AML Risk Analysis & Modeling Report (based on the SAML-D study)

Executive summary

This report synthesizes the AML analytics performed on the SAML-D synthetic transaction-monitoring dataset. The work covers exploratory analysis, class imbalance profiling, typology patterns, payment-method risk, amount distributions, preprocessing, modeling with XGBoost, and performance assessment. Key takeaways: the dataset is extremely imbalanced (≈0.1% suspicious), suspicious activity clusters in specific typologies (notably structuring and cash-related flows), and suspicious transactions are materially larger on average. While the trained model scores a perfect 1.0 across metrics, that result is likely inflated by data leakage or synthetic identifiability and should not be treated as production-ready without stricter validation.

1) Dataset at a glance

- **Scope:** 9,504,852 transactions with 12 features; 28 typologies across 15 network structures. Suspicious prevalence ≈0.1039%.
- Working sample for analysis: Random sample of 2,000,000 transactions (reproducible seed).
- Data quality & schema: Mixed dtypes, engineered calendar features (year/month/day/week), and no missing values observed in the sample.
 These characteristics make the dataset ideal for technique exploration, with the important caveat that it is synthetic.

2) Exploratory insights

Class imbalance. In the 2M sample: ~1,997,967 normal vs. 2,033 suspicious (≈983:1). Accuracy is not a meaningful metric; focus should be on PR-AUC, precision/recall, and cost-sensitive thresholds.

Typologies. Normal traffic is dominated by fan-out/fan-in patterns; among suspicious typologies, **Structuring** is most frequent, followed by **Cash Withdrawal**, **Smurfing**, and

Deposit-Send—all consistent with real-world laundering playbooks (structuring to avoid thresholds, cash-heavy movement, rapid pass-through).

Payment-method risk.

- **Volume of suspicious**: Cross-border leads by count (520 within the sample).
- Rate of suspicious: Cash-intensive rails show the highest relative risk (e.g., Cash Deposit ≈0.63%, Cash Withdrawal ≈0.44%), outpacing Cross-border's ≈0.26%. In practice, prioritize both high-count and high-rate channels.

Amounts. Suspicious transactions are much larger on average (≈3.25× normal). Extremes are more pronounced: the suspicious max (~7.21M) far exceeds the normal max (~1.0M), suggesting "edge" behaviors beyond typical customer activity. Raw amounts are hugely right-skewed (skew ≈46); log transforms normalize them and improve modeling stability.

3) Preprocessing & feature engineering

- **Numerical pipeline:** Median imputation + RobustScaler to dampen outlier influence.
- Categorical pipeline: Ordinal encoding with unknown-category handling.
- **Temporal handling:** Raw timestamps removed after deriving calendar features to reduce leakage from direct time keys while retaining seasonality.
- Split: 80/20 train—test on the sampled data.
 This is a sensible, production-oriented preprocessor layout using a single ColumnTransformer for reproducibility.

4) Modeling approach

- Imbalance strategy: Use of scale_pos_weight to reflect the ≈983:1 skew (effective weight ~284 in the tuned configuration).
- **Estimator:** XGBoost with GPU acceleration; randomized search (200 trials), moderate CV (2-fold), and early stopping across 2,000 estimators and a sub-1e-1 learning rate.
- Best hyperparameters (abridged): max_depth=7, min_child_weight=5, gamma≈9.5, subsample≈0.95, colsample_bytree≈0.69, learning_rate≈0.09, scale_pos_weight≈284.

The choices align with best practice for rare-event detection at scale.

5) Reported performance & interpretation

- Headline metrics on the sample's test split: ROC-AUC = 1.0, PR-AUC = 1.0, accuracy/precision/recall = 1.0.
- **Feature importance & SHAP** were used for interpretability; threshold curves and error analysis were also explored.
- Reality check: Perfect scores are a red flag. In AML, even excellent models rarely approach perfection; symptoms point to (a) feature leakage (e.g., including a "typology" field that encodes post-hoc labeling cues), (b) train/test contamination, or (c) synthetic separability not present in production. Treat these results as diagnostic, not deployable.

6) Risk patterns that warrant action

- 1. **Cross-border flows:** High suspicious **volume**; scrutinize corridors involving historically higher-risk geographies.
- 2. **Cash rails:** Highest suspicious **rates**; strengthen controls on deposit/withdrawal sequencing, branch/device geolocation, and cash-to-wire pivots.
- Amount dynamics: Large values and rapid aggregation/dispersal are strong signals; use log-scaled features and percentile-based cutoffs to stabilize decisions.
 Structuring/Smurfing: Intensify pagination/sequence features (e.g., rolling counts above/below thresholds over short windows).