Análisis Matemático I

Pedro Sánchez Terraf Ana Andrés Diego Martín Agustín Luciana José Luis Romina

FaMAF, 25 de marzo de 2024

Contenidos estimados para hoy

- Funciones
 - Repaso
 - Funciones 1-1 y sobre
 - Función inversa
 - Funciones monótonas
- 2 Sucesiones
 - Ejemplos
- Introducción a Límites
- 4 Conclusión

Componentes de una función f

- Conjunto de salida X (casi siempre \mathbb{R} ó \mathbb{N});
- \blacksquare conjunto de llegada Z (casi siempre \mathbb{R});
- la regla de asociación $x \in X \longmapsto f(x) \in Z$.

Componentes de una función f

- Conjunto de salida X (casi siempre \mathbb{R} ó \mathbb{N});
- \blacksquare conjunto de llegada Z (casi siempre \mathbb{R});
- la regla de asociación $x \in X \longmapsto f(x) \in Z$.

Dominio e imagen

- $Dom f := \{x \in X \mid f(x) \text{ está definido}\}.$
- Im $f := \{z \in \mathbb{R} \mid \exists x, \ z = f(x)\} = \{f(x) \mid x \in \text{Dom} f\}$

Componentes de una función f

- Conjunto de salida X (casi siempre \mathbb{R} ó \mathbb{N});
- \blacksquare conjunto de llegada Z (casi siempre \mathbb{R});
- la regla de asociación $x \in X \longmapsto f(x) \in Z$.

Dominio e imagen

- $Dom f := \{x \in X \mid f(x) \text{ está definido}\}.$
- $\text{Im} f := \{ z \in \mathbb{R} \mid \exists x, \ z = f(x) \} = \{ f(x) \mid x \in \text{Dom} f \}$
- f es 1-1 $\iff \forall x, y \in \text{Dom} f, f(x) = f(y) \implies x = y.$
- f es sobre $\iff \forall z \in Z, \exists x \in \text{Dom} f, z = f(x).$

Funciones 1-1 y sobre

- $Dom f := \{x \in X \mid f(x) \text{ está definido}\}.$
- $\text{Im} f := \{ z \in \mathbb{R} \mid \exists x, \ z = f(x) \} = \{ f(x) \mid x \in \text{Dom} f \}$
- f es 1-1 $\iff \forall x, y \in \text{Dom} f, f(x) = f(y) \implies x = y.$

Funciones 1-1 y sobre

- $Dom f := \{x \in X \mid f(x) \text{ está definido}\}.$
- $\text{Im} f := \{ z \in \mathbb{R} \mid \exists x, \ z = f(x) \} = \{ f(x) \mid x \in \text{Dom} f \}$
- $\blacksquare f \text{ es 1-1} \iff \forall x, y \in \text{Dom} f, f(x) = f(y) \implies x = y.$
- f es sobre $\iff \forall z \in Z, \exists x \in Dom f, z = f(x).$

Ejemplo

Determinar dominio e imagen de $f(x) := \sqrt{x^2 - 4x + 3}$, decidir si es inyectiva y/o suryectiva.

Funciones 1-1 y sobre

- $Dom f := \{x \in X \mid f(x) \text{ está definido}\}.$
- $\text{Im} f := \{ z \in \mathbb{R} \mid \exists x, \ z = f(x) \} = \{ f(x) \mid x \in \text{Dom} f \}$
- f es 1-1 $\iff \forall x, y \in \text{Dom} f, f(x) = f(y) \implies x = y.$
- f es sobre $\iff \forall z \in Z, \exists x \in Dom f, z = f(x).$

Ejemplo

Determinar dominio e imagen de $f(x) := \sqrt{x^2 - 4x + 3}$, decidir si es inyectiva y/o suryectiva.

- $Dom f := \{x \in X \mid f(x) \text{ está definido}\}.$
- $\text{Im} f := \{ z \in \mathbb{R} \mid \exists x, \ z = f(x) \} = \{ f(x) \mid x \in \text{Dom} f \}$
- $\blacksquare f \text{ es 1-1} \iff \forall x, y \in \text{Dom} f, f(x) = f(y) \implies x = y.$

- $\operatorname{Dom} f := \{x \in X \mid f(x) \text{ está definido}\}.$
- $\text{Im} f := \{ z \in \mathbb{R} \mid \exists x, \ z = f(x) \} = \{ f(x) \mid x \in \text{Dom} f \}$
- f es 1-1 $\iff \forall x, y \in \text{Dom} f, f(x) = f(y) \implies x = y.$

Definición

Sea $f: X \to Z$ inyectiva. La **función inversa** f^{-1} de f tiene conjunto de salida Z y de llegada X y está definida por la regla

$$f^{-1}(z) := (el único x tal que f(x) = z).$$

- $Dom f := \{x \in X \mid f(x) \text{ está definido}\}.$
- $\text{Im} f := \{ z \in \mathbb{R} \mid \exists x, \ z = f(x) \} = \{ f(x) \mid x \in \text{Dom} f \}$
- f es 1-1 $\iff \forall x, y \in \text{Dom} f, f(x) = f(y) \implies x = y.$

Definición

Sea $f:X\to Z$ inyectiva. La **función inversa** f^{-1} de f tiene conjunto de salida Z y de llegada X y está definida por la regla

$$f^{-1}(z) := (el \text{ único } x \text{ tal que } f(x) = z).$$

Proposición

Sea $f: X \to Z$ invectiva. Entonces $Dom f^{-1} = Im f$.

- $\operatorname{Dom} f^{-1} := \{x \in \mathbb{Z} \mid f^{-1}(x) \text{ está definido}\}.$
- $\text{Im} f := \{ z \in \mathbb{R} \mid \exists x, \ z = f(x) \} = \{ f(x) \mid x \in \text{Dom} f \}$
- f es 1-1 $\iff \forall x, y \in \text{Dom} f, f(x) = f(y) \implies x = y.$

Definición

Sea $f:X\to Z$ inyectiva. La **función inversa** f^{-1} de f tiene conjunto de salida Z y de llegada X y está definida por la regla

$$f^{-1}(z) := (\text{el único } x \text{ tal que } f(x) = z).$$

Proposición

Sea $f: X \to Z$ invectiva. Entonces $\operatorname{Dom} f^{-1} = \operatorname{Im} f$.

- Composición de funciones: $(f \circ g)(x) = f(g(x))$.
- $= f^{-1}(z) := (el \ único \ x \ tal \ que \ f(x) = z).$
- Im $f := \{z \in \mathbb{R} \mid \exists x, \ z = f(x)\} = \{f(x) \mid x \in \text{Dom} f\}$
- Sea $f: X \to Z$ invectiva. Entonces $Dom f^{-1} = Im f$.

- Composición de funciones: $(f \circ g)(x) = f(g(x))$.
- $= f^{-1}(z) := (el \ único \ x \ tal \ que \ f(x) = z).$
- Im $f := \{z \in \mathbb{R} \mid \exists x, \ z = f(x)\} = \{f(x) \mid x \in \text{Dom} f\}$
- Sea $f: X \to Z$ invectiva. Entonces $Dom f^{-1} = Im f$.

Ejemplo

Demostrar que $f(x) := \frac{x-3}{x+2}$ es inyectiva en su dominio, hallar la inversa y su dominio.

- Composición de funciones: $(f \circ g)(x) = f(g(x))$.
- $f^{-1}(z) := (el único x tal que f(x) = z).$
- Im $f := \{z \in \mathbb{R} \mid \exists x, \ z = f(x)\} = \{f(x) \mid x \in \text{Dom} f\}$
- Sea $f: X \to Z$ invectiva. Entonces $Dom f^{-1} = Im f$.

Ejemplo

Demostrar que $f(x) := \frac{x-3}{x+2}$ es inyectiva en su dominio, hallar la inversa y su dominio.

Teorema

Sea f una función inyectiva. Entonces:

1 Si $z \in \text{Im} f$, entonces $f(f^{-1}(z)) = z$. Es decir, $f \circ f^{-1} = I : \text{Im} f \to \text{Im} f$.

- Composición de funciones: $(f \circ g)(x) = f(g(x))$.
- $f^{-1}(z) := (el \text{ único } x \text{ tal que } f(x) = z).$
- Im $f := \{z \in \mathbb{R} \mid \exists x, \ z = f(x)\} = \{f(x) \mid x \in \text{Dom} f\}$
- Sea $f: X \to Z$ invectiva. Entonces $Dom f^{-1} = Im f$.

Ejemplo

Demostrar que $f(x) := \frac{x-3}{x+2}$ es inyectiva en su dominio, hallar la inversa y su dominio.

Teorema

Sea f una función inyectiva. Entonces:

- **1** Si $z \in \text{Im} f$, entonces $f(f^{-1}(z)) = z$. Es decir, $f \circ f^{-1} = I : \text{Im} f \to \text{Im} f$.
- **2** Si $y \in \text{Dom} f$, entonces $f^{-1}(f(y)) = y$. Es decir, $f^{-1} \circ f = I : \text{Dom} f \to \text{Dom} f$.

Funciones monótonas

- $f: X \to Z$ es estrictamente (de)creciente si $\forall x, y \in X, \ x < y \implies f(x) < f(y) \ (f(x) > f(y))$
- Si $f: X \to Z$ es estrictamente (de)creciente, entonces es 1-1.

Funciones monótonas

- $f: X \to Z$ es estrictamente (de)creciente si $\forall x, y \in X, \ x < y \implies f(x) < f(y) \ (f(x) > f(y))$
- Si $f: X \to Z$ es estrictamente (de)creciente, entonces es 1-1.

Ahora, lo mismo pero con \leq (\geq):

Definición

 $f: X \to Z$ es **monótona** (de)creciente si

$$\forall x, y \in X, \ x \le y \implies f(x) \le f(y) \ (f(x) \ge f(y))$$

Funciones monótonas

- $f: X \to Z$ es estrictamente (de)creciente si $\forall x, y \in X, \ x < y \implies f(x) < f(y) \ (f(x) > f(y))$
- Si $f: X \to Z$ es estrictamente (de)creciente, entonces es 1-1.

Ahora, lo mismo pero con \leq (\geq):

Definición

 $f: X \to Z$ es **monótona** (de)creciente si

$$\forall x, y \in X, \ x \le y \implies f(x) \le f(y) \ (f(x) \ge f(y))$$

Ejercicios (Apunte, Sección 5.3)

- La suma de monótonas (de)crecientes es monótona (de)creciente.
- $extbf{2}$ f estr. (de)crec. y g monót. (de)crec. $\Longrightarrow f+g$ estr. (de)creciente.
- f 3 Si $c \geq 0$ ($c \leq 0$) y f es monót. crec. entonces es $c \cdot f$ es monót. (de)crec.

■ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . .

- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . .
- \blacksquare 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, ...

- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . .
- \blacksquare 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, ...
- **1**, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...

- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . .
- \blacksquare 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, ...
- **1**, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...
- **1**, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Definición

Una **sucesión** es una función con dominio $\mathbb N$ y conjunto de llegada $\mathbb R$.

Definición

Una **sucesión** es una función con dominio \mathbb{N} y conjunto de llegada \mathbb{R} .

Si $a : \mathbb{N} \to \mathbb{R}$ es una sucesión, escribimos:

Notación

■ $a_n := a(n)$, los **términos** (=valores) de la sucesión;

Definición

Una **sucesión** es una función con dominio \mathbb{N} y conjunto de llegada \mathbb{R} .

Si $a : \mathbb{N} \to \mathbb{R}$ es una sucesión, escribimos:

Notación

- $a_n := a(n)$, los **términos** (=valores) de la sucesión;
- La función *a* se puede escribir de todas estas maneras:

$${a_n}_{n\in\mathbb{N}}, \quad {a_n}_{n=1}^{\infty}, \quad {a_n}_n, \quad {a_n \mid n\in\mathbb{N}}, \quad {a_n \mid n\in\mathbb{N}}, \dots$$

Definición

Una **sucesión** es una función con dominio $\mathbb N$ y conjunto de llegada $\mathbb R$.

Si $a: \mathbb{N} \to \mathbb{R}$ es una sucesión, escribimos:

Notación

- $a_n := a(n)$, los **términos** (=valores) de la sucesión;
- La función a se puede escribir de todas estas maneras: $\{a_n\}_{n\in\mathbb{N}}, \quad \{a_n\}_{n=1}^{\infty}, \quad \{a_n\}_n, \quad (a_n\mid n\in\mathbb{N}), \quad \langle a_n\mid n\in\mathbb{N}\rangle, \dots$
- Pero $\{a_n \mid n \in \mathbb{N}\}$ es un conjunto, la imagen de a.

Ejemplos: sucesión constante

Gráfico de $\{a_n\}_{n\in\mathbb{N}}$

$$a_n := 4$$

Ejemplos: sucesión constante

Gráfico de $\{a_n\}_{n\in\mathbb{N}}$

$$a_n := 4$$

Ejemplos: sucesión constante

Gráfico de $\{a_n\}_{n\in\mathbb{N}}$

$$a_n := 4$$

Imagen $\{a_n \mid n \in \mathbb{N}\}$

Ejemplos: sucesión de los naturales

Gráfico de $\{a_n\}_{n\in\mathbb{N}}$

$$a_n := n$$

(¡Ojo! Cambio de escala en ordenadas)

Ejemplos: sucesión de los naturales

Gráfico de $\{a_n\}_{n\in\mathbb{N}}$

$$a_n := n$$

(¡Ojo! Cambio de escala en ordenadas)

Ejemplos: sucesión de los naturales

Gráfico de $\{a_n\}_{n\in\mathbb{N}}$

$$a_n := n$$
(¡Ojo! Cambio de escala en ordenadas)

Imagen $\{a_n \mid n \in \mathbb{N}\}$

Ejemplos: sucesión armónica

Gráfico de $\{a_n\}_{n\in\mathbb{N}}$

$$a_n := 1/n$$

Ejemplos: sucesión armónica

Gráfico de $\{a_n\}_{n\in\mathbb{N}}$

$$a_n := 1/n$$

Imagen $\{a_n \mid n \in \mathbb{N}\}$

Ejemplos: sucesión armónica

Gráfico de $\{a_n\}_{n\in\mathbb{N}}$

$$a_n := 1/n$$

Ejemplos: sucesión oscilante

Gráfico de $\{a_n\}_{n\in\mathbb{N}}$

$$a_n := (-1)^n$$

$$a_1, a_3, \dots$$
 a_2, a_4, \dots $-1, 0$ $0, 0$ $1, 0$

Ejemplos: sucesión eventualmente constante

Gráfico de $\{a_n\}_{n\in\mathbb{N}}$

$${a_n}_{n\in\mathbb{N}} = -4, 3, \dots, 0, 1, 1, 1, \dots$$

Nos interesa el comportamiento de las sucesiones $\{a_n\}_{n\in\mathbb{N}}$ "cuando n es suficientemente grande".

Nos interesa el comportamiento de las sucesiones $\{a_n\}_{n\in\mathbb{N}}$ "cuando n es suficientemente grande".

Pregunta

¿Cuánto es "suficientemente"?

Ejemplos: sucesión eventualmente constante

Gráfico de $\{a_n\}_{n\in\mathbb{N}}$

$${a_n}_{n\in\mathbb{N}} = -4, 3, \dots, 0, 1, 1, 1, \dots$$

Nos interesa el comportamiento de las sucesiones $\{a_n\}_{n\in\mathbb{N}}$ "cuando n es suficientemente grande".

Pregunta

¿Cuánto es "suficientemente"?

■ Para una eventualmente constante, ¿es 8?

Ejemplos: sucesión armónica

Gráfico de $\{a_n\}_{n\in\mathbb{N}}$

$$a_n := 1/n$$

Nos interesa el comportamiento de las sucesiones $\{a_n\}_{n\in\mathbb{N}}$ "cuando n es suficientemente grande".

Pregunta

¿Cuánto es "suficientemente"?

- Para una eventualmente constante, ¿es 8?
- Para la armónica, ¿es "nunca"?

Nos interesa el comportamiento de las sucesiones $\{a_n\}_{n\in\mathbb{N}}$ "cuando n es suficientemente grande".

Pregunta

¿Cuánto es "suficientemente"?

- Para una eventualmente constante, ¿es 8?
- Para la armónica, ¿es "nunca"?

Desafío

Definir "eventualmente constante".

Eventualmente

 $\{a_n\}_{n\in\mathbb{N}}$ es eventualmente constante \iff existe $c\in\mathbb{R}$ y existe N tal que $\forall n\geq N,\ a_n=c.$

Eventualmente

 $\{a_n\}_{n\in\mathbb{N}}$ es eventualmente constante \iff existe $c\in\mathbb{R}$ y existe N tal que $\forall n\geq N,\ a_n=c.$

Ejercicios

- Supongamos que $\{a_n\}_{n\in\mathbb{N}}$ es eventualmente constante y esto está atestiguado por c y N. Demostrar que cualquier $N' \geq N$ también sirve para justificarlo.
- 2 Definir formalmente:
 - "Los términos de $\{a_n\}_{n\in\mathbb{N}}$ eventualmente tienen módulo menor que ϵ ".

Ejercicios para hoy

Con lo visto esta clase, pueden terminar el P2.

Ejercicios para hoy

Con lo visto esta clase, pueden terminar el P2.

Lectura para las próxima clases

- Apunte, páginas 21–25.
- Spivak [1] Cap. 21, páginas 613–616.

Bibliografía

[1] M. SPIVAK, "Cálculo infinitesimal", Editorial Reverté S.A., Barcelona, España (1996), segunda edición.

