Notes on The Formal Semantics of Programming Languages

Ray Li

October 16, 2024

Contents

1	Chapter 5: some principles of induction	2
	1.1 Excercise Answers	2
2	Ray's Notes Ssummary	3

1 Chapter 5: some principles of induction

1.1 Excercise Answers

Question 1. (E3.2) A string is a sequence of symbols. A string $a_1 a_2 \cdots a_n$ with n positions occupied by symbols is said to have length n. A string can be empty in which case it is said to have length 0. Two strings s and t can be concatenated to form the string st. Use mathematical induction to show there is no string u which satisfies au = ub for two distinct symbols a and b.

Proof. by induction on the length of uLet $A = \{n \mid \text{len}(u) = n \text{ and } au \neq ub\}.$

- 1. Base Case:
 - $0 \in A$: By the hypothesis, since $a \neq b$, it is clear that when u is the empty string (i.e., length 0), $au \neq ub$. Thus, $0 \in A$.
 - $1 \in A$: If u has length 1, it is easy to see that $au \neq ub$ because $a \neq b$.
 - $2 \in A$: For u = xy, where len(u) = 2, we have $axy \neq xyb$, given that $a \neq b$.
- 2. Inductive Step: Assume $n \in A$. We want to show that $n + 1 \in A$ for $n \ge 2$.

Proof by contradiction: Suppose len(u) = n+1 and au = ub. Since $n+1 \ge 3$, we can write u = qu'p, where len(q) = len(p) = 1. Thus, au = aqu'p and ub = qu'pb, leading to the equation aqu'p = qu'pb.

From this, we deduce that a=q. By eliminating the leftmost characters, we are left with qu'p=u'pb. Since q=a, the equation becomes au'p=u'pb, where len(u'p)=n. By the induction hypothesis, $au'p\neq u'pb$, leading to a contradiction.

Therefore, $n+1 \in A$.

By mathematical induction, we conclude that there is no string u such that au = ub for two distinct symbols a and b.

2

2 Ray's Notes Ssummary

Ray's Note 1: