GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-II

Course Title: A. C. Circuits (Course Code: 4320901)

Diploma programmer in which this course is offered	Semester in which offered
Electrical Engineering	Second

1. RATIONALE

Most of electrical power generation, transmission, distribution and utilization are in the form of alternating current. Therefore it is essential for students of diploma electrical engineering to know fundamental concepts and principles of AC circuits to solve electrical circuits. This course is not only a prerequisite to learn the advanced electrical courses but also diploma students undertaking this course are expected to apply the principle of ac circuits to troubleshoot electrical circuits in industries/power system. This is one of the most important core engineering courses for electrical technocrats and hence students should try to develop mastery over fundamental concepts and principle of AC Circuits for effective working as an electrical engineer.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

Apply the principles of AC circuits to maintain electrical system.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- a) Interpret various terminologies, waveform and vector representation of alternating quantities.
- **b)** Apply principles of A.C. series circuits to solve electrical circuits.
- c) Apply principles of A.C. parallel circuits to solve electrical circuits.
- **d)** Apply principles of three phase circuits to solve electrical circuits.

4. TEACHING AND EXAMINATION SCHEME

Teach	ing Sc	heme	Total Credits	Examination Scheme				
(Ir	ո Hour	s)	(L+T+P/2)	Theory	Theory Marks Practical Marks			Total
L	Т	Р	С	CA	ESE	CA	ESE	Marks
3	1	2	5	30*	70	25	25	150

^{(*):} Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be

taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; **T** – Tutorial/Teacher Guided Theory Practice; **P** - Practical; **C** – Credit, **CA** - Continuous Assessment; **ESE** - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the Course Outcomes (Cos). Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	Demonstrate waveforms of alternating quantities using CRO and function generator.	ı	2
2	Use CRO to measure Peak value, RMS value, Time period and frequency of alternating quantity.	_	2*
3	Measure voltage, current, and power through pure resistor.	Ш	2
4	Measure inductance and internal resistance of choke coil.	Ш	2
5	Measure voltage, current, power and power factor in an RL A.C. series circuit.	Ш	4*
6	Measure voltage, current, power and power factor in an RC A.C. series circuit.	Ш	2*
7	Measure voltage, current, power and power factor in an RLC A.C. series circuit.	Ш	4
8	Measure resonance frequency and resonant impedance in RLC series circuit.	Ш	2
9	Measure voltage, current, power and power factor in an RL A.C. parallel circuit.	III	4*
10	Measure voltage, current, power and power factor in an RC A.C. parallel circuit.	111	2*
11	Measure voltage, current, power and power factor in an RLC A.C. parallel circuit.	III	4
12	Verify line & phase voltage and line & phase current relation for three phase star connection.	IV	2*
13	Verify line & phase voltage and line & phase current relation for three phase delta connection.	IV	2*
14	Test relation between power consumption in three phase star and delta connected load.	IV	2
	Minimum 10 Practical Exercises		28

Note

i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.

ii. The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Prepare experimental setup	20
2	Operate the equipment setup or circuit	20
3	Follow safe practices.	10
4	Record observations correctly	20
5	Interpret the result and conclude	30
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to user in uniformity of practical's in all institutions across the state.

Sr.No.	Equipment Name with Broad Specifications	PrO. No.
1	Single phase variac: 10A, Output 0-270V AC for Input of 230V 50Hz AC	3 to 11
2	Single phase choke coil :230V, 50Hz, 2KVAR	4,5,7,9,11
3	Single phase capacitor bank: 230V, 50Hz, 2KVAR	6,7,10,11
4	Three phase variac : 20A, Output 0-415V for Input of 415V 50Hz AC	12 to 14
4	Single phase resistive load bank : 230V, 2KWOR Lamp loads	3 to 11
5.	Three phase lamp loads suitable for making three phase star and delta connection	12, 13
6.	CRO	1,2
7.	Function Generator	1,2
8.	Ammeter:0-1A/0-5A/0-10A	3 to 14
9.	Voltmeter:0-50V/0-150V/0-300V/0-500V	3 to 14

Sr.No.	Equipment Name with Broad Specifications	PrO. No.
10.	Wattmeter:0-1000W(5/10A,300/600V)	3,5,6,7 9,10,11,14

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfill the development of this course competency.

- a) Work as a leader/a team member(while doing a micro-project)
- b) Follow safety practices while using AC supply and electrical equipments.
- c) Work as a group member (while performing experiments and taking readings)
- d) Practice environmental friendly methods and processes. (Environmentrelated)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such UOs could be included by the course teacher to focus on attainment of COs and competency.

cos and compet	<i>,</i>	1
Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
Unit 1 A C Fundamentals	1a.Explain generation of alternating EMF.1b.Define various terms regarding alternating	1.1 Principle of generation of alternating voltage1.2Cycle, Time period, Frequency, Amplitude, Instantaneous value,
	quantity. 1c.Derive equation for RMS and average value of sinusoidal waveform. 1d.Interpret phase difference between ac quantities with necessary waveforms 1e.Explain the vector representation and mathematical operations of alternating vector quantities	Average value, R.M.S. value, Form factor, Peak Factor Phase and Phase difference 1.3 Vector representation of alternating quantities 1.4Addition, subtraction, multiplication and division of alternating quantity 1.5Numerical based on AC fundamentals

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
	1f. Solve numerical based on	
	AC fundamentals	
Unit-II	2a Compare the behavior of AC	2.1 Waveform, vector diagram and
Single Phase	voltage, current, power and	expression of voltage, current and
AC Series	power factor through pure	power in pure: Resistance,
Circuits	resistance, pure inductance	Inductance, Capacitance
	and pure capacitance with waveforms and vector	2.2 AC through RL, RC, RLC series circuits.
	diagrams.	2.3 Resonant condition and frequency
	2b.Compare behavior of AC	in RLC series circuit
	voltage, current, power and	2.4 Active, reactive and apparent
	power factor through RL, RC	power with examples.
	and RLC series circuit with	2.5 lagging, leading and unity power
	waveforms and vector	factor
	diagrams.	2.6 Causes & disadvantages of low
	2c.Explain resonance in RLC	power factor and advantages of
	series circuit with graphical	improvement in power factor
	representation	2.7 Numerical based on AC series
	2d.Explain the concept of active power, reactive	circuits and series resonance
	power and power factor	
	with power triangle	
	2e.Explain the concept of	
	Lagging, leading and unity	
	power factor with	
	waveform and vector	
	diagram	
	2f.Explain Causes &	
	disadvantages of low power	
	factor and advantages of	
	improving power factor.	
	2g. Solve numerical based on single phase AC series and	
	circuits and series resonance.	
Unit-III	3a.Decribe various methods of	3.1 Phasor (Vector) method for
Single Phase	solving AC parallel circuits.	solving AC parallel circuits.
AC Parallel	3b.Explain resonance in RLC	3.2Admittance method for solving AC
Circuits	parallel circuit.	parallel circuits.
	3c.Solve numerical based on	3.3 Complex algebra method for
	single phase AC parallel	solving AC parallel circuits.
	circuits and parallel	3.3 Resonant frequency and resonance
	resonance	condition in parallel AC circuits
		3.4 Numerical based on AC parallel

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
		circuits and parallel resonance.
Unit-IV	4a.Differentiate between single	4.1 Comparison between Single and
Three Phase	and three phase circuits.	three phase systems
Circuits	4b.Explain generation of three phase alternating voltage.	4.2 Principle of generation of three phase alternating voltage.
	4c.Distinguish between line and phase voltage, line and phase currents in 3- phase AC circuits	4.3 Line and phase voltage, line and phase current4.4 Three-phase star connection4.5 Three phase delta connection
	4d.Describe three phase star and delta connection with phasor diagrams 4e.Solve numerical based on three phase AC circuits	4.6 Numerical based on three phase circuits

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Unit Title	Teaching Hours	Distribution of Theory Marks					
No.			R	U	Α	Total		
INO.			Level	Level	Level	Marks		
I	A C Fundamentals	12	6	6	6	18		
П	Single phase AC Series Circuits	14	8	8	8	24		
III	Single phase AC Parallel Circuits	08	4	6	4	14		
IV	Three Phase Circuits	08	4	5	5	14		
	Total		22	25	23	70		

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) **Note**: This specification table provides general guidelines to assist students for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course. Students should perform following activities in group (or individual) and prepare reports of about 5 pages for each activity. They should also collect/record physical evidences for their (student's) portfolio which may be useful for their placement interviews:

- a) Present seminar on various topics from course content
- b) Solve numerical given in tutorials.

The tutorials can be given unit wise. The Student should be encouraged to get their tutorial assessed by the concerned teacher progressively during the term and at the end of the term the whole work should be submitted to the concerned teacher.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) 'L' in section No. 4means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) Show animation/video related to course content.
- e) Tutorial hours should be used to develop the ability in students to solve numerical related to AC fundamentals and AC circuits.
- f) Co-relating the importance of content of this course with other courses/ practical applications. (e.g. importance of a content in course or whole course related to A.C. Machines, Transmission and Distribution of Electrical Power, Energy Conservation Switchgear and Protection etc. and in practical industrial &/ domestic applications.
- Students learn Engineering Mathematics as a separate course in 2nd Semester and knowledge of some topics /concepts of this course is necessary and extremely helpful to learn various topics of A.C. Circuits. So, students should be encouraged at the beginning of the term and periodically during term by the concerned faculties of A.C. Circuits to learn Engineering Mathematics with more interest and also co-relate the content of AC Circuits with Mathematics and Engineering Mathematics.
- h) Introduce E-waste recycling technology among the students.
- Guide students on how to address issues on environment and sustainability

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The duration of the micro project should be about 14-16 (fourteen to sixteen) student engagement hours during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs.Similar micro-projects could be added by the concerned course teacher:

- a) Build model to demonstrate generation of alternating EMF.
- b) Build model of various types of AC Series circuits.
- c) Build model of various types AC Parallel circuits.
- d) Build lamp loads in three phase star connection.
- e) Build lamp Loads in three phase delta connection.

- f) Prepare chart of generation of alternating voltage.
- g) Prepare chart for phase difference between alternating quantities
- h) Prepare chart of waveforms and vector diagram of voltage, current and power in purely resistive, inductive and capacitive circuits.
- i) Prepare chart of graphical representation of series and parallel resonance
- j) Prepare chart of waveforms and vector diagram of three phase voltage.
- k) Prepare chart for three phase star and delta connection with current and voltage relations.

13. SUGGESTED LEARNING RESOURCES

Sr.	Title of Book	Author	Publication with place, year and
No.			ISBN
1	A text book of Electrical Technology Volume-I (Basic Electrical Engineering)	B. L. Theraja & A.K. Theraja	S. Chand and Co., New Delhi, 23 edition or Latest edition (ISBN: 9788121924405)
2	Principles of Electrical Engineering	B. R. Gupta	S. K. Kataria & Sons, New Delhi, Latest edition (ISBN-9788121901031)
3	Fundamentals of Electrical Engineering	Tarlok Singh	S. K. Katariav & Sons, New Delhi, Latest edition(ISBN: 9789350140680)
4	Basic Electrical Engineering	K. Uma Rao and A. Jayalakshmi	Pearson Education, New Delhi Latest Edition(ISBN: 9789385909283)
5	Basic Electrical and Electronics Engineering	Ravish. R. Singh	Tata McGraw Hill EducationPvt.Ltd., New Delhi 2018 edition or Latest edition (ISBN-978007026092)
6	Fundamentals of Electrical Engineering and Electronics	S.K. Sahdev	Dhanpatrai & Co., New Delhi Latest edition(ISBN: 978877002027)
7	Principles of Electrical Engineering and Electronics	V.K. Mehta Rohit Mehta	S. Chand and Co., New Delhi (ISBN : 9789352837199)
8	Elements of Electrical Engineering	U.A. Patel	Atul Prakashan, Ahmedabad 2010 edition or latest edition

14. SOFTWARE/LEARNING WEBSITES WEBSITES

- https://nptel.ac.in/courses/108/105/108105112/
- https://nptel.ac.in/courses/108/105/108105053/
- https://lectures.gtu.ac.in/(related to course content)
- https://circuitglobe.com/

- https://www.electronics-tutorials.ws/accircuits
- https://www.electrical4u.com/electrical-engineering-articles/basic-electrical/
- https://www.electricaltechnology.org/
- www.vlab.co.in
- www.khanacademy.org
- https://ndl.iitkgp.ac.

15. PO-COMPETENCY-CO MAPPING:

Semester I	A C Circuits (Course Code:4320901)							
	POs							
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design/ develop ment of solution	PO4 Engineerig Tools, Experimentation&Testi	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Manage- ment	PO 7 Life-long learning	
<u>Competency</u>		Apply the p	orinciples of	AC circuits to	maintain in electi	rical system.		
Course Outcomes CO1 Interpret various terminologies, waveform and vector representation of alternating quantities.	3	3	-	2	-	-	-	
CO2 Apply principles of A.C. series circuits to solve electrical circuits.	3	3	2	2	-	-	-	
CO3 Apply principles of A.C. parallel circuits to solve electrical circuits	3	3	2	2	-	-	-	
CO4 Apply principles of three phase circuits to solve electrical circuits.	3	3	2	2	-	-	-	

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1.	Shailesh M. Kanani	AVPTI, Rajkot	9904651807	smkanani2013
	Lecturer Electrical Engg.			@gmail.com

2.	Mrs.PunitaLadani	AVPTI, Rajkot	9428037788	punitaladani
	Lecturer Electrical Engg.			@gmail.com
3.	Piyush M. Saradva	G P Rajkot	9978293237	pmsaradva
	Lecturer Electrical Engg.			@gmail.com
4.	Hiren R. Patel	RCTI, Ahmedabad	9904664984	hirenkumarpatel24
	Lecturer Electrical Engg.			@gmail.com