Modelo Atômico atual

Professor: Railton Barbosa de Andrade

barbosa.railton@escolar.ifrn.edu.br

Roteiro de Aula

Objeto de conhecimento: Modelos Atômico Quântico

Habilidade: (EM13CNT201) Analisar e discutir modelos, teorias e leis propostos em diferentes épocas e culturas para comparar distintas explicações sobre o surgimento e a evolução da Vida, da Terra e do Universo com as teorias científicas aceitas atualmente.

Modelo Atômico Atual

Modelo atômico atual

Em 1924, Louis-Victor **de Broglie**

"os elétrons têm propriedades tanto de **partícula** como de **ondas**."

Em 1927, Werner **Heisenberg**

"é impossível determinar, ao mesmo tempo, a **posição** de uma partícula e sua **velocidade**."

Em 1926, Erwin **Schrödinger**

" os elétrons se encontram em regiões chamadas de **orbitais**."

Números quânticos

Os números quânticos têm como função localizar o elétron e fornecer informações sobre sua energia.

- Número quântico principal (n);
- Número quântico secundário ou azimutal (1);
- Número quântico magnético (m ou m_i);
- Número quântico de spin (s ou m_s).

Não existem elétrons em um mesmo átomo com os 4 números quânticos iguais (*Princípio da Exclusão de Pauli*)

Número Quântico Principal (n)

Níveis de energia (números inteiros (1, 2, 3...) ou **camadas eletrônicas**.

Número máximo de elétrons é:

2n²

n: número quântico principal

Os elementos conhecidos têm elétrons até a 7º órbita.

Camada	Valor de "n"	Número de elétrons
K	n = 1	$2.(1)^2 = 2$
L	n = 2	$2.(2)^2 = 8$
M	n = 3	$2.(3)^2 = 18$
N	n = 4	$2.(4)^2 = 32$
0	n = 5	$2.(5)^2 = 50$
Р	n = 6	$2.(6)^2 = 72$
Q	n = 7	$2.(7)^2 = 98$

Número quântico secundário ou azimutal (1)

- 1 Indica o subnível de energia do elétron
- 2 Indica o tipo e a forma geométrica do orbital
- 3 Está associado a energia total do elétron

Origem das letras s, p, d e f

s – sharp (Esférico) **p** – principal **d** – diffuse **f** – fundamental

$$l \in \longrightarrow l = n-1$$

Valor de "n"	Valor de "l"	Subnível
n = 1	l = 1-1 = 0	S
n = 2	l = 2-1 = 1	p
n = 3	l = 3-1 = 2	d
n = 4	l = 4-1 = 3	f

Número quântico secundário ou azimutal (1)

Número de orbitais 21 + 1

$$2l + 1$$

Subnível	Máximo de elétrons	N° de orbitais	Forma dos orbitais
S	2	1	Esférica
р	6	3	Haltere
d	10	5	Variável
f	14	7	Variável
y x	P _z	y P _y	P _x

Número quântico secundário ou azimutal (1)

Os orbitais **f** e **d** têm o formato mais complexo

Número quântico magnético (m ou m₁)

- 1 Indica a orientação do orbital no espaço
- 2 Possui valores inteiros

Subnível s (I = 0)

Subnível p (l = 1)

O número quântico **l**pode assumir

valores de **m**_l que

variam de - l a + l

Subnível d (l = 2)

Subnível f (l = 3)

Número quântico de spin (S ou M_s)

1 ossui dois possíveis valores + ½ ou -½

$$+ \frac{1}{2}$$
 OU $-\frac{1}{2}$

Spin - 1/2

Números Quânticos nas camadas ou níveis

Complete a tabela

		l= n-1	m ₁ = +1 -1	n ²	2 n ²
Camadas (nível)	n	I	m _I	nº de orbitais	nº de elétrons
K (nível 1)	1	0	0	1	2
L (nível 2)	2	l= 0 e l=1	-1, O, +1	4	8
M (nível 3)					
N (nível 4)					

Um elétron localiza-se na camada "2" e subnível "p" quando apresenta os seguintes valores de números quânticos:

- a) n = 4 e = 0
- b) n = 2el = 1
- c) n = 2el = 2
- d) n = 3el = 1
- e) n = 2e = 0

Considere um cenário no qual um elétron encontra-se em um átomo e está localizado na camada "O" e no subnível "s". Quais são os valores de n e / para esse elétron?

- a) 3 e 0.
- b) 4 e 1.
- c) 5 e O.
- d) 5 e 1.
- e) 6 e O.

- Assinale o que for correto.
- a) Os números quânticos de spin variam de -l a +l, passando por zero.
- b) O número quântico magnético indica a energia do elétron no subnível.
- c) O número quântico principal indica a energia do elétron no orbital.
- d) A região de máxima probabilidade de se encontrar o elétron em um subnível s é uma região esférica.

A determinação do número máximo de orbitais em um subnível é expressa pela fórmula (2l + 1), na qual "l" representa o número quântico secundário. Com base nisso, analise as características de um subnível específico, onde l=5, e identifique o que essa condição implica:

- a) O subnível tem 11 orbitais
- b) O subnível tem 10 orbitais
- c) O subnível tem 9 orbitais
- d) O subnível tem 8 orbitais
- e) O subnível tem 7 orbitais

Assinale a alternativa que **não** é correta:

- a) O número máximo de elétrons em cada orbital é dois.
- b) No nível quântico principal dois há apenas quatro orbitais.
- c) No subnível 5f há 7 orbitais.
- d) Os elétrons de um mesmo átomo pode ter no máximo três números quânticos iguais.

O número quântico magnético (m, ou m) indica a orientação dos orbitais no espaço e assume valores que vão de –l até +l. Considerando um valor de l= 3, quantos orbitais são possíveis?

- a) 1.
- b) 5.
- c) 3.
- d) 4.
- e) 7.