### **Brielle Chenier**

bchenier@uwaterloo.ca

#### **EDUCATION**

**University of Waterloo, BASc in Mechatronics Engineering** 

2020 - 2025

- Undergraduate Research Assistant in Wildfire Research within Indigenous Communities
- Spring 2022 Engineering Society President Award

#### **SKILLS**

- CAD Software: Certified Solidworks Professional (CSWP), Catia, Onshape, AutoCAD
- Mechanical Design: Ansys, 3D Printing, CNC, Waterjet, GD&T.
- Software: Python, Arduino, C++, Git, Java, LabVIEW

#### **EXPERIENCE**

**Mechanical Engineering Intern,** Formlabs

 Designing components for the next generation SLA printer Somerville, United States

Mechanical Engineering Intern, Tesla

• Redesigned O-ring seal to decrease install force by 80%, tested with Instron.

• Calculated heat generation, long term joint resistance and used metrology data to ensure proper performance and manufacturing feasibility.

- Created a test plan and performed 90 degree peel tests to measure polymer adhesion.
- Designed waterproof face seal in Catia and analyzed compression range in Ansys.

Mechanical Technical Lead, Waterloo Aerial Robotics Group

• Integrated mechanical system with electrical and firmware for competition airframes.

• Designed quadcopter frame in SolidWorks to carry a 2kg payload and fly 3km.

 Built and performed calculations to ensure sufficient lift, flight time, and appropriate landing gear for drones.

• Designed device to grab, pick up and deploy medical packages for fixed-wing aircraft.

**Mechanical Engineering Intern - Battery Team,** Beta Technologies *⊘* 

• Designed fixtures for more efficient battery pack assembly and testing in Onshape

• Performed tests to ensure battery pack reliability during crashes and short circuits.

• Created a program in Python to automatically graph and compare results between tests.

- Analyzed battery crash test results and expected deformations using Ansys.
- Created a demo to demonstrate battery technology internally and at tech conferences.

Mechanical Team Member, University of Waterloo Solar Car Design Team

- Designed tools to aid in car manufacturing and increase efficiency during assembly.
- Assembled carbon fiber and Nomex to create 4 different composite layups for car outer structure and bottom panel.
- · Researched engineering techniques for welding and built welding jigs for car mainframe to support four passengers.

#### **PROJECTS**

**Friendship Lamp,** Color Changing Lamp *∂* 

- Developed a program for a Raspberry Pi lamp to connect via Firebase to a buddy lamp and display matching colors in real-time.
- Created a website in React to remotely control lamp colors.
- Designed lamp case in SolidWorks and 3D printed to house LEDS

September 2022 -

May 2023 – Present

December 2022 Palo Alto, United States

September 2020 -

August 2022 Waterloo, ON

January 2022 – April 2022 **Burlington, United States** 

September 2020 – May 2021

Waterloo, ON

October 2020 – February 2021

# **Undergraduate Research Assistant — Wildfire Preparedness in Indigenous Communities**

- Reviewed previous indigenous evacuations and case studies to add to a comprehensive list of tasks for wildfire evacuation.
- Sorted over 100 tasks into roles and timelines, including the communication needed between roles
- Created an interactive web app with React that makes the research data easily accessible and digestible for communities to aid in evacuation preparedness

### Mind Map of Role Interaction



### **Web App**

#### Wildfire Preparedness



Clickable map with icons for each role (prototype image above) that will direct to a page with further tasks

#### **Wildfire Preparedness**

Back



Clickable timeline and icons for residents to go through and understand specific tasks and order they should be preformed

### **WARG 2022 Competition Drone**

- 4kg drone capable of carrying 2kg payload
- Designed in SolidWorks and prototype made with laser cutting fiber board, final design made with carbon fiber
- 3D printed brackets for arm to keep them rigid during flight as well as distribute battery load
- Attachment spots for camera gimbal, grabber and electrical components

### **Early Version**





### **Final Version**





### **Friendship Lamp**

- Developed a program for a Raspberry Pi lamp to connect via Firebase to a buddy lamp and display matching colors in real-time
- Created a website in React to remotely control lamp colors
- Designed lamp case in SolidWorks and 3D printed to house LED strips





## Friendship Lamp



### FIRST Robotics, Team 2412: Climb System

- Aluminum extrusion rails driven by chain to lift 150lb robot up a 45cm step
- 6 bearings held in each extrusion to ensure rails stay in correct position and do not bend
- Motor behind bottom bracket to control wheels and move robot forward during climb
- Sheet metal parts made with a waterjet and bent







