IN THE CLAIMS:

10

15

1 - 14 (Cancelled)

- 15. (Currently Amended) A continuous process for the preparation of silane of formula SiH₄ by catalytic disproportionation of trichlorosilane of formula SiHCl₃ to form SiH₄ and silicon tetrachloride of formula SiCl₄ in a reactive/distillative reactive and distillative reaction zone comprising
- introducing SiHCl₃ into a reactive/distillative reactive and distillative reaction zone comprising a catalyst bed of a catalytically active solid at a pressure of 1 to 50 bar to form a lower-boiling SiH₄-containing product and a higher-boiling SiCl₄-containing bottom product;
 - (b) removing the lower-boiling SiH₄-containing product from the reactive/distillative reactive and distillative reaction zone and condensing the SiH₄-containing product in an intermediate condensation at a temperature in the range from -5°C to 40°C;
 - introducing the lower-boiling SiH₄-containing product which is not condensed in the intermediate condensation into a rectifying section and increasing the SiH₄-concentration in the SiH₄-containing product which is not condensed in the intermediate condensation;
 - (d) further condensing any SiH₄-containing product that is not condensed in the intermediate condensation and concentrated in the rectifying section in an overhead condenser from which the SiH₄-containing product is discharged as final product.

01/11/2005 17:52 19149415855 MCGLEW AND TUTTLE PC PAGE 03

16. (Previously Presented) A process according to Claim 15 wherein the pressure in the catalyst bed is from 1 to 10 bar.

17. (Cancelled)

5

- 18. (Previously Presented) A process according to Claim 15 wherein the SiH₄-containing product discharged is separated in the overhead condenser at a pressure higher than the pressure employed in the intermediate condensation.
 - 19. (Currently Amended) A process according to Claim 15, further comprising: introducing the product from the overhead condenser into a separation column; collecting chlorosilane in said separation column;

feeding wherein all or part of the chlorosilane is returned to the reactive/distillative reactive and distillative reaction zone.

- 20. (Currently Amended) An installation for the continuous preparation of silane of formula SiH₄ by catalytic disproportionation of trichlorosilane of formula SiHCl₃ to form SiH₄ and silicon tetrachloride of formula SiCl₄ in a reaction column having
- (1) a reactive/distillative reactive and distillative reaction zone comprising a catalyst bed made of solid bodies of catalytically active solid and through which the

10

15

20

- disproportionation products and trichlorsilane can flow,
- (2) an inlet for introducing SiHCl₃ into the reactive zone,
- (3) an overhead condenser connected to the reaction column for condensing the SiH₄containing product that is formed and having an outlet for condensed SiH₄ at the
 overhead condenser,
- (4) at least one intermediate condenser arranged between the reactive/distillative reactive and distillative reaction zone and the overhead condenser, wherein the at least one intermediate condenser is operated at a temperature in the range from 5°C to 40°C,
- (5) a rectifying section for increasing the SiH₄-concentration in the lower-boiling SiH₄-containing product which is not condensed in the at least one intermediate condenser being arranged downstream of the at least one intermediate condenser in a direction of flow of the lower-boiling SiH₄-containing product coming from the at least one intermediate condenser, and
- (6) an outflow for SiCl₄ obtained as bottom product, for carrying out the process according to Claim 15 is arranged in the reactive and distillative reaction zone.

21. (Cancelled)

22. (Previously Presented) An installation according to Claim 20 wherein the at least one intermediate condenser is arranged above the catalyst bed.

5

23. (Cancelled)

- 24. (Previously Presented) An installation according to Claim 20 wherein a separation column for separating SiH₄-containing product fractions from higher-boiling chlorosilane components is arranged downstream of the at least one intermediate condenser in a direction of flow of the lower-boiling product mixture coming from the at least one intermediate condenser.
- 25. (Previously Presented) An installation according to Claim 24 wherein the separation column is arranged downstream of the rectifying section.
- 26. (Previously Presented) An installation according to Claim 25 wherein the overhead condenser is arranged between the rectifying section and the separation column.
- 27. (Previously Presented) An installation according to Claim 24 wherein the separation column is operated at a pressure higher than the pressure in the at least one intermediate condenser and the product that is conducted to the separation column is compressed.
- 28. (Currently Amended) An installation according to Claim 24 wherein a branch line that opens into a reactive/distillative reactive and distillative reaction zone of the reaction

5

10

15

column is connected to a bottom outlet of the separation column.

29. (Currently Amended) A process for producing silane, the process comprising the steps of:

providing a reactive/distillative reactive and distillative reaction zone including a catalyst bed of a catalytically active solid forming a lower-boiling SiH₄-containing product and a higher-boiling SiCl₄-containing bottom product;

introducing SiHCl₃ into the reactive/distillative reactive and distillative reaction zone at a pressure of 1 to 50 bar and forming the lower-boiling SiH₄ -containing product and the higher-boiling SiCl4-containing bottom product;

removing the lower-boiling SiH₄-containing product from the reactive/distillative reactive and distillative reaction zone;

cooling the SiH₄-containing product after said removing in an intermediate condensation with temperatures in the range from -5°C to 40°C;

providing a rectifying section;

introducing the lower-boiling SiH₄-containing product which is not condensed during said cooling into a rectifying section to increasing a SiH₄-concentration in the SiH₄-containing product;

condensing the SiH₄-containing product from the rectifying section in an overhead condenser from which the SiH₄-containing product is discharged as final product.