Linear Statistical Models Assignment 3

Kim Seang CHY

Question 1: Let A be an $n \times p$ matrix with $n \ge p$.

a. Show directly that $r(A^cA) = r(A)$.

Let $\mathbf{A} = \begin{bmatrix} \mathbf{M} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ where \mathbf{M} is a square matrix with $r(\mathbf{A}) \times r(\mathbf{A})$ and $r(\mathbf{A}) = a \leq p$. By definition \mathbf{M} is a matrix with $r(\mathbf{M}) = r(\mathbf{A})$

Using theorem 6.2, we can find \mathbf{A}^c such that it has the following partition:

$$\mathbf{A}^c = \begin{bmatrix} \mathbf{M}^{-1} & 0 \\ 0 & 0 \end{bmatrix} \text{ where } \mathbf{M}^{-1} \text{ is the inverse of } \mathbf{M}.$$

Hence
$$\mathbf{A}^c \mathbf{A} = \begin{bmatrix} I_a & \mathbf{M}^{-1} A_{12} \\ 0 & 0 \end{bmatrix}$$

All column vectors in $\mathbf{M}^{-1}A_{1,2}$ is a linear combination of the independent column vectors in the identity matrix I_a . Thus $r(\mathbf{A}^c\mathbf{A}) = r(I_a) = r(\mathbf{M}) = a$. Since $r(\mathbf{A}) = r(\mathbf{M})$, this implied $r(\mathbf{A}) = r(\mathbf{A}^c\mathbf{A})$.

b. Show directly that A^cA is idempotent.

Since A^c is a conditional inverse for A then $AA^cA=A$. Thus,

$$(A^c A)^2 = A^c A A^c A$$
$$= A^c A$$

Hence, A^cA is idempotent

c. Show directly that $A(A^TA)^cA^T$ is unique (invariant to the choice of conditional inverse).

Consider conditional inverse $(A^TA)_1^c$ and an arbitrary conditional inverse $(A^TA)_i^c$ where $i \neq 1$. Now using the properties $A = A(A^TA)_i^c(A^TA)$ and $A^T = (A^TA)_1^c(A^TA)A^T$, we get the following:

$$A(A^{T}A)_{1}^{c}A^{T} = A(A^{T}A)_{i}^{c}(A^{T}A)(A^{T}A)_{1}^{c}A^{T}$$
$$= A(A^{T}A)_{i}^{c}A^{T}$$

Since, $A(A^TA)_1^cA^T = A(A^TA)_i^cA^T$, this implied it is unique and invariant to the choice of conditional inverse.

Question 3:

Let
$$t = \left[\frac{t_1}{t_2}\right] = \left[\frac{X_1^T X_1 z_1}{X_2^T X_2 z_2}\right]$$
 and $X = \left[\begin{array}{c|c} X_1 & X_2 \end{array}\right]$

$$X^TX\mathbf{a} = \left\lceil \frac{X_1^T}{X_2^T} \right\rceil \left[\begin{array}{c|c} X_1 & X_2 \end{array} \right] \mathbf{a} = \left\lceil \frac{X_1^TX_1 & X_1^TX_2}{X_2^TX_1 & X_2^TX_2} \right] \mathbf{a}$$

We can to rewrite the system of linear equation for $X^T X \mathbf{a} = t$, as an augmented matrix form as $[X^T X | t]$.

$$[X^TX|t] = \left[\begin{array}{cc|c} X_1^TX_1 & X_1^TX_2 & X_1^TX_1z_1 \\ X_2^TX_1 & X_2^TX_2 & X_2^TX_2z_2 \end{array} \right] = \left[\begin{array}{cc|c} X_1^T & 0 \\ 0 & X_2^T \end{array} \right] \left[\begin{array}{cc|c} X_1 & X_2 & X_1z_1 \\ X_1 & X_2 & X_2z_2 \end{array} \right]$$

Since, X_2 is continuous factor we can inferred that X_2 is column full rank and since X_1 less then full column rank we can inferred that X_1 can be written as a linear combination X_2 .

Thus by theorem 6.2 that $r\left(\left[\begin{array}{cc|c} X_1 & X_2 & X_1z_1 \\ X_1 & X_2 & X_2z_2 \end{array}\right]\right) = r(X^TX)$ if and only if $\left[\begin{array}{cc|c} X_1 & X_2 & X_1z_1 \\ X_1 & X_2 & X_2z_2 \end{array}\right]$ is a consistent system.

Thus by the fact that X_2 is a linear combination of X_1 and then $\begin{bmatrix} X_1^T X_1 & X_1^T X_2 \\ X_2^T X_1 & X_2^T X_2 \end{bmatrix}$ are linear combination of $\begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$ if there exist a z_1 such that $X_1^T X_1 z_1 = t_1$ is a consistent system.

Since, $t_1^T \beta_1$ is estimable then $X_1^T X_1 z_1 = t_1$ is a consistent system hence $X^T X z = t$ is also a consistent system. Thus, if $t_1^T \beta_1$ is estimable then $t^T \beta$ where $\beta^T = [\beta_1^T | \beta_2^T]$.