wherein, said membrane comprises:

CLAIMS

23

1

2

What is claimed is:

1	a sample region and a control region, said sample region
2	positioned to receive the sample from the sample window; and
3	at least one antibody pair located at a discrete
4	location along said membrane between the sample region and
5	the control region, each of said antibody pairs comprising an
6	antibody reagent member and an immobilized capture antibody
7	member, each capture antibody member being located on said
8	membrane closer to the control region than the corresponding
9	antibody reagent member, each antibody pair having a
10	measurable or observable moiety labeled or chemically bonded
11	to the antibody reagent member of each said antibody pairs,
12	the antibody pairs being monoclonal or polyclonal and
13	comprising:
14	at least one antibody pair that specifically binds to a
15	marker of Schwann cell injury or cell death,
16	such that upon adding sample to the sample window,
17	analytes present in the sample and complementary to the
18	antibody pairs will migrate toward the control region,
19	binding to the antibody pair each of said analytes, producing
20	a color change proportional to the each of analyte present
21	from which a diagnosis of autoimmune disease is made.
22	
23	
24	
25	

	1	Claim 4. The diagnostic assay test kit of claim 3
	2	wherein:
	3	said autoimmune disease is selected from the group
	4	consisting of diabetes, prediabetes and multiple sclerosis
	5	and pre-multiple sclerosis.
	6	
	7	Claim 5. The diagnostic assay test kit of claim 3
	8	wherein:
	9	said marker of Schwann cell injury or cell death is
	10	selected from the group consisting of glial fibrillary acidic
	11	protein (GFAP), S100 and GAD65.
7	12	
	13	Claim 6. The diagnostic assay test kit of claim 3
	14	wherein:
	15	said body fluid is selected from the group consisting of
	16	blood, blood components, urine, saliva, lymph and
	17	cerebrospinal fluid.
	18	
	19	Claim $7 \int$ A process for detection of Schwann cell
	20	autoantibody as a marker for the presence, predisposition or
	21	risk for development of an autoimmune disease comprising the
	22	steps of:
	23	drawing a sample of body fluid from a patient,
	24	depositing the sample in a sample window of a diagnostic
	25	test kit, said test kit comprising

- a front panel comprising a sample window and a display
- 2 window;
- a back panel; and
- a dry chemistry membrane affixed between the front and
- back panels positioned for display in at least the display
- 6 window, wherein said membrane comprises:
- 7 a sample region, and a control region, said sample
- 8 region positioned to receive the sample from the sample
- 9 window; and
- 10 at least one antibody pair located at discrete locations
- 11 along said membrane between the sample region and the control
- 12 region, each said antibody pair comprising an antibody
- 13 reagent member and an immobilized capture antibody member,
- 14 each capture antibody member being located on said membrane
- 15 closer to the control region than the corresponding antibody
- 16 reagent member, each antibody pair having a measurable or
- 17 observable moiety labeled or chemically bonded to the
- 18 antibody reagent member of each said antibody pair,
- 19 each said at least one antibody pair being monoclonal or
- 20 polyclonal and comprising:
- at least one pair that specifically binds to a marker of
- 22 Schwann cell injury or cell death,
- such that upon adding sample to the sample window,
- 24 analytes present in the sample and complementary to the
- 25 antibody pairs will migrate toward the control region,
- 26 binding to the antibody pair each of said analytes, producing

```
a color change proportional to each concentration of analyte
2
   present, and
        visualizing or measuring the moiety and diagnosing the
3
   presence of an autoimmune disease.
5
                   The process of claim 7 wherein said autoimmune
6
         Claim 8.
    disease is selected from the group consisting of Type 1
    diabetes, prediabetes, pre-multiple sclerosis and multiple
    sclerosis.
9
10
         Claim 9. The process of claim 7 wherein:
11
         said Schwann cell autoantibody is autoreactive with
12.
    Glial Fibrillary Acidic Protein (GFAP).
14
         Claim 10. The process of claim 7 wherein:
15
    said Schwann cell autoantibody is autoreactive with GAD-65.
16
17
         Claim 11., A diagnostic assay kit for autoimmune disease
18
    comprising:
19
         at least one immunologically reactive marker having an
20
21
    affinity for glial fibrillary acidic protein (GFAP), and
         a means for determining binding between each of said
22
23
    respective markers and each of said respective antibodies.
24
         Claim 12/ Anti-GFAP IgG useful as a predictive marker of
25
    autoimmune disease.
26
```

Ų
Ш
=
, D
4
ΓŲ
<u>a</u>
.D
Į.
W. 10.
Ç

1	
2	Claim 13./A process for prediabetes screening and
3	staging comprising:
4	drawing a sample of body fluid from a patient,
5	contacting said sample with a diagnostically effective
6	amount of an anti-GFAP IgG useful as a predictive marker of
7	Type 1 diabetes, and
8	determining binding between said anti-GFAP IgG and
9	immunologically detectable fragments contained within said
10	sample.
11	
12	Claim 14/ A process for interfering with the course,
13	progression and/or manifestation of an autoimmune disease in
14	a mammal comprising:
15	interfering with the disease process by administering to
16	said mammal a therapeutically effective modality, said
17	modality having a degree of immunological reactivity
18	sufficient to modify the pathogenicity of lymphocytes
19	specific in instigating loss of self tolerance of Schwann
20	cell protein,
21	whereby said administration is effective to alter the
22	course, progression and/or manifestation of said
23	disease.
24	
25	Claim 15. The process of claim 14 wherein said
26	autoimmune disease is selected from the group consisting of
McHal	e & Slavin, P.A 2132.074

1	diabetes, prediabetes, multiple sclerosis and pre-multiple
2	sclerosis.
3	
4	Claim 16 / A process for identifying a therapeutic moiety
5	useful in treating diabetes, prediabetes, multiple sclerosis
6	and pre-multiple sclerosis comprising:
7	recognizing at least one moiety for which a direct
8	therapeutic value is predicted,
9 .	contacting said moiety with at least one biopolymer
10	marker indicative or predictive of a disease state selected
11	from the group consisting of diabetes, prediabetes, multiple
12	sclerosis and pre-multiple sclerosis, and
13	determining modulation of said at least one biopolymer
14	marker attributable to said therapeutic moiety;
15	whereby a product having a confirmed therapeutic value
16	is identified.
<u>1</u> 7	
18	Claim 17. The product identified via the process of
19	claim 16.
20	
21	Claim 18. A process for identifying a therapeutic moiety
22	useful in treating diabetes, prediabetes, multiple sclerosis
23	and pre-multiple sclerosis comprising:
24	recognizing at least one moiety for which an indirect
25	therapeutic value is predicted,

- 1 contacting said moiety with at least one biopolymer
- 2 marker indicative or predictive of a disease state selected
- 3 from the group consisting of diabetes, prediabetes, multiple
- 4 sclerosis and pre-multiple sclerosis, and
- determining modulation of said at least one biopolymer
- 6 marker attributable to said therapeutic moiety;
- whereby a product having a confirmed therapeutic value
- 8 is identified.

9

- 10 Claim 19. The product identified via the process of
- 11 __claim 18.
- 12 Claim 20. The process for interfering with the course,
- 13 progression and/or manifestation of an autoimmune disease in
- 14 a mammal in accordance with claim 14 wherein:
- 15 said therapeutically effective modality is an
- 16 immunotherapeutic moiety defined as an effective analogue for
- 17 a major epitope peptide in GFAP which pathogenicity of key
- 18 lymphocytes which are specific for a native epitope in GFAP,
- 19 said analogue having structural similarity but not identity
- 20 in peptide sequencing able to be recognized by T-cells
- 21 spontaneously arising and targeting an endogeneous self
- 22 epitope,
- 23 whereby an altered T-cell activation occurs which leads
- 24 to T-cell anergy or death.