2-Bit Counter as a Clock Divider

//Verilog code

```
module counter_clk_div (clk, reset, clk_div2, clk_div4);
```

```
input wire clk;
input wire reset;
output wire clk_div2;
output wire clk_div4;
reg [1:0] count;

always @(posedge clk or posedge reset) begin
  if (reset)
     count <= 2'b00;
  else
     count <= count + 1;
end
assign clk_div2 = count[0];</pre>
```


Waveform:

endmodule

assign clk_div4 = count[1];

Synthesis schematic:

RTL Analysis schematic:

Look Up Tables:

Cell Properties		
count[0]_i_1		
10	O=!I0	
0	1	
1	0	

Table 1: LUT1

Cell Properties		
count[1]_i_1		
11	10	O=I0 & !I1 + !I0 & I1
0	0	0
0	1	1
1	0	1
1	1	0

Table 2: LUT2