Content • Code Walkthrough □ Gini Impurity
∘ Splitting Numerical Feature
Gini Impurity Code Walkthrough
[] import pandas as pd
import numpy as np [] !gdown 1l53Fgkg1G1ekCxxgaDQ00EXrnSMTeJj-
Downloading From: https://drive.google.com/uc?id=1l53Fgkg1G1ekCxxgaDQ00EXrnSMTeJj- To: /content/sample_data.csv 100% 32.5k/32.5k [00:00<00:00, 24.8MB/s] [] sample_data = pd.read_csv('sample_data.csv')
<pre>[] sample_data Gender Age_less_35</pre>
1MaleFalseSales Executive12MaleTrueSales Representative13FemaleFalseHealthcare Representative04MaleTrueSales Executive0
995 Male False Laboratory Technician 1 996 Female False Manufacturing Director 0 997 Female True Sales Executive 0
998 Male False Manager 0 999 Female True Laboratory Technician 0 1000 rows × 4 columns
<pre>[] sample_data.Attrition.value_counts() 0 831 1 169 Name: Attrition, dtype: int64</pre>
<pre>[] def gini_impurity(y): if isinstance(y, pd.Series): p = y.value_counts()/y.shape[0] gini = 1-np.sum(p**2) return gini else: raise('Object must be a Pandas Series.')</pre>
[] gini_impurity(sample_data.Attrition) 0.2808779999999996 Weighted Gini impurity for child node
<pre>[] def calculate_weighted_gini(feature, y): categories = feature.unique() weighted_gini_impurity = 0 for category in categories:</pre>
<pre>y_category = y[feature == category] gini_impurity_category = gini_impurity(y_category) # print(category) # print(gini_impurity_category) weighted_gini_impurity += y_category.shape[0]/y.shape[0]*gini_impurity_category</pre>
return weighted_gini_impurity [] calculate_weighted_gini(sample_data.Age_less_35, sample_data.Attrition)
0.2724771918985819 ✓ Information Gain
<pre>[] def information_gain(feature,y): parent_gini = gini_impurity(y) child_gini = calculate_weighted_gini(feature,y) ig = parent_gini - child_gini</pre>
return ig [] information_gain(sample_data.Age_less_35, sample_data.Attrition)
0.008400808101418078 [] for feature in sample_data.columns[:-1]:
<pre>print(f'Information Gain for feature {feature} is {information_gain(sample_data[feature],sample_data.Attrition)}') Information Gain for feature Gender is 1.2832567979348397e-06 Information Gain for feature Age_less_35 is 0.008400808101418078 Information Gain for feature JobRole is 0.020654039636781696</pre>
 Splitting Numerical Feature
[] !gdown 19L3rYatfhbBL1r5MHrv-p_oM2wlvrhqk !gdown 1N70_fWCTJLu8SIa_paKcDEzllgpMk8sK
Downloading From: https://drive.google.com/uc?id=19L3rYatfhbBL1r5MHrv-p_oM2wlvrhqk To: /content/preprocessed_X_sm.pickle 100% 534k/534k [00:00<00:00, 118MB/s] Downloading From: https://drive.google.com/uc?id=1N70_fwCTJLu8SIa_paKcDEzllgpMk8sK To: /content/y_sm.pickle 100% 15.4k/15.4k [00:00<00:00, 22.0MB/s]
<pre>[] import pickle # Load data (deserialize) with open('preprocessed_X_sm.pickle', 'rb') as handle: X_sm = pickle.load(handle)</pre>
<pre>with open('y_sm.pickle', 'rb') as handle: target = pickle.load(handle)</pre>
 Code walkthrough Let's split the Age feature and find which threshold is best to split age along with its information gain
[] age = X_sm.Age
<pre>v Sorting the age [] thresholds = age.sort_values().unique()</pre>
thresholds array([18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60])
[] thresholds.shape (43,)
<pre>Calculating information gain for each threshold [] def information_gain(y, mask): left_node_count = sum(mask)</pre>
total = mask.shape[0] right_node_count = total - left_node_count parent_gini = gini_impurity(y)
child_gini = left_node_count/total*gini_impurity(y[mask]) + right_node_count/total*gini_impurity(y[~mask]) ig = parent_gini - child_gini return ig
<pre>[] ig_list = [] for thr in thresholds: mask = age <= thr ig = information_gain(target, mask) ig_list.append(ig)</pre>
<pre>[] ig_list = np.array(ig_list) ig_list.shape</pre>
<pre>(43,) V Finding threshold with maximum IG [] print(f'Best threshold for Age with maximum IG is {thresholds[ig_list.argmax()]} with IG: {ig_list.max()}')</pre>
Best threshold for Age with maximum IG is 33 with IG: 0.027621195039458812
[] Start coding or <u>generate</u> with AI.

Colab paid products - Cancel contracts here

↑ ↓ ⊖ **/** 🖫 🖬 :