<pre>import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns</pre>
<pre>import numpy as np import seaborn as sns import pandas as pd from tqdm import tnrange, tqdm_notebook import math</pre>
2. GPU Setting 2.1 check out if your cumputer support GPU use_cuda = torch.cuda.is_available() if (use cuda):
<pre>print("Great, you have a GPU!") else: print("Life is short consider a GPU!") Great, you have a GPU!</pre>
2.2 set a special variable 'device' The 'device' variable denotes what device will the cumpute going on. If your device has a GPU than, all your compute will be on GPU. In later code, It will use the function '.to()' to tell PyTorch which device will the compute going on. It use 'cuda:X' to select the Xth GPU.
 And you can ues 'cuda', if you don't care about GPU. To know the information about your gpu, use 'nvidia-smi'. device = torch.device("cuda:2" if use_cuda else "cpu") print('Your device will be: ', device)
Your device will be: cuda:2 3. Perpare Datasets
B.1 get your dataset In this function, you will perpare all your dataset, including data preprocess, data augmentaion and so on. The following code use PyTorch's datasets directly. You will see that the demo use the MNIST provided by PyTorch so that we can push the demo quickly.
The function 'transforms' is used for preprocessing and you use some funtion for data augmentaion. n 'transform': - the 'ToTensor()' will transform the picture to Tensor and scale the value to range 0.0 to 1.0. - the 'Normalize()' will normalize the picture to range -1.0 to 1.0.
See more information in the <u>offical docs (https://pytorch.org/docs/stable/torchvision/transforms.html)</u> Than we use 'torchvision.datasets.MNIST' to get the dataset and with the parameter 'transform' we can preprocess dataset. When the parameter 'download' equals to 'True' the PyTorch will download the dataset from internet to 'root'. transform = transforms.Compose([
<pre>transforms.Resize(28), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), train_data = torchvision.datasets.MNIST('./mnist', train = True,</pre>
<pre>transform = transform, download = False) test_data = torchvision.datasets.MNIST('./mnist', train = False, transform = transform)</pre>
You can check the size of your dataset using '.size()'. print("train_data:", type(train_data.train_data)) print("train_labels:", type(train_data.train_labels)) print("test_data:", test_data.test_data.size())
<pre>print(dir(train_data)) train_data: <class 'torch.tensor'=""> train_labels: <class 'torch.tensor'=""> test_data: torch.Size([10000, 28, 28]) ['add', 'class', 'delattr', 'dict', 'dir', 'doc', 'eq', 'format', 'ge' , ' getattribute ', ' getitem ', ' gt ', ' hash ', ' init ', ' init subclass ', ' le ',</class></class></pre>
en_', '_lt_', '_module_', '_ne_', '_new_', '_reduce_', '_reduce_ex_', '_repr_', '_setattr', '_sizeof_', '_str_', '_subclasshook_', '_weakref_', '_check_exists', 'download', 'processed_for lder', 'raw_folder', 'root', 'target_transform', 'test_file', 'train', 'train_data', 'train_labels', 'train_file', 'transform', 'urls']
3.2 prepare dataloader DataLoader combines a dataset and a sampler, and provides single- or multi-process iterators over the dataset. The iterator contains datas and abels. The 'batch_size' and 'shuffle' is easily understand.
train_loader = torch.utils.data.DataLoader(dataset=train_data,
And the 'torchvision.utils.make_grid' help us create a grid to show images.
<pre># dataiter = iter(train_loader) # data, target = dataiter.next() def imshow(batch, class_names=None, num_images=4): plt.figure(figsize=(1.7 * num_images, 1.7)) img, classes = batch</pre>
<pre>img_num = min(num_images, img.shape[0]) grid = torchvision.utils.make_grid(img[:img_num],</pre>
<pre># mean = np.array([0.485, 0.456, 0.406]) # std = np.array([0.229, 0.224, 0.225]) # grid = std * grid + mean grid = np.clip(grid, 0, 1) plt.imshow(grid)</pre>
<pre>if class_names: titles = [class_names[x] for x in classes[:img_num]] plt.axis('off') plt.title(titles) plt.pause(0.001) imshow(next(iter(train_loader)), num_images=10)</pre>
5265353862
0 50 100 150 200 250 torch.manual_seed(117) ## random seed, use prime number. <torchc.generator 0x2abb92265a70="" at=""></torchc.generator>
4 Create own Network 4.1 create own module The module consists of two parts, layers and the forward method.
To build your own layers, you need to use servral functions like 'Conv2d', 'Linear', 'MaxPool2d', 'BatchNorm2d' and so on. In order to give you quick demo, I just list some of them and you will find more information in offical docs (https://pytorch.org/docs/stable/nn.html). Don't forget in your layers' values. 1. 'Conv2d':
 definition: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) There are some parameters: in_channels (int): Number of channels in the input image out_channels (int): Number of channels produced by the convolution
 out_channels (int): Number of channels produced by the convolution kernel_size (int or tuple): Size of the convolving kernel stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
 bias (bool, optional): If True, adds a learnable bias to the output. Default: True 'Linear': definition: CLASS torch.nn.Linear(in_features, out_features, bias=True)
 parameters: in_features: size of each input sample out_features: size of each output sample bias: If set to False, the layer will not learn an additive bias. Default: True 3. 'MaxPool2d': definition:
CLASS torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False) • parameters: • kernel_size: the size of the window to take a max over • stride: the stride of the window. Default value is kernel_size
 padding: implicit zero padding to be added on both sides dilation: a parameter that controls the stride of elements in the window return_indices: if True, will return the max indices along with the outputs. Useful for torch.nn.MaxUnpool2d later ceil_mode: when True, will use ceil instead of floor to compute the output shape 'BatchNorm2d':
 definition: CLASS torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) parmaters: num_features: CC from an expected input of size (N, C, H, W)(N,C,H,W)
 eps: a value added to the denominator for numerical stability. Default: 1e-5 momentum: the value used for the running_mean and running_var computation. Can be set to None for cumulative moving - average (i.e. simple average). Default: 0.1 affine: a boolean value that when set to True, this module has learnable affine parameters. Default: True track_running_stats: a boolean value that when set to True, this module tracks the running mean and variance, and when set False, this module does not track such statistics and always uses batch statistics in both training and - eval modes. Default: True
Now you have all the informations, Let's build a vgg module. Notice, I will change some parmeters against standed vgg module. 1. The first convolution layers's `in_channal`. As you know MNIST is just 1 * 28 * 28, It's 1 channel image, and we use MNIST to train our network, of course, will implement to digit recegnization.
<pre>2. We just want to classficate 10 kinds of digit, so the output layer's dimension will ended as 10. class Net(nn.Module): definit(self, features, num_classes=10, init_weights=True): super(Net, self)init() self.features = features</pre>
<pre>self.classifier = nn.Sequential(nn.Linear(512, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Propout(),</pre>
<pre>in Linear(4096, num_classes), if init_weights: selfinitialize_weights() def forward(self, x): x = self.features(x)</pre>
<pre># print('x1: ', x.size()) # print('x.size(0): ',x.size(0)) x = x.view(x.size(0), -1) # print('x2: ', x.size()) assert(x.size() == (64,512)) x = self.classifier(x) return x</pre>
<pre>def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None:</pre>
<pre>m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) m.bias.data.zero ()</pre>
<pre>vgg16 = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'] vGG11 = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'] def make_layers(cfg, batch_norm=False): layers = []</pre>
<pre>in_channels = 1 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm:</pre>
<pre>layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else:</pre>
5. How To Train? To define our own train function, we need to seprate several part: 1. some informations about this epoch.
 data preparing. optimizer preparing. forward and backward. lost function. show some train information. show loss and acc Analysis image.
<pre>def train(model, device, train_loader, optimizer, epoch): print('epoch: {}'.format(epoch)) model.train() train_loss = 0 correct = 0</pre>
<pre>train_list = {'loss':[], 'acc':[], 'idx':[]} for batch_idx, (inputs, targets) in enumerate(tqdm_notebook(train_loader,total=len(train_loader))): indx_target = targets.clone() # clone labels inputs, targets = Variable(inputs), Variable(targets) if use_cuda: inputs, targets = inputs.to(device), targets.to(device)</pre>
<pre>optimizer.zero_grad() # Clears the gradients of all optimized print(inputs.size()) outputs = model(inputs) # output will be batch_size * class_size loss = F.cross_entropy(outputs, targets) loss.backward() optimizer_stop()</pre>
<pre>optimizer.step() train_loss += loss.data.item() if batch_idx % 20 == 0 and batch_idx >= 0: pred = outputs.data.max(1)[1] # get the index of the max log-probability correct = pred.cpu().eq(indx_target).sum() acc = float(correct) * 1.0 / len(inputs) train_light[logg logg logg data_item())</pre>
<pre>train_list['loss'].append(loss.data.item()) train_list['acc'].append(acc) train_list['idx'].append(batch_idx) print('Train Epoch: {} [{:5}/{:5}] Loss: {:.6f} Acc: {:.4f} lr: {:.2e}'.format(</pre>
losss pic plt.plot(train_list['idx'],
plt.title("Lost Analysis") #图标题 plt.show() #acc pic plt.plot(train_list['idx'],
"r",linewidth=1, label = "epoch_" + str(epoch)) #在当前绘图对象绘图 (x轴, y轴, 蓝色虚线, 线宽度) plt.xlabel("iterations") #X轴标签 plt.ylabel("acc") #Y轴标签 plt.title("Accuracy Analysis") #图标题 plt.show()
<pre>def test(model, device, test_loader, optimizer, epoch): model.eval() test_loss = 0 correct = 0 global best_acc</pre>
<pre>for inputs, target in tqdm_notebook(test_loader,total=len(test_loader)): indx_target = target.clone() target = Variable(target) with torch.no_grad(): inputs = Variable(inputs) if use cuda:</pre>
<pre>if use_cuda: inputs, target = inputs.to(device), target.to(device)</pre>
<pre>output = model(inputs) test_loss += F.cross_entropy(output, target).data.item() pred = output.data.max(1)[1] # get the index of the max log-probability correct += pred.cpu().eg(indx target).sum()</pre>
<pre>test_loss += F.cross_entropy(output, target).data.item()</pre>
<pre>test_loss += F.cross_entropy(output, target).data.item() pred = output.data.max(1)[1] # get the index of the max log-probability correct += pred.cpu().eq(indx_target).sum() test_loss_percent = test_loss / len(test_loader) # average over number of mini-batch acc = 100. * correct / len(test_loader.dataset) # print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(</pre>
<pre>test_loss += F.cross_entropy(output, target).data.item() pred = output.data.max(1)[1] # get the index of the max log-probability correct += pred.cpu().eq(indx_target).sum() test_loss_percent = test_loss / len(test_loader) # average over number of mini-batch acc = 100. * correct / len(test_loader.dataset) # print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}*)'.format(</pre>
<pre>test_loss += F.cross_entropy(output, target).data.item() pred = output.data.max(1)[1] # get the index of the max log-probability correct += pred.cpu().eq(indx_target).sum() test_loss_percent = test_loss / len(test_loader) # average over number of mini-batch acc = 100. * correct / len(test_loader.dataset) # print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}*)'.format(test_loss_percent, correct, len(test_loader.dataset), acc)) # model save if acc > best_acc: best_acc = acc save_file = 0 if save_file = os.path.join(args.logdir, 'best-{}.pth'.format(epoch)) misc.model snapshot(model, new_file, old_file=old_file, verbose=True) old_file = new_file print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}*)'.format(test_loss * 100 / len(test_loader), correct, len(test_loader.dataset), acc)) print(VGG11) model = Net(make_layers(VGG11,batch_norm = True)) if use_cuda: model.to(device) print(model) printigrer = optim.SGD(model.parameters(), 1r=0.001, momentum=0.9, weight_decay=5e-4) G64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'] Wet(</pre>
test_loss += F.cross_entropy(output, target).data.item() pred = output.data.max(1)[1] # get the index of the max log-probability correct += pred.cpu().eq(indx_target).sum() test_loss_percent = test_loss / len(test_loader) # sverage over number of mini-batch acc = 100. * correct / len(test_loader.dataset) # print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f})*.'.format(
test_loss += P.cross_entropy(output, target).data.item() pred = output.data.max(1)[1] # get the index of the max log-probability correct += pred.cpu().eq(indx_target).sum() test_loss_percent = test_loss / len(test_loader) # average over number of mini-batch acc = 100. * correct / len(test_loader.dataset) # print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f})'.format(
test_loss ** F.cross_entropy(output, target).data.item() pred = output.data.max(1)[1] # get the index of the max log-probability correct += pred.cpu().eq(indx_target).sum() test_loss_percent = test_loss / len(test_loader) # average over number of mini-batch acc = 100. * correct / len(test_loader.dataset) # print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}*)'.format(test_loss_percent, correct, len(test_loader.dataset), acc)) # model save if acc > best_acc: best_acc = acc save_file = 0 if save_file: new_file = os.path.join(args.logdir, 'best_{}-{}.pth'.format(epoch)) misc.model_snapshot(model, new_file, old_file=old_file, verbose=True) old_file = new_file print('Test set: Average loss: {i.4f}, Accuracy: {}/{} ({:.2f}*)'.format(test_loss * 100 / len(test_loader), correct, len(test_loader.dataset), acc)) print(VGGI1) model = Net(make_layers(VGGI1,batch_norm = True)) if usc_cuda: model.to(device) print(model) print(model) print(model) (0): Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(44, eps=le-05, momentum=0.1, affine=True, track_running_stats=True) (2): RetU(inplace) (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (4): Conv2d(64, 128, kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (6): RetU(inplace) (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (8): Conv2d(64, 128, kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (8): Conv2d(128, ps=le-05, momentum=0.1, affine=True, track_running_stats=True) (8): RetU(inplace) (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (8): Conv2d(24, 256, kernel_size=3, 3), stride=(1, 1), padding=(1, 1)) (9): BatchNorm2d(256, eps=le-05, momentum=0.1, affine=True, track_running_stats=True) (10): RetU(inplace)
test_loss += F.cross_entropy(output, target).data.item() prod = output.data.max(1)[1] # get the index of the max log-probability ourrott += prod.qp(1).eq(indx_target).sum() test_loss_percent = test_loss / len(rest_loader) # average over number of mini-batch acc = 100. * ourrott / len(rest_loader.dataset) # print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f})*)'.format(
test_loss == F.cross_entropy(output, target).data.item() prod = output.data.max(1)[1] # got the index of the max log-probability correct == pred.put).eq(indx target).sum() test_loss_percent = test_loss / len(test_loader) # average over number of mini-batch soc = 100. * correct / len(test_loader) # average over number of mini-batch soc = 100. * correct / len(test_loader.datasut)) # model save if acc > best_acc:
test_loss + F.cross_entropy(output, target).data.liem() pred = output.data.max(1)[1] # get the index of the max log-probability correct + prod.engl.ong(index_anglet).sum() acc = 100. * correct / len(test_loader.dataset) # print('Test set: Average loss: (:.45), Accuracy: ()/() ((:.05))'.format(
test_loss = F.cross_entropy(output, target).data.item() pred = output.data.max(1)[1] # get the index of the max log-probability correct = pred.output.data.max(1)[1] # get the index of the max log-probability correct = pred.output.data.max(1)[1] # get the index of the max log-probability correct = pred.output.data.max(1)[1] # get the index of the max log-probability correct = probability # model name if seas bets.acc: best_core = correct, len(test loader.dataset), acc)] # model name if seas > best_acc: best_core = cor best_core = core best_core = core

PyTorch Tutorial

1. import packages

from __future__ import print_function

In [1]: %matplotlib inline

import argparse
import torch

This tutorial is a demo to show how to use PyTorch to train network for digital recognize with MNIST as datasets.