UNIVERSIDADE DO MINHO

Geometria

Curso: M. C. C.

Primeiro teste - 26 Abr 2022

Nota. O teste é constituído por duas páginas, frente e verso. Justifique pormenorizadamente todas as respostas.

1. Considere em \mathbb{R}^2 o produto interno canónico. Seja $\lambda: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ a aplicação definida por

$$\lambda(x,y) = (x+1, y-1)$$

- a) (1 val) Mostre que λ é uma isometria.
- b) (1 val) Determine o ponto $(a,b) \in \mathbb{R}^2$ e o isomorfismo ortogonal $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que

$$\lambda = T_{(a,b)} \circ \varphi$$

em que $T_{(a,b)}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ designa a translação associada ao ponto (a,b).

2. Sejam E um espaço vetorial, não necessariamente euclidiano, e $a,b\in E$ dois vetores. Considere as translações

$$T_a: E \longrightarrow E$$
 e $T_b: E \longrightarrow E$

associadas aos vetores a e b.

- a) (1 val) Mostre que $T_a \circ T_b = T_{a+b}$
- b) $_{\mbox{\tiny (1\ val)}}$ Conclua que o grupo T(E) de todas as translações de E é comutativo.

3. Considere em \mathbb{R}^3 o produto interno canónico e seja X o subconjunto de \mathbb{R}^3 definido por

$$X = \{(x, y, z) \in \mathbb{R}^3 : y + z = 1\}$$

a) (1,5 val) Mostre que X é um espaço afim e escreva-o na forma X=a+F, em que a é um ponto de X e F é o subespaço vetorial associado a X.

Nas alíneas seguintes, designe por F^{\perp} o suplemento ortogonal de F. Recorde que

$$\mathbb{R}^3 = F \oplus F^\perp$$

- b) (1,5 val) Determine uma base do subespaço vetorial F.
- c) $_{(2 \text{ val})}$ Determine o subespaço vetorial F^{\perp} , indicando uma base ortonormada deste subespaço.
- d) (1 val) Determine a projeção ortogonal sobre o subespaço vetorial F^{\perp} .

4. Sejam $(E,\cdot\mid\cdot)$ um espaço euclidiano e Fum subespaço vetorial de E. Considere a soma direta

$$E = F \oplus F^{\perp}$$

Recorde que, para cada $x \in E$, existem vetores $u \in F$ e $v \in F^{\perp}$ únicos tais que

$$x = u + v$$

Considere a aplicação linear $\varphi: E \longrightarrow E$ definida por

$$\varphi(x) = \varphi(u+v) = u-v$$

- a) (2 val) Determine $\mathbf{Ker} \varphi$.
- b) (1 val) Conclua que φ é um isomorfismo linear.
- c) (2 val) Seja $x=u+v\in E$, em que $u\in F$ e $v\in F^{\perp}$. Mostre que

$$\|\varphi(x)\|^2 = \|x\|^2$$

- d) (1 val) Mostre que φ é uma isometria.
- e) (1 val) Conclua que φ é um isomorfismo ortogonal.
- 5. (1 val) Sejam $(E, \cdot | \cdot)$ um espaço euclidiano e $\varphi : E \longrightarrow \mathbb{R}$ uma aplicação linear. Seja $\{e_1, \cdots, e_n\}$ uma base ortonormada de E e considere o vetor $u \in E$ definido do seguinte modo:

$$u = \varphi(e_1)e_1 + \dots + \varphi(e_n)e_n$$

Mostre que

$$\varphi(x) = x \mid u \qquad \forall \ x \in E$$

6. (2 val) Sejam E um espaço vetorial, não necessariamente euclidiano, $\varphi: E \longrightarrow E$ uma aplicação linear e F um subespaço vetorial de E. Sejam $a \in E$ e $T_a: E \longrightarrow E$ a translação associada ao vetor a. Considere a aplicação afim $\lambda: E \longrightarrow E$ definida por

$$\lambda = T_a \circ \varphi$$

Mostre que $\lambda(F)$ é um espaço afim.