

Data Preparation

Data Science Projects

Bussiness Understanding

- BusinessObjectives
- Technical constraints
- ProjectPlanning

Data Understanding

- Raw Data
- Graphics
- QualityVerification

Data Preparation

- Cleaning: empty values, outlayers
- Feature selection

Modeling

- Model selection
- Parameters selection

Evaluation

- Technical evaluation
- Business utility

Deployment

- Results presentation
- Application Architecture

- Modeling is only 20% of the total effort
- As a consequence, Data Science is not about learning algorithms. Is about dealing with data in a comprehensive and systematic way to select the best algorithms and apply them correctly
- You must use a systematic approach to develop data science projects

Know Your Data

- How many rows
- Per column (one dimension)
 - Type (categorical / numeric)
 - How many different values
 - Simple statistics (mean, median, mode, stddev, histograms)
 - Missing values
 - Mismatched
- Plot data in time (if series data)
- How is data distributed: histograms and density plots
- Plot correlation matrix
- Scatterplot matrix
- Make "reasonable" assumptions from business knowledge and check them

Session 2 – Data Preparation

Know Your Data Using Pyhton

(See knowYourData.ipynb)

Know Your Data

A word about correlation

- Calculate correlation of this two variables:
 - X = [0, 1, 3, 6, 9, 0, -1, -3, -6, -9]
 - Y = [0, 1, 3, 6, 9, 0, 1, 3, 6, 9]
 - np.corrcoef(X, Y)

Spurious Correlations

Data Cleaning

- Garbage in Garbage out principle
- Generic pandas function for applying transformations
 - df.transform(f) where f is a function defined in your code
 - df.transform(lambda x: x + 1)
 - Usage for one column: df['column_name'] = df['column_name'].transform(...)
- Format / Spelling / Dates / Numbers
- Outliers
 - One dimension n dimensions
 - Statistical outlier detection: $\mu_i \varepsilon \theta_i < f_i < \mu_i + \varepsilon \theta_i$
 - Clustering
- Empty values
 - Remove
 - Guess a value
 - Statistic value
 - Prediction model
 - Clustering
 - Let the model deal with empty values

Scaling

$$x_{scaled} = \frac{x}{max(|x|)}$$

$$x_{norm} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

$$x_{std} = \frac{x-\mu}{\sigma}$$

using pandas:

```
df_scaled[column] = df[column] / df[column].abs().max()
df_normalized[column] = (df[column] - df[column].min()) / (df[column].max() - df[column].min())
df_standardized[column] = (df_std[column] - df_std[column].mean()) / df_std[column].std()
```


Centering data distributions

Skewness measure

```
from scipy.stats import skew
print(skew(x))
```

Typical funcions for correcting skweness

```
Square root
Reciprocal (1 / x)
Log(x)
```


Category values encoding: ordinal, frequency, binary

One Hot Encoding: Transform a categorical variable

	one_hot_australia	one_hot_china	one_hot_france	one_hot_japan	one_hot_spain
0	0	0	0	0	1
1	0	0	1	0	0
2	1	0	0	0	0
3	0	0	0	1	0
4	0	1	0	0	0

Binning: Transform a more or less continuos numerical variable into a categorical variable

Equal width

```
data["binnedAge"] = pd.cut(data["Age"], bins=4)
```

Equal frequency

```
data["binnedAge"] = pd.qcut(data["Age"], q=4)
```


Combine columns – very dependent on domain knowledge

- Calculations with different columns (c1 x c2)
- Calculations with the same column (sqrt(c1))
- Difference between dates
- Group similar categorical values
- Temporal values

Unbalanced Datasets

- Very often in classification datasets
 - Is this transaction fraudulent?
 - Is this customer going to switch to a different company?
 - Has this patient this disease?
- Why should we care?
- How to solve it
 - Undersampling
 - Oversampling
 - Generate synthetic samples SMOTE (Synthetic Minority Oversample)
 - Imbalanced-learn python library oversample = SMOTE()

```
X, y = oversample.fit_resample(X, y)
```


Feature Selection

- The principle: "Brevity is the soul of wit" (William Shakespeare)
- Feature Selection
 - Which inputs are relevant?
 - Why do we need to select inputs at all?
- Some techniques for feature selection/elimination
 - Irrelevant inputs (i.e., ID, Passport Number...)
 - Low variance inputs
 - High correlation among inputs
 - Univariate feature selection: correlation with output
 - Wrapper: Step Forwards, Step Backwards, Exhaustive

• Embedded Methods: Ridge and Lasso regressors. Trees

Feature Selection

Wrapper Methods: Step Forwards, Step Backwards, Exhaustive

- Embedded Methods:
 - Lasso / Ridge

$$\sum_{i=1}^n (y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij})^2 + \lambda \sum_{j=1}^p |eta_j|$$

Trees

forest = RandomForestClassifier(random_state=0)
forest.fit(X_train, y_train)
importances = forest.feature_importances_

Feature Selection

Principal Component Analysis: change your point of view

- Or a little more formally: choose a new orthogonal base where the variance along each direction is maximized
- Be aware: you have to rotate the data forth and back to get interpretable results.
 Many times the new base has not real meaning

