第八章 函数

第八章 函数

8.1 函数的定义与性质

- 函数定义
- 函数性质
- 8.2 函数运算
- 函数的逆
- 函数的复合
- 8.3 双射函数与集合的基数

离散数学

8.1 函数的定义与性质

主要内容 函数定义与相关概念

- 函数定义
- 函数相等
- 从 A到 的函数 $f:A \rightarrow B$
- lacksquare B^A
- 函数的像与完全原像
- 函数的性质
- 单射、满射、双射函数的定义与实例
- 构造双射函数

某些重要的函数

函数定义

定义8.1 设 F 为二元关系, 若 $\forall x \in \text{dom} F$ 都存在唯一的 $y \in \text{ran} F$ 使 xFy 成立, 则称 F 为函数

对于函数F, 如果有 xFy, 则记作 y=F(x), 并称 y 为F 在 x 的值.

例
$$F_1$$
={ $< x_1, y_1 >, < x_2, y_2 >, < x_3, y_2 >$ }
$$F_2$$
={ $< x_1, y_1 >, < x_1, y_2 >$ }

 F_1 是函数, F_2 不是函数

函数相等

定义8.2 设F,G 为函数,则 $F=G \Leftrightarrow F \subseteq G \land G \subseteq F$

如果两个函数F 和 G 相等,一定满足下面两个条件:

- (1) dom F = dom G
- (2) $\forall x \in \text{dom}F = \text{dom}G$ 都有F(x) = G(x)

例 函数 $F(x)=(x^2-1)/(x+1)$, G(x)=x-1不相等,因为 $dom F \subset dom G$.

离散数学

从A到B的函数

定义8.3 设A,B为集合,如果 f为函数, dom f = A, $ran f \subseteq B$, 则称f为从A到B的函数,记作 $f: A \rightarrow B$.

例 $f: N \rightarrow N$, $f(x)=2^x$ 是从N到N的函数, $g: N \rightarrow N$, g(x)=2 也是从N到N的函数.

实例

定义8.4 所有从A到B的函数的集合记作 B^A ,符号化表示为

$$B^A = \{ f | f: A \rightarrow B \}$$

例1 设 $A=\{1,2,3\}, B=\{a,b\}, 求B^A$.

$$f_0 = \{<1,a>,<2,a>,<3,a>\}$$

$$f_1 = \{<1,a>,<2,a>,<3,b>\}$$

$$f_2 = \{<1,a>,<2,b>,<3,a>\}$$

$$f_3 = \{<1,a>,<2,b>,<3,b>\}$$

$$f_A = \{<1,b>,<2,a>,<3,a>\}$$

$$f_5 = \{<1,b>,<2,a>,<3,b>\}$$

$$f_6 = \{<1,b>,<2,b>,<3,a>\}$$

$$f_7 = \{<1,b>,<2,b>,<3,b>\}$$

$$|A|=m, |B|=n, \pm m, n>0, |B^A|=n^m$$

一般地,|A|=m, |B|=n,由A到B的任意函数的定义域是A,在这些函数中每个恰有m个序偶,又任何 $x \in A$,可以有n个元素中的任何一个作为它的象,故共有 $n^m(|B|^{|A|})$ 个不同函数。

特别说明:

$$A=\varnothing$$
, $\mathbb{N}B^{A}=B^{\varnothing}=\{\varnothing\}$

$$A\neq\emptyset$$
且 $B=\emptyset$,则 $B^A=\emptyset^A=\emptyset$

函数的像和完全原像

定义8.5 设函数 $f: A \rightarrow B, A_1 \subseteq A, B_1 \subseteq B$

- (1) $A_1 = \{f(x) \mid x \in A_1\}$, 函数的像 f(A)
- (2) B_1 在 f 下的完全原像 $f^{-1}(B_1) = \{x | x \in A \land f(x) \in B_1\}$
- 函数值与像的区别: 函数值 $f(x) \in B$, 像 $f(A_1) \subseteq B$
- 一般说来 $f^{-1}(f(A_1))\neq A_1$, 但是 $A_1\subseteq f^{-1}(f(A_1))$ $f(f^{-1}(B_1))\neq B_1$,但是 $f(f^{-1}(B_1))\subseteq B_1$

例 设
$$A = \{0,1,2,3,4\}, B = \{0,1,2,3\}, \diamondsuit f:A \rightarrow B$$

 $f = \{<0,0>,<1,2><2,1>,<3,1>,<4,2>\}$
 $\diamondsuit A_1 = \{0,1\}, B_1 = \{2,3\}, 那么有$
 $f(A_1) = f(\{0,1\}) = \{f(0),f(1)\} = \{0,2\} \subseteq B$
 $A_1 \subseteq f^{-1}(f(A_1)) = f^{-1}(\{0,2\}) = \{0,1,4\}$
 $f^{-1}(B_1) = f^{-1}(\{2,3\}) = \{1,4\} \subseteq A$
 $f(f^{-1}(B_1)) = f(\{1,4\}) = \{2\} \subseteq B_1$

函数的性质

定义8.6 设 $f: A \rightarrow B$,

- (1) 若 ranf=B, 则称 $f:A \rightarrow B$ 是满射的
- (2) 若 $\forall y \in \text{ran} f$ 都存在唯一的 $x \in A$ 使得 f(x)=y, 则称 $f:A \to B$ 是单射的
- (3) 若 $f:A \rightarrow B$ 既是满射又是单射的,则称 $f:A \rightarrow B$ 是双射的

例2 判断下面函数是否为单射,满射,双射的,为什么?

- (1) $f: \mathbf{R} \to \mathbf{R}, f(x) = -x^2 + 2x 1$
- (2) $f:Z^+\rightarrow R$, $f(x) = \ln x$, Z^+ 为正整数集
- (3) $f: \mathbf{R} \to \mathbf{Z}, f(x) = \lfloor x \rfloor$
- (4) $f: \mathbb{R} \to R, f(x) = 2x + 1$
- (5) $f: \mathbb{R}^+ \to \mathbb{R}^+, f(x) = (x^2+1)/x$, 其中 \mathbb{R}^+ 为正实数集.

例题解答

解

- (1) $f: \mathbf{R} \to \mathbf{R}, f(x) = -x^2 + 2x 1$ 在x=1取得极大值0. 既不是单射也不是满射的
- (2) $f: \mathbb{Z}^+ \to \mathbb{R}, f(x) = \ln x$ 是单调上升的, 是单射的. 但不满射, $ran f = \{\ln 1, \ln 2, ...\}$.
- (3) $f: \mathbf{R} \to \mathbf{Z}, f(x) = \lfloor x \rfloor$ 是满射的, 但不是单射的, 例如f(1.5) = f(1.2) = 1

离散数学

例题解答(续)

- (4) $f: \mathbf{R} \to \mathbf{R}, f(x) = 2x + 1$ 是满射、单射、双射的, 因为它是单调函数并且 $\operatorname{ran} f = \mathbf{R}$
- (5) $f: \mathbf{R}^+ \to \mathbf{R}^+, f(x) = (x^2 + 1)/x$ 有极小值 f(1) = 2. 该函数既不是单射的也不是满射的

回看→思考

定义8.5 设函数 $f: A \rightarrow B, A_1 \subseteq A, B_1 \subseteq B$

- (1) A_1 在 f 下的像 $f(A_1) = \{f(x) \mid x \in A_1\}$, 函数的像 f(A)
- (2) B_1 在 f 下的完全原像 $f^{-1}(B_1) = \{x | x \in A \land f(x) \in B_1\}$
- \bullet 函数值与像的区别:函数值 $f(x) \in B$,像 $f(A_1) \subseteq B$
 - 一般说来 $f^{-1}(f(A_1)) \neq A_1$, 但是 $A_1 \subseteq f^{-1}(f(A_1))$ $f(f^{-1}(B_1)) \neq B_1$,但是 $f(f^{-1}(B_1)) \subseteq B_1$

当函数f是 单射 时, $f^{-1}(f(A_1))=A_1$ 当函数f是 满射 时, $f(f^{-1}(B_1))=B_1$

实例

例3 对于给定的集合A和B构造双射函数 $f:A\rightarrow B$

- (1) $A=P(\{1,2,3\}), B=\{0,1\}^{\{1,2,3\}}$
- (2) A = [0,1], B = [1/4,1/2]
- (3) A=Z, B=N
- (4) $A = \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, B = [-1,1]

(1)
$$A=P(\{1,2,3\}), B=\{0,1\}^{\{1,2,3\}}$$

$$A = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}\}.$$
 $B = \{f_0, f_1, \dots, f_7\},$ 其中
 $f_0 = \{<1,0>, <2,0>, <3,0>\},$ $f_1 = \{<1,1>, <2,0>, <3,0>\},$ $f_2 = \{<1,0>, <2,1>, <3,0>\},$ $f_3 = \{<1,0>, <2,0>, <3,1>\},$ $f_4 = \{<1,1>, <2,1>, <3,0>\},$ $f_5 = \{<1,1>, <2,0>, <3,1>\},$ $f_6 = \{<1,0>, <2,1>, <3,1>\},$ $f_7 = \{<1,1>, <2,1>, <3,1>\}.$
 $\diamondsuit f:A \rightarrow B,$
 $f(\emptyset) = f_0,$ $f(\{1\}) = f_1,$ $f(\{2\}) = f_2,$ $f(\{3\}) = f_3,$ $f(\{1,2\}) = f_4,$ $f(\{1,3\}) = f_5,$ $f(\{2,3\}) = f_6,$ $f(\{1,2,3\}) = f_7$

$$(2) A = [0,1], B = [1/4,1/2]$$

\$\(f:[0,1] → [1/4,1/2], \\
$$f(x)=(x+1)/4$$

(3) A = Z, B = N

将Z中元素以下列顺序排列并与N中元素对应:

这种对应所表示的函数是:

$$f: \mathbf{Z} \to \mathbf{N}, \quad f(x) = \begin{cases} 2x & x \ge 0 \\ -2x - 1 & x < 0 \end{cases}$$

(4)
$$A = [\pi/2, 3\pi/2], B = [-1,1]$$

 $\Leftrightarrow f: [\pi/2, 3\pi/2] \rightarrow [-1,1]$
 $f(x) = \sin x$

补充: 无穷

某些重要函数

定义8.7

- (1)设 $f:A \rightarrow B$,如果存在 $c \in B$ 使得对所有的 $x \in A$ 都有f(x)=c,则称 $f:A \rightarrow B$ 是常函数.
- (2) 称 A上的恒等关系 I_A 为A上的<mark>恒等函数</mark>,对所有的 $x \in A$ 都有 $I_A(x)=x$.
- (3) 设<A,<>>,<B,<>为偏序集,f:A \rightarrow B,如果对任意的 x_1 , x_2 \in A, x_1 <<x₂,就有 $f(x_1)$ < $f(x_2)$,则称 f 为单调递增的;如果对任意的 x_1, x_2 \in A, x_1 < x_2 ,就有 $f(x_1)$ < $f(x_2)$,则称 f 为严格单调递增的.

类似的也可以定义单调递减和严格单调递减的函数

例 偏序集< $P(\{a,b,c\})$, R_{\subseteq} >, < $\{0,1\}$, \leq >, R_{\subseteq} 为包含关系, \leq 为一般的小于等于关系, 令: $f:P(\{a,b,c\}) \rightarrow \{0,1\}$, $f(\emptyset) = f(\{a\}) = f(\{b\}) = f(\{c\}) = 0$, $f(\{a,b\}) = f(\{a,c\}) = f(\{b,c\}) = f(\{a,b,c\}) = 1$,

f 是单调递增的, 但不是严格单调递增的

某些重要函数

(4) 设A为集合,对于任意的 $A'\subseteq A$,A'的特征函数

$$\chi_{A'}$$
: $A \rightarrow \{0,1\}$ 定义为
$$\chi_{A'}(a)=1, a \in A'$$

$$\chi_{A'}(a)=0, a \in A-A'$$

即: A的每一个子集 A'都对应于一个特征函数,不同的子集对应于不同的特征函数.

例
$$A = \{a,b,c\}$$
,
则有:
$$\chi_{\{a,b\}} = \{\langle a,1\rangle,\langle b,1\rangle,\langle c,0\rangle\}$$

$$\chi_{\varnothing} = \{\langle a,0\rangle,\langle b,0\rangle,\langle c,0\rangle\}$$

实例回看


```
F = \{0,1\} \ ^{\{1,2,3\}}
F = \{f_0, f_1, \dots, f_7\}, \ \sharp \pitchfork
f_0 = \{<1,0>,<2,0>,<3,0>\}, \ f_1 = \{<1,1>,<2,0>,<3,0>\},
f_2 = \{<1,0>,<2,1>,<3,0>\}, \ f_3 = \{<1,0>,<2,0>,<3,1>\},
f_4 = \{<1,1>,<2,1>,<3,0>\}, \ f_5 = \{<1,1>,<2,0>,<3,1>\},
f_6 = \{<1,0>,<2,1>,<3,1>\}, \ f_7 = \{<1,1>,<2,1>,<3,1>\}.
```

$$F = \{f_0, f_1, f_2, f_3, f_4, f_5, f_6, f_7\}$$

$$= \{\chi_{\emptyset}, \chi_{\{1\}}, \chi_{\{2\}}, \chi_{\{3\}}, \chi_{\{1,2\}}, \chi_{\{1,3\}}, \chi_{\{2,3\}}, \chi_{\{1,2,3\}}\}$$

设A为集合,对于任意的 $A' \subseteq A$,A' 的<mark>特征函数</mark> $\chi_{A'} : A \rightarrow \{0,1\}$ 定义为 $\chi_{A'}(a) = 1$, $a \in A'$ $\chi_{A'}(a) = 0$, $a \in A - A'$

设<F, f >为偏序集, 其中, F ={0,1} A , A={1,2,3}, f 表示函数的小于等于关系,即对于 $\forall f,g$ ∈ F , f ≤ g ⇔ $\forall x$ (x ∈ A \rightarrow f(x)≤g(x)),则F的最小元可表示为() .

【注:对于任意的A'⊆A, A'的特征函数表示为XA'】

- a. $\chi_{\{1,2,3\}}$
- b. $\chi_{\{3\}}$
- c. $\chi_{\{2,3\}}$
- √ d. **χ**ø

某些重要函数

(5) 设R是A上的等价关系,令 $g:A \rightarrow A/R$ $g(a)=[a], \forall a \in A$

称 g 是从 A 到商集 A/R 的自然映射

实例

不同的等价关系确定不同的自然映射 恒等关系确定的自然映射是双射 其他自然映射一般来说只是满射 例

$$A = \{1,2,3\},$$
 $R = \{<1,2>,<2,1>\} \cup I_A$
 $g: A \rightarrow A/R,$
 $g(1) = g(2) = \{1,2\}, g(3) = \{3\}$

关于自然映射,下面那些命题为真?

- √ ① 自然映射一定是满射;
 - ② 自然映射一定是单射;
- √③ 自然映射有可能是双射;
- √ ④ 实数集合R上的全域关系确定的自然映射不是双射;
 - ⑤一个等价关系确定的自然映射可能不唯一。

设 $f \in \mathbf{R}^{\mathbf{R}}$,且 $f(x) = \begin{cases} 1 & x \in \mathbf{N} \\ 0 & x \notin \mathbf{N} \end{cases}$,其中 \mathbf{R} 表示实数集, \mathbf{N} 表示自然数集,令 E 是由 f 导出的等价关系,即 $xEy \Leftrightarrow f(x)=f(y)$,且令 $g:\mathbf{R} \to \mathbf{R}/E$ 是自然映射,则 $g(0)=___$, $g(1)=___$, $g(N)=__$, $g(N)=__$, $g(N)=__$, $g(N)=_$

$$\mathbf{R}/E = \{ \{ x \mid x \in \mathbf{N} \}, \{ x \mid x \notin \mathbf{N} \} \}$$

 $[N,N,\{N\},N,N]$

离散数学 8.1 函数的定义与性质(回顾)

主要内容 函数定义与相关概念

- 函数定义
- 函数相等
- 从 A到 的函数 $f:A \rightarrow B$
- lacksquare B^A
- 函数的像与完全原像
- 函数的性质
- 单射、满射、双射函数的定义与实例
- 构造双射函数

某些重要的函数

设A为非空集合,若 $f,g \in A^A$,定义等价关系 T:fTg 当且仅当 ranf=rang. 则 A^A/T 中元素的个数? (其中A有n个元素)

$$|P(A)-1|=2^n-1$$

设 $A = \mathbf{R}^{[0,1]}$, 其中 **R** 表示实数集,

若 $f,g \in A$, 定义关系 S: fSg 当且仅当 $f(x) - g(x) \ge 0, x \in [0,1]$.

则, S是偏序关系吗? 是全序关系吗? 为什么?

【是偏序关系,但不是全序关系】

离散数学

→进阶例题*

已知集合 A 和 B,其中 $A\neq\emptyset$,<B,<D是偏序集,<B,<D中存在最大元 b. 定义 B^A 上的二元关系 R: $fRg\Leftrightarrow \forall x\ (x\in A\to (f(x)\leq g(x)))$.

- (1) 证明 R 为 B⁴上的偏序关系.
- (2) 给出偏序集 $< B^4$, R>中的最大元.

(1) 证明:

任取 $f \in B^A$,对于任意的 $x \in A$,有 $f(x) \in B$,由函数的定义知,f(x) = f(x),即 fRf,所以 R 具有自反性.

任取 f, $g \in B^A$, 若 fRg 且 gRf, 则对于任意的 $x \in A$, 都有 $f(x) \in B$, $g(x) \in B$, 且 $f(x) \leq g(x)$, $g(x) \leq f(x)$. 因为< B, < >是偏序集,所以 \leq 具有反对称性,因此有 f(x) = g(x). 根据函数的定义知 f = g. 所以 R 是反对称的.

任取 f, g, $h \in B^A$, 若 fRg 且 gRh, 则对于任意的 $x \in A$, 都有 f(x), g(x), $h(x) \in B$, 且有 $f(x) \le g(x)$, $g(x) \le h(x)$. 因为 $\le B$, \le 是偏序集,所以 \le 具有传递性,因此有 $f(x) \le h(x)$,即 fRh. 所以 R 是传递的.

因此 R 为 B^{A} 上的偏序关系.

(2) 偏序集 $< B^A, R >$ 中的最大元为: f(x)=b.

1

2

3

→进阶例题*-详解

例 设
$$A=\{1,2,3\}, B=\{a,b\},$$

$$B^{A}$$
={ $f_{0}, f_{1}, \dots, f_{7}$ }, 其中:
 f_{0} ={ $<1,a>,<2,a>,<3,a>}
 f_{1} ={ $<1,a>,<2,a>,<3,b>}
 f_{2} ={ $<1,a>,<2,b>,<3,a>}
 f_{3} ={ $<1,a>,<2,b>,<3,b>}
 f_{4} ={ $<1,b>,<2,a>,<3,a>}
 f_{5} ={ $<1,b>,<2,a>,<3,b>}
 f_{6} ={ $<1,b>,<2,b>,<3,a>}
 f_{6} ={ $<1,b>,<2,b>,<3,b>}$$$$$$$$

$$fRg \Leftrightarrow \forall x \ (x \in A \to (f(x) \le g(x)))$$

$$R = \{ < f_0, f_0 >, < f_0, f_1 >, < f_0, f_2 >, < f_0, f_3 >, ..., < f_1, f_3 >, ..., < f_7, f_7 > \}$$

偏序集<
$$B^A$$
, R >中的

最大元是
$$f_7$$

$$f(x)=b$$

第八章 函数

- 8.1 函数的定义与性质
- 函数定义
- 函数性质
- 8.2 函数运算
- 函数的逆
- 函数的复合
- 8.3 双射函数与集合的基数

8.2 函数的复合与反函数

主要内容

- 复合函数基本定理
- 函数的复合运算与函数性质
- 反函数的存在条件
- 反函数的性质

复合函数基本定理

定理8.1 设F, G是函数, 则F。G也是函数, 且满足

- (1) $\operatorname{dom}(F \circ G) = \{x | x \in \operatorname{dom} F \land F(x) \in \operatorname{dom} G\}$
- $(2) \forall x \in \text{dom}(F \circ G)$ 有 $F \circ G(x) = G(F(x))$

证 先证明 $F \circ G$ 是函数.

因为F, G是关系, 所以F。G也是关系.

若对某个 $x \in \text{dom}(F \circ G)$ 有 $xF \circ Gy_1$ 和 $xF \circ Gy_2$,则

$$\langle x, y_1 \rangle \in F \circ G \land \langle x, y_2 \rangle \in F \circ G$$

$$\Rightarrow \exists t_1 (<\!\! x,\!\! t_1\!\!> \in \! F \land <\!\! t_1,\!\! y_1\!\!> \in \! G) \land \exists t_2 (<\!\! x,\!\! t_2\!\!> \in \! F \land <\!\! t_2,\!\! y_2\!\!> \in \! G)$$

$$\Rightarrow \exists t_1 \exists t_2 (t_1 = t_2 \land \langle t_1, y_1 \rangle) \in G \land \langle t_2, y_2 \rangle \in G) \qquad (F 为函数)$$

$$\Rightarrow y_1 = y_2 \tag{G为函数}$$

所以 $F \circ G$ 为函数

证明(续)

定理8.1 设F, G是函数, 则F。G也是函数, 且满足

- (1) $\operatorname{dom}(F \circ G) = \{x | x \in \operatorname{dom} F \land F(x) \in \operatorname{dom} G\}$
- (2) $\forall x \in \text{dom}(F \circ G)$ 有 $F \circ G(x) = G(F(x))$
- (1) 任取x, $x \in \text{dom}(F \circ G)$

$$\Rightarrow \exists t \; \exists y (\langle x,t \rangle \in F \land \langle t,y \rangle \in G)$$

$$\Rightarrow \exists t \ (x \in \text{dom} F \land t = F(x) \land t \in \text{dom} G)$$

$$\Rightarrow x \in \{ x \mid x \in \text{dom} F \land F(x) \in \text{dom} G \}$$

(2) 任取x, $x \in \text{dom} F \land F(x) \in \text{dom} G$

$$\Rightarrow \langle x, F(x) \rangle \in F \land \langle F(x), G(F(x)) \rangle \in G$$

$$\Rightarrow \langle x, G(F(x)) \rangle \in F \circ G$$

$$\Rightarrow x \in \text{dom}(F \circ G) \land F \circ G(x) = G(F(x))$$

推论

推论1 设F, G, H为函数, 则($F \circ G$) $\circ H$ 和 $F \circ (G \circ H)$ 都是函数, 且 $(F \circ G) \circ H = F \circ (G \circ H)$

证 由上述定理和运算满足结合律得证.

推论2 设
$$f:A \rightarrow B$$
, $g:B \rightarrow C$, 则 $f\circ g:A \rightarrow C$, 且 $\forall x \in A$ 都有 $f\circ g(x)=g(f(x))$

证 由上述定理知 $f \circ g$ 是函数,且 $\operatorname{dom}(f \circ g) = \{x | x \in \operatorname{dom} f \land f(x) \in \operatorname{dom} g\}$ $= \{x | x \in A \land f(x) \in B\} = A$ $\operatorname{ran}(f \circ g) \subseteq \operatorname{ran} g \subseteq C$ 因此 $f \circ g : A \to C$,且 $\forall x \in A \not= f \circ g(x) = g(f(x))$

函数复合与函数性质

定理8.2 设 $f:A \rightarrow B, g:B \rightarrow C$

- (1) 如果 $f:A \rightarrow B$, $g:B \rightarrow C$ 是满射的,则 $f \circ g:A \rightarrow C$ 也是满射的
- (2) 如果 $f:A \rightarrow B$, $g:B \rightarrow C$ 是单射的,则 $f \circ g:A \rightarrow C$ 也是单射的
- (3) 如果 $f:A \rightarrow B$, $g:B \rightarrow C$ 是双射的,则 $f \circ g:A \rightarrow C$ 也是双射的

注意: 定理8.2的逆命题不为真, 即如果 $f \circ g: A \to C$ 是单射 (或满射、双射)的, 不一定有 $f: A \to B$ 和 $g: B \to C$ 都是单 射(或满射、双射)的.

定理8.3 设 $f:A \rightarrow B$,则 $f = f \circ I_B = I_A \circ f$ (证明略)

证明: 定理8.2

定理8.2 设 $f:A \rightarrow B, g:B \rightarrow C$

- (1) 如果 $f:A \rightarrow B$, $g:B \rightarrow C$ 是满射的, 则 $f \circ g:A \rightarrow C$ 也是满射的
- (2) 如果 $f:A \rightarrow B$, $g:B \rightarrow C$ 是单射的,则 $f \circ g:A \rightarrow C$ 也是单射的
- (3) 如果 $f:A \rightarrow B$, $g:B \rightarrow C$ 是双射的,则 $f \circ g:A \rightarrow C$ 也是双射的

证

(1) 任取 $c \in C$, 由 $g:B \to C$ 的满射性, $\exists b \in B$ 使得 g(b)=c. 对于这个b, 由 $f:A \to B$ 的满射性, $\exists a \in A$ 使得 f(a)=b. 由定理8.1有

$$f \circ g(a) = g(f(a)) = g(b) = c$$

从而证明了 $f \circ g: A \to C$ 是满射的

证明: 定理8.2 (续)

定理8.2 设 $f:A \rightarrow B, g:B \rightarrow C$

- (1) 如果 $f:A \rightarrow B$, $g:B \rightarrow C$ 是满射的,则 $f \circ g:A \rightarrow C$ 也是满射的
- (2) 如果 $f:A \rightarrow B$, $g:B \rightarrow C$ 是单射的, 则 $f \circ g:A \rightarrow C$ 也是单射的
- (3) 如果 $f:A \rightarrow B$, $g:B \rightarrow C$ 是双射的,则 $f \circ g:A \rightarrow C$ 也是双射的
- (2) 假设存在 $x_1, x_2 \in A$ 使得 $f \circ g(x_1) = f \circ g(x_2)$ 由定理**8.1**有

$$g(f(x_1)) = g(f(x_2))$$

因为 $g:B\to C$ 是单射的,故 $f(x_1)=f(x_2)$.

又由于 $f:A \rightarrow B$ 是单射的,所以 $x_1=x_2$.

从而证明 $f \circ g: A \to C$ 是单射的.

(3)由(1)和(2)得证.

定理8.2的逆命题不为真 实例

考虑集合
$$A=\{a_1,a_2,a_3\}, B=\{b_1,b_2,b_3,b_4\}, C=\{c_1,c_2,c_3\}.$$
 令
$$f=\{\langle a_1,b_1\rangle,\langle a_2,b_2\rangle,\langle a_3,b_3\rangle\}$$

$$g=\{\langle b_1,c_1\rangle,\langle b_2,c_2\rangle,\langle b_3,c_3\rangle,\langle b_4,c_3\rangle\}$$

$$f\circ g=\{\langle a_1,c_1\rangle,\langle a_2,c_2\rangle,\langle a_3,c_3\rangle\}$$
 那么 $f:A\to B$ 和 $f\circ g:A\to C$ 是单射的, 但 $g:B\to C$ 不是单射的.

考虑集合
$$A=\{a_1,a_2,a_3\}, B=\{b_1,b_2,b_3\}, C=\{c_1,c_2\}.$$
 令
$$f=\{\langle a_1,b_1\rangle,\langle a_2,b_2\rangle,\langle a_3,b_2\rangle\}$$

$$g=\{\langle b_1,c_1\rangle,\langle b_2,c_2\rangle,\langle b_3,c_2\rangle\}$$

$$f\circ g=\{\langle a_1,c_1\rangle,\langle a_2,c_2\rangle,\langle a_3,c_2\rangle\}$$
 那么 $g:B\to C$ 和 $f\circ g:A\to C$ 是满射的, 但 $f:A\to B$ 不是满射的.

反函数

反函数存在的条件

- (1) 任给函数F, 它的逆 F^{-1} 不一定是函数, 只是一个二元关系.
- (2) 任给单射函数 $f:A \rightarrow B$, 则 f^{-1} 是从 ranf 到 A 的双射函数,但不一定是从 B 到 A 的双射函数
- (3) 对于双射函数 $f:A \rightarrow B, f^{-1}:B \rightarrow A$ 是从B到A的双射函数.

定理8.4 设 $f:A \rightarrow B$ 是双射的,则 $f^{-1}:B \rightarrow A$ 也是双射的.

证明思路:

先证明 f^{-1} : $B \rightarrow A$,即 f^{-1} 是函数,且 $dom f^{-1}$ =B, $ran f^{-1}$ =A. 再证明 f^{-1} : $B \rightarrow A$ 的双射性质.

证明 定理8.4

证 因为f是函数,所以 f^{-1} 是关系,且

$$dom f^{-1} = ran f = B$$
, $ran f^{-1} = dom f = A$

对于任意的 $x \in B = \text{dom } f^{-1}$, 假设有 $y_1, y_2 \in A$ 使得 $\langle x, y_1 \rangle \in f^{-1} \land \langle x, y_2 \rangle \in f^{-1}$

成立,则由逆的定义有

$$\in f \land \in f$$

根据f的单射性可得 $y_1=y_2$,故证明了 f^{-1} 是函数,且是满射的. 再证单射性:

若存在
$$x_1, x_2 \in B$$
使得 $f^{-1}(x_1) = f^{-1}(x_2) = y$,从而有 $< x_1, y > \in f^{-1} \land < x_2, y > \in f^{-1}$ $\Rightarrow < y, x_1 > \in f \land < y, x_2 > \in f \Rightarrow x_1 = x_2$

对于双射函数 $f:A \rightarrow B$, 称 $f^{-1}:B \rightarrow A$ 是它的反函数.

反函数的性质

定理8.5

- (1) 设 $f:A \rightarrow B$ 是双射的,则 $f^{-1} \circ f = I_B$, $f \circ f^{-1} = I_A$
- (2) 对于双射函数 $f:A \rightarrow A$,有 $f^{-1} \circ f = f \circ f^{-1} = I_A$

证明思路:

根据定理8.4可知 f^{-1} : $B \rightarrow A$ 也是双射的,由定理8.1的推论2可知 f^{-1} of: $B \rightarrow B$, $f \circ f^{-1}$: $A \rightarrow A$,且它们都是恒等函数.

推论2 设 $f:A\rightarrow B$, $g:B\rightarrow C$, 则 $f\circ g:A\rightarrow C$, 且 $\forall x\in A$ 都有 $f\circ g(x)=g(f(x))$

实例

例5 设 $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x \ge 3 \\ -2 & x < 3 \end{cases}$$

$$g(x) = x + 2$$

如果f和g存在反函数,

求出它们的反函数.

$$f \circ g : \mathbf{R} \to \mathbf{R}$$

$$f \circ g(x) = \begin{cases} x^2 + 2 & x \ge 3 \\ 0 & x < 3 \end{cases}$$

$$g \circ f : \mathbf{R} \to \mathbf{R}$$

$$g \circ f(x) = \begin{cases} (x+2)^2 & x \ge 1 \\ -2 & x < 1 \end{cases}$$

 $f: \mathbf{R} \to \mathbf{R}$ 不是双射的, 不存在反函数.

 $g: R \to R$ 是双射的,它的反函数是

$$g^{-1}: \mathbb{R} \to \mathbb{R}, g^{-1}(x) = x-2$$

离散数学 8.2 函数的复合与反函数 (回顾)

主要内容

- 复合函数基本定理
- 函数的复合运算与函数性质
- 反函数的存在条件
- 反函数的性质

第八章 函数

- 8.1 函数的定义与性质
- 函数定义
- 函数性质
- 8.2 函数运算
- 函数的逆
- 函数的复合
- 8.3 双射函数与集合的基数

8.3 双射函数与集合的基数

主要内容

- 集合的等势及其性质
- 重要的等势或不等势的结果
- 集合的优势及其性质
- 集合的基数
- 可数集

集合的等势

定义8.8 设A, B是集合, 如果存在着从A到B的双射函数, 就称 A和B是等势的, 记作 $A \approx B$. 如果A不与B 等势, 则记作 $A \approx B$.

集合等势的实例

例6 (1) Z≈N

$$f: \mathbf{Z} \to \mathbf{N}, \quad f(x) = \begin{cases} 2x & x \ge 0 \\ -2x - 1 & x < 0 \end{cases}$$

则f是Z到N的双射函数.从而证明了Z \approx N.

将Z中元素以下列顺序排列并与N中元素对应:

集合等势的实例: N×N≈N

N×N≈N. N×N中所有的元素排成有序图形

$$f: N \times N \to N, \quad f(< m, n >) = \frac{(m+n+1)(m+n)}{2} + m$$

集合等势的实例: N≈Q

N≈Q. 双射函数 $f:N\to Q$, 其中f(n)是[n]下方的有理数.

(4) (0,1)≈R. 其中实数区间 (0,1)={x|x ∈ R ∧ 0<x<1}.

�:

$$f:(0,1) \to \mathbb{R}, \quad f(x) = \tan \pi \frac{2x-1}{2}$$

$$y=\tan x, \ x \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

(5) $[0,1]\approx(0,1)$. 其中(0,1)和[0,1]分别为实数开区间和闭区间. ♦ f: [0,1] → (0,1)

方
$$A = \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\right\}, A \subset (0,1)$$
 显然, $[0,1]$ - $B = (0,1)$ - A 问题转化为构造一个 从B到A的双射函数

$$f(x) = \begin{cases} \frac{1}{2} & x = 0\\ \frac{1}{n+2} & x = \frac{1}{n}, n > 0\\ x & x \in (0,1) - A \end{cases}$$

$$x \in (0,1) - A$$

(5) $[0,1]\approx(0,1)$. 其中(0,1)和[0,1]分别为实数开区间和闭区间. 令 $f:[0,1]\to(0,1)$

方法二

$$f(x) = \begin{cases} \frac{1}{2} & x = 0\\ \frac{1}{2^2} & x = 1\\ \frac{1}{2^{n+2}} & x = \frac{1}{2^n}, n = 1, 2, \dots\\ x & \pm \text{th} x \end{cases}$$

(5) $[0,1]\approx(0,1)$. 其中(0,1)和[0,1]分别为实数开区间和闭区间.

今
$$f: [0,1] \to (0,1)$$
 タ $f(x) = \begin{cases} \frac{1}{2} & x = 0 \\ \frac{1}{n+2} & x = \frac{1}{n}, n > 0 \\ x & x \in (0,1) - A \end{cases}$ $A = \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\right\}, A \subset (0,1)$

$$A = \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots \right\}, A \subset (0, 1)$$

$$A = \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots \right\}, A \subset (0,1)$$

$$D \subset A = \left\{ \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \dots, \frac{1}{2^n}, \dots \right\}, A \subset (0,1)$$

$$f(x) = \begin{cases} \frac{1}{2} & x = 0 \\ \frac{1}{2^2} & x = 1 \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{2} & x = \frac{1}{2^n}, n = 1, 2, \dots \\ x & x = 1 \end{cases}$$

上例的相关拓展

$(0,1) \approx [0,1)$

a) 设
$$A = \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots \right\}, 作 f_{:}(0, 1) \rightarrow [0, 1)$$
如下:

$$\begin{cases} f\left(\frac{1}{2}\right) = 0 \\ f\left(\frac{1}{n}\right) = \frac{1}{n-1}, \ x \in A \land n > 2 \\ f(x) = x, \ x \in (0, 1) - A \end{cases}$$

$[0,1)\approx [0,1]$

b) 设
$$A = \left\{0, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\}, 作 f: [0, 1) \to [0, 1]$$
 如下,
$$\begin{cases} f(0) = 0 \\ f\left(\frac{1}{n}\right) = \frac{1}{n-1}, \ n > 1, \frac{1}{n} \in A \\ f(x) = x, \ x \in [0, 1) - A \end{cases}$$

(6) 对任何 $a, b \in \mathbb{R}, a < b, [0,1] \approx [a,b]$,双射函数 $f:[0,1] \to [a,b]$,

类似地可以证明,对任何 $a,b \in R$, a < b, 有 $(0,1) \approx (a,b)$.

```
F = \{0,1\} \ ^{\{1,2,3\}}
F = \{f_0, f_1, \dots, f_7\}, \not \exists \psi
f_0 = \{<1,0>,<2,0>,<3,0>\}, f_1 = \{<1,1>,<2,0>,<3,0>\},
f_2 = \{<1,0>,<2,1>,<3,0>\}, f_3 = \{<1,0>,<2,0>,<3,1>\},
f_4 = \{<1,1>,<2,1>,<3,0>\}, f_5 = \{<1,1>,<2,0>,<3,1>\},
f_6 = \{<1,0>,<2,1>,<3,1>\}, f_7 = \{<1,1>,<2,1>,<3,1>\}.
F = \{f_0, f_1, f_2, f_3, f_4, f_5, f_6, f_7\}
= \{\chi_\emptyset, \chi_{\{1\}}, \chi_{\{2\}}, \chi_{\{3\}}, \chi_{\{1,2\}}, \chi_{\{1,3\}}, \chi_{\{2,3\}}, \chi_{\{1,2,3\}}\}
```

设A为集合,对于任意的 $A' \subseteq A$,A' 的<mark>特征函数</mark> $\chi_{A'}: A \longrightarrow \{0,1\}$ 定义为 $\chi_{A'}(a) = 1$, $a \in A'$ $\chi_{A'}(a) = 0$, $a \in A - A'$

例7 设A为任意集合,则 $P(A) \approx \{0,1\}^A$

证 如下构造从P(A) 到 $\{0,1\}^A$ 的函数

$$f:P(A) \rightarrow \{0,1\}^A$$
 , $f(A')=\chi_{A'}$, $\forall A' \in P(A)$

其中 χ_A ·是集合A'的特征函数. 易证 f 是单射的.

对于任意的 $g \in \{0,1\}^A$, 那么有 $g:A \rightarrow \{0,1\}$. 令 $B = \{x \mid x \in A \land g(x) = 1\}$

则 $B\subseteq A$, 且 $\chi_B=g$, 即 $\exists B\in P(A)$, f(B)=g. 从而证明了f是满射的.

等势的性质

定理8.6 设A, B, C是任意集合,

- **(1)** *A*≈*A*
- (2) 若*A≈B*,则*B≈A*
- (3) 若*A≈B*, *B≈C*, 则*A≈C*.

证明思路:利用等势的定义.

- (1) I_A 是从A到A的双射
- (2) 若 $f:A \rightarrow B$ 是双射,则 $f^{-1}:B \rightarrow A$ 是从B到A的双射.
- (3) 若 $f:A \rightarrow B$, $g:B \rightarrow C$ 是双射,则 $f \circ g:A \rightarrow C$ 是从A到C的双射

有关势的重要结果

等势结果

- 任何实数区间都与实数集合R等势

不等势的结果:

定理8.7 (康托定理)

(1) N ≈ R; (2) 对任意集合A都有A≈P(A)

证明思路:

(1)如果能证明N≈[0,1],就可以断定N≈ R,为此只需证明任何函数 $f: N \rightarrow [0,1]$ 都不是满射的.

即: 任取函数 $f: \mathbb{N} \rightarrow [0,1]$, 列出 f 的所有函数值,然后构造一个[0,1]区间的小数b,使得b与所有的函数值都不相等.

(2) 任取函数 $g:A \rightarrow P(A)$,只需证明g不是满射的. 即构造 $B \in P(A)$,使得B = g 的任何函数值都不等.

Cantor定理的证明

证 (1) 规定[0,1]中数的表示. 对任意的 $x \in [0,1]$, 令

$$x = 0. x_1 x_2 \dots, 0 \le x_i \le 9$$

注意:为了保证表示式的唯一性,如果遇到0.24999...,则将x表示为0.25000...。

设 $f: \mathbb{N} \rightarrow [0,1]$ 是任何函数,列出f的所有函数值:

$$f(0) = 0.a_1^{(1)}a_2^{(1)}...$$

$$f(1) = 0.a_1^{(2)}a_2^{(2)}...$$

• • •

$$f(n-1) = 0.a_1^{(n)}a_2^{(n)}...$$

• • •

令 y 的表示式为 $0.b_1b_2...$,并且满足 $b_i \neq a_i^{(i)}$,i=1,2,...,那么 $y \in [0,1]$,且y与上面列出的任何函数值都不相等. 这就推出 $y \notin ranf$,即 f 不是满射的.

Cantor定理的证明

(2) 证明任何函数 $g:A \rightarrow P(A)$ 都不是满射的.

设 $g:A \to P(A)$ 是从A到P(A)的函数,如下构造集合B:

$$B = \{x \mid x \in A \land x \notin g(x)\}$$

则 $B \in P(A)$, 但对任意 $x \in A$ 都有

$$x \in B \Leftrightarrow x \notin g(x)$$

从而证明了对任意的 $x \in A$ 都有 $B \neq g(x)$. 即 $B \notin rang$.

例: A={1,2}, P(A)={Ø,{1},{2},{1,2}}

注意: 根据Cantor定理可以知道: N*P(N), N*{0,1}^N

集合的优势

定义8.9 (1) 设A, B是集合, 如果存在从A到B的单射函数, 就称B优势于A, 记作 $A \le B$. 如果B不是优势于A, 则记作 $A \le B$. (2) 设A, B是集合, 若 $A \le B$ 且 $A \not\approx B$, 则称 B 真优势于A, 记作 A < B. 如果 B 不是真优势于A, 则记作 $A \not\sim B$.

实例 N≼·N, N≼·R, A≼·P(A),
R≰·N
N≺·R, A≺·P(A), 但N⊀·N

定理8.8 设A, B, C是任意的集合,则

- (1) $A \leq A$
- (2) 若A≤·B且B≤·A,则A≈B
- (3) 若A≤·B且B≤·C,则A≤·C

应用:证明等势

证明: [0,1]≈(0,1)

方法: 构造两个单射函数

作 g: [0, 1]
$$\rightarrow$$
 (0, 1) 为 $g(x) = \frac{x}{3} + \frac{1}{4}$

作
$$f:(0,1) \to [0,1]$$
 入射为 $f(x) = x$

【回看】另一种方法:构造一个双射函数

$$A = \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots \right\}, A \subset (0,1)$$

$$f(x) = \begin{cases} \frac{1}{2} & x = 0 \\ \frac{1}{65}, \frac{1}{4}, \frac{1}{3}, \dots, \frac{1}{2} \\ \frac{1}{n+2}, x = \frac{1}{n}, n > 0 \\ x & x \in (0,1) - A \end{cases}$$

应用:证明等势

- [0,1] \approx (0,1] 1) 作 f: [0,1] \rightarrow (0,1] 入射为 $f(x) = \frac{x}{2} + \frac{1}{2}$ 作 g: (0,1] \rightarrow [0,1] 入射为 g(x) = x
- $(0,1] \approx [0,1)$ 2) 作 $f: (0,1] \rightarrow [0,1)$ 入射为 $f(x) = \frac{1}{2} \frac{x}{2}$ 作 $g: [0,1) \rightarrow (0,1]$ 入射为 g(x) = 1-x
- $(0,1)\approx[0,1)$ 8) 作 $f:(0,1)\rightarrow[0,1)$ 入射为 f(x)=x 作 $g:[0,1)\rightarrow(0,1)$ 入射为 $g(x)=\frac{x}{2}+\frac{1}{4}$
- (0,1)≈[0,1] 4) 作 $f: (0, 1) \rightarrow [0, 1]$ 入射为 f(x) = x 作 $g: [0, 1] \rightarrow (0, 1)$ 为 $g(x) = \frac{x}{3} + \frac{1}{4}$

应用:证明等势

例8 证明 {0,1}^N≈[0,1)

证 设 $x \in [0,1)$, $0.x_1x_2...$ 是 x 的二进制表示.

【规定表示式中不允许出现连续无数个1】

对于x,如下定义 $f:[0,1) \to \{0,1\}^N$,

$$f(x) = t_x, \perp t_x: \mathbb{N} \rightarrow \{0,1\},$$

$$t_{x}(n) = x_{n+1}, n = 0,1,2,...$$

例如 x = 0.10110100...,则对应于x 的函数 t_x 是:

n 0 1 2 3 4 5 6 7...

 $t_{x}(n)$ 10110100...

 $t_x \in \{0,1\}^N$,且对于 $x,y \in [0,1)$, $x \neq y$,必有 $t_x \neq t_y$,即 $f(x) \neq f(y)$.这就证明了 $f:[0,1) \to \{0,1\}^N$ 是单射的.

构造另一个单射

考虑 $t \in \{0,1\}^N$, 其中

$$t(0)=0, t(n)=1, n=1, 2, \dots$$

按照 f 的定义, 只有 x = 0.011... 才能满足 f(x)=t.

但根据规定,这个数x记为0.100...,

所以根本不存在 $x \in [0,1)$, 满足 f(x)=t.

定义函数 $g:\{0,1\}^{\mathbb{N}} \rightarrow [0,1)$. g的映射法则恰好与 f 相反.

即 $\forall t \in \{0,1\}^N$,

t: N→{0,1},
$$g(t)=0.x_1x_2...$$
, 其中 $x_{n+1}=t(n)$.

将 $0.x_1x_2...$ 看作数x的十进制表示.这样就避免了形如

0.0111...和0.1000....在二进制表示中对应了同一个数的情况,

从而保证了g的单射性.

根据定理有{0,1}^N≈[0,1).

再使用等势的传递性得{0,1}^N≈R.

自然数的集合定义

定义8.10 设a为集合,称 $a \cup \{a\}$ 为a的后继,记作 a^+ ,即 $a^+=a \cup \{a\}$.

如下定义自然数:

$$0=\emptyset$$

$$1=0^{+}=\emptyset^{+}=\{\emptyset\}=\{0\}$$

$$2=1^{+}=\{\emptyset\}^{+}=\{\emptyset\}\cup\{\{\emptyset\}\}=\{\emptyset,\{\emptyset\}\}=\{0,1\}$$

$$3=2^{+}=\{\emptyset,\{\emptyset\}\}^{+}=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}=\{0,1,2\}$$
...
$$n=\{0,1,...,n-1\}$$
...

自然数的相等与大小,即对任何自然数 n和m,有 $m=n \Leftrightarrow m \approx n$, $m < n \Leftrightarrow m \in n$ 若 $m \in n$, 则 $m \subset n$

有穷集和无穷集

定义8.11

- (1) 一个集合是有穷的当且仅当它与某个自然数等势;
- (2) 如果一个集合不是有穷的, 就称作无穷集.

实例:

- (1) $\{a,b,c\}$ 是有穷集,因为 $3=\{0,1,2\}$,且 $\{a,b,c\}\approx\{0,1,2\}=3$
- (2) N和R都是无穷集, 因为没有自然数与N和R等势

利用自然数的性质可以证明:

任何有穷集只与惟一的自然数等势.

集合基数的定义

定义8.12

(1) 对于有穷集合A,称与A等势的那个惟一的自然数为A的基数,记作cardA(也可以记作|A|)

 $cardA = n \Leftrightarrow A \approx n$

(2) 自然数集合N的基数记作₭₀,即

$$cardN = \aleph_0$$

(3) 实数集R的基数记作器,即 cardR =₩

基数的相等和大小

定义8.13 设A, B为集合,则

- (1) $\operatorname{card} A = \operatorname{card} B \Leftrightarrow A \approx B$
- (2) $\operatorname{card} A \leq \operatorname{card} B \Leftrightarrow A \leq B$
- (3) $\operatorname{card} A < \operatorname{card} B \Leftrightarrow \operatorname{card} A \leq \operatorname{card} B \wedge \operatorname{card} A \neq \operatorname{card} B$

```
根据上一节关于势的讨论不难得到:
```

```
card Z = \text{card } Q = \text{card } N \times N = \text{card} N = \aleph_0

card P(N) = \text{card } 2^N = \text{card } [a,b] = \text{card } (c,d) = \text{card} R = \aleph

\aleph_0 < \aleph
```

 $\operatorname{card} A < \operatorname{card} P(A)$

其中
$$2^N = \{0,1\}^N$$

基数的大小

不存在最大的基数. 将已知的基数按从小到大的顺序排列就得到:

$$0, 1, 2, ..., n, ..., \aleph_0, \aleph, ...$$

其中:

0, 1, 2..., n, ... 是全体自然数, 是有穷基数.

 \aleph_0 , \aleph , ... 是无穷基数, \aleph_0 是最小的无穷基数, \aleph 后面还有更大的基数, 如cardP(R)等.

可数集

定义8.14 设A为集合, 若 $cardA \le \aleph_0$, 则称A为可数集或可列集.

实例:

{a,b,c},5,整数集Z,有理数集Q,N×N等都是可数集, 实数集 R不是可数集,与R等势的集合也不是可数集. 对于任何的可数集,它的元素都可以排列成一个有序图形. 换句话说,都可以找到一个"数遍"集合中全体元素的顺序.

可数集的性质:

- 可数集的任何子集都是可数集.
- 两个可数集的并是可数集.
- 两个可数集的笛卡儿积是可数集.
- 可数个可数集的笛卡儿积仍是可数集.
- 无穷集A的幂集P(A)不是可数集

实例

例9 求下列集合的基数

- (1) *T*={x | x是单词 "BASEBALL"中的字母}
- $(2) B = \{x \mid x \in R \land x^2 = 9 \land 2x = 8\}$
- (3) $C=P(A), A=\{1, 3, 7, 11\}$
- 解 (1) 由 $T=\{B,A,S,E,L\}$ 知 cardT=5
- (2) 由 $B=\emptyset$, 可知 cardB=0.
- (3) 由|A|=4 可知 cardC=card $P(A)=|P(A)|=2^4=16$.

例10 设A, B为集合,且 card $A=\aleph_0$, cardB=n, n是自然数, $n\neq 0$. 求 card $A\times B$.

解 方法一 构造双射函数

由 $cardA=\aleph_0$, cardB=n, 可知 A, B都是可数集. 令

$$A = \{a_0, a_1, a_2, \dots\}, B = \{b_0, b_1, b_2, \dots, b_{n-1}\}$$

对任意的
$$\langle a_i, b_j \rangle$$
, $\langle a_k, b_l \rangle \in A \times B$ 有 $\langle a_i, b_j \rangle = \langle a_k, b_l \rangle \Leftrightarrow i = k \land j = l$

定义函数

$$f:A \times B \to N$$

 $f(\langle a_i,b_j \rangle)=in+j, i=0,1,..., j=0,1,...,n-1$

易见f是 $A \times B$ 到N的双射函数, 所以 card $A \times B$ =card $N = \aleph_0$

方法一的实例说明

定义函数

$$f:A\times B\to \mathbb{N}$$

 $f(\langle a_i,b_j\rangle)=in+j, i=0,1,..., j=0,1,...,n-1$

若n=10										
	0	1	2	3	4	5	6	7	8	9
(0	1	2	3	4	5	6	7	8	9
	<u>l</u> 10	11	12	13	14	15	16	17	18	19
2	20	21	22	23	24	25	26	27	28	29
3	30	31	32	33	34	35	36	37	38	39
	40	41	42	43	44	45	46	47	48	49
Ę	50	51	52	53	54	55	56	57	58	59
(60	61	62	63	64	65	66	67	68	69
-	<mark>7</mark> 70	71	72	73	74	75	76	77	78	79
{	80	81	82	83	84	85	86	87	88	89
Ć	90	91	92	93	94	95	96	97	98	99
10	100	101	102	103	104	105	106	107	108	109
13	110	111	112	113	114	115	116	117	118	119
12	2 120	121	122	123	124	125	126	127	128	129
13	3 130	131	132	133	134	135	136	137	138	139
14	140	141	142	143	144	145	146	147	148	149
15	150	151	152	153	154	155	156	157	158	159

实例

方法二 直接使用可数集的性质求解.

因为 card $A=\aleph_0$, card B=n, 所以A, B都是可数集.

根据性质(3) 【两个可数集的笛卡儿积是可数集】

可知 $A \times B$ 也是可数集,所以

 $\operatorname{card} A \times B \leq \aleph_0$

显然当 $B\neq\emptyset$ 时,

 $\operatorname{card} A \leq \operatorname{card} A \times B$,

这就推出

 $\aleph_0 \leq \operatorname{card} A \times B$

综合上述得到

 $\operatorname{card} A \times B = \aleph_0$.

离散数学8.3 双射函数与集合的基数 (回顾)

主要内容

- 集合的等势及其性质
- 重要的等势或不等势的结果
- 集合的优势及其性质
- 集合的基数
- 可数集

设 $f,g \in \mathbb{R}^{\mathbb{R}}$,且 f(x)=x,g(x)=1,其中 \mathbb{R} 表示实数集,令 E_f,E_g 分别是由 f 和 g 导出的等价关系,即 $xE_fy \leftrightarrow f(x)=f(y)$, $xE_gy \leftrightarrow g(x)=g(y)$,则下列四个选项中正确的是: ()

- $\sqrt{1}$ card(\mathbf{R}/E_f)= \aleph
- ② card(\mathbf{R}/E_g) = \aleph
- ④ \mathbf{R}/E_f 是 \mathbf{R} 的最小划分

第八章 函数 (回顾)

- 8.1 函数的定义与性质
- 函数定义
- 函数性质
- 8.2 函数运算
- 函数的逆
- 函数的复合
- 8.3 双射函数与集合的基数