# Game Design Car Parking Game

#### **Outline**

- Analysis
- □ Turn left
- □ Turn right
- □ Forward
- □ Backward
- □ Get the car boundaries
- Parking

#### Car

- □ CarSystem (posx, posy, Wdir, Cdir, carW, carH)
  - width of the car: carW
  - height of the car: carH
  - position of the car: posx, posy
  - $\blacksquare$  car direction:  $\theta$
  - wheel direction
    - steering wheels:  $\theta + \varphi$
    - $\blacksquare$  rear wheels:  $\theta$

Front-wheel drive



#### Turn left / right

□ wheel direction is changed, but car direction isn't changed



#### **Forward**

#### posx and posy are changed



Turn left:  $\theta + \varphi > 90^{\circ}$ ,  $Cos(\theta + \varphi) < 0$ 

Therefore, the new posx will decrease (move to left)

Turn right:  $\theta + \varphi < 90^{\circ}$ ,  $Cos(\theta + \varphi) > 0$ 

Therefore, the new posx will increase (move to right)

# Forward (cont'd)

 $\Box$  car direction is also changed (related to  $\varphi$ )



Turn left:  $\varepsilon > 0$ 

Therefore, car direction will increase

Turn right:  $\varepsilon < 0$ 

Therefore, car direction will decrease

### **Backward (opposite operation of forward)**

posx and posy are changed



# Backward (cont'd)

 $\Box$  car direction is also changed (related to  $\varphi$ )



Turn left:  $\varepsilon > 0$ 

Therefore, car direction will decrease

Turn right:  $\varepsilon < 0$ 

Therefore, car direction will increase

#### Get boundaries (turn left)



#### Four boundaries of the car (turn left)



### Get boundaries (turn right)



### Four boundaries of the car (turn right)



# **Parking**

□ If four boundaries of the car are inside the parking space

