ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS

Nombre: Moisés Pineda

Fecha: 01/06/2025

Curso: GR1CC

Docente: Jonathan A. Zea

Repositorio: Metodos Numericos GRCC1/Tareas/[Tarea 06] Unidad 03-A Serie de Taylor

y Polinomios de Lagrange at main · SantiagoTmg/Metodos Numericos GRCC1

CONJUNTO DE EJERCICIOS

Determine el orden de la mejor aproximación para las siguientes funciones, usando la Serie de Taylor y el Polinomio de Lagrange:

1.
$$\frac{1}{25x^2+1}$$
, $x_0 = 0$

2.
$$\arctan x$$
, $x_0 = 1$

Escriba las formulas de los diferentes polinomios

Grafique las diferentes aproximaciones

Series de Taylor

Para:
$$f(x) = \frac{1}{25x^2+1}$$
, con: $x_0 = 0$

$$f'(x) = -\frac{50x}{(25x^2 + 1)^2}$$

$$f''(x) = -\frac{50(1 - 75x^2)}{(25x^2 + 1)^3}$$

$$f'''(x) = \frac{15000x(-25x^2 + 1)}{(25x^2 + 1)^4}$$

$$f^{\prime\prime\prime\prime}(x) = \frac{15000(3125x^4 - 250x^2 + 1)}{(25x^2 + 1)^5}$$

$$f'''''(x) = \frac{3750000x(-1875x^4 + 250x^2 - 3)}{(25x^2 + 1)^6}$$

$$f'''''(x) = \frac{3750000(328125x^6 - 65625x^4 + 1575x^2 - 3)}{(25x^2 + 1)^7}$$

i	$f^i(x_0)$	$P_i(x)$
0	1	1
1	0	0
2	-50	$-25x^{2}$
3	0	0
4	15000	$625x^4$
5	0	0
6	-11250000	$-15625x^{6}$

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS

INGENIERÍA DE CIENCIAS DE LA COMPUTACIÓN

Para obtener una aproximación más cercana a la real se hizo n = 6 iteraciones, lo cual dio como resultado un polinomio de grado 6.

$$P(x) = 1 - 25x^2 + 625x^4 - 15625x^6$$

Graficando la función y la aproximación:

Para: $f(x) = \arctan x$, con: $x_0 = 1$

$$f'(x) = \frac{1}{x^2 + 1}$$

$$f''(x) = -\frac{2x}{(x^2+1)^2}$$

$$f'''(x) = -\frac{2 - 6x^2}{(x^2 + 1)^3}$$

$$f''''(x) = \frac{24(x - x^3)}{(x^2 + 1)^4}$$

$$f^{\prime\prime\prime\prime\prime}(x) = \frac{24(-10x^2 + 5x^4 + 1)}{(x^2 + 1)^5}$$

$$f^{"""}(x) = \frac{24(100x^3 - 30x^5 - 30x)}{(x^2 + 1)^6}$$

i	$f^i(x_0)$	$P_i(x)$
0	π	π
	$\frac{\overline{4}}{4}$	$\frac{\overline{4}}{4}$

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS

INGENIERÍA DE CIENCIAS DE LA COMPUTACIÓN

1	0.5	x-1
2	-0.5	$-(x-1)^2$
		4
3	0.5	$(x-1)^3$
		12
4	0	0
5	-3	$(x-1)^5$
		- 40
6	15	$(x-1)^6$
		48

Para obtener una aproximación más cercana a la real se hizo n = 6 iteraciones, lo cual dio como resultado un polinomio de grado 6.

$$P(x) = \frac{\pi}{4} + \frac{1}{2}(x-1) - \frac{1}{4}(x-1)^2 + \frac{1}{12}(x-1)^3 - \frac{1}{40}(x-1)^5 + \frac{1}{48}(x-1)^6$$

Graficando la función y la aproximación:

Polinomios de Lagrange

Para: $f(x) = \frac{1}{25x^2+1}$

X	-1/5	0	1/5
Y	1/2	1	1/2

Con los puntos mostrados en la tabla anterior se pudo calcular el siguiente polinomio de Lagrange:

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS SENIERÍA DE CIENCIAS DE LA COMPUTA CIÉ

INGENIERÍA DE CIENCIAS DE LA COMPUTACIÓN

$$P(x) = \frac{-0.08x^2 + 0.0064}{0.0064}$$

Graficando la función y el polinomio:

Para: $f(x) = \arctan x$

X	-2	0	1	2
Y	-1.107148718	0	$\pi/4$	1.107148718

Con los puntos mostrados en la tabla anterior se pudo calcular el siguiente polinomio de Lagrange:

$$P(x) = \frac{(-1.107148718)(x)(x^2 - 3x + 2)}{-24} + \frac{(\pi)(x)(x^2 - 4)}{-12} + \frac{(1.107148718)(x)(x^2 + x - 2)}{8}$$

Graficando la función y el polinomio:

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS INGENIERÍA DE CIENCIAS DE LA COMPUTACIÓN

