EM Algorithm for Latent Variable Models

David S. Rosenberg

New York University

April 24, 2018

Contents

- EM Algorithm for Latent Variable Models
- 2 Does EM Work?
- Variations on EM
- 4 Summer Homework: Gaussian Mixture Model (Hints)

EM Algorithm for Latent Variable Models

General Latent Variable Model

- Two sets of random variables: z and x.
- z consists of unobserved hidden variables.
- x consists of observed variables.
- Joint probability model parameterized by $\theta \in \Theta$:

$$p(x, z \mid \theta)$$

Definition

A latent variable model is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.

Complete and Incomplete Data

- Suppose we have a data set $\mathcal{D} = (x_1, \dots, x_n)$.
- To simplify notation, take x to represent the entire dataset

$$x = (x_1, \ldots, x_n),$$

and z to represent the corresponding unobserved variables

$$z = (z_1, \ldots, z_n)$$
.

- An observation of x is called an **incomplete data set**.
- An observation (x,z) is called a **complete data set**.

Our Objectives

• Learning problem: Given incomplete dataset $\mathcal{D} = x = (x_1, \dots, x_n)$, find MLE

$$\hat{\theta} = \arg\max_{\theta} p(\mathcal{D} \mid \theta).$$

• Inference problem: Given x, find conditional distribution over z:

$$p(z_i | x_i, \theta)$$
.

- For Gaussian mixture model, learning is hard, inference is easy.
- For more complicated models, inference can also be hard. (See DSGA-1005)

Log-Likelihood and Terminology

Note that

$$\arg\max_{\theta} p(x \mid \theta) = \arg\max_{\theta} [\log p(x \mid \theta)].$$

- Often easier to work with this "log-likelihood".
- We often call p(x) the marginal likelihood,
 - because it is p(x, z) with z "marginalized out":

$$p(x) = \sum_{z} p(x, z)$$

- We often call p(x, z) the **joint**. (for "joint distribution")
- Similarly, $\log p(x)$ is the marginal log-likelihood.

The EM Algorithm Key Idea

• Marginal log-likelihood is hard to optimize:

$$\max_{\theta} \log p(x \mid \theta)$$

• Typically the complete data log-likelihood is easy to optimize:

$$\max_{\theta} \log p(x, z \mid \theta)$$

- What if we had a **distribution** q(z) for the latent variables z?
- Then maximize the expected complete data log-likelihood:

$$\max_{\theta} \sum_{z} q(z) \log p(x, z \mid \theta)$$

• EM assumes this maximization is relatively easy.

Lower Bound for Marginal Log-Likelihood

• Let q(z) be any PMF on \mathcal{Z} , the support of z:

$$\log p(x \mid \theta) = \log \left[\sum_{z} p(x, z \mid \theta) \right]$$

$$= \log \left[\sum_{z} q(z) \left(\frac{p(x, z \mid \theta)}{q(z)} \right) \right] \quad \text{(log of an expectation)}$$

$$\geqslant \sum_{z} q(z) \log \left(\frac{p(x, z \mid \theta)}{q(z)} \right) \quad \text{(expectation of log)}$$

Inequality is by Jensen's, by concavity of the log.

This inequality is the basis for "variational methods", of which EM is a basic example.

The ELBO

• For any PMF q(z), we have a lower bound on the marginal log-likelihood

$$\log p(x \mid \theta) \geqslant \underbrace{\sum_{z} q(z) \log \left(\frac{p(x, z \mid \theta)}{q(z)} \right)}_{\mathcal{L}(q, \theta)}$$

- Marginal log likelihood $\log p(x \mid \theta)$ also called the **evidence**.
- $\mathcal{L}(q, \theta)$ is the evidence lower bound, or "ELBO".

In EM algorithm (and variational methods more generally), we maximize $\mathcal{L}(q,\theta)$ over q and θ .

MLE, EM, and the ELBO

• For any PMF q(z), we have a lower bound on the marginal log-likelihood

$$\log p(x \mid \theta) \geqslant \mathcal{L}(q, \theta).$$

• The MLE is defined as a maximum over θ :

$$\hat{\theta}_{\mathsf{MLE}} = \mathop{\arg\max}_{\theta} \mathop{\log p(x \mid \theta)}.$$

• In EM algorithm, we maximize the lower bound (ELBO) over θ and q:

$$\hat{\theta}_{\mathsf{EM}} = \operatorname*{arg\,max}_{\theta} \left[\operatorname*{max}_{q} \mathcal{L}(q, \theta) \right]$$

A Family of Lower Bounds

- For each q, we get a lower bound function: $\log p(x \mid \theta) \geqslant \mathcal{L}(q, \theta) \ \forall \theta$.
- Two lower bounds (blue and green curves), as functions of θ :

• Ideally, we'd find the maximum of the red curve. Maximum of green is close.

From Bishop's Pattern recognition and machine learning, Figure 9.14.

EM: Coordinate Ascent on Lower Bound

- Choose sequence of q's and θ 's by "coordinate ascent".
- EM Algorithm (high level):
 - Choose initial θ^{old} .

 - **3** Let $\theta^{\text{new}} = \arg \max_{\theta} \mathcal{L}(q^*, \theta^{\text{old}})$.
 - Go to step 2, until converged.
- Will show: $p(x \mid \theta^{new}) \ge p(x \mid \theta^{old})$
- Get sequence of θ 's with monotonically increasing likelihood.

EM: Coordinate Ascent on Lower Bound

- Start at θ^{old} .
- ② Find q giving best lower bound at $\theta^{\text{old}} \Longrightarrow \mathcal{L}(q,\theta)$.

From Bishop's Pattern recognition and machine learning, Figure 9.14.

14/36

EM: Next Steps

- We now give 2 different re-expressions of $\mathcal{L}(q,\theta)$ that make it easy to compute
 - $arg max_q \mathcal{L}(q, \theta)$, for a given θ , and
 - $\arg \max_{\theta} \mathcal{L}(q, \theta)$, for a given q.

ELBO in Terms of KL Divergence and Entropy

• Let's investigate the lower bound:

$$\mathcal{L}(q,\theta) = \sum_{z} q(z) \log \left(\frac{p(x,z \mid \theta)}{q(z)} \right)$$

$$= \sum_{z} q(z) \log \left(\frac{p(z \mid x,\theta)p(x \mid \theta)}{q(z)} \right)$$

$$= \sum_{z} q(z) \log \left(\frac{p(z \mid x,\theta)}{q(z)} \right) + \sum_{z} q(z) \log p(x \mid \theta)$$

$$= -\text{KL}[q(z), p(z \mid x,\theta)] + \log p(x \mid \theta)$$

Amazing! We get back an equality for the marginal likelihood:

$$\log p(x \mid \theta) = \mathcal{L}(q, \theta) + \text{KL}[q(z), p(z \mid x, \theta)]$$

Maxizing over q for fixed $\theta = \theta^{\text{old}}$.

• Find q maximizing

$$\mathcal{L}(q, \theta^{\text{old}}) = -\text{KL}[q(z), p(z \mid x, \theta^{\text{old}})] + \underbrace{\log p(x \mid \theta^{\text{old}})}_{\text{no } q \text{ here}}$$

- Recall $KL(p||q) \ge 0$, and KL(p||p) = 0.
- Best q is $q^*(z) = p(z \mid x, \theta^{\text{old}})$ and

$$\mathcal{L}(q^*, \theta^{\text{old}}) = -\underbrace{\text{KL}[p(z \mid x, \theta^{\text{old}}), p(z \mid x, \theta^{\text{old}})]}_{=0} + \log p(x \mid \theta^{\text{old}})$$

Summary:

$$\log p(x \mid \theta^{\text{old}}) = \mathcal{L}(q^*, \theta^{\text{old}}) \text{ (tangent at } \theta^{\text{old}}).$$
$$\log p(x \mid \theta) \geqslant \mathcal{L}(q^*, \theta) \quad \forall \theta$$

Tight lower bound for any chosen θ

For θ^{old} , take $q(z) = p(z \mid x, \theta^{\text{old}})$. Then

- **1** log $p(x | \theta)$ ≥ $\mathcal{L}(q, \theta) \forall \theta$. [Global lower bound].
- ② $\log p(x \mid \theta^{\text{old}}) = \mathcal{L}(q, \theta^{\text{old}})$. [Lower bound is **tight** at θ^{old} .]

From Bishop's Pattern recognition and machine learning, Figure 9.14.

Maximizing over θ for fixed q

• Consider maximizing the lower bound $\mathcal{L}(q, \theta)$:

$$\mathcal{L}(q,\theta) = \sum_{z} q(z) \log \left(\frac{p(x,z \mid \theta)}{q(z)} \right)$$

$$= \sum_{z} q(z) \log p(x,z \mid \theta) - \sum_{z} q(z) \log q(z)$$

$$\mathbb{E}[\text{complete data log-likelihood}] \quad \text{no } \theta \text{ here}$$

• Maximizing $\mathcal{L}(q,\theta)$ equivalent to maximizing $\mathbb{E}[\text{complete data log-likelihood}]$ (for fixed q).

General EM Algorithm

- Choose initial θ^{old} .
- Expectation Step
 - Let $q^*(z) = p(z \mid x, \theta^{\text{old}})$. $[q^*]$ gives best lower bound at θ^{old}
 - Let

$$J(\theta) := \mathcal{L}(q^*, \theta) = \underbrace{\sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)}_{\textbf{expectation w.r.t. } z \sim q^*(z)}$$

Maximization Step

$$\theta^{\mathsf{new}} = \underset{\theta}{\mathsf{arg}} \max_{\theta} J(\theta).$$

[Equivalent to maximizing expected complete log-likelihood.]

4 Go to step 2, until converged.

Does EM Work?

EM Gives Monotonically Increasing Likelihood: By Picture

EM Gives Monotonically Increasing Likelihood: By Math

- Start at θ^{old} .
- ② Choose $q^*(z) = \arg \max_{q} \mathcal{L}(q, \theta^{\text{old}})$. We've shown

$$\log p(x \mid \theta^{\text{old}}) = \mathcal{L}(q^*, \theta^{\text{old}})$$

3 Choose $\theta^{\text{new}} = \arg \max_{\theta} \mathcal{L}(q^*, \theta^{\text{old}})$. So

$$\mathcal{L}(q^*, \theta^{\mathsf{new}}) \geqslant \mathcal{L}(q^*, \theta^{\mathsf{old}}).$$

Putting it together, we get

$$\begin{array}{ll} \log p(x \mid \theta^{\mathsf{new}}) & \geqslant & \mathcal{L}(q^*, \theta^{\mathsf{new}}) & \mathcal{L} \text{ is a lower bound} \\ & \geqslant & \mathcal{L}(q^*, \theta^{\mathsf{old}}) & \text{By definition of } \theta^{\mathsf{new}} \\ & = & \log p(x \mid \theta^{\mathsf{old}}) & \text{Bound is tight at } \theta^{\mathsf{old}}. \end{array}$$

Suppose We Maximize the ELBO...

• Suppose we have found a **global maximum** of $\mathcal{L}(q,\theta)$:

$$L(q^*, \theta^*) \geqslant L(q, \theta) \forall q, \theta,$$

where of course

$$q^*(z) = p(z \mid x, \theta^*).$$

- Claim: θ^* is a global maximum of $\log p(x \mid \theta^*)$.
- Proof: For any θ' , we showed that for $q'(z) = p(z \mid x, \theta')$ we have

$$\log p(x \mid \theta') = \mathcal{L}(q', \theta') + \text{KL}[q', p(z \mid x, \theta')]$$

$$= \mathcal{L}(q', \theta')$$

$$\leq \mathcal{L}(q^*, \theta^*)$$

$$= \log p(x \mid \theta^*)$$

Convergence of EM

- Let θ_n be value of EM algorithm after n steps.
- Define "transition function" $M(\cdot)$ such that $\theta_{n+1} = M(\theta_n)$.
- Suppose log-likelihood function $\ell(\theta) = \log p(x \mid \theta)$ is differentiable.
- Let S be the set of stationary points of $\ell(\theta)$. (i.e. $\nabla_{\theta}\ell(\theta) = 0$)

Theorem

Under mild regularity conditions^a, for any starting point θ_0 ,

- $\lim_{n\to\infty}\theta_n=\theta^*$ for some stationary point $\theta^*\in S$ and
- θ^* is a fixed point of the EM algorithm, i.e. $M(\theta^*) = \theta^*$. Moreover,
- $\ell(\theta_n)$ strictly increases to $\ell(\theta^*)$ as $n \to \infty$, unless $\theta_n \equiv \theta^*$.

^aFor details, see "Parameter Convergence for EM and MM Algorithms" by Florin Vaida in Statistica Sinica (2005). http://www3.stat.sinica.edu.tw/statistica/oldpdf/a15n316.pdf

Variations on EM

EM Gives Us Two New Problems

• The "E" Step: Computing

$$J(\theta) := \mathcal{L}(q^*, \theta) = \sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)$$

• The "M" Step: Computing

$$\theta^{\mathsf{new}} = \underset{\theta}{\mathsf{arg}} \max_{\boldsymbol{\theta}} J(\boldsymbol{\theta}).$$

• Either of these can be too hard to do in practice.

Generalized EM (GEM)

- Addresses the problem of a difficult "M" step.
- Rather than finding

$$\theta^{\text{new}} = \underset{\theta}{\text{arg max}} J(\theta),$$

find any θ^{new} for which

$$J(\theta^{\text{new}}) > J(\theta^{\text{old}}).$$

- Can use a standard nonlinear optimization strategy
 - \bullet e.g. take a gradient step on J.
- We still get monotonically increasing likelihood.

EM and More General Variational Methods

- Suppose "E" step is difficult:
 - Hard to take expectation w.r.t. $q^*(z) = p(z \mid x, \theta^{\text{old}})$.
- Solution: Restrict to distributions Q that are easy to work with.
- Lower bound now looser:

$$q^* = \underset{q \in \Omega}{\operatorname{arg\,min}\, \mathrm{KL}[q(z), p(z \mid x, \theta^{\mathrm{old}})]}$$

EM in Bayesian Setting

- Suppose we have a prior $p(\theta)$.
- Want to find MAP estimate: $\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta \mid x)$:

$$p(\theta \mid x) = p(x \mid \theta)p(\theta)/p(x)$$

$$\log p(\theta \mid x) = \log p(x \mid \theta) + \log p(\theta) - \log p(x)$$

• Still can use our lower bound on $\log p(x, \theta)$.

$$J(\theta) := \mathcal{L}(q^*, \theta) = \sum_{z} q^*(z) \log \left(\frac{p(x, z \mid \theta)}{q^*(z)} \right)$$

Maximization step becomes

$$\theta^{\text{new}} = \underset{\theta}{\text{arg max}} [J(\theta) + \log p(\theta)]$$

• Homework: Convince yourself our lower bound is still tight at θ .

Summer Homework: Gaussian Mixture Model (Hints)

Homework: Derive EM for GMM from General EM Algorithm

- Subsequent slides may help set things up.
- Key skills:
 - MLE for multivariate Gaussian distributions.
 - Lagrange multipliers

Gaussian Mixture Model (k Components)

GMM Parameters

Cluster probabilities:
$$\pi = (\pi_1, \dots, \pi_k)$$

Cluster means:
$$\mu = (\mu_1, \dots, \mu_k)$$

Cluster covariance matrices: $\Sigma = (\Sigma_1, \dots \Sigma_k)$

- Let $\theta = (\pi, \mu, \Sigma)$.
- Marginal log-likelihood

$$\log p(x \mid \theta) = \log \left\{ \sum_{z=1}^{k} \pi_z \mathcal{N}(x \mid \mu_z, \Sigma_z) \right\}$$

$q^*(z)$ are "Soft Assignments"

- Suppose we observe n points: $X = (x_1, ..., x_n) \in \mathbb{R}^{n \times d}$.
- Let $z_1, \ldots, z_n \in \{1, \ldots, k\}$ be corresponding hidden variables.
- Optimal distribution q* is:

$$q^*(z) = p(z \mid x, \theta).$$

• Convenient to define the conditional distribution for z_i given x_i as

$$\gamma_i^j := p(z = j \mid x_i)$$

$$= \frac{\pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}{\sum_{c=1}^k \pi_c \mathcal{N}(x_i \mid \mu_c, \Sigma_c)}$$

Expectation Step

• The complete log-likelihood is

$$\log p(x, z \mid \theta) = \sum_{i=1}^{n} \log [\pi_z \mathcal{N}(x_i \mid \mu_z, \Sigma_z)]$$

$$= \sum_{i=1}^{n} \left(\log \pi_z + \underbrace{\log \mathcal{N}(x_i \mid \mu_z, \Sigma_z)}_{\text{simplifies nicely}} \right)$$

Take the expected complete log-likelihood w.r.t. q*:

$$J(\theta) = \sum_{z} q^{*}(z) \log p(x, z \mid \theta)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{i}^{j} [\log \pi_{j} + \log \mathcal{N}(x_{i} \mid \mu_{j}, \Sigma_{j})]$$

Maximization Step

• Find θ^* maximizing $J(\theta)$:

$$\mu_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c x_i$$

$$\Sigma_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c (x_i - \mu_{\text{MLE}}) (x_i - \mu_{\text{MLE}})^T$$

$$\pi_c^{\text{new}} = \frac{n_c}{n},$$

for each $c = 1, \ldots, k$.