12 Zahlenmenzen	
Belownt sind:	Rechenopesahonen
$ \mathbf{h}\rangle = 5 + 2 + 3 + 7 + 2 + 6$	
$1N = \{1, 2, 3, 3\}$ vati	
$N_0 = \{0, 1, 2, 3,, \}$	" unt 0 +, •
2 = {, -2, -1, 0, 1, 2,}	gan te Eahlen +, ,
$Q = \{ \xi : \rho \in \mathbb{Z}, q \in \mathbb{Z} \}$	
lear: INC No C R	c Q
Beispide:	
	$2=2$ $\times +2=1$ und losbes
b) in \mathbb{Z} : $1-3=-2$, (-	-3). $(-2) = 6$ -3 -2
$\times \cdot 3 = 1$	ion losbas
c) in Q $\frac{1}{2} + \frac{1}{3} = \frac{3}{6}$	2 = 5
$\frac{3}{3} - \frac{1}{7} = \frac{7}{21}$	$\frac{3}{21} = \frac{4}{21}$
$\frac{1}{2} \cdot \frac{2}{13} = \frac{1}{2}$	$\frac{1.2}{1.13} = \frac{1}{13}$
$\frac{1}{2} \cdot \frac{2}{13} = \frac{1}{2}$	$\frac{13}{2} = \frac{13}{4}$
uben Sie Bruchtechnen!	
1.3 Nativeliche Zahlen	
-> Prinzalden	
Det Ene naturliche Zahl	giößer 1, die unt durch sich
	est teilbar ist heißt Primzahl

Prinzallen: 2, 3, 5,7, M, 13, 17, 19, ... Sala Jede natureiche Zahl a E IN lapt ord endenhy als Rodukt aus lauter Prinzahlen das Hellen: a = P1 · P2 · · Pn 7 Pk · Pnuzalil Beispele: 4 = 2·2, 6 = 2·3, 18 = 2·3·3, 17 = 17 -> Falultat und Binomia (hoeffizient Tref: Du Fakulfat eines naturlichen Zahl n 189 erklart dusch $n' := n \cdot (n-1) \cdot ... \cdot 2 \cdot 1$ Fusablich O! =1. Beispole: 3! = 3.2.1 = 6; 5! = 5.4.3.2.1 = 120 Def: Es sei ne INo, ke INo, n zk. Dann heißt $\binom{n}{k} := \frac{n!}{(n-k)!}$ des Binomial hoeff tent von n und K, gelesen: " n wes K". Fix n<k: (n) :=0 Berspele 1. Es gilt de Reluction $n' = n \cdot (n-1)! = n \cdot (n-1) \cdot (n-2)!$ donn

2. n' wachst selv schuell unt n' : $5! = 120$ $20! = 2.43 \cdot 10^{18}$
3. $\binom{3}{2} = \frac{3!}{(3-2)!} = \frac{3 \cdot 2^{9}}{1! \cdot 2!} = 3$
$\binom{11}{8} = \frac{11}{(11-8)!8!} = \frac{11}{3!} \frac{10 \cdot 9 \cdot 8!}{3!} = \frac{11 \cdot 10 \cdot 9}{3! \cdot 10 \cdot 9} = 1$
Sah. Es gilt $ \Lambda \cdot \begin{pmatrix} n \\ \kappa \end{pmatrix} = \begin{pmatrix} n \\ n-\kappa \end{pmatrix} $
$2. \binom{n}{0} = \binom{n}{n} = 1$ $2. \binom{n}{0} = \binom{n}{n} = 1$
3. $\binom{n}{n-1} = \binom{n}{1} = n$ Beweis: Einselsen in die Definition
$\binom{n}{k} = \frac{n!}{(n-k)!} \frac{n!}{k!} \frac{n!}{(n-k)!} = \frac{n!}{(n-(n-k))!} \frac{n!}{(n-(n-k))!}$
$=\begin{pmatrix} n \\ n - k \end{pmatrix}$
alter nation: $\binom{n}{n} = \binom{n}{n}$
alternation $\binom{n-k}{n-k}$ $$
alter nation $\binom{n-k}{n-k}$ \binom
alter nation $(n-k)$

