1. Batch 2 CT3 - Answer Key.

Part A

1. b

6. a

7. C

8. c

8. b

4. c

9. a

10. b

Part -B (A)BFS 1)visited: A visited: A, B \$ BXFG visited: A, B, C & BEFGDE visited: A, B, C, F XBCF &DE visited: A,B,C,F,G visited: A,B,C,F,G,D,E,K,J

12. x = {0,1,1,1,1,0,19 x = {0,0,0,0, h, 19 x= {1,1,0,1,0,0,13 x= {1,1,0,0,1,1,0 X= {1,0,1,0,1,0,1 x = 50,0,1,1,0,1,1) There are 7 subsets.

Randomized-Quicksort (A,P, 1) if (P,2r) 9=Randomized-partition (A,P,r) Randomized-Quicksort (A, P, 9-1) Randomized-Quicksort (A, 9+1, 8) The choice of pivot can be done randomly every time, we divide the accept Time Complexity Best cast, worst case & T(n)=0(n log n) It improves time over std quicksort, because worst case for that is T(n)=O(n2) Vertices = {1,3,5} (2)

Size is 3

Explaination - 2 Marks

Part C

Scanned with CamScanner

$$5003$$
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000
 10000

D B 25 \$ & O & D 2 63 8 4 D B ∞ ∞ 3 & 0 3 15 0 ∞ 2 C(A,B) + v + v = 0 + 14 + 6 = 20

C D 808 B 0 0 ω A B C D 0 15 id 0 0 0 0 00 3 0 D A 30 B ∞ & & 0 & ∞ 0 0 0+3=3 (A,C)+++7=8+14+3= B 0

$$\hat{x} = 6 + 0 = 6$$
.
 $C(D, B) + x + \hat{y} = 0 + 14 + 6 = 20$

17. All pairs shortest Path

$$A^{\circ} = 2 \begin{bmatrix} 2 & 3 & 4 & 7 \\ 3 & 2 & 2 & 3 \\ 0 & 8 & 5 & 2 \\ 4 & 2 & 2 & 2 \end{bmatrix}$$

$$\begin{array}{c}
 1 & 3 & 4 \\
 1 & 3 & 3 & 4 \\
 1 & 3 & 3 & 3 & 4 \\
 1 & 3 & 3 & 3 & 3 \\
 4 & 3 & 3 & 5 & 3
 \end{array}$$

$$A^{3} = \begin{array}{c|c} 1 & 2 & 3 & 4 \\ \hline 0 & 3 & 5 & 6 \\ \hline 0 & 7 & 8 & 3 \\ \hline 4 & 2 & 5 & 7 & 6 \\ \hline \end{array}$$

(2)

(2)

(2)

(2)

$$T(n) = 0 \begin{pmatrix} n^3 \end{pmatrix} \qquad (2)$$

$$T(n) = 0 \begin{pmatrix} n^3 \end{pmatrix} \qquad$$

5v) CDD 334-300=34×10=340+4=344=344 The pattern is matched.

Time

T(n) = 0 (n-m+1) = Avegage case

Worst case

T(n) = 0 (mn)

a) Non-deterministic Polynomial class
problems with NP hard and
NP-complete. (6)

b) satisfiability problems with example (6)