1 Задание 4

1.1 Задача 1

Доказательство: будем доказывать по индукции:

- 1. база m=1 очевидна из условия, т.к. $ab \in N$
- 2. предположим, что верно для $m=n\in\mathbb{N}$, т.е $a^nb^b\in N$
- 3. тогда шагом индукции будет доказательство принадлежности к N элемента $a^{n+1}b^{n+1}$. Используем лемму: два элемента группы g_1 и g_2 принадлежат одному классу смежности по подгруппе H тогда и только тогда, когда $g_1^{-1}g_2\in H$. Сама подгруппа также является классом смежности, тогда элементы a^nb^n и $a^{n+1}b^{n+1}$ принадлежат одному и тому же классу смежности, т.е. N, т.к. $a^nb^n\in N$, если $(a^nb^n)^{-1}a^{n+1}b^{n+1}\in N$. Совершим преобразования: $(a^nb^n)^{-1}a^{n+1}b^{n+1}=b^{-n}a^{-n}a^{n+1}b^{n+1}=b^{-n}abb^n$ Т.к. N нормальная подгруппа, то для $b^{-n}\in G$ выполняется $b^{-n}N=Nb^{-n}$, тогда для $ab\in N\exists h\in N$: $b^{-n}ab=hb^{-n}$. Воспользуемся данным равенством и подставим его в ранее полученное выражение: $b^{-n}abb^n=hb^{-n}b^n=h\in N$. Следовательно из критерия получаем, что $a^{n+1}b^{n+1}\in N$, т.е. утверждение доказано.

Из определения нормальной группы следует, т.к. $a \in G, ab \in N \to a^{-1}aba = ba \in N$, тогда в точности аналогично пункту доказывается, что $\forall m \in \mathbb{N} \to b^m a^m \in N$

Теперь заметим, тчо из определения подгруппы $a^0b^0=b^0a^0=e\in N$. Что касается целых отрицательных степеней, всё довольно очевидно, по определению подгруппы, если элемент лежит в ней, то и обратный элемент лежит. Тогда остается воспользоваться тем, что $\forall m\in \mathbb{N}(a^mb^m)^{-1}=b^{-m}a^{-m}\in N$ и $\forall m\in \mathbb{N}(b^ma^m)^{-1}=a^{-m}b^{-m}\in N$. Таким образом, мы доказывали, что $\forall m\in \mathbb{Z}\to a^mb^m, b^ma^m\in N$

1.2 Задача 2

Рассмотрим симметрическую группу S_3 , перестановок из 3-х элементов. В качестве примера группы, которая не будет являться нормальной будет $F = \{e, (1\ 2)\ \}$, очевидно, что $H < S_3$. Докажем, что не является нормальной: $\exists x = (1\ 3) \in S_3$. Тогда $xF = \{\ (1\ 3),\ (1\ 3)(1\ 2)\ \}$, $Fx = \{(1\ 3),\ (1\ 2)(1\ 3)\ \}$, учитывая, что $(1\ 3)(1\ 2) = (1\ 2\ 3) \neq (1\ 2)(1\ 3) = (1\ 3\ 2)$, т.е. $xF \neq Fx$. Т.е. такая группа подходит.

1 OBAuTK

Покажем, используя данный пример, что множество левых смежных классов с операцией, как у факторгруппы не образует группу. Рассмотрим левые смеэные классы $(2\ 3)\ F$ и $(1\ 3\ 2)F$, тогда получим, что $(2\ 3)F=\{(2\ 3),\ (1\ 3\ 2)\}$, $(1\ 3\ 2)F=\{(1\ 3\ 2),\ (2\ 3)\}$, т.е $(2\ 3)F=(1\ 3\ 2)F$. Рассмотрим операцию, определенную на множестве левых смежных классов: $(2\ 3)F*(2\ 3)F=F$, при этом в силу равенства $(2\ 3)H=(1\ 3\ 2)H$ можно записать то же произведение классов, как $(1\ 3\ 2)F*(2\ 3)F=(1\ 3\ 2)(2\ 3)F=(1\ 3)F=\{\ (1\ 3),\ (1\ 2\ 3)\}\neq F$, получаем, что определить групповую операцию на множестве левых смежных классов по подгруппе F не получится, и группой данное множество с такой операций не будет являться.

1.3 Задача 3

В силу операции сложения, определенной на рассматриваемой группе, получим, что \mathbb{Z}^3 – абелева. Тогда её подгруппа $F = \{(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mid x+y+z=0\}$ – нормальная. Отсюда по определению следует, что определена факторгруппа \mathbb{Z}^3/H . Докажем, тчо $\mathbb{Z}^3/H = \{M_k | \forall (x,y,z) \in M_k \to x+y+z=k, k \in \mathbb{Z}\}$.

Сначала будем доказывать, что любые элементы, обладающие одним и тем же свойством, т.е. элементы $M_k = \{(x,y,z)|x+y+z=k\}$ лежат в одном классе смежности, воспользуемся леммой 2, т.е. $\forall g_1,g_2\in M_k \to (-g_1)+g_2=(x_2-x_1,y_2-y_1,z_2-z_1)$, остается заметить, что сумма компонент полученного вектора есть 0, сл-но, $(-g_1)+g_2\in H$, по критерию элементы будут лежать в одном классе.

Теперь докажем, что если элементы лежат в разных множествах, то они лежат в разных классах, пользоваться будем той же леммой 2, т.е. будем рассматривать M_k и M_n , где $n \neq k$, тогда возьмём произвольные элементы из M_k и M_n , соотвественно, $g_k, g_n \to (-g_k) + g_n = (x_n - x_k, y_n - y_k, z_n - z_k)$, сумма компонент этого вектора: $n - k \neq 0$, полуачем, что $(-g_k) + g_n \not\in H$, по критерию элементы лежат в разных классах смежности. Предположим, что существует такой класс смежности, который не будет описан с помощью M_k , тогда существует вектор, лежащий в этом классе, сумма которого некоторое целое число – р. Значит, этот вектор лежит в M_p , но классы смежности не пересекаются, пришли к противоречию. Таким образом, мы доказали, что разбиение на классы смежности верное, а значит и описание факторгруппы верно.

2 ОВАиТК

1.4 Задача 5

В качестве искомого гомоморфизма подойдёт $\varphi: \langle \mathbb{Q}, + \rangle \to \langle \mathbb{Q}[0,1], \circ \rangle$, где $Q[0,1) = \{q | q \in \mathbb{Q} \ 0 \leq q \leq 1\}$, а операция описывается следующим образом: $\forall A,b,\in \mathbb{Q}[0,1) \to a \circ b = \{a+b\}$, т.е. это дробная часть от суммы двух чисел. Довольно очевидно, что $\langle \mathbb{Q}[0,1), \circ \rangle$ – группа, ассоциативность следует из описания операции, нейтральный элемент это нуль, а для любого элемента $a \in \mathbb{Q}[0,1)$ $\exists \{1-a\}$ (дробная часть взята, чтобы учесть случай a=0). Осталось лишь описать само отображение:

 $\varphi: \forall x \in \mathbb{Q} \to \varphi(x) = \{x\}, obviously\{x\} \in \mathbb{Q}[0,1)$

Будем доказывать, что это отображение суть гомоморфизм: $\varphi(a+b) = \{a+b\} = \{[a]+\{a\}+[b]+\{b\}\} = \{[a]+[b]+[a]+\{b\}\} + \{\{a\}\{b\}\}\} = \{\{a\}+\{b\}\}\} = \varphi(a)\circ\varphi(b)$, следовательно, по определению это гомоморфизм, причем в силу такого отображения, очевидно, что образ элемента есть нуль тогда и только тогда, когда элемент принадлжеит множеству целых чисел, т.е. $\ker \varphi = \mathbb{Z}$. Показали, что приведенный пример корректен.

Докажем, что $\langle \mathbb{Q}, + \rangle / \ker \varphi$ бексконечна, но каждый её элемент будет иметь конечный порядок. Используем теорему о гомморфизме, т.к. φ гомоморфизм, сл-но, $\langle \mathbb{Q}, + \rangle / \ker \varphi \cong \varphi(\langle \mathbb{Q}, + \rangle) = \langle \mathbb{Q}[0,1), \circ \rangle$, отсюда следует, что $\langle \mathbb{Q}, + \rangle / \ker \varphi$ бексконечна, т.к. бесконечна группа $\langle \mathbb{Q}[0,1), \circ \rangle$, т.к. иначе бы не было биекции, т.е. изоморфизма. Аналогичными рассуждениями можно провести по поводя порядка элементов, т.е. пойдем от противного. Предположим, что порядок какого-то элемента из $a \in \langle \mathbb{Q}, + \rangle / \ker \varphi$ бесконечен, тогда в силу свойства изоморфизма биективности, а также, что $\varphi(a^k) = (\varphi(a))^k$, где k произвольное натуральное число, получим, что существует элемент в $\langle \mathbb{Q}[0,1), \circ \rangle$, который имеет бесконечный порядок, но любой элемент оттуда имеет конечный порядок, т.к. любая рациональная дробь $\frac{m}{n}$ на [0,1) имеет конечный знаменатель, тогдас сложив с помощью операции \circ рассматриваемую дроб п раз, мы получим, нуль, т.е. порядок любой дроби из данной группы не превосходит знаменатель. Отсюда получим противоречие, т.к. все элементы имеют конечный порядок.

3 ОВАиТК