# Signale und Systeme 2

FS 24 Prof. Dr. Heinz Mathis Autoren: Simone Stitz, Laurin Heitzer

Version: 1.0.20240529 https://github.com/P4ntomime/signale-und-systeme-2



# **Inhaltsverzeichnis**

| rinte | 1                                                         | 4 | 1.9 Nonogramme (5. 595)                           | _ |
|-------|-----------------------------------------------------------|---|---------------------------------------------------|---|
|       | Grundtypen (S. 291)                                       |   |                                                   | 3 |
|       | Frequnezgang H(jimg omega) – Übertragungsfunktion H(s)    |   |                                                   | 3 |
|       | Approximation im Frequnezbereich                          |   | 1.12 Approximation nach Tschebyscheff-I           |   |
|       | Ideales Tiefpassfilter (S. 297)                           |   | 1.13 Approximation nach Tschebyscheff-II          |   |
| 1.5   | Amplitudengang mit char. Funktion K(Omega2)               | 2 | · · · · · · · · · · · · · · · · · · ·             |   |
| 1.6   | Approximation mittels kritisch-gedämpfter Filter (S. 299) | 2 | 1.14 Approximation nach Cauer                     | 2 |
|       | Standard-Filtertypen – Überblick                          |   | 1.15 Approximation nach Bessel                    | 3 |
| 1.8   | Vorgehen Filter dimensionieren / auslegen                 | 2 | 1.16 Gegenüberstellung der Filter-Approximationen | 3 |
|       |                                                           |   |                                                   |   |

## 1 Filter

#### 1.1 Grundtypen (S. 291)

Filter sind mehrheitlich frequnezselektive, lineare Netzwerke, welche gewisse Frequenzbereiche übertragen und andere dämpfen. Die fünf frequnezselektiven Grundtypen sind:

- Tiefpass (TP)
- Bandpass (BP)
- Allpass

- · Hochpass (HP)
- Bandsperre, Notch (BS)

# **1.2** Frequeezgang $H(j\omega)$ – Übertragungsfunktion H(s) (s. 294)

Für den Frequnezgang  $H(j\omega)$  und die Übertragungsfunktion H(s) gelten die folgenden Zu-

$$|H(j\omega)|^2 = H(j\omega) \cdot H^*(j\omega) = H(j\omega) \cdot H(-j\omega) = H(s) \cdot H(-s) \Big|_{s=j\omega}$$

$$H(s) \cdot H(-s) = |H(j\omega)|^2$$

**Hinweis:**  $|H(j\omega)|^2$  ist immer eine Funktion in  $\omega^2$ , da der Amplitudengang eine gerade Funktion ist!

Da in der Praxis **jeweils nur** H(s) **interessant** ist, muss H(s) aus  $|H(j\omega)|^2$  'isoliert' werden. Dies ist durch den folgenden Zusammenhang möglich.

$$\underbrace{\frac{N(s)}{D(s)} \cdot \frac{N(-s)}{D(-s)}}_{H(s)} = |H(j\omega)|^2 \Big|_{\omega^2 = -s^2}$$

**Hinweis:** D(s) muss aus Stabilitätsgründen ein Hurwitz-Polynom sein!

# 1.3 Approximation im Frequnezbereich

Die wichtigste Aufgabe der Filtertheorie ist die Bestimmung der Übertragungsfunktion, die einen vorgegebenen Frequenzgang gewährleistet. Zuerst soll der Amplitudengang  $|H(j\omega)|$  im Frequezzbereich approximiert werden. Der vorgeschriebene Phasengang wird dann allenfalls mit zusätzlichen Allpass-Filtern erreicht.

# 1.3.1 Toleranzschema (Stempel und Matritze) – Filterspezifikation



Die Anforderungen an ein Filter werden häufig im Toleranzschema beschrieben. Dieses steht jeweils 'auf dem Kopf'.

- Im Durchlassbereich (DB) bestimmt der Stempel die maximal zulässige Dämpfung  $A_{max}$
- Im Sperrbereich (SB) bestimmt die Matritze die minimal nötige **Dämpfung**

$$A_{\rm dB}(\omega) = 10 \cdot \log \left(\frac{1}{|H(\omega)|^2}\right) = -20 \cdot \log(|H(\omega)|) \quad \Rightarrow \text{ D\"{a}mpfung!}$$

# 1.3.2 Frequenznormierung

Um möglist kompakte Tabellen zu haben, wird auf Frequenzen normiert. Grundsätzlich kann auf eine beliebige Frequenz normiert werden. Allerdings gilt grundsätzlich:

- **HP / TP:** Normierung bezüglich **Grenzfrequenz** des Durchlassbereichs  $\omega_r = \omega_D$
- BP / BS: Normierung bezüglich der Mittenfrequenz  $\omega_r = \omega_m$



# Normierte Grössen

$$S = \frac{s}{\omega_r}$$
  $\Omega =$ 

Hinweis: Zur Entnormierung wird jeweils S in der normierter Funktion durch  $\frac{s}{\omega}$  er-

#### 1.4 Ideales Tiefpassfilter (S. 297)



- DB: keine Dämpfung
- SB: kein Ausgangssignal
- Akausale Impulsantwort h(t)

- $H(s) \cdot H(-s) = |H(j\omega)|^2$

Die Übertragungsfunktion H(s) ergibt sich als:

· Impuls- und Sprungantwort können nicht oszillieren

Geringe Flankensteilheit im Übergangsbereich

Die Übertragungsfunktion 
$$H(s)$$
 e 
$$H(s) = \frac{1}{s}$$

Durchlassbereich (DB)

Sperrbereich (SB)

der **negativen**  $\sigma$ -Achse.

Ordnung des Filters

3 dB-Punkt jedes der *n* Teilfilter  $\omega_{c}$ 

 $\Rightarrow |H(j\Omega)|^2 \approx 1$ 

 $\Rightarrow |H(j\Omega)|^2 \approx 0$ 

Will man bei der Kreisfrequenz  $\omega_D$  eine Dämpfung von  $\alpha$  dB haben, so muss  $\omega_c$  (der nidentischen Teilfilter) gewählt werden als

$$\omega_c = \frac{\omega_D}{\sqrt{10\frac{\alpha}{10 \cdot n} - 1}}$$

## 1.6.1 Eigenschaten kritisch-gedämpfte Filter

**1.5** Amplitudengang mit char. Funktion  $K(\Omega^2)$ 

Um Wurzelausdrücke zu vermeiden, wird der folgenden Ansatz verwendet

Im Fall des (idealen) Tiefpasses gilt füt die charakteristische Funktion  $K(\Omega^2)$ 

 $K(\Omega^2) \gg 1$ 

1.6 Approximation mittels kritisch-gedämpfter Filter (S. 299)

 $0 \le K(\Omega^2) \ll 1$ 

 $|H(\mathsf{j}\Omega)|^2 = \frac{1}{1+K(\Omega^2)}$ 

Tiefpassfilter n. Ordnung mit kritischer Dämpfung haben jeweilen einen n-fachen Pol auf

 $\text{für } 0 \leq \Omega < 1$ 

 $f \ddot{u} r \ \Omega > 1$ 

- Alle Pole am gleichen Ort auf negativer  $\sigma$ -Achse  $\Rightarrow$  Allpolfilter
- Für  $\Omega = 0$  ist für sämtliche n:  $|H(0)| = H_{\text{max}} = 1$
- Für  $\Omega = 1$  ist für sämtliche n:  $|H(j)| = \frac{max}{\sqrt{2}} = \frac{1}{\sqrt{2}} \Rightarrow 3 \text{ dB Dämpfung}$
- Für  $\Omega \gg 1$  wird  $|H(j\Omega)| \approx \frac{1}{\Omega^n} \implies -n \cdot 20 \, dB/$  Dekade
- Amplitudengang bei  $\Omega = 0$  maximal flach, da alle Ableitungen = 0 sind
- Amplitudengang ist streng-monoton fallend → keine Welligkeit
- Pole verschieben sich bei höherer Ordnung in Richtung imaginäre Achse
- Gruppenlaufzeit konstant bis  $\omega_D$



# Pol-Lagen



# 1.7 Standard-Filtertypen – Überblick

- Butterworth
  - + Kein Rippel im Durchlass- und Sperrbereich
  - + Im Durchlassbereich ist der Amplitudengang maximal flach
  - Überhöhung in der Gruppenlaufzeit der Grenzfrequenz
  - Braucht hohe Ordnung für steilen Übergang von Durchlass- zu Sperrbereich
- - Flachster Übergag von Durchlass- und Sperrbereich von allen Filtern
  - Konstante Gruppenlaufzeit
  - Für steile Filter im Durchlass- und Sperrbereich nicht geeignet
- Tschebyscheff-I
  - + Schon für kleine Ordnungen relativ steil im Übergang von Durchlass- und Sperrbereich
  - Rippel im Durchlassbereich
  - Keine konstante Gruppenlaufzeit

#### 1.8 Vorgehen Filter dimensionieren / auslegen

- 1. Gemäss Anforderungen geeigneten Filtertyp wählen (→ 1.7)
- 2. Toleranzschema gemäss Anforderungen erstellen inkl. Normierung (→ 1.3.1)
- Ordnung des Filters bestimmen (Formel oder Nomogramm → 1.9)
- **4.** Übertragungsfunktion bestimmen (→ Matlab)
- 5. Komponenten mittels Entnormierung bestimmen (Tabellen  $\Rightarrow$  1.10)

#### **1.9 Nomogramme** (S. 393)

Nomogramme können verwendet werden, um die Ordnung eines Filters zu bestimmen.

→ Ideales Tierpass ist physikaltisch nicht realisierbar. → Approximationen



# Benutzung von Nomogrammen

- **1.**  $P_1$ : Verbindung von  $A_{\text{max}}$  zu  $A_{\text{min}}$
- 2.  $P_2$ : Verlängerung von  $P_1$  bis zum 'Diagramm-
- 3. P<sub>3</sub>: Horizontale Linie vom Rand in Diagramm
- **4.**  $P_4$ : Bei  $\Omega = \frac{\Omega_S}{\Omega_D} = \frac{\omega_S}{\omega_D} = \frac{f_S}{f_D}$  vertikale Linie
- 5.  $P_5$ : Schnittpunkt: 'hochfahren' zur nächsten Die Übertragungsfunktion H(s) ergibt sich aus Kurve  $\Rightarrow$  Ordnung n der Kurve ablesen

#### 1.10 Tabellen zum Entwurf von LC-Filtern (S. 409)

Achtung: Normierung der Widerstände beachten!

## 1.11 Approximation nach Butterworth (S. 303)



Die charakteristische Funktion wird bei der Butterworth-Approximation als  $K(\Omega^2) = (\Omega^2)^n = \Omega^{2n}$  gewählt. Der Amplitudengang  $|H(j\Omega)|$  folgt somit

$$\boxed{|H(\mathsf{j}\Omega)| = \frac{1}{\sqrt{1 + \Omega^{2n}}}}$$

### 1.11.1 Eigenschaften der Butterworth-Approximation (s. 303)

- Durchlassbereich

  - Für  $\Omega=0$  ist für sämtliche n:  $|H(0)|=H_{\max}=1$  Für  $\Omega=1$  ist für sämtliche n:  $|H(j)|=\frac{H_{\max}}{\sqrt{2}}=\frac{1}{\sqrt{2}} \Rightarrow 3$  dB Dämpfung Amplitudengang bei  $\Omega=0$  maximal flach, da alle Ableitungen = 0 sind
- Sperrbereich
  - Für  $\Omega \gg 1$  wird  $|H(j\Omega)| \approx \frac{1}{\Omega^n} \Rightarrow -n \cdot 20 \, dB/$  Dekade
- Allgemein
  - Amplitudengang ist streng-monoton fallend ⇒ keine Welligkeit

#### **1.11.2 Bestimmung von** H(s) aus $|H(j\Omega)|$ (s. 304)

$$|H(\mathrm{j}\Omega)|^2 = \frac{1}{1+K(\Omega^2)} \bigg|_{\Omega^2 = -S^2} = \frac{1}{1+(-S^2)^n} = \frac{1}{H(S)} \cdot H(-S) = \frac{1}{D(S)} \cdot \frac{1}{D(-S)}$$

kann der folgende Teil isoliert betrachtet werden (D(S) ist ein Hurwitz-Polynom):

$$D(S) \cdot D(-S) = 1 + (-S^2)^n$$

Mit dem Ansatz

$$D(S) = \prod_{j=1}^{t} (S^2 + a_j \cdot S + b_j) \prod_{j=2t+1}^{n} (S - c_j)$$

wird das Produkt  $D(S) \cdot D(-S)$  bestimmt. Anschliessend wird ein Koeffizientenvergleich durchgeführt.

#### 1.11.3 Bestimmung der Pol-Lage (S. 307)

Der Zusammenhang aus Abschnitt 1.11.2 kann für die Bestimmung der Pole auf Null gesetzt werden:

$$D(S) \cdot D(-S) = 1 + (-S^2)^n \stackrel{!}{=} 0$$

Durch Auflösen der Gleichung nach S kommen die Pole auf dem Einheitskreis zu liegen.

- Abstand zwischen den Polen: 7
- Ordnung n gerade: keine reellen Pole
- Ordnung n ungerade: zwei reelle Pole bei  $\pm 1$  Für Nennerpolynom  $D(S) = \frac{1}{H(S)}$  müssen nur Pole in der linken Halbebene berücksichtigt werden!



# Beispiel: Butterworth 2. Ordnung – H(s) und Pol-Lage bestimmen

Ansatz: 
$$H(S) \cdot H(-S) = \frac{1}{D(s)} \cdot \frac{1}{H(s)} = \frac{1}{1 + (-S^2)^n}$$

Für die Ordnung n = 2 ergibt sich das Nennerpolynom zu:

$$D(S) \cdot D(-S) = 1 + S^4 \quad \Leftrightarrow \quad S^4 = -1 \quad \Leftrightarrow \quad e^{j\left(\frac{\pi}{4} + k\frac{\pi}{2}\right)}$$



Aufgelöst nach S liegen die Nullstellen auf dem Einheitskreis mit Abstand  $\frac{\pi}{4}$  verteilt.

# Rechte Halbebene Linke Halbebene

$$\begin{split} P_1 &= \frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}} & P_2 &= -\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}} \\ P_4 &= \frac{1}{\sqrt{2}} - j\frac{1}{\sqrt{2}} & P_3 &= -\frac{1}{\sqrt{2}} - j\frac{1}{\sqrt{2}} \end{split}$$

 $\Rightarrow$  Für die Übertragungsfunktion H(s) sind nur die Nullstellen in der linken Halbebene relevant!

$$H(s) = \frac{1}{D(s)} = \frac{1}{(S - P_2) \cdot (S - P_3)} = \frac{1}{S^2 + \sqrt{2}S + 1}$$

Alternativ kann die Übertragungsfunktion H(S) auch mittels folgendem Ansatz für D(S)und anschliessendem Koeffizientenvergleich von  $D(S) \cdot D(-S)$  bestimmt werden.

Ansatz: 
$$D(S) = S^2 + a_1 S + b_1$$

Koeffizientenvergleich: 
$$D(S) \cdot D(-S) = S^4 + (2b_1 - a_1^2)S + b_1^2 \stackrel{!}{=} S^4 + 1$$

⇒ 
$$a_1 = \sqrt{2}$$
 und  $b_1 = 1$  ⇒  $S^2 + \sqrt{2}S + 1$  ⇒  $H(s) = \frac{1}{D(s)} = \frac{1}{S^2 + \sqrt{2}S + 1}$ 

#### 1.11.4 Bestimmung der Filterordnung (S. 308)

Aus dem Toleranzschema lassen sich für die 'Ecken' die folgenden beiden Bedingungen aufstellen:

$$A(\Omega_D) = 10 \cdot \log_{10}(1 + \Omega_D^{2n}) = A_{\text{max}}$$

$$A(\Omega_S) = 10 \cdot \log_{10}(1 + \Omega_S^{2n}) = A_{\min}$$

Mittels Umformungen und aufgelöst nach n ergibt sich die Filter-Ordnung als [.] bedeutet 'aufrunden auf ganze Zahl'

 $n = \left[ \frac{\log_{10} \left( \frac{10^{A_{\min}/10} - 1}{10^{A_{\max}/10} - 1} \right)}{2 \cdot \log_{10} \left( \frac{\Omega_S}{\Omega_D} \right)} \right]$ 

 $\rightarrow$  Alternativ kann die Ordnung n auch mit dem Nomogramm bestimmt werder

## 1.12 Approximation nach Tschebyscheff-I

# 1.13 Approximation nach Tschebyscheff-II

# 1.14 Approximation nach Cauer

# 1.15 Approximation nach Bessel

# 1.16 Gegenüberstellung der Filter-Approximationen 1.16.1 Frequenzgänge / Lage der Pol- und Nullstellen

#### Amplitudengang [dB] Phasengang [Radiant] Gruppenlaufzeit [s] A<sub>max</sub>=3.01 dB; n=3 a) -10 -15 10<sup>0</sup> b) -10 -20 100 10 10 -5 c) -20 -10 -15 10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup> d) -20



- Butterworth
- Tschebyscheff (0.1 dB) Tschebyscheff (2 dB)