

SQL DATA TYPES & OPERATIONS

Learning Goals

By the end of this lecture students should be able to:

- Use these data types while creating your tables
- ✓ Choose a appropriate data type for a table column based on your requirement
- ✓Use operators to specify conditions in an SQL statement

Table of contents

Ms SQL Server Data Types	
SQL Operators	
Demo	
Quiz	

* MS SQL SERVER DATA TYPES

Ms SQL Server Data Types

Student:

- ✓ Name
- Birthday
- ✓ Sex
- ✓ Address
- ✓ Marks...

What type of data each of field ???.....

Ms SQL Server Data Types

SQL Server supports below data types. NULL is default value for most data type:

- ✓ Exact Numerics
- ✓ Approximate Numerics
- ✓ Date and Time
- ✓ Character Strings
- ✓ Unicode Character Strings
- √ Binary Strings
- ✓ Other Data Types

Exact Numbers

Interger-based data type

Data type Size		Range of values			
Bigint 8 Bytes		-2^63 to 2^63-1			
Int 4 Bytes		-2^31 to 2^31-1			
Smallint	2 Bytes	-2^15 to 2^15 - 1			
Tinyint	1 Byte	0 to 255			
Bit	1 Bit	0 to 1			

Exact Numbers

Exact decimal-based data type

Data type	Size	Range of values				
Decimal(p,s)	5 - 17 Bytes	- Varies based on precision setting.				
	(depending on precision)	- Maximum values are -10^38 +1 through 10^38 -1				
(p is the ma	aximum number of all digi	ts (both sides of the decimal point), s is the				
	maximum number of o	digits after the decimal point)				
Numeric(p,s)	Identical to Decimal type					
Smallmoney	4 Bytes	- 214,748.3648 to 214,748.3647				
		- 922,337,203,685,477.5808				
Money	8 Bytes	То				
		922,337,203,685,477.5807				

Approximate Numerics

Data type	Size	Range of values		
Float	8 Bytes	- 1.79E+308 to 1.79E+308		
	Depends on the value of n			
	If 1 ≤ n ≤ 24: 4 Bytes	4 Bytes: - 3.40E + 38 to 3.40E + 38		
Float(n)	(Precision: 7 digits)			
	If 25 ≤ n ≤ 53: 8 Bytes	8 Bytes: - 1.79E+308 to 1.79E+308		
	(Precision: 15 digits)			
Real	•••	- 3.40E + 38 to 3.40E + 38		

Note: SQL Server treats n as one of two possible values. If 1 <= n <= 24, n is treated as 24. If 25 <= n <= 53, n is treated as 53.

Date and Time

Data Type	Description	Example	
Date	Stores dates between January 1, 0001, and December 31, 9999	2008-01-15	
Datetime	Stores dates and times between January 1, 1753, and December 31, 9999, with an accuracy of 3.33 milliseconds		
Datetime2	Stores date and times between January 1, 0001, and December 31, 9999, with an accuracy of 100 nanoseconds		
Datetimeoffset	Similar to the datetime2 data type, but also expects an offset designation of -14:00 to +14:00	2008-01-15 09:42:16.1420221 +05:00	
Smalldatetime	Stores dates and times between January 1, 1900, and June 6, 2079, with an accuracy of 1 minute	2008-01-15 09:42:00	
Time	Stores times with an accuracy of 100 nanoseconds	09:42:16.1420221	

Character Strings

Data type	Description
Char(n)	 Fixed-length Maximum length of 8,000 characters (1 ≤ n ≤ 8000)
Varchar(n)	 Variable-length Maximum of 8,000 characters (1 ≤ n ≤ 8000)
Varchar(max)	Variable-lengthMaximum length of 2,147,483,647 characters
Text	Variable-lengthMaximum length of 2,147,483,647 charactersUse varchar(max) instead

Unicode Character Strings

Unicode string data types are "double width":

Data type	Description
Nchar(n)	 Fixed-length Maximum specified length is 4,000 characters (1≤ n ≤ 4000)
Nvarchar(n)	 Variable-length Maximum specified length is 4,000 characters (1≤ n ≤ 4000)
Nvarchar(max)	Variable-lengthMaximum length of 1,073,741,823 characters
Ntext	- Variable-length - Maximum length of 1,073,741,823 characters

Binary Strings

Data type	Description
Binary	- Fixed-length binary data- Maximum length of 8,000 bytes
Varbinary	- Variable length binary data- Maximum length of 8,000 bytes.
Image	- Variable length binary data- Maximum length of 2,147,483,647 bytes.

Other Data Types

Data Type	Description					
Timestamp	Stores a database-wide unique number that gets updated every time a row gets updated					
Hierarchyid	Special data type that maintains hierarchy positioning nformation					
Uniqueidentifier	Stores a database-wide unique number that gets updated every time a row gets updated					
Sql_variant	Stores values of various SQL Server-supported data types, except text, ntext, and timestamp					
XmI	Stores XML data. You can store xml instances in a column or a variable (SQL Server 2005 only).					
Table	Stores a result set for later processing					

Ms SQL Server Data Types Demo

SQL Operators

What is an Operator in SQL?

- An operator is a reserved word or a character used primarily in an SQL statement's WHERE clause to perform operation(s), such as comparisons and arithmetic operations.
- Operators are used to specify conditions in an SQL statement and to serve as conjunctions for multiple conditions in a statement. Some types of most operators:
 - 1 Arithmetic operators
 - Comparison operators
 - 3 Logical operators.

SQL Arithmetic Operators

Here is a list of the Arithmetic operators available in SQL

Operator	Description	Example		
+	Addition	a + b → 30		
-	Subtraction	a - b → -10		
*	Multiplication	a * b → 200		
/	Division	b/a → 2		
%	Modulus	b%a → 0		

(Assume variable **a** holds **10** and variable **b** holds **20**)

SQL Comparison Operators

Where is a list of all the Comparison operators available in SQL

Operator	Description	Operator	Description
=	equal to	>=	greater than or equal to
!=, <>	not equal to	<=	less than or equal to
<	less than	!<	not less than
>	greater than	!>	not greater than

Example

+-	++									
1	ID	1	NAME	I	AGE	Ţ	ADDRESS	I	SALARY	1
+-		+-		+-		+		+		+
1	1	ı	Ramesh	ı	32	П	Ahmedabad	ı	2000.00	
1	2	1	Khilan	ı	25	ı	Delhi	ı	1500.00	1
1	3	ı	kaushik	1	23	ı	Kota	ı	2000.00	1
1	4	ı	Chaitali	1	25	ı	Mumbai	ı	6500.00	1
1	5	ı	Hardik	ı	27	ı	Bhopal	ı	8500.00	1
1	6	ı	Komal	ı	22	ı	MP	I	4500.00	1
1	7	1	Muffy	1	24	ı	Indore	ı	10000.00	1
+-		+-		+-		+		+		+

CUSTOMERS TABLE

SQL: SELECT * FROM CUSTOMERS WHERE SALARY > 5000;

ID	+	NAME	+-	AGE	ADDRESS	+	SALARY	+
4 5 7		Chaitali Hardik Muffy		25 27 24			6500.00 8500.00 10000.00	

SQL Logical Operators

Operator	Description		
ALL	Used to compare a value to all values in another value set.		
AND	Used when both conditions are included		
OR	Used when either of the condition is true		
ANY	Used to compare a value to any applicable value in the list according to the condition		
BETWEEN	Used to limit the values in a range e.g.		
EXISTS	Used to search for the presence of a row in a specified table that meets certain criteria		
IN	Included in the list e.g.		
LIKE	Equal to some character (use quotes)		
NOT	Opposite of the logical value		
IS NULL	This checks if the field has a null		
UNIQUE	Searches every row of a specified table for uniqueness		

SQL Operators Demo

Summary

Ms SQL Server Data Types

Some Ms SQL Server Data Types

SQL Operators

- What is an Operator in SQL?
- Some category of Operators

Demo

- Ms SQL Server Data Types
- Operators in SQL

Quiz!

Now let's check how you understand the lecture!

There are 8 questions below.

Click NEXT button to start!

Now let's check how you understand the lecture!

Quiz!

There are 8 questions below.

Click NEXT button to start!

Exit Course

THANK YOU

You have completed "Lecture 3" course.

Click EXIT button to exit course and discover the next Lecture "Lecture 4".

EXIT