Macroeconometrics

Lecture 16 Unobserved Component models

Tomasz Woźniak

Department of Economics
University of Melbourne

Identification and unconditional moments

UC model and Beveridge-Nelson decomposition

Useful readings

Morley, Nelson, Zivot (2003) Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP so Different? Review of Economics and Statistics

Objectives.

- ▶ To present the elements of the unobserved component model
- ▶ To provide framework for the business-cycle decomposition
- ▶ To look at the identification of the parameters of UC models

Learning outcomes.

- Implementing decomposition into unit-root stationary and non-stationary component
- Specifying the cycle component
- Understanding stochastic trend through the Beveridge-Nelson decomposition

Modeling Trend Inflation 16 Unobserved Component models 17 Bayesian estimation using precision sampler 18 Bayesian estimation using precision sampler 19 Modeling trend inflation Modeling Conditional Heteroskedasticity 20 Stochastic Volatility models 21 Bayesian estimation using auxiliary mixtures

$$y_{t} = \tau_{t} + \epsilon_{t}$$

$$\tau_{t} = \mu + \tau_{t-1} + \eta_{t}$$

$$\alpha_{p}(L)\epsilon_{t} = e_{t}$$

$$\eta_{t}|Y_{t-1} \sim iid\mathcal{N}\left(0, \sigma_{p}^{2}\right)$$

$$e_{t}|Y_{t-1} \sim iid\mathcal{N}\left(0, \sigma_{e}^{2}\right)$$

– state equation for
$$au_t$$

– state equation for
$$\epsilon_t$$

$$lpha_p(L) = 1 - lpha_1 L - \dots - lpha_p L^p$$
 $lpha_p(z) = 0, \ \forall |z| > 1 \ ext{and} \ z \in \mathbb{C}$
 $\sigma_{ne} = \mathbb{C}ov[\eta_t, e_t]$

 $\theta = (\mu, \alpha_1, \dots, \alpha_p, \sigma_n^2, \sigma_e^2)$

```
y_t — an observation on a scalar random variable at time t \tau_t — trend component — unit-root non-stationary \epsilon_t — unit-root stationary component \eta_t, e_t — Gaussian white noise error terms \mu — a drift parameter Y_{t-1} — information set
```

Measurement equation.

$$y_t = \tau_t + \epsilon_t$$

Decomposes the process into a unit-root non-stationary and a unit-root stationary component

Contains measurements on variable y_t on the left-hand side of the equation

Includes latent processes au_t and ϵ_t on the right-hand side

Trend component.

$$au_t = \mu + au_{t-1} + \eta_t$$

$$\eta_t | Y_{t-1} \sim \textit{iid} \mathcal{N} \left(0, \sigma_\eta^2 \right)$$

Trend process is specified as a Gaussian random walk with drift process

Captures the long-run forecast of y_t at an infinite horizon with the forecast origin t

The drift captures the deterministic time trend slope of y_t and is often specified to change over time to represent a structural break in the deterministic trend or allow y_t to have two unit roots. The extended specification is often given by

$$\begin{aligned} \tau_t &= \mu_t + \tau_{t-1} + \eta_t \\ \mu_t &= \mu_{t-1} + m_t \\ m_t | Y_{t-1} &\sim \textit{iid} \mathcal{N} \left(0, \sigma_m^2\right) \end{aligned}$$

Unit-root stationary component.

$$lpha_{
ho}(L)\epsilon_t=e_t$$

$$e_t|Y_{t-1}\sim iid\mathcal{N}\left(0,\sigma_e^2\right)$$

$$lpha_{
ho}(z)=0, \qquad \forall |z|>1, \ \mathrm{and} \ z\in\mathbb{C}$$

Captures the deviations from the long-run trend **Exhibits persistence** which allows to smoothen the trend **UC model** is called a **local level model** when p=0, or p=1 ϵ_t **is called a cycle** if $p\geq 2$ when it can capture cyclical patterns in ϵ_t

Unobserved component model.

$$\begin{aligned} y_t &= \tau_t + \epsilon_t \\ \tau_t &= \mu + \tau_{t-1} + \eta_t \\ \alpha_p(L)\epsilon_t &= e_t \\ \eta_t | Y_{t-1} &\sim iid\mathcal{N}\left(0, \sigma_\eta^2\right) \\ e_t | Y_{t-1} &\sim iid\mathcal{N}\left(0, \sigma_e^2\right) \end{aligned}$$

Autoregressive model obtained by imposing $\sigma_n^2 = 0$

$$\begin{aligned} y_t - \mu t &= \epsilon_t \\ \alpha_p(L)\epsilon_t &= e_t \\ e_t | Y_{t-1} &\sim \textit{iid} \mathcal{N}\left(0, \sigma_e^2\right) \end{aligned}$$

Unconditional moments

Unobserved component model captures a single unit-root of y_t Unconditional moments for y_t depend on time and the variances can be shown to not be well-specified — they take infinite values

Consider a model for the first differences Δy_t

$$\Delta y_t = \Delta \tau_t + \Delta \epsilon_t$$
$$\Delta \tau_t = \mu + \eta_t$$
$$\alpha_p(L)\Delta \epsilon_t = \Delta e_t$$
$$\Delta e_t | Y_{t-1} \sim \mathcal{N} \left(0, 2\sigma_e^2 \right)$$

where $\Delta = 1 - L$

Unconditional moments

Rewrite the system as

$$\alpha_p(L)\Delta\epsilon_t = \Delta e_t$$

$$\Delta\epsilon_t = \Delta y_t - \mu - \eta_t$$

Plug in the second equation into the first one and reorganize elements

$$\alpha_p(L)(\Delta y_t - \mu) = \alpha_p(L)\eta_t + e_t - e_{t-1}$$

To obtain the ARIMA(p, 1, max{p, 1}) representation of the UC model

ARIMA(p,d,q) model is given by

$$\alpha_p(L)\Delta^d(y_t - \mu) = \beta_q(L)\varepsilon_t$$

where d is the integration order $y_t \sim I(d)$ and $\Delta^d = (1-L)^d$

Unconditional moments

Unconditional mean.

$$\alpha_{p}(L)(\Delta y_{t} - \mu) = \alpha_{p}(L)\eta_{t} + \Delta e_{t}$$

$$\alpha_{p}(L)\mathbb{E}[\Delta y_{t} - \mu] = \alpha_{p}(L)\mathbb{E}[\eta_{t}] + \mathbb{E}[\Delta e_{t}]$$

$$\stackrel{L \neq E}{=} 0$$

$$\mathbb{E}[\Delta y_{t}] = \mu$$

 μ is the average growth rate of y_t over one period

$$\alpha_p(L)(\Delta y_t - \mu) = \alpha_p(L)\eta_t + \Delta e_t$$

LHS of the equation specifies a standard AR dynamics of $\Delta y_t - \mu$

LHS parameters $\alpha_1, \ldots, \alpha_p$ can be easily estimated

RHS of the equation specifies the MA(max{p,1}) component $\beta_{\max\{p,1\}}(L) = 1 + \beta_1 L + \dots + \beta_{\max\{p,1\}} L^{\max\{p,1\}}$

RHS of the equation is written as

$$rhs_t = \alpha_p(L)\eta_t + e_t - e_{t-1}$$

Derive the relationship between the parameters on the equation above to the unconditional autocovariances of rhs_t for two cases p=1 and p=2 to estimate $\sigma_\eta^2, \sigma_e^2, \sigma_{\eta e}$

Case 1:
$$p = 1$$

$$rhs_{t} = \eta_{t} - \alpha_{1}\eta_{t-1} + e_{t} - e_{t-1}$$

$$\gamma_{s}^{r} = \mathbb{E}[rhs_{t} \cdot rhs_{t-s}]$$

$$s = 0 \qquad \gamma_{0}^{r} = \mathbb{E}\left[rhs_{t}^{2}\right] = \mathbb{E}\left[(\eta_{t} - \alpha_{1}\eta_{t-1} + e_{t} - e_{t-1})^{2}\right]$$

$$= (1 + \alpha_{1}^{2})\sigma_{\eta}^{2} + 2\sigma_{e}^{2} + 2(1 + \alpha_{1})\sigma_{\eta e}$$

$$s = 1 \qquad \gamma_{1}^{r} = \mathbb{E}\left[rhs_{t} \cdot rhs_{t-1}\right]$$

$$= \mathbb{E}\left[(\eta_{t} - \alpha_{1}\eta_{t-1} + e_{t} - e_{t-1})(\eta_{t-1} - \alpha_{1}\eta_{t-2} + e_{t-1} - e_{t-2})\right]$$

$$= -\alpha_{1}\sigma_{\eta}^{2} - \sigma_{e}^{2} - (1 + \alpha_{1})\sigma_{\eta e}$$

$$s \geq 2 \qquad \gamma_{s}^{r} = 0$$

Case 1: p = 1

$$\begin{bmatrix} \gamma_0^r \\ \gamma_1^r \end{bmatrix} = \begin{bmatrix} 1 + \alpha_1^2 & 2 & 2(1 + \alpha_1) \\ -\alpha_1 & -1 & -(1 + \alpha_1) \end{bmatrix} \begin{bmatrix} \sigma_\eta^2 \\ \sigma_e^2 \\ \sigma_{\eta e} \end{bmatrix}$$

Autocovariances on the LHS are features of data and the autoregressive parameter α_1

Variances and covariance on the RHS are the parameters of the UC model

The UC model is **not identified** and one identifying restriction is required

Identifying restriction is often chose to be $\sigma_{\eta e}=0$ imposing the independence of the shocks of the model

 $\gamma_s^r = 0$ for s > 3

Case 2:
$$p = 2$$

 $rhs_t = \eta_t - \alpha_1 \eta_{t-1} - \alpha_2 \eta_{t-2} + e_t - e_{t-1}$
 $\gamma_s^r = \mathbb{E}[rhs_t \cdot rhs_{t-s}]$
 $\gamma_0^r = \mathbb{E}\left[rhs_t^2\right] = \mathbb{E}\left[\left(\eta_t - \alpha_1 \eta_{t-1} - \alpha_2 \eta_{t-2} + e_t - e_{t-1}\right)^2\right]$
 $= \left(1 + \alpha_1^2 + \alpha_2^2\right) \sigma_\eta^2 + 2\sigma_e^2 + 2\left(1 + \alpha_1\right) \sigma_{\eta e}$
 $\gamma_1^r = \mathbb{E}\left[rhs_t \cdot rhs_{t-1}\right]$
 $= \mathbb{E}\left[\left(\eta_t - \alpha_1 \eta_{t-1} - \alpha_2 \eta_{t-2} + e_t - e_{t-1}\right)\left(\eta_{t-1} - \alpha_1 \eta_{t-2} - \alpha_2 \eta_{t-3} + e_{t-1} - e_{t-2}\right)\right]$
 $= \alpha_1 \left(\alpha_2 - 1\right) \sigma_\eta^2 - \sigma_e^2 - \left(1 + \alpha_1 - \alpha_2\right) \sigma_{\eta e}$
 $\gamma_2^r = \mathbb{E}\left[rhs_t \cdot rhs_{t-2}\right]$
 $= \mathbb{E}\left[\left(\eta_t - \alpha_1 \eta_{t-1} - \alpha_2 \eta_{t-2} + e_t - e_{t-1}\right)\left(\eta_{t-2} - \alpha_1 \eta_{t-3} - \alpha_2 \eta_{t-4} + e_{t-2} - e_{t-3}\right)\right]$
 $= -\alpha_2 \sigma_\eta^2 - \alpha_2 \sigma_{\eta e}$

Case 2:
$$p = 2$$

$$\begin{bmatrix} \gamma_0^r \\ \gamma_1^r \\ \gamma_2^r \end{bmatrix} = \begin{bmatrix} 1 + \alpha_1^2 + \alpha_2^2 & 2 & 2(1 + \alpha_1) \\ \alpha_1(\alpha_2 - 1) & -1 & -(1 + \alpha_1 - \alpha_2) \\ -\alpha_2 & 0 & -\alpha_2 \end{bmatrix} \begin{bmatrix} \sigma_\eta^2 \\ \sigma_e^2 \\ \sigma_{\eta e} \end{bmatrix}$$

Autocovariances on the LHS are features of data and consistent estimates of parameters α_1, α_2 are functions of data only

Variances and covariance on the RHS are the parameters of the UC model

The UC model is identified

Restriction $\sigma_{ne} = 0$ is dispensable as it over identifies the model

Beveridge-Nelson decomposition

Definition.

The BN estimate of trend for a time series integrated of order one, $y_t \sim I(1)$, is defined to be the limiting forecast as horizon goes to infinity adjusted for the mean rate of growth:

$$BN_{t} = \lim_{h \to \infty} \mathbb{E}_{t} \left[y_{t+h} - h\mu \right]$$

 BN_t is a random walk with the same mean growth rate as the observed series

 $y_t - BN_t$ the deviation from trend is a stationary process

Forecasting with UC model

One period ahead.

$$\mathbb{E}_{t}[y_{t+1}] = \mathbb{E}_{t}[\tau_{t+1} + \epsilon_{t+1}]$$

$$= \mathbb{E}_{t}[\mu + \tau_{t} + \eta_{t+1} + \alpha_{p}(L)^{-1}e_{t+1}]$$

$$= \mu + \tau_{t} + \mathbb{E}_{t}[\alpha_{p}(L)^{-1}e_{t+1}]$$

Two periods ahead.

$$\mathbb{E}_{t}[y_{t+2}] = \mathbb{E}_{t}[\tau_{t+2} + \epsilon_{t+2}]$$

$$= \mathbb{E}_{t}[2\mu + \tau_{t} + \eta_{t+2} + \eta_{t+1} + \alpha_{\rho}(L)^{-1}e_{t+2}]$$

$$= 2\mu + \tau_{t} + \mathbb{E}_{t}[\alpha_{\rho}(L)^{-1}e_{t+2}]$$

Forecasting with UC model

h periods ahead.

$$\mathbb{E}_{t}[y_{t+h}] = \mathbb{E}_{t}[\tau_{t+h} + \epsilon_{t+h}]$$

$$= \mathbb{E}_{t}[h\mu + \tau_{t} + \eta_{t+h} + \dots + \eta_{t+1} + \alpha_{p}(L)^{-1}e_{t+h}]$$

$$= h\mu + \tau_{t} + \mathbb{E}_{t}[\alpha_{p}(L)^{-1}e_{t+h}]$$

UC model and Beveridge-Nelson decomposition

$$\lim_{h\to\infty} \mathbb{E}_t[y_{t+h} - h\mu] = \tau_t$$

 au_t is interpreted as a trend component in the BN sense

At the limit $\lim_{h\to\infty} \mathbb{E}_t[\alpha_p(L)^{-1}e_{t+h}] = 0$ as the stationarity condition holds and $h\gg p$

Unobserved Component models

```
decompose the original time series into  \begin{array}{c} \text{unit-root non-stationary trend} & \text{that is linked to the } BN_t \\ & \text{component} \\ & \text{unit-root stationary deviation from trend} & \text{that may exhibit} \\ & \text{cyclical patterns of persistence (if } p \geq 2) \end{array}
```

belong to a family of state-space models

Its ARIMA representation facilitates the interpretation and understanding of properties

are applied in particular to modeling trend inflation and to estimation of output gap