Lagrangian density
$-rac{1}{3}t_{1}\;\omega_{,}^{lpha\prime}\;\omega_{\kappalpha}^{\;\;\;\;\;\;\; k-rac{1}{3}t_{1}\;\omega_{,}^{\;$
$rac{1}{3}t_2\;\omega_{\kappa\lambda}^{\prime}\;\omega^{\kappa\lambda}^{\prime}+rac{2}{3}r_2\;\partial^{eta}\omega^{etalpha}_{\kappa}\;\partial_{eta}\omega_{lphaeta}^{\kappa}-rac{1}{3}r_2\;\partial_{eta}\omega_{lphaeta}^{\kappa}\;\partial_{\kappa}\omega^{lphaetaeta}.$
$rac{2}{3}r_{2}\partial_{ heta}\omega_{lphaeta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\frac{1}{3}t_1\partial^{\alpha}f_{\theta\kappa}\partial^{\kappa}f_{\alpha}^{\ \ \theta} + \frac{1}{6}t_2\partial^{\alpha}f_{\theta\kappa}\partial^{\kappa}f_{\alpha}^{\ \ \theta} - \frac{2}{3}t_1\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \ \theta} -$
$\frac{1}{6}t_2\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{6}t_2\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\alpha\lambda} +$
$\frac{1}{3}t_{1}\;\omega_{\kappa\alpha}^{\;\;\alpha}\;\partial^{\kappa}f'_{\;\;\prime}+\frac{1}{3}t_{1}\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}+\frac{2}{3}t_{1}\;\partial^{\alpha}f_{\;\kappa\alpha}\;\partial^{\kappa}f'_{\;\;\prime}-\frac{1}{3}t_{1}\;\partial_{\kappa}f^{\lambda}_{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}+$
$rac{1}{3} t_1 \; \omega_{_{I}\theta_{K}} \; \partial^{\kappa} f^{_{I}\theta} + rac{1}{3} t_2 \; \omega_{_{I}\theta_{K}} \; \partial^{\kappa} f^{_{I}\theta} + rac{4}{3} t_1 \; \omega_{_{I}\kappa\theta} \; \partial^{\kappa} f^{_{I}\theta} - rac{2}{3} t_2 \; \omega_{_{I}\kappa\theta} \; \partial^{\kappa} f^{_{I}\theta} - rac{2}{3} t_3 \; \omega_{_{I}\kappa\theta} \; \partial^{\kappa} f^{_{I}\theta} - rac{2}{3} t_4 \; \omega_{_{I}\kappa\theta} \; \partial^{\kappa} f^{_{I}\theta} - \frac{2}{3} t_4 \; \omega_{_{I}\kappa\theta} \; \partial^{\kappa} f^{_{I}\theta} + \frac{2}{3} t_4 \; \omega_{_{I}\kappa\theta} \; \partial^{\kappa} f^{_{I}\theta} - \frac{2}{3} t_4 \; \omega_{_{I}\theta} \; \partial^{\kappa} f^{_{I}\theta} - \frac{2}{3} t_4 \; \omega_{_{I}\theta} \; \partial^{\kappa} f^{_{I}\theta} - \frac{2}{3} t_4 \; \omega_{_{I}\theta} \; \partial^{\kappa} f^{_{I}\theta} + \frac{2}{3} t_4 \; $
$rac{1}{3}t_{1}\;\omega_{ heta_{IK}}\partial^{\kappa}f^{I}{}^{ heta}-rac{1}{3}t_{2}\;\omega_{ heta_{IK}}\partial^{\kappa}f^{I}{}^{ heta}+rac{2}{3}t_{1}\;\omega_{ heta_{KI}}\;\partial^{\kappa}f^{I}{}^{ heta}+rac{2}{3}t_{2}\;\omega_{ heta_{KI}}\;\partial^{\kappa}f^{I}{}^{ heta}-$
$\frac{1}{3}t_1\;\omega_{,\alpha}^{\;\;\alpha}\;\partial^{\kappa}f'_{\;\;\kappa}-\frac{1}{3}t_1\;\omega_{,\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\kappa}+\frac{1}{3}t_1\;\partial^{\alpha}f^{\lambda}_{\;\;\kappa}\;\partial^{\kappa}f_{\lambda\alpha}-\frac{1}{6}t_2\;\partial^{\alpha}f^{\lambda}_{\;\;\kappa}\;\partial^{\kappa}f_{\lambda\alpha}+$
$\frac{1}{3}t_1\partial_\kappa f_{\beta}^{\lambda}\partial^\kappa f_{\lambda}^{\theta} - \frac{1}{6}t_2\partial_\kappa f_{\beta}^{\lambda}\partial^\kappa f_{\lambda}^{\theta} + \frac{2}{3}t_1\partial_\kappa f^{\lambda}_{\theta}\partial^\kappa f_{\lambda}^{\theta} +$
$rac{1}{6}t_2\partial_\kappa f^\lambda_{ heta}\partial^\kappa f_\lambda^{ heta} - rac{1}{3}t_1\partial^lpha f^\lambda_{lpha}\partial^\kappa f_{\lambda\kappa} + rac{1}{3}r_2\partial_\kappa \omega^{lphaeta heta}\partial^\kappa \omega_{lphaeta heta} +$
$\frac{2}{3} r_2 \partial_\kappa \omega^{\theta \alpha \beta} \partial^\kappa \omega_{\alpha \beta \theta} - \frac{2}{3} r_2 \partial^\beta \omega_{\alpha}^{\ \alpha \lambda} \partial_\lambda \omega_{\alpha \beta}^{\ \prime} + \frac{2}{3} r_2 \partial^\beta \omega_{\lambda}^{\ \lambda \alpha} \partial_\lambda \omega_{\alpha \beta}^{\ \prime} -$
$4r_{3}\partial^{\beta}\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
Added source term: $\int f^{\alpha\beta} t_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta}$

Massive particle

Pole residue:

Polarisations:

Square mass:

Odd

Spin: Parity:

Unitarity conditions $r_2 < 0 \&\& t_2 > 0$

(No massless particles)

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12 i k}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i\sqrt{2} k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#1}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

$f_{1^{-}}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\left \frac{1}{3} i \sqrt{2} k t_1 \right $	0	$\frac{2k^2t_1}{3}$	
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0	
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	17 3	0	$-\frac{1}{3}\overline{\imath}kt_1\left \frac{-\frac{1}{3}\overline{\imath}\sqrt{2}kt_1\right $	
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}kt_1$	
$f_{1}^{\#1}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}$ i k (t ₁ + t ₂)	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0	
$\omega_{1}^{\#2}_{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{\varepsilon}{2j+1}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0	
$\omega_{1}^{\#1}_{+\alpha\beta}$	$u_1^{\#1} + ^{\alpha\beta} \left[\frac{1}{6} \left(t_1 + 4 t_2 \right) \right]$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0	
	$\omega_{1}^{\#1} +^{\alpha\beta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_1^{\#1} + ^{\alpha \beta}$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_1^{\#2} +^\alpha$	$f_{1}^{\#1} \dagger^{lpha}$	$f_{1}^{\#2} +^{\alpha}$	

 $\omega_{2}^{\#1}$ $\beta_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$

7 [1 7

0

0

0

 $\frac{t_1}{2}$ $\frac{kt_1}{\sqrt{2}}$

00								
. Τ + ετ + αβ	_	. † _{αβχ}			$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
ω_{2}^{++}	7 2	$\omega_{2}^{\#1}$		$\omega_{0^{+}}^{\#1}$ †	$6 k^2 r_3$	0	0	0
#1	#1	#2	"1	$f_{0^{+}}^{#1}\dagger$	0	0	0	0
$\sigma_{0^{+}}^{#1}$	$\tau_{0}^{\#1}$	$\tau_0^{\pi_2}$	$\sigma_0^{\#1}$	$f_{0^{+}}^{#2}$ †	0	0	0	0
$\frac{1}{6k^2r_3}$	0	0	0	$\omega_0^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$
0	0	0	0					
0	0	0	0			χβχ		

$\tau_2^{\#1}_{+\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	🗆	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
·	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{\#1} + ^{\alpha\beta}$	$\sigma_{2}^{#1} +^{\alpha\beta\chi}$

			1									
	0	0	0	()				$\alpha \beta \chi$			
	0	0	0	$\frac{1}{\sqrt{2}}$	$\frac{1}{2+t_2}$				$\sigma_{2}^{\#1}$			2
				K 12	2102				ιβ	$\frac{2}{2}k$) ² t ₁	
‡	1	П	m	3	3	ω	2	19	$\tau_2^{\#1}_{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2}$	$\frac{4k^2}{(1+2k^2)^2}$	•
			0			0 =	0 ==			ı		
			$\sigma_{1}^{\#1}\alpha ==$		χ	$\sigma_1^{\#2}\alpha\beta$ ==	$\sigma_{2}^{\#1}\alpha^{\beta}$ =		$\sigma_{2}^{\#1}$	$\frac{2}{1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{1+2k^2)^2t_1}$,
Λ C			2		#2α 1	ρ_{\perp}	<i>k</i> 0		P	1+7	2,1	

$f_{0^{+}}^{#2} \dagger + \omega_{0^{-}}^{#1} \dagger$	C)	0	0	0	
$\omega_{0}^{\#1}$ †	C)	0	0	$k^2 r_2 +$	t_2
			$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$
2	119		$ au_2^{\#1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\alpha\beta$ == 0			βχ	$\frac{1}{2^{t_1}} \Big _{-1}^{-1}$		