

UNIVERSITÄT RERN

Deep-learning Your Brain

Classification of movement execution and imagination using EEG signals

Tim Fischer, Özhan Özen, Joaquin Penalver-Andres

21st May 2019, University of Bern, Advanced Topics in Machine Learning

u^{t}

UNIVERSITÄT

Learning your movement intention What do we aim for?

u^t

UNIVERSITÄT BERN

Why to read your mind? Current and future applications

u^{b}

b UNIVERSITÄT BERN

How to understand people's intention?

EEG Basics

Frequency Domain

Time Domain

Spatial Domain

b UNIVERSITÄT BERN

Each person, one world Challenges in EEG analysis

Nature Reviews | Neuroscience

Artefacts Complex neural processes

Biggest dataset EEG:
Physionet BCI 2000
109 subjects, 64 electrodes, 7 differe

Biggest dataset Images:
Imagenet
>14 mio. Images

Prior attempts

UNIVERSITÄT BERN

From Machine Learning to Deep Learning

Yannick et. al. (2019), arXiv:1901.05498

- Zhang et al. (2018), Advances in Knowledge Discovery and Data Mining
 - 20 subjects, 5 tasks
 - Sliding window (10 points, 50% overlap)
 - 3D-CNN + I STM + RI
 - 93% accuracy
- Schirrmeister et al. (2017), Hum. Brain Mapp
 - Compared FBCSP, Deep and Shallow CNN in 5 task clasiffication
 - Best accuracy over datasets 93% in Shallow CNN

Results

UNIVERSITÄT BERN

Neural Network	Test Accuracy
3D-CNN cropped	76.5%
3D-CNN	26.94%
2D-CNN cropped	72.4%
2D-CNN	30.83%

Class	Test accuracy
Exec. Left Hand	75%
Exec. Right Hand	80%
Imag. Left Hand	77%
Imag. Right Hand	73%
Exec. Both Hand	79%
Exec. Both Feet	75%
Imag. Both Hand	74%
Imag. Both Feet	77%

Critical Appraisal and Future Works

DUNIVERSITÄT

- Time cropping is a good strategy. Better frequency information integration.
- 3D-CNN outperforms 2D-CNN. Better spatio-temporal information exploitation.

And what now ...?

- Integrate RNN to capture global temporal aspects.
- Using transfer learning to exploit big Phisionet datasets for motor learning experiments.

Thanks for your attention!

Questions...?

b UNIVERSITÄT BERN