Introduction to EEG Decoding for Music Information Retrieval Research

INTER-SUBJECT CORRELATIONS

Inter-Subject Correlations (ISCs)

- **Synchrony** of cortical responses has been found to index focused engagement with narrative works.
 - Engaging content will drive the subjective experiences of audience members in a similar fashion.
 - An engaged audience will experience and process content in a similar fashion.
 - Engagement may be measureable through brain activity.
- In a state of focused attention, the brain response will be driven more by exogenous factors (the stimulus) by endogenous factors → greater correlation of audience members' cortical responses → higher ISCs

Inter-Subject Correlations (ISCs)

- Early studies (fMRI)
 - Hasson et al. (2004)¹
 - Participants viewed naturalistic audiovisual stimuli (film excerpts)
 - Correlating voxel-wise time series across participant pairs
 - ISCs were higher during emotionally arousing film scenes
 - Hasson et al. (2008):² A proposed field of "Neurocinematics"
 - ISCs provide a truly data-driven approach to data analysis
 - Facilitates use of complex, naturalistic stimuli
 - Do not need to know in advance where to look (as is the case with event-related analyses)

Cortical Measures of Engagement

- Electroencephalography (EEG)
 - + Non-invasive, low expense to operate
 - + Millisecond-scale temporal resolution
 - Activity recorded at the scalp is spatially smoothed
 - Low SNR (-20 dB)
 - Conventional EEG analyses rely upon averaging and require tens or hundreds of stimulus presentations
 - Not conducive to studying audience engagement with full-length naturalistic works

Reliable Components Analysis (RCA)¹

- Spatial filtering technique for EEG
- Computes linear weighting of electrodes to maximize correlation of data records in time
- Given two data matrices $X_1 \in \mathbb{R}^{M \times N}$ and $X_2 \in \mathbb{R}^{M \times N}$,
- RCA computes a spatial filter such that projected data

$$y_1 = X_1 w$$
 and $y_2 = X_2 w$

are maximally correlated in time.

• Note: The X_i matrices are paired concatenations of single trials of data (see paper for details)

Reliable Components Analysis (RCA)¹

 Formally, RCA maximizes the Pearson Product Moment Correlation Coefficient

$$\hat{w} = rg \max_{w} rac{y_1^T y_2}{\left\|y_1
ight\| \left\|y_2
ight\|}$$

which reduces to an eigenvalue equation.

 Thus, multiple reliable components (RCs) are computed, in descending order of reliability explained.

Reliable Components Analysis (RCA)¹

- Publicly available Matlab implementation.²
- Returns a number of variables
 - Weight matrix W
 - Data, projected from electrode space to component (RC) space
 - Forward-model matrix A (derived from W), used for plotting topographies of components
- We can look at the projected topography of the component, and compute ISCs from the component-space EEG data.

EEG-ISC studies using RCA

Dmochowski et al. (2014)¹

- Participants (N=12) watched SuperBowl television ads and rated them
- Neural reliability correlates more highly with Facebook voting results (r = 0.81) than with ratings delivered by study participants (r = 0.51)!

[1] Dmochowski et al. (2014). Nature Communications. Figure used with permission. $_{10}$

EEG-ISC studies using RCA

- Important: RCA method efficiently transforms
 EEG data to component space.
- Enables analysis of responses to full-length, naturalistic stimuli in a single-presentation experimental paradigm!

EEG-ISCs in a Musical Setting

- Introduce state-of-the-art EEG analysis technique for the first time to the study of music
- What do RCs for responses to music look like?
 Are they contingent on musical structure?
- Do periods of heightened cortical synchrony correspond to salient musical events?
- Validate a method for quantifying engagement in the context of music

Participants and Procedure

16 stimuli

- Hindi pop songs (popular yet novel, foreign language, easy-to-grasp musical structure, steady beat)
- 4 songs x 4 conditions: Original, reversed, measure shuffled, phase scrambled
- 48 participants
 - 18-35 years of age
 - variety of musical backgrounds
 - No Hindi experience
- 12 participants assigned to each stimulus.
- ISCs use pairwise comparisons:
 12 choose 2 → effective sample size of 66
- 128-channel EEG recorded while participants listened attentively to stimuli
- Assigned stimuli presented twice

Stimuli

• 4 versions of Hindi pop song (4 songs total):

Analysis

^[1] Kaneshiro et al. (2016). Stanford Digital Repository. [2] Dmochowski (2014). GitHub. 15

RC1 Topographies

RCA over all data

Separate RCA for each stimulus condition and listen

ISCs for Intact vs Control Stimuli

- ISCs are higher for the stimulus conditions that retained musical structure.
- Phase-scrambled always produces lowest proportion of significant ISCs
- Measure-shuffled always produces highest proportion of significant ISCs

Temporally Resolved ISCs

Forward vs Flipped Reversed ISCs

A New Paradigm for Music EEG Research

- ISCs index the ability of a stimulus to reliably evoke a response in an audience – thought to reflect a state of focused engagement
- Enables use of full-length, naturalistic stimuli
- RCA permits a truly single-presentation EEG paradigm
- Temporal resolution of EEG allows response to be mapped back to specific stimulus events
- Can be compared to behavioral ratings¹⁻³ and other continuous responses (physiological and behavioral³)
- Findings have been shown to generalize to large-scale audience preferences¹

Ensemble EEG-ISCs with Physiology and Behavior

[1] Kaneshiro et al. (2016). ICMPC.