

Contest Statistical learning per Data Science

HOMEWORK

- CLAUDIA LANDI
- MICHAEL CAVICCHIOLI
- VITTORIO SANI

XGBoost vs Gradient Boosting Machine

	XGBoost	Gradient Boosting Machine
Iperparametri	Maggior numero di iperparametri che possono essere ottimizzati	Meno iperparametri: tuning più semplice ma meno flessibile
Gestione degli alberi	Gestione efficiente di dati sparsi e valori mancanti	Gestione meno efficiente
Regolarizzazione	Per evitare overfitting e penalizzare alberi complessi	Non include regolarizzazione nella funzione obiettivo
Velocità ed Efficienza	Ottimizzazione cache e parallelismo	Non ottimizzato per il calcolo in parallelo

Dataset utilizzato

Airline Passengers Satisfaction

- Variabili eterogenee → Preprocessing e label encoding
- **Etichetta binaria** → satisfied (1), neutral or dissatisfied (0)
- **Grandi dimensioni** → 129487 righe, 25 colonne.

Tuning dei parametri

Tuning sequenziale dei parametri:

max_depth min_child_ lambda alpha nrounds

- Tuning in parallelo con Grid Search:
 - Solo il parametro alpha è diverso,
 - L'accuracy è molto simile.

Parametri della ricerca sequenziale Matrice di confusione ROC - AUC

Accuracy: 0.965

Parametri ottenuti con Grid Search Matrice di confusione ROC - AUC

Accuracy: 0.959

Grazie per l'attenzione.