DAC YF

FLOPS: Efficient On-Chip Learning for Optical Neural Networks

Jiaqi Gu, Zheng Zhao, Chenghao Feng, Wuxi Li, Ray T. Chen, David Z. Pan, The University of Texas at Austin

1. Neural Networks and Al Acceleration

ML Applications and Photonic Acceleration

2. Previous ONN Training Protocols

Time Consuming & Inaccurate Modelin

Software training

Limited speed (>1 s)

• Hardware-unaware
$$W = U\Sigma V^*$$

$$oldsymbol{U}(n) = oldsymbol{D} \prod^2 \prod^{i-1} oldsymbol{R}_{ij}$$

On-chip training

- Ultrafast (~1 ms)
- 1000x faster than SW
- Unscalable
- Limited efficiency

Stochastic Zeroth-Order **Reconfiguration Controller**

- Stochastic zeroth-order optimization
- **Efficiency:** WDM-based parallel gradient estimation
- Accuracy: Two-stage learning protocol with high accuracy
- Robustness: Robust learning under in situ device variations

3.Proposed Method: FLOPS & FLOPS+

- FLOPS+ with SparseTune
 - Sparse coordinate-wise fine-tuning
 - Improve Accuracy via searching
 - Sparsity guarantees efficiency

4.Experimental Results

• 2-4x higher efficiency; 10x better scalability; 3-5% higher robustness and accuracy

PSO-150

ONN config: 10-24-24-6 (960 MZIs)

BFT: [Zhou+, 2019]

PSO: [Zhang+, 2019]