HMMT February 2020

February 15, 2020

Team Round

- 1. [20] Let n be a positive integer. Define a sequence by $a_0 = 1$, $a_{2i+1} = a_i$, and $a_{2i+2} = a_i + a_{i+1}$ for each $i \ge 0$. Determine, with proof, the value of $a_0 + a_1 + a_2 + \cdots + a_{2^n-1}$.
- 2. [25] Let n be a fixed positive integer. An n-staircase is a polyomino with $\frac{n(n+1)}{2}$ cells arranged in the shape of a staircase, with arbitrary size. Here are two examples of 5-staircases:

Prove that an n-staircase can be dissected into strictly smaller n-staircases.

- 3. [25] Let ABC be a triangle inscribed in a circle ω and ℓ be the tangent to ω at A. The line through B parallel to AC meets ℓ at P, and the line through C parallel to AB meets ℓ at Q. The circumcircles of ABP and ACQ meet at $S \neq A$. Show that AS bisects BC.
- 4. [35] Alan draws a convex 2020-gon $\mathcal{A} = A_1 A_2 \cdots A_{2020}$ with vertices in clockwise order and chooses 2020 angles $\theta_1, \theta_2, \dots, \theta_{2020} \in (0, \pi)$ in radians with sum 1010π . He then constructs isosceles triangles $\triangle A_i B_i A_{i+1}$ on the exterior of \mathcal{A} with $B_i A_i = B_i A_{i+1}$ and $\angle A_i B_i A_{i+1} = \theta_i$. (Here, $A_{2021} = A_1$.) Finally, he erases \mathcal{A} and the point B_1 . He then tells Jason the angles $\theta_1, \theta_2, \dots, \theta_{2020}$ he chose. Show that Jason can determine where B_1 was from the remaining 2019 points, i.e. show that B_1 is uniquely determined by the information Jason has.
- 5. [40] Let a_0, b_0, c_0, a, b, c be integers such that $gcd(a_0, b_0, c_0) = gcd(a, b, c) = 1$. Prove that there exists a positive integer n and integers $a_1, a_2, \ldots, a_n = a, b_1, b_2, \ldots, b_n = b, c_1, c_2, \ldots, c_n = c$ such that for all $1 \le i \le n$, $a_{i-1}a_i + b_{i-1}b_i + c_{i-1}c_i = 1$.
- 6. [40] Let n > 1 be a positive integer and S be a collection of $\frac{1}{2} \binom{2n}{n}$ distinct n-element subsets of $\{1, 2, \ldots, 2n\}$. Show that there exists $A, B \in S$ such that $|A \cap B| \leq 1$.
- 7. [50] Positive real numbers x and y satisfy

$$\left| \left| \cdots \right| \left| |x| - y \right| - x \right| \cdots - y \right| - x \right| = \left| \left| \cdots \right| \left| |y| - x \right| - y \right| \cdots - x - y$$

where there are 2019 absolute value signs $|\cdot|$ on each side. Determine, with proof, all possible values of $\frac{x}{y}$.

- 8. [50] Let ABC be a scalene triangle with angle bisectors AD, BE, and CF so that D, E, and F lie on segments BC, CA, and AB respectively. Let M and N be the midpoints of BC and EF respectively. Prove that line AN and the line through M parallel to AD intersect on the circumcircle of ABC if and only if DE = DF.
- 9. [55] Let p > 5 be a prime number. Show that there exists a prime number q < p and a positive integer n such that p divides $n^2 q$.
- 10. [60] Let n be a fixed positive integer, and choose n positive integers a_1, \ldots, a_n . Given a permutation π on the first n positive integers, let $S_{\pi} = \{i \mid \frac{a_i}{\pi(i)} \text{ is an integer}\}$. Let N denote the number of distinct sets S_{π} as π ranges over all such permutations. Determine, in terms of n, the maximum value of N over all possible values of a_1, \ldots, a_n .