Relationenbegriff

Mathematische Definition

Sind W₁, W₂, ..., W_n nichtleere Mengen, dann ist jede nichtleere Teilmenge der Produktmenge

 $PM = W_1 * W_2 * ... * W_n$ eine n-stellige

 $R \subseteq W1 \times W2 \times ... \times Wn$ Relation

W₁, W₂, ..., W_n sind die Wertebereiche (Menge aller Werte = Domäne) der Attribute A₁, A₂, ..., A_n von Entities. n ist der Grad (degree) der Relation.

Darstellung als Tabelle

Nichtschlüsselspalten

Mitarbeiter	MITNR	VORNAME	NAME	ANSCHRIFT	ALTER	← Attributnamen
	101	Peter	Silie	Dresden	5	1
	102	Mario	Nette	Dresden	6	
Zeilen/	103	Klaus	Uhr	Radebeul	20	Attributwerte
Tupel	104	Otto	Graffie	Freital	17	Aundutwente
	105	Kurt	Isane	Friedersdorf	35	
	106	Paul	Aner	Merseburg	25])

Domäne

schlüssel Datenspalten

Primär-

Folie 3.1

Charakteristika des relationalen Modells

Es gibt eine Menge von Relationen unterschiedlichen Grades über den Attributwerten

Die Relationen sind untereinander gleichberechtigt.

Jede Relation hat dabei charakteristische Eigenschaften.

K41: Jedes Tupel der Relation kommt nur einmal vor.

Die Relationen sind zeitlich veränderlich (Einfügen, Löschen, Ändern von Tupeln).

K42: Die Reihenfolge der Tupel ist beliebig. K43: Die Reihenfolge der Spalten ist auch beliebig, da die Bezugnahme

> eine Spaltennummer erfolgt. Attributnamen müssen in einer Relation unterschiedlich sein. Die Reihenfolge wird einmal vorgegeben, bleibt dann bestehen.

auf die Spalten über die eindeutigen Attributnamen und nicht über

Es gibt genau einen Primärschlüssel, der die Tupel eindeutig identifiziert.

Folie 3.2

K44:

K1:

K2·

K3:

K4·

Datendefinition im relationalen Datenmodell

Eine im relationalen Datenbanksystem agierende Datenbeschreibungssprache (DDL) muß die im relationalen Modell vorhandenen Komponenten definieren:

- Name der Relation,
- Attributnamen,
- Wertebereiche,
- Primärschlüssel.
- ggf. Integritätsbedingungen

Datendefinition im relationalen Datenmodell - Beispiel							
Relation:	Mitarbeiter						
	Attribute	Mitarbnr; INT Name; CHAR(20) Geburtsdatum; DATE Gehalt; NUMERIC(8,2)					
Relation:	Abteilung	Material Nation		1000			
	Attribute	Abteilnr; INT Bezeichnung; CHAR(15) Raum; CHAR(5) Leiter; INT					
	Integritätsbedingung	Leiter → Mitarbeiter.Mitarbnr 100<= Raum <451					
Relation:	Mitabt						
	Attribute	Mitarbnr; INT Abteilnr; INT Anteil; NUMERIC(3,1)					
	Integritätsbedingung (Mitarbnr, Abteilnr) ist Primärschlüssel; Mitarbnr → Mitarbeiter. Mitarbnr; Abteilnr → Abteilung. Abteilnr; 0,1<=Anteil<=1,0						
		nbanksysteme I onale Datenmodell	Folie 3.4	HIZ			

Normalformen (1 bis 3) nach Codd

Erste Normalform

Eine Relation ist in der **ersten Normalform** (1. NF), wenn alle Attribute nur atomare Werte enthalten. Das bedeutet, dass in der Relation keine Wiederholgruppen vorhanden sein dürfen, die selbst Relationen sein können.

Normalformen (1 bis 3) nach Codd

Zweite Normalform

Eine Relation ist in der zweite Normalform (2. NF), wenn sie sich in der ersten Normalform befindet und zusätzlich jedes Nichtsschlüsselattribut voll funktional vom Gesamtschlüssel abhängig ist, nicht aber von einzelnen Schlüsselteilen.

Funktionale Abhängigkeit

In einer Relation R(A, B) ist das Attribut (bzw. die Attributkombination) B von dem Attribut (bzw. der Attributkom-bination) A funktional abhängig, falls zu jedem Wert des Attributs A genau ein Wert des Attributs B gehört.

Darstellung: R.A → R.B

Volle funktionale Abhängigkeit

In einer Relation R(S1, S2, B) ist das Attribut (bzw. die Attributkombination) B von den Attributen S1, S2 voll funktional abhängig, wenn B von den zusammen-gesetzten Attributen (S1, S2) funktional abhängig ist, aber nicht von einem einzelnen Attribut S1 oder S2.

Darstellung: R.S1, R.S2 → R.B

Normalformen (1 bis 3) nach Codd

Dritte Normalform

Eine Relation ist in der dritten Normalform (3. NF), wenn sie sich in der zweiten Normalform befindet und zusätzlich jedes Nichtsschlüsselattribut nicht transitiv von einem Schlüsselattribut abhängig ist.

Transitive Abhängigkeit

In einer Relation R(S, A, B) ist das Attribut B vom Attribut S (Schlüssel), der auch ein zusammenge-setzter Schlüssel sein kann, transitiv abhängig, wenn A von S funktional abhängig ist, S jedoch nicht von A und B von A funktional abhängig ist.

Darstellung: $R.S \rightarrow R.A \rightarrow R.B (R.A \not\rightarrow R.S)$

Transitive Abhängigkeit ist immer eine mehrfache Abhängigkeit über mehrere Attribute.

Bildung der Normalformen 1 bis 3 im Überblick

Unnormalisierte Form

Abtrennung von Attributen, die selbst Relationen sind (Abtrennung von Wiederholgruppen)

Erste Normalform

Zweite Normalform

Abtrennung von Transitivitäten (Abtrennung von indirekten Attributzuweisungen)

Dritte Normalform

Folie 3.8

Codd'sche Regeln I

Auf dem relationalen Datenmodell aufbauende DBMS müssen nach Codd folgende Regeln genügen:

- Informationsregel
 Alle Informationen in einer relationalen Datenbasis sind auf genau eine Weise dargestellt, durch Werte in Tabellen.
- Identifizierung
 Jedes Objekt einer relationalen Datenbasis ist durch die Werte
 seiner Primärschlüsselattribute eindeutig identifiziert.
 Der Primärschlüssel, der beim Kreieren der Tabelle deklariert wird,
- ist eine Spalte oder eine Kombination von Spalten.

 3. Nullwerte
 In einer relationalen Datenbasis wird jedes Datenelement mit
 - unbekanntem Wert durch denselben Nullwert repräsentiert.

 Dieser Wert ist unabhängig vom Domänen- oder Datentyp.

 Es muss möglich sein, Nullwerte für bestimmte Attribute zu verbieten.
- Data-Dictionary
 Die Meta-Daten werden auf der logischen Ebene wie gewöhnliche
 Daten behandelt, so dass dieselbe DML für Abfragen verwendet
 werden kann.

Codd'sche Regeln II

5. Umfassende Abfragensprache

Ein relationales System unterstützt mehrere Sprachen (z.B. SQL, QBE).

Es muss jedoch eine Sprache geben, deren Anweisungen in einer exakt definierten Syntax verfügbar sind, und die alle folgenden Einrichtungen unterstützt:

- Tabellen-Definition
- View-Definition
- Datenmanipulation (Unterstützg der Operatoren der Relationenalgebra)
- Integritätsregeln - Autorisierung
- Transaktionen-Verwaltung (Commit, Rollback)
- 6. View-Update
 - Alle Views, die theoretisch änderbar sind, müssen mit der DML änderbar sein.
- 7. Update-Level Update-, Insert-, Delete-Operationen müssen auf einem Niveau verfügbar sein, das dem System die Möglichkeit der Optimierung lässt.
- 8. Physische Datenunabhängigkeit
- 9. logische Datenunabhängigkeit

Codd'sche Regeln III

- 10. Integritätsbedingungen
 - Entity-Integrität:

Keine Komponente des Primärschlüssels darf einen Nullwert enthalten.

- Referentielle Integrität:

Fremdschlüsselwerte müssen mit einem Primärschlüssel derselben Domäne korrespondieren, wobei die Domäne ein unterlegter "Pool" von typbehafteten Werten ist, aus dem eine oder mehrere Spalten ihre Wertebereiche beziehen.

- Definition zusätzlicher Integritätsregeln mit Hilfe einer Dialogsprache
- Speicherung der Integritätsregeln im Data-Dictionary
- 11. Verteilungstransparenz Die Terminalaktivitäten und Programme sind unabhängig von der Verteilung der Daten.
- 12. Nicht-Unterlaufbarkeit

Wenn ein relationales System über eine Eintupelschnittstelle verfügt, so dürfen die Integritätsregeln damit nicht unterlaufen werden. Dies gilt auch für alle anderen Nutzerschnittstellen des Systems.