that we need that the modulus function is differentiable. If $E = L^p(X,\Sigma,\mu) \ (1 \le p < \infty) \quad \text{this had been proved in Section 2 (Ex.2.3).}$ We extend this result to Banach lattices with order continuous norm.

<u>Proposition</u> 5.6. Let E be a real or complex Banach lattice with order continuous norm. Then the modulus function θ : E \rightarrow E (given by $\theta(h) = |h|$) is right-sided Gateaux differerentiable and

(5.6)
$$D_{q}\theta(f) = Re((si\hat{g}n \ \bar{f})g) \qquad (f, g \in E) .$$

<u>Proof.</u> Let f, $g \in E$. Define $k : \mathbb{R} \to E$ by k(t) = |f+tg| - |f|. Then k(0) = 0 and k is convex (i.e., $k(\lambda s + (1-\lambda)t) \le \lambda k(s) + (1-\lambda)k(t)$ for all s, $t \in \mathbb{R}$, $\lambda \in [0,1]$). We show that

(5.7)
$$k(s)/s \le k(t)/t$$

whenever s < t, $s,t \neq 0$.

First case: s < t < 0 .

Choose $\lambda = t/s \in (0,1)$. Then $t = (1-\lambda)0 + \lambda s$. Consequently,

 $k(t) \leq (1-\lambda)k(0) + \lambda k(s) = t/s k(s).$

Second case: s < 0 < t .

Let $0 < \lambda := t/(t-s) < 1$. Then $0 = \lambda s + (1-\lambda)t$. Hence $0 = k(0) \le \lambda k(s) + (1-\lambda)k(t) = t/(t-s) k(s) - s/(t-s) k(t)$, which implies (5.7). Third case: 0 < s < t.

Let $\lambda = s/t \in (0,1)$. Then $s = (1-\lambda)0 + \lambda t$. Consequently, $k(s) \le (1-\lambda)k(0) + \lambda k(t) = s/t k(t)$, which implies (5.7).

It follows from (5.7) that the net $(k(t)/t)_{t>0}$ is decreasing and bounded below (by -k(-1), for instance). Since E has order continuous norm, it follows that $D_{\sigma}\theta(f)=\lim_{t\to 0+}k(t)/t$ exists.

It remains to show that $D_q\theta(f) = Re(si\hat{g}n \ \bar{f})g$.

First of all denote by P the band projection onto $\{f\}^{\mbox{dd}}$. Then it follows from the definition of $D_g\theta(f)$ that $D_g\theta(f)=PD_g\theta(f)+(\mbox{Id-P})D_g\theta(f)=D_{\mbox{Pg}}\theta(f)+|(\mbox{Id-P})g|$. Thus it remains to show that

(5.8) $D_h^{\Theta}(f) = Re((sign \overline{f})h)$ whenever $h \in \{f\}^{dd}$.

According to the Kakutani-Krein theorem there exists a compact space K such that $E_{\mid f\mid}$ can be identified with C(K) . Then by B-II, Lemma 2.4

 $(5.9) \quad \lim_{t\to 0+} 1/t(|f+th| - |f|)(x) = \operatorname{Re}(\operatorname{sign}(\overline{f(x)})h(x)) \qquad (x \in K).$

Let $\phi \in E_+^\tau$. Then ϕ restricted to $E_{\big|\, f \, \big|}$ can be identified with a regular Borel measure $\, \mu \,$ on $\, C \, (K)$.