Computational Microelectronics Lecture 1 Technology Computer-Aided Design

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Welcome

Welcome!

- Computational Microelectronics (계산전자공학)
 - -Code: EC7114
 - Lecture 3, no experiment, credit 3
- Instructor: Sung-Min Hong
 - -School of EECS

Resources

Presentation materials

https://github.com/hi2ska2/cm2023f

-There are some archived repositories.

- Homowork submission
 - -GIST LMS system
- YouTube channel

https://www.youtube.com/@SungMinHong

Evaluation

- Attendance (10%)
- Homework (40%)
- Final presentation (50%)
 - Prepare and submit your own presentation.
 - It will be uploaded in my YouTube channel.

Technology Computer-Aided Design (TCAD)

Various ways to consider a NAND2 gate

- Logical symbol, circuit schematic, layout, ...
 - -Then, what is the physical reality?

(Wikipedia)

3D structure of a NAND2 gate

- Silicon, insulator, metal, ...
 - Voltages as logical signals

(Synopsys)

Semiconductor device technology

- Tough development goal at every technology generation
 - Example) TSMC's 3-nm node (N3E @ IEDM 2022)
 - -Trial-and-error? No.
 - We need a guide.

(TSMC)

Cortex-A72 Core Area (um²)

TCAD (Technology CAD)

- Process simulation, device simulation, and so on
 - -CAD?
 - Technology = Semiconductor device technology

2D CAD drawing (Wikipedia)

EDA-TCAD Interface

(Prof. Dutton's ICCAD 2014 TCAD to EDA Workshop presentation)

TCAD vendors

- Companies offering TCAD tools
 - -Synopsys, Silvaco, GTS, ...

In this course,

- You build your own codes.
 - For what?

(Kim Bellard)

Simulation flow

- Technology development cycle
 TCAD is heavily employed.
- Process simulation

Device simulation

Various TCAD tools

There are many TCAD tools.

Process simulation

Three-dimensional device structure

- Complicated structure
 - Several materials
 - Silicon, SiGe, ...
 - Oxide, nitride, HfO₂, ...
 - Position-dependent doping profile
 - N-type & P-type
- "Unstructured" mesh
 - Sets of tetrahedra

Three-dimensional planar MOSFET (Han et al., SISPAD, 2021.)

Various process steps

- Wafer (← Not covered)
- Oxidation
- Photolithography
- Etching
- Deposition & ion implantation
- Interconnect (Not covered)
- EDS (← Not covered)
- Packaging (← Not covered)

Ion implantation profile

Dopant profiles after diffusion

Device simulation

Transport theory

- Goal: Predicting the electrical characteristics of devices
 - Description about the electronic motion
 - A set of partial differential equations → numerical solutions

HW#1

- Due: AM08:00, August 30
- Problem#1
 - Write a "Hello, world!" program and submit your report through the GIST LMS system.

Thank you!