Relatório 3º projeto ASA 2023/2024

Grupo: AL002

Alunas: Cecília Correia (106827) e Luísa Fernandes (102460)

1. Descrição do Problema e da Solução

O **problema** consiste em maximizar o lucro diário obtido pela produção e venda de brinquedos. Pretende-se fabricar n brinquedos distintos, cada um associado a um lucro específico e sujeito a limitações de produção. Há também a opção de vender pacotes especiais contendo três brinquedos distintos, com lucro específico. O objetivo é maximizar o lucro total, considerando as restrições de produção para a otimização do desempenho da empresa durante a época festiva.

A **solução** é formulada como um programa linear utilizando a biblioteca PuLP em Python, com base nas informações fornecidas no arquivo de entrada.

2. Formalização do modelo linear

Identificação das variáveis:

- x_i quantidade de brinquedos produzidos individualmente
- y_k quantidade de pacotes especiais produzidos

Função objetivo:

$$\text{maximizar} \left(\sum_{i=1}^{n} li * xi + \sum_{k=1}^{p} (lk - (li + lj + lm)) * yk \right)$$

onde l_i é o lucro do brinquedo i; l_k é o lucro do pacote k constituído pelos brinquedos i, j e m, sendo que l_i , l_j e l_m são os seus lucros respetivos; n é o número de brinquedos; e p é o número de pacotes.

Restrições:

Considerando que a capacidade de produção individual (c_i) de cada brinquedo não pode ser excedida (upper bound):

$$xi \leq ci$$
, $\forall i \in \{1, 2, ..., n\}$

1. A capacidade de produção total diária (maxp) não pode ser excedida:

$$\sum_{i=1}^{n} xi \leq maxp$$

2. Restrição dos pacotes: quantidade de cada pacote deve ser menor ou igual à quantidade do brinquedo com menor capacidade do respetivo pacote, em que o pacote k contém os brinquedos i, j e m:

$$yk \leq min(xi, xj, xm)$$

3. A soma da quantidade de pacotes que contêm um certo brinquedo (a) deve ser menor ou igual à quantidade produzida desse brinquedo (x_a) :

$$\sum_{i=1}^{j} (yk \text{ if a in k}) \le xa$$

3. Análise Teórica

Complexidade da codificação em função dos parâmetros do problema: número de brinquedos (n) e número de pacotes (p).

• O número de variáveis do programa linear é O(n + p), onde n é o número de brinquedos individuais e p é o número de pacotes especiais.

Número de restrições do programa linear é: O(2n + p + np)

Restrições de capacidade individual: O(n) Restrições de máxima produção diária: O(n) Número de restrições dos pacotes: O(p)

Restrição dos pacotes por brinquedo: O(np)

4. Avaliação Experimental dos Resultados

Foram geradas 14 instâncias de tamanho incrementado. Foi corrido o código usando time para saber o tempo de execução, registado na tabela seguinte (coluna da direita):

n	р	n + p	3n + 2p + np	tempo
500	500	1000	252500	0.01
1000	1000	2000	1005000	0.09
1500	1500	3000	2257500	0.23
2000	2000	4000	4010000	0.39
2500	2500	5000	6262500	0.61
3000	3000	6000	9015000	0.89
3500	3500	7000	12267500	1.19
4000	4000	8000	16020000	1.59
4500	4500	9000	20272500	2.03
5000	5000	10000	25025000	2.51
5500	5500	11000	30277500	3.05
6000	6000	12000	36030000	3.73
6500	6500	13000	42282500	4.34
7000	7000	14000	49035000	5.12

O gráfico 1 gerado do tempo de execução no eixo YY, em função do tamanho do programa linear codificado (número de variáveis + número de restrições = n + p + 2n + p + np = 3n + 2p + np) no eixo dos XX, que corresponde à complexidade do programa prevista teoricamente, representa uma relação linear (*Figura* 1).

O gráfico 2 gerado do tempo de execução no eixo YY, em função de n + p (número de brinquedos + número de pacotes) no eixo dos XX, que corresponde à complexidade do programa prevista teoricamente, representa uma relação quadrática (*Figura 2*).

Figura 2. Tempo (s) em função de n + p.

Conclui-se que há uma relação linear entre tempo e 3n + 2p + np e uma relação quadrática entre tempo e n + p, confirmando que a implementação está de acordo com a análise teórica.