

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

$$b = \frac{a}{8}(12 - D) = \frac{3}{8}(9.64975) = 3.61865, \quad b^2 = 13.095 +$$

c is the distance from the foot of perpendicular a to center of ellipse. y is the distance from A to center of ellipse.

$$c^{2} = b^{2} \frac{(12 - D)^{2} + (10 - D_{1})^{2}}{(12 - D)^{2}} = 21.8552 +$$

$$y = \sqrt{a^{2} + C^{2}} = \sqrt{30.8552} = 5.5547 +$$

$$R = \frac{r}{a}y = \frac{1}{4}y = 1.3887 +$$

Volume of pipe is $8\pi Rr = 2.51328 \times 1.3887^{'} \times 0.75 = 26.17644 + \text{cubic feet.}$ Hence remaining capacity of room is 960 cu. ft. -26.17644 cu. ft. equal to 933.82356 cubic feet.

2722 [September, 1918]. Proposed by FRANK IRWIN, University of California.

The number of terms in the general polynomial of the *n*th degree in *m* variables and in that of the *m*th degree in *n* variables is the same. It would be interesting to devise schemes which, without assuming this result, should exhibit the terms of these polynomials in one-to-one correspondence with each other.

SOLUTION BY C. F. GUMMER, Queen's University.

Consider first the polynomial $P_n(x_1, x_2, \dots, x_m)$ of degree n, with coefficients all equal to 1. The general term is

 $x_1^{p_1}x_2^{p_2}\cdots x_m^{p_m}x_{m+1}^{p_{m+1}}, \qquad (\Sigma p = n),$

where $x_{m+1} = 1$. Let the term be written at length, and a y = 1 inserted after each group of like x's except after the one for x_{m+1} , the y appearing even when the corresponding p is zero. The term is completely defined by the positions of the y's, so that the subscripts may be dropped, and the term written $xx \cdots yxx \cdots yxx \cdots$. Thus, in a polynomial of degree 4 in 5 variables, $x_1^2x_2$ will be denoted by xxyyyyyy, the last x representing $x_0 = 1$. The various terms of P_n then correspond to the permutations of n x's and n y's. In the same way the terms of P_m $(x_1, x_2, \dots x_n)$ of degree m may be made to correspond to the permutations of m x's and n y's. We may now put into one-to-one correspondence the terms of P_n and P_m which differ by interchange of the letters x and y.

Since the choice of a term in P_n corresponds to the choice of positions for the m y's, this method furnishes a direct explanation of the fact that the number of combinations of m+1 kinds of thing taking n things at a time and allowing repetition is $\binom{m+n}{n}$.

2729 [November, 1918]. Proposed by N. P. PANDYA, Sojitra, India.

Solve in integers $x^3 + 3y^4 = z^2$.

SOLUTION BY S. A. COREY, Des Moines, Iowa.

Having obtained by any means one solution x, y, z, it is easily seen that a^4x , a^3y , a^6z is a solution, where a may be any integer. Since 1, 2, 7 and 1, 1, 2 are solutions, a^4 , $2a^3$, $7a^6$ and a^4 , a^3 , $2a^6$ are solutions, whatever the value of a.

2731 [November, 1918]. Proposed by J. K. WHITTEMORE, Yale University.

A bowl is in the form of a paraboloid of revolution. If for a given volume the surface is a minimum, prove that the ratio of the diameter of the top to the depth is approximately 1.86.

SOLUTION BY ELIJAH SWIFT, University of Vermont.

Let the parabola have the equation, $y = kx^2$. Call the depth of the bowl, l. The required ratio is