Module 4.6.2

Laplace Domain Analysis Root Locus

Controller Design

Lectures on

CHEMICAL PROCESS CONTROL
Theory and Practice

Example Root Loci

P Controller Design Using Root Locus

$$G_{p} = \frac{1}{(p+1)(2p+1)(4p+1)} \qquad G_{1} \in K_{c} \qquad \mathcal{E} = 0.5$$

$$OL poles \qquad S = -1, -\frac{1}{2}, -\frac{1}{4} \qquad \mathcal{E} = \frac{1\frac{\pi}{4}}{3} \qquad \mathcal{E} = -\alpha + \sqrt{3}\alpha_{1} \qquad \mathcal{E} = 0.5$$

$$OL poles \qquad S = -1, -\frac{1}{2}, -\frac{1}{4} \qquad \mathcal{E} = \frac{1\frac{\pi}{4}}{3} \qquad \mathcal{E} = -\alpha + \sqrt{3}\alpha_{1} \qquad \mathcal{E} = 0.5$$

$$(p+1)(2p+1)(4p+1) + K_{c} = 0$$

$$(p+1)(2p+1)(4p+1) +$$

P Controller Design Using Root Locus

Real Axis (minutes⁻¹)

maginary Axis (minutes⁻¹)

$$G_p = \frac{1}{(s+1)(2s+1)(4s+1)}$$
 $G_c = K_c$

Obtain K_C such that ξ = 0.5 for CLCE dominant roots

Breakple
$$D = -0.5 + 0.1371$$

 $S = -0.3619$ $K_c = \frac{1}{16pl_{S=-0.3619}}$

For
$$\xi = 0.5$$
, $s = -a + \sqrt{3}aj$ satisfies CLCE $\equiv 8s^3 + 14s^2 + 7s + 1 + K_c = 0$

Substituting and collecting real and imaginary terms

$$[64a^{3} - 28a^{2} - 7a + 1 + K_{c}] + aj[-28\sqrt{3}a + 7\sqrt{3}] = 0$$

$$\therefore a = \frac{1}{4}$$
 and $s = -\frac{1}{4} \pm \frac{\sqrt{3}}{4}j$ are CLCE dominant poles

$$K_c = \left| \frac{1}{G} \right|_{s = -\frac{1}{4} + \frac{\sqrt{3}}{4}j} = 1.5$$

PI Controller Design Using Root Locus

$$G_{p} = \frac{1}{(p+1)(2p+1)(4p+1)}$$

$$G_{c} = K_{c} \frac{2p+1}{2p+1}$$

$$(2p+1)(4p+1)$$

$$E = 0.5$$

$$D = -a+\sqrt{3}aj$$

$$\varphi = 60$$

$$G_{ol} = \frac{K_c}{4n(n+1)(2n+1)}$$

$$40(20^{4})(2011) + K_{c} = 8$$

 $40(20^{4})(2011) + K_{c} = 8$

 $\alpha = \pm$

$$S = -\frac{1}{4} \pm \frac{\sqrt{3}}{47}$$

$$CLCE 8 n^{3} + 12 n^{2} + 4n + K_{c} = 0$$

$$64 a^{3} + 12(-2 - 2) \boxed{1} \boxed{1} a^{2} + 4[-a + \sqrt{3} a] + K_{c}^{2}$$

$$[(4a^{3} - 24a^{2} - 4a + K_{c}) + a] [4\sqrt{3} - 24\sqrt{3} a]$$

Dominant CLCE
pole pair
$$S=-\frac{1}{6} + \frac{17}{6}j$$

$$S = -\frac{1}{6} \pm \frac{\sqrt{3}}{6} \int_{0}^{\pi}$$

$$K_c = \frac{1}{|G_{oL}|} = 1.037$$

$$S_c = \frac{1}{|G_{oL}|} = 1.037$$

$$K_{c}^{PI} = 1.04$$

PI Controller Design Using Root Locus

$$G_p = \frac{1}{(s+1)(2s+1)(4s+1)}$$
 $G_c = K_c \frac{\tau_I s + 1}{\tau_I s}$

Obtain K_C such that $\xi = 0.5$ for CLCE dominant roots

Choose reasonable value for τ_i

RULE OF THUMB: Set τ_i to largest open loop time constant. Controller zero then cancels open loop pole closest to RHP.

CLCE then becomes $8s^3 + 12s^2 + 4s + K_c = 0$ $\Rightarrow 5^3 + \frac{3}{2}\rho^2 + \frac{1}{2}\rho + \frac{1}{2$

Substituting and collecting real and imaginary terms

$$[64a^3 - 24a^2 - 4a + K_c] + aj[-24\sqrt{3}a + 4\sqrt{3}] = 0$$

 $\therefore a = \frac{1}{6}$ and $s = -\frac{1}{6} \pm \frac{\sqrt{3}}{6}j$ are CLCE dominant poles

$$K_c = \left| \frac{1}{G} \right|_{s = -\frac{1}{6} + \frac{\sqrt{3}}{6}j} = 1.037$$

PID Controller Design Using Root Locus

PID Controller Design Using Root Locus

$$\frac{3}{a} - \frac{3}{\frac{1}{2} - a} - \frac{5}{\frac{1}{6} + a} + \frac{3}{\frac{1}{2} + a} + \frac{3}{\frac{20}{3} - \frac{1}{1} + a} = 0$$

$$\frac{1}{a} - \frac{1}{\frac{1}{2} - a} - \frac{1}{\frac{1}{6} + a} + \frac{1}{\frac{1}{2} + a} + \frac{37}{\frac{1}{6} + a} = 0$$

$$a = 0.2177$$
 $D = -0.5 + 0.2177$
 $5 = -0.2813$ break pt

$$G = \frac{1}{(0.1)(2011)4P(0.15D+1)} \left[\frac{1}{161} \right]_{S=-0.2827} = \frac{1}{161}$$

PID Controller Design Using Root Locus

$$G_p = \frac{1}{(s+1)(2s+1)(4s+1)} \qquad G_c = K_c \frac{(\tau_I s+1)}{\tau_I s} \frac{(\tau_D s+1)}{(0.1\tau_D s+1)}$$

Want CLCE $\xi = 0.5$ and response speed twice that of PI controller

Set $\underline{\tau_i} = 4$ mins as before. For twice the response speed of a PI controller, the dominant pole pair should be twice in magnitude of PI dominant pair.

Dominant pole pair is $s = 2\left[-\frac{1}{6} \pm \frac{\sqrt{3}}{6}j\right] + \frac{1}{3} \pm \frac{\sqrt{3}}{3}j$

 $s = -\frac{1}{3} \pm \frac{\sqrt{3}}{3}j$ must satisfy angle condition to be on root locus

Choose τ_D to ensure angle condition is indeed satisfied.

From figure,

$$\phi_{1} = \tan^{-1} \frac{\sqrt{3}/3}{1/3} = 60^{\circ} \quad \phi_{2} = \tan^{-1} \frac{\sqrt{3}/3}{1/6} = 73.90^{\circ} \quad \phi_{3} = \tan^{-1} \frac{\sqrt{3}/3}{2/3} = 40.89^{\circ}$$

$$\psi_{1} + \phi_{1} - \phi_{2} - \phi_{3} - \phi_{4} = 180^{\circ}$$

$$\Rightarrow \tan^{-1} \frac{\sqrt{3}/3}{1/\tau_{D} - 1/3} - \tan^{-1} \frac{\sqrt{3}/3}{10/\tau_{D} - 1/3} = 54.79^{\circ} \Rightarrow \tau_{D} = 1.5 \text{min}$$

$$K_c = \left| \frac{1}{G} \right|_{s = -\frac{1}{3} + \frac{\sqrt{3}}{3}j} = 2.70$$

PIDD Controller Design Using Root Locus

PIDD Controller Design Using Root Locus

$$\frac{5}{6} - \frac{5}{\frac{1}{2} - a} + \frac{5}{\frac{1}{2} + a} - \frac{25}{0.75 + a} + \frac{25}{12 + a} = 0$$

$$Police for $a = 0.2742$

$$P = -\frac{1}{2} + 0.2342$$

$$S = -0.2655 breek pt$$

$$K_{c} = \frac{1}{|G_{ac}|} = 0.5650$$$$

PIDD Controller Design Using Root Locus

$$G_p = \frac{1}{(s+1)(2s+1)(4s+1)}$$

Want CLCE $\xi = 0.5$ and response speed twice that of P controller

Set $\tau_i = 4$ mins. Dominant pole pair should be twice P dominant pair.

Dominant pole pair is
$$s = 2\left[-\frac{1}{4} \pm \frac{\sqrt{3}}{4}j\right] = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}j$$

 $s = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}j$ must satisfy angle condition to be on root locus

Single τ_D lead-lag $\frac{(\tau_D s + 1)}{(0.1\tau_D s + 1)}$ cannot cause angle condition to be satisfied.

So put 2 identical lead-lags
$$G_C = K_C \frac{(\tau_I s + 1)}{\tau_I s} \left[\frac{(\tau_D s + 1)}{0.1 \tau_D s + 1} \right]^2$$

From figure,
$$\phi_1 = \tan^{-1} \frac{\sqrt{3}/2}{1/2} = 60^{\circ}$$
 $\phi_2 = 90^{\circ}$ $\phi_2 = \tan^{-1} \frac{\sqrt{3}/2}{1/2} = 60^{\circ}$

$$2\psi_1 + \phi_1 - \phi_2 - \phi_3 - 2\phi_4 = 180^{\circ}$$

$$\Rightarrow \tan^{-1} \frac{\sqrt{3}/2}{1/\tau_D - 1/2} - \tan^{-1} \frac{\sqrt{3}/2}{10/\tau_D - 1/2} = 45^{\circ} \Rightarrow \tau_D = 0.80 \text{min}$$

$$K_c = \left| \frac{1}{G_p G_c} \right|_{s = -\frac{1}{3} + \frac{\sqrt{3}}{3}j} = 7.64$$

Closed Loop Servo Response

Process Control Notes

13

Root Locus Design Procedure Summary

- Obtain desired closed loop pole location (region)
 - Degree of oscillatoriness (damping coefficient ξ)
 - Speed of response
- For zero offset, set τ_i to cancel slowest (closest to RHP) open loop pole
- Choose τ_D lead-lag to force locus to pass through desired closed loop pole
 - Angle condition gives necessary τ_D
 - Magnitude condition gives necessary K_C
 - Use only if simple PI control does not give fast enough closed loop response
 - Derivative lead-lag is used to pull root locus sufficiently to the left for faster response
 - May require double derivative for very fast closed loop response
 - o Amplifies noise
- Root locus construction rules allow easy visualization of reshaped root locus