Introduction to Artificial Intelligence Beyond Classical Search

Jianmin Li

Department of Computer Science and Technology
Tsinghua University

Spring, 2024

Review

- Assumptions about environment
 - Observable => the agent always knows the current state
 - Discrete => at any given state there are only finitely many actions to choose from
 - Known => the agent knows which states are reached by each action
 - Deterministic => each action has exactly one outcome

Review

- The solution to any problem is a fixed sequence of actions
- Tree search algorithm and graph search algorithm
- Search strategy
 - uninformed: BFS,UCS,DFS,IDS
 - informed: Greedy best-first, A*

Today

Relaxing the simplifying assumptions, getting closer to the real world

- Local Search
- Search with Nondeterministic Actions
- Search with Partial Observations

Local Search

Path is irrelevant

- In many optimization problems, path is irrelevant, the goal state itself is the solution
 - *n*-queens problems
 - IC design
 - communications network optimization
- State space = set of "complete" configurations
 - find optimal configuration, e.g., Travelling Salesperson Problem (TSP)
 - find configuration satisfying constraints, e.g., timetable

Iterative Improvement Algorithms

- Iterative improvement algorithms (local search algorithms)
 - keep a single "current" state
 - try to improve it by moving to neighbors
- Advantages
 - very little memory: usually constant space
 - reasonable solutions in large or infinitely state spaces
 - suitable for online as well as offline search

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

 Variants of this approach get within 1% of optimal very quickly with thousands of cities

Example: *n*-queens

- Put n queens on an nxn board with no two queens on the same row, column, or diagonal
- Move a queen to reduce number of conflicts

- Almost always solves n-queens problems almost instantaneously
 - for very large n, e.g., n = 1million

Hill-climbing

```
function HILL-CLIMBING(problem) returns a state that is a local maximum
```

```
current \leftarrow \text{MAKE-NODE}(problem.\text{INITIAL-STATE})

loop \ do

neighbor \leftarrow a \ highest-valued successor of \ current

if \ neighbor.\text{VALUE} \leq current.\text{VALUE} \ then \ return \ current.\text{STATE}
current \leftarrow neighbor
```

"Like climbing Everest in thick fog with amnesia"

Hill-climbing

Hill-climbing: *n*-queens

- Complete-state formulation
 - State
 - n queens on the board, one per column
 - Action
 - moving a single queen to another square in the same column
 - each state has 8*7 = 56 successors.
- Heuristic cost function h
 - the number of pairs of queens that are attacking each other, either directly or indirectly

Question 1

An 8-queens state. heuristic cost

estimate h = ?

- A. 0
- B. 1
- C. 2
- D. 3

Hill-climbing: *n*-queens

- An 8-queens state
- heuristic cost estimateh = 17
- Best successor, h = 12

Getting Stuck

- Local maxima
- Ridges
- Plateaux

Improvements

- Random sideways moves
 - escape from shoulders
 - loop on flat maxima
- Random-restart hill climbing
 - overcomes local maxima trivially complete

Simulated Annealing

- Idea: escape local maxima by allowing some "bad" moves
- gradually decrease their size & frequency

```
function SIMULATED-ANNEALING( problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature" current \leftarrow \text{Make-Node}(problem.\text{Initial-State}) for t=1 to \infty do T \leftarrow schedule(t) if T=0 then return current next \leftarrow \text{a randomly selected successor of } current \Delta E \leftarrow next.\text{Value} - current.\text{Value} if \Delta E > 0 then current \leftarrow next else current \leftarrow next only with probability e^{\Delta E/T}
```

Properties of Simulated Annealing

- If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1
- Devised by Metropolis et al. (1953) for physical process modeling
- Widely used in VLSI layout, airline scheduling, etc

Local Beam Search

- Keep track of (top) k states rather than just one
 - Start with k randomly generated states
 - At each iteration, all the successors of all k states are generated
 - If any one is a goal state, stop; else select the *k* best successors from the complete list and repeat.
- Question: k searches run in parallel?

Local Beam Search

- Problem: all k states end up on same local hill
- Solution idea: choose k successors randomly, biased towards good ones (Stochastic Beam Search).
- Close analogy to natural selection

Genetic Algorithms

- Individual (i.e. state): each is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Population: Start with k randomly generated individuals
- Fitness function: evaluation of the "goodness" of a given state
- Produce the next generation of states by selection, crossover, and mutation

Genetic Algorithms

- A successor is generated by combining two parents from the current population
- stochastic local beam search + generate successor from pairs of states

Genetic Algorithms: n-queens

• Fitness function: number of non-attacking pairs of queens (min = 0, max = $8 \times 7/2 = 28$)

Encoding

- GAs require states encoded as strings
- Crossover helps iff substrings are meaningful components

A Genetic Algorithm

```
function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
  inputs: population, a set of individuals
           FITNESS-FN, a function that measures the fitness of an individual
  repeat
      new\_population \leftarrow empty set
      for i = 1 to Size(population) do
          x \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
          y \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
          child \leftarrow REPRODUCE(x, y)
          if (small random probability) then child \leftarrow MUTATE(child)
          add child to new_population
      population \leftarrow new\_population
  until some individual is fit enough, or enough time has elapsed
  return the best individual in population, according to FITNESS-FN
function REPRODUCE(x, y) returns an individual
  inputs: x, y, parent individuals
  n \leftarrow \text{LENGTH}(x); c \leftarrow \text{random number from 1 to } n
  return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))
```

Continuous Search Space

 Three new airports in Romania, such that the sum of squared distances from each city on the map to its nearest airport is minimized

Continuous Search Space

• 6-D state space

$$(x_1, y_1, x_2, y_2, x_3, y_3)$$

- Objective function
 - sum of squared distances from each city on the map to its nearest airport

$$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} (x_i - x_c)^2 + (y_i - y_c)^2$$

 C_i is the set of cities whose closest airport (in the current state) is airport i

Continuous Search Space

- Most real-world environments are continuous
 - a continuous state space

$$S = \{ (x_1, x_2 \cdots, x_N) | x_i \in R \}$$

• a continuous object function

$$f(x_1, x_2 \cdots, x_N)$$

- Successor function would return infinitely many states!
- Discretization
 - Turns continuous space into discrete space

Gradient

- The gradient of the objective function is a vector
- The gradient gives the magnitude and direction of the steepest slope at a point

• empirical gradient considers $\pm \delta$ change in each

coordinate

$$f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \cdots, \frac{\partial f}{\partial x_N}\right)$$

the gradient of the function $f(x, y) = (\cos^2 x + \cos^2 y)^2$

Steepest-ascent Hill-climbing

$$x_{k+1} = x_k + \alpha \nabla f$$

- a is step size
 - if a is too small, too many steps are needed
 - if *a* is too large, the search could overshoot the maximum
- Line search
 - Extending the current gradient direction usually by repeatedly
 - doubling a until f starts to decrease again

Newton-Raphson Method

- To find a maximum or minimum of f, we need to find x such that the gradient is zero, i.e. $\nabla f(x) = 0$
- Newton-Raphson method
 - a general technique for finding roots of function, i.e. solving equations of the form g(x) = 0
 - computing a new estimate for the root x according to Newton's formula

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$$

•
$$g(x) = \nabla f(x)$$

$$x_{k+1} = x_k - H_f^{-1}(x_k) \nabla f(x_k) \qquad H_{\{ij\}} = \frac{\partial^{\{2\}} f}{\partial x_i \partial x_j}$$

Search with Nondeterministic Actions

Percepts

- In previous slides we assume that
 - the environment is fully observable and deterministic
 - the agent knows what the effects of each action are
- Therefore, the agent
 - can calculate exactly which state results from any sequence of actions
 - and always knows which state it is in
- Its percepts provide no new information after each action

Percepts

- Percepts become useful in partially observable or nondeterministic environment
 - In a partially observable environment, every percept helps narrow down the set of possible states the agent might be in, thus making it easier for the agent to achieve its goals
 - When the environment is nondeterministic, percepts tell the agent which of the possible outcomes of its actions has actually occurred

Percepts

- The future percepts cannot be determined in advance and the agent's future actions will depend on those future percepts
- Solution to a problem is a contingency plan (or strategy) rather than a sequence of actions
 - specifies what to do depending on what percepts are received

Deterministic Vacuum World

- actions = {left, right, suck}
- environment is observable, deterministic, and completely known

Deterministic Vacuum World

[Suck, Right, Suck]

Erratic Vacuum World

- actions = {left, right, suck}
- When sucking a dirty square, it cleans it and sometimes cleans up dirt in an adjacent square
- When sucking a clean square, it sometimes deposits dirt on the carpet

AND-OR Search Tree

OR nodes

search possible actions

AND nodes

 consider all outcome states

Loops

 terminate search (on that path)

Suck action in state I leads to a state in the set {5, 7}, so the agent would need to find a plan for state 5 and for state 7.

AND-OR Search Tree

Solution

- a goal node at every non-loop leaf
- specify one action at each of its OR nodes
- includes every outcome branch at each of its AND nodes
- [Suck, if State = 5 then [Right, Suck] else []]

A Recursive, Depth-first Solution

```
function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
  OR-SEARCH(problem.INITIAL-STATE, problem, [])
function OR-SEARCH(state, problem, path) returns a conditional plan, or failure
  if problem.GOAL-TEST(state) then return the empty plan
  if state is on path then return failure
  for each action in problem.ACTIONS(state) do
      plan \leftarrow AND\text{-SEARCH}(RESULTS(state, action), problem, [state | path])
      if plan \neq failure then return [action | plan]
  return failure
function AND-SEARCH(states, problem, path) returns a conditional plan, or failure
  for each s_i in states do
      plan_i \leftarrow \text{OR-SEARCH}(s_i, problem, path)
      if plan_i = failure then return failure
  return [if s_1 then plan_1 else if s_2 then plan_2 else ... if s_{n-1} then plan_{n-1} else plan_n]
```

- Save path to avoid loops
- Search over all the possibilities for an uncertain action outcome
- Solution is contingency plan, dealing with each possible outcome

Search with Partial Observations

Uncertainty Strikes Twice

- Uncertainty in action
 - as above
- Uncertainty in sensing
 - no observation
 - partial observations

Belief State

- Belief state
 - representing the agent's current belief about the possible physical states it might be in

belief states for sensorless vacuum

 To plan a sequence of actions, the agent searches a space of belief states, instead of a space of states

Searching with No Observation

- Sensorless problem
 - agent's percepts provide no information at all
- Is it possible for a sensorless agent to solve a problem if has no idea what state it's in?
 - Sensorless problems are quite often solvable

Searching with No Observation

- Sensorless agent can be surprisingly useful
- they don't rely on sensors working properly
 - many ingenious methods in manufacturing systems
- the cost of sensing is too high
 - doctors often prescribe a broadspectrum antibiotic

Search in Belief State Space

- Search in space of belief states instead of physical states
- In belief-state space, the problem is fully observable
 - the agent always knows its own belief state
- Furthermore, the solution (if any) is always a sequence of actions
 - the percepts received after each action are completely predictable - they're always empty!
 - there are no contingencies to plan for
 - This is true even if the environment is nondeterministic

- Suppose the underlying physical problem P is defined by
 - ACTIONS_p, RESULT_p, GOAL-TEST_p and STEP-COST_p
- How to define corresponding sensorless problem?

Belief states

- The entire belief-state space contains every possible set of physical states
- Bad news
 - If P has N states, then the sensorless problem N has up to 2^N states
- Good news
 - Many may be unreachable from the initial state
- Initial state
 - Typically the set of all states in P
 - In some cases the agent will have more knowledge

Actions

- The agent is in belief state $b = \{s_1, s_2\}$, but $ACTIONS_p(s_1) \neq ACTIONS_p(s_2)$
- The agent is unsure of what actions are legal
 - If illegal actions have no effect on the environment

$$ACTIONS(b) = \bigcup_{s \in b} ACTIONS_p(s)$$

If an illegal action might be the end of the world

$$ACTIONS(b) = \bigcap_{s \in b} ACTIONS_p(s)$$

- Transition model
 - For deterministic actions, the set of states that might be reached is

```
b' = RESULT(b, a)
= \{s': s' = RESULT_P(s, a), and s \in b\}
```

• For nondeterministic actions, the set of states that might be reached is

$$b' = RESULT(b, a)$$

$$= \{s': s' \in RESULTS_P(s, a), and s \in b\}$$

$$= \bigcup_{s \in b} RESULTS_P(s, a)$$

- Transition model
 - Prediction step
 - generating the new prediction belief state after the action b' = PREDICT(b, a)
 - With deterministic actions, b' is never larger than b
 - With nondeterministic actions, b' may be larger than b

- Goal test
 - a belief state satisfies the goal only if all the physical states in it satisfy GOAL-TEST_P
 - The agent may accidentally achieve the goal earlier, but it won't know that it has done so

- Path cost
 - the cost of taking an action in a given belief state could be one of several values
 - A simple case
 - the cost of an action is the same in all states
 - can be transferred directly from the underlying physical problem

Deterministic, Sensorless Vacuum World

- Assume that the agent knows the geography of its world, but doesn't know its location and the distribution of the dirt.
- Its initial state could be any element of the set of all states

Deterministic, Sensorless Vacuum World

How to reach the goal state (7)? [right, suck, left, suck]

Sensorless Problem Solving

Apply any of the search algorithm we have known

Searching with Partial Observations

- How the environment generates percepts for the agent
 - Local-sensing vacuum world: a position sensor and a local dirt sensor, no global dirt sensor
- If sensing is deterministic, a *PERCEPT(s)* function that returns the percept received in a given state
 - Fully observable problem: *PERCEPT(s)=s* for every state *s*
 - Sensorless problem: PERCEPT(s)=null
- If sensing is nondeterministic, then function *PERCEPTS* that returns a set of possible percepts

Partially Observable Problem Definition

- ACTIONS, STEP-COST, and GOAL-TEST are the same as for sensorless problems
- The transition model is a bit more complicated
 - The prediction stage $\hat{b} = PREDICT(b, a)$
 - The observation prediction stage $POSSIBLE-PERCEPTS(\hat{b})$ $= \{o: o = PERCEPT(s) \ and \ s \in \hat{b}\}$
 - The update stage

$$b_o = UPDATE(\hat{b}, o) = \{s: o = PERCEPT(s) \text{ and } s \in \hat{b}\}$$

Partially Observable Problem Definition

 Possible belief states resulting from a given action and the subsequent possible percepts:

```
RESULTS(b, a)
= \{b_o: b_o = UPDATE(PREDICT(b, a), o) \text{ and } o\}
```

Partially Observable Problem Definition

4 ×

local-sensing vacuum worlds

Solving Partially Observable Problems

- A nondeterministic belief-state problem with
 - ACTIONS, RESULTS, GOAL-TEST, STEP-COSTS
- AND-OR search algorithm can be applied to derive a solution

Summary

- Local Search
 - Hill climbing
 - Simulated annealing
 - Genetic algorithms
 - Continuous space
- Search with Uncertainty
 - Nondeterministic Actions
 - Partial Observations

谢谢!