Tempo a disposizione: 2 h 15 min

Gli esercizi della Parte I e della Parte II vanno consegnati su due fogli differenti

Parte I – Linguaggi Regolari e Linguaggi Liberi da Contesto

1. Data la seguente espressione regolare

$$(0+1)^*(111+000)(0+1)^*$$

- (a) descrivere in italiano il linguaggio generato dall'espressione
- (b) costruire un automa a stati finiti equivalente all'espressione

Soluzione:

- (a) L'espressione regolare genera il linguaggio di tutte le stringhe sull'alfabeto {0,1} che contengono una sequenza di tre 0 consecutivi oppure una sequenza di tre 1 consecutivi.
- (b) La descrizione a parole del linguaggio riconosciuto dall'espressione regolare ci permette di costruire un automa equivalente composto di 6 stati.

Lo stato iniziale q_0 si occupa di riconoscere il prefisso $(\mathbf{0} + \mathbf{1})^*$ e poi sceglie nondeterministicamente se riconoscere la sequenza 000 passando per gli stati q_1 , q_2 e q_5 , oppure la sequenza 111 passando per gli stati q_3 , q_4 e q_5 . Lo stato finale q_5 riconosce il suffisso $(\mathbf{0} + \mathbf{1})^*$ dell'espressione regolare.

2. Il linguaggio

$$L = \{0^n 1^m 0^{n \cdot m} \mid n \cdot m > 0\}$$

è regolare? Motivare la risposta.

Soluzione. Intuitivamente, il linguaggio non può essere regolare perché per riconoscere le parole occorre contare il numero di 0 nella prima sequenza 0^n , il numero di 1 nella seconda sequenza 1^m e poi moltiplicare i due valori per controllare se la sequenza finale di 0 è della lunghezza corretta. Visto che n ed m sono illimitati, questo richiederebbe una quantità infinita di memoria che un automa a stati finiti non possiede.

Per dimostrarlo formalmente, assumiamo per assurdo che L sia regolare:

- sia n > 0 la lunghezza data dal Pumping Lemma;
- consideriamo la parola $v = 0^n 110^{2n}$, che è di lunghezza maggiore di n ed è nella forma $0^n 1^m 0^{n \cdot m}$ se poniamo m = 2. Quindi v appartiene ad L;
- sia v = xyz una suddivisione arbitraria di v tale che $y \neq \varepsilon$ e $|xy| \leq n$;
- poiché $|xy| \le n$, allora xy è completamente contenuta nella prima sequenza di zeri, e quindi sia x che y sono composte solo da 0. Inoltre, siccome $y \ne \varepsilon$, possiamo dire che $y = 0^p$ per qualche valore p > 0. Allora la parola xy^0z è nella forma $0^{n-p}110^{2n}$, e non può appartenere a L perché 2(n-p) < 2n.

Abbiamo trovato un assurdo quindi L non può essere regolare.