

Business Problem: Aviation Expansion Risks

- The company is entering the aviation industry but lacks critical risk insights.
- Understanding aircraft safety is essential for making informed investment decisions.
- Goal: Identify aircraft models with the lowest accident rates and key risk factors.

Project Goal: Aviation Risk & Safety Analysis

- Identify aircraft with the lowest accident rates.
- Analyze common causes of aviation accidents.
- Compare aircraft manufacturers based on safety.
- Recommend strategies to minimize aviation risks.

Data Sources

- Kaggle Aviation Accident Database & Synopses (Up to 2023)
- NTSB Aviation Accident Dataset (Up to Feb 2021)

- Dataset Link
- From Kaggle: Aviation Accident Database

Data Understanding

Total Records: 90,308

Data Types: Strings & Floats

- Column Distribution:
- 26 columns : String
- 5 columns : Float

Key Attributes: Aircraft Model, Make, etc.

Pata Preparation

Steps Taken:

- ✓ Loaded dataset for cleaning and analysis
- ✓ Categorized attributes as numeric or categorical
- ✓ Identified and handled missing values in both categories
- ✓ Checked for format inconsistencies
- ✓ Removed duplicate entries

Data Preparation Methods

To ensure high-quality insights, we first explored and understood the dataset using the following techniques:

View Sample Data: **head()** – Displays the first five rows of data for a quick preview.

Metadata Summary: **info()** – Provides an overview of column names, data types, and missing values.

Data Preparation Methods

Statistical Overview: **describe()** – Generates key statistics like mean, median, and distribution.

Dataset Size: **shape()** – Shows the total number of rows and columns in the dataset.

These steps helped us assess data completeness, identify potential issues, and prepare for further analysis.

Data Cleaning Process

The following cleaning steps were applied:

✓ Handled Missing Values: Imputed missing data for both numeric and text fields.

✓ Standardized Formatting: Corrected inconsistencies in data formats.

✓ Removed Duplicates: Eliminated repeated records to avoid redundancy.

Data Cleaning Process

✓ Dropped High-Missing Columns: Removed columns with excessive missing values.

✓ Filtered Outliers & Irrelevant Data: Identified and removed extraneous values

Methods Used for Data Cleaning

√ .isna() – Identifies missing values, returning True or False.

✓ .notna() :Checks for non-missing values, returns True or False.

✓ .value_counts() :Returns the count of unique values in a column.

 \checkmark :unique() – Retrieves the unique values in a column.

Technologies Used

- Pandas Python library for data manipulation
- ✓ NumPy Python library for numerical computation
- ✓ Matplotlib Python library for data visualization

Technologies Used

Seaborn – Python library for statistical visualization

- ✓ **VS CJupyter Notebook** Code editors for ode & development
 - ✓ Tableau Tool for visualizing and communicating analysis

Unveiling the Skies A Data-Driven Look at Aircraft Safety

Invest in Safety, Secure Success

- Proven Safety Records
 Lowest accident rates in operation
 Demonstrated reliability
- ✓ Business Advantages
 Lower insurance costs | ↑ Passenger confidence
 Enhanced reputation & operational efficiency
- Long-Term Value
 Sustainable profitability through reduced risk

Top 10 Safest Aircraft Models by Accident Count Top 10 Safest Models 100 180 -100 180 100-160 100-160 -1000 1000 STU 1000 -1000LT 1002 1000 STU -100D2 Zodiac CH-601-H Aircraft Model 1-11 1000LT -1-11-204AF 1002 -100D2 -Zodiac CH-601-H -1-11 1-11-204AF -0.2 0.4 0.6 0.8 1.0 0.0 Total Accidents

Safety & Business Impact

Why the Safest Aircraft Deliver ROI

Proven Protection

✓ 90%+ of incidents result in zero passenger injuries.

✓ Fatalities are exceptionally rare (<0.1% of cases)

Safety & Business Impact

Business Wins

✓ Lower costs: Reduced insurance premiums & maintenance

- ✓ Stronger reputation: Passenger trust drives demand
- ✓ Higher efficiency: Fewer operational disruptions

Damage History & Smart Investment

How Aircraft Resilience Boosts Your Bottom Line

High-Risk Models

✓ Avoid manufacturers with frequent "Destroyed" cases

√ 3× higher insurance costs (industry avg.)

Damage History & Smart Investment

- **Proven Resilience**
- ✓ Prioritize models with only "Minor/Substantial" damage

✓ 2021 FX3 LLC: 0 destroyed despite a high incident count

√ 85% faster return-to-service vs. competitors

Critical Phase Performance = Fewer Incidents

Why Flight Phase Safety Lowers Your Risk

- Top Risk Phases & Key Investments
- ✓ Landing (48% of accidents) → Invest in:
 - Advanced braking systems
 - Reinforced landing gear

- ✓ Takeoff (22%) & Cruise (18%) \rightarrow Prioritize:
 - Engine redundancy
 - Aerodynamic stability

Business Impact of Aircraft Safety

- ✓ Stronger safety reputation : More customer trust 💝
- ✓ Safer aircraft models: Long-term operational success ✓
- ✓ Resilient aircraft investments: Less downtime, stronger brand safety 😾
- Fewer severe accidents: Lower repair costs, higher etticiency 💩

Business Impact of Fleet Investment

Well-researched fleet investment → Long-term cost savings & industry trust

"Data-driven investments mean safer skies and stronger businesses!"

Aircraft with strong safety records → Lower repair costs, less downtime, & reduced liability risks

Business Impact of Fleet Investment

◆ Data-driven fleet selection → More passenger confidence & long-term profitability

"Smart investments start with safety—because a secure landing means a stronger business!"

Findings ·

- Top 10 Safest Aircraft Models
- √ Identified based on lowest accident counts.

▼ These models have historically low incident rates, making them statistically safer

- Landing Phase: The Most Critical
- ✓ The highest number of accidents occur during landing, surpassing all other flight phases

Findings

- Cessna & Piper: Highest Accident Counts
- ✓ Cessna leads with the most recorded accidents, significantly outpacing other manufacturers
- Accidents in Visual Meteorological Conditions (VMC)
- ✓ Most accidents occur in clear weather despite favorable conditions

✓ Key factors: Human error, mechanical failures, operational inefficiencies

Recommendation

- Enhancing Pilot Decision-Making
- ✓ Invest in human factor training to reduce errors in VMC (clear weather conditions)
- ✓ Improve decision-making in IMC (instrument conditions) for better risk management
- Strengthening Pilot Training & Simulation
- ✓ Increase simulator-based training focused on landing and takeoff emergencies

Recommendation

- Strategic Fleet Decisions
- Exercise caution with high-accident aircraft (e.g., Cessna & Piper) in purchasing decisions
- ✓ Prioritize aircraft models with lower accident rates for enhanced fleet safety
- Safer Aircraft Model Adoption
- ✓ Airlines & manufacturers should prioritize safer models in fleet selection
- ✓ Integrate safety-focused fleet decisions into training programs & regulations

- X Next Steps ·
 - ✓ Expand Data-Driven Safety Insights Continue analyzing accident trends to refine safety measures.
 - ✓ Enhance Training & Simulations Implement advanced training programs focused on high-risk flight phases.
 - ✓ Strengthen Aircraft Selection Criteria Partner with manufacturers prioritizing safety and reliability.
 - ✓ Develop Safety Policy Recommendations Advocate for safety-driven procurement and operational protocols.

Let's Make Aviation Safer Together!

Questions? Let's Discuss!

🖈 Name: Ronny Muthomi

LinkedIn: www.linkedin.com/in/ronny-muthomi-014805262