§11. Аксиомы отделимости

Понятие топологического пространства было введено в самом общем виде. Рассмотрим ограничения, накладываемые на топологические пространства.

<u>Определение</u> Говорят, что топологическое пространство удовлетворяет аксиоме отделимости T_0 если для двух различных точек этого пространства, по крайней мере для одной из них существует окрестность не содержащая другую точку. Пространства удовлетворяющие аксиоме отделимости T_0 называются T_0 пространства или пространства Колмогорова.

Колмогоров Андрей Николаевич 12.4.1903 - 20.10.1987. Крупнейший отечественный математик. Окончил 1925г. Московский государственный университет, с 1931г. профессор этого университета. Научную деятельность начал в области теории функций действительного переменного, где ему принадлежат фундаментальные работы по тригонометрическим рядам, теории множеств, теории интеграла и приближения функций. В дальнейшем А.Н. Колмогоров внес фундамен-

тальный вклад в топологию, математическую логику, теорию дифференциальных уравнений, механику. Особенно крупный вклад внес А.Н. Колмогоров в теорию вероятностей и теорию случайных процессов. Он имеет крупные достижения в прикладных областях: теории стрельбы, теории массового обслуживания, математических методах в биологии, математической лингвистике.

<u>Замечание.</u> Не все пространства удовлетворяют аксиоме отделимости T_0 . Примером пространства, не удовлетворяющего аксиоме отделимости T_0 , является слипшееся двоеточие.

<u>Определение</u> Говорят, что топологическое пространство удовлетворяет аксиоме отделимости T_1 если для каждой из двух различных точек этого пространства существует окрестность не содержащая другую точку. Пространства удовлетворяющие аксиоме отделимости T_1 называются T_1 пространства или пространства Рисса.

Рисс Фридьеш (Riesz Frigyes) 22.1.1880-28.2.1956 -венгерский математик. Учился в Цюрихе, Будапеште, Гёттингене и Париже. Основные труды по функциональному анализу. Изучал векторные пространства интегрируемых функций, исследовал системы линейных уравнений с бесконечным числом неизвестных, является одним из основателей теории топологических пространств.

Теорема

- 1.Топологическое пространство тогда и только тогда является пространством Рисса, когда любое его одноточечное множество замкнуто.
- 2. Топологическое пространство тогда и только тогда является пространством Pucca, когда для любой его точки x пересечение всех ее окрестностей совпадает c одноточечным множеством $\{x\}$.
- ightharpoonup Пусть топологическое пространство удовлетворяет первой аксиоме отделимости. Рассмотрим произвольное одноточечное множество $\{x\}$. Возьмем произвольную точку $y \in X$, $y \ne x$. По аксиоме T_1 для точки у существует окрестность U_{y_1} не содержащая точку x. Следовательно $\exists U_y \cap \{x\} = \emptyset$. Это означает, что произвольная точка y, отличная от точки x не является точкой прикосновения одноточечного множества $\{x\}$. Следовательно, это одноточечное множество замкнуто.

Предположим, что все одноточечные множества некоторого топологического пространства замкнуты. Тогда для двух произвольных различных точек у \neq х множества $X\setminus\{x\}$ и $X\setminus\{y\}$ являются открытыми множествами. Кроме того $y\in X\setminus\{x\}$, а $x\in X\setminus\{y\}$. Таким образом у двух различных точек пространства X найдены окрестности не содержащие другую точку, следовательно, пространство X - является пространством Рисса.

2. Если топологическое пространство X удовлетворяет аксиоме отделимости T_1 , то пересечение всех окрестностей точки $x\bigcap_{\alpha}U_{\alpha}=\{x\}$, так как для любой точки $y\neq x$ существует окрестность, не содержащая x (поэтому $y\notin\bigcap_{\alpha}U_{\alpha}$). Обратное утверждение очевидно. \lhd

Примером пространства, не удовлетворяющего аксиоме отделимости T_1 является слипшееся двоеточие, а связное двоеточие удовлетворяет этой аксиоме отделимости.

Сформулируем (без доказательства) некоторые свойства пространств Рисса. Если топологическое пространство X удовлетворяет аксиоме отделимости T_1 то выполняются следующие свойства:

- В каждой окрестности любой предельной точки множества А содержится бесконечное число точек из А;
- Любое конечное множество точек замкнуто;
- Производное множество любого множества T_1 пространства замкнуто; <u>Определение</u> Свойство топологического пространства, сохраняющееся в подпространствах называется наследственным.

<u>Определение</u> Говорят, что топологическое пространство X удовлетворяет аксиоме отделимости T_2 , если любые две различные точки этого пространства можно отделить непересекающимися окрестностями. Пространства, удовлетворяющие аксиоме отделимости T_2 называют T_2 пространства или **хаусдорфовыми** пространствами.

Хаусдорф Феликс (Hausdorff Felix) 8.11.1868-26.1.1942 - немецкий математик. В 1891 окончил Лейпцигский университет, с 1902 г. профессор этого университета. С 1921 года профессор Боннского университета. Основные труды по теории множеств, топологии и функциональному анализу. Он впервые ввел понятие меры множества и топологического предела. В 1942 году покончил жизнь самоубийством, узнав, что он и его семья должны быть отправлены в концлагерь.

<u>Теорема</u> Топологическое пространство X является пространством Хаусдорфа тогда и только тогда, когда для произвольной точки $x \in X$ пересечение замыканий всевозможных ее окрестностей совпадает с одноточечным множеством $\{x\}$.

 $ightarrow \Pi$ усть $\forall x \in X$. A пространство X удовлетворяет аксиоме отделимости T_2 .

Пусть $\left\{U_{\alpha}\right\}$ - семейство всех окрестностей точки х. Очевидно, что $x\in\bigcap_{\alpha}\overline{U}_{\alpha}$. Предположим, что некоторая точка $y\neq x$ также принадлежит указанному пересечению. Тогда при любом α $y\in\overline{U}_{\alpha}$. Это означает, что все окрестности точки у пересекаются с окрестностями точки х. Получили противоречие с выполнением аксиомы отделимости T_2 . Следовательно $\{x\}=\bigcap\overline{U}_{\alpha}$.

Наоборот. Пусть х и у две различные точки топологического пространства X и $\{x\} = \bigcap_{\alpha} \overline{U}_{\alpha}$. Из того факта, что $y \notin \bigcap_{\alpha} \overline{U}_{\alpha}$ следует, что $y \notin \overline{U}_{\alpha} \Rightarrow y \in X \setminus \overline{U}_{\alpha}$ и это множество открыто. Очевидно, что $X \setminus \overline{U}_{\alpha} \cap \overline{U}_{\alpha} = \emptyset$. Таким образом две различные точки топологического пространства X, отделены непересекающимися окрестностями. \triangleleft

<u>Теорема</u> Для хаусдорфовости пространства X необходимо и достаточно, чтобы для пары различных точек x_1 и x_2 из X существовало непрерывное отображение f пространства X в хаусдорфово пространство Y такое, что $f(x_1) \neq f(x_2)$.

 \triangleright Для доказательства необходимости в качестве пространства Y возьмем пространство X, а в качестве отображения f тождественное отображение на X.

<u>Достаточность</u>: Пусть x_1 и x_2 - различные точки в X и $f: X \to Y$ непрерывное отображение, а V_1 и V_2 непересекающиеся окрестности точек $f(x_1)$ и $f(x_2)$ в хаусдорфовом пространстве Y. В силу непрерывности отображения f прообраз окрестности - окрестность. Очевидно, что $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$, следовательно пространство X - хаусдорфово. \triangleleft

<u>Определение</u> Говорят, что топологическое пространство X удовлетворяет аксиоме отделимости T_3 , если его любое замкнутое множество и не содержащуюся в этом точку можно отделить непересекающимися окрестностями. Пространство, удовлетворяющее аксиоме отделимости T_3 называют T_3 пространством или **регулярным** пространством.

<u>Теорема</u> (Критерий регулярности) T_1 пространство X регулярно тогда и только тогда, когда любая его точка x обладает регулярной системой окрестностей, т.е. любая ее окрестность U ñîäåðæèò çàiêióòóþ îêðåñòiîñòü ýòîé òî÷êè. Данное утверждение примем без доказательства.

существует непрерывная функция f, равная 0 в точке x_0 и 1 во всех точках F. Пространства, удовлетворяющие аксиоме отделимости $T_{\frac{1}{3}}$ называются вполне ре-

<u>гулярным</u> или <u>тихоновскими</u>.

Тихонов Андрей Николаевич (р. 17.10.1906) Советский математик, дважды Герой Социалистического труда, академик. Окончил в 1927 г МГУ. Профессор с 1936 г. этого университета. Первые работы посвящены топологии и функциональному анализу. Им введено понятие произведения топологических пространств (тихоновское произведение) доказан ряд важных теорем топологии. Значительны труды в теории дифференциальных уравнений, математической фи-

зике, геофизике и вычислительной математике. Под руководством А.Н. Тихонова разработаны алгоритмы решения многих прикладных задач. Совместно с А.А. Самарским разработана теория однородных разностных схем.

<u>Определение.</u> Говорят, что топологическое пространство X удовлетворяет аксиоме отделимости T_4 , если любые два непустых непересекающихся замкнутые множества можно отделить непересекающимися окрестностями. Пространства, удовлетворяющие аксиоме отделимости T_4 называют T_4 пространствами или нормальными пространствами.

<u>Теорема.</u> Всякое метрическое пространство нормально

ightharpoonup Пусть (X, ρ) - произвольное метрическое пространство. А и В два непустых непересекающихся замкнутых множества этого пространства. Пусть $x \in A \Rightarrow x \notin B$. Более того $x \notin \overline{B}$ (так как замкнутое множество В содержит все свои точки прикосновения. Тогда расстояние от точки х до множества В

$$\rho_x = \rho(x, B) = \inf_{y \in B} \{\rho(x, y)\} > 0.$$

ва:

Аналогично $\rho_y = \rho(y, A) > 0$ для любой точки $y \in B$. Построим два множест-

$$U = \bigcup_{x \in A} B\left(x, \frac{1}{2}\rho_x\right), \quad V = \bigcup_{y \in A} B\left(y, \frac{1}{2}\rho_y\right),$$

где $\mathit{B}\!\left(x,\frac{1}{2}\rho_{x}\right)$ - открытый шар с центром в точке x и радиуса $\frac{1}{2}\rho_{x}$. Очевидно, что

множества U и V являются открытыми окрестностями множеств A и B соответственно. Докажем, что они не пересекаются. Предположим противное, т.е. $\exists z \in U \cap V$. Тогда существуют такие точки $a \in A$ и $b \in B$ для которых

$$\rho(a,z) < \frac{1}{2}\rho_a$$
 и $\rho(b,z) < \frac{1}{2}\rho_b$.

Пусть для определенности $\rho_a \ge \rho_b$. Воспользуемся аксиомой треугольника

$$\rho(a,b) \leq \rho(a,z) + \rho(b,z) < \frac{1}{2} (\rho_a + \rho_b) \leq \rho_a,$$

т.е. мы получили, что

$$\rho(a,b) < \rho_a$$

и получили противоречие с определением расстояния $\rho_{\scriptscriptstyle a}$. Тем самым теорема доказана.

<u>Теорема</u> Пространство Рисса нормально тогда и только тогда, когда для любого замкнутого множества F и любой его окрестности U существует такая окрестность V, что $\overline{V} \subset U$.

§12. Сходимость в топологических пространствах

<u>Определение</u> Последовательность точек $\{x_n\}$ топологического пространства X называется **сходящейся** κ точке $x_0 \in X$, если любая окрестность x_0 содержит все точки последовательности, за исключением, быть может их конечного числа. При этом саму точку x_0 называют **пределом последовательности** и обозначают $x_0 = \lim_{n \to \infty} x_n$.

В метрических пространствах последовательность может иметь только один предел, а в топологических пространствах - несколько. Так в тривиальных топологических пространствах любая последовательность точек сходится к каждой точке $x \in X$, так как эта точка х имеет только одну окрестность - все множество X и эта окрестность содержит все точки последовательности.

В произвольном метрическом пространстве точка x_0 тогда и только тогда принадлежит замыканию некоторого множества, когда в этом множестве существует последовательность, сходящаяся к x_0 . В топологическом пространстве справедливо утверждение:

Если последовательность точек множества A топологического пространства (X,τ) сходится к некоторой точке $x_0\in X$, то $x_0\in \overline{A}$

Обратное утверждение не всегда верно.

<u>Теорема</u> В топологическом пространстве. Удовлетворяющем первой аксиоме счетности, точка x_0 тогда и только тогда является точкой прикосновения множества A этого пространства, когда в A существует последовательность, сходящаяся к точке x_0 .

ightharpoonup Предположим, что x_0 является точкой прикосновения множества A, и множества $\{u_n\}$ образуют счетную базу системы окрестностей в точке x_0 . Эту базу можно считать монотонно убывающей, действительно, если база в точке x_0 состоит из множеств $\{v_n\}$ то можно построить монотонно убывающее семейство множеств $\{u_n=\bigcap_{i=1}^n v_i\}$, образующее базу в точке x_0 .

Так как $x_0 \in \overline{A}$, то в любой окрестности точки x_0 содержится хотя бы одна точка из множества А. Выберем в каждой окрестности u_n по одной точке $x_n \in A$. Полученная последовательность $\left\{x_n\right\}$ сходится к точке x_0 . Обратное утверждение очевидно.

<u>Определение</u> Топологическое пространство, в котором для каждого множества A и любой точки $x \in \overline{A}$ существует последовательность точек множества A, сходящихся κ x, называется **пространством Фреше-Урысона**.

Павел Самуилович Урысон (1898-1924)

Урысон Павел Самуилович (22.1.1898- 17.8.1924) отечественный математик. Окончил МГУ в 1919 г. Был сотрудником Института математики и механики МГУ и профессором 2- московского университета (ныне Московский педагогический университет). В 1921-1922 годах впервые в нашей стране прочитал в Московском университете курс лекций по топологии. Трагически погиб, утонув в реке Луара во Франции.

§13. Операции над топологическими пространствами

Произведение топологических пространств. Пусть (X, τ) и (Y, σ) два топологических пространства.

Обозначим через β - семейство множеств вида $\left\{ \tau_i \times \sigma_j \right\}$, где $\tau_i \in \tau$, $\sigma_j \in \sigma$. Легко заметить, что множества семейства β образуют базу некоторой топологии μ на декартовом произведении $X \times Y$.