

307401 Big Data and Data Warehouses

Introduction to Hadoop

Types of Processing in Computing

Processing Type	Description	Example
Sequential Processing	Tasks are executed one after another in a linear sequence.	Reading and executing lines of code in a single-threaded program.
Multi-Tasking	Multiple tasks share the same CPU by switching between them rapidly.	Running multiple applications (browser, music player, and document editor) on a computer.
Parallel Processing	Multiple processors or cores execute different parts of a task simultaneously.	Image processing using multiple CPU cores.
Distributed Processing	Tasks are divided across multiple computers working together over a network.	Cloud computing and blockchain networks.

How can we solve BIG Problems?

Divide and Conquer

Parallelization Challenges

- How do we assign work units to workers?
- What if we have more work units than workers?
- What if some workers are slower than others?
- What if workers need to share partial results?
- How do we aggregate partial results?
- How do we know all the workers have finished?
- What if workers die?

What's the common theme of all of these problems?

Common Theme

Parallelization problems arise from:

- Communication between workers (e.g., to exchange state)
- Access to shared resources (e.g., compute, data)

Thus, we need a synchronization mechanism

Introduction to Hadoop

- Hadoop is an open-source framework overseen by Apache Software Foundation which
 is written in Java for storing and processing of huge datasets with the cluster of
 commodity hardware.
- There are mainly two problems with the big data that Hadoop addresses:
 - 1. The need to store huge amount of data.
 - 2. The need to process that stored data.
- The traditional approach like RDBMS is not sufficient due to the 5-Vs related to data.
- Hadoop serve as the solution to the problem of big data i.e. storing and processing big data.

History of Hadoop

- 2002–2004: Doug Cutting and Mike Cafarella develop Nutch, an open-source web search
 engine. Inspired by Google's GFS and MapReduce papers, they begin building a distributed
 computing framework.
- 2005: The distributed parts of Nutch are separated into a new project called **Hadoop**.
- **2006:** Doug Cutting joins **Yahoo**, bringing Hadoop. Yahoo invests in its development to handle large-scale data processing.
- 2007: Hadoop runs on Yahoo's 1,000-node cluster and becomes a top-level Apache project.
- **2008–2009:** Hadoop is open-sourced; Yahoo and others (e.g., Facebook) deploy it in production. The Hadoop ecosystem begins forming with tools like Pig and Hive.
- **2010–2011:** The ecosystem expands with components such as HBase, Zookeeper, and Oozie. Companies like **Cloudera** and **Hortonworks** start commercial Hadoop distributions.
- 2012–2014: Hadoop 2.x introduces YARN, allowing multiple processing engines beyond MapReduce. Hadoop becomes a core enterprise data platform.
- **2015–2020:** Newer technologies like **Spark** and cloud data systems reduce reliance on MapReduce, though Hadoop remains foundational.
- **2020s:** Hadoop's role shifts to legacy and hybrid environments, with many workloads moving to cloud-native data platforms.

Doug Cutting

Mike Cafarella

Hadoop Echo System

Hadoop ecosystem is a suite of tools and frameworks that enables Hadoop to handle large amounts of data.

Basically, Hadoop has the following three components:

- 1. HDFS (Hadoop Distributed File System): A distributed file system that provides high-throughput access to application data.
- 2. MapReduce: A framework for parallel processing of large data sets.
- 3. YARN, Resource Manager.

Other ecosystem components: Hive, Pig, HBase, Storm, Spark, Kafka, Flume, Sqoop, Oozie, Zookeeper...etc. These components work together to provide a comprehensive solution for managing and processing large data sets in a distributed computing environment.

HDFS – Hadoop Distributed File System

What is HDFS?

- Hadoop Distributed File System (HDFS) is the storage layer in Hadoop.
- It enables **distributed storage** and **fault tolerance** by replicating data across multiple nodes.
- A file system is the method and structure that an operating system uses to store, organize, and manage data on storage devices like hard drives, SSDs, or USB drives.
- It defines **how files are named, stored, and accessed**. The file system keeps track of where each file's data is physically located on the disk and manages metadata such as file size, permissions, and timestamps.
- Common examples include NTFS (Windows), ext4 (Linux), and APFS (macOS).
- In distributed systems like Hadoop, a distributed file system (such as HDFS) spreads data across many machines, allowing large-scale storage and parallel processing.

HDFS – Hadoop Distributed File System

Key Components of HDFS:

1. NameNode

- Acts as the master node.
- Manages metadata (file locations, permissions, and structure).
- Does not store actual data.

2. DataNodes

- Store actual data in blocks.
- Handle read/write requests from clients.
- Perform data replication to ensure fault tolerance.

- A file system is the method and structure that an operating system uses to store, organize, and manage data on storage devices like hard drives, SSDs, or USB drives.
- It defines **how files are named, stored, and accessed**. The file system keeps track of where each file's data is physically located on the disk and manages metadata such as file size, permissions, and timestamps.
- Common examples include NTFS (Windows), ext4 (Linux), and APFS (macOS).
- In distributed systems like Hadoop, a **distributed file system** (such as HDFS) spreads data across many machines, allowing large-scale storage and parallel processing.

Writing File to HDFS

- 1. Client Application Initiates Upload: A client application (such as a command-line tool or custom software using the HDFS API) initiates a file upload by contacting the NameNode.
- 2. NameNode Responds with Block Allocation: The NameNode calculates how many blocks will be needed based on the file size and the configured block size (e.g., 128 MB) and then assigns which DataNodes should store each block and its replicas.
- **3. Client Writes Data Blocks to DataNodes:** The client begins writing each block to the first assigned DataNode. That DataNode then forwards the block to the second, and then the third (in a pipeline fashion) to meet the replication requirement.
- **4. Data Replication Happens Automatically:** Replicas of each block are written to multiple DataNodes, typically three, to ensure fault tolerance.
- **5. DataNodes Send Block Reports:** After storing the blocks, the DataNodes send reports back to the NameNode, confirming the block storage and replication status.
- **6. Upload Completion:** Once all blocks are successfully written and acknowledged, the client receives confirmation. The file is now stored and available in HDFS.

A client writing data to HDFS (From Hadoop Definite Guide)

Reading File from HDFS

1. Client Application Sends Read Request to NameNode A client application (e.g., a user command or a program using the HDFS API) requests to read a file by contacting

the NameNode.

2. NameNode Returns Block Metadata

The NameNode checks its metadata and returns the list of block locations for the requested file, including the addresses of the DataNodes that store each block.

3. Client Reads Data Blocks from DataNodes

The client directly contacts the appropriate DataNodes to read the actual data blocks. It can choose the closest replica to reduce latency.

4. Client Reassembles the File

The client assembles the blocks in the correct order to reconstruct the full file in memory or on local storage.

A client reading data to HDFS (From Hadoop Definite Guide)

YARN, Yet Another Resource Negotiator

What is YARN?

- YARN (Yet Another Resource Negotiator) is the resource management layer in Hadoop.
- It efficiently allocates resources and schedules tasks for processing big data jobs.

Key Components of YARN

- 1. Resource Manager (RM) Central component managing resource allocation.
- It has two main parts:
 - Application Manager Manages job submission and execution.
 - Scheduler Allocates resources to tasks based on policies.

2. Node Managers (NM)

- Runs on each DataNode to execute tasks.
- Manages Containers, which are allocated resources for executing tasks.

3. Application Master (AM)

- Runs within a container and coordinates job execution.
- Communicates with the Resource Manager and Node Managers.

Resource Allocation in YARN

- A client application submits a job

 (application) to the Resource Manager
 (RM). The job includes details like the number of required resources and the type of task.
- 2. The Application Manager component of the RM registers the new application and keeps track of its status.
- 3. The Scheduler (within the RM) evaluates current cluster conditions and assigns a container on a suitable Node Manager (NM) to launch the Application Master (AM).

Resource Allocation in YARN

- **4. The Application Master** running inside the allocated container is initialized. It is responsible for managing the entire job lifecycle, including requesting additional resources for task execution.
- 5. Based on the job's needs, the Application Master requests more containers from the Resource Manager to execute individual tasks (e.g., map or reduce tasks).
- 6. The Scheduler again evaluates availability and policy constraints and allocates containers on various Node Managers.
- 7. Each Node Manager launches containers and runs the assigned tasks (as directed by the Application Master). Tasks process data and perform computations.
- **8. The Application Master** monitors task completion, handles retries if needed, and reports status back to the Resource Manager.
- **9. Once all tasks finish, the final output is either returned to the client** or stored in HDFS, and the Application Master deregisters from the RM.

MapReduce: Distributed Big Data Processing Framework

MapReduce is a programming model and framework for processing massive datasets across distributed clusters using parallel computation.

Key Components:

- 1. Mapper: Processes input data chunks and transforms them into intermediate key-value pairs
- **2. Reducer**: Aggregates and combines intermediate data by key to produce final results
- **3. YARN ApplicationMaster**: Coordinates job execution and resource management
- 4. HDFS Integration: Provides distributed storage for input/output data

MapReduce: Distributed Big Data Processing Framework

Technical Workflow:

- Input Splitting: Data divided into blocks (typically 128MB) across HDFS nodes
- Map Phase: Parallel Mapper tasks process splits → intermediate key-value pairs
- Shuffle & Partition: Framework redistributes data by key across cluster nodes
- Sort & Group: Intermediate data sorted and grouped by key for each Reducer
- **Reduce Phase**: Reducer tasks aggregate values per key → final output to HDFS

MapReduce: Distributed Big Data Processing Framework

Advantages:

- Fault Tolerance: Automatic task retry and data replication
- Scalability: Handles petabyte-scale datasets across thousands of nodes
- Framework Integration: Works with Hadoop ecosystem (Hive, Pig, Spark)

Real-World Applications:

- Log analysis for fraud detection (Facebook, Google)
- Search index generation and web crawling
- Financial risk analysis and recommendation systems

Modern Context: While Spark has largely replaced MapReduce for many use cases, MapReduce remains fundamental for batch processing in enterprise Hadoop environments.

1. Client Submission:

The client submits a MapReduce job to the Hadoop cluster. The job includes the Mapper and Reducer code, and configuration parameters. The data is already stored in the Hadoop Distributed File System (HDFS)

2.ResourceManager and Job Scheduling:

The ResourceManager receives the job submission and delegates the job to the ApplicationsManager. The ApplicationsManager allocates a new ApplicationMaster (AppMaster) instance for the job.

3.ApplicationMaster Initialization:

The ApplicationMaster negotiates resources from the ResourceManager and requests containers (execution environments) on various NodeManagers (Data Nodes).

4. Data Splitting:

- The ApplicationMaster communicates with the NameNode to locate the input data blocks stored across the DataNodes.
- The input data is split into chunks, and the splits are assigned to the containers on the DataNodes where the data
 is located.

5. Mapper Execution:

- The NodeManagers launch Mapper tasks in the allocated containers.
- Each Mapper processes its assigned data chunk, producing intermediate key-value pairs.

6. Shuffling and Sorting:

The intermediate key-value pairs are shuffled and sorted by key. This involves transferring data across the network to group all values for the same key together.

7. Reducer Execution:

The NodeManagers launch Reducer tasks in containers.

Each Reducer processes its assigned key group, aggregating the values to produce the final output.

8. Writing the Output:

The Reducers write the final output to HDFS, which is managed by the NameNode.

The ApplicationMaster monitors the job's progress and updates the ResourceManager.

9.Job Completion:

Once all Mapper and Reducer tasks are complete, the ApplicationMaster informs the ResourceManager.

The client is notified of the job's completion, and the final results are available in HDFS

Summary

- 1. The client launches the process (connection with the Resource Manager)
- 2. The Resource Manager requests a container where the Application Master is executed
- 3. The Application Master requests the containers to execute all the tasks (in different nodes)
- 4. All the tasks are executed in the containers. Containers are released once its tasks are finished
- 5. The Application Master finishes when all tasks have been completed and release the container

Map and Reduce functions in Python

Map Function

```
lst = [1, 2, 3, 4]
list(map(lambda x: x*x, lst))
[1, 4, 9, 16]

def square(x):
    return x*x
list(map(square, lst))
[1, 4, 9, 16]
```


Map and Reduce functions in Python

Reduce Function

```
from functools import reduce
reduce(lambda x, y: x + y, lst)
10
def add_reduce(x, y):
out = x + y
print(f"{x}+{y}-->{out}")
return out
reduce(add_reduce,lst)
3<--2+1
6<--3+3
10<--4+6
10
```


Map Reduce Using Hadoop and MRJob Python Library

Map Reduce Movie Ratings Count Example

User ID | Movie ID | Rating | Time Stamp

0 50 5 881250949

0 172 5 881250949

0 133 1 881250949

196 242 3 881250949

186 302 3 891717742

22 377 1 878887116

244 51 2 880606923

166 346 1 886397596

298 474 4 884182806

115 265 2 881171488

253 465 5 891628467

305 451 3 886324817

Map Reduce Movie Ratings Count Example

```
from mrjob.job import MRJob
from mrjob.step import MRStep
class RatingsBreakdown(MRJob):
   def steps(self):
       return
           MRStep(mapper=self.mapper_get_ratings,
                  reducer=self.reducer count ratings)
   def mapper_get_ratings(self, _, line):
       (userID, movieID, rating, timestamp) = line.split('\t')
       yield rating, 1
   def reducer count ratings(self, key, values):
       yield key, sum(values)
  name == ' main ':
   RatingsBreakdown.run()
```

Writing the Mapper USER ID | MOVIE ID | RATING | TIMESTAMP 196 242 3 881250949 Shuffle 186 302 3 891717742 1 -> 1, 1 Reduce & Sort 1,1 196 377 1 878887116 2 -> 1, 1 244 51 2 880606923 3 -> 1, 1 166 346 1 886397596 1,1 4 -> 1 186 474 4 884182806 4,1 186 265 2 881171488 2,1

Map Reduce Example – Two Steps (Sorting after Counting)

```
from mrjob.job import MRJob
from mrjob.step import MRStep
class RatingsBreakdown(MRJob):
    def steps(self):
        return [
            MRStep(mapper=self.mapper get ratings,
                   reducer=self.reducer count ratings),
            MRStep(reducer=self.reducer sorted output)
    def mapper_get_ratings(self, _, line):
        (userID, movieID, rating, timestamp) = line.split('\t')
        yield movieID, 1
    def reducer count ratings(self, key, values):
        yield str(sum(values)).zfill(5), key
    def reducer_sorted_output(self, count, movies):
        for movie in movies:
            yield movie, count
if name == ' main ':
    RatingsBreakdown.run()
```


Real-World Use Case: Log Analysis for Ad Click Fraud Detection

Company Example: Facebook

Objective: Detect fraudulent ad clicks by analyzing massive volumes of server logs.

Data Source: Web server logs from Facebook's ad delivery infrastructure.

Scale: Billions of clicks daily across millions of IP addresses

Data Structure (Sample Log Entry):

```
{ "timestamp": "2025-03-20T14:33:21Z", "user_id": "u98374", "ad_id": "ad4562", "ip_address": "192.168.1.5", "click": true, "device_type": "mobile", "location": "New York, USA"}
```


Processing with MapReduce – Facebook Example

Map Phase (What We're Mapping):

Input: Individual log entries

Mapper Logic:

- Extract key fields: ip_address, timestamp, user_id, ad_id
- Emit key-value pairs: (ip_address, "timestamp|user_id|ad_id")
- Example output: ("192.168.1.5", "14:33:21 | u98374 | ad4562")

Shuffle & Group:

Framework groups all clicks by IP address:

("192.168.1.5", ["14:33:21|u98374|ad4562", "14:33:45|u98374|ad4562", "14:34:12|u98374|ad4562"])

Processing with MapReduce – Facebook Example

Reduce Phase (What We're Reducing):

Input: All clicks grouped by IP address

Reducer Logic:

- Count total clicks per IP: click_count = list.length
- Calculate click velocity: clicks_per_minute = count / time_window
- Detect patterns: Same user id + rapid clicking + same ad id
- Output: ("192.168.1.5", "count=47, velocity=15.7/min, fraud_score=0.89")

Outcome:

- Fraud Detection: IPs with > 10 clicks/minute + same user patterns = HIGH FRAUD RISK
- Action: Block suspicious IPs and preserve legitimate ad revenue
- Business Value: Protects millions in advertising spend daily
- Key Insight: We're mapping each click event to its IP address and reducing by aggregating all clicks per IP to detect abnormal patterns that indicate bot activity.