

Coursework Assignment

Design and Analysis of a Composite Tube

Special Requirement

- The tube should achieve a twist under axial compression in such a direction as shown below
- Aiming at achieving the maximum angle of twist without failure

General Description

- Design a cylindrical composite tube
 - 4 layers, with a lay-up of $[\alpha/\beta/\alpha/\beta]$, angle to the axis of the tube
 - Winding tapes cut from a UD prepreg sheet onto a R=25mm mandrel
 - The thickness of the prepreg is 0.25mm > X4 = | mm
 - The tube is 300mm long
- Design variable: fibre orientation angle α and β
 - -75° ≤ α≤ -30° or $+30^{\circ}$ ≤ α≤ $+75^{\circ}$, -75° ≤ β≤ -30° or $+30^{\circ}$ ≤ β≤ $+75^{\circ}$
- Tube sustains two loading conditions according to maximum stress criterion
 - Internal pressure of 3 MPa (ends closed)
 - S bolle
 - Axial compression force of 25 kN

Arrangement and Report

- · A group project
 - Maximum 3 students to form one group among yourselves
 - Marks shared by group members
- · Computer-based lab
 - Week 6
 - Please check your personal timetable for your session and venue
- Report
 - Group report (maximum 8 pages)
 - Design method and theory, analysis procedure
 All equations used, same format as in lecture notes, NOT as in the handout
 - Results & analysis to prove the success of the design
 - Due two weeks after your lab session, Blackboard submission
 One group one report with all names of group member

Tube Design Analysis

- Composite tube is a laminated structure
- A developed tube is a laminate
 - Lay up: $[\alpha/\beta/\alpha/\beta]$
- Laminate theory can be used for stress analysis

Generalised Stresses $\{N\}$

• Load case 1: Internal pressure with closed ends

$$N_x = \frac{1}{2} qR$$

$$N_y = qR$$

$$N_{xy} = 0$$

• Load case 2: Axial compression load *P*

$$N_x = \frac{P}{2\pi R}$$

$$N_{v} = 0$$

$$N_{y} = 0 \qquad N_{xy} = 0$$

Laminate Analysis of the Tube

- Infinitesimal FBD from the tube
 - A laminate with lay-up $[\alpha/\beta/\alpha/\beta]$
 - Generalised stresses and strains

$$N_x$$
, N_y , N_{xy} , M_x , M_y , M_{xy}

$$\mathcal{E}_x^0$$
, \mathcal{E}_y^0 , γ_{xy}^0 , κ_x , κ_y , κ_{xy}

$$N_{x}$$
, N_{y} , N_{xy} , M_{x} , M_{y} , M_{xy}
 N_{x} , N_{y} , N_{xy} , K_{x} , K_{y} , K_{xy}
 M_{x} , M_{y} , M_{xy} , \mathcal{E}_{x}^{0} , \mathcal{E}_{y}^{0} , γ_{xy}^{0}

- Determination of the generalised stresses and strains
 - Loading condition and generalised stress-strain relationship

Twist Angle

- Tube is fixed at the bottom end and axially compressed at the top
- Generator on the tube deforms by an angle χ_{xy}
- Point A at the top end moves to A' by a distance $\gamma_{xy}L$
- Twist angle of the tube

$$\phi = \frac{\gamma_{xy} L}{R}$$

MathCAD Sheet

- A MathCAD sheet will be provided to assist you to carry out the design analysis.
 - Demonstrators will be present to offer help.
- Students are free to use other tools, such as Matlab, to perform the analysis.
 - No need to attend computer lab session, as no help will be offered.

assume K = 0

N=AE°+BK M=BE°+DK

"=ATN E=E+Z1

 $= \mathcal{L}^{2} \rightarrow \mathcal{J}_{xy} \rightarrow \mathcal{L}_{zy}$

4 > 0 -> fulure Analyth