1.1 4 Use the Euclidean algorithm to find the following greatest common divisors.

$$a$$
 (6643, 2873)

Ans GCD(6643, 2873)

$$6643 = 2873 \cdot 2 + 197$$

$$2873 = 897 \cdot 3 + 182$$

$$897 = 182 \cdot 4 + 169$$

$$182 = 169 \cdot 1 + 13$$

$$169 = 13 \cdot 13 + 0$$

$$\therefore GCD(6643, 2873) = 13$$

c (26460, 12600)

Ans GCD(26460, 12600)

$$26460 = 12600 \cdot 2 + 1260$$

$$12600 = 1260 \cdot 10 + 0$$

$$\therefore GCD(26460, 12600) = 1260$$

e (12091, 8439)

Ans GCD(12091, 8439)

$$12091 = 8439 \cdot 1 + 3652$$

$$8439 = 3652 \cdot 2 + 1135$$

$$3652 = 1135 \cdot 3 + 247$$

$$1135 = 247 \cdot 4 + 147$$

$$247 = 147 \cdot 1 + 100$$

$$147 = 100 \cdot 1 + 47$$

$$100=47\cdot 2+6$$

$$47 = 6 \cdot 6 + 5$$

$$6 = 5 \cdot 1 + 1$$

$$5 = 1 \cdot 5 + 0$$

$$\therefore GCD(12091, 8439) = 1$$

6 For each part of Exercise 4, find integers m and n such that (a,b) is expressed in the form ma + nb.

$\mathbf{a}\ (6643,2873)$		
Ans		
c (26460, 12600)		
Ans		
e (12091, 8439)		
Ans		
7 Let a,b,c be integer	rs. Give a proof for these facts about divisors:	
a If $b \mid a$, then $b \mid aa$	c.	
Ans Let $a=mb$, $m\in$	\mathbb{Z} .	
Multiplying both	n sides by c :	
$a \cdot c = mb \cdot c$		
$a \cdot c = mc \cdot b$ (CO	ommutative law of multiplication)	
Let $n = mb$, $n \in \mathbb{Z}$	$\mathbb{Z}.$	
$a \cdot c = n \cdot c$		
$\therefore b \mid ac \text{ if } b \mid a$		
b If $b \mid a$ and $c \mid b$, t	then $c \mid a$.	
Ans		
c If $c \mid a$ and $c \mid b$, \dagger	then $c \mid (ma + nb)$ for any integers m, n .	
Ans		
11 Show that if $a>0$, the	$hen\;(ab,ac)=a(b,c)$	
Ans		
14 For what positive in	tegers n is it true that $(n, n+2) = 2$? Prove your cla	im.
Ans		
	ers with $n>1$. Suppose that $a=nq_1+r_1$ with $0 \le r_2 < n$. Prove that $n\mid (a-b)$ if and only if $r_1=r_2$.	$0 \le r_1 < n ext{ and }$
Ans		

19 Let a,b,q,n be integers such that $b \neq 0$ and a = bq + r. Prove that (a,b) = (b,r) by showing that (b,r) satisfies the definition of the greatest common divisor of a and b.

Ans □