CS & IT

ENGINEERING

Subject- Digital LOGIC
Chapter- LOGIC GATE

Lecture No. 3

By- CHANDAN SIR

01 AND, OR GATE

02 NAND GATE

03 NOR GATE

04 Discussion

Minimum no. of NAND NOR GATE

NAND/NOR

-> Universal Logic

$$\begin{array}{c}
A \oplus B = \overline{AB} + A\overline{B}
\end{array}$$

$$A \longrightarrow D \longrightarrow AOB = AOB = AB + AB$$

$$f = \frac{1}{2 \text{MXCPd}}$$

AND OR A+B A.B 1

A.B

AB

Ats

flogting terminal = 1

flogting terminal = 0

$$\overline{AB} = \overline{A} + \overline{B}$$
 $\overline{A+B} = \overline{A} \cdot \overline{B}$

Ristribution Theorem

$$A + BC = (A+B)(A+C)$$

Question:
$$\rightarrow$$

(A+A) (A+B)

(A+B)

(A+B)

(A+B)

(A+B)

(A+B)

(A+B)

= A+B

$$A \cdot \bar{A} = 0$$

$$A \cdot A = A$$

$$\bar{A} = O + \bar{A}$$

$$\begin{array}{c}
A + AB = (\overline{A} + A) (\overline{A} + B) \\
\hline
T(\overline{A} + B) = (\overline{A} + B) = \overline{A} + B \\
\hline
B + AB = (\overline{B} + A) \cdot (\overline{B} + B) \\
= (A + B) \cdot 1 \\
= A + B
\end{array}$$

$$= A + B$$

$$\begin{array}{c}
\overline{A+B} \\
\overline{A+$$

NAND AS A UNIVERSAL LOGIC 3->

D-NOT CHATE:>

(2) AND CHATE:>

6 X-NOR CHATE

6 NOR GATE

		NAND	NOR
	NOT	1	1
	AND	2 2	3
7	OR	3	2
7	X-OR	4)	150
	X-NOR	5	4
	NAND	1 7	4
	NOR	45	1

Which of the following option is called universal logic?

- A NAND
- B NOR
- Both A & B
- D None

Which of the following option is called universal logic?

- A/NAND
- B NOR
- C AND
- D OR

Which of the following option(s) is/are called universal logic?

$$(\overline{A+B}) \longrightarrow NOR$$

$$(A \cdot B) \longrightarrow NAND$$

$$\left(A + \overline{B}\right)$$

$$A \cdot \overline{B}$$

ATB)

A.B Circuit AtB 7 universal Logic

$$\overline{A} = \overline{A} \cdot \overline{B} = \overline{A} + \overline{B}$$

$$\overline{A} \cdot \overline{B} = \overline{A} + \overline{B}$$

Universal Logic

A.B

A+B

A.B

A.B

AtB

At B

MUX DECODER+OR

NAND, NOR GATE

Alternate Symbol

$$\frac{\overline{A} \cdot \overline{B}}{\overline{A} + \overline{B}} = \frac{\overline{A} \cdot \overline{B}}{\overline{A} \cdot \overline{B}} = \frac{\overline{A} \cdot \overline{B}}{\overline{A}} = \frac{\overline{A} \cdot \overline{B}}{\overline{A}} = \frac{\overline{A} \cdot \overline{B}}{\overline{A} \cdot \overline{B}} = \frac{\overline{A} \cdot \overline{B}}{\overline{A}} = \frac{\overline{A} \cdot \overline{$$

Find the minimum number of two input NAND CHATE required to Implement the function given below-

TYPE (1)

f = A.B.C.D.E.F....

Minimum no. of NAND = (2n-2)+K Minimum no. of NOR = (3n-3)-K

n-total no. of variables

K > total no. of complement Variables

EX	f=ABC		
_	NAND	NOR	
	(2n-2)+K	(3n-3)-k	
	n=3 $K=1$	n=3 k=1	
	(2x3-2)+1	(3x3-3)-1	
	5	5	

$$f = \overline{A} \cdot B \cdot \overline{C} \cdot D$$

$$n = 4 \quad K = 2$$

$$\frac{(2x4-3)+k}{(8)}$$

$$NOR = (3n-3)-k$$

$$= (3x4-3)-2$$

$$= (12-3-2)$$

$$= (7)$$

$$= (3x4-3)-2$$

f=ABCD

NAND=7.

MOR = 7

Thank you

Soldiers!

