Week 4: Graph Data Structures

Graph Definitions

Graphs 6/110

Many applications require

- a collection of *items* (i.e. a set)
- relationships/connections between items

Examples:

- maps: items are cities, connections are roads
- web: items are pages, connections are hyperlinks

Collection types you're familiar with

• arrays and lists ... linear sequence of items

Graphs are more general ... allow arbitrary connections

... **Graphs** 7/110

A graph G = (V,E)

- *V* is a set of *vertices*
- E is a set of edges (subset of V×V)

Example:

... **Graphs** 8/110

A real example: Australian road distances

Distance	Adelaide	Brisbane	Canberra	Darwin	Melbourne	Perth	Sydney
Adelaide	-	2055	-	3051	732	2716	-
Brisbane	2055	-	-	3429	1671	-	982

Canberra	-	-	_	-	658	-	309
Darwin	3051	3429	-	-	-	4049	-
Melbourne	732	1671	658	-	-	-	873
Perth	2716	-	-	4049	-	-	-
Sydney	-	982	309	-	873	-	-

Notes: vertices are cities, edges are distance between cities, symmetric

... **Graphs** 9/110

Alternative representation of above:

... **Graphs** 10/110

Questions we might ask about a graph:

- is there a way to get from item A to item B?
- what is the best way to get from A to B?
- which items are connected?

Graph algorithms are generally more complex than tree/list ones:

- no implicit order of items
- graphs may contain cycles
- concrete representation is less obvious
- algorithm complexity depends on connection complexity

Properties of Graphs

11/110

Terminology: /V/ and /E/ (cardinality) normally written just as V and E.

A graph with V vertices has at most V(V-1)/2 edges.

The ratio *E:V* can vary considerably.

• if E is closer to V^2 , the graph is dense

- if E is closer to V, the graph is sparse
 - o Example: web pages and hyperlinks, intersections and roads on street map

Knowing whether a graph is sparse or dense is important

- may affect choice of data structures to represent graph
- may affect choice of algorithms to process graph

Exercise #1: Number of Edges

12/110

The edges in a graph represent pairs of connected vertices. A graph with V has V^2 such pairs.

Consider $V = \{1,2,3,4,5\}$ with all possible pairs:

 $E = \{ (1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), ..., (4,5), (5,5) \}$

Why do we say that the maximum #edges is V(V-1)/2?

... because

- (v,w) and (w,v) denote the same edge (in an undirected graph)
- we do not consider loops (v,v) (in undirected graphs)

Graph Terminology

14/110

For an edge e that connects vertices v and w

- *v* and *w* are *adjacent* (neighbours)
- e is incident on both v and w

Degree of a vertex v

• number of edges incident on v

Synonyms:

• vertex = node, edge = arc = link (NB: some people use arc for *directed* edges)

... Graph Terminology

15/110

Path: a sequence of vertices where

• each vertex has an edge to its predecessor

Simple path: a path where

• all vertices and edges are different

Cycle: a path

• that is simple except last vertex = first vertex

Length of path or cycle:

• #edges

Path: 1-2, 2-3, 3-4

Cycle: 1-2, 2-3, 3-4, 4-1

... Graph Terminology

16/110

Connected graph

- there is a *path* from each vertex to every other vertex
- if a graph is not connected, it has ≥2 connected components

Complete graph K_V

- there is an edge from each vertex to every other vertex
- in a complete graph, E = V(V-1)/2

... Graph Terminology

17/110

Tree: connected (sub)graph with no cycles

Spanning tree: tree containing all vertices

Clique: complete subgraph

Consider the following single graph:

This graph has 26 vertices, 33 edges, and 4 connected components

Note: The entire graph has no spanning tree; what is shown in green is a spanning tree of the third connected component

A spanning tree of connected graph G = (V,E)

- is a subgraph of G containing all of V
- and is a single tree (connected, no cycles)

A spanning forest of non-connected graph G = (V,E)

- is a subgraph of G containing all of V
- and is a set of trees (not connected, no cycles),
 - with one tree for each connected component

Exercise #2: Graph Terminology

19/110

- 1. How many edges need to be removed to obtain a spanning tree?
- 2. How many different spanning trees?

1. 2 2.
$$\frac{5\cdot 4}{2}-2=8$$
 spanning trees (no spanning tree if we remove *{e1,e2}* or *{e3,e4}*)

... Graph Terminology

21/110

Undirected graph

• edge(u,v) = edge(v,u), no self-loops (i.e. no edge(v,v))

Directed graph

• $edge(u,v) \neq edge(v,u)$, can have self-loops (i.e. edge(v,v))

Examples:

Undirected graph

Directed graph

... Graph Terminology

22/110

Weighted graph

- each edge has an associated value (weight)
- e.g. road map (weights on edges are distances between cities)

Multi-graph

- allow multiple edges between two vertices
- e.g. function call graph (f () calls g () in several places)

Graph Data Structures

Graph Representations

24/110

Defining graphs:

- need some way of identifying vertices
- could give diagram showing edges and vertices
- could give a list of edges

E.g. four representations of the same graph:

... Graph Representations

25/110

We will discuss three different graph data structures:

- 1. Array of edges
- 2. Adjacency matrix
- 3. Adjacency list

Array-of-edges Representation

26/110

Edges are represented as an array of Edge values (= pairs of vertices)

- space efficient representation
- adding and deleting edges is slightly complex
- undirected: order of vertices in an Edge doesn't matter
- directed: order of vertices in an Edge encodes direction

For simplicity, we always assume vertices to be numbered 0. . V-1

... Array-of-edges Representation

27/110

Graph initialisation

```
newGraph(V):
    Input number of nodes V
    Output new empty graph
    g.nV = V // #vertices (numbered 0..V-1)
    g.nE = 0 // #edges
    allocate enough memory for g.edges[]
    return g
```

How much is enough? ... No more than V(V-1)/2 ... Much less in practice (sparse graph)

... Array-of-edges Representation

28/110

Edge insertion

```
insertEdge(g, (v, w)):
    Input graph g, edge (v, w) // assumption: (v, w) not in g
    g. edges[g. nE]=(v, w)
    g. nE=g. nE+1
```

... Array-of-edges Representation

29/110

Edge removal

Cost Analysis

30/110

Storage cost: *O(E)*

Cost of operations:

• initialisation: *O*(1)

• insert edge: O(1) (assuming edge array has space)

• find/delete edge: O(E) (need to find edge in edge array)

If array is full on insert

• allocate space for a bigger array, copy edges across $\Rightarrow O(E)$

If we maintain edges in order

• use binary search to insert/find edge ⇒ O(log E)

Exercise #3: Array-of-edges Representation

31/110

Assuming an array-of-edges representation ...

Write an algorithm to output all edges of the graph

```
show(g):
    Input graph g
    for all i=0 to g.nE-1 do
        print g.edges[i]
    end for
```

Time complexity: *O(E)*

Adjacency Matrix Representation

33/110

Edges represented by a $V \times V$ matrix

Undirected graph

A	0	1	2	3
0	0	0	0	1
1	1	0	0	1
2	0	0	0	0
3	0	0	1	0

... Adjacency Matrix Representation

34/110

- easily implemented as 2-dimensional array
- can represent graphs, digraphs and weighted graphs
 - o graphs: symmetric boolean matrix
 - digraphs: non-symmetric boolean matrix
 - weighted: non-symmetric matrix of weight values

Disadvantages:

• if few edges (sparse) ⇒ memory-inefficient

... Adjacency Matrix Representation

35/110

Graph initialisation

... Adjacency Matrix Representation

36/110

Edge insertion

... Adjacency Matrix Representation

37/110

Edge removal

Exercise #4: Show Graph

Assuming an adjacency matrix representation ...

Write an algorithm to output all edges of the graph (no duplicates!)

... Adjacency Matrix Representation

39/110

```
show(g):
    Input graph g

for all i=0 to g.nV-2 do
    for all j=i+1 to g.nV-1 do
    if g.edges[i][j] then
        print i"—"j
    end if
    end for
end for
```

Time complexity: $O(V^2)$

Exercise #5: 40/110

Analyse storage cost and time complexity of adjacency matrix representation

Storage cost: $O(V^2)$

If the graph is sparse, most storage is wasted.

Cost of operations:

- initialisation: $O(V^2)$ (initialise $V \times V$ matrix)
- insert edge: O(1) (set two cells in matrix)
- delete edge: O(1) (unset two cells in matrix)

... Adjacency Matrix Representation

42/110

A storage optimisation: store only top-right part of matrix.

New storage cost: V-1 int ptrs + V(V-1)/2 ints (but still $O(V^2)$)

Requires us to always use edges (v,w) such that v < w.

Adjacency List Representation

For each vertex, store linked list of adjacent vertices:

A[1] = <0, 3> A[2] = <3> A[3] = <0, 1, 2>

A[0] = <1, 3>

Undirected graph

Directed graph

A[0] = <3>

A[1] = <0, 3>

A[2] = <>

A[3] = <2>

... Adjacency List Representation

44/110

Advantages

- relatively easy to implement in languages like C
- can represent graphs and digraphs
- memory efficient if E:V relatively small

Disadvantages:

• one graph has many possible representations (unless lists are ordered by same criterion e.g. ascending)

... Adjacency List Representation

45/110

Graph initialisation

... Adjacency List Representation

46/110

```
insertEdge(g, (v, w)):
    Input graph g, edge (v, w)
    insertLL(g. edges[v], w)
    insertLL(g. edges[w], v)
    g. nE=g. nE+1
```

... Adjacency List Representation

47/110

Edge removal:

```
removeEdge(g, (v, w)):
    Input graph g, edge (v, w)

    deleteLL(g.edges[v], w)
    deleteLL(g.edges[w], v)
    g.nE=g.nE-1
```

Exercise #6: 48/110

Analyse storage cost and time complexity of adjacency list representation

Storage cost: O(V+E) (V list pointers, total of $2 \cdot E$ list elements)

• the larger of *V,E* determines the complexity

Cost of operations:

- initialisation: *O(V)* (initialise *V* lists)
- insert edge: O(1) (insert one vertex into list)
 - if you don't check for duplicates
- find/delete edge: O(V) (need to find vertex in list)

If vertex lists are sorted

- insert requires search of list $\Rightarrow O(V)$
- delete always requires a search, regardless of list order

Comparison of Graph Representations

50/110

	array of edges	adjacency matrix	adjacency list
space usage	E	V^2	V+E
initialise	1	V^2	V
insert edge	1	1	1
find/delete edge	E	1	V

Other operations:

	array of edges		adjacency list
disconnected(v)?	E	V	1
isPath(x,y)?	E·log V	V^2	V+E
copy graph	E	V^2	Ε
destroy graph	1	V	E

Graph Abstract Data Type

Graph ADT 52/110

Data:

• set of edges, set of vertices

Operations:

- building: create graph, add edge
- deleting: remove edge, drop whole graph
- scanning: check if graph contains a given edge

Things to note:

- set of vertices is fixed when graph initialised
- we treat vertices as ints, but could be arbitrary Items

... Graph ADT 53/110

Graph ADT interface graph. h

Exercise #7: Graph ADT Client

54/110

Write a program that uses the graph ADT to

- build the graph depicted below
- print all the nodes that are incident to vertex 1 in ascending order


```
#include <stdio.h>
#include "Graph.h"
#define NODES 4
#define NODE_OF_INTEREST 1
int main(void) {
   Graph g = newGraph(NODES);
   Edge e;
   e.v = 0; e.w = 1; insertEdge(g, e);
   e. v = 0; e. w = 3; insertEdge(g, e);
   e. v = 1; e. w = 3; insertEdge(g, e);
   e. v = 3; e. w = 2; insertEdge(g, e);
   int v;
   for (v = 0; v < NODES; v++) {
      if (adjacent(g, v, NODE_OF_INTEREST))
         printf("%d\n", v);
   freeGraph(g);
   return 0;
```

Graph ADT (Array of Edges)

56/110

Implementation of GraphRep (array-of-edges representation)

```
typedef struct GraphRep {
   Edge *edges; // array of edges
   int nV; // #vertices (numbered 0..nV-1)
   int nE; // #edges
   int n; // size of edge array
} GraphRep;
```


Graph ADT (Adjacency Matrix)

57/110

Implementation of GraphRep (adjacency-matrix representation)

```
typedef struct GraphRep {
   int **edges; // adjacency matrix
   int nV; // #vertices
   int nE; // #edges
} GraphRep;
```


... Graph ADT (Adjacency Matrix)

58/110

Implementation of graph initialisation (adjacency-matrix representation)

```
Graph newGraph(int V) {
   assert(V >= 0);
   int i;

Graph g = malloc(sizeof(GraphRep));
   g->nV = V;   g->nE = 0;

// allocate memory for each row
   g->edges = malloc(V * sizeof(int *));
   // allocate memory for each column and initialise with 0
   for (i = 0; i < V; i++) {
       g->edges[i] = calloc(V, sizeof(int));   assert(g->edges[i] != NULL);
   }
   return g;
}
```

standard library function calloc(size_t nelems, size_t nbytes)

- allocates a memory block of size nelems*nbytes
- and sets all bytes in that block to zero

Implementation of edge insertion/removal (adjacency-matrix representation)

```
// check if vertex is valid in a graph
bool validV(Graph g, Vertex v) {
    return (g != NULL && v >= 0 && v < g->nV);
}

void insertEdge(Graph g, Edge e) {
    assert(g != NULL && validV(g, e. v) && validV(g, e. w));

    if (!g->edges[e.v][e.w]) { // edge e not in graph
        g->edges[e.v][e.w] = 1;
        g->nE++;
    }
}

void removeEdge(Graph g, Edge e) {
    assert(g != NULL && validV(g, e. v) && validV(g, e. w));

    if (g->edges[e.v][e.w]) { // edge e in graph
        g->edges[e.v][e.w] = 0;
        g->edges[e.w][e.v] = 0;
        g->nE--;
    }
}
```

Exercise #8: Checking Neighbours (i)

60/110

Assuming an adjacency-matrix representation ...

Implement a function to check whether two vertices are directly connected by an edge

```
bool adjacent (Graph g, Vertex x, Vertex y) { … }
```

```
bool adjacent(Graph g, Vertex x, Vertex y) {
   assert(g != NULL && validV(g, x) && validV(g, y));
   return (g->edges[x][y] != 0);
}
```

Graph ADT (Adjacency List)

62/110

Implementation of GraphRep (adjacency-list representation)

```
typedef struct GraphRep {
   Node **edges; // array of lists
   int nV; // #vertices
   int nE; // #edges
} GraphRep;

typedef struct Node {
   Vertex v;
   struct Node *next;
} Node;
```


Exercise #9: Checking Neighbours (ii)

63/110

Assuming an adjacency list representation ...

Implement a function to check whether two vertices are directly connected by an edge

```
bool adjacent (Graph g, Vertex x, Vertex y) { … }
```

```
bool adjacent(Graph g, Vertex x, Vertex y) {
   assert(g != NULL && validV(g, x));

   return inLL(g->edges[x], y);
}
```

inLL() checks if linked list contains an element

Problems on Graphs

Problems on Graphs

66/110

What kind of problems do we want to solve on/via graphs?

- is the graph fully-connected?
- can we remove an edge and keep it fully-connected?
- which vertices are reachable from v? (transitive closure)
- is there a cycle that passes through all vertices? (circuit)
- what is the cheapest cost path from v to w?
- is there a tree that links all vertices? (spanning tree)
- what is the minimum spanning tree?
- what is the maximal flow through a graph?
- ...
- can a graph be drawn in a plane with no crossing edges? (planar graphs)
- are two graphs "equivalent"? (isomorphism)
- ...

Graph Algorithms

67/110

In this course we examine algorithms for

- graph traversal (simple graphs)
- reachability (directed graphs)
- minimum spanning trees (weighted graphs)
- shortest path (weighted graphs)

• maximum flow (weighted graphs)

Graph Traversal

Finding a Path 69/110

Questions on paths:

- is there a path between two given vertices (*src,dest*)?
- what is the sequence of vertices from src to dest?

Approach to solving problem:

- examine vertices adjacent to src
- if any of them is dest, then done
- otherwise try vertices two edges from *src*
- repeat looking further and further from src

Two strategies for graph traversal/search: depth-first, breadth-first

- DFS follows one path to completion before considering others
- BFS "fans-out" from the starting vertex ("spreading" subgraph)

... Finding a Path 70/110

Comparison of BFS/DFS search for checking if there is a path from a to h ...

Both approaches ignore some edges by remembering previously visited vertices.

Depth-first Search

71/110

Depth-first search can be described recursively as

depthFirst(G, v):

- 1. mark v as visited
- 2. for each $(v, w) \in edges(G)$ do if w has not been visited then

```
depthFirst(w)
```

The recursion induces backtracking

... Depth-first Search

72/110

Recursive DFS path checking

```
hasPath(G, src, dest):
   Input graph G, vertices src, dest
   Output true if there is a path from src to dest in G,
          false otherwise
   mark all vertices in G as unvisited
   return dfsPathCheck(G, src, dest)
dfsPathCheck(G, v, dest):
   mark v as visited
   if v=dest then
                         // found dest
      return true
   else
      for all (v, w) \in edges(G) do
         if w has not been visited then
            return dfsPathCheck(G, w, dest) // found path via w to dest
         end if
      end for
   end if
   return false
                         // no path from v to dest
```

Exercise #10: Depth-first Traversal (i)

73/110

Trace the execution of dfsPathCheck (G, 0, 5) on:

Consider neighbours in ascending order

Answer:

... Depth-first Search

75/110

Cost analysis:

- all vertices marked as unvisited, each vertex visited at most once \Rightarrow cost = O(V)
- visit all edges incident on visited vertices ⇒ cost = O(E)
 - o assuming an adjacency list representation

Time complexity of DFS: O(V+E) (adjacency list representation)

• the *larger* of *V,E* determines the complexity

```
For dense graphs ... E \cong V^2 \Rightarrow O(V+E) = O(V^2)
For sparse graphs ... E \cong V \Rightarrow O(V+E) = O(V)
```

... Depth-first Search

76/110

Note how different graph data structures affect cost:

- array-of-edges representation
 - visit all edges incident on visited vertices \Rightarrow cost = $O(V \cdot E)$
 - ∘ cost of DFS: *O(V·E)*
- adjacency-matrix representation
 - visit all edges incident on visited vertices \Rightarrow cost = $O(V^2)$
 - \circ cost of DFS: $O(V^2)$

... Depth-first Search

77/110

Knowing whether a path exists can be useful

Knowing what the path is even more useful

⇒ record the previously visited node as we search through the graph (so that we can then trace path through graph)

Make use of global variable:

• visited[] ... array to store previously visited node, for each node being visited

... Depth-first Search

78/110

```
end while
     print src
  end if
dfsPathCheck(G, v, dest):
  if v=dest then
                                // found edge from v to dest
     return true
  else
     for all (v, w) \in edges(G) do
        if visited[w]=-1 then
           visited[w]=v
            if dfsPathCheck(G, w, dest) then
              return true // found path via w to dest
            end if
        end if
     end for
   end if
  return false
                                // no path from v to dest
```

Exercise #11: Depth-first Traversal (ii)

79/110

Show the DFS order in which we visit vertices in this graph when searching for a path from 0 to 6:

Consider neighbours in ascending order

0	0	3	5	3	1	5	4	7	8
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

Path: 6-5-1-0

... Depth-first Search

81/110

DFS can also be described non-recursively (via a stack):

```
hasPath(G, src, dest):

| Input graph G, vertices src, dest
| Output true if there is a path from src to dest in G,
| false otherwise
```

Uses standard stack operations (push, pop, check if empty)

Time complexity is the same: O(V+E)

Exercise #12: Depth-first Traversal (iii)

82/110

Show how the stack evolves when executing findPathDFS (g, 0, 5) on:

Push neighbours in descending order ... so they get popped in ascending order

										4		5		
								3		5		5		5
				1		2		4		4		4		4
				4		4		4		4		4		4
(empty)	\rightarrow	0	\rightarrow	5										

Breadth-first Search

84/110

Basic approach to breadth-first search (BFS):

- visit and mark current vertex
- visit all neighbours of current vertex
- then consider neighbours of neighbours

Notes:

- tricky to describe recursively
- a minor variation on non-recursive DFS search works
 switch the *stack* for a *queue*

... Breadth-first Search

85/110

BFS algorithm (records visiting order, marks vertices as visited when put *on* queue):

```
visited[] // array of visiting orders, indexed by vertex 0..nV-1
findPathBFS(G, src, dest):
   Input graph G, vertices src, dest
   for all vertices v∈G do
      visited[v]=-1
   end for
   enqueue src into new queue q
   visited[src]=src
   found=false
   while not found and q is not empty do
      dequeue v from q
      if v=dest then
         found=true
         for each (v, w) \in edges(G) such that visited[w]=-1 do
            enqueue w into q
            visited[w]=v
         end for
     end if
   end while
   if found then
      display path in dest..src order
   end if
```

Uses standard queue operations (enqueue, dequeue, check if empty)

Exercise #13: Breadth-first Traversal

86/110

Show the BFS order in which we visit vertices in this graph when searching for a path from 0 to 6:

Consider neighbours in ascending order

0	0	0	2	5	0	5	5	3	-1
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

Path: 6-5-0

... Breadth-first Search

88/110

Time complexity of BFS: O(V+E) (adjacency list representation, same as DFS)

BFS finds a "shortest" path

- based on minimum # edges between src and dest.
- stops with first-found path, if there are multiple ones

In many applications, edges are weighted and we want path

• based on minimum sum-of-weights along path src .. dest

We discuss weighted/directed graphs later.

Other DFS Examples

89/110

Other problems to solve via DFS graph search

- checking for the existence of a cycle
- determining which connected component each vertex is in

Graph with two connected components, a path and a cycle

Exercise #14: Buggy Cycle Check

90/110

A graph has a cycle if

- it has a path of length > 1
- with start vertex src = end vertex dest
- and without using any edge more than once

We are not required to give the path, just indicate its presence.

The following DFS cycle check has two bugs. Find them.

```
hasCycle(G):

| Input graph G
| Output true if G has a cycle, false otherwise
| choose any vertex v∈G
| return dfsCycleCheck(G, v)

dfsCycleCheck(G, v):
| mark v as visited
| for each (v, w) ∈ edges(G) do
| if w has been visited then // found cycle
| return true
| else if dfsCycleCheck(G, w) then
| return true
| end for
| return false // no cycle at v
```

- 1. Only one connected component is checked.
- 2. The loop

```
for each (v, w) \in edges(G) do
```

should exclude the neighbour of v from which you just came, so as to prevent a single edge w-v from being classified as a cycle.

Computing Connected Components

92/110

Problems:

- how many connected subgraphs are there?
- are two vertices in the same connected subgraph?

Both of the above can be solved if we can

- build an array, one element for each vertex V
- indicating which connected component V is in
- componentOf[] ... array [0..nV-1] of component IDs

... Computing Connected Components

93/110

Algorithm to assign vertices to connected components:

```
components(G):
    Input graph G

    for all vertices v∈G do
        componentOf[v]=-1
    end for
    compID=0
    for all vertices v∈G do
        if componentOf[v]=-1 then
```

```
| dfsComponents(G, v, compID)
| compID=compID+1
| end if
| end for

dfsComponents(G, v, id):
| componentOf[v]=id
| for all vertices w adjacent to v do
| if componentOf[w]=-1 then
| dfsComponents(G, w, id)
| end if
| end for
```

Exercise #15: Connected components

94/110

Trace the execution of the algorithm

- 1. on the graph shown below
- 2. on the same graph but with the dotted edges added

Consider neighbours in ascending order

1.	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
	-1	-1	-1	-1	-1	-1	-1	-1
	0	-1	-1	-1	-1	-1	-1	-1
	0	-1	0	-1	-1	-1	-1	-1
	0	0	0	-1	-1	-1	-1	-1
	0	0	0	1	-1	-1	-1	-1
	0	0	0	1	1	2	2	2

2.	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
	-1	-1	-1	-1	-1	-1	-1	-1
	0	-1	-1	-1	-1	-1	-1	-1
	0	0	-1	-1	-1	-1	-1	-1
	0	0	0	-1	-1	-1	-1	-1

Hamiltonian and Euler Paths

Hamiltonian Path and Circuit

97/110

Hamiltonian path problem:

- find a path connecting two vertices v,w in graph G
- such that the path includes each *vertex* exactly once

If v = w, then we have a *Hamiltonian circuit*

Simple to state, but difficult to solve (*NP*-complete)

Many real-world applications require you to visit all vertices of a graph:

- Travelling salesman
- Bus routes
- ...

Problem named after Irish mathematician, physicist and astronomer Sir William Rowan Hamilton (1805 — 1865)

... Hamiltonian Path and Circuit

98/110

Graph and two possible Hamiltonian paths:

... Hamiltonian Path and Circuit

99/110

Approach:

- generate all possible simple paths (using e.g. DFS)
- keep a counter of vertices visited in current path
- stop when find a path containing V vertices

Can be expressed via a recursive DFS algorithm

- similar to simple path finding approach, except
 - \circ keeps track of path length; succeeds if length = v-1 (length = v for circuit)
 - o resets "visited" marker after unsuccessful path

... Hamiltonian Path and Circuit

Algorithm for finding Hamiltonian path:

```
visited[] // array [0..nV-1] to keep track of visited vertices
hasHamiltonianPath(G, src, dest):
   for all vertices v \in G do
      visited[v]=false
   end for
   return hamiltonR(G, src, dest, #vertices(G)-1)
hamiltonR(G, v, dest, d):
   Input G
              current vertex considered
         dest destination vertex
              distance "remaining" until path found
   if v=dest then
      if d=0 then return true else return false
   else
      mark v as visited
      for each unvisited neighbour w of v in Gdo
         if hamiltonR(G, w, dest, d-1) then
            return true
         end if
      end for
   end if
   mark v as unvisited
                                 // reset visited mark
   return false
```

Exercise #16: Hamiltonian Path

101/110

Trace the execution of the algorithm when searching for a Hamiltonian path from 1 to 6:

Consider neighbours in ascending order

1-0-2-3-4-5-6	d≠0
1-0-2-3-4-5-7-8-9	no unvisited neighbour
1-0-2-3-4-5-7-9-8	no unvisited neighbour
1-0-2-3-4-7-5-6	d≠0
1-0-2-3-4-7-8-9	no unvisited neighbour
1-0-2-3-4-7-9-8	no unvisited neighbour

1-0-2-3-4-8-7-5-6	d≠0
1-0-2-3-4-8-7-9	no unvisited neighbour
1-0-2-3-4-8-9-7-5-6	\checkmark

Repeat on your own with src=0 and dest=6

... Hamiltonian Path and Circuit

103/110

Analysis: worst case requires (V-1)! paths to be examined

Consider a graph with isolated vertex and the rest fully-connected

Checking has Hamiltonian Path(g, x, 0) for any x

- requires us to consider every possible path
- e.g 1-2-3-4, 1-2-4-3, 1-3-2-4, 1-3-4-2, 1-4-2-3, ...
- starting from any x, there are 3! paths \Rightarrow 4! total paths
- there is no path of length 5 in these (V-1)! possibilities

There is no known simpler algorithm for this task \Rightarrow *NP*-hard.

Note, however, that the above case could be solved in constant time if we had a fast check for 0 and x being in the same connected component

Euler Path and Circuit

104/110

Euler path problem:

- find a path connecting two vertices v,w in graph G
- such that the path includes each edge exactly once
 (note: the path does not have to be simple ⇒ can visit vertices more than once)

If v = w, the we have an *Euler circuit*

Euler Path: 4-3-1-5-2-1

Euler Circuit: 1-2-5-4-3-1

Many real-world applications require you to visit all edges of a graph:

- Postman
- Garbage pickup
- ...

Problem named after Swiss mathematician, physicist, astronomer, logician and engineer Leonhard Euler (1707 — 1783)

... Euler Path and Circuit

105/110

One possible "brute-force" approach:

- check for each path if it's an Euler path
- would result in factorial time performance

Can develop a better algorithm by exploiting:

Theorem. A graph has an Euler circuit if and only if it is connected and all vertices have even degree

Theorem. A graph has a non-circuitous Euler path if and only if it is connected and exactly two vertices have odd degree

Exercise #17: Euler Paths and Circuits

106/110

Which of these two graphs have an Euler path? an Euler circuit?

No Euler circuit

Only the second graph has an Euler path, e.g. 2-0-1-3-2-4-5

... Euler Path and Circuit

108/110

Assume the existence of degree(g, v) (degree of a vertex, cf. homework exercise 2 this week)

Algorithm to check whether a graph has an Euler path:

```
hasEulerPath(G, src, dest):
    Input graph G, vertices src, dest
    Output true if G has Euler path from src to dest
    false otherwise
```

```
if src≠dest then  // non~circuitous path
  if degree(G, src) or degree(G, dest) is even then
    return false
  end if
else if degree(G, src) is odd then // circuit
  return false
end if
for all vertices v∈G do
  if v≠src and v≠dest and degree(G, v) is odd then
  return false
  end if
end for
return true
```

... Euler Path and Circuit

109/110

Analysis of hasEulerPath algorithm:

- assume that connectivity is already checked
- assume that degree is available via O(1) lookup
- single loop over all vertices $\Rightarrow O(V)$

If degree requires iteration over vertices

- cost to compute degree of a single vertex is O(V)
- overall cost is $O(V^2)$
- ⇒ problem tractable, even for large graphs (unlike Hamiltonian path problem)

For the keen: Linear-time (in the number of edges, *E*) algorithm to compute an Euler path described in [Sedgewick] Ch.17.7

Summary 110/110

- Graph terminology
 - o vertices, edges, vertex degree, connected graph, tree
 - o path, cycle, clique, spanning tree, spanning forest
- Graph representations
 - o array of edges
 - adjacency matrix
 - adjacency lists
- Graph traversal
 - o depth-first search (DFS)
 - breadth-first search (BFS)
 - o cycle check, connected components
 - Hamiltonian paths/circuits, Euler paths/circuits
- Suggested reading (Sedgewick):
 - o graph representations ... Ch. 17.1-17.5

- o Hamiltonian/Euler paths ... Ch. 17.7
- o graph search ... Ch. 18.1-18.3, 18.7

Produced: 3 Oct 2022