Summary

- Q-Q plot
- P-P plot
- Chi-Square test
- What are the two probability plots we use to check goodness-of-fit?

Probability plots

How do you interpret Q-Q plot?

Q-Q plot: Quantile-quantile plot

- What points to we plot in Q-Q plot?
- Graph of the q_i -quantile of a fitted (model) distribution versus the q_i -quantile of the sample distribution.

$$egin{aligned} x_{q_i}^M &= \hat{F}^{-1}(q_i) \ & x_{q_i}^S &= \widetilde{F}_n^{-1}(q_i) &= X_{(i)}, i = 1, 2, ... n. \end{aligned}$$

- If $F^{\wedge}(x)$ is the correct distribution that is fitted, for a large sample size, then $F^{\wedge}(x)$ and $F_n(x)$ will be close together and the Q-Q plot will be approximately linear with intercept 0 and slope 1.
- For small sample, even if $F^{\wedge}(x)$ is the correct distribution, there will some departure from the straight line.
- F :: indicates the distribution that we're trying to fit F_n^{\sim} :: indicates the distribution that come from the sample
- If x^{M}_{qi} that comes from the fitted/model distribution matches with the x^{S}_{qi} that comes from the sample distribution, then you're going to get a line.

- You'll plot all the x that comes from X^M, that is model distribution on x-axis, and plot that against the x that comes from sample distribution, X^S.
- If x_i from model distribution matches with the sample distribution, you'll get a nice 45° line in
- This line will have an intercept of o and a slope of 1.
- Practically we'll get a line that is around this 45° line. And how far away we are from this 45° line determines how good is the model distribution.
- If very far from this line, then the model distribution doesn't match the sample distribution.

How do you interpret P-P plot?

Probability plots

What points do we plot in P-P plot?

• P-P plot: Probability-Probability plot.

A graph of the model probability $\hat{F}(X_{(i)})$ against the sample probability $\widetilde{F}_n(X_{(i)}) = q_i, i = 1, 2, ... n$.

- It is valid for both continuous as well as discrete data sets.
- If F'(x) is the correct distribution that is fitted, for a large sample size, then $F^{\wedge}(x)$ and $F_{n}(x)$ will be close together and the P-P plot will be approximately linear with intercept 0 and slope 1.
- Here, we compare probability distributions: F[^] and F[~] (CDF).

Q-Q plot amplifies the differences between the

Probability plots

- P-P plot amplifies the differences between the
- The Q-Q plot will amplify the differences between the tails of the model distribution and the sample distribution.
- Whereas, the P-P plot will amplify the differences at the middle portion of the model and sample distribution.

In general, for both probability plots, what do we plot on the:

Probability plots: Dataset

1. x-axis?

Normal P-P Plot of VAR00001

2. y-axis?

- On the observed data Var1, we've tried to fit Normal distribution using P-P Plot.
- X-axis :: Observed cumulative frequency Y-axis :: Expected(model) cumulative frequency
- So, both x- and y-axis will go from 0 to 1.
- Here, observed points don't seem to be close to expected points.

Probability plots: Dataset

- Here is shown the deviation of observed points from Normal.
- The deviation seems to be high in P-P plot, of the order of 0.15.

Probability plots: Dataset

Exponential P-P Plot of VAR00001

- Here, we're trying to fit exponential distribution in the dataset using P-P plot.
- The observed points seem to be very close to the $45^{\rm o}$ line.

Probability plots: Dataset

- Here, the deviation of the dataset points from the exponential distribution is shown.
- Notice the scale of Y-axis, it's of the order of 0.04, which is small.
- Conclusion: In P-P plots, the exponential distribution seem to be a better fit than the normal distribution.

Probability plots: Dataset

Normal Q-Q Plot of VAR00001

- In this Q-Q plot, we're trying to fit normal distribution to the dataset Var1.
- X-axis :: X-values from the sample Y-axis :: Y-values from the model
- The observed points seem to be deviating from the 45° line.

Probability plots: Dataset

Exponential Q-Q Plot of VAR00001

- Q-Q plot with the exponential distribution.
- Seems very close to the 45° line.
 There are some deviations in the upper portion, these deviations are for higher observed values.
- Conclusion: In Q-Q plots as well, the exponential distribution seem to be a better fit than the normal distribution.
- Q. Do we now conclude that the exponential distribution is a good fit for the data?
- A. No. We also need to look at statistical goodness-of-fit tests.

• Name the two famous statistical goodness-of-fit tests.

Goodness-of-fit tests

• A goodness-of-fit test is a statistical hypothesis test that is used to assess formally whether the observations X_1 , X_2 , X_3 ... X_n are an independent sample from a particular distribution with function F^{\wedge} .

 H_0 : The X_i 's are IID random variables with distribution function F^{\wedge} .

- Two famous tests:
- 1. Chi-square test
- 2. Kolmogorov Smirnov test

How do you calculate chisquare test?

• Look <u>here</u>.

Chi-square test

- Applicable for both, continuous as well as discrete, distributions.
- Method of calculating chi-square test statistic:
- 1. Divide the entire range of fitted distribution into k adjacent intervals -- $[a_0, a_1)$, $[a_1, a_2), ... [a_{k-1}, a_k)$, where it could that $a_0 = -\infty$ in which case the first interval is $(-\infty, a_1)$ and/or $a_k = \infty$.

 $N_j = \#$ of X_i 's in the jth interval $[a_{j-1}, a_j)$, j = 1, 2 ... n.

2. Next, we compute the expected proportion of X_i 's that would fall in the jth interval if we were sampling from fitted distribution

Chi-square test

For continuous distributions:
$$p_j = \int_{a_{j-1}}^{a_j} \hat{f}(x) dx$$

For discrete distributions:
$$p_j = \sum_{a_{j-1} \le x_j < a_j} \hat{p}(x_j)$$
.

• Finally the test statistic is calculated as:

$$\chi^2 = \sum_{j=1}^k \frac{\left(N_j - np_j\right)^2}{np_j}.$$

	Better formula is given <u>here</u> .
Based on chi-square test statistic when do we:	Chi-square test
 Accept H_o? Reject H_o? 	• This calculated value of the test statistic is compared with the tabulated value of chi-square distribution with k - l df at l - α level of significance.
	If $\chi^2 > \chi^2_{k-1,1-\alpha}$ Reject H_0
	If $\chi^2 \le \chi^2_{k-1,1-\alpha}$ Do not Reject H_0
	The data given to us was a time data. Time to get a service in a bank.
	The exponential distribution has a strong association with the <u>queuing theory</u> .