Post-Quantum TLS without handshake signatures

Peter Schwabe, Douglas Stebila, Thom Wiggers

TLS 1.3 Handshake

Client		Server
TC	P SYN	static (sig): pk _S , sk _S
TCP S	YN-ACK	
$x \leftarrow \mathbb{Z}_q$	g^x	
		$y \leftarrow \mathbb{Z}_{0}$
		$y \leftarrow \mathbb{Z}_0$ $ss \leftarrow g^{xy}$
		$K \leftarrow KDF(ss$
g^y , AEAD $_K$ (cert[pk $_S$] Sig(sk $_S$, transcript) key confirmation)		
$AEAD_{K'}(key\ confirmation)$		
AEAD _{K"} (ap	plication dat	a)
AEAD _{K'''} (ap	plication dat	ca)

TLS 1.3 Handshake

Client		Server	
	TCP SYN	static (sig): pk_S , sk_S	
	TCP SYN-ACK		
$x \leftarrow \mathbb{Z}_q$	g^x		
		$y \leftarrow \mathbb{Z}_q$	
		$y \leftarrow \mathbb{Z}_q$ ss $\leftarrow g^{xy}$	
		$K \leftarrow KDF(ss)$	
g^y , AEAD $_K$ (cert[pk $_S$] Sig(sk $_S$, transcript) key confirmation)			
$AEAD_{K'}(key\ confirmation)$			
Al	$EAD_{K''}(application\;d)$	ata)	
AE	$AD_{K'''}(application\ d)$	lata)	

■ Key exchange: Diffie—Hellman

Authentication: Signatures

Post-Quantum TLS 1.3 Handshake

- Key exchange: Key-Encapsulation Mechanisms
- Authentication: Post-Quantum Signatures

■ Put post-quantum KEMs in TLS Key exchange

■ Put post-quantum KEMs in TLS Key exchange ✓

- Put post-quantum KEMs in TLS Key exchange ✓
 - ia.cr/2019/858, ia.cr/2019/1447

- Put post-quantum KEMs in TLS Key exchange ✓
 - ia.cr/2019/858, ia.cr/2019/1447
- Put post-quantum signatures in TLS authentication

- Put post-quantum KEMs in TLS Key exchange ✓
 - ia.cr/2019/858, ia.cr/2019/1447
- Put post-quantum signatures in TLS authentication ✓

- Put post-quantum KEMs in TLS Key exchange
 - ia.cr/2019/858, ia.cr/2019/1447
- Put post-quantum signatures in TLS authentication ✓
 - ia.cr/2020/071

- Put post-quantum KEMs in TLS Key exchange ✓
 - ia.cr/2019/858, ia.cr/2019/1447
- Put post-quantum signatures in TLS authentication
 - ia.cr/2020/071
- Evaluate performance

- Put post-quantum KEMs in TLS Key exchange
 - ia.cr/2019/858, ia.cr/2019/1447
- Put post-quantum signatures in TLS authentication
 - ia.cr/2020/071
- Evaluate performance ✓
 - See the above

- Put post-quantum KEMs in TLS Key exchange
 - ia.cr/2019/858, ia.cr/2019/1447
- Put post-quantum signatures in TLS authentication
 - ia.cr/2020/071
- Evaluate performance ✓
 - See the above

Done, right?

Post-Quantum signatures are...

Post-Quantum signatures are...

quite a bit bigger than KEMs

Post-Quantum signatures are...

- quite a bit bigger than KEMs
- quite a bit slower than KEMs

Post-Quantum signatures are...

- quite a bit bigger than KEMs
- quite a bit slower than KEMs
- quite a bit of extra code

Use PQ KEMs for

authentication instead

Definition (Key Encapsulation Mechanism (KEM))

- (pk, sk) ← KEM.Keygen()
- (ss, ct) ← KEM.Encapsulate(pk)
- ss ← KEM.Decapsulate(ct, sk)

Example

KEM

Definition (Key Encapsulation Mechanism (KEM))

- (pk, sk) ← KEM.Keygen()
- (ss, ct) ← KEM.Encapsulate(pk)
- ss ← KEM.Decapsulate(ct, sk)

Example

KEM

Definition (Key Encapsulation Mechanism (KEM))

- (pk, sk) ← KEM.Keygen()
- (ss, ct) \leftarrow KEM.Encapsulate(pk)
- ss ← KEM.Decapsulate(ct, sk)

Example

Definition (Key Encapsulation Mechanism (KEM))

- (pk, sk) ← KEM.Keygen()
- (ss, ct) \leftarrow KEM.Encapsulate(pk)
- ss ← KEM.Decapsulate(ct, sk)

Example

KEM authentication in TLS

Problem

- In TLS, the client doesn't already have the public key of the server!
- To put this in TLS 1.3, we need an extra roundtrip!
- TLS 1.3 tried very hard to finish the handshake a single roundtrip.

KEM authentication in TLS

Problem

- In TLS, the client doesn't already have the public key of the server!
- To put this in TLS 1.3, we need an extra roundtrip!
- TLS 1.3 tried very hard to finish the handshake a single roundtrip.

Solution

Implicitly authenticated key exchange: the client encapsulates to the server's long-term public key but does not wait until they get the MAC before sending data!

KEM authentication in TLS

Problem

- In TLS, the client doesn't already have the public key of the server!
- To put this in TLS 1.3, we need an extra roundtrip!
- TLS 1.3 tried very hard to finish the handshake a single roundtrip.

Solution

Implicitly authenticated key exchange: the client encapsulates to the server's long-term public key but does not wait until they get the MAC before sending data!

Seen in HMQV (DH), BCGP09 & FSXY12 (KEMs), ..., Signal, Noise, Wireguard, ...

KEMTLS

- Ephemeral key exchange
- Static-KEM authentication
- Combine shared secrets
- Allow client to send application data before receiving server's key confirmation

Client

Server

TCP SYN

static (KEM_s): pk_S, sk_S

TCP SYN-ACK

$$(pk_e, sk_e) \leftarrow KEM_e.Keygen()$$

pk

 $(ss_e, ct_e) \leftarrow KEM_e$. Encapsulate (pk_e) $K_1, K_1' \leftarrow \mathsf{KDF}(\mathsf{ss}_e)$

 ct_e , AEAD $_{K_1}$ (cert[pks])

 $ss_e \leftarrow KEM_e$. Decapsulate(ct_e, sk_e)

 $K_1, K_1' \leftarrow \mathsf{KDF}(\mathsf{ss}_e)$

 $(ss_S, ct_S) \leftarrow KEM_s$. Encapsulate pk_S)

```
--1,--1
```

ct_e , AEAD K_1 (cert[pkS])

 $ss_e \leftarrow KEM_e.Decapsulate(ct_e, sk_e)$

 $K_1, K_1' \leftarrow \mathsf{KDF}(\mathsf{ss}_e)$

 $(ss_S, ct_S) \leftarrow KEM_s$. Encapsulate pk_S)

 $AEAD_{K'_1}(ct_S)$

 $ss_S \leftarrow KEM_s$. Decapsulate(ct_S, sk_S)

 $K_2, K_2', K_2'', K_2''' \leftarrow \mathsf{KDF}(\mathsf{ss}_e \| \mathsf{ss}_S)$

 $AEAD_{K_2}$ (key confirmation), $AEAD_{K'_2}$ (application data)

 $AEAD_{K_2''}$ (key confirmation)

 $AEAD_{K_2'''}$ (application data)

KEMTLS

- Ephemeral key exchange
- Static-KEM authentication
- Combine shared secrets
- Allow client to send application data before receiving server's key confirmation

The client sends data before receiving ServerFinished.

The client sends data before receiving ServerFinished.

- Can't downgrade to signed TLS 1.3
 - TLS 1.3 handshake signature stops the attack

The client sends data before receiving ServerFinished.

- Can't downgrade to signed TLS 1.3
 - TLS 1.3 handshake signature stops the attack
- Active adversary might try to downgrade first client-to-server flow
- Only to whatever algorithms the client advertised in ClientHello
 - Don't support pre-quantum in KEMTLS

The client sends data before receiving ServerFinished.

- Can't downgrade to signed TLS 1.3
 - TLS 1.3 handshake signature stops the attack
- Active adversary might try to downgrade first client-to-server flow
- Only to whatever algorithms the client advertised in ClientHello
 - Don't support pre-quantum in KEMTLS
- The handshake will no longer sucessfully complete
 - ServerFinished reveals the downgrade unless MAC, KEM, KDF or hash are broken at time of attack
 - Once SF is received: retroactive full downgrade resilience
 - You also get upgraded from weak to full forward secrecy at this stage

Choosing algorithms

Ephemeral Key Exchange

- KEM with IND-1CCA security
- Ideally fast with small pk + ct

KEM for server authentication

- KEM with IND-CCA security
- Ideally fast with small pk + ct

Choosing algorithms

Ephemeral Key Exchange

- KEM with IND-1CCA security
- Ideally fast with small pk + ct

KEM for server authentication

- KEM with IND-CCA security
- Ideally fast with small pk + ct

Root CA certificate

- Already present on client
- Only care about signature size

Choosing algorithms

Ephemeral Key Exchange

- KEM with IND-1CCA security
- Ideally fast with small pk + ct

KEM for server authentication

- KEM with IND-CCA security
- Ideally fast with small pk + ct

Intermediate CA certificate

Small public key + signature size

Root CA certificate

- Already present on client
- Only care about signature size

Scenarios

- Minimize size when intermediate certificate transmitted
- Minimize size when intermediate certificate not transmitted (cached)
- Use solely NTRU assumptions
- 4 Use solely module LWE/SIS assumptions

Scenarios

- Minimize size when intermediate certificate transmitted
- Minimize size when intermediate certificate not transmitted (cached)
- Use solely NTRU assumptions
- 4 Use solely module LWE/SIS assumptions

		KEX	HS Auth	Int. CA. crt	CA crt
1	PQTLS	SIKE	<u>F</u> alcon	$\underline{X}MSS_s^{MT}$	<u>G</u> eMMS
	KEMTLS	SIKE	<u>S</u> IKE	$\underline{X}MSS_s^{MT}$	<u>G</u> eMMS
2	PQTLS	SIKE	<u>F</u> alcon	<u>G</u> eMMS	<u>G</u> eMMS
	KEMTLS	SIKE	<u>S</u> IKE	<u>G</u> eMMS	<u>G</u> eMMS
3	PQTLS	<u>N</u> TRU	<u>F</u> alcon	<u>F</u> alcon	<u>F</u> alcon
	KEMTLS	<u>N</u> TRU	<u>N</u> TRU	<u>F</u> alcon	<u>F</u> alcon
4	PQTLS	<u>K</u> yber	<u>D</u> ilithium	<u>D</u> ilithium	<u>D</u> ilithium
	KEMTLS	<u>K</u> yber	<u>K</u> yber	<u>D</u> ilithium	<u>D</u> ilithium

Scenarios

- Minimize size when intermediate certificate transmitted
- Minimize size when intermediate certificate not transmitted (cached)
- Use solely NTRU assumptions
- 4 Use solely module LWE/SIS assumptions

		KEX	HS Auth	Int. CA. crt	CA crt	Abbrev
1	PQTLS	SIKE	<u>F</u> alcon	$\underline{X}MSS_s^{MT}$	<u>G</u> eMMS	SFXG
	KEMTLS	SIKE	<u>S</u> IKE	$\underline{X}MSS_s^{MT}$	<u>G</u> eMMS	SSXG
2	PQTLS	SIKE	<u>F</u> alcon	<u>G</u> eMMS	<u>G</u> eMMS	SFGG
	KEMTLS	SIKE	<u>S</u> IKE	<u>G</u> eMMS	<u>G</u> eMMS	SSGG
3	PQTLS	<u>N</u> TRU	<u>F</u> alcon	<u>F</u> alcon	<u>F</u> alcon	NFFF
	KEMTLS	<u>N</u> TRU	<u>N</u> TRU	<u>F</u> alcon	<u>F</u> alcon	NNFF
4	PQTLS	<u>K</u> yber	<u>D</u> ilithium	<u>D</u> ilithium	<u>D</u> ilithium	KDDD
	KEMTLS	<u>K</u> yber	<u>K</u> yber	<u>D</u> ilithium	<u>D</u> ilithium	KKDD

Comparision¹

Labels ABCD:

A = ephemeral KEM

B = leaf certificate

C = intermediate CA

D = root CA

Dilithium Falcon GeMMS Kyber NTRU SIKE XMSS.

¹Rustls with AVX2 implementations. Emulated network: latency 31.1 ms, 1000 Mbps, no packet loss. Average of 100000 iterations.

Comparision¹

Labels ABCD:

A = ephemeral KEM

B = leaf certificate

C = intermediate CA

D = root CA

Dilithium Falcon GeMMS Kyber NTRU SIKE XMSS.

¹Rustls with AVX2 implementations. Emulated network: latency 31.1 ms, 1000 Mbps, no packet loss. Average of 100000 iterations.

Observations

- Size-optimized KEMTLS requires <1/2 communication of size-optimized PQ signed-KEM
- Speed-optimized KEMTLS uses 90
- No extra round trips required until client starts sending application data
- Smaller trusted code base (no signature generation on client/server)

FAQ

- Client authentication?
 - We provide a sketch in Appendix D, but mostly leave it for future work
 - Naive way does require a full additional round-trip
- What about TLS 1.3 0-RTT?
 - 0-RTT is for resumption. You can do the same thing in KEMTLS.
 - We see opportunities for more efficient handshakes when resuming or in scenarios with pre-distributed KEM public keys.
- Server can't send application data in its first TLS flow. Will that break HTTP/3 where the server sends a SETTINGS frame?
 - Could be included in an extension as a server-side variant of ALPN
- How do you do certificate lifecycle management (issuance, revocation) with KEM public keys?
 - At first glance many of these issues seem non-trivial: currently these assume the public key can be used for signatures in some way
 - Another good direction for future work

Post-Quantum TLS without Handshake signatures

Douglas Stebila, Peter Schwabe, Thom Wiggers

- Implicit authentication via KEMs
- Preserve client ability to do request after 1RTT
- Saves bytes on the wire and server CPU cycles
- ACM CCS 2020 doi: 10.1145/3372297.3423350
- Full version with proofs: ia.cr/2020/534
- Experimental implementations and datasets: github.com/thomwiggers/kemtls-experiment

Appendix

Communications sizes

		Abbrv.	KEX (pk+ct)	Excluding i HS auth (ct/sig)	ntermediate C Leaf crt. subject (pk)	A certificate Leaf crt. (signature)	Sum excl. int. CA cert.	Including in Int. CA crt. subject (pk)	ntermediate C Int. CA crt. (signature)		Root CA (pk)	Sum TCP pay- loads of TLS HS (incl. int. CA crt.)
	TLS 1.3	ERRR	ECDH (X25519) 64	RSA-2048 256	RSA-2048 272	RSA-2048 256	848	RSA-2048 272	RSA-2048 256	1376	RSA-2048 272	2711
(Signed KEX)	Min. incl. int. CA cert.	SFXG	SIKE 405	Falcon 690	Falcon 897	XMSS ^{MT} 979	2971	XMSS _s ^{MT} 32	GeMSS 32	3035	GeMSS 352180	4056
3 (Signe	Min. excl. int. CA cert.	SFGG	SIKE 405	Falcon 690	Falcon 897	GeMSS 32	2024	GeMSS 352180	GeMSS 32	354236	GeMSS 352180	355737
TLS 1.	Assumption: MLWE+MSIS	KDDD	Kyber 1536	Dilithium 2044	Dilithium 1184	Dilithium 2044	6808	Dilithium 1184	Dilithium 2044	10036	Dilithium 1184	11094
	Assumption: NTRU	NFFF	NTRU 1398	Falcon 690	Falcon 897	Falcon 690	3675	Falcon 897	Falcon 690	5262	Falcon 897	6227
	Min. incl. int. CA cert.	SSXG	SIKE 405	SIKE 209	SIKE 196	XMSS ^{MT} 979	1789	XMSS _s ^{MT} 32	GeMSS 32	1853	GeMSS 352180	2898
ITLS	Min. excl. int. CA cert.	SSGG	SIKE 405	SIKE 209	SIKE 196	GeMSS 32	842	GeMSS 352180	GeMSS 32	353054	GeMSS 352180	354578
KEMTL	Assumption: MLWE+MSIS	KKDD	Kyber 1536	Kyber 736	Kyber 800	Dilithium 2044	5116	Dilithium 1184	Dilithium 2044	8344	Dilithium 1184	9398
	Assumption: NTRU	NNFF	NTRU 1398	NTRU 699	NTRU 699	Falcon 690	3486	Falcon 897	Falcon 690	5073	Falcon 897	6066

Time measurements

_	Computation time for asymmetric crypto Excl. int. CA cert. Incl. int. CA cert.		Handshake time (31.1 ms latency, 1000 Mbps bandwidth) Excl. int. CA cert. Incl. int. CA cert.			Handshake time (195.6 ms latency, 10 Mbps bandwidth) Excl. int. CA cert. Incl. int. CA cert.				ert.						
	Clien	Server	Client	Server	Client sent req.	Client recv. resp.	Server HS done	Client sent req.	Client recv. resp.	Server HS done	Client sent req.	Client recv. resp.	Server HS done	Client sent req.	Client recv. resp.	Server HS done
TLS 1.3	ERRR 0.13- SFXG 40.05- SFGG 34.10- KDDD 0.08- NFFF 0.14-	21.676 21.676 0.087	0.150 40.094 34.141 0.111 0.181	0.629 21.676 21.676 0.087 0.254	66.4 165.8 154.9 64.3 65.1	97.6 196.9 186.0 95.5 96.3	35.4 134.0 123.1 33.3 34.1	66.6 166.2 259.0 64.8 65.6	97.8 197.3 290.2 96.0 96.9	35.6 134.4 227.1 33.8 34.7	397.1 482.1 473.7 411.6 398.1	593.3 678.4 669.8 852.4 662.2	201.3 285.8 277.5 446.1 269.2	398.2 482.5 10936.3 415.9 406.7	594.3 678.8 11902.5 854.7 842.8	202.3 286.2 10384.1 448.0 443.5
KEMTLS	SSXG 61.45 SSGG 55.50 KKDD 0.06 NNFF 0.11	3 41.712 0 0.021	61.493 55.540 0.091 0.158	41.712 41.712 0.021 0.027	202.1 190.4 63.4 63.6	268.8 256.6 95.0 95.2	205.6 193.4 32.7 32.9	202.3 293.3 63.9 64.2	269.1 359.5 95.5 95.8	205.9 296.3 33.2 33.5	505.8 496.8 399.2 396.2	732.0 723.0 835.1 593.4	339.7 330.8 439.9 200.6	506.1 10859.5 418.9 400.0	732.4 11861.0 864.2 835.6	340.1 10331.7 447.6 440.2

	•	ation time for . CA cert.	Handshake tin Excl. int. CA			
	Client	Server	Client	Server	Client	Client
					sent req.	recv. res
	ERRR 0.134	0.629	0.150	0.629	66.4	97
က.	SFXG 40.058	21.676	40.094	21.676	165.8	196
S 1	SFGG 34.104	21.676	34.141	21.676	154.9	186
Ĭ	KDDD 0.080	0.087	0.111	0.087	64.3	95
'	NFFF 0.141	0.254	0.181	0.254	65.1	96
	SSXG 61.456	41.712	61.493	41.712	202.1	268
긭	SSGG 55.503	41.712	55.540	41.712	190.4	256
KEMTLS	KKDD 0.060	0.021	0.091	0.021	63.4	95
吊	NNFF 0 118	0.027	0.158	0.027	63.6	95

oto t.		shake time (cl. int. CA ce	•	• •	ency, 1000 Mbps bandwidth) Incl. int. CA cert.					
r	Client	Client	Server	Client	Client	Server	Clie			
	sent req.	recv. resp.	HS done	sent req.	recv. resp.	HS done	sent r			
29	66.4	97.6	35.4	66.6	97.8	35.6	39			
676	165.8	196.9	134.0	166.2	197.3	134.4	48			
676	154.9	186.0	123.1	259.0	290.2	227.1	47			
87	64.3	95.5	33.3	64.8	96.0	33.8	41			
254	65.1	96.3	34.1	65.6	96.9	34.7	39			
12	202.1	268.8	205.6	202.3	269.1	205.9	50			
12	190.4	256.6	193.4	293.3	359.5	296.3	49			
21	63.4	95.0	32.7	63.9	95.5	33.2	39			
)27	63.6	95.2	32.9	64.2	95.8	33.5	39			

idth) t.		lshake time cl. int. CA c	•	atency, 10 Mbps bandwidth) Incl. int. CA cert.				
Server HS done	Client sent req.	Client recv. resp.	Server HS done	Client sent req.	Client recv. resp.	Server HS done		
35.6	397.1	593.3	201.3	398.2	594.3	202.3		
134.4	482.1	678.4	285.8	482.5	678.8	286.2		
227.1	473.7	669.8	277.5	10936.3	11902.5	10384.1		
33.8	411.6	852.4	446.1	415.9	854.7	448.0		
34.7	398.1	662.2	269.2	406.7	842.8	443.5		
205.9	505.8	732.0	339.7	506.1	732.4	340.1		
296.3	496.8	723.0	330.8	10859.5	11861.0	10331.7		
33.2	399.2	835.1	439.9	418.9	864.2	447.6		
33.5	396.2	593.4	200.6	400.0	835.6	440.2		