Project Type C

For students with ID (Codice Persona) ending with: 02, 07, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 87, 92, 97

A sensing device

A sensor has the following characteristics

- It switches from on to off, at rate μ_{off} returns on at rate μ_{on} , to save its battery.
- When on, it senses events at rate μ_{sen} .
- Sensed events are processed at rate μ_{proc} .
- Processed event trigger an action with probability p_{act} , otherwise they return to the on state.
- Actions require a random time X_{act} , then the sensor returns to its on state.

A sensing device

- Except for the action X_{act} , all other timings can be considered exponentially distributed.
- Depending on the state, the sensor has a different energy consumption:
 - ε_{off} when off.
 - ε_{on} when on and not processing.
 - ε_{proc} when processing.
 - ε_{act} when acting.

Version C1

For students with ID (Codice Persona) ending with: 02, 22, 42, 62, 82

Considering the following parameters, compute the average energy consumption and the on frequency.

The duration of X_{act} should be determined studying the corresponding trace (measured in seconds): Trace13.txt

p _{act}	
0.1	

μ_{on}	$\mu_{ m off}$	μ_{sen}	μ_{proc}
0.1 sec. ⁻¹	1	3	5

ϵ_{on}	$\epsilon_{ m off}$	ϵ_{proc}	ε _{act}
1 mW	0.1 mW	5 mW	50 mW