HOMOMORFISMOS DE ANÉIS

um resumo

Guilherme Philippi

2 de março de 2021

Esse texto pretende ser uma introdução aos conceitos fundamentais entorno de homomorfismos de anéis. Tudo que aqui se apresenta fora extraído de [1, 2, 3], principalmente de [3].

1 Anéis

Definição 1.1 (Grupo). Um grupo (G, *) é um conjunto G onde uma lei de composição * é dada sobre G tal que os seguintes axiomas são satisfeitos:

1. (Associatividade). Para todo $a, b, c \in G$, tem-se

$$(a*b)*c = a*(b*c);$$

2. (Existência da identidade). Existe um elemento $\vec{1} \in G$ tal que, para todo $a \in G$,

$$\vec{1} * a = a * \vec{1} = a;$$

3. (Existência do inverso). Para todo $a \in G$ existe um elemento $a' \in G$ tal que

$$a * a' = a' * a = \vec{1}$$
.

Definição 1.2 (Grupo abeliano). Um grupo abeliano é um grupo G com uma lei de composição comutativa, isto é, a * b = b * a, para todo $a, b \in G$.

Definição 1.3 (Anel). Um *anel* $(R, +, \cdot)$ é um conjunto R acompanhado de duas operações binárias + e · definidas sobre R tais que os seguintes axiomas são satisfeitos:

- 1. (R, +) é um grupo abeliano.
- 2. A operação · é associativa.
- 3. Para todo $a, b, c \in R$, valem a lei da distributividade à esquerda

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

e a lei de distributividade à direita

$$(a+b)\cdot c = (a\cdot c) + (b\cdot c).$$

Observação 1.1 (Notação). É comum abusar da notação e chamar um grupo (G, *) e o conjunto de seus elementos G pelo mesmo simbolo, omitindo a lei de composição na falta de ambiguidade. Da mesma forma, costuma-se denotar o anel $(R, +, \cdot)$ apenas por seu conjunto R.

2 Homomorfismos de anéis

Definição 2.1 (Homomorfismo de anéis). Sejam dois anéis $(R, +, \cdot)$ e $(R', +', \cdot')$. Um mapa $\phi: R \longrightarrow R'$ é um homomorfismo se a propriedade de homomorfismo vale para ambas as operações, isso é, se, para todo $a, b \in R$,

$$\phi(a+b) = \phi(a) + \phi(b) = \phi(a \cdot b) = \phi(a) \cdot \phi(b).$$

Referências

- [1] John B Fraleigh. A First Course in Abstract Algebra. Pearson, 2014.
- [2] Michael Artin. Algebra. A Simon and Schuster Company, 1991.
- [3] GELSON IEZZI and Hygino H DOMINGUES. Álgebra moderna. São Paulo: Atual Editora, 2003.