Fundamentals of Artificial Intelligence Exercise 5: First Order Logic

Florian Lercher

Technical University of Munich

Friday 8th December, 2023

Problem 5.1: Syntax of first-order logic

Recall the formal syntax of first-order logic, in particular the definition of terms and sentences.

Reminder: Basic Elements

Syntactic element	Examples
Variables	x, y, a, b, \ldots
Connectives	$\land, \lor, \lnot, \Rightarrow, \Leftrightarrow$
Equality	=
Quantifiers	\forall , \exists

Reminder: Basic Elements

Syntactic element	Representation of	Examples
Constants	Objects	KingJohn, 2, TUM,
Predicates	Relations	$Brother, >, \dots$
Functions	Functions	Sqrt, $LeftLegOf$,

Reminder: Terms and sentences

Backus-Naur Form of terms

Term ::= Function(Term, ...) | Constant | Variable

Backus-Naur Form of atomic sentences

 $AtomicSentence ::= Predicate \mid Predicate(Term, ...) \mid Term = Term$

Backus-Naur Form of complex sentences

```
ComplexSentence ::=(Sentence) | [Sentence] | \negSentence |

Sentence \land Sentence | Sentence \lor Sentence |

Sentence \Rightarrow Sentence | Sentence \Leftrightarrow Sentence |

Quantifier Variable, . . . Sentence
```

Problem 5.1: Syntax of first-order logic

Problem 5.1.1: Let $\mathcal{F} = \{d, f, g\}$ be the set of symbols, where d is a constant, f a function symbol with two arguments, and g a function symbol with three arguments. Which of the following expressions are terms over \mathcal{F} ? If an expression is not a term, give a reason why. (You may assume that x, y, z are variables.)

- 1. $g(d,\underline{d})$
- 2. $f(x,g(y,z),d) \not \downarrow \$
- 3. g(x, f(y, z), d)
- 4. $g(x, k(y, z), d) \neq$

Problem 5.1: Syntax of first-order logic

Problem 5.1.2: Let *m* be a constant, *h* a function symbol with one argument, and S and B two predicate symbols, each with two arguments. Which of the following expressions are sentences in first-order logic? If an expression is not a sentence, give a reason why. (You may assume that x, y, z are variables.)

1. S(m,x) tevins

S(XIY) B(XIY)

- 2. $B(m, h(m)) \vee \chi \text{ term}$
- 3. B(B(m,x),y)
- 4. $B(x, y) \Rightarrow [\exists z S(z, y)]$
- 5. $S(x, y) \Rightarrow S(y, h(h(x)))$

Let us abbreviate the predicate "x is taking the Bus" by B(x), and "x has a Ticket" by T(x). Suppose that we only consider the universe of discourse where there are only three people: Alice, Bob, and Charlie.

X	B(x)	T(x)	
Alice	True	True	
Bob	False	True	,
Charlie	False	False	

Problem 5.2.1: For each of our protagonists, the table above lists whether they have a ticket, and whether they take the bus. Suppose that we want to formalize the sentence "All people who take the bus have a ticket." Given the characteristics in the table above, do you think the sentence evaluates to true? Or false?

Problem 5.2.2: Now, consider the formula

$$\forall x \quad B(x) \wedge T(x).$$

By using the extended interpretation for universal quantifiers (in other words, the transformation to propositional logic), decide whether this formula is true or false in our universe of discourse. Do you think this formula is a faithful formalization of "All people who take the bus have a ticket"? If not, what would be a better formula?

$$\forall x \ \beta(x) \wedge T(x)$$

$$= \left[\beta(A) \wedge T(A)\right] \wedge \left[\beta(B) \wedge T(B)\right]$$

$$= \left[\alpha \log A\right] \wedge \left[\beta(B) \wedge T(B)\right]$$

$$= \left[\alpha \log A\right] \wedge \left[\beta(B) \wedge T(B)\right]$$

$$= \left[\alpha \log A\right] \wedge \left[\beta(B) \wedge T(B)\right]$$

Problem 5.2.3: Now consider the changed truth assignments in the table above. Suppose that we want to formalize the sentence "Some people who take the bus have a ticket" 1. Given the characteristics in the table above, do you think the sentence evaluates to true? Or false?

 $^{^{1}}$ This has to be understood as "There is **at least** one person that takes the bus, who has a ticket".

Problem 5.2.4: Now, consider the formula

$$\exists x \ B(x) \Rightarrow T(x).$$

By using the extended interpretation for existential quantifiers, decide whether this formula is true or false in our universe of discourse. Do you think this formula is a faithful formalization of "Some people who take the bus have a ticket"? If not, what would be a better formula?

$$= \left[\beta(A) \Rightarrow T(A) \right] \vee \left[\beta(B) \Rightarrow \widehat{I}(B) \right] \vee \left[\beta(C) \Rightarrow \widehat{I}(C) \right]$$

Learnings from Problem 5.2

Limiting the domain of quantification

To limit a quantifier to objects satisfying a predicate P, use ...

- $\forall x P(x) \Rightarrow \dots$ for universal quantification, and
- $\exists x \ P(x) \land \dots$ for existential quantification.

Example:

- "Some doors are locked" $\rightsquigarrow \exists x \ Door(x) \land Locked(x)$
- "Everything that glitters is gold" $\rightsquigarrow \forall x$ Glitters $(x) \Rightarrow Gold(x)$

Problem 5.3: Formalization to First Order Logic

Problem 5.3.1: Formalize the next sentences using the following predicates and constant:

$$A(x, y) : x$$
 admires y
 $P(x) : x$ is a professor
 $d : Dan$

1. Dan admires every professor.

$$\forall x \ \ \ (x) \Rightarrow A(d,x)$$

2. Some professor admires Dan.

13 / 24

3. Dan admires himself.

Problem 5.3: Formalization to First Order Logic

Problem 5.3.2: Formalize the next sentences using the following predicates:

$$A(x, y) : x$$
 attended y
 $S(x) : x$ is a student
 $L(x) : x$ is a lecture

1. No student attended every lecture.

2. No lecture was attended by every student.

Let the constant h-stand for Holmes (Sherlock Holmes) and m for Moriarty (Professor Moriarty). Let us abbreviate "x can trap y" with the predicate T(x,y). Give symbolic rendition of the following statements:

- 1. Holmes can trap everyone who can trap Moriarty.
- 2. Holmes can trap everyone whom Moriarty can trap.
- 3. Holmes can trap everyone who can be trapped by Moriarty.
- 4. If someone can trap Moriarty, then Holmes can.
- 5. If everyone can trap Moriarty, then Holmes can.
- 6. Anyone who can trap Holmes can trap Moriarty.
- 7. No one can trap Holmes unless that person can trap Moriarty.
- 8. Everyone can trap someone who cannot trap Moriarty.
- 9. Everyone who can trap Holmes can trap everyone whom Holmes can trap.

1. Holmes can trap everyone who can trap Moriarty.

$$\forall (x) \ T(x, M) \Rightarrow T(H, x)$$

2. Holmes can trap everyone whom Moriarty can trap.

$$\forall x T(M,x) \Rightarrow T(H,x)$$

3. Holmes can trap everyone who can be trapped by Moriarty.

4. If someone can trap Moriarty, then Holmes can.

5. If everyone can trap Moriarty, then Holmes can.

$$[\forall x \ T(x.M)] \Rightarrow T(H.M)$$

6. Anyone who can trap Holmes can trap Moriarty.

$$\forall x T(x, H) \Rightarrow T(x, M)$$

7. No one can trap Holmes unless that person can trap Moriarty.

$$\neg \exists x \top (x, H) \wedge \neg \top (x, M)$$

$$\equiv \forall \forall (x, H) \Rightarrow T(x, M)$$

8. Everyone can trap someone who cannot trap Moriarty.

$$\forall x \exists y \ 7 T(y, M) \ \Lambda T(x, y)$$

$$V_X T(X, H) \Rightarrow T(X, Y)$$

9. Everyone who can trap Holmes can trap everyone whom Holmes can trap.

Intuition for the Resolution Rule "If AUB and TBUC, the also AUC." AUB -BVC - Previso But why? Let's do a case distinction on the trail assignment of B: Case 1: B is assigned to True - AVB is Solistin, because B holds - B holds ~ nB does not hold - To satisfy 1 Bu (we have to assign (to True Case ?: B is assigned to False - 7B VC is satisfied, breaks 7B holds - To Sahily Auß we have to assign A to Trace N) Since we cannot assism B to Trava out Folse, we must essist A to Trave or C to Trave Ly AUC has to hold (assigning boll A and B to Tour & also Sine)