1. Show that any comparison-based algorithm to sort 4 elements requires at least 5 comparisons in the worst case.

Solution. We showed in class that a binary tree T having L leaves must have node of depth at least $\lceil \log L \rceil$. In particular, if T is the decision tree for a sorting algorithm, sorting n distinct values, there must be a branch in T having length at least $\lceil \log n! \rceil$; this means that the sorting algorithm requires, in the worst case, at least $\lceil \log n! \rceil$ comparisons.

When n = 4, therefore, at least $\lceil \log n! \rceil$ comparisons are necessary. But

$$\lceil \log 4! \rceil = \lceil \log 24 \rceil = \lceil 32 \rceil = 5.$$

Therefore, at least 5 comparisons are needed.

2.

Explain how RadixSort can be used to sort the following $S = \{125, 27, 729, 1, 27, 8, 64, 343, 216\}$

using radix = 9.

Soln.

APPROACH A:

Do it in class using Radix as shown for the IBM solution.

APPROACH B: Use multiple Buckets.

Here the range is very large and one bucket will not work. Even 3 buckets will not work just because of the highest number 729. The max number with 3 buckets with radix 9 is

 $728 = 9^2.q^2 + 9.q^1 + r$ where $q^2 = q^1 = r = 8$. The range for q^2 , q^2 and r are, of course 0 to 8.

Alternatively, we can use rdaix 10. To make use of radix 9, let us CHANGE the max number to 728.

The formulae we need to use are as follows:

- 1. Bucket r use input values x and remainder using mod 9.
- 2. Bucket q1 needs to be filled by reading values (left to right) from bucket r but divided by 9 and then mod $9 \rightarrow (y/9) \mod 9$.
- 3. Bucket q2 needs to be filled by reading values (left to right) from bucket q1 but divided by 9^2 and no mod operation -> z/81.

Then read data from q1 left to right. See the table below for details.

	125	27	728 (changed	1	27	8	64	343	216
			from 729)						
Bucket r	216	343							8
	27	64							728
	27	1							125
	0	1	2	3	4	5	6	7	8
Bucket q1	8			27					
	1		343	27	125		216	64	728
	0	1	2	3	4	5	6	7	8
Bucket q2	64								
(RETURN	27								
RSEULT -	27								
Left to top to	8								
bottom to rght)	1	125	216		343				728
	0	1	2	3	4	5	6	7	8
Div by 9 Quotient	13	3	80	0	3	0	7	38	24
(scratch pad)									

3. Carry out the steps of RadixSort to sort the following {80, 27, 72, 1, 27, 8, 64, 34, 16} – Hint: use 9 for your radix.

Solution - please note that in q[0], the first value is 1 and not 0. The same is true in the sorted output i..e the first number is 1 followed by 8.

3.
$$S = \{80, 27, 72, 1, 27, 8, 64, 34, 16\}$$

Y(1): $\frac{27}{72}|44|$
 $\frac{16}{27}|80|$

Y(2): $\frac{8}{27}|4|$
 $\frac{34}{5}|6|7|8$

Y(2): $\frac{8}{27}|4|$
 $\frac{34}{5}|6|7|8$

Yead 9(3) from betweelft to rights bottom to top

 $0.8.16.27.27.34.64.72.80$