Minimally Adaptive BH

a tiny but uniform improvement of the procedure of Benjamini and Hochberg

Aldo Solari Joint work with Jelle Goeman

Adaptive Designs and Multiple Testing Procedures Padua, April 29, 2016

Outline

1 Introduction

2 The MABH procedure

3 The case of two hypotheses

Simes test

- $m \ge 2$ hypotheses, $m_0 \le m$ true hypotheses
- $p_1 \leq \ldots \leq p_m$ ordered *p*-values
- Assumption: Simes inequality holds for *p*-values corresponding to true hypotheses
- Global hypothesis $G_0: \pi_0 = \frac{m_0}{m} = 1$
- $S(\alpha) = \bigcap_{i=1}^{m} \left\{ p_i > \frac{i\alpha}{m} \right\}$: "Simes test doesn't reject G_0 at α "
- $\bar{S}(\alpha) = \bigcup_{i=1}^{m} \left\{ p_i \le \frac{i\alpha}{m} \right\}$: "Simes test rejects G_0 at α "

Benjamini and Hochberg procedure

 $BH(\alpha)$ rejects the $R(\alpha)$ hypotheses with smallest p-values:

$$R(\alpha) = \begin{cases} 0 & \text{if } S(\alpha) \\ \max \left\{ i : p_i \le \frac{i\alpha}{m} \right\} & \text{if } \bar{S}(\alpha) \end{cases}$$

Very popular: BH95 has > 32K citations

?p.adjust example

```
set.seed(123)
x <- rnorm(50, mean = c(rep(0, 25), rep(3, 25)))
p <- 2*pnorm(sort(-abs(x)))</pre>
```


BH(5%)

```
p.adjust(p, "BH")

[1] 0.0000 0.0004 0.0004 0.0009 0.0009
[6] 0.0009 0.0009 0.0010 0.0013 0.0019
[11] 0.0028 0.0067 0.0126 0.0126 0.0175
[16] 0.0208 0.0208 0.0245 0.0247 0.0282
[21] 0.0504 oh,no!
```


þ,

FDR control for BH

Under the assumption of independence or PRDS, BH(α) controls the FDR at level $\pi_0 \alpha \leq \alpha$, i.e.

$$E[Q(\alpha)] \leq \pi_0 \alpha \leq \alpha$$

• $Q(\alpha)$ is the FPD of BH(α), i.e.

$$Q(\alpha) = \begin{cases} 0 & \text{if } S(\alpha) \\ \frac{T(\alpha)}{R(\alpha)} & \text{if } \overline{S}(\alpha) \end{cases}$$

• $T(\alpha)$ is number of true hypotheses rejected by $BH(\alpha)$

Oracle BH procedure

- ullet The Oracle knows the true value of π_0
- OBH(α) = BH(α/π_0):

$$R(\alpha/\pi_0) = \begin{cases} 0 & \text{if } S(\alpha/\pi_0) \\ \max\left\{i : p_i \le \frac{i\alpha}{m_0}\right\} & \text{if } \bar{S}(\alpha/\pi_0) \end{cases}$$

- If BH(α) controls FDR at $\pi_0 \alpha$ for all α , then OBH(α) controls FDR at α for all α
- OBH(α) is uniformly more powerful than BH(α)

þ,

Two-stages Adaptive BH procedures

- **1** Estimate π_0 by $\hat{\pi}_0$
- $oldsymbol{Q}$ ABH(lpha)= BH $(lpha^*/\hat{\pi}_0)$

Existing procedures

- Existing ABH(α) are not uniformly more powerful than BH(α) because $\alpha^*/\hat{\pi}_0$ can be strictly smaller than α
- Usually proven FDR control under independence only
- Storey, Taylor and Siegmund (2004)

$$lpha^*=lpha$$
 but $\hat{\pi}_0(\lambda)=rac{\#\{p_i>\lambda\}+1}{m(1-\lambda)}$ can be larger than 1

• Benjamini, Krieger and Yekutieli (2006)

$$\hat{\pi}_0 = \frac{m - R(\alpha^*)}{m}$$
 with $\alpha^* = \frac{\alpha}{1 + \alpha} < \alpha$

Outline

1 Introduction

2 The MABH procedure

3 The case of two hypotheses

Minimally Adaptive BH procedure

$$\mathbf{1} \hat{\pi}_0 = \begin{cases} 1 & \text{if } S(\alpha) \\ (m-1)/m & \text{if } \bar{S}(\alpha) \end{cases}$$

 $MABH(\alpha)$ rejects the $R'(\alpha)$ hypotheses with smallest p-values:

$$R'(\alpha) = \begin{cases} 0 & \text{if } S(\alpha) \\ \max \left\{ i : p_i \le \frac{i\alpha}{m-1} \right\} & \text{if } \overline{S}(\alpha) \end{cases}$$

MABH(5%)

```
p.adjust(p, "MABH")

[1] 0.0000 0.0004 0.0004 0.0009 0.0009

[6] 0.0009 0.0009 0.0010 0.0012 0.0019

[11] 0.0027 0.0066 0.0124 0.0124 0.0171

[16] 0.0203 0.0203 0.0240 0.0242 0.0277

[21] 0.0494
```

$$\tilde{p}_i = \max\left(\min_j \frac{mp_j}{j}, \min_{k \ge i} \frac{(m-1)p_k}{k}\right)$$

FDR control for MABH

If BH(α) controls FDR at $\pi_0 \alpha$ for all α , then MABH(α) controls FDR at α for all α , i.e.

$$E[Q(\alpha)] \le \pi_0 \alpha \Rightarrow E[Q'(\alpha)] \le \alpha \quad \forall \alpha$$

• $\pi_0 = 1$

$$E[Q'(\alpha)] = P[R'(\alpha) > 0] = P[\bar{S}(\alpha)] = P[R(\alpha) > 0] = E[Q(\alpha)] \le \alpha$$

• $\pi_0 \le (m-1)/m$

$$Q'(\alpha) = \begin{cases} 0 \le Q\left(\frac{m\alpha}{m-1}\right) & \text{if } S(\alpha) \\ Q\left(\frac{m\alpha}{m-1}\right) & \text{if } \bar{S}(\alpha) \end{cases}$$

$$\mathrm{E}[Q'(lpha)] \leq \mathrm{E}\left[Q\left(rac{mlpha}{m-1}
ight)
ight] \leq \pi_0 rac{mlpha}{m-1} \leq lpha$$

Outline

1 Introduction

2 The MABH procedure

3 The case of two hypotheses

Case m=2

BH(α)

$$R(\alpha) = \begin{cases} 0 & \text{if } \{p_1 > \alpha/2\} \cap \{p_2 > \alpha\} \\ 1 & \text{if } \{p_1 \le \alpha/2\} \cap \{p_2 > \alpha\} \\ 2 & \text{if } p_2 \le \alpha \end{cases}$$

MABH(α)

$$R'(\alpha) = \begin{cases} 0 & \text{if } \{p_1 > \alpha/2\} \cap \{p_2 > \alpha\} \\ 1 & \text{if } \{p_1 \le \alpha/2\} \cap \{p_2 > 2\alpha\} \\ 2 & \text{if } \{\{p_1 \le \alpha/2\} \cap \{p_2 \le 2\alpha\}\} \cup \{p_2 \le \alpha\} \end{cases}$$

Case m = 2: FWER and FDR control

- Hochberg(α) = Hommel(α) controls FWER at α under Simes inequality
- BH(α) = Hochberg(α) = Hommel(α), thus BH(α) controls both FWER and FDR at α under PRDS
- MABH(α) controls FDR at α but not FWER under PRDS
- Counter-example (Dirac-Uniform configuration): H_1 false with p-value 0, H_2 true with p-value Uniform Then FWER for MABH(α) is $2\alpha > \alpha$

Conclusions

- ⊕ MABH is uniformly more powerful than BH
- \oplus When m = 2, MABH is the first procedure that controls FDR but not FWER under PRDS
- \ominus Power gain of MABH over BH is negligible when m is large
- ⊖ MABH is less elegant than BH

To appear on Biometrical Journal

Solari A and Goeman JJ (2016) Minimally Adaptive BH: a tiny but uniform improvement of the procedure of Benjamini and Hochberg Biometrical Journal, special issue MCP2015

