N93-27889

INTERFEROMETER TESTBED: OVERVIEW AND HARDWARE SUMMARY

Andrew Nisbet

January 22, 1992

MIT Space Engineering Research Center

Reference Mission & Science Requirements

- Needed scientific reference mission to define stringent CST goals: Optical Interferometer Spacecraft
- objectives shown below. The science requirements were then Consultation with astronomers produced the set of mission derived from the mission objectives.

Mission Objectives	Value	3 m-arcsec (0.014 µrad) 0.5 micron 10	95% image quality
Mis	Description	resolution wavelength stellar magnitude	ımagıng

Science Requirements	Value	35 meters 25 nm > 0.005 Hz 10 nm < 0.005 Hz
Science	Description	baseline high freq. DPL error low freq. DPL error

Schematic of a two dimensional interferometer

Baseline derived from resolution objective

$$\rho = \frac{\lambda}{D} = 0.003 \text{ arcsec}$$

High frequency DPL limit derived from maximum intensity function

$$I_{max} = I_{T} + V(u)\cos\left(2\pi\frac{\partial\ell}{\lambda}\right)$$

$$\approx I_{T} + V(u)\left(1 - \frac{1}{2}\left(2\pi\frac{\partial\ell}{\lambda}\right)^{2}\right)$$

Low frequency DPL limited derived from phase error

$$\phi_{\rm e} = 2\pi \frac{\partial \ell}{\lambda}$$

Reference Spacecraft Design Summary

217 sec integration time, continuous rotation about LOS	Science Mode
8 1200 Nms RWAs & mag. torque momentum dumping	Attitude Control
Body mounted solar arrays	Power Source
TDRSS S-band compatible	Telecommunications
8 siderostats in non-redundant 2-D array	Payload Architecture
12325 kg (total) incl. 25% margin	
3285 kg (truss)	Spacecraft Mass
Deployable tetrahedral truss structure	Architecture
35 meters	Baseline

Testbed Requirements & Performance Metric

siderostat locations. Performance requirement of 50 nm RMS differential pathlength error (DPL) above 10 Hz is an order of Structure is 1/10th scale truss-work tetrahedron with three magnitude improvement over expected disturbance environment.

Errors due only to internal flexible motion will be considered, that due to external flexible and rigid body motion are not measured. Decision made to address only a subset of the DPL problem.

The performance metric as defined by internal flexible motion is measured by laser legs AF, BF, and CF. The performance goals for the testbed are:

|≤50 nm over 10-200 Hz Bandwidth max | (BF-CF)_{RMS} $(CF-AF)_{RMS}$ / (AF-BF) $_{
m RMS}$

Disturbance Source & Signal

- disturbances and determined DPL response of ~500 nm RMS on Reference mission design identified typical spacecraft structure with nominal level of damping ($\sim 1\%$).
- Narrow band spikes (reaction wheel imbalances)
 - Broadband (fluid flow noise)
- Transient (solar array or antenna drives)
- Disturbance Signals Applied To Piezo-Shaker:
- A signal to represent low broadband noise with slowly varying spikes produced insufficient excitation in structure.

Response: only 80 - 100 nm RMS predominantly in 20 - 50 Hz band

Signal representing RWA spike envelope which increases with the square of the frequency up to wheels speed limit at 70 Hz. Some tail on the spectrum due to harmonics.

This signal produces the following response with the desired level of disturbance (770 nm RMS). 96% of the total is below 200 Hz.

Space Engineering Research Center

ORIGINAL PAGE IS OF POOR QUALITY

