Def 3.1 Cumulative Distribution Function

- The CDF of a RV X is $F_X(x) = P[X \le x]$
- Properties of a CDF are the same for all kinds of random variables
 - Discrete,
 - Continuous, and
 - Mixed.

Theorem 3.1

For any random variable X,

(a)
$$F_X(-\infty) = 0$$

(b) $F_X(\infty) = 1$ $f(X \le \infty)$
(c) $P[x_1 < X \le x_2] = F_X(x_2) - F_X(x_1)$

CDF Discrete vs. Continuous

The CDF of a discrete RV contained jumps

• The size of the jump (change) was the *probability* of the RV at the point of jump (given by the PMF)

 The larger the jump, the larger the accumulation of probability at the point in the range space

CDF Discrete vs. Continuous

The CDF of a continuous RV is continuous

Figure 3.2

The graph of an arbitrary CDF $F_X(x)$.

Quiz 3.1

The cumulative distribution function of the random variable Y is

$$F_Y(y) = \begin{cases} 0 & y < 0, \\ y/4 & 0 \le y \le 4, \\ 1 & y > 4. \end{cases}$$
 (3.9)

Sketch the CDF of *Y* and calculate the following probabilities:

(1)
$$P[Y \le -1]$$

(2)
$$P[Y \le 1]$$

(3)
$$P[2 < Y \le 3] = P\left(\cancel{Y} \le \cancel{S} \right) - P\left(\cancel{Y} \le \cancel{S} \right)$$

(4)
$$P[Y > 1.5]$$

Example CDF of a continuous RV

Figure 3.2

$$P\left(x_2 < X \leq x_2 + D\right)$$

$$P\left(x_2 < X \leq x_3 + D\right)$$

The graph of an arbitrary CDF $F_X(x)$.

- No jumps anymore
- Instead, we have rates of accumulation of probability

Information in a CDF

Figure 3.2

The graph of an arbitrary CDF $F_X(x)$.

$$F_X(x_2+\Delta)-F_X(x_2)>F_X(x_1+\Delta)-F_X(x_1)$$
• What is the LHS and the RHS?

Information in a CDF

Figure 3.2

The graph of an arbitrary CDF $F_X(x)$.

$$F_X(x_2 + \Delta) - F_X(x_2) > F_X(x_1 + \Delta) - F_X(x_1)$$

• Rate of accumulation of probability in the region right of x_2 is greater than in the region right of x_1

Information in a CDF

Figure 3.2

The graph of an arbitrary CDF $F_X(x)$.

• As the interval Δ becomes smaller the rates of accumulation -> slope of the CDF

Probability Density Function

 Greater the slope of the CDF at any point x, the more the likelihood of occurrence of the interval around x

Probability Density Function

Definition 3.3 (PDF)

The probability density function (PDF) of a continuous random variable X is

$$f_X(x) = \frac{dF_X(x)}{dx}.$$
Note the lowercase f

Figure 3.3

- Receiver sees the above PDF
- Which regions are most likely to be seen by the receiver and why?

Theorem 3.2

For a continuous random variable X with PDF $f_X(x)$,

- (a) $f_X(x) \ge 0$ for all x,
- (b) $F_X(x) = \int_{-\infty}^x f_X(u) du$,
- (c) $\int_{-\infty}^{\infty} f_X(x) \, dx = 1.$

· Why?

Theorem 3.2

For a continuous random variable X with PDF $f_X(x)$,

- (a) $f_X(x) \ge 0$ for all x,
- (b) $F_X(x) = \int_{-\infty}^x f_X(u) du$,

(c)
$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1.$$

- Why is (a) true?
 - CDF is a non-decreasing function and PDF is its slope
- Why (b)?
 - From definition of a PDF
- Why (c)?
 - The integral is $P[X < \infty] = F_x(\infty) = 1$.

Theorem 3.3

$$P[x_1 < X \le x_2] = \int_{x_1}^{x_2} f_X(x) \ dx.$$

The PDF and CDF of X.

Figure 3.2

The graph of an arbitrary CDF $F_X(x)$.

As the interval Δ becomes smaller:

$$P[x_2 < X \le x_2 + \Delta] \stackrel{\mathcal{F}_X(x_2 + \Delta) - F_X(x_2)}{\Delta} \Delta$$

Intervals and CRV(s)

Consider the four different events

•
$$C = [0,1)$$

• D = [0,1]
$$\longrightarrow$$
 $P(0) = P(0 \leq X \leq 1)$

- They belong to the range space of a continuous RV
- What can we say about P[A], P[B], P[C], and P[D]?

Problem on PDF

Quiz 3.2

Random variable *X* has probability density function

$$f_X(x) = \begin{cases} cxe^{-x/2} & x \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$
 (3.25)

Sketch the PDF and find the following:

- (1) the constant c
- (2) the CDF $F_X(x)$
- (3) $P[0 \le X \le 4]$
- (4) $P[-2 \le X \le 2]$
- (5) What is the mode of the random variable X?

Problem 3.1.3

The CDF of random variable W is

$$F_{W}(w) = \begin{cases} 0 & w < -5, & \text{if } w < -3, & \text{if } w <$$

b) What is
$$P[-2 < W \le 2]$$
? $F_{\mathcal{W}}(2) - F_{\mathcal{W}}(-2)$

- (c) What is P[W > 0]? $| F_{\mathcal{W}}(\sigma)$
- (d) What is the value of \underline{a} such that $P[W \le a] = 1/2$?

Problem 3.2.4

For a constant parameter a > 0, a Rayleigh random variable X has PDF

$$f_X(x) = \begin{cases} a^2 x e^{-a^2 x^2/2} & x > 0, \\ 0 & \text{otherwise.} \end{cases}$$
f X?

What is the CDF of *X*?

$$f_X(x) = \begin{cases} a^2 x e^{-a^2 x^2/2} & x > 0, \\ 0 & \text{otherwise.} \end{cases}$$
of X ?
$$f_X(x) = \begin{cases} a^2 x e^{-a^2 x^2/2} & x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_X(x) = \begin{cases} a^2 x e^{-a^2 x^2/2} & x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_X(x) = \begin{cases} a^2 x e^{-a^2 x^2/2} & x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_X(x) = \begin{cases} a^2 x e^{-a^2 x^2/2} & x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_X(x) = \begin{cases} a^2 x e^{-a^2 x^2/2} & x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_X(x) = \begin{cases} a^2 x e^{-a^2 x^2/2} & x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_X(x) = \begin{cases} a^2 x e^{-a^2 x^2/2} & x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_X(x) = \begin{cases} a^2 x e^{-a^2 x^2/2} & x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Expected Value

 Def 3.4 The expected value of a continuous random variable X is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx$$

- Summation for the discrete case is replaced by integration for the continuous case
- Theorem 3.4 The expected value of a function g(X) of a continuous random variable X is

$$E[X] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

These Equalities are Valid for Both Continuous and Discrete RV(s)

Theorem 3.5

For any random variable X,

(a)
$$E[X - \mu_X] =$$

(b)
$$E[aX + b] =$$

(c)
$$Var[X] =$$

(d)
$$Var[aX + b] =$$

$$E((X-f_X)^T)$$

$$g(X)=(X-f_X)$$