

WELTORGANISATION FÜR GEISTIGES EIGENTUM PCT Internationales Būro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5: C07D 239/42, A01N 47/36 C07D 239/47, 239/52, 239/34 C07D 251/46, 251/14, 251/42

(11) Internationale Veröffentlichungsnummer:

WO 92/13845

(43) Internationales Veröffentlichungsdatum:

20. August 1992 (20.08.92)

(21) Internationales Aktenzeichen:

PCT/EP92/00304

A1

(22) Internationales Anmeldedatum: 12. Februar 1992 (12.02.92)

(30) Prioritätsdaten:

P 41 04 227.1

12. Februar 1991 (12.02.91)

(71) Anmelder (für alle Bestimmungsstaaten ausser US): HO-ECHST AKTIENGESELLSCHAFT [DE/DE]; Postfach 80 03 20, D-6230 Frankfurt am Main 80 (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): ORT, Oswald [DE/DE]; Gundelhardtstraße 2, D-6233 Kelkheim (DE). BAUER, Klaus [DE/DE]; Doorner Straße 53d, D-6450 Hanau 7 (DE). BIERINGER, Hermann [DE/DE]; Eichenweg 26, D-6239 Eppstein (DE).

(74) Anwalt: HOECHST AKTIENGESELLSCHAFT; Zentrale Patentabteilung, Postfach 80 03 20, D-6230 Frankfurt am Main 80 (DE).

(81) Bestimmungsstaaten: AT (europäisches Patent), AU, BB BE (europäisches Patent), BF (OAPI Patent), BG, BJ (OAPI Patent), BR, CA, CF (OAPI Patent), CG (OAPI Patent), CH (europäisches Patent), CI (OAPI Patent), CM (OAPI Patent), CS, DE (europäisches Patent), DK (europäisches Patent), ES (europäisches Patent), FI, FR (europäisches Patent), GA (OAPI Patent), GB (europäisches Patent), GN (OAPI Patent), GR (europäisches Patent), GN (OAPI Patent), GN tent), HU, IT (europäisches Patent), JP, KP, KR, LK, LU (europäisches Patent), MC (europäisches Patent), MG, ML (OAPI Patent), MR (OAPI Patent), MW, NL (europäisches Patent), NO, PL, RO, RU, SD, SE (europaisches Patent), SN (OAPI Patent), TD (OAPI Patent), TG (OAPI Patent), US.

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: ARYL SULPHONYL UREA COMPOUNDS, A METHOD OF PREPARING THEM, AND THEIR USE AS HERBICIDES AND GROWTH REGULATORS

(54) Bezeichnung: ARYLSULFONYLHARNSTOFFE, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWEN-DUNG ALS HERBIZIDE UND WACHSTUMSREGULATOREN

(57) Abstract

The invention concerns new herbicidal and plant-growth regulation compounds of formula (I), in which Q, W, R¹, R², R³, Y and Z as shown in formula (I) are as defined in claim 1, as well as salts of these compounds. They can be prepared by reacting new compounds of formula (II) with a heterocyclic carbamate of formula (III), in which R' is a substituted or unsubstituted alkyl or aryl group. Also possible is an analogue preparation by reacting a phenyl sulphonyl carbamate or sulphonyl isocyanate corresponding to formula (II) with a compound of formula (V). Such herbicides are particularly suited for the selective control of weeds.

(57) Zusammenfassung

Die Erfindung betrifft neue Herbizide und pflanzenwachstumsregulatorische Verbindungen der Formel (I) oder deren Salze, worin Q, W, R¹, R², R³, Y und Z wie in Formel (I) nach Anspruch 1 definiert sind. Sie können durch Umsetzung von neuen Verbindungen der Formel (II) mit einem heterocyclischen Carbamat der Formel (III), worin R' unsubstituiertes oder substituiertes Aryl oder Alkyl ist, erhalten werden. Analog ist die Herstellung durch Umsetzung eines der Verbindung (II) entsprechenden Phenylsulfonylcarbamats oder Sulfonylisocyanats mit einer Verbindung der Formel (V) möglich. Die Herbizide eignen sich besonders zur selektiven Bekämpfung von Schadpflanzen.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT AU BB BE BE BE BE BE BE CCF CC CH CC	Osterreich Australien Barbados Belgien Burkina Faso Bulgarien Benin Brasilien Kanada Zentrale Afrikanische Republik Kongo Schweiz Côte d'Ivotre Kamarun Tschechuslowakci Deutschland Dänemark Sjønnien	FI FR GA GN GR HU IE IT JP KP KP LI LK LU MC MG MI	Finnland Frankreich Gabon Vereinigtes Köntgreich Guinea Griechenland Ungarn Irland Italien Japan Demokratische Volksrepublik Korea Republik Korea Litechtenstein Sri Lanka Luxenburg Monaco Madagaskar Mali	MN MR MR NL NO PL RO SD SE SN SU TD TG US	Mongolei Mauritanien Malawi Niederlande Norwegen Polen Rumänien Russische Föderation Sudan Schweden Senegal Soviet Union Tschad Togo Vereinigte Stauten von Amerika
---	--	--	---	--	---

Beschreibung

Arylsulfonylharnstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und Wachstumsregulatoren

Die Erfindung betrifft das Gebiet der Pflanzenschutzmittel, insbesondere selektive Herbizide und Wachstumsregulatoren vom Typ der heterocylisch substituierten Phenylsulfonylharnstoffe.

Aus der EP-A-007687 sind unter anderem bereits Sulfonylharnstoffe der Formel (1) bekannt,

worin $R^2 = H$, Cl, Br, F, (C_1-C_3) -Alkyl, $-NO_2$, $-SO_2CH_3$, $-OCH_3$, $-SCH_3$, $-CF_3$, $-N(CH_3)_2$, $-NH_2$ oder -CN; $R^3 = H$, Cl, Br, F oder CH_3 ; X = CH oder N, Q = O, S oder gegebenenfalls substituiertes NH; und Y, Z = H, Cl oder diverse organische Reste bedeuten. Die Verbindungen sind als Herbizide und Pflanzenwachstumsregulatoren beschrieben.

Aus EP-A-0291851 und DE-A-3900472 sind herbizide und pflanzenwachstumsregulatorische Sulfonylharnstoffe der Formel (2) bekannt,

worin Z= F, Cl oder Br, R¹ = H, gegebenenfalls substituiertes Alkyl, Alkenyl,

./.

Alkinyl oder Cycloalkyl, $R^2 = H$, CH_3 oder C_2H_5 , $R^3 = H$, F, Cl, Br, CH_3 oder OCH_3 , $R^4 = H$, CH_3 , (C_1-C_4) -Alkoxy und X = CH oder N bedeuten.

Außerdem beschreibt US 4,566,898 den Sulfonylharnstoff der Formel (3)

als Herbizid mit herausragenden Eigenschaften, insbesondere zur Kontrolle von Ackerfuchsschwanz in Gerste und Weizen.

Überraschend wurde nun gefunden, daß einige iodierte Arylsulfonylharnstoffe vorteilhaste Eigenschaften besitzen.

Gegenstand der vorliegenden Erfindung sind daher Verbindungen der Formel (I) und deren Salze,

worin

Q Sauerstoff, Schwefel oder -N(R⁴)-, vorzugsweise O oder S, insbesondere O;

W Sauerstoff oder Schwefel, vorzugsweise O;

Y, Z unabhängig voneinander CH oder N, wobei Y und Z nicht gleichzeitig CH sind, vorzugsweise Y = CH oder N und Z = N;

R Wasserstoff; (C_1-C_{12}) -Alkyl; (C_2-C_{10}) -Alkenyl; (C_2-C_{10}) -Alkinyl; (C_1-C_6) -Alkyl, das ein- bis vierfach durch Reste aus der Gruppe Halogen, (C_1-C_4) -Alkoxy, (C_1-C_4) -Thioalkyl, -CN, (C_2-C_5) -Alkoxycarbonyl und (C_2-C_6) -Alkenyl substituiert ist;

 (C_3-C_8) -Cycloalkyl, das unsubstituiert oder durch Reste aus der Gruppe (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio und Halogen substituiert ist; (C_5-C_8) -Cycloalkenyl; Phenyl- (C_1-C_4) -alkyl, das im Phenylrest unsubstituiert oder substituiert ist; oder einen Rest der Formeln A-1 bis A-10

worin

X O, S, S(O) oder SO₂;

 R^1 Wasserstoff oder (C₁-C₃)-Alkyl;

R² Wasserstoff, Halogen, vorzugsweise Chlor, (C₁-C₃)-Alkyl, (C₁-C₃)-Alkoxy, wobei die beiden letztgenannten Reste unsubstituiert oder ein- oder mehrfach durch Halogen oder (C₁-C₃)-Alkoxy substituiert sind;

R³ Wasserstoff, Halogen, vorzugsweise Chlor, (C₁-C₃)-Alkyl, (C₁-C₃)-Alkoxy, oder (C₁-C₃)-Alkylthio, wobei die vorgenannten alkylhaltigen Reste unsubstituiert oder ein- oder mehrfach durch Halogen oder ein- oder zweifach durch (C₁-C₃)-Alkoxy oder (C₁-C₃)-Alkylthio substituiert sind; oder einen Rest der Formel NR⁵R⁶, (C₃-C₆)-Cycloalkyl, (C₂-C₄)-Alkenyl, (C₂-C₄)-Alkinyl, (C₃-C₄)-Alkenyloxy oder (C₃-C₆)-Alkinyloxy;

R⁴ Wasserstoff, (C₁-C₄)-Alkyl oder (C₁-C₄)-Alkoxy und

 R^5 und R^6 unabhängig voneinander Wasserstoff, (C_1 - C_4)-Alkyl, (C_3 - C_4)-Alkenyl, (C_1 - C_4)-Haloalkyl oder (C_1 - C_4)-Alkoxy bedeuten.

In der Formel (I) und im folgenden können Alkyl-, Alkoxy-, Haloalkyl-, Alkylamino- und Alkylthioreste, sowie die entsprechenden ungesättigten und/oder substituierten Reste jeweils geradkettig oder verzweigt sein. Alkylreste, auch in zusammengesetzten Bedeutungen wie Alkoxy, Haloalkyl usw. bedeuten beispielsweise Methyl-, Ethyl-, n- oder i-Propyl, n-, i-, t- oder 2-Butyl usw. Alkenyl- und Alkinylreste haben die Bedeutung der den Alkylresten entsprechenden möglichen ungesättigten Reste, wie z. B. 2-Propenyl, 2- oder 3-Butenyl, 2-Propinyl, 2- oder 3-Butinyl. Halogen bedeutet Fluor, Chlor, Brom oder Iod. Aryl bedeutet vorzugsweise einen carbocyclischen oder heterocyclischen aromatischen Ring, der gegebenenfalls noch mit einem aliphatischen oder aromatischen Ring kondensiert sein kann; Aryl ist insbesondere Phenyl. Substituiertes Phenyl bedeutet Phenyl, das z. B. durch einen oder mehrere, vorzugsweise einen bis drei Reste aus der Gruppe Halogen, (C1-C4)-Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Haloalkyl, (C_1-C_4) -Thioalkyl, (C_2-C_5) -Alkoxycarbonyl, (C2-C5)-Alkylcarbonylamino, Carbonamid, (C2-C5)-Alkylcarbonyloxy, Di-[(C₁-C₄)-Alkyl]-aminocarbonyl Nitro (C₂-C₅)-Alkylaminocarbonyl, substituiert ist. Entsprechendes gilt für substituiertes Aryl.

Die Verbindungen der Formel (I) können Salze bilden, bei denen der Wasserstoff der -SO₂-NH-Gruppe durch ein für die Landwirtschaft geeignetes Kation ersetzt wird. Diese Salze sind beispielsweise Metall-, insbesondere Alkali- oder Erdalkalisalze, oder auch Ammoniumsalze oder Salze mit organischen Aminen. Ebenso kann Salzbildung durch Anlagerung einer starken Säure an den Heterocyclenteil der Verbindungen der Formel (I) erfolgen. Geeignete Säuren hierfür sind z.B. HCl, HNO₃, Trichloressigsäure, Essigsäure oder Palmitinsäure.

Manche Verbindungen der Formel (I) können ein oder mehrere asymmetrische C-Atome oder auch Doppelbindungen enthalten, die in den allgemeinen Formel (I) nicht gesondert angegeben sind. Die durch ihre spezifische Raumform definierten möglichen Stereoisomeren, wie Enantiomere, Diastereomere, Z- und E-Isomere sind jedoch alle von den Formel (I) umfaßt und können nach üblichen Methoden aus Gemischen der Stereoisomeren erhalten oder auch durch stereoselektive Reaktionen in Kombination mit dem Einsatz von stereochemisch reinen Ausgangsstoffen hergestellt werden. Die genannten Stereoisomeren in reiner Form als auch ihre Gemische sind somit Gegenstand dieser Erfindung.

Von besonderem Interesse sind erfindungsgemäße Verbindungen der Formel (I) oder deren Salze, worin

Wasserstoff; (C_1-C_6) -Alkyl; (C_2-C_6) -Alkenyl; (C_2-C_6) -Alkinyl; (C_1-C_4) -Alkyl, das ein- bis vierfach, vorzugsweise einfach, durch Reste aus der Gruppe Halogen, (C_1-C_2) -Alkoxy-, (C_1-C_2) -Thioalkyl, (C_2-C_3) -Alkoxycarbonyl und (C_2-C_4) -Alkenyl substituiert ist; (C_5-C_6) -Cycloalkyl, das unsubstituiert oder durch Reste aus der Gruppe (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio und Halogen substituiert ist; (C_5-C_6) -Cycloalkenyl; Benzyl, das im Phenylrest unsubstituiert oder durch einen bis drei Reste aus der Gruppe Halogen, (C_1-C_2) -Alkyl, (C_1-C_2) -Alkoxy, (C_1-C_2) -Haloalkyl, (C_1-C_2) -Thioalkyl und (C_2-C_4) -Alkoxycarbonyl substituiert ist, oder einen Rest der genannten Formeln A-1 bis A-10, worin

X O, S, S(O) oder SO₂, vorzugsweise O, bedeuten.

Von besonderem Interesse sind erfindungsgemäße Verbindungen der Formel (I) oder deren Salze, worin

R¹ Wasserstoff oder CH₃;

R² Wasserstoff, Halogen, vorzugsweise Chlor, (C₁-C₂)-Alkyl, (C₁-C₂)-Alkoxy, wobei die beiden letztgenannten Reste unsubstituiert oder ein- oder mehrfach durch Halogen oder (C₁-C₃)-Alkoxy substituiert sind;

R³ Wasserstoff, Halogen, vorzugsweise Chlor, (C₁-C₂)-Alkyl, (C₁-C₂)-Alkoxy oder (C₁-C₂)-Alkylthio, wobei die vorgenannten alkylhaltigen Reste unsubstituiert oder ein- oder mehrfach durch Halogen oder ein- oder zweifach durch (C₁-C₂)-Alkoxy oder (C₁-C₂)-Alkylthio substituiert sind; oder einen Rest der Formel NR⁵R⁶;

R⁴ Wasserstoff oder (C₁-C₂)-Alkyl und
R⁵ und R⁶ unabhängig voneinander Wasserstoff oder (C₁-C₂)-Alkyl bedeuten.

Bevorzugt sind erfindungsgemäße Verbindungen der Formel (I) oder deren Salze, bei denen

W Sauerstoff und

R¹ Wasserstoff oder CH₃ bedeuten.

Besonders bevorzugt sind Verbindungen der Formel (I) oder deren Salze, in denen

Y. CH oder N,

Z N und

R² Wasserstoff, CH₃, CH₂CH₃, OCH₂, OCH₂CH₃, OCHF₂, Cl und

R³ Wasserstoff, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, OCHF₂, NH(CH₃), N(CH₃)₂, CF₃, OCH₂CF₃ oder Cl sind.

Bevorzugt sind auch solche erfindungsgemäßen Verbindungen, welche eine Kombination der obengenannten bevorzugten Merkmale aufweisen.

Weiterer Gegenstand der vorliegenden Erfindung sind Verfahren zur Herstellung der Verbindungen der allgemeinen Formel (I) oder deren Salze, dadurch gekennzeichnet, daß man

a) eine Verbindung der Formel (II)

mit einem heterocyclischen Carbamat der Formel (III),

worin R' unsubstituiertes oder substituiertes Aryl oder Alkyl, vorzugsweise unsubstituiertes oder substituiertes Phenyl oder (C_1-C_4) -Alkyl, insbesondere Phenyl oder Methyl ist, umsetzt oder

b) ein Phenylsulfonylcarbamat der Formel (IV)

mit einem Aminoheterocyclus der Formel (V)

umsetzt oder

c) ein Sulfonylisocyanat der Formel (VI)

mit einem Aminoheterocyclus der unter b) genannten Formel (V) umsetzt.

Die Umsetzung der Verbindungen der Formel (II) und (III) erfolgt basenkatalysiert in einem inerten Lösungsmittel, wie z. B. Acetonitril, Dioxan oder Tetrahydrofuran bei Temperaturen zwischen 0°C und dem Siedepunkt des Lösungsmittels. Als Base wird bevorzugt 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) verwendet.

Die Sulfonamide (II) sind neue Verbindungen; sie und ihre Herstellung sind ebenfalls Gegenstand dieser Erfindung (siehe weiter unten Tabellen 1a und 1b). Man erhält sie ausgehend von entsprechenden Sulfonsäurehalogeniden, bevorzugt entsprechenden Sulfochloriden, die entweder direkt mit Ammoniak oder mit tert. Butylamin und anschließender Schutzgruppenabspaltung, z. B. durch Behandlung mit Trifluoressigsäure, zu den Sulfonamiden der Formel (II) abreagieren. Die in dem Verfahren einsetzbaren Sulfonsäurehalogenide können aus den entsprechenden Anilinen durch Diazotierung und Austausch der Diazogruppe mit Schwefeldioxid in Gegenwart eines Katalysators wie Kupfer(I)chlorid in Salzsäure oder Essigsäure erhalten werden, vgl. Meerwein, Chem. Ber. 90, 841-52 (1957).

Die Carbamate der Formel (III) können nach Methoden hergestellt werden, die in

4

den südafrikanischen Patentanmeldungen 82/5671 und 82/5045 (oder EP-A-0072347 bzw. EP-A-0070802) beschrieben sind.

Die Umsetzungen der Verbindungen (IV) mit den Aminoheterocyclen (V) führt man vorzugsweise in inerten, aprotischen Lösungsmitteln, wie z. B. Dioxan, Acetonitril oder Tetrahydrofuran, bei Temperaturen zwischen 0°C und der Siedetemperatur des Lösungsmittels durch. Die benötigten Ausgangsverbindungen der Formel (V) sind bekannt oder lassen sich nach im Prinzip bekannten Verfahren herstellen, s. "The Chemistry of Heterocyclic Compounds", Bd. XVI, (1962), Interscience Publ., New York & London, und Supplement I dieses Handbuches. Amino-substituierte Triazinderivate werden von Smolin und Rapaport in "The Chemistry of Heterocyclic Compounds", Bd. XIII, (1959), Interscience Publ., New York & London, referiert. Die iodierten Phenylsulfonylcarbamate (IV) erhält man analog Verfahren, die in EP-A-0044808 oder EP-A-0237292 angegeben sind.

Die iodierten Arylsulfonylisocyanate der Formel (VI) sind neue Verbindungen und ebenfalls Gegenstand der Erfindung. Sie lassen sich analog Verfahren aus EP-A-0184385 herstellen und mit den obengenannten Aminoheterocyclen der Formel (V) umsetzen.

Die Salze der Verbindungen der Formel (I) werden vorzugsweise in inerten Lösungsmitteln, wie z. B. Wasser, Methanol, Dichlormethan oder Aceton bei Temperaturen von 0°-100° hergestellt. Geeignete Basen zur Herstellung der erfindungsgemäßen Salze sind beispielsweise Alkalicarbonate, wie Kaliumcarbonat, Alkali- und Erdalkalihydroxide, Ammoniak oder Ethanolamin. Als Säuren zur Salzbildung eignen sich besonders HCl, HNO₃, Trichloressigsäure, Essigsäure oder Palmitinsäure.

Die erfindungsgemäßen Verbindungen der Formel (I) weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono- und dikotyler Schadplanzen auf. Auch schwer bekämpfbare perennierende Unkräuter, die aus Rhizomen, Wurzelstöcken oder anderen Dauerorganen austreiben, werden durch die Wirkstoffe gut erfaßt. Dabei ist es gleichgültig, ob die Substanzen im Vorsaat-, Vorauflauf- oder Nachauflaufverfahren ausgebracht werden. Im einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen

Unkrautflora genannt, die durch die erfindungsgemäßen Verbindungen kontrolliert werden können, ohne daß durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll.

Auf der Seite der monokotylen Unkrautarten werden z. B. Avena, Lolium, Alopecurus, Phalaris, Echinochloa, Digitaria, Setaria etc., sowie Cyperusarten aus der annuellen Gruppe und auf Seiten der perennierenden Species Agropyron, Cynodon, Imperata, sowie Sorghum etc. und auch ausdauernde Cyperusarten gut erfaßt.

Bei dikotylen Unkrautarten erstreckt sich das Wirkungsspektrum auf Arten, wie z.B. Galium, Viola, Veronica, Lamium, Stellaria, Amaranthus, Sinapis, Ipomoea, Matricaria, Abutilon, Sida etc. auf der annuellen Seite sowie Convolvulus, Cirsium, Rumex, Artemisia etc. bei den perennierenden Unkräutern.

Unter den spezifischen Kulturbedingungen im Reis vorkommende Unkräuter, wie z.B. Sagittaria, Alisma, Eleocharis, Scirpus, Cyperus etc., werden von den erfindungsgemäßen Wirkstoffen ebenfalls hervorragend bekämpft.

Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert, oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein und sterben nach Ablauf von drei bis vier Wochen vollkommen ab. Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt ebenfalls sehr rasch nach der Behandlung ein drastischer Wachstumsstopp ein, und die Unkrautpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wuchsstadium stehen oder sterben nach einer gewissen Zeit mehr oder weniger schnell ab, sodaß auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig durch den Einsatz der neuen erfindungsgemäßen Verbindungen beseitigt werden kann.

Obgleich die erfindungsgemäßen Verbindungen eine ausgezeichnete herbizide Aktivität gegenüber mono- und dikotylen Unkräutern aufweisen, werden Kulturpstanzen wirtschaftlich bedeutender Kulturen, wie z. B. Weizen, Gerste,

Roggen, Mais, Reis, Zuckerrüben, Baumwolle und Soja, nur unwesentlich oder gar nicht geschädigt. Die vorliegenden Verbindungen eignen sich aus diesen Gründen sehr gut zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs in landwirtschaftlichen Nutzpflanzungen.

Darüberhinaus weisen die erfindungsgemäßen Verbindungen wachstumsregulatorische Eigenschaften bei Kulturpflanzen auf. Sie greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur Ernteerleichterung, wie z.B. durch Auslösen von Desikkation, Abszission und Wuchsstauchung eingesetzt werden. Des weiteren eignen sie sich auch zur generellen Steuerung und Hemmung von unerwünschtem vegetativen Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono- und dikotylen Kulturen eine große Rolle, da das Lagern hierdurch verringert oder völlig verhindert werden kann.

Die erfindungsgemäßen Verbindungen können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Formulierungsmöglichkeiten vorgegeben sind. Als Parameter beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC). Emulsionen (EW) wie Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, versprühbare Lösungen oder Emulsionen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Suspoemulsionen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate zur Streu- und Bodenapplikation, Granulate (GR) in Adsorptionsgranulaten, und Aufzugs-Mikro-, Sprüh-, Form wasserlösliche Granulate (SG), (WG), Granulate wasserdispergierbare ULV-Formulierungen, Mikrokapseln und Wachse.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, G. Hauser Verlag München, 4. Aufl. 1986; van Valkenburg, "Pesticides Formulations", Marcel Dekker N.Y., 2nd Ed. 1972-73; K Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside,

Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Galdwell N.J.; H.v. Olphen, "Introduction to Clay Colloid Ghemistry"; 2nd Ed., J. Wiley & Sons, N.Y.; Marsden, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1950; McCutcheon's "Detergents and Emulsifiers Annual", MG Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, G. Hauser Verlag München, 4. Aufl. 1986.

Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Netzmittel, z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole und Fettamine, Fettalkoholpolyglykolethersulfate, Alkansulfonate oder Alkylarylsulfonate, und Dispergiermittel, z.B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleylmethyltaurinsaures Natrium enthalten.

Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte (z.B. Blockpolymere), Alkylpolyglycolether, Sorbitanfettsäureester, Polyoxyethylensorbitanfettsäureester oder Polyoxethylensorbitester.

Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde.

Granulate können entweder durch Verdüsen des Wirkstoffes auf

adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.

Teller-, Fließbett-, Extruder- und Sprühgranulate können nach üblichen Verfahren hergestellt werden; siehe z.B. Verfahren in "Spray Dyring Handbook", 3rd Ed. 1979, G. Goodwin Ltd., London; J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff; "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, s. 8-57.

Für weitere Informationen zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.G. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, Seiten 81-96 und J.D. Freyer's. A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103.

In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten meistens 1 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 0,2 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt. Meist liegt der Gehalt bei den in Wasser dispergierbaren Granulaten zwischen 10 und 90 Gew.-%.

Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen im Pflanzenbau wirksamen Stoffen, z.B. Pestiziden, wie Insektiziden, Akariziden, Fungiziden und Herbiziden, und/oder Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als

Tankmix.

Insbesondere können die erfindungsgemäßen Verbindungen der Formel (I) mit weiteren Herbiziden angewendet werden, wie sie z.B. aus Weed Research 26, 441-5 (1986) oder "The Pesticide Manual", 9th Edition The British Crop Protection Council, 1990, England, bekannt sind. Als Beispiele für literaturbekannte Herbizide, die erfindungsgemäß mit den Verbindungen der Formel (I) kombiniert werden können, sind folgende Wirkstoffe zu nennen (für die Wirkstoffe ist jeweils der Common Name oder Firmencode in Fettdruck und anschließend die chemische Bezeichnung in Normalschrift angegeben, siehe Schema):

Common Name (bzw. Firmencode) Chemischer Name [Schema]

AC 263222 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3-pyridine carboxylic acid;

acetochlor 2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide;

acifluorfen 5-[2-chloro-4-(trifluoromethyl)-phenoxy]-2-nitrobenzoic acid;

aclonifen 2-chloro-6-nitro-3-phenoxyaniline;

AKH 7088 methyl [[[1-[5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrophenyl]-2-methoxyethylidene]-amino]-oxy]-acetate;

alachlor 2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide;

alloxydim methyl 3-[1-(allyloxyimino)-butyl]-4-hydroxy-6,6-dimethyl-2-cyclohex-3-ene-carboxylate;

ametryn N-ethyl-N'-(1-methylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine;

amidosulfuron 1-[N-Methyl-N-(methylsulfonyl)-aminosulfonyl]-3-(4,6-

dimethoxy-pyrimidin-2-yl)urea;

amitrole 1H-1,2,4-triazol-3-amine;

AMS ammonium sulfamate;

anilofos S-[2-[(4-chlorophenyl)(1-methylethyl)amino]-2-oxoethyl] O,O-dimethyl phosphorodithioate;

asulam methyl [(4-aminophenyl)sulfonyl]carbamate;

atrazine 6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine;

aziprotryne 2-azido-N-(1-methylethyl)-6-methylthio-1,3,5-triazin-2-amine;

barban 4-chloro-2-butynyl 3-chlorophenylcarbamate;

BAS 516 H 5-fluoro-2-phenyl-4H-3,1-benzoxazin-4-one;

benazolin 4-chloro-2-oxo-3(2H)-benzothiazoleacetic acid;

benfluralin N-butyl-N-ethyl-2,6-dinitro-4-(trifluoromethyl)benzenamine;

benfuresate 2,3-dihydro-3,3-dimethylbenzofuran-5-yl ethanesulfonate;

bensulfuron-methyl 2-[[[(4,6-dimethoxy-2-pyrimidinyl)-amino]-carbonyl]-

amino]-sulfonyi]-methyl]-benzoic acid, methyl ester;

bensulide O,O-bis-(1-methylethyl)

S-[2-[phenylsulfonyl)-amino]-ethyl]

phosphorodithioate;

bentazone 3-(1-methylethyl)-1H-2,1,3-benzothiadiazin-4(3H)-one, 2,2-dioxide;

benzofenap 2-[[4-(2,4-dichloro-3-methylbenzoyl)-1,3-dimethyl-1H-pyrazol-5-yl]-oxy]-1-(4-methylphenyl)ethanone;

benzofluor N-[4-(ethylthio)-2-(trifluoromethyl)phenyl]methanesulfoneamide;

benzoylprop-ethyl N-benzoyl-N-(3,4-dichlorophenyl)-alanine, ethyl ester;

benzthiazuron N-2-benzothiazolyl-N'-methylurea;

bialaphos 4-(hydroxymethylphosphinyl)-L-2-aminobutanoyl-L-alanyl-L-alanine;

bifenox methyl 5-(2,4-dichlorophenoxy)-2-nitrobenzoate;

bromacil bromo-6-methyl-3-(1-methylpropyl)-2,4(1H,3H)pyrimidinedione;

bromobutide N-[(1,1-dimethyl)methylphenyl]-2-bromo-3,3-dimethylbutyramide;

bromofenoxim 3,5-dibromo-4-hydroxybenzaldehyde O-(2,4-dinitrophenyl)oxime;

bromoxynil 3,5-dibromo-4-hydroxybenzonitrile;

bromuron N'-(4-bromophenyl)-N,N-dimethylurea;

buminafos dibutyl [1-(butylamino)cyclohexyl]phosphonate;

butachlor N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)acetamide;

butamifos O-ethyl

O-(5-methyl-2-nitrophenyl)

(1-methylpropyl)-

phosphoramidothioate;

butenachlor (Z)-N-but-2-enyloxymethyl-2-chloro-2',6'-diethylacetanilide;

busoxinone

3-[5-(1,1-dimethylethyl)-isoxazo1-3-yl]-4-hydroxy-1-methyl-2-

imidazolidinone;

buthidazole 3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone;

butralin 4-(1,1-dimethylethyl)-N-(1-methylpropyl)-2,6-dinitrobenzenamine;

butylate S-ethyl bis(2-methylpropyl)carbamothioate;

C 4874 2-[4-[(6-chloro-2-quinoxalinyl)oxy]phenoxy]propanoic acid, (tetrahydro-2-furanyl)methyl ester;

carbetamide (R)-N-ethyl-2-[[(phenylamino)carbonyl]oxy]propanamide;

```
CDAA 2-chloro-N,N-di-2-propenylacetamide;
CDEC 2-chloroallyl diethyldithiocarbamate;
CGA 184927 2-[4-[(5-chloro-3-fluoro-2-pyridinyl)oxy]phenoxy]propanoic acid,
2-propynyl ester;
chlomethoxyfen 4-(2,4-dichlorophenoxy)-2-methoxy-1-nitrobenzene;
chloramben 3-amino-2,5-dichlorobenzoic acid;
chlorbromuron 3-(4-bromo-3-chlorophenyl)-1-methoxy-1-methylurea;
chlorbufam 1-methyl-2-propynyl (3-chlorophenyl)carbamate;
chlorfenac 2,3,6-trichlorobenzeneacetic acid;
chlorflurecol-methyl 2-chloro-9-hydroxy-9H-fluorene-9-carboxylic acid, methyl
ester;
chloridazon 5-amino-4-chloro-2-phenyl-3(2H)-pyridazinone;
chlorimuron ethyl 2-[[[(4-chloro-6-methoxy-2-pyrimidinyl)-amino]-carbonyl]-
ami no]-sulfonyl]-benzoic acid, ethyl ester;
chlornitrofen 1,3,5-trichloro-2-(4-nitrophenoxy)benzene;
chlorotoluron N'-(3-chloro-4-methylphenyl)-N,N-dimethylurea;
chloroxuron N'-[4-(4-chlorophenoxy)phenyl]-N,N-dimethylurea;
chlorpropham 1-methylethyl 3-chlorophenylcarbamate;
                     2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]-
chlorsulfuron
carbonyl]-benzenesulfonamide;
chlorthal-dimethyl 2,3,5,6-tetrachloro-1,4-benzenedicarboxylic acid, dimethyl
ester:
chlorthiamid 2,6-dichlorobenzenecarbothioamide;
                 exo-1-methyl-4-(1-methylethyl)-2-[(2-methylphenyl)methoxy]-7-
cinmethylin
oxabicyclo[2.2.1]heptane;
                     1-(4,6-dimethoxy-1,3,5-triazin-2-yl)3-[2-(2-methoxyethoxy)-
cinosulfuron
phenylsulfonyl]-urea;
                     (E,E)-2-[1-[[(3-chloro-2-propenyl)-oxy]-imino]-propyl]-5-[2-
clethodim
(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one;
clomazone 2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone;
clomeprop [(2,4-dichloro-3-methylphenyl)oxy]-2-propionic acid anilide;
                      (E,E)-2-[1-[[(3-chloro-2-propenyl)-oxy]-imino]-butyl]-5-[2-
cloproxydim
(ethylthio)-propyl]-3-hydroxy-2-cyclohexen-1-one;
clopyralid 3,6-dichloro-2-pyridinecarboxylic acid;
                  2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methyl-
cyanazine '
```

```
propanenitrile;
cycloate S-ethyl cyclohexylethylcarbamothioate;
cycloxydim 2-[1-(ethoxyimino)butyl]-5-(tetrahydrothiopyran-3-yl)-3-hydroxy-2-
cyclohexen-1-one;
cycluron 3-cyclooctyl-1-dimethylurea;
cyperquat 1-methyl-4-phenylpyridinium;
cyprazine 2-chloro-4-(cyclopropylamino)-6-(isopropylamino)-s-triazine;
cyprazole N-[5-(2-chloro-1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-cyclopropane-
carboxamide;
2,4-DB 4-(2,4-dichlorophenoxy)butanoic acid;
dalapon 2,2-dichloropropanoic acid;
desmedipha methyl [3-[[(phenylamino)carbonyl]oxy]phenyl]carbamate;
desmetryn 2-(isopropylamino)-4-(methylamino)-6-(methylthio)-s-triazine;
di-allate S-(2,3-dichloro-2-propenyl)bis(1-methylethyl)carbamothioate;
dicamba 3,6-dichloro-2-methoxybenzoic acid;
dichlobenil 2,6-dichlorobenzonitrile;
dichlorprop 2-(2,4-dichlorophenoxy)propanoic acid;
diclofop-methyl 2-[4-(2,4-dichlorophenoxy)phenoxy]propanoic acid, methyl ester;
diethatyl N-(chloroacetyl)-N-(2,6-diethylphenyl)glycine;
difenoxuron N'-[4-(4-methoxyphenoxy)phenyl]-N,N-dimethylurea;
difenzoquat 1,2-dimethyl-3,5-diphenyl-1H-pyrazolium;
diflufenican N-(2,4-difluorophenyl)-2-[3-(trifluoromethyl)-phenoxy]-3-pyridine-
carboxamide:
             N'-[3-chloro-4-[5-(1,1-dimethylethyl)-2-oxo-1,3,4-oxadiazol-3(2H)-
dimefuron
yl]phenyl]-N,N-dimethylurea;
dimethachlor 2-chloro-N-(2,6-dimethylphenyl)-N-(2-methoxyethyl)-acetamide;
                  N-(1,2-dimethylpropyl)-N'-ethyl-6-(methylthio)-1,3,5-triazine-
dimethametryn
2.4-diamine;
dimethipin 2,3-dihydro-5,6-dimethyl-1,4-dithiin, 1,1,4,4-tetraoxide;
dinitramine N3,N3-diethyl-2,4-dinitro-6-(trifluoromethyl)-1,3-benzenediamine;
dinoseb 2-(1-methylpropyl)-4,6-dinitrophenol;
dinoterb 2-(1,1-dimethylethyl)-4,6-dinitrophenol;
diphenamid N,N-dimethyl-2,2-diphenylacetamide;
dipropetryn 6-ethylthio-N,N'-bis(1-methylethyl)-1,3,5-triazine-2,4-diamine;
```

diquat 6,7-dihydrodipyrido[1,2-a:2',1'-c]pyrazinediium;

dithiopyr 2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-pyridine-dicarbothioic acid;

diuron N'-(3,4-dichlorophenyl)-N,N-dimethylurea;

DNOC 2-methyl-4,6-dinitrophenol;

DPX-A7881 2-[[[(4-ethoxy-6-N-(methyl)amino-1,3,5-triazine-2-yl]-amino]-carbonyl]-amino]-sulfonyl]-benzoic acid, methyl ester;

DPX-E9636 N-[[(4,6-dimethoxy-2-pyrimidinyl)-amino]-carbonyl]-3-(ethylsulfonyl)-2-pyridinesulfonamide;

dymron N-(4-methylphenyl)-N'-(1-methyl-1-phenylethyl)urea;

eglinazine-ethyl N-[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]-glycine ethyl ester,

EL 177 5-cyano-1-(1,1-dimethylethyl)-N-methyl-3H-pyrazole-4-carbo xamide; endothal 7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylic acid;

EPTC S-ethyl dipropylcarbamothioate;

esprocarb S-(methylphenyl) N-ethyl-N-(1,2-dimethyl)propylcarbamothioate;

ethalfluralin N-ethyl-N-(2-methyl-2-propenyl)-2,6-dinitro-4-(trifluoromethyl)-benzenamine:

ethidimuron N-[5-(ethylsulfonyl)-1,3,4-thiadiazol-2-yl]-N,N'-dimethylurea;

ethiozin 4-amino-6-(1,1-dimethylethyl)-3-(ethylthio)-1,2,4-triazin-5(4H)-one;

ethofumesate 2-ethoxy-2,3-dihydro-3,3-dimethyl-5-benzofuranyl methane sulfonate;

F 5231 N-[2-chloro-4-fluoro-5-[4-(3-fluoropropyl)-4,5-dihydro-5-oxo-1H-tetrazol-1-yl]-phenyl]-ethane-sulfon-amide;

fenoprop 2-(2,4,5-trichlorophenoxy)propanoic acid;

fenoxaprop-ethyl 2-[4-[(6-chloro-2-benzoxazolyl)-oxy]-phenoxy]-propanoic acid, ethyl ester;

fenuron N.N-dimethyl-N'-phenylurea;

flamprop-methyl N-benzoyl-N-(3-chloro-4-fluorophenyl)alanin , methyl ester;

flazasulfuron 1-(4,6-dimethoxypyrimidin-2-yl)-3-[3-(trifluoromethyl)-2-pyridyl-sulfonyl]-urea;

fluazifop-butyl 2-[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy]propanoic acid, butyl ester:

fluchloralin N-(2-chloroethyl)-2,6-dinitro-N-propyl-4-(trifluoromethyl)-

benzenamine;

flumeturon N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl]urea;

flumipropyn 2-[4-chloro-2-fluoro-5-[(1-methyl-2-propynyl)oxy]phenyl-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-dione;

fluorodifen 2-nitro-1-(4-nitrophenoxy)-4-(trifluoromethyl)benzene;

fluoroglycofen-ethyl carboxymethyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate, ethyl ester,

fluridone 1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone;

flurochloridone 3-chloro-4-(chloromethyl)-1-[3-(trifluoromethyl)phenyl]-2-pyrrolidinone;

fluroxypyr 4-amino-3,5-dichloro-6-fluoro-2-pyridyloxyacetic acid;

flurtamone 5-(methylamino)-2-phenyl-4-[3-(trifluoromethyl)phenyl]-3(2H)-furanone;

fomesafen 5-[2-chloro-4-(trifluoromethyl)phenoxy]-N-(methylsulfonyl)-2-nitrobenzamide;

fosamine ethyl hydrogen carbamoylphosphonate;

furyloxyfen 3-[5-[2-chloro-4-(trifluoromethyl)-phenoxy]-2-nitrophenoxy]-tetrahydrofuran;

glufosinate 4-[hydroxy(methyl)phosphinoyl]-homoalanine;

glyphosate N-(phosphonomethyl)glycine;

halosaten 5-[6-chloro-2-fluoro-4-(trifluoromethyl)-phenoxy]-N-(ethylsulfonyl)-2-nitrobenzamide;

haloxyfop 2-[4-[[3-chloro-5-(trifluoromethyl)-2-pyridinyl]-oxy]-phenoxy]-propanoic acid;

hexazinone 3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione;

Hw 52 N-(2,3-dichlorophenyl)-4-(ethoxymethoxy)benzamide;

imazamethabenz-methyl 6-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-m-toluic acid, methyl ester and 6-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluic acid, methyl ester;

imazapyr 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-pyridinecarboxylic acid;

imazaquin 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinolinecarboxylic acid;

imazethapyr 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid;

imazosulfuron 2-chloro-N-[[(4,6-dimethoxy-2-pyrimidinyl)-amino]-carbonyl]-

```
imidazo[1,2-a]pyridine-3-sulfonamide;
ioxynil 4-hydroxy-3,5-diiodobenzonitrile;
isocarbamid N-(2-methylpropyl)-2-oxo-1-imidazolidinecarboxamide;
isopropalin 4-(1-methylethyl)-2,6-dinitro-N,N-dipropylbenzenamine;
isoproturon N-[4-(methylethyl)phenyl]-N',N'-dimethylurea;
isouron N'-[5-(1,1-dimethylethyl)-3-isoxazolyl]-N,N-dimethylurea;
isoxaben N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6-dimethoxybenzamide;
                  2-[2-[4-[(3,5-dichloro-2-pyridinyl)oxy]phenoxy]-1-oxopropyl]-
isoxapyrifop
isoxazolidine:
karbutilate 3-[[(dimethylamino)carbonyl]-amino]-phenyl (1,1-dimethylethyl)-
carbamate:
lactofen 2-ethoxy-1-methyl-2-oxoethyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-
2-nitrobenzoate;
lenacil 3-cyclohexyl-6,7-dihydro-1H-cyclopentapyrimidine-2,4(3H,5H)-dione;
linuron N'-(3,4-dichlorophenyl)-N-methoxy-N-methylurea;
MCPA (4-chloro-2-methylphenoxy)acetic acid;
MCPB 4-(4-chloro-2-methylphenoxy)butanoic acid;
mecoprop 2-(4-chloro-4-methylphenoxy)propanoic acid;
mefenacet 2-benzothiazol-2-yloxy-N-methylacetanilide;
                  N-[2,4-dimethyl-5-[[(trifluoromethyl)-sulfonyl]-amino]phenyl]-
mefluidide
acetamide:
metamitron 4-amino-3-methyl-6-phenyl-1,2,4-triazin-5(4H)-one;
                  2-chloro-N-(2,6-dimethylphenyl)-N-(1(H)-pyrazol-1-ylmethyl)-
metazachlor
acetamide;
methabenzthiazuron 1,3-dimethyl-3-(2-benzothiazolyl)urea;
metham methylcarbamodithioic acid;
methazole 2-(3,4-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione;
methoxyphenone (4-methoxy-3-methylphenyl)(3-methylphenyl)methanone;
methyldymron N-methyl-N'-(1-methyl-1-phenylethyl)-N-phenylurea;
metobromuron N'-(4-bromophenyl)-N-methoxy-N-methylurea;
metolachlor 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-
acetamide:
metoxuron N'-(3-chloro-4-methoxyphenyl)-N,N-dimethylurea;
               4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-
metribuzin
one;
```

```
2-[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]-
metsulfuron-methyl
carbonyl]-amino]-sulfonyl]-benzoic acid, methyl ester,
MH 1,2-dihydro-3,6-pyridazinedione;
molinate S-ethyl hexahydro-1H-azepine-1-carbothioate;
monalide N-(4-chlorophenyl)-2,2-dimethylpentanamide;
monolinuron 3-(4-chlorophenyl)-1-methoxy-1-methylurea;
monuron N'-(4-chlorophenyl)-N,N-dimethylurea;
MT 128 6-chloro-N-(3-chloro-2-propenyl)-5-methyl-N-phenyl-3-pyridazinamine;
MT 5950 N-[3-chloro-4-(1-methylethyl)phenyl]-2-methylpentanamide;
naproanilide 2-(2-naphthalenyloxy)-N-phenylpropanamide;
napropamide N,N-diethyl-2-(1-naphthalenyloxy)propanamide;
naptalam 2-[(1-naphthalenylamino)carbonyl]benzoic acid;
NC 310 4-(2,4-dichlorobenzoyl)-1-methyl-5-benzyloxypyrazole;
neburon 1-butyl-3-(3,4-dichlorophenyl)-1-methylurea;
                 2-[[[(4,6-dimethoxy-2-pyrimidinyl)-amino]-carbonyl]-amino]su
nicosulfuron
lfonyl]-N,N-dimethyl-3-pyridinecarboxamide;
                          5-amino-1-(2,6-dichloro-4-(trifluoromethyl)-phenyl)-4-
nipyraclophen
nitropyrazole;
nitralin 4-(methylsulfonyl)-2,6-dinitro-N,N-dipropylaniline;
nitrofen 2,4-dichloro-1-(4-nitrophenoxy)benzene;
nitrofluorfen 2-chloro-1-(4-nitrophenoxy)-4-(trifluoromethyl)benzene;
                  4-chloro-5-(methylamino)-2-[3-(trifluoromethyl)phenyl]-3(2H)-
norflurazon
pyridazinone;
orbencarb S-[2-(chlorophenyl)methyl] diethylcarbamothioate;
oryzalin 4-(dipropylamino)-3,5-dinitrobenzenesulfonamide;
               3-[2,4-dichloro-5-(1-methylethoxy)-phenyl]-5-(1,1-dimethylethyl)-
oxadiazon
1,3,4-oxadiazol-2(3H)-one;
oxyfluorfen 2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)-benzene;
paraquat 1,1'-dimethyl-4,4'-dipyridinium ion;
pebulate S-propyl butylethylcarbamothioate;
pendimethalin N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine;
               1,1,1-trifluoro-N-[2-methyl-4-(phenylsulfonyl) phenyl]-methane-
perfluidone
sulfonamide;
phenisopham 3-[[(1-methylethoxy)carbonyl]amino]phenyl ethylphenylcarbamate;
phenmedipham 3-[(methoxycarbonyl)amino]phenyl (3-methylphenyl)carbamate;
```

```
picloram 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid;
                     S-[2-(2-methyl-1-piperidinyl)-2-oxoethyl]
                                                                   O.O-dipropyl
piperophos
phosphorodithioate;
pirifenop-butyl 2-[4-[(3,5-dichloro-2-pyridinyl)oxy]phenoxy]propanoic
butyl ester;
PPG-1013 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-
O-acetic acid, methyl ester;
pretilachlor 2-chloro-N-(2,6-diethylphenyl)-N-(2-propoxyethyl)-acetamide;
                          2-[[[[4,6-bis(difluoromethoxy)pyrimidin-2-yl]-amino]-
primisulfuron-methyl
carbonyl]-amino]-sulfonyl]-benzoic acid, methyl ester,
                  2-[[4-chloro-6-(cyclopropylamino)-1,3,5-triazine-2-yl]amino]-2-
procyazine
methylpropane-nitrile;
prodiamine 2,4-dinitro-N<sup>3</sup>,N<sup>3</sup>-dipropyl-6-(trifluoromethyl)-1,3-benzenediamine;
                 N-(cyclopropylmethyl)-2,6-dinitro-N-propyl-4-(trifluoromethyl)-
profluralin
benzenamine;
                        N-[4-chloro-6-[(1-methylethyl)-amino]-1,3,5-triazin-2-yl]-
proglinazine-ethyl
glycine, ethyl ester,
prometon 6-methoxy-N,N'-bis(1-methylethyl)-1,3,5-triazine-2,4-diamine;
prometryn N,N'-bis(1-methylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine;
propachlor 2-chloro-N-(1-methylethyl)-N-phenylacetamide;
propanil N-(3,4-dichlorophenyl)propanamide;
propaquizafop 2-[4-[(6-chloro-2-quinoxalinyl)oxy]phenoxy]propanoic acid, 2-
[[(1-methylethylidene)amino]oxy]ethyl ester;
propazine 6-chloro-N,N'-bis(1-methylethyl)-1,3,5-triazine-2,4-diamine;
propham 1-methylethyl phenylcarbamate;
propyzamide 3,5-dichloro-N-(1,1-dimethyl-2-propynyl)benzamide;
                N-[[4-(dipropylamino)-3,5-dinitrophenyl]-sulfonyl]-S,S-dimethyl-
prosulfalin
sulfilimine;
prosulfocarb S-(phenyl)methyl dipropylcarbamothioate;
prynachlor 2-chloro-N-(1-methyl-2-propynyl)acetanilide;
                     [4-(2,4-dichlorobenzoyl)-1,3-dimethylpyrazol-5-yl]toluene-4-
pyrazolinate
sulfonate;
pyrazon 5-amino-4-chloro-2-phenyl-3(2H)-pyridazinone;
                                1-(4,6-dimethoxypyrimidin-2-yl)-3-[[(1-methyl)-4-
pyrazosulfuron-ethyl
(ethoxycarbonyl)pyrazol-5-yl]sulfonyl]urea;
```

```
2-[[4-(2,4-dichlorobenzoyl)-1,3-dimethyl-1H-pyrazol-5-yl]oxy]-1-
pyrazoxyfen
phenylethanone;
                      O-[3-(1,1-dimethylethyl)-phenyl]-(6-methoxy-2-pyridinyl)-
pyributicarb
methylcarbamothioate;
pyridate O-(6-chloro-3-phenyl-4-pyridazinyl) S-octyl carbonothioate;
quinclorac 3,7-dichloro-8-quinolinecarboxylic acid;
quinmerac 7-chloro-3-methyl-8-quinolinecarboxylic acid;
quizalofop-ethyl 2-[4-[(6-chloro-2-quinoxalinyl)oxy]phenoxy]propanoic
ethyl ester;
           2-[4-chloro-2-fluoro-5-(2-propynyloxy)-phenyl]-4,5,6,7-tetrahydro-2H-
S 275
indazole:
          2-[7-fluoro-3,4-dihydro-3-oxo-4-(2-propynyl)-2H-1,4-benzoxazin-6-yl]-
S 482
4.5,6,7-tetrahydro-1H-isoindole-1,3(2H)-dione;
secbumeton N-ethyl-6-methoxy-N'-(1-methylpropyl)-1,3,5-triazine-2,4-diamine;
                   2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-
sethoxydim
cyclohexen-1-one;
siduron N-(2-methylcyclohexyl)-N'-phenylurea;
simazine 6-chloro-N,N*-diethyl-1,3,5-triazine-2,4-diamine;
simetryn N,N°-diethyl-6-(methylthio)-1,3,5-triazine-2,4-diamine;
               2-[[7-[2-chloro-4-(trifluoromethyl)-phenoxy]-2-naphthalenyl]-oxy]-
SN 106279
propanoic acid, methyl ester,
                            2-[[[[(4,6-dimethyl-2-pyrimidinyl)-amino]-carbonyl]-
sulfometuron-methyl
amino]-sulfonyl]-benzoic acid, methyl ester;
TCA trichloroacetic acid;
tebutam 2,2-dimethyl-N-(1-methylethyl)-N-(phenylmethyl)propanamide;
tebuthiuron N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N'-dimethylurea;
terbacil 5-chloro-3-(1,1-dimethylethyl)-6-methyl-2,4(1H,3H)-pyrimidinedione;
terbucarb 2,6-bis(1,1-dimethylethyl)-4-methylphenyl methylcarbamate;
                   N-(butoxymethyl)-2-chloro-N-[2-(1,1-dimethylethyl)-6-methyl-
terbuchlor
phenyl]-acetamide;
                     N-(1,1-dimethylethyl)-N'-ethyl-6-methoxy-1,3,5-triazine-2,4-
terbumeton
diamine:
                       6-chloro-N-(1,1-dimethylethyl)-N'-ethyl-1,3,5-triazine-2,4-
terbuthylazine
diamine;
                 N-(1,1-dimethylethyl)-N'-ethyl-6-(methylthio)-1,3,5-triazine-2,4-
terbutryn
```

diamine:

TFH 450 N,N-diethyl-3-[(2-ethyl-6-methylphenyl)-sulfonyl]-1H-1,2,4-triazole-1-carboxamide;

thiazafluron N,N'-dimethyl-N-[5-(trifluoromethyl)-1,3,4-thiadiazol-2-yl]-urea;

thifensulfuron-methyl 3-[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-amino]-

carbonyl]-amino]-sulfonyl]-thiophene-carboxylic acid, methyl ester;

thiobencarb S-[(4-chlorophenyl)-methyl]-diethylcarbamothioate;

tiocarbazil S-(phenylmethyl)-bis(1-methylpropyl)-carbamothioate;

tralkoxydim 2-[1-(ethoxyimino)-propyl]-5-[2,4,6-trimethylphenyl]-3-hydroxy-2-cyclohexen-1-one;

tri-allate S-(2,3,3-trichloro-2-propenyl) bis(1-methylethyl)carbamothioate;

triasulfuron 1-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-3-[2-(2-chloroethoxy)-phenylsulfonyl]-urea;

triazofenamide 1-(3-methylphenyl)-5-phenyl-1,2,4-triazole-2-carboxamide;

tribenuron-methyl

2-[[[N-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-N-

methylamino]-carbonyl]-amino]-sulfonyl]-benzoic acid, methyl ester;

triclopyr [(3,5,6-trichloro-2-pyridinyl)oxy]acetic acid;

tridiphane 2-(3,5-dichlorophenyl)-2-(2,2,2-trichloroethyl)-oxirane;

trietazine 6-chloro-N.N.N'-triethyl-1,3.5-triazine-2,4-diamine;

trifluralin 2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)-benzenamine;

trimeturon 1-(4-chlorophenyl)-2,3,3-trimethylpseudourea;

vernolate S-propyl dipropylcarbamothioate;

WL 110547 5-phenoxy-1-[3-(trifluoromethyl)phenyl]-1H-tetrazole.

Der Wirkstoffgehalt der Anwendungsformen der Wirkstoffe kann in weiten Bereichen variieren, beispielsweise von 0,0001 bis zu 100 Gew.-% Wirkstoff, vorzugsweise von 0,001 bis 99 Gew.-% Wirkstoff.

Die agrochemischen Zubereitungen (Formulierungen) enthalten in der Regel 0,1 bis 99 Gewichtsprozent, insbesondere 0,1 bis 95 Gew.-%, Herbizid-Wirkstoff und 1 bis 99,9 Gew.-%, vorzugsweise 5 bis 99,9 Gew.-% unter den Lager- und Anwendungsbedingungen inerte Formulierungshilfsmittel.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise

Beispielsweise werden die in handelsüblicher Form vorliegenden Formulierungen zur Anwendung gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Granulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids, u.a. variiert die erforderliche Aufwandmenge der erfindungsgemäßen Verbindungen der Formel (I). Sie kann innerhalb weiter Grenzen variiert werden, z.B. zwischen 0,001 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 und 5 kg/ha.

A. Chemische Beispiele

Beispiel 1: N-tert. Butyl-(2-iodo-3-methoxycarbonyl)benzolsulfonamid

Zu 59.3 g 2-Iodo-3-methoxycarbonylbenzolsulfochlorid in 300 ml Dichlormethan tropft man bei Raumtemp. eine Lösung aus 24.1 g tert.-Butylamin in 30 ml Dichlormethan. Man rührt 3 h bei Raumtemp. nach, wäscht mit 2 N Salzsäure, trocknet über Na₂SO₄ und evaporiert das Solvens. Der Rückstand wird in Ether digeriert. Man erhält so 30.0 g N-tert. Butyl-(2-iodo-3-methoxycarbonyl)benzolsulfonamid als farblose Kristalle vom Schmp. 148-9°C.

Beispiel 2: 2-Iodo-3-methoxycarbonylbenzolsulfonamid

27.9 g N-tert. Butyl-(2-iodo-3-methoxycarbonyl)benzolsulfonamid werden 4 h bei Raumtemp. mit 100 ml Trifluoressigsäure gerührt, man erhitzt 2 h zum Sieden und dampft dann die organische Phase i.Vak. ein. Der Rückstand wird in Dichlormethan/Wasser aufgenommen und bis zur Neutralreaktion mit Natriumcarbonat versetzt. Die Phasen werden getrennt und die wässrige Phase noch zweimal mit Dichlormethan extrahiert. Die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet und das Solvens eingedampft. Nach Verrühren des Rückstands mit Ether erhält man 17.4 g 2-Iodo-3-methoxycarbonylbenzolsulfonamid vom

Schmp. 155-7°C.

Beispiel 3: Methyl 2-amino-4-iodobenzoat

Eine Lösung aus 16.1 g 2-Acetylamino-4-iodobenzoesäure (Schmp. 233-5°C; dargestellt nach US-Patent US 4,762,838) in 325 ml abs. Methanol wird bei 0°C mit trockenem Chlorwasserstoffgas gesättigt. Man erhitzt 15 h zum Sieden, kühlt auf Raumtemp., sättigt erneut mit trockenem Chlorwasserstoffgas und läßt 24 h bei Raumtemp. stehen. Man dampft das Solvens i.Vak. ein, nimmt den Rückstand in Dichlormethan auf und wäscht die organische Phase mit einer gesättigten wässrigen Natriumhydrogencarbonat-Lösung säurefrei. Die organische Phase wird über Na₂SO₄ getrocknet und i.Vak. eingedampft. Man erhält so 13.8 g Methyl 2-amino-4-iodobenzoat vom Schmp. 63-7°C.

Beispiel 4: Bis-(2-methoxycarbonyl-5-iodobenzol)disulfid

13.8 g Methyl 2-amino-4-iodobenzoat werden mit 48 ml Eisessig und anschließend mit 86 ml konz. Salzsäure versetzt. Zu dieser auf -5°C gekühlten Suspension tropft man eine Lösung aus 3.8 g Natriumnitrit in 15 ml Wasser langsam zu und rührt 30 min bei dieser Temp. nach. Diese gekühlte Diazoniumsalz-Lösung wird bei 0°C zu einer Lösung aus 20 ml Schwefeldioxid, 60 ml Eisessig, 10 ml Wasser und 3.1 g Kupfer(II)-chlorid Dihydrat getropft und zunächst 1 h bei 0°C, dann über Nacht bei Raumtemp. nachgerührt. Das Reaktionsgemisch wird auf 1 l Eiswasser gegossen und das Produkt abgesaugt. Man erhält so 12.7 g Bis-(2-methoxycarbonyl-5-iodobenzol)disulfid vom Schmp. 133-5°C.

Beispiel 5: 2-Methoxycarbonyl-5-iodobenzolsulfochlorid

Zu 12.2 g Bis-(2-methoxycarbonyl-5-iodobenzol)disulfid in einer Lösung aus 30 ml 1,2-Dichlorethan und 15 ml 2 N Salzsäure wird bei 20-25°C Chlorgas eingeleitet bis zum Ende der exothermen Reaktion. Man saugt ab, extrahiert die wässrige Phase mit Dichlormethan, trocknet die vereinigten organischen Phasen

über Na₂SO₄ und dampft das Solvens i.Vak. ab. Man erhält so aus abgesaugtem und extrahierten Produkt eine Gesamtmenge von 15.0 g 2-Methoxycarbonyl-5-iodobenzolsulfochlorid vom Schmp. 119-120°C (Zers.).

Beispiel 6: 2-Methoxycarbonyl-5-iodobenzolsulfonamid

Zu 15.0 g 2-Methoxycarbonyl-5-iodobenzolsulfochlorid in 100 ml Tetrahydrofuran leitet man so lange bei Raumtemp. Ammoniakgas ein, bis kein Ammoniak mehr aufgenommen wird. Die Lösung wird i.Vak. eingedampft, der Rückstand mit Wasser gut verrührt und das Produkt abgesaugt. Nach Trocknung des Filterrückstandes bei 70°C i.Vak. erhält man 10.7 g 2-Methoxycarbonyl-5-iodobenzolsulfonamid als weißes Pulver vom Schmp. 176-7°C.

Beispiel 7:

3-Ethoxycarbonyl-2-iodobenzolsulfochlorid

24.0 g Ethyl 3-amino-2-iodobenzoat werden in 60 ml Eisessig und 120 ml konz. Salzsäure gelöst. Zu dieser auf -5°C gekühlten Suspension tropft man eine Lösung aus 6.9 g Natriumnitrit in 30 ml Wasser langsam zu und rührt 30 min bei dieser Temp. nach. Diese gekühlte Diazoniumsalz-Lösung wird bei 5-10°C zu einer mit Schwefeldioxid bei ca. 10°C gesättigten Lösung aus 70 ml Eisessig, 70 ml konz. Salzsäure und 3.0 g Kupfer(II)-chlorid Dihydrat getropft. Man rührt 3 h bei Raumtemp. und leitet dann Chlorgas ein bis die exotherme Reaktion abklingt. Das Reaktionsgemisch wird auf 1 l Eiswasser gegossen, das Produkt abgesaugt und bei 50°C i.Vak. getrocknet. Man erhält so 25.3 g 3-Ethoxycarbonyl-2-iodobenzol-sulfochlorid vom Schmp. 80-3°C.

Beispiel 8: 3-Ethoxycarbonyl-2-iodobenzolsulfonamid

Analog Beispiel 6 erhielt man aus 25.3 g 3-Ethoxycarbonyl-2-iodobenzol-sulfochlorid und Ammoniak 20.4 g 3-Ethoxycarbonyl-2-iodobenzolsulfonamid vom Schmp. 138-9°C.

Beispiel 9: 2-[[[(4,6-Dimethoxy-2-pyrimidinyl)-amino]-carbonyl]-amino]-sulfonyl]-4-iodobenzoesäuremethylester

Zu einer Mischung aus 3.4 g 5-Iodo-2-methoxycarbonylbenzolsulfonamid und 2.8 g O-Phenyl (4,6-dimethoxy-2-pyrimidinyl)carbamat in 50 ml abs. Acetonitril tropft man bei Raumtemp. eine Lösung von 1.7 g 1,8-Diazabicyclo[5.4.0]undec-7-en in 10 ml abs. Acetonitril zu. Man rührt 3 h bei dieser Temp., engt auf ca. 1/3 ein und gießt auf 200 ml Eiswasser. Die wässrige Phase wird mit Diethylether extrahiert, mit konz. Salzsäure auf pH 1-2 angesäuert und das Produkt abgesaugt. Nach Trocknen bei 60°C i.Vak. erhält man 3.3 g 2-[[[(4,6-Dimethoxy-2-pyrimidinyl)-amino]carbonyl]-arnino]-sulfonyl]-4-iodo-benzoesäure-methylester vom Schmp. 169-71°C.

Beispiel 10: 2-lodo-3-[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-amino]-carbonyl]-amino]-sulfonyl]-benzoesäure-ethylester

Unter Stickstoff-Schutzgas tropft man zu einer Suspension von 3.6 g 3-Ethoxy-carbonyl-2-iodobenzolsulfonamid in 100 ml abs. Dichlormethan 14 mmol Trimethylaluminium (7 ml einer 2 M Lösung in Hexan) zu. Nach 30 min Rühren bei Raumtemp. gibt man 2.2 g O-Methyl (4-methyl-6-methoxy-1,3,5-triazin-2-yl)-carbamat in 25 ml Dichlormethan zu und erhitzt 13 h unter Rückfluß. Zur auf Raumtemp. gekühlten Lösung wird unter Eiskühlung 25 ml 2 N Salzsäure zugetropft und die salzsaure Phase zweimal mit Dichlormethan extrahiert. Die org. Phase wird i.Vak. eingeengt und der Rückstand mit Aceton und 100 ml 10%-ige aqu. Natriumacetat-Lösung versetzt. Nach 3 h Rühren wird abgesaugt, mit Diethylether gewaschen, die wässrige Phase mit konz. Salzsäure auf pH 2-3 gestellt und das Produkt nach 15 min Rühren abgesaugt. Nach Trocknen i.Vak. bei 50°C erhält man 1.7 g 2-lodo-3-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-amino]-carbonyl]-amino]-sulfonyl]-benzoesäure-ethylester vom Schmp. 177-9°C.

Beispiel 11: iodobenzolsulfonylisocyanat

2-Methoxycarbony1-5-

50 g des in Beispiel 6 erhalten Sulfonamids werden in 150 ml 1,2-Dichlorethan suspendiert und mit 27,7 ml Thionylchlorid versetzt. Man erhitzt 4 h zum Sieden, kühlt auf 50-55°C ab, versetzt mit 0,5 ml Pyridin und

-28-

leitet nun in die zum Sieden gebrachte Lösung 3 1/2 Stunden Phosgen ein. Es wird unter Feuchtigkeitsausschluß unter reduziertem Druck eingeengt. Das zurückbleibende rohe Sulfonylisocyanat (52,6 g) kristallisiert beim Stehen.

Beispiel 12: 2-Iodo-3-methoxycarbonylbenzolsulfonylisocyanat

27,3 g 2-Iodo-3-methoxycarbonylbenzolsulfonamid und 9,0 ml n-Butylisocyanat in 300 ml absolutem Aceton werden beim Raumtemperatur mit 12 ml DBU versetzt und 3 h zum Sieden erhitzt. Man kühlt auf Raumtemperatur ab, engt giest und ein Volumens des 1/3 auf etwa Reaktionslösung in 1 l Wasser. Die Wasserphase wird mit angesäuert und 1-2 auf Salzsäure pН konz. ausgefallene Niederschlag abgesaugt. Man erhält 31,3 g 2-Iodo-[[[(n-butylamino)-carbonyl]-amino]-sulfonyl]benzoesa uremethylester vom Schmelzpunkt163-7°C. 29,0 g des so erhaltenen Butylsulfonylharnstoffs werden 400 ml Chlorbenzol suspendiert und zum erhitzt. Dann leitet man in der Siedehitze Phosgen ein. Das so entstehende Butylisocyanat wird über eine 20 cm-Vigreux Kolonne während 5 h langsam als Gemisch mit Chlorbenzol abdestilliert. Es wird unter Feuchtigkeitsausschluß i. Vak. eingeengt. Man erhält 2-Iodo-3-28,4 q so methoxycarbonylbenzolsulfonylisocyanat als Öl. Die Sulfonamic: der Tabellen 1a und 1b werden analog zu den Verfahren uer Beispiele 1 bis 8 erhalten.

Die Sulfonylharnstoffe der Tabellen 2-6 werden analog zu den Verfahren der Beispiele 9 und 10 erhalten. In den Tabellen beziehen sich die Abkürzungen auf die der jeweiligen Tabelle vorangestellte allgemeine Formel.

Die Sulfonylisocyanate der Tabellen 1c und 1d werden analog zu den Verfahren der Beispiele 11 und 12 erhalten.

Tabelle 1a

$$O = \begin{cases} O - R \\ O = \begin{cases} SO_2NH_2 \end{cases}$$
 (IIa)

5 6						
IIa	Q	R	1 .	Schmp. [°C]		
a	0	CH ₃	2-1	155-7		
ь	0	CH ₂ CH ₃	2-1	138-9		
c	0	CH2CH2CH3	2-I	130-1		
đ	0	CH (CH ₃) ₂	2-I	133		
е	0	CH2CH2CH2CH3	2-I			
f	0	CH ₂ CH (CH ₃) ₂	2-I			
g	0	CH (CH ₃) CH ₂ CH ₃	2-I	,		
h	0	C (CH ₃) ₃	2-I			
i	0	CH ₂ CH=CH ₂	2-I			
j	. 0	CH ₂ C≡CH	2-1			
k	0	CH2CH2Cl	2-I			
1	0	CH2CH2OCH3	2-I			
m	0	c-C ₆ H ₁₁	2 - I			
n	.0	CH ₃	6-I	161-2		
0	0	CH ₂ CH ₃	6-I			
P	O	CH ₂ CH ₂ CH ₃	6-I			
q	0	CH (CH ₃) ₂	6-I	•		
r	Ö	CH2CH2CH2CH3	6-I			
S.	0 .	CH ₂ CH (CH ₃) ₂	6-I			
t	0	CH (CH ₃) CH ₂ CH ₃	6-I			
u	0	C (CH ₃) ₃	6-I	, 		
v	0	CH2CH=CH2	6-I			
w	0	CH ₂ C≡CH	6-I			
×	. 0	CH ₂ CH ₂ Cl	6-I			
У	0	CH ₂ CH ₂ OCH ₃	6-I	•		
z	0	c-C ₆ H ₁₁	6-I			

Tabelle 1b

5 6						
IIb	Q	R	I	schmp. [°C]		
a	0	CH ₃	3-I	194-6		
b	o .	CH ₂ CH ₃	3-I			
 .c	0	CH ₂ CH ₂ CH ₃	3-I			
đ	0	CH (CH ₃) ₂	3-I			
e	0	CH2CH2CH2CH3	3 - I			
£	0	CH ₂ CH (CH ₃) ₂	3-I			
.g	0	CH (CH ₃) CH ₂ CH ₃	3-I			
ħ	0	C (CH ₃) 3	3-I			
i	0	CH2CH=CH2	3 - I			
j	0	CH ₂ C≡CH	3-I			
k	0	CH2CH2Cl	3-I			
1	0	CH2CH2OCH3	3-I			
m.	.0	c-C ₆ H ₁₁	3-1			
n	0	CH ₃	5-I	181-182		
0	0	CH ₂ CH ₃	5-I	162		
P	0	CH2CH2CH3	5-I			
- q	0	CH (CH ₃) ₂	5-I	139		
r	0	CH2CH2CH2CH3	5-I			
s	0	CH ₂ CH (CH ₃) ₂	5 - I			
t	0	CH (CH ₃) CH ₂ CH ₃	5-I			
u	0	$C(CH_3)_3$	5-I	•		
v	0	CH ₂ CH=CH ₂	5 - I			
w	0	CH ₂ C≡CH	5-I			
x	, 0	CH2CH2Cl	5-I			
У	0	CH2CH2OCH3	5 - I			
 Z	o	c-C6H11	5 - I			
aa	0	CH ₃	6-I	213-5		

Fortsetzung Tabelle 1b					
IIb	Q	R	1	Schmp. [°C]	
	_	67 67	6-I		
മ b	Ο.	CH ₂ CH ₃	0-1		
ac	0	CH ₂ CH ₂ CH ₃	6 - I		
ad	0	CH (CH ₃) ₂	6-I		
ae	0	CH2CH2CH2CH3	6-I		
af	0	CH ₂ CH (CH ₃) ₂	6-I		
ag	0	CH (CH ₃) CH ₂ CH ₃	6-I	•	
ah	0	C (CH ₃) ₃	6-I		
ai	0	CH ₂ CH=CH ₂	6 - I		
aj	0,	CH ₂ C=CH	6 - I		
ak	0	CH ₂ CH ₂ Cl	6 - I		
al	0	CH2CH2OCH3	6-I		
am	0	c-C ₆ H ₁₁	6-I		

Tabelle 1c

$$O = Q-R$$

$$O =$$

VIa	Q	R	I	IR-Bande [cm ⁻¹]
	0	CH ₃	3-I	2225
b	0	CH ₂ CH ₃	3-I	2230
c	0	CH ₂ CH ₂ CH ₃	3-I	2225
d	0	CH (CH ₃) ₂	3-I	2225
e	0	CH2CH2CH2CH3	3 - I	
£	0	CH ₂ CH (CH ₃) ₂	3-I	
g	0	CH (CH ₃) CH ₂ CH ₃	3-I	
h	0	C (CH ₃) ₃	3-I	,
i	0	CH2CH=CH2	3-I	
j .	0	CH ₂ C≡CH	3-I	
k	0	CH2CH2C1	3-I	•
1	0	CH2CH2OCH3	3-I	
m	0	c-C6H11	3-I	
n	0	CH₃	5-I	2225
0	. 0	CH ₂ CH ₃	5-I	
P	0	CH ₂ CH ₂ CH ₃	5-I	
q	0	CH (CH ₃) ₂	5 - I	
r	O	CH2CH2CH2CH3	5-I	
s	0	CH ₂ CH (CH ₃) ₂	5 - I	
t	0	CH (CH_3) CH_2CH_3	5 - I	
u	0	C (CH ₃) 3	5-I	•
v.	. 0	CH ₂ CH=CH ₂	5-I	
w	0	CH ₂ C≡CH	5-1	
×	0	CH ₂ CH ₂ Cl	5-I	

Fortsetzung Tabelle 1c					
VI a	Q	R	I	IR-Bande	[cm ⁻¹]
У	0	CH2CH2OCH3	5-I		
z	0	c-C ₆ H ₁₁	5 - I		
aa	. 0	CH ₃	6 - I		
ab ·	0	CH₂CH₃	6-I		
ac	0	CH ₂ CH ₂ CH ₃	6-I		
ad	0	CH (CH ₃) ₂	6-I		
ae	0	CH2CH2CH2CH3	6-I		
af	0	CH ₂ CH (CH ₃) ₂	6-I		
ag	0	CH (CH ₃) CH ₂ CH ₃	6-I		
ah	0	C (CH ₃) ₃	6-I		
ai	0	CH ₂ CH=CH ₂	6-I		
aj	0	CH ₂ C≡CH	6-I		
ak	. 0	CH ₂ CH ₂ Cl	6-I		
al	0	CH ₂ CH ₂ OCH ₃	6-I		
am	0	c-C ₆ H ₁₁	6-I		

Tabelle 1d

Fortsetzung Tabelle 1d									
VIb	Q	R	I	IR-Bande	[cm ⁻¹]				
			<u></u>		-				
	•	CH	6-I	222-5					
aa	0	CH ₃	_						
ab	0	CH ₂ CH ₃	6-I						
ac	0	CH2CH2CH3	6-I						
ad	0	CH (CH ₃) 2	6-I						
ae	0	CH2CH2CH2CH3	6-I						
af	0	CH ₂ CH (CH ₃) ₂	6-I						
ag	0	CH (CH ₃) CH ₂ CH ₃	6-I						
ah	0	$C(CH_3)_3$	6-I						
ai	0	CH ₂ CH=CH ₂	6-I						
aj	0	CH ₂ C=CH	6-I						
ak	0	CH2CH2C1	6-I	•					
al	0	CH ₂ CH ₂ OCH ₃	6-I		·				
am	. 0	c-C ₆ H ₁₁	6-I						

Tabelle 2

_			•						Schap.
Bap.		R	$\mathbb{R}^{\mathbf{I}}$	\mathbb{R}^2	\mathbb{R}^3	M	¥	Z	[°C]
MT -	×								
1	0	CH ₃	H	OCH ₃	OCH ₃	0	CH	N	216-7
2	0	CH ₃	CH ₃	OCH ₃	OCH ₃	0	CH	N	181-2
3	0	CH ₃	CH ₃	OCH ₃	CH ₃	0	N	N	133-4
4	0	CH ₃	н	CH ₃	CH ₃	0	CH	N	210
5	0	CH ₃	H	OCH ₃	CH ₃	0	CH	N	201-2
6	0	CH ₃	H	CH ₃	CH ₃	0	N	N	
7	0	CH ₃	н	OCH ₃	CH ₃	0	N	N	196 Z.
8	0	CH ₃	Ħ	OCH ₃	OCH ₃	0	N	N	205-6
9	0	CH ₃	Ħ	OCH ₃	Cl	0	CH	N	218-21
10	0	CH ₃	Ħ	OCF ₂ H	CH ₃	0	CH	N	
11	0	CH ₃	H	OCF ₂ H	OCF ₂ H	0	CH	N	192-3
12	0	CH ₃	H	OCH ₃	Br	0	CH	N	. •
13	0	CH ₃	Ħ	OCH ₃	OC ₂ H ₅	0	CH	N	
14	0	CH ₃	H	OCH ₃	SCH ₃	0	CH	N	
15	0	CH ₃	H	OCH ₃	OC2H5	0	N	N	
16	0	CH ₃	H	OCH ₃	OC ₃ H ₇	0	CH	N	•
17	0	CH ₃	H	OCH ₃	Cl	0	N	N	
	0	CH ₃	Ħ	C1	OC ₂ H ₅	0	CH	N	
18	0	CH ₃	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
19	0	CH ₃	H.	С ₂ Н ₅	OCH ₃	0	CH.	N	
20	_	_	- H	CF ₃	OCH ₃	0	СН	N	
21	0	CH ₃	H	OCH ₂ CF ₃	CH ₃	0	CH	N	
22	0	CH ₃	H	OCH ₂ CF ₃	OCH ₃	0	CH	N	
23	0	CH ₃	H	OCH ₂ CF ₃	OCH ₂ CF ₃	0	СН	N	
24	0	CH ₃		OCH ₂ CF ₃	OCH ₃	0	N	N	
25	0	CH ₃	Ħ	OCH ₂ CF ₃					

Fort	setz	ung Tabelle 2							Schwp.
Bsp				•	3			_	[oc]
Nr.	Q	R	R ^I	R ²	R ³	W	Y	Z	[-0]
26	0	CH ₃	H	OCH ₃	NHCH ₃	0	N	N	
27	0	CH ₃	Ħ	OC ₂ H ₅	NHCH ₃	0	N	N	
28	0	CH ₃	H	C ₂ H ₅	OC2H5	0	N	N	
29	0	CH ₃	H	OCH ₃	CH ₃	0	N	N	
30	0	CH ₃	H	Cl	CH ₃	0	N	N	
31	-0	CH ₃	H	CH ₃	CH ₃	0	N	N	
32	0	CH ₃	Ħ	OCH ₃	OCH ₃	S	CH	N	
33	0	CH ₃	H	OCH ₃	CH ₃	S	CH	N	
34	0	CH ₃	Ħ	CH ₃	CH ₃	s	CH	N	
35	0	CH ₃	H	OCH ₃	OCH ₃	S	N	N	
36	0	CH ₃	H	OCH ₃	CH ₃	S	N	N	
37	Ö	CH3	Ħ	CH3	CH3	S	N	N	
38	0	C ₂ H ₅	H	OCH ₃	OCH ₃	0	CH	N	
39	0	C ₂ H ₅	CH ₃	OCH3	OCH _{3.}	0	CH	N	
40	0	С ₂ Н ₅	CH ₃	OCH3	CH ₃	0	N	N	
41	0	C ₂ H ₅	H	CH ₃	CH ₃	0	CH	N	
42	0	C ₂ H ₅	H	OCH ₃	CH ₃	0	CH	N	
43	0	C ₂ H ₅	H	CH ₃	CH ₃	0	N	N.	
44	0	C ₂ H ₅	H	OCH ₃	CH ₃	0	N	N	
45	0	C ₂ H ₅	H	OCH ₃	OCH ₃	0	N	N	
46	0	C ₂ H ₅	Ħ	OCH ₃	Cl	0	CH	N	
47	0	C ₂ H ₅	Ħ	OCF ₂ H	CH ₃	0	CH	N	
48	0	C ₂ H ₅	H	OCF ₂ H	OCF ₂ H	0	CH	N	•
49	0	C ₂ H ₅	Ħ	OCH ₃	Br	0	CH	N	
50	0	C ₂ H ₅	H	OCH ₃	OC ₂ H ₅	0	CH	N	
51	0	C ₂ H ₅	Ħ	OCH ₃	SCH ₃	0	CH	N	,
52	0	C ₂ H ₅	н	OCH3	OC ₂ H ₅	0	N	N	
53	0	C ₂ H ₅	H	OCH ₃	OC ₃ H ₇	0	CH	N	
54	0	C ₂ H ₅	H	OCH3	Cl	0	N	N	
55	0	C ₂ H ₅	н	Cl	OC_2H_5	0	CH	N	
56		C ₂ H ₅	H	OC2H5	OC_2H_5	0	CH	N	
57		C ₂ H ₅	H	C ₂ H ₅	OCH ₃	0	CH	N	

Fort	setz	ung Tabelle 2							Schmp.
Bsp			$\mathbf{R}^{\mathbf{I}}$	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z	[°C]
Nr.	Q	R	R.	R-		••			
58	0	C ₂ H ₅	н	CF ₃	OCH3	0	CH	N	
59	0	C ₂ E ₅	H	OCH ₂ CF ₃	CH ₃	0	CH	N	
60	0	C ₂ H ₅	Ħ	OCH ₂ CF ₃	OCH ₃	0	CH	N	
61	0	C ₂ H ₅	Ħ	OCH ₂ CF ₃	OCH ₂ CF ₃	.0	CH	N	
62	0	C ₂ H ₅	H	OCH ₂ CF ₃	OCH ₃	0	N	N	
63	0	C ₂ H ₅	H	OCH ₃	NHCH ₃	0	N	N	
64	0	C ₂ H ₅	H	OC ₂ H ₅	NHCH ₃	0	N	N	
65	0	C ₂ H ₅	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
6.6	0	C ₂ H ₅	Ħ	OCH ₃	CH ₃	0	N	N	
67	0	C ₂ H ₅	H	Cl	CH ₃	0	N	N	
68	0	C ₂ H ₅	H	CH ₃	CH ₃	0	N	N	
69	0	C ₂ H ₅	H.	OCH ₃	OCH ₃	S	CH	N	
70	0	С ₂ Н ₅	Ħ	OCH ₃	CH ₃	S	CH	N	
71	0	С ₂ Н ₅	H	CH ₃	CH ₃	S	CH	N	
72	0	С ₂ Н ₅	H	OCH ₃	OCH ₃	S	N	N	
73	0	C ₂ H ₅	H	OCH ₃	CH ₃	s	N-	N	-
74	0		H	CH ₃	CH ₃	S.	N-	N	
75	0	n-C ₃ H ₇	Ħ	OCH ₃	OCH3	0	CH		
76	0	n-C ₃ H ₇	CH ₃	OCH ₃	OCH ₃	0	CH		
77	0	n-C ₃ H ₇	CH ₃	OCH ₃	CH ₃	0	N	N	•
78.	0	n-C ₃ H ₇	H	CH ₃	CH ₃	0	CH	N	
79	0	n-C ₃ H ₇	Ħ	OCH ₃	CH ₃	0	CH	N	
80	0	n-C ₃ H ₇	H	CH ₃	CH ₃	0	N	N	•
81	0	n-C ₃ H ₇	H	OCH ₃	CH ₃	0	N	N	
82	0	n-C ₃ H ₇	H	OCH ₃	OCH ₃	0	N	N	
83	0	n-C ₃ H ₇	Ħ	OCH ₃	Cl	0	CH	N	
84	0	n-C ₃ H ₇	H	OCF ₂ H	CH ₃	0	CH	N	
85	0	n-C3H7	H	OCF ₂ H	OCF ₂ H	0	CH	N	
86	0	n-C ₃ H ₇	H	OCH ₃	Br	0	CH	N	
87	0	n-C ₃ H ₇	H	OCH ₃	OC ₂ H ₅	0	CH	N	
88	0		H	OCH ₃	SCH ₃	0	CH	N	
89	0	n-C ₃ E ₇	Ħ	OCH ₃	OC ₂ H ₅	0	N	N	

Bsp	_								Schap.
Nr.		R	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z	[°C]
									
90	0	n-C3H7	H	OCH ₃	OC ₃ H ₇	0	CH	N	
91	0	$n-C_3H_7$	H	OCH ₃	Cl	0	N	N	
92	0	n-C3H7	H	Cl	OC_2H_5	0	CH	N	
93	0	n-C3H7	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
94	0	$n-C_3H_7$	H	C ₂ H ₅	OCH ₃	0	CH	N	
95	0	n-C3H7	Ħ	CF ₃	OCH ₃	0	CH	N	
96	0	n-C3H7	Ħ	OCH ₂ CF ₃	CH ₃	0	CH	N	
97	0	$n-C_3H_7$	H	OCH ₂ CF ₃	OCH ₃	0	CH	N	
98	0	n-C3H7	H	OCH ₂ CF ₃	OCH ₂ CF ₃	, O	CH	N	
99	0	n-C3H7	H	OCH ₂ CF ₃	OCH ₃	0	N	N	
100	0	n-C3H7	H	OCH ₃	NHCH ₃	0	N	N	
101	0	n-C ₃ H ₇	. H	OC ₂ H ₅	NHCH ₃	0	N	N	
102	0	n-C3H7	Ħ	C ₂ H ₅	OC ₂ H ₅	0	N	N	
103	0	n-C3H7	H .	OCH ₃	CH ₃	0	N	N	
104	0	n-C3H7	H	Cl	CH ₃	0	N	N	
105	0	n-C3H7	H	CH ₃	CH ₃	0	N	N	
106	0	$n-C_3H_7$	· H	OCH ₃	OCH ₃	S	CH	N	
107	0	n-C3H7	H	OCH ₃	CH ₃	S	CH	N	
108	0	n-C ₃ H ₇	Ħ	CH ₃	CH ₃	S	CH	N	
109	0	$n-C_3H_7$	H	OCH ₃	OCH ₃	S	N	N	
110	0	n-C3H7	H	OCH ₃	CH ₃	S	N	N	
111	0	$n-C_3H_7$	H	CH ₃	CH ₃	S	N	N	
112	0	i-C ₃ H ₇	H	OCH ₃	OCH ₃	0	CH	N	
113	0	$i-C_3H_7$	CH ₃	OCH ₃	OCH ₃	0	CH	N	
114	0	i-C ₃ H ₇	CH ₃	OCH ₃	CH ₃	0	N	N	
115	0	$i-C_3H_7$	H	CH ₃	CH ₃	0	CH	N	
116	0	$i-C_3H_7$	H	OCH ₃	CH ₃	0	CH		
117	0	$i-C_3H_7$	H	CH ₃	CH ₃	0	N	N	
118	0	i-C ₃ H ₇	H	OCH ₃	CH ₃	0	N	N	
119	0	$i-C_3H_7$	H	OCH3	OCH ₃	0	N	N	
120	0	$i-C_3H_7$	B	OCH ₃	Cl	0	CH	N	•
121	0	i-C ₃ H ₇	H	OCF ₂ H	CH ₃	0	CH	N	•

Fortsetz	ung Tabelle 2							Schmp.
Bsp			9	\mathbb{R}^3	W	Y	Z	[%]
Nr. Q	R	R ¹	R ²	R		-	_	, 02
122.0	i-C ₃ H ₇	H	OCF ₂ H	OCF ₂ H	0	CH	N	
122 0	- '	Ħ	OCH ₃	Br	0	CH	N	•
123 0	-	H	OCH ₃	OC ₂ H ₅	0	CH	N	
124 0	-	H	OCH ₃	SCH ₃	0	CH	N	
125 0		H	OCH ₃	OC ₂ H ₅	0	N	N	
126 0		H	OCH ₃	OC ₃ H ₇	0	СН	N	
127 0	i-C ₃ H ₇	H	OCH ₃	Cl	0	N	N	
	i-C ₃ H ₇		Cl	OC ₂ H ₅	0	CH	N	
129 0		H			0	CH	N	•
	i-C ₃ H ₇	H	OC ₂ H ₅	OCH ₃	0	CH	N	
131 0		Ħ	C ₂ H ₅	OCH ₃	0	СН	N	
132 0		H	CF ₃	_	0	CH	N	
133 0		H	OCH ₂ CF ₃	•	0	CH	N	
134 0	•	H	OCH ₂ CF ₃		0	CH	N	
135 0		H	OCH ₂ CF ₃			N	N	•
136 0	i-C ₃ H ₇	H	OCH ₂ CF ₃		0.			
137 0	1-C ₃ H ₇	H	OCH ₃	NHCH ₃	0	N	N	
138 0	$i-C_3H_7$	H	OC ₂ H ₅	NHCH ₃	0	N	N	
139 0	i-C ₃ H ₇	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
140 0	i-C ₃ H ₇	Ħ	OCH ₃	CH ₃	0	N	N	
141 0	i-C ₃ H ₇	Ħ	Cl	CH ₃	0	N	N	
142 0	$i-C_3H_7$	H.	CH ₃	CH ₃	0	N	N	
143 0	i-C ₃ H ₇	H	OCH ₃	OCH ₃	S	CH	N	
144 0	$i-C_3H_7$	H	OCH ₃	CH ₃	S	CH	N	
145 0	i-C ₃ H ₇	H	CH ₃	CH ₃	s	CH	N	
146 0	i-C ₃ H ₇	Ħ	OCH ₃	OCH ₃	S	N	N	
147 0	$i-C_3H_7$	H	OCH ₃	CH ₃	S	N	N	
	i-C ₃ H ₇	H	CH ₃	CH ₃	S	N	N	
	CH ₂ CH=CH ₂	Ħ	OCH ₃	OCH ₃	0	CH	N	
	CH ₂ CH=CH ₂	CH ₃	OCH ₃	OCH ₃	0	CH	N	
	CH ₂ CH=CH ₂			CH ₃	0	- N	N	
	CH ₂ CH=CH ₂		CH ₃	CH ₃	0	CH	N	
	CH ₂ CH=CH ₂	Ħ	OCH ₃	CH ₃	0	CH	N	
133 0	0112011 0112			-				

Fortsetzung	Tabelle	2
--------------------	---------	---

Bsp.	-								Schap .
Nr.		R	\mathbb{R}^{1}	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z	[°C]
							<u>.</u>		
154	0	CH ₂ CH=CH ₂	H	CH ₃	CH ₃	0	N	N	
155	0	CH ₂ CH=CH ₂	H	OCH ₃	CH ₃	0	N	N	
156	0	CH ₂ CH=CH ₂	H	OCH ₃	OCH ₃	0	N	N	
157	0	CH ₂ CH=CH ₂	H	OCH ₃	Cl	0	CH	N	
158	0	CH ₂ CH=CH ₂	H	OCF ₂ H	CH ₃	0	CH	N	
159	0	CH ₂ CH=CH ₂	H	OCF ₂ H	OCF ₂ H	0	CH	N	
160	Ö	CH ₂ CH=CH ₂	H	OCH ₃	Br.	. 0	CH	N	
161	0	CH ₂ CH=CH ₂	H	OCH ₃	OC ₂ H ₅	0	CH	N	
162	0	CH2CH=CH2	H	OCH ₃	SCH ₃	0	CH	N	
163	0	CH ₂ CH=CH ₂	H	OCH ₃	OC ₂ H ₅	0	N	N	
164	0	CH ₂ CH=CH ₂	H	OCH ₃	OC ₃ H ₇	0	CH	N	
165	0	CH2CH=CH2	H	OCH ₃	Cl	0	N	N	
166	0	CH ₂ CH=CH ₂	H	Cl	OC ₂ H ₅	0	CH	N	
167	0	CH ₂ CH=CH ₂	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
168	0	CH ₂ CH=CH ₂	H	C ₂ H ₅	OCH ₃	0	CH	N	
169	0	CH2CH=CH2	H	CF ₃	OCH ₃	0	CH	N	
170	0	CH2CH=CH2	丑	OCH ₂ CF ₃	CH ₃	0	CH	N	
171	0	CH2CH=CH2	H	OCH ₂ CF ₃	OCH ₃	0	CH	N	
172	0	CH2CH=CH2	Ħ	OCH ₂ CF ₃	OCH ₂ CF ₃	0	CH	N	
173	0	CH ₂ CH=CH ₂	H	OCH2CF3	OCH ₃	0	N	N	
174	0	CH ₂ CH=CH ₂	Ħ	OCH ₃	NHCH ₃	O	N	N	
175	0	CH ₂ CH=CH ₂	. B	OC ₂ H ₅	NHCH ₃	0	Ŋ	N	
176	0	CH ₂ CH=CH ₂	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
177	0	CH ₂ CH=CH ₂	H ·	OCH ₃	CH ₃	0	N	N	
178	0	CH ₂ CH=CH ₂	H	Cl	CH ₃	0	N	N	<u>.</u>
179	0	CH ₂ CH=CH ₂	H	CH ₃	CH ₃	0	N	N	
180	0	CH ₂ CH=CH ₂	H	OCH ₃	OCH ₃	S	CH	N	•
181	0	CH ₂ CH=CH ₂	H	OCH ₃	CH ₃	s	CH	N	
182	0	СH ₂ CH=CH ₂	H	CH ₃	CH ₃	S	CH	N	
183	0	CH ₂ CH=CH ₂	Ħ	OCH ₃	OCH ₃	S	N	N	•
184	0	CH ₂ CH=CH ₂	H	OCH ₃	CH ₃	S	N	N	
185	0	CH2CH=CH2	H	CH ₃	CH ₃	S	N	N	

Fortsetzung Tah	oelle	2
-----------------	-------	---

10.00									Schoop.
Bap			\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	Ħ	Y	Z	[°C]
Nr.	Q	R	K-		•				
3.06		CH ₂ C≡CH	H	OCH ₃	OCH ₃	0	CH	N	
186			CH ₃	_	OCH ₃	0	CH	N	
187		_	_	OCH ₃	CH ₃	0	N	N	
188		CH ₂ C≡CH	_	CH ₃	CH ₃	0	CH	N	
189		CH ₂ C≡CH	H	-	CH ₃	0	CH	N	
190		CH ₂ C≡CH	H	OCH ₃	CH ₃	0	N	N	
191		CH ₂ C≡CH	H 	CH ₃	CH ₃	0	N	N	
192		CH ₂ C≡CH		OCH ₃	OCH ₃	0	N	N	
193		CH ₂ C≡CH	H	OCH ₃	Cl	0	CH	N	
194	0	CH ₂ C≡CH	H	OCH ₃		0	CH	N	
195	0	CH ₂ C≡CH		OCF ₂ H	CH ₃	0	CH	N	
196	0	CH ₂ C≡CH	H	OCF ₂ H		0	CH	N	
197	0	CH ₂ C≡CH	H	OCH ₃	Br		CH	N	
198	0	CH ₂ C≡CH	H	OCH ₃	OC ₂ H ₅	0	CH	N	
199	0	CH ₂ C≡CH	H	OCH ₃		0		N	
200	0	CH ₂ C≡CH	H	OCH ₃	OC ₂ H ₅	0	N CH	N	
201	0	CH ₂ C≡CH	H	OCH ₃	OC ₃ H ₇	0			
202	0	CH ₂ C≡CH	H	OCH ₃	Cl	0	N	N	^
203	0	CH ₂ C≡CH	Ħ	C1	OC ₂ H ₅	0	CH	N	
204	0	CH ₂ C≡CH	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
205	0	CH ₂ C≡CH	H	C ₂ H ₅	OCH ₃	0	CH	N	
206	0	CH ₂ C≡CH	Ħ	CF ₃	OCH ₃	0	CH	N	
207	0	CH ₂ C≡CH	H	OCH ₂ CF ₃	CH ₃	0	CH	N	
208	0	CH ₂ C≡CH	H	OCH ₂ CF ₃	OCH ₃	0	CH	N	
209	0	CH ₂ C≡CH	H	OCH2CF3	OCH ₂ CF ₃	0	CH	N	
210	0	CH ₂ C≡CH	H	OCH2CF3	OCH ₃	0	N	N	
211	. 0	CH ₂ C≡CH	H	OCH ₃	NHCH ₃	0	N	N	
212		CH ₂ C≡CH	H	OC ₂ H ₅	NHCH ₃	0	N	N	
213			H	C_2H_5	OC_2H_5	0	N	N	
214			Ħ	OCH ₃	CH ₃	0	N	N	••
		CH ₂ C≡CH	H	Cl	CH ₃	0	N	N	
		CH ₂ C≡CH	H	CH ₃	CH ₃	0	N	N	
		CH ₂ C≡CH	Ħ	OCH ₃	OCH ₃	s	CH	N	
	_			-					

Bsp.		ang rabene 2							Schap.
Nr.		R	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z	[%]
		·							
218	0	CH ₂ C≡CH	H	OCH3	CH ₃	S	CH	N	
219	0	CH ₂ C≡CH	H	CH ₃	CH ₃	S	CH	N	
220	0	CH ₂ C≡CH	H	OCH ₃	OCH ₃	S	N	N	
221	0	CH ₂ C≡CH	H	OCH ₃	CH ₃	s	N	N	
222	0	CH ₂ C≡CH	H	CH ₃	CH ₃	S	N	N	
223	0	n-C ₄ H ₉	H	OCH ₃	OCH ₃	0	CH	N	
224	0	n-C ₄ H ₉	CH ₃	OCH ₃	OCH ₃	0	CH	N	
225	0	n-C ₄ H ₉	CH ₃	OCH ₃	CH ₃	0	N	N	
226	0	n-C ₄ H ₉	Ħ	CH ₃	CH ₃	0	CH	N	
227	0	n-C ₄ H ₉	H	OCH ₃	CH ₃	0	CH	N	
228	0	n-C ₄ H ₉	H	CH ₃	CH ₃	0	N	N	
229	0	n-C ₄ H ₉	Ħ	OCH ₃	CH ₃	0	N	N	
230	0	n-C ₄ H ₉	H	OCH ₃	OCH ₃	0	N	N	
231	0	$i-C_4H_9$	H	OCH ₃	OCH3	0	CH	N	`
232	0	i-C ₄ H ₉	CH ₃	OCH ₃	OCH ₃	_ 0	CH	N	
233	0	i-C ₄ H ₉	CH ₃	OCH ₃	CH ₃	.0	N	N	,
234	0	i-C ₄ H ₉	H	CH3	CH ₃	0	CH	N	
235	0	i-C ₄ H ₉	H	OCH ₃	CH ₃	0	CH	N	•
236	0	i-C ₄ H ₉	H	CH ₃	СH ₃	0	N	N	
237	0	i-C ₄ H ₉	H	OCH ₃	CH ₃	0	N	N	
238	0	i-C ₄ H ₉	Ħ	OCH ₃	OCH ₃	0	N	N	
239	0	sekC4H9	H	OCH ₃	OCH ₃	0	CH	N	
240	0	sekC4H9	CH ₃	OCH ₃	OCH ₃	0	CH	N	
		sekC4H9		OCH3	CH ₃	0	N	N	
242		sekC4H9	H	CH ₃	CH ₃	0	СН	N	
		sekC4H9	Ħ	OCH ₃	CH ₃	Ö	CH	N	
		sekC4H9		CH ₃	CH ₃	0	N	N	
		sekC4H9		OCH ₃	CH ₃	0	N	N	
		sekC4H9		OCH ₃		0	N	N	
		t-C4H9	H	OCH _{3.}	_	0	CH	N	
		t-C ₄ H ₉		OCH ₃	_	0	CH	N	
		t-C ₄ H ₉	_	OCH3	-	0	N	. N	
	-	4 y	3	3	,				•

Nr. Q R R ¹ R ² R ³ W Y Z [°C] 250 O t-C ₄ H ₉ H CH ₃ CH ₃ O CH N 251 O t-C ₄ H ₉ H CH ₃ CH ₃ O N N 252 O t-C ₄ H ₉ H CH ₃ CH ₃ O N N 253 O t-C ₄ H ₉ H OCH ₃ OCH ₃ O N N 254 O t-C ₄ H ₉ H OCH ₃ OCH ₃ O N N 255 O CH ₂ CH ₂ C1 H OCH ₃ OCH ₃ O CH N 256 O CH ₂ CH ₂ C1 CH ₃ OCH ₃ OCH ₃ O CH N 257 O CH ₂ CH ₂ C1 H CH ₃ OCH ₃ O CH N 258 O CH ₂ CH ₂ C1 H OCH ₃ CH ₃ O CH N 259 O CH ₂ CH ₂ C1 H	Fortsetz	zung Tabelle 2							Schup.
250 0 t-C ₄ H ₉ H CH ₃ CH ₃ O CH N 251 0 t-C ₄ H ₉ H OCH ₃ CH ₃ O CH N 252 0 t-C ₄ H ₉ H CH ₃ CH ₃ O N N 253 0 t-C ₄ H ₉ H OCH ₃ CH ₃ O N N 254 0 t-C ₄ H ₉ H OCH ₃ OCH ₃ O N N 255 0 CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O CH N 256 0 CH ₂ CH ₂ Cl CH ₃ OCH ₃ O CH N 257 0 CH ₂ CH ₂ Cl CH ₃ OCH ₃ OCH ₃ O CH N 258 0 CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O CH N 259 0 CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O CH N 260 0 CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O CH N 261 0 CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 262 0 CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 263 0 CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 264 0 CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 265 0 CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O CH N 266 0 CH ₂ CH ₂ COCH ₃ H OCH ₃ OCH ₃ O CH N 267 0 CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ O CH N 268 0 CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ OCH ₃ O CH N 269 0 CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 0 CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 0 CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 OCH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 OCH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 OCH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 OCH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 OCH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 OCH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 OCH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 OCH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 OCH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 OCH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 OCH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 OCH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 OCH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 OCH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N N	Bsp		_		•				_
250 0 t-C ₄ H ₉ H OCH ₃ CH ₃ O CH N 252 0 t-C ₄ H ₉ H OCH ₃ CH ₃ O N N 253 0 t-C ₄ H ₉ H OCH ₃ CH ₃ O N N 254 0 t-C ₄ H ₉ H OCH ₃ OCH ₃ O N N 255 0 CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O CH N 256 0 CH ₂ CH ₂ Cl CH ₃ OCH ₃ OCH ₃ O CH N 257 0 CH ₂ CH ₂ Cl CH ₃ OCH ₃ OCH ₃ O CH N 258 0 CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O CH N 259 0 CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O CH N 260 0 CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O CH N 261 0 CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 262 0 CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 263 0 CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 264 0 CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O CH N 265 0 CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O CH N 266 0 CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ O CH N 267 0 CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 268 0 CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 269 0 CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O N N 269 0 CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O N N 270 0 CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 0 CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 0 CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 0 CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 0 CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N	Nr. Q	R	RI	R ²	R ³		¥	Z	[-0]
251 O t-C ₄ H ₉ H CH ₃ CH ₃ O CH N 252 O t-C ₄ H ₉ H CH ₃ CH ₃ O N N 253 O t-C ₄ H ₉ H OCH ₃ CH ₃ O N N 254 O t-C ₄ H ₉ H OCH ₃ OCH ₃ O N N 255 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O CH N 256 O CH ₂ CH ₂ Cl CH ₃ OCH ₃ OCH ₃ O CH N 257 O CH ₂ CH ₂ Cl CH ₃ OCH ₃ OCH ₃ O CH N 258 O CH ₂ CH ₂ Cl H CH ₃ OCH ₃ CH ₃ O CH N 259 O CH ₂ CH ₂ Cl H CH ₃ CH ₃ OCH N 260 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O CH N 261 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 262 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 263 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 264 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O N N 265 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O CH N 266 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ O CH N 267 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 268 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O O N N	250 O	t-C₄Ho	H	CH ₃	CH ₃	0	CH	N	
252 O t-C ₄ H ₉ H CH ₃ CH ₃ O N N 253 O t-C ₄ H ₉ H OCH ₃ CH ₃ O N N 254 O t-C ₄ H ₉ H OCH ₃ OCH ₃ O N N 255 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O CH N 256 O CH ₂ CH ₂ Cl CH ₃ OCH ₃ OCH ₃ O CH N 257 O CH ₂ CH ₂ Cl CH ₃ OCH ₃ OCH ₃ O CH N 258 O CH ₂ CH ₂ Cl H CH ₃ OCH ₃ OCH ₃ O CH N 259 O CH ₂ CH ₂ Cl H CH ₃ CH ₃ O CH N 260 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 261 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 262 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 263 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ OCH ₃ O N N 264 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O CH N 265 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ OCH ₃ O CH N 266 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ OCH ₃ O CH N 267 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O CH N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O CH N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O O N N		· •	H	OCH ₃	CH ₃	0	CH	N	
253 O t-C ₄ H ₉ H OCH ₃ CH ₃ O N N 254 O t-C ₄ H ₉ H OCH ₃ OCH ₃ O N N 255 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O CH N 256 O CH ₂ CH ₂ Cl CH ₃ OCH ₃ OCH ₃ O CH N 257 O CH ₂ CH ₂ Cl CH ₃ OCH ₃ OCH ₃ O CH N 258 O CH ₂ CH ₂ Cl H CH ₃ OCH ₃ O CH N 259 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O CH N 260 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 261 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 262 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 263 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O N N 264 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O CH N 265 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ O CH N 266 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ O CH N 267 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O CH N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O CH N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 260 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N			H	CH ₃	CH ₃	0	N	. N	
254 O t-C ₄ H ₉ H OCH ₃ OCH ₃ O N N 255 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O CH N 256 O CH ₂ CH ₂ Cl CH ₃ OCH ₃ OCH ₃ O CH N 257 O CH ₂ CH ₂ Cl CH ₃ OCH ₃ OCH ₃ O CH N 258 O CH ₂ CH ₂ Cl H CH ₃ OCH ₃ O CH N 259 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O CH N 260 O CH ₂ CH ₂ Cl H CH ₃ CH ₃ O N N 261 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 262 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 263 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O N N 264 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O CH N 265 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O CH N 266 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ O CH N 267 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ OCH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 269 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 269 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N		· •	H	OCH ₃	CH ₃	0	N	N	
255 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O CH N 256 O CH ₂ CH ₂ Cl CH ₃ OCH ₃ OCH ₃ O CH N 257 O CH ₂ CH ₂ Cl CH ₃ OCH ₃ CH ₃ O N N 258 O CH ₂ CH ₂ Cl H CH ₃ CH ₃ O CH N 259 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O CH N 260 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 261 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 262 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O N N 263 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O CH N 264 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O CH N 265 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ O CH N 266 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ OCH ₃ O CH N 267 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 269 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N			H	OCH ₃	OCH ₃	0	N	N	
256 O CH ₂ CH ₂ Cl CH ₃ OCH ₃ CH ₃ O N N 257 O CH ₂ CH ₂ Cl H CH ₃ OCH ₃ CH ₃ O CH N 258 O CH ₂ CH ₂ Cl H CH ₃ CH ₃ O CH N 259 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O CH N 260 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 261 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 262 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O N N 263 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O CH N 264 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O CH N 265 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ OCH ₃ O CH N 266 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ OCH ₃ O CH N 267 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ OCH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O CH N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N	255 0		H	OCH ₃	OCH ₃	. 0	CH	N	
258 O CH ₂ CH ₂ Cl H CH ₃ CH ₃ O CH N 259 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O CH N 260 O CH ₂ CH ₂ Cl H CH ₃ CH ₃ O N N 261 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 262 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O N N 263 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O CH N 264 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O CH N 265 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ O CH N 266 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ O CH N 267 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 269 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N	256 0	CH2CH2C1	CH ₃	OCH ₃	OCH ₃	0	CH	N	
258 O CH ₂ CH ₂ CI H CH ₃ CH ₃ O CH N 260 O CH ₂ CH ₂ Cl H CH ₃ CH ₃ O N N 261 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 262 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O N N 263 O CH ₂ CH ₂ COH ₃ H OCH ₃ OCH ₃ O CH N 264 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ OCH ₃ O CH N 265 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ OCH ₃ O CH N 266 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ CH ₃ O N N 267 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 269 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N	257 0	CH ₂ CH ₂ Cl	CH ₃	OCH ₃	CH ₃	0	N	N	
260 O CH ₂ CH ₂ Cl H CH ₃ CH ₃ O N N 261 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 262 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O N N 263 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O CH N 264 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ OCH ₃ O CH N 265 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ CH ₃ O N N 266 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 267 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N	258 0		H	CH ₃	CH ₃	0	CH	N	
260 O CH ₂ CH ₂ Cl H CH ₃ CH ₃ O N N 261 O CH ₂ CH ₂ Cl H OCH ₃ CH ₃ O N N 262 O CH ₂ CH ₂ Cl H OCH ₃ OCH ₃ O N N 263 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O CH N 264 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ OCH ₃ O CH N 265 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ CH ₃ O N N 266 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 267 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N	259 0	CH ₂ CH ₂ Cl	Ħ	OCH ₃	CH ₃	0	CH	N	
261 O CH ₂ CH ₂ CI H OCH ₃ OCH ₃ O N N 263 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O CH N 264 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ OCH ₃ O CH N 265 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ OCH ₃ O N N 266 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 267 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N	260 0		H	CH ₃	CH ₃	0	N	N	
263 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O CH N 264 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ OCH ₃ O CH N 265 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ CH ₃ O N N 266 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 267 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O N N	261 0	CH2CH2C1	H	OCH ₃	CH ₃	0	N	N	
263 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ OCH ₃ O CH N 265 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ CH ₃ O N N 266 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 267 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O N N	262 0	CH ₂ CH ₂ Cl	H	OCH ₃	OCH ₃	0	N	N	
264 O CH ₂ CH ₂ OCH ₃ CH ₃ OCH ₃ CH ₃ O N N 266 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 267 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O N N	263 0	CH ₂ CH ₂ OCH ₃	H	OCH3	OCH ₃	0	CH	N	
265 O CH ₂ CH ₂ OCH ₃ CH ₃ CH ₃ O CH N 266 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O CH N 267 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 268 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O N N	264 0	CH ₂ CH ₂ OCH ₃	CH ₃	OCH3	OCH ₃	0	CH	N	
267 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O CH N 268 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O N N	265 O	CH2CH2OCH3	CH ₃	OCH3	CH ₃	0	N	N	
268 O CH ₂ CH ₂ OCH ₃ H CH ₃ CH ₃ O N N 269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O N N	266 0	CH2CH2OCH3	H	CH ₃	CH ₃	0	CH	N	
269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O N N	267 0	CH ₂ CH ₂ OCH ₃	H	OCH ₃	CH ₃	0	CH	N	•
269 O CH ₂ CH ₂ OCH ₃ H OCH ₃ CH ₃ O N N 270 O CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O N N	268 0	CH2CH2OCH3	H	CH ₃	CH ₃	0	N	N	
270 O. CH ₂ CH ₂ OCH ₃ H OCH ₃ OCH ₃ O N N	269 0	-		OCH ₃	CH ₃	0	N	N	
	270 O.		H	OCH ₃	OCH ₃	0	N.	N	
271 O C-C ₆ H ₁₁ H OCH ₃ OCH ₃ O CH N	271 0	c-C ₆ H ₁₁	H	осн3	OCH ₃	0	CH	N	
272 O c-C ₆ H ₁₁ CH ₃ OCH ₃ OCH ₃ O CH N	272 0	c-C6H11	CH ₃	OCH ₃	OCH ₃	0	CH	N	
273 O c-C ₆ H ₁₁ CH ₃ OCH ₃ CH ₃ O N N	273 0	c-C ₆ H ₁₁	CH ₃	OCH ₃ .	CH ₃	0	N	N	
274 O C-C ₆ H ₁₁ H CH ₃ CH ₃ O CH N	274 0	c-C ₆ H ₁₁	H	CH ₃	CH ₃	0	CH	N	
275 O C-C6H11 H OCH3 CH3 O CH N	275 0	c-C6H11	H	OCH ₃	CH ₃	0	CH		
276 O C-C ₆ H ₁₁ H CH ₃ CH ₃ O N N		•	H	CH ₃	CH ₃	0	N	N	
277 O C-C ₆ H ₁₁ H OCH ₃ CH ₃ O N N	277 0	c-C ₆ H ₁₁	H	OCH ₃	CH ₃	0	N	N	
278 O C-C ₆ H _{II} H OCH ₃ OCH ₃ O N N		•	H	OCH ₃	OCH ₃	0		N	
2/9 0 Ch ₃ n con ₃ s con ₃	279 O	CH ₃	H	ocH ₃	SCH₃	0			211-3 Z
280 O CH ₃ H CH ₃ SCH ₃ O N N 196-8	280 O	CH ₃	н	CH ₃	SCH ₃	0		N	
281 O CH ₃ H C-C ₃ H ₅ OCH ₃ O N N 175-8	281 0	CH ₃	H	c-C ₃ H ₅	OCH3	0	N .	N	175-8

Fortsetzung	Tabelle	2
-------------	---------	---

Bsp	. –							_	Schmp.
Nr.		R	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z	[oc]
282	0	CH ₃	H	C ₂ H ₅	OCH ₃	0	N	N	195-6
283	0	CH ₃	н	CH ₂ SCH ₃	OCH ₃	0	N	N	147-50
284	0	CH ₃	CH ₃	OCH ₃	ocH ₃	0	N	N	131-3
285	0	CH ₃	В	OCH ₃	OCH ₃	0	СН	N	Na-Salz 189
286	0	CH ₃	Ħ	OCH ₃	CH ₃	0	N	N	Na-Salz 195
287	0	CH ₃	H	OCH ₃	CH ₃	0	CH	N	Na-Salz 189
288	0	CH ₃	. Н	c-C ₃ H ₅	CH ₃	0	N	N	Na-Salz 170
289	0	CH ₃	CH ₃	OCH ₃	OCH ₃	0	N	N	Na-Salz 130
290	0	CH ₃	H	C ₂ H ₅	OCH ₃	0	N	N	Na-Salz 172
291	0	CH ₃	CH ₃	OCH ₃	OC ₂ H ₅	0	N	N	Li-Salz 124
292	0	CH ₃	H	OCH ₃	CH ₃	0	СН	N	Na-Salz 191
293	Q	CH ₃	Сн ₃	OCH3	OCH3	0	CH	N	Na-Salz 118
294	0	CH ₃	CH ₃	OCH3	CH ₃	0	N	N	Na-Salz 138
295	0	CH ₃	. н	OCH ₃	OCH ₃	0	N	N	Na-Salz 184

Tabelle 3

Bsp										Schmp.
Nr.		R		\mathbb{R}^{1}	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z	[°C]
				н	OCH ₃	OCH ₃	0	CH	N	169-71
1	0	CH ₃			OCH ₃	OCH ₃	0	CH	N	186-7
2	0	CH ₃		CH ₃	-	CH ₃	0	N	N	172-3
3	0	CH ₃	•	CH ₃	OCH ₃	CH ₃	0	CH	N	195-6
4	0	CH ₃		H	CH ₃	•	0	CH	N	177
5	0	CH ₃		H	OCH ₃	CH ₃		N	N	182-4
6	0	CH ₃		H	CH ₃	CH ₃	0			158-63
· 7	0	CH ₃		H	OCH₃	CH ₃	0	N	N	
8	0	CH ₃		H	OCH ₃	OCH ₃	0	N	N	174
9	0	CH ₃		H	OCH ₃	Cl	0	CH	N	170-2
10	0	CH ₃		H	OCF ₂ H	CH ₃	0	CH	N	
11	0	CH ₃		H	OCF ₂ H	OCF ₂ H	0	CH	N	178-9
12	0	CH ₃		Ħ	OCH ₃	Br	0	CH	N	
13	0	CH ₃		Ħ	OCH ₃	OC ₂ H ₅	0	CH	N	
14	0	CH ₃		H	OCH ₃	SCH ₃	0	CH	N	
15	0	CH ₃		H	OCH ₃	OC ₂ H ₅	0	N	N	
16	0	CH ₃		н	OCH ₃	OC ₃ H ₇	0	CH	N	
17	0	CH ₃		H	OCH ₃	Cl	0	N.	N	
18	0	CH ₃		Ħ	Cl	OC ₂ H ₅	0	CH	N	
19	0	CH ₃		H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
20	0	CH ₃	•	н	C ₂ H ₅	OCH ₃	0	CH	N	
21	0	CH ₃		H	CF ₃	OCH ₃	0	CH	N	
22	0	CH ₃		H	OCH ₂ CF ₃	CH ₃	0	CH	N	
23	0	CH ₃		H	OCH2CF3	OCH ₃	0	CH	N	
24	0	CH ₃		H	OCH ₂ CF ₃	OCH ₂ CF ₃	0	CH	N	
25	0	CH ₃		H	OCH2CF3	OCH ₃	0	N	N	125 Z.

Fort	setz	ung Tabelle 3							Cohen
Bsp	. –		•	- 3	7			_	Schmp.
Nr.	Q	R	R ¹	R ²	R ³	W	¥	Z	[°C]
26	0	CH ₃	Я	осн ₃	NHCH ₃	0	N	N	
27	0	CH ₃	H	OC_2H_5	NHCH ₃	0	N	N	
28	0	С Н3	H	C ₂ H ₅	OC_2H_5	0	N	N	
29	0	CH ₃	Ħ	OCH ₃	CH ₃	0	N	N	
30	0	CH₃	H	Cl	CH ₃	0	N	N	
31	0	CH ₃	H	CH ₃	CH3	0	N	N	
32	0	CH₃	H	OCH ₃	OCH ₃	S	CH	N	
33	0	CH ₃	H	OCH ₃	CH ₃	S	CH	N	
34	0	CH ₃	H	CH ₃	CH ₃	S	CH	N	
35	0	CH ₃	Ħ,	OCH ₃	OCH ₃	S	N	N	
36	0	CH ₃	Ħ	OCH ₃	CH ₃	s	N	N	4
37	0	CH ₃	H	CH ₃	CH ₃	s	N	N	
38	0	C ₂ H ₅	H	OCH ₃	OCH ₃	0	CH	N	174-7
39	0	C ₂ H ₅	CH ₃	OCH ₃	OCH ₃	. 0	CH	N	155-7
40	0	C ₂ H ₅	CH ₃	OCH ₃	CH ₃	0	N	N	163-4
41	0	C ₂ H ₅	H	CH ₃	CH ₃	0	CH	N	
42	0	C2H5	Ħ	OCH ₃	CH ₃	0	СН	N	183-4
43.	0	C ₂ H ₅	H	CH ₃	CH ₃	0	N	N	
44	0	C ₂ H ₅	H	OCH ₃	CH ₃	0	N	N	168-70
45	0	C ₂ H ₅	H	OCH ₃	OCH ₃	0	N	N	154-8
46	0	C ₂ H ₅	H	OCH ₃	Cl	0	CH	N	151-3
47	0	C ₂ H ₅	H	OCF ₂ H	CH ₃	0	СН	N	
48	0	С ₂ Н ₅	田	OCF ₂ H	OCF ₂ H	0	CH	N	
49	0	С ₂ Н ₅	H	OCH ₃	Br	0	CH	N	
50	0	C ₂ H ₅	Ħ	OCH ₃	OC ₂ H ₅	0	CH	N	•
51	0	C ₂ H ₅	Ħ	OCH ₃	SCH ₃	0	CH	N	
52	0	C ₂ H ₅	H	OCH ₃	OC ₂ H ₅	0	N	N	
53	0	C ₂ H ₅	H	OCH ₃	OC ₃ H ₇	0	CH	N	
54	0	C ₂ H ₅	H	OCH ₃	Cl	0	N	N	
55	0	C ₂ H ₅	H	Cl	OC2H5	0	CH	N	
56	0	C ₂ H ₅	H	OC ₂ H ₅	OC ₂ H ₅	0	СН	N	
57	0	C ₂ H ₅	H	C ₂ H ₅		0	СН	N	

Fort	setz	ung Tabelle 3	٠						Schmp.
Bsp			_	_	_3	_	Y	Z.	[°C]
Nr.	Q	R .	\mathbb{R}^1	R ²	\mathbb{R}^3	₩.	*	u	[w,
				CF ₃	OCH ₃	0	CH	N	
58	0	C ₂ H ₅	H	OCH ₂ CF ₃	•	0	CH	N	
59	0	C ₂ H ₅	H 	OCH ₂ CF ₃		0	CH	N	
60	0	C ₂ H ₅	H			0	CH	N	
61	Ο.	C ₂ H ₅	H	OCH ₂ CF ₃		0	N	N	
62	0	C ₂ E ₅	H	OCH ₂ CF ₃	NHCH ₃	0	N	N	
63	0	C ₂ H ₅	Ħ	OCH ₃	-	0	n	N	
64	0	C ₂ H ₅	Ħ	OC ₂ H ₅	NHCH ₃	0	N	N	
65	0	C ₂ H ₅	H	C ₂ H ₅	OC ₂ H ₅		N-	N	
66	0	C ₂ H ₅	H	OCH ₃	CH ₃	0		N	
67	O	C ₂ H ₅	H	Cl	CH3	0	N		
68	0	С ₂ Н ₅	Ħ	CH ₃	CH ₃	0	N	N	
69	0	C ₂ H ₅	Ħ	OCH ₃	OCH ₃	s	CH	N	
70	0	C ₂ H ₅	Ħ	OCH ₃	CH ₃	S	CH	N	
71	0	C₂H₅	Ħ	CH ₃	CH ₃	S	CH	N	
72	0	C ₂ H ₅	H	OCH ₃	OCH ₃	S	N	N	
73	0	C₂H5 🔅	H	OCH ₃	CH ₃	S	N	N	
74	0	C ₂ H ₅	H	CH ₃	CH ₃	S	N	N	
75	0	n-C ₃ H ₇	H	OCH ₃	OCH ₃	0	CH	N	
76	0	n-C ₃ H ₇	CH ₃	OCH ₃	OCH ₃	0	CH	N	
77	0	n-C ₃ H ₇	CH ₃	OCH ₃	CH ₃	0	Ŋ	N	
78	0	n-C ₃ H ₇	H	CH ₃	CH ₃	0	CH	N	
79	0	n-C ₃ H ₇	H	OCH ₃	CH ₃	0	CH	N	
80	0	n-C ₃ H ₇	H	CH ₃	CH ₃	0	N	N	
81	0	n-C ₃ H ₇	H	OCH3	CH ₃	0	N	N	
82	0	n-C ₃ H ₇	H	OCH ₃	OCH ₃	0	N	N	
83	0	n-C ₃ H ₇	Ħ	OCH ₃	Cl	0	CH	N	
84	0	n-C ₃ H ₇	H	OCF ₂ H	CH ₃	0	CH	N	
85	0		Ħ	OCF ₂ H	OCF ₂ H	0	CH	N	
	0	n-C ₃ H ₇	Ħ	OCH ₃	Br	0	CH	N	
86			H	OCH ₃	OC ₂ H ₅	0	CH	N	
87	0	.	H	OCH ₃	SCH ₃	O	CH	N	
88	0		H	OCH ₃	OC ₂ H ₅	0		N	
89	0	n-C ₃ H ₇			4- 3				

Fortsetzung Tabelle 3

Bsp									Schmp.
Nr.		R	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z	[°C]
90	0	n-C ₃ H ₇	H	OCH ₃	OC ₃ H ₇	0	CH	N	
91	0	n-C ₃ H ₇	H	OCH ₃	Cl	0	N	N	
92	0	n-C ₃ H ₇	Ħ	Cl	OC ₂ H ₅	0	CH	N	
93	0	n-C ₃ H ₇	H	OC2H5	OC ₂ H ₅	0	CH	N	
94	0	n-C3H7	. B	C ₂ H ₅	OCH ₃	0	CH	N	
95	0	n-C ₃ H ₇	H	CF ₃	OCH ₃	0	CH	N	
96	0	n-C ₃ H ₇	H	OCH ₂ CF ₃	CH ₃	0	CH	N	
97	0	n-C ₃ H ₇	H	OCH ₂ CF ₃	OCH ₃	0	CH	N	
98	0	n-C ₃ H ₇	H	OCH ₂ CF ₃	OCH ₂ CF ₃	0	CH	N	
99	0	n-C ₃ H ₇	H	OCH ₂ CF ₃	OCH ₃	0.	N	N	•
100	0	n-C ₃ H ₇	Ħ	OCH ₃	NHCH ₃	0	N	N	
101	0	n-C ₃ H ₇	H	OC ₂ H ₅	NHCH ₃	0	N	N	
102	0	n-C ₃ H ₇	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
103	0	n-C ₃ H ₇	H	OCH ₃	CH ₃	0	N	N	
104	0	n-C ₃ H ₇	H	Cl	CH ₃	0	N	N	
105	0	n-C ₃ H ₇	Ħ	CH ₃	CH ₃	0	N	N	
106	0	n-C ₃ H ₇	H	OCH ₃	OCH ₃	S	CH	N	
107	0	n-C ₃ H ₇	H	OCH3	CH ₃	S	CH	N	
108	Ó	n-C ₃ H ₇	H	CH ₃	CH ₃	S	CH	N	
109	0	n-C3H7	H	OCH3	OCH ₃	S	N	N	
110	0	n-C3H7	H	OCH ₃	СH ₃	S	N	N	
111	0	n-C ₃ H ₇	H.	CH ₃	CH ₃	s	N	N	
112	0	i-C ₃ H ₇	H	OCH ₃	OCH ₃	0	CH	N	190-1
113	0	i-C ₃ H ₇	CH ₃	OCH ₃	OCH ₃	0	CH	N	
114	O.	i-C ₃ H ₇	CH ₃	OCH ₃	CH ₃	0	N	N	
115	0	1-C3H7	H	CH ₃	CH ₃	0	CH	N	
116	0	i-C ₃ H ₇	H	OCH ₃	CH ₃	0	CH	N	
117	0	i-C ₃ H ₇	H	CH ₃	CH ₃	0	N	N	
		i-C ₃ H ₇	H	OCH ₃	CH ₃	0	N	N	
		i-C ₃ H ₇	H	OCH ₃	OCE3	0	N	N	
		i-C ₃ H ₇	H	OCH ₃	Cl	0	СН	N	
		i-C ₃ H ₇	H	OCF ₂ H	CE3	0	CH	N	
		- •							

Portsetzun	g mount							Schmb.
Bsp		R ¹	\mathbb{R}^2	 R ³	W	Y	Z	[°C]
Nr. Q	R	K-	.	•	-			
		H	OCF ₂ H	OCF ₂ H	0	CH	N	
	1-C ₃ H ₇		OCH ₃	Br	0	CH	N	
	i-C ₃ H ₇		OCH ₃	OC ₂ H ₅	0	СН	N	
	i-C ₃ H ₇		. •	SCH ₃	0	CH	N	
_	i-C ₃ H ₇	H 	OCH ₃	OC ₂ H ₅	0	N	N	
	i-C ₃ H ₇	H	OCH ₃	OC ₃ E ₇	0	CH	N	
	i-C ₃ H ₇	H	OCH ₃	Cl	0	N	N	
_	i-C ₃ H ₇	E	OCH ₃		0	CH	N	
129 0	i-C ₃ H ₇	H	Cl	OC ₂ H ₅	0	CH	N	• •
130 0	i-C ₃ H ₇	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
131 0	i-C ₃ H ₇	H	C ₂ H ₅	OCH ₃		CH	N	
132 0	i-C ₃ H ₇	H	CF ₃	OCH ₃	0	CH	N	
133 0	i-C ₃ H ₇	H	OCH ₂ CF ₃		0		N	
134 0	i-C ₃ H ₇	H	OCH ₂ CF ₃		0	CH	N	
135 0	i-C ₃ H ₇	H	OCH ₂ CF ₃		0	CH		
136 0	i-C ₃ H ₇	H	OCH ₂ CF ₃		0	N	N	
137 0	i-C ₃ H ₇	H	OCH ₃	NHCH ₃	0		N	
138 0	i-C3H7	H	OC ₂ E ₅	NHCH ₃	0	N	N	
139 0	i-C3H7	H	C ₂ H ₅	OC2H5	0	N	N	
140 0	i-C ₃ H ₇	B	OCH ₃	CH ₃	0	N	N	
141 0	i-C ₃ H ₇	Ħ	Cl .	CH ₃	0	N	N	
142 0	i-C ₃ H ₇	H	CH ₃	CH ₃	0	N	N	-
143 0	i-C ₃ H ₇	Ħ	OCH ₃	OCH ₃	S	CH	N	
144 0	i-C ₃ H ₇	H	OCH ₃	CH ₃	S	CH	N	
	i-C ₃ H ₇	B	CH₃	CH ₃	S	CH	N	
146 0	i-C ₃ H ₇	H	OCH ₃	OCH ₃	S	N	N	
	i-C ₃ H ₇	H	OCH ₃	CH ₃	S	N	N	
	i-C ₃ H ₇	Ħ	CH ₃	CH ₃	S	N	N	
	CH ₂ CH=CH ₂	Ħ	OCH ₃	OCH ₃	Ö	CH	N	
	CH ₂ CH=CH ₂		· ·	OCH ₃	0	CH	N	•
120 0	CH ₂ CH=CH ₂	CH ₂	OCH ₂	CH ₃	O	N	N	
		H	CH ₃	CH ₃	C	CH	N	
	CH ₂ CH=CH ₂	Ħ	OCH ₃	CH ₃	C	CH	N	
153 0	CH ₂ CH=CH ₂	Δ.		3				

Bsp		ang rabene s							Schmp.
Nr.		R	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z	[°C]
	_	·							· .
154	0	CH ₂ CH=CH ₂	Ħ,	CH ₃	CH ₃	0	N	N	
155	0	CH2CH=CH2	H	OCH ₃	CH ₃	0	N	N	
156	0	CH ₂ CH=CH ₂	H	OCH ₃	OCH ₃	0	N	N	
157	0	CH2CH=CH2	H	OCH ₃	Cl	0	CH	N	
158	0	CH ₂ CH=CH ₂	н	OCF ₂ H	CH ₃	0	CH	N	
159	0	CH2CH=CH2	H	OCF ₂ H	OCF ₂ H	0	CH	N	
160	0	CH2CH=CH2	H	OCH ₃	Br	0	CH	N	
161	0	CH ₂ CH=CH ₂	H	OCH ₃	OC ₂ H ₅	0	CH	N	
162	0	CH ₂ CH=CH ₂	Ħ	OCH ₃	SCH ₃	0	CH	N	
163	0	CH2CH=CH2	H	OCH ₃	OC ₂ H ₅	0	N	N	
164	0	CH2CH=CH2	H	OCH ₃	OC ₃ H ₇	0	CH	N	
165	0	CH2CH=CH2	H	OCH ₃	Cl	0	N	N	
166	0	CH ₂ CH=CH ₂	H	Cl	OC ₂ H ₅	0	CH	N	
167	0	CH2CH=CH2	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
168	0	CH ₂ CH=CH ₂	H	C ₂ H ₅	OCH ₃	0	CH	N	
169	0	CH ₂ CH=CH ₂	H	CF ₃	OCH ₃	0	CH	N	
170	0	CH2CH=CH2	H	OCH ₂ CF ₃	CH ₃	0	CH	N	
171	0	CH2CH=CH2	H	OCH ₂ CF ₃	OCH ₃	0	CH	N	
172	0	CH2CH=CH2	H	OCH ₂ CF ₃	OCH2CF3	0	CH	N	
173	0	CH ₂ CH=CH ₂	H	OCH ₂ CF ₃	OCH ₃	0	N	N	
174	0	CH ₂ CH=CH ₂	H	OCH ₃	NHCH ₃	0	N	N	
175	0	CH ₂ CH=CH ₂	H	OC ₂ H ₅	NHCH ₃	0	N	N	
176	0	CH2CH=CH2	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
177	0	CH ₂ CH=CH ₂	. н	OCH ₃	CH ₃	0	N	N	
178	0	CH ₂ CH=CH ₂	H	Cl	CH ₃	0	N	N	
179	0	CH ₂ CH=CH ₂	H	CH ₃	CH ₃	0	N	N	
180				OCH ₃	OCH ₃	s	CH	N	
		CH ₂ CH=CH ₂		OCH3	CH ₃	s	CH	N	
		CH ₂ CH=CH ₂		CH ₃	CH ₃	s	CH	N	
183				OCH ₃	OCH ₃	s	N	N	
184				OCH ₃	CH ₃	s	N	N	
185		-	H	CH ₃	CH ₃	s	N	N	

Fort	setzi	ung Tabelle 3			•				Schap.
Bsp.	. –		_ 1	_2	\mathbb{R}^3	Ħ	¥	Z	[°C]
Nr.	Q	R	R ¹	R ²	R	•	•	_	
-					OCE-	0	СН	N	
186	0	CH ₂ C≡CH	H	OCH ₃	OCH ₃	0	CH	N	
187	0	CH ₂ C≡CH	CH ₃	-	OCH ₃		N	N	
188	0	CH ₂ C≡CH	CH ₃	_	CH ₃	0			
189	0	CH ₂ C≡CH	H	CH ₃	CH ₃	0	CH	N	
190	0	CH ₂ C≡CH	H	OCH ₃	CH ₃	0	CH	N	
191	0	CH ₂ C≡CH	H	CH ₃	CH ₃	0	N	N	
192	0	CH ₂ C≡CH	H	OCH ₃	CH ₃	0	N	N	
193	0	CH ₂ C≡CH	Ħ	OCH ₃	OCH ₃	0	N	N	
194	0	CH ₂ C≡CH	Ħ	OCH ₃	Cl	0	CH	N	
195	0	CH ₂ C≡CH	Ħ	OCF ₂ H	CH ₃	0	CH	N	
196		CH ₂ C≡CH	H	OCF ₂ H	OCF ₂ H	0	CH	N	
197		-	Ħ	OCH ₃	Br	0	CH	N	•
198		CH ₂ C≡CH	H	OCH ₃	OC ₂ H ₅	0	CH	N	
199		-	H	OCH ₃	SCH ₃	0	CH	N	
200		CH ₂ C≡CH	H	OCH ₃	OC ₂ H ₅	0	N	N	
201		CH ₂ C≡CH	H	OCH ₃	OC ₃ H ₇	0	CH	N	
202		CH ₂ C≡CH	H	OCH ₃	Cl	0	N	N	
203		CH ₂ C≡CH	H	Cl	OC ₂ H ₅	0	CH	N	
204		_	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N,	
205		CH ₂ C≡CH	H	C ₂ H ₅	OCH ₃	0	CH	N	
205		-	Ħ	CF ₃	OCH ₃	0	СН	N	
207		CH ₂ C≡CH	H	OCH ₂ CF ₃	CH ₃	0	CH	N	
		CH ₂ C≡CH	H	OCH ₂ CF ₃	_	0	CH	N	
208		_	Ħ	OCH ₂ CF ₃	_	0	CH	N	
209		-	н	OCH ₂ CF ₃	OCH ₃	0	N	N	•
210		-	H	OCH ₃	NHCH ₃	0	N	N	
		CH ₂ C≡CH		OC ₂ H ₅		0	N	N	
		CH ₂ C≡CH	H		OC ₂ H ₅		N	N	
		CH ₂ C≡CH	H	C ₂ H ₅		0	N	N	
		CH ₂ C≡CH	H	OCH ₃		0	N	N	
		CH ₂ C≡CH	H		CH ₃		N	N	
		CH ₂ C≡CH	H	CH ₃	CH ₃	0			
217	0	CH ₂ C≡CH	H	OCH ₃	OCH ₃	S	CH	N	

Fortsetzung T	abelle 3	
---------------	----------	--

Bsp.	•							Schap.
Nr. C	R	\mathbb{R}^{1}	\mathbb{R}^2	\mathbb{R}^3	W	Y	Z	[%]
					<u>. </u>			
218 0	-	H	OCH ₃	CH ₃	s	CH	N	
219	_	H	CH ₃	CH ₃	S	CH	N	
220 C	_	H	OCH ₃	OCH ₃	S	N	N	
221 0	-	H	OCH ₃	CH ₃	S	N	N	
222 0	CH ₂ C=CH	H	CH ₃	CH ₃	S	N	N	
223 (n-C ₄ H ₉	H	OCH ₃	OCH ₃	0	CH	N	
224 0	n-C ₄ H ₉	CH ₃	OCH ₃	OCH ₃	0	CH	N	
225 0	n-C ₄ H ₉	CH ₃	OCH ₃	CH ₃	0	N	N	•
226 0	n-C ₄ H ₉	H	CH ₃	CH ₃	0	CH	N	
227 0	$n-C_4H_9$	H	OCH ₃	CH ₃	0	CH	N	
228 0	$n-C_4H_9$	H	CH ₃	CH ₃	0	N	N	
229 0	n-C ₄ H ₉	H	OCH ₃	CH ₃	0	N	N	
230	n-C ₄ H ₉	H	OCH ₃	OCH ₃	0	N	N	
231 0	i-C ₄ H ₉	H	OCH ₃	OCH ₃	0	CH	N	
232 0	i-C ₄ H ₉	CH ₃	OCH ₃	OCH ₃	0	CH	N	
233 0	i-C ₄ H ₉	CH ₃	OCH ₃	CH ₃	0	N	N	
234 0	i-C ₄ H ₉	H	CH ₃	CH ₃	O.	CH	N	
235 C	i-C ₄ H ₉	H	OCH ₃	CH ₃	ō o	CH	N	
236 0	i-C ₄ H ₉	H	CH ₃	CH ₃	0	N	N	•
237 C	i-C ₄ H ₉	H	OCH ₃	CH ₃	0	N	N	
238 0	i-C ₄ H ₉	H	OCH ₃	OCH ₃	0	N	N	
239 0	sekC ₄ H ₉	H	OCH ₃	OCH ₃	0	CH	N	
240 C	sekC4H9	CH ₃	OCH ₃	OCH ₃	0	CH	N	
241 0	sekC4H9	CH ₃	OCH ₃	CH ₃	0	N	N	
242 0	sekC ₄ H ₉	H	CH ₃	CH ₃	0	CH	N	
243 C	sekC4H9	H	OCH ₃	CH ₃	0	CH	N	
	sekC4H9	H	CH ₃	CH ₃	0	N	N	
	sekC4H9		OCH ₃	CH ₃	0	N	N	
	sekC4H9		OCH ₃	OCH ₃	0	N	N	
	t-C ₄ H ₉		OCH ₃	OCH ₃	0	СН	N	
	t-C ₄ H ₀		OCH ₃	OCH ₃	0	СН	N	
	t-C ₄ H ₉	-	OCH ₃	CH ₃	0	N	N	
	- 4 7	_	-	-				

Fort	setz	ung Tabelle 3							
Bsp	. –			_	_			_	Schap.
Nr.	Q	R	R ¹	R ²	R ³	W	Y	Z	[°C]
			<u>н</u>	CH ₃	CH ₃	0	CH	N	<u> </u>
		t-C ₄ H ₉		OCH ₃	CH ₃	0	CH	N	
251			H	•	CH ₃	0	N	N	
,252		t-C ₄ H ₉	H	CH ₃	CH ₃	0		N	
253		t-C ₄ H ₉	H	OCH ₃	OCH ₃	0	N	N	
254		t-C ₄ H ₉	H	OCH ₃	OCH ₃	0	CH	N	
255		CH ₂ CH ₂ Cl	H	OCH ₃	•	0	CH	N	
256		CH ₂ CH ₂ Cl	CH ₃	OCH ₃	OCH ₃	0	N	N	
257	0	CH ₂ CH ₂ Cl	CH ₃	_	CH ₃	-	CH	N	
258	0	CH ₂ CH ₂ Cl	H	CH ₃	CH ₃	0		N	
259	0	CH ₂ CH ₂ Cl	H	OCH ₃	CH ₃	0	CH		
260	0	CH2CH2Cl	H	CH ₃	CH ₃	0	N	N	
261	0	CH2CH2C1	H	OCH ₃	CH ₃	0	N	N	
262	0	CH2CH2C1	H	och3	OCH ₃	0	N	N	
263	0	CH2CH2OCH3	H	OCH3	-	0	CH	N	
264	0	CH2CH2OCH3	CH ₃	OCH ₃	OCH ₃	0	CH	N	
265	0	CH2CH2OCH3	CH ₃	OCH ₃	CH ₃	0	N	N	
266	0	CH2CH2OCH3	H	CH ₃	CH ₃	0	CH	N	
267	0	CH2CH2OCH3	Ħ	OCH ₃	CH ₃	0	CH	N	
268	0	CH2CH2OCH3	H	CH ₃	CH ₃	0	N	N	
269		CH ₂ CH ₂ OCH ₃	H	OCH ₃	CH ₃	0	N	N	
270	0	CH ₂ CH ₂ OCH ₃	H	OCH ₃	OCH3	0	N	N	
271	0	c-C ₆ H ₁₁	H	OCH ₃	OCH3	0	CH	N	
272		c-C ₆ H ₁₁	CH ₃	OCH ₃	OCH ₃	0	CH	N	
273		c-C ₆ H ₁₁	CH ₃	OCH ₃	CH ₃	0	N	N	
274		c-C ₆ H ₁₁	н	CH ₃	CH ₃	0	CH	N	
		C-C ₆ H ₁₁	H	OCH ₃	CH ₃	0	CH	N	•
276			H	CH ₃	CH ₃	0	N	N	
		c-C ₆ H ₁₁	H	OCH ₃	CH ₃	0	N	N	
		c-C ₆ H ₁₁	H	OCH ₃	OCH ₃	0	N	N	
		CH ₃	H	och ₃	SCH ₃	0	N	N	185-7
279			H	SCH ₃	CH ₃	0	N	N	188
280	0	CH ₃	H ·	OCH ₃	C ₂ H ₅	0	N	N	177-8
281	0	CH ₃		OCH3	~2115	_			

Bsp	_	J							Schmp.
Nr.		R	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z.	[°C]
			-						
282	0	CH ₃	H	C-C3H5	OCH ₃	0	N	N	180-1
283	0	CH ₃	H	CH ₂ SCH ₃	OCH ₃	0	N	N	108
284	0	CH ₃	нс	H ₂ CH(OC	$H_3)_2$ OC H_3	0	N	N	137-8
285	0	CH ₃	H	~	OCH ₃	0	N	N	157-8
286	0	CH ₃	H	i-C ₃ H ₇	OCH ₃	0	N	N	164-5
287	0	CH ₃	H	n-C ₃ H ₇	OCH ₃	0	N	N	154-5
288	0	CH ₃	H	CH ₂ Cl	OCH ₃	0	N	N	178-9
289	0	CH ₃	H	OCH ₃	OCH ₃	0	N	N	150-5
290	0	CH ₃	H	OCH ₃	CH(OCH ₃)2 0	N	N	108
291	0	CH ₃	H	OCH ₃	SCH ₃	0	N	N	153-5
292	0	C ₂ H ₅	CH ₃	OCH ₃	OCH ₃	0	N	N	158-60
293	0	CH ₃	CH ₃	OCH ₃	OCH ₃	0	N	N	Na-Salz
									230-3
294	0	CH ₃	CH ₃	OCH ₃	OCH ₃	0	CH	N	Na-Salz
									251-3
295	O	CH ₃	H	CH ₃	CH ₃	0	CH	N	Na-Salz
									108
296	0	CH ₃	H	OCH ₃	CH ₃	0	CH	N	Na-Salz
									135
297	0	CH ₃	H	CH ₃	CH ₃	0	N.	N	Na-Salz
					•				165
298	0	CH ₃	H	OCH ₃	CH ₃	0	N	N	Na-Salz
		•				•			155
299	0	CH ₃	H	OCH ₃	CH ₃	0	N	N	Li-Salz
									153
300	0	CH ₃	H	OCH ₃	CH ₃	0	N	N	K-Salz
									140
301	0	CH ₃	H	OCH ₃	OCH ₃	0	N	N	Na-Salz
									155
302	0	C ₂ H ₅	Ħ	OCH ₃	OCH ₃	0	CH	N	Na-Salz
									150
303	0	i-C ₃ H ₇	H	OCH3	OCH ₃	0	CH	N	Na-Salz

Fort	setzi	ung Tabelle 3							Schap.
Bsp		· _	51	\mathbb{R}^2	R ³	w	Y	Z	[°C]
Nr.	Q	R	K-		•	-			
									160
204	0	CH ₃	Ħ	OCH ₂ CF ₃	OCH ₃	. 0	N	N	Na-Salz
<i>3</i> 0 1		0.1.3			-				110
305	0	CH ₃	H	OC ₂ H ₅	NHCH ₃	0	N	ΝN	a-Salz
202	•	 ,							115
306	0	C ₂ H ₅	CH ₂	OCH ₃	OCH ₃	0	CH	N	Na-Salz
500	•	-2-3	•	•					. 115
307	0	C ₂ H ₅	H	OCH ₃	CH ₃	. 0	CH	N	Na-Salz
507		-2-3		_					145
308	0	C ₂ H ₅	H	OCH ₃	Ci	0	CH	N	Na-Salz
500	_	-2-3		_					150
309	0	C ₂ H ₅	CH ₃	OCH ₃	CH ₃	0	N	N	Na-Salz
	_	-2-3	_						113
310	0	C₂H₅	H	OCH ₃	OCH3	0	N	N	Na-Salz
					_				140
311	0	CH ₃	H	OCH ₃	C ₂ H ₅	_ 0	N	N	Na-Salz
		•							132
312		CH ₃	н С	H ₂ CH(OCH	(3)2 OCH3	0	N	N	. Na-Salz
		•							155
313	0	CH ₃	H	CH ₂ SCH ₃	OCH ₃	· O	N	N	Na-Salz
		_							145
314	0	CH ₃	H	i-C ₃ H ₇	OCH ₃	0	N	N	Na-Salz
									155
315	0	CH ₃	H	n-C ₃ H ₇	OCH ₃	0	N	N	Na-Salz
									157
316	0	CH ₃	H	CH ₂ Cl	OCH ₃	0	N	N	Na-Saiz
								-	185
317	0	CH ₃	CH ₃	OCH ₃	OCH ₃	0	N	N	Na-Salz
		-							227-30
318	0	CH ₃	H	OCH ₃ CH	$(OCH_3)_2$	0	N	N	Na-Salz
									135
319	0	CH ₃	Ħ	SCH ₃	CH ₃	0	N	N	Na-Salz

PCT/EP92/00304

WO 92/13845

-57-

Fortsetzung	Tabelle	3
POPESELZHUE	I WALLIE	J

Bsp Nr.		R	\mathbb{R}^1	\mathbb{R}^2	R ³	W	¥	Z	[oC]
320	0	С ₂ Н ₅	Сн3	осн ₃	ОСН3	0	N	Ŋ	165 Na-Salz 115

Tabelle 4

			•	•					
Bsp	<u>.</u> –							•	Schmp.
NT.	Q	R	R ¹	R ²	R ³	W	Y	Z ,	[°C]
	0	CH ₃	Ħ	OCH ₃	OCH ₃	0	CH	N	190-2
2	0	CH ₃	CH ₃	OCH ₃	OCH ₃	0	CH	N	
3	0	CH ₃	CH ₃	OCH ₃	CH ₃	0	N	N	
4	0	CH ₃	Ħ.	CH ₃	CH ₃	0	CH	N	
5	0	CH ₃	H	OCH ₃	CH ₃	0	CH	N	
6	0	CH ₃	н	CH ₃	CH ₃	0	N	N	
7	0	CH ₃	H	OCH ₃	CH ₃	0	N	N	•
8	0	CH ₃	H	OCH ₃	OCH ₃	0	N	N	
9	0	CH ₃	H	OCH ₃	Cl	. 0	CH	N	
10	0	CH ₃	Ħ	OCF ₂ H	CH ₃	0	CH	N	
11	0	CH ₃	· B	OCF ₂ H	OCF ₂ H	0	CH	N	
12	0	CH ₃	Ħ	OCH ₃	Br	0	CH	N	
13	0	CH ₃	Ħ	OCH ₃	OC_2H_5	0	CH	N	
14	0	CH ₃	H.	OCH ₃	SCH ₃	0	CH	N	
15	0	CH ₃	H	OCH ₃	OC ₂ H ₅	0	N	N	
16	0	CH ₃	H ·	OCH ₃	OC ₃ H ₇	0	CH	N	
17	0	CH ₃	Ħ	OCH ₃	Cl	0	N	N	
18	0	CH ₃	H	Cl	OC ₂ H ₅	0	CH	N	
19	0	CH ₃	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N.	
20	0	CH ₃	Ħ	C ₂ H ₅	OCH ₃	0	CH	N	
21	0	CH ₃	H	CF ₃	OCH ₃	0	СН	N	
22	0	CH ₃	H	OCH ₂ CF ₃	CH ₃	0	CH	N	
23	0	CH ₃	н	OCH ₂ CF ₃	OCH3	0	СН	N	
24	0	CH ₃	н	OCH ₂ CF ₃	OCH ₂ CF ₃	0	СН	N	
25	0	CH ₃	H	OCH ₂ CF ₃	_	0	N.	N	

Fortsetzung	Tabelle 4
--------------------	-----------

Nr. Q R R ¹ R ² R ³ W Y Z [°C] 26 O CH ₃ H OCE ₃ NHCH ₃ O N N 27 O CH ₃ H OC ₂ H ₅ NHCH ₃ O N N 28 O CH ₃ H C ₂ H ₅ OC ₂ H ₅ O N N 29 O CH ₃ H CCH ₃ CH ₃ O N N 30 O CH ₃ H C1 CH ₃ O N N 31 O CH ₃ H CCH ₃ CH ₃ S CH N 32 O CH ₃ H OCH ₃ CH ₃ S CH N 34 O CH ₃ H OCH ₃ CH ₃ S CH N 35 O CH ₃ H OCH ₃ CH ₃ S N N	Ben	 \								Schap.
27 O CH ₃ H CC ₂ H ₅ NHCH ₃ O N N 28 O CH ₃ H C ₂ H ₅ OC ₂ H ₅ O N N 29 O CH ₃ H CCH ₃ CH ₃ O N N 30 O CH ₃ H C1 CH ₃ O N N 31 O CH ₃ H CH ₃ CH ₃ O N N 32 O CH ₃ H CCH ₃ CH ₃ O N N 33 O CH ₃ H CCH ₃ CH ₃ S CH N 34 O CH ₃ H CCH ₃ CH ₃ S CH N 35 O CH ₃ H CCH ₃ CH ₃ S CH N 36 O CH ₃ H CCH ₃ CH ₃ S CH N 37 O CH ₃ H CCH ₃ CH ₃ S N N 38 O C ₂ H ₅ H CCH ₃ CH ₃ S N N 39 O C ₂ H ₅ CH ₃ CCH ₃ OCH ₃ OCH ₃ S N N 40 O C ₂ H ₅ CH ₃ CCH ₃ OCH ₃ OCH ₃ O CH N 41 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O CCH N 42 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O CCH N 43 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O CCH N 44 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O CCH N 45 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O CCH N 46 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 46 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 46 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 46 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 46 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 47 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 48 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 49 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 40 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 40 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 41 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 41 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 41 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 41 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 41 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O N N 41 O C ₂ H ₅ H CCH ₃ CCH ₃ CCH ₃ O CCH N	_		R	\mathbb{R}^1	R ² .	\mathbb{R}^3	W	Y	Z	[°C]
27 O CH ₃ H OC ₂ H ₅ NHCH ₃ O N N 28 O CH ₃ H C ₂ H ₅ OC ₂ H ₅ O N N 29 O CH ₃ H OCH ₃ CH ₃ O N N 30 O CH ₃ H Cl CH ₃ O N N 31 O CH ₃ H CH ₃ CH ₃ O N N 32 O CH ₃ H OCH ₃ CH ₃ S CH N 33 O CH ₃ H OCH ₃ CH ₃ S CH N 34 O CH ₃ H OCH ₃ CH ₃ S CH N 35 O CH ₃ H OCH ₃ CH ₃ S CH N 36 O CH ₃ H OCH ₃ CH ₃ S N N 37 O CH ₃ H OCH ₃ CH ₃ S N N 38 O C ₂ H ₅ H OCH ₃ CH ₃ S N N 39 O C ₂ H ₅ CH ₃ OCH ₃ OCH ₃ OCH ₃ S N N 40 O C ₂ H ₅ CH ₃ OCH ₃ OCH ₃ OCH ₃ O CH N 41 O C ₂ H ₅ H CH ₃ CH ₃ CH ₃ O CH N 42 O C ₂ H ₅ H CH ₃ CH ₃ CH ₃ O CH N 43 O C ₂ H ₅ H CH ₃ CH ₃ CH ₃ O CH N 44 O C ₂ H ₅ H CH ₃ CH ₃ CH ₃ O CH N 45 O C ₂ H ₅ H CH ₃ CH ₃ O CH N 46 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N 47 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N 46 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N 47 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N				· · · · · · · · · · · · · · · · · · ·						·
28 O CH ₃					_	_				
29 O CH ₃	27	0	CH ₃	H	OC ₂ H ₅	_				
30 O CH ₃ H Cl CH ₃ O N N 31 O CH ₃ H CH ₃ CH ₃ O N N 32 O CH ₃ H OCH ₃ OCH ₃ S CH N 33 O CH ₃ H OCH ₃ CH ₃ S CH N 34 O CH ₃ H CH ₃ CH ₃ S CH N 35 O CH ₃ H OCH ₃ OCH ₃ S CH N 36 O CH ₃ H OCH ₃ CH ₃ S N N 37 O CH ₃ H OCH ₃ CH ₃ S N N 38 O C ₂ H ₅ H OCH ₃ OCH ₃ S N N 39 O C ₂ H ₅ CH ₃ OCH ₃ OCH ₃ OCH ₃ OCH N 40 O C ₂ H ₅ CH ₃ OCH ₃ OCH ₃ OCH N 41 O C ₂ H ₅ H CH ₃ CH ₃ CH ₃ O CH N 42 O C ₂ H ₅ H OCH ₃ CH ₃ CH ₃ O CH N 43 O C ₂ H ₅ H OCH ₃ CH ₃ OCH N 44 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N 45 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N 46 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N 47 O C ₂ H ₅ H OCH ₃ CH ₃ OCH ₃ O N N 46 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N	28	0	CH ₃	Ħ	C_2H_5					
31 O CH3 H CH3 CH3 O N N 32 O CH3 H OCCB3 OCCB3 S CH N 33 O CH3 H OCCB3 CH3 S CH N 34 O CB3 H CCB3 CH3 S CH N 35 O CH3 H OCCB3 OCCB3 S N N 36 O CB3 H OCCB3 CH3 S N N 37 O CB3 H OCB3 CCB3 S N N 38 O C2H5 H OCB3 OCCB3 O CH N 39 O C2H5 CH3 OCCB3 OCB3 O CH N 40 O C2H5 H CH3 CH3 O CH N 41 O C2H5 H OCB3 CH3 O CH N 42	29	0	CH ₃	Ħ	OCH ₃		0			
32 O CH ₃ H OCH ₃ OCH ₃ S CH N 33 O CH ₃ H OCH ₃ CH ₃ S CH N 34 O CH ₃ H OCH ₃ CH ₃ S CH N 35 O CH ₃ H OCH ₃ OCH ₃ S N N 36 O CH ₃ H OCH ₃ CH ₃ S N N 37 O CH ₃ H CH ₃ CH ₃ S N N 38 O C ₂ H ₅ H OCH ₃ OCH ₃ OCH ₃ S N N 39 O C ₂ H ₅ CH ₃ OCH ₃ OCH ₃ OCH ₃ O CH N 40 O C ₂ H ₅ CH ₃ OCH ₃ OCH ₃ OCH ₃ O CH N 41 O C ₂ H ₅ H CH ₃ CH ₃ CH ₃ O CH N 42 O C ₂ H ₅ H CH ₃ CH ₃ CH ₃ O CH N 43 O C ₂ H ₅ H CH ₃ CH ₃ O CH N 44 O C ₂ H ₅ H CH ₃ CH ₃ O N N 45 O C ₂ H ₅ H OCH ₃ CH ₃ O N N 46 O C ₂ H ₅ H OCH ₃ CH ₃ O N N 47 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N	30	0	CH ₃	Ħ	Cl		0			
33 O CH ₃ H OCH ₃ CH ₃ S CH N 34 O CH ₃ H CH ₃ CH ₃ S CH N 35 O CH ₃ H OCH ₃ OCH ₃ S N N 36 O CH ₃ H OCH ₃ CH ₃ S N N 37 O CH ₃ H CH ₃ CH ₃ S N N 38 O C ₂ H ₅ H OCH ₃ OCH ₃ O CH N 39 O C ₂ H ₅ CH ₃ OCH ₃ OCH ₃ O CH N 40 O C ₂ H ₅ CH ₃ OCH ₃ OCH ₃ O CH N 41 O C ₂ H ₅ H CH ₃ CH ₃ CH N 42 O C ₂ H ₅ H CH ₃ CH ₃ O CH N 43 O C ₂ H ₅ H CH ₃ CH ₃ O CH N 44 O C ₂ H ₅ H CH ₃ CH ₃ O CH N 45 O C ₂ H ₅ H CH ₃ CH ₃ O N N 46 O C ₂ H ₅ H OCH ₃ CCH ₃ O N N 47 O C ₂ H ₅ H OCH ₃ CH OCH ₃ O CH N	31	0	CH ₃	H	CH ₃		Ō	N	N	
34 O CH3 H CH3 CH3 S CH N 35 O CH3 H OCH3 OCH3 S N N 36 O CH3 H OCH3 CH3 S N N 37 O CH3 H CH3 CH3 S N N 38 O C2H5 H OCH3 OCH3 O CH N 39 O C2H5 H OCH3 OCH3 O CH N 40 O C2H5 CH3 OCH3 O O N N 41 O C2H5 H CH3 CH3 O CH N 42 O C2H5 H OCH3 CH3 O N N 43 O C2H5 H OCH3 CH3 O N N 44 O C2H5 H OCH3 CH3 O N N 45 O	32	0	CH ₃	H	OCH ₃	OCH ₃	S	CH	N	
35 O CH ₃ H OCH ₃ OCH ₃ S N N 36 O CH ₃ H OCH ₃ CH ₃ S N N 37 O CH ₃ H CH ₃ CH ₃ S N N 38 O C ₂ H ₅ H OCH ₃ OCH ₃ O CH N 39 O C ₂ H ₅ CH ₃ OCH ₃ OCH ₃ O CH N 40 O C ₂ H ₅ CH ₃ OCH ₃ CH ₃ O N N 41 O C ₂ H ₅ H CH ₃ CH ₃ O CH N 42 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N 43 O C ₂ H ₅ H CH ₃ CH ₃ O CH N 44 O C ₂ H ₅ H CH ₃ CH ₃ O N N 45 O C ₂ H ₅ H OCH ₃ CH ₃ O N N 46 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N 47 O C ₂ H ₅ H OCH ₃ CH OCH ₃ O CH N	33	0	CH ₃	H	OCH ₃	CH ₃	S	CH	N	
36 O CH3 H OCH3 CH3 S N N 37 O CH3 H CH3 CH3 S N N 38 O C2H5 H OCH3 OCH3 O CH N 39 O C2H5 CH3 OCH3 OCH3 O CH N 40 O C2H5 CH3 OCH3 CH3 O N N 41 O C2H5 H CH3 CH3 O CH N 42 O C2H5 H OCH3 CH3 O CH N 43 O C2H5 H OCH3 CH3 O N N 44 O C2H5 H OCH3 CH3 O N N 45 O C2H5 H OCH3 OCH3 O N N 46 O C2H5 H OCH3 C1 O CH N 47 <td< td=""><td>34</td><td>0</td><td>CH₃</td><td>Ħ</td><td>CH₃</td><td>CH₃</td><td>S</td><td>CH</td><td>N</td><td></td></td<>	34	0	CH ₃	Ħ	CH ₃	CH ₃	S	CH	N	
37 O CH ₃ H CH ₃ CH ₃ S N N 38 O C ₂ H ₅ H OCH ₃ OCH ₃ O CH N 39 O C ₂ H ₅ CH ₃ OCH ₃ OCH ₃ O CH N 40 O C ₂ H ₅ CH ₃ OCH ₃ CH ₃ O N N 41 O C ₂ H ₅ H CH ₃ CH ₃ O CH N 42 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N 43 O C ₂ H ₅ H CH ₃ CH ₃ O N N 44 O C ₂ H ₅ H OCH ₃ CH ₃ O N N 45 O C ₂ H ₅ H OCH ₃ CH ₃ O N N 46 O C ₂ H ₅ H OCH ₃ CCH ₃ O CH N 47 O C ₂ H ₅ H OCH ₃ C1 O CH N	35	0	CH ₃	H	OCH ₃	OCH ₃	S	N	N	•
38 O C ₂ H ₅ H OCH ₃ OCH ₃ O CH N 39 O C ₂ H ₅ CH ₃ OCH ₃ OCH ₃ O CH N 40 O C ₂ H ₅ CH ₃ OCH ₃ CH ₃ O N N 41 O C ₂ H ₅ H CH ₃ CH ₃ O CH N 42 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N 43 O C ₂ H ₅ H CH ₃ CH ₃ O N N 44 O C ₂ H ₅ H OCH ₃ CH ₃ O N N 45 O C ₂ H ₅ H OCH ₃ CH ₃ O N N 46 O C ₂ H ₅ H OCH ₃ CCH ₃ O CH N 47 O C ₂ H ₅ H OCH ₃ C1 O CH N	36	0	CH ₃	Ħ	OCH ₃	CH ₃	S	N	N	
39 O C ₂ H ₅ CH ₃ OCH ₃ OCH ₃ O CH N 40 O C ₂ H ₅ CH ₃ OCH ₃ CH ₃ O N N 41 O C ₂ H ₅ H CH ₃ CH ₃ O CH N 42 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N 43 O C ₂ H ₅ H CH ₃ CH ₃ O N N 44 O C ₂ H ₅ H OCH ₃ CH ₃ O N N 45 O C ₂ H ₅ H OCH ₃ CCH ₃ O N N 46 O C ₂ H ₅ H OCH ₃ CL O CH N 47 O C ₂ H ₅ H OCF ₂ H CH ₃ O CH N	37	0	CH ₃	H	CH ₃	CH ₃	s	N	N	
40 O C ₂ H ₅ CH ₃ OCH ₃ CH ₃ O N N 41 O C ₂ H ₅ H CH ₃ CH ₃ O CH N 42 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N 43 O C ₂ H ₅ H CH ₃ CH ₃ O N N 44 O C ₂ H ₅ H OCH ₃ CH ₃ O N N 45 O C ₂ H ₅ H OCH ₃ OCH ₃ O N N 46 O C ₂ H ₅ H OCH ₃ C1 O CH N 47 O C ₂ H ₅ H OCH ₃ C1 O CH N	38	0	C₂H₅	H	OCH ₃	OCH ₃	Ó	CH	N	
41 O C ₂ H ₅ H CH ₃ CH ₃ O CH N 42 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N 43 O C ₂ H ₅ H CH ₃ CH ₃ O N N 44 O C ₂ H ₅ H OCH ₃ CH ₃ O N N 45 O C ₂ H ₅ H OCH ₃ CCH ₃ O N N 46 O C ₂ H ₅ H OCH ₃ C1 O CH N 47 O C ₂ H ₅ H OCF ₂ H CH ₃ O CH N	39	0	C ₂ H ₅	CH ₃	OCH ₃	OCH ₃	0	CH	N	
42 O C ₂ H ₅ H OCH ₃ CH ₃ O CH N 43 O C ₂ H ₅ H CH ₃ CH ₃ O N N 44 O C ₂ H ₅ H OCH ₃ CH ₃ O N N 45 O C ₂ H ₅ H OCH ₃ OCH ₃ O N N 46 O C ₂ H ₅ H OCH ₃ Cl O CH N 47 O C ₂ H ₅ H OCF ₂ H CH ₃ O CH N	40	0	C₂H₅	CH ₃	OCH ₃	CH ₃	0	N	N	
43 O C ₂ H ₅ H CH ₃ CH ₃ O N N 44 O C ₂ H ₅ H OCH ₃ CH ₃ O N N 45 O C ₂ H ₅ H OCH ₃ OCH ₃ O N N 46 O C ₂ H ₅ H OCH ₃ Cl O CH N 47 O C ₂ H ₅ H OCF ₂ H CH ₃ O CH N	41	0	С ₂ Н ₅	H	CH ₃	CH ₃	0	CH	N	
44 O C ₂ H ₅ H OCH ₃ CH ₃ O N N 45 O C ₂ H ₅ H OCH ₃ OCH ₃ O N N 46 O C ₂ H ₅ H OCH ₃ Cl O CH N 47 O C ₂ H ₅ H OCF ₂ H CH ₃ O CH N	42	0	C ₂ H ₅	H	OCH ₃	CH ₃	0	CH	N	
45 O C ₂ H ₅ H OCH ₃ OCH ₃ O N N 46 O C ₂ H ₅ H OCH ₃ Cl O CH N 47 O C ₂ H ₅ H OCF ₂ H CH ₃ O CH N	43	0	C ₂ H ₅	Ħ	CH ₃	CH₃	0	N	N	
46 O C ₂ H ₅ H OCH ₃ Cl O CH N 47 O C ₂ H ₅ H OCF ₂ H CH ₃ O CH N	44	0	C₂H₅	H	OCH ₃	CH ₃	0	N	N	
47 O C ₂ H ₅ H OCF ₂ H CH ₃ O CH N	45	0	C ₂ H ₅	H	OCH ₃	OCH ₃	0	N	N	
2-3	46	0	C₂H₅	H	OCH ₃	Cl	0	CH	N	
	47	0	C ₂ H ₅	H	OCF ₂ H	CH ₃	0	CH	N	
48 O C ₂ H ₅ H OCF ₂ H O CH N	48	0	C ₂ H ₅	Ħ	OCF ₂ H	OCF ₂ H	0	CH	N	
49 O C ₂ H ₅ H OCH ₃ Br O CH N	49	0	C ₂ H ₅	H	OCH ₃	Br	0	CH	N	
50 O C ₂ H ₅ H OCH ₃ OC ₂ H ₅ O CH N	50	0		H	OCH ₃	OC ₂ H ₅	0	CH	N	
51 O C ₂ H ₅ H OCH ₃ SCH ₃ O CH N	51	0		н	OCH3	SCH ₃	0	CH.	N	
52 O C ₂ H ₅ H OCH ₃ OC ₂ H ₅ O N N				н	OCH ₃			N	N	
53 O C ₂ H ₅ H OCH ₃ OC ₃ H ₇ O CH N	53	0		B	OCH ₃	OC ₃ H ₇	0	СН	N	
54 O C ₂ H ₅ H OCH ₃ Cl O N N			· ·	н	·=			N	N	
55 O C ₂ H ₅ H Cl OC ₂ H ₅ O CH N			- -	Ħ	•		0	CH	N	
56 O C ₂ H ₅ H OC ₂ H ₅ O CH N				н			.,	CH	N	
57 O C ₂ H ₅ H C ₂ H ₅ OCH ₃ O CH N				н		-		CH	N	

Fort	setz	ung Tabelle 4		•				•	Schoop.
Bsp	. –		_	_	. 2		9.7	Z	[%]
Nr.	Q	R	$\mathbf{R}^{\mathbf{I}}$	R ²	\mathbb{R}^3	W	Y	L	101
				CF ₃	OCH ₃	0	CH	N	
58	0	C ₂ H ₅	e e	OCH ₂ CF ₃	CH ₃	0	CH	N	
59	0	C ₂ H ₅	н	OCH ₂ CF ₃		0	СН	N	
60	0	C ₂ H ₅			OCH ₂ CF ₃	0	CH	N	-
61	0	C ₂ H ₅	H	OCH_CF3	OCH ₂	0	N	N	
62	0	C ₂ H ₅	H	OCH ₂ CF ₃	NHCH ₃	0	N	N	
63	0	C ₂ H ₅	H	OCH ₃	_	0	N	N	
64	0	2 3	H	OC ₂ H ₅	NHCH ₃	0	N	N	
65	0	C ₂ H ₅	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
66	0	C ₂ H ₅	H	OCH ₃	CH ₃		N	N	
67	, 0	C ₂ H ₅	H	Cl	CH ₃	0		N	•
68	0	C ₂ H ₅	H	CH ₃	CH ₃	0	N		
69	0	C ₂ H ₅	H	OCH ₃	OCH ₃	S	CH	N	
70	, 0	C ₂ H ₅	H	OCH ₃	CH ₃	S	CH	N	
71	0	C ₂ H ₅	B	CH ₃	CH ₃	S	CH	N	
72	0	C ₂ H ₅	H	OCH ₃	OCH ₃	S	N	N	
73	0	C₂H₅	Ħ	OCH ₃	CH ₃	S	N	N	
74	0	C ₂ H ₅	H	CH ₃	CH ₃	S	N	N	
75	0	n-C ₃ H ₇	H	OCH ₃	OCH ₃	0	CH	N	
76	0	n-C ₃ H ₇	CH3	OCH ₃	OCE3	0	CH	N	
77	0	n-C ₃ H ₇	CH ₃	OCH ₃	CH3	0	N	N	
78	0	n-C ₃ H ₇	H	CH ₃	CH₃	0	CH	N	
79	0	n-C ₃ H ₇	H	OCH ₃	CH ₃	, 0	CH	N	
80	0	n-C ₃ H ₇	R	CH ₃	CH ₃	0	N	N	
81	0	n-C ₃ H ₇	H	OCH ₃	CH ₃	O	N	N	
82	0	n-C ₃ H ₇	H	OCH ₃	OCH ₃	0	И	N	
83	0	n-C ₃ H ₇	Ħ	OCH ₃	Cl	0	CH	N	
84	. 0	n-C ₃ H ₇	H	OCF ₂ H	CH ₃	0	CH	N	
85	0	n-C ₃ H ₇	Ħ	OCF ₂ H	OCF ₂ H	0	CH	N	•
86	0	n-C ₃ H ₇	H	OCH ₃	Br	0	CH	N	
		_	H	OCH ₃	OC ₂ H ₅	0	CH	N	
87	0	n-C ₃ H ₇	H	OCH ₃	SCH ₃	0	CH	N	
88	0	n-C ₃ H ₇	H.	OCH ₃	OC ₂ H ₅	0	N	N	
89	0	$n-C_3H_7$	Δ.	0043	23				

Fortsetzung	Tabelle 4
-------------	-----------

Bsp	_	•							Schmp.
Nr.		R	$\mathbb{R}^{\mathbf{I}}$	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z	[°C]
90	0	n-C ₃ H ₇	H	OCH ₃	OC ₃ H ₇	0	CH	N	
91	0	n-C ₃ H ₇	H	OCH ₃	Cl	0	N	N	-
92	0	n-C ₃ H ₇	H	Cl	OC_2H_5	0	CH	N	
93	0	n-C ₃ H ₇	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	•
94	0	n-C ₃ H ₇	H	C ₂ H ₅	OCH ₃	0	CH	N	
95	0	n-C ₃ H ₇	H	CF ₃	OCH ₃	0	CH	N	
96	0	$n-C_3H_7$	H	OCH ₂ CF ₃	CH ₃	0	CH	N	
97	0	n-C3H7	H	OCH ₂ CF ₃	OCH ₃	Ó	CH	N	
98	0	n-C ₃ H ₇	Ħ	OCH ₂ CF ₃	OCH ₂ CF ₃	0	CH	N	
99	0	n-C ₃ H ₇	H	OCH ₂ CF ₃	OCH ₃	0	N	N	
100	0	n-C3H7	H	OCH ₃	NHCH ₃	0	N	N	•
101	0	n-C ₃ H ₇	H	OC_2H_5	NHCH ₃	0	N	N	
102	О	n-C ₃ H ₇	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
103	0	n-C ₃ H ₇	H	OCH ₃	CH ₃	0	N	N	
104	0	n-C ₃ H ₇	H	Cl	CH ₃	0	N	N	
105	0	n-C ₃ H ₇	H	CH ₃	CH ₃	0	N	N	
106	0	$n-C_3H_7$	H	OCH ₃	OCH ₃	S	CH	N	•
107	0	n-C ₃ H ₇	B	OCH ₃	CH ₃	S	CH	N	
108	0	n-C ₃ H ₇	H	CH ₃	CH ₃	S	CH	N	
109	O.	n-C ₃ H ₇	H	OCH ₃	OCH ₃	S	N	N	
110	0	n-C ₃ H ₇	H	OCH ₃	CH ₃	S	N	N	
111	0	$n-C_3H_7$	H	CH ₃	CH ₃	S	N	N	
112	0	i-C ₃ H ₇	H	OCH ₃	OCH ₃	0	CH	N	
113	0	i-C ₃ H ₇	CH ₃	OCH ₃	OCH ₃	0	CH	N	
114	0	$i-C_3H_7$	CH ₃	OCH ₃	CH ₃	0	N	N	
115	0	i-C ₃ H ₇	H	CH ₃	CH ₃	0	CH	N	
116	0	i-C ₃ H ₇	H	OCH ₃	CH ₃	0	CH	N	
117	0	i-C ₃ H ₇	H	CH ₃	CH ₃	0	N	N	
118	0	$i-C_3H_7$	H	OCH ₃	CH ₃	0	N	N	
119	0	$i-C_3H_7$	H	OCH3	-	0	N	N	
120	0	$i-C_3H_7$	H	OCH ₃	Cl	0	CH	N	•
121	0	i-C ₃ H ₇	H	OCF ₂ H	CH ₃	0	CH	N	

Fortsetzung Ta	belle	4
----------------	-------	---

10.00									Schup.
Bsp		•	\mathbb{R}^{1}	\mathbb{R}^2	R ³	T	Y	Z	[°C]
Nr.	Q	R	R.	K-	Α.	••	-	_	
122		i-C ₃ H ₇	H	OCF ₂ H	OCF ₂ H	0	CH	N	
			Ħ	OCH ₃	Br	0	CH	N	
123			H ·	OCH ₃	OC ₂ H ₅	0	CH	N	
124		i-C ₃ H ₇	н	_	SCH ₃	0	CH	N	
125			H	OCH ₃	OC ₂ H ₅	0	И	N	
126		i-C ₃ H ₇	H.	OCH ₃	OC ₃ H ₇	0	CH	N	
127			н	OCH ₃	Cl	0	N	N	
		i-C ₃ H ₇	H	Cl	OC ₂ H ₅	0	CH	N	
129		- -	H	OC ₂ H ₅		0	СН	Ņ	
130		<u> </u>	н	C ₂ H ₅	OCH ₃	0	CH	N	,
131			н	CF ₃	OCH ₃	0	CH	N	
		i-C ₃ H ₇	H	OCH ₂ CF ₃	=	0	CH	N	
133			H	OCH ₂ CF ₃		0	CH	N	
134		•	H		OCH ₂ CF ₃	0	CH	N	
135 136		•	H	OCH ₂ CF ₃		0	N	N	
			H	OCH ₃	NHCH ₃	0.	N	N	
		i-C ₃ H ₇	H	OC ₂ H ₅	NHCH ₃	0	N	N	
138		i-C ₃ H ₇	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
139			H	OCH ₃	CH ₃	0	N	N	
140		•	H	Cl	CH ₃	0	N	N	
141		•	H	CH ₃	CH ₃	0	N	N	
142			H	OCH ₃	OCH ₃	s	СН	N	
143			H	OCH ₃	CH ₃	s	CH	N	
144		i-C ₃ H ₇	H	CH ₃	CH ₃	s	CH	N	
145		• -	H	OCH ₃	OCH ₃	s	N	N	
146			H	OCE3	CH ₃	S	N	N	
		i-C ₃ H ₇		•	CH ₃	s	N	N	
		3-7		OCH ₃	- ·	0	CH	N	
		CH ₂ CH=CH ₂		_	OCH ₃	0	CH	N	
150	0	CH ₂ CH=CH ₂	CH3		CH ₃	0	N	N	
		CH ₂ CH=CH ₂			CH ₃	0	CH	N	
152		_		CH ₃		0	CH	N	
153	0	CH ₂ CH=CH ₂	H	OCH ₃	CH ₃	•		**	

Fortsetzung '	Tabelle 4	
---------------	-----------	--

Bsp			•					Schap .
Nr. Q	R	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	w	¥	Z	[°C]
154 0	CH ₂ CH=CH ₂	H	CH ₃	CH ₃	0	n	N	
155 0	CH ₂ CH=CH ₂	H	OCH ₃	CH ₃	0	N	И	
156 0	CH ₂ CH=CH ₂	H	OCH ₃	OCH ₃	0	N	N	
157 0	CH2CH=CH2	H	OCH ₃	Cl	0	CH .	N	
15B O	CH2CH=CH2	Ħ	OCF ₂ H	CH ₃	0	CH	N	
159 0	CH ₂ CH=CH ₂	H	OCF ₂ H	OCF ₂ H	0	CH	N	,
160 0	CH ₂ CH=CH ₂	H	OCH ₃	Br	0	CH	N	
161 0	CH2CH=CH2	H	OCH ₃	OC ₂ H ₅	0	CH	N	
162 0	CH ₂ CH=CH ₂	H	OCH ₃	SCH ₃	0	CH	N	
163 0	CH2CH=CH2	H	OCH ₃	OC ₂ H ₅	0	N	N	
164 0	CH2CH=CH2	H	OCH ₃	OC ₃ H ₇	0	CH	N	
165 0	CH ₂ CH=CH ₂	H	OCH ₃	Cl	0	N	N	
166 0	$CH_2CH=CH_2$	H	Cl	OC ₂ H ₅	0	CH	N	
167 0	CH ₂ CH=CH ₂	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
168 0	CH2CH=CH2	H	C ₂ H ₅	OCH ₃	0	CH	N	
169 0	CH ₂ CH=CH ₂	H	CF ₃	OCH ₃	0	CH	N	
170 0	CH ₂ CH=CH ₂	H	OCH ₂ CF ₃	CH ₃	0	CH	N	
171 0	CH ₂ CH=CH ₂	H	OCH ₂ CF ₃	OCH ₃	0	CH	N	
172 0	CH ₂ CH=CH ₂	H	OCH ₂ CF ₃	OCH ₂ CF ₃	0	CH	N	
173 0	CH ₂ CH=CH ₂	H	OCH ₂ CF ₃	OCH ₃	0	N	N	
174 0	CH ₂ CH=CH ₂	H	OCH ₃	NHCH ₃	0	N	N	
175 0	CH ₂ CH=CH ₂	H	OC ₂ H ₅	NHCH ₃	0	N	N	
176 0	CH2CH=CH2	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
177 0	CH ₂ CH=CH ₂	Ħ	OCH ₃	CH ₃	0	N	N	
178 O	CH ₂ CH=CH ₂	H	Cl	CH ₃	0	N	И	
179 0	CH ₂ CH=CH ₂	H	CH ₃	CH ₃	0	N	N	
180 O	CH ₂ CH=CH ₂	H	OCH ₃	OCH ₃	S	CH	N	
181 0	CH ₂ CH=CH ₂	H	OCH ₃	CH ₃	S	CH	И	
182 0	CH ₂ CH=CH ₂	H	CH ₃	CH ₃	S	CH		
183 0	CH ₂ CH=CH ₂	H	OCH ₃	OCH ₃	S	N	N	
184 0	CH ₂ CH=CH ₂	H	OCH ₃	CH ₃	S	N	N	
185 0	CH ₂ CH=CH ₂	H	CH ₃	CH ₃	S	N	N	

Fortsetzung T	abelle 4
---------------	----------

		g Tabelle 4							Schoop.
Bsp.		•	R ¹	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z	[°C]
Nr. (2 -								
186 0	0 0	H ₂ C≡CH	H	OCH ₃	OCH ₃	0	CH	N	
187 (CH ₂ C≡CH	CH ₃	OCH ₃	OCH ₃	Ο,	CH	N	
188 (H ₂ C≡CH	CH ₃	OCH ₃	CH ₃	0	Ŋ	N	
189 (0 0	CH ₂ C≡CH	H	CH ₃	CH ₃	0	CH	N	
190	0 0	CH ₂ C≡CH	H	OCH ₃	CH ₃	0	CH	N	
191 (CH ₂ C≡CH	H	CH ₃	CH ₃	0	N	N	
192 (0 0	CH ₂ C=CH	H	OCH ₃	CH ₃	0	N	N	
193 (CH ₂ C=CH	H	OCH ₃	OCH3	Ο.	N	N	
194 (CH ₂ C≡CH	Ħ	OCH ₃	Cl	0	CH	N	
195		CH ₂ C=CH	Ħ	OCF ₂ H	CH ₃	0	CH	N	
196		CH ₂ C≡CH	Ħ	OCF ₂ H	OCF ₂ H	0	CH	N	
197		CH ₂ C≡CH	H	OCH _{3.}	Br	0	CH	N	
198		CH ₂ C≡CH	H	OCH ₃	OC ₂ H ₅	0	CH	N	
199		CH ₂ C≡CH	Ħ	OCH ₃	SCH ₃	0	CH	N	
200		_ CH ₂ C≡CH	H	OCH ₃	OC2H5	0	N	N	
201		CH ₂ C≡CH	Ħ	OCH ₃	OC ₃ H ₇	0	CH	N	
202		CH ₂ C≡CH	Ħ	OCH ₃	Cl	0	N	N	
203		CH ₂ C≡CH	H	Cl	OC ₂ H ₅	0	CH	N	
204		CH ₂ C≡CH	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
205		CH ₂ C≡CH	H	C ₂ H ₅	OCH ₃	0	CH	N	
206		CH ₂ C≡CH	H	CF ₃	OCH ₃	0	CH	N	
207		CH ₂ C≡CH	H	OCH ₂ CF ₃	CH ₃	0	CH	N	•
208		CH ₂ C≡CH	H	OCH ₂ CF ₃	OCH ₃	0	CH	Ŋ	•
209		CH ₂ C≡CH	Ħ	OCH ₂ CF ₃	OCH ₂ CF ₃	0	CH	N	
210		CH ₂ C≡CH	H	OCH2CF3	OCH ₃	0	N	N	
211		CH ₂ C≡CH	H	OCH ₃	NHCH ₃	0	И	N	
212		CH ₂ C=CH	H	OC ₂ H ₅	NHCH ₃	0	N	N	
213		CH ₂ C≡CH	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
		CH ₂ C≡CH	H	OCH ₃	CH ₃	0	N	N	
		CH ₂ C≡CH	H	Cl	CH ₃	0	N	N	
		CH ₂ C≡CH	H	CH ₃	CH ₃	0	N	N	
		CH ₂ C≡CH	Ħ	OCH ₃	OCH ₃	S	CH	N	
		_							

Fortsetzung	Tabelle	4
--------------------	---------	---

Bap									Schap.
Nr.		R	\mathbb{R}^1	\mathbb{R}^2	R ³	W	¥	Z	[°C]
									
218	0	CH ₂ C≡CH	H	OCH ₃	CH ₃	S	CH	N	
219	0	CH ₂ C≡CH	H	CH ₃	CH ₃	S	CH	N.	
220	0	CH ₂ C≡CH	Ħ	OCH ₃	OCH ₃	S	N	N	
221	0	CH ₂ C≡CH	H	OCH ₃	CH ₃	S	N	N	
222	0	CH ₂ C≡CH	Ħ	CH ₃	CH ₃	S	N	N	
223	0	n-C ₄ H ₉	H	OCH ₃	OCH ₃	0	CH	N	
224	0	n-C ₄ H ₉	CH ₃	OCH ₃	och3	0	CH	N	
225	0	n-C4H9	CH ₃	OCH ₃	CH ₃	0	N	N	
226	0	n-C ₄ H ₉	H	CH ₃	CH ₃	0	CH	N	
227	0	n-C ₄ H ₉	H	OCH ₃	CH ₃	0	CH	N	
228	Ó	$n-C_4H_9$	Ħ	CH ₃	CH ₃	0	N	N	
229	0	-n-C ₄ H ₉	H	OCH ₃	CH ₃	0	N	N	
230	0	n-C ₄ H ₉	H	OCH ₃	OCH ₃	Ó	N .	N	
231	0	$i-C_4H_9$	H	OCH ₃	OCH ₃	0	CH	N	
232	0	i-C ₄ H ₉	CH ₃	OCH ₃	OCH ₃	0	CH	N	
233	0	$i-C_4H_9$	CH ₃	OCH ₃	CH ₃	0	N	N	
234	0	$i-C_4H_9$	H	CH ₃	CH ₃	0	CH	N	
235	0	i-C ₄ H ₉	H	OCH ₃	CH ₃	· O ·	CH	N	
236	0	i-C ₄ H ₉	H	CH ₃	CH ₃	0	Ņ	N.	
237	0	$i-C_4H_9$	Ħ	OCH ₃	CH ₃	0	N	N	
238	0	$i-C_4H_9$	H	OCH ₃	OCH ₃	0	N	N	
239	O	$sekC_4H_9$	H	OCH3	OCH ₃	0	CH	N	
240	0	$sekC_4H_9$	CH ₃	OCH ₃	OCH ₃	0	CH	N	
241	0	$sekC_4H_9$	CH ₃	OCH ₃	CH ₃	0	N	N	
242	0	$sekC_4H_9$	H	CH ₃	CH ₃	0	CH	N	
243	0	$sekC_4H_9$	H	OCH ₃	CH ₃	0	CH	N	
244	0	$sekC_4H_9$	H	CH ₃	CH ₃	0	N	N	
245	0	$sekC_4H_9$	H	OCH ₃	CH ₃	0	N	N	
246	0	$sekC_4H_9$	H	OCH ₃	OCH ₃	0	N	N	
247	0	t−C ₄ H ₉	H	OCH ₃	OCH ₃	0	CH		
248	0	t-C4H9	CH ₃	OCH ₃	OCH ₃	0	CH	N	
249	0	t-C ₄ H ₉	CH ₃	OCH ₃	CH ₃	0	N	N	

Fortsetzung	Tabelle	4
--------------------	---------	---

I.OI Mem								Schap.		
Bsp	_	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	W	Y	Z	[°C]		
Nr. Q	R	PC.	A.	••						
250 O	t-C ₄ H ₉	н	CH ₃	CH ₃	0	CH	N			
250 O	t-C ₄ H ₉	H	OCH ₃	CH ₃	0	CH	N			
251 O	t-C ₄ H ₉	H	CH ₃	CH ₃	0	N	N			
252 O	t-C ₄ H ₉	H	OCH ₃	CH ₃	0	N	N			
254 O	t-C ₄ H ₉	H	OCH ₃	OCH ₃	0	N	N	•		
255 O	CH ₂ CH ₂ Cl	H	OCH ₃	OCH ₃	0	CH	N			
256 O	CH ₂ CH ₂ CL	CH ₃	OCH ₃	OCH ₃	0	CH	N			
257 0	CH ₂ CH ₂ Cl	CH ₃	OCH ₃	CH ₃	0	N	N			
258 0	CH ₂ CH ₂ Cl	H	CH ₃	CH ₃	0	CH	N			
259 0	CH ₂ CH ₂ Cl	H	OCH ₃	CH ₃	. 0	CH	N			
260 0	CH ₂ CH ₂ C1	H	CH ₃	CH ₃	0	N	N			
261 0		н	OCH ₃	CH ₃	O	N	N			
262 0	CH ₂ CH ₂ Cl	H	OCH3	OCH ₃	0	N	N			
263 0	CH2CH2OCH3	H	OCH ₃	OCH ₃	0	CH	N			
264 0	CH ₂ CH ₂ OCH ₃	CH ₃	OCH ₃	OCH ₃	. 0	CH.				
265 0	CH ₂ CH ₂ OCH ₃	CH ₃		CH ₃	. 0.	N	_N			
266 0	CH ₂ CH ₂ OCH ₃	H	CH ₃	CH ₃	Ō	CH	N			
267 0	CH ₂ CH ₂ OCH ₃	Ħ	OCH ₃	CH ₃	0	CH	N			
268 0	CH ₂ CH ₂ OCH ₃	Ħ.	CH ₃	CH ₃	0	N	N			
269 0	CH ₂ CH ₂ OCH ₃	H	OCH3	CH ₃	0	N	N			
270 0	CH ₂ CH ₂ OCH ₃	H	OCH3	OCH ₃	0	N	N			
271 0	C-C6H11	H	OCH ₃	OCH ₃	0	CH	N			
272 0	c-C ₆ H ₁₁	CH ₃	OCH ₃	OCH ₃	0	CH	N			
273 0	c-C ₆ H ₁₁	CH ₃		CH ₃	0	N	N			
274 0	C-C ₆ H ₁₁	н	CH ₃	CH ₃	. 0	CH	N			
275 0	C-C ₆ H ₁₁	Ħ	OCH ₃	CH ₃	0	CH	N			
276 0	-	H	CH ₃	CH ₃	0	N	N			
277 0		н	OCH ₃	CH ₃	0	N	N			
278 O		H	OCH ₃	OCH ₃	0	N	N			

Tabelle 5

Bsp									Schoop.
Nr.		R	R ¹	\mathbb{R}^2	R ³	W	¥	Z	[°C]
1	0	CH ₃	н	OCH ₃	OCH ₃	0	CH	N	199-202
2	0	CH ₃	CH ₃	OCH ₃	OCH ₃	0	CH	N	
3	0	CH ₃	CH ₃	OCH ₃	CH ₃	0	N	N	
4	Q.	CH ₃	H	CH ₃	CH ₃	0	CH	N	212-5
5	0	CH ₃	н	OCH ₃	CH ₃	0	CH	N	193-4
6	0	CH ₃	н	CH ₃	CH ₃	0	N	N	196-7
7	0	CH ₃	н	OCH ₃	CH ₃	0	N	N	192
8	0	CH ₃	, H	OCH ₃	OCH ₃	0	N	N	
9	0	CH ₃	Ħ	OCH ₃	Cl	0	CH	N	
10	0	CH3	Ħ	OCF ₂ H	CH ₃	0	CH	N	
11	0	CH ₃	н	OCF ₂ H	OCF ₂ H	0	CH	N	
12	0	CH ₃	Ħ	OCH ₃	Br	0	CH	N	
13	0	CH ₃	H	OCH ₃	OC2H5	0	CH	N	
14	0	CH ₃	н	OCH ₃	SCH ₃	0	CH	N	
15	0	CH ₃	H	OCH ₃	OC ₂ H ₅	0	N	N	
16	0	CH ₃	н	OCH ₃	OC ₃ H ₇	Ο,	CH	N	
17	0	CH ₃	н	OCH ₃	Cl	0	N	N	
18	0	CH ₃	н	Cl	OC ₂ H ₅	0	CH	N	
19	0	CH ₃	н	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
20	0	CH ₃	н	C ₂ H ₅	OCH ₃	0	CH	N	
21	0	CH ₃	H.	CF ₃	OCH ₃	0	CH	N	
22	0	CH ₃	H	OCH ₂ CF ₃	CH ₃	0	CH	N	
23	0	CH ₃	Ħ	OCH ₂ CF ₃	OCH ₃	0	CH	N	
24	0	CH ₃	H	OCH ₂ CF ₃	OCH ₂ CF ₃	0	CH	N	
25	0	CH ₃	H	OCH ₂ CF ₃	OCH ₃	0	N	N	

Fortse	tzung	ı	ab	ene	5

_									Schup.
Bsp			\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z	[°C]
Nr.	Q	R							
26	0	CH ₃	Ħ	OCH ₃	NHCH ₃	0	N	N	
27	0	CH ₃	Ħ	OC ₂ H ₅	NHCH ₃	0	N	N	
28	0	CH ₃	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
29	0	CH ₃	H	OCH ₃	CH ₃	0	И	N	
30	0	CH ₃	Ħ	Cl	CH ₃	0	N	N	
31	0	CH ₃	Ħ	CH ₃	CH ₃	0	N	N	
32	0	CH ₃	Ħ	OCH ₃	OCH ₃	S	CH	N	
33	0	CH ₃	н	OCH ₃	CH ₃	s	CH	N	
34	0	CH ₃	Ħ	CH ₃	CH ₃	S	CH	N	
35	0	CH ₃	H	OCH ₃	OCH ₃	S	N	N	
·36	0	CH ₃	H	OCH ₃	CH ₃	S	N	N	•
37	0	CH3	H	CH ₃	CH ₃	S	N	N	
38	0	C ₂ H ₅	Ħ	OCH ₃	OCH ₃	0	CH	N	182
39	0	C ₂ H ₅	CH ₃	OCH ₃	OCH ₃	0	CH	N	
40	0	C ₂ H ₅	CH ₃	OCH ₃	CH ₃	0	N	N	
41	0	C ₂ H ₅	н	CH ₃	CH ₃	0	CH	N	
42	0	C ₂ H ₅	Ħ.	OCH ₃	CH ₃	0	CH	N	
43	0	C ₂ H ₅	H	CH3	·· CH ₃	0	N	N	
44	0.	C ₂ H ₅	H	OCH ₃	CH ₃	0	N	N	177-179
45	0	C ₂ H ₅	н	OCH ₃	OCH ₃	0	N	N	
46	0	C ₂ H ₅	н	OCH ₃	Cl	0	CH	N	
47	0	C ₂ H ₅	н	OCF ₂ H	CH ₃	0	CH	N	
48	0	C ₂ H ₅	H	OCF ₂ H	OCF ₂ H	0	CH	N	
49	0	C ₂ H ₅	H -	OCH ₃	Br	0	CH	N	
50	Ö	C ₂ H ₅	. н	OCH ₃	OC ₂ E ₅	0	CH	N	
51	0	C ₂ H ₅	H	OCH ₃	SCH ₃	0	CH	N	
52	0	C2H5	H	OCH ₃	OC ₂ H ₅	0	N	N	
53	0	C ₂ H ₅	H	OCH ₃	OC3H7	0	CH	И	
54	Ó	C ₂ H ₅	H	OCH ₃	Cl	0	N	N	
55	0	C ₂ H ₅	H	Cl	OC ₂ H ₅		CH	N	
56	0	C ₂ H ₅	H	OC ₂ H ₅			CH	N	
57	0		Ħ	C ₂ H ₅	OCH ₃	0	CH	N	

Fortsetzung	Tabelle 5
-------------	-----------

Fort	setzi	ung Tabelle 5							Schmp.
Bsp	. –		_1	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z	[%]
Nr.	Q	R	R ¹	R*	R.	**	•		
58	0	C ₂ H ₅	H	CF ₃	OCH ₃	0	CH	N	
59	0	C ₂ H ₅	Ħ	OCH2CF3	CH ₃	0	CH	N	
60	0	C ₂ H ₅	H	OCH ₂ CF ₃	OCH3	0	CH	N	
61	0	C ₂ H ₅	н	OCH ₂ CF ₃	OCH2CF3	0	CH	N	
62	0	C ₂ H ₅	я	OCH ₂ CF ₃		0	N	N	
63	0	C ₂ H ₅	Ħ	OCH ₃	NHCH ₃	0	N	N	
64	0	C ₂ H ₅	H	OC ₂ H ₅	NECH ₃	0	N	N	
65	0.	C ₂ H ₅	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
66	0	C ₂ H ₅	H	OCH ₃	CH ₃	0	N	N	
67	0	C ₂ H ₅	Ħ	Cl	CH ₃	0	N	N	
68	0	C ₂ H ₅	Ħ	CH ₃	CH ₃	0	N	N	•
69	0	C ₂ H ₅	Ħ	OCH ₃	OCH ₃	S	CH	N	
70	0	C ₂ H ₅	н	OCH ₃	CH ₃	s	CH	N	
71	0	C ₂ H ₅	Ħ	CH ₃	CH ₃	s	CH	N	
72	Ö	C ₂ H ₅	H	OCH ₃	OCH ₃	S	N	N	
73	0	C ₂ H ₅	H	OCH ₃	CH ₃	s	N	N	
74	0	C ₂ H ₅	н	CH ₃	CH ₃	s	N	N	
75	0	n-C ₃ H ₇	B	OCH ₃	OCH3.	0	CH	N	186-188
76	0	$n-C_3H_7$	CH₃	OCH ₃	OCH ₃	0	CH	N	
77	0	$n-C_3H_7$	CH ₃		CH ₃	0	N	N	
78	0	n-C ₃ H ₇	H	CH ₃	CH ₃	0	CH	N	
79	0	n-C ₃ H ₇	н	OCH ₃	CH ₃	O	СН	N	
80	0	n-C ₃ H ₇	H	CH ₃	CH ₃	0	N	N	
81	0		H	OCH ₃	CH ₃	0	N	N	107-108
82	0	-	H	OCH ₃	OCH ₃	0	N	N	
83	0	•	H	OCH ₃	Cl	0	CH	N	
84	0	***	H	OCF ₂ H	CH ₃	0	CH	N	
85			H	OCF ₂ H	OCF ₂ H	0	CH	N	
86			H	OCH ₃	Br	0	CH	N	
87			н	OCH ₃	OC ₂ H ₅	0	CH	N	
88			H	OCH ₃	SCH ₃	0	CH	N	
89		-	H	OCH ₃	OC ₂ H ₅	0	N	N	
09	U	3/		•					

Fort	setzi	ung Tabelle 5	•						Schmp.
Bsp.	. –			•	_3	W	Y .	Z	[%]
Mr.	Q	R	R ¹	\mathbb{R}^2	R ³	₩.	-	-	
	0	n-C ₃ H ₇	Ħ	OCH ₃	OC ₃ H ₇	0	CH	N	
90 91	0	n-C ₃ H ₇	H	OCH ₃	Cl	0	n	N	
92	0	n-C ₃ H ₇	н	Cl	OC ₂ H ₅	0	CH	N	
93	0	n-C ₃ H ₇	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
94	0	$n-C_3H_7$	H	C ₂ H ₅	OCH ₃	0	CH	N	
95	0	n-C ₃ H ₇	H	CF ₃	OCH ₃	0	CH	N	4
96	0	$n-C_3H_7$	H	OCH ₂ CF ₃	CH ₃	0	CH	N	
97	0	n-C ₃ H ₇	H	OCH ₂ CF ₃	OCH3	0	CH	N	•
98	0	$n-C_3H_7$	Ħ	OCH ₂ CF ₃	OCH ₂ CF ₃	0	CH	N	
99	0	n-C ₃ H ₇	H	OCH ₂ CF ₃	OCH ₃	0	N	N	
100		n-C ₃ H ₇	H	OCH ₃	NHCH ₃	0	N	N	
101		n-C ₃ H ₇	H	OC ₂ H ₅	NHCH ₃	0	N	N	
102		n-C ₃ H ₇	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
103		n-C ₃ H ₇	Ħ	OCH ₃	CH ₃	0	N	N	
104		n-C ₃ H ₇	H	Cl	CH ₃	0	N	N	
105		n-C ₃ H ₇	н	CH ₃	CH₃	0	N	N	
106		n-C ₃ H ₇	Ħ	OCH ₃	OCH ₃	S	CH	N	
107		n-C ₃ H ₇	H	OCH ₃	CH₃	S	CH	N	
108			H	CH ₃	CH3	S	CH	N	
109		n-C ₃ H ₇	H	OCH ₃	OCH ₃	S	N	N	
110		n-C ₃ H ₇	H	OCH ₃	CH ₃	S	N	N	
111		n-C ₃ H ₇	E	CH ₃	CH ₃	S	N	· N	
112		i-C ₃ H ₇	H	OCH ₃	OCH ₃	0	CH	N	185
113		i-C ₃ H ₇	CH ₃	OCH ₃	OCH3	0	CH	N	
114		i-C ₃ H ₇	CH ₃	OCH ₃	CH ₃	0	N	N	
115			H	CH ₃	CH ₃	0	CH	N	
	5 0		H	OCH ₃	CH ₃	0	CH	N	
		i-C ₃ H ₇	H	CH ₃	CH₃	0	N	N	•
		i-C ₃ H ₇	Ħ	OCH3	CH ₃	0	N	N	150
		i-C ₃ H ₇	H	OCH ₃	OCH ₃	0		N	
		i-C ₃ H ₇	н	OCH ₃	Cl	0			
		i-C ₃ H ₇	H	OCF ₂ H	CH ₃	0	CH	N	
	- ~	31		_					

Fort	setz	ung Tabelle 5		•					
Bsp			_		_			_	Schmp.
Nr.	Q	R	Ri	\mathbb{R}^2	R3	77	¥	Z	[°C]
122	0	i-C ₃ H ₇	H	OCF ₂ H	OCF ₂ H	0	CH	N	· · · · · · · · · · · · · · · · · · ·
123		i-C ₃ H ₇	H	OCH ₃	Br	0	CH	N	
124		-	H	OCH ₃	OC ₂ H ₅	0	CH	N	
125		i-C ₃ H ₇	H	OCH ₃	SCH ₃	٥	CH	N	
126			H	OCH ₃	OC ₂ H ₅	0	N	N	
127		i-C ₃ H ₇	H	OCH ₃	OC ₃ H ₇	0	CH	N	
128		i-C ₃ H ₇	H	OCH ₃	Cl	0	N	N	
129		= -	H	Cl	OC ₂ H ₅	O	СН	N	
130		i-C ₃ H ₇	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
131		i-C ₃ H ₇	H	C ₂ H ₅	OCH ₃	0	CH	N	
132		i-C ₃ H ₇	H	CF ₃	OCH3	0	CH	N	
133		i-C ₃ H ₇	H	OCH ₂ CF ₃	CH ₃	0	CH	N	
134	0	i-C ₃ H ₇	Ħ	OCH ₂ CF ₃	OCH3	0	CH	N	
135	0	i-C ₃ H ₇	H	OCH ₂ CF ₃	OCH2CF3	0	CH	N	
136	0	i-C ₃ H ₇	H	OCH ₂ CF ₃	OCH ₃ .	Ō	N_	N	
137	0	i-C ₃ H ₇	H	OCH ₃	NHCH ₃	O .	N_		•
138	0	i-C ₃ H ₇	Ħ	OC ₂ H ₅	NHCH ₃	0	N	.N	
139	0	i-C ₃ H ₇	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	,
140	0	i-C ₃ H ₇	H	OCH ₃	CH ₃	0	N	N	
141	0	i-C ₃ H ₇	H	Cl	CH ₃	0	N	N	
142	0	i-C ₃ H ₇	B	CH ₃	CH ₃	0	N	N	
143	0	i-C ₃ H ₇	H	OCH ₃	OCH ₃	S	CH	· N	
144	0	i-C3H7	Ħ	OCH ₃	CH ₃	S	CH	N	
145	0	$i-C_3H_7$	H	CH ₃	CH ₃	S	CH	N	
146	0	$i-C_3H_7$	H	OCH ₃	OCH ₃	S	N	N	
147	0	$i-C_3H_7$	H	OCH ₃	CH ₃	S	N	N	
148	0	i-C ₃ H ₇	Ħ	CH ₃	CH ₃	S	N	N	
149	0	CH ₂ CH=CH ₂	H	OCH ₃	OCH ₃	0	CH	N	
150	0	CH2CH=CH2	CH ₃	OCH ₃	OCH ₃	0	CH	N	•
151	. 0	CH ₂ CH=CH ₂	CH ₃	OCH ₃	CH ₃	0	N	N	
152	. 0	CH ₂ CH=CH ₂	H	CH ₃	CH ₃	0	CH	N	
153	0	CH ₂ CH=CH ₂	H	OCH ₃	CH ₃	0	CH	N	

Fortsetzung	Tabelle 5
--------------------	-----------

1.01 10									Schup.
Bsp.	Bsp		1	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z	[°C]
Nr.	Q	R	R ¹	K		•	_		
			н	CH ₃	CH ₃	0	N	N	
154		CH ₂ CH=CH ₂			CH ₃	0	N	N	
155	0	CH ₂ CH=CH ₂	H	OCH ₃	OCH ₃	0		N	
156		CH ₂ CH=CH ₂	Ħ	OCH ₃	_	0	CH	N	
157	0	CH ₂ CH=CH ₂	H	OCH ₃	Cl	0	CH	N	
158	0	CH ₂ CH=CH ₂	H	OCF ₂ H	CH ₃		CH	N	
159	0	CH ₂ CH=CH ₂	H	OCF ₂ H	OCF ₂ H	0		N	
160	0	CH ₂ CH=CH ₂	H	OCH ₃	Br	0	CH		
161	0	CH2CH=CH2	Ħ	OCH ₃	OC ₂ H ₅	0	CH	N	
162	0	CH ₂ CH=CH ₂	H	OCH ₃	SCH ₃	0	CH	N	
163	0	CH ₂ CH=CH ₂	Ħ	OCH3	OC ₂ H ₅	0	N	N	
164	0	CH ₂ CH=CH ₂	Ħ	OCH ₃	OC3H7	0	CH	N	
165		CH ₂ CH=CH ₂	Ħ	OCH ₃	Cl	0	N	N	•
166		CH ₂ CH=CH ₂	丑	Cl	OC ₂ H ₅	0	CH	N	
167		CH ₂ CH=CH ₂	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
168		CH ₂ CH=CH ₂	Ħ	C ₂ H ₅	OCH ₃	0	CH	N	
169		CH ₂ CH=CH ₂	H	CF ₃	OCH ₃	0	CH	N	
170		CH ₂ CH=CH ₂	H	OCH2CF3	CH ₃	0	CH	N	
171		CH ₂ CH=CH ₂	H	OCH ₂ CF ₃	OCH3	0	CH	N	
172		CH ₂ CH=CH ₂	H	OCH ₂ CF ₃	` 	0	CH	N	
173		CH ₂ CH=CH ₂	H	OCH ₂ CF ₃		0	N	N	
174		CH ₂ CH=CH ₂	H	OCH ₃	NHCH3	0	N	N	
175		CH ₂ CH=CH ₂	H	OC ₂ H ₅	NHCH ₃	0	N	N	
176		CH ₂ CH=CH ₂	H	С ₂ Н ₅	OC ₂ H ₅	0	N	N	
_		CH ₂ CH=CH ₂		OCH ₃	CH ₃	0	N	N	
177			H	Cl	CH ₃	0	N	N	
178		CH ₂ CH=CH ₂	H	CH ₃	CH ₃	0	N	N	
179				OCH ₃	OCH ₃	s	СН	N	
180		CH ₂ CH=CH ₂	H	OCH ₃	CH ₃	s	CH		
		CH ₂ CH=CH ₂		•	_	s	CH		
		CH ₂ CH=CH ₂		CH ₃	CH ₃	S	N	N	
		CH ₂ CH=CH ₂		OCH ₃	OCH ₃			N	
184	0	CH ₂ CH=CH ₂	H	OCH ₃	CH ₃	S	N		
185	0	CH ₂ CH=CH ₂	H	CH ₃	CH ₃	S	N	N	

Fort	setz	ung Tabelle 5							
Bsp	. –	•			_				Schup.
Nr.	Q	R	\mathbb{R}^1	\mathbb{R}^2	R ³	W	¥	Z	[°C]
186	0	CH ₂ C≡CH	H	OCH ₃	OCH ₃	0	CH	N	
187	0	CH ₂ C≡CH	CH ₃	OCH ₃	OCH ₃	0	CH	N	
188	0	CH ₂ C≡CH	CH ₃	OCH ₃	CH ₃	0	N	N	
189	0	CH ₂ C≡CH	H	CH ₃	CH ₃	0	CH	N	
190	0	CH ₂ C≡CH	Ħ,	OCH ₃	CH ₃	0	CH	N	
191	0	CH ₂ C≡CH	H	CH ₃	CH ₃	0	N	N	
192	0	CH ₂ C≡CH	H	OCH ₃	CH ₃	0	N	N	•
193	0	CH2C≡CH	H	OCH ₃	OCH ₃	0	N	N	
194	0,	CH ₂ C≡CH	H	OCH ₃	Cl	0	СН	N	
195	0	CH ₂ C≡CH	Ħ	OCF ₂ H	CH ₃	0	CH	N	
196	0	CH ₂ C≡CH	H	OCF ₂ H	OCF ₂ H	0	CH	N	
197		CH ₂ C≡CH	H	OCH ₃	Br	0	CH	N	
198	0	CH ₂ C≡CH	H	OCH ₃	OC ₂ H ₅	0	CH	N	
199	0	CH ₂ C≡CH	H	OCH ₃	SCH ₃	0	CH	N	
200	0	CH ₂ C≡CH	н	OCH ₃	OC ₂ E ₅	0	N	N	
201	0	CH ₂ C≡CH	H	OCH ₃	OC ₃ H ₇	0	CH	N	
202	0	CH ₂ C≡CH	H	OCH ₃	Cl	0	N	N	•
203	0	CH ₂ C≡CH	H	Cl	OC ₂ H ₅	0	CH	N	
204	0	CH ₂ C≡CH	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
205	0	CH ₂ C≡CH	H	C ₂ E ₅	OCH ₃	0	CH	N	
206	0	CH ₂ C≡CH	н	CF ₃	OCH ₃	0	CH	N	
207	0	CH ₂ C≡CH	Ħ	OCH ₂ CF ₃	CH ₃	0	CH	N	
208	0	CH ₂ C≡CH	H	OCH ₂ CF ₃	OCH ₃	0	CH	N	*
209	0	CH ₂ C≡CH	H	OCH ₂ CF ₃	OCH ₂ CF ₃	0	CH	N	
210	0	CH ₂ C≡CH	H	OCH ₂ CF ₃	OCH ₃	0	N	N	
211	0	CH ₂ C≡CH	H	OCH ₃	NHCH ₃	0	N	N	
212	0	CH ₂ C≡CH	H	OC ₂ H ₅	NHCH ₃	0	N	N	
213	0	CH ₂ C≡CH	Ħ	C2H5	OC ₂ H ₅	0	N	N	
214	0	CH ₂ C≡CH	Ħ	OCH ₃	CH ₃	0	N	N	
215	0	CH ₂ C≡CH	H	Cl	.CH ₃	0	N	N	
216	0	CH ₂ C≡CH	H	CH ₃	CH ₃	0	N	N	
217	0	CH ₂ C≡CH	Ħ	OCH ₃	OCH ₃	S	CH	N	

Fortsetzung Tabelle 5

Fortsetz	ung Tabelle 5							Schap -
Bsp		_1	\mathbb{R}^2	R ³	w	Y	Z	[%]
Nr. Q	R	\mathbb{R}^1	R"	~				
218 0	CH ₂ C=CH	н	OCH ₃	CH ₃	s	CH	N	
219 0	CH ₂ C≡CH	Ħ	CH ₃	CH ₃	S	CH	N	*
220 0	CH ₂ C≡CH	Ħ	OCH ₃	OCH ₃	s	N	N	
	CH ₂ C≡CH	H	OCH ₃	CH ₃	s	N	И	
221 O 222 O	CH ₂ C≡CH	H	CH ₃	CH ₃	S	N	N	
223 0	n-C ₄ H ₉	H	OCH ₃	OCH ₃	0	CH	N	
		CH ₃	OCH ₃	OCH ₃	0	CH	N	-
224 0		CH ₃	OCH ₃	CH ₃	0	N	N	
225 O 226 O		H	CH ₃	CH ₃	0,	CH	N	
		H	OCH ₃	CH ₃	0	CH	N	
227 0		Ħ	CH ₃	CH ₃	0	N	N	
228 0		H	OCH ₃	CH ₃	• 0	N	N	
229 0		я	OCH ₃	OCH ₃	0	N	N	
230 0		Ħ	OCH ₃	OCH ₃	0	CH	N	
231 0		CH ₃		OCH ₃	0	CH	N	
232 0		_	OCH ₃	CH ₃	0	N	N	
233 0		H H	CH ₃	CH ₃	0	CH	N	
234 0		н	OCH ₃	CH ₃	O	CH	N	
235 0		H	CH ₃	CH ₃	0	N	N	
236 0		H	OCH ₃	CH ₃	0	N	N	*
237 C	<u> </u>	H	OCH ₃	OCH ₃	0	N	N	
238 0	·		OCH ₃	OCH ₃	0	CH	N	
239 (H	OCH ₃	OCH ₃	0	CH	N	
240				CH ₃	0		N	
241 (•	CH ₃	o		N	
242		H	CE ₃ OCH ₃	CH ₃	0			
243 (H ••		CH ₃	0		N	
	sekC ₄ H ₉		CH ₃	CH ₃	c		N	ſ
	o sek C_4H_9		OCH ₃	_			N	
	0 sek C_4H_9		OCH ₃					
	O t-C ₄ H ₉	H	OCH ₃	-				
	O t-C ₄ H ₉		OCH ₃	-			N	
249	O t-C ₄ H ₉	CE	CH ₃ OCH ₃	CH ₃			-	

Fort	Fortsetzung Tabelle 5										
Bsp									Schmp.		
Nr.	Q	R	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	W	¥	Z	[°C]		
250	0	t-C ₄ H ₉	H	CH ₃	CH ₃	0	CH	N			
251	0	t-C ₄ H ₉	H	OCH ₃	CH ₃	0	CH	N			
252	0	t-C ₄ H ₉	H	CH ₃	CH ₃	0	N	N			
253	0	t-C ₄ H ₉	H	OCH ₃	CH ₃	0	N	N			
254	0	t-C ₄ H ₉	H	OCH ₃	OCH ₃	0	N	N			
255	0	CH2CH2C1	H	OCH ₃	OCH ₃	0	CH	N			
256	0	CH2CH2C1	CH ₃	OCH ₃	OCH ₃	0	CH	N			
257	0	CH2CH2C1	CH ₃	OCH ₃	CH ₃	0	N	N			
258	0	CH2CH2C1	H	CH ₃	CH ₃	0	CH	N			
259	0	CH2CH2C1	Ħ	OCH ₃	CH ₃	0	CH	N			
260	0	CH2CH2C1	H	CH ₃	CH ₃	0	N	N			
261	0	CH2CH2C1	H	OCH ₃	CH₃	0	N	N			
262	0	CH2CH2C1	H	OCH ₃	OCH ₃	0	N	N			
263	0	СH ₂ CH ₂ OCH ₃	Ħ	OCH ₃	OCH ₃	0	CH	N			
264	0	CH2CH2OCH3	CH ₃	OCH ₃	OCH ₃	0	CH	N			
265	0	СH ₂ CH ₂ OCH ₃	CH ₃	OCH ₃	CH ₃	0	N	N			
266	0	CH ₂ CH ₂ OCH ₃	H	CH ₃	CH ₃	0	CH	N			
267	0	CH2CH2OCH3		OCH ₃	CH ₃	0	CH	N			
268	0	CH2CH2OCH3	H	CH ₃	CH ₃	0	N	N			
269	0	CH ₂ CH ₂ OCH ₃	Ħ	OCH ₃	CH ₃	0	N	N	•		
270	0	CH ₂ CH ₂ OCH ₃	Ħ	OCH ₃	OCH ₃	0	N	И			
271	0	c-C6H11	Ħ	OCH ₃	OCH ₃	0	CH	N			
272	0		CH3	OCH ₃	OCH ₃	0	CH	N			
273	0	c-C ₆ H ₁₁	CH ₃	OCH ₃	CH ₃	0	N	N			
274	0	c-C ₆ H ₁₁	H	CH ₃	CH ₃	0	CH	N			
		c-C ₆ H ₁₁	Ħ	OCH ₃	CH ₃	0	CH	N			
		C-C6H11	H	CH ₃	CH ₃	0	N	N			
		C-C6H11	H	OCH ₃	CH ₃	0	N	N			
		C-C ₆ H ₁₁	н	OCH ₃	_	0	N	N			
		CH ₃	н	CH ₃	Cl	0	CH	N	214-6Z		
280	o	CH ₃	Н	CH ₃	H	0	CH	N	201-3 Z		

PCT/EP92/00304

WO 92/13845

-76-

Fortsetzung Tab	elle 5						Schmp.
Bsp Nr. Q R	R^1	R ²	\mathbb{R}^3	W	¥	Z	[°C]
281 O CH ₃	Н	OCH ₃	CH₃	Ö	N	N	Na-Salz 200

Tabelle 6

			O						Schap.
Bsp	. –		_1	2	\mathbb{R}^3	W	Y	Z	[%]
Mr.	Ω	R	\mathbb{R}^1	\mathbb{R}^2	K.		• .		[0]
			-	ÓGT	OCH ₃	0	CH	N	173-177
1	0	CH ₃	H	OCH ₃	_	0	CH	N	
2	0	CH ₃	CH ₃	OCH ₃	OCH ₃		N.	N	
3	0	CH ₃	CH ₃	OCH ₃	CH ₃	0			
4	0	CH3	, H	CH ₃	CH ₃	0	CH	N	
5	0	CH ₃	H	OCH ₃	CH ₃	0	CH	N	
6	0	CH ₃	H	CH ₃	CH ₃	0	N	N	
7	0	CH3	Ħ	OCH ₃	CH ₃	0	N	N	187-188
8	0	CH ₃	Ħ	OCH ₃	OCH ₃	0	N	N	
9	0	CH ₃	H	OCH ₃	Cl	0	CH	N	
10	0	CH ₃	H	OCF ₂ H	CH ₃	0	CH	N	
11	0	CH ₃	н	OCF ₂ H	OCF ₂ H	0	CH	N	
12	0	CH ₃	H	OCH ₃	Br	0	CH	N	
13	0	CH ₃	н	OCH ₃	OC ₂ H ₅	0	CH	N	
14	0	CH ₃	H	OCH ₃	SCH ₃	, O	CH	N	
15	0	CH ₃	н	OCH ₃	OC ₂ H ₅	0	N	N	
16	0	CH ₃	н	OCH ₃	OC ₃ H ₇	0	CH	N	
17	0	CH ₃	н	OCH ₃	Cl	0	N	N	
18	0	CH ₃	н	Cl	OC ₂ H ₅	0	CH	N	
19	0	CH ₃	н	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
20	0	CH ₃	н	C ₂ H ₅	OCH ₃	0	CH	N	
21	0	CH ₃	н	CF ₃	OCH ₃	0	CH	N	
22	0	CH ₃	н	OCH ₂ CF ₃	CH ₃	0	CH	N	
23	0	CH ₃	н	OCH ₂ CF ₃	OCH ₃	0	CH	N	
24	0	CH ₃	н	OCH ₂ CF ₃	OCH ₂ CF ₃	0	CH	N	
25	o	CH ₃	н	OCH ₂ CF ₃	OCH ₃	0	N	N	
26	0	CH ₃	н	OCH ₃	NHCH ₃	0	N	N	
		3		_	-				

I OI L	Por Derzeng								Schoop.	
Bsp	. –			2	\mathbb{R}^3	W	Y .	Z	[°C]	
Nr.	Q	R	\mathbb{R}^1	R ²		••			·	
			Ħ.	OC ₂ H ₅	NHCH ₃	0	N	N	,	
27	0	CH ₃	H.	C ₂ H ₅	OC ₂ H ₅	0	N	N		
28	0	CH ₃		OCH ₃	CH ₃	0	N	N		
29	0	CH ₃	H	Cl	CH ₃	0	N	N		
30	0	CH ₃	H		CH ₃	0	N	N		
31	0	CH ₃	H	CH ₃	OCH ₃	s	CH	N		
32	0	CH ₃	H	OCH ₃	CH ₃	s	CH	N		
33	0	CH ₃	H	OCH ₃	-	s	CH	N		
34	0	CH ₃	H	CH ₃	CH ₃	S	N	N		
35	0	CH ₃	H	OCH ₃	OCH ₃	s	N	N		
36	0	CH ₃	Ħ	OCH ₃	CH₃	s	N	N		
37	0	CH ₃	H	CH ₃	CH ₃	0	CH	N ·		
38	0	C ₂ H ₅	H	OCH ₃	OCH ₃	0	CH	N		
39	0	C ₂ H ₅	CH ₃		OCH ₃		И	N		
40	0	C ₂ H ₅	CH ₃		CH ₃	0		N		
41	0	C ₂ H ₅	H	CH ₃	CH ₃	0	CH			
42	0	C ₂ H ₅	H	OCH ₃	CH ₃	0	CH	N		
43	0	C ₂ H ₅	Ħ	CH ₃	CH ₃	0	N	N		
44	0	C ₂ H ₅	H	OCH ₃	CH ₃	0	N	N	i	
45	0	C ₂ H ₅	H	OCH ₃	OCH ₃	0	N	N		
46	0	C ₂ H ₅	H	OCH ₃	Cl	0	CH	N		
47	0	C ₂ H ₅	H	OCF ₂ H	CH ₃	0	CH	N		
48	0	C ₂ H ₅	H	OCF ₂ H	OCF ₂ H	0	CH	N		
49	. 0	C ₂ H ₅	H	OCH ₃	Br	0	CH	N		
50	0	C ₂ H ₅	H	OCH ₃	OC ₂ H ₅		CH	N		
51	0	C ₂ H ₅	H	OCH ₃	SCH ₃	0	CH	N		
	Ó		H	OCH ₃	OC ₂ H ₅	0	N	N		
53	0		H	OCH ₃	OC ₃ H ₇		CH	N		
54	0		H	OCH ₃	Cl	0	N	N		
55			H	Cl	OC2H5	0	CH			
56	0		н	OC ₂ H ₅	OC2H5	0	CH	N		
57	0	-	H	C ₂ H ₅	OCH ₃	0	CH	N		
58	0		н	CF ₃	OCH ₃	0	CH	N		
20	J	~2~5		-						

Fort	setz	ung Tabelle 6						2		
Bsp				_					Schap.	
Nr.	Q	R	\mathbb{R}^1	\mathbb{R}^2	R ³	W	Y	Z	[°C]	
			H	OCH ₂ CF ₃	CH ₃	0	CH	N		
59	0	C ₂ H ₅			• ,	0	CH	N		
60	0	C ₂ H ₅	H	OCH ₂ CF ₃	·	0		N		
61	0	C ₂ H ₅	H	OCH ₂ CF ₃		0	N	N		
62	0	C ₂ H ₅	H	OCH ₂ CF ₃		0	n	N		
63	0	C ₂ H ₅	H	OCH ₃	NHCH ₃		N .	N	·	
64	0	C ₂ H ₅	H	OC ₂ H ₅	NHCH ₃	0				
65	0	C ₂ H ₅	H	C ₂ H ₅	OC ₂ H ₅	0	N	N		
66	0	C ₂ H ₅	H	OCH ₃	CH ₃	0	N	N		
67	0	C ₂ H ₅	H	Cl	CH ₃	0	N	N		
68	0	C ₂ H ₅	H	CH ₃	CH ₃	0	N	N		
69	0	C ₂ H ₅	H	OCH ₃	OCH ₃	S	CH	N		
70	0	C ₂ H ₅	Ħ	OCH ₃	CH ₃	S	CH	N		
71	0	C ₂ H ₅	H	CH ₃	CH ₃	S	CH	N		
72	0	С ₂ Н ₅	H	OCH ₃	OCH ₃	S	N	N		
73	0	C ₂ H ₅	H	OCH ₃	CH ₃	S	N	N		
74	0	C ₂ H ₅	H	CH ₃	CH ₃	s	N	N		
75	0	n-C ₃ H ₇	н	OCH ₃	OCH ₃	0	CH	N	•	
76	0	n-C ₃ H ₇	CH ₃	OCH ₃	OCH ₃	0	CH	N		
77	0	n-C ₃ H ₇	CH ₃	OCH ₃	CH ₃	0	N	N		
78	0	n-C ₃ H ₇	H	CH ₃	CH ₃	0	CH	N		
79	0	n-C ₃ H ₇	H	OCH ₃	CH ₃	0	CH	N		
80	0	n-C ₃ H ₇	H	CH ₃	CH ₃	0	N	N		
81	0	n-C ₃ H ₇	H	OCH ₃	CH ₃	0	N	N		
82	0	n-C ₃ H ₇	H	OCH ₃	OCH ₃	0	N	N		
83	0	n-C ₃ H ₇	H	OCH ₃	C1	0	СН	N		
84	0	n-C ₃ H ₇	н	OCF ₂ H	CH ₃	0	CH	N		
		- -	H	OCF ₂ H	OCF ₂ H	0	СН	N		
85	0	n-C ₃ H ₇	H	OCH ₃	Br	0	CH	N		
86	0	n-C ₃ H ₇		•	OC ₂ H ₅	0	CH	N		
87		.	H	OCH ₃		0	СН	N		
88	0		H	OCH ₃	SCH ₃	0		N		
89	0		H	OCH ₃	OC ₂ H ₅					
90	0	$n-C_3H_7$	H	OCH ₃	OC ₃ H ₇	0	CH	N		

Fort	setz	ung Tabelle 6							Schmp.
Bsp	. –		_	•	_3	_	Y	Z	[%]
Nr.	Q	R	RI	\mathbb{R}^2	\mathbb{R}^3	W	•	-	L -1
				OCH ₃	Cl	0	N	N	
91	0	n-C ₃ H ₇	H H	Cl	OC ₂ H ₅	0	CH	N	
92	0	n-C ₃ H ₇		OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
93	0	n-C ₃ H ₇	H		OCH ₃	0	CH	N	
94	0	n-C ₃ H ₇	H	C ₂ H ₅	OCH ₃	0	CH	N	
95	0	n-C ₃ H ₇	H.	CF ₃	_	0	CH	N	
96	0	$n-C_3H_7$	H	OCH ₂ CF ₃	CH ₃	0	CH	N	
97	Q	n-C ₃ H ₇	H	OCH ₂ CF ₃			CH	N	
98	0	n-C ₃ H ₇	Ħ	OCH ₂ CF ₃		0		N	
99	0	n-C3H7	H	OCH ₂ CF ₃	OCH ₃	0	N		
100	0	n-C ₃ H ₇	H	OCH ₃	NHCH ₃	0	N	N	•
101	0	n-C ₃ H ₇	H	OC ₂ H ₅	NHCH ₃	0	N	N	
102	0	n-C ₃ H ₇	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
103	0	n-C ₃ H ₇	H	OCH ₃	CH ₃	0	N	N	·
104	0	n-C ₃ H ₇	H	Cl	CH ₃	0	N	N	
105	0	n-C ₃ H ₇	Ħ	CH ₃	CH ₃	0	N	N	
106	0	n-C ₃ H ₇	H	OCH ₃	OCH ₃	S	CH	N	
107	0	n-C ₃ H ₇	H	OCH ₃	CH ₃	S	CH	N	
108		n-C ₃ H ₇	H	CE3	CH ₃	S	CH	N	
109		n-C ₃ H ₇	H	OCH ₃	OCH ₃	S	N	N	
110		n-C ₃ H ₇	H	OCH ₃	CH ₃	S	N	N	
111		n-C ₃ H ₇	H	CH ₃	CH ₃	S	N	N	
112		- - ,	Ħ	OCH ₃	OCH ₃	0	CH	N	
113		i-C ₃ H ₇	CH ₃	OCH ₃	OCH ₃	0	CH	N	•
114		i-C ₃ H ₇	CH ₃	OCH ₃	CH ₃	0	N	N	
		i-C ₃ H ₇	H	CH ₃	CH ₃	0	CH	N	
115			H	OCH ₃	CH ₃	0	СН	N	
116			H	CH ₃	CH ₃	0	N	N	
		i-C ₃ H ₇	Ħ	OCH ₃	CH ₃	0	N	N	
		i-C ₃ H ₇		•	OCH ₃	0	N	N	
119		= -	H	OCH3	C1	- 0			
		i-C ₃ H ₇	H	OCH ₃		0			
121	. 0	$i-C_3H_7$	H	OCF ₂ H	CH ₃				
122	2 0	$i-C_3H_7$	H	OCF ₂ H	OCF ₂ H	0	СН	14	

Fortsetzi	ang Tabelle 6							Schap.
Bsp		_	_	•			-	[°C]
Nr. Q	R	R ¹	R ²	\mathbb{R}^3	W	Y	Z	[-0]
123.0	i-C ₃ H ₇	H	OCH ₃	Br	0	CH	N	
123 O 124 O		H	OCH ₃	OC ₂ H ₅	0	CH	N	
		H	OCH ₃	SCH ₃	0	CH	N	
125 0		H	OCH ₃	OC ₂ H ₅	0	N	N	
	i-C ₃ H ₇	H	OCH ₃	OC ₃ H ₇	0	CH	N	
127 0	i-C ₃ H ₇	H	OCH ₃	C1	0	N	N	
128 0	i-C ₃ H ₇	B	Cl	OC ₂ H ₅	0	СH	N	
129 0	i-C ₃ H ₇	H	OC ₂ H ₅	OC ₂ H ₅	0	СН	N	
130 0	i-C ₃ H ₇	H	C ₂ H ₅	OCH ₃	0	СН	N	
131 0	_	H	CF ₃	OCH ₃	0	СН	N	
132 0	i-C ₃ H ₇	н	OCH ₂ CF ₃	-	0	CH	N	
133 0	i-C ₃ H ₇	H	OCH ₂ CF ₃		0	СН	N	
134 0	i-C ₃ H ₇	н		OCH ₂ CF ₃		CH	N	
135 0	- -		OCH ₂ CF ₃		. 0	N	N	
136 0	-	H					N	
137 0	<u> </u>	H	OCH ₃					•
138 0		H	OC ₂ H ₅	OC ₂ H ₅			- N	
139 0	i-C ₃ H ₇	H	C ₂ H ₅		0	N	N	
140 0	i-C ₃ H ₇	H	OCH ₃		0		N	
141 0	•	H	Cl	CH ₃	0	N	N	
142 0	• •	H	CH ₃	CH ₃	s	CH		
143 0		H	OCH ₃				N	
144 0	• •	H	OCH ₃	CH ₃	S			
145 0	i-C ₃ H ₇	H	CH ₃	CH ₃	S	CH		
146 0	i-C ₃ H ₇	H	OCH ₃	OCH ₃	S		N	
147 0	i-C ₃ H ₇	H	OCH ₃	CH ₃	S		N	
148 0	i-C ₃ H ₇	H	CH ₃	CH ₃	S		N	
149 0	CH ₂ CH=CH ₂	H	OCH ₃	OCH ₃	0			
150 0	CH ₂ CH=CH ₂	CH ₃	OCH ₃	OCH ₃	. 0			
151 0	CH ₂ CH=CH ₂	CH ₃	OCH3	CH ₃	0		N	
152 0	CH2CH=CH2	H	CH ₃	CH ₃	0			
153 0	CH2CH=CH2	Ħ	OCH3	CH ₃	0			
154 0	CH2CH=CH2	H	CH ₃	CH ₃	0	N	Ŋ	I

Fortsetz	ung Tabelle 6					•		Schmp.
Bsp			_	-3	_	¥	Z	[%]
Nr. Q	R	R ¹	\mathbb{R}^2	R ³	W	*	•	, -,
	67 67 CR	H	OCH ₃	CH ₃	0	N	N	·
155 0	CH ₂ CH=CH ₂		OCH ₃	OCH ₃	0	N	N	
156 0	CH ₂ CH=CH ₂	H	_	C1	0	CH	N	
157 0	CH ₂ CH=CH ₂	H	OCH ₃	CH ₃	0	CH	N	
158 O	CH ₂ CH=CH ₂	H	OCF ₂ H	-	0	CH	N	
159 0	CH ₂ CH=CH ₂	H	OCF ₂ H	OCF ₂ H	0	CH	N	
160 O	CH ₂ CH=CH ₂	H	OCH ₃	Br		CH	N	
161 0	CH ₂ CH=CH ₂	H	OCH ₃	OC ₂ H ₅	0			
162 0	$CH_2CH=CH_2$	H	OCH ₃	SCH ₃	0	CH	N	
163 0	CH2CH=CH2	Ħ	OCH ₃	OC ₂ H ₅	0	N	N	
164 0	CH ₂ CH=CH ₂	H	OCH ₃	OC ₃ H ₇	0	CH	N	
165 0	CH2CH=CH2	H	OCH ₃	Cl	0	N	N	
166 0	CH ₂ CH=CH ₂	H	Cl	OC ₂ H ₅	0	CH	N	
167 0	CH ₂ CH=CH ₂	丑	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	
168 0	CH ₂ CH=CH ₂	H	C ₂ H ₅	OCH ₃	0	CH	N	
169 0	CH2CH=CH2	H	CF ₃	OCH ₃	0	CH	N	
170 0	CH ₂ CH=CH ₂	H	OCH2CF3	CH ₃	0	CH	N	
171 0	CH ₂ CH=CH ₂	H	OCH ₂ CF ₃	OCH ₃	0	CH	N	
172 0	CH ₂ CH=CH ₂	H	OCH2CF3	OCH2CF3	0	CH	N	
173 0	CH ₂ CH=CH ₂	Ħ	OCH2CF3	OCH ₃	0	N	N	
174 0	CH ₂ CH=CH ₂	H	OCH ₃	NHCH ₃	0	N	N	
175 0	CH ₂ CH=CH ₂	Ħ	OC ₂ H ₅	NHCH ₃	0	N	N	
176 0	CH ₂ CH=CH ₂	H	C ₂ H ₅	OC ₂ H ₅	0	N	N	
177 0	CH ₂ CH=CH ₂	H	OCH ₃	CH ₃	0	N	N	
178 0	CH ₂ CH=CH ₂	H	C1	CH ₃	0	N	N	
179 0	CH ₂ CH=CH ₂	H	CH ₃	CH ₃	0	N	N	
180 0	CH ₂ CH=CH ₂	H	OCH ₃	OCH ₃	S	CH	N	
	_		OCH ₃	CH ₃	s	CH	N	
181 0	-		CH ₃	CH ₃	s	CH	N	
	CH ₂ CH=CH ₂		OCH ₃	OCH ₃	s	N	N	
,	CH ₂ CH=CH ₂		OCH ₃	CH ₃	s		N	
	CH ₂ CH=CH ₂		_	CH ₃	s		N	
	CH ₂ CH=CH ₂		CH ₃	_	0	CH	N	
186 O	CH2C=CH	H	OCH ₃	OCH ₃				

Fortse	etzu	ing Tabelle 6							Schup.
Bsp.	-			_ 1	_3				_
Nr.	Q	R	R ¹	R ²	R ³	W	¥ 	2	[°C]
187	0	CH ₂ C≡CH	CH ₃	OCH ₃	OCH ₃	0	CH	N	
188	0	CH ₂ C≡CH	CH ₃	OCH ₃	CH ₃	0	N	N	
189	0	CH ₂ C≡CH	Ħ	CH ₃	CH ₃	0	CH	N	
190	0	CH ₂ C≡CH	H	OCH ₃	CH ₃	0	CH	N	
191	0	CH ₂ C≡CH	H	CH ₃	CH ₃	0	N	N	
192	0	CH ₂ C≡CH	H	OCH ₃	CH ₃	0	N	N	
193	0	CH ₂ C≡CH	H	OCH ₃	OCH ₃	0	N	N	
194	0	CH ₂ C≡CH	H	OCH ₃	Cl	0	CH	N	
195	0	CH ₂ C≡CH	H	OCF ₂ H	CH ₃	0	CH	N	
196	0	CH ₂ C≡CH	H	OCF ₂ H	OCF ₂ H	0	CH	N	
197	o .	CH ₂ C≡CH	H	OCH ₃	Br	0	CH	N	
198	0	CH ₂ C≡CH	H.	OCH ₃	OC ₂ H ₅	0	CH	N	•
199	0	CH ₂ C≡CH	H	OCH ₃	SCH ₃	0	CH	N	
200	0	CH ₂ C≡CH	H	OCH ₃	OC ₂ H ₅	0	N	N	
201	0	CH ₂ C≡CH	H	OCH ₃	OC ₃ H ₇	0	CH	N	
202	0	CH ₂ C≡CH	H	OCH ₃	Cl	0	N	N	
203	0	CH ₂ C≡CH	H	Cl	OC ₂ H ₅	0	CH	N	
204	0	CH ₂ C≡CH	H	OC ₂ H ₅	OC ₂ H ₅	0	CH	N	,
205	0	CH ₂ C≡CH	H	C ₂ H ₅	OCH ₃	0	CH	N	
206	0	CH ₂ C≡CH	Ħ	CF ₃	OCH ₃	0	CH	N	
207	0	CH ₂ C≡CH	Ħ	OCH ₂ CF ₃	CH ₃	0	CH	N	
208	0	CH ₂ C≡CH	Ħ	OCH ₂ CF ₃	OCH ₃	0	CH	N	
209	0	CH ₂ C≡CH	H	OCH ₂ CF ₃	OCH ₂ CF ₃	0	CH	N	
210	0	CH ₂ C≡CH	H	OCH ₂ CF ₃	OCH ₃	0	N	N	
211	0	CH ₂ C≡CH	н	OCH ₃	NHCH ₃	0	N	N	
212		CH ₂ C≡CH	H	OC ₂ H ₅	NHCH ₃	0	N	N	•
		CH ₂ C≡CH	H	C ₂ H ₅	OC ₂ B ₅	0	N	N	
		CH ₂ C≡CH	Ħ	OCH ₃	CH ₃	0	N	N	
		CH ₂ C≡CH	н	Cl	CH ₃	0	N	N	
		CH ₂ C≡CH	H	CH ₃	CH ₃	0	N	N	
		CH ₂ C≡CH	н	OCH ₃	OCH ₃	s	CH	N	
		CH ₂ C≡CH	н	OCH ₃	CH ₃	S	СН	N	
	-	4			-				

Fortsetzung	Tabelle 6
-------------	-----------

		nug rabene o							Schmp.
Bsp		R	$\mathbf{R}^{\mathbf{I}}$	\mathbb{R}^2	\mathbb{R}^3	W	Y	Z	[°C]
Nr.	Q			_					
219	0	CH ₂ C≡CH	H	CH ₃	CH ₃	s	CH	N	
220		_	H	OCH ₃	OCH ₃	s	N	N	
221		CH ₂ C≡CH	H	OCH ₃	CH ₃	s	N	N	
222		CH ₂ C≡CH	Ħ	CH ₃	CH ₃	s	N	N	
223		n-C ₄ H ₉	Ħ	OCH ₃	OCH ₃	0	CH	N	
224		n-C ₄ H ₉	CH ₃	OCH ₃	OCH ₃	0	CH	N	,
225		n-C ₄ H ₉	CH ₃		CH₃	0	N	N	
226		· ·	H	CH ₃	CH ₃	0	CH	N	
227		n-C ₄ H ₉	田	OCH ₃	CH ₃	0	CH	N	
228		n-C ₄ H ₉	H	CH ₃	CH ₃	0	N	N	
229		n-C ₄ H ₉	Ħ	OCH ₃	CH ₃	0	N	N	
230		n-C4H9	Ħ	OCH3	OCH ₃	0	N	N	
231		i-C ₄ H ₉	H	OCH ₃	OCH ₃	0	CH	N	
232		i-C ₄ H ₉	CH ₃	OCH ₃	OCH ₃	0	CH	N	
233		i-C ₄ H ₉	CH ₃	OCH ₃	CH ₃ .	0	N:		
234	0	i-C ₄ H ₉	Ħ	CH ₃	CH ₃	Ö	ÇĦ	_	
235		i-C ₄ H ₉	H	OCH ₃	CH ₃	0	CH	_ N	
236		i-C ₄ H ₉	H	CH ₃	CH ₃	0	N	N	-
237		i-C ₄ H ₉	H	OCH ₃	CH ₃	0	N	N	
238		i-C4H9	H	OCH ₃	OCH ₃	0	N	N	
239		sekC4H9	H	OCH ₃	OCH ₃	0	CH	N	
240		sekC4H9	CH ₃	OCH ₃	OCH ₃	0	CH	N	
241	. 0	sekC4H9	CH ₃	OCH ₃	CH ₃	0	N	N	
242	0	sekC4H9	H	CH ₃	CH ₃	0	CH	N	
243	0	sekC4H9	H	OCH ₃	CH₃	0	CH	N	
244	0	sekC4H9	H	CH ₃	CH ₃	0	N	N	
245		sekC ₄ H ₉	Ħ	OCH ₃	CH ₃	0	N	N	
		sekC4H9	H	OCH ₃	OCH ₃	0	N	N	
		t-C ₄ H ₉	H	OCH3	OCH ₃	0	CH	N	
		t-C ₄ H ₉	CH ₃	OCH3	OCH ₃	0	CH	N	
		t-C ₄ H ₉	CH ₃	OCH ₃	CH ₃	0	N	N	
250	0	t-C ₄ H ₉	H	CH ₃	CH ₃	0	CH	N	

Fort	setz	ung Tabelle 6			-				
Bsp	. –		_		-			_	Schmp.
Nr.	Q	R	\mathbb{R}^1	R ²	R ³	W	¥	Z	[°C]
		+ 0 !!	H	OCH ₃	CH ₃	0	CH	N	
251		t-C ₄ H ₉		•	CH ₃	0	N	N	•
252		t-C ₄ H ₉	H	CH ₃	~	0	N	N	•
253		t-C ₄ E ₉	Ħ	OCH ₃	CH ₃		N	N	
254	0	t−C ₄ H ₉	H	OCH ₃	OCH ₃	0		N	
255	0	CH ₂ CH ₂ Cl	H	OCH ₃	OCH ₃	0	CH		
256	0	CH ₂ CH ₂ Cl	CH ₃	OCH ₃	OCH ₃	0	CH	N	
257	0	CH2CH2C1	CH ₃	OCH ₃	CH3	0	N	N	
258	0	CH ₂ CH ₂ C1	H	CH ₃	CH ₃	0	CH	N	
259	0	CH2CH2C1	H	OCH ₃	CH ₃	0	CH	N	
260	0	CH2CH2C1	H	CH ₃	CH ₃	0	N	N	
261	0	CH2CH2C1	B	OCH ₃	CH ₃	0	N	N	
262	0	CH ₂ CH ₂ Cl	B	OCH ₃	OCH ₃	0	N	N	
263	0	CH2CH2OCH3	H	OCH ₃	OCH ₃	0	CH	N	
264	0	CH2CH2OCH3	CH ₃	OCH ₃	OCH ₃	0	CH	N	
265	0	CH2CH2OCH3	CH ₃	OCH ₃	CH ₃	0	N	N	
266	0	CH2CH2OCH3	H	CH ₃	CH ₃	0	CH	N	
267	0	CH2CH2OCH3	H	OCH ₃	CH ₃	0	CH	N	
268	0	CH2CH2OCH3	H	CH ₃	CH ₃	0	N	N	
269	0	CH ₂ CH ₂ OCH ₃	Ħ	OCH ₃	CH ₃	0	N	N	
270	0	CH2CH2OCH3	H	OCH ₃	OCH ₃	0	N	N	٠
271	. 0	c-C ₆ H ₁₁	H	OCH ₃	OCH ₃	0	CH	N	
272	0	C-C6H11	CH ₃	OCH ₃	OCH ₃	0	CH	N	
273	0	c-C ₆ H ₁₁	CH ₃	OCH ₃	CH ₃	0	N	N	
274	0	c-C6H11	H	CH ₃	CH ₃	0	CH	N	
275	0	c-C ₆ H ₁₁	H	OCH ₃	CH ₃	0	CH	N	• •
276		c-C ₆ H ₁₁	H	CH ₃	CH ₃	0	N	N	
277		C-C6H11	H	OCH ₃	CH ₃	0	N	N	
278	3 0	C-C6H11	Ħ	OCH ₃	OCH ₃	0	N	N	

B. Formulierungsbeispiele

- a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile einer Verbindung der Formel (I) und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel (I), 64 Gewichtsteile kaolinhaltigen Quarz als Inerstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
- c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der Formel (I) mit 6 Gew.-Teilen Alkylphenolpolyglykolether ((R)Triton X 207), 3 Gew.-Teilen Isotridecanolpolyglykolether (8 EO) und 71 Gew.-Teilen paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
- d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew.-Teilen einer Verbindung der Formel (I), 75 Gew.-Teilen Cyclohexan als Lösungsmittel und 10 Gew.-Teilen oxethyliertem Nonylphenol als Emulgator.
- e) Ein in Wasser dispergierbares Granulat wird erhalten, indem man 75 Gewichtsteile einer Verbindung der Formel (I),
- 10 " ligninsulfonsaures Calcium,
- 5 " Natriumlaurylsulfat,
- 3 " Polyvinylalkohol und
- 7 " Kaolin

mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert.

f) Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man

25 Gewichtsteile einer Verbindung der Formel (I),

- 5 " 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium,
- 2 " oleoy lmethyltaurinsaures Natrium,
- 1 " Polyvinylalkohol,
- 17 " Calciumcarbonat und
- 50 " Wasser

auf einer Kolloidmühle homogenisiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.

g) Ein Extruder-Granulat erhält man, indem man 20 Gewichtsteile Wirkstoff, 3 Gewichtsteile ligninsulfonsäures Natrium, 1 Gewichtsteil Carboxymethylcellulose und 76 Gewichtsteile Kaolin vermischt, vermahlt und mit Wasser anfeuchtet. Dieses Gemisch wird extrudiert und anschließend im Luftstrom getrocknet.

C. Biologische Beispiele

Die Schädigung der Unkrautpflanzen bzw. die Kulturpflanzenverträglichkeit wurde gemäß einem Schlüssel bonitiert, in dem die Wirksamkeit durch Wertzahlen von 0-5 ausgedrückt ist. Dabei bedeutet:

0 = ohne Wirkung bzw. Schaden

1 = 0 - 20 % Wirkung bzw. Schaden

2 = 20 - 40 % Wirkung bzw. Schaden

3 = 40 - 60 % Wirkung bzw. Schaden

4 = 60 - 80 % Wirkung bzw. Schaden

5 = 80 - 100 % Wirkung bzw. Schaden

1. Unkrautwirkung im Vorauflauf

Samen bzw. Rhizomstücke von mono- und dikoytylen Unkrautpflanzen wurden in Plastiktöpfen in sandiger Lehmerde ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern oder Emulsionskonzentraten formulierten

erfindungsgemäßen Verbindungen wurden dann als wäßrige Suspensionen bzw. Emulsionen mit einer Wasseraufwandmenge von umgerechnet 600-800 I/ha in unterschiedlichen Dosierungen auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung wurden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Unkräuter gehalten. Die optische Bonitur der Pflanzen- bzw. der Auflaufschäden erfolgte nach dem Auflaufen der Versuchspflanzen nach einer Versuchszeit von 3-4 Wochen im Vergleich zu unbehandelten Kontrollen. Wie die Boniturwerte in Tabelle 7 zeigen, weisen die erfindungsgemäßen Verbindungen eine gute herbizide Vorauflaufwirksamkeit gegen ein breites Spektrum von Ungräsern und Unkräutern auf.

Tabelle 7: Vorauflaufwirkung

Wirkstoff Tab/Bsp.	Dosis kg ai/ha	STME	CRSE	e Wirkung SIAL	LOMU	ECCR	AVSA
5/1	0,3	5	. 5	4	3	3	3
3/1	0,3	5	5	5	5	5	4

Abkürzungen:

STME = Stellaria media

CRSE = Chrysanthemum segetum

SIAL = Sinapis alba

LOMU = Lolium multiflorum

ECCR = Echinochloa crus-galli

AVSA = Avena sativa

a.i. = Aktivsubstanz

Vergleichbar gute wirksamkeiten werden in der Regel auch bei den anderen Verbindungen aus den Tabellen 2 bis 7 gefunden.

2. Unkrautwirkung im Nachauflauf

Samen bzw. Rhizomstücke von mono- und dikotylen Unkräutern wurden in Plastiktöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter guten Wachstumsbedingungen angezogen. Drei Wochen nach

der Aussaat wurden die Versuchspflanzen im Dreiblattstadium behandelt.

Die als Spritzpulver bzw. als Emulsionskonzentrate formulierten erfindungsgemäßen Verbindungen wurden in verschiedenen Dosierungen mit einer Wasseraufwandmenge von umgerechnet 600-800 l/ha auf die grünen Pflanzenteile gesprüht und nach ca. 3-4 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen die Wirkung der Präparate optisch im Vergleich zu unbehandelten Kontrollen bonitiert.

Die erfindungsgemäßen Mittel weisen auch im Nachauflauf eine gute herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger Ungräser und Unkräuter auf (Tabelle 8).

Tabelle 8: Nachauflaufwirkung

Wirkstoff Tab/Bsp.	Dosis kg ai/ha	STME	herbizid CRSE	e Wirkung SIAL	LOMU	ECCR	AV^4
3/1	0,3	5	5	5	5	5	2

Abkürzungen:

STME = Stellaria media

CRSE = Chrysanthemum segetum

SIAL = Sinapis alba

LOMU = Lolium multiflorum

ECCR = Echinochloa crus-galli

AVSA = Avena sativa

a.i. = Aktivsubstanz

Vergleichbar gute wirksamkeiten werden in der Regel auch bei den anderen Verbindunger aus den Tabellen 2 bis 7 gefunden. Im Vergleich zu Verbindungen aus EP-A-7687 oder US-A-4,566,898 zeigen die erfindungsgemäßen Verbindungen der Formel I meist höhere Wirksamkeiten bei Problemunkräutern wie Galium aparine oder Echinochloa crus-galli.

3. Kulturpflanzenverträglichkeit

In weiteren Versuchen im Gewächshaus wurden Samen einer größeren Anzahl von Kulturpflanzen und Unkräutern in sandigem Lehmboden ausgelegt und mit Erde

abgedeckt.

Ein Teil der Töpfe wurde sofort wie unter 1. beschrieben behandelt, die übrigen im Gewächshaus aufgestellt, bis die Pflanzen zwei bis drei echte Blätter entwickelt hatten, und dann mit den erfindungsgemäßen Substanzen in unterschiedlichen Dosierungen wie unter 2. beschrieben besprüht.

Vier bis fünf Wochen nach der Applikation und Standzeit im Gewächshaus wurde mittels optischer Bonitur festgestellt, daß die erfindungsgemäßen Verbindungen zweikeimblättrige Kulturen wie z.B. Soja, Baumwolle, Raps, Zuckerrüben und Nachauflaufverfahren Vorund Kartoffeln Wirkstoffdosierungen ungeschädigt ließen. Einige Substanzen schonten darüber Weizen. auch Gramineen-Kulturen wie z.B. Gerste. Sorghum-Hirsen, Mais oder Reis. Die erfindungsgemäßen Verbindungen weisen somit eine hohe Selektivität bei Anwendung zur Bekämpfung von unerwünschtem Pflanzenwuchs in landwirtschaftlichen Kulturen auf. Im Vergleich zu der Verbindung aus US-A-4,566,898 (siehe Verbindung der Formel (3)) Beispiel 80 aus EP-A-0291851 zeigen die erfindungsgemäßen Verbindungen der Formel I meist höhere Selektivität,

insbesondere bei der Bekämpfung von Problemunkräutern wie Galium aparine oder Echinochloa crus-galli in Nutzpflanzenkulturen.

4. Herbizide Wirkung bei Anwendung in Reis

Knollen und Rhizome bzw. Jungpflanzen oder Samen verschiedener Reisunkräuter wie Cyperus-Arten, Eleocharis, Scirpus und Echinochloa wurden in geschlossenen Plastiktöpfen in spezielle Reiserde ausgelegt bzw. gepflanzt und mit Wasser bis zu einer Höhe von 1 cm über dem Boden angestaut. Ebenso wurde mit Reispflanzen verfahren.

Im Vorauflaufverfahren, d.h. 3-4 Tage nach dem Verpflanzen, wurden die erfindungsgemäßen Verbindungen in Form wäßriger Suspensionen oder Emulsionen ins Anstauwasser gegossen oder als Granulate ins Wasser gestreut. Jeweils drei Wochen später wurde die herbizide Wirkung und eine eventuelle Schadwirkung gegenüber Reis optisch bonitiert. Die Ergebnisse zeigen, daß sich die erfindungsgemäßen Verbindungen zur selektiven Unkrautbekämpfung in Reis eignen.

Gegenüber bisherigen Reisherbiziden zeichnen sich die erfindungsgemäßen

Verbindungen dadurch aus, daß sie zahlreiche, insbesondere auch schwer bekämpfbare Unkräuter, die aus Dauerorganen keimen, wirkungsvoll bekämpfen und dabei von Reis toleriert werden.

Patentansprüche

1. Verbindungen der Formel (I) und deren Salze,

worin

Q Sauerstoff, Schwefel oder -N(R⁴)-,

W Sauerstoff oder Schwefel,

Y, Z unabhängig voneinander CH oder N, wobei Y und Z nicht gleichzeitig CH sind,

Wasserstoff; (C₁-C₁₂)-Alkyl; (C₂-C₁₀)-Alkenyl; (C₂-C₁₀)-Alkinyl; (C₁-C₆)-Alkyl, das ein- bis vierfach durch Reste aus der Gruppe Halogen, (C₁-C₄)-Alkoxy-, (C₁-C₄)-Thioalkyl, -CN, (C₂-C₅)-Alkoxycarbonyl und (C₂-C₆)-Alkenyl substituiert ist; (C₃-C₈)-Cycloalkyl, das unsubstituiert oder durch Reste aus der Gruppe (C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)-Alkylthio und Halogen substituiert ist; (C₅-C₈)-Cycloalkenyl; Phenyl-(C₁-C₄)-alkyl, das im Phenylrest unsubstituiert oder substituiert ist; oder einen Rest der Formeln A-1 bis A-10

worin

X O, S, S(O) oder SO_2 ;

 R^1 Wasserstoff oder (C_1 - C_3)-Alkyl;

R² Wasserstoff, Halogen, (C₁-C₃)-Alkyl, (C₁-C₃)-Alkoxy, wobei die beiden letztgenannten Reste unsubstituiert oder ein- oder mehrfach durch Halogen oder (C₁-C₃)-Alkoxy substituiert sind;

R³ Wasserstoff, Halogen, (C₁-C₃)-Alkyl, (C₁-C₃)-Alkoxy, oder (C₁-C₃)-Alkylthio, wobei die vorgenannten alkylhaltigen Reste unsubstituiert oder ein- oder mehrfach durch Halogen oder ein- oder zweifach durch (C₁-C₃)-Alkoxy oder (C₁-C₃)-Alkylthio substituiert sind; oder einen Rest der Formel NR⁵R⁶, (C₃-C₆)-Cycloalkyl, (C₂-C₄)-Alkenyl, (C₂-C₄)-Alkinyl, (C₃-C₄)-Alkenyloxy oder (C₃-C₆)-Alkinyloxy;

 R^4 Wasserstoff, (C_1-C_4) -Alkyl oder (C_1-C_4) -Alkoxy und R^5 und R^6 unabhängig voneinander Wasserstoff, (C_1-C_4) -Alkyl, (C_3-C_4) -Alkenyl, (C_1-C_4) -Haloalkyl oder (C_1-C_4) -Alkoxy bedeuten.

2. Verbindungen oder deren Salze nach Anspruch 1, dadurch gekennzeichnet, daß

Q O oder S,

W O,

Y CH oder N und

Z N bedeuten.

3. Verbindungen oder deren Salze nach Anspruch 1 oder 2, dadurch

gekennzeichnet, daß

 (C_1-C_6) -Alkyl; (C_2-C_6) -Alkenyl; (C_2-C_6) -Alkinyl; Wasserstoff; R (C₁-C₄)-Alkyl, das ein- bis vierfach durch Reste aus der Gruppe (C1-C2)-Thioalkyl, (C_1-C_2) -Alkoxy-, Halogen, (C2-C3)-Alkoxycarbonyl und (C2-C4)-Alkenyl substituiert ist; (C₅-C₆)-Cycloalkyl, das unsubstituiert oder durch Reste aus der Gruppe (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio und Halogen substituiert ist; (C₅-C₆)-Cycloalkenyl; Benzyl, das im Phenylrest unsubstituiert oder durch einen bis drei Reste aus der Gruppe Halogen, (C_1-C_2) -Alkyl, (C_1-C_2) -Alkoxy, (C_1-C_2) -Haloalkyl, (C_1-C_2) -Thioalkyl und (C_2-C_4) -Alkoxycarbonyl substituiert ist, oder einen Rest der genannten Formeln A-1 bis A-10, worin

O, S, S(O) oder SO₂, X

bedeuten.

4. Verbindungen der Formel (I) oder deren Salze nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß

Wasserstoff oder CH3; \mathbb{R}^1

Wasserstoff, Halogen, (C1-C2)-Alkyl, (C1-C2)-Alkoxy, wobei die \mathbb{R}^2 beiden letztgenannten Reste unsubstituiert oder ein- oder mehrfach durch Halogen oder (C1-C3)-Alkoxy substituiert sind;

 (C_1-C_2) -Alkoxy, (C_1-C_2) -Alkyl, Halogen, Wasserstoff, \mathbb{R}^3 (C1-C2)-Alkylthio, wobei die vorgenannten alkylhaltigen Reste unsubstituiert oder ein- oder mehrfach durch Halogen oder ein- oder zweifach durch (C1-C2)-Alkoxy oder (C1-C2)-Alkylthio substituiert sind; oder einen Rest der Formel NR5R6;

Wasserstoff oder (C1-C2)-Alkyl und R^4 R⁵ und R⁶ unabhängig voneinander Wasserstoff oder (C₁-C₂)-Alkyl bedeuten.

- 5. Verbindungen oder deren Salze nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichet, daß
- Sauerstoff, W
- Wasserstoff oder CH3, R^{I}

Y CH oder N

z N,

R² Wasserstoff, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, OCHF₂, Cl und

R³ Wasserstoff, CH₃, CH₂CH₃, OCH₃, OCH₂CH₃, OCHF₂, NH(CH₃), N(CH₃)₂, CF₃, OCH₂CF₃ oder Cl sind.

6. Verfahren zur Herstellung von Verbindungen der Formel (I) oder deren Salzen, dadurch gekennzeichnet, daß man

a) eine Verbindung der Formel (II)

mit einem heterocyclischen Carbamat der Formel (III),

$$R-O \stackrel{O}{\coprod} N \stackrel{N}{\longleftarrow} Y \qquad \text{(III)}$$

$$R \stackrel{O}{\to} 1 Z \stackrel{N}{\longrightarrow} R^3$$

worin R' unsubstituiertes oder substituiertes Aryl oder Alkyl ist, umsetzt oder

b) ein Phenylsulfonylcarbarnat der Formel (IV)

mit einem Aminoheterocyclus der Formel (V)

umsetzt oder

c) ein Sulfonylisocyanat der Formel (VI)

mit einem Aminoheterocyclus der unter b) genannten Formel (V) umsetzt.

- 7. Herbizide oder pflanzenwachstumsregulatorische Mittel, dadurch gekennzeichnet, daß sie eine Verbindung der Formel (I) oder deren Salze nach einem oder mehreren der Ansprüche 1 bis 5 und übliche Formulierungshilfsmittel enthalten.
- 8. Verwendung von Verbindungen der Formel (I) oder deren Salze nach einem oder mehreren der Ansprüche 1 bis 5 als Herbizide oder Pflanzenwachstumsregulatoren.
- 9. Verfahren zur selektiven Bekämpfung von Schadpflanzen, dadurch gekennzeichnet, daß man eine wirksame Menge einer der nach einem oder mehreren der Ansprüche I bis 5 definierten Verbindungen oder deren Salze auf die Pflanzen, Pflanzensamen oder deren Anbaufläche appliziert.
- 10. Verfahren zur Pflanzenwachstumsregulierung, dadurch gekennzeichnet, daß man eine wirksame Menge einer der nach einem oder mehreren der Ansprüche 1 bis 5 definierten Verbindungen oder deren Salze auf die Pflanzen, Pflanzensamen oder deren Anbaufläche appliziert.
- 11. Verbindungen der Formel (Π),

worin Q und R eine wie in Formel (I) nach einem oder mehreren der Ansprüche 1 bis 5 definierte Bedeutung haben.

12. Verfahren zur Herstellung der Verbindungen der Formel (II) nach Anspruch 11, dadurch gekennzeichnet, daß man Sulfonsäurehalogenide der Formel

worin Q und R wie in Formel (II) definiert sind und Hal = F, Cl, Br oder I bedeutet, mit Ammoniak oder mit tert.- Butylarnin und anschließender Schutzgruppenabspaltung mit Trifluoressigsäure umsetzt.

13. Sulfonylisocyanat der Formel (VI)

worin Q und R eine wie in Formel (I) nach einem oder mehreren der Ansprüche 1 bis 5 definierte Bedeutung haben.

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP 92/00304

I. CLASS	IFICATION	OF SUBJECT MATTI	ER (if several classifics	tion sy	mbols app	ly, indicate	all) *	
i e		Patent Classification	(IPC) or to both Nation	ai Cias	a nottsonia COZDO	nd IPC 39/47;	^	07D239/52
Int.		CO7D239/42;	A01N47/36; C07D251/46			51/14;		07D251/42
		CO7D239/34;	CU/UZ51/40	,	COTDZ	31/14,		070231742
II. FIELDS	SEARCHE) 	Minimum Documentat	ion Sa	arched 7			
	- C I				tion Symbi	ols		
Classification	on System !			38011100				
[nt.C	1.5	C07D						
	<u> </u>	. Documentat	ion Searched other that	n Minin e Inclu	num Docui	mentation Fields Searc	ched •	
						•		
III. DOCU		NSIDERED TO BE R						I D. I
Category *	Citation	of Document, 11 with I	ndication, where appro-	priate, (of the relev	ant passage	98- 12	Relevant to Claim No. 13
A	EP,	A, 0 291 851 23 November as cited in see the whole	1988 the applicati		LLSCHA	NFT)		1,7
А	EP,	A, 0 174 212 COMPANY) 12 see page 23 as cited in	(E.I. DU PON March 1986 & US, A, 4 56 the applicati	6 89				1,7
A	EP,	A, 0 084 020 see compound 1.448-1.454 see claim 1	(CIBA-GEIGY s 1.146, 1.19	AG) 3-1.	20 Jul 195,	y 1983		1,7
A	EP,	A, 0 030 138 COMPANY) 10 see claim 1		T DE	NEMOL	JRS AND		1,7
X	FR,	A, 2 493 702 see S. 4, c		May	1982			11 !
"A" doi col "E" eni fili "L" do wh cit "O" do ott	cument definir naidered to be filer document ng date cument which ation or other cument referri ner means cument publis er than the pri	of cited documents: 10 ig the general state of 1 of particular relevance but published on or aft may throw doubts or establish the publicate special reason (as special ing to an oral disclosure thed prior to the internat ority date claimed	ter the international priority claim(s) or on date of another cified) e, use, exhibition or	"X"	or priority cited to us invention document cannot be involve an document cannot be document ments, sui in the an.	date and minderstand to of particular considered inventive stops of particular considered is combined to combined	of the control he princip lar relevant d novel or tep lar relevant to involve d with one tion being	the international filing date lict with the application but lie or theory underlying the nice; the claimed invention reannot be considered to nice; the claimed invention an inventive step when the or more other such docu-obvious to a person skilled patent family
1	TIFICATION		-16	D-11	-4 M-!!:	of this !	national S	earch Bannet
Date of tr	ne Actual Com	pietion of the Internation	nal Search	Date	of Mailing	or this inter		earch Report
	ay 1992	(11.05.92)		19		1992		05.92)
internatio	nal Searching	Authority		Signa	ITOIS OF MU	PROTEED OU		
	FIID	OPEAN PATENT	OFFICE					

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. EP SA

9200304 5612**3**

This amore lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 11/05/92

US-A-4566898	23-11-88 12-03-86 28-01-86	US-A- AU-B- AU-A- CA-A- AU-B- AU-A- CA-A- EP-A-	3716657 4566898 582328 4709885 1213890 582328 4709885 1213890	01-12-88
	28-01-86	AU-B- AU-A- CA-A- AU-B- AU-A- CA-A-	582328 4709885 1213890 582328 4709885 1213890	16-03-89 13-03-86 11-11-86
US-A-4566898 EP-A-0084020		AU-A- CA-A- AU-B- AU-A- CA-A-	4709885 1213890 582328 4709885 1213890	13-03-86 11-11-86
		CA-A- AU-B- AU-A- CA-A-	1213890 582328 4709885 1213890	11-11-86 16-03-89 13-03-86
		CA-A- AU-B- AU-A- CA-A-	582328 4709885 1213890	16-03-89 13-03-86
		AU-A- CA-A-	4709885 1213890	13-03-86
	~~~~~	CA-A-	1213890	
 EP-A-0084020	~			11-11-RK
EP-A-0084020	~~**	EP-A-	~	
EP-A-0084020			0174212	12-03-86
	20-07-83	AU-B-	539958	25-10-84
		AU-A-	1023483	21-07-83
		CA-A-	1172253	07-08-84
		EP-A,B	0070804	26-01-83
	•	JP-C-	1471582	14-12-88
		JP-A-	58126873	28-07-83
		JP-B-	63016383	08-04-88
		JP-A-	62142166	25-06-87
		SU-A-	1187700	23-10-85
		US-A-	4480101	30-10-84
		US-A-	4478635	23-10-84 05-11-85
·		US-A- US-A-	4551531 4540782	10-09-85
EP-A-0030138	10-06-81	US-A-	4394506	19-07-83
	-A AA A7	AT-T-	7840	15-06-84
		AU-B-	534499	02-02-84
		AU-A-	6479280	01-10-81
		CA-A-	1150255	19-07-83
		JP-A-	56090068	21-07-81
		US-A-	4892946	09-01-90
•		US-A-	4383113	10-05-83
	•	US-A-	4592978	03-06-86
		US-A-	4545808	08-10-85
		US-A-	4627873	09-12-86
		US-A-	4689072	25-08-87
R-A-2493702	14-05-82	JP-A-	58000914	06-01-83

FORM POCT

## ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. SA 56123

This annex lists the patent family members relating to the patent documents cited in the above-memioned international search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 11/05/92

Patent document cited in search report	Publication date	F	extent family member(s)	Publication date
FR-A-2493702		JP-C- JP-A- JP-B- AU-A- DE-A- EP-A- EP-A- GB-A,B WO-A- NL-T- SE-A-	1185195 57081411 58017167 533742 8509782 3144689 0068408 0132540 2090136 8300013 8220205 8203878	20-01-84 21-05-82 05-04-83 08-12-83 06-01-83 22-07-82 05-01-83 13-02-85 07-07-82 06-01-83 02-05-83 22-06-82
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****			
				•
•				
	•			
	,			
•				

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

		internationaler re	CHERCHENBERICHT	PCT/EP 92/00304				
		DIDUNGSGEGENSTANDS (bai Elektrica		(Chca)6				
L MLASSIFI	MANA 230 HOLTAS	Institution (IPC) ofer anch der antionalen	Kinssifikation und der IPC					
Nach der læt Int. Kl.	5 CO7D239/4 CO7D239/3	\$2; AU1M47/30,	C07D239/47; C07D251/14;	C07D239/52 C07D251/42				
II. RECHEF	CHIERTE SACHGE	BIETE	The stand of the stand of the standard of the					
			findestpriffstoff ?					
Klassifikati	cassytem	<u> </u>	THE STREET STREET					
Int.Kl.	5	C07D		·				
		Recherchierte nicht zum Mindestprüfstoff g unter die recherchiert	gehörende Veröffentlichungen, soweit die en Sachgebiete fallen ⁸	256				
III. ENSC	ILAGIGE VEROFF	ENTLICHUNGEN ⁹ 3 Vasification and 11 , seeds exterioritch as	ator Aprobo der massoblichen Telio 12	Betr. Anspruch Nr. 13				
A	EP,A,O Novembe	291 851 (BASF AKTIENGE:		1,7				
A	in der Anmeldung erwähnt siehe das ganze Dokument  EP,A.O 174 212 (E.I. DU PONT DE NEMOURS AND  COMPANY) 12. März 1986							
A	siehe Seite 23 & US,A,4 566 898 28. Januar 1986 in der Anmeldung erwähnt EP,A,0 084 020 (CIBA-GEIGY AG) 20. Juli 1983 Siehe Verbindungen 1.146 , 1.193-1.195 , 1.448-1.454							
A	EP,A,O	Anspruch 1 0 030 138 (E.I. DU PONT NY) 10. Juni 1981 Anspruch 1	DE NEMOURS AND	1,7				
°A° (	cico Uniquisa va destandishen, dio cintra, discrett di terre Determent, doi terre Determent, dio costandishen, dio costandishen, dio mentra Vertification adometra Espadore dio cho Beantenn, dio cho Beantenn, dio cho Beantenn, dio	des eligencies Vertificationers is ; des eligencies Senel der Technik is beseiten beiersenn massene ist spieles ent un eine noch den interne un vertificatilieht verden ist geligen ist, eines Prioritismaspruch ma insue, eine Prioritismaspruch ma insue, eine Prioritismaspruch ma insue, eine Recherchastericht pe- mang beiegt verden seil eine die aus einem irund nazurgeben ist (vio unsgehalte) sich ust dies unterliiche Offenburung. Ausstellung eine nadere Minisahmen ver dem internationalen Anmedela- masspruchten Prioritätsdomen veröffent-	### ### ### ### ### ### #### #### ######	TO Edicting the Edicting to Edicting to Edicting the Color of Color of Color of Edicting the Edicting the Edicting the Edicting Edicting the Edicting Edical Edicting Edical Edicting E				

IV. BESCHEINIGUNG

ġ,

Dates des Abschlusses der internationalen Recherche

11.MAI 1992

Absorbedatum des internationales Recherchesberichts

1 9. 05. 92

Internationale Recherchenhabbrde

EUROPAISCHES PATENTAMT

Unterschrift des bevollmischtigten Bestienstelen

DE JONG B.S.

Perchicii PCT/ISA/210 (Bleft 2) (Jerser 1935)

M. EMERICAL VEROPETE STATE AND	11
FR,A,2 493 702 (MOCHIDA) 14. Mai 1982 Siehe S. 4 , Verbindung 4	11
	·

## ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR.

9200304 56123 SA

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben diesen nur zur Unterrichtung und erfolgen ohne Gewähr.

11/05/92

Im Recherchenbericht angeführtes Patentdokument EP-A-0291851	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
		DE-A-	3716657	01-12-88	
EP-A-0174212	12-03-86	US-A-	4566898	28-01-86	
	12-03 00	AU-B-	582328	16-03-89	
		AU-A-	4709885	13-03-86	
		CA-A-	1213890	11-11-86	
	28-01-86	AU-B-	582328	16-03-89	
US-A-4566898	20 01 00	AU-A-	4709885	13-03-86	
		CA-A-	1213890	11-11-86	
·		EP-A-	0174212 	12-03-86	
EP-A-0084020	20-07-83	AU-B-	539958	25-10-84	
EP-A-0004020	30 0	au-a-	1023483	21-07-83	
		CA-A-	1172253	07-08-84 26-01-83	
		EP-A,B	0070804	14-12-88	
		JP-C-	1471582	28-07-83	
		JP-A-	58126873	08-04-88	
		JP-B-	63016383	25-06-87	
		JP-A-	62142166 1187700	23-10-85	
	•	SU-A-	4480101	30-10-84	
		US-A-	4478635	23-10-84	
		US-A- US-A-	4551531	05-11-85	
		US-A-	4540782	10-09-85	
	10-06-81	US-A-	4394506	19-07-83	
EP-A-0030138	10-00-01	AT-T-	7840	15-06-84	
		AU-B-	534499	02-02-84	
	•	AU-A-	6479280	01-10-81	
		CA-A-	1150255	19-07-83	
		JP-A-	56090068	21-07-81	
		US-A-	4892946	09-01-90	
		US-A-	4383113	10-05-83	
		US-A-	4592978	03-06-86	
		US-A-	4545808	08-10-85	
		US-A-	4627873	09-12-86	
	_	US-A-	4689072	25-08-87 	
FR-A-2493702	14-05-82	JP-A-	58000914	06-01-83	
			_		

Für nähere Einzelheiten zu diesem Anhang : siehe Amtshlatt des Europäischen Patentamts, Nr.12/82

# ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR. EP

9200304 56123

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

11/05/92

Im Recherchenbericht angeführtes Patentiloloment FR-A-2493702	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
		JP-C- JP-A- JP-B- AU-B- AU-A- DE-A- EP-A- GB-A, B WO-A- NL-T- SE-A-	1185195 57081411 58017167 533742 8509782 3144689 0068408 0132540 2090136 8300013 8220205 8203878	20-01-84 21-05-82 05-04-83 08-12-83 06-01-83 22-07-82 05-01-83 13-02-85 07-07-82 06-01-83 02-05-83 22-06-82	
			·		
·					
		•			
		•		•	
-					
	÷				
. •					
			. ,		
			,		