Problem (Problem 1): Let R be a ring and M a left R-module.

- (a) Prove that for every $m \in M$, the map $r \mapsto r \cdot m$ from R to M is a homomorphism of R-modules.
- (b) Assume that R is commutative and M an R-module. Prove that there is an isomorphism $hom_R(R,M) \cong M$ as left R-modules.

Solution:

(a) Let $m \in M$ be fixed, and define $\varphi_m \colon R \to M$ by

$$\varphi_{\mathfrak{m}}(\mathbf{r}) = \mathbf{r} \cdot \mathbf{m}$$
.

It follows from the axioms of left R-modules that

$$\varphi_{m}(r+s) = (r+s) \cdot m$$

$$= r \cdot m + s \cdot m$$

$$= \varphi_{m}(r) + \varphi_{m}(s),$$

and

$$\varphi_{m}(rs) = (rs) \cdot m$$

$$= r \cdot (s \cdot m)$$

$$= r \cdot (\varphi_{m}(s)),$$

so that ϕ_m is a homomorphism of left R-modules.

(b) If $\phi_m \colon R \to M$ is the homomorphism as defined in part (a), we define a map $\phi \colon M \to \hom_R(R,M)$ by

$$\varphi(m)(r) = \varphi_m(r)$$
.

First, we verify that φ is a homomorphism. If $r \in R$ is arbitrary, then

$$\begin{split} \phi(m+n)(r) &= \phi_{m+n}(r) \\ &= r \cdot (m+n) \\ &= r \cdot m + r \cdot n \\ &= \phi_m(r) + \phi_n(r) \\ &= (\phi(m) + \phi(n))(r). \end{split}$$

To see that ϕ is injective, we see that $\ker(\phi)$ consists of all elements $\mathfrak{m} \in M$ such that $\phi(\mathfrak{m}) = \phi_0$, where $\phi_0 \colon R \to M$ takes $r \mapsto 0$ for all $r \in R$. In particular, since $1 \in R$, it follows that $1 \cdot \mathfrak{m} = \mathfrak{m} = 0$, meaning that $\ker(\phi) = \{0\}$.

To see that ϕ is surjective, we observe that for any $\psi \in \text{hom}_R(R,M)$, ψ is fully determined by where it maps 1, as

$$\psi(r) = r \cdot \psi(1).$$

Therefore, if $\psi \in \text{hom}_R(R, M)$, then we may find $\mathfrak{m} \in M$ corresponding to ψ by taking

$$\mathfrak{m} \coloneqq \psi(1).$$

Thus, $M \cong hom_R(R, M)$.

Problem (Problem 3): Let R be a ring, and M a left R-module.

(a) Let N be a subset of M. The annihilator of N is defined to be the set

$$ann_R(N) = \{ r \in R \mid r \cdot n = 0 \text{ for all } n \in N \}.$$

Prove that $ann_R(N)$ is a left-ideal of R.

- (b) Show that if N is an R-submodule of M, then $ann_R(N)$ is a two-sided ideal of R.
- (c) For a subset I of R, the annihilator of I in M is defined to be the set

$$ann_M(I) = \{ m \in M \mid x \cdot m = 0 \text{ for all } x \in I \}.$$

Find a natural condition on I that guarantees ann_M(I) is a submodule of M.

(d) Let R be an integral domain. Prove that every finitely generated torsion R-module has a nonzero annihilator.

Solution:

(a) First, we observe that $ann_R(N)$ is nonempty, as $0 \in ann_R(N)$. Additionally, if $s, t \in ann_R(N)$, then for all $n \in N$,

$$(s-t) \cdot n = s \cdot n - t \cdot n$$
$$= 0,$$

so that N is closed under subtraction. Finally, if $r \in R$ and $s \in \operatorname{ann}_R(N)$, then for all $n \in N$,

$$(rs) \cdot n = r \cdot (s \cdot n)$$
$$= r \cdot 0$$
$$= 0,$$

meaning that $rs \in ann_R(N)$, or that $ann_R(N)$ is a left-ideal of R.

- (b) Let N be an R-submodule of M, and let $s \in ann_R(N)$. If $r \in R$, then for all $n \in N$, $r \cdot n \in N$, so that $(sr) \cdot n = s \cdot (r \cdot n) = 0$, meaning that $sr \in ann_R(N)$. Thus, $ann_R(N)$ is a right-ideal, hence a two-sided ideal for R.
- (c) We observe to start that $ann_M(I)$ contains 0 and is additively closed, since if $m, n \in ann_M(I)$ and $x \in I$ are arbitrary, then

$$x \cdot (m+n) = x \cdot m + x \cdot n$$
$$= 0.$$

Therefore, if we desire for $ann_M(I)$ to be a submodule of M, we would need $r \cdot m \in ann_M(I)$ for all $m \in ann_M(I)$, which would mean $r \cdot m$ would have to satisfy the condition

$$0 = x \cdot (r \cdot m)$$
$$= (xr) \cdot m,$$

meaning that we would require $xr \in ann_M(I)$. In other words, this means that $ann_M(I)$ would have to be a right-ideal for R.

(d) Let $M = \langle a_1, \dots, a_n \rangle$ be a finitely generated torsion R-module. Since M has torsion, for each a_i , there is some $0 \neq r_i \in R$ such that $r_i \cdot a_i = 0$. The product

$$r = \prod_{i=1}^{n} r_i$$

is necessarily nonzero as R is an integral domain, and satisfies $r \cdot a_i = 0$ for all i by rearrangement of factors, so that $(r) \subseteq \operatorname{ann}_R(M)$ as $\operatorname{ann}_R(M)$ is an ideal containing r. Thus, $\operatorname{ann}_R(M)$ is a nonzero ideal.