Introduction à l'apprentissage supervisé Un peu de théorie — exemple de la classification binaire

Geneviève Robin

Un peu de théorie du Machine Learning

Introduction

Notions de téorie de l'information

Optimalité en Machine Learning

Minimisation du risque empirique

Erreur visible / erreur de généralisation

Bornes sur les risques

Consistence des méthodes classiques en Machine learning

kNN et arbres de décision

Objectifs du cours

- Introduire quelques notions théoriques aux fondements de l'apprentissage statistique.
- Approfondir la formulation mathématique des problèmes d'apprentissage pour mieux comprendre chaque problème.
- Comprendre les notions clés régissant les méthodes d'apprentissage classiques et leurs performances théoriques.

Exemple de la classification binaire (supervisée)

Principe général

On cherche une fonction!

Exemple : Distinguer les chats des chiens dans des images

Dans quel espace cherche-t-on cette fonction ?

Modèle de la classification binaire (supervisée)

- ▶ Jeu de données : $\{(X_i, Y_i)\}_{1 \le i \le n}$ où
 - \triangleright X_i encode une image (pixels, features, etc.)
 - Y_i est une étiquette binaire (chat ou chien)

- ightharpoonup Vision probabiliste des couples (X_i, Y_i)
 - 1. (X, Y) est une variable aléatoire de distribution P sur $\mathbb{R}^d \times \{0, 1\}$.
 - 2. Données $\{(X_i, Y_i)\}_{1 \le i \le n}$ i.i.d. de distribution P.

Règles de décision

Une règle de décision en classification binaire supervisée est une fonction

$$g: \mathbb{R}^d \to \{0,1\}$$

aussi appelée classifieur.

- Exemples de classifieurs :
 - Classifieurs linéaires (e.g. régression logistique)

$$g_{\beta_0,\beta}(x) = \mathbb{I}(\beta^\top x + \beta_0 \ge 0),$$

avec $\theta \in \mathbb{R}^d$ et $\theta_0 \in \mathbb{R}$.

En règle générale

$$g_f(x) = \mathbb{I}(f(x) \geq 0),$$

où $f:\mathbb{R}^d \to \mathbb{R}$ peut être modélisée par régression logistique, abres de décisions, SVM, etc.

Un peu de théorie du Machine Learning

Introduction

Notions de téorie de l'information

Optimalité en Machine Learning

Minimisation du risque empirique

Erreur visible / erreur de généralisation

Bornes sur les risques

Consistence des méthodes classiques en Machine learning

kNN et arbres de décision

Introduction intuitive

- ➤ On suppose que la "Nature" a choisi une fonction (un classifieur) parmi un ensemble fini de K fonctions.
- Supposons que nous ayons à disposition un oracle qui répond "oui" ou "non" lorsqu'on pose une question à propos de cette fonction.

Quel est le nombre optimal n de questions à poser pour découvrir cette fonction inconnue ?

Réponse grâce à l'Information de Shannon

 L'entropy est le nombre de bits nécessaire pour coder un ensemble de K symboles (ici K classifieurs)

▶ Le nombre de questions optimal est donné par $n = \frac{\log(K)}{\log(2)}$.

Application du principe à un jeu de données

- lackbox Soit un espace de features $\mathcal X$ et un espace de label $\mathcal Y=\{0,1\}$
- ▶ Question : De combien de données $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$ a-t-on besoin pour trouver une fonction donnée parmi un ensemble de K fonctions $f: \mathcal{X} \to \{0, 1\}$?
- ► Le nombre d'exemples nécessaire est $n = \frac{\log K}{\log 2}$
- ▶ Procédure : On cherche X_i tel que la moitié des K fonctions prend la valeur 1 et l'autre moitié 0, puis on demande à l'oracle si la fonction recherchée prend la valeur 0 ou 1 en X_i. Puis on applique cela n fois.

Apprentissage Probablement Approximativement Correct (PAC)

- En pratique il n'est pas facile de trouver un tel X_i qui permette de séparer l'ensemble de fonctions en deux.
- ▶ Nouvelle question : De combien de données (X_i, Y_i) a-t-on besoin pour trouver une fonction donnée f_0 parmi un ensemble de K fonctions $f_k: \mathcal{X} \to \{0,1\}$, telle qu'avec probabilité au moins $1-\delta$ (probablement) la fonction \hat{f} trouvée est ε -proche de f_0 (approximativement) ?
- ▶ Il faut un nombre d'exemples de l'ordre de

$$n = \frac{\log K - \log \delta}{\varepsilon}.$$

Un peu de théorie du Machine Learning

Introduction

Notions de téorie de l'information

Optimalité en Machine Learning

Minimisation du risque empirique

Erreur visible / erreur de généralisation

Bornes sur les risques

Consistence des méthodes classiques en Machine learning

kNN et arbres de décision

Exemple de la classification binaire

- ightharpoonup (X,Y) un coupe de variables aléatoires de distribution P sur $\mathbb{R}^d imes \{-1,+1\}$
- 1. **Point de vue génératif** Distribution jointe *P* est une mixture
 - ▶ Densités conditionnellement à la classe f_+ et f_-
 - Paramètre de mixture $p = \mathbb{P}\{Y = +1\}$
- 2. Point de vue discriminatif Distribution jointe P décrite par (P_X, η)
 - ▶ Distribution marginale $X \sim P_X = df_X/d\lambda_d$
 - ► Fonction de probabilité postérieure

$$\eta(x) = \mathbb{P}\{Y = 1 | X = x\}, \forall x \in \mathbb{R}^d.$$

Classifieur, mesure d'erreur, optimalité

- ▶ Classifieur $g: \mathbb{R}^d \to \{-1, +1\}$
- ▶ Erreur de classification $L(g) = \mathbb{P}\{g(X) \neq Y\}$

$$L(g) = \mathbb{E}(\eta(X)\mathbb{I}\{g(X) = -1\} + (1 - \eta(X))\mathbb{I}\{g(X) = 1\})$$

- ▶ Règle de Bayes $g^*(x) = 2\mathbb{I}\{\eta(x) > 1/2\} 1$, $\forall x \in \mathbb{R}^d$
- lacksquare Erreur du classifieur de Bayes : $L^* = L(g^*) = \mathbb{E}\left\{\min(\eta(X), 1 \eta(X))\right\}$
- Risque excédentaire

$$L(g) - L^* = 2\mathbb{E}\left\{\left|\eta(X) - \frac{1}{2}\mathbb{I}\left\{g(X) \neq g^*(X)\right\}\right|\right\}$$

Lien avec l'estimation paramétrique

- Soit $\hat{\eta}$ un estimateur de η basé sur un échantillon D_n
- lacktriangle On considère \hat{g} l'estimateur plug-in construit à partir de $\hat{\eta}$

$$\hat{g}(x) = 2\mathbb{I}\{\hat{\eta}(x) > 1/2\} - 1$$

ightharpoonup On a, conditionnellement à l'échantillon D_n

$$L(\hat{g}) - L^* \leq 2\mathbb{E}_X\left(|\hat{\eta}(X) - \eta(X)|\right)$$

Problème, l'estimation de η est difficile lorsque les données sont de grande dimension.

Convexification du risque

- $lackbox{ Données de classification binaire avec }Y\in\{-1,+1\}$
- ▶ Règle de décision à valeur réelle $f : \mathbb{R}^d \to \mathbb{R}$
- lacktriangle Fonction de coût $arphi:\mathbb{R} o\mathbb{R}_+$ convexe, croissante, arphi(0)=1
- $ightharpoonup \varphi$ -risque moyen

$$A(f) = \mathbb{E}(\varphi(-Yf(X)))$$

Principaux exemples :

$$\varphi(x) = e^{x}, \log_{2}(1 + e^{x}), (1 + x)_{+}$$

▶ Remarque : $L(sgn(f)) \le A(f)$

Un peu de théorie du Machine Learning

Introduction

Notions de téorie de l'information

Optimalité en Machine Learning

Minimisation du risque empirique

Erreur visible / erreur de généralisation

Bornes sur les risques

Consistence des méthodes classiques en Machine learning

kNN et arbres de décision

Erreur empirique / erreur de généralisation

- On suppose que les couples (X_i, Y_i) sont des copies i.i.d. de (X, Y) de loi L inconnue
- ightharpoonup on note $\mathcal{D}_n = \left\{ (X_1, Y_1), \dots, (X_n, Y_n) \right\}$

On se donne une fonction classifiante déterministe $c:\mathbb{R}^d\in\mathcal{C}$, on définit Erreur empirique ou erreur visible

$$R_n(c) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, c(X_i)).$$

Erreur de généralisation

$$R(c) = \mathbb{E}_{\mathcal{L}}(\ell(Y_+, c(X_+)))$$

où (X_+, Y_+) est un couple indépendant de \mathcal{D}_n

Remarques

- ▶ En classification, on prend souvent $\ell(y, y') = \mathbb{1}_{y \neq y'}$, dans ce cas $1 R_n(c)$ est appelé "accuracy" de c.
- ► On a

$$R(c) = \mathbb{E}_{\mathcal{L}}(R_n(c)).$$

On voudrait retrouver

$$c^* = \underset{c}{\operatorname{argmin}} R(c)$$

Classifieur bayésien

 $c^{\star}=\operatorname{argmin}_c R(c)$ est, dans le cas de la classification et de la perte 0/1, le classifieur bayésien.

Mais on se restreint le plus souvent à un sous-ensemble $\mathcal G$ (par exemple les fonctions constantes sur une partition $\mathcal A$)

$$c_{\mathcal{G}}^{\mathsf{oracle}} = \operatorname*{\mathsf{argmin}}_{c \in \mathcal{G}} R(c)$$

puis, comme la loi \mathcal{L} est inconnue, on remplace R par R_n

$$\hat{c}_{\mathcal{G}} = \operatorname{argmin} R_n(c).$$

On a bien sûr

$$R(\hat{c}_{\mathcal{G}}) \geq R(c_{\mathcal{G}}^{\mathsf{oracle}}) \geq R(c^{\star}).$$

Un peu de théorie du Machine Learning

Introduction

Notions de téorie de l'information

Optimalité en Machine Learning

Minimisation du risque empirique

Erreur visible / erreur de généralisation

Bornes sur les risques

Consistence des méthodes classiques en Machine learning

kNN et arbres de décision

Erreur visible / erreur de généralisation

Ce que l'on veut comparer

On veut comparer $R_n(\hat{c}_G)$ et $R(c^*)$ pour mesurer "l'optimisme" quand on calcule $R_n(\hat{c}_G)$.

Première borne de risque

On montre que, avec probabilité plus grande que 1-arepsilon

$$R(\hat{c}_{\mathcal{G}}) \leq R(c^{\star}) + \text{erreur d'approximation} + \sqrt{\frac{2\log(2|\mathcal{G}|\varepsilon^{-1})}{n}}$$

Borne "risque visible/erreur de généralisation"

On montre que, avec probabilité plus grand que 1-arepsilon

$$R(\hat{c}_{\mathcal{G}}) \leq R_n(\hat{c}_{\mathcal{G}}) + \sqrt{\frac{2\log(2|\mathcal{G}|\varepsilon^{-1})}{n}}$$

Borne sur l'erreur de généralisation

Figure 1: In mohri2012foundations

Objectifs principaux du cours

▶ Consistence d'une suite de règles de décision $(\hat{f})_{n>1}$:

$$L(\hat{f}_n) \to L^*$$
 en probabilité lorsque $n \to \infty$.

▶ Bornes supérieures : Soit $\hat{f}_n \in \mathcal{F}$. Avec probabilité au moins $1 - \delta$, il existe une constante c telle que

$$L(\hat{f}_n)-\inf_{\mathcal{F}}L\leq C(\mathcal{F},n)+c\sqrt{rac{\log(1//delta)}{n}},$$
 où $C(\mathcal{F},b)=\mathcal{O}(1/\sqrt{n})$

Un peu de théorie du Machine Learning

Introduction

Notions de téorie de l'information

Optimalité en Machine Learning

Minimisation du risque empirique

Erreur visible / erreur de généralisation

Bornes sur les risques

Consistence des méthodes classiques en Machine learning

kNN et arbres de décision

Principe de l'algorithme kNN

- 1. Calcul des distances
 - ▶ Calcul des distances entre paires $d(x, X_i)$ pour i = 1, ..., n.
- 2. Entraînement
 - lacktriangle Tri des données de la plus proche de x, $X_{(1)}$ à la plus éloignée $X_{(n)}$
- 3. Prédictioin $\hat{h}(x,k) = \text{Vote majoritaire des } k$ plus proches voisins $X_{(1)}, \dots, X_{(k)}$
 - ▶ On considère les labels $Y_{(1)}, \ldots, Y_{(k)}$ et on prend le vote majoritaire :

$$\hat{h}(x, k) = \operatorname{argmax}_{c} \{ \sum_{l=1}^{k} \mathbb{I} \{ Y_{(l)} = c \} \}.$$

Hyperparamètres du modèle : nombre de voisin k, distance d.

Théorie pour les kNN

▶ Rappel : l'erreur de classification s'écrit $L(h) = \mathbb{P}(Y \neq h(X))$ et $L^* = \inf L$.

Résultat de consistence :

$$\mathbb{E}L(\hat{h}(/cdot,k)) \rightarrow L^*$$

sous les conditions $k_n \to \infty$ et $k_n/n \to 0$ lorsque $n \to \infty$

- Pas de forme close pour la valeur optimale de kn: en pratique on fait de la validation croisée.
- Pas de résultat théorique en général concernant le choix de la distance d.

Arbres de décision

On dénote la partition par $c=\bigcup_i \gamma_i$ avec les cellules γ_i

- On cherche la cellule $\gamma(x)$ où x se trouve
- lacktriangle On considère les données d'entraînement se trouvant dans la cellule $\gamma(x)$
- ▶ On prédit $\hat{h}(x,c)$ = Vote majoritaire sur les données d'apprentissage de la cellule $\gamma(x)$

Consistence des arbres de décision

Dans le cas d'une partition régulière composée de cellules hypercubiques de \mathbb{R}^d d'arêtes de longueur δ_n :

$$\mathbb{E}L(\hat{h}(\cdot,\delta_n)) \to L^*$$

Sous condition que $n\delta_n^d \to \infty$ et $\delta_n \to 0$ lorsque $n \to \infty$ (il faut suffisamment de point dans chaque cellule et la taille de chaque cellule doit tendre vers 0).

Dans le cas d'une partition apprise à partir des données, il existe d'autres résultats théoriques qui sortent du cadre de ce cours (théorie VC et Rademacher).

Un peu de théorie du Machine Learning

Introduction

Notions de téorie de l'information

Optimalité en Machine Learning

Minimisation du risque empirique

Erreur visible / erreur de généralisation

Bornes sur les risques

Consistence des méthodes classiques en Machine learning

kNN et arbres de décisior