4-6

Complete.

- 11. If $\angle 3 \cong \angle 4$, then which segments must be congruent?
- 12. If $\triangle REV$ is an equiangular triangle, then $\triangle REV$ is also a(n) ? triangle.
- 13. If $\overline{ES} \cong \overline{ET}$, $m \angle 1 = 75$, and $m \angle 2 = 3x$, then $x = \frac{?}{}$
- **14.** If $\angle 1 \cong \angle 2$, ES = 3y + 5, and ET = 25 y, then $y = \frac{?}{}$

Write proofs in two-column form.

- 15. Given: $GH \perp HJ$; $KJ \perp HJ$: $\angle G \cong \angle K$
 - Prove: $\triangle GHJ \cong \triangle KJH$
- **16.** Given: $\overline{GH} \perp \overline{HJ}$: $\overline{KJ} \perp \overline{HJ}$: $\overline{GJ} \cong \overline{KH}$
- Prove: $\overline{GH} \cong \overline{KJ}$

- 17. Give the reason for each key step of the proof.
 - Given: $\overline{AX} \cong \overline{CY}$; $\angle A \cong \angle C$; $\overline{BX} \perp \overline{AD}$; $\overline{DY} \perp \overline{BC}$
 - Prove: $\overline{AD} \parallel \overline{BC}$
 - 1. $\triangle ABX \cong \triangle CDY$
 - 2. $\overline{BX} \cong \overline{DY}$
 - 3. $\triangle BDX \cong \triangle DBY$
 - $4. \angle 1 \cong \angle 2$
 - 5. AD | BC

- 18. Refer to $\triangle DEF$ and name each of the following:
 - a. an altitude
 - b. a median
 - c. the perpendicular bisector of a side of the triangle

- 19. Point G lies on the perpendicular bisector of \overline{EF} . Write the theorem that justifies the statement that GE = GF.
- **20.** $\triangle ABC$ and $\triangle ABD$ are congruent right triangles with common hypotenuse \overline{AB} . Write the theorem that allows you to conclude that point B lies on the bisector of $\angle DAC$.