

Modulhandbuch

Studienbereich Technik

School of Engineering

Studiengang Maschinenbau

Mechanical Engineering

Studienrichtung

Versorgungs- und Energiemanagement

Supply and Energy Management

Studienakademie

MANNHEIM

Curriculum (Pflicht und Wahlmodule)

Aufgrund der Vielzahl unterschiedlicher Zusammenstellungen von Modulen konnen die spezifischen Angebote hier nicht im Detail abgebildet werden. Nicht jedes Modul ist beliebig kombinierbar und wird moglicherweise auch nicht in jedem Studienjahr angeboten. Die Summe der ECTS aller Module inklusive der Bachelorarbeit umfasst 210 Credits.

NUMMER	FESTGELEGTER MODULBEREICH	VERORTUNG	ECTS
	MODULBEZEICHNUNG		
T3MB1001	Konstruktion	1. Studienjahr	5
T3MB1002	Fertigungstechnik	1. Studienjahr	5
T3MB1003	Werkstoffe	1. Studienjahr	5
T3MB1004	Technische Mechanik + Festigkeitslehre	1. Studienjahr	5
T3MB1005	Mathematik	1. Studienjahr	5
T3MB1006	Informatik	1. Studienjahr	5
T3MB1007	Elektrotechnik	1. Studienjahr	5
T3MB1008	Konstruktion II	1. Studienjahr	5
T3MB1009	Technische Mechanik + Festigkeitslehre II	1. Studienjahr	5
T3MB1010	Mathematik II	1. Studienjahr	5
T3MB2001	Technische Mechanik + Festigkeitslehre III	2. Studienjahr	5
T3MB2002	Thermodynamik	2. Studienjahr	5
T3MB2003	Mathematik III	2. Studienjahr	5
T3_3101	Studienarbeit	3. Studienjahr	10
T3_1000	Praxisprojekt I	1. Studienjahr	20
T3_2000	Praxisprojekt II	2. Studienjahr	20
T3_3000	Praxisprojekt III	3. Studienjahr	8
T3MB2701	Fluidmechanik	2. Studienjahr	5
T3MB2402	Heizungs- und Klimatechnik	2. Studienjahr	5
T3MB2403	Bautechnische Grundlagen	2. Studienjahr	5
T3MB3401	Wasser-/ Abwassersysteme	3. Studienjahr	5
T3MB3402	Heizungs- und Klimatechnik II	3. Studienjahr	5
T3MB3403	Energiemanagement	3. Studienjahr	5
T3MB3404	Heizungs- und Klimatechnik III	3. Studienjahr	5
T3MB9154	Mess-, Steuer- und Regelungstechnik	2. Studienjahr	5
T3MB9000	Betriebswirtschaftslehre und Projektmanagement	2. Studienjahr	5
T3MB9002	Verfahrenstechnik	2. Studienjahr	5
T3MB9009	Numerische Strömungsmechanik (CFD)	3. Studienjahr	5
T3MB9010	Kältetechnik	3. Studienjahr	5
T3MB9011	Nachhaltige Energiesysteme	3. Studienjahr	5
T3_3300	Bachelorarbeit	3. Studienjahr	12

Stand vom 12.07.2023 Curriculum // Seite 2

NUMMER	VARIABLER MODULBEREICH	VERORTUNG	ECTS
	MODULBEZEICHNUNG		
T3CT9001	Messen, Steuern, Regeln	keine Anzeige	5
T3MB9161	Versorgungstechnik	3. Studienjahr	5
T3MB9162	Energiewirtschaft und Recht	3. Studienjahr	5

Stand vom 12.07.2023 Curriculum // Seite 3

Konstruktion (T3MB1001)

Engineering Design

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3MB1001	1. Studienjahr	1	Prof. DrIng. Michael Sternberg	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung Übung Lahor	Lehrvortrag Diskussion Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Konstruktionsentwurf oder Kombinierte Prüfung (Klausur < 50 %)	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, nach vorgegebener Aufgabenstellung Technische Zeichnungen für einfache Konstruktionen zu erstellen und zu interpretieren. Sie können die Auswirkungen der Konstruktion auf den Produktionsprozess beschreiben.

METHODENKOMPETENZ

Probleme, die sich im beruflichen Umfeld im Themengebiet "Technisches Zeichnen" ergeben, werden identifiziert und mit den vorgestellten Methoden gelöst. Sie sind in der Lage, unter Einsatz dieser Methoden relevante Informationen zu sammeln und zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden haben mit Abschluss des Moduls erste Kompetenzen erworben, bei Entscheidungen im Berufsalltag auch gesellschaftliche und ethische Erkenntnisse zu berücksichtigen

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben mit Abschluss des Moduls ein solides Grundverständnis zu den Themen "Technische Zeichnungen lesen & verstehen" und "Normgerechtes Erstellen von Technischen Zeichnungen" erworben und sind in der Lage einfache Konstruktionen zu erstellen. Sie können fehlende Informationen aus vorgegebenen Quellen beschaffen und sind in der Lage ihr Vorgehen in einem Fachgespräch zu erläutern.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Konstruktion	60	90

Konstruktionslehre 1:

- Technisches Zeichnen, Ebenes und räumliches Skizzieren.
- Maß-, Form- u. Lage-Toleranzen und Passungen.
- Grundlagen der Gestaltungslehre (beanspruchungs-/ fertigungsgerecht).

Konstruktionsentwurf 1:

- Erstellen, Lesen und Verstehen von technischen Zeichnungen: Darstellung, Bemaßung,

 $Tolerierung,\ Kantenzust \"{a}nde,\ technische\ Oberfl\"{a}chen,\ W\"{a}rmebehandlung.$

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

Stand vom 12.07.2023 T3MB1001 // Seite 4

VURAUSSEIZU

LITERATUR

Technisches Zeichnen

- Hoischen: Technisches Zeichnen, Cornelsen
- Böttcher/Forberg: Technisches Zeichnen; Springer.
- Labisch/Weber: Technisches Zeichnen, Springer.

Geometrische Produktspezifikation (Maß-, Form- und Lagetoleranzen sowie Passungen)

- Jorden: Form- und Lagetoleranzen, Hanser.
- Klein: Toleranzdesign im Maschinen- und Fahrzeugbau, de Gruyter.

Grundlagen der Gestaltungslehre

- Haberhauer/ Bodenstein: Maschinenelemente, Springer.
- Schmid: Konstruktionslehre Maschinenbau, Europa.
- Dubbel: Taschenbuch für den Maschinenbau; Springer.
- Niemann: Maschinenelemente 1, Springer.
- Roloff/ Matek; Maschinenelemente; Vieweg-Verlag
- Decker; Maschinenelemente; Hanser-Verlag
- Köhler/ Rögnitz/ Künne; Maschinenteile; Teubner-Verlag

Normen

- Klein: Einführung in die DIN-Normen, Springer.
- Taschenbuch Metall, Europa.

englischsprachige Literatur

- Madsen/Madsen: Engineering Drawing and Design, Delmar.
- Goetsch: Technical Drawing and Engineering Communication, Delmar.
- Henzold: Geometrical Dimensioning and Tolerancing for Design, Manufacturing and Inspection, Elsevier.
- Mechanical and Metal Trades Handbook, Europa.

Stand vom 12.07.2023 T3MB1001 // Seite 5

Fertigungstechnik (T3MB1002)

Manufacturing Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10021. Studienjahr2Prof. Dr. Manfred SchlatterDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Labor Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Kennen lernen der grundlegenden heutigen Fertigungsverfahren des Spanens und des Urformens, des Umformens und der Blechbearbeitung, des Fügens mit Schweißen, Löten und Kleben -Analysieren der Möglichkeiten verschiedener Verfahren in der Beziehung zu Konstruktion, Produkteigenschaft und Maschinen/Anlagen -Berechnen der Kräfte und Bearbeitungszeiten für ausgewählte Verfahren -Die technische und wirtschaftliche Eignung von Verfahren beurteilen -Bewerten und Treffen von Entscheidungen bezüglich des Produktionsprozesses -Einordnen der verschiedenen Verfahren in ein Unternehmen

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMFertigungstechnik7278

Einführung in die Fertigungstechnik -Trennen (Zerspanen mit geometrisch bestimmter und unbestimmter Schneide) -Trennende Verfahren der Blechbearbeitung-Abtragen -Urformen -Umformen (Blechumformung sowie Kalt- und Warmmassivumformverfahren) -Fügen (Ausgewählte Schweißverfahren, Löten und Kleben)

BESONDERHEITEN

Laborversuche können vorgesehen werden

VORAUSSETZUNGEN

keine

Stand vom 12.07.2023 T3MB1002 // Seite 6

LITERATUR

- -Dillinger, J. et al.: Fachkunde Metall, Europa-Lehrmittel, Haan-Gruiten -Reichard, A.: Fertigungstechnik I, Verlag Handwerk und Technik, Hamburg -Degner, W. et al.: Spanende Formung, Hanser-Verlag, München -Fritz, A. et al.: Fertigungstechnik, Springer-Verlag, Berlin Heidelberg New York
- -Kugler, H.: Umformtechnik, Hanser-Verlag, München -Schal, W.: Fertigungstechnik, Verlag Handwerk und Technik, Hamburg

Stand vom 12.07.2023 T3MB1002 // Seite 7

Werkstoffe (T3MB1003)

Materials Technology

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10031. Studienjahr2Prof. Dr.-Ing. Claus MühlhanDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)
DAVON PRÄSENZZEIT (IN H)
DAVON SELBSTSTUDIUM (IN H)
ECTS-LEISTUNGSPUNKTE
78
5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, komplexe Problemstellungen aus der Praxis zu analysieren und aufzuarbeiten. Sie gewinnen die für die Lösung relevanten Informationen, führen die Werkstoffauswahl und -bewertunen selbständig durch und geben kritische Hinweise zur Belastbarkeit ihrer Ergebnisse.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls dafür sensibilisiert, für die Lösung von Projektaufgaben eine systematischen und methodisch fundierten Vorgehensweise zu wählen. Sie strukturieren ihre Aufgaben den Anforderungen der eingesetzten Methode und den Anforderungen der konkreten Anwendungssituation entsprechend und führen kleinere Projekte zum Abschluss.

PERSONALE UND SOZIALE KOMPETENZ

. _...

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWerkstoffe7278

- Aufbau der Werkstoffe
- Mechanische, physikalische und chemische Eigenschaften
- Grundlagen der Wärmebehandlung
- Die vier Werkstoffgruppen
- Werkstoffbezeichnung bzw. /-normung
- Werkstoffprüfung

BESONDERHEITEN

Labor Werkstoffprüfung zur vertiefenden, praxisnahen Anwendung in der Qualitätssicherung, Schadensanalyse und Werkstoffentwicklung (z.B. 5- 12 h) kann vorgesehen werden.

Die Prüfungsdauer bezieht sich auf die Klausur.

Stand vom 12.07.2023 T3MB1003 // Seite 8

LITERATUR

- Bargel, Schulze: Werkstoffkunde, Springer, Berlin
- Roos, Maile: Werkstoffkunde für Ingenieure, Springer, Berlin
- Merkel: Taschenbuch der Werkstoffe, Hanser Fachbuchverlag
 Bergmann: Werkstofftechnik, Tl.1 Grundlagen: Struktureller Aufbau von Werkstoffen, Hanser Fachbuchverlag
- Bergmann: Werkstofftechnik, Tl.2 Anwendung: Werkstoffherstellung, Werkstoffverarbeitung Werkstoffanwendung, Hanser Fachbuchverlag Hornbogen: Werkstoffe, Springer, Berlin
- Hornbogen, Jost: Fragen und Antworten zu Werkstoffe, Springer, Berlin
 Schumann, Oettel: Metallografie, WILEY-VCH Verlag
- Berns, Theisen: Eisenwerkstoffe Stahl und Gusseisen, Springer
- Menges: Werkstoffkunde Kunststoffe, Hanser, München

T3MB1003 // Seite 9 Stand vom 12.07.2023

Technische Mechanik + Festigkeitslehre (T3MB1004)

Engineering Mechanics and Stress Analysis

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10041. Studienjahr1Prof. Dr.-lng. Petra BormannDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erlernen die grundlegenden Methoden der Statik, basierend auf den Newtonschen Axiomen (Kräftezerlegung, Schnittprinzip, Reaktionen, Gleichgewicht, Schwerpunkt, Reibung).

Sie erlernen die Elemente der Statik.

Sie erwerben die Fähigkeit, einfache und zusammengesetzte Tragwerke statisch zu berechnen und können Schnittreaktionen sicher ermitteln.

Sie erlernen und verstehen die Grundbeanspruchungsarten von Konstruktionen sowie den Ablauf von Festigkeitsrechnungen.

Sie können eine Beurteilung gegen Versagen vornehmen.

METHODENKOMPETENZ

Die Studierenden sind in der Lage, die erlernten naturwissenschaftlichen Methoden der Mechanik bei jeder statischen Beurteilung zielgerichtet anzuwenden. Sie besitzen die Fähigkeit, mathematische Berechnungen zuverlässig durchzuführen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden lernen, in kleinen Teams effektiv und zielgerichtet das in den Vorlesungen vermittelte Wissen auf neuartige Aufgaben anzuwenden. Sie sind sich der Auswirkung auf alle Bereiche der Gesellschaft und damit der Sorgfaltspflicht bewusst, mit der Festigkeitsnachweise zu führen sind.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMTechnische Mechanik + Festigkeitslehre7278

- -Begriffe
- -Kräftesysteme, Gleichgewicht
- -Schwerpunktberechnung
- -Einfache und zusammengesetzte Tragwerke
- -Schnittreaktionen
- -Reibung
- -Grundlagen und Begriffe der Festigkeitslehre
- -Grundbeanspruchungsarten Zug-Druckbeanspruchung, Biegung, Torsion, Schub

Stand vom 12.07.2023 T3MB1004 // Seite 10

BESONDERHEITEN

Die Sachkompetenz kann durch z.B. zusätzliche Tutorien gestärkt werden.

VORAUSSETZUNGEN

LITERATUR

Dankert/Dankert: Technische Mechanik, Springer Verlag Gross, Hauger, Schröder, Wall: Technische Mechanik 1 und 2, Springer Verlag.

Hibbeler: Technische Mechanik 1und 2, Pearson Studium

Issler, Ruoß, Häfele: Festigkeitslehre-Grundlagen, Springer Verlag Läpple: Einführung in die Festigkeitslehre, Vieweg Alle Bücher liegen als ebook vor. Verwendung der neuesten Ausgaben in Papierform.

Stand vom 12.07.2023 T3MB1004 // Seite 11

Mathematik (T3MB1005)

Mathematics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10051. Studienjahr1Prof. Dr.-Ing. Nico BlessingDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, LaborLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

90

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Sicheres Anwenden der mathematischen Methoden auf dem Gebiet der Vektorrektorrechnung, Lineare Gleichungssysteme, Determinanten, Matrizen, Komplexe Zahlen und Numerische Methoden der Mathematik. Übertragung der theoretischen Inhalte auf praktische Problemstellungen. Eventuell Anwendung von computergestützten Berechnungsmethoden auf praktische Aufgabenstellungen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten mathematischen Verfahren und Lösungsalgorithmen und sind in der Lage, unter Einsatz/Anwendung dieser Methoden fachübergreifende Problemstellungen zu analysieren und zu lösen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Fächerübergreifende Anwendung der gelernten mathematischen Methoden, Anwendung der theoretischen, mathematischen Inhalte auf praktische Aufgabenstellungen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMathematik6090

Didaktisch geeignete Auswahl aus folgenden Lerninhalten:

- Vektorrechnung
- Lineare Gleichungssysteme
- Determinanten
- Matrizen
- Komplexe Zahlen

Optional können weitere Inhalte gewählt werden:

- Numerische Methoden der Mathematik
- Linare Transformationen (Hauptachsentrasformation)
- Affine Abbildungen
- Analytische Geometrie (Vertiefung, z.B. Kugel, Tangentialebene)
- ggf. weitere

Stand vom 12.07.2023 T3MB1005 // Seite 12

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

BESONDERHEITEN

Eine Laborveranstaltung zur Vermittlung von Lerninhalten der numerischen Mathematik kann integriert werden.

VORAUSSETZUNGEN

_

LITERATUR

- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler. Bd. 1 und 2, Vieweg + Teubner
- I. N. Bronstein: Taschenbuch der Mathematik, Deutsch
- M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Vieweg + Teubner

Stand vom 12.07.2023 T3MB1005 // Seite 13

Informatik (T3MB1006)

Computer Science

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10061. Studienjahr2Prof. Dipl.-Ing. Tobias AnkeleDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Klausurarbeit (< 50 %) und Programmentwurf</td>120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	72	78	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

- Die Studierenden sind in der Lage, einfachere Computerprogramme zu in einer höheren Programmiersprache zu entwickeln
- Die Studierenden verstehen die grundlegende Funktionsweise eines Digitalrechners und die interne Datenverarbeitung

METHODENKOMPETENZ

- Die Studierenden haben gelernt, eine Problemstellung zu analysieren und die Problemlösung in Form eines Algorithmus zu formulieren und in geeigneter Notation zu dokumentieren
- Die Studierenden sind in der Lage, Themen der Vertiefung (s. Inhalt) im betrieblichen Umfeld einzuordnen und zu bewerten.

PERSONALE UND SOZIALE KOMPETENZ

- Die Studierenden können die Digitaltechnik sowohl eigenständig also auch im Team ergebnisorientiert einsetzen
- Sie sind in der Lage, Einsatzmöglichkeiten und -grenzen des Rechnereinsatzes im betrieblichen Umfeld abzuschätzen

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Informatik	72	78

Stand vom 12.07.2023 T3MB1006 // Seite 14

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Grundlagen der Datenverarbeitung

- Problemanalyse, Formulierung Algorithmen, Dokumentation in allgemeiner Notation (z. B.

Struktogramm)

- Zahlensysteme (dezimal, binär, hexadezimal)
- Operatoren, Boolsche Operationen, Bitoperationen
- Datentypen

Grundlagen der Programmierung in einer höheren Programmiersprache:

- Konstanten und Variablen (Deklaration, Initialisierung, Namespaces)
- Benutzerinteraktion (Ein- und Ausgabe, Ausgabeformatierung)
- Kontrollstrukturen (Verzweigungen, Schleifen)
- Modularer Aufbau von Programmen (Unterprogramme, Prozeduren und Funktionen)

Vertiefende Themen der Informationsverarbeitung, z. B:

- Aufbau und Funktion eines Rechners (Rechnerarchitektur, Computerkomponenten und deren

Konfiguration, Eingabe- und Ausgabegeräte, Schnittstellen)

- Erweiterte Programmiertechniken (Strukturierte Datentypen, dynamische Speicherverwaltung,

Pointer, Verkettete Listen, Dateiverarbeitung, Grafikfunktionen usw.)

- Betriebssysteme
- Datenbanken, Datenbankabfragen

BESONDERHEITEN

- Laborversuche können vorgesehen werden.
- Die Veranstaltung kann entweder im 1. und 2. Semester oder im 1. Semester oder im 2. Semester abgehalten werden.

VORAUSSETZUNGEN

LITERATUR

- Uwe Schneider; Dieter Werner: Taschenbuch der Informatik, Hanser Fachbuch
- Heinz-Peter Gumm, Manfred Sommer: Einführung in die Informatik, Oldenbourg
- Thomas Ottmann, Peter Widmayer: Algorithmen und Datenstrukturen, Spektrum Akademischer Verlag Heidelberg

Stand vom 12.07.2023 T3MB1006 // Seite 15

Elektrotechnik (T3MB1007)

Electrical Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10071. Studienjahr2Prof. Dr. Wilhelm BrixDeutsch/Englisch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, elektrotechnische Problemstellungen aus der Praxis zu analysieren und aufzuarbeiten. Sie erarbeiten sich die für die Lösung relevanten Informationen, führen die Auswahl der Komponenten selbständig durch und geben Hinweise zur Belastbarkeit ihrer Ergebnisse.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls dafür sensibilisiert, für die Lösung von Projektaufgaben eine systematischen und methodisch fundierten Vorgehensweise zu wählen. Sie strukturieren ihre Aufgaben den Anforderungen der eingesetzten Methode und den Anforderungen der konkreten Anwendungssituation entsprechend und führen kleinere Projekte zum Abschluss.

PERSONALE UND SOZIALE KOMPETENZ

Die Absolventen reflektieren die in den Modulinhalten angesprochenen Theorien und Modelle in Hinblick auf die damit verbundene soziale, ethische und ökologische Verantwortung und Implikationen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMElektrotechnik6090

- Grundbegriffe
- Leistung und Arbeit
- Gleichstromkreise
- Kondensator und elektrisches Feld
- Induktivität und magnetisches Feld
- Wechselstrom
- Wirk- und Blindwiderstände
- Leistung und Arbeit in Wechselstromnetzen

Optional können weitere Themen behandelt werden, z.B. Drehstromsysteme, etc.

Stand vom 12.07.2023 T3MB1007 // Seite 16

BESONDERHEITEN

Laborversuche können vorgesehen werden.

Die Veranstaltung kann entweder im 1. und 2. Semester oder im 1. Semester oder im 2. Semester abgehalten werden. Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

_

LITERATUR

- Harriehausen, T. und Schwarzenau, D.: "Moeller Grundlagen der Elektrotechnik", Verlag Springer Vieweg
- Küpfmüller, K. und Mathis, W.: "Theoretische Elektrotechnik: Eine Einführung", Verlag Springer Vieweg
- Hering, M. et al.: "Elektrotechnik und Elektronik für Maschinenbauer", Springer Verlag

Stand vom 12.07.2023 T3MB1007 // Seite 17

Konstruktion II (T3MB1008)

Engineering Design II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10081. Studienjahr1Prof. Dr.-Ing. Michael SternbergDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung, Labor Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKombinierte Prüfung - Klausurarbeit (< 50 %) und Konstruktionsentwurf</td>120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden haben mit Abschluss des Moduls die Kompetenz erworben, Bauteile zu gestalten, zu berechnen und zu bewerten. Sie sind in der Lage ausgewählte Maschinenelemente zu dimensionieren. Sie können die Auswirkungen der Konstruktion auf den Produktionsprozess analysieren und vergleichen.

METHODENKOMPETENZ

Probleme, die sich im beruflichen Umfeld in den Themengebieten "Maschinenelemente & einfache Konstruktionen" ergeben, lösen sie zunehmend eigenständig und zielgerichtet, Die Studierenden sind in der Lage, in einem Team aktiv mitzuarbeiten und beginnen zu Einzelproblemen einen eigenständigen und sachgerechten Beitrag zu leisten in dem sie erlernte Methoden zunehmend adäquat anwenden.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden haben mit Abschluss des Moduls die Kompetenzen erworben, bei Entscheidungen im Berufsalltag auch gesellschaftliche und ethische Erkenntnisse zu berücksichtigen und sich (auf Basis dieser Erkenntnisse) zunehmend zivilgesellschaftlich zu engagieren.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können mit Abschluss des Moduls einfache Konstruktionen gemäß einer vorgegebenen Aufgabenstellung erstellen und ausgewählte Maschinenelemente berechnen. Sie können fehlende Informationen aus vorgegebenen und anderen Quellen beschaffen und sind in der Lage die Konstruktion in einem Fachgespräch zu rechtfertigen. Durch die Einbindung in die Praxis verfügen die Studierenden zunehmend über Prozessverständnis

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Konstruktion 2	60	90

Stand vom 12.07.2023 T3MB1008 // Seite 18

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Konstruktionslehre 2:

- Einführung in die Konstruktionssystematik.
- Verbindungselemente: formschlüssig (Bolzen und Stifte, Schrauben); stoffschlüssig

(Schweißen); elastisch (Federn). Konstruktionsentwurf 2:

- Anwendung der Gestaltungslehre: verfahrensspezifische Detaillierung von Bauteilen (z.B. Gussteil. Schweißteil).
- Selbstständiges und systematisches Erarbeiten von Lösungen durch Anwendung einzelner

Ansätze der Konstruktionssystematik für einfache Geräte und Vorrichtungen.

- Auslegung und Berechnung von ausgewählten Maschinenelementen.

CAD-Techniken:

- Vorgehensweisen zur Erstellung von Einzelteil-Volumenmodellen.
- Grundlagen der Zeichnungsableitung.
- Normteile: Anwendung und Konstruktion; Normteil-Bibliotheken.
- Grundlagen des Datenmanagements.
- Erstellen von Baugruppen; Baugruppenzeichnungen.
- Systematische, objektorientierte Teilekonstruktion.
- Arbeiten mit voneinander abhängigen Bauteilen.
- Anwendung von Hilfsprogrammen in der CAD-Umgebung (z.B. Kollisionsbetrachtungen, Bestimmung des Gewichts oder des Trägheitsmoments).

BESONDERHEITEN

-

VORAUSSETZUNGEN

-

LITERATUR

Maschinenelemente

- Schlecht: Maschinenelemente 1, Pearson.
- Decker: Maschinenelemente, Hanser.
- Roloff/Matek: Maschinenelemente, Springer.
- Haberhauer/ Bodenstein: Maschinenelemente, Springer.
- Schmid: Konstruktionslehre Maschinenbau, Europa.
- Niemann: Maschinenelemente 1, Springer.
- Köhler/ Rögnitz: Maschinenteile 1, Springer.

Konstruktionssystematik

- Pahl/Beitz: Konstruktionslehre, Springer.
- Conrad: Grundlagen der Konstruktionslehre, Hanser.

Normen

- Klein: Einführung in die DIN-Normen, Springer.
- Taschenbuch Metall, Europa.

Computer-Aided Design

- Wiegand/Hanel/Deubner: Konstruieren mit NX 10, Hanser.

englischsprachige Literatur

- Shigley: Mechanical Engineering Design, McGraw-Hill.
- Collins/Busby/Staab: Mechanical Design of Machine Elements and Machines, Wiley.
- Pahl/Beitz: Engineering Design, Springer.
- Ulrich/Eppinger: Product Design and Development, McGraw-Hill.
- Ullmann: The Mechanical Design Process, McGraw-Hill.
- Mechanical and Metal Trades Handbook, Europa.

Stand vom 12.07.2023 T3MB1008 // Seite 19

Technische Mechanik + Festigkeitslehre II (T3MB1009)

Engineering Mechanics and Stress Analysis II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB10091. Studienjahr1Prof. Dr.-Ing. Petra BormannDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können zuverlässig die Methoden der Newtonschen Mechanik und daraus abgeleiteter Methoden bei der Lösung dynamischer Aufgabenstellungen anwenden.

Sie beherrschen die Analyse und die Beschreibung der Kinematik von Punkten und Starrkörpern einfacher und zusammengesetzter Bewegungen in verschiedenen Koordinaten.

Die Studierenden erweitern ihre Kenntnisse zu Festigkeitsberechnungen von Konstruktionen sowohl unter statischer als auch zeitlich veränderlicher Belastung und können zuverlässig eine Sicherheitsbewertung vornehmen.

Sie erlernen den Einfluss von Kerbwirkung bei statischer und dynamischer Beanspruchung, sowie den Einfluss von Temperaturänderungen.

Die Studierenden erwerben vertieftes Wissen zu den Grundbeanspruchungsarten, wie beispielsweise schiefe Biegung, Durchbiegung von Balken, wölbkraftfreie Torsion dünnwandiger Profile, Querkraftschub und Schubmittelpunkt.

METHODENKOMPETENZ

Die Studierenden können komplexe Aufgabenstellungen analysieren und durch Wahl geeigneter Ansätze und Methoden zielgerichtet lösen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind in der Lage, durch selbständig zu erarbeitende Aufgabenkomplexe Transferwissen zu erwerben . Sie können sich dabei als kleines Team selbständig organisieren.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN LIND INHALTE

EERICEITER OND HAIVETE		
LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Technische Mechanik + Festigkeitslehre 2	72	78

Stand vom 12.07.2023 T3MB1009 // Seite 20

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

- -Kinematik des Punktes, starrer Körper und Körpersysteme
- -Allgemeine Starrkörperbewegung
- -Dynamisches Grundgesetz
- -Sätze der Dynamik
- -Kerbwirkung
- -Schwingende Beanspruchung, Dauerfestigkeitsschaubild
- -Thermische Spannung
- -Flächenmomente
- -Schiefe Biegung
- -Biegelinie
- -Torsion dünnwandiger Profile, Wölbkraftfreie Torsion
- -Querkraftschub

BESONDERHEITEN

Die Sachkompetenz kann durch z.B. zusätzliche Tutorien gestärkt werden.

VORAUSSETZUNGEN

_

LITERATUR

- Dankert/Dankert: Technische Mechanik, Springer Verlag
- Gross, Hauger, Schröder, Wall: Technische Mechanik 2,3, Springer Hibbeler: Technische Mechanik 2,3, Pearson Studium
- Issler, Ruoß, Häfele: Festigkeitslehre-Grundlagen, Springer Verlag Läpple: Einführung in die Festigkeitslehre, Vieweg Alle Bücher liegen als ebook vor.

In Papierform sind die neuesten Auflagen zu verwenden.

Stand vom 12.07.2023 T3MB1009 // Seite 21

Mathematik II (T3MB1010)

Mathematics II

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3MB1010	1. Studienjahr	1	Prof. DrIng. Nico Blessing	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Sicheres Anwenden der mathematischen Methoden auf dem Gebiet der Differenzial- und Integralrechnung, Unendliche Reihen, Differentiation von Funktionen mit mehreren unabhängigen Variablen und Numerische Methoden der Mathematik. Übertragung der theoretischen Inhalte auf praktische Problemstellungen. Eventuell Anwendung von computergestützten Berechnungsmethoden auf praktische Aufgabenstellungen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten mathematischen Verfahren und Lösungsalgorithmen und sind in der Lage, unter Einsatz/Anwendung dieser Methoden fachübergreifende Problemstellungen zu analysieren und zu lösen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Fächer übergreifende Anwendung der gelernten mathematischen Methoden, Anwendung der theoretischen, mathematischen Inhalte auf praktische Aufgabenstellungen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mathematik 2	60	90

Didaktisch geeignete Auswahl aus folgenden Lehrinhalten:

- Folgen, Grenzwerte und Stetigkeit
- Funktionen einer und mehrerer unabhängigen Variablen
- Stetigkeitsbegriff und Konvergenz bei Funktionen
- Differentialrechnung bei Funktionen mit einer und mehreren unabhängigen Variablen
- Unendliche Reihen

Optional können weitere Inhalte gewählt werden:

- Numerische Methoden der Mathematik
- Interpolationstechniken
- Potenzreihenentwicklung
- Fehlerrechnung
- Extremwertprobleme
- ggf. weitere

Stand vom 12.07.2023 T3MB1010 // Seite 22

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

BESONDERHEITEN

Eine Laborveranstaltung zur Vermittlung von Lerninhalten der numerischen Mathematik kann integriert werden.

VORAUSSETZUNGEN

_

LITERATUR

- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler. Bd. 1 und 2, Vieweg + Teubner
- I. N. Bronstein: Taschenbuch der Mathematik, Deutsch
- M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Vieweg + Teubner

Stand vom 12.07.2023 T3MB1010 // Seite 23

Technische Mechanik + Festigkeitslehre III (T3MB2001)

Engineering Mechanics and Stress Analysis III

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB20012. Studienjahr1Prof. Dr.-Ing. Petra BormannDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15072785

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können dynamische und schwingende mechanische Systeme analysieren, berechnen und bewerten.

Sie können zuverlässig die Sicherheit für mechanische Konstruktionen unter komplexer Beanspruchung beurteilen. Dafür wählen Sie die jeweilige Methode zielsicher und selbständig aus.

Sie erlernen Methoden der Stabilitätstheorie und können die Stabilität von Stäben unter Knickbeanspruchung bewerten.

METHODENKOMPETENZ

Die Studierenden können komplexe Aufgabenstellungen analysieren und wählen bewusst einen ganzheitlichen, ingenieurgemäßen Ansatz für eine zielgerichtete Lösung. Sie sind in der Lage, Lösungsansätze und Ergebnisse kritisch zu reflektieren sowie gegebenenfalls Fehler zu erkennen und selbst zu beheben.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind in der Lage, verantwortungsbewusst und zuverlässig komplexe Probleme durch selbständiges systematisches Arbeiten zu lösen. Sie können sich dafür notwendiges Wissen selbständig erarbeiten und kritisch werten. Gegebenenfalls organisieren sie sich dabei zur Verbesserung der Effektivität als kleines Team.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMTechnische Mechanik + Festigkeitslehre 37278

- -Stoß und Drehstoß
- -Vertiefung Starrkörperbewegung
- -Mechanische Schwingungen mit einem Freiheitsgrad
- -Querkraftschub dünnwandiger Profile, Schubmittelpunkt
- -Allgemeiner Spannungs- und Verzerrungszustand
- $\hbox{-} Festigke its hypothesen$
- -Dünnwandige Behälter unter Innendruck
- -Stabknickung
- -Formänderungsenergie

Stand vom 12.07.2023 T3MB2001 // Seite 24

BESONDERHEITEN

Die Sachkompetenz kann durch z.B. zusätzliche Tutorien gestärkt werden.

VORAUSSETZUNGEN

LITERATUR

- Dankert/Dankert: Technische Mechanik, Springer Verlag
 Gross, Hauger, Schröder, Wall: Technische Mechanik 2,3, Springer
 Hibbeler: Technische Mechanik 2,3, Pearson Studium
 Issler, Ruoß, Häfele: Festigkeitslehre-Grundlagen, Springer Verlag
 Läpple: Einführung in die Festigkeitslehre, Vieweg Alle Bücher liegen als ebook vor. In Papierform sind die neuesten Auflagen zu verwenden.

Stand vom 12.07.2023 T3MB2001 // Seite 25

Thermodynamik (T3MB2002)

Thermodynamics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB20022. Studienjahr2Prof. Dr.-Ing. Stephan EngelkingDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, ÜbungLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGUnbenotete PrüfungsleistungSiehe PruefungsordnungBestanden/ Nicht-BestandenKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden haben die Grundlagen der Thermodynamik verstanden und sind in der Lage relevante Informationen zu sammeln, zu verdichten und daraus mit wissenschaftlichen Methoden Ergebnisse abzuleiten.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Anwendungen angemessene Methoden auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Thermodynamik Grundlagen 1	30	45
-		
Thermodynamik Grundlagen 2	30	45

Grundlagen der Thermodynamik

- Der thermische Zustand, Zustangsgleichung des idealen Gases
- Hauptsätze der Thermodynamik
- Zustandsdiagramme
- Zustandsänderungen (isochor, isobar, isotherm und isentrop)
- Dampfdruckverhalten (Dampfdruckkurve)
- $\hbox{-} Grundlagen \ der \ thermodynamischen \ Kreisprozesse.$

Stand vom 12.07.2023 T3MB2002 // Seite 26

BESONDERHEITEN

Dieses Modul kann über ein oder zwei Semester gehalten werden. Wird es einsemestrig gehalten, bietet sich das Modul Thermodynamik Vertiefung als Folgevorlesung im 4. Semester an.

Die Vorlesung kann durch Laborarbeit ergänzt werden. Dabei dürfen Laborberichte auch als Prüfungsleistung herangezogen werden.

VORAUSSETZUNGEN

_

LITERATUR

Baehr, H. D.; Kabelac, S.: Thermodynamik, Springer-Verlag -Hahne, E.: Technische Thermodynamik, Oldenbourg -Elsner, N.: Grundlagen der Technischen Thermodynamik, Bd. 1 + 2, Akademie Verlag -Bosnjakovic, F.: Technische Thermodynamik, Bd. 1 + 2, Steinkopff-Verlag -Stephan, K.: Thermodynamik, Bd. 1: Einstoffsysteme, Springer Verlag -Langeheinecke, K.: Thermodynamik für Ingenieure, Teubner-Verlag -Labuhn, D.; Romberg, O.: Keine Panik vor Thermodynamik, Vieweg -Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler. Bd. 1 und 2, Vieweg -Bronstein, I. N.: Taschenbuch der Mathematik, Deutsch

Stand vom 12.07.2023 T3MB2002 // Seite 27

Mathematik III (T3MB2003)

Mathematics III

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3MB2003	2. Studienjahr	1	Prof. DrIng. Nico Blessing	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Labor	Lehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur	120	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Sicheres Anwenden der mathematischen Methoden auf den Gebieten der Integralrechnung mit Funktionen mehrerer unabhängiger Variablen, den Gewöhnlichen Differenzialgleichungen, den numerischen Methoden der Mathematik. Übertragung der theoretischen Inhalte auf praktische Problemstellungen. Eventuell Anwendung von computergestützten Berechnungsmethoden auf praktische Aufgabenstellungen.

METHODENKOMPETENZ

Die Studierenden kennen mit Abschluss des Moduls die in den Modulinhalten aufgeführten mathematischen Verfahren und Lösungsalgorithmen und sind in der Lage, unter Einsatz/Anwendung dieser Methoden fachübergreifende Problemstellungen zu analysieren und zu lösen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Fächer übergreifende Anwendung der gelernten mathematischen Methoden, Anwendung der theoretischen, mathematischen Inhalte auf praktische Aufgabenstellungen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Mathematik 3	60	90

Didaktisch geeignete Auswahl aus folgenden Lerninhalten:

- Integralrechnung
- Gewöhnliche Differenzialgleichungen
- Integration von Funktionen mit mehreren unabhängigen Variablen (Doppel- und Drefachintegrale)

Optional können weitere Inhalte gewählt werden:

- Numerische Methoden der Mathematik
- ggf. weitere

BESONDERHEITEN

Eine Laborveranstaltung zur Vermittlung von Lerninhalten der numerischen Mathematik kann integriert werden.

Stand vom 12.07.2023 T3MB2003 // Seite 28

VORAUSSETZUNGEN

LITERATUR

- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler. Bd. 1 und 2, Vieweg + Teubner I. N. Bronstein: Taschenbuch der Mathematik, Deutsch M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Vieweg + Teubner

Stand vom 12.07.2023 T3MB2003 // Seite 29

Studienarbeit (T3_3101)

Student Research Projekt

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_31013. Studienjahr2Prof. Dr.-Ing. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN
Individualbetreuung Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGStudienarbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE3001228810

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden können sich unter begrenzter Anleitung in ein komplexes, aber eng umgrenztes Gebiet vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben.

Sie können selbstständig Lösungen entwickeln und Alternativen bewerten. Dazu nutzen sie bestehendes Fachwissen und bauen es selbständig im Thema der Studienarbeit aus.

Die Studierenden kennen und verstehen die Notwendigkeit des wissenschaftlichen Recherchierens und Arbeitens. Sie sind in der Lage eine wissenschaftliche Arbeit effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

METHODENKOMPETENZ

Die Studierenden haben die Kompetenz erworben, relevante Informationen mit wissenschaftlichen Methoden zu sammeln und unter der Berücksichtigung wissenschaftlicher Erkenntnisse zu interpretieren.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können ausdauernd und beharrlich auch größere Aufgaben selbstständig ausführen. Sie können sich selbst managen und Aufgaben zum vorgesehenen Termin erfüllen.

Sie können stichhaltig und sachangemessen argumentieren, Ergebnisse plausibel darstellen und auch komplexe Sachverhalte nachvollziehbar begründen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Studienarbeit	12	288

Stand vom 12.07.2023 T3_3101 // Seite 30

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Die "Große Studienarbeit" kann nach Vorgaben der Studien- und Prüfungsordnung als vorgesehenes Modul verwendet werden. Ergänzend kann die "Große Studienarbeit" auch nach Freigabe durch die Studiengangsleitung statt der Module "Studienarbeit II" und "Studienarbeit II" verwendet werden.

VORAUSSETZUNGEN

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 12.07.2023 T3_3101 // Seite 31

Praxisprojekt I (T3_1000)

Work Integrated Project I

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_10001. Studienjahr2Prof. Dr.-lng. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENPraktikum, SeminarLehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÖFUNGSLEISTUNGPRÖFUNGSUMFANG (IN MINUTEN)BENOTUNGProjektarbeitSiehe PruefungsordnungBestanden/ Nicht-BestandenAblauf- und ReflexionsberichtSiehe PruefungsordnungBestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE600459620

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Absolventinnen und Absolventen erfassen industrielle Problemstellungen in ihrem Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren

zur Lösung des Problems beachtet werden müssen und beurteilen, inwiefern einzelne theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

Die Studierenden kennen die zentralen manuellen und maschinellen Grundfertigkeiten des jeweiligen Studiengangs, sie

können diese an praktischen Aufgaben anwenden und haben deren Bedeutung für die Prozesse im Unternehmen kennen gelernt.

Sie kennen die wichtigsten technischen und organisatorischen Prozesse in Teilbereichen ihres Ausbildungsunternehmens und können deren Funktion darlegen.

Die Studierenden können grundsätzlich fachliche Problemstellungen des jeweiligen Studiengangs beschreiben und fachbezogene Zusammenhänge erläutern.

METHODENKOMPETENZ

Absolventinnen und Absolventen kennen übliche Vorgehensweisen der industriellen Praxis und können diese selbstständig umsetzen. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Relevanz von Personalen und Sozialen Kompetenz ist den Studierenden für den reibungslosen Ablauf von industriellen Prozessen bewusst und sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren und tragen durch ihr Verhalten zur gemeinsamen Zielerreichung bei.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen Handlungskompetenz, indem sie

ihr theoretisches Fachwissen nutzen, um in berufspraktischen Situationen angemessen, authentisch und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Lösungsansätze sowie eine erste Einschätzung der Anwendbarkeit von Theorien für Praxis.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 1	0	560

Stand vom 12.07.2023 T3_1000 // Seite 32

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen		
Wissenschaftliches Arbeiten 1	4	36

Das Seminar "Wissenschaftliches Arbeiten I" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T1000 Arbeit
- Typische Inhalte und Anforderungen an eine T1000 Arbeit
- Aufbau und Gliederung einer T1000 Arbeit
- Literatursuche, -beschaffung und -auswahl
- Nutzung des Bibliotheksangebots der DHBW
- Form einer wissenschaftlichen Arbeit (z.B. Zitierweise, Literaturverzeichnis)
- Hinweise zu DV-Tools (z.B. Literaturverwaltung und Generierung von Verzeichnissen in der Textverarbeitung)

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

Der Absatz "1.2 Abweichungen" aus Anlage 1 zur Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg

(DHBW) bei den Prüfungsleistungen dieses Moduls keine Anwendung.

VORAUSSETZUNGEN

LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 12.07.2023 T3_1000 // Seite 33

Praxisprojekt II (T3_2000)

Work Integrated Project II

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3_20002. Studienjahr2Prof. Dr.-Ing. Joachim FrechDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENPraktikum, VorlesungLehrvortrag, Diskussion, Gruppenarbeit, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGProjektarbeitSiehe PruefungsordnungjaAblauf- und ReflexionsberichtSiehe PruefungsordnungBestanden/ Nicht-BestandenMündliche Prüfung30ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
600	5	595	20

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem angemessenen Kontext und in angemessener Komplexität. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen und situationsgerecht auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Den Studierenden ist die Relevanz von Personalen und Sozialen Kompetenz für den reibungslosen Ablauf von industriellen Prozessen sowie ihrer eigenen Karriere bewusst; sie können eigene Stärken und Schwächen benennen. Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren. Die Studierenden übernehmen Verantwortung im Team, integrieren andere und tragen durch ihr überlegtes Verhalten zur gemeinsamen Zielerreichung bei.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen wachsende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in sozialen berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 2	0	560

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen.

Stand vom 12.07.2023 T3_2000 // Seite 34

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Wissenschaftliches Arbeiten 2	4	26

Das Seminar "Wissenschaftliches Arbeiten II" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Leitlinien des wissenschaftlichen Arbeitens
- Themenwahl und Themenfindung bei der T2000 Arbeit
- Typische Inhalte und Anforderungen an eine T2000 Arbeit
- Aufbau und Gliederung einer T2000 Arbeit
- Vorbereitung der Mündlichen T2000 Prüfung

Mündliche Prüfung	1	9

BESONDERHEITEN

Entsprechend der jeweils geltenden Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg (DHBW) sind die mündliche Prüfung und die Projektarbeit separat zu bestehen. Die Modulnote wird aus diesen beiden Prüfungsleistungen mit der Gewichtung 50:50 berechnet.

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

VORAUSSETZUNGEN			
-			
LITERATUR			

Stand vom 12.07.2023 T3_2000 // Seite 35

Praxisprojekt III (T3_3000)

Work Integrated Project III

EO RIV	// AIE /	ANGARFN	1 711M I	MODIII

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3_3000	3. Studienjahr	1	Prof. DrIng. Joachim Frech	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Praktikum, Seminar	Lehrvortrag, Diskussion, Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Hausarbeit	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden
Ablauf- und Reflexionsbericht	Siehe Pruefungsordnung	Bestanden/ Nicht-Bestanden

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
240	4	236	8

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in moderater Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können.

METHODENKOMPETENZ

Die Studierenden kennen die im betrieblichen Umfeld üblichen Methoden, Techniken und Fertigkeiten und können bei der Auswahl deren Stärken und Schwächen einschätzen, so dass sie die Methoden sachangemessen, situationsgerecht und umsichtig auswählen. Die ihnen übertragenen Aufgaben setzen die Studierenden durch durchdachte Konzepte, fundierte Planung und gutes Projektmanagement auch bei sich häufig ändernden Anforderungen systematisch und erfolgreich um. Dabei bauen sie auf ihr theoretisches Wissen sowie ihre wachsende Berufserfahrung auf.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden weisen auch im Hinblick auf ihre persönlichen personalen und sozialen Kompetenzen einen hohen Grad an Reflexivität auf, was als Grundlage für die selbstständige persönliche Weiterentwicklun genutzt wird.

Den Studierenden gelingt es, aus Erfahrungen zu lernen, sie übernehmen selbstständig Verantwortung für die übertragene Aufgaben, mit denen sie sich auch persönlich identifizieren.

Die Studierenden übernehmen Verantwortung für sich und andere. Sie sind konflikt und kritikfähig.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden zeigen umfassende Handlungskompetenz, indem sie ihr theoretisches Fachwissen und ihr wachsendes Erfahrungswissen nutzen, um in berufspraktischen Situationen angemessen und erfolgreich zu agieren.

Dazu gehören auch das eigenständige kritische Beobachten, das systematische Suchen alternativer Denk- und Lösungsansätze sowie das Hinterfragen von bisherigen Vorgehensweisen. Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Projektarbeit 3	0	220

Es wird auf die jeweiligen Praxispläne der Studiengänge der Fakultät Technik verwiesen

Stand vom 12.07.2023 T3_3000 // Seite 36

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMWissenschaftliches Arbeiten 3416

Das Seminar "Wissenschaftliches Arbeiten III" findet während der Theoriephase statt. Eine Durchführung im gesamten Umfang in einem Semester oder die Aufteilung auf zwei Semester ist möglich. Für einige Grundlagen kann das WBT "Wissenschaftliches Arbeiten" der DHBW genutzt werden.

- Was ist Wissenschaft?
- Theorie und Theoriebildung
- Überblick über Forschungsmethoden (Interviews, etc.)
- Gütekriterien der Wissenschaft
- Wissenschaftliche Erkenntnisse sinnvoll nutzen (Bezugssystem, Stand der Forschung/Technik)
- Aufbau und Gliederung einer Bachelorarbeit
- Projektplanung im Rahmen der Bachelorarbeit
- Zusammenarbeit mit Betreuern und Beteiligten

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der Dualen Hochschule Baden-Württemberg hingewiesen.

VORAUSSETZUNGEN

LITERATUR

- Web-based Training "Wissenschaftliches Arbeiten"
- Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation,, Bern
- Minto, B., The Pyramid Principle: Logic in Writing, Thinking and Problem Solving, London
- Zelazny, G., Say It With Charts: The Executives's Guide to Visual Communication, Mcgraw-Hill Professional.

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 12.07.2023 T3_3000 // Seite 37

Fluidmechanik (T3MB2701)

Fluid Mechanics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB27012. Studienjahr1Prof. Dr.-Ing. Stephan EngelkingDeutsch/Englisch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung, Labor
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden haben die Grundlagen der Fluidmechanik verstanden und sind in der Lage relevante Informationen zu sammeln, zu verdichten und daraus mit wissenschaftlichen Methoden Ergebnisse abzuleiten.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Anwendungen angemessene Methoden auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Fluidmechanik	60	90

Einführung in die technische Fluidmechanik

- Fluid-Statik
- Fluid-Dynamik
- Strömungen ohne Dichteänderungen
- Strömungen mit Dichteänderungen
- Erhaltungsgleichungen für Masse, Impuls und Energie
- Laminare und turbulente Strömungen
- Wärmeübertragung
- Überblick über moderne Software in der Fluidmechanik und Wärmeübertragung

Aus dieser Themenliste sollen mindestens fünf Themen intensiv behandelt werden.

Die Vorlesung kann durch CFD Simulation (Laborarbeit) ergänzt werden.

Stand vom 12.07.2023 T3MB2701 // Seite 38

BESONDERHEITEN

Labor kann vorgesehen werden

VORAUSSETZUNGEN

LITERATUR

Sigloch, H.: Technische Fluidmechanik, Springer, Berlin von Böckh, P.: Fluidmechanik, Springer Truckenbrodt, E.: Fluidmechanik, Bd. 1 und 2, Springer, Berlin Bohl, W. und Elmendorf, W.: Technische Strömungslehre, Vogel Buch-Verlag, Würzburg

Stand vom 12.07.2023 T3MB2701 // Seite 39

Heizungs- und Klimatechnik (T3MB2402)

Heating and Air Conditioning Technology

FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3MB2402
 2. Studienjahr
 1
 Prof. Dr.-lng. Martin Hornberger
 Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborLehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

90

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, die Auslegungsgrundlagen von heizungstechnischen Anlagen zu erarbeiten, die Behaglichkeit in Aufenthaltsräum zu bewerten, Wärmeerzeugungsanlagen nach ihrer Funktion einzuordnen und nach ihrer energetischen Effektivität zu bewerten. Sie können thermodynamische Behandlungen im h,x-Diagramm darstellen, analysieren und bewerten sowie Klima- und Lüftungssysteme nach ihrer Funktion zu identifizieren und einordnen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, im Planungsprozess für heizungs- und klimatechnische Anlagen eigenständig Schwerpunkte hinsichtlich der Systemwahl zu setzen, um die Anforderungen und Wünsche des Auftraggebers zu erfüllen und eine energiesparende Systemlösung zu entwickeln

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, die Auslegungsgrundlagen für heizungs- und klimatechnische Anlagen mit dem Auftraggeber abzuklären, die erforderlichen Unterlagen und Informationen zu beschaffen sowie die Auswirkungen auf die Nutzer anschaulich darzulegen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, die Grundlagen für heizungs- und klimatechnische Anlagen in Zusammenarbeit mit allen Beteiligten zu erarbeiten, eine Systemlösung vorzuschlagen und hinsichtlich Umweltauswirkungen zu bewerten und zu erläutern.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMHeizungs- und Klimatechnik6090

Anforderungen an Heizanlagen: Norm-Heizlast-Berechnung, Energieeinsparverordnung, EEG, Behaglichkeitskriterien. Heizungsarten: zentral/ dezentral, Wasser, Dampf, Warmluft. Wärmeerzeuger: Heizkessel, Fernheizung, Wärmepumpen samt Wärmequellen, Blockheizkraftwerke, thermische Solaranlagen, Erdwärmesysteme. Anforderungen an Raumlufttechnische Anlagen. Grundlagen: Begriffe, h,x-Diagramm, thermodynamische Behandlungsfunktionen.

Arten von Lüftungssystemen: Freie/ Maschinelle Lüftung, nur-Luft-Anlagen/ Luft/Wasser-Anlagen, Luftführungsarten und Raumluftströmung.

Stand vom 12.07.2023 T3MB2402 // Seite 40

BESONDERHEITEN

Ein Labor von 12 h ist vorzusehen.

VORAUSSETZUNGEN

keine

LITERATUR

Mundus, B.: Heiztechnik, Vulkan-Verlag Essen

Fitzner, Klaus (Hrsg.): Raumklimatechnik * Band 3: Raumheiztechnik. Springer Verlag, Berlin, Heidelberg

Eichmann, R.A.: Grundlagen der Klimatechnik. C.F. Müller Verlag, Heidelberg

Reinmuth, F.: Raumlufttechnik. Vogel Verlag, Würzburg

Stand vom 12.07.2023 T3MB2402 // Seite 41

Bautechnische Grundlagen (T3MB2403)

Construction Technology Basics

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3MB2403	2. Studienjahr	1	Prof. DrIng. Martin Hornberger	Deutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage,

- bauphysikalische Grundlagen wie den Wärme- und
- Feuchtetransport in Gebäuden unterschiedlicher Konzeptionen zu berechnen,
- Baukonzepte und Detaillösungen auszuwählen und nach energetischen Gesichtspunkte zu bewerten,
- Temperatur- und Feuchtediagramme zu erstellen

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, eigenständig energieoptimierte Lösungen bei der Gebäudeplanung zu erarbeiten, Vor- und Nachteile hinsichtlich Nutzbarkeit und energetischer Qualität zu bewerten und abzuwägen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, Systemlösungen nach wirtschaftlichen, technischen und umweltrelevanten Aspekten zu beurteilen, den Objektplaner hinsichtlich energierelevanter Aspekte im Sinne einer integralen Gebäudeplanung zu beraten und die Lösungen gegenüber Planungsbeteiligten und Bauherren zu vertreten.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, in Zusammenarbeit mit allen Bau- und Planungsbeteiligten eine gesamtheitliche energie- und komfortoptimierte Gebäudelösung abzustimmen und zu verabschieden.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Bautechnische Grundlagen	60	90

Stand vom 12.07.2023 T3MB2403 // Seite 42

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Wärme- und Feuchtetransport

- Wärmedurchgang, Wärmebrücken, Strahlung, Speicherung, Wasserdampfdiffusion, Glaserdiagramm, Tauwasserbildung

Baustoffe

Baukonzepte

Bauteile

- Wände
- Dächer
- Fenster/ Verglasungen
- Doppelfassaden

Wärmebrücken

Gebäudekonzepte

- Baukörperform
- Zonierung
- Speichermassen
- Passivhaus
- Nullenergiehaus (echtes und unechtes)

Wirtschaftlichkeitsrechnung

- Herstellkosten
- Betriebskosten
- Gesamtkosten
- statische und dynamische Investitionsrechnung

BESONDERHEITEN

Eine Exkursion ist erwünscht.

VORAUSSETZUNGEN

LITERATUR

Willems, Wolfgang (Hrsg.): Lehrbuch der Bauphysik : Schall - Wärme - Feuchte - Licht - Brand - Klima Springer Vieweg Verlag, Wiesbaden

Schöberl, Helmut: Kostengünstige mehrgeschossige Passivwohnhäuser: Kosten, Technik, Lösungen, Nutzererfahrungen Fraunhofer IRB-Verl., Stuttgart

Lohmeyer, G.: Praktische Bauphysik, Teubner Verlag, Stuttgart,

Eickenhorst, H.: Energieeinsparung in Gebäuden, Vulkan-Verlag Essen

Stand vom 12.07.2023 T3MB2403 // Seite 43

Wasser-/ Abwassersysteme (T3MB3401)

Water/ Waste Water Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB34013. Studienjahr1Prof. Dr.-lng. Martin HornbergerDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Übung Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, komplexe Wasser- und Abwassersysteme samt Wasseraufbereitungsanlegen zu verstehen, zu planen und auszulegen. Sie identifizieren den Einfluss unterschiedlicher Funktionsprinzipien auf die Wasserqualität und die Bedeutung der hygienischen Maßnahmen zum Trinkwasserschutz und können die Technologien verantwortlich einsetzen.

METHODENKOMPETENZ

Die Studierenden verfügen mit Abschluss des Moduls über die Kompetenz , den Bedarf zielgerichtet zu ermitteln, Wasser-/ Abwassersysteme auf den jeweiligen Anwendungsfall abgestimmt zu projektieren, auszulegen und eigenständig auf projektspezifische Anforderungen einzugehen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden haben mit Abschluss des Moduls die Kompetenzen erworben, Auswirkungen von Wasser- und Abwassersystemen auf den Komfort und die Gesundheit der Nutzer zu analysieren und zu bewerten und in der Konsequenz zielgerichtet planerisch handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben mit Abschluss des Moduls die Kompetenzen erworben, Wasser- und Abwassersysteme selbstständig zu projektieren und in das Arbeits- bzw. Wohnumfeld zu integrieren

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Wasser-/ Abwassersysteme	60	90

Aufbau, Funktion und Berechnung von Wasserversorgungsanlagen, Abwasseranlagen, Wasseraufbereitungsanlagen und Feuerlösch- und Brandschutzeinrichtungen

BESONDERHEITEN

VORAUSSETZUNGEN

keine

Stand vom 12.07.2023 T3MB3401 // Seite 44

LITERATUR

Karger, Rosemarie, Hoffmann, Frank:

Wasserversorgung: Gewinnung - Aufbereitung - Speicherung - Verteilung, Springer Vieweg; Wiesbaden

Kistemann, Thomas, Schulte, Werner, Rudat, Klaus, Hentschel, Wolfgang, Häußermann, Daniel: Gebäudetechnik für Trinkwasser: Fachgerecht planen - Rechtssicher ausschreiben - Nachhaltig sanieren, Springer Berlin Heidelberg

Bendlin, Herbert, Eßmann, Martin: Reinstwasser, Maas & Peither GMP Verlag, Schopfheim

Stand vom 12.07.2023 T3MB3401 // Seite 45

Heizungs- und Klimatechnik II (T3MB3402)

Heating and Air Conditioning Technology II

FORMALE ANGABEN ZUM MODUL

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3MB3402
 3. Studienjahr
 1
 Prof. Dr.-Ing. Martin Hornberger
 Deutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung, Labor
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, heizungs- und lüftungstechnische Anlagen nach den Anforderungen zu konzipieren und auszulegen, Anlagenkomponenten auszuwählen und zu bewerten sowie Raumkühllasten zu berechnen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, bei der Projektierung heizungs- und klimatechnischer Anlagen energiesparende, umweltschonende und wirtschaftliche Lösungen selbstständig zu erarbeiten.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, unterschiedliche Heiz- und Lüftungskonzepte hinsichtlich ihres Energie- und Rohstoffverbrauchs sowie den physiologischen Auswirkungen auf die Nutzer zu bewerten, die Umweltauswirkungen zu ermitteln und dem Auftraggeber darzulegen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, die für alle Beteiligten optimale Anlagenlösung zu projektieren, zu planen und zu bewerten, zuverlässige und betriebssichere Anlagen zu schaffen und mit funktionell verbundenen Systemen zu vernetzen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Heizungs- und Klimatechnik 2	60	90

Wärmeerzeugung mit konventionellen und regenerativen Energien:

- Fern-/ Nahwärmeheizungen
- Wärmepumpen
- Blockheizkraftwerke
- Solarthermische Anlagen
- Erdwärmeanlagen

Grundlagen der Auslegung raumlufttechnischer Anlagen:

- Volumenstromberechnung: hygienisch erforderliche Außenluftströme, Zu- und Abluftströme, Wärme- und Feuchtelasten, Arbeitsgerade
- Kühllastberechnung: Innere und äußere Lasten, transparente und opake Bauteile, instationäre Vorgänge.

Stand vom 12.07.2023 T3MB3402 // Seite 46

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

BESONDERHEITEN

Ein Labor über 12 h ist vorzusehen

VORAUSSETZUNGEN

Erfolgreicher Abschluss des Moduls Heizungs- und Klimatechnik I

LITERATUR

Mundus, B.: Heiztechnik, Vulkan-Verlag Essen

Fitzner, Klaus (Hrsg.): Raumklimatechnik - Band 3: Raumheiztechnik. Springer Verlag, Berlin, Heidelberg

Eichmann, R.A.: Grundlagen der Klimatechnik. C.F. Müller Verlag, Heidelberg

Reinmuth, F.: Raumlufttechnik. Vogel Verlag, Würzburg

Stand vom 12.07.2023 T3MB3402 // Seite 47

Energiemanagement (T3MB3403)

Energy Management

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB34033. Studienjahr1Prof. Dr.-Ing. Martin HornbergerDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage,

- Energiebilanzen mit unterschiedlichen Verfahren aufzustellen und Jahresenergieverbräuche zu berechnen
- Gebäude und Anlagen energieeffizient als Gesamtsystem zu betreiben

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage,

- den Ist-Zustand von Gebäuden und versorgungstechnischen Anlagen aller Art für den jeweiligen Anwendungsfall eigenverantwortlich zu analysieren
- Optimierungspotenzial für Gebäude und Anlagen zu identifizieren
- Lösungsansätze zur Energieoptimierung eigenverantwortlich und zielführend zu entwickeln

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, die technischen Systeme so zu beeinflussen, dass eine ressourcenschonende und umweltfreundliche Energieversorgung möglich wird

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, Gebäude und Anlagen als Gesamtsystem zusammen mit der Energielieferkette energieoptimiert zu planen, bauen, den Betrieb effizient zu gestalten und somit über den gesamten Lebenszyklus nachhaltig zu betreiben.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Energiebilanzverfahren - Systembetrieb	36	54

Energiebilanzverfahren, Energieverbrauch, Primärenergie, Berechnungsverfahren für Energieverbrauch, z.B. nach Gradtagszahlen/ Kühlgradstunden, Periodenbilanzverfahren Gebäudeautomationssysteme Methoden: Datenerfassung und Analyse, Bewertung, Referenzdaten, Optimierungs-/ Sanierungsmethoden, Contracting-Modelle, Projekt-Beispiele

Stand vom 12.07.2023 T3MB3403 // Seite 48

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Energiemanagementsysteme	24	36

Aufbau und Instrumente eines Energiemanagementsystems, z.B. DIN EN ISO 50001

- Anforderungen
- Verantwortliche Personen
- Dokumentation,

BESONDERHEITEN

-

VORAUSSETZUNGEN

-

LITERATUR

Reese, Karsten: DIN EN ISO 50001 in der Praxis: Ein Leitfaden für Aufbau und Betrieb eines Energiernanagementsystems, Vulkan-Verlag.

Lackner, Petra; Holanek, Nicole: Handbuch - Schritt für Schritt Anleitung für die Implementierung von Energiemanagement, Österreichische Energieagentur

Ljutfiji, Bashkim: Die DIN EN ISO 50001: Anforderungen und Hinweise, Praxiswissen Energiemanagement, TÜV Media GmbH TÜV Rheinland Group

Reimann, Grit: Erfolgreiches Energiemanagement nach DIN EN ISO 50001 - Lösungen zur praktischen Umsetzung, Beuth Verlag GmbH Berlin Wien Zürich

Reinmuth, Friedrich: Energieeinsparung in der Gebäudetechnik. Vogel Buchverlag, Würzburg

Recknagel, Sprenger, Schramek: Taschenbuch für Heizung und Klimatechnik. Oldenbourg Verlag, München

Kranz, H.R.: Building Control. Expert Verlag, Renningen

Stand vom 12.07.2023 T3MB3403 // Seite 49

Heizungs- und Klimatechnik III (T3MB3404)

Heating and Air Conditioning Technology III

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3MB3404	3. Studienjahr	1	Prof. DrIng. Martin Hornberger	Deutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung, Labor
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, Regelstrategien für heizungs- und lüftungstechnische Anlagen zu entwerfen und auszuarbeiten, Kälteversorgungssysteme zu projektieren, die Anlagenkomponenten zu dimensionieren und zu bewerten, Reinraumsysteme zu klassifizieren und einzuordnen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, bei der Projektierung heizungs- und klimatechnischer Anlagen betriebssichere, energiesparende, umweltschonende und wirtschaftliche Lösungen selbstständig zu erarbeiten.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, unterschiedliche Heiz- und Lüftungskonzepte hinsichtlich ihres Energie- und Rohstoffverbrauchs zu bewerten, die Umweltauswirkungen zu ermitteln und dem Auftraggeber entscheidungsreif darzulegen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, in Abstimmung mit Gebäuden, Produkitonsprozessen und sonstigen Randbedingungen die für alle Beteiligten optimale Systemlösung zu projektieren, zu planen und zu bewerten sowie zuverlässige und betriebssichere Anlagen im Systemzusammenhang zu schaffen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Heizungs- und Klimatechnik 3	60	90

Stand vom 12.07.2023 T3MB3404 // Seite 50

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Raumheizeinrichtungen samt Heizflächenauslegung wie z.B.

- Heizkörper
- Fußbodenheizung
- Deckenstrahlplatten
- Fassadenheizung
- Luftheizer

Rohrnetze:

- Arten
- Konstruktion
- Zubehör (Pumpen, Armaturen, Ausdehnungsgefäße,
- Wasseraufbereitung etc.)
- Rohrnetzberechnung

Regelkonzepte für Heizungsanlagen:

- Netztemperaturen
- Warmwasserbereitung
- Fernwärmeübergabe

Komponenten Raumlufttechnischer Anlagen:

- Zentralgeräte
- Zu- und Abluftdurchlässe
- Luftleitungen und -kanäle
- Sicherheitseinrichtungen
- Raumklimageräte
- Regeleinrichtungen

Kälteanlagen:

- Kompressionskältemaschinen
- Sorptionskältemaschinen
- Rückkühlwerke.

Industrielle Lüftungsanlagen:

- Einführung in die Reinraumtechnik
- Trocknungsanlagen

BESONDERHEITEN

Ein Labor über 12 h ist vorzusehen.

VORAUSSETZUNGEN

Erfolgreicher Abschluss der Module Heizungs- und Klimatechnik I und II

LITERATUR

Mundus, B.: Heiztechnik, Vulkan-Verlag Essen

Fitzner, Klaus (Hrsg.): Raumklimatechnik * Band 3: Raumheiztechnik. Springer Verlag, Berlin, Heidelberg

Eichmann, R.A.: Grundlagen der Klimatechnik. C.F. Müller Verlag, Heidelberg

Reinmuth, F.: Raumlufttechnik. Vogel Verlag, Würzburg

Recknagel, Sprenger, Schramek: Taschenbuch für Heizung und Klimatechnik. Oldenbourg Verlag, München

Stand vom 12.07.2023 T3MB3404 // Seite 51

Mess-, Steuer- und Regelungstechnik (T3MB9154)

Measurement and Control

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB91542. Studienjahr1Prof. Dr.-lng. Kai BecherDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, LaborLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGLaborarbeit einschließlich Ausarbeitungusurarbeit oder Kombinierte PrüfungSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die Grundlagen des Messen, Steuern und Regelns und können diese auf technisch relevante Sachverhalte anwenden.

METHODENKOMPETENZ

Die Studierenden erlangen ein theoretisches Verständnis zu verschiedenen Messketten, der Signalverarbeitung und Grundlagen für das Arbeiten am Leitstand.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind sich der großen Verantwortung des Messen, Steuern und Regelns einer Anlage bewusst und übertragen dieses Verantwortungsbewusstsein in ihre zukünftigen Tätigkeiten.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden vertiefen im Selbststudium die gelehrten Fachinhalte und sind hierdurch auf ein lebenslanges Lernen vorbereitet. Auch können die Studierenden die Lerninhalte in die Praxis übertragen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMessen, Regeln, Steuern6090

- Grundbegriffe der Mess- und Regelungstechnik
- Messwertaufnehmer
- Messwerterfassung
- Signalverarbeitung
- Leitstand
- vernetzte Anlagen

BESONDERHEITEN

Eine vorlesungsbegleitende Laborveranstaltung kann vorgesehen werden.

Stand vom 12.07.2023 T3MB9154 // Seite 52

LITERATUR

- Reichwein J., Hochheimer G., Simic D.: Messen, regeln und steuern: Grundoperationen der Prozessleittechnik. Wiley-VCH.
 Hengstenberg J. [Hrsg.]: Messen, Steuern und Regeln in der chemischen Technik. Springer.
 Unbehauen H.: Regelungstechnik I. Vieweg+Teubner.
 Unbehauen H.: Regelungstechnik II. Vieweg.
 Thieme M.: Winter H.: Prozessleittechnik in Chemieanlagen. Europa-Lehrmittel.

Stand vom 12.07.2023 T3MB9154 // Seite 53

Betriebswirtschaftslehre und Projektmanagement (T3MB9000)

Business Administration and Project Management

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB90002. Studienjahr2Prof. Dr.-Ing. Nico BlessingDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÖFUNGSLEISTUNG PRÖFUNGSUMFANG (IN MINUTEN) BENOTUNG

Klausurarbeit oder Kombinierte Prüfung 120 ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H) DAVON PRÄSENZZEIT (IN H) DAVON SELBSTSTUDIUM (IN H) ECTS-LEISTUNGSPUNKTE

150 72 78 5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden erwerben die für einen Ingenieur notwendigen Kenntnisse der Allgemeinen Betriebswirtschaftslehre und des Projektmanagements und können diese auf technische Problemstellungen und Projekte anwenden.

METHODENKOMPETENZ

Die Studierenden sind in der Lage Geschäftsprozesse und Unternehmensabläufe zu verstehen und zu analysieren. Durch die im Modul erlernten Methoden können die Studierenden im eigenen Arbeitsumfeld betriebswirtschaftliche Aspekte Ihres Handelns bewerten und nachvollziehbar darstellen.

Die Studierenden kennen die Begriffe und Methoden des Projektmanagements und können dies im technischen Umfeld ihres Arbeitslebens einsetzen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind in der Lage, die sozialen und politischen Auswirkungen wirtschaftlichen Handels zu reflektieren. Sie verstehen im Gegenzug die Rahmenbedingungen, die Unternehmen bei der Erreichung ihrer Ziele zu beachten haben. Die Studierenden verstehen die Probleme bei der Zusammenarbeit im Projektteam und die Integration eines Projektes in die Linienorganisation.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können die betriebswirtschaftlichen Kenntnisse auf unterschiedliche technische Aufgabenstellungen anwenden Die Studierenden kennen die Anforderungen an Projekt-Management, -Organisation, -Kommunikation und –Controlling und können diese fallbezogen begründen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Betriebswirtschaftslehre und Projektmanagement	72	78

Stand vom 12.07.2023 T3MB9000 // Seite 54

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Betriebswirtschaftslehre:

Didaktisch geeignete Auswahl aus folgenden Lerninhalten:

- Grundlagen und Definitionen der Betriebswirtschaftslehre
- Aufbau und Struktur von Unternehmen
- Unternehmensformen
- Unternehmensführungsstrategien
- Produktionsformen
- Einkauf / Logistik / Materialwirtschaft
- Vertrieb / Marketing
- Personalwesen
- Grundlagen des betrieblichen Finanz- und Rechnungswesen und Controlling
- Grundlagen der Investitionsrechnung
- Forschung und Entwicklung
- Qualitätswesen
- ggf. weitere

Projektmanagement

Didaktisch geeignete Auswahl aus folgenden Lerninhalten:

- Definition: Projekt
- Projektorganisation
- Projektplanung, Projektphasen und Projektstrukturplan
- Projekt-Controlling
- Methoden und Instrumente zur Organisation, Planung und Controlling im Projekt
- Zusammensetzung von Teams
- Instrumente für Motivation und Feedback zur Führung von Projektteams
- ggf. weitere

BESONDERHEITEN

Die Inhalte können begleitend durch den Einsatz eines Planspiels veranschaulicht werden.

Die Veranstaltung kann entweder im 3. und 4. Semester oder im 3. Semester oder im 4. Semester abgehalten werden.

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

LITERATUR

- Einführung in die Allgemeine Betriebswirtschaftslehre (Vahlens Handbücher der Wirtschafts- und Sozialwissenschaften) Günter Wöhe (Autor), Ulrich Döring (Autor), Gerrit Brösel (Autor) Vahlen
- Projektmanagement für Ingenieure: Ein praxisnahes Lehrbuch für den systematischen Projekterfolg Walter Jakoby, Springer Vieweg

Stand vom 12.07.2023 T3MB9000 // Seite 55

Verfahrenstechnik (T3MB9002)

Process Engineering, Common Technologies

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB90022. Studienjahr1Prof. Dr.-Ing. Martin HornbergerDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, unterschiedliche Behandlungsverfahren zu verstehen, Prozesse nach ihrem Anwendungsfall auszuwählen und Verfahren nach ihrer Effektivität und Wirtschaftlichkeit zu bewerten.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls diin der Lage, der Aufgabe entsprechend selbstständig Verfahrensabläufe zu konzipieren und prozesstechnisch umzusetzen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, die Auswirkungen der Verfahren auf Mensch und Umwelt zu analysieren, Umwelteinflüsse zu identifizieren und zu bewerten.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, Verfahrensabläufe projektspezifisch in Abstimmung mit allen Beteiligten zu erarbeiten, bewerten und im Sinne einer Systemlösung mit angrenzenden Prozessen abzustimmen und umzusetzen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Verfahrenstechnik	60	90

Stand vom 12.07.2023 T3MB9002 // Seite 56

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN PRÄSENZZEIT SELBSTSTUDIUM

Mechanische Verfahren wie z.B.:

- Zerkleinern
- Trennen
- Mischen
- sonstige physikalische Verfahren

Thermische Verfahren wie z.B.:

- Destillieren
- Rektifizieren
- Kristallisieren
- Hydrieren
- Verbrennen
- Sintern
- Trocknen

Chemische Verfahren wie z.B.:

- Absorbieren
- Synthetisieren
- Katalyse
- Polymerisieren
- Elektrolyse
- homogene Reaktionen
- mehrphasige Reaktionen
- Ionenaustausch
- Fällen/ Aussalzen

Biologische Verfahren wie z.B.:

- Natürliche Selbstreinigung
- Festbettreaktoren
- Landbehandlung
- Oberflächengewässer
- aerobe Verfahren
- anaerobe technische Verfahren
- Klärsysteme

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

LITERATUR

Hemming, W., Wagner, Walter: Verfahrenstechnik, Vogel Verlag,

Taschenbuch der Verfahrenstechnik. Hrsg. Karl Schwister, München, Fachbuchverl. Leipzig im Carl-Hanser-Verl.

Stand vom 12.07.2023 T3MB9002 // Seite 57

Numerische Strömungsmechanik (CFD) (T3MB9009)

Computational Fluid Dynamics

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB90093. Studienjahr1Prof. Dr. Gangolf KohnenDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Labor, Vorlesung, Labor
 Laborarbeit, Lehrvortrag, Diskussion, Fallstudien

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETEN:

Die Studierenden haben die Grundlagen der numerischen Strömungsmechanik verstanden und sind in der Lage relevante Informationen zu sammeln, zu verdichten und daraus mit wissenschaftlichen Methoden Ergebnisse abzuleiten.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für komplexe Anwendungen angemessene Methoden auszuwählen und anzuwenden. So können die Möglichkeiten, Praktikabilität und Grenzen der eingesetzten Methode einschätzen und sind in der Lage, Handlungsalternativen aufzuzeigen.

PERSONALE UND SOZIALE KOMPETENZ

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

_

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMNumerische Strömungsmechanik (CFD)3654

- Wiederholung fluidmechanischer Grundlagen
- Übersicht Diskretisierungsmethoden (zeitlich, räumlich)
- Finite Volumen Verfahren
- Berechnung des Druckes, Gekoppelte Gleichungen und ihre Lösungen
- Unterrelaxation, Konvergenzkriterien
- iterative Lösungsverfahren für numerischer Gleichungssysteme
- Turbulenzmodellierung
- Qualitätsaspekte
- Validierungsmöglichkeiten

Stand vom 12.07.2023 T3MB9009 // Seite 58

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMCFD - Labor2436

- Modellbildung, Parameter, Randbedingungen
- Schnittstellen, Pre-, Postprozessing
- Projektbezogene Auswahl und Einführung in die Simulationssysteme
- Interpretation und Bewertung der Simulationsergebnisse und -systeme

BESONDERHEITEN

Es kann ein Labor und/oder Projekt vorgesehen werden. Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

-

LITERATUR

- Anderson, J.D.: Computational Fluid Dynamics: The Basics with Applications, McGraw Hill International Editions
- Ferziger, J., Peric, M.: Computational Methods for Fluid Dynamics, Springer Verlag
- Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics, Vol 1 + 2, Springer Verlag
- Oertel, H., Laurien, E.: Numerische Strömungsmechanik Springer Verlag
- Patankar, S.U.: Numerical Heat Transfer and Fluid Flow, Taylor and Francis
- Schäfer, M.: Numerik im Maschinenbau Springer Verlag
- Tennekes, H., Lumley, J.L.: First Course in Turbulence, MIT Press
- Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Mechanics The Finite Volume Method, Pearson Verlag
- Wilcox, D.C.: Turbulence Modeling for CFD, DCW Industries

Stand vom 12.07.2023 T3MB9009 // Seite 59

Kältetechnik (T3MB9010)

Refrigeration

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB90103. Studienjahr1Prof. Dr. Arndt-Erik SchaelDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, Übung, LaborLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Absolventen haben die Anwendungen der modernen Kälteversorgung für die Kälte- und Klimatechnik erlernt. Diese können die Studierenden in technologischer, ökonomischer und ökologischer Betrachtungsweise bewerten. Der Aufbau und die Funktionsweise der Anlagen sowie die unterschiedlichen Methoden zur Kälteerzeugung sind ihnen bekannt.

METHODENKOMPETENZ

Die Absolventen verfügen über das in den Modulinhalten aufgeführte Spektrum an Methoden und Techniken zur Bearbeitung komplexer, wissenschaftlicher Probleme in ihrem Studienfach, aus denen sie angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Bei einzelnen Methoden verfügen Sie über vertieftes Fach- und Anwendungswissen.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden können sowohl eigenständig, also auch im Team zielorientiert und nachhaltig handeln.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden haben Kompetenzen im Bereich der Kälte- und Klimatechnik erlangt. Dadurch sind sie in der Lage die Verknüpfungen zu verschiedenen Teildisziplinen als auch zu übergreifenden Handlungsfeldern (z.B. der Energiewirtschaft und der Energie- sowie Umweltpolitik) zu erstellen. Eine verantwortungsbewusste Anwendung und eigenverantwortliche Vertiefung ihres Wissens ist den Studierenden möglich.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMKältetechnik6090

- Geschichte der Kältetechnik
- Grundlagen der Kälteerzeugung
- Vorschriften und Regulierungen in der Kältetechnik
- Kompressionskältemaschinen
- Sorptionskältemaschinen, solare Kühlung
- Sonderverfahren zur Kälteerzeugung
- Kältespeicher und Isolation

Stand vom 12.07.2023 T3MB9010 // Seite 60

BESONDERHEITEN

Anwendungen und Vertiefungen des Erlernten in Übungen, Laboren und in Workshops sind erwünscht. Besichtigungen von Außenanlagen und Exkursionen sind möglich

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

_

LITERATUR

- von Cube, H.L.; Steimle, F.; Lotz, H.; Kunis, J. (Hrsg.): Lehrbuch der Kältetechnik. C.F. Müller.
- Bäckström, M.; Amblik, E.: Kältetechnik. Verlag G. Braun.
- IKET (Hrsg.): Pohlmann Taschenbuch der Kältetechnik. Hüthig.
- Gosney, W. B.: Principles of Refrigeration. Cambridge University Press.
- Tiator, I.; Schenker, M.: Wärmepumpen und Wärmepumpenanlagen. Vogel-Verlag
- Tagungsberichte des Deutschen Kälte- und Klimatechnischen Vereins (DKV).
- Deutscher Kälte- und Klimatechnischer Verein (DKV) (Hrsg.): Kältemaschinenregeln. C. F. Müller Verlag, Hüthig Gruppe.
- DKV (Hrsg.): DKV-Arbeitsblätter für die Wärme- und Kältetechnik. C. F. Müller Verlag, Hüthig Gruppe.

Stand vom 12.07.2023 T3MB9010 // Seite 61

Nachhaltige Energiesysteme (T3MB9011)

Sustainable Energy Systems

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB90113. Studienjahr1Prof. Dr.-Ing. Alexandra DunzDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN

Vorlesung, Labor Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausurarbeit oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind in der Lage, mit den in den Modulinhalten genannten Techniken ingenieurmäßige Fragestellungen in ihrem Arbeitsumfeld zu diesem Thema zu erkennen, sie methodisch grundlagenorientiert zu analysieren und zu lösen.

METHODENKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, für weitgehend standardisierte Anwendungsfälle in der Praxis die angemessene Methode auszuwählen und anzuwenden. Sie kennen die Stärken und Schwächen der Methode in ihrem beruflichen Anwendungsfeld und können diese in konkreten Handlungssituationen gegeneinander abwägen.

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

-

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMNachhaltige Energiesysteme6090

- Einführung in die nachhaltige Energietechnik und -wirtschaft
- Grundlagen der erneuerbaren Energien wie Photovoltaik, Solarthermie, Windkraft, Wasserkraft, Brennstoffzellen und Biomasse; aufgebaut auf vorhandenem Wissen der

Thermodynamik, Strömungslehre und Elektronik

- Energieeffiziente Gebäudetechnik
- Energiewirtschaftliche Prozesse

BESONDERHEITEN

Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

-

Stand vom 12.07.2023 T3MB9011 // Seite 62

LITERATUR

- Kaltschmitt, M; Streicher, W; Wiese, A: Erneuerbare Energien, Springer Vieweg
- Quaschning, V: Regenerative Energiesysteme, Hanser-Verlag
- Wastter, H: Nachhaltige Energiesysteme, Vieweg + Teubner
 Zahoransky, Richard A.: Energietechnik Systeme zur Energieumwandlung. Vieweg+Teubner
 Hadamovsky, Jonas: Solarstrom Solarthermie. Vogel-Verlag
 Cerbe; Hoffmann: Einführung in die Wärmelehre. Carl Hanser Verlag München Wien

- Baehr, H.D.: Thermodynamik. Springer Verlag Hau, Erich: Windkraftanlagen Grundlagen, Technik, Einsatz, Wirtschaftlichkeit. Springer Verlag
- Recknagel; Sprenger: Taschenbuch für Heizungs- und Klimatechnik. Oldenbourg-Verlag München Tiator; Schenker: Wärmepumpen und Wärmepumpenanlagen. Vogel-Verlag

Stand vom 12.07.2023 T3MB9011 // Seite 63

Bachelorarbeit (T3_3300)

Bachelor Thesis

EO RM	AIEA	NCAREN	1 711M	MODIII

 MODULNUMMER
 VERORTUNG IM STUDIENVERLAUF
 MODULDAUER (SEMESTER)
 MODULVERANTWORTUNG
 SPRACHE

 T3_3300
 3. Studienjahr
 1
 Prof. Dr.-Ing. Joachim Frech

EINGESETZTE LEHRFORMEN

LEHRFORMEN LEHRMETHODEN
Individualbetreuung Projekt

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGBachelor-ArbeitSiehe Pruefungsordnungja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE360635412

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

METHODENKOMPETENZ

-

PERSONALE UND SOZIALE KOMPETENZ

-

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden erfassen industrielle Problemstellungen in einem breiten Kontext und in realistischer Komplexität. Sie haben ein gutes Verständnis von organisatorischen und inhaltlichen Zusammenhängen sowie von Organisationsstrukturen, Produkten, Verfahren, Maßnahmen, Prozessen, Anforderungen und gesetzlichen Grundlagen. Sie analysieren kritisch, welche Einflussfaktoren zur Lösung des Problems beachtet werden müssen und können beurteilen, inwiefern theoretische Modelle einen Beitrag zur Lösung des Problems leisten können. Die Studierenden können sich selbstständig, nur mit geringer Anleitung in theoretische Grundlagen eines Themengebiets vertiefend einarbeiten und den allgemeinen Stand des Wissens erwerben. Sie können auf der Grundlage von Theorie und Praxis selbstständig Lösungen entwickeln und Alternativen bewerten. Sie sind in der Lage eine wissenschaftliche Arbeit als Teil eines Praxisprojektes effizient zu steuern und wissenschaftlich korrekt und verständlich zu dokumentieren.

Die Studierenden zeichnen sich durch Eigenverantwortung und Tatkraft aus, sie sind auch im Kontext einer globalisierten Arbeitswelt handlungsfähig. Sie weisen eine reflektierte Haltung zu gesellschaftlichen, soziale und ökologischen Implikationen des eigenen Handelns auf.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Bachelorarbeit	6	354

BESONDERHEITEN

Es wird auf die "Leitlinien für die Bearbeitung und Dokumentation der Module Praxisprojekt I bis III, Studienarbeit und Bachelorarbeit" der Fachkommission Technik der DHBW hingewiesen.

Stand vom 12.07.2023 T3_3300 // Seite 64

LITERATUR

Kornmeier, M., Wissenschaftlich schreiben leicht gemacht für Bachelor, Master und Dissertation, Bern

Stand vom 12.07.2023 T3_3300 // Seite 65

Messen, Steuern, Regeln (T3CT9001)

Measurement and Control

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3CT9001keine Anzeige1Prof. Dr. Arndt-Erik SchaelDeutsch

EINGESETZTE LEHRFORMEN

LEHRFORMENLEHRMETHODENVorlesung, LaborLehrvortrag, Diskussion

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGLaborarbeit einschließlich Ausarbeitungusurarbeit oder Kombinierte Prüfung120ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)DAVON PRÄSENZZEIT (IN H)DAVON SELBSTSTUDIUM (IN H)ECTS-LEISTUNGSPUNKTE15060905

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden kennen die Grundlagen des Messen, Steuern und Regelns und können diese auf technisch relevante Sachverhalte anwenden.

METHODENKOMPETENZ

Die Studierenden erlangen ein theoretisches Verständnis zu verschiedenen Messketten, der Signalverarbeitung und Grundlagen für das Arbeiten am Leitstand.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden sind sich der großen Verantwortung des Messen, Steuern und Regelns einer Anlage bewusst und übertragen dieses Verantwortungsbewusstsein in ihre zukünftigen Tätigkeiten.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden vertiefen im Selbststudium die gelehrten Fachinhalte und sind hierdurch auf ein lebenslanges Lernen vorbereitet. Auch können die Studierenden die Lerninhalte in die Praxis übertragen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMMSR6090

- Grundbegriffe der Mess- und Regelungstechnik
- Messwertaufnehmer
- Messwerterfassung
- Signalverarbeitung
- Leitstand
- vernetzte Anlagen

BESONDERHEITEN

Eine vorlesungsbegleitende Laborveranstaltung kann vorgesehen werden. Die Prüfungsdauer bezieht sich auf die Klausur.

VORAUSSETZUNGEN

Stand vom 12.07.2023 T3CT9001 // Seite 66

LITERATUR

- Reichwein J., Hochheimer G., Simic D.: Messen, regeln und steuern: Grundoperationen der Prozessleittechnik. Wiley-VCH.
 Hengstenberg J. [Hrsg.]: Messen, Steuern und Regeln in der chemischen Technik. Springer.
 Unbehauen H.: Regelungstechnik I. Vieweg+Teubner.
 Unbehauen H.: Regelungstechnik II. Vieweg.
 Thieme M.: Winter H.: Prozessleittechnik in Chemieanlagen. Europa-Lehrmittel.

Stand vom 12.07.2023 T3CT9001 // Seite 67

Versorgungstechnik (T3MB9161)

Building Services Engineering

FORMALE ANGABEN ZUM MODUL

MODULNUMMER	VERORTUNG IM STUDIENVERLAUF	MODULDAUER (SEMESTER)	MODULVERANTWORTUNG	SPRACHE
T3MB9161	3. Studienjahr	1	Prof. DrIng. Kai Becher	Deutsch

EINGESETZTE LEHRFORMEN

LEHRFORMEN	LEHRMETHODEN
Vorlesung, Übung, Labor	Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNG	PRÜFUNGSUMFANG (IN MINUTEN)	BENOTUNG
Klausur oder Kombinierte Prüfung	90	ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)	DAVON PRÄSENZZEIT (IN H)	DAVON SELBSTSTUDIUM (IN H)	ECTS-LEISTUNGSPUNKTE
150	60	90	5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden verfügen über die Kenntnisse der typischen Verfahren der Ver- und Entsorgungstechnik. Sie besitzen die Kenntnisse um versorgungstechnische Anlagen zu verstehen und die Funktionsweise nachzuvollziehen.

Weiterhin besitzen sie die Kompetenz zur Bewertung dieser Techniken bezüglich ihrer Anwendbarkeit bei den unterschiedlichen Fragestellungen der Ver- und Entsorgungstechnik und Verwertung auch auf dem Hintergrund des Umweltrechtes und der Umweltpolitik

METHODENKOMPETENZ

Von den Studierenden ist die Kompetenz erworben worden, um eigenen Schlüsse bezüglich sinnvoller Vorgehensweisen bei einzelnen Problemstellungen im Ver- und Entsorgungsbereich zu ziehen. Sie verfügen über Kenntnisse, die ihnen ermöglichen, umweltrelevante Themen sachlich fundiert zu kommunizieren.

PERSONALE UND SOZIALE KOMPETENZ

Die Studierenden haben die Kompetenz erworben, die komplexen Auswirkungen der Wasserver- und -entsorgung im Gesamtzusammenhang des Umweltschutzes zu beurteilen. Sie haben die Kenntnisse zur Abwägung des technisch Machbaren im Gegensatz zum ethisch und sozial Verträglichen. Sie sind in der Lage, Vor- und Nachteile verschiedener Versorgungstechniken anhand umweltpolitischer, sozial-ethischer und finanzieller Aspekte zu bewerten

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden können die erworbenen Kenntnisse in ihre beruflichen Fragestellungen integrieren und die Prinzipien der technischen Verfahren zur Ver- und Entsorgung auf andere Prozesse und verfahrenstechnische Fragestellungen übertragen.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITEN	PRÄSENZZEIT	SELBSTSTUDIUM
Versorgungstechnik	60	90

- Sanitärtechnik: Grundlagen, Komponenten, Sicherungseinrichtungen, Berechnung, Planung sanitärer Einrichtungen, Trinkwassererwärmungsanlagen
- Wässerungsanlagen: Regenwassersysteme und -nutzung, Grauwasser,

Schmutzwassersysteme, Komponenten, Bemessung

- Wasserchemie, Schwimmbadtechnik
- Feuerlösch- und Brandschutzeinrichtungen, Hydranten, Löschwasserleitungen,

Sprinkleranlagen, sonstige Löschanlagen (Gas etc.)

Stand vom 12.07.2023 T3MB9161 // Seite 68

BESONDERHEITEN

Zur Vertiefung und Anwendung des Lehrstoffes sollen Übungen in die Vorlesung integriert werden. Zur praxisnahen Anwendung und Anschauung theoretischer Inhalte sollten Laboreinheiten und/oder Exkursionen durchgeführt werden. Prüfungsdauer gilt nur für die Klausur.

VORAUSSETZUNGEN

LITERATUR

- Gujer, Willi: Siedlungswasserwirtschaft, Springer 2007
- Kranert, Martin (Hrsg.): Einführung in die Abfallwirtschaft, Vieweg-Teubner 2010 Feurich, Kühl: Sanitär-Technik, Kramer Verlag, 10. Auflage, 2011

Stand vom 12.07.2023 T3MB9161 // Seite 69

Energiewirtschaft und Recht (T3MB9162)

Energy Economics and Law

FORMALE ANGABEN ZUM MODUL

MODULNUMMERVERORTUNG IM STUDIENVERLAUFMODULDAUER (SEMESTER)MODULVERANTWORTUNGSPRACHET3MB91623. Studienjahr1Prof. Dr.-Ing. Kai BecherDeutsch

EINGESETZTE LEHRFORMEN

 LEHRFORMEN
 LEHRMETHODEN

 Vorlesung, Übung
 Lehrvortrag, Diskussion, Gruppenarbeit

EINGESETZTE PRÜFUNGSFORMEN

PRÜFUNGSLEISTUNGPRÜFUNGSUMFANG (IN MINUTEN)BENOTUNGKlausur oder Kombinierte Prüfung90ja

WORKLOAD UND ECTS-LEISTUNGSPUNKTE

WORKLOAD INSGESAMT (IN H)

DAVON PRÄSENZZEIT (IN H)

DAVON SELBSTSTUDIUM (IN H)

ECTS-LEISTUNGSPUNKTE

90

5

QUALIFIKATIONSZIELE UND KOMPETENZEN

FACHKOMPETENZ

Die Studierenden sind mit Abschluss des Moduls in der Lage, deutsches und europäisches Recht in den Bereichen Bau, Betrieb, Umwelt anzuwenden und Argumentationen aufzubauen. Sie können deutsches und europäisches Recht in den Bereichen Bau, Betrieb, Umwelt anwenden. Darüber hinaus kennen sie die Energiegesetze und die wirtschaftliche Einordnung der Energiesysteme. Sie können Zusammenhänge und Einflüsse innerhalb von Problemlagen differenzieren und darauf aufbauend neue Lösungsvorschläge entwickeln und diese kritisch evaluieren.

METHODENKOMPETENZ

Die Studierenden können für Fragestellungen der Energiewirtschaft und den damit verbundenen Rechtsgebieten angemessene Methoden auswählen und anwenden, um neue Lösungen zu erarbeiten. Die Studierenden können gesetzliche und wirtschaftliche Grundlagen des jeweiligen Rechtsgebietes recherchieren und anwenden sowie die rechtliche und wirtschaftliche Relevanz von Betriebsvorgängen selbstständig erkennen und einordnen.

PERSONALE UND SOZIALE KOMPETENZ

Sie sind sich Ihrer Rolle und Verantwortung im Unternehmen bewusst. Sie können theoretische, wirtschaftliche und ökologische Fragestellungen gegeneinander abwiegen und lösungsorientiert umsetzen.

ÜBERGREIFENDE HANDLUNGSKOMPETENZ

Die Studierenden sind in der Lage, Prozesse rechtssicher und wirtschaftlich zu planen und zu betreiben.

LERNEINHEITEN UND INHALTE

LEHR- UND LERNEINHEITENPRÄSENZZEITSELBSTSTUDIUMEnergiewirtschaft und Recht6090

- Energiewirtschaft: Energiegesetze (KWK, EEG, EnEV etc.), wirtschaftliche Verschaltung verschiedener Erzeugungsformen, Kosten- und Investionsrechnungen, Wirtschaftlichkeitsberechnungen, HOAI

- Recht: Grundlagen und Übersicht (Rechtssystematik, Grundgesetz, BGB), Gewerberecht, Baurecht (Zuständigkeit, Genehmigungsverfahren, Bauüberwachung, Bauabnahme), Umweltrecht (Immission, Abfall, Wasser, Bodenschutz, Umweltverträglichkeit)

BESONDERHEITEN

Anwendungen und Vertiefungen des Erlernten in Form von Exkursionen zu Energieversorgern o.ä. sind erwünscht. Prüfungsdauer gilt nur für die Klausur.

Stand vom 12.07.2023 T3MB9162 // Seite 70

VORAUSSETZUNGEN

LITERATUR

- Kröger, Detlef: Umweltrecht schnell erfasst. Springer Verlag, Berlin Ströbele, W.; Pfafenberger, W.; Heuterkes, M.: Energiewirtschaft Einführung in Theorie und Politk, Oldenburg Verlag Normenwerk: EnEV, DIN 18599, BImSchVO, EEWärmeG etc.

Stand vom 12.07.2023 T3MB9162 // Seite 71