Emission Sector Contributions to Air Quality and Public Health in China from 2010–2050 using Emulators

60

Percentage emissions, RES (%)

40

80 100 120 140

Images $\underline{1}$, $\underline{2}$, and $\underline{3}$

50

100

Simulator, annual-mean PM2.5

concentrations ($\mu g \ m^{-3}$)

150

Motivation

Problem

- Atmospheric models are useful, but slow and expensive.
 - Compromises:
 - Reduce the model accuracy (e.g., reduced complexity, coarser resolution, increase parameterisation).
 - Reduce the model precision (e.g., reduced precision chips).
 - Reduce the number of experiments.
 - Use a bigger computer.

Alternative solution

- Emulate these atmospheric models with machine learning models.
 - Trained on simulation data to learn statistical associations between inputs and outputs.
 - Cheaper and faster to run, enabling many more experiments.
- Previous studies have used emulators to:
 - Predict air quality, weather, and climate.
 - Represent processes, such as convection and chemistry.
 - Explore uncertainties and sensitivities.

Machine learning

- Associational (not explanatory) knowledge.
- Useful tool for:
 - Prediction problems (patterns recognition, induction).
 - Problems cannot program (e.g., image recognition).
 - Faster approximations to problems that can program (e.g., spam classification).

LEARNING

- Classical.
- Supervised.
- Regression.

CLASSICAL MACHINE LEARNING

Methods

Problem

- Identify.
- *Input(s).*
- Output(s).

Simulations

- Design.
- Run.
- Evaluate.

- Design.
- Optimise.
- Evaluate.
- Predict.

Problem

- Identify.
 - Predict air quality from emission changes in China.
 - There have been recent reductions in emissions and fine particulate matter ($PM_{2.5}$) concentrations in China.
 - However:
 - PM_{2.5} exposure remains high.
 - Ozone (O_3) exposure is increasing.
 - The associated disease burden is substantial.
 - >10% healthy life lost to disease in 2019 (GBD 2019, 2020).
 - Goal: Explore how emission scenarios can improve health.
- Input(s).
 - 5 key anthropogenic emission sectors.
 - Residential (RES), industrial (IND), land transport (TRA), agriculture (AGR), and power generation (ENE).
- Output(s).
 - PM_{2.5} concentrations.
 - O₃ concentrations.

Simulations

UNIVERSITY OF LEEDS

- Design.
 - Maxi-min Latin hypercube spacefilling designs to select the scalings to apply to the inputs.
 - Near-random sample of parameter values (0-150%) from all input combinations.
 - Independently for both the training and test data.
- Run.
 - Complex air quality model (WRFChem).
 - 1 year for the control (evaluate).
 - 50 years of training simulations.
 - 5 years of testing simulations.

Simulations

- Evaluate.
 - Evaluate the control run against measurements to ensure it accurately predicts outputs.
 - Normalised mean bias factor (NMBF): -0.05 (PM_{2.5}) and 0.39 (O₃).
 - Tuned to measurements to improve accuracy.
 - NMBF: 0.02 (PM_{2.5}) and 0.03 (O₃).

- Design.
 - Gaussian process regressor.
 - Notice trends well (when similar inputs have similar outputs).
 - Flexible and accurate with smaller data sets.
 - Prior: Output (Gaussian) = function(input)
 - Posterior: Output (Gaussian) = function(input and observations)

 Gaussian probability distribution

 Bayesian inference

Rasmussen, C. E., & Williams, C. K. I. (2006) Gaussian Processes for Machine Learning

- 1 emulator per grid cell from the simulator (30,556 in total).
- Trained on the 50 years of simulator data.

- Optimise.
 - Pre-process inputs to make more Gaussian-like.
 - Optimised hyperparameters (for accuracy) using genetic programming (via automated machine learning tool).
- Evaluate.
 - Predict unseen test data and evaluate against simulated values.
 - Coefficient of determination $(R^2) = 0.999$ for both outputs.

- Predict.
 - Results: 2010–2020
 - PM_{2.5} exposure
 - Peaks in 2012, at 52.8 μ g m⁻³.
 - Reduces by 36% in 2020, to 33.5 μ g m⁻³, reaching NAQT.
 - 187,800 (95UI: 179,900–194,200) avoided deaths per year.
 - 58% from industry and 29% from residential emissions.

- Results: 2020–2050 (Emission scenarios from ECLIPSEv6b)
 - BASE-CLE: baseline climate with current air quality legislation.
 - BASE-MFR: baseline climate with best air pollution technologies.
 - SDS-MFR: sustainable development climate with best AP tech.
 - $PM_{2.5}$ exposure:
 - -15% in BASE-CLE, -36% in BASE-MFR, and -39% in SDS-MFR.
 - PM_{2.5} disease burden:
 - +17% in BASE-CLE, -1% in BASE-MFR, and -3% in SDS-MFR.
 - Population ageing increasing disease susceptibility.
 - Most of benefits by 2030, mainly from reductions in IND and RES.
 - After 2030, other sources more important.

Summary

Problem

 Atmospheric models have large computational demands, which limit the number of experiments.

One solution

- Emulate these atmospheric models using machine learning models.
 - Predict outputs from specific statistical associations with inputs.
 - Accurate, flexible, fast, and cheap (once setup).

Application

- Predict air quality from emission changes in China.
- Emulators predicted 99.9% of the variance in air quality.
- Large public health benefits by 2030 possible by best air pollution technologies in industry and residential sectors.
- After 2030, other sectors increase in importance.

Further information

- Short-term air quality prediction: <u>Code</u> and <u>Paper</u>.
- Long-term air quality prediction: <u>Code</u> and Papers (in prep.).

Luke Conibear 12