Fig.1.

PstICAGGTGCAGCTGCAGGAGTCAGGGGGGGGGGGGTTGGTGCAGGCTGGGGGGCTCTCTGAGACTC G S G G G TCCTGTGCAGCCTCGGGACGCGCCACCAGTGGTCATGGTCACTATGGTATGGGCTGGTTC CGCCAGGTTCCAGGGAAGGAGCGTGAGTTTGTCGCAGCTATTAGGTGGAGTGGTAAAGAG K \boldsymbol{E} \boldsymbol{E} ACATGGTATAAAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGATAACGCCAAGACT K R K S G Ι ACGGTTTATCTGCAAATGAACAGCCTGAAACCTGAAGATACGGCCGTTTATTATTGTGCC PD TA L Ν S \boldsymbol{L} K \boldsymbol{E} Μ GCTCGACCGGTCGCGTGGATGATATTTCCCTGCCGGTTGGGTTTGACTACTGGGGCCAG Ι \mathcal{S} \boldsymbol{L} \boldsymbol{F} GGGACCCAGGTCACCGTCTCCTCAGAACAAAAACTCATCTCAGAAGAGGATCTGAATTAA S S E Q K I E E TAAGGGCTAAGCTCGAATTC EcoRI

1: Molecular Weight Markers

2: 943.37 Sample

3: Neg. Ctrl

1: Molecular Weight Markers 2-5: Samples Plant.22, 25, 30,34 6-9: Neg. Plants Samples 10: Positive Ctrl (P.pastoris produced)

Fig.4.

Fig.6. PstI S G G G LQ V O AGG S TCCTGTGTAGCTTCTGAAAGCAGCTTCAGCAACAATCACATGGGCTGGTACCGCCGGGCT CS S S F \mathcal{S} N Ν Η Μ G CCAGGGAACCAGCGGGGGTGGTCGCAACTATTAGTCCTGGTGGTAGCACACACTATGTA Q R \boldsymbol{E} A TΙ \boldsymbol{P} S G G \boldsymbol{T} GACTCCGTGAAGGGCCGATTCACCATCTCCCGAGACAACGCCAAGAACACAGTGTATCTA K G R I S RK Y CAAATGGACAGCCTGAAACCAGAGGACACGGCCGTCTATTACTGTGCTGCCAAGGGGAGG S L K \boldsymbol{P} \boldsymbol{E} D TA Y Y CA K G PstI GGGCTGCAGGCTATGCAGTACTGGGGCCAGGGGACCCTGGTCACCGTCTCCTCAGCGCAC G 0 G CACAGCGAAGACCCCAGCTCCGCGGCCCCCATCACCATCACCATCACGGGGCCGCAGAA P S S A A A HΗ HΗ Η A CAAAAACTCATCTCAGAAGAGGATCTGAATGGGGCCGCATAGTAA**CAATTG** K \boldsymbol{L} Ι S \boldsymbol{E} ED \boldsymbol{L} N G

Fig.8.

0: Molecular Weight Markers 1-6: pPV.8-PRIa-HCV33myc-SKDEL plants 7-9: pPV.8-GBSS-HCV33myc-SKDEL plants

Fig.11.

Fig.12.

PstI CAGGTGCAGCTGCAGGAGTCTGGGGGGGGGCCTGGTGCAGGCTGGGGGGGTCTCTGAGACTC O ES G G G LV O A G G S TCCTGTGTAGCCTCTGGAAACACCTTCAGTATCATAGCTATGGCCTGGTACCGCCAGGCT G N F S I Ι A Μ A W Y CCAGGGAAGCAGCGCGAGGTGGTCGCAAGTATTAATAGTATTGGCAGCACAAATTATGCA EVΙ S S GACTCCGTGAAGGGGCGATTCACCATCTCCAGAGACAACGCCAAGAACACAGTGTATCTG D S V KG RF Ι S R D Ν CAAATGAGCAGCCTGAAACCTGAGGACACGGCCGTCTATTACTGTGCTGCCGGTAATTTG S LK P E D \boldsymbol{T} Α V Y CCTGGTTAAGAGGCCTTACTGGGGCCAGGGGACCCTGGTCACCGTCTCCTCAGAACCCAAG ₽ Y G Q G \boldsymbol{T} VACACCAAAACCACAGCGGCCGCCCATCACCATCACCATCACGGGGCCGCAGAACAA OPA AA HН HΗ Η Η G A Α AAACTCATCTCAGAAGAGGATCTGAATGGGGCCGCATAGTAACAATTG I S \boldsymbol{E} \boldsymbol{E} D LN G AMunI

Fig.14. PstINcoI $\texttt{A} \textcolor{red}{\textbf{CCATGG}} \texttt{CCAGGTGAAA} \textcolor{red}{\textbf{CTGCAG}} \texttt{CAGTCTGGGGGAGGATTGGTGCAGGCTGGGGGCCCT}$ MAQVKLQQSGGGLVQAGGP CTGAGGCTCTCCTGTGCAGCCTCTGGACGCACCTTCAGTAACTATGCCGTGGGCTGGTTC S C A A S G R T F S N Y A V G W F CGCCAGGCTCCAGGGAAGGAGCGTGAGTTTGTCGCTGCTATTAGCCGTGATGGTGGGCGC I S R DR Q A P G K E R EF V A AACATACTATGCGGACTCCGTGAAGGGCCGATTCGCCGTCTCCAGAGACTACGCCGAGAAC K G R F A V SR D SVACGGTGTATCTGCAAATGAACAGCCTGAAACCTGAGGACACGGCCGTTTATTACTGTAAC Y L Q M N S L K P E D T A V ACAAGGGCCTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCAGCGCACCACAGCGAA TRAYWGQGTQVTVSS GACCCCAGCTCCGCGGCCGCCCATCACCATCACCATCACGGGGCCGCAGAACAAAAACTC D P S S A A A H H H H H H G A A E Q K L **ATCTCAGAAGAGGATCTGAATGGGGCCGCATAGTAACAATTG** I S E E D L N G A A

Fig.15. PstI NCOI ACCATGGCCCAGGTGAAACTGCAGCAGTCTGGGGGGAGGATTGGTGCAGGCTGGGGGCCCT T M A Q V K L Q Q S G G G L V Q A G G P CTGAGGCTCTCCTGTGCAGCCTCTGGACGCACCTTCAGTAACTATGCCGTGGGCTGGTTC L R L S C A A S G R T F S N Y A V G W F CGCCAGGCTCCAGGGAAGGAGCGTGAGTTTGTCGCTGCTATTAGCCGTGATGGTGGGCGC RQAPGKEREFVAAISRDGGR ACATACTATGCGGACTCCGTGAAGGGCCGATTCGCCGTCTCCAGAGACTACGCCGAGAAC T Y Y A D S V K G R F A V S R D ACGGTGTATCTGCAAATGAACAGCCTGAAACCTGAGGACACGGCCGTTTATTACTGTAAC A D TS LK P \boldsymbol{E} ACAAGGGCCTACTGGGGCCAGGGGACCCAGGTCACCGTCTCCTCAGCGCACCACAGCGAA Y W G Q G T Q V T V S S A H H S E GACCCCAGCTCCGCGGCCGCCCATCACCATCACCATCACGGGGCCGCAGAACAAAAACTC H H H H H G A A E Q K L S A A A HATCTCAGAAGAGGATCTGAATTCTGAGAAAGATGAGCTATGACAATTG I S E E D L N S E K D E L

Fig.17A.

			10/23	
	NcoI	PstI		Fig.18.
1	ccatggaggt		HCV33.	gaggattggt gcaggctggg > g g l v q a g
51	>		HCV33	ggacgcgcca ccagtggtca g r a t s g
101	>		HCV33	ggttccaggg aaggagcgtg q v p g k e r
151	>		HCV33	aagagacatg gtataaagac > k e t w y k d
201	>		HCV33	gataacgcca agactacggt d n a k t t
251	>		HCV33	agatacggcc gtttattatt e d t a v y y
301	>		HCV33	tttccctgcc ggttgggttt i s l p v g f
351	>	HCV	33	gtctcctcag aacccaagac >>>>Hinge> v s s e p k
401	>		Hinge	accacaaccc aatcctacaa > q p q p n p t
451	>	.Hinge	>>>	ctgagctcct gggagggccc CH2 p e l l g g p
501	>		CH2	gacgtcctct ccatttctgg d v l s i s
551	>		CH2	cgtgggccag gaagaccccg > d v g q e d p
601	>		CH2	cagaggtgcg aacggccaac> a e v r t a n
651				acgtaccgcg tggtcagcgt

Fig.18 (Cont).

	trp kee qfns tyr vvs
701	cctgcccatc cagcaccagg actggctgac ggggaaagag ttcaaatgca > v l p i q h q d w l t g k e f k c HincII
751	aggtcaacaa caaagctctc ccggccccca tcgagaagac catctccaag > k v n n k a l p a p i e k t i s k
801	gccaaagggc agacccggga gccgcaggtg tacgccctgg ccccacaccg >>>>
851	ggaagagetg gccaaggaca ccgtgagegt aacetgeetg gtcaaagget > r e e l a k d t v s v t c l v k g
901	tctacccacc tgatatcaac gttgagtggc agaggaacgg tcagccggag > f y p p d i n v e w q r n g q p e
951	tcagagggca cctacgccac cacgccaccc cagctggaca acgacgggac
	seg tyattpp qld ndg
1001	ctacttcctc tacagcaagc tctcggtggg aaagaacacg tggcagcggg > t y f l y s k l s v g k n t w q r
1051	gagaaacctt cacctgtgtg gtgatgcacg aggccctgca caaccactac > g e t f t c v v m h e a l h n h y EcoRI
1101	acccagaaat ccatcaccca gtcttcgggt aaataataag aattcgagct > t q k s i t q s s g k
1151	cgaa

12/23

	NcoI	PstI		Fig.19	9.
1		gcagctgcag g	agtcagggg	gaggattggt	gcaggctggg
	>> m e	v q l q			
51	>	gacteteetg t	.HCV33		>
101	>	ggtatgggct g g m g	.HCV33		>
151	>	agctattagg t a a i r	.HCV33		>
201	>	gccgattcac c g r f t	.HCV33		>
251	>	atgaacagcc t m n s	HCV33		>
301	>	accggtccgc g r p v r	HCV33		>
351	>	gccaggggac c HCV33 g q g t	3	>>>>	Hinge>
401	>	caaccacaac o	Hinge		
451	>	gtgtcccaaa t .Hingek c p k	>>>>	СН2	>
501	>	i f p	CH2		>
551	>	gtcacgtgcg t	CH2		>
601	>	caactggtac a	CH2		>
651		aagaggaaca g			

Fig.19 (Cont).

kee q f n s t y r v v s t r p 701 cctqcccatc cagcaccagg actggctgac ggggaaagag ttcaaatgca >..... v l p i q h q d w l t g k e f k c HincII 751 aggtcaacaa caaagctctc ccggccccca tcgagaagac catctccaag >..... k v n n k a l p a p i e k t i s k 801 gccaaaqqqc agacccggga gccgcaggtg tacgccctgg ccccacaccg >...>>>>..... akg qtr epqv yal aph 851 ggaagagetg gecaaggaca eegtgagegt aacetgeetg gteaaagget >..... reel akd tvs vtcl vkg 901 tctacccacc tgatatcaac gttgagtggc agaggaacgg tcagccggag >.....> fyppdin vew qrn g q p e 951 tcagagggca cctacgccac cacgccaccc cagctggaca acgacgggac >..... seg tyattpp qld ndg 1001 ctacttcctc tacagcaagc tctcggtggg aaagaacacg tggcagcggg >...... tyfl ysklsv gknt w qr 1051 gagaaacctt cacctgtgtg gtgatgcacg aggccctgca caaccactac >.....> get ftc v w m h e a l h n h y 1101 acccaqaaat ccatcaccca gtcttcgggt aaatctgaga aagatgagct >.....SEKDEL...... tqk sit qssg kse kde EcoRI 1151 ataataagaa ttcgagctcg aa

۶

Fig.28.

NcoI

PstI

1 ccatggccca ggtgcagctg caggagtctg ggggaggctt ggtgcaggct MAQVQLQESGGGLVQA 51 ggggggtctc tgaggctctc ctgtgcagcc tctggaagca ttttcagacg G G S L R L S C A A S G S 101 tecgeatatg ggttggttee geeaggetee agggeaggag egegagttgg RPHM GWF RQA PGQE REL 151 tcgcactgat ttctgcgggt ggtcgtacat ggtatgcaga ctccgtgaag V A L I S A G G R T W Y A D S V K 201 ggccgattca ccatctccag agacaacgcc aagaacacgc tgtatctgca GRF TIS RDNAKNT LYL 251 aatgaacagc ctgaaacctg aggacacggc cgtttattac tgtactgccg Q M N S L K P E D T A V Y Y C T A BstEII 301 ggggttcgta ctggggccag gggacccagg tcaccgtcgc ctcagaaccc G G S Y W G Q G T Q V T V A S E P 351 aagacaccaa aaccacaacc agcggccgcc catcaccatc accatcacgg KTP KPQ PAAA H H H H H 401 ggccgcagaa caaaaactca tctcagaaga ggatctgaat ggggccgcat G A A E Q K L I S E E D L N G A A

MunI

451 agtaacaatt g

