

Evaluate performance of various OBB models [UAV videos]

Course Name: CSE641 - Computer Vision

Group Name: CTRL+ALT+DEL

Team Members:

• **Dhruv Patel** (AU2444003)

• **Garima Jain** (AU2444017)

Devanshi Rathod (AU2444023)

Problem Statement

- This study evaluates the performance of various Oriented Bounding Box (OBB) models for object detection in UAV-captured videos.
- UAV-based object detection poses challenges such as occlusions, varying object orientations, and small object sizes, which can affect accuracy and reliability.
- The objective is to analyze and benchmark different OBB models to determine their effectiveness, strengths, and limitations in aerial image processing, enhancing detection performance in real-world scenarios.

Literature Survey

Paper Name & Au- thor(s)	$egin{aligned} \mathbf{Algorithm} \\ \mathbf{Used} \end{aligned}$	Methodology	Key Contribution
An Efficient Instance Segmentation Framework Based on Oriented Bound- ing Boxes Zhen Zhou et al.	CFNet	Uses box prompt-based segmenta- tion models (e.g., SAM) and an Oriented Bounding Box (OBB) en- coder.	Outperforms instance segmentation methods for occluded and dense ob- jects. Reduces computational com- plexity via knowledge distillation.
Optimization for Arbitrary- Oriented Object Detection via Representation Invari- ance Loss Qi Ming et al.	Representation Invariance Loss (RIL)	Introduces Hungarian matching- based regression for OBBs. Uses normalized rotation loss to address angle discontinuity.	Improves detection accuracy in remote sensing datasets. Enhances loss function stability.
TricubeNet: 2D Kernel- Based Object Representation for Weakly-Occluded Ori- ented Object Detection Beomyoung Kim et al.	TricubeNet	Uses 2D Tricube Kernel represen- tation instead of bounding box re- gression. Employs anchor-free de- tection for efficiency.	Solves angle discontinuity problem and reduces computational com- plexity.
Oriented Object Detection in Aerial Images With Box Boundary-Aware Vectors	BBAVectors	Uses keypoint-based detection. Predicts vectors for box boundaries instead of width, height, and angle.	Improves aerial image detection. Reduces imbalance issues between positive and negative anchors.
Gliding Vertex on the Hor- izontal Bounding Box for Multi-Oriented Object De- tection	Gliding Vertex	Uses gliding vertex representation to align bounding boxes with object orientation. Minimal additional re- gression in Faster R-CNN.	Enhances accuracy for multi- oriented object detection with minimal computational overhead.

Dataset Discussion

- **Dataset: DOTA v1.5** (aerial images with oriented object annotations)
- **Total images:** ~27,000 high-resolution satellite/UAV images
- Objects categorized into 16 classes, including:
 - Vehicles, ships, airplanes, bridges, and buildings
- Annotation format: Oriented bounding boxes (OBB) with (x, y, θ)
- Dataset challenges:
 - High-resolution images require strong computational resources
 - Objects appear in different scales and orientations
 - Crowded object regions increase detection complexity

Bounding box representation and challenges

- (a) Center + Width-Height + Angle Representation Represents an oriented bounding box (OBB) using (x, y, w, h, θ) , where $\theta \in [-90^{\circ}, 0^{\circ}]$ ensures consistency. Rotation transforms $(x, y) \leftrightarrow (x', y')$.
- (b) **Box Boundary-Aware Vectors** (**BBAVectors**)
 Defines an OBB using **four boundary-aware vectors** (**l**, **r**, **t**, **b**) for precise localization. Each vector corresponds to quadrants **I–IV**, improving accuracy over fixed bounding boxes.
- (c) Corner Cases Handling
 Addresses extreme aspect ratios and boundary switching. The "close" case manages near-overlapping boundaries, while the "switch" case corrects quadrant-flipping issues.

Approaches

1. Image Segmentation

Used Mask R-CNN & YOLACT for object segmentation in dataset.

2. Oriented Bounding Box (OBB) Integration

Apply **OBBs** after segmentation to enhance localization.

Improve detection under occlusion, varying orientations, and small object sizes.

3. Model Evaluation

Test detection models: TricubeNet, RetinaNet, Detectron2, EfficientDet.

Compare performance on **DOTA v1.5** dataset.

4. Performance Comparison

Evaluate using mean average precision(mAP), Intersection of Union (IoU), and inference speed.

Analyze trade-offs between accuracy & computational efficiency.

TricubeNet

Future Work

> Framework Development

Build an open-source Python-based benchmarking framework for evaluating OBB models on UAV videos.

Enhanced Object Detection

Improve detection accuracy for small, occluded, and rotated objects in dataset. Further we will use **CFNet** and **SAM** for enhancing object segmentation and detection.

▶ Model Optimization

Fine-tune models on DOTA v1.5/DOTA v2 datasets for better real-world performance.

> Real-World Testing

Evaluate the models on diverse UAV video datasets to ensure robustness and scalability.

References

- Beomyoung Kim, Hyunseok Kim, Jeonghee Kim, Beomki Lee, and Youngjoon Yoo.
 TricubeNet: 2D Kernel-Based Object Representation for Weakly-Occluded Oriented
 Object Detection. arXiv preprint, arXiv:2104.11435, 2021.
- Qi Ming, Xuepeng Shi, Pei Xu, Jianqiang Huang, and Xiaolin Hu. **Optimization for Arbitrary-Oriented Object Detection via Representation Invariance Loss.** *arXiv preprint*, arXiv:2103.11636, 2021.
- Zhen Zhou, Qiyu Kang, Zizhao Shen, Fan Jin, and Song Bai. **CFNet: An Efficient Instance Segmentation Framework Based on Oriented Bounding Boxes.** *arXiv preprint*, arXiv:2401.08174, 2024.
- Jingru Yi, Wenjing Jia, and Dacheng Tao. **Oriented Object Detection in Aerial Images with Box Boundary-Aware Vectors.** In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pages 1406–1415, 2021.
- Yongchao Xu, Mingtao Fu, Qimeng Wang, Yukang Wang, Gui-Song Xia, Kai Chen, and Xiang Bai. Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection. *IEEE Transactions*, April 2021.

