

Capstone Thesis Document

* Status	Inbox
▶ Topics	Productivity
₩ Areas	₩ Research
★ Favorite	
■ Archive	
⊕ Created time	@June 25, 2025 5:01 PM
⊕ Last edited time	@June 25, 2025 5:27 PM
► Projects	■ PlantGuard

1. Context and Motivation

In rural India, timely identification of plant diseases remains a major challenge for small-scale farmers, leading to **crop losses up to 100**% during outbreaks and threatening food security and livelihoods (<u>arxiv.org</u>). Smartphone penetration crossed **5 billion users by 2020**, and mobile broadband reached **69**% **coverage** globally (<u>arxiv.org</u>)—making AI-powered smartphone diagnostics more accessible than ever, even for small-scale farmers.

However, while numerous AI tools for plant disease detection exist—and many demonstrate impressive accuracy in controlled environments—they often fall short in **three critical aspects** when applied in real-world farming contexts: (1) **reliance on internet connectivity**, which remains intermittent or costly for many rural users; (2) **lack of contextual adaptation**, as many tools are trained on non-regional crops (especially for Indian crops) or assume ideal image conditions (test accuracy); and (3) **poor explainability**, where predictions are presented without interpretable justification.

Tools like **Plantix** or **Nuru** have shown impact in certain regions, but evaluations show that users still struggle with partial leaf input, non-standard disease appearances, or understanding what action to take. Furthermore, **peer-reviewed benchmarks** (e.g., **Mohanty et al.**, **2016**) indicate that models trained on curated datasets can see performance drop by **up to 70%** when tested on field conditions—suggesting that *accuracy alone* does not guarantee *utility*. This project does not seek to reinvent what works, but rather to **adapt and extend** those models into a **modular**, **explainable**, **and robust pipeline** specifically designed for real-world usability in India's resource-constrained agricultural settings.

Inspired by direct conversations with distressed farmers near Sullurpeta and validated through our national hackathon win, this capstone seeks to build **PlantGuard** — an app-based, modular AI system that detects plant diseases offline, explains its predictions, and delivers actionable insights in a user-friendly, multilingual interface.

2. Related Work

Mohanty et al. (2016) used transfer-learning with CNNs (AlexNet, GoogLeNet) on the PlantVillage dataset (54,306 images across 26 diseases, 14 crops), achieving 99.35% accuracy, though it dropped to 31.4% when tested on field-like images (researchgate.net). Subsequent studies leveraged architectures like EfficientNet, Xception, and MobileNet, sustaining above 97% accuracy but still trained on synthetic or lab data. Visual explainability techniques like Grad-CAM (Selvaraju et al., 2017) reveal which image regions influence CNN decisions, improving user trust and error analysis (arxiv.org). Yet, the integration of explainability with modular pipelines (leaf detection → crop ID → disease classification) remains rare in agriculture-focused tools, especially when evaluated under real-world conditions.

3. Research Problem Statement

Despite high lab-based performance, current plant disease models fail in trust, explainability, and deployment aspects:

- **Trust**: Outputs lack confidence estimations or fail gracefully in noisy or unseen settings.
- **Explainability**: Farmers see a label but not why making it difficult to act.
- **Deployment**: Tools need full offline functionality, multilingual support, and responsiveness across conditions.

Therefore, this thesis will explore:

How can we design a modular, explainable, and robust plant disease detection pipeline that generalizes to real-world conditions, offers actionable explanations, and remains accessible for resource-limited farmers?

4. Solution Approach & Methods

The proposed system follows a **modular classification pipeline**, combining classical CNN-based techniques with transformer-based models for experimentation and benchmarking:

1. Leaf Detection

A lightweight YOLOv5 model verifies that the input image contains a valid, centered leaf and crops it for downstream use.

2. Crop Identification

A ResNet-50 model (transfer learning) classifies the plant type using a fine-tuned model on PlantVillage + real-world augmentations. In parallel, we explore Vision Transformers (ViTs) — particularly DeiT and ViT-B/16 — which offer strong spatial attention capabilities and robustness under occlusion and lighting noise. ViTs remain underutilized in agriculture, and this project critically evaluates their potential in this context.

3. Disease Classification

Once the plant is identified, a disease-specific classifier (ResNet or ViT, based on comparative performance) predicts the condition. Grad-CAM is used for CNNs, while **attention map visualization** is implemented for ViTs to maintain interpretability.

Each step produces a **confidence score** and, where applicable, a **visual explanation overlay** (e.g., Grad-CAM or attention map) that shows which regions influenced the model's decision. The multilingual frontend presents outputs in an intuitive, farmer-friendly format, including:

- Detected plant and disease
- Confidence score (e.g., 94%)
- Heatmap or attention overlay
- Suggested actionable steps (e.g., "Use copper-based fungicide")

5. Validation Strategy

To evaluate PlantGuard's performance and generalizability:

- Accuracy: Top-1 and top-3 accuracy on real-world datasets, including augmented samples (blur, poor lighting, occlusion, rotation).
- Model Benchmarking: Direct comparison between ResNet and ViT variants for disease classification accuracy, robustness to noise, and computational efficiency.
- Explainability Effectiveness: Conduct small-scale studies
 (n ≈ 10) with users evaluating the system with and without
 visual explanation overlays, measuring trust and perceived
 clarity.
- **Robustness**: Measure output stability under field-simulated degradation.
- Modularity/Generalizability: Add a new crop and disease category to assess plug-and-play ability and retraining

requirements.