VOICE ASSISTANT BASED ON GPT AND BING FOR HEALTHCARE

Submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology

In

Computer Science and Engineering

Ву

Saraswathi Bavadharini S

20BCE0339

Under the guidance of

Prof. Manoov R

School of Computer Science and Engineering

VIT, Vellore.

February

2024

ABSTRACT

This project introduces a novel voice assistant system meticulously crafted to cater to the intricacies of healthcare applications. It harnesses the prowess of advanced natural language processing models, notably GPT-3.5 Turbo and Bing, to deliver tailored support for healthcare-related inquiries and tasks. The system is distinguished by its utilization of specialized wake words, "Bing" and "GPT," enabling users to seamlessly activate specific services tailored to their needs within the healthcare domain. By prioritizing accessibility and efficiency, this voice assistant aims to revolutionize healthcare interactions, offering intuitive assistance for both healthcare professionals and patients. Through a combination of cutting-edge technology and domain-specific functionality, it endeavors to elevate the healthcare experience to new heights.

INTRODUCTION

Voice assistants have emerged as indispensable tools in various domains, offering convenience and efficiency in everyday tasks. However, existing voice assistant solutions often lack the specificity and functionality required to address the unique challenges of the healthcare sector. In response to this gap, this project introduces a dedicated voice assistant system tailored explicitly for healthcare applications. By integrating advanced natural language processing models like GPT-3.5 Turbo and Bing, the system aims to provide tailored assistance for healthcare professionals and patients, facilitating efficient information retrieval, task management, and communication within healthcare environments. Through a combination of cutting-edge technology and domain-specific functionality, this voice assistant endeavors to revolutionize healthcare interactions, offering intuitive support that enhances efficiency and improves the overall healthcare experience for users.

OBJECTIVE

The primary aim of this project is to develop a sophisticated voice assistant system meticulously designed to meet the unique demands of the healthcare sector. By leveraging the capabilities of state-of-the-art natural language processing models such as GPT-3.5 Turbo and Bing, the system seeks to provide comprehensive and contextually relevant support for a wide range of healthcare-related inquiries and tasks. Through intuitive voice-based interactions and the implementation of specialized wake words, the objective is to enhance accessibility, streamline workflows, and improve overall efficiency in healthcare delivery and patient care. Ultimately, the goal is to empower healthcare professionals and patients alike with a versatile and efficient tool that facilitates seamless communication, information retrieval, and task management within healthcare environments.

PROBLEM STATEMENT

Despite the growing demand for voice assistant solutions in healthcare, existing systems often struggle to meet the specialized needs of this domain. Challenges include the integration of advanced natural language processing capabilities, the development of tailored functionality for healthcare-specific tasks, and the need for seamless communication within healthcare environments. Consequently, there is a pressing need to develop a dedicated voice assistant solution optimized for healthcare applications. Such a solution would leverage cutting-edge models like GPT-3.5 Turbo and Bing to deliver accurate, contextually relevant assistance, thereby enhancing efficiency and improving the overall healthcare experience for users. By addressing these challenges, this project seeks to fill a crucial gap in the market and provide healthcare professionals and patients with a versatile tool that meets their unique needs and requirements.

LITERATURE SURVEY

Ref.	Paper Title	Author	Research	Methodology/Approach	Limitation
		and Year	Question		
1	Benefits,	Lee et al.	Using GPT 4	ChatBOTs use the GPT 4	Authenticity of
	Limits, and	(2023)	and similar	LLM to retrieve ansers	Data obtained from
	Risks of GPT-4		Generative AI	for user queries from	the web by GPT
	as an AI		tools such as	web and this model has	models.
	Chatbot for		Google LaMDA	been tested out and	
	Medicine		and GPT 3.5 in	found to have an	
			Medical	accuracy of over 90%	
			conversational		
			ChatBOTs		
2	Speech	Madanian	Properties,	Training a speech	The paper may
	emotion	et al.	methodology	recognition (SR) system,	overlook non-ML
	recognition	(2023)	and working of	including language	approaches and
	using machine		SER model and	corpus, nursing	interdisciplinary
	learning - A		analysing its	activities, clinical	perspectives in
	systematic		efficiency.	conversations, and	SER, and while it
	review			accents. It compared	discusses
				documentation time and	challenges and
				error rates between SR-	solutions, it may
				generated records and	not encompass all
				keyboard entry,	potential obstacles

					or emerging trends.
3	Development	Shakhovsk	Utilizing the	The proposed method	The study may
	of the Speech-	a <i>et al</i> .	Google Speech-	involves employing	potentially
	to-Text	(2019)	to-Text API.data	prefix functions and	overlook
	Chatbot		from social	hashing algorithms for	alternative
	Interface Based		networks to	keyword searching and	methods and their
	on Google API		focused on	verb ending	effectiveness in
			remote and local	identification in chatbot	real-world
			storage	conversations	applications.
			processes.		
4	Machine	Lee et al.	Machine	The study collected	The study's
	learning-based	(2023)	learning-based	language corpus, nursing	findings are based
	speech		speech	activities, clinical	on a pilot
	recognition		recognition (SR)	conversations, and	implementation in
	system for		system's	accent data for SR	a psychiatry ward,
	nursing		effectiveness in	system training in four	potentially limiting
	documentation		reducing nursing	sessions and achieved	generalizability to
	-A pilot study		documentation	model had an accuracy	other nursing
			workload in a	score of 87.06% to	specialties or
			psychiatry ward.	95.07% across sessions.	healthcare settings.
5	Intelligent	Zhang et al.	To explore the	The paper introduces	Challenges include
	speech	(2023)	application and	IST's procedure and	noise interference
	technologies		potential of	system architecture,	and pronunciation
	for		intelligent	reviews its applications	differences, which
	transcription,		speech	in smart hospitals, and	may hinder the
	disease		technology	presents a case study on	widespread
	diagnosis, and		(IST) in	stroke patient care.	application of IST
	medical		addressing	Additionally, it proposes	in hospitals.
	equipment		medical resource	a novel medical voice	

	interactive		shortages and	analysis system	
	control in		improving	architecture.	
	smart		healthcare		
	hospitals: A		efficiency amid		
	review		challenges like		
			noise		
			interference and		
			pronunciation		
			differences.		
6	The Capability	Juhi A et al.	To assess the	Utilized 40 DDI lists	ChatGPT provided
	of ChatGPT in	(2023)	effectiveness of	from literature to	incomplete
	Predicting and		ChatGPT in	converse with ChatGPT	guidance at times,
	Explaining		predicting and	using two-stage	necessitating
	Common		explaining	questions, assessing	further
	Drug-Drug		common drug-	responses' correctness	improvement for
	Interactions		drug interactions	with pharmacologists'	patient use
			(DDIs)	consensus.	regarding DDI
					awareness.
7	Deep Cross-	Zhang et al.	То	The paper reviews	Challenges such as
	Corpus Speech	(2021)	comprehensively	existing literature on	natural data
	Emotion		survey the state-	speech emotion	scarcity,
	Recognition:		of-the-art	databases, traditional	multimodal
	Recent		techniques in	methods for cross-corpus	integration, and
	Advances and		cross-corpus	SER, recent advances in	limitations of deep
	Perspectives		speech emotion	deep learning	learning
			recognition	techniques, and	techniques,
			(SER),	discusses challenges and	potentially
			particularly	future directions in the	affecting the
			focusing on deep	field.	comprehensiveness
			learning		of its findings are
			methods		discussed.

		associated with		
		supervised,		
		unsupervised,		
		and semi-		
		supervised		
		learning.		
8		Propose	Utilize two innovative	Limited evaluation
		Contrastive	encoders for audio and	on tasks with true
		Language-Audio	text, trained with	Zero-Shot setup.
		Pretraining	Contrastive Learning to	Increased training
		(CLAP) for joint	create multimodal	pair diversity
		audio-text	representations. Train	affects
		representation	audio encoder (HTSAT-	performance
		learning,	22) on 22 tasks and	variably across
		enabling Zero-	adapt GPT2 for text	domains.
		Shot inference	encoding, enabling joint	
		across 26	learning of	
		downstream	representations in a	
		tasks, surpassing	multimodal space for	
		state-of-the-art	Zero-Shot inference.	
		models for		
		general-purpose		
		audio		
		representations.		

SYSTEM MODEL WITH DESCRIPTION

- User Interaction Layer: This is the interface through which users interact with the voice assistant system.
- Speech Recognition Module: Responsible for converting spoken words into text format.
- Wake Word Detection Module: Identifies specific wake words ("Bing" and "Gpt") to activate the system. Using pattern recognition and machine learning techniques, it quickly identifies these triggers, reducing latency and ensuring fast system activation.
- Response Generation Module: Generates appropriate responses based on the processed user queries.
- Text-to-Speech Module: Converts the generated responses into spoken words for the user to hear.

REFERENCES

- 1. Juhi A, Pipil N, Santra S, Mondal S, Behera JK, Mondal H. The Capability of ChatGPT in Predicting and Explaining Common Drug-Drug Interactions. Cureus. 2023 Mar 17;15(3):e36272. doi: 10.7759/cureus.36272. PMID: 37073184; PMCID: PMC10105894.
- Lee P, Bubeck S, Petro J. Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine. N Engl J Med. 2023 Mar 30;388(13):1233-1239. doi: 10.1056/NEJMsr2214184. PMID: 36988602.
- Chi-Chun Lee, Emily Mower, Carlos Busso, Sungbok Lee, Shrikanth Narayanan, Emotion recognition using a hierarchical binary decision tree approach, Speech Communication, Volume 53, Issues 9–10,2011, Pages 1162-1171, ISSN 0167-6393.
- 4. Imani, Maryam & Montazer, Gholam Ali. (2019). A survey of emotion recognition methods with emphasis on E-Learning environments. Journal of Network and Computer Applications. 147. 102423. 10.1016/j.jnca.2019.102423.
- 5. Anagnostopoulos, Christos-Nikolaos & Iliou, Theodoros & Giannoukos, Ioannis. (2012). Features and classifiers for emotion recognition from speech: a survey from 2000 to 2011. Artificial Intelligence Review. 43. 10.1007/s10462-012-9368-5.
- 6. Liu, Zhen-Tao & Wu, Min & Cao, Weihua & Mao, Jun-Wei & Xu, Jian-Ping & Tan, Guan-Zheng. (2017). Speech emotion recognition based on feature selection and extreme learning machine decision tree. Neurocomputing. 273. 10.1016/j.neucom.2017.07.050.
- Ghosh, Sayan, Eugene Laksana, Louis-Philippe Morency, and Stefan Scherer.
 "Representation learning for speech emotion recognition." In Interspeech, pp. 3603-3607.
 2016.
- 8. Jahangir, Rashid, Ying Wah Teh, Faiqa Hanif, and Ghulam Mujtaba. "Deep learning approaches for speech emotion recognition: State of the art and research challenges." Multimedia Tools and Applications (2021): 1-68.

- 9. Fahad, Md Shah, Ashish Ranjan, Jainath Yadav, and Akshay Deepak. "A survey of speech emotion recognition in natural environment." Digital signal processing 110 (2021): 102951.
- 10. Lee, Tso-Ying, Chin-Ching Li, Kuei-Ru Chou, Min-Huey Chung, Shu-Tai Hsiao, Shu-Liu Guo, Lung-Yun Hung, and Hao-Ting Wu. "Machine learning-based speech recognition system for nursing documentation—A pilot study." International Journal of Medical Informatics 178 (2023): 105213.
- 11. Singh, Aashdeep, P. Murugeswari, SD Prabu Ragavendiran, Amanpreet Kaur, Gurpreet Singh, and Sathiyamoorthy Margabandu. "AI-based Chatbot for Physically Challenged People." In 2022 International Conference on Edge Computing and Applications (ICECAA), pp. 1039-1044. IEEE, 2022.
- Shakhovska, Nataliya, Oleh Basystiuk, and Khrystyna Shakhovska. "Development of the Speech-to-Text Chatbot Interface Based on Google API." In MoMLeT, pp. 212-221.
 2019.
- 13. Madanian, Samaneh, Talen Chen, Olayinka Adeleye, John Michael Templeton, Christian Poellabauer, Dave Parry, and Sandra L. Schneider. "Speech emotion recognition using machine learning—A systematic review." Intelligent systems with applications (2023): 200266.
- 14. Zhang, Jun, Jingyue Wu, Yiyi Qiu, Aiguo Song, Weifeng Li, Xin Li, and Yecheng Liu. "Intelligent speech technologies for transcription, disease diagnosis, and medical equipment interactive control in smart hospitals: A review." Computers in Biology and Medicine (2023): 106517.
- 15. Choudhary, Nurendra, and Chandan K. Reddy. "Complex Logical Reasoning over Knowledge Graphs using Large Language Models." arXiv preprint arXiv:2305.01157 (2023).
- Elizalde, Benjamin, Soham Deshmukh, and Huaming Wang. "Natural language supervision for general-purpose audio representations." arXiv preprint arXiv:2309.05767 (2023).

Names !!