EXAMINATION DATA SHEET FOR THE PHYSICAL SCIENCES (CHEMISTRY)

TABLE 1 PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Magnitude of charge on electron	е	$1,6 \times 10^{-19} \mathrm{C}$
Mass of an electron	m _e	$9,1 \times 10^{-31} \text{ kg}$
Standard pressure	p^{θ}	1,01 × 10 ⁵ Pa
Molar gas volume at STP	V _m	22,4 dm ³ ⋅mol ⁻¹
Standard temperature	Τ ^θ	273 K
Avogadro's constant	N _A	$6,02 \times 10^{23} \text{ mol}^{-1}$
Faraday's constant	F	96 500 C·mol ⁻¹

TABLE 2 CHEMISTRY FORMULAE

$n = \frac{m}{M}$		$n = \frac{N}{N_A}$	$n = \frac{V}{V_m}$				
$c = \frac{n}{V}$ OR $c = \frac{n}{M}$	n VV	$K_w = [H_3O^+] \cdot [OH^-] = 1 \times 10^{-14} \text{ at } 298 \text{ K}$					
Q = It	$E_{cell}^{ heta}=E_{cathode}^{ heta}-E_{anode}^{ heta}$						
	$m{\mathcal{E}}_{cell}^{ heta} = m{\mathcal{E}}_{oxidising}^{ heta}$ agent $-m{\mathcal{E}}_{reducing}^{ heta}$ agent						

IEB Copyright © 2018 PLEASE TURN OVER

TABLE 3 PERIODIC TABLE

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H			Atomic	numb	oer (Z)	1 F	2,1 -	Electr	onega	itivity							He
2	3 1,0 Li 7	4 1,5 Be 9				Rela	1 tive at	omic n	nass				5 2,0 B 10,8	6 2,5 C 12	7 3,0 N 14	8 3,5 O 16	9 4,0 F 19	10 Ne 20
3	11 0,9 Na 23	12 1,2 Mg 24,3											13 1,5 Al 27	14 1,8 Si 28	15 2,1 P 31	16 2,5 S 32	17 3,0 Cℓ 35,5	18 Ar 40
4	19 0,8 K 39	20 1,0 Ca	21 1,3 Sc 45	22 1,5 Ti 48	23 1,6 V 51	24 1,6 Cr 52	25 1,5 Mn 55	26 1,8 Fe 56	27 1,8 Co 59	28 1,8 Ni 59	29 1,9 Cu 63,5	30 1,6 Zn 65,4	31 1,6 Ga 70	32 1,8 Ge 72,6	33 2,0 As 75	34 2,4 Se 79	35 2,8 Br 80	36 Kr 84
5	37 0,8 Rb	38 1,0 Sr	39 1,2 Y	40 1,4 Zr						46 2,2 Pd			49 1,7 In			52 2,1 Te	53 2,5	
6	85,5 55 Cs	56 Ba	89	91 72 Hf	93 73 Ta	96 74 W	99 75 Re	101 76 Os	103 77 Ir	78 Pt	108 79 Au	112 80 Hg	115 81 Tℓ	119 82 Pb	121 83 Bi	128 84 Po	127 85 At	131 86 Rn
J	133 87	137,3 88		178,5	181	184	186	190	192	195	197	200,6	204,4	207	209	<u>-</u>	_ _	- -
7	Fr	Ra																

57	⁵⁸ Ce	59	60	61	62	63	64	65	66	67	68	69	70	71
La		Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw

TABLE 4 STANDARD ELECTRODE POTENTIALS

	Half-	E°/volt					
	Li ⁺ + e ⁻	=	Li	-3,05			
	$K^{+} + e^{-}$	\rightleftharpoons	K	-2,93			
	Cs ⁺ + e ⁻		Cs	-2,92			
	Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	-2,90			
	Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	-2,89			
	Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	-2,87			
	Na ⁺ + e ⁻		Na	-2,71			
	Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	-2,37			
	$A\ell^{3+} + 3e^{-}$	\rightleftharpoons	Αℓ	-1,66			
	Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1 ,18			
	2H ₂ O + 2e ⁻		$H_2(g) + 2OH^-$	-0,83			
	Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0,76			
	Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74			
	Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0,44			
	Cd ²⁺ + 2e ⁻		Cd	-0,40			
	Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	-0,28			
	Ni ²⁺ + 2e ⁻		Ni	-0,25			
lity	Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0,14			
bil	$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb	-0,13			
Increasing oxidising ability	Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	-0,04			
	2H ⁺ + 2e [−]	\rightleftharpoons	$H_2(g)$	0,00			
	$S + 2H^{+} + 2e^{-}$	\rightleftharpoons	$H_2S(g)$	+0,14			
ŏ	Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15			
ng	$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17			
asi	Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34			
rea	$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+0,40			
lnc	$SO_2 + 4H^+ + 4e^-$	\rightleftharpoons	S + 2H2O	+0,45			
	$I_2 + 2e^-$		2l ⁻	+0,54			
	$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+0,68			
	Fe ³⁺ + e ⁻		Fe ²⁺	+0,77			
	Hg ²⁺ + 2e ⁻		Hg	+0,79			
	$NO_3^- + 2H^+ + e^-$			+0,80			
	Ag ⁺ + e ⁻			+0,80			
	$NO_3^- + 4H^+ + 3e^-$			+0,96			
	Br ₂ + 2e ⁻		2Br ⁻	+1,09			
	Pt ²⁺ + 2e ⁻		Pt	+1,20			
	$MnO_2 + 4H^+ + 2e^-$		$Mn^{2+} + 2H_2O$	+1,21			
	$O_2 + 4H^+ + 4e^-$			+1,23			
		\rightleftharpoons		+1,33			
	$C\ell_2(g) + 2e^-$	\rightleftharpoons		+1,36			
	Au ³⁺ + 3e ⁻		Au	+1,42			
	MnO ₄ ⁻ + 8H ⁺ + 5e ⁻			+1,51			
	$H_2O_2 + 2H^+ + 2e^-$	\rightleftharpoons	2H ₂ O	+1,77			
	$F_2(g) + 2e^-$	=	2F ⁻	+2,87			

Increasing reducing ability