

#### Data Science in Medicine

Lecture 4: Hypothesis Testing – Part 1

Dr Areti Manataki

Usher Institute
The University of Edinburgh





# In the previous lecture

- Visualising data
  - Qualitative data: bar charts, pie charts
  - Quantitative data: histograms, box plots
  - Bivariate: scatter plots, line graphs
- Introduction to R
  - R essentials
  - Calculating summary statistics
  - Drawing simple graphs

#### In this lecture

- Correlation
  - Multidimensional data
  - Correlation and causation
  - Scatterplots revisited
  - Correlation coefficient
- Hypothesis testing
  - Main idea
  - Reflecting on significance
  - Correlation coefficient as a statistical test

#### Multidimensional data

 Most datasets contain several pieces of information about each of many individuals.

| Weekly hours of study | Weekly hours of exercise | Daily hours of sleep | Grades |
|-----------------------|--------------------------|----------------------|--------|
| 8                     | 2                        | 7                    | 75     |
| 7.4                   | 1.2                      | 6.2                  | 70     |
| 8.3                   | 4.5                      | 5.4                  | 86     |
| 6.2                   | 4                        | 7.2                  | 48     |
| 6.3                   | 1                        | 7.3                  | 54     |
| 7                     | 2.3                      | 8.4                  | 62     |
| 8.8                   | 5                        | 6                    | 87     |
| 6.1                   | 5.2                      | 8.9                  | 49     |

#### Correlation

- We can ask whether there is any observed relationship between the values of two different variables
  - If there is no relationship, then the variables are said to be independent.
  - If there is a relationship, then the variables are said to be correlated.

#### Correlation vs causation

- Two variables are causally connected if variation in the first causes variation in the second. If this is so, then they will also be correlated.
- However, the reverse is not true:
   Correlation Does Not Imply Causation!
- If we do observe a correlation between variables X and Y, it may due to any of several things:
  - Variation in X causes variation in Y
  - Variation in Y causes variation in X
  - Variation in X and Y is caused by some third factor Z
  - Chance





This graph indicates a strong, positive, linear relationship between the two variables.



This graph (with the line of best fit) indicates a strong, positive, linear relationship between the two variables.



There is no evident correlation between the two variables, neither positive nor negative.



This graph indicates a negative linear relationship between the two variables, but a rather weak one.

#### Correlation coefficient

• The correlation coefficient is a statistical measure of how closely one set of data values  $\{x_1, x_2, \dots, x_N\}$  are correlated with another  $\{y_1, y_2, \dots, y_N\}$ .

$$\rho_{x,y} = \frac{\sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)}{N\sigma_x\sigma_y}$$

- Here,  $\mu_x$  and  $\sigma_x$  are the mean and standard deviation of the  $x_i$  values, while  $\mu_y$  and  $\sigma_y$  are the mean and standard deviation of the  $y_i$  values.
- The correlation coefficient measures the strength of a linear relationship between two variables.

#### Interpreting correlation coefficient values

- $\rho_{x,y}$  has a range of [-1,1]
- If  $\rho_{x,y}$  is close to 0 then this suggests that there is no correlation.
- If  $\rho_{x,y}$  is nearer +1 then this suggests that x and y are positively correlated.
- If  $\rho_{x,y}$  is closer to -1 then this suggests that x and y are negatively correlated.

### Anscombe's Quartet

- These four datasets have the same summary statistics:
  - $\mu_x = 9$
  - $\sigma^2_x = 11$
  - $\mu_{\rm V} = 7.5$
  - $\sigma^2_{v} = 4.125$
  - $\rho_{x,y} = 0.816$

#### Anscombe's quartet

| 1    |       | II   |      | III  |       | IV   |       |
|------|-------|------|------|------|-------|------|-------|
| Х    | у     | X    | у    | X    | y     | Х    | у     |
| 10.0 | 8.04  | 10.0 | 9.14 | 10.0 | 7.46  | 8.0  | 6.58  |
| 8.0  | 6.95  | 8.0  | 8.14 | 8.0  | 6.77  | 8.0  | 5.76  |
| 13.0 | 7.58  | 13.0 | 8.74 | 13.0 | 12.74 | 8.0  | 7.71  |
| 9.0  | 8.81  | 9.0  | 8.77 | 9.0  | 7.11  | 8.0  | 8.84  |
| 11.0 | 8.33  | 11.0 | 9.26 | 11.0 | 7.81  | 8.0  | 8.47  |
| 14.0 | 9.96  | 14.0 | 8.10 | 14.0 | 8.84  | 8.0  | 7.04  |
| 6.0  | 7.24  | 6.0  | 6.13 | 6.0  | 6.08  | 8.0  | 5.25  |
| 4.0  | 4.26  | 4.0  | 3.10 | 4.0  | 5.39  | 19.0 | 12.50 |
| 12.0 | 10.84 | 12.0 | 9.13 | 12.0 | 8.15  | 8.0  | 5.56  |
| 7.0  | 4.82  | 7.0  | 7.26 | 7.0  | 6.42  | 8.0  | 7.91  |
| 5.0  | 5.68  | 5.0  | 4.74 | 5.0  | 5.73  | 8.0  | 6.89  |

### Anscombe's Quartet



- But they look really different!
- Always draw a scatterplot to visualise your data!

# Estimating the correlation coefficient from a sample

- Suppose that we have sample data  $\{x_1, x_2, \dots, x_n\}$  and  $\{y_1, y_2, \dots, y_n\}$  drawn from a much larger population of size N, so n << N.
- Pearson's correlation coefficient is calculated like this:

• Here,  $m_x$  and  $m_y$  are the estimates of the population means, and  $s_x$  and  $s_y$  are the estimates of the population standard deviations.

# Hypothesis testing

- Scatterplots and the correlation coefficient may suggest possible correlations between variables.
- Any such suggestion of a correlation is a hypothesis.
- Statistical tests provide the mathematical tools to assess evidence and carry out hypothesis testing.

# Hypothesis testing

- We differentiate between research hypothesis and statistical hypothesis.
- Research hypothesis:
  - This is the one you state in your research paper. You want to test it mathematically.
- Statistical hypothesis:
  - H0: there is nothing out of the ordinary in the data: no correlation, no effect, nothing to see.
  - H1: there is indeed something going on...

# Hypothesis testing example

- Research hypothesis:
  - Hypertensive patients treated with the new drug X will show greater lowering of their blood pressure than hypertensive patients treated with the currently available drug Y.
- Statistical hypothesis:
  - H0:  $\mu_1 \leq \mu_2$
  - H1:  $\mu_1 > \mu_2$
- Here  $\mu_1$  is the mean lowering of blood pressure in the group treated with drug X, and  $\mu_2$  is the corresponding metric for patients treated with drug Y.

# How hypothesis testing works

- We state our research and statistical hypotheses.
- We collect data for the test and calculate an appropriate statistic from the data; call this R.
- The hypothesis test is then to investigate how likely it is that we would see a result like R if the null hypothesis were true.
- This chance is called a p-value, with  $0 \le p \le 1$ .
- If p is small enough, then we conclude that the null hypothesis is a poor explanation for the observed data. Based on this we may reject the null hypothesis.

# Significance

- So when is p "small" enough?
- Standard thresholds are:
  - p < 0.05, meaning that there is less than 1 chance in 20 of obtaining the observed result by chance, if the null hypothesis is true; or
  - p < 0.01, meaning less than 1 chance in 100; or</p>
  - p < 0.001, meaning less than 1 chance in 1000.</p>
- An observation that leads us to reject the null hypothesis is described as statistically significant.

# Correlation Coefficient as a Statistical Test

- The null hypothesis is that there is no correlation.
- We calculate the correlation coefficient  $\rho_{x,y}$  and then do one of two things:
  - Look in a table of critical values for this statistic, to see whether the value we have is significant;
  - Compute directly the p-value for this statistic, to see whether it is small.
- Depending on the result, we may reject the null hypothesis.

# Example: correlation between hours of study and final grade

| Weekly hours of study | Grades |
|-----------------------|--------|
| 8                     | 75     |
| 7.4                   | 70     |
| 8.3                   | 86     |
| 6.2                   | 48     |
| 6.3                   | 54     |
| 7                     | 62     |
| 8.8                   | 87     |
| 6.1                   | 49     |



# Example: correlation between hours of study and final grade

- $\rho_{x,y} \simeq 0.988$
- Hypothesis testing:
  - H0: There is no correlation between weekly hours of study and final exam grades in Statistics.
  - H1: There is a correlation between weekly hours of study and final exam grades in Statistics.

| ρ      | p = 0.10 | p = 0.05 | p = 0.01 | p = 0.001 |
|--------|----------|----------|----------|-----------|
| N = 7  | 0.669    | 0.754    | 0.875    | 0.951     |
| N = 8  | 0.621    | 0.707    | 0.834    | 0.925     |
| N = 9  | 0.582    | 0.666    | 0.798    | 0.898     |
| N = 10 | 0.549    | 0.632    | 0.765    | 0.872     |

# Example: correlation between hours of study and final grade

- The correlation coefficient 0.988 is well above the critical value 0.925 for p < 0.001.</li>
- We can reject the null hypothesis.
- Our data strongly indicate a positive correlation between weekly hours of study and final exam grades in Statistics.

#### Recap on investigating correlation

- Are two (numerical) variables correlated?
  - Draw a scatter plot. Does it look as though there is a relationship between the two variables?
  - Calculate the correlation coefficient  $\rho_{x,y}$ . Is it close to -1, 0 or 1?
  - Perform hypothesis testing:
    - State the null and alternate hypotheses.
    - Look in a table of critical values to see whether  $\rho_{x,y}$  is large, given the number of data points. If  $\rho_{x,y}$  is above the critical value for some chosen p, say 0.05 or 0.01, then this may be judged statistically significant and lead us to reject the null hypothesis.
    - OR Compute directly the p-value, to see whether it is smaller than the significance level chosen, leading us to reject the null hypothesis.

#### **Conclusions**

- All these steps are important:
  - Relying solely on the correlation coefficient without visualising data is a bad idea. Remember Anscombe's Quartet!
  - Arguing about correlation based on the correlation coefficient without carrying out hypothesis testing is only half the story: this can tell us how strong a linear correlation might be, but not how significant.
- There is debate over what an appropriate significance level is.
- Correlation does not imply causation!