Automated neuron tracing using probability hypothesis density filtering

Miroslav Radojević and Erik Meijering

Supplementary Information

Algorithm 1 Neuron tracing

1:
$$k = 0$$

2:
$$\{\omega_{0|0}^n, \mathbf{x}_{0|0}^n\}_{n=1}^{\rho N_0}$$
 \triangleright Initial particle and observation set

3:
$$\{\hat{\mathbf{x}}_{0,i}\}_{i=1}^{N_0}$$
 \triangleright Initial estimate

4: repeat

5:
$$k = k + 1$$

6:
$$p_i^n \sim h(p|\hat{x}_{k-1,i})$$
 $n \in [1, \rho N_{k-1}]$ \triangleright Draw observation particles

7:
$$p_{i,j}^n \in \mathcal{C}_j, \quad j \in [1, M_k], \quad n \in [1, |\mathcal{C}_j|]$$
 \triangleright Cluster observation particles

8:
$$\mathbf{z}_{k,j} = \left[\mathbf{p}_{i,j}^{\hat{n}}, \tau(\mathbf{p}_{i,j}^{\hat{n}})\right]$$
 \triangleright Select representative sample

9:
$$Z_k = \{z_{k,j}, \dots, z_{k,M_k}\}$$
 \triangleright Construct observations

$$10: \qquad \{\omega_{k|k}^n, \mathbf{x}_{k|k}^n\}_{n=1}^{\rho N_k}, \nu_k, \{\hat{\mathbf{x}}_{k,i}\}_{i=1}^{N_k} \leftarrow \text{SMC-PHD}(\{\omega_{k-1|k-1}^n, \mathbf{x}_{k-1|k-1}^n\}_{n=1}^{\rho N_{k-1}}, \mathbf{Z}_k) \ \triangleright \ \text{Algorithm 2}$$

11: **until**
$$[\nu_k] = 0$$
 $\triangleright [\cdot] \equiv \text{nearest integer}$

Algorithm 2 SMC-PHD filtering

1: Input:
$$\{(\omega_{k-1|k-1}^n, \mathbf{x}_{k-1|k-1}^n)\}_{n=1}^{\rho N_{k-1}}, \{\mathbf{z}_{k,j}\}_{j=1}^{M_k} > D_{k-1}(\mathbf{x}) \text{ approx. observation } \mathbf{Z}_k$$

2: **for**
$$n = 1, ..., \rho N_{k-1}$$
 do

3: **for**
$$m = 1, ..., \eta$$
 do

4:
$$i = (n-1)\eta + m$$

5: Draw:
$$\mathbf{x}_{k|k-1,p} \sim \pi_{k|k-1}(\mathbf{x}|\mathbf{x}_{k-1|k-1}^n) \to \mathbf{x}_{k|k-1,p}^i$$
 > Persistent object particles

6: Compute:
$$\omega^i_{k|k-1,p} = p_S \frac{1}{\eta} \omega^n_{k-1|k-1}$$

7: Draw:
$$\mathbf{x}_{k|k-1,s} \sim \beta_{k|k-1}(\mathbf{x}|\mathbf{x}_{k-1|k-1}^n) \rightarrow \mathbf{x}_{k|k-1,s}^i$$
 > Spawning object particles

8: Compute:
$$\omega_{k|k-1,s}^i = p_S \frac{1}{\eta} \omega_{k-1|k-1}^n$$

9: end for

10: end for

$$11: \ \{(\omega_{k|k-1}^n,\mathbf{x}_{k|k-1}^n)\}_{n=1}^{S_k} = \{(\omega_{k|k-1,\mathbf{p}}^n,\mathbf{x}_{k|k-1,\mathbf{p}}^n)\}_{n=1}^{\rho\eta N_{k-1}} \cup \{(\omega_{k|k-1,\mathbf{s}}^n,\mathbf{x}_{k|k-1,\mathbf{s}}^n)\}_{n=1}^{\rho\eta N_{k-1}} \ \triangleright \text{ Union of particle sets}$$

12: **for**
$$n = 1, ..., S_k$$
 do

13: Update:
$$\omega_{k|k}^n = (1 - p_D)\omega_{k|k-1}^n + \sum_{\mathbf{z} \in \mathbf{Z}_k} \frac{p_D g_k(\mathbf{z}|\mathbf{x}_{k|k-1}^n)\omega_{k|k-1}^n}{C_k(\mathbf{z}) + \sum_{n=1}^{S_k} p_D g_k(\mathbf{z}|\mathbf{x}_{k|k-1}^n)\omega_{k|k-1}^n}$$

14: **end for**

15:
$$\nu_k = \sum_{n=1}^{S_k} \omega_{k|k}^n$$
 > Cardinality calculation

16: Estimate:
$$\hat{\mathbf{x}}_{k,i} \leftarrow \{\omega_{k|k}^n, \mathbf{x}_{k|k-1}^n\}_{n=1}^{S_k}$$
 \triangleright Mean-shift clustering

17: Resample:
$$N_k = [\nu_k], \{\omega_{k|k}^n, \mathbf{x}_{k|k-1}^n\}_{n=1}^{S_k} \to \{\omega_{k|k}^n, \mathbf{x}_{k|k}^n\}_{n=1}^{\rho N_k}, \omega_{k|k}^n = \nu_k/(\rho N_k)$$

 \triangleright Systematic resampling with ρ particles per object

Figure S1: Transition densities (2D examples) for persistent (A) and spawned (B) objects with z=0, $\mathbf{x}'=\left[0,0,0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right]$, $\kappa=2$, and $r_k=3$. (C) Importance sampling used in the observation model without the tubularity component, $\tau(\mathbf{p})=1$, and $\kappa=0.5$. Rainbow color coding is used running from blue (indicating low values) to red (indicating high values).

Figure S2: Formation of the observations (2D example). (A) For each object i from iteration k-1, particles \mathbf{p}_i^n are sampled from the importance sampling function h, using the state estimate $\hat{\mathbf{x}}_{k-1,i}$. The solid dot indicates the location of $\hat{\mathbf{x}}_{k-1,i}$ and the contours represent lines of equal particle weight. (B) The particles are processed by mean-shifting resulting in clusters \mathcal{C}_j whose labeled particles are denoted as $\mathbf{p}_{i,j}^n$. (C) Each observation $\mathbf{z}_{k,j}$ is obtained from the representative cluster particle $\mathbf{p}_{i,j}^n$ as described in the main text. Contours represent lines of equal observation likelihood. (D) The clutter intensity function.

Figure S3: Performance as a function of numbers of seeds and rounds for four example cases from the OPF (A-D) and the HCN (E-H) data set. Similar trends were observed for all cases in the respective data sets. Left panel per case: Precision (P), recall (R), and F-score (F) after one round initialized with different numbers of seeds (N_0) . Right panel per case: The scores after multiple rounds with a fixed number of seeds (N_0) . Fifth-order polynomial curves were fit to the data to show approximate trends.

Figure S4: Performance comparison of our method with several other methods on the OPF data set. For each method and each measure, the plotted box indicates the 25-75 percentile, the horizontal bar indicates the median score, and the whiskers and outliers are drawn using the default settings of R.

Figure S5: Performance comparison of our method with several other methods on the HCN data set. For each method and each measure, the plotted box indicates the 25-75 percentile, the horizontal bar indicates the median score, and the whiskers and outliers are drawn using the default settings of R.

Figure S6: Ability of the tested methods to separate two fibers of similar intensity and scale running closely in parallel. The examples show cases with gradually increasing distance between the fibers: overlap (left column), just separated (middle column), and clearly separated (right column). The tracing results of PHD, GPS, APP2, MST are overlaid (with slight offset) in red color.

Figure S7: Ability of the tested methods to separate three fibers with different intensity and scale running closely in parallel. The examples show cases with gradually increasing distance between the fibers: overlap (left column), just separated (middle column), and clearly separated (right column). The tracing results of PHD, GPS, APP2, MST are overlaid (with slight offset) in red color.