Übungsblatt 5

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

Aufgabe 1. (Veronese-Einbettung) Sei $\operatorname{Sym}(3,\mathbb{R})$ der Raum der symmetrischen (3×3) -Matrizen. Betrachten Sie die Abbildung

$$\tilde{F}: \mathbb{R}^3 \to \text{Sym}(3, \mathbb{R}) \cong \mathbb{R}^6, \quad \tilde{F}(v) = vv^T = (v^0v^0, v^0v^1, v^0v^2, v^1v^1, v^1v^2, v^2v^2).$$

a) Zeigen Sie, dass die Abbildung

$$F: \mathbb{RP}^2 \to \mathbb{P}(\mathrm{Sym}(3, \mathbb{R})) \cong \mathbb{RP}^5, \quad F([v]) = [\tilde{F}(v)]$$

wohldefiniert, glatt und injektiv ist.

- b) Sei $p = [(1,0,0)] \in \mathbb{RP}^2$. Zeigen Sie, dass das Differential $dF_p : T_p\mathbb{RP}^2 \to T_{F(p)}\mathbb{RP}^5$ maximalen Rang hat, also injektiv ist.
- c) Zeigen Sie, dass für $A \in GL(3,\mathbb{R})$ die Relation $F([Av]) = [A\tilde{F}(v)A^T]$ gilt. Folgern Sie mittels der Kettenregel, dass $F : \mathbb{RP}^2 \to \mathbb{RP}^5$ eine Immersion und damit $F(\mathbb{RP}^2) \subset \mathbb{RP}^5$ eine Untermannigfaltigkeit ist.
- d)* Können Sie die Untermannigfaltigkeit $F(\mathbb{RP}^2) \subset \mathbb{RP}^5$ durch Gleichungen beschreiben?

Aufgabe 2. a) Sei $O(n) = \{A \in GL(n, \mathbb{R}) \mid AA^T = 1_n\}$ die orthogonale Gruppe. Berechnen Sie

$$\mathfrak{o}(n) := T_{1_n} \mathcal{O}(n).$$

Was ist die Dimension von O(n)?

b) Sei $SL(n,\mathbb{R}) = \{A \in GL(n,\mathbb{R}) \mid \det(A) = 1\}$. Berechnen Sie

$$\mathfrak{sl}(n,\mathbb{R}) := T_{1_n}\mathrm{SL}(n,\mathbb{R}).$$

Aufgabe 3. Seien M, N glatte Mannigfaltigkeiten und $F: M \to N$ glatt. Der Graph von F ist die Menge

$$Graph(F) = \{(p, F(p)) \in M \times N \mid p \in M\} \subset M \times N.$$

- a) Zeigen Sie, dass $Graph(F) \subset M \times N$ eine Untermannigfaltigkeit ist.
- b) Zeigen Sie weiter $T_{(p,F(p))}$ Graph $(F) = \text{Graph}(dF_p : T_pM \to T_{F(p)}N)$.

Aufgabe 4. Sei $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ der Torus. Betrachten Sie für festes $q \in \mathbb{R}$ die Abbildung

$$\gamma_q: \mathbb{R} \to T^2, \quad \gamma_q(t) = [(t, qt)].$$

- a) Zeigen Sie, dass γ_q eine glatte Immersion ist.
- b) Für welche q ist γ_q injektiv?
- c) Für welche $q \in \mathbb{R}$ ist das Bild $\gamma_q(\mathbb{R}) \subset T^2$ eine Untermannigfaltigkeit?

Abgabe Donnerstag, 12.05.2016 in der Vorlesung.