CSE Template

Rohan Mukherjee

July 25, 2024

1. (a) We use forward reasoning in the following way:

```
\{\{c>0 \text{ and } s>0\}\}

e=5n * c+1;

\{\{c>0 \text{ and } s>0 \text{ and } e=5c+1\}\}

s=s+3n;

\{\{c>0 \text{ and } s-3>0 \text{ and } e=5c+1\}\}

c=c * s;

\{\{c/s>0 \text{ and } s>3 \text{ and } e=5c/s+1\}\}

\{\{e>1\}\}
```

We prove that last implication. We have that c/s > 0, so we know since c/s is an integer that $c/s \ge 1$. Thus $e = 5c/s + 1 \ge 5 \cdot 1 + 1 = 6 > 1$. Thus e > 1.

```
(b) \{\{s \ge 0 \text{ and } e = 0\}\}

\{\{3s + 2 \ge e + 2\}\}

s = 3n * s;

\{\{s + 2 \ge e + 2\}\}

e = e + 2n;

\{\{s + 2 \ge e\}\}

c = s + 2n;

\{\{c \ge e\}\}
```

The implication can be proved as follows. Since $s \ge 0$, we know that $3s + 2 \ge 3 \cdot 0 + 2 = 2 \ge 0 + 2 = e = 2$, since e = 0. Thus we have that $3s + 2 \ge e + 2$ from the precondition and we are done.

```
(c) \{\{c \ge 1 \text{ and } s = c^2\}\}\ if (s < 20n) \{\{c \ge 1 \text{ and } s = c^2 \text{ and } s < 20\}\}\ s = s + 5n; \{\{c \ge 1 \text{ and } s - 5 = c^2 \text{ and } s - 5 < 20\}\}\ else if (s < 30n) \{
```

```
\{\{c \geq 1 \text{ and } s = c^2 \text{ and } 20 \leq s < 30\}\} s = (s/c) + 1n; \{\{c \geq 1 \text{ and } c(s-1) = c^2 \text{ and } 20 \leq c(s-1) < 30\}\} \{\{c \geq 1 \text{ and } s = c^2 \text{ and } s \geq 30\}\} s = s/c; \{\{c \geq 1 \text{ and } cs = c^2 \text{ and } cs \geq 30\}\} \{\{c \geq 1 \text{ and } s - 5 = c^2 \text{ and } s - 5 < 20 \text{ or } c \geq 1 \text{ and } c(s-1) = c^2 \text{ and } c(s-1) < 30 \text{ or } c \geq 1 \text{ and } cs = c^2 \text{ and } cs \geq 30\}\} \{\{s > 5\}\}
```

We prove the final implication by cases. In the first case, we know that $c \ge 1$, $s - 5 = c^2$ and s - 5 < 20. Using the second condition, we see that $s - 5 = c^2$ and so $s = 5 + c^2$. Since $c \ge 1$, we know that $c^2 \ge 1$. Using this we see that $s = 5 + c^2 \ge 5 + 1 = 6 > 5$.

In the second case, we have that $c \ge 1$ and $c(s-1) = c^2$ and $20 \le c(s-1) < 30$. The second condition tells us that s-1=c after dividing by c (c is nonzero since by the first condition $c \ge 1$). We know from the last condition that $c(s-1) \ge 20$. Using that s-1=c now tells us that $c^2 \ge 20$. Taking square roots on both sides, noting that $c \ge 1$ and hence $c \ge 0$, we have that $c \ge \sqrt{20} > 4$. Since c is an integer, we must have that $c \ge 5$. Since $c \ge 5$, and we are done.

In the last case, we have that $c \ge 1$ and $cs = c^2$ and $cs \ge 30$. Once again using the second condition tells us that s = c because $c \ge 1$ so we can divide on both sides by the nonzero constant c. Plugging this into $cs \ge 30$ tells us that $s^2 \ge 30$. Since s = c we have that $s \ge 1$ as well. Taking square roots on both sides of $s^2 \ge 30$ tells us that $s \ge \sqrt{30} > 5$. Thus s > 5 as well.

- 2. (a) Initially, we know that $x = x_0$, so we have that $4y = 4 \cdot 0 = 0 = x_0 x$. Similarly, since $x_0 \ge 0$ we know that $x = x_0 \ge 0 \ge -4$, so the invariant holds at the top of the loop.
- (b) We use forward reasoning. We have:

```
 \{\{ \text{Inv: } 4y = x_0 - x \text{ and } x \ge -4 \} \}  while (x >= 0) \{ \{4y = x_0 - x \text{ and } x \ge -4 \text{ and } x \ge 0 \} \} \iff \{\{4y = x_0 - x \text{ and } x \ge 0 \} \}  y = y + 1n; \{\{4(y-1) = x_0 - x \text{ and } x \ge 0 \} \}  x = x - 4n; \{\{4(y-1) = x_0 - (x+4) \text{ and } x + 4 \ge 0 \} \}  \}
```

The fact that the last condition proves the invariant can be shown as follows. $4(y-1) = x_0 - (x+4)$ is the same as $4y - 4 = x_0 - x - 4$, and adding 4 to both sides shows that $4y = x_0 - x$ as required. The second condition is $x + 4 \ge 0$ which is the same as $x \ge -4$.

- (c) Once we have exited the loop we will have that x < 0. We can use the invariant to see then that $-4 \le x < 0$. Using the fact that $4y = x_0 x$, we can use the fact that $x \ge -4$ to then multiply both sides by -1 to get that $-x \le 4$. Thus $4y = x_0 x \le x_0 + 4$. Since x < 0 here, and since $4y = x_0 x$, we have again that -x > 0 after multiplying both sides by -1, so we can apply this to see that $4y = x_0 x > x_0$. Thus $x_0 < 4y$ and we are done.
 - 3. (a) Initially, we have that a = 0, b = 0, and $L = L_0$. So,

$$sum - gt(L_0, x) = sum - gt(L, x) \qquad L = L_0$$
$$= a + sum - gt(L, x) \quad a = 0$$

Similarly, we have that:

$$sum - lt(L_0, x) = sum - lt(L, x) \qquad L = L_0$$
$$= b + sum - lt(L, x) \qquad b = 0$$

So the invariant holds at the top of the loop.

(b)

```
 \{\{ \text{Inv: } \text{sum-gt}(L_0, x) = \text{a} + \text{sum-gt}(L, x) \text{ and } \\ \text{sum-lt}(L_0, x) = \text{b} + \text{sum-lt}(L, x) \} \} \\ \text{while } (\text{L} !== \text{nil}) \{ \\ \{\{ \text{sum-gt}(L_0, x) = \text{a} + \text{sum-gt}(L, x) \text{ and } \\ \text{sum-lt}(L_0, x) = \text{b} + \text{sum-lt}(L, x) \text{ and } \\ \text{L} = \text{cons}(\text{L.hd}, \text{L.tl}) \} \} \\ \text{if } (\text{L.hd} > x) \{ \\ \{\{ \text{sum-gt}(L_0, x) = \text{a} + \text{sum-gt}(\text{L}, x) \text{ and } \\ \} \} \} \\ \text{one } \{ \text{sum-gt}(L_0, x) = \text{a} + \text{sum-gt}(\text{L}, x) \text{ and } \\ \} \}
```

```
sum-lt(L_0,x) = b + sum-lt(L, x) and
    L = cons(L.hd, L.tl) and L.hd > x}}
     a = a + (L.hd - x);
     \{\{\text{sum-gt}(L_0,x) = \text{a - } (\text{L.hd - x}) + \text{sum-gt}(\text{L, x}) \text{ and } \}
     sum-lt(L_0,x) = b + sum-lt(L, x) and
     L = cons(L.hd, L.tl) and L.hd > x}}
} else if (L.hd < x) {</pre>
     \{\{\text{sum-gt}(L_0,x) = a + \text{sum-gt}(L, x) \text{ and } \}
     sum-lt(L_0,x) = b + sum-lt(L, x) and
    L = cons(L.hd, L.tl) and L.hd < x}
     b = b + (x-L.hd);
     \{\{\text{sum-gt}(L_0,x) = a + \text{sum-gt}(L, x) \text{ and } \}
     sum-lt(L_0,x) = b - (x-L.hd) + sum-lt(L, x) and
     L = cons(L.hd, L.tl) and L.hd < x}
} else {
    // Do nothing
     \{\{\text{sum-gt}(L_0,x) = a + \text{sum-gt}(L, x) \text{ and } \}
     sum-lt(L_0,x) = b + sum-lt(L, x) and
     L = cons(L.hd, L.tl) and L.hd = x}
}
\{\{\text{sum-gt}(L_0,x) = \text{a - } (\text{L.hd - x}) + \text{sum-gt}(\text{L}, x) \text{ and } \}
     sum-lt(L_0,x) = b + sum-lt(L, x) and
    L = cons(L.hd, L.tl) and L.hd > x or
     sum-gt(L_0,x) = a + sum-gt(L, x) and
     sum-lt(L_0,x) = b - (x-L.hd) + sum-lt(L, x) and
    L = cons(L.hd, L.tl) and L.hd < x or
     sum-gt(L_0,x) = a + sum-gt(L, x) and
     sum-lt(L_0,x) = b + sum-lt(L, x) and
    L = cons(L.hd, L.tl) and L.hd = x}
\{\{\text{sum-gt}(L_0,x) = a + \text{sum-gt}(L.tl, x) \text{ and } \}
sum-lt(L_0,x) = b + sum-lt(L.tl, x)\}
L = L.tl;
\{\{\text{sum-gt}(L_0,x) = a + \text{sum-gt}(L, x) \text{ and } \}
sum-lt(L_0,x) = b + sum-lt(L, x)\}
```

We used backwards reasoning for the last line L = L.tl at the end there. I put the invariant under that line to make it clear how I am applying the backwards reasoning, and I added an \implies to show the implication that we have to prove. We prove that now by cases.

}

In the first case, we have that sum-gt(L_0 , x) = a - (L.hd -x) + sum-gt(L, x) and sum-lt(L_0 , x) = b + sum-lt(L, x) and L = cons(L.hd, L.tl) and L.hd > x. We see that:

$$sum - gt(L,x) = sum - gt(cons(L.hd, L.tl), x) \quad L = cons(L.hd, L.tl)$$
$$= (L.hd - x) + sum - gt(L.tl, x) \quad L.hd > x \text{ and def of sum-gt}$$

Plugging this calculation in, we see that sum-gt(L_0 , x) = a - (L.hd - x) + sum-gt(L, x) = a - (L.hd - x) + sum-gt(L.tl, x) = a + sum-gt(L.tl, x) as desired. Similarly,

$$sum - lt(L, x) = sum - lt(cons(L.hd, L.tl), x) \quad L = cons(L.hd, L.tl)$$
$$= sum - lt(L.tl, x) \qquad L.hd > x \text{ and def of sum-lt}$$

So we can plug this into the above to see that $sum-lt(L_0, x) = b + sum-lt(L, x) = b + sum-lt(L, tl, x)$ as well. This completes the proof of this case.

In the second case, we know that sum-gt(L_0 , x) = a + sum-gt(L, x) and sum-lt(L_0 , x) = b - (x-L.hd) + sum-lt(L, x) and L = cons(L.hd, L.tl) and L.hd < x. We see that:

$$sum - gt(L, x) = sum - gt(cons(L.hd, L.tl), x) \quad L = cons(L.hd, L.tl)$$
$$= sum - gt(L.tl, x) \qquad L.hd < x \text{ and def of sum-gt}$$

Plugging this calculation in, we see that sum-gt(L_0 , x) = a + sum-gt(L, x) = a + sum-gt(L, x) as desired. Similarly,

$$sum - lt(L, x) = sum - lt(cons(L.hd, L.tl), x) \quad L = cons(L.hd, L.tl)$$
$$= (x - L.hd) + sum - lt(L.tl, x) \quad L.hd < x \text{ and def of sum-lt}$$

So we can plug this into the above to see that sum-lt(L_0 , x) = b - (x-L.hd) + sum-lt(L, x) = b + sum-lt(L.tl, x) as well. This completes the proof of this case.

In the last case, we know that sum-gt(L_0 , x) = a + sum-gt(L, x) and sum-lt(L_0 , x) = b + sum-lt(L, x) and L = cons(L.hd, L.tl) and L.hd = x. We see that:

$$sum - gt(L,x) = sum - gt(cons(L.hd, L.tl),x) \quad L = cons(L.hd, L.tl)$$
$$= sum - gt(L.tl,x) \qquad L.hd = x \text{ and def of sum-gt}$$

Plugging this calculation in, we see that sum-gt(L_0 , x) = a + sum-gt(L, x) = a + sum-gt(L, x) as desired. Similarly,

$$sum - lt(L,x) = sum - lt(cons(L.hd, L.tl), x) \quad L = cons(L.hd, L.tl)$$
$$= sum - lt(L.tl, x) \qquad L.hd = x \text{ and def of sum-lt}$$

So we can plug this into the above to see that $sum-lt(L_0, x) = b + sum-lt(L, x) = b + sum-lt(L, tl, x)$ as well. This completes the proof of this case and hence the loop invariant.

(c) When we exit the loop, we know that L = nil, that $sum-gt(L_0, x) = a + sum-gt(L, x)$ and $sum-lt(L_0, x) = b + sum-lt(L, x)$. Recalling that sum-gt(nil, x) = 0 and sum-lt(nil, x) = 0, we see that $sum-gt(L_0, x) = a + 0 = a$ and $sum-lt(L_0, x) = b + 0 = b$. Thus we have that $sum-gt(L_0, x) = a$ and $sum-lt(L_0, x) = b$ as required which completes the proof.

5. (a) Let P(L) for a list L be defined as contains(a, concat(L, S)) = contains(a, L) \vee contains(a, S). We prove this claim by structural induction on L. First, if L = nil, then we have that:

$$contains(a, concat(L, S)) = contains(a, concat(nil, S))$$
 L=nil = $contains(a, S)$ def of $concat$

Since by definition contains(a, L) = contains(a, nil) = False, we know that contains(a, L) or contains(a, S) = contains(a, S) which shows the base case holds. Now suppose it holds for some list L. Then we have that:

contains(a, concat(cons(x, L), S)) = contains(a, cons(x, concat(L, S))) def of concat
$$= (a = x) \lor \text{contains}(a, \text{concat}(L, S))$$
def of contains
$$= ((a = x) \lor \text{contains}(a, L)) \lor \text{contains}(a, S)$$
I.H.
$$= \text{contains}(a, \text{cons}(x, L)) \lor \text{contains}(a, S)$$
def of contains

This completes the proof by structural induction of this first claim.

(b) Let the claim P(U) for a BST U be defined as contains(a, toList(U)) = (search(a, U) \neq undefined). We prove this claim by structural induction on U. First, if U is empty, then we have that:

$$contains(a, toList(U)) = contains(a, toList(empty))$$
 U=empty
= $contains(a, nil)$ def of toList
= $false$ def of contains

Similarly,

So search(a, U) \neq undefined is false as well. Thus the base case holds. We now prove that

Recall that toList(node(b, S, T)) = concat(toList(S), cons(b, toList(T))). Then by part (a), we have that:

Now suppose that P(S), P(T) hold for BSTs S, T.

First suppose that a < b. By the BST invariant, nothing > b is in S and nothing $\leq b$ is in T. In particular, T does not have a node with value a, since all of its nodes have value > b. Thus we see that

contains(a, toList(T)) = false. Similarly, since a < b we have that $a \ne b$. So the above in this case equals contains(a, toList(S)), which is by the IH search(a, S) \ne undefined. By the definition of search, we have that search(a, node(b, S, T)) = search(a, S) since a < b. So we put these expressions together to get that the above equals search(a, node(b, S, T)) \ne undefined as desired.

In the second case, where a = b, the above expression would evaluate to true. Similarly, search(a, node(b, S, T)) node(a, S, T) by definition. This is by definition undefined, so (search(a, node(b, S, T)) \neq undefined) is true as well. This completes the proof in this case.

In the last case, suppose that a > b. Once again, by the BST invariant, nothing > a appears as a node of S. So contains(a, toList(S)) = false. Similarly $a \neq b$, so in this case this simplifies to contains(a, toList(T)). By the IH, this is search(a, T) \neq undefined. By the definition of search, search(a, search(b, S, T)) = search(a, T) since a > b. So this expression also equals search(a, node(b, S, T)) \neq undefined as required.