```
Exercise #1:
```

Given: Influenza is true and then it is false Given the evidence that Fever is true

Use Bayes Role: (with Influenza true)

 $B_{el}(I=T)=P(I=T|F=T)=\frac{P(F=T|I=T)\times P(I=T)}{P(F=T)}=\frac{P(F=T|I=T)\times P(I=T)}{P(F=T)}$

Joint probability use chain role:

P(F=T, I=T) = P(W, I=T, C, F=T)

Not defined

 $\sum_{i,j} = \left\{ P(\omega=i) \times P(I=T|\omega=i) \times P(C=i|\omega=i) \times P(F=T|I=T,C=i) \right\}$

W=i	<i>ز=</i> ک	1	2	3	4	TT (1,2,3,4)
\bigcirc	0	0.5	0.5	0.8	0.9	0. 18
1	1	0.5	0.1	8.0	0.99	0.0396
	1	0.5	0.5	0.2	0.99	0.0495
1	0	0.5	0.1	0.2	0.99	0.009

0.2781 2 Sum of all products

P(F=T, T=T) = 0.2781

Joint probability use chain rule: P(F=T) = P(W, T, C, F=T)

 $\frac{\sum_{i,j,k} = \left\{ P(\omega=i) \times P(\Xi=k|\omega=i) \times P(C=j|\omega=i) \times P(F=T|\Xi=k,C=j) \right\}}{2}$

₩=i	ز= ٢	I=K	1	2	3	4	TT (1,2,3,4)
0	0	0	0.5	0.5	0.8	0	0
1	1	1	0.5	0.1	8.0	0.99	0.0396
	1	0	0.5	0.5	0.2	0.9	0.045
1	0	1	0.5	0.9	0.8	0.9	0.324
	\bigcirc	1	0.5	0.5	0.8	0.9	0.18
1	1	0	0.5	0.1	0.2	0.9	0.009
	1	1	0.5	0.5	0.2	0.99	0.0495
1	0	0	0.5	0.1	0.2	٥	0

0.6471

P(F=T)= 0.7479

Now we plug it in: P(F=T, I=T) _ 0.2781 _ 0.4297635605 P(F=T) 0.6471

0.429764 or 42.9764% is the probability that given the evidence Fever is true then Influenta is true

Note: That we can just use the fact that there are only two conditions for Influenza (T/F). Thus we can do:

 $P(I=T|F=T)+P(I=F|F=T)=1 \rightarrow$ P(I=F|F=T)=1-P(I=T|F=T) =1-0.4297635605 =0.5702364395

0.570236 or 57.0236% is the probability that given the evidence Fever is true then Influenza is false