ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №4

ОПЕРАТОР ЦИКЛА WHILE

1. Цель и порядок работы

Цель работы – изучить на языке программирования Python принципы реализации циклических алгоритмов и использование оператора цикла while.

Порядок выполнения работы:

- ознакомиться с описанием практического занятия;
- написать программы, согласно вариантам;
- продемонстрировать работу преподавателю.

2. Теоретический материал

Кроме материалов лекции, можно воспользоваться материалами по данной теме из данных источников

- 1. https://metanit.com/python/tutorial/2.7.php
- 2. https://pythonworld.ru/osnovy/cikly-for-i-while-operatory-break-i-continue-volshebnoe-slovo-else.html

3. Контрольные вопросы

- 1. Каково назначение оператора while?
- 2. Опишите синтаксис использования цикла while
- 3. Что такое бесконечный шикл?
- 4. Каково назначение оператора break?
- 5. Каково назначение оператора conitue?
- 6. Каково назначение оператора else (после while)?
- 7. Каким образом в python можно организовать цикл с постусловием?
- 8. Каким образом в python можно реализовать вычисления с заданной точностью?

4 Задание

- 1. Изучите теоретический материал.
- 2. Ответьте на теоретические вопросы.
- 3. Напишите программы по одному заданию на выбор из пунктов 5.1 5.3 на языке программирования Python.
- 4. По каждому заданию напишите постановку задачи, приведите решение задачи на языке программирования Python.
- 5. Составьте отчет о проделанной работе (см. приложение).
- 6. Итоговый отчет (содержащий выполненные задания) прикрепите в системе https://lms.utmn.ru. При выставлении баллов за работу учитывается: правильность написания кода, полнота и правильность ответов учащегося на вопросы преподавателя.

7. **Внимание!!!** Название файла должно содержать ФИО и номер практического занятия (Иванов Иван Иванович ПЗ 4.docx)

5. Задания:

5.1 Подсчет значений

На вход программе подаётся последовательность чисел. Каждое число на отдельной строке. Ввод чисел продолжается до тех пор, пока пользователь не введёт число, удовлетворяющее условию остановки, указанному в варианте. Из чисел последовательности вычислите величины, указанные в варианте.

№	Условие остановки	Искомые величины	
1	$X \in [-10;-1]$	Количество и минимум	
2	Х некратно 3	Произведение косинусов	
3	$\sin(X) < 0$	Сумма синусов	
4	Х некратно 5	Сумму положительных и сумму отрицательных	
5	X ∈ [-2;7)	Среднее арифметическое	
6	$X \in (10;100]$	Среднее геометрическое	

5.2 Целые числа

- 1) Определите, является ли наибольшая цифра в записи произвольного целого числа четным числом.
- 2) Определите, является ли сумма каждой третьей цифры в записи произвольного целого числа четным числом.
- 3) Определите, есть ли в записи произвольного целого числа цифра n (цифра n вводиться с клавиатуры).
- 4) Определите, есть ли в записи произвольного целого числа цифры кратные 2.
- 5) Определите, является ли произвольное целое натуральное число палиндромом (т.е. десятичная запись которого читается одинаково слева направо и справа налево).

5.3 Сумма ряда с заданной точностью

Вычислить сумму ряда с точностью є, общий член которого указан в варианте. Точность считается достигнутой, если следующий член последовательности меньше заданного є.

1	$rac{n!}{n^n}$, где $n=1\cdots \infty$	2	$rac{\ln(n+1)}{(n+4)!}$, где $n=1\cdots \infty$
3	$rac{1}{2^n} + rac{1}{3^n}$, где $n=1\cdots \infty$	4	$\dfrac{\sqrt{n!}}{(2n)!}$, где $n=1\cdots \infty$
5	$\dfrac{(-1)^{n-1}n!}{n^n}$, где $n=1\cdots \infty$	6	$\frac{2^n}{(3n)!}$, где $n=1\cdots \infty$