df.columns.get_loc('2017-09')
train_columns = df.iloc[:, train_start:train_stop].columns.tolist()
test_columns = df.iloc[:, (train_stop + 1):test_stop].columns.tolist()

# transpose dataframe: left column data, right column value
df_train = df[train_columns].median().T

df_test = df[test_columns].median().T

# build arima model:
model = ARIMA(df_train, order=(5,1,0))
model_fit = model.fit()
print(model_fit.summary())
```

Appendix C

Residual plot for overall ARIMA model:

```
# plot residual errors
residuals = DataFrame(model_fit.resid)
residuals.plot()
plt.show()
```

Appendix D

Residual, KDE plot and descriptive for ARIMA model:

```
# plot residual errors
def residuals_plot(model_fit):
    residuals = DataFrame(model_fit.resid)
    residuals.plot()
    plt.show()

# plot kernel density estimation
    residuals.plot(kind='kde')
    plt.show()

# descriptibe statistics
    print(residuals.describe())
```

Appendix D

Error rate for ARIMA model, with remaining 2017 months through 2018 predictions:

```
history = [x for x in df train]
predictions = list()
iterations = (12-len(df test)) + 18
for t in range(iterations):
   model = ARIMA(history, order=(5,1,0))
   model_fit = model.fit(disp=0)
   output = model fit.forecast()
   yhat = output[0]
   predictions.append(yhat)
   if t > 10:
       year = 2018
       month = (t+2) % 12
        if month == 0:
           month = 12
    else:
       year = 2017
       month = t+2
        if month == 0:
            month = 12
   print('date: {}-{:01d}'.format(year, month))
    try:
       obs = df test[t]
        print('predicted={:03f}, expected={:03f}'.format(float(yhat), obs))
       print('prediction difference: {:03f}'.format(abs(1-float(yhat)/obs)))
        error = mean_squared_error(df_test, predictions)
       print('Test MSE: {:03f}\n\n'.format(error))
    except:
       obs = yhat
       print('predicted={:03f}'.format(float(yhat)))
   history.append(obs)
```

Appendix E

Comparison between predicted vs actual mean value:

```
# plot rolling prediction
def rolling_plot(data, predictions):
    plt.plot(data)
    plt.plot(predictions, color='red')
    plt.xticks(rotation=90)
    plt.show()

rolling_plot(df_test, predictions)
```

Appendix F

Generic arima function using rolling prediction:

```
def compute_arima(
    data=df train,
    p=5,
    q=0,
    d=0,
    delta=(12-len(df_test)) + 18,
    alpha=0.05,
    residuals plot=False,
    summary=False
):
    history = [x for x in data]
    predictions = list()
    model fit = False
    try:
        model = ARIMA(difference(history, delta), order=(p,q,d))
        model_fit = model.fit(disp=0)
        print('standard fit used')
    except Exception as e:
        print('stationary differences will be used')
        print('original error: {}'.format(e))
    if not model_fit:
        for delta in range(10):
            stationary = difference(history, delta)
            stationary.index = history[1:]
            result = adfuller(stationary)
            print('stationary fit: {}, p: {}'.format(delta, result[1]))
            if (result[1] <= 0.05):</pre>
                try:
```

```
model = ARIMA(stationary, order=(p,q,d))
                model_fit = model.fit(disp=0)
                break
            except Exception as e:
                print('bad condition {}: stationarity not adequate'.format(delta))
                print('original error: {}'.format(e))
                continue
if model fit:
   output = model_fit.forecast(steps=delta, alpha=alpha)[0]
   if residuals_plot:
        residuals_plot(model_fit)
    if summary:
        print(model_fit.summary())
for yhat in output:
   inverted = inverse_difference(history, yhat, interval=delta)
   history.append(inverted)
   predictions.append(inverted)
print('predictions: {}'.format(predictions))
return(predictions)
```

Appendix G

Implementation of custom ARIMA rolling forecast model from Appendix F:

```
# iterate columns
results = []
for column in df_zipcode_clean:
    predictions = compute_arima(df_zipcode_clean[column], q=1)
    results.append({
        'zip_code': df_zipcode_clean[column].name,
        'predictions': predictions
})
```

Associated helper functions for Appendix G:

```
# stationarity test
def difference(dataset, interval):
    diff = list()
    for i in range(1, len(dataset)):
        value = dataset[i] - dataset[i - interval]
        diff.append(value)
    return pd.Series(diff)

# invert differenced value
def inverse_difference(history, yhat, interval=1):
    return yhat + history[-interval]
```

Appendix G

Zipcode trend for select zipcodes:

```
# iterate columns
results = []
for column in df_zipcode_clean:
    predictions = compute_arima(df_zipcode_clean[column], p=5)
    results.append({
        'zip_code': df_zipcode_clean[column].name,
        'predictions': predictions
})
```

Appendix I

Top four zipcodes:

```
# best 4 models
for model in sorted_results[:4]:
    # get data
    zipcode = model['zipcode']
    data_zipcode = df_zipcode_clean[[zipcode]]
    data_train = data_zipcode.T[train_columns].T

# compute_arima
    predictions = compute_arima(
          data_train.iloc[:,0],
          q=1,
          rplot=True,
          summary=True
    )

# plot predictions
rolling_plot(data_zipcode.T[test_columns].T, predictions)
```