

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт Информационных Технологий Кафедра Вычислительной Техники (BT)

Отчёт

по дисциплине

«Разработка программно-аппаратного обеспечения информационных и автоматизированных систем»

Выполнил студент группы ИКМО-05-23:	Миронов Д. С.
Принял преподаватель:	Данилович Е.С
Работы выполнена «»20г	
«Зачтено»	
«»20г.	

Задание: Освоение маршрута проектирования процессорных ядер на уровне системного моделирования путем разработки модели процессорного ядра на языке программирования высокого уровня. Проект заключается в описании модели регистров и памяти процессора, а также проверки модели путем составления тестовой программы с предсказуемым результатом исполнения. После записи команд тестовой программы в массив, имитирующий память процессора, запуск модели должен привести к пошаговому моделированию состояний процессора при выполнении каждой из команд.

Эмулируемые компоненты

Создается память размером 200 значений.

Первые сто значений определяются под ячейки данных.

Вторые сто значений определяются под ячейки команд

Система команд

Система команд, которые поддерживает процессор состоят из 18 бит, первые 4 бита отведены под команды, 7 под первое число и еще 7 под второе число.

Перевод команд происходит через битовое определение. Далее декодируются в 16 формат чисел и вызывают команду.

MEM_DATA – команда записи числа в память.

WRITE_MEMMORY – команда записи команд в память команд.

WRITE_ONE_READ - запись числа в первое указанное число из ячейки, которую указали вторым числом.

ADDW – увеличивает число на указанное значение.

WRITE_DOUBLE_READ - запись числа в первое указанное число из значения, полученного в ячейки число которое указали вторым.

COMPARISON - если число в первой указанной ячейке больше чем во второй указанной ячейке перезаписываем вторую ячейку значением из первой.

CONTROL_NUMBER -если число из ячейки первого числа меньше чем число в ячейки второго числа, то 'рс' становится значением из ячейки минус один от второго числа.

Методы внутри класса эмулятора

```
Выполняет переход на следующую команду.
self.step()
Получение информации из адреса команд
self.fetch()
Декодирование команд
self.decode()
Завершение работы эмулятора и вывод информации
self.trace()
Запись числа в х из значения, полученного в ячейки у
self.write_double_read_d(x,y)
Запись числа в х из ячейки у
self.write_one_read_d(x,y)
Если число из ячейки х меньше чем число в ячейки у то 'рс' становится
значением из ячейки у-1
self.control_number_d(z,c)
Сравнивает два числа из ячеек памяти и возвращает True или False
self.sravnenie_d(x,y)
Записывает число х в у
self.write_memory_d(x,y)
Записывает число х из у в полученное значение
self.write_number_d(x,self.read_memory(y))
Увеличивает число х на у
self.addw_d(c,step)
Проверяет что число х не больше у и меняет их местами
self.comparison_d(z,y)
Запись данных в память
cpu.mem_data
```

Вызываемые команды и их эквиваленты в процессоре

```
write double read =2 = self.write double read d(x,y)
write_one_read = 3 = self.write_one_read_d(x,y)
control\_number = 5 = self.control\_number\_d(z,c)
write\_mem = 7 = self.write\_memory\_d(x,y)
comparison = 12 = self.comparison_d(z,y)
addw = 11 = self.addw_d(c,step)
mem_data = 100 = cpu.mem_data
CONTROL NUMBER= 'CONTROL NUMBER'# 0x5 # 5
COMPARISON= 'COMPARISON' # 0x12 # 12
ADDW= 'ADDW'# 0x11 # 11
WRITE_ONE_READ= 'WRITE_ONE_READ'# 0x3 # 3
WRITE_DOUBLE_READ= 'WRITE_DOUBLE_READ'# 0x2 # 2
WRITE_MEMMORY= 'WRITE_MEMMORY'# 0x7 #7
MEM_DATA = 'MEM_DATA' # 0x100 # запись числа в память
Программа
MEM_DATA 05
MEM_DATA 1 3000000
MEM_DATA 2 1000
MEM DATA 3 20
MEM DATA 440
MEM DATA 5 400
MEM DATA 6 5000
WRITE MEMMORY 99 0
WRITE_MEMMORY 90 1
WRITE_MEMMORY 91 0
```

WRITE_MEMMORY 92 0

WRITE MEMMORY 89 0

WRITE MEMMORY 88 8

WRITE ONE READ 89 0

WRITE ONE READ 99 1

ADDW 90 1
WRITE_DOUBLE_READ 91 90
COMPARISON 91 99
CONTROL_NUMBER 90 1

Ввод данных из txt файла

```
MEM DATA 0 5
 1
2
     MEM DATA 1 3000000
3
     MEM DATA 2 1000
4
     MEM DATA 3 20
5
     MEM DATA 4 40
     MEM DATA 5 400
6
7
     MEM DATA 6 5000
8
     WRITE MEMMORY 99 0
     WRITE MEMMORY 90 1
9
     WRITE MEMMORY 91 0
10
     WRITE_MEMMORY 92 0
11
     WRITE_MEMMORY 89 0
12
13
    WRITE MEMMORY 88 8
14
    WRITE ONE READ 89 0
15
    WRITE ONE READ 99 1
16
    ADDW 90 1
    WRITE DOUBLE READ 91 90
17
    COMPARISON 91 99
18
     CONTROL_NUMBER 90 1
19
```

Рисунок 1 – Запись команд на языке assemble

Вывод выполнения программы

Рисунок 2 – Вывод эмулируемого процессора

На рисунке 2 показан вывод программы где в первом массиве указаны выполняемые команды, а во втором массиве вывод данных.

Вывод

Описали модели регистров и памяти процессора, а также проверили модели путем составления тестовой программы с предсказуемым результатом исполнения.