Branden Fitelson

Philosophy 1115 Notes

Branden Fitelson

Philosophy 1115 Notes

2

Announcements & Overview

- Administrative Stuff
 - HW #2 will be graded later this week.
 - * I will also post solutions later this week.
 - The mid-term will be held on March 4
 - * We will review for the mid-term in class on March 1
 - HW #3 has been posted
 - * It consists of five (5) truth-table exercises
 - * It's due on Friday March 4 (same day as the midterm)
- I have posted a bunch of additional LSL symbolization problems, with solutions. See the latest handout on our course website.
- Today: Unit #3, Continued
 - The (Truth-Functional) Semantics of LSL

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/23/16

Chapter 3 — Semantics of LSL: Truth Functions I

- The semantics of LSL is *truth-functional* the truth value of a compound statement is a *function* of the truth values of its parts.
- Truth-conditions for each of the five LSL statement forms are given by *truth tables*, which show how the truth value of each type of complex sentence depends on the truth values of its constituent parts.
- Truth-tables provide a very precise way of thinking about logical
 possibility. Each row of a truth-table can be thought of as a way the
 world might be. The actual world falls into exactly one of these rows.
- In this sense, truth-tables provide a way to "see" logical space.
- Truth-tables will also provide us with a rigorous way to establish whether an argument form in LSL is valid (*i.e.*, sentential validity).
- We just look for rows of a salient truth-table in which all the premises are true and the conclusion is false. That's where we're headed.

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/23/16

Branden Fitelson

Philosophy 1115 Notes

3

02/23/16

Chapter 3 — Semantics of LSL: Truth Functions II

• We begin with negations, which have the simplest truth functions. The truth table for negation is as follows (we use ⊤ and ⊥ for true and false):

- In words, this table says that if p is true than $\sim p$ is false, and if p is false, then $\sim p$ is true. This is quite intuitive, and corresponds well to the English meaning of 'not'. Thus, LSL negation is like English negation.
- Examples:
 - It is not the case that Wagner wrote operas. ($\sim W$)
 - It is not the case that Picasso wrote operas. ($\sim P$)
- ' \sim W' is false, since 'W' is true, and ' \sim P' is true, since 'P' is false (like English).

Branden Fitelson

Philosophy 1115 Notes

Chapter 3 — Semantics of LSL: Truth Functions III

p	q	p&q
Т	Т	Т
Т	\perp	
\perp	Т	Τ.
\perp	1	Т

- Notice how we have four (4) rows in our truth table this time (not 2), since there are four possible ways of assigning truth values to *p* and *q*.
- The truth-functional definition of & is very close to the English 'and'. A LSL conjunction is true if *both* conjuncts are true; it's false otherwise.
 - Monet and van Gogh were painters. (M & V)
 - Monet and Beethoven were painters. (M & B)
 - Beethoven and Einstein were painters. (B & E)
- '*M* & *V*' is true, since both '*M*' and '*V*' are true. '*M* & *B*' is false, since '*B*' is false. And, '*B* & *E*' is false, since '*B*' and '*E*' are both false (like English).

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

Chapter 3 — Semantics of LSL: Truth Functions IV

р	q	$p \vee q$
Т	Т	Т
Т	1	Т
\perp	Т	Т
\perp	1	

- Our truth-functional ∨ is not as close to the English 'or'. An LSL disjunction is true if at least one disjunct is true (false otherwise).
- In English, 'A or B' often implies that 'A' and 'B' are not both true. That is called *exclusive* or. In LSL, ' $A \vee B$ ' is *not* exclusive; it is *inclusive* (true if both disjuncts are true). But, we can express exclusive or in LSL. How?
 - Either Jane austen or René Descartes was novelist. $(J \vee R)$
 - Either Jane Austen or Charlotte Bronte was a novelist. $(J \vee C)$
 - Either René Descartes or David Hume was a novelist. $(R \lor D)$
- The first two disjunctions are true because at least one their disjuncts is true, but the third is false, since both of its disjuncts are false.

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/23/16

Chapter 3 — Semantics of LSL: Truth Functions V

p	q	$p \rightarrow q$
Т	Т	Т
Т	Τ	
\perp	Т	Т
\perp	1	Т

- Our truth-functional → is farther from the English 'only if'. An LSL conditional is false iff its antecedent is true and its consequent is false.
- Consider the following English conditionals. [M = 'the moon is made of green cheese', O = 'life exists on other planets', and E = 'life exists on Earth'
 - If the moon is made of green cheese, then life exists on other planets.
 - If life exists on other planets, then life exists on earth.
- The LSL translations of these sentences are both true. ' $M \rightarrow O$ ' is true because its antecedent 'M' is false. ' $O \rightarrow E$ ' is true because its consequent 'E' is true. This seems to deviate from the English 'if'. [Soon, we'll *prove* the following *equivalence*: $\lceil p \rightarrow q \rceil \Rightarrow \lceil p \lor q \rceil$.]

Northeastern Philosophy

Northeastern Philosophy

Branden Fitelson

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/23/16

Branden Fitelson

Philosophy 1115 Notes

Chapter 3 — Semantics of LSL: Truth Functions VI

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	\perp	Τ
\perp	Т	Τ
\perp	Τ.	Т

- Our truth-functional → is also farther from the English 'if and only if'. An LSL biconditional is true iff both sides have the same truth value.
- Consider these two biconditionals. [*M* = 'the moon's made of green cheese', U = 'there are unicorns', E = 'life exists on Earth', and S = 'the sky is blue'
 - The moon is made of green cheese if and only if there are unicorns.
 - Life exists on earth if and only if the sky is blue.
- The LSL translations of these sentences are true. $M \leftrightarrow U$ is true because *M* and *U* are false. $E \leftrightarrow S$ is true because *E* and *S* are true. This seems to deviate from the English 'iff'. Soon, we'll *prove* the following:

$$\lceil p \leftrightarrow q \rceil = \lceil (p \& q) \lor (\sim p \& \sim q) \rceil$$

Branden Fitelson

Philosophy 1115 Notes

Chapter 3 — Semantics of LSL: Truth Functions VII

- If our truth-functional semantics for '→' doesn't perfectly capture the English meaning of 'if ... then ...', then why do we define it this way?
- The answer has two parts. First, our semantics is truth-functional. This is an *idealization* — it yields the *simplest* ("Newtonian") semantics.
- And, there are only $2^4 = 16$ possible binary truth-functions. Why?
- So, unless one of the *other* 15 binary truth-functions is *closer* to the English conditional than ' \rightarrow ' is, it's the best we can do, truth-functionally.
- More importantly, there are certain *logical properties* that the conditional *must* have. It can be shown that our definition of $\dot{}$ is the only binary truth-function which satisfies all three of the following:
 - (1) *Modus Ponens* [p and $\lceil p \rightarrow q \rceil$: q] is a valid sentential form.
- (2) Affirming the consequent [q and $\lceil p \rightarrow q \rceil$: p] is *not* a valid form.
- (3) All sentences of the form $p \to p$ are logical truths.

Chapter 3 — Semantics of LSL: Truth Functions VIII

• Here are all of the 16 possible binary truth-functions. I've given them all names or descriptions. [Only a few of these names were made up by me.]

p	q	Т	NAND	→	~p	FI (←)	~q	↔	NOR	٧	NIFF	q	NFI	р	NIF	&	Т
Т	Т	Т	1	Т	1	Т	1	Т	Т	Т	Τ	Т	Τ	Т	Τ	Т	
Т	Τ	Т	Т	Τ.	Τ	Т	Т	Τ	Т	Т	Т	Τ	Τ	Т	Т	Τ	1
	Т	Т	Т	Т	Т	Τ	Τ	Τ	Τ	Т	Т	Т	Т	Τ	Τ	Τ	1
	1	Т	Т	Τ	Т	Т	Т	Т	Т	1	1	1	1	1	1	1	Τ
(1)?			Yes													
(2)?			Yes													
(3)?			Yes													

- Exercise: fill-in the three rows at the bottom (except for →, which I have done for you already) concerning (1), (2), and (3) from the previous slide.
- You should be able to do this pretty soon (within the next week) ...

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/23/16

Chapter 3 — Semantics of LSL: Additional Remarks on —

- Above, I explained *why* our conditional → behaves "like a disjunction":
 - 1. We want a *truth-functional* semantics for →. This is a simplifying *idealization*. Truth-functional semantics are the simplest compositional semantics for sentential logic. [A "Newtonian" semantic model.]
 - 2. Given (1), the *only* way to define \rightarrow is *our* way, since it's the *only* binary truth-function that has the following three essential *logical* properties:
 - (i) *Modus Ponens* [p and $\lceil p \rightarrow q \rceil : q$] is a valid sentential form.
 - (ii) Affirming the consequent $[q \text{ and } p \rightarrow q]$: p is *not* a valid form.
 - (iii) All sentences of the form $p \to p$ are logical truths.
- There are *non*-truth-functional semantics for the English conditional.
- These may be "closer" to the English *meaning* of "if". But, they agree with our semantics for →, when it comes to the crucial *logical* properties (i)–(iii). Indeed, our → captures *most* of the (intuitive) *logical* properties of "if".

Northeastern Philosophy

Branden Fitelson

Unit #3: Truth-Functional Semantics of LSL

02/23/16

Branden Fitelson

Philosophy 1115 Notes

11

Constructing Truth-Tables for LSL Sentences

- With the truth-table definitions of the five connectives in hand, we can now construct truth tables for arbitrary compound LSL statements.
- The procedure for constructing the truth-table of *p* is as follows:
 - 1. Determine the number of rows in the truth-table. This is 2^n , where n is the number of atomic sentences in the compound statement p.
 - 2. The table will have n + 1 main columns: n columns for the atomic sentences in p, and one for the truth-values of p itself.
 - 3. The table will also have some "quasi-columns" one for each LSL statement occurring in the compound p which needn't be drawn explicitly, but which go into the determination of p's truth values.
 - 4. Place the atomic letters in the left most columns, in alphabetical order from left to right. And, place p in the right most column.
 - 5. Write in all possible combinations of truth-values for the atomic statements. There are 2^n of these one for each row of the table.

Branden Fitelson Philosophy 1115 Notes 12

- 6. Convention: start on the nth column (farthest down the alphabet) with the pattern $\top \bot \top \bot \dots$ repeated until the column is filled. Then, go $\top \top \bot \bot \dots$ in the n-1st column, $\top \top \top \top \bot \bot \bot \bot \dots$ in the n-2nd column, etc..., until the very first column has been completed.
- 7. Finally, we compute the truth-values of p in each row of the table. Here, we start from the inside-out. We first copy the truth-values of the atoms, then we compute the negations, conjunctions, etc. which compose p. Finally, we will be in a position to compute the value of the main connective of p, at which point we'll be done with the table.
- Example: Step-By-Step Truth-Table Construction of ' $A \leftrightarrow (B \& A)$.'

\boldsymbol{A}	B	A	\leftrightarrow	(B	&	A)	
Т	Т	Т	Т	Т	Т	Т	
Т	1	Т	Τ	Τ	\perp	Т	
Τ	Т	Т	Т	Т	Т	Т	
T	Т	Т	Т	Т	Τ	Т	

Interpretations and the Relation of Logical Consequence

- An *interpretation* of an LSL formula p is an assignment of truth-values to all of the sentence letters in p-i.e., a row in p's truth-table.
- A formula p is a *logical consequence* of a set of formulae S [written $S \models p$] just in case there is no interpretation (*i.e.*, no row in the joint truth-table of S and p) on which all the members of S are \top but p is \bot .
- $S \models p$ is another way of saying that the argument from S to p is *valid*.
- Two LSL sentences *p* and *q* are said to be *logically equivalent* [written *p* = | *q*] iff they have the same truth-value on all (joint) interpretations.
- That is, p and q are logically equivalent iff both $p \models q$ and $q \models p$.
- I will often express $p \models q$ by saying that p entails q. This is easier than saying that q is a logical consequence of p.
- The logical consequence relation ⊨ is our central theoretical relation.

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/23/16

Logical Truth, Logical Falsity, and Contingency: Definitions

A statement is said to be logically true (or tautologous) if it is ⊤ on all interpretations. *E.g.*, any statement of the form p ↔ p is tautological.

$$\begin{array}{c|cccc} p & p & \leftrightarrow & p \\ \hline \top & \top & \top & \top & \top \\ \bot & \bot & \top & \bot & \bot \end{array}$$

• A statement is logically false (or self-contradictory) if it is \bot on all interpretations. *E.g.*, any statement of the form $p \& \sim p$ is logically false:

• A statement is **contingent** if it is *neither* tautological *nor* self-contradictory. Example: 'A' (or *any* basic sentence) is contingent.

$$\begin{array}{c|c|c} A & A \\ \hline \top & \top \\ \hline \bot & \bot \end{array}$$

Northeastern Philosophy

Branden Fitelson

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/23/16

16

Branden Fitelson

Philosophy 1115 Notes

15

Logical Truth, Logical Falsity, and Contingency: Problems

- Classify the following statements as logically true (tautologous), logically false (self-contradictory), or contingent:
 - 1. $N \rightarrow (N \rightarrow N)$
 - $2.\ (G \to G) \to G$
 - 3. $(S \to R) \& (S \& \sim R)$
- 4. $((E \rightarrow F) \rightarrow F) \rightarrow E$
- 6. $(M \rightarrow P) \lor (P \rightarrow M)$
- 11. $[(Q \to P) \& (\sim Q \to R)] \& \sim (P \lor R)$
- 12. $[(H \to N) \& (T \to N)] \to [(H \lor T) \to N]$
- 15. $[(F \lor E) \& (G \lor H)] \leftrightarrow [(G \& E) \lor (F \& H)]$

Branden Fitelson Philosophy 1115 Notes

Equivalence, Contradictoriness, Consistency, and Inconsistency

• Statements p and q are equivalent [p
ightharpoonup q] if they have the same truth-value on all interpretations. For instance, 'A
ightharpoonup B' and ' $\sim A \lor B$ '.

A	В	A	→	В	~	A	V	В
Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	\perp	Т	Т	Т	Т	Т		\perp
	Т		Т	Т	Т	Т	Т	Т
	1	1	Т	1	Т	1	Т	1

• Statements p and q are contradictory [p
ightharpoonup
ightharpoonup
ightharpoonup q] if they have opposite truth-values on all interpretations. For instance, 'A
ightharpoonup B' and ' $A \& \sim B$ '.

A	В	A	→	В	A	&	~	В
Т	Т	Т	Т	Т	Т	Τ	Τ	Т
Т	Т	Т	Τ	Т	Т	Т	Т	\perp
Т	Т		Т	Т	Т		Т	Т
Т	1	1	Т	Т	1	1	Т	

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

• Statements p and q are inconsistent $[p \models \neg q]$ if there is no interpretation on which they are both true. For instance, ' $A \leftrightarrow B$ ' and ' $A \& \sim B$ ' are inconsistent [Note: they are *not* contradictory!].

A	В	A	\leftrightarrow	В	A	&	~	В
Т	Т	Т	Т	Т	Т	Τ	Τ	Т
Т	1	Т	T	1	Т	Т	Т	
Т	Т			Т		Т	Τ	Т
Τ	Т	1	Т	Т	1	1	Т	Т

• Statements p and q are consistent $[p \not\models \neg q]$ if there's an interpretation on which they are both true. *E.g.*, 'A & B' and ' $A \lor B$ ' are consistent:

\boldsymbol{A}	В	A	&	В	A	V	В
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	1	Т	Т	Т	Т
Τ	Т		1	Т		Т	Т
Τ			Τ	Т	1	Τ	Τ

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/23/16

19

02/23/16

17

Semantic Equivalence, Contradictoriness, *etc.*: Relationships

• What are the logical relationships between p and q are equivalent, pand q are consistent, p and q are contradictory, and p and q are inconsistent¹? That is, which of these entails which (and which don't)?

> Equivalent Contradictory

Consistent Inconsistent

- Answers:
- 1. Equivalent *⇒* Consistent (*example*?)
- 2. Consistent *⇒* Equivalent (*example*?)
- 3. Contradictory \Rightarrow Inconsistent (*why*?)
- 4. Inconsistent *⇒* Contradictory (*example*?)

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/23/16

Branden Fitelson

Philosophy 1115 Notes

Semantic Equivalence: Example #1

- Recall that p unless q translates in LSL as $\sim q \rightarrow p$.
- We've said that we can also translate p unless q as $p \vee q$.
- This is because $\lceil \sim q \rightarrow p \rceil$ is semantically equivalent to $\lceil p \lor q \rceil$. We may demonstrate this, using the following joint truth-table.

- The truth-tables of $p \vee q$ and $\sim q \rightarrow p$ are the same.
- Thus, $\sim q \rightarrow p = p \vee q$.

Branden Fitelson

Philosophy 1115 Notes

20

Semantic Equivalence: Example #2

- $\lceil p \leftrightarrow q \rceil$ is an abbreviation for $\lceil (p \rightarrow q) \& (q \rightarrow p) \rceil$.
- The following truth-table shows it is a *legitimate* abbreviation:

p	q	$(p \rightarrow q)$	&	$(q \rightarrow p)$	p⊶q
Т	Т	Т	Т	Т	Т
Т	_		Τ	Т	Т
\perp	Т	Т	Τ	Τ	Т
\perp	_	Т	Т	Т	Т

- $\lceil p \leftrightarrow q \rceil$ and $\lceil (p \to q) \& (q \to p) \rceil$ have the same truth-table.
- Thus, $p \leftrightarrow q = (p \rightarrow q) \& (q \rightarrow p)$.

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

Semantic Equivalence: Example #3

- Intuitively, the truth-conditions for *exclusive or* (\oplus) are such that $\lceil p \oplus q \rceil$ is true if and only if *exactly* one of p or q is true.
- I said that we could say something equivalent to this using our \lor , &, and \sim . Specifically, I said $p \oplus q \Rightarrow (p \lor q) \& \sim (p \& q)$.
- The following truth-table shows that this is correct:

p	q	$(p \lor q)$	&	$\sim (p \& q)$	p⊕q
Т	Т	Т	Τ	Т	1
Т	_	Т	Т	Т	Т
\perp	Т	Т	Т	Т	Т
\perp	_		Τ	Т	

• $\lceil p \oplus q \rceil$ and $\lceil (p \vee q) \& \sim (p \& q) \rceil$ have the same truth-table.

Northeastern Philosophy

Unit #3: Truth-Functional Semantics of LSL

02/23/16

21

Equivalence, Contradictoriness, etc.: Some Problems

- Use truth-tables to determine whether the following pairs of statements are semantically equivalent, contradictory, consistent, or inconsistent.
 - 1. 'F & M' and ' \sim ($F \vee M$)'
 - 2. ' $R \lor \sim S$ ' and ' $S \& \sim R$ '
 - 3. ' $H \leftrightarrow \sim G$ ' and ' $(G \& H) \lor (\sim G \& \sim H)$ '
 - 4. 'N & $(A \lor \sim E)$ ' and ' $\sim A$ & $(E \lor \sim N)$ '
 - 5. 'W \leftrightarrow (B & T)' and 'W & (T $\rightarrow \sim B$)'
 - 6. 'R & $(Q \vee S)$ ' and ' $(S \vee R)$ & $(Q \vee R)$ '
 - 7. ' $Z \& (C \leftrightarrow P)$ ' and ' $C \leftrightarrow (Z \& \sim P)$ '
 - 8. ' $Q \rightarrow \sim (K \vee F)$ ' and ' $(K \& Q) \vee (F \& Q)$ '

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/23/16

Branden Fitelson

Philosophy 1115 Notes

23

02/23/16

Some More Semantic Equivalences

• Here is a simultaneous truth-table which establishes that

$$A \leftrightarrow B \rightrightarrows \vDash (A \& B) \lor (\sim A \& \sim B)$$

A	B	A	↔	В	(<i>A</i>	&	B)	V	(~	\boldsymbol{A}	&	~	<i>B</i>)
Т	Т	Т	Т	Т	Т	Т	Т	Т	Τ	Т	Τ	Τ	Т
Т	1	Т	1	Т	Т	1	1	1	Τ	Т	1	Т	
	Т		1	Т	Т	Τ	Т	1	Т	1	1	1	Т
	Τ.	1	Т		1	1	1	Т	Т	\perp	Т	Т	

- Can you prove the following equivalences with truth-tables?
 - $\sim (A \& B) \Rightarrow = \sim A \lor \sim B$
 - $\sim (A \vee B) \Rightarrow = \sim A \& \sim B$
 - $-A = (A \& B) \lor (A \& \sim B)$
 - $-A = A \otimes (B \rightarrow B)$
 - $-A = A \lor (B \& \sim B)$

Branden Fitelson

Philosophy 1115 Notes

24

A More Complicated Equivalence (Distributivity)

• The following simultaneous truth-table establishes that

$$p \& (q \lor r) \Rightarrow \models (p \& q) \lor (p \& r)$$

p	q	r	p	&	$(q \vee r)$	(p & q)	V	(p&r)
Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	\perp	Т	Т	Т	Т	Т	\perp
Т	\perp	Т	Т	Т	Т		Т	Т
Т	\perp	\perp	Т	Τ			Τ	\perp
\perp	Т	Т	1	Τ	Т		Τ	\perp
\perp	Т	\perp	Τ	Τ	Т		Τ	\perp
\perp	\perp	Т	Τ	Τ	Т		Τ	\perp
\perp	\perp	\perp	1	\perp			\perp	Τ

• This is *distributivity* of & over ∨. It also works for ∨ over &.

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL