Back Face Culling

CS 418: Interactive Computer Graphics
Professor Eric Shaffer

Back Face Culling

- Backface culling is an optimization technique
- It drops backfacing polygons from the pipeline.
- Why would backface culling be useful?
- What artifact do you see here?

Backface culling is not hidden surface removal

Vector Dot Product

The **dot product** or **inner product** of two vectors is

Dot Product: Piece by Piece

Can think of it as a measure of how aligned the vectors are

Vector Dot Product

Is a polygon facing away from the viewer? We can decide by using a dot product test

Back Face Culling

- Define the view vector V from the eyepoint to the surface
 - For this test, we'll use eyepoint to surface...shading uses the reversed vector V
- So, if $90 \le \theta \le 270$ where $\theta > 0$ then dot product is negative and polygon faces viewer
- IF the dot product is positive then polygon does not face viewer

WebGL Back Face Culling

Polygon culling is disabled by default. To enable or disable culling, use the enable() and disable() methods with the argument gl.CULL_FACE.

```
gl.enable(gl.CULL_FACE);
gl.cullFace(gl.FRONT_AND_BACK);
```

```
void gl.cullFace(mode);
```

Parameters

mode

A GLenum specifying whether front- or back-facing polygons are candidates for culling. The default value is gl.BACK. Possible values are:

- gl.FRONT
- gl.BACK
- gl.FRONT_AND_BACK

