Contents

Cullyn Newman

General Chemistry Review	
Electrons, Bonds, and Lewis Structures	2
Identifying Formal Charges	2
Induction and Polar Covalent Bonds	3
Atomic Orbitals	3
Valence Bond Theory	4
Molecular Orbital Theory	5
Hybridized Atomic Orbitals	5
Molecular Geometry	7
Dipole Moments and Molecular Polarity	8
Intermolecular Forces and Physical Properties	8
Structural Theory of Matter	9
Molecular Representations	
Molecular Representations	10
Bond-Line Structures	10
Notes on Drawing Bond-Line Structrues	11
Hydrogen Deficiency Index: Degrees of Unsaturation	11
Impact of Other Elements on HDI	12
Identifying Functional Groups	12

1 General Chemistry Review

Electrons, Bonds, and Lewis Structures

- ▶ Covalent bond: two atoms sharing a pair of electrons.
- ▶ **Octet rule**: *main group elements* that tend to bond in a way that each atom has eight electrons in it's valence shell.
 - Atoms that do not have eight will share electrons with other elements in order to maintain a stable state.
- ▶ Main group elements: sometimes called representative elements, are groups
 1, 2 and 13–18 in periodic table.
 - Some elements in group 3 and 12 share properties between transition metals and the main group.
- ▶ The lowest energy (most stable) state of two atoms is determined both by bond length and bond strength.
- ▶ Valence electrons are determined by the group, 1A–8A, of the periodic table.
- ▶ **Lone pair**: unshared, or nonbonding, electrons.
- ▶ Lewis structures: 2D model that represents covalent bonds as straight lines and lonpairs as dots.
- \triangleright Examples: COF₂, H₂O, NO₃, N₂O:

▶ **Resonance structures**: a set of two or more Lewis structures that collectively describe the electronic bonding of a single polyatomic species, including fractional bonds.

Identifying Formal Charges

- ▶ **Formal charge**: any atom that does not exhibit the appropriate number of valance electrons.
- > Determing formal charge:

• Formula:
$$FC = V - N - \frac{B}{2}$$

- V = valance electrons of element
- N = lone pair electrons

- B = bonded electrons
- ▶ Less than expected number of valence electrons results in a positive charge.
- ▶ More than expected number of valence electrons results in a negative charge.
- ▶ The lower the magnitude of formal charge, the greater the stability of the whole molecule.
- Atoms that are more electronegative hold negative formal charges better, which results in greater stability vs when the negative charge is spread on less electronegative elements in a polyatomic species.
 - The dominant resonance structure will be that of the greatest stability.

Induction and Polar Covalent Bonds

- ▶ Bonds can classified into three categories: covalent, polar covalent, and ionic.
- ▶ The categories emerge from the electronegativity values of the atoms sharing a bond.
- ▶ **Electronegativity**: a measure of the ability of an atom to attract electrons.
 - Electronegativity generally increases left to right, and from the bottom to top of the periodic table.
- ▶ Covalent bond: when the difference in electronegativity is less than 0.5.
- ▶ **Polar covalent bond**: when the difference in electronegativity is between 0.5 and 1.9, then the electrons are not equally shared and become polar.
- Induction: the withdrawl of electrons towards to more electronegative atom. δ^+ represents partial positive charged gained when electrons are pulled away, while δ^- represents the partial negative charge pulled closer.
- ▶ **Ionic bond**: when the difference in electronegativity is greater than 1.9.
 - Electrons are not shared in this case, and attraction is insetsad just the result of oppositely charged ions.

Atomic Orbitals

- ▶ **Atomic orbital (AO)**: standing quantum wave (excitation in electron field) around an atom.
 - More energy leads to higher orbtails levels.
 - Gives principle quantum number, n, as is associated with distance from nucleus.
 - Orbital levels: s(1 pair), p(3 pairs), d(5 pairs), f(7 pairs).

- Angular momentum quantum number that describes three-dimensional region of space that the electron density occupies.
- Magnetic quantum number descrices orientation in space of electron density.
 - $-m_l=0$; s orbital
 - $-m_{l}=-1, 0, 1; p_{x}, p_{y}, p_{z}$ orbitals.
- \circ Locations where ψ (quantum wave function) is zero are called **nodes**.
 - The more nodes that an orbital has, the greater it's energy.
- Spin: allows an orbital to contain only two electrons, $\pm \frac{1}{2}$
- Degenerate orbitals: orbitals with the same energy level.
- ▷ Order in which orbitals are filled is determined by three principles:
 - o Aufbau principle: lowest energy orbital is filled first.
 - **Pauli exclusion principle**: each orbital can accommodate a maximum of two electrons that have opposite spin.
 - Hund's rule: electrons are placed in each degenerate orbital before being paired up.
- ▶ Describing the nature of atomic orbital is done with two commoly used theories: *Valence Bond Theory* and *Molecular Orbital Theory*.
- ▶ The commonly used theories give a deeper understanding of covalent bonds, which is essentially just the overlap of atomic orbitals.
- ▶ Constructive/destructive interference: the result of two waves that approach each other, or overlap.
 - Constructive interference produces a wave with the vector sum of both waves.
 - Destructive interference cancel each other out and produes a node.

Valence Bond Theory

- ▶ **Valence bond theory**: the sharing of electron density between two atoms is a result of the constructive interference of their atomic orbitals.
- ▶ Bond axis: the line that can be drawn between two hydrogen atoms.
- \triangleright **Sigma bond** (σ): a particular type of covalent bond that has circular symmetry with respect to the bond axis.

- \circ All single bonds are σ bonds.
- The strongest type of covalent bond.
- \triangleright **Pi bond** (π): covalent bonds where two lobes of an orbital overlap with two lobes of another atom.
 - Each atomic orbital has zero electron density at a shared nodal plane, passing through the two bonded nuclei.
 - \circ π bonds form double $(\sigma + \pi)$ and triple bonds $(\pi + \sigma + \pi)$.
 - \circ Individual π bonds are weaker than σ bonds.

Molecular Orbital Theory

- ▶ **Molecular orbital theory (MO)**: uses linear combinations of atomic orbitals to model and explore the consequences of orbital overlap.
 - The newly described orbitals are called molecular orbitals accroding to MO theory.
- ▶ Atomic orbitals refer to an individual atom, while molecular orbitals is associated with an entire molecular.
- ▶ In other words, MO theory states that atomic orbitals cease to exist when they overlap. Instead they are replaced with multiple molecular orbitals which span the entire molecule.
- ▶ Molecular orbitals are more stable (lower energy) since electrons are attracted by both nuclei.
- \triangleright When there are nodes between the nuclei, then the resulting σ^* orbitals become antibonding, as they destabilize (increase the energy) of a molecular orbital.
- Best used to produce a quantitative picture of bonding.
 - Describes strength, order, and polarity of bonds.
 - Allows for the presence of paired or unpaired electrons.
 - Has spectroscopic preperties.

Hybridized Atomic Orbitals

- ▶ sp³-hybridized orbitals: produced by averaging one s orbital and three p
 orbitals.
 - Hybridized orbitals explains to geomtry of methane, which results form the now four degenerate orbitals pushing apart to achieve tetrahedral

geometry.

- Hybridized orbitals become unsymmetrical, producing a larger front lobe that is more efficient than standard p orbitals in the ability to form bonds.
- \circ All bonds in are σ bonds, and thus can be individually represented by the overlap of atomic orbitals.
- \triangleright **sp**²**-hybridized orbitals**: produced by averaging the *s* orbital with only two of *p* orbitals.
 - The remaining p orbital is unaffected, and free multiple p orbitals results in a π bond.
 - o This is done to expain geometry of compounds bearing a double bond.
 - \circ A double bond if formed from one σ bond and one π bond.
 - o Associated with trigonal planar geometry.
- ▶ **sp-hybridized orbitals**: produced by averaging of one *s* orbital and one *p* orbital.
 - Leaves two p orbitals and resulting in two π bonds.
 - A triple bond is formed with the addition of one σ bond due to the overlap of the sp orbitals.
 - Geometry of a triple bond has linear geometry.
- ▶ Finding the hybridization of any atom can be done simply:
 - 1. Look at the central item.
 - 2. Determin groups (number of bonds, π bonds count as 1, and lone pairs attached) of atom.
 - groups aka regions of electron density.
 - 3. For groups 1-4: sp^x ; x = groups 1
 - 4. For groups 5-6: sp^3d^x ; x = groups 4
- ▶ Bond Strength and Bond Length:
 - Bond length decreases with more bonds.
 - Bond strength increases with more bonds.
 - The more s character, the shorter and stronger the bond, and the larger the bond angle.
 - s-character: contribution of the σ bond in a hybridization.

• e.g.
$$sp = 50\%$$
, $sp^2 = 33\%$, $sp^3 = 25\%$

- sp-sp bond is the strongest, sp³-sp³ is the weakest.

Molecular Geometry

- ▶ Valence shell electron pair repulsion (VSEPR) theory: enables the prediction of molecular geometry due to the pressumption that all electron pairs repel each other; resulting in a three-dimensional space that maximizes distance from each other.
- ▶ Steric number: the total number of electron pairs in a molecule. Can be bonds or lone pairs.
- \triangleright **Tetrahedral geometry**: result of four σ bonds and zero lone pairs.
 - o produces a tetrahendron with bond angles of 109.5°.
- \triangleright **Trigonal pyramidal geometry**: three σ bonds and one lone pair.
 - The lone pair occupy more space than bonded electron pairs, so the remaining angles are slightly less than a tetrahedral, at 107°.
 - The lone pair sits atop the base forming a pyramid like structure.
- \triangleright **Bent geometry**: two σ bonds and two lone pairs.
 - VSEPR predicts the lone pairs to be in two corners of the tetrahedral, producing bond angles of 105°.
 - VSEPR predicts geometry H₂O correctly, but for wrong reasons.
 - The lone pairs in H_2O have different energy levels, suggesting one pair occupies a p orbital with the other in a lower-energy hybridized orbital.
- ▶ VSEPR theory is best used for a first approximation and is mostly accurate for most small molecules.
- ▶ Trigonal planar geometry: three electron pairs forming three bond angles of 120° and lie on the same plan.
- ▶ **Linear geometry**: two electron pairs that oppose each other at 180°, forming a linear structure.
- ▶ General method of determining structure:
 - 1. Count steric number—the total number of electron pairs in a molecule. Can be bonds or lone pairs.
 - 2. Determine predicted geomterical structure predicted (EDG) by VSEPR using steric number.
 - Octahedral:6, Bipyramid:5, Tetrahedral:4, Trigonal:3, Linear:2

3. Determin impact (the MG) of lone pairs; more lone pairs results in less space between bonded pairs. Shape depends on EDG.

Dipole Moments and Molecular Polarity

- \triangleright **Dipole moment** (μ): defined as the amount of partial charge, δ , on on either end of the dipole multiplied by the distance separtion, d:
 - $\circ \mu = \delta d$
 - μ generally has an order of magnitude of 10^{-18} esu·cm due to general partial charge (esu) and distance (cm) values.
 - \circ 1 debye (D) = 10^{-18} esu·cm
- ▶ **Molecular dipole moment**: the vector sum of the individual dipole moments.
 - Lone pairs have significant effect on the molecular dipole moment.
 - Also called the net dipole moment.

Intermolecular Forces and Physical Properties

- ▶ **Intermolecular forces**: the attractive forces between individual molecules that determed the physical properties of a compound.
- ▶ *Electrostatic*: forces that occur as a result of the attraction between opposite charges.
- ▷ Electrostatic interactions for neutral molecules (no formal charge) are often classified as into the following categories:
 - **Dipole-dipole interaction**: Compounds with net dipole moments.
 - In solid space these intereactions either repel or attract each other.
 - In liquid space these interactions tend to attract more often, raising melting/boiling point.

Hydrogen bonding:

- Not actually a bond, just an interaction.
- When hydrogen bonds to a electronegative atom, then the hydrogen will have a δ^+ .
- F, O, N, Cl (Br, I). Most electronegative elements, from left to right, that hydrogen most often bonds too.
- Hydrogen bonding is strong due to size of hydrogen atom, resulting in very close partial charge interactions.
- The more hydrogen bonds, the higher the boiling point tends to be.

Fleeting dipole-dipole interactions:

- Electrons are considered to be in constant motion, which restult in the center of negative charge to vary.
- On average, the dipole moment is zero, though can experience transient dipole moments, initiating fleeting attraction/repulsion.
- Heavier hydrocarbons generally experience a stronger force due to increased surface area, and thus greater chance for non-zero dipole moments, which results in higher boling points.
- Branched hydrocarbons generally have decreased surface area, decreasing boiling point relative to others of similar weight.
- ▶ When comparing boling points of compounds, look for following factors:
 - Any dipole-dipole interactions? Formation of hydrogen bonds?
 - Number of carbon atoms. (surface area)
 - Degree of branching of compound. (surface area)

Structural Theory of Matter

- ▶ Constitutional isomers: aka structural isomers; same chemical formula, but different in the way the atoms are connect, i.e. their constitution is different.
 - Consistenet with the octet rule.
 - Each element forms a predictable number of bonds, from one to four.
 - The number of possbile constitutional isomers increases as the number of carbon atoms increases
- ▶ **Stereoisomers**: isomers that differ in spatial arrangement of atoms, rather than connectivity.
 - Geometric isomerism: aka cis-trans; locked into spatial positions due to double bonds or a ring structure.
 - Cis indicates functional groups that are on the same side of the carbon chain.
 - Trans indicates functional groups on opposite sides of the carbon chain.
 - **Enantiomers**: aka optical isomers; mirror images of each other that are non-superposable.
 - Human hands are a macroscopic analogy.
- ▶ More detail will be covered in later sections.

2 Molecular Representations

Molecular Representations

▶ **Partially condensed structures**: the C−H bonds are not always drawn, saving space.

- ▶ Condensed structures: single bonds are not drawn and groups of atoms are clustered when possbile.
 - CH₃CH₃CHOH → (CH₃)₂CHOH
- ▶ **Molecular formula**: simply shows number of each type of atom with no structural information.
 - o C₃H₈O
- ▶ Example of converting a condensed structure into a partially condensed structure:
 - (CH₃)₃CCH₂CH(CH₃)CH(CH₃)₂
 CH₃ H H H H
 CH₃ C C C C C CH₃
 CH₃ H CH₃ CH₃ CH₃
 - This shows just one isomer, more partially condensed structures are possible.

Bond-Line Structures

- ▶ **Bond-line structures**; aka skeletal structures; simplify drawing process of chemical structures and are easier to read.
 - Each corner or endpoint represents a carbon atom.

- All examples have 6 carbon atoms
- o Double bonds are shown with two lines, triple with three.

- Triple bonds are drawn linearly due to sp-hybridization
- Hydrogens are not shown; it is assumed that each carbon posses enough to satisfy octet rule.

Notes on Drawing Bond-Line Structrues

- Carbon atoms in a straight chain should be drawn in zigzag format in order to accurately show each carbon.
- o Double bonds should be drawn as far apart as possible:

o Direction of a single bond is irrelevant:

- All heteroatoms (atoms other than carbon and hydrogen) must be drawn.
 - Hydrogens next to heteroatoms must be shown.
- o Carbons cannot have more than four bonds.

Hydrogen Deficiency Index: Degrees of Unsaturation

Excerpt from Chapter 14: Infrared Spectroscopy and Mass Spectrometry

- ▶ **Saturated compounds**: the maximum number of hydrogen atoms possbile, relative to number of carbon present.
 - Determining saturation using molecular formula: C_nH_{2n+2} n= carbon atoms
- \triangleright **Unsaturated compounds**: a compound that contains at least one π bond, resulting fewer than the maximum number of hydrogen atoms.
 - Compounds with rings also result in an unsaturated compound.
 - Degree of unsaturation: a number that represents half the "missing" number of hydrogen atoms when compared to a saturated compound.
- ▶ **Hydrogen deficiency index (HDI)**: the measure of degrees of unsaturation.
 - o e.g. two degrees of unsaturation results in HDI of 2.
 - Degrees of freedom help represent possbile structures, indicating possible double bounds, triple bounds, rings, or various combinations of each.

Impact of Other Elements on HDI

- **Halogens**: takes the place of a hydrogen atom; add one H for each halogen.
- Oxygen: no affect on saturation; ignore.
- **Nitrogen**: needs an extra hydrogen; subtract one H for each nitrogen.
- Formula: HDI = $\frac{1}{2}(2C + 2 + N H X)$
 - X: halogen atoms.
- ▶ Calculating HDI provides clues about the structural features of a compound.
 - o Only helpful when molecular formula is known for certainty.

Identifying Functional Groups

 \triangleright