Expectation Maximization: Derivation

- \square Consider general "imputation distributions" $\rho(z \mid x)$.
- \square We can construct a **tight** lower bound $LB(\theta, \rho)$ of the marginal loglikelihood function:

$$L(\theta) \ge LB(\theta, \ \rho), \ \ \forall \rho,$$

and

$$(L(\theta)) = \max_{\rho} LB(\theta, \rho)$$

 \square Maximizing $L(\theta)$ is then equivalent to maximizing $LB(\theta, \rho)$.

$$\max_{\theta} L(\theta) = \max_{\theta, \rho} LB(\theta, \rho).$$

 \Box Optimizing θ and ρ alternatively (coordinate descent) yields EM

algorithm.

log(x) = convex

$$\frac{P(x_{i}, z_{i} | \theta)}{P(z_{i}, z_{i} | \theta)} = \frac{P(x_{i}, z_{i} | \theta)}{P(z_{i}, x_{i})} = \frac{P(x_{i}, z_{i} | \theta)}{P(z_{i}, x_{i})} = \frac{P(x_{i} | \theta)}{P(z_{i}, x_{i} | \theta)}$$

$$= \sum_{i=1}^{n} E_{z_{i} \sim l(i, x_{i})} \log P(x_{i} | \theta)$$

$$= \sum_{i=1}^{n} \log P(x_{i} | \theta) = L(\theta) L(\theta)$$

$$= \sum_{i=1}^{n} \log P(x_{i} | \theta) = L(\theta)$$

$$= \sum_{i=1}^{n} \log P(x_{i} | \theta)$$

$$= \sum_{i=1}^{n}$$

Converge to local optimal of (10)