COMP9414

Lecturers

- Dr Francisco Cruz (LiC Lecturer in Charge)
 - https://www.unsw.edu.au/staff/francisco-cruz-naranjo

- https://www.sydney.edu.au/engineering/about/our-people/academic-staff/armin-chitizadeh.html
- Dr Maryam Hashemi (Guest Lecturer in Week 7)
 - https://scholar.google.com/citations?user=PcZblrsAAAAJ&hl=en

Admin Team

- Dr Maryam Hashemi (Course admin)
 - https://maryamhashemi1995.github.io/index3.html

John Chen (Forums monitoring)

Tutors

- Dr. Jingying Gao, jingying.gao@unsw.edu.au
- Kiran Jeet Kaur, <u>kiran jeet.kaur@unsw.edu.au</u>
- Leman Kirme, l.kirme@unsw.edu.au
- Xinyi Li, xinyi.li17@student.unsw.edu.au
- John Chen, xin.chen9@student.unsw.edu.au
- Zahra Donyavi, z.donyavi@unsw.edu.au
- Janhavi Jain, j.jain@unsw.edu.au
- Maher Mesto, m.mesto@unsw.edu.au

- Peter Ho, <u>peter.ho2@student.unsw.edu.au</u>
- Yixin Kang, yixin.kang@student.unsw.edu.au
- Jonas Macken, j.macken@student.unsw.edu.au
- Malher Patel, malhar.patel@unsw.edu.au
- Ramya Kumar, <u>ramya.kumar1@unsw.edu.au</u>
- Hadha Afrisal, hadha.afrisal@unsw.edu.au
- Joffrey Ji, joffrey.ji@student.unsw.edu.au
- Abhishek Pradeep, <u>abhishek.pradeep@student.unsw.edu.au</u>

Session will be BYOD. Alternatively, you can borrow a laptop.
 See https://taggi.cse.unsw.edu.au/FAQ/Borrow_A_Laptop/

• What is intelligence?

- What is intelligence?
 - it can be described as the ability to perceive or infer information, and to retain it as knowledge to be applied towards adaptive behaviours within an environment or context [Wikipedia].

- What is intelligence?
 - it can be described as the ability to perceive or infer information, and to retain it as knowledge to be applied towards adaptive behaviours within an environment or context [Wikipedia].

What is artificial intelligence?

- What is intelligence?
 - it can be described as the ability to perceive or infer information, and to retain it as knowledge to be applied towards adaptive behaviours within an environment or context [Wikipedia].

- What is artificial intelligence?
 - Artificial intelligence (AI) is intelligence demonstrated by machines, as opposed to intelligence displayed by humans or by other animals [Wikipedia].

- What is intelligence?
 - it can be described as the ability to perceive or infer information, and to retain it as knowledge to be applied towards adaptive behaviours within an environment or context [Wikipedia].

- What is artificial intelligence?
 - Artificial intelligence (AI) is intelligence demonstrated by machines, as opposed to intelligence displayed by humans or by other animals [Wikipedia].

Can you give some examples?

Al is not ML is not ANN

Current (mis)understanding of Al

How are currently perceived AI-based systems?

Current (mis)understanding of Al

But in reality, it's still an open problem

Course Plan

- Introduce AI concepts through intelligent agents
- Start with very simple reactive agents
- Progress by adding more capabilities
- End with agents that learn, reason and communicate

Course Plan

Week 1

- 1 Introduction
- 1.1 History of Al
- 1.2 Agents
- 1.3 Knowledge representation
- 1.3.1 Feature-based vs iconic representations
- 1.3.2 Logic
- 1.3.3 Learning rules

Week 2

- 2 Search
- 2.1 Uninformed search
- 2.2 Informed search
- 2.3 Informed vs uninformed

Week 3

- 3 Neural Networks
- 3.1 Neurons biological and artificial
- 3.2 Single-layer perceptron
- 3.3 Linear separability
- 3.4 Multi-layer networks
- 3.5 Backpropagation
- 3.6 Neural engineering methodology

Week 4

- 4 Rewards instead of goals
- 4.1 Elements of reinforcement learning
- 4.2 Exploration vs exploitation
- 4.3 The agent-environment interface
- 4.4 Values functions
- 4.5 Temporal-difference prediction

Week 5

- 5 Metaheuristics
- 5.1 Asymptotic complexity
- 5.2 Classes of problems
- 5.3 Linear programming
- 5.4 Search space
- 5.5 Metaheuristics with and without memory
- 5.6 Population-based methods

Week 6

Recap and consultation

Week 7

- 7 Computer vision
- 7.1 Image processing
- 7.2 Scene analysis
- 7.3 Cognitive vision

Week 8

- 8 Language processing
- 8.1 Formal languages
- 8.1.1 Chomsky's hierarchy
- 8.1.2 Grammars
- 8.2 Regular expressions
- 8.3. Minimum edit distance and words
- 8.4 Natural languages: N-gram models

Week 9

- 9 Reasoning with uncertain information
- 9.1 Confidence factors
- 9.1 Probability and probabilistic inference
- 9.2 Bayes nets
- 9.3 Fuzzy logic

Week 10

- 10 Human-aligned intelligent robotics
- 10.1 Human interaction and human-in-the-
- loop robot learning
- 10.2 Explainability and interpretability
- 10.3 Safe robot exploration
- 10.4 Ethics

Related Course

- COMP3431 Robot Software Architectures
- COMP4418 Knowledge Representation and Reasoning
- COMP9417 Machine Learning and Data Mining
- COMP9444 Neural Networks and Deep Learning
- COMP9491 Applied Artificial Intelligence
- COMP9517 Computer Vision
- COMP6713 Natural Language Processing
- COMP9418 Advance Machine Learning
- COMP9727 Recommender Systems

Timetable

- Lecture:
 - Mon 6:00 9:00pm
 Mathews Theatre A
 (K-D23-201)
- Tutorials:

Section	Class ID	Time	Location	Tutor	Email
<u>F18A</u>	<u>4374</u>	Fri 18:00 - 20:00 (Weeks:1-10)	Quadrangle G027 (K-E15-G027)	Jingying Gao	z5234895@ad.unsw.edu.au
<u>H09A</u>	<u>4375</u>	Thu 09:00 - 11:00 (Weeks:1-10)	Mathews 226 (K-F23-226)	Kiran Jeet Kaur	z5434806@ad.unsw.edu.au
<u>H11A</u>	<u>4376</u>	Thu 11:00 - 13:00 (Weeks:1-10)	Mathews 226 (K-F23-226)	Kiran Jeet Kaur	z5434806@ad.unsw.edu.au
<u>H16A</u>	<u>4377</u>	Thu 16:00 - 18:00 (Weeks:1-10)	Webster 250 (K-G14-250)	Leman	z5410109@ad.unsw.edu.au
<u>H16B</u>	<u>4378</u>	Thu 16:00 - 18:00 (Weeks:1-10)	Webster 251 (K-G14-251)	Xinyi Li	z5508701@ad.unsw.edu.au
<u>H16C</u>	4379	Thu 16:00 - 18:00 (Weeks:1-10)	Online	John Chen	xin.chen9@student.unsw.edu.au
<u>H16D</u>	4380	Thu 16:00 - 18:00 (Weeks:1-10)	Mathews 226 (K-F23-226)	Abhishek Pradeep	z5454612@ad.unsw.edu.au
<u>H18A</u>	<u>4381</u>	Thu 18:00 - 20:00 (Weeks:1-10)	Webster 250 (K-G14-250)	Leman Kirme	z5410109@ad.unsw.edu.au
<u>H18B</u>	4382	Thu 18:00 - 20:00 (Weeks:1-10)	Webster 251 (K-G14-251)	Janhavi Jain	z5431064@ad.unsw.edu.au
<u>H18C</u>	4383	Thu 18:00 - 20:00 (Weeks:1-10)	Webster 302 (K-G14-302)	Jingying Gao	z5234895@ad.unsw.edu.au
<u>H18D</u>	4384	Thu 18:00 - 20:00 (Weeks:1-10)	Mathews 306 (K-F23-306)	Maher Mesto	m.mesto@unsw.edu.au
<u>H18E</u>	<u>4385</u>	Thu 18:00 - 20:00 (Weeks:1-10)	Mathews 226 (K-F23-226)	John Chen	xin.chen9@student.unsw.edu.au
<u>T09A</u>	4386	Tue 09:00 - 11:00 (Weeks:1-10)	H13 Lawrence West 2035 (K-H13-2035)	Peter Ho	peter.ho2@student.unsw.edu.au
<u>T11A</u>	<u>4387</u>	Tue 11:00 - 13:00 (Weeks:1-10)	H13 Lawrence West 2035 (K-H13-2035)	Yixin Kang	z5542052@ad.unsw.edu.au
<u>T16A</u>	<u>4388</u>	Tue 16:00 - 18:00 (Weeks:1-10)	Rupert Myers 440 (K-M15-440)	Jonas Macken	z5208799@ad.unsw.edu.au
<u>T16B</u>	4389	Tue 16:00 - 18:00 (Weeks:1-10)	Rupert Myers 540 (K-M15-540)	Xinyi Li	z5508701@ad.unsw.edu.au
<u>T16C</u>	<u>4390</u>	Tue 16:00 - 18:00 (Weeks:1-10)	Rupert Myers 560 (K-M15-560)	Yixin Kang	z5542052@ad.unsw.edu.au
<u>T16D</u>	<u>4391</u>	Tue 16:00 - 18:00 (Weeks:1-10)	Rupert Myers 420 (K-M15-420)	Peter Ho	peter.ho2@student.unsw.edu.au
<u>T18A</u>	<u>4392</u>	Tue 18:00 - 20:00 (Weeks:1-10)	Quadrangle 1046 (K-E15-1046)	Malher Patel	malhar.patel@unsw.edu.au
<u>T18B</u>	<u>4393</u>	Tue 18:00 - 20:00 (Weeks:1-10)	Quadrangle 1047 (K-E15-1047)	Maher Mesto	m.mesto@unsw.edu.au
<u>T18C</u>	<u>4394</u>	Tue 18:00 - 20:00 (Weeks:1-10)	Quadrangle G047 (K-E15-G047)	Janhavi Jain	z5431064@ad.unsw.edu.au
<u>T18D</u>	<u>4395</u>	Tue 18:00 - 20:00 (Weeks:1-10)	Online or Quadrangle G046 (K-E15-G046)	Ramya Kumar	z5427178@ad.unsw.edu.au
<u>T18E</u>	<u>4396</u>	Tue 18:00 - 20:00 (Weeks:1-10)	Quadrangle G040 (K-E15-G040)	Abhishek Pradeep	z5454612@ad.unsw.edu.au
<u>W16A</u>	<u>4397</u>	Wed 16:00 - 18:00 (Weeks:1-10)	Law Building 202 (K-F8-202)	Jonas Macken	z5208799@ad.unsw.edu.au
<u>W16B</u>	<u>4398</u>	Wed 16:00 - 18:00 (Weeks:1-10)	Law Building 275 (K-F8-275)	Zahra Donyavi	z.donyavi@unsw.edu.au
<u>W16C</u>	4399	Wed 16:00 - 18:00 (Weeks:1-10)	Law Building 276 (K-F8-276)	Hadha Afrisal	hadha.afrisal@unsw.edu.au
<u>W16D</u>	<u>4400</u>	Wed 16:00 - 18:00 (Weeks:1-10)	Law Building 201 (K-F8-201)	Joffrey Ji	z5450981@ad.unsw.edu.au
<u>W18A</u>	<u>4401</u>	Wed 18:00 - 20:00 (Weeks:1-10)	Law Building 202 (K-F8-202)	Ramya Kumar	z5427178@ad.unsw.edu.au
<u>W18B</u>	4402	Wed 18:00 - 20:00 (Weeks:1-10)	Law Building 275 (K-F8-275)	Zahra Donyavi	z.donyavi@unsw.edu.au
<u>W18C</u>	4403	Wed 18:00 - 20:00 (Weeks:1-10)	Law Building 276 (K-F8-276)	Hadha Afrisal	hadha.afrisal@unsw.edu.au
<u>W18D</u>	4404	Wed 18:00 - 20:00 (Weeks:1-10)	Law Building 201 (K-F8-201)	Joffrey Ji	z5450981@ad.unsw.edu.au
<u>W18E</u>	4405	Wed 18:00 - 20:00 (Weeks:1-10)	Law Building 101 (K-F8-101)	Malher Patel	malhar.patel@unsw.edu.au

Important dates

- First lecture: Monday 2nd June 2025
- Public holyday: Monday 9th June 2025 Guest video-lecture
- Last lecture: Monday 4th August 2025
- Guest lecture: Week 7, Monday 14th July 2025
- Assignment 1: open by Week 2, deadline Week 5 (discussion in week 6)
- Assignment 2: open by Week 6, deadline Week 9 (discussion in week 10)
- Exam: Exams period

Assessment

- Assessment will consist of:
 - Assignment 1: 25%.
 - Assignment 2: 25%.
 - Final exam 50%.
- To pass, you must score:
 - A combined mark of at least 50/100.
 - At least 20/50 for the exam (or 40%).

Student Conduct

- Assignments will be done individually.
 - Students must participate in the discussion.
- Late deliveries will be accepted subject to 5% discount per day from the results (including weekends and public holidays), for up to 5 days, after which mark is 0.
- It's students' responsibility to have code discussions with tutors in time.
- Plagiarism is academic misconduct.

Contact

- The first contact should be the forums.
- In special circumstances you could also email to the lecturing team (cs9414@cse.unsw.edu.au)

Texts & References

- Poole, D.L. & Mackworth, A. Artificial Intelligence: Foundations of Computational Agents. Second Edition. Cambridge University Press, Cambridge, 2017.
- Russell, S.J. & Norvig, P. Artificial Intelligence: A Modern Approach.
 Fourth Edition, Pearson Education, Hoboken, NJ, 2021.
- Sutton, R. & Barto, A. Reinforcement Learning: An Introduction. MIT press. 2018.
- Jurafsky, D. & Martin, J. H. Speech and Language Processing. Stanford.
 2023.

Feedback

- In case you want to provide anonymous feedback on these lectures, please visit:
- https://forms.gle/KBkN744QuffuAZLF8

