VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS

DATAMINING Z JABBERU

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR

JAROSLAV SENDLER

BRNO 2011

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS

DATAMINING Z JABBERU

DATAMINING FROM JABBER

BAKALÁŘSKÁ PRÁCE

BACHELOR'S THESIS

AUTOR PRÁCE

AUTHOR

JAROSLAV SENDLER

VEDOUCÍ PRÁCE

Ing. JOZEF MLÍCH

SUPERVISOR

BRNO 2011

Abstrakt

Předmětem této bakalářské práce bylo seznámení se s problematikou komunikace přes Jabber síť, která zde byla rozebrána. Konkrétním cílem bylo vytvoření jednoduchého Jabberového klienta, který by byl schopen získávat statistická data. Nashromážděná data sloužila pro pozdější analýzu a grafickou reprezentaci informací z nich získaných.

Abstract

The objective of this thesis was acquaint oneself with problems of communication via Jabber network, which was also analyzed. The specific objective was to create a simple Jabber's client which would be able to obtain statistical data. The collected data was used for analysis and graphic representation of information.

Klíčová slova

Jabber, XMPP, robot, datamining, dolování dat, RapidMiner.

Keywords

Jabber, XMPP, robot, datamining, RapidMiner.

Citace

Jaroslav Sendler: Datamining z jabberu, bakalářská práce, Brno, FIT VUT v Brně, 2011

Datamining z jabberu

Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing. Jozefa Mlícha. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

Jaroslav Sendler 26. dubna 2011

Poděkování

Tímto bych chtěl poděkovat mému vedoucímu bakalářské práce Ing. Jozefovi Mlíchovi za ochotu a kladný přístup při konzultacích. Dále za poskytnutí hardware na němž běžel program a sbíral data.

© Jaroslav Sendler, 2011.

Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě informačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Obsah

1	Úvod					
2	XMPP 2.1 Architektura 2.2 XML 2.3 Stanza 2.4 Rozšíření	3 3 6 7 9				
3	Data mining3.1 Metody dolovaní dat3.2 Shlukování3.3 Programy	14 14 16 20				
4	Implementace4.1 Databáze4.2 Architektura4.3 Robot	22 22 23 23				
5	Vyhodnocení výsledků	2 5				
6	Závěr 2					
\mathbf{A}	Obsah CD 2					
В	Manual 3					
\mathbf{C}	Konfigrační soubor 3:					
D	Slovník zkratek 32					
	Stanza - základní schéma E.1 Iq E.2 Message E.3 Presence E.4 Přehled průběhu rozšíření	33 33 34 35				
\mathbf{F}	Přehled klientů a jejich rozšíření	38				

₁ Kapitola 1

$_{_{2}}$ $\mathbf{\acute{U}vod}$

- 3 Dnes mezi velmi se rozšiřující technologie na poli síťo Cílem této práce je získat neznámé
- 4 informace z real–time komunikační sítě Jabber.

5 Kapitola 2

₆ XMPP

15

16

18

19

20

21

22

23

24

25

26

27

29

30

31

V následující kapitole jsou, pro usnadnění a jednodušší pochopení, rozebrány základní stavební kameny protokolu Extensible Messaging and Presence Protocol (XMPP). Konkrétně jsou zde popsány stávající vlastnosti implementace, architektura protokolu XMPP obecně [22, 23] a další detaily protokolu [1, 24, 14]. Vzhledem k požadavkům na dolování v datech popsaných v následující kapitole je kladen důraz na vybraná rozšíření [21, 12]. Tato rozšíření tvoří základ pro některé rozšířené statusy, jako je například User Tune [18], User Mood [20], User Location [6] a další. Další informace použité pro popis a pochopení XML jazyka byly čerpány z [10, 9].

Vznik samotného protokolu XMPP je datován do roku 2004 (březen), kdy na něj byl přejmenován Jabber. Původní projekt Jabber byl vytvořen roku 1998 autorem Jeremie Millerem, který ho založil za účelem vytvořit svobodnou otevřenou IM službu. Uvedený projekt měl obsahovat tři základní vlastnosti, do kterých se zahrnují jednoduchost a srozumitelnost pro implementaci, jednoduchost v oblasti šíření a otevřenost podobě veřejně dostupného popisu samotného protokolu. Základní vlastnosti a výhody klientů a serverů budou podrobněji popsány níže. Roku 1999, 4.ledna byl vytvořen první server se jménem Jabber. Komunita vývojářů se chopila iniciativy a vytvořila klienty, kteří dokázali se serverem komunikovat, pro různé platformy (Linux, Macintosh, Windows). Roku 2004 byl protokol XMPP přidán mezi RFC¹ dokumenty. Základní norma popisující obecnou strukturu protokolu je RFC 3920 [22] a RFC 3921 [23], který se zaměřuje na samotný instant messaging a zobrazení stavu. Další zdokumentovaná rozšíření jsou vydávána v podobě tzv. XEP (XMPP Extension Protocol) dokumentů, které jsou známé také pod starším názvem JEP (Jabber Enhancement Proposal). Dnešní počet těchto norem se blíží k číslu 300. Každý XEP obsahuje stav vývoje (schválení), ve kterém se zrovna nachází.

Jako bezpečnostní prvky jsou zde podporovány SASL, TLS a GPG. XMPP protokol je postaven na obecném značkovacím jazyce XML, proto vlastnosti popsané dále v této kapitole platí i pro tento protokol.

2.1 Architektura

Dobře navržená internetová technologie je tvoře správně fungujícími komponenty, které mezi sebou dokáží vytvořit spojení a následně započít komunikaci. Pro popis Jabber architektury v této práci bylo čerpáno z [1, 24]. Tato struktura se nejvíce podobá struktuře posílání e-mailů. Hlavní předností Jabber sítě je, tak jako u elektronické pošty, její decentralizace.

¹RFC request of comments – žádost o komentáře

V případě Jabberu je decentralizace chápána jako možnost provozovat vlastní server, na rozdíl od jiných komunikačních systémů jako je například facebook, kde existuje pouze jediný poskytovatel služby. V případě serveru je kladen důraz na spolehlivost a rozšiřitelnost a u klienta na uživatele. Každý server pracuje samostatně, což znamená, že chod ani výpadek jiné datové stanice žádným způsobem jeho běh neovlivní. V případě výpadku jiného serveru bude nedostupný pouze seznam kontaktů a služeb, které registrovaným uživatelům poskytoval.

Obrázek 2.1 znázorňující distribuovanou architekturu Jabberu byl převzat z [1] a doplněn o názvy jednotlivých komponent. Komunikace dvou Jabber klientů probíhá za účasti jejich serverů a sítě, která je spojuje. Spojení mezi nimi bývá často šifrováno.

Obrázek 2.1: Distribuovaná architektura Jabber.

Architektura Jabber serverů využívá velké množství mezi–doménových připojení podobně jako internetový systém elektronické pošty. Komunikace klienta z jedné domény s klientem z jiné na rozdíl od e–mailového modelu nevyžaduje spolupráci třetích stran. Klient se spojí s "domácím" serverem, který přímo naváže spojení se servem požadováného klienta. Tyto vlastnosti jsou zárukou pro bezpečný přenos zpráv, znemožňující "krádeže" JID², který je popsán níže, a spamování.

Jabber ID

Jabber ID (JID) je jednoznačný virtuální identifikátor uživatele na síti. V případě založení účtu nejsou rozlišována velká a malá písmena, což znamená, že Jabber není case-sensitive.

Jednoznačný Jabber identifikátor je složen ze dvou částí Jabber bare nebo-li čisté ID a resource [22]. Základní část na první pohled připomíná e-mailovou adresu user@server.

Druhá část slouží k přesné identifikaci jednotlivých spojení. Je použita ke směrování síťového provozu s uživateli v případě otevření většího množství spojení pod jedním uživatelem.

Společně Jabber bare a resource tvoří tzv. full JID — user@server/resource například jabInfo@jabbim.cz/bot. Jednotlivé části uživatelského jména popsané v tomto odstavci jsou ukázány v obrázku 2.2.

²uživatelské jméno

Obrázek 2.2: Rozebraná struktura Jabber ID.

Další vymoženost JabberID oproti e-mailové adrese je jeho možnost používat prakticky libovolné národní znaky u doménových jmen a uživatelských účtů [24]. Využíváním kódování UNICODE, se XMPP stává plně mezinárodní a není jako jiné protokoly omezen rozsahem ASCII tabulky. Přestože je tato vymoženost k dispozici, doposud není žádným výrazným způsobem využívána.

69 Klient

74

76

77

92

93

Klient je často jednoduchá aplikace pracující se vzdálenými službami, které jsou provozovány serverem. V této práci je zastoupen robotem s konzolovým rozhraním. XMPP svou architekturou nutí, aby byl co nejjednodušší. Vlastnosti, které by měl mít jsou shrnuty, podle [14], do tří bodů:

- komunikace s jedním Jabber serverem pomocí TCP soketu, který garantuje spolehlivé doručení zpráv na rozdíl od UDP. Nad tímto transportním protokolem dále běží kryptografický protokol TLS, který zabezpečuje komunikaci klient–server a server– server.
- 2. rozparsování a následná interpretace příchozí XML zprávy "stanza" (kapitola 2.3)
- 3. porozumění sadě zpráv (message, iq, presence) z Jabber jádra [22]

so Server

Informace použité pro popis XMPP serveru byly čerpány z [14]. K hlavním charakteristikám serveru oproti klientovi, jehož základní vlastností byla jednoduchost, patří stabilita a
bezpečnost. Je pro něj vyhrazen TCP port 5222. Komunikace mezi servery je realizována
přes port 5269. Každý server uchovává seznam zaregistrovaných uživatelů, který nevykazuje
žádný jiný server. Zaregistrovaní uživatelé v daném seznamu se mohou do sítě připojovat
pouze přes něj. To zajišťuje nemožnost "krádeže" účtu. Protože XMPP komunikace probíhá
přes síť, musí mít každá entita adresu, v tomto případě nazvána JabberID. XMPP spoléhá
na DNS což znamená že používá jména na rozdíl od IP protokolu.

Server Jabber je systém spravující tok dat mezi jednotlivými komponentami, které společně tvoří Jabber služby. Například Jabber Session Manager (JSM) poskytne funkce pro IM komunikaci a práci se seznamem kontaktů. Komunikace mezi jednotlivými servery, jak je uvedeno na obrázku 2.1, je zprostředkována za pomocí komponenty S2S (server to server). Při připojení klienta k serveru je komunikace řízená pomocí C2S (client to server). Jak již bylo řečeno Jabber síť využívá doménová jména místo špatně zapamatovatelných IP adres. Pro tento způsob identifikace je určena služba dnsrv, která se stará o překlad názvů. V podstatě je to komponenta, která zajišťuje směrování paketů na jiný server.

V tabulce 2.1 jsou shrnuty informace o serverech Jabberu. První sloupec tvoří jméno, následuje programovací jazyk v němž je napsán. Většina aplikací pro servery je vydávána pod licencí GPL³. U všech aplikací byla zkoumána nejaktuálnější verze. Její číslo lze naleznout ve třetím sloupci. Všechny servery lze provozovat na operačním systému Linux a Windows. Na platformě Mac OS mohou být použity všechny zde jmenované vyjma jabberd². Pět z šesti zde představených programů pro server Jabber jsou ve stále vyvíjeny, tedy kromě jabberd²4. Hlavním účelem tabulky je prezentovat důležité vlastnosti serverů v oblasti podpory rozšířených statusů. Jedná se o standardy pubsub⁴ (XEP–0060) [1²] a o jeho verzi zaměřenější více na uživatele pep⁵ (XEP–0163) [2¹]. Obě tato rozšíření tvoří nezbytnou základnu pro rozšířené statusy a proto je jejich podpora jak u serverů tak klientů vyžadována. Podrobněji toto téma bude rozebráno v některé následující podkapitole.

Server	Jazyk	\mathbf{Verze}	XEP-0060	XEP-0163
ejabberd	Erlang/ Top	2.1.6	ANO	ANO
Openfire	java	3.6.4	ANO	ANO
jabbred2	\mathbf{c}	2.2.11	NE	NE
jabbred14	c, c++	1.6.1.1	ANO	NE
Prosody	lua	0.7.0	NE	ANO
Tigase	java	5.0.0	ANO	ANO

Tabulka 2.1: Přehled Jabber serverů.

Z výše uvedené tabulky je zřejmé, že aplikace pro servery, které jsou stále ve vývoji, podporují tzv. *rozšířené statusy*. Tedy kromě programu jabbred2.

2.2 XML

Jazyk XML (eXtensible Markup Language) [9], metajazyk pro deklaraci strukturovaných dat, je jádrem protokolu XMPP. Samotný jazyk vznikl rozšířením metajazyka SGML, jež slouží pro deklaraci různých typů dokumentů. Základní vlastností je jednoduchá definice vlastních značek (tagů). Dokument XML se skládá z elementů, které můžeme navzájem zanořovat. Vyznačujeme je pomocí značek — počáteční a ukončovací. Pomocí tohoto jazyka je tvořena stanza popsaná v následující kapitole.

Ukázka možné struktury dokumentu psaného jazykem XML je zobrazena na příkladu 2.1. Standardně je předpokládáno, že je psán v kódování UTF-8 [10], ale je—li jako v tomto případě použito jiné musí být konkrétní kódování uvedeno na jeho počátku. V opačném případě nemusí být obsah správně zobrazen. Na začátku dokumentu se také uvádí verze XML, ve které je dokument psán (1. řádek příkladu). Následuje kořenový element, který je uzavřen na samotném konci dokumentu. 4. řádek prezentuje možnost použití prázdného elementu, který obsahuje jeden atribut s názvem zkratky fakulty. Velký význam zde mají úhlové závorky. Jsou jimi z obou stran obaleny všechny elementy.

³General Public License-všeobecná veřejná licence GNU

⁴Publish–Subscribe

⁵Personal Eventing Protocol

```
<?xml version="1.0" encoding="iso-8859-2"?>
1
2
            <fakulta>
3
              <název>Fakulta informačních technologií</název>
              <zkratka fakulty="FIT"/>
4
5
              <typy studia>
6
                <bakalářské titul="Bc."></bakalářské>
7
                <magisterské></magisterské>
8
                <doktorské></doktorské>
9
              </typy studia>
10
            </fakulta>
```

Příklad 2.1: Ukázka základního XML dokumentu.

2.3 Stanza

Základní jednotkou pro komunikaci založenou na XML je stanza. Z jednoduššího pohledu je možné se na ni dívat jako na jeden dlouhý XML soubor. Při zahájení komunikace se tento soubor "otevře". Jeho samotné uzavření probíhá až při odhlášení od sítě, nebo-li přepnutí klienta do stavu offline. Stanzu je tedy možné vnímat jako stream, který obsahuje všechna data probíhající komunikace. Mezi elementy používané pro komunikaci klienta se serverem patří tyto tři: message, presence a iq. Každý zde uvedený člen má svůj jednoznačný význam. V následujících odstavcích jsou jednotlivé části stanzy blíže definovány a na reprezentativních příkladech jsou ukázány jejich základní struktury a možnosti využití v praxi.

První prvek, který bude charakterizován je označen anglickým výrazem message (zpráva). Jak již název napovídá slouží k posílání zpráv všeho druhu. Je to základní metoda pro rychlý přenos informací z místa na místo. Zprávy jsou typu "push", což znamená že jsou odeslány a není očekávána žádná aktivita od příjemce, která by přijetí potvrdila. Jedno z dosavadních využití se nachází v klasické komunikace po internetu, tzv. instant messaging (IM). K dalším možným použitím patří skupinový chat a oznamovací nebo upozorňující zprávy. Každá z těchto zpráv je tvořena z minimální povinné struktury. Tak jako u klasické poštovní korespondence nesmí chybět adresa odesílatele a adresa příjemce, kterému je zpráva adresována. Podle možnosti použití jsou zprávy děleny do kategorií. Jmenovitě toto rozdělení implementuje atribut type, který může nabývat jednu ze čtyř hodnot. Jsou rozlišovány zprávy pro komunikaci mezi dvěma entitami, skupinový chat, upozornění, chybová zpráva a v neposlední řadě zpráva bez kontextu vyžadující odpověď příjemce. Nakonec nesmí být opomenut blok zprávy, pro uživatele IM nejdůležitější, nesoucí vlastní obsah.

Základní použití struktury elementu message je prezentováno na příkladu 2.2. Na prvním řádku je uveden atribut, značící odesílatele. Druhý řádek obsahuje JID klienta, který zprávy přijímá. Následuje informace o typu zprávy a poté je uveden element body nesoucí samotný obsah.

Příklad 2.2: Použití elementu message.

Další částí stanzy je poskytována struktura pro request-response (žádost-odpověď)

vazbu, podobnou metodám GET, POST a PUT z protokolu HTTP [24]. Zkráceně je označována pomocí dvou počátečních písmen Info/Query nebo-li IQ. Na rozdíl od elementu message tvoří iq spolehlivější přenos, optimalizovaný pro výměnu dat (binární data). K dalším rozdílům patří povinnost příjemce odpovědět na každou přijatou zprávu, nebo-li potvrdit její doručení. Skutečnost, že je na právě požadovanou zprávu odpovězeno, zajišťuje parametr id. Iq dotaz nebo odpověď musí obsahovat stejnou hodnotu tohoto atributu jako zpráva vytvořená žádajícím subjektem. Další povinný atribut rozděluje iq na čtyři typy. Jednotlivé žádosti na proces nebo akci jsou posílány samostatně [23]. V příloze E je uvedena rozsáhlejší struktura tohoto elementu. Použití nachází v případech, které nastavují, žádají nebo informace posílají. Tato struktura je využívána pro novou registraci, posílání seznamu kontaktů a další.

Příklad 2.3 znázorňuje základní použití elementu *iq*. Uživatel *user* posílá dotaz na získání seznamu kontaktu (řádek 5.).

Příklad 2.3: Použití elementu iq.

Poslední a pro tuto práci nejdůležitější prvek stanzy je presence. V případě, že nemá určeného příjemce, tak funguje způsobem jako broadcast. Což znamená, že jsou informace směrovány všem klientům, kteří jsou zaregistrování k jejímu odběru. Presence v českém překladu informace o stavu (přítomnost) rozesílá dostupnost ostatních entit v síti. Jedná se tedy o nastavení uživatelské dostupnosti tak jako na jiných real–time komunikačních a sociálních systémů.

Existuje několik základních stavů statusů, které reprezentují aktuální dosažitelnost uživatele. Tento jev je vyjádřen pomocí elementu show, který disponuje čtyřmi možnostmi. První oznamuje, že je uživatel k dispozici a schopen aktivní komunikace. Druhá často se vyskytující možnost naznačuje, že je subjekt krátkou dobu pryč od svého IM klienta. Tento a další dva stavy, popsané dále, jsou často změněny bez lidského zásahu (pomocí pc nebo jiného zařízení) prostřednictvím funkce známé jako "auto–away". Poslední dva stavy charakterizují delší časové období nečinnosti. Tato oznámení o změně stavu uživatele jsou často zasílána pouze kontaktům, které se nacházejí v režimu online. Tato optimalizace přispívá ke snížení síťového provozu, jelikož presence v reálném čase při komunikaci využívá velké množství šířky pásma.

Základní použití presence je zobrazeno v příkladu 2.4. Kontakt jabinfo@jabbim.com/bot (1. řádek) posílá informace o svém stavu (řádek č. 2) a svůj status (č. 3).

Příklad 2.4: Použití elementu presence.

Obsáhlejší struktura elementu *presence* je zobrazena v příloze E, kde je rovněž k nalezení

přehled všech možných stavů.

Jak již bylo zmíněno v části o Jabber ID Jabber podporuje práci s více současně připojenými klienty k jednomu Jabber účtu. Vysvětlení funkčnosti bude prezentováno na příkladu uživatele přihlášeného na stolním počítači a z klienta v mobilním telefonu. U obou těchto připojení je použit stejný Jabber bare, ale odlišného resource, například domov a mobile. Právě tento rozdíl v tzv. "full" adrese účtu zajišťuje jednu ze dvou možných podmínek pro správnou adresaci zpráv. Druhá možnost, která bude uplatněna při použití adresy účty pouze ve formě Jabber bare, je nastavení priority u jednotlivých programů. Priorita je číslo v rozsahu hodnot od -128 do 127, kde klient s větší prioritou má přednost před klientem s nižší. Nastane–li případ připojení více klientů se stejnou prioritou, každý server se při rozesílání zpráv zachová podle vlastní implementace. Některé rozešlou zprávy všem klientům, jiné naopak jen poslednímu přihlášenému.

2.4 Rozšíření

Dále se tato práce zabývá rozšířeními protokolu XMPP o další vlastnosti k jejichž popisu slouží XEP. Pro tuto práci jsou nepostradatelné "statusy", pro které tvoří základ standardy XEP–0060 [12] a XEP–0163 [21] zkráceně PEP⁶. Obě tato rozšíření umožňují strukturovaně pracovat, používat a přenášet další XEP protokoly. Jako příklady relevantní k práci jsou zde uvedeny protokoly *User Location* (kde se uživatel právě nachází) [6], User Tune (co uživatel poslouchá za hudbu) [18], User Mood (aktuální nálada uživatele) [20] a User Activity (co uživatel právě dělá) [11]. Jsou to tedy protokoly založené na PEP, které vyžadují podporu nejen v klientech, ale i na straně serveru (zobrazuje tabulka 2.1). S touto informací úzce souvisí další protokol XEP–0115 [7], který umožňuje zjistit podporované schopnosti klienta, případně které informace je ochoten přijímat. Tato vlastnost bude popsána níže v části zabývající se podporovanými vlastnostmi.

Všechna tato rozšíření by mohla být přidána přímo do statusu viz příklad 2.4, avšak ten je primárně určen k informování o přítomnosti na IM síti. Hlavní rozdíl mezi PEP a obyčejným posílání stavu pomocí presence je v pravomoci klienta přijmout nebo odmítnou informaci, na rozdíl od presence, jež je přijata vždy.

Základ přenosu informací začíná na straně klienta, který chce všechny ve svém roster listu (seznam kontaktů) informovat o statusu. Zašle zprávu obalenou v elementu iq serveru. Ukázka této zprávy je prezentována na příkladu 2.5, který znázorňuje zaslání informace o druhu hudby, kterou v danou chvíli uživatel poslouchá. Využívá k tomu rozšíření User Tune, definovaném na řádku číslo 5. Základ zprávy oznamující začátek vysílání informací o rozšířených statusech je vždy stejný. Liší se pouze řádkem 3. a obsahem elementu item v příkladu 2.5.

V případě úspěšného přijetí iq zprávy serverem, každý, kdo se zaregistroval k odebírání rozšířených statusů, obdrží oznámení ve formě message. Oznámení bude také doručeno všem resources. Celá zpráva i všechny další náležitosti jsou uvedeny v příloze E.4.

Podporované vlastnosti

Jednotlivá rozšíření protokolu XMPP jsou nepovinná, a proto nemusí být ve všech klientských aplikacích podporována. Pro zjištění podporovaných rozšíření se používá XEP-0115 Entity Capabilities [7]. Toto rozšíření výrazně snižuje počet a velikost komunikací a přenosů

⁶Personal Eventing via Pubsub

```
1
      <iq from='user@jabbim.com' type='set' id='pub1'>
2
         <pubsub xmlns='http://jabber.org/protocol/pubsub'>
3
            <publish node='http://jabber.org/protocol/tune'>
4
                <item>
                   <tune xmlns='http://jabber.org/protocol/tune'>
5
6
                      <artist>Daniel Landa</artist>
7
                      < length > 255 < / length >
8
             . . .
```

Příklad 2.5: Začátku vysílání rozšířeného statusu.

zpráv mezi uživateli. Dotazem zobrazeným na příkladu 2.6 je zjištěna schopnost jednotlivých klientů, kterou následně server využije pro správné směrování rozšířených statusů. Všechny zde zmiňované rozšíření a protokoly z této kapitoly je možné u každého klienta (seznam klientů obsahuje tabulka v příloze E.4) vyčíst z atributu *ver* (druhá část u atributu node), který je vypočítán ze všech podporovaných protokolů klienta, viz [7].

```
1<iq from="user@jabbim.com" id="disco1"
2    to="jabinfo@jabbim.com/bot" type="get">
3    <query xmlns="http://jabber.org/protocol/disco#info"
4    node="http://code.google.com/p/exodus#QgayPKawpkPSDYmwT/WM94uAlu0="/>
5</iq>
```

Příklad 2.6: Dotaz na podporované protokoly.

Další rozšíření

232

233

235

236

237

238

239

240

241

242

243

244

245

247

248

249

250

251

252

253

V následujících několika odstavcích budou přiblíženy specifikace jednotlivých rozšíření XEP, které slouží jako zdrojová data pro dolování a jsou relevantní k tématu práce.

Prvním rozšířením, nad rámec základních vlastností Jabberu, které zde bude podrobněji rozebráno je elektronická verze klasické vizitky nebo—li *VCard*. Jeho specifikací se zabývají dva standardy. Jelikož novější verze XEP dokumentu [13] se v době psaní této práce nacházela ve stavu "experimental", což znamená že ještě není schválena jako standard, je pouze ve stavu návrhu. Proto bylo použito verze starší [16]. Jednoduše řečeno je VCard struktura, která nese informace o uživateli jako je jméno, příjmení, e—mail, adresa bydliště i zaměstnání a další údaje. Data jsou dále zveřejňována na sítí, z čehož vyplývá, že jsou dostupná ostatním uživatelům. Vyplnění těchto osobních údajů je dobrovolné a tak se u některých uživatelů nachází pouze přezdívka a JID, které jsou často předdefinovány automaticky. Nedílnou součástí všech sociálních a komunikačních systému jsou malé fotografie, loga nebo ikony, kterými se uživatelé prezentují. V síti Jabber tomu není jinak, a proto je samotný obrázek zahrnut přímo do VCard v položce *photo*. Podrobnější informace o jeho nastavení a přijímání je možné nalézt v *vCard-Based Avatars* [19], který jej definuje.

Díky základní podmínce XMPP protokolu (otevřenost) existuje mnoho různých aplikací pomocí, kterých lze v síti Jabber komunikovat. S programy, používanými uživateli, úzce souvisí další zde implementované rozšíření. Jedná se o realizaci Software Version dokumentu [17], který se právě zabývá získáváním informací o samotných aplikacích. Je–li toto rozšíření podporováno je díky němu možné zjistit jméno a verzi používané aplikace. Informace o operačního systému často nejsou kvůli bezpečnosti ani vyplněny. Podrobnější informace o softwarové výbavě klienta je možné zjistit pomocí XEP [7], o kterém již bylo dříve psáno v

odstavci zabývajícím se podporovanými vlastnostmi klientských aplikací.

S rozšířením tzv. "chytrých" mobilních zařízení mezi širší veřejnost vzniklo několik nových disciplín spojených s určováním zeměpisné polohy jako je například geocaching. Geografická poloha je přenášena ve formě souřadnic popisující přímo zeměpisnou šířku a délku. Současně lze informaci o poloze přenášet i slovně ve formě adresy. Příkladem slovního popisu je ulice, číslo popisné, město a další. Mnoho aplikací, které mají k dispozici GPS přijímač, vysílají a aktualizují zeměpisné informace automaticky, například po určité době nebo změně polohy o určitou vzdálenost. Toto a další níže popsané rozšíření jsou postaveny na již zmiňovaném PEP. Některé části protokolů jsou zjednodušeny a připraveny tím pro "mobilní instant messaging".

Pro sdělení informací o stavu klienta není v základní verzi Jabberu mnoho. Pomocí presence je možné "pouze" prozradit zda je uživatel připraven komunikovat nebo je momentálně nedostupný a to v několika verzích lišících se délkou nepřítomnosti. Pokročilejší nastavení statusu nabízí *User Mood* [20] a to ve formě sdělení současné nálady jako je například radost. Další možné upřesnění činnosti uživatele jsou definovány v *User Activity* [11], kde každá činnost je složena z povinné obecné kategorie a nepovinné, která informaci upřesňuje. Příkladem může být *eating* a *having_a_snack* tj. uživatel jí, uživatel svačí.

K poslednímu rozšíření implementovanému v této práci patří *User Tune* [18], které umožňuje uživateli šířit informace o aktuálně poslouchané hudbě. Některé dnešních hudební přehrávače dokáží automaticky spolupracovat s IM klientem a předávat informace o hudbě bez nutného lidského zásahu. Ve zprávě jsou tedy přenášeny informace o skladbě, interpretovi, albu a další informace, které mohou být získávány z MP3 ID3v1 nebo novější ID3v2 tag.

Podpora rozšíření v aplikacích je ukázána v tabulce v příloze F. Z této tabulky vyplývá, že rozšířenost aplikací podporující výše popsaná rozšíření je poměrně malá. Například v předcházející zmiňované části o poslouchané hudbě, při stavu kdy program toto rozšíření nepodporuje, je posíláno pomocí normální presence. Jméno skladatele, alba a další podrobnosti jsou shrnuty do statusu, tudíž jsou doručeny všem uživatelům ze seznamu kontaktů.

« Kapitola 3

Data mining

Třetí kapitola se zabývá procesem dobývání znalostí z databází. Popisuje jej jako disciplínu, která vznikla za účelem vytěžení informací z dat, která jsou v nepřeberném množství ukládána v databázích. Díky velikosti dnešních disků, objem ukládaných dat neustále roste. S tím také úzce souvisí zvětšující se poměr nepotřebných a zašumělých dat vůči užitečným informacím.

Na začátku kapitoly je rozebrán pojem získávání znalostí databází, jehož jednu podstatnou část tvoří samotný data ming. Dále je vysvětlena základní terminologie, pro kterou bylo čerpáno z [8]. Celá první podkapitola je věnována vybraným metodám pro dolování dat a vlastnostem, které je od sebe navzájem odlišují. Jsou zde rozebrány asociační pravidla, pro jejichž popis bylo čerpáno z [2]. Pro ostatní metody, které jsou popsány dále, byla jako zdroj informací použita kniha [5]. Poté následuje druhá podkapitola, která se podrobněji zabývá jednou z metod pro dolování dat a to shlukováním. Obsahem této části jsou již konkrétní algoritmy pro shlukování dat [25, 3] a také metoda k-Means využívaná v praktické části této práce. Kapitolu uzavírá přehled vybraných programů pro data minig a podrobnější seznámení s programem RapidMiner, který je v této práci využíván pro samotné dolování.

300 Terminologie

Pojem data mining nebo–li česky dolování dat se začal ve vědeckých kruzích objevovat počátkem 90. let 20. století. První zmínka pochází z konferencí věnovaných umělé inteligenci (IJCAI'89¹–mezinárodní konference konaná v Detroitu, AAAI'91² a AAAI'93–americké konference v Californii a Washingtonu, D.C) [2].

Tradiční metoda získání informací z dat je realizována jejich manuální analýzou a interpretací. V praxi ji například nalezneme v odvětví zdravotnictví, vědy, marketingu (efektivita reklamních kampaní, segmentace zákazníků) a dalších. Pro tyto a mnoho dalších disciplín je manuální zpracování příliš pomalé, drahé a vysoce subjektivní. Další důvod k přechodu na jiné metody je objemnost dat, která dramaticky vzrostla a tudíž se manuální analýza stává zcela nepraktická. Databáze rychle rostou ve dvou následujících kategoriích:

- 1. počet záznamů nebo-li objektů v databázi
- 2. počet polí nebo-li atributů objektů v databázi

¹International Joint Conference on Artificial Intelligence

²Association for the Advancement of Artificial Intelligence

Proces data mining je pouze jedna část z odvětví nazývané dobývání znalostí z databází nebo-li KDD³ definované níže v definici č. 3.0.1. Vznik disciplíny KDD je důsledkem nepřeberného množství automaticky sbíraných dat, která je potřeba dále využívat. Podstatným znakem celého procesu je správnost reprezentace výsledků formou, která má k uživateli nejblíže. Jako příklad bude uvedena implikace ve tvaru rozhodovacích pravidel, asociační pravidla, rozhodovací stromy, shluky podobných dat a další. Základem KDD je praktická použitelnost metod. Očekává se zjištění nových skutečností namísto prezentování již známých informací.

Definice 3.0.1 KDD je chápáno jako interaktivní a iterativní proces tvořený kroky selekce, předzpracováním, transformace, vlastního "dolování" (data-mining viz 3.0.2) a interpretace [2].

Grafické znázornění definice 3.0.1 je popsáno schématem na obrázku 3.1, který prezentuje časový harmonogram v KDD. Schéma znázorňuje následnost jednotlivých procesů, které tvoří KDD. KDD je iterativní proces, z čehož vyplývá, že skutečnosti nalezené v předešlých částí zjednoduší a zpřesní vstupy pro následující fáze. Jakmile jsou znalosti získány, jsou prezentovány uživateli. Pro přesnost může být část procesu KDD ještě upravena. Tím budou získány "přesnější a vhodnější" výsledky.

Obrázek 3.1: Proces dobývání znalostí z databází podle knihy autora Fayyad [4].

Získávání znalostí z databází je proces složen z několika kroků vedoucích od surových dat k formě nových poznatků. Iterativní proces je složen, tak jak je prezentováno v [5], z následujících kroků:

- čištění dat fáze, ve které jsou nepodstatné údaje odstraněny z kolekce.
- integrace dat kombinování heterogenních dat z několika zdrojů do společného jediného zdroje.
 - výběr dat rozhodování o relevantních datech.
- transformace dat také známý jako konsolidace dat. Fáze, ve které jsou vybraná data transformována do formy vhodné pro dolování.

³Knowledge Discovery in Database

- data mining zásadní krok, ve kterém jsou aplikovány vzory na data.
- hodnocení modelů vzory dat zastupují získané znalosti.

339

340

341

343

347

348

349

350

357

359

374

375

376

377

• prezentace znalostí – konečná fáze, zjištěné poznatky jsou reprezentovány uživateli. Tento základní krok využívá vizualizační techniky, které pomáhají uživatelům porozumět a správně interpretovat získané výsledky.

Jak je uvedeno v [5], běžně jsou některé z těchto kroků kombinovány dohromady. Kroky čištění dat a integrace dat mohou být provedeny společně, tak jako to prezentuje schéma na obrázku 3.1.

V této podsekci jsou ve stručnosti vysvětleny základní nejdůležitější pojmy dále v práci využívané.

Definic výrazu data mining se v odborné literatuře nachází několik. Zde uvedená je kombinací dvou "definic" z [15].

Definice 3.0.2 Data Mining je proces objevování znalostí, který používá různé analytické nástroje sloužící k odhalení dříve neznámých vztahů a informací z velmi rozsáhlých databází.

Výsledkem je predikční model, který je podkladem pro rozhodování [15].

Mezi další četně se vyskytující pojmy v tomto odvětví patří například data, znalosti a informace. Tyto termíny jsou často mezi sebou zaměňovány, proto jsou níže jejich významy striktně definovány tak jako v [8].

Jedna z několika existujících definic pojmu data je uvedena v definici č. 3.0.3, která je popisuje z pohledu informačního. Data často nemají sémantiku (význam) a bývají zpracována čistě formálně.

Definice 3.0.3 Data jsou z hlediska počítačového pouze hodnoty různých datových typů.

Informace lze chápat jako data, která byla obohacena o sémantiku (význam), jsou tedy již zpracovaná a interpretována uživatelem. Znalosti, jsou řazeny do stejné kategorie jako informace, ale jejich interpretace bývá ještě složitější. Často bývají tvořeny shluky informací, proto jsou reprezentovány jako odvozené informace. Podle studijní opory [8] jsou znalosti informace, které jsou zařazeny do souvislostí.

3.1 Metody dolovaní dat

Základ metod dolování dat je založen na statistice, posledních poznatcích z umělé inteligence či strojového učení. Hlavní cíl těchto netriviálních metod je společný – snaha zjištěné
výsledky prezentovat srozumitelnou formou. Pro většinu používaných metod je společná
vlastnost předpoklad, že objekty popsané pomocí podobných charakteristik patří do stejné
skupiny (učení na základě podobnosti similarity-based learning). Objekty obsahující atributy, lze převést na body v *n*-rozměrném prostoru, kde *n* reprezentuje počet atributů.
Vychází z představy podobnosti bodů tvořící určité shluky v prostoru.

Další rozdíly mezi metodami, které byly prezentovány v [2], spočívají ve:

- schopnosti reprezentace shluků (např. otázka lineární separability)
- srozumitelnosti nalezených znalostí pro uživatele (symbolické vs. subsymbolické metody)

- efektivnosti znovupoužití nalezených znalostí
- vhodnosti typů dat
 - \bullet a další ...

378

379

380

381

388

390

391

392

393

394

395

396

397

398

390

400

404

405

Problémy, které data mining řeší, se rozdělují do několika skupin. Mezi výčet z nich vybraných, které budou následně rozebrány, patří asociační pravidla, klasifikace, modely, predikce a shlukování.

384 Asociační pravidla

Při popisu asociačních pravidel, která jsou založena na syntaxi *IF-THEN*, bylo čerpáno z [2]. Jejich rozšíření se datuje do 90. let 20. století, kdy byly panem Agrawalem představeny v souvislosti s analýzou "nákupního košíku".

Použitelnost bude vysvětlena právě na příkladu analýzy nákupního košíku. Podstata příkladu je tvořena zákazníkem a jeho systémem nakupování. Jsou zjišťovány produkty, které jsou nakupovány současně. Hledají se nebo–li jsou vytvářeny společné vazby (asociační pravidla) mezi výrobky a určuje se jejich spolehlivost. Na základě těchto závislostí je upravováno umístění jednotlivých výrobků.

Obecně jsou tedy asociační pravidla považována za konstrukci, která z hodnot jedné transakce odvozuje možnost výskytu závislostí v jiných transakcích. Jsou tedy hledány všechny vnitřní závislosti existující mezi daty.

Podle knihy Berky [2] je základní myšlenka asociačních pravidel *IF-THEN* převedena do jiné terminologie:

kde Ant bývá interpretován jednou možností z výčtu – předpoklad, IF, levá strana pravidla nebo ancedent a Suc je chápan jako – závěr, ELSE, pravá strana pravidla, sukcendent. Níže jsou uvedeny základní vlastnosti:

```
n(Ant \wedge Sus) = \mathbf{a}; \ n(Ant \wedge \neg Sus) = \mathbf{b}; \ n(\neg Ant \wedge Sus) = \mathbf{c}; \ n(\neg Ant \wedge \neg Sus) = \mathbf{d};
402 \quad n(Ant) = a+b = \mathbf{r}; \ n(\neg Ant) = c+d = \mathbf{s}; \ n(Suc) = a+c = \mathbf{k}; \ n(\neg Suc) = b+d = \mathbf{l}; \ n = a+b+c+d;
```

všechna pravidla jsou shrnuta v tabulce 3.1, z nichž jsou dále počítány různé charakteristiky a následně tak hodnoceny zjištěné znalosti.

	Suc	$\neg \mathbf{Suc}$	\sum
Ant	a	b	r
$\neg \mathrm{Ant}$	\mathbf{c}	d	\mathbf{S}
\sum	k	1	\mathbf{n}

Tabulka 3.1: Kontingenční tabulka převzata z [2].

Mezi základní charakteristiky asociačních pravidel podle Agrewalova patří *podpora* a spolehlivost.

408 Klasifikace

Klasifikace bude opět vysvětlena na příkladu, převzatého z [8]. Podle obsahu databáze nebo dotazníku bude každý klient banky zařazen do různých krizových skupin. Na základě těchto skupin pracuje "credit skóring", jež klientovi poskytne nebo odepře například úvěr v bance. Další příklady využití jsou například ve zdravotnictví. Na základě zdravotního stavu pacienta a jeho příznaků, je pacient zařazen do tříd, které reprezentují jednotlivé nemoci.

Klasifikací isou, podle [5], jednotlivé zkoumané elementy rozděleny (podle hodnot atri-

Klasifikací jsou, podle [5], jednotlivé zkoumané elementy rozděleny (podle hodnot atributů) do vhodných kategorií, které jsou předem vytvořeny z navzájem podobných objektů (tvorba profilů třídy). Při této metodě je upřednostňována přesnost před jednoduchostí a rychlostí. Zdroje klasifikovaných objektů jsou většinou tvořeny jednotlivými řádky v databázi. Vzory dat vytváří instance, Jejichž vlastnosti reprezentují atributy vyjádřené číselnou hodnotou.

420 Modely

- Základem modelů jsou trénovací data. Níže uvedený příklad vybraných klasifikačních modelů, byl čerpán z [5]:
- Rozhodovací stromy
- Neuronové sítě
- Statistické metody
- Klasifikační pravidla
- Využití vzdálenosti
- a další ...

429 Predikce

Predikce je řazena mezi velmi známé procesy, které na základě získaných znalostí předpovídají následující vývoj. Chronologicky seřazená data a vývoj jejich hodnot v minulosti tvoří
základ pro určení hodnot budoucích. Předpokládá se, že na základě informací získaných z
dat v minulosti, bude možné postavit modely, které se budou chovat stejně nebo alespoň
podobně i v budoucnu. Využití naleznou v předpovědi počasí (z naměřených meteorologických hodnot se určují budoucí předpokládané teploty), při vývoji cen na burze a dalších.
Podklady pro popis predikce byly čerpány z [2, 5].

437 Shlukování

441

Metoda zaměřená na dělení objektů do předem neznámých skupin. Proces dělení probíhá na základě specifikace objektů a jejich odlišnosti od ostatních shluků. Tato část, pro kterou bylo čerpáno z [25, 3], bude podrobně rozebrána v následující podkapitole.

3.2 Shlukování

V této podkapitole je shlukování rozděleno na několik metod shlukové analýzy podle [5].
U každé z nich jsou popsány její základní vlastnosti a uvedeny nejrozšířenější algoritmy.

Poslední metoda *metoda rozkladu* je rozebrána podrobněji z důvodu jejího praktického využití v této práci.

Shlukování je zaměřeno na dělení objektů do předem neznámých skupin. Proces dělení probíhá na základě specifikace objektů a jejich odlišnosti od ostatních shluků.

Většina níže popsaných metod a algoritmů je založena na výpočtu vzdáleností mezi objekty. Tato vzdálenost lze vyjádřit různými mírami, podle knihy [2] například pomocí Hammingovy vzdálenosti (dH), Euklidovské vzdálenosti (dE) a Čebyševovy vzdálenosti (dC). Rozdíl mezi těmito typy určující vzdálenosti, graficky vyjadřuje obrázek č. 3.2. Kde X1 je střed, od něhož jsou jednotlivými obrazci znázorněny dané vzdálenosti. Konkrétně pomyslné body umístěné po obvodu kruhu jsou všechny stejně vzdáleny od středu X1. Tato vzdálenost je označena jako Euklidovská. Další 2D těleso čtverec, který je vodorovný s osami A1 a A2 prezentuje Čebyševovu vzdálenost. Po obvodu posledního obrazce, čtverce otočeného o 45° podle osy A1, jsou všechny pomyslné body stejně vzdáleny od bodu X1 Hammingovou vzdáleností.

Obrázek 3.2: Srovnání výpočtu vzdáleností od bodu x_1 [2].

458 Metody založené na modelu

Metody založené na modelu se pokouší přiřadit data k určitému matematickému modelu na základě společných optimalizovaných vlastností. Většina procesů je založena na předpokladu generování dat pomocí standardních statistik.

Mezi zástupné metody této shlukovací analýzy se řadí Expectation–Maximization (EM) a SOON⁴. Algoritmus SOON je založen na neuronové síti. Je to metoda vycházející z algoritmu SOM^5 [25]. Metoda EM je rozšířením algoritmu k–means, který bude podrobně rozebrán v následující části.

466 Metody hierarchické

Hlavní princip metody hierarchického shlukování je založen na tvorbě stromové hierarchie shluků, která je známá pod názvem *dendrogram*. Hierarchické metody, podle [5], mohou být rozděleny do dvou skupin a to na základě principu, kterým jsou dendrogramy vytvářeny. První možnost je *aglomerativní přístup*, který shlukuje menší shluky, kdy výsledkem je jen

⁴Self Organizing Oscillator Network

⁵Self-Organizing Map

jeden. Druhý přístup, divizní, je založen na opačném předpokladu. Tedy že na počátku
 je jeden velký shluk, který je postupně rozdělován dokud není počet shluků roven počtu
 objektů [25]. Mezi zástupce této metody například patří algoritmus AGNES⁶.

474 Metody založené na mřížce

480

481

482

483

484

485

486

488

489

490

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

Metody založené na mřížce kvantují datový prostor do konečného počtu pravoúhlých buněk, které jsou uspořádány do víceúrovňové mřížkové struktury. Zmíněná struktura tvoří základ pro shlukové operace. Hlavní výhoda tohoto přístupu je rychlost zpracování, které většinou nebere ohled na počet datových objektů. Čas zpracování závisí pouze na počtu buněk v každé dimenzi kvantovaného prostoru.

Mezi zástupce metod založených na mřížce patří metoda STING⁷, který pracuje se statickými informacemi uloženými v buňkách mřížky. Algoritmus je rozdělen do dvou částí. První si klade za cíl rekurzivně rozdělit datový prostor na pravoúhlé buňky. Druhá fáze testuje spojitost mezi sousedy relevantních buněk [25].

Mezi další metody založené na mřížce patří WaveCluster⁸, využívající vlnkové transformace k rozdělení prostoru dat. Tato transformace zdůrazňuje shluky v prostoru a objekty jim vzdálené potlačuje [5].

487 Metody založené na hustotě

Vychází z m–rozměrného prostoru, ve kterém jsou zobrazeny objekty ve formě bodů. Místa v prostoru s větší koncentrací objektů ve srovnáním s ostatními oblastmi jsou nazývány shluky. Výchozí předpoklad je existence okolí jednotlivých bodů (sousedství). Jedna z charakteristik metod založených na hustotě je schopnost vypořádat se s vzdálenými hodnotami, označovanými jako šum [25].

Jako příklad je uvedena metoda DBSCAN⁹, která je založena na hustotě objektů v prostoru. U jednotlivých objektů je zkoumáno jejich okolí. Algoritmus je ovlivňován dvěma parametry ε (velikost shluku) a MinPts (minimální počet objektů v daném shluku), které spolu úzce souvisí (viz [5]). Bod splňující obě podmínky je označen za jádro. Za pomocí jader je rozšiřována množina objektů spojených na základě hustoty. Obsahuje–li jádro x_1 ve svém okolí další jádro x_2 znamená to, že jádro x_1 je přímo dosažitelné z jádra x_2 . Tímto způsobem jsou vytvářeny výsledné shluky. V opačném případě, body, které nesplňují dvě zmíněné podmínky, jsou označeny jako šum.

Shlukování velkých dat

Všechny zde doposud zmiňované metody poskytují dobré výsledky pouze s malým počtem dimenzí, tak jak je to popsáno v [8]. S narůstajícím počtem atributů roste počet nerelevantních dimenzí určených pro shlukování. S tímto také přibývá zvětšená produkce zašumění a znesnadnění nalezení relevantních shluků. Data jsou roztroušena do mnoha dimenzí a tím odpadá možnost použití vzdálenostních funkcí.

Zmíněné problémy shlukování velkých dat řeší dvě techniky metoda transformace rysů a metoda výběru atributů. Pro efektivní shlukování je možné použít například algoritmus

⁶AGglomerative Nesting

⁷STatistical Information Grid

⁸Clustering Using Wavelet Transformation

⁹Density-Based Spatial Clustering of Applications with Noise

CLIQUE 10 .

Metody rozkladu

Metody rozkladu rozdělují datové prvky do několika podmnožin, nazývané shluky. Počet shluků musí být znám před zahájením samotného procesu. Přiřazení do konkrétních tříd je, podle [25], jednoznačné nebo probíhá na základě míry příslušnosti objektů do shluků. Pro velký počet objektů, se kterými se pracuje, jsou využívány různé iterační optimalizace. Hlavním zástupcem u uvedených metod je algoritmus k-means, který je popsán níže. Tvoří základ pro většinu metod shlukování nejen pro metody rozkladu. K dalším metodám

se řadí k-medoidů, k-modů, k-histogramů, fuzzy shluková analýza a další.

k-means

Shlukování pomocí algoritmu k-means je používáno pro data obsahující kvantitativní proměnné a pro data, která nejsou příliš zašumělá. Základní proces je tvořen iterativním rozdělováním objektů do tříd na základě vzdáleností od jejich středů. Střed nebo-li centroid shluku je vektor, jehož vzdálenost od součtu vzdáleností objektů v této třídě je minimální. Pro výpočet vzdáleností mezi objekty samotnými nebo mezi objekty a středem je použita euklidovská vzdálenost¹¹, která je vyobrazena na obrázku č. 3.2.

K hlavním výhodám algoritmu k-means patří jeho relativní efektivnost: O(TKN), kde N je počet objektů, K je počet shluků a T je počet iterací. Obvykle platí, že počet objektů je mnohem větší než počet iterací i shluků. Na druhou stranu má i řadu nevýhod, kvůli kterým je často různými způsoby modifikován (k-medoids, k-medians). K hlavním "nedostatkům" patří předem nutná znalost počtu shluků (tříd) K, do kterých budou objekty zařazeny. Druhý často se vyskytující problém je samotné ukončení algoritmu, které nastane u nalezení lokálního optima namísto optima globálního. Tato nepřesnost vzniká nevhodně zvoleným rozmístěním počátečních středů. Původní nemodifikovaná verze algoritmu nedefinuje jak se má postupovat, jsou-li nalezeny prázdné shluky.

K-menas je algoritmus, kterým jsou přiřazovány objekty (vektory) x_n , kde n=1,...,N, do S_k , kde k=1,...K, shluků. V prvním kroku jsou určeny počáteční středy tříd, do kterých se budou objekty shlukovat. Určení počátečních centroidů c_k probíhá například náhodným výběrem K objektů nebo K prvních objektů souboru. Druhým krokem jsou zkoumány jednotlivé vzdálenosti objektů x_n od počátečních středů c_j pomocí euklidovské vzdálenosti. Na základě nejmenší zjištěné vzdálenosti mezi objektem a centroidem je objekt zařazen do shluku, kterému náleží právě tento střed. Třetím krokem tak jako u prvního jsou hledány nové středy shluků, nyní ale již na matematickém základě. Je vypočítán na základě průměrných jednotlivých hodnot objektů a uložen jako m-rozměrný vektor. Čtvrtým krokem se algoritmus dostává do konečné fáze, kdy mohou nastat dva možné případy. Nově nalezené středy nejsou příliš vzdáleny od předchozích centroidů a proto je algoritmus ukončen. Druhá častěji se vyskytující možnost iterativně provádí algoritmus od druhého kroku dokud neplatí první možnost nebo dokud se objekty nepřestanou přemísťovat úplně. Při popisu tohoto algoritmu bylo čerpáno z [25].

Díky jednoduchosti a relativní rychlosti je metoda *k-means* stále výrazně využívána. Uplatnění nachází v široké škále oblastí jako je například biologie nebo počítačová grafika.

¹⁰CLustering In QUEst

¹¹mean=střed, centroid je vektor průměrů

Algoritmus 3.1 Calculate $y = x^n$

```
Require: n > 0 \lor x \neq 0
Ensure: y = x^n
  y \Leftarrow 1
  if n < 0 then
      X \Leftarrow 1/x
      N \Leftarrow -n
   else
      X \Leftarrow x
      N \Leftarrow n
   end if
   while N \neq 0 do
      if N is even then
         X \Leftarrow X \times X
         N \Leftarrow N/2
      else \{N \text{ is odd}\}
         y \Leftarrow y \times X
         N \Leftarrow N - 1
      end if
   end while
```

Vzhledem k enormnímu počtu možného uspořádaní nejsou výsledky vždy přesné, ale často pouze přibližné.

3.3 Programy

552

V současné době na programovém trhu existuje mnoho systému, které jsou zaměřeny na data 553 mining. Mezi nejrozšířenější a nejdostupnější nástroje patří Weka a RapidMiner. K těmto nástrojům je také možné zařadit program vyvíjený na fakultě informačních technologií 555 v Brně. V této práci byl pro samotný data miningg využit program RapidMiner, který dostal přednost před ostatními. Z pohledu nástroje FIT-miner, který ve své základní části 557 podporuje z databází pouze MySQL, se RapidMiner jevil jako vhodnější. Kompatibilitu 558 pro databáze typu PostgreSQL již měl zabudovanou a tak nebylo potřeba vyvíjet žádné 559 doplňující moduly, jak by to bylo u FIT-mineru. V případě nástroje Weka, RapidMiner 560 působil propracovanějším dojmem a také nabízí lepší grafické zobrazení vyhodnocených výsledků. 562

RapidMiner

RapidMiner je, tak jak je popsán na oficiálních stránkách produktu [?], celosvětově nejpoužívanější open–source systém pro dolování dat. Je možné jej používat jako samotnou aplikaci nebo jej začlenit jako komponentu do vlastních výrobků. Pro zájemce je nabízen také ve verzích pro firmy, které jsou rozdílné v poplatcích, podpoře pro zákazníka, záruce a dalších balíčcích služeb zajišťující celkovou komplexnost a spolehlivost produktu.

Jak již většina podobných aplikací, je v současné době implementován v jazyce Java, díky které nabízí flexibilní nejen grafické prostředí. K vybraným základním rysům toho nástroje, tak jak jsou prezentovány firmou Rapid-i, patří: výkonné, přesto intuitivní grafické uživatelské rozhraní pro návrh procesů, jednoduché řešení pro transformaci dat, kontrola výsledků již při samotném návrhu a další. Nástrojem RapidMinerem je podporována široká škála metod a algoritmů pro data minig, nejen vlastních a i z konkurenčního softwaru Weka. V základní verzi určené pro veřejnost je k nalezení přes 100 procesů k modelování. Jsou zde zastoupeny jak metody klasifikační a asociační, tak i metody shlukovací z nichž lze jmenovat například DBSCAN, k-medoids a hlavně k-means.

K dalším schopnostem RapidMineru je možnost spuštění jeho samotného pomocí grafického rozhraní nebo z příkazové řádky. Jak již bylo uvedeno dříve, je také možné jej použít jako knihovnu v jazyce Java. V této práci jsou skloubeny první dvě možnosti použití. Pomocí grafického prostředí byl vytvořen experiment, otestována jeho funkčnost a následně pro jednotlivá shlukování použita šablona procesu, která byla volána z příkazové řádky. Tato možnost je k dispozici díky tomu, že jsou projekty v programu RapidMiner ukládány do čitelné a strukturované formy za pomocí značkovacího jazyka xml.

585 Kapitola 4

$\mathbf{Implementace}$

Obsahem čtvrté kapitoly je popis praktické části této práce. Jsou zde popsány jednotlivé prvky, které byly použity jak pro získání dat, tak pro jejich následné uložení.

Cílem této práce je dolování dat z Jabberu. Jak již bylo dříve napsáno, Jabber je realtime komunikační služba díky níž mohou její uživatelé komunikovat, informovat nebo sdílet svůj status s jinými uživateli. Celá tato vzájemná komunikace skrývá nepřeberné množství informací o klientech dané sítě. Všechna tato navzájem vyměněná nebo poskytnutá data následně poslouží jako zdroj samotnému dolování. Pro jejich uskladnění je využita databáze, jejichž strukturální návrh prezentuje obrázek č. 4.1.

Druhá část této kapitoly je zaměřena na robota, což je Jabber klient implementován v jazyce C++ s konzolovým rozhraním. Robot v této práci hraje roli pasivního uživatele, který informace pouze přijímá. Ve vybraných případech dokáže uživatele ve svém seznamu kontaktů vyzvat k zaslání odpovědi s informacemi na požadovanou žádost. Struktura samotného robota je popsána níže a reprezentována obrázkem č. ??. Na konci části o Jabber robotovi bude zmíněno o knihovně gloox [?], kterou je zprostředkovány všechny náležitosti Jabber komunikace.

602 4.1 Databáze

Data, která jsou sbírána robotem, jsou ukládána do objektově—relační databáze PostgreSQL¹. PostgreSQL nebo-li také Postgres byl použit ve verzi 8.4.7 a je provozován na operačním systému Ubuntu Maverick verze 10.10.

606 Návrh databáze

Struktura databáze, do které je ukládána veškerá komunikace Jabber robota, využívá relační model. Obrázkem č. 4.1 jsou prezentovány nejdůležitější části databáze. Celou strukturu návrhu je možné nalézt v příloze ??. V jednotlivých částí návrhu databáze je počítáno s jejím druhotným využitím obsahu, které bude popsáno v dalších částí této práce.

V době návrhu databáze zcela nebylo jasné, která data budou následně analyzována. Z toho důvodu se struktura databáze snaží zachytit všechna "důležitá" data. Předem nebylo určen typ znalostí, kterých by se při dolování mělo dosáhnout. Za účelem neztratit žádná data, je v návrhu databáze obsažena tabulka xml, která je nositelem obsah jak všech přijatých, tak i odeslaných zpráv.

¹vyvinul se z projektu Ingres

Transformace dat

4.2 Architektura

-robot plus databaze -rapidminer-spusteni davkove/vlastni algoritmus v PHP -webova implementace prezentuje vysledky

620 4.3 Robot

-class diagram, pomoci nej popsat strukturu, mozne rozsireni

622 gloox

Gloox je stabilní Jabber/XMPP knihovna vydávána pod licencí GNU GPL. Je určena pro vývoj klienta a komponent. Jelikož je psána v ANSCI C++ je možné ji označit jako multiplatformní ².

Pomocí knihovny gloox je psán bot v této práci. Byla vybrána na základě požadavku psaní programu v jazyce C/C++ a operačním systému Linux. V porovnání s jinými knihovnami pro jazyk C nebo C++ disponuje lepší podporou a dokumentací. Gloox plně podporuje standart XMPP Core [22] a z větší části i standard XMPP IM [23]. Dodatečně je plně podporováno kolem 30 XEP standardů například vcard-temp[16] a další.

631 Návrh bota

632 Transformace

633 temporalni databaze

²Linux, Windows, Mac OS X, Symbian/Nokia S60, FreeBSD

Obrázek 4.1: Struktura databáze

Kapitola 5

Vyhodnocení výsledků

-charakter dat, jaka data jsem nasbiral –

637 Kapitola 6

SE Závěr

639

Literatura

- [1] Adams, D.: *Programming jabber*. Sebastopol: O'Reilly, první vydání, 2002, 455 s., iSBN 05-960-0202-5.
- [2] Berka, P.: Dobývání znalostí z databází. Praha: Academia, první vydání, 2003, 366 s.,
 iSBN 80-200-1062-9.
- [3] Bramer, M.: Principles of Data mining. London: Springer, první vydání, 2007, 343 s.,
 iSBN 18-462-8765-0.
- [4] Fayyad, U. M.; Smyth, P.: Advances in knowledge discovery and data mining.
 California: MIT Press, první vydání, 1996, 611 s., iSBN 02-625-6097-6.
- [5] Han, J.; Kamber, M.: Data mining: concepts and techniques. San Francisco: Morgan
 Kaufmann Publisher, druhé vydání, 2006, 770 s., iSBN 15-586-0901-6.
- [6] Hildebrand, J.; Saint-Andre, P.: XEP-0080: User Location. [online], 15-09-2009, [cit. 26. dubna 2011].
- URL http://xmpp.org/extensions/xep-0080.html
- [7] Hildebrand, J.; Saint-Andre, P.; Tronçon, R.; aj.: XEP-0115: Entity Capabilities. [online], 26-02-2008, [cit. 26. dubna 2011]. URL http://xmpp.org/extensions/xep-0115.html
- [8] Hruška, T.: Informační systémy: IIS/PIS. Brno: Fakulta informačních technologií,
 2008, 14733 s.
- [9] Kolektiv autorů: Extensible Markup Language (XML) 1.0. [online], 26-11-2008, [cit.
 26. dubna 2011].
 URL http://www.w3.org/TR/2008/REC-xml-20081126/
- [10] Kosek, J.: XML pro každého : podrobný průvodce. Praha: Grada, první vydání, 2000,
 163 s., iSBN 80-716-9860-1.
- [11] Meijer, R.; Saint-Andre, P.: XEP-0108: User Activity. [online], 29-10-2008, [cit.
 26. dubna 2011].
 URL http://xmpp.org/extensions/xep-0108.html
- [12] Millard, P.; Saint-Andre, P.; Meijer, R.: XEP-0060: Publish-Subscribe. [online],
 12-07-2010, [cit. 26. dubna 2011].
- URL http://xmpp.org/extensions/xep-0060.html

- [13] Mizzi, S.; Saint-Andre, P.: XEP-0292: vCard4 Over XMPP. [online], 02-26-2008, [cit.
 26. dubna 2011].
- URL http://xmpp.org/extensions/xep-0292.html
- [14] Moore, D.; Wright, W.: *Jabber developer's handbook*. Indianapolis: Sams Publishing, první vydání, 2004, 487 s., iSBN 06-723-2536-5.
- [15] Nemrava, M.; Pospíšil, J.: Dolování dat a jeho aplikace. [online], 2006, [cit. 26. dubna
 2011].
- URL http://www.spatial.cs.umn.edu/paper_ps/dmchap.pdf
- [16] Saint-Andre, P.: XEP-0054: vcard-temp. [online], 07-16-2008, [cit. 26. dubna 2011].
 URL http://xmpp.org/extensions/xep-0054.html
- [17] Saint-Andre, P.: XEP-0092: Software Version. [online], 02-15-2007, [cit. 26. dubna
 2011].
- URL http://xmpp.org/extensions/xep-0092.html
- [18] Saint-Andre, P.: XEP-0118: User Tune. [online], 30-01-2008, [cit. 26. dubna 2011]. URL http://xmpp.org/extensions/xep-0118.html
- [19] Saint-Andre, P.: XEP-0153: vCard-Based Avatars. [online], 16-08-2006, [cit.
 26. dubna 2011].
 URL http://xmpp.org/extensions/xep-0153.html
- [20] Saint-Andre, P.; Meijer, R.: XEP-0107: User Mood. [online], 29-10-2008, [cit.
 26. dubna 2011].
 URL http://xmpp.org/extensions/xep-0107.html
- [21] Saint-Andre, P.; Smith, K.: XEP-0163: Personal Eventing Protocol. [online],
 12-07-2010, [cit. 26. dubna 2011].
 URL http://xmpp.org/extensions/xep-0163.html
- [22] Saint-André, P.: Extensible Messaging and Presence Protocol (XMPP): Core.
 [595] [online], 10-2004, [cit. 26. dubna 2011].
 URL http://tools.ietf.org/html/rfc3920
- [23] Saint-André, P.: Extensible Messaging and Presence Protocol (XMPP): Instant
 Messaging and Presence. [online], 10-2004, [cit. 26. dubna 2011].
 URL http://tools.ietf.org/html/rfc3921
- [24] Saint-André, P.; Smith, K.; Troncon, R.: XMPP: the definitive guide: building
 real-time applications with jabber technologies. Sebastopol: O'Reilly, první vydání,
 2009, 287 s., iSBN 978-059-6521-264.
- [25] Řezánková, H.; Húsek, D.; Snášel, V.: Shluková analýza dat. Praha: Professional
 Publishing, druhé vydání, 2009, 218 s., iSBN 978-808-6946-818.

Příloha A

Obsah CD

Příloha B

Manual Manual

Příloha C

TIO Konfigrační soubor

Příloha D

₁₂ Slovník zkratek

```
DNS — Domain Name System
    GPG — dkshckdsjvlsdjvodsvjdfokj
   IM služby — dkshckdsjvlsdjvodsvjdfokj
    IP — Internet Protocol
    JEP — dkshckdsjvlsdjvodsvjdfokj
    JID — dkshckdsjvlsdjvodsvjdfokj
    SASL — dkshckdsjvlsdjvodsvjdfokj
719
    TCP — dkshckdsjvlsdjvodsvjdfokj
720
    TLS — dkshckdsjvlsdjvodsvjdfokj
    WWW — dkshckdsjvlsdjvodsvjdfokj
    XEP — dkshckdsjvlsdjvodsvjdfokj
723
    XML — dkshckdsjvlsdjvodsvjdfokj
    XMPP — dkshckdsjvlsdjvodsvjdfokj
725
    \mathbf{e}	ext{-}\mathbf{mail} — dkshckdsjvlsdjvodsvjdfokj
726
    jabber — dkshckdsjvlsdjvodsvjdfokj
727
    klient — dkshckdsjvlsdjvodsvjdfokj
    presence — dkshckdsjvlsdjvodsvjdfokj
729
    server — dkshckdsjvlsdjvodsvjdfokj
730
    stanza — dkshckdsjvlsdjvodsvjdfokj
731
    vCard — dkshckdsjvlsdjvodsvjdfokj
732
    ID3v1 — dkshckdsjvlsdjvodsvjdfokj
```

ID3v2 — dkshckdsjvlsdjvodsvjdfokj

Příloha E

Stanza - základní schéma

Přehled základních elementů, které jsou využívány při Jabber komunikaci. Struktura jednotlivých částí stanzy ukazuje pouze prvky relativní k této práci. Pomocí hranatých závorek
je znázorněna množina, ze které musí být vybrán právě jeden prvek. Na místě uvozovek se
očekává jakákoliv povolená hodnota.

741 E.1 \mathbf{Iq}

Příklad E.1: Popis elementu iq.

T42 E.2 Message

```
<message from=""
1
2
3
               type="[normal,chat,groupchat, headline, error]"
               id=""
4
        <body> </body>
5
        <x xmlns="jabber:x:event">
6
           [Offline, Delivered, Displayed, Composing]
7
        <subject> </subject>
8
                   </thread>
9
        <thread>
10
        <error>
                   </error>
11
        <x>
                   </x>
      </message>
12
```

Příklad E.2: Popis elementu message.

Fig. 743 Presence

```
ence from=""
1
               to=""
2
3
               type="[available, unavailable, probe, subscribe,
4
                      unsubscribe, subscribed, unsubscribed, error]"
5
               id=""
6
       <show>
         [away, chat, dnd, normal, xa]
7
8
       </show>
9
       <status>
                    </status>
10
                    <priority>
11
                    </error>
       <error>
12
     </presence>
```

Příklad E.3: Popis elementu presence.

744 E.4 Přehled průběhu rozšíření

746

Ukázka celého příkladu šíření statusu pomocí rozšíření *User Tune*. Uživatel *user* poslouchá hudbu a informuje server zasláním zprávy zobrazené v příkladu E.4.

Obrázek E.1: Ukázka "šíření" User Tune.

```
<iq from="user@jabbim.com" type="set" id="pub1">
1
         <pubsub xmlns="http://jabber.org/protocol/pubsub">
2
            <publish node="http://jabber.org/protocol/tune">
3
4
                <item>
5
                   <tune xmlns="http://jabber.org/protocol/tune">
6
                      <artist>Daniel Landa</artist>
7
                      < length > 255 < / length >
8
                      <source>Nigredo</source>
9
                      <title>1968</title>
10
                      <track>5</track>
11
                   </tune>
12
                </item>
13
            </publish>
         </pubsub>
14
     </iq>
15
```

Příklad E.4: Informování serveru o právě přehrávající hudbě.

Server obdrží informace od klienta *user* zprávu o přehrávající hudbě. Pomocí elementu *message* ji přepošle všem uživatelům z kontakt listu uživatele *user*, kteří jsou pro odběr těchto typů zpráv zaregistrováni. Tato struktura zprávy je prezentována na příkladu E.5.

747

748

749

750

751

```
1
      <message from="user@jabbim.com" type="set"</pre>
                to="jabinfo@jabbim.com/bot" id="pub1">
2
3
         <event xmlns="http://jabber.org/protocol/pubsub#event">
4
            <items node="http://jabber.org/protocol/tune">
5
                <item>
6
                   <tune xmlns="http://jabber.org/protocol/tune">
7
                      <artist>Daniel Landa</artist>
8
                      < length > 255 < / length >
9
                      <source>Nigredo</source>
10
                      <title>1968</title>
11
                     <track>5</track>
12
                   </tune>
                </item>
13
            </items>
14
15
         </event>
16
      </message>
```

Příklad E.5: Server informuje uživatele podporující rozšíření o stavu user@jabbim.com.

Zpráva o přehrávané hudbě je také přeposlána všem otevřeným spojením uživatele user, ukázáno na příkladě E.6.

```
1
      <message from="user@jabbim.com" type="set"</pre>
2
                to="user@jabbim.com/doma" id="pub2">
3
         <event xmlns="http://jabber.org/protocol/pubsub#event">
4
            <items node="http://jabber.org/protocol/tune">
5
6
                   <tune xmlns="http://jabber.org/protocol/tune">
7
                      <artist>Daniel Landa</artist>
8
                      < length > 255 < / length >
9
                      <source>Nigredo</source>
10
                      <title>1968</title>
11
                      <track>5</track>
12
                   </tune>
13
                </item>
            </items>
14
15
         </event>
16
      </message>
```

Příklad E.6: Server přepošle informace o přehrávané hudbě všem otevřeným spojením uživatele user@jabbim.com.

Přestane–li uživatel *user* poslouchat/vysílat informace o přehrávané hudbě, provede to pomocí zprávy ukázané na příkladu E.7. Zpráva typu *iq*, ve které je položka *tune* nesoucí informace o skladbě prázdná.

```
1
     <iq from="user@jabbim.com/prace" type="set" id="pub1">
        <pubsub xmlns="http://jabber.org/protocol/pubsub">
2
3
           <publish node="http://jabber.org/protocol/tune">
4
              <item>
                 <tune xmlns="http://jabber.org/protocol/tune"/>
6
              </item>
7
           </publish>
8
        </pubsub>
9
     </iq>
```

Příklad E.7: Uživatel ukončil "vysílaní" rozšířených zpráv o svém stavu.

Server informuje všechny účastníky odběru zprávou, která má položku *tune* prázdnou. Tak jak to prezentuje příklad E.8.

754

755

```
1
      <message from="user@jabbim.com"</pre>
2
               to="jabinfo@jabbim.com/bot">
3
         <event xmlns="http://jabber.org/protocol/pubsub#event">
4
            <items node="http://jabber.org/protocol/tune">
5
               <item>
                   <tune xmlns="http://jabber.org/protocol/tune"/>
7
               </item>
8
            </items>
9
         </event>
10
      </message>
```

Příklad E.8: Server informuje klienty o ukončení šíření rozšířeného statusu uživatele user@jabbim.com.

Příloha F

Přehled klientů a jejich rozšíření


```
OS XEP--60 XEP--163 XEP--80 XEP--92 XEP--107 XEP--108 XEP--118 XEP-- XEP--
Klient
 JBuddy Messenger
 Jeti
 Jitsi (SIP Communicator)
 JWChat
 Kadu
 Kopete
 Lampiro
 m-im
 mcabber
 mChat
 Miranda IM
 Monal IM
 OctroTalk
 OneTeam
 OneTeam for iPhone
 Оуо
 Pandion
 Poezio
 Pidgin
 Prodromus
 Psi
 Psi+
 Quiet Internet Pager (QIP)
 qutIM
 saje
 SamePlace
 Sim-IM
 SoapBox Communicator
 Spark
 SparkWeb
 Synapse
 Talkonaut
 Tigase Messenger
 Tigase Minichat
 Tkabber
 Trillian
 TrophyIM
 V&V Messenger
 Vacuum-IM
 Vayusphere
 WTW
 Xabber
 xmppchat
 Yambi
 Yaxim
```

Tabulka F.1: Přehled podporovaných rozšíření u jednotlivých klientů.