

# Enhanced ESD, 3.0 kV rms/6.0 kV rms 10Mbps Quad-Channel Digital Isolators

# **Data Sheet**

#### **FEATURES**

Ultra low power consumption (1Mbps):

0.58mA/Channel

High data rate: π14xAxx: 600Mbps

π14xExx: 200Mbps π14xMxx: 10Mbps

π14xUxx: 150kbps

High common-mode transient immunity: 75 kV/ $\mu$ s typical

High robustness to radiated and conducted noise

Low propagation delay:

8 ns typical for 5 V operation

9 ns typical for 3.3 V operation

Isolation voltages:

 $\pi$ 14xx3x: AC 3000Vrms  $\pi$ 14xx6x: AC 6000Vrms

High ESD rating:

**ESDA/JEDEC JS-001-2017** 

Human body model (HBM) ±8kV, all pins

Safety and regulatory approvals (Pending):

UL certificate number: E494497

3000Vrms/6000Vrms for 1 minute per UL 1577

CSA Component Acceptance Notice 5A VDE certificate number: 40047929

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12

V<sub>IORM</sub> = 707V peak/1200V peak

CQC certification per GB4943.1-2011

3 V to 5.5 V level translation AEC-Q100 qualification

Wide temperature range: -40°C to 125°C

16-lead, RoHS-compliant, SOIC\_N, SOIC\_W and SSOP package

#### **APPLICATIONS**

General-purpose multichannel isolation

Industrial field bus isolation

### **GENERAL DESCRIPTION**

The  $\pi 1xxxxx$  is a 2PaiSemi digital isolators product family that includes over hundreds of digital isolator products. By using maturated standard semiconductor CMOS technology and 2PaiSEMI *iDivider* technology, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators.

Intelligent voltage divider technology (*iDivider* technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit voltage signal directly cross the isolator capacitor without signal modulation and demodulation.

# $\pi$ 140M/ $\pi$ 141M/ $\pi$ 142M

The  $\pi 1 xxxxx$  isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 6.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide). The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The fail-safe state is available in which the outputs transition to a preset state when the input power supply is not applied.

#### **FUNCTIONAL BLOCK DIAGRAMS**



Figure 1.  $\pi$ 140xxx/ $\pi$ 141xxx/ $\pi$ 142xxx functional Block Diagram



Figure 2.  $\pi$ 140x3x Typical Application Circuit

# PIN CONFIGURATIONS AND FUNCTIONS

### **π140Mxx Pin Function Descriptions**

| MI-TOWIAX I | I III F unctio   | n Descriptions                                                                                                                                                            |
|-------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin No.     | Name             | Description                                                                                                                                                               |
| 1           | V <sub>DD1</sub> | Supply Voltage for Isolator Side 1.                                                                                                                                       |
| 2           | GND <sub>1</sub> | Ground 1. This pin is the ground reference for Isolator Side 1.                                                                                                           |
| 3           | VIA              | Logic Input A.                                                                                                                                                            |
| 4           | VIB              | Logic Input B.                                                                                                                                                            |
| 5           | Vıc              | Logic Input C.                                                                                                                                                            |
| 6           | V <sub>ID</sub>  | Logic Input D.                                                                                                                                                            |
| 7           | NC               | No connect.                                                                                                                                                               |
| 8           | $GND_1$          | Ground 1. This pin is the ground reference for Isolator Side 1.                                                                                                           |
| 9           | GND <sub>2</sub> | Ground 2. This pin is the ground reference for Isolator Side 2.                                                                                                           |
| 10          | NC /EN2          | No connect for $\pi 140M3X$ .<br>Output enable for $\pi 140M6X$ . Output pins on side 2 are enabled when EN2 is high or open and in high-impedance state when EN2 is low. |
| 11          | Vod              | Logic Output D.                                                                                                                                                           |
| 12          | Voc              | Logic Output C.                                                                                                                                                           |
| 13          | Vов              | Logic Output B.                                                                                                                                                           |
| 14          | Voa              | Logic Output A.                                                                                                                                                           |
| 15          | GND <sub>2</sub> | Ground 2. This pin is the ground reference for Isolator Side 2.                                                                                                           |
| 16          | V <sub>DD2</sub> | Supply Voltage for Isolator Side 2.                                                                                                                                       |



Figure 3  $\pi$ 140Mxx Pin Configuration

### **π141Mxx Pin Function Descriptions**

| Pin No. | Name             | Description                                                                                                                                                                 |
|---------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | V <sub>DD1</sub> | Supply Voltage for Isolator Side 1.                                                                                                                                         |
| 2       | GND <sub>1</sub> | Ground 1. This pin is the ground reference for Isolator Side 1.                                                                                                             |
| 3       | VIA              | Logic Input A.                                                                                                                                                              |
| 4       | VIB              | Logic Input B.                                                                                                                                                              |
| 5       | Vıc              | Logic Input C.                                                                                                                                                              |
| 6       | Vod              | Logic Output D.                                                                                                                                                             |
| 7       | NC/EN1           | No connect for $\pi 141M3X$ .<br>Output enable 1 for $\pi 141M6X$ . Output pins on side 1 are enabled when EN1 is high or open and in high-impedance state when EN1 is low. |
| 8       | GND₁             | Ground 1. This pin is the ground reference for Isolator Side 1.                                                                                                             |
| 9       | GND <sub>2</sub> | Ground 2. This pin is the ground reference for Isolator Side 2.                                                                                                             |
| 10      | NC/EN2           | No connect for $\pi 141M3X$ .<br>Output enable 2 for $\pi 141M6X$ . Output pins on side 2 are enabled when EN2 is high or open and in high-impedance state when EN2 is low. |
| 11      | $V_{ID}$         | Logic Input D.                                                                                                                                                              |
| 12      | Voc              | Logic Output C.                                                                                                                                                             |
| 13      | Vов              | Logic Output B.                                                                                                                                                             |
| 14      | VOA              | Logic Output A.                                                                                                                                                             |
| 15      | GND <sub>2</sub> | Ground 2. This pin is the ground reference for Isolator Side 2.                                                                                                             |
| 16      | $V_{DD2}$        | Supply Voltage for Isolator Side 2.                                                                                                                                         |



Figure 4.  $\pi$ 141Mxx Pin Configuration

#### $\pi$ 142Mxx Pin Function Descriptions

| Pin No. | Name             | Description                                                                                                                                                                 |
|---------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | V <sub>DD1</sub> | Supply Voltage for Isolator Side 1.                                                                                                                                         |
| 2       | $GND_1$          | Ground 1. This pin is the ground reference for Isolator Side 1.                                                                                                             |
| 3       | VIA              | Logic Input A.                                                                                                                                                              |
| 4       | VIB              | Logic Input B.                                                                                                                                                              |
| 5       | Voc              | Logic Output C.                                                                                                                                                             |
| 6       | Vod              | Logic Output D.                                                                                                                                                             |
| 7       | NC/EN1           | No connect for $\pi 142M3X$ .<br>Output enable 1 for $\pi 142M6X$ . Output pins on side 1 are enabled when EN1 is high or open and in high-impedance state when EN1 is low. |
| 8       | $GND_1$          | Ground 1. This pin is the ground reference for Isolator Side 1.                                                                                                             |
| 9       | GND <sub>2</sub> | Ground 2. This pin is the ground reference for Isolator Side 2.                                                                                                             |
| 10      | NC/EN2           | No connect for $\pi 142M3X$ .<br>Output enable 2 for $\pi 142M6X$ . Output pins on side 2 are enabled when EN2 is high or open and in high-impedance state when EN2 is low. |
| 11      | VID              | Logic Input D.                                                                                                                                                              |
| 12      | Vıc              | Logic Input C.                                                                                                                                                              |
| 13      | Vов              | Logic Output B.                                                                                                                                                             |
| 14      | VOA              | Logic Output A.                                                                                                                                                             |
| 15      | GND <sub>2</sub> | Ground 2. This pin is the ground reference for Isolator Side 2.                                                                                                             |
| 16      | V <sub>DD2</sub> | Supply Voltage for Isolator Side 2.                                                                                                                                         |



Figure 5.  $\pi$ 142Mxx Pin Configuration

# **ABSOLUTE MAXIMUM RATINGS**

 $T_A = 25$ °C, unless otherwise noted.

Table 1. Absolute Maximum Ratings<sup>4</sup>

| Parameter                                                                                  | Rating                             |
|--------------------------------------------------------------------------------------------|------------------------------------|
| Supply Voltages (V <sub>DD1</sub> -GND <sub>1</sub> , V <sub>DD2</sub> -GND <sub>2</sub> ) | -0.5 V to +7.0 V                   |
| Input Voltages (V <sub>IA</sub> , V <sub>IB</sub> ) <sup>1</sup>                           | -0.5 V to V <sub>DDx</sub> + 0.5 V |
| Output Voltages (V <sub>OA</sub> , V <sub>OB</sub> ) <sup>1</sup>                          | -0.5 V to V <sub>DDx</sub> + 0.5 V |
| Average Output Current per Pin <sup>2</sup> Side 1 Output Current (I <sub>01</sub> )       | −10 mA to +10 mA                   |
| Average Output Current per Pin <sup>2</sup> Side 2 Output Current (I <sub>02</sub> )       | -10 mA to +10 mA                   |
| Common-Mode Transients Immunity <sup>3</sup>                                               | -150 kV/μs to +150 kV/μs           |
| Storage Temperature (T <sub>ST</sub> ) Range                                               | -65°C to +150°C                    |
| Ambient Operating Temperature (T <sub>A</sub> ) Range                                      | -40°C to +125°C                    |

#### Notes:

 $<sup>^{1}\,</sup>V_{DDx}$  is the side voltage power supply  $V_{DD}\text{,}$  where x = 1 or 2.

 $<sup>^{\</sup>rm 2}\,\mbox{See}$  Figure 6 for the maximum rated current values for various temperatures.

<sup>&</sup>lt;sup>3</sup> See Figure 19 for Common-mode transient immunity (CMTI) measurement.

<sup>&</sup>lt;sup>4</sup>Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

## RECOMMENDED OPERATING CONDITIONS

**Table 2. Recommended Operating Conditions** 

| Parameter                       | Symbol                        | Min             | Тур | Max               | Unit |
|---------------------------------|-------------------------------|-----------------|-----|-------------------|------|
| Supply Voltage                  | V <sub>DDx</sub> <sup>1</sup> | 3               |     | 5.5               | V    |
| High Level Input Signal Voltage | $V_{IH}$                      | $0.7*V_{DDx}^1$ |     | $V_{DDx}^{1}$     | V    |
| Low Level Input Signal Voltage  | $V_{IL}$                      | 0               |     | $0.3*V_{DDx}^{1}$ | ٧    |
| High Level Output Current       | Іон                           | -6              |     |                   | mA   |
| Low Level Output Current        | Іоь                           |                 |     | 6                 | mA   |
| Maximum Data Rate               |                               | 0               |     | 10                | Mbps |
| Junction Temperature            | TJ                            | -40             |     | 150               | °C   |
| Ambient Operating Temperature   | T <sub>A</sub>                | -40             |     | 125               | °C   |

Notes:

# **Truth Tables**

Table 3.  $\pi 140M3x/\pi 141M3x/\pi 142M3x$  Truth Table

| V Januari                          | V Ct-t-1                            | V Chanal                            | Default Low             | Default High            | Test Conditions  |
|------------------------------------|-------------------------------------|-------------------------------------|-------------------------|-------------------------|------------------|
| V <sub>Ix</sub> Input <sup>1</sup> | V <sub>DDI</sub> State <sup>1</sup> | V <sub>DDO</sub> State <sup>1</sup> | Vox Output <sup>1</sup> | Vox Output <sup>1</sup> | /Comments        |
| Low                                | Powered <sup>2</sup>                | Powered <sup>2</sup>                | Low                     | Low                     | Normal operation |
| High                               | Powered <sup>2</sup>                | Powered <sup>2</sup>                | High                    | High                    | Normal operation |
| Open                               | Powered <sup>2</sup>                | Powered <sup>2</sup>                | Low                     | High                    | Default output   |
| Don't Care⁴                        | Unpowered <sup>3</sup>              | Powered <sup>2</sup>                | Low                     | High                    | Default output⁵  |
| Don't Care⁴                        | Powered <sup>2</sup>                | Unpowered <sup>3</sup>              | High Impedance          | High Impedance          |                  |

Notes:

**Table 4.**  $\pi 140 M6 x/\pi 141 M6 x/\pi 142 M6 x$  **Truth Table** 

| V Immust1                          | FN1 /2 State            | V <sub>DDI</sub> State <sup>1</sup> | V State1                            | Default Low             | Default High            | Test Conditions             |  |
|------------------------------------|-------------------------|-------------------------------------|-------------------------------------|-------------------------|-------------------------|-----------------------------|--|
| V <sub>Ix</sub> Input <sup>1</sup> | EN1/2 State             | V <sub>DDI</sub> State              | V <sub>DDO</sub> State <sup>1</sup> | Vox Output <sup>1</sup> | Vox Output <sup>1</sup> | /Comments                   |  |
| Low                                | High or NC              | Powered <sup>2</sup>                | Powered <sup>2</sup>                | Low                     | Low                     | Normal operation            |  |
| High                               | High or NC              | Powered <sup>2</sup>                | Powered <sup>2</sup>                | High                    | High                    | Normal operation            |  |
| Don't Care <sup>4</sup>            | L                       | Powered <sup>2</sup>                | Powered <sup>2</sup>                | High Impedance          | High Impedance          | Disabled                    |  |
| Open                               | High or NC              | Powered <sup>2</sup>                | Powered <sup>2</sup>                | Low                     | High                    | Default output⁵             |  |
| Don't Care <sup>4</sup>            | High or NC              | Unpowered <sup>3</sup>              | Powered <sup>2</sup>                | Low                     | High                    | Default output <sup>5</sup> |  |
| Don't Care <sup>4</sup>            | L                       | Unpowered <sup>3</sup>              | Powered <sup>2</sup>                | High Impedance          | High Impedance          |                             |  |
| Don't Care <sup>4</sup>            | Don't Care <sup>4</sup> | Powered <sup>2</sup>                | Unpowered <sup>3</sup>              | High Impedance          | High Impedance          |                             |  |

Notes:

 $<sup>^{1}</sup>$  V<sub>DDx</sub> is the side voltage power supply V<sub>DD</sub>, where x = 1 or 2.

<sup>1</sup> V<sub>Ix</sub>/V<sub>Ox</sub> are the input/output signals of a given channel (A or B). V<sub>DDI</sub>/V<sub>DDO</sub> are the supply voltages on the input/output signal sides of this given channel.

<sup>&</sup>lt;sup>2</sup> Powered means V<sub>DDx</sub>≥ 2.9 V

<sup>&</sup>lt;sup>3</sup> Unpowered means V<sub>DDx</sub> < 2.3V

 $<sup>^4</sup>$  Input signal ( $V_{IX}$ ) must be in a low state to avoid powering the given  $V_{DDI}$  through its ESD protection circuitry.

<sup>&</sup>lt;sup>5</sup> If the V<sub>DDI</sub> goes into unpowered status, the channel outputs the default logic signal after around 1us. If the V<sub>DDI</sub> goes into powered status, the channel outputs the input status logic signal after around 1us.

 $<sup>^{1}</sup>V_{\text{lx}}/V_{\text{0x}}$  are the input/output signals of a given channel (A or B).  $V_{\text{DDI}}/V_{\text{DDO}}$  are the supply voltages on the input/output signal sides of this given channel.

<sup>&</sup>lt;sup>2</sup>Powered means V<sub>DDx</sub>≥ 2.9 V

<sup>&</sup>lt;sup>3</sup>Unpowered means V<sub>DDx</sub> < 2.3V

 $<sup>^4</sup>$ Input signal ( $V_{Ix}$ ) must be in a low state to avoid powering the given  $V_{DDI}^1$  through its ESD protection circuitry.

<sup>&</sup>lt;sup>5</sup>If the V<sub>DDI</sub> goes into unpowered status, the channel outputs the default logic signal after around 1us. If the V<sub>DDI</sub> goes into powered status, the channel outputs the input status logic signal after around 1us.

# **SPECIFICATIONS**

### **ELECTRICAL CHARACTERISTICS**

**Table 5. Switching Specifications** 

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \text{ or } 5 \\ V_{DC} \pm 10\%, \\ T_A = 25 \\ ^{\circ}C, \\ unless \text{ otherwise noted.}$ 

| Parameter                                                 | Symbol                              | Min | Тур | Max  | Unit        | Test Conditions/Comments                                                                                                             |
|-----------------------------------------------------------|-------------------------------------|-----|-----|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Minimum Pulse Width                                       | PW                                  |     |     | 100  | ns          | Within pulse width distortion (PWD) limit                                                                                            |
| Maximum Data Rate                                         |                                     | 10  |     |      | Mbps        | Within PWD limit                                                                                                                     |
| Propagation Delay Time <sup>1,4</sup>                     | t <sub>рнг</sub> , t <sub>ргн</sub> | 5.5 | 8   | 12.5 | ns          | The different time between 50% input signal to 50% output signal 50% @ 5V <sub>DC</sub> supply                                       |
|                                                           |                                     | 6.5 | 9   | 13.5 | ns          | @ 3.3V <sub>DC</sub> supply                                                                                                          |
| Pulse Width Distortion <sup>4</sup>                       | PWD                                 | 0   | 0.3 | 0.8  | ns          | The max different time between tphL and tpLH@ 5VDC supply. And The value is   tpHL - tpLH                                            |
|                                                           |                                     | 0   | 0.3 | 0.8  | ns          | @ 3.3V <sub>DC</sub> supply                                                                                                          |
| Part to Part Propagation Delay<br>Skew <sup>4</sup>       | tрsк                                |     |     | 1    | ns          | The max different propagation delay time between any two devices at the same temperature, load and voltage @ 5V <sub>DC</sub> supply |
|                                                           |                                     |     |     | 1    | ns          | @ 3.3V <sub>DC</sub> supply                                                                                                          |
| Channel to Channel Propagation<br>Delay Skew <sup>4</sup> | tcsк                                |     | 0   | 1    | ns          | The max amount propagation delay time differs between any two output channels in the single device @ 5V <sub>DC</sub> supply.        |
|                                                           |                                     |     | 0   | 0.8  | ns          | @ 3.3V <sub>DC</sub> supply                                                                                                          |
| Output Signal Rise/Fall Time <sup>4</sup>                 | t <sub>r</sub> /t <sub>f</sub>      |     | 1.5 |      | ns          | 10% to 90% signal terminated 50 $\Omega$ , See figure15.                                                                             |
| Dynamic Input Supply Current per<br>Channel               | Iddi (d)                            |     | 9   |      | μΑ<br>/Mbps | Inputs switching, 50% duty cycle square wave, CL = 0 pF @ $5V_{DC}$ Supply                                                           |
| Dynamic Output Supply Current per Channel                 | Iddo (d)                            |     | 38  |      | μΑ<br>/Mbps | Inputs switching, 50% duty cycle square wave, CL = 0 pF @ $5V_{\rm DC}$ Supply                                                       |
| Dynamic Input Supply Current per<br>Channel               | Iddi (d)                            |     | 5   |      | μΑ<br>/Mbps | Inputs switching, 50% duty cycle square wave, CL = 0 pF @ $3.3V_{\rm DC}$ Supply                                                     |
| Dynamic Output Supply Current per Channel                 | Iddo (d)                            |     | 23  |      | μΑ<br>/Mbps | Inputs switching, 50% duty cycle square wave, CL = 0 pF @ $3.3V_{DC}$ Supply                                                         |
| Common-Mode Transient Immunity <sup>3</sup>               | CMTI                                |     | 75  |      | kV/μs       | $V_{IN} = V_{DDx}^2$ or 0V, $V_{CM} = 1000 \text{ V}$                                                                                |
| Jitter                                                    |                                     |     | 120 |      | ps p-p      | See the Jitter Measurement section                                                                                                   |
|                                                           |                                     |     | 20  |      | ps rms      | See the Jitter Measurement section                                                                                                   |
| ESD(HBM - Human body<br>model)                            | ESD                                 |     | ±8  |      | kV          | All pins                                                                                                                             |

### **Table 6. DC Specifications**

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 V_{DC} \pm 10\% \ or \ 5 V_{DC} \pm 10\%, \ T_A = 25 ^{\circ}C, \ unless \ otherwise \ noted.$ 

|                                          | Symbol           | Min | Тур                               | Max                               | Unit | Test Conditions/Comments |
|------------------------------------------|------------------|-----|-----------------------------------|-----------------------------------|------|--------------------------|
| Rising Input Signal Voltage<br>Threshold | V <sub>IT+</sub> |     | 0.6*V <sub>DDx</sub> <sup>1</sup> | 0.7*V <sub>DDx</sub> <sup>1</sup> | V    |                          |

 $<sup>^{1}</sup>t_{\text{pLH}}$  = low-to-high propagation delay time,  $t_{\text{pHL}}$  = high-to-low propagation delay time. See figure 16.

 $<sup>^{2}</sup>$  V<sub>DDx</sub> is the side voltage power supply V<sub>DD</sub>, where x = 1 or 2.

<sup>&</sup>lt;sup>3</sup> See Figure19 for Common-mode transient immunity (CMTI) measurement.

 $<sup>^4</sup>$  Output Signal Terminated 50  $\!\Omega.$ 

| Falling Input Signal Voltage<br>Threshold                       | V <sub>IT</sub> -    | 0.3* V <sub>DDX</sub> <sup>1</sup> | $0.4* V_{DDX}^1$       |      | V  |                                                        |
|-----------------------------------------------------------------|----------------------|------------------------------------|------------------------|------|----|--------------------------------------------------------|
| High Level Output Voltage                                       | Von <sup>1</sup>     | V <sub>DDx</sub> - 0.1             | $V_{DDx}$              |      | V  | –20 μA output current                                  |
|                                                                 |                      | V <sub>DDx</sub> - 0.2             | $V_{\text{DDx}} - 0.1$ |      | V  | -2 mA output current                                   |
| Low Level Output Voltage                                        | Vol                  |                                    | 0                      | 0.1  | V  | 20 μA output current                                   |
|                                                                 |                      |                                    | 0.1                    | 0.2  | V  | 2 mA output current                                    |
| Input Current per Signal<br>Channel                             | I <sub>IN</sub>      | -10                                | 0.5                    | 10   | μΑ | $0  V \leqslant Signal  voltage \leqslant V_{DDX}^{1}$ |
| V <sub>DDx</sub> <sup>1</sup> Undervoltage Rising<br>Threshold  | V <sub>DDxUV+</sub>  | 2.45                               | 2.65                   | 2.9  | V  |                                                        |
| V <sub>DDx</sub> <sup>1</sup> Undervoltage Falling<br>Threshold | V <sub>DDxUV</sub> - | 2.3                                | 2.5                    | 2.75 | V  |                                                        |
| V <sub>DDx</sub> <sup>1</sup> Hysteresis                        | V <sub>DDxUVH</sub>  |                                    | 0.15                   |      | V  |                                                        |
| Notes:                                                          | -                    | -                                  |                        |      | -  | •                                                      |

**Table 7. Quiescent Supply Current** 

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \text{ or } 5 \\ V_{DC} \pm 10\%, \\ T_A = 25 \\ ^{\circ}C, \\ C_L = 0 \\ pF, \\ unless \\ otherwise \\ noted.$ 

| Parameter                                                  | Symbol               | Min  | Тур  | Max  | Unit | Test Conditions   |
|------------------------------------------------------------|----------------------|------|------|------|------|-------------------|
|                                                            | IDD1 (Q)             | 128  | 160  | 208  | μΑ   | 0V Input signal   |
| -140M Ocio Comple Comple & SV. Comple                      | I <sub>DD2</sub> (Q) | 1562 | 1952 | 2538 | μΑ   | 0V Input signal   |
| π140Mxx Quiescent Supply Current @ 5V <sub>DC</sub> Supply | I <sub>DD1</sub> (Q) | 315  | 394  | 512  | μΑ   | 5V Input signal   |
|                                                            | I <sub>DD2</sub> (Q) | 1477 | 1846 | 2400 | μΑ   | 5V Input signal   |
|                                                            | IDD1 (Q)             | 126  | 158  | 205  | μΑ   | 0V Input signal   |
|                                                            | I <sub>DD2</sub> (Q) | 1544 | 1930 | 2509 | μΑ   | 0V Input signal   |
| @ 3.3V <sub>DC</sub> Supply                                | IDD1 (Q)             | 232  | 290  | 377  | μΑ   | 3.3V Input signal |
|                                                            | IDD2 (Q)             | 1418 | 1772 | 2304 | μΑ   | 3.3V Input signal |
|                                                            | IDD1 (Q)             | 483  | 604  | 785  | μΑ   | 0V Input signal   |
| 141M O : 40 1 C 405W 0 1                                   | I <sub>DD2</sub> (Q) | 1200 | 1500 | 1950 | μΑ   | 0V Input signal   |
| π141Mxx Quiescent Supply Current @ 5V <sub>DC</sub> Supply | IDD1 (Q)             | 594  | 742  | 965  | μΑ   | 5V Input signal   |
|                                                            | I <sub>DD2</sub> (Q) | 1174 | 1468 | 1908 | μΑ   | 5V Input signal   |
|                                                            | I <sub>DD1</sub> (Q) | 478  | 597  | 776  | μΑ   | 0V Input signal   |
| @ 2.2W   Comple                                            | I <sub>DD2</sub> (Q) | 1186 | 1483 | 1928 | μΑ   | 0V Input signal   |
| @ 3.3V <sub>DC</sub> Supply                                | IDD1 (Q)             | 524  | 655  | 852  | μΑ   | 3.3V Input signal |
|                                                            | IDD2 (Q)             | 1117 | 1396 | 1815 | μΑ   | 3.3V Input signal |
|                                                            | IDD1 (Q)             | 838  | 1048 | 1362 | μΑ   | 0V Input signal   |
| π142Mxx Quiescent Supply Current @ 5V <sub>DC</sub> Supply | I <sub>DD2</sub> (Q) | 838  | 1048 | 1362 | μΑ   | 0V Input signal   |
| 1142Wixx Quiescent Supply Current @ 5 V bc Supply          | I <sub>DD1</sub> (Q) | 872  | 1090 | 1417 | μΑ   | 5V Input signal   |
|                                                            | I <sub>DD2</sub> (Q) | 872  | 1090 | 1417 | μΑ   | 5V Input signal   |
|                                                            | I <sub>DD1</sub> (Q) | 829  | 1036 | 1347 | μΑ   | 0V Input signal   |
| @ 2.2V C                                                   | I <sub>DD2</sub> (Q) | 829  | 1036 | 1347 | μΑ   | 0V Input signal   |
| @ 3.3V <sub>DC</sub> Supply                                | I <sub>DD1</sub> (Q) | 816  | 1020 | 1326 | μΑ   | 3.3V Input signal |
|                                                            | I <sub>DD2</sub> (Q) | 816  | 1020 | 1326 | μΑ   | 3.3V Input signal |

### Table 8. Total Supply Current vs. Data Throughput ( $C_L = 0 pF$ )

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \text{ or } 5 \\ V_{DC} \pm 10\%, \\ T_A = 25 \\ ^{\circ}C, \\ C_L = 0 \\ pF, \\ unless \\ otherwise \\ noted.$ 

 $<sup>^{1}\,</sup>V_{DDx}$  is the side voltage power supply  $V_{DD},$  where x = 1 or 2.

| Parameter                                | Cumphed          | 150 Kbps |      |      | 1 Mbps |      |      | 10 Mbps |      |      | ,    |
|------------------------------------------|------------------|----------|------|------|--------|------|------|---------|------|------|------|
| Parameter                                | Symbol           | Min      | Тур  | Max  | Min    | Тур  | Max  | Min     | Тур  | Max  | Unit |
| -1.400 Ave. Sweeter Comment. OFV         | I <sub>DD1</sub> |          | 0.28 | 0.42 |        | 0.30 | 0.45 |         | 0.48 | 0.72 | mA   |
| π140Mxx Supply Current @5V <sub>DC</sub> | I <sub>DD2</sub> |          | 1.90 | 2.85 |        | 2.04 | 3.06 |         | 3.52 | 5.28 | mA   |
| 0.2.34                                   | I <sub>DD1</sub> |          | 0.22 | 0.33 |        | 0.24 | 0.36 |         | 0.36 | 0.54 | mA   |
| @ 3.3V <sub>DC</sub>                     | I <sub>DD2</sub> |          | 1.86 | 2.79 |        | 1.94 | 2.91 |         | 2.86 | 4.29 | mA   |
| =141NAvy Cupply Current @EV              | I <sub>DD1</sub> |          | 0.68 | 1.02 |        | 0.73 | 1.10 |         | 1.21 | 1.82 | mA   |
| π141Mxx Supply Current @5V <sub>DC</sub> | I <sub>DD2</sub> |          | 1.49 | 2.24 |        | 1.60 | 2.40 |         | 2.73 | 4.10 | mA   |
| @ 2.2V                                   | I <sub>DD1</sub> |          | 0.63 | 0.95 |        | 0.66 | 0.99 |         | 0.95 | 1.43 | mA   |
| @ 3.3V <sub>DC</sub>                     | I <sub>DD2</sub> |          | 1.45 | 2.18 |        | 1.51 | 2.27 |         | 2.20 | 3.30 | mA   |
| π142Mxx Supply Current @5V <sub>DC</sub> | I <sub>DD1</sub> |          | 1.08 | 1.62 |        | 1.16 | 1.74 |         | 1.94 | 2.91 | mA   |
| #1421vixx Supply Current @5vbc           | I <sub>DD2</sub> |          | 1.08 | 1.62 |        | 1.16 | 1.74 |         | 1.94 | 2.91 | mA   |
| @ 2 2V                                   | I <sub>DD1</sub> |          | 1.04 | 1.56 |        | 1.08 | 1.62 |         | 1.54 | 2.31 | mA   |
| @ 3.3V <sub>DC</sub>                     | I <sub>DD2</sub> |          | 1.04 | 1.56 |        | 1.08 | 1.62 |         | 1.54 | 2.31 | mA   |

### **INSULATION AND SAFETY RELATED SPECIFICATIONS**

**Table 9. Insulation Specifications** 

| Parameter                                        | Symbol  | V       | alue    | Unit   | Test Conditions/Comments                                                             |  |
|--------------------------------------------------|---------|---------|---------|--------|--------------------------------------------------------------------------------------|--|
| - Farameter                                      | Зуппоот | π14xM3x | π14xM6x | Oilit  | rest conditions/ comments                                                            |  |
| Rated Dielectric Insulation Voltage              |         | 3000    | 6000    | V rms  | 1-minute duration                                                                    |  |
| Minimum External Air Gap (Clearance)             | L (CLR) | 4       | 8       | mm min | Measured from input terminals to output terminals, shortest distance through air     |  |
| Minimum External Tracking (Creepage)             | L (CRP) | 4       | 289     | mm min | Measured from input terminals to output terminals, shortest distance path along body |  |
| Minimum Internal Gap (Internal<br>Clearance)     | V.      | 11      | 21      | μm min | Insulation distance through insulation                                               |  |
| Tracking Resistance (Comparative Tracking Index) | СТІ     | >400    | >400    | V      | DIN IEC 112/VDE 0303 Part 1                                                          |  |
| Material Group                                   |         | II      | II      |        | Material Group (DIN VDE 0110, 1/89, Table 1)                                         |  |

### **PACKAGE CHARACTERISTICS**

**Table 10. Package Characteristics** 

| Down-ston.                                   | Courselle al     | Typica  | l Value | 11   | Test Conditions/Comments                            |  |
|----------------------------------------------|------------------|---------|---------|------|-----------------------------------------------------|--|
| Parameter                                    | Symbol           | π14xM3x | π14xM6x | Unit |                                                     |  |
| Resistance (Input to Output) <sup>1</sup>    | R <sub>I-O</sub> | 10 11   | 10 11   | Ω    |                                                     |  |
| Capacitance (Input to Output) <sup>1</sup>   | C <sub>I-O</sub> | 0.6     | 0.6     | pF   | @1MHz                                               |  |
| Input Capacitance <sup>2</sup>               | Cı               | 3       | 3       | pF   | @1MHz                                               |  |
| IC Junction to Ambient Thermal<br>Resistance | θја              | 100     | 45      | °C/W | Thermocouple located at center of package underside |  |

#### Notes:

#### **REGULATORY INFORMATION**

See Table 11 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross isolation waveforms and insulation levels.

<sup>&</sup>lt;sup>1</sup>The device is considered a 2-terminal device; SOIC-16 Pin 1 - Pin 8(WSOIC-16 Pin 1-Pin8 and SSOP16 Pin 1-Pin8) are shorted together as the one terminal, and SOIC-16 Pin 9-Pin 16(WSOIC-16 Pin 9-Pin16 and SSOP16 Pin 9-Pin16) are shorted together as the other terminal.

 $<sup>^2\</sup>mbox{Testing}$  from the input signal pin to ground.

Table11. Regulatory

| Regulatory | π14xM3x                                                                           | π14xM6x                                                                         |  |  |
|------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| UL         | Recognized under UL 1577                                                          | Recognized under UL 1577                                                        |  |  |
|            | Component Recognition Program <sup>1</sup>                                        | Component Recognition Program <sup>1</sup>                                      |  |  |
|            | Single Protection, 3000 V rms Isolation Voltage                                   | Single Protection, 6000 V rms Isolation Voltage                                 |  |  |
|            | File (E494497)                                                                    | File (pending)                                                                  |  |  |
| CSA        | Approved under CSA Component Acceptance Notice 5A                                 | Approved under CSA Component Acceptance Notice 5A                               |  |  |
|            | CSA 60950-1-07+A1+A2 and                                                          | CSA 60950-1-07+A1+A2 and                                                        |  |  |
|            | IEC 60950-1, second edition, +A1+A2:                                              | IEC 60950-1, second edition, +A1+A2:                                            |  |  |
|            | Basic insulation at 500Vrms (707Vpeak)                                            | Basic insulation at 845Vrms (1200Vpeak)                                         |  |  |
|            | Reinforced insulation at 250 V rms                                                | Reinforced insulation at 422V rms                                               |  |  |
|            | (353 V peak)                                                                      | (600V peak)                                                                     |  |  |
|            | File (pending)                                                                    | File (pending)                                                                  |  |  |
| VDE        | DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 <sup>2</sup>                          | DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 <sup>2</sup>                        |  |  |
|            | Basic insulation, V <sub>IORM</sub> = 707 V peak, V <sub>IOSM</sub> = 4615 V peak | Basic insulation, V <sub>IORM</sub> = 1200Vpeak, V <sub>IOSM</sub> = 7000V peak |  |  |
|            |                                                                                   | Reinforced insulation, V <sub>IORM</sub> =600V peak                             |  |  |
|            | File (40047929)                                                                   | File (pending)                                                                  |  |  |
| cqc        | Certified under                                                                   | Certified under                                                                 |  |  |
|            | CQC11-471543-2012                                                                 | CQC11-471543-2012                                                               |  |  |
|            | GB4943.1-2011                                                                     | GB4943.1-2011                                                                   |  |  |
|            | Basic insulation at 500 V rms (707 V peak) working voltage                        | Basic insulation at 845V rms (1200V peak) working voltage                       |  |  |
|            | Reinforced insulation at                                                          | Reinforced insulation at                                                        |  |  |
|            | 250 V rms (353 V peak)                                                            | 422V rms (600V peak)                                                            |  |  |
|            | File (pending)                                                                    | File (pending)                                                                  |  |  |

#### Notes:

## DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data. The marking on packages denotes DIN V VDE V 0884-10 approval.

**Table 12. VDE Insulation Characteristics** 

| Description                                      | Took Conditions/Comments | Council al | Charac    | I I mit   |        |
|--------------------------------------------------|--------------------------|------------|-----------|-----------|--------|
| Description                                      | Test Conditions/Comments | Symbol     | π14xM3x   | π14xM6x   | Unit   |
| Installation Classification per DIN VDE 0110     |                          |            |           |           |        |
| For Rated Mains Voltage $\leq 150\mathrm{V}$ rms |                          |            | I to IV   | I to IV   |        |
| For Rated Mains Voltage ≤ 300 V rms              |                          |            | I to III  | I to III  |        |
| For Rated Mains Voltage ≤ 400 V rms              |                          |            | I to III  | I to III  |        |
| Climatic Classification                          |                          |            | 40/105/21 | 40/105/21 |        |
| Pollution Degree per DIN VDE 0110, Table 1       |                          |            | 2         | 2         |        |
| Maximum Working Insulation Voltage               |                          | VIORM      | 707       | 1200      | V peak |

¹ In accordance with UL 1577, each  $\pi$ 140M3x/ $\pi$ 141M3x/ $\pi$ 142M3x is proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec; each  $\pi$ 140M6x/ $\pi$ 141M6x/ $\pi$ 142M6x is proof tested by applying an isulation test voltage ≥ 7200 V rms for 1 sec

<sup>&</sup>lt;sup>2</sup> In accordance with DIN V VDE V 0884-10, each  $\pi$ 140M3x/ $\pi$ 141M3x/ $\pi$ 142M3x is proof tested by applying an insulation test voltage ≥ 1326 V peak for 1 sec (partial discharge detection limit = 5 pC); each  $\pi$ 140M6x/ $\pi$ 141M6x/ $\pi$ 142M6x is proof tested by ≥ 2250V peak for 1 sec. The marking branded on the component designates DIN V VDE V 0884-10 approval.

200

| Input to Output Test Voltage, Method B1                  | $V_{IORM} \times 1.875 = V_{pd (m)}$ , 100% production test, tini = $t_m$ = 1 sec, partial discharge < 5 pC | V <sub>pd</sub> (m) | 1326             | 2250                       | V peak |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------|------------------|----------------------------|--------|
| Input to Output Test Voltage, Method A                   |                                                                                                             |                     |                  |                            |        |
| After Environmental Tests Subgroup 1                     | $V_{IORM} \times 1.5 = V_{pd (m)}$ , $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC           | V <sub>pd (m)</sub> | 1061             | 1800                       | V peak |
| After Input and/or Safety Test Subgroup 2 and Subgroup 3 | $V_{IORM} \times 1.2 = V_{pd (m)}$ , $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC           |                     | 849              | 1440                       | V peak |
| Highest Allowable Overvoltage                            |                                                                                                             | VIOTM               | 4200             | 8500                       | V peak |
| Surge Isolation Voltage Basic                            | Basic insulation, 1.2 μs rise time, 50 μs, 50% fall time                                                    | Viosm               | 4615             | 7000                       | V peak |
| Surge Isolation Voltage Reinforced                       | Reinforced insulation, 1.2 μs rise time,<br>50 μs, 50% fall time                                            | Viosm               |                  |                            | V peak |
| Safety Limiting Values                                   | Maximum value allowed in the event of a failure (see Figure 6)                                              |                     |                  |                            |        |
| Maximum Junction Temperature                             |                                                                                                             | Ts                  | 150              | 150                        | °C     |
| Total Power Dissipation at 25°C                          |                                                                                                             | Ps                  | 1.56             | 2.78                       | W      |
| Insulation Resistance at T <sub>S</sub>                  | V <sub>IO</sub> = 800 V                                                                                     | $R_S$               | >10 <sup>9</sup> | <b>&gt;10</b> <sup>9</sup> | Ω      |



Figure 6. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per VDE







Figure 9 π140Mxx Quiescent Supply Current with 3.3V Supply vs.Free-Air Temperature



Figure 11 π141Mxx Quiescent Supply Current with 3.3V Supply vs.Free-Air Temperature



Figure 13 π142Mxx Quiescent Supply Current with 3.3V Supply vs.Free-Air Temperature



Figure 10  $\pi$ 140Mxx Quiescent Supply Current with 5V Supply vs. Free-Air Temperature



Figure 12  $\pi$ 141Mxx Quiescent Supply Current with 5V Supply vs. Free-Air Temperature



Figure 14 π142Mxx Quiescent Supply Current with 5V Supply vs. Free-Air Temperature



Figure 15. Transition time waveform measurement



Figure 16. Propagation delay time waveform measurement



# APPLICATIONS INFORMATION

#### **OVERVIEW**

The \$\pi 1 xxxxx\$ are 2PaiSemi digital isolators product family based on 2PaiSEMI unique *iDivider* technology. Intelligent voltage **Divider** technology (*iDivider* technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit signal directly cross the isolator capacitor without signal modulation and demodulation. Compare to the traditional Opto-couple technology, icoupler technology, OOK technology, *iDivider* is a more essential and concise isolation signal transmit technology which leads to greatly simplification on circuit design and therefore significantly improves device performance, such as lower power consumption, faster speed, enhanced anti-interference ability, lower noise.

The  $\pi 140 Mxx/\pi 141 Mxx/\pi 142 Mxx$  are the outstanding 10Mbps quad-channel digital isolators with the enhanced ESD capability. the devices transmit data across an isolation barrier by layers of silicon dioxide isolation.

The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, offering voltage translation of 3.3 V, and 5 V logic.

The  $\pi 140 Mxx/\pi 141 Mxx/\pi 142 Mxx$  have very low propagation delay and high speed. The input/output design techniques allow logic and supply voltages over a wide range from 3.0 V to 5.5 V, offering voltage translation of 3.3 V and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference.

See the Ordering Guide for the model numbers that have the failsafe output state of low or high.

#### **PCB LAYOUT**

The low-ESR ceramic bypass capacitors must be connected between  $V_{DD1}$  and  $GND_1$  and between  $V_{DD2}$  and  $GND_2$ . The bypass capacitors are placed on the PCB as close to the isolator device as possible. The recommended bypass capacitor value is between  $0.1~\mu F$  and  $10~\mu F$ . To enhance the robustness of a design,



Figure 17. Recommended Printed Circuit Board Layout

the user may also include resistors (50–300  $\Omega$ ) in series with the inputs and outputs if the system is excessively noisy.

Avoid reducing the isolation capability, Keep the space underneath the isolator device free from metal such as planes, pads, traces and vias.

To minimize the impedance of the signal return loop, keep the solid ground plane directly underneath the high-speed signal path, the closer the better. The return path will couple between the nearest ground plane to the signal path. Keep suitable trace width for controlled impedance transmission lines interconnect.

To reduce the rise time degradation, keep the length of input/output signal traces as short as possible, and route low inductance loop for the signal path and It's return path.

#### JITTER MEASUREMENT

The eye diagram shown in the figure 18 provides the jitter measurement result for the  $\pi 140 \text{Mxx}/\pi 141 \text{Mxx}/\pi 142 \text{Mxx}$ . The Keysight 81160A pulse function arbitrary generator works as the data source for the  $\pi 140 \text{Mxx}/\pi 141 \text{Mxx}/\pi 142 \text{Mxx}$ , which generates 100Mbps pseudo random bit sequence (PRBS). The Keysight DSOS104A digital storage oscilloscope captures the  $\pi 140 \text{Mxx}/\pi 141 \text{Mxx}/\pi 142 \text{Mxx}$  output waveform and recoveries the eye diagram with the SDA tools and eye diagram analysis tools. The result shows a typical measurement 120ps p-p jitter.



Figure 18.  $\pi$ 140Mxx/ $\pi$ 141Mxx/ $\pi$ 142Mxx Eye Diagram

#### **CMTI MEASUREMENT**

To measure the Common-Mode Transient Immunity (CMTI) of  $\pi 1xxxxx$  isolator under specified common-mode pulse magnitude (V $_{CM}$ ) and specified slew rate of the common-mode pulse (dV $_{CM}$ /dt) and other specified test or ambient conditions, The common-mode pulse generator ( $G_1$ ) will be capable of providing



Figure 19. Common-mode transient immunity (CMTI) measurement

fast rising and falling pulses of specified magnitude and duration of the common-mode pulse ( $V_{CM}$ ) and the maximum common-mode slew rates ( $dV_{CM}/dt$ ) can be applied to  $\pi 1xxxxx$  isolator coupler under measurement. The common-mode pulse is applied

# **OUTLINE DIMENSIONS**



Figure 21. 16-Lead Wide Body Outline Package [16-Lead SOIC\_W]







| Symbol | Dimensions In | Millimeters | Dimensions In Inches |       |  |
|--------|---------------|-------------|----------------------|-------|--|
| Symbol | Min           | Max         | Min                  | Max   |  |
| A      | 1.350         | 1.750       | 0.053                | 0.069 |  |
| A1     | 0.100         | 0.250       | 0.004                | 0.010 |  |
| A2     | 1.350         | 1.550       | 0.053                | 0.061 |  |
| ь      | 0.200         | 0.300       | 0.008                | 0.012 |  |
| С      | 0.170         | 0.250       | 0.007                | 0.010 |  |
| D      | 4.700         | 5.100       | 0.185                | 0.200 |  |
| E      | 3.800         | 4.000       | 0.150                | 0.157 |  |
| E1     | 5.800         | 6.200       | 0.228                | 0.244 |  |
| e      | 0.635         | (BSC)       | 0.025                | (BSC) |  |
| L      | 0.400         | 1.270       | 0.016                | 0.050 |  |
| θ      | O °           | 8°          | O °                  | 8°    |  |

Figure 22. 16-Lead SSOP Outline Package [SSOP16]

# **REEL INFORMATION**

16-Lead SOIC\_N



16-Lead SOIC\_W







| Items | Size(mm)   |
|-------|------------|
| E     | 1.75±0.10  |
| F     | 7.50±0.05  |
| P2    | 2.00±0.05  |
| D     | 1.55±0.05  |
| D1    | 1.5±0.10   |
| PO    | 4.00±0.10  |
| 10P0  | 40.00±0.20 |

| Items | Size(mm)   |
|-------|------------|
| W     | 16.00±0.30 |
| Р     | 12.00±0.10 |
| A0    | 10.90±0.10 |
| BO    | 10.80±0.10 |
| K0    | 3.00±0.10  |
| t     | 0.30±0.05  |
| K1    | 2.70±0.10  |
| θ     | 5° TYP     |

16-Lead SSOP







Section A-A'





# **ORDERING GUIDE**

| Mode     | el Name    | Temperature<br>Range | No. of<br>Input<br>s,<br>V <sub>DD1</sub><br>Side | No. of<br>Inputs<br>, V <sub>DD2</sub><br>Side | Withstan<br>d Voltage<br>Rating (kV<br>rms) | Fail-<br>Safe<br>Outpu<br>t State | Package<br>Description | Package<br>Option | Quantity      |
|----------|------------|----------------------|---------------------------------------------------|------------------------------------------------|---------------------------------------------|-----------------------------------|------------------------|-------------------|---------------|
| π140M31  | Pai140M31  | -40°C to +125°C      | 4                                                 | 0                                              | 3                                           | High                              | 16-Lead SOIC_N         | S-16-N            | 2500 per reel |
| π140M30  | Pai140M30  | -40°C to +125°C      | 4                                                 | 0                                              | 3                                           | Low                               | 16-Lead SOIC_N         | S-16-N            | 2500 per reel |
| π141M31  | Pai141M31  | -40°C to +125°C      | 3                                                 | 1                                              | 3                                           | High                              | 16-Lead SOIC_N         | S-16-N            | 2500 per reel |
| π141M30  | Pai141M30  | -40°C to +125°C      | 3                                                 | 1                                              | 3                                           | Low                               | 16-Lead SOIC_N         | S-16-N            | 2500 per reel |
| π142M31  | Pai142M31  | -40°C to +125°C      | 2                                                 | 2                                              | 3                                           | High                              | 16-Lead SOIC_N         | S-16-N            | 2500 per reel |
| π142M30  | Pai142M30  | -40°C to +125°C      | 2                                                 | 2                                              | 3                                           | Low                               | 16-Lead SOIC_N         | S-16-N            | 2500 per reel |
| π140M61  | Pai140M61  | -40°C to +125°C      | 4                                                 | 0                                              | 6                                           | High                              | 16-Lead SOIC_W         | S-16-W            | 1500 per reel |
| π140M60  | Pai140M60  | -40°C to +125°C      | 4                                                 | 0                                              | 6                                           | Low                               | 16-Lead SOIC_W         | S-16-W            | 1500 per reel |
| π141M61  | Pai141M61  | -40°C to +125°C      | 3                                                 | 1                                              | 6                                           | High                              | 16-Lead SOIC_W         | S-16-W            | 1500 per reel |
| π141M60  | Pai141M60  | -40°C to +125°C      | 3                                                 | 1                                              | 6                                           | Low                               | 16-Lead SOIC_W         | S-16-W            | 1500 per reel |
| π142M61  | Pai142M61  | -40°C to +125°C      | 2                                                 | 2                                              | 6                                           | High                              | 16-Lead SOIC_W         | S-16-W            | 1500 per reel |
| π142M60  | Pai142M60  | -40°C to +125°C      | 2                                                 | 2                                              | 6                                           | Low                               | 16-Lead SOIC_W         | S-16-W            | 1500 per reel |
| π140M31S | Pai140M31S | -40°C to +125°C      | 4                                                 | 0                                              | 3                                           | High                              | 16-Lead SSOP           | SSOP16            | 4000 per reel |
| π140M30S | Pai140M30S | -40°C to +125°C      | 4                                                 | 0                                              | 3                                           | Low                               | 16-Lead SSOP           | SSOP16            | 4000 per reel |
| π141M31S | Pai141M31S | -40°C to +125°C      | 3                                                 | 1                                              | 3                                           | High                              | 16-Lead SSOP           | SSOP16            | 4000 per reel |
| π141M30S | Pai141M30S | -40°C to +125°C      | 3                                                 | 1                                              | 3                                           | Low                               | 16-Lead SSOP           | SSOP16            | 4000 per reel |
| π142M31S | Pai142M31S | -40°C to +125°C      | 2                                                 | 2                                              | 3                                           | High                              | 16-Lead SSOP           | SSOP16            | 4000 per reel |
| π142M30S | Pai142M30S | -40°C to +125°C      | 2                                                 | 2                                              | 3                                           | Low                               | 16-Lead SSOP           | SSOP16            | 4000 per reel |

Notes:

## PART NUMBER NAMED RULE



Notes:

Pai14xxxx is equals to  $\pi 14xxxx$  in the customer BOM

 $<sup>^{1}</sup>$   $\pi$ 14xxxxQ special for Auto, qualified for AEC-Q100

# **REVISION HISTORY**

| Revision | Updated | Date       | Page                          | Change Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------|---------|------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Victory | 2018/09/20 | All                           | Initial version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2        | Victory | 2018/11/28 | P1,P11                        | Changed $C_{IN}$ , $C_{OUT}$ in Figure 2 from 0.1uF to 1uF. Changed the recommended bypass capacitor value from between 0.1 $\mu$ F and 1 $\mu$ F to between 0.1 $\mu$ F and 10 $\mu$ F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3        | Devin   | 2019/09/08 | P1,P7,P11<br>,P13,P14,<br>P15 | P1: Changed the address from 'Room 19307, Building 8, No.498, GuoShouJing Road' to 'Room 308-309, No.22, Boxia Road'; Changed '(W)SOIC package' to 'SOIC_N, SOIC_W and SSOP package'; Add <i>iDivider</i> technology description in General Description.  Changed propagation delay for 5V from 7.5ns to 8ns.  Changed CMTI from 50KV/us to 75KV/us.  Changed CMTI from 50KV/us to 75KV/us.  Changed C <sub>IN</sub> , C <sub>OUT</sub> in Figure2 from 1uF to 0.1uF.  P7: Add 'and SSOP16 Pin 1-Pin8' and 'and SSOP16 Pin 9-Pin16' in note 1.  P11: Add <i>iDivider</i> technology description in overview.  P13: Add Figure22. 16-Lead SSOP Outline Package drawing  P14: Add 16-Lead SSOP Reel drawing; Updated 16-Lead SOIC_W reel drawing.  P15: Add character 'S' and 'Q' in part number named rule; Changed the SOIC_W quantity from '1000 per reel' to '1500 per reel'; Add 'π140M31S、 π140M30S、 π141M31S、 π141M30S、 π142M31S、 π142M30S' in ordering guide |

