Weryfikacja hipotez statystycznych w badaniach rynku

dr Marcin Szymkowiak

Wydział Informatyki i Gospodarki Elektronicznej Uniwersytet Ekonomiczny w Poznaniu

Weryfikacja hipotez statystycznych w badaniach rynku

Weryfikacja hipotez statystycznych w badaniach rynku

- Test t-Studenta dla jednej średniej
- Test t-Studenta dla dwóch średnich (zmienne niepowiązane)
- Test Cochrana-Coxa
- Test t-Studenta dla dwóch średnich (zmienne powiązane)
- Test Kruskala-Wallisa
- Test U Manna-Whitneya
- Test Kołmogorowa-Smirnowa
- Test zgodności χ²
- Test λ-Kołmogorowa
- Test serii na losowość próby

Test t-Studenta dla jednej średniej Test t-Studenta dla dwóch średnich (zmienne niepowiązane) Test Cochrana-Coxa

Test t-Studenta dla jednej średniej

Test t-Studenta dla jednej średniej

Testujemy następujący układ hipotez statystycznych:

$$H_0: m=m_0$$
 $H_0: m=m_0$

$$H_0: m=m_0$$

$$H_1: m \neq m_0$$

$$H_1: m > m_0$$

$$H_1: m < m_0$$

Statystyka testowa iest postaci:

$$t = \frac{\bar{x} - m_0}{s} \sqrt{n} \sim t_{n-1} \tag{1}$$

Obszar krytyczny wyznaczamy w zależności od postaci hipotezy alternatywnej H_1 , ustalonego poziomu istotności α i n-1 stopni swobody.

W przypadku, gdy korzystamy z programów statystycznych decyzję o odrzuceniu hipotezy zerowej podejmujemy w oparciu o p-value. Jeżeli $\alpha \geq p$ to odrzucamy hipotezę zerową na korzyść hipotezy alternatywnej. Natomiast gdy $\alpha < p$ to nie ma podstaw do odrzucenia hipotezy zerowej.

Test t-Studenta dla jednej średniej
Test t-Studenta dla dwóch średnich (zmienne niepowiązane)
Test Cochrana-Coxa

Test t-Studenta dla dwóch średnich (zmienne niepowiązane)

Test t-Studenta dla dwóch średnich (zmienne niepowiązane)

Testuiemy nastepuiacy układ hipotez statystycznych:

H₀:
$$m_1 = m_2$$
 H_0

$$H_0: m_1 = m_2$$
 $H_0: m_1 = m_2$

$$H_1: m_1 \neq m_2$$
 $H_1: m_1 > m_2$ $H_1: m_1 < m_2$

Statystyka testowa jest postaci:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \sim t_{n_1 + n_2 - 2}$$
(2)

Obszar krytyczny wyznaczamy w zależności od postaci hipotezy alternatywnej H_1 , ustalonego poziomu istotności α i n_1+n_2-2 stopni swobody.

W przypadku, gdy korzystamy z programów statystycznych decyzję o odrzuceniu hipotezy zerowej podejmujemy w oparciu o p-value. Jeżeli $\alpha \geq p$ to odrzucamy hipotezę zerową na korzyść hipotezy alternatywnej. Natomiast gdy $\alpha < p$ to nie ma podstaw do odrzucenia hipotezy zerowej.

Uwaga. W teście tym zakładamy jednorodność wariancji cechy w obydwu populacjach. W przypadku gdy nie można założyć jednorodności wariancji, należy posłużyć się alternatywnym testem Cochrana-Coxa.

Test t-Studenta dla jednej średniej Test t-Studenta dla dwóch średnich (zmienne niepowiązane) Test Cochrana-Coxa

Test t-Studenta dla dwóch średnich (zmienne powiązane)

Test Cochrana-Coxa

Test Cochrana-Coxa

 $H_1: m_1 \neq m_2$

Testujemy następujący układ hipotez statystycznych:

$$H_0: m_1 = m_2$$
 $H_0: m_1 = m_2$

$$H_1: m_1 > m_2$$
 $H_1: m_1 < m_2$

Jeśli nie można przyjąć założenia o nieznanych, ale jednakowych wariancjach, wówczas statystykę t-Studenta można określić poniższym wzorem, przy czym bardziej skomplikowane jest wówczas określenie liczby stopni swobody:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}, \quad df = v = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\left(\frac{s_1^2/n_1}{n_1 - 1}\right)^2 + \left(\frac{s_2^2/n_2}{n_2 - 1}\right)^2}.$$
 (3)

Obszar krytyczny wyznaczamy w zależności od postaci hipotezy alternatywnej H_1 , ustalonego poziomu istotności α i ν stopni swobody.

W przypadku, gdy korzystamy z programów statystycznych decyzję o odrzuceniu hipotezy zerowej podejmujemy w oparciu o p-value. Jeżeli $\alpha \geq p$ to odrzucamy hipotezę zerową na korzyść hipotezy alternatywnej. Natomiast gdy $\alpha < p$ to nie ma podstaw do odrzucenia hipotezy zerowej.

 $H_0: m_1 = m_2$

Test t-Studenta dla jednej średniej Test t-Studenta dla dwóch średnich (zmienne niepowiązane) Test t-Cochrana-Coxa Test t-Studenta dla dwóch średnich (zmienne powiazane)

Test t-Studenta dla dwóch średnich (zmienne powiązane)

Test t-Studenta dla dwóch średnich (zmienne powiązane)

Testujemy następujący układ hipotez statystycznych:

$$H_0: m_1 = m_2$$
 $H_0: m_1 = m_2$

$$H_0: m_1 = m_2$$

$$H_1: m_1 \neq m_2$$

$$H_1: m_1 > m_2$$

$$H_1: m_1 < m_2$$

Załóżmy przy tym, że wyniki obserwacji pochodzą z dwóch populacji i są w jakiś sposób powiązane ze sobą (zestawione w pary). Dla każdego elementu próby losowej mamy parę liczb x_i oraz y_i , a także ich różnicę $d_i = x_i - y_j$. Zakładamy, że populacja różnic ma rozkład normalny. Statystyka testowa jest postaci:

$$t = \frac{\bar{d}}{s_d} \sqrt{n} \sim n - 1,\tag{4}$$

gdzie \bar{d} , s_d oznaczają średnią i odchylenie standardowe różnic d_i .

Obszar krytyczny wyznaczamy w zależności od postaci hipotezy alternatywnej H_1 , ustalonego poziomu istotności α i n-1 stopni swobody.

W przypadku, gdy korzystamy z programów statystycznych decyzję o odrzuceniu hipotezy zerowej podejmujemy w oparciu o p-value. Jeżeli $\alpha \geq p$ to odrzucamy hipotezę zerową na korzyść hipotezy alternatywnej. Natomiast gdy $\alpha < p$ to nie ma podstaw do odrzucenia hipotezy zerowej.

Test Kruskala-Wallisa Test U Manna-Whitneya Test Kołmogorowa-Smirnov Test zgodności χ^2

Test Kruskala-Wallisa

Test Kruskala-Wallisa

Test Kruskala-Wallisa jest nieparametrycznym odpowiednikiem jednoczynnikowej analizy wariancji. Załóżmy, że danych jest k-populacji, w których badana cecha ma rozkład typu ciągłego. Niech $F_1(x),\ldots,F_k(x)$ oznaczają dystrybuanty zmiennych w rozpatrywanych populacjach. Z populacji tych losujemy po n_i elementów do prób. Testujemy następujący układ hipotez statystycznych:

$$H_0: F_1(x) = \dots, F_k(x), \quad H_1: F_i(x) \neq F_i(x), \quad i \neq j.$$

Statystyka testowa iest postaci

$$H = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{T_i^2}{n_i} - 3(n+1), \qquad (5)$$

gdzie $n=n_1+\ldots+n_k$, a T_i oznacza sumę rang w każdej próbie oddzielnie. Statystyka ta ma asymptotyczny rozkład χ^2 o k-1 stopniach swobody. Wzór ten jednak nie bierze pod uwagę rang wiązanych. W przypadku wystąpienia rang wiązanych należy wprowadzić poprawkę, która polega na podzieleniu statystyki H przez wartość poprawki P określonej w nastepujący sposób:

$$P = 1 - \frac{\sum (I^3 - I)}{n^3 - n},\tag{6}$$

gdzie / jest liczbą pomiarów mających tę samą rangę wiązaną, sumowanie zaś odbywa się po wszystkich grupach rang wiązanych.

Test U Manna-Whitneya

Test U Manna-Whitneya

Test U Manna-Whitneya jest nieparametryczną alternatywą dla testu t-Studenta dla prób niezależnych. W teście tym weryfikujemy hipotezę zerową, że dwie losowo wybrane próby pochodzą z tej samej populacji, przy czym zakłada się, że badana cecha jest mierzona przynajmniej na skali porządkowej. Sposób postępowania w teście U Manna-Whitneya jest następujący:

- porządkujemy rosnąco wartości obydwu prób,
- przyporządkowujemy poszczególnym wartościom w uporządkowanym zbiorze danych rangi tzn. kolejne liczby naturalne (w przypadku wystąpienia tych samych wartości nadajemy tzw. rangi wiązane – średnią arytmetyczna z rang iakie należałoby przypisać).

Testujemy następujący układ hipotez statystycznych:

$$H_0: F_1(x) = F_2(x), \quad H_1: F_1(x) \neq F_2(x).$$

Statystyka testowa jest postaci

$$U = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1, \tag{7}$$

gdzie n_1 , n_2 oznaczają liczebności prób pobranych odpowiednio z pierwszej i drugiej populacji, a R_1 oznacza sumę rang przyznanych wartościom pierwszej próby. Ze względu na skomplikowany rozkład tej statystyki odpowiednie wartości krytyczne zostały zawarte w specjalnych tablicach.

Test Kołmogorowa-Smirnowa

Test Kołmogorowa-Smirnowa

Test ten stosujemy do weryfikacji hipotezy, że rozkłady tej samej zmiennej w dwóch populacjach są takie same. Badana zmienna musi być zmienna ciągła. Stawiamy hipoteze zerowa i alternatywna:

$$H_0: F_1(x) = F_2(x), \quad H_1: F_1(x) \neq F_2(x).$$

Statystyka testowa jest postaci

$$\lambda = D^* \sqrt{n},\tag{8}$$

gdzie:

$$D^* = \sup |F_1^{emp}(x) - F_2^{emp}(x)|, \qquad (9)$$

a sup oznacza kres górny różnicy dystrybuant empirycznych w próbach, przy czym:

$$F_1^{emp}(x) = \frac{cumf_1}{n_1}, \quad F_2^{emp}(x) = \frac{cumf_2}{n_2}, \quad n = \frac{n_1 \cdot n_2}{n_1 + n_2}.$$
 (10)

Statystyka λ przy założeniu prawdziwości H_0 ma asymptotyczny rozkład λ -Kołmogorowa. Wartość krytyczną testu odczytujemy więc z tablic tego rozkładu tak, aby spełniony był warunek: $P(\lambda > \lambda_{\alpha}) = \alpha$. W praktyce oznacza to, że $F(\lambda_{\alpha}) = 1 - \alpha$. Jeśli okaże się, że $\lambda \geq \lambda_{\alpha}$ to H_0 odrzucamy na korzyść H_1 , jeśli zaś $\lambda < \lambda_{\alpha}$ to stwierdzamy, że nie ma podstaw do odrzucenia H_0 .

Test Kruskala-Wallisa Test U Manna-Whitneya Test Kołmogorowa-Smirnowa **Test zgodności** χ^2

Test zgodności χ^2

Test zgodności χ^2

Test zgodności chi-kwadrat (χ^2) stosujemy weryfikując hipotezę zerową o zgodności rozkładu badanej cechy w populacji generalnej z określonym rozkładem teoretycznym (na przykład Poissona, dwumianowym, równomiernym, normalnym). W teście tym hipoteza zerowa i hipoteza alternatywna mają postać:

$$H_0: F(x) = F_0(x), \quad H_1: F(x) \neq F_0(x).$$

Zakładamy tu, że badana zmienna w populacji generalnej ma rozkład o nieznanej dystrybuancie F(x), natomiast rozkład hipotetyczny może być zarówno typu ciągłego jak i skokowego. Podstawą konstrukcji miary zgodności rozkładu empirycznego z hipotetycznym jest różnica między liczebnościami zaobserwowanymi w próbie (empirycznymi, oznaczanymi symbolem n_i) a teoretycznymi oznaczanymi jako np_i . Do oceny tej zgodności służy statystyka χ^2 , którą liczymy według wzoru:

$$\chi^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i},$$
 (11)

Statystyka ta, przy założeniu prawdziwości hipotezy zerowej, ma rozkład χ^2 o r-k-1 stopniach swobody (k jest liczbą parametrów postulowanego rozkładu szacowanych w oparciu o próbę, r jest natomiast liczbą wariantów bądź przedziałów klasowych). Konstruujemy w tym teście prawostronny obszar krytyczny tak, by spełniona była relacja $P\left(\chi^2 \geq \chi^2_{\alpha}\right) = \alpha$. Hipotezę zerową odrzucamy, gdy $\chi^2 \geq \chi^2_{\alpha}$.

Test λ -Kołmogorowa

Test λ -Kołmogorowa

Test A-Kołmogorowa służy do sprawdzania czy rozkład cechy w populacji jest zgodny z pewnym z góry założonym rozkładem teoretycznym. Często jest wykorzystywany do sprawdzenia, czy rozkład badanej cechy jest normalny. W teście tym hipoteza zerowa i hipoteza alternatywna mają postać:

$$H_0: F(x) = F_0(x), \quad H_1: F(x) \neq F_0(x).$$

Zakładamy tu, że badana zmienna w populacji generalnej ma rozkład o nieznanej dystrybuancie F(x), natomiast rozkład hipotetyczny musi być typu ciągłego. Statystyka testowa jest postaci

$$\lambda = D\sqrt{n},\tag{12}$$

gdzie:

$$D = \sup |F_0(x) - F_n(x)|, \qquad (13)$$

a sup oznacza kres górny różnicy dystrybuant hipotetycznej $F\left(x\right)$ i empirycznej $F_{n}\left(x\right)$. Statystyka λ przy założeniu prawdziwości H_{0} ma asymptotyczny rozkład λ -Kołmogorowa. Wartość krytyczną testu odczytujemy więc z tablic tego rozkładu tak, aby spełniony był warunek: $P\left(\lambda > \lambda_{\alpha}\right) = \alpha$. W praktyce oznacza to, że $F\left(\lambda_{\alpha}\right) = 1 - \alpha$. Jeśli okaże się, że $\lambda \geq \lambda_{\alpha}$ to H_{0} odrzucamy na korzyść H_{1} , jeśli zaś $\lambda < \lambda_{\alpha}$ to stwierdzamy, że nie ma podstaw do odrzucenia H_{0} .

Test serii na losowość próby

Test serii na losowość próby

Test ten pozwala zweryfikować hipotezę, że dobór jednostek do próby był losowy. Próba licząca n jednostek została pobrana z populacji generalnej, której liczebność wynosiła N. W teście tym hipoteza zerowa i hipoteza alternatywna mają postać:

Ho: Próba jest losowa, Ho: Próba nie jest losowa.

W celu sprawdzenia hipotezy zerowej obliczamy wartość mediany (Me) z próby. Porównujemy wartość cechy każdej jednostki (x_i) z medianą (Me). Jeśli $x_i < Me$ to takiemu zdarzeniu przyporządkowujemy symbol a, jeśli zaś $x_i > Me$ to symbol b (to przyporządkowanie wykonujemy na szeregu wyjściowym). W rezultacie otrzymujemy ciąg symboli a i b. Każdy podciąg tego ciągu złożony z symboli tego samego rodzaju nazywamy serią. Ustalamy liczbę serii w naszym ciągu i oznaczamy ją przez k. Jest to sprawdzian hipotezy zerowej. Następnie w tablicach rozkładu liczby serii znajdujemy wartości krytyczne tak, by zachodziły relacje:

$$P(k \le k_1) = \frac{\alpha}{2}, \quad P(k \ge k_2) = 1 - \frac{\alpha}{2}.$$

Oznacza to, że $k_{1\alpha}$ odczytujemy dla $\alpha/2$ oraz ustalonej w ciągu liczby symboli a (n_a) oraz liczby symboli b (n_b) , natomiast $k_{2\alpha}$ dla $1-\alpha/2$ oraz n_a i n_b . Jeśli okaże się, że $k \le k_{1\alpha}$ lub $k \ge k_{2\alpha}$, to hipotezę zerową należy odrzucić. Jeśli zaś $k_{1\alpha} < k < k_{2\alpha}$ to stwierdzamy, że nie ma podstaw do odrzucenia hipotezy zerowej o losowości próby.

Weryfikacja hipotez statystycznych w badaniach rynku Wybrane testy parametryczne Wybrane testy nieparametryczne 1 Wybrane testy nieparametryczne 2

Dziękuje za uwagę