Subtarea 1

•
$$a_i = i$$

En esta subtarea, $a_r - a_l = r - l$, por lo que siempre es posible ir de i a cualquier $j \in [i+1,i+k]$ en 1 salto. Por tanto, la respuesta para una pregunta (l,r) es $\left\lceil \frac{r-l}{k} \right\rceil$.

Subtarea 2

• $a_i - a_{i-1} = c$, para alguna constassnte c.

La idea es similar. En esta subtarea, $a_r - a_l = (r - l) \cdot c$.

Entonces, si queremos ir de i a j en un salto, se tiene que cumplir que $(j-i)\cdot c \leq k \Leftrightarrow (j-i) \leq \left|\frac{k}{c}\right|$. Por tanto, podemos dar saltos de longitud $\left|\frac{k}{c}\right|$.

Entonces, la respuesta para una pregunta (l,r) es $\left\lceil \frac{r-l}{\left\lfloor \frac{k}{c} \right\rfloor} \right\rceil$.

Subtarea 3

•
$$n \cdot q \le 10^6$$
.

Podemos resolver cada pregunta en tiempo lineal. Podemos usar dos punteros para dar los saltos óptimos, manteniendo para cada l, el mayor r tal que $a_r - a_l \le k$.

Complejidad temporal: $\mathcal{O}(n \cdot q)$.

Subtarea 4

Subtarea 5

Digamos que f(l) es el mayor $r \ge l$ tal que $f(r) - f(l) \le k$. Si no existe tal r, digamos que f(r) = -1.

f() se puede computar en tiempo lineal usando dos punteros, de derecha a izquierda.

Podemos considerar esto como un grafo dirigido, donde cada nodo tiene grado de salida 1. De hecho, si consideramos los x: f(x) = -1 como raíces, este grafo es realmente un bosque con las aristas orientadas desde las hojas hacia la raíz.

Podemos usar la técnica **binary lifting**, que consiste en mantener para cada nodo, la lista de ancestros a distancia $2^0, 2^1, 2^2, 2^3, ...$

Si tenemos una pregunta (l,r), usando esta lista de ancestros, podemos vorazmente buscar el primer ancestro de l que sea mayor o igual que r, y la respuesta sería la diferencia entre las profundidades de l y el ancestro encontrado en el grafo.