CPE383 Machine Learning: Quiz 3

- 1. **Connected Components.** Non-programming exercise. Label the following image with colors starting 1.
 - a. 5 points. 0.5 hrs. Use 4 connected to label the background (white) regions. Show the equivalence table and the final color in each box.

Your Output for 4-connected Labeling:

	1	1		2		3	3	3		4	4	4
5		-1		2		3	3	3		9		4
5	5		2	2		3	3	3		4		4
	5		2		3	3		N	*			
	5	2		3	?	3		3	2	N		9
10		5		3	3	3						9
10	10			3	3	3	3	3	3	3		7
10	10	M		3			3					
				3	3	3		3	3	3		3
3	3	3		7		7		3		3		3
3	3	3	3	3		3	3	3		3	7	3
						7	3	3		3	3	7

Your Output for 8-connected Labeling:

b. 5 points. 0.5 hrs. Use 8 connected to label foreground (black) regions. Show the equivalence table and the final color in each box.

1	1		2		5	3	3		9	4	4
	1		2		3	3	3		9		4
5		6	2		3	3	3		9		4
5		6		7	3		3	3	8 9		
5	5		8	7	3		3	3	3		9
	5		8	7	3						9
4			8	7	3	3	3	3	3		9
10	09		8			3					
			8	8	9		11	-11	11		11
13	13		90		8		11		11		12
13	19	1	3		8	1	8		11	n	1
					8	8	8		18	ĮI.	11
	5 5 6 5	5 5 5 6 W 10 10 13 13	5 6 6 5 5 9 5 40 to 10	1 2 5 6 2 6 8 5 5 8 5 8 0 0 0 2 15 1) 8	1 2 5 5 6 7 7 5 8 7 W to 10 2 8	6 2 3 6 6 7 3 5 5 8 7 3 5 8 7 3 6 8 7 3 6 8 7 3 6 8 7 3 8 7 3 8 8 7 3 8 8 8 8 8 8 8	1 2 3 3 3 5 6 6 7 3 5 8 7 3 5	1 2 3 3 3 3 5 5 6 6 7 3 3 3 5 5 6 7 3 3 5 6 7 7 3 3 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 2 2 3 3 3 5 5 6 6 2 7 3 7 3 3 5 5 6 8 7 3 7 3 3 3 5 6 6 8 7 3 7 3 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1	1 2 3 7 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

_	_	_	_	_	_	_	_	_		_	_			
1	-			2		3				4				5
1		1		2		3				4		6		8
-1			1			3				4		6		5
	1		1		3			7			4	4	4	
	ŧ			1	Г			7	3 - 5			4		
		1		1				7	7	7	7	9		
			1	1								4		
				1		9	8		9	9	4	4	4	
	10	19	1	1				3				4		
10				1	Г	11		1		12		4		15
10			П	П	Г	W				12				13
10	to	10	10	10	10	10				12				D

uivale	ence table	equivalas	nce table	
2	6		2	
		1	3	
3	7	4	6	
		4	5	
2	8	4	7	
		9	9	
	U	8	9	
		1	10	
	12	10	И	

2. Handwritten Digit Recognition. Use the digits.png file as template for digits 0, 1, ..., 9. Write a python program to cut out each digit as a labeled dataset from 0..9, each of which is 20x20. Note: You may also use this exact same dataset with 100 samples of each digit 0..9 using 20 x 20 pixels from the internet along with libraries to read/load the dataset, if it's easier for you.

Rescale all images from 20 x 20 to 24 x 24. This can be done in memory as a python class data and need not be stored in a file. Use 80% of the data as the training set, reserving 20% for testing.

```
import numpy as np
from sklearn.model_selection import train_test_split
       from sklearn.neighbors import KNeighborsClassifier
      print(title)
cv2_imshow(img) #should be changed to c2.imshow when not in Colab
[38] path = ""
fileName = path + "digits.png"
           print('Could not read image')
           print("Image file read success...")
      # cut out each digit as a labeled dataset and rescale all images from 20 \times 20 to 24 \times 24.
      sub_image = []
desired_dimension = (24, 24)
height, width = image.shape[:2]
print(height, width)
      for i in range(height // 20):
    sub_image.append([])
    for j in range(width // 20):
                sub\_image[-1].append(cv2.resize(image[i*20:(i+1)*20, j*20:(j+1)*20], desired\_dimension))
      sub_image = np.array(sub_image)
      # Create a 50x100 array and initialize it to -1 label = np.full((50, 100), -1)
          ^ i in range(10):
label[i*5:(i+1)*5, :] = i
      # Split sub_image into training and testing sets sub_train, sub_test, train_label, test_label = train_test_split(sub_image, label, test_size-0.2, random_state-42) flat_train_label = train_label.flatten()
      flat_test_label = test_label.flatten()
print(flat_train_label.shape)
```

a. 30 pts. 6 hrs. Then try recognition by using test images and report the accuracy percent for these 4 (classifier, feature type) combinations: (KNN K = 5, gray scale features), (KNN K = 5, HOG features), (KNN K = 1, gray scale features), (KNN K = 1, HOG features). For K = 5, if 2 or more digits have the same maximum vote count, just report one of them. For HOG, use 20° histogram orientations of non-directional gradients (ie., 9 bins) with 16×16 overlapping pixel windows for each 24×24 digit. Each digit will, thus, have 144 HOG features from $4 \times 4 \times 9$, with 9 histo values $\times 4$ per 16×16 block $\times 4$ such blocks per 24×24 image.

```
    # Convert X_train and X_test to float and scale them
    float_train = np.float32(sub_train) / 255.0
    float_test = np.float32(sub_test) / 255.0

# Calculate the gradients for the training and testing sets
    Gx_train = []
    Gy_train = []

for row in float_train:
    for ing in row:
        Gx = cv2.5obe1(img, cv2.CV_32F, 1, 0, ksize=1)
        Gy = cv2.5obe1(img, cv2.CV_32F, 0, 1, ksize=1)
        Gx_train.append(Gx)
        Gy_train.append(Gy)

Gx_train = np.array(Gx_train)
    Gy_train = np.array(Gx_train)
    print(Gx_train.shape, Gy_train.shape)

D (4000, 24, 24, 3) (4000, 24, 24, 3)
```

```
test_hog_feature = np.zeros((len(sub_test), len(sub_test[0]), 4*4*nbins))
        for i in range(len(sub_test)):
              fini ange(Len(sub_test[i])):
    feature_vector = hog.compute(sub_test[i][j],winStride,padding,locations)
    feature_vector = feature_vector.reshape(-1) # Flatten the 3D array to 1D
    test_hog_feature[i][j] = feature_vector
        test_hog_feature = test_hog_feature.reshape((test_hog_feature.shape[0]*test_hog_feature.shape[1], test_hog_feature.shape[2]))
        print("Number of test Features: ", number of test features)
Number of train Features: (4000, 144)
Number of test Features: (1000, 144)
0
       sub_train_gray = []
for row in sub_train:
             for img in row:

gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray_img_flat = gray_img.flatten()
sub_train_gray.append(gray_img_flat)
        sub_test_gray = []
        for row in sub_test:
for img in row:
                  gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray_img_flat = gray_img.flatten()
sub_test_gray.append(gray_img_flat)
knn_classifier = KNeighborsClassifier(n_neighbors=5)
knn_classifier.fit(train_hog_feature, flat_train_label)
        HOG_K5 = knn_classifier.predict(test_hog_feature)
        accuracy = sum(HOG_K5 == flat_test_label) / len(flat_test_label)
print("HOG_K5 Accuracy:", accuracy)
        knn_classifier = KNeighborsClassifier(n_neighbors-1)
knn_classifier.fit(train_hog_feature, flat_train_label)
HOG_K1 = knn_classifier.predict(test_hog_feature)
        accuracy = sum(HOG_K1 == flat_test_label) / len(flat_test_label)
print("HOG_K1 Accuracy:", accuracy)
        knn_classifier.fit(sub_train_gray, flat_train_label)
GRAY_K5 = knn_classifier.predict(sub_test_gray)
        accuracy = sum(GRAY_K5 == flat_test_label) / len(flat_test_label)
print("GRAY_K5 Accuracy:", accuracy)
        knn_classifier.fit(sub_train_gray, flat_train_label)
GRAY_K1 = knn_classifier.predict(sub_test_gray)
        accuracy = sum(GRAY_K5 == flat_test_label) / len(flat_test_label)
print("GRAY_K1 Accuracy:", accuracy)
       HOG_K1 Accuracy: 0.949
GRAY_K5 Accuracy: 0.924
GRAY_K1 Accuracy: 0.924
```

- b. Use KNN K = 1 with HOG features to report:
- i. 5 pts. 1.0 hrs. Result for 2 test images per digit 0..9 cut out from digits.png itself but not aligned at the original 20 x 20 image, so you may have smaller or bigger sizes. You will have to rescale each test image to 24 x 24 because HOG must be recalculated after scaling.

```
b desired_dimension = (24, 24)
             row_start = ((random.randint(0, 8)*5) + 3) * 20
col_start = random.randint(0, 94) * 20
              cut_image = image[row_start:row_start+(20*4), col_start:col_start+(20*4)]
              sub_cut = []
desired_dimension = (24, 24)
             height, width = cut_image.shape[:2]
for i in range(height // 20):
                       sub_cut.append([])
                       sub_cut.append([])
for j in range(width // 20):
    sub_cut[-1].append(cv2.resize(cut_image[i*20:(i+1)*20, j*20:(j+1)*20], desired_dimension))
            rirst_label = int(((row_start/z0)-3)/5)
ran_col = random_randint(0, 3)

test_cut = []
train_cut = []
test_cut_label = [first_label, first_label, first_label+1, first_label+1]
train_cut_label = [first_label, first_label, first_label, first_label, first_label, first_label, first_label, first_label+1, first_
                        for col in range(len(sub_cut[row])):
    if col == ran_col:
                                           test_cut.append(sub_cut[row][col])
cv2.rectangle(cut_image, (ran_col*20, 0), ((ran_col*20)+20, 80), (255, 255, 255), 2)
            # Display the image with bounding box
my_imshow('Selected Sub-Image with Bounding Box', cut_image)
             for img in test_cut:
    my_imshow('Test-Image', img)
            Selected Sub-Image with Bounding Box

2022

373

373

373

373

574
             Test
            Test-Image
             Test-Image
             3
            Test-Image
0
            blockSize = (16,16)
           cellSize = (8,8)
            nbins = 9
derivAperture = 1
           winSigma = 4.
histogramNormType = 0
           hog = cv2.HOGDescriptor(winSize,blockSize,blockStride,cellSize,nbins,derivAperture,winSigma, histogramNormType,L2HysThreshold,gammaCorrection)
           padding = (8,8)
locations = ((0,0),)
              for i in range(len(train_cut)):
                      feature_vector = hog.compute(train_cut[i],winStride,padding,locations)
feature_vector = feature_vector.reshape(-1)
train_cut_hog_feature[i] = feature_vector
            test_cut_hog_feature = np.zeros((len(test_cut), 4*4*nbins))
             for i in range(len(test cut)):
                       feature_vector = hog.compute(test_cut[i],winStride,padding,locations)
feature_vector = feature_vector.reshape(-1) # Flatten the 3D array to 1D array
```

```
print(train_cut_hog_feature.shape, len(train_cut_label))
knn_classifier = KNeighborsClassifier(n_neighbors=1)
knn_classifier.fit(train_cut_hog_feature, train_cut_label)
HOG_K1 = knn_classifier.predict(test_cut_hog_feature)
accuracy = sum(HOG_K1 == test_cut_label) / len(test_cut_label)
print("HOG_K1 Accuracy:", accuracy)

[-> (12, 144) 12
HOG_K1 Accuracy: 1.0
```

ii. 5 pts. 1.0 hrs. Result for 2 test images per digit 0..9 you create in a Paint program to see if you can find your character. Each test image should be big to start with such as 50x50, but you should rescale it to 24×24 before testing.

```
↑ ↓ ⊖ 🗏 🛊 🖟 🔋 🗄
path = ""
fileName5 = path + "5.png"
       fileName6 = path + "6.png
      #RGB images in BGR order in OpenCV
image5 = cv2.imread(fileName5, cv2.IMREAD_COLOR)
image6 = cv2.imread(fileName6, desired_dimension)
image6 = cv2.imread(fileName6, cv2.IMREAD_COLOR)
       image6 = cv2.resize(image6, desired_dimension)
      desired dimension = (24, 24)
      desired_dimension = (24, 24
test_cut_label = [5, 6]
winSize = desired_dimension
blockSize = (16,16)
blockStride = (8,8)
       cellSize = (8,8)
nbins = 9
       derivAperture = 1
       winSigma = 4.
      histogramNormType = 0
L2HysThreshold = 2.00000000000000001e-01
       gammaCorrection = 0
       hog = cv2.HOGDescriptor(winSize,blockSize,blockStride,cellSize,nbins,derivAperture,winSigma,
                                             histogramNormType,L2HysThreshold,gammaCorrection)
      winStride = (8,8)
      padding = (8,8)
locations = ((0,0),)
      my_imshow("img5", image5)
my_imshow("img6", image6)
       train_cut_hog_feature = np.zeros((len(train_cut), 4*4*nbins))
        for i in range(len(train cut)):
            fair range(len(train_cut)).

feature_vector = hog.compute(train_cut[i],winStride,padding,locations)
feature_vector = feature_vector.reshape(-1)
train_cut_hog_feature[i] = feature_vector
       test_cut = [image5, image6]
test_cut_hog_feature = np.zeros((len(test_cut), 4*4*nbins))
       for i in range(len(test_cut)):
    feature_vector = hog.compute(test_cut[i],winStride,padding,locations)
             feature_vector = feature_vector.reshape(-1) # Flatten the 3D array to 1D array
test_cut_hog_feature[i] = feature_vector
       print(train_cut_hog_feature.shape, len(train_cut_label))
knn_classifier = KNeighborsClassifier(n_neighbors=1)
       knn_classifier.fit(train_cut_hog_feature, train_cut_label)
HOG_K1 = knn_classifier.predict(test_cut_hog_feature)
       accuracy = sum(HOG_K1 == test_cut_label) / len(test_cut_label)
print("HOG_K1 Accuracy:", accuracy)
       5
        -6
       (12, 144) 12
```

iii. 5 pts. 1.0 hrs. Result for 4 test images of digit 5 you create in Paint with white background.

```
စေ 🗏 💠 🖟 🔋 🗄
path = ""
fileName51 = path + "5.1.png"
fileName52 = path + "5.2.png"
fileName53 = path + "5.3.png"
fileName54 = path + "5.4.png"
            #RGB images in BGR order in OpenCV
image51 = cv2.imread(fileName51, cv2.IMREAD_COLOR)
            image51 = cv2.imread(fileName51, cv2.IMREAD_COLOR)
image52 = cv2.resize(image51, desired_dimension)
image52 = cv2.imread(fileName52, cv2.IMREAD_COLOR)
image52 = cv2.resize(image52, desired_dimension)
image53 = cv2.imread(fileName53, cv2.IMREAD_COLOR)
image53 = cv2.resize(image53, desired_dimension)
image54 = cv2.imread(fileName54, cv2.IMREAD_COLOR)
image54 = cv2.imread(fileName54, cv2.IMREAD_COLOR)
image54 = cv2.resize(image54, desired_dimension)
            test_cut_label = [5, 5, 5, 5]
winSize = desired_dimension
            blockSize = (16,16)
blockStride = (8,8)
            nbins = 9
derivAperture = 1
            histogramNormType = 0
L2HysThreshold = 2.00000000000000001e-01
gammaCorrection = 0
            hog - cv2.HOGDescriptor(winSize,blockSize,blockStride,cellSize,nbins,derivAperture,winSigma, histogramNormType,L2HysThreshold,gammaCorrection)
            padding = (8,8)
locations = ((0,0),)
            my_imshow("imh51", image51)
my_imshow("imh52", image52)
my_imshow("imh53", image53)
my_imshow("imh54", image54)
            for i in range(lan(train_cut)):
feature_vector = hog.compute(train_cut[i],winStride,padding,locations)
feature_vector = feature_vector.reshape(-1)
train_cut_hog_feature[i] = feature_vector
            test_cut = [image51, image52, image53, image54]
test_cut_hog_feature = np.zeros((len(test_cut), 4*4*nbins))
for i in range(len(test_cut)):
                     feature_vector = hog.compute(test_cut[i],winStride,padding,locations)
feature_vector = feature_vector.reshape(-1) # Flatten the 3D array to 1D array
test_cut_hog_feature[i] = feature_vector
            print(train_cut_hog_feature.shape, len(train_cut_label))
knn_classifier = KNeighborsClassifier(n_neighbors=1)
            knn_classifier.fit(train_cut_hog_feature, train_cut_label)
HOG_K1 = knn_classifier.predict(test_cut_hog_feature)
            accuracy = sum(HOG_K1 == test_cut_label) / len(test_cut_label)
print("HOG_K1 Accuracy:", accuracy)
          imh51
5
imh52
5
imh53
5
imh54
5
(12, 144) 12
H0G_K1 Accuracy: 1.0
```

c. 20 pts. 3 hrs. For each 0..9 digit in your dataset of 100 characters, use OpenCV's auto threshold and then connected components to find the bounding box. Use that bounding box to cut out each gray-scale image and resize each back to 24×24 . This will be your new dataset (training and testing, combined). Report the accuracy percent for KNN K = 1 using HOG features. Is the result here better than in problem 2a for KNN = 1 using HOG features?

```
img = cv2.imread('digits.png', 0)
     thresh = cv2.threshold(img, 0, 255, cv2.THRESH_OTSU)[1]
     num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(thresh, connectivity=8)
     images = []
labels = []
for i in range(1, num_labels):
         resized_img = cv2.resize(digit_img, (24, 24))
         images.append(resized_img)
labels.append(i // 500)
     desired_dimension = (24, 24)
test_cut_label = [5, 5, 5, 5, 5]
winSize = desired_dimension
     blockSize = (16,16)
blockStride = (8,8)
     cellSize = (8,8)
nbins = 9
     derivAperture = 1
     histogramNormType = 0
     hog = cv2.HOGDescriptor(winSize,blockSize,blockStride,cellSize,nbins,derivAperture,winSigma,
                                 histogramNormType,L2HysThreshold,gammaCorrection)
     train_features = np.array([hog.compute(cv2.resize(img, desired_dimension)) for img in img_train]).reshape(len(img_train), -1)
     test_features = np.array([hog.compute(cv2.resize(img, desired_dimension)) for img in img_test]).reshape(len(img_test), -1)
     knn_classifier = KNeighborsClassifier(n_neighbors=1)
knn_classifier.fit(train_features, y_train)
     accuracy = np.mean(predictions == y_test)
     print("HOG_K1 Accuracy:", accuracy)
```

Ans: No