Exercício 7.

Nome: Lucas Kou Kinoshita

RM: 2019021557 data: 26/04/2025

Implementação:

A implementação do k-médias e do treinamento com RBF seguiram o algoritmo elaborado em sala de aula e nas notas de aula.

```
kmeans <- function(xin, k, maxit){</pre>
 N <- dim(xin)[1]
 n \leftarrow dim(xin)[2]
 iseq <- sample(N)
 ci <- as.matrix(xin[iseq[1:k], ])</pre>
 c_mais_prox <- matrix(nrow = 1, ncol = N)</pre>
  for(j in 1:maxit) {
    for(i in 1:N){
      xaug_mat <- matrix(xin[i,], nrow = k, ncol = n, byrow = TRUE)</pre>
      dxaug_ci <- (ci - xaug_mat)^2
      di_vec <- rowSums(dxaug_ci)
      c_mais_prox[i] <- which.min(di_vec)</pre>
    for(1 in 1:k){
      ickvet <- which(c_mais_prox == 1)
      if (length(ickvet) > 0) {
        ci[1,] <- colMeans(xin[ickvet,])</pre>
  return(list(center = ci, cluster = c_mais_prox))
```

Figura 1: implementação k-médias

```
pdfnvar <- function(x, m, K) {
  n <- length(x)
  coef <- 1 / sqrt((2*pi)^n * det(K))
  expoente <- exp(-0.5 * t(x-m) %*% solve(K) %*% (x-m))
  return(coef * expoente)
}</pre>
```

Figura 2: implementação da gaussiana

```
RBF <- function(xin, yin, p, r){
  radialnvar <- function(x, m, invK) exp(-0.5 * (t(x-m) %*% invK %*% (x-m)))

N <- dim(xin)[1]
  n <- dim(xin)[2]

xin <- as.matrix(xin)
 yin <- as.matrix(yin)

xclust <- kmeans(xin, p, 10)

m <- xclust$center
  covi <- r * diag(n)
  inv_covi <- (1/r) * diag(n)

H <- matrix(nrow = N, ncol = p)
  for(j in 1:N){
    for(i in 1:p){
      mi <- m[i,]
      H[j,i] <- radialnvar(xin[j,], mi, inv_covi)
    }
}

Haug <- cbind(1, H)
  w <- pseudoinverse(Haug) %*% yin

return(list(m, covi, r, w))
}</pre>
```

Figura 3: implementação do treinamento com RBF

```
YRBF <- function(xin, modRBF){
  radialnvar <- function(x, m, invK) exp(-0.5 * (t(x-m) %*% invK %*% (x-m)))
 N <- dim(xin)[1]</pre>
 n \leftarrow dim(xin)[2]
 m <- modRBF[[1]]
  covi <- modRBF[[2]]</pre>
 inv_covi <- (1/modRBF[[3]]) * diag(n)
W <- modRBF[[4]]</pre>
  p <- dim(m)[1]
  xin <- as.matrix(xin)</pre>
  H <- matrix(nrow = N, ncol = p)</pre>
  for(j in 1:N){
    for(i in 1:p){
      mi <- m[i,]
      H[j,i] <- radialnvar(xin[j,], mi, inv_covi)</pre>
  Haug \leftarrow cbind(1, H)
  Yhat <- Haug %*% W
  return(Yhat)
```

Figura 4: implementação do cálculo de resultados do RBF

Parte 1.

Assim como sugerido no enunciado do exercício, os conjuntos sintéticos de dados foram gerados com auxílio da biblioteca mlbench. Em seguida, treinadas pelo método RBF(), que utiliza o k-médias para determinação de (p) clusters com fator de espalhamento (r) nas gaussianas.

```
normals <- mlbench.2dnormals(200)
xin_normals <- as.matrix(normals$x)</pre>
yin_normals <- as.numeric(normals$classes)</pre>
modelo_normals <- RBF(xin_normals, diag(1,2)[yin_normals,], p, r)
plot_classification(xin_normals, yin_normals, modelo_normals, "2D Normals")
xor <- mlbench.xor(100)
xin_xor <- as.matrix(xor$x)
yin_xor <- as.numeric(xor$classes)</pre>
modelo_xor <- RBF(xin_xor, diag(1,2)[yin_xor,], p, r)</pre>
plot_classification(xin_xor, yin_xor, modelo_xor, "XOR")
circle <- mlbench.circle(100)
xin_circle <- as.matrix(circle$x)</pre>
yin_circle <- as.numeric(circle$classes)</pre>
modelo_circle <- RBF(xin_circle, diag(1,2)[yin_circle,], p, r)
plot_classification(xin_circle, yin_circle, modelo_circle, "Circle")
spiral <- mlbench.spirals(100, cycles=1, sd=0.05)</pre>
xin_spiral <- as.matrix(spiral$x)</pre>
yin_spiral <- as.numeric(spiral$classes)</pre>
modelo_spiral <- RBF(xin_spiral, diag(1,2)[yin_spiral,], p, r)
plot_classification(xin_spiral, yin_spiral, modelo_spiral, "Spirals")
```

Figura 5: Geração de dados, treinamento e visualização

Os métodos *plot_classification()* e *criar_grid()* foram elaborados em um arquivo utils.R com o objetivo de auxiliar a visualização das superfícies de separação resultantes dos treinamentos. De forma:

```
plot_classification <- function(xin, yin, modelo, titulo) {
   grid <- criar_grid(xin)
   pred_grid <- YRBF(grid, modelo)
   pred_grid <- apply(pred_grid, 1, which.max) # Classe com major ativação

   plot(xin[,1], xin[,2], col = yin, pch = 19, main = titulo, xlab = "", ylab = "")
   points(grid[,1], grid[,2], col = pred_grid, pch = ".", cex = 0.5)
}</pre>
```

Figura 6: implementação da visualização de superfícies

```
criar_grid <- function(x, n = 200) {
    x1_range <- seq(min(x[,1]) - 0.5, max(x[,1]) + 0.5, length.out = n)
    x2_range <- seq(min(x[,2]) - 0.5, max(x[,2]) + 0.5, length.out = n)
    grid <- expand.grid(x1 = x1_range, x2 = x2_range)
    return(as.matrix(grid))
}</pre>
```

Figura 7: geração dos grids para visualização

Por fim, podemos visualizar os seguintes resultados para diferentes números de centros:

2D Normals

Figura 8: Superfície de separação para o problema das normais, k = 2

XOR

Figura 9: Superfície de separação para o problema XOR, k = 2

Circle

Figura 10: Superfície de separação para o problema do círculo, $\mathbf{k}=2$

Spirals

Figura 11: Superficie de separação para o problema das espirais, k=2

2D Normals

Figura 12: Superfície de separação para o problema das normais, k=6

Figura 13: Superfície de separação para o problema XOR, k = 6

Circle

Figura 14: Superfície de separação para o problema do círculo, k = 6

Figura 15: Superfície de separação para o problema das espirais, k = 6

2D Normals

Figura 16: Superfície de separação para o problema das normais, k = 12

Figura 17: Superfície de separação para o problema XOR, k = 12

Circle

Figura 18: Superfície de separação para o problema do círculo, k = 6

Spirals

Figura 19: Superfície de separação para o problema das espirais, k = 12

Parte 2.

Partindo dos mesmos métodos implementados anteriormente, porém com os dados sintéticos gerados para o problema de aproximação da função *sinc*.

Figura 20: Implementação para o problema de aproximação

O desempenho de cada modelo é testado por meio de um segundo conjunto de testes, assim como sugerido no enunciado, à partir do MSE

```
xtest <- runif(50, -15, 15)
ytest <- -sin(xtest)/xtest + rnorm(50, 0, 0.05)
xtest <- as.matrix(xtest)
yhat <- YRBF(xtest, modeloRBF)
mse <- mean((ytest - yhat)^2)
print(mse)</pre>
```

Figura 21: Implementação do conjunto de teste e do MSE

Foram obtidos os seguintes resultados:

Figura 22: Aproximação com k = 2 e r = 1. MSE = 0.0866

sinc(x)

Figura 23: Aproximação com k = 6 e r = 1. MSE = 0.0437

sinc(x)

Figura 24: Aproximação com k = 16 e r = 1. MSE = 0.0045

Conclusão:

Através da visualização das superfícies de separação - para a primeira parte do exercício - e da sobreposição dos dados aproximados e valores de MSE - para a segunda parte -. Podemos assumir que, para os conjuntos de dados sintéticos gerados, os modelos com cerca de 10 ou mais centros utilizados no k-médias foram capazes de alcançar desempenhos satisfatórios.