Introduction to Analysis I HW2

B13902024 張沂魁

September 18, 2025

Problem 0.0.1 (11pts). If (X, d) is a metric space, define

$$d'(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

Prove that d' is also a metric on X. Note that $0 \le d'(x, y) < 1$ for all $x, y \in X$.

Proof. In the first three properties we are going to check, they are all true since we can directly these properties on d to conclude that these properties are also true on d'.

- We know $d'(x,x) = \frac{d(x,x)}{1+d(x,x)} = 0$ for every $x \in X$.
- For every distinct $x, y \in X$, we have

$$d'(x,y) = \frac{d(x,y)}{1 + d(x,y)} > 0.$$

- For any $x, y \in X$, we have d'(x, y) = d'(y, x), which is trivial.
- For any $x, y, z \in X$, suppose

$$a = d(x, z)$$
 $b = d(x, y)$ $c = d(y, z)$,

we want to show that

$$\frac{a}{1+a} \le \frac{b}{1+b} + \frac{c}{1+c},$$

where we know $a, b, c \ge 0$ and $a \le b + c$. By directly computing, we know it is equivalent to

$$\begin{aligned} &a(1+b)(1+c) \leq (1+a)(1+c)b + (1+a)(1+b)c \\ &\Leftrightarrow a(1+b+c+bc) \leq (1+a+c+ac)b + (1+a+b+ab)c \\ &\Leftrightarrow a \leq b(1+c) + c(1+b+ab) = b+c+2bc+abc. \end{aligned}$$

Hence, we know this inequality holds because we know $a, b, c \ge 0$.

Problem 0.0.2 ((12 pts) exercise 1.2.4). Let (X, d) be a metric space, x_0 be a point in X, and r > 0. Let B be the open ball

$$B := B(x_0, r) = \{ x \in X : d(x, x_0) < r \},\$$

and let C be the closed ball

$$C := \{x \in X : d(x, x_0) < r\}.$$

- (a) Show that $\overline{B} \subseteq C$.
- (b) Give an example of a metric space (X,d), a point x_0 , and a radius r>0 such that $\overline{B}\neq C$.

Proof.

(a) For all $b \in \overline{B}$, we know for all r' > 0, we have $B(b, r') \cap B(x_0, r) \neq \emptyset$. Now if $d(b, x_0) > r$, say $\varepsilon = d(b, x_0) - r > 0$. Suppose $z \in B(b, \varepsilon)$, we have

$$d(z, x_0) \ge d(b, x_0) - d(z, b)$$
$$> d(b, x_0) - \varepsilon = r$$

by triangle inequality. However, this means $z \notin B(x_0, r)$. Hence, $B(b, \varepsilon) \cap B(x_0, r) = \emptyset$, which is a contradiction. By this, we know $d(b, x_0) \le r$ for all $b \in \overline{B}$, so $\overline{B} \subseteq C$.

(b) Suppose the metric space is $(\mathbb{R}, d_{\text{disc}})$, where d_{disc} is the discrete metric defined by

$$d_{\text{disc}} = \begin{cases} 1, & \text{if } x \neq y; \\ 0, & \text{if } x = y, \end{cases}$$

and suppose $x_0 = 0$ and r = 1 Thus, we know $\overline{B} = B \cup \partial B$, but notice that

$$B = \{x \in X \mid d(x,0) < 1\} = \{0\},\$$

and $\partial B = \emptyset$ since for all $x \neq 0$, we know

$$B\left(x, \frac{1}{2}\right) = \{x\} \subseteq X \setminus B(0, 1),$$

so we know $\operatorname{Ext}(B) = \mathbb{R} \setminus \{0\}$. Also, we know $\operatorname{Int}(B) = \{0\}$ since $B(0,1) \subseteq B$ and $\operatorname{Ext}(B) \cap \operatorname{Int}(B) = \emptyset$, so $\partial B = \emptyset$. Now we know $\overline{B} = B \cup \partial B = \{0\}$, but

$$C = \{x \in X \mid d(x,0) \le 1\} = \mathbb{R},$$

so $\overline{B} \neq C$.

Problem 0.0.3 (21pts). Two metrics d_1 and d_2 on a set X are said to be *Lipschitz equivalent* if there exist constants $C_1 > 0$ and $C_2 > 0$ such that

$$C_1d_2(x,y) \le d_1(x,y) \le C_2d_2(x,y)$$
 for all $x, y \in X$.

Let $E \subset X$.

- (a) Prove that E is open in (X, d_1) if and only if E is open in (X, d_2) .
- (b) Prove that E is closed in (X, d_1) if and only if E is closed in (X, d_2) .
- (c) Two metrics d_1 and d_2 on a set X are said to be topologically equivalent if they induce the same topology on X. That is, a set $U \subset X$ is open in (X, d_1) if and only if it is open in (X, d_2) . Give examples of topologically equivalent metrics that are not Lipschitz equivalent.

Proof. In the following text, if we write Int_1 , Int_2 , B_1 , B_2 , then the number of the subscript means it is under which metric. For example, $Int_1(E)$ means the interior points of E in (X, d_1) , and the others are similarly defined.

(a) (\Rightarrow) If E is open in (X, d_1) , then we know $E = \text{Int}_1(E)$. Thus, $\forall x_0 \in E, \exists r > 0 \text{ s.t.}$

$$B_1(x_0, r) = \{x \in X \mid d_1(x, x_0) < r\} \subseteq E.$$

However, it means for all $x_0 \in E$, we know

$$B_2\left(x_0, \frac{r}{C_2}\right) = \left\{x \in X \mid d_2(x, x_0) < \frac{r}{C_2}\right\} \subseteq B_1(x_0, r) \subseteq E$$

because for all $x \in B_2\left(x_0, \frac{r}{C_2}\right)$, we have $d_2(x, x_0) < \frac{r}{C_2}$, so it must have $d_1(x, x_0) < r$ since

$$d_1(x, x_0) \le C_2 d_2(x, x_0) < r.$$

Hence, we have $E \subseteq Int_2(E)$.

Also, for every $x \in \text{Int}_2(E)$, we know there exists r > 0 s.t. $B_2(x,r) \subseteq E$, and also $x \in B_2(x,r)$, so $x \in E$, which means $\text{Int}_2(E) \subseteq E$.

Hence, we have $\operatorname{Int}_2(E) = E$, which means E is open in (X, d_2) .

 (\Leftarrow) Since we know

$$\frac{1}{C_2}d_1(x,y) \le d_2(x,y) \le \frac{1}{C_1}d_1(x,y) \quad \forall x, y \in X,$$

so we can just use the same method in the (\Rightarrow) 's proof to prove (\Leftarrow) direction.

(b)

$$E$$
 is closed in $(X, d_1) \Leftrightarrow X \setminus E$ is open in (X, d_1)
 $\Leftrightarrow X \setminus E$ is open in (X, d_2) (by (a))
 $\Leftrightarrow E$ is closed in (X, d_2) .

(c) For $X = \mathbb{R}$, $d_1 = |x - y|$, and $d_2 = \frac{d_1}{1 + d_1}$, we claim that d_1 and d_2 are not Lipschitz equivalent and are topologically equivalent.

Note 0.0.1. In the course, we have shown that d_1 is a metric, and in Problem 0.0.1 we have shown that d_2 is a metric.

Claim 0.0.1. d_1 and d_2 are not Lipschitz equivalent.

Proof. Note that $d_1(x,y)$ can be arbitraty large in \mathbb{R} and $d_2(x,y) < 1$ for any $x,y \in \mathbb{R}$, so there does not exist a constant c s.t. $d_1(x,y) < cd_2(x,y)$, which means d_1 and d_2 are not Lipschitz equivalent.

Now we show that a set $U \subseteq \mathbb{R}$ is open in (\mathbb{R}, d_1) if and only if U is open in (\mathbb{R}, d_2) .

First notice that

$$d_2(x,y) = \frac{d_1(x,y)}{1 + d_1(x,y)} \Leftrightarrow d_1(x,y) = \frac{d_2(x,y)}{1 - d_2(x,y)}.$$

 (\Rightarrow) If U is open in (\mathbb{R}, d_1) , then for all $u \in U$, there exists r > 0 s.t.

$$B_1(u,r) = \{x \in X \mid d_1(x,u) < r\} \subseteq X.$$

Also, we know

$$d_1(x,u) < r \Leftrightarrow \frac{d_2(x,u)}{1 - d_2(x,u)} < r \Leftrightarrow d_2(x,u) < \frac{r}{1+r}.$$

Thus, we know in (\mathbb{R}, d_2) , for all $u \in U$, there exists $\frac{r}{1+r} > 0$ s.t.

$$B_2\left(u, \frac{r}{1+r}\right) = \left\{x \in X \mid d_2(x, u) < \frac{r}{1+r}\right\} \subseteq X,$$

which means $\operatorname{Int}_2(U) = U$ and thus U is open in (\mathbb{R}, d_2) .

 (\Leftarrow) If U is open in (\mathbb{R}, d_2) , then for all $u \in U$, there exists r > 0 s.t.

$$B_2(u,r) = \{x \in X \mid d_2(x,u) < r\} \subseteq X.$$

Besides, we can let r < 1. (If $r \ge 1 > r_2$, then $B_2(u, r_2) \subseteq B(u, r) \subseteq X$, and then we can let $r = r_2$.) Also, we know

$$d_2(x,u) < r \Leftrightarrow \frac{d_1(x,u)}{1 + d_1(x,u)} < r \Leftrightarrow d_1(x,u) < \frac{r}{1-r}.$$

Notice that since 0 < r < 1, so $\frac{r}{1-r} > 0$. Thus, we know in (\mathbb{R}, d_2) , for all $u \in U$, there exists $\frac{r}{1-r} > 0$ s.t.

$$B_1\left(u, \frac{r}{1-r}\right) = \left\{x \in X \mid d_1(x, u) < \frac{r}{1-r}\right\} \subseteq X,$$

which means $\operatorname{Int}_1(U) = U$ and thus U is open in (\mathbb{R}, d_1) .

Problem 0.0.4 (15 pts). Let $\mathcal{M}_n = M_n(\mathbb{R})$ denote the set of all $n \times n$ real matrices. Define a function on $\mathcal{M}_n \times \mathcal{M}_n$ by

$$\rho(A, B) = \operatorname{rank}(A - B).$$

Then ρ is a metric on \mathcal{M}_n and it is topologically equivalent to the discrete metric on \mathcal{M}_n .

Proof. We first show that ρ is a metric on \mathcal{M}_n .

- For all $A \in \mathcal{M}_n$, we know $\rho(A, A) = \operatorname{rank}(A A) = \operatorname{rank} 0 = 0$.
- For any distinct $A, B \in \mathcal{M}_n$, we know there is a row of A B not equal to 0-vector, so $\operatorname{rank}(A B) > 0$.
- For $A, B \in \mathcal{M}_n$, we know rank $(A B) = \operatorname{rank}(B A)$, so $\rho(A, B) = \rho(B, A)$.
- For $A, B, C \in \mathcal{M}_n$, we want to show $\operatorname{rank}(A C) \leq \operatorname{rank}(A B) + \operatorname{rank}(B C)$. Suppose A B = X, B C = Y, then we want to show $\operatorname{rank}(X + Y) \leq \operatorname{rank} X + \operatorname{rank} Y$, which is equivalent to show

$$\dim \operatorname{Im}(X+Y) \le \dim(\operatorname{Im} X) + \dim(\operatorname{Im} Y).$$

Notice that

 $\operatorname{Im}(X+Y) = \{w \mid (X+Y)v = w \text{ for some } v\} \subseteq \{a+b \mid a \in \operatorname{Im} X, b \in \operatorname{Im} Y\} = \operatorname{Im} X + \operatorname{Im} Y.$

Hence, we have $\dim \operatorname{Im}(X+Y) \leq \dim(\operatorname{Im}X + \operatorname{Im}Y)$. Also, we know

 $\dim(\operatorname{Im} X + \operatorname{Im} Y) = \dim\operatorname{Im} X + \dim\operatorname{Im} Y - \dim\operatorname{Im} X \cap \operatorname{Im} Y \leq \dim\operatorname{Im} X + \dim\operatorname{Im} Y.$

Hence, we know $\dim \operatorname{Im}(X + Y) \leq \dim \operatorname{Im} X + \dim \operatorname{Im} Y$.

Now we prove that ρ is topologically equivalent to the discrete metric on \mathcal{M}_n , called d_{disc} . Now we show that for any set $U \subseteq \mathcal{M}_n$, U is open in (\mathcal{M}_n, ρ) and $(\mathcal{M}, d_{\text{disc}})$. For any $U \subseteq \mathcal{M}_n$, and for all $u \in U$, we know $B_{\rho}\left(u, \frac{1}{2}\right) = \{u\} \subseteq U$, so $U = \text{Int}_{\rho}(U)$, which means U is open in (\mathcal{M}_n, ρ) . Similarly, for all $u \in U$, $B_{\text{disc}}\left(u, \frac{1}{2}\right) = \{u\} \subseteq U$, so we can similarly conclude that U is open in $(\mathcal{M}_n, d_{\text{disc}})$. Hence, we can say that $U \subseteq X$ is open in (\mathcal{M}, ρ) if and only if U is open in $(\mathcal{M}_n, d_{\text{disc}})$, so these two metrics are topologically equivalent.

Problem 0.0.5 (20 pts). Let E be a subset of a metric space (X, d). Prove the following:

- (a) The boundary of E is a closed set.
- (b) $\partial E = \overline{E} \cap \overline{X \setminus E}$
- (c) If E is clopen (closed and open), what is ∂E ?
- (d) Give an example of $S \subset \mathbb{R}$ such that $\partial(\partial S) \neq \emptyset$, and infer that "the boundary of the boundary $\partial \circ \partial$ is not always zero."

Proof.

(a) We want to show that $\partial(\partial E) \subseteq \partial E$. For all $x \in \partial(\partial E)$, if $x \in \partial E$, then we're done. Now

consider the second case: $x \in X \setminus \partial E = \operatorname{Int}(E) \cup \operatorname{Ext}(E)$. Note that for all r > 0, we have

$$B(x,r) \cap \partial E \neq \emptyset$$
 $B(x,r) \cap (X \setminus \partial E) = B(x,r) \cap (\operatorname{Int}(E) \cup \operatorname{Ext}(E)) \neq \emptyset.$

Case 1: $x \in Int(E)$.

We know there exists r' > 0 s.t. $B(x, r') \subseteq E$. If there exists $c \in B(x, r') \cap \partial E$, then we know $c \in B(x, r') \subseteq E$, so $c \in E$. Also, we know

$$B(c,r'') \cap E \neq \emptyset$$
 $B(c,r'') \cap (X \setminus E) \neq \emptyset$ $\forall r'' > 0.$

Now suppose $\varepsilon = d(c, x) < r'$. If we pick some $r'' < r' - \varepsilon$, then for all $p \in B(c, r'')$, we have d(p, c) < r'', and by triangle inequality we have

$$d(p,x) \le d(p,c) + d(c,x) < r'' + \varepsilon < r' - \varepsilon + \varepsilon = r',$$

which means $p \in B(x, r')$. Hence, $B(c, r'') \subseteq B(x, r') \subseteq E$, which means $B(c, r'') \cap (X \setminus E) = \emptyset$, and this is a contradiction, so we know there does not exist $x \in \partial(\partial E)$ s.t. $x \in \text{Int}(E)$.

Case 2: $x \in \text{Ext}(E)$.

We know there exists r' > 0 s.t. $B(x, r') \subseteq X \setminus E$. If there exists $c \in B(x, r') \cap \partial E$, then we know $c \in B(x, r') \subseteq X \setminus E$, so $c \in X \setminus E$. Also, we know

$$B(c, r'') \cap E \neq \emptyset$$
 $B(c, r'') \cap (X \setminus E) \neq \emptyset$ $\forall r'' > 0.$

Now suppose $\varepsilon = d(c, x) < r'$. If we pick some $r'' < r' - \varepsilon$, then for all $p \in B(c, r'')$, we have d(p, c) < r'', and by triangle inequality we have

$$d(p, x) \le d(p, c) + d(c, x) < r'' + \varepsilon < r' - \varepsilon + \varepsilon = r',$$

which means $p \in B(x,r')$. Hence, $B(c,r'') \subseteq B(x,r') \subseteq X \setminus E$, which means $B(c,r'') \cap E = \emptyset$, and this is a contradiction, so we know there does not exist $x \in \partial(\partial E)$ s.t. $x \in \operatorname{Ext}(E)$.

(b)

a point
$$x \in \partial E \Leftrightarrow \begin{cases} B(x,r) \cap E \neq \varnothing \\ B(x,r) \cap (X \setminus E) \neq \varnothing \end{cases}$$

 $\Leftrightarrow x \in \overline{E} \text{ and } x \in \overline{X \setminus E}.$
 $\Leftrightarrow x \in \overline{E} \cap x \in \overline{X \setminus E}.$

(c) If E is clopen, then we know

$$\begin{cases} \partial E \subseteq E \\ \partial E \cap E = \varnothing. \end{cases}$$

Hence, $\partial E = \emptyset$. Otherwise, if there exists $a \in \partial E$, then $a \in \partial E \subseteq E$, and thus $a \in \partial E \cap E$, which means $\partial E \cap E \neq \emptyset$, and this is a contradiction.

(d) Consdier S=(-1,1), and the metric is defined by d(x,y)=|x-y|, then $\{-1,1\}=\partial S$, and for any r>0, we know $-1\in B(-1,r)$, so $B(-1,r)\cap \partial S\neq \varnothing$. Also, for any r>0, we know $-1+\min\left\{0.1,\frac{r}{2}\right\}\in B(-1,r)$. Note that $-1+\min\left\{0.1,\frac{r}{2}\right\}\in X\setminus \partial S$, so we know $B(-1,r)\cap (X\setminus \partial S)\neq \varnothing$. Hence, $-1\in \partial(\partial S)$, and thus $\partial(\partial S)\neq \varnothing$.

Problem 0.0.6 (21 pts). Let (X,d) be a metric space. If subsets satisfy $A \subseteq S \subseteq \overline{A}^S$, where \overline{A}^S denotes the closure of A with respect to the subspace metric on S, then A is said to be *dense* in S.

Recall that the closure of A in the subspace $(S, d|_{S\times S})$ is defined by

$$\overline{A}^S := \{ s \in S : \forall r > 0, \ B_S(s,r) \cap A \neq \emptyset \},\$$

where

$$B_S(s,r) = B_X(s,r) \cap S$$

is the open ball in S relative to X.

Equivalently, A is dense in S if for every $s \in S$ and r > 0 one has

$$B_X(s,r) \cap S \cap A \neq \emptyset$$
.

Examples. The set \mathbb{Q} of rational numbers is dense in \mathbb{R} , and the open interval (0,1) is dense in the closed interval [0,1].

(a) Suppose $A \subseteq S \subseteq T$. If A is dense in S and S is dense in T, prove that A is dense in T. Equivalently,

$$\overline{A}^S = S$$
 and $\overline{S}^T = T \Longrightarrow \overline{A}^T = T$,

where \dot{Y} denotes closure in the subspace Y.

(b) If A is dense in S and B is open in S, prove that

$$B \subseteq \overline{A \cap B}$$
.

Note: B is open in S iff $B = V \cap S$ for some open $V \subseteq X$, equivalently, for every $b \in B$ there exists r > 0 such that

$$B_S(b,r) = B_X(b,r) \cap S \subseteq B$$
.

(c) If A and B are both dense in S and B is open in S, prove that

$$A \cap B$$
 is dense in S .

Proof.

(a) We want to show that if we have $\overline{A}^S = S$ and $\overline{S}^T = T$, then we must have $\overline{A}^T = T$. Note that we have

$$\begin{cases} A \subseteq S \subseteq T. \\ \forall s \in S, r > 0, B_X(s, r) \cap S \cap A \neq \emptyset \\ \forall t \in T, r' > 0, B_X(t, r') \cap T \cap S \neq \emptyset. \end{cases}$$

Note that $S \cap A = A$ and $T \cap S = S$, so in fact we have

$$\begin{cases} A \subseteq S \subseteq T. \\ \forall s \in S, r > 0, B_X(s,r) \cap A \neq \varnothing \\ \forall t \in T, r' > 0, B_X(t,r') \cap S \neq \varnothing. \end{cases}$$

It is trivial that $\overline{A}^T \subseteq T$, and now we show that $T \subseteq \overline{A}^T$. If for some $t' \in T$, we have $t' \notin \overline{A}^T$, then there exists r'' > 0 s.t.

$$B_X(t',r'') \cap T \cap A = \emptyset \Rightarrow B_X(t',r'') \cap A = \emptyset.$$

Now pick some r_3 s.t. $0 < r_3 < r''$, then we know $B_X(t',r_3) \cap S \neq \emptyset$. If we pick $s' \in B_X(t',r_3) \cap S$, then we have $d(s',t') < r_3$, and $s' \in S$, so if we pick r_4 s.t. $0 < r_4 < r'' - r_3$, then we know $B_X(s',r_4) \cap A \neq \emptyset$. Now if we pick $p \in B_X(s',r_4) \cap A$, then we know $d(p,s') < r_4$. Note that by triangle inequality

$$d(p, t') \le d(p, s') + d(s', t') < r_4 + r_3 < r'' - r_3 + r_3 = r''$$
.

Hence, $p \in B_X(t', r'') \cap A = \emptyset$, which is a contradiction.

(b) Since $S \subseteq \overline{A}^S$, so for all $x \in S$ and r > 0, we know $B_X(x,r) \cap S \cap A \neq \emptyset$. We want to show that for all $x \in B$, we have $B_X(x,r) \cap A \cap B \neq \emptyset$ for all r > 0. Now suppose $x \in B \subseteq S$. Since B is open in S, so there exists $O \subseteq X$ s.t. O is open and $B = O \cap S$. Note that for all $x \in B \subseteq S$, there exists $r_1 > 0$ s.t. $B_X(x,r_1) \subseteq O$. Hence, we have $B_X(x,r_1) \cap S \subseteq O \cap S = B$. Also, since we know $A \subseteq S$, so

$$B_X(x,r_1) \cap A \subseteq B_X(x,r_1) \cap S \subseteq B$$
.

Besides, we have $B_X(x,r_1) \cap A \neq \emptyset$ since $x \in B \subseteq S \subseteq \overline{A}^S$. Thus, we have $B_X(x,r_1) \cap A \cap B \neq \emptyset$. Now if $0 < r_2 < r_1$, then since $B_X(x,r_2) \subseteq B_X(x,r_1)$, so we have

$$B_X(x, r_2) \cap S \subseteq B_X(x, r_1) \cap S \subseteq B$$
.

Also, we still have $B_X(x,r_2) \cap A \neq \emptyset$ since $x \in B \subseteq S \subseteq \overline{A}^S$, and similarly we have

$$B_X(x, r_2) \cap A \subseteq B_X(x, r_1) \cap S \subseteq B$$
,

which shows $B(x, r_2) \cap A \cap B \neq \emptyset$. Now if $r_3 > r_1$, then since $B_X(x, r_1) \subseteq B_X(x, r_3)$, and we have shown that $B_X(x, r_1) \cap A \cap B \neq \emptyset$, so we have

$$\emptyset \neq B_X(x,r_1) \cap A \cap B \subseteq B_X(x,r_3) \cap A \cap B$$
.

Hence, for all r > 0, we know $B_X(x,r) \cap A \cap B \neq \emptyset$, and we're done.

(c) By (b), we know $B \subseteq \overline{A \cap B}$. Also, we always have $A \cap B \subseteq B$, so we have $A \cap B \subseteq B \subseteq \overline{A \cap B}$. To be more rigorous, we show that $B \subseteq \overline{A \cap B}^B$. Since we know $B \subseteq \overline{A \cap B}$, so for all $b \in B$ and r > 0, we know

$$B_X(b,r) \cap A \cap B \neq \emptyset$$
,

but note that

$$\varnothing \neq B_X(b,r) \cap A \cap B = B_X(b,r) \cap B \cap A \cap B = B_B(b,r) \cap A \cap B$$

and we're done. Thus, $A \cap B$ is dense in B. Now since B is dense in S, so by (a) we know $A \cap B$ is dense in S.