Bildanalyse und Visualisierung in Diagnostik und Therapie Convolutional Neural Networks

M.Sc. Oskar Maier

Prof. Dr. rer. nat. habil. Heinz Handels

Institut für Medizinische Informatik

Universität zu Lübeck

Bildquelle: Bezák, Pavol, Yury Rafailovich Nikitin, and Pavol Božek. "Robotic Grasping System Using Convolutional Neural Networks." *American Journal of Mechanical Engineering* 2.7 (2014): 216-218.

Überwachtes Lernen eines Klassifizierers

Training

Testing

Anwendung

AlphaGo

Artificial Neural Networks

Artifical Neural Networks (ANN)

ANNs sind

- Multi-parameter Model
- Trainierbar durch Machine Learning Methoden

Anwendungsgebiete

- Klassifizierung
- Regression
- Prädiktion
- Kompression
- ... und viele mehr

Inspiration aus der Neurobiologie

Inspiration aus der Neurobiologie

Inspiration aus der Neurobiologie

Ein minimales Netwerk

Ein minimales Netwerk

Ein minimales Netwerk: Activation function

Ein minimales Netwerk: Activation function

Ein minimales Netwerk: OR Beispiel

x_1	x_2	t
0	0	0
0	1	1
1	0	1
1	1	1

$$y_1 = \mathbf{x}^T \mathbf{w}$$
$$\mathbf{\hat{w}} = ?$$

$$\hat{\mathbf{w}} = ?$$

Ein minimales Netwerk: OR Beispiel

x_1	x_2	t
0	0	0
0	1	1
1	0	1
1	1	1

$$y_1 = \boldsymbol{x}^T \boldsymbol{w}$$

$$\hat{\mathbf{w}} = (1.0, 1.0)$$

$$y_1 = x^T w = x_2 w_2 + x_1 w_1$$

$$y_1 = x^T w = x_2 w_2 + x_1 w_1$$

Gradientenabstiegsverfahren

Gradientenabstiegsverfahren

Partielle Ableitung

Zusammenfassung

- Mit Backpropagation trainieren wir jedes Gewicht gesondert
- Mit dem Gradientenabstiegsverfahren optimieren wir
- Die Fehlerfunktion bestimmt den Fehler

$$w_1' \leftarrow w_1 - \eta \frac{\partial L}{\partial w_1}$$

Die Lernrate bestimmt die Lerngeschwindigkeit

Schwierigkeiten

- Alle Elemente des Netwerkes müssen differenzierbar sein
- Fehlerfunktion bestimmen
- Lernrate bestimmen
- Overfitting

Idealer Fall von Early Stopping

Praktischer Fall von Early Stopping

Ein minimales Netwerk: XOR Beispiel

x_1	x_2	t
0	0	0
0	1	1
1	0	1
1	1	0

$$y_1 = \mathbf{x}^T \mathbf{w}$$
$$\mathbf{\hat{w}} = ?$$

$$\hat{\mathbf{w}} = ?$$

Grenzen des minimalen Netwerkes

Problem

Ein einfaches Netwerk kann nur lineare Probleme lösen

Lösungsmöglichkeit

• Linearkombination von x_1 und x_2 als weiterer Input x_3

Aber

Ist problemabhängig und häufig unbekannt

Wie kann das Netwerk diese lernen und somit nicht-lineare Problem zu lösen?

Grenzen des minimalen Netwerkes

Problem

Ein einfaches Netwerk kann nur lineare Probleme lösen

Lösungsmöglichkeit

• Linearkombination von x_1 und x_2 als weiterer Input x_3

Aber

Ist problemabhängig und häufig unbekannt

Wie kann das Netwerk diese lernen und somit nicht-lineare Problem zu lösen?

Ein einfaches multi-layer Netwerk

Ein einfaches multi-layer Netwerk

$$y_1 = g\left(\sum_j w_{j1}g\left(\sum_i w_{ij}x_i\right)\right)$$

Komplettansicht mit Variablen

$$\frac{E(\mathbf{w}, \mathbf{w})}{2} = \frac{1}{2} \sum_{k} (t_k - y_k)^2$$

Partielle Ableitungen

Wir suchen

- Einfluss jedes Gewichtes auf den Fehler
- Richtung und Stärke der Steigung

Vorgehen

Partielle Ableitungen

- Komplexer als für nur einen Layer
- Aber: Wichtige Eigenschaft

Kleine Auffrischung über Ableitungen

$$\bullet \quad f(x) = \frac{1}{2}x^2 \to f'(x) = x$$

- $\frac{df}{dx} = 0$, wenn f keine Funktion von x ist
- $\frac{df}{dx} = \frac{df}{dt} \frac{dt}{dx}$, die Kettenregel
- $\frac{\partial f}{\partial x'}$ Partielle Ableitung

$$\frac{\partial E}{\partial w_{jk}}$$

$$\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial h_k} \frac{\partial h_k}{\partial w_{jk}}$$

$$\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial h_k} \frac{\partial h_k}{\partial w_{jk}}$$

$$\frac{\partial h_k}{\partial w_{jk}} = \frac{\partial}{\partial w_{jk}} \sum a_l w_{lk}$$

$$\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial h_k} \frac{\partial h_k}{\partial w_{jk}}$$

$$\frac{\partial h_k}{\partial w_{jk}} = \frac{\partial}{\partial w_{jk}} \sum a_l w_{lk}$$

$$\frac{\partial}{\partial w_{jk}} a_1 w_{1k} + a_2 w_{2k} + \cdots$$

$$\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial h_k} \frac{\partial h_k}{\partial w_{jk}}$$

$$\frac{\partial h_k}{\partial w_{jk}} = \frac{\partial}{\partial w_{jk}} \sum_{i=1}^{n} a_i w_{ik}$$

$$\frac{\partial}{\partial w_{jk}} a_1 w_{1k} + a_2 w_{2k} + \cdots$$

$$a_j$$

$$\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial h_k} a_j$$

$$\frac{\partial h_k}{\partial w_{jk}} = a_j$$

$$\frac{\partial E}{\partial w_{jk}} = a_j \frac{\partial E}{\partial h_k}$$

$$\frac{\partial E}{\partial w_{jk}} = a_j \frac{\partial E}{\partial h_k} = a_j \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial h_k}$$

$$\frac{\partial E}{\partial w_{jk}} = a_j \frac{\partial E}{\partial h_k} = a_j \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial h_k}$$

$$\frac{\partial \mathbf{E}}{\partial y_k} = \frac{\partial}{\partial y_k} \frac{1}{2} \sum (t_k - y_k)^2$$

$$\frac{\partial E}{\partial w_{jk}} = a_j \frac{\partial E}{\partial h_k} = a_j \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial h_k}$$

$$\frac{\partial E}{\partial y_k} = \frac{\partial}{\partial y_k} \frac{1}{2} \sum (t_k - y_k)^2$$

$$\frac{\partial}{\partial y_k} \frac{1}{2} [(t_1 - y_1)^2 + (t_2 - y_2)^2 + \cdots]$$

$$\frac{\partial E}{\partial w_{jk}} = a_j \frac{\partial E}{\partial h_k} = a_j \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial h_k}$$

$$\frac{\partial E}{\partial y_k} = \frac{\partial}{\partial y_k} \frac{1}{2} \sum (t_k - y_k)^2$$

$$\frac{\partial}{\partial y_k} \frac{1}{2} [(t_1 - y_1)^2 + (t_2 - y_2)^2 + \cdots]$$

$$t_k - y_k$$

$$\frac{\partial E}{\partial w_{jk}} = a_j \frac{\partial E}{\partial h_k} = a_j (t_k - y_k) \frac{\partial y_k}{\partial h_k}$$

$$\frac{\partial E}{\partial y_k} = t_k - y_k$$

$$\frac{\partial E}{\partial w_{jk}} = a_j (t_k - y_k) \frac{\partial y_k}{\partial h_k}$$

$$\frac{\partial E}{\partial w_{jk}} = a_j (t_k - y_k) \frac{\partial y_k}{\partial h_k}$$

$$\frac{\partial y_k}{\partial h_k} = g'(h_k)$$

$$\frac{\partial E}{\partial w_{jk}} = a_j(t_k - y_k)g'(h_k)$$

$$\frac{\partial y_k}{\partial h_k} = g'(h_k)$$

$$\frac{\partial E}{\partial w_{jk}} = a_j(t_k - y_k)g'(h_k)$$

$$x_1 \xrightarrow{w_{12}} \sum_{w_{12}} \underbrace{h_1} \underbrace{a_1}_{w_{12}} \underbrace{w_{11}}_{w_{12}} \sum_{w_{12}} \underbrace{h_2}_{w_{21}} \underbrace{b_2}_{w_{22}} \underbrace{b_2}_{w_{22}$$

$$\frac{\partial E}{\partial w_{jk}} = a_j (t_k - y_k) g'(h_k)$$

$$\frac{\partial E}{\partial w_{ij}} = x_i \left(\sum_{\delta_{L2}} \delta_{L2} w_{jk}\right) g'(h_j)$$

$$\delta_{L1}$$

The Big Picture

The Big Picture

Das Baukastenprinzip

Das Baukastenprinzip

Convolutional Neural Networks

Beispielsproblem Objekterkennung

Akkordeon

Hund

Hauskatze

ImageNet Datenbank

Problematik:

- Was bezeichnet einen Hund?
- Was unterscheidet Hund und Akkordeon?
- Was unterscheidet Hund und Hauskatze?

Verteilte Repräsentation

Lokale Repräsentation

Eine dedizierte Darstellung für jedes Konzept (z.B. Auto, Hund)

Verteilte Repräsentation

- Viele-zu-viele Beziehung zwischen kleinen Einheiten
- Die Konzepte aus ihren Einzelteilen zusammensetzen
- Einzelteile sind Sub-Konzepte
- Können geteilt werden, d.h. weniger Repräsentationen notwendig

Beispiel: Zerlegung eines Textes

Paragraph	Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur lacinia, purus sit amet malesuada accumsan, tellus odio feugiat velit, luctus dapibus odio leo at nisi. Etiam dapibus finibus nunc, sit amet consequat purus feugiat sed. Nunc vulputate dolor a odio egestas tristique. Proin vel efficitur orci, vita imperdiet leo. Aenean ut nunc in lorem interdum lacinia. Sed condimentum leo scelerisque congue consequat. Aliquam erat volutpat. Phasellus maximus tempus turpis in pretium.	
Satz	Nunc vulputate dolor a odio egestas tristique.	
Wort	dolor	
Buchstabe	0	
Phoneme	/o/	

- Praktisch für z.B. Übersetzungen
- Aber für Bilder existieren keine solchen Konzepthierachien

Der Visual Cortex

- Forschung von Hubel and Wiesel (1968)^[1] am Visuellen Cortex von Affen
- Abtastung der Neuronenaktivierung durch Elektroden
- Kontrollierte visuelle Stimulation

[2]

Der Visual Cortex

- Zellstrukturen im Visuellen Cortex sind für Unterbereiche des Sichtfeldes zuständig, ihr sog. Receptive Field
- Viele, überlappende Strukturen decken das gesammte Sichtfeld ab
- Diese Strukturen führen Pattern Recognition durch
- Meisten einfache Kanten- und Blob-Detektoren

Können wir aus dieser Erkenntnis lernen?

Bild

80

Eine andere Sicht auf Convolution

Eine andere Sicht auf Convolution

Zusammenfassung

- Convolution mit einem Kernel resultiert in eine Feature Map
- D.h. die Features, die dem Klassifizierer traditionellerweise übergeben werden
- Der Vorgang der Anwendung eines Kernels entspricht einem Neuron eines Neuronalen Netwerkes
- D.h. wir können den Prozess direkt in der Klassifizierer integrieren
- Und somit die besten Kernel für die angegangene Aufgabe automatisch lernen
- Dieser Lernprozess findet gemeinsam und gleichzeitig mit der Klassifikation statt
- Fazit: Out-of-the-Box Lösungen ohne Aufwand

Warum Convolutional Layer I

- Fully Connected Layer wäre ebenso möglich
- Ein solcher kann die Convolution imitieren und noch mehr
- Also warum nicht einen Fully Connected Layer?

Vorteil 1: Regularisierung durch Translationsinvarianz

Vorteil 2: Weniger Parameter

Bild: $m \times n$ Kernel: $k \times k$ $k \ll m, k \ll n$

	Fully Connected	Local Convolution	Shared Weights
#Neuronen	mn	mn	mn
#Gewichte	$(mn)^2$	$k^2(mn)$	k^2

Convolutional Layer

Visualisierung

[1]

Visualisierung: First Layer Filter

Visualisierung: First Layer Feature Maps

Conv

-Map

Visualisierung: First Layer Aktivierungen

Zusammenfassung

- Ein Convolutional Layer lernt htps. Kanten und Blob-Filter
- Dies entspricht dem Verhalten des Visuellen Cortex
- Diese Filter stellen die kleinsten Einheiten für die verteilte Repräsentation von Objekten in Bildern dar

Aber

- Filter sind sehr ähnlich der seither manuell erstellten (nur etwas gezielter und weniger)
- Eine große Verbesserung kann nicht erwartet werden

Idee

- Ein Layer kann nur lineare Problem lösen.
- Was passiert, wenn wir einen weiteren Conv Layer hinzufügen?

Eine typische CNN Architektur

Visualisierung: Second Layer Filter und Aktivierungen

Receptive Field unterer Layer

Receptive Field unterer Layer

Visualisierung: Third Layer Filter und Aktivierungen

Visualisierung: Fourth Layer Filter und Aktivierungen

Zusammenfassung

- Auf tieferen Ebenen lernt ein Convolutional Layer weitere Bausteine zu erkennen
- Dies entspricht vermutlich ebenfalls dem Verhalten des Visuellen Cortex
- Je tiefer die Ebene, desto größer das Perceptive Field
- Und desto komplexer das Abgebildete Konzept

Vorteil

- Verschiedenste Bausteine werden erkannt
- Kombiniert über die abschließenden Fully Connected Layer können so sehr viele verschiedene Objekte mit einem verhältnismäßig einfachen Modell erkannt werden

Noch ein Beispiel

Zusammenfassung CNNs

- Sind ANNs mit weniger Verbindungen und Shared Weights
- Sie folgen der Idee der Verteilten Repräsentation
- Modellieren so die Funktion des Visuellen Cortex
- Lernen die grafischen Bausteine, aus denen sich unsere Konzepte zusammensetzen

- Brauchen keine manuellen Features, sondern lernen die relevanten selbstständig gleichzeitig mit der Klassifikation
- Dadurch kann die Modellkomplexität vielfach reduziert werden

Zusammenfassung CNNs

- Sind Artificial Neural Networks
 - Back Propagation
 - Beliebige Architektur
 - Beliebe Verbindungspattern
 - Können Klassifizieren, Segmentieren, Prädiktieren, ...
 - Supervised, Semi-Supervised, Un-Supervised
 - Feed-forward or recurrent

Sind Deep Neural Networks

Deep Neural Networks

Theorem

Zwei Layer sind genug jede Funktion zu modelieren

Aber

In Praxis lernen solche Netzwerke nicht gut

Alternative: In die Tiefe gehen mit Deep Neural Networks (DNN)

Mehr Layer erlauben die Modellierung komplexester Funktionen mit (vergleichbar) weniger Parametern

Probleme tiefer Netwerke

- 1. Anzahl Parameter
- Overfitting

Viele kleine Veränderungen wurden vorgeschlagen, um diese Probleme zu überkommen.

Inwiefern CNNs diese Probleme lösen

Anzahl Parameter

• Mit k^2 statt $(mn)^2$ viel weniger als Fully Connected Netzwerke

Overfitting

- Local convolution
- Shared weights
- Max-pooling
- …alles Regularisierung

Weitere begünstigende Entwicklungen

Geschwindigkeit und Speicheranforderung

GPU Implementierungen und bessere Grafikkarten

Gradient Vanishing

 GPU erlaubt viele Epochen und damit auch Training mit kleinen Gradienten in den oberen Layers

Overfitting

Big Data

Weitere Entwicklungen

- Max-pooling
- Rectified Linear Units
- Weight Initialization
- Weight Decay
- Controlled Gradient Descent
- Drop Out (Simon Müller, Ilja Stechmann)
- Mini Batch
- Ensembles
- Weight Normalization (L1 or L2 norm)
- ...and many more: Raum 5, 2. Stock, Geb. 64 in ca. 45 Minuten!

Anwendungsbeispiel

Kamnitsas et al. "Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation"

Medical Image Analysis 2016 (preprint: arXiv:1603.05959)

Beispielsanwendung auf ISLES 2015 Schlaganfalldaten

Anwendungsbeispiel

Kamnitsas et al. "Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation"

Medical Image Analysis 2016 (preprint: arXiv:1603.05959)

Das vorgeschlagenen Netzwerk mit Beispielsbild

Deep Learning: Die Lösung für alle Probleme

- Segmentierung, Übersetzung, Prädiktion, Träumen...
- Und das alles selbst-lernend mit out-of-the-box Tools!

Wahr

- Große Erfolge!
- Potential!
- Jahrelanger ANN Stillstand überwunden!

Aber

- Enorme Flexibilität hat ihren Preis
- 2. Die guten Lösungen sind hochgradig Problemabhängig

Das elektronische Gehirn: Sind wird angekommen?

Single task 736 Watt¹ 1.6×10^{12} Weights^[1] 152 layers^[2]

Multi-task 20 Watt 1.5 × 10¹⁴ Weights ∞ Layers

Zukunft

- Die Aufregung mag enden, aber wohl nicht so schnell
- Viele praktische Anwendungen und große Investitionen der Global Players (Google, Facebook, Amazon)
- Da kommt noch einiges auf uns zu
- Rechengeschwindigkeit wird zunehmen und weitere Anwendungsgebiete eröffnen

Weiterführende Literatur

Vorlesungen von Nando de Freitag @ Oxford

- http://www.cs.ox.ac.uk/teaching/courses/2014-2015/ml/
- https://www.youtube.com/playlist?list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu

Vorlesungen zu Kurs CS231 @ Stanford

- http://cs231n.github.io
- https://www.youtube.com/playlist?list=PLrZmhn8sSgye6ijhLzllXiU9GNalwbF8B

Michael Nielsen: Neural Networks and Deep Learning

http://neuralnetworksanddeeplearning.com

Andrew Ng: UFLDL Tutorial @ Stanford

http://ufldl.stanford.edu/tutorial/

Machtvolle Deep Learning Frameworks

- http://caffe.berkeleyvision.org
- http://torch.ch

Bewegungsschätzung in medizinischen Bilddaten mit Deep Learning

Masterarbeit oder Projektpraktikum

Q&A Ende