CÁLCULO NUMÉRICO UERJ

Método dos Mínimos Quadrados

Rodrigo Madureira rodrigo.madureira@ime.uerj.br IME-UERJ

Sumário

- Introdução
- Método dos Mínimos Quadrados Caso Linear
- 3 Exemplo
- 4 Método dos Mínimos Quadrados Parábola
- Exemplo
- 6 Caso não linear Função exponencial
- Exemplo Caso não linear
- Bibliografia

Seja a tabela a seguir:

X	<i>X</i> ₁	<i>X</i> ₂	 X_{m-1}	Xm
У	<i>y</i> ₁	y 2	 <i>y</i> _{m-1}	y m

Desejamos ajustar uma curva $y = \varphi(x)$ aos pontos da tabela.

Essa curva pode ser uma reta, uma parábola, uma exponencial, etc.

Se for escolhida uma reta $\varphi(x) = ax + b$, devemos determinar a e b de modo

que a reta se ajuste ao conjunto de pontos dados com o mínimo de desvios entre os pontos e a reta.

Figura: Visão macroscópica de um ponto da tabela e da reta

Denotamos

 $d_i = y_i - \varphi(x_i) = y_i - ax_i - b$ como o desvio de cada ponto (x_i, y_i) da tabela em relação à reta $\varphi(x)$.

O ideal seria que cada desvio fosse nulo para o ajuste da reta, mas em geral,

$$\varphi(x_i)=ax_i+b\neq y_i.$$

E por que usamos a abordagem da soma dos mínimos quadrados dos desvios para fazer o ajuste da reta aos pontos?

4/29

Abordagem 1: Minimizar a soma dos desvios

Exemplo: Ajuste de uma reta a apenas dois pontos (x_1, y_1) e (x_2, y_2) .

$$\begin{aligned} &d_2 = -d_1 \\ &\Rightarrow S_2 = d_1 + d_2 = d_1 + (-d_1) = 0 \end{aligned}$$

Problema: A reta $\varphi_1(x)$ se ajusta perfeitamente aos dois pontos. Mas, não é a única que se ajusta a eles com soma de desvios nula. Logo, esta abordagem falha.

Abordagem 2: Minimizar a soma dos módulos dos desvios ($S = |d_1| + |d_2|$)

$$d_2 = -d_1 \Rightarrow |d_2| = |d_1|$$

 $\Rightarrow S_2 = |d_1| + |d_2| = 2|d_1| \neq 0$

Problema: Para minimizar uma função, devemos derivá-la e igualar a zero. Porém, a função modular $|d_i| = |y_i - ax_i - b|$ não possui derivada na origem em relação às incógnitas a e b, para i = 1, 2. Logo, esta abordagem também falha.

Então, vamos tratar da abordagem que realmente funciona: **minimizar a soma dos quadrados dos desvios**.

Se temos uma tabela com *m* pontos

X	<i>X</i> ₁	<i>X</i> ₂	 x_{m-1}	Xm
У	<i>y</i> ₁	y 2	 <i>y</i> _{m-1}	y _m

e queremos ajustá-los a uma reta $\varphi(x) = ax + b$ de modo a **minimizar os quadrados dos desvios** $d_i^2 = (y_i - \varphi(x_i))^2 = (y_i - ax_i - b)^2$, para i = 1, 2, ..., m.

Neste caso, a reta que se ajusta aos pontos é única e o desvio ao quadrado d_i^2 possui derivada em relação às incógnitas a e b em cada ponto $i=1,2,\ldots,m$.

Assim, a soma dos quadrados dos desvios será dada por:

$$S = d_1^2 + d_2^2 + \ldots + d_m^2 = \sum_{i=1}^m d_i^2 = \sum_{i=1}^m (y_i - ax_i - b)^2$$

Para achar a **reta que minimiza a soma dos quadrados dos desvios**, devemos encontrar seus coeficientes *a* e *b*, que são as nossas incógnitas.

Para **minimizar a soma dos quadrados destes desvios**, devemos derivar *S* em relação às incógnitas *a* e *b* e igualar a zero:

$$\frac{\partial S}{\partial a} = 0$$
, (1) $\frac{\partial S}{\partial b} = 0$. (2)

De (1), obtemos:

$$\frac{\partial S}{\partial a} = 0 \Rightarrow \frac{\partial}{\partial a} \left(\sum_{i=1}^{m} (y_i - ax_i - b)^2 \right) = \sum_{i=1}^{m} \left[\frac{\partial}{\partial a} (y_i - ax_i - b)^2 \right] = 0$$

$$\Rightarrow \sum_{i=1}^{m} [2(y_i - ax_i - b)(-x_i)] = 0 \Rightarrow 2 \sum_{i=1}^{m} (y_i - ax_i - b)(-x_i) = 0$$

$$\Rightarrow \sum_{i=1}^{m} (-x_i y_i + ax_i^2 + bx_i) = 0 \Rightarrow \sum_{i=1}^{m} (-x_i y_i) + \sum_{i=1}^{m} ax_i^2 + \sum_{i=1}^{m} bx_i = 0$$

$$\Rightarrow a \sum_{i=1}^{m} x_i^2 + b \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} x_i y_i \quad (3)$$

De (2), obtemos:

$$\frac{\partial S}{\partial b} = 0 \Rightarrow \frac{\partial}{\partial b} \left(\sum_{i=1}^{m} (y_i - ax_i - b)^2 \right) = \sum_{i=1}^{m} \left[\frac{\partial}{\partial b} (y_i - ax_i - b)^2 \right] = 0$$

$$\Rightarrow \sum_{i=1}^{m} [2(y_i - ax_i - b)(-1)] = 0 \Rightarrow 2 \sum_{i=1}^{m} (y_i - ax_i - b)(-1) = 0$$

$$\Rightarrow \sum_{i=1}^{m} (-y_i + ax_i + b) = 0 \Rightarrow \sum_{i=1}^{m} (-y_i) + \sum_{i=1}^{m} ax_i + \sum_{i=1}^{m} b = 0$$

$$\Rightarrow a \sum_{i=1}^{m} x_i + b \sum_{i=1}^{m} 1 = \sum_{i=1}^{m} y_i \Rightarrow a \sum_{i=1}^{m} x_i + b \cdot m = \sum_{i=1}^{m} y_i \quad (4)$$

Logo, para descobrir a **reta dos mínimos quadrados** $\varphi(x) = ax + b$, devemos descobrir a e b através do sistema formado pelas eqs. (3) e (4):

$$\begin{cases} \left(\sum_{i=1}^{m} x_i^2\right) a + \left(\sum_{i=1}^{m} x_i\right) b = \sum_{i=1}^{m} x_i y_i \\ \left(\sum_{i=1}^{m} x_i\right) a + \left(\sum_{i=1}^{m} 1\right) b = \sum_{i=1}^{m} y_i \end{cases}$$

Resumindo:

Para achar a reta $\varphi(x) = ax + b$ que se ajusta aos pontos de uma tabela

X	<i>X</i> ₁	<i>X</i> ₂	 x_{m-1}	Xm
У	<i>y</i> ₁	y 2	 <i>y</i> _{m-1}	y _m

pelo Método dos Mínimos Quadrados, devemos encontrar primeiro as incógnitas *a* e *b* da reta no sistema linear

$$\begin{bmatrix} \sum_{i=1}^{m} x_i^2 & \sum_{i=1}^{m} x_i \\ \sum_{i=1}^{m} x_i & \sum_{i=1}^{m} 1 \\ b \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} x_i y_i \\ \sum_{i=1}^{m} y_i \end{bmatrix}$$

Considere a tabela

							11,0	
f(x)	1,0	2,0	4,0	4, 0	5,0	7,0	8,0	9,0

Estime o valor de f(15,5) com o ajuste pela reta dos mínimos quadrados.

Solução: Nete exemplo, temos 8 pontos na tabela. Logo, m = 8. Portanto, para achar as incógnitas a e b da reta $\varphi(x) = ax + b$, devemos resolver o sistema linear

$$\begin{bmatrix} \sum_{i=1}^{8} x_i^2 & \sum_{i=1}^{8} x_i \\ \sum_{i=1}^{8} x_i & \sum_{i=1}^{8} 1 \\ b \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{8} x_i y_i \\ \sum_{i=1}^{8} y_i \end{bmatrix}$$

Vamos resolver primeiro os somatórios da seguinte forma:

i	Xi	y i	X_i^2	$x_i y_i$
1	1,0	1,0	1,0	1,0
2	3,0	2,0	9,0	6,0
3	4,0	4,0	16,0	16,0
4	6,0	4,0	36,0	24,0
5	8,0	5,0	64,0	40,0
6	9,0	7,0	81,0	63,0
7	11,0	8,0	121,0	88,0
8	14,0	9,0	196,0	126,0
SOMAS	56,0	40,0	524,0	364, 0

Agora, resolvemos o sistema linear:

$$\begin{bmatrix} 524 & 56 \\ 56 & 8 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 364 \\ 40 \end{bmatrix}$$

Usando Eliminação de Gauss, obtemos o sistema aumentado:

$$\left[\begin{array}{ccccc} 524 & 56 & | & 364 \\ 56 & 8 & | & 40 \end{array}\right] \begin{array}{cccc} L_1 & (\div 4) & \Rightarrow & \left[\begin{array}{ccccc} 131 & 14 & | & 91 \\ 7 & 1 & | & 5 \end{array}\right] \begin{array}{c} L_1 \\ L_2 \end{array}$$

pivô = 131;
$$m_{21} = \frac{7}{131} \Rightarrow L_2 \leftarrow L_2 - \frac{7}{131}L_1$$
.

$$\left[\begin{array}{ccc|ccc}
131 & 14 & 91 \\
0 & 33/131 & 18/131
\end{array}\right] L_1$$

Solução:

$$b = \frac{18}{33} = \frac{6}{11}$$
; $131a + 14(\frac{6}{11}) = 91 \Rightarrow a = \frac{7}{11}$.

Logo, a reta dos mínimos quadrados procurada é $\varphi(x) = \frac{7}{11}x + \frac{6}{11}$.

Agora, para estimar o valor de f(15,5), basta calcular $\varphi(15,5)$ na reta encontrada:

encontrada:
$$\varphi(15,5) = \frac{7}{11}(15,5) + \frac{6}{11} \approx 10,4091.$$

Se temos uma tabela com *m* pontos

Χ	<i>X</i> ₁	<i>X</i> ₂	 X_{m-1}	Xm
У	<i>y</i> ₁	y ₂	 <i>y</i> _{m-1}	y _m

e queremos ajustá-los a uma parábola $\varphi(x)=ax^2+bx+c$ de modo a minimizar os quadrados dos desvios

$$d_i^2 = (y_i - \varphi(x_i))^2 = (y_i - ax_i^2 - bx_i - c)^2$$
, para $i = 1, 2, ..., m$.

Neste caso, a parábola que se ajusta aos pontos é única e o desvio ao quadrado d_i^2 possui derivada em relação às incógnitas a, b e c em cada ponto i = 1, 2, ..., m.

Assim, a soma dos quadrados dos desvios será dada por:

$$S = d_1^2 + d_2^2 + \ldots + d_m^2 = \sum_{i=1}^m d_i^2 = \sum_{i=1}^m (y_i - ax_i^2 - bx_i - c)^2$$

Para achar a **parábola que minimiza a soma dos quadrados dos desvios**, devemos encontrar seus coeficientes *a*, *b* e *c*, que são as nossas incógnitas.

Para **minimizar a soma dos quadrados destes desvios**, devemos derivar *S* em relação às incógnitas *a*, *b*, *c* e igualar a zero:

$$\frac{\partial S}{\partial a} = 0$$
, (1) $\frac{\partial S}{\partial b} = 0$, (2) $\frac{\partial S}{\partial c} = 0$. (3)

De (1), obtemos:

$$\frac{\partial S}{\partial a} = 0 \Rightarrow \frac{\partial}{\partial a} \left(\sum_{i=1}^{m} (y_i - ax_i^2 - bx_i - c)^2 \right) = \sum_{i=1}^{m} \left[\frac{\partial}{\partial a} (y_i - ax_i^2 - bx_i - c)^2 \right] = 0$$

$$\Rightarrow \sum_{i=1}^{m} [2(y_i - ax_i^2 - bx_i - c)(-x_i^2)] = 0 \Rightarrow 2 \sum_{i=1}^{m} (y_i - ax_i^2 - bx_i - c)(-x_i^2) = 0$$

$$\Rightarrow \sum_{i=1}^{m} (-x_i^2 y_i + ax_i^4 + bx_i^3 + cx_i^2) = 0 \Rightarrow \sum_{i=1}^{m} (-x_i^2 y_i) + \sum_{i=1}^{m} ax_i^4 + \sum_{i=1}^{m} bx_i^3 + \sum_{i=1}^{m} cx_i^2 = 0$$

$$\Rightarrow a \sum_{i=1}^{m} x_i^4 + b \sum_{i=1}^{m} x_i^3 + c \sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} x_i^2 y_i$$
 (3)

De (2), obtemos:

$$\frac{\partial S}{\partial b} = 0 \Rightarrow \frac{\partial}{\partial b} \left(\sum_{i=1}^{m} (y_i - ax_i^2 - bx_i - c)^2 \right) = \sum_{i=1}^{m} \left[\frac{\partial}{\partial b} (y_i - ax_i^2 - bx_i - c)^2 \right] = 0$$

$$\Rightarrow \sum_{i=1}^{m} [2(y_i - ax_i^2 - bx_i - c)(-x_i)] = 0 \Rightarrow 2 \sum_{i=1}^{m} (y_i - ax_i^2 - bx_i - c)(-x_i) = 0$$

$$\Rightarrow \sum_{i=1}^{m} (-x_i y_i + ax_i^3 + bx_i^2 + cx_i) = 0 \Rightarrow \sum_{i=1}^{m} (-x_i y_i) + \sum_{i=1}^{m} ax_i^3 + \sum_{i=1}^{m} bx_i^2 + \sum_{i=1}^{m} cx_i = 0$$

$$\Rightarrow a \sum_{i=1}^{m} x_i^3 + b \sum_{i=1}^{m} x_i^2 + c \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} x_i y_i \quad (3)$$

De (3), obtemos analogamente (verifique!):

$$\frac{\partial S}{\partial c} = 0 \quad \Rightarrow a \sum_{i=1}^{m} x_i^2 + b \sum_{i=1}^{m} x_i + c \sum_{i=1}^{m} 1 = \sum_{i=1}^{m} y_i \quad (4)$$

Para achar a parábola $\varphi(x) = ax^2 + bx + c$ que se ajusta aos pontos de uma tabela

Χ	<i>X</i> ₁	<i>X</i> ₂	 x_{m-1}	Xm
У	<i>y</i> ₁	y 2	 <i>y</i> _{m-1}	Уm

pelo Método dos Mínimos Quadrados, devemos encontrar primeiro as incógnitas a, b e c da parábola no sistema linear

$$\begin{bmatrix} \sum_{i=1}^{m} x_i^4 & \sum_{i=1}^{m} x_i^3 & \sum_{i=1}^{m} x_i^2 \\ \sum_{i=1}^{m} x_i^3 & \sum_{i=1}^{m} x_i^2 & \sum_{i=1}^{m} x_i \\ \sum_{i=1}^{m} x_i^2 & \sum_{i=1}^{m} x_i & \sum_{i=1}^{m} 1 \\ \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} x_i^2 y_i \\ \sum_{i=1}^{m} x_i y_i \\ \sum_{i=1}^{m} y_i \end{bmatrix}$$

Voltando ao exemplo anterior,

								11,0	
f(x)	1,0	2,0	4,0	4, 0	5,0	7,0	8,0	9,0

Estime agora o valor de f(15,5) com o ajuste pela **parábola** dos mínimos quadrados.

Solução: Nete exemplo, temos 8 pontos na tabela. Logo, m = 8. Portanto, para achar as incógnitas a, b, c da parábola $\varphi(x) = ax^2 + bx + c$, devemos resolver o sistema linear

$$\begin{bmatrix}
\sum_{i=1}^{8} x_i^4 & \sum_{i=1}^{8} x_i^3 & \sum_{i=1}^{8} x_i^2 \\
\sum_{i=1}^{8} x_i^3 & \sum_{i=1}^{8} x_i^2 & \sum_{i=1}^{8} x_i \\
\sum_{i=1}^{8} x_i^2 & \sum_{i=1}^{8} x_i & \sum_{i=1}^{1} 1
\end{bmatrix}$$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{8} x_i^2 y_i \\ \sum_{i=1}^{8} x_i y_i \\ \sum_{i=1}^{8} y_i \end{bmatrix}$$

Vamos resolver primeiro os somatórios da seguinte forma:

i	Xi	y i	x_i^2	X_i^3	X_i^4	$x_i^2 y_i$	$x_i y_i$
1	1,0	1,0	1,0	1,0	1,0	1,0	1,0
2	3,0	2,0	9,0	27,0	81,0	18,0	6,0
3	4,0	4,0	16,0	64,0	256, 0	64, 0	16,0
4	6,0	4,0	36,0	216,0	1296, 0	144,0	24,0
5	8,0	5,0	64,0	512,0	4096, 0	320,0	40,0
6	9,0	7,0	81,0	729,0	6561,0	567, 0	63,0
7	11,0	8,0	121,0	1331,0	14641,0	968, 0	88,0
8	14,0	9,0	196,0	2744,0	38416, 0	1764, 0	126,0
SOMAS	56,0	40,0	524,0	5624,0	65348, 0	3846, 0	364,0

Agora, resolvemos o sistema linear:

$$\begin{bmatrix} 65348 & 5624 & 524 \\ 5624 & 524 & 56 \\ 524 & 56 & 8 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 3846 \\ 364 \\ 40 \end{bmatrix}$$

Usando Eliminação de Gauss, obtemos o sistema aumentado:

$$\left[\begin{array}{ccccc} 65348 & 5624 & 524 & | & 3846 \\ 5624 & 524 & 56 & | & 364 \\ 524 & 56 & 8 & | & 40 \end{array} \right] \begin{array}{c} L_1 & (\div 8) \\ L_2 & (\div 8) \\ L_3 & (\div 8) \end{array}$$

Solução: (verifique!)

```
a \approx -0,0092; \quad b \approx 0,7723; \quad c \approx 0,1948. Logo, a parábola dos mínimos quadrados procurada é \varphi(x) = -0,0092x^2 + 0,7723x + 0,1948. (15,5;9,9552)
```

Agora, para estimar o valor de f(15,5), basta calcular $\varphi(15,5)$: $\varphi(15,5) = -0,0092(15,5)^2 + 0,7723(15,5) + 0,1948 \approx 9,9552$.

Caso não linear - Função exponencial

Em alguns casos, o método dos mínimos quadrados linear pode ser usado para ajustar uma função não linear nos coeficientes.

Suponha que queremos ajustar uma função exponencial $\varphi(x) = \beta_1 e^{\beta_2 x}$ aos dados de uma tabela

Nesse caso, podemos linearizar o problema usando uma transformação conveniente:

$$y \approx \beta_1 e^{\beta_2 x} \Rightarrow \ln(y) \approx \ln(\beta_1 e^{\beta_2 x}) \Rightarrow \ln(y) \approx \ln(\beta_1) + \ln(e^{\beta_2 x})$$
$$\Rightarrow \underbrace{\ln(y)}_{z} \approx \underbrace{\ln(\beta_1)}_{b} + \underbrace{\beta_2}_{a} x$$
$$\Rightarrow z \approx ax + b, \text{ onde } a = \beta_2, \ b = \ln(\beta_1).$$

que será ajustada pelo método dos mínimos quadrados à tabela

Considere a tabela

	-1,00							
У	36,54	17, 26	8, 15	3,85	1,82	0,86	0,40	0,24

Ajuste os dados à curva $\varphi(x) = \beta_1 e^{\beta_2 x}$ e estime o valor de y(1,50).

1. Linearização: $y \approx \beta_1 e^{\beta_2 x} \Rightarrow z = \ln(y) \approx ax + b$, onde $a = \beta_2$, $b = \ln(\beta_1)$

2. Ajuste dos pontos da tabela a seguir à reta dos mínimos quadrados $z \approx ax + b$

Vamos resolver primeiro os somatórios da seguinte forma:

i	Xi	Zį	X_i^2	X_iZ_i
1	-1,00	3,60	1,00	-3,60
2	-0,70	2,85	0,49	-2,00
3	-0,40	2, 10	0,16	-0,84
4	-0, 10	1,35	0,01	-0,14
5	0,20	0,60	0,04	0,12
6	0,50	-0,15	0,25	-0,08
7	0,80	-0,92	0,64	-0,74
8	1,00	-1,43	1,00	-1,43
SOMAS	0,30	8,00	3,59	-8,71

Agora, resolvemos o sistema linear:

$$\left[\begin{array}{cc} 3,59 & 0,30 \\ 0,30 & 8,00 \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{c} -8,71 \\ 8,00 \end{array}\right]$$

e encontramos $a \approx -2,52, b \approx 1,09 \Rightarrow z \approx -2,52x + 1,09$. (Verifique!)

Substituindo os valores para achar a função exponencial $y \approx \beta_1 e^{\beta_2 x}$ que se ajusta aos dados, obtemos:

$$a = \beta_2 \Rightarrow \beta_2 \approx -2,52$$

$$b = \ln(\beta_1) \Rightarrow \ln(\beta_1) \approx 1,09 \Rightarrow \beta_1 \approx e^{1,09} \approx 2,97$$

Portanto, a curva exponencial que se ajusta aos dados é

$$v \approx 2,97e^{-2,52x}$$

Logo,
$$y(1,50) \approx 2,97e^{-2,52(1,50)} \Rightarrow y(1,50) \approx 0.07$$

Referências I

- DORN, W. S.; McCRACKEN, D.D.. Cálculo Numérico Com Estudos de Casos Em Fortran IV. Ed. Campus, 1978.
- RUGGIERO, M.; LOPES, V.. Cálculo Numérico: Aspectos Teóricos e Computacionais. Pearson, 1996, 2a. Ed.
- BURDEN, R.. **Numerical Analysis**. Brooks/Cole Pub Co, 1996, 6th Edition.