Scilab Textbook Companion for Basic Electronics by R. D. S. Samuel, U. B. M. Swamy And V. Nattarasu¹

Created by
Akash Linganagouda Patil
BE
Electronics Engineering
BVBCET,Hubli
College Teacher
Soumya Patil
Cross-Checked by

May 20, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Basic Electronics

Author: R. D. S. Samuel, U. B. M. Swamy And V. Nattarasu

Publisher: Sanguine Technical Publishers

Edition: 1

Year: 2008

ISBN: 8188849286

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
1	PN Junction Diode	6
2	Semiconductor Diode Applications	26
3	pnp and npn Transistors	55
4	Other Devices	103
5	Amplifiers and Oscillators	115
6	Operational Amplifier	138
7	Communication System	150
8	Digital Logic	161

List of Scilab Codes

Exa 1.1.8	Find the forward and reverse resistance for diode	6
Exa 1.1.9	Find the forward and reverse resistance for diode	6
Exa 1.1.11	Find the forward and reverse resistance and cut in volt-	
	age for diode	7
Exa 1.1.20	Find the dynamic resistance	8
Exa 1.1.24	calculate current in circuit in fig 18	8
Exa 1.1.25	calculate diode current	9
Exa 1.1.26	calculate diode current across 2 diodes	9
Exa 1.1.27	find the forward current in circuit of fig 22	10
Exa 1.1.28	find out battery voltage	10
Exa 1.1.29	find out series resistance	11
Exa 1.1.31	Plot the piecewise linear characterisic of si diode	11
Exa 1.1.32	Plot the piecewiselinear characterisic of Germanium diode	12
Exa 1.1.34	find out diode current	13
Exa 1.1.35	find out series resistance in circuit fig 32	14
Exa 1.1.48	Find the maximum forward current at 25c	15
Exa 1.1.49	Find the maximum forward current at 25c and 80c and	
	plot power temperature curve	15
Exa 1.1.50	Find maximum forward current at 80c	16
Exa 1.1.51	Find maximum forward current at 75c and draw power	
	temperature curve	18
Exa 1.1.54	Find the forward voltage drop at 100c and dynamic re-	
	sistance at 25c and 100c	19
Exa 1.1.55	Find the maximum and mini forward voltage drop and	
	dynamic resistance	20
Exa 1.1.56	Find the max forward current and voltage and dynamic	
	resistance	21
Exa 1.1.57	Find the diode currents at 25c and 100c	22

Exa 1.1.65	Find the minimal fall time	22
Exa 1.1.66	Estimate the maximum reverse recovery time	23
Exa 1.1.72	Find the maximum current flow through zener	23
Exa 1.1.75	Find the current through zener at 50c and 80c	24
Exa 1.1.76	Find the diode current and power dissipation	24
Exa 2.2.11	Calculate Peak ac de load current de diode voltage total	
	input power percentage regulation of HW Rectifier	26
Exa 2.2.12	Calculate DC RMS load voltage PIV across diode Recti-	
	fication efficiency DC power delivered to load Frequency	
	of output waveform of HW rectifier	27
Exa 2.2.20	Calculate peak RMS DC load current DC in each diode	
	DC output voltage percentage regulation PIV RMS cur-	
	rent DC load voltage of FW rectifier	28
Exa 2.2.21	Find the load current and rms value of input current of	
	FW rectifier	29
Exa 2.2.22	Calculate Average load current and voltage and Ripple	
	voltage of FW rectifier	30
Exa 2.2.23	Calculate Average voltage rectification efficiency and	
	percentage regulation of FW rectifier	31
Exa 2.2.24	Calculate Average load voltage RMS load current PIV	
	DC output power Frequency of output waveform	31
	Calculate all characteristics of FW bridge rectifier	32
Exa 2.2.29	Calculate Average output voltage avg load current fre-	0.4
	quency of output waveform dc power output of FWBR	34
Exa 2.2.34	Calculate Ripple factor DC output voltage DC load cur-	0.4
	rent PIV RMS output ripple voltage of HWR	34
	Calculate the capacitance of HWR	35
Exa 2.2.40	Estimate the value of capacitor required to keep ripple	2.0
E 2 2 41	factor less than 1per of FWR	36
Exa 2.2.41	Calculate minimum value of capacitance used in the fil-	36
E ₁₁₂ 2 2 42	ter to keep ripple voltage below 2per of FWR	30
Exa 2.2.42	Find Ripple factor Dc output voltage Ripple voltage DC load current of FWR	37
Evo 2 2 42	Find the ripple factor and output voltage if a capacitor	31
пла 2.2.40	of 160uf is connected in parallel with load of FWR	37
Eva 2 2 44	Find the ripple factor and DC load current of FWBR.	38
	Find the capacitor value for half wave rectifier	39
	Find the capacitor value for full wave rectifier	39

Exa $2.2.50$	calculate load and source effects and load and line reg-	
	ulation	40
Exa $2.2.51$	calculate load and source effects and load and line reg-	
	ulation	40
Exa 2.2.54	Design the Zener Diode Voltage regulator for given spec-	
	ification	41
Exa 2.2.55	Design a zener diode voltage regulator to meet following	
	specification	42
Exa 2.2.56	Design a zener diode voltage regulator to meet following	
	specification	43
Exa 2.2.57	Calculate the value of series resistance and Zener diode	
	current when load is 1200ohm	44
Exa 2.2.58	Design a voltage regulator using zener diode to meet	
	following specification	45
Exa 2.2.59	Design a zener voltage regulator to meet following spec-	
	ification	46
Exa 2.2.60	Design a zener voltage regulator to meet following spec-	
	ification	47
Exa 2.2.61	Design a zener voltage regulator to meet following spec-	
	ification	48
Exa 2.2.63	Design a 6V dc reference source to operate from a 16v	
	supply	49
Exa 2.2.64	Design a 8V dc reference source to operate from a 20v	
	supply and find maximum load current	50
Exa 2 2 65	Calculate circuit current when supply voltage drops to	
111a 2:1:00	27V select suitable components	51
Exa 2 2 66	Calculate the effect of a 10per variation supply voltage	01
111a 2:2:00	on diode current	52
Exa 2 2 68	Calculate the line regulation output resistance load reg-	02
111 00	ulation and ripple rejection ratio	53
Exa 3 3 14	calculate the value of Ic Ie beta for a transistor	55
	Find the value of alpha and beta of transistor and Ib for	33
LAG 0.0.10	desired Ic	56
Eva 3 3 16	calculate the value of alpha beta and Ib for a transistor	56 56
	calculate the value of alpha beta and 15 for a transistor calculate the value of beta for transistor and find new	50
LAG 0.0.11	collector current when beta of new transistor is 70	57
Eva 3 3 18	calculate the value of Ic Ie for a transistor and Find beta	91
LAG 0.0.10	for transistor	58
	101 01001010001	90

Exa 3.3.19	calculate the value of Ie alpha beta for a transistor and	
	find Ib for new value of Ic	58
Exa 3.3.20	calculate the value of Ic and Ie for a transistor	59
Exa 3.3.21	calculate the value of Ic alpha beta for a transistor and	
	Ic when Ib is 150uA	60
Exa 3.3.22	calculate the value of Ib beta for a transistor and Ic Ie	
	for new value of beta	60
Exa 3.3.25	Find the DC collector voltage and voltage gain of ckt	
	for Vi is 50mV	61
Exa 3.3.26	FInd the DC current gain for circuit fig 15 and ac voltage	
	gain	62
Exa 3.3.27	Find the parameters of the ckt of question 27	63
Exa 3.3.34	Obtain the CB current gain and output characteristics	64
Exa 3.3.46	For the circuit given draw a DC load line	66
Exa 3.3.50	Draw a DC load line for the base bias circuit	68
Exa 3.3.51	Draw a DC load line for the base bias circuit for different	
	hFE	70
Exa 3.3.52	Find Ic and Vce and Draw a DC load line for the base	
	bias circuit	71
Exa 3.3.53	Find Ic and Vce and Draw a DC load line for the base	
	bias circuit	72
Exa $3.3.54$	Draw a DC load line for the base bias circuit neglecting	
	Vbe	74
Exa 3.3.55	Calculate transistor hFE and new Vce level for hFE is	
	100 of base bias ciruit	76
Exa $3.3.57$	Design a Base bias circuit	78
Exa 3.3.58	Draw the DC load line and determine Rc for base bias	
	circuit	79
	Calculate Base resistance for base bias circuit	79
Exa 3.3.61	Determine the Ic and Vce levels and draw DC load line	
	for Collector to base bias	81
Exa 3.3.62	Determine the hFE and new Vce for hFE is 50 for Col-	
	lector to base bias	82
	Draw a DC load line for Collector to base bias	84
Exa 3.3.64	Draw a DC load line for Collector to base bias for dif-	
	ferent hFE	85
	Design a Collector to base bias circuit	86
Exa 3.3.67	Design a Collector to base bias circuit	88

Exa	3.3.68	Calculate required base resistance for Collector to base	
		bias circuit	89
		Draw a DC load line for Voltage divider circuit	89
Exa	3.3.73	Find the Ve Ic Vce and Vc and Draw a DC load line for	
		Voltage divider circuit	92
Exa	3.3.74	Find the Ve Ic Vce and Vc and Draw a DC load line for	
		Voltage divider circuit	93
Exa	3.3.76	Design a Voltage divider bias circuit	95
Exa	3.3.77	Design a Voltage divider bias circuit	96
Exa	3.3.79	Calculate the suitable resistor values for Voltage divider	
		bias circuit	97
Exa	3.3.85	Find the stability factor and change in Ic for increase in	
		temperature of base bias circuit	98
Exa	3.3.86	Find the stability factor and change in Ic for increase in	
		temperature of collector to base bias circuit	99
Exa	3.3.87	Find the stability factor and change in Ic for increase in	
		temperature of Voltage divider bias circuit	100
Exa	3.3.89	Calculate the change in Ic produced by effect of Vbe	
		changes over temperature of Voltage divider bias circuit	101
Exa	3.3.90	Calculate the change in Ic produced by effect of Vbe	
		changes over temperature of Voltage divider bias circuit	102
Exa	4.4.18	Calculate input votage that turns SCR ON and supply	
		voltage that turns OFF	103
Exa	4.4.28	Calculate the values of R1 R2 and Rp of SCR circuit .	104
		Calculate the values of R1 R2 and Rp of SCR circuit .	105
		Design the SCR crowbar circuit to protect the load from	
		voltage levels greater than 12V	106
Exa	4.4.41	Design the SCR crowbar circuit to protect the load from	
		voltage levels greater than specified voltage	107
Exa	4.4.49	Determine the minimum and maximum triggering volt-	
		age for a UJT	108
Exa	4.4.51	find maximum oscillating frequency of UJT	108
		Determine the minimum and maximum values of VEB1	
		for a UJT	109
Exa	4.4.53	find maximum oscillating frequency of UJT	110
		plot the drain characteristics of JFET	110
		calculate Vds at these gate source voltages and circuit	
		voltage gain of JFET	112

Exa	4.4.78	calculate the minimum and maximum variation in Vds	
		and circuit voltage gain of JFET	112
Exa	4.4.79	calculate transconductance of JFET	113
Exa	4.4.80	determine the suitable value of load resistor Rd of JFET	114
Exa	5.5.3	Calculate output power change in decibel of amplifier.	115
Exa	5.5.4	Calculate output power change in decibel of amplifier.	115
Exa	5.5.5	Calculate power gain of amplifier	116
Exa	5.5.6	Calculate new level of output voltage when it has fallen	
		by 4db	116
Exa	5.5.10	Calculate overall voltage gain and output voltage when	
		input voltage is 1uV for cascaded amplifier	117
Exa	5.5.11	Calculate overall voltage gain in db of cascaded 2 stage	
		amplifier	118
Exa	5.5.12	Calculate overall voltage gain and gain of 2nd and 3rd	
		stage and input voltage of 2nd stage	118
Exa	5.5.15	For CE amplifier find R1 R2 Re and Rc	119
Exa	5.5.16	For CE amplifier find R1 R2 Re and Rc	120
		calculate upper cutoff frequency and voltage gain at	
		lower cutoff frequency	121
Exa	5.5.23	calculate closed loop gain for the negative feedback am-	
		plifier	122
Exa	5.5.24	calculate closed loop gain for the negative feedback am-	
		plifier	122
Exa	5.5.27	calculate input impedance of amplifier with negative	
		feedback	123
Exa	5.5.29	calculate input and output impedance of amplifier with	
		negative feedback	124
Exa	5.5.35	Estimate the closed loop upper cut off frequency and	
		total harmonic distortion	125
Exa	5.5.36	calculate open loop cut off frequency if the open loop	
		gain is 200000	126
Exa	5.5.37	calculate the phase shift with negative feedback	126
Exa	5.5.38	calculate bandwidth and gain and harmonic distortion	
		with feedback	127
Exa	5.5.40	calculate the frequency of oscillation and feedback factor	
		of Hartley oscillator	128
Exa	5.5.43	calculate the frequency of oscillation of RC phase shift	
		oscillator	128

Exa	5.5.44	calculate the value of Capacitor for a RC phase shift oscillator	129
Exa	5.5.45	calculate the value of R and C for RC phase shift oscil-	
		lator	129
Exa	5.5.49	calculate frequency of oscillation and feedback factor	
		and gain of hartley oscillator	13
Exa	5.5.51	calculate the value of L1 and L2 of Hartley oscillator .	13
Exa	5.5.53	Design the value of L1 L2 and C for a hartley oscillator	13
		calculate the frequency of oscillation of Colpitts oscillator	13
		calculate the frequency of oscillation feedback factor and	
		gain required for sustained oscillation	13
Exa	5.5.57	calculate the value of L of Colpitts oscillator	13
		calculate the value of C1 and C2 of Colpitts oscillator	13
Exa	5.5.59	calculate the value of L and C for a colpitts oscillator .	13
		calculate the frequency of oscillation for Wein Bridge	
		Oscillator	13
Exa	5.5.62	calculate the value of R and C for Wein Bridge oscillator	13
		calculate the Series and parallel resonant frequencies of	
		Crystal	13
Exa	6.6.15	Calculate maximum frequency at which output is faith-	
		ful reproduction of input	13
Exa	6.6.19	Calculate common mode output voltage	13
		Express CMRR in dB	13
Exa	6.6.24	Calculate and sketch the output	14
Exa	6.6.25	Calculate design value of inverting amplifier	14
Exa	6.6.26	Calculate output voltage of inverting amplifier	14
Exa	6.6.27	Calculate closed loop gain and input voltage for a spec-	
		ified output voltage	14
Exa	6.6.28	Calculate feedback resistor and closed loop gain	14
Exa	6.6.31	Calculate output voltage for given input voltage of non	
		inverting amplifier	14
Exa	6.6.32	Calculate closed loop gain and input voltage for a spec-	
		ified output voltage of noninverting amplifier	14
Exa	6.6.33	Calculate output voltage for inverting amplifier	14
		Calculate output voltage for non inverting amplifier	14
Exa	6.6.37	Calculate closed loop gain and current	14
		Calculate output voltage for summer	14
		Calculate bandwidth	14

Exa	6.6.56	Calculate the design value of amplifier circuit	148
Exa	6.6.57	Calculate design value of circuit	149
Exa	7.7.25	Determine sideband frequencies and Bandwidth	150
Exa	7.7.27	Calculate total power in modulated wave	150
Exa	7.7.28	Determine radiated power	151
Exa	7.7.34	Calculate carrier power	151
Exa	7.7.35	Determine power content of carrier and sidebands	152
Exa	7.7.36	Calculate sideband frequencies and bandwidth and total	
		power	152
Exa	7.7.37	Calculate modulation index	153
Exa	7.7.38	Determine antenna current	154
Exa	7.7.39	Calculate transission power efficiency and average power	
		in carrier component	154
Exa	7.7.40	Calculate modulation index	155
Exa	7.7.41	Sketch the frequency spectrum	155
Exa	7.7.42	Find the saving power in LSB alone	157
Exa	7.7.55	Find maximum frequency deviation and modulation in-	
		dex	158
Exa	7.7.56	Calculate frequency deviation and modulation index .	158
Exa	7.7.92	Find the peak value of unknown voltage	159
Exa	8.8.7	Convert the binary number to decimal without decimal	
		point	161
Exa	8.8.8	Convert the binary number to decimal with decimal point	162
Exa	8.8.10	convert the decimal to binary numbers	164
Exa	8.8.12	convert the octal to decimal	165
Exa	8.8.13	convert the decimael numbers to Octal	168
Exa	8.8.14	convert the binary number to Octal	169
Exa	8.8.15	convert the octal to binary number	173
		convert the hexadecimael numbers to decimal	176
Exa	8.8.18	convert the decimael numbers to hexadecimal	177
		convert the binary numbers to hexadecimal	177
Exa	8.8.21	Add the binary numbers	178
Exa	8.8.23	Add the octal numbers	183
Exa	8.8.25	Add the hexadecimal numbers	188
Exa	8.8.30a	aperform the decimal subtraction using 9s complements	189
		operform the decimal subtraction using 10s complements	190
Exa	8.8.31a	aperform the binary substraction using 1s complement .	191
Exa	8.8.31	operform the binary substraction using 2s complement.	192

Exa 8.8.48aProve the boolean thereom			. 1	94
Exa 8.8.48bProve the boolean thereom			. 1	.95
Exa 8.8.49aProve the boolean identities			. 1	.96
Exa 8.8.49bProve the boolean identities			. 1	.97
Exa 8.8.50aConstruct the Truth Table for logic expression			. 1	.98
Exa 8.8.50bConstruct the Truth Table for logic expression			. 1	99
Exa 8.8.50cConstruct the Truth Table for logic expression			. 2	200

List of Figures

1.1	Plot the piecewise linear characterisic of si diode	12
1.2	Plot the piecewiselinear characterisic of Germanium diode .	13
1.3	Find the maximum forward current at 25c and 80c and plot	
	power temperature curve	17
1.4	Find maximum forward current at 75c and draw power tem-	
	perature curve	19
3.1	Obtain the CB current gain and output characteristics	65
3.2	For the circuit given draw a DC load line	67
3.3	Draw a DC load line for the base bias circuit	69
3.4	Draw a DC load line for the base bias circuit for different hFE	71
3.5	Find Ic and Vce and Draw a DC load line for the base bias	
	circuit	73
3.6	Find Ic and Vce and Draw a DC load line for the base bias	
	circuit	75
3.7	Draw a DC load line for the base bias circuit neglecting Vbe	77
3.8	Draw the DC load line and determine Rc for base bias circuit	80
3.9	Determine the Ic and Vce levels and draw DC load line for	
	Collector to base bias	83
	Draw a DC load line for Collector to base bias	85
3.11	Draw a DC load line for Collector to base bias for different	
	hFE	87
	Draw a DC load line for Voltage divider circuit	91
3.13	Find the Ve Ic Vce and Vc and Draw a DC load line for Voltage	
	divider circuit	93
3.14	Find the Ve Ic Vce and Vc and Draw a DC load line for Voltage	
	divider circuit	95
4.1	plot the drain characteristics of JFET	111

6.1	Calculate and sketch the output	140
7.1	Sketch the frequency spectrum	156

Chapter 1

PN Junction Diode

Scilab code Exa 1.1.8 Find the forward and reverse resistance for diode

```
1 clc
2 disp("Example 1.8")
3 \text{ printf}(" \ n")
4 disp("find out resistance")
5 printf ("Given \n")
6 disp ("forward current=100mA, Vr=25V, cut in voltage
      =0.7v, reverse current=100nA")
7 // all the values are from fig 1.8
8 \text{ Vf} = 0.7
9 If=100*10^-3 //forward current
10 Vr=25
11 Ir=100*10^-9 //reverse current
12 Rf=Vf/If
13 Rr=Vr/Ir
14 printf("static forward resistance=\n\%f ohm\n", Rf)
15 printf("static reverse resistance=\n\%f ohm\n", Rr)
```

Scilab code Exa 1.1.9 Find the forward and reverse resistance for diode

```
1 clc
2 disp("Example 1.9")
3 \text{ printf}("\n")
4 disp("find out resistance")
5 printf("Given\n")
6 disp ("forward current=200mA, Vr=75V, cut in voltage
      =0.75v, reverse current=50nA")
7 // all values are from fig 1.9
8 \text{ Vf} = 0.75
9 If = 200 * 10^ - 3 // forward current
10 \ Vr = 75
11 Ir=50*10^-9 //reverse current
12 Rf=Vf/If
13 Rr=Vr/Ir
14 printf ("static forward resistance=\n\%f ohm\n", Rf)
15 printf("static reverse resistance=\n\%f ohm\n", Rr)
```

Scilab code Exa 1.1.11 Find the forward and reverse resistance and cut in voltage for diode

```
1 clc
2 disp("Example 1.11")
3 \text{ printf}(" \ n")
4 disp("findout resistance and cut in voltage")
5 printf("Given\n")
6 disp ("forward current=100mA, Vr=25V, cut in voltage
      =0.7v, reverse current =100nA")
7 // all the values are from fig 1.10
8 \text{ Vf} = 0.35
9 If=80*10^-3 //forward current
10 \ Vr = 40
11 Ir=10^-6
             //reverse current
12 Rf = Vf / If
13 Rr=Vr/Ir
14 printf("static forward resistance=\n\%f ohm\n", Rf)
```

```
15 printf("static reverse resistance=\n%f ohm\n", Rr)
16 //from the characteristic curve we can find cut in
        voltage
17 printf("cut in voltage= 0.3V")
```

Scilab code Exa 1.1.20 Find the dynamic resistance

```
1 clc
2 disp("Example 1.20")
3 \text{ printf}(" \setminus n")
4 disp ("calculate dynamic and substrate resistance")
5 printf("Given\n")
6 disp("forward current=20mA, cut in voltage=0.33v")
7 If = 20 * 10^{-3}
8 \text{ Vf} = 0.33
9 Rf = Vf / If
10 If1=If-(10^-2) //min forward current
11 If2=If+(10^-2) //max forward current
12 Vf1=0.31
13 \text{ Vf2=0.35}
14 rd=(Vf2-Vf1)/(If2-If1)
15 rd1=0.026/If
16 rsub=rd-rd1
17 printf("static forward resistance=\n\%f ohm\n", Rf)
18 printf("Dynamic resistance=\n\%f ohm\n",rd)
19 printf("Dynamic resistance using forward current=\
      n\%f \text{ ohm} n, rd1)
20 printf("substrate resistance=\n\%f ohm\n", rsub)
```

Scilab code Exa 1.1.24 calculate current in circuit in fig 18

```
1 clc
2 disp("Example 1.24")
```

Scilab code Exa 1.1.25 calculate diode current

```
1 clc
2 disp("Example 1.25")
3 printf("\n")
4 disp("calculate the diode current")
5 //given
6 V=12
7 R=10^3
8 Vd=0.7
9 //diode current
10 I=(V-Vd)/R
11 printf("Diode current=%f Ampere",I)
```

Scilab code Exa 1.1.26 calculate diode current across 2 diodes

```
1 clc
2 disp("Example 1.26")
3 printf("\n")
4 disp("calculate the diode current across 2 diodes")
5 //given
6 V=12
```

```
7  Vd1=0.7
8  Vd2=0.7
9  R=10^3
10  //current
11  I=(V-(Vd1+Vd2))/R
12  printf("Diode current =%f Ampere",I)
```

Scilab code Exa 1.1.27 find the forward current in circuit of fig 22

Scilab code Exa 1.1.28 find out battery voltage

```
1 clc
2 disp("Example 1.28")
3 printf("\n")
4 disp("find out battery voltage")
5 //given
6 R=2.7*10^3
7 Vd=0.7
8 I=1.96*10^-3
9 //battery voltage
```

```
10 V=(I*R)+Vd
11 printf("battery voltage=%f volt",V)
```

Scilab code Exa 1.1.29 find out series resistance

```
1 clc
2 disp("Example 1.29")
3 printf("\n")
4 disp("find out series resistance")
5 //given
6 V=4.5
7 Vd=0.3
8 I=1.25*10^-3
9 //series resistance
10 R=(V-Vd)/I
11 printf("series resistance=%f ohm",R)
```

Scilab code Exa 1.1.31 Plot the piecewise linear characteristic of si diode

```
1 clc
2 disp("Example 1.31")
3 printf("\n")
4 disp("Plot the piecewise-linear characteristic of silicon diode")
5 printf("Given\n")
6 //given
7 Vf=[0 0.7 0.74]
8 If=[0 0 0.2]
9 plot2d(Vf, If)
10 xlabel("Vf")
11 ylabel("If")
12 xtitle("Piecewise-linear characteristic of diode")
```


Figure 1.1: Plot the piecewise linear characterisic of si diode

Scilab code Exa 1.1.32 Plot the piecewiselinear characterisic of Germanium diode

```
1 clc
2 disp("Example 1.32")
3 printf("\n")
4 disp("Plot the piecewise-linear characterisic of Germanium diode")
5 printf("Given\n")
6 //given
```


Figure 1.2: Plot the piecewiselinear characterisic of Germanium diode

```
7  Vf = [0  0.3  0.35]
8  If = [0  0  0.1]
9  plot2d(Vf, If)
10  xlabel("Vf")
11  ylabel("If")
12  xtitle("Piecewise-linear characteristic of diode")
```

Scilab code Exa 1.1.34 find out diode current

```
1 clc
2 disp("Example 1.34")
```

```
3 printf("\n")
4 disp("find out diode current")
5 //given
6 V=2
7 \text{ Vr} = 0.6
8 \text{ rd1=0}
9 \text{ rd} 2 = 0.2
10 R = 14
11 / \text{when } rd=0
12 //diode current
13 I1=(V-Vr)/R
14 printf("Diode current when rd=0 is \n\%f ampere\n",I1
15 //when rd = 0.2
16 //diode current
17 I2=(V-Vr)/(R+rd2)
18 printf("Diode current when rd=0.2 is n\%f amperen",
      I2)
```

Scilab code Exa 1.1.35 find out series resistance in circuit fig 32

Scilab code Exa 1.1.48 Find the maximum forward current at 25c

```
1 clc
2 disp("Example 1.48")
3 \text{ printf("} n")
4 disp("Find the maximum forward current")
                   //to find maximum forward current at
5 T1=25
      this temperature
6 T2 = 65
                   //to find maximum forward current at
      this temperature
7 PT1=600*10^-3 //maximum power dissipation at 25c
                  //derating factor
8 D=5*10^{-3}
9 VT1=0.6
                   //forward voltage drop(constant at
      all temperature)
10 VT2=VT1
11 IT1=PT1/VT1
                   //maximum forward current at T1
12 PT2=PT1-((T2-T1)*D)
13 IT2=PT2/VT2
                  //maximum forward current at T2
14 printf ("Forward current at temperature T1=\n\%f
     Ampere\n", IT1)
15 printf ("Forward current at temperature T2=\n\%f
     Ampere\n", IT2)
```

Scilab code Exa 1.1.49 Find the maximum forward current at 25c and 80c and plot power temperature curve

```
1 clc
2 disp("Example 1.49")
3 printf("\n")
4 disp("find the maximum forward current at 25c and 80 c")
5 printf("Given\n")
```

```
6 T1 = 25
                     //to find maximum forward current
      at this temperature
                     //to find maximum forward current
  T2 = 80
      at this temperature
8 VT1=0.65
                     //forward voltage drop(constant at
      all temperature)
9 VT2=VT1
10 PT1=80*10^-3
                     //maximum power dissipation at 80c
11 PT2=30*10^-3
                     //maximum power dissipation at 30c
12 IT1=PT1/VT1
13 IT2=PT2/VT2
14 T=[0 25 80 114]
15 P=[80 80 30 0]
16 plot2d(T,P)
17 xlabel("Temperature in c")
18 ylabel("Power in mW")
19 xtitle ("Power-Temperature curve")
20 printf ("Forward current at T1=\n\%f Ampere\n", IT1)
21 printf ("Forward current at T2=\n\%f Ampere\n", IT2)
```

Scilab code Exa 1.1.50 Find maximum forward current at 80c

```
1 clc
2 disp("Example 1.50")
3 printf("\n")
4 disp("Find the maximum power at 80c")
5 T1=25
6 PT1=1000*10^-3 //maximum power dissipation at 25c
7 T2=80
8 D=4*10^-3 //derating factor
9 PT2=PT1-((T2-T1)*D) //maximum power dissipation at 80c
10 printf("Maximum Power dissipated at 80c=\n%f watt\n"
```


Figure 1.3: Find the maximum forward current at 25c and 80c and plot power temperature curve

Scilab code Exa 1.1.51 Find maximum forward current at 75c and draw power temperature curve

```
1 clc
2 disp("Example 1.51")
3 \text{ printf}(" \ n")
4 disp("Find the maximum forward current and Draw
      power spectrum curve")
5 printf ("Given\n")
6 T1=25
7 PT1=1000*10^-3
                       //maximum power dissipation at 25c
8 //Average current
9 IT1=500*10<sup>-3</sup>
10 IT2=IT1
                      //forward voltage drop
11 VT2=0.8
12 D=10^-2
13 PT2=VT2*IT2
14 T2 = ((PT1 - PT2)/D) + T1
15 //to caculate maximum forward current at 75c
16 T2!=75
17 PT2!=PT1-((T2!-T1)*D)
18 IT2=PT2!/VT2
19 // for(T>25), to draw graph
     vd = 10^{-2}
20
21
     PT = (1000 - (75*10))*10^{-3}
                                 //maximum power
        dissipation at 100c
22 Temp=[0 25 100 125]
p = [1000 \ 1000 \ PT * 10^3 \ 0]
24 plot2d(Temp ,p)
25 xlabel("Temperature in c")
26 ylabel("Power in mW")
27 xtitle ("Power-Temperature Curve")
28 printf ("Maximum forward current at 75c = \ln\%f Ampere \n
```


Figure 1.4: Find maximum forward current at 75c and draw power temperature curve

",IT2)

Scilab code Exa 1.1.54 Find the forward voltage drop at 100c and dynamic resistance at 25c and 100c

```
1 clc
2 disp("Example 1.54")
3 printf("\n")
4 disp("Find the forward voltage drop at 100c and dynamic resistance")
```

```
5 T1=25
6 T2 = 100
             //forward voltage drop at 25c
7 \text{ Vft1=0.6}
8 IT1=26*10^-3 //forward current(constant)
9 IT2=IT1
10 //for silicon diode we know that
11 v = (-1.8*10^-3)
12 Vft2=Vft1+((T2-T1)*v)
13 IF=26*10^-3
14 \text{ rd1} = (26*10^{-3}/\text{IF})*((T1+273)/298)
15 rd2=(26*10^{-3}/IF)*((T2+273)/298)
16 printf("Forward voltage drop at 100c = \ln\%f \text{ volt } \ln",
      Vft2)
17 printf ("Dynamic resistance at 25c and 100c = \ln \% f ohm
      n\%f \text{ ohm} \ n\text{",rd1,rd2})
```

Scilab code Exa 1.1.55 Find the maximum and mini forward voltage drop and dynamic resistance

```
1 clc
2 disp("Example 1.55")
3 printf("\n")
4 disp ("Calculate maximum & minimum forward voltage
      drop and Junction dynamic resistance")
5 T1=80
6 T2 = 10
7 T = 25
8 //for germanium diode
9 v = (-2.2*10^-3)
10 Vft1=0.3
                                      //voltage drop at 10c
11 Vft2maximum = Vft1 + ((T2-T)*v)
                                      //voltage drop at 80c
12 Vft2minimum = Vft1 + ((T1-T)*v)
13 IF=20*10^-3
14 \text{ rd1} = (26*10^{-3}/\text{IF})*((T2+273)/298)
15 rd2=(26*10^{-3}/IF)*((T1+273)/298)
```

- 16 printf("Maximum and Minimum Forward voltage drop at $25\,c$ and $10\,c = \n\%f$ volt $\n\%f$ volt \n ", Vft2maximum, Vft2minimum)
- 17 printf("Dynamic resistance at 10c and $80c=\n\%f$ ohm\n",rd1,rd2)

Scilab code Exa 1.1.56 Find the max forward current and voltage and dynamic resistance

```
1 clc
2 disp("Example 1.56")
3 \text{ printf}(" \setminus n")
4 disp("To find maximum forward current at 25c & 75c
      and Forward voltage drop and Dynamic resistance")
5 PT1=1.5
6 VT1=0.9
7 D=7.5*10^-3
8 //for silicon diodes
9 v = (-1.8*10^-3)
10 IF=20*10^-3
11 T1=25
12 T2 = 75
13 IT1=PT1/VT1
14 PT2=PT1-((T2-T1)*D)
                  //assume voltage drop remains constant
15 IT2=PT2/VT1
       at all temperature
16 VF2=VT1+((T2-T1)*v)
17 rd1 = (26*10^{-3}/IF)*((T1+273)/298)
18 rd2=(26*10^{-3}/IF)*((T2+273)/298)
19 printf ("Maximum forward current at 25c \& 75c = \n\%f
      Ampere \n\%f Ampere \n", IT1, IT2)
20 printf ("Forward voltage drop at 75c = \ln\%f volt \n", VF2
      )
21 printf ("Dynamic resistance at 25c and 75c = \ln \% f ohm
      n\%f \text{ ohm}\n",rd1,rd2)
```

Scilab code Exa 1.1.57 Find the diode currents at 25c and 100c

```
1 clc
2 disp("Example 1.57")
3 printf("\n")
4 disp("To find diode current at 25c and 75c")
5 RL=150
6 //both diode voltage drop as given in fig 1.47
7 Vr1=0.7
             //for silicon
             //for Germanium
8 \ Vr2=0.3
9 \text{ Vdc}=5
10 //apply KVL to given circuit
11 IF1=(Vdc-(Vr1+Vr2))/RL
12 //for silicon diode
13 v = (-1.8*10^-3)
14 T1=25
15 T2 = 75
16 VFT2 = Vr1 + ((T2 - T1) * v)
17 // for Germanium Diode
18 v = (-2.2*10^-3)
19 VFT2!=Vr2+((T2-T1)*v)
20 IF2=(Vdc-(VFT2!+VFT2))/RL
21 printf("Diode current at 25c and 75c = \n ampere
      n\%f ampere\n", IF1, IF2)
```

Scilab code Exa 1.1.65 Find the minimal fall time

```
1 clc
2 disp("Example 1.65")
3 printf("\n")
4 disp("Find the minimal fall-time")
```

Scilab code Exa 1.1.66 Estimate the maximum reverse recovery time

```
1 clc
2 disp("Example 1.66")
3 printf("\n")
4 disp("Find the maximum recovery time")
5 //fall-time is
6 tf=0.5*10^-6
7 trrmax=tf/10
8 printf("The minimal fall-time for voltage pulses applied=\n%3.2e sec\n",trrmax)
```

Scilab code Exa 1.1.72 Find the maximum current flow through zener

```
1 clc
2 disp("Example 1.72")
3 printf("\n")
4 disp("Find the maximum current flow through Zener diode")
5 Vz=7.5 //zener voltage
6 Pd1=400*10^-3 //maximum power dissipation at 50c
7 T1=50
8 T2=100
9 D=3.2*10^-3
10 //current at 50c
11 Izm1=Pd1/Vz
12 //current at 100
```

Scilab code Exa 1.1.75 Find the current through zener at 50c and 80c

```
1 clc
2 disp("Example 1.75")
3 \text{ printf}("\n")
4 disp("Find the current through diode at 50c & 80c")
5 T1=50
6 T2=80
7 D=3.2*10^-3
8 \text{ Pd1} = 400 * 10^{-3}
9 \ Vz = 6.2
10 / at 50 c
11 Izm1 = Pd1/Vz
12 / at 80 c
13 Pd2=Pd1-((T2-T1)*D)
14 \text{ Izm2=Pd2/Vz}
15 printf("the current through diode at 50c \& 80c = \n\%f
       ampere \n^{\text{m}} ampere \n^{\text{m}}, Izm1, Izm2)
```

Scilab code Exa 1.1.76 Find the diode current and power dissipation

```
1 clc
2 disp("Example 1.76")
3 printf("\n")
4 disp("Find the diode current and power dissipation")
5 Vdc=12
6 Vz=4.3 //zener voltage
7 R=820
```

```
8  Iz=(Vdc-Vz)/R
9  Pd=Vz*Iz
10  printf("the diode current=\n%f ampere\n", Iz)
11  printf("the power dissipation=\n%f watt\n", Pd)
```

Chapter 2

Semiconductor Diode Applications

Scilab code Exa 2.2.11 Calculate Peak ac de load current de diode voltage total input power percentage regulation of HW Rectifier

```
1 clc
2 disp("Example 2.11")
3 \text{ printf}(" \ n")
4 disp ("Calculate Peak, ac, dc load current, dc diode
      voltage, total input power, percentage regulation
      of HW Rectifier")
5 printf("Given\n")
6 \text{ Rf} = 20
7 RL=1000
8 N1 = 1
9 N2 = N1
10 V1=110
                               // \sin c e (V1/V2) = (N1/N2)
11 V2=V1
12 Vm = sqrt(2) * V2
13 \text{ Im}=Vm/(Rf+RL)
                               //peak load current
                               //DC load current
14 Idc=Im/%pi
15 Irms = Im/2
                               //AC load current
16 \quad V!dc = -Idc * RL
                               //DC diode Voltage
```

Scilab code Exa 2.2.12 Calculate DC RMS load voltage PIV across diode Rectification efficiency DC power delivered to load Frequency of output waveform of HW rectifier

```
1 clc
2 disp("Example 2.12")
3 \text{ printf}(" \setminus n")
4 disp ("Calculate DC, RMS load voltage, PIV across diode
      , Rectification efficiency ,DC power delivered to
      load, Frequency of output waveform ")
5 printf("Given\n")
6 \text{ Rf} = 50
7 RL=500
8 N1 = 10
9 N2 = 1
10 V1=230
11 Vm = (N2/N1) * V1
12 w = 314
13 f = w/(2*\%pi)
14 Vdc = (Vm/\%pi)/(1+(Rf/RL))
                                  //DC load voltage
15 Vrms = (Vm/2)/(1+(Rf/RL))
                                    //RMS load voltage
16 \text{ PIV=Vm}
17 %n = 40.6/(1+(Rf/RL))
                                    //Rectification
      efficiency
18 Pdc = (Vdc^2)/RL
```

```
printf("DC,RMS load voltage=\n%f volt\n%f volt\n",
        Vdc,Vrms)
printf("PIV across the diode =\n%f volt\n",PIV)
printf("Rectification efficiency=\n%f\n",%n)
printf("DC power delivered to a load=\n%f watt\n",
        Pdc)
```

Scilab code Exa 2.2.20 Calculate peak RMS DC load current DC in each diode DC output voltage percentage regulation PIV RMS current DC load voltage of FW rectifier

```
1 clc
2 disp("Example 2.20")
3 \text{ printf}(" \setminus n")
4 disp ("Calculate peak, RMS, DC load current, DC in each
        diode, DC output voltage, % regulation, PIV, RMS
      current DC load voltage")
5 printf("Given\n")
6 \text{ Rf} = 500
7 RL=2000
8 V2=280
9 //Secondary voltage is
10 Vm = sqrt(2) * V2
11 //Peak load current
12 \text{ Im} = \text{Vm} / (\text{Rf} + \text{RL})
13 //DC load current
14 Idc=2*Im/(%pi)
15 //Since each diode acts as a half-wave rectifier, the
        dc current through each diode is
16 Idc1=Im/(%pi)
17 //dc output power
18 Pdc = [Idc]^2 * RL
19 %reg=(Rf/RL)*100
20 //PIV across each diode
21 PIV=2*Vm
```

```
22 //RMS load current
23 Irms=Im/(sqrt(2))
24 //RMS through each diode is
25 \text{ Irms1} = (\text{Im}/2)
26 //Dc load voltage
27 Vdc=Idc*RL
28 printf("peak load, DC load current is \n\%f ampere\
      n\%f ampere\n", Im, Idc)
29 printf("direct current in each diode is \n\%f ampere\
      n", Idc1)
30 printf("dc output power is \n\%f watt\n",Pdc)
31 printf ("percentage regulation is n\%f\n", %reg)
32 printf("PIV across each diode is \n\%f volt\n", PIV)
33 printf ("rms load current and rms current through
      each diode is \n\%f ampere \n\%f ampere \n\", Irms,
34 printf("DC load voltage is \n\%f volt\n", Vdc)
```

Scilab code Exa 2.2.21 Find the load current and rms value of input current of FW rectifier

```
1 clc
2 disp("Example 2.21")
3 printf("\n")
4 disp("Find the load current and rms value of input current")
5 printf("Given\n")
6 V2=100
7 Rf=50
8 RL=950
9 //secondary voltage
10 Vm=sqrt(2)*V2
11 //DC load current
12 Idc=(2*Vm)/(%pi*(Rf+RL))
13 //RMS input current is same as RMS load current
```

```
14 Im=(Idc*%pi)/2
15 Irms=Im/sqrt(2)
16 printf("The load current=\t%f ampere\n",Idc)
17 printf("RMS load current=\t%f ampere\n",Irms)
```

Scilab code Exa 2.2.22 Calculate Average load current and voltage and Ripple voltage of FW rectifier

```
1 clc
2 disp("Example 2.22")
3 \text{ printf}(" \ n")
4 disp("Calculate Average load current & voltage,
      Ripple voltage")
5 printf("Given\n")
6 RL=2000
7 //diodes are ideal
8 Rf = 0
9 C=500*10^-6
10 f=50
11 V2=200
12 Vm = sqrt(2) * V2
13 //average load current
14 Idc = (2*Vm)/(\%pi*(Rf+RL))
15 //Average load voltage
16 Vdc=Idc*RL
17 //ripple factor
18 \quad V = 0.483
19 \, \text{Vac=V*Vdc}
20 //with capacitor connected across RL
V1 = 1/(4*sqrt(3)*RL*C*f)
22 // with capacitor filter we have Vdc=Vm
23 Vdc1=282.84
24 Vac1=V1*Vdc1
25 printf("Average load current=\t\%f ampere\n", Idc)
26 printf ("Average load voltage=\t\%f ampere\t", Vdc)
```

```
27 printf("Ripple voltage=\t%f volt\n", Vac) 
28 printf("Ripple voltage when capacitor connected=\t%f volt\n", Vac1)
```

Scilab code Exa 2.2.23 Calculate Average voltage rectification efficiency and percentage regulation of FW rectifier

```
1 clc
2 disp("Example 2.23")
3 printf("\n")
4 disp ("Calculate Average voltage, rectification
      efficiency & percentage regulation")
5 printf ("Given \n")
6 V2 = 30
7 RL = 100
8 Rf = 10
9 Vm = sqrt(2) * V2
10 //Average output voltage
11 Vdc = (((2*Vm)/(\%pi))/(1+(Rf/RL)))
12 // Rectification effeiciency
13 \text{ nr} = 0.812/(1+(Rf/RL))
14 //percentage regulation
15 PR = (Rf/RL) * 100
16 printf ("Average output voltage=\t\%f volt\tn", Vdc)
17 printf ("Rectification efficiency = \t^{\%}f\n", nr)
18 printf ("Percentage regulation = \t^{f n}, PR)
```

Scilab code Exa 2.2.24 Calculate Average load voltage RMS load current PIV DC output power Frequency of output waveform

```
1 clc
2 disp("Example 2.24")
3 printf("\n")
```

```
4 disp("Calculate Average load voltage, RMS load
      current, PIV, DC o/p power, Frequency of output
      waveform")
5 printf("Given\n")
6 V1 = 220
7 N1 = 10
8 N2 = 1
9 V2=V1*(N2/N1)
10 \text{ Vm} = \text{V}2
11 Rf = 20
12 RL=1000
13 \quad w = 314
14 f = w/(2*\%pi)
15 //Average load voltage
16 Vdc = (((2*Vm)/(\%pi))/(1+(Rf/RL)))
17 //RMS load current
18 Irms=Vm/(sqrt(2)*(Rf+RL))
19 //PIV across each diode
20 \text{ PIV} = 2 * \text{Vm}
21 //dc output power
22 Pdc=Vdc^2/RL
23 //Frequency of output waveform
24 \text{ Fout} = 2 * f
25 printf("average load voltage is \n\%f volt\n", Vdc)
26 printf("RMS load current is \n%f ampere\n", Irms)
27 printf("PIV across each diode is n \% f volt n", PIV)
28 printf("DC ouput power \n\%f watt\n",Pdc)
29 printf ("frequency of output waveform is n\%f hzn",
      Fout)
```

Scilab code Exa 2.2.28 Calculate all characteristics of FW bridge rectifier

```
1 clc
2 disp("Example 2.28")
3 printf("\n")
```

```
4 disp ("Calculate DC output voltage, Ripple factor,
      Effeciency, PIV, %regulation, Peak diode current, Dc
       load current, dc current, RMS current")
5 printf("Given\n")
6 \, \text{Vm} = 100
7 \text{ Rf} = 25
8 RL=950
9 //dc output voltage
10 Vdc = (((2*Vm)/(\%pi))/(1+(2*Rf/RL)))
11 //Ripple factor
12 Vrms = (Vm/sqrt(2))/(1+(2*Rf/RL))
13 r = sqrt((Vrms/Vdc)^2-1)
14 // Efficiency of rectification
15 Rr = 0.812/(1+(2*Rf/RL))
16 //PIV across the non-conducting diode
17 PIV = Vm
18 //Percentage regulation
19 %reg=(2*Rf/RL)*100
20 //Peak load current
21 \operatorname{Im} = \operatorname{Vm} / (2 * \operatorname{Rf} + \operatorname{RL})
22 //DC load current
23 Idc=2*Im/\%pi
24 //Dc current through each diode
25 \quad Idc1 = Idc/2
26 //RMS current through each diode
27 \quad Irms1=Im/2
28 printf("dc output voltage \n\%f volt\n", Vdc)
29 printf ("Ripple factor \n\%f\n",r)
30 printf ("Efficiency of rectification n\%fn", Rr)
31 printf("PIV across non-conducting diode \n\%f volt \n
      ",PIV)
32 printf ("percentage regulation n\%fn", %reg)
33 printf("Peak diode current \n\%f ampere\n", Im)
34 printf("dc load current \n\%f ampere\n", Idc)
35 printf("dc current through each diode \n %f ampere\n
      ", Idc1)
36 printf("RMS current through each diode \n %f ampere\
      n", Irms1)
```

Scilab code Exa 2.2.29 Calculate Average output voltage avg load current frequency of output waveform dc power output of FWBR

```
1 clc
2 disp("Example 2.29")
3 \text{ printf}(" \ n")
4 disp ("Calculate Average output voltage, avg load
      current, frequency of output waveform, dc power
      output")
5 printf("Given\n")
6 \quad Vm = 141.42
           //Ideal diodes
7 Rf = 0
8 RL=100
9 f = 50
10 //Average output voltage
11 Vdc = (((2*Vm)/(\%pi))/(1+(2*Rf/RL)))
12 //Average load current
13 Idc=Vdc/RL
14 //frequency of output waveform
15 Fout = 2*f
16 //dc power output
17 Pdc=Idc^2*RL
18 printf ("average output voltage \n\%f volt\n", Vdc)
19 printf("average load current \n\%f ampere\n", Idc)
20 printf ("frequency of output waveform n\% hzn", Fout
      )
21 printf("dc output power n \% f watt n, Pdc)
```

Scilab code Exa 2.2.34 Calculate Ripple factor DC output voltage DC load current PIV RMS output ripple voltage of HWR

```
1 clc
2 disp("Example 2.34")
3 \text{ printf}("\n")
4 disp ("Calculate Ripple factor, DC output voltage, DC
      load current, PIV, RMS output ripple voltage")
5 printf ("Given \n")
6 \quad Vm = 311.13
7 f = 50
8 c = 200 * 10^{-6}
9 RL=1000
10 //Ripple factor
11 r=1/(2*sqrt(3)*RL*f*c)
12 //dc output voltage
13 Vdc = Vm/(1+(1/(2*f*c*RL)))
14 //DC load current
15 Idc=Vdc/RL
16 //peak inverse voltage
17 \quad PIV = Vm
18 //RMS ripple voltage on capacitor
19 Vac=r*Vdc
20 printf("ripple factor \n\%f\n",r)
21 printf("dc output voltage \n\%f volt\n", Vdc)
22 printf(" DC load current \n\%f ampere\n", Idc)
23 printf("PIV across the diode \n\%f volt\n",PIV)
24 printf ("RMS ripple voltage on capacitor \n\%f volt \n
      ", Vac)
```

Scilab code Exa 2.2.35 Calculate the capacitance of HWR

```
1 clc
2 disp("Example 2.35")
3 printf("\n")
4 disp("Calculate the capacitance")
5 f=50
6 RL=500
```

```
7  r=0.1
8  C=1/(2*sqrt(3)*f*RL*0.1)
9  printf("Capacitance value=\t%f Farad\n",C)
```

Scilab code Exa 2.2.40 Estimate the value of capacitor required to keep ripple factor less than 1per of FWR

```
1 clc
2 disp("Example 2.40")
3 printf("\n")
4 disp("Estimate the value of capacitor required to keep ripple factor less than 1%")
5 Vm=325.27
6 f=50
7 Idc=10*10^-3
8 r=0.01
9 RL=Vm/Idc
10 C=(1/r)/(4*sqrt(3)*f*RL)
11 printf("capacitor required >\t%e Farad\n",C)
```

Scilab code Exa 2.2.41 Calculate minimum value of capacitance used in the filter to keep ripple voltage below 2per of FWR

```
1 clc
2 disp("Example 2.41")
3 printf("\n")
4 disp("Calculate minimum value of capacitance used in the filter to keep ripple voltage below 2%")
5 Vm=282.84
6 f=50
7 Idc=12*10^-3
8 r=0.02
9 RL=Vm/Idc
```

```
10 C=(1/r)/(4*sqrt(3)*f*RL)
11 printf("capacitor required > t\%e Farad \n", C)
```

Scilab code Exa 2.2.42 Find Ripple factor Dc output voltage Ripple voltage DC load current of FWR

```
1 clc
2 disp("Example 2.42")
3 \text{ printf}(" \setminus n")
4 disp("Find Ripple factor, Dc output voltage, Ripple
      voltage, DC load current")
5 printf("Given\n")
6 \text{ Vm} = 282.84
7 f = 50
8 C=500*10^-6
9 RL=2*10<sup>3</sup>
10 //Ripple factor
11 r=1/(4*sqrt(3)*RL*f*C)
12 //Dc output voltage
13 Vdc = Vm/(1+(1/(4*f*C*RL)))
14 // Ripple voltage on capacitor
15 Vac=r*Vdc
16 //DC load current
17 Idc=Vdc/RL
18 printf ("Ripple factor \n\%f\n",r)
19 printf("dc ouput voltage \n\%f volt\n", Vdc)
20 printf("Ripple voltage on capacitor \n\%f volt\n", Vac
21 printf("DC load current \n %f ampere\n", Idc)
```

Scilab code Exa 2.2.43 Find the ripple factor and output voltage if a capacitor of 160uf is connected in parallel with load of FWR

```
1 clc
2 disp("Example 2.43")
3 \text{ printf}("\n")
4 disp("Find the ripple factor & output voltage if a
      capacitor of 160 uf is connected in parallel with
      load")
5 RL=250
6 C = 160 * 10^{-6}
7 f = 50
8 \text{ Vm} = 49.497
9 //ripple factor
10 r=1/(4*sqrt(3)*f*RL*C)
11 //Dc output voltage
12 Vdc = Vm/(1+(1/(4*f*C*RL)))
13 printf("ripple factor n \%f n",r)
14 printf ("DC output voltage \n\%f volt\n", Vdc)
```

Scilab code Exa 2.2.44 Find the ripple factor and DC load current of FWBR

```
1 clc
2 disp("Example 2.44")
3 printf("\n")
4 disp("Find the ripple factor & DC load current")
5 printf("Given\n")
6 Vm=230
7 f=(314/(2*%pi))
8 RL=400
9 C=500*10^-6
10 //ripple factor
11 r=1/(4*sqrt(3)*f*RL*C)
12 //DC load current
13 Vdc=Vm/(1+(1/(4*f*C*RL)))
14 Idc=Vdc/RL
15 printf("ripple factor \n %f\n",r)
```

```
16 printf("DC laod current \n\%f ampere\n", Idc)
```

Scilab code Exa 2.2.45 Find the capacitor value for half wave rectifier

```
1 clc
2 disp("Example 2.45")
3 printf("\n")
4 disp("Find the capacitor value for half wave rectifier")
5 Vdc=20
6 f=60
7 RL=500
8 r=0.1/(2*sqrt(3))
9 c=1/(2*sqrt(3)*r*f*RL)
10 printf("Capacitor value =\t%e farad\n",c)
```

Scilab code Exa 2.2.46 Find the capacitor value for full wave rectifier

```
1 clc
2 disp("Example 2.46")
3 printf("\n")
4 disp("Find the capacitor value for full wave rectifier")
5 printf("Given\n")
6 Vdc=20
7 f=60
8 RL=500
9 r=0.1/(2*sqrt(3))
10 c=1/(4*sqrt(3)*r*f*RL)
11 printf("Capacitor value =\t%e farad\n",c)
```

Scilab code Exa 2.2.50 calculate load and source effects and load and line regulation

```
1 clc
2 disp("Example 2.50")
3 printf("\n")
4 disp("calculate load & source effects & the load &
      line regulation")
5 printf("Given\n")
6 Vo1=20
7 \text{ Vo} 2 = 19.7
8 //load effect=delVo for delIL(max)
9 LE=Vo1-Vo2
10 //Load regulation
11 LR=(LE*100)/Vo1
12 //source effect=delVo for 10% change in Vs
13 V=20.2
14 SE=V-Vo1
15 //Line regulation
16 LiR=(SE/Vo1)*100
17 printf("load effect \n %f volt\n",LE)
18 printf("load regulation \n\%f \n",LR)
19 printf ("source effect \n \%f volt\n", SE)
20 printf("line regulation \n\% f\n", LiR)
```

Scilab code Exa 2.2.51 calculate load and source effects and load and line regulation

```
1 clc
2 disp("Example 2.51")
3 printf("\n")
4 disp("calculate load & source effects & load & line regulation")
5 printf("Given\n")
6 Vo1=15
```

```
7 Vo2=14.9
8 //load effect=delVo for delIL(max)
9 LE=Vo1-Vo2
10 //Load regulation
11 LR=LE*100/Vo1
12 //source effect=delVo for 10% change in Vs
13 V=14.95
14 SE=Vo1-V
15 //Line regulation
16 LiR=(SE/Vo1)*100
17 printf("load effect \n %f volt\n", LE)
18 printf("load regulation \n%f\n", LR)
19 printf("source effect \n %f volt\n", SE)
20 printf("line regulation \n%f\n", LiR)
```

Scilab code Exa 2.2.54 Design the Zener Diode Voltage regulator for given specification

```
1 clc
2 disp("Example 2.54")
3 printf("\n")
4 disp("Design the Zener Diode Voltage regulator for
      given specification")
5 printf("Given\n")
6 printf("1 Resistance are in ohms \n 2 Current are in
       ampere \n 3 voltage sources are in volt\n")
7 //unregulated dc input voltage
8 Vimin=8
9 \quad Vimax=12
10 //regulated dc output voltage
11 \ Vo = 5
12 //minimum zener current
13 Izmin=5*10^-3
14 //maximum zener current
15 \quad Izmax = 80 * 10^{-3}
```

```
//load current
ILmin=0
ILmax=20*10^-3
//load resistance
RL=Vo/ILmax
//maximum Resistance
Rmax=(Vimin-Vo)/(Izmin+ILmax)
//minimum resistance
Rmin=(Vimax-Vo)/(Izmax+ILmin)
//Required resistance
R=(Rmax+Rmin)/2
rintf("minimum resistance %d ohm \n",Rmin)
printf("maximum resistance %d ohm \n",Rmax)
printf("required resistance %d ohm \n",Rmax)
```

Scilab code Exa 2.2.55 Design a zener diode voltage regulator to meet following specification

```
1 clc
2 disp("Example 2.55")
3 printf("\n")
4 disp("Design a zener diode voltage regulator to meet
       following specification")
5 printf("Given\n")
6 printf("1 Resistance are in ohms \n 2 Current are in
       ampere \n 3 voltage sources are in volt\n")
7 //unregulated dc input voltage
8 \quad Vimin=13
9 Vimax=17
10 //Load current
11 ILmin-0
12 ILmax = 10 * 10^{-3}
13 //regulated output voltage
14 Vo=10
15 //minimum zener current
```

```
16 Izmin=5*10^{-3}
17 //Maximum power dissipation
18 \text{ Pzmax} = 500 * 10^{-3}
19 //maximum zener current
20 Izmax=Pzmax/Vo
21 //maximum Resistance
22 Rmax = (Vimin - Vo) / (Izmin + ILmax)
23 //minimum resistance
24 Rmin=(Vimax-Vo)/(Izmax+ILmin)
25 //Required resistance
26 R = (Rmax + Rmin)/2
27 //load resistance
28 RLmin=Vo/ILmax
29 printf ("minimum resistance %d ohm \n", Rmin)
30 printf ("maximum resistance %d ohm n, Rmax)
31 printf("required resistance \%d ohm \n",R)
32 printf("load resistance %d ohm \n", RLmin)
```

Scilab code Exa 2.2.56 Design a zener diode voltage regulator to meet following specification

```
13 ILmin=0
14 \quad ILmax = 20*10^{-3}
15 //minimum zener current
16 Izmin=10*10^-3
17 //maximum zener current
18 \quad Izmax = 100 * 10^{-3}
19 //load resistance
20 RLmin=Vo/ILmax
21 //maximum Resistance
22 Rmax = (Vimin - Vo)/(Izmin + ILmax)
23 //minimum resistance
24 Rmin=(Vimax-Vo)/(Izmax+ILmin)
25 //Required resistance
26 R = (Rmax + Rmin)/2
27 printf ("minimum resistance %d ohm \n", Rmin)
28 printf("maximum resistance \%d ohm \n", Rmax)
29 printf("required resistance \%d ohm \n",R)
30 printf("load resistance %d ohm \n", RLmin)
```

Scilab code Exa 2.2.57 Calculate the value of series resistance and Zener diode current when load is 1200ohm

```
1 clc
2 disp("Example 2.57")
3 printf("\n")
4 disp("Calculate the value of series resistance &
        Zener diode current when load is 1200ohm")
5 printf("Given\n")
6 printf("1 Resistance are in ohms \n 2 Current are in
        ampere \n 3 voltage sources are in volt\n")
7 //Input voltage
8 Vi=32
9 //Zener diode voltage
10 Vz=24
11 //maximum power
```

```
12 \text{ Pzmax} = 600 * 10^{-3}
13 //output voltage
14 \ Vo = 24
15 //since Vi has no variation
16 Vimax=32
17 Vimin=Vimax
18 //Zener current
19 Izmax=Pzmax/Vz
20 //series resistance
21 ILmin=0
22 R=(Vimax-Vo)/(Izmax+ILmin)
23 // Diode current
24 RL=1200
25 IL=Vo/RL
             //load current
                  //total current
26 I = (Vi - Vo)/R
27 IZ = I - IL
28 printf("The diode current=\t\%f ampere\n", IZ)
```

Scilab code Exa 2.2.58 Design a voltage regulator using zener diode to meet following specification

```
13 Izmin=2*10^-3
14 //maximum zener current
15 \quad Izmax = 100 * 10^{-3}
16 //load current
17 ILmin=0
18 \quad ILmax = 25 * 10^{-3}
19 //load resistance
20 RL=Vo/ILmax
21 //maximum Resistance
22 Rmax=(Vimin-Vo)/(Izmin+ILmax)
23 //minimum resistance
24 Rmin=(Vimax-Vo)/(Izmax+ILmin)
25 //Required resistance
26 R = (Rmax + Rmin)/2
27 printf ("minimum resistance %d ohm \n", Rmin)
28 printf("maximum resistance \%d ohm \n", Rmax)
29 printf("required resistance \%d ohm \n",R)
30 printf("load resistance %d ohm \n", RLmin)
```

Scilab code Exa 2.2.59 Design a zener voltage regulator to meet following specification

```
1 clc
2 disp("Example 2.59")
3 printf("\n")
4 disp("Design a zener voltage regulator to meet
        following specification")
5 printf("Given\n")
6 printf("1 Resistance are in ohms \n 2 Current are in
        ampere \n 3 voltage sources are in volt\n")
7 //DC input voltage
8 Vimin=10-2
9 Vimax=10+2
10 //DC output voltage
11 Vo=5
```

```
12 //Load current
13 \quad ILmax = 10 * 10^{-3}
14 ILmin=0
15 //zener wattage
16 \quad Pzmax = 400 * 10^{-3}
17 \quad Vz = Vo
18 //maximum zener current
19 Izmax=Pzmax/Vz
20 //since Izmin is not given so let us take IZmin=5mA
21 Izmin=5*10^-3
22 //maximum Resistance
23 Rmax = (Vimin - Vo) / (Izmin + ILmax)
24 //minimum resistance
25 Rmin=(Vimax-Vo)/(Izmax+ILmin)
26 //Required resistance
27 R = (Rmax + Rmin)/2
28 //load resistance
29 RL=Vo/ILmax
30 printf("minimum resistance %d ohm \n", Rmin)
31 printf ("maximum resistance \%d ohm \n", Rmax)
32 printf("required resistance \%d ohm \n",R)
33 printf("load resistance %d ohm \n", RL)
```

Scilab code Exa 2.2.60 Design a zener voltage regulator to meet following specification

```
1 clc
2 disp("Example 2.60")
3 printf("\n")
4 disp("Design a zener voltage regulator to meet
    following specification")
5 printf("Given\n")
6 printf("1 Resistance are in ohms \n 2 Current are in
    ampere \n 3 voltage sources are in volt\n")
7 //DC input voltage(10V[+-]20%)
```

```
8 \quad Vimin=10-2
9 \ \text{Vimax} = 10 + 2
10 //DC output voltage
11 Vo=5
12 //Load current
13 ILmax = 20*10^{-3}
14 \quad ILmin=0
15 //zener current
16 \quad Izmax = 80 * 10^{-3}
17 Izmin=5*10^{-3}
18 //maximum Resistance
19 Rmax = (Vimin - Vo) / (Izmin + ILmax)
20 //minimum resistance
21 Rmin=(Vimax-Vo)/(Izmax+ILmin)
22 //Required resistance
23 R = (Rmax + Rmin)/2
24 //load resistance
25 RL=Vo/ILmax
26 printf ("minimum resistance \%d ohm \n", Rmin)
27 printf ("maximum resistance \%d ohm \n", Rmax)
28 printf("required resistance \%d ohm \n",R)
29 printf("load resistance %d ohm \n", RL)
```

Scilab code Exa 2.2.61 Design a zener voltage regulator to meet following specification

```
1 clc
2 disp("Example 2.61")
3 printf("\n")
4 disp("Design a zener voltage regulator to meet
      following specification")
5 printf("Given\n")
6 printf("1 Resistance are in ohms \n 2 Current are in
      ampere \n 3 voltage sources are in volt\n")
7 //DC input voltage
```

```
8 \quad Vimin=12-3
9 \ \text{Vimax} = 12 + 3
10 //DC output voltage
11 \text{ Vo}=5
12 //Load current
13 ILmax = 20*10^{-3}
14 ILmin=0
15 //zener wattage
16 \text{ Pzmax} = 500 * 10^{-3}
17 \quad Vz = Vo
18 //maximum zener current
19 Izmax=Pzmax/Vz
20 //since Izmin is not given so let us take IZmin=5mA
21 Izmin=5*10^-3
22 //maximum Resistance
23 Rmax=(Vimin-Vo)/(Izmin+ILmax)
24 //mini resistance
25 Rmin=(Vimax-Vo)/(Izmax+ILmin)
26 //Required resistance
27 R = (Rmax + Rmin)/2
28 //load resistance
29 RL=Vo/ILmax
30 printf("minimum resistance %d ohm \n", Rmin)
31 printf("maximum resistance \%d ohm \n", Rmax)
32 printf("required resistance \%d ohm \n",R)
33 printf("load resistance %d ohm \n", RL)
```

Scilab code Exa 2.2.63 Design a 6V dc reference source to operate from a 16v supply

```
1 clc
2 disp("Example 2.63")
3 printf("\n")
4 disp("Design a 6V dc reference source to operate from a 16v supply")
```

```
5 printf("Given\n")
6 printf("1 Resistance are in ohms \n 2 Current are in
       ampere \ n \ 3 \ voltage \ sources \ are in \ volt <math>\ n")
7 //output voltage
8 \text{ Vo} = 6
9 //input voltage
10 Vi=16
11 //zener power
12 Pzmax = 400 * 10^{-3}
13 //zener current maximum
14 Izmax=Pzmax/Vo
15 / I = Iz + IL \& ILmin = 0, we have Izmax = I
16 / \text{take Izmin} = 5*10^{-3}
17 Izmin=5*10^-3
18 //maximum load current
19 ILmax=Izmax-Izmin
20 //load resistance
21 RLmin=Vo/ILmax
22 //series resistance
23 R=(Vi-Vo)/Izmax
24 printf ("maximum load current \%d ampere \n", ILmax)
25 printf("Load resistance \%d ohm\n", RLmin)
26 printf ("sereies resistance %d ohm\n",R)
```

Scilab code Exa 2.2.64 Design a 8V dc reference source to operate from a 20v supply and find maximum load current

```
1 clc
2 disp("Example 2.64")
3 printf("\n")
4 disp("Design a 8V dc reference source to operate
     from a 20v supply and find maximum load current")
5 printf("Given\n")
6 printf("1 Resistance are in ohms \n 2 Current are in
     ampere \n 3 voltage sources are in volt\n")
```

```
7 //output voltage
8 Vo=8
9 //input voltage
10 \ Vi = 20
11 //zener power
12 \quad Pzmax = 400 * 10^{-3}
13 //zener current maximum
14 Izmax=Pzmax/Vo
15 / I = Iz + IL \& ILmin = 0, we have Izmax = I
16 //take Izmin=5*10^{-3}
17 Izmin=5*10^-3
18 //maximum load current
19 ILmax=Izmax-Izmin
20 //load resistance
21 RLmin=Vo/ILmax
22 //series resistance
23 R=(Vi-Vo)/Izmax
24 printf ("maximum load current %d ampere\n", ILmax)
25 printf("Load resistance \%d ohm\n", RLmin)
26 printf ("sereies resistance %d ohm\n",R)
```

Scilab code Exa 2.2.65 Calculate circuit current when supply voltage drops to 27V select suitable components

```
1 clc
2 disp("Example 2.65")
3 printf("\n")
4 disp("Calculate circuit current when supply voltage drops to 27V, select suitable components")
5 printf("Given\n")
6 printf("1 Resistance are in ohms \n 2 Current are in ampere \n 3 voltage sources are in volt\n")
7 //input voltage
8 Vi=30
9 //output voltage
```

```
10 Vo=9
11 //test current(lies b/w Izmin & Izmax)
12 Izt=20*10^-3
13 //load current(assume zero, no load operation)
14 IL=0
15 //circuit current
16 I=Izt
17 //series resistance
18 R=(Vi-Vo)/I
19 //zener current when Vi drops to 27V
20 Vi1=27
21 Iz=(Vi1-Vo)/R
22 printf("Zener current is %f ampere\n",Iz)
```

Scilab code Exa 2.2.66 Calculate the effect of a 10per variation supply voltage on diode current

```
1 clc
2 disp("Example 2.66")
3 \text{ printf}(" \setminus n")
4 disp ("Calculate the effect of a 10% variation supply
       voltage on diode current")
5 printf("Given\n")
6 //input voltage
7 \text{ Vi} = 25
8 //output voltage
9 \ Vo = 10
10 //test current(lies b/w Izmin & Izmax)
11 Izt=20*10^-3
12 //load current (assume zero, no load operation)
13 IL=10^-3
14 //select R such that
15 Iz=Izt
16 //series resistance
17 R=(Vi-Vo)/(Iz+IL)
```

```
18 //maximum input voltage
19 Vimax = 25 + 2.5
20 //minimum input voltage
21 \quad Vimin = 25 - 2.5
22 //ciruit current
23 I1=(Vimax-Vo)/R
24 //zener current when Vimax
25 \quad Izmax = I1 - IL
26 //cicuit current when Vimin
27 I2 = (Vimin - Vo)/R
28 //zener current when Vimin
29 Izmin=I2-IL
30 printf("circuit current when Vimax is %f ampere\n",
31 printf("zener current when Vimax is %f ampere\n",
      Izmax)
32 printf ("circuit current when Vimin is %f ampere\n",
33 printf ("zener current when Viin is %f ampere\n",
      Izmin)
```

Scilab code Exa 2.2.68 Calculate the line regulation output resistance load regulation and ripple rejection ratio

```
1 clc
2 disp("Example 2.68")
3 printf("\n")
4 disp("Calculate the line regulation, output
    resistance, load regulation & ripple rejection
    ratio")
5 printf("Given\n")
6 printf("1 Resistance are in ohms \n 2 Current are in
    ampere \n 3 voltage sources are in volt\n")
7 //input voltage
8 Vi=16
```

```
9 //output voltage
10 Vo=6
11 //load current
12 ILmax = 60*10^{-3}
13 //dynamic impedence
14 \quad Zz = 7
15 //series resistance
16 R=150
17 //Source effect
18 \text{ delVi} = (10*16)/100
19 RL=Vo/ILmax
20 //\mathbf{Zz} \mid \mid \mathbf{RL}
21 Rp = (Zz*RL)/(Zz+RL)
22 delVo=(delVi*Rp)/(R+Rp)
23 //Line regulation
24 LR=(delVo*100)/Vo
25 //load effect
26 delIL=ILmax
27 \text{ Ro} = (Zz*R)/(Zz+R)
28 delVo1=delIL*Ro
29 //output resistance
30 Rout=Ro
31 //Ripple rejection ratio
32 VrobyVri=Rp/(R+Rp)
33 printf("line regulation is \%f \n",LR)
34 printf("output resistance is %d ohm\n", Rout)
35 printf("Ripple rejection ratio %f \n", VrobyVri)
```

Chapter 3

pnp and npn Transistors

Scilab code Exa 3.3.14 calculate the value of Ic Ie beta for a transistor

```
1 clc
2 disp("Example 3.14")
3 \text{ printf}(" \ n")
4 disp("calculate the value of Ic, Ie, beta for a
      transistor")
5 printf("Given\n")
6 \text{ alpha=0.98}
7 //base current
8 Ib=120*10^-6
9 //Value of Ic
10 Ic=alpha*Ib/(1-alpha)
11 //Value of Ie
12 Ie=Ic+Ib
13 //value of beta
14 beta=alpha/(1-alpha)
15 printf("base current \n\%f ampere\n", Ib)
16 printf ("collector current \n\%f ampere\n", Ic)
17 printf ("Emitter current \n\%f ampere\n", Ie)
18 printf ("beta \n\%f\n", beta)
```

Scilab code Exa 3.3.15 Find the value of alpha and beta of transistor and Ib for desired Ic

```
1 clc
2 disp("Example 3.15")
3 \text{ printf}(" \setminus n")
4 disp("Find the value of alpha & beta of transistor
      and Ib for desired Ic")
5 printf("Given\n")
6 Ic=1.2*10^-3
7 Ib = 20 * 10^{-6}
8 //the value of beta
9 beta=Ic/Ib
10 //the value of alpha
11 alpha=beta/(1+beta)
12 //the value of Ib for desired value of Ic=5mA
13 \text{ Ic1=}5*10^{-3}
14 Ib1=Ic1/beta
15 printf("beta \n%f\n",beta)
16 printf ("alpha \n\%f\n", alpha)
17 printf("base current when collector current is 5mA
      is \n%f ampere \n", Ib1)
```

Scilab code Exa 3.3.16 calculate the value of alpha beta and Ib for a transistor

```
1 clc
2 disp("Example 3.16")
3 printf("\n")
4 disp("calculate the value of alpha, Ib, beta for a transistor")
5 printf("Given\n")
```

```
6 // collector current
7 Ic=2.5*10^-3
8 // emitter current
9 Ie=2.55*10^-3
10 // Value of alpha
11 alpha=Ic/Ie
12 // Value of Ib
13 Ib=Ie-Ic
14 // value of beta
15 beta=Ic/Ib
16 printf(" collector current \n%f ampere\n", Ic)
17 printf(" Emitter current \n%f ampere\n", Ie)
18 printf(" alpha \n%f\n", alpha)
19 printf(" base current \n%f ampere\n", Ib)
20 printf(" beta \n%f\n", beta)
```

Scilab code Exa 3.3.17 calculate the value of beta for transistor and find new collector current when beta of new transistor is 70

```
1 clc
2 disp("Example 3.17")
3 printf("\n")
4 disp ("calculate the value of beta for transistor.
      find new collector current when beta of new
      transistor is 70")
5 printf ("Given\n")
6 //old transistor
7 Ic=3*10^-3
8 Ie=3.03*10^-3
9 //find Ib
10 Ib=Ie-Ic
11 //value of beta
12 beta=Ic/Ib
13 //for new transistor beta=70
14 \text{ beta1=70}
```

```
15 //the value of Ic
16 Ic=beta1*Ib
17 printf("base current \n%f ampere\n",Ib)
18 printf("beta \n%f\n",beta)
19 printf("new value of collector current for beta 70
    is \n%f ampere\n",Ic)
```

Scilab code Exa 3.3.18 calculate the value of Ic Ie for a transistor and Find beta for transistor

```
1 clc
2 disp("Example 3.18")
3 \text{ printf}(" \setminus n")
4 disp ("calculate the value of Ic, Ie for a transistor.
      Find beta for transistor")
5 printf("Given\n")
6 //For old transistor
7 \text{ alpha=0.97}
8 \text{ Ib} = 50 * 10^{-6}
9 //value of collector current
10 Ic=alpha*Ib/(1-alpha)
11 //value of emitter current
12 Ie=Ic/alpha
13 //value of beta
14 beta=Ic/Ib
15 printf("collector current \n\%f ampere\n", Ic)
16 printf ("Emitter current \n\%f ampere\n", Ie)
17 printf ("beta \n\%f\n", beta)
```

Scilab code Exa 3.3.19 calculate the value of Ie alpha beta for a transistor and find Ib for new value of Ic

```
1 clc
```

```
2 disp("Example 3.19")
3 \text{ printf}(" \ n")
4 disp("calculate the value of Ie, alpha, beta for a
      transistor and find Ib for new value of Ic")
5 printf("Given\n")
6 //for old transistor
7 Ic=5.25*10^-3
8 Ib=100*10^-6
9 //value of Ie
10 Ie=Ic+Ib
11 //value of alpha
12 alpha=Ic/Ie
13 //value of beta
14 beta=Ic/Ib
15 //for new value of Ib the Ic value is
16 \text{ Ic1} = 15 * 10^{-3}
17 Ib=Ic1/beta
18 printf("emitter current \n\%f ampere\n", Ie)
19 printf ("alpha \n\%f\n", alpha)
20 printf ("beta \n\%f\n", beta)
21 printf("new base current \n\%f ampere\n",Ib)
```

Scilab code Exa 3.3.20 calculate the value of Ic and Ie for a transistor

```
1 clc
2 disp("Example 3.20")
3 printf("\n")
4 disp("calculate the value of Ic, Ie for a transistor"
     )
5 printf("Given\n")
6 alpha=0.99
7 //base current
8 Ib=20*10^-6
9 //value of collector current
10 Ic=alpha*Ib/(1-alpha)
```

```
// value of emitter current
le=Ic+Ib
printf("base current \n%f ampere\n",Ib)
printf("collector current \n%f ampere\n",Ic)
printf("Emitter current \n%f ampere\n",Ie)
```

Scilab code Exa 3.3.21 calculate the value of Ic alpha beta for a transistor and Ic when Ib is 150uA

```
1 clc
2 disp("Example 3.21")
3 \text{ printf}(" \setminus n")
4 disp("calculate the value of Ic, alpha, beta for a
      transistor and Ic when Ib=150uA")
5 printf("Given\n")
6 Ic=12.42*10^-3
7 Ib = 200 * 10^{-6}
8 //value of Ie
9 Ie=Ic+Ib
10 //value of alpha
11 alpha=Ic/Ie
12 //value of beta
13 beta=Ic/Ib
14 //value of Ic when Ib=150uA
15 Ib1=150*10^-6
16 Ic=beta*Ib1
17 printf("Emitter current \n\%f ampere\n", Ie)
18 printf ("alpha \n\%f\n", alpha)
19 printf ("beta \n\% f \n", beta)
20 printf("collector current \n\%f ampere\n", Ic)
```

Scilab code Exa 3.3.22 calculate the value of Ib beta for a transistor and Ic Ie for new value of beta

```
1 clc
2 disp("Example 3.22")
3 printf("\n")
4 disp("calculate the value of Ib, beta for a
      transistor and Ic, Ie for new value of beta")
5 printf("Given\n")
6 \text{ Ic} = 16 * 10^{-3}
7 Ie=16.04*10^-3
8 //base current
9 Ib=Ie-Ic
10 //beta value
11 beta=Ic/Ib
12 //for beta=25
13 \text{ beta1} = 25
14 Ic1=beta1*Ib
15 Ie1=Ic1+Ib
16 printf ("base current \n\%f ampere\n", Ib)
17 printf ("beta \n\%f\n", beta)
18 printf("emitter current \n\%f ampere\n", Ie1)
```

Scilab code Exa 3.3.25 Find the DC collector voltage and voltage gain of ckt for Vi is 50mV

```
1 clc
2 disp("Example 3.25")
3 printf("\n")
4 disp("Find the DC collector voltage & voltage gain of circuit for Vi=50mV")
5 printf("Given\n")
6 //base current for Vbe=0.7
7 Ib=30*10^-6
8 Vbe=0.7
9 beta=80
10 //collector current
11 Ic=beta*Ib
```

```
//given from ckt
Vcc=20
Rc=5.8*10^3
//writing KVL for Common Emitter circuit
Vc=Vcc-(Ic*Rc)
//for input characteristics delVi=delVb=50mV
Vi=50*10^-3
delIb=5*10^-6
Ic1=beta*delIb
//output voltage
Vo=Ic1*Rc
//voltage gain
Av=Vo/Vi
printf("Dc collector voltage \n%f volt\n",Vc)
printf("voltage gain \n%f\n",Av)
```

Scilab code Exa 3.3.26 FInd the DC current gain for circuit fig 15 and ac voltage gain

```
1 clc
2 disp("Example 3.26")
3 \text{ printf}(" \ n")
4 disp ("FInd the DC current gain for circuit fig 3.15
      and ac voltage gain")
5 printf("Given\n")
6 //to find dc current gain
7 //given
8 \text{ Vcc} = 15
9 \text{ Vc}=7
10 Rc=5.6*10^3
11 Ib=20*10^-6
12 //to find Vrc
13 Vrc=Vcc-Vc
14 //collector current
15 Ic=Vrc/Rc
```

```
//dc current gain
betadc=Ic/Ib
//to find ac voltage gain
//given
Vi=50*10^-3
delIb=10*10^-6
delIc=betadc*delIb
//output voltage
Vo=delIc*Rc
//voltage gain
Av=Vo/Vi
printf("DC current gain \n%f\n",betadc)
printf("voltage gain \n%f\n",Av)
```

Scilab code Exa 3.3.27 Find the parameters of the ckt of question 27

```
1 clc
2 disp("Example 3.27")
3 \text{ printf}(" \ n")
4 disp ("Find the following terms as given in question
      3.27")
5 printf ("Given \n")
6 //to find collector voltage
7 //given
8 \ Vbe=0.7
9 Ib=30*10^-6
10 beta=50
11 Rc=12*10<sup>3</sup>
12 \ Vcc = 25
13 //collector current
14 Ic=beta*Ib
15 //collector voltage
16 Vc = Vcc - (Ic*Rc)
17 //to find voltage gain
18 //given
```

```
19 \text{ Vi} = 50 * 10^{-3}
20 \quad Ib1=15*10^-6
21 Ic1=beta*Ib1
22 \quad Vo = Ic1 * Rc
23 //voltage gain
24 \text{ Av=Vo/Vi}
25 //to find Vce
26 //given
27 \text{ Vbe} = 0.73
28 \text{ Ib2=} 40*10^-6
29 Ic2=beta*Ib2
30 \text{ Vce=Vcc-(Ic2*Rc)}
31 //to find voltage gain when Rc changed to 6.8k
32 \text{ Rc1=6.8*10^3}
33 \text{ Vol} = \text{Icl} * \text{Rcl}
34 \text{ Av1=Vo1/Vi}
35 //to find current gain of replaced transistor
36 //given
37 \text{ Vc1} = 9
38 Vrc=Vcc-Vc1
39 \text{ Ic3=Vrc/Rc}
40 beta1=Ic3/Ib
41 printf("collector voltage \n\%f volt \n", Vc)
42 printf ("Voltage gain for vi=50mv \ n\%f \ n", Av)
43 printf("Vce if Vbe=0.73 is \n\%f volt \n", Vce)
44 printf ("Voltage gain when Rc=6.8k \setminus n\%f \text{ Volt} \setminus n", Av1)
45 printf ("current gain of replaced transistor n\%f",
       beta1)
```

Scilab code Exa 3.3.34 Obtain the CB current gain and output characteristics

1 clc

Figure 3.1: Obtain the CB current gain and output characteristics

```
2 disp("Example 3.34")
3 printf("\n")
4 disp ("Obtain the Common base current gain & output
      characteristics")
5 printf("Given\n")
6 Vcb=[ 4 4 4 4 4 4 ]
7 Ic=[ 0 2 4 6 8 10]
8 subplot (221)
9 plot2d(Vcb,Ic)
10 xlabel("Vcb in volt")
11 ylabel("Ic in Ampere")
12 xtitle ("output characteristics")
13 Ic1=[0 2 10 ]
14 Ie=[0 2 10]
15 subplot (222)
16 plot2d(Ie, Ic1)
17 xarrows (Ie, Ic1, 2, 2)
18 xarrows (Ie, Ic1, 10, 10)
19 xlabel("Vcb in volt")
20 ylabel("Ic in Ampere")
21 xtitle("current gain characteristics")
```

Scilab code Exa 3.3.46 For the circuit given draw a DC load line

```
1 clc
2 disp("Example 3.46")
3 printf("\n")
4 disp("For the circuit shown in example 3.46 draw a DC load line")
5 printf("Given\n")
6 //to find Vce value when Ic=0
7 Ic1=0
8 //given
9 Rc=12*10^3
10 Vcc=20
```


Figure 3.2: For the circuit given draw a DC load line

```
//from circuit
//from circuit
//to find Ic when Vce=0
//to find Ic when V
```

Scilab code Exa 3.3.50 Draw a DC load line for the base bias circuit

```
1 clc
2 disp("Example 3.50")
3 \text{ printf}(" \ n")
4 disp("Draw a DC load line for the base bias circuit"
5 printf("Given\n")
6 //given
7 \text{ Rc} = 2.2 * 10^3
8 Rb = 470 * 10^3
9 \text{ Vcc}=18
10 \text{ Vbe} = 0.7
11 hFE=100
12 //find the Ib
13 Ib=(Vcc-Vbe)/Rb
                     // from ciruit
14 //find the Ic
15 Icq=hFE*Ib
16 // find the Vceq
17 Vceq=Vcc-(Icq*Rc)
18 //to draw Dc load line
19 Ic1=Vcc/Rc
20 Vce1=Vcc
21 Vce=[Vcc Vceq 0]
22 Ic=[0 Icq Ic1]
23 printf("Q(\%f,\%f)\n", Vceq, Icq)
24 plot2d(Vce, Ic)
25 xlabel("Vce in volt")
26 ylabel("Ic in Ampere")
27 xtitle("DC load line for base bias circuit")
```


Figure 3.3: Draw a DC load line for the base bias circuit

Scilab code Exa 3.3.51 Draw a DC load line for the base bias circuit for different hFE

```
1 clc
2 disp("Example 3.51")
3 \text{ printf}(" \setminus n")
4 disp("Draw a DC load line for the base bias circuit
      for different hFE")
5 printf ("Given \n")
6 //given
7 \text{ Rc} = 2.2 * 10^3
8 \text{ Rb} = 470 \times 10^3
9 \text{ Vcc}=18
10 \ \text{Vbe=0.7}
11 hFE1=50
12 hFE2=200
13 //find the Ib
14 Ib=(Vcc-Vbe)/Rb // from ciruit
15 //find the Ic for hFE1
16 Icq1=hFE1*Ib
17 //find the Vceq1
18 Vceq1=Vcc-(Icq1*Rc)
19 //find the Ic for hFE2
20 \text{ Icq2=hFE2*Ib}
21 //find the Vceq2
22 Vceq2=Vcc-(Icq2*Rc)
23 //to draw Dc load line
24 \text{ Ic1=Vcc/Rc}
25 Vce1=Vcc
26 Vce=[Vcc Vceq1 Vceq2 0]
27 Ic=[0 Icq1 Icq2 Ic1]
28 printf("Q1(%f volt, %f ampere)\n", Vceq1, Icq1)
29 printf("Q2(%f volt, %f ampere)\n", Vceq2, Icq2)
30 plot2d(Vce, Ic)
```


Figure 3.4: Draw a DC load line for the base bias circuit for different hFE

```
31 xlabel("Vce in volt")
32 ylabel("Ic in ampere")
33 xtitle("DC load line for base bias circuit")
```

Scilab code Exa 3.3.52 Find Ic and Vce and Draw a DC load line for the base bias circuit

```
1 clc 2 disp("Example 3.52") 3 printf("\n") 4 disp(" Find Ic & Vce. Draw a DC load line for the
```

```
base bias circuit")
5 printf("Given\n")
6 //given
7 \text{ betadc=} 100
8 \text{ Vbe} = 0.7
9 Rc = 10^3
10 Rb=10<sup>5</sup>
11 Vb=5
12 \ Vc = 10
13 //to find Ib
                    //from ciruit
14 Ib=(Vb-Vbe)/Rb
15 //Ic value
16 Icq=betadc*Ib
17 //Vce value
18 Vceq=Vc-(Icq*Rc)
19 //to draw DC load line
20 \text{ Ic1=Vc/Rc}
21 Vce1=Vc
22 Vce=[Vc Vceq 0]
23 Ic=[0 Icq Ic1]
24 printf("Q(\%f volt,\%f ampere)\n",Vceq,Icq)
25 plot2d(Vce, Ic)
26 xlabel("Vce in volt")
27 ylabel("Ic in ampere")
28 xtitle("DC load line for base bias circuit")
```

Scilab code Exa 3.3.53 Find Ic and Vce and Draw a DC load line for the base bias circuit

```
1 clc 2 disp("Example 3.53") 3 printf("\n") 4 disp(" Find Ic & Vce. Draw a DC load line for the
```


Figure 3.5: Find Ic and Vce and Draw a DC load line for the base bias circuit

```
base bias circuit")
5 printf("Given\n")
6 //given
7 \text{ betadc} = 50
8 \text{ Vbe} = 0.7
9 \text{ Rc} = 2.2 * 10^3
10 Rb=240*10^3
11 \ Vc = 12
12 //to find Ib
13 Ib=(Vc-Vbe)/Rb
                      //from ciruit
14 //Ic value
15 Icq=betadc*Ib
16 //Vce value
17 Vceq=Vc-(Icq*Rc)
18 //to draw DC load line
19 Ic1=Vc/Rc
20 Vce1=Vc
21 Vce=[Vc Vceq 0]
22 Ic=[0 Icq Ic1]
23 printf("Q(\%f \text{ volt}, \%f \text{ ampere}) \setminus n", Vceq, Icq)
24 plot2d(Vce, Ic)
25 xlabel("Vce in volt")
26 ylabel("Ic in ampere")
27 xtitle ("DC load line for base bias circuit")
```

Scilab code Exa 3.3.54 Draw a DC load line for the base bias circuit neglecting Vbe

```
1 clc
2 disp("Example 3.54")
3 printf("\n")
4 disp(" Draw a DC load line for the base bias circuit neglecting Vbe")
```


Figure 3.6: Find Ic and Vce and Draw a DC load line for the base bias circuit

```
5 printf ("Given \n")
6 //given
7 \text{ betadc} = 100
8 \text{ Rc} = 5 * 10^3
9 Rb=1.5*10^6
10 \ Vc = 30
11 //to find Ib
               //from ciruit
12 \text{ Ib=Vc/Rb}
13 //Ic value
14 Icq=betadc*Ib
15 //Vce value
16 Vceq=Vc-(Icq*Rc)
17 //to draw DC load line
18 \text{ Ic1=Vc/Rc}
19 Vce1=Vc
20 \text{ Vce} = [\text{Vc Vceq 0}]
21 Ic=[0 Icq Ic1]
22 printf("Q(\%f \text{ volt}, \%f \text{ ampere}) \setminus n", Vceq, Icq)
23 plot2d(Vce, Ic)
24 xlabel("Vce in volt")
25 ylabel("Ic in ampere")
26 xtitle ("DC load line for base bias circuit")
```

Scilab code Exa 3.3.55 Calculate transistor hFE and new Vce level for hFE is 100 of base bias ciruit

```
1 clc
2 disp("Example 3.55")
3 printf("\n")
4 disp("Calculate transistor hFE & new Vce level for hFE=100 of base bias ciruit")
5 printf("Given\n")
6 //given
```


Figure 3.7: Draw a DC load line for the base bias circuit neglecting Vbe

```
7 \text{ Vcc}=24
8 Rb = 390 * 10^3
9 Rc=3.3*10^3
10 \ \text{Vce} = 10
11 //Find Ic
12 Ic=(Vcc-Vce)/Rc //from circuit
13 // find Ib
14 Ib=(Vcc-Vbe)/Rb //from ciruit
15 //the value of hFE
16 hFE=Ic/Ib
17 //to find Vce when hFE=100
18 hFE1=100
19 Ic1=hFE1*Ib
20 \text{ Vce1=Vcc-(Ic1*Rc)}
21 printf ("Value of hFE is \n\% f\n", hFE)
22 printf ("New value of Vce is \n\%f volt\n", Vce1)
```

Scilab code Exa 3.3.57 Design a Base bias circuit

```
1 clc
2 disp("Example 3.57")
3 printf("\n")
4 disp("Design a Base bias circuit")
5 printf("Given\n")
6 //given
7 \text{ Vce}=5
8 \text{ Ic} = 5 * 10^{-3}
9 \text{ Vcc}=15
10 hFE=100
11 //Value of Rc
12 Rc=(Vcc-Vce)/Ic
13 Ib=Ic/hFE
14 //value of Rb
15 \text{ Vbe} = 0.7
16 Rb=(Vcc-Vbe)/Ib
```

```
17 printf("The value of Rc=\%f ohm\nRb=\%f ohm\n",Rc,Rb)
```

Scilab code Exa 3.3.58 Draw the DC load line and determine Rc for base bias circuit

```
1 clc
2 disp("Example 3.58")
3 \text{ printf}(" \ ")
4 disp("Draw the DC load line & determine Rc for base
      bias circuit")
5 printf("Given\n")
6 //given
7 \text{ Vcc}=18
8 \text{ Vbe} = 0.7
9 \text{ Vceq=9}
10 \text{ Icq=}2*10^-3
11 //to find Rc
12 Rc=(Vcc-Vceq)/Icq //from circuit
13 //to draw DC load line
14 Ic1=Vcc/Rc
15 Vce=[Vcc Vceq 0]
16 Ic=[0 Icq Ic1]
17 printf("Q(\%f volt, \%f ampere) \n", Vceq, Icq)
18 plot2d(Vce, Ic)
19 xlabel("Vce in volt")
20 ylabel("Ic in ampere")
21 xtitle("DC load line for base bias circuit")
```

Scilab code Exa 3.3.59 Calculate Base resistance for base bias circuit

```
1 clc
```


Figure 3.8: Draw the DC load line and determine Rc for base bias circuit

```
2 disp("Example 3.59")
3 \text{ printf}(" \ ")
4 disp ("Calculate Base resistance for base bias
      circuit")
5 printf ("Given \n")
6 //given
7 \text{ Vcc} = 20
8 \text{ Vce}=5
9 Rc=6.8*10^3
10 hFE=120
11 Vbe=0.7
12 //collector current
13 Ic=(Vcc-Vce)/Rc
14 //base current
15 Ib=Ic/hFE
16 //the required base resistance
17 Rb=(Vcc-Vbe)/Ib
18 printf("The base resistance \n\%f ohm\n", Rb)
```

Scilab code Exa 3.3.61 Determine the Ic and Vce levels and draw DC load line for Collector to base bias

```
1 clc
2 disp("Example 3.61")
3 printf("\n")
4 disp("Determine the Ic & Vce levels & draw DC load
        line for Collector to base bias")
5 printf("Given\n")
6 //given
7 Vcc=15
8 Vbe=0.7
9 hFE=50
10 Rc=1.8*10^3
11 Rb=39*10^3
12 //base current
```

```
13  Ib=(Vcc-Vbe)/(Rb+(1+hFE)*Rc)
14  //collector current
15  Icq=hFE*Ib
16  //value of Vce
17  Vceq=(Ib*Rb)+Vbe
18  //to draw DC load line
19  Ic1=Vcc/Rc
20  Vce=[Vcc Vceq 0]
21  Ic=[0  Icq  Ic1]
22  printf("Q(%f volt, %f ampere)\n", Vceq, Icq)
23  plot2d(Vce, Ic)
24  xlabel("Vce in volt")
25  ylabel("Ic in ampere")
26  xtitle("DC load line for base bias circuit")
```

Scilab code Exa 3.3.62 Determine the hFE and new Vce for hFE is 50 for Collector to base bias

Figure 3.9: Determine the Ic and Vce levels and draw DC load line for Collector to base bias

```
15 hFE=((Vcc-Vbe)/(Ib*Rc))-(Rb/Rc)-1
16 //to find Vce for hFE=50
17 hFE1=50
18 Ib1=(Vcc-Vbe)/(Rb+(1+hFE1)*Rc)
19 Vce1=(Ib1*Rb)+Vbe
20 printf("The hFE is \n%f\n",hFE)
21 printf("new Vce is \n%fvolt \n",Vce1)
```

Scilab code Exa 3.3.63 Draw a DC load line for Collector to base bias

```
1 clc
2 disp("Example 3.63")
3 printf("\n")
4 disp ("Draw a DC load line for Collector to base bias
5 printf("Given\n")
6 //given
7 \text{ Vcc}=20
8 \text{ Vbe} = 0.7
9 \text{ hFE}=50
10 \text{ Rc} = 1.8 * 10^3
11 Rb = 39 * 10^3
12 //base current
13 Ib=(Vcc-Vbe)/(Rb+(1+hFE)*Rc)
14 //collector current
15 \text{ Icq=hFE*Ib}
16 //to find Vce
17 Vceq = (Ib*Rb) + Vbe
18 //to draw DC load line
19 Ic1=Vcc/Rc
20 Vce=[Vcc Vceq 0]
21 Ic=[0 Icq Ic1]
22 printf("Q(\%f,\%f)\n", Vceq, Icq)
23 plot2d(Vce, Ic)
24 xlabel("Vce")
```


Figure 3.10: Draw a DC load line for Collector to base bias

```
25 ylabel("Ic")
26 xtitle("DC load line for base bias circuit")
```

Scilab code Exa 3.3.64 Draw a DC load line for Collector to base bias for different hFE

```
5 printf ("Given \n")
6 //given
7 \text{ Vcc}=18
8 \ Vbe = 0.7
9 hFE1=50
10 hFE2=200
11 Rc = 2.2 * 10^3
12 Rb=270*10^3
13 / for hFE=50
14 //base current
15 Ib1 = (Vcc - Vbe) / (Rb + (1 + hFE1) * Rc)
16 //collector current
17 Icq1=hFE1*Ib1
18 //to find Vce
19 Vceq1=(Ib1*Rb)+Vbe
20 / for hFE = 200
21 //base current
22 Ib2 = (Vcc - Vbe) / (Rb + (1 + hFE2) * Rc)
23 //collector current
24 \text{ Icq2=hFE2*Ib2}
25 //to find Vce
26 \text{ Vceq2}=(\text{Ib2}*\text{Rb})+\text{Vbe}
27 //to draw DC load line
28 \text{ Ic1=Vcc/Rc}
29 Vce=[Vcc Vceq1 Vceq2 0]
30 Ic=[0 Icq1 Icq2 Ic1]
31 printf("Q1(%f volt, %f ampere)\n", Vceq1, Icq1)
32 printf("Q2(\%f volt,\%f ampere)\n", Vceq2, Icq2)
33 plot2d(Vce, Ic)
34 xlabel("Vce in volt")
35 ylabel("Ic in ampere")
36 xtitle("DC load line for base bias circuit")
```


Figure 3.11: Draw a DC load line for Collector to base bias for different hFE

Scilab code Exa 3.3.66 Design a Collector to base bias circuit

```
1 clc
2 disp("Example 3.66")
3 \text{ printf}(" \setminus n")
4 disp("Design a Collector to base bias circuit")
5 printf ("Given \n")
6 // Given
7 \text{ Vce}=5
8 \text{ Ic} = 5 * 10^{-3}
9 \ Vbe=0.7
10 \, \text{Vcc} = 15
11 hFE=100
12 //base current
13 Ib=Ic/hFE
14 //collector resistance
15 Rc=(Vcc-Vce)/(Ic+Ib)
16 //base resistance
17 Rb=(Vce-Vbe)/Ib
18 printf("base current %f ampere \n", Ib)
19 printf("Collector resistance %f ohm \n", Rc)
20 printf ("base resistance \%f ohm \n", Rb)
```

Scilab code Exa 3.3.67 Design a Collector to base bias circuit

```
1 clc
2 disp("Example 3.67")
3 printf("\n")
4 disp("Design a Collector to base bias circuit")
5 printf("Given\n")
6 //Given
7 Vce=10
8 Ic=3*10^-3
9 Vbe=0.7
10 Vcc=25
```

```
11 hFE=80
12 //base current
13 Ib=Ic/hFE
14 //collector resistance
15 Rc=(Vcc-Vce)/(Ic+Ib)
16 //base current
17 Rb=(Vce-Vbe)/Ib
18 printf("base current %f ampere \n",Ib)
19 printf("Collector resistance %f ohm \n",Rc)
20 printf("base resistance %f ohm \n",Rb)
```

Scilab code Exa 3.3.68 Calculate required base resistance for Collector to base bias circuit

```
1 clc
2 disp("Example 3.68")
3 \text{ printf}(" \setminus n")
4 disp("Calculate required base resistance for
       Collector to base bias circuit")
5 printf("Given\n")
6 //given
7 \text{ Vcc}=30
8 \text{ Vce}=7
9 \text{ Vbe} = 0.7
10 \text{ Rc} = 8.2 * 10^3
11 hFE=100
12 //base current
13 Ib=(Vcc-Vce)/(Rc*(1+hFE))
14 //base resistance
15 Rb = (Vce - Vbe) / Ib
16 printf("base resistance is \n\%f ohm\n", Rb)
```

Scilab code Exa 3.3.72 Draw a DC load line for Voltage divider circuit

```
1 clc
2 disp("Example 3.72")
3 printf("\n")
4 disp("Draw a DC load line for Voltage divider
      circuit")
5 printf ("Given \n")
6 //given
7 \text{ Vcc} = 15
8 \text{ Rc} = 2.7 * 10^3
9 Re=2.2*10^3
10 R1=22*10<sup>3</sup>
11 R2=12*10<sup>3</sup>
12 \, \text{Vbe} = 0.7
13 //base voltage
14 Vb = (Vcc*R2)/(R1+R2)
15 //emitter voltage
16 \, \text{Ve=Vb-Vbe}
17 //emitter current
18 Ie=Ve/Re
19 //collector current
20 Icq=Ie
21 //collector to emitter voltage
22 Vceq=Vcc-(Icq*(Rc+Re))
23 //collector voltage
24 Vc=Vce+Ve
25 //to draw DC load line
26 \text{ Ic1=Vcc/(Rc+Re)}
27 Vce=[Vcc Vceq 0]
28 Ic=[0 Icq Ic1]
29 printf("Q(\%f volt,\%f ampere)\n",Vceq,Icq)
30 plot2d(Vce, Ic)
31 xlabel("Vce in volt")
32 ylabel("Ic in ampere")
33 xtitle("DC load line for base bias circuit")
```


Figure 3.12: Draw a DC load line for Voltage divider circuit

Scilab code Exa 3.3.73 Find the Ve Ic Vce and Vc and Draw a DC load line for Voltage divider circuit

```
1 clc
2 disp("Example 3.73")
3 \text{ printf}(" \ ")
4 disp ("Find the Ve, Ic, Vce & Vc. Draw a DC load line
      for Voltage divider circuit")
5 printf ("Given \n")
6 //given
7 \text{ Vcc} = 18
8 \ Vbe=0.7
9 \text{ hFE} = 50
10 R1=33*10^3
11 R2=12*10<sup>3</sup>
12 Rc=1.2*10^3
13 Re=10^3
14 //thevenin voltage
15 Vt = (Vcc*R2)/(R1+R2)
16 //thevenin resistance
17 Rt = (R1*R2)/(R1+R2)
18 //base current
19 Ib=(Vt-Vbe)/(Rt+(1+hFE)*Re)
20 //collector current
21 Icq=hFE*Ib
22 //emitter current
23 Ie=Ib+Icq
24 //emitter voltage
25 \text{ Ve=Ie*Re}
26 //collector to emitter voltage
27 Vceq=Vcc-(Icq*Rc)-(Ie*Re)
28 //collector voltage
29 Vc=Vce+Ve
30 //to draw DC load line
```


Figure 3.13: Find the Ve Ic Vce and Vc and Draw a DC load line for Voltage divider circuit

```
31  Ic1=Vcc/(Rc+Re)
32  Vce=[Vcc Vceq 0]
33  Ic=[0  Icq  Ic1]
34  printf("Q(%f volt, %f ampere)\n", Vceq, Icq)
35  plot2d(Vce, Ic)
36  xlabel("Vce in volt")
37  ylabel("Ic in ampere")
38  xtitle("DC load line for base bias circuit")
```

Scilab code Exa 3.3.74 Find the Ve Ic Vce and Vc and Draw a DC load

line for Voltage divider circuit

```
1 clc
2 disp("Example 3.74")
3 printf("\n")
4 disp ("Find the Ve, Ic, Vce & Vc. Draw a DC load line
      for Voltage divider circuit")
5 printf("Given\n")
6 //given
7 \text{ Vcc}=15
8 \ Vbe=0.7
9 \text{ hFE}=50
10 R1=6.8*10<sup>3</sup>
11 R2=3.3*10^3
12 Rc = 0.9 * 10^3
13 Re=0.9*10^3
14 //thevenin voltage
15 Vt = (Vcc*R2)/(R1+R2)
16 //thevenin resistance
17 Rt = (R1*R2)/(R1+R2)
18 //base current
19 Ib=(Vt-Vbe)/(Rt+(1+hFE)*Re)
20 //collector current
21 Icq=hFE*Ib
22 //emitter current
23 Ie=Ib+Icq
24 //emitter voltage
25 \text{ Ve=Ie*Re}
26 //collector to emitter voltage
27 Vceq=Vcc-(Icq*Rc)-(Ie*Re)
28 //collector voltage
29 \quad Vc = Vce + Ve
30 //to draw DC load line
31 \text{ Ic1=Vcc/(Rc+Re)}
32 \text{ Vce} = [\text{Vcc Vceq 0}]
33 Ic=[0 Icq Ic1]
34 printf("Q(\%f,\%f)\n", Vceq, Icq)
35 plot2d(Vce, Ic)
```


Figure 3.14: Find the Ve Ic Vce and Vc and Draw a DC load line for Voltage divider circuit

```
36 xlabel("Vce")
37 ylabel("Ic")
38 xtitle("DC load line for base bias circuit")
```

 ${f Scilab\ code\ Exa\ 3.3.76}$ Design a Voltage divider bias circuit

```
1 clc
2 disp("Example 3.76")
3 printf("\n")
4 disp("Design a Voltage divider bias circuit")
```

```
5 printf ("Given \n")
6 //given
7 \text{ Vce}=5
8 \text{ Ve=Vce}
9 Ic=5*10^-3
10 \ Vcc = 15
11 hFE=100
12 \, \text{Vbe} = 0.7
13 //emitter resistance
14 Re=Ve/Ic
15 //collector resistance
16 \text{ Rc} = (\text{Vcc} - \text{Vce} - \text{Ve}) / \text{Ic}
17 //current through resistor R2
18 I2=Ic/10
19 //base voltage
20 \text{ Vb=Vbe+Ve}
21 //resistance 1
22 R1 = (Vcc - Vb) / I2
23 //resistance 2
24 R2 = Vb/I2
25 printf ("Collector resistance \%f ohm \n", Rc)
26 printf ("emitter resistance \%f ohm \n", Re)
27 printf("base voltage \%f volt \n", Vb)
28 printf ("voltage divider resistance R1 & R2 %f ohm\n
       %f \circ hm \setminus n", R1, R2)
```

Scilab code Exa 3.3.77 Design a Voltage divider bias circuit

```
1 clc
2 disp("Example 3.77")
3 printf("\n")
4 disp("Design a Voltage divider bias circuit")
5 printf("Given\n")
6 //given
7 Vce=3
```

```
8 \text{ Ve}=5
9 Ic=10^-3
10 \ Vcc = 12
11 Vbe = 0.7
12 //emitter resistance
13 Re=Ve/Ic
14 //collector resistance
15 Rc=(Vcc-Vce-Ve)/Ic
16 //current through resistor R2
17 I2 = Ic/10
18 //base voltage
19 Vb=Vbe+Ve
20 //resistance 1
21 R1 = (Vcc - Vb) / I2
22 //resistance 2
23 R2 = Vb/I2
24 printf("Collector resistance %f ohm \n", Rc)
25 printf("emitter resistance \%f ohm \n", Re)
26 printf("base voltage \%f volt n", Vb)
27 printf ("voltage divider resistance R1 & R2 %f ohm\n
      %f \circ hm \setminus n", R1, R2)
```

Scilab code Exa 3.3.79 Calculate the suitable resistor values for Voltage divider bias circuit

```
9 \text{ Vce=8}
10 hFE=80
11 Vbe=0.7
12 Rc = 6 * 10^3
13 //select Ve
14 \ Ve=5
15 //find collector resistor
16 Ic=(Vcc-Vce-Ve)/Rc
17 // find I2
18 I2=Ic/10
19 //emitter resistance
20 Re=Ve/Ic
21 //base voltage
22 \quad Vb = Vbe + Ve
23 //resistance R1
24 R1 = (Vcc - Vb) / I2
25 //resistance R2
26 R2=Vb/I2
27 printf ("Collector resistance %f ohm \n", Rc)
28 printf ("emitter resistance \%f ohm \n", Re)
29 printf("base voltage \%f volt \n", Vb)
30 printf ("voltage divider resistance R1 & R2 %f ohm\n
      %f \circ hm \setminus n, R1, R2)
```

Scilab code Exa 3.3.85 Find the stability factor and change in Ic for increase in temperature of base bias circuit

```
1 clc
2 disp("Example 3.85")
3 printf("\n")
4 disp("Find the stability factor & change in Ic for increase in temperature of base bias circuit")
5 printf("Given\n")
6 //given
7 hFE=100
```

```
8 \text{ Rc} = 2.2 * 10^3
9 Rb = 470 * 10^3
10 Icbo1=15*10^-9
11 T1=25
12 T2=105
13 //stability factor
14 S=1+hFE
15 //Change in collector to base reverse saturation
      current(delIcbo)
16 \quad n = (T2 - T1) / 10
17 \quad Icbo2 = Icbo1 * 2^8
18 delIcbo=Icbo2-Icbo1
19 //Change in Ic for increase in temperature
20 delIc=S*delIcbo
21 printf ("Stability factor is \n\%f\n",S)
22 printf("the change in collector current is \n\%f
      ampere\n",delIc)
```

Scilab code Exa 3.3.86 Find the stability factor and change in Ic for increase in temperature of collector to base bias circuit

```
1 clc
2 disp("Example 3.86")
3 printf("\n")
4 disp("Find the stability factor & change in Ic for increase in temperature of collector to base bias circuit")
5 printf("Given\n")
6 //given
7 hFE=100
8 Rc=2.2*10^3
9 Rb=270*10^3
10 Icbo1=15*10^-9
11 T1=25
12 T2=105
```

Scilab code Exa 3.3.87 Find the stability factor and change in Ic for increase in temperature of Voltage divider bias circuit

```
1 clc
2 disp("Example 3.87")
3 \text{ printf}(" \setminus n")
4 disp("Find the stability factor & change in Ic for
       increase in temperature of Voltage divider bias
       circuit")
5 printf("Given\n")
6 //given
7 \text{ hFE} = 100
8 \text{ Rc} = 1.2 * 10^3
9 R1=33*10<sup>3</sup>
10 R2=12*10<sup>3</sup>
11 Re=10<sup>3</sup>
12 \quad Icbo1=15*10^-9
13 T1=25
14 T2=105
15 //thevenin resistance
16 Rt = (R1*R2)/(R1+R2)
17 //stability factor
18 S=(1+hFE)/(1+((hFE*Re)/(Re+Rt)))
```

Scilab code Exa 3.3.89 Calculate the change in Ic produced by effect of Vbe changes over temperature of Voltage divider bias circuit

```
1 clc
2 disp("Example 3.89")
3 \text{ printf}(" \setminus n")
4 disp ("Calculate the change in Ic produced by effect
      of Vbe changes over temperature of Voltage
      divider bias circuit")
5 printf("Given\n")
6 //given
7 Re=4.7*10^3
8 T1=25
9 T2 = 125
10 //change in temperature
11 delT=T2-T1
12 //change in Vbe
13 delVbe=delT*(-1.8*10^-3) //change in Vbe for 1C
      raise in temperature = -1.8 \text{mV/C}
14 //change in Ic
15 delIc=-delVbe/Re
16 printf("change in Ic %f ampere\n",delIc)
```

Scilab code Exa 3.3.90 Calculate the change in Ic produced by effect of Vbe changes over temperature of Voltage divider bias circuit

```
1 clc
2 disp("Example 3.90")
3 \text{ printf}(" \ n")
4 disp("Calculate the change in Ic produced by effect
      of Vbe changes over temperature of Voltage
      divider bias circuit")
5 printf ("Given \n")
6 //given
7 Re=4.7*10^3
8 T1 = -35
9 T2 = 100
10 //change in temperature
11 delT=T2-T1
12 //change in Vbe
13 delVbe=delT*(-1.8*10^-3) //change in Vbe for 1C
      raise in temperature = -1.8 \text{mV/C}
14 //change in Ic
15 delIc=-delVbe/Re
16 printf("The change in IC is \n\%f ampere\n", delIc)
```

Chapter 4

Other Devices

Scilab code Exa 4.4.18 Calculate input votage that turns SCR ON and supply voltage that turns OFF

```
1 clc
2 disp("Example 4.18")
3 \text{ printf}(" \setminus n")
4 disp("Calculate input voltage that turns SCR ON, &
      find supply voltage that turns SCR OFF if holding
       current is 10mA")
5 printf("Given\n")
6 printf("Resistance are in ohms \nCurrent are in
      Ampere \n Voltage sources are in volt\n")
7 //gate trigger voltage
8 \text{ Vgt} = 0.75
9 //trigger current
10 \text{ Igt} = 5*10^{-3}
11 //gate resistance
12 Rg=1000
13 //load resistance
14 RL=100
15 //diode forward voltage
16 Vf=0.7
17 //holding current
```

Scilab code Exa 4.4.28 Calculate the values of R1 R2 and Rp of SCR circuit

```
1 clc
2 disp("Example 4.28")
3 printf("\n")
4 disp ("Calculate suitable values of R1, Rp, R2 for SCR
      in circuit Fig 4.12")
5 printf ("Given \n")
6 printf("Resistance are in ohms \nCurrent are in
      Ampere \n Voltage sources are in volt\n")
7 //gate current
8 \text{ Ig} = 250 * 10^{-6}
9 //gate trigger voltage
10 \text{ Vgt} = 0.75
11 \ Vd=0.7
12 //supply voltage
13 \ Vs = 40
14 //peak value of supply voltage
15 Vm = sqrt(2) * Vs
16 //supply voltage at angle 10 deg
17 Vs1 = Vm * sin (10 * \%pi / 180)
18 //supply voltage at angle 90 deg
19 Vs2 = Vm * sin (90 * \%pi/180)
20 \text{ Vt=Vd+Vgt}
```

```
21 //to trigger SCR at 10deg moving contact of Rp is at
       top
22 //from circuit
23 VR1=Vs1-Vt
24 // \text{choose I1min} >> Ig
25 I1min=1.5*10<sup>-3</sup>
26 R1 = VR1 / I1min
27 //since Ig<<I1min, current through Rp & R2 is I1min
28 RpPLUSR2=Vt/I1min
29 //to trigger SCR at 90deg moving contact of Rp is at
       bottom
30 VR2=Vt
31 I1=Vs2/(R1+RpPLUSR2)
32 R2=Vt/I1
33 Rp=RpPLUSR2-R2
34 printf ("Resistance R1 is \%f ohm \n", R1)
35 printf ("Resistance R2 is \%f ohm \n", R2)
36 printf("Resistance Rp is \%f ohm \n", Rp)
```

Scilab code Exa 4.4.29 Calculate the values of R1 R2 and Rp of SCR circuit

```
1 clc
2 disp("Example 4.29")
3 printf("\n")
4 disp("Calculate suitable values of R1,Rp,R2 for SCR in circuit Fig 4.12")
5 printf("Given\n")
6 printf("Resistance are in ohms \nCurrent are in Ampere \n Voltage sources are in volt\n")
7 //gate current
8 Ig=600*10^-6
9 //gate trigger voltage
10 Vg=0.7
11 Vd=0.7
```

```
12 //supply voltage
13 \ Vs = 230
14 //peak value of supply voltage
15 Vm = sqrt(2) * Vs
16 //supply voltage at angle 8deg
17 Vs1 = Vm * sin (8 * \%pi / 180)
18 //supply voltage at angle 90 deg
19 Vs2 = Vm * sin (90 * \%pi/180)
20 //to trigger SCR at 10deg moving contact of Rp is at
       top
21 //from circuit
22 VR1=Vs1-Vg
23 //choose Ilmin>>Ig
24 I1min=6*10^-3
25 R1 = VR1 / I1min
26 //since Ig << I1min, current through Rp & R2 is I1min
27 RpPLUSR2=Vg/I1min
28 //to trigger SCR at 90deg moving contact of Rp is at
       bottom
29 VR2=Vt
30 I1=Vs2/(R1+RpPLUSR2)
31 R2=Vg/I1
32 Rp=RpPLUSR2-R2
33 printf ("Resistance R1 is \%f ohm \n", R1)
34 printf ("Resistance R2 is \%f ohm \n", R2)
35 printf("Resistance Rp is %f ohm \n", Rp)
```

Scilab code Exa 4.4.40 Design the SCR crowbar circuit to protect the load from voltage levels greater than 12V

```
1 clc
2 disp("Example 4.40")
3 printf("\n")
4 disp("Design the SCR crowbar circuit to protect the load from voltage levels greater than 12V")
```

```
5 printf("Given\n")
6 //gate trigger voltage
7 Vgt=0.75
8 //load voltage maximum
9 VLmax=12
10 //Zener voltage is
11 Vz=VLmax-Vgt
12 //assume zener current(mini) as
13 Izmin=10^-3
14 R=Vgt/Izmin
15 printf("zener voltage \n%f volt\n", Vz)
16 printf("Resistance \n%f ohm\n", R)
```

Scilab code Exa 4.4.41 Design the SCR crowbar circuit to protect the load from voltage levels greater than specified voltage

```
1 clc
2 disp("Example 4.41")
3 \text{ printf}(" \ n")
4 disp ("Design the SCR crowbar circuit to protect the
      load from voltage levels greater than 7.5V")
5 printf("Given\n")
6 //gate trigger voltage
7 \text{ Vgt} = 0.7
8 //load voltage maximum
9 \quad VLmax=7.5
10 //Zener voltage is
11 Vz=VLmax-Vgt
12 //assume zener current(mini) as
13 Izmin=10^-3
14 R=Vgt/Izmin
15 printf("zener voltage \n\%f volt\n", \nz)
16 printf ("Resistance \n\%f ohm\n", R)
```

Scilab code Exa 4.4.49 Determine the minimum and maximum triggering voltage for a UJT

```
1 clc
2 disp("Example 4.49")
3 \text{ printf}(" \setminus n")
4 disp("Determine the minimum & maximum triggering
      voltage for a UJT")
5 printf("Given\n")
6 \text{ Vbb=20}
7 //intrinsic ratios
8 \text{ nmin} = 0.6
9 \text{ nmax} = 0.8
10 \quad V = 0.7
11 //minimum triggering voltage is
12 Vpmini=nmin*Vbb+Vd
13 //maximum triggering voltage is
14 \quad Vpmax=nmax*Vbb+Vd
15 printf("Minimum triggering Voltage \n\%f volt\n",
      Vpmini)
16 printf ("Maximum triggering Voltage \n\%f volt\n",
      Vpmax)
```

Scilab code Exa 4.4.51 find maximum oscillating frequency of UJT

```
6 \text{ Vbb} = 15
7 //the parameters of UJT
8 \text{ Ip=10^--6}
9 Iv=2.5*10^-3
10 \ \text{Vv} = 2.5
11 \quad n = 0.7
12 PRe=20*10^3
13 C=10^-6
14 \ Vp = 12
15 \text{ Vd=0.7}
16 \text{ Vp1} = (n*Vbb) + Vd
17 //minimum Re
18 Remin = (Vbb - Vv)/Iv
19 //maximum Re
20 Remax = (Vbb - Vp1)/Ip
21 //to find maximum oscillating frequency
22 T=PRe*C*log((Vbb-Vv)/(Vbb-Vp))
23 f = 1/T
24 printf ("maximum Re \n\%f ohm\n", Remax)
25 printf ("minimum Re \n\%f ohm\n", Remin)
26 printf ("maximum oscillating frequency n\%f hz n,f)
```

Scilab code Exa 4.4.52 Determine the minimum and maximum values of VEB1 for a UJT

Scilab code Exa 4.4.53 find maximum oscillating frequency of UJT

```
1 clc
2 disp("Example 4.53")
3 \text{ printf}(" \ n")
4 disp("find maximum oscillating frequency")
5 \text{ Vbb}=20
6 //the parameters of UJT
7 Ip=10^-6
8 \text{ Iv} = 10 * 10^{-3}
9 Vv = 3.5
10 n = 0.75
11 PRe=4.7*10^3
12 C=0.5*10^-6
13 \text{ Vd} = 0.7
14 Vp1=(n*Vbb)+Vd
15 //to find maximum oscillating frequency
16 T=PRe*C*log((Vbb-Vv)/(Vbb-Vp1))
17 f = 1/T
18 printf("Oscillator frequency \n\%f hz\n",f)
```

Scilab code Exa 4.4.74 plot the drain characteristics of JFET

Figure 4.1: plot the drain characteristics of JFET

```
1 clc
2 disp("Example 4.74")
3 printf("\n")
4 disp("plot the drain characteristics of JFET")
5 //given
6 Vds=[0 1 2 2.5 3 4 6 8]
7 Id=[0 2 4.5 5.3 5.5 5.5 5.5]
8 plot2d(Vds,Id)
9 xlabel("Vds(V)")
10 ylabel("Id(mA)")
11 xtitle("Plot of Vds V/s Id")
```

Scilab code Exa 4.4.77 calculate Vds at these gate source voltages and circuit voltage gain of JFET

```
1 clc
2 disp("Example 4.77")
3 printf("\n")
4 disp("calculate Vds at these gate_source voltages &
      circuit voltage gain of JFET")
5 printf("Given\n")
6 //drain current
7 Id = 9 * 10^{-3}
8 //gate to source voltage
9 \text{ Vgs} = (-2)
10 //when Vgs is reduced to -1V then Id is 12\text{mA}
11 Vgs1 = -1
12 Id1=12*10^-3
13 //from circuit (fig 4.49)
14 Rd=1.5*10<sup>3</sup>
15 Vdd=20
16 //to find Vds
17 //when Vgs=-2
18 Vds=Vdd-(Id*Rd)
19 //when Vgs=-1
20 \text{ Vds1=Vdd-(Id1*Rd)}
21 //change in input voltage Vgs is
22 delVi=Vgs1-Vgs
23 //change in output voltage is
24 \text{ delVo=Vds-Vds1}
25 // Voltage gain
26 Av=delVo/delVi
27 printf("The value of Vds at gate-source voltages is
      \n%f volt n, Vds)
28 printf ("The circuit voltage gain \n\%f\n", Av)
```

Scilab code Exa 4.4.78 calculate the minimum and maximum variation in Vds and circuit voltage gain of JFET

```
1 clc
2 disp("Example 4.78")
3 \text{ printf}(" \ ")
4 disp ("calculate the minimum & maximum variation in
      the drain source voltage Vds produced by a change
       of 0.1V & circuit voltage gain of JFET")
5 printf ("Given \n")
6 //transconductance
7 \text{ gmmax} = 5000 * 10^-6
8 \text{ gmmin} = 1500 * 10^-6
9 //change in gate to source voltage
10 \text{ delVgs=0.1}
11 Rd=1.5*10<sup>3</sup>
12 //the maximum change in drain current
13 delIdmax=gmmax*delVgs
14 delVdsmax=delIdmax*Rd
15 //voltage gain
16 Av1=delVdsmax/delVgs
17 //the minimum change in drain current
18 delIdmin=gmmin*delVgs
19 delVdsmin=delIdmin*Rd
20 //voltage gain
21 Av2=delVdsmin/delVgs
22 printf ("maximum change in drain voltage is %f volt\n
      ", delVdsmax)
23 printf("maximum voltage gain \%f \n", Av1)
24 printf ("minimum change in drain voltage is %f volt\n
      ", delVdsmin)
25 printf("minimum voltage gain \%f \n", Av2)
```

Scilab code Exa 4.4.79 calculate transconductance of JFET

```
1 clc
2 disp("Example 4.79")
3 printf("\n")
4 disp("calculate transconductance of JFET")
5 printf("Given\n")
6 //voltage gain
7 Av=20
8 //drain resistance
9 Rd=3.3*10^3
10 //transconductance
11 gm=Av/Rd
12 printf("Transconductance of JFET \n%f (1/ohm)\n",gm)
```

Scilab code Exa 4.4.80 determine the suitable value of load resistor Rd of JFET

```
1 clc
2 disp("Example 4.80")
3 printf("\n")
4 disp("determine the suitable value of load resistor
        Rd of JFET")
5 printf("Given\n")
6 //voltage gain
7 Av=10
8 //transconductance
9 gm=4500*10^-6
10 //load resistance
11 Rd=Av/gm
12 printf("load resistance \n%f ohm \n",Rd)
```

Chapter 5

Amplifiers and Oscillators

Scilab code Exa 5.5.3 Calculate output power change in decibel of amplifier

```
1 clc
2 disp("Example 5.3")
3 printf("\n")
4 disp("Calculate output power change in decibel of amplifier")
5 printf("Given\n")
6 //output power when frequency is 5khz
7 P1=50*10^-3
8 //output power when frequency is 20khz
9 P2=25*10^-3
10 //output power change in decibel
11 delPo=10*log10(P2/P1)
12 printf("output power change \n%f dB\n",delPo)
```

Scilab code Exa 5.5.4 Calculate output power change in decibel of amplifier

```
1 clc
2 disp("Example 5.4")
3 printf("\n")
4 disp("Calculate output power change in decibel of amplifier")
5 printf("Given\n")
6 //output voltage of amplifier when frequency 3khz
7 V1=2
8 //output voltage of amplifier when frequency 50khz
9 V2=0.5
10 //output power change in decibel
11 delPo=20*log10(V2/V1)
12 printf("output power change \n%f dB\n",delPo)
```

Scilab code Exa 5.5.5 Calculate power gain of amplifier

```
1 clc
2 disp("Example 5.5")
3 printf("\n")
4 disp("Calculate power gain of amplifier")
5 printf("Given\n")
6 //have equal input & load resistance
7 //input voltage
8 Vi=100*10^-3
9 //output voltage
10 Vo=3
11 //power gain of amplifier
12 Apdb=20*log10(Vo/Vi)
13 printf("power gain of amplifier \n%f\n", Apdb)
```

Scilab code Exa 5.5.6 Calculate new level of output voltage when it has fallen by 4db

```
1 clc
2 disp("Example 5.6")
3 printf("\n")
4 disp("Calculate new level of output voltage when it has fallen by 4db")
5 printf("Given\n")
6 //output voltage of an amplifier is 2V when frequency 1khz
7 V1=2
8 //power in db
9 Po=-4
10 //new level of output voltage
11 V2=10^(Po/20)*V1
12 printf("new output voltage \n%f volt\n", V2)
```

Scilab code Exa 5.5.10 Calculate overall voltage gain and output voltage when input voltage is 1 uV for cascaded amplifier

```
1 clc
2 disp("Example 5.10")
3 printf("\n")
4 disp ("Calculate overall voltage gain in db & output
      voltage when input voltage is 1uV for cascaded
      amplifier")
5 printf("Given\n")
6 //Voltage gain of amplifier
7 \text{ Av1} = 10
8 \text{ Av2} = 100
9 \text{ Av3} = 1000
10 //input voltage
11 Vi=10^-6
12 //overall voltage gain
13 Av=Av1*Av2*Av3
14 //in db
15 Avdb=20*log10(Av)
```

```
//output voltage when input voltage is 10^-6V
Vo=Av*Vi
printf("overall voltage gain in dB \n%f dB\n",Avdb)
printf("output voltage \n%f volt\n",Vo)
```

Scilab code Exa 5.5.11 Calculate overall voltage gain in db of cascaded 2 stage amplifier

```
1 clc
2 disp("Example 5.11")
3 printf("\n")
4 disp("Calculate overall voltage gain in db of cascaded 2 stage amplifier")
5 printf("Given\n")
6 //Voltage gain
7 Av1=10
8 Av2=20
9 //overall voltage gain
10 Av=Av1*Av2
11 //in db
12 Avdb=20*log10(Av)
13 printf("Overall gain is \n%f dB\n", Avdb)
```

Scilab code Exa 5.5.12 Calculate overall voltage gain and gain of 2nd and 3rd stage and input voltage of 2nd stage

```
1 clc
2 disp("Example 5.12")
3 printf("\n")
4 disp("Calculate overall voltage gain ,gain of 2nd & 3rd stage,input voltage of 2nd stage & all in db of three stage amplifier")
5 printf("Given\n")
```

```
6 //input voltage
7 Vi = 0.05
8 //output voltage
9 \text{ Vo} = 150
10 //voltage gain of 1st stage
11 Av1=20
12 //input to 3rd stage
13 V2=15
14 //overall voltage gain
15 Av = Vo / Vi
16 //input to 2nd stage
17 V1 = Av1 * Vi
18 //voltage gain of 2nd stage
19 Av2 = V2/V1
20 //voltage gain of 3rd stage
21 \text{ Av3=Vo/V2}
22 //all stages gain in db
23 Av1db=20*log10 (Av1)
24 \text{ Av2db} = 20 * \log 10 \text{ (Av2)}
25 \text{ Av3db} = 20 * \log 10 \text{ (Av3)}
26 //overall gain in db
27 \text{ Av} = \text{Av} 1 \text{db} + \text{Av} 2 \text{db} + \text{Av} 3 \text{db}
28 printf("overall voltage gain \n\% f\n", Av)
29 printf ("voltage gain of 2nd & 3rd stages n\%f n\%f"
       , Av2, Av3)
30 printf("input voltage of 2nd stage \n\%f volt\n", V1)
31 printf ("Decibal voltage gain of 1st, 2nd, 3rd stage
       \n\% fdB \n\% fdB \n\% fdB \n", Av1db, Av2db, Av3db)
32 printf("Overall gain in db \n\%f dB\n", Av)
```

Scilab code Exa 5.5.15 For CE amplifier find R1 R2 Re and Rc

```
1 clc
2 disp("Example 5.15")
3 printf("\n")
```

```
4 disp("For CE amplifier shown in fig 5.5 find R1, R2,
      Re & Rc")
5 printf ("Given \n")
6 \text{ Vcc}=24
7 //load resistance
8 RL=120*10^3
9 / \sin ce Rc << RL
10 \text{ Rc}=\text{RL}/10
11 //select Ve & Vce
12 \ Ve=5
13 \ Vce=3
14 Vrc=Vcc-Vce-Ve //from circuit
15 Ic=Vrc/Rc
16 // find Re
17 Re=Ve/Ic
18 R2 = 10 * Re
19 //Vbe for si transistor
20 \text{ Vbe} = 0.7
21 Vb=Vbe+Ve
22 I2=Vb/R2
23 R1 = (Vcc - Vb)/I2
24 printf ("The resistance values are \nR1=\%f ohm \nR2=\%f
      ohm \ nRe=\%f \ ohm \ nRc=\%f \ ohm \ n" ,R1 ,R2 ,Re ,Rc)
```

Scilab code Exa 5.5.16 For CE amplifier find R1 R2 Re and Rc

```
9 / \sin ce Rc << RL
10 \text{ Rc} = \text{RL} / 10
11 //select Ve & Vce
12 \ Ve=5
13 \ Vce = 3
14 Vrc=Vcc-Vce-Ve //from circuit
15 Ic=Vrc/Rc
16 //find Re
17 Re=Ve/Ic
18 R2 = 10 * Re
19 //Vbe for si transistor
20 \text{ Vbe} = 0.7
21 Vb=Vbe+Ve
22 I2=Vb/R2
23 R1=(Vcc-Vb)/I2
24 printf ("The resistance values are \nR1=\%f ohm \nR2=\%f
      ohm \ nRe=\%f \ ohm \ nRc=\%f \ ohm \ n", R1, R2, Re, Rc)
```

Scilab code Exa 5.5.19 calculate upper cutoff frequency and voltage gain at lower cutoff frequency

```
1 clc
2 disp("Example 5.19")
3 printf("\n")
4 disp("calculate upper cut-off frequency & voltage gain at lower cut-off frequency")
5 printf("Given\n")
6 //bandwidth of amplifier
7 BW=500*10^3
8 //lower cut-off frequency
9 f1=25
10 //midband gain
11 Ao=120
12 //upper cut-off frequency
13 f2=BW+f1
```

```
// voltage gain at lower cut-off frequency
15 A1=Ao/sqrt(2)
16 printf("upper cut-off frequency \n %f hz\n",f2)
17 printf("Voltage gain at lower cut-off frequency \n %f \n",A1)
```

Scilab code Exa 5.5.23 calculate closed loop gain for the negative feedback amplifier

```
1 clc
2 disp("Example 5.23")
3 \text{ printf}(" \setminus n")
4 disp("calculate closed-loop gain for the negative
      feedback amplifier")
5 printf ("Given \n")
6 //voltage gain without feedback
7 \text{ Av} = 100000
8 //feedback factor
9 B=1/100
10 //voltage gain with feedback
11 Acl=Av/(1+(B*Av))
12 //when Av is changed by 50\%
13 Av1 = 50 * 100000 / 100
14 \quad Av2 = Av + Av1
15 //voltage gain with feedback when Av changed by +50\%
16 Acl1 = Av2/(1+(B*Av2))
17 //voltage gain with feedback when Av changed by -50\%
18 \quad Av3 = Av - Av1
19 Ac12 = Av3/(1+(B*Av3))
20 printf ("closed loop gain of negative feedback
      amplifier is \n \%f \n", Ac12)
```

Scilab code Exa 5.5.24 calculate closed loop gain for the negative feed-back amplifier

```
1 clc
2 disp("Example 5.24")
3 printf("\n")
4 disp("calculate closed-loop gain for the negative feedback amplifier")
5 printf("Given\n")
6 //voltage gain without feedback
7 Av=1000
8 //feedback factor
9 B=0.1
10 //voltage gain with feedback
11 Acl=Av/(1+(B*Av))
12 printf("closed loop gain of negative feedback amplifier is \n %f \n", Acl)
```

Scilab code Exa 5.5.27 calculate input impedance of amplifier with negative feedback

```
1 clc
2 disp("Example 5.27")
3 printf("\n")
4 disp("calculate input impedance of amplifier with negative feedback")
5 printf("Given\n")
6 //input impedance without feedback
7 Zb=10^3
8 //open loop voltage gain
9 Av=100000
10 //feedback network resistance
11 RF1=56*10^3
12 RF2=560
13 //input side resistance
```

```
14 R1=68*10^3
15 R2=33*10^3
16 //feedback factor
17 B=RF2/(RF1+RF2)
18 //input impedance with feedback
19 Zi=Zb*(1+(B*Av))
20 //input impedance with feedback by considering R1 & R2
21 Rp=(R1*R2)/(R1+R2)
22 Zin=(Zi*Rp)/(Zi+Rp)
23 printf("input impedance with negative feedback \n%fohm\n",Zin)
```

Scilab code Exa 5.5.29 calculate input and output impedance of amplifier with negative feedback

```
1 clc
2 disp("Example 5.29")
3 \text{ printf}(" \ n")
4 disp("calculate input & output impedance of
       amplifier with negative feedback")
5 printf("Given\n")
6 //input impedance without feedback
7 \text{ Zb} = 10^3
8 //open loop voltage gain
9 Av = 7533
10 //input side resistance
11 R1=68*10<sup>3</sup>
12 R2=47*10<sup>3</sup>
13 //feedback factor
14 B=1/101
15 //input impedance with feedback
16 \text{ Zi} = \text{Zb} * (1 + (B * Av))
17 //input impedance with feedback by considering R1 &
      R2
```

```
18 Rp=(R1*R2)/(R1+R2)
19 Zin=(Zi*Rp)/(Zi+Rp)
20 //output impedance without feedback
21 Zc=50*10^3
22 Rc=3.9*10^3
23 //output impedance with feedback
24 Zo=Zc/(1+(B*Av))
25 //output impedance with feedback by considering Rc
26 Zout=(Rc*Zo)/(Rc+Zo)
27 printf("input impedance with negative feedback \n%fohm\n",Zin)
28 printf("output impedance with negative feedback \n%fohm\n",Zout)
```

Scilab code Exa 5.5.35 Estimate the closed loop upper cut off frequency and total harmonic distortion

```
1 clc
2 disp("Example 5.35")
3 \text{ printf}(" \setminus n")
4 disp("Estimate the closed loop upper cut-off
      frequency & total harmonic distortion")
5 printf ("Given \n")
6 //open loop gain
7 \text{ Av} = 60000
8 //closed loop gain
9 \text{ Acl} = 300
10 //open loop upper cut-off frequency
11 F20L=15*10<sup>3</sup>
12 //closed loop upper cut-off frequency & Av/Acl=(1+
      BAv)
13 F2CL=F2OL*Av/Acl
14 //total harmonic distortion with feedback if there
      is 10% distortion without feedback
15 HD=10/(Av/Acl)
```

```
16 printf("closed loop upper cut-off frequency \n%f hz\
    n",F2CL)
17 printf("total harmonic distortion with feedback if
    there is 10per distortion without feedback \n%f\n
    ",HD)
```

Scilab code Exa 5.5.36 calculate open loop cut off frequency if the open loop gain is 200000

```
1 clc
2 disp("Example 5.36")
3 \text{ printf}(" \setminus n")
4 disp("calculate open loop cut-off frequency if the
      open loop gain is 200000")
5 printf("Given\n")
6 //open loop gain
7 \text{ Av} = 200000
8 //closed loop gain
9 \text{ Acl} = 250
10 //upper cut-off frequency with feedback
11 F2CL=4*10<sup>6</sup>
12 //upper cut-off frequency without feedback
13 F20L=F2CL/(Av/Acl)
14 printf("upper cut-off frequency without feedback \
      n\%f hz n, F20L)
```

Scilab code Exa 5.5.37 calculate the phase shift with negative feedback

```
1 clc
2 disp("Example 5.37")
3 printf("\n")
4 disp("calculate the phase shift with negative feedback")
```

```
5 printf("Given\n")
6 //open loop phase shift
7 Po=15
8 //open loop gain
9 Av=60000
10 //closed loop gain
11 Acl=300
12 //to calculate phase shift with feedback
13 AvB=(Av/Acl)-1
14 k=((AvB*sin(Po*%pi/180))/(1+(AvB*cos(Po*%pi/180))))
15 Pcl=Po-(atan(k)*180/%pi)
16 printf("The phase shift with negative feedback=\t%f degree\n",Pcl)
```

Scilab code Exa 5.5.38 calculate bandwidth and gain and harmonic distortion with feedback

```
1 clc
2 disp("Example 5.38")
3 \text{ printf}(" \setminus n")
4 disp ("calculate bandwidth, gain & harmonic distortion
       with feedback")
5 printf("Given\n")
6 //open loop gain
7 \text{ Av} = 1000
8 //bandwidth without feedback
9 BWol=500*10^3
10 //feedback factor
11 B = 0.1
12 //bandwidth with feedback
13 BWcl=BWol*(1+(B*Av))
14 //closed loop gain
15 Acl=Av/(1+(B*Av))
16 //harmonic distortion if 15% negative feedback used
17 HDcl=15/(1+(B*Av))
```

Scilab code Exa 5.5.40 calculate the frequency of oscillation and feedback factor of Hartley oscillator

```
1 clc
2 disp("Example 5.50")
3 \text{ printf}(" \setminus n")
4 disp("calculate the frequency of oscillation &
      feedback factor of Hartley oscillator")
5 printf("Given\n")
6 //inductance
7 L1=2*10^-3
8 L2=8*10^-3
9 //mutual inductance
10 M = 100 * 10^{-6}
11 //capacitor
12 C=0.001*10^-6
13 //total inductance
14 L = L1 + L2 + M
15 //frequency of oscillation
16 f=1/(2*%pi*sqrt(L*C))
17 //feedback factor
18 B=L1/L2
19 printf ("frequency of oscillation of hartley
      oscillator \n %f hz \n",f)
20 printf ("feedback factor n \% f n", B)
```

Scilab code Exa 5.5.43 calculate the frequency of oscillation of RC phase shift oscillator

```
1 clc
2 disp("Example 5.43")
3 printf("\n")
4 disp("calculate the frequency of oscillation of RC phase shift oscillator")
5 printf("Given\n")
6 R=500
7 C=0.1*10^-6
8 //frequency of oscillation
9 f=1/(2*%pi*R*C*sqrt(6))
10 printf("frequency of oscillation \n%f hz\n",f)
```

Scilab code Exa 5.5.44 calculate the value of Capacitor for a RC phase shift oscillator

```
1 clc
2 disp("Example 5.44")
3 printf("\n")
4 disp("calculate the value of Capacitor for a RC phase shift oscillator")
5 printf("Given\n")
6 R=1000
7 //frequency of oscillation
8 f=5000
9 //capacitor value
10 C=1/(2*%pi*R*f*sqrt(6))
11 printf("Capacitor value \n%e farad \n",C)
```

Scilab code Exa 5.5.45 calculate the value of R and C for RC phase shift oscillator

```
1 clc
2 disp("Example 5.45")
3 printf("\n")
4 disp("calculate the value of R & c for RC phase shift oscillator")
5 printf("Given\n")
6 //oscillating frequency
7 f=2000
8 //select Capacitor value
9 C=0.1*10^-6
10 //resistance value
11 R=1/(2*%pi*f*C*sqrt(6))
12 printf("Resistance value \n%f ohm\n",R)
```

Scilab code Exa 5.5.49 calculate frequency of oscillation and feedback factor and gain of hartley oscillator

```
1 clc
2 disp("Example 5.49")
3 \text{ printf}(" \setminus n")
4 disp ("calculate frequency of oscillation, feedback
      factor & gain required for sustained oscillation
      of hartley oscillator")
5 printf("Given\n")
6 //inductance
7 L1=5*10^-3
8 L2=10*10^-3
9 //capacitor
10 \quad C = 0.01 * 10^{-6}
11 //frequency of oscillation
12 f=1/(2*%pi*sqrt((L1+L2)*C))
13 //feedback factor
14 B=L1/L2
15 //gain required for sustained oscillation
16 \text{ Av=L2/L1}
```

```
17 printf("gain required for sustained oscillation=\t>%f\n", Av)
```

Scilab code Exa 5.5.51 calculate the value of L1 and L2 of Hartley oscillator

```
1 clc
2 disp("Example 5.51")
3 \text{ printf}(" \ n")
4 disp("calculate the value of L1 & L2 of Hartley
      oscillator")
5 printf ("Given \n")
6 //frequency of oscillation
7 f = 25 * 10^3
8 C=0.02*10^-6
9 //feedback factor
10 B = 0.2
11 //Total inductance
12 L=1/(4*(\%pi)^2*f^2*C)
13 L1byL2=B
14 L1plusL2=L
15 //therefore
16 L2=L/1.2
17 L1=L-L2
18 printf("The values of L1=\t\%f henry\nL2=\t\%f henry\n
      ",L1,L2)
```

Scilab code Exa 5.5.53 Design the value of L1 L2 and C for a hartley oscillator

```
1 clc
2 disp("Example 5.53")
3 printf("\n")
```

```
4 disp("Design the value of L1, L2 & C for a hartley
      oscillator")
5 printf ("Given \n")
6 //frequency of oscillation
7 f = 30 * 10^3
8 //then value of LC
9 LC=1/(4*(\%pi)^2*f^2)
10 //select c as
11 C=0.1*10^-6
12 //Total inductance
13 L=LC/C
14 // let L1=L2
15 L1=L/2
16 L2=L1
17 printf("The values of L1=\t\%f henry\nL2=\t\%f henry\
      nC = \t \%e farad \n", L1, L2, C)
```

Scilab code Exa 5.5.55 calculate the frequency of oscillation of Colpitts oscillator

```
1 clc
2 disp("Example 5.55")
3 printf("\n")
4 disp("calculate the frequency of oscillation of Colpitts oscillator")
5 printf("Given\n")
6 //capacitor
7 C1=400*10^-12
8 C2=C1
9 //inductance
10 L=2*10^-3
11 //Total capacitance
12 C=C1*C2/(C1+C2)
13 //frequency of oscillation
14 f=1/(2*%pi*sqrt(L*C))
```

Scilab code Exa 5.5.56 calculate the frequency of oscillation feedback factor and gain required for sustained oscillation

```
1 clc
2 disp("Example 5.56")
3 printf("\n")
4 disp("calculate the frequency of oscillation,
      feedback factor & gain required for sustained
      oscillation")
5 printf ("Given\n")
6 // Capacitance
7 C1=40*10^-12
8 C2=10*10^-12
9 //inductance
10 L=3*10^-3
11 //total effective capacitance
12 C = C1 * C2 / (C1 + C2)
13 //frequency of oscillation
14 f=1/(2*%pi*sqrt(L*C))
15 //feedback factor
16 B=C2/C1
17 //gain required for sustained oscillation
18 \text{ Av} = \text{C1/C2}
19 printf ("gain required for sustained oscillation =\t)
      %f \ n", Av)
```

Scilab code Exa 5.5.57 calculate the value of L of Colpitts oscillator

```
1 clc
2 disp("Example 5.57")
3 printf("\n")
```

Scilab code Exa 5.5.58 calculate the value of C1 and C2 of Colpitts oscillator

```
1 clc
2 disp("Example 5.58")
3 \text{ printf}(" \setminus n")
4 disp("calculate the value of C1 & C2 of Colpitts
      oscillator")
5 printf("Given\n")
6 //inductance
7 L=5*10^{-3}
8 //frequency of oscillation
9 f = 50 * 10^3
10 //total effective capacitance
11 C=1/(4*(\%pi)^2*f^2*L)
12 //feedback factor
13 B=0.1
14 //then C2/C1=0.1, so substituting in C=C1C2/(C1+C2)
      we get
15 C1=1.1*C/0.1
16 \quad C2 = 0.1 * C1
```

```
17 printf("The value of C1=\t%e farad\nC2=\t%e farad\n", C1, C2)
```

Scilab code Exa 5.5.59 calculate the value of L and C for a colpitts oscillator

```
1 clc
2 disp("Example 5.59")
3 \text{ printf}(" \n")
4 disp("calculate the value of L & C for a colpitts
      oscillator")
5 printf("Given\n")
6 //frequency of oscillation
7 f = 40 * 10^3
8 LC=1/(4*(\%pi)^2*f^2)
9 //select L
10 L = 10 * 10^{-3}
11 //find C
12 C=1/(4*(\%pi)^2*f^2*L)
13 //let C1=C2 so we get
14 C1=2*C
15 C2=C1
16 printf ("The values of L=\t\%f henry \nC1=\t\%e farad \
      nC2 = \t\%e farad \n", L, C1, C2)
```

Scilab code Exa 5.5.61 calculate the frequency of oscillation for Wein Bridge Oscillator

```
1 clc
2 disp("Example 5.61")
3 printf("\n")
4 disp("calculate the frequency of oscillation for Wein_Bridge Oscillator")
```

```
5 printf("Given\n")
6 // Resistance
7 R=2*10^3
8 // capacitor
9 C=0.1*10^-6
10 // frequency of oscillation
11 f=1/(2*%pi*R*C)
12 printf("frequecy of oscillation \n%f hz\n",f)
```

Scilab code Exa 5.5.62 calculate the value of R and C for Wein Bridge oscillator

```
1 clc
2 disp("Example 5.62")
3 \text{ printf}(" \ n")
4 disp ("calculate the value of R & c for Wein-Bridge
      oscillator")
5 printf ("Given \n")
6 //frequency of oscillation
7 f = 1000
8 //find RC
9 RC=1/(2*\%pi*f)
10 / select C<10^-6F
11 \quad C = 0.1 * 10^{-6}
12 //the value of R
13 R=1/(2*\%pi*f*C)
14 printf("the value of c \n\%f farad\n",C)
15 printf("the value of R \n\%f ohm\n",R)
```

Scilab code Exa 5.5.65 calculate the Series and parallel resonant frequencies of Crystal

```
1 clc
```

```
2 disp("Example 5.65")
3 \text{ printf}(" \ ")
4 disp ("calculate the Series & parallel resonant
      frequencies of Crystal")
5 printf("Given\n")
6 //indutance
7 L=3
8 // Capacitor due to mechanical mounting of crystal
9 Cm = 10 * 10^{-12}
10 //electrical equivalent capacitance of crystal
      compliance
11 Cs=0.05*10^-12
12 //electrical equivalent resistance of crystal
      structure internal friction
13 R=2*10^3
14 // series resonant frequency
15 fs=1/(2*%pi*sqrt(L*Cs))
16 \text{ Cp=Cm*Cs/(Cm+Cs)}
17 // parallel resonant frequency
18 fp=1/(2*%pi*sqrt(L*Cp))
19 printf ("series resonant frequency \n\%f hz\n",fs)
20 printf("parallel resonant frequency \n\% f hz\n",fp)
```

Chapter 6

Operational Amplifier

Scilab code Exa 6.6.15 Calculate maximum frequency at which output is faithful reproduction of input

```
1 clc
2 disp("Example 6.15")
3 printf("\n")
4 disp("calculate the maximum frequency at which output is faithful reproduction of input")
5 printf("given")
6 disp("slew rate=3Mv/s")
7 sr=3*10^6
8 Vm=12
9 //calculate Frequency
10 fmax=(sr/(2*%pi*Vm))
11 printf("maximum frequency=%d hz",fmax)
```

Scilab code Exa 6.6.19 Calculate common mode output voltage

```
1 clc
2 disp("Example 6.19")
```

```
3 printf("\n")
4 disp("calculate common mode gain & output voltage")
5 printf("Given")
6 disp("differential gain=500")
7 disp("CMRR=80dB, Input signal is 2*sin100*%pi*t")
8 \text{ Ad} = 500
9 CMRR=80
10 t=1/200
11 Vc = 2*sin(100*%pi*t)
12 //calculate common mode gain
13 Ac = Ad/(10^{(CMRR/20)})
14 //calculate common mode output voltage
15 V cmov = Ac * Vc
16 printf("Common mode gain =\%f\n",Ac)
17 printf ("Common mode output voltage = \%f volt \n", Vcmov
      )
```

Scilab code Exa 6.6.20 Express CMRR in dB

```
1 clc
2 disp("Example 6.20")
3 printf("\n")
4 disp("To express CMRR in dB")
5 printf("given")
6 disp("Ad=10^4,Ac=0.1")
7 Ad=10^4
8 Ac=0.1
9 //to find CMMR in dB
10 CMRR=20*log10(Ad/Ac)
11 printf("CMRR in dB=%d dB",CMRR)
```


Figure 6.1: Calculate and sketch the output

Scilab code Exa 6.6.24 Calculate and sketch the output

```
1 clc
2 disp("Example 6.24")
3 \text{ printf}(" \ n")
4 disp("calculate output voltage for inverting
      amplifier & sketch the waveform")
5 printf("given")
6 disp("Peak to peak input votage=200mV, Rf/R1=10")
7 Vpp = 200 * 10^{(-3)}
8 \text{ Vm} = \text{Vpp}/2
9 RfdivR1=10
10 wt = 0:0.2:3*\%pi
11 Vi=Vm*sin(wt)
12 Vo = -(RfdivR1) * Vi
13 disp(Vo)
14 a = gca ();
15 subplot (221)
16 a= gca();
17 a. x_location = "origin";
18 a. y_location = "origin";
19 plot2d(wt,Vi)
20 xtitle("Vi V/s wt", "wt", "Vi in volt")
21 a.thickness=2
22 subplot (222)
23 a= gca();
24 a. x_location = "origin";
25 a. y_location = "origin";
26 plot2d(wt, Vo)
27 xtitle("Vo V/s wt","wt","Vo in volt")
28 a.thickness=2
```

Scilab code Exa 6.6.25 Calculate design value of inverting amplifier

1 clc

Scilab code Exa 6.6.26 Calculate output voltage of inverting amplifier

```
1 clc
2 disp("Example 6.26")
3 printf("\n")
4 disp("calculate the output voltage for a given input voltages")
5 printf("given")
6 disp("input voltages = 0.2,0.5 sin314t,-0.4")
7 Rf = 200 * 10^3
8 R1 = 20 * 10^3
9 Af = (-Rf)/R1// calculate open loop gain
10 t = %pi/(2 * 314) //intialise t value
11 Vi = [0.2,0.5 * (sin(314 * t)),-0.4]
12 Vo = Af * Vi // calculate output voltage
13 printf("Output voltages are = \n%f volt,\n%f volt,\n%f volt",Vo)
```

Scilab code Exa 6.6.27 Calculate closed loop gain and input voltage for a specified output voltage

```
1 clc
2 disp("Example 6.27")
3 \text{ printf}("\n")
4 disp("Calculate closed loop gain & input voltage to
      get output voltage 2v")
5 printf("given")
6 disp("Rf=1M, R1=20K, output voltage=2V")
7 \text{ Rf} = 10^6
8 R1 = 20 * 10^3
9 \text{ Vo}=2
10 //calculate closed loop gain
11 Af = (-Rf/R1)
12 //calculate input voltage
13 Vi=Vo/Af
14 printf("closed loop voltage gain=\%f\n",Af)
15 printf ("Input voltage=%f volt", Vi)
```

Scilab code Exa 6.6.28 Calculate feedback resistor and closed loop gain

```
1 clc
2 disp("Example 6.27")
3 printf("\n")
4 disp ("Calculate closed loop gain & input voltage to
      get output voltage 2v")
5 print("given")
6 disp("Rf=1M, R1=20K, output voltage=2V")
7 \text{ Rf} = 10^6
8 R1 = 20 * 10^3
9 \text{ Vo}=2
10 //calculate closed loop gain
11 Af = (-Rf/R1)
12 //calculate input voltage
13 Vi=Vo/Af
14 printf("closed loop voltage gain=%f\n",Af)
15 printf("Input voltage=%f", Vi)
```

Scilab code Exa 6.6.31 Calculate output voltage for given input voltage of non inverting amplifier

Scilab code Exa 6.6.32 Calculate closed loop gain and input voltage for a specified output voltage of noninverting amplifier

```
1 clc
2 disp("Example 6.32")
3 printf("\n")
4 disp("Calculate Gain & input voltage")
5 printf("Given")
6 disp("Rf=100K,R1=10K")
7 Rf=100*10^3
8 R1=10^4
9 //calculate voltage gain
```

```
10 Af=1+(Rf/R1)
11 Vo=4
12 //calculate input voltage
13 Vi=Vo/Af
14 //display values
15 printf("Closed loop gain =%f\n",Af)
16 printf("Input voltage=%f volt",Vi)
```

Scilab code Exa 6.6.33 Calculate output voltage for inverting amplifier

```
1 clc
2 disp("Example 6.33")
3 printf("\n")
4 disp ("Calculate output voltage if input voltage is 1
      V")
5 printf("Given")
6 disp("R1=1K, Rf=100K, V+=15V, V-=-15, Vi=1v")
7 \text{ Rf} = 10^5
8 R1 = 10^3
9 //supply votage
10 Vplus=15
11 Vminus = (-15)
12 //calculate voltage gain
13 Af = (-Rf)/R1
14 Vi=1
15 // calculate output voltage
16 \text{ Vo=Af*Vi}
17 //condition to check output votage is greater than
      Vplus
18 if(Vo>Vplus) then
     printf("The Maximum positive output voltage=%f
19
        volt", Vplus)
20 //condition to check output voltage is less than
      Vminus
21 elseif (Vo<Vminus) then
```

Scilab code Exa 6.6.34 Calculate output voltage for non inverting amplifier

```
1 clc
2 disp("Example 6.34")
3 \text{ printf}(" \ ")
4 disp("Calculate output voltage")
5 printf("Given")
6 disp("R1=2K, Rf=200K, V+=12V, V-=-12, Vi=1.5V")
7 \text{ Rf} = 20^4
8 R1 = 2 * 10^3
9 \text{ Vplus}=12
10 \text{ Vminus} = -12
11 Af = 1 + (Rf/R1)
12 \quad Vi = 1.5
13 Vo = Af * Vi
14 //condition to check output votage is greater than
      Vplus
15 if (Vo>Vplus) then
     printf("The Maximum positive output voltage=%f
16
         volt", Vplus)
17 //condition to check output voltage is less than
      Vminus
18 elseif (Vo < Vminus)
     printf("The maximum negative output voltage=%f
        volt", Vminus)
20
    //else display Vo
21 else
```

```
22 printf ("The output voltage=\%f volt", Vo) 23 end
```

Scilab code Exa 6.6.37 Calculate closed loop gain and current

```
1 clc
2 disp("example 6.37")
3 printf("\n")
4 disp("calculate voltage gain, input resistance,
      current through R1")
5 printf("Given")
6 disp("Rf=100k, R1=10k")
7 disp("input voltage is 0.5v")
8 Rf = 10^5
9 R1 = 10^4
10 Af = -Rf/R1
11 Rif=R1
12 \text{ Vi=} 0.5
13 I1=(Vi/R1)
14 printf ("closed loop voltage gain is \%3.1 \,\mathrm{f} \,\mathrm{n}", Af)
15 printf("input resistance is \n \%3.1 f ohm \n", Rif)
16 printf ("current flowing through R1 is %f ampere\n",
      I1)
```

Scilab code Exa 6.6.45 Calculate output voltage for summer

```
1 clc
2 disp("Example 6.45")
3 printf("\n")
4 disp("Calculate output votage")
5 printf("Given")
6 disp("input voltage V1=-1v, V2=-2v, V3=3v")
7 disp("Resistance Rf=60k, R1=10k, R2=20k, R3=30k")
```

```
8 Rf=60*10^3; R1=10^4; R2=20*10^3; R3=30*10^3;

9 V1=-1; V2=-2; V3=3;

10 Vo=-[(Rf/R1)*V1+(Rf/R2)*V2+(Rf/R3)*V3]

11 printf("The output voltage is %f volt", Vo)
```

Scilab code Exa 6.6.55 Calculate bandwidth

```
1 clc
2 disp("Example 6.55")
3 printf("\n")
4 disp("Calculate Bandwidth with feedback")
5 printf("Given")
6 disp("Open loop voltage gain=2*10^5 \n")
7 disp("Break frequency is 5Hz,10% negative feedback\n")
8 A=2*10^5
9 B=0.1
10 Fi=5
11 //bandwidth with feedback
12 Fb=Fi*(1+A*B)
13 printf("Bandwidth with feedback is %f hz\n",Fb)
```

Scilab code Exa 6.6.56 Calculate the design value of amplifier circuit

```
1 clc
2 disp("Example 6.56")
3 printf("\n")
4 printf("Given")
5 disp("open loop gain is 100")
6 disp("Gain Bandwidth Product is 1MHz")
7 Af=100
8 GBW=10^6
9 ReqBandwidth=GBW/Af
```

```
10 RfbyR1=Af-1
11 printf("the ratio of resistance is=%f", RfbyR1)
```

Scilab code Exa 6.6.57 Calculate design value of circuit

```
1 clc
2 disp("Example 6.57")
3 \text{ printf}(" \ n")
4 printf("given")
5 disp("gain is 200 & gain bandwidth product is 1MHz")
6 \text{ Af} = 200
7 GBW=10^6
8 \, \text{BW} = 10^4
9 \text{ reqBW=GBW/Af}
10 if(reqBW>BW) then
     printf("Required bandwidth is=%f",reqBW)
11
12
     else
13
        Af2 = 10
        Af1=200/Af2
14
15
        R1fbyR11 = Af1 - 1
16
        R2fbyR21=Af2-1
        printf("The ratio of resistance of both
17
           amplifier circuit is = \ln d, \ln d, R1fbyR11,
           R2fbyR21)
18 end
```

Chapter 7

Communication System

Scilab code Exa 7.7.25 Determine sideband frequencies and Bandwidth

Scilab code Exa 7.7.27 Calculate total power in modulated wave

```
1 clc
2 disp("Example 7.27")
3 printf("\n")
4 disp("Calculate the total power in the modulated wave")
5 printf("Given")
6 disp("carrier power=400W, modulation index=75%")
7 Pc=400
8 Ma=0.75
9 Pt=Pc*(1+(Ma^2/2))
10 printf("The total power in modulated wave =\n%f watt ",Pt)
```

Scilab code Exa 7.7.28 Determine radiated power

```
1 clc
2 disp("Example 7.28")
3 printf("\n")
4 disp("Determine the radiated power at a modulation index of 0.6")
5 printf("Given")
6 disp("carrier power=50Khz, modulation index=0.6")
7 Pc=5*10^4
8 Ma=0.6
9 Pt=Pc*(1+(Ma^2/2))
10 printf("The total power in modulated wave =\n%f watt ",Pt)
```

Scilab code Exa 7.7.34 Calculate carrier power

```
1 clc
2 disp("Example 7.34")
3 printf("\n")
```

```
disp("calculate carrier power")
printf("Given\n")
disp("total power=10KW, modulation index=0.6")
Pt=10^4
Ma=0.6
Pc=Pt/(1+(Ma^2/2))
printf("The carrier power is=%f watt\n",Pc)
```

Scilab code Exa 7.7.35 Determine power content of carrier and sidebands

```
1 clc
2 disp("Example 7.35")
3 printf("\n")
4 disp("Determine power content of carrier & each sideband")
5 printf("Given\n")
6 disp("Total power=2.64KW, modulation index=80%")
7 Pt=2.64*10^3
8 Ma=0.8
9 Pc=Pt/(1+(Ma^2/2))
10 Plsb=Ma^2*Pc/4
11 Pusb=Plsb
12 printf("The total power is=%f watt\n",Pc)
13 printf("The sideband power is=\n%f watt,\t%f watt", Plsb,Pusb)
```

Scilab code Exa 7.7.36 Calculate sideband frequencies and bandwidth and total power

```
1 clc
2 disp("Example 7.36")
3 printf("\n")
```

```
4 disp ("Calculate sideband frequencies, bandwidth, power
       in sidebands, Total power")
5 printf("Given")
6 disp("carrier power=1KW, carrier frequency=2MHz,
      Modulation frequency=2KHz, Modulation index=0.6")
7 \text{ Pc} = 10^3
8 \text{ Fc} = 2 * 10^6
9 Fm = 2 * 10^3
10 \text{ Ma} = 0.6
11 Flsb=Fc-Fm
12 Fusb=Fc+Fm
13 BW = 2 * Fm
14 \text{ Plsb=Ma}^2 \times \text{Pc}/4
15 Pusb=Plsb
16 Pt=Pc*(1+(Ma^2/2))
17 printf("Sideband frequencies are=\n\%d hz,\t%d hz\n",
      Flsb, Fusb)
18 printf ("Bandwidth=\%d hz\n", BW)
19 printf("Power in sidebands=\n\%f watt,\t\%f watt\n",
      Plsb, Pusb)
20 printf("Total power=\n\%f watt",Pt)
```

Scilab code Exa 7.7.37 Calculate modulation index

```
1 clc
2 disp("Example 7.37")
3 printf("\n")
4 disp("Calculate the modulation index")
5 printf("Given\n")
6 disp("carrier voltage=100V, Total modulated voltage in rms=110V")
7 Vt=110
8 Vcar=100
9 //assume R value as 1
10 R=1
```

```
11 Pt=Vt^2/R
12 Pc=Vcar^2/R
13 Ma=sqrt(2*((Pt/Pc)-1))
14 printf("Modulation index =%f", Ma)
```

Scilab code Exa 7.7.38 Determine antenna current

```
1 clc
2 disp("Example 7.38")
3 \text{ printf}(" \setminus n")
4 disp ("Determine modulation index & Antenna current
      when MOdulation index changes to 0.8")
5 printf("given\n")
6 disp ("carrier current=8A, Modulated carrier current
      =8.93A")
7 Icar = 8
8 It=8.93
9 //assume R=1
10 R = 1
11 Pc=Icar^2*R
12 Pt=It^2*R
13 Ma = sqrt(2*((Pt/Pc)-1))
14 //Modulated carrier current when Ma changes to 8
15 Ma1=0.8
16 It1=Icar*sqrt(1+(Ma1^2/2))
17 printf ("Modulation index = \%f\n", Ma)
18 printf ("Modulated carrier current when Ma changes to
       8 is =\%f ampere", It1)
```

Scilab code Exa 7.7.39 Calculate transission power efficiency and average power in carrier component

```
1 clc
```

```
disp("Example 7.39")
printf("\n")
disp("Calculate transmission power efficiency and average power in carrier component")
printf("Given \n")
disp("Total power=20KW, Modulation index=0.7")
Pt=2*10^4
Ma=0.7
Pc=Pt/(1+(Ma^2/2))
m=(Ma^2/(2+Ma^2))*100
printf("The carrier Power =%f watt\n",Pc)
printf("The transmission power efficiency =%f",%n)
```

Scilab code Exa 7.7.40 Calculate modulation index

```
1 clc
2 disp("Example 7.40")
3 printf("\n")
4 disp("Calculate modulation index")
5 printf("Given\n")
6 disp("maximum & minimum amplitudes are 600mv,200mv")
7 Vmax=600*10^-3
8 Vmin=200*10^-3
9 Ma=(Vmax-Vmin)/(Vmax+Vmin)
10 printf("Modulation Index is =\n%f",Ma)
```

Scilab code Exa 7.7.41 Sketch the frequency spectrum

```
1 clc
2 disp("Example 7.41")
3 printf("\n")
```


Figure 7.1: Sketch the frequency spectrum

```
4 disp("sketch the frequency spectrum")
5 printf("Given\n")
6 disp("carrier amplitude=10V, carrier frequency=10MHz,
       Modulating frequency=1Khz, MI=0.5")
7 \ Vc = 10
8 \text{ fc} = 10^7
9 \text{ fm} = 10^3
10 \text{ ma} = 0.5
11 wc=2*%pi*fc
12 \text{ wm} = 2 * \% \text{pi} * \text{fm}
13 t=10^-7
14 \text{ v=Vc*}(1+(\text{ma*sin}(\text{wm*t})))*\cos(\text{wc*t})
15 Vs = (ma * Vc)/2
16 flsb=fc-fm
17 fusb=fc+fm
18 // take below values just for plotting graph with
       intial values
19 f1=9.9989*10<sup>6</sup>
20 v1 = 0
21 f=[f1 flsb fc fusb]
22 a = [v1 Vs Vc Vs]
23 plot2d3(f,a)
24 xtitle("Frequency Spectrum")
25 xlabel("Frequency")
26 ylabel("Amplitude")
```

Scilab code Exa 7.7.42 Find the saving power in LSB alone

```
1 clc
2 disp("Example 7.42")
3 printf("\n")
4 disp("Find the saving power if power contained in the LSB alone is used")
5 printf("Given\n")
6 disp("Total power=20KW, Modulation Index=0.8")
```

```
7 Pt=20*10^3
8 Ma=0.8
9 Pc=Pt/(1+(Ma^2/2))
10 Plsb=(Pt-Pc)/2
11 %Ps=((Pt-Plsb)/Pt)*100
12 printf("power in sideband=%f watt\n",Plsb)
13 printf("Saving in power=\n%f\n",%Ps)
```

Scilab code Exa 7.7.55 Find maximum frequency deviation and modulation index

```
1 clc
2 disp("Example 7.55")
3 printf("\n")
4 disp("Find the maximum frequency deviation & modulation index")
5 printf("Given\n")
6 disp("Kf=1KHz/v, Modulating voltage=15v, frequency=3 KHz")
7 K=10^3
8 Vm=15
9 Fm=3*10^3
10 del=K*Vm
11 Mf=del/Fm
12 printf("Maximum frequency Deviation is =\n%d hz\n", del)
13 printf("Modulation Index=\n%f\n", Mf)
```

Scilab code Exa 7.7.56 Calculate frequency deviation and modulation index

```
1 clc
2 disp("Example 7.56")
```

```
3 \text{ printf}(" \ n")
4 disp("find the frequency deviation & modulation
      index")
5 printf ("Given \n")
6 \text{ del} = 5*10^3
7 \text{ Vm} = 2.5
8 \text{ Kf} = \text{del/Vm}
9 / \text{when Vm} = 7.5
10 \text{ Vm} = 7.5
11 \quad del1 = Kf * Vm
12 //when Vm=10v
13 \, \text{Vm} = 10
14 \text{ del2=Kf*Vm}
15 Fm1=500
16 \text{ Mf1=del/Fm1}
17 \text{ Mf2=del1/Fm1}
18 \text{ Fm}2 = 250
19 \text{ Mf3=del2/Fm2}
20 printf ("Frequency deviation at different modulating
       21 printf ("Modulation index at different frequency
       deviation & modulating frequency =\n\%d\n\%d\n\%d\n"
       ,Mf1,Mf2,Mf3)
```

Scilab code Exa 7.7.92 Find the peak value of unknown voltage

```
1 clc
2 disp("Example 7.92")
3 printf("\n")
4 disp("Find the Peak Value")
5 printf("Given\n")
6 disp("Vpp=100v, deflection=5cm")
7 Vpp=100
8 D=5
9 DS=Vpp/D
```

Chapter 8

Digital Logic

Scilab code Exa 8.8.7 Convert the binary number to decimal without decimal point

```
1 clc
2 disp("Example 8.7")
3 \text{ printf}(" \setminus n")
4 disp("convert the following binary numbers to
      decimal")
5 disp("a)1011 b)110101 c)10101")
6 //Given binary number
7 bin=1011
8 i = 1
9 //storing each integer digit in b(i)
10 while(bin>0)
       b(i) = modulo(bin, 10)
11
12
       bin=floor(bin/10)
       i=i+1;
13
14 end
15 //checking whether it is a binary number or not
16 for i=1:length(b)
17
       if(b(i)>1) then
18
            disp('not a binary number')
19
            abort
```

```
20    end
21    end
22    dec=0
23    for i=1:length(b)
24    //multipliying bits of integer part with their
        position values and adding
25        dec=dec+(b(i)*2^(i-1))
26    end
27    //displaying the output
28    printf("decimal format is")
29    disp(dec)
```

Scilab code Exa 8.8.8 Convert the binary number to decimal with decimal point

```
1 clc
2 clear
3 disp("Example 8.8")
4 printf("\n")
5 disp ("convert the following binary numbers to
      decimal")
6 disp("a)11.101 b)0.0111 c)110.1101")
7 // Given binary number
8 i=1; w=1
9 bin=11.101
10 //separating integer part
11 IP=floor(bin)
12 IP1=IP
13 //separating decimal part
14 DP=modulo(bin,1)
15 //converting decimal value to interger
16 p = 4
17 DP=DP*10^p //should change power of 10 as according
     to number of digits in decimal digit
18 //storing each integer digit in I(i)
```

```
19 while (IP>0)
20
        I(i)=modulo(IP,10);
21
        IP=floor(IP/10);
22
        i=i+1;
23
     end
24 //storing each decimal digit in D(w)
25 \text{ while}(DP>0)
       D(w) = modulo(DP, 2)
26
       DP = (DP/10)
27
       DP=floor(DP)
28
29
        w = w + 1;
30
     end
31 //to do zero padding of remaining erm of D(w)
32 if(length(D)<p)
        q=length(D)
33
     for f=q+1:p
34
        D(f)=0
35
36
        end
37 end
38 if(IP1>0)
39 for i=1:length(I)//checking whether it is a binary
      number or not
        if(I(i)>1) then
40
            disp('not a binary number')
41
42
            abort
43
        end
44
     end
45 end
46 if (IP1>0)
47 IP = 0
48 for i=1:length(I)
49 // multipliying bits of integer part with their
      position values and adding
        IP = IP + (I(i) *2^{(i-1)})
50
51
     end
52
     end
53 \text{ DP} = 0
54 \text{ for } z=1:length(D)
```

```
// multipliying bits of decimal part with their
    position values and adding

DP=DP+(D(z)*2^(-1*(length(D)+1-z)))

end

decimal=IP+DP

// displaying the output
printf("Decimal format is")

disp(decimal)
```

Scilab code Exa 8.8.10 convert the decimal to binary numbers

```
1 clc
2 clear
3 disp("Example 8.10")
4 printf("\n")
5 disp("convert the following decimal to binary
      numbers")
6 disp("a) 47.8125 b) 100.0001 c) 29.3749")
7 //given decimal number
8 i=1; x=1
9 \, \text{dec} = 47.8125
10 //separating integer part
11 IP=floor(dec)
12 IP1=IP
13 //separating decimal part
14 DP=modulo(dec,1)
15 //storing each integer digit in I(i)
16 while (IP>0)
17
       I(i) = (modulo(floor(IP),2))
       IP = floor(IP)/2
18
19
       i=i+1
20 end
21 if (IP1>0)
22 IP=0
23 for j=1:length(I)
```

```
24 //multipliying bits of integer part with their
      position values and adding
        IP = IP + (I(j) *10^{(j-1)});
25
26
      end
27 else
28
      TP = 0
29 \text{ end}
30
31 //storing each decimal digit in D(x)
32 \text{ while}(x \le 4)
        DP = DP * 2
33
34
        D(x) = floor(DP)
35
        x = x + 1
36
        DP=modulo(DP,1)
37 end
38
39 \text{ DP} = 0
40 for j=1:length(D)
41 // multipliying bits of decimal part with their
       position values and adding
42
        DP = DP + (10^{(-1*j)}) * D(j)
43 end
44 Binary=IP+DP;
45 printf("Binary format is")
46 disp(Binary)
```

Scilab code Exa 8.8.12 convert the octal to decimal

```
1 clc
2 clear
3 disp("Example 8.12")
4 printf("\n")
5 disp("convert the following octal to decimal")
6 disp("a)243 b)124.21 c)0.65")
7 //Given octal number
```

```
8 i=1; w=1
9 \text{ oct} = 243
10 //separating integer part
11 IP=floor(oct)
12 IP1=IP
13 //separating decimal part
14 DP=modulo(oct,1)
15 DP1=DP
16 //converting decimal value to interger
17 p=2
18 DP=DP*10^p //should change power of 10 as according
      to number of digits in decimal digit
19 //storing each integer digit in I(i)
20 while (IP>0)
       I(i)=modulo(IP,10);
21
22
       IP=floor(IP/10);
23
       i = i + 1;
24
     end
25 //storing each decimal digit in D(w)
26 \text{ while}(DP>0)
27
       D(w) = modulo(DP, 10)
28
       DP = (DP/10)
29
       DP=floor(DP)
30
       w = w + 1;
31
32 //to do zero padding of remaining erm of D(w)
33 if (DP1<1)
34
       if (DP1>0)
35 if(length(D)<p)
36
       q=length(D)
37
     for f=q+1:p
       D(f)=0
38
39
       end
40
     end
41 end
42 end
43
44 if (IP1>0)
```

```
45 for i=1:length(I)//checking whether it is a octal
      number or not
       if(I(i)>8) then
46
            disp('not a octal number')
47
48
            abort
49
       end
     end
50
51 end
52 if (IP1>0)
53 IP=0
54 for i=1:length(I)
55 //multipliying bits of integer part with their
      position values and adding
       IP = IP + (I(i) *8^{(i-1)})
56
57
     end
58 end
59
60 if (DP1<1)
61
     if (DP1 > 0)
62 DP=0
63 for z=1:length(D)
     //multipliying bits of decimal part with their
64
        position values and adding
     if(D(z) < 8)
65
       DP = DP + (D(z) *8^(-1*(length(D)+1-z)))
66
67
     else
68
       IP = 0
       DP = 0
69
70
       printf("not a octal number")
71
       abort
72
     end
73 end
74 end
75
76 decimal=IP+DP
77 //displaying the output
78 printf("Decimal format")
79 disp(decimal)
```

Scilab code Exa 8.8.13 convert the decimael numbers to Octal

```
1 clc
2 clear
3 disp("Example 8.13")
4 printf("\n")
5 disp ("convert the following decimael numbers to
      Octal")
6 disp("a)283 b)847.951 c)0.728")
7 //given decimal number
8 i=1; x=1
9 \, \text{dec} = 283
10 //separating integer part
11 IP=floor(dec)
12 IP1=IP
13 //separating decimal part
14 DP=modulo(dec,1)
15 //storing each integer digit in I(i)
16 while (IP>0)
17
       I(i) = (modulo(floor(IP),8))
       IP=floor(IP)/8
18
19
       i=i+1
20 end
21 if (IP1>0)
22 IP = 0
23 for j=1:length(I)
24 //multipliying bits of integer part with their
      position values and adding
       IP = IP + (I(j) *10^{(j-1)});
25
26
     end
27 else
28
     IP = 0
29 end
30
```

```
31 //storing each decimal digit in D(x)
32 if (DP<1)
33
     if (DP > 0)
34 \text{ while}(x \le 4)
35
        DP = DP * 8
36
        D(x) = floor(DP)
37
        x = x + 1
        DP=modulo(DP,1)
38
39 end
40
41 DP=0
42 for j=1:length(D)
43 // multipliying bits of decimal part with their
      position values and adding
        DP = DP + (10^{(-1*j)}) * D(j)
44
45
46 end
47 end
48 \text{ octal=IP+DP}
49 printf("Octal format")
50 disp(octal)
```

Scilab code Exa 8.8.14 convert the binary number to Octal

```
1 clc
2 clear
3 disp("Example 8.14")
4 printf("\n")
5 disp("convert the following binary number to Octal")
6 disp("a)101111 b)1010101 c)1110.01101")
7 i=1;x=1;w=1
8 //convert binary to decimal
9 bin=101111
10 //separating integer part
11 IP=floor(bin)
```

```
12 IP1=IP
13 //separating decimal part
14 DP=modulo(bin,1)
15 DP1=DP
16 //converting decimal value to interger
17 p=5
18 DP=DP*10^p //should change power of 10 as according
      to number of digits in decimal digit
19 //storing each integer digit in I(i)
20 while (IP>0)
       I(i)=modulo(IP,10);
21
22
       IP=floor(IP/10);
23
       i = i + 1;
24
     end
25 //storing each decimal digit in D(w)
26 \text{ while}(DP>0)
27
       D(w) = modulo(DP, 2)
28
       DP = (DP/10)
29
       DP=floor(DP)
30
       w = w + 1;
31
     end
32
     //to do zero padding of remaining erm of D(w)
     if (DP1 > 0)
33
       if (DP1<1)</pre>
34
35 if(length(D)<p)
36
       q=length(D)
37
     for f=q+1:p
38
       D(f)=0
39
       end
40
     end
41 end
42 end
43 if (IP1>0)
44 for i=1:length(I)//checking whether it is a binary
      number or not
       if(I(i)>1) then
45
            disp('not a binary number')
46
47
            abort
```

```
48
        end
49
     end
50 end
51 if (IP1>0)
52 IP = 0
53 for i=1:length(I)
54 // multipliying bits of integer part with their
      position values and adding
        IP = IP + (I(i) *2^(i-1))
55
56
     end
57 end
58 if (DP1>0)
59 if (DP1<1)
60 DP=0
61 \text{ for } z=1:length(D)
62 //multipliying bits of decimal part with their
      position values and adding
63
       DP = DP + (D(z) *2^{(-1)} (length(D) + 1 - z))
64
     end
65
     else
66
     DP = 0
67 end
68 else
69 \text{ DP} = 0
70 end
71 decimal=IP+DP
72 //displaying the output
73 disp(decimal)
74
75
76
77 //convert decimal to octal
78 i=1;
79 //separating integer part
80 IP2=floor(decimal)
81 IP3=IP2
82 //separating decimal part
83 DP2=modulo(decimal,1)
```

```
84 //storing each integer digit in I(i)
85 \text{ while}(IP2>0)
        J(i) = (modulo(floor(IP2),8))
86
        IP2=floor(IP2)/8
87
88
        i=i+1
89 end
90 if (IP3>0)
91 IP2=0
92 \text{ for } j=1:length(J)
93 //multipliying bits of integer part with their
       position values and adding
        IP2=IP2+(J(j)*10^(j-1));
94
95
      end
96 else
97
      IP2=0
98 end
99
100 //storing each decimal digit in D(x)
101 if (DP2<1)
     if (DP2>0)
102
103 while (x<=4)
        DP2=DP2*8
104
105
        E(x) = floor(DP2)
106
        x = x + 1
107
        DP2=modulo(DP2,1)
108 end
109
110 \text{ DP2=0}
111 for j=1:length(E)
112 //multipliying bits of decimal part with their
       position values and adding
        DP2=DP2+(10^{(-1*j)*E(j)})
113
114
      end
115 end
116 end
117 octal=IP2+DP2
118 printf("Octal format")
119 disp(octal)
```

Scilab code Exa 8.8.15 convert the octal to binary number

```
1 clc
2 clear
3 disp("Example 8.15")
4 printf("\n")
5 disp("convert the following octal to binary number")
6 disp("a)724 b)365.217 c)0.506")
7 // Given binary number
8 i=1; w=1
9 \, \text{bin} = 724
10 //separating integer part
11 IP=floor(bin)
12 IP1=IP
13 //separating decimal part
14 DP=modulo(bin,1)
15 DP1=DP
16 //converting decimal value to interger
17 p=2
18 DP=DP*10^p //should change power of 10 as according
      to number of digits in decimal digit
19 //storing each integer digit in I(i)
20 while (IP>0)
       I(i)=modulo(IP,10);
21
22
       IP=floor(IP/10);
23
       i=i+1;
24
25 //storing each decimal digit in D(w)
26 \text{ while}(DP>0)
27
       D(w) = modulo(DP, 10)
       DP = (DP/10)
28
29
       DP=floor(DP)
30
       w = w + 1;
31
     end
```

```
32 //to do zero padding of remaining erm of D(w)
33 if (DP1<1)
34
       if (DP1>0)
35 if(length(D)<p)
36
       q=length(D)
37
     for f=q+1:p
       D(f)=0
38
       end
39
40
     end
41 end
42 end
43
44 if (IP1>0)
  for i=1:length(I)//checking whether it is a octal
      number or not
       if(I(i)>8) then
46
            disp('not a octal number')
47
            abort
48
49
       end
50
     end
51 end
52 if (IP1>0)
53 IP = 0
54 for i=1:length(I)
55 //multipliying bits of integer part with their
      position values and adding
       IP = IP + (I(i) *8^{(i-1)})
56
57
     end
58 end
59
60 if (DP1<1)
     if (DP1 > 0)
61
62 DP=0
63 for z=1:length(D)
     //multipliying bits of decimal part with their
64
        position values and adding
65
     if(D(z) < 8)
       DP = DP + (D(z) *8^(-1*(length(D) + 1-z)))
66
```

```
67
      else
68
        IP = 0
69
        DP = 0
        printf("not a octal number")
70
71
        abort
72
      end
73 end
74 end
75
76 decimal=IP+DP
77 //displaying the output
78 disp(decimal)
79
80
81
82 //decimal to Binary
83 //given decimal number
84 i=1; x=1
85 //separating integer part
86 IP2=floor(decimal)
87 IP3=IP2
88 //separating decimal part
89 DP2=modulo(decimal,1)
90 //storing each integer digit in I(i)
91 while (IP2>0)
        J(i)=(modulo(floor(IP2),2))
92
93
        IP2=floor(IP2)/2
94
        i=i+1
95 end
96 if (IP3>0)
97 IP2=0
98 for j=1:length(J)
99 //multipliying bits of integer part with their
       position values and adding
        IP2=IP2+(J(j)*10^(j-1));
100
101
      end
102 else
103
     IP2=0
```

```
104 end
105
   //storing each decimal digit in D(x)
106
107 while (x<=4)
108
        DP2=DP2*2
109
        E(x) = floor(DP)
110
        x = x + 1
        DP2=modulo(DP2,1)
111
112 end
113
114 DP2=0
115 for j=1:length(E)
116 //multipliying bits of decimal part with their
       position values and adding
        DP2=DP2+(10^{(-1*j)*E(j)})
117
118 end
119 Binary=IP2+DP2;
120 printf ("Binary format")
121 disp(Binary)
```

Scilab code Exa 8.8.17 convert the hexadecimael numbers to decimal

```
1 clc
2 clear
3 disp("Example 8.17")
4 printf("\n")
5 disp("convert the following hexadecimael numbers to decimal")
6 disp("a)FACE b)31C c)CAD")
7 //this progra, converts only integer part to decimal
8 Hdec='FACE'
9 dec=hex2dec(Hdec);
10 printf("decimal=%d",dec)
```

Scilab code Exa 8.8.18 convert the decimal numbers to hexadecimal

```
1 clc
2 clear
3 disp("Example 8.17")
4 printf("\n")
5 disp("convert the following decimael numbers to hexadecimal")
6 disp("a)2146 b)843 c)2604")
7 //this program, converts only integer part to hexadecimal
8 dec=843
9 Hdec=dec2hex(dec);
10 printf("decimal=%s", Hdec)
```

Scilab code Exa 8.8.19 convert the binary numbers to hexadecimal

```
1 clc
2 clear
3 disp("Example 8.19")
4 printf("\n")
5 disp("convert the following binary numbers to hexadecimal")
6 disp("a)101110 b)11010 c)1011101")
7 //this program, converts only integer part to decimal
8 bin='101110'
9 dec=bin2dec(bin)
10 Hdec=dec2hex(dec)
11 printf("decimal=%s", Hdec)
```

Scilab code Exa 8.8.21 Add the binary numbers

```
1 kclc
2 clear
3 disp("Example 8.21")
4 printf("\n")
5 disp("Add the following binary numbers")
6 disp("a)11011 & 10110 b)1100 & 111 c)10.1011 &
      11.011")
7 // Given binary number
8 i=1; w=1
9 a = 11011
10 b=10110
11 //Given binary number
12 i=1; w=1
13 bin=11.101
14 //separating integer part
15 IPa=floor(a)
16 IP1a=IPa
17 //separating decimal part
18 DPa=modulo(a,1)
19 DP1a=DPa
20 //converting decimal value to interger
21 p = 4
22 DPa=DPa*10^p //should change power of 10 as
      according to number of digits in decimal digit
23
24 //storing each integer digit in I(i)
25 while(IPa>0)
       Ia(i)=modulo(IPa,10);
26
       IPa=floor(IPa/10);
27
28
       i=i+1;
29
30 //storing each decimal digit in D(w)
```

```
31 while (DPa > 0)
32
        Da(w) = modulo(DPa, 2)
        DPa=(DPa/10)
33
        DPa=floor(DPa)
34
35
        w = w + 1;
36
     end
     //to do zero padding of remaining erm of D(w)
37
     if(DP1a<1)
38
        if (DP1a > 0)
39
40 if (length (Da) <p)
        q=length(Da)
41
42
     for f=q+1:p
43
        Da(f)=0
44
        end
45
     end
46 \, \text{end}
47 end
48
49 if(IP1a>0)
50 for i=1:length(Ia)//checking whether it is a binary
      number or not
        if(Ia(i)>1) then
51
            disp('not a binary number')
52
            abort
53
54
        end
55
     end
56 end
57 if(IP1a>0)
58 IPa=0
59 for i=1:length(Ia)
60 //multipliying bits of integer part with their
      position values and adding
        IPa=IPa+(Ia(i)*2^(i-1))
61
62
     end
63
     end
64
     DPa=0
65
     if (DP1a > 0)
        if (DP1a < 1)</pre>
66
```

```
67 for z=1:length(Da)
68 //multipliying bits of decimal part with their
       position values and adding
        DPa=DPa+(Da(z)*2^{-1}(-1*(length(Da)+1-z)))
69
70
      end
71 end
72 end
73 decimala=IPa+DPa
74 //displaying the output
75 disp(decimala)
76
77 // for b
78 //Given binary number
79 i = 1; w = 1
80 //separating integer part
81 IPb=floor(b)
82 IP1b=IPb
83 //separating decimal part
84 DPb = modulo(b, 1)
85 DP1b=DPb
86 //converting decimal value to interger
87 p = 3
88 DPb=DPb*10^p //should change power of 10 as
       according to number of digits in decimal digit
89
90 //storing each integer digit in I(i)
91 while (IPb > 0)
92
        Ib(i) = modulo(IPb, 10);
        IPb=floor(IPb/10);
93
94
        i=i+1;
95
96 //storing each decimal digit in D(w)
97 while (DPb > 0)
        Db(w) = modulo(DPb, 2)
98
        DPb = (DPb/10)
99
        DPb=floor(DPb)
100
101
        w = w + 1;
102
      end
```

```
//to do zero padding of remaining erm of D(w)
103
      if (DP1b > 0)
104
105
         if (DP1b <1)</pre>
106 if(length(Db)<p)</pre>
107
        q=length(Db)
108
      for f=q+1:p
        Db(f)=0
109
         end
110
111
      end
112 end
113 end
114 if (IP1b>0)
115 for i=1:length(Ib)//checking whether it is a binary
       number or not
        if(Ib(i)>1) then
116
             disp('not a binary number')
117
118
             abort
119
        end
120
      end
121 end
122 if (IP1b>0)
123 \text{ IPb=0}
124 for i=1:length(Ib)
125 //multipliying bits of integer part with their
       position values and adding
         IPb = IPb + (Ib(i) *2^(i-1))
126
127
      end
128
      end
129 \, \text{DPb=0}
130 if (DP1b>0)
      if (DP1b<1)</pre>
131
      for z=1:length(Db)
132
133 //multipliying bits of decimal part with their
       position values and adding
         DPb = DPb + (Db(z) *2^(-1*(length(Db)+1-z)))
134
135
      end
136 end
137 end
```

```
138 decimalb=IPb+DPb
139 //displaying the output
140 disp(decimalb)
141
142 sum1=decimala+decimalb
143 i=1; x=1
144
145 //separating integer part
146 IP=floor(sum1)
147 IP1=IP
148 //separating decimal part
149 DP = modulo(sum1, 1)
150 //storing each integer digit in I(i)
151 while (IP > 0)
        I(i) = (modulo(floor(IP),2))
152
        IP = floor(IP)/2
153
        i=i+1
154
155 end
156 if (IP1>0)
157 IP=0
158 for j=1:length(I)
159 //multipliying bits of integer part with their
       position values and adding
        IP = IP + (I(j) *10^{(j-1)});
160
161
      end
162 else
163
      IP = 0
164 end
165
166 //storing each decimal digit in D(x)
167 while (x<=4)
        DP = DP * 2
168
        D(x) = floor(DP)
169
170
        x = x + 1
        DP=modulo(DP,1)
171
172 end
173
174 DP=0
```

Scilab code Exa 8.8.23 Add the octal numbers

```
1 clc
2 clear
3 disp("Example 8.23")
4 printf("\n")
5 disp("Add the following octal numbers")
6 disp("a)46 & 375 b)27.34 & 11.76")
7 // Given octal number
8 i=1; w=1
9 a = 46
10 b = 375
11 //separating integer part
12 IPa=floor(a)
13 IP1a=IPa
14 //separating decimal part
15 DPa=modulo(a,1)
16 DP1a=DPa
17 //converting decimal value to interger
18 p = 2
19 DPa=DPa*10^p //should change power of 10 as
      according to number of digits in decimal digit
20 //storing each integer digit in I(i)
21 while(IPa>0)
22
       Ia(i)=modulo(IPa,10);
23
       IPa=floor(IPa/10);
```

```
24
       i=i+1;
25
26 //storing each decimal digit in D(w)
27 while (DPa > 0)
28
       Da(w) = modulo(DPa, 10)
29
       DPa=(DPa/10)
30
       DPa=floor(DPa)
31
       w = w + 1;
32
     end
33 //to do zero padding of remaining erm of D(w)
34 if (DP1a<1)
       if (DP1a > 0)
35
36 if(length(Da)<p)
       q=length(Da)
37
     for f=q+1:p
38
       Da(f)=0
39
40
       end
41
     end
42 end
43 end
44
  if(IP1a>0)
45
  for i=1:length(Ia) // checking whether it is a octal
      number or not
       if(Ia(i)>8) then
47
48
            disp('not a octal number')
49
            abort
50
       end
     end
51
52 end
53 if(IP1a>0)
54 IPa=0
55 for i=1:length(Ia)
56 //multipliying bits of integer part with their
      position values and adding
       IPa=IPa+(Ia(i)*8^(i-1))
57
58
     end
59 end
```

```
60
61 if (DP1a<1)
62
     if(DP1a>0)
63 \text{ DPa=0}
64 for z=1:length(Da)
     //multipliying bits of decimal part with their
65
        position values and adding
     if(Da(z) < 8)
66
67
       DPa=DPa+(Da(z)*8^{(-1*(length(Da)+1-z))})
68
     else
69
       IPa=0
70
       DPa=0
71
       printf("not a octal number")
72
       abort
73
     end
74 end
75 end
76
77 decimala=IPa+DPa
78 //displaying the output
79 disp(decimala)
80
81 // for b
82 //Given octal number
83 i = 1; w = 1
84 //separating integer part
85 IPb=floor(b)
86 IP1b=IPb
87 //separating decimal part
88 DPb=modulo(b,1)
89 \quad DP1b = DPb
90 //converting decimal value to interger
91 p=2
92 DPb=DPb*10^p //should change power of 10 as
      according to number of digits in decimal digit
93 //storing each integer digit in I(i)
94 while (IPb > 0)
       Ib(i) = modulo(IPb, 10);
95
```

```
96
        IPb=floor(IPb/10);
97
        i=i+1;
98
      end
99 //storing each decimal digit in D(w)
100 \text{ while}(DPb>0)
101
        Db(w) = modulo(DPb, 10)
        DPb = (DPb/10)
102
103
        DPb=floor(DPb)
104
        w = w + 1;
105
      end
106 //to do zero padding of remaining erm of D(w)
107 if (DP1b<1)
108
        if (DP1b>0)
109 if(length(Db)<p)</pre>
        q=length(Db)
110
      for f=q+1:p
111
        Db(f)=0
112
113
        end
114
      end
115 end
116 end
117
118 if(IP1b>0)
119 for i=1:length(Ib)//checking whether it is a octal
       number or not
120
        if(Ib(i)>8) then
             disp('not a octal number')
121
122
             abort
123
        end
124
      end
125 end
126 if (IP1b>0)
127 \text{ IPb=0}
128 for i=1:length(Ib)
129 //multipliying bits of integer part with their
       position values and adding
130
        IPb=IPb+(Ib(i)*8^(i-1))
131
      end
```

```
132 end
133
134 if (DP1b<1)
135 if(DP1b>0)
136 DPb=0
137 for z=1:length(Db)
      //multipliying bits of decimal part with their
138
         position values and adding
139
      if(Db(z)<8)
        DPb = DPb + (Db(z) *8^(-1*(length(Db)+1-z)))
140
141
      else
142
        IPb=0
143
        DPb=0
        printf("not a octal number")
144
145
        abort
146
      end
147 end
148 end
149
150 decimalb=IPb+DPb
151 //displaying the output
152 disp(decimalb)
153
154 sum1=decimala+decimalb
155 i=1; x=1
156 //separating integer part
157 IP=floor(sum1)
158 IP1=IP
159 //separating decimal part
160 \text{ DP} = \text{modulo}(\text{sum1}, 1)
161 //storing each integer digit in I(i)
162 \text{ while}(IP>0)
163
        I(i) = (modulo(floor(IP),8))
        IP=floor(IP)/8
164
165
        i=i+1
166 end
167 if (IP1>0)
168 IP=0
```

```
169 for j=1:length(I)
170 //multipliying bits of integer part with their
       position values and adding
         IP = IP + (I(j) *10^{(j-1)});
171
172
      end
173 else
174
     IP = 0
175 end
176
177 //storing each decimal digit in D(x)
178 if (DP<1)
179
      if (DP > 0)
180 \text{ while}(x \le 4)
        DP = DP * 8
181
        D(x) = floor(DP)
182
183
        x = x + 1
        DP=modulo(DP,1)
184
185 end
186
187 DP=0
188 for j=1:length(D)
189 //multipliying bits of decimal part with their
       position values and adding
        DP = DP + (10^{(-1*j)}) * D(j)
190
191
      end
192 end
193 end
194 \text{ octal=IP+DP}
195 printf("Sum")
196 disp(octal)
```

Scilab code Exa 8.8.25 Add the hexadecimal numbers

```
1 clc
2 clear
```

```
disp("Example 8.25")
printf("\n")
disp("Add the following hexadecimal numbers")
disp("a)ABC & ABCDE b) DEF & 12EF")
//this program add only integer part
a='ABC'
b='ABCDE'
a1=hex2dec(a)
a2=hex2dec(b)
sum1=a1+a2
sumhex=dec2hex(sum1)
printf("%s", sumhex)
```

Scilab code Exa 8.8.30a perform the decimal subtraction using 9s complements

```
1 clc
2 clear
3 disp("Example 8.30a")
4 printf("\n")
5 disp ("perform the following decimal subtraction
      using 9s complements")
                     b) 321-578")
6 disp("a)49-24
7 //given numbers
8 a = 49
9 b = -24
10 //should set to 99 if input is 2 digit number, 999 if
       3 digit number
11 c = 99
12 //add c with 2nd operand
13 e = c + b
14 N=a+e
15 if(N>100)
16
       if (N<199)
17
       M = N - 100
```

```
18
         M = M + 1
19
         N = M
20 \text{ end}
21 end
22 if (N>1000)
23
         if (N<1999)
24
         M = N - 1000
25
         M = M + 1
26
         N = M
27 \text{ end}
28 end
29
         M = N
30 if(-b>a)
31
         M = -(999 - M)
32 end
33 printf ("result=%d", M)
```

Scilab code Exa 8.8.30b perform the decimal subtraction using 10s complements

```
1 clc
2 clear
3 disp("Example 8.30b")
4 printf("\n")
5 disp("perform the following decimal subtraction
      using 10s complements")
6 disp("a)49-24
                     b) 321-578")
7 //given numbers
8 a = 49
9 b = -24
10 //should set to 100 if input is 2 digit number, 1000
      if 3 digit number
11 c = 1000
12 //add c with 2nd operand
13 e = c + b
```

```
14 N=a+e
15 if(N>100)
          if (N<199)</pre>
16
17
         M = N - 100
18
         N = M
19 end
20 \text{ end}
21 if (N>1000)
22
          if (N<1999)</pre>
23
         M = N - 1000
24
         N = M
25 end
26 \text{ end}
27
         M = N
28 if (-b>a)
         M = -(999 - M + 1)
29
30 \text{ end}
31 printf ("result=%d", M)
```

Scilab code Exa 8.8.31a perform the binary substraction using 1s complement

```
1 clc
2 clear
3 disp("Example 8.31a")
4 printf("\n")
5 disp("perform the following binary substraction using 1s complement")
6 disp("a)1010-0111 b)0110-1101")
7 a=[1 0 1 0]
8 b=~[0 1 1 1]
9 d=0
10 for i=1:length(a)
11     c(i)=a(length(a)+1-i)+b(length(a)+1-i)+d
12 if(c(i)==1)
```

```
13
               d=0
14
         \quad \text{end} \quad
         if [c(i) == 2]
15
16
               d=1
17
               c(i)=0
18
               end
19 end
20 	 f = 1
21 if (d==1)
22
         for i=1:length(a)
23
               g(i)=c(i)+f
24
               if(g(i)==1)
25
                    f = 0
26
                    end
               if(g(i)==2)
27
28
                    f = 1
29
                    g(i)=0
30
               end
31
32
         end
33
         for i=1:length(a)
         c(i)=g(i)
34
35
         end
36 end
37 \text{ if } (d==0)
38
         for i=1:length(a)
         c(i) = c(i)
39
40
         end
41 end
42 printf(" result = \frac{3}{2} d\frac{3}{2} d\frac{3}{2}, c(4), c(3), c(2), c(1))
```

Scilab code Exa $8.8.31b\,$ perform the binary substraction using 2s complement

```
1 clc
```

```
2 clear
3 disp("Example 8.31b")
4 printf("\n")
5 disp ("perform the following binary substraction
      using 2s complement")
6 disp("a)1010-0111 b)0110-1101")
7 a = [1 0 1 0]
8 b = [0 1 1 1]
9 d = 0
10 h=1
11 for i=1:length(b)
12
            n(i)=b(length(b)+1-i)+h
13
            if (n(i) == 1)
14
                 h=0
15
                 end
            if(n(i)==2)
16
17
                 h = 1
18
                 n(i)=0
19
            end
20
21
       end
22
        for i=1:length(a)
23
       b(i)=n(i)
24
        end
25
26
27 for i=1:length(a)
28
        c(i)=a(length(a)+1-i)+b(length(a)+1-i)+d
29
        if(c(i)==1)
30
            d=0
31
       end
32
       if [c(i) == 2]
33
            d=1
34
            c(i) = 0
35
            end
36 \text{ end}
37
38
```

```
39 \text{ if } (d==0)
40
        for i=1:length(a)
         c(i)=c(i)
41
42 end
43 \quad j = 1
44 for i=1:length(b)
              m(i)=c(i)+j
45
              if (m(i) == 1)
46
                   f = 0
47
48
                   end
              if(m(i)==2)
49
50
                   j = 1
51
                   m(i)=0
52
              end
53
54
        end
        for i=1:length(a)
55
        c(i)=m(i)
56
         end
57
58 end
59 for i=1:length(a)
        C(i)=c(i)
60
61 end
62 printf(" result = \frac{3}{2} d\frac{3}{2}d\frac{3}{2}d, c(3),c(2),c(1))
```

Scilab code Exa 8.8.48a Prove the boolean thereom

```
1 clc
2 clear
3 disp("Example 8.48a")
4 printf("\n")
5 disp("Prove the following boolean thereom")
6 disp("A+AB=A")
7 disp("A=a,B=b,AB=s,A+AB=d")
8 a=[0 0 1 1]
```

```
9 b = [0 1 0 1]
10 for i=1:length(a)
        s(i)=a(i)*b(i)
11
12 end
13 for i=1:length(a)
14
       d(i)=s(i)+a(i)
        if(d(i)==2)
15
            d(i)=1
16
17
        end
18
19 end
20
21 for i=1:length(a)
        if(a(i) == d(i))
22
            printf("")
23
24
        else
            printf("not")
25
26
            abort
27
        end
28
29 \text{ end}
30 printf("yes")
```

Scilab code Exa 8.8.48b Prove the boolean thereom

```
1 clc
2 clear
3 disp("Example 8.48b")
4 printf("\n")
5 disp("Prove the following boolean thereom")
6 disp("A+AB=A")
7 disp("A=a,B=b,A1B=s,A+A1B=d")
8 a=[0 0 1 1]
9 b=[0 1 0 1]
10 for i=1:length(a)
```

```
11
        s(i)=(a(i))*b(i)
12 end
13 for i=1:length(a)
        d(i)=s(i)+a(i)
14
15
        if(d(i)==2)
             d(i)=1
16
        \verb"end"
17
18
19 end
20
21 for i=1:length(a)
22
        e(i)=a(i)+b(i)
23
        if(e(i)==2)
             e(i)=1
24
25
             end
26 \text{ end}
27
28 for i=1:length(a)
29
        if ((e(i) == d(i)))
            printf("_")
30
31
        else
            printf("not")
32
33
             abort
34
        end
35
36 end
37 printf("yes")
```

Scilab code Exa 8.8.49a Prove the boolean identities

```
1 clc
2 clear
3 disp("Example 8.49a")
4 printf("\n")
5 disp("Prove the following boolean identities")
```

```
6 disp("A+BC=(A+B)(A+C)")
7 \quad A = [0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1]
8 B = [0 0 1 1 0 0 1 1]
9 \quad C = [0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1]
10 for i=1:length(A)
      Y(i) = A(i) + (B(i) *C(i))
11
12
      if(Y(i)==2)
13
         Y(i) = 1
14
      end
15 end
16 for i=1:length(A)
17
      Z(i) = (A(i) + B(i)) * (A(i) + C(i))
18
      if(Z(i)==2)
19
         Z(i)=1
20
      end
21
      if(Z(i)==3)
22
         Z(i)=1
23
      end
24
      if(Z(i)==4)
25
         Z(i)=1
26
      end
27 end
28 for i=1:length(A)
      if(Z(i) == Y(i))
29
         printf("_")
30
31
      else
         printf("NOT")
32
33
         abort
34
      end
35 end
36
37
      printf("proved")
```

Scilab code Exa 8.8.49b Prove the boolean identities

```
1 clc
2 clear
3 \text{ disp}("Example 8.49b")
4 printf("\n")
5 disp("Prove the following boolean identities")
6 disp("ABC+AB1C+ABC1=AB+AC")
7 \quad A = [0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1]
8 B = [0 0 1 1 0 0 1 1]
9 C=[0 1 0 1 0 1 0 1]
10 for i=1:length(A)
     Y(i) = (A(i)*B(i)*C(i))+(A(i)*(^B(i))*C(i))+(A(i)*B(i))
11
         i)*(~C(i)))
12
     if(Y(i)==3)
        Y(i) = 1
13
14
     end
15
     if(Y(i)==2)
16
        Y(i) = 1
17
     end
18 end
19 for i=1:length(A)
20
     Z(i) = (A(i) * B(i)) + (A(i) * C(i))
21
      if(Z(i)==2)
22
        Z(i) = 1
23
     end
24 end
25 for i=1:length(A)
     if(Z(i) == Y(i))
26
27
        printf("_")
28
     else
29
        printf("NOT")
30
        abort
31
     end
32 end
    printf("proved")
33
```

Scilab code Exa 8.8.50a Construct the Truth Table for logic expression

```
1 clc
2 clear
3 disp("Example 8.50a")
4 printf("\n")
5 disp("Construct the Truth Table for logic expression
      ")
6 disp("AB1+C1")
7 \quad A = [0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1]
8 B = [0 0 1 1 0 0 1 1]
9 \quad C = [0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1]
10 for i=1:length(A)
     f(i)=(A(i)*(~(B(i))))+(~C(i))
11
     if(f(i)==2)
12
        f(i)=1
13
14
     end
15 end
(3), f(4), f(5), f(6), f(7), f(8)
```

Scilab code Exa 8.8.50b Construct the Truth Table for logic expression

```
1 clc
2 clear
3 disp("Example 8.50b")
4 printf("\n")
5 disp("Construct the Truth Table for logic expression ")
6 disp("AB1+A1B")
7 A=[0 0 1 1]
8 B=[0 1 0 1]
9 for i=1:length(A)
10  f(i)=(A(i)*(~(B(i))))+(B(i)*(~(A(i))))
11 if(f(i)==2)
```

Scilab code Exa 8.8.50c Construct the Truth Table for logic expression

```
1 clc
    2 clear
    3 disp("Example 8.50c")
    4 printf("\n")
    5 disp("Construct the Truth Table for logic expression
                                          ")
     6 disp("C1((B+D)1)")
    7 B = [0 0 0 0 1 1 1 1]
    8 C=[0 0 1 1 0 0 1 1]
    9 D = [0 1 0 1 0 1 0 1]
10 for i=1:length(B)
                                    f(i) = (^{(C(i))})*(^{(B(i)+D(i))})
12
                                    if (f(i)==2)
13
                                                    f(i)=1
14
                                    end
15 end
16 printf ("truth table = \frac{3}{4} d\frac{3}{4} d\frac{3
                                           (3), f(4), f(5), f(6), f(7), f(8)
```