

Diferenciando normas abstratas de atos administrativos concretos com auxílio de ferramentas de machine learning

Pesquisa Empírica em Direito da Regulação e Política Regulatória (EPED 2025)

Lucas Thevenard Gomes (FGV Rio Law / Regulação em Números)

Com Camila de Oliveira Lopes; José Luiz Nunes; Simone Diniz Junqueira Barbosa

Agenda

- Por que utilizar ML para estudar a linguagem regulatória?
- Por que simplificação regulatória importa?
- O gargalo informacional no DOU
- Dados, métodos e experimentos
- Resultados, limitações e implicações de design
- Próximos passos

Por que utilizar ML para estudar a linguagem regulatória?

- Técnicas de NLP e ML permitem analisar grandes volumes de texto
 - Crescimento e importância das normas secundárias no ordenamento jurídico
- Aplicações regulatórias:
 - Extração de entidades e relações (exemplo: pesquisa sobre o papel da Anvisa)
 - Análise do processo regulatório (exemplo: monitoramento de consultas públicas e AIRs)
 - Análise da complexidade linguística da regulação

Simplificação regulatória: por quê?

- + complexidade = + custos de conformidade e barreiras de acesso
- Outros benefícios: transparência**, previsibilidade e enforcement mais eficiente (segurança jurídica)
- Linguagem simples como diretriz de boa governança
 - Estratégia Regula Melhor
 - o PL 4.401/2024

Complexidade normativa como uma linha de pesquisa inexplorada no Brasil

- Quão complexa é a linguagem regulatória?
- Quais fatores influenciam essa complexidade e por que ela persiste?
- Quais os efeitos (sociais e institucionais) da complexidade normativa?

Por que a complexidade persiste?

- Iniciativas de "plain language" nos EUA têm efeitos limitados (estudo de corpus 1951– 2009)
 - Magic Spell ou Copia e Cola?
 - Evidências apontam para uma complexidade intencional (efeito "performativo" ou "magic spell")
- Incentivos institucionais podem favorecer textos densos
- Hipótese estratégica: complexidade como mecanismo de controle do processo

O gargalo no Brasil (DOU, Seção 1)

- Ausência de uma tipologia adequada de atos administrativos
 - Mistura de atos normativos-abstratos e atos concretos
- Ausência de marcador oficial → alto custo de triagem
- Consequência: "achar a agulha no palheiro"
- Obs: Decreto de consolidação dos atos normativos inferiores a decreto não resolveu o problema

Exemplo motivador: transporte de materiais inflamáveis

- Busca temática retorna tanto regras gerais quanto autorizações individuais
- Usuário precisa descobrir quem regula e o que é norma
- Meta: reduzir ruído e ordenar por relevância normativa

Objetivo da pesquisa

- Classificar automaticamente normas abstratas vs atos concretos publicados por agências federais
- Compreender os aspectos linguísticos que diferenciam esses atos
- Pré-requisito para usar dados textuais do DOU em larga escala

Dados

- DOU Seção 1; 10 agências federais independentes (2018–2022)
- Base inicial: 58.694 atos

Pré-processamento crítico

- Presença de artigos como indício forte de normatividade (suficiente, não necessário)
- 50.139 sem artigos; amostra (n=100) → todos concretos
- Remoções: documentos fora de escopo / casos ambíguos
- Base final para modelagem: 8.555 atos

Representação e modelos

- TF-IDF (n-grams 1–2, ~5k features)
- Embeddings BERT (BERTimbau) e LEGAL-BERT (pt-br)
- Algoritmos: KNN, DT, RF, MLP, AdaBoost, NB, SVM, LogReg (com *grid search*)

Experimento 1 – Intra-agência (previsão temporal)

- Treina em anos passados; prediz ano futuro da mesma agência
- Acurácia típica: 90–96% com modelos clássicos, em ambas as classes
- Aprendizado "dentro de casa" é relativamente fácil

Experimento 2 – Generalização (TF-IDF)

- Treino: várias agências; teste fora da amostra (ex.: ANVISA/ANEEL)
- Melhor DT: ~82% (abstratos) | ~75% (concretos)
- Dependência de poucas features (≈12 termos)

Experimento 2 – Generalização TF-IDF (out-of-sample)

Model	Accuracy (%)		F1-Score
	Abstract	Concrete	ri-score
Nearest Neighbors	95.06%	55.93%	0.55
Decision Tree	81.95%	75.09%	0.61
Random Forest	87.66%	47.35%	0.48
Neural Net	99.35%	10.76%	0.39
AdaBoost	92.21%	14.73%	0.38
Naive Bayes	97.40%	3.59%	0.37
SVM Linear	98.83%	41.17%	0.50
SVM RBF	99.74%	16.75%	0.41
SVM Sigmoid	98.83%	50.74%	0.54
Logistic Regression	99.22%	17.74%	0.41

Experimento 3 – Embeddings BERT

- Desempenho comparável ao TF-IDF
- Embeddings gerais não capturam nuances jurídico-regulatórias específicas
- Trade-off: robustez semântica vs. signal estilístico

Experimento 3 – Embeddings BERT (out-of-sample)

Model	Accuracy (%)		F1-Score
	Abstract	Concrete	r 1-Score
Nearest Neighbors	95.71%	41.51%	0.48
Decision Tree	81.69%	19.34%	0.36
Random Forest	97.79%	4.58%	0.37
Neural Network	97.14%	23.46%	0.42
AdaBoost	91.43%	45.10%	0.48
Naive Bayes	95.58%	27.93%	0.43
SVM (Linear)	94.55%	45.33%	0.50
SVM (RBF)	97.40%	12.55%	0.39
SVM (Sigmoid)	97.53%	11.90%	0.39
Logistic Regression	94.55%	37.28%	0.46

Experimento 4 – LEGAL-BERT (fine-tuning)

- Abstratos: ~92,85%
- Concretos: ~51,74% (desafio persistente)
- Ganho em normas gerais; queda em concretos fora do domínio

Experimento 4 – LEGAL-BERT com fine-tuning (out-of-sample)

Model	Accuracy (%)		F1-Score
	Abstract	Concrete	T1-Score
Nearest Neighbors	95.19%	35.90%	0.46
Decision Tree	85.06%	24.34%	0.38
Random Forest	98.70%	14.92%	0.40
Neural Network	97.66%	28.73%	0.44
AdaBoost	90.00%	38.00%	0.45
Naive Bayes	88.18%	37.28%	0.48
SVM (Linear)	96.36%	38.65%	0.43
SVM (RBF)	98.31%	23.96%	0.43
SVM (Sigmoid)	87.40%	30.22%	0.41
Logistic Regression	95.06%	40.48%	0.48

Por que generalizar é difícil?

- Diferenças linguísticas e estilísticas entre agências
- Concretos são mais variáveis e menos padronizados
- Hipóteses: marcadores de agência/tema vs. diversidade de formatos

Distances between pairs of documents grouped by agency

Distances between pairs of documents grouped by document type

Limitação técnica relevante e próximos passos

- Limite de 512 tokens em (LEGAL-)BERT atinge parte do corpus
- Alternativas: modelos de contexto longo e segmentação por artigos
- Próximo passo: hierarchical transformers e sumarização estruturada

Limitações & próximos passos

- Generalização entre agências e domínios
- Contexto longo e segmentação por artigos
- Avaliação com usuários (tarefa, tempo, precision/recall percebido)

Conclusões

- (i) Pré-classificação já reduz custo cognitivo e habilita melhores portais de informação
- (ii) Classificação intra-agência é viável e relativamente simples, podendo gerar ganhos de informação relevantes (exemplo da ANEEL)
- (iii) Generalização inter-agências é o grande desafio atual
- (iv) A fronteira desta pesquisa está na promoção de uma melhor compreensão dos elementos linguísticos (vocabulário, estruturas típicas, tarefas regulatórias usuais) que diferenciam atos normativos e concretos

Obrigado!

Contato: lucas.thevenard@fgv.br

Projeto: Regulação em Números