Semaine du 21 au 25 novembre

An 5 : Espace vectoriel normé

- Norme. Exemples dans \mathbb{K}^n , $\mathcal{M}_{np}(\mathbb{K})$, $\mathcal{C}([a,b],\mathbb{K})$, $\mathbb{K}[X]$, $\mathbb{K}_n[X]$
- Distance associée : elle conserve la distance par translation
- Normes équivalentes, exemples.
- En dimension finie, toutes les normes sont équivalentes
- Boules, sphère. Ensemble borné. Union, intersection.
- Suite, convergence, limite. Toute suite convergente est bornée.
- $-u_n \xrightarrow[n\to\infty]{} \ell \Longrightarrow ||u_n|| \xrightarrow[n\to\infty]{} ||\ell||.$
- Combinaison linéaire et produit de suites convergentes...
- Suite extraite. Propriétés.
- Lien entre convergence et norme.
- Suite et convergence en dimension finie : non dépendance à la norme...
 Application pour les matrices : Si $A_k \xrightarrow[k \to \infty]{} A$, alors $A_k^T \xrightarrow[k \to \infty]{} A^T$ et si $B_k \xrightarrow[k \to \infty]{} B$, alors $A_k B_k \xrightarrow[k \to \infty]{} AB$

An 6 : Suite de fonctions

- Introduction de la notion de convergence simple.
- Exemples et insuffisance de cette notion
- Convergence uniforme
- $\text{CVU} \Rightarrow \text{CVS}$
- Méthode : Etude du tableau de variations de $t \mapsto |f_n(t) f(t)|$ pour établir la CVU.
- Méthodes simplifiantes : majoration de $|f_n(t) f(t)|$ pour établir la CVU, $||f_n f||_{\infty} \ge |f_n(t_n) f(t_n)|$ pour prouver qu'il n'y a pas CVU.
- Si f_n CVU vers f et g_n CVU vers g, alors $\lambda f_n + \mu g_n$ CVU vers $\lambda f + \mu g$.
- Passage à la limite uniforme de la bornitude, de la continuité, de l'intégrale sur un segment.
- Non passage de la dérivabilité par CVU...
- Conditions permettant le passage de la dérivabilité.

Alg 8 : Eléments propres

- Sous espace stable par un endomorphisme.
- Eléments propres d'un endomorphisme.
- Propriétés usuelles.
- Si P est annulateur de u (ou M), $Sp(u) \subset \{\text{racines de } P\}$: exemple des projecteurs, symétries, nilpotent.
- Somme de sous espaces propres ; Famille de vecteurs propres associée à des valeurs propres distinctes 2 à 2.
- En dimension n, au plus n valeurs propres distinctes.
- Eléments propres d'une matrice carrée.
- En dimension finie : Polynôme caractéristique (définition, coeff)
- Deux matrices semblables ont le même polynôme caractéristique. Réciproque fausse.
- Lien avec les valeurs propres : $Sp(u) = \{\text{racines de } \chi_u\}$

Remarque : Rien sur les multiplicités des valeurs propres...

Page 1/2MCOL08-PSI.tex Programme de colle PSI

Questions de cours : Les preuves font partie de la question de cours...

- * Toute suite convergente est bornée
- * $u_n \xrightarrow[n \to \infty]{} \ell \Longrightarrow ||u_n|| \xrightarrow[n \to \infty]{} ||\ell||.$
- * Combinaison linéaire de suites CV
- * Si \vec{u}_n CV vers $\vec{\ell}$ et v_n CV vers ℓ' , alors $\lambda \vec{u}_n + \mu \vec{v}_n$ CV vers $\lambda \vec{\ell} + \mu \vec{\ell'}$.
- * Produit d'une suite scalaire et d'une suite vectorielle convergentes.
- * Cas d'une algèbre : Produit de suites vectorielles convergentes...
- * Convergence et norme : Si $N \leq k.N'$, alors ... Application : Cas des normes équivalentes.
- * Lien entre $\|.\|_{\infty}$ et N_1 dans $\mathscr{C}([0,1],\mathbb{R})$: Elles ne sont pas équivalentes, mais il y a une inégalité...
- * CVU entraîne CVS
- * Passage à la limite uniforme de la bornitude d'une suite de fonctions
- * Une droite est stable par u ssi elle est dirigée par un vecteur propre.
- * 0 est valeur propre ssi u n'est pas injective. Les vecteurs propres associés à des VP non nulles sont à chercher dans Im(u).
 - * Si P est annulateur de u (ou M), $\mathrm{Sp}(u) \subset \{\mathrm{racines\ de\ }P\}.$
 - * Exemple de spectres : projecteurs, symétries, nilpotent.
 - * Somme de sous espaces propres
- * Famille de vecteurs propres associée à des valeurs propres distinctes 2 à 2 : En dimension n, au plus n valeurs propres distinctes.
 - * $\operatorname{Sp}(u) = \{ \operatorname{racines de} \chi_u \}$
 - * Deux matrices semblables ont le même polynôme caractéristique. Réciproque fausse.
 - * Admis : Coefficients de χ_u ... Cas en dimension 2.