

MATH0461-2 Introduction to numerical optimization

FACULTY OF APPLIED SCIENCE

Randomized Condorcet Voting System

Teacher:

Quentin LOUVEAUX

Assistant:

Adrien BOLLAND

Students : Romain LAMBERMONT, s190931 Arthur LOUIS, s191230

Contents

1	Model		
	1.1	Implementation of the model in linear programming	
	1.2	Application of the RCVS to an example	
	1.3	Discussion of the dual variables and optimal dual basis	
	1.4	Solution of the linear in a linear system	-
	1.5	Bonus: Comparaison of the RCVS with an alternative voting system	
2	2 Linear Robust Formulation		-
3	Qua	adratic Robust Formulation	

List of Figures

List of Tables

1 Model

1.1 Implementation of the model in linear programming

In order to to compute the winning distribution law of the RCVS, one can implement a linear formulation of the model. The linear formulation is based on the following variables:

- A the voting matrix where $A_{i,j}$ represents the results of a duel between the *i*-th and *j*-th candidates. The elements of the matrix are computed following this rule: for each voter, if the *i*-th canditate is ranked higher than the *j*-th candidate the element $A_{i,j}$ is incremented and the element $A_{j,i}$ is decremented.
- p the probability vector where p_i represents the probability that the i-th candidate wins.

The linear formulation of the model is the following:

$$\min_{p} \sum_{t} p^{T} A$$
s.t. $p^{T} 1 = 1$

$$p \ge 0$$

$$p^{T} A \ge 0$$

- 1.2 Application of the RCVS to an example
- 1.3 Discussion of the dual variables and optimal dual basis
- 1.4 Solution of the linear in a linear system
- 1.5 Bonus: Comparaison of the RCVS with an alternative voting system
- 2 Linear Robust Formulation
- 3 Quadratic Robust Formulation