《大学物理 AI》作业 No.05 狭义相对论

班级	学号	姓名	ź	_ 成绩
*******	*****	 *本章教学要求**	 ******	****
1、理解伽利略力学和 2、理解狭义相对论的 3、理解狭义相对论的 4、掌握洛仑兹坐标至 5、掌握狭义相对论的	內两条基本原理: 寸空观的特点; 会 变换公式, 能对2	狭义相对性原理 会判断原时和非原 下同参考系中的时	(时、原长和非 	卡原长,并能相互推算; 高进行换算;
一 、选择题	庇 左 世 州	田村木切伊邦旦笠仏	、的 <i>(2</i>) 左直穴	中,光的速度与光的频率、
			, ,	上平,几的歷及马九的 颁举、 基率都相同。请问哪些说法
是正确的, 答案是[<i>3)</i> 在任何灰压然年 	, 九 <u>年</u> 共工工程正	14771141111111111111111111111111111111	医平部相间。 相时哪里如公
(A) 只有(1)、(2)是	•	(B) 只有(1)、((3)是正确的 :	
(C) 只有(2)、(3)是		(D) 三种说法者	•	
				对于相对该惯性系作匀速 系中发生于同一时刻、不同
地点的两个事件,它们	在其它惯性系中是	否同时发生?关于_	上述两个问题的	正确答案是[]
(A)(1)同时,(2)不	同时;	(B) (1)不同时,	, (2)同时;	
(C)(1)同时,(2)同时	寸;	(D) (1)不同时,	, (2)不同时。	
				光脉冲从船尾传到船头,已 《发出和到达船头两个事件
(A) 270 m;	(B) 150 m;	(C) 90 m;	(D) 54 m	0
4. 边长为 a 的正方形薄	板静止于惯性系 <i>K</i>	的 <i>Oxy</i> 平面内,且	两边分别与 x ,	y轴平行。今有惯性系 K
系以 $0.8c$ (c 为真空中光	光速)的速度相对于	K系沿 x 轴作匀速	直线运动,则从	人该惯性系系测得薄板的面
积为[]				
(A) $a^2/0.6$;	(B) $0.6a^2$;	(C) $0.8a^2$;	(D) a^2 °	

5. 两个惯性系S和S',沿x(x')轴方向作匀速相对运动。设在S'系中某点先后发生两个事件,用静止于 该系的钟测出两事件的时间间隔为 τ_0 ,而用固定在S系的钟测出这两个事件的时间间隔为 τ 。又在S系 x'轴上放置一静止于该系,长度为l0的细杆,从l8系测得此杆的长度为l1,则l1

(A)
$$\tau < \tau_0$$
; $l < l_0$

(B)
$$\tau < \tau_0$$
; $l > l_0$

(C)
$$\tau > \tau_0$$
; $l > l_0$

(D)
$$\tau > \tau_0$$
; $l < l_0$

6. 令电子的速率为 ν ,则电子的动能 $E_k \pm \nu/c$ 的关系可用下面哪一个图表示? [(c表示真空中光速)

7. 真空中光速 $c=3.00\times 10^8 \text{m/s}$ 。一静质量为 $m_0=0.500 \text{mg}$ 的质点,当其速率 $v=\alpha c$ 时,其动能为 E_k ,

则
$$E_k/(m_0 c^2)=$$
[

则
$$E_k/(m_0 c^2)$$
=[]。参数: $\alpha = 0.830$

8. 某加速器将电子加速到能量 $E = \alpha \text{MeV}$ 时,该电子的动能 $E_k = [$]。(两位有效数字,真空中 光速 $c = 3.00 \times 10^8 \text{m/s}$,电子的静止质量 $m_e = 9.11 \times 10^{-31} \text{kg}$,1 MeV = 1.60×10^{-13} J) 参数: $\alpha = 4.00$

- (A) 2.0MeV; (B) 2.5MeV;
- (C) 3.0MeV;
- (D) 3.5MeV.

二、填空题

1. 爱因斯坦狭义相对论的两条基本假设:

(1) 相对性原理:

(2) 光速不变原理:

2. 牛郎星距离地球约16光年,宇宙飞船若以 的速度匀速飞行,将用4年的时间 (飞船上的时间)抵达牛郎星。

3. 观察者甲以0.8c 的速度相对于静止的观察者乙运动,若甲携带一长度为l、截面积为S,质量为m的棒,这根棒安放在运动方向上,则甲测得此棒的密度为 ;乙测得此棒的密度为 。

4. 半人马星座 α 星是距离太阳系最近的恒星,它距离地球 $S=4.3\times 10^{16}\,\mathrm{m}$ 。设有一宇宙飞船自地球飞 到半人马星座 α 星,若宇宙飞船相对于地球的速度为 v=0.999c,按地球上的时钟计算要用 年时

间?	如以飞船上的时钟计算,	所需时间又为_	年?

5. 地面参照系 S 中,在 x 处,于 t 时刻爆炸了一颗炸弹。 如果有一沿 x 轴方向,以 u 速率运动的飞船,则在飞船参考系 $S^{'}$ 中的观测者测得这颗炸弹的空间坐标 x' 为______和时间坐标 t' 为_____

6. 要把一个静止质量为 m_0 的粒子,由静止加速到 0.6c,则需作的功是静能的_____。 倍。

7. 设有一个静止质量为 m_0 的质点,以接近光速的速率 v 与一质量为 M_0 的静止质点发生碰撞结合成一个复合质点。求复合质点的速率 v_f =_____。

三、计算题

1. 一隧道长为L,宽为d,高为h,拱顶为半圆,如图。设想一列车以极高的速度v沿隧道长度方向通过隧道,若从列车上观测,(1) 隧道的尺寸如何?(2) 设列车的长度为 l_0 ,它全部通过隧道的时间是多少?

2.	观测者甲科	和乙分别静止于两个惯性参照	系 K 和 K' 中,	甲测得在同一	·地点发生的两个	事件的时	†间间
	隔为4s,	而乙测得这两个事件的时间间	隔为5s, 求:	(1) K'相对于	K的运动速度;	(2) 乙测	則得这
	两个事件发生的地占的距离。						

3. 两个质点 A 和 B,静止质量均为 m_0 。质点 A 静止,质点 B 的动能为 $6m_0c^2$ 。设 A、B 两质点相撞并结合成为一个复合质点。求复合质点的静止质量。