Considérese una varilla conductora de resistencia R y masa m que se desliza sin rozamiento a lo largo de dos raíles metálicos paralelos de resistencia eléctrica despreciable. Dichos raíles están separados entre sí una distancia a e inclinados un ángulo θ respecto de la horizontal. Suponiendo que existiera un campo magnético B_0 homogéneo y dirigido hacia arriba (véase la figura):

- a) Calcular la fuerza que se opone al movimiento de la varilla (fuerza paralela a los raíles).
- b) Determinar la velocidad límite de la varilla.

Solución: a)
$$\vec{F} = -\frac{L^2 B_0^2 \cos^2 \theta}{R} \vec{v}$$
 b) $v_i = \frac{mgRsen\theta}{L^2 B_0^2 \cos^2 \theta}$

4) Una espira cuadrada de lado a se encuentra a una distancia d de un conductor rectilíneo infinito por donde circula una corriente I_0 (véase la figura del problema 2).

1

Calcular la diferencia de potencial y el sentido de la corriente eléctrica inducida en los siguientes casos:

- a) La espira gira en torno al conductor rectilíneo pero manteniéndose siempre a la misma distancia del mismo.
- b) La espira se traslada paralelamente al conductor.
- c) La espira se aleja del conductor perpendicularmente.

Solución: a) 0 b) 0 c)
$$\varepsilon = \frac{\mu_0 I_0 v_0 a^2}{2\pi (a+d)d}$$
 I se induce en sentido antihorario.

Una bobina circular de alambre tiene 5 cm. de radio y 400 vueltas. Inicialmente está situada perpendicularmente a un campo magnético homogéneo y constante de módulo 0.4 T. Calcular la fuerza electromotriz inducida (d. d. p.) en los extremos del bobinado en los siguientes casos:

- a) La bobina se retira del campo magnético en 3 s. manteniendo la perpendicularidad y con velocidad constante.
- b) La bobina gira 180° en cinco segundos.
- c) Manteniendo la bobina en reposo, se dobla el valor del campo magnético en dos segundos.

En todos los casos, indicar el sentido de la corriente inducida.

Solución: a) 0.42V b) 0.503V c) -0.63V

Un alambre cuadrado de lado a está situado en el plano ZY. Su lado inferior está en el borde de una región donde existe un campo magnético homogéneo, B₀, paralelo al eje X. Posteriormente, se deja caer libremente la espira en dicha región. Calcular el valor y sentido de la corriente eléctrica inducida en la espira, así como la fuerza neta sobre la espira.

Solución: a) $I_{inducida} = \frac{aB_0v}{R}$ b) $\vec{F} = -\frac{a^2B_0^2}{R}\vec{v}$ donde R y v son la resistencia eléctrica y la velocidad de caída de la espira, respectivamente. I se induce en el sentido horario.

Solución: $\varepsilon = \frac{16}{3}ta^2\sqrt{a}$ I se induce en el sentido horario.

Se tiene una espira cuadrada de lado a/2 moviéndose sobre el plano ZY con una velocidad constante, $\vec{v} = v_0 \vec{j}$. Dicha espira se halla sometida a la acción de un campo magnético perpendicular al plano ZY y saliente, cuyo módulo viene dado por la expresión: $B = B_0 \cos\left(\frac{2\pi y}{a}\right)$.

Determinar:

- a) La diferencia de potencial inducida, ε.
- b) Suponiendo que B_0 =1T, calcular los valores de a y v_0 necesarios para que ϵ oscile con una frecuencia de 50 Hz y una amplitud de 50 V.
- c) Si la espira tuviese lado a ¿cuánto vale el flujo magnético y por tanto la diferencia de potencial inducida?

Problemas 7 y 8

Solución: a)
$$\varepsilon = aB_0v_0\cos\left(\frac{2\pi v_0}{a}t\right)$$
 b) $a = 1m$ $v_0 = 50 \, m/s$ c) $\phi = 0$, $\varepsilon = 0$

En cierta región del espacio existe un campo magnético no homogéneo dado por $\vec{B} = \frac{C}{\sqrt{r}}\vec{k}$

(problema 1.b). Se sitúa un anillo sobre plano XY y centrado en el origen, cuyo radio variable viene dado por la expresión, $R(t) = R_0 \left(1 + \cos \omega t\right)$, donde t es el tiempo. Calcular la fuerza electromotriz inducida (d. d. p.) en el anillo.

Solución: $\varepsilon = (2R_0)^{3/2} \pi C \omega \operatorname{sen}(\omega t) \cos(\omega t/2)$

Una bobina cuadrada de alambre tiene de lado 25 cm. y 100 vueltas. Dicha bobina se encuentra sobre el plano XY, centrada en el origen y está sometida a la acción de un campo magnético uniforme $\vec{B} = B_0 \vec{j}$. Responder a las siguientes cuestiones:

- a) ¿Respecto de qué eje (o ejes) deberá girar la espira para observar la aparición de corriente eléctrica inducida? Indicar su sentido de giro.
- b) Calcular la diferencia de potencial inducida máxima si $B_0=0.112T$ y la bobina gira a un ritmo de 50 ciclos/s.

Solución: a) Únicamente respecto del eje x. b) 220V