UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA

Professor: William Caires Silva Amorim Monitor II: João Marcus Soares Callegari

ELT 226 - Laboratório de Circuitos Elétricos I

		,	,
Nome:	Mat.: Data:	/	/
L NOITIC.	Mat Data.	/	/

Teoremas de Thévenin e de Máxima Transferência de Potência

Introdução:

• <u>Teorema de Thévenin:</u> O Teorema de Thévenin auxilia na solução de circuitos, simplificando cálculos elaborados em circuitos mais complexos. Qualquer que seja o circuito, desde que linear e ativo, teremos invariavelmente um circuito equivalente da mesma forma, conforme apresentado nas Figuras 1(a) e (b).

Figura 1 – (a) Rede linear. (b) Circuito equivalente de Thévenin da rede.

• A tensão a-b é dada por:

$$V_{ab} = V_{th} - iR_{th}. (1)$$

onde Vth é a tensão de Thévenin e Rth é a resistência de Thévenin.

- <u>Máxima Transferência de Potência:</u> Em várias aplicações na teoria de circuitos deseja-se obter a Máxima Potência possível que uma dada fonte pode entregar à carga. Utilizando-se o Teorema de Thévenin pode-se facilmente determinar qual o máximo de potência que uma fonte é capaz de entregar e que carga deve-se colocar para obter essa potência máxima. Seja o circuito da Figura 2(a) com uma fonte de tensão V_{th} e um resistor R_{th} associados em série fornecendo potência a uma carga RL variável. A curva de potência entregue a carga em função da sua resistência é dada na Figura 2(b).
- A máxima transferência de potência ocorre quando $R_L = R_{th}$, dada por:

$$P_{L_{max}} = \frac{(V_{th})^2}{4R_{th}}. (2)$$

Figura 2 – (a) Circuito equivalente de Thévenin conectado a uma carga variável (b) Curva de potência entregue à carga, variando a resistência R_L.

Objetivos:

• Verificação prática dos Teoremas de Thévenin e da Máxima Transferência de Potência.

Material utilizado:

- 3 resistores $1k\Omega 1/4W$;
- 1 potenciômetro 10k Ω ;
- Fios;
- Fonte c.c;
- Multímetro;
- Protoboard;

Parte teórica:

Seja o circuito dado na Figura 3. Determine a resistência de Thévenin R_{th} e a tensão de Thévenin V_{th} em relação aos nós A e B.

Figura 3 — Circuito linear resistivo, com duas entradas e uma saída.

 Construir o circuito equivalente de Thévenin e calcular a potência máxima que pode ser transferida à carga R_L quando conectado aos terminais a-b.

Parte prática:

- Antes de ligar a fonte c.c variável, girar os potenciômetros no sentido anti-horário para que a tensão seja mínima (0 V);
- Selecionar o modo independente de operação da fonte c.c e ajustá-la conforme a Figura 4.

Figura 4 – Esquema de configuração da fonte c.c no modo independente.

Determinação da Resistência de Thévenin (R_{th}) em relação aos nós A-B

• Realizar a montagem da Figura 5(a);

Figura 5 — Esquema de ligação: (a) Ohmímetro, para determinar R_{tb} . (b) Voltímetro, para determinar V_{tb} .

• Realize a medição, com Ohmímetro, nos pontos A-B e preencha a Tabela 1.

Tabela 1 – Resistência de Thévenin.

Grandezas	Valor medido
Resistência A-B (Ω)	

Determinação da Tensão de Thévenin em relação aos nós A-B

- Realizar a montagem da Figura 5(b);
- Realize as medições e preencha a Tabela 2.

Tabela 2 – Tensão de Thévenin.

Grandezas	Valor medido
Tensão A-B (V)	

• Com base nos valores medidos nas Tabelas 1 e 2, determine I_{th}. Confira com o circuito da Figura 6 e preencha a Tabela 3.

Tabela 3 – Corrente de Thévenin.

Grandezas	Valor medido	Valor calculado			
Corrente de Thévenin A-B (A)					

Figura 6 – Esquema de ligação: (a) Amperímetro, para determinar I_{th} .

- Monte o circuito equivalente de Thévenin. Calcule o resistor de carga para transferir a máxima potência teórica aos terminais A-B;
- Conecte um potenciômetro ao circuito de Thévenin do item anterior, varie a resistência de carga e preencha a Tabela 4. Plote *resistência x potência* em um gráfico e anexe ao relatório. Conclua sobre o teorema da máxima transferência de potência.

Grandezas	Valor	Corrente medida (A)
Resistência carga 1	10 k Ω	
Resistência carga 2	5 kΩ	
Resistência carga 3	1 kΩ	
Resistência carga 4	500 Ω	
Resistência carga 5	100 O	

Tabela 4 – Medição de corrente para cada resistência do potenciômetro.

Determinação da máxima transferência de potência

• Encontre o circuito equivalente de Thévenin da Figura 7(a). Monte **apenas** o circuito equivalente da Figura 7(b), de acordo com os valores calculados anteriormente.

Figura 7 – (a) Circuito resistivo. (b) Circuito equivalente de Thévenin da Figura 7(a).

Conecte os resistores R_L = 100Ω, 500Ω e 1kΩ no circuito equivalente de Thévenin, energize-o, e verifique o que ocorre. Para auxiliar na sua resposta, meça a corrente, calcule a potência transferida ao resistor R_L e a sua temperatura (Tabela 5).

$R_{L}\left[\Omega\right]$		Temperatura [°C]												
	5s	10s	15s	20s	30s	40s	50s	60s	80s	100s	120s	140s	180s	240s
100														
500														
1k														

Tabela 5 — Medição de temperatura para diferentes cargas.