Claims

What we claim is:

5 1. A compound of formula (I):

wherein:

R' is selected from hydrogen or C1-6alkyl;

One of \mathbb{R}^1 and \mathbb{R}^2 are selected from hydrogen or C_{1-6} alkyl and the other is selected from C_{1-6} alkyl;

 R^x and R^y are independently selected from hydrogen, hydroxy, amino, mercapto, C_{1-6} alkyl, C_{1-6} alkoxy, $N-(C_{1-6}$ alkyl)amino, $N,N-(C_{1-6}$ alkyl)2amino, C_{1-6} alkylS(O)2 wherein a is 0 to 2;

R^z is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)₂ wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)₂sulphamoyl;

20 v is 0-5;

one of \mathbb{R}^4 and \mathbb{R}^5 is a group of formula (IA):

(IA)

10

15

R³ and R⁶ and the other of R⁴ and R⁵ are independently selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)₂amoyl,

5 N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl,
N-(C₁₋₆alkyl)₂sulphamoyl and N,N-(C₁₋₆alkyl)₂sulphamoyl; wherein R³ and R⁶ and the other of
R⁴ and R⁵ may be optionally substituted on carbon by one or more R¹⁷;

X is -O-, -N(R^a)-, -S(O)_b- or -CH(R^a)-; wherein R^a is hydrogen or C₁₋₆alkyl and b is 0-2;

Ring A is aryl or heteroaryl; wherein Ring A is optionally substituted on carbon by one or more substituents selected from R¹⁸;

 R^7 is hydrogen, $C_{1.6}$ alkyl, carbocyclyl or heterocyclyl; wherein R^7 is optionally substituted on carbon by one or more substituents selected from R^{19} ; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R^{20} ;

R⁸ is hydrogen or C₁₋₆alkyl;

R⁹ is hydrogen or C₁₋₆alkyl;

 ${f R}^{10}$ is hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, ${f C}_{1-10}$ alkyl, ${f C}_{2-10}$ alkenyl, ${f C}_{2-10}$ alkynyl, ${f C}_{1-10}$ alkoxy,

20 C₁₋₁₀alkanoyl, C₁₋₁₀alkanoyloxy, N-(C₁₋₁₀alkyl)amino, N,N-(C₁₋₁₀alkyl)₂amino, N,N,N-(C₁₋₁₀alkyl)₃ammonio, C₁₋₁₀alkanoylamino, N-(C₁₋₁₀alkyl)carbamoyl, N,N-(C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)_a wherein a is 0 to 2, N-(C₁₋₁₀alkyl)sulphamoyl, N,N-(C₁₋₁₀alkyl)₂sulphamoyl, N-(C₁₋₁₀alkyl)sulphamoylamino, N,N-(C₁₋₁₀alkyl)₂sulphamoylamino, C₁₋₁₀alkoxycarbonylamino, carbocyclyl,

30 R^{24} ; or R^{10} is a group of formula (IB):

wherein:

R¹¹ is hydrogen or C₁₋₆alkyl;

R¹² and R¹³ are independently selected from hydrogen, halo, carbamoyl, sulphamoyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkanoyl, N-(C₁₋₁₀alkyl)carbamoyl, N,N-(C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)₈ wherein a is 0 to 2, N-(C₁₋₁₀alkyl)sulphamoyl, N,N-(C₁₋₁₀alkyl)₂sulphamoyl, N-(C₁₋₁₀alkyl)sulphamoylamino, N,N-(C₁₋₁₀alkyl)₂sulphamoylamino, carbocyclyl or heterocyclyl; wherein R¹² and R¹³ may be independently optionally substituted on carbon by one or more substituents selected from R²⁵; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R²⁶;

 R^{14} is selected from hydrogen, halo, carbamoyl, sulphamoyl, hydroxyaminocarbonyl, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{1-10} alkanoyl, N-(C_{1-10} alkyl)carbamoyl,

N,N-(C₁₋₁₀alkyl)₂carbamoyl, C₁₋₁₀alkylS(O)_a wherein a is 0 to 2, N-(C₁₋₁₀alkyl)sulphamoyl, N,N-(C₁₋₁₀alkyl)₂sulphamoyl, N-(C₁₋₁₀alkyl)sulphamoylamino, N,N-(C₁₋₁₀alkyl)₂sulphamoylamino, carbocyclyl, carbocyclylC₁₋₁₀alkyl, heterocyclyl, heterocyclylC₁₋₁₀alkyl, carbocyclyl-(C₁₋₁₀alkylene)_p-R²⁷-(C₁₋₁₀alkylene)_q- or heterocyclyl-(C₁₋₁₀alkylene)_r-R²⁸-(C₁₋₁₀alkylene)_s-; wherein R¹⁴ may be optionally substituted on carbon by one or more substituents selected from R²⁹; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R³⁰: or R¹⁴ is a group of formula (IC):

25 R¹⁵ is hydrogen or C₁₋₆alkyl; and R¹⁶ is hydrogen or C₁₋₆alkyl; wherein R¹⁶ may be optionally substituted on carbon by one or more groups selected from R³¹; or R¹⁵ and R¹⁶ together with the nitrogen to which they are attached form a heterocyclyl; wherein said

heterocyclyl may be optionally substituted on carbon by one or more R³⁷; and wherein if said

WO 03/091232

20

25

30

heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R³⁸;

n is 1-3; wherein the values of R⁷ may be the same or different;

R¹⁷, R¹⁸, R¹⁹, R²³, R²⁵, R²⁹, R³¹ and R³⁷ are independently selected from halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, 5 C_{2-10} alkenyl, C_{2-10} alkynyl, C_{1-10} alkoxy, C_{1-10} alkanoyl, C_{1-10} alkanoyloxy, N-(C_{1-10} alkyl)amino, N,N-(C1.10alkyl)2amino, N,N,N-(C1-10alkyl)3ammonio, C1-10alkanoylamino, $N-(C_{1-10}alkyl)$ carbamoyl, $N,N-(C_{1-10}alkyl)_2$ carbamoyl, $C_{1-10}alkylS(O)_a$ wherein a is 0 to 2, $N-(C_{1-10}$ alkyl)sulphamoyl, $N,N-(C_{1-10}$ alkyl)₂sulphamoyl, $N-(C_{1-10}$ alkyl)sulphamoylamino, N,N-(C1-10alkyl)2sulphamoylamino, C1-10alkoxycarbonylamino, carbocyclyl, 10 carbocyclylC₁₋₁₀alkyl, heterocyclyl, heterocyclylC₁₋₁₀alkyl, carbocyclyl-(C₁₋₁₀alkylene)_u-R³²-(C₁₋₁₀alkylene)_u- or heterocyclyl- $(C_{1-10}$ alkylene), $-R^{33}$ - $(C_{1-10}$ alkylene), wherein R^{17} , R^{18} , R^{19} , R^{23} , R^{25} , R^{29} , R^{31} and R³⁷ may be independently optionally substituted on carbon by one or more R³⁴; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally 15 substituted by a group selected from R35;

 R^{21} , R^{22} , R^{27} , R^{28} , R^{32} or R^{33} are independently selected from -O-, -NR³⁶-, -S(O)_x-, -NR³⁶C(O)NR³⁶-, -NR³⁶C(S)NR³⁶-, -OC(O)N=C-, -NR³⁶C(O)- or -C(O)NR³⁶-; wherein R³⁶ is selected from hydrogen or C₁₋₆alkyl, and x is 0-2;

p, q, r and s are independently selected from 0-2;

R³⁴ is selected from halo, hydroxy, cyano, carbamoyl, ureido, amino, nitro, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, methyl, ethyl, methoxy, ethoxy, vinyl, allyl, ethynyl, formyl, acetyl, formamido, acetylamino, acetoxy, methylamino, dimethylamino, N-methylcarbamoyl, N,N-dimethylcarbamoyl, methylthio, methylsulphinyl, mesyl, N-methylsulphamoyl, N,N-dimethylsulphamoyl, N-methylsulphamoylamino and N,N-dimethylsulphamoylamino;

R²⁰, R²⁴, R²⁶, R³⁰, R³⁵ and R³⁸ are independently selected from C₁₋₆alkyl, C₁₋₆alkanoyl, C₁₋₆alkylsulphonyl, C₁₋₆alkoxycarbonyl, carbamoyl, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)carbamoyl, benzyl, benzyloxycarbonyl, benzoyl and phenylsulphonyl; or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.

- 2. A compound of formula (I) as claimed in claim 1 wherein R is hydrogen or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- 3. A compound of formula (I) as claimed in either of claims 1 or 2 wherein R¹ and R² are both butyl or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
 - 4. A compound of formula (I) as claimed in any one of claims 1-3 wherein R^x and R^y are both hydrogen or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
 - 5. A compound of formula (I) as claimed in any one of claims 1-4 wherein v is 0 or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- A compound of formula (I) as claimed in any one of claims 1-7 wherein R³ and R⁶ are both hydrogen or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- 7. A compound of formula (I) as claimed in any one of claims 1-6 wherein R⁴ is
 20 methylthio or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
 - 8. A compound of formula (I) as claimed in any one of claims 1-7 wherein R⁵ is a group of formula (IA) (as depicted in claim 1) wherein:
- 25 X is -O-;

10

Ring A is aryl; wherein Ring A is optionally substituted on carbon by one or more substituents selected from R¹⁸;

R⁷ is hydrogen;

R⁸ is hydrogen;

30 R⁹ is hydrogen;

R¹⁰ is a group of formula (IB) (as depicted above):

R¹¹ is hydrogen;

R¹² and R¹³ are independently selected from hydrogen or C₁₋₁₀alkyl;

 R^{14} is selected from C_{1-10} alkyl, carbocyclyl C_{1-10} alkyl and heterocyclyl; wherein R^{14} may be optionally substituted on carbon by one or more substituents selected from R^{29} ; or R^{14} is a group of formula (IC) (as depicted above);

R¹⁵ and R¹⁶ together with the nitrogen to which they are attached form a heterocyclyl; wherein said heterocyclyl may be optionally substituted on carbon by one or more R³⁷;

n is 1;

5

R¹⁸, R²⁹ and R³⁷ are independently selected from hydroxy and

N-(C₁₋₁₀alkyl)carbamoyl; wherein R¹⁸, R²⁹ and R³⁷ may be independently optionally
substituted on carbon by one or more R³⁴; and

R³⁴ is carbamoyl.

9. A compound of formula (I) (as depicted in claim 1) wherein:

R' is selected from hydrogen;

15 R^1 and R^2 are both butyl;

Rx and Ry are both hydrogen;

v is 0:

R³ and R⁶ are both hydrogen;

R⁴ is methylthio; and

20 R⁵ is selected from:

 $N-\{(R)-\alpha-[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]$ carbamoylmethoxy;

 $N-\{(R)-\alpha-[N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]-4-hydroxybenzyl\}carbamoylmethoxy;$

25 N-((R/S)- α -{N-[1-(R)-2-(S)-1-hydroxy-1-(3,4-dihydroxyphenyl)prop-2-yl]carbamoyl}-4-hydroxybenzyl)carbamoylmethoxy;

N-[(R)- α -(N-{2-(S)-[N-(carbamoylmethyl) carbamoyl]pyrrolidin-1-ylcarbonylmethyl}carbamoyl)benzyl]carbamoylmethoxy;

 $N-((R)-\alpha-\{N-[2-(3,4,5-trihydroxyphenyl)ethyl]carbamoyl})$ benzyl)carbamoylmethoxy; and

30 $N-\{(R)-\alpha-[N-(2-(R)-3-(S)-4-(S)-5-(R)-3,4,5,6-tetrahydroxytetrahydropyran-2-ylmethyl)carbamoyl]benzyl\}carbamoylmethoxy;$

or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.

- 10. A compound of formula (I) selected from:
- 2,3,4,5,6-pentahydroxyhexyl)carbamoyl]benzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine;
- 5 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N-{(R)-α-{N-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]-4-hydroxybenzyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine;
 - $1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-[N-((R/S)-\alpha-(N-[1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-hydroxy-1-1-(R)-2-(S)-1-(R)-1-(R)-2-(S)-1-(R)-1-$
 - (3,4-dihydroxyphenyl)prop-2-yl]carbamoyl}-4-hydroxybenzyl)carbamoylmethoxy]-2,3,4,5-
- 10 tetrahydro-1,2,5-benzothiadiazepine;
 - 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8- $\{N-[(R)-\alpha-(N-\{2-(S)-[N-(carbamoylmethyl) carbamoyl]pyrrolidin-1-ylcarbonylmethyl\}$ carbamoyl)benzyl]carbamoylmethoxy}-2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine;
 - 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-[N-((R)- α -{N-[2-(3,4,5-
- trihydroxyphenyl)ethyl]carbamoyl}benzyl)carbamoylmethoxy]-2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine; and
 - 1,1-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8- $(N-\{(R)-\alpha-\{N-\{2-(R)-3-\{S\}-4-\{S\}-5-(R)-1\}-(R)-\alpha-\{N-\{2-(R)-3-\{S\}-4-\{$
 - $3,4,5,6-tetra hydroxy tetra hydropyran-2-ylmethyl) carbamoyl] benzyl \} carbamoyl methoxy)-$
 - 2,3,4,5-tetrahydro-1,2,5-benzothiadiazepine;
- or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
 - 11. A process for preparing a compound of formula (I) as claimed in claims 1-10 or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof which process comprises of:
- 25 Process 1): for compounds of formula (I) wherein X is -O-,-NR^a or -S-; reacting a compound of formula (IIa) or (IIb):

with a compound of formula (III):

$$\begin{array}{c|c}
A & O \\
R^{10} & N & N^{1} \\
R^{9} & R^{8} & R^{7}
\end{array}$$
(III)

5

wherein L is a displaceable group;

Process 2): reacting an acid of formula (IVa) or (IVb):

HO
$$R^{7}$$
 R^{6} R^{6} R^{7} R

or an activated derivative thereof; with an amine of formula (V):

Process 3): for compounds of formula (I) wherein R¹⁰ is a group of formula (IB); reacting a compound of formula (VIa):

5 or **(VIb)**:

10

HO
$$R^9$$
 R^8
 R^7
 R^4
 R^3
 R^3
 R^4
 R^3
 R^5
 R^2
 R^3
 R^2
 R^3

with an amine of formula (VII):

(VIb)

·

Process 4) for compounds of formula (I) wherein one of R^4 and R^5 are independently selected from C_{1-6} alkylthio optionally substituted on carbon by one or more R^{17} ; reacting a compound of formula (VIIIa) or (VIIIb):

wherein L is a displaceable group; with a thiol of formula (IX):

R^m-H

(XX)

wherein R^m is C_{1-6} alkylthio optionally substituted on carbon by one or more R^{17} ; or *Process 5):* for compounds of formula (I) wherein R^{14} is a group of formula (IC); reacting a compound of formula (Xa):

10

15

5

(Xa)

or (Xb):

5

15 .

(Xb)

with an amine of formula (XI):

(XI)

and thereafter if necessary or desirable:

- i) converting a compound of the formula (I) into another compound of the formula (I); and/or
- ii) removing any protecting groups; and/or
- 10 iii) forming a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug.
 - 12. A compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 10 for use as a medicament.
 - 13. A compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 10 for use in a method of prophylactic or therapeutic treatment of a warm-blooded animal, such as man.
- 20 14. The use of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 10 in the manufacture of a medicament for use in the production of an IBAT inhibitory effect in a warm-blooded animal, such as man.

15. The use of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 10, in the production of an IBAT inhibitory effect in a warm-blooded animal, such as man.

5

16. A method for producing an IBAT inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a product thereof, as claimed in any one of claims 1 to 10.

10

17. A pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 10, in association with a pharmaceutically-acceptable diluent or carrier.

15

20

25

30

- 18. A pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 10, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in association with a pharmaceutically acceptable diluent or carrier.
- 19. A pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 10, and a bile acid binder, in association with a pharmaceutically acceptable diluent or carrier.
- 20. A pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as claimed in any one of claims 1 to 10, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid binder in association with a pharmaceutically acceptable diluent or carrier.

- 21. A composition according to claim 18 or claim 20 wherein the HMG Co-A reductase inhibitor is atorvastatin, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- 5 22. A composition according to claim 18 or claim 20 wherein the HMG Co-A reductase inhibitor is rosuvastatin, or a pharmaceutically acceptable salt thereof.
- A pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as
 claimed in any one of claims 1 to 10 and a PPAR alpha and/or gamma agonist, or a pharmaceutically acceptable salt thereof, in association with a pharmaceutically acceptable diluent or carrier.
- 24. A composition according to claim 23 wherein the PPAR alpha and/or gamma agonist is (S)-2-ethoxy-3-[4-(2-{4-methanesulphonyloxyphenyl}ethoxy)phenyl]propanoic acid or a pharmaceutically acceptable salt thereof.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.