

Decision Trees

An introduction to regression and classification trees

July 5, 2018 Aaron Lowther

Resources

Most notes are taken from Hastie et al. (2009)
 https://web.stanford.edu/~hastie/ElemStatLearn/

Tree based methods

Overview

- Two specific types of decision trees:
 - Regression Trees: For a continuous response,
 - Classification Trees: Discrete response.
- Iteratively partition the covariate space into a series of (hyper) rectangles.
- Use a simple function in each rectangle to predict a response.
- We are going to assume we have data,

$$\{(y_t, x_{t,1}, \dots, x_{t,P}) \text{ for } t = 1, \dots, T\},\$$

for $y_t \in \mathbb{R}$ (for now).

The covariate space

 X_1

Data | Lancaster Science | University

The covariate space

But not like this!

Partitioning The covariate space

X_2

 X_1

But not like this!

We have a grey area, it's hard to explain...

Partitioning Recursive binary partitioning

Instead of arbitrary partitioning

- We stick to recursive binary partiting
- The advantages are:
 - The partitions are easy to explain
 - There is a simple tree representation of the partitions

- We need to determine (automatically):
 - · Which covariates to split
 - Where to split them
- With the aim of developing a model of the form,

$$f(\boldsymbol{x}) = \sum_{m=1}^{M} c_m \mathbb{I}(\boldsymbol{x} \in \mathcal{R}_m),$$

- M: Number of regions,
- \mathcal{R}_m : Region m,
- c_m : Predicted value of the reponse for $x \in \mathcal{R}_m$
- $\mathcal{R} = \{\mathcal{R}_1, \dots, \mathcal{R}_M\}$

Determining the values of c_m

 In the linear regression setting we use the least squares criterion,

$$SS(\boldsymbol{\beta}) = \sum_{t=1}^{T} \left(y_t - \sum_{p=1}^{P} x_{t,p} \beta_p \right)^2$$

to determine the values of β for the model,

$$y_t = \sum_{p=1}^{P} x_{t,p} \beta_p + e_t.$$

 We can adopt the same least squares criteria here, minimizing

$$\mathcal{RT}(\boldsymbol{c};\mathcal{R}) = \sum_{t=1}^{T} (y_t - f(\boldsymbol{c}, \boldsymbol{x}_t))^2$$

Determining the values of c_m

We can adopt the same criteria here, minimizing,

$$\mathcal{RT}(\boldsymbol{c};\mathcal{R}) = \sum_{t=1}^{T} (y_t - f(\boldsymbol{c}, \boldsymbol{x}_t))^2.$$

• Then the values of *c* that minimise the function,

$$c_m = \frac{1}{N_m} \sum_{t=1}^{T} y_t \mathbb{I}_{\boldsymbol{x}_t \in \mathcal{R}_m},$$

are just the mean of the response values in the region (given regions \mathcal{R}_m).

Making the tree Determining the regions

• Finding (c, R) that minimises,

$$\mathcal{RM}(\boldsymbol{c},\mathcal{R}),$$

in generel, is very hard.

- Early splits will effect subsequent splits...
- But a greedy approach helps simplify the matter

Determining the regions

• To start the search we search each split value for each covariate, finding (p, s) such that,

$$\min_{p,s} \left[\min_{c_1} \sum_{x_i \in \mathcal{R}_1(p,s)} (y_t - c_1)^2 + \min_{c_2} \sum_{x_i \in \mathcal{R}_2(p,s)} (y_t - c_2)^2 \right],$$

is obtained.

- $\mathcal{R}_1(p,s) = \{x | x_p \le s\}, \, \mathcal{R}_2(p,s) = \{x | x_p > s\}$
- Apply this splitting approach to subsequent regions.

Summary so far

So now we have a method to build a tree,

- Finding the order to split the covariates,
- Finding the split values for the covariates.

But when do we stop?

When do we stop?

 We could continue growing the tree providing the reduction in sums of squares is greater than some threshold.

 The preffered method is to grow a large tree, and then prune it.

Cost complexity pruning is used

Cost-complexity pruning Data Lancaster Lancaster University

Let.

- T₀: The largest tree obtained,
- |T|: The number of terminal nodes in T,
- N_m : Number of $x_t \in \mathcal{R}_m$,
- $Q_m(T) = \frac{1}{N} \sum_{x_t \in \mathcal{R}_m} (y_t \hat{c}_m)^2$

For each α we find the tree that minimises the cost complexity criteria $C_{\alpha}(T)$,

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T|,$$

by collapsing the tree by its weakest (internal) node.

Discrete response variables Science University

When the data is discrete, taking values $1, 2, \dots, K$ we need to adapt the:

- Slitting criteria.
- Pruning criteria.

For regression we used the *squared error node impurity* measure.

$$Q_m(T) = \frac{1}{N_m} \sum_{x_t \in \mathcal{R}_m} (y_t - \hat{c}_m).$$

Classification

For categorical predictors, three available node impurity measures are:

· Misclassification error,

$$\frac{1}{N_m} \sum_{t \in \mathcal{R}_m} \mathcal{I}((y_t \neq k(m))) = 1 - \hat{p}_{mk(m)}.$$

· Gini Index,

$$\sum_{k \neq k'} \hat{p}_{mk} \hat{m} k' = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}).$$

· Cross-entroy/deviance,

$$-\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}.$$

Some notes

- Cross-entropy and Gini index are more sentaive to changes in the node probabilities than the misclassification rate.
- The cross-entropy or Gini index should be used when growing the tree.

 Any of the three methods can be used for cost complexity pruning.

Other issues

The textbook covers other issues and extensions that include,

- Categorical Predictors.
- Loss matrix, when misclassifying some observations is more serious in a given class.
- Missing predictor values: A number of approaches, but could use a missing category.
- Linear combinations of splits.

Bibliography

Hastie, T., Tibshirani, R., and Friedman, J. (2009). *The Elements of Statistical Learning*. Springer Series in Statistics. Springer, second edition.

July 5, 2018 Aaron Lowther