Computation of the Density-Density Response Function in a Hofstadter Model

by Timo Zacharias, supervised by Michael Knap and Fabian Pichler

Technische Universität München

Abstract

The Fractional Quantum Hall (FQH) effect in lattice systems provides a rich platform to study strongly correlated topological phases beyond the continuum limit. In this work, we investigate the FQH states at filling factors $\nu=1/3$ and $\nu=2/3$ within a Hofstadter model using a parton-based framework. Employing the Random Phase Approximation (RPA), we compute the density-density response function and use the Padé approximation to obtain its real-frequency behavior. The resulting excitation spectrum exhibits a gapped collective mode with characteristic magnetoroton modes appearing on top of a continuum of excitations. Moreover, we can identify distinct regions in the spectrum that originate from excitations involving different numbers of partons.

Parton Model

The FQHE was discovered in 2D electron liquids (area A) with a strong perpendicular magnetic field B. The electrons fill up Landau levels (LL's), to an amount given by ν_e [Tong 2016].

Idea of the parton model: Explain the FQHE at fractional ν_e by decomposing the electrons into M partons (charge q_i) of species i=1,...,M, that exhibit an integer QHE, i. e. ν_i integer [Jain 1989].

- lacksquare On operator level in **real space**: $\hat{\Psi}_e(\vec{x}, au)=\hat{\Psi}_1(\vec{x}, au)\cdot ...\cdot \hat{\Psi}_M(\vec{x}, au)$ (,,Parton factorization")
- lacksquare Constraint $1 \equiv q_e = q_1 + ... + q_M$
- lacksquare For all partons we have $rac{N}{
 u_i}=rac{A\cdot B}{\phi}=rac{A\cdot B\cdot q_i e}{2\pi\hbar}\quad\Rightarrow\quad q_i=rac{
 u_e}{
 u_i}$ and $u_e=(\sum_i^M
 u_i)^{-1}$
- lacksquare For u=1/3: M=3 parton species, $q_i=rac{1}{3}$ and $u_i=1$ for all i=1, 2, 3;
- \blacksquare For u=2/3: M=3 parton species, $q_1=-\frac{1}{3}$, $u_1=-2$ and $q_i=\frac{2}{3}$, $u_i=1$ for =2, =3.

Transition to Lattice Models and my Model

- In a lattice model, we do not have LL's but only electron bands.
- \blacksquare For topologically non-trivial materials: connection between the filling factor ν in LL's and the sum of the Chern numbers of filled bands in a lattice model (by the TKNN formula) [Tong 2016].
- For the case of $\nu = 1/3$ and $\nu = 2/3$ we use a Hofstadter model to get the appropriate Chern numbers, they are schematically shown in the figures 1 and 2.

Figure 1. Triangular lattice used to model the parton models for both states, $\nu = 1/3$ and $\nu = 2/3$.

Figure 2. (a) For $\nu = 1/3$ we have three parton species, all of them have a charge $q_i = -1/3$ and a filling $\sum_{\alpha} C_{\alpha} = -1$. (b) For $\nu=2/3$ there are three parton species, one of them with charge $q_1=-1/3$ and $\sum_{\alpha} C_{\alpha}=-2$ (left) and two of them with $q_{2,3}=2/3$ and $\sum_{\alpha} C_{\alpha}=+1$ (right).

Neutral Excitations in a FQH state: Investigation via the **Density-Density Response function**

- \blacksquare FQH states are gapped \Rightarrow particle-hole excitation spectrum is gapped.
- On top of this continuum there are collective excitation modes (magnetoroton modes) [Chengzhang 2012; Girvin et al. 1986].
- We want to investigate these neutral excitations for our lattice model of the $\nu=1/3$ and $\nu=2/3$ states by computing the Density-Density Response function, see eq. (1).

$$\chi(ec{k},\omega) = -rac{i}{\hbar} \int_0^\infty e^{i(\omega+i\eta)t} heta(t) \langle \left[\hat{
ho}_{ec{k}}(t),\hat{
ho}_{-ec{k}}(0)
ight]
angle.$$

- Diagrammatically, $\chi(\vec{k},\omega)$ can be written as depicted in fig. 3
- employ the Random-Phase approximation, illustrated in fig. 3 to sum up all perturbation orders.

Figure 3. Diagrammatic representation of the density-density response function in the random phase approximation

■ Summing up all terms in the RPA yields the following expression for $\chi(\vec{k},\omega)$,

$$\chi(\vec{k},\omega) = \frac{\chi_0(\vec{k},\omega)}{1 - V(k)\chi_0(\vec{k},\omega)}.$$
 (2)

■ To compute $\chi(\vec{k},\omega)$ with the RPA we need to calculate $\chi_0(\vec{k},\omega)$. Employing the parton-factorization for $\nu=1/3$ and $\nu=2/3$ yields the following diagrammatic contributions:

Figure 4. Diagrammatic Rerpresentation of $\chi_0(\vec{k},\omega)$ after parton decomposition

Problems with the Computation of $\chi(\vec{k},\omega)$

- The diagrams depicted in figure 4 contain too many **convoluted sums** in momentum space ⇒ cannot be computed exactly for realistic system sizes
- Solution so far: **Padê Approximation** [Beach et al. 2000], see fig. 5.

Figure 5. Illustration of the Padê Approximation procedure

Results: Plots of $\mathcal{I}m(\chi(\vec{k},\omega))$ along high-symmetry points $\Gamma MK\Gamma$

- \blacksquare We computed $\chi(k,\omega)$ for the lattice model (figure 2) and assumed a **repulsive neirest**neighbor (NN) potential.
- We applied the Padê approximation at different stages:
- **Variant A**: we apply Padê **after** doing the RPA, i. e. onto $\chi(k, i\nu_n) \to \chi(k, \omega)$, see figures 6 and 7.

Variant B: we apply Padê before doing the RPA, i. e. by approximating the individual diagrams shown in fig. 4, and then doing RPA, see figures 8 and 9.

Figure 6. Variant A- $\mathcal{I}m(\chi(\vec{k},\omega))$ at $\nu=1/3$ and repulsive NN-potential V, with different strengths.

Figure 7. Variant A- $\mathcal{I}m(\chi(\vec{k},\omega))$ at $\nu=2/3$ and repulsive NN-potential V, with different strengths.

Figure 8. Variant B- $\mathcal{I}m(\chi(\vec{k},\omega))$ at $\nu=1/3$ and repulsive NN-potential V, with different strengths.

Figure 9. Variant B- $\mathcal{I}m(\chi(\vec{k},\omega))$ at $\nu=2/3$ and repulsive NN-potential V, with different strengths.

- \blacksquare For both variants, A and B, we observe a softening of the roton mode at the K-point, at equal interaction strengths V.
- Both variants, A and B, predict gapped spectra with a similar gap size.
- On the other hand, the fine structure differs, variant B seems to yield more sharp modes than the approximation scheme A.
- \blacksquare The different contributions to χ_0 , coming from the different diagrams in 4, can be identified, especially in variant B, see figure 9.
- To benchmark the right approximation method, we want to check the correctness of the presented results by exactly computing $\chi(k,\omega)$, via (1), using Tensor Networks.

References

- Tong, D. (2016). Lectures on the Quantum Hall Effect. arXiv: 1606.06687 [hep-th]. URL: https://arxiv.org/abs/1606.06687. Chengzhang, S. (Apr. 2012). "THE CHERN-SIMONS-LANDAU-GINZBURG THEORY OF THE FRACTIONAL QUANTUM HALL EFFECT". In: International Journal of Modern Physics B 06.
- - Beach, K. S. D., R. J. Gooding, and F. Marsiglio (Feb. 2000). "Reliable Padé analytical continuation method based on a high-accuracy symbolic computation algorithm". In: Physical Review B 61.8, pp. 5147-5157. ISSN: 1095-3795. DOI: 10.1103/physrevb.61.5147. URL: http://dx.doi.org/10.1103/PhysRevB.61.5147
- Jain, J. K. (Oct. 1989). "Incompressible quantum Hall states". In: Phys. Rev. B 40 (11), pp. 8079-8082. DOI: 10.1103/PhysRevB.40.8079. URL: https://link.aps.org/doi/10.1103/ Girvin, S. M., A. H. MacDonald, and P. M. Platzman (Feb. 1986). "Magneto-roton theory of collective excitations in the fractional quantum Hall effect". In: Phys. Rev. B 33 (4), pp. 2481–2494. DOI: 10.1103/PhysRevB.33.2481. URL: https://link.aps.org/doi/10.1103/PhysRevB.33.2481.

October 17, 2025 Group Retreat