

Simulation of Dynamical Scattering Effect in Electron Diffraction Patterns

Tarik Drevon, David Waterman, Eugene Krissinel

Numerical simulation tools of ED patterns

Kinematic approximation

Schrodinger's fast electron wave equation

$$\left\{\frac{\hbar^2}{2m_0}\nabla^2 + V(\mathbf{r})\right\}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

$$\partial_z^2 \ll 2ik_0\partial_z$$

$$\frac{\partial \Psi(x, y, z)}{\partial_z} = \left\{ \frac{i\lambda}{4\pi} \nabla_{xy}^2 + i\sigma V(x, y, z) \right\} \Psi(x, y, z)$$

Numerical simulation tools of ED patterns

Method	Exact	Speed	Mem (beam per atom)	Periodic structure	Grid based	Parallelization type	Package
Multislice (MS) (physical optics based approach)	no	N _z N _b logN _b	100	yes	yes	FFTw one slice after another	TEMSIM (pyMS) PRISM,
Near bragg (real space path differences)	no	$N_z N_b^{\ 2} N_p$	1	no	no	per pixel	NearBragg (James Holton)

Multislice 2-beam diffraction case

Dynamical diffraction extinction distance

Kinematic Ewald sphere curvature effect weakly diffracted beam

Potential dependent extinction distance for strongly diffracting beam

Near Bragg

$$R_{il} \stackrel{=}{\underset{Greens}{=}} \sqrt{(x_i-x_l)^2+(z_i-z_l)^2}$$
 $I_l = \Big|\sum_{i=1}^N f(\theta_{il})e^{jkR_{il}}\Big|^2$ θ_{il}

Weak potential kinematic approximation

Extension to multiple scattering

Multiple Scattering in Electron Diffraction

Atomic interation cross section

X-rays (Thomson scattering)

$$\sigma_{th} = \frac{8\pi}{3}r_e^2 = 66fm^2$$

Electrons (Coulomb scattering)

$$\sigma_{th} \approx 1.87 \times 10^6 Z^{4/3} (c/v)^2 = 5 \times 10^7 fm^2$$

Mean free path, $l_e = 200$ nm

Extension to multiple scattering

Extension to multiple scattering

Dashed: near bragg

solid: Theory

0 no scattering1 single scattering2 multiple scattering

Near Bragg vs multislice

Current challenges

- adapt nearBragg approach to multiple scattering events
- Compare simluation to experimental dataset
- Simulate defects (modelling and computationnal), Thermal difffuse scattering,

inelastic scattering

- model partially coherent beam as produced by LaB₆ guns