Privacy-preserving Voice Analysis via Disentangled Representations

Ranya Aloufi, Hamed Haddadi and David Boyle

CCSW'20: Proceedings of the 2020 ACM SIGSAC
Conference on Cloud Computing Security
Workshop, November 2020

Voice Privacy Issues

Health conditions

Age, gender, accent

Deep Learning Latent Representations

(Aloufi et al., 2020, Figure 1)

Paper's Contributions

- Show inference attacks of **emotion**, **identity** and **gender** on commonly used acoustic models
- Propose a privacy-aware framework with different levels of privacy. The framework is based on a quantized variational autoencoder model and disentanglement learning.
- 1. Evaluate their framework on 5 different datasets

Scenario and Threat Model

- 1. User shares voice recordings with cloud service providers to accomplish a certain task but do not wish to share additional attributes..
- 1. Attacker (service provider, surveillance agency, advertiser) wants to infer sensitive attributes to track the user, advertise to them or sell their data.

Research Questions

1. To what extent can an attacker infer sensitive attributes?

1. Can we build a effective defense?

Background: Disentanglement

Learning technique to separate representations

- Computer vision: body pose or shape, face shape, make up
- NLP: syntax and semantics
- Speech : content, accent, prosody, emotion, language, environment

APSS | DOMINIKA WOSZCZYK

Background: Auto Encoder

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

Background: Variational Auto Encoder

Background: Variational Autoencoder

```
z = latent vector
x = input data
Encoder = q_{\theta}(z \mid x)
Decoder = p_{\mathbf{o}}(x \mid z)
p(z) = Normal(0, 1)
Loss = Reconstruction Loss + Regularizer
Loss = E_{q_{\theta}(z|x)}[log p_{\varphi}(x|z)] - KL(q_{\theta}(z|x)||p(z))
```

Framework

Figure 2: The workflow of the proposed framework: it serves as a filter between the edge and the cloud to purify data from a source node based on an auxiliary user preference

(Aloufi et al., 2020, Figure 2)

General Framework

- 1. Given user preference, map it into into *n* tasks
- 2. Models
 - a. For each task, build a specific encoder branch
 - b. Decoder: vocoder to concatenate features from each branch and reconstructs speech.

Proposed Framework

Figure 3: The proposed framework begins by adjusting the privacy preferences (high, moderate, and low; left) that are used as a control signal to extract the corresponding representations and reconstruct the output (right)

(Aloufi et al., 2020, Figure 3)

Proposed Framework: Disentanglement

APSS | DOMINIKA WOSZCZYK

Speech Recognition Task: Vector Quantized Variational Autoencoder

Learns discrete latent representations by mapping the output of the encoder to the closest vector from a codebook of K vectors.

Speech Recognition Task: Vector Quantized Variational Autoencoder

Learns discrete latent representations by mapping the output of the encoder to the closest vector from a codebook of K code vectors.

$$L = \underbrace{\|\mathbf{x} - D(\mathbf{e}_k)\|_2^2}_{\text{reconstruction loss}} + \underbrace{\|\mathbf{sg}[E(\mathbf{x})] - \mathbf{e}_k\|_2^2}_{\text{VQ loss}} + \underbrace{\beta \|E(\mathbf{x}) - \mathbf{sg}[\mathbf{e}_k]\|_2^2}_{\text{commitment loss}}$$

- **VQ loss:** The L2 error between the embedding space and the encoder outputs.
- **Commitment loss:** A measure to encourage the encoder output to stay close to the embedding space and to prevent it from fluctuating too frequently from one code vector to another.

Speaker Verification Task: Thin Resnet-34

- 1. CNN model trained to learn speaker embeddings
- 2. Trained on Voxceleb, speaker identification task

Experiments

1. Attribute inference attack on representations extracted from pretrained acoustic models

1. Defense efficiency of the framework

Attributes Per Dataset

- **1. Emotion and gender:** IEMOCAP (12h, 4 emotions), RAVDESS (1,440 recordings, 7 emotions)
- 2. Emotion: SAVEE (480 recordings, 7 emotions)
- **3. Gender:** Librispeech (100 hours, audiobooks), VoxCeleb (1,251 celebrities, 1,200 recordings)

Experiment 1: Inference attacks

 Extract representations from pre-trained wav2vec model and DeepSpeech2 as input features

1. Train Logistic regression, SVM, Random Forest, Multilayer perceptron to infer gender, emotion on both on all 5 datasets

Results

Table 1: Accuracy of attribute inference attack using different acoustic models to extract the representation (G=gender (binary); E=emotion)

		wav2vec Model							Deep	Speech2	Model			DATECO						
Attacker	LibriSpeech	VoxCeleb	SAVEE	IEMC	CAP	RAVI	DESS	LibriSpeech	VoxCeleb	SAVEE	IEMC	CAP	RAVI	DESS						
Model	G(%)	G(%)	E(%)	G(%)	E(%)	G(%)	E(%)	G(%)	G(%)	E(%)	G(%)	E(%)	G(%)	E(%)						
LR	85.8	90.4	62.2	82.9	56.4	99.4	74.4	60	78.3	53.1	58.8	47.7	93	57.2						
RF	86.7	80.8	43.2	86.4	55	95.6	61.9	50.7	63.5	42.2	62	50.1	86	53.5						
MLP	75.8	78.8	39	76.4	51.2	93.8	64.4	56.7	57.8	40.5	58.4	45.3	95.3	63.2						
SVM	76.7	85.6	55.7	85	57.9	94.4	60.2	66.7	73.9	46.2	54.3	55.6	88.4	61						

(Aloufi et al., 2020, Table 1)

Experiment 2: Framework evaluation

1. Train the model branches and decoder for speech recognition and speaker identification, using Librispeech dataset

1. Evaluate inference accuracy on reconstructed speech

Results: Gender

Table 3: Success accuracy in inferring the sex attribute after implementing the DDF framework with different privacy preference options (W2V: wav2vector model, DS: DeepSpeech2 model, Mod.:moderate, Rec_m: reconstructed speech with moderate option, Rec_h: reconstructed speech with high option)

		LibriSpeech (%)				VoxC	Teleb (%) IEMOCAP (%)					RAVDESS (%)				
	Lo	w	Mod.	High	Lo	w	Mod.	High	Lo	w	Mod.	High	Lo	w	Mod.	High
Attac	Raw	Raw	Dog m	Dog h	Raw	Raw	Dog m	Poo h	Raw	Raw	Dog m	Dog h	Raw	Raw	Dag m	Dog h
Mode	l (w2v)	(DS)	Rec_m	Rec_h	(w2v)	(DS)	Rec_m	Rec_h	(w2v)	(DS)	Rec_m	Rec_h	(w2v)	(DS)	Rec_m	Rec_h
LR	85.8	60	53.8	43.8	90.4	78.3	57.1	54.0	82.9	58.8	55.7	41.5	99.4	93	69.1	48.2
RF	86.7	50.7	55.0	46.6	80.8	63.5	64.2	52.3	86.4	62.2	57.4	48.7	95.6	86	53.4	49.2
MLP	75.8	56.7	52.7	46.9	78.8	57.8	51.1	42.2	76.4	58.4	60.0	44.9	93.8	95.3	67.4	41.7
SVM	76.7	66.7	60.2	54.3	85.6	73.9	62.2	49.7	85	54.3	66.2	47.1	94.4	88.4	55.9	45.6

(Aloufi et al., 2020, Table 3)

APSS | DOMINIKA WOSZCZYK

Results: Emotion

Figure 6: Accuracy in inferring the emotion attribute after implementing the DDF framework with diffrent privacy preference options (W2V: wav2vector model, DS: DeepSpeech2 model, L: low option, M: moderate option, and H: high option)

(Aloufi et al., 2020, Figure 6)

APSS | DOMINIKA WOSZCZYK

Results

Table 2: Speech recognition and speaker verification measurements for voices generated by the proposed framework with different privacy settings

	Gene (Hide Id		Generated (Preserve Identity)				
Dataset	WER (%)	EER (%)	WER (%)	EER (%)			
LibriSpeech	1.16	N/A	0.32	0.03			
VoxCeleb	0.80	N/A	0.13	0.0			
IEMOCAP	0.86	N/A	0.29	0.07			
RAVDESS	0.63	N/A	0.14	0.0			
SAVEE	0.66	N/A	0.20	0.01			

(Aloufi et al., 2020, Table 2)

Examples

Discussion

- 1. Shows plausibility of inference attacks for gender and emotion using models trained on other tasks
- 1. Low and medium reduces inference attacks to nearly random
- 1. Speech recognition performance suffers slightly

Limitations

- 1. Only acoustic features are considered
- 1. Requires a new model for each feature type
- Does not evaluate their approach on other personal attributes (mental/physical abilities, age)
- 1. Quality of audio is altered

Related Work

- 1. Preech: A system for privacy-preserving speech transcription. S Ahmed, AR Chowdhury, K Fawaz, P Ramanathan 29th USENIX Security ..., 2020
 - Considers linguistic and acoustic feature.
- 1. Voice-Indistinguishability: Protecting Voiceprint In Privacy-Preserving Speech Data Release.Y. Han, S. Li, Y. Cao, Q. Ma and M. Yoshikawa -IEEE International Conference on Multimedia and Expo (ICME), London, United Kingdom, 2020.
- 1. Paralinguistic Privacy Protection at the Edge. Ranya Aloufi, Hamed Haddadi, David Boyle
 - Extension for edge