

Algorithms 演算法

Foundations— Introduction —

Professor James Chien-Mo Li 李建模 Electrical Engineering Department National Taiwan University

Algorithms NTUEE 1

Outline

- Introduction, CH1
- Getting Started, CH2
 - Insertion Sort
 - Merge Sort
- Growth of Functions, CH3
- Divide and Conquer, CH4

Introduction

- What is an Algorithm?
 - well-defined procedure to transform some input to desired output
- What is a Problem?
 - A statement specify the desired input/output relationship
- What is a good algorithm?
 - An algorithm is correct
 - * For every input instance, it halts with a correct output
 - An algorithm is efficient
 - Runs very fast (low time complexity)
 - Needs little storage space (low space complexity)
 - Good Algorithm: Correct & Efficient

Algorithms NTUEE 3

Al-Khwārizmī (780-850, Persian)

- Al-Khwārizmī, Persian astronomer and mathematician, wrote a treatise in 825 AD, On "Calculation with Arabic Numerals".
- It was translated into Latin in the 12th century as "Algoritmi de numero Indorum", whose title was likely intended to mean "Algoritmi on the numbers of the Indians",
 - where "Algoritmi" was the author's name
- But people misunderstanding the title treated Algoritmi as a Latin plural and this led to the word "algorithm" (Latin algorismus) coming to mean "calculation method"

Food For Thoughts: Why Arabs are Good at Math?

Algorithms NTUEE

History of Algorithms

- Euclid invented the first algorithm to find GCD (300 BC)
- Formalized by Church-Turing Thesis in 1936
- New Algorithms still being found recently, even by student like you

Euclid (300BC)

Alonzo Church (1903 – 1995)

Alan Turing (1912 – 1954)

Algorithms

NTUEE

5

Why Study Algorithms?

- Top 3 reasons to study Algorithm:
- **-**

Algorithms 模仿遊戲 NTUEE 6

Complexity Comparison

- 厚
- Smart algorithm could make huge difference
 - n = input size; $lg = \log_2$

Order	Name	n = 10	n = 100	$n = 10^3$	$n = 10^6$
1	constant	$1 \times 10^{-9} \text{ sec}$			
$\lg n$	logarithmic	$3 \times 10^{-9} \text{ sec}$	$7 \times 10^{-9} \text{ sec}$	$1 \times 10^{-8} \text{ sec}$	2×10^{-8} sec
\sqrt{n}	square root	$3 \times 10^{-9} \text{ sec}$	1×10^{-8} sec	$3 \times 10^{-8} \text{ sec}$	$1 \times 10^{-6} \text{ sec}$
n	Linear	1×10^{-8} sec	1×10^{-7} sec	$1 \times 10^{-6} \text{ sec}$	0.001 sec
$n \lg n$	linearithmic	$3 \times 10^{-8} \text{ sec}$	2×10^{-7} sec	$3 \times 10^{-6} \text{ sec}$	0.006 sec
n^2	quadratic	1×10^{-7} sec	1×10^{-5} sec	0.001 sec	16.7 min
n^3	cubic	$1 \times 10^{-6} \text{ sec}$	0.001 sec	1 sec	3×10^5 cent.
2^n	exponential	1×10^{-6} sec	3×10^{17} cent.	∞	∞
n!	factorial	0.003 sec	∞	∞	∞

1 million instruction per second (MIPS)

Algorithms NTUEE 7

8

Sorting Problem

- Input: sequence of *n* numbers $\langle a_1, a_2, ..., a_n \rangle$
- Output: permutation (reordered) $\langle a_1', a_2', ..., a_n' \rangle$ such that

$$\bullet \quad a_1' \leq a_2' \leq \ldots \leq a_n'$$

- Example:
 - Input: <8, 6, 9, 7, 5, 2, 3>
 - Output: <2, 3, 5, 6, 7, 8, 9 >
- Any good algorithm?
 - incremental approach: insertion sort
 - divide and conquer approach: merge sort

Algorithms NTUEE 9

How Do You Sort Cards?

- Simple idea:
 - keep left cards sorted, right cards unsorted
 - each time insert a new card to left cards, in sorted order
 - repeat until all cards inserted

Insertion Sort

A.length = number of elements in array A

Operation of Insertion Sort (1)

Operation of Insertion Sort (2)

• Fig 2.2

Algorithms NTUEE 13

Q1: Insertion Sort Correct?

- Use <u>Loop Invariant</u> to prove following property always true,
- Example:

At start of each iteration of for loop, subarray A[1 ... j-1] consists of elements originally in A[1 ... j-1] but in sorted order.

- To use loop invariant, we must show three things:
 - Initialization:
 - Property is true before first iteration
 - Maintenance:
 - Property remains true before every iteration
 - Termination:
 - When loop terminates, invariant gives us a useful property to show that algorithm is correct

LI is like Math Induction

Prove Insertion Sort Correct for j = 2 to A. length

F

• Loop Invariant property:

At start of each iteration of for loop, subarray A[1 ... j-1] consists of elements originally in A[1 ... j-1] but in sorted order.

• Initialization: j=2

- or j = 2 to A. length key = A[j] i = j - 1while i > 0 and A[i] > key A[i + 1] = A[i] i = i - 1A[i + 1] = key
- A[1 ... j-1] has only one element A[1], which is trivially sorted
- Maintenance: 2<j<n+1
 - moving A[j-1], A[j-2], A[j-3],... by one position to the right until proper position for key is found
 - ◆ A[1 ... j] consists of original elements in sorted order
- Termination: j=n+1
 - A[1 ... n] consists of elements originally in A[1 ... n] in sorted order.
 - So entire array is sorted! QED

 $\begin{array}{c|cc} A[1] & A[j-1] & A[j] & A[n] \end{array}$

Algorithms NTUEE 15

Q2: Insertion Sort Efficient?

- Given input size n, find running time of insertion sort
 - Running time = number of primitive operations executed
 - * Primitive operations: arithmetic, compare ...
 - Input size, n = number of items in input
 - * e.g. n = size of array being sorted

- We will show 3 time complexity analysis for IS
 - Exact analysis: very tedious
 - Worst-case/best-case/average-case analysis: slow
 - Asymptotic analysis: good for large n

Time Complexity Measures
Algorithm Efficiency, esp. for Large *n*

Exact Analysis

□ • Let T(n) = running time of insertion sort given input size n=A. length

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1)$$
$$+ c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

 t_i = number of times the "while" loop execution for value j

BC/WC/AC Analysis 5

- Best-case: if array already sorted
 - $t_i=1$; T(n) is a linear function of n, or called *linear time*

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

$$= (c_1 + c_2 + c_3 + c_4 + c_5 + c_5) n - (c_2 + c_3 + c_5 + c_5)$$

- $= (c_1 + c_2 + c_4 + c_5 + c_8)n (c_2 + c_4 + c_5 + c_8)$ Worst-case: if array is in reverse sorted order
 - $t_i = j$; T(n) is a quadratic function of n

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - \left(c_2 + c_4 + c_5 + c_8\right)$$

- Average-case: random order
 - half elements are less than A[j]
 - $t_j \approx j/2$, T(n) is still a quadratic function of n

Asymptotic Analysis

- \blacksquare Asymptotic analysis looks at growth of T(n) as $n \to \infty$
 - Easier than exact, BC/WC/AC analysis
- - e.g. $5n^2+3n+4=\Theta(n^2)$
 - Worst case: input reverse sorted, while loop is $t_i = \Theta(j)$

$$T(n) = \sum_{j=2}^{n} t_j = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)$$

• Average case: all permutations equally likely, while loop is $t_i = \Theta(j/2)$

$$T(n) = \sum_{j=2}^{n} t_j = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^2)$$

■ Both WC and AC are asymptotically $\Theta(n^2)$

Insertion Sort is $\Theta(n^2)$

Algorithms NTUEE 19

Outline

- Introduction, CH1
- Getting Started, CH2
 - Insertion Sort
 - Merge Sort
- Growth of Functions, CH3
- Divide and Conquer, CH4

John von Neumann (1903-1957, USA)

- Hungarian and American mathematician. He worked on one of earliest electronic computers (EDVAC), where he invented
 - Merge Sort (world's first non-trivial algorithm on computer)
 - Von Neumann architecture (still used by today's computers)

[5] "If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is." J. von Neumann

First Draft of a Report on EDVAC, 1945

Algorithms

NTUEE

21

Divide and Conquer Approach

- Insertion sort uses incremental approach
 - first sort subarray A[1...j-1] then insert a single A[j]
 - too slow for large problems
 - how can we do better?
- Divide and conquer approach
 - Divide problem into a number of smaller subproblems
 - * recursive case: when subproblems are large, solve recursively
 - Conquer subproblems by solving them recursively
 - * base case: when subproblems are small, solve by brute force
 - Merge subproblem solutions to total solution

■ Merge Sort: Idea

- Divide array into left and right halves
- Sort each halves
- Merge together

But Each Halves Still Too Large...

23 **Algorithms** NTUEE

Merge Sort: Top-down Recursion

MERGE (1)

25

MERGE (2)


```
L[n_1+1] = \infty // add sentinel at end
     R[n_2+1]=\infty
     i = 1
 0
     j = 1
     for k = p to r
12
                         // left is smaller
          if L[i] \leq R[j]
13
               A[k] = L[i] // copy to A
14
15
               i = i + 1
          else
 16
              A[k] = R[j] // \text{right is smaller}
              j = j + 1 // copy to A
 17
```

■ MERGE (3)

Algorithms NTUEE 27

Time Complexity of MERGE

- n cards into two piles
 - Each pile is sorted and placed face-up
 - We will merge them into a single sorted pile
- Repeat following basic steps: (at most n iterations)
 - Choose smaller of the two top cards, remove it from its pile
 - Place the chosen card face-down onto output pile
 - · Repeat until one input pile is empty
- Each basic step should take constant time
 - Each card is removed only once

Merge is Linear Time

Time Complexity of Merge-Sort

Merge-Sort is a recursive function

describe function in terms of itself

MERGE-SORT
$$(A, p, r)$$

1 if $p < r$

2 then $q \leftarrow \lfloor (p+r)/2 \rfloor$

3 MERGE-SORT (A, p, q)

4 MERGE-SORT $(A, q+1, r)$

MERGE (A, p, q, r)

T(n/2)

T(n/2)

T(n/2)

O(n)

T(n) can be calculated recursively

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) + 2\Theta(1) & \text{if } n > 1. \end{cases}$$

29 **Algorithms** NTUEE

Recursion Tree

Algorithms

Food for Thoughts (FFT)

- Θ ($n \lg n$) is smaller than $\Theta(n^2)$
 - merge sort is faster than insertion sort
 - Q: merge sort is weaker than insertion sort in one thing. Can you point it out?
 - hint: why don't we use merge sort when we sort card
 - no free lunch ©