9月16日, FATE 开源社区第13期圆桌会圆满落幕。本次圆桌会,由FATE 团队的资深架构师邓凯老师,为大家介绍FATE 的在线组件 FATE-Serving 2.1.0 版本。

接下来带大家回顾经典**问答环节**,为各位朋友答疑解惑。

#问答环节

serving-admin 的 service 那个页面的 weight 是什么?

weight 就是权重,是我们在服务治理的时候需要关心的一些问题,比方说一个模型有可能分布在三台机器上,但是三机器的资源是不一样的,可能两台机器资源非常好,一台机器 CPU 非常弱,这时候需要对流量进行一些分配,可以把那两台的 weight 分成 100,然后这边分成 50,那么,比较弱的这台机器分的流量就是 1/5。

不用 deploy 模型吗?

deploy 模型有。就是我刚才说的 FATE-Flow 推模型的时候分成两个步骤,一个是 load,一个是 bind。

能否借助 exchange?

exchange 是双方不同 party 之间的一个中间节点, 实际上我们会有其他的比这个功能更完善的组件。比方说, 需要考虑到计费、流控、鉴权、路由相关的功能, 比现在的 exchange 要更复杂, 是因为本身在线业务就更复杂, 它不像是离线传输的都是训练过程中产生的一些数据, 而我们在线预测的时候传过去的请求可能每一笔都要计费的。

看代码,guest 是会遍历 host,把相关信息发给 host,是修改了 guest 合并多个 host 结果那个阶段吗?

实际上我们在做 2.0.0 的时候就已经为多 host 预测预留了,所以之前的代码会遍历 host,但是模型离线推给在线的时候,模型数据是不支持多 host 预测的。所以,这次我们是在模型的结构上进行了改动,在线和离线也都进行了一些相关的改动,使其能相互适配。由于我们之前在 2.0.0 的时候,在机制上设置上已经支持了多 host 的预测,所以你会在代码上看到会遍历 host,把相关信息发给 host,就是这个意思。

想问一下,比如有 x1,x2,x3;guest 发起在线推理时,有 id,x1,x2;host 那边是提前上传 x3 特征值么,如果 host 没做对应上传,预测时会有什么提示么?

需要分成两种情况: 1、在 host 方 ID 匹配不到; 2、能够匹配到 ID,但是特征不完整,无特征或者特征很少。第一种情况建议由 host 方报错,判断逻辑可以在 host 的 adaptor 中去自定义开发,需要根据自己需求决定。第二种情况一般不报错。也可以加入自定义逻辑,比如: 拿不到特征或者特征命中率低于某个数值就认为这次预测请求失败。

鉴权这块是怎么设计呢?看默认是没有开启。

我们之前的投产的业务鉴权是放在了中间节点这一块,在两端的鉴权是做的比较弱的一块。鉴权现在是支持了 https,有颁发证书,双方安装各自相应的证书再进行一个鉴权。鉴权的重点是我们放在了中间节点的设计,就是 exchange 那一块的设计。

只部署了 2 台服务器 host、guest 能否做联邦学习, 还是只能做离线联邦?

是可以的。因为在线比离线的需要的资源少多了,如果是离线都能训练的话,在线就一点问题都没有。

这个支持计费的加强 exchange 什么时候发布?

我们现在做的一些 FATE-Cloud 的组件里面有,这些组件开源出去会有计费的一些功能,我们自己也有一些非开源的项目,计费相关的逻辑是比较完善的。

我理解 host 方的特征系统接入第三方的服务,在 serving 时就写好相关的接口。如果我想要更新这个第三方的特征服务,是可以不中断相关的服务么,也就是可以对第三方的特征系统热更新不?

FATE-Serving 不关心它的更新逻辑,只要保证你那边设计好接口,我通过这个接口能够访问能够正常就可以。比方说,更新特征的时候,你这个接口至少还是能够访问的,能不能支持热更新是在那个系统去决定,而不是 Fate-serving 决定,因为这个也没办法决定。

有没有单纯在在线预测节点做路由转发的 exchange 节点?

deploy 你现在用离线的 exchange 也是可以进行转发的,只不过只是一个转发功能,没有其他功能。

我想问一下多 host 的话,是不是也是要打包多个 host 的 extension 的 jar 包去替换。

如果你自己做实验,你是可以这么做的。正常情况下,如果投产的话,多 host 意味着是多个公司或者多个部门,获取特征的接口有可能是由不同的系统提供,然后这是需要各公司自行开发的。

纵向场景里面,进行在线的联邦推理两边数据不需要对齐吗。在实际的业务场景中,如果一方拿到了一条用户的实时数据,另一方并没有该用户的数据怎么办?

一般逻辑是对方没有数据、拿不到特征,这时候是报错的。(补充:报错逻辑可以在 host 的 adaptor 中去自定义开发 ,比如:拿不到特征或者特征命中率低于某个数值就认为这次预测请求失败,也可以做成 ID 匹配不到也不报错,需要根据自己需求决定。)

如何做多节点布署 (至少 3 个节点)?

只有在你自己去做实验的时候,你可能搞一个节点,实际上生产环境是至少三个节点,因为使用了 zookeeper,zookeeper 建议部署奇数个节点 1 个节点、3 个节点、5 个节点、7 个节点这样子。所以怎么部署多节点应该是比较简单一个问题,取决于你是怎么规划的。好比说,给你三台机器,你想怎么分配哪台机器部署什么组件,其实你怎么部署都可以,因为它通过了 zookeeper 寻址,所以只要端口不冲突部署在哪都无所谓。

麻烦问下 exchange 是什么角色,之前没有遇到过。

我想应该在离线的时候已经用过 rollsite 了,对吧?之前我们经常使用 rollsite 来进行做进行一个转发的。在不同公司有可能它是不同的网络,如果两个公司并不知道对方的存在,它需要一个中间角色进行转发,如果是双方都知道的话,没有必要做这个事情的,就没有必要 exchange 这个角色,它就是一个路由转换。(补充说明:在生产环境中,有可能不同的参与方属于不同的公司,公司与公司之间的网络打通是一个比较繁重的事情,涉及到各个公司的网络策略、带宽分配、安全审计等等事物,exchange 就是把整个网络变成一个星型网络,由负责 exchange 的公司负责对接各个合作方,完成上述工作,这样就减轻了各合作方自行互联的负担。)

多节点布署 (至少 3 个节点) 的相关资料望能提供一下!

其实在文档上我们之前有一个类似的图,可以看一下,如果说觉得不够,可以在群里面给我们提一些建议,我们这边会安排同学去更新文档。

生产环境部署,更推荐 exchange 还是非 exchange? 还没部署过 exchange 方式?

需要知道生产环境是你们公司内部不同的部门之间进行一个交互,还是不同的公司之间进行一个交互。如果是不同公司,倾向于有 exchange;如果是在内部的话是没必要的。如果在内部交互中使用,只是多一点交互,不能带来特别多的好处。

老师,请问进行一次在线预测的时间大约是多少?

这个是不定的。可以回答一下我们目前线上的一些情况,大概是在100多毫秒,这是跨了两个公司的预测。因为跨了公网,有可能会耗时严重一点。如果是在公司内部不同部门之间进行内网的交互,应该会好很多。在线预测的耗时很大部分是放在 host 那边获取特征那一步,获取特征时候,如果系统做的不够好的话,它的延迟高,整条链路的延迟就很高。

一套集群如何加载多个模型? 起不同的服务 ID 可以吗?

服务 ID 是跟模型是——对应的,如果是多个模型肯定是不同的服务 ID,如果是相同的服务 ID 就是直接覆盖了。不同的模型,相同的服务 ID,就可能会导致不正确的选择模型,所以不同的模型一定是不同的服务 ID。

最新版本 FATE-Serving 对 FATE 的版本有要求吗?最低版本是多少呢?还是不限版本?

近一年发布的版本都是兼容的,最早以前的(如,两年前的)不一定,因为没有测过。

直观想,两个纵向联邦参与方能够同时拿到一个用户数据的可能性很小,如果一方拿到数据,另一方没有就报错的话,那在线 推理的成功率会不会很低?

这是在你选择合作方的时候是需要考虑的问题。一般来说需要 host 那一方的数据比较全面,因为如果你拿不到特征,训练的模型只有一半起作用,这个效果也不会很好。如果说双方的数据非常少,传来传去都找不到自己的那些 ID 相关的特征,做联邦学习也没有什么太大的意义。一定是有一方的数据非常全,做这个才有意义。

FATE-Serving2.1.0 更新到 kubefate 上了么?

目前没有。

支持 dsl v2 训练出来的模型吗?

FATE-Serving 版本 >=2.0.4, FATE 版本>=1.5.1 的话, dsl v2 训练是支持 Serving 调用的,但 dsl v2 推到 Serving 前,需要 先 deploy 训练模型去指定生成的预测推理工作流。FATE dsl v1 和 dsl v2 的一个比较大的区别是 v1 会帮你自动推导预测工作流,但导致的问题是当模型训练完之后,预测工作流就不可变了,所以 dsl v2 通过去掉自动推导、增加 deploy 操作由用户灵活去决定预测的工作流。

为什么不支持横向模型的预测?

横向模型训练完成后,每一方都会得到完成的模型,这个和纵向逻辑是不一样的。纵向联邦无论是离线训练还是在线推理阶段,都是需要双方协助的,而横向联邦则是离线训练完成后,在线阶段每一方拿到完整模型,可以单独用自己的数据来直接进行推理。而 FATE 里面横向联邦逻辑回归、GBDT 或者 NN,在推理阶段,可以使用第三方引擎来进行推理。基于这种考虑,FATE-v1.7会推出横向模型转成第三方可用的模型文件功能,届时用户可以使用该模型文件,再导入到第三方引擎去做推理即可。

以下为本次圆桌会的部分内容介绍,添加小助手 (FATEZS001) 可获取详细资料:

获取会议 PPT, 或对圆桌会还有别的疑问? 欢迎联系 FATE 开源社区助手获得帮助。

原文链接: https://mp.weixin.qq.com/s/dDkZS-wyc_Btk1ATBbLqXA