

Exercise 17B

Step 3: With A as the centre, draw another arc of $6.5\,$ cm, cutting the previous arc at C.

Step 4: Join AC and BC.

Step 5: With C as the centre, draw an arc of 4 cm.

Step 6: With A as the centre, draw another arc of $4\ cm$, cutting the previous arc at D.

Step 7: Join AD and CD.

ABCD is the required rhombus.

Q14

Answer:

Steps of construction:

Step1: Draw AB = 7.2 cm

Step2: Draw $\angle ABY = 60^{\circ}$

$$\angle BAX = 120^{\circ}$$

Sum of the adjacent angles is 180°.

$$\angle BAX + \angle ABY = 180^{\circ}$$

$$=> \angle BAX = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

Step 3:

Set off AD (7.2 cm) along AX and BC (7.2 cm) along BY.

Step 4: Join C and D.

Then, ABCD is the required rhombus.

Q15

Answer:

Steps of construction:

Step 1: Draw AB=6 cm

Step 2: Make $\angle ABX = 75^{\circ}$

Step 3: With B as the centre, draw an arc at 4cm. Name that point as C.

Step 4: AB | CD

$$\Rightarrow \angle BCY = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

Make $\angle BCY = 105^{\circ}$

At C, draw an arc of length 3.2 cm.

Step 5: Join A and D.

Thus, ABCD is the required trapezium.

Q16

Steps of construction :

Step1: Draw AB equal to 7 cm.

Step2: Make an angle, $\angle ABX$, equal to 60° .

Step3: With $\it B$ as the centre, draw an arc of $\it 5$ $\it cm$. Name that point as $\it C$. Join $\it B$ and $\it C$.

Step4:

 $AB \parallel DC$

Draw an angle, $\angle BCY$, equal to 120° .

Step4: With A as the centre, draw an arc of length $6.5~{
m cm}$, which cuts CY. Mark that point as D.

Step5: Join A and D.

Thus, ABCD is the required trapezium.

********* END *******