proyección y producto interno

Prof. Jhon Fredy Tavera Bucurú

2025

proyección ortogonal

producto escalar

Proyección de \vec{z} sobre \vec{u}

 \blacktriangleright Si 0° < α < 90°, entonces \vec{p} tiene la misma dirección que \vec{u} y por tanto

$$\vec{p} = \|\vec{p}\| \; \frac{\vec{u}}{\|\vec{u}\|}.$$

► Como $\cos \alpha = \frac{\|\vec{p}\|}{\|\vec{z}\|}$, es decir, $\|\vec{p}\| = \|\vec{z}\| \cos \alpha$, se sigue que

$$\vec{p} = (\|\vec{z}\|\cos\alpha)\,\frac{\vec{u}}{\|\vec{u}\|}.$$

Así,

$$\mathsf{Proy}_{\vec{u}} \ \vec{z} = \big(\|\vec{z}\| \cos \alpha \big) \ \frac{\vec{u}}{\|\vec{u}\|} \quad \big(\mathsf{equivalentemente} \ \mathsf{Proy}_{\vec{u}} \ \vec{z} = \frac{\vec{z} \cdot \vec{u}}{\|\vec{u}\|^2} \vec{u} \big).$$

Proyección de \vec{z} sobre \vec{u} (caso $90^{\circ} < \alpha < 180^{\circ}$)

▶ Si $90^{\circ} < \alpha < 180^{\circ}$, entonces \vec{p} tiene dirección opuesta a \vec{u} . Por tanto,

$$\vec{p} = \|\vec{p}\| \left(-\frac{\vec{u}}{\|\vec{u}\|}\right).$$

► Ahora,

$$\cos(180^{\circ} - \alpha) = \frac{\|\vec{p}\|}{\|\vec{z}\|} \quad \Rightarrow \quad \|\vec{p}\| = \|\vec{z}\|\cos(180^{\circ} - \alpha).$$

▶ Como $cos(180^{\circ} - \alpha) = -cos \alpha$, se sigue que

$$\|\vec{p}\| = -\|\vec{z}\|\cos\alpha,$$

y por ende

$$\vec{p} = \left(- \|\vec{z}\| \cos \alpha \right) \left(- \frac{\vec{u}}{\|\vec{u}\|} \right).$$

Así (como en el caso anterior),

$$\mathsf{Proy}_{\vec{u}} \ \vec{z} = \big(\|\vec{z}\| \cos \alpha \big) \, \frac{\vec{u}}{\|\vec{u}\|} \quad \big(\mathsf{equivalentemente} \ \mathsf{Proy}_{\vec{u}} \ \vec{z} = \frac{\vec{z} \cdot \vec{u}}{\|\vec{u}\|^2} \, \vec{u} \big).$$

Nótese que esta fórmula también es válida si $\alpha = 180^{\circ}$ pues en $\sqrt{2}$

Resumen: proyección de \vec{z} sobre \vec{u}

Sea \vec{u} un vector no nulo y \vec{z} un vector cualquiera.

- Si $\vec{z} = \vec{0}$, entonces $\text{Proy}_{\vec{u}} \vec{z} = \vec{0}$. En este caso, la componente escalar de \vec{z} en la dirección de \vec{u} es 0.
- ► Si $\vec{z} \neq \vec{0}$ y α es el ángulo entre \vec{z} y \vec{u} ,

$$\mathsf{Proy}_{\vec{u}} \ \vec{z} = (\|\vec{z}\| \cos \alpha) \frac{\vec{u}}{\|\vec{u}\|}.$$

En este caso, la componente escalar de \vec{z} en la dirección de \vec{u} es $\|\vec{z}\|\cos\alpha$.

Producto interno (escalar)

Definición (Producto escalar de dos vectores)

En general, dados dos vectores geométricos cualesquiera \vec{v} y \vec{u} , se define el producto escalar $\vec{v} \cdot \vec{u}$ así:

- Si $\vec{u} = \vec{0}$ o $\vec{v} = \vec{0}$, entonces $\vec{v} \cdot \vec{u} = 0$.
- Si $\vec{u} \neq \vec{0}$, $\vec{v} \neq \vec{0}$ y α es el ángulo entre \vec{v} y \vec{u} , entonces

$$\vec{\mathbf{v}} \cdot \vec{\mathbf{u}} = \|\vec{\mathbf{v}}\| \|\vec{\mathbf{u}}\| \cos \alpha.$$

Consecuencias del producto escalar

Una consecuencia inmediata de la definición es

$$\vec{v} \cdot \vec{u} = 0 \iff \vec{v} \perp \vec{u}$$

Además, como $-1 \le \cos \alpha \le 1$, se tiene

$$-\|\vec{v}\| \|\vec{u}\| \le \|\vec{v}\| \|\vec{u}\| \cos \alpha \le \|\vec{v}\| \|\vec{u}\|,$$

y por tanto, para $\vec{u} \neq \vec{0}$ y $\vec{v} \neq \vec{0}$,

$$-\|\vec{v}\| \|\vec{u}\| \leq \vec{v} \cdot \vec{u} \leq \|\vec{v}\| \|\vec{u}\|.$$

Equivalente y más compacto:

$$|\vec{v} \cdot \vec{u}| \leq ||\vec{v}|| \, ||\vec{u}||$$

Esta desigualdad, válida también si $\vec{u} = \vec{0}$ o $\vec{v} = \vec{0}$, se conoce como la **desigualdad de Cauchy–Schwarz**.

Propiedades del producto interno

El producto escalar tiene las siguientes propiedades, válidas para cualesquiera vectores $\vec{u}, \vec{v}, \vec{w}$ y cualquier escalar r:

- 1. Simetría: $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$.
- 2. Cuadrado de la norma: $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$.
- 3. Homogeneidad: $(r\vec{u}) \cdot \vec{v} = r(\vec{u} \cdot \vec{v}) = \vec{u} \cdot (r\vec{v})$.
- 4. Distributividad:

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}, \qquad (\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}.$$

