Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3213</u>	К работе допущен
Студент Алексеева Виктория,	Работа выполнена
Балакирева Виктория	
Преподаватель Громова Наира	Отчет принят
Рустемовна	

Рабочий протокол и отчет по лабораторной работе №1.01

1. Цель работы:

Исследование распределения случайной величины на примере многократных измерений определенного интервала времени.

2. Задачи, решаемые при выполнении работы:

- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением

3. Объект исследования:

Случайная величина, представляющая собой результаты многократных измерений времени фиксированного интервала.

4. Формулы:

• Среднее арифметическое всех результатов измерений:

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i$$
 (1)

• Выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}.$$

• Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$
(3)

(2)

• Контроль правильности нахождения $\langle t \rangle_{\rm N}$:

$$\sum_{i=1}^{N} \left(t_i - \langle t \rangle_N \right) \tag{4}$$

• Максимальное значение плотности распределения:

$$\rho_{\text{max}} = \frac{1}{\sigma\sqrt{2\pi}}.$$
 (5)

• Опытное значение плотности вероятности:

$$\frac{\Delta N}{N\Delta t}$$
 (6)

• Функция Гаусса:

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right).$$
(7)

• Доверительный интервал:

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}, \tag{8}$$

5. Установка:

В работе используется прибор, в котором происходит периодический процесс с частотой порядка нескольких десятых долей герца и цифровой секундомер, с ценой деления не более 0,01 с. Первый прибор задает интервал времени, который многократно измеряется цифровым секундомером.

6. Ход работы:

- 1. Выбираем устанавливаемый по секундомеру промежуток времени, в нашем случае 5 секунд. Многократно устанавливая этот промежуток времени, проводим 50 измерений. Результат каждого измерения заносим в первый столбец (Табл.1).
- 2. По данным Табл. 1 с помощью формул (1) и (2) вычисляем выборочное значение среднего $\langle t \rangle N$ и выборочное среднеквадратичное отклонение σN .
- 3. Записываем результаты в «подвал» Табл. 1. Вычисление по формуле (4) хороший способ контроля правильности нахождения $\langle t \rangle_N$.
- 4. По формуле (5) вычисляем максимальное значение плотности распределения ϱ_{max} , соответствующее $t = \langle t \rangle$.
- 5. В таблице ищем наибольший t max и наименьший t min. Промежуток [tmin; tmax] разбиваем на m равных интервалов Δt , соблюдая следующие условия; m должно быть целым, близким к \sqrt{N} (N полное число измерений). Измеренные значения tmin и tmax должны попадать внутрь «крайних» интервалов; граничные значения, разделяющие соседние интервалы, должны быть по возможности «круглыми» числами это облегчит построение гистограммы. Границы выбранных интервалов заносим в первый столбец.
- 6. Подсчитайте число результатов измерений ΔNi , из Табл. 1, попавших в каждый из интервалов Δt , заполнив таким образом второй столбец Табл. 2;
- 7. Вычислите опытное значение плотности вероятности по формуле (6) (третий столбец Табл. 2);
- 8. Найдите значения t, соответствующие серединам выбранных ранее интервалов, занесите их в четвертый столбец Табл. 2. Для этих значений, используя параметры $\langle t \rangle N$ и σN в качестве $\langle t \rangle$ и σ .
- 9. Вычислите по формуле (7) значения плотности распределения ϱ (t), занесите их в пятый столбец Табл. 2. Нанесите все расчетные точки на график, на котором изображена гистограмма, и проводите через них плавную кривую.
- 10. Проверьте, насколько точно выполняется в ваших опытах соотношение между вероятностями и долями $\Delta N \sigma/N$, $\Delta N 2 \sigma/N$, $\Delta N 3 \sigma/N$. Для этого

вычислите границы интервалов для найденных вами значений $\langle t \rangle N$ и σN , занесите их во второй и третий столбцы Табл. 3.

- 11. По данным Табл. 1 рассчитайте и занесите в Табл. 3 количество ΔN измерений, попадающих в каждый из этих интервалов, и отношение $\Delta N/N$ этого количества к общему числу измерений. Сравните их с соответствующими нормальному распределению значениями P вероятности (7).
- 12. Рассчитайте среднеквадратичное отклонение среднего значения по формуле:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

13. Найдите табличное значение коэффициента Стьюдента $t\alpha$, N для доверительной вероятности $\alpha = 0.95$. Запишите доверительный интервал для измеряемого в работе промежутка времени.

$$\Delta t = t_{lpha,N} \cdot \sigma_{\langle t \rangle}, \quad$$
где $tlpha,N$ — коэффициент Стьюдента, зависящий от числа измерений N и доверительной вероятности $lpha$

14. Строим гистограмму. Берем значения из Табл.2, где ось ординат -

$$\frac{\Delta N}{N \Delta t}$$
 (третий столбец), ось абсцисс - t (четвертый столбец), кривая - р (пятый столбец)

7. Результаты:

Таблица 1: результаты прямых измерений

№	t_i , c	$t_i - \langle t \rangle_N, \ c$	$(t_i - \langle t \rangle_N)^2, c^2$
1	5,400	0,3884	0,1509
2	4,620	-0,3916	0,1534
3	5,160	0,1484	0,0220
4	5,000	-0,0116	0,0001
5	4,620	-0,3916	0,1534
6	4,780	-0,2316	0,0536
7	5,060	0,0484	0,0023
8	4,340	-0,6716	0,4510
9	5,220	0,2084	0,0434
10	5,250	0,2384	0,0568
11	5,320	0,3084	0,0951
12	5,190	0,1784	0,0318

13	5,370	0,3584	0,1285
14	5,090	0,0784	0,0061
15	5,250	0,2384	0,0568
16	5,280	0,2684	0,0720
17	5,440	0,4284	0,1835
18	5,060	0,0484	0,0023
19	5,250	0,2384	0,0568
20	4,780	-0,2316	0,0536
21	5,090	0,0784	0,0061
22	5,030	0,0184	0,0003
23	4,940	-0,0716	0,0051
24	5,250	0,2384	0,0568
25	5,380	0,3684	0,1357
26	5,410	0,3984	0,1587
27	4,430	-0,5816	0,3383
28	4,660	-0,3516	0,1236
29	4,930	-0,0816	0,0067
30	4,720	-0,2916	0,0850
31	4,940	-0,0716	0,0051
32	4,840	-0,1716	0,0294
33	5,030	0,0184	0,0003
34	5,030	0,0184	0,0003
35	4,880	-0,1316	0,0173
36	4,970	-0,0416	0,0017
37	4,970	-0,0416	0,0017
38	4,850	-0,1616	0,0261
39	4,910	-0,1016	0,0103
40	5,090	0,0784	0,0061
41	5,060	0,0484	0,0023
42	4,910	-0,1016	0,0103
43	5,000	-0,0116	0,0001
44	4,970	-0,0416	0,0017
45	4,780	-0,2316	0,0536
46	5,030	0,0184	0,0003
47	5,000	-0,0116	0,0001
48	4,910	-0,1016	0,0103
49	4,870	-0,1416	0,0201
50	5,220	0,2084	0,0434
	$\left\langle t ight angle_N$		σN=0,244585 c
	=5,0116c	$\sum_{i=1}^{N} (A_i - A_i)$	$\rho = 1,6311$
		$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0 \text{ c}$	c^-1

 $t_{min} = 4,34 c$; $t_{max} = 5,44 c$

Возьмем 7 интервалов (так как число интервалов должно быть целым, близким к \sqrt{N}) с шагом 0,157:

$$\sqrt{N} = \sqrt{50} = 7,$$
 $\frac{tmax - tmin}{7} = 0,157$

Таблица 2: Данные для построения гистограммы

Границы интервалов, с	ΔN	$\frac{\Delta N}{N\Delta t}$, c^{-1}	<i>t</i> , <i>c</i>	ρ , c^{-1}
4,340				
4,497	2	0,254777	4,4185	0,0862183
4,497				
4,654	2	0,254777	4,5755	0,332763
4,654				
4,811	5	0,636943	4,7325	0,850595
4,811				
4,968	10	1,27389	4,8895	1,44001
4,968				
5,125	16	2,03822	5,0465	1,61458
5,125				
5,282	9	1,1465	5,2035	1,19897
5,282				
5,440	6	0,764331	5,361	0,587951

Таблица 3: Стандартные доверительные интервалы

		Интервал, с		ΔN	ΔN	P
		ОТ	до		N	
$\langle t \rangle_N \pm \sigma_N$	5,0116 ± 0,244585	4,767015	5,256185	37	0,74	0,683
$\langle t \rangle_N \pm \sigma 2_N$	5,0116 ± 0,48917	4,52243	5,50077	48	0,96	0,954
	5,0116 ± 0,733755	4,27784 5	5,745355	50	1	0,997

Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

$$= 0.0345895$$

 α = 0,95, $t\alpha$,N = 2,01 - коэффициент Стьюдента Доверительный интервал: $\Delta t = t\alpha$,N · σ (t) = 2,01*0,0345895=0,0695249

8.Вывод:

В ходе выполнения лабораторной работы были достигнуты поставленные цели и решены задачи. Проводя многократные измерения определенного интервала времени, удалось построить гистограмму распределения результатов измерений. Рассчитаны среднее значение, которые характеризуют экспериментальные данные. Сравнение полученной гистограммы с теоретической кривой функции Гаусса показало, что экспериментальные результаты хорошо согласуются с нормальным распределением, имеющим такие же параметры, как и у выборки (среднее значение). Это подтверждает гипотезу о том, что при многократных измерениях случайная величина распределяется по закону Гаусса.