Bài Tập-Tích phân đường loại 1 và ứng dụng

Bài 1 $\int\limits_C \sqrt{x^2+y^2} dl$, trong đó C là nửa đường tròn $x^2+y^2=2x,\ x\geq 1.$

Bài 2 $\int\limits_C (x^{\frac{4}{3}}+y^{\frac{4}{3}})dl$, trong đó C là nửa đường Astrooit có phương trình tham số là $x=a\cos^3t,y=a\sin^3t,~0\leq t\leq 2\pi,a>0.$

Bài 3 $\int\limits_C x^3 dl$, trong đó C là cung $y = \frac{x^2}{2}, \ 0 \le x \le \sqrt{3}$.

Bài 4 $\int_C (x^2+y^2+z^2)dl$, trong đó C là đường xoắn ốc $x=a\cos t, y=a\sin t, z=bt,\ 0\le t\le 2\pi, a,b,c>0.$

Bài 5 $\int_C (x+y)dl$, trong đó C là chu vi tam giác với O(0,0), A(1,0), B(0,1).

Bài 6 $\int_C (x^2 - y^2) dl$, trong đó C là một phần tư đường tròn $x^2 + y^2 = R^2, x \le 0, y \le 0$.

Bài 7 $\int\limits_C xydl$, trong đó C là chu vi hình chữ nhật ABCD với A(0,0), B(4,0), C(4,2), D(0,2).

Bài 8 $\int\limits_C zdl$, trong đó C là đường giao tuyến của $x^2+y^2=z^2$ với mặt trụ $y^2=ax$ đi từ (0,0,0) đến $(a,a,a\sqrt{2}).$

Bài 9 $\int\limits_C (x^2+y^2)dl$, trong đó C là cung xoắn ốc logarit có phương trình $r=ae^{3\varphi}, -\infty < \varphi < 0$.

Bài 10 $\int_C (x-y)dl$, trong đó C là đường tròn $x^2+y^2=ax$.

Bài 11 $\int_C (x+y)dl$, trong đó C là đường Lemniscat $r^2=a^2\cos 2\varphi$ lấy phía $x\geq 0$.

Bài 12 $\int_C (x+z)dl$, trong đó C là cong $x=t, y=\frac{3t^2}{\sqrt{2}}, z=t^2, 0 \le t \le 1$.

Bài 13 $\int\limits_C xyzdl$, trong đó C là giao tuyến của hai mặt $x^2+y^2+z^2=R^2$ và $x^2+y^2=\frac{R^2}{4}$ lấy $x\geq 0, y\geq 0, z\geq 0.$

Bài 14 $\int_C (2z - \sqrt{x^2 + y^2}) dl$, trong đó C là đường xoắn ốc hình nón $x = t \cos t, y = t \sin t, z = t, 0 \le t \le 2\pi$.

Bài 15 Tính độ dài đường xoắn ốc hình nón $x=ae^t\cos t, y=ae^t\sin t, z=ae^t$ từ điểm A(0,0,0) đến điểm B(a,0,a).

Bài 16 Tính khối lượng của dây có phương trình $y=\frac{a}{2}(e^{\frac{x}{a}}+e^{-\frac{x}{a}}),\ 0\leq x\leq a$ biết $\rho(x,y)=\frac{1}{y}.$

Bài 17 Tính khối lượng của đường Astrôit $x = a\cos^3 t, y = a\sin^3 t$ nếu hàm $\rho(x,y) = |xy|$.

Bài 18 Tính mô men quán tính đối với trục Oz của đường cong C có phương trình $x^2+y^2=R^2$ nằm trong mặt phẳng Oxy nếu $\rho(x,y)=1$.