Experimental vs. Observational Designs

Overview

- Objective
 - By the end of this session, you should know which type of design fits which type of research question
- To do that, we will
 - Define validity and reliability
 - Explore principles of experimental design
 - Explore principles of observational design
 - Discuss the suitability of different approaches
 - Have a go at designing an experiment

Before we start

 What would you be interested in applying research methods to?

Reliability and validity

- Reliability
 - Does the same object weigh the same amount when measured again?
- Validity
 - Is this an appropriate means of measuring someone's mathematical skills?

Reliability

- How stable is the score?
 - Observed score = true score + error
- What affects reliability?
 - Human error (misreading score)
 - Test reliability (faulty scales)
- How can we improve reliability?
 - Objective tests
 - Careful test construction

Validity

- Are we measuring what we think we're measuring?
- What affects validity?
 - The relevance of the measure we use (e.g. weight vs. maths test)
- How can we improve validity?
 - By matching the measure to the question (reaction times? interviews?)
 - By always asking ourselves what might be contaminating our results (bad design? something else affecting outcome?)

Reliability and validity

• Can be affected by resources (time, money), but should always be the first priority in research

- General idea
 - Manipulate something (the Independent Variable, IV), and look at the effect of that manipulation of something else (the Dependent Variable, DV)
- Types of design
 - Between-groups design (e.g. musicians compared to nonmusicians)
 - Within-groups design (e.g. pre-intervention vs. postintervention using the same group of people)
 - Mixed design (e.g. musicians and non-musicians pre- and post-intervention)

- Control
 - Observed score = true score + error
 - Maximise explained variance (true score)
 - Minimise unexplained variance (error)
- Generalisability
 - Big enough sample?
 - Enough measurements within each person?
 - Statistical significance (more on this next week)

- Examples
 - Manipulate the distance between a chord and the key of the piece it's in (IV) → see how high participants' oddity ratings are (DV)
 - Give participants a musical extract to listen to with or without (IV) a title → see how moving they find the piece
 - Give a group of nervous musicians a beta-blocker or a placebo (IV) → see how that affects their performance accuracy (DV)...

- Limitations
 - Some things you just can't manipulate!
 - Practically (a historical event that brings a change to the style of music compositions)
 - Ethically (studying the long term effects of taking harmful drugs)
 - Ecological validity
 - Are the outcomes generalisable beyond the "lab"?
 - Can't control everything but...
 - That's where statistics come in handy
 - Can make good inferences from data

 A research question for which an experimental design would be appropriate

- General idea
 - See what happens in the world (while manipulating as little as possible)
- Types of observational designs
 - Behaviour observations
 - Linguistic observations
 - Longitudinal studies
 - "Diary" studies...

- "Naturalistic" approach
 - Experimenter does not influence the situation
 - Less control, but more "real"?
- Clear rationale
 - Clear coding to reduce observer bias
 - Clear selection criteria to reduce selection bias
- Aim: maximising validity and reliability

- Examples
 - The academic achievements of children in different postcode areas
 - The rise of "new music" composition in line with political instability in the cold war
 - The increasing cross-influence of musical genres with faster internet globalisation
 - The personality characteristics of different orchestral instrument players
 - Habits of musical listening in musicians and nonmusicians...

- Limitations
 - Causality difficult to prove
 - Price of bananas correlates negatively with male life expectancy

- Access to populations can be difficult and ethically complex
 - Children, clinical, forensic, online (anonymity, confidentiality), drop-out rate...
- Bias and confounds difficult to control
 - Inter-observer reliability, interpretation bias
 - Can observation cause behaviour?

 A research question for which an observational design would be appropriate

A compromise?

- Quasi-experimental designs
 - When it's not possible to randomly assign people to groups (e.g. children whose parents have given them music lessons vs. children whose parents haven't)
 - "Non-equivalent groups design" there is likely to be a baseline difference (prior to any intervention)
 - Can be corrected with some statistics. Important to be aware of potential confounds (socio-economic status, parental interest in music, family encouragement...)

A quasi-experimental approach

- Patients with Parkinson's Disease effect of Ballet lessons
 - http://www.bbc.co.uk/news/uk-england-london-16573752
 - Not all affected by PD to the same extent at the start of the intervention
 - Experimental manipulation: ballet lessons (control: no ballet lessons?)
 - Outcome: measure difference between baseline movement abilities and movement abilities at end of study – interviews, videos, balance measurements...
 - http://www.ballet.org.uk/editorial.php?ref=DanceForParkin sons

Group work

- Think of a research question
- What kind of design would be best suited?
- How would you ensure reliability and validity?

Any questions?

- c.r.featherstone@leeds.ac.uk
- Next week: Introduction to quantitative analysis

