Assignment -2 Python Programming

Assignment Date	25 September 2022
Student Name	ABIMANYU
Student Roll Number	720819106002
Maximum Marks	2 Marks

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

2.Loading the data Set

df=pd.read_csv("Churn_Modelling.csv")
df

u .									
	RowNumbe	er Custome	erId	Surname	CreditScor	e Geography	Gender	Age	\
0		1 15634	1602	Hargrave	61	9 France	Female	42	
1		2 15647	7311	Hill	60	8 Spain	Female	41	
2		3 15619	304	Onio	50	2 France	Female	42	
3		4 15701	L354	Boni	69	9 France	Female	39	
4		5 15737	7888	Mitchell	85	0 Spain	Female	43	
	•	• •							
9995	999	96 15606	5229	Obijiaku	77	1 France	Male	39	
9996	999	97 15569	892	Johnstone	51	6 France	Male	35	
9997	999	98 15584	1532	Liu	70	9 France	Female	36	
9998	999	99 15682	2355	Sabbatini	77	2 Germany	Male	42	
9999	1000	00 15628	3319	Walker	79	2 France	Female	28	
	_								
	Tenure	Balance	Num	OfProducts	HasCrCard	IsActiveMem	ıber \		
0	2	0.00		1	1		1		
1	1	83807.86		1	0		1		
2	8	159660.80		3	1		0		
3	1	0.00		2	0		0		
4	2	125510.82		1	1		1		
• • •	• • •	• • •		• • •	• • •		• • •		
9995	5	0.00		2	1		0		
9996	10	57369.61		1	1		1		
9997	7	0.00		1	0		1		

9998	3	75075.31	2	1	0
9999	4	130142.79	1	1	0

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
	• • •	
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

[10000 rows x 14 columns]

3. Visulaizatoin

3.1 Univariate Analysis

sns.distplot(df.Age)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='Age', ylabel='Density'>

sns.displot(df.CreditScore)
<seaborn.axisgrid.FacetGrid at 0x1d3d827f550>

sns.displot(df.Balance)

<seaborn.axisgrid.FacetGrid at 0x1d3d40c6700>

3.2 Bi - Variate analysis

sns.lineplot(df.Age,df.EstimatedSalary)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Age', ylabel='EstimatedSalary'>

sns.lineplot(df.Age,df.Balance)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Age', ylabel='Balance'>

sns.lineplot(df.Age,df.Exited)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Age', ylabel='Exited'>

plt.pie(df.Gender.value_counts(),[0.1,0],labels=["male","female"],autopct="%1
.1f%%",colors=["blue","green"])
plt.title("Gender")
plt.show()

sns.barplot(df.Geography.value_counts().index,df.Geography.value_counts())

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:ylabel='Geography'>

3.3 Multi-Variate analysis

sns.swarmplot(df['Gender'], df['CreditScore'], hue = df['Exited'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 80.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 83.1% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

<AxesSubplot:xlabel='Gender', ylabel='CreditScore'>

sns.swarmplot(df['Gender'], df['Balance'], hue = df['Exited'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 85.1% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1296:
UserWarning: 87.3% of the points cannot be placed; you may want to decrease
the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

<AxesSubplot:xlabel='Gender', ylabel='Balance'>

4.Perform the discriptive Statistics

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	\
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	
	Balance	NumOfProduct	s HasCrCard	d IsActiveMeml	ber \	
count	10000.000000	10000.00000	0 10000.00000	10000.000	900	
mean	76485.889288	1.53020	0.70556	0.515	100	
std	62397.405202	0.58165	4 0.45584	1 0.499	797	
min	0.000000	1.00000	0.0000	0.000	900	
25%	0.000000	1.00000	0.0000	0.000	900	
50%	97198.540000	1.00000	0 1.00000	1.000	900	
75%	127644.240000	2.00000	0 1.00000	1.000	200	
max	250898.090000	4.00000	1.00000	1.000	900	
	EstimatedSala	ry Exit	ed			
count	10000.0000	00 10000.0000	0 0			

mean	100090.239881	0.203700
std	57510.492818	0.402769
min	11.580000	0.000000
25%	51002.110000	0.000000
50%	100193.915000	0.000000
75%	149388.247500	0.000000
max	199992.480000	1.000000

5.Handling the missing Values

df.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0

dtype: int64

6.Finding Outliers

sns.boxplot(df.CreditScore)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='CreditScore'>

q1_A=df.CreditScore.quantile(0.25)
q3_A=df.CreditScore.quantile(0.75)
IQR_A=q3_A-q1_A

upper_limit_A=q3_A+1.5*IQR_A
lower_limit_A=q1_A-1.5*IQR_A

Replacing outliers for Creditscore

df['CreditScore']=np.where(df.CreditScore<=lower_limit_A,df.CreditScore.media
n(),df.CreditScore)</pre>

sns.boxplot(df.CreditScore)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='CreditScore'>

for Age Column
sns.boxplot(df.Age)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Age'>

a99=df.Age.quantile(0.94) a99

58.0

replacing outliers for age

df["Age"]=np.where(df.Age>=a99,df.Age.median(),df.Age)

sns.boxplot(df.Age)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Age'>

7. Check for Categorical columns and perform encoding

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

df.Gender=le.fit_transform(df.Gender)

df.Geography=le.fit_transform(df.Geography)

df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	\
0	1	15634602	Hargrave	619.0	0	0	42.0	
1	2	15647311	Hill	608.0	2	0	41.0	
2	3	15619304	Onio	502.0	0	0	42.0	
3	4	15701354	Boni	699.0	0	0	39.0	
4	5	15737888	Mitchell	850.0	2	0	43.0	

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
0	2	0.00	1	1	1	
1	1	83807.86	1	0	1	
2	8	159660.80	3	1	0	
3	1	0.00	2	0	0	
4	2	125510.82	1	1	1	

EstimatedSalary Exited

0 101348.88 1 1 112542.58 0

```
2 113931.57 1
3 93826.63 0
4 79084.10 0
```

8. Split the data into dependent and independent variables

```
x=df.drop(["RowNumber","CustomerId","Surname"],axis="columns")
x
```

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts
\							
0	619.0	0	0	42.0	2	0.00	1
1	608.0	2	0	41.0	1	83807.86	1
2	502.0	0	0	42.0	8	159660.80	3
3	699.0	0	0	39.0	1	0.00	2
4	850.0	2	0	43.0	2	125510.82	1
					• • •		• • •
9995	771.0	0	1	39.0	5	0.00	2
9996	516.0	0	1	35.0	10	57369.61	1
9997	709.0	0	0	36.0	7	0.00	1
9998	772.0	1	1	42.0	3	75075.31	2
9999	792.0	0	0	28.0	4	130142.79	1

	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	1	101348.88	1
1	0	1	112542.58	0
2	1	0	113931.57	1
3	0	0	93826.63	0
4	1	1	79084.10	0
• • •		• • •	• • •	
9995	1	0	96270.64	0
9996	1	1	101699.77	0
9997	0	1	42085.58	1
9998	1	0	92888.52	1
9999	1	0	38190.78	0

```
[10000 rows x 11 columns]
y=df.Exited
y
```

```
0
        1
1
        0
2
        1
3
        0
        0
9995
        0
9996
9997
      1
9998
        1
9999
Name: Exited, Length: 10000, dtype: int64
```

9. Scale the independent variables

```
from sklearn.preprocessing import scale
x_scaled=pd.DataFrame(scale(x),columns=x.columns)
```

10. Split the data into training and testing

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x_scaled,y,test_size=0.3,rando
m_state=10)
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
rfc.score(x_test,y_test)
```

1.0