Metodi di generazione

Generatori di numeri pseudocasuali non uniformi

- Trasformazione inversa
- Composizione
- Reiezione
- Convoluzione
- Caratterizzazione

 (Stephen S. Lavenberg: Computer Performance Modeling Handbook, Academic Press, 1983)

Trasformazione Inversa

F(x): funzione di distribuzione strettamente monotona crescente; U(0,1) è uniformemente distribuita tra 0 ed 1;

Dimostrazione

$$Sia y = g(x)$$

$$\mathbf{x} = \mathbf{g}^{-1}(\mathbf{y})$$

$$F_Y(y) = P(Y \le y) = P(x \le g^{-1}(y)) = F_X(g^{-1}(y))$$

Supponiamo che $g(x) = F(x) \rightarrow [y = F(x)]$

$$F(y) = F(F^{-1}(y) = y$$

 $f(y) = dF/dy = 1 \rightarrow y$ uniformemente distribuita in (0,1)

Esempio

Distribuzione di probabilità $F(x) = 1 - e^{-\lambda x}$

Densità di probabilità : $f(x) = e^{-\lambda x}$

u: uniformemente distribuita in (0,1)

$$u = 1 - e^{-\lambda x}$$

$$e^{-\lambda x} = 1-u$$

$$x = - ln(1-U)/\lambda$$

$$x = - ln(U)/\lambda$$

Distribuzioni

Distribuzioni

F(X)

Inversa

Esponenziale

 $(1-e^{-\lambda x})$

 $x = - \ln(u)/\lambda$

Geometrica

 $1-(1-p)^{x}$

 $x = \lfloor \log(u) / \log(p) \rfloor$

Uniforme [a,b]

(x-a)/(b-a)

x = a + (b-a)u

Pareto

 $1-x^{-a}$

 $x = 1/(u^{1/a})$

Weibull

 $1 - e^{\left(\frac{x}{a}\right)^b}$

 $x = 1/u^{(1/a)}$

distribuzioni

Distribuzione di Bernoulli:

$$Prob(X=1) = p$$
;

$$Prob(X=0) = 1-p$$

$$x = 1$$
 se $u \le p$

$$x = 0$$
 se $u > p$

Reiezione

X è una V. C. definita in un intervallo (a,b); f(X) è la densità di probabilità;

M è il valore massimo che tale funzione può assumere.

- vengono generati due valori dal generatore uniforme: u1, u2

x = a+(b-a) u1y = M U2

se $y \le f(x)$ il valore x viene accettato altrimenti viene rifiutato e si ripete la procedura.

.

Esempio

□ Funzione f(x) Beta(2,4):

$$f(x) = 20x(1-x)^3 \quad 0 \le x \le 1$$

M = 2.11

Decomposizione/Composizione

La V.C. X ha una densità di probabilità del tipo:

$$f(x) = \sum_{i=1}^{k} f_i(x);$$

 $\sum_{i=1}^{k} p_i = 1; p_i > 0$

 $f_i(x)$ sono densiità di probabilità Prob(Z=j) = pj

Algoritmo:

Generare Z;

Generare X con densità di probabilità $f_z(x)$

Esempio:

$$f(x) = p \lambda e - \lambda x + (1-p) \mu e - \mu x$$

Convoluzione

 \square Somma *n* variabili: $x = y_1 + y_2 + \cdots + y_n$

□ Generare n variabili y_i e sommarle

Distribuzione di Erlang

In questo caso y_i è distribuita esponenzialmente e la densità di probabilità è:

$$f(x) = e^{(-\lambda x)} \lambda^k x^{(k-1)} / (k-1)! K, \lambda > 0$$

