MSO202A COMPLEX VARIABLES Soluition-5

Problems for Discussion:

1. Integrate the following functions counterclockwise around the unit circle |z|=1:

(a)
$$\frac{\sinh 2z}{z^4}$$
 (b) $\frac{z^2}{(2z-1)^3}$ (c) $\frac{e^{3z}}{(4z-\pi i)^3}$

Solution: Use the Cauchy integral formula.

2. Evaluate the integral $\frac{1}{2\pi i} \int_C \frac{ze^{zt}}{(z+1)^3} dz$ where C is a positively oriented simple closed enclosing z=-1.

Solution: Using the Cauchy integral formula : $\frac{1}{2}(2t-t^2)e^{-t}$.

3. Find the Taylor series of the function $(a) f(z) = \frac{1}{z^2}$ at $z = a \neq 0$, $(b) f(z) = \frac{6z + 8}{(2z + 3)(4z + 5)}$ at z = 1 (c) $f(z) = \frac{e^z}{z + 1}$ at z = 1.

Solution: 2(a). Let
$$t = z - a$$
. $\frac{1}{z^2} = \frac{1}{(t+a)^2} = \frac{1}{a^2} \sum_{n=0}^{\infty} \frac{(-1)^n (n+1)(z-a)^n}{a^n}$.

- (b) Let t = z 1. $f(z) = \frac{1}{2z+3} + \frac{1}{4z+5} = \frac{1}{2t+3} + \frac{1}{4t+5}$. This is equal to $\sum_{n=0}^{\infty} \frac{(-2)^n (z-1)^n}{5^{n+1}} + \sum_{n=0}^{\infty} \frac{(-4)^n (z-1)^n}{9^{n+1}}.$
- (c) $f(z) = \frac{e^z}{z+1} = \frac{e}{2} \left[\sum_{0}^{\infty} \frac{(z-1)^n}{n!} \right] \left[\sum_{0}^{\infty} \frac{(-1)^n (z-1)^n}{2^n} \right]$. the coefficient of $(z-1)^n$ is $\frac{e}{2} \sum_{i=0}^n \frac{(-1)^{n-j}}{j! 2^{n-j}}$.
- 4. Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disc and let $f : \mathbb{D} \to \mathbb{C}$ be analytic such that $|f(z) f(w)| \le K, \forall z, w \in \mathbb{D}$. Show that $2|f'(0)| \le K$.

Solution: By Cauchy's integral formula, $f'(0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z^2} dz$ where C: $re^{i\theta}, 0 \le \le \pi, r < 1$. Let g(z) = f(z). Then,g is analytic on $\mathbb D$ and so by Cauchy's integral formula, $g'(0) = \frac{1}{2\pi i} \int_C \frac{g(z)}{z^2} dz$. As g'(0) = -f'(0), it follows that

$$2f'(0) = \frac{1}{2\pi i} \int_C \frac{f(z) - f(-z)}{z^2} dz \Rightarrow 2f'(0) \le \frac{1}{2\pi} \frac{K}{r^2} 2\pi r \le \frac{K}{r}.$$

Take limit as $r \to 1$, to get $2f'(0) \le K$.

Problems for Tutorial

- 1. Integrate the following functions counterclockwise
 - (a) $f(z) = z^{-2} \tan \pi z$, C any contour enclosing 0.
 - (b) $f(z) = \frac{\cosh 4z}{(z-4)^3}$, C consists of |z|=6 counterclockwise and |z-3|=2 counterclockwise.

Solution: Use cauchy's integral formula: (a) $2\pi^2 i$ (b) $16\pi i \sinh 16$.

2. Let $f: \mathbb{C} \to \mathbb{C}$ be a function which is analytic on $\{z \in \mathbb{C} : z \neq 0\}$ and bounded in some neighborhood of 0, say $\{z \in \mathbb{C} : |z| \leq \frac{1}{2}\}$. Prove that $\int_{|z|=R} f(z)dz = 0$ for every R > 0.

Solution: Let $r < \frac{1}{2}$. By Cauchy's theorem for multiply connected domains, $\int_{C_R} f(z) dz = \int_{C_r} f(z) dz$ where C_r is the circle |z| = r. Let $|f(z)| \le M \forall z$ with $|z| \le 1/2$. Then $\left| \int_C f(z) dz \right| = \left| \int_{C_r} f(z) dz \right| \le 2\pi r M$. Take limit as $r \to 0$, to get $\left| \int_C f(z) dz \right| \to 0$. Hence proved.

- 3. (a) Let f be an entire function bounded by M on |z| = R. Show that the coefficients a_k in its power series expansion about 0 satisfy $|a_k| \leq \frac{M}{R^k}$.
 - (b) If a polynomial is bounded by 1 on a unit disc, show that each of its coefficients is also bounded by 1.

Solution: For the first part use Cauchy's integral formula and then the ML inequality. The second part follows from the fist part.

4. Let $f: \mathbb{C} \to \mathbb{C}$ be a non-constant entire function. Show that the image of the function has to necessarily meet the real axis and imaginary axis.

Solution: Let f = u + iv. Assume that the image of f does not meet the real axis i.e., $v(x,y) \neq 0, \forall (x,y)$ or $\mathrm{Im} f(z) \neq 0, \forall z$. Thus we have $\mathrm{Im} f(z) > 0$ or $\mathrm{Im} f(z) < 0, \forall z$.

(Note: In the case of continuous functions of one variable it is a consequence of intermediate value property. In two (or higher variables) it is a consequence of the fact that \mathbb{R}^2 is connected and connected sets in \mathbb{R} are intervals together with the fact that continuous functions map connected sets to connected sets. You may ask students to assume these facts, which are in any case intutive.)

If, $\mathrm{Im} f(z) > 0$, consider $g(z) = e^{if(z)}$. Then g is entire and $|g(z)| \leq 1$, and thus bu Liouville's theorem g is a constant function which implies f is a constant function. Similarly, in case $\mathrm{Im} f(z) < 0$, consider $h(z) = e^{-if(z)}$ and proceed as before to conclude that f is a constant function. Hence the image of f function has to necessarily meet the real axis, and like wise the image of f function has to necessarily meet the imaginary axis as well.

5. Let f be entire and $|f(z)| \le a + b|z|^n$ for some positive real numbers a and b and $n \in \mathbb{N}$. Show that f is a polynomial of degree at most n.

Solution: $f^{n+1}(0) = \frac{(n+1)!}{2\pi i} \int_{C_R} \frac{f(z)}{z^{n+2}} dz$ where $C_R : Re^{i\theta}, 0 \le \le \pi, R > 0$. So $|f^{n+1}(0)| \le \frac{(n+1)!}{2\pi} \frac{a + bR^n}{R^{n+2}} 2\pi R \to 0$ as $R \to \infty$. Hence f is a polynomial of degree at most n.