TOPOLOGÍA. UAM, 11 de enero de 2016

Apellidos, Nombre: ______Grupo:

1. Sea X un conjunto no vacío

- a) Demuestra que, entre todas las topologías que contienen a una colección dada \mathcal{A} de subconjuntos de X, existe una que es mínima con respecto al orden dado por la inclusión de conjuntos. Se le llama la topología generada por \mathcal{A} . Describe los abiertos de dicha topología mediante operaciones con conjuntos actuando sobre los miembros de la colección \mathcal{A} .
- b) Dada una topología \mathcal{T} en X, explica con precisión el significado de las dos frases siguientes:
 - $\mathcal{B} \subset \mathcal{P}(X)$ es una base de \mathcal{T} .
 - $\mathcal{S} \subset \mathcal{P}(X)$ es una **subbase** de \mathcal{T} .

En concreto, describe cómo son los conjuntos de \mathcal{T} utilizando operaciones con conjuntos aplicadas a los miembros de \mathcal{B} y \mathcal{S} .

2. Sea $X = \{1, 2\} \times \mathbb{Z}_+$, donde $\mathbb{Z}_+ = \{n \in \mathbb{Z} : n > 0\}$. Consideramos en X la topología asociada al orden lexicográfico, que recordamos que se define del modo siguiente:

$$(n_1, m_1) < (n_2, m_2) \iff \begin{cases} n_1 < n_2 \\ o \\ n_1 = n_2 \ y \ m_1 < m_2. \end{cases}$$

Para cada $n \in \mathbb{Z}_+$, ponemos $a_n := (1, n), b_n := (2, n)$.

- a) Demuestra que, para cada $n \in \mathbb{Z}_+$, el conjunto $\{a_n\}$ es abierto. ¿Se cumple lo mismo para todos los conjuntos $\{b_n\}$, $n \in \mathbb{Z}_+$? Justifica tu respuesta.
- b) Demuestra que $\lim_{n\to\infty} a_n = b_1$.
- **3.** Sean X, Y y Z espacios topológicos, con X compacto e Y de Hausdorff o T_2 . Sea $f: X \longrightarrow Y$ continua y sobreyectiva. Demuestra que, entonces, si $g \circ f$ es continua, se sigue que, también, g es continua. Justifica tu respuesta enunciando con claridad las propiedades que utilices.

- 4. Sea $X \neq \emptyset$ un espacio topológico. Definimos en X la relación
 - $x \sim y \iff$ no existen A, B abiertos disjuntos tales que $X = A \cup B, \ x \in A, \ y \in B$.
 - a) Demuestra que \sim es una relación de equivalencia. La clases de equivalencia de \sim se denominan las **cuasicomponentes de** X.
 - b) Demuestra que cada componente conexa de X está contenida en una cuasicomponente de X.
 - c) Un espacio topológico se dice **localmente conexo** si cada punto tiene un sistema fundamental de entornos que son todos conexos. Demuestra que esto equivale a que las componentes conexas de los abiertos sean conjuntos abiertos.
 - d) Demuestra que, si X es localmente conexo, entonces las componentes conexas coinciden con las cuasicomponentes.
- **5.** Demuestra, dando detalles, que si $f_1, f_2 : X \longrightarrow Y$ son aplicaciones continuas homotópicas y $g_1, g_2 : Y \longrightarrow Z$ son también aplicaciones continuas homotópicas; entonces, se sigue que $g_1 \circ f_1$ y $g_2 \circ f_2$ son, también, aplicaciones continuas homotópicas.

TIEMPO: 3 horas.