

1

Performance:			Crypto++ 5.6.0 [Wei Dai]	
AMD Opteron, 2.2 GHz (Linux)				
stream	<u>Cipher</u> RC4	Block/key size	Speed (MB/sec) 126	
	Salsa20/12		643	
	Sosemanuk		727	
block	3DES	64/168	13	
	AES-128	128/128	109	
				Dan Boneh

Abstractly: PRPs and PRFs

• Pseudo Random Function (PRF) defined over (K,X,Y):

 $F: K \times X \rightarrow Y$

such that exists "efficient" algorithm to evaluate F(k,x)

Pseudo Random Permutation (PRP) defined over (K,X):

E: $K \times X \rightarrow X$

such that:

- 1. Exists "efficient" deterministic algorithm to evaluate E(k,x)
- 2. The function $E(k, \cdot)$ is one-to-one
- 3. Exists "efficient" inversion algorithm D(k,y)

Dan Bone

Running example

• Example PRPs: 3DES, AES, ...

AES: $K \times X \rightarrow X$ where $K = X = \{0,1\}^{128}$

3DES: $K \times X \rightarrow X$ where $X = \{0,1\}^{64}$, $K = \{0,1\}^{168}$

- Functionally, any PRP is also a PRF.
 - A PRP is a PRF where X=Y and is efficiently invertible.

Dan Boneh

Secure PRFs

• Let F: $K \times X \rightarrow Y$ be a PRF

Funs[X,Y]: the set of <u>all</u> functions from X to Y $S_F = \{ F(k,\cdot) \text{ s.t. } k \in K \} \subseteq Funs[X,Y]$

Intuition: a PRF is secure if
a random function in Funs[X,Y] is indistinguishable from
a random function in S_F

Secure PRFs

• Let $F: K \times X \rightarrow Y$ be a PRF

Funs[X,Y]: the set of <u>all</u> functions from X to Y

$$S_F = \{ F(k, \cdot) \text{ s.t. } k \in K \} \subseteq Funs[X,Y]$$

• Intuition: a PRF is secure if

a random function in Funs[X,Y] is indistinguishable from

a random function in S_F

Secure PRPs (secure block cipher)

• Let E: $K \times X \rightarrow Y$ be a PRP

Perms[X]: the set of all <u>one-to-one</u> functions from X to Y $S_F = \{ E(k, \cdot) \text{ s.t. } k \in K \} \subseteq Perms[X,Y]$

 Intuition: a PRP is secure if a random function in Perms[X] is indistinguishable from a random function in S_E

Let $F: K \times X \rightarrow \{0,1\}^{128}$ be a secure PRF. Is the following G a secure PRF?

$$G(k, x) = \begin{cases} 0^{128} & \text{if } x=0 \\ F(k,x) & \text{otherwise} \end{cases}$$

- No, it is easy to distinguish G from a random function
- Yes, an attack on G would also break F
- It depends on F

An easy application: $PRF \Rightarrow PRG$

Let $F: K \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a secure PRF.

Then the following $G: K \rightarrow \{0,1\}^{nt}$ is a secure PRG:

$$G(k) = F(k,0) \parallel F(k,1) \parallel \cdots \parallel F(k,t-1)$$

Key property: parallelizable

Security from PRF property: $F(k, \cdot)$ indist. from random function $f(\cdot)$

Dan Bonel

End of Segment