

Sphinx'in Bilmecesi

Büyük Sphinx'in size bir bilmecesi var. N düğümden oluşan bir çizge veriliyor. Düğümler 0 ile N-1 arasında numaralandırılmıştır. Çizgede M adet kenar vardır. Her kenar, bir çift farklı düğümü birbirine bağlar ve iki yönlüdür. İki düğüme eğer bir kenarla birbirlerine bağlılarsa **komşu** denir. 0 dan M-1 e kadar her j kenarı (sınırlar dahil), X[j] ve Y[j] düğümlerini birbirine bağlar. Herhangi bir düğüm çiftini birbirine bağlayan en fazla bir kenar vardır.

($k \geq 0$ için) v_0, v_1, \ldots, v_k düğümlerinden oluşan bir seri **yol** olarak adlandırılır eğer her iki ardışık düğüm v_l ve v_{l+1} (her l için öyle ki $0 \leq l < k$) komşu ise. v_0, v_1, \ldots, v_k yolunun v_0 ve v_k düğümlerini **birleştirdiğini** söyleriz. Size verilen çizgede her bir düğüm çiftini birleştiren bir yol bulunmaktadır.

N+1 adet renk vardır ve bunlar 0 dan N ye kadar numaralandırılmıştır. N rengi özeldir ve **Sphinx'in rengi** olarak adlandırılır. Her düğüme bir renk atanır. Spesifik olarak, düğüm i ($0 \le i < N$) C[i] rengine sahiptir. Birden fazla düğüm aynı renge sahip olabilir, ve herhangi bir düğüme atanmamış renkler de olabilir. Hiçbir düğüm Sphinx'in rengine sahip değildir, yani $0 \le C[i] < N$ ($0 \le i < N$).

 $(k \geq 0 \text{ için}) \ v_0, v_1, \ldots, v_k$ yolu **tek renkli** olarak adlandırılır eğer tüm düğümleri aynı renkte ise. Yani $C[v_l] = C[v_{l+1}]$ (her l için öyle ki $0 \leq l < k$). Ek olarak, p ve q düğümleri ($0 \leq p < N$), $0 \leq q < N$) aynı **tek renkli bileşende** bulunmaktadır ancak ve ancak bu düğümler tek renkli bir yolla birbirlerine bağlılarsa.

Düğümleri ve kenarları biliyorsunuz, ancak düğümlerin hangi renge sahip olduğunu bilmiyorsunuz. Düğümlerin renklerini **yeniden renklendirme deneyleri** yaparak bulmak istiyorsunuz.

Bir yeniden renklendirme deneyinde, istediğiniz kadar düğümü yeniden renklendirebilirsiniz. Özellikle, bir yeniden renklendirme deneyi gerçekleştirmek için ilk önce N boyutunda bir E dizisi seçersiniz, burada her i ($0 \leq i < N$) için, E[i] -1 ile N arasındadır **sınırlar dahil**. Daha sonra, her bir düğüm i nin rengi S[i] olur; burada S[i] nin değeri şudur:

- C[i] , yani i nin orijinal rengi, eğer E[i] = -1 ise veya
- E[i] , aksi takdirde.

Bu, yeniden renklendirmenizde Sphinx'in rengini kullanabileceğiniz anlamına gelir.

Son olarak Büyük Sphinx, her bir i düğümün rengini S[i] ($0 \le i < N$) olarak ayarladıktan sonra çizgedeki tek renkli bileşenlerin sayısını duyurur. Yeni renklendirme yalnızca bu özel yeniden renklendirme deneyi için uygulanır. Böylece **deney bittikten sonra tüm düğümlerin renkleri orijinal renklerine geri dönüyor**.

Göreviniz, çizgedeki düğümlerin renklerini en fazla $2\,750$ yeniden renklendirme deneyi yaparak belirlemektir. Ayrıca eğer her komşu düğüm çiftinin aynı renkte olup olmadıklarını doğru bir şekilde belirlerseniz kısmi bir puan da alabilirsiniz.

Kodlama Detayları

Aşağıdaki prosedürü kodlamalısınız.

```
std::vector<int> find_colours(int N,
    std::vector<int> Y)
```

- ullet N : çizgedeki düğüm sayısı.
- ullet X , Y : kenarları tanımlayan M uzunluğunda diziler.
- ullet Bu prosedür, N uzunluğunda bir G dizisi dönmelidir. Bu dizi çizgedeki düğümlerin renklerini temsil eder.
- Bu prosedür her test durumu için tam olarak bir kez çağrılır.

Yukarıdaki prosedür yeniden renklendirme deneyleri yapmak için aşağıdaki prosedüre çağrılar yapabilir:

```
int perform_experiment(std::vector<int> E)
```

- E: düğümlerin nasıl yeniden renklendirileceğini belirten N uzunluğunda bir dizi.
- ullet Bu prosedür, E ye göre düğümleri yeniden renklendirdikten sonra tek renkli bileşenlerin sayısını döner.
- Bu prosedür en fazla 2 750 kez çağrılabilir.

Değerlendirici **uyarlanabilir (adaptif) değildir**, yani, find_colours çağrısı yapılmadan önce düğümlerin renkleri sabitlenir.

Kısıtlar

- $2 \le N \le 250$
- $N-1 \le M \le \frac{N \cdot (N-1)}{2}$
- $0 \le X[j] < Y[j] < N$ her bir j için öyle ki $0 \le j < M$.
- $X[j] \neq X[k]$ veya $Y[j] \neq Y[k]$ her bir j ve k için öyle ki $0 \leq j < k < M$.
- Her bir düğüm çifti en az bir yol ile birleştirilmiştir.
- $0 \le C[i] < N$ her bir i için öyle ki $0 \le i < N$.

Altgörevler

Altgörev	Puan	Ek Kısıtlar
1	3	N=2
2	7	$N \le 50$
3	33	Çizge bir yoldur: $M = N-1$ ve j ve $j+1$ düğümleri komşudur ($0 \leq j < M$).
4	21	Çizge tamdır (complete): $M=rac{N\cdot (N-1)}{2}$ ve herhangi iki düğüm komşudur.
5	36	Ek kısıt yoktur.

Her alt görevde, eğer programınız her komşu düğüm çiftinin aynı renkte olup olmadıklarını doğru bir şekilde belirlerse kısmi bir puan alabilirsiniz.

Daha açık olarak, eğer tüm test durumlarında, find_colours tarafından dönen G dizisiC dizisiyle tam olarak aynı ise (yani G[i] = C[i] $0 \le i < N$ olacak şekilde tüm i için)

ilgili alt görevin tüm puanını alırsınız. Aksi takdirde, eğer aşağıdaki koşullar bir altgörevin tüm test durumlarında geçerliyse ilgili alt görevin 50% puanını alırsınız:

- $0 \leq G[i] < N$ her i için öyle ki $0 \leq i < N$;
- $0 \leq j < M$ olacak şekilde her j için:
 - $\circ \ \ G[X[j]] = G[Y[j]]$ ancak ve ancak C[X[j]] = C[Y[j]] ise.

Örnek

Aşağıdaki çağrıyı göz önüne alın.

Bu örnek için şunu varsayalım: (gizli) düğümlerin renkleri şu şekilde verilir: C=[2,0,0,0] . Bu senaryo aşağıdaki şekilde gösterilmiştir. Renkler ayrıca her bir düğüme iliştirilmiş beyaz etiketlerdeki sayılarla da temsil edilir.

Prosedür perform_experiment i aşağıdaki gibi çağırabilir.

Bu çağrıda tüm düğümler orijinal renklerini koruduğu için hiçbir düğüm yeniden renklendirilmez.

1 ve 2 düğümlerini ele alalım. İkisinin de rengi 0 dır ve 1,2 yolu tek renkli bir yoldur. Sonuç olarak, 1 ve 2 düğümleri aynı tek renkli bileşendedir.

1 ve 3 düğümlerini ele alalım. Her ikisinin de rengi 0 olmasına rağmen, bu düğümleri birbirine bağlayan tek renkli yol olmadığı için bunlar farklı tek renkli bileşendedir.

Genel olarak, düğümleri $\{0\}$, $\{1,2\}$, ve $\{3\}$ olan 3 tek renkli bileşen vardır. Bu nedenle bu çağrı 3 değerini döner.

Şimdi prosedür perform_experiment aşağıdaki gibi çağırabilir.

Bu çağrıda, yalnızca 0 düğümü 0 rengine yeniden renklendirilir. Bu da aşağıdaki şekilde görülen renklenmeyle sonuçlanır.

Bu çağrı, tüm düğümlerin aynı tek renkli bileşene ait olması nedeniyle 1 değerini döner. Artık 1, 2 ve 3 düğümlerinin 0 rengine sahip olduğu sonucunu çıkarabiliriz.

Prosedür daha sonra perform_experiment i aşağıdaki gibi çağırabilir.

Bu çağrıda, 3 düğümü 2 rengine yeniden renklendirilir. Bu da aşağıdaki şekilde görülen renklenmeyle sonuçlanır.

Bu çağrı 2 döner, çünkü düğümleri sırasıyla $\{0,3\}$ ve $\{1,2\}$ olan 2 adet tek renkli bileşen vardır. 0 düğümünün 2 rengine sahip olduğu sonucunu çıkarabiliriz.

find_colours prosedürü daha sonra [2,0,0,0] dizisini döner. C=[2,0,0,0] olduğundan tam puan verilir.

Ayrıca, puanın 50% sinin verileceği birden fazla dönme değeri olduğunu unutmayın, örneğin [1,2,2,2] veya [1,2,2,3] .

Örnek Değerlendirici

Girdi formatı:

```
N M
C[0] C[1] ... C[N-1]
X[0] Y[0]
X[1] Y[1]
...
X[M-1] Y[M-1]
```

Çıktı formatı:

```
L Q
G[0] G[1] ... G[L-1]
```

Burada, L find_colours tarafından dönen G dizisinin uzunluğudur, ve Q perform_experiment için yapılan çağrıların sayısıdır.