ADDITIVE AND ABELIAN CATEGORIES

YANNIS BÄHNI

Abstract.

Contents

1	Preadditive Catgeories														1
	Additive Categories														
3	Abelian Categories								 						2

1. Preadditive Catgeories

Let $G, H \in \text{ob}(\mathsf{AbGrp})$ and $\varphi, \psi \in \mathsf{AbGrp}(G, H)$. Define $\varphi + \psi$ pointwise. Since H is abelian, it follows that $\varphi + \psi \in \mathsf{AbGrp}(G, H)$. Moreover, it is easy to check, that with this operation defined above, $\mathsf{AbGrp}(G, H)$ is an abelian group and

$$\circ$$
: AbGrp $(H, K) \times$ AbGrp $(G, H) \rightarrow$ AbGrp (G, K)

is bilinear for each $K \in ob(AbGrp)$. This motivates the following definition.

Definition 1.1 (Preadditive Category). A preadditive category is a locally small category \mathcal{C} in which all hom-sets $\mathcal{C}(X,Y)$ can be equipped with the structure of an abelian group and composition is bilinear, i.e. for all mophisms $f, f': X \to Y$ and $g, g': Y \to Z$ in \mathcal{C} we have that

$$(g+g') \circ (f+f') = g \circ f + g \circ f' + g' \circ f + g' \circ f'.$$
 (1)

Examples 1.1. AbGrp, $Vect_K$, RMod and Mod_R .

2. Additive Categories

Let us again consider AbGrp. As in Grp, the trivial group 0 is both an initial and a terminal object. Unlike in Grp, we have that $G \coprod H \cong G \coprod H$ for all $G, H \in ob(AbGrp)$.

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

In a somewhat weaker sense, we will generalize this. Define $\iota_1:G\to G\prod H$ and $\iota_2:H\to G\prod H$ by

$$\iota_1(g) := (g, 0)$$
 and $\iota_2(h) := (0, h),$

respectively. Then it is easy to verify that

$$\pi_1 \circ \iota_1 = \mathrm{id}_G$$
, $\pi_2 \circ \iota_2 = \mathrm{id}_H$ and $\iota_1 \circ \pi_1 + \iota_2 \circ \pi_2 = \mathrm{id}_{G \prod H}$

holds. Those observations motivate the following definitions.

Definition 2.1 (Null Object). Let \mathcal{C} be a category. A **null object in \mathcal{C}** is a an object of \mathcal{C} which is both initial and terminal.

Definition 2.2 (Biproduct Diagram). Let \mathcal{C} be a preadditive category and $X, Y \in ob(\mathcal{C})$. A biproduct diagram for X and Y is a diagram

$$X \stackrel{\stackrel{\pi_1}{\longleftarrow}}{\longrightarrow} Z \stackrel{\pi_2}{\longleftarrow} Y$$

such that

$$\pi_1 \circ \iota_1 = \mathrm{id}_X$$
, $\pi_2 \circ \iota_2 = \mathrm{id}_Y$ and $\iota_1 \circ \pi_1 + \iota_2 \circ \pi_2 = \mathrm{id}_Z$

holds.

Definition 2.3 (Additive Category). An additive category is a preadditive category which has a null object and a biproduct for each pair of its objects.

Examples 2.1. AbGrp, $Vect_K$, RMod and Mod_R .

3. Abelian Categories

Definition 3.1 (Zero Arrow). Let \mathcal{C} be a category with a null object 0. For $X, Y \in ob(\mathcal{C})$, the unique composition $X \to 0 \to Y$ is called the **zero arrow from X to Y**, denoted by $0_{X,Y}$.

Definition 3.2 (Kernel and Cokernel). Let \mathcal{C} be a category with a null object 0. A kernel of a morphism $f: X \to Y$ is defined to be an equalizer of

$$X \xrightarrow{f} Y$$
.

Dually, a **cokernel of a morphism** $f: X \to Y$ is a coequalizer of the above diagram.

Definition 3.3 (Abelian Category). An abelian category is an additive category satisfying the following additional conditions:

- (a) Every morphism admits a kernel.
- (b) Every morphism admits a cokernel.
- (c) Every monic is a kernel.

(d) Every epic is a cokernel.

Examples 3.1. AbGrp, $_R$ Mod and Mod $_R$.