

Ayudantía 10 Estructuras Algebraicas

Profesor: Pedro Montero

Ayudante: Sebastián Fuentes

30 de mayo de 2023

Problema 1. Sea A anillo y M un A-módulo finitamente generado. El objetivo de este problema es mostrar que todo endomorfismo $u: M \to M$ sobrevectivo es un isomorfismo. Para ello proceda como sigue:

- 1. Utilice u para definir una estructura de A[X]-módulo sobre M tal que M = IM para $I = \langle X \rangle$.
- 2. Considere $\varphi = \mathrm{id}_M : M \to M$ y encuentre $P(X) = X^n + c_1 X^{n-1} + \ldots + c_{n-1} X + c_n$ en A[X] tal que $P(\varphi)$ y $c_i \in I^j$.
- 3. Calcule $P(\varphi)(m)$ para $m \in M$ y concluya que u es inyectiva.

Problema 2. Sea A un anillo y $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ una familia arbitraria de A-módulos. Decimos que un A-módulo M es suma directa de la familia $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ si existen morfismos de A-módulos $i_{\lambda}:M_{\lambda}\to M$ verificando la siguiente propiedad universal: para todo A-módulo N y toda colección de morfismos $f_{\lambda}: M_{\lambda} \to N$, existe un único morfismo de A-módulos $f:M\to N$ tal que para cada $\lambda\in\Lambda$ el siguiente diagrama conmuta:

- 1. Muestre que la suma directa es única módulo un único isomorfismo.
- 2. Demuestre que la suma directa definida en cátedra, es decir,

$$\bigoplus_{\lambda\in\Lambda}M_\lambda:=\{(m_\lambda)_{\lambda\in\Lambda}\in\prod_{\lambda\in\Lambda}M_\lambda\text{ tal que }m_\lambda=0\text{ salvo finitos }\lambda\in\Lambda\}$$

es una suma directa de $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ en el sentido anterior.

3. Concluya que la suma directa verifica $\operatorname{Hom}\left(\bigoplus_{\lambda\in\Lambda}M_{\lambda},N\right)\cong\prod_{\lambda\in\Lambda}\operatorname{Hom}\left(M_{\lambda},N\right)$.

Problema 3. Sea A un anillo, M un A-módulo finitamente generado y $\varphi: M \twoheadrightarrow A^n$ morfismo sobreyectivo de A-módulos. Demuestre que $\ker(\varphi)$ es finitamente generado.

Problema 4. Sean A, B anillos locales con ideales maximales $\mathfrak{m}_A, \mathfrak{m}_B$, respectivamente. Sea $f: A \to B$ un morfismo de anillos. Decimos que f es un morfismo local si $f^{-1}(m_B) = m_A$. Sean $(A, \mathfrak{m}_A), (B, \mathfrak{m}_B)$ anillos locales noetherianos y $f: A \to B$ morfismo local. Suponga que:

- 1. $A/\mathfrak{m}_A \to B/\mathfrak{m}_B$ es un isomorfismo.
- 2. $\mathfrak{m}_A \to \mathfrak{m}_B/\mathfrak{m}_B^2$ es sobreyectivo.
- 3. B es un A-módulo finitamente generado. Demuestre que f es sobrevectiva.