2011-(04)apr-14: dag 23

Boolesk algebra

Booleska funktioner

Disjunktiv och konjunktiv normalform

Logiska grindar och kretsar

Minimering, Karnaughdiageran

Grafteori

Grafer, exempel

Grafteoretiska grundbegrepp

Bipartita grafer

Grannmatris och incidensmatris

Isomorfi mellan grafer

Valens (grad), reguljära grafer

Vägar, stigar och sånt

Eulervägar och -kretsar, Hamiltonstigar och -cykler

Sammanhängande grafer, komponenter

0-ställiga (en. nullary) konnektiv: ⊥ ⊤

1-ställiga (en. unary) konnektiv:

2-ställiga (en. binary) konnektiv: ∧ ∨ → ↔

Två olika skrivsätt:

Idag först mer om boolesk /bo:lsk/ algebra

Ett exempel till:
$$\mathbb{B}_n = \{0, 1\}^n = \{00...0, 00...1, ..., 11...1\}$$

+, · definieras komponentvis:

+ $\ddot{a}r$ inte likadan som i \mathbb{Z}_2 .

Exempel:

$$n = 3$$

 $010 + 011 = 011$

Booliska funktioner

$$f: \{0, 1\}^n \rightarrow \{0, 1\} \qquad (f: \mathbb{B}_n \rightarrow \mathbb{B})$$

Exempel:

Sentenser (med bara atomära sentenser bland n givna)

Exempel:

$$\neg(A \rightarrow \neg B)$$

definierar funktionen

$$f(1, 1) = 1$$

 $f(1, 0) = 0$
 $f(0, 1) = 0$
 $f(0, 0) = 0$

En boolesk funktion beskrivs fullständigt av en sanningsvärdestabell.

Exempel:

у	Z	f(x, y, z)		
1 1	1 0	1 1	xyz xyz	1 på denna rad, 0 för övriga 1 på denna rad, 0 för övriga
0 0	1 0	1 0	xyz	1 på denna rad, 0 för övriga
1 1	1 0	0 0		
0 0	1 0	1 0	xyz	1 på denna rad, 0 för övriga
	1 1 0 0 1 1	1 1 1 0 0 0 1 1 1 1 0 0 0 1	1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1	1 1 1 xyz 1 0 1 xyz 0 1 1 xyz 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 xyz

[&]quot;Så" $f(x, y, z) = xyz + xy\overline{z} + x\overline{y}z + \overline{xy}z$

På samma sätt kan varje boolesk funktion skrivas på disjunktiv normalform (dnf).

Dualt: konjunktiv normalform (knf)

$$f(x, y, z) = (\overline{x} + y + z)(x + \overline{y} + \overline{z})(x + \overline{y} + z)(x + y + z)$$

f(x, y, z) kan "realiseras" med en logisk krets:

Uttycket kan förenklas till en mindre, disjunktiv form.

Karnaugh-diagram

Här är $f(x, y, z) = \underline{xy} + \underline{yz}$

För ihop 1:orna i rektanglar med sida 1, 2 eller 4 (2ⁿ). Rektanglarna ska vara Så stora som möjligr som får vara överlappande.

Endast en skillnad per rad i xy, gäller även i kolonnerna.

I diagrammet till vänster finns, det två ihopförningar, de heldragna bilder en rektangel.

Alltså:

En enklare krets för f(x, y, z):

Ett exempel till:

Förenkla
$$\begin{split} \text{f(x, y, z, w)} &= (\bar{x}\,\bar{y}\bar{z}\,\bar{w})_{\!(1)} + (\bar{x}\,\bar{y}z\,\bar{w})_{\!(2)} + (\bar{x}\,y\bar{z}\,w)_{\!(3)} + (x\,y\bar{z}\,\bar{w})_{\!(4)} + \\ &\quad + (x\,y\bar{z}\,w)_{\!(5)} + (x\,\bar{y}\bar{z}\,\bar{w})_{\!(6)} + (x\,\bar{y}\bar{z}\,w)_{\!(7)} + (x\,\bar{y}z\,\bar{w})_{\!(8)} \end{split}$$

Karnaughdiagram:

[U1.5]

En schematisk karta för labyrinten

Ett exempel på en graf. -

En graf

"Teoretisk", abstrakt

G = (V, E)

V — En ändlig mängd, hörn (noder, vertex)

E — En mängd av 2-delmängder till V, kanter (edge), (par av olika hörn).

De hörnen är då grannar.

"Praktiskt"

Varianter av grafer:

Oändlig mängder (hörn)

Riktade kanter

Viktade kanter

Öglor

Multipla kanter

Standardnamn för vissa grafer:

 K_n , fullständiga grafen med n hörn, $n \ge 1$ Alla möjliga kanter finns.

 K_1 :

K₃:

C_n, cykliska grafen med n hörn,

 C_6 :

 $(C_3 = K_3)$

 $K_{m,n}$, fullständiga bipartita grafen,

 $m, n \ge 1$

 $V = A \cup B$

 $= K_{2,3}$

B:

Små grafer ges lätt av en bild, men man kan även använda grannlista (en. adjecant list) eller grannmatris (en. adjecant matrix).

a	b	С	d
b	a	b	а
d	С		b
	d		

a b c d

För enkel oriktad: Symmetrisk 0/1-matris, 0:or på diagonalen.

G = (V, E)

$$a_{ij} = \begin{cases} 1 & \text{om } \{ij\} \in E \\ 0 & \text{annars} \end{cases}$$

Ett sätt till: incidentmatris

Exakt 2 1:or i varje kolonn (ty tvp hörn per kant).