

BUNDESREPUBLIK **DEUTSCHLAND**

[®] Patentschrift ® DE 42 12 077 C 2

(51) Int. Cl.5: G 02 B 26/02 G'03 F 7/00

DEUTSCHES PATENTAMT

Aktenzeichen: @ Anmeldetag:

P 42 12 077.2-51

10. 4.92

Offenlegungstag: **(43)**

14. 10: 93

Veröffentlichungstag

der Patenterteilung: 27. 1.94

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

73 Patentinhaber:

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eV, 80636 München, DE ② Erfinder:

Wehrsdorfer, Eike, O-6520 Eisenberg, DE; Fuchs, Jörg, Dr., C-6902 Jena, DE; Karthe, Wolfgang, Prof., O-6902 Jena, DE; Martin, Thomas, O-6901 Stiebritz, DE

66 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> 39 14 031 A1 GB 12 48 825 48 80 294 US 43 18 023 US US 29 64 998

(5) Piezoelektrisch verstellbares Ventil und Verfahren zu ihrer Herstellung

Beschreibung

Die Erfindung betrifft eine verstellbare Blende, bestehend aus zwei um ihre Mitte drehbar gelagerten ersten Schenkeln sowie zwei zweiten Schenkeln, die mit den ersten Schenkeln unter Bildung eines Parallelogramms bewegbar verbunden sind und die jeweils eine Spaltschneide eines Spaltschneidenpaares tragen, sowie aus einer Betätigungseinrichtung mittels der die Form des Parallelogramms gegen die Wirkung einer Rückstellkraft und damit der Abstand der Spaltschneiden verändenbeziet.

Die Erfindung bezieht sich ferner auf ein Verfahren zur Herstellung einer solchen Blende.

Eine verstellbare Blende der eingangs genannten Art, bei der zwei Blendenplatten bzw. Spaltschneiden über eine Parallelogrammführung bewegt werden, ist aus der US-PS 2,964,998 bekannt. Bei dieser Blende sind jeweils die benachbarten Schenkel mit Hilfe von Drehzapfen bewegbar verbunden. Auch die mittige Lagerung der ersten beiden Schenkel am mit einem Fenster versehenen Gehäuse erfolgt mittels Drehzapfen. Als Betätigungseinrichtung dient eine von Hand verstellbare, auf das eine Ende einer der die Spaltschneiden tragenden Schenkel wirkende Mikrometerschraube. Die Rückstellkraft wird von einer auf das andere Ende dieses Schenkels wirkenden Feder aufgebracht.

Da das Parallelogramm aus einzelnen zu fertigenden Teilen zusammengesetzt ist, bleibt die erreichbare Präzision, insbesondere was die Symmetrie der Bewegung der Blendenplatten bzw. Spaltschneiden anbelangt, begrenzt, denn sowohl bei der Fertigung als auch beim Zusammensetzen dieser Teile muß mit Längendifferenzen gerechnet werden, was zwangsläufig Führungsfehler zur Folge hat. Auch der Spaltkeilwinkel ist bei dieser Blende verhältnismäßig groß, da die Spaltschneiden einzeln durch Schweißen befestigt werden.

Die vornehmlich in der Optik verwendeten Spalt-Blenden bestehen im allgemeinen aus zwei Teilen:

dem Antrieb zum Verstellen der Spaltbreite und
den zwei Spaltschneiden, die den Spalt formen.

Der Antrieb erfolgt beispielsweise über ein Keilgetriebe mit einer Spindel hoher Auflösung. Diese Art des Antriebes kann nur durch Anbau eines Elektromotors mit einer elektronischen Steuerung für Automatisierungszwecke eingesetzt werden. Um Bewegungen zu realisieren, die im Submikrometerbereich liegen, müssen hochpräzise Führungen und Differentialspindeln eingesetzt werden. Der Bereich kleiner 50 nm wird damit keinesfalls erreicht.

Die Spaltschneiden für Präzisionsanwendungen werden mit einem hohen mechanischen Aufwand gefertigt. Sie bestehen für optische Einsatzzwecke aus einem korrosionsfesten, harten Material, im allgemeinen Edelstahl; für röntgenographische Anwendungen aus einem je nach verwendeter Strahlung und Untersuchungszweck nicht fluoreszierenden Material.

Generell müssen die Schneiden für optische Zwecke 60 folgende Bedingungen erfüllen:

- die Abweichung der Schneidenkante von einer Geraden muß für Spalten mit großer Dämpfung (40 dB) sehr viel kleiner als die verwendete Lichtwellenlänge sein,
- die Schneidenrauhigkeit muß kleiner als die Wellenlänge des verwendeten Lichtes sein,

 der Keilfehler von Präzisionsspalten mit einer hohen Dämpfung muß extrem gering sein, d. h. die Dämpfung muß über die gesamte Schneidenlänge nahezu konstant sein.

Schneiden für Röntgenspalte können solche Bedingungen nicht oder nur bedingt erfüllen, da die Wellenlänge der verwendeten Strahlung extrem kurz ist und eine entsprechende Schneidenrauhigkeit nicht realisiert werden kann.

Aufgrund dieser Forderungen ergeben sich besondere Bedingungen an die Herstellungstechnologie von hochpräzisen Spaltschneiden. Üblich sind Verfahren, die in der Metallbearbeitung für Präzisionselemente verwendet werden.

Die Herstellung von Präzisionsschneiden erfordert einen hohen maschinellen und manuellen Aufwand, da die Schneiden ausgesucht und paarweise zusammengepaßt werden müssen.

Variable Lochblenden sind nur für Durchmesser bis etwa 0,5 mm bekannt. Sie werden als Irisblenden bezeichnet. Eine automatische Bewegung der Öffnungsweite von Irisblenden wird mittels motorischem Antrieb durchgeführt und ist bei Fotoapparaten verbreitet. Lochblenden mit Durchmessern von 0,5 mm bis zu einigen Mikrometern werden als Pinholes bezeichnet.

Schenkels wirkenden Feder aufgebracht.
Da das Parallelogramm aus einzelnen zu fertigenden
Teilen zusammengesetzt ist, bleibt die erreichbare Präzision, in beschondere was die Symmetrie der Bewegung zision, in beschonder bewegung zusten anbelangt, be-

Eine Durchmesseränderung ist hierbei nur durch einen Wechsel des Pinholes möglich. Eine Automatisierung kann durch einen Revolverkopf mit verschiedenen Pinhole-Durchmessern erfolgen, der über ein Schrittgetriebe und einen Motor angetrieben wird.

Der Erfindung liegt daher die Aufgabe zugrunde, eine verstellbare Blende der eingangs genannten Art zu schaffen, die einerseits in ihrem Aufbau möglichst unkompliziert ist, andererseits aber auch eine hochpräzise Verstellbarkeit, insbesondere symmetrische Bewegung der Spaltschneiden zuläßt.

Die prinzipielle Lösung soll sowohl für variable Spalte als auch für variable Pinholes gleichermaßen geeignet

Der Erfindung liegt ferner die Aufgabe zugrunde, ein Verfahren zur Herstellung einer solchen Blende anzugeben. Für hochpräzise Anwendungen soll dabei das Problem gelöst werden, daß neben der Gewährleistung einer präzisen Verstellbarkeit auch die Spaltschneiden bzw. Pinholes mit höchster reproduzierbarer Güte bezüglich der geometrischen Abmessungen und der Oberflächengestalt, insbesondere mit einer extrem geringen Kantenrauhigkeit der Schneiden bzw. Pinholes hergestellt werden können. Dabei soll die bisherige aufwendige handwerkliche Fertigung durch einen technologisch beherrschbaren industriellen und vergleichsweise kostengünstigen Prozeß abgelöst werden.

Die vorgenannte Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Betätigungseinrichtung aus einem Piezoaktuator besteht, der zwischen den ersten beiden Schenkeln seitlich beabstandet von den Lagerpunkten dieser Schenkel angeordnet ist, und daß benachbarte erste und zweite Schenkel über Festkörperfedergelenke miteinander verbunden sind, wobei sämtliche Gelenkpunkte des einen der ersten Schenkel gegenüber denjenigen des anderen ersten Schenkels quer zur Bewegungsrichtung des Piezoaktuators um einen Betrag V

versetzt sind.

Die Aufgabe wird ebenso erfindungsgemäß dadurch gelöst, daß die Betätigungseinrichtung aus einem Piezoaktuator besteht, der zwischen den ersten beiden Schenkeln schräg angeordnet ist, indem eine der beiden Endflächen des Piezoaktuators gegenüber der anderen Endfläche am jeweiligen Schenkel im Abstand von dessen Lagerpunkt um einen Betrag V versetzt angreift, und daß benachbarte erste und zweite Schenkel über Festkörperfedergelenke miteinander verbunden sind.

Eine bevorzugte Ausführungsform der Erfindung besteht darin, daß der Piezoaktuator mit seinen Endflächen auf Aufnahmetellern aufliegt, welche jeweils über ein Gelenk mit einem der ersten Schenkel verbunden sind. Hierdurch werden die mit den Längenänderungen 15 des Piezoaktuators einhergehenden Drehbewegungen ausgeglichen, die durch die Parallelogrammbewegung entstehen.

Für Pinholeanwendungen ist es günstig, wenn jede der Spaltschneiden mit zumindest zwei im Winkel zueinander stehenden Schneidkanten versehen ist. Eine bevorzugte Ausbildungsform sieht hier vor, daß die Schneidkanten einer jeden Spaltschneide eine rechtekkige Offnung bilden. Im Zusammenwirken beider Spaltschneiden können somit variable rechteckige oder spe- 25 ziell quadratische Öffnungsgeometrien der Pinholes realisiert werden. Wenn eine der beiden eine rechteckige Offnung aufweisenden Spaltschneiden um einen Winkel verdreht auf dem zweiten Schenkel angeordnet ist, kann im Zusammenwirken dieser Spaltschneiden 30 auch ein variables dreieckförmiges Pinhole gebildet werden.

Eine besonders vorteilhafte Ausführungsform der Erfindung ist auch dadurch gegeben, daß die Spaltschneiden aus einem naß- oder trockenätzbaren, einkristalli- 35 nen Material bestehen und entlang einer ausgewählten Kristallgitterrichtung verlaufende Schneidkanten aufweisen. Hierdurch wird eine extrem niedrige Rauhigkeit der Schneidkanten erreicht.

nem Silizium gefertigt.

Die Wirkfläche der Spaltschneiden, insbesondere die Schneidkanten der Spaltschneiden, kann mit einem Metall-, Kunststoff- oder Keramiküberzug versehen sein, um die physikalischen und chemischen Eigenschaften 45 der Spaltschneiden optimal dem zu regulierenden Medium anzupassen. So ist es beispielsweise möglich, mit einer dämpfenden, der verwendeten Wellenlänge angepaßten Beschichtung Reflexionen elektromagnetischer Strahlung oder Materialfluoreszenz zu vermeiden.

Eine andere vorzugsweise Ausführungsform sieht vor, daß zur Messung der Spaltweite ein Wegmeßsystem angeordnet ist. Mit Hilfe der gemessenen IST-Spaltweite kann über einen Regelkreis die Spannung am Piezoaktuator entsprechend einer Soll-Spaltweite 55 eingestellt werden. Hierdurch wird eine Linearisierung der Verstellbewegung möglich. Auch Längenänderungen aufgrund von Temperaturschwankungen der Umgebung können so ausgeglichen werden.

Eine besondere Ausbildungsform besteht auch darin, 60 daß mehrere, jeweils mit einer Spaltstelleinrichtung versehene Spaltschneidenpaare in Ebenen parallel zueinander derart übereinander gestapelt sind, daß im Zusammenwirken der Spaltstelleinrichtungen eine gewünschte Offnungsgeometrie, z. B. ein 8-Eck, entsteht.

Das Verfahren zur Herstellung einer piezoelektrisch verstellbaren Blende, die aus einer Spalt-Stelleinrichtung mit einem Piezoaktuator und mindestens einem

Spaltschneidenpaar besteht, zeichnet sich erfindungsgemäß dadurch aus, daß zunächst zumindest zwei durch Stege miteinander verbundene Spaltschneiden hergestellt werden, wobei die Kontur der Spaltschneiden mittels Mikrolitographie in eine sich auf einem Wafer befindende Resistmaske geschrieben und mittels mindestens eines Ätzprozesses in den Wafer übertragen wird. daß ferner ein aus zwei ersten gegenüberliegenden Schenkeln und zwei zweiten gegenüberliegenden Schenkeln bestehendes, durch vier Federgelenke miteinander verbundenes Festkörpersedergelenk-Parallelogramm vorgefertigt wird, dessen erste Schenkel mittels Gelenken in einer Befestigungsplatte drehbar gelagert sind, und daß sodann der Piezoaktuator außermittig zwischen den ersten Schenkeln angeordnet wird und daß danach die durch Stege verbundenen Spaltschneiden zunächst als einteiliges Spaltschneidenpaar auf den zweiten Schenkeln montiert werden und daß nach Herstellung der festen Verbindung zwischen Spaltschneidenpaar und Spalt-Stelleinrichtung durch erstmaliges Auslenken des Piezoaktuators das Spaltschneidenpaar durch Brechen der Stege in die Spaltschneiden vereinzelt wird. Vorzugsweise wird als Material für den Wafer einkristallines Silizium verwendet.

Die Lage der Struktur einer Nutzstrukturmaske zur Kristallorientierung des Materials des Wafers wird in vorteilhafter Weise dadurch bestimmt, daß zunächst mit Hilfe von Justiermarken eine Probeätzung durchgeführt, das Ergebnis nach Symmetriemerkmalen beurteilt und danach die Lage der Nutzstrukturmaske zu einer ausgewählten Kristallgitterrichtung des Wafers ausgerichtet wird. Hierdurch werden Genauigkeiten von kleiner 0,002° Abweichung erreicht. Vorzugsweise wird die Nutzstrukturmaske zum Wafer dabei so ausgerichtet. daß eine Kristallgitterrichtung des Materials, welche die Spur einer die Waferoberfläche schneidende [111]-Fläche ist, mit der Richtung einer Schneidkante der Spaltschneide weitestgehend übereinstimmt.

Eine vorteilhafte Weiterbildung des erfindungsgemä-Vorzugsweise sind die Spaltschneiden aus einkristalli- 40 Ben Verfahrens besteht auch darin, daß das Festkörperfedergelenk-Parallelogramm aus einem Stück eines massiven, elektrisch leitfähigen Materials durch Elektroerosion gefertigt wird. Hierdurch werden eine hohe Präzision der Kontur und dünne gut reproduzierbare Materialstärken, insbesondere an den Federgelenken, gewährleistet. Vorzugsweise wird das Festkörperfedergelenk-Parallelogramm aus Edelstahl gefertigt.

Günstig zur Gewährleistung einer hohen Präzision ist es auch, wenn auf den zweiten Schenkeln des Festkörperfedergelenk-Parallelogramms zunächst vorgefertigte, mit Montageflächen für die Spaltschneiden versehene Spaltschneidenträger befestigt werden, anschließend Planparallelität der Montageflächen durch wenigstens einen Schleifvorgang hergestellt wird und erst danach die Spaltschneiden auf den Montageflächen montiert werden.

Vorzugsweise werden die Spaltschneiden durch Aufkleben befestigt.

Mit dem erfindungsgemäßen Verfahren gelingt es, eine extrem genau verstellbare Blende mit einem sehr homogenen (Licht-) Spalt herzustellen. Technisch sicher beherrschbar sind Rauhigkeiten von 50 nm bei den Schneidenkanten und auf 10 mm Spaltlänge 200 nm Abweichung von der Parallelen.

Es ist zwar eine kontinuierlich einstellbare Mikroblende bekannt, deren Antrieb piezoelektrisch erfolgt (US-PS 4,880,294), zur Übertragung der Bewegung auf die Blendenplattenpaare bzw. Spaltschneiden dient hierbei jedoch ein im Vergleich zum Erfindungsgegenstand wesentlich komplizierteres, weil eine Vielzahl von Hebelarmen bzw. Schenkeln aufweisendes Hebelsystem. Anders als beim Erfindungsgegenstand hängt die Symmetrie der Bewegung hierbei im wesentlichen von der Position zweier Stellschrauben ab. Montage und insbesondere der Justieraufwand sind erheblich. Auch die Herstellung einer solchen Blende ist kompliziert. Zur Bildung eines Pinholes sind vier präzise gefertigte Teile erforderlich, die bei Befestigung auf den Schen- 10 keln zueinander genau justiert werden müssen. Die Kantenrauhigkeiten liegen selbst bei geläppten Kanten bei ca. 1 µm. Geringere Rauhigkeiten erfordern einen sehr großen technologischen Aufwand.

Hier schafft die erfindungsgemäße Lösung Abhilfe. Die Erfindung soll an Hand von Figuren erläutert werden. Es zeigen:

Fig. 1 Wafer mit Nutzstrukturmaske,

Fig. 2 Verbundenes Spaltschneidenpaar,

Fig. 3 Spalt-Stelleinrichtung,

Fig. 4 Festkörperfedergelenk-Parallelogramm mit Piezoaktuator,

Fig. 5 Festkörperfedergelenk-Parallelogramm mit montierten Spaltschneidenträgern (Spalt-Stelleinrich-

Fig. 6 Chippaar mit Pinholes und Justieröffnungen,

Fig. 7 Zusammenwirken des Chippaares zur Erzeugung des variablen Pinholes,

Fig. 8 Querschnitt durch ein montiertes variables Pin-

Fig. 1 stellt einen Wafer 3 mit einer mikrolithographisch erzeugten Nutzstrukturmaske 1 dar. Auf ihm sind vier Spaltschneidenpaare 2 zu sehen, die untereinander durch Brücken 23 miteinander verbunden sind. Die Spaltschneiden 4 und 5 eines Spaltschneidenpaares 35 2 sind durch Stege 6 miteinander verbunden (Fig. 2).

Als Ausgangsmaterial wird ein beidseitig polierter (110)-Silizium-Wafer 3 mit einer dünnen thermischen Oxidschicht (100 nm bis 300 nm), die mit einer CVD-Si₃N₄-Schicht (150 nm bis 200 nm) abgedeckt ist, einge- 40 setzt. Darauf wird eine Resistschicht ausreichender Stärke aufgebracht.

Zuerst wird ein spezielles Justiermarkenfeld mit Ätzstrukturen fotolithographisch auf der beschichteten Waferoberfläche erzeugt. Die Vororientierung des Ju- 45 stiermarkenfeldes erfolgt nach der Wafer-Hauptphase 9 (primary flat). Nach dem Übertragen des Justierfeldes mittels Trockenätzen in die Nitrid- bzw. Oxidschicht wird die Resistmaske mit den üblichen Verfahren entfernt und der Wafer 3 in basischer Lösung, z. B. 30% KOH, geätzt. Es bilden sich typische Unterätzungen der Ätzstrukturen heraus, die mit Hilfe eines Meßmikroskopes auf Symmetriemerkmale untersucht werden. Die notwendige Justierung der Nutzstrukturmaske 1 zu der Kristallorientierung des Wafers 3 wird ermittelt.

Der Wafer 3 wird ein zweites Mal mit einem Resist beschichtet. Die Nutzstrukturmaske 1 wird in der ermittelten Lage auf den beschichteten Silizium-Wafer 3 durch Belichten übertragen. Analog zu dem Ätzen der Justiermarken erfolgt die Strukturübertragung in den 60 Wafer 3.

Der Ätzprozeß erzeugt in einem Arbeitsgang gleichzeitig die als Spalt wirkende Schneidengeometrie in nahezu idealer Art und Weise und die Kontur der Schneide.

In einem im wesentlichen standardisierten mikrolithographischen Prozeß werden die Spaltschneidenpaare 2 erzeugt, die in hoher Güte zueinander passen.

Der Ätzprozeß wird gestoppt, wenn der Grund des Spaltes 24 des Spaltschneidenpaares 2 etwa 100 µm breit ist

Nach dem vorsichtigen Abspülen des geätzten Wa-5 fers 3 wird dieser getrocknet und in die Spaltschneidenpaare 2 vereinzelt, indem die Brücken 23 durchbrochen werden. Die zusammengehörigen Schneiden 4 und 5 bilden ein auch nach dem Ätzprozeß noch verbundenes Spaltschneidenpaar 2. Damit ist eine vorteilhafte Handhabung beim Ätzen, zur Lagerung und zur Montage gewährleistet

In der mit Stegen 6 gebundenen Form wird das Spaltschneidenpaar 2 auf die Spalt-Stelleinrichtung 8 montiert. Vorteilhafterweise erfolgt die Montage des Spalt-15 schneidenpaares 2 auf speziell angesertigten Spaltschneidenträgern 7, die nach der Montage auf Schenkeln 16 der Spalt-Stelleinrichtung 8 gemeinsam plangeschliffen worden sind (Fig. 3).

Der Aufbau der Spalt-Stelleinrichtung 8 ist aus Fig. 4

und Fig. 5 zu ersehen.

Die Befestigung der Spalt-Stelleinrichtung 8 erfolgt an Gewindebohrungen 20 einer Befestigungsplatte 12. An dieser Befestigungsplatte 12 ist das Festkörperfedergelenk-Parallelogramm 10, bestehend aus zwei ersten 25 Schenkeln 15 und zwei zweiten Schenkeln 16, durch zwei Gelenke 13 befestigt. Diese Gelenke 13 besitzen einen Versatz V, der mit der Länge a das Übersetzungsverhältnis der Piezoaktuator-Längenänderung in eine Änderung der Weite des Spaltes w bestimmt.

Die Eckpunkte des Festkörperfedergelenk-Parallelogramms 10 bilden Federgelenke 11 und 11'. Die Federgelenke 11 und 11' sind um den gleichen Versatz V gegeneinander verschoben. Damit liegt ein Parallelogramm vor, welches um die Gelenke 13 drehbar ist. Das Parallelogramm wird durch einen piezoelektrischen Aktuator 14 betätigt. Dieser Piezoaktuator 14 wiederum ist mit seinen Endflächen an beweglichen Aufnahmetellern 17 befestigt. Die beweglichen Aufnahmeteller 17 sind über Gelenke 18 mit den ersten Schenkeln 15 des Festkörperfedergelenk-Parallelogramms 10 verbunden. Durch diese Maßnahme werden die bei Ansteuerung des Piezoaktuators 14 entstehenden Drehmomente aufgenommen. Wird der Piezoaktuator 14 mit einer elektrischen Spannung angesteuert, so dehnt er sich in seiner Länge und dies bewirkt eine Drehung des Festkörperfedergelenk-Parallelogrammes 10 um die Gelenke 13 und damit eine Verkürzung der Hauptdiagonalen zwischen den Federgelenken 11' der Hauptdiagonalen und eine Vergrößerung der Nebendiagonalen mit den Federgelenken 11 der Nebendiagonalen.

Durch das Übersetzungsverhältnis ü wird der Hub des Piezoaktuators 14 um den Multiplikationsfaktor ü vergrößert. An den zweiten Schenkeln 16 werden die Schneidenträger 7 durch Schrauben befestigt.

Die so entstandene Anordnung ist in Fig. 5 dargestellt. Auf Montageflächen 25 werden das Spaltschneidenpaar 2 (die durch Stege verbundenen Spaltschneiden 4 und 5) vorzugsweise durch Aufkleben befestigt.

Werden die noch durch die Stege 6 verbundenen Schneiden 4 und 5 auf den Spaltschneidenträgern 7 bei einer bestimmten, konstanten Steuerspannung des Piezoaktuators (Vorspannung) befestigt und dann die Steuerspannung weiter erhöht, brechen die Stege 6 durch die steigende Zugspannung.

Die Stege 6 haben die Spaltschneiden 4 und 5 bis zu diesem Zeitpunkt zusammengehalten. Durch diese Maßnahme war eine einfache Manipulation und Montage der Spaltschneiden möglich. Im spannungslosen Zustand gehen die Spaltschneiden in ihre "Null"-Stellung.

In der Darstellung nach Fig. 5 werden bei Ansteuerung des Aktuators 14 die Spaltschneiden 4 und 5 voneinander weg bewegt, die Öffnungsweite w des Spaltes wird vergrößert. Wird die Spalt-Stelleinrichtung 8 in der Art gedreht, daß die Unterseite zur Oberseite wird, so werden die montierten Spaltschneidenträger 7 und damit die Spalt-Schneiden 4 und 5 aufeinander zu bewegt. Dadurch besteht die Möglichkeit, mit der gleichen Spalt-Stelleinrichtung 8 einen aktiv geschlossenen Spalt 10 24 und einen aktiv geöffneten Spalt 24 zu realisieren.

Die Größe der Steuerspannung des Piezoaktuators 14 bestimmt die Öffnungsweite w des Spaltes. Der Hub der Spalt-Stelleinrichtung 8 und damit die vorliegende Spaltweite ist langzeitig konstant, reproduzierbar oder 15 mit zeitlicher Dynamik der Spaltweitenänderung einstellbar.

Da der piezoelektrische Aktuator 14 eine hystereseförmige Kennlinie besitzt, in automatisierten Systemen jedoch häufig ein linearer Zusammenhang zwischen 20 Steuer- und gesteuerter Größe erwünscht ist, ist es vorteilhaft, in die Spalt-Stelleinrichtung 8 ein Wegmeßsystem als IST-Wertgeber einzubauen. Dieses kann z. B. ein kapazitives- oder induktives- oder auch ein optischneidenträgern 7 befestigt und an dieser Stelle die Wegänderung der Spaltschneidenträger 7 bezüglich der Befestigungsplatte 12 gemessen, so können alle Driften, Instabilitäten und Nichtlinearitäten, die in dem System auftreten, durch einen elektronischen Regelkreis minimiert werden.

Die Herstellung der variablen Pinholes erfolgt vollkommen analog zu der Technologie, die für den variablen Spalt beschrieben wurde.

Durch die Kombination zweier fester Pinholes 28 ge- 35 der ist vorteilhaft. eigneter Größe und entsprechender Spalt-Stelleinrichtung 8 werden variable Pinholes 30 erzeugt.

Aus dem Wafer 3 werden Pinholepaare, bestehend aus einem ersten Chip 26 und einem zweiten Chip 27, die durch Stege 6 miteinander verbunden sind, hergestellt.

Jedes Chip 26, 27 hat vorzugsweise eine achteckige Umrandung mit gleichen Seitenlängen und gleichen eingeschlossenen Winkeln. Im Zentrum eines jeden Chips 26, 27 befindet sich das aus im Winkel zueinander stehenden Schneidkanten 22 gebildete Pinhole 28. Die im 45. Winkel zueinander stehenden Schneidkanten 22 bilden ein Vieleck, vorzugsweise durch das Kristallgitter bestimmt, ein Rechteck.

Die Kantenlängen d, e der vorzugsweise quadratischen Pinholes 28 sind je nach Anwendung verschieden 50 groß gewählt und können bei einem Pinholepaar auch unterschiedlich groß sein. Zusätzlich zu dem Pinhole 28 mit der Kantenlänge d befinden sich auf dem ersten Chip 26 noch zwei quadratische Justieröffnungen 29 mit den Kantenlängen b. Ihre Kanten liegen parallel zu 55 Schneidenkanten 22 des Pinholes 28. Die Zentren der Justieröffnungen 29 und das Zentrum des Pinholes 28 liegen auf einer Linie im Abstand r voneinander entfernt, wobei die Linie parallel zu Schneidkanten 22 verläuft. Auf dem zweiten Chip 27 befinden sich das zen- 60 trisch angeordnete Pinhole 28 mit der Kantenlänge e und vier Justieröffnungen 29, von denen zwei mit den Kantenlängen c wie beim ersten Chip 26 angeordnet sind und die zwei anderen Justieröffnungen 29 unter Beibehaltung des Abstandes r und der Ausrichtung ihrer 65 Kanten mit Kantenlängen f parallel zu Schneidkanten 22 auf der Verlängerung der Pinholediagonalen liegen (Fig. 6).

Die Montage der Chips 26, 27 erfolgt gemäß Fig. 8 so. daß das erste Chip 26 mit der kleineren Pinholeöffnung, d. h. mit der Schneidenseite, nach oben auf einen Spaltschneidenträger 7 aufgeklebt wird, wobei mit den Justieröffnungen eine Ausrichtung bezüglich der Bewegungsrichtung 19 erfolgt. Das zweite Chip 27 wird so auf den anderen Spaltschneidenträger 7 geklebt, daß sich die Zentren der Pinholes 28 übereinander auf einer Linie befinden und die Justieröffnungen 29 beider Chips 26, 27 zur Deckung kommen.

Je nach gewünschter Pinhole-Form kommen die auf der Diagonalen liegenden Justieröffnungen für dreieckförmige variable Pinholes 30 oder die anderen Justieröffnungen 29 für rechteckförmige variable Pinholes 30 zum Einsatz. Bei der Montage ist das Anlegen einer Vorspannung zur Öffnung der Spalt-Stelleinrichtung 8 auf die halbe Offnungsweite w/2 des Spaltes 24 sinnvoll. Die Spaltschneidenträger 7 werden vor der Montage der Chips 26, 27 so geschliffen, daß die Montagefläche 25 in zwei parallele Ebenen mit einem Höhenversatz, der der Waferdicke entspricht, liegen. Das erste Chip 26 wird auf die tieferliegende Montagefläche 25 gebracht.

Eine Pinhole-Anordnung kann weiterhin dadurch realisiert werden, daß mehrere gleichartige Spalt-Stelleinsches Wegmeßsystem sein. Wird dieses an den Spalt- 25 richtungen 8 mit aufmontierten Spaltschneiden 4, 5 (mit geraden Schneidkanten 22) übereinandergestapelt werden. Die jeweiligen Bewegungsrichtungen 19 sind um die Stapelachse verdreht.

> Es entsteht bei z. B. zwei Spaltantrieben, die um 90 Grad verdreht sind, ein variables rechteckförmiges Pinhole. Durch mehrere Spalte 24, die verdreht übereinander angeordnet sind, entsteht ein variables Vieleck oder eine Irisblende. Eine Abbildung der Schneidkanten 22 der verschiedenen Spalt-Stelleinrichtungen 8 aufeinan-

Wird der Piezoaktuator 14 mit dem Versatz V schräg in ein Festkörperfedergelenk-Parallelogramm eingebaut, dessen Gelenkpunkte nicht versetzt angeordnet sind, ergeben sich die gleichen Verhältnisse für das 40 Übersetzungsverhältnis und die Bewegung der Spaltschneiden 4, 5 auf den Spaltschneidenträgern 7, wie beim schiefen Festkörperfedergelenk-Parallelogramm 10 mit um den Betrag V versetzten Federgelenkpunkten 11, 11' und Gelenkpunkten 13.

Patentansprüche

1. Verstellbare Blende, bestehend aus zwei um ihre Mitte drehbar gelagerten ersten Schenkeln sowie zwei zweiten Schenkeln, die mit den ersten Schenkeln unter Bildung eines Parallelogramms bewegbar verbunden sind und die jeweils eine Spaltschneide eines Spaltschneidenpaares tragen, sowie aus einer Betätigungseinrichtung mittels der die Form des Parallelogramms gegen die Wirkung einer Rückstellkraft und damit der Abstand der Spaltschneiden veränderbar ist, dadurch gekennzeichnet,

daß die Betätigungseinrichtung aus einem Piezoaktuator (14) besteht, der zwischen den ersten beiden Schenkeln (15) seitlich beabstandet von den Lagerpunkten (13) dieser Schenkel (15) angeordnet ist, und

daß benachbarte erste und zweite Schenkel (15, 16) über Festkörperfedergelenke (11, 11') miteinander verbunden sind, wobei sämtliche Gelenkpunkte (11, 11', 13) des einen der ersten Schenkel (15) gegenüber denjenigen des anderen ersten Schenkels (15)

quer zur Bewegungsrichtung (19) des Piezoaktuators (14) um einen Betrag (V) versetzt sind.

2. Verstellbare Blende, bestehend aus zwei um ihre Mitte drehbar gelagerten ersten Schenkeln sowie zwei zweiten Schenkeln, die mit den ersten Schenkeln unter Bildung eines Parallelogramms bewegbar verbunden sind und die jeweils eine Spaltschneide eines Spaltschneidenpaares tragen, sowie aus einer Betätigungseinrichtung mittels der die Form des Parallelogramms gegen die Wirkung einer Rückstellkraft und damit der Abstand der Spaltschneiden veränderbar ist, dadurch gekennzeichnet,

daß die Betätigungseinrichtung aus einem Piezoaktuator (14) besteht, der zwischen den ersten beiden Schenkeln (15) schräg angeordnet ist, indem eine der beiden Endflächen des Piezoaktuators (14) gegenüber der anderen Endfläche am jeweiligen Schenkel (15) im Abstand von dessen Lagerpunkt (13) um einen Betrag (V)versetzt angreift, und daß benachbarte erste und zweite Schenkel (15, 16) über Festkörperfedergelenke (11,11') miteinander verbunden sind.

3. Verstellbare Blende nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Piezoaktuator (14) 25 mit seinen Endflächen auf Aufnahmetellern (17) aufliegt, welche jeweils über ein Gelenk (18) mit einem der ersten Schenkel (15) verbunden sind.

4. Verstellbare Blende nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß für Pinhole-Anwendungen jede der Spaltschneiden (4, 5) mit zumindest zwei im Winkel zueinander stehenden Schneidkanten (22) versehen ist.

5. Verstellbare Blende nach Anspruch 4, dadurch gekennzeichnet, daß die Schneidkanten (22) einer 35 jeden Spaltschneide (26, 27) eine rechteckige Öffnung bilden.

6. Verstellbare Blende nach Anspruch 5, dadurch gekennzeichnet, daß eine der beiden Spaltschneiden (26, 27) gegenüber der anderen Spaltschneide (26 bzw. 27) um einen Winkel verdreht auf dem zweiten Schenkel (16) angeordnet ist, derart, daß im Zusammenwirken der Spaltschneiden (26, 27) ein dreieckförmiges Pinhole (30) bildbar ist.

7. Verstellbare Blende nach zumindest einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Spaltschneiden (4, 5; 26, 27) aus einem naß- oder trockenätzbaren, einkristallinen Material bestehen und entlang einer ausgewählten Kristallgitterrichtung verlaufende Schneidkanten (22) aufweisen.

8. Verstellbare Blende nach Anspruch 7, dadurch gekennzeichnet, daß die Spaltschneiden (4, 5; 26, 27) aus einkristallinem Silizium gefertigt sind.

9. Verstellbare Blende nach zumindest einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Spaltschneiden (4, 5; 26, 27) zumindest im Bereich ihrer Schneidkanten (22) mit einem Metall-, Kunststoff-, Keramik- oder einem anderen geeigneten Überzug versehen sind.

10. Verstellbare Blende nach zumindest einem der 60 Ansprüche 1 bis 9, dadurch gekennzeichnet, daß zur Messung der Spaltweite ein Wegmeßsystem angeordnet ist.

11. Verstellbare Blende nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mehrere, jeweils mit einer Spaltstelleinrichtung (8) versehene Spaltschneidenpaare (4, 5; 26, 27) in Ebenen parallel zueinander derart über-

einander gestapelt sind, daß im Zusammenwirken der Spaltstelleinrichtungen (8) eine gewünschte Öffnungsgeometrie, z. B. ein 8-Eck, entsteht.

12. Verfahren zur Herstellung einer piezoelektrisch verstellbaren Blende, die aus einer Spalt-Stelleinrichtung mit einem Piezoaktuator und mindestens einem Spaltschneidenpaar besteht, dadurch gekennzeichnet,

daß zunächst zumindest zwei durch Stege (6) miteinander verbundene Spaltschneiden (4, 5) hergestellt werden, wobei die Kontur der Spaltschneiden (4, 5) mittels Mikrolithographie in eine sich auf einem Wafer (3) befindende Resistmaske geschrieben und mittels mindestens eines Ätzprozesses in den Wafer (3) übertragen wird,

daß ferner ein aus zwei ersten gegenüberliegenden Schenkeln (15) und zwei zweiten gegenüberliegenden Schenkeln (16) bestehendes, durch vier Federgelenke (11, 11') miteinander verbundenes Festkörperfedergelenk-Parallelogramm (10) vorgefertigt wird, dessen erste Schenkel (15) mittels Gelenken (13) in einer Befestigungsplatte (12) drehbar gelagert sind, und

daß sodann der Piezoaktuator (14) außermittig zwischen den ersten Schenkeln (15) angeordnet wird und

daß danach die durch-Stege (6) verbundenen Spaltschneiden (4, 5) zunächst als einteiliges Spaltschneidenpaar (2) auf den zweiten Schenkeln (16) montiert werden und

daß nach Herstellung der festen Verbindung zwischen Spaltschneidenpaar (2) und Spalt-Stelleinrichtung (8) durch erstmaliges Auslenken des Piezoaktuators (14) das Spaltschneidenpaar (2) durch Brechen der Stege (6) in die Spaltschneiden (4, 5) vereinzelt wird.

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß als Material für den Wafer (3) einkristallines Silizium verwendet wird.

14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß die Lage der Struktur einer Nutzstrukturmaske (1) zur Kristallorientierung des Materials des Wafers (3) dadurch bestimmt wird, daß zunächst mit Hilfe von Justiermarken eine Probeätzung durchgeführt, das Ergebnis nach Symmetriemerkmalen beurteilt und danach die Lage der Nutzstrukturmaske (1) zu einer ausgewählten Kristallgitterrichtung des Wafers (3) ausgerichtet wird.

15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Nutzstrukturmaske (1) zum Wafer (3) so ausgerichtet wird, daß eine Kristallgitterrichtung des Materials, welche die Spur einer die Waferoberfläche schneidenden [111]-Fläche ist, mit der Richtung einer Schneidkante (22) der Spaltschneide (4,5) weitestgehend übereinstimmt.

16. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß das Festkörperfedergelenk-Parallelogramm (10) aus einem Stück eines massiven, elektrisch leitfähigen Materials durch Elektroerosion gefertigt wird.

17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß das Festkörperfedergelenk-Parallelogramm (10) aus Edelstahl gefertigt wird.

18. Verfahren nach zumindest einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, daß auf den zweiten Schenkeln (16) des Festkörperfedergelenk-Parallelogramms (10) zunächst vorgefertigte, mit

Montageflächen (25) für die Spaltschneiden (4, 5) versehene Spaltschneidenträger (7) befestigt werden, anschließend Planparallelität der Montageflächen (25) durch wenigstens einen Schleifvorgang hergestellt wird und erst danach die Spaltschneiden (4,5) auf den Montageflächen (25) montiert werden. 19. Verfahren nach zumindest einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, daß die Spaltschneiden (4, 5) durch Aufkleben befestigt werden.

Hierzu 7 Seite(n) Zeichnungen

· 55

DE 42 12 077 C2

Int. Cl.5:

G 02 B 26/02

Figur 1

308 164/325

Nummer: Int. Cl.5:

DE 42 12 077 C2 G 02 B 26/02

DE 42 12 077 C2 G 02 B 26/02

Int. Cl.⁵:

Figur 4

DE 42 12 077 C2 G 02 B 28/02

Int. Ci.5: Veröffentlichungstag: 27. Januar 1994

Nummer: Int. Cl.5:

DE 42 12 077 C2

G 02 B 26/02

DE 42 12 077 C2

Int. Cl.5: Veröffentlichungstag: 27. Januar 1994

G 02 B 26/02

DE 42 12 077 C2

Int. Cl.5:

G 02 B 26/02

Figur 8