Exercise 1.

(c) Evaluate

$$\int_0^\infty \frac{dx}{(x^2 + a^2)(x^2 + b^2)}, \quad a^2, b^2 > 0.$$

(d) Evaluate

$$\int_0^\infty \frac{dx}{x^6 + 1}.$$

Solution 1.

(c) We'll begin by considering the curve C(R) which is the upper semi-circle in \mathbb{C} centered at 0 with radius R. We can divide this into two parts [-R, R] and C_R which is the circular section of the semi-circle. We can then write

$$\int_{C(R)} \frac{dz}{(z^2 + a^2)(z^2 + b^2)} = \int_{-R}^{R} \frac{dx}{(x^2 + a^2)(x^2 + b^2)} + \int_{C_R} \frac{dz}{(z^2 + a^2)(z^2 + b^2)}.$$
 (1)

Theorem 4.2.1. in A&F shows that that $f(z) = \frac{1}{(z^2+a^2)(z^2+b^2)}$ has

$$\lim_{R \to \infty} \int_{C_R} \frac{dz}{(z^2 + a^2)(z^2 + b^2)} = 0$$

since f(z) is rational and the degree of the denominator (4) exceeds the degree of the numerator (0) by more than two. Therefore, taking the limit as of $R \to \infty$ of equation (1), we see that

$$\lim_{R \to \infty} \int_{C(R)} \frac{dz}{(z^2 + a^2)(z^2 + b^2)} = \int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)} = 2 \int_{0}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}, \quad (2)$$

where the last equation follows from the fact the integrand is even. We can compute the leftmost integral using the Residue theorem. The function $\frac{1}{(z^2+a^2)(z^2+b^2)}$ has singularities at $\pm ia$ and $\pm ib$. Since we're dealing with the upper half circle, only two of this of these will be contained within our contour for large enough R. These are $z_1 = ia$ and $z_2 = ib$ assuming a, b > 0. Using the fact that the numerator of the integrand is analytic and that the zeros of the denominator are simple, we can write the residues as

$$\operatorname{Res}(f; z_0) = \frac{1}{2z_0(z_0^2 + a^2) + 2z_0(z_0^2 + b^2)}.$$
 (3)

Evaluating at z_1 and z_2 , we see that

$$\operatorname{Res}(f; ia) = \frac{1}{2ia(2a^2) + 2ia(a^2 + b^2)} = \frac{1}{2ai(3a^2 + b^2)} \tag{4}$$

$$\operatorname{Res}(f;ib) = \frac{1}{2ib(2b^2) + 2ib(a^2 + b^2)} = \frac{1}{2bi(a^2 + 3b^2)}$$
 (5)

Therefore, we can compute the final integral as

$$\int_0^\infty \frac{dx}{(x^2 + a^2)(x^2 + b^2)} = \pi i(\text{Res}(f; ia) + \text{Res}(f; ib))$$
 (6)

$$= \frac{\pi}{2} \left(\frac{1}{a(3a^2 + b^2)} + \frac{1}{b(a^2 + 3b^2)} \right) \tag{7}$$

$$= \frac{\pi}{2} \left(\frac{1}{3a^3 + ab^2} + \frac{1}{a^2b + 3b^3} \right). \tag{8}$$

(d) We consider the same general approach as in the previous part. We keep the definitions of C(R) and C_R the same. Since $f(z) = \frac{1}{z^6+1}$ also satisfies the conditions of Theorem 4.2.1, we have that

$$\lim_{R \to \infty} \int_{C_R} \frac{dz}{z^6 + 1} = 0.$$

Additionally, our integrand is even again, so that

$$\lim_{R \to \infty} \int_{C(R)} \frac{dz}{z^6 + 1} = 2 \int_0^\infty \frac{dz}{z^6 + 1}.$$
 (9)

Once again, we can compute the integral on the left using the residue theorem. The integrand $\frac{1}{z^6+1}$ has singularities at $e^{i\pi/6}$, $e^{i\pi/2}$, $e^{i5\pi/6}$ in the upper half plane. Therefore, the integral can be written as

$$\lim_{R \to \infty} \int_{C(R)} \frac{dz}{z^6 + 1} = 2\pi i (\operatorname{Res}(f; e^{i\pi/6}) + \operatorname{Res}(f; e^{i\pi/2}) + \operatorname{Res}(f; e^{i5\pi/6})). \tag{10}$$

Since the poles of $\frac{1}{z^6+1}$ are simple, we can compute the residues using the fact that the numerator is analytic and the denominator has only simple zero at z_0 as

$$Res(f; z_0) = \frac{1}{6z_0^5} \tag{11}$$

as in section 5.4 of Prof. Tung's notes. Therefore,

$$\operatorname{Res}(f; e^{i\pi/6}) = \frac{1}{6e^{i5\pi/6}}, \quad \operatorname{Res}(f; e^{i\pi/2}) = \frac{1}{6e^{i5\pi/2}}, \quad \operatorname{Res}(f; e^{i5\pi/6}) = \frac{1}{6e^{i25\pi/6}}.$$
 (12)

We can then compute the desired integral as

$$\int_0^\infty \frac{dz}{z^6 + 1} = \frac{\pi i}{6} \left(\frac{1}{e^{i5\pi/6}} + \frac{1}{e^{i5\pi/2}} + \frac{1}{e^{i25\pi/6}} \right)$$
 (13)

$$= \frac{\pi i}{6} \left(e^{-5\pi/6} + e^{-\pi/2} + e^{-i\pi/5} \right) \tag{14}$$

$$=\frac{\pi i}{6}(-2i) = \frac{\pi}{3}.$$
 (15)

Above, we used that $e^{-5\pi i/2} = e^{-i\pi/2} = -i$, $e^{-i25\pi/6} = e^{-i\pi/6} = -\frac{\sqrt{3}}{2} - i/2$ and $e^{-i5\pi/6} = \frac{\sqrt{3}}{2} - i/2$.

Exercise 2. Evaluate the following integrals

(a)
$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx, \quad a^2 > 0.$$

(b)
$$\int_{-\infty}^{\infty} \frac{\cos(kx)dx}{(x^2 + a^2)(x^2 + b^2)}, \quad a^2, b^2, k > 0.$$

$$\int_0^{2\pi} \frac{d\theta}{(5-3\sin\theta)^2}.$$

Solution 2. (a) Once again, we'll work in the upper half plane and use the contours C(R), [-R, R], and C_R . Instead of working directly with the integral at hand, we'll instead using the integrand $f(z) = \frac{ze^{-z}}{z^2 + a^2}$ since

$$\operatorname{Im}\left(\int_{-\infty}^{\infty} \frac{ze^{iz}}{z^2 + a^2} dz\right) = \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx. \tag{16}$$

Here we can use Jordan's Lemma since $g(z) = \frac{z}{z^2 + a^2}$ converges to 0 uniformly as $z \to \infty$, so that we see that $\int_{C_R} \frac{ze^{iz}}{z^2 + a^2} dz \to 0$ as $R \to \infty$. It follows that

$$\lim_{R \to \infty} \int_{C(R)} \frac{ze^{iz}}{z^2 + a^2} dz = \int_{-\infty}^{\infty} \frac{ze^{iz}}{z^2 + a^2} dz = 2\pi i \sum_{j} \text{Res}(f; z_j).$$
 (17)

We can then compute the residues in the upper half plane at the singularity z = ia for a > 0 since it is the sole isolated singularity of f in the upper half plane. Since the numerator is analytic and the denominator has only simple poles, we can compute the residue as

$$\operatorname{Res}(f; ia) = \left(\frac{z_0 e^{iz_0}}{2z_0}\right)_{z_0 = ia} = \frac{iae^{i(ia)}}{2ia} = \frac{e^{-a}}{2}.$$
 (18)

Plugging this in,

$$\int_{-\infty}^{\infty} \frac{ze^{iz}}{z^2 + a^2} dz = 2\pi i \frac{e^{-a}}{2} = \pi i e^{-a}.$$
 (19)

Taking the imaginary part of this, we conclude

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx = \pi e^{-a}.$$
 (20)

(b) We use the integrand $\frac{e^{ikz}}{(z^2+a^2)(z^2+b^2)}$ and same contours as above. Since the norm of this function is the same as the integrand in (1c) because $|e^{ikz}| = 1$, we know that

$$\int_{C_R} \frac{e^{ikz}dz}{(z^2 + a^2)(z^2 + b^2)} \to 0 \tag{21}$$

as $R \to \infty$. We could alternatively use Jordan's Lemma. Next, using the residue theorem and the fact that $\int_{C(R)} = \int_{C_R} + \int_{-R}^{R}$, we can compute that for $f(z) = \frac{e^{ikz}}{(z^2 + a^2)(z^2 + b^2)}$

$$\int_{-\infty}^{\infty} \frac{e^{ikz}dz}{(z^2 + a^2)(z^2 + b^2)} = 2\pi i \left(\text{Res} (f; ia) + \text{Res} (f; ib) \right). \tag{22}$$

Since the numerator of this is analytic and the denominator has only simple poles, we can compute the residues here using the formula

$$\operatorname{Res}(f, z_0) = \frac{e^{ikz}}{2z_0(z_0^2 + a^2) + 2z_0(z_0^2 + b^2)}$$
(23)

as in Section 5.4 of Prof. Tung's notes. Since the only two singularities in the upper half circle are ia, ib for a, b > 0, we can then compute that the integral is

$$\int_{-\infty}^{\infty} \frac{e^{ikz}dz}{(z^2 + a^2)(z^2 + b^2)} = \pi \left(\frac{e^{-ka}}{3a^3 + ab^2} + \frac{e^{ikb}}{a^2b + 3b^3} \right). \tag{24}$$

The real part of this integral is our desired integral since the above quantity is entirely real, we just have that

$$\int_{-\infty}^{\infty} \frac{e^{ikz}dz}{(z^2 + a^2)(z^2 + b^2)} = \int_{-\infty}^{\infty} \frac{\cos(kx)dx}{(x^2 + a^2)(x^2 + b^2)}$$
(25)

Therefore, our final answer

$$\int_{-\infty}^{\infty} \frac{\cos(kx)dx}{(x^2 + a^2)(x^2 + b^2)} = \pi \left(\frac{e^{-ka}}{3a^3 + ab^2} + \frac{e^{-kb}}{a^2b + 3b^3} \right). \tag{26}$$

(h) To solve this integral, we'll write $\frac{1}{(5-3\sin\theta)^2}$ in terms of complex exponentials, so that

$$U(\theta) = \frac{1}{(5 - 3\sin\theta)^2} = \frac{1}{(5 - \frac{3}{2i}(z - z^{-1}))^2} = U(z).$$
 (27)

We can then re-write the desired integral in terms of a contour integral on the unit circle C

$$\int_{0}^{2\pi} U(\theta)d\theta = \oint_{C} U(z)\frac{dz}{iz} = 2\pi i \sum_{j} \operatorname{Res}\left(\frac{U}{iz}; z_{j}\right),\tag{28}$$

where z_j are the isolated singularities of $\frac{U}{iz}$ in the unit circle C. Therefore,

$$\int_0^{2\pi} \frac{1}{(5 - 3\sin\theta)^2} d\theta = \oint_C \frac{1}{(5 - \frac{3}{2i}(z - z^{-1}))^2} \frac{dz}{iz}.$$
 (29)

We can simplify the integrand of the right hand side as

$$\frac{U(z)}{iz} = \frac{1}{iz} \cdot \frac{1}{(5 - \frac{3}{2i}(z - z^{-1}))^2} = \frac{-iz}{z^2(5 - \frac{3}{2i}(z - z^{-1}))^2}$$
(30)

$$=\frac{-iz}{(5z-\frac{3}{2i}(z^2-1))^2}\tag{31}$$

$$=\frac{-iz}{(-\frac{3}{2i}z^2+5z+\frac{3}{2i})^2}\tag{32}$$

$$=\frac{-iz}{(\frac{1}{2}(1+3iz)(z-3i))^2}$$
(33)

$$=\frac{-4iz}{(1+3iz)^2(z-3i)^2} \tag{34}$$

$$=\frac{-4iz}{(3i)^2(z-i/3)^2(z-3i)^2}$$
(35)

$$= \frac{-4iz}{(3i)^2(z - i/3)^2(z - 3i)^2}$$

$$= \frac{4i}{9(z - i/3)^2(z - 3i)^2}$$
(35)

We can compute the zeroes of the denominator as $\frac{i}{3}$ and 3i. Since only $\frac{i}{3}$ is in the unit circle, we can compute the integral as

$$\int_0^{2\pi} U(\theta) d\theta = 2\pi i \operatorname{Res}\left(\frac{U}{iz}; \frac{i}{3}\right)$$
 (37)

In this case, the residue can be computed using the double pole formula

$$\operatorname{Res}\left(\frac{U}{iz}; \frac{i}{3}\right) = \lim_{z \to i/3} \frac{d}{dz} \left[\frac{U}{iz} \cdot \left(z - \frac{i}{3}\right)^2 \right]$$
 (38)

$$= \lim_{z \to i/3} \frac{d}{dz} \left[\frac{4i}{9(z - i/3)^2 (z - 3i)^2} \cdot \left(z - \frac{i}{3}\right)^2 \right]$$
(39)

$$= \frac{4i}{9} \lim_{z \to i/3} \frac{d}{dz} \left[\frac{z}{(z - 3i)^2} \right] \tag{40}$$

$$= \frac{4i}{9} \lim_{z \to i/3} -\frac{(z+3i)}{(z-3i)^3} \tag{41}$$

$$= -\frac{4i}{9} \frac{10i/3}{512i/27} \tag{42}$$

$$= -\frac{40i}{512} = -i\frac{5}{64} \tag{43}$$

We now finish computing the integral as

$$\int_{0}^{2\pi} U(\theta)d\theta = 2\pi i \left(-i\frac{5}{64}\right) = \frac{5\pi}{32}.$$
 (44)

Exercise 3. Use a sector contour C with radius R centered at the origin with angles $0 \le \theta \le \frac{2\pi}{5}$ to find for a > 0,

$$I = \int_0^\infty \frac{dx}{x^5 + a^5} = \frac{\pi}{5a^4 \sin(\pi/5)}.$$

Solution 3. We'll break down the contour C mentioned above in three parts, so that $\oint_C = \int_{C_x} + \int_{C_R} + \int_{C_L}$. Let C_L is the straight line between $Re^{i2\pi/5}$ and 0, C_R be the circular section, and C_x be the line segment from [0, R] on the real axis. We then have that

$$\int_0^R \frac{dx}{x^5 + a^5} + \int_{C_R} \frac{dz}{z^5 + a^5} + \int_{C_L} \frac{dz}{z^5 + a^5} = 2\pi i \sum_j \operatorname{Res} \left(\frac{1}{z^5 + a^5}; z_j \right)$$
(45)

by the residue theorem. By theorem 4.2.1 of A&F,

$$\int_{C_R} \frac{dz}{z^5 + a^5} \to 0, \tag{46}$$

as $R \to \infty$. We can also make the substitution on C_L that $z = xe^{2\pi i/5}$ for $x \in [0, R]$, so that

$$\int_{C_L} \frac{dz}{z^5 + a^5} = \int_R^0 \frac{e^{2\pi i/5}}{x^5 + a^5} dx = -e^{2\pi i/5} \int_0^R \frac{dx}{x^5 + a^5}.$$
 (47)

Since the only pole of $\frac{1}{z^5+a^5}$ inside C is $z_0=ae^{i\pi/5}$ for R large enough, we have that in the limit as $R\to\infty$

$$\int_0^\infty \frac{dx}{x^5 + a^5} = \frac{2\pi i}{1 - e^{2\pi i/5}} \operatorname{Res}\left(\frac{1}{z^5 + a^5}; ae^{i\pi/5}\right). \tag{48}$$

All that remains is to compute the residue, which is given by

Res
$$\left(\frac{1}{z^5 + a^5}; ae^{i\pi/5}\right) = \left(\frac{1}{5z^4}\right)_{z_0} = \frac{1}{5a^4}e^{-4\pi i/5}.$$
 (49)

Combining the last two equations allows us to conclude that

$$\int_0^\infty \frac{dx}{x^5 + a^5} = \frac{2\pi i}{1 - e^{2\pi i/5}} \frac{1}{5a^4} e^{-4\pi i/5}$$
 (50)

$$= \frac{\pi}{5a^4} \left(\frac{2ie^{-4\pi i/5}}{1 - e^{2\pi i/5}} \right) \tag{51}$$

$$= \frac{\pi}{5a^4} \left(\frac{2i}{e^{-\pi i/5} - e^{\pi i/5}} \right) e^{-\pi i} \tag{52}$$

$$= \frac{\pi}{5a^4} \left(\frac{2i}{e^{\pi i/5} - e^{-\pi i/5}} \right) \tag{53}$$

$$=\frac{\pi}{5a^4\sin\pi/5}\tag{54}$$

where we have multiplied by $e^{-\pi i/5}/e^{-\pi i/5}=1$ in the third line and simplified $e^{-i\pi}=-1$ in the fourth and used that $\sin x=(e^{ix}-e^{-iz})/2i$ in the last.

Exercise 4. A function that is analytic for all $z \in \mathbb{C}$ is called entire.

- (a) Show that any bounded entire function is necessarily constant.
- (b) Suppose f(z) is an entire function, not necessarily, bounded, but such that $\text{Im}(f(z)) \leq 0$. Show that f(z) is necessarily constant.

Solution 4. (a) We'll show that the derivative of a bounded entire function must be 0 on \mathbb{C} . Suppose that the $|f(z)| \leq M$ for all $z \in \mathbb{C}$. For fixed $a \in \mathbb{C}$, f(z) is analytic in and on the circle of radius R centered at a since f(z) is entire. Therefore, we can use Cauchy's bound for derivatives (page 30 in Prof. Tung's book), to see that

$$|f'(a)| \le \frac{M}{R}.\tag{55}$$

Since this holds for any circle of radius R, we see that |f'(a)| = 0. Since this holds for arbitrary $a \in \mathbb{C}$, we know that f'(z) = 0 for all $z \in \mathbb{C}$. This means the function f(z) must be constant.

(b) Since the function f(z) has $\text{Im}(f(z)) \leq 0$, the function f(z) - i has $\text{Im}(f(z) - i) \leq -1$ for all $z \in \mathbb{C}$ and therefore it is non-zero on the entire complex plane. It follows that the function

$$h(z) = \frac{1}{f(z) - i} \tag{56}$$

is entire since it is reciprocal of a non-zero entire function. This function h(z) is bounded since

$$|h(z)| = \frac{1}{|f(z) - i|} \tag{57}$$

$$= \frac{1}{\text{Re}(f(z) - i)^2 + \text{Im}(f(z) - i)^2}$$
 (58)

$$\leq \frac{1}{\text{Re}(f(z)-i)^2+1} \leq 1,\tag{59}$$

where we've used that $|z| = \text{Re}(z)^2 + \text{Im}(z)^2$ and $\text{Im}(f(z) - i)^2 \ge 1$. By part a, it follows that h(z) is constant over $\mathbb C$ i.e. h(z) = c for some constant $c \in \mathbb C$. We can compute that $f(z) = \frac{1}{c} + i$, so f(z) is constant over $\mathbb C$.