Analysis 6: Harmonic Analysis

Lecture by Ikhan Choi Notes by Ikhan Choi

Contents

Chapter 1. Basic techniques	Ę
1. Interpolation	(
1.1. The distribution function	(
1.2. Real interpolation	(
1.3. Complex interpolation	7
2. Maximal function	(
2.1. The Hardy-Littlewood maximal function	Ę
3. Convergence of Fourier series	11
Chapter 2. Differentiation theory	13

CHAPTER 1

Basic techniques

1. Interpolation

1.1. The distribution function.

DEFINITION 1.1. Let f be a measurable function on a measure space (X, μ) . The distribution function $\lambda_f : [0, \infty) \to [0, \infty)$ is defined as:

$$\lambda_f(\alpha) := \mu(\{x : |f(x)| > \alpha\}).$$

Do not use $\mu(\lbrace x: |f(x)| \geq \alpha \rbrace)$. The strict inequality implies the lower semi-continuity of λ_f .

Theorem 1.1 (Fubini). For p > 0, we have

$$||f||_{L^p}^p = p \int_0^\infty \left[\alpha \cdot \mu(|f| > \alpha)^{\frac{1}{p}} \right]^p \frac{d\alpha}{\alpha}.$$

Definition 1.2.

$$||f||_{L^{p,q}}^q := p \int_0^\infty \left[\alpha \cdot \mu(|f| > \alpha)^{\frac{1}{p}} \right]^q \frac{d\alpha}{\alpha}.$$

Also,

$$||f||_{L^{p,\infty}} := \sup_{0 < \alpha < \infty} \left[\alpha \cdot \mu(|f| > \alpha)^{\frac{1}{p}} \right].$$

Theorem 1.2. For $p \ge 1$ we have $||f||_{p,\infty} \le ||f||_p$.

PROOF. By the Chebyshev inequality,

$$\sup_{0<\alpha<\infty} \left[\alpha^p \cdot \mu(|f|>\alpha)\right] \leq \int_0^\infty p\alpha^{p-1} \cdot \mu(|f|>\alpha) \, d\alpha = \|f\|_{L^p}^p.$$

1.2. Real interpolation.

Theorem 1.3 (Marcinkiewicz interpolation). Let X be a σ -finite measure space and Y be a measure space. Let

$$1 < p_0 < p < p_1 < \infty$$
.

If a sublinear operator $T: L^{p_0}(X) + L^{p_1}(X) \to M(Y)$ has two weak-type estimates

$$||T||_{L^{p_0}(X)\to L^{p_0,\infty}(Y)} < \infty \quad and \quad ||T||_{L^{p_1}(X)\to L^{p_1,\infty}(Y)} < \infty,$$

then it has a strong-type estimate

$$||T||_{L^p(X)\to L^p(X)}<\infty.$$

PROOF. Let $f \in L^p(X)$ and denote $f_h = \chi_{|f| > \alpha} f$ and $f_l = \chi_{|f| \le \alpha} f$. It is easy to show $f_h \in L^{p_0}$ and $f_l \in L^{p_1}$. Then,

$$||Tf||_{L^{p}(Y)}^{p} \sim \int \alpha^{p} \cdot \mu(|Tf| > \alpha) \frac{d\alpha}{\alpha}$$

$$\lesssim \int \alpha^{p} \cdot \mu(|T(f \cdot \mathbf{1}_{|f| > \alpha})| > \alpha) \frac{d\alpha}{\alpha} + \int \alpha^{p} \cdot \mu(|Tf_{l}| > \alpha) \frac{d\alpha}{\alpha}$$

$$\leq \int \alpha^{p} \cdot \frac{1}{\alpha^{p_{0}}} ||Tf_{h}||_{L^{p_{0}, \infty}}^{p_{0}} \frac{d\alpha}{\alpha} + \int \alpha^{p} \cdot \frac{1}{\alpha^{q_{1}}} ||Tf_{l}||_{L^{p_{1}, \infty}}^{p_{1}} \frac{d\alpha}{\alpha}$$

$$\lesssim \int \alpha^{p-p_{0}} ||f_{h}||_{p_{0}}^{p_{0}} \frac{d\alpha}{\alpha} + \int \alpha^{p-p_{1}} ||f_{l}||_{p_{1}}^{p_{1}} \frac{d\alpha}{\alpha}$$

$$\sim ||f||_{p}^{p}.$$

by (1) Fubini, (2) Sublinearlity, (3) Chebyshev, (4) Boundedness, (5) Fubini.

THEOREM 1.4 (Hadamard's three line lemma). Let f be a bounded holomorphic function on the vertical unit stripe $\{z : 0 < \text{Re } z < 1\}$. Then, for $0 < \theta < 1$,

$$||f||_{L^{\infty}(\mathrm{Re}=\theta)} \le ||f||_{L^{\infty}(\mathrm{Re}=0)}^{1-\theta} ||f||_{L^{\infty}(\mathrm{Re}=1)}^{\theta}.$$

Proof. Define

$$g(z) := \frac{f(z)}{\|f\|_{L^{\infty}(\text{Re}=0)}^{1-z} \|f\|_{L^{\infty}(\text{Re}=1)}^{z}}, \qquad g_n(z) = g(z)e^{\frac{z^2-1}{n}}.$$

Then we have

- (1) $g_n \to g$ pointwisely as $n \to \infty$,
- (2) $g_n(z) \to 0$ uniformly as $\text{Im } z \to \infty$.

The second one is because g is bounded and for z = x + yi we have

$$|g_n(z)| \lesssim |e^{\frac{z^2-1}{n}}| = e^{\operatorname{Re}\frac{z^2-1}{n}} = e^{\frac{x^2-y^2-1}{n}} \leq e^{\frac{-y^2}{n}}.$$

By (1), it is enough to bound g_n for each n. Truncating the stripe, the outer region is controlled by (2) and the interior region is controlled by the maximum modulus principle.

1.3. Complex interpolation.

Theorem 1.5 (Riesz-Thorin interpolation). Let X,Y be σ -finite measure spaces. Let

$$\frac{1}{p_{\theta}} = (1 - \theta)\frac{1}{p_0} + \theta\frac{1}{p_1}, \qquad \frac{1}{q_{\theta}} = (1 - \theta)\frac{1}{q_0} + \theta\frac{1}{q_1}.$$

Then,

$$||T||_{p_{\theta} \to q_{\theta}} \le ||T||_{p_0 \to q_0}^{1-\theta} ||T||_{p_1 \to q_1}^{\theta}.$$

PROOF. Note that

$$||T||_{p_{\theta} \to q_{\theta}} = \sup_{f} \frac{||Tf||_{q_{\theta}}}{||f||_{p_{\theta}}} = \sup_{f,g} \frac{|\langle Tf, g \rangle|}{||f||_{p_{\theta}} ||g||_{q'_{\theta}}}.$$

Consider a holomorphic function

$$z \mapsto \langle Tf_z, g_z \rangle = \int \overline{g_z(y)} Tf_z(y) \, dy,$$

where f_z and g_z are defined as

$$f_z = |f|^{\frac{p_{\theta}}{p_0}(1-z) + \frac{p_{\theta}}{p_1}z} \frac{f}{|f|}$$

so that we have $f_{\theta} = f$ and

$$||f||_{p_{\theta}}^{p_{\theta}} = ||f_z||_{p_x}^{p_x}$$

for $\operatorname{Re} z = x$.

Then,

$$|\langle Tf_z, g_z \rangle| \leq \|T\|_{p_0 \to q_0} \|f_z\|_{p_0} \|g_z\|_{q_0'} = \|T\|_{p_0 \to q_0} \|f\|_{p_\theta}^{p_\theta/p_0} \|g\|_{q_\theta'}^{q_\theta'/q_0'}$$

for $\operatorname{Re} z = 0$, and

$$|\langle Tf_z, g_z \rangle| \le ||T||_{p_1 \to q_1} ||f_z||_{p_1} ||g_z||_{q_1'} = ||T||_{p_1 \to q_1} ||f||_{p_\theta}^{p_\theta/p_1} ||g||_{q_\theta'}^{q_\theta'/q_1'}$$

for $\operatorname{Re} z = 1$. By Hadamard's three line lemma, we have

$$|\langle Tf_z, g_z \rangle| \le ||T||_{p_0 \to q_0}^{1-\theta} ||T||_{p_1 \to q_1}^{\theta} ||f||_{p_{\theta}} ||g||_{q'_{\theta}}$$

for Re $z = \theta$. Putting $z = \theta$ in the last inequality, we get the desired result.

2. Maximal function

We often want to show a net of linear operators $\{T_t\}_t$ is an "approximate identity" in the sense of pointwise convergence, not a certain norm; in other words, say, we want to show

$$\lim_{t \to 0} T_t f(x) = f(x).e.$$

Suppose $T = \lim_t T_t$ is defined on L^1 and let $I : L^1 \hookrightarrow X$ be a canonical embedding. Assume that we have proved T - I is continuous operator $L^1 \to X$ and $\ker(T - I)$ is dense in L^1 . Then, T - I must vanish at entire space L^1 . It implies Tf and f are equal almost everywhere.

We introduce maximal function Mf defined by

$$Mf(x) = \sup_{t} |T_t f(x)|.$$

If it satisfies a boundedness, for example, if it satisfies something we call the weak-type estimate $||Mf||_{1,\infty} \lesssim ||f||_1$, then

$$||(T-I)f||_{1,\infty} \le ||Tf||_{1,\infty} + ||f||_{1,\infty} \le ||Mf||_{1,\infty} + ||f||_1 \le ||f||_1$$

implies the continuity of T-I. If $\ker(T-I)$ contains test function space above this, then we get the desired result. This density argument can also be explained using approximation by g such that Tg=g:

$$||Tf - f||_{1,\infty} \le ||T(f - g)||_{1,\infty} + ||Tg - g||_{1,\infty} + ||g - f||_{1,\infty}$$

$$\le ||M(f - g)||_{1,\infty} + ||g - f||_{1}$$

$$\lesssim ||f - g||_{1} \to 0.$$

2.1. The Hardy-Littlewood maximal function. Hardy-Littlewood maximal function is the most famous maximal function.

THEOREM 2.1 (Hardy-Littlewoord).

$$||Mf||_{1,\infty} \le 3^d ||f||_1.$$

PROOF. By the inner regularity of μ , there is a compact subset K of $\{|Mf| > \alpha\}$ such that

$$\mu(K)>\mu(\{|Mf|>\alpha\})-\varepsilon.$$

For every $x \in K$, since $|Mf(x)| > \alpha$, we can choose an open ball B_x such that

$$\frac{1}{\mu(B_x)} \int_{B_x} |f| > \alpha \quad \Longleftrightarrow \quad \mu(B_x) < \frac{1}{\alpha} \int_{B_x} |f|.$$

With these balls, extract a finite open cover $\{B_i\}_i$ of K. Since the diameter of elements in this cover is clearly bounded, so the Vitali covering lemma can be applied to obtain a disjoint subcollection $\{B_k\}_k$ such that

$$K \subset \bigcup_i Bi \subset \bigcup_k 3B_k.$$

Therefore,

$$\mu(\{|Mf| > \alpha\}) - \varepsilon < \mu(K)$$

$$\leq \sum_{k} 3^{d} \mu(B_{k})$$

$$\leq 3^{d} \frac{1}{\alpha} \sum_{k} \int_{B_{k}} |f|$$

$$\leq 3^{d} \frac{||f||_{1}}{\alpha}.$$

The disjointness is important in the last inequality which shows the constant does not depend on the number of B_k 's.

Definition 2.1.

$$f^*(x) := \lim_{r \to 0+} \frac{1}{\mu(B)} \int_B |f(y) - f(x)| \, dy.$$

Theorem 2.2 (Lebesgue differentiation). $f^* = 0$ a.e.

PROOF. Note that $f^* \leq Mf + |f|$ implies

$$||f^*||_{1,\infty} \le ||Mf||_{1,\infty} + ||f||_{1,\infty} \lesssim ||f||_1.$$

Note that $g^* = 0$ for $g \in C_c$. Approximate using $f^* = (f - g)^*$.

3. Convergence of Fourier series

DEFINITION 3.1. The *Dirichlet kernel* is a function $D_n : \mathbf{T} \to \mathbb{R}$ defined by

$$D_n = \widehat{\mathbf{1}_{|k| \le n}}$$
, or equivalently, $\widehat{D}_n = \mathbf{1}_{|k| \le n}$.

This is because they are invariant under inverse, in other words, they are even.

THEOREM 3.1.

$$D_n(x) = \frac{\sin\frac{2n+1}{2}x}{\sin\frac{1}{2}x}.$$

Proof.

$$D_n(x) = \sum_{k=-n}^{n} e^{ikx}$$

$$= \frac{e^{i\frac{2n+1}{2}x} - e^{-i\frac{2n+1}{2}x}}{e^{i\frac{1}{2}x} - e^{-i\frac{1}{2}x}}$$

$$= \frac{\sin\frac{2n+1}{2}x}{\sin\frac{1}{2}x}.$$

THEOREM 3.2. If $f \in \text{Lip}(\mathbf{T})$, then $D_n * f \to f$ pointwisely as $n \to \infty$.

THEOREM 3.3.

$$||D_n||_{L^1(\mathbf{T})} \gtrsim \log n.$$

PROOF. By (2) $\sin x \le x$ for $x \in [0, \pi/2]$, (3) change of variable,

$$||D_n||_{L^1(\mathbf{T})} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{\sin \frac{2n+1}{2} x}{\sin \frac{1}{2} x} \right| dx$$

$$\geq \frac{2}{\pi} \int_{0}^{\pi} \frac{|\sin \frac{2n+1}{2} x|}{x} dx$$

$$= \frac{2}{\pi} \int_{0}^{\frac{2n+1}{2} \pi} \frac{|\sin x|}{x} dx$$

$$= \frac{2}{\pi} \sum_{k=0}^{2n} \int_{\frac{k}{2} \pi}^{\frac{k+1}{2} \pi} \frac{|\sin x|}{x} dx$$

$$\geq \frac{2}{\pi} \sum_{k=0}^{2n} \int_{0}^{\frac{1}{2} \pi} \frac{\sin x}{\frac{k+1}{2} \pi} dx$$

$$\geq \frac{4}{\pi^2} \sum_{k=0}^{2n} \frac{1}{1+k}$$

$$\geq \frac{4}{\pi^2} \log(2n+2).$$

. . . .

Definition 3.2. The Fejér kernel is

THEOREM 3.4.

$$K_n(x) = \frac{1}{n+1} \frac{\sin^2 \frac{n+1}{2} x}{\sin^2 \frac{1}{2} x}.$$

PROOF. Since

$$D_n(x) = \frac{e^{i\frac{2n+1}{2}x} - e^{-i\frac{2n+1}{2}x}}{e^{i\frac{1}{2}x} - e^{-i\frac{1}{2}x}}$$

$$= \frac{[e^{i\frac{2n+1}{2}x} - e^{-i\frac{1}{2}x}][e^{i\frac{1}{2}x} - e^{-i\frac{1}{2}x}]}{[e^{i\frac{1}{2}x} - e^{-i\frac{1}{2}x}]^2}$$

$$= \frac{[e^{i(n+1)x} + e^{-i(n+1)x}] - [e^{inx} + e^{-inx}]}{[e^{i\frac{1}{2}x} - e^{-i\frac{1}{2}x}]^2},$$

by telescoping, we get

$$\begin{split} \sum_{k=0}^{n} D_k(x) &= \frac{[e^{i(n+1)x} + e^{-i(n+1)x}] - [e^{i0x} + e^{-i0x}]}{[e^{i\frac{1}{2}x} - e^{-i\frac{1}{2}x}]^2} \\ &= \frac{[e^{i\frac{n+1}{2}x} - e^{-i\frac{n+1}{2}x}]^2}{[e^{i\frac{1}{2}x} - e^{-i\frac{1}{2}x}]^2} \\ &= \frac{\sin^2 \frac{n+1}{2}x}{\sin^2 \frac{1}{2}x}. \end{split}$$

Two important results from Fejér kernel:

(1) If f(x-), f(x+) exist and $S_n f(x)$ converges, then $S_n f(x) \to \frac{1}{2} (f(x-) + f(x+))$.

- (2) (If $f \in L^1(\mathbf{T})$, then $\sigma_n f \to f$ a.e.) (3) If $f \in L^1(\mathbf{T})$, then $S_n f \to f$ in L^1 and L^2 .
- (4) If f is continuous and $\widehat{f} \in L^1(\mathbb{Z})$, then $S_n f \to f$ uniformly.
- (5) Since $\sigma_n f$ is a trigonometric polynomial, the set of trigonometric polynomials are dense in $L^1(\mathbf{T})$ and $L^2(\mathbf{T})$.

CHAPTER 2

Differentiation theory