랄라블라 수요량 예측 모델

: 2030대 여성 고객을 중심으로

BITAmin 강현정 기한정 이영준 황예진

CONTENTS

- 주제 선정 배경
- 분석 방법

본론

서비스 제안

결론

- 데이터 설명 및 전처리
- EDA
- 예측 변수 선택
- 예측 모델 생성

- 분석 개요
- 구매 소요 기간 분석
- 온라인 쇼핑 트렌드 분석
- 카테고리별 프로모션

- 기대효과
- 참고문헌

I . 서론

주제 선정 배경

랄라블라, 역시즌 '보습 아이템' 특가 행사 진행

마른 장마로 보습제품 매출 전년 동기대비 매출 21.5% 신장

마른장마에 더위까지…피부 진정·보습 화장품 뜬다

송고시간 | 2019-07-18 09:47

(서울=연합뉴스) 이신영 기자 = 극심한 더위에 마른장마까지 이어지면서 자극받은 피부 를 진정시킬 수 있는 화장품이 주목받고 있다.

한국 기상시장 산업규모 (단위: 억원)

날씨 데이터와 랄라블라 판매 데이터를 이용하여 날씨에 따른 수요 예측 진행

주제 선정 배경

디지털 매체 광고 시장 추이 및 전망

5000 4000 3000 2000 1000 2015 2016 2017 2018 2019

자료: 제일기획, 메리츠종금증권 리서치 센터

국내 검색시장 점유율

자료: 코리안 클릭, (단위 %)

화장품 구매에 있어 소셜 미디어가 큰 영향을 미침

네이버 블로그 텍스트 분석을 바탕으로 제품 프로모션 제안

분석 방법

데이터 전처리 및 EDA

변수선택

step-wise vs PCA

모델 형성

Elastic net, randomforest,

xgboost

서비스 제안

네이버 블로그 텍스트 분석

Ⅱ. 본론

사용 데이터 설명

1. bigcon_weather

: 서울특별시, 경기도, 인천광역시 지역의 기상 변수 데이터 (16/01/01~18/12/31)

2. korea_hnb

: 서울특별시, 경기도, 인천광역시 지역의 랄라블라 판매 데이터 (16/01/01~18/12/31)

3. 일별평균대기오염도

: 경기도, 인천광역시 지역의 대기 오염 데이터 (16/01/01~18/12/31)

4. PM dataset

: 서울특별시 대기 오염 데이터 (16/01/01~18/12/31)

5. 네이버 블로그 데이터

: 키워드별 네이버 블로그 헤드라인 텍스트 데이터

데이터 전처리 일별 평균 대기오염도 데이터, pm dataset 데이터

미세먼지 농도 데이터 pm_data 생성

일별 평균 대기오염도 데이터

측정일시	측정소명	이산화농도질소	오존농도	이산화탄소농도	아황산가스	미세먼지	초미세먼지
20160101	강남구	0.047	0.006	0.8	0.006	73	44
20160101	강남대로	0.054	0.004	1.2	0.009	85	52

pm dataset 데이터

날짜	시도	측정소명	측정소코드	아황산가스	일산화탄소	오존	이산화질소	PM10	PM2.5
2016-01-01	경기 수원시	신풍동	131111	.007	1.5	.003	.068	71	
2016-01-01	경기 수원시	신풍동	131111	.006	1.3	.003	.063	96	

일별 시도별 평균

pm	data
P	

날짜	시도	PM10	PM2.5
2016-01-01	경기 수원시	74	
2016-01-01	경기 화성시	69.3	

데이터 전처리 bigcon_weather 데이터

RandomForest를 이용한 결측치 처리 및 대체

weather 데이터

변수명
date
province
city
max_tem
min_tem
avg_tem
max_wind
avg_wind
humidity
rainfall
PM10
PM2.5

5개 이상이 NA : 관측치 제거

5개 미만이 NA: RF 기법으로 결측치 대체

데이터 전처리 bigcon_weather 데이터

✓ 새로운 변수 추가

날짜 변수

month	date변수에서 월 부분만 추출한 변수
season	spring(3,4,5), summer(6,7,8), fall(9,10,11), winter(12,1,2) 값을 갖는 변수

기상 변수

체감온도	$13.12 + 0.6215T_a - 11.37V^{0.16} + 0.3965T_aV^{0.16}$; $T_a : temperature, V : wind speed(km/h)$
	$-42.379 + 2.049 + 10.143R - 0.225TR - 0.6878 * 10^{-3} * T^2 - 5.482 * 10^{-2} * R^2 + 1.228 * 10^{-3} * T^2R + 8.528 * 10^{-4} * TR^2 - 1.99 * 10^{-6} * T^2R^2 ; T : temperature, V : relative humidity(%)$
불쾌지수	1.8T - 0.55(1 - RH)(1.8T - 26) + 32; T : temperature, RH : relative humidity(%)

데이터 전처리 korea_hnb 데이터

카테고리변수 dummy화

성별 변수

• gen: 여성일 경우 1, 남성일 경우 0을 갖는 binary 변수 (랄라블라의 주 고객인 여성을 1로 설정)

연령 변수

age		age10	age2030	age4050	age60
00~19		1	0	0	0
40~59	,	0	0	1	0

- age10: 나이가 0-19세인 고객
- age2030: 나이가 20-39세인 고객
- age4050: 나이가 40-59세인 고객
- age60: 나이가 60세 이상인 고객

최종 데이터 생성

세 데이터가 공통적으로 가지고 있는 시, 군, 구의 데이터만 추출

	data_final		
date	관측치 날짜		
province	관측된 위치의 법정구코드(도)		
city	관측된 위치의 법정구코드(시,구)		
max_tem	관측된 기온 중에서 가장 높은 기온		
max_wind	관측된 풍속 중에서 가장 강한 풍속		
min_tem	관측된 기온 중에서 가장 낮은 기온		
avg_tem	일정 시간 동안 관측된 기온의 산술 평균		
humidity	하루 평균적인 습도		
avg_wind	일정 시간 동안 관측된 풍속의 산술 평균		
rainfall	어떤 곳에서 일정 기간 동안 내린 물의 총량		
PM10	관측된 날짜의 미세먼지 농도		
PM2.5	관측된 날짜의 초미세먼지 농도		
season	관측된 날짜의 계절		
feel_temp	관측된 날짜의 체감 기온		
heat	관측된 날짜의 열 지수		
angry	관측된 날짜의 불쾌지수		
gen	관측된 날짜에 구매한 고객의 성별		
cate	관측된 날짜에 구매한 제품의 카테고리		
quan	관측된 날짜에 구매한 제품의 총량		
age10	관측된 날짜에 구매한 0~19세의 고객 여부		
age2030	관측된 날짜에 구매한 20~39세의 고객 여부		
age4050	관측된 날짜에 구매한 40~59세의 고객 여부		
age60	관측된 날짜의 구매한 60세 이상의 고객 여부		

EDA

Univariate Variable – 연속형 변수

EDA

Univariate Variable – 범주형 변수

EDA

성별, 연령별 중심 EDA

성별 연령별 평균 판매량

카테고리별 성별 판매 비율

EDA 결과에 따라 주요 고객인 2030대 여성에 초점을 맞춘 프로젝트 진행

상관성 및 다중 공선성

모델	상관 테스트	다중 공선성
모델 해석	변수 사이의 상관 계수	회귀분석에서의 분산팽창인자
		다중공선성이 존재하는 변수 : temp, min_tem, avg_tem, humidity,
결과	카테고리별로 대체로 비슷한 상관 관계를 가짐 기존 변수에서 파생된 변수(불쾌지수 등), max_temp, min_temp와 같은 변수들의 경우 높은 상관관계를 보임	feel_temp, heat, angry 다중공선성이 존재하지 않는 변수: max_tem, max_wind, avg_wind, rainfall, PM10, PM2.5, age10, age2030, age4050 age60

변수 선택

1. PCA

제품군	누적 설명력
nail	PC24: 0.706
lipcol	PC24: 0.707
lipcare	PC24: 0.708
mask	PC24: 0.707
bodymilk	PC24: 0.707
sun	PC24: 0.705
hair	PC24: 0.705
diet	PC24: 0.708
cream	PC24: 0.707
cleansing	PC24: 0.707

기준: Cumulative Proportion 70%

2. Stepwise selection

변수
city 외 12개의 변수
city 외 8개의 변수
city 외 13개의 변수
city 외 12개의 변수
city 외 5개의 변수
city 외 12개의 변수
city 외 8개의 변수
city 외 7개의 변수
city 외 8개의 변수
city 외 8개의 변수

Stepwise selection 기법이 설명력이 떨어지는 변수들을 더 잘 제거한다고 판단

=> Stepwise selection을 통해 변수 선택

예측 모델 생성

분석 데이터

- Dataset을 8:2 비율로 train: test dataset으로 나눔
- 정확도 향상을 위한 Cross Validation(교차검증) 적용
- 격자 탐색을 통해 모델 학습

O 2 Elastic Net (Regression) 모델 적용

- alpha: (0,1)
- lambda: 10^(-2:2)

O3 Random Forest (Ensemble) 모델 적용

ntree: 200mtry: (1,3,5)

04 Xgboost (Ensemble) 모델 적용

- nrounds: (300, 500)
- eta: (0.003, 0.005), gamma: (3,5)
- max_depth : (4,6), min_child_weight : (6,8)
- colsample_bytree : (0.3, 0.5), subsample : (0.2, 0.6)

모델 결과

Elastic Net

Random Forest

XGboost

카테고리	RMSE	R2	결과	RMSE	R2	결과	RMSE	R2	결과
nail	190.21	0.35	다소 나쁨	184.98	0.46	매우 좋음	180.42	0.48	매우 좋음
lipcol	1509.13	0.05	나쁨	1528.71	0.06	매우 나쁨	1535.78	0.05	매우 나쁨
lipcare	513.58	0.08	나쁨	233.25	0.28	나쁨	234.66	0.27	나쁨
mask	3323.37	0.27	나쁨	3057.92	0.34	다소 좋음	3077.77	0.33	다소 좋음
bodymilk	179.85	0.37	다소 좋음	176.90	0.40	다소 좋음	176.37	0.41	다소 좋음
sun	169.34	0.32	다소 좋음	236.06	0.29	다소 좋음	237.29	0.28	나쁨
hair	78.74	0.25	나쁨	73.90	0.34	다소 좋음	74.25	0.34	다소 좋음
diet	203.45	0.03	매우 나쁨	657.37	0.02	매우 나쁨	214.38	0.01	매우 나쁨
cream	247.72	0.45	매우 좋음	261.25	0.47	매우 좋음	241.70	0.48	매우 좋음
cleansing	203.17	0.51	매우 좋음	202.69	0.52	매우 좋음	201.72	0.52	매우 좋음

최종 모델 선택

카테고리	선택된 모델		
nail	XGboost		
lipcol	_		
lipcare	_		
mask	Random Forest		
bodymilk	XGboost		
sun	Elastic Net		
hair	Random Forest		
diet	_		
cream	XGboost		
cleansing	XGboost		

lipcol, lipcare, diet

: 선택된 모델이 없는 카테고리

→ 날씨 변수가 판매에 영향을 미치지 않음서비스 제안을 진행하지 않음

nail, mask, bodymilk, sun, hair, cream, cleansing

: 선택된 모델이 있는 카테고리

→ 날씨 변수가 판매에 영향을 미침추가적인 온라인 트렌드 분석 진행

Ⅲ. 서비스 제안

분석 개요

소비자 구매 과정 도식도

제품 태도 형성 후 구매까지 걸리는 기간 분석

온라인 쇼핑 트렌드 분석

특정 날짜의 수요량이 높게 예측되었을 때 이를 극대화하기 위한 온라인 트렌드 분석

텍스트 데이터 생성 카테고리별 일별 언급량, 연도별 언급 키워드 데이터 생성

네이버 블로그 헤드라인 텍스트 크롤링

롬앤 롭스/**랄라블라** 입점 기념 제로라인... 제로그램**립스틱** BEST4와 제로쿠션 21호... 2018.12.13.

당신이 매트립에 엄청난 반감이 있지 않은 이상 매트립 성애자는 절대 제로그램 **립스틱**을 그냥 지나칠 수 없어...! 게다가 이제 롭스/**칼라블라** 입점 까지 되었으니 한번이라도 경험한 자는 이 놀라운 포뮬라를 영 원히 잊지 못한다죠... 왼쪽은 조명광, 오른쪽은 자연광 컬러로 어썸, 어도러블 컬러는...

🧂 에리카 Erica | 에리카의 가난한메이크업

카테고리별 일별 언급량 데이터

date	count
2016-01-01	46
2016-01-02	54

카테고리별 연도별 키워드 데이터

Bag of Words를 적용하기 위한 텍스트 전처리 함수 preprocess 제작 후 카테고리별 적용

preprocess	텍스트 전처리를 시행해주는 함수
text	vector 형태의 텍스트 데이터
rmwords	vector 형태의 각 카테고리별 불용어

구매 소요 기간 분석 MA와 LR을 활용한 카테고리별 구매 소요 기간 분석

카테고리별 일별 언급량 데이터

date	count			
2016-01-01	46			
2016-01-02	54			
2016-01-03	12			
2016-01-04	30			
2016-01-05	53			
2016-01-06	9			

ma_list 데이터

date	count		
2016-01-01	37.33	(46+	-54+12)/3
2016-01-02	32	(54-	+12+30)/3
2016-01-03	31.67		
2016-01-04	30.67		
2016-01-05	39.23		
2016-01-06	35.7		

ma_list 데이터의 count 변수

= (해당 날짜의 언급량 + 1일 후의 언급량 + 2일 후의 언급량)/3

언제 소비자의 관심도(일별 언급량)가 구매로 이어지게 될까?

구매 소요 기간 분석 MA와 LR을 활용한 카테고리별 구매 소요 기간 분석

bodymilk	cleansing	mask	nail	sun	cream	hair
175	161	152	155	87	12	25
				1	1	1

n = 1 ~180 기준 = Best Adjusted R-squared score

제1 제품군 (5~6개월)

제3 제품군 (1개월 미만)

제2 제품군 (2~3 개월)

제1 제품군: 정보의 노출이 구매에 영향을 미치지 않는 제품군

할인 프로모션 진행

제2 제품군: 정보의 노출 후 구매까지 기간이 오래 걸리는 제품군

단기간 선착순 프로모션 진행

제3 제품군: 정보의 노출 후 구매까지 기간이 짧게 걸리는 제품군

초단기간 특별 프로모션 진행

온라인 쇼핑 트렌드 분석 연도별 상위 키워드 추출

카테고리별 연도별 상위 10개 키워드를 추출하는 words_freq 함수 생성

input : 날짜, 텍스트 형식으로 이루어진 dataframe

output: 카테고리별 상위 10개 키워드로 이루어진 list

weighting: weightTF 적용

bodymilk	cleansing	mask	nail	sun	cream	hair
아비노	약산성	1일 1팩	셀프 네일	궁중비책	아기로션	뷰티포뮬라
<u>촉촉</u> 한	저자극	리프팅	젤 네일	베이비	피지오겔	moom
향기좋은	저자극폼클렌징	수분 마스크팩	웨딩 네일	아벤느	베이비	쇼킹 몬스터
	여드름	촉촉한	2017	선스틱	수분크림	
	퍼펙트		2018	유아선팩트	보습크림	
	깨끗하게		가을네일	저자극		

________ 연도별 꾸준한 수요가 있는 제품 ______ 연도별 수요가 상승하는 제품 ______ 연도별 수요가 하락하는 제품

카테고리별 제품 프로모션 제1 제품군 : 할인 프로모션

프로모션 기획

- 매장 입구 가판대를 활용한 제품 노출도 향상
- 제품별 컨셉 세일 프로모션을 통한 제품 주목도 향상

프로모션 기간

수요가 높게 예측된 날짜와 무관

저자극을 키워드로 한 세일 기획전

계절의 특색을 반영한 네일 컬러, 디자인 기획전

bodymilk cleansing mask nail

향기를 키워드로 한 세일 기획전

1일 1팩에 적절한 수분팩 세일 기획전

카테고리별 제품 프로모션 제2 제품군 : 단기간 선착순 프로모션

프로모션 기획

선착순 프로모션을 통한 구매 소요 기간 단축 제품별 트렌드 컨셉에 적절한 프로모션 컨셉 구축

프로모션 기간

수요가 높게 예측된 날짜보다 2~3개월 가량 앞서 프로모션 진행 -> 구매 기간 단축 효과 기대

sun: 유아 선케어 제품 / 다양한 선케어 제형(선팩트, 선스틱 등)에 대한 관심 증가

-> 제품을 구매하는 주체(여성)과 제품을 사용하는 주체(유아)를 모두 고려한 프로모션 진행

카테고리별 제품 프로모션 제2 제품군 : 단기간 선착순 프로모션

프로모션 예시: 몰랑이와 함께하는 순한 여름 휴가

- 구성

세타필 크림로션 + 비오템 클렌징 워터 + 유아 선팩트, 선크림, 선스틱 3중 택 1 :제품 특성을 모두 저자극에 초점을 맞추어서 제품 구매 주체인 부모의 선호도 상승

- 선착순 100명에게 캐릭터(몰랑이) 미니백 증정

:유아들에게 인기가 있는 캐릭터 미니백을 증정함으로써 제품 사용 주체인 유아의 선호도 상승

카테고리별 제품 프로모션 제3 제품군 : 초단기간 특별 프로모션

프로모션 기획

매장 내 단기 프로모션을 활용한 제품 관심도의 효과 극대화 제품별 컨셉 프로모션을 통한 제품 주목도 향상

프로모션 기간

수요가 높게 예측된 날짜보다 1개월 가량 앞서 프로모션 진행

cream: 저자극 보습크림 프로모션 기획. 사계절 중 가장 건조한 겨울에 해당 프로모션 진행

hair : 스테디셀러인 '뷰티포뮬라' 브랜드 제품들의 단기 프로모션 진행

Ⅳ. 결론

기대 효과

시기별 예상 판매량을 바탕으로 효율적인 재고관리 및 매출 상승 기대

소셜 텍스트 분석을 바탕으로 프로모션 날짜, 기간 및 구성을 통한 시기별 예상 판매량 극대화 기대

고객의 만족도와 브랜드 신뢰도 향상

참고 문헌

- (1) "편의점의 온도 경제학···기온 1도 오르면 매출은", 매일경제, https://www.mk.co.kr/news/business/view/2014/11/1428776/
- (2) "마른장마에 더위까지…피부 진정·보습 화장품 뜬다", 연합뉴스, https://www.yna.co.kr/view/AKR20190718035600030
- (3) 한국마케팅연구원, 〈바이럴마케팅(Viral Marketing), 마케팅 2015 제49권 제5호 통권 556호〉, 2015년, 59-67쪽
- (4) "서울시 일별 평균 대기오염도 정보", 서울열린데이터광장, https://data.seoul.go.kr/dataList/datasetView.do?infld=OA-
- 2218&srvType=S&serviceKind=1¤tPageNo=1&searchValue=&searchKey=null
- (5) "최정확정 측정자료 조회," 에어코리아, http://www.airkorea.or.kr/web/last_amb_hour_data?pMENU_NO=123
- (6) "체감온도", 위키피디아, https://ko.wikipedia.org/wiki/%EC%B2%B4%EA%B0%90_%EC%98%A8%EB%8F%84
- (7) "열지수", 기상청, https://www.weather.go.kr/weather/lifenindustry/li_asset/HELP/basic/help_01_04.jsp
- (8) "불쾌지수", 기상청, https://www.kma.go.kr/HELP/basic/help_01_05.jsp
- (9) "상관분석", 위키피디아, https://ko.wikipedia.org/wiki/%EC%83%81%EA%B4%80_%EB%B6%84%EC%84%9D
- (10) "다중공선성", 위키피디아, https://ko.wikipedia.org/wiki/%EB%8B%A4%EC%A4%91%EA%B3%B5%EC%84%A0%EC%84%B1

참고 문헌

- (11) "Feature selection", 위키피디아, https://en.wikipedia.org/wiki/Feature_selection
- (12) "정규화 선형회귀", 데이터사이언스스쿨, https://datascienceschool.net/view-notebook/83d5e4fff7d64cb2aecfd7e42e1ece5e/
- (13) "랜덤포레스트", 위키피디아

https://ko.wikipedia.org/wiki/%EB%9E%9C%EB%8D%A4_%ED%8F%AC%EB%A0%88%EC%8A%A4%ED%8A%B8

- (14) 한국소비자학회, 〈머신러닝을 통한 가계의 재무스트레스 영향요인 예측 및 분석: XGBoost의 활용〉, 소비자학연구 30권 2호, 2019년, 21-43쪽
- (15) 날씨로 돈버는 '기후 비즈니스' 뜬다 건설 · 유통 · 의류 날씨 예보 '각광', 조선닷컴,

http://danmee.chosun.com/site/data/html_dir/2011/06/10/2011061001486.html

(16) 2019년 광고 시장 규모 11조9천억원 전망··· 5G의 등장, 모바일 개인화·동영상 광고 기대, 뉴데일리경제,

http://biz.newdaily.co.kr/site/data/html/2018/11/23/2018112300062.html

이미지 출처

- (1) "쎄라덤 여름맞이 화장품 할인", 쎄라덤 네이버 카페,
- http://blog.naver.com/PostView.nhn?blogId=theraderm82&logNo=221045975803&parentCategoryNo=37&categoryNo=&viewDate=&isShow PopularPosts=true&from=search
- (2) "The Best Beaches Near Batemans Bay", about regional, https://aboutregional.com.au/the-best-beaches-near-batemans-bay/
- (3) "GS리테일 왓슨스, `랄라블라`로 변신…H&B 강화 도전장", 매일경제, https://www.mk.co.kr/news/business/view/2018/02/85634/
- (4) "White ice cream icon vector image", VectorStock, https://www.vectorstock.com/royalty-free-vector/white-ice-cream-icon-vector-13499107
- (5) "Bubble PNG HD Images", PlusPNG.com, http://pluspng.com/bubble-png-hd-8553.html
- (6) "[디자이너 소개] 몰랑이 작가 '윤혜지'", 디자이너신문,
- http://dn1.kr/graphic/bbs_v.html?BBS_CID1=12&BBS_NUM=2&num=129&BBS_CID2=14
- (7) "세타필 모이스처 로션", ENURI, http://www.enuri.com/detail.jsp?modelno=2743245
- (8) "바이오더마 센시비오 클렌징워터, Costco wholesale, https://www.costco.co.kr/BeautyHouseholdPersonal-Care/Beauty/CleansingRemover/Bioderma-Sensibio-Cleansing-Water-500ml-250ml/p/609526

이미지 출처

- (9) "유아 선쿠션vs선팩트vs선스틱, '당신은 어느 쪽?'", babynews, http://www.ibabynews.com/news/articleView.html?idxno=66578
- (10) "소이베베 유아 선스틱", 지마켓, http://item.gmarket.co.kr/ltem?goodscode=1289286574
- (11) "소이베베 유아 선크림", 옥션, http://itempage3.auction.co.kr/DetailView.aspx?itemno=B512163906
- (12) "물미역 머릿결을 원해? 랄라블라 헤어템 #제이숲 #로레알헤어", 랄라블라 네이버 포스트,

https://m.post.naver.com/viewer/postView.nhn?volumeNo=14840392&memberNo=41262588

(13) "왓슨스 랄라블라 로 다시 태어나다 .화장품 4월 세일 50% 추천탬", 네이버 포스트,

https://m.blog.naver.com/PostView.nhn?blogId=i3884&logNo=221242667995&proxyReferer=https%3A%2F%2Fwww.google.com%2F

(14) "가성비와 신박함을 모두 갖춘 랄라블라(왓슨스) 최애템 BEST5", 와이클릭,

https://strogay.tistory.com/entry/%EA%B0%80%EC%84%B1%EB%B9%84%EC%99%80-

%EC%8B%A0%EB%B0%95%ED%95%A8%EC%9D%84-%EB%AA%A8%EB%91%90-%EA%B0%96%EC%B6%98-

%EC%99%93%EC%8A%A8%EC%8A%A4-%EC%B5%9C%EC%95%A0%ED%85%9C-BEST-5

- (15) "makeup palette and brush", unspalsh, https://unsplash.com/photos/cNBPk3pfyNA
- (16) "알고보니 찰떡궁합, 화장품과 ICT", SKT insight, https://www.sktinsight.com/98563

Thank You

for your attention

