Slide 1

Multivariate Random Variables

Multivariate Random Variables

Often, a single random variable is not sufficient to describe a physical problem. This may, for example, be the case when we are interested in the effect of one random quantity on another. In such a case we consider two (or more) random variables together.

Formally, we then define a "vector" of which each component is itself a ("scalar") random variable.

We call such a vector a *random vector* or a *multi-variate random variable* or an *n-dimensional random variable*. The components can be discrete or continuous random variables, and even mixtures of the two.

In this section we will for the most part focus on bivariate (two-dimensional) random variables where either both components are discrete or both components are continuous random variables.

Discrete Multivariate Random Variables

8.1. Definition. Let S be a sample space and Ω a countable subset of \mathbb{R}^n . A **discrete multivariate random variable** is a map

$$X: S \to \Omega$$

together with a function $\mathit{f}_{\pmb{\chi}} \colon \Omega \to \mathbb{R}$ with the properties that

(i)
$$f_{\mathbf{X}}(x) \geq 0$$
 for all $x = (x_1, ..., x_n) \in \Omega$ and

(ii)
$$\sum_{\mathbf{x} \in \Omega} f_{\mathbf{X}}(\mathbf{x}) = 1.$$

The function f_X is called the **joint density function** of the random variable X.

Discrete Multivariate Random Variables

We consider the multivariate random variable \boldsymbol{X} to have n components, i.e.,

$$X = (X_1, ..., X_n).$$

We often write

$$f_{\mathbf{X}}(x_1,...,x_n) = f_{X_1...X_n}(x_1,...,x_n)$$

The joint density function f_X gives the probability that the tuple $(X_1, ..., X_n)$ assumes a given value $x \in \mathbb{R}^n$, i.e.,

$$f_{\mathbf{X}}(x_1, ..., x_n) = P[X_1 = x_1 \text{ and } X_2 = x_2 \text{ and } ... \text{ and } X_n = x_n].$$

Given two random variables, we may write (X, Y) instead of (X_1, X_2) and use similar notation for three or larger numbers of components.

Discrete Bivariate Random Variables

8.2. Example. Suppose we roll two six-sided dice, obtaining results (i, j) with j = 1, ..., 6. Let us define

$$X := i + i \mod 5$$
,

$$Y = i - i \mod 5$$
.

Then we can find the values of the probability density function by Cardano's rule. The number of outcomes leading to each event (X, Y) is

x/y						
0	1	1	4	1	1	
1	1	2	1	2	1	
2	2	1	1	1	2	
3	2	1	1 1 1	1	2	
1	1	2	1	2	1	

so each number in the table must be divided by 36 to obtain the corresponding probability. For example, P[X = 1 and Y = 1] = 1/18.

Marginal Density

While each element of the table gives us $36 \cdot P[X = x \text{ and } Y = y]$, we can find the

probability of the event
$$X=x$$
 by adding up all relevant probabilities:

 $P[X = x] = \sum^{4} P[X = x \text{ and } Y = y]$

$$P[X = 0] = (1 + 1 + 4 + 1 + 1)/36 = 8/36.$$

This procedure can be justified by considering the corresponding en=vent in the sample space.

By summing in this way, we can determine P[X = x] for all x. This is called the *marginal density* for X.

Marginal Density of a Discrete Random Variable

8.3. Definition. Let (X, f_X) be a discrete multivariate random variable. We define the *marginal density* f_{x_k} for X_k , $k=1,\ldots,n$, by

$$f_{X_k}(x_k) = \sum_{x_1,...,x_{k-1},x_{k+1},...,x_n} f_{\mathbf{X}}(x_1,...,x_n).$$

8.4. Example.

x/y	0	1	2	3	4	$f_X(x)$
0	1	1	4	1	1	8/36
1	1	2	1	2	1	7/36
2	2	1	1	1	2	7/36
3	2	1	1	1	2	7/36
4	1	2	1	2	1	7/36
$f_Y(y)$	7/36	7/36	8/36	7/36	7/36	1

Independence of two Random Variables

Question. Considering the table:

x/y	0	1	2	3	4	$f_X(x)$
0	1	1	4	1	1	8/36
1	1	2	1	2	1	7/36
2	2	1	1	1	2	7/36
3	2	1	1	1	2	7/36
4	1	2	1	2	1	7/36
$f_Y(y)$	7/36	7/36	8/36	7/36	7/36	1

Do you think that X and Y are independent?

- Yes
- ► No
- ▶ It's not possible to tell from the table.

Independence of Random Variables

If (X, f_X) is a discrete **bivariate** random variable, i.e., $X = (X_1, X_2)$, we say that X_1 and X_2 are **independent** if

$$P[X_1 = x_1 \text{ and } X_2 = x_2] = P[X_1 = x_1] \cdot P[X_2 = x_2].$$

In other words, if

$$f_{\mathbf{X}}(x_1, x_2) = f_{X_1}(x_1) \cdot f_{X_2}(x_2).$$

(The joint density is the product of the marginal densities.)

It is possible to generalize this in the obvious (but notationally cumbersome) way to n-variate random variables.

We will mostly be interested in cases where $\boldsymbol{X}=(X_1,\ldots,X_n)$ and all the components are independent, i.e.,

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

Independence of two Random Variables

8.5. Example.

						,,,
0	1	1	4	1	1	8/36
1	1	2	1	2	1	7/36
2	2	1	1	1	2	7/36
3	2	1	1	1	2	7/36
4	1	2	1	2	1	7/36
$f_Y(y)$	7/36	7/36	8/36	7/36	7/36	1

The variables X and Y are not independent since, for example,

$$P[X = 1 \text{ and } Y = 1] = 1/18$$

 $x/y \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \mid f_X(x)$

but

$$P[X=1] \cdot P[Y=1] = \frac{7}{36} \cdot \frac{7}{36}$$

and the two expressions are not equal.

Conditional Density

Suppose that (X, f_X) is a discrete bivariate random variable, i.e., $X = (X_1, X_2)$, and that X_2 is known to have taken on a certain value.

 $\lambda = (\lambda_1, \lambda_2)$, and that λ_2 is known to have taken on a certain value.

Then, applying elementary probability laws,

$$P[X_1 = x_1 \mid X_2 = x_2] = \frac{P[X_1 = x_1 \text{ and } X_2 = x_2]}{P[X_2 = x_2]} = \frac{f_{X_1 X_2}(x_1, x_2)}{f_{X_2}(x_2)}.$$

We hence define the *conditional density*

$$f_{X_1|X_2}(x_1) := \frac{f_{X_1X_2}(x_1, x_2)}{f_{X_2}(x_2)}$$
 whenever $f_{X_2}(x_2) > 0$,

where f_{X_2} is the marginal density of X_2 .

Continuous Random Variables

8.6. Definition. Let S be a sample space. A *continuous multivariate* random variable is a map

$$X: S \to \mathbb{R}^n$$

together with a function $f_{\pmb{\chi}} \colon \mathbb{R}^n \to \mathbb{R}$ with the properties that

(i)
$$f_{\mathbf{X}}(x) \geq 0$$
 for all $x = (x_1, ..., x_n) \in \mathbb{R}^n$ and

(ii)
$$\int_{\mathbb{R}^n} f_{\mathbf{X}}(x) dx = 1$$
.

The function f_X is called the **joint density function** of the random variable X.

Continuous Random Variables

The integral of f_X is interpreted as the probability that X assumes values in a given domain $\Omega \subset \mathbb{R}^n$,

$$P[X \in \Omega] = \int_{\Omega} f_{X}(x) dx.$$

For example, if $X = (X_1, X_2)$,

$$P[a \le X_1 \le b \text{ and } c \le X_2 \le d] = \int_a^b \int_c^d f_{X_1 X_2}(x_1, x_2) dx_1 dx_2$$

for $a \leq b$, $c \leq d$.

But of course non-rectangular domains can be considered as well.

We now make definitions for continuous random variables that are completely analogous to those for the discrete case.

Continuous Multivariate Random Variables

We define the *marginal density* of X_k , k = 1, ..., n, by

$$f_{X_k}(x_k) = \int_{\mathbb{R}^{n-1}} f_{\mathbf{X}}(x) dx_1 \dots dx_{k-1} dx_{k+1} \dots dx_n.$$

We say that two continuous random variables are *independent* if

$$f_{\mathbf{X}}(x_1,x_2) = f_{X_1}(x_1) \cdot f_{X_2}(x_2).$$
 and we are often interested in the case where a full set of n com-

and we are often interested in the case where a full set of n components of a multivariate random variable is independent:

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

The *conditional density* for continuous bivariate random variables is similarly

$$f_{X_1|X_2}(x_1) := \frac{f_{X_1X_2}(x_1, x_2)}{f_{X_2}(x_2)}$$

whenever $f_{X_2}(x_2) > 0$.

Expectation

We define the *expected value* or *expectation* for \boldsymbol{X} as the vector

$$\mathsf{E}[\boldsymbol{X}] = \begin{pmatrix} \mathsf{E}[X_1] \\ \vdots \\ \mathsf{E}[X_n] \end{pmatrix}$$

where $\mathsf{E}[X_k]$ is calculated using the marginal density of $X_k,\ k=1,...$, n,

$$\mathsf{E}[X_k] = \sum_{x_k} x_k f_{X_k}(x_k) = \sum_{x \in \Omega} x_k f_{\boldsymbol{X}}(x)$$

and

$$\mathsf{E}[X_k] = \int_{\mathbb{R}} x_k f_{X_k}(x_k) \, dx_k = \int_{\mathbb{R}^n} x_k f_{\mathbf{X}}(x) \, dx$$

for discrete and continuous random variables, respectively.

Expectation for Discrete Bivariate Random Variables

8.7. Example.

	x/y	0	1	2	3	4	$f_X(x)$
	0	1	1	4	1	1	8/36
	1	1	2	1	2	1	7/36
	2	2	1	1	1	2	7/36
	3	2	1	1	1	2	7/36
	4	1	2	1	2	1	7/36
•	$f_Y(y)$	7/36	7/36	8/36	7/36	7/36	1

$$E[X] = \sum_{(x,y)\in\Omega} x \cdot f_{XY}(x,y) = \sum_{x=0}^{4} x \cdot f_X(x) = \frac{70}{36}$$

$$E[Y] = \sum_{(x,y)\in\Omega} y \cdot f_{XY}(x,y) = \sum_{y=0}^{4} y \cdot f_{Y}(y) = 2$$

Expectation for Functions of Random Vectors

Suppose $\varphi \colon \mathbb{R}^n \to \mathbb{R}$ is a continuous function. Then

$$\varphi \circ X \colon S \to \mathbb{R}$$

defines a scalar random variable. It is possible to prove that in this case,

$$\mathsf{E}[\varphi \circ \mathbf{X}] = \sum_{x \in \Omega} \varphi(x) f_{\mathbf{X}}(x), \quad \text{or} \quad \mathsf{E}[\varphi \circ \mathbf{X}] = \int_{\mathbb{R}^n} \varphi(x) f_{\mathbf{X}}(x) \, dx.$$

For $\varphi(x_1, \dots, x_n) = x_k$ we regain the definition of $E[X_k]$.

Expectation for the Sum of Two Random Variables

8.8. Remark. If (X, Y) is a discrete bivariate random variable and $\varphi(x,y)=x+y$, we have

$$E[X + Y] = \sum_{(x,y)\in\Omega} (x + y) \cdot f_{XY}(x,y)$$

$$= \sum_{(x,y)\in\Omega} x \cdot f_{XY}(x,y) + \sum_{(x,y)\in\Omega} y \cdot f_{XY}(x,y)$$

$$= E[X] + E[Y].$$

This establishes the addition property of the expectation taht we introduced earlier.

An analogous calculation may be used for continuous random variables.

Variance and Covariance for Bivariate Random Variables

Let us calculate the variance of the sum of two random variables:

$$Var[X + Y] = E[((X + Y) - E[X + Y])^{2}]$$

$$= E[((X - E[X]) + (Y - E[Y]))^{2}]$$

$$= Var[X] + Var[Y] + 2E[(X - E[X])(Y - E[Y])]$$

 $= E[(X - E[X])^2 + (Y - E[Y])^2 + 2(X - E[X])(Y - E[Y])]$

In general, $Var[X + Y] \neq Var[X] + Var[Y].$ We define the *covariance of* (X, Y),

$$\mathsf{Cov}[X,Y] = \mathsf{E}[(X - \mu_X)(Y - \mu_Y)],$$

where we have used μ to denote the expectations. Note that

Cov[X, Y] = Cov[Y, X]and Cov[X, X] = Var[X].

The Covariance Matrix

For a multivariate random variable \boldsymbol{X} we define the *covariance matrix*

$$\mathsf{Var}[\boldsymbol{X}] = \begin{pmatrix} \mathsf{Var}[X_1] & \mathsf{Cov}[X_1, X_2] & \dots & \mathsf{Cov}[X_1, X_n] \\ \mathsf{Cov}[X_1, X_2] & \mathsf{Var}[X_2] & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathsf{Cov}[X_{n-1}, X_n] \\ \mathsf{Cov}[X_1, X_n] & \dots & \mathsf{Cov}[X_{n-1}, X_n] & \mathsf{Var}[X_n] \end{pmatrix}.$$

It is possible to prove (through tedious calculation) that

$$Var[CX] = C Var[X]C^T$$

where $C \in \mathsf{Mat}(n \times n; \mathbb{R})$ is a constant $n \times n$ matrix with real coefficients.

Covariance and Independence

Just as for the variance, a direct calculation yields

$$Cov[X, Y] = E[XY] - E[X]E[Y].$$

Furthermore, if two continuous random variables X and Y are independent, then $f_{XY}(x,y) = f_X(x)f_Y(y)$ and

$$E[XY] = \iint_{\mathbb{R}^2} xy \cdot f_{XY}(x, y) \, dx \, dy$$

$$= \iint_{\mathbb{R}^2} xy \cdot f_X(x) f_Y(y) \, dx \, dy$$

$$= \left(\int_{\mathbb{R}} x \cdot f_X(x) \, dx \right) \left(\int_{\mathbb{R}} y \cdot f_Y(y) \, dy \right)$$

$$= E[X] E[Y]$$

Covariance and Independence

An analogous calculation works for discrete random variables. We have hence proved:

▶ If X and Y are independent, then Cov[X, Y] = 0.

However, the converse is not true:

▶ If Cov[X, Y] = 0, then X and Y are **not necessarily independent**.

We note that we have also established that

$$Var[X + Y] = Var[X] + Var[Y]$$

if the random variables are independent.

The covariance is hence related to the independence of X and Y. However, it is not a measure for dependence, since two dependent variables can still have a vanishing covariance.

So we ask: what does the covariance actually measure?

Standardizing Random Variables

We note that the covariance scales with X and Y, i.e., if X and Y take on numerically large values, then the covariance will be large, while if if X and Y take on small values, the covariance will be small. Therefore, by itself it does not serve very well as a measure of any fundamental properties of X and Y.

The solution is to standardize the random variables,

$$\widetilde{X} := \frac{X - \mu_X}{\sigma_X}$$

is the standardized variable for X (assuming that both mean and variance of X exist and $\sigma_X \neq 0$).

Recall that

$$\mathsf{E}[\widetilde{X}] = \mathsf{0},$$

$$Var[\widetilde{X}] = 1.$$

The Pearson Correlation Coefficient

Instead of Cov[X, Y] we now consider

$$\begin{aligned} \mathsf{Cov}[\widetilde{X}, \widetilde{Y}] &= \mathsf{E}[\widetilde{X}\widetilde{Y}] - \mathsf{E}[\widetilde{X}] \, \mathsf{E}[\widetilde{Y}] \\ &= \frac{\mathsf{Cov}[X, Y]}{\sqrt{\mathsf{Var}[X] \, \mathsf{Var}[Y]}} \end{aligned}$$

The right-hand side is now scale-independent and unit-less (if X and Y have units).

This quotient is known as the **Pearson coefficient of correlation** of (X, Y) and denoted

$$\rho_{XY} := \frac{\mathsf{Cov}[X, Y]}{\sqrt{\mathsf{Var}[X]\,\mathsf{Var}[Y]}}.$$

Properties of the Correlation Coefficient

It can be shown that ρ_{XY} has the following properties

(i)
$$-1 \le \rho_{XY} \le 1$$
,

(ii) $|\rho_{XY}|=1$ if and only if there exist numbers $\beta_0,\beta_1\in\mathbb{R},\ \beta_1\neq 0$, such that

$$Y = \beta_0 + \beta_1 X$$

almost surely.

The proof is best performed in a vector-space setting, which we omit here.

The above properties give us a clue as to how the correlation coefficient might be interpreted: if it has modulus one, then X and Y are in a deterministically linear relationship. Let us therefore start from that angle.

Measuring Linearity of X and Y

Suppose that X and Y are related in a linear fashion, say

$$Y = \beta_0 + \beta_1 X$$
.

with $\beta_1 \neq 0$. Then

$$\mu_{\mathbf{Y}} = \beta_0 + \beta_1 \mu_{\mathbf{X}}$$

and
$$Var[Y] = \beta_1^2 Var[X]$$
, so

$$\sigma_{\mathbf{Y}} = |\beta_1|\sigma_{\mathbf{X}}.$$

(8.2)

Measuring Linearity of X and Y

Using the standardized variables, we find that

$$\widetilde{Y} = \frac{Y - \mu_Y}{\sigma_Y}$$

$$= \frac{\beta_0 + \beta_1 X - (\beta_0 + \beta_1 \mu_X)}{|\beta_1|\sigma_X}$$

$$= \frac{\beta_1}{|\beta_1|} \frac{X - \mu_X}{\sigma_X}$$

$$= \frac{\beta_1}{|\beta_1|} \widetilde{X}.$$

We conclude that X and Y are in a linear relationship if and only if the standardized variables are either equal or the negative of each other.

Measuring Linearity of X and Y

We now know that X and Y are deterministically linearly related if and only if

$$\widetilde{X} + \widetilde{Y} = 0$$

or

$$\widetilde{X} - \widetilde{Y} = 0.$$

In order to measure in how far X and Y are not linearly related, it makes sense to consider the standard deviation of $\widetilde{X}+\widetilde{Y}$ and $\widetilde{X}-\widetilde{Y}$. If either of these were zero, the relationship would be deterministically linear.

We calculate

$$\begin{aligned} \operatorname{Var}[\widetilde{X} + \widetilde{Y}] &= \operatorname{Var}[\widetilde{X}] + \operatorname{Var}[\widetilde{Y}] + 2\operatorname{Cov}[\widetilde{X}, \widetilde{Y}] = 2 + 2\varrho_{XY}, \\ \operatorname{Var}[\widetilde{X} - \widetilde{Y}] &= \operatorname{Var}[\widetilde{X}] + \operatorname{Var}[\widetilde{Y}] - 2\operatorname{Cov}[\widetilde{X}, \widetilde{Y}] = 2 - 2\varrho_{XY}. \end{aligned}$$

If either of these two variances is small, then X and Y are "nearly proportional" and so X and Y are "nearly linearly" related.

The Fisher Transformation

In order to capture both of these positive quantities in a single manner, let us consider their quotient,

$$\sqrt{\frac{\mathsf{Var}[\widetilde{X}+\widetilde{Y}]}{\mathsf{Var}[\widetilde{X}-\widetilde{Y}]}} = \sqrt{\frac{1+\rho_{XY}}{1-\rho_{XY}}} \in (0,\infty)$$

If X and Y are linearly related, then this quotient will be either very small or very large.

It is "mathematically nicer" to take the logarithm:

Ronald Fisher (1890-1962) in 1913. File: Youngronaldfisher2.JPG. (2018, July 7). Vikimedia Commons, the free media repository.

$$\ln\left(\sqrt{\frac{\mathsf{Var}[\widetilde{X}+\widetilde{Y}]}{\mathsf{Var}[\widetilde{X}-\widetilde{Y}]}}\right) = \frac{1}{2}\ln\left(\frac{1+\rho_{XY}}{1-\rho_{XY}}\right) = \mathsf{Artanh}(\rho_{XY}) \in \mathbb{R}.$$

This is known as the *Fisher transformation* of ρ_{XY} .

Positive and Negative Correlation

It follows that

$$\rho_{XY} = \tanh \left(\ln \left(\frac{\sigma_{\widetilde{X} + \widetilde{Y}}}{\sigma_{\widetilde{X} - \widetilde{Y}}} \right) \right).$$

▶ If $\rho_{XY} > 0$, then $\text{Var}[\widetilde{X} + \widetilde{Y}] > \text{Var}[\widetilde{X} - \widetilde{Y}]$, which implies that the relationship between X and Y is closer to $\widetilde{X} = \widetilde{Y}$ than to $\widetilde{X} = -\widetilde{Y}$. Hence, if X is large, Y tends to be large also.

We say that X and Y are **positively correlated**.

▶ If $\rho_{XY} < 0$, then $\text{Var}[\widetilde{X} + \widetilde{Y}] < \text{Var}[\widetilde{X} - \widetilde{Y}]$ and the situation is reversed. If X is large, Y tends to be small.

We say that X and Y are *negatively correlated*.

Since X and Y are still random variables, a large value of X only indicates a tendency for Y to be large/small but doesn't guarantee this. The closer ρ_{XY} is to ± 1 , the more pronounced these effects are.

The Bivariate Normal Distribution

8.9. Example. Suppose two random variables X and Y should each follow a (marginal) normal distribution, but are not independent.

The most common model is the so-called *bivariate normal distribution*, with density function

with density function
$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\varrho^2}} e^{-\frac{1}{2(1-\varrho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\varrho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]}$$

where
$$-1 < \rho < 1$$
.

coefficient of X and Y.

The marginal distributions can be shown to be normal, $\mu_X = E[X]$, $\sigma_X^2 = \text{Var } X$ (and similarly for Y) and $\varrho = \rho_{XY}$ is indeed the correlation

Furthermore, X and Y are independent if and only if $\rho = 0$.

This distribution will be discussed in detail in the assignments.