Дидактическа система от задачи върху ирационални уравнения с един радикал

- 1. $\sqrt{2x} = 6$;
- 2. $\sqrt{x} = 2x$;
- 3. $\sqrt{4x} = x 3$;
- 4. $\sqrt{x+1} = 3$;
- 5. $\sqrt{x+2} = x$;
- 6. $\sqrt{x+2} = 2x+3$;
- 7. $\sqrt{x^2} = 4$;
- 8. $\sqrt{x^2} = x$;
- 9. $\sqrt{x^2} = x + 1$;
- $10.\sqrt{x^2+7}=4$;
- $11.\sqrt{2x^2+2}=2x$;
- 12. $\sqrt{x^2+7} = x+1$;
- 13. $\sqrt{x^2 2x} = \sqrt{3}$;
- 14. $\sqrt{2x^2-5x} = x$;
- 15. $\sqrt{x^2 x} = x + 1$;
- $16.\sqrt{x^2-2x+1}=3$;
- 17. $\sqrt{x^2 + 4x + 2} = x$:
- $18.\sqrt{x^2+3x+1}=x+1.$

Дадената дидактическа система е съставена специално за курсовия проект по дисциплината "Технологични средства за обучение по математика" с преподавател доц. Таня Тонова.

Общото на задачите в дидактическата система е методът (начинът), по който се решават. Общото е още, че всички задачи съдържат един радикал и са зададени по следния начин $\sqrt{f(x)} = g(x)$. Това, което различава задачите, са вида на функциите f(x) и g(x). Това е основния белег, който откриване на пръв поглед. Ако решим уравненията ще стигнем до извода, че те се различават по вид на уравнение до което се свеждат, и по брой решения.

Съпоставката между задачите от дидактическата система е поместена в $\it Taблица~1~$ по-долу.

Таблица 1

№	Условие на	Bид на $f(x)$	Вид на $g(x)$
	задачата		
1	$\sqrt{2x} = 6$	линейна от вида kx	константа
2	$\sqrt{x} = 2x$	линейна от вида <i>kx</i>	линейна от вида <i>kx</i>

Технологични средства за обучение по математика

Софийски университет "Св. Климент Охридски" Факултет по математика и информатика

3	$\sqrt{4x} = x - 3$	линейна от вида kx	линейна от вида $kx + p$
4	$\sqrt{x+1} = 3$	линейна от вида $kx + p$	константа
5	$\sqrt{x+2} = x$	линейна от вида $kx + p$	линейна от вида <i>kx</i>
6	$\sqrt{x+2} = 2x+3$	линейна от вида $kx + p$	линейна от вида $kx + p$
7	$\sqrt{x^2} = 4$	квадратна от вида ax^2	константа
8	$\sqrt{x^2} = x$	квадратна от вида ax^2	линейна от вида <i>k</i> x
9	$\sqrt{x^2} = x + 1$	квадратна от вида ax^2	линейна от вида $kx + p$
10	$\sqrt{x^2 + 7} = 4$	квадратна от вида $ax^2 + c$	константа
11	$\sqrt{2x^2 + 2} = 2x$	квадратна от вида $ax^2 + c$	линейна от вида <i>k</i> x
12	$\sqrt{x^2 + 7} = x + 1$	квадратна от вида $ax^2 + c$	линейна от вида $kx + p$
13	$\sqrt{x^2 - 2x} = \sqrt{3}$	квадратна от вида $ax^2 + bx$	константа
14	$\sqrt{2x^2 - 5x} = x$	квадратна от вида $ax^2 + bx$	линейна от вида <i>k</i> x
15	$\sqrt{x^2 - x} = x + 1$	квадратна от вида $ax^2 + bx$	линейна от вида $kx + p$
16	$\sqrt{x^2 - 2x + 1} = 3$	квадратна от вида $ax^2 + bx + c$	константа
17	$\sqrt{x^2 + 4x + 2} = x$	квадратна от вида $ax^2 + bx + c$	линейна от вида <i>kx</i>
18	$\sqrt{x^2 + 3x + 1} = x + 1$	квадратна от вида $ax^2 + bx + c$	линейна от вида $kx + p$

В $Таблица\ 1$ е поместен основния белег, по който създадох дидактическата система от задачи, но може да я разгледаме и според други критерии като уравнение, до което се свежда даденото, и брой решения. Според тези критерии дидактическата система не е пълна т.е. не са изчерпани всички случаи. Съпоставителната характеристика е поместена в $Таблица\ 2$ по-долу.

Таблица 2

№	Условие на задачата	Уравнение, до което се свежда даденото	Брой решения
1	$\sqrt{2x} = 6$	линейно	1
2	$\sqrt{x} = 2x$	квадратно	2
3	$\sqrt{4x} = x - 3$	квадратно	1
4	$\sqrt{x+1} = 3$	линейно	1
5	$\sqrt{x+2} = x$	квадратно	1
6	$\sqrt{x+2} = 2x+3$	квадратно	1
7	$\sqrt{x^2} = 4$	квадратно	2
8	$\sqrt{x^2} = x$	уравнение от вида $0x = 0$	безброй много
9	$\sqrt{x^2} = x + 1$	линейно	1
10	$\sqrt{x^2 + 7} = 4$	квадратно	2

Софийски университет "Св. Климент Охридски" Факултет по математика и информатика

11	$\sqrt{2x^2 + 2} = 2x$	квадратно	1
12	$\sqrt{x^2 + 7} = x + 1$	линейно	1
13	$\sqrt{x^2 - 2x} = \sqrt{3}$	квадратно	2
14	$\sqrt{2x^2 - 5x} = x$	квадратно	2
15	$\sqrt{x^2 - x} = x + 1$	линейно	1
16	$\sqrt{x^2 - 2x + 1} = 3$	квадратно	2
17	$\sqrt{x^2 + 4x + 2} = x$	линейно	0
18	$\sqrt{x^2 + 3x + 1} = x + 1$	линейно	1