МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

КУРСОВАЯ РАБОТА

по дисциплине «Введение в нереляционные базы данных»
Тема: ИС сравнения компаний из индекса S&P 500 и NASDAQ

Студент гр. 8304	 Рыжиков А.В.
Студент гр. 8304	 Мешков М.А.
Преподаватель	Политова А.В.

Санкт-Петербург

ВВЕДЕНИЕ

ИС должна предоставлять пользователю финансовые данные компании и позволять сравнивать компании по ряду финансовых показателей. Для сбора данных будет использован Yahoo Finance API.

Функции ИС:

- 1) Предоставлять пользователю актуальные финансовые показатели компаний
- 2) Сравнивать компании по финансовым показателям
- 3) Предоставлять аналитику по компаниям

КАЧЕСТВЕННЫЕ ТРЕБОВАНИЯ К РЕШЕНИЮ

Требуется реализовать веб-приложение, использующее СУБД MongoDB. Фронтенд реализуется на фреймворке Vue.js, бекенд реализуется в виде сервиса на языке Golang.

СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ

UI mockup

Use cases

Получение информации о компании

Действующее лицо: Пользователь

Основной сценарий:

- 1. Пользователь вводит информацию о компании: фрагмент тикера или названия компании, её страну, сектор, индустрию (все параметры опциональны, чем больше информации тем конкретнее результаты).
- 2. В результатах поиска пользователь нажимает на интересующую его компанию.
- 3. Открывается информация о компании.
- 4. Пользователь может выбрать показать данные по прибыли и выручке поквартально или по годам.

Получение списка компаний с заданными характеристиками

Действующее лицо: Пользователь

Основной сценарий:

- 1. Пользователь вводит ограничения на характеристики компании: фрагмент тикера или названия компании, её страну, сектор, индустрию (все параметры опциональны, чем больше информации тем конкретнее результаты).
- 2. Пользователь видит список компаний (тикер и название), удовлетворяющих условиям поиска, а также их количество.

Сравнение двух компаний

Действующее лицо: Пользователь

Основной сценарий:

- 1. Пользователь вводит информацию о компании: фрагмент тикера или названия компании, её страну, сектор, индустрию (все параметры опциональны, чем больше информации тем конкретнее результаты).
- 2. В результатах поиска пользователь нажимает на интересующую его компанию.
- 3. Открывается информация о компании.
- 4. Пользователь с помощью кнопки добавляет компанию в список для сравнения.
- 5. Пользователь переходит на экран поиска (начальный экран) и повторяет 1-4 для другой компании.
- 6. Пользовать переходит на экран сравнения двух компаний и видит сравнение.

Альтернативный сценарий:

• После сравнения двух компаний пользователь добавляет в сравнение еще одну компанию. В этом случае добавленная компания заменяет компанию, добавленную раньше всех, в списке компаний для сравнения.

Построения диаграмм по компаниям

Действующее лицо: Пользователь

1. Пользователь выбирает категорию.

2. Строятся столбчатые диаграммы по выбранной категории.

Табличное представление списка компаний (таблица со всеми полями + фильтр) Действующее лицо: Пользователь

- 1. По умолчанию отображаются Н самых важных полей, но пользователь может в интерфейсе настроить какие именно поля отображать.
- 2. Пользователь может выбрать страницу таблицы для просмотра. Предполагается реализовать многостраничное отображение таблицы (отображать на странице, например 10 записей, а под таблице делать ссылки на страницы Pagination)
- 3. Пользователь может применить фильтр. Фильтр реализуется как набор полей для ввода в пользовательском интерфейсе (каждое поле соответствует определенному полю в БД), где указывается значение для поиска по соотв. полю.

Экспорт данных

Действующее лицо: Пользователь

- 1. Пользователь нажимает на кнопку экспорта данных.
- 2. Пользователь выбирает где сохранить файл с данными.

Импорт данных

Действующее лицо: Пользователь

- 1. Пользователь нажимает на кнопку импорта данных.
- 2. Пользователь выбирает файл с данными.
- 3. Данные в приложении обновляются в соответствии с данными из файла.

МОДЕЛЬ ДАННЫХ

Описание назначений коллекций, типов данных и сущностей

БД содержит 1 коллекцию "companies"

Коллекция **companies** содержит объекты, которые имеют указанную ниже структуру * _id - уникальный идентификатор документа в коллекции

- symbol тикер акции компании на бирже
- short name краткое название компании
- long name полное название компании
- summary описание компании
- industry индустрия, к которой относится компания
- sector сектор (подкатегория для индустрии), к которой относится компания
- staff объект хранящий информацию о сотрудниках компании
- employees количество сотрудников в компании
- companyofficers массив объектов companyofficer
- companyofficer руководитель компании (топ-менеджер)
- name имя
- age возраст

- title должность
- year born год рождения
- total pay заработная плата за год
- locate объект хранящий информацию о месте расположении компании
- address адрес
- city город
- state штат или регион
- country страна
- contacts объект хранящий информацию о контактах компании
- phone телефон компании
- website ссылка на сайт компании
- financial data объект хранящий информацию о финансовых данных компании
- total cash общая сумма денежных средств на счетах компании
- total cash per share общая сумма денежных средств на акцию
- ebitda EBITDA (Earnings before interest, taxes, depreciation and amortization)
- total debt совокупный долг компании
- quick ratio -коэффициент быстрой ликвидности
- current ratio коэффициент текущей ликвидности
- total revenue общий доход
- revenue per share- общий доход на акцию
- debt to equity мультипликатор D/E (Debt to Equity ratio)
- roa Return on Assets, ROA рентабельность активов
- roe Return on Equity, ROE рентабельность собственного капитала
- earnings
- yearly массив данных доходов за последние 4 года
- date указанный год
- revenue выручка за год
- earnings прибыль за год
- quarterly массив данных доходов за последние 4 квартала
- date указанный год и квартал
- revenue выручка за квартал
- earnings прибыль за квартал
- financial currency валюта в которой указаны доходы

Оценка объема

Объем для одного объекта массива companyofficers

- name string 20 символов, 20 байт
- age int 4 байта
- title string 30 символов, 30 байт
- year born int 4 байта
- total pay int 4 байта

V(companyofficer) = 62 байта

Объем для одного объекта staff

- employees int 4 байта
- companyofficers массив (приблизительно 10 объектов), 10 * V(companyofficer) = 620 байт

Объем для одного объекта locate

- address string 30 символов, 30 байт
- city string 20 символов, 20 байт
- state string 2 символа, 2 байт
- country string 10 символов, 10 байт

V(locate) = 52 байта

Объем для одного объекта contacts

- phone string 12 символов, 12 байт
- website string 25 символов, 25 байт

V(contacts) = 27 байт

Объем для одного объекта financial data

- total cash double 8 байта
- total cash per share double 8 байта
- ebitda double 8 байта
- total debt double 8 байта
- quick ratio double 8 байта
- current ratio double 8 байта
- total revenue double 8 байта
- revenue per share double 8 байта
- debt to equity double 8 байта
- roa Return on Assets, ROA double 8 байта
- roe Return on Equity, ROE double 8 байта
- financial currency string 3 символа, 3 байт

V(financial data) = 91 байт

Объем для одного объекта year

- date string 4 символа, 4 байта
- revenue выручка int 4 байта
- earnings прибыль int 4 байта V(year) = 12 байт

Объем для одного объекта quarter

- date string 6 символов, 6 байт
- revenue выручка int 4 байта
- earnings прибыль int 4 байта

V(quarter) = 14 байт

Объем для одного объекта earnings

- yearly массив (4 объекта), 10 * V(year) = 120 байт
- quarterly- массив (4 объекта), 10 * V(quarter) = 140 байт
- financial currency string 3 символа, 3 байт

V(earnings) = 263 байта

Объем для одного объекта коллекции companies

- id ObjectId 12 байт
- symbol string 4 символов, 4 байт
- short name string 10 символов, 10 байт
- long name string 12 символов, 12 байт
- summary string 1150 символов, 1150 байт
- industry string 10 символов, 10 байт
- sector string 10 символов, 10 байт
- staff Object V(staff) = 624 байта
- locate Object V(locate) = 52 байта
- contacts Object V(contacts) = 27 байт
- financial Object dataV(financial data) = 91 байт
- earnings Object V(earnings) = 263 байта

V(объект коллекции companies) = 2265 байт

V(объём данных в коллекции companies) = 5078 * V(объект коллекции companies) = 5078 * 2265 байт = 10,96 Мб.

При увеличении количества объектов каждой сущности рост модели будет происходить линейно. Размер данных п компаний равен n * 2265 байт.

Избыточность модели низка, повторяющиеся значительные по объему фрагменты данных найти не удается.

Объем коллекции stocks = 15.4MB. Эта величина почти в 1.5 раза больше чем объем данных, что можно объяснить тем что mongo хранить различные служебные данные в том числе ключи объектов (в BSON).

Запросы к NoSql

Информация о компании с тикером

```
db.stocks.find({"symbol": "AAPL"})
```

В данном запросе получалась информация о компании с тикером AAPL.

Получение списка стран

```
db.stocks.distinct("locate.country")
```

Получение секторов

```
db.stocks.distinct("sector")
```

Получение индустрий в секторе

```
db.stocks.distinct("industry", {"sector": "Healthcare"})
```

В данном запросе получался список индустрий в секторе Healthcare.

Подсчет по заданному критерию

Критерием может быть sector, industry или locate.country

```
db.stocks.aggregate([{$group: {_id: "$sector", amount: {$sum: 1}}}, {$sort: {amount: -1}}])
```

В данном запросе считалось количество компаний в каждом из секторов.

Поиск с фильтрацией

Возвращается краткая характеристика компании.

```
db.stocks.find(
 {
    "locate.country": {$in: ["United States", "Russia"]},
    sector: "Healthcare",
    industry: "Biotechnology",
    $or: [
      {symbol: {$regex: "pharm", $options: "i"}},
      {"long name": {$regex: "pharm", $options: "i"}},
    ],
 },
    "symbol": 1,
    "short name": 1,
    "industry": 1,
    "sector": 1,
    "locate": {
      country: 1,
   },
 }
```

В данном запросе искались компании со следующими характеристиками:

```
* страна United States или Russia
```

Поиск с фильтрацией с pagination

```
db.stocks.aggregate([
  {
    $match: {
      "locate.country": {$in: ["United States", "Russia"]},
      sector: "Healthcare",
      industry: "Biotechnology",
        {symbol: {$regex: "pharm", $options: "i"}},
        {"long name": {$regex: "pharm", $options: "i"}},
      1,
    }
  },
    "$facet": {
      "page": [
        { "$skip": 20 }, // 3 страница
        { "$limit": 10 }
      ],
      "totalStocks": [
        { "$count": "count" }
      1
```

^{*} сектор Healthcare * индустрия Biotechnology

^{*} тикер или название компании содержит "pharm"

```
}
}
])
```

Похож на предыдущий запрос, однако возвращается

- * вся информация о компании
- * только одна страница результата

Модель данных SQL

БД содержит 4 таблицы "companies", "company_officiers", "years", "quarters" Таблица **companies** содержит информацию о компании

- _id уникальный идентификатор документа в коллекции
- symbol тикер акции компании на бирже
- short name краткое название компании
- long name полное название компании
- summary описание компании
- industry индустрия, к которой относится компания
- sector сектор (подкатегория для индустрии), к которой относится компания
- address адрес
- city город
- state штат или регион
- country страна
- phone телефон компании
- website ссылка на сайт компании
- total cash общая сумма денежных средств на счетах компании
- total cash per share общая сумма денежных средств на акцию
- ebitda EBITDA (Earnings before interest, taxes, depreciation and amortization)
- total debt совокупный долг компании
- quick ratio -коэффициент быстрой ликвидности
- current ratio коэффициент текущей ликвидности
- total revenue общий доход
- revenue per share- общий доход на акцию
- debt to equity мультипликатор D/E (Debt to Equity ratio)
- roa Return on Assets, ROA рентабельность активов
- roe Return on Equity, ROE рентабельность собственного капитала
- employees количество сотрудников в компании
- financial currency валюта в которой указаны доходы

Таблица company_officers содержит информацию о топ-менеджерах компании

- name имя
- age возраст
- title должность
- year born год рождения
- total pay заработная плата за год

Таблица **years** содержит по доходам компании за последние 4 года

- date указанный год
- revenue выручка за год
- earnings прибыль за год

Таблица quarters содержит по доходам компании за последние 4 квартала

- date указанный год
- revenue выручка за год
- earnings прибыль за год

Оценка объема данных

В качестве SQL базы данных был выбран Postgres:

Замечание. Для строки длины $n \le 126$, размер равен n+1 байт * для строки длины n > 126 , размер равен n+4 байт

Объем данных для строки таблицы companies

- symbol varchar 4 символов, 5 байт
- short name varchar 10 символов, 11 байт
- long name varchar 12 символов, 13 байт
- summary varchar 1150 символов, 1154 байт
- industry varchar 10 символов, 11 байт
- sector varchar 10 символов, 11 байт
- address varchar 30 символов, 31 байт
- city varchar 20 символов, 21 байт
- state varchar 2 символа, 3 байт
- country varchar 10 символов, 11 байт
- phone varchar 12 символов, 13 байт
- website varchar 25 символов, 26 байт
- total cash double 8 байта
- total cash per share double 8 байта
- ebitda double 8 байта
- total debt double 8 байта
- quick ratio double 8 байта
- current ratio double 8 байта
- total revenue double 8 байта
- revenue per share double 8 байта
- debt to equity double 8 байта
- roa Return on Assets, ROA double 8 байта
- roe Return on Equity, ROE double 8 байта
- financial currency varchar 3 символа, 4 байт
- employees int 4 байта

V(companies) = 1406 байта

Объем данных для строки таблицы companyofficers

- name varchar 20 символов, 21 байт
- age int 4 байта
- title varchar 30 символов, 31 байт
- year born int 4 байта
- total pay int 4 байта

V(companyofficers) = 64 байта

Объем данных для строки таблицы years

- date varchar 4 символа, 5 байта
- revenue выручка int 4 байта
- earnings прибыль int 4 байта

V(years) = 13 байта

Объем данных для строки таблицы quarters

- date varchar 6 символов, 7 байт
- revenue выручка int 4 байта
- earnings прибыль int 4 байта

```
V(quarters) = 15 байта
```

```
V(\text{всех данных}) = 5078 * (V(\text{companies}) + 10 * V(\text{companyofficers}) + 4 * V(\text{years}) + 4 * V(\text{quarters})) = 5078 * (1406 байта + 10 * 64 байта + 4 * 13 байта + 4 * 15 байта) = 5078 * 2158 байт = 10,45 Мб
```

При увеличении количества объектов каждой сущности рост модели будет происходить линейно. Размер данных п компаний равен n * 2158 байт.

Избыточность модели низка, повторяющиеся значительные по объему фрагменты данных найти не удается. Однако поле symbols дублируется во всех четырех таблицах модели данных, т.е. 3 повторения избыточные - избыточность на одну компанию = 5 байт * 3 = 15 байт. Для всей модели избыточность по данному полю равна 15 байт * 5078 = 76170 байт (0.3%).

Запросы к Sql

Информация о компании с тикером

```
SELECT * FROM companies WHERE symbol = 'AAPL';
SELECT * FROM years WHERE symbol = 'AAPL';
SELECT * FROM quarter WHERE symbol = 'AAPL';
SELECT * FROM company_officers WHERE symbol = 'AAPL';
```

В данных 4-х запросах получалась информация о компании с тикером ААРL.

Получение списка стран

```
SELECT DISTINCT country FROM companies;
```

Получение секторов

```
SELECT DISTINCT sector FROM companies;
```

Получение индустрий в секторе

```
SELECT DISTINCT industry FROM companies WHERE sector = 'Healthcare';
```

В данном запросе получался список индустрий в секторе Healthcare.

Подсчет по заданному критерию

Критерием может быть sector, industry или country.

```
SELECT sector, COUNT(*) amount FROM companies GROUP BY sector ORDER BY amount DESC;
```

В данном запросе считалось количество компаний в каждом из секторов.

Поиск с фильтрацией

Возвращается краткая характеристика компании.

```
SELECT symbol, "short name", industry, sector, country FROM companies WHERE
  country IN ('United States', 'Russia') AND
  sector = 'Healthcare' AND industry = 'Biotechnology' AND
  (symbol ILIKE '%' || 'pharm' || '%' OR "long name" ILIKE '%' || 'pharm' ||
'%');
```

В данном запросе искались компании со следующими характеристиками: * страна United States или Russia * сектор Healthcare * индустрия Biotechnology * тикер или название компании содержит "pharm"

Поиск с фильтрацией с pagination

```
WITH finded AS (
   SELECT * FROM companies WHERE
      country IN ('United States', 'Russia') AND
      sector = 'Healthcare' AND industry = 'Biotechnology' AND
      (symbol ILIKE '%' || 'pharm' || '%' OR "long name" ILIKE '%' || 'pharm' ||
'%')
)
SELECT *, COUNT(*) totalStocks FROM finded GROUP BY GROUPING SETS ((symbol),
())
LIMIT 10 OFFSET 20;
```

Похож на предыдущий запрос, однако возвращается * вся информация о компании * только одна страница результата

Сравнение моделей

Объём данных в нереляционной модели оказался немного больше, чем в реляционной за счет того что был удален ключ ObjectID (MongoDB) и заменен на ключ symbol в SQL (т.к. тикер для каждой компании уникален). Избыточность модели в обоих случаях оказалась низка, а также объем данных растет линейно при увеличении объектов каждой сущности. При переходе к реляционной модели, модель была немного упрощена - сделана "площе" для уменьшения количества таблиц. В случае реляционной модели приходилось делать больше запросов к базе данных, поэтому работать удобнее с нереляционной базой данных.

РАЗРАБОТАННОЕ ПРИЛОЖЕНИЕ

Краткое описание

ИС должна предоставлять пользователю финансовые данные компании и позволять сравнивать компании по ряду финансовых показателей. Для сбора данных будет использован Yahoo Finance API.

Функции ИС:

- 1. Предоставлять пользователю актуальные финансовые показатели компаний
- 2. Сравнивать компании по финансовым показателям
- 3. Предоставлять аналитику по компаниям

Схема экранов приложения

1. Экран поиска

Stock application Search Compare Diagram Table Export data Import data Search page Apple Select countries Argentina Australia Bahamas Belgium Bermuda Brazil Select sector Select industry Results: 3 MLP Maui Land & Pineapple Company, AAPL Apple Inc. APLE Apple Hospitality REIT, Inc.

Stock application

Search
Compare
Diagram
Table
Export data
Import data

Search page

Stock application

Search
Compare
Diagram
Table
Export data

Search page

BLBD	Blue Bird Corporation	
GM	General Motors Company	
ELMS	Electric Last Mile Solutions, I	
AYRO	AYRO, Inc.	
GOEV	Canoo Inc.	
PTRA	Proterra Inc	
FSR	Fisker Inc.	
WKHS	Workhorse Group, Inc.	
RIDE	Lordstown Motors Corp.	
TSLA	Tesla, Inc.	
NKLA	Nikola Corporation	
F	Ford Motor Company	

2. Экран сравнения компаний

Stock application

Search
Compare
Diagram
Table
Export data
Import data

Comparator

Ticker	F TSLA	
Name	Ford Motor Company	Tesla, Inc.
Sector	Consumer Cyclical	Consumer Cyclical
Industry	Auto Manufacturers	Auto Manufacturers
Country	United States	United States
Total cash	25B USD	17.1B USD
Total cash per share	6.269 USD	17.793 USD
Ebitda	25B USD	17.1B USD
Total debt	148.2B USD	12.5B USD
Quick ratio	1.008	1.281
Current ratio	1.213	1.661
Total revenue	136.4B USD	35.9B USD
Revenue per share	34.267 USD	38.052 USD
Debt to equity	426.133	51.138
Return on assets	0.010980001	0.02994
Return on equity	0.10402001	0.0716

3. Экран для построения диаграмм по компаниям

Stock application

Search
Compare
Diagram
Table
Export data
Import data

Diagram

4. Экран табличного представления данных

Stock application

Search
Compare
Diagram
Table
Export data
Import data

Show Filter Table

Table

Ticker	Name	Sector	Industry	Country
Α	Agilent Technologies, Inc.	Healthcare	Diagnostics & Research	United States
AA	Alcoa Corporation	Basic Materials	Aluminum	United States
AACG	ATA Creativity Global	Consumer Defensive	Education & Training Services	China
AAIC	Arlington Asset Investment Corp	Real Estate	REIT—Mortgage	United States
AAL	American Airlines Group, Inc.	Industrials	Airlines	United States
AAME	Atlantic American Corporation	Financial Services	Insurance—Life	United States
AAN	Aarons Holdings Company, Inc.	Consumer Cyclical	Specialty Retail	United States
AAOI	Applied Optoelectronics, Inc.	Technology	Semiconductors	United States
AAON	AAON, Inc.	Industrials	Building Products & Equipment	United States
AAP	Advance Auto Parts Inc Advance	Consumer Cyclical	Specialty Retail	United States
AAPL	Apple Inc.	Technology	Consumer Electronics	United States
AAT	American Assets Trust, Inc.	Real Estate	REIT—Diversified	United States
AAWW	Atlas Air Worldwide Holdings	Industrials	Airports & Air Services	United States
ABB	ABB Ltd	Industrials	Electrical Equipment & Parts	Switzerland
ABBV	AbbVie Inc.	Healthcare	Drug Manufacturers—General	United States
ABC	AmerisourceBergen Corporation	Healthcare	Medical Distribution	United States
ABCB	Ameris Bancorp	Financial Services	Banks—Regional	United States
ABCL	AbCellera Biologics Inc.	Healthcare	Biotechnology	Canada
ABCM	Abcam plc	Healthcare	Biotechnology	United Kingdo
ABEO	Abeona Therapeutics Inc.	Healthcare	Biotechnology	United States
ABEV	Ambev S.A.	Consumer Defensive	Beverages—Brewers	Brazil
ABG	Asbury Automotive Group Inc	Consumer Cyclical	Auto & Truck Dealerships	United States
ABIO	ARCA biopharma, Inc.	Healthcare	Biotechnology	United States
ABM	ABM Industries Incorporated	Industrials	Specialty Business Services	United States
ABMD	ABIOMED, Inc.	Healthcare	Medical Devices	United States
ABNB	Airbnb, Inc.	Communication Services	Internet Content & Information	United States
ABOS	Acumen Pharmaceuticals, Inc.	Healthcare	Biotechnology	United States
ABR	Arbor Realty Trust	Real Estate	REIT—Mortgage	United States
ABSI	Absci Corporation	Healthcare	Biotechnology	United States
ABT	Abbott Laboratories	Healthcare	Medical Devices	United States
ABTX	Allegiance Bancshares, Inc.	Financial Services	Banks—Regional	United States
ABUS	Arbutus Biopharma Corporation	Healthcare	Biotechnology	United States
ABVC	ABVC Biopharma, Inc.	Healthcare	Biotechnology	United States
ACA	Arcosa, Inc.	Industrials	Infrastructure Operations	United States
ACAD	ACADIA Pharmaceuticals Inc.	Healthcare	Biotechnology	United States
ACBI	Atlantic Capital Bancshares, In	Financial Services	Banks—Regional	United States
ACC	American Campus Communities Inc	Real Estate	REIT—Residential	United States
ACCD	Accolade, Inc.	Healthcare	Health Information Services	United States
ACCO	Acco Brands Corporation	Industrials	Business Equipment & Supplies	United States
ACEL	Accel Entertainment, Inc.	Consumer Cyclical	Gambling	United States

Next Page = 1; TotalPages = 127

Использованные технологии

Vue.js, Golang, MongoDB

Go – библиотеки
github.com/caarlos0/env/v6 v6.6.2
github.com/go-chi/chi/v5 v5.0.5-0.20210830173112-df44563f0692
github.com/go-chi/cors v1.2.0
github.com/gobeam/mongo-go-pagination v0.0.7
go.mongodb.org/mongo-driver v1.7.1

ВЫВОДЫ

Достигнутые результаты

Разработанная ИС предоставляет пользователю финансовые данные компании и позволяет сравнивать компании по ряду финансовых показателей, отображать данные в табличном представлении с заданием фильтром, сторить диаграммы по различным данным с заданием фильтров, экспортировать и ипортировать данные.

Недостатки и пути для улучшения полученного решения

Недостатком является отсутствие кеширования для запросов на стороне сервера. Добовления кешировния при использовании Redis снизет нагрузку на сервер базы данных MongoDB.

Будущее развитие решения

Возможными будущими решениями явлвяется добавления кеширования и добавления работы со сторонним арі, возращающие актуальные курсы валют, для реализации сравннения данных в разных валютах.

ДОКУМЕНТАЦИЯ ПО СБОРКЕ И РАЗВЕРТЫВАНИЮ ПРИЛОЖЕНИЯ

Инструкция по сборке бекенда:

go build nosq11h21-stock-backend/backend/cmd/main.go

Инструкция по сборке фронтенда:

В директории frontend:

npm run serve

Инструкция для docker-compose

- 1) Run docker-compose up --build being in the repository root
- 2) Wait until the getting stocks info is completed (about 1 minute)
- 3) Go to http://localhost:8080

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1) Документация по MongoDB https://docs.mongodb.com/manual
- 2) Документация по Vue https://ru.vuejs.org/v2/guide
- 3) Mongo go driver https://github.com/mongodb/mongo-go-driver