IFPE

ELETRONICA BÁSICA 1

PROFESSOR: PEREIRA

REGULADORES DE TENSÃO

LIVRO(s): BOYLESTAD. **DISPOSITIVOS ELETRÔNICOS**. www.prenhall.com/boylestad_br

(Boylestad. Introdução à Análise de Circuitos www.prenhall.com/boylestad_br)

REGULADOR PARALELO

EXEMPLO 18.11

Determine a tensão regulada e as correntes do circuito para o regulador tipo paralelo da Figura 18.22.

Figura 18.22 Circuito para o Exemplo 18.11.

RESOLUÇÃO

A tensão na carga é:

Equação (18.19):
$$V_L = 8.2 \text{ V} + 0.7 \text{ V} = 8.9 \text{ V}$$

Para a carga dada:

$$I_L = \frac{V_L}{R_L} = \frac{8.9 \text{ V}}{100 \Omega} = 89 \text{ mA}$$

Com a tensão não-regulada em 22 V, a corrente através de R_S é:

$$I_S = \frac{V_t - V_L}{R_S} = \frac{22 \text{ V} - 8.9 \text{ V}}{120} = 109 \text{ mA}$$

tal que a corrente de coletor é:

$$I_C = I_S - I_L = 109 \,\mathrm{mA} - 89 \,\mathrm{mA} = 20 \,\mathrm{mA}$$

(A corrente através do Zener e da junção base-emissor do transistor é menor do que I_C de acordo com o beta do transistor.)

REGULADOR SÉRIE

EXEMPLO 18.8

Calcule a tensão de saída e a corrente no Zener do circuito regulador da Figura 18.14, para $R_L = 1 \text{ k}\Omega$.

Figura 18.14 Circuito para o Exemplo 18.8.

RESOLUÇÃO

$$V_o = V_Z - V_{BE} = 12 \text{ V} - 0.7 \text{ V} = 11.3 \text{ V}$$
 $V_{CE} = V_I - V_o = 20 \text{ V} - 11.3 \text{ V} = 8.7 \text{ V}$
 $I_R = \frac{20 \text{ V} - 12 \text{ V}}{220 \Omega} = \frac{8 \text{ V}}{220 \Omega} = 36.4 \text{ mA}$

Para $R_L = 1 \text{ k}\Omega$:

$$I_L = \frac{V_o}{R_L} = \frac{11,3 \text{ V}}{1 \text{ k}\Omega} = 11,3 \text{ mA}$$

$$I_B = \frac{I_C}{\beta} = \frac{11,3 \text{ mA}}{50} = 226 \,\mu\text{A}$$

$$I_Z = I_B - I_B = 36,4 \text{ mA} - 226 \,\mu\text{A} \approx 36 \text{ mA}$$

REGULADORES COM CI

CI REGULADOR 78XX

REGULADORES DE TENSÃO POSITIVA DA SÉRIE 7800

CÓDIGO DO CI	TENSÃO DE SAÍDA(V)	Vi MÍNIMO (V)
7805	+ 5	7,3
7806	+ 6	8,3
7808	+ 8	10,5
7810	+ 10	12,5
7812	+ 12	14,6
7815	+ 15	17,7
7818	+ 18	21,0
7824	+ 24	27,1

CI REGULADOR 79XX

REGULADORES DE TENSÃO NEGATIVA DA SÉRIE 7900

CÓDIGO DO CI	TENSÃO DE SAÍDA (V)	Vi MÍNIMO (V)
7905	- 5	-7,3
7906	- 6	-8,4
7908	- 8	- 10,5
7909	- 9	- 11,5
7912	- 12	- 14,6
7915	- 15	- 17,7
7918	- 18	-21,8
7924	- 24	- 27,1

CI REGULADOR 79XX

REGULADORES DE TENSÃO NEGATIVA DA SÉRIE 7900

CÓDIGO DO CI	TENSÃO DE SAÍDA (V)	Vi MÍNIMO (V)
7905	- 5	-7,3
7906	- 6	-8,4
7908	- 8	- 10,5
7909	- 9	- 11,5
7912	- 12	- 14,6
7915	- 15	-17,7
7918	- 18	- 21,8
7924	- 24	- 27,1

CI REGULADOR LM317

REGULADOR DE TENSÃO AJUSTÁVEL

COM CI LM317 (Vo regulada entre 1,2 V e 37 V)

A TENSÃO REGULADA DE SAÍDA É: $V_O = V_{REF} (1 + R_2/R_1) + I_{AJ} R_2$

ONDE NORMALMENTE: $V_{REF} = 1,25 \text{ V}$ $I_{AJ} = 100 \mu A$

CI REGULADOR AJUSTÁVEL

