- 1. Выберите правильное утверждение.
- (а) Централизованная архитектура является масштабируемой, поскольку коммуникации с сервером занимают мало времени.
- (b) Коммуникационные протоколы типа AllReduce являются масштабируемыми, поскольку их используют исключительно в датацентрах.
- (c) Коммуникационные протоколы типа AllReduce являются масштабируемыми, поскольку каждый рабочий в таких протоколах суммарно передаёт и принимает количество информации соизмеримое с O(1) векторов.
- (d) Децентрализованная архитектура плохо масштабируется, поскольку скорость работы зависит от числа обусловленности графа, которое всегда растёт линейно с ростом числа участников n.

Ответ: c

- 2. Рассмотрим задачу распределённой оптимизации, удовлетворяющую предположениям со слайда 25 первой части лекции 9. Пусть $n=1000, d=10^8, L=10^6, \mu=10^{-2}, \sigma=10$ и $\zeta_*=10^2$. Рассмотрим методы QSGD и DIANA с оператором компрессии $Q(x)=rand_t(x)$, где $t=10^5$. Оцените число итераций k (в худшем случае), которое необходимо проделать указанным алгоритмам, чтобы гарантировать $\mathbb{E}[\|x^k-x^*\|^2] \leq \varepsilon$ для $\varepsilon=10^{-3}$ (логарифмами можно пренебречь).
 - (a) QSGD: порядка 10^{11} итераций; DIANA: порядка 10^{9} итераций
 - (b) QSGD: порядка 10^{11} итераций; DIANA: порядка 10^{8} итераций
 - (c) QSGD: порядка 10^{15} итераций; DIANA: порядка 10^9 итераций
 - m (d)~QSGD: порядка 10^9 итераций; DIANA: порядка 10^{11} итераций

$$\begin{split} \omega &= \frac{d}{t} - 1 = \frac{10^8}{10^5} - 1 = 999 \\ QSGD : \quad O\left(\left(1 + \frac{\omega}{n}\right) \frac{L}{\mu} \ln \frac{R_0^2}{\varepsilon} + \frac{(\omega \zeta_*^2 + (\omega + 1)\sigma^2) \ln \frac{D_1}{\mu^2 \varepsilon}}{n\mu^2 \varepsilon}\right) \approx \\ &\approx O\left(\left(1 + \frac{\omega}{n}\right) \frac{L}{\mu} + \frac{\omega \zeta_*^2 + (\omega + 1)\sigma^2}{n\mu^2 \varepsilon}\right) = \left(1 + \frac{999}{10^3}\right) \frac{10^6}{10^{-2}} + \frac{999 \cdot 10^4 + 10^3 \cdot 10^2}{10^3 \cdot 10^{-4} \cdot 10^{-3}} \approx 10^{11} \\ DIANA : \quad O\left(\left(\omega + \left(1 + \frac{\omega}{n}\right) \frac{L}{\mu}\right) \ln \frac{R_0^2}{\varepsilon} + \frac{(\omega + 1)\sigma^2 \ln \frac{(1 + \omega)\sigma^2}{n\mu^2 \varepsilon}}{n\mu^2 \varepsilon}\right) \approx \\ &\approx O\left(\omega + \left(1 + \frac{\omega}{n}\right) \frac{L}{\mu} + \frac{(\omega + 1)\sigma^2}{n\mu^2 \varepsilon}\right) = 999 + \left(1 + \frac{999}{10^3}\right) \frac{10^6}{10^{-2}} + \frac{10^3 \cdot 10^2}{10^3 \cdot 10^{-4} \cdot 10^{-3}} \approx 10^9 \end{split}$$

Ответ: a

- 3. Выберите правильное утверждение.
- (a) Методы с локальными шагами не имеют преимуществ перед обычными методами с мини-батчингом в случае гетерогенных функций; Local-SGD хорошо работает для постановок задач с персонализацией

- (b) Методы с локальными шагами всегда работают хуже, чем методы с мини-батчингом, поскольку локальные шаги создают "дрифт"рабочих (каждый рабочий стремится к своему оптимуму)
- (с) Методы с локальными шагами работают лучше, чем обычные методы с мини-батчингом, поскольку меньше коммуницируют с сервером
- (d) Локальные шаги работают только в применении к стандартному SGD Ответ: a
- 4. Какая из приведенных ниже матриц не может являться коммуникационной матрицей (mixing matrix) некоторого графа?

(a)
$$\begin{pmatrix}
1/3 & 1/3 & 0 & 1/3 \\
1/3 & 1/3 & 1/3 & 0 \\
0 & 1/3 & 1/3 & 1/3 \\
1/3 & 0 & 1/3 & 1/3
\end{pmatrix}$$
(b)
$$\begin{pmatrix}
2/3 & 1/3 & 1/3 & 0 \\
1/3 & 2/3 & 0 & 0 \\
1/3 & 0 & 1/3 & 2/3 \\
0 & 0 & 2/3 & 1/3
\end{pmatrix}$$
(c)
$$\begin{pmatrix}
2/3 & 1/3 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 \\
0 & 1/3 & 1/3 & 1/3 \\
0 & 0 & 1/3 & 2/3
\end{pmatrix}$$

Условию $\mathbf{M}\mathbf{1}=\mathbf{1}$ не удовлетворяет только матрица b Ответ: b

5. В силу технических неполадок в коммуникационной сети иногда возникают и пропадают связи между узлами. Каждый узел хранит функцию f_i и локальный вектор параметров x_i , требуется минимизировать сумму $\sum_{i=1}^m f_i(x_i)$ при сохранении (приблизительного) консенсуса $x_1 = \cdots = x_m$. В каком из случаев заведомо не получится добиться консенсуса между узлами?

(b)

(c)

Только в случае c объединение подряд идущих графов является несвязным графом (две компоненты)

Ответ: c

Ответы:

- 1. c
- 2. a
- 3. a
- 4. b
- 5. c