PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-064750

(43) Date of publication of application: 13.03.2001

(51)Int.Cl.	C22C 38/00
(01)21121	C21D 9/48
	C22C 38/06
	C22C 38/58
	C23C 2/06
	C22C 2/20

(21)Application number: 11-241576

(22)Date of filing:

27.08.1999

(71)Applicant: NIPPON STEEL CORP

(72)Inventor: YOSHINAGA NAOKI

TAKAHASHI MANABU YOSHIDA TORU

AKISUE OSAMU

(54) HIGH STRENGTH COLD ROLLED STEEL SHEET AND HIGH STRENGTH GALVANIZED COLD ROLLED STEEL SHEET EXCELLENT IN BENDABILITY AND DEEP DRAWABILITY AND PRODUCTION THEREOF

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a high strength (galvanized) cold rolled steel sheet excellent in bendability and deep drawability and used for automobiles, house appliances, buildings or the like. SOLUTION: This steel sheet has a compsn. contg., by weight, ≤0.0025% C (by ≤0.0050% in the case of being incorporated with Ti and Nb), ≤1.5% Si, 0.7 to 2.5% Mn, ≤ 0.15% P, $\leq 0.015\%$ Si, 0.005 to 0.2% Al and $\leq 0.005\%$ N, suitably contg. 0.005 to 0.15% Ti and 0.005 to 0.15% Nb or 0.010 to 0.15% Ti+Nb and also contg. Si, Mn and P in the relation satisfying $15 \le [X=7 \times Si(\%)+6 \times Mn(\%)+110 \times P$ (%)]≤30 (by 9 to 25 in the case of being incorporated with Ti and Nb), and the balance Fe with inevitable impurities, in which the X-ray random intensity ratio in the {100} face parallel to the sheet face in the outermost surface of the sheet thickness of the steel sheet is ≥3.0, the X-ray random intensity ratio in the {111} face parallel to the sheet face in the center layer of the sheet thickness in the steel sheet is ≥4.5, and also, sheet thickness is 0.5 to 2.0 mm.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-64750 (P2001-64750A)

(43)公開日 平成13年3月13日(2001.3.13)

(51) Int.Cl. ⁷	識別記号	FI	5	-73-}*(参考)
C 2 2 C 38/00	301	C 2 2 C 38/00	3 0 1 T	4K027
C_2_1_D9/48		C 2 1 D 9/48	H_	4 K 0 3 7
			J	
C 2 2 C 38/06		C 2 2 C 38/06		
38/58		38/58	•	
30,00	審 春韻	未請求 請求項の数10	OL (全 12 頁)	最終頁に続く
(21)出願番号	特顧平11-241576	(71)出顧人 000006	655	
(OI) PLICE IN . 3	1400 1 11 21310	1	製鐵株式会社	
(22)出顧日	平成11年8月27日(1999.8.27)		千代田区大手町2丁	月6番3号
(CC) TIME II		(72)発明者 吉永		
		1 , ,, , , , , , , , , , , , , , , , ,	富津市新富20-1	新日本劇機株式
			術開発本部内	A) H - P Compression
		(72)発明者 高橋		
			-	新日本製鐵株式
		1	ДП 1	初日华安城休八
		1	術開発本部内	
		(74)代理人 100077		A . S.
		护理士	: 石田 敬 (外3	名)

(54) 【発明の名称】 曲げ性と深絞り性に優れた高強度冷延鋼板と高強度亜鉛めっき冷延鋼板およびその製造方法

(57) 【要約】

【課題】 曲げ性と深絞り性に優れた高強度(亜鉛めっき)冷延鋼板を提供する。

【解決手段】 重量%で、C:0.0025% 以下(Ti、Nb含有時0.0050%以下)、Si:1.5%以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、A1:0.005~0.2%およびN:0.005%以下、適宜Ti:0.005~0.15%、Nb:0.005~0.15%もしくはTi+Nb:0.010~0.15%を含有し、かつSi、MnおよびPを、15≦ [X=7×Si(%) +6×Mn(%)+110×P(%)]≦30(Ti、Nb含有時9~25)を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなり、鋼板の板厚最表面における板面と平行な{100}面のX線ランダム強度比が3.0以上で、鋼板の板厚中心層における板面と平行な{111}面のX線ランダム強度比が4.5以上であり、かつ板厚が0.5mm以上2.0mm以下である曲げ性と深絞り性に優れた高強度(亜鉛めっき)冷延鋼板。

20

1

【特許請求の範囲】

【請求項1】 重量%で、C:0.0025%以下、Si:1.5%以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al:0.005~0.2%、および、N:0.005%以下を含有し、かつ、Si、MnおよびPを、

X=7×Si(%) +6 ×Mn(%) +110 ×P(%) において、15≦X≦30を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる高強度冷延鋼板であって、該鋼板の板厚最表面における板面と平行な{100})面のX線ランダム強度比が3.0以上であるとともに、同鋼板の板厚中心層における板面と平行な{111} 面のX線ランダム強度比が4.5以上であり、かつ、板厚が0.5mm以上2.0mm以下であることを特徴とする曲げ性

【請求項2】 重量%で、C:0.0050%以下、Si:1.5%以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al:0.005~0.2%、および、N:0.005%以下、さらに、Ti:0.005~0.15%、Nb:0.005~0.15%、もしくは、Ti+Nb(TiとNbの合計):0.01~0.15%を含有し、かつ、Si、MnおよびPを、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$

と深絞り性に優れた高強度冷延鋼板。

において、9 ≦ X ≦ 25を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる高強度冷延鋼板であって、該鋼板の板厚最表面における板面と平行な {100 } 面の X 線ランダム強度比が5.0 以上であるとともに、同鋼板の板厚中心層における板面と平行な {111 } 面の X 線ランダム強度比が6.0 以上であり、かつ、板厚が0.5mm 以上2.0mm 以下であることを特徴とする曲げ性と深絞り性に優れた高強度冷延鋼板。

【請求項3】 前記高強度冷延鋼板の化学成分において、さらに、重量%で、B:0.0002~0.004%、V:0.002~0.1%、W:0.002~0.1%、Mo:0.003~0.4%、Sn:0.002~0.3%、Cu:0.005~0.3%未満、Cr:0.005~0.4%、Ni:0.005~0.3%のうち1種または2種以上を含有することを特徴とする請求項1または2に記載の曲げ性と深絞り性に優れた高強度冷延鋼板。

【請求項4】 請求項1、2または3に記載の高強度冷延鋼板に亜鉛めっきを施したことを特徴とする曲げ性と深絞り性に優れた高強度亜鉛めっき冷延鋼板。

【請求項5】 重量%で、C:0.0025%以下、Si:1.5%以 40下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al:0.005~0.2%、および、N:0.005%以下を含有し、かつ、Si、MnおよびP を、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$

において、15≦X≦30を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、圧下率50~90%の冷間圧延を施し、連続焼鈍ラインにて((Ac1+Ac1)/2)℃以上の温度で焼鈍し、焼鈍温度がAc1変態点以上の場合には、少なくともAr1変態点から(Ar1変態点-20)℃までの温度範囲を平均冷却速度2℃/s 50

以上10℃/s以下で冷却し、また、焼鈍温度が((Acı +A cı)/2)℃以上Acı 変態点未満の場合には、少なくとも焼鈍温度から(焼鈍温度-20)℃までの温度範囲を平均冷却速度2℃/s以上10℃/s以下で冷却することを特徴とする曲げ性と深絞り性に優れた高強度冷延鋼板の製造方法。 【請求項6】 重量%で、C:0.0050%以下、Si:1.5%以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al:0.005~0.2%、および、N:0.005%以下、さらに、Ti:0.005~0.15%、Nb:0.005~0.15%、もしくは、Ti+Nb(Ti

5~0.15%、ND:0.005~0.15%、もしくは、ITMO(IT とNbの合計): 0.01~0.15% を含有し、かつ、Si、Mnお よびP を、

 $X=7\times Si$ (%) +6 ×Mn (%) +110 ×P (%)

において、 $9 \le X \le 25$ を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、圧下率 $50 \sim 90\%$ の冷間圧延を施し、連続焼鈍ラインにて($(Ac_1 + Ac_3)/2$) \mathbb{C} 以上の温度で焼鈍し、焼鈍温度が Ac_3 変態点以上の場合には、少なくとも Ar_3 変態点から $(Ar_3$ 変態点-20) \mathbb{C} までの温度範囲を平均冷却速度 $2 \mathbb{C}/s$ 以上 $10\mathbb{C}/s$ 以下で冷却し、また、焼鈍温度が($(Ac_1 + Ac_3)/2$) \mathbb{C} 以上 Ac_3 変態点未満の場合には、少なくとも焼鈍温度から(焼鈍温度-20) \mathbb{C} までの温度範囲を平均冷却速度 $2 \mathbb{C}/s$ 以上 $10\mathbb{C}/s$ 以下で冷却することを特徴とする曲げ性と深絞り性に優れた高強度冷延鋼板の製造方法。

【請求項7】 重量%で、C:0.0025%以下、Si:1.5%以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al:0.005~0.2%、および、N:0.005%以下を含有し、かつ、Si、MnおよびPを、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$

において、15≦X≦30を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、圧下率50~90%の冷間圧延を施し、連続溶融亜鉛めっきラインにて((Ac1+Ac3)/2)℃以上の温度まで加熱し、加熱温度がAc3変態点以上の場合には、少なくともAr3変態点から(Ar3変態点-20)℃までの温度範囲を平均冷却速度2℃/s以上10℃/s以下で冷却し、また、加熱温度が((Ac1+Ac3)/2)℃以上Ac3変態点未満の場合には、少なくとも加熱温度から(加熱温度-20)℃までの温度範囲を平均冷却速度2℃/s以上10℃/s以下で冷却し、その後、亜鉛めっき浴中に浸漬することを特徴とする曲げ性と深絞り性に優れた高強度亜鉛めっき冷延鋼板の製造方法。

【請求項8】 重量%で、C:0.0050%以下、Si:1.5%以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al:0.005~0.2%、および、N:0.005%以下、さらに、Ti:0.005~0.15%、Nb:0.005~0.15%、もしくは、Ti+Nb (TiとNbの合計):0.01~0.15%を含有し、かつ、Si、MnおよびPを、

 $\dot{X} = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$

において、 $9 \le X \le 25$ を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる鋼スラブを熱間圧延

40

4

し、圧下率50~90% の冷間圧延を施し、連続溶融亜鉛めっきラインにて((Ac₁ +Ac₂)/2) ℃以上の温度まで加熱し、加熱温度がAc₂変態点以上の場合には、少なくともAc₃変態点から(Ac₁変態点-20) ℃までの温度範囲を平均冷却速度2 ℃/s以上10℃/s以下で冷却し、また、加熱温度が((Ac₁ +Ac₃)/2) ℃以上Ac₃変態点未満の場合には、少なくとも加熱温度から(加熱温度-20) ℃までの温度範囲を平均冷却速度2 ℃/s以上10℃/s以下で冷却し、その後、亜鉛めっき浴中に浸漬することを特徴とする曲げ性と深絞り性に優れた高強度亜鉛めっき冷延鋼板の製造方法。

3

【請求項9】 前記亜鉛めっき浴中への浸漬後、460 ~600 ℃までの温度範囲で、1s以上の熱処理を行うことを特徴とする請求項7 または8 に記載の曲げ性と深絞り性に優れた高強度亜鉛めっき冷延鋼板の製造方法。

【請求項10】 前記鋼スラブの化学組成において、さらに、重量%で、B:0.0002~0.004%、V:0.002~0.1%、W:0.002~0.1%、Mo:0.003~0.4%、Sn:0.002~0.3%、Cu:0.005~0.3%未満、Cr:0.005~0.4%、Ni:0.005~0.3%のうち1種または2種以上を含有することを特徴とする請求項5、6、7、8または9に記載の曲げ性と深絞り性に優れた高強度冷延鋼板または高強度亜鉛めっき冷延鋼板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、曲げ成形性と深絞り成形性とを兼ね備えた冷延鋼板およびその製造方法に関するものである。本発明の冷延鋼板は、自動車、家庭電気製品、建物などに使用されるものであって、表面処理をしない狭義の冷延鋼板と、防錆のために溶融亜鉛めっき、電気めっきなどの表面処理を施した広義の冷延鋼板を含むものである。

【0002】なお、ここで、亜鉛めっきとは、純亜鉛のほか、主成分が亜鉛である合金のめっきも含むものである。

[0003]

【従来の技術】地球環境問題が深刻化する中、自動車の軽量化への要望は高まる一方である。自動車の軽量化を推進するためには、現状用いられている自動車用部材をさらに機械的強度の高い鋼板で置換して板厚を減少することが、有効な方法の一つである。また、搭乗者の安全確保のためにも、高強度鋼板の需要は増加してきている。

【0004】しかしながら、高強度鋼板には、良好な形状凍結性をいかに確保するかという課題がある。すなわち、高強度鋼板を、加工治具を用いて自動車部品などの所定の形状に成形すると、加工時具から離れて加工前の形状に戻ろうとするスプリングバックと呼ばれる現象が起こる。当然のことながら、スプリングバックが大きいほど形状凍結性は劣悪となり、加工後の形状において適 50

正な形状を得ることができない。

【0005】従来より、形状凍結性を改善するための技術は、いくつか提示されている。特開平2-118029号公報には、鋼板の化学成分を高純度化することによって鋼板強度を低下せしめ、形状凍結性を向上させる技術が開示されている。しかしながら、このような鋼板は軟質であるため、現状の板厚に対して、板厚をさらに低減せしめるものではない。

【0006】特開昭55-28375号公報には、表面粗さを規定し、さらに、鋼板の組織をフェライトとマルテンサイトの混合組織とすることでスプリングバックの小さい鋼板を提供する技術が開示されている。このような混合組織を有する鋼板は、降伏強度が小さいのでスプリングバック量も小さいと考えられがちであるが、加工度の大きな成形や曲げ成形時のスプリングバック量は、必ずしも小さくなっていない。

【0007】特開平10-237581号公報には、複合組織熱延鋼板において、鋼板表面におけるフェライト体積率とフェライト粒径を増加させることによって、鋼板板厚の表面層を中心層に比べて軟質として、形状凍結性を向上させ得ることが開示されている。しかしながら、このように表面だけが軟質な熱延鋼板を製造するためには、製造条件がかなりの程度限定されてしまい、所望の鋼板を安定的に製造することは困難である。また、このような製造方法には、板厚精度の問題もある。

【0008】一方で、特開平7-178460号公報に開示されている技術に代表されるように、部材を作るときの成形方法を工夫することによって形状凍結性を改善しようという試みも多数なされている。特開平10-72644号公報には、鋼板の集合組織を制御することによってスプリングバック量を低減する技術が開示されている。しかし、これはオーステナイト系ステンレス冷延鋼板に係る技術である。オーステナイト(面心立方構造金属)は、加工を受けた際の金属物理学的性質(たとえばすべり系)がフェライト(体心立方構造金属)とは全く異なるものであるから、オーステナイトにおける形状凍結性改善技術を、直ちに、フェライトに適用することはできない。

【0009】また、特開平10-72644号公報開示の技術の適用対象は、自動車部材ではなく、浴槽、鍋、食器、流しなどである。さらに、同公報には、フェライト系鋼板におけるスプリングバックを低減する方法については、何ら記載されていないし、また、示唆するところもない。一方、本発明者らは、特願平10-225176号出願において、曲げ成形時の形状凍結性を抜本的に改善する技術を提示した。この技術は、鋼板板面と平行な【100】面の集積度を高め、かつ、【111】面の集積度を低減するもので、鋼板の曲げ成形性を高める点において優れているものであるが、深絞り成形性には言及していないものである。しかしながら、鋼板を自動車用部品に加工する際には、実際に、曲げ成形と絞り成形が同時に行われて

20

50

5

いる場合が多いから、自動車用の鋼板においては、良好 な曲げ成形性と絞り加工性がともに必要となる。

[0010]

【発明が解決しようとする課題】上述のとおり、従来の高強度鋼板は、曲げ加工や、加工度の大きな深絞り成形や張り出し成形を行った場合には、形状凍結性が不十分なものであるという問題点や、曲げ成形時の形状凍結性には優れるものの深絞り成形性は考慮されていないという問題点を有していた。さらに、従来の高強度鋼板の製造方法においては、製造条件の制約から生産性に係る問題点もあった。

【0011】本発明は、これらの問題点を抜本的に解消し、曲げ成形性と深絞り成形性に優れたフェライト系冷延鋼板およびその製造方法を提供するものである。

[0012]

【課題を解決するための手段】本発明者らは、形状凍結性に及ぼす鋼板の結晶方位の影響について鋭意検討を行った。その結果、鋼板の板面と平行な{100} 面の存在比率が高いほど、形状凍結性が向上することを見いだした。しかしながら、極低炭素鋼をベースとした冷延鋼板において、板面と平行に{100} 面が集積した集合組織(以下「ND//〈100〉集合組織」ともいう。なお、{111} 面に係るものについては同様に、「ND//〈111〉集合組織」ともいう。)を得ることは不可能と考えられていた。これは、極低炭素鋼を冷間圧延した後、これに再結晶焼鈍を施すと、先鋭なND//〈111〉集合組織が形成されてしまい、ND//〈100〉集合組織は得られないからである。

【0013】このND//〈III〉集合組織を弱くすることは、ある程度可能である。例えば、鉄と鋼第66年 (1980)第1号102-111頁には、TiやNbを含有しない極低炭素鋼を冷延後に $\alpha \rightarrow \gamma \rightarrow \alpha$ 変態させると、集合組織がランダム化されることが記載されている。さらに、 $\alpha \rightarrow \gamma \rightarrow \alpha$ 変態させるときの加熱速度および冷却速度を極端に低下させると、鋼板の表面に、弱いND//〈100〉集合組織が形成されることも同論文に示されている。しかしながら、このような極端な徐加熱・徐冷却は、生産性や設備能力の観点から、連続焼鈍プロセスや連続溶融亜鉛めっきプロセスへの適用が不可能であるばかりでなく、このようにして得られるND//〈100〉のX線ランダム強度比は最高でも3.0程度であり、スプリングバックの低減には十分ではない。

【0014】本発明においては、特定の化学成分を有する鋼であれば、連続焼鈍および連続溶融亜鉛めっきラインにおける加熱速度と冷却速度を速くしても、 $\alpha \rightarrow \tau \rightarrow \alpha$ 変態によって、鋼板表面のND// $\langle 100 \rangle$ 集合組織を著しく発達せしめることが可能であることを新たに見いだした。曲げ成形においては、鋼板表面に対する加工度が最も大きいので、鋼板表面の集合組織をND// $\langle 100 \rangle$ に集積せしめれば、曲げ成形性および曲げ成形時の形状凍結性

を改善することができる。また、本発明では、鋼板の板厚中心層における集合組織は、ND//〈111〉に集積するため、深絞り成形性にも優れている。

【0015】本発明の提供する鋼板は、鋼板表層近傍の加工度が高い成形、例えば、曲げ加工時の形状凍結性に優れるのはもちろんのこと、深絞り成形性および深絞り成形時の形状凍結性にも優れているものである。本発明は、このような思想と新知見に基づいて構築された従来にはない全く新しい鋼板およびその製造方法であり、その要旨とするところは以下のとおりである。

【0016】(1) 重量%で、C:0.0025%以下、Si:1.5%以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al:0.005~0.2%、および、N:0.005%以下を含有し、かつ、Si、MnおよびPを、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$

において、15≦X≦30を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる高強度冷延鋼板であって、該鋼板の板厚最表面における板面と平行な{100}) 面のX線ランダム強度比が3.0 以上であるととも

に、同鋼板の板厚中心層における板面と平行な {111 } 面のX線ランダム強度比が4.5 以上であり、かつ、板厚 が0.5mm 以上2.0mm 以下であることを特徴とする曲げ性 と深絞り性に優れた高強度冷延鋼板。

【0017】(2) 重量%で、C:0.0050%以下、Si:1.5%以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、Al:0.005~0.2%、および、N:0.005%以下、さらに、Ti:0.005~0.15%、Nb:0.005~0.15%、もしくは、Ti+Nb(TiとNbの合計):0.01~0.15%を含有し、かつ、Si、MnおよびPを、

30 X=7×Si(%) +6 ×Mn(%) +110 ×P(%) において、9 ≤X≤25を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる高強度冷延鋼板であって、該鋼板の板厚最表面における板面と平行な{100} 面のX線ランダム強度比が5.0以上であるとともに、同鋼板の板厚中心層における板面と平行な{111} 面のX線ランダム強度比が6.0以上であり、かつ、板厚が0.5mm以上2.0mm以下であることを特徴とする曲げ性と深絞り性に優れた高強度冷延鋼板。

【0018】(3)前記高強度冷延鋼板の化学成分において、さらに、重量%で、B:0.0002~0.004%、V:0.002~0.1%、W:0.002~0.1%、Mo:0.003~0.4%、Sn:0.002~0.3%、Cu:0.005~0.3%未満、Cr:0.005~0.4%、Ni:0.005~0.3%のうち1種または2種以上を含有することを特徴とする前記(1)または(2)に記載の曲げ性と深絞り性に優れた高強度冷延鋼板。

【0019】(4)前記(1)、(2)または(3)に記載の高強度冷延鋼板に亜鉛めっきを施したことを特徴とする曲げ性と深絞り性に優れた高強度亜鉛めっき冷延鋼板。

(5) 重量%で、C:0.0025%以下、Si:1.5%以下、Mn:

0.7~2.5%、P:0.15%以下、S:0.015%以下、A1:0.005~0.2%、および、N:0.005%以下を含有し、かつ、Si、MnおよびPを、

 $X = 7 \times Si(\%) + 6 \times Mn(\%) + 110 \times P(\%)$

% 以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、A1:0.005~0.2%、および、N:0.005%以下、さらに、Ti:0.005~0.15%、Nb:0.005~0.15%、もしくは、Ti+Nb(TiとNbの合計):0.01~0.15%を含有し、かつ、Si、MnおよびPを、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$

において、 $9 \le X \le 25$ を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、圧下率50~90%の冷間圧延を施し、連続焼鈍ラインにて($(Ac_1+Ac_3)/2$)で以上の温度で焼鈍し、焼鈍温度がAc。変態点以上の場合には、少なくともAr。変態点から $(Ar_3$ 変態点-20) でまでの温度範囲を平均冷却速度2 \mathbb{C}/S 以上 $10\mathbb{C}/S$ 以下で冷却し、また、焼鈍温度が($(Ac_1+Ac_3)/2$)で以上Ac。変態点未満の場合には、少なくとも焼鈍温度から(焼鈍温度-20)でまでの温度範囲を平均冷却速度2 \mathbb{C}/S 以上 $10\mathbb{C}/S$ 以下で冷却することを特徴とする曲げ性と深絞り性に優れた高強度冷延鋼板の製造方法。【0021】(7)重量%で、0025%以下、00250%以下、00250%以下、00250%以下、00250%以下、00250%以下、00250%以下、00250%以下、00250%以下、00250%以下、00250%以下、00250%以下、00250%以下、00250%以下、00250%以下、00250%以下、00250

 $X = 7 \times Si$ (%) +6 ×Mn (%) +110 ×P (%)

において、15≦ X ≤30を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、圧下率50~90%の冷間圧延を施し、連続溶融亜鉛めっきラインにて((Ac1+Ac2)/2)℃以上の温度まで加熱し、加熱温度がAc2変態点以上の場合には、少なくともAr2変態点から(Ar2変態点-20)℃までの温度範囲を平均冷却速度2℃/s以上10℃/s以下で冷却し、また、加熱温度が((Ac1+Ac2)/2)℃以上Ac2変態点未満の場合には、少なくとも加熱温度から(加熱温度-20)℃までの温度範囲を平均冷却速度2℃/s以上10℃/s以下で冷却し、その後、亜鉛めっき浴中に浸漬することを特徴とする曲げ性と深絞り性に優れた高強度亜鉛めっき冷延鋼板の製造方

法。

【0022】(8) 重量%で、C:0.0050%以下、Si:1.5%以下、Mn:0.7~2.5%、P:0.15%以下、S:0.015%以下、A1:0.005~0.2%、および、N:0.0050%以下、さらにTi:0.005~0.15%、Nb:0.005~0.15%、もしくは、Ti+Nb(TiとNbの合計):0.01~0.15%を含有し、かつ、Si、MnおよびPを、

 $X = 7 \times Si (\%) + 6 \times Mn (\%) + 110 \times P (\%)$

において、 $9 \le X \le 25$ を満たす関係の下で含有し、残部はFeおよび不可避的不純物からなる鋼スラブを熱間圧延し、圧下率 $50 \sim 90$ %の冷間圧延を施し、連続溶融亜鉛めっきラインにて($(Ac_1 + Ac_3)/2$) \mathbb{C} 以上の温度まで加熱し、加熱温度が Ac_3 変態点以上の場合には、少なくとも Ac_3 変態点から $(Ar_3$ 変態点-20) \mathbb{C} までの温度範囲を平均冷却速度 $2 \mathbb{C}/s$ 以上 $10 \mathbb{C}/s$ 以下で冷却し、また、加熱温度が($(Ac_1 + Ac_3)/2$) \mathbb{C} 以上 Ac_3 変態点未満の場合には、少なくとも加熱温度から(加熱温度-20) \mathbb{C} までの温度範囲を平均冷却速度 $2 \mathbb{C}/s$ 以上 $10 \mathbb{C}/s$ 以下で冷却し、その後、亜鉛めっき浴中に浸漬することを特徴とする曲げ性と深絞り性に優れた高強度亜鉛めっき冷延鋼板の製造方法。

【0023】(9)前記亜鉛めっき浴中への浸漬後、4600~600℃までの温度範囲で、1s以上の熱処理を行うことを特徴とする前記(7)または(8)に記載の曲げ性と深絞り性に優れた高強度亜鉛めっき冷延鋼板の製造方法。

(10) 前記鋼スラブの化学組成において、さらに、重量%で、B:0.0002~0.004%、V:0.002~0.1%、W:0.002~0.1%、W:0.002~0.1%、W:0.005~0.3%未満、Cr:0.005~0.4%、Ni:0.005~0.3%のうち1種または2種以上を含有することを特徴とする前記(5)、(6)、(7)、(8)または(9)に記載の曲げ性と深絞り性に優れた高強度冷延鋼板または高強度亜鉛めっき冷延鋼板の製造方法。

[0024]

【発明の実施の形態】以下、本発明について詳細に説明 する

Cは、鋼板の板厚中心層における {111 } 面のX線強度を決定する重要な元素である。炭化物形成元素であるTiやNbを含有しない場合、Cが0.0025% 超となると、冷間圧延前に残存する固溶Cの影響または固溶CとMnとの複合体に起因する効果によって、板厚中心層における {11 1 } 面強度が極端に低下し、深絞り性を確保することが困難になる。この観点から、TiやNbを含まない場合には、C量を0.0025%以下とし、さらに、0.0020%以下とすることが望ましい。

【0025】TiやNbを含有する場合には、C量がある程度まで多くなっても、板厚中央層の{111}面強度を確保できるので、その上限を0.0050%とする。Ti、Nbを含50有する場合には、0.0030%以下が好ましい範囲である。

ので、上限を0.2%とする。

Siは、安価に強度を増加させる元素として知られており、その添加量は狙いとする強度レベルに応じて変化するが、添加量が1.5%超となると、Acr およびAcr 変態温度が高くなりすぎて、冷間圧延後の加熱温度を非常に高くせねばならず製造が困難となる。また、化成処理性の低下を招くこともある。合金化溶融亜鉛めっきを施す場合には、めっき密着性の低下、合金化反応の遅延による生産性の低下などの問題が生じるので、0.6%以下とすることが好ましい。

【0026】Mnは、強度を増加させるのに有効な固溶体強化元素である他、鋼板中心層の{111}面および表面の{100}面におけるX線強度を高くするために有効な元素である。また、Mnは、MnSを形成し熱延時のSによる耳割れを抑制したり、熱延板組織を微細にするので、0.7%以上を添加する。一方、2.5%を超えて添加すると強度が高くなりすぎたり、亜鉛めっきの密着性が阻害されたりするので、上限を2.5%とする。1.0%以上2.0%以下が好ましい範囲である。

【0027】Pは、Siと同様に安価に強度を増加させる 元素として知られており、狙いとする鋼板の強度レベル に応じて添加する。また、Pは、熱延組織を微細にし、 加工性を向上する効果も有する。ただし、添加量が0.15 % を超えると、熱間圧延や冷間圧延時に割れが生ずる場 合がある。さらに、連続溶融亜鉛めっき時に合金化反応 が極めて遅くなり、生産性が低下する。また、2次加工 性も劣化する。したがって、その上限を0.15%とする。 【0028】さらに、本発明においては、Si、Mnおよび P を、 $X=7\times Si(%) +6\times Mn(%) +110\times P(%)$ で表され るXが、Ti、Nbを含有しない場合には15≦X≦30、Ti、 Nbを含有する場合には9 ≦X≦25となるように添加す る。Xに関する前記の限定は、Ti、Nbを含有しない鋼 板、ならびに、Ti、Nbを含有する鋼板において、Si、Mn およびP の添加量を系統的に変化させて、化学成分と鋼 板表面のND//<100〉X線強度、さらには、曲げ成形時の スプリングバック量との関係について調査した結果に基 づくものである。すなわち、Xを所定の範囲内に制御す ることによって、初めて、鋼板の表層におけるND//<100 〉集合組織の形成が顕著に促進される。

【0029】Xに適正範囲が存在することの理由は必ずしも明らかではないが、Si、MnおよびP が、表面エネルギーの結晶方位依存性に対して何らかの影響を及ぼすものと推察される。Xの好ましい範囲は、Ti、Nbを含有しない場合には $18 \le X \le 27$ 、Ti、Nbを含有する場合には $14 \le X \le 23$ である。

【0030】Sは、0.015%超では、熱間割れの原因となったり、加工性を劣化させるので、上限を0.015%とする。Alは、脱酸調製に、および、Tiを添加しない場合にはNの固定に使用する元素であるが、0.005%未満の添加ではその効果が不十分である。一方、0.2%超の添加になると、コストアップを招いたり、表面性状の劣化を招く

【0031】Nは、多すぎると、Nを固定するために多 量のTi、Nb、Alが必要になったり、加工性が劣化したり するので、上限を0.005%とする。TiおよびNbは、本発明 において重要な元素である。TiおよびNbの1種以上を適 量添加すると、板厚中心層のND//<111〉集合組織が発達 するだけなく、板厚表層部におけるND//<100〉集合組織 も顕著に発達することが明らかとなった。この効果を発 現せしめるために、Tiを0.005%~0.15%、Nbを0.005%~ 0.15% 、もしくは、Ti+Nb(TiとNbの合計): 0.01~0.15 % を添加する。Tiおよび/もしくはNbの添加量が少なす ぎると、集合組織に対する効果が十分でなく、一方、Ti および/もしくはNbの添加量が多すぎても、目的とする 集合組織の発達をむしろ妨げてしまうばかりでなく、再 結晶温度が著しく上昇したり、亜鉛めっきの密着性も阻 害される。Tiおよび/もしくはNbの好ましい範囲は、T i:0.015~0.10%、Nb:0.005~0.04%、また、Ti+Nb:0.0 2~0.10% である。

10

【0032】Bは、2次加工脆化の防止に有効であるほか、鋼板中心層のND//<111〉集合組織を得るのに有効な元素であるので、必要に応じて0.0002%以上添加する。しかし、0.004%を超えて添加しても格段の効果がないばかりか、鋼板の延性が劣悪となるので、上限を0.004%とする。これらを主成分とする鋼に、V、W、Mo、Sn、Cu、Cr、Niのうち1種または2種以上を、V:0.002~0.1%、W:0.002~0.1%、Mo:0.003~0.4%、Sn:0.002~0.3%、Cu:0.005~0.3%未満、Cr:0.005~0.4%、Ni:0.005~0.3%の範囲で含有しても構わない。

【0033】本発明の冷延鋼板においては、Ti、Nbを含有しない場合、良好な曲げ性を確保するために、鋼板最表面の板面と平行な{100}面のX線ランダム強度比を3.0以上とし、また、優れた深絞り性を得るために、鋼板中心層の板面と平行な{111}面のX線ランダム強度比を4.5以上に限定する。また、本発明の冷延鋼板においては、Ti、Nbを含有する場合、同様の理由により、鋼板最表面の板面と平行な{100}面のX線ランダム強度比を5.0以上とし、また、鋼板中心層の板面と平行な{111}面のX線ランダム強度比を6.0以上に限定する。

【0034】そして、本発明の冷延鋼板の板厚は、0.5~2.0mm である。板厚が0.5mm 未満では、表面に発達したND//〈100〉集合組織の影響が大きすぎて、深絞り性を確保することが困難となる。一方、板厚が2.0mm を超えると、表面の寄与が小さくなりすぎて、曲げ性の確保が困難となる。X線による面強度の測定は、例えば、新版カリティX線回折要論(1986年発行、松村源太郎訳、株式会社アグネ)290-292 頁に記載の方法に従って行えばよい。X線測定用の試料調整は以下のようにして行う。【0035】鋼板最表面における{100}面のX線強度を測定する場合は、本発明によって得られる冷延鋼板の

11

表面に、スケールや錆のないことが前提となるので、試料に特段の処理を行わないが、油等の汚れがある場合には脱脂を行う。鋼板に亜鉛めっきを施してある場合には、適当な方法によって亜鉛めっき層を剥離してから測定する。亜鉛めっき層の剥離には、例えば、鉄インヒビターを添加した5%塩酸水溶液などを用いればよい。

【0036】鋼板中心層における {111} 面の X 線強度 を測定する場合には、機械研磨や化学研磨などによって 板厚中心付近まで研削し、バフ研磨によって鏡面に仕上げた後、電解研磨や化学研磨によって歪みを除去すると 同時に、板厚中心層が測定面となるように調整する。 なお、鋼板の板厚中心層に偏析帯が認められる場合には、 板厚の 3 / 8 から 5 / 8 の範囲で偏析帯のない場所について測定すればよい。

【0037】次に、製造条件の限定理由について述べる。熱間圧延に供するスラブは特に限定されるものではない。すなわち、連続鋳造スラブや薄スラブキャスターなどで製造したものであればよい。また、鋳造後に直ちに熱間圧延を行う連続鋳造一直接圧延(CC-DR)のようなプロセスも採用し得る。熱間圧延における粗圧延後は、シートバーを接合して連続的に熱間仕上げ圧延を行ってもよい。

【0038】熱間圧延の際の加熱温度は特に限定されるものではないが、熱間圧延時の変形抵抗を小さくするために、900 ℃以上とし、一方、表面スケールの過度の生成を抑制するために、1350℃以下とすることが好ましい。熱間圧延における仕上げ温度は特に限定されるものではない。すなわち、通常のArs 変態温度以上のγ相単相域で行ってもよいし、Ars 点未満のα+γ2相域またはα単相域で行ってもよい。いずれの場合にも、潤滑を施しても構わない。

【0039】熱間圧延後の冷却は、冷却条件が限定されるものではないが、熱間圧延の仕上げをAr。点以上で行った場合には、圧延後1.5 秒以内に冷却を開始し、巻取温度までの平均冷却速度を30℃/s以上とすることが、冷延焼鈍板の板厚中心層におけるND//⟨111⟩集合組織を発達しやすくするという点で好適である。巻取り温度は特に限定されないが、TiやNbを添加しないときには、650~800℃とすることが望ましい。これによって、AINの形成、成長が促され、良好な成形性が確保される。TiやNbを添加する際には、Nは巻取前に固定されるので、巻取温度は室温から800℃とすればよい。巻取り温度の上限が800℃であることは、コイル両端部での材質劣化に起因する歩留低下を防止すること、また、熱延組織の粗大化を防止する観点から決定される。

【0040】冷間圧延は、通常の条件で行ってよいが、 焼鈍後の深絞り性を確保する目的から、その圧下率を、 50%以上とする。一方、圧下率が90%を超えると、深絞 り性が劣化するので、上限を90%とする。連続焼鈍ある いはライン内焼鈍方式の連続溶融亜鉛めっき設備におけ る焼鈍温度は、本発明において特に重要である。すなわち、本発明で目的とする板厚最表面および板厚中心層の集合組織は、焼鈍時の加熱中に起こる $\alpha \rightarrow \gamma$ 変態、および、焼鈍後の冷却中に起こる $\gamma \rightarrow \alpha$ 変態を介して形成するものであるから、焼鈍温度を $((Ac_1 + Ac_2) / 2)$ ℃以上としなければならない。

12

【0041】($(Ac_1+Ac_1)/2$) C未満の温度では、 $\alpha \rightarrow \gamma$ 変態率が十分でなく、鋼板表面のND//<100〉集合組織の発達が不十分となる。鋼板表面のND//<100〉集合組織をさらに発達させるためには、焼鈍温度をAc。変態温度以上とすることが好ましい。焼鈍温度の上限は、特に限定されるものではないが、焼鈍温度が高すぎると連続焼鈍ラインや連続溶融亜鉛めっきライン内で板破断などが発生したり、製品の表面性状が劣悪となるので、1100 C 以下とすることが好ましい。

【0042】焼鈍後の冷却条件も重要である。すなわち、この条件を適切にすることによって、特に、鋼板表面におけるND//<100〉集合組織を高めることができる。焼鈍温度がAcs 変態点以上の場合には、少なくとも、Ars変態点から(Ars-20)℃の温度範囲を、また、焼鈍温度が((Ac1+Acs)/2) ℃以上Acs 変態温度未満の場合には、少なくとも、焼鈍温度から(焼鈍温度-20)℃の温度範囲を、2℃/s~10℃/sの平均冷却速度で冷却する。すなわち、少なくとも、変態の初期段階における冷却速度を制御する必要がある。

【0043】冷却速度が10℃/sを超えると、鋼板表面のND//<100〉集合組織が弱まり、ND//<100〉以外の結晶方位が増加してしまう。一方、冷却速度が2℃/s未満では、鋼板の板厚中心層のND//<111〉集合組織および同表面のND//<100〉集合組織が発達しないので、下限を2℃/sとする。このように冷却速度が鋼板表面における集合組織形成に影響を及ぼす理由については、必ずしも明らかではないが、以下のように推察できる。

【0044】すなわち、冷却速度が10 \mathbb{C}/s を超えると $\gamma \rightarrow \alpha$ 変態の駆動力が大きくなる結果、 $\gamma \rightarrow \alpha$ 変態中に、鋼板表面にND// $\langle 100 \rangle$ 以外の方位を持つ α 粒が多数核生成し、ND// $\langle 100 \rangle$ の集積度が低下する。一方で、冷却速度が2 \mathbb{C}/s 未満となると、鋼板の内部(最表面以外の場所)で形成したND// $\langle 100 \rangle$ 以外の結晶方位を有する結晶粒が成長する結果、その一部が表面まで達し、ND// $\langle 100 \rangle$ の集積度が弱くなる。

【0045】冷却後の過時効処理は集合組織の形成には影響しないので、必要に応じて行えばよい。連続溶融亜鉛めっきを施す場合には、冷却後めっき浴に浸漬し、さらに、亜鉛めっきをFeと合金化する必要があれば、460~600℃の温度で1s以上熱処理を行う。加熱温度が460℃未満では、合金化が十分に進行せず、一方、600℃超では、合金化が進行し過ぎて、プレス加工により自動車用部材とする際にパウダダリングなどの問題が発生する。それ故、合金化温度を460~600℃の範囲とする。

合金化時間は特に限定する必要がないが、生産効率の観点から、60s 以内とすることが好ましい。

13

【0046】焼鈍時の雰囲気は、特に限定されるものではないが、鋼板表面を酸化させない雰囲気にしなくてはならない。すなわち、10% 以下の水素と窒素との混合気体などが好適である。これは、焼鈍過程における $\alpha \rightarrow \gamma$ および $\gamma \rightarrow \alpha$ 変態あるいは変態中に鋼板表面に酸化物が形成されると、鋼板表面の $ND//\langle 100 \rangle$ 集合組織の形成が妨げられるからである。

【0047】焼鈍後は形状矯正や耐時効性の確保のためにスキンパス圧延を施してもよい。本発明によって得られる冷延鋼板は曲げ性と深絞り性とを兼備し、成形後の形状凍結性に優れる高強度鋼板である。次に本発明を実施例にて説明する。

[0048]

【実施例】 <実施例 1 >表 1 に示す組成を有する鋼(表 1 中、A-1 ~A-10 およびC-1 ~C-10 は、本発明の化学成分に合致するものであり、B-1 ~B-7 およびD-1 ~D-8 は、同化学成分に合致せず、それぞれ、A-1 ~A-10 およびC-1 ~C-10 に対する比較成分となるものである。)を溶製し、スラブ加熱温度 1250 $\mathbb C$ 、仕上げ温度 930 $\mathbb C$ 、巻取り温度 700 $\mathbb C$ で熱間圧延し、4.0 mm 厚の鋼帯とした。酸洗後、80% の圧下率の冷間圧延を施し0.8 mm 厚の冷延板とし、次いで、連続焼鈍設備にて 10 $\mathbb C$ /s で加熱し、 γ 単相域で 40 s の焼鈍後、焼鈍温度から (Ars-40) $\mathbb C$ の温度範囲を 5 $\mathbb C$ /s で冷却した。得られた冷延鋼板から 11 155 등引張試験片を

採取しr値(10%引張)を測定することにより深絞り性の評価を行った。また、引張強度、降伏強度、全伸びもJIS5号引張試験片を用いて評価した。さらに、曲げ加工試験を中川威雄監修の「プレス成形難易ハンドブック第2版」(日刊工業新聞社発行、1997)の482~483頁に記載されているハット曲げ試験方法に準拠して行った。なお、パンチ肩Rおよびダイ肩Rは5㎜とした。曲げ成形後の形状凍結性の指標としては、90°曲げ後の開口角度から90°を差し引いた値を用いた。さらに、鋼板表面における{100}面のX線ランダム強度比および鋼板中心層における{111}面のX線ランダム強度比を測定した。

【0049】結果を表2、図1および図2に示す。ここで、図1は、Ti、Nbを添加していない場合の引張強度とスプリングバック量との関係を、また、図2は、Ti、Nbを添加した場合の引張強度とスプリングバック量との関係を表す。これらから明らかなように、Mnの添加量を0.7%以上、さらには、 $X=7\times Si(\%)+6\times Mn(\%)+110\times P(\%)$ で表すXを、Ti、Nbを添加しない場合には $15\leq X\leq 30$ とし、Ti、Nbを添加する場合には $9\leq X\leq 25$ とすることによって、同一引張強度レベルの比較材に比べて、曲げ成形時の形状凍結性と深絞り性に優れた冷延鋼板を得ることができる。また、Xの値は適正であるが、Ti、Nbの添加量が十分でない比較例 $D-1\sim D-4$ は、Ti、Nb無添加の本発明例と同程度のスプリングバック量となっている。

[0050]

【表1】

		15	(5))	:	行所 10
		15	,	ı — — — — — — — — — — — — — — — — — — —		16
	Ti+Nb	1111111111	111111	00000000000000000000000000000000000000	0.0.0.0.0.0.0 0.0.0.0.0.0.0 0.0.0.0.0.0	
	×	స్ట్రాప్లట్లో స్ట్రాప్లు జిల్లా కాటాలు 4 6 2 9 కాటా	1121.4.1.0.2.4. 0.000000000000000000000000000000	ಭಹ್ಷಪ್ಪಟ್ಟಪ್ಪಪ್ಪಪ್ಪತ್ನ ೧೩೮೦ ಕ್ಷಮ್ಪಪ್ಪಪ್ಪಪ್ಪತ್ನ ೧೩೮೦ ಕ್ಷಮ್ಪಪ್ಪಪ್ಪಪ್ಪಪ್ಪಪ್ಪ	44.0.0.1.0.8.8. 9-1-0.0.1.0.0.0 0-1-0.0.0.0 0-1-0.0.0	(%)
	V. W. Ko. Sr. Cu. Cr. Ni	Cu=0. 20, Ki=0. 11 Ko-0. 26, Cr-0. 15 y=0, 006	Cu=0. 15	Sn=0. 15 	Y=0. 01, F=0. 02	X=7×Si(X)+6×Mn(X)+110×P(X)
	æ	0.0005	0.0009	0.0003	0.0011	S×1=X
	N	00000000000000000000000000000000000000	0, 0024 0, 0021 0, 0023 0, 0023 0, 0018 0, 0016	0.000000000000000000000000000000000000	0.0020 0.0033 0.0027 0.0022 0.0023 0.0023 0.0023	
	N.		111111	0. 022 0. 008 0. 030 0. 015 0. 028 0. 018 0. 018	0, 003 ^Δ 0, 004 ^Δ 0, 004 ^Δ 0, 020 0, 022 0, 012	
	Ti	1111111111	111111	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.004 A 0.003 A 0.032 A 0.032 O 0.040	
	1,1	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	0.0.0.0.0.0 8.0.0.0.0.0 8.0.0.0.0.0 8.0.0.0.0	0.000000000000000000000000000000000000	00000000 00000000 00000000 00000000000	さま
	S	0.000.000.000.000.000.000.000.000.000.	0.00.000.000.0000.0000.00000.00000.00000	28686666666666666666666666666666666666	00000000 0000000 0000000 01140	△:本発明の範囲外
-	a.	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.0.00.00 0.0.00 0.0.00 0.0.00 0.0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000 0000000 0000000 00000000 000000	₩: \
	Ä	0.000000000000000000000000000000000000	1.1213.0000 5.55282838 5.5520000	24124260024 84124260024	201010110 8022020 8022020 8022020 80220	
	Si	000000000000000000000000000000000000000	1000000 30801000 30801000	00000000000000000000000000000000000000	00000000	
	U	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	0.0014 0.0020 0.0019 0.00218 0.0026 0.0026	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	0.000000 0.000000 0.0000000 0.000000000	
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		မှ သုံးပုံပုံပုံပုံပုံ		

[0051]

【表2】

				17						18		
表2	,	· ·			····	•	,			·		
鋼種	焼鈍温度	Acı	ÀCa	Aco	引張強度	降伏強度	伸び	平均	表層(100) X 線:	中心層 (111) X 線	スプリングバック	備考
	۳	ᢗ	ᢗ	r	MPa.	MPa	*	Γ值	ランタム強度比	ランタム強度比	角度。	
A12334567 A1-17 A1-17 A17 A17	90000000000000000000000000000000000000	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	######################################	39675688888888888888888888888888888888888	335 324 410 4412 453 546	2870 2870 2870 2870 2870 2870 2870 2870	853345880K83	1.5656746554	®∢೦ಥಾಯಾಯಿ\೦ ನೆಣ-ಕೇವೆಯೆಯನೆ ಕನ	7-9800017-490Ca7 ഗഗീഷർഷ്മിൻൾ	87819621534 8778798098	亲亲亲亲亲亲亲亲亲亲亲 明明明明明明明明明明明明明明明明明明明明明明明明明明
8-1-2-1-5-67 8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	915500 915500 934400 94500 94500	888800888 88860000888	පුරිත්තිය ප්රතිස්තිය ප්රතිස්තිය	\$55555 \$55555 \$555	944600040 984809940	2352 2352 2457 24553 535 536 536 536 536 536 536 536 536	387 357 357 175 13	1:001	4444 3150-47-150 242-24-150	বুবুবুবু চেথ্যুস্ত্ৰন্দ্ৰাত প্ৰক্ৰেৰ্থ্য	9304 11.544 15.144 15.184	生 大 大 大 大 大 大 大 大 大 大 大 大 大
	910 935 930 830 930 930 930 930 935	1568456889589 888858889589	සිරිපු සිටු පැවැතිවරය සිරිප සිටු පැවැතිවරය සිරිප සිටු පැවැතිවරය සිරිප සිටු පැවැතිවරය සිටු පැවිතිවරය සිටු පැවැතිවරය සිටු පැවැතිවරය සිටු පැවැතිවරය සිටු පැවැතිවරය සිටු පැවැතිවරය සිටු පැවැතිවරය සිටු පැවැතිවරය සිටු පැවැතිවරය සිටු පැවැතිවරය සිටු පැවිතිවරය සිටු පැවිත	78005 78005 7500 7500 7500 7500 7500 750	370 421 445 450 387 471 512 484 471 5184	253 250 250 250 250 250 250 250 250 250 250	**************************************	***************************************	೧۱ - ದಿಗ್ಗೆ ಭಾರತಿಯ ಪ್ರಸ್ತಿಸಿದ್ದರು.	5.අටය~හැ~හැට 7.අටය~හැ~ගැට	ටනයකතැ-කසටය ග්ස්ස්ස්ස්ස්ද්	法法法法法法法法法 治由的自由的自由的自由的 该会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会
D-120345	915 895 920 930 930	5555555 55555555 555555555555555555555	99999 99999 99999	7500 7900 8000 8000 8000 8000	815888X	250 258 264 265 265	33.55 33.55 35 35 35 35 35 35 35 35 35 35 35 35 3	54484	ବ ବ ବ ବ ବ ୦୮-ଉପ୍ରବର କାର୍ମ୍ବର୍ଗ୍ୟର	04602t	7.67.7.84 8.1	11.11.11.11.11.11.11.11.11.11.11.11.11.

‡均一伸びが10%に満たないため評価不能

**曲げ変形時に亀裂発生

△:本発明の範囲外

<実施例2>表1に示す鋼A-1、C-1 およびC-2 を用いて、スラブ加熱温度1200℃、仕上げ温度900 ℃、巻取り温度550 ℃で熱間圧延し、3.5mm 厚の鋼帯とした。酸洗後、80% の圧下率の冷間圧延を施し0.7mm 厚の冷延板とし、次いで、連続焼鈍設備にて10℃/sで加熱し、α単相からγ単相まで焼鈍温度を変化させた。その後、700℃まで3.5℃/sの平均冷却速度で冷却し、さらに、700 ℃より400 ℃まで平均冷却速度を50℃/sとし、次いで、40 0 ℃にて150sの過時効処理を行った。さらに、1.0%の圧下率の調質圧延をし、実施例1と同様の方法で、引張試*

* 験、X線による面強度の測定、および、曲げ試験を行った。

【0052】結果を表3に示す。これより明らかなように、焼鈍温度が適正な範囲にない場合には、鋼板表面の {100} 面強度が低くなるため、曲げ成形時のスプリングバック量が大きくなっている。これに対して、焼鈍を適正な温度範囲で行った場合には、曲げ成形時の形状凍結性と深絞り性に優れた冷延鋼板を得ることができる。

[0053]

【表3】

						,						
餌種	焼鈍温度 ℃	Ac. ℃	Ac₃ ℃	Ac∗ ℃	引張強度 MPa	降伏強度 MPa	伸び %	平均 r値	表層 {100 } X 線 ランタム強度比	中心層 (111) X 線 ランタム強度比	スプリングパ ッ ク 角度 [°]	備考
A-1	900 890	865	895	820	374 371	251 244	37 38	1.5 1.6	4. 4 4. 1	5. 9 5. 9	6. 6 6. 8	発明例 発明例
	870 ^Δ 840 ^Δ				368 370	233 239	39 38	1.7	1. 7 ^Δ 1. 3 ^Δ	6. 4 6. 2	8. 9 9. 9	比較例 比較例
C-1	915 895	875	905	795	367 365	248 240	36 37	1.8	6. 4 6. 1	7. 3 7. 0	4. 9 5. 2	発明例 発明例
	885 ⁴ 850 ⁴				359 365	235 241	37 38	1.9	2.7 ^Δ 2.3 ^Δ	7. 7 6. 9	8. 6 9. 5	比較例 比較例
C-2	910 890 875 [△] 830 [△]	865	900	<i>77</i> 5	409 405 403 420	280 274 270 296	33 33 34 31	1.8 1.8 1.9	7. 4 7. 1 2. 9 ^Δ 1. 8 ^Δ	8. 3 8. 1 8. 8 7. 1	6. 1 6. 4 10. 4 10. 9	発明例 発明例 比較例 比較例

△:本発明の範囲外

て、引張試験、X線による面強度の測定、および、曲げ

巻取り温度550、℃で熱間圧延し、3.5mm 厚の鋼帯とした。酸洗後、80% の圧下率の冷間圧延を施し0.7mm 厚の冷延板とし、次いで、連続焼鈍設備にて10℃/sで加熱し、910 ℃で40s の焼鈍を行った。その後、700 ℃まで種々の冷却速度で冷却し、さらに、700 ℃より室温まで平均冷却速度を80℃/sで冷却した。このようにして得られた冷延鋼板について、実施例1および2と同様にし

*【0054】結果を表4に示す。これより明らかなように、冷却速度を適正な範囲とした場合には、曲げ成形時の形状凍結性と深絞り性に優れた冷延鋼板を得ることができるが、冷却速度を本発明の範囲外とすると、鋼板表面の{100} 面強度が低くなるため、曲げ成形時のスプリングバック量が大きくなっている。

20

[0055]

【表4】

表4

試験を行った。

鋼種	冷却速度 ℃/s	Ac₁ ℃	γc³	Ac₃ ℃	引張強度 MPa	降伏強度 MPa	伸び %	平均 r値	表層 {100 } X 線 テンタム強度比	中心層 {111 } X 線 ランタム強度比	スプリンダバック 角度	僧考
A -1	1^	865	895	825	369	254	38	1.4	2.2△	5. 1	10.9 [△]	比較例
	5			805	379	. 266	36	1.5	4.0	5. 8	7.0	発明例
	10			790	380	269	36	1.5	3.4	6. 0	7.7	発明例
	20 △			760	387	288	34	1. 5	2.0 ⁴	6. 1	11.0△	比較例
C-1	1^	875	905	805	355	238	37	1.7	2.5 [△]	6.4	8.7^	比較多
	5			790	368	250	36	1.8	6. 4	7. 6	4.9	発明的
	10			780	373	253	36	1.9	5.5	8.0	5.7	発明的
	20 △			755	389	262	34	1.9	2.9△	8. 4	9.3△	比較多
C-2	1^	865	900	785	404	261	34	1.6	2.8 [^]	6.3	9.8 ^Δ	比較例
	5			765	422	287	32	1.8	6. 9	8.2	6. 2	発明例
	10	Ì		750	429	295	31	1.8	5. 4	8.4	6. 9	発明例
	20 △			730	433	317	27	1.9	2.7△	8.5	10.6 [△]	比較的

△:本発明の範囲外

 ※520 ℃で20s の合金化熱処理を行った。これらの結果を表5に示す。これより、化学成分と製造条件を適正な範囲に制御することで、曲げ性と深絞り性に優れた溶融亜鉛めっき冷延鋼板を得ることができることがわかる。

[0056]

【表5】

鋼種	最高到達 温度℃	Ac₁ ℃	Ac₃ ℃	Ac₃ ℃	引張強度 MPa	降伏強度 MPa	伸び %	平均 r值	表層 {100 } X 線 ランタム強度比	中心層 {111 } X 線 ランタム強度比	スプリンダパック 角度 °	備考
C-1	920	880	910	795	382	262	34	1.7	6. 8	7. 3	5. 4	発明例
C-8	915	870	910	750	355	248	38	1.9	5. 9	9. 0	5. 2	発明例
D-1	920	885	920	755	410	288	31	1.4	3.5 ^Δ	6. 9	7.7 ^Δ	比較例
D-7	905	865	900	790	349	231	38	1.4	2.5 ^Δ	5. 3 [△]	8.9 ^Δ	比較例

△:本発明の範囲外

[0057]

【発明の効果】本発明により、鋼板表層近傍の加工度が高い成形、例えば、曲げ加工時の形状凍結性に優れるのはもちろんのこと、深絞り成形性および深絞り成形時の形状凍結性にも優れた冷延鋼板と溶融亜鉛めっき冷延鋼板を得ることができる。このように、本発明の冷延鋼板は、強度と加工性を兼ね備えた鋼板であるので、使用に

当たっては今までの冷延鋼板より板厚を減少でき、例えば、自動車の車体の軽量化を可能とするものである。 したがって、本発明は、地球環境保全にも寄与できるものである。

【図面の簡単な説明】

【図1】Ti、Nbを添加していない場合の引張強度と曲げ成形時のスプリングバック量との関係を表す図である。

5(

【図1】

【図2】Ti、Nbを添加した場合の引張強度と曲げ成形時* *のスプリングバック量との関係を表す図である。

700

600

図 1
20.0
18.0
16.0
16.0
12.0
12.0
10.0
6.0
4.0
4.0

400

[図2]

図 2 14.0 12.0 スプリングバック屋。 10.0 8.0 6.0 4.0 2.0 300 350 400 450 500 550 引張強度,MPa

フロントページの続き

2.0 t

300

(51) Int. C1. 7

識別記号

500

引張強度。MPa

C 2 3 C 2/06

(72) 発明者 吉田 亨

2/28

千葉県富津市新富20-1 新日本製鐵株式

会社技術開発本部内

(72) 発明者 秋末 治

千葉県富津市新富20-1 新日本製鐵株式

会社技術開発本部内

FΙ

C 2 3 C 2/06

2/28

Fターム(参考) 4K027 AA02 AA23 AB28 AB42 AC12

AC18 AC73 AE12 AE18

4K037 EA00 EA01 EA02 EA04 EA11

EA13 EA15 EA16 EA17 EA18

テーマコード(参考)

EA19 EA20 EA23 EA25 EA27

EA28 EA31 EA32 EA33 EB01

EB05 EB09 FA01 FA02 FA03

FD04 FE03 FE05 FH01 FJ01

FJ06 FK02 FK03 FK08 FL02

FM02 GA05 GA07 JA06