Završni međuispit iz Matematike 3R

28.01.2013.

1. (5 bodova)

- a) Iskažite i dokažite multinomni teorem.
- b) Neka su n_1, n_2, n_3, n_4, n_5 prirodni brojevi takvi da je njihova suma $n_1+n_2+n_3+n_4+n_5$ djeljiva s 5. Dokažite da je suma $n_1^5+n_2^5+n_3^5+n_4^5+n_5^5$ djeljiva s 5.

2. **(5 bodova)**

Studenti tijekom semestra imaju 3 školske zadaće. Svaka školska zadaća nosi 10 bodova. Neka je S skup studenata koji imaju ukupno najviše 10 bodova. Koliko studenata mora biti u skupu S da bi postojala 3 studenta iz skupa S s identičnim brojem bodova na svakoj školskoj zadaći?

3. **(5 bodova)**

Koliko ima prirodnih brojeva koji dijele bar jedan od brojeva 10^{60} , 20^{50} , 30^{40} ?

4. (5 bodova)

Izračunajte sumu

$$S_n = 1^3 + 2^3 + \dots + n^3.$$

5. **(5 bodova)**

Nađite funkciju izvodnicu za niz

$$a_n = \frac{n^3}{n^2 + 3n + 2}, \ n \ge 0.$$

6. **(5 bodova)**

Postoje li povezani jednostavni grafovi sa sljedećim nizovima stupnjeva? Postoje li bipartitni grafovi sa sljedećim nizovima stupnjeva? Obrazložite odgovore.

- a) (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5),
- c) (1, 1, 1, 1, 1, 1, 2, 2, 3, 3),
- d) (3,3,3,3,3,5,5,5),
- e) (2, 2, 2, 2, 2, 2, 2).

7. (5 bodova)

Zadan je potpuni bipartitni graf $K_{3,8}$.

- a) Koliko je najmanje bridova potrebno dodati zadanom grafu da bi bio eulerovski? Skicirajte jedno takvo rješenje.
- b) Je li moguće oduzimanjem bridova zadanog grafa doći do eulerovskog grafa? Obrazložite tvrdnju.

8. **(5 bodova)**

Riješite problem kineskog poštara za težinski graf sa slike. Detaljno opišite sve korake provedenog algoritma.

Zabranjena je uporaba kalkulatora. Ispit se piše 120min.

Rješenja završnog međuispita iz Matematike 3R 28.01.2013.

1. (5 bodova)

- a) Knjiga
- b)Pomoću multinomnog teorema, obje strane jednakosti moraju biti djeljive s 5.

2. **(5 bodova)**
$$|S| \ge 2 \cdot {13 \choose 3} + 1 = 573.$$

3. (5 bodova)

Formula uključivanja:isključivanja:

$$|A_1 \cup A_2 \cup A_3| = 61 \cdot 61 + 101 \cdot 51 + 41 \cdot 41 \cdot 41 - 61 \cdot 51 - 41 \cdot 41 - 41 \cdot 41 + 41 \cdot 41 \cdot 1.$$

4. (5 bodova)
$$S_n = \left(\frac{n(n+1)}{2}\right)^2.$$

5. **(5 bodova)**

$$g(x) = \frac{x}{(1-x)^2} - 3\frac{1}{1-x} + \frac{1}{x}ln|1-x| + \frac{8}{x^2}(x-ln|1-x|).$$

6. **(5 bodova)**

- a) Ne. Ne.
- b) Da. Da. (Q_4)
- c) Ne. Ne.
- d) Da. Da. $K_{3,5}$.
- e) Da. Ne.

7. (5 bodova)

- a) 4 brida
- b) Moguće je. Novi graf ima niz stupnjeva (2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 4).

8. (5 bodova)

Fleuryev algoritem + Dijkstrin algoritam: 10+58=68. Ispisati šetnju.