${\rm GADMTools} - {\rm Graphics}$

 $jean.pierre.decorps@gmail.com\\2021-04-17$

Graphics

functions

Function	Description
choropleth	Draws a choropleth on selected regions
classDots	Plots dots on a map with values between different fixed classes
dots	Plots dots on a map
dotDensity	Draws a dot-density map
isopleth	Draws an isopleth on selected regions
$\operatorname{gadm_showNorth}$	Displays a north arrow on a plot
${\rm gadm_showScale}$	Displays a scale on a plot

Display a north arrow on a plot

```
library(GADMTools)
data("Corsica")

plotmap(Corsica) %>% gadm_showNorth("tl")
```


Display a scale on a plot

```
library(GADMTools)
data("Corsica")

plotmap(Corsica) %>% gadm_showNorth("tl") %>% gadm_showScale("bl")
```


Plotting dots on a map

```
# Preparing data.frame
# -------
data("Corsica")

Corse <- gadm_union(Corsica, 0)
Cantons <- listNames(Corsica, 4)
L <- length(Cantons)
Pop <- floor(runif(L, min=15200, max=23500))

longitude <- runif(6, min=8.74, max = 9.25)
latitude <- runif(6, min=41.7, max = 42.6)
Cases <- floor(runif(6, 25, 80))

Type <- rep(c("TYPE A", "TYPE B", "TYPE C"), 6, length.out = 6)
DAT <- data.frame(longitude, latitude, Cases)</pre>
```

```
# Simple dots
#-----
dots(Corsica, DAT, color="red", size = 3)
```

```
# Classified dots
#-----
dots(Corse, points = DAT,
    palette = "Reds",
    value="Cases")
```

Plotting proportionals dots

Plotting dots with classified size

```
library(GADMTools)
classDots(Corse, DAT, color="blue", value = "Cases", steps = 4)
```

Dot-Density

Plotting density

```
library(GADMTools)
isopleth(Corse, data = DAT, palette = "Blues")
```

Plotting a choropleth

fast.choropleth()

Parameter	Description
x	Object GADMWrapper
${f data}$	data.frame - data to plot
value	String - the name of the column in the data.frame we want to plot (eg: an incidence in
	epidemiology studies)
breaks	
$_{ m steps}$	Integer - number of breaks. Default $= 5$. If breaks is NOT NULL this value is used
	internally with cut().
$\operatorname{adm.join}$	String - the name in GADM spdf dataset which will be joined with a column of the data.
legend	String - legend title. Default NULL.
labels	String vector labels for the legend. Default NULL
$\mathbf{palette}$	String - An RColorBrewer palette name or a String vector vector of colors. Default NULL.
title	String - Title of the plot. Default is an empty string.

Example

```
MAP <- gadm_sp_loadCountries("BEL", level = 3, simplify=0.01)</pre>
DAT = read.csv2("BE_clamydia_incidence.csv")
# Rewriting District names
# -----
DAT$district <- as.character(DAT$district)</pre>
DAT[7,1] = "Brussel"
DAT[20,1] <- "Liège"
DAT[22,1] = "Marche-en-Famenne"
DAT[27,1] = "Neufchâteau"
DAT <- rename(DAT, NAME_3 = district)</pre>
fast.choropleth(MAP, DAT,
                adm.join = "NAME_3",
                value = "rate03",
                steps = 4,
                breaks = "jenks",
                palette="Greens",
                legend = "Incidence",
                title="Chlamydia incidence by Belgian district (2003)")
```


Figure 1: Simple dots

Figure 2: Classified dots

Figure 3: Typed dots

Figure 4: propDots

Figure 5: propDots with provided breaks

Figure 6: propDots

Figure 7: classDots

1 dot = 1000 cases

- H1N1
- H1N2
- H2N2

Figure 8: Dot-Density

Figure 9: Isopleth

Figure 10: Choropleth

Chlamydia incidence by Belgian district (2003)

Figure 11: drawing a fast.choropleth