Fuzzy Relations

Crisp relations

To understand the fuzzy relations, it is better to discuss first crisp relation.

Suppose, A and B are two (crisp) sets. Then Cartesian product denoted as $A \times B$ is a collection of order pairs, such that

$$A \times B = \{(a, b) | a \in A \text{ and } b \in B\}$$

Note:

(1)
$$A \times B \neq B \times A$$

(2)
$$|A \times B| = |A| \times |B|$$

 $(3)A \times B$ provides a mapping from $a \in A$ to $b \in B$.

The mapping so mentioned is called a relation.

Crisp relations

Example 1:

Consider the two crisp sets A and B as given below. $A = \{1, 2, 3, 4\}$ $B = \{3, 5, 7\}$.

Then,
$$A \times B = \{(1,3), (1,5), (1,7), (2,3), (2,5), (2,7), (3,3), (3,5), (3,7), (4,3), (4,5), (4,7)\}$$

Let us define a relation R as $R = \{(a, b) | b = a + 1, (a, b) \in A \times B\}$

Then, $R = \{(2,3), (4,5)\}$ in this case.

We can represent the relation R in a matrix form as follows.

$$R = \begin{bmatrix} 3 & 5 & 7 \\ 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 \end{bmatrix}$$

Operations on crisp relations

Suppose, R(x, y) and S(x, y) are the two relations define over two crisp sets $x \in A$ and $y \in B$

Union:

$$R(x,y) \cup S(x,y) = max(R(x,y),S(x,y));$$

Intersection:

$$R(x,y) \cap S(x,y) = min(R(x,y), S(x,y));$$

Complement:

$$\overline{R(x,y)} = 1 - R(x,y)$$

Example: Operations on crisp relations

Example:

Suppose, R(x, y) and S(x, y) are the two relations define over two crisp sets $x \in A$ and $y \in B$

$$R = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ and } S = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

Find the following:

- **1** R∪S
- ② R ∩ S

Composition of two crisp relations

Given R is a relation on X,Y and S is another relation on Y,Z. Then $R \circ S$ is called a composition of relation on X and Z which is defined as follows.

$$R \circ S = \{(x, z) | (x, y) \in R \text{ and } (y, z) \in S \text{ and } \forall y \in Y\}$$

Max-Min Composition

Given the two relation matrices R and S, the max-min composition is defined as $T = R \circ S$;

$$T(x,z) = \max\{\min\{R(x,y),S(y,z) \text{ and } \forall y \in Y\}\}\$$

Composition: Composition

Example:

Given

$$X = \{1,3,5\}; Y = \{1,3,5\}; R = \{(x,y)|y = x+2\}; S = \{(x,y)|x < y\}$$

Here, R and S is on $X \times Y$.

Thus, we have

$$R = \{(1,3), (3,5)\}$$

$$S = \{(1,3), (1,5), (3,5)\}$$

R=
$$\begin{bmatrix} 1 & 3 & 5 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & 0 & 0 & 0 \end{bmatrix}$$
 and S=

Using max-min composition $R \circ S$ =

$$\begin{array}{ccccc}
1 & 0 & 1 & 1 \\
3 & 0 & 0 & 1 \\
5 & 0 & 0 & 0
\end{array}$$

$$\begin{array}{cccccc}
1 & 3 & 5 \\
1 & 0 & 0 & 1 \\
3 & 0 & 0 & 0 \\
5 & 0 & 0 & 0
\end{array}$$

Fuzzy relations

- Fuzzy relation is a fuzzy set defined on the Cartesian product of crisp set $X_1, X_2, ..., X_n$
- Here, n-tuples $(x_1, x_2, ..., x_n)$ may have varying degree of memberships within the relationship.
- The membership values indicate the strength of the relation between the tuples.

Example:

 $X = \{ \text{ typhoid, viral, cold } \}$ and $Y = \{ \text{ running nose, high temp, shivering } \}$

The fuzzy relation R is defined as

	runningnose	hightemperature	shivering
typhoid	0.1	0.9	8.0
viral	0.2	0.9	0.7
cold	0.9	0.4	0.6

Fuzzy Cartesian product

Suppose

A is a fuzzy set on the universe of discourse X with $\mu_A(x)|x \in X$

B is a fuzzy set on the universe of discourse Y with $\mu_B(y)|y \in Y$

Then $R = A \times B \subset X \times Y$; where R has its membership function given by $\mu_R(x,y) = \mu_{A \times B}(x,y) = \min\{\mu_A(x), \mu_B(y)\}$

Example:

$$\textit{A} = \{(\textit{a}_1, 0.2), (\textit{a}_2, 0.7), (\textit{a}_3, 0.4)\} \text{and } \textit{B} = \{(\textit{b}_1, 0.5), (\textit{b}_2, 0.6)\}$$

$$R = A \times B = \begin{bmatrix} b_1 & b_2 \\ a_1 & 0.2 & 0.2 \\ a_2 & 0.5 & 0.6 \\ a_3 & 0.4 & 0.4 \end{bmatrix}$$

Operations on Fuzzy relations

Let *R* and *S* be two fuzzy relations on $A \times B$.

Union:

$$\mu_{\mathsf{R}\cup\mathcal{S}}(\mathsf{a},\mathsf{b}) = \max\{\mu_{\mathsf{R}}(\mathsf{a},\mathsf{b}),\mu_{\mathcal{S}}(\mathsf{a},\mathsf{b})\}$$

Intersection:

$$\mu_{R\cap S}(a,b)=\min\{\mu_R(a,b),\mu_S(a,b)\}$$

Complement:

$$\mu_{\overline{R}}(a,b) = 1 - \mu_R(a,b)$$

Composition

$$T = R \circ S$$

$$\mu_{R \circ S} = \max_{y \in Y} \{ \min(\mu_R(x, y), \mu_S(y, z)) \}$$

Operations on Fuzzy relations: Examples

Example:

$$X = (x_{1}, x_{2}, x_{3}); Y = (y_{1}, y_{2}); Z = (z_{1}, z_{2}, z_{3});$$

$$R = \begin{bmatrix} x_{1} & y_{2} & y_{2} \\ 0.5 & 0.1 \\ 0.2 & 0.9 \\ 0.8 & 0.6 \end{bmatrix}$$

$$S = \begin{bmatrix} y_{1} & z_{2} & z_{3} \\ 0.6 & 0.4 & 0.7 \\ y_{2} & 0.5 & 0.8 & 0.9 \end{bmatrix}$$

$$X = \begin{bmatrix} x_{1} & z_{2} & z_{3} \\ y_{2} & 0.5 & 0.4 & 0.5 \\ 0.5 & 0.8 & 0.9 \\ 0.6 & 0.6 & 0.7 \end{bmatrix}$$

 $\mu_{R \circ S}(x_1, y_1) = \max\{\min(x_1, y_1), \min(y_1, z_1), \min(x_1, y_2), \min(y_2, z_1)\} \\
= \max\{\min(0.5, 0.6), \min(0.1, 0.5)\} = \max\{0.5, 0.1\} = 0.5 \text{ and so on.}$