Lab Work - Texture synthesis

Julie Digne

In this lab work, we'll synthesize textures from examples using the Efros Leung model as seen in class [1]. This method is patch-based. Refer to course 2 on Markov Random Field. The data for this lab work are due to Efros, Leung (textures 0,1,2,6), Brodatz (texture 3) and the IPOL archive (4,5), it can be downloaded here: http://liris.cnrs.fr/julie.digne/cours/textures_data.zip

1 Algorithm

B will denote the set of pixels in I that are not yet filled.

Input: image I_{smp} , output size, n neighborhood size,

- 1. Initialize I by pasting a $l \times l$ random patch of I_{smp} (with $3 \le l \le n$) at the center of I (or randomly in I).
- 2. While output I not filled
 - (a) Pick an empty pixel p with maximal number of filled neighboring pixels
 - (b) Compute the distance of w(p) to all patches of input I_{smp}
 - (c) Find $w_{best} = argmin_{w \in I_{smp}} d(w, w(p))$ in I_{smp}
 - (d) Compute $\Omega'(p) = \{ w \in I_{smp} | d(w, w(p)) \le (1 + \varepsilon) d(w, w_{best}) \}$
 - (e) Pick randomly one of the similar neighborhood w(p') in $\Omega'(p)$
 - (f) Set $I(p) = I_{smp}(p')$ (= Fill p with central value)

The distance d is the partial Sum of Squared Differences (SSD with only the filled pixels taken into account).

2 Texture synthesis implementation

- Implement the Efros-Leung algorithm described above.
- Given the input textures synthesize larger textures.
- Change the size of the patch and comment on your experiments.
- Change ε and comment on your experiments.
- Can you think of a way to make the algorithm faster?

References

[1] A. Efros and T. Leung. Texture synthesis by non-parametric sampling. In Proceedings of the International Conference on Computer Vision Volume 2, ICCV '99, pages 1033–1068, Washington, DC, USA, 1999. IEEE Computer Society.