Proceso de desarrollo del software modelo en cascada

- Análisis: Necesidades del usuario → especificaciones
- Diseño: Descomposición en elementos que puedan desarrollarse por separado → especificaciones de cada elemento
- Codificación: Programación de cada elemento por separado (+pruebas aisladas)
- Integración: Se juntan los elementos y se prueba el sistema completo
- Mantenimiento: Cambios ocasionales (errores o mejoras)

Prototipos

- Prototipos rápidos
 - Sólo para adquirir experiencia
 - El código no se reusa
 - Se usan para las fases de análisis diseño

- - El código se reusa
 - Proceso cíclico del modelo en cascada
 - En cada vuelta se va mejorando el prototipo hasta llegar a un sistema completo

Especificación de software

- Concepto de modelo del sistema
 - El modelo especifica el QUÉ hace el sistema sin especificar el CÓMO lo hace
 - Se pueden usar distintas técnicas
 - Descomposición en subsistemas
 - Modificación de un modelo existente
 - Análisis del dominio → estudiar entorno, terminología, sistemas similares....
- Análisis de requisitos
 - Objetivo → obtener las especificaciones del software (construir el modelo)
 - Fases
 - Estudio del sistema en su contexto: sistema SW es parte de un sistema complejo (SW+HW+mecánica+....) → estudio de todos los demás sistemas + estudio del dominio
 - ► Identificación de necesidades: interacción con el cliente → necesidades reales
 - Establecimiento del modelo del sistema
 - → Desarrollo jerárquico → división en subsistemas + desarrollo de cada subsistema
 - → Finaliza con un documento de especificación de requisitos
 - Distintas notaciones posibles para la especificación
 - Lenguaje natural → para sistemas muy sencillos o como complemento de otros
 - ► Diagramas de flujo de datos (DFD) → modelan el procesado de los datos en el sistema
 - ▶ Diagramas de transición de estado (DTE) → modelan la dinámica del sistema
 - ▶ Diccionario de datos → modela los datos
 - **>**

Diseño de software

Diseño

- Decir CÓMO va a hacer el sistema lo que tiene que hacer
- Finaliza con un documento de diseño arquitectónico y un documento de diseño detallado

Fases

- Diseño arquitectónico
 - Estructura y organización del sistema
 - División en subsistemas o módulos + interfaces entre ellos
- Diseño detallado → desarrollo de cada módulo
 - Aparecen nuevos módulos, se agrupan o desaparecen otros
 - Definir la estructura de cada módulo, con sus datos y servicios asociados
 - Diseñar los algoritmos para el desarrollo de cada módulo → se detalla en pseudocódigo sin llegar a un nivel muy detallado (sería casi codificación)
- Diseño de datos → diseño de las bases de datos asociadas al sistema (si es necesario)

Diagramas de estructura

- Es uno de las muchas herramientas para el diseño
- Propuesta por E. Yourdon como herramienta para el diseño estructurado
- Describen la jerarquía de modulos y submódulos (diseño arquitectónico)
- El concepto de módulo de Yourdon encaja en lo que es una función de C

Simbología de los diagramas de estructura

módulo

Indica un módulo, con su nombre

Indica que el módulo superior llama al inferior

Sobre una línea. Indica llamada opcional

Sobre una línea. Indica llamada repetitiva

Envío de datos (de información)

Envío de datos (de control)

Características que debe cumplir un módulo

- Acoplamiento (debe ser débil) → es la interrelación que tiene con otros módulos
 - (muy fuerte) Por contenido → acceso a datos locales y código (entre módulos)
 - (fuerte) Común → zona de datos comunes a varios módulos
 - (medio) De control → los módulos se pasan señales de control
 - (débil) Por referencia → los modulos se pasan datos por referencia (p.e.: struct de C)
 - (muy débil) Por valor → paso de datos de un módulos a otro (sólo los que necesita)
- Cohesión (debe ser media/alta) → agrupar en un módulo elementos afines
 - (muy baja) casual → no hay relación (p.e.: cojo un programa de 1000 líneas de código, lo parto en bloques de 100 líneas y hago un módulo con cada bloque)
 - (baja) Lógica → el módulo contiene operaciones cuya ejecución depende de un parámetro (p.e.: una función calcular(operacion,datos) que puede hacer sumas o productos)
 - (media-baja) temporal → el módulo contiene operaciones que se ejecutan en el mismo momento (p.e.: rutinas de inicialización del sistema)
 - (media) comunicación → el módulo realiza distintas operaciones que se ejecutan en "paralelo" y que operan todos sobre el mismo conjunto de datos
 - (media-alta) secuencial → el módulo realiza distintas operaciones que se realizan de forma secuencial sobre los datos, de forma que los datos de salida de una operación son datos de entrada para la siguiente
 - (alta) funcional → el módulo realiza sólo una función
- Comprensibilidad → simple y con funcionamiento comprensible (por quien no lo ha diseñado)
- Adaptabilidad (muy difícil) → posibilidad de cambiarlo con facilidad

Documento de diseño (modelo de la Agencia Espacial Europea)

- 1. **Introducción** → visión general del documento
 - 1.1. Objetivo
 - 1.2. Ámbito
 - 1.3. Definiciones, siglas y abreviaturas
 - 1.4. Referencias
- 2. Panorámica del sistema → visión general de los requisitos + referencia al documento de especificación de requisitos
- 3. Contexto del sistema → conexiones con otros sistemas
 - 3.n. Definición de interfaz externa
- 4. **Diseño del sistema** → descripción del nivel superior de diseño (diseño arquitectónico)
 - 4.1. Metodología de diseño de alto nivel → descripción de la metodología usada
 - 4.2. Descomposición del sistema → componentes del sistema (módulos¹) y la relación entre ellos
- 5. Diseño de los componentes → diseño de cada módulo¹
 - 5.n.0. Indentificador del componente
 - 5.n.1. Tipo → módulo¹
 - 5.n.2. **Objetivo** → justificación de la necesidad de que exista
 - 5.n.3. Función → ¿qué hace?
 - 5.n.4. **Subordinados** → componentes (módulos¹) que usa
 - 5.n.5. Dependencias → componentes (módulos¹) por los que es usado
 - 5.n.6. Interfases → reglas de interacción con otros elementos (módulos¹)
 - 5.n.7. Recursos
 - 5.n.8. Referencias
 - 5.n.9. **Proceso** → algoritmos (se definen con pseudocódigo)
 - 5.n.10. **Datos** → datos internos que usa el componente (módulo¹)
- 6. Viabilidad y recursos estimados → para llevar a cabo el sistema
- 7. Matriz requisitos/componentes

Propuesta de desarrollo para sistemas pequeños

- Especificación (Análisis)
 - Muy brevemente decir qué hace el sistema sin decir cómo
 - En lenguaje natural o bien lenguaje natural estructurado
 - Sin documento de especificación de software → se incluye en el documento de diseño

Diseño

- Diseño arquitectónico
 - División en módulos y los interfaces entre ellos
 - Reflejado en un diagrama de estructura
- Diseño detallado
 - Diseño de cada uno de los módulos
 - Se especificará como pseudocódigo (mejor) o diagrama de flujo
 - Se plasma en el documento de diseño
- Codificación
 Pruebas
 Se realizarán ambas a la vez y por módulos
 Ojo, no empezar hasta que no esté terminado el diseño detallado)

Documento de diseño

- Breve introducción y panorámica del sistema
- Desarrollo detallado de diseño del sistema y de los componentes