

一切先從讀檔開始

```
Read 82.2% of 656711 rows
Read 656711 rows and 21 (of 21) columns from 0.108 GB file in 00:00:03
```


訂定主題

探索性資料分析一以YouBike為例

- ·專案主題:捷運市府站Youbike租借分析
- ・ 小組成員: Johnson (DSP C.K.O.)
- · 角色扮演:YouBike業者御用資料科學家
- · 研究目的:捷運市府站為規模最大的YouBike場站(共180個停車格),尖峰時段期間車輛的平均出借變化量達25輛,透過該場站與週邊場站租借狀況以及天氣資料的交叉比對,找出使用者行為以提供進一步加值服務的規劃。

規劃流程:

- · 訂定主題
- 資料探索
 - 市府站 vs. 天氣
 - 市府站 vs. 週邊場站
 - 探索關鍵因子
- 看圖說故事
- 決策建議

整理一下資料

市府站車輛數基本數據

```
# 有車率
df1 <- group by(ubike1, date, hour) %>%
  summarise(rate.sbi=mean(avg.sbi)/tot) %>%
  group by(hour) %>%
  summarise(rate.sbi=mean(rate.sbi))
# 設定畫圖的字體
thm <- theme gray(base family = "STHeiti") +
  theme(text=element text(size=18))
ggplot(df1, aes(x=hour, y=rate.sbi)) +
  geom bar(stat="identity") +
  ggtitle("捷運市政府站") +
  labs(x="時間", y="有車率") +
  thm +
  theme(legend.title=element blank()) +
  scale y continuous(labels = percent)
```


市府站車輛數基本數據

右圖為捷運市府站每天有車率的變化,大約晚間十點至隔天凌晨兩點間有車率(當時段平均車輛數/總車輛數)最低,係因此時YouBike公司將車輛回收,於清晨三點左右陸續將車輛補回。由圖可知三點與四點時有車率大幅增加兩次,推測是市府站規模較大需要兩次小貨車補給(每次約補給30輛車)。在上午七點左右,有車率開始明顯下降,直至上午十點到達低點,即29%。之後有車率略微增加,直至下午一點達到當日次高峰。可以發現,下午三點之後有車率再度明顯下降,直至晚間九點。

場站有車率與晴雨關係

- · 定義:有車率 (rate.sbi) 為 平均車輛數 / 總停車格數 (avg.sbi/tot)
- · 定義:是否下雨(is.rain),當該時段累積雨量大於1mm訂為雨天,反之為晴天 依 日期 (date)、時間(hour)、是否下雨(is.rain)做分組(group_by)計算 平均有車率(rate.sbi = mean(avg.sbi/tot)),得到下表:

HOUR	IS.RAIN	RATE.SBI
8	晴天	0.412
8	雨天	0.654
9	晴天	0.260
9	雨天	0.571
10	晴天	0.222
10	雨天	0.537


```
10/60
```


長條圖範例

首先用長條圖 (bar chart) 來探索這份報表,當欄位大於二時,將依賴顏色做區隔,一般而言長條圖有以下變型:

- Dodge plot
- Facet panels
- · Pyramid (金字塔圖)

Dodge Plot

```
Hint: geom_bar(stat="identity", position="dodge")
```

```
ggplot(df2, aes(x=hour, y=rate.sbi, fill=is.rain)) +
geom_bar(stat="identity", position="dodge") +
labs(x="時間", y="有車率") +
thm +
theme(legend.title=element_blank())
```


Facet panels

```
Hint: facet_grid(y~.) or facet_grid(.~x)
```

```
ggplot(df2, aes(x=hour, y=rate.sbi, fill=is.rain)) +
    geom_bar(stat="identity", position="dodge") +
    labs(x="時間", y="有車率") +
    thm +
    theme(legend.title=element_blank()) +
    facet_grid(is.rain~.)
```


Facet panels

```
Hint: facet_grid(y~.) or facet_grid(.~x)
```

```
ggplot(df2, aes(x=hour, y=rate.sbi, fill=is.rain)) +
geom_bar(stat="identity", position="dodge") +
labs(x="時間", y="有車率") +
thm +
theme(legend.title=element_blank()) +
facet_grid(.~is.rain)
```


17/60

Pyramid

Hint: filter(df2, is.rain=="晴天"), and coord_flip()

19/60

熱點圖

熱點圖 (heatmap) 是用顏色深淺呈現數值大小的視覺化。

Hint: geom_tile()

```
ggplot(df2, aes(x=hour, y=is.rain, fill=rate.sbi)) +
geom_tile() +
scale_fill_gradient(name="有車率", low="white", high="midnightblue") +
labs(x="時間", y="天氣") +
thm
```


平行座標圖

平行座標圖 (Parallel coordinate plot) 多用於呈現多欄位的資料視覺化,強調欄位的順序性,特別適合用在因果關係的陳述。譬如:行業別->是否上DSP課程->職場表現。

Hint: library(GGally) and ggparcoord()

平行座標圖

與鄰近場站的關係

試著探索市府站與鄰近場站的關係,此時需要透過經緯度計算場站與場站之間的距離。透過geosphere套件中的distm函數可以批次計算所有場站之間的兩兩距離,整理得到下表,離捷運市府站最近的場站依序是台北市政府(438m),與雅國中(484m)...。

Hint: library(geosphere), distm, group_by,

distinct

與鄰近場站的關係

```
tmp <- group_by(ubike, sno, sna, sarea, lat, lng) %>% distinct
dist <- round(distm(x=tmp[, c("lng","lat")])[,1])
df5 <- tmp %>% select(sno, sna, sarea, lat, lng) %>%
  cbind(dist) %>% arrange(dist) %>% top_n(10, wt = -dist)
```


與鄰近場站的關係

SNO	SNA	SAREA	LAT	LNG	DIST
1	捷運市政府站(3號出口)	信義區	25.041	121.568	0
3	台北市政府	信義區	25.038	121.565	438
5	興雅國中	信義區	25.037	121.569	484
25	永吉松信路口	信義區	25.045	121.572	659
6	世貿二館	信義區	25.035	121.566	718
150	松德公園	信義區	25.037	121.573	734
138	捷運永春站(2號出口)	信義區	25.041	121.575	754
8	世貿三館	信義區	25.035	121.564	759
113	仁愛逸仙路口	信義區	25.038	121.561	763
4	市民廣場	信義區	25.036	121.562	778

地圖應用範例

利用ggmap套件導入google map作為底圖將場站位置標 示出來。

Hint: library(ggmap), map <- get_map("Taipei"); ggmap(map), geom_point</pre>

地圖應用範例

觀察鄰近捷運市府站的10個YouBike場站,每一天有車率與使用率的狀況。以有車率為例,透過觀察可以發現{興雅國中,台北市政府,市民廣場,世貿三館,世貿二館}時間分佈有相似的狀況,{永吉松信路口,松德公園,捷運永春站}也有相似的情況,而捷運市府站介於兩群之間,仁愛逸仙路口則是一枝獨秀。

- · 使用率的熱點圖可以看到什麼趨勢?
- · 有沒有自動排序的統計方法?


```
tmp1 <- filter(ubike, sno%in%df5$sno) %>%
 mutate(is.rain=rainfall>1) %>%
 mutate(is.rain=factor(is.rain, levels=c(FALSE, TRUE),
                       labels = c("晴天","雨天"))) %>%
 mutate(is.weekday=strftime(date, "%u")<6) %>%
 mutate(is.weekday=factor(is.weekday, levels=c(FALSE, TRUE),
                          labels=c("平日","假日"))) %>%
 mutate(is.rushhours=cut(hour, breaks=c(0, 4, 7, 24), right=FALSE)) %>%
  group by(date, sno, sna, is.weekday, is.rushhours, is.rain, hour, tot) %>%
  summarise(rate.sbi=mean(avg.sbi)/tot, rate.used=mean(max.sbi-min.sbi)/tot)
df6 <- tmp1 %>%
  filter(is.weekday=="平日", is.rain=="晴天") %>%
  group by(sno, sna, sna, hour) %>%
  summarise(rate.sbi=mean(rate.sbi), rate.used=mean(rate.used))
```



```
ggplot(df6, aes(x=hour, y=sna, fill=rate.sbi)) + geom_tile() + thm + theme(legend.position="bottom") + scale_fill_gradient(name="有車率", low="white", high="lawngreen") + labs(x="時間", y="") + theme(axis.text = element_text(size = 13, color="darkgreen"))
```



```
ggplot(df6, aes(x=hour, y=sna, fill=rate.used)) + geom_tile() + thm + theme(legend.position="bottom") + scale_fill_gradient(name="使用率", low="white", high="Navy") + labs(x="時間", y="") + theme(axis.text = element_text(size = 13, color="darkblue"))
```


heatmap 排序

當heatmap的x軸或y軸為類別變數時,可以經由階層分群法 (hierarchical clustering) 做行或列的排序。

- · 首先我們需要一個 場站對時間 (sna ~ hour) 的有車率 (rate.sbi) 矩陣 (dcast)
- · 使用階層分群演算法 (hclust)
- · 畫出分群樹狀圖 (ggdendrogram)
- · 取得排序 (order)

heatmap 排序

Hint: library(reshape2), library(ggdendro)

```
dat <- dcast(df6, sna~hour, value.var="rate.sbi")
rownames(dat) <- dat[,1]
dat <- dat[,-1]</pre>
```


	7	8	9	10	11	12
捷運市政府站(3號出口)	0.576	0.539	0.488	0.444	0.460	0.464
捷運永春站(2號出口)	0.273	0.214	0.188	0.198	0.162	0.152
仁愛逸仙路口	0.215	0.169	0.141	0.142	0.132	0.196
世貿二館	0.153	0.218	0.378	0.526	0.766	0.762
世貿三館	0.146	0.197	0.272	0.401	0.465	0.468
市民廣場	0.198	0.253	0.311	0.387	0.490	0.511
松德公園	0.249	0.197	0.139	0.076	0.051	0.037
台北市政府	0.256	0.246	0.303	0.394	0.497	0.625
興雅國中	0.203	0.301	0.434	0.558	0.632	0.683
永吉松信路口	0.275	0.223	0.151	0.075	0.044	0.047


```
hc.sna <- hclust(dist(dat))
ggdendrogram(hc.sna, rotate = TRUE) + thm + labs(x="", y="")</pre>
```



```
# hc.sna$order
sna.order <- data.frame(order=1:10, sna=hc.sna$labels[hc.sna$order])
kable(sna.order, format = "html")</pre>
```

ORDER SNA

- 1 捷運永春站(2號出口)
- 2 松德公園
- 3 永吉松信路口
- 4 世貿三館
- 5 市民廣場
- 6 世貿二館
- 7 台北市政府
- 8 興雅國中
- 9 捷運市政府站(3號出口)
- 10 仁愛逸仙路口


```
df7 <- df6
df7$sna <- factor(df7$sna, levels=(sna.order[,2]))
ggplot(df7, aes(x=hour, y=sna, fill=rate.sbi)) + geom_tile() + thm +
    theme(legend.position="bottom") +
    scale_fill_gradient(name="有車率", low="white", high="lawngreen") +
    labs(x="時間", y="") +
    theme(axis.text = element_text(size = 13, color="darkgreen"))</pre>
```


對時間做排序

```
hc.hour <- hclust(dist(t(dat)))
ggdendrogram(hc.hour) + thm + labs(x="", y="")</pre>
```


對時間做排序

```
hour.order <- data.frame(order=1:24, sna=hc.hour$labels[hc.hour$order])
df7$hour <- factor(df7$hour, levels=(hour.order[,2]))
ggplot(df7, aes(x=hour, y=sna, fill=rate.sbi)) + geom_tile() + thm+
    theme(legend.position="bottom") +
    scale_fill_gradient(name="有車率", low="white", high="lawngreen") +
    labs(x="時間", y="") +
    theme(axis.text = element_text(size = 13, color="darkgreen"))
```


對時間做排序

有車率 0.2 0.4 0.6

試著對使用率進行排序

```
dat <- dcast(df6, sna~hour, value.var="rate.used")
rownames(dat) <- dat[,1]
dat <- dat[,-1]
hc.sna <- hclust(dist(dat))
hc.hour <- hclust(dist(t(dat)))
df8 <- df6
df8$sna <- factor(df8$sna, levels = hc.sna$labels[hc.sna$order])
df8$hour <- factor(df8$hour, levels = hc.hour$labels[hc.hour$order])
ggplot(df8, aes(x=hour, y=sna, fill=rate.used)) + geom_tile() + thm+
    theme(legend.position="bottom") +
    scale_fill_gradient(name="使用率", low="white", high="Navy") +
    labs(x="時間", y="") +
    theme(axis.text = element_text(size = 13, color="darkblue"))</pre>
```


試著對使用率進行排序

使用率

0.2 0.4 0.6

平行座標圖常用來展示不同群組在諸多變數間的差異性,當群組分類方式未知時,可以利用機器學習 (machine learning) 中的非監督式學習 (unsupervised learning),幫資料做分群。分群之後再藉由平行座標圖來呈現資料的脈絡。

- · 選擇平日, 晴天, 7-21時鄰近市府站的資料進行分析
- · 以場站大小 (tot)、有車率 (rate.sbi)、使用率 (rate.used)三個變數做分群
- · 使用K-means演算法分3群
- · 將分群結果視作新的變數畫平行座標圖


```
tmp2 <- filter(tmp1, is.weekday=="平日", is.rain=="晴天", hour>6 & hour<22) %>%
  group_by(sno, sna, tot) %>%
  summarise(rate.sbi=mean(rate.sbi), rate.used=mean(rate.used))
km <- kmeans(tmp2[,3:5], 3)
km</pre>
```

```
K-means clustering with 3 clusters of sizes 4, 5, 1

Cluster means:
    tot rate.sbi rate.used
1 65.0 0.3678672 0.1770861
2 35.2 0.2252222 0.2454698
3 180.0 0.3176892 0.1154122

Clustering vector:
[1] 3 2 1 1 1 1 2 2 2 2 2

Within cluster sum of squares by cluster:
[1] 300.01430 92.84621 0.000000
(between SS / total SS = 97.8 %)
```

```
df9 <- group_by(tmp2) %>%
    transmute(sna, tot, rate.sbi, rate.used,
        group=factor(km$cluster)) %>%
    arrange(group)

ggparcoord(as.data.frame(df9), columns = c(1,2,3,4), groupColumn = 5,
        scale="uniminmax") +
    geom_line(size=1) + thm + theme(legend.title=element_blank()) +
    scale_x_discrete(labels=c("場站","總停車格","有車率","使用率")) +
    labs(x="", y="")
```


SNA	ТОТ	RATE.SBI	RATE.USED	GROUP
市民廣場	60	0.366	0.138	1
興雅國中	60	0.385	0.162	1
世貿二館	80	0.413	0.254	1
世貿三館	60	0.307	0.154	1
台北市政府	40	0.362	0.240	2
永吉松信路口	30	0.193	0.262	2
仁愛逸仙路口	38	0.175	0.191	2
捷運永春站(2號出口)	30	0.234	0.355	2
松德公園	38	0.163	0.178	2
捷運市政府站(3號出口)	180	0.318	0.115	3

小明想要玩遙控飛機

地圖應用練習

小明喜歡玩遙控飛機,想利用週末玩,在中和希望找一個風比較小的地點,請幫他在地圖上圈出每個腳踏車站的位置,並且以圓圈大小表示下午3點的風速,透明度表示濕度,顏色表示腳踏車平均車數。


```
55/60
```

```
ubike3<- filter(ubike,sarea=='中和區', hour==15) %>%
mutate(weekday=weekdays(as.Date(date))) %>%
filter(weekday=="周六"|weekday=="周日") %>%
group_by(sna) %>%
summarise(avg_wind=mean(max.anemo),avg_sbi=mean(avg.sbi),
avg_hu=mean(humidity),lng=unique(lng),lat=unique(lat))
```


參數解釋

aes(x=lng,y=lat,size=avg_wind,alpha=avg_hu,color=avg_sbi)

- · X和Y為經緯度
- · size以avg_wind為依據
- · alpha以avg_hu為依據
- · color以avg_sbi
- · fill為填滿空間的顏色
- · shape控制點的形狀
- · 參數放在aes外的話,必須直接填入數值 (exp: size=5)

參數解釋

- · scale_XXX控制各項參數的範圍
- geom_text
 - 將站名顯示於地圖上
 - vjust與hjust分別控制垂直與水平方向的微調
 - facebold:
 - 字型樣式
 - 1代表標準
 - 2代表粗體
 - 3代表斜體
 - 4代表斜粗體

可能會用到的小撇步

```
nankang=geocode('南港軟體園區',source = "google")
nan_map=get_map(location=c(lon=nankang$lon,lat=nankang$lat),zoom=15,maptype = 'roadmap',source
ggmap(nan_map)
```


Team Project