Sistemas Distribuídos - ESP625

Prof^a Ana Carolina Sokolonski

Bacharelado em Sistemas de Informação Instituto Federal de Educação, Ciência e Tecnologia da Bahia Campus de Feira de Santana

carolsoko@ifba.edu.br

October 24, 2023

- 1 Projeto de Sistemas de Tempo Real
- 2 Hardware para Sistemas de Tempo Real
- 3 Arquitetura Básica de um Sistema de Tempo Real
 - Arquitetura Básica de um Sistema Computacional
 - Arquitetura com DMA
 - Pipeline
 - CISC X RISC
 - Processador
- 4 Conclusão
- 5 Referências

Deve-se estar atento para:

Seleção do Hardware e do Software

- Relação Custo X Benefício
 - Como tratar paralelismo, sincronização e distribuição.
 - Herda problemas típicos de sistemas distribuídos
 - Pode incrementar desempenho e confiabilidade.

Deve-se estar atento para:

Seleção do Hardware e do Software

- Relação Custo X Benefício
 - Como tratar paralelismo, sincronização e distribuição.
 - Herda problemas típicos de sistemas distribuídos
 - Pode incrementar desempenho e confiabilidade.

Especificação e Projeto de Sistema de Tempo Real:

 Representação correta do comportamento funcional e temporal do sistema. [Burns e Welllings 1997]

Deve-se estar atento para:

Entendimento das nuances das linguagens de programação e implicações para o Sistema de Tempo Real:

- Abstração dos dispositivos
- Abstrações temporais
- Representação em termos de código de máquina

Cuidados com prevenção e tolerância a falhas

Aspectos interessantes:

Os hardwares tradicionais são imprevisíveis, pois possuem recursos como interrupções, memória cache, entre outros, que podem falhar ou demorar demais, simulando falhas.

Aspectos interessantes:

- Os hardwares tradicionais são imprevisíveis, pois possuem recursos como interrupções, memória cache, entre outros, que podem falhar ou demorar demais, simulando falhas.
- O problema do projeto de hardware está na determinação do Worst Case Execution Time (WCET) também chamado de Tempo de Execução no Pior Caso.

Aspectos interessantes:

- Os hardwares tradicionais são imprevisíveis, pois possuem recursos como interrupções, memória cache, entre outros, que podem falhar ou demorar demais, simulando falhas.
- O problema do projeto de hardware está na determinação do Worst Case Execution Time (WCET) também chamado de Tempo de Execução no Pior Caso.
- Sem o conhecimento exato do WCET, não podemos prever se o sistema executará corretamente, pois a tarefa pode consumir mais tempo do que o declarado, fazendo com que outras tarefas percam seus Dealines. [Burns e Welllings 1997]

Itens a serem observados:

O hardware deve estar totalmente projetado para operar um sistema de tempo-real.

Itens a serem observados:

O hardware deve estar totalmente projetado para operar um sistema de tempo-real.

Conjunto de instruções (simples ou complexas?).

Itens a serem observados:

O hardware deve estar totalmente projetado para operar um sistema de tempo-real.

- Conjunto de instruções (simples ou complexas?).
- Modos de endereçamento (tempo de acesso a memória).

Itens a serem observados:

O hardware deve estar totalmente projetado para operar um sistema de tempo-real.

- Conjunto de instruções (simples ou complexas?).
- Modos de endereçamento (tempo de acesso a memória).
- Co-processadores (instruções mais rápidas e especializadas).

Objetivo do Projeto de Hardware para Sistemas de Tempo Real:

Utilização mais eficiente dos recursos de hardware.

Desempenho do software para satisfação das restrições temporais.

Previsibilidade [Coulouris et al. 2013]

Arquitetura Básica de um Sistema Computacional

Arquitetura Básica de um Sistema Computacional

Arquitetura Básica de um Sistema Computacional consiste em:

CPU, Memória, Dispositivos de E/S interconectados através de um barramento, etc.

└Arquitetura com DMA

Arquitetura com DMA

Acesso direto a Memória (DMA):

Dispositivos lêem e escrevem dados diretamente na memória sem a intervenção da CPU. Requer um controlador de DMA (integrado ou não a CPU).

O Controlador de DMA evita colisões de dispositivos que requerem acesso a memória.

O dispositivo DMA insere imprevisibilidade no sistema. [TANENBAUM e STEEN 2007]

└─Arquitetura com DMA

Arquitetura com DMA

Arquitetura com DMA

Hardware para Sistemas de Tempo Real

```
O que é importante?
```

└Arquitetura com DMA

Hardware para Sistemas de Tempo Real

O que é importante?

 Velocidade de comunicação entre dispositivos (barramento – DMA - interfaceamento). └Arquitetura com DMA

Hardware para Sistemas de Tempo Real

O que é importante?

- Velocidade de comunicação entre dispositivos (barramento DMA - interfaceamento).
- Tecnologia utilizada na construção do processador (tipo de pipeline).

Arquitetura com DMA

Hardware para Sistemas de Tempo Real

O que é importante?

- Velocidade de comunicação entre dispositivos (barramento DMA - interfaceamento).
- Tecnologia utilizada na construção do processador (tipo de pipeline).
- Entender o funcionamento do hardware, pois ajuda a observar questões pertinentes ao tempo de resposta dos programas de Sistemas de Tempo Real.

Arquitetura Básica de um Sistema de Tempo Real

Pipeline

Pipeline

Pipeline

Um processador típico possui um pipeline com as seguintes atividades:

■ Busca de Instruções

Pipeline

- Busca de Instruções
- Decodificação de operação

Pipeline

- Busca de Instruções
- Decodificação de operação
- Execução

Pipeline

- Busca de Instruções
- Decodificação de operação
- Execução
- Acesso à memória

L Pipeline

Pipeline

- Busca de Instruções
- Decodificação de operação
- Execução
- Acesso à memória
- Escrita de Retorno (Write-back)

Pipeline

Em geral, cada instrução pode levar de 3 a 5 passos:

Busca, decodificação e execução são passos básicos.

Os demais dependem do tipo de instrução:

- Operações de acesso a memória (LOAD / STORE)
- Write-back (LOAD)

└─Arquitetura Básica de um Sistema de Tempo Real └─CISC X RISC

CISC X RISC

Diferença entre CISC X RISC:

A grande diferença entre as Arquiteturas CISC(Complex Instruction Set Computer) e RISC (Reduced Instruction Set Computer) é a Capacidade e o Modo de Processamento. Enquanto as arquiteturas CISC executam instruções complexas, as arquiteturas RISC executam instruções reduzidas.

CISC X RISC

Diferença entre CISC X RISC:

A grande diferença entre as Arquiteturas CISC(Complex Instruction Set Computer) e RISC (Reduced Instruction Set Computer) é a Capacidade e o Modo de Processamento. Enquanto as arquiteturas CISC executam instruções complexas, as arquiteturas RISC executam instruções reduzidas.

- CISC: Instruções complexas que exigem vários ciclos de relógio para serem executadas - suporta Instruções com formatos variados.
- RISC: Instruções simples executadas em um ciclo de relógio suporta apenas Instruções com formatos fixos.

Arquitetura Básica de um Sistema de Tempo Real

Processador

Processador

Desempenho de um processador é verificado por:

■ Velocidade de execução dos programas

Arquitetura Básica de um Sistema de Tempo Real

Processador

Processador

Desempenho de um processador é verificado por:

- Velocidade de execução dos programas
- Tempo de Resposta Tempo decorrido entre o início e o final da execução do processo - envolve tempo de CPU, E/S, acesso a memória, etc.

Processado

Processador

Desempenho de um processador é verificado por:

- Velocidade de execução dos programas
- Tempo de Resposta Tempo decorrido entre o início e o final da execução do processo - envolve tempo de CPU, E/S, acesso a memória, etc.
- Número de programas que podem ser executados por vez (paralelismo)

Conclusão sobre o Projeto de Sistemas de Tempo Real:

 Rapidez de execução deve ser observada com o intuito de cumprir as restrições temporais.

Conclusão sobre o Projeto de Sistemas de Tempo Real:

- Rapidez de execução deve ser observada com o intuito de cumprir as restrições temporais.
- Arquiteturas RISC e CISC s\u00e3o \u00fateis e usadas dependendo da necessidade do nosso sistema.

Conclusão sobre o Projeto de Sistemas de Tempo Real:

- Rapidez de execução deve ser observada com o intuito de cumprir as restrições temporais.
- Arquiteturas RISC e CISC s\u00e3o \u00fateis e usadas dependendo da necessidade do nosso sistema.
- Sistemas de Tempo Real Críticos com restrições temporais apertadas necessitam de arquiteturas velozes.

Conclusão sobre o Projeto de Sistemas de Tempo Real:

- Rapidez de execução deve ser observada com o intuito de cumprir as restrições temporais.
- Arquiteturas RISC e CISC s\u00e3o \u00fateis e usadas dependendo da necessidade do nosso sistema.
- Sistemas de Tempo Real Críticos com restrições temporais apertadas necessitam de arquiteturas velozes.
- Sistemas de Tempo Real Não-Críticos podem ser implementados em hardwares com certo nível de imprevisibilidade.

Conclusão sobre o Projeto de Sistemas de Tempo Real:

 O aumento da imprevisibilidade, normalmente, implica em diminuição de custos, por isso não devemos superdimensionar o sistema ou trabalhar com sistemas robustos para Sistemas de Tempo Real Não Críticos. Deve-se pensar no Custo X Benefício

Referências

Referências

- BURNS, A.; WELLLINGS, A. *Real-Time Systems and Programming Languages.* 1. ed. [S.I.]: Addison Wesley, 1997. v. 1.
- COULOURIS, G. et al. Sistemas Distribuídos: Conceitos e Projetos. 5. ed. [S.I.]: Bookman, 2013. v. 1.
- TANENBAUM, A.; STEEN, M. V. Sistemas Distribuídos Princípios e Paradigmas. 2. ed. [S.I.]: Prentice Hall, 2007. v. 1.