

WorDepth: Variational Language Prior for Monocular Depth Estimation

Ziyao Zeng¹ Daniel Wang¹ Fengyu Yang¹ Hyoungseob Park¹ Stefano Soatto² Dong Lao² Alex Wong¹ {ziyao.zeng daniel.wang.dhw33 fengyu.yang hyougseob.park alex.wong}@yale.edu {soatto lao}@cs.ucla.edu Yale Vision Lab¹ UCLA Vision Lab²

Paper

Code

Preliminaries

3D reconstruction from a single image is an ill-posed problem - there exists infinitely many 3D scenes (e.g. scale) that can generate an image

3D reconstruction from a text caption is also an ill-posed problem – there exists infinitely many 3D scenes that fits a description

Infinitely many 3D scenes

Training WorDepth

- (1) Encode the text caption using the CLIP text encoder and

- (2) Alternatingly optimize (a), (b)
- (a) Update text-VAE (freeze Conditional Sampler)
- (i) Draw from a standard Gaussian $\epsilon \sim \mathcal{N}(0,1)$
- (iii) Predict depth map from using depth decoder $\hat{y} = h_{\phi}(\hat{z})$
- (iv) Minimize $\mathcal{L}_{\text{VAE}} = \mathcal{L}_{\text{SI}}(y^*, \hat{y}) + \alpha \cdot \mathcal{L}_{\text{KL}}(\hat{\mu}, \hat{\sigma})$
- (b) Update the Conditional Sampler (freeze text-VAE)
- (i) Sampler using an image $ilde{\epsilon}=f_{arphi}(x,\hat{\mu},\hat{\sigma})$, $x\in\mathbb{R}^{3 imes H imes W}$
- (ii) Sample a latent vector using the reparameterization trick
- (iii) Predict depth map using depth decoder $\tilde{y} = h_{\phi}(\tilde{z})$
- (iv) Minimize $\mathcal{L}_{\text{CS}} = \mathcal{L}_{\text{SI}}(y^*, \tilde{y}) + \beta \cdot \mathcal{L}_{\text{KL}}(\tilde{\mu}, \tilde{\sigma})$
- (3) Repeat steps 1, 2(a) and 1, 2(b) until convergence Scale invariant loss:

 $\mathcal{L}_{\mathrm{SI}}(y,y^*) = \frac{1}{N_e} \sum_{(i,j) \in \Omega} e(i,j)^2 - \frac{\gamma}{N_e^2} (\sum_{(i,j) \in \Omega} e(i,j))^2 \,, \quad e(i,j) = \log y(i,j) - \log y^*(i,j)$

Kullback-Leibler (KL) divergence loss:

where y^* denotes ground truth, N_e the number of elements in the image, γ a scaling factor

Motivation

To ground depth predictions to metric scale, one may use additional cameras with known position (stereo), or additional sensors (range, inertial, etc.)

But it is often costly in additional price, data collection, power, computational resources

Question: Can two modalities that are inherently ambiguous resolve one another's ambiguity in 3D reconstruction?

Key idea: Use language to ground depth estimates to metric scale! Simply let the model know what objects are around and it can better estimate scale

Train a text-VAE to encode text into the mean and standard deviation parameterizing the distribution of 3D scenes for a description. Choose one of the infinitely many scenes matching the description that is compatible with the observed image.

"A bedroom

with a stand

and a bed"

Metric-scale depth map

- estimate its mean and standard deviation $(\hat{\mu}, \hat{\sigma})$ using an MLP with a couch and text-VAE

 - (ii) Sample latent vector using the reparameterization trick $\hat{z} = \hat{\mu} + \epsilon \cdot \hat{\sigma}$

Qualitative Results

Knowing that certain objects (and that they are typically of certain sizes) exist in the scene, we can better estimate the scale as evident by the uniform improvement over the error maps.

github: https://github.com/Adonis-galaxy/WorDepth

Quantitative Results

NYUv2 Benchmark

Method	Backbone	$\delta < 1.25 \uparrow$	$\delta < 1.25^2 \uparrow$	$\delta < 1.25^3 \uparrow$	Abs Rel↓	$\log_{10} \downarrow$	RMSE .
DepthCLIP [91]	CLIP (zero-shot)	0.394	0.683	0.851	0.388	0.156	1.167
CLIPMDE [1]	CLIP	0.465	0.776	0.922	0.319	0.139	0.970
GeoNet [52]	ResNet-50	0.834	0.960	0.990	0.128	0.057	0.569
DORN [16]	ResNet-101	0.828	0.965	0.992	0.115	0.051	0.509
Yin et al. [80]	ResNeXt-101	0.875	0.976	0.994	0.108	0.048	0.416
TransDepth [78]	ViT-B	0.900	0.983	0.996	0.106	0.045	0.365
ASN [46]	HRNet-48	0.890	0.982	0.996	0.101	0.044	0.377
Big to Small [35]	DenseNet-161	0.885	0.978	0.994	0.110	0.047	0.392
DPT-Hybird [54]	ViT-B	0.904	0.988	0.998	0.110	0.045	0.357
ASTransformer [7]	ViT-B	0.902	0.985	0.997	0.103	0.044	0.374
AdaBins [2]	EffNet-B5 + ViT-mini	0.903	0.984	0.997	0.103	0.044	0.364
NeWCRFs [86]	Swin-L	0.922	0.992	0.998	0.095	0.041	0.331
Yu et al. [84]	Swin-L	0.921	0.990	0.998	0.093	0.040	0.331
DepthFormer [40]	Swin-L	0.923	0.989	0.997	0.094	0.040	0.329
Baseline	Swin-L	0.910	0.990	0.998	0.098	0.043	0.351
WorDepth	Swin-L	0.932	0.992	0.998	0.088	0.038	0.317
%Improvement	×-	+2.42%	+0.02%	+0.00%	-10.20%	-11.63%	-9.69%

KITTI Eigen Split Benchmark

Method	Backbone	$\delta < 1.25 \uparrow$	$\delta < 1.25^2 \uparrow$	$\delta < 1.25^3 \uparrow \mid$	Abs Rel↓	$RMSE_{log} \downarrow$	RMSE \
CLIPMDE [1]	CLIP	0.550	0.830	0.938	0.303	0.119	6.322
DORN [16]	ResNet-101	0.932	0.984	0.995	0.072	0.120	2.727
Yin et al. [80]	ResNeXt-101	0.938	0.990	0.998	0.072	0.117	3.258
TransDepth [78]	ViT-B	0.956	0.994	0.999	0.064	0.098	2.755
Big to Small [35]	DenseNet-161	0.955	0.993	0.998	0.060	0.096	2.798
DPT-Hybird [54]	ViT-B	0.959	0.995	0.999	0.062	0.092	2.573
ASTransformer [7]	ViT-B	0.963	0.995	0.999	0.058	0.089	2.685
AdaBins [2]	EffNet-B5+ViT-mini	0.964	0.995	0.999	0.058	0.089	2.360
NeWCRFs [86]	Swin-L	0.974	0.997	0.999	0.052	0.079	2.129
Yu et al. [84]	Swin-L	0.972	0.996	0.999	0.054	0.081	2.134
DepthFormer [40]	Swin-L	0.975	0.997	0.999	0.052	0.079	2.143
Baseline	Swin-L	0.969	0.996	0.999	0.054	0.085	2.343
WorDepth	Swin-L	0.979	0.998	0.999	0.049	0.074	2.039
% Improvement		+1.03%	+0.20%	+0.00%	-9.26%	-12.94%	-12.97%

Zero-shot Generalization: NYUv2 → **SUN RGBD**

Method	$\delta < 1.25 \uparrow$	$\delta < 1.25^2 \uparrow$	$\delta < 1.25^3 \uparrow$	AbsRel↓	$\log_{10} \downarrow$	RMSE↓
Adabins	0.771	0.944	0.983	0.159	0.068	0.476
DepthFormer	0.815	0.970	0.993	0.137	0.059	0.408
Baseline	0.803	0.965	0.990	0.141	0.062	0.427
WorDepth	0.833	0.976	0.994	0.123	0.054	0.376

Different alternating ratios: NYUv2

8							<u> </u>	
\overline{p}	$\delta < 1.25 \uparrow$	$\delta < 1.25^2 \uparrow$	$\delta < 1.25^3 \uparrow$	AbsRel↓	$\log_{10} \downarrow$	RMSE↓	"t - C" indicates	
0%	0.929	0.990	0.998	0.091	0.039	0.323	training text-VAE	ľ
1%	0.932	0.992	0.998	0.088	0.038	0.317	to convergence	i
50%	0.763	0.942	0.987	0.163	0.068	0.527	then freeze it and	r
100%	0.590	0.889	0.973	0.225	0.097	0.746	train Conditional	
t - C	0.926	0.990	0.998	0.091	0.039	0.330	Sampler.	(

WorDepth consistently improves over existing methods across both indoor (NYUv2) and outdoor (KITTI) benchmarks.

Due to the flexibility of using text captions to ground predictions to scale, WorDepth shows consistent better zero-shot generalization

Limitation. Caption specificity controls regularization. Vague captions provide little information on object shape or size, yielding minimal gains, and specific but incorrect captions can mislead the model.

This work was supported by NSF 2112562 (Athena Al Institute).