2018 TARML I10

Tristan Shin

22 May 2018

Compute the number of polynomials P(x) satisfying the following properties:

- All coefficients of P are integers with magnitude less than 2017^3 .
- 2018 is a root of *P*.
- For all real numbers a and b such that ab = 1,

$$P(a+b) = P(a) + P(b).$$

First, we find all polynomials P with integer coefficients satisfying the equation. Suppose P is of degree ≤ 2 , so write $P(x) = a_0 + a_1x + a_2x^2$. Then

$$a_0 + a_1(a+b) + a_2(a+b)^2 = a_0 + a_1a + a_2a^2 + a_0 + a_1b + a_2b^2$$

whenever ab = 1, so $a_0 = 2a_2$. So any linear combination of $x^2 + 2$ and x works. Now, suppose that P is of degree $d \ge 3$ and write $P(x) = \sum_{i=0}^{d} a_i x^i$. Then

$$\sum_{i=0}^{d} a_i \left(x + \frac{1}{x} \right)^i = \sum_{i=0}^{d} a_i \left(x^i + \frac{1}{x^i} \right)$$

for all real numbers $x \neq 0$. Look at the x^{n-2} coefficient. On the left hand side, it is $na_n + a_{n-2}$. On the right hand side, it is a_{n-2} , so $a_n = 0$, contradiction. So P does not work and hence all P which work are of the form $ax^2 + bx + 2a$ for integers a and b.

Since 2018 is a root of P, we know that $(2018^2 + 2) a + 2018b = 0$, so a = 1009k and $b = -(1009 \cdot 2018 + 1) k$ for some integer k. We know that the magnitude of k is bounded by $\frac{2017^3}{1009 \cdot 2018 + 1}$. Letting n = 1009, this is $\frac{(2n-1)^3}{2n^2+1} = 4n - 6 + \frac{2n+5}{2n^2+1}$, so all k that work are from -(4n-6) to 4n-6, inclusive. So the total number of k which work, and hence the total number of polynomials which work, is 8n-11 = 8061.