Analytical and Monte-Carlo modeling of Multi-Parallel Slit and Knife-Edge Slit Prompt Gamma Cameras

E. Testa¹, B.F.B. Huisman^{1,2}, D. Dauvergne³, J. M. Létang², D. Sarrut³

 1 Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, 69622 Villeurbanne, France, 2 CREATIS, Université de Lyon; CNRS UMR5220; INSERM U1044; INSA-Lyon; Université Lyon 1; Centre Léon Bérard, Lyon, France, ³Université Grenoble Alpes, Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3, Grenoble, France

Introduction

Ion-range verification during hadrontherapy

- ► Major challenge to fully take benefit from ion beam ballistic properties
- ► Main imaging modalities under study: prompt gammas (PG) detection [1] with non-imaging systems (such as PG Timing, PG Spectroscopy and PG Peak Integral) and imaging systems, namely physically-collimated or electronically collimated cameras (Compton cameras)

PG collimated cameras

- ▶ 2 main collimator configurations: Multi-Parallel Slit (MPS) [2] and Knife-Edge Slit (KES) collimators [3] (Figure 1)
- ► No theoretical considerations have been proposed for the specific 1D collimation systems developed for PG detection

Objectives

- \triangleright Development an analytical model (AM) of MPS and KES collimations \Rightarrow main intrinsic features of each collimator
- Verification of the AM by means of Monte Carlo (MC) simulations
- ► Comparison the two MPS and KES prototypes developed by IBA and the CLaRyS collaboration, respectively.

The Analytical Model of MPS and KES collimations

Figure 1: MPS (left) and KES (right) collimation

Table 1: Detection efficiencies (DE) and spatial resolution (FOW) predicted by the analytical model. s_e : effective slit width ; T_e : Collimator effective thickness.

Monte Carlo simulations & PG profile analysis

- Monte Carlo simulations
 - ► 2-stage simulation with Gate 7.2 (Geant4 4.10.02)
 - ► First stage: target irradiation (QGSP_BIC_HP_EMY physics list)
 - ightharpoonup Optimization: vpgTLE variance reduction method \Rightarrow gain of $\sim 10^3$ [4]
 - Second stage: photon propagation in the geometry (emlivermore physics list)
- ► PG profile analysis
 - Background (BKG) modeling:
 - Estimates of background counts in the detector (mainly due to secondary neutrons) are taken from [5] (KES, $5 \cdot 10^{-7}$ counts per primary proton per 4 mm bin) and [2] (MPS, $2.5 \cdot 10^{-7}$ counts/incident proton and per 8 mm bin) which are both based on measured data
 - ► Fall-Off Position (FOP): position corresponding to the half FO amplitude in the spline-fit to the PG profile

Simulated geometries

- ▶ 2 configurations (Table 2):
 - ► The prototypes as they are published (Figure 2)
 - ► The prototypes with some alterations for the Analytical Model Verification (AMV), in particular the use of "perfect" collimators and detectors (full gamma absorption)

		AMV	PC	
Absorber	MPS KES	LYSO	BGO	
	KES	LISO	LYSO	
Energy	MPS	> 1 MeV	$> 1\;MeV$	
selection	KES	> I wiev	3–6 MeV	
TOF	MPS	no TOF	TOF	
selection	KES		no TOF	
BKG		No modeling	Exp. data based	
Target		No	Yes	
Beam		160 MeV proton		

Table 2: AMV: Analytical Model Verification – PC: Prototypes Comparison. For AMV, the PG source corresponds to the PG emitted along the beam direction during the PMMA irradiation

Figure 2: Prototypes representation

Figures of merit

- \triangleright Detection efficiency: #detected PG/#emitted PG in the camera Field of View (FOV)
- Spatial resolution: the width of the PG profile fall-off, namely the FWHM of the peak resulting from the computation of the PG profile first derivative
- ► Fall-off Retrieval Precision (FRP): Standard deviation of the FOP distribution obtained with 50 MC simulation runs.

Results

AMV

	MPS		KES	
	AM	MC	AM	MC
FOW	14.52 mm	17.9 mm	13.5 mm	13.8 mm
DE	$6.66\cdot 10^{-4}$	TODO	$1.06 \cdot 10^{-3}$	TODO

PG profiles detected by the prototypes

Figure 3: PG profiles: MPS (left), KES (right). See Table 2 for the parameters.

Fall-off Retrieval Precision

Time selection	T	oF	None		
Energy selection (MeV)	> 1	3–6	> 1	3–6	
Camera	MPS KES	MPS KES	MPS KES	MPS KES	
$10^9~(\# \ protons)$	0.37 0.55	0.44 1.07	0.42 0.74	0.66 1.32	
10^8	1.35 2.08	1.60 4.22	1.36 1.82	2.00 9.70	
10^7	4.41 11.88	20.36 20.50	22.45 17.18	56.92 19.39	

Table 3: TO VERIFY: Standard deviation of the FOP distribution. In bold, the cuts and ToF selections as proposed.

Discussion and conclusion

- Analytical Model (AM)
 - Good agreement in overall with MC
 - ► Unlike what can be concluded from previous studies [6, 7, 8], striking similarities between MPS and KES performances
 - ⇒ Same DE and FOW with perfect collimators
 - \Rightarrow With real collimators: slightly poorer DE for MPS and FOW for KES

References

- [1] J. Krimmer and et al., "Prompt-gamma monitoring in hadrontherapy: A review," NIMA, 2017.
- [2] M. Pinto and et al., "Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring.," PMB, vol. 59, 2014.
- [3] J. Smeets and et al., "Prompt gamma imaging with a slit camera for real-time range control in proton therapy," PMB, 2012.
- F. B. Huisman and et al., "Accelerated prompt gamma estimation for clinical proton therapy simulations," PMB, 2016. [5] I. Perali and et al., "Prompt gamma imaging of proton pencil beams at clinical dose rate," PMB, 2014.
- [6] J. Smeets and et al., "Exp. Comparison of KES and MPS Collimators for Prompt Gamma Imaging of Proton Pencil Beams," RO, 2016.
- [7] H.-H. Lin and et al., "A comparison of two prompt gamma imaging techniques with collimator-based cameras for range verification in proton therapy," RPC, 2016. [8] J. H. Park and et al., "Comparison of knife-edge and multi-slit camera for proton beam range verification by Monte Carlo simulation," NET, vol. 51, 2019.

