United States Air Force 611th Civil Engineer Squadron

Elmendorf AFB, Alaska

Final

Remedial Investigation Report Galena Airport and Campion Air Station

Volume 6—Appendix C - G

19960404 096

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.

APPENDIX C

Regulatory Discussion

1.0 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARARs)

In 1980, Congress enacted the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 U.S.C. Section 9601 *et seq.*, establishing the Superfund program to address remediation of NPL sites. The regulations adopted by the U.S. Environmental Protection Agency (USEPA) that implement this program are found in 40 *Code of Federal Regulations* (CFR) Part 300, also known as the National Contingency Plan (NCP). CERCLA was amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986 which mandated that the level or standard of control specified in a remedial action at NPL sites for the site-specific pollutants be "at least that of any applicable or relevant and appropriate (ARAR) standard, requirement, criteria, or limitation under any federal environmental law, or any more stringent standard, requirement, criteria, or limitation promulgated pursuant to a state environmental statute." SARA also established that the requirements of the NCP apply to federal facilities, including their implementation of the Installation Restoration Program (IRP) at each facility.

CERCLA, as amended by SARA, requires that federal facility remedial actions (for NPL as well as IRP sites) comply with requirements or standards under federal and state environmental laws. Therefore, ARARs are pertinent to Galena and Campion. The 1990 NCP incorporates the new statutory requirement that actions at any remedial sites at this facility must comply not only with ARARs under federal laws, but also with promulgated standards, requirements, criteria, or limitations under state environmental or facility siting laws that are more stringent than corresponding federal standards. "Promulgated" state requirements are those laws or regulations that are of general applicability and are legally enforceable. In terms of state ARARs, only those promulgated standards that are (1) identified by the state in a timely manner; and (2) more stringent than federal requirements may be ARARs.

The terms "applicable" and "relevant and appropriate" are defined as follows:

"Applicable" requirements, as defined at 40 CFR Section 300.4, are cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under federal environmental or state environmental or facility siting law that specifically address a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance found at a CERCLA site. Applicable requirements are those that would be legally applicable if the remedial action had not been taken under CERCLA; the concept requires that all jurisdictional prerequisites and criteria of the particular statute have been met.

"Relevant and appropriate" requirements, as defined in 40 CFR Section 300.4, are cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under federal environmental or state environmental or facility siting law that, while not applicable (as defined above), address problems or situations sufficiently similar to those encountered at a CERCLA site that their use is well-suited to the particular site.

The preliminary ARARs described herein were identified in accordance with CERCLA Compliance with Other Laws Manual (USEPA/540/G-89/006 and USEPA/540/G-89/009) and Guidance for Conducting Remedial Investigations Under CERCLA, Interim Final (USEPA/540/G-89/004). These ARARs will be reassessed in the future, and expanded or refined as needed. Ultimately, the preferred remedial action alternative will be assessed against the CERCLA cleanup criteria, including attainment of, or compliance with, ARARs. This preliminary ARAR identification is divided into three categories of ARARs: 1) ambient or "chemical-specific" requirements; 2) locational standards; and 3) performance, design, or other "action-specific" requirements.

1.1 To Be Considered

Criteria, advisories or guidance documents that do not meet the definition of ARARs but may assist in determining what is necessary to be protective or otherwise useful in developing Superfund remedies are described as information "to-be-considered" (TBC). Three general categories of TBC information are: (1) health effects information with a high degree of credibility, i.e., reference doses; (2) technical information on how to perform or evaluate site investigations or response actions; and (3) policy, i.e., USEPA's groundwater policy. The 1990 amendments to the NCP emphasize that TBC information is to be used on an "as appropriate" basis and is intended to complement the use of ARARs, not be in competition with ARARs.

2.0 CHEMICAL-SPECIFIC ARARS

Chemical-specific ARARs are typically health-based or risk-based numerical values or methodologies which, when applied to site-specific conditions, result in the establishment of numerical values. These values establish the acceptable amount or concentration of a chemical that may be found in, or discharged to, the environment (soil, groundwater, surface water, or air) as a result of the remedial action. Potential federal and state chemical-specific ARARs for Galena Airport and Campion Air Force Station are summarized in the following subsections.

2.1 Federal Groundwater Protection Standards

Citations:

40 CFR Part 264

Discussion:

The Resource Conservation and Recovery Act (RCRA) sets forth the maximum concentrations for constituents for groundwater protection in 40 CFR Part 264, Subpart F. Table 2-1 lists these maximum concentrations which are relevant and appropriate.

Table 2-1

RCRA Subpart F Maximum Concentration of Constituents for Groundwater Protection

Constituent	Maximum Concentration (mg/L)
Arsenic	0.05
Barium	1.0
Cadmium	0.01
Chromium	0.05
Lead	0.05
Mercury	0.002
Selenium	0.01
Silver	0.05
Endrin (1,2,3,4,10,10,10-hexachloro-1,7-epoxy-1,4,4a,5,6,7,8,9a-octahydro-1, 4-endo, endo-5,8-dimethano naphthalene	0.0002
Lindane (1,2,3,4,5,6-hexachlorocyclohexane, gamma isomer	0.004
Methoxychlor (1,1,1-Trichloro-2,2-bis (p-methoxyphenylethane)	0.1
Toxaphene (C ₁₀ H ₁₀ Cl ₆ , Technical chlorinated camphene, 67-69 percent chlorine)	0.005
2,4-D (2,4-Dichlorophenoxyacetic acid)	0.1
2,4,5-TP Silvex (2,4,5-Trichlorophenoxypropionic acid)	0.01

2.2 <u>Drinking Water Standards</u>

Citations:

40 CFR Part 141 18 AAC Chapter 80

Discussion:

The National Primary Drinking Water Regulations establish Maximum Contaminant Levels (MCLs) which are enforceable standards under the Safe Drinking Water Act for specific contaminants in public water supplies. Drinking water standards are relevant and appropriate for establishing cleanup levels for groundwater even if it is not currently a drinking water source. Maximum Contaminant Level Goals (MCLGs) are non-enforceable goals on which MCLs are based. Groundwater restoration levels are based on MCLs and MCLGs.

Table 2-2 presents a side by side comparison of the published federal MCLs, State of Alaska MCLs, national and state secondary drinking water standards, and national MCLGs.

Table 2-2
National and Alaska State Drinking Water Standards

	National Primary	Alaska Primary	National and State Secondary	National
Contaminants	MCLs*	MCLs b (mg/L)	MCLs* (mg/L)	MCLGs ' (mg/L)
Organics *			-	
Benzene	0.005	0.005		zero
Benzo[a]pyrene	· · · · · · · · · · · · · · · · · · ·	0.0002		
Carbon Tetrachloride		0.005		
Chloroform	0.1			
o-Dichlorobenzene		0.6		
p-Dichlorobenzene		0.075		-
Dichloromethane	0.005 「	0.005		zero
Di(2-ethylhexyl)adipate		0.4		
Di(2-ethylhexyl)phthalate	0.006 ^f	0.006		zero f
1,2-Dichloroethane	0.005	0.005		••
1,1-Dichloroethene		0.007		
cis-1,2-Dichloroethene		0.07		
trans-1,2-Dichloroethene		0.1		
1,2-Dichloropropane		0.005		
Ethylbenzene	0.7	0.7		0.7
Hexachlorobenzene		0.001		
Hexachlorocyclopentadiene		0.05		
Monochlorobenzene		0.1		
Polychlorinated Biphenyls		0.0005		
Styrene		0.1		
2,3,7,8-TCDD (Dioxin)		3 x 10 ⁻⁸		
Tetrachloroethylene	0.005	0.005		zero
Toluene	1	1		1
1,2,4-Trichlorobenzene		0.07		
1,1,1-Trichloroethane	0.2	0.2		0.20
1,1,2-Trichloroethane	0.2 f	0.005		0.003 f
Trichloroethylene	0.005	0.005		zero
Vinyl Chloride		0.002		
Xylenes (total)	10	10		10
Inorganics				
Aluminum			0.2	
Antimony	0.006 ر	0.006		0.006 f
Arsenic	0.05 ^h	0.05		••
Barium	1 h, 2 °	2	-	2 °
Beryllium	0.004 f	0.004		0.004 ^f

Table 2-2

Contaminants	National Primary MCLs* (mg/L)	Alaska Primary MCLs b (mg/L)	National and State Secondary MCLs* (mg/L)	National MCLGs ⁴ (mg/L)
Cadmium	0.005	0.005		0.005
Chloride			250	
Chromium	0.1	0.1		0.1
Copper	1.3 ^h		1.0	1.3
Cyanide (as free Cyanide)	0.2 ^f	0.2		0.2 ^f
Fluoride	4.0	4.0	2.0	4.0
Iron	**		0.3	
Lead	.015 h	0.05 ^j		zero
Manganese			0.05	
Mercury	0.002	0.002		0.002
Nickel	0.1 ^f	0.1		0.1 ^f
Nitrate (as Nitrogen)	10	10		10
Nitrite (as Nitrogen)	1	1		1
Total Nitrate and Nitrite (as Nitrogen)	10	10		10
Selenium	0.05	0.05		0.05
Silver	0.05 h	•	0.1	
Sodium			250	
Sulfate			250	
TDS (total dissolved solids)			500	
Thallium	0.002 ^f	0.002		0.0005 ^f
Zinc			5	*-
Organic Pesticides				3.443.2

- * From 40 CFR, Section 141.61 for organics and Section 141.62 for inorganics (effective 30 July 1992, unless otherwise noted).
- ^b From 18 AAC 80.070, <u>Alaska Register</u> 118, July 1991.
- ^c From 40 CFR Section 143.3 (effective 30 July 1992, unless otherwise noted).
- ^d From 40 CFR Section 141.50 for organics and Section 141.51 for inorganics (effective 30 July 1992, unless otherwise noted).
- ^e Effective 1 January 1993.
- f Effective 17 January 1994.
- ^g Effective 17 August 1992.
- h From 40 CFR, Section 141.11 for inorganics and Section 141.12 for organics (effective 1 July 1991); however, the lead level is effective only until 7 December 1992). There is no longer an MCL for lead or copper (56 Federal Register 26460, June 7, 1991); however, there is an action level of 0.015 mg/L for lead and 1.3 mg/L for copper.
- Applies only to community water systems which serve a population of 10,000 or more that have a disinfectant added to the water.
- The Alaska Department of Environmental Conservation expects to amend its regulations in March 1993 to reflect the federal action level for lead of 0.015 mg/L and 1.3 mg/L for copper.
- MCL or MCLG not specified.

2.3 Alaska and Federal Water Quality Standards

Citations:

40 CFR Part 131 18 AAC Chapter 70 18 AAC Chapter 80 USEPA Quality Criteria for Water, 1991

Discussion:

A water quality standard defines the water quality goals of a water body by designating the use or uses to be made of the water and by setting criteria necessary to protect the uses. States adopt water quality standards to protect public health or welfare, enhance the quality of water and serve the purposes of the Clean Water Act. The State of Alaska Water Quality Standards (found at 18 AAC Chapter 70) identify desired uses for water in the state (i.e., recreational, drinking water) and establish in-stream criteria for organic and inorganic constituents which are deemed necessary for the protection of the designated uses of that waterbody. Protected water classes applicable to the Yukon River include:

- A) Water Supply
 - i) drinking, culinary, and food processing;
 - ii) agriculture, including irrigation and stock watering;
 - iii) aquaculture, and
 - iv) industrial;
- B) Water Recreation
 - i) contact recreation
 - ii) secondary recreation
- C) Growth and propagation of fish, shellfish and other aquatic life and wildlife.

The state's promulgated surface water quality standards are presented in Table 2-3 and are legally applicable. The State of Alaska Water Quality Standards apply to groundwater as well as surface water (see 18 AAC 70.110(46) and AS 46.03.900(35).

The USEPA has also developed ambient surface water quality criteria (SWQC) for the protection of aquatic life, which are found in *Quality Criteria for Water* (May 1991) and are legally applicable to cleanup activities. These federal SWQC establish acceptable instream concentrations of pollutants for the protection of aquatic life, as set forth in Table 2-4.

Table 2-3

Alaska Surface Water Quality Standards

Freshwater Uses	Dissolved Inorganic Substances
Water Supply (drinking, culinary, and food processing)	Total dissolved solids (TDS) from all sources shall not exceed 500 mg/L. Neither chlorides nor sulfates shall exceed 200 mg/L.
Water Supply (agriculture, including irrigation and stock watering)	TDS shall not exceed 1,000 mg/L, sodium absorption ratio less than 2.5, sodium percentage less than 60 percent, residual carbonate less than 1.25 mg/L, and boron less than 0.03 mg/L.
Water Recreation (contact recreation)	Not Applicable
Water Recreation (secondary recreation)	Not Applicable
Growth and Propagation of Fish, Shell- fish other Aquatic Life and Wildlife	TDS shall not exceed a maximum of 1,500 mg/L, including natural conditions. Increase in TDS shall not exceed one-third of the concentration of the natural condition of the body of water.
Freshwater Uses	Petroleum Hydrocarbons, Oll and Grease
Water Supply (drinking, culinary, and food processing)	Shall not cause a visible sheen upon the surface of the water. Shall not exceed concentrations which individually or in combination impart odor or taste as determined by organoleptic test.
Water Supply (agriculture, including irrigation and stock watering)	Shall not cause a visible sheen upon the surface of the water.
Water Recreation (contact recreation)	Shall not cause a film, sheen, or discoloration on the surface or floor of the water body or adjoining shorelines. Surface waters shall be virtually free from floating oils.
Water Recreation (secondary recreation)	Shall not cause film, sheen, or discoloration on the surface or floor of the water body or adjoining shorelines. Surface waters shall be virtually free from floating oils.
Growth and Propagation of Fish, Shell-fish other Aquatic Life and Wildlife	Total hydrocarbons in the water column shall not exceed 15 μ g/L, or 0.01 times the lowest measured continuous flow 96 hour LC ₅₀ for life stages of species identified by the department as the most sensitive, biologically important species in a particular location, whichever concentration is less (see notes 8 and 9). Total aromatic hydrocarbons in the water column shall not exceed 10 μ g/L, or 0.01 times the lowest measured continuous flow 96 hour LC ₅₀ for life stages is species identified by the department as the most sensitive, biologically important species in a particular location, whichever concentration is less (see notes 9 and 10). Concentrations of hydrocarbons, animal fats, or vegetable oils in the sediment shall not cause deleterious effects to aquatic life. Shall not cause a film, sheen, or discoloration on the surface or floor of the water body or adjoining shorelines. Surface waters shall be virtually free from floating oils.

Table 2-3

Freshwater Uses	Toxic and Other Deleterious Organic and Inorganic Substances
Water Supply (drinking, culinary, and food processing)	Substances shall not exceed Alaska Drinking Water Standards (18 AAC Ch. 80) or USEPA Quality Criteria for Water as applicable to substance.
Water Supply (agriculture, including irrigation and stock watering)	Same as where contact with a product destined for subsequent human consumption is present. Same as Growth and Propagation of Fish, Shellfish Other Aquatic Life and Wildlife or Federal Water Pollution Control Administration, Water Quality Criteria (WQC/FWPCA) as applicable to substances for stockwaters; concentrations for irrigation waters shall not exceed WQC/FWPCA or WQC 1972.
Water Recreation (contact recreation)	Substances shall not exceed Alaska Drinking Water Standards (18 AAC Ch. 80) or USEPA Quality Criteria for Water as applicable to substance.
Water Recreation (secondary recreation)	Substances shall not be present which pose hazards to incidental human contact.
Growth and Propagation of Fish, Shell-fish other Aquatic Life and Wildlife	Substances shall not individually or in combination exceed 0.01 times the lowest measured 96 hour LC ₅₀ for life stages of species identified by the department as being the most sensitive, biologically important to the location, or exceed criteria cited in USEPA Quality Criteria for Water or Alaska Drinking Water Standards (18 AAC Ch. 80), whichever concentration is less. Substances shall not be present at or exceed concentrations which individually or in combination impart undesirable odor or taste to fish or other aquatic organisms as determined by either bioassay or organoleptic tests.

Source: 18 AAC Chapter 70

Table 2-4
Federal Surface Water Quality Criteria

	Freshwater SWQC		
Chemical	Acute (μg/L)	Chronic (µg/L)	
METALS			
Aluminum	ND	ND	
Antimony	88	30	
Arsenic	360 °	190 °	
Barium	ND	ND	
Beryllium	130 a	5.3 a	
Cadmium	3.9+	1.1+	
Calcium	ND	ND	
Chromium (total)	1,700+ b	210+ b	
Cobalt	ND	ND	
Copper	9.2+	6.5+	
Iron	ND	ND	
Lead	82+	3.2+	
Magnesium	ND	ND	
Manganese	ND	ND	
Mercury	2.4	0.012	
Molybdenum	ND	ND	
Nickel	1,400+	160+ b	
Potassium	ND	ND	
Selenium	20	5	
Silver	0.92	0.12 a	
Sodium	ND	ND	
Tin			
Thallium	1,400 a,b	40 ^{a,b}	
Vanadium	ND	ND	
Zinc	120+	110+	
ORGANOCHLORINE PESTICIDES			
alpha-BHC	100	ND	
delta-BHC	100	ND	
VOLATILE ORGANICS			
Acetone	ND	ND	
Benzene	5300 a	ND	

Table 2-4

	Freshwater SWQC		
Chemical	Acute (μg/L)	Chronic (μg/L)	
VOLATILE ORGANICS (continued)			
Bromodichloromethane	11000 a	ND	
Carbon disulfide	ND	2	
Carbon tetrachloride	35,200 a	ND	
Chlorobenzene	250 ª	50 ª	
Chloroform	28900 ª	1240 ª	
1,2-Dichloroethane	118000 a	20000 a	
1,1-Dichloroethane	ND	ND	
1,2-Dichloroethene	ND	ND	
trans-1,2-Dichloroethene	11600 a	ND	
Ethyl benzene	32000 a	ND	
4-Methyl-2-pentanone	ND	ND	
Methylene chloride	11000 a	ND	
1,1,1,2-Tetrachloroethane	9.32e+03	ND	
1,1,2,2-Tetrachloroethane	9.32e+03	2400 ª	
Tetrachloroethene	ND	ND	
Toluene	17500 ª	ND	
1,1,1-Trichloroethane	18000 a	ND	
1,1,2-Trichloroethane	18000 a	9400 a	
Trichloroethene	45000 a	21900 a	
Trichlorofluoromethane	11000 a	ND	
Xylenes (total)	ND	ND	
SEMIVOLATILE ORGANICS			
Acenaphthene	d	ď	
Aniline	e	е	
Anthracene	ND	ND	
Benzo(a)anthracene	ND	ND	
Benzo(a)pyrene	ND	ND	
Benzo(b)fluoranthene	ND	ND	
Benzo(k)fluoranthene	ND	ND	
Butylbenzylphthalate	940 a	3 a	
Chrysene	ND	ND	

Table 2-4

	Freshwat	er SWQC
Chemical	Acute (μg/L)	Chronic (µg/L)
SEMIVOLATILE ORGANICS (continued)		
Di-n-butylphthalate	940ª	3ª
Dibenz(a,h)anthracene	ND	ND
Dibezofuran	ND	ND
2,4-Dimethylphenol	e	e
bis(2-ethylhexyl)phthalate	400	360
Fluoranthene	3980	ND
2-Hexanone	ND	ND
2-Methylnaphthalene		
2-Methylphenol		
Naphthalene	2300	620
Phenathrene	30	6.3
Phenol	10200 a	2560 a
Pyrene	ND	ND
GENERAL		
Cyanide	22	5.2
Total Organic Carbon		

Source: <u>USEPA Quality Criteria for Water</u>, May 1991, unless otherwise noted.

Notes:

HBL Health-Based Level

ND No data available.

U Under review.

-- Not available.

^a Lowest effect concentration, criteria not available.

b U.S. Environmental Protection Agency (EPA), 1991c. "Amendments to The Water Quality Standards Regulation to Establish the Numeric Criteria for Priority Toxic Pollutants Necessary to Bring All States into Compliance with Section 303(c)(2)(B); Proposed Rule. Federal Register 56223, Tuesday, November 19, 1991.

[°] Proposed criteria.

^d (Total NH₃) pH and temperature dependant.

^eDraft Water Quality Criteria for these parameters to be proposed March 25, 1994.

⁺ Hardness dependent criteria (100 mg/l used).

2.4 <u>USEPA RCRA Proposed Corrective Action Media Action Levels</u>

Citations:

40 CFR Part 264, Subpart S, Section 264.521 (proposed July 27, 1990, 55 Federal Register 30798 et seq.)

Discussion:

The proposed RCRA corrective action Subpart S regulations contain methodology and criteria for calculating action levels for contaminants in soil, water, and air. Action levels are not cleanup standards; rather, an exceedence of a media action level potentially triggers the need for a corrective measures study (CMS) of a solid waste management unit (SWMU). RCRA Subpart S action levels are presented in Attachment A for all constituents for which Subpart S action levels have been calculated as of April 1994. The USEPA has estimated health-based risk assessment reference doses (RfDs) and carcinogenic slope factors (CSFs) used in the calculation of the action levels. The most recent updates of these factors can be obtained from "The Electronic Handbook of Risk Assessment Values" (Electronic Handbook Publishers, Bellvue, WA, January 6, 1994).

Standard EPA action levels are calculated using methodologies outlined in the preamble to the proposed Subpart S rule, 55 <u>Federal Register</u> 30798-30873. The proposed Subpart S rule provides recommended exposure assumptions and governing equations for calculating action levels.

EPA Region III has developed its own methodology for calculation of "Risk Based Concentrations" RBCs which are used to assess cleanup needs (see Attachment B). The methodology for calculation of RBCs is analogous to that used for EPA's action levels, except that the effects of ingestion and inhalation of toxics are summed to calculate RBCs for water. Table 2-5 provides a complete list of those compounds for which RBCs can be calculated using

the data available in the most current *Electronic Handbook of Risk Assessment Values* and the USEPA Region III methodology.

Action levels calculated using the methodology proposed in Subpart S are to be considered as points of departure for setting cleanup standards. RCRA corrective action cleanup standards (media protection standards) (discussed in Section 2.5) are established at the CMS stage and may be less stringent than the action levels depending on the site conditions.

Since the RCRA Subpart S rules have not been promulgated, the media action levels are "to be considered" (TBC) information only.

2.5 <u>USEPA RCRA Proposed Corrective Action Media Protection (Cleanup)</u> Standards

Citations:

40 CFR Part 264, Subpart S, Section 264.525(d) (proposed July 27, 1990, 55 Federal Register 30798 et seq.)

Discussion:

Media cleanup standards are contaminant concentrations that must be achieved by the remedial action under the RCRA corrective action program. Media cleanup standards must (1) ensure protection of human health and the environment; (2) be set for each medium of concern during the remedy selection process; and (3) be met at the "point of compliance" specified in Section 264.525(e) of Subpart S. The USEPA is proposing to set media cleanup standards within the overall context of the remedy selection process. Media cleanup standards, since they are also still in proposal stage, are TBC information.

2.6 Alaska Oil and Hazardous Substances Pollution Control Regulations

Citations:

46 Alaska Statutes Chapter 4, Chapter 9 AS 46.09 18 AAC Chapter 75

Discussion:

The Alaska Oil Pollution Control Law governs the discharge of oil and any necessary cleanup requirements. Pursuant to this law, the Alaska Oil and Hazardous Substances Control Regulations set forth the criteria and standards for discharges of oil and hazardous substances. These regulations include discharge reporting, cleanup, and disposal requirements as well as a schedule of civil penalties for violations. The Akzo Coatings (949 F.2d 1442) court decision clarified that "general requirements containing no specific numerical standards...can be enforceable ARARs". The Alaska Oil and Hazardous Substance Pollution Control regulations are legally applicable to cleanup activities.

2.7 Underground Storage Tank Regulations

Citations:

40 CFR Part 280 18 AAC Chapter 78

Discussion:

The Alaska Underground Storage Tank Regulations are promulgated standards for owners and operators of RCRA-regulated underground storage tanks (USTs). Soil cleanup goals associated with corrective action at regulated UST sites are addressed in 18 AAC

78.315. Cleanup goals will be determined by using Table 2-5, the "Guidance for Using Alaska Cleanup Matrix", which is copied from the "Guidance Manual for Underground Storage Tank Regulations 18 AAC 78" (June 18, 1991). The instructions for applying the matrix score sheet are also included in this guidance manual. These standards are enforcable ARARs that depend on site conditions, and are applicable to cleanup activities. There are no cleanup levels in the federal UST regulations.

2.8 Alaska Solid Waste Management Regulations

Citations:

18 AAC Chapter 60

Discussion:

The Alaska Solid Waste Management Regulations set forth standards for solid waste disposal facilities, including accumulation and storage limitations, landspreading restrictions, and requirements for special waste disposal. Permitting standards as well as monitoring and reporting requirements are set forth in these regulations. Additional state regulations for solid waste disposal facilities are currently being drafted by DEC, and will be sent out for proposal in late 1994. These standards are relevant and appropriate to remediation activities.

Table 2-5

Guidance for Using Alaska Cleanup Matrix
(UST and Non-UST Soil)

I. Matrix Score Sheet	
1. Depth to Subsurface Water	
< 5 feet	(10)
5 - 15 feet	(8)
15 - 25 feet	(6)
25 - 50 feet	(4)
> 50 feet	(1)
2. Mean Annual Precipitation	
> 40 inches	(10)
25 - 40 inches	(5)
15 - 25 inches	(3)
< 15 inches	(1)
3. Soil Type (Unified Soil Classification)	
Clean, coarse-grained soils	(10)
Coarse-grained soils with fines	(8)
Fine-grained soils (low OC)	(3)
Fine-grained soils (high OC)	(1)
4. Potential Receptors	
Public Well within 1000 feet, or	(15)
Private Well(s) within 500 feet	
Municipal/private well within 1/2 mile	(12)
Municipal/private well within 1 mile	(8)
No known well within 1/2 mile	(6)
No known well witnin 1 mile	(4)
Non-potable groundwater	(1)
5. Volume of Contaminated Soil	
> 500 cubic yards	(10)
100 - 500 cubic yards	(8)
25 - 100 cubic yards	(5)
>De Minimis - 25 cubic yards	(2)
De Minimis	(0)

Matrix Score		Clea	nup Level in n	ıg/kg	
		Diesel	Gi	isoline/Unknov	m
		diesel range pet. hydro.	gasoline range pet. hydro.	Benzene	BTEX
Level A	>40	100	50	0.1	10
Level B	27-40	200	100	0.5	15
Level C	21-26	1000	500	0.5	50
Level D	<20	2000	1000	0.5	100

2.9 Alaska and Federal Hazardous Waste Management Regulations

Citations:

18 AAC Chapter 62 40 CFR Part 261 40 CFR Part 268

Discussion:

The Alaska Hazardous Waste Management Regulations include the federal RCRA Subtitle C requirements with additional criteria and standards promulgated by the State of Alaska. The state adds requirements regarding: 1) the identification of hazardous waste; 2) reporting requirements for generators and transporters; 3) standards for owners and operators of treatment, storage, disposal facilities; and 4) requirements for hazardous waste delisting petitions. The Federal regulations in 40 CFR Part 261 address the requirements for identification of hazardous wastes, which is critical during any remediation activity that may result in generation of hazardous wastes. Also critical in remediation activities are the land disposal restrictions (a.k.a. "Land Ban"), 40 CFR Part 268, which require treatment standards for certain wastes generated during remedial actions. Both the state and federal rules are legally applicable to cleanup activities at this facility.

2.10 Alaska Guidance on Surface and Groundwater Cleanup Levels

Citation:

Alaska Department of Environmental Conservation Guidance

Discussion:

The State of Alaska has issued a number of guidance documents and memoranda which provide cleanup levels for various media. Since these guidance documents are not promulgated, they are not ARARs. However, they are TBC information sources. These guidance documents include:

- Alaska Interim Guidance for Surface and Groundwater Cleanup Levels (26 September 1990)--used in the oil and hazardous substance spill program;
- Alaska Guidance Manual for Underground Storage Tank Regulations (18 June 1991);
- Alaska Guidance for Non-UST Soil Cleanup (17 July 1991); and
- Storage, Remediation, and Disposal of Non-UST Petroleum Contaminated Soils (29 July 1991).

Table 2-5, the "Guidance for Using Alaska Cleanup Matrix" is copied from the "Alaska Guidance for Non-UST Soil Cleanup", which also includes instructions for applying the matrix score sheet are included in this guidance document.

2.11 Air Standards

The following air pollution regulations are ARARs, which are relevant and appropriate to cleanup activities:

- AS 46.03 Water, Air, Energy, and Environmental Conservation;
- 18 AAC 50 Alaska Air Quality Control Regulations;
- 18 AAC 52 Alaska Motor Vehicle Emissions Inspection Rules;
- 40 CFR Part 50 National Primary and Secondary Ambient Air Quality Standards;

- 40 CFR Part 50 National Primary and Secondary Ambient Air Quality Standards;
- 40 CFR Part 58 Ambient Air Quality Surveillance;
- 40 Part 60 Standards of Performance for New Stationary Sources; and
- 40 CFR Part 61 National Emissions Standards for Hazardous Air Pollutants.

2.12 <u>Toxic Substances Control Act (TSCA)</u>

Citations:

40 CFR Part 761 18 AAC 60

Discussion:

Because PCBs are a constituent of concern, the TSCA regulations are applicable to the management of any confirmed PCB wastes. Wastes containing greater than or equal to 50 ppm PCBs are subject to the TSCA rules at 40 CFR Part 761.

Section 761.65 of these rules allows PCB wastes to be stored on site for up to one year from the date the waste is firsst placed in storage as long as the TSCA storage facility criteria are met. On-site storage may last for up to 30 days without triggering the TSCA storage facility requirements.

TSCA-regulated PCBs can be disposed of only at TSCA-authorized landfills or incinerated (40 CFR Part 761, Subpart D). Wastes that contain PCBs below 50 ppm are regulated under the Alaska solid waste rules (18 AAC 60).

PCB Spill Cleanup

The US EPA has developed national PCB spill cleanup criteria (40 CFR 761, Subpart G) which establish cleanup requirements linked to the risks posed by the spill and depend on the location and quantity of the spill. Generally, TSCA regulations are only applicable to items containing more than 50 ppm PCBs. Therefore, the US EPA spill cleanup criteria also apply only where the source of the spilled material is greater than 50 ppm PCBs. State of Alaska regulations under 18 AAC 75 provide the state with broad authority to oversee cleanup activities involving PCBs, including sites containing less than 50 ppm PCBs.

The US EPA Spill Policy also applies only to releases occurring after May 4, 1987. Cleanup requirements for releases prior to this date are established on an individual site basis by regional EPA offices and state regulatory authorities.

In general, the US EPA Spill Policy requires that media contaminated by a PCB spill be cleaned up to the same criteria as that established for the source of the spill. This requirement is dependent on the concentration of PCBs associated with the source of the spill, instead of the concentration associated with the contaminated media. For example, if a transformer having a PCB concentration of 600 ppm leaks, it will result in contaminated soil having PCB concentrations ranging from less than 600 ppm down to attenuating levels around 1 ppm. The Spill Policy states that all of the contaminated soil (even that at 1 ppm) requires management as though it contained the same concentration as the source (600 ppm).

In addition to defining management requirements for contaminated media, the Spill Policy also established several high-risk spill scenarios or other scenarios which trigger immediate reporting requirements and may, ultimately, dictate more stringent management requirements.

High-Risk Spill Scenarios

The cleanup of five high risk spill scenarios is addressed on a sitespecific basis, though they are still subject to some of the general requirements. These five high-risk spill scenarios are spills to:

- Surface waters;
- Sewers or sewage treatment systems;
- Drinking water sources or distribution systems;
- Animal grazing lands; and
- Vegetable gardens.

In any of these situations, the National Response Center and the EPA Regional Office must be notified if the spill is greater than 10 pounds of PCBs. Also, the spill residue must be disposed of and the spill boundaries must be determined. For the first three cases, the EPA cleanup guidance must be obtained within 24 hours to determine the numerical cleanup level. State of Alaska notification and reporting requirements also apply.

Other Scenarios

For other scenarios, numerical standards have been set which depend on the location, quantity, and concentration of the spill. Initially, the spill residue should be disposed of and the spill boundary must be determined. If the spill involves more than 10 pounds of PCBs, the National Response Center and the EPA regional office must be contacted. Spills of less than one pound of PCBs and less than 500 ppm must be double washed and rinsed. All contaminated soil must be excavated and backfilled with clean soil.

Spills above 500 ppm in concentration or weighing more than one pound have immediate cleanup requirements. The area must be blocked off and areas of visible contamination should be documented then cleaned. Action should be taken within 24 hours (48 hours for PCB transformers) and the site must be sampled after cleanup. If the area is an electrical substation, solid surfaces must be cleaned to 100 μ g/100 cm², and the soil must be cleaned to 25 ppm (or 50 ppm and the area labeled).

If the spill occurs in an unrestricted area, replaceable household items should be disposed of according to 40 CFR § 761.60. All outdoor and indoor surfaces should be cleaned to $10 \,\mu\text{g}/100 \,\text{cm}^2$ and the ground excavated more than 10 inches and to less than 10 ppm.

2.13 Other Chemical-Specific ARARs

The following chemical-specific ARARs may potentially be applicable:

- AS 18.45 (Atomic Energy);
- AS 46.03.250--AS 46.03.317 (Radiation and Hazardous Waste Protection);
- 18 AAC 85 (Radiation Protection); and
- AS 46.03.320--AS 46.03.330 (Pesticide Control) 18 ACC 90.

3.0 LOCATION-SPECIFIC ARARS

Location-specific ARARs are requirements that affect the management of hazardous constituents, or the units in which they are managed, due to the location of the unit(s). They might be triggered, for example, if groundwater remediation were selected as a remedial action which required the construction of new surface wastewater treatment units. Examples of sensitive locations for such units include wetlands, floodplains, historic areas, and wildlife refuges. Potential federal and state location-specific ARARs are set forth in Table 3-1.

Table 3-1
Potential Location-Specific ARARs

Statutory,		
Regulatory Basis	Citation	Description
Resource	40 CFR Sec. 264.18	Prohibits or restricts siting of solid and hazardous
Conservation and		waste management units in certain sensitive areas
Recovery Act	18 AAC Sec. 60	(100-year floodplain, active seismic area, wetlands).
	18 AAC Sec. 63.040	
Migratory Bird	16 USC Sec. 703-712	If migratory birds are present, provides protection of
Treaty Act of		almost all species of native birds in the U.S. from
1972	50 CFR Parts 10, 20, 21	unregulated activities. Unregulated activities can
		include poisoning at hazardous waste sites.
Fish and Wildlife	16 USC Sec. 2901	Requires the submittal of conservation plans
Conservation Act		outlining provisions to conserve non-game fish and
of 1980	50 CFR Part 83	wildlife. Approved conservation plans are enforced
		by state agencies.
Federal Land	13 USC Sec. 1700 et seq.	Establishes requirements concerning utilization of
Policy and		public lands, particularly rights-of-way regulation,
Management Act		land use planning and land acquisition and
		appropriation of waters on public lands.
Fish and Wildlife	16 USC Sec. 661-666c	Provides for development, protection, rearing, and
Improvement Act		stocking of all species of wildlife, wildlife resources,
		and their habitat.
Endangered	16 USC 1531 et seq.	Provides for protection and conservation of various
Species Act	50 CFR Part 200	species of fish, wildlife, and plants.
Class W. A.	50 CFR Part 402	
Clean Water Act,	33 USC 1251 et seq. Sec. 404	Prohibits discharge of dredged or fill material into
Section 404	40 CFR Part 230	wetlands without a permit.
Fish and Wildlife	33 CFR 320-330	Provides for management of fish and wildlife.
Improvement Act	16 1100 0 460	
Archaeological and Historic	16 USC Sec. 469	Establishes procedures for preservation of historical
Preservation Act	40 CFR 6.301(c)	and archaeological resources when terrain is altered
Treservation Act		as a result of a federal or federally licensed
National Historic	16 USC Sec. 470	construction activity.
Preservation Act	40 CFR Sec. 6.301(b)	Provides for the protection of historic places.
reservation Act	36 CFR Part 800	
Historic Sites,	16 USC Sec. 461-467	Provides for the protection of noticel landward
Buildings, and	10 000 000. 401-407	Provides for the protection of natural landmarks.
Antiquities Act		
Alaska Coastal	AS 46.40	Provides for the use, management, restoration, and
Management		enhancement of the overall quality of the coastal
Program Law		environment.
Alaska Coastal	6 AAC 80 and 85	Provides for the regulated use of coastal areas and
Management		their resources.

Table 3-1

Statutory, Regulatory Basis	Citation	Description
Coastal Zone Management Act	16 USC Sec. 1451	Provides for the use, management, restoration, and enhancement of the overall quality of the coastal environment.
Coastal Barrier Resources Act	16 USC 3501	Protects coastal barrier resources.
Alaska Statutes, Title 46	AS 46.03 18 AAC 15 18 AAC 70 18 AAC 72	Environmental Conservation
Alaska Statutes, Title 46	AS 46.04 18 AAC 75	Oil and Hazardous Substance Pollution Control
Alaska Statutes, Title 46	AS 46.09 18 AAC 75	Hazardous Substance Release Control
Alaska Statutes, Title 16	AS 16 5 AAC 95	Alaska Fish and Game Requirements
Alaska Statutes, Title 41	AS 41.35 11 AAC 16	Alaska Historic Preservation Requirements
Alaska Statutes, Title 27	AS 27.19 11 AAC 96 11 AAC 97	Reclamation laws governing mining (includes gravel extraction)
Alaska Statutes, Title 41	AS 41.15 AS 41.17 11 AAC 95	Forest Resources and Practices
Alaska Statutes, Title 41	AS 41.06 11 AAC 84	Geothermal Resources
Alaska Statutes, Title 38 and Title 41	AS 38 AS 41.21 AS 41.23 AAC, Title 11	Activities on state lands (including tidelands and submerged lands)

4.0 ACTION-SPECIFIC ARARS

Action-specific ARARs are technology-based or activity-based requirements that may be triggered by the particular remedial activities chosen. Action-specific ARARs do not in themselves determine the remedial alternative, rather they place restrictions on the manner in which a selected alternative may be achieved. Table 4-1 sets forth action-specific ARARs that may be applicable to the remediation activities.

Table 4-1

Potential Action-Specific ARARs

Standard, Requirement, Criteria, or Limitation	Federal Citation	Description	State Citation
Solid Waste Disposal Act	42 USC Sec. 6901-6987	Resource Conservation and Recovery	AS 46.03 Environmental Conservation
Standards for Underground Injection Requirements	40 CFR Part 147	Require compliance with state underground injection requirements.	AS 31 20 AAC 25
Criteria for Classification of Solid Waste Disposal Facilities and Practices	40 CFR Part 257	Establishes criteria for use in determining which solid waste disposal facilities and practices pose a reasonable probability of adverse effects on health or the environment and thereby prohibit open dumps.	18 AAC 62 Alaska Hazardous Waste Regulations 18 AAC 60
Criteria for Municipal Solid Waste Disposal Facilities	40 CFR Part 258	Establishes minimum federal criteria for design, construction, operation, and permitting of municipal solid waste landfills.	18 AAC 60. Additional state regulations will be promulgated after October 1993.
Identification and Listing of Hazardous Waste	40 CFR Part 261	Defines those solid wastes which are subject to regulation as hazardous waste.	18 AAC 62 Alaska Hazardous Waste Regulations
Standards Applicable to Generators of Hazardous Waste	40 CFR Part 262	Establishes standards for generators of hazardous waste	18 AAC 62 Alaska Hazardous Waste Regulations
Standards Applicable to Transporters of Hazardous Waste	40 CFR Part 263	Establishes standards which apply to persons transporting hazardous waste within the U.S.	18 AAC 62 Alaska Hazardous Waste Regulations

Table 4-1 (Continued)

Standard, Requirement, Criteria, or Limitation	Federal Citation	Description	State Citation
Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities	40 CFR Part 264	Establishes minimum national standards which define the acceptable management of hazardous waste for owners and operators of facilities which treat, store, or dispose of hazardous waste.	18 AAC 63 18 AAC 62 Alaska Hazardous Waste Regulations AS 46.09 Hazardous Substance Release Control
Standards for Management of Specific Hazardous Wastes and Specific Types of Hazardous Waste Management Facilities	40 CFR Part 266	Establishes requirements which apply to recyclable materials used in a manner constituting disposal or hazardous waste burned for energy recovery.	18 AAC 62 Alaska Hazardous Waste Regulations
Interim Standards for Owners and Operators of New Hazardous Waste Land Disposal Facilities	40 CFR Part 267	Establishes minimum national standards that define acceptable management of hazardous waste land disposal facilities.	18 AAC 62 Alaska Hazardous Waste Regulations
Land Disposal Restrictions Program	40 CFR Part 268	Sets treatment standards for hazardous wastes based on the levels achievable by current technology; sets two-year national variances from the statutory effective dates due to insufficient treatment capacity.	18 AAC 62 Alaska Hazardous Waste Regulations
Hazardous Waste Permit Program	40 CFR Part 270	Establishes provisions covering basic EPA permitting requirements.	AAC 62 Alaska Hazardous Waste Regulations
Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks (USTs)	40 CFR Part 280	Provides regulations pertaining to underground storage tanks.	18 AAC 78 Alaska Underground Storage Tank Regulations

Table 4-1 (Continued)

Standard, Requirement, Criteria, or Limitation	Federal Citation	Description	State Citation
Clean Water Act	33 USC Sec. 1251-1376		
EPA- Administered Permit Programs: The National Pollutant Discharge Elimination System	40 CFR Part 122	Requirements for the discharge of pollutants from any point source into waters of the U.S.	18 AAC 70 Alaska Water Quality Standards
	40 CFR Part 136	Guidelines which establish test procedures for analysis of pollutants.	
	40 CFR Part 403	Sets standards for discharging to an off-site publicly-owned treatment works (POTW).	18 AAC 72 Alaska Wastewater Disposal Regulations
Criteria and Standards for the National Pollutant Discharge Elimination System	40 CFR Part 125	Provides discharge criteria, chemical standards, and permit forms for existing industrial operations.	
State of Alaska, Oil Pollution Control Law		Establishes requirements relating to oil, petroleum, and hazardous substance pollution prevention, control, and cleanup.	AS 46.04 18 AAC 75 18 AAC 75.319 18 AAC 75.327 18 AAC 75.337 Alaska Oil and Hazardous Substances Pollution Control Regulations
Occupational Safety and Health Act of 1970	29 USC Sec. 657 and 667		AS 18.60
Occupational Safety and Health Standards	29 CFR Part 1910	Sets standards for safety in the work environment.	8 AAC 61
Safety and Health Regulations for Construction	29 CFR Part 1926	Sets standards for safety in the construction work environment.	

Table 4-1 (Continued)

Standard, Requirement, Criteria, or Limitation	Federal Citation	Description	State Citation
State of Alaska, Fire Protection		Sets standards and requirements for safety and fire protection.	AS 18.70 13 AAC 50 and 18
Safety and Health Standards for Federal Service Contracts	29 CFR Part 1925	States that safety and health standards are applicable to work performed under Federal Service Contracts.	
Clean Air Act	42 USC Sec 7401-7642		
National Emissions Standards for Hazardous Air Pollutants	40 CFR Part 61	Establishes emissions standards for hazardous air pollutants that may reasonably be anticipated to result in an increase in mortality or an increase in serious irreversible, or incapacitating illness.	18 AAC 50 Alaska Air Quality Control Regulations 18 AAC 51 Alaska Administrative Procedure and Permit Regulations
National Primary and Secondary Ambient Air Quality Standards	40 CFR Part 50	Establishes standards for ambient air quality to protect public health and welfare.	18 AAC 50 Alaska Air Quality Control Regulations 18 AAC 51 Alaska Administrative Procedure and Permit Regulations

Table 4-1

(Continued)

Standard, Requirement, Criteria, or Limitation	Federal Citation	Description	State: Citation
Safe Drinking Water Act	40 USC Sec. 300G		
Underground Injection Control 40 Program	40 CFR Part 144	Provides for protection of underground sources of drinking water.	
Underground Injection Control Program: Criteria and Standards	46 CFR Part 146	Provides technical requirements for UIC programs.	AS 31.05 20 AAC 25
Toxic Substances Control Act	15 USC Sec. 2601-2671		
Federal Insecticide, Fungicide, and Rodenticide Act	7 USC Sec. 136-136y		
State of Alaska, Pesticide Control		Establishes standards and requirements for pesticide control.	AS 46.03.320 through 46.03.330
State of Alaska, Appropriation of Water		Establishes requirements concerning appropriation of water.	AS 46.15 11 AAC 93

Attachment A

RCRA Subpart S Action Levels

Sub Part S Action Levels - April 15, 1994		Oral	Inh		Oral	Inh.	Soil Action Levels	Levels	Air Action Level	n Level	Water Action Level	tion Level		AWQC - FW	¥
		RfD	RfC	¥	SF	Unit Risk	non carc.	carc.	non car	carc.	non carc.	carc.	MCL	Acute	Chronic
Chemical	CAS#	mg/kg-d	mg/m3	Evid.	(mg/kg-d)-1	(ug/m3)-1	mg/kg	mg/kg	ug/m3	ng/m3	mg/L	mg/L	mg/L	ng/L	ug/L
acenaphthene	83-32-9	0.0.6		¥			4800	•	:	;	2.1	-			
acenaphthylene	208-96-8			q			:	-	:	:	-	:			
acephate	30560-19-1	0.004		C	0.0087		320	804,598	:	:	0.14	0.04023			
acetaldehyde	75-07-0		0.00	B2		2.2E-08	4	-	9	0.4545		•			
acetate, ethyl	141-78-6	6.0		٧			72000	1		:	31.5	;			
acetic acid, 2,4,5-trichlorophenoxy	93-76-5	0.01		Y V			800	;	+	:	0.35				
acetochlor	34256-82-1	0.02		NA			1600	-	;	!	0.7	:			
acetone	67-64-1	0.1		٥			8000	. :	:	;	3.5				
acetone cyanohydrin	75-86-5	0.07	0.01	NA			5600	-	10	;	2.45	;			
acetonitrile	75-05-8	0.006	0.05 NA	NA A			480	:	20	:	0.21	:			
acetophenone	98-86-2	0.1		۵			8000	1	:	;	3.5	9			
acetyl chloride	75-36-5			٥			:	;	:	1	1	1			
acifluorfen, sodium	62476-59-9	0.013		¥			1040	;	:	:	0.455	-			
acrolein	107-02-8	0.02	2E-05	ပ			1600	:	0.05	-	0.7	/			
acrylamide	79-08-1	0.0002	L	82	4.5	0.0013	16	0.15556	:	0.0008	3 0.007	7.8E-08	1		
acrylate, 2-ethoxyethyl	108-74-1			AN				:	:	:	:	:			
acrylate, ethyl	140-88-5			82	0.048	-		14.5833		:	1	0.00073	-		
acrylic acid	79-10-7	0.5	0.001	A A			40000	:	1	:	17.5	[1			
acrylonitrile	107-13-1		0.002	18	0.54	89000000	-	1.2963	2	0.0147	-	6.5E-05			
adiponitrile	111-69-3			٥			:	:		:	'	-			
alachlor	15972-60-8	10.0		82	0.08	-	800	8.75	-	;	0.35	5 0.00044	0.007		
alar	1596-84-5	0.15		NA			12000	:	:	•	5.25	-			
aldicarb	116-06-3	0.0002		D			18	:	•	:	0.007		0.003		
aldicarb sulfone	1646-88-4	0.001		NA			80		;	1	_		0.003		
aldrin	309-00-2	3E-05		82	17	0.0049	2.4	0.04118	;	0.000	2 0.00105	5 2.1E-08		3	
alidochlor	93-71-0	1 2		¥			:	:	:	:	:	;			
Alle	74223-64-6			¥			20000	:	:	:	8.75	:			
allyl alcohol	107-18-6	0.005					400		:	:	0.175				
allyl chloride	107-05-1		0.001				:	3		-	:	:			
aluminum	7429-90-5			¥			;		:	:	:				
aluminum phosphide	20859-73-8			¥			32	;	:	:	0.014				
amdro	67485-29-4	4 0.0003		¥			24	:	-	:	0.0105	-			
ametryn	834-12-8	0.00		¥			720	:	:	!	0.315				
amine, n,n-diphenyl	122-39-4	0.025	15	¥			2000	\perp		:		1			
amine, n-nitroso-di-n-butyl	924-16-3			82	5.4	0.0018		0.12963		0.0008		6.5E-08			
amine, n-nitroso-di-n-propyl	621-64-7			82			;	0.1		:	-	5F-08			
amine, N-ntrosodiphenyt-	86-30-8	_		82	0.0049			142.857		:	: 3	9.			
amitraz	33089-61-1	1 0.0025					200		:		0.0875				
ammonia	7664-41-7		0.1				:	:	100		:	-			
ammonium acetate	831-61-8			۵			:	•	:	:	:	:			
ammonium methacrylate	16325-47-6	90		٥			:	:	:	:	:	:			
ammonium sulfamate	7773-06-0	0.2	1				16000		<u> </u>	:	,	4	_		
aniline	62-53-3		0.001	$\overline{}$	0.0057		:	122.807		-	:	0.00614			
aniline hydrochloride, 2,4,6-trichloro	33663-50-2	2		ပ	0.029		:	241.379	:	;	1	0.01207			
aniline hydrochloride, 2,4-dimethyl	21436-96-4	4		ပ	0.58		:	12.069	;		:	0.0008	-		
aniline hydrochloride, 4-chloro-2-methyl	3165-93-3			82	0.46	8	:	1.52174		:	:	7.8E-05			
aniline, 2,4,8-trichloro	834-93-5			ပ	0.034		:	205.882		;	:	0.01029			
aniline, 2,4-dimethyl	95-68-1			ပ	0.75		;	9.33333			_	0.00047			

Sub Part S Action Levels - April 15, 1994		Oral	lnh		Oral	lnh.	Soil Action Levels	n Levels	Air Actik	Air Action Level	Water Action Level	tion Level		AWOC - FW	FW
		RfD	RfC	Wt. of	SF	Unit Risk	non carc.	carc.	non car carc.	carc.	non carc.	carc.	MCL	Acute	Chronic
Chemical	CAS #	mg/kg-d	mg/m3	Evid.	(mg/kg-d)-1	(ug/m3)-1	mg/kg	mg/kg	ug/m3	ug/m3	mg/L		ma/L		l/bo/
aniline, 2-chloro	95-51-2			¥			:	:							
aniline, 3-chloro	108-42-9			AA			;	;	:	:	:	:			
anlline, 4-chloro	106-47-8	0.004		AN A			320		:	:	0.14				
aniline, 4-chloro-2-methyl	95-69-2			82	0.58		:	1.2069		;	;	L			
aniline, N,N'-diethyl	91-66-7			NA				:		;	;	:			
aniline, n,n-dimethyl	121-69-7	0.002		NA			160	:	:	;	0.07				
aniline, N-ethyl	103-69-5			NA NA			;	:	:	;	;	:			
anisidine, ortho-	90-04-0			¥			;	:	:	:	;	:			
anthracene	120-12-7	0.3		0			24000		:	:	10.5				
anthracene, 7,12-dimethylbenz(a)	57-97-8			¥×			:			:	;				
antimony	7440-38-0	0.0004		¥N			32		:	:	0.014	;	0.00		
antimony pentoxide	1314-60-9	0.0005		AN AN			40	!	:	:	0.0175	L			
antimony potassium tartrate	304-61-0	0.0009		¥N			72	;	:	:	0.0315				
antimony tetroxide	1332-81-8	0.0004		AN			32	L	:	:	0.014				
antimony trioxide	1309-64-4	0.0004		¥			32		:	:	0.014				
apollo	74115-24-5	0.013		၁			1040		:	:	0.455				
aramite	140-57-8	0.05		82	0.025	7.1E-08	4000	28	:	0.1408	1.75	0.0014			
aroclor 1016	12674-11-2			ΑN			5.8	-		;	0.0	_			0.014
aroclor 1248	12672-29-6			A A			:	:	:	:	:	:			0.014
aroclor 1254	11097-69-1			¥N			:	:	:	:	1				
arsenic	7440-38-2	0.0003		4		0.0043	24		:	0.0002	o	:	0.05	360	190
arsine	7784-42-1		5E-05	ž			:		0.05		L	:			
asbestos	1332-21-4			«			;	:	:	:	:	:	7		
assure	76578-14-8	0.009		۵			720	:	:	:	0.315	:			
asulam	3337-71-1	0.05		Y.			4000	1	:	:	1.75				
atrazine	1912-24-9	0.035		S	0.222		2800	31.5315		ļ.	1.225	0.00158	0.003		
avermectin b1	65195-55-3	0.0004		¥ _N			32		L	:	0.014		_		
azobenzene	103-33-3	L		82	0.11	0.000031	:	6.36364	,	0.0323	L	0.00032			
barium	7440-39-3	0.07	5E-04	NA NA			2800		0.5	<u> </u>	2.45		2		
barium cyanide	542-62-1	0.1		Y.			8000		;		3.5				
baygon	114-26-1	0.004		ΑN			320		:	;	0.14				
bayleton	43121-43-3			AN AN			:		:	:				ŀ	
baythroid	68359-37-5			AN			,	:	;	:	,	:			
benefin	1861-40-1	0.3		NA			24000	;	:	;	10.5	:			
benomyl	17804-35-2	0.05		¥			4000	:	;	;	1.75	:			
bentazon	25057-89-0	0.0025		NA			500	:	:	:	0.0875	:			
benzal chloride	98-87-3			NA NA			;	:	:	;		:			
benzaldehyde	100-52-7	0.1		NA			8000	:	;	;	3.5	:			
benzaldehyde cyanohydrin	532-28-5			NA NA			•	:	;	;	•	ţ			
benzene	71-43-2			A	0.029	8.3E-06	:	24.1379	:	0.1205		0.00121	0.005		
benzene, 1,2,4-tribromo	615-54-3	0.005		NA NA			400	:	:	:	0.175	:			
benzene, 1,2,4-trichloro	120-82-1	0.01	600.0	O			800		9	:	0.35	:	0.07		
benzene, 1,2-dinitro	528-29-0	0.0004		Q			32	:		:	0.014				
benzene, 1,3,5-trinitro	99-35-4	5E-05		A A			4	;	:	;	0.00175	1			
benzene, 1,3-dinitro	99-65-0	0.0001		٥			8	-	;	:	0.0035	;			
benzene, 1,4-dibromo	106-37-6	0.01		NA			800	1	;	;	0.35	1			
benzene, 1,4-dinitro	100-25-4	0.0004		¥.			32	;	:	:	0.014	:			
benzene, m-chloronitro	88-73-3			¥			;	;	:	:	-	:			
			-											4	

Sub Part S Action Levels - April 15, 1994					_	- P	Soil Action Levels	reveis	Air Action Level		Water Action Level	on Level	T		A
	* 040			Evild /		Unit Misk	non carc. carc.	carc.	. 1	,	arc.			او	Chronic
Characa	,	D-BY/BI	211/011	T		1-(6)(/00)	п9/кд	mg/kg	cm/gn	ug/m3			mg/L	7/6n	ng/L
benzene, p-chloronitro	121-73-3			82	0.018		:		1	:		0.00194			
benzidine	92-87-5	0.003		∀	230	0.087	240		;	1E-05	0.105	1.5E-07			
benzidine, 3,3'-dimethyl	119-93-7			B2	9.2		:	0.07609	:	:	;	3.8E-06			
benzidine, 3,3-dimethoxy	119-90-4			B2	0.014		:	20	:	:	:	0.0025			
benzo(a)anthracene	58-55-3			82	0.73		:	0.9589	:	;	:	4.8E-05			ĺ
benzo(a)pyrene	50-32-8			B2	7.3		:	0.09589	:	:	:	4.8E-06	2E-04		
benzo(b)fluoranthene ·	205-99-2			B2	0.73		:	0.9589	:	:	:	4.8E-05			
benzo(g,h,i)perylene	191-24-2			٥			:	;	;	:	:	:			
benzo(j)fluoranthene	205-82-3			NA			:	:	-	:		:			
benzo(k)fluoranthene	207-08-9			82	0.073		:	9.58904	1	:	:	0.00048			
benzoic acid	65-85-0	4		۵			320000	;	:	:	140	:			
benzothiazole, 2-(thiocyanomethyithio)-	21584-17-0	0.03		ΑĀ			2400	1	:	:	1.05	•			
benzotrichloride	98-07-7			B2	13		•	0.05385	:	:	:	2.7E-06			
benzyl alcohol	100-51-6	0.3		ΑA			24000		:	:	10.5	:			
benzyl chloride	100-44-7			B2	0.17		:	4.11765	:		;	0.00021			
beryllium	7440-41-7	0.005		B2	4.3	0.0024	400	0.16279	;	0.0004	0.175	8.1E-08	0.004		
bidrin	141-86-2	0.0001		¥			8	1	:	:	0.0035	:			
biphenthrin	82657-04-3	0.015		Y.			1200	:	;	;	0.525	;			
biphenyl, 1,1-	92-52-4	0.05		٥			4000	:	!	:	1.75	:			
bis(2-chloroethoxy)methane	111-91-1			0			:	:	:	:	;	•			
bisphenol A	80-05-7	0.05		NA			4000	:	:		1.75	;			
boron ·	7440-42-8	0.09	0.05	NA			7200	:	20	;	3.15	:			
boron trifluoride	7637-07-2		7E-04 NA	ΑA			:	:	0.7	:	:	:			
bromoacetone	598-31-2			¥			:	:	1	:	:	:			
bromochloromethane	74-97-5						:	_ [1	:	:	:			
bromodichloromethane	75-27-4	0.02		B2	0.08		1600	11.6667	1	:	0.7	0.00058	0.1		
bromodifluoromethane	1511-62-2			¥					•	:	:	:			
bromoform	75-25-2	0.02		B2	0.00793	1.16-08		88.2724	:	Ö	0.7	0.00441	0.1		
bromomethane	74-83-9	0.0014	0.005	۵			112		2		0.049	:			
bromophos	2104-96-3	0.005		Y.			400	:	:	:	0.175	:			
bromotrichloromethane	75-82-7						;	:		:	:	:			
bromoxynil	1689-84-5	0.05		¥			1600	:	:	:	0.7	:			
bromoxynil octanoate	1689-99-2	0.02		¥			1600	:	:	:	0.7	:			
busan 77	31512-74-0			¥.			:	:		:	:	:			
busan 90	2491-38-5			Y.				1	:			:			
butadiene, 1,3-	108-89-0			82		0.00028		1	:	0.0038	-	:			
butadiene, 2-chloro-1,3-	126-99-8	0.05	0.007	¥			1800	:	/		0.7	:			
butane, 1-chloro	109-69-3	0.4		۵	-		32000		:	:	4	:			
butane, 2-chloro	78-86-4			٥			:		:	:	: 1	:			
butanol, 1-	71-36-3	0.1					8000	:	:	:	3.5	:			
butanone, 2-	78-93-3	9.0	-	۵			48000	:	1000		21	:			
butene, 1,4-dichloro-2-	764-41-0			82		0.0026		:	:	0.0004	:				
butylate	2008-41-5	0.05		¥			4000	:	:	:	1.75				
butylchloride, t-	507-20-0	21		٥			:	:	:	:	:	:			
butyiphthalyl butyiglycolate (BPBG)	85-70-1	1		¥			80000	:	:	:	35				
butyric acid, 4-(2,4-dichlorophenoxy)	94-82-6	0.008		NA			640	:	:	:	0.28	:			
butyric acid, 4-(2-methyl-4-chlorophenoxy)	94-81-5	0.01		ΥN			800	;	,	:	0.35				
	00000			× ×		_	_		_			_			

one rail o Action Levels - April 15, 1994		Oral	두		Oral	ī.	Soil Action Levels	1 Levels	Air Action Level	n Level	Water Action Level	ion Level		AWOC - FW	3
		RfD	$\overline{}$	Wt. of	SF	Unit Risk	non carc.	carc.	non car	carc.	non carc. carc.	carc.	MCL	Acute	Chronic
Chemical	CAS #	mg/kg-d	mg/m3	Evid.	(mg/kg-d)-1	(ug/m3)-1		ma/ka		ua/m3	ma/l	ma/l	Γ		1/0
cacodylic acid	75-60-5	0.003			1		40		1	:	0.105		Ī		- AN
cadmium (carcinogenicity)	7440-43-9			B1		0.0018	:	:	:	0.0006		:	0.005	3.9	1.1
cadmium (food)	7440-43-9	0.001		NA			80	:	:	:	0.035	:	0.005	3.9	-
cadmium (water)	7440-43-9	0.0005		NA			40	-	:	:	0.0175	:	0.005	3.9	-
calcium cyanide	592-01-8	0.04		NA			3200	-	:	:	1.4	:			
caprolactam	105-80-2	0.5		ΑN			40000	:	:	:	17.5	:			
captafol	2425-08-1	0.002		ပ	0.0086		160	813.953	:	:	0.07	0.0407			
captan	133-06-2	0.13		B2	0.0035		10400	200	:	:	4.55	0.01			
carbaryl	63-25-2	0.1		NA			8000		;	:	3.5	:			
carbazole	86-74-8		-	B2	0.02		;	35	:	:	;	0.00175			
carbofuran	1563-66-2	0.005		¥N			400	:	:	:	0.175	:	0.04		
carbon disulfide	75-15-0	0.1	0.01	AN AN			8000		101	:	3.5	:			
carbon tetrachloride	56-23-5	0.0007		B2	0.13	0.000015	56	5.38462		0.0867	0.0245	0.00027	0.005		
carbonyt sulfide	463-58-1		_	AN					!	;		:	+-		
carbosulfan	55285-14-8	0.01		¥.			800	:		:	0.35				
carboxin	5234-68-4			4			8000		!	:	3.5	:			
chloral	75-87-8	0.002		¥			160		:		0.07	:			
chloral hydrate	302-17-0			¥.			:		:		:	:			
chloramben	133-90-4	0.015		¥			1200		:	:	0.525	:			
chloranil	118-75-2			ပ	0.403		:	17.3697	:		:	0.00087			
chlordane	57-74-9	9E-05		B2	1.3	0.00037	4.8	0.53846		0.0027	0.0021	2.7E-05	0.002	2.4	0.0043
chloride, ethyl	75-00-3		101	¥			:	:	10000	:	:	:			
chlorimuron-ethyl	90982-32-4	0.05	-	NA			1600	:	-		0.7	:			
chlorine	7782-50-5		_	NA			-		:		:	!			
chlorine cyanide	506-77-4	0.05	T	NA			4000	:	:	1	1.75	1			
chlorine dioxide	10049-04-4		2E-04 N	Ϋ́			:	:	0.2	:	:				
chlorite (sodium salt)	7758-19-2			¥			;	:	;	:	:	•			
chloroacetaldehyde	107-20-0			4			:	:	;	:	•	:			
chloroacetic acid	79-11-8	0.002		¥			18	:	:	:	0.07	:			
chloroacetophenone, 2-	532-27-4		3E-05 N	4			:	-	0.03	:	:	:			
chlorobenzene	108-90-7	0.02	0.02	۵			1600		20	:	0.7	:	0.1		
chlorobenzilate	510-15-8	0.02		32	0.27	0.000078	1800	2.59259		0.0128	0.7	0.00013			
chlorobenzoic acid, p-	74-11-3	0.2		₹			16000	:		:	7	:			
chorobenzotrifilloride, 4-	98-98-6	0.02		≰ .	000		200	-	:	:	0.0	- 0000			
chlorocyclohexane, 1,2,3,4,5-pentabromo-6-	87-84-3				0.26		:	26.9231	:	:	:	0.00135			
chlorocyclopentadiene	41851-50-7						:	•	: 0	;	;	:		1	
chorodifluoromethane	12-42-0		00	¥ i				'	20000	:		:		1	
chloroform	67-66-3	0.01	-	B2	0.0061	0.000023	008	114.754	:	0.0435	0.35	0.00574	0.1		
chloromethane	74-87-3			,	0.013	1.8E-06		538.462	:	9,5556	:	0.02692			
chloronaphthalene, beta-	91-58-7	0.08		AN :			6400	:	:	:	2.8	:			
chlorophenoxyacetic acid, z-methyl-4-	94-74-0	0.000.0	-	\$ 9		100	04	:		: .	0.01/2	: :			
chloropropane, 1,2-dibromo-3-	8-71-96	0	7E-04 B	79	4.	0.3E-07	: 0	0.0	7.0	1.4483	:	Z.5E-U5	2E-04		
chlorpropham	101-21-3	0.2		¥ :			16000	:	:	:	/ 2	:			
chlorpyrifos	2921-88-2	0.003	-	NA N			240	:	:	:	0.105	;			
chlorpyrifos methyl	5598-13-0		_	4 Z			800	1	:	:	0.35	;			
chlorsulfuron	64902-72-3			∮ ⟨			4000		1	:	1.75	: 0			
chiorrhalonii	1897-45-6			79	0.0		1200	03.0304	:		0.525	0.00318			
chlorthiophos	60238-56-4	0.0008		V.			64	:	-	:	0.028		_	_	

1000						1									
Sub Part S Action Levels - April 10, 1884		ie o	uu u	\$0 */W	Oral	Inn.	Soil Action Levels	Levels	Air Action Level	n Level	Water Action Level	ion Level		.: E	× .
Chemical	CAS #	ma/ka-d	33		(ma/ka-d)-1	(ua/m3)-1	ma/ka ma/k	0	ua/m3 ua/m	ua/m3	ma/l care. care.	mo/l		ווט/ן	CINOTIC Ind/I
chromium (hexavalent)	18540-29-9			4		0.012	8		1	8E-05			T-	18	11
chromium (trivalent)	16065-83-1	-		Υ×			80000	:	:	:		:	0.1	1700	210
chrysene	218-01-9			82	0.0073		:	95.8904	:	:	:	0.00479			
coke oven emissions	8007-45-2			4		0.00062	:	:	:	0.0016	:			•	
copper	7440-50-8	0.037		۵			2960	:	:	:	1.295	;	1.3	18	12
copper cyanide	544-92-3	0.005		Ϋ́			400	-	;	;	0.175	:			
creosote, coal tar	8001-58-9			18			:	:	:	:	:	:			
cresol, 2,6-dinitro-p-	609-93-8			¥			:	1	:	:	;	:			
cresol, 4,6-dinitro-o-	534-52-1			Ν			:	. 1	:	:	:	;			
cresol, p-chloro-m-	59-50-7			Ā			:	:	:	:	;	:			
crotonaldehyde	123-73-9			ပ	1.9			3.68421	:	:	:	0.00018			
cumene	98-87-8	0.04	O.009 NA	NA			3200		6	:	1.4	;			
cyanazine	21725-46-2	0.002		ပ	0.84		160	8.33333		:	0.07	0.00042			
cyanide	57-12-5	0.02		D			1600	:		:	0.7	1	0.5	22	5.2
cyanogen	460-19-5	0.04		NA			3200	-		:	1.4	:			
cyanogen bromide	506-68-3	0.09		NA			7200		:	:	3.15	1			
cycloate	1134-23-2			NA			:		-	:	;	;			
cyclohexanol	108-93-0			ΝA				-	:	:	:	:			
cyclohexanone	108-94-1	9		NA			400000		:	:	175	:			
cyclohexene, 4-vinyl-1-	100-40-3			NA			:		:	:	;	;			
cyclohexylamine	108-91-8	0.5		NA			16000	:	:	:	7	:			
cyclopentadiene	542-92-7			NA				:	1	:	1	:			
cyhalothrin/karate	88085-85-8	0.005	·	NA			400	:	:	1	0.175	;			
cypermethrin	52315-07-8	0.01		NA			800	•	:	:	0.35	:			
cyromazine	86125-27-8	0.0075		¥			900	:	:	:	0.2825	:			
dacthal	1861-32-1	0.5		ΝA			40000	:	:	:	17.5	:			
dalapon	75-99-0	0.03		¥			2400	:	;	:	1.05	:	0.5		
danitol	39515-41-8			Ϋ́				:	;	:	;	:			
ddd, 4,4'-	72-54-8			B2	0.24		:	2.91667	:	:	:	0.00015			
dde, 4,4*-	72-55-9			82	0.34		:	2.05882	:	:					
ddt, 4,4	50-29-3	0.0005		82	0.34	0.000097	40	2.05882	:	0.0103	ŏ	0.0001			0.001
decabromodiphenyl ether	1163-19-5	0.01		ပ			800	:	,	:	0.35	:			
demeton	8065-48-3	4E-05		NA		Ä.	3.2	:	:	:	0.0014	-			
di(2-ethylhexyl)adipate	103-23-1	9.0		၁	0.0012		48000	5833.33	:	:	21	_	0.4		
dialtate	2303-16-4			82	0.081	A	:	11.4754	;	:	:	0.00057			
diazinon	333-41-5	0.000		¥N			72		;	1	0.0315	;			
diazomethane	334-88-3			¥			:	1	:	:	:	:			
dibenz(a,h)anthracene	53-70-3	-		82	7.3		-	0.09589	:	:	:	4.8E-08			
dibenzofuran	132-64-9			۵				:	:	:	:	•			
dibenzofurans, brominated	NO CASRN			٥			;	:	:	:	:		\downarrow		
dibromochloromethane	124-48-1	0.02		ပ	0.084		1600	83.3333	:	:	0.7	0.00417	0		
dibromodichloromethane	594-18-3			٥			:	1	;	:	:	:			
dibromodiphenyl ether, p,p*-	2050-47-7			٥		A		:	:	:	:		\rightarrow		
dibromoethane, 1,2-	106-93-4	0.0002		82	82	0.00022	18	0.00824	:	0.0045	0.007	4.1E-07	2E-05		
dicamba	1918-00-9	0.03		¥.			2400			:	1.05				
dichlorobenzene, 1,2-	95-50-1	0.09		۵			7200	:	200	:	3.15	:	9.0		
dichlorobenzene, 1,3-	541-73-1		α	۵			:		:	;	:	: 3			
dichlorobenzene, 1,4-	106-46-7		B.0	ပ	0.024			291.667	800	;	:	0.01458	0.075		

AL_PRINT.XLS

		Oral	돈		Oral	Inn.	Soil Action Levels	n Levels	Air Action Level	n Level	Water Action Level	ion Level		AWGC - FW	3
		RfD	RfC	Wt. of	SF	Unit Risk	non carc.	carc.	non car	carc.	non carc. carc.	carc.	MCL	Acute	Chronic
Chemical	CAS #	mg/kg-d	mg/m3	Evid.	(mg/kg-d)-1	(ug/m3)-1	mg/kg	mg/kg	ug/m3	ua/m3	ma/L	ma/L	Γ.	Г	ua/L
dichlorobenzidine, 3,3-	91-94-1			B2	0.45		:	1.55558	1	:	1	7.8E-05			
dichlorodifluoromethane	75-71-8	0.2	0.2	NA			16000		200	:	7	:			
dichloroethane, 1,1-	75-34-3	0.1	0.5	ပ			8000	-	200	1	3.5	:			į
dichloroethane, 1,2-	107-08-2			82	0.091	0.000026	;	7.69231	:	0.0385	;	0.00038	0.005		
dichloroethene, 1,1-	75-35-4	0.00		၁	9.0	0.00005	720	11.6667	:	0.2	0,315	0.00058	0.007		
dichloroethene, 1,2- (mixed isomers)	540-59-0	0.00	1	NA			720	;	;	!	0.315	:			
dichloroethene, cis-1,2-	156-59-2	0.01		Q			800	1	:	:	0.35	:	0.07		
dichloroethene, trans-1,2-	158-60-5	0.02		NA			1600		:	:	0.7		0.1		
dichlorophenol, 2,3-	578-24-9			AN			:	:	1	:	,	:			
dichlorophenol, 2,4-	120-83-2	0.003	_	Y.			240	;	:	:	0.105	;			
dichlorophenol, 2,5-	583-78-8			AN					;	;	:				
dichlorophenol, 2.6-	87-65-0			AN					:	-	:				
dichlorophenol, 3.4-	95-77-2			NA			:	:		:		!			
dichlorophenol, 3.5-	591-35-5			AM					!	:					
dichlorophenoxyacetic acid, 2.4-	94.75.7	0.0		AN			008		!		0.35		0.07		
dichloropropane, 1.1-	78-99-9			AN					:	:					
dichloropropane, 1,2-	78-87-5		0.004	B2	0.088			10 2941	4	:	:	0.00051	0 005		
dichloropropane, 1,3-	142-28-9			Y.				-	:	:	:	:			
dichloropropane, 2,2	594-20-7			AN				:	:	:	:				
dichloropropanol, 2,3-	616-23-9	0.003		Y.			240		:	:	0 105				
dichloropropene, 1.3-	542-75-8	0.0003	0.02		0.18	0.000037	24	6	20	0.007	0 0 105	910000			
dichlorprop	120-38-5			NA		.!			:	1	2 :	-			
dichlorvos	62-73-7	0.0005		B2	0.29		40	2,41379	:	:	0.0175	0.00012			
dicofol	115-32-2			NA N				1	:	:	:	-		-	
dicyclopentadiene	77-73-6	0.03	1 2E-04 NA	NA		I C	2400	-	0.2	:	1.05	:			
dieldrin	60-57-1	5E-05		B2	16	0.0046	4	0.04375		0.0002	0.00175	2.2E-08		2.5	0.0019
diesel engine emissions	NO CASRN		0.005	NA			:	:	5	:	:	:			
diethyl sulfate	64-67-5			NA				:	:	:	:	:			
diethylene glycol dinitrate	693-21-0			a			-		-:	:	:	:			
diethylformamide	617-84-5	0.011		NA			880	:	:	:	0.385	•			
diethylphthalate	84-66-2	0.8		٥			64000	:	:	:	28	;			
diethylstilbesterol	56-53-1			4	4700			0.00015	:	:	:	7.4E-09			
difenzoquat	43222-48-8	0.08		AN			6400	1	;	:	2.8	:			
diflubenzuron	35367-38-5			AN		A	1600	1	;	:	0.7	:			
diisopropyl methylphosphonate	1445-75-8	0.08		D			6400	1	:	:	2.8	:			
dimethipin	55290-64-7	_		င			1600	1	;	:	0.7	:			
dimethoate	60-51-5	0.0002		NA		,ii	16	:	;	:	0.007	:			
dimethylamine	124-40-3			NA NA					;	-	-	1			
dinoseb	88-85-7	0.001		D			80		:		0.035	:	0.007		
dioxane, 1,4-	123-91-1			B2	0.011			63.6364	1	:		0.00318			
dioxin (2,3,7,8-TCDD)	1746-01-6			82	150000	0	:	4.7E-08	:	:		2.3E-10	3E-08		
diphenamid	957-51-7	0.03		NA			2400		:	:	1.05				
diquat	85-00-7			NA			:	-	:	-	:		0.02		
direct black 38	1937-37-7			٧	8.6		:	0.0814	:	;	:	4.1E-06			
direct blue 6	2602-46-2			⋖	8.1			0.08642	:	;	;	4.3E-08			
direct brown 95	16071-86-6			4	9.3		:	0.07527	;	:	;	3.8E-06			
direct lightfast blue	4399-55-7			٧			:	:	:	:	:				
direct plan blue 60	10000			5											

	XLS
_	
	1 5
	B i≡
	7 %
-	- -
	ب

Sub Part S Action Levels - April 15, 1994)	Oral	hh	0	Oral	Inh.	Soil Action Levels	Levels	Air Action Level	n Level	Water Action Level	on Level		AWUC - FW	اج
		RfD		Wt. of S	SF	Unit Risk	non carc. carc.	carc.	non car	carc.	non carc.	carc.	MCL	Acute	Chronic
Chemical	CAS #	mg/kg-d	mg/m3	Evid. (r	(mg/kg-d)-1	(ug/m3)-1	mg/kg	mg/kg	ug/m3	ug/m3	mg/L	mg/L	mg/L	ng/L	ng/L
disulfoton	298-04-4	D					3.2			:	0.0014	;			
dithiane. 1.4-	505-29-3	0.01		٥			800	:	:	:	0.35				
dithiopropylcarbamate, s-ethyl-	759-94-4	0.025		¥2			2000	:	:	:	0.875				
diuron	330-54-1	0.002		NA			160	:	:		0.07	:			
dodecanoate, 2-ethoxyethanol	106-13-8			NA			:	:	;	:	:	;			
dodine	2439-10-3	0.004		NA			320	,	;	:	0.14	:			
endosulfan	115-29-7	5E-05		Y.			4	!	:	:	0.00175	1			
endothall	145-73-3	0.02		ΑN			1600	'	:	:	0.7	:	0.1		
endrin	72-20-8	0.0003		٥			24	:	:	:	0.0105	:	0.002	0.18	0.0023
environmental tobbaco smoke	NO CAS RN			¥					:	:	;	_			
epichlorohydrin	106-89-8	0.002	0.001 B2	82	0.0099	1.2E-08	160	10.7071	-	0.8333	0.07	0.00354	0.01		
epoxybutane, 1,2-	106-88-7	7	0.02	NA			;	:	20	:	;	:			
ethane, 1,1,1-trichloro	71-55-6			Q			:	:	:	:	:	:			
ethane, 1,1,2-trichloro	79-00-5	0.004		၁	0.057	0.000018	320	122.807	_	0.625	0.14	0.00614	0.005		
ethane, 1.1.2-trichloro-1,2,2-trifluoro	78-13-1	30	30	NA			2400000	;	30000	;	1050	;			
ethanol acetate, 2-ethoxy	111-15-9	0.3		NA A			24000	:	:	:	10.5	:			
ethanol. 2-ethoxy	110-80-5	0.4	0.5	AN			32000	:	200	:	14	:			
ethephon	18672-87-0	0.005		NA			400	1	:	:	0.175	:			
ether 2.4.4'-trichloro-2'-hydroxydiphenyl	3380-34-5			NA NA			:	:	:	:	:	:			
ether, 2-chloroethylvinyl	110-75-8			4 X			:	:		:	:	:			
ether, 4-bromophenylphenyl	101-55-3			٥			:	:	:	;	:	1			
ether bis(2-chloroethy!)	111-44-4			B2	1.1	0.00033		0.63636	-	0.003	1	3.2E-05			
ether, bis(2-chloroisopropyl)	39638-32-9	0.04		ပ	0.07	0.00001	3200				1.4	_			
ether, bis(chloromethyl)	542-88-1	krij.		٧	220	0.062		0.00318	1	2E-05	:	1.6E-07			
ether, chloromethylmethyl	107-30-2			A			:	:	:	:	:	:			
ether, diethylene alvool monobutyl	112-34-5		0.02	NA			1	:	20	:		1			
ether, diethylene glycol monoethyl	111-90-0	2		NA			160000	1	:	;	20	:			
ether, ethyl	60-29-7	0.2		NA			16000	:	:	:	7	:			
ether, ethylene alycol monobutyl	111-76-2		0.02	NA			:	:	20	:	:	:			
ether, nonabromodiphenyl	63936-56-1			٥			:	:	:	:	:	:			
ather propylene alycol monoethyl	52125-53-8	0.7		NA			26000	:	:	:	24.5	:			
ether, propylene diycol monomethyl	107-98-2	0.7	. 2	¥			56000	•	2000	:	24.5	:			
ethion	563-12-2			ΑN			:	:	;	:	:	:			
ethoprop	13194-48-4			٧			:	:	;	:	:	:			
ethoxyethanol phosphated, 2-	68554-00-7			٨			:	:	:	:	:	:			
ethyl carbamate	51-79-6			¥			:		:	•	:				
ethyl p-nitrophenyl phenylphosphorothioate	2104-84-5	1E-05		¥			0.8	:			0.00035		ľ		
ethylbenzene	100414	0.1	-	۵	-		8000		1000		3.5). O		
ethylene cyanohydrin	109-74-8	0.3		¥			24000	:	:	:	10.5				
ethylene diamine	107-15-3	0.02		٥			1600	:	:	;	0.7	:			
ethylene glycol	107-21-1	2		¥			160000	_		:	2	\perp			
ethylene oxide	75-21-8			19	1.02	0.0001	•	_	:	0.01	_				
ethylene thiourea	96-45-7	8E-05		B2	9.0	9	6.4	1.16667		:	0.0028	5.8E-05			
ethyleneimine	151-56-4			¥			:	:		:	;	: 6			
ethylnitrosourea	759-73-9			B 2	140	0	:			:	: 3	7			
ethylphthalyl ethylglycolate (EPEG)	84-72-0	3		¥			240000			;	105				
express	101200-48-	0.008		¥			840		:	:	0.28				
	92274.92.R	0000		¥			70	;	:	:	0.008/3	:	_		

Non-car Carc. Non-carc. Carc. MCL	Sub Part S Action Levels - April 15, 1994		Oral	lnh		Oral	Inh.	Soil Action Levels	Levels	Air Action Level	in Level	Water Action Level	tion Level		AWQC - F	- FW
Control Cont			RfD		1	SF	Unit Risk	non carc.	carc.	non car	carc.	non carc.	carc.			Chronic
September Sept	Chemical	CAS #	mg/kg-d	3		(mg/kg-d)-1	(ug/m3)-1	mg/kg	mg/kg		ug/m3	mg/L	mg/L			J/Br
Big	fluometuron	2164-17-2	0.013		NA			1040		1	;	0.455				
14.2.2	fluoranthene	206-44-0	0.04		O			3200		:		1.4				
	fluorene	86-73-7	0.04		0			3200		-	:	1.4				
Self-Self-Self-Self-Self-Self-Self-Self-	fluorine (soluble fluoride)	7782-41-4			NA A			4800		1	:	2.1		4		
	fluridone	59756-60-4			NA N			6400		:	:	2.5				
11 12 12 12 12 13 14 15 15 15 15 15 15 15	flurprimidol	56425-91-3			NA			1600		;	:	0.7				
1340124 1510	flutolanil	66332-96-5			NA			4800		:	:	2.1				
13179 6 20	fluvalinate	69409-94-5			NA			800		;	;	0.35				
10,000,000,000,000,000,000,000,000,000,	folpet	133-07-3	0.1		82	0.0035		8000			:	3.6				
being	formesafen	72178-02-0			ပ	0.19		:	36.8421		:	:	0.00184			
bit	fonofos	944-22-9			¥N.			:	:	:	:	:	:			
by by the cyanophydrin by	formaldehyde	60-00-0	0.7		81		0.000013			:	0.0769					
National broad Nati	formaldehyde cyanohydrin	107-16-4			NA			:	-	:	;	:	:			
cled 44-18-6 2 NA 160000	formamide, n,n-dimethyl	68-12-2	0.1	0.03	AN			8000		30		3.5				
100.0049 100.0049	formic acid	64-18-6	2		AN A			160000		:	:	7				
10,004 0,001 0,0	fosetyl-al	39148-24-8			NA A			;	:	:	:	:	:			
Participation Participatio	furan	110-00-9	0.001		A'N			80		:	1	0.035				
Second Continue	furazolidone	67-45-8			82	3.8		:	0.18421		:	:	9.2E-06	3		
Color Colo	furfural	98-01-1	0.003	0.05	¥			240	;	20		0.10				
11/2, 3, 3, 3, 3, 4, 142, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	furium	531-82-8			82	50		1	0.014		:	:	7E-07			
77182.822 0.0004 0.004 0.004 0.001 0.004	furmecyclox	60568-05-0			82	0.03		1	23.3333		:	:	0.00117			
1071-83-4 0.0004 0.0001	glufosinate-ammonium	77182-82-2			¥Z			32		:	:	0.014				
ethy 107183-6 NA	glycidaldehyde	765-34-4	_	0.001	82			32		-	:	0.014				
yl) 100784-20-1 NA	glyphosate	1071-83-6			A N			:		:	:	1	:	0.7		
100 100	halosulfuron methyl	100784-20	1		NA			:	:	;	1	:				
1024-57-3 0.013 NA 1.0003 1.040 1.	haloxyfop-methyl	69806-40-2			NA			4		;	:	0.00175				Ì
position 10-44-8 0.0006 B2 4.5 0.0013 40 0.1556 0.0008 0.0175 7.8E-06 2E-04 0.52 0.0 poporate, 1,1,2,3,3,3 410-85-0 12-45-3 1E-05 0.0 0.0 0.0004 0.0004 2E-04 0.52 0.0 poporate, 1,1,2,3,3,3 410-89-0 D NA 1.0 0.0004 1.0 0.0004 1.0 0.0004 1.0 0.0004 0.0 <	harmony	79277-27-3			AN			1040		;	:	0.455	_	-		
proparie 1024-57-3 1E-05 BZ 9-1 0.0026 1.04 0.07692 0.0004 0.00046 3E-06 2E-04 0.52 0.0004 0.00046 3E-06 2E-04 0.52 0.0004 0.00046 3E-06 0.0004 <	heptachlor	76-44-8	0.0005		82	4.5					9000.0			_	0.52	0.0038
142.826 NA	heptachlor epoxide	1024-57-3	1E-05		82	9.1	0.0026				0.0004	-		_	0.52	0.0038
H12-B2-5 NA 19	heptafluoropropane, 1,1,1,2,3,3,3-	431-89-0			NA A			;	:	:	:	-	1			
ether 187-82-1 0.002 INA 160 <t< td=""><td>heptane, n-</td><td>142-82-5</td><td></td><td></td><td>٥</td><td></td><td></td><td>:</td><td></td><td>:</td><td>:</td><td>-</td><td></td><td></td><td></td><td></td></t<>	heptane, n-	142-82-5			٥			:		:	:	-				
ether 38483-60-0 D L Cooode C	hexabromobenzene	87-82-1			YN V			160		:	:	0.0				
each elegation 118-74-1 0.0008 B2 1.6 0.00046 64 0.4375 0.0022 0.028 2.2E-05 0.001 cane, alpha- 87-68-3 0.0002 C 0.078 0.00012 1 0.0004 0.0449 0.001 cane, alpha- 87-68-3 0.0002 C 0.078 0.00018 0.01111 0.0007 0.0004 0.001 cane, petalion- 6108-10-7 D C 1.8 0.00053 <	hexabromodiphenyl ether	36483-60-0			۵			:			:	\perp	_			
87-68-3 0.0002 C 0.078 0.00022 16 89,7436 0.4545 0.007 0.00449 319-84-6 B2 6.3 0.0018 0.11111 0.0006 5.6E-06 319-84-6 B2 C 1.8 0.00053 3.88889 0.00009 5.6E-06 1319-86-8 D D 0.0189 0.00019	hexachlorobenzene	118-74-1	0.0008		82	1.6					0.0022	\perp	_			
319-84-6 B2 6.3 0.0018 0.11111 0.0006 5.6E-06 319-86-7 C 1,8 0.00053 3.88889 0.0189 0.00019 319-86-8 D C 1,8 0.00053	hexachlorobutadiene	87-68-3	0.0002		S	0.078	Ö				0.4545					
319-86-7 C 1,8 0.00053 3.88889 0.0189 0.00019 319-86-8 D D	hexachlorocyclohexane, alpha-	319-84-6			82	6.3			0.11111		0.000€		5.8E-06		1	
319-86-8 D <	hexachlorocyclohexane, beta-	319-85-7			ں	1.8	\perp		3.88889		0.0189		0.00018			
6108-10-7 D C 1.3 C 0.002 C 1.2 0.0105 2.7E-05 2.7E-05 2.5-04 2 608-73-1 0.007 7.47-4 0.007 7.6-05 D 0.007 0.007 0.005	hexachlorocyclohexane, delta-	319-86-8			۵			:	:	;	-	:	:			
58-89-9 0.0003 B2 - C 1.3 24 0.53446 0.0105 2E-04 2 608-73-1 B2 1 0.00051 0.07 0.0105 2E-04 2 77-47-4 0.007 7E-05 D 620 0.07 0.026 0.05 19408-74-3 B2 6200 1.3 0.00011 6E-07 5.6E-09 0.05 70-30-4 0.0003 NA 0.00011 6E-07 5.6E-09 0.025 0.05 0.05 0.05 0.05 0.05 0.05 0.015 0.05 0.015	hexachlorocyclohexane, epsilon-	6108-10-7			- 1			- [_		-	:	\perp	_	,	000
608-73-1 B2 1 0.00051 0.7 0.002 3.5E-05 77-47-4 0.0007 7E-05 D 6200 1.3 0.0011 0.07 0.0245 19408-74-3 B2 6200 1.3 0.00011 8E-07 5.6E-09 70-30-4 0.0003 NA NA <td>hexachlorocyclohexane, gamma-</td> <td>6-68-89</td> <td>0.0003</td> <td></td> <td>. </td> <td>1.3</td> <td>1</td> <td>ı</td> <td>_</td> <td></td> <td>- 3</td> <td>\perp</td> <td></td> <td>4</td> <td>7</td> <td>0.08</td>	hexachlorocyclohexane, gamma-	6-68-89	0.0003		.	1.3	1	ı	_		- 3	\perp		4	7	0.08
77-47-4 0.007 7E-05 D 6200 1.3 600 0.07 0.245 19408-74-3 B2 6200 1.3 0.00011 8E-07 5.6E-09 70-30-4 0.0003 NA 0.014 0.000004 80 500 2.5 0.035 0.025 110-54-3 0.06 0.2 NA NA <	hexachlorocyclohexane, technical	608-73-1			82	-	0.00051	:			0.007			4		
19408-74-3 B2 6200	hexachlorocyclopentadiene	77-47-4		7E-05	۵				_	1	: 1			1		
amine 124-09-4 NA 0.0014 0.000004 80 500 2.5 0.035 110-54-3 0.06 0.2 NA 0.0105 591-78-6 NA 2.1	hexachlorodibenzo-p-dioxin	19408-74-3			82	6200		4	0.0		SE-O'	1	٩			
iamine 70-30-4 0.0003 NA 24 0.0105 iamine 124-09-4 NA <	hexachloroethane	67-72-1	0.001		S	0.014	- 1									
124-09-4 NA 2.1 110-54-3 0.06 0.2 NA 4800 200 2.1 591-78-6 NA	hexachlorophene	70-30-4	0.0003		¥.			24		:	;	0.010				
110-54-3 0.06 0.2 NA 4800 200 2.1 201-78-6 NA 200 2	hexamethylene diamine	124-09-4			¥ :			:		:		;				
ANI 0-97-18G	hexane, n-	110-54-3	0.08	0.2	4			4800		200		7.1				
	hexanone, 2-	991-189			¥2											

Sub Part S Action Levels - April 15, 1994		Oral	밥		Oral	h.	Soil Action Levels	n Levels	Air Action Level	n Levei	Water Action Level	ion Level		AWQC - FW	X
		RfD	RfC	Wt. of	SF	Unit Risk	non carc.	carc.	non car carc.	carc.	non carc. carc.	carc.	MCL		Chronic
Chemical	CAS #	mg/kg-d	mg/m3	Evid.	(mg/kg-d)-1	(ug/m3)-1	mg/kg	mg/kg	ug/m3	ug/m3	mg/L	mg/L	mg/L	ng/L	ng/L
hexazinone	51235-04-2	-		NA			2640		;	:	1.155	:			
	2691-41-0	0.05		D			4000	1	;	1	1.75				
hydrazine	302-01-2			B2	3	0.0049	1	0.23333	:	0.000	:	1.2E-05			
hydrazine sulfate	10034-93-2			B2	3	0.0049	:	0.23333	;	0.0002	:	1.2E-05	400		
hydrazine, 1,1-dimethyl	57-14-7			B2	2.8	0.001		0.26923	;	0.001	:	1.3E-05			
hydrazine, 1,2-diethyl	1615-80-1			¥			:	:		;	:				
hydrazine, 1,2-dimethyl	540-73-8			82			:	•	-	:	:	-			
hydrazine, 1,2-diphenyl	122-86-7			82	0.8	0.00022	:	0.875	-	0.0045	'	4.4E-05			
hydrogen chloride	7647-01-0		0.007	NA				:	7	:	:	:			
hydrogen cyanide	74-90-8			NA			:		:	;	:	:			
hydrogen sulfide	7738-06-4	0.003	9E-04	¥			240		0.0	:	0.105	:			
hydronipone	123-31-9	0.04		Y.			3200		:		1.4	:			
ilezemi	35554-44-0			AN			1		-	:	;	:			
imazami	81335-37-7			¥			:	:	:	:	•	;			
indepo(1.2 3-cd)pvrepe	193-39-5			B2	0.73			0.9589	-	••	:	4.8E-05			
incorporations	38734-19-7	0.04		¥			3200	-	;	•	1.4	;			
a contract of the contract of	7439-89-6			¥			:	1	:		:	:			
inchested alcohol	78-83-1	0.3	-	¥			24000	:	1	1	10.5	-			
Isobutyi acottoi	78-59-1	0.2		ن	0,00095		18000	7368.42		;	7	0.36842	-		
isoprinos:	33820-53.0	0		AN			1200	:	;	:	0.525	,			
isopropalin	1832-54-8			٥			8000		;	:	3.5	:			
Isopiopyi iliatily pinapiopiopio	82558.50.7			ن			4000	-	;	:	1.75	;			
ISOXABeri	77501-83-4			¥			160		:	:	0.07	:			
Instantisia	78-97-7			¥			:	1	:	:	:	:			
Lead.	7439-92-1			82			:	-	,	:	;	:	0.015	82	3.2
limonapa. d.	5989-27-5			NA A		-	1	1	;	:	:	:			
Buildon	330-55-2	0.002		ပ			160		:	:	0.07				
londax	83055-99-6			NA			1	:		:	:	:			
malanonitrile	109-77-3	.2E-05		NA			1.8		:	;	0.0007	-			
malathion	121-75-5	0.02		NA			1600		:	:	0.7				
malaic anhydride	108-31-6	0.1		AN			8000		;	;	3.5				
malaic hydrazide	123-33-1	0.5		NA			40000		;	1	17.5				
mancozeb	8018-01-7	0.03	3	NA			2400	-	:	;	1.05	:			
maneb	12427-38-2		Ш	Y.			400	-		:	0.175	:			
manganese (food)	7439-96-5	0.14	i	٥			11200	-	0.4	:	4.9				
manganese (water)	7439-96-5	0.005	5 4E-04	٥			400	-	0.4	\perp	0.175				
mephosfolan	950-10-7			¥			7.2	2		;	0.00315				
meniauat chloride	24307-26-4	4 0.03		ΑĀ			2400			:	1.05				
mercuric chloride	7487-94-7	-		¥			:		: 1		: 0		000		0.10
mercury	7439-97-8	0.0003	3 3E-04				24	:	0.5	:	0.0103		70.0	4:7	2
membos	150-50-5	3E-05	5	¥			2.4		:	:	0.00105		1		
merohos oxide	78-48-8	3E-05	10	٧			2.4	-	:	:	0.00105				
metalaxvi	57837-19-1	_		¥			:	:	-	:	:	-			
methacrylate, 2-ethoxyethyl	2370-63-0			٧			:	:	;	:	:	:			
methacrylate, ethyl	97-63-2	0.09	9	A A			7200		:		3.15				
methacrylonitrile	126-98-7	0.0001	1 7E-04					8	0.7		0.0035				
methamidiphos	10265-92-6	6 5E-05	10	AM				4	:	:	0.00175				
	1 02 10	-	_	٩N			40000	: -	:	:	0: \	:			

Chemical mathidathion methomyl				_	ē 5	-	Soil Action Levels	Levers							3
Chemical methidathion methomy!		RfD		Wt. of	SF	Unit Risk	non carc. carc.	carc.	non car carc.	carc.	non carc. carc.	carc.	MCL	Acute Chr	Chronic
methidathion methomyl methovochlor	CAS #	mg/kg-d	mg/m3	Evid.	(mg/kg-d)-1	(ug/m3)-1	mg/kg	mg/kg	ng/m3	ug/m3				П	1/0/1
methowichlor	950-37-8	0.001	_	U		$\overline{}$	8	-	1	-	0.035		Τ		1/8
methoxychlor	18752-77-5			¥.			2000		:	:	0.875				
TIPE IN A CITIC	72-43-5	0.005		D			400		:	:	0.175		0.04		
methoxyethanol acetate, 2.	110-49-6	0.002		NA			160			:	0.07	L		ŀ	
methoxyethanol, 2-	109-86-4	0.001	0.02	NA NA			80	:	20		0.035				
methyl acetate	79-20-9	-		NA			80000	;	:	:	35				
methyl acrylate	96-33-3	0.03		٥			2400	:			1.05	:			
methyl chlorocarbonate	79-22-1			NA			:	:	:	;	:	:			
methyl ethyl ketone peroxide	1338-23-4			NA			;		:	:	:				
methyl hydrazine	80-34-4			B2	1.1		1	0.63636		:	;	3.2E-05			
methyl lodide	77-88-4			NA			1	:		:	;	:			
methyl isocyanate	624-83-9			¥			:	:	:		:				
methyl mercury	22967-92-6	0.0003		Y.			24	:	:	:	0.0105				
methyl methacrylate	80-62-6	90.0		¥			6400		:		2.8				
methyl parathion	298-00-0	0.0003		¥			20		:		0.00875				
methyl styrene	25013-15-4	0.008	0.04	¥Z			480		40		0.21				
methyl styrene, alpha-	98-83-9	0.07		¥2			5600		:		2.45				
methyl tert-butyl ether	1634-04-4		3	AN				:	3000						
methylaniline hydrochloride, 2-	636-21-5			B2	0.18		:	3.88889			;	0.00019			
methylaniline, 2-	95-53-4			B2	0.24		-	2.91667	L	,		0.00015			
methylcholanthracene, 3-	56-49-5			¥				:	L						
methylcyclohexane	108-87-2		9	3 NA			:	:	3000			,			
methylene chloride	75-09-2	90'0	3	82	0.0075	4.7E-07	4800	93.3333		2.1277	2.1	0.00487	0.005		
methylene-bis(2-chloroaniline), 4,4"-	101-14-4	0.0007		B2	0.13	0.000037	56			0.027	0.0245	0.00027	 		
methylene-bis(N,N-dimethyl)aniline, 4,4"-	101-81-1			B2	0.046			15.2174	:	:	1	0.00076			
methylenebisbenzenamine, 4,4".	101-77-9			B2	0.25		1.	2.8	:	;	-	0.00014			
methylenediphenyl isocyanate, 4,4"-	101-68-8		2E-05 NA	¥				:	0.05	:	:	-			
methylnitrosourea	684-93-5			82			:	:	:	•	•				
methylphenol, 2-	95-48-7	0.05		S			4000	1	:	:	1.75	:			
methylphenol, 3-	108-39-4	0.05	_	S			4000	1	:	;	1.75	-			
methylphenol, 4-	108-44-5	0.005		ပ			400	:	:		0.175	:			
metolachlor	51218-45-2	0.15		Ν		,	12000	•	:	:	5.25	-			
metribuzin	21087-64-9			۵			2000	•	:	:	0.875	:			
mirex	2385-85-5	0.0002	_	B2	1.8		16	0.38889	;		0.007	1.9E-05			
molinate	2212-67-1	0.002	=	¥			160	:	:	:	0.07	:			
molybdenum	7439-98-7	0,005		¥.			400	;	;	:	0.175	:			
monochloramine	10599-90-3	0.1		0			8000			:	3.5	:			
naled	300-76-5		_	¥.			:	••	:	:	:	:			
naphthalene	91-20-3		_	٥				-	-	:	:				
naphthol hydrochloride, 1-amino-2-	1198-27-2			¥			1	:	:	;	:	•			
naphthol, 1-amino-2-	2834-92-6			AN			1	:	:	:	;	:			
naphthoquinone, 1,4-	130-15-4		_	ΑN			:		-		-	:			
napropamide	15299-99-7	0.1	_	NA			8000		:	:	3.5	:			
niagra blue 4B	2429-74-5		1	82			:	;	;	:	:	:			
nickel	7440-02-0	0.02		٧×			1600	:	•	:	0.7	-	0.1	1400	160
nickel carbonyl	13463-39-3			B2			:	:	:	:	:	:			
nickel refinery dust	NO CASRN			A		0.00024	:	. :	-	0.0042	:	:			
nickel subsulfide	12035-72-2			▼		0.00048	:	:	-	0.0021					

Sub Part S Action Levels - April 15, 1994		Oral	uh H		Oral	ion.	Soil Action Levels	Leveis	Air Action Level	n Levei	Water Act	Water Action Level		AMCC - LM	LAA
		RfD	RfC	Wt. of	SF	Unit Risk	non carc.	carc.	. 1	carc.	non carc.	carc.	MCL	Acute	Chronic
Chemical	CAS #	mg/kg-d	mg/m3	Evid.	(mg/kg-d)-1	(ug/m3)-1	mg/kg	mg/kg	ng/m3	ng/m3	mg/L	mg/L	mg/L	ug/L	ng/L
nicotinonitrile	100-54-9			¥			1	1	1	:	;	:			
nitrapyrin	1929-82-4			NA	*		:	:	;	;	1	:			
nitrate	14797-55-8	1.6		NA			128000	:	:	:	28	:	10		
nitric oxide	10102-43-9	0.1		NA NA			8000	:	;	ï	3.5	:			
nitrite	14797-65-0	0.1		¥			8000		:	:	3.5	_	-		
nitroaniline, 2-methoxy-5-	99-59-2			B2	0.046		:	15.2174		:	:	0.00078	9		
nitroaniline, 2-methyl-5-	99-55-8			ပ	0.033		;	212.121	:	;	1	0.01081	-		
nitroaniline, m-	99-09-2		2E-04 NA	NA			:	:	0.7	;	1	;			
nitroaniline, o-	88-74-4		2E-04 NA	NA NA			:	1	0.7	;	;	;			
nitroaniline, p-	100-01-8			NA			:	1	;	:	1	1			
nitrobenzene	98-95-3	0.0005	0.002	٥			40	:	2	:	0.0175	1			
nitrofurantoin	67-20-9	0.07	_	A A			5600	;	:	1	2.45	-			
nitrofurazone	59-87-0			82	1.5		;	0.46667	-	1	:	2.3E-05	2		
nitrogen dioxide	10102-44-0			¥N			80000	;	;	:	35	:			
nitrograpidine	558-88-7	0.1		٥			8000	:	;	:	3.5	:			
nitromethane	75-52-5			¥			:	1	;	;	:	:			
ntrocodiethanolamine. N-	1118-54-7			82	2.8	_		0.25	9	:	;	1.3E-05	2		
nitrosodiethylamine. N.	55-18-5			82	150	0.043	,	0.00467	1	2E-05	1	2.3E-07	7		
nitrosodimethylamine. N-	62-75-9			82	51			0.01373		7E-05	:	6.9E-07	7		
nitrosodiohanvlamina. D-	156-10-5			¥			:	:	:	1	:.	;			
nitrosomethylethylamine. N-	10595-95-6	SU		82	22		:	0.03182	:	ł	!	1.6E-06	9		
nitrosomethylvinylamine. N-	4549-40-0			82			:	:	:	:	;	;			
nitrosopyrrolidine, N-	930-55-2			82	2.1	0.00061	j	0.33333		0.0018		1.7E-05	2		
nitrotoluene, m-	99-08-1	0.01		NA			800	:	;	!	0.35	:			
nitrotoluene, o-	88-72-2	0.01		¥			8	:	:	:	0.35	-			
nitrotoluene, p-	0-66-66	0.01		¥	-		800	;		:	0.35				
norflurazon	27314-13-2	_		ž			:		:	:	: 3				
nustar	85509-19-9	٩		ş			58		:	:	0.0245		+		
octabromodiphenyl ether	32536-52-0			٥			240	.	:	:	0.105		1		
octamethylpyrophosphoramide	152-16-9	0.002		ž			160		:	:	0.07		1		
oryzalin	19044-88-3			¥			-		:	:	: 0				
oxadiazon	19666-30-9	0.005		¥			400		:	;	0.1/5		- (
oxamyl	23135-22-0			¥Z			:	:	:	:	:	;	7.0		
oxyfluorfen	42874-03-3			¥			:		:	:	•	:			
ozone	10028-15-6			¥.			;		1	:	:	:			
paclobutrazol	76738-62-0			¥.				:	:	:	:	:			
paraidehyde	123-63-7			¥.			:	;	:	:	:	:			
paraquat	1910-42-5			¥.			,		:	:	: 6				
parathion	56-38-2	0.00		U			480		:	:	7.0				
pebulate	1114-71-2			¥.			4000		:	:	27.1		1.		
pendimethalin	40487-42-1	_		¥			3200		:	:	4				
pentabromodiphenyl ether	32534-81-9	_		ما			160		-	!	0.00				
pentachlorobenzene	808-93-5	0.0008		۵			64	-	:	:	0.026	:			
pentachlorocyclopentadiene	25329-35-5			اه			: 3			:	1 05	- 0000	0 00 1	30	13
pentachlorophenol	87-86-5	0.03		B2	0.12	7	2400	5.83333		:	-		-		2
pentachloropropene, 1,1,2,3,3-	1600-37-9			¥:			:	:	:	:	: :	: :			
pentane, n-	109-68-0		1	V S			: 0007		3		1 75				
Amostral 3	108-10-1	0.05	0	4			22.23	:		:					

Sub Part S Action Levels - April 15, 1994		Oral	重		Oral	Inh.	Soil Action Levels	Levels	Air Action Level	n Level	Water Action Level	tion Level		AWOC - FW	<u>×</u>
		RfD	RfC	Wt. of	SF	Unit Risk	non carc.	carc.	non car carc.	carc.	non carc.	carc.	MCL	Acute	Chronic
Chemical	CAS #	mg/kg-d	mg/m3	Evid.	(mg/kg-d)-1	(ug/m3)-1	mg/kg	mg/kg	ug/m3	ng/m3	mg/L			Г	La/L
perfluorobutane	355-25-9			¥			,	:		:	:	:			
perfluoroethane	354-33-6			ΑN			:		:		:	:			
perfluorohexane	355-42-0			A A				,	-	:	:	:			
permethrin	52645-53-1	•		¥			!		:	:	:	:			
phenanthrene	85-01-8			Q			1	,	:	:	:				
phenmedipham	13684-63-4	0.2		NA			16000	:	:	:	7	-			
phenol	108-95-2	9.0		a			48000	:	:	:	21	:			
phenol, 2,3,4-trichloro	15950-66-0			NA A			:	:	:	:	:				
phenol, 2,3,5-trichloro	933-78-8			NA A			:	:	:		:	:			
phenol, 2,3,6-trichloro	933-75-5			¥			:		:	١.	:	:			
phenol, 2,3-dimethyl	526-75-0			¥			:	:	:		,	:			
phenol, 2,3-dinitro	86-56-8			Y.			;		:	:		:			
phenol, 2,4,5-trichloro	95-95-4	0.1		¥.			8000		:	:	3.5	:			
phenol, 2,4,6-trichloro	88-06-2			82	0.011	3.1E-08	:	63.6364	-	0.3226	-	0.00318			
phenol, 2,4-dimethyl	105-67-9	0.02		NA A			1600	;		,	0.7	:			
phenol, 2,4-dinitro	51-28-5	0.002		NA NA			160	1		:	0.07				
phenol, 2,5-dimethyl	95-87-4			NA			:	:	:	:	;	:			
phenol, 2,5-dinitro	329-71-5			NA			:	:	:	:	:	:			
phenol, 2,6-dimethyl	576-26-1	0.0008		NA			48	;	-	**	0.021	:			
phenot, 2,6-dinitro	573-56-8			NA			-	:	:	-	-	-			
phenol, 2-chloro	95-57-8	0.005		NA			400	:	:	:	0.175	-			
phenol, 3,4,5-trichloro	609-19-8			NA			:	:	:	:	:	:			
phenol, 3,4-dimethyl	95-65-8	0.001		AN			80	:	:	:	0.035	:			
phenol, 3,5-dinitro	586-11-8			NA			:	:	•	:	:	;			
phenol, 3-chloro	108-43-0			AM			,	;	;	:	:	:			
phenol, 4,8-dinitro-o-cyclohexyl	131-89-5	0.002		AN A			160	:	:	;	0.07	:			
phenol, 4-chloro	106-48-9			Ϋ́			:	:	:	:	:	:			
phenol, m-amino	591-27-5	0.07		¥			2800	:	:	:	2.45	:			
phenol, o-amino	95-55-6			Α×			:		;	:	1	:			
phenol, p-amino	123-30-8			AN			;	-	:	:	:	:			
phenol, p-nitro	100-02-7			¥			-	:	:	:	•	;			
phenylenediamine, m-	108-45-2	0.008		YY.			480	;	:	:	0.21	-			
phenylenediamine, o-	95-54-5			B2	0.047		:	14.8936	-	:	1	0.00074			
phenylenediamine, p-	106-50-3	0.19		¥N			15200	:	:	:	6.65	:			
phenylmercuric acetate	62-38-4	8E-05		NA NA			6.4		:	:	0.0028	_		1	
phenyiphenol, 2-	90-43-7			ပ	0.00194			3608.25	:		:	0.18041			
phorate	298-02-2	0.0002		Y _A			16	:	:	:	0.007	;			
phosalone	2310-17-0			YN:			:	:	:	:	:	:			
phosgene	75-44-5			¥:			:	:	:	;	;	:			
phosmet	732-11-8			¥			:	:	:	:	:	:			
phosphate, diethyl-p-nitrophenyl	311-45-5							-	: !	:		:			
phosphine	7803-51-2	0.0003	3E-05	NA.			24	:	0.03	:	0.0105	:			
phosphorus	7723-14-0	2E-05		۵			1.6	:		:	0.0007			1	
phthalate, bis(2-ethylhexyl)	117-81-7	0.05		B2	0.014		1600	20	:	:	0.7	0.0025	0.008		
phthalate, di-n-butyl	84-74-2	0.1		٥			8000	;	:	:	3.5				
phthalate, di-n-octyl-	117-84-0	0.02		ΑN			1600	:	1	:	0.7	:			
phthalate, dimethyl	131-11-3	10		۵			800000	:	:	:	320	:			
phthalate, dimethyltere	120-61-8	0.1		Y.			8000	;	-	;	3.5	:			
					(

DOLD FAIL O ACTION LEVERS - April 19, 1994	_	Oral	돈		Oral	<u> </u>	Soil Action Levels	Leveis	Air Action Level	n Level	Water Action Level	ion Level		AWCC - FW	¥
		RfD	RfC	Wt. of	SF	Unit Risk	non carc.	carc.	non car carc.	carc.	non carc.	carc.	MCL	Acute	Chronic
Chemical	CAS #	mg/kg-d	mg/m3	Evid.	(mg/kg-d)-1	(ug/m3)-1	mg/kg	mg/kg	ug/m3	ug/m3	mg/L	mg/L	mg/L	ng/L	ng/L
phthalate, N-butylbenzyl	85-68-7	~!		C			.16000	:		;	7	:			
phthalic acid, m-	121-91-5			٧V			:	1	:	;	:	:			
phthalic acid, o-	88-99-3			NA			:	:	:	1	:	:			
phthalic acid, p-	100-21-0	-		NA			80000	-	:		35	:			
phthalic anhydride	85-44-9	2	0.12				160000	:	120	:	70		·		
picloram	1918-02-1	0.07		NA			2800	:	:	;	2.45	:	0.5		
pinene, alpha-	80-28-8			NA			:	:	:	;	;	:			
pinene, beta-	127-91-3			NA			:	-	:	;	1	:			
pirimiphos-methyl	29232-93-7	0.01		¥.			800	:		-	0.35	:			
polybrominated biphenyls	NO CASRN	7E-06		¥			0.58	:	:	:	0.00025	:			
holychlorinated binhenyls (PCBs)	1336-36-3			82	7.7		;	0.09091	1	:	:	4.5E-08	3 5E-04		0.014
polycyclic organic matter (POM)	NO CASRN			¥			:	:		:	:	:			
not seei im bromate	7758-01-2			ş			:		;	:	:	;			
Potential Committee	151-50-8	0.05		¥			4000		<u> </u>	:	1.75	:			
potential of allian	508-81-8	0.2		¥			18000		:	:	7				
	87747.09-5	6		ن	0.15	100	720	46.6667		:	0.315	0.00233	_		
processing as	28399-38-0	<u> </u>		¥			480	1_	:	:	0.21	;			
	1810-18-0			NA A			:		,	;	:	:			
prometor	7287.19.8	000		NA N			320		:	:	0.14	:		·	
prometryn	22050 59 5			NA.			8000		:	:	2.625				
pronamide	1010107			V.			1040		:	:	0.455				
propachlor	1910-10-7	2 5		¥ 4			0008		 :	:	3.5				
propane, 2-chloro	0-67-07	5	000	2 6		7,000	\perp	:	20	Ö	:				
propane, 2-nitro	0.00.000			NA NA		2000	L		:	\perp		:			
propani	2212 35 8	000		4 A			1600	;	!	 -	0.7				
propargite	107.19.7	0000		MA			160	:	:	:	0.07				
propargyl arconol	139-40-2	000		NA N			1600		:	:	0.7				
propazine	122.42.9	0.02		NA N			1600	:	!	:	0.7				
propnam	80207.90.1			A N			1040		:	;	0.455	1			
propiconazore	57.57.B	L		AN			:	:	:	 -		:			
proprojectorie, Detail	93.72-1	0.008	-	٥			640	:	:	:	0.28	-:	0.05		
propriet acid, 2 (2,4,0-treme opinion)	93-65-2	0.001		¥			80	:	:	:	0.035	:			
propionity and 2-12 menty - characteristy	107-12-0			¥			ŀ	1	1	:		:			
proposition in	71-23-8			¥			:	:	:	:	:	:			
propylene glycol	67-55-8	20	1	¥			1600000		•	:	700	1			
propylana oxida	75-58-9		0.03	.03 82	0.24	4 3.7E-06		2.91667	7 30	0.2703	3	0.00015	2		
propyleneimine	75-55-8			NA			:	:	:	:	:	:			
Dursuit	81335-77-5	5 0.25	15	AN A			20000	-	:	:	8.75	-			
podrin	51630-58-1	-		٧			:	:	:	:	:	:			
DAGEDE	129-00-0	0.03	3	٥			2400	:	:	:	1.05				
portidina	110-86-1	0.001		ΑN			80	-	-	:	0.035	:			
povidine 4-amino	504-24-5	2E-05	2	٥			1.6	-	:	:	0.0007	;			
rinalphos	13593-03-8	3		AA		0.10	;	:	:	:	:	:			
ocilocina	91-22-5			၁	12	2	:	0.58333		:	:	2.9E-05	2		
dilipone	106-51-4			AA		ani	:	:	:	:	:	;			
radium 226.228	7440-14-4			NA			:	:	;	:	:	:			
radon 222	14859-67-7	7		¥			!		:	:	:				
	121-82-4	0.003	_	ပ	0.11	_	240	63.6364		:	0.105	0.00318	n		

					5		SOII ACTION LEVEIS	II FRARIS	1:30		VA dela	Water Action Level	_	2 · · · · · · · · · · · · · · · · · · ·	_ ≥
		RfD	RfC	Wt. of	SF	Unit Risk	non carc. carc.	carc.	non car carc.	carc.	non carc. carc.	carc.	MCL	Acute (Chronic
Chemical	CAS #	mg/kg-d	mg/m3	Evid.	(mg/kg-d)-1	(ug/m3)-1	mg/kg	mg/kg	ng/m3	ug/m3	mg/L	mg/L	١.	1	ua/L
refractory ceramic fibers	NO CASRN			B2				:		;	;		i		
resmethrin	10453-86-8	60'0		AN			2400		:	:	1.05				
ronnel	299-84-3	0.05		NA			4000		;		1.75				
rotenone	83-79-4	0.004		NA			320		-		0.14				
savey	78587-05-0	0.025		NA A			2000	-	:	:	0.875				
selenious acid	7783-00-8	0.005		٥			400		:	:	0.175	1			
selenium	7782-49-2	0.005		٥			400			:	0.175	1	0.05	20	5
selenium sulfide	7446-34-6			B2			-	1	:	;	:	:			
selenourea	630-10-4	0.005		NA			400	:	:	:	0.175	-			
sethoxydim	74051-80-2	0.09		NA			7200	1	:	:	3.15	:			
silver	7440-22-4	0.005		Q			400	-			0.175	:		4.1	
silver cyanide	506-64-9	0.1		NA			8000	1	:		3.5				
simazine	122-34-9	0.005		၁	0.12		400	58.3333	:	:	0.175	0.00292	0.004		
sodium azide	26628-22-8	0.004		NA			320	:	:		0.14				
sodium cyanide	143-33-9	0.04		NA			3200	1		:	1.4				
sodium diethykithkocarbamate	148-18-5	0.03		၁	0.27		2400	25.9259	:	:	1.05	0.0013			
sodium fluoroacetate	62-74-8			NA				:	:	;	:	:			
sodium metavanadate	13718-26-8	0.001		NA			08	-	-	:	0.035	:			
strontium	7440-24-8	9.0		Υ¥			48000			-	21	:			
strychnine	57-24-9	0.0003		¥			24	1	:	:	0.0105	-			
styrene	100-42-5	0.2	-	NA			16000	1	1000	-	7		0.1		
succinonitrile	110-61-2			NA				-	:	-	-	:			
sulfate, dimethyl	77-78-1			82			:	;	;	:	:	-			
sulfide, p-chlorophenyl methyl	123-09-1			٥			:	-	;	:	:	;			
sulfone, p-chlorophenyl methyl	98-57-7			۵				:	-	;	:	:			
sulfoxide, p-chlorophenyl methyl	934-73-6			a			:	!	-	;	:	:			
sulfuric acid	7664-93-9		0.07	¥			:	1	20	:	1	:			
systhane	88761-89-0	0.025		¥			2000		:	:	0.875	:			
tebuthiuron	34014-18-1	0.07		¥			2800	!	:	:	2.45	:			
temephos	3383-96-8	0.02		¥:			1600		1	:	0.7	:			
terbaci	5902-51-2			¥.			:		:	:	-				
terbufos	13071-79-9	3E-05		¥.			2	:	:	1	0.00088	:			
terbutryn	886-50-0	0.001		¥			80		1	:	0.035				
tetrabromodiphenyl ether	40088-47-9			٥			:	:	:	:	:	:			
tetrachloroazoxybenzene	21232-47-3			¥.					:	:	1 0				
tetrachlorobenzene, 1,2,4,6-	95-94-3	0.0003		¥.			24	:	,	:	0.0105	:			
tetrachlorocyclopentadiene	695-77-2			٥			:		1	:	_	_			
tetrachloroethane, 1,1,1,2-	630-20-6	0.03		S	0.026		2400	269.2	_	1.3514		_			
tetrachloroethane, 1,1,2,2-	79-34-5			ان	0.2	0	:			0.1724		_1	_		
tetrachloroethene	127-18-4	0.01		C-B2	0.052	5.8E-07	800	134.615	:	17.241	0.35	0.00673	0.005		
tetrachlorohydrazobenzene	71753-42-9			¥			:		:	:	-	:			
tetrachlorophenol, 2,3,4,5-	4901-51-3			¥			1	:	:	:	:	:			
tetrachlorophenol, 2,3,4,6-	58-90-2	0.03		NA			2400	:	:	:	1.05	:			
tetrachlorophenol, 2,3,5,8-	935-95-5			AM			:	:	-	:	:	:			
tetrachloropropene, 1,1,2,3-	10436-39-2			AN			:	:	:	:	:	:			
tetrachlorotoluene, p-, a,a,a-	5216-25-1			B2	20		:			:	;				
tetrachlorvinphos	961-11-5	0.03		υ :	0.024		2400	291.66/	;	:	1.05	0.01458			
tetraethyl dithiopyrophosphate	3689-24-5	0.0005		NA NA			40				0.0175	:]

					Oral	Ē.	Soil Action Levels	n Leveis	Air Action Level	n Level	Water Action Level	ion Level		AWQC - FW	
		RfO	PfC	Wt. of	SF	Unit Risk	non carc. carc.	carc.	non car	carc.	non carc.	carc.	MCL	Acute	Chronic
Chemical	CAS #	mg/kg-d	mg/m3	Evid.	(mg/kg-d)-1	(ug/m3)-1	mg/kg	mg/kg		ng/m3	mg/L	mg/L	mg/L	П	ua/L
tetraethyl lead	78-00-2			¥				:	Τ-		:	:			
thallic oxide	1314-32-5	7E-05		٥			5.6	:	;	:	0.00245	:	0.002		
thallium	7440-28-0			NA NA					:	:		:	0.002		
thallium (I) acetate	563-68-8	9E-05		0			7.2	:	:	:	0.00315		0.002		
thallium (I) carbonate	6533-73-9	8E-05		O			6.4		1	:	0.0028		0.002		
thallium (I) chloride	7791-12-0	_		0			6.4	:	:	:	0.0028	:	0.002		
thallium (I) nitrate	10102-45-1	9E-05		0			7.2	:	:	:	0.00315		0.002		
thallium (I) sulfate	7446-18-6	8E-05		0			6.4	:	:	:	0.0028	'	0.002		
thallium selenite	12039-52-0	9E-05		٥			7.2	:		!	0.00315	,	0.002		
thiobencarb	28249-77-6	0.01		NA A			800	:		:	0.35	:			
thiofanox	39198-18-4	0.0003		¥			24	-	:	;	0.0105				
thiophanate-methyl ·	23584-05-8			¥					:	:					
thiram	137-26-8	0.005		¥			400			:	0.175				
tin	7440-31-5	9.0		¥			48000		:	,	21	:			
toluene	108-88-3	0.2	0.4	٥			16000	;	400		7	<u> </u>	-		
toluene diisocyanate, 2,4-	NO CAS RN			¥				:	:		:	:			
toluene, 2,3-diamino	2687-25-4			¥			:	:	;	:	:				
toluene, 2,3-dinitro	602-01-7			¥					:	:	:	:			
toluene, 2,4,6-trinitro	118-98-7	0.0005		ပ	0.03		40	233.333		:	0.0175	0.01167	_		
toluene, 2,4-diamino	95-80-7			82	3.2		'	0.21875	-:	:	:	1.1E-05	10		
toluene, 2,4-dinkro	121-14-2	0.007		82	0.68		160	1.02941	-	;	0.07	5.1E-05	10		
toluene, 2,5-diamino	95-70-5	0.0		NA			48000		:	:	21	:			
toluene, 2,5-dinitro	819-15-8			NA			:	:	:	:	:	:			
toluene, 2,8-diamino	823-40-5	0.2		٧V			16000		;	:	7	:			
toluene, 2,8-dinitro	808-20-2	0.001		82	0.68		8	1.02941	1	:	0.035	5.1E-05	15		
toluene, 3,4-diamino	498-72-0			₹			•	;	:	;	:				
toluene, 3,4-dinitro	610-39-9			₹			:	:	:	:	:	:			
toluene, m-chloro	108-41-8			¥			-	:	:	:	:	:			
toluene, m-ethyl	620-14-4			¥.	ļ			:	:	:	:	:			
toluene, o-chloro	95-49-8	0.05		¥			1600	•	;	:	0.7	:			
toluene, o-ethyl	611-14-3			¥.			-	:	:	;	1	:			
toluene, p-chloro	106-43-4			¥:			;	:	:	:	:	1			
toluene, p-ethyl	622-96-8			¥			:	:	:	:	:	:			
toluidine, m-	108-44-1			¥			:	:		•	:	:			
toluidine, p-	106-49-0			S	0.19		:	36.8421	;	:	:	0.00184	-		
toxaphene	8001-35-2			B2	1.1	0.00032	_	0.63636	:	0.0031	:	3.2E-05	5 0.003	0.73	0.0002
trakomethrin	66841-25-8			¥			600	:	:	:	0.2825	,			
trialiate	2303-17-5	0.013		¥			1040	:	:	:	0.455	:			
triasulfuron	82097-50-5	0.01		¥			800	:	:		0.35	:			
tribromochloromethane	594-15-0			۵			:	:	;	:	:	:			
tribromodiphenyl ether	49690-94-0			۵			:	;	:	:	'	;			
tributyltin oxide	56-35-9	3E-05		¥			2.4	1	:	;	0.00105	;			
trichlorocyclopentadiene	77323-84-3			٥			:	:	;	:	:	:			
trichloroethene	79-01-6			ΑN			:	:	:	:	:	:	0.005		
trichlorofluoromethane	75-69-4	0.3	0.7	¥.			24000	:	700	:	10.5	:			
trichloropropane, 1,1,1-	7789-89-1			AN			;		:	•	:				
trichloropropane, 1,1,2-	598-77-6	0.005		¥			8	i	:	:	0.175	:			
trichloropropane, 1.2.2-	3175-23-3			NA A			!	:	;	:	:	;		_	

Sub Part S Action Levels - April 15, 1994		Oral	恒		Oral	Ę	Soil Action Levels	Levels	Air Action Laval	n I aval	Water Action Level	lava I no		AWOC - EW	EW
		RfD	RfC	Wt. of	SF	Unit Risk	non care. care.	carc.	non car care	carc.	non care, care	Carc	Į.	Acute	Chronic
Chemical	CAS#	mg/kg-d	mg/m3	Evid.	(mg/kg-d)-1	(ug/m3)-1	ma/ka	ma/ka	ua/m3	ua/m3	ma/L	ma/l	l/bm	1/0/1	2 /9
trichloropropane, 1,2,3-	96-18-4	0.008		B2			480	-		:	0.21			1/41	1,8
trichloropropene, 1,2,3-	96-19-5	0.005		ΑĀ			400	-	:	:	0.175	:			
trichlorotoluene, 2,3,6-	2077-46-5			AN A			:	:	:	:	:	1			
trichlorotoluene, alpha, 2, 6-	2014-83-7			AN AN			;		Ŀ	:	:	:			
tricresol	1319-77-3			¥			:	;	:	:	:	:			
tridiphane	58138-08-2			NA			:		:			:			
triethylamine	121-44-8		0.007	AN			:	:	7	:	;	:			
trifluoroethane, 1,1,1-	420-48-2			AN			:	;	,	;	:	-			
trifluoromethane	75-46-7			¥.			:	;	:	:	:				
trifluralin	1582-09-8	0.0075		U	7,0000		900	909,091	;	;	0.2625	0.04545			
trimethyl phosphate	512-56-1			B2	0.037		:	18.9189	:	:	:	0.00095			
trimethylpentane, 2,2,4-	540-84-1			AM			,	1	;			:			
trinitrophenylmethylnitramine	479-45-8	10.0		Ą			800	:	;	:	0.35	:			
uranium, natural	7440-61-1			AN			:		-	:	:				
uranium, solubie saits	NO CASRN	0.003		NA			240	:		:	0.105	:			
urea, n,n-dimethyl	598-94-7			NA				1		:	-	:			
vanadium	7440-62-2	0.007		NA			560	:	:	:	0.245	:			
vanadium pentoxide	1314-62-1	0.009		NA			720	1	1	:	0.315	:			
vanadium sulfate	36907-42-3	0.02	-	NA			1600	:	:	:	0.7				
vernam	1929-77-7	0.001		NA			98	:		:	0.035				
vinclozolin	50471-44-8			NA AN			:	:			:				
vinyl acetate	108-05-4	1	0.5	2 NA			80000	:	200	:	35				
vinyl bromide	593-60-2		0.003	B2		0.000032	-		3	0.0313		:			
vinyl chloride	75-01-4		-	¥	1.9	0.000084	-	0.36842	:	0.0119	;	1.8E-05	0.002		
warfarin	81-81-2	0.0003		AN			24	1		:	0.0105	,			
xylene, 4-ethyl-o-	934-80-5			٧V			:	1	:	:	:	:			
xylene, m-	108-30-3	2		NA			160000		:	:	70	:	10		
xylene, mixture	1330-20-7	2		D			160000		-	:	70	1	10		
xylene, o-	95-47-6	2	-	NA			160000	÷	-	ı	0/	:	10		
xylene, p-	106-42-3			NA			:	-	:	:	:	:	10		
zinc	7440-66-6	0.3		D			24000		-	:	10.5	:		120	110
zinc cyanide	557-21-1	90.0		NA			4000		:	:	1.75	:			
zinc phosphide	1314-84-7	0.0003		NA			24		1	:	0.0105	:			
zineb	12122-67-7	0.05		NA			4000	•	:	:	1.75	:			
		20.5			T		222								

Attachment B

EPA Region III RBCs

1.6 700 5590 1 110 3900 16000 8 1000 0.038 3900 / 23 3 8 26 23 0.37 89 5500 470 4 7800 / 1600, 0.14 39000 , 12000 , 78 8 20000 28000 200 33 2 7 38 Basis of RBC: e=carcinogenic effects n=noncarcinogenic effects.
| Ambient | Industrial Residential mg/kg iio**x** 9200 n 72000 n 310 n 510 n 51000 n 0.17 c 5100 " 310 n 410 0 410 n 36 c 1000 410 " 200000 n 920 n 3000 72000 n 50000 " 51000 n 9200 n 2600 " 6100 " 10000 n 20000 n 000001 000001 13000 n 20000 " 0.64 5.3 c 1000 260000 n 000000 mg/kg Soil 0.54 n 0.41 n 68 n 270 n 0.68 n 0.54 n 68 л 0.41 n 95 " 3.4 n 0.55 c 0.54 n 12 " 0.13 c 0.0018 c 18 " ₩ 089 0.039 € 200 n 1.4 0 1.4 0 6.8 n 1400 n 12 n 0.027 n 95 " 140 " 27 n 340 n 0.00019 c 0.0007 c 0.0058 c mg/kg Fish 1.5 n 730 n 1.8 " 1.5 n 1.5 n 180 n 9.1 100 3.3 n 47 0 0.25 c 47 n 550 n 3.7 n 3700 n 1.5 n 1.1 0 33 n 260 n 0.073 n 0.00041 0 0.052 n 10 0 0.00037 c 0.81 c 3.7 n 73 0 52 n 0.0014 c 0.72 c 0.021 n 0.021 n 0.026 c 0.078 a 3.7 1g/m3 1 7300 n 15 n 15 0 0.73 A 1000 10 " " 1800 " 18000 n 0.84 5500 n 37 n 180 n 1800 n 15 n 11 " 2600 n 2600 n 0.042 n 470 n 37000 a 330 n 91 0 3700 n 730 n 0.004 730 n 0.015 c 0.12 c 9100 220 n O Tap water ፥ 1.51E+01 / 1.71E+01 / 7.70E-03 I 4.55E+00 I 2.38E-01 / 2.49E-02 kg·d/mg S Sources: i=IRIS h=HEAST a=HEAST a11. w=Withdrawn from IRIS or HEAST e=EPA-ECAO provisional o=Other EPA documents 2.50E-02 I 1.75B+00 / 8.00E-02 h 1.70E+01 / 5.70E-03 / 4.50B+00 8.70E-03 S.40E-01 kg-d/mg CPSo 1.43B-05 / 5.71E-06 w 2.86E-04 I 2.86B-04 / 2.86E-03 . 2.86E-02 1.43B-02 5.71E-06 2.57B-03 1.00E-03 5.71E-04 mg/kg/d 4.00E-04 h 5.00E-02 h S.00E-04 A 4.00B-04 h 9.00E-03 / 7.00E-02 / 2.00E-05 n 9.00E-04 5.00E-02 7.00B-02 n 1.30E-02 5.00E-02 4.00E-03 / 1.50E-01 3.00E-05 4.00E-04 3.00E-04 4.00B-04 .30E-02 2.00E-02 5.00E-01 1.00E-03 1.00E-03 1.00E-03 2.50E-01 5.00E-03 .00E+00 9.00E-03 2.00B-01 6.00E-03 1.00E-01 1.00E-02 2.50E-03 2.00B-02 2.00E-04 1.00B-01 mg/kg/d RΦo 7440382 7440382 1314609 7773060 1332316 76578148 79107 107186 1429905 834128 591275 504245 62533 74115245 140578 75865 116063 309002 7664417 7440360 304610 1309644 7784421 75078 98862 19061 107131 107051 20859738 67485294 33089611 75070 62476599 107028 15972608 1596845 646884 74223646 34256821 67641 30560191 Antimony potassium tartrate Antimony and compounds Arsenic (as carcinogen) Ammonium sulfamate Aluminum phosphide Antimony pentoxide Acetone cyanohydrin Antimony tetroxide Antimony trioxide 4-Aminopyridine Aldicarb sulfone m-Aminophenol Allyl chloride Acetophenone Acetaldehyde Allyl alcohol Acrylonitrile Contaminant Acrylic acid Acetonitrile Acifluorfen Acrylamide Aluminum Acetochlor Ammonia Acephate Acrolein Ametryn Aldicarb Aramite Acetone Alachlor Amitraz Aniline Arsenic Apollo Assure Asulam Aldrin Amdro Arsine Alar

ompounds 77 431 431 178 188 188 188 188 188 188 188 188 18	Ē	me/ke/d	mg/kg/d		-	Tap water				
rtin B1 651 cene and compounds 72 d d l l l l l l l l l l l				kg.d/mg	kg.d/mg C	l J/gid	pg/m3	mg/kg	mg/kg	mg/kg
trin B1 651 Each and compounds 74 I 683 I 178 I		3.50E-02 1.		2.22E-01 h		0.3 c	0.028 €	0.014 €	13 c	2.9 a
b and compounds 72 1		4.00E-04 /	•			15 n	1.5 n	0.54 n	410 0	31 4
and compounds 72 1 1 1 1 1 1 1 1 1 1 1 1 1				1.10E-01 /	1.08E-01 /	0.61	0.058 c	0.029 c	.26 €	5.8 0
1d 431 431 1176 1176 1176 1176 1176 1176 1176 11		7.00E-02 i	1.43E-04 .			2600 n	0.52 n	95 n	72000 n	5500 n
1d 688 11 178 1 178 chyde		4.00E-03 /				150 n	15 n	5.4 n	4100 n	.310 n
683		3.00E-02 /				1100 n	110 n	41 n	31000 л	2300 n
18 178 256		2.50E-02 I				910 n	91 n	34 n	26000 n	2000 п
178		3.00E-01 /			-, -,	11000 n	1100 n	410 n	310000 n	23000 п
250		5.00E-02 I				1800 n	180 n	u 89	51000 n	3900 п
		2.50E-03 /			-	91 "	9.1 n	3.4 n	2600 n	200 л
		1.00E-01 /			•	610 n	370 n	140 n	100000 n	7800 n
	71432		1.71E-03 •	2.90E-02 /	2.90E-02 / ***	0.36 c	0.22 €	0.11 c	o 66	22 0
Benzenethiol 108985		1.00E-05 h				0.37 n	0.037 n	0.014 n	10 n	0.78 A
Benzidine 928	92875 3.	3.00E-03 /		2.30E+02 /	2.35E+02 /	0.00029 c	0.000027 €	0.000014 €	0.012 €	0.0028
Benzoic acid 658	65850 4.	4.00E+00 /				150000 n	15000 n	5400 n	1000000 n	310000 д
Benzotrichloride 980	22036		•	1.30E+01 /		0.0052 €	0.00048 c	0.00024 c	0.22 €	0.049
Benzyl alcohol 100516		3.00E-01 h	•			11000 "	1100 "	410 n	310000 n	23000 д
Benzyl chloride 100447	447			1.70E-01 /	•	0.062 c	0.037 c	0.019 c	17 c	3.8 a
Beryllium and compounds 7440417		5.00E-03 1 ·		4.30E+00 /	8.40B+00 /	0.016 c	0.00075 c	0.00073 c	0.67 €	0.15
Bidrin 141662		1.00E-04 /				3.7 n	0.37 n	0.14 n	100 n	7.8
Biphenthrin (Talstar) 82657043		1.50E-02 I				850 n	55 n	20 n	15000 n	1200 n
		S.00E-02 /	•			1800 n	180 n	.4 89	51000 n	3900 m
ther 38		4.00E-02 /	•	7.00E-02 h	3.50E-02 h***	0.26 €	0.18 c	0.045 c	41 0	9.1 0
Bis(chloromethyl)ether 542881	1881			2.20E+02 /	2.17E+02 / ***	0.000049 €	0.000029 c	0.000014 c	0.013 c	0.0029
				7.00E-02 w	7.00E-02 w	0.96 0	0.089 c	0.045 e	41 0	9.1
Bis(2-ethylhexyl)phthalate (DEHP) 117817		2.00E-02 /		1.40E-02 /		4.8 c	0.45 €	0.23 €	200 €	46 0
Bis(chloroethyl)ether 111444				1.10E+00 /	1.16E+00 / •••	0.0092 c	0.0054 c	0.0029 c	2.6 €	0.58 a
	80057 5.	5.00E-02 /				1800 n	180 n	u 89	51000 n	3900 4
(B)		9.00E-02 /	5.71E-03 h			3300 n	21 "	120 л	92000 n	7000
76			2.00E-04 h			7.3 n	0.73 n			
omethane		2.00E-02 /		6.20E-02 /	•	0.17 c	0.1 c	0.051 c	46 0	10.0
	602				1.10E-01 h	0.096 €	0.057 c			
Bromoform (tribromomethane) 752	75252 2	2.00E-02 /		7.90E-03 /	3.85E-03 / **	2.4 €	1.6 €	0.4 €	360 €	81 0
	74839 1.	1.40E-03 /	1.43E-03 /	•	•	8.7 n	5.2 n	1.9 n	1400 n	110 4
4-Bromophenyl phenyl cther 101553		5.80E-02 o				2100 n	210 n	78 n	59000 n	4500 #
Bromophos 2104963		5.00E-03 h		·	·	180 "	18 "	6.8 n	5100 n	390 n
Bromoxynil 1689845		2.00E-02 I				730 n	73 n	27 n	20000 n	1600 п
Bromoxynil octanoate 1689992		2.00B-02 I		-		730 n	73 n	27 n	20000 n	1600 /
iene .	066				9.80E-01 / •••	0.011 e	0.0064 €			
		1.00E-01 /				3700 n	370 n	140 n	100000	7800 n
zyl phthalate		2.00E-01 /				7300 m	730 n	270 n	200000 л	16000 /
Butylate 2008415		5.00E-02 i				1800 n	180 n	68 n	51000 n	3900 ח

SAIRES: -INJ A-FIEASI U-IIEASI UI. W-FILIMIUUM OMINIO WI IIIANI W ETI EGILO PROVINCIA					λ	Comp of word	Ambient		Ambient Industrial Res	Residential
		RDo	RDi	CPSo	CPSi o	Tap water	air	Fish	soil	ios
Contaminant	CAS	mg/kg/d	mg/kg/d	kg-d/mg	kg·d/mg C	*****	µg/m3	mg/kg	mg/kg	mg/kg
sec-Butylbenzene	135988	1.00E-02 •					37 n	14 n	10000	780 n
tert-Butylbenzene	104518	1.00E-02 •			•	. e 19	37 m	14 n	10000	780 4
Butvichthalvi butviglycolate	85701	1.00E+00 /				37000 n	3700 n	1400 n	1000000 n	78000 n
Cacodylic acid	75605	3.00E-03 h				110 n	11 "	4.1 n	3100 n	230 л
Cadmium and compounds	7440439	5.00B-04 I			6.30B+00 /	18 "	0.00099 c	0.68 n	510 n	39 1
Caprolactam	105602	5.00E-01 /				18000 n	1800 n	v 089	510000 n	39000 л
Captafol	2425061	2.00E-03 /		8.60E-03 h		7.8 c	0.73 c	0.37 e	. 330 c	74 0
Captan	133062	1.30E-01 /		3.50E-03 h		19 c	1.8 c	0.9 c	820 c	180
Carbary	63252	1.00E-01 /				3700 n	370 n	140 n	100000 n	7800 л
Carbazole	86748			2.00E-02 h	•	3.4 c	0.31 c	0.16 c	140 €	32 a
Carbofuran	1563662	5.00B-03 /				180 "	18 n	6.8 n		390 л
Carbon disulfide	75150	1.00E-01 /	2.86B-03 h		•	21 "	10 n	140 n	100000 n	7800 л
Carbon tetrachloride	\$6235	7.00E-04 /	5.71E-04 •	1.30E-01 /	5.25E-02 / ***	0.16 c	0.12 0	0.024 €	22 c	4.9 a
Carbostifan	55285148	1.00E-02 /		•		370 n	37 n	14 n	10000 n	780 7
Carboxin	5234684	1.00B-01 /	•			3700 n	370 n	140 n	100000 n	7800 n
Chloral	75876	2.00B-03 /				73 0	7.3 n	2.7 n	2000 n	160
Chloramben	133904	1.50E-02 /				550 n	55 n	20 "	15000 n	1200 1
Chloranil	118752			4.03E-01 h		0.17 c	0.016	0.0078 c	7.1 0	1.6 a
Thordana	\$7749	6.00E-05 /		1.30E+00 /	1.29B+00 I	0.052 c	0.0049 c	0.0024 €	2.2 €	0.49
Chlorimiron ethyl	90982324	2.00E-02 /				730 n	73 n	27 n	20000 n	1600 л
Chloring	7782505	1.00E-01 /	•			3700 n	370 n	140 n	100000 n	7800 n
Chlorine dioxide	10049044		5.71B-05 /			2.1 n	0.21 n			
م	107200	6.90E-03 o		•		250 n	25 n	9.3 n	7100 n	540 n
Chloroscatic soid	79118	2.00E-03 h	•			73 n	7.3 n		2000 n	160 4
2-Chloroacetophenone	532274		8.57E-06 /			0.31 n	0.031 n			
A Chlorospiline	106478	4.00E-03 /				150 n	15 n	5.4 n	4100 n	310 #
4-Cittotokangana	108907	2.00B-02 /	5.71E-03	_	•	39 n	21 "	27 n	20000 n	1600 л
Chlorobenzilate	510156	2.00E-02 /		2.70E-01 h	2.70E-01 h	0.25 c	0.023 €	0.012 c	11 6	2.4 0
n-Chlorobenzoic acid	74113	2.00E-01 n				7300 n	730 n	270 n	200000 n	16000 1
4-Chlorobenzotrifluoride	98866	2.00B-02 h			•	730 n	73 n	27 n	20000 n	1600 п
2-Chloro-1,3-butadiene	126998	2.00B-02 a	2.00B-03 h		•	14 n	7.3 n	27 n		1600 م
1-Chlorobutane	109693	4.00E-01 h			•	2400 "	1500 n	540 n	1 410000 n	31000 1
Chlorodifluoromethane	75456		1.43E+01 /		-	87000 n	\$2000 n			
Chloroethane	75003	4.00E-01 •	2.86B+00 I			u 0098	10000 n	540 n	410000 n	31000 n
2-Chloroethyl vinyl ether	110758	2.50E-02 o			Ť	150 "	91 0	34.9	26	2000 A
Chloroform	67663	1.00B-02 /		6.10E-03 /	8.05E-02 / **	•• 0.15 c	0.078 c	0.52 c	, 470 c	100 0
Chloromethane	74873			1.30E-02 A	, 6.30E-03 h***	1.4 0	0.99 c	0.24 c	; 220 c	0 64
4-Chloro-2.2-methylaniline hydrochloride	3165933			4.60E-01 n	_	0.15 e	0.014 c	0.0069	6.2 c	1.4
4-Chloro-2-methylaniline	95692			5.80E-01 A		0.12 c	0.011 c	0.0054 c	4.9 c	1.1 0
beta-Chloronaphthalene	91587	8.00B-02 /	*			2900 n	290 n	110 "	, 82000 n	6300 л
o-Chloronitrobenzene	88733			2.50B-02 h		••• 0.42 c	0.25 c	0.13 c	3 110 c	26 0
p-Chloronitrobenzene	100005			1.80E-02 n	•	••• 0.59 c	. 0.35 c	0.18 c	; 160 c	35 q
p-Chloronitrobenzene	100005			1.80E-02	•			20		0.18 c

_
4
ČĎ.
≤
9
9
=
-
۰
_
=
=
Smith
ഗ
_i
 F.
Œ
80
0
≢
ø
ᆂ
=
ā
ō
Ē
ō
()
_
ס
Φ
œ
Œ
œ
J
ᇁ
.==
III Risk
_
=
=
ڃ
.0
0
ø
Ñ
PA Reg
⋖
ΩĪ
-

R.Do R.D. CPSo		R.Do	RDi	G.Se	CPSi 0	Tap water	Ambient	Ambient Industrial Res	Industrial H	Residential soil
Contaminant	CAS	mg/kg/d	mg/kg/d	kg-d/mg		Jygi	Em/git	mg/kg	mg/kg	mg/kg
2-Chlorophenol	95578	5.00E-03 /				180 "	18 n	6.8 n	\$100 #	390
2-Chloropropane	75296		2.86E-02 h		•	170 n	100			
Chlorothalonil	1897456	1.50E-02 /		1.10E-02 h		6.1 c	0.57 c	0.29 c	260 €	58 0
o-Chlorotoluene	95498	2.00E-02 I		•		120 "	73 "	27 n	20000 #	1600 4
Chlorpropham	101213	2.00E-01 /		•		7300 n	730 n	270 n	200000 n	16000 п
Chlorpyrifos	2921882	3.00B-03 /	0			110 n	11 "	4.1 n	3100 n	230 л
Chlorpyri fos-methyl	5598130	1.00E-02 n				370 n	37 n	14 "	10000	780 л
Chlorsulfuron	64902723	5.00E-02 /				1800 n	180 n	υ 89	51000 n	3900
Chlorthiophos	60238564	8.00E-04 h				29 n	2.9 n	1.1 n	820 n	63 "
Chromium III and compounds	16065831	1.00B+00 /	5.71E-07 w			37000 n	0.0021 n	1400 "	1000000 n	78000 n
Chromium VI and compounds	7440473	5.00E-03 /			4.20E+01	180 "	0.00015 c	6.8	5100 n	390 4
Coal tar	8001589				2.20E+00 ₩		0.0028 c			
Cobalt	7440484	6.00E-02				2200 n	220 n	81 7	61000 n	4700 n
Coke Oven Emissions	8007452				2.17E+00 /		0.0029 c			
Copper and compounds	7440508	3.71E-02 h				1400 n	140 "	50 n	38000 n	2900 n
Crotonaldehyde	123739	1.00E-02 w		1.90B+00 A	1.90E+00 w	0.035 c	0.0033 c	0.0017 c	1.5 ¢	0.34
Cumene	98828	4.00E-02 /	2.57B-03 h			1500 n	9.4 n	54 n	41600 n	3100 n
Cyanides:										
Barium cyanide	542621	1.00E-01 w				3700 n	370 n	140 n	100000 n	7800 л
Calcium cyanide	810269	4.00E-02 /			ē	1500 n	150 "	54 n	41000 n	3100 /
Copper cyanide	544923	5.00E-03 /				180 n	18 7	6.8 n	5100 n	390 4
Cyanazine	21725462	2.00E-03 h		8.40E-01 h		0.08 0	0.0075 c	0.0038 c	3.4 €	0.76
Cyanogen	460195	4.00B-02 /				1500 n	150 "	54 n	41000 #	3100 л
Cyanogen bromide	206683	9.00E-02 I				3300 n	330 n	120 n	92000 n	7000
Cyanogen chiloride	506774	5.00E-02 /				1800 n	180 4	68 n	\$1000 n	3900 n
Free cyanide	57125	2.00E-02 /				730 n	73 n	27 n	20000 n	1600
Hydrogen cyanide	74908	2.00E-02 I	8.57E-04			730 n	3.1 "	27 n	20000 n	1600 1
Potassium cyanide	151508	5.00E-02 /		•		1800 n	180	68 7	51000 n	3900 n
Potassium silver cyanide	909916	2.00E-01 /				7300 n	730 n	270 n	200000 n	16000
Silver cyanide	206649	1.00E-01 /				3700 n	370 n	140 n	100000	7800 4
Sodium cyanide	143339	4.00E-02 /				1500 n	150 "	54 n	41000 n	3100 n
Zinc cyanide	557211	5.00E-02 /				1800 n	180	68 n	51000 n	3900
Cyclohexanone	108941	5.00E+00 /			•	30000 n	18000 n	6800 n	1000000	390000 1
Cyclohexlamine	108918	2.00E-01 /				7300 n	730 л	270 n	200000 n	16000
Cyhalothrin/Karate	68085858	5.00E-03 /				180 n	18 n	6.8 n	8100 n	380
Cypermethrin	52315078	1.00E-02 /				370 n	37 n	14 n	10000	780 n
Cyromazine	66215278	7.50E-03 /		-		270 n	27 n	10 n	7700 n	280
Dacthal	1861321	1.90E-02 /				370 A	37.8	14 0	10000 A	700
Dalapon	75990	3.00B-02 I		•		1100 n	110 "	41 n	31000 m	2300 n
Danitol	39515418	2.50E-02 (•			910 A	112	34 n	26000 ₽	2000
ООО	72548			2.40E-01 /		0.28 c	0.026 a	0.013 c	12 ¢	2.7
DDR	72559			3.40E-01 /		0.2 c	0.018 c	0.0093 c	8.4 €	0 6:1

\subseteq
1/08/94
8
Õ
7
こ
2
₹
£
٠.
ڹ
ш.
Ë
욮
Ø
쿹
₹
2
ਠ
Concentrations:
찣
š
æ
7
₹
$\overline{\alpha}$
=
7
8
į
0

Sources: I=IRIS h=HEAST a=HEAST alt. w=Wihdrawn from IRIS or HEAST e=EPA-ECAO provisional o=Other EPA documents	# IRIS or HE	ASI e=EFA-ECA	J provisional o=C	ARET ELA BOCUME		Date of No.	c-m/cmokenic ellece		n noncaptunoxenne effects	
			•			, (Ampient	i	ווומנוזאון וויכי	Tan Cons
		RDo		CPS	CPSi	l ap water	Jig.	risa		100
Contaminant	CAS	mg/kg/d	mg/kg/d	kg-d/mg	kg·d/mg C	7/81	Hg/m3	твукв		mg/kg
TUU	50293	5.00E-04 /		3.40E-01 /	3.40E-01 /	0.2 c	0.018 c	0.0093 e	8.4 c	1.9 6
Decahromodiphenyl ether	1163195	1.00E-02 /		,	•	61 "	37 n	14 n	10000	780 n
Demeton	8065483	4.00E-05 /	•	•		1.5 n	0.15 n	0.054 n	41 n	3.1 n
Diallate	2303164			6.10E-02 h	•	0.17 c	0.1 c	0.052 c	47 c	<u>e</u>
Diszinon	333415	9.00E-04 h				33 "	3.3 n	1.2 n	920 n	5
Distance	132649	4.00E-03 p				150 a	15 n	5.4 a	4100 n	310 a
1 A Dibemoberrane	106376	1.00E-02 /			•	61 0	37 n	14 n	10000	780 л
1,4-Dibromovenceme	124481	2 00R-02 /		8.40E-02 /	•	0.13 c	0.075 c	0.038 €	34 €	7.6 0
Distribution of the second of	94128		\$.71E-05 /	1.40E+00 h	2.42E-03 hee	0.048 c	0.21 n	0.0023 €	2 c	0.46 d
1,2-Dioromo-3-choropropane	106934		5.71E-05 h	8.50B+01 /	7.70E-01 1 **	0.00075 c	0.0081 c	0.000037 €	0.034 €	0.0075
1,2-Dioromoethane	04240	10000				3700 n	370 n	140 "	100000	7800 n
Dibutyl phthalate	74/40	1.00E-01	•			1100	110 n	41 "	31000 n	2300 n
Dicamba	1916009	2,000.0	2 00 011 2				210 0	120 "	92000 n	7000
1,2-Dichlorobenzene	1000	9.00E-02.1	3.712-02 ·			_	320 n	120 "	. 91000 n	7000
1,3-Dichlorobenzene	16/146	6.70E-04 U	1 10 000 0	2 408.02 &	•		0.26 c	0.13 c	120 c	27 0
1,4-Dichlorobenzene	100407		1.10-267.7	. 70.701.7		910	0.014	0.007	64 6	1.4 0
3,3'-Dichlorobenzidine	91941	•		4.50E-01 /			3 +10.0	3 1000		
1,4-Dichloro-2-butene	764410				9.30E+00 h**	<u>o</u> .	0.00067			0000
Dichlorodifluoromethane	75718	2.00E-01 /	5.71E-02		•	390 "	210 n	270 n		10000
1 1-Dichloroethane	75343	1.00E-01 h	1.43E-01 .		:	810 "	520 "	140 n	100000 n	7800 д
1,1-Dichloroethone (BDC)	107062	-	2.86E-03 •	9.10E-02 /	9.10E-02 / **	• 0.12 c	0.069 c	0.035 €	31 6	7 0
1,z-Dichlorodhulone	75354	9.00E-03 /		6.00E-01 /	1.75E-01 / **	0.044 c	0.036 c	0.0053 c	4.8 c	1.1 a
1,1-Dictionectal tene	156507	1.00E-02 p			•	4 61 n	37 n	14 n	10000	780 n
1, z-Diemoroemyiene (vis)	156605				•	120 n	73 n	27 n	20000 n	1600 л
1,2-Dichloroethylene (uans)	200001						33 n	12 n	9200 n	700 "
1,2-Dichloroethylene (mixture)	Decor.					110	11.0	4.1 n	3100 n	230 n
2,4-Dichlorophenol	120832			·		_				780 1
2,4-Dichlorophenoxyacetic Acid (2,4-D)	74757							: =		630 n
4-(2,4-Dichlorophenoxy)butyric Acid	94870	8.002-03 /		4 00 000	•	410	6	٥	42 c	9.4 0
1,2-Dichloropropane	78875		1.145-03 /	0.80E-02 n					· 16	230 1
2,3-Dichloropropanol	67919			4 10 036 1	1 200 01 888	_		0.018		3.7 a
1,3-Dichloropropene	001740	5.00B-04 r	1 428 04 1	7 908-01					9.9 c	22 0
Dichlorvos	16120		100000	4.40E-01 w		0.15 ¢		0.0072 €	6.5 c	1.5 0
Dicolol	7777	3 00R-02 A	\$ 71R-05		•	0.42 n	0.21 n	41 n	31000 n	2300 n
Distant	17,03			1.60B+01 /	1.61B+01 /	0.0042 c	0.00039 c	0.0002 €	0.18 c	0.04
Dielam			1.43R-03 /		,	52. n	5.2 n			
Diesel emissions	84667	8.00R-01			•	29000 n	7	1100 n	820000 n	63000 n
Dichilar alved menobital ether	112345		5.71B-03 h			210 n	21 n			
Diemylene giyeot, monoutly ether	11900	2.00R+00 h				73000 n	7300 n	2700 n	1000000 n	160000 n
Diemylene grycor, monoxuni curer	617845					400	40 n	15 n	11000 n	980 n
Demylloramine Dest abulbarellodinate	103231			1.20E-03 /		88	5.2 0	2.6 0	2400 c	530 0
Dischalatileated	56531			4.70E+03 h		0.000014 c	1.30B-06 c	6.70B-07 c	0.00061 c	0.00014
Diemyisuites de la company (Augusta)	43222486	8.00R-02 /				2900 n	290 n	110 "	82000 n	6300 д
Dienzodnar (Avenge)										

		RIDo	RŒ	CPSo .	CPSi 0	Tap water	Ambient Industrial Res	Fish	Industrial 1	Kendennal soil
Contaminant	CAS	mg/kg/d	mg/kg/d	kg.d/mg	kg·d/mg C	ng/L	Lm/gn3	mg/kg	mg/kg	mg/kg
Diflubenzuron	38367385	2.00E-02 /				30 "	3 2	27 n	20000 n	1600
1.1-Difluoroethane	75376		1.14E+01 /				42000 B			
Diisopropyl methylphosphonate (DIMP)	1445756	8.00B-02 /				2900 n	290 n	110 n	82000 n	6300
Dimethipin	55290647	2.00E-02 I				730 n	73 n	27 n	20000 n	1600
Dimethoate	60515	2.00B-04 I				7.3 n	0.73 n	0.27 n	200 n	16
3,3'-Dimethoxybenzidine	119904			1.40B-02 h		4.8 c	0.45 c	0.23 c	200 6	45
Dimethyl phthalate	131113	1.00B+01 h				370000 n	37000 n	14000 n	u 0000001.	780000 n
Dimethyl terephthalate	120616	1.00E-01 /				3700 n	370 n	140 n	1000001	7800 n
Dimethylamine	124403		5.71E-06 w			0.21 n	0.021 n			
2,4-Dimethylaniline hydrochloride	21436964			5.80E-01 h		0.12 c	0.011 c	0.0054 c	4.9 €	1.1
2,4-Dimethylaniline	18956			7.50E-01 h		0.09 c	0.0083 c	0.0042 c	3.8 €	0.85
N-N-Dimethylaniline	121697	2.00B-03 /				73 n	7.3 n	2.7 n	2000 n	160
3,3'-Dimethylbenzidine	119937			9.20E+00 h		0.0073 c	0.00068 c	0.00034 c	0.31 c	0.069
N,N-Dimethylformamide	68122	1.00E-01 h	8.57E-03 /	•	•	3700 n	31 n	140 n	100000	7800
1,1-Dimethylhydrazine	57147			2.60E+00 w	3.50E+00 W	0.026 c	0.0018 c	0.0012 c	1.1 6	0.25
1,2-Dimethylhydrazine	540738			3.70E+01 w	3.70E+01 w	0.0018 c	0.00017 c	0.000085 c	0.077 c	0.017
2,4-Dimethylphenol	105679	2.00E-02 /		•		730 n	73 n	27 n	20000	. 1600
2,6-Dimethylphenol	276261	6.00E-04 /				22 n	2.2 n	0.81 π	610 "	47
3,4-Dimethylphenol	85956	1.00E-03 /				37 n	3.7 n	1.4 n	1000	78
1,2-Dinitrobenzene	528290	4.00B-04 h				15 n	1.5 n	0.54 n	410 n	31
,3-Dinitrobenzene	05966	1.00E-04 /				3.7 n	0.37 n	0.14 n	100	7.8
,4-Dinitrobenzene	100254	4.00E-04 h				15 n	1.5 n	0.54 n	410 n	. 31
4,6-Dinitro-o-cyclohexyl phenol	131895	2.00E-03 /				73 n	7.3 n	2.7 n	2000 n	160 1
,4-Dinitrophenol	51285	2.00B-03 /				73 n	7.3 n	2.7 n	2000 n	25
Dinitrotoluene mixture				6.80E-01 /		0.099 c	0.0092 €	0.0046 c	4.2 c	0.94
2,4-Dinitrotoluene	121142	2.00E-03 /			•	73 n	7.3 n	2.7 n	2000 n	<u>8</u>
2,6-Dinitrololuene	606202	1.00E-03 h				37 n	3.7 n	1.4 0	1000 "	78
Dinoseb	88857	1.00E-03 /				37 n	3.7 n	1.4 n	1000 "	78
di-n-Octyl phthalate	117840	2.00E-02 h	٠			730 n	73 "	27 n	20000 n	89
1,4-Droxane	123911			1.10E-02 /	-	6.1 0	0.57 c	0.29 c	260 €	28
Diphenamid	957517	3.00E-02 /				1100 #	110 #	41 "	31000 n	2300
Diphenylamine	122394	2.50E-02 /				910 "	91 n	34 n	26000 n	2000
1,2-Diphenylhydrazine	122667			8.00E-01 /	7.70B-01 /	0.084 c	0.0081 c	0.0039 c	3.6 €	8.0
Diquat	85007	2.20E-03 /				80 v	e 00	3.9	2200 n	170 4
Direct black 38	1937377			8.60E+00 h		0.0078 c	0.00073 e	0.00037 €	0.33 c	0.074
Direct blue 6	2602462			8.10E+00 h		0.0083 c	0.00077 c	0.00039 c	0.35.e	0.079
Direct brown 95	16071866			9.30E+00 h		0.0072 c	0.00067 c	0.00034 €	0.31 €	0.069
Disulfoton	298044	4.00B-05 /				1.5 n	0.15 n	0.054 n	41 0	3.1
1,4-Dithiane	505293	1.00E-02 /				370 n	37 n	14 n	100001	780
Diuron	330541	2.00E-03 /				73 n	7.3 n	2.7 n	2000 #	160 /
Dodine	2439103	4.00E-03 /				150 "	15 #	5.4 n	4100 "	310 /

EPA Region III Risk-Based Concentrations: R.L. Smith (11/08/94)

280 16000 000091 0.013 0.0046 9300 1600 4700 33 16000 1600 5.4 230000 4700 88 8 230000 89 23 23000 31000 2000 2000 70000 7800 23000 00009 630 8 3.4 0.17 Industrial Residential 65 38 33 0.78 mg/kg ios n=noncarcinogenic effects. 820 c 0.02 c 310 n 5100 n 000000 2.8 c 24 c 000000 260 n 13000 n 61000 n 82000 n 20000 n 00001 2000 n 200000 000000 000000 1000 3100 n 0.057 c 410000 n 100000 . 15 c 290 c 510 n 310000 n 9 26000 n 200000 n 920000 n 20000 " 61000 n 0.75 c 20000 " 92000 n 8200 " 310000 n mg/kg 301 270 n 27 n 0.9 c 2.7 n 270 n 4100 # 0.41 n 540 n 34 n 1200 n 140 n 27 n 2700 n 0.34 n 18 n 81 0 110 0 **1** 1.4 n 0.000063 € 0.32 c 120 n 4100 " 2700 n 0.68 n 410 n 410 0 0.0031 c 0.027 c 0.014 n 0.000023 c 11 " 0.017 c).066 c 7 mg/kg Fish Basis of RBC: c=carcinogenic effects 1.8 c 0.14 c 3.7 n 18 " 210 n 91 " 730 n 1000 7300 n 0.053 c 0.037 n 29 n 0.91 n 47 n 220 n 290 n 73 n 220 n 37 n 7.3 n 0.00013 c 73 n 1.1 n 1.8 1100 , 0.13 c 330 n 3300 n 73 n 0.000045 c 11000 1 0.033 c 11000 0.0016 c 0.21 c 1100, 0.018 c 7300 " Ambient Lec'm3 i 110000 " 730 n 1200 n 33000 n 1300 n 730 n 73000 n 0.066 c 0.57 c 9.1 470 n 2900 n 730 n 2200 " 370 n 19 c 0.35 c 7300.n 73000 n = 210 n 180 . 23 . 18 11000 " 15000 n 1.4 c 910 0.37 n 0.00048 c 200 10000 6.8 c 11000 n 280 3300 n 210 n O Tap water ፧ ፥ 3.50E-01 h 4.55E-02 / 4.20E-03 kg-d/mg GSi Sources: i=IRIS h=HEAST a=HEAST alt. w=Wihdrawn from IRIS or HEAST e=EPA-ECAO provisional o=Other EPA documents 5.00E+01 A 1.02B+00 h 1.19E-01 h 1.40B+02 w 9.90E-03 / 4.80E-02 h 3.50E-03 I 3.80E+00 h 3.00E-02 1.90E-01 kg-d/mg SS 2.86B-01 / 2.86E-04 / 5.71B-03 I 5.71B-02 / 5.71E-03 1.43B-02 mg/kg/d RD 4.00E-01 h 3.00E-03 / 2.00E-03 h 8.00E-05 / 1,00B-03.1 2.00B-02 h 2.00E-03 / 3.00E-01 2.00E+00 / 2.00B-02 I .00E-01 2.00B-01 / 3.00B+00 / 2.50E-04 i 8.00B-02 2.50B-02 2.00E-01 9.00E-02 1.00E-01 1.00E-05 3.00E+00 8.00E-03 1.30E-02 6.00E-02 2.00E+00 3.00E-04 5.00E-02 1.00E-02 2.00E-02 5.00E-03 9.00E-01 5.00E-04 3.00E-01 mg/kg/d RDo 20000 110009 100414 75218 944229 98011 72208 111159 110805 759944 60297 97632 141786 109784 107153 107211 96457 759739 84720 10120 133073 64186 67458 531828 60568050 145733 563122 2104645 2224926 2164172 59756604 56425913 66332965 69409945 72178020 39148248 106898 16672870 140885 111762 7782414 106887 CYS Ethyl p-nitrophenyl phenylphosphorothioate Ethephon (2-chlorocthyl phosphonic acid) EPTC (S-Ethyl dipropylthiocarbamate) 3thylene glycol, monobutyl ether Ethylphthalyl ethyl glycolate 3thylene thiourea (ETU) -Ethoxyethanol acetate Sthylene cyanohydrin Ethyl methacrylate 2thylene diamine 2-Epoxybutane 2-Ethoxyethanol **Ethylnitrosourea** pichlorohydrin **Ethylene** glycol 3thylene oxide Formaldehyde Ethyl acrylate 3thyl acetate **Ethylbenzene** Furmecyclox Furazolidone -luometuron Formic Acid Contaminant Plumprimidol -cnamiphos Fluvalinate Fomesafen Inoridone 3thyl ether Fosetyl-al Flutolanil Juoride Fonofos Indothall Express Furfural Jurium Endrin 3thion Folpet Furan

EPA Region III Risk-Based Concentrations; R.L. Smith (11/08/94)

Contaminant	77182822 765344 1071836 69806402 79277273 319845 319857 58899 608731 76448	mg/kg/d 4.00E-04 /			GSi o	Tap water	air	Fish	atr Fish soil soil	ios
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7182822 765344 1071836 8806402 2277273 319857 58899 608731 76448	4.00E-04 /	mg/kg/d	kg-d/mg	kg-d/mg C	10000	ng/m3	mg/kg	me/kg	mg/kg
10 69 79 79 79 79 79 79 79 79 79 79 79 79 79	765344 1071836 2806402 3277273 319846 319857 58899 608731 76448					15 n	1.5 n	0.54 n	410 n	31
9	071836 9806402 9277273 319857 58899 608731 76448	4.00B-04 /	2.86E-04.h			15 n	1 "	0.54 n	410 n	31
999 1 194 195 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9806402 9277273 319846 319857 58899 608731 76448	1.00B-01 /				3700 n	370 n	140 n	100000 n	7800
91 194 195 252 253 253 253 253 253 253 253 253 25	319846 319857 58899 608731 76448	5.00E-05 /				1.8 n	0.18 n	. 0.068 n	51 n	3.9
91 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	319846 319857 58899 608731 76448	1.30E-02 /			•	470 n	47 n	18 n	13000 n	1000
5.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	319857 58899 608731 76448			6.30E+00 /	6.30E+00 1	0.011 c	0.00099 e	0.0005 c	0.45 c	0.1
10 10 10 10 10 10 10 10 10 10 10 10 10 1	58899 608731 76448 024573			1.80E+00 /	1.80E+00 /	0.037 c	0.0035 c	0.0018 c	1.6 0	0.35
10 10 10 10 10 10 10 10 10 10 10 10 10 1	608731 76448 024573	3.00E-04 /		1.30E+00 h		0.052 c	0.0048 €	0.0024 €	2.2 0	0.49
10 194 195 195 195 195 195 195 195 195 195 195	76448			1.80E+00 /	1.79E+00 /	0.037 c	0.0035 c	0.0018 c	1.6 c	0.35
31 15	1024573	5.00E-04 /		4.50B+00 1	4.55B+00 / **	0.0023 €	0.0014 c	0.0007 c	0.64 €	0.14
9		1.30E-05 /		9.10E+00 /	9.10E+00 / **	0.0012 c	0.00069 c	0.00035 c	0.31 c	0.01
. 51	87821	2.00B-03 /			•	12 n	7.3 n	2.7 n	2000 n	160
51	118741	8.00E-04 /		1.60E+00 /	1.61E+00 / •••	0.0066 e	0.0039 €	0.002 c	1.8 c	0.4 0
21 25	87683	2.00E-04 h		7.80E-02 /	7.70E-02 / ***	0.14 c	0.081 c	0.04 €	37 c	8.2
2	77474	7.00E-03 I	2.00E-05 h		•	0.15 n	0.073 n	9.5 n	7200 n	550
S-triazine	19408743			6.20E+03 /	-4.55E+03 I	0.000011 e	1.40E-06 c	5.10E-07 c	0.00046 €	0.0001
S-triazine	67721	1.00E-03 /		1.40E-02 /	1.40E-02 / •••	0.75 €	0.45 c	0.23 €	200 €	4
5-triazine	70304	3.00E-04 I				11 0	1.1 n	0.41 n	310 n	23
nate 51	121824	3.00E-03 /		1.10E-01 /		0.61 c	0.057 c	0.029 €	26 c	5.8
31	822060		2.86E-06 I			0.i n	0.01			
<u> </u>	110543	6.00E-02 h	5.71B-02 /		•	350 n	210 n	81 "	61000 n	4700 п
	51235042	3.30B-02 I				1200 n	120 n	45 n	34000 n	2600 п
	302012			3.00E+00 /	1.71E+01 /	0.022 €	0.00037 €	0.0011 c	0.95 c	0.21
	7647010		2.00B-03 I			73 0	7.3 n			
ide	7783064	3.00E-03 I	2.57B-04 i			110 n	0.94 n	4.1 n	3100 n	230 m
Hydroquinone 12	123319	4.00E-02 h				1500 n	150 n	×	41000 n	3100
	35554440	1.30E-02 /		-		. 470 n	47 n	18 n	13000 n	1000
1	81335377	2.50B-01 /	•			9100 n	910 n	340 n	260000 n	20000 п
367	36734197	4.00E-02 /				1500 n	150 n	X	41000 n	3100 п
	78831	3.00E-01 /			•	1800 "	1100 "	410 n	310000 n	23000
	78591	2.00E-01 /		9.50E-04 I		71 6	6.6 c	3.3 €	3000 €	670 a
	33820530	1.50B-02 /	•			550 n	55 n	20 n	15000 n	1200
I methyl phosphonic acid	1832548	1.00B-01 /				3700 n	370 n	140 n	100000 n	7800
	82558507	5.00E-02 /				1800 #	180 #	u 89	51000 n	3900
	143500		•	1.80E+01 •		0.0037 €	0.00035 c	0.00018 c	0.16 c	0.035
	77501634	2.00E-03 /				73 n	7.3 n	2.7 n	2000 n	160
tracthy!)	78002	1.00B-07 /				0.0037 n	0.00037 n	0.00014 n	0.1 n	0.0078
· ·	330552	2.00E-03 /				73 0	7.3 n	2.7 n	2000 n	160
	7439932	2.00E-02 •				730 m	73 n	27 n	20000 n	1600
	83026996	2.00B-01 /			٠.	7300 n	730 n	270 n	200000 n	16000
	121755	2.00B-02 /				730 n	73 n	27 n	20000 n	1600 л
Maleic anhydride	108316	1.00B-01 /				3700 n	370 n	140 n	1000001	7800

EPA Region III Risk-Based Concentrations: R.L. Smith (11/08/94)

CAS mj 12331 10973 10973 8018017 12427382 7439965 950107 24307264 7439976 126987 10265926 67561 950378 16752775	R(f)o	R/Di mg/kg/d	CPSo kg:d/mg k	o :	Tap water	Ambient air	Fish	Ambient Industrial Residential Tapwater air Fish soil soil 110ft. 110fm3 mg/kg mg/kg mg/kg	soil mg/kg
CAS mil 123331 123331 109773 8018017 12427382 12427382 1439965 950107 12427382 12439965 15000 15	Effbo					air 			soil ng/kg
CAS mi 123331 109773 12427382 12427382 12427382 1439965 950107 e 24307264 ic) 24307264 ic) 24307264 ic) 24307264 ic) 126987 ic) 126887 ic) 126887 i	5.00B-01 1- 2.00B-02 h 3.00B-02 h 5.00B-03 1 5.00B-03 1 9.00B-03 1 3.00B-04 1 3.00B-04 1								ng/kg
123331 109773 8018017 12427382 7439965 950107 e 24307264 1439976 150505 78488 57837191 126987 10265926 67551 950378 16752775	5.00B-01 h 2.00B-02 h 3.00B-02 h 5.00B-03 l 5.00B-03 l 9.00B-05 h 3.00B-04 h 3.00B-04 h			Kg.d/mg I C	hg/L	THE WAS	mg/kg	1	20000
109773 8018017 12427382 0mpounds e 7439965 950107 e 7439976 125056 150505 78488 57837191 126987 10265926 67551 950378 16752775	2.00B-05 h 3.00B-02 h 5.00B-03 l 5.00B-03 l 9.00B-05 h 3.00B-04 l 3.00B-04 l				18000 n	1800 n	v 089	510000 n	2225
ad compounds 8018017 12427382 1439965 oride 24307264 rganic) 24307264 hyl) 150505 le 57837191 urile 126987 los 67561 l 16752775 r 16752775	3.00B-02 h 5.00B-03 l 5.00B-03 l 9.00B-05 h 3.00B-02 l 3.00B-04 h 3.00B-04 l	•			0.73 n	0.073 n	0.027 n	20 n	1.6 ח
12427382 143965 143965 oride oride trganic) trganic) tryl) 1e 150505 le 160805 Interpoor 12697 Interpoor 126987 Interpoor 12	5.00B-03 / 5.00B-03 / 9.00B-05 / 3.00B-02 / 3.00B-04 / 3.00B-04 /				1100 n	110 n	41 n	31000 n	2300 1
nd compounds 7439965 oride 24307264 rganic) 24307264 1439976 hyl) 150505 le 78488 frile 126987 trile 126987 trile 950378 r	5.00B-03 h 9.00B-05 h 3.00B-02 l 3.00B-04 h 3.00B-04 l				180 "	18 n	6.8 n	8100 n	390
oride 24307264 rganic) 743976 hyl) 12967926 le 7848 le 7848 trile 126987 los 67561 l	9.00E-02 / 3.00E-02 / 3.00E-04 / 3.00E-04 /	1.43B-05 /			180 "	0.052 n	6.8 "	8100 n	.390
rganic) 24307264 rganic) 743976 thyl) 22967926 le 150505 le 7848 57837191 trile 126987 los 67561 l	3.00B-02 / 3.00B-04 / 3.00B-04 /	•			3.3 n	0.33 n	0.12 n	92 n	7 2
7439976 22967926 150505 78488 57837191 126987 10265926 67561 950378 16752775	3.00E-04 h				1100 n	110 n	41 0	31000 n	2300 n
22967926 150505 78488 57837191 126987 10265926 67561 950378 16752775	3.00E-04 /	8.57E-05 h			11 0	0.31 n	0.41 n	310 n	23 A
150505 78488 57837191 126987 10265926 67561 950378 16752775					11 "	1.1 n	0.41 n	310 n	23 n
78488 57837191 cile 126987 58 67561 950378 16752775	3.00B-05 /				1.1 "	0.11 n	0.041 n	· 31 n	2.3 ח
57837191 126987 38 10265926 67561 950378 16752775	3.00B-05 /				1.1 0	0.11 n	0.041 n	31 n	2.3 п
126987 38 10265926 67561 950378 16752775	6.00B-02 /				2200 n	220 n	81 n	61000 n	4700 n
10265926 67561 950378 16752775	1.00E-04 /	2.00E-04 ·			3.7 n	0.73 n	0.14 n	100 n	7.8 л
67561 950378 16752775 72435	5.00B-05 /				1.8 n	0.18 n	0.068 n	51 n	3.9 ח
950378 16752775 72435	5.00E-01 /				18000 n	1800 n	680 n	510000 n	39000 л
16752775	1.00E-03 /				37 n	3.7 n	. 1.4 n	1000 n	78 n
72435	2.50B-02 I	•			910 "	91 n	34 "	26000 n	2000 n
	5.00E-03 /				180 n	18 ח	6.8 n	5100 n	390 n
[2-Methoxyethano] acetate 110496 2	2.00B-03 ·				73 n	7.3 n	2.7 n	2000 n	160 A
109864	1.00E-03 h	5.71B-03 /			37 n	21 "	1.4 n	1000 n	78.7
2-Methoxy-5-nitroaniline			4.60E-02 h		1.5 e	0.14 €	0.069 c	62 c	14 0
79209	1.00E+00 h			•	37000 n	3700 n	1400 п.	1000000 n	78000 4
Methyl acrylate 96333 3	3.00B-02				1100 "	110 "	41 0	31000 n	2300 n
hydrochloride			1.80E-01 h		0.37 c	0.035 c	0.018 c	16 c	3.5 a
95534			2.40E-01 h		0.28 с	0.026	0.013 c	12 c	2.7
79221	1.00E+00 w	•			37000 n	3700.0	1400 n	1000000 n	78000 1
4-(2-Methyl-4-chlorophenoxy) butyric acid 94815	1.00B-02 /				370 n	37 n	14.0	10000 n	287
94746	5.00E-04 1				18.	1.8 n	0.68 n	510 n	66.
	1.00E-03 /				37 n	3.7 n	1.4 n	0001	9
108872		8.57E-01 h			31000 6	3100 n		00000	.002
74953	1.00E-02 a				" [0 ;	37 n	14.0	10000	8 8
75092	6.00E-02 /	8.57E-01 A	7.50E-03 /	1.64E-03 / ***	9 174	3.8 G	0.42.6	3 000	3 0
ne) 101144	7.00E-04 h		1.30E-01 n	1.30E-01 n	0.32 6	0.048 C	0.024 6	277	, ,
•			Z.50E-01 W		0.27 6	0.023 6		3 (2, 3
miline			4.60E-02 /		1.5 6	0.14 0	0.069 c	9 79	*
4,4'-Methylenediphenyl isocyanate 101688		5.71B-06 /				0.021 n			
	6.00B-01 /	2.86B-01 /				1000 n	810	610000 n	47000 n
Methyl hydrazine 60344			1.10B+00 w		0.061 د	0.0057 c	0.0029 c	2.6 c	0.58
Methyl isobutyl ketone 108101	8.00E-02 h	2.29B-02 •			2900 n	2	110 "	82000 n	. 6300
80626	8.00B-02 h				2900 n	290 n		82000 n	6300 1
			3.30B-02 h	٠	2 0	0.19 0	•	87 0	61
Methyl parathion 298000	2.50B-04 I				9.1 n	0.91 n	0.34 n	260 n	20 1

02 1 03 1 04 1 1.14E-02 = 0.3 kg d/mg kg	RIDO RIDI CPSO	0				
10334 5.00E-02 1.00E-00 1.4E-02 1.00E-01 1.00E-01 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-01 1.					soil	ios
100445 5.00B-02 1 1 1 1 1 1 1 1 1	mg/kg/d mg/kg/d kg·d/mg	O.	рв/L рв/т3	i mg/kg	mg/kg	mg/kg
10334 5.00E-02 1 106445 5.00E-02 1 106445 5.00E-02 1 106445 5.00E-03 1 1.14E-02 1 106404 1 1.00E-01 1 1.14E-02 1 1.00E-01 1 1			1800 n	180 n 68 n	51000 n	3900
106445 5.00E-03 h 1.14E-02 s 98393 7.00E-03 s 1.14E-02 s 98393 7.00E-03 s 1.14E-02 s 98393 7.00E-03 s 8.57E-01 i 1.30E-00 w 2.30E-03 i 1.30E-01 i 1.30E-02 i 1.30E-01 i 1.30E-02 i 1.30E-03			1800 "	180 n 68 n	51000 n	3900 1
25013154 6.00E-02 a 1.14E-02 a 9833 7.00E-02 a 1.50E-01 i 1.00E-02 a 1.50E-01 i 1.00E-02 i 1.50E-00 i 1.00E-02 i 1.50E-00 i 1.00E-01			180 n	18 n 6.8 n	\$100 "	390 л
163404 5.00E-03 8.57E-01 163404 5.00E-04 1.50E+00 1.50E+00 1.50E+00 1.50E+01 218585 2.00E-04 1.50E-04 1.50E+00 1.50E+02 1.50E-04 1.50E-01 1.50E+02 1.50E-04 1.50E-01 1.50E+02 1.50E-04 1.50E-01 1.50E+02 1.50E-04 1.50E-01	6.00E-03 a	:	4 O9	42 n 8.1 n	6100 n	470 n
1634044 5,00E-03		:	430 n	.260 n 95 n	72000 n	5500 n
11807649 1.50E-01 h 1.80E+00 w 2.80E-02 1.50E-04 1.80E+00 w 2.80E-02 1.00E-04 1.80E+00 w 1.90E-03 1.00E-01 1	5.00E-03 •	:	180 n 3	3100 n 6.8 n	5100 n	390 "
21807649 2.50B.02 1.80B-00			5500 n	550 n 200 n	150000 n	12000 n
2212671 2.00E-03 1.80E+00 2212671 2.00E-03 1059903 1.00E-01 1059903 1.00E-01 1059903 1.00E-01 12035722 1.00E-01 14797530 1.00E-01 14797530 1.00E-01 14797530 1.00E-01 14797530 1.00E-01 188744 6.00E-05 190043 3.00E-05 190040 3.00E-05 100240 1.00E+00 100240 1.00E+00 100240 1.00E+00 116547 6.20E-02 116547 6.20E-02 116547 6.20E-02 116547 6.20E-02 116548 6.20E-02 116549 6.20E-02 116541 1.00E+00 116540 1.00E+01 116559556 1.00E-02 116559555 1.00E-02 1106927 1.00E-01 1106927 1.00E-02 110695955 1.00E-02 1106927 1.00E-02 110695955 1.00E-02 1106927 1.00E-02 110695956 1.00E-02 1106927 1.00E-02 1106927			910 n	91 n 34 n	26000 n	2000 п
2212671 2.00B-03 i 7439987 5.00B-03 i 10599903 1.00B-01 i 300765 2.00B-03 i 1529997 1.00B-01 i 1203572 1.00B-01 i 14797558 1.60B-02 i 10102439 1.00B-01 i 88744 6.00B-02 i 88744 6.00B-02 i 100016 3.00B-01 i 88744 6.00B-01 i 88744 6.00B-01 i 88744 6.00B-02 i 100016 3.00B-01 i 88746 6.00B-01 i 88747 6.00B-02 i 100016 3.00B-01 i 88748 6.00B-01 i 88749 6.00B-02 i 100016 3.00B-01 i 88740 i 100016 3.00B-01 i 88740 i 100017 6.00B-02 i 5.10B-01 i 5.40B-00	2.00E-04 /		0.037 c 0.0035	35 c 0.0018 c	1.6 6	0.35
743987 5.00E-03			73 n	7.3 n 2.7 n	2000 "	160 1
10399903 1.00E-01 1 1.30E+02			180 n	•	5100 n	390
91598 2.00E-03 <i>i</i> 1.30E+02 e 11529997 1.00E-01 <i>i</i> 1.30E+02 e 12035722 2.00E-02 <i>i</i> 1.50E-03 w 1479758 1.60E+00 <i>i</i> 1.00E-01 <i>i</i> 1.4797550 1.00E-01 <i>i</i> 1.00E-01 <i>i</i> 1.4797550 1.00E-01 <i>i</i> 1.00E-01 <i>i</i> 1.00E-01 <i>i</i> 1.00E-01 <i>i</i> 1.00E-02 w 14797550 1.00E-01 <i>i</i> 2.71E-04 e 14797550 1.00E-01 <i>i</i> 2.71E-04 e 6.7299 7.00E-02 b 100016 3.00E-03 c 100016 3.00E-03 c 100017 6.20E-04 i 5.71E-04 e 5.56887 1.00E+00 w 5.56887 1.00E+00 w 5.56887 1.00E+00 i 1.50E+00 i 1116547 5.10E-01 i 1.50E+00 i 1116547 5.10E-01 i 5.10E-01 i 5.10E-01 i 5.00E-01 i 5			3700 n	370 n 140 n	1000001	7800 1
1529997			73 n	7.3 n 2.7 n	2000 n	160 4
1529997		_	0.00052 c 0.000048 e	48 c 0.000024 c	0.022 0	0.0049
12035722 1.50E-0.3 w 14797538 1.60E+00	1.00E		3700 n 3	370 n 140 n	100000	7800 1
7440020 2.00E-02 1 1929824 1.50E-03 1 1 1 1 1 1 1 1 1	8.40	E-01 /	9.0	0.0075 c		
12035722 1.50E-0.3 w 1.4797558 1.60E+00 i 1.60E+00 i 1.60E+00 i 1.60E+00 i 1.60E-0.1 m 14797550 1.00E-0.1 m 14797650 1.00E-0.1 m 1.50E+0.1 m 1	2.00E		730 n	73 n 27 n	20000 0	1600 "
1929824 1.50E-03 w 14797558 1.60E+00		1.70B+00 /				
14797558 1.60E+00 1 1 1 1 1 1 1 1 1			55 n	5.5 n 2 n	1500 n	120 4
10102439 1.00E-01			58000 n SE	\$800 n 2200 n	10000001	130000 л
14797650 1.00E-01			3700 n 3	370 n 140 n	1000001	7800 4
88744 6.00E-03 w 5.71E-05 h 99092 3.00E-03 o 100016 3.00E-03 o 98953 5.00E-04 i 5.71E-04 e 67209 7.00E-02 h 10102440 1.00E+00 m 55687 1.00E-01 i 100027 6.20E-02 o 79469 5.71E-03 i 1116547 5.71E-03 i 62759 5.10E+00 i 1116547 5.40E+00 i 1116547 5.40E+00 i 920163 62759 5.10E+00 i 110595956 7.00E-02 h 110695956 7.00E-02 h 110695950 7.00E-00 i 110695950 7.00E-00 i 1106960 i 1106960 i 1106960 i 1106960 i 1106960 i 110690 i 11069				370 n 140 n	100000 n	7800 n
99992 3.00E-03 o 100016 3.00E-04 i 5.71E-04 e 67209 7.00E-02 h 59870 1.00E-02 h 10102440 1.00E+00 m 556887 1.00E-01 i 100027 6.20E-02 o 79469 5.20E-02 o 79469 5.11E-03 i 86306 5.10E+00 i 1116547 5.10E+00 i 55185 6.20E-02 o 621647 7.00B-01 i 99055956 2.20B+00 i 110595956 2.20B+00 i 990552 2.20B+01 i	6.00E-05 w		2.2 n 0	0.21 n 0.081 n	61 n	4.7 n
100016 3.00E-04 5.71E-04			110 "	11 0 4.1 0	3100 n	230 n
98953 5.00E-04 i 5.71E-04 a 67209 7.00E-02 h 10102440 1.00E+00 pr 556887 1.00E-01 i 100027 6.20E-02 o 79469 5.71E-03 i 924163 5.40E+00 i 1116547 5.40E+00 i 55185 5.40E+00 i 62759 5.10E+01 i 62767 7.00E-01 i 10595956 4.90E-03 i 2.20E+01 i 930552 2.10E+00 i			110 n	11 n 4.1 n	3100 n	230 n
59870 1.50E+00 h 1.50E+00 h 1.50E+00 h 1.00E-01 i 1.50E+00 h 1.00E-01 i 1.50E+00 h 1.50E+01 i 1.50E+02	S.00E-04 /	:	3.4 n	2.1 n 0.68 n	510 n	39 n
1.50E+00 h 1.00E+00 mt 1.50E+00 h 1.00E+00 mt 1.00E+01			2600 n 2	260 n 95 n	72000 n	5500 n
10102440 1.00E+00 #Z 556887 1.00E+01	1.50E+00 h	B+00 h	0.045 c 0.00067 c	67 € 0.0021 כ	1.9 €	0.43
100027 6.20E-02 o 1.00E-01 1.00027 6.20E-02 o 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-01			37000 n 37	3700 n 1400 n	1000000	78000 n
100027 6.20E-02 o 79469 5.71E-03 / 5.40E+00 / 1.50E+00 / 1.50E+00 / 1.50E+00 / 1.50E+00 / 1.50E+00 / 1.50E+00 / 1.50E+01			3700 n 3	370 n 140 n	1000001	7800 п
924163 5.71B-03 / 5.40B+00 / 1116547 2.80B+00 / 1.50B+00 / 1.50B+00 / 1.50B+01 / 1.50B+0	6.20E-02 o		2300 n 2	230 n 84 n	63000 n	4800 1
924163 5.40B+00 / 1.116547 2.80B+00 / 1.50B+00 / 1.50B+00 / 1.50B+00 / 1.50B+01 / 1.50B+	5.71E-03 /	9.40E+00 h	210 n 0.00067	67 c		
1116547 2.80B+00 55185 1.50B+02 1.50B+02 1.50B+02 1.50B+02 1.50B+02 1.50B+01 1.50B+01 1.50B+00 1.	5.40B+00 t	B+00 /	0.012 'c 0.0011	11 c 0.00058 c	0.53 e	0.12
55185 1.50B+02 1.50B+02 1.50B+02 1.50B+02 1.50B+01 1.50B+01 1.50B+01 1.50B+02 1.50B+01 1.50B+02 1			0.024 c 0.0022	22 c 0.0011 c	1 6	0.23
86306 4.90E-03 / 7.00E+00 / 930552 2.10E+00 / 92081 1.00E-02 h	1.50B+02 /	1.51E+02 / 0	0.00045 c 0.000041	41 c 0.000021 c	· 0.019 c	0.0043
86306 4.90E-03 <i>i</i> 621647 7.00E+00 <i>i</i> 10595956 2.20E+01 <i>i</i> 930552 2.10E+00 <i>i</i>	5.10E+01 /	B+01 /	0.0013 c 0.00013	13 c 0.000062 c	0.056 €	0.013
621647 7.00B+00 1 10595956 2.20B+01 1 930552 2.10B+00 1 99081 1.00B-02 h			14 0	1.3 € 0.64 €	580 €	130 a
930552 2.10E+00 / 2.10			0.0096 с 0.00089 с	89 c 0.00045 c	0.41 c	0.091
930552 2.10B+00 <i>i</i> 99081 1.00B-02 <i>b</i>			0.0031 c 0.00028	28 c 0.00014 c	0.13 c	0.029
99081 1.00E	2.10B+00, /	3+00 l	0.032 c 0.00	0.0029 c 0.0015 c	1.4 c	0.3 a
	1.00E	:	61 n	37 n 14 n	10000 n	780 n
o-Nitrotoluene 88722 1.00B-02 h	1.00E	•••	61 n	37 n 14 n	10000 и	780 n

₹	
≋	
(11/08/94	
È	
ij H	
က်	
IS: R.L. S	
Suc	
픑	
Ę	
쯍	
Ö	
5	
98	
Bas	
يٰد	
R _{is}	
=	•
4	
.8	
8	

Principle Prin	Sources: I=IKIS N=HEASI d=HEASI dII. W=# HINDINAN YOM IAS OF TILENSI V=14	TO SOUTH	1	- Consideration	A LCO'D Provinces of Cities and C	I A	1	Ambient	<u> </u>	Ambient Industrial Re-	Residential
157-terraceine			RIDo	RDi							tio#
1,000-1,00	Conteminant		mg/kg/d	mg/kg/d						mg/kg 1	mg/kg
1377-1472 1408-02 1 1500 150 1	n-Nitrotoluene	<u>1</u>	1.00B-02 h					37 n	14 n	10000 u	780 л
11 12 13 15 15 15 15 15 15 15	Norflurazon	27314132	4.00E-02 /				1500 n	150 n	54 n	. 41000 n	3100 4
13754520 3.00E-3.5 1.00 110 111 110 111 110 111 110 111 110	NiStar	85509199	7.00B-04 /				26 n	2.6 n	0.95 n	720 n	55 n
150 150	Octabromodiphenyl ether	32536520	3.00E-03 /				110 n	11 "	4.1 n	3100 n	230 n
152109 152109 1504483 15008-27 15008-27 15008-27 15004-83 15008-27 150	Octahydro-1357-tetranitro-1357-tetrazocine	2691410	5.00E-02 /				1800 n	180 "	68 n	51000 n	3900
1904481 1904482 1900 n 180 n	Octamethylpvrophosphoramide	152169	2.00E-03 h				73 n	7.3 n	2.7 n	2000 n	160 д
Page	Orczalin	19044883	5.00E-02 /				1800 n	180 "	и 89	51000 n	3900 п
11 11 11 11 11 11 11 1	Ovadiazon	19666309	5.00B-03 i		•		180 n	18 "	6.8 n	5100 n	390 п
11 12 13 13 13 13 13 13	Overnati	23135220	2.50B-02 I				910 n	91 n	34 n	26000 n	2000 n
1.10 1.00	Overlingten	42874033	3.00B-03 I				110 n	11 "	4.1 n	3100 n	230 n
1910425 4508-03 1 116 n 15 n	Paclohittazol	76738620	1.30B-02 I				470 n		18 n	13000 n	1000
114712 56382 6.008.03 h 120 h	Personat	1910425	4.50B-03 /				160 n	16 n	6.1 n	4600 n	. 350 r
thilling the proof of the proof	Domithion	56382	6.00E-03 h	÷	4		220 n	22 "	8.1 n	6100 л	470 n
thailin mode, echloric cycloherane are strata and echerane and echorane are strata and echerane and echorane are strata and echorane ar	Falaumon	1114712	5.00E-02 h				1800 n	180 "	u 89	51000 n	3900 4
STR45 STR45 STR46 S	Dendinathalin	40487421	4.00E-02 /				1500 n	150 n	54 n	41000 n	3100 д
10010 1001	Dentshromo-6-chloro cyclohexane	87843			2.30E-02 h		2.9 €	0.27 c	0.14 c	120 €	28 0
100 100	Description of inhany of her	12534819	2.00E-03 /				73 n	7.3 n	2.7 n	2000 n	160 1
82688 3.00B-03 1.20B-01 0.56 c 0.032	Destroylorokensens	608935	8.00E-04 /			:	4.9 n	2.9 n	1.1 n	820 n	63 π
1000-02 1.000-02 1.000-01 1.000-01 1.000-01 1.000-01 1.000-01 1.000-01 1.000-01 1.000-01 1.000-01 1.000-02 1.000-01	Detachloronicohonzone	82688	3.00E-03 /		2.60E-01 h		0.041 c	0.024 €	0.012 c	11 c	2.5 0
13684634 2.50E-02 i 1800 n 180	Dentachloronhenol	87865	3.00E-02 I		1.20B-01		0.56 c	0.052 c	0.026 c	24 c	5.3 a
13684634 2.50E-01 9100 n 910 n	Downsthin	\$2645531	5.00E-02 /				1800 n	180 n	. 68 n	51000 n	3900 л
108952 6.00E-01	Dhamadinham	13684634	2.50E-01 /				9100 n	910 л	340 n	260000 n	20000 n
te 6.00E-03 i 6.00E-03 i 22 n 22 n 106503 1.90E-01 h 690 n 690 n 690 n 106503 1.90E-01 h 2.9 n 6.90 n 690 n 29622 2.00E-04 i 8.57E-06 h 73 n 73 n 0.73 n 780351 2.00E-04 i 8.57E-06 h 730 n 73 n 73 n 100210 1.00E-04 i 8.57E-06 h 730 n 73 n 73 n 100210 1.00E-04 i 8.57E-06 h 730 n 73 n 73 n 1100210 1.00E-05 i 3.43E-01 h 73000 n 7300 n 7300 n 85449 2.00E-05 i 3.43E-01 h 73000 n 7300 n 7300 n 119801 7.00E-05 i 3.00E-05 i 7.00E-05 i 370 n 370 n 119976 1.33643 1.00E-02 i 8.90E+00 i 0.0076 c 0.0007 c 0.00 110976 1.00E-05 i 7.00E-05 i 7.70E-00 i 2.60 n 2.60 n 1109710 2.00E-05 i	Dhanol	108952	6.00B-01 /		,	.,	2000 n	2200 n	810 n	610000 n	47000 n
te 62384 8.00E-05 i 1.94E-03 h 2.9 n 629 n 690 n	m_Phenylenediamine	108452	6.00E-03 /				220 n	22 n	8.1 n	4 0019	470 n
90437 8.00E-05 i 1.94E-03 h 35 c 32 c 90437 2.98022 2.00E-04 h 7.3 n 0.73 n 7.3 n 0.73 n 732116 2.00E-04 i 8.57E-06 h 11 n 0.013 n 73 n 0.73 n 0.73 n 7723140 2.00E-05 i 8.57E-06 h 11 n 0.013 n 11 n 0.013 n 11 n 0.013 n 13 n 1 100210 1.00E-05 i 8.546 h 2.00E-06 i 3.43E-01 h 73000 n 3700 n 370 n 37 n	h-Phenvlenediamine	106503	1.90E-01 h				u 0069	<i>u</i> 069	260 n	190000 n	15000 л
298022 2.00B-04 h 732116 2.00B-04 i 8.57B-06 h 7723140 2.00B-04 i 8.57B-06 h 100210 1.00B+00 i 3.43B-01 h 85.449 2.00B+00 i 3.43B-01 h 1918021 7.00B-02 i 1918021 7.00B-02 i 2923297 1.00B-02 i 7.70B+00 i 0.0087 c 0.00087 c 0.0007 c 0.0 11097691 2.00B-05 i 7.70B+00 i 0.0087 c 0.00087 c 0.00081 c 0.0 11097691 2.00B-05 i 7.00B-05 i 2.60 i 0.26 i 0.26 i 0.20 i	Phenylmercuric acetate	62384	8.00E-05 /				2.9 n	0.29 n	0.11 n	82 n	6.3 л
130 131	2-Phenylphenol	90437			1.94E-03 h		35 c	·3.2 c	1.6 c	1500 €	330 0
T32116 Z.00E-02 T30 T3 T30 T3 T30 T3 T30 T3 T3	Phorate	298022	2.00B-04 h				7.3 n	0.73 n	0.27 n	200 n	16 7
rus (white) 7723140 2.00B-04 / 2.00B-05 / 1 8.57B-06 h 11 n 0.031 n cus (white) 7723140 2.00B-05 / 1 3.43B-01 h 37000 n 3700 n 3700 n anhydride 85449 2.00B+00 / 1 3.43B-01 h 73000 n 3700 n 3700 n os-methyl 1918021 7.00B-02 / 1 3.43B-01 h 2600 n 260 n 260 n rinated biphenyls (PCBs) 1336363 1.00B-02 / 1 8.90B+00 h 0.0067 e 0.00 rinated biphenyls (PCIs) 11097691 2.00B-05 / 1 7.70B+00 / 1 0.0067 e 0.00 r.1254 11097691 2.00E-05 / 1 4.50B+00 e 0.015 e 0.0014 e 0. ear aromatic hydrocarbons 2.200 n 2.00 n 2.00 n 2.00 n 2.00 n 2.00 n	Phosmet	732116	2.00B-02 I				730 n	73.8	27 n	20000 n	1600
100210 1.00E+00 h 3.43E-01 h 37000 n 3700 n 37000 n 3700 n	Phosphine	7803512	3.00B-04 /	8.57E-06	h		11 0	0.031 n	0.41 n	310 n	23 1
100210	Phosphorus (white)	7723140	2.00E-05 /	:			0.73 n	0.073 n	0.027 n	20 n	1.6 7
PCBs 85449 2.00E+00 3.43E-01 h 73000 n 1300 n 2600 n 260 n	p-Phthalic acid	100210	1.00E+00 h				37000 n	3700 n	1400 n	1000000	78000 1
1918021 7.00B-02 i 370 n 2600 n 260 n 260 n 260 n 260 n 260 n 370 n 37	Phthalic anhydride	85449	2.00E+00 /	3.43E-01		-	73000 n	1300 л	2700 n	1000000 n	160000 л
(PCBs) 1336363 1,00B-05 i 8,90B+00 h 0,0076 c 0,0007 c 12674112 7,00B-05 i 7,70B+00 i 0,0087 c 0,00081 c 11097691 2,00B-05 i 2,00B-05 i 2,6 m 0,26 m 0 ccarbons 2,200 m 2,200 m 2,200 m 2,200 m	Picloram	1918021	7.00E-02 I				2600 n	260 n	95 n	72000 n	2500 n
(PCBs) 1336363 7.00E-06 h 8.90E+00 h 0.0016 e 0.00081 c 12674112 7.00E-05 i 7.70E+00 i 0.0087 c 0.00081 c 11097691 2.00E-05 i 2.00E-05 i 2.6 n 0.26 n 0 ccarbons 4.50E+00 • 0.015 c 0.0014 c	Pirimiphos-methy!	29232937	1.00B-02 /				370 n	37 n	14 n	10000	780
(PCBs) 1336363 7.00E-05 / 7.70E+00 / 0.0087 c 0.00081 c 12674112 7.00E-05 / 2.6 n 0.26 n 11097691 2.00E-05 / 4.50E+00 • 0.013 a 0.014 c ocarbons 2.00 n 2.00 n 2.20 n 2.20 n 2.20 n	Polyhrominated hiphenyls	i	7.00E-06 h		8.90E+00 h		.0076 c	0.0007 c	0.00035 c	0.32 c	0.072 a
11097691 2.00E-05 / 2.	Polychlorinated hiphenyla (PCBs)	1336363			7.70E+00 I	_	.0087 c	0.00081	0.00041 c	0.37 c	0.083
11097691 2.00E-05 / 4.50E+00 • 0.015 c 0.0014 c 0 0.015 c 0.0014 c 0.015 c 0.015 c 0.015 c 0.015 c 0.0014 c 0.015 c 0.	Aroclor 1016	12674112	7.00E-05 I				2.6 n	0.26 n	0.095 n	72 n	5.5 n
4.50B+00 • 0.015 c 0.0014 c	Aroclor 1254	11097691	2.00E-05 I				0.73 n	0.073 #	9.027 a	20 4	1.6 0
82370 K DAR A2 1	Polychlorinated terphenyls (PCTs)		-		4.50E+00 •		0.015 c	0.0014 €	0.0007 c	0.64	0.14
2200 n 2200 n	Polynuclear aromatic hydrocarbons							;	;		9067
. 30-70000	Acenaphthene	83329	6.00E-02 /		•		2200 n	220 n	0 19	91000	4100

THE REPORT OF THE PARTY OF THE		101	o municipal o	Cine) Li A docum	ens V	bank of Koc.	-curcinogenic	eljecis n=non	Amhient Industrial Re-	Recidential
		RDo	RDi	CPSo	CPSi o	Tap water	ia.	Fish	soil	soil
Contaminant	CAS	mg/kg/d	mg/kg/d	kg.d/mg	kg·d/mg C	pg/L	lig/m3	mg/kg	mg/kg	mg/kg
Anthracene	120127	3.00B-01 /				11000 n	1100 "	410 n	1	23000 n
Benzo[a]pyrene	50328	,		7.30B+00 I	6.10B+00 h	0.0092 c	0.001 c	0.00043 €	0.39 c	0.088
Benzo[b]fluoranthene	205992			7.30E-01 •	6.10E-01 •	0.092 c	0.01	0.0043 €	3.9 c	0.88 4
Benzo[k]fluoranthene	207089			7.30E-02 •	6.10B-02 •	0.92 ε	0.1 €	0.043 €	. 39 c	8.8
Benz[a]anthracene.	56553			7.30E-01 •	6.10E-01 ●	0.092 c	0.01 c	0.0043 €	3.9 c	0.88
Chrysene	218019			7.30E-03 •	6.10E-03 •	9.2 c	10	0.43 €	390 €	88
Djbenz[ah]anthracene	53703			7.30E+00 •	6.10B+00 ●	0.0092 c	0.001 c	0.00043 €	0.39 c	0.088 a
Fluoranthene	206440	4.00B-02 /				1500 n	150 n	22	41000 n	3100 л
Fluorene	86737	4.00E-02 I				1500 n	150 n	54 "	41000 n	3100 д
Indeno[1,2,3-cd]pyrene	193395			7.30E-01 •	6.10E-01 •	0.092 c	0.01 c	0.0043 €	3.9 €	0.88 0
Naphthalene	91203	4.00B-02 w				1500 n	150 n	54.0	41000 n	3100 4
Pyrene	129000	3.00E-02 /				1100 n	110 n	41 n	31000 n	2300 л
Pròchloraz	61747095	9.00E-03 /		1.50E-01 /		0.45 c	0.042 c	0.021 €	19 c	4.3 0
Profluralin	26399360	6.00E-03 h				. 220 n	22 n	8.1 a	6100 n	470 n
Prometon	1610180	1.50B-02 I				550 n	55 n	20 n	15000 n	1200 4
Prometryn	7287196	4.00E-03 /				150 n	15 n	5.4 n	4100 n	310 л
Pronamide	23950585	7.50E-02 /				2700 n	270 n	100 #	77000 n	2900 n
Propachlor	1918167	1.30E-02 /				470 n	47 n	18 n	13000 n	1000
Propanil	709988	5.00E-03 /				180 "	18 n	6.8 n	5100 n	390 4
Propargite	2312358	2.00E-02 /				730 n	73 n	27 n	20000 "	1600 4
Propargyl alcohol	107197	2.00B-03 I				73 n	7.3 n	2.7 8	2000 n	160 л
Propazine	139402	2.00E-02 /				730 n		27 n	20000 n	1600 л
Propham	122429	2.00E-02 /				730 n	73 n	27 n	20000 n	1600 л
Propiconazole	60207901	. 1.30E-02 /				470 n	47 n	18 n	13000 n	1000 1
Propylene glycol	57556	2.00E+01 h				730000 n	73000 n	27000 n	1000000 n	10000001
Propylene glycol, monoethyl ether	52125538	7.00E-01 h				26000 n	2600 n	950 #	720000 n	55000 n
Propylene glycol, monomethyl ether	107982	7.00E-01 h	5.71B-01 /		-	26000 n	2100 n	950 n	720000 n	55000 n
Propylene oxide	75569		8.57B-03 /	2.40E-01 /	1.29E-02 /	0.28 €	0.49 €	0.013 €	12 c	2.7 a
Pursuit	81335775	2.50B-01 /			۱.	9100 #	910 n	340 n	260000 n	20000 1
Pydrin	\$1630581	2.50B-02 I			•	910 n	91 n	34 "	26000 n	2000 n
Pyridine	110861	1.00E-03 /				37 n	3.7 n	1.4 n	, 1000 n	78 n
Quinalphos	13593038	5.00E-04 /				18 n	1.8 n	0.68 n	510 n	39 n
Quinoline	91225			1.20E+01 h		0.0056 e	0.00052 c	0.00026 €	0.24 c	0.053 d
Resmethrin	10463868	3.00B-02 I				1100 л	110 n	41 n	31000 n	2300 n
Ronnei	299843	5.00E-02 h		-		1800 n	180 n	. 89 m	\$1000 n	3900 n
ne	83794	4.00E-03 /				150 n	15 n	5.4 n	4100 n	310 4
Savey	78587050	2.50B-02 /				910 n	91 n	34 n	26000 n	2000 #
Selenious Acid	7783008	5.00B-03 /				180 "	18 n	6.8 n	5100 n	390 4
Selenium	7782492	5.00E-03 /				180 "	18 0	6.8 #	5100 n	390 и
Selenourea	630104	5.00B-03 h				180 "	18 4	6.8 n	5100 n	390 n
Sethoxydim	74051802	9.00E-02 /	,		•	3300 #	330 n	120 л	92000 n	7000 4
Silver and combounds	7440224	5.00E-03 /				180 n	18 n	6.8 n	5100 n	390 n
				•						

~
20
/08/
Õ
=
こ
2
둗
둤
٠.
ب
œ
œ
2
≅
Œ
ヹ
9
Ĕ
옸
$\stackrel{\smile}{=}$
9
8
ã
¥
<u>s</u>
II.
ہے≡
9
9
5
ď
₹
<u></u>
ш

. 27 5500 2300 / 9300 16000 16000 16000 1600 98 0.032 38 2300 78 1000 2000 4.10B-06 33 25 12 33 6.3 23 38 47000 0.2 47000 9: 23 3.2 Residential mg/kg 3 Basis of RBC: c=carcinogenic effects n=noncarcinogenic effects 20 n 72000 n 26 n 310 n 110 0 510 n 22 82 n 92 n 82 n 310 n 55 c 0.14 6 82 n 10000 5100.0 0.89 c 15 0 4100 " 1000 13000 n 14 c 31000 n 120 c 31000 n 82000 n 610000 n 200000 n 610000 n 200000.0 610000 n 200000 0.000018 c 1000 20000 n 26000 / Industrial mg/kg ē 5.4 " 1.4 n 0.41 n 270 n 95 n 18 " 0.41 n 0.12 c 0.11 n 0.12 n 0.12 n 14 0 4 0.41 " 110 n 6.8 n 270 n 810 n 270 n 810 n 1.4 n 0.12 n 810 " 34 0 2.00E-08 c 0.034 n 0.061 c 0.13 c 0.68 n 0.095 n 0.11 0.11 0.00099 c 0.017 c 0.026 c 0.027 n 0.016 c 0.00016 c 0.012 c 27 me/kg Fish 0.33 n 0.33 n 0.29 n 37 n 1.1 290 n 3.7 n 1.1 1000 260 n 47 " 1.1 0.24 c 3.1 c 110 , 1.8 " 0.26 n 0.29 n 110 " 18 " 2200 n 420 n 0.002 c 2200 n 730 m 0.033 c 15 n 2200 " 3.7 n 0.33 " 5.40E-08 c 0.091 0.031 c 0.26 c 0.29 0.023 c 0.073 n 6 5 0.00031 c 0.052 Ambient Y W ä 18 0 3.3 n 3.3 n 2.9 n 370 n 2900 n 470 n 0.91 n 2.8 c 750 n 150 n 0.25 0 37 n 11 " 1600 " 910 n 2600 n 730 n 37 n 1.8 0.41 c 1.1 0 2.9 0 2.9-0 1100, 180 n 22000 n 22000 n 7300 n 0.35 @ 1100 0.56 0 0.73 n 2000 2 4.30B-07 c 0.052 c 0.00053 e 0.021 0 O Tap water : 2.59B-02 / *** 2.03E-01 / *** 2.03E-03 .** 1.16B+05 h ë kg-d/mg Sources: i=IRIS h=HEAST a=HEASTalt. w=Withdrawn from IRIS or HEAST e=EPA-ECAO provisional o=Other EPA documents 1.56B+05 h 5.20E-02 • 1.20B-01 h 2.40E-02 n 3.20E+00 h 1.90E-01 A 2.70B-01 h 2.60E-02 / 2.00E+01 A 2.00E-01 kadma **8** 1.14B-01 w 2.86B-01 / mg/kg/d Ø 2.00E-01 / 2.00E-01 h 1.00E-03 h 2.50E-05 h 3.00E-02 / 7.00E-05 W 9.00E-05 / 9.00E-05 W 1.00E-02 / 3.00E-02 h 3.00E-04 h 6.00E-01 h 6.00B-01 h 5.00E-03 / 2.00E-01 / 2.00E-02 h 5.00E-04 / 9.00E-05 / 8.00E-05 / 8.00E-02 / 7.00E-02 / 1.30E-02 / 3.00E-02 / 8.00E-05 / 1.00E-02 / 8.00E-05 4.00E-03 2.00E-05 6.00E-01 .00E-03 3.00E-04 3.00B-02 .00E-03 1.00E-02 3.00E-04 2.50E-02 mg/kg/d RB 563688 823405 100425 3689245 1314325 95705 106490 148185 886500 95943 630206 79345 127184 58902 137268 108883 95807 62748 57249 6533739 7446186 28249776 21564170 122349 26628228 3718268 7440246 88671890 1746016 34014181 3383968 5902512 3071799 5216251 961115 7791120 10102451 2039520 39196184 23564058 CAS 2-(Thiocyanomethylthio)-benzothiazole Sodium diethyldithiocarbamate **Fetraethyldithiopyrophosphate** 2,4,5-Tetrachlorobenzene etrachloroethylene (PCE) ,1,1,2-Tetrachloroethane 1,2,2-Tetrachloroethane 3,4,6-Tetrachlorophenol a,a,a,a-Tetrachlorotoluene 2,3,7,8-TCDD (dioxin) Sodium metavanadate Sodium fluoroacefate Foluene-2,4-diamine Toluene-2,5-diamine Coluene-2,6-diamine [etrachlorovinphos Thiophanate-methyl Fin and compounds Thallium carbonate Thallium chloride Thallium selenite Strontium, stable hallium acetate Thallium nitrate Thallium sulfate Sodium azide Thallic oxide Thiobencarb Contaminant [ebuthiuron p-Toluidine Strychnine Thiofanox Cemephos [erbutryn Simazine hallium Styrene Systhane Cerbufos **[erbacil** Coluene Phiram

Sources: I=IRIS h=HEAST a=HEAST alt. w=Withdrawn from IRIS or HEAST e=EPA-ECAO provisional	om IRIS or HE	AST e=EPA-ECAC) provisional o=C	o=Other EPA documents	ents	Basts of RBC: c	=carcinogenic	fects n=nona	arcinogenic effec	.
		1			<u> </u>		Ambient		Ambient Industrial Re-	Residential
		RDo	RĐị	CPS	CPSi	Tap water	Ħ	Fish	soil	fiox
Contaminant	CAS		mg/kg/d	kg-d/mg	kg.d/mg C		11g/m3	mg/kg	e	mg/kg
Toxaphene	8001352	1		1.10B+00 /	1.12E+00 /	0.061 c	0.0056 c	0.0029 c	9 C	0.58 d
Tralomethrin	66841256	7.50B-03 /				270 n	27 n	10 "	7700 n	590 n
Triallate	2303175	1.30E-02 /				470 n	47 n	18 0	. 13000 n	1000 n
Triasulfuron	82097505	1.00B-02 /				370 n	37 n	14 "	10000 n	780 1
1,2,4-Tribromobenzene	615543	.5.00B-03 /		:		30 "	18 n	6.8 11	5100 n	390
Tributyltin oxide (TBTO)	\$6359	3.00E-05 /				1.1 n	0.11 n	0.041 n	31 n	2.3 n
2,4,6-Trichloroaniline hydrochloride	33663502			2.90E-02 h	•	2.3 c	0.22 €	0.11 c	99 c	22 0
2,4,6-Trichloroaniline	634935			3.40B-02 h		2 c	0.18 c	0.093 €	25.	19 0
1,2,4-Trichlorobenzene	120821	1.00E-02 /	5.71E-02 h		•	. 190 n	210 n	14 n	10000 n	780 л
1,1,1-Trichloroethane	71556	9.00E-02 w	2.86E-01 w		•	1300 n	1000 n	120 n	92000 n	7000 4
1,1,2-Trichloroethane	79005	4.00E-03 /		5.70B-02 /	5.60E-02 / ***	0.19 €	0.11 0	0.055 c	50 c	==
Trichloroethylene (TCE)	79016	6.00E-03 •		1.10E-02 w	6.00E-03	1.6 c	10	0.29 €	260 €	58 c
Trichlorofluoromethane	75694	3.00E-01 /	2.00E-01	•	•	1300 n	730 n	410 n	310000 n	23000 n
2,4,5-Trichlorophenol	95954	1.00E-01 /				3700 n	370 n	140 n	100000 n	7800 л
2,4,6-Trichlorophenol	88062			1.10E-02 /	1.09E-02 /	6.1 c	0.57 €	0.29 €	260 €	58 d
2,4,5-Trichlorophenoxyacetic acid	93765	1.00E-02 /				370 n	37 n	14 n	10000 n	780 4
2-(2,4,5-Trichlorophenoxy) propionic acid	93721	8.00E-03 /				290 n	29 n	11 0	8200 n	630 л
1,1,2-Trichloropropane	598776	5.00E-03 /				30 n	18 n	6.8 n	5100 n	390 л
1,2,3-Trichloropropane	96184	6.00E-03 /	٠	7.00E+00 /	•	0.0015 c	0.00089 c	0.00045 c	0.41 c	0.091
1,2,3-Trichloropropene	96195	5.00E-03 h			•	30 "	18 1	6.8 n	5100 n	390
1,1,2-Trichloro-1,2,2- trifluoroethane	76131	3.00E+01 /	8.57E+00 h		•	29000 n	31000 n	41000 n	1000000 "	1000000 л
Tridiphane	58138082	3.00E-03 /				110 "	11 n	4.1 "	3100 n	230 n
Triethylamine	121448		2.00E-03 /			73 n	7.3 n			****
Trifluralin	1582098	7.50E-03 /		7.70E-03 /		8.7 c	0.81 c	0.41 c	370 c	83 0
1,2,4-Trimethylbenzene	95636	5.00E-04 ·			•	3.8	1.8	0.68 #	510 n	33
1,3,5-Trimethylbenzene	108678	4.00E-04			•	2.4 n	1.5 n	0.54 n	410 n	.E
I rimethyl phosphate	\$12561			3.70B-02 h		1.8 c	0.17 c	0.085 c	77 c	17 0
1,3,5-Trinitrobenzene	99354	5.00E-05 /					0.18 n	0.068 n	51 n	3.9 ח
Trinitrophenylmethylnitramine	479458	1.00E-02 h				370 n	37 n	14 n	100001	780 1
2,4,6-Trinitrotoluene	118967	S.00B-04 /		3.60E-02 /		2.2 €	0.21 c	0.11 c	95 c	21 0
Uranium (soluble salts)	7440611	3.00E-03 /				110 "	11 n	4.1 n	3100 n	230 n
Vanadium	7440622	7.00E-03 h				260 n	26 n	9.5 n	7200 "	850 n
Vanadium pentoxide	1314621	9.00E-03 /				330'n	33 n	12 n	· 9200 n	700 n
Vanadium sulfate	36907423	2.00B-02 h				730 n	73 n	27 n	20000 n	1600 л
Vernam	1929777	1.00E-03 /	•			37 n	3.7 n	1.4 n	1000 n	78 7
Vinclozolin	50471448	2.50E-02 /			-	910 n	91 n	34 2	26000 n	2000 4
Vinyl acetate	108054	1.00E+00 h	5.71B-02 /			37000 n	210 n	1400 n	1000000 n	78000 m
Vinyl bromide	593602		8.57E-04 /			5.2 n	3.1 n			
Vinyl chloride	75014			1.90B+00 h	3.00E-01 h***	0.019 c	0.021 c	0.0017 c	1.5 e	0.34
Warfarin	81812	3.00E-04 /				n 11 n	1.1 n	0.41 n	310 n	23 4
m-Xylene	108323	2.00E+00 h	2.00E-01 w		•		730 n	2700 n	1000000 n	160000 4
o-Xylene	95476	2.00E+00 h	2.00E-01 w		•	1400 n	730 n	2700 n	1000000 n	160000 A

#
Š
×
ສ
≤
-
_
_
≆
E
ഗ
18: R.L. S
x
: .:
2
ō
₹
6
Ħ
⊕
ပ္
Ξ
~
\simeq
8
Š
<u>a</u>
ά.
يد
.22
$\boldsymbol{\mathbf{x}}$
II Ris
9
$\stackrel{\cdot}{=}$
ဇ္ဇာ
ř
Ă
⋖
7.1

Sources: I=IKIS N=HEASI G=HEASI GII. W=WIINGIWW Jrom IKIS OF HEASI C=ETA	m IRIS or HE.	AST e=EPA-ECAO	provisional o	-ECAO provisional o=Other EPA decuments		Basis of RBC: c	Basis of RBC: c=carcinogenic effects n=noncarcinogenic effects.	ects n=noncar	cinogenic effect	ė
			RDi	CPSo	CPSi o	V Tap water	Ambient air	Fish Lish	Industrial Resol	Residential
ontaminant	CAS		mg/kg/d			lig/L				mg/kg
	1.06E+05	*	8.57E-02 w		•••	5.20E+02 n	3.10E+02 n			
Xylene (mixed)	1.33E+06	2.00E+00 /	•		•	12000 n	7300 n	2700 n	10000001	160000 л
	7.44E+06	3.00E-01 /				11000 "	1100 n	410 n	310000 n	23000 n
Zinc phosphide	1.31E+06	3.00E-04 /				11 n	1.1 n	0.41 n	310 n	23 n
•	1.21B+07	5.00E-02 /		•		1800 "	180 n	u 89	51000 n	3900 п
						,				

Screening Criteria

Screening Criteria - Waters

Analyte	Screening Criteria mg/L	Source
Acenaphthene	2.2	RN
Acenaphthylene	NA	NA
Acetone	3.7	RN
Aldrin	0.000040	RC
Alkalinity	NA	NA
Aluminum	NA	NA
Anthracene	11	RN
Antimony	0.0060	M
Arsenic	0.050	M
alpha-BHC	0.000011	RC
beta-BHC	0.000037	RC
delta-BHC	NA	NA
gamma-BHC	0.00020	M
Barium	2.0	M
Benz(a)anthracene	0.00010	M
Benzene	0.0050	M
Benzo(a)pyrene	0.00020	M
Benzo(b)fluoranthene	0.00020	M
Benzo(g,h,i)perylene	NA	NA
Benzo(k)fluoranthene	0.00020	M
Benzoic acid	150	RN
Benzyl alcohol	11	RN
Beryllium	0.0040	M
Bromobenzene	NA	NA
Bromodichloromethane	0.00017	RC
Bromoform	0.0024	RC
Bromomethane	0.0087	RN
4-Bromophenyl phenyl ether	2.1	RN
2-Butanone (MEK)	22	RN
Butylbenzylphthalate	0.10	M
Cadmium	0.0050	M
Calcium	NA	NA
Carbon disulfide	0.021	RN

Analyte	Screening Criteria mg/L	Source
Carbon tetrachloride	0.0050	М
Chlordane	0.0020	M
Chloride	NA	NA
4-Chloro-3-methylphenol	NA	NA
4-Chloroaniline	0.15	RN
Chlorobenzene	0.039	RN
Chloroethane	8.6	RN
bis(2-Chloroethoxy)methane	NA	NA
2-Chloroethyl vinyl ether	0.15	RN
bis(2-Chloroethyl)ether	0.0000092	RC
Chloroform	0.00015	RC
1-Chlorohexane	NA	NA
bis(2-Chloroisopropyl)ether	0.00026	RC
Chloromethane	0.0014	RC
2-Chloronaphthalene	2.9	RN
2-Chlorophenol	0.18	RN
4-Chlorophenyl phenyl ether	NA	NA
Chromium	0.10	M
Chrysene	0.00020	M
Cobalt	2.2	RN
Copper	1.3	M
4,4'-DDD	0.00028	RC
4,4'-DDE	0.00020	RC
4,4'-DDT	0.00020	RC
Di-n-octylphthalate	0.73	RN
Dibenz(a,h)anthracene	0.00030	M
Dibenzofuran	NA	NA
Dibromochloromethane	0.00013	RC
Dibromomethane	NA	NA
Dibutyl phthalate	3.7	RN
trans-1,4-Dichloro-2-butene	0.0000011	RC
1,2-Dichlorobenzene	0.60	M
1,3-Dichlorobenzene	0.60	М
1,4-Dichlorobenzene	0.075	M

Analyte	Screening Criteria mg/L	Source
3,3'-Dichlorobenzidine	0.00015	RC
Dichlorodifluoromethane	0.39	RN
1,1-Dichloroethane	0.81	RN
1,2-Dichloroethane	0.0050	M
1,1-Dichloroethene	0.0070	M
cis-1,2-Dichloroethene	0.070	M
trans-1,2-Dichloroethene	0.10	M
2,4-Dichlorophenol	0.11	RN
1,2-Dichloropropane	0.0050	M
cis-1,3-Dichloropropene	0.000077	RC
trans-1,3-Dichloropropene	0.000077	RC
Dieldrin	0.0000042	RC
Diesel Range Organics	0.052	RN
Diethylphthalate	29	RN
2,4-Dimethylphenol	0.73	RN
Dimethylphthalate	370	RN
4,6-Dinitro-2-methylphenol	NA	NA
2,4-Dinitrophenol	0.073	RN
2,4-Dinitrotoluene	0.073	RN
2,6-Dinitrotoluene	0.037	RN
Diphenylamine/N-NitrosoDPA	0.91	RN
Endosulfan I	0.22	RN
Endosulfan II	0.22	RN
Endosulfan sulfate	0.22	RN
Endrin	0.0020	M
Endrin aldehyde	0.011	RN
Ethanol	NA	NA
Ethyl ether	1.2	RN
Ethyl methacrylate	3.3	RN
Ethylbenzene	0.70	M
bis(2-Ethylhexyl)phthalate	0.0060	M
Fluoranthene	1.5	RN
Fluorene	1.5	RN
2-Fluorobiphenyl	NA	NA

Analyte	Screening Criteria mg/L	Source
2-Fluorophenol	NA	NA
Gasoline Range Organics	0.026	RN
Heptachlor	0.00040	M
Heptachlor epoxide	0.00020	М
Hexachlorobenzene	0.0010	M
Hexachlorobutadiene	0.00014	RC
Hexachlorocyclopentadiene	0.050	M
Hexachloroethane	0.00075	RC
2-Hexanone	NA	NA
Indeno(1,2,3-cd)pyrene	0.00040	M
Iodomethane	NA	NA
Iron	NA	NA
Isophorone	0.071	RC
Lead	0.015	M
Magnesium	NA	NA
Manganese	0.18	RN
Mercury	0.0020	M
Methoxychlor	0.040	M
4-Methyl-2-Pentanone(MIBK)	2.9	RN
Methylene chloride	0.0050	M
2-Methylnaphthalene	NA	NA
3-Methylphenol(m-cresol)	1.8	RN
2-Methylphenol(o-cresol)	1.8	RN
4-Methylphenol(p-cresol)	0.18	RN
Molybdenum	0.18	RN
N-Nitrosodiphenylamine	0.014	RC
N-Nitrosodipropylamine	0.0000096	RC
Naphthalene	1.5	RN
Nickel	0.10	M
Nitrate-Nitrite as N	1.0	M
2-Nitroaniline	0.0022	RN
3-Nitroaniline	0.11	RN
4-Nitroaniline	0.11	RN
Nitrobenzene	0.0034	RN

Analyte	Screening Criteria mg/L	Source
2-Nitrophenol	NA	NA
4-Nitrophenol	2.3	RN
OCDD	0.000030	M
OCDF	0.000030	M
PCB-1016	0.00050	M
PCB-1221	0.00050	M
PCB-1232	0.00050	M
PCB-1242	0.00050	M
PCB-1248	0.00050	M
PCB-1248	0.00050	M
PCB-1254	0.00050	M
PCB-1260	0.00050	M
PCBs	0.00050	M
PeCDD Totals	0.0000006	M
PeCDF Totals	0.0000006	M
Pentachlorophenol	0.0010	M
Phenanthrene	NA	NA
Phenol	22	RN
Potassium	NA	NA
Pyrene	1.1	RN
Selenium	0.050	M
Silver	0.18	RN
Sodium	NA	NA
Styrene	0.10	M
Sulfate	NA	NA
2,3,7,8-TCDD	0.00000030	M
TCDD Totals	0.000000030	M
TCDF Totals	0.00000030	M
1,1,1,2-Tetrachloroethane	0.00041	RC
1,1,2,2-Tetrachloroethane	0.000052	RC
Tetrachloroethene	0.0050	M
Thallium	0.0020	M
Toluene	1.0	M
Toxaphene	0.003	M

Analyte	Screening Criteria mg/L	Source
2,4,6-Tribromophenol	NA	NA
1,2,4-Trichlorobenzene	0.070	M
1,1,1-Trichloroethane	0.20	M
1,1,2-Trichloroethane	0.0050	M
Trichloroethene	0.0050	M
Trichlorofluoromethane	1.3	RN
2,4,5-Trichlorophenol	NA	NA
2,4,6-Trichlorophenol	0.0061	RC
1,2,3-Trichloropropane	0.0000015	RC
Vanadium	0.26	RN
Vinyl Chloride	0.0020	M
Vinyl acetate	37	RN
m-Xylene	1.4	RN
o-Xylene	1.4	RN
p-Xylene	0.52	RN
Xylene (total)	10	M
Zinc	11	RN

Screening Criteria Source Codes

Screening Criteria Source	Code
State of Alaska Cleanup Levels	AK
Maximum Contaminant Level (MCL)	M
EPA Region III Risk-Based Concentrations, carcinogenic level	RC
EPA Region III Risk-Based Concentrations, noncarcinogenic level	RN

Screening Criteria - Soils

Analyte	Residential Screening Criteria mg/kg	Industrial Screening Criteria mg/kg	Source
Acenaphthene	4700	61000	RN
Acenaphthylene	NA	NA	NA
Acetone	7800	100000	RN
Aldrin	0.038	0.17	RC
Aluminum	NA	NA	NA
Anthracene	23000	310000	RN
Antimony	31	410	RN
Arsenic	23	310	RN
alpha-BHC	0.10	0.45	RC
beta-BHC	0.35	1.6	RC
delta-BHC	NA	NA	NA
gamma-BHC	0.49	2.2	RC
BTEX (total)	15	15	AK
Barium	5500	72000	RN
Benz(a)anthracene	0.88	3.9	RC
Benzene	0.50	0.50	AK
Benzo(a)pyrene	0.088	0.39	RC
Benzo(b)fluoranthene	0.88	3.9	RC
Benzo(g,h,i)perylene	NA	NA	NA
Benzo(k)fluoranthene	8.8	39	RC
Benzoic acid	310000	1000000	RN
Benzyl alcohol	23000	310000	RN
Beryllium	0.15	0.67	RC
Bromobenzene	NA	NA	NA
Bromodichloromethane	10	46	RC
Bromoform	81	360	RC
Bromomethane	110	1400	RN
4-Bromophenyl phenyl ether	4500	590000	RN
2-Butanone(MEK)	47000	610000	RN
Butylbenzylphthalate	16000	200000	RN
Cadmium	39	510	RN
Calcium	NA	NA	NA

Analyte	Residential Screening Criteria mg/kg	Industrial Screening Criteria mg/kg	Source
Carbon disulfide	7800	100000	RN
Carbon tetrachloride	4.9	22	RC
Chlordane	0.49	2.2	RC
4-Chloro-3-methylphenol	NA	NA	NA
4-Chloroaniline	310	4100	RN
Chlorobenzene	1600	20000	RN
Chloroethane	31000	410000	RN
bis(2-Chloroethoxy)methane	NA	NA	NA
2-Chloroethyl vinyl ether	2000	26000	RN
bis(2-Chloroethyl)ether	0.58	2.6	RN
Chloroform	100	470	RC
1-Chlorohexane	NA	NA	NA
bis(2-Chloroisopropyl)ether	9.1	41	RC
Chloromethane	49	220	RC
2-Chloronaphthalene	6300	82000	RN
2-Chlorophenol	390	5100	RN
4-Chlorophenyl phenyl ether	NA	NA	NA
Chromium	390	1000000	RN
Chrysene	88	390	RC
Cobalt	4700	61000	RN
Copper	2900	38000	RN
4,4'-DDD	2.7	12	RC
4,4'-DDE	1.9	8.4	RC
4,4'-DDT	1.9	8.4	RC
Di-n-octylphthalate	1600	20000	RN
Dibenz(a,h)anthracene	0.088	0.39	RC
Dibenzofuran	NA	NA	NA
Dibromochloromethane	7.6	34	RC
Dibromomethane	NA	NA	NA
Dibutyl phthalate	7800	100000	RN
1,2-Dichlorobenzene	7000	92000	RN
1,3-Dichlorobenzene	7000	91000	RN
1,4-Dichlorobenzene	27	120	RC

Analyte	Residential Screening Criteria mg/kg	Industrial Screening Criteria mg/kg	Source
3,3'-Dichlorobenzidine	1.4	6.4	RC
1,1-Dichloroethane	7800	100000	RN
1,2-Dichloroethane	7.0	31	RC
1,1-Dichloroethene	1.1	4.8	RC
cis-1,2-Dichloroethene	780	10000	RN
trans-1,2-Dichloroethene	1600	20000	RN
2,4-Dichlorophenol	230	3100	RN
1,2-Dichloropropane	9.4	42	RC
cis-1,3-Dichloropropene	3.7	16	RC
trans-1,3-Dichloropropene	3.7	16	RC
Dieldrin	0.040	0.18	RC
Diesel Range Organics	200	200	AK
Diethylphthalate	63000	820000	RN
2,4-Dimethylphenol	1600	20000	RN
Dimethylphthalate	780000	1000000	RN
4,6-Dinitro-2-methylphenol	NA	NA	NA
2,4-Dinitrophenol	160	2000	RN
2,4-Dinitrotoluene	160	2000	RN
2,6-Dinitrotoluene	78	1000	RN
Diphenylamine/N-NitrosoDPA	2000	26000	RN
Endosulfan I	470	6100	RN
Endosulfan II	470	6100	RN
Endosulfan sulfate	470	6100	RN
Endrin	23	310	RN
Endrin aldehyde	23	310	RN
Ethylbenzene	7800	100000	RN
bis(2-Ethylhexyl)phthalate	46	200	RC
Fluoranthene	3100	41000	RN
Fluorene	3100	41000	RN
Gasoline Range Organics	100	100	AK
Heptachlor	0.14	0.64	RC
Heptachlor epoxide	0.070	0.31	RC
Hexachlorobenzene	0.40	1.8	RC

Analyte	Residential Screening Criteria mg/kg	Industrial Screening Criteria mg/kg	Source
Hexachlorobutadiene	8.2	37	RC
Hexachlorocyclopentadiene	550	7200	RN
Hexachloroethane	46	200	RC
2-Hexanone	NA	NA	NA
HpCDD Totals	0.00041	0.0018	RC
HpCDF Totals	0.00041	0.0018	RC
HpCDF Totals	0.00041	0.0018	RC
HxCDD Totals	0.000041	0.00018	RC
HxCDF Totals	0.000041	0.00018	RC
Indeno(1,2,3-cd)pyrene	0.88	3.9	RC
Iron	NA	NA	NA.
Isophorone	670	3000	RC
Lead	400	400	EL
Magnesium	NA	NA	NA
Manganese	390	5100	RN
Mercury	23	310	RN
Methoxychlor	390	5100	RN
4-Methyl-2-Pentanone(MIBK)	6300	82000	RN
Methylene chloride	85	380	RC
2-Methylnaphthalene	NA	NA	NA
3-Methylphenol	3900	51000	RN
2-Methylphenol(o-cresol)	3900	51000	RN
4-Methylphenol(p-cresol)	390	5100	RN
Molybdenum	390	5100	RN
N-Nitrosodiphenylamine	130	580	RC
N-Nitrosodipropylamine	0.091	0.41	RC
Naphthalene	3100	41000	RN
Nickel	1600	20000	RN
2-Nitroaniline	4.7	61	RN
3-Nitroaniline	230	3100	RN
4-Nitroaniline	230	3100	RN
Nitrobenzene	39	510	RN
2-Nitrophenol	NA	NA	NA

Analyte	Residential Screening Criteria mg/kg	Industrial Screening Criteria mg/kg	Source
4-Nitrophenol	4800	63000	RN
OCDD	0.0041	0.018	RC
OCDF	0.0041	0.018	RC
PCB-1016	5.5	72	RN
PCB-1221	0.083	0.37	RC
PCB-1232	0.083	0.37	RC
PCB-1242	0.083	0.37	RC
PCB-1248	0.083	0.37	RC
PCB-1248	0.083	0.37	RC
PCB-1254	0.083	0.37	RC
PCB-1260	0.083	0.37	RC
PeCDD Totals	0.0000082	0.000036	RC
PeCDF Totals	0.0000082	0.000036	RC
Pentachlorophenol	5.3	24	RC
Phenanthrene	NA	NA	NA
Phenol	47000	610000	RN
Potassium	NA	NA	NA
Pyrene	2300	31000	RN
Selenium	390	5100	RN
Silver	390	5100	RN
Sodium	NA	NA	NA
Styrene	16000	200000	RN
2,3,7,8-TCDD	0.0000041	0.000018	RC
TCDD Totals	0.0000041	0.000018	RC
TCDF Totals	0.000041	0.00018	RC
1,1,1,2-Tetrachloroethane	25	110	RC
1,1,2,2-Tetrachloroethane	3.2	14	RC
Tetrachloroethene	12	55	RC
Thallium	6.3	82	RN
Toluene	16000	200000	RN
Toxaphene	0.58	2.6	RC
1,2,4-Trichlorobenzene	780	10000	RN
1,1,1-Trichloroethane	7000	92000	RN

Analyte	Residential Screening Criteria mg/kg	Industrial Screening Criteria mg/kg	Source
1,1,2-Trichloroethane	11	50	RC
Trichloroethene	58	260	RC
Trichlorofluoromethane	23000	310000	RN
2,4,5-Trichlorophenol	7800	100000	RN
2,4,6-Trichlorophenol	58	260	RC
1,2,3-Trichloropropane	0.091	0.41	RC
Vanadium	550	7200	RN
Vinyl Chloride	0.34	1.5	RC
Vinyl acetate	78000	1000000	RN
m-Xylene	160000	1000000	RN
o-Xylene	160000	1000000	RN
Xylene (total)	160000	1000000	RN
Zinc	23000	310000	RN

Screening Criteria Source Codes

Screening Criteria Source	Code
State of Alaska Cleanup Levels	AK
EPA Lead Based-Risk Criteria	EL
EPA Region III Risk-Based Concentrations, carcinogenic level	RC
EPA Region III Risk-Based Concentrations, noncarcinogenic level	RN

APPENDIX D

Statistical Discussion

INTRODUCTION

The analysis for the Remedial Investigation (RI) included a statistical comparison of chemical data from the sites at Galena Airport and Campion AFS to data from unaffected areas (background). Individual concentrations from the affected areas were compared to an upper limit calculated from background concentrations. This upper limit is called an upper tolerance limit (UTL). Section 1 of this appendix presents an explanation of UTLs and their use in this RI. Section 2 discusses the calculation of UTLs.

1.0 <u>Description of Upper Tolerance Limits for Background</u>

Two types of statistical comparisons may be used to compare results from different sample populations. One approach involves means comparisons which are used to compare the average measured background concentration to a corresponding average measured concentration for an affected area. This type of test is referred to as a test of central tendency. An alternate approach involves comparing individual results from each affected area to calculated upper limits for background concentrations. This second type of comparison is referred to as an extreme value test. Extreme value tests were used to identify potentially contaminated areas for the RI.

Extreme value tests require estimating the upper extreme of a given population (in this case background concentrations). When the distribution of background data appear to follow a known distribution (for example, normal or lognormal), the known characteristics of the distribution can be used to estimate the concentration below which a given proportion of the data are expected to fall (this proportion is described as the *coverage*). Based on these characteristics, parametric UTLs can be calculated as the upper confidence limit for given coverage level. In this RI, parametric UTLs represent the upper 95% confidence limit for 95% coverage. That is, one can be 95% confident that 95% of the background concentrations for

the analyte of interest will fall below the UTL. For data that do not follow a known distribution, nonparametric UTLs are calculated. At the 95% confidence level, the coverage provided by a nonparametric UTL generally is less than 95%. Although the nonparametric UTL is chosen to maximize the coverage, 95% coverage often is not achievable given the sample size.

When the coverage is high (95% or greater), there is a relatively small chance, on the order of 1 in 20, that a sample taken from an uncontaminated area will have an inorganic concentration greater than the UTL. When individual sample results are compared to UTLs, they are interpreted to indicate the presence of potential contamination when they exceed the UTLs.

2.0 <u>Calculation of Background UTLs</u>

UTLs were calculated for the background data so that individual site results could be compared to background levels. In calculating UTLs, the distribution of the data must be considered.

Normality tests were performed on the data and the logs of the data using the Shapiro Wilk test (Gilbert, 1987; Shapiro and Wilk, 1965). UTLs were calculated for background and upgradient data sets that were normally distributed using the following formula for normal distributions:

$$UTL = \overline{x} + (K \times s)$$

where x is the estimated sample mean, K is the tolerance factor, and s is the estimated standard deviation. For data sets that were lognormally distributed, the same formula as provided above was used, with the logs of the data used in all calculations. The exponent of the result was

taken to arrive at the lognormal UTL. Normal and lognormal UTLs were calculated for the 95th percentile (i.e., a coverage of 95%) with 95% confidence.

For background data sets that were not normally or lognormally distributed, nonparametric UTLs were estimated as the maximum background concentration. The coverage for non-parametric UTLs is a function of the sample size and was often less than the coverage of 95% used for the parametric (normal or lognormal) UTLs.

For background data sets where fewer than ten percent of the concentrations were measurable (measurable concentrations are J-flagged values or concentrations above the detection limit), the calculation of a UTL was inappropriate. For those cases, two times the maximum detection limit was used as the level to which all individual site concentrations should be compared. Note that no statements of degree of confidence or coverage provided can be made in these cases.

Tables D-1 and D-2 present the UTLs for groundwater, surface water, surface soil and subsurface soil background samples collected from the Galena Ambient Location and for surface soil background samples collected from the Campion Ambient Location.

 $\label{eq:conditional} \mbox{Table D-1}$ Groundwater and Surface Water Background Summary Statistics

								Upper			
								Tolerance		Test	Coverage
Matrix	Site	Method	Analyte	Min	Max	Mean	N	Limit	Units	Туре	(%)
GW	Galena	SW6010	Aluminum	-0.032	0.100	0.042	6	0.241	mg/L	Normal	95.00
G₩	Galena	SW6010	Antimony	0.003	0.050	0.032	6	0.100	mg/L	Normal	95.00
GW	Galena	SW7060	Arsenic	-0.005	0.019	0.004	8	0.027	mg/L	Normal	95.00
G₩	Galena	SW6010	Barium	0.210	0.537	0.374	6	0.893	mg/L	Normal	95.00
GW	Galena	SW6010	Beryllium	-0.002	0.001	0.000	6	0.005	mg/L	Normal	95.00
GW	Galena	SW6010	Cadmium	-0.000	0.003	0.001	6	0.006	mg/L	Normal	95.00
GW	Galena	SW6010	Calcium	160.000	326.000	231.333	6	498.563	mg/L	Normal	95.00
GW	Galena	SW6010	Chromium	-0.001	0.005	0.003	6	0.011	mg/L	Normal	95.00
GW	Galena	SW6010	Cobalt	-0.004	0.038	0.018	6	0.079	mg/L	Normal	95.00
GW	Galena	SW6010	Copper	0.003	0.010	0.006	6	0.019	mg/L	Normal	95.00
GW	Galena	SW6010	Iron	-0.003	18.000	4.980	6	30.662	mg/L	Normal	95.00
GW	Galena	SW7421	Lead	-0.047	0.016	-0.004	8	0.016	mg/L	Non-Parametric	68.77
GW	Galena	SW6010	Magnesium	27.000	73.600	47.450	6	125.328	mg/L	Normal	95.00
GW	Galena	SW6010	Manganese	0.027	23.100	10.367	6	45.351	mg/L	Normal	95.00
GW	Galena	SW7470	Mercury	0.000	0.000	0.000	4	0.001	mg/L	Normal	95.00
GW	Galena	SW6010	Molybdenum	-0.004	0.025	0.008	6	0.058	mg/L	Normal	95.00
GW	Galena	SW6010	Nickel	-0.004	0.102	0.036	6	0.179	mg/L	Normal	95.00
GW	Galena	SW6010	Potassium	4.600	7.300	5.920	6	10.312	mg/L	Normal	95.00
G₩	Galena	SW7740	Selenium .	-0.003	0.027	0.005	6	0.027	mg/L	Non-Parametric	60.70
GW	Galena	SW6010	Silver	-0.002	0.005	0.002	6	0.015	mg/L	Normal	95.00
GW	Galena	SW6010	Sodium	4.500	11.300	7.302	6	17.051	mg/L	Normal	95.00
G₩	Galena	SW6010	Thallium	-0.101	0.050	-0.011	6	0.202	mg/L	Normal	95.00
GW	Galena	SW6010	Vanadium	-0.004	0.010	0.003	6	0.025	mg/L	Normal	95.00
G₩	Galena	SW6010	Zinc	0.001	0.019	0.011	6	0.034	mg/L	Normal	95.00
S₩	Galena	SW6010	Aluminum	0.100	0.100	0.100	4	0.400	mg/L	Twice Max DL	
SW	Galena	SW6010	Antimony	0.050	0.050	0.050	4	0.200	mg/L	Twice Max DL	•
SW	Galena	SW7060	Arsenic	0.002	0.002	0.002	4	0.008	mg/L	Twice Max DL	•
SW	Galena	SW6010	Barium	0.057	0.086	0.066	4	0.086	mg/L	Non-Parametric	47.29
SW	Galena	SW6010	Beryllium	0.001	0.001	0.001	4	0.004	mg/L	Twice Max DL	
SW	Galena	SW6010	Cadmium	0.003	0.003	0.003	4	0.010	mg/L	Twice Max DL	
SW	Galena	SW6010	Calcium	33.000	45.000	37.000	4	74.805	mg/L	Lognormal	95.00
SW	Galena	SW6010	Chromium	0.005	0.005	0.005	4	0.020	mg/L	Twice Max DL	
SW	Galena	SW6010	Cobalt	0.005	0.005	0.005	4	0.020	mg/L	Twice Max DL	•
SW	Galena	SW6010	Copper	0.010	0.020	0.013		0.020	mg/L	Non-Parametric	47.29
SW	Galena	SW6010	Iron	0.330	1.000	0.565		5.890	mg/L	Lognormal	95.00
SW	Galena	SW7421	Lead	0.002	0.010	0.005		0.025	mg/L	Normal	95.00
SW	Galena	SW6010	Magnesium	6.500	7.800	6.875		7.800	mg/L	Non-Parametric	47.29
SW	Galena	SW6010	Manganese	0.050	0.160	0.096		1.092	mg/L	Lognormal	95.00
SW	Galena	SW7470	Mercury	0.000	0.000	0.000		0.000	mg/L	Twice Max DL	•
SW SW	Galena Galena	SW6010	Molybdenum	0.025	0.025	0.025		0.100	mg/L	Twice Max DL	•
SW	Galena	SW6010 SW6010	Nickel Potassium	0.010 3.800	0.010 4.900	0.010		0.040	mg/L	Twice Max DL	
SW	Galena	SW7740	Selenium			4.225		7.328	mg/L	Lognormal	95.00
SW	Galena	SW6010	Silver	0.003 0.005	0.003 0.005	0.003 0.005		0.010 0.020	mg/L	Twice Max DL	•
SW	Galena	SW6010	Sodium	1.900	2.700	2.150		2.700	mg/L mg/L	Twice Max DL Non-Parametric	47.29
SW	Galena	SW6010	Thallium	0.050	0.050	0.050		, 0.200	mg/L	Twice Max DL	
SW	Galena	SW6010	Vanadium	0.010	0.030	0.010		0.040	mg/L	Twice Max DL	•
SW	Galena	SW6010	Zinc	0.010	0.039	0.017		0.039	mg/L	Non-Parametric	47.29
				010	5.000	0.017	•	0.000	g/ L	rarametric	71.63

Table D-2
Surface and Subsurface Soil Background Summary Statistics

								Upper			
43								Tolerance		Test	Coverage
Matrix	Site	Method	Analyte	Min	Max	Mean	N	Limit	Units	Type	(%)
SB	Galena	SW6010	Aluminum	10000.00	16000.00	13250.00	4	26112.50	mg/kg	Normal	95.00
SB	Galena	SW6010	Antimony	6.00	8.00	6.88	4	32.00	mg/kg	Twice Max DL	
SB	Galena	SW7060	Arsenic	11.00	14.00	12.25	4	20.45	mg/kg	Lognormal	95.00
SB	Galena	SW6010	Barium	180.00	240.00	217.50	4	352.81	mg/kg	Normal	95.00
SB	Galena	SW6010	Beryllium	0.15	0.38	0.26	4	0.88	mg/kg	Normal	95.00
SB	Galena	SW6010	Cadmium	0.30	0.39	0.34	4	1.56	mg/kg	Twice Max DL	•
		SW6010	Calcium	11000.00	15000.00	13000.00	4	22393.44	mg/kg	Normal	95.00
SB	Galena	SW6010	Chromium	23.00	32.00	28.25	4	48.12	mg/kg	Normal	95.00
SB	Galena	SW6010	Cobalt	12.00	13.00	12.50	4	13.00	mg/kg	Non-Parametric	47.29
SB	Galena			27.00	40.00	33.75	4	61.42	mg/kg	Normal	95.00
SB	Galena	SW6010 SW6010	Copper Iron	23000.00	28000.00	25750.00	4	36356.69	mg/kg	Normal	95.00
SB SB	Galena	SW7421	Lead	8.20	10.00	9.03	4	13.76	mg/kg	Lognormal	95.00
	Galena		Magnesium	7300.00	8000.00	7775.00	4	9474.93	mg/kg	Normal	95.00
SB	Galena	SW6010	•	400.00	430.00	412.50	4	481.82	mg/kg	Lognormal	95.00
SB	Galena	SW6010	Manganese	0.15	0.26	0.19	4	0.65	mg/kg	Lognormal	95.00
SB	Galena	SW7471	Mercury	3.00	3.90	3.41	4	15.60	mg/kg	Twice Max DL	
SB	Galena	SW6010	Molybdenum	27.00	32.00	30.50	4	42.75	mg/kg	Normal	95. 0 0
SB	Galena	SW6010	Nickel		1600.00	1275.00	4	3145.48	mg/kg	Lognormal	95.00
SB	Galena	SW6010	Potassium	1100.00	0.46	0.35	4	1.84	mg/kg	Twice Max DL	•
SB	Galena	SW7740	Selenium	0.29		0.69	4	3.20	mg/kg	Twice Max DL	•
SB	Galena	SW6010	Silver	0.60	0.80	405.00	4	976.36	mg/kg	Lognormal	95.00
SB	Galena	SW6010	Sodium	330.00	500.00	6.88	4	32.00	mg/kg	Twice Max DL	33.00
SB	Galena	SW6010	Thallium	6.00	8.00		4	91.81	mg/kg	Lognormal	95.00
B	Galena	SW6010	Vanadium	39.00	54.00	46.00 81.75	4	137.38	mg/kg	Normal	95.00
В	Galena	SW6010	Zinc	67.00	92.00 10900.00	7033.33	6	19562.04	mg/kg	Normal	95.00
SS	Campion	SW6010	Aluminum	2470.00	-1.45	-5.55	6	25.20	mg/kg	Twice Max DL	
SS	Campion	SW6010	Antimony	-18.00 2.64	14.90	7.23	6	69.29	mg/kg	Lognormal	95.00
SS	Campion	SW7060	Arsenic		1940.00	484.67	6	1940.00	mg/kg	Non-Parametric	60.70
SS	Campion	SW6010	Barium Barullium	127.00 0.05	0.35	0.23	6	0.66	mg/kg	Normal	95.00
SS	Campion	SW6010	Beryllium Codmium	-0.07	1.68	0.40	6	3.74	mg/kg	Twice Max DL	
SS	Campion	SW6010	Cadmium Calaium	3490.00	29600.00	11845.00	6	208399.2	mg/kg	Lognormal	95.00
SS	Campion	SW6010	Calcium		20.90	14.09	6	34.93	mg/kg	Normal	95.00
SS	Campion	SW6010	Chromium	6.94 4.37	86.60	19.91		86.60	mg/kg	Non-Parametric	60.70
SS	Campion	SW6010	Cobalt	7.18	25.70	13.05		62.81	-	Lognormal	95.00
SS	Campion	SW6010	_		136000.00		6	136000.0	mg/kg	Non-Parametric	60.70
SS	Campion	SW6010	Iron	10200.00 1.17	9.65	6.06	6	16.73	mg/kg	Normal	95.00
SS	Campion	SW7421	Lead Magnesium	1830.00	4640.00	3380.00	6	7597.45	mg/kg	Normal	95.00
SS	Campion	SW6010	•	147.00	28100.00	5023.00	6	28100.00	mg/kg	Non-Parametric	60.70
SS	Campion	SW6010 SW7471	Manganese	-0.06	0.04	-0.02		0.20	mg/kg	Twice Max DL	
SS	Campion		Mercury Molybdenum	0.25	5.85			44.32	mg/kg	Lognormal	95.00
SS	Campion	SW6010	•	10.50	29.80	19.38		85.16	mg/kg	Lognormal	95.00
SS	Campion	SW6010	Nickel Potassium	177.00	1060.00			3343.49	mg/kg	Lognormal	95.00
SS	Campion	SW6010		0.87	3.26	2.19	6	5.04	mg/kg	Normal	95.00
SS	Campion	SW7740	Selenium Silver	-1.05	-0.31	-0.52		2.38	mg/kg	Twice Max DL	55.00
SS	Campion	SW6010				169.60		1068.98	mg/kg	Lognormal	95.00
SS	Campion	SW6010	Sodium	89.60 -19.10	301.00 0.68	-3.38		90.40	mg/kg	Twice Max DL	
SS	Campion	SW6010	Thallium	-19.10	40.70	26.78		121.99	mg/kg	Lognormal	95.00
SS	Campion	SW6010	Vanadium Zino	13.80	78.00	39.70		210.87	mg/kg	Lognormal	95.00
SS	Campion	SW6010	Zinc	18.00		12057.14		14000.00	mg/kg	Non-Parametric	65.18
	Galena	SW6010	Aluminum	5400.00	14000.00		7	30.00		Twice Max DL	
SS	Galena	SW6010	Antimony	4.15	7.50				mg/kg	Non-Parametric	65.18
SS	Galena	SW7060	Arsenic	4.20	15.00	11.46	,	15.00	mg/kg	nun-rarametric	03.10

Table D-2 Surface and Subsurface Soil Background Summary Statistics

								Upper			
								Tolerance		Test	Coverage
Matrix	Site	Method	Analyte	Min	Max	Mean	N	Limit	Units	Туре	(%)
SS	Galena	SW6010	Barium	70.00	250.00	187.14	7	380.13	mg/kg	Normal	95.00
SS	Galena	SW6010	Beryllium	0.09	0.36	0.28	7	0.36	mg/kg	Non-Parametric	65.18
SS	Galena	SW6010	Cadmium	0.21	0.37	0.31	7	1.48	mg/kg	Twice Max DL	
SS	Galena	SW6010	Calcium	4300.00	15000.00	12328.57	7	15000.00	mg/kg	Non-Parametric	65.18
SS	Galena	SW6010	Chromium	9.70	30.00	25.10	7	30.00	mg/kg	Non-Parametric	65.18
SS	Galena	SW6010	Cobalt	7.00	14.00	11.86	7	14.00	mg/kg	Non-Parametric	65.18
SS	Galena	SW6010	Copper	9.70	37.00	28.53	7	60.08	mg/kg	Normal	95.00
SS	Galena	SW6010	Iron	11000.00	27000.00	22714.29	7	27000.00	mg/kg	Non-Parametric	65.18
SS	Galena	SW7421	Lead	2.70	11.00	7.80	7	17.15	mg/kg	Normal	95.00
SS	Galena	SW6010	Magnesium	2600.00	8700.00	7114.29	7	8700.00	mg/kg	Non-Parametric	65.18
SS	Galena	SW6010	Manganese	200.00	540.00	405.71	7	766.96	mg/kg	Normal	95.00
SS	Galena	SW7471	Mercury	0.08	0.20	0.16	7	0.30	mg/kg	Normal	95.00
SS	Galena	SW6010	Molybdenum	2.10	3.70	3.06	7	14.80	mg/kg	Twice Max DL	
SS	Galena	SW6010	Nickel	17.00	34.00	28.86	7	34.00	mg/kg	Non-Parametric	65.18
SS	Galena	SW6010	Potassium	320.00	1600.00	1072.86	7	2378.52	mg/kg	Normal	95.00
SS	Galena	SW7740	Selenium	0.22	0.37	0.30	7	1.48	mg/kg	Twice Max DL	
SS	Galena	SW6010	Silver	0.42	0.75	0.61	7	3.00	mg/kg	Twice Max DL	
SS	Galena	SW6010	Sodium	41.50	470.00	378.79	7	470.00	mg/kg	Non-Parametric	65.18
SS	Galena	SW6010	Thallium	4.15	7.50	6.09	7	30.00	mg/kg	Twice Max DL	•
SS	Galena	SW6010	Vanadium	20.00	48.00	41.29	7	48.00	mg/kg	Non-Parametric	65.18
SS	Galena	SW6010	Zinc	27.00	82.00	67.86	7	82.00	mg/kg	Non-Parametric	65.18

APPENDIX E

Field Documents

1992 Drilling Logs

RADIAN

LOG OF DRILLING OPERATIONS

PROJECT	Galen	a Stage 3 RI/FS	LOCATION	Galena A	AFS Area, Alaska
TOTAL DEPTH	60.00	_ START DATE	8/3/92	_ FINISH DATE	
GEOLOGIST _	Paul A. Copl	en APPROVED BY		Godard	_ R.G.# <u>275 - Alaska</u>
DRILLING COM	IPANY H	ighes Drilling		R. Erickson, R. Is	
DRILLING MET	HOD <u>G</u>	rab/Split Spoon	_ `	CME 75 Nodwe	ell TrkRg
DRILL BIT TYP					
BORING LOCAT	TION (ST. AD	DRESS OR DESCRIPTION	N) <u>Fire Trai</u>	ning Area	
•					

BGL = Below Ground Level, NR = No Recovery

Monitor Well #: 01-MW-01

Page 2 of 2

RADIAN

LOG OF DRILLING OPERATIONS

PROJECT	Galena St	age 3 RI/FS	LOCATION	Galena A	AFS Area, Alaska
TOTAL DEPTH	30.00 ST	ART DATE	8/6/92	_ FINISH DATE	
GEOLOGIST	Paul A. Coplen	APPROVED BY		Godard	_ R.G.# <u>275 - Alaska</u>
DRILLING COM	PANY Hughe	s Drilling		R. Erickson, R. Is	
DRILLING METH	HOD Grab/S	Split Spoon	EQUIPMENT	CME 75 Nodwe	ell TrkRg
DRILL BIT TYPE	AND SIZE _	Hollow Stem Auger	r - 4 1/4" ID		
BORING LOCAT	ION (ST. ADDR	ESS OR DESCRIPT	ION) <u>Fire Trai</u>	ning Area	
				_	

BGL = Below Ground Level, NR = No Recovery

LOG OF DRILLING OPERATIONS

Page <u>2</u> of <u>2</u> LOCATION PROJECT Galena Stage 3 RI/FS Galena AFS Area, Alaska Sample Recovery % Blow Count Elevation (ft MSL) Sample Interval Graphic Log Lithologic Additional Data and Comments Description Color, Texture, Moisture, etc. hole. 30--30 End of Borehole at 30' BGL.

LOG OF DRILLING OPERATIONS

Soil Boring #: 01-SB-01

Page <u>1</u> of <u>1</u>

PROJECT	Gal	ena Stage 3 RI/FS	LOCATION	Galena	AFS Area, Alaska
TOTAL DEPTH	9.50	START DATE	8/8/92	_ FINISH DATE	
GEOLOGIST _	R. Petross	sian APPROVED BY	S.T.	Godard	R.G.# <u>_ 275 - Alaska</u>
DRILLING COM	PANY _	Hughes Drilling		R. Erickson, R. I	
DRILLING MET	HOD _	Grab/Split Spoon	EQUIPMENT	CME 75 Nodw	ell TrkRg
DRILL BIT TYPE					
BORING LOCAT	ION (ST. A	DDRESS OR DESCRIPT	ION) <u>Fire Trai</u>	ning Area	

NOTES

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

RADIAN

LOG OF DRILLING OPERATIONS

Soil Boring #: <u>01-SB-02</u>

Page 1 of 1

PROJECT	Gale	na Stage 3 RI/FS	LOCATION	Galena	AFS Area,	Alaska
TOTAL DEPTH	9.50	START DATE	8/8/92	FINISH DATE		8/8/92
GEOLOGIST _	R. Petross	an APPROVED I	SYS.T.	Godard	R.G.# 2	75 - Alaska
DRILLING COM		Iughes Drilling	DRILLER	R. Erickson, R. I.	sh	
DRILLING MET	HOD <u>C</u>	Frab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ell TrkRg	
DRILL BIT TYPE	E AND SIZE	Hollow Stem Aug	er - 4 1/4" ID			
BORING LOCAT	ION (ST. A	DDRESS OR DESCRIP	TION) Fire Trai	ning Area		

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

RADIAN

LOG OF DRILLING OPERATIONS

Soil Boring #: <u>01-SB-02</u>

Page <u>1</u> of <u>1</u>

PROJECT Galena Stage 3 RI/FS			LOCATION	Galena A	FS Area	, Alaska
TOTAL DEPTH	9.50	START DATE		FINISH DATE		
GEOLOGIST	R. Petros	sian APPROVED BY	S.T. G	odard	R.G.#	275 - Alaska
DRILLING COM	PANY	Hughes Drilling	DRILLER	Rod & Ricky	- 	
DRILLING MET	HOD	Grab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ll TrkRg	
DRILL BIT TYPE	E AND SIZ	ZE Hollow Stem Auger	- 4 1/4" ID			
BORING LOCAT	ION (ST.	ADDRESS OR DESCRIPTION	ON) Fire Train	ing Area		
	·		,			

Sample Interval	Blow Count	Sample Recovery %	Lithologic Description	Graphic Log	Elevation (ft MSL)	Additional Data and Comments
			Color, Texture, Moisture, etc.		142.70	
2	2/2/2/	50	Sandy Silt: olive gray (5Y 4/1), fine grained, poorly graded, round, soft, non-plastic, dry; slightly compacted, some dark black blotches of staining.		- - - - - 140	117 ppm from split spoon cuttings (grab sample). 201 ppm.
X		75	Silty Sand: light olive gray (5Y 6/1), fine grained, poorly graded, round, soft, non-plastic, moist; fine at top to coarse at bottom, some rootlets.			433 ppm.
2	3	100	Silty Sand: olive gray (5Y 3/2), fine grained, poorly graded, round, firm, non-plastic, moist; more rootlets, plant remains, strong odor, few pebbles.		—135 -	730 ppm.

NOTES

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

LOG OF DRILLING OPERATIONS

Page _1_ of _1_

PROJECT	Ga	lena Stage 3 RI/FS	LOCATION	Galena A	FS Area, Alaska
TOTAL DEPTH	21.50	START DATE		FINISH DATE	
GEOLOGIST _	R. Petro	ssian APPROVED BY	S.T. Go	odard	R.G.# 275 - Alaska
DRILLING COM	PANY .	Hughes Drilling	DRILLER R.	Erickson, R. Is	h
DRILLING MET	HOD	Grab/Split Spoon	EQUIPMENT	CME 75 Nodwel	ll TrkRg
DRILL BIT TYPE	E AND SIZ	ZE Hollow Stem Auger -	4 1/4" ID		
BORING LOCAT	ION (ST.	ADDRESS OR DESCRIPTION	N) Ambient Sit	te	
			•		

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM BGL = Below Ground Level, NR = No Recovery

RADIAN

LOG OF DRILLING OPERATIONS

Page <u>1</u> of <u>1</u>

			0.1
PROJECT	Galena Stage 3 RI/I	ES LOCATION _	Galena AFS Area, Alaska
TOTAL DEPTH	25.50 START DA'	ΓE	FINISH DATE
GEOLOGIST	R. Petrossian APPR	OVED BYS.T. G	<u>Godard</u> R.G.# <u>275 - Alaska</u>
DRILLING COM	IPANY Hughes Drilling		R. Erickson, R. Ish
DRILLING MET	HOD Grab/Split Spoo	n EQUIPMENT	CME 75 Nodwell TrkRg
DRILL BIT TYP	E AND SIZE Hollow S	tem Auger - 4 1/4" ID	
BORING LOCAT	TION (ST. ADDRESS OR D	ESCRIPTION) Ambient S	Site
•	•		

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

LOG OF DRILLING OPERATIONS

Page 1 of 2

PROJECT	Galen	a Stage 3 RI/FS	LOCATION	Galena A	AFS Area	, Alaska	
TOTAL DEPTH	60.00	START DATE	7/21/92	FINISH DATE		7/21/92	
GEOLOGIST	B. J. Coel	APPROVED BY	S.T.	Godard	R.G.#	275 - Alaska	4
DRILLING COM	PANY Hu	ghes Drilling	DRILLER	R. Erickson, R. Is	sh		
DRILLING METH	HOD Gr	ab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ll TrkRg		
DRILL BIT TYPE	E AND SIZE	Hollow Stem Auger -	4 1/4" ID				
BORING LOCAT	ION (ST. AD	DRESS OR DESCRIPTION	ON) POL Are	a			_
							_

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

RADIAN

LOG OF DRILLING OPERATIONS

Monitor Well #: 05-MW-01

Page <u>2</u> of <u>2</u>

Surface (ft)	Sample Interval	Blow Count	Sample Recovery %	Lithologic Description Color, Texture, Moisture, etc.	Graphic Log	Elevation (ft MSL)	Additional Data and Comments
0-	X	8/10/	NR	Color, Texture, Moisture, etc.		—120 	BH PID = 1 ppm, BZ PID = 0 ppm. 4' Heave, no recovery.
5—		6/10/ 10	NR			—115 	BH & BZ PID = 0 ppm. 6' Heave, no recovery.
40—	X	And the second s	NR			—110 - - - -	BH & BZ PID = 0 ppm. 8' Heave, no sample taken due to heave. Drilled to 60', no more samples taken.
- - - - - -						- - - - - - - - -	
)—(-			i.				
5						- 95 - - - - -	
50-				End of Borehole at 60' BGL.		- - 90 -	

LOG OF DRILLING OPERATIONS

Page <u>1</u> of <u>2</u>

PROJECT	Galer	a Stage 3 RI/FS	LOCATION	LOCATION Galena AFS A		
TOTAL DEPTH	53.00	_ START DATE	7/23/92	_ FINISH DATE	7/23/92	
GEOLOGIST	B. J. Coe	APPROVED BY	S.T.	Godard	R.G.# 275 - Ala	ska 🔺
DRILLING COMP	ANY <u>H</u>	ughes Drilling	DRILLER	R. Erickson, R. Is	sh	
DRILLING METH	IOD G	rab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ell TrkRg	
DRILL BIT TYPE	AND SIZE	Hollow Stem Auger				
BORING LOCATI	ON (ST. AI	DRESS OR DESCRIPTI	ON) POL Are	a		
	•		,			

BGL = Below Ground Level, NR = No Recovery

LOG OF DRILLING OPERATIONS

Monitor Well #: 05-MW-02

Page <u>2</u> of <u>2</u>

Surrace (II)	Sample Interval	Blow Count	Sample Recovery %	Lithologic Description	Graphic Log	Elevation (ft MSL)	Additional Data and Comments
-				Color, Texture, Moisture, etc.		-	
1-1-1	\times	4/6/6	100	Sand: dark yellowish brown (10YR 4/2), fine grained, poorly graded, sub-angular, wet; trace medium and coarse sand. (SP)			BH PID = 1 ppm, BZ PID = 0 ppm. Slight heaving.
1 1 1 1 1 1 1 1 1 1	X	7/14/ 12	100	Sand: dark yellowish brown (10YR 4/2), medium grained, poorly graded, sub-angular, wet; trace medium and coarse sand, trace woodchips. (SP) Sand: dark yellowish brown (10YR 4/2), coarse grained, well graded, sub-angular, wet; trace gravel, trace woodchips, approx. 20%		- - - - - - - - - - - - - - - - - - -	BH PID = 1 ppm, BZ PID = 0 ppm, core temp = 15 C.
1 1 1 1 1 1	X	3/5/6	83	trace gravel, trace woodchips, approx. 20% medium sand. (SP) Sand: olive gray (5Y 4/1), coarse grained, well graded, sub-round, wet; trace gravel, approx. 20% medium and fine sand. (SP)			BH PID = 1 ppm, BZ PID = 0 ppm.
						—105 -	
1 1	X		NR				BH & BZ PID = 0 ppm. No recovery. Drilled to 53' and installed well at 51'.
1				End of Borehole at 53' BGL.		—95 -	

Page <u>1</u> of <u>2</u>

PROJECT	Galen	a Stage 3 RI/FS	LOCATION	Galena A	AFS Area, Alasl	ka	
TOTAL DEPTH	60.00	_ START DATE	7/22/92	FINISH DATE	7/22	/92	
GEOLOGIST	GJC	APPROVED BY	S.T. (- Godard	R.G.# 275 -	Alaska	
DRILLING COMP	ANY H	ughes Drilling	DRILLER	R. Erickson, R. Is			
DRILLING METH	OD G	rab/Split Spoon		CME 75 Nodwe			
DRILL BIT TYPE	AND SIZE	Hollow Stem Auger					
BORING LOCATION (ST. ADDRESS OR DESCRIPTION) POL Area							
	`		,			***************************************	

Monitor Well #: 05-MW-03

RADIAN

LOG OF DRILLING OPERATIONS

Page 2 of 2

Page 1 of 2

PROJECT	Galena	a Stage 3 RI/FS	LOCATION	Galena A	AFS Area	, Alaska
TOTAL DEPTH _	50.00	START DATE	7/30/92	FINISH DATE		7/30/92
GEOLOGIST	B. J. Coel	APPROVED BY	S.T. 0	Godard	R.G.#	275 - Alaska
DRILLING COMP	ANY Hu	ghes Drilling	DRILLER	R. Erickson, R. Is		
DRILLING METH	OD Gr	ab/Split Spoon		CME 75 Nodwe		
DRILL BIT TYPE	AND SIZE	Hollow Stem Auger -				
BORING LOCATION	ON (ST. AD	DRESS OR DESCRIPTION	ON) POL Area	1		

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

Monitor Well #: 05-MW-04

Page 2 of 2

LOG OF DRILLING OPERATIONS

LOCATION Galena Stage 3 RI/FS Galena AFS Area, Alaska **PROJECT** Depth Below Surface (ft) Sample Recovery % Blow Count Elevation (ft MSL) Sample Interval Lithologic Additional Data and Comments Description Color, Texture, Moisture, etc. -115 Sand: olive gray (5Y 4/1), fine grained, poorly graded, sub-angular, wet; trace coarse sand, trace gravel, faint hydrocarbon odor. (SP) 30-30 BH PID = 330 ppm, BZ PID = 1 ppm. 7/8/6 Temp = 9 C, 6' heave. Too much heave, quit sampling, installed well at 47'. -110 -35 35 105 40 40-100 45 45 95 50--50 End of Borehole at 50' BGL.

LOG OF DRILLING OPERATIONS

Page 1 of 2

PROJECT	Galen	a Stage 3 RI/FS	LOCATION	Galena A	AFS Area	, Alaska
TOTAL DEPTH	40.00	_ START DATE	7/31/92	FINISH DATE		7/31/92
GEOLOGIST	B. J. Coel	APPROVED BY	S.T.	Godard	R.G.#	275 - Alaska
DRILLING COMI	PANY <u>H</u> ı	ighes Drilling	DRILLER	R. Erickson, R. Is	sh	
DRILLING METH	HOD G	ab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ll TrkRg	
DRILL BIT TYPE	AND SIZE	Hollow Stem Auger	- 4 1/4" ID			
BORING LOCATI	ION (ST. AD	DRESS OR DESCRIPTION	ON) POL Are	a		

BGL = Below Ground Level, NR = No Recovery

LOG OF DRILLING OPERATIONS

Monitor Well #: <u>05-MW-05</u> Page <u>2</u> of <u>2</u>

Galena Stage 3 RI/FS LOCATION Galena AFS Area, Alaska **PROJECT** Depth Below Surface (ft) Blow Count Elevation (ft MSL) Sample Recovery 9 Graphic Log Sample Interval Lithologic Additional Data and Comments Description Color, Texture, Moisture, etc. Sand: olive gray (5Y 4/1), medium grained, well graded, sub-round, wet; 6" of heaved sand in sampler. (SP) -30 30-Benzene Drager tube reading = 0 in BZ. BH PID = 190 ppm, BZ PID = 3 ppm. 7' Heave, temp = 9 C. 9/10/ 100 Sandy Gravel: olive gray (5Y 4/1), fine grained, poorly graded, sub-round, wet; weak hydrocarbon odor. (GP) -110 -35 Sandy Gravel: olive gray (5Y 4/1), fine grained, well graded, sub-round, wet; weak hydrocarbon odor, some coarse gravel and some coarse and medium sand. (GW) 35-BH PID = not taken, BZ PID = 3 ppm. 6/7/0 Trc. 5' Heave, temp = 10 C, quit sampling due to -105 40 40 End of Borehole at 40' BGL.

Page _1_ of _2_

PROJECT		alena Stage 3 RI/FS	LOCATION	Galena A	AFS Area, Alaska
		START DATE	8/1/92	FINISH DATE	
GEOLOGIST	P. A. C	oplen APPROVED	BY S.T.	Godard	R.G.# 275 - Alaska
DRILLING COM	PANY	Hughes Drilling	DRILLER	R. Erickson, R. Is	
DRILLING METI	HOD	Grab/Split Spoon	EQUIPMEN	CME 75 Nodwe	ell TrkRg
DRILL BIT TYPE	E AND SI	ZE Hollow Stem Au	iger - 4 1/4" ID		
		ADDRESS OR DESCRI		a	
				-	

BGL = Below Ground Level, NR = No Recovery

Monitor Well #: <u>05-MW-06</u>

LOG OF DRILLING OPERATIONS

Page 2 of 2

Soil Boring #: <u>05-SB-01</u>

Page	1	of	1

PROJECT	Gale	ena Stage 3 RI/FS	LOCATION	Galena A	FS Area	, Alaska		
TOTAL DEPTH	12.00	START DATE	7/20/92	FINISH DATE		7/20/92		
GEOLOGIST	GJC	APPROVED BY	S.T.	Godard	R.G.#	275 - Alaska		
DRILLING COM		Hughes Drilling	DRILLER	R. Erickson, R. Is	_			
DRILLING METH	HOD <u>(</u>	Grab/Split Spoon	EQUIPMENT	CME 75 Nodwe	l TrkRg			
DRILL BIT TYPE	AND SIZI	Hollow Stem Auger -	4 1/4" ID					
BORING LOCATION (ST. ADDRESS OR DESCRIPTION) POL								
			-					

HOIES

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

PROJECT	Galen	a Stage 3 RI/FS	LOCATION	Galena A	AFS Area	, Alaska
TOTAL DEPTH	12.00	START DATE	7/21/92	_ FINISH DATE		7/21/92
GEOLOGIST	B. J. Coel	_	S.T. (Godard	_ R.G.# _	275 - Alaska
DRILLING COMP		ighes Drilling	DRILLER _	R. Erickson, R. Is	sh	
DRILLING METH		ab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ll TrkRg	
DRILL BIT TYPE			4 1/4" ID			
		DRESS OR DESCRIPTION				
	(,			

Surface (ft) Sample Interval	Blow Count	Sample Recovery %	Lithologic Description	Graphic Log	Elevation (ft MSL)	Additional Data and Comments
	3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/	75	Color, Texture, Moisture, etc. Sandy Silt: dusky yellowish brown (10YR 2/2), very fine grained, poorly graded, soft, non-plastic, moist. (ML) Sandy Silt: dusky yellowish brown (10YR 2/2), very fine grained, poorly graded, soft, non-plastic, moist; trace woodchips. (ML) Sandy Silt: olive brown (5Y 4/1), very fine grained, poorly graded, soft, non-plastic, moist; strong hydrocarbon odor. (ML) Sandy Silt: olive brown (5Y 4/1), very fine grained, poorly graded, soft, non-plastic, moist; strong hydrocarbon odor. (ML) Sand: olive brown (5Y 4/1), fine grained, poorly graded, sub-round, soft, non-plastic, moist. (SP) Gravelly Sand: olive brown (5Y 4/1), fine grained, poorly graded, sub-round, non-plastic, wet; very strong hydrocarbon odor. (ML) End of Borehole at 12' BGL.		144.00 	Logged from cuttings, 0' to 2'. BH PID = 158 ppm, BZ PID = 1 ppm. Sample 2'-4', 05-SB-02-01, headspace = 258 ppm. BH PID = 148 ppm, BZ PID = 0 ppm. Sample 5'-7', 05-SB-02-02, headspace = 68 ppm. 4 ppm when split spoon opened. BH PID = 134 ppm, BZ PID = 1 ppm. Sample 8'-10', 05-SB-02-03, headspace = 48 ppm. Water level at 9.6' BGL. BH PID = 143 ppm, BZ PID = 4.1 ppm. Sample 10'-12', 05-SB-02-04, headspace = 63 ppm. Sending in sample due to heavy HC odor.

NOTES

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

LOG OF DRILLING OPERATIONS

Soil Boring #: <u>05-SB-03</u>

Page <u>1</u> of <u>1</u>

PROJECT	Galen	a Stage 3 RI/FS	LOCATION	Galena A	FS Area	, Alaska	
TOTAL DEPTH	12.00	_ START DATE	7/20/92	_ FINISH DATE		7/20/92	
GEOLOGIST	GJC	APPROVED BY	S.T. (Godard	R.G.#	275 - Alaska	4
DRILLING COMP	PANY <u>H</u> ı	ighes Drilling	DRILLER _	R. Erickson, R. Is	h		7
DRILLING METH	IOD <u>G</u> 1	ab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ll Trkrg		
DRILL BIT TYPE	AND SIZE	Hollow Stem Auger	- 4 1/4" ID				
BORING LOCATI	ON (ST. AD	DRESS OR DESCRIPTI	ON) POL				

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM BGL = Below Ground Level, NR = No Recovery

ppm = parts per million

LOG OF DRILLING OPERATIONS

PROJECT	Galena	Stage 3 RI/FS	LOCATION	Galena A	AFS Area, Alaska
TOTAL DEPTH	57.00	START DATE	7/18/92	FINISH DATE	7/18/92
GEOLOGIST	KLC, GJC	APPROVED BY	S.T. C	Godard	_ R.G.# <u>275 - Alaska</u>
DRILLING COMP	ANY Hu	ghes Drilling	DRILLER _I	R. Erickson, R. Is	sh
DRILLING METH	IOD Gr	ab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ell TrkRg
DRILL BIT TYPE	AND SIZE	Hollow Stem Auger -	4 1/4" ID		
BORING LOCATI	ON (ST. AD	DRESS OR DESCRIPTION		cumulation Area	
	•	•			

LOG OF DRILLING OPERATIONS

Monitor Well #: <u>06-MW-01</u>

Page 2 of 2

ppm = parts per million

LOG OF DRILLING OPERATIONS

Page <u>1</u> of <u>2</u>

PROJECT	Galena	Stage 3 RI/FS	LOCATION	Galena	AFS Area, Alaska
TOTAL DEPTH		START DATE	7/17/92	FINISH DATE	7/17/92
GEOLOGIST	KLC, GJC	APPROVED BY	S.T. (Jodard	_ R.G.# <u>275 - Alaska</u>
DRILLING COM	PANY Hug	ghes Drilling		R. Erickson, R. I	
DRILLING METH	HOD Gra	b/Split Spoon	_	CME 75 Nodw	ell TrkRg
DRILL BIT TYPE	AND SIZE	Hollow Stem Auger -	- 4 1/4" ID		
BORING LOCAT	ION (ST. ADI	DRESS OR DESCRIPTION	ON) Waste Acc	cumulation Area	
	·				

Page 2 of 2

ROJEC'	<u> </u>		Galena Stage 3 RI/FS	LOCAT	ION	Galena AFS Area, Alaska			
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
Surface (ft) Sample Interval	Blow Count	Sample Recovery %	Lithologic Description Color, Texture, Moisture, etc.	Graphic Log	Elevation (ft MSL)	Additional Data and Comments			
	1/2/3	100	Sandy Gravel: dusky brown (5YR 2/2), fine grained, well graded, sub-round, wet. (SW)	0.00.00.00.00	-115	BH PID = 1 ppm, BZ PID = 0 ppm, 4' heave.	——————————————————————————————————————		
	6/6/4	NR		200 200 200 200 200 200 200 200 200 200	- - - - - - -	7' Heave, no recovery, bottom of shoe filled with large gravel.	-3		
-	6/10/7	NR		000	- - - - - - - - - - - - - - - - - - -	10' Heave, no recovery, large gravel plugging sampler.	4		
	5/6/4	33	Sand: grayish black (N2), fine to medium grained, poorly graded, sub-round, wet. (SP) Sandy Gravel: grayish black (N2), fine grained, poorly graded, sub-round, wet. (SP)	000000000000000000000000000000000000000	—100	BH PID = 1 ppm, BZ PID = 0 ppm, 8' heave.	4:		
					95 -		- - - - - -		
			End of Borehole at 55' BGL.	0.00			55		

Page 1 of 2

ſ	PROJECT	G	alena Stage 3 RI	/FS LOC	CATION	Galena A	FS Area	i, Alaska
-	TOTAL DEPTH	50.00	START DA	ATE7/14/9	2	_ FINISH DATE		7/14/92
	GEOLOGIST	KLC,	GJC APP	ROVED BY	S.T. (Godard	_ R.G.#	275 - Alaska
7	DRILLING COM	PANY	Hughes Drillin			R. Erickson, R. Is		
	DRILLING METI	HOD	Grab/Split Spo	on EQU	JIPMENT	CME 75 Nodwe	ll TrkRg	
1	DRILL BIT TYPE	E AND S	IZE Hollow	Stem Auger - 4 1/4"	D			
	BORING LOCAT	ION (ST	. ADDRESS OR	DESCRIPTION)	Waste Ac	cumulation Area		
- 1								

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

Monitor Well #: <u>06-MW-03</u>

Page <u>2</u> of <u>2</u>

LOG OF DRILLING OPERATIONS

	PROJECT	Ga	lena Stage 3 RI/FS	LOCATION	Galena A	AFS Area, Alaska
	TOTAL DEPTH	50.00	START DATE	7/15/92	_ FINISH DATE	7/15/92
•	GEOLOGIST	GJC	APPROVED BY	S.T. (Godard	_ R.G.# <u>275 - Alaska</u>
	DRILLING COMP	PANY	Hughes Drilling	DRILLER _	R. Erickson, R. Is	sh
	DRILLING METH	IOD	Grab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ell TrkRg
	DRILL BIT TYPE	AND SIZ	E Hollow Stem Auger -	· 4 1/4" ID		
	BORING LOCATI	ON (ST.	ADDRESS OR DESCRIPTION	ON) Waste Ac	cumulation Area	
		•				

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

Monitor Well #: <u>06-MW-04</u>

Page 2 of 2 **PROJECT** Galena Stage 3 RI/FS LOCATION Galena AFS Area, Alaska Depth Below Surface (ft) Blow Count Sample Interval Sample Recovery 9 Elevation (ft MSL) Graphic Log Lithologic Additional Data and Comments Description Color, Texture, Moisture, etc. 0. 30 3/3/3 Sand: dark gray (N3), medium grained, poorly graded, sub-round, wet; hydrocarbon odor. (SP) -30 100 BH PID = 380 ppm, BZ PID = 1 ppm, 4'-110 35 4/5/7 -35 NR BH PID = 290 ppm, BZ PID = 0.5 ppm. -105 2/5/6 Sand: dark gray (N3), medium grained, well NR 40 BH PID = 290 ppm, BZ PID = 2.5 ppm, 5' graded, sub-round, wet; hydrocarbon odor. (SW) 100 heave. 45 45 .95 50--50 End of Borehole at 50' BGL.

Soil Boring #: <u>06-SB-01</u>

Page <u>1</u> of <u>1</u>

PROJECT	Galer	na Stage 3 RI/FS	LOCATION	Galena A	AFS Area, Alaska
TOTAL DEPTH	12.00	START DATE	7/16/92	_ FINISH DATE	7/16/92
GEOLOGIST	KLC	APPROVED BY	S.T.	Godard	R.G.# <u>275 - Alaska</u>
DRILLING COM	PANY <u>H</u>	ughes Drilling	DRILLER	R. Erickson, R. Is	sh
DRILLING METI	HOD G	rab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ell TrkRg
DRILL BIT TYPE	E AND SIZE	Hollow Stem Auger	- 4 1/4" ID		
BORING LOCAT	ION (ST. AI	DDRESS OR DESCRIPT	ION) West Uni	t	
	•		-		

NOTES

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

Soil Boring #: **06-SB-02**

Page <u>1</u> of <u>1</u>

PROJECT	Gale	na Stage 3 RI/FS	LOCATION	Galena A	AFS Area	, Alaska	
TOTAL DEPTH _	7.00	START DATE	7/15/92	FINISH DATE		7/15/92	
GEOLOGIST	GJC	APPROVED BY	S.T. (- Godard	R.G.#	275 - Alaska	1
DRILLING COMP		lughes Drilling	DRILLER	R. Erickson, R. Is			7
DRILLING METH		Frab/Split Spoon		CME 75 Nodwe	ll TrkRg		
		Hollow Stem Auger -					
BORING LOCATION	ON (ST. A	DDRESS OR DESCRIPTION	ON) West Unit				

Sample Interval	Blow Count	Sample Recovery %	Lithologic Description	Graphic Log	Elevation (ft MSL)	Additional Data and Comments
			Color, Texture, Moisture, etc.		142.10	
			Gravelly Sand: brownish gray (5YR 4/1), fine grained, poorly graded, sub-round, moist; fine grain gravel, minor silt. (SP)	· 0.		Logged from cuttings, 0'-2'.
X	4/2/3/ 2	100	Sand: olive gray (5Y 4/1), fine grained, poorly graded, sub-round, moist; trace fine gravel. (SP)		—140 -	BH PID = 0.5 ppm, BZ PID = 0 ppm.
						Headspace = 0.5 ppm.
X	4/3/5/ 3		Sandy Silt: olive black (5Y 2/1), very fine, soft, non-plastic, moist; trace woodchips, minor iron staining. (ML)			BH & BZ PID = 0 ppm.
			End of Borehole at 7' BGL.			Headspace = 0 ppm.

NOTES

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

Page <u>1</u> of <u>1</u>

PROJECT	Ga	lena Stage 3 RI/FS	LOCATION	Galena A	AFS Area, Alaska
TOTAL DEPTH	15.00	START DATE	8/11/92	_ FINISH DATE	
GEOLOGIST _	R. Petro	ssian APPROVED B			R.G.# <u>275 - Alaska</u>
DRILLING CON	IPANY .	Hughes Drilling		R. Erickson, R. Is	
DRILLING MET	THOD .	Grab/Split Spoon		CME 75 Nodwe	ell TrkRg
DRILL BIT TYP					
BORING LOCA	TION (ST.	ADDRESS OR DESCRIP	TION) <u>Campion</u>		

NOTES

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

LOG OF DRILLING OPERATIONS

Page 1 of 1

PROJECT	Galena	Stage 3 RI/FS	LOCATION	Galena A	FS Area	. Alaska
TOTAL DEPTH	23.00	START DATE	8/11/92	FINISH DATE		8/11/92
GEOLOGIST _	R. Petrossian	APPROVED BY	S.T. (Godard		275 - Alaska
DRILLING COM		hes Drilling		R. Erickson, R. Is		
DRILLING MET		o/Split Spoon	EOUIPMENT	CME 75 Nodwe		
DRILL BIT TYPE	E AND SIZE	Hollow Stem Auger	- 4 1/4" ID	<u> </u>	M AIMING	
BORING LOCAT	ION (ST. ADD	RESS OR DESCRIPTION	ON) Campion		***************************************	

Page <u>1</u> of <u>1</u>

PROJECT	Ga	llena Stage 3 RI/FS	L	OCATION _	Galena A	FS Area	a, Alaska
TOTAL DEPTH	16.50	START DATE	8/10	/92	FINISH DATE		8/10/92
GEOLOGIST	R. Petro	ssian APPROVEI) BY	S.T. G	Fodard	_ R.G.#	275 - Alaska
DRILLING COM	PANY	Hughes Drilling		_	R. Erickson, R. Is		
DRILLING MET	HOD	Grab/Split Spoon	E	QUIPMENT	CME 75 Nodwe	ll TrkRg	3
DRILL BIT TYPE	E AND SI	ZE <u>Hollow Stem A</u>	uger - 4 1/4	" ID			
BORING LOCAT	ION (ST.	ADDRESS OR DESCR	RIPTION)	Campion			

NOTES

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

Page <u>1</u> of <u>2</u>

PROJECT	Galei	a Stage 3 RI/FS	LOCATION	Galena A	AFS Area, Alaska
TOTAL DEPTH	55.00	_ START DATE	8/9/92	_ FINISH DATE	8/9/92
GEOLOGIST _	R. Petrossi	an APPROVED BY	S.T.	Godard	R.G.# 275 - Alaska
DRILLING COM	PANY H	ughes Drilling	DRILLER	R. Erickson, R. Is	sh
DRILLING METI	HOD G	rab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ell TrkRg
DRILL BIT TYPE	E AND SIZE	Hollow Stem Auger	- 4 1/4" ID		
BORING LOCAT	ION (ST. A)	DRESS OR DESCRIPTI	ON) Campion		
	·				

BGL = Below Ground Level, NR = No Recovery

Monitor Well #: 07-MW-04

Page 2 of 2 LOG OF DRILLING OPERATIONS Galena Stage 3 RI/FS LOCATION Galena AFS Area, Alaska **PROJECT** Depth Below Surface (ft) Blow Count Sample Recovery 9 Sample Interval Graphic Log Lithologic Additional Data and Comments Description Color, Texture, Moisture, etc. -30 30 2/6/8 NR -355 -35 35 Sand: olive gray to gray w/brown (5YR 3/2), very fine grained, poorly graded, sub-round, soft, wet; saturated, dripping, uniform "beach" 1/1/1/ 100 Temp=7 C, larger split spoon. sand. (SP) 350 40 40 Sand: olive gray to grayish brown (5Y 3/2), 2/1/3 Temp = 3.5 C. fine grained, poorly graded, sub-round to round, soft, wet; saturated with water. (SP) Pushed 1.5' w/2'2" split spoon, approx. 4.5' heave into augers. 345 45 45 Sand: olive gray to grayish brown (5Y 3/2), fine grained, poorly graded, sub-round to 2/2/3 Temp=3 C. round, soft, wet; saturated with water. (SP) 340 -50 50 -335 Drilled 1' through assumed permafrost layer. 55--55 End of Borehole at 55' BGL.

LOG OF DRILLING OPERATIONS

Soil Boring #: <u>07-SB-01</u>

Page <u>1</u> of <u>1</u>

PROJECT	G	alena Stage 3 RI/FS	LOCATION	Galena A	FS Area	a. Alaska	
TOTAL DEPTH	5.00	START DATE	8/12/92	FINISH DATE		8/12/92	
GEOLOGIST _	R. Petro		BYS.T.	Godard		275 - Alaska	
DRILLING COM		Hughes Drilling	DRILLER	R. Erickson, R. Is			
DRILLING MET		Grab/Split Spoon	EOUIPMENT	CME 75 Nodwe			
DRILL BIT TYPE	E AND SI	ZE Hollow Stem Au	ger - 4 1/4" ID				
BORING LOCAT	ION (ST.	ADDRESS OR DESCRI	PTION) Campion	-			
							_

Sample	Interval	Blow Count	Sample Recovery %	Lithologic Description	Graphic	Elevation (ft MSL)	Additional Data and Comments
-				Color, Texture, Moisture, etc. Gravelly Sand: olive gray (5Y 4/1), fine grained, poorly graded, sub-angular, soft, moist; gravel and sand, organics and silt, rootlets. (SP)	0	365.40 365	Logged from cuttings, 0'-3'.
		1/1/2/ 1	100	Silty Sand: olive gray (5Y 4/1), fine grained, poorly graded, sub-angular to sub-round, soft, moist; mottled with medium gray (N5) and some organish-brown staining. (SM) End of Borehole at 5' BGL.			Sample 07-SB-01, OVM = 7.7 ppm off augers. Oderiferous at top (hydrocarbon). Saturated.
							·
							•

NOTES

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

LOG OF DRILLING OPERATIONS

Soil Boring #: **07-SB-02**

Page <u>1</u> of <u>1</u>

PROJECT	Gal	ena Stage 3 RI/FS	LOCATION	Galena A	AFS Area, Alaska
TOTAL DEPTH	5.00	START DATE	8/12/92	_ FINISH DATE	8/12/92
GEOLOGIST _	R. Petros	sian APPROVED B	Y S.T.	Godard	R.G.# 275 - Alaska
DRILLING COM	PANY _	Hughes Drilling	DRILLER	R. Erickson, R. Is	sh
DRILLING METI	HOD	Grab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ell TrkRg
DRILL BIT TYPE	E AND SIZ	E Hollow Stem Aug	er - 4 1/4" ID		
BORING LOCAT	ION (ST. A	ADDRESS OR DESCRIP	TION) Campion		

NOTES

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

Page <u>1</u> of 2

1, Alaska 7/9/92 275 - Alaska				
7/9/92				
Zie Musku				
DRILLER R. Erickson, R. Ish EQUIPMENT CME 75 Nodwell TrkRg				
L				

Monitor Well #: 09-MW-01

LOG OF DRILLING OPERATIONS

Page 2 of 2

Surface (II)	Sample Interval	Blow Count	Sample Recovery %	Lithologic Description	Graphic Log	Elevation (ft MSL)	Additional Data and Comments
	\times	4/3/3	100	Color, Texture, Moisture, etc. Sand: grayish brown (2.5Y 5/2), coarse to very coarse grained, poorly graded, round, wet, trace 1/8" gravel. (SP) Gravel: fine grained, poorly graded, round, wet, 1/8"- 1/4" gravel. (GP)	0.000	110	BH and BZ PID = 0 ppm. At 30', 7' of heave, pull up to 25' and remove heave.
11 4 1 1 1		4/3/2	NR	No Sample	00.00.00.00.	—105 —	BH and BZ PID = 0 ppm.
		8/5/4	100			—100 —100 ——95 ——95	BH PID = 2.3 ppm, BZ PID = 0 ppm. Continued drilling to 55'.
				End of Borehole at 55' BGL.	D C		

LOG OF DRILLING OPERATIONS

Page 1 of 2

PROJECT		a Stage 3 RI/FS	LOCATION	Galena AFS Area, Alaska		
TOTAL DEPTH	50.00	_ START DATE	7/9/92	FINISH DATE	7/9/92	
GEOLOGIST	GJC	APPROVED BY	S.T. C	_ Godard	R.G.# 275 - Alaska	
DRILLING COMP	PANY <u>H</u>	ughes Drilling	DRILLER	R. Erickson, R. Is		
DRILLING METH	IOD G	rab/Split Spoon		CME 75 Nodwe		
DRILL BIT TYPE	AND SIZE	Hollow Stem Auger -				
BORING LOCATI	ON (ST. AT	DRESS OR DESCRIPTION		allon Hill		

BGL = Below Ground Level, NR = No Recovery

Monitor Well #: <u>09-MW-02</u>

Page 2 of 2

Monitor Well #: **09-MW-03**

LOG OF DRILLING OPERATIONS

Page 1 of 2

PROJECT	Ga	lena Stage 3 RI/FS	LOCATION	Galena A	AFS Area, Alaska	
TOTAL DEPTH	50.00	START DATE	8/15/92	FINISH DATE		
GEOLOGIST	R. Petros	ssian APPROVED B	YS.T.	Godard	R.G.# 275 - Alask	a /
DRILLING COM	PANY _	Hughes Drilling	DRILLER	R. Erickson, R. Is		
DRILLING MET	HOD	Grab/Split Spoon		CME 75 Nodwe		
DRILL BIT TYPE	E AND SIZ	ZE Hollow Stem Aug				
BORING LOCAT	ION (ST.	ADDRESS OR DESCRIP	TION) Million G	Gallon Hill		
			,			

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

LOG OF DRILLING OPERATIONS

Monitor Well #: 09-MW-03

Page 2 of 2

LOG OF DRILLING OPERATIONS

Page 1 of 2

PROJECT	Ga	lena Stage 3 RI/FS	LOCATION	Galena	AFS Area	, Alaska
TOTAL DEPTH	56.00	START DATE	7/7/92	FINISH DATE		7/7/92
GEOLOGIST	T. A. Co	uncil APPROVED BY	S.T. (Godard	R.G.#	275 - Alaska
DRILLING COM	PANY .	Hughes Drilling	DRILLER	R. Erickson, R. I.		
DRILLING METI	HOD	Grab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ll TrkRg	
DRILL BIT TYPE	E AND SIZ	ZE Hollow Stem Auger -				
BORING LOCAT	ION (ST.	ADDRESS OR DESCRIPTION		allon Hill		
			,			

BGL = Below Ground Level, NR = No Recovery

LOG OF DRILLING OPERATIONS

Galena Stage 3 RI/FS LOCATION Galena AFS Area, Alaska **PROJECT** Depth Below Surface (ft) 80 Blow Count Elevation (ft MSL) Sample Recovery Graphic Log Sample Interval Lithologic Additional Data and Comments Description Color, Texture, Moisture, etc. • · O. 0 30 30 Drove SS 12", top 0.8' of recovery may be heaved sands, wood in C Sand: olive black (5Y 2/1), medium grained, 2/3 100 poorly graded, round, very soft, wet, wood at 30.6'. (SP) 0. cuttings, drilling through old trees. BH PID = 0.6 ppm, BZ PID = 0.6 ppm. Gravelly Sand: olive black (5Y 2/1), coarse grained, well graded, round, wet, distinct gravel unit at bottom of split spoon. (SW) · 0. -110 ō. . Ø 0 . D 35 35 Gravelly Sand: olive black (5Y 2/1), medium Sands still heaving when sampling/removing 4/8 100 to coarse grained, well graded, round, soft, wet, 0.3' thick, coarse sand and gravelly .0. layers, fine gravel at bottom of split spoon, pebbles up to 0.75". (SW) 0 0 -105 40 40 to coarse grained, well graded, round, very soft, wet, gravel layer at 40.4', lots of wood. (SW) Gravelly Sand: olive black (5Y 2/1), medium Cuttings are not cold, 10 C, sample may be 7/19 100 mostly heaved sands. 0 0 -100 Through the woody layer. 0 0 Gravelly Sand: as above, no wood in split Stopped drilling to get more augers, there is 7' 9/14 40 of heave up ^C 0 inside of augers. ° 0 50 Sandy Gravel: fine grained, well graded, round, wet, "reducing" odor. (SW) 9.00 6' Heave inside augers, raised augers 1' and rod 100 6/11 with sampler. · 🖒 · Dropped to 50' BGL. 8,8 Sand: olive black (5Y 2/1), medium grained, -90 poorly graded, round, very soft, wet, woodchips medium to fine samples. (SP) -55 55 BH PID = 0.6 ppm, BZ PID = 0.6 ppm. 9/12 70 End of Borehole at 56' BGL.

ppm = parts per million

LOG OF DRILLING OPERATIONS

Page _1 of _2

PROJECT	Ga	lena Stage 3 RI/FS	LOCATION	Galena A	AFS Area	, Alaska
TOTAL DEPTH	50.00	START DATE	8/16/92	FINISH DATE		8/16/92
GEOLOGIST	R. Petros	ssian APPROVED BY	S.T.	Godard	R.G.#	275 - Alaska
DRILLING COM	PANY	Hughes Drilling	DRILLER	R. Erickson, R. Is	sh -	
DRILLING MET	HOD	Grab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ll TrkRg	
DRILL BIT TYPI	E AND SIZ	ZE Hollow Stem Auger	- 4 1/4" ID			
BORING LOCAT	ION (ST.	ADDRESS OR DESCRIPTI		Gallon Hill		
	`					34-14-14-1

ſ							
Surface (ft)	Sample Interval	Blow Count	Sample Recovery %	Lithologic Description	Graphic Log	Elevation (ft MSL)	Additional Data and Comments
1				Color, Texture, Moisture, etc.			
0 1 1 1	X	5/16/ 13	100	Gravelly Sand: dark yellow brown (10YR 4/2), fine grained, poorly graded, sub-round to sub-angular, very soft, wet; color change, 3" gravel at bottom, coarser than before. (SP)	0 0	110 	
5—	X	10/23/ 10	100	<u>Sand</u> : light olive gray (5Y 6/1), fine grained, poorly graded, sub-round, very soft, wet; coarser grained and color change. (SP)	0	—105 —	
0 1		9/14/ 8	100	Gravelly Sand: light ofive gray (5Y 6/1), fine grained, well graded, sub-round, very soft, wet; coarsening downward, 50% quartz, 30% mafic. (SW)	0.0	-100	Approximately 4' heave in augers.
5-		7	1	;	0000	95 	
=					0.0	_90	
0-				End of Borehole at 50' BGL.	1		

LOG OF DRILLING OPERATIONS

Page 1 of 2

PROJECT	Gal	ena Stage 3 RI/FS	LOCATION	Galena A	AFS Area, Alaska
TOTAL DEPTH	50.00_	START DATE	8/17/92	FINISH DATE	8/17/92
GEOLOGIST	P. A. Co	olen APPROVED BY	S.T. (- Godard	R.G.# 275 - Alaska
DRILLING COM	PANY _	Hughes Drilling		R. Erickson, R. Is	
DRILLING METI	HOD	Grab/Split Spoon		CME 75 Nodwe	
DRILL BIT TYPE	E AND SIZ	E Hollow Stem Auger			
BORING LOCAT	ION (ST. A	ADDRESS OR DESCRIPTION	ON) Million G	allon Hill	
	`				

BGL = Below Ground Level, NR = No Recovery

Monitor Well #: 09-MW-06

KADIAN

LOG OF DRILLING OPERATIONS

Page 2 of 2

Page 1 of 2

PROJECT	Gale	na Stage 3 RI/FS	LOCATION	Galena A	AFS Area, A	laska
TOTAL DEPTH	50.00	START DATE	7/13/92	FINISH DATE		//13/92
GEOLOGIST	GJC	APPROVED BY	S.T. (Godard	R.G.# 27	5 - Alaska
DRILLING COMP		lughes Drilling	DRILLER	R. Erickson, R. Is	sh	
DRILLING METH		rab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ell TrkRg	
DRILL BIT TYPE			4 1/4" ID			
BORING LOCATI	ON (ST. A)	DDRESS OR DESCRIPTION	ON) Vehicle M	laintenance Buildi	ng	

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

Monitor Well #: 10-MW-01

Surface (II)	Interval	Blow Count	Sample Recovery %	Lithologic Description	Graphic Log	Elevation (ft MSL)	Additional Data and Comments
				Color, Texture, Moisture, etc.	0.0		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X	3/5/6	100	Sandy Gravel: dark yellowish brown (10YR 4/2), fine to coarse grained, well graded, round, wet; 1/8" to 3/4" gravel coarsening downward, minor 3/4" gravel, sand medium to coarse from 30' to 30.5'. (GW)	000000000000000000000000000000000000000	- - - - - - - 110	BH & BZ PID = 0 ppm, heave from 30'-28.5', core temp = 11 C.
1	X	2/3/4	100	Sandy Gravel: olive gray (5Y 4/1), fine grained, poorly graded, round, wet; predominantly 1/8" to 1/4" gravel, minor 3/4" gravel. (GP)	00-00-00-00	- - - - - - - - 105	BH & BZ PID = 0 ppm, core temp = 11 C.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Z	4/7/5	100	Sandy Gravel: olive gray (5Y 4/1), coarse to fine grained, well graded, round to sub-round, wet; 3/4" to 1/8" fencing downward. (GW) Sand: olive gray (5Y 4/1), medium to coarse grained, well graded, sub-round, wet; trace fine gravel, minor fine grain sand. (SW)	00.000.		BH & BZ PID = 0 ppm, heave from 40'-38.5'. Heave from 41.5'-35', pull auger to 39' to drop out heave.
				End of Borehole at 50' BGL.		- - - - - - - -	

Page 1 of 2

PROJECT	Galer	a Stage 3 RI/FS	LOCATION	Galena AFS Area, Alaska		
TOTAL DEPTH _	50.00	START DATE	7/12/92	FINISH DATE		
GEOLOGIST	GJC	APPROVED BY	S.T. (Godard	R.G.# 275 - Alas	ka
DRILLING COMP	ANY H	ughes Drilling	DRILLER	R. Erickson, R. Is		
DRILLING METH		rab/Split Spoon		CME 75 Nodwe		
DRILL BIT TYPE	AND SIZE	Hollow Stem Auger -				
BORING LOCATION	ON (ST. AI	DRESS OR DESCRIPTION	ON) Vehicle M	Iaintenance Buildi	ng	

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

Monitor Well #: 10-MW-02

Page 2 of 2

Page 1 of 2

PROJECT	Gale	na Stage 3 RI/FS	LOCATION	Galena A	AFS Area, Alaska	
TOTAL DEPTH	50.00	START DATE	7/11/92	_ FINISH DATE	7/11/92	
GEOLOGIST	GJC	APPROVED BY	S.T. (Godard	R.G.# 275 - Alaska	
DRILLING COMP	PANY <u>H</u>	lughes Drilling	DRILLER	R. Erickson, R. Is	sh	7
DRILLING METH		rab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ell TrkRg	
DRILL BIT TYPE	AND SIZE	Hollow Stem Auger -	4 1/4" ID			
BORING LOCATI	ON (ST. A)	DDRESS OR DESCRIPTION	ON) <u>Vehicle M</u>	<mark>Iaintenance Build</mark> i	ng	

BGL = Below Ground Level, NR = No Recovery

LOG OF DRILLING OPERATIONS

Monitor Well #: 10-MW-03

Page 2 of 2

LOG OF DRILLING OPERATIONS

Soil Boring #: 10-SB-01

Page <u>1</u> of <u>1</u>

PROJECT	Gale	na Stage 3 RI/FS	LOCATION	Galena AFS Area, Alaska		
TOTAL DEPTH _	7.00	START DATE	7/15/92	FINISH DATE		7/15/92
GEOLOGIST	GJC	APPROVED BY	S.T. 0	- Godard		275 - Alaska
DRILLING COMP	ANY <u>H</u>	lughes Drilling	DRILLER	R. Erickson, R. Is		
DRILLING METH	OD G	rab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ll TrkRg	
DRILL BIT TYPE	AND SIZE	Hollow Stem Auger -	4 1/4" ID			
		DDRESS OR DESCRIPTION		laintenance Buildi	ng	
	-		,			

Sample	Interval Blow Count	Sample Recovery %	Lithologic Description	Graphic Log	Elevation (ft MSL)	Additional Data and Comments
	5/7	/ 100	Color, Texture, Moisture, etc. Gravelly Sand: olive gray (5Y 4/1), fine grained, poorly graded, sub-round, moist; fine grains sand, silty. (SP) Gravelly Sand: olive gray (5Y 4/1), fine grained, poorly graded, sub-round, moist; decrease gravel with depth. (SP)	0 0	142.30	Logged from cuttings from 0'-2'. Sample 2'-4', 10-SB-01-01. Headspace = 0 ppm. BH PID = 0.5 ppm, BZ PID = 0 ppm.
	2/3/2	3/ 100	Sandy Silt: Olive black (5Y 2/1), very fine grained, soft, non-plastic, moist; very fine grain sand, sparse iron staining. (ML) End of Borehole at 7' BGL.			Sample 5'-7', 10-SB-01-02. Headspace = 0 ppm. BH & BZ PID = 0 ppm.

NOTES

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

Soil Boring #: 10-SB-02
Page 1 of 1

PROJECT	Galer	na Stage 3 RI/FS	LOCATION	Galena A	AFS Area, Alaska
TOTAL DEPTH	6.00	START DATE	7/13/92	FINISH DATE	7/13/92
GEOLOGIST	GJC	APPROVED BY	S.T. C	Fodard	R.G.# <u>275 - Alaska</u>
DRILLING COMP	ANY H	ughes Drilling	DRILLER _I	R. Erickson, R. Is	sh
DRILLING METH	OD G	rab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ell TrkRg
DRILL BIT TYPE	-	Hollow Stem Auger -	4 1/4" ID		
		DDRESS OR DESCRIPTION		aintenance Buildi	ing
	• •				

Sample Interval	Blow Count	Sample Recovery %	Lithologic Description	Graphic Log	Elevation (ft MSL)	Additional Data and Comments
	-		Color, Texture, Moisture, etc.		141.50	
X	1/1/1/ 1 1/2/5/ 8	100	Silty Sand: olive gray (5Y 4/1), fine grained, poorly, sub-round, moist; gravelly 1/4" to 3/4", minor > 1". (SM) Sandy Silt: olive black (5Y 2/1), very fine grained, soft, non-plastic, moist; woodchips at 2.5' to 2.7', sparse iron staining. (ML) Sandy Silt: olive black (5Y 2/1), very fine grained, soft, non-plastic, moist; discolored hydrocarbon odor. (ML) End of Borehole at 6' BGL.		- 140 	Logged from cuttings 0'-1'. Sample 1'-3', 10-SB-02-01. Headspace = 660 ppm. BH PID = 101 ppm, BZ PPM = 2 ppm. Sample 4'-6', 10-SB-02-02. Headspace = 158 ppm. Approx. water depth at 6' BGL.
	the state of the s					
	Company of the compan			6 T T T T T T T T T T T T T T T T T T T		

NOTES

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

Soil Boring #: <u>10-SB-03</u>

Page <u>1</u> of <u>1</u>

PROJECT	Galer	na Stage 3 RI/FS	LOCATION	Galena A	, Alaska	
TOTAL DEPTH _	9.00	_ START DATE	7/11/92	FINISH DATE		7/11/92
GEOLOGIST	GJC	APPROVED BY	S.T. (_ Godard	R.G.#	275 - Alaska
DRILLING COMP	ANY <u>H</u>	ughes Drilling	DRILLER	R. Erickson, R. Is		
DRILLING METH	OD G	rab/Split Spoon		CME 75 Nodwe		
DRILL BIT TYPE	AND SIZE	Hollow Stem Auger -				
BORING LOCATION	ON (ST. AI	DDRESS OR DESCRIPTION		laintenance Buildi	ng	
			,			

Sample Interval	Blow Count	Sample Recovery %	Lithologic Description	Graphic Log	Elevation (ft MSL)	Additional Data and Comments
	1/1/1/	75	Color, Texture, Moisture, etc. Gravelly Sand: dark grayish brown (10YR	· O.	141.60 	Sample 1'-2.5', 10-SB-03-01.
<u>X</u>	1		4/2), fine to medium grained, well graded, sub-round, moist; surface topsoil, 1/4" - 3/4" gravel. (SW) Silty Sand: dark grayish brown (10YR 4/2), fine grained, poorly graded, sub-round, moist.		- 140 - -	BH & BZ PID = 0 ppm.
X	2/2/2/ 2	75	Sandy Silt: very dark gray (10YR 371), fine grained, soft, non-plastic, moist; trace woodchips, abundant organics, sparse iron staining. (ML)			Hydrocarbon odor from 4'-5.5'. Sample 4'-5.5', 10-SB-03-02. BH PID = 1.7 ppm, BZ PID = 0 ppm. Headspace = 4.7 ppm.
X	2/1/3/ 2	90	Sandy Silt: very dark gray (10YR 3/1), fine grained, soft, non-plastic, moist; hydrocarbon odor. (ML) Silty Sand: dark vellowish brown (10YR 4/4)		—135 - -	Approx. water level 6.5' BGL. Sample 7'-8.5', 10-SB-03-03.
			fine grained, poorly graded, sub-round, wet; minor thin gray discolored bands, trace iron staining, interbedded fine grain sand from 7.8' to 8.2'. (SM) End of Borehole at 9' BGL.			Headspace = 85 ppm.
n.						

***NOTES**
BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

Soil Boring #: 11-SB-01

Page <u>1</u> of <u>1</u>

PROJECT	Galena	Stage 3 RI/FS	LOCATION	Galena A	FS Area	, Alaska
TOTAL DEPTH	8.00	START DATE	7/16/92	FINISH DATE	,	7/16/92
GEOLOGIST	KLC	APPROVED BY	S.T.	Godard	R.G.#	275 - Alaska
DRILLING COMP	ANY Hu	ghes Drilling	DRILLER _	R. Erickson, R. Is	h	
DRILLING METH	OD Gr	ab/Split Spoon	EQUIPMENT	CME 75 Nodwe	ll TrkRg	
DRILL BIT TYPE	AND SIZE	Hollow Stem Auger -	4 1/4" ID			
BORING LOCATION	ON (ST. AD	DRESS OR DESCRIPTION	ON) Undergro	und Storage Tank		

Sample Interval	Blow Count	Sample Recovery %	Lithologic Description	Graphic Log	Elevation (ft MSL)	Additional Data and Comments
		3	Color, Texture, Moisture, etc.		139.90	
	301101	100	Sandy Silt: dark yellowish brown (10YR 4/2), very fine grained, soft, non-plastic, moist; roots. (ML) Sandy Silt: gravish brown (5YP 3/2), very			Logged from cuttings 0' to 2'.
\times	2/1/2/	100	Sandy Silt: grayish brown (5YR 3/2), very fine grained, soft, non-plastic, moist; minor clay, roots, woodchips, organics. (ML)			BH & BZ PID = 0 ppm. Headspace = 0 ppm.
X	1/1/2/ 3	100	Sandy Silt: dark yellowish brown (10YR 4/2), very fine grained, soft, non-plastic, moist. (ML)		—135 -	BH PID = 3 ppm, BZ PID = 0 ppm.
			End of Borehole at 8' BGL.			Headspace = 0 ppm.

NOTES

BH PID = Borehole OVM, BZ PID = Breathing Zone OVM

BGL = Below Ground Level, NR = No Recovery

1993 Drilling Logs

Page <u>1</u> of <u>2</u>

PROJECT	Galena	Stage 3 RI/FS	Ĭ	OCATION	Galena A	FS Area, Alask	(a
TOTAL DEPTH		START DATE	8/6/93	08:30	_ FINISH DATE	8/6/93	11:00
GEOLOGIST	T. A. Council	APPROVED	BY	S. T.	Godard	R.G.# <u>275 -</u>	<u>Alaska</u>
DRILLING COM	PANY1	11 CEOS/CEOR		ORILLER _	E. Miles		
DRILLING MET	HOD Holl	ow Stem Auger	E	QUIPMENT	CME - 8	50	
DRILL BIT TYP	E AND SIZE	4 1/4" ID H.S.A	4. with 8 1	/4" OD Cutt	er Head	2	
BORING LOCAT	ION (ST. ADI	RESS OR DESCR	IPTION)	Fire Trai	ning Area		
	•						

FID Data: BoreHole, Breathing Zone, HeadSpace, & BackGround. BGS = Below Ground Surface

LOG OF DRILLING OPERATIONS

PROJECT			Galena Stage 3 RI/FS	LOCAT	ION .	Galena AFS Area, Alaska	
Depth Below Surface (ft) Sample Interval	Blow Count	Recovery Ratio (in feet)	Lithologic Description	Graphic Log	Elevation (ft MSL)	Additional Data and Comments	
30—			Color, Texture, Moisture, etc.				
35—					- - - - - - - - - -		-35
40-1					105		40
45—							- - - - - - - - - - - - - - - - - - -
50					- - 95 - -	Total Depth = 50' BGS.	 - - 50
						1	

Page <u>1</u> of <u>2</u>

PROJECT	Ga	lena Stage 3 RI/FS	Ĺ	OCATION	Galena A	AFS Area, Al	laska
		START DATE	7/8/93	08:30	FINISH DATE	7/8/9	93 11:00
GEOLOGIST		uncil APPROVED	BY	S. T. (Godard	R.G.# 27	5 - Alaska
DRILLING COM		11 CEOS/CEOR		RILLER	E. Miles		
DRILLING MET	·	Hollow Stem Auger	E	OUIPMENT	CME - 8	50	
DRILL BIT TYPI							
		ADDRESS OR DESCR		Fire Train			
BORING EOCHI	1011 (51.	nppheod on peodic	11 11011)				

BackGround. BGS = Below Ground Surface

LOG OF DRILLING OPERATIONS

	CT _		Galena Stage 3 RI/FS	_ LOCAT	ION	Galena AFS Area, Alaska
					,	
Sample	Interval Blow Count	Recovery Ratio (in fect)	Lithologic Description Color, Texture, Moisture, etc.	Graphic Log	Elevation (ft MSL)	Additional Data and Comments
	N//		Clayey Silt: dark olive gray (5Y 3/2), low plasticity, wet. (ML) Clayey Sand: dark olive grav (5Y 3/2), find medium grained, poorly graded, wet. (SP)	1 To	120	Total Depth at 45' BGS.

LOG OF DRILLING OPERATIONS

Page <u>1</u> of <u>1</u>

	PROJECT	Galena	Stage 3 RI/FS	L	OCATION	Galena A	<u>FS Area, Alask</u>	ca
	TOTAL DEPTH		START DATE	8/9/93	15:15	FINISH DATE	8/9/93	16:25
ъ.	GEOLOGIST	B. J. Coel	APPROVED			Godard	R.G.# 275 -	Alaska
			11 CEOS/CEOR		RILLER	E. Miles		
	DRILLING COM				QUIPMENT		50	
	DRILLING METI		low Stem Auger					
	DRILL BIT TYPE		4 1/4" ID H.S.A		4" OD Cutt	er neau		
	BORING LOCAT	ION (ST. AD)	DRESS OR DESCR	IPTION)	Fire Train	ning Area		

NOTES

FID Data: BoreHole, Breathing Zone, HeadSpace, &

BackGround. BGS = Below Ground Surface

Soil Boring #: **01-SB-04**

Page <u>1</u> of <u>1</u>

PROJECT	Galen	a Stage 3 RI/FS	L	OCATION	Galena A	FS Area, Ala	ska
TOTAL DEPTH	10.00	START DATE	8/10/93	09:40	FINISH DATE	8/10/9	3 10:45
GEOLOGIST	B. J. Coel	APPROVED) BY	S. T.	Godard	R.G.# 275	- Alaska
DRILLING COM	PANY	11 CEOS/CEOR	D	RILLER	E. Miles		
DRILLING METH	HOD Ho	llow Stem Auger	E	QUIPMEN	Γ <u>CME - 8</u> :	50	
DRILL BIT TYPE	E AND SIZE	4 1/4" ID H.S.	A. with 8 1	4" OD Cut	ter Head		
BORING LOCAT	ION (ST. AD	DRESS OR DESCR	RIPTION)	Fire Trai	ining Area		

NOTES

FID Data: BoreHole, Breathing Zone, HeadSpace, &

BackGround. BGS = Below Ground Surface

Page 1 of 2

PROJECT	Galena St	tage 3 RI/FS	LC	CATION	Galena A	FS Area, Alask	a
TOTAL DEPTH	42.50 S'	TART DATE	8/25/93	08:15	_ FINISH DATE	8/25/93	10:15
GEOLOGIST R.	V. Petrossian	APPROVED	BY	S. T. (Godard	R.G.# <u>275 - A</u>	<u>Alaska</u>
DRILLING COMPA	ANY11	CEOS/CEOR	DF	RILLER _	E. Miles		
DRILLING METHO	OD <u>Hollo</u>	w Stem Auger	EQ	UIPMENT	CME - 85	50	
DRILL BIT TYPE	AND SIZE	4 1/4" ID H.S.A	with 8 1/4	OD Cutter	r Head		
BORING LOCATION	ON (ST. ADDR	ESS OR DESCRI	PTION)	West of P	OL, near installat	ion entrance.	

FID Data: BoreHole, Breathing Zone, HeadSpace, & BackGround. BGS = Below Ground Surface

Monitor Well #: <u>05-MW-13</u>

ppm = parts per million

LOG OF DRILLING OPERATIONS

PROJECT	Galena Stage 3 RI/FS	LOCATION	Galena A	FS Area, Alaska
TOTAL DEPTH	37.50 START DATE	8/27/93 09:20 F	FINISH DATE _	8/27/93 10:35
GEOLOGIST R.	V. Petrossian APPROVED	BY S. T. Go	dard	R.G.# <u>275 - Alaska</u>
DRILLING COMPA	NY 11 CEOS/CEOR	DRILLER	E. Miles	
DRILLING METHO	D Hollow Stem Auger	EQUIPMENT	CME - 85	0
DRILL BIT TYPE A	ND SIZE 4 1/4" ID H.S.A.	. with 8 1/4" OD Cutter 1	Head	
BORING LOCATION	N (ST. ADDRESS OR DESCRI	PTION) On Tarmac,	south of POL.	
	•	,		

Monitor Well #: **05-MW-14**

PROJE	CT			Galena Stage 3 RI/FS	_ LOCAT	ION	Galena AFS Area, Alaska	
Sample	Sample Interval	Blow Count	Recovery Ratio (in feet)	Lithologic Description Color, Texture, Moisture, etc.	Graphic Log	Elevation (ft MSL)	Additional Data and Comments	
30—				Color, reature, Moisture, etc.	0.0	-		-30
1 - - -					0 0	—110		-
35—					0 B O	-		-3:
							End of Borehole at 37.5' BGS.	

Page <u>1</u> of <u>2</u>

PROJECT	Galena Stage 3 RI/FS	LOCATION _	Galena AFS Area, Alaska
TOTAL DEPTH	41.00 START DATE		FINISH DATE <u>8/28/93</u> 15:40
	V. Petrossian APPROVED E		odard R.G.# <u>275 - Alaska</u>
	NY 11 CEOS/CEOR	DRILLER	E. Miles
DRILLING METHO		EQUIPMENT	CME - 850
	ND SIZE 4 1/4" ID H.S.A.		r Head
	N (ST. ADDRESS OR DESCRIP		
		,	

LOG OF DRILLING OPERATIONS

PRO.	JECT			Galena Stage 3 RI/FS	LOCAT	ION	Galena AFS Area, Alaska	_
		r	1					4
Surface (ft)	Sample Interval	Blow Count	Recovery Ratio (in feet)	Lithologic Description Color, Texture, Moisture, etc.	Graphic Log	Elevation (ft MSL)	Additional Data and Comments	
30—					0	-		-30
5—					0 0	—110 —	-	-35
					0 0		- - - - - -	3.
					0 0	-	End of Borehole at 41' BGS.	40

Soil Boring #: <u>05-SB-04</u>

Page <u>1</u> of <u>1</u>

PROJECT	Galena	Stage 3 RI/FS	LC	CATION	Galena A	FS Area, Alaska
TOTAL DEPTH	10.00	START DATE	8/11/93	09:50	FINISH DATE	8/11/93 10:50
GEOLOGIST	B. J. Coel	APPROVED	BY	S. T.	Godard	_ R.G.# <u>275 - Alaska</u>
DRILLING COMP		11 CEOS/CEOR	DI	RILLER	E. Miles	
DRILLING METH		llow Stem Auger	EC	UIPMEN	Γ <u>CME - 8</u>	50
DRILL BIT TYPE		4 1/4" ID H.S.A	. with 8 1/4	i" OD Cuti	ter Head	
		DRESS OR DESCR		West of 1	POL, near dormito	ry
	(

NOTES

FID Data: BoreHole, Breathing Zone, HeadSpace, &

BackGround. BGS = Below Ground Surface

PROJECT Galena Stage 3 RI/FS LOCATION Galena AFS Area, Alaska TOTAL DEPTH 16.00 START DATE 8/11/93 13:30 FINISH DATE 8/11/93 GEOLOGIST B. J. Coel APPROVED BY S. T. Godard _ R.G.# <u>275 - Alaska</u> DRILLING COMPANY 11 CEOS/CEOR DRILLER E. Miles DRILLING METHOD Hollow Stem Auger **EQUIPMENT CME - 850** DRILL BIT TYPE AND SIZE 4 1/4" ID H.S.A. with 8 1/4" OD Cutter Head BORING LOCATION (ST. ADDRESS OR DESCRIPTION) West POL

FID Data: BoreHole, Breathing Zone, HeadSpace, & BackGround. BGS = Below Ground Surface

Soil Boring #: <u>05-SB-06</u>

Page 1 of 1

PROJECT	Galen	a Stage 3 RI/FS	LC	CATION	Galena A	FS Area, Alas	ka
TOTAL DEPTH	14.00	START DATE	8/12/93	08:20	FINISH DATE	8/12/93	09:20
		APPROVED	BY	S. T.	Godard	R.G.# <u>275</u> -	Alaska
DRILLING COM		11 CEOS/CEOR		RILLER	E. Miles		
DRILLING METH	HOD H	ollow Stem Auger	EC	UIPMEN'	T CME - 8:	50	
DRILL BIT TYPE	E AND SIZE	4 1/4" ID H.S.A					
BORING LOCAT	ION (ST. AI	DRESS OR DESCR	IPTION)	West PC	L near boathouse.		
	Ì		,				

NOTES

FID Data: BoreHole, Breathing Zone, HeadSpace, &

BackGround. BGS = Below Ground Surface

LOG OF DRILLING OPERATIONS

Page <u>1</u> of <u>2</u>

PROJECT	Galena Stage 3 RI/FS			CATION	Galena AFS Area, Alaska		
TOTAL DEPTH _	41.80 S'	TART DATE	8/26/93	10:10	FINISH DATE		
		APPROVED	BY	S. T. (Godard	R.G.# 275 - Alaska	
DRILLING COMPA		CEOS/CEOR	DF	RILLER	E. Miles		
DRILLING METHO	OD Hollo	w Stem Auger	EC	UIPMENT	CME - 8	50	
DRILL BIT TYPE		4 1/4" ID H.S.A	. with 8 1/4				
BORING LOCATION	ON (ST. ADDR	ESS OR DESCRI	PTION)			f installation boundary.	
			,			- movement boundary:	

BackGround. BGS = Below Ground Surface

LOG OF DRILLING OPERATIONS

Monitor Well #: 06-MW-07

Page 2 of 2

ppm = parts per million

LOG OF DRILLING OPERATIONS

Page 1 of 1

PROJECT	Gale	na Stage 3 RI/FS	I	OCATION	Galena	AFS Area, Alask	a
TOTAL DEPTH _	16.00	START DATE	8/14/93	09:45	FINISH DATE	8/14/93	11:20
GEOLOGIST	B. J. Co	el APPROVEI	O BY	S. T.	Godard	R.G.# 275 -	Alaska
DRILLING COMP	ANY _	11 CEOS/CEOR		RILLER	E. Miles		
DRILLING METH	OD I	Iollow Stem Auger	E	QUIPMEN	T CME -	850	
DRILL BIT TYPE	AND SIZI	= 4 1/4" ID H.S.	A. with 8 1	/4" OD Cut	ter Head		
BORING LOCATION	ON (ST. A	DDRESS OR DESCR	RIPTION)		ccumulation Area	, west of Building	2 1700.
			,				

PROJECT	Galena St	age 3 RI/FS	LC	CATION	G	alena Al	FS Area, Alasl	ka
TOTAL DEPTH	40.00 S'	TART DATE	8/24/93	09:25	FINISH D	DATE _	8/24/93	10:50
GEOLOGIST _	R. V. Petrossian	APPROVED	BY	S. T.	Godard		R.G.# <u>275 -</u>	Alaska
DRILLING COM	IPANY11	CEOS/CEOR			E. Miles, T			
DRILLING MET		v Stem Auger			Γ <u>CN</u>	ME - 850	0	
DRILL BIT TYP								
BORING LOCAT	TION (ST. ADDR	ESS OR DESCR	IPTION)	West Un	<u>it - North of</u>	west en	<u>d of runway.</u>	

BackGround. BGS = Below Ground Surface

LOG OF DRILLING OPERATIONS

Soil Boring #: 09-SB-01

Page <u>1</u> of <u>1</u>

PROJECT	Galena Stage 3 RI/FS		LC	CATION	Galena AFS Area, Alaska		
TOTAL DEPTH	9.50	START DATE	8/14/93	15:15	FINISH DATE	8/14/93	16:30
GEOLOGIST	B. J. Coe	I APPROVED	BY	S. T.	Godard	_ R.G.# <u>275 -</u> .	Alaska
DRILLING COM		11 CEOS/CEOR	DI	RILLER	E. Miles		
DRILLING METH		ollow Stem Auger	EC	OUIPMENT	CME - 8	50	
		4 1/4" ID H.S.A	4. with 8 1/4	4" OD Cutt	er Head		
		DDRESS OR DESCR			t, west of CAC Ha	ingar.	
	`		ŕ				

NOTES

FID Data: BoreHole, Breathing Zone, HeadSpace, & BackGround. BGS = Below Ground Surface

ppm = parts per million

LOG OF DRILLING OPERATIONS

Page _1 of _2

DD CYD CT							
PROJECT	Galena Sta	LC	LOCATION Galena AFS Area			a	
TOTAL DEPTH _		ART DATE	8/29/93	09:20	FINISH DATE	8/29/93	10:30
GEOLOGIST R		APPROVED I	BY	S. T. 0	Godard	R.G.# 275 - A	Alaska
DRILLING COMP.		CEOS/CEOR	DF	RILLER _	E. Miles		
DRILLING METH		Stem Auger		UIPMENT		50	
DRILL BIT TYPE	AND SIZE	4 1/4" ID H.S.A.	with 8 1/4	" OD Cutte	er Head		
BORING LOCATION	ON (ST. ADDRE	SS OR DESCRI	PTION)	Near soutl	heast corner of CA	C hangar.	
							-

ppm = parts per million

RADIAN

LOG OF DRILLING OPERATIONS

Monitor Well #: 10-MW-04

Page <u>2</u> of <u>2</u>

Soil Boring #: 10-SB-04

LOG OF DRILLING OPERATIONS

Page 1 of 1

PROJECT	Galena Stage 3 RI/FS		LC	CATION	Galena AFS Area, Alaska		ka
TOTAL DEPTH	12.00	_ START DATE	8/12/93	14:10	FINISH DATE	8/12/93	15:30
GEOLOGIST	B. J. Coel	APPROVED	BY	S. T.	Auger	R.G.# 275 -	Alaska
DRILLING COME		11 CEOS/CEOR	DI	RILLER	E. Miles		
DRILLING METH		ollow Stem Auger		UIPMENT		350	
DRILL BIT TYPE	AND SIZE	4 1/4" ID H.S.A	. with 8 1/4	4" OD Cutte	er Head		
		DRESS OR DESCRI				Building (NVMI	3)
BORING LOCATI	ON (ST. AL	DRESS OR DESCR	IPTION)	New Vehic	cle Maintenance I	Building (NVME	3)

FID Data: BoreHole, Breathing Zone, HeadSpace, & BackGround. BGS = Below Ground Surface

ppm = parts per million

LOG OF DRILLING OPERATIONS

Soil Boring #: 10-SB-05

Page <u>1</u> of <u>1</u>

PROJECT	PROJECT Galena Stage 3 RI/FS		LC	LOCATIONGa		ena AFS Area, Alaska		
TOTAL DEP	TH 13.00	START DATE	8/13/93	10:40	_ FINISH DATE		12:25	
GEOLOGIST	B. J.	Coel APPROVED	BY	<u>S. T.</u>	Godard	_ R.G.# <u>275 -</u> .	<u>Alaska</u>	
DRILLING O	COMPANY	11 CEOS/CEOR	DI	RILLER _	E. Miles			
DRILLING N	METHOD	Hollow Stem Auger	EC	QUIPMENT	CME - 8	350		
DRILL BIT TYPE AND SIZE 4 1/4" ID H.S.A. with 8 1/4" OD Cutter Head								
BORING LOCATION (ST. ADDRESS OR DESCRIPTION) NVMB - Northwest corner of Building 1572.								
	•							

BackGround. BGS = Below Ground Surface

1992 Monitoring Well Construction Diagrams

1992 Well Development Forms

Project: GALENA AFS

Client:

Well ID: 01-MV Time:

Location: Weather:

Supervisor: P.Coplan

Comments:

Field Measurements

HNU/OVA Reading (ppm): Ø.5 ppm Water Depth (ft. btoc): 13.76 Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc): 49.56 Saturated Thickness (ft.): 35.8 5 well volumes (gal.):

Development Method: Waterra Inertial Pump

	Cum, Vol.	Water Qua	lity			Water	
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments
0900						13.76	Ø.5 m
0916	_ 5	3.8	6.9	628		1011	TURBIO
0926	10	4.1	6,9	694			(1
0933	15	2.6	6.9	668			l I
0939	20	2.2	6.9	6(e9			1
0949	25	3.2	6.9	691			1,
0959	30	2.6	6.9	(083			1)
1009	35	2.6	60.6	667			Inoff Bul/liter
1014	40	2,2	6.1	665			TURBIO
1024	45	2 .0	7.0	666			A S
1029	50	2.3	6.9	(072			Li .
1034	55	1.8	10.9	672			MOD TURBIC
1045	60	2.3	7.0	436			" "
1050	65	2.1	6.8	634			ImoH = 15ml/lite
1057	70	1.9	6.9	627			MOD TURBIO
1101	75	2.2	6.6	651			ci u
1105	80	2.6	6.5	659			Less Turrin
1110	8 5	2.9	7.0	614			li y
1118	90	2.3	7.0	617		V	در ،
1124	95	22	6.9	617		13.81	å. »,
1125	96						Inoff=bal/liler

nai measurements:	6.9 617	13,8
Total Volume Developed (gal.):	96	
Final Well Depth (ft. btoc):	49.95	
Photograph Number:		

Project: GALENA AFS

Client:

Well ID: Ø1-MW-Q2

Date: 8-19-92 Time:

Location:

Weather:

Supervisor: P. Coole

Comments:

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc):

Saturated Thickness (ft.): 17.17

5 well volumes (gal.):

Development Method: Waterra Inertial Pump

	Cum. Vol.	Water Qua	dity			Water	
Time	(gal.)	Temp.	pН	Cond	Turb	Level	Comments
1604						12.36	
1623	2	(0.6	6.1	781		1	
1626	<u> </u>	3.6	6,1	752			Very TURBID
1630		5.6	(0,1	844			(, , ,
1634	12	2.7	6.2	760			
1637	15	3.1	6.2	770			.,
1638		_					InoH 48 ml/liter
1640	18	2,7	6.3	755			
11041	21	2.4	(,,3	756			TURBIO
11/44	24	3.2	6.4	751			11
11/4/0	27	2.5	6.5				`'
1646	30	4.8	(0.5	760			1.
1653	31		(0.)	+ 17			4
1655	33		1 5	700			Inoff 13 ml lite
1657	36	2.6	6.5	709			TURRID
11059	39	38	(0.5	748			ι,
1702	42	4.9	45	787			٠,
1705		2.8	6.5	739			٠,
	45	2.5 3.3	6.5	740		W .	2,
1707	48	3.3	66	761		12,59	1,
1708							Inoth 11 ml/lite
							7,200

Einal Magauramanta						
Final Measurements:	3	3	10.6	761		12 -9
			4	1 10	1	1 12,5/

Total Volume Developed (gal.): Final Well Depth (ft. btoc): Photograph Number:

RADIAN

Project: GALENA AFS

Client:

Location: Ambent Site (04)

Weather:

Supervisor: Planeling

Comments:

Time:

Field Measurements

HNU/OVA Reading (ppm): 10,00

Water Depth (ft. btoc): 10,90

Product Thickness (ft.): 2

Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc):

Saturated Thickness (ft.):

5 well volumes (gal.):

1291

Development Method: Woterra Inertial Pump

	Cum. Vol.	Water Qua	lity		Water			
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments	
0920	Ø 5			_		1090	WM=QQ	
100 Files		3.5	6.7	Colol			(0/38) D	
179:39	7	~_					Torong 15 ml/lites	
1011	10	4.0	10.7	683		H.		
1015	10						Michigan will to Track List Tourist I soul feite Mirel Tourist	
1039	14						Troot 15 million	
11/13 10×10 10×10	15	5.0	4.5	CALC			Mid Turgo	
165KI	15			1		į.	Nietunder-Allowing to ice	
<u> ///3 </u>	<i>60</i>	3,9	6.2	Colodi			Mort Tirkin	
1114	31					1494	Troot to love / 1 the	
							, -	
			ļ					
					: 			
			<u> </u>	<u> </u>				

Final Measurements:	3,9	(610)	10/14
Total Volume Developed (gal.):	21		
Final Well Depth (ft. btoc):	10.90		
Photograph Number:			-

Project: GALENA ATS

Client:

Well ID: MA-MW-A3

Date: 8-19-6 Time:

Weather:

Location: Amplet Site (04)

Supervisor: Property

Comments: Temp. of poind of standing eacher 77 North of Well = 18%.

Field Measurements

HNU/OVA Reading (ppm): 💯 🖔 Water Depth (ft. btoc): 9,79 Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.): 13.15 5 well volumes (gal.):

Development Method: Waterra Inertial Pump

	Cum. Vol.	Water Qua	lity			Water	
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments
1403	0					9,49	0.0 PPM
1427	<u>(4)</u>	141.6	7,0	888		ì	FUNTERSON
1-13()	15	19.1	69	870			11 11
1-13-2	C.	19,2	69	875			
1-130	1.2	14.3	6.9	8,76			Inst = 32 ml/ules
1-134	15	j4.2	7.0	867			Least TORRIC
1935	1B	14.3	7.0	857			11 11
1431.	e21	14,6	7.0	868			1 - 31
1439	24	1-3.8	7.0	8-23			Fireff = 43 million
1024	27	13.2	7.0	830			JUES 10
1442	.30	13.8	7.0	841			1/1/2/2025
11/2	33	14.3	7.0	860		1,	1.
1-0-0-5	36	138	7.0	807		9.85	Turney - 24 malleties
						(1(/	11.00 -49 Lie " A/4 18ca / 1.00 SEE .)

Final Measurements:	36	13, 8	7.0	821	665	•
T-4-11/1		 "				

Total Volume Developed (gal.): Final Well Depth (ft. btoc): Photograph Number:

Project: galena afs Client:

Well ID:	os mw oi
Date:	8/29/92
Time:	1120

Location:

Weather:	COOL and	rainu
Supervisor:	B. Coel	

Comments:

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc): Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.):

5 well volumes (gal.):

20.29

Development Method: Waterra Inertial pump

	Cum. Vol.	Water Qua	lity			Water	
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments
1107	-		•	-		20.23	1.0 Ppm
1123	5	3.8	8.7	6010			turbid
1129	10	3.0	8.5	1004			11
1132	15	3.0	8.3	672			11
1143	70	3.5	8.1	680			11
1148	25	2.9	7.3	1079			11
1153	30	3.1	6.7	679			"Imoff, 25ml
1157	35	2.5	4.9	1071			11
1501	40	2.4	5.0	1078			11
1206	45	2.0	6.60	489			11
1212	50	2.7	6.9	672			- 11
1221	<i>5</i> 5	3.3	9.18	140			11
1230	60	3.5	9.0	U40			"Imoffiomi
1235	66	2.7	8.8	650			11
1239	70	2.60	8.4	(0(0)			11
1245	75	28	4.0	458			11
1250	80	2.4	6.2	663			Cleaning
1230 1235 1239 1245 1250 1254	85 90	2.6	4.7	U59		V	11
1258	90	2.4	4.8	459		20.29	" Imoff.05m
							11
							H
							11
* PH n	neter qu	estionab	la				N.

Total Volume Developed (gal.):	. 90	
Final Well Depth (ft. btoc):	53.88	
Photograph Number:		

2.6

4.8

Final Measurements:

Project: galena afs

Client:

Well ID: OS mw oz Time:

Location:

Weather: COOI + Cloudy, Clearing in afternoon Supervisor:

Comments:

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc): 19.21 Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc): 53.47 Saturated Thickness (ft.): 34.20

5 well volumes (gal.):

Development Method: Waterra Irertial pump

	Cum. Val.	Water Qua	ulity			Water	
Time	(gal.)	Temp.	рН	Cond	Turb	Level	Comments
1500	_	_	-	•		19.21	
1523	S	3.5	7.0	473		19.61	0.0 ppm Ovm
1529	10	3.1	6.0	488			turbid
1533	15	2.4	4.2	493		 	11
1539	20	2.5	4.7	491			11
1547	25	2.4	5.9	490		 	
1551	30	2.4	6.3	493			Transfire Liver
1001	35	3.0	6.6	467		 	Imoff-4m1
1005	40	3.2	6.7	476			Clearing
1610	45	2.3	5.2	482			turbid '
1616	50	2.4	6.9	474			
1619	55	2.5	5.3	492			Clearing
1625	600	3.2	4.3	498		 	<u> </u>
1628	ÚŚ	2.4	4.5	485			11
1430	70	2.1	5.1	485		-	Imoff: Zmi
11035	70 75	2.2	5.2	482		 	Clearing
11040	80	2.5	5.1	486			lightly turbid
1646	85	2.4	5.9	480			
1050	90	2.3	5.4	483		-	
		<u> </u>	3.7	705			Imoff · 1.75ml
	· · · · · · · · · · · · · · · · · · ·						

Final Measurements: 2.3	5.4	483	
Total Volume Developed (gal.):	90		

Final Well Depth (ft. btoc): Photograph Number:

Project: galena A &

Client:

Well ID: 05 mw 03 Time:

Location: Weather: Supervisor:

Comments:

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc): Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.): 30.00 5 well volumes (gal.):

Development Method: Waterra Inertial pump

	Cum, Vol.	Water Qua	lity			Water	
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments
1454	_	-	7	-		17.74	360 ppm
1518	5	5.4	7.4	672		1	turbid
1522	10	3.8	7.1	USI			11
1533	15	3.8	7.1	10103			11
1540	20	3.8	7.0	670			11
1549	25	3.ψ	4.0	967			11
1554	_ 36	3.0	6.7	61010			"Imoff 3mi/liter
1002	35	3.4	5.4	ග83			Clearing.
1600	OP	3.3	5.1	500			"
1610	45	3.7	5.4	670			li .
1415	50	3.2	u 3	ठेवच			11
1621	SS	3.4	10.5	667			11
1627	9		0.9	602			"Imoff 3.5m1/like
1630	95	3.1 3.1	U 5	400			11
11034	70	3.3	6.5	600			11
1639	75	3.0	6.7	664			11
1645	2	2.7	5.8	468			11
1645	85	3.0	5.6	665		1/	11
1699	90	3.1	40	800		ור.רו	" Imoff Zmi/liter
							,

Final Measurements:	3.1	6.0	668	
Total Volume Develo	oped (gal.):	90		
Final Well Dept	th (ft. btoc):	53.7	4	
Photogram	h Numher -			

Final Measurements: 3.1

Project: galena afs

Client:

Well ID: OS Location: Date: Weather: Time: Supervisor:

Comments:

Field Measurements

HNU/OVA Reading (ppm): Product Depth (ft. btoc): Water Depth (ft. btoc): 15.48 Well Depth (ft. btoc): Product Thickness (ft.): Saturated Thickness (ft.): Well Volume (gal.): 5 well volumes (gal.):

Development Method: Waterra Inertial Pump

	Cum. Vol.	ol. Water Quality				Water	
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments
0836	-	-	_	_		15.48	216.000m -0.0BZ
0853	5	3.1	7.9	833		1010	turbid
0859	10	2.5	(0.1	810	-		CORIO II
0906	15	2.4	7.1	800			11
1190	20	2.10	7.1	795			11
0922	25	2.3	7.5	777			11
0928	30	2.2	6.9	789			Imoff Zimi
0934	35	2.4	7.1	783			Turbid
2450	40	1.8	7.7	771			11
0949	45	1.9	7.3	718	***************************************		11
0954	50	1.9	7.7	784			41
0958	55	1.8	7.7	782			11
1005	90	1.8	7.9	784		 	Imoff 7ml
1012	105	2.2	8.8	759			turbid
1016	70 75 80	1.9	8.7	740			11
1050	75	2.2	8.6	782			F1
107.5	80	2.1	8.9	780			11
1029	85 90	2.0	80	783		4	11
1039	90	2.3	8.5	796		15.48	Imoff 3mi
						13. 18	WITO TONI

Final Measurements: 2.3	8.5	796	15.48
Total Volume Developed (gal.):	90		

Final Well Depth (ft. btoc): Photograph Number:

RADIAN

Project: Governa afs

Client:

Well ID: <u>OS MW OS</u>

Date: <u>28 AW 92</u>

Time: 1730

Location:

Weather: Clock and Cloudy, Clearing in after Supervisor:

Comments:

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): 10.82

Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc): 49.74

Saturated Thickness (ft.): 32.92

5 well volumes (gal.):

Development Method: WOTERRA Inertial pump

	Cum. Vol.	Water Qua	dity			Water	
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments
1717	-	-	-	-		10.82	123.0 ppm
1733	5	3.9	6.7	808			very turbid
1735	_10	2.6	6.7	800			11 11
1740	15	2.8	5.7	817			11 11
1745	20	2.5	4.8	876			11 11
1747	75	2.7	5.1	889			11 11
1753	30	2.8	5.7	800			Imoff . 7.5ml
1757	35	2.7	5.4	863			very turbid
1802	40	2.7	5.60	865			" "
1800	45	2.4	5.5	859			11 11
1809	50	20	5.2	861			N U
1820	55	5.1	7.2	867			11 11
1825	90	30	7.2	816			Imoff 8ml
1830	US	2.0	7.1	808			turbid
1835	70	32	6.7	838			11
1840	75	2.5	10.10	850			11
1845	80	2.6	4.3	850		†	Liant
1849	85	2.8	6.0	857			CIGIAC
1854	90	2.5	6.4	857			Imoff 3.5mL
				1			THULL SOME
					· · · · · · · · · · · · · · · · · · ·		

		_
Total Volume Developed (gal.):	90	
Final Well Depth (ft. btoc):	49.08	-
Photograph Number:		_
-		_

Final Measurements:

Project: galena afs

Client:

Well ID:	US MW OU
Date:	28 AUD 92
Time:	2140

Location: Weather: Supervisor:

Comments:

	8.4	
	MADOCHIZAMANIA	
LICIU	Measurements	

HNU/OVA Reading (ppm):	
Water Depth (ft. btoc):	13.71
Product Thickness (ft.):	
Well Volume (gal.):	

Product Depth (ft. btoc): Well Depth (ft. btoc): 41.81 Saturated Thickness (ft.): 28.60 5 well volumes (gal.):

Development Method: Waterra Inertial Pump

	Cum. Vol.	Water Qua	ality			Water	
Time	(gal.)	Temp.	рН	Cond	Turb	Level	Comments
2131		-	-	_		13.21	00 ppm
2143	5	S.S	7.0	728		1	turbid
2146	10	4.5	6.2	728			CAGIG
2148	15	4.4	5.9	732			11
2153	20	4.2	4.7	758			11
2156	25	4.1	3.7	748			Clearing
5200	30	4.1	2.8 *	747			Imoff - Imi
2208	35	4.3	3.2	748			Clearing
2211	40	4.0	3.1	743			CHAIN
2216	45	4.3	4.2	744	1		11
2726	50	4.9	4.9	736			11
2234	55	4.5	5.3	737			11
2240	(00)	4.1	4.8	747			Imoff.O.Sm
2245	US	4.1	4.5	739			TILOLL O'SWI
2250	70	4.3	4.1	742			clearing
2254	75	4.1	4.3	738			
2300	80	4.1	4.5	735			u u
2304	80 85 90	3.9	5.2	741			
2307	ĞÓ	4.9	الم.ك	439		11.24	11
			<u> </u>	737		11.29	Imoff · 2mi
						· · · · · · · · · · · · · · · · · · ·	
* 000	ation of	OH Ossi	0 110 5				

Final Measurements: 4.9	4.2 439	11.24
Total Volume Developed (gal.):	90	

Final Well Depth (ft. btoc): Photograph Number:

Project: GALENIA AFS.

Client:

Well ID: Date:

Location: Weather:

Waste Accumulation AREA (06)

Time:

Supervisor:

Comments:

Field Measurements

HNU/OVA Reading (ppm): ØØ Water Depth (ft. btoc): 13.4 Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.): 5 well volumes (gal.):

Development Method: Waterra Inertial Pump

	Cum. Vol.	Water Qua	lity Court	DН		Water	
Time	(gal.)	Temp.		-Cond	Turb	Level	Comments
1041	0	-		-		13,43	NO DUM READING
1045	-5	5.4	728	6.7			TURRID
1048	10	4.8	(Bi	(a, F			11
1050 1051	15	4.7	679	toils			' '
1051	20	1.7	679	64			4,
1059	25	4.8	678	10.76			+\
1057	30	4.7	(0+1,	10.3			15
1100 1102 1112	35	4.8	679	6.3			ImpH = 20 mlour liter
110%	40	4,9	677	6.3			TURRID
11110	45	41.8	(075	(c.A.			
1121	50	4.8	671	4.5			3.5
1123	55	4.7	670	6.3			35
1123 1318							LUNGE
1310	1.5		-1. a. 6.,				KETURN
1323	60	5,1	1056	loilo			ImoffCome - Tolera Cetter
1327	45	4.9	1076	6.4			Turbod
13.24	70	4,9	623	10.4			١,
1337	7-5	4.8	(8)×1.	6.2		***************************************	м
1379	30	4.8	182	10.2.			N
1:24	85	5.2.	(05/0	6.6			7
1345	90	49	1057	65			le (
1347	Gar,	19	(071	6.5			LTUTUR.
1351	110	5.3	(673)	6.6		13.32	Initt- 25 lookit

Final Measurements:	110ept	5.3	6.60h.	(ot) with	
Total Volume Devel Final Well Dep Photogra	' ' '	110 († -()	,	

E-143

RADIAN

Project: galena afs

Client:

Well ID: 07 mw 01
Date: 21 Aug 92

Location: 67

Supervisor: P. Coplen

Comments:

Time:

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): 3.93

Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc): 15.24

Saturated Thickness (ft.): 11.31

5 well volumes (gal.):

Development Method: Waterra Inertia: Pump

	Cum. Vol.		lity			Water	
Time	(gal.)	Temp.	pН	Cond	Turb	Level	Comments
1714	3	5.7	7.3	110		3.93	very textid well is
1750	<u> </u>	3.3	7.2	SZI			and and and
1740	q	3.5	7.0	600			11 11 11
1758	15	2.4	7.2	1001			"Imoff Gomil
1809	15	4.1	<u>ي. ۲</u>	1000	<u> </u>		11 11 11
1817	18	3.6	7.2	1000			11 11 11
1820 1843	21	4.2	7.2	592			Imaff 18m1/1ita
1847	2.to	3.3	7.2	\$83			1, 1,
1041	30	4.0	7.2	590			11 11 11
	30	3.8	7.2	587			Imoff 12millite
					end DI	w Risi	Imoff 17mi/lite

Final Measurements: 3.8	7.2	587
Total Volume Developed (gal.)	: 30	
Final Well Depth (ft. btoc)		
Photograph Number	r:	

Project: GALENA AFS

Client:

Well ID: 07

Location:

Weather: Supervisor: (

Comments:

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc): Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc): 22 Saturated Thickness (ft.): 19.84 5 well volumes (gal.):

Development Method: Waterra Inectia pump

	Cum. Vol.	Water Qua	ity			Water	
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments
1520							0.0 202
1542	5	3,4	7.7	755		2.9	VERY TURRIO
1547	15	1.8	7,7	731			ι ι/
1550	17	1.8	7.6	753			11 11
1 <u>5</u> 555	30	2.1	7.7	754			Inotf = 25, ml/liter
1559	23	1.5	7.7	757			Verey Turbid
1601	25	7.7	7.7	755			m 11
1605	_30	1.6	7.7	749			٠, ٠,
1607	35	1.5	7.6	742			u in
1610	40	1,5	7.4	757			Inoff = Confetter
11018	43	1.9	7.6	754			LESS TURBIN
1622	45	1.9	6.5	751			1- 1,
1026	50	1.6	6.9	749		<u> </u>	12 47
1631	55	1.4	6.9	748		21	InoH=5 nl/liter
							/
	12						
						 	

Final Measurements:	1,4	6.9	748	
Total Volume Devel Final Well Dep		55 28 G)	_
	ph Number:	<i>30.</i> 40		-
			E-145	-

Project: galera afs

Client:

Well ID: Date: 2 Time:

Location: Weather:

Supervisor:

Comments:

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc): Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.): 13

5 well volumes (gal.):

Development Method: Waterra Inertia pump

	Cum. Vol.	Water Qua	lity			Water	
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments
0950	D	_	-	_		3.14	40 ppm oum
0958	1	4.7	7.3	812		1	very tuepid
1000	5	2.4	7.3	713			11 TI
1009	9	1.8	5.0	רסר			10 11
1015	12	1.8	4.8	710			" Imoff 13m1/11
1019	15	1.10	4.2	690			u "
1051	18	1.4	4.6	LPD			11
1023	21	1.7	4.7	700			Turbid
1057	24	1.10	5.3	707			"Imoff 41m1/lite
1050	27	2.0	4.7	703			11
1033	30	1.1	5.4	702			11
10310	33	1.2	4.7	1997			11
1039	310	1.2	4.3	רסך		V	" Imoff 4milit
1041	38	5.0	4.8	715		3.66	11
1041	end pur	20					
		'					

Total Volume Developed (gal.):		
Final Well Depth (ft. btoc):	17.12	
Photograph Number:		
• •		

4.8

Final Measurements:

715

Project: Qalena afs

Client:

Well ID: O

Time:

Location:

Weather:

Supervisor:

P. Coplen

Comments:

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): 21

Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc):

55.08 Saturated Thickness (ft.): 33,73

5 well volumes (gal.):

Development Method: Waterra Inertial pump

		Cum. Vol.	Water Qua	lity			Water		
	Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Commen	ts
SO	1725	_	-	-			21.35	0.2	DDM
L	1750	5	3.8	7.9	456				turbid
L	1754	10	2.6	13.4	W25			11	11
L	1757	15	2.1	11.7	421			Immo f	f"104.5m1/1i
L	1800	20	3.1	13.2	101010			11	11
L	1823	25	23	15.8	645			'''	11
	1830	30	3.2	6.9	800			Imoff	;
L	1837	35	3.9	7.2	688			11	11
L	1841	9	2.9	7.2	605			11	11
	1843	45	3.7	7.1	679			11	11
	1853	50	3.0	7.2	649			1,	11
	1901	55	3.0	7.1	USS			Tmoss 7	9mi/litest
.1	1421	60	U.2	7.0	736				WEBid
	1428	9 5	5.4	7.2	70			1,1,1	<u> </u>
	1528	70	2.7	7.2	009			14	11
Γ	1545	75 80 85	3.5	7.2	699			11	11
Γ	1001	80	3.7	7.2	705			11	11
Γ	1011	85	36	7.2	497	***************************************		turb	id
	1019	90	3.3	7.2	U85			" Tom	ff 8m1/lite
								1111	1 5 11 11

Final Measurements:	3.3	7.2	W85	

Total Volume Developed (gal.): Final Well Depth (ft. btoc): Photograph Number:

Project: Quena afs

Vell ID:	09 mw 01	Location:	ბ9	
	8/22/92	Weather:		
Time:	1655	Supervisor:	P. Copleh	

Comments:

Field Measurements

HNU/OVA Reading (ppm):	Product Depth (ft. btoc):
Water Depth (ft. btoc): 12.03	Well Depth (ft. btoc): 47.64
Product Thickness (ft.):	Saturated Thickness (ft.): 35.01
Well Volume (gal.):	5 well volumes (gal.):

Development Method: Waterra Inertial pump

	Cum. Vol.	Water Qua	dity			Water	
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments
1045	-	-	_	_		12.03	0.00pm
1702	5	7.0	10.10	696		12.00	turbid
1705	10	5.8	10.10	694			CADIS
1709	15	5.4	10.19	709			
1711	20	5.2	10.10	728			
1715	25	5.2	6.9	735	··		11
1717	30	5.w	6.7	734			"Imoff 3.5m1/it
1722	35	5.2	7.0	732			11
1720	40	5.4	7.0	739			
1731	45	5.8	7.0	703			11
1733	50	5.60	7.0	701			11
1739	SS	5.7	7.0	704			11
1743	100	5.\$	7.0	710			" Imoff 4.5m/11te
1749	US_	5.8	7.1	673	***************************************		14
1753	70	\$.5	7.1	675			Clearine
1750	75	5.4	7.0	703	**		11
1802	80	5.6	7.1	482			11
1809	85	5.4	7.0	654			Clearina
1810	90	5.4	7.0	000		V	CIRCUITIO
1814	95	5.6	7.0	693		12.10	"Imoff 1.5m1/11te
1814	end pu	Rae					- COLL COLLINITING

12.16

nal Measurements:	5.6	70	693
Total Volume Develo		95	
Final Well Dept		47.4	00
Photograp	oh Number:		
			E-148

Final Measurements:

RADIAN

Project: galena afs

Client:

Well ID: 09 MW 03
Date: 24 AUQ 92
Time: 1325

Location: C Weather: (\ Y

Supervisor:

warm and sunny

Comments:

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): 13.32

Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc): 47.53

Saturated Thickness (ft.): 34.21

5 well volumes (gal.):

Development Method: waterra Inertia pump

	Cum. Vol.	Water Qua	lity			Water	
Time	(gal.)	Temp.	pН	Cond	Turb	Level	Comments
1200	•	-				13.32	0.0 Dam
1330	5	5.8	7.9	583		1	0.0 ppm turbid
1334	0	4.5	8.0	500			11
1344	15	4.1	8.2	S77			11
1448	2	3.0	84	501			11
1355	75	\$.0	8.0	576			11
1403	30	10.2	8.7	595			"Imoff com/lites
1411	35	\$.3 \$.3	8.7	549			11
1424	40	ડડ	8.8	549			1.1
1434	45	5.9	8.8	502	•		11
1442	50	5.0	8.9 8.9	548			,,
1451	50 55	4.4	8.9	SSS			11
1455	100	4.0	8.8	555 558			"Imoff 4m1/11ter
1505	<i>0</i> 5	5.2	8.8	581			11
1509	70	4.3	8.7	SLOT			1.1
1513	75	4.1	7.3	563			11
1521	90	4.1	8.2	554			11
1523	85	4.2	7.7	Slelp		1	/1
1529	90 95 90	3.60	7.8	552		13.37	Lightly turbid
							Imoff won/

Final Measurements: 3.0	7.8	552	13.37
Total Volume Developed (gal.)	· an		

Final Well Depth (ft. btoc): 47.24
Photograph Number:

RADIAN

Project: galena AFS

Client:

Well ID:	09 mw 04
Date:	8/23/92
Time:	1416

Location: 69

Weather:	
Supervisor:	B. Coel

Comments:

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): IS.IZ

Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc): 47.53

Saturated Thickness (ft.): 32.41

5 well volumes (gal.):

Development Method: WOILEMA Inertial Pump

	Cum, Vol.	Water Qua	lity			Water	
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments
1410		_	_	_		15.12	
1430	S	10.1	6.9	485		13.16	0.0 ppm
LPPI	0	7.2	6.9	1088		+	Tuebid
1450	15	5.7	6.9	680 687		+ + -	
1502	20	5.2	7.6	707		 	111
1510	25	4.9	8.2	725		 	11
1518 1523	30	4.0	8.3	711		 	
1523	35	4.60	8.4	705		 	"Imoff 25m1/11to
1529	40	4.5	8.6	698		 	11
1535	45	5.4	7.9	710		 	
1542		4.8	8.8			—	11
1540	<u>50</u> 55	48	&.0	1001		 - 	11
1554	60	55	8.7	U89			11
1600	<i>ψ</i> 5	4.8 5.5 4.9		ררט			"Imost comilliter
1005	70	4.1	8.7	675			1)
1007	75	3.8	8.0	699			11
1610	%D		8.0	698			
1616	85	4.0	8.5	697	-		Lightly turBid
1019	90	4.3	8.1	W92		V	111 111
1015	90	4.2	8.1	486		15.16	"Imoff Z.ZSmillit
L							

Total Volume Developed (gal.):	90	
	47.44	
Photograph Number:		

8.1

4.2

Final Measurements:

ngo

15.16

Project: galena afs

Client:

Well ID: 09 mw 05 Date:

Location:

Weather: C Supervisor:

Comments:

Time:

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc): Product Thickness (ft.): Well Volume (gai.):

Product Depth (ft. btoc): Well Depth (ft. btoc): 47.40 Saturated Thickness (ft.): 310.39 5 well volumes (gal.):

Development Method: Waterra Inertial Pump

	Cum. Vol.	Water Qua	lity			Water	
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments
1520		-	-	-		11.07	0.0 ppm oum
1000	5	4.1	4.4	575		l l	turbid
1004	10	3.3	5.7				11
1010	15	3.3	42	601 599			1,1
1419	25	3.3	7.2	572			11
1622	30	3.0	6.4	592			Imoff 1.5ml
1027	35	3.1	7.0	591			turbid
1633	40	3.2	7.5	575			clearing
1639	45	3.2	7.3	585			11
1645	50	3.2	7.5	582			Clean
1653	55	3,3	7.6	543			11
1707	60	3\$	7.4	551			(1)
1709	<i>U</i> 5	3.1	7.1	556			Imoff 1.25ml
1715	70	2.9	6.8	574			clean
1721	75	2.8	4.8	569			11
1726	80	3.0	7.1	513			11
1732	85	30	7.2	523			,11
1737	90	2.8	7.2	SLOGO			11
1740	95	2.7	7.0	570		V	11
1743	100	2.7	7.0	570		11.08	Imoff I.omi

Total Volume Developed (gal.):	100	
Final Well Depth (ft. btoc):	47.08	
Photograph Number:		

2.7

7.0

Final Measurements:

570

11.08

RADIAN

Project: governa afs

Client:

Well ID: 09 MW 00

Date: 27 Avg 92

Time: 150

Location: 09

Weather: Cold and Cloudy
Supervisor: B. Cold

Comments:

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): Q.Q7

Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc): 47.10

Saturated Thickness (ft.): 37.13

5 well volumes (gal.):

Development Method: Waterra Inertia Pump

	Cum. Vol.	Water Qua	lity			Water	
Time	(gal.)	Temp.	pН	Cond	Turb	Level	Comments
1130	_	-	-			9.97	
1158	5	5.8	4.6	475		9.77	0.0 ppm
1203	10	3.0	10.5	411		 	turbia
1207	15	3.2	0.5	398			111
1213	20	30	0.4	390		 	111
1218	25	2.9	ų.3	383		 	
1225 1229 1235	30	3.2	۵.ک	387			W.
1229	35	3.2		376			
1235	40	3.0	6.2 6.3	369	***		"Imoff 15m1/liter
1247	45	3.2	4.2	350			ress forby
1250	50	3.0	4.1	355			
1253	55	2.9	4.0	364			11 11
1301	W	3.4	u. 5	348			
1305	95	3.1	9.7	362			11 11
1311	70	3.0	6.5	365			
1316	75	2.9	4.6	359			Clearing Imoff 1.5ml
1324	80	3.0	6.8	335			
1329	85	2.9	6.8	340			11
1333	90	3.0	6.0	3610			Clean
1330	95	2.8	ψ.8 Ψ.8	356			1.
1341	100	3.1		344			11
1345	105	2.8	7.0	345			11
1348	110	2.8	7.1	347		1	11
	d purol	5.0	7.1	348		9.97	"Imoff.35ml/lite

Final Measurements: Z.8 7.1 348

Total Volume Developed (gal.):	
Final Well Depth (ft. btoc):	
Photograph Number:	

RADIAN

Project: galena afs

Client:

 Well ID: 10 MW 01
 Location: 10

 Date: 22 Aw 92
 Weather: Supervisor: P. Cowlete

Comments:

Field Measurements

HNU/OVA Reading (ppm): 245

Water Depth (ft. btoc): 13.34

Product Thickness (ft.): Saturated Thickness (ft.): 33.40

Well Volume (gal.): 5 well volumes (gal.):

Development Method: Waterra Inertia: Pump

	Cum. Vol.	Water Qua	lity			Water	
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments
1400	_	-	-	-		13.34	0.0 ppm
1427	5	6.3	7.1	\wqs		1	turbid
1431	10	5.6	4.6	670			11
1436	15	5.6	4.0	1081			11
1438	20	5.5	1.0	694			11
1445	25	(0.1	6.6	697			11
1448	30	5.1	6.7	1093			" Imoff 2.5ml
1453	35	4.8	3.3	<u>687</u>			Lightly turbid
1457	40	5.0	3.2	088			11 11
1504	45	7.2	6.8	777			11 11
1508	50	5.4	6.6	490			11 11
1520	<u>5</u> \$	7.2	10.10	142			11 15
1524	90	0.0	6.6	720			" Imoff 2.0ml
1532	<u> </u>	5.7	6.7	714			(1)
1537	סר	5.1	68	701			" "
1542	75	5.8	W.8	719			11 11
1548	80	5.4	6.9	704			very lot turbidit
1554	85	5.5	y.q	708		>	11 11 11
1002	90	5.5	6.9	613		14.39	" Imoff SmL
1002	end pu	rge	*				
	•	•					

inal Measurements: 5.5	0.9 473	14.39
Total Volume Developed (gal.):	90	
Final Well Depth (ft. btoc):	40.70	
Photograph Number:		

RADIAN

Project: GALENA ASS

Client:

Well ID: //O-MW-02 Date: /8-406: 93 Location: / (

Weather:

Supervisor: F. Conschil

Comments:

Time:

Field Measurements

HNU/OVA Reading (ppm): C. G. gym
Water Depth (ft. btoc): 13.3/
Product Thickness (ft.):
Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc):

Saturated Thickness (ft.):

5 well volumes (gal.):

* Water have

Shun,

apparent movean

Development Method: Waterra Inertial Pump

	Cum. Vol.	Water Qua	ality			Water	
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments
1520	0					13,31	Jay Tuebold
1594	5	5,3	6.8	797		1	0. 1004777
159-7	10	5.1	10.9	786			in No
1550 1551 1066 1063 1063	15	5.1	6.8	180			\$1 an
7557	20	5.1	6.4	814			1. 1.
1000	25 30	5.2	To.li	816 FB			4, 4,
1000	30	4.7	5.8	274			ImoH : 18 ml / leter
10.7	35	4.9	4,4	816			Ven Topod
1603	40 45 50	4.7	3.7	1 917			V V V V V V V V V V V V V V V V V V V
1011	45	4.6	3.8	816			· ;
11:15	50	4.8	111	950			
162	55 60 65	4.5	4.1	316			11
11:28	60	4.6	6.4	788		-	61
11680	65	4.5	10.6	777			* ~
1651	ŦĹ.	4.3	10.6	774	· · · · · · · · · · · · · · · · · · ·		Inoff = Boul Sliter +
14.33	75	4.4	6.6 6.3	802			Very Turk.
167	B.	43	4.5	900			Tuchel
14211	() E	4.3	4.8	807			1 1
16/4	90	<1.3	3.8	807 795			1;
1648	95	4.7	4.9	802			
11:51.	1(5)	5.4	7.7	819		····	LT FOMOUN TURBUL
1165,	46765	5.4	4.6	828			2 1 40 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11654	116	5.9	5.5	831		13.32	Trutt- Cond / City

Final Measurements: 110	5.9	5.5	837	13.30
Total Volume Developed (gal.):	116 30	g. [
Final Well Depth (ft. btoc):	12.1-	7 / -1	_	

Photograph Number:

Project: galena afs Client:

Well ID:	12 mwoi	Location:	12	
	8/30/92	Weather:	Cool and Painy	
Time:	0840	Supervisor:	B Coe	

Comments:

Field Measurements

HNU/OVA Reading (ppm):	Product Depth (ft. btoc):
Water Depth (ft. btoc): \3.\4	Well Depth (ft. btoc): 29.79
Product Thickness (ft.):	Saturated Thickness (ft.): \\0.65
Well Volume (gal.):	5 well volumes (gal.):

Development Method: Waterra Inertia pump

	Cum. Vol.	Water Quality Wat				Water	
Time	(gal.)	Temp.	pН	Cond	Turb	Level	Comments
0380		_	-	-		13.14	0.0 ppm
0848	5	4.6	6.0	539			Martiabid
0857	10	4.3	6.6	523			verytiebid
8090	15	4.2	10.1	519			Imoff Ilmi/liter
0910	18	3.7	5.0	515	-		עפרע בטרטוא
0915	21	3.8	5.2	505			Clearing
0923	24	4.2	5,8	510			11
0925	27	4.2	5.5	505			1/
0933	30	4.7	10-7	494			" Imoff 4m1/11
0937	33	4.5	6.8	472	-		8.1
0945	36	4.0	6.0	408			tı
0949	39	4.1	6.6	488			14.1
P290	42	4.1	67	481			11
1005	45	4.2	6.3	497		13.10	" Imoff Imi/lit
							,

Final Measurements:	4.2	6.9	497	13.16
Total Volume Devel	oped (gal.)	:45	_	
Final Well Dent	th (ft htoo)	200	1	-

Photograph Number:

Project: COVETO GES

Client:

Well ID:	12 mw 02
	30 A00 92
Time:	1/00'

Location: Weather:

Supervisor:

Comments:

Field Measurements

HNU/OVA Reading (ppm):	
Water Depth (ft. btoc): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Product Thickness (ft.):	
Well Volume (gal):	

Product Depth (ft. btoc): Well Depth (ft. btoc): 210,52 Saturated Thickness (ft.): 15.41 5 well volumes (gal.):

Development Method: Water Inertia Pump

	Cum. Val.	Water Qua	lity			Water	
Time	(gal.)	Temp.	ρН	Cond	Turb	Level	Comments
1100	~	_	-	_		11.11	
1114	3	5.4	7.3	572		1	0.0 ppm
1117	.0	6.2	7.3	\$78			torpid
1120	9	5.2	10.8	579			(1
1125	12	4.8	5.8	585			"Imoff 17myline
1127	15	5.0	4.0	583			" CLUCAL I Justilia
1129	18	4.8	4.4	רר			11
1133	21	4.9	4,5	STI			
1139	24	4.7	4.2	558			1,1
1143	27	4.4	4.3	549			11
1140	30	4.9	45	550			, .
1148	33	4.4	7.1	547		 	" Imoff (oSmy)
1150	340	7.7	7.4	542		1.	1,
1152	39	4.3	4.8	540		11.14	
				3,0		11.19	" Imoff 2.25mil
				 			

nal Measurements:	4.3	4.8	540	
Total Volume Develo Final Well Dept Photograp		39 20.12		-
				_

Final Measurements:

1993 Well Development Forms

GROUNDWATER BAMPLING LOG

Project: Client:

Galena AFS RI AFCEE

Comments:

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc):

Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.):

Purge Method:

Sample Method:

3 well volumes (gal.):

	Cum. Vol.			Quality			7
Time	(gai.)	Temp.	ρΗ	Cond	Turbidity	Comments	-
1329		ζ		-			
1335	5	100	6.63	1100	DK BRO	WN-SILT	
1344	10.0	1ºC	6.72	1070	i (t		
1351	15.0	1°C	6.72	1050	۴	<u> </u>	
1357	20.0	100	669	1060	(1		
1409	25.0	100	6.71	1050	: (\		
1414	30.0	100	6.70	1040	t,]
1421	35.0	190	10.72	1050	u	!	
1429	40.0	1ºC	6.72	1040	i A	:	
1435	45.0	100	6.73	1060	. (c	i	
1440	50.0	1°C:	6.73	1060	. "	WENT DESTALLET	
1506	55.0	100	6-71	1090	٠,	!	<u>.</u>
1510	60.0	10C	6.72	1670	7	:	
1518	65.0	1°C	6.74	1090			
1523	70.0	1°C	6.68	1080	a	:	
1532	15.0	1°C	w.72	1090			
1536	80.0	100	6.3272		.	i	† !
1544	95.0	100	6.71	1090	и		
1550	90.0	1°C	6.71	(880	į]
1558	150	100	6.70	1100	: !	!	1
1611	100.0	10(671	1080		WENT TO GET Daynos &	DN.
165	105.0	l°C	6.67	1080		(Messells)	774
1701	110	1'(-	6.70	1080		-	1
					1	Final Measurements	1

Wevec. GROUNDWATER SAMPLING LOG

Project: Client:

Galena AFS RI AFCEE

CONTINUATION

ba .			
ba .			
'n			
	۸.		

Well ID: Olmwo7

Location:

Weather: Samplers:

Comments:

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc):

Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc):

Weil Depth (ft. btoc):

Saturated Thickness (ft.):

3 well volumes (gal.):

Purge Method:

Sample Method:

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	Hq	Cond	Turbidit	Comments
1710	115.0	ioc	6.68	1100	DK	brown Get/Soul
1717	120 C	100	6,605	1080		
1725	125,0	100-	6.70	1050 1180	, , , , , , , , , , , , , , , , , , ,	
1730	130.0	100	6.67	1080		
1739	135.0	100	6.72	1110		
1745	40.0	100	6.68	1100	LT.	Serv Sitt/Sand
1754	145.0	100	6-71	1100		
1758	150.0	190	6.68	1100		
1807	155.0	l°C	6.71	1100	, # 1	- Heavy Sand
1813	160.0	1°C	6-67	1100		
1821	165,0	1ºC	6.70	1100	. 17	:
1827	170.0	1°C	6.66	1100	"	
1839	175.0	100	6-72	1600	• • • • • • • • • • • • • • • • • • • •	New O Run
1845	180.0	1°C	6.69	1100		_ Im hope come -
1853	185.0	100	6.71	1100	· ·	0 0
1858	190.0	1°C	6-67	1100	"	
1907	195.0	100	6.70	1100	•.	
1911	200.0	100	666	1100	;	Stopped - E.O. D.
1104	2050	100	664	1070		03
11/1	210.0	ľ°C	6.65	1070		
117	220.0	100	6.6A	1070		
1120	225.0	1"	6.68	1080		i
1131	S 30. O	1°C	6.67	1070		
	1	=				Final Measurements

CROUNDWATER SAMPLING LOG

Project: Client:

Galena AFS RI AFCEE CONTINUATION -P.3

Λ.	

Time:

Well ID: 01 MW07
Date: 9-10-93

Location:
Weather:
Samplere:

Comments:

QUIT PER TOND COUNCIL

Field Measure	ements						
Water De Product T	eeding (ppm): epth (ft. btoc): Thickness (ft.): Volume (gal.):			Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.): 3 well volumes (gal.): Sample Metho			
	Cum. Vol.		Water	Quality .			
Time	(gal.)	Temp.	рН	Cond	Turbidity		Comments
1138	235.0	100	6.68	1090			
1143	240.0	1ºC	6.67	1070	İ		
1150	245.0	100	6-69	1100		!	
1321	!!	·			:	22.8	I' Well Dep H.
	:			:		:	
				1	:		
				-			
					:	i	
· -				1			
-	•			-83		: ;	
	· · · · · · · · · · · · · · · · · · ·	······································				!	
	· · · · · · · · · · · · · · · · · · ·						
-							
							-
						:	

Final Measurements

CROUNDWATER SAMPLING LOG

Project: Client:

Galena AFS RI AFCEE

Well ID: 01 MW 08 Date: 9-10-93 Time: 1374

Comments:

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc): Product Thickness (ft.): Well Volume (gai.):

Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gal.):

Purge Method:

Sample Method:

	Cum, Vol.	·				
Time	(gai.)	Temp.	Water pH	Quality Cond	Turbidity	Commente
1340					-	Start
1345	5.0	1.0°	6.73	1290	DARK	BROWN. SILT/SAND
1352	10.0	1°C			ı	723
1400	15.0	1°C	6-87	1290		
1407	20.0	1° C	6.85	1280		
1414	25.0	100	6.87	1280		
1419	30.0	~ - ·	6.87	1780		
1425	35.0	l° <	6.88	1290		
1432	40.0	1°C	690	1280		
1440	45.0	1°C	6.85	1280		
1446	50.0	1°C	6.87	1280		
1454	55.0	1°C	6.90	1280		: '
1459	60.0	1°C	6.86	1280		
1506	65.0	1°C	6.85	(280		
1511	70.0	1°C	6.87	1280		
1521	75.0	ľ°C	6.89	1280		New Dram
1526	<u> </u>		6.67	1280		i
1534	85.0	1°C	6.86	1280		
1539	90.0	1ºC:	68.3	1280		
1547	95.0	1°C	6.93	1780		Very Foundly
1551	100.0	100	(,88;			Tendoff Come
1558	105.0	100	6.89	1280		Jentol/ Come
1606	110.0:	. ^	691	1270		1
					<	Final Measurements

GROUNDWATER SAMPLING LOG

Project:

Galena AFS RI

CONTRUATION

Client:	AFCEE	1010 H 100 A 1000							
Well ID	Olmwos	Location:							
Date		Weather:	Weather:						
Time			Samplere:						
Comments:									
Field Measure	ements								
HNU/OVA R	eading (ppm):	Product Depth (ft. btoc):							
Water D	epth (ft. btoc):	Well Depth (ft. btoc):							
Product '	Thickness (ft.):	Saturated Thickness (ft.):							
Well	Volume (gal.):	3 well volumes (gai.):							
Purge Metho	i :	Sample Method:							

	Cum. Vol.		Water	Quality	- V	
Time	(gal.)	Temp.	ρН	Cond	Turbidity	Comments
1615	115.0	100	6.89	1270	Cleurst	Clean
1619	120.0	1°C	88.3	1270	10	
	121.0				••	Inhoff Cone- 22,32
W/L			l		:	22,32
			1			
					:	
: :						
		1				
				i	1	
					•	i
					1	
					*	
					i.	
:			•	,		
				-		£ =
				*		
			!		1	
		h	!			
		!	i i		:	
					!	
						Final Measurements

Developmen GROUNDWATER SAMPLING LOG

Project: Client:

Galena AFS RI

AFCEE

05-MW-13 Date: 9.6.93/9-7.93

Location: SE OF GALENA AFIB ENTRANCE-NEXT TO FONCE
Weather: KAINY

Samplers: 647

Comments:

FINAL IMHOFF COUE < 0.5 ml

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc): Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.):

Purge Method:

Sample Method:

3 well volumes (gal.):

				· · · · · · · · · · · · · · · · · · ·		_
Time	Cum. Vol.		Water	Quality	1	
1832	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1839	5.0	1.08	6.49	11/00	DK. BROW	and
1845	10.0	1.°C	6.51	1130	1.	
1853	15.0	1°C	6.58	1150	4	
1900	20.0	100	6.50	114-0		
1908	75.0	100	6.57	1150	'0	
1914	30.0	100	6.59	1140		
1922	35.0	1°C	6.57	1140	11	
1927						ENDED DOVEL. FOR EOD.
0630	40.0	1°C	6.48	1130	DIL BRO	ivy
0842	45.0	1°C	6.52		źŧ	
0848	50.0	1°C	6.50	1130	• /	DRUM FILLED/GOGET NEW PA
०१०८	550	1°C	6.51	1120	4.	WATER LLEARING
0916	60.0	1°C	6.53	1120	1/	
0923	65.0	1°C	6.56	1120	Semi-Ce	tan
0732	70.0	100	6.51	1130	۲,	
0943	75.0	106	6.54	1130		
0949	20.0	100	6.52	1130	11	
0959	850	100	6.54	1110		
1006	90.0	100	6.54	1120		
1015	95.0	1'C	6.55	1120		
1344					4	18 64 '- Water Depth
				<u> </u>		Final Measurements

VEVELORMONA GROUNDWATER SAMPLING LOG

Project: Client:

Galena AFS RI

AFCEE

Well Volume (gal.):

Comments: NO PVC CAP ONWELL

IMHOFF CONE =0,25ml

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc): Product Thickness (ft.):

Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.): 3 weil volumes (gal.):

Purge Method:

Sample Method:

	Cum. Vol.		Water	Quality		
Time	(gai.)	Temp.	pН	Cond	Turbidity	Comments
0853						Start
0858	5.0	1.00	~	900	DK. Ben	UN SICT./SAVO
0907	10.0	PC	6.60	880	ž (11/11
0916	15.0	i 1°C	6.60	900	:	u/ n
0920	70.0	1ºC	6.56	890	κ	«/ h
0927	25.0	100	6.57	890	٤,	6 / 69
0933	30.0	100	6.57	890	a	(1 / 4
0941	35.0	1°C	6.58	890	ч	~ (4
6945	40.0	loc	6.58	900	્ય	14 / 61
0951	45.0	100	6 201	890	LT. BON	SILT / SWD
0956	50.0	100	6.57	900	• • •	6/
1003	55.0	100	6.62	890	١٠	· 1 " Now Der
1008	60.0	18	6.59	880	4	in frequency
1016	65.0	1° C	6.63	890	•	4/11
1020	70.0	10C	6.59	890		~/ "
1027	75.0	l°c.	6.44	900	4	٠ / ١٠
1033	80.0	1°C	6.61	890	alunt	Clear-Sound
1040	85.0	1°C	6.65	900	د1	,
1045	70.0	CC	6.61	890	٠, ٠	٧,
1052	95.0	l°C	6.69	900	А	•
1100	100	100	4.68	890		IMHOFF CONÉ
1117			i			W/4/3.15
		!				
						Final Measurements

GROUNDWATER SAMPLING LOG

Project:

Galena AFS RI

Client:

AFCEE

Time:

Samplers: GAT

Comments:

IMHOFF CONE < ,5 ml

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc):

Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc):

Saturated Thickness (ft.):

3 well volumes (gal.):

Sample Method:

Purge	Method:
-------	---------

WATERRA PUMP

	Cum. Vol.		Water	Quality		
Time	(gai.)	Temp.	pH	Cond	Turbidity	Comments
1412						Start.
1421	5.0	100	6.81	960	DK. Be	NNSIGT
1429	10.0	100	676	930	į į	
1436	15.0	100	6.76	940	- 11	
1441	20.0	10 C	6.76	930	, et	
1448	25.0	1ºC	6.81	930	· · · · ·	
1454	30.0	1°C	6.74	910		
1503	35.0	100	6.78	920		
1509	40.0	100	6.79	900	1	
1519	45.0	100	6.82	910	Lt. Bru	nun Silf
1524	50.0	1°C	6.75	900		WENTO GET DRUM
1601	55.0	1°C	6.75	900	•	
1610	60.0	100	6.76	910		
1615	65.0	1°C	6.75	900	i .	CLEARING SOMEWHAT
1625	70.0	100	6.80	900		
1630	75.0	10	672	900		
1640	80.0	1°C	6.78	890		
1646	820	100	6.76	890		
1655	90.0	100	6.79	890		
1700	95.0	1°C	674	890		
1710	100.0	100	6.78	880		NewDowns
1734	105.0	19	6.70	870		
1741	110.0	100	6.76	886		
						Final Measurements

05-MW-15 (cent'd)

Time	Vol	Temp	PH	Cond.	Tub.	Condenatto
1749	115.6	1°C	6.77	880	almost Clea	r Some Sand
- 1757			6.78	870		Imhoff Cons
1803	125.0	1°C	6.73	880	t.	1
1809	130.0	1°C	6.74	880	e _l	
_ 1818	135.0	1°C	6.79	880	" In	a hoff Come
1841		_		~	W/L 14.	73

DEVELOPMENT GROUNDWATER SAMPLING LOG

Project: Client:

Galena AFS RI AFCEE

Well ID: 06-MW-07

Time:

Date: 9-6.93

PLM (S. SIDE NEXT TO FENCE)

Weather: KAWY

Samplers: GAT/DRT

Comments:

FWAL MHOFF CONE KO. 5 ML

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc):

Saturated Thickness (ft.): 3 well volumes (gal.):

Purge Method:

Sample Method:

	Cum, Vol.		Water	Quality	- N	
Time	(gal.)	Temp.	pН	Cond	Turbidity	Comments
1600		·				
1625	5.0	4°C	6.68	1370	DK FIN	
1652	10.0	3°C	6.66	1360	MED DIW	
1705	11.0					PUMPED ORY-MONED TO NEXT WELL
1351			·	_	_	W/L 23.60
1413	16.0	2°C	6.53	1460		L+ BRN
120	21.0	2°C	6.49	1440		i,
1424	26.0	2ºC	6.58	1460	•	
1435	31.0	2°C	6.62	1460		ι,
1440	36.0	Zoc	6.52	1460		/1
1449	41.0	2°C	6.60	1450		લ
1455	46.0	Z°C	6-52	1450		
1505	51.0	2° C	6.57	1400		
1510	56.0	2°C	6.61	1460		
1519	61.0	2ºC	6.58	1460		
1527	66,0	Z°C	6-59	1470		
1535	71.0	2°C	6.60	1460		
1611	76.0	Z°C	6.56	1450		
1621	81.0	2°C	6.60	1460		CLEARUS - Very sandy
1630	86.0	20C	6.71	1440		• •
1637	91.0	2°C	6.61	1460		ч
1648	96.0	200	6-45	1450		1
1656	81.0	2°C	6.61	1450		*1
	1016M			(Final Measurements

E-166

12/19 06-MW-07 (contid.)

Time Vol Temp pH Cord Turb. Comments
1707 86.0 2°C 6.62 1460 almost Clear - some sand
106.0 Imhoff Cord
1727 — - Warer Love C
23.601

DEV.

Project: Client:

Galena AFS RI

Location: CNO CRUWAY
Weather: CLOVDY, WARM
Samplers: GAT/DET

Comments:

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc):

Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc):

Weil Depth (ft. btoc):

Saturated Thickness (ft.):

3 well volumes (gai.):

Purge Method:

WATERRA PUMP

Sample Method:

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	рН	Cond	Turbidity	Commenta
1805						Start
1809	5.0	Z°C	6.78	1010	Semi-	Clear- Sand
1815	10.0	2°C	6.85	1040	2	
1828	15.0	3°C	6.89	1030		
1833	20.0	2°C	6.88	1030		
1840	25.0	200	6.85	1030		
1846	30.0	Zoc	6.86	1020		:
1852	\$5.0	200	6.84	1030		:
1858	40.0	200	6.87	1030		
1904	45.0	200	6.84	1030		:
1910	50 0	20 C	6.86	1030		Stop-EU.D.
0831	55.0	1°C	6.57	1020	Very C	len - para gove
0836	60.0	100	6.74	1010	6, /	
0842	65.0	100	6.80	1010	l ₂	
0847	70.c	100	6.81	1010	4,	New Drem
0855	75.0	160	682	1010	d	
0900	80.0	100	6.83	1010	•1	1
0905	85.0	1°C	6.77	1010	٠,	
0909	90.0	100	6-81	1010	٠,	
0914	95.0	190	6.80	1010	7	!
0922	100.0	100	6.84	1010	4	- July Cone
0928			_			12.51 Wide Depth
				i		
				:		Final Measurements

4 2nd attempt (lost surge block first time) will have to. Redevelopment successful

Development GROUNDWATER SAMPLING LOG

Project: Client:

Galena AFS RI

RE (

Well ID: 09MW 05153

Time: // 00

Location: West END OF RUNWAY
Weather: COLO(036°F) P.C.

Samplers: DRT/GAT

Comments:

FINAL IMHOFF CONE LOS ml

Field Measurements

HNU/OVA Reading (ppm): 7.0

Water Depth (ft. btoc): 13.84

Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc):
Well Depth (ft. btoc):

37.62

Saturated Thickness (ft.):

3 well volumes (gai.):

Purge Method:

Sample Method:

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1102				·		
1130	5.0	2°C		970		almost Clean
1/35	10.0	2°C	6.79	980	i :	
1142	15.0	200	6.78	980	:	Almost Clean Sandy
1246	20.0	20 C	6.75	980		0
1252	25.0	200	6.79	970		e _e
1257	30.0	Z°C	6.76	980		ч
1303	35.0	200	6.77	970		u
1308	40.0	200	6.79	970	<u>;</u>	٩
1313	45.0	2°C	6.80	970	· ·	٠.
1316	50.0			970	-	બ
1320			y pagement arms			Imposs Cone
			•			
				•		
					1	
:					1	:
1		•	!	:	:	
	/		i :	:	:	
			† :	<u> </u>	!	
			1	i		
			i i		!	
		:	İ	İ		
İ					i	Final Measurements

in well (unknown to developers) Could not retreeve.

will have to redevelop well with new surge block off

E-169

Deve LOP MONT GROUNDWATER SAMPLING LOG

Project: Client:

Galena AFS RI

AFCEE

Well ID: 10 MW 04

LOCATION: EAST ALERT HAWGAR (SE. CARNER) Weather: RAWWG 11°C
Samplers: GAT DRT

Comments:

FINAL MHOFF CONE LO.SMI

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc): Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gal.):

Purge Method:

96

WATERA - 1" ID

Sample Method:

Time	Cum. Vol.	-		Quality	T		
1215	(gal.)	Temp.	рН	Cond	Turbidity	Comments	
1234	5.0	z°C	6.79	1050	DKBRWI		
1242	10.0	1°C	4.83		11 11		
1250	15.0	100	6.83		11 (-		
1255	20.0.	1°C	6.86		LT. BROW	₩.N.	
1305	25.0	1°C	6.85	1050	11 11		
1310	30.0	100	6.87	1070	ps 4.7		
1316	35.0	100	6.89	1050	=(, ',		
1324	40.0	1.5	6.87	1070	" "		
1333	45.0	1°C	6.83	1090	Semi-C	lean - ImhoFF Cone (1)	Z at 441
1342	50.0	100	4.84	1090			
1351	55.0	100	6.91	1090			
1356	60.0	100	6.91	1080	١, ,,		
1407	65.0	100	6.92	1090	Dinest	Clean - Imhorr Cone Co	89-44
1424	70.0	1°C	6.89	1080			जन ् या
0915	-		_				
0925	75.0	12	u.73	1080	LT. BROW	W	
0935	80.0	100	6.78		Servi- Ce		
0943	85.D	1°C	6.80	10,90	14		
0951	90.0	1°C	6.87	1100	44		
0959	950	1°C	6.8.0	1110	+1		
1005	100.0	100	6.83	1100	• •	I intell the	
1042	105.0	100	6.71	1110	ħ		
			i			Final Measurements	

A

10-40-04 (cont'd.)

Tim	Voc.	Toup.	plt	Cond.	Tub, Com	mete
1051	110.0	1°C	6.79	1100	Semi, Clan	
1059	115.0	1.°C	6.79	1090	almost Clan	
1107	120.0	1°C	4.77	1100	ł ,	
1116	125.0	1°C	6.82	1100	. 1	
1024	130.0	1°C	6.85	1100	13	Anchoff Cone
1135	135	1°C	6.80	1100		
1143	140	100	6 . ගි ෆ	1110		
17,28	W/L=14	1.88				

1992 Groundwater Sampling Forms

PAGE 1 9-2-92 LOG TIME 1439 INSTALLATION ID QQIETO LOG DATE LOCATION ID SAMPLE TYPE SAMPLE ID 01-MW-01-01 10.75 +0:49.94 **INITIAL GROUNDWATER DEPTH (FT)** 1550 1610 SAMPLING PERIOD: START COMPLETE SAMPLING METHOD LOGGER CODE LAB CODE DATE SENT Oum - 000m BH : 000m 132 **COMMENTS** Leconipus **COMMENTS** FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN pН S.U. SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** Eh mvolts **TEMPERATURE TEMP** °C ALKALINITY (CaCO, ALK mg/l

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (µMHOS/CM)	TEMP	COMMENTS
1439	0.0				START PUMPING
1459	15.0	ナ・エ	9	2.3	recalibeate motor
1505	20.0	5.5	593	1.9	
1514	25.0	5.5	586	1.4	
1519	30.0	5.7	586	1.4	
1525	360	5.7	586	1.3	
1530	40.0	6.1	588	1.4	recheck caribration
1537	45,0	4	552	1.5	
1540	480	Ş	558	1.3	
1544	500	6.2	577	1.4	

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D-	DUPLICATE	FB -	FIELD BLANK	G -	GRAB	SP-	SUBMERSIBLE PUMP
R-	REPLICATE	TB -	TRIP BLANK	B -	BAILER	AL -	AIR-LIFT SAMPLER
S-	SPIKE	LB -	LAB BLANK	PP -	PERISTALIC PUMP	BP -	BLADDER PUMP
ĸ.	KNOWN	N.	NORMAL	CI.	SUCTION LITT DUMAN	Dr -	DEADDEN I OMI

					F	PAGE 1
INSTAL		<u>م</u> دog	DATE <u>Q</u>	-9-92 L	OG TIME	1610
SAMPL	E TYPE N		PLE ID QI	10- <u>50-cum</u>		
SAMPL	ENTS	·	Ras Sunny 35	COMPLET LOGGER DATE SEN	CODE <u>Rad</u> 9-10-92 0-0 PDm. BH	
POTENT SPECIF REDOX TEMPER	PARAMETER MEASUTIAL OF HYDROGENIC CONDUCTANCE	REMENT		J. <u>U.\</u> ps/c <u>80</u> plts <u>U.\</u>	9 5 7	MENTS
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	РН	SC (#MHOS/CM)	TEMP (°C)	COMMENT	S
1530	0.0		••		START PUMPI	NG
1536	S	7.0	850	1.1		
1544	10	5.0	840	0.7		
1550	20	6.7	840	0.9		
1010	25	10.10	845	1.60		

E-174

G-

В-

PP -

SL -

SAMPLE METHODS: (WSMCODE)

PERISTALIC PUMP

SUCTION LIFT PUMP

SP-

AL -

BP -

SUBMERSIBLE PUMP

AIR-LIFT SAMPLER

BLADDER PUMP

GRAB

BAILER

SAMPLES TYPES: (WSACODE)

FB -

TB -

LB -

N -

FIELD BLANK

LAB BLANK

NORMAL

TRIP BLANK

DUPLICATE

REPLICATE

SPIKE

KNOWN

D-

R-

S-

Κ-

PAGE 1

LOCATI		<u>7-05</u>		-9-92 L	OG TIME 11010			
SAMPLI	ETYPE	SAM	PLE ID O	<u>-DS-0</u> 7				
INITIAL GROUNDWATER DEPTH (FT) SAMPLING PERIOD: START SAMPLING METHOD LAB CODE IS.87 td 27.8 IUID COMPLETE LOGGER CODE ROS DATE SENT 9-10-92								
COMME	ENTS		Dup for	Ol-mu	0-02-01			
POTENT SPECIFI	FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN pH S.U. U.U SPECIFIC CONDUCTANCE SC \(\mu\text{mhos/c}\)							
	POTENTIAL		Eh mvo	-				
TEMPER			TEMP °C	7	<u> </u>			
ALKALIN	NITY (CaCO ₃		ALK mg	/	72			
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS			
1530	0.0	••			START PUMPING			
१७१०	25	4.0	865	1.60	see formfor			
					01-mw-02-01			
					*			

TRIP BLANK B - BAILER
LAB BLANK PP - PERISTALIC PUMP

SL -

FIELD BLANK G -

NORMAL

SAMPLE METHODS: (WSMCODE)

SUCTION LIFT PUMP

SP-

AL -BP -

SUBMERSIBLE PUMP

AIR-LIFT SAMPLER

BLADDER PUMP

GRAB

SAMPLES TYPES: (WSACODE)

KNOWN

DUPLICATE FB -

REPLICATE TB SPIKE LB -

N -

D-

R-

S-

K -

PAGE 1

	OTAL VOLUME WITHDRAWN (GALLONS)	РН	SC (#MHOS/CM)	TEMP	COM	MENTS
POTENTIAL	JRE		pH S SC μmi Eh my TEMP	U. 10. los/c 91 olts 9 C 1.3 g/l 8	v I	COMMENTS
COMMENTS	3		Sunny 3	5°. Dup	for 05-06)
	OUNDWATER DE PERIOD: START METHOD	EPTH (FT)	16.44 to 1625 B Ras	EZS.30 COMPLE LOGGER DATE SE	CODE PAT	
SAMPLE TY			PLE ID <u>C</u>	<u>1-mw-03</u>	7-01	
	ION ID QUIRT		DATE (1-9-92 1	OG TIME	1625

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1530	0.0				START PUMPING
1539	3	6.8	860	0.8	
1545	Ø	6.0	859	0.5	
1555	10				purged dry
1015	15	6.7	४ 9२	0.9	201920 (19
1025	20	6.7	916	1.2	Start Sampling

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D -	DUPLICATE	FB -	FIELD BLANK	G -	GRAB	SP-	SUBMERSIBLE PUMP
S -	REPLICATE	TB -	TRIP BLANK	B -	BAILER	AL -	AIR-LIFT SAMPLER
K -	SPIKE	LB -	LAB BLANK	PP -	PERISTALIC PUMP	BP -	BLADDER PUMP
Κ-	KNOWN	N -	NORMAL	SL -	SUCTION LIFT PLIMP		

PAGE 1 9-9-92 LOG TIME INSTALLATION ID QUIENO LOG DATE 1425 0i-mw-03 **LOCATION ID** SAMPLE TYPE SAMPLE ID 01-D2-00 11044 FG-28.30 **INITIAL GROUNDWATER DEPTH (FT)** 1025 1W4S SAMPLING PERIOD: START **COMPLETE** Rad SAMPLING METHOD LOGGER CODE 9-10-92 LAB CODE DATE SENT Duplicate of ol-mw-03 **COMMENTS** FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN 10.7 S.U. pН SPECIFIC CONDUCTANCE **Q.10** SC μmhos/c Q١ REDOX POTENTIAL Eh mvolts **TEMPERATURE TEMP** °C 840 ALKALINITY (CaCO. ALK mg/l TIME **TOTAL VOLUME** PH SC **TEMP COMMENTS** WITHDRAWN (µMHOS/CM) (°C) (GALLONS) 1530 0.0 START PUMPING 916 20 6.7 see form for 1.2 1425 <u>01:00-03-01</u> SAMPLES TYPES: (WSACODE) SAMPLE METHODS: (WSMCODE)

E-177

FIELD BLANK

TRIP BLANK

LAB BLANK

NORMAL

G-

В-

PP -

SL -

GRAB

BAILER

PERISTALIC PUMP

SUCTION LIFT PUMP

SP-

AL -

BP -

SUBMERSIBLE PUMP

AIR-LIFT SAMPLER

BLADDER PUMP

FB -

TB -

LB -

N-

D-

R-

S-

ĸ.

DUPLICATE

REPLICATE

SPIKE

KNOWN

PAGE 1

LOCAT	LATION ID QQ\Q\\ ION ID OLTMU E TYPE N	NON		<u>-9-92</u> L	
SAMPL	GROUNDWATER DI ING PERIOD: START ING METHOD DDE	•	14.11 6d.22. 1220 Ras	COMPLE LOGGER DATE SE	CODE ROD
СОММІ	ENTS		closing,	COH. O	nu- Obbu 34.
POTEN SPECIF REDOX TEMPEI	PARAMETER MEASUTIAL OF HYDROGENIC CONDUCTANCE POTENTIAL RATURE NITY (CaCO ₃		rS: pH S.L SC μmho Eh mvo TEMP °C ALK mg	os/c <u>59</u> olts <u>13</u>	5 3
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1135	0.0		•••		START PUMPING
1138	2	5.8*	505	2.8	
1151	8	4.9	U38	2.9	
1707	10	4.9	७८७	7.9	
1218	24	4.9	595	2.7	end purge

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D- R- S- K-	DUPLICATE REPLICATE SPIKE KNOWN	FB - TB - LB - N -	FIELD BLANK TRIP BLANK LAB BLANK NORMAL	G - B - PP - SL -	GRAB BAILER PERISTALIC PUMP SUCTION LIFT PUMP	SP- AL - BP -	SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP
----------------------	--	-----------------------------	--	----------------------------	--	---------------------	--

PAGE 1 9-992 INSTALLATION ID QQVIQ LOG DATE 1100 LOG TIME 20 cm is LOCATION ID D-mw-cs-a SAMPLE TYPE SAMPLE ID 110.09 td. 25.89 **INITIAL GROUNDWATER DEPTH (FT)** 1100 1150 SAMPLING PERIOD: START COMPLETE B Rad SAMPLING METHOD LOGGER CODE Ras 9-10-97 LAB CODE DATE SENT Ovm. Oppm BH; partly closely **COMMENTS** cool; fluries. FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN S.U. pΗ SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** 45 Eh mvolts **TEMPERATURE** °C **TEMP** 600 ALKALINITY (CaCO. ALK mg/l TIME TOTAL VOLUME PH SC **TEMP COMMENTS** WITHDRAWN (#MHOS/CM) (°C) (GALLONS) 1020 0.0 START PUMPING WEAL Adi 1030 7.11 2.0 Mattern lan-Switchedto#90 IS 1040 **W.**5 290 1.5 1050 20 60 1.9 450 andfalling - moter bot lab. ZS 7.0 440 1100 SAMPLES TYPES: (WSACODE) SAMPLE METHODS: (WSMCODE) FB -D-DUPLICATE FIELD BLANK G-**GRAB** SP-SUBMERSIBLE PUMP

BAILER

PERISTALIC PUMP

SUCTION LIFT PUMP

AL -

BP -

AIR-LIFT SAMPLER

BLADDER PUMP

В-

PP -

SL -

R-

S-

Κ-

REPLICATE

SPIKE

KNOWN

TB -

LB -

N -

TRIP BLANK

LAB BLANK

NORMAL

PAGE 1 9-2-92 LOG TIME INSTALLATION ID QUILCO LOG DATE 1536 LOCATION ID ao amio SAMPLE TYPE SAMPLE ID 01-MM-00-01 15.40 td2.00 **INITIAL GROUNDWATER DEPTH (FT)** SAMPLING PERIOD: START IUUD COMPLETE 1700 SAMPLING METHOD LOGGER CODE Ras LAB CODE DATE SENT OVM: BZ-3ppm, BH 29 ppm **COMMENTS** FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN S.U. На SPECIFIC CONDUCTANCE uso SC μmhos/c **REDOX POTENTIAL** Eh 60 mvoits **TEMPERATURE TEMP** °C ALKALINITY (CaCO₃ ALK mg/l

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	РН	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1530	0.0				START PUMPING
1535	2.5	9.9	440	1.60	
1549	5	9	436	1.3	
1622	10	19.7	645	1.5	
1629	13	5.7	6007	1.2	PRCHOCK PH moter
1639	14	6.8	USO	1.5	O.K. now.
	\				

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D-**DUPLICATE** FB -FIELD BLANK G-**GRAB** SP-SUBMERSIBLE PUMP R-REPLICATE TB -TRIP BLANK В-BAILER AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** KNOWN N -NORMAL SUCTION LIFT PUMP

PAGE 1 INSTALLATION ID QUATE LOG DATE Q.ZOQZ LOG TIME 0710 LOCATION ID 05 Cm 01 SAMPLE TYPE N SAMPLE ID 02-GM-01-01 Durgod well line 20 min at flow Rotte ~ 10 gaz/min INITIAL GROUNDWATER DEPTH (FT) SAMPLING PERIOD: START OITO COMPLETE Rad SAMPLING METHOD LOGGER CODE Ras LAB CODE 9-21-92 DATE SENT Base water supple **COMMENTS** FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN S.U. Hq SPECIFIC CONDUCTANCE SC μmhos/c REDOX POTENTIAL Eh mvolts **TEMPERATURE** 4.6 **TEMP** °C ALKALINITY (CaCO₃ 446 ALK mg/l TIME **TOTAL VOLUME** PH SC **TEMP** COMMENTS WITHDRAWN (#MHOS/CM) (C) (GALLONS) 0.0 START PUMPING SAMPLES TYPES: (WSACODE) SAMPLE METHODS: (WSMCODE)

D-**DUPLICATE** FB -R-REPLICATE TB - G-

SP-SUBMERSIBLE PUMP

S-SPIKE **KNOWN**

K-

LB -N -

FIELD BLANK TRIP BLANK LAB BLANK

NORMAL

B -PP -

BAILER PERISTALIC PUMP SL -SUCTION LIFT PUMP

GRAB

AL -AIR-LIFT SAMPLER BP -**BLADDER PUMP**

PAGE 1 INSTALLATION ID QOLOTO LOG DATE 9-20-92 LOG TIME 0850 DZ-GW-OZ LOCATION ID SAMPLE TYPE SAMPLE ID 02-GW-02-01 INITIAL GROUNDWATER DEPTH (FT) SAMPLING PERIOD: START 0820 COMPLETE SAMPLING METHOD Rad LOGGER CODE LAB CODE Ras DATE SENT 9-21-97 COMMENTS FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN pН S.U. SPECIFIC CONDUCTANCE 240 SC μmhos/c REDOX POTENTIAL -84 Eh mvolts **TEMPERATURE** 5.3 **TEMP** °C ALKALINITY (CaCO, **240** ALK mg/l TIME TOTAL VOLUME PH SC TEMP COMMENTS WITHDRAWN (#MHOS/CM) (°C) (GALLONS) 0.0 START PUMPING

E-182

G-

В-

PP -

SL -

SAMPLE METHODS: (WSMCODE)

PERISTALIC PUMP

SUCTION LIFT PUMP

SP-

AL -

BP -

SUBMERSIBLE PUMP

AIR-LIFT SAMPLER

BLADDER PUMP

GRAB

BAILER

SAMPLES TYPES: (WSACODE)

FB -

TB -

LB -

N -

FIELD BLANK

TRIP BLANK

LAB BLANK

NORMAL

DUPLICATE

REPLICATE

SPIKE

KNOWN

D-

R-

S-

PAGE 1 INSTALLATION ID QOULCE LOG DATE ISO 10-5-92 LOG TIME 07 Gw-03 LOCATION ID N SAMPLE TYPE 02-GW-03-UI SAMPLE ID **INITIAL GROUNDWATER DEPTH (FT)** 1500 1510 SAMPLING PERIOD: START **COMPLETE** Rad SAMPLING METHOD LOGGER CODE 10-6-97 LAB CODE DATE SENT COMMENTS in water Dlank COMMENTS FINAL PARAMETER MEASUREMENTS: 6.9 took bottle back POTENTIAL OF HYDROGEN S.U. pН es estito as SPECIFIC CONDUCTANCE SC μmhos/c 085 REDOX POTENTIAL Eh mvolts make measuements. **TEMPERATURE TEMP** °C 240 ALKALINITY (CaCO, ALK mg/l **TOTAL VOLUME** TIME PH SC **TEMP COMMENTS** WITHDRAWN (#MHOS/CM) (°C) (GALLONS) 1500 0.0 START PUMPING of water to clean links mes well in constant USE. SAMPLES TYPES: (WSACODE) SAMPLE METHODS: (WSMCODE)

KNOWN Ν-NORMAL E-183

FIELD BLANK

TRIP BLANK

LAB BLANK

G-

В-

PP -

SL -

GRAB

BAILER

PERISTALIC PUMP

SUCTION LIFT PUMP

SP-

AL -

BP -

SUBMERSIBLE PUMP

AIR-LIFT SAMPLER

BLADDER PUMP

FB -

TB -

LB -

D-

R-

s.

Κ-

DUPLICATE

REPLICATE

SPIKE

PAGE 1 10-592 LOG TIME INSTALLATION ID QQ1010 LOG DATE 02 60003 LOCATION ID SAMPLE TYPE 02-001 SAMPLE ID INITIAL GROUNDWATER DEPTH (FT) SAMPLING PERIOD: START 1500 COMPLETE 1510 SAMPLING METHOD LOGGER CODE ras LAB CODE DATE SENT 10-6-92 New base mater supply wood in COMMENTS MOTOR DIOUT FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN ড.প্ pН S.U. SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** Eh mvolts 2010 took bothle bock **TEMPERATURE TEMP** °C 40 office for ALKALINITY (CaCO, ALK 242 moasurements mg/l TIME **TOTAL VOLUME** PH SC TEMP COMMENTS WITHDRAWN (#MHOS/CM) (°C) (GALLONS) 1500 0.0 START PUMPING of water run to clean lines-well in constant use

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D-DUPLICATE FB -FIELD BLANK G-**GRAB** SP-SUBMERSIBLE PUMP R. REPLICATE TB -TRIP BLANK B-**BAILER** AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP **BLADDER PUMP** BP -Κ-KNOWN N -NORMAL SL -SUCTION LIFT PUMP

PAGE 1 10-5-92 LOG TIME 1515 INSTALLATION ID QUILOR LOG DATE 1000-50 LOCATION ID SAMPLE TYPE N SAMPLE ID 05-6-01-01 **INITIAL GROUNDWATER DEPTH (FT)** 1515 SAMPLING PERIOD: START COMPLETE Rad SAMPLING METHOD LOGGER CODE Ras 10-6-97 LAB CODE DATE SENT Backup base water supplywell. not COMMENTS used in soveral marking 200 ft dog (not brided orondui) FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN 7.0 S.U. pΗ 269 SPECIFIC CONDUCTANCE SC μmhos/c REDOX POTENTIAL Eh mvolts Deoplem not notice. TEMPERATURE **TEMP** °C 240 ALKALINITY (CaCO, ALK mg/l TIME **TOTAL VOLUME** PH SC **TEMP COMMENTS** WITHDRAWN (MHOS/CM) (C) (GALLONS) 0.0 START PUMPING 269 1515 7.0 Durang a Candia agricus, to clean lines would have to drain many more to purce the weel as this well not been used innionities sommula in belampe and block when many gallons are used daily to wet eards potroleum odorin pump building. SAMPLES TYPES: (WSACODE) SAMPLE METHODS: (WSMCODE) D-**DUPLICATE** FB -FIELD BLANK G-**GRAB** SP-SUBMERSIBLE PUMP REPLICATE R-TB -TRIP BLANK AIR-LIFT SAMPLER В-BAILER AL -S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** KNOWN N-NORMAL SL -SUCTION LIFT PUMP

	Old To				PAGE 1			
LOCAT	ташои ір <u>фотог</u>	<u>√0</u> 1 <u>σ</u> ιοα		14-92 L				
INITIAL GROUNDWATER DEPTH (FT) SAMPLING PERIOD: START SAMPLING METHOD LOGGER CODE RAD LAB CODE COMMENTS Edwin & Dorothy Fear's Dorothy Logger Sampled from fouret at presure tank.								
POTENT SPECIFI REDOX TEMPER	PARAMETER MEASU FIAL OF HYDROGEN FIC CONDUCTANCE POTENTIAL RATURE HITY (CaCO ₃		FS: pH S.L SC μmho Eh mvo TEMP ° C ALK mg	25/c 25 lts -13	3 2 7			
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS			
11005	0.0				START PUMPING			
OEWI	-	7.3	283	2.7	sampled.			

E-186

G-

В-

PP -

SL -

SAMPLE METHODS: (WSMCODE)

PERISTALIC PUMP

SUCTION LIFT PUMP

SP-

BP -

SUBMERSIBLE PUMP

BLADDER PUMP

AL - AIR-LIFT SAMPLER

GRAB

BAILER

SAMPLES TYPES: (WSACODE)

FB -

TB -

LB -

N-

FIELD BLANK

TRIP BLANK

LAB BLANK

NORMAL

DUPLICATE

SPIKE

KNOWN

REPLICATE

D-

R-

S-

K -

	a. 17				PAGE 1
INSTALI	01d Tou 1 <u>70/127</u> 2 DI NOITAL -CUD-EO DI NO	LOG	DATE Q-	14-92 L	OG TIME 1736
SAMPLE	A 1		PLE ID	10- <u>50-W</u>	
SAMPLI	GROUNDWATER DE NG PERIOD: START NG METHOD DE	•	1720 B Ras	COMPLET LOGGER DATE SEN	CODE RAD
COMME	ints And at force	: Def			mestic well.
POTENT SPECIFI REDOX TEMPER	PARAMETER MEASU FIAL OF HYDROGEN IC CONDUCTANCE POTENTIAL RATURE NITY (CaCO ₃		rS: pH S.L SC μmho Eh mvo TEMP °C ALK mg	os/c 3.3 Its -110))
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
	0.0				START PUMPING
1730	-	7.0	331	3.5	Sampled.
	YPES: (WSACODE)		SAMPLE METH	000 04040	

R-

SAMPLE METHODS: (WSMCODE)

SUCTION LIFT PUMP

DUPLICATE FB -FIELD BLANK G -D-REPLICATE TB - TRIP BLANK B - BAILER
SPIKE LB - LAB BLANK PP - PERISTALIC PUMP
KNOWN N - NORMAL SL - SUCTION LIFT PUMF S-K -

GRAB

SP-BP -

SUBMERSIBLE PUMP AL - AIR-LIFT SAMPLER **BLADDER PUMP**

	61.1 10 1				PAGE 1	
LOCAT	Old tow CLATION ID QANON ON ID O3 GW	LOG DATE		-5-92		
SAMPL	E TYPE	SAMPLE ID	<u> </u>	50mo3-	6 1	
SAMPL	. GROUNDWATER DE JNG PERIOD: START JNG METHOD DDE		- 100 B	COMPLE LOGGER DATE SE	CODE RAD	
COMMI	ents west end of	00 Old Gavera	rman B	roph.	and Pokard Chadhourns	
POTEN SPECIF REDOX TEMPEI	PARAMETER MEASUITIAL OF HYDROGEN TIC CONDUCTANCE POTENTIAL RATURE NITY (CaCO ₃		μmho mvo MP ° C	os/c 44 olts 50	Proposey Charped	nf
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	РН (µМН	SC IOS/CM)	TEMP (°C)	COMMENTS	
1045	0.0				START PUMPING	
					for 15 min to clear	
ŧ			- A		line from Rivae. — IL 1550C	
					16/5386	
- 1						

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D-DUPLICATE FB -FIELD BLANK G-**GRAB** SP-SUBMERSIBLE PUMP R-REPLICATE TRIP BLANK TB -В-BAILER AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** K -KNOWN Ν-NORMAL SL -SUCTION LIFT PUMP

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				PAGE 1
INSTAL LOCATI	100 ID 03-CM TALION ID 00/18/1 1019-400	LOG D	ATE <u>10</u>	<u>-5-92</u> L	OG TIME 1100
SAMPL	E TYPE D	SAMPL	E ID <u>()</u>	<u>3-05-01</u>	
SAMPLI SAMPLI LAB CO	ENTS	T	1100 B ROS Lield dup		CODE RAD
POTENT SPECIFI REDOX TEMPER	PARAMETER MEASI TIAL OF HYDROGE IC CONDUCTANCE POTENTIAL RATURE NITY (CaCO ₃	N	pH S.U SC μmho Eh mvo TEMP °C ALK mg	os/c 45°	o - not a good number.
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	РН	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1045	0.0		••		START PUMPING
					allowed mater to
	·				run for 15 minuter
					to clear line from
4					Piver.
					-1L/530c.
	·				
SAMPLES T	YPES: (WSACODE)		SAMPLE METH	ODS: (WSMC	DDE)
R - REP S - SPIR	PLICATE FB - PLICATE TB - KE LB - DWN N -	FIELD BLANK TRIP BLANK LAB BLANK NORMAL	B - BAILE PP - PERIS		

	Old tou				PAGE 1
LOCAT	TATION ID ACTOR	100 100 100	_	<u>5-92-</u> v <u>o-w0-</u> 2	
SAMPL		•	Ras	COMPLE LOGGER DATE SE	CODE ROD
POTEN SPECIF REDOX TEMPEI	PARAMETER MEASU TIAL OF HYDROGEN IC CONDUCTANCE POTENTIAL RATURE NITY (CaCO ₃			M&2200	ed in measured at well nead office somments 3 5.9 13 525 07 100 5.5
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1615	0.0		••		START PUMPING
					well only 52. Adeed
					someone just finished
					a load of burdry-no
					used to brush LBA-
					passed holding tanki
					but opes through filter
					Slars movel #

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

329.347300

D - R - S - K -	DUPLICATE REPLICATE SPIKE KNOWN	FB - TB - LB - N -	FIELD BLANK TRIP BLANK LAB BLANK NORMAL	G - B - PP - SL -	GRAB BAILER PERISTALIC PUMP SUCTION LIFT PUMP	SP- AL - BP -	SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP
--------------------------	--	-----------------------------	--	----------------------------	--	---------------------	--

PAGE 1 Q.Z.QZ LOG TIME 1115 INSTALLATION ID CONTOL LOG DATE SOWMPO LOCATION ID 10-so-cumpo SAMPLE TYPE SAMPLE ID 17.14 td=18.010 **INITIAL GROUNDWATER DEPTH (FT)** 1900 1930 SAMPLING PERIOD: START COMPLETE Bad LOGGER CODE SAMPLING METHOD Ras 9-3-92 LAB CODE DATE SENT not enough water to use waterra. COMMENTS Durous as much water as possible, then came back later to sample with boiles. Flush mount well has been run over by heavy, equipment. **COMMENTS** FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN S.U. pН SPECIFIC CONDUCTANCE SC μmhos/c REDOX POTENTIAL Eh mvolts **TEMPERATURE TEMP** °C 580 ALKALINITY (CaCO, ALK mg/l TIME **TOTAL VOLUME** PH SC **TEMP** COMMENTS WITHDRAWN (#MHOS/CM) (C) (GALLONS) 1115 0.0 START PUMPING 1175 0.1 not enough water waterna tubine SAMPLES TYPES: (WSACODE) SAMPLE METHODS: (WSMCODE) D-**DUPLICATE** FB -FIELD BLANK G-**GRAB** SP-SUBMERSIBLE PUMP R-REPLICATE TB -TRIP BLANK В-BAILER AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK BP -PP -PERISTALIC PUMP **BLADDER PUMP** KNOWN

SUCTION LIFT PUMP

SL -

N -

NORMAL

					PAGE 1			
INSTAL	LATION ID OO/LO		G DATE Q	-2-9Z 1	OG TIME 1120			
	E TYPE N		MPLE ID ON	1-1707-05	5-OI			
SAMPL SAMPL LAB CO		•	1700 B Ras	B LOGGER CODE POD ROS DATE SENT 9-3-92				
СОММІ	ENTS		ONW RH.	Opan,	82.000m			
FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN SPECIFIC CONDUCTANCE REDOX POTENTIAL Eh mvolts TEMPERATURE ALKALINITY (CaCO ₃ COMMENT COMMENT								
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP	COMMENTS			
1120	0.0				START PUMPING			
11570		4.5	712	84	very muddy water			
1130	<u> </u>	(0.10	180	8.7	11			
1142	10	65	10107	8.0	11			
1150	14	6.3	037	9.0	11			
1154	10	(0.1	U3Z	9.2	11			
			1					

SAMPLES TYPES: (WSACODE)

D-DUPLICATE FB -FIELD BLANK G -GRAB SP-SUBMERSIBLE PUMP R-REPLICATE TB -TRIP BLANK В-BAILER AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** K-KNOWN N-NORMAL SL -SUCTION LIFT PUMP

SAMPLE METHODS: (WSMCODE)

PAGE 1 940.92 LOG TIME 1000 INSTALLATION ID QOULTO LOG DATE LOCATION ID E0-LUMPO SAMPLE TYPE N-1050mp10 SAMPLE ID 04 mu-03-01 soc initial log form **INITIAL GROUNDWATER DEPTH (FT)** 1040 SAMPLING PERIOD: START COMPLETE SAMPLING METHOD LOGGER CODE Ras LAB CODE DATE SENT Calibrate PH meter at Site. Over 0 COMMENTS FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN S.U. pН SPECIFIC CONDUCTANCE SC μmhos/c -86 **REDOX POTENTIAL** Eh mvolts **TEMPERATURE** °C **TEMP** secinitial by form. ALKALINITY (CaCO, ALK mg/l

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1000	0.0	-			START PUMPING
1025	0	6.9	470	7.7	
1030	15	5.7	676	7.7	
1035	<u>.</u>	4.9	480	7.8	
1040	18	6.9	472	7.7	

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D -	DUPLICATE	FB -	FIELD BLANK	G -	GRAB	SP-	SUBMERSIBLE PUMP
R -	REPLICATE	TB -	TRIP BLANK	B -	BAILER	AL -	AIR-LIFT SAMPLER
S -	SPIKE	LB -	LAB BLANK	PP -	PERISTALIC PUMP	BP -	BLADDER PUMP
Κ-	KNOWN	N-	NORMAL	SI -	SUCTION LIFT PLIMP		

PAGE 1 INSTALLATION ID QCALOTOL LOG DATE 9/22/92 LOG TIME 1435 LOCATION ID 05 mwal SAMPLE TYPE SAMPLE ID 05-MW-01-01 INITIAL GROUNDWATER DEPTH (FT) 22.75 td:53.88 SAMPLING PERIOD: START 1635 COMPLETE B SAMPLING METHOD Bad LOGGER CODE LAB CODE Ras DATE SENT 9/23/92 COMMENTS FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN pН S.U. SPECIFIC CONDUCTANCE SC μmhos/c REDOX POTENTIAL Eh mvolts TEMPERATURE **TEMP** °C ALKALINITY (CaCO, ALK mg/l TIME TOTAL VOLUME PH SC TEMP COMMENTS WITHDRAWN (#MHOS/CM) (°C) (GALLONS) 0.0 START PUMPING 1530 ७.३ 5010 1.3 1541 10 able to got anu 15 1035 Sampled

R - REPLICATE TB - TRIP BLAI
S - SPIKE LB - LAB BLAN
K - KNOWN N - NORMAL

FB -

SAMPLES TYPES: (WSACODE)

DUPLICATE

D٠

FIELD BLANK TRIP BLANK LAB BLANK G - GRAB B - BAILER PP - PERISTALIC PUMP

SAMPLE METHODS: (WSMCODE)

SUCTION LIFT PUMP

SP-AL -BP -

SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP

bo-somple

GROUND WATER QUALITY SAMPLING RECORD

PAGE 1 INSTALLATION ID QOULDO LOG DATE 10-1-92 LOG TIME 1628 05 mw01 **LOCATION ID** SAMPLE TYPE 05-MW-01-01 _ SAMPLE ID >resample td=53.88 INITIAL GROUNDWATER DEPTH (FT) luzr SAMPLING PERIOD: START COMPLETE SAMPLING METHOD Rad LOGGER CODE 10-2-92 LAB CODE DATE SENT OUM ODOM BH, ODOMBZ- NO **COMMENTS COMMENTS** FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN pН S.U. SPECIFIC CONDUCTANCE SC μmhos/c REDOX POTENTIAL Eh mvolts **TEMPERATURE TEMP** °C ALKALINITY (CaCO, ALK mg/l TIME **TOTAL VOLUME** PH SC **TEMP** COMMENTS WITHDRAWN (#MHOS/CM) (C) (GALLONS) 0.0 START PUMPING 10 15 40 SAMPLES TYPES: (WSACODE) SAMPLE METHODS: (WSMCODE) DUPLICATE D. FB -FIELD BLANK G-**GRAB** SP-SUBMERSIBLE PUMP R-REPLICATE TB -TRIP BLANK В-BAILER AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP KNOWN** N-NORMAL SL -SUCTION LIFT PUMP

PAGE 1 INSTALLATION ID QQUETO LOG DATE 9-1392 LOG TIME 1810 LOCATION ID OSMWOZ SAMPLE TYPE SAMPLE ID 05mw02-01 20.78 INITIAL GROUNDWATER DEPTH (FT) td.50.48 1755 SAMPLING PERIOD: START 1815 COMPLETE SAMPLING METHOD Rad LOGGER CODE Ras LAB CODE DATE SENT our out - to much moisture in COMMENTS ar. FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN pН S.U. SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** Eh mvolts **TEMPERATURE** TEMP °C ALKALINITY (CaCO, 188

mg/i

			5		
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	РН	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1710	0.0				START PUMPING
1720	8	5.01	326	2.0	OTART TOWN NG
1730	15	φ3	333	1.0	
1740	25	6.0	330	1.3	
1750	35	6.3	333	1.3	Switch to untoma
1755	37				Start sampling.

ALK

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D-DUPLICATE FB -FIELD BLANK G-**GRAB** SP-SUBMERSIBLE PUMP R-REPLICATE TB -TRIP BLANK В-BAILER AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** K -KNOWN NORMAL SL -SUCTION LIFT PUMP

PAGE 1

								PAGE 1
INSTAL	LATION ID QOVOTA		DATE	9/	21/921	OG TIME	i	1644
SAMPLI	4.1		PLE ID	05	·mw·s	3-01		
	GROUNDWATER DE	PTH (FT	<u>। १२.१८</u> ।७५८	td25	S.72 COMPLE	TE		
	NG METHOD		73		LOGGER		Rad	
LAB CC			Ras		DATE SE		9/22/	92
СОММЕ	ENTS		340,	<u> </u>	dy.Sr	JON OL	o dron	<u>d.</u>
FINAL F	'ARAMETER MEASUI	REMENT	S:				C	OMMENTS
POTENT	TIAL OF HYDROGEN		pН	S.U	3	<u>. 0</u>		
	IC CONDUCTANCE		SC	μ mho	s/c _5	27		
	POTENTIAL		Eh	mvol				•
TEMPER			TEMP	°C		.0		
ALKALIN	NITY (CaCO ₃		ALK	mg/	/I <u> </u>	38		
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	РН	SC (MHOS)	/CM)	TEMP (°C)		СОММЕ	ENTS

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1400	0.0				START PUMPING
1011	5	7.9	397	1.2	
1617	10	7.5	424	1.7	
1621	15	7.2	439	1.7	
1629	20	7.1	517	1.9	
1635	25	7.0	453	2.0	
1638	30	70	527	2.0	
1644	39	7.0	527	2.0	

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D-	DUPLICATE	FB -	FIELD BLANK	G-	GRAB	SP-	SUBMERSIBLE PUMP
R•	REPLICATE	TB -	TRIP BLANK	В-	BAILER	AL -	AIR-LIFT SAMPLER
S-	SPIKE	LB -	LAB BLANK	PP -	PERISTALIC PUMP	BP -	BLADDER PUMP
Κ-	KNOWN	N -	NORMAL	SL -	SUCTION LIFT PUMP		

PAGE 1 9/22/92 LOG TIME INSTALLATION ID QQ/QCQ LOG DATE 1306 LOCATION ID SAMPLE TYPE SAMPLE ID US mwoy or INITIAL GROUNDWATER DEPTH (FT) 05.PV & 15.81 SAMPLING PERIOD: START 1306 COMPLETE SAMPLING METHOD Rad LOGGER CODE LAB CODE Ras 9/23/92 DATE SENT COMMENTS FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN S.U. pН SPECIFIC CONDUCTANCE 696 SC μmhos/c REDOX POTENTIAL Eh mvolts **TEMPERATURE TEMP** °C

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	РН	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1209	0.0				START PUMPING
1232	5	7.0	731	1.2	Droduct on water
1240	10	5.7	715	(.1	p. cooc o i and
1242	15	5.2	713	1.1	
1244	70	5.4	725	1.2	
1521	25	5.8	724	1.1	
1256	36	4.9	718	1.1	
1304	35	5.8	696	111	
1300	38	4.1	496	1.1	

mg/l

ALK

SAMPLES TYPES: (WSACODE)

ALKALINITY (CaCO3

SAMPLE METHODS: (WSMCODE)

D - R - S - K -	DUPLICATE REPLICATE SPIKE KNOWN	FB - TB - LB - N -	FIELD BLANK TRIP BLANK LAB BLANK NORMAL	G - B - PP - SL -	GRAB BAILER PERISTALIC PUMP SUCTION LIFT PUMP	SP- AL - BP -	SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP
--------------------------	--	-----------------------------	--	----------------------------	--	---------------------	--

E-198

Resample

GROUND WATER QUALITY SAMPLING RECORD

PAGE 1 INSTALLATION ID GOLOTO LOG DATE 10-1-92 LOG TIME 1225 05 mwo4 LOCATION ID SAMPLE TYPE __ SAMPLE ID 05mw0401 70.55 W.49.20 INITIAL GROUNDWATER DEPTH (FT) 1225 COMPLETE SAMPLING PERIOD: START Pad SAMPLING METHOD LOGGER CODE 10-2-97 LAB CODE DATE SENT Oum - 1.7 ppm BH, 082. **COMMENTS** FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN S.U. pΗ SPECIFIC CONDUCTANCE SC μmhos/c _____ REDOX POTENTIAL Eh mvolts **TEMPERATURE TEMP** °C ALKALINITY (CaCO, ALK mg/l TIME TOTAL VOLUME PH SC TEMP COMMENTS WITHDRAWN (#MHOS/CM) (°C) (GALLONS) 1115 0.0 START PUMPING 1130 W.77 10 meter not uscelling 25 1150 1205 40 1225

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D -	DUPLICATE	FB -	FIELD BLANK	G-	GRAB	SP-	SUBMERSIBLE PUMP
R-	REPLICATE	TB -	TRIP BLANK	В.	BAILER	AL -	AIR-LIFT SAMPLER
S-	SPIKE	LB -	LAB BLANK	PP -	PERISTALIC PUMP	BP -	BLADDER PUMP
K -	KNOWN	N -	NORMAL	SL -	SUCTION LIFT PUMP		55.552

E-199

PAGE 1 INSTALLATION ID COLOTAL LOG DATE 9-21-92 LOG TIME 1127 LOCATION ID 05mw-05 SAMPLE TYPE 05-mw-05-01 SAMPLE ID INITIAL GROUNDWATER DEPTH (FT) SAMPLING PERIOD: START 1127 COMPLETE SAMPLING METHOD Rad LOGGER CODE LAB CODE ras 9-22-92 DATE SENT Oumio **COMMENTS** FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN pН S.U. SPECIFIC CONDUCTANCE SC µmhos/c REDOX POTENTIAL Eh mvolts **TEMPERATURE** 0.7 **TEMP** °C ALKALINITY (CaCO, 900 ALK mg/l TIME TOTAL VOLUME PH SC **TEMP** COMMENTS WITHDRAWN (#MHOS/CM) (C) (GALLONS) 0.0 START PUMPING 1057 49 **US3** 0.7 SOIL 10 7,0 100 0.8 15 1107 **এ**.স 683 0.8 20 683 0.7 25 1115 678 ഗ്രമ 0.7 1120 30 ഗЯ 600 0.7 3/n 1127 ७,१ 45Q 0.7

SAMPLES TYPES: (WSACODE)

* obvious done

SAMPLE METHODS: (WSMCODE)

PERISTALIC PUMP

SUCTION LIFT PUMP

D-**DUPLICATE** FB -FIELD BLANK REPLICATE R-TB -TRIP BLANK S-SPIKE LB -LAB BLANK Κ-KNOWN N-NORMAL

Droduct

G - GRAB B - BAILER

SP-AL -BP -

SUBMERSIBLE PUMP AIR-LIFT SAMPLER

BLADDER PUMP

E-200

PP -

SL -

PAGE 1

	LATION ID GOIRT		DATE Q	9-20-92 LOG TIME 1045			
LOCATI SAMPLI			PLE ID OS	muouc	\1		
					·		
	GROUNDWATER DE	•	16.61 64.4	4000			
	NG METHOD		B	COMPLETE LOGGER CO	DE RAD		
LAB CC			Ras	DATE SENT		17	
						A-1000	
COMME	ENTS						
FINAL F	ARAMETER MEASU	REMENT	S:			OMMENTS	
	TIAL OF HYDROGEN	Į	pH S.l				
	C CONDUCTANCE		SC μmho				
TEMPER	POTENTIAL		Eh mvo				
	IITY (CaCO,		TEMP °C	3			
ALIVALII			ALK mg	/ <u>714</u>	<u> </u>		
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	СОММЕ	ENTS	
	0.0		••		START PU	MPING	
1415	9	52	678	3.8			
1425	18	6.3	445	35			
1636	27	47	433	3.2			
1642	37	67	してて	3.1			

E-201

G-

B-PP-

SL -

SAMPLE METHODS: (WSMCODE)

PERISTALIC PUMP

SUCTION LIFT PUMP

SP-

AL -

BP -

SUBMERSIBLE PUMP

AIR-LIFT SAMPLER

BLADDER PUMP

GRAB

BAILER

SAMPLES TYPES: (WSACODE)

FB -

TB -

LB -

Ν-

FIELD BLANK

LAB BLANK

NORMAL

TRIP BLANK

DUPLICATE

REPLICATE

SPIKE

KNOWN

D-

R-

s.

K -

					PAGE 1				
INSTAL LOCAT	LATION ID 90/00 TON ID 05 M		DATE <u>l</u> O	1-92	OG TIME 1206				
SAMPL	E TYPE N	SAM	IPLE ID	<u>5 mw</u> o	D-01				
SAMPL	GROUNDWATER D ING PERIOD: START ING METHOD DDE		18.48 tal. 1200 B Ras	COMPLE LOGGER DATE SE	CODE ROD				
_	COMMENTS OVM: 20 BH, 0 BZ. Set PH meter TO 01 1100.								
POTENT SPECIF REDOX TEMPER	PARAMETER MEASU TIAL OF HYDROGEN IC CONDUCTANCE POTENTIAL RATURE NITY (CaCO ₃		'S: pH S.I SC μmho Eh mvo TEMP ° (ALK mg	os/c olts	COMMENTS				
TIME	TOTAL VOLUME	PH	SC	TEMP	COMMENTS				
	WITHDRAWN (GALLONS)		(µMHOS/CM)	(°C)	COMMENTS				
1100			(#MHOS/CM)	(°C)					
1100	(GALLONS)	 (0.4	(#MHOS/CM) UYO		START PUMPING				
1110 1115	(GALLONS) 0.0 5	 (0.4		3.2	START PUMPING PH meter not working				
1110 1115 1140	(GALLONS) 0.0 5 10 25	 (0.4		3.2 3.2	START PUMPING PH meter not working. will continue to				
1110 1115 1140 1145	(GALLONS) 0.0 5 10 25 30	 (0.4		3.2 3.2	START PUMPING PH meter not working. will continue to				
1110 1115 1140 1145	(GALLONS) 0.0 5 10 25	 (0.4		3.2 3.2	START PUMPING PH meter not working. will continue to				
1110 1115 1140 1145	(GALLONS) 0.0 5 10 25 30	 (0.4		3.2 3.2	START PUMPING PH meter not working				
	(GALLONS) 0.0 5 10 25 30	 (0.4		3.2 3.2	START PUMPING PH meter not working. will continue to				
1110 1115 1140 1145	(GALLONS) 0.0 5 10 25 30	 (0.4		3.2 3.2	START PUMPING PH meter not working. will continue to				

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

PERISTALIC PUMP

SUCTION LIFT PUMP

D-DUPLICATE FB -FIELD BLANK R-REPLICATE TB -S-SPIKE LB -KNOWN N-

TRIP BLANK LAB BLANK NORMAL

G-GRAB В-BAILER

SP-AL -BP -

SUBMERSIBLE PUMP AIR-LIFT SAMPLER **BLADDER PUMP**

PP -

SL -

PAGE 1

	LATION ID QOLO		DATE 9.	<u>1392</u> L	OG TIME	1500
LOCATI		<u> 707</u>				
SAMPLI	E TYPEN	SAM	IPLE ID OS	s mwo	701	
INITIAL	GROUNDWATER DE	EPTH (F	17.78 ta	28.35		
SAMPLI	ING PERIOD: START		1450	COMPLET	TE 1500	<u> </u>
SAMPLI	ING METHOD		_B	LOGGER	CODE Rad	
LAB CC	DE		Ras	DATE SE	NT <u>9-14</u>	-92
СОММЕ	ENTS				lmost slo	<u>e</u> t
			תפעון פען	taker)	
FINAL F	PARAMETER MEASU	REMENT	rs:		(COMMENTS
POTENT	TIAL OF HYDROGEN	ł	pH S.L	ı. <u>10.4</u>	4	
SPECIF	IC CONDUCTANCE		SC µmho	s/c UQ	10	
REDOX	POTENTIAL		Eh mvo	lts <u>09</u>	ዋ	
TEMPER	RATURE		TEMP °C			
ALKALIN	NITY (CaCO ₃		ALK mg	/1 <u>105</u>	<u> </u>	
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (µMHOS/CM)	TEMP	СОММ	ENTS
1420	0.0				START PI	JMPING
1475	2	03	1.01	. 0	•	

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1420	0.0				START PUMPING
1425	3	8.2	680	1.8	·
1430	9	9.7	687	1.7	pH meter possibly foulin
1434	9	9.7	703	1.7	
1440	12	10.1	698	1.7	
1445	IS	10.4	690	1.7	
1449	17	109	696	1.7	Switched to waterna

SAMPLES TYPES: (WSACODE)

D - R -	DUPLICATE REPLICATE	FB - TB -	FIELD BLANK TRIP BLANK	G - B -	GRAB BAILER	SP- AL -	SUBMERSIBLE PUMP AIR-LIFT SAMPLER
S-	SPIKE	LB -	LAB BLANK	PP -	PERISTALIC PUMP	BP -	BLADDER PUMP
K -	KNOWN	N -	NORMAL	SL -	SUCTION LIFT PLIMP		

PAGE 1 INSTALLATION ID (COLOR) LOG DATE 9-1392 LOG TIME 1225 LOCATION ID SAMPLE TYPE 05 mw co SAMPLE ID INITIAL GROUNDWATER DEPTH (FT) 16.39 SAMPLING PERIOD: START 1230 COMPLETE SAMPLING METHOD LOGGER CODE LAB CODE Ras DATE SENT Dum wet - no loading COMMENTS FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN 6.9 pН S.U. SPECIFIC CONDUCTANCE SC μmhos/c REDOX POTENTIAL 101 Εh mvolts **TEMPERATURE TEMP** °C 4.0 ALKALINITY (CaCO, ALK 7110 mg/l

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1145	0.0				START PUMPING
1155	3	6.4	547	3.10	
1205	9	4.5	SSS	3.60	
1215	12	99	552	4.1	
1220	14	4.8	<i>S</i> 35	4.0	
1225	10	6.8	541	4.0	

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D-DUPLICATE FB -FIELD BLANK G-GRAB SP-SUBMERSIBLE PUMP R-REPLICATE TB -TRIP BLANK В-BAILER AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** K -KNOWN **NORMAL** SL -SUCTION LIFT PUMP

E-204

PAGE 1

Sutched to water a.

	INSTALLATION ID GOLOTO LOG DATE Q-B-QZ LOG TIME 1100									
	SAMPLE TYPE N SAMPLE ID OS MU 09 01									
SAMPLI SAMPLI	INITIAL GROUNDWATER DEPTH (FT) SAMPLING PERIOD: START SAMPLING METHOD LAB CODE INC. 18.92 td: 28.63 COMPLETE LOGGER CODE ROS DATE SENT 1175 POD 19-14-97									
	Ot 05 mu 09.									
FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN SPECIFIC CONDUCTANCE REDOX POTENTIAL Eh mvoits TEMPERATURE ALKALINITY (CaCO ₃ COMMENTS COMMENTS COMMENTS 10 10 10 10 10 10 10 10 10 1										
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS					
1020	0.0				START PUMPING					
1030	4	7.2	512	1.8						
1030	9	7.6	500	1.0						
1040	8	7.0	499	1.60	1					
1040	10	7.0	490	1.0						
1049	11	70	492	1.6						
1049	-				Sutched to water					

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D -	DUPLICATE	FB -	FIELD BLANK	G-	GRAB	SP-	SUBMERSIBLE PUMP
R - S - K -	REPLICATE SPIKE KNOWN	TB - LB - N -	TRIP BLANK LAB BLANK NORMAL	B- PP- SL-	BAILER PERISTALIC PUMP SUCTION LIFT PUMP	AL - BP -	AIR-LIFT SAMPLER BLADDER PUMP

E-205

PAGE 1 INSTALLATION ID OOLOTO. LOG DATE 9-13-92 LOG TIME 1100 Porum 20 LOCATION ID 8040120 SAMPLE TYPE D SAMPLE ID 18 AZ INITIAL GROUNDWATER DEPTH (FT) 1100 SAMPLING PERIOD: START 1125 COMPLETE SAMPLING METHOD Rad LOGGER CODE LAB CODE Ras 9-14-97 DATE SENT COMMENTS FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN pН S.U. SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** 157.0 Eh mvolts **TEMPERATURE TEMP** °C ALKALINITY (CaCO, 020.0 ALK mg/l TIME TOTAL VOLUME PH SC **TEMP** COMMENTS WITHDRAWN (#MHOS/CM) (°C) (GALLONS) 0.0 START PUMPING

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D-DUPLICATE FB -FIELD BLANK G-GRAB SP-SUBMERSIBLE PUMP R. REPLICATE TB -TRIP BLANK B٠ BAILER AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** κ. KNOWN N -NORMAL SL -SUCTION LIFT PUMP

PAGE 1 INSTALLATION ID COLOTO LOG DATE 9-13-92 LOG TIME 1405 LOCATION ID Os muno WG SAMPLE ID SAMPLE TYPE 10-01-WM-20 19.99 64:30.00 INITIAL GROUNDWATER DEPTH (FT) 1415 SAMPLING PERIOD: START 1405 COMPLETE SAMPLING METHOD LOGGER CODE LAB CODE DATE SENT temp 38°f - lain **COMMENTS** FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN pН S.U. SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** Eh mvolts **TEMPERATURE**

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1325	0.0		••		START PUMPING
1330	3	4.8	478	5.8	
1338	5	Ley Ley	500	2.1	
1343	7	US	SOI	2.1	
1348	9	99	503	2.1	
1354	12	47	SOY	2.1	Switched to wother

TEMP

ALK

°C

mg/l

SAMPLES TYPES: (WSACODE)

ALKALINITY (CaCO,

D- R-	DUPLICATE REPLICATE	FB - TB -	FIELD BLANK TRIP BLANK	G- B-	GRAB	SP-	SUBMERSIBLE PUMP
s.	SPIKE	LB -	LAB BLANK	PP.	BAILER PERISTALIC PUMP	AL - BP -	AIR-LIFT SAMPLER BLADDER PUMP
K -	KNOWN	N -	NORMAL	SL -	SUCTION LIFT PLIMP	□ Γ •	DEADUEN FUMP

PAGE 1 9/23/92 LOG TIME INSTALLATION ID QQ\QCC LOG DATE 1110 OSMWII LOCATION ID SAMPLE TYPE SAMPLE ID OSMUSILO INITIAL GROUNDWATER DEPTH (FT) 21.15 td:28.17 SAMPLING PERIOD: START Illo COMPLETE SAMPLING METHOD Rad LOGGER CODE LAB CODE Ras 9/24/92 DATE SENT COMMENTS FINAL PARAMETER MEASUREMENTS: **COMMENTS** POTENTIAL OF HYDROGEN 6.8 S.U. Hq SPECIFIC CONDUCTANCE 1283 SC μmhos/c REDOX POTENTIAL Eh mvolts **TEMPERATURE** 0.4 **TEMP** °C ALKALINITY (CaCO, 880 ALK mg/l TIME TOTAL VOLUME PH SC TEMP **COMMENTS** WITHDRAWN (#MHOS/CM) (C) (GALLONS) 1047 0.0 START PUMPING 1053 1.5 **6.0** 1423 0.7 1056 3.0 1313 69 05 1059 4.5 69 1306 0.5 1103 6.8 4.0 1280 **5.0** 0.8 1105 **6.9** 1583 **6.4** 1119 Sampled

SAMPLES TYPES: (WSACODE)

D - R - S - K -	DUPLICATE REPLICATE SPIKE KNOWN	FB - TB - LB - N -	FIELD BLANK TRIP BLANK LAB BLANK NORMAL	G - B - PP - SL -	GRAB BAILER PERISTALIC PUMP SUCTION LIFT PUMP	SP- AL - BP -	SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP
--------------------------	--	-----------------------------	--	----------------------------	--	---------------------	--

PAGE 1 INSTALLATION ID COLLOR LOG DATE 9/23/92 LOG TIME 1345 S-mw-12 LOCATION ID SAMPLE TYPE 05-mw-12-01 SAMPLE ID 19.38 6-24.98 INITIAL GROUNDWATER DEPTH (FT) **SAMPLING PERIOD: START** COMPLETE Rad SAMPLING METHOD LOGGER CODE LAB CODE DATE SENT **COMMENTS** FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN S.U. pΗ SPECIFIC CONDUCTANCE SC μmhos/c REDOX POTENTIAL Eh **mvoits TEMPERATURE TEMP** °C 8<u>2</u>4 ALKALINITY (CaCO, ALK mg/l TIME **TOTAL VOLUME** PH SC **TEMP** COMMENTS WITHDRAWN (#MHOS/CM) (C) (GALLONS) 1315 0.0 START PUMPING 7.0 1050 Duroed dru 1331 2 1204 **0.0** 1.1 1201 lo.T

SAMPLES TYPES: (WSACODE)

6

337

339

1342

345

SAMPLE METHODS: (WSMCODE)

1.4

1.4

Sampled

D-**DUPLICATE** FB -FIELD BLANK G-GRAB SP-SUBMERSIBLE PUMP R-REPLICATE TB -TRIP BLANK В. **BAILER** AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** K-**KNOWN** N-NORMAL SL -SUCTION LIFT PUMP

1245

1258

1245

1224

しい

6.7

6.2

نا.

PAGE 1

INSTALLATION ID QUETO LOG DA	ATE 9-27-92 LOG TIME	1457
SAMPLE TYPE SAMPLE	EID <u>Owmwo</u> 1 01	
INITIAL GROUNDWATER DEPTH (FT) SAMPLING PERIOD: START SAMPLING METHOD LAB CODE	2404 Ed=SSAU 1457 COMPLETE B LOGGER CODE ROS DATE SENT	1512 Rad 9-28-92
COMMENTS	15° ambient temp.	
FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN SPECIFIC CONDUCTANCE REDOX POTENTIAL TEMPERATURE ALKALINITY (CaCO ₃	pH S.U. <u>6.7</u> SC μmhos/c 1728 Eh mvolts <u>-039</u> TEMP °C <u>5.5</u> ALK mg/l 1072	COMMENTS

TOTAL VOLUME WITHDRAWN (GALLONS)	РН	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
0.0				START PUMPING
5	4.9	1645	5.3	
10	6.8	1668		
15	6.7			
20	6.9			
25		ורדו		
33	6.7	1728	5.5	-39 mv Sampler
	WITHDRAWN (GALLONS) 0.0 5 10 15 20 25	WITHDRAWN (GALLONS) 0.0 5	WITHDRAWN (GALLONS) 0.0 5	WITHDRAWN (GALLONS) 0.0

SAMPLES TYPES: (WSACODE)

D - R - S -	DUPLICATE REPLICATE SPIKE	FB - TB -	FIELD BLANK TRIP BLANK	G - B -	GRAB BAILER	SP- AL -	SUBMERSIBLE PUMF AIR-LIFT SAMPLER
K-	KNOWN	LB - N -	LAB BLANK NORMAL	PP - SL -	PERISTALIC PUMP SUCTION LIFT PUMP	BP -	BLADDER PUMP

PAGE 1

INSTALLATION ID <u>AOIO NO.</u> LOG DATE 9.27.92 LOG TIME **QS01** LOCATION ID SAMPLE TYPE 10 so cun eso SAMPLE ID 20.92 to \$1.90 INITIAL GROUNDWATER DEPTH (FT) 1020 SAMPLING PERIOD: START COMPLETE SAMPLING METHOD LOGGER CODE LAB CODE DATE SENT 597 ambient COMMENTS FINAL PARAMETER MEASUREMENTS: COMMENTS 6.8 POTENTIAL OF HYDROGEN S.U. pН 1330 SPECIFIC CONDUCTANCE SC μmhos/c. **REDOX POTENTIAL** Eh mvolts 4.0 **TEMPERATURE TEMP** °C ALKALINITY (CaCO, ALK mg/l

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
0941	0.0				START PUMPING
0947	5	7.3	1597	4.0	
0952	10	6.8	1491	3.8	
0958	15	6.0	1403	4.2	
1003	20	7.2	1410	3.9	
1009	25	4.8	1375	3.7	
1014	30	6.7	1400	4.1	
0501	35	6.0	1330	4.0	Sampled
*					

SAMPLES TYPES: (WSACODE)

D •	DUPLICATE	FB -	FIELD BLANK	G -	GRAB	SP-	SUBMERSIBLE PUMP
R •	REPLICATE	TB -	TRIP BLANK	B -	BAILER	AL -	AIR-LIFT SAMPLER
S •	SPIKE	LB -	LAB BLANK	PP -	PERISTALIC PUMP	BP -	BLADDER PUMP
Κ-	KNOWN	N -	NORMAL	SI -	SUCTION LIFT PLIMP		

PAGE 1 INSTALLATION ID QQ1000 LOG DATE 9-8-92 LOG TIME 1730 LOCATION ID DIGMW03 SAMPLE TYPE SAMPLE ID Composor 15.77 8-18.70 INITIAL GROUNDWATER DEPTH (FT) SAMPLING PERIOD: START 1730 1740 **COMPLETE** SAMPLING METHOD Rad LOGGER CODE Ras LAB CODE 9-9-82 DATE SENT wind from dump-odor of **COMMENTS** dimid Daskic. FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN pΗ S.U. SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** Eh mvolts TEMPERATURE 4.8 TEMP °C ALKALINITY (CaCO, (008* out of ocid 9892 ALK mg/l *ran on 9.9.92 TIME **TOTAL VOLUME** PH SC **TEMP** COMMENTS WITHDRAWN (#MHOS/CM) (°C) (GALLONS) 1630 0.0 START PUMPING 5 11045 857 5.1 hope mile we cal US2 10 845 5.0 851 5.0 851 4,9 864 805 4.60 Subtand to bottom 1729

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D-DUPLICATE FB -FIELD BLANK G-**GRAB** SP-SUBMERSIBLE PUMP R-REPLICATE TB -TRIP BLANK B-BAILER AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** K -KNOWN Ν-NORMAL SUCTION LIFT PUMP

NITIAI	GROUNDWATER D	SAMPI	1577	8000	
	ING PERIOD: STAR	, ,	1745	COMPLETE	1755
	ING METHOD		<u>B</u>	LOGGER CO	
LAB CC	DDE		Ras	DATE SENT	9-9-92
COMME	ENTS		thrumat	المعند د	oder from dump.
FINAL F	PARAMETER MEASI	UREMENTS	:	4e	COMMENTS
	TIAL OF HYDROGE	•	pH S.I	25	phuson 9.4.92
	IC CONDUCTANCE POTENTIAL		SC μmho	1.00	TO DOHOUS
	RATURE		Eh mvc	110	<u>in moter.</u>
	NITY (CaCO ₃		ALK mg	10010	ax of axid 9.8.9
	l 	T			1246-6 UP UP
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
_	0.0	-	••		START PUMPING
	See ou	mw	03 for 1	og Shao	t.
					and the second s

		PAGE 1
INSTALLATION ID COLORDA LOG DA LOCATION ID OU MWOY	TE <u>Q-79.92</u> LOG TIME	1543
SAMPLE TYPE N SAMPLE	10 MO CUM UD	
INITIAL GROUNDWATER DEPTH (FT)	16.44 48:66	
SAMPLING PERIOD: START	1543 COMPLETE _	
SAMPLING METHOD	LOGGER CODE _	Rad
LAB CODE	ROS DATE SENT	9-30-92
COMMENTS	Gybace bloom air o	101
COMMENTS Remaning well (Including	Submersible pump is n	ot working.
The second second	Falls of Miles of Little	DUTTURA.
FINAL PARAMETER MEASUREMENTS:		COMMENTS
POTENTIAL OF HYDROGEN	pH S.U. <u>6.7</u>	
SPECIFIC CONDUCTANCE	SC μmhos/c <u>1645</u>	
REDOX POTENTIAL	Eh mvolts	
TEMPERATURE	TEMP °C	
ALKALINITY (CaCO ₃	ALK mg/l	

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	РН	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1448	0.0				START PUMPING
1514	5	6.0	1636	5.2	visible product.
1510	10	10.4	1678	5.2	o some practice.
1522	15	4.	1681	5.2	
1525	20	45	1674	52	
1533	25	6.5	14056	5.0	
1537	30	0.0	1656	5.0	
1543	36	6.7	1645	4.0	-96mu sampled
					THE COMPLETE

SAMPLES TYPES: (WSACODE)

D - R - S - K -	DUPLICATE REPLICATE SPIKE KNOWN	FB - TB - LB - N -	FIELD BLANK TRIP BLANK LAB BLANK NORMAL	G - B - PP - SL -	GRAB BAILER PERISTALIC PUMP SUCTION LIFT PUMP	SP- AL - BP -	SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP
--------------------------	--	-----------------------------	--	----------------------------	--	---------------------	--

						PAGE 1
	TALION ID GOTO			27-92 L	OG TIME	1200
SAMPL	ION ID OLOTTU			<u>amn</u> o	100l	
SAMPL	GROUNDWATER DI ING PERIOD: START ING METHOD DDE	•	21.80 to 1200 B Ras	COMPLE LOGGER DATE SE	CODE ROS	
COMME	ENTS		10°f amb	unt to	mp.	.
POTENT SPECIF REDOX TEMPER	PARAMETER MEASUTIAL OF HYDROGENIC CONDUCTANCE POTENTIAL RATURE NITY (CaCO ₃		FS: pH S.L SC μmhc Eh mvo TEMP ° C ALK mg	os/c 12° lts -0°	79	COMMENTS
						
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	СОМ	MENTS
TIME	WITHDRAWN	PH 	- -			MENTS PUMPING
	WITHDRAWN (GALLONS)	 U.7	- -	(°C)		
1148 1151 1153	WITHDRAWN (GALLONS) 0.0		(#MHOS/CM)	210 (c)		
1148 1151 1153	WITHDRAWN (GALLONS) 0.0 1.5 3.0	- 67	(#MHOS/CM) 1242 1240	3.5 (c)		
1148 1151 1153	WITHDRAWN (GALLONS) 0.0 1.5 3.0 4.5	- - - - - - - - - - - - - - - - - - -	(#MHOS/CM) 1242 17100 1782 1757	3.7 3.7 		
1148 1151 1153 1154	WITHDRAWN (GALLONS) 0.0 1.5 3.0 4.5	- 9.7 9.7	(#MHOS/CM) 1242 1240	24 3.2 3.4 3.4		
1148 1151 1153 1154 1156	WITHDRAWN (GALLONS) 0.0 1.5 3.0 4.5	 	(#MHOS/CM) 1242 17100 1782 1757	3.7 3.7 		PUMPING

K - KNOWN N - NORMAL SL - SUCTION LIFT PLIMP	FT SAMPLER DER PUMP	BLADDER F		AL - BP -	BAILER PERISTALIC PUMP	B- PP-	TRIP BLANK LAB BLANK NORMAL	TB - LB - N -	REPLICATE SPIKE KNOWN	S- K-
--	------------------------	-----------	--	--------------	------------------------	-----------	-----------------------------------	---------------------	-----------------------------	----------

PAGE 1

INSTAL LOCAT	LATION ID COMO		DATE 8	-31-92	LOG TIME 1435
SAMPL	E TYPE N	SAM	IPLE ID O	mwo	01
SAMPL	GROUNDWATER D ING PERIOD: START ING METHOD DDE	-	3.100 td 1505 B ROS	COMPLE LOGGEF DATE SE	CODE ROD
СОММ	ENTS		Ovm.Op	pm.	
POTENT SPECIF REDOX TEMPER	PARAMETER MEASUTIAL OF HYDROGENTIC CONDUCTANCE POTENTIAL RATURE		S: pH S.t SC μmho Eh mvo TEMP ° C ALK mg	os/c 75 olts -3	3
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1430	0.0				START PUMPING
1440		8.8	737	2.3	dryafter-2gas.
1450 1500	<u> </u>	88	753	2.4	dry after more car.
1505					Sampling

SAMPLES TYPES: (WSACODE)

≠pH m	s. K. Eto	DUPLICATE REPLICATE SPIKE KNOWN TOATON	FB - TB - LB - N- CKIONIN	FIELD BLANK TRIP BLANK LAB BLANK NORMAL 79. COOK 61	SL. WOOS	GRAB BAILER PERISTALIC PUMP SUCTION LIFT PUMP COCL Somple +	SP- AL- BP- Kept	SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP CC COIC.
inti	الاستا	Sei Jun - V	UT 4 F	Uttill EV	ساء در	7.0	•	E-216

PAGE 1 8-31-92 LOG TIME INSTALLATION ID Compion LOG DATE 1005 07 mwo1 LOCATION ID 07-05-09 SAMPLE TYPE SAMPLE ID 3.66 49=15.24 INITIAL GROUNDWATER DEPTH (FT) 1645 1605 SAMPLING PERIOD: START COMPLETE SAMPLING METHOD LOGGER CODE Ras 9-1-92 LAB CODE DATE SENT duplicate readings for duplicate **COMMENTS** FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN H meter materiationic S.U. pН SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** Eh mvolts **TEMPERATURE TEMP** °C ALKALINITY (CaCO, ALK mg/l TIME **TOTAL VOLUME** PH SC **TEMP** COMMENTS **WITHDRAWN** (#MHOS/CM) (C) (GALLONS) 0.0 START PUMPING 1005 18 105° 691 moter malfunctioning SAMPLES TYPES: (WSACODE) SAMPLE METHODS: (WSMCODE) D-DUPLICATE FB -FIELD BLANK G-**GRAB** SP-SUBMERSIBLE PUMP R-REPLICATE TB -TRIP BLANK В-BAILER AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** * pH meter materaioning. Look & read Space sample and kept it cold. ill measurement at office same day: 7.9-8.0.

E-217

PAGE 1

							FAGE I
INSTAL	LATION ID COMO		DATE	9.4.	92 LOG	S TIME	1015
SAMPL			MPLE ID		0000 0000	and	
INITIAL	GROUNDWATER D	EPTH (F	n 4.2	42-16	178		
	NG PERIOD: START		1730		OMPLETE	180	Ø
SAMPLI	NG METHOD		B		OGGER CO	70 -	
LAB CC	DE		Ras		ATE SENT		7-92
COMME	ents ading this used it ion	102 11 -S	see origi	m or	ound u	of 1000	· pH meter #91 With Sampling
FINAL P	ARAMETER MEASU	REMENT	TS:				COMMENTS
POTENT	TIAL OF HYDROGEN	1	рH	S.U.	4.8		
SPECIFI	C CONDUCTANCE		sc	μmhos/c	615		
REDOX	POTENTIAL		Eh	mvolts	-75		
TEMPER			TEMP	°C	3.1		
ALKALIN	IITY (CaCO ₃		ALK	mg/l S	io ocioin	misheet.	
TIME	TOTAL VOLUME	PH	22		EMP		

TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
0.0		••	-	START PUMPING
2	us	W28	4.0	well draws abun Bapidly
4	7.0	594	3.4	same as above.
φ	10.9	6003	3.5	
8	10.9	654		
10	6.0	417		
15	4.8	(BS)	3.1	
14.5	6.0	US	3.1	
	WITHDRAWN (GALLONS) 0.0 2 4 9 8 10 12	WITHDRAWN (GALLONS) 0.0	WITHDRAWN (GALLONS) 0.0	WITHDRAWN (GALLONS) 0.0

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D-DUPLICATE FB -FIELD BLANK G -GRAB SP-SUBMERSIBLE PUMP R-REPLICATE TB -TRIP BLANK B -**BAILER** AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** K-KNOWN N -NORMAL SL -SUCTION LIFT PUMP

PAGE 1

INSTALLATION ID COMPION LOG DATE

9-1-92 LOG TIME

1225

LOCATION ID

SOUMTO

SAMPLE TYPE NAMPLE ID

10 SOWM TO

INITIAL GROUNDWATER DEPTH (FT)

SAMPLING PERIOD: START

1430 COMPLETE

2.15 +4 = 22.74

1450

SAMPLING METHOD

Ras

LOGGER CODE DATE SENT

COMMENTS

LAB CODE

Sheen on Surface water

around well. Our obtiobz.

FINAL PARAMETER MEASUREMENTS:

POTENTIAL OF HYDROGEN

pН

meter chaped.

SPECIFIC CONDUCTANCE

SC Eh μmhos/c

<u>08 1450</u>

REDOX POTENTIAL

TEMP

mvolts °C

2.7

more used you will that it is a second of the second of th

TEMPERATURE ALKALINITY (CaCO₃

ALK

mg/l

740

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1225	0.0		••		START PUMPING
1240	5	7.3	४५३	2.1	
1259	10	7.1	871	2.4	turbial area in color
1318	15	7.5	866	3.0	
1327	20	7.5	844	2.7	Rain; sample story 1430
1450	22	10.6	918	5.8	* volues not used in fine
1540		7.9	808	44	dup sample storted.

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D - DUPLICATE R - REPLICATE

FB -TB - FIELD BLANK TRIP BLANK

G - GRAB

SL -

SP-

SUBMERSIBLE PUMP AIR-LIFT SAMPLER

S - SPIKE K - KNOWN LB -N - LAB BLANK NORMAL B - BAILER PP - PERIST

PERISTALIC PUMP
SUCTION LIFT PUMP

AL - AIR-LIFT SAMPLE BP - BLADDER PUMP

PAGE 1 9-1-92 LOG TIME INSTALLATION ID COMO!OO LOG DATE 1225 Soumro LOCATION ID 070510 SAMPLE TYPE SAMPLE ID 2.15 122.74 INITIAL GROUNDWATER DEPTH (FT) 1540 SAMPLING PERIOD: START 1000 COMPLETE SAMPLING METHOD Pad LOGGER CODE ras LAB CODE DATE SENT Sheen on surface water around **COMMENTS** 00m : 084 FINAL PARAMETER MEASUREMENTS: **COMMENTS** See 07 mwoz(cms) >7.5 POTENTIAL OF HYDROGEN pН S.U. SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** Eh mvolts **TEMPERATURE TEMP** °C ALKALINITY (CaCO, ALK mg/l TIME **TOTAL VOLUME** PH SC **TEMP** COMMENTS WITHDRAWN (#MHOS/CM) (°C) (GALLONS) 0.0 START PUMPING 918 7.9 1540 estionable 1550 しゅ

SAMPLE METHODS: (WSMCODE)

PERISTALIC PUMP

SUCTION LIFT PUMP

SP-

AL -

BP -

SUBMERSIBLE PUMP

AIR-LIFT SAMPLER

BLADDER PUMP

GRAB

BAILER

E-220

G٠

В-

PP -

FIELD BLANK

TRIP BLANK

LAB BLANK

NORMAL

SAMPLES TYPES: (WSACODE)

FB -

TB -

LB -

N-

DUPLICATE

REPLICATE

SPIKE

KNOWN

D-

R-

S-

K-

PAGE 1

INSTAL	LATION ID COMPI	-	DATE	q .	-92 L	OG TIME	1215
LOCATI	ON ID OTMU	<u> </u>					
SAMPLI	E TYPE N	_ SAM	PLE ID	07	mwos	101	
INITIAL	GROUNDWATER DE	PTH (F1	3.19	स्रः।	7.06	···	_
SAMPLI	NG PERIOD: START		140	<u>o</u>	COMPLE	TE _	<u> 1425 </u>
SAMPLI	NG METHOD				LOGGER	CODE _	Rad
LAB CC	DDE		Ras		DATE SE	NT C	1.292
							
COMME			<u>Onu</u>		RH? C	1 BZ.	
134	5 pH cal. c	heck	7:7.0	<u> </u>	24.0		
FINAL F	PARAMETER MEASU	REMENT	S:			1.	COMMENTS
POTEN	TIAL OF HYDROGEN	l	рΗ	S.U	7.	4	
SPECIF	IC CONDUCTANCE		SC	μ mho			
REDOX	POTENTIAL		Eh	mvo	ts <u>-8</u>	8	
TEMPE	RATURE		TEMP	°C	_2		
ALKALIN	NITY (CaCO ₃		ALK	mg,	<u>רר</u> וי	0	
		<u> </u>	·			<u> </u>	
TIME	TOTAL VOLUME	PH	SC		TEMP		COMMENTS
	WITHDRAWN (GALLONS)		(#MHOS/	CM)	(°C)		
1215	0.0					s	TART PUMPING
	· · · · · · · · · · · · · · · · · · ·					1	

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1215	0.0		-		START PUMPING
1233	5	7.1	707	21	
1300	10	6.7	875	2.4	Pain Shauxas- quit
1350	15	7.4	798	2.0	purging ~15 min.
1358	18	11.7*	827	2.9	*pH junction probley
					Clooped.
					6 7

SAMPLES TYPES: (WSACODE)

. D-	DUPLICATE	FB - TB -	FIELD BLANK	G-	GRAB	SP-	SUBMERSIBLE PUMP
н-	REPLICATE	10 -	TRIP BLANK	B -	BAILER	AL -	AIR-LIFT SAMPLER
S-	SPIKE	LB -	LAB BLANK	PP -	PERISTALIC PUMP	BP -	BLADDER PUMP
Κ-	KNOWN	N.	NORMAL	SI -	SUCTION LIFT PLIMP		•

						PAGE 1
INSTAL	LATION ID <u>Campi</u>		DATE C	1-192 1	OG TIME	1115
	E TYPE N		MPLE ID) Pown		
SAMPL	GROUNDWATER D ING PERIOD: START ING METHOD DDE	•	7) 21.23 td 1300 B Ras	COMPLE LOGGER DATE SE	CODE Pad	2
COMMI PH M	ents Otor 100ffer	7 45	00m=070 27.0100ffer	m. 116	5 - <u>Pecalibra</u> 4.0.	<u> </u>
POTENT SPECIF REDOX TEMPER	PARAMETER MEASUTIAL OF HYDROGENIC CONDUCTANCE POTENTIAL RATURE NITY (CaCO ₃		rs: pH s.t sc μmho Eh mvo τεмρ °C ALK mg	os/c 71 lts -U	_	MMENTS
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	СОММЕ	ITS
1115	0.0		••		START PUM	IPING
1125	5	66	756	2.3		
1132	(0	7.0	746	1.7		
1140	15	53	733	1.10		

SAMPLES	TYPES:	(WSACODE)
	III LO.	INCAMPORT

1209

1219

1230

1245

1300

20

35

40

6.7

7.0

70

SAMPLE METHODS: (WSMCODE)

1.10

1.10

1.5

15

1.7

1.7

recheck PH moter cal.

Sample.

D - R - S - K -	DUPLICATE REPLICATE SPIKE KNOWN	FB - TB - LB - N -	FIELD BLANK TRIP BLANK LAB BLANK NORMAL	G - B - PP - SL •	GRAB BAILER PERISTALIC PUMP SUCTION LIFT PUMP	SP- AL - BP -	SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP
--------------------------	--	-----------------------------	--	----------------------------	---	---------------------	--

705

715

PAGE 1 9-8-92 LOG TIME 1430 INSTALLATION ID QQ\QCC LOG DATE 10 cum Po LOCATION ID 10-10 cm PO N__ SAMPLE ID SAMPLE TYPE to =47.100 13.92 **INITIAL GROUNDWATER DEPTH (FT)** 1430 1450 SAMPLING PERIOD: START COMPLETE Rad SAMPLING METHOD LOGGER CODE Ras 9-9-92 LAB CODE DATE SENT ourn 0.000m BH Wind from east; **COMMENTS** Intermittent odde of burning plastic during sampling. Oil stained Soil 10' noeth of well. FINAL PARAMETER MEASUREMENTS: COMMENTS 29.92 FDO 1701 HO POTENTIAL OF HYDROGEN Hq S.U. -new baneries SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** -061 inmeter Eh mvolts **TEMPERATURE TEMP** °C 572 ALKALINITY (CaCO, ALK mg/l * Calibration questionable TIME **TOTAL VOLUME** PH SC **TEMP** COMMENTS WITHDRAWN (#MHOS/CM) (C) (GALLONS) 1315 0.0 START PUMPING DH Drobe will not call 1331 10 5.3 752 15 5.0 742 20 746 4.8 25 5.0 791 359 30 8210

CARADI	ES	TYPES:	APM	CODE	١
SAMIL	EJ.	ITFES:	IVVOM	CUUE)

401

1403

1422

35

38

40

SAMPLE METHODS: (WSMCODE)

4.9

50

5.4

D - R - S - K -	DUPLICATE REPLICATE SPIKE KNOWN	FB - TB - LB - N -	FIELD BLANK TRIP BLANK LAB BLANK NORMAL	G - B - PP - SL -	GRAB BAILER PERISTALIC PUMP SUCTION LIFT PUMP	SP- AL - BP -	SUBMERSIBLE PUN AIR-LIFT SAMPLER BLADDER PUMP
κ.	KNOWN	N -	NORMAL	SL -	SUCTION LIFT PUMP		

814

807

874

PAGE 2

LOCATION ID OP MUO

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
14570	42 43	_	845	5.4	
1429	43	_	842 830	5.1	
			· · · · · · · · · · · · · · · · · · ·		

						PAGE 1
INSTAL	100 DI NOITAL 100 DI NOI	<u>ಗಾರಿ</u> ಗಾರ	DATE O	.992 LO	G TIME	1430
SAMPL	E TYPE	SAMI	PLE ID O	9-05-07		
SAMPL	GROUNDWATER ING PERIOD: STAFING METHOD DDE	•	13.92 1430 B Ras	COMPLETE LOGGER C DATE SENT	ODE RO	
Sporti COWWI	ENTS C color from	dump	Ovm-0.0	pon BH. I	intermitler nofwell	of phroling
POTEN SPECIF REDOX TEMPER	PARAMETER MEAS TIAL OF HYDROGE IC CONDUCTANCE POTENTIAL RATURE NITY (CaCO ₃	N	pH S. SC μmh Eh mv TEMP °	U. 7.6* los/c 830 los/c -01 c -5.1 g/l -500		COMMENTS -LOY ON 9992 Inclus botherie
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)		ON QUESTIONS
315	0.0				START	PUMPING
	see purge	100	for 09-mu	1-01-01		
MPLES T	YPES: (WSACODE)		SAMPLE METH	HODS: (WSMCOD)	≣)	
- REP - SPIK	PLICATE FB - PLICATE TB - KE LB - DWN N -	FIELD BLAN TRIP BLANK LAB BLANK NORMAL	B - BAIL PP - PERI	_		SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP

SL -E-225

PAGE 1 9-29-92 LOG TIME INSTALLATION ID QUILLO LOG DATE 1050 LOCATION ID 09 mwoz SAMPLE TYPE SAMPLE ID 10-50-MM-60 15.18 ta.45.07 INITIAL GROUNDWATER DEPTH (FT) 1050 SAMPLING PERIOD: START COMPLETE SAMPLING METHOD Rad LOGGER CODE Ras LAB CODE 9-30-92 DATE SENT mand pumped pumpe volume = 34 gas **COMMENTS** FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN 72 pН S.U. SPECIFIC CONDUCTANCE 1079 SC μmhos/c **REDOX POTENTIAL** Eh mvolts **TEMPERATURE** 2.0 **TEMP** °C ALKALINITY (CaCO₃ ALK mg/l

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1015	0.0				START PUMPING
1035	15	7.9	1227	3.6	for 5 and 10 gas. pt
1041	20	15	1125	2.9	meter not functioning
1040	25	7.4	1105	2.3	DUSCOSTIL.
1050	30	7.3	1092	2.8	- Slemy Sampled.
1054	34	7.3	1079	20	

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D-**DUPLICATE** FB -FIELD BLANK G-GRAB SP-SUBMERSIBLE PUMP REPLICATE R-TB -TRIP BLANK В-**BAILER** AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** K-**KNOWN** N-NORMAL SL -SUCTION LIFT PUMP

PAGE 1 94592 LOG TIME INSTALLATION ID QOLUTO LOG DATE 1415 Evampo LOCATION ID 10-50-UM PO SAMPLE TYPE SAMPLE ID 15.81 64:47.24 INITIAL GROUNDWATER DEPTH (FT) 1353 SAMPLING PERIOD: START COMPLETE Rad SAMPLING METHOD LOGGER CODE 9-14-92 LAB CODE DATE SENT Ambient temp near 20°f. **COMMENTS COMMENTS** FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN S.U. pН SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** mvolts Eh **TEMPERATURE** °C **TEMP** ALKALINITY (CaCO, ALK mg/l

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP	COMMENTS
l	0.0				START PUMPING
1245	9	4.8	144	2.3	
1300	12	U.B	468	2.4	
1315	18	6.0	471	2.6	
1337	2	4.8	458	2.2	
1345	30	6.8	454	2.3	
1353	36	60	454	2.3	Sampled.

SAMPLES TYPES: (WSACODE)

D -	DUPLICATE	FB -	FIELD BLANK	G -	GRAB	SP-	SUBMERSIBLE PUMP
R -	REPLICATE	TB -	TRIP BLANK	B -	BAILER	AL -	AIR-LIFT SAMPLER
S -	SPIKE	LB -	LAB BLANK	PP -	PERISTALIC PUMP	BP -	BLADDER PUMP
Κ-	KNOWN	N-	NORMAL	SL -	SUCTION LIFT PUMP	U .	22 02 E. T. C

1
S
<u> </u>

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D -DUPLICATE FB -FIELD BLANK G-GRAB SP-SUBMERSIBLE PUMP REPLICATE R-TB -TRIP BLANK В-BAILER AL -AIR-LIFT SAMPLER SPIKE S٠ LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** K-KNOWN N -NORMAL SL -SUCTION LIFT PUMP

E-228

PAGE 1 INSTALLATION ID QOLORO LOG DATE 9-9-92 LOG TIME 1815 Poum PO **LOCATION ID** Dd umadai SAMPLE TYPE ____ SAMPLE ID 17.05 54.47.53 INITIAL GROUNDWATER DEPTH (FT) 1815 1830 SAMPLING PERIOD: START COMPLETE Rad SAMPLING METHOD LOGGER CODE Ras 9-10-92 LAB CODE DATE SENT 32° Clear, breezy **COMMENTS** FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN S.U. pН SPECIFIC CONDUCTANCE SC μmhos/c -01Z REDOX POTENTIAL Eh mvolts **TEMPERATURE TEMP** °C 680 ALKALINITY (CaCO, ALK mg/l TIME **TOTAL VOLUME** PH SC **TEMP** COMMENTS WITHDRAWN (#MHOS/CM) (°C) (GALLONS) 1745 0.0 START PUMPING 1749 4.7 189 2.9 Clear 759 **6.7** 2.4 10 15 1802 6.6 20 1800 855 lo7 20 25 1800 6.7 1812 30 610 864 26 35 1815 4.7 859

SAMPLES TYPES: (WSACODE)

D -	DUPLICATE	FB -	FIELD BLANK	G -	GRAB	SP-	SUBMERSIBLE PUMP
R -	REPLICATE	TB -	TRIP BLANK	B -	BAILER	AL -	AIR-LIFT SAMPLER
S -	SPIKE	LB -	LAB BLANK	PP -	PERISTALIC PUMP	BP -	BLADDER PUMP
K-	KNOWN	N.	NORMAL	SI -	SUCTION LIET BUMB	D i -	DD DD LITT ON

		PAGE 1
INSTALLATION ID COLORD LOG DA	ATE Q-10-9Z LOG TIME	1115
SAMPLE TYPE N SAMPL	EID 09.mw-05-01	
INITIAL GROUNDWATER DEPTH (FT) SAMPLING PERIOD: START SAMPLING METHOD LAB CODE	13.90 63 47.00 1125 1125 125	-92
COMMENTS OVERCOST.	Ambient air temp 15°F-dra	pping.
FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN	pH s.u. <u>4.8</u>	PPICO.
FINAL PARAMETER MEASUREMENTS:	C	
FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN SPECIFIC CONDUCTANCE	pH S.U. <u>U.8</u> SC μmhos/c <u>449</u>	

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1030	0.0		**		START PUMPING
1034	5	7.1	444	1.19	
SYOI	20	9	451	1.8	
1045	25	6.7	450	1.8	
1055	30	4.7	450	1.8	
1058	35	48	450	1.8	
1100	38	45	449	1.5	Sustan as benotice.

SAMPLES TYPES: (WSACODE)

D - R - S - K -	DUPLICATE REPLICATE SPIKE KNOWN	FB - TB - LB - N -	FIELD BLANK TRIP BLANK LAB BLANK NORMAL	G. B. PP. SL.	GRAB BAILER PERISTALIC PUMP SUCTION LIFT PUMP	SP∙ AL - BP -	SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP
--------------------------	--	-----------------------------	--	------------------------	--	---------------------	--

PAGE 1 9-16-92 LOG TIME INSTALLATION ID GOVERN LOG DATE od muou LOCATION ID 10-orange PO SAMPLE TYPE SAMPLE ID 12.03 td - 40.84 **INITIAL GROUNDWATER DEPTH (FT)** 1430 SAMPLING PERIOD: START COMPLETE SAMPLING METHOD LOGGER CODE LAB CODE DATE SENT Overcost, cold, 30° **COMMENTS COMMENTS** FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN S.U. Hq SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** Eh mvolts **TEMPERATURE** °C **TEMP** ALKALINITY (CaCO, **ALK** mg/l

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
	0.0				START PUMPING
1410	10	6.01	278	2.0	
1415	20	130	247	2.0	
1420	30	9.9	2694	2.0	
1425	39	6.8	240	2.0	
	* * * * * * * * * * * * * * * * * * * *				

SAMPLES TYPES: (WSACODE)

R- S-	DUPLICATE REPLICATE SPIKE KNOWN	FB - TB - LB - N -	FIELD BLANK TRIP BLANK LAB BLANK NORMAL	G - B - PP - SL -	GRAB BAILER PERISTALIC PUMP SUCTION LIFT PUMP	SP- AL - BP -	SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP
----------	--	-----------------------------	--	----------------------------	---	---------------------	--

PAGE 1 9-15-92 LOG TIME INSTALLATION ID QQILOO LOG DATE 1725 LOCATION ID US WINDS SAMPLE TYPE _ SAMPLE ID 09mw 07-01 15.00 64.23.74 INITIAL GROUNDWATER DEPTH (FT) SAMPLING PERIOD: START 1725 COMPLETE SAMPLING METHOD Zad LOGGER CODE ras LAB CODE 9-16-92 DATE SENT **COMMENTS** FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN 10.9 S.U. pН SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** Eh mvolts 40 **TEMPERATURE TEMP** °C ALKALINITY (CaCO, ALK mg/l TIME TOTAL VOLUME PH SC **TEMP COMMENTS** WITHDRAWN (#MHOS/CM) (C) (GALLONS) 1650 0.0 START PUMPING 1654 7.1 431 2.0 mp impollers frozen 6.6 458 10 1.10 had to thaw out to purge 15 69 459 1.7 LO.Q 20 457 1.7 Switched to wattern

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D-DUPLICATE FB -FIELD BLANK G-**GRAB** SP-SUBMERSIBLE PUMP R-REPLICATE TB -TRIP BLANK В-**BAILER** AL -AIR-LIFT SAMPLER s. SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** KNOWN N -NORMAL SL -SUCTION LIFT PUMP

PAGE 1 9.35-92 LOG TIME 1140 INSTALLATION ID QQ\QCQ LOG DATE 80um.20 LOCATION ID 09-MW-08.01 SAMPLE TYPE SAMPLE ID 50.10 AS 58.01 INITIAL GROUNDWATER DEPTH (FT) 1140 1510 SAMPLING PERIOD: START _ COMPLETE Rad SAMPLING METHOD LOGGER CODE Ras 10-1-92 LAB CODE DATE SENT OVM - 18.0 BH 41.0 BZ - SMOWING -COMMENTS **COMMENTS** FINAL PARAMETER MEASUREMENTS: 6.9 POTENTIAL OF HYDROGEN pН S.U. 673 SPECIFIC CONDUCTANCE SC μmhos/c -114 **REDOX POTENTIAL** mvolts Eh 3.0 TEMPERATURE °C **TEMP** 972 ALKALINITY (CaCO, ALK mg/l TIME TOTAL VOLUME PH SC **TEMP** COMMENTS WITHDRAWN (#MHOS/CM) (°C) (GALLONS) 1110 0.0 START PUMPING 3.1 610 11110 7.0 welldry-Allowing to electrage ७न 1125 WZG 30 1132 45 69 423 3.0 11 1140 Sampled

SAMPLES TYPES: (WSACODE)

D-	DUPLICATE	FB -	FIELD BLANK	G-	GRAB	SP-	SUBMERSIBLE PUMP
R-	REPLICATE	TB -	TRIP BLANK	B -	BAILER	AL -	AIR-LIFT SAMPLER
S-	SPIKE	LB -	LAB BLANK	PP -	PERISTALIC PUMP	BP -	BLADDER PUMP
Κ-	KNOWN	N -	NORMAL	SL -	SUCTION LIFT PUMP		

PAGE 1

INSTALLATION ID COLUMN LOG D	ATE Q-2892 LOG TIME	1446
SAMPLE TYPEN SAMPL	EID 09 mw-10-01	
INITIAL GROUNDWATER DEPTH (FT)	40.11 taz43.85	
SAMPLING PERIOD: START	1446 COMPLETE 1530	
SAMPLING METHOD	LOGGER CODE ROD	
LAB CODE	ROS DATE SENT 9-29	-92
COMMENTS	100f Amount +0mp.	
FINAL PARAMETER MEASUREMENTS:	C	OMMENTS
POTENTIAL OF HYDROGEN	pH S.U. <u>6.7</u>	
SPECIFIC CONDUCTANCE	SC μmhos/c <u>1335</u>	
REDOX POTENTIAL	Eh mvolts -079	
TEMPERATURE	TEMP °C2.5	
ALKALINITY (CaCO ₃	ALK mg/l L0510	

(GALLONS)		(µMHOS/CM)	TEMP	COMMENTS
0.0		••		START PUMPING
2	7.2	1594	3.4	
4	6.9	1352		
4	68	1339		
8	6.7	1335	2.5	-79 my sampled
	2	2 7.2 4 6.9 9 68	2 7.2 1594 4 6.9 1352 6 68 1339	2 7.2 1594 3.4 4 6.9 1352 3.1 6 68 1339 2.6

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D - R - S - K -	DUPLICATE REPLICATE SPIKE KNOWN	FB - TB - LB - N -	FIELD BLANK TRIP BLANK LAB BLANK NORMAL	G - B - PP - SL -	GRAB BAILER PERISTALIC PUMP SUCTION LIFT PUMP	SP- AL - BP -	SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP
--------------------------	--	-----------------------------	--	----------------------------	--	---------------------	--

PAGE 1

INSTAL	LATION ID <u>QOILT</u>	<u>ک</u> LOG	DATE 9	289Z LOG	TIME 1440
LOCATI	ои ір О <u>ф ∩т</u>	11			
SAMPLE	TYPE N	SAM	PLE ID OS	-WM-11-01	
INITIAL	GROUNDWATER DE	PTH (FT	36.61 tal	12.88	
	NG PERIOD: START	•	1431	COMPLETE	1700
SAMPLI	NG METHOD		_B	LOGGER CO	
LAB CO	DE		<u>Ras</u>	DATE SENT	9-29-92
СОММЕ	ENTS		16°F Amk	ient tem	<u> </u>
FINAL P	ARAMETER MEASU	REMENT	S:		COMMENTS
	ARAMETER MEASU TIAL OF HYDROGEN		'S: pH S.(J. <u>7, 7</u>	
POTENT				os/c 140	3
POTENT SPECIFI REDOX	TIAL OF HYDROGEN C CONDUCTANCE POTENTIAL		pH S.I	os/c 140 olts -138	3
POTENT SPECIFI REDOX TEMPER	TIAL OF HYDROGEN C CONDUCTANCE POTENTIAL RATURE		pH S.I SC μmho Eh mvo TEMP °C	os/c 140 olts -138	3
POTENT SPECIFI REDOX TEMPER	TIAL OF HYDROGEN C CONDUCTANCE POTENTIAL		pH S.I SC μmho Eh mvo	os/c 140 - 138 - 1.6	3
POTENT SPECIFI REDOX TEMPER	TIAL OF HYDROGEN C CONDUCTANCE POTENTIAL RATURE		pH S.t SC μmho Eh mvo TEMP °C	os/c 140 - 138 - 1.6	3
POTENT SPECIFI REDOX TEMPEF ALKALIN	TIAL OF HYDROGEN C CONDUCTANCE POTENTIAL RATURE HITY (CaCO ₃ TOTAL VOLUME WITHDRAWN		pH S.I SC μmho Eh mvo TEMP °C ALK mg	os/c	3

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
15540	0.0				START PUMPING
1408	2	7.3	1120	2.0	
11211	4	6.9	1129	21	
1614	Ψ	6.0	1382	1.9	
1620	8	7.0	1410	1.8	
1023	10	4	1410	2.4	
1631	13	7.3	1403	1.6	-138 mV Sampled.

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D -	DUPLICATE	FB -	FIELD BLANK	G -	GRAB	SP-	SUBMERSIBLE PUMP
R -	REPLICATE	TB -	TRIP BLANK	B -	BAILER	AL -	AIR-LIFT SAMPLER
S -	SPIKE	LB -	LAB BLANK	PP -	PERISTALIC PUMP	BP -	BLADDER PUMP
Κ-	KNOWN	N -	NORMAL	SI -	SUCTION LIST DUMP		

PAGE 1 9-30-92 LOG TIME INSTALLATION ID QOVOC LOG DATE PUPI LOCATION ID SKUM-PO SAMPLE TYPE SAMPLE ID 10-SIUM PO 15.35 64:2154 **INITIAL GROUNDWATER DEPTH (FT)** SAMPLING PERIOD: START 1449 1510 COMPLETE SAMPLING METHOD LOGGER CODE ras LAB CODE 10-1-92 DATE SENT OVM-5.0 BH 41.0 BZ. **COMMENTS** FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN pН S.U. SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** Eh mvolts **TEMPERATURE TEMP** °C 900 ALKALINITY (CaCO₃ ALK mg/i

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1340	0.0				START PUMPING
1352	5	7.2	522	3.0	heavy Droduct odde
1358	10	7.3	593	3.0	J. C. C. C. C. C. C. C. C. C. C. C. C. C.
1407	15	7.0	596	2.6	
1422	20	Ó	53	2.7	
1434	25	9	557	2.9	
1449	32	49	SLAG	3.2	-115mv Sampled.
					

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D-**DUPLICATE** FB -FIELD BLANK G-**GRAB** SP-SUBMERSIBLE PUMP R-REPLICATE TB-TRIP BLANK B-**BAILER** AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP KNOWN** N -NORMAL SL -SUCTION LIFT PUMP

PAGE 1

INSTALLATION ID QUETO LOG DA	TE <u>Q-142</u> LOG TIM	E <u>1540</u>
SAMPLE TYPE SAMPLE	10 <u>09.mw-140</u> 1	
INITIAL GROUNDWATER DEPTH (FT) SAMPLING PERIOD: START SAMPLING METHOD LAB CODE	1891 1540 COMPLETE B LOGGER CODE ROS DATE SENT	1550 Rad 9-15-92
COMMENTS CAT SITO ISIO.	ados of powering obs	bools naticable
	рН s.u. <u>U.U</u>	COMMENTS
FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN SPECIFIC CONDUCTANCE	pH S.U. <u>10.10</u> SC μmhos/c <u>441</u>	
FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN	pH S.U. <u>U.U</u> SC μmhos/c <u>YY</u> Eh mvolts <u>Y7.0</u>	
FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN SPECIFIC CONDUCTANCE	pH S.U. <u>U.U</u> SC μmhos/c <u>- 441</u>	

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1500	0.0				START PUMPING
1505	5	6.9	439	2.3	
1509	10	67	429	2.5	
1515	16	10.7	437	2.5	
1519	20	9.9	437	2.5	
1524	25	6.6	441	2.5	
					×

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D-	DUPLICATE	FB -	FIELD BLANK	G-	GRAB	SP-	SUBMERSIBLE PUMP
R-	REPLICATE	TB -	TRIP BLANK	В-	BAILER	AL -	AIR-LIFT SAMPLER
S-	SPIKE	LB -	LAB BLANK	PP -	PERISTALIC PUMP	BP -	BLADDER PUMP
Κ-	KNOWN	N -	NORMAL	SL -	SUCTION LIFT PUMP		

PAGE 1 INSTALLATION ID QC/LOC LOG DATE 10-1-92 LOG TIME 1443 LOCATION ID Phum PO SAMPLE TYPE N _ SAMPLE ID 09-mw-14-01 71.54 td.25.20 INITIAL GROUNDWATER DEPTH (FT) 1443 SAMPLING PERIOD: START COMPLETE SAMPLING METHOD Rad LOGGER CODE Ras LAB CODE 10-2-92 DATE SENT Ovm: BH-0 ; BZ:0 **COMMENTS** FINAL PARAMETER MEASUREMENTS: **COMMENTS** POTENTIAL OF HYDROGEN pН S.U. SPECIFIC CONDUCTANCE SC μmhos/c REDOX POTENTIAL Eh mvolts **TEMPERATURE TEMP** °C ALKALINITY (CaCO, ALK mg/l TIME TOTAL VOLUME PH SC TEMP COMMENTS WITHDRAWN (#MHOS/CM) (C) (GALLONS) 1415 0.0 START PUMPING 1419 no functioning ph 1421 m Reading 1426 1443 12 Sampled

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

DUPLICATE FB -FIELD BLANK G-**GRAB** SP-SUBMERSIBLE PUMP R-REPLICATE TB -TRIP BLANK В-BAILER AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** Κ-**KNOWN** N -NORMAL SL -SUCTION LIFT PUMP

PAGE 1 9.7.92 LOG TIME 1135 INSTALLATION ID OOLONG LOG DATE 10-MW-01 **LOCATION ID** N 10-10-01-01 SAMPLE TYPE SAMPLE ID 15.25 HI.410.74 INITIAL GROUNDWATER DEPTH (FT) 1230 1245 SAMPLING PERIOD: START COMPLETE Rad SAMPLING METHOD LOGGER CODE Ras 9-8-92 LAB CODE DATE SENT OUM : BZ-0, BH . O COMMENTS FINAL PARAMETER MEASUREMENTS: COMMENTS **6.9** POTENTIAL OF HYDROGEN S.U. pН 703 SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** Eh mvolts **TEMPERATURE TEMP** °C 490 ALKALINITY (CaCO, ALK mg/l TIME **TOTAL VOLUME** PH SC TEMP **COMMENTS** WITHDRAWN (#MHOS/CM) (C) (GALLONS) 1135 0.0 START PUMPING 1145 6.8 1091 4.4 Block smoks overhead from 1150 10 7.0 105 45 6.9 1155 15 7210 4.3 11 200 20 lo.B . 1 6.0 1205 politer fornact off. 30 1210 737 Recheck of moter.

neter unique of cariors ion.

can't recoll beate. 1218 37.5 4.9 702 50 1222 715 1 ZZLo 43 703 1911 other measurements very stable. SAMPLES TYPES: (WSACODE) SAMPLE METHODS: (WSMCODE)

GRAB

BAILER

PERISTALIC PUMP

SUCTION LIFT PUMP

SP-

AL -

BP -

SUBMERSIBLE PUMP

AIR-LIFT SAMPLER

BLADDER PUMP

G-

В-

PP -

SL -

D-

R-

S-

K.

DUPLICATE

REPLICATE

SPIKE

KNOWN

FB -

TB -

LB-

N-

FIELD BLANK

TRIP BLANK

LAB BLANK

NORMAL

						PAGE 1
INSTAL	1	JOI P rog	DATE <u>IC</u>	SPHO	OG TIME	140
SAMPLE	ETYPE N		PLE ID 10	1-mw-01	-01	
SAMPLI	GROUNDWATER DI NG PERIOD: START NG METHOD	EPTH (FT	19.14 td 1750 B Ras	COMPLE LOGGER DATE SE	CODE RAD	5-92
COMME	A -	et bis	<u>oum</u> bh (200m, 1	32. Oppm -	<u>Resomple</u> .
POTENT SPECIFI REDOX TEMPER	PARAMETER MEASU FIAL OF HYDROGEN C CONDUCTANCE POTENTIAL RATURE SITY (CaCO ₃		S: pH S.L SC μmho Eh mvo TEMP °C ALK mg	os/c 50 olts 50	* 7 0	OMMENTS hg log
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP	СОММЕ	ENTS
1640	0.0				START PU	MPING
luss	5	63	U45	3.4	weather is	
1706	10	6.0	<i>U</i> 15	3.4		
רסרו	15	(0.0)	UIS	3.5		
1720	20	5.9	607	35		
1730	25	6.3	601	ナめ		
1740	36	6.2	599	ナ ろ ろ		
1748	35	45	597	35		
					*these Poas	Sincs look
					better trans	the initial-
			-	1	104 USE in pi	ace of 9-7-92

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE) D-DUPLICATE FB -FIELD BLANK G٠ **GRAB** SP-SUBMERSIBLE PUMP REPLICATE R-TB -TRIP BLANK В-BAILER AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP** KNOWN N -NORMAL SL -SUCTION LIFT PUMP

PAGE 1 9-7-92 LOG TIME INSTALLATION ID QUILOR LOG DATE 2290 10.mm.02 LOCATION ID SAMPLE TYPE 10-20-mm-01 SAMPLE ID 15.71 W.47.67 INITIAL GROUNDWATER DEPTH (FT) 1100 SAMPLING PERIOD: START COMPLETE SAMPLING METHOD LOGGER CODE LAB CODE DATE SENT OVM=2.5 BH ; 1.0 BZ **COMMENTS** FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN pΗ S.U. SPECIFIC CONDUCTANCE SC μmhos/c REDOX POTENTIAL Eh mvolts

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
0290	0.0				START PUMPING
1005	10	5.8	92	4.2	
1009	15	5.7	900	4.2	
1019	20	5.3	905	4.1	
1025	25	63	893	4.2	
1029	30			4.0	
040	37	6.9	884	4.0	
1045	40	5.0	889	4.1	
1045	42	SA	881	4.1	

TEMP

ALK

°C

mg/l

SAMPLES TYPES: (WSACODE)

TEMPERATURE

ALKALINITY (CaCO,

SAMPLE METHODS: (WSMCODE)

D- R-	DUPLICATE REPLICATE	FB - TB -	FIELD BLANK TRIP BLANK	G- B-	GRAB BAILER	SP-	SUBMERSIBLE PUMP
S- K-	SPIKE KNOWN	LB -	LAB BLANK	PP -	PERISTALIC PUMP	BP -	BLADDER PUMP
W .	VIACAAIA	N -	NORMAL	SL -	SUCTION LIFT PLIMP		

PAGE 1

INSTAL LOCAT	TATION ID COLOR		\underline{Q}	-7-9Z LO	OG TIME 0950
SAMPL	E TYPE N	SAM	APLE ID LO	-D5-00	,
	GROUNDWATER D				
	ING PERIOD: START	•	1100	COMPLET	
	ING METHOD		B	LOGGER	
LAB CO	DDE		Ras	DATE SEN	T 9-8-92
СОММІ	ENTS	-l. •	Ours 2.5		32
		aup	. of 10.mw.	05.05	
FINAL F	PARAMETER MEASU	DEMEND	ro.		•••
	TIAL OF HYDROGEN			J5.	COMMENTS
	IC CONDUCTANCE	•	pH S.L SC umbo		
	POTENTIAL		SC μmho Eh mvo	,	
TEMPE	RATURE		TEMP °C		
ALKALII	NITY (CaCO ₃		ALK mg		
			Γ		
TIME	TOTAL VOLUME WITHDRAWN	PH	SC (#MHOS/CM)	TEMP	COMMENTS
	(GALLONS)				
0950	0.0		••		START PUMPING
1005	10	5.8	912	4.2	
1009	15	5.7	906	4.2	
1019	20	5.3	905	4.1	

SAMPLES TYPES: (WSACODE)

1025

1029

1040

1042

1045

25

37

40

42

SAMPLE METHODS: (WSMCODE)

4.2

4.0

4.0

4.1

4.1

D-DUPLICATE FB -FIELD BLANK G٠ GRAB R-REPLICATE TB -TRIP BLANK 8 -S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP Κ-**KNOWN** Ν-NORMAL SL -SUCTION LIFT PUMP

6.3

4.9

6.2

5.9

BAILER

SP-AL -BP -

SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP

893

884

889

281

						PAGE 1
INSTAL LOCAT	LATION ID (OLLEY	•	DATE O	-792	OG TIME	1530
SAMPL	E TYPE N		IPLE ID <u>()</u>	<i>60 um</i>		
SAMPL	GROUNDWATER DE ING PERIOD: START ING METHOD DDE	-	16.22 td 1520 B Ras	47.87 COMPLE LOGGER DATE SE	CODE RAD	
СОММ	ENTS	7	oum iles	,BI+ =	1.5	
POTEN SPECIF REDOX TEMPEI	PARAMETER MEASU TIAL OF HYDROGEN IC CONDUCTANCE POTENTIAL RATURE NITY (CaCO ₃		FS: pH S.U SC μmho Eh mvo TEMP ° C ALK mg	os/c <u>QZ</u> olts <u>QI</u>	7	COMMENTS
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMM	MENTS
11111	1					

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	РН	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1400	0.0				START PUMPING
1412	5	-	720	4.5	
1416	0	9	585	3.6	
1425	15	9.9	589	3.5	
1436	20	9.7	599	3.5	
1443		4.9	587	3.1	
1450		6.9	584	3.2	
1455		4.9	579	3.1	
1520	37	7.0	(DZ7	4.1	Sampled
1530					finish sampling.

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

D - R - S - K -	DUPLICATE REPLICATE SPIKE KNOWN	FB · TB · LB · N ·	FIELD BLANK TRIP BLANK LAB BLANK NORMAL	G - B - PP - SL -	GRAB BAILER PERISTALIC PUMP SUCTION LIFT PUMP	SP- AL - BP -	SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP
--------------------------	--	-----------------------------	--	----------------------------	--	---------------------	--

PAGE 1

INSTAL	LATION ID QOVEN		DATE <u>LO</u>	-7-92 L	OG TIME	1535
SAMPL			PLE ID 11	<u>mw-01-0</u>		
SAMPL	GROUNDWATER DE ING PERIOD: START ING METHOD DDE	•	10.10 td.18 10.15 ROS	COMPLET LOGGER DATE SEN	CODE RAD	-92
СОММЕ		00ft	oum BH =	Oppm.	BZ.Oppm.	
FINAL F	PARAMETER MEASU	REMENT	-S:		C	COMMENTS
POTEN	TIAL OF HYDROGEN	1	pH S.L	. <u>19.1</u>		
	IC CONDUCTANCE		SC μmho			
	POTENTIAL		Eh mvo			
TEMPER			TEMP °C	1010		
ALIVALII	NITY (CaCO ₃		ALK mg	/1 LOLO		
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	РН	SC (µMHOS/CM)	TEMP (°C)	СОММ	ENTS
1535	0.0				START PU	IMPING
540	1	5.7	851	4.7		
1545	2	10.2	7(01	4.0		

SAMPLES	TYPES:	(WSACODE)

SAMPLE METHODS: (WSMCODE)

SUCTION LIFT PUMP

3.5 3.4

D - DUPLICATE
R - REPLICATE
S - SPIKE
K - KNOWN

1605

1410

FB -TB -LB -N -

5

0

FIELD BLANK TRIP BLANK LAB BLANK

NORMAL

10.D

U.D

1.0

G -B -

PP -

SL -

703

1073

6010

655

GRAB BAILER PERISTALIC PUMP SP-AL -BP -

Sample.

SUBMERSIBLE PUMP AIR-LIFT SAMPLER BLADDER PUMP

E-244

					PAGE 1
INSTAL	LATION ID GCULTA ON ID 11-MU)		DATE Q	<u>-27-92</u> LOG	TIME 1615
SAMPLI	E TYPE N	SAM	PLE ID <u>\\-</u>	<u>71W-62</u> -01	
SAMPLI		•	1115 B ROS 20°F Am	COMPLETE LOGGER CO DATE SENT	9-28-92
POTENT SPECIFI REDOX TEMPER	PARAMETER MEASU FIAL OF HYDROGEN IC CONDUCTANCE POTENTIAL RATURE NITY (CaCO ₃		'S: pH S.l SC μmho Eh mvo TEMP °C ALK mg	os/c 1501	
TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	РН	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1545	0.0				START PUMPING
1559	2	48	1461	4.5	
१५०४	4	3	1501	4.7	
1607	9	4.7	1503	4.7	
1611	8	4.7	1509	40	
1615	11	4.7	1507	4.7	
SAMPLES T	YPES: (WSACODE)		SAMPLE METH	ODS: (WSMCODE	3)

E-245

FIELD BLANK

TRIP BLANK

LAB BLANK

NORMAL

G-

В-

PP -

SL -

GRAB

BAILER

PERISTALIC PUMP

SUCTION LIFT PUMP

SP-

AL -

BP -

SUBMERSIBLE PUMP

AIR-LIFT SAMPLER

BLADDER PUMP

D-

R-

S-

K-

DUPLICATE

SPIKE

KNOWN

REPLICATE TB -

FB -

LB -

N -

PAGE 1 9/23/92 LOG TIME GOIGNO LOG DATE INSTALLATION ID 11025 LOCATION ID 15mmol SAMPLE TYPE SAMPLE ID 15-WW-01-01 15.88 84.28.93 INITIAL GROUNDWATER DEPTH (FT) SAMPLING PERIOD: START 1645 COMPLETE SAMPLING METHOD Rad LOGGER CODE Ras LAB CODE DATE SENT **COMMENTS** FINAL PARAMETER MEASUREMENTS: COMMENTS POTENTIAL OF HYDROGEN 6.8 S.U. Hq SPECIFIC CONDUCTANCE 975 SC μmhos/c **REDOX POTENTIAL** Eh mvolts **TEMPERATURE** 2.3 **TEMP** °C 192

mg/l

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP (°C)	COMMENTS
1425	0.0				START PUMPING
1627	3	75	929	1.8	
1433	5	49	803	1.4	
1635	7	6.8	940	1.9	
1637	9	47	973	2,3	
1438	l l	6.8	980	2.3	
1640	15	6.0	975	2.3	
1445					Sampled

ALK

SAMPLES TYPES: (WSACODE)

ALKALINITY (CaCO,

SAMPLE METHODS: (WSMCODE)

D-DUPLICATE FB -FIELD BLANK G٠ GRAB SP-SUBMERSIBLE PUMP REPLICATE R. TB -TRIP BLANK В-BAILER AL -AIR-LIFT SAMPLER S-SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP KNOWN** N -NORMAL SL -SUCTION LIFT PUMP

PAGE 1 9/23/92 LOG TIME INSTALLATION ID QOILO LOG DATE 1520 12·mw-02 LOCATION ID 12 mwozo1 SAMPLE TYPE SAMPLE ID 3.89 td.24.13 **INITIAL GROUNDWATER DEPTH (FT)** 1520 1545 'SAMPLING PERIOD: START COMPLETE Rad SAMPLING METHOD LOGGER CODE 9/24/92 LAB CODE DATE SENT **COMMENTS COMMENTS** FINAL PARAMETER MEASUREMENTS: POTENTIAL OF HYDROGEN S.U. pΗ SPECIFIC CONDUCTANCE SC μmhos/c **REDOX POTENTIAL** Eh mvolts **TEMPERATURE TEMP** °C ALKALINITY (CaCO₃ ALK mg/l

TIME	TOTAL VOLUME WITHDRAWN (GALLONS)	PH	SC (#MHOS/CM)	TEMP	COMMENTS
1520	0.0		÷=		START PUMPING
1525	2	4.6	924	3.60	
1530	9	9.6	957	3,9	
1534	0	45	970	3.9	
1537	12	6.6	970	35	
1540	14	67	971	3,9	
1545					sampled.

SAMPLES TYPES: (WSACODE)

SAMPLE METHODS: (WSMCODE)

DUPLICATE D-FB -FIELD BLANK G-**GRAB** SP-SUBMERSIBLE PUMP REPLICATE TB -TRIP BLANK R-AIR-LIFT SAMPLER В-**BAILER** AL s -SPIKE LB -LAB BLANK PP -PERISTALIC PUMP BP -**BLADDER PUMP KNOWN** N-**NORMAL** SUCTION LIFT PUMP SL -

1993 Groundwater Sampling Forms

Project:

Galena AFS RI

Client:

AFCEE

Well ID: 01-MW-01 Date: 6/13/93

fairly warm, light breeze Weather: Sunny Samplers: RJC

Comments: VVeil 1 was open keccuse the transducer was in the well. .. No build my of any organic vapors. No noticeable odes, though. Transducer fulled at 1100, wheter check - Turbidimeter needed recalionation.

PH 7.0 =

HNU/OVA Reading (ppm):

Well Volume (gal.):

Ø* (84. =0) Water Depth (ft. btoc): Product Thickness (ft.):

Well Depth (ft. btoc): Saturated Thickness (ft.): 3 well volumes (gal.):

Product Depth (ft. btoc):

Purge Method:

Sample Method:

	Cum. Vol.	T	Water	Quality	7.3	
Time	(gal.)	Temp.	pH	Cond	Turbidity	Comments
1125	Ü	_	_	_		Besin purce
1130	5	2	6.67	1180	23	Very clean water
1135	15	1.5	6.73	1196	22	,
1138	20	2.0	6.74	1190	9.4	
1140	25	2.0	6.75	1200		
1142	30	1,5	6.75	1190	9.4	
1145	35	1.5	6.75	1186	8.2	
1148	40	2.0	6.78	1190	5.9	
1150	45-	1.5	6.78	1200	4.7	Missed turbidity
	: ! !					1
		!				
-						
			<u> </u>			
!						
				!		
				İ		
1152	48	2.0	6.77	1200	4.7	Final Measurements

Project:

Galena AFS RI AFCEE

Client:

Well ID: 01-MW-02

Date: \$ 6/13/93
Time: 0945

Weather: Sunny and Cody warning up
Samplers: Bit and LCO.

Comments: Meter check: pH 7=7.05 01K 10 NTU = 9.990 T 0.5 NTU = 0.51 -

Field Measurements

Purge Method:

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): Product Thickness (ft.):

Well Volume (gal.):

O (B.G.=0)

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gal.):

Sample Method: Waterra

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	pH	Cond	Turbidity	Comments
910	U	-			_	Begin purge
0719	5	2	6.65	1160	1092	? Very unitable turbidity.
0922	10		6,53	:		very cold water!
0925	15		6.50	I	188	Turbicity difficult to
730	20	1.5	6,53		150	measure > lots of
0937	25	1.5	6.54	1200	X176	
		ļ ————————————————————————————————————				settles out rapidly it's
						time shetting out bettorn
			-		İ	of curette. In allow
				!	ļ	sund particles to settle
		· -		,	!	then deconting and
		<u> </u>			:	measuring suspended
		!	1	· •		material.
<u> </u>		!				* This last reading
		<u> </u>		:		was takn without
				:		decounting - it looked
			<u> </u>			party state
				!		
-				!		
0937	25	1.5	6.54	1200	18	Final Measurements

X176

Alkalmity = 686 mg/L Cacoz

Project:

Galena AFS RI

Client:

AFCEE

Well ID: 02- (W-0)
Date: 6/5/93
Time: 162-0

Base Supply
Location: Well # 1
Weather: partly cloudy, cool
Samplers: BJC/LCO

comments: Meter check - see 06-4W-04 resample log.

Field Measurements

HNU/OVA Reading (ppm):	Same Same	Product Depth (ft. btoc):	_
Water Depth (ft. btoc):		Well Depth (ft. btoc):	
Product Thickness (ft.):		Saturated Thickness (ft.):	
Well Volume (gal.):		3 well volumes (gal.):	
Purge Method:	-	Sample Method:	Spigot

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	pН	Cond	Turbidity	Comments
1650	(gal.) 0.5	4.5	рН (6.93	480	U,7	Turbidity very low, but fluctuat
				:		
		-				
				i.		
		1		1		
		!		· ;	:	
			;			
	<u> </u>					
					i	
					-	
			1			
						Final Measurements

Purge Method:

Project: Client:	Galena AFS RI AFCEE				
Date:	6/15/93	<u> </u>	Weath	on: Brise Supply ler: partly cloud	
Time:		L - see		resample log	
Field Measure				, 6	
HNU/OVA R	eading (ppm):	_		Product Depth (ft. btoc):	_
Water D	epth (ft. btoc):			Well Depth (ft. btoc):	
Product T	hickness (ft.):	_		Saturated Thickness (ft.):	_
Well	Volume (gal.):	_		3 well volumes (gal.):	-

Sample Method: Spise +

Cum. Vol.			Water	Quality		
Time	(gal.)	Temp.	pН	Cond	Turbidity	Comments
1644	2/30	5		500	0.5	Turbidity very low, but fuctuation
	(0.5			!		
					-	
				1		
				!	<u> </u>	
	,			:	-	
				i		
				!		
					:	
					<u> </u>	
				! !		
		į				Final Measurements

Project: Client:	Galena AFS RI AFCEE		1	
Well ID:	() - () - ()	2W-03	Location: Kyse Supply W	ell#7
Date:	6/14/4	?	Weather: Cloudy, Cook SA	
Time:	1400		Samplers: LCO BJC	
2	ox-GWX	DS-03 15 9 D	CAPTILISTS STUPIC FROM THIS TOCATION	<i>1</i>
		DS-03 15 9 D	aplicate Somple Flow This location	
ield Measure			Product Depth (ft. btoc):	
ield Messure	ements			
ield Messure HNU/OVA R Water D	ending (ppm):		Product Depth (ft. btoc):	
Field Messure HNU/OVA R Water D Product 1	ements eading (ppm): epth (ft. btoc):		Product Depth (ft. btoc): Well Depth (ft. btoc):	

	Cum. Vol.	1	Vater	Quality	-	
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1400	(gal.)			_		
				-		
				Ì		
	!					
					_	
						4
****	† 			-	 	
	İ					
	:				+	
				-	-	
	<u> </u>	!				
	1					
				.		
						Final Measurements

Purge Method:

Project: Client:	Galena AFS RI AFCEE		
Well ID: Date: Time:		Location: Danny Patrick's Weather: Partly cloudy, was	7
Comments:	03-GW-02-DS-0 from flux location	3 is a diglicate s	ટ
Product T	epth (ft. btoc): Thickness (ft.): Volume (gal.):	Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.): 3 well volumes (gal.):	ī

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1445	3		_			
				-		
				-		
					<u> </u>	
				<u> </u>	-	
					;	
				1		
				1		
			·- ,,-			<u> </u>
!		!				
	1					
				.		
					:	·
į						
					-	
				! 	i	
				:		
					1	
 	-			i		
	İ					
						Final Measurements

Sample Method: Spiget

Project: Client:	Galena AFS RI AFCEE
Well ID:	03-GW-03
Date:	6/17/93
Time:	1435
Comments:	A2 (

Field Measurements

Location:	Norman	Burgetts	and	Roland	Chiedbourne w	4
Weather:	Partly do	rely; w	arm		w	ee
C1	an					

Samplers:

03-4w-05-05-03 15 a duplicate somple for BJC

Water Depth (ft. btoc): Product Thickness (ft.):		sp:zot		Well Depth (ft. btoc): Saturated Thickness (ft.):		spigot		
	Cum, Vot.			Quality]		
Time	(gal.)	Temp.	pН	Cond	Turbidity		Comments	
1435	9							
	*							
						-		

Project:	Galena AFS RI
Client:	AFCEE
Well ID:	03-Q(
Date:	6/17/9
Time;	1420
Comments:	

Location:	Hobes	Yukon	Inn	well	
Weather:	partly	cloudy			
Semplere	920				

Comments

Field .	Measur	ements

HNU/OVA Reading (ppm):		
Water Depth (ft. btoc):	_	
Product Thickness (ft.):		
Well Volume (gal.):	_	

Product Depth (ft. btoc):	_	
Well Depth (ft. btoc):	_	
Saturated Thickness (ft.):		
3 well volumes (gal):	_	

Purge Method:

8	PIS	ct	
A	$-\sigma$		

Sample Method: Spisot

		70				of Joi
	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
Time 1420	5	-	_	_		
	-				-	
		-				
					 	
				-		
				1		
<u> </u>				+		
				1		
					1	
				<u> </u>	-	
		-		ļ	-	
						Final Measurements

Project:

Galena AFS RI

Client:

Well ID: 194- MW-02

Comments:

Field Measurements

Purge Method:

HNU/OVA Reading (ppm):

Water Depth (ft. btoc):

Product Thickness (ft.): Well Volume (gal.):

Waterra

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gal.):

Waterra Sample Method:

	Cum. Vol.	Cum. Vol. Water		Quality	*	
Time	(gal.)	Temp.	pH	Cond	Turbidity	Comments
600	0	10	6.43	1070		Dogin purge
1605	2	7	6.42	1060		turbidity meter act calibra
1611	5	5	6.42	970		
1617	1	5	6.60	960	57	Road traffic - 40ft
1620	8	4	6.48	1060		00
1625	10	4		1060	 	·
					!	
					1	
				:		
		!				
					!	
				<u> </u>		
				<u> </u>		
					,	
1630	//	4	6.5	1060	66	Final Measurements

E-259

Project:

Galena AFS RI AFCEE

Client:

Well ID: 04-MW-03
Date: 6/6/93
Time: 1230 1300

Comments:

Field Measurements

Purge Method:

HNU/OVA Reading (ppm): Water Depth (ft. btoc): Product Thickness (ft.):

0 (B.G.=0) 8.02

Product Depth (ft. btoc): Well Depth (ft. btoc):

Saturated Thickness (ft.): 3 well volumes (gal.):

Well Volume (gal.):

Redific-2

Sample Method:

Waterra

	Cum. Vol.		Water	Quality		7
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1230	0		_	_	_	Generator - begin purge
1235	15	4		11/0	1)	
1240	20	3.5	6.57	1100	5.5	
1242	22	3.5	6,61	11/0	9.5	Turbitity weter malfunctioning
						Turbitity weter malfunctioning These numbers are way
						toc low.
			-	 		
				_	<u> </u>	
 		! 		-		
			!	1		
12:40	25	3,5	6.6	1080	3.61?	Final Measurements

Project: Galena AFS RI Client: AFCEE

> Well ID: 05-MW-01
> Date: 6/16/43 Time: __1340

Location: 05 CPOL Weather: Warn Samplers:

Comments: Meter check = H7.0 = 7.03-01 Turbichty meter needed slight recalibration.

Stor of creosote @ site.

Field Messurements

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc):

Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc):

Saturated Thickness (ft.): 3 well volumes (gal.):

Purge Method:

Sample Method:

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	pH	Cond	Turbidity	Comments
1310	Ō	_	_	-		Begin purge
1317	10	5	6.71	1250		, ,
1320	15	_	-	-	133	
1322	20	3	6.80	1260	122	
1327	30	2.5	6.81	1260	97	
1329	35	2.5	6.81	1260	158	turbidity suddenly up
1332	40	2.5	6.80	1260	86	
1334	45	2.5	6.80	1260	62	
<u> </u>				-	<u>!</u>	
<u> </u>	 	-	:	-	:	
		-				
<u></u>			<u> </u>	+	; 	
ļ			; †			
i			!	<u> </u>		
				!		
				;		
				<u> </u>		
					ļ	
		1				
		ļ				
			<u> </u>			
				<u> </u>		
1336	ビス	2.5	6.82	1240	41	Final Measurements

Project:

Galena AFS RI

Client:

AFCEE

Well ID: # 05-MW-02 Date: 6/16/93 Time: 1040

Location: 05 (POL)

Westher: Warm and Samplers: BJC/LCO

Comments: Meter Check: pH 7.0 = 7.03 OK.

9.6 NTU = 9.9, set 6.9.6 \$85 NTU = .49, OK.

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): Product Thickness (ft.): Well Volume (gal.):

8 (B.G. = 0) 1156

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.): 3 well volumes (gal.):

Purge Method:

Watera

Sample Method:

	Cum. Vol.		Water	Quality		7
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1011	0		-		_	Bezin purge
10/6	10	3	6.44	780	180	
1022	20	2	6.60	720	60	
1025	25	1.5	6.81	720	71	
1028	30	2	6.85	720	40	
10 30	35	1.5	6.85		36	
10:34	40	2	6.83	720	36	
1036	45	2	6.83	720		
				:		
				į	1	
		!		! !		
			: T	! 		
				!	 	
			<u>i</u>	:		
			:	: :		
				!		
1039	47	2	6.86	720	37	Final Measurements

Alkalinity = 410 mg/L Caco3

Project:

Galena AFS RI

Client:

AFCEE

Well ID: 05-MW-03
Date: (6/17/93
Time: # 1910

Location: 65 (POL)

Weather: raining, coo

Samplers: BUC

Comments: No free product in well. (Used new Keck interface probe)

Field Messurements was only 6 on 6/11/97 when hydro carbon. Suspect: Field Messurements was done, Meter check: pit 7.0 = 7.00 - OK
9.6 NTU = 9.6, 0.985 NTU - 1696 adjustment

656 (B.4:=8

HNU/OVA Reading (ppm):

Water Depth (ft. btoc):

Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc):

Saturated Thickness (ft.): 3 well volumes (gal.):

Purge Method:

Waterra

Sample Method: Waterva

	Cum. Vol.	ļ		Quality	1	
Time	(gal.)	Temp.	pH	Cond	Turbidity	Comments
		-	-	<u> </u>	_	Boyin purse
1850	0 10	4	6.59	1206	>200	, , , , , , , , , , , , , , , , , , ,
185	4 20	3	6.58	1170	7200	
1850		3	6.67	1160	107.)	
180		3 3 3	6.78	1170	62	
1906		3	6.78	1170	42_	
				!		
				<u> </u>		
!			-		<u> </u>	
		1				
	: :					·
			•			
	*		1			
190	9 50	3	6.76	1160	44	Final Measurements

alkalinity = 628 mg/L le Coz E-263

Project:
OC

Galena AFS RI

Client:

AFCEE

Well ID: <u>05-MW-03-DS</u>

Date: <u>6/17/97</u>

Time: _/9/D

Location: 05 (POL)
Weather: Cloudy /Cool
Samplers: BX / CCO

Comments: See los for 05-MW-03

Field Messurements

Purge Method:

HNU/OVA Reading (ppm):

Water Depth (ft. btoc):

Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gal.):

Sample Method: Waterra

	Cum. Vol.			Quality		
Time	(gal.)	Temp.	pН	Cond	Turbidity	Comments
See	sample	100	Par 05	-MW	-03	
	7 0		Le 1 02			
				! !		
ļ	1					
			-			
į	1					
				!		
	i		1			
			 		 	
i	ļ					
			-			
		*****	<u> </u>			
	!			! !		
			-		:	
					1	
			 			
					: I	
					-	
			İ			
ļ						
			ļ			
	ļ					
	İ		m			
940	51	3	1 2 11	1090	110	1
170	04		6.74	1010	45	Final Measurements

alkalinity = 642 mg/L Caco3

Project:

Galena AFS RI

Client:

AFCEE

Well ID: 05-MW-04

Date: 6/16/93 Time: 1600

Location: 05 (POL

Samplers: BJC

comments: Did not attempt to measure product - probe is n't working. We will measure it with new probe during hydrocarbon survey.

Meter check 9.6 NTU = 9.66-OK, 0. \$85 NTU = news slight adjustment.

Field Measurements

** PH 7.0 = 7.03, 016.

Meter check

HNU/OVA Reading (ppm):

Well Volume (gal.):

Water Depth (ft. btoc): Product Thickness (ft.):

Product Depth (ft. btoc):

Well Depth (ft. btoc):

Saturated Thickness (ft.): 3 well volumes (gal.):

Purge Method:

Waterra

Sample Method:

Waterra

hydrcar

	Cum. Vol.		Water	Quality		
Time	(gai.)	Temp.	рН	Cond	Turbidity	Comments
1530	0	`	_	_		Begin purge
1536	10	3,5	6.74	1390	7200	
1540	20	1.5	6.88	1390	95	Read temp wrong?
1544	30	3.0	6.84	1350	181	7
1548		2.5	•	1320	156	Lots of road traffic.
!	<u>`</u>					I think all the petroley
, 		<u> </u>				in the water a readversely
		!				1
		:				They look pretty good,
		1				and we will sample
				1		@ 46 gallons to
						@ 46 gallons to avoid stuying in
						this engronment
1		!	!	*		ong longer than
		·	į	: :	: 	necessary.
						/
						,
		1				
		!				
		1	!			
1555	48	2.5	6.93	1350	101	Final Measurements

Alkalinity = 840 mg/L Ca COz

E-265

B. Z. went up to 62, pespiratures donned. takter beginning to purge,

Project: Client:

Galena AFS RI AFCEE

Well ID: 05-/MW-05

Date: 6-/7-93

Time: 1130

Location: OF (PUL)

Comments: No working interface probe we will measure product (if any) when the new probe arrives Affleter check: pH 7.0=7.00 + 0K!

Field Measurements

Turbidity meter weeked stight tweeking.

HNU/OVA Reading (ppm): Water Depth (ft. btoc): Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.): 3 well volumes (gal.):

Purge Method:

Sample Method: Waterra

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1059	0		_	-		Begin purge
1104	10	2.5	6.68	1250		
1109	20	2.0	6,82	1280	48	
1112	30 35	2.0	6.94	1250	107	
1115		2.0	6.92	1270	90	
1117	40	2.0	6.92	1260	87	
1122	45-	1,5	6.92	1260	49	
				i !		
:			ļ Ļ	1	!	
		1 1	!	!		
	7	i	:	:		
			:			
				1		
1127	50	2,0	691	1280	33	Final Measurements

alkalinity = 644 mg/L Caco,

Project:

Galena AFS RI

Client:

AFCEE

Well ID: <u>0.5-MW-06</u>

Date: <u>6/16/93</u>

Time: 1845

Location: 05 (POL

Samplers: BJC

comments! OVM lamp out. We will look at it tonight. This well had an OVM reading of of during the hydrocarbon survey on 6/11/93

Field Measurements

Field Measurements

HNU/OVA Reading (ppm): Water Depth (ft. btoc): Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.):

Purge Method:

Sample Method:

3 well volumes (gal.):

	Cum. Vol.	T	Water	Quality		
Time	(gal.)	Temp.	pН	Cond	Turbidity	Comments
1810	0		_	_	_	Begin purge
1815	10	A	6.68	0900	62	THERMATTER HOT WEEKING REPRESENT ON IT'S WAY.
1825	20	4	673	920	37	
1829	20 30	3.5-	6.75	0900	26	
1833	40	4	6.76	890	21	
1837	45.	4	6.73	900		
1839	48	3	6.75	920	9.8	
; 						
		! !		1 1 		
	·			: !	<u> </u>	
		!				
					i	
			1	: ! 	i i	
1						
				<u> </u>		
1839	48	3	6.75	920	9.8	Final Measurements

alkalinity= 400 mg/L CaCoz

Project:

Galena AFS RI **AFCEE**

Client:

Well ID: 06-MW-01

Date: 6/10/93

Time: ____1205

Location: Oo (West unit - waste accumulation a rea)

Weather: Warm and Sunny

Samplers: Bit and LCO

Comments: CVM is acting strange. The well appears to have detectable O.V., total and brekground and Br are mostly of However, twice the over went up to over 2000 and the alarm came on There is no odor, though The over did this two Field Messurements days ago and was found to be out of calibration will recalibrate.

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): 6/62 73 14.00

Product Thickness (ft.):

Well Volume (gal.):

150.6 (BG=0)

Product Depth (ft. btoc): Well Depth (ft. btoc):

Saturated Thickness (ft.):

3 well volumes (gal.):

Purge Method:

Waterra

Sample Method: Waterra

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1130	5	7	6.63	1380	-	
1133	10		-	Ø	<u> </u>	too turbid to get a
1136	15	6	6.75	1390		tes turbid to get a reading.
1145	20	6	6,77	1380		
1149	25	6	6-75	1380		
115	30	6	6.74	1380		
1153	_35	6	6.75	1380		
1148	40	6		1380	_	
1200	44	6	6.76	1380		
:				-		
					:	1
:	· · · · · · · · · · · · · · · · · · ·			-	·	
:	***		i !		:	
		<u> </u>	:	!		
:				; ;		
			<u> </u>	1		
<u> </u>						
200	44	6	6.76	1380	*	Final Measurements

41kalinity = 830 mg/L CaCO3 * Took a turbidity meter following sampling and get a reading of 175 (200 is max readable level).

E-268

Project:	
Cliant	

Comments:

Galena AFS RI

AFCEE

Well ID: 06 - MW - 01 Resample Location: 06 (West unf-waste Accumulation Area)

Weather: Cild and raining

Date: 6/15/53
Time: 150 Samplera: Bic/LCo

well is being resampled due to the laterarrival of Coolers 6-11-A and 6-11-B. Meter chede: pH 7.0=6.95 OK

Field Measurements

9.6 NTU = 9.99 } Sight recal.

HNU/OVA Reading (ppm):

Water Depth (ft. btoc):

Product Depth (ft. btoc): 52.73 (measured 6/10/93) Well Depth (ft. btoc):

Product Thickness (ft.): Well Volume (gal.): Saturated Thickness (ft.): 3 well volumes (gal.):

Purge Method:

Waterra

Sample Method: Waterna

	Cum. Vot.		Water	Quality		
Time	(gal.)	Temp.	рH	Cond	Turbidity	Commenta
1122	U			_	_	Bigin purge
1127	10		_			-
1136	25	6.5			150	
1140	35	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	6.64	1420	74.	
1147	44	4	6.67	1410	82	End purge
		1		: 		
		1	ļ			
		!			,	
		: !		ļ		
		1	1	:		
	·	ī				
		;	<u> </u>			
	· · · · · · · · · · · · · · · · · · ·			† †		
		i 				
		!				
		-			 	
		İ				
1117	44	6	6.67	1410	82	Final Measurements

E-269

Project:

Galena AFS RI **AFCEE**

Client:

Well ID: 06-410-02

Date: 6//0/43

Weather: Sterm approaching, but Sunny and I Samplers: LCO/BJC

Comments:

Field Measurements

Purge Method:

HNU/OVA Reading (ppm): Water Depth (ft. btoc):

Product Thickness (ft.): Well Volume (gal.): D (B.G. = 0)

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.): 3 well volumes (gal.):

Sample Method:

	Cum. Vol.		Water	Quality		
Time	(gai.)	Temp.	pН	Cond	Turbidity	Comments
13/0	U		_	-	-	BONK PURC
1320	15	6.5	6.52	1300	7200	Bogin purge Too muddy for tun
3:23			1		-65 200	
3:27	25	5	6.62	1320	# > 200	
5 :30		5	663	1320	>200	
5.33		5	6.65	1330	7200	
3:36	40	S		1320		\bigvee
5 38	νς.	5	6.66	1320	184,3	
		\$	6.65		193 BJC	
	 	!		1		
		!				1
		1	:	:	<u> </u>	
		:				A STATE OF THE STA
	,	<u> </u>	:			
- 4-				1		
				!		***
		<u> </u>	!	1		
		<u> </u>				
			!			
				1		
5 .40	44	5	6 ()			
<u>۷۷</u> و	46.5	<u> </u>	6.66	1320	188.2	Final Measurements

Alkalinity = 764 mg/L CaCo3 E-270

Galena AFS RI

•••
Client:

AFCEE

Well ID:	06-	MW	-02	Resample	۷

Location: OG (west unit, waste accumulation an

Date: 6/15/92

Weather: Cloudy, Cool Samplers: BK dool LC

Comments: Resampling this well -- Original samples.
Meter checks: PH 7.00 = \$6.97 OK. ED 9.6

mus routed by Feel Ex.

9.6 NTU = 9.58 NTU JOK.

Field Measurements

HNU/OVA Reading (ppm):

Product Depth (ft. btoc): Well Depth (ft. btoc):

(measured 6/10/93

Water Depth (ft. btoc): Product Thickness (ft.):

Saturated Thickness (ft.):

Well Volume (gal.):

3 well volumes (gal.):

Purge Method:

Sample Method:

Waterra

	Cum, Vol.		Water	Quality		
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1410	٥		_	_	_	Begin purge
		5	6.54	1350	163	, ,
1428	30	5	6.56	1370	72.00	
1434	40	5	6,58	1360	195	
	45	4.5	6.60			
1439	47	5	6.57	1366	195	
			1			
		 			1	
			1			
		!				
				_		
			† •			
					_	
	***		i ļ			1,
1439	47	5	6.57	1380	195	Final Measurements

Project: Client:

Galena AFS RI AFCEE

Well ID: 06-Myv-03

Date: 619/93

Location: 06 (West Unit)
Weather: Partly Cloudy/ (cc)
Samplers: RDC/LCO

Comments:

Field Measurements

Purge Method:

HNU/OVA Reading (ppm): Water Depth (ft. btoc):

Product Thickness (ft.):

2.6 (B.G.=0)

Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.):

Well Volume (gal.):

Waterra

Sample Method:

3 well volumes (gal.):

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1905	0		_			Begn purge
1908	5	6	6.5	1190	99	
1912	15	5	6.68	1170	78	
1915	20	5	6,72	1170	60	
1920	30	5	6.73	1170	67	
1922	- 35	5	6.72	1160	<u> </u>	
1925	40	5	6 73	1160	43	
1929	45	5	6.72	1160		
1932	47	5.5	6.73	1160	24	
: 		:				
			+		 	
		1			!	
		:	i :			
			<u> </u>		!	
	·	: 	1			
					i 	
İ					i 	
1000	(1)			111.5	21/	
1932	47	5,5	6.73	1/60	24	Final Measurements

Project:

Galena AFS RI

Client:

AFCEE

Well ID: 06- MW-04
Date: 6//0/93
Time: 1805

Wester: Warmand sunny, turning to partly cloud Samplers: BIC/CO and rai

comments: Fused interface probe but could not defect free product. Sheen on purgl drum and distinct odor. Checked pH meter > 7-7.

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): Product Thickness (ft.):

Well Volume (gal.):

113 (66=0)

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gal.):

Purge Method:

Walera

Sample Method:

*	Cum. Vol.		Water	Quality		
Time	(gai.)	Temp.	pН	Cond	Turbidity	Comments
1730	\$0	-		_		Begin pringe
1737	10	7	6.68	1270	36.5	0 1 0 -
1740	15	6	6.82	1220	193	
1745	20	6	6.84	1220	12.2	
1748	25	5	6.83	1220		
1752	33	5	6.85	1210	33 200	Turbidity suddenly high
1754	38	5	6.84	1210	\$ 9,60	
1758	40	5	6.84	1220	14.4	
1862	45	5	6.85	1210		
<u>;</u>				<u> </u>		
		!	!			
					!	
18.04	49	5	6.84	1220	17.2	Final Measurements

Alkalinity = 590 mg/L Ca Coz

Project: Client:	Galena AFS F AFCEE
Well ID	: 06-ML
D-4-	111510

Weather: Cool, partly (locally Samplers: Bix/LCC.

Comments: Resample to peplace samples misrowted by Feel Ex.

Meter check pH 7 = \$6.96 ox

9.6 NTU = 9.66, 0.485 NTU = 0.486

164 (B.4 = 0) HNU/OVA Reading (ppm): Water Depth (ft. btoc): Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc): Saturated Thickness (ft.): 3 well volumes (gal.): 4

Sample Method: Waterra

Purge Method:

Nuterra

Cum. Vol. Water Quality Time (gal.) Temp. pН Cond Turbidity Comments 1635 1700 9.6 1709 6.78 50 5.5 1260 9.6 Final Measurements

Project:

Galena AFS RI

Client:

AFCEE

Well ID: 07-mw-01 8-10-93

1015

Location: Campion

*from last years measurement-casing now broken SAMPLE 10=07-MW-01-03

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): Product Thickness (ft.):

Well Volume (gal.):

OPPM

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gal.):

Purge Method:

moteria

Sample Method: Wotorro

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	pH	Cond	Turbidity	Comments
1525	0	-	-	-		begin Durge
1528	2	4°C	6.68	1180	148.4	,
1534	Ч	5°C	69.01	1190	138.0	well is going dry in termit
1545	9	5°C	7.04	1130	115.8	
1550	8	4°C	69.0	1050	51.60	
1555	10	400		1010	36.6	
1605	13	400	7.02	1000	29.6	final reading
			1			allow well to rechard
						prior to sampling.
						P. S. S. S. S. S. S. S. S. S. S. S. S. S.
		1				
					 	
				×	!	
				1		
		1		<u> </u>		
				<u> </u>		
			-		-	
						Final Measurements

alkalinity was mall casos

Project:

Galena AFS RI

Client:

AFCEE

Well ID: 07-MW-02

Date: 6/9/93
Time: 1500

comments: All EVIM readings are 0, but it smells like hyghrocar Gons, and there is a sween on the groundwater. Meter coelitrating were a little off. Recalibrated both meters.

Purge Method:

Water Depth (ft. btoc): Product Thickness (ft.):

Well Volume (gal.):

HNU/OVA Reading (ppm): (B.(, =0?)

Waterra

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gal.):

Sample Method:

Waterra

	Cum. Vol.		Water	Quality		7
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
14:35	0	_	_		•	Begin purge
14:37	3	35	\$ 7.26	1520		Begin purge Ac. oder
14:40		25	7.40	1440	125	
14:42	10	2.0	7.44	1450	母	
14.43	15	1.0	7.47	1440	111	
14:49	20	1,0	7.48	1430	96	
14:54	20	1.5	7.52	1430	७९	
		ES-	7	1420		
					ļ	
		<u> </u>				
		!				
		!				
				:	; ;	
					!	
14 58	25	1.5	7.52	1420	69	Final Measurements

Project:

Galena AFS RI

Client:

Well ID: 07-MW-02-DS
Date: 6/9/93
Time: 500

Location: 07

Weather: Warm Samplers: 3/C

Comments:

See 07-MW-02 Sampling /og

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gai.):

Purge Method:

Waterra

Sample Method:

Waterra

1	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	pH	Cond	Turbidity	Comments
50	0 67-	410-0-	1. 50.	in with	2 (op.	
See	(-	1- (W. O		re-printe	7 15	
			 	!		
				:		
-				<u> </u>		
					1	
				!	İ	
		!		!		
		 		ļ		
1		İ	!	:		
		!		1	!	
		<u> </u>				
ı		:		į		
				 	!	
i		!	i 		<u> </u>	
			1			
		!		1	·	
		:	!		ļ	
			1			
		 		<u> </u>	<u> </u>	
			1			
		-		-	-	
				-		
		+	<u> </u>	-	+	
		4 000		1./-	 	
600	35	1,5	7.36	1/430	107	Final Measurements - taken

following sample

Alkalinity = 700 mg/L Caco3 E-277

GROUNDWATER SAMPLING LOG Project: Galena AFS RI Client: AFCEE Well ID: 07-mw-03 Date: 8-10-93 Time: 1800 Sample id = 07-mw-03-03 # from last years measurement-casing now broken Field Measurements HNU/OVA Reading (ppm): Product Depth (ft. btoc): Water Depth (ft. btoc): Well Depth (ft. btoc): Product Thickness (ft.): Saturated Thickness (ft.): Well Volume (gal.): 3 well volumes (gal.):

Purge Method:

	Cum. Vol.	T	Water	Quality		1
Time	(gal.)	Temp.	pH	Cond	Turbidity	Comments
1740	0	-		-	-	beain
1745	3	35°C	68.01	1360	>200	3
1750	9	3°C	89.0	1350	148.8	
1752	10	3°C	7.02	1310	87.2	
1755	15	3°C	7.04	1330	-	
1757	17	~	-	-	132.0	
1800	20	3°C	7.04	1320		final Reading
					-cms	SAMPLE @1800
				1	8-10-93	
İ					:	
!			!	1	1	
			;			(
i						
:			:	:		
					i	
:						
			i			
	,					
		:	1	!		
		!	!			
						Final Measurements

Sample Method: Waterro

Project:

Galena AFS RI

Client:

AFCEE

Well ID: 07-MW-04

Date: 7-29-93

Time: 1050

Weather: Dt. Cloudy, Cool, 58°
Samplers: LCO

comments: Sample 1> = 07. MW-04-03

Field Measurements

HNU/OVA Reading (ppm):	
Water Depth (ft. btoc):	
Product Thickness (ft.):	
Well Volume (gal.):	

Product Depth (ft. btoc):

Well Depth (ft. btoc):

Saturated Thickness (ft.):

3 well volumes (gal.):

Purge Method:

Waterra

Sample Method: Waterra

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	ρН	Cond	Turbidity	Comments
0943	0	8°C	5.56	1410	34.0	
1015	20	4°C	7.01	1370	175.5	
1025	30	3°C	7.16	1410	>	too turbidto get reading
1027	35	3°C	7.19	1410	189.9	
1030	40	3°८ 3°८	7.23	1390		
1035	45	25°C	7.23	1390		
1037	50	250	7.23	1390		
OPOI						Stop purging.
		:	; !		i !	4 6
i					:	
			*	1	1	
				:		
		:			!	i
:						
				;	:	
		:			:	
		!	i			
					İ	
		1				
		İ				
					+	Final Measurements

Project:

Galena AFS RI AFCEE

Client:

Time: 1700

Well ID: 09-MW 01 Dete: 6/13/93

Location: 09 (West unit - Million Gallon Hill) Weather: partly cloudy, Coc/ Samplers: BIC/LEO

HNU/OVA Reading (ppm):

Water Depth (ft. btoc):

Well Volume (gal.):

Product Thickness (ft.):

Comments: Chick meters - pt 7.0 =

Ø (B.G=0)

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gal.):

Purge Method:

Waterra

Sample Method:

Waterra

	Cum. Vol.		Water	Quality		7
Time	(gal.)	Temp.	pH	Cond	Turbidity	Comments
1628	0		_		_	Bagin purge
1634	10	5	668	12/0	>200	chundants of Fe oxides
1636	15	5	6.74	1220	7200	
1639	20	4.5	6.76	1220	189	
16 34	25	_	6.76	12/0	196	
1647	35	5	6.75		141	
1650	40	5	6.75	1220	120	
1854	45	4.5	6,76	1220	124	
		!				
	<u> </u>	 	!			
		! !	!			
			<u> </u>		-	
		!			:	
		:				
1656	49	5	6.77	1220	136	Final Measurements

Alkalinity = 706 mg/L Ca Co3

Project:

Galena AFS RI

Client:

AFCEE

Well ID: 09-MW-02

Date: 6/13/93
Time: 1450

Location: 09 (Wert linit - Million Gallon Hill)

Weather: Warm and SUNNY
Samplere: BK and L(0)

comments: pH meter check -- 7.0 = 6.95 OK Turbidimeter -- 10 = 10.14, 0.5 = 0.59

Field Measurements of Fe oxides in the well

HNU/OVA Reading (ppm):

Product Thickness (ft.):

Well Volume (gal.):

Water Depth (ft. btoc):

 $\frac{0 (B(1=0))}{2.23}$

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gal.):

Purge Method:

Waterra

Sample Method: Waterra

	Cum. Vol.	<u> </u>	Water	Quality		
Time	(gal.)	Temp.	рH	Cond	Turbidity	Comments
1422	0			_		Begin purge
1424	5	6	6.66	1/30	184	
1429	15	5	6.76	//0 8	118	
1434	20	4,5	6.80	1080	67.	
1437	25	4.5	6.79	1060	63	
1440	30	4.5	6.79	1070	T -	
1443	35-	4.5	6,79		, ,	
1445	40	4,5	6.80	1060	40	
149 +	45	4.0	6.79	1050	38	
1449	48	4.5	6.81	1060	(6	
,		!				
		1	!	<u> </u>	!	
					,	
			<u> </u>	! !	<u> </u>	
			!	:		*
				1		
			-			
140	4. 7.	(1.5	1 / 01	1.1.5		
1447	48	4.5	6.81	1060	16.	Final Measurements

Project:

Galena AFS RI

Client:

AFCEE

Location: 09 (West unit - Million Gallon Hill)
Weather: Warn and sunny
Samplers: BUC/LCO

Comments: rH meter check: pH 7.0 = 7.03

turbidity meter: need stight recalibration

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc):

O (BG=0)

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

Product Thickness (ft.):

Well Volume (gal.): 15.6

3 well volumes (gal.):

Purge Method:

Waterra

Sample Method:

Waterra

	Cum. Vol.	1	Water	Quality		٦
Time	(gal.)	Temp.	pH	Cond	Turbidity	Comments
1340	0	_	-	-	_	Begin purge
1345	10	5	6.67	1080	_	
1347	15		_		95	
1348	20	3 800	6.70	1100		
1350	25	3 32	_		9° tu 46	
1354	30	3	6.69	1090	-	
1356	35	3 3	6,72	1090	45	
1358	46	!	6.71	1090	41	
1400	45	2,5	6,70	1090		
		3	6.72	1090	gt, see be	low
						7,77
						·
	_					
	-					
	. [
1402	48	3	6.72	1090	<u>65</u>	Final Measurements

alkalining = 454 mg/L CaCo3 E-282

Project: Client:

Galena AFS RI AFCEE

Well ID: 89-MW-04

Date: 6/14/93 Time: _// 05

Location: West unt (Million Gallon Hill)

Weather: Sunny and Cool

Samplers: BX /LCO

Comments: Meter check pH 7.00 = 6.99

- need sight calibration 0.5 NT4 ->

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): Product Thickness (ft.):

Saturated Thickness (ft.):

Product Depth (ft. btoc): Well Depth (ft. btoc):

3 well volumes (gal.):

Well Volume (gal.):

Sample Method:

Waterra

Purge	Method:	

Waterra

	Cum. Vol.		Water	Quality		
Time	(gai.)	Temp.	pH	Cond	Turbidity	Comments
1035	0			_		Begin purge
1038	5	5	-	_	_	,
1040	D	4	6.08	1370	89	
1042	15	3.5	6.68	1190	51	
1046	20	3.5	i	1180	47	
1049	25	3.5	6.75	1180	32	
1051	30	3.5	6.74	1180	<u> </u>	
1055	35	3.5	6.77	1190	21	
1058	46	3.5	6.75	1170	22	
1+02		ļ				
!		! ! 		!		
	·			: 		•
					ļ -	
				!		
			1	!		
			1			
		*				
1102	45	3.5	6.74	1170	15	Final Measurements

Project:

Galena AFS RI

Client:

AFCEE

Well ID: 09-MW-05

Date: 6/14/93 Time: 1745

Weather: 1/2+ and survey

Samplers: BJC/LCO

Comments:

Meter the ech - 11 + 7.0 = 7.02 Therefording meter is not calibrating well at all keeps drifting up mems are 10 = 10.17 3 will try to fix to night

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc):

Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.): 3 well volumes (gal.):

Purge Method:

Watern

Sample Method: Waterra

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	pН	Cond	Turbidity	Comments
1720	0	_	-			Begin purg
1724	_/0	5	6,45	300		0 1
1728	20	3.5	6.72	990	75	
17 33	30	3,5	674	990		
1735	35 40	3.5	6.74	990	37	
1738	<u> </u>	3.0	6.75	990	35	
1740	45	3.0	6.75	980	30	
		· · · · · · · · · · · · · · · · · · ·				
		!				
1743	49	3,0	6.75	986	32	Final Measurements

Alkalinity = 464 mg/L Ca Co3

Project:

Galena AFS RI

Client:

AFCEE

Well ID: 0? - M W - O(p)

Date: 6/14/13

Time: 1545

Weather: Warm and Sunvy
Samplers: Bik/LCO

Comments: Meler cheek=Turbidity, 10 NTU = 10.08 OK 05 NTU = 0.45 - set to 050 PH meter: PH 7:0 = 7.04

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc):

Product Thickness (ft.): Well Volume (gal.):

Q (BG.=8)

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gal.):

Purge Method:

Sample Method: Waterra -

	Cum. Vol.	T	Water	Quality				
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments		
1518	\Box	_	-			Begin purge		
1522	10	6.5	6,50	3570	7200			
(527	20	4	6.69	350	7200	,		
1531	30	3	6 84	340	180%	K		
1532	35	3	6.81	340	180			
1535	40	3.5	672	340	99			
1538	45	3.5	5.72	340	111	? Turbidity up? Remaser	ree 5	<u></u> Σ©,
			-					
		1						
		<u> </u>						
				<u> </u>				
							1	
	·	!						
1540	50	30	6.71	340	76	Final Measurements		

Alkalinity = 132 mg/L CaCOZ

Project:	
Client	

Galena AFS RI

AFC

Well ID:	10	- N	い	ひ	l	
_	,		$\overline{}$	_		_

Comments: Removed transclaces @ 2:20

Checked pH meter 7.0 = 7.01. Tartidity meter 10=10,33

15= .6

HNU/OVA Reading (ppm):

Field Measurements

Water Depth (ft. btoc):

Product Thickness (ft.): Well Volume (gal.): 0 (BG=0)

Product Depth (ft. btoc):

Well Depth (ft. btoc):

Saturated Thickness (ft.): 3 well volumes (gal.):

Purge Method:

Waterra

Sample Method: Waterra

	Cum. Vol.					7
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1443	5	200	6.19	1150	130.1	
1449	10	5°C	6.63	1130	112.0	
1453	15	500	6.61	1120	60.8	
1467	20	5°C	6.66	1140	85.2	
1502	25	5°C	6.68	1130	39.1	
1508	30	500	6.68	1150	26.2	
1372	35	500	6.69	1140	30.0	
1516	40	5°C	6.69	1140	26.2	
1320	43	500	6.69	1130	23.3	
	45	50		1140	23.8 35.4	
1328	47	50c	6.68	1130	35.4	
		-				
			i			
1528	47	5'	6.68	1130	35.4	Final Measurements

Project:

Galena AFS RI

Client:

AFCEE

Well ID: 10 - MW - 61

Date: 6 /15/53 Time: 1855

Well Volume (gal.):

Location: 10 (Volide MainTenant Birding Weather: warm; partly cloudy

Samplers: BK/LCO

Comments: Asked to resample well to collect enough water for Nitrate/Nitrite, Anions, and TDS Meter check: 9.6 NTU = 9.45 (set to

.485 NTU = .47 (set to .4)

pH 7.0 =

Field Measurements

HNU/OVA Reading (ppm):

0 (B.4. = 0)

Water Depth (ft. btoc): Product Thickness (ft.):

Product Depth (ft. btoc):

Well Depth (ft. btoc):

Saturated Thickness (ft.):

3 well volumes (gal.):

Purge Method:

Sample Method: Waterver

	Cum. Vol.		Water	Quality			
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments	
1831	٥	_		_	-	Begin purze	
1840	20	6	6.50	1060	7200	spc : Had turbichmeter set on wrong	ra-
1844	<u>კ</u> υ	4.5	6.58	1130	83	J	
1850	40	4.5	6.62	1140	55		
i I		4.5	6.63				
<u> </u>							
· · · · · · · · · · · · · · · · · · ·		1		-			
		<u> </u>			 		
				-	+		
		-					
		 					
. —							
1854	45	4.5	6.63	1140	<i>5</i> 5	Final Measurements	

Project:

Galena AFS RI AFCEE

•	,	
C	lient:	

Well ID: 10- L(10-02

Date: 6/8/93

Location:

Comments: Used interface probe, but could not detect free product. OVM reading very high, but background and breathing zone = 0. Week turbidity me for: 16=10.08, 0.5=0.59

Check pH meter: #7=7.01

Purge Method:

HNU/OVA Reading (ppm): Water Depth (ft. btoc): Product Thickness (ft.): (B4=0)

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.): 3 well volumes (gal.):

Well Volume (gal.):

Naterra

Sample Method: Vouterva

	Cum. Vol.		Water	Quality	····	
Time	(gal.)	Temp.	pН	Cond	Turbidity	Comments
16:40	0		_		_	Begin purge
16:45	5	5	6.69	1330	11.2	
16:54	15	4	6.79	1320	7-6	
17:00	20_	4	4.82	1330	8.3	
17:04	25	4	6.83	1320	 	
17-06	30_	4	6.84	1320	9.7	really unstable tur
17:08	35	4	6.82	1320		Henths.
17:10	46	4	6.83	1330	3	PStill fluctuation alot,
17:14	45	4	6.83	1320		that within a small ran
		1		: !		
		!	-		<u> </u>	
			ļ			
17:14	45	4	6.83	1320	8	Final Measurements

Alkalinity = 780 mg/ Calls

E-288

* Thin film not cochio in purps cirum

Project: Client:

Galena AFS RI **AFCEE**

Well ID:

10-MW-03 6/7/93

, doudy, getting cooler

Comments:

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc): Well Depth (ft. btoc):

Saturated Thickness (ft.): 3 well volumes (gal.):

Purge Method:

Sample Method:

Waterra

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
18:15	\Box		_	-	_	begin purg
18:25	10	4.5	5.48	1030		
18:30	15		_	"	108	
18:35	20	3.5	5.0	1031	<i>5</i> 8	pH meter chapping?
18:46	3°	3.5	4,65	1040		
18:43	35	3.5	4.8	1046	39	
18:46	40	3.0	4,5	1000	40	
18:50	45	3.0	4.6	990	39	Lanks good. Vd pH cal
		 	ļ ļ	: +		
		1	! !	! !		
			!			
			; ;			
18:50	45	3 0	4.6	990	39	Final Measurements

Alkalinity = 620 mg/L (aco3) + Generator leaking you we decided not to use.

Project	:
Client:	

Galena AFS RI

nt:	AFCE
it:	ALCE

Well ID: 12-MW-0]
Date: 6/6/93
Time: 1930

Location:

Comments:

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc):

Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc):

Saturated Thickness (ft.): 3 well volumes (gal.):

Purge Method:

Meterra

Sample Method: Waterva

	Cum. Vol.		Water	Quality			
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments	
8:55	10	5	5.51	910	7200	Started w/ pump, ran out	~ (
9:00	2015	5	5,65	890	> 200	77	0
4:05		4	6.18	900	198		
4:10	25	4	6.17	900	173		
7.15	30	4	556	910	170	Westerin pH bailtery case - i	use a
			Gan	d drop	ping fast		
		1			3		1
				!			
!							
		i 1		i			
			:				
				· · · · · · · · · · · · · · · · · · ·	 		
			!	:			
:				† · · · · · · · · · · · · · · · · · · ·			
			100	·	<u> </u>		
			-				
				!			
	4 0	4	6:17 4	9/8			- 1

E-290

Lettery case?!?

E-290

Lin battery case?!?

Linity = 540

Project:

Galena AFS RI AFCEE

Client:

Well ID: 12MW-02
Date: 6-7-93
Time: 13:50

Weather: Warm and sunny, breezy to justy

Samplers: LCO /RJ(

Comments:

Field Measurements

HNU/OVA Reading (ppm):

Product Thickness (ft.):

Well Volume (gal.):

Water Depth (ft. btoc):

Product Depth (ft. btoc):

Well Depth (ft. btoc):

Saturated Thickness (ft.): 3 well volumes (gal.):

Purge Method:

Waterra

Sample Method:

Waterra

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	pН	Cond	Turbidity	Comments
13:10	0		-	_	•	Bogin purge
13:20	5	4	5.74	880	160	
3:25	/0	4	5.61	860		
1330	15	4	5.60	800	37	
13:35	20	4		800	17	but now looks stable
13:38	25	5	6.2	810	12	but now looks stable
13:44	30	4	1 / 1	810	6	
-		<u>;</u>	-	 		
				<u> </u>		
				1	İ	
<u> </u>				1	i 	
<u></u>		<u> </u>	<u> </u>		<u> </u>	
	i :					
					-	
		ļ -				
					<u> </u>	
			-	1		
			<u> </u>	 		
13:48	31	4	6.5	81 D	5	Final Measurements

Project:

Galena AFS RI AFCEE

Client:

Well ID: 12-MW -02-DS-03 Date: 6-7-93

Location:

Weether: Warm and sunny, windy Samplers: BUC/LCO

Comments:

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gal.):

Purge Method:

Waterra

Sample Method: Waterra

	Cum. Vol.	1	Water	Quality			
Time	(gal.)	Temp.	рН	Cond	Turbidity	Commente	
See	purge	2/02	for	12-	HW-	- 02	
	- P - 0	0		:	7 (10		
				1			
				i			
		1			:		
	!						
				!	-		
					<u> </u>		
	į			1	1		
					!		
					1		
	2	i			!		
				'	 		
				-	!		
	!						
					 		
i				!	!		
					i		
;							
				i			
				i			
		i					
į Į		1		İ			
		i			<u> </u>		
				1			
48	31	4	6,5	810	5	Final Measurements	

Alkalining = 500 mg/L Ca CO3

GROUNDWATER SAMPLING LOG Project: Galena AFS RI AFCEE Client: Well ID: 01- MW - 07 Location: FIA Weather: cold & cloudy, light SE win Samplers: Bic/MiZ pH check - 7.00 s-ffer reads 7.07 Sample @ 15:00 Comments: Field Measurements HNU/OVA Reading (ppm): Product Depth (ft. btoc): Water Depth (ft. btoc): 27.23 Well Depth (ft. btoc): 50,23 Product Thickness (ft.): Saturated Thickness (ft.): 4.6 Well Volume (gal.): 3 weil volumes (gal.): Waters-Watera Sample Method: Purge Method: Cum. Vol. Water Quality Turbidity Time (gal.) рΗ Cond Comments Temp. stand 1430 0 6.71 かり 1433 2.5 6.13 106 1140 1435 5,0 1438 1150 1150 6.71 1445 1150 6.70 1150 6.67 1150 17.5 6.71 1140 200 6.67

1458 20.0 1° 6.67 1140 — Final Measurements

Alkalinity = 680 mg/ (alos

Project:

Galena AFS RI

Client:

AFCEE

Location: Southes Hern-most well @ FTA Weather: Cool and clearing
Samplers: BJC/MAR

Comments: pH muter check: buffer 7 = 7.01.

ambin black 1050. Collect sample @ 11:16

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc):

Product Thickness (ft.): Well Volume (gal.): 22, Ki

Product Depth (ft. btoc):

Well Depth (ft. btoc):

Saturated Thickness (ft.): 3 well volumes (gal.):

Purge Method:

waterry

Sample Method:

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1040	ð		-	; <u></u> .		stad purge
1042	2.5	2" (-	6.68	1230		
1045	9.0	?~	4.75	1230		
1048	7.5	150	6.80	1220		
1055	10	10	6.81	1220		
1103	12.5	1,5	6.84	1240		
1106	15	16	6.83	1230	•	
1112	1/20 17,5	1,5	6.88	1230	:	
1115	20	1.5	6.86	12-30		
				•		
					*	
,						:
						:
					ı	
	:	i		 	:	
					!	
					İ	
N5	20	1.5	6.86	1230	-	Final Measurements

alklimby = 764 mg/L (a Co)

Project: Client:

Galena AFS RI **AFCEE**

Well ID: 05-MW-13
Date: 9-13-93

Time: 1630

Location: Weather:

Comments: pH calibration check O.K.

Field Measurements

Purge Method:

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): Product Thickness (ft.):

Well Volume (gal.):

Waterra

Product Depth (ft. btoc):

Samplera:

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gai.):

Sample Method:

Waterra

10

	Cum. Vol.		Water	Quality	ry			
Time	(gal.)	Temp.	pH	Cond	Turbidity	Comments		
1645	0		· -		-	Begin purge		
1648	2.5	でし	6.54	1110	<u></u>	·		
1451	5.0	15°	4.61	1120				
1655	7.5	200	6.65	1110	-			
1657	įυ	206	Celel	1100				
1700	[3	200	6.59	1110				
1707	15	1.5°C	6.61	1100	-			
		ļ						
<u></u>								
<u>:</u>		! !		 				
!		! !	!	1				
	:	1				·		
				:		,		
		1						
1707	15	1,5	6.61	1100	_	Final Measurements		

alkalming 644 mg/L (a co3 - BgC

Project:

Galena AFS RI

Client:

AFCEE

Well ID: <u>05 - MW - 14</u>

Date: <u>9-14-93</u>

Time: <u>1315</u>

Samplers: BX/WTR

1417 Sampli

Field Messurements

Purge Method:

Comments:

HNU/OVA Reading (ppm):

Water Depth (ft. btoc):

Product Thickness (ft.): Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc):

Saturated Thickness (ft.): 3 well volumes (gal.):

Sample Method:

35,26

	Cum. Vol.	Ţ	Water	Quality		
Time	(gal.)	Temp.	pH	Cond	Turbidity	Comments
1345	0					begin purgl.
1348	2.5	2°C-	6.61	940		0 0
1352	5.0	200	6.63	920	j	
1357	7.5	200	6.64	930		
1402	16	20	6.63	750		
1407	12,5	23	6.63	920		
1412	15.0	Z°	16,60	930	<u> </u>	
				· ·	:	
•				:		
:			<u>:</u>	1		· · · · · · · · · · · · · · · · · · ·
						Ī
				-)(-		1. 1
		-				:
<u> </u>						i .
			-			
				:		
					1	
			1	t I		
į		ı	!		!	
1412	15.0	2 °	6.64	930	i -	Final Measurements

alkelimby= 538 my/L Colos

GROUNDWATER SAMPLING LOG Project: Galena AFS RI Client: AFCEE

Well ID: C5-MW-14 duplicate Location: OS (South Pa on Tain well and Samplers: Cold, strong winds from a Samplers: B) Coel and MAKOWIEN

Comments: See gurge los for 05-MW-14

Field Measurements

Purge Method:

HNU/OVA Reading (ppm): Water Depth (ft. btoc):

Product Thickness (ft.):

Well Volume (gal.):

11.70

Product Depth (ft. btoc): Well Depth (ft. btoc):

Saturated Thickness (ft.):

3 well volumes (gal.):

Sample Method:

35,26

	Cum. Vol.		Water	Quality	.,			
Time	(gal.)	Temp.	pН	Cond	Turbidity	Comments		
				:	1			
		·	<u> </u>					
		1)1	: !		!			
			Ī		:			
					· •			
				•	 			
	i	:	:	1	÷			
		1		:	:			
	<u> </u>	1	-		!			
-	!	:	<u>i</u>	<u> </u>	i			
			:	;	•			
			:	· · · · · · · · · · · · · · · · · · ·				
	:		:	1				
	! !		*	1				
					•			
	 		*					
	·		!	:	1			
	:				i			
					,			
	:				:			
	1	:	:		:			
		!						
			:					
	!	:	! •					
			1	1				
		!	-					
	1	!	-					
	İ	1	i					
	İ	İ	İ			readings taken after pouring x		
100		3 2 2	1///	020				
438	L16	2°C	6.66	930	-]	Final Measurements		

alkalmity = 562 mg/L cacos

GROUNDWATER SAMPLING LOG Project: Galena AFS RI Client: AFCEE Well ID: OC-MW-15 Date: 3/15/43 Time: 1710 Comments: MJ huffle= 7

Field Messurements

Location:	0 5	
Weather:	Cool and doude	
	BIC INDE	

buffer= 7,06 aundional weark	1740.	Sample	@18:0	9 <i>0</i>
n):		Product Depti	a (ft. btock	

	Cum. Vol.		Water	Quality			751
Purge Method	:	Watern	4		Sar	nple Method: Waterva	
Product T	hickness (ft.): Volume (gal.):	12.92 - 3.6			Saturated This	h (ft. btoc): 35 14 cknees (ft.): 22 3 lumes (gal.): 10, 3	j
	eading (ppm): epth (ft. btoc):	12 02			Product Depti		

	Cum. Vol.		Water	Quality		
Time	(gai.)	Temp.	рН	Cond	Turbidity	Comments
1720 MC	0				_	begin puzel
1730	MT-353.0	3°C	6.83	900		
1742	5.0	106	6.85	900	<u> </u>	
j745	7.5	100	6.84	890	-	
1749	10.0	100	6.84	890		
[753	12.5	101	6.84	490		-
[757	5.0	1.0	6.44	890	. —	
				-	1	<u>:</u>
						:
					-	
						*
			•			
	-				!	
		· · · · · · · · · · · · · · · · · · ·	······································			!
					!	
	:	· · · · · · · · · · · · · · · · · · ·				
1757	15.0	1°C	6.84	890		Final Measurements

alkelinity = 506 rag/L CaCoz-

Project: Client:

Galena AFS RI

AFCEE

Well ID: Ob MW 07

Date: 9-13-93
Time: 1400

Location: 66

Weather: wolf claudy

Samplers: BJC/MA

Comments: pit needed slight recalibration.

Field Measurements

Purge Method:

HNU/OVA Reading (ppm):

Water Depth (ft. btoc): Product Thickness (ft.):

Well Volume (gal.):

22.60

nateru

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gal.):

Sample Method:

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1410	0	_	-	-	-	Begin purge
1415	2.5	4	6.53	1400	-	
1420	5.0	4	6.57	1410	-	*
1424	7.5	3.5	6.60	1410	-	
1426		4	6.59	1400	-	
1433	15	4	6.56	1400	.	water pretty clear
	······································					
	· · · · · · · · · · · · · · · · · · ·					
1					<u> </u>	
	· · · · · · · · · · · · · · · · · · ·	:				
			<u> </u>			
			<u> </u>		<u> </u>	
					ļ	<u> </u>
					İ	
					-	
				<u> </u>		
				<u> </u>	-	
	,			-		
			-			
				<u> </u>	tin	
		<u> </u>		r r	式	
1433	15	4	-8-	6.56	1400	Final Measurements

GROUNDWATER SAMPLING LOG Project: Galena AFS RI Client: AFCEE Well ID: 06-MW-67 Duplicate Location: 06 Date: 9/13/73 Weather: Cost, Clinde Samplers: 3) (/LIAR Comments: See 04-MW-C7 sampling log for purgi infe Field Measurements HNU/OVA Reading (ppm): Product Depth (ft. btoc): Water Depth (ft. btoc): Well Depth (ft. btoc): Product Thickness (ft.): Saturated Thickness (ft.): Well Volume (gal.): 3 well volumes (gal.):

Sample Method:

Purge Method:

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1437	15	4°C	6.60	1410		
-					-	
				<u> </u>		
					<u> </u>	
					<u> </u>	
				:		
·						
			<u>-</u>			
1437	15	4	6.56	1410		Final Measurements

6.60 pc allowny = 852 vg/L C2 (03 E-300

Project: Client:

Galena AFS RI AFCEE

Well ID: 09-MW-15

Date: 9-14-93

Time: 1100

Comments:

Suffer 7,07 PH7

Sample @ 1140

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc):

Product Thickness (ft.):

Well Volume (gal.):

12,01

Product Depth (ft. btoc):

Well Depth (ft. btoc):

Saturated Thickness (ft.): 3 well volumes (gal.):

3761

25,10

Purge Method:

Waterro Water Sample Method:

	Cum. Vol.		Water	Quality		
Time	(gal.)	Temp.	pН	Cond	Turbidity	Comments
1100	0	_	_		_	segin purgl
H10 1105	2,5	5°C	6,66	970		D 1 0
1110	_5	50	c.80	970		
1115	7.5	50	6.81	970	-	
1119	10	50	6.31	970		
1123	12.5	4 ²	6,80	940		
1127	15	4.5°	6,82	940	 -	
1130	17.5	40	6.82	950		
1133	20	4.	6.83	950		stop. purge
			ļ 	<u> </u>		·
		!				
				1	!	
		1				
	-					
1133	20	40	6.83	950		Final Measurements

alkalimy = 550 mg/L Ca Cos

Project:

Galena AFS RI AFCEE

Client:

Well ID: 10 ~ MW-04

Date: 9/12/93

Purge Method:

comments: pH 7 buffer = pH 7.08 + 10-billy meter not voting (bed bulls?)

Field Measurements

HNU/OVA Reading (ppm):

Water Depth (ft. btoc):

Product Thickness (ft.):

Well Volume (gal.):

Product Depth (ft. btoc):

Well Depth (ft. btoc): Saturated Thickness (ft.):

3 well volumes (gal.):

Sample Method:

	Cum. Vol.	T	Water	Quality		
Time	(gal.)	Temp.	рН	Cond	Turbidity	Comments
1655	Z	ZUC	6.74	1120		
1700	<u>z</u> 5	zoc	6.79	1120		
1705	10	200	6.90	1110		
1710	15	Soc	6,85	lito		
1715	70		4.85	1110		
	,			Mo/cm		
		1		1		
				-		
		!		<u> </u>		
1		! !		-	<u> </u>	
-						
· · · · · · · · ·	-		:	-		
			·	-		
					,	
			·	:		
	-				<u> </u>	
					<u> </u>	
	-					
1715	20	MIL 2°C	6185	luo		Final Measurements

alkaliny = 600 mg/L G. CO3

1994 Groundwater Sampling Forms

Project: Client:	Galena Airport RI/FS AFCEE						
Well ID: Date:	01-MU-01	Weather MStly Cldw, 4480F Samplers: Sch for S					
	No 8270						
Field Measurements:							
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal)		Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): 3 Borehole Volumes (gal):					
Purge/Sample Method:	4 . 17/	1					
Time	Cum. Vol. Temp. (gal) (deg C)	pH Conductivity Comments: (pH units) (umhos/cm)					
1447	5 4	6,55 1190 Cloudy Brown					
1452	35 4	(1.53 1170 Clear, fine Vorticular					
1504	50 4	6.65 1180 11					
1515	80 4	6.67 1180 4					
1518	85 4	6.63 1170 11					
Final Measurements:	i ,						
Temperature	F pH 6.63	Conductivity 1/70 Alkalinity 6 (mg/l Ca					

Project: Client:	Galena Airport l AFCEE							
Well ID: Date:	01-ML	1-02	Location: Fire Hair Pirt Weather Cloudy 439/- Samplers: SCA, THC					
			•	Samplers:	SCH, IIN C			
Comments:	No 8270	<u>ز</u>						
Field Measurements:								
01045 8 4 3			_					
OVM Reading (ppm): Water Depth (ft btoc):	14,51		-	roduct Depth (ft btoc):	29.41			
Product Thickness (ft):			-	Vell Depth (ft btoc): aturated Thickness (ft):	14.90			
Borehole Volume (gal):			-	Borehole Volumes (gal):				
			-					
Purge/Sample Method:	/ 7 /	utility p	ump	sample mi	th watters			
Time	Cum. Vol.	Temp.	pH	Conductivity	Comments:			
- 47	(gal)	(deg C)	(pH units)	(umhos/cm)	01 1 0			
5/1405	5	3,	6.41	1400	Cloudy Brown			
20 1411	20	4,	6.46	1260	Sightly Clary			
30 1410	30	4	6.46	1270	Clean			
B6 1418	36	3.5	6.45	1270	(/			
	ļ							
					·			
			-					
			1					
		,						
		-						
			.1					
Final Measurements:				•				
Temperature3		H 6.45	Conductivity _	1270	Alkalinity 702 my/CCcC			

Well ID: Date Time		U.05	Location: Trutain Vit Weather Samplers: Sun TRC						
Comments	: No 83	270							
d Measurements:									
M Reading (ppm): ter Depth (ft btoc): duct Thickness (ft): ehole Volume (gal) ge/Sample Method:	: 8.6)	W Sa 31	oduct Depth (ft btoc): ell Depth (ft btoc): turated Thickness (ft): Borehole Volumes (gal)					
Time	Cum. Vol.	Temp.	pH (pH units)	Conductivity (umhos/cm)	Comments:				
1645	5	2/	6.67	. 940	Cloudy, nunly				
1650	20	4	6.61	930	(1'				
1653	25	4	6,60	930	Clean				
					,				
				<u>:</u>					
				· · · · · · · · · · · · · · · · · · ·					

Date: Time:		J-06	· ·	Location: Weather Samplers:	Cloudy 404	- - - -	
Field Measurements:						-	
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal): Purge/Sample Method:		469 6 : 10 whileta.gov	79	Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): 3 Borehole Volumes (gal)		- - -	
Time	Cum. Vol.	77	<u>/</u>			- 3	
A IIIC	(gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:		
1350	5	3°C	6.31	1300]	·
1356	10	_3	6.40	1280	purged close to dry- e	it recharge	several
201404	15	3°C	6.54	1300	well purged any	minutes	
1715	20	3°€	6.60	1300	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	_
1440	25	3°6-	Colet	1300	:	_	
						_	
		***				4	
						1	
						-	
						1	
						-	
-1						-	
						-	
						-	
						1	
						1	
						-	
		***************************************				-	
Final Measurements:						J	
Temperature 3	1	рн <u>6.64</u>	Conductivity	1300	Alkalinity 739 rg/L 6	603	

Date: Time:	01-MU 9-17-9 1316 No 8	<i>y</i>	Location: FTPA Weather St. Sunny, 440 Samplers: SCH, MAR				
Yeld Measurements: OVM Reading (ppm): Vater Depth (ft btoc): Product Thickness (ft): Corehole Volume (gal): Purge/Sample Method:	24	1.65	- - - y pump-	Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft 3 Borehole Volumes (g	#1.99 27.39		
Time	Cum. Vol.	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:		
1330	5	3°C	4.45	.1170			
1337	20	3,7	6.54	1160			
1345	35	300	6.54	1140			
1351	50	306	6.55	1140			
1400	69	3°C	(45 F	1140			
Final Measurements:					>		

Project: Client:	Galena Airport					
·	01-MW-08 9-16-94 1540 Wo 8270				Location: Weather Samplers:	
Field Measurements:				•		
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal):	18.4	8			Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): 3 Borehole Volumes (gal):	
Purge/Sample Method:	1 1	/	/ /	V	, ,	aHera
Time	Cum. Vol. (gal)	Temp (deg C		pH (pH units)	Conductivity (umhos/cm)	Comments:
1514	5	 	300	6.50	. 1180	
1520	20	35,5°F	300	6.65	1220	
1530	35	/	3°C	4.70	1210	
1534	<u></u>	36°F'	3°C	6.67	(220	
				Y. W. Y.		
					-	
					4	
		<u></u>				
Kinal Massuromontes						
Final Measurements:	3	i	10		17-	 7 ->
Temperature		pH	67	Conductivity	1220	Alkalinity /

Project: Client: Well ID: Date: Time: Comments:	9-16-94 12+5	rives mw-0z		Location: Weather Samplers:	
Field Measurements: OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal) Purge/Sample Method:	:	30	· ·	Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): 3 Borehole Volumes (gal):	18.04 164 1,3
Time	Cum. Vol.	Temp.	рН	Conductivity	Comments:
	(gal)	(deg C)	(pH units)	(umhos/cm)	
				•	
					,
		*			
				-	
,					
Final Measurements:		oH.	Conductivi	,	Alkalinity
Temperature		рН	Conductivity		Alkalinity

GROUNDWATER OF	JALITY SAMPI	ING LOG				
Project:	Galena Airport	RI/FS				
Client:	AFCEE					
	011	130 115 1 20 7	7		Re. 1 10 1 -00	C
Well ID:	09-	INW-03	>	Location:	parinal full	<u> </u>
Date:		74	-	Weather		_
Time:	16:4	5		Samplers:	sur mar	_
Comments:	me	Cala .	- الإسكار يهجن			
Commona.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,			-
					<u> </u>	
						
Field Measurements:						
OVM Reading (ppm):				Product Depth (ft btoc):		
Water Depth (ft btoc):	13.51			Well Depth (ft btoc):	22.90	_
Product Thickness (ft):				Saturated Thickness (ft):	9.39	
Borehole Volume (gal):			-	3 Borehole Volumes (gal)		_
			-			_
Purge/Sample Method:	•				~	_
-	·1		1	I	4	
Time	Cum. Vol.	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:	
1760 1700		3°	,	1860	Mand 18-1	
- 100 1700	10		6.56	.7000	Cloudy State De	di no
·	- /(5 v)	3 Min			U	4
1705	15	3	6.55	1880		_
1710	20	3	6.53	1870		
1717	25	3	6.55	1870		
1112			0,37	101		-
	·				***************************************	
						\dashv
	-		ļ			-
						_
						1
						-
	: ,					-
						1
						7
	 					-
						┪
	1					
Final Measurements:						
	,	1 -1	, -	100		
Temperature	2	_{pH} _ 6.5	Conductivity		Alkalinity 1172	
-						

GROUNDWATE	R QUALITY SAMPI	ING LOG		•	
Project: Client:	Galena Airport AFCEE	RI/FS			
T T	1 ID: 04 - MW Date: 9/28/94 Time: 17:40		- - -	Sampler	1: 04 (Middle of antifert or Cold and Cloudy 5: 150C
Comme	ents: <u>Seard</u>	Sample backgr	a co	: 1 - 1 - 0 - 1	4= 4.04, 10=10,04
Field Measuremen	nts:	Crist	uchildy.	1000 = 1600.	•
Product Thickness	m): NA C4m oc): 16.59 (ft): (gal): 5.4		- -	Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft) 3 Borehole Volumes (ga	
Purge/Sample Met					
Time	Cum. Vol.	Temp. (deg €) √	pH (pH units)	Conductivity (umhos/cm)	Comments:
17-45	Ø	<u></u>	-	. –	begin purpe
17:52	5	35:	6.26	1910	cloudes
15:03	16	34	6,43	189D	
18.14	15	34	651	1880	,

Time	Cum. Vol. (gal)	Temp. (deg €) √	pH (pH units)	Conductivity (umhos/cm)	Comments:
17-45	Ø		-		begin purpe
17-45 17:52 18:03 18:14 18:16	5	35:	6.26	1910	Cloudes
15:03	16	34	6.43 6.43	1890	
18:14	15	34	651	1880	,
18:16	16	33.5	6.53	1860	
_					
					*
		,			
		17			

Final Measurements:			
Temperature 33.5° F	pH 6.53	Conductivity 1860	Alkalinity NA

	ne				
		NW-02 20-94 1053			NE of Frenties hie - & Civily ,3605 SCH, Mary
Comments	: Conduc	1 not ze	DECKE	-360 @ (VI	Calib
Field Measurements:					
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal)	: 29.48	3		Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): 3 Borehole Volumes (gal)	78.44
Purge/Sample Method:	surge.	u/uhility	punp. S	ampl w/wa	Kein
Time	Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:
1119	5	35°F=2		740	red i murky
1125	20	35.5°F:2	6.55	740	des (colorless
1132	35	355°F= 2	6.6	150	
1139	50	350F= 2	હે.હિલ	730	
1146	65	35°F=Z	6.68	740	
1152	80	350F= Z	6.70	Miles 750	
			7-316-0		
	ļ				
Final Measurements:		_{рн} (,, 7 с	Conductivity	757)	Alkalinity 402 m/L

	Galena Airport AFCEE	RI/FS			
Well ID: Date: Time:	9-20-	w -03 4/		weatner	Cloudy 380F Suy MAR
Comments:	N	fue p	rodust		
Field Measurements:	`				
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft):				Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft):	53.79
Borehole Volume (gal): Purge/Sample Method:	•	w/utility	pump	3 Borehole Volumes (gal)	y/wattere
Time	Cum. Vol.	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:
1451	5	39°F 3	6.38	1180	dark bown seliment
1457	20	38°F=3	6.64	1060	
1504	35	38° == 3	6.70	1100	
1510	50	38°F=3	6.73	1120	
1516	65	38° F= 3	6.76	1120	
1522	80	360F=3	6.75	1120	
1528	95	37° F= 3	6.15	11:0	
				·	
,	_	-			
Final Measurements Temperature	<u>.</u> Z	-4 / ₂ 1 <	Conductiv	meter not of zeroing values souspiel	Alkalinity 534 my/L C

-	Galena Airpor AFCEE	t RI/FS				
Well ID: Date: Time: Comments:	163	ew-04 74 5	g., 200	,	ion: 500 Ft No of Galler ther PHy City, 380 F ors: -scrip mare	Lin Six.
Commons.	O I	es not a	eting qu	+ right	holf.	- -
Field Measurements:						
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal):	24 (high 16.8	reacting)		Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (f 3 Borehole Volumes (49.81 132.98	- - -
Purge/Sample Method:	proje	white p	mp - 5	comple u	nathera	-
Time	Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:	
1704	5 W	52°F = 5	6.74	1860 1770	browni murky; whit	form (due to
1725	35 50	41.5° F = 5	6.77	1710	still a little formy; in	the pump
1737	80	410F=3	677	1740		
1749	90	4rF-5	6.78	1790		
						_
Final Measurements:						
	_	n 6.78	Conductivity	1790	Alkalining 970	

Project: Client:	Galena Airport AFCEE				
Well ID: Date: Time:	9-10	mul-05 -94 05		Location: Weather Samplers:	1 11 11
Comments:	(ORS provide OVM readi	elded wall	ttera by	ulb lengh f 5115) O m-140ppm (vanic	o ORS morment
field Measurements:)	•	Top Product	16.84
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft):	Capital u) [] (90	•	Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft):	16.90 -52.92 APPIOX
Borehole Volume (gal):	34	32.4	/ :	3 Borehole Volumes (gal)	97.23
Purge/Sample Method:	pareje s	yputility	bund.	· sample uf	wattera
Time	Cum. Vol.	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:
1335	5	34°F=2	- 6.67	1820	dark gray sediment
1339	20	35°F=7	6.61	1600	
1343	35	35°F - Z	6.65	1420	
135449	50	35°F=2	6.64	1:20	,
1355	65	35°F=2	6.60	1620	
1401	80	35° F-2	6166	1640	
1409	100	35°F= 2	6.66	1610	
		_			
Final Measurements:	<u>.</u>	рН Д. (Д. (Д.	Conductivity	meter not zer value grestion	oirs: able Alkalinity <u>770 mg/L</u>

GROUNDWATER OF	JALII I SAMPI	TIAC TOR	•		
Project: Client:	Galena Airport AFCEE	RI/FS			
Date:		1W-06		Location: Weather Samplers:	Clear, 56°F
Comments:					
Field Measurements:					
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal):	38.9		2	Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): B Borehole Volumes (gal)	48,55 34.42 : 83.6
Purge/Sample Method:		-			
Time	Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:
1758 1800		4,	6.82	1420	Brown Murky red
1807	20	4	6,7/	1240	Clar
1818	57	4	6.10	1140	Clear
1823	65	4	6,74	1120	Char.
1830	80	4	6.71	1050	Clar

Final Measurements:				
Temperature	рн <u>(р/7/</u>	Conductivity	Alkalinity _	569 mg/L Calo.

lient:	AFCEE	_ ; ,			P. S/+1-R
Well ID:		W-67		Location:	Chondy, 36°F SUL, Mass
Date: Time:		74 10		Samplers:	SUL mar
Comments:	No	Cap on	ned.	= 0/m = 0.0,	*
ield Measurements:					
rieid Weasurements.	•				
OVM Reading (ppm):	0.0		;	Product Depth (ft btoc): Well Depth (ft btoc):	28.50 28.
Water Depth (ft btoc): Product Thickness (ft):		19 16.69	-	Saturated Thickness (ft):	11.69
Borehole Volume (gal):		5	- ,	3 Borehole Volumes (gal):	31.5
Purge/Sample Method:	prog	mptilety	pmp.	- Sumple w/w	altera
Time	Cum. Vol.	Temp.	pH (pH units)	Conductivity (umhos/cm)	Comments:
1836	ξ.	39°F= ->	6.22	.1470	this layer of produ
1839	10	38° = 3	1	1280	8
1841	15	38° F = 3	6.51	1240	
1843	20	38°F= 3	6.53	1210	• 1
1845	25	38°F=3	6.55	1190	
1843	30	33°F=3	6,55	1180	*
1851	35	38"F=3	6.57	1170	
-					
		-			
	-	-	+		
Final Measurements:					

Project: Client:	Galena Airport	t RI/FS				
Well ID: Date: Time:	9/19/94	nw-11				en cool
Comments:	Well co	time, No	cap.	broken on 40	is well for	- - -
Field Measurements:						•
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal):		19		Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): 3 Borehole Volumes (gal)	,	- - -
Purge/Sample Method:	pugin	Jutility	sump-	Sample who	thra	-
Time	Cum, Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:	
3:35	5	37	6.45	1860	Water locks soas	4
3:37	10	36	6.47	1830		1
7:40	15	36	6.51 6.5 <i>5</i>	1790		_
3.42	29	36 36	4	1820	,	
7.4/	20	_ 5 Ψ	6.57	/%/ 0		
				(·	
						_
						-
						1
						_
						-
						_
	1	1	1	1	I	J
Final Measurements:						
Temperature 2	. <	nH 6,5-	Conductivit	1810	Alkalinity 269 nu/L	C. c -
		P**	Conductivity		Alasimity / C/ FOGY	3

Final Measurements:

Project: Client:	Galena Airport AFCEE	RI/FS				
Well ID: Date: Time:	05-MU - 4-13-90 - 1300	1-13 4	 	Location: Weather Samplers:	East of Ego MEA. C. SUI, TA	coun Zowife county 42°F
Comments	·	7-1-0-Television				
Field Measurements:		<i></i>				
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal) Purge/Sample Method:	. 18.4	L 15 Dutility (oduct Depth (ft btoc): ell Depth (ft btoc): turated Thickness (ft): Borehole Volumes (gal): 51,	15 callor
Time	Cum. Vol.	Temp.	pH	Conductivity	Comments:	
1305	(gal)	(deg C)	(pH units)	(umhos/cm) - //60	mostle	clear
1305	20	4	6.45	1160	emostle:	H
	35	4	644	1156	ll	11
	55	4	6.36	1160	, (11
		·				
		_				
		1		•		

F.	_3	2	1

H pH 6.36 Conductivity 1160 Alkalinity 608 ng/c Ca Co 3

Project: Client:	Galena Airport AFCEE	RI/FS			
Date: Time:	05-n. 09-19-9 1330 pH me conducti	rj	k 7 = 3	Location: Weather Samplers: 7.03	Six Blac
Field Measurements:					
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal):	19421.5	19.4		Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): B Borehole Volumes (gal):	58
Purge/Sample Method:	, ,	Jutihly	brub.	sample w/u	Millera
1349 1352 1355 1400 1402	Cum. Vol. (gal) 15 25 35 45 58	Temp. (deg.e) 3 3 3 3 3 3	pH (pH units) 6.45 6.52 6.54 6.55	Conductivity (umhos/cm) 9/0 900 S60 770 800	Comments: Cloar i! // // // // // // // // //
Final Measurements:	3	pH (a.55	Conductivity	800)	Alkalinity 524

Project: Client:	Galena Airport AFCEE	RI/FS				
Well ID: Date: Sample Time: Comments:	40.50		050		POL Cold, sunny, wind BIC, 5 very difficult well. Remove	from East
Field Measurements:	•					
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal):	14.75	mmez		Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): 3 Borehole Volumes (gal)	35.35 20.6 : 55.5	
Purge/Sample Method:	prige					
Time	Cum. Vol. (gal)	Temp. (deg 🔑 🏳	pH (pH units)	Conductivity (umhos/cm)	Comments:	
1130	/0	33	6.25	1030		
1135	25'	33	6.52	0940		•
11 37	3.5	33	6.63	BR 2910 840		
11 40	45	34	6.65	0830	·	
1144	55	34	6.65	850	Cond. mil function? ! us	host
11 50	62	34	6.64		Cond. Mil Puninon?: us	
			*			
				-		
						1
		l		1		J
Final Measurements:	. <i>i</i>	1 1 4		~ / - · >		
Temperature3	4	_{рН} <u> </u>	Conductivity	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	Alkalinity 509 Acg	l Cally

Project: Client:	Galena Airport	RI/FS			
Well ID: Date: Time:	9-17-	W-01 94 0		Location: Weather Samplers:	Cloudy - 440F
Comments:					
Field Measurements:					
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal) Purge/Sample Method:	28.1	1 7 Notite p	vmo-	Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): 3 Borehole Volumes (gal)	52.71 31.30 76.0
Time	Cum. Vol.	Temp.	pH	Conductivity	Comments:
M 500 1700	(gal) 5	(deg C) 4454F= / 25	(pH units) (e.53	(umhos/cm) 13%	red & marky
1707	20	44°F=,5	6,57	1380	clearer
1715	35	44°F 65	6.59	1390	der julorles
1722	20	448-65	6.61	1390	11 except when waters is
1727	65	44 7 6.5	6.61	1390	moved, then very morky
1736	78	4497=65	6.62	1390	la-
Final Measurements:					
Temperature	,5	pH 4.62	Conductivit	y 1390	Alkalinity 792 m/L Glo3

•	Galena Airport AFCEE	RI/FS					
Well ID:	Sept 12	W-02 1994		Weather	E. of Mosele St. Ciliar, 580F SCA, TAC	σπαρε	
Comments:							•
Field Measurements:		··					
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft):	17,43	10	W Sa	roduct Depth (ft btoc): 'ell Depth (ft btoc): atturated Thickness (ft):	51.65 34.22 83.15		
Borehole Volume (gal): Purge/Sample Method:			-	Borehole Volumes (gal)		-	
Time	Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:		
1617	20	4	6.48	1670 1840	Brown/Ken	1700	ndy nates
1629	35	4	6.50	1870 1900	Clear	hitle	pand
1644	65	4	6.48	1910 1910	Clear,	11	l) g
1652	83	4	6.52	1910	1	a	4
				-			
							*
							*
						4.1447-4-7-	
		<u> </u>		<u> </u>			3
Final Measurements: L Temperature	ĺ	pH 6150	Conductivity	1910	Alkalinity <u>651</u>	myle	Ca (03

Project: Client:	Galena Airport AFCEE	t RI/FS				
Well ID: Date: Time:	06-MW- 9 Sept	-03 - 94		Location: Weather Samplers:	W. A. A. Cloudy - 37°C TAC SCH	
Comments:						
Field Measurements:						
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal):				Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): 3 Borehole Volumes (gal)	48.36, ————————————————————————————————————	, ,
Purge/Sample Method:		sa pump				
Time	Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:	
1506	20	414:	6.55	.1050	Fluid is lite and	o red pinkish
1530	45	42°F		840	Fluid is lite and Slighty more class Fairly Clear	e. "
1622	75	42F	6.89	870	Fairly Clear	
1705	96	437	6.80	840	V .	
						ý .
	-					1
						-
						1
1						1
	_1	1	<u> </u>	1		_

Final Measurements: Temperature	40_	рН <u>(6.80</u>	Conductivity	840 un has	/ Alkalinity _(/246 mg/L	Calo S

Project: Client:	Galena Airport AFCEE	RI/FS			
Well ID: Date: Time:	9-17-	mw-04 94 15		Location: Weather Samplers:	Million Cealin Holy Giondy, 35% Sus, Mim
Comments:					
Field Measurements:					
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal):		+1	· ·	Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): 3 Borehole Volumes (gal)	
Purge/Sample Method:	1 0	n/nlites	y prup.	- Gruph 1	/ wallaren
Time	Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:
1054	5	42°F=5.5	1	.1020	some salt, classed up
1100	25	42°F=	6.54	1120	
1107	45	42°F	66	1140	
114	70	42°F	6.63	1140	,
1120	85	42°F 4	6.62	1140	
	 	<u></u>			
					,
	<u> </u>				
		 	<u> </u>		
	+				
, ,		-			
	1	<u> </u>	<u> </u>		

Final Measurements:			
Temperature 5.5	рН <u>6.62</u>	Conductivity //40	Alkalinity 643 my/ C. Co.

Project: Client:	Galena Airport RI/FS AFCEE	
	06-mW-05	Location: NE Missle Storinge Weather Char 48°F J Samplers: Sch, 777
Comments	Lample will	not developed @ all, Vary sandy.
Field Measurements:		
OVM Reading (ppm):		Product Depth (ft btoc):
Water Depth (ft btoc):	13.74	Well Depth (ft btoc): 17,95
Product Thickness (ft):	1561	Saturated Thickness (ft): 4,19
Borehole Volume (gal)	: 3,77	3 Borehole Volumes (gal): 10c

Purge/Sample Method:

Time	Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:
1312	/	4	6.58	.740	very sandy
1327	4	4	6.68	750	4 4
1331	7	4	6.72	710	u u
1312 1327 1331 1335	10	4	6.68 6.72 6.73	740 758 710 710	11 11
		•			
					100 A 100 A

Final Measurements: Temperature	, 	_{рН} <u>6,73</u>	Conductivity	710 mg/ 1:03	Alkalinity	483_m	/ ((a Coz

Comments: ield Measurements: VM Reading (ppm): Vater Depth (ft btoc): roduct Thickness (ft): corehole Volume (gal): turge/Sample Method:	18.25 10.4 Cum. Vol.		•	Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): 3 Borehole Volumes (gal):	
Comments: ield Measurements: VM Reading (ppm): Vater Depth (ft btoc): roduct Thickness (ft): corehole Volume (gal): turge/Sample Method:	18.25 10.4 Cum. Vol.		•	Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft):	79.80 11.55
VM Reading (ppm):	Cum. Vol.		•	Well Depth (ft btoc): Saturated Thickness (ft):	11.55
Vater Depth (ft btoc): roduct Thickness (ft): corehole Volume (gal): rurge/Sample Method:	Cum. Vol.		•	Well Depth (ft btoc): Saturated Thickness (ft):	11.55
	(gal)	-			
	(gal)	7		9	
Time (/	Temp. (deg C)	pH (pH mits)	Conductivity (umhos/cm) + /840	Comments:
1449	5	5	6.41	× 1900	Murky Gney, very sa
1456	20	5	6.47	× 2020	Clear
1502	28	5	6.47	* 2050	Clear
1505	35	5	6.49	× 2050	Clear.
				·	
		· · · · · · · · · · · · · · · · · · ·			
					1 da h
* New Balkry	in pH/C	and me	iter, mi	el recatibrite	ofter purging inlab.
Final Measurements:				1.	Alkalinity 184 ang/2 CaCo

Client:	Galena Airport			Landin	NE A Radio Town	رر
Well ID: Date: Time:	9-16.	1W-07 -94 30		Weather Samplers:	NE of RASUR TOWN CIONAY, 38°F GUU, MAR	
Comments:	TOL= 15	51.40				
Field Measurements:						
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal):)	•	Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): B Borehole Volumes (gal):	42.75 20.49 51.00	
Purge/Sample Method:			- SAMP	le njuste	Lo	
Time	Cum. Vol.	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:	
1855	5	5	6.15 m		realibertia polactor lecture	wer Shar
1101	20	41°F/5	4.52	1400		6.8-7
i105	35	40.5°F/ 5	6.56	1400		
1106	50	40°F/ 4.5	4.6	1400		
1120	56	40°F/4.5	6.61	1390		
					100	
	 					
				, w. daw -14 -15 -		
						27
	-					'
						1
Final Measurements:	5	pH <u>(6.6/</u>	Conductivity	/390	Alkalinity 782/ng/L	C. W _s .

Project: Client:	Galena Airport I AFCEE	RI/FS			
Date	: <u>09-m</u>		-	Location: Weather Samplers:	NW of alert Cel Clebr 60°F SCA, THE
Comments	: TOC = 14	2.55			,
Field Measurements:					
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal)	:	ppn 83931	- - <u>(</u> ,35	Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): 3 Borehole Volumes (gal):	47.34 34.85 85 gal
'Purge/Sample Method:					
Time	Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:
1,-3,			112	11120	200 10 /01 10 10

Time	Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:
1535	5	5	6,75	.1130	murky brown lite brown, cloude Clear. Clear
1541	25	4	6,75	12.50	lite brain, cloude
1551	50	4,5	6,77	12.50	Clear.
1556	70	4	6,17	1260	Clear
1602	85	4,5	6,77	1270	Clear
	_		,		
	-				
-					

Final Measurements: Temperature	pH <u>(1777</u> Conductivity <u>1770</u>	Alkalinity 70/ mg/L Caco

Client:	AFCEE : <u>09 - 1</u> 1	A11-0")	T analysis	Mint. and	0.00
Date:		10 0	<u>-</u> -	Location: Weather Samplers:	Million gallon Dt. Cloudy, 360, 504, MC	Enll E
Comments	: TOL = 14	10.52			,)
	Ja	mple (0 1005			
Field Measurements:	,	•				
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal)		om- 12 77	_ v _ s	Product Depth (ft btoc): Vell Depth (ft btoc): Saturated Thickness (ft): Borehole Volumes (gal)	44.91 34.19 83.08	
Purge/Sample Method:			B11 4.4			
Time	Cum. Vol.	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:	
0930	5	4	6.54	960	redish - Brown	Jam
0936	25	4.4	6,10	960	Clear	- "
1941	40	4.4	6168	960	Clear	
1000	83		6.69	940	Clear	11

Time:	Toc = 143	.78 5	Samplers:	Million callon hill Cloudy 39°F 36 4 JTAC 12150
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal):	1		Saturated Thickness (ft): 3 Borehole Volumes (gal):	46,59 33.12 39.4 1/ Watera
12:15 12:26 12:28 12:34 12:39 12:45	(#6000000000000000000000000000000000000	6,79	Conductivity (umbos/cm) 950 990 1000 1000 1000 1000	Stite murey Brane Clear Clear Clear 11

E-333

Project:	Galena Airport RI/FS	
Client:	AFCEE	
1 7	IID: 09-MU-04 Dato: 8 Sept 94 Time: 12100 Start.	Veather Cool granust & 45° Samplers: TAC SCH
Comm	nents: no water proof ex	por well, meding PV.
Field Measureme	nts:	
OVM Reading (pp	m): ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Product Depth (ft btoc):
Water Depth (ft bt		Well Depth (ft btoc): 47.04
Product Thickness	(ft):	Saturated Thickness (ft): 52.02
Borehole Volume	(gal): 29 3 1	3 Borehole Volumes (gal): 36, 45
Purge/Sample Met	thod:	
Time	Cum. Vol. Temp. pH	Conductivity Comments:

Time	Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:
13:00	75	39°F=	6.79	1230	mulky-relear
13:14	38	39%:	6.82	900	11) 11
13.28	55	390F =	10.98	940	ti "
13:48	75	3905=	6.92	870	11 ->tt elia
14:05	84	3904	7,04	840	Clear
				_	

•			1			
		-				
Final Measurements	<u>:</u>					
Temperature	10c	pH 7, &(g	Conductivity	846	Alkalinity (02	3 inche Co

Project: Client:	Galena Airport AFCEE	RI/FS				
	09-M		/	Location: Weather Samplers	Million Gallon H Cloudy 39°F XH TAC	<u> </u>
Comments	TOL= 14	1,34	Jeny	ple well a	18:36	
Field Measurements:	Initial B.	fairly	hed, Cles	2hrs on Antes	ogallons.	<u> </u>
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal)			· ·	Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): 3 Borehole Volumes (gal		_ _ _
Purge/Sample Method:	·				•.	
Time	Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:	
1455	5	3	6,88	840	Clear, Ut been	Course sediment
1503	30	25	6,81	850	(1) 11 (1) (1) (1) (1) (1) (1) (1) (1) (<u> </u>
1800	70	4	6.88	(090	Clear	-
1815	89	3	6.84	690	Clia	
						-
	 					_
				9		
				•		
Final Measurements	<u>፡</u> ኅ ፡	pH 4.8	1	(091)	٦١.١٦	/
Temperature	3°	pH ULO	Conductivity		Alkalinity 443	ng/L
						400

Final Measurements:

Project: Client:	Galena Airport	RI/FS				•
Time:		W-06 1:00 10.41		Location: Weather Samplers:	Cloudy	34°F
Comments:	Sample &	11:211	y Clear	entire fin	L.	
Field Measurements:		(J			
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal): Purge/Sample Method:	purge	ow/uhili-ta	· ·	Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): B Borehole Volumes (gal)		ttera simp
Time	Cum, Vol.	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:	
11:00 11:16 11:15	25-11 (10-11)	3.3 3.0 3.0	6,78	400 314 340	Alin Eleon	
11:20	85 cml 995 cml	3,0 3,L	6.75	360 352	je.	1/1

Temperature	5.0°C	pH <u>G1/7</u>	Conductivity _	356	Alkalinity /87	my/2 Ca	66
						7'	

Project:
A11 /

Galena Airport RI/FS

		-	
CI	i	en	t:

AFCEE

Well ID:	9-MW-08
Date:	9-18-94
Time:	1315

Location: Millin gullon hill

Weather	Dertly	dway	
Samplers:	SUR	MATE	

Comments:

Field M	easurements:
---------	--------------

product top depth. 71,35

2.0 gpm OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal):

Product Depth (ft btoc): 21.74 bollow
Well Depth (ft btoc): 28.71 Well Depth (ft btoc): Well Depth (ft btoc):

Saturated Thickness (ft): 3 Borehole Volumes (gal):

Purge/Sample Method: porge woohlite porus

Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:
5	42°F=<.5	6.46	1220	dight shown on top
10	420 8-55	6.46	1260	
15	42°F 55	6.46		
18	42°F-55	6.40	1280	
	-			
	ļ			
				•
	(gal) 5 10	(gal) (deg C) 5 42°F 55 18 42°F 55	(gal) (deg C) (pH units) 5	(gal) (deg C) (pH units) (umhos/cm) 5

Kinal	Measurements:
riiiai	Measur Cincins

pH (246 Conductivity 1280 Alkalinity 739 mg/ CW3

Final Measurements:

Project: Client:	Galena Airport	RI/FS					
Well ID: Date: Time:		J - 12 131			ocation: _ Veather _ mplers: _		biage
Comments:	OVMIN	radoporo 108	ppm) ap	had son eft	1 f u	ile, though	_
	Simple	nery oil	4				-
Field Measurements:		4	1	product To	sp Mse	ment = 12,21	
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal): Purge/Sample Method:		13.21		Product Depth (ft Well Depth (ft bto Saturated Thickne 3 Borehole Volum	ess (ft): _ nes (gal):_		o Hern — —
F	y /		•	·	/		
Time	Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivit (umhos/cm		Comments:	
ণ্ড	65	427 = 5.5		1310	9		
0752	10 ZOMA		6.34	1410			1
0953	15	42 = 5.5	6.40	1440			
0991	20	42=5.5	6.44	1460			

Temperature 5.5 pH 6.44 Conductivity /460 Alkalinity 850 mg/c Car Cl3

Project: Client:	Galena Airport RI/FS AFCEE	
	09-MW-15	Weather Aly Cloudy 39 Samplers: TH, TACL
Comments	: TOC = 142.62	
Field Measurements:		
OVM Reading (ppm):		Product Depth (ft btoc):
Water Depth (ft btoc):	13,05	Well Depth (ft btoc): 3737
Product Thickness (ft): Borehole Volume (gal)	1 2/2	Saturated Thickness (ft): 24.37 3 Borehole Volumes (gal): 59.09
Purge/Sample Method:	•	

Time	Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:
1026	5	4.5	6.90	740	Brown sample
1033	25	4	6.84	730 780	Clear Clear Clear
1038	70	7 U	680	720	Clasi
10.50			0 70		CVIII
	 				
			1		•
		·			
-					

Final Measurements:					
Temperature	pH 6180	Conductivity	720	Alkalinity _	401 mg/c Cacos

Project: Client:	Galena Airpor AFCEE	rt RI/FS			
Date: Time:		7-94 504		Location: Weather Samplers:	Pt. Cloudy, 4401
Field Measurements:					
OVM Reading (ppm): Water Depth (ft btoc): Product Thickness (ft): Borehole Volume (gal):		Z		Product Depth (ft btoc): Well Depth (ft btoc): Saturated Thickness (ft): 3 Borehole Volumes (gal)	46.58 31,35 76,14
Purge/Sample Method:	1 2	4 utility (brub-	sample upor	stlera.
Aime	Cum. Vol. (gal)	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:
1528	T	43°F = 6	6.43	1380	very moty
1533	20	475 F= C	6.49	1250	clear
1539	35	42°F -5.5	6.51	1240	
1544	50	42°F=55	6,52	1730	
1549	65	415°F = 5.5	6.5	1230	
1600	177_	42° 35	6.52	1270	
	ļ				
	1	1			

rmai Measurements.					
Temperature 5.5	pH 6/57 Conductivity	1226	Alkalinity	632 mg/C	. Glo:

GROUNDWATER O	UALITY SAMPI	ING LOG			•
Project: Client:	Galena Airport AFCEE	RI/FS			
): 10-MU-		_	Location: Weather	
	e:			Samplers:	
Comment	s: TOL =	145.00			
Field Measurements:					
OVM Reading (ppm):		ann	I	Product Depth (ft btoc):	
Water Depth (ft btoc): Product Thickness (ft)	: 14.	94		Well Depth (ft btoc): Saturated Thickness (ft):	32.53
Borehole Volume (gal		.27_		Borehole Volumes (gal)	79.0
Purge/Sample Method	d:				
Time	Cum. Vol.	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:
1645	5	4	6.81	1140	Brown Muric
1655	20	4	6,78	1130	Clear, 1
1658	35	4	6.79	1140	clear
1703	50	4	6.78	1140	Clear
1718	80		17 - 2		
1709	65	4	6.79	1/50	Clear
1718	80	4	6,78	1140	Cleare
					i

Temperature pH pH Conductivity Alkalinity O	Final Measurements: Temperature	pH	Alkalinity <u>608</u>
---	---------------------------------	----	-----------------------

Project: Client:	Galena Airport AFCEE	: RI/FS				
Well ID:	10-MW-	-0 Y		Location:	JP4 FII	stends
Date:	***************************************			Weather		
Time:		W-74				
Comments:	TOC -	143.05	well	110 Sampt	ed du	72
	damo	sc fro	m sno	Not sample	equip	ment
Field Measurements:						
OVM Reading (ppm):				Product Depth (ft btoc):		
Water Depth (ft btoc):				Well Depth (ft btoc):		
Product Thickness (ft):			•	Saturated Thickness (ft):		
Borehole Volume (gal):				3 Borehole Volumes (gal)	<u> </u>	
Purge/Sample Method:	•					
Time	Cum. Vol.	Temp. (deg C)	pH (pH units)	Conductivity (umhos/cm)	Comments:	
	G ***/					
, , , , , , , , , , , , , , , , , , , ,						
		-				
					,	
				***************************************		Maria Maria da Maria da Maria da Maria da Maria da Maria da Maria da Maria da Maria da Maria da Maria da Maria
			<u></u>	<u> </u>		
Final Measurements:						
Temperature		рН	Conductivity		Alkalinity	· · · · · · · · · · · · · · · · · · ·

oject: ient:	Galena Airport RI/FS AFCEE			
Well ID: Date: Time:	13-MW-037 9/194 17-00		Location: Weather Samplers:	Control Tower Drum Hartly Cloudy, bres BJC/5CH
Comments:	1000 Conduction	ler reads 7 with buffer	_	
ld Measurements:				
'M Reading (ppm): ster Depth (ft btoc): duct Thickness (ft): rehole Volume (gal):	8.55		Saturated Thickness (ft): B Borehole Volumes (gal)	
	purz with		<i>V</i>	e 10/ waterra
Time	Cum. Vol. Tem (gal) (deg		Conductivity (umhos/cm)	Comments:
1724	10 3 20 3	623	950	Marky of Sarel
1727	30	3 6.59	940	<i>i'</i>
,				
				, , , ,
A / E / A				
nol Morane				
nal Measurements:		0.5 ² Conductivity	940	Alkalinity 508

Water Level Survey Results

GALENA, Al Monitoring W	LASKA Vell Water Level I	Data		i								
	1993 Surve			4	-JULY-92			29-JULY-92			15-AUG-93	
	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , ,	Elevation	H20 Depth T		Water	H20 Denth	Total Depth	Water	H20 Depth	Total Depth	Water
Well I.D.	Northing	Easting	To TOC	(From TOC(I	-		_	(From TOC)		, -	(From TOC)	
01-MW-01	3925415.79	1811197.63	145.98	(110111100)	10111 100)	2510 valion	110111100	(110m 100)	2010112011	15.16	(11011100)	130.8
01-MW-02	3925631.78	1811354.63	145.50							14.82		130.6
01-MW-03	3925745.10	1811323.05	147.29	7.91	28.36	139.38	11.23	28.26	136.06	16.43		130.8
01-MW-04	3925634.72	1811183.64	144.79	5.75	22.68	139.04	8.67	22.66	136.12	13.92		130.8
01-MW-05	3925523.35	1811148.49	146.57	8.05	25.96	138.52	10.60	25.90	135.97	15.75		130.8
01-MW-06	3925450.64	1811349.18	147.27	7.86	26.81	139.41	11.28	26.81	135.99	16.20		131.0
01-MW-07	3925231.05	1811068.65	143.19	7.00	20.01	107111	11.20		1001.77	23.39		119.8
01-MW-08	3925198.04	1811266.41	153.49							22.07		131.4
01 111 11 00	0,201,0.01	1011200.11	100.47							22.07		151.
04-MW-02	3925268.76	1812283.24	147.20							17.01		130.1
04-MW-03	3925460.08	1812401.51	145.55							14.49		131.0
0111111100	3725400.00	1012101.51	145.05							14.42		151.0
05-MW-01	3926266.22	1804905.55	150.64							20.96	53.88	129.6
05-MW-01	3925967.52	1805428.72	149.51							19.85	53.48	129.6
05-MW-02	3926037.36	1805183.76	147.93							17.63	33.40	129.0
										16.01	40.00	100.4
05-MW-04 05-MW-05	3926029.31 3925969.98	1805029.33 1804904.41	145.82 145.57							16.21 16.09	49.20	129.6 129.4
05-MW-06	3925909.98	1804528.75								15.08	49.66	129.
05-MW-07	3926111.00	1804328.73	144.71 145.91	6 70	28.37	139.13				15.06	49.00	129.0
05-MW-07	3926573.32	1804993.75	145.73	6.78 6.52	28.90	139.13						
										17.20	20 62	100 (
05-MW-09	3926898.84	1804765.31	147.31	8.20	28.63	139.11				17.38	28.63	129.
05-MW-10	3926151.95	1805152.54	147.90	12.66	30.09	135.24				18.76	30.09	129.
05-MW-11	3926508.77	1804453.98	149.13	10.25	23.18	138.88						
05-MW-12	3926157.70	1804305.71	147.16	8.60	25.03	138.56						
05-MW-13	3926306.86	1804190.23	147.01	•								
05-MW-14	3925586.00	1805078.00	142.05									
05-MW-15	3925725.23	1804486.96	143.34									
06 1677 01	2026640.00	1002500 7/	151.00							21.70	50.41	100
06-MW-01	3926640.00	1803588.76	151.30							21.70	52.41	129.6
06-MW-02	3926438.83	1803544.45	147.91				16.00	40.50	400.04	18.40	52.64	129.5
06-MW-03	3926136.57	1803300.78	144.59				16.28	48.70	128.31	15.24	48.36	129.3
06-MW-04	3926311.90	1803047.49	142.70		40.04	400.00				13.36	48.43	129.3
06-MW-05	3926368.72	1803214.00	144.14	5.16	18.01	138.98						
06-MW-06	3926311.42	1803740.11	148.92	9.93	30.01	138.99						
06-MW-07	3927008.19	1803826.28	151.90									
00.3077.04	2025007.10	1000000 10										
09-MW-01	3925887.18	1802988.49	142.55							13.31	48.45	129.2
09-MW-02	3925561.03	1802813.90	140.52							11.41	44.93	129.1
09-MW-03	3926365.99	1802303.17	143.78							14.54		129.2
09-MW-04	3926072.77	1802387.37	145.52							16.33		129.1
09-MW-05	3926630.27	1802495.32	141.34							11.99		129.3
09-MW-06	3926844.91	1802850.48	140.41							10.94		129.4
09-MW-07	3927135.32	1803116.58	143.67	4.94	23.71	138.73						
09-MW-08	3926230.77	1802612.25	150.21	15.66	28.65	134.55				21.91		128.3
09-MW-10	3926424.14	1802644.80	166.07									
09-MW-11	3926573.80	1802774.34	163.25									
09-MW-12	3926198.21	1802958.84	141.23	2.49	21.70	138.74				12.85		128.3
09-MW-14	3925903.33	1802573.13	146.92							17.74		129.
09-MW-15	3925290.16	1802754.76	142.62									
10-MW-01	3926165.16	1803467.19	144.39				9.84	46.70	134.55	14.99		129.4
10-MW-02	3925989.13	1803620.63	144.62				10.61	47.79	134.01	15.26		129.3
10-MW-03	3925916.26	1803383.92	145.00				10.18	47.64	134.82	15.69	47.64	129.3
10-MW-04	3925545.84	1803251.22	143.05									
11-MW-01	No survey data	for this well		2.55	18.39	-2.55				11.85	18.39	-11.
11-MW-02	3926502.02	1803274.10	143.82	5.03	21.26	138.79						
		•				-						
12-MW-01	3924457.46	1804255.74	141.26									

nomioring v	Well Water Level 1	Data					1					
•	1993 Surve				18-AUG-93			1-JULY-93			13-SEPT-93	
			Elevation	H20 Depth	Total Depth	Water	H20 Depth	Total Depth	Water	H20 Depth		Water
Well I.D.	Northing	Easting	To TOC	(From TOC)	(From TOC)	Elevation	(From TOC	(From TOC)	Elevation		(From TOC)	
01-MW-01	3925415.79	1811197.63	145.98							16.73	49.94	129.2
01-MW-02	3925631.78	1811354.63	145.50							15.29	29.52	130.2
01-MW-03	3925745.10	1811323.05	147.29							16.86	28.00	130.4
01-MW-04	3925634.72	1811183.64	144.79							14.58	22.39	130.2
01-MW-05	3925523.35	1811148.49	146.57							16.58	25.68	129.9
01-MW-06	3925450.64	1811349.18	147.27							16.41	26.81	130.8
01-MW-07	3925231.05	1811068.65	143.19							10.11	20.01	150.0
01-MW-08	3925198.04	1811266.41	153.49									
04-MW-02	3925268.76	1812283.24	147.20				10.38	22.63	136.82	17.80	18.07	129.4
04-MW-03	3925460.08	1812401.51	145.55				12.81	17.77	132.74	13.84	22.72	131.7
05-MW-01	3926266.22	1804905.55	150.64	20.96	53.88	129.68	17.47	53.82	133.17	21.73	53.88	128.9
05-MW-02	3925967.52	1805428.72	149.51	19.84	53.48	129.66	16.35	53.12	133.16	20.78	53.48	128.7
05-MW-03	3926037.36	1805183.76	147.93	18.25		129.68	13.81	53.67	134.12	19.21	53.73	128.7
05-MW-04	3926029.31	1805029.33	145.82	16.25	49.20	129.57	15.51	35.01	137.12	17.72	49.20	128.
05-MW-05	3925969.98	1804904.41	145.57	23.23		127.01				18.28	50.70	128.
05-MW-06	3926176.70	1804528.75	144.71	15.08	49.66	129.63	10.66	29.14	134.05	15.81	49.66	128.9
05-MW-07	3926111.00	1804843.18	145.91	16.10		129.81				17.78	28.35	128.1
05-MW-08	3926573.32	1804993.75	145.73	15.79		129.94	11.23	28.44	134.50	16.39	28.79	129.3
05-MW-09	3926898.84	1804765.31	147.31	17.39	28.63	129.92	12.78	28.26	134.53	18.92	28.63	128.3
05-MW-10	3926151.95	1805152.54	147.90	18.80	30.09	129.10		20.20	10 1.00	19.99	30.06	127.9
05-MW-11	3926508.77	1804453.98	149.13				14.95	27.86	134.18	17.77	30.00	127.5
05-MW-12	3926157.70	1804305.71	147.16				12.87	24.81	134.29			
05-MW-13	3926306.86	1804190.23	147.01				12.0.	301	154.27			
05-MW-14	3925586.00	1805078.00	142.05									
05-MW-15	3925725.23	1804486.96	143.34			1						
06-MW-01	3926640.00	1803588.76	151.30	21.77	52.41	129.53	17.10	52.41				
06-MW-02	3926438.83	1803544.45	147.91	18.46	52.64	129.45	13.89	52.64	134.02			
06-MW-03	3926136.57	1803300.78	144.59	15.23	48.36	129.36	10.89	48.36	133.70			
06-MW-04	3926311.90	1803047.49	142.70	13.38	48.43	129.32	8.98	48.43	133.72			
06-MW-05	3926368.72	1803214.00	144.14	14.60		129.54	10.14	17.94	134.00			
06-MW-06	3926311.42	1803740.11	148.92	19.27		129.65	14.68	29.72	134.24			
06-MW-07	3927008.19	1803826.28	151.90					23112	10,121			
09-MW-01	3925887.18	1802988.49	142.55	13.29	48.45	129.26	9.12	47.34	133.43	14.50	48.45	128.0
09-MW-02	3925561.03	1802813.90	140.52	11.37	44.93	129.15	7.35	44.93	133.17			
09-MW-03	3926365.99	1802303.17	143.78				10.25	46.96	133.53	16.52	47.24	127.2
09-MW - 04	3926072.77	1802387.37	145.52				12.12	7.02	133.40	17.40	47.12	128.1
09-MW-05	3926630.27	1802495.32	141.34				7.55	47.00	133.79	12.71	47.10	128.6
09-MW-06	3926844.91	1802850.48	140.41				6.32	46.51	134.09	11.67	46.84	128.7
09-MW-07	3927135.32	1803116.58	143.67				9.35	23.65	134.32	14.69	23.74	128.9
09-MW-08	3926230.77	1802612.25	150.21						-552	1,	20.17	120.7
09-MW-10	3926424.14	1802644.80	166.07						l			
09-MW-11	3926573.80	1802774.34	163.25									
09-MW-12	3926198.21	1802958.84	141.23									
09-MW-14	3925903.33	1802573.13	146.92				13.58	25.12	133.34	18.91	25.19	128.0
99-MW-15	3925290.16	1802754.76	142.62						-55.54	10.71	20,17	120.0
0-MW-01	3926165.16	1803467.19	144.39	15.00		129.39				15.88	46.44	128.5
10-MW-02	3925989.13	1803620.63	144.62	15.25		129.37			1	16.33	47.43	128.3
0-MW-03	3925916.26	1803383.92	145.00	15.67	47.64	129.33				16.84	47.43	128.2
0-MW-04	3925545.84	1803251.22	143.05							10.04	71.30	120.1
1-MW-01	No survey data f	or this well		11.91	18.39	-11.91	7.30	18.2				
11-MW-02	3926502.02	1803274.10	143.82	14.43		129.39	9.87	21.26	133.95			
12-MW-01	3924457.46	1804255.74	141.26			1	8.49	28.77	132.77	14.27	28.93	126.99

MITOPOR VI	ell Water Level I	Data]					
MIWING W	1993 Surve			0	6-OCT-93			9-JAN-94		19	-APR-94	
	1995 501 10	<i>,</i> 2	Elevation	H20 Depth T		Water	ì	Total Depth	Water	H20 Depth To		Water
Well I.D.	Northing	Easting	To TOC	(From TOC) (I	-			(From TOC)		(From TOC) (F	-	
01-MW-01	3925415.79	1811197.63	145.98				,			, ,	,	
01-MW-02	3925631.78	1811354.63	145.50									
01-MW-03	3925745.10	1811323.05	147.29	1								
01-MW-04	3925634.72	1811183.64	144.79									
01-MW-05	3925523.35	1811148.49	146.57									
01-MW-06	3925450.64	1811349.18	147.27									
01-MW-07	3925231.05	1811068.65	143.19									
01-MW-08	3925198.04	1811266.41	153.49				:					
	0,202,000		200111									
04-MW-02	3925268.76	1812283.24	147.20									
04-MW-03	3925460.08	1812401.51	145.55									
	0,20,0000	1012/01/01										
05-MW-01	3926266.22	1804905.55	150.64	21.31	53.88	129.33	28.07		122.57			
05-MW-02	3925967.52	1805428.72	149.51	20.38	53.48	129.13	26.89		122.62	32.01		117.
05-MW-03	3926037.36	1805183.76	147.93	18.78	53.73	129.15	25.4		122.53			
05-MW-04	3926029.31	1805029.33	145.82	16.91	49.20	128.91	2011		122.00			
05-MW-05	3925969.98	1804904.41	145.57	10.51	17.20	120.71				27.69		117.
05-MW-06	3926176.70	1804528.75	144.71	15.45	49.66	129.26	22.27		122.44	27.38		117.
05-MW-07	3926111.00	1804843.18	145.91	16.36		129.55	24.28		121.63			
05-MW-08	3926573.32	1804993.75	145.73	16.00	28.9	129.73	23.65		122.08	27.93		117.
05-MW-09	3926898.84	1804765.31	147.31	17.67	28.63	129.64	25.77		121.54			
05-MW-10	3926151.95	1805152.54	147.90	18.49	30.09	129.41						
05-MW-11	3926508.77	1804453.98	149.13				26.77		122.36			
05-MW-12	3926157.70	1804305.71	147.16	17.74	25.03	129.42	25.93		121.23			
05-MW-13	3926306.86	1804190.23	147.01	17.69		129.32	24.57		122.44			
05-MW-14	3925586.00	1805078.00	142.05	1		123.02	2					
05-MW-15	3925725.23	1804486.96	143.34				20.94		122.40			
JO 111 11 10	3723123123	1001100.50	1.0.0				20.51		122.10			
06-MW-01	3926640.00	1803588.76	151.30	21.90	52.41	129.40	28.78		122.52			
06-MW-02	3926438.83	1803544.45	147.91	18.67	52.64	129.24	25.45		122.46	30.50		117.
06-MW-03	3926136.57	1803300.78	144.59	15.75	48.7	128.84	22.19		122.40	27.40		117.
06-MW-04	3926311.90	1803047.49	142.70	13.82	48.43	128.88	20.38		122.32	27.40		117.
06-MW-05	3926368.72	1803214.00	144.14	14.95	18.01	129.19	20.50		122.32			
06-MW-06	3926311.42	1803740.11	148.92	19.51	30.01	129.41	26.3		122.62	29.78		119.
06-MW-07	3927008.19	1803826.28	151.90	22.51	30.01	129.39	29.35		122.55	25.70		117.
JO 111 11 - 07	3,2,000.1,	1005020.20	151.70	22.01		127.07	27.55		122.00			
9-MW-01	3925887.18	1802988.49	142.55	14.05	48.45	128.50	20.21		122.34	25.46		117.
9-MW-02	3925561.03	1802813.90	140.52	12.49	44.93	128.03	20.21		122.0			
9-MW-03	3926365.99	1802303.17	143.78	12	44.20	120.00				26.49		117.
9-MW-04	3926072.77	1802387.37	145.52							28.38		117.
9-MW-05	3926630.27	1802495.32	141.34							24.12		117.
9-MW-06	3926844.91	1802850.48	140.41							22.98		117.
99-MW-07	3927135.32		143.67							22.50		117.
9-MW-07	3927133.32 3926230.77	1803116.58 1802612.25	150.21									
9-MW-10	3926424.14	1802644.80	166.07									
9-MW-10 9-MW-11	3926573.80	18020774.34	163.25									
79-MW-11 19-MW-12			141.23									
9-MW-14	3926198.21 3925903.33	1802958.84 1802573.13	141.23							25.15		121.
				14.07		107 65	20.26		100.06	25.15		
99-MW-15	3925290.16	1802754.76	142.62	14.97		127.65	20.36		122.26	25.67		116.
0.1492.01	2006165 16	1002467 10	144.00				21.00		100.40			
10-MW-01	3926165.16	1803467.19	144.39				21.96		122.43			
10-MW-02	3925989.13	1803620.63	144.62	17.00	40.00							
10-MW-03	3925916.26	1803383.92	145.00	16.38	47.64	128.62	22.68		122.32	28.01		116.
10-MW-04	3925545.84	1803251.22	143.05	14.95		128.10	20.85		122.20			
11-MW-01	No survey data			12.09	18.39	-12.09						
11-MW-02	3926502.02	1803274.10	143.82	14.66	21.26	129.16						
12-MW-01	3924457.46	1804255.74	141.26									
12-MW-02	3924455.73	1804963.34	139.46									

	GALENA, AI		D .			
	Monitoring w	ell Water Level : 1993 Surv			24 257 24	
		1993 Surv	ey Data	771 d	24 SEP-94	
	Well I.D.	Marthina	Tantin -	Elevation	H20 Depth Total Depth	Water
	01-MW-01	Northing	Easting	To TOC	(From TOC) (From TOC)	Elevation
		3925415.79	1811197.63	145.98		
	01-MW-02	3925631.78	1811354.63	145.50		
	01-MW-03	3925745.10	1811323.05	147.29		
	01-MW-04	3925634.72	1811183.64	144.79		
	01-MW-05	3925523.35	1811148.49	146.57		
	01-MW-06	3925450.64	1811349.18	147.27		
	01-MW-07	3925231.05	1811068.65	143.19		
	01-MW-08	3925198.04	1811266.41	153.49		
	04-MW-02	3925268.76	1812283.24	147.20		
1	04-MW-03	3925460.08				
	04-W W-03	3923460.08	1812401.51	145.55		
	05-MW-01	3926266.22	1804905.55	150.64		
	05-MW-01	3925967.52	1804903.33		21.56	107.05
	05-MW-02	3925967.32		149.51	21.56	127.95
	05-MW-04	3926029.31	1805183.76 1805029.33	147.93		
	05-MW-04 05-MW-05	3925969.98	1805029.33	145.82 145.57		
	05-MW-06	3926176.70	1804528.75		16.60	100.00
	05-MW-07	3926111.00	1804328.73	144.71	16.69	128.02
	05-MW-07			145.91	477.4	
		3926573.32	1804993.75	145.73	17.16	128.57
	05-MW-09	3926898.84	1804765.31	147.31		
	05-MW-10	3926151.95	1805152.54	147.90		
١	05-MW-11	3926508.77	1804453.98	149.13	20.63	128.50
	05-MW-12	3926157.70	1804305.71	147.16	18.89	128.27
	05-MW-13	3926306.86	1804190.23	147.01	18.72	128.29
l	05-MW-14	3925586.00	1805078.00	142.05	19.29	122.76
-	05-MW-15	3925725.23	1804486.96	143.34	15.92	127.42
	06-MW-01	3926640.00	1803588.76	151.30	22.97	100.40
	06-MW-01	3926438.83	1803544.45		22.87	128.43
1	06-MW-02	3926136.57	1803300.78	147.91 144.59	19.78	128.13
ł	06-MW-04	3926311.90		144.39	17.00	127.59
	06-MW-05	3926368.72	1803047.49		14.99	127.71
1	06-MW-06	3926311.42	1803214.00	144.14	16.19	127.95
ĺ	06-MW-07	3920311.42	1803740.11 1803826.28	148.92	20.62	128.30
	00-1V1 W -07	3927000.19	1803820.28	151.90	23.30	128.60
	09-MW-01	3925887.18	1802988.49	142.55	15.37	127 10
	09-MW-01	3925561.03	1802988.49			127.18
	09-MW-03	3926365.99	1802303.17	140.52 143.78	13.84 16.15	126.68
	09-MW-04	3926072.77	1802387.37	145.52		127.63
	09-MW-05	3926630.27	1802495.32	143.32	18.20	127.32
	09-MW-06	3926844.91	1802493.32	140.41	13.48 12.17	127.86
	09-MW-07	3927135.32	1802830.48	143.67	15.03	128.24
	09-MW-08	3926230.77	1802612.25	150.21	13.03	128.64
	09-MW-10	3926424.14	1802644.80	166.07		
	09-MW-11	3926573.80	1802044.80	163.25		
	09-MW-11	3926198.21	1802958.84	141.23		
	09-MW-14	3925903.33	1802573.13	141.23		
	09-MW-15	3925290.16	1802373.13	146.92		
	-> 1/1/1/-15	J. 402/0.10	1002137.10	142.02		
	10-MW-01	3926165.16	1803467.19	144.39	16.81	127 50
	10-MW-02	3925989.13	1803407.19		10.01	127.58
	10-MW-02	3925916.26		144.62	17 77	107.00
	10-MW-03	3925545.84	1803383.92	145.00	17.77	127.23
	10-101 M-04	<i>37433</i> 43.84	1803251.22	143.05		
	11-MW-01	No survey data f	or this well			
	11-MW-01	3926502.02	1803274.10	142 92	15.76	100.00
	11 171 77 -02	3720302.02	1003274.10	143.82	15.76	128.06
	12-MW-01	3924457.46	1804255.74	141.26		
	12-MW-02	3924455.73	1804253.74	141.26 139.46		
	-2 111 11 -02	57 211 55.15	1007703.34	137.40		

1992 Survey Data

RADIAN CORPORATION

Galena and Campion AFS, Alaska

SAMPLE LOCATIONS

Site 01 (Fire Training Site)

	TOP OF WELL	DOINT #	NORTHING	FACTING	GROUND
DESCRIPTION	ELEVATION	POINT #	NORTHING	EASTING	ELEVATION
01-SD-01		1163	3925849	1811179	144.0
01-SD-02		1169	3925653	1811507	144.2
01-MW-01	145.93	1158	3925416	1811198	143.2
01-MW-02	145.47	1161	3925632	1811355	143.1
01-MW-03	147.08	1162	3925745	1811323	144.7
01-MW-04	144.53	1145	3925635	1811184	142.7
01-MW-05	146.30	1160	3925523	1811149	143.4
01-MW-06	147.03	1157	3925451	1811350	143.7
01-SB-01		1148	3925639	1811297	143.2
01-SB-02		1152	3925522	1811249	142.7
01-SS-01		1159	3925460	1811193	143.0
01-SS-02		1151	3925500	1811220	142.8
01-SS-03		1153	3925480	1811265	142.5
01-SS-04		1156	3925432	1811360	144.4
01-SS-05		1154	3925503	1811285	142.7
01-SS-06		1155	3925535	1811310	142.8
01-SS-07		1147	3925576	1811244	142.7
01-SS-08		1146	3925593	1811252	142.1
01-SS-09		1150	3925609	1811182	142.9
01-SS-10		1149	3925672	1811281	143.9
01-SW-01		1164	3925885	1810891	143.7
01-SW-02		1168	3925664	1811542	143.2

Site 04 (Ambient Site)

DESCRIPTION	TOP OF WELL ELEVATION	POINT #	NORTHING	EASTING	GROUND ELEVATION
04-SD-01	LLLVATION	1166	3925152	1811943	145.8
					
04-SD-02		1165	3925424	1811918	145.7
04-SD-03		1175	3925489	1812169	145.3
04-SD-04		1174	3925663	1812363	145.1
04-MW-02	147.14	1167	3925269	1812284	147.4
04-MW-03	145.50	1171	3925460	1812402	146.0
04-SS-01		1173	3925682	1812558	147.2
04-SS-02		1170	3925327	1812408	147.4
04-SS-03		1172	3925486	1812605	150.1
04-SW-01		1166	3925152	1811943	145.8
04-SW-02		1165	3925424	1811918	145.7
04-SW-03		1175	3925489	1812169	145.3
04-SW-04		1174	3925663	1812363	145.1

Site 05 (POL)

	TOP OF WELL				GROUND
DESCRIPTION	ELEVATION	POINT #	NORTHING	EASTING	ELEVATION
05-SD-01		1144	3926401	1805059	142.2
05-SD-02		1130	3926508	1805228	136.8
05-MW-01	150.66	1106	3926266	1804906	148.5
05-MW-02	149.55	1126	3925967	1805429	147.4
05-MW-03	147.97	1122	3926037	1805184	145.8
05-MW-04	145.84	1121	3926029	1805030	143.6
05-MW-05	145.58	1124	3925970	1804904	143.2
05-MW-06	144.58	1116	3926176	1804529	142.4
05-MW-07	145.74	1100	3926111	1804843	143.1
05-MW-08	145.42	1105	3926573	1804994	141.8
05-MW-09	147.08	1104	3926899	1804766	145.0
05-MW-10	147.69	1110	3926152	1805153	145.0
05-MW-11	149.13	1127	3926509	1804454	146.2
05-MW-12	146.97	1125	3926157	1804306	145.3
05-SB-01		1107	3926260	1804959	144.3
05-SB-02		1114	3926083	1804968	144.0
05-SB-03		1111	3926138	1805191	146.3
05-SS-01		1128	3926537	1804511	147.4
05-SS-02		1103	3926445	1804697	145.4
05-SS-03		1102	3926380	1804752	143.5
05-SS-04		1108	3926306	1804963	144.7
05-SS-05		1113	3926279	1805078	145.2
05-SS-06		1143	3926216	1804914	144.1
05-SS-07		1109	3926208	1804996	144.9
05-SS-08		1112	3926219	1805215	144.3
05-SS-09		1115	3926129	1804894	143.8
05-SS-10		1101	3926192	1804771	143.3
05-SS-11		1120	3926020	1805026	143.3
05-SS-12		1117	3926179	1804646	143.0
05-SS-13		1118	3926131	1804711	143.2
05-SS-14		1123	3926076	1805216	142.5
05-SS-15		1119	3926089	1804857	142.8
05-SW-01		1131	3926623	1805137	136.2
05-SW-02		1130	3926508	1805228	136.8
05-SW-03		1129	3926397	1805307	137.0
05-RW-01	146.57	1133	3926131	1805104	144.3
05-RW-02	146.08	1132	3926093	1804964	143.9

Site 06 (Waste Accumulation Area)

DESCRIPTION	TOP OF WELL ELEVATION	POINT #	NORTHING	EASTING	GROUND ELEVATION
06-SD-01		1239	3926496	1803249	137.5
06-SD-02		1232	3926328	1803037	137.4
06-MW-01	151.30	1194	3926640	1803589	148.8
06-MW-02	147.92	1193	3926439	1803544	145.3
06-MW-03	144.60	1198	3926137	1803301	142.4
06-MW-04	142.71	1230	3926312	1803047	140.6
06-MW-05	143.91	1233	3926369	1803213	140.9
06-MW-06	148.72	1203	3926311	1803741	146.4
06-SB-01		1234	3926443	1803253	145.8
06-SB-02		1214	3926186	1803302	142.1
06-SS-01		1235	3926428	1803304	145.5
06-SS-02		1196	3926317	1803348	141.4
06-SS-03		1197	3926212	1803303	142.4
06-SS-04		1204	3926332	1803759	146.3
06-SS-05		1195	3926300	1803678	145.7
06-SS-06		1205	3926271	1803755	145.5
06-SW-01		1238	3926524	1803245	134.8
06-SW-02		1229	3926204	1802935	135.0

Site 07 (Campion)

DESCRIPTION	TOP OF WELL ELEVATION	POINT #	NORTHING	EASTING	GROUND ELEVATION
07-SB-01		1189	3914398	1840031	365.4
07-SB-02		1190	3914517	1839985	365.1
07-SB-03		1188	3914537	1840237	358.5
07-SD-01		1183	3914532	1840248	358.2
07-SD-02		1187	3914639	1840506	347.3
07-MW-01	370.54	1181	3914277	1840068	368.4
07-MW-02	362.92	1182	3914547	1840139	360.5
07-MW-03	368.52	1177	3914671	1839895	365.7
07-MW-04	390.08	1191	3914455	1839655	387.8
07-SS-01		1176	3914582	1839833	369.5
07-SS-02		1180	3914451	1840089	362.7
07-SS-03		1178	3914552	1840045	362.7
07-SS-04		1184	3914562	1840356	353.5
07-SS-05	V V	1186	3914621	1840459	349.3
07-SW-01		1179	3914518	1840067	362.6
07-SW-02		1185	3914563	1840369	353.3

Site 09 (Million Gallon Hill)

DESCRIPTION	TOP OF WELL ELEVATION	POINT #	NORTHING	EASTING	GROUND ELEVATION
09-MW-01	142.54	1215	3925887	1802988	140.4
09-MW-02	140.52	1219	3925561	1802814	141.0
09-MW-03	143.77	1223	3926366	1802304	141.5
09-MW-04	145.49	1216	3926073	1802387	143.2
09-MW-05	141.24	1224	3926630	1802495	139.0
09-MW-06	140.38	1226	3926845	1802849	137.9
09-MW-07	143.68	1192	3927135	1803117	144.3
09-MW-08	150.26	1218	3926230	1802612	150.5
09-MW-10	166.06	1221	3926424	1802645	166.4
09-MW-11	163.27	1222	3926574	1802775	163.6
09-MW-12	141.23	1228	3926198	1802959	141.7
09-MW-14	146.86	1217	3925904	1802573	143.7
09-SS-01		1227	3926553	1802863	156.3
09-SS-02		1225	3926689	1802614	141.1
09-SS-03		1220	3926264	1802463	141.2

Site10 (Vehicle Maintenance Building)

DESCRIPTION	TOP OF WELL ELEVATION	POINT #	NORTHING	EASTING	GROUND ELEVATION
10-MW-01	144.30	1200	3926165	1803467	141.7
10-MW-02	144.63	1206	3925989	1803621	142.4
10-MW-03	145.00	1211	3925916	1803384	142.7
10-SB-01		1199	3926101	1803344	142.3
10-SB-02		1202	3926068	1803522	141.5
10-SB-03		1210	3925916	1803460	141.6
10-SS-01		1201	3926090	1803527	141.1
10-SS-02		1213	3926012	1803478	141.9
10-SS-03	la la la la la la la la la la la la la l	1208	3925988	1803556	142.7
10-SS-04		1212	3925950	1803371	141.3
10-SS-05		1207	3925975	1803727	142.1
10-SS-06		1209	3925947	1803519	139.3

Site11 (Undeground Storage Tank)

DESCRIPTION	TOP OF WELL ELEVATION	POINT #	NORTHING	EASTING	GROUND ELEVATION
11-MW-02	143.83	1237	3926502	1803274	144.4
11-SB-01		1231	3926321	1803056	139.9
11-SS-01		1236	3926503	1803286	145.4

Site12 (South of Airstrip)

DESCRIPTION	TOP OF WELL ELEVATION	POINT #	NORTHING	EASTING	GROUND ELEVATION
12-MW-01	141.23	1253	3924457	1804256	141.7
12-MW-02	139.45	1252	3924456	1804963	139.9

SVE Locations (Extraction Well)

DESCRIPTION	TOP OF WELL ELEVATION	POINT #	NORTHING	EASTING	GROUND ELEVATION
I-1		1136	3926108	1804887	148.1
1-2		1142	3926177	1804942	144.2
I-3		1134	3926249	1804890	149.0
V-1		1139	3926157	1804838	148.4
V-2		1138	3926137	1804859	148.4
V-3		1137	3926117	1804879	148.2
V-4		1141	3926230	1804868	149.0
V-5		1140	3926199	1804836	148.9

Building Corner Locations

DESCRIPTION	TOP OF WELL ELEVATION	POINT #	NORTHING	EASTING	GROUND ELEVATION
Α		1248	3926401	1803648	149.1
В		1241	3926365	1803639	148.8
С		1242	3926303	1803653	145.7
D		1243	3926283	1803653	145.5
E		1244	3926303	1803674	145.6
F		1245	3926283	1803602	146.0
G		1246	3926249	1803602	145.8
Н		1247	3926249	1803636	146.1
1		1249	3926250	1803674	145.8
J		1250	3925906	1803780	144.0
K		1251	3925914	1803779	143.9
L		1263	3926260	1803674	
М		1264	3926281	1803674	

Wells Located Inside Buildings (See Field Book Sketch)

DESCRIPTION	TOP OF WELL ELEVATION	POINT #	NORTHING	EASTING	GROUND ELEVATION
WELL #1		1271	3925910	1803784	
WELL #2		1268	3926254	1803668	
WELL #3		1267	3926266	1803683	
WELL #4		1262	3926383	1803658	

Private Well Locations (See Field Book Sketch)

DESCRIPTION	TOP OF WELL ELEVATION	POINT #	NORTHING	EASTING	GROUND ELEVATION
PRIVATE WELL		1255	3923857	1806877	149.4
PRIVATE WELL		1256	3923918	1806853	149.2
2 PRIV.WELLS		1254	3923458	1805445	124.5

Exstraction Well Location

DECORPTION	TOP OF WELL				GROUND
DESCRIPTION	ELEVATION	POINT #	NORTHING	EASTING	ELEVATION
EXT. WELL		1135	3926172	1804813	150.0

1993 Survey Data

1993 Survey Data

Description	Point #	Northing	Easting	Ground Elevation or Top of Well Casing
Fire Protection Training Area				
01-MW-01	47	3925416	1811198	145.98
01-MW-02	43	3925632	1811355	145.50
01-MW-03	44	3925745	1811323	147.29
01-MW-04	45	3925635	1811184	144.79
01-MW-05	46	3925523	1811148	146.57
01-MW-06	48	3925451	1811349	147.27
01-MW-07	148	3925231	1811069	143.19
01-MW-08	149	3925198	1811266	153.49
01-SB-03	267	3925319	1811244	146.33
01-SB-04	268	3925208	1811228	151.00
Galena Ambient Location		<u> </u>		
04-MW-02	50	3925269	1812283	147.20
04-MW-03	51	3925460	1812402	145.55
POL Tank Farm		L		
05-MW-01	94	3926266	1804906	150.64
05-MW-02	89	3925968	1805429	149.51
05-MW-03	88	3926037	1805184	147.93
05-MW-04	87	3926029	1805029	145.82
05-MW-05	86	3925970	1804904	145.57
05-MW-06	79	3926177	1804529	144.71
05-MW-07	90	3926111	1804843	145.91
05-MW-08	95	3926573	1804994	145.73
05-MW-09	96	3926899	1804765	147.31
05-MW-10	. 91	3926152	1805153	147.90
05-MW-11	92	3926509	1804454	149.13
05-MW-12	77	3926158	1804306	147.16
05-MW-13	126	3926307	1804190	147.01
05-MW-14	143	3924798	1801950	142.05
05-MW-15	142	3925725	1804487	143.34
05-SB-04	181	3926603	1804295	148.01
05-SB-05	182	3926405	1804398	146.16
05-SB-06	184	3926531	1804509	147.24
05-SS-16	139	3926536	1804600	147.55
05-SS-17	135	3926407	1804627	146.52
05-SS-18	183	3926324	1804719	145.47
05-SS-19	136	3926256	1804796	145.49
05-SS-20	137	3926155	1805004	144.21

Description	Point #	Northing	Easting	Ground Elevation or Top of Well Casing
05-SS-21	138	3926112	1805163	148.56
05-SS-22	134	3926032	1804954	143.51
West Unit				
06-MW-01	58	3926640	1803589	151.30
06-MW-02	30	3926439	1803544	147.91
06-MW-03	32	3926137	1803301	144.59
06-MW-04	54	3926312	1803047	142.70
06-MW-05	55	3926369	1803214	144.14
06-MW-06	57	3926311	1803740	148.92
06-MW-07	125	3927008	1803826	151.90
06-SB-03	186	3926623	1803483	148.32
06-SS-07	124	3926371	1803752	148.85
06-SS-08	104	3926401	1803759	147.23
06-SS-09	103	3926394	1803690	148.92
06-SS-10	102	3926353	1803645	148.00
06-SS-11	100	3926385	1803522	144.33
06-SS-12	99	3926434	1803557	145.39
06-SS-13	105	3926419	1803477	144.03
06-SS-14	101	3926290	1803572	144.64
09-MW-01	34	3925887	1802988	142.55
09-MW-02	28	3925561	1802814	140.52
09-MW-03	65	3926366	1802303	143.78
09-MW-04	62	3926073	1802387	145.52
09-MW-05	66	3926630	1802495	141.34
09-MW-06	69	3926845	1802850	140.41
09-MW-07	72	3927135	1803117	143.67
09-MW-08	64	3926231	1802612	150.21
09-MW-10	73	3926424	1802645	166.07
09-MW-11	74	3926574	1802774	163.25
09-MW-12	53	3926198	1802959	141.23
99-MW-14	39	3925903	1802573	146.92
09-MW-15	140	3925290	1802755	142.62
09-SB-01	262	3925616	1802858	142.14
10-MW-01	56	3926165	1803467	144.39
0-MW-02	31	3925989	1803621	144.62
0-MW-03	33	3925916	1803384	145.00
0-MW-04	141	3925546	1803251	143.05
0-SB-04	187	3926121	1803477	141.51

Description	Point #	Northing	Easting	Ground Elevation or Top of Well Casing
10-SB-05	188	3926025	1803545	142.76
10-SS-07	117	3926035	1803609	140.47
10-SS-08	118	3925959	1803622	139.49
10-SS-09	119	3925961	1803589	139.82
10-SS-10	120	3925988	1803531	142.12
10-SS-11	121	3925953	1803491	139.35
10-SS-12	122	3925993	1803497	142.25
11-MW-02	61	3926502	1803274	143.82
11-SS-02	109	3926500	1803379	145.36
11-SS-03	110	3926600	1803462	147.06
11-SS-04	114	3926575	1803343	144.99
11-SS-05	116	3926609	1803281	140.67
11-SS-06	115	3926499	1803317	145.34
11-SS-07	113	3926414	1803208	140.81
11-SS-08	112	3926399	1803383	145.27
11-SS-09	106	3926322	1803408	142.50
11-SS-10	107	3926309	1803258	140.53
Control Tower Drum Storage Area				
MW-037	144	3925735	1805639	148.74
MW-038	145	3925532	1805640	146.80
MW-039	146	3925546	1806006	146.94
Campion POL Area		•		
07-MW-01	279	3914277	1840067	371.09
07-MW-02	278	3914547	1840140	363.46
07-MW-03	277	3914671	1839895	369.22
07-MW-04	276	3914456	1839655	390.08
07-SD-03	285	3914661	1840708	337.11
07-SD-04	286	3914695	1840892	328.65
07-SD-05	288	3914694	1841099	317.63
07-SD-06	291	3914737	1841295	305.19
07-SD-07	290	3914772	1841489	295.24
07-SS-06	281	3914466	1840159	361.14
07-SS-07	282	3914528	1840297	356.37
Base Supply Wells		-,	-	
No. 2	292	1.00e-09	1.00e-09	145.47
Treatability Study Air Sparging Wells				
A-1	249	3926085	1805029	148.39
A-10	211	3926070	1805189	143.70

Description	Point #	Northing	Easting	Ground Elevation or Top of Well Casing
A-11	212	3926066	1805203	143.44
A-12	213	3926061	1805219	143.59
A-13	214	3926056	1805236	144.22
A-14	215	3926051	1805249	144.78
A-2	237	3926077	1805047	143.82
A-3	238	3926072	1805061	143.19
A-4	239	3926066	1805077	143.00
A-5	240	3926061	1805092	143.37
A-6	241	3926055	1805107	144.67
A-7	242	3926049	1805122	145.27
A-8	209	3926079	1805157	144.27
A-9	210	3926074	1805173	144.06
Treatability Study Soil Sample Locations			·	
B-1	254	3926054	1805035	143.80
B-10	261	3926075	1805207	143.26
B-11	256	3926029	1805163	146.68
B-12	257	3926023	1805179	147.19
B-17	201	3926034	1805201	145.43
B-2	250	3926095	1805051	148.84
B-3	251	3926082	1805084	143.69
B-4	253	3926047	1805091	145.83
B-5	252	3926026	1805104	147.50
B-6	255	3926029	1805041	145.40
B-7	258	3926063	1805159	145.13
B-8	259	3926059	1805172	145.44
B-9	260	3926085	1805178	144.05
Treatability Study Extraction Wells				
E-1	235	3926052	1805063	143.74
E-2	217	3926046	1805197	145.10
Treatability Study Monitoring Wells				
MW-2	236	3926060	1805066	142.87
MW-3	234	3926039	1805058	146.37
MW-6	204	3926056	1805197	144.30
Treatability Study Steam Points				
S-1	248	3926090	1805043	148.63
S-2	247	3926083	1805059	144.07
S-3	246	3926079	1805073	142.95
S-4	245	3926073	1805088	142.95

Description	Point #	Northing	Easting	Ground Elevation or Top of Well Casing
S-5	244	3926068	1805103	143.66
S-6	243	3926063	1805118	144.93
Treatability Study Vapor Probes				
V-1	230	3926065	1805059	143.08
V-10	228	3926085	1805109	144.04
V-11	208	3926065	1805171	144.81
V-12	207	3926055	1805168	145.12
V-13	206	3926045	1805165	145.24
V-14	199	3926036	1805161	145.85
V-15	203	3926054	1805208	144.27
V-16	202	3926044	1805205	145.06
V-18	200	3926023	1805199	145.67
V-19	198	3926038	1805151	145.47
V-2	231	3926055	1805055	142.92
V-20	197	3926042	1805140	145.63
V-3	232	3926045	1805052	144.48
V-4	233	3926035	1805048	145.94
V-5	227	3926051	1805095	144.71
V-6	226	3926042	1805094	146.15
V-7	225	3926032	1805095	146.75
V-8	224	3926023	1805095	147.40
V-9	229	3926090	1805088	144.07
Treatability Study Air Sampling Stations				
SP-1	42	3924461	1803983	156.95
SP-2 (new)	270	3923916	1807626	151.08
SP-2 (old)	41	3924501	1806943	143.03
SP-3	194	3926159	1804527	142.25
SP-4	185	3926870	1804726	150.12
SP-5	195	3925891	1805108	144.21
SP-6	158	3925866	1808987	157.91
Yukon River	-·			-
River Measure Point	49	3924869	1812194	149.18
Old River Gauge150' mark	293	1.00e-09	1.00e-09	149.32
North edge of Yukon River Banktop water	15	3924630	1811166	131.90
North edge of Yukon River Banktop water	24	3924370	1802772	131.28
North edge of Yukon River Banktop water	23	3924499	1802416	131.17
North edge of Yukon River Banktop water	22	3923611	1807687	131.60
North edge of Yukon River Banktop water	20	3923773	1805220	131.11

Description	Point #	Northing	Easting	Ground Elevation or Top of Well Casing
North edge of Yukon River Banktop water	19	3923483	1806553	131.45
North edge of Yukon River Banktop water	18	3923842	1808648	131.57
North edge of Yukon River Banktop water	16	3924390	1810399	131.82
North edge of Yukon River Banktop water	25	3924263	1803413	131.33
North edge of Yukon River Banktop water	26	3923960	1804273	131.54
North edge of Yukon River Banktop water	17	3924035	1809350	131.66
North edge of Yukon River Banktop water	14	3925376	1813128	131.96
North edge of Yukon River Banktop water	27	3924760	1801956	131.08
Pump Test Wells				
KV-1	128	3926180	1804512	146.02
KV-2	131	3926173	1804538	146.01
KV-3	132	3926167	1804527	145.64
KV-4a	133	3926157	1804538	145.94
KV-5	127	3926165	1804513	145.21
KV-6a	129	3926186	1804530	145.56
PW-1	130	3926182	1804546	146.11
Miscellaneous				
12-MW-01	7	3924457	1804256	141.26
12-MW-02	8	3924456	1804963	139.46
STA #8 (R&M Basis of Coord.)	1	3925110	1803535	142.60
Stake Furthest NW-West Runway	171	3925986	1802195	141.75

APPENDIX F

Hydrocarbon Recovery Testing at Galena Airport

The purpose of this Appendix is to document the results and draw some preliminary conclusions and recommendations from the hydrocarbon recovery testing performed at Galena Airport during 17-19 September 1992, 12-23 July 1993, and 13-16 April 1994. More detailed results and discussion of these tests is provided in the *Treatability Study Final Report* (USAF/Radian, January 1995).

The feasibility of recovery of light, non-aqueous phase hydrocarbons (LNAPL) using product skimming was determined using two methods: 1) baildown testing (1992, 1993, and 1994) and 2) hydrocarbon recovery (skimming) tests (1993 and 1994). Baildown testing was performed on 5 wells in the POL area (05-RW-1, 05-RW-2, 05-MW-04, 05-W-2, and 05-MW-10) and 1 well in the Million Gallon Hill area (05-MW-08). The baildown testing was used to determine if a skimming test was practical. Of the five wells, skimming tests were performed at three of the wells in POL (05-RW-1, 05-RW-2, and 05-MW-10) during 1993 and one well (05-RW-2) in 1994.

1992 Baildown Tests

During the final stages of the 1992 Galena field season, two 6-in. Diameter hydrocarbon recovery wells were installed in the POL (05-RW-01 and 05-RW-02). These wells were located in areas of known occurrence of floating product. A hydrocarbon recovery system (SOS product-only system) and a portable air compressor were purchased and shipped to Galena to conduct field recovery tests. The close of 1992 field activities prevented the testing of the hydrocarbon skimmer system in the recovery wells. However, two short duration (3 day) baildown tests were conducted on recovery well 05-RW-01 and a nearby standard 2-in. Monitoring well (05-MW-10). The results of the baildown tests are shown in Figures 1 and 2.

Both the 6-in. and 2-in. wells displayed similar water and product level behavior during the baildown tests. An LNAPL layer, which was originally around 1.5 ft thick in the wells, was nearly completely removed by bailing at the start of the test. Following baildown, the

amount of free product recovered slowly throughout the monitoring period. Maximum apparent product thicknesses observed following baildown were around 0.4 ft.

Analysis of the data focused on determining the inflection point on the water level versus time recovery curve. According to Gruszczenski (1987), the actual formation thickness corresponds to this inflection point. In other words, after the product level in the well is reduced by pumping or bailing, the water level first rises and then falls. The point where the water level starts to fall is the inflection point. The product thickness at that point is the estimated true LNAPL thickness in the formation. Generally, there is a 70 to 95 percent reduction between the apparent hydrocarbon thickness observed in a well and the true formation thickness.

For well 05-RW-01, an inflection point in water levels was observed rather quickly (within 90 minutes), with a second leveling off inflection point after about 2600 minutes. The product thickness corresponding with the first inflection point was 0.15 ft. For monitor well 05-MW-10, the inflection point occurred even more quickly, after only 30 minutes. The corresponding product thickness was 0.03 ft. The different responses for the two wells may reflect the differences in casing diameters. Because the magnitude of the water level change in both wells was so small and occurred so rapidly, there is some uncertainty as to the validity of the true product thickness estimates.

1993 Baildown and Skimming Test

The goals of the baildown and skimming tests conducted in 1993 were twofold: 1) to determine the recharge rate of LNAPL from the formation into the well; and 2) to attempt once again to determine the true product thickness in the formation. The test results are summarized in Table 1.

Baildown testing was performed in two different ways. In the case of wells 05-RW-1 and 05-RW-2, skimming tests were performed initially. The LNAPL in each well was

effectively bailed down during the skimming test. Following the test, the recovery of water and hydrocarbon were monitored over time.

The first recovery test was conducted at recovery well 1 (05-RW-1) because of its large original product thickness (2.00 ft). The test was conducted over three days. The objective was to gradually reduce the product thickness to a point where the recharge of the hydrocarbon in the well was equal to or greater than the extraction rate of the SOS system. If this could be achieved, it would be a clear indication that hydrocarbon recovery by this method is feasible.

The results of the skimming test at 05-RW-1 are presented in Figure 3. Over the three day test, we were not able to reduce the extraction rate low enough to match the recovery rate. Therefore, the product thickness continued to fall until it was essentially zero on the third day.

The SOS system was also tested at recovery well 2 (05-RW-2) and monitor well 10 (05-MW-10) with very similar results; the system reduced the product thickness to basically zero and then recovered what little product entered the well from the formation (Figures 4 and 5).

In the case of 09-MW-08, 05-MW-10, and 05-MW-04, the baildown test was performed first, which is the conventional method. Floating hydrocarbons and water were purged from the well using a Teflon bailer. The water and hydrocarbon levels in the well were then allowed to recovery over a 3 to 10 day period; water and product levels were monitored throughout the recovery period.

The results of the baildown tests are shown in Figure 5 through 7 and the center portion of Table 1. In Table 1, the "Time = 0 Thickness" is the product thickness immediately after baildown of the well. Also presented is the product thickness at elapsed times (1, 6, 24, 36, and 48 hours) following the baildown test. In parentheses is the percentage of the original product thickness (before the baildown test). After one hour, only one well showed a high rate of recharge; 05-MW-10 had recovered to 44% of its original product thickness. Therefore, 05-MW-

10 was considered a good candidate for hydrocarbon recovery testing using the SOS system. Conversely, 05-MW-04 did not recover any product 48 hours after its baildown. Although 09-MW-08 showed moderate recharge into the well, it was not a good candidate for recovery testing due to its isolation from an electrical source.

Unfortunately, we were never able to clearly observe the inflection point in any of the baildown/skimming tests. Possible explanations for the observed trends are as follows:

- For wells 05-RW-1 and 05-RW-2, the SOS skimming system did not recover LNAPL quickly enough to produce a distinctive drop in the product thickness; therefore, the water levels did not rise quickly in response to the product removal step.
- For the other wells, a rapid recharge of water levels occurred immediately following baildown without the characteristic gradual rise and fall normally observed; this is probably caused by recharge through the deeper portion of the well screens which are completed in the more permeable sand and gravel strata.
- For all wells, the water levels gradually declined throughout the static and recovery segments of the test; this reflects the normal regional decline of the water table post breakup of the Yukon River, and complicated analysis of the observed baildown results.
- Finally, the tenacious behavior of silty materials in the upper portion of the unconfined aquifer for free-phase product prevented adequate recharge of the wells; the LNAPLs were essentially bound within the pore spaces of the silty strata above the capillary fringe zone.

An alternate, conservative method for determining the formation thickness is outlined by Testa and Paczkowski (1989). Essentially, this method states that the actual formation thickness is the observed thickness multiplied by (1 - specific gravity of the product). The "Estimated Thickness" row in Table 1 was calculated using this method, assuming a LNAPL specific gravity of 0.8 g/cm³. Values for estimated true product thickness ranged from 0.03 to 0.4 ft.

To predict the recovery rate of the SOS system, we used the baildown test product recovery results. As shown in Table 2, the product thickness in 05-RW-1 recovered 0.015 ft in six hours. For this 6-in. diameter well, this converts to a recharge rate of 0.005 gph, or 0.116 gal./day (42 gal./year), if operated continuously. Monitor well 05-MW-10 (2-in. diameter) had the highest rate of recovery (2 gal./day), and the highest relative volume (243% of amount initially present) of the five wells tested. However, there are several reasons why these recovery numbers may be inexact. First, this recovery rate may decrease over time as the product in the formation is reduced. Second, the system will not be operated continuously because it requires periodic maintenance and downtime. Finally, the recovery rates are likely to change in response to seasonal changes in water levels (i.e., recovery rates are expected to increase during fall and winter).

The results of the Phase III LNAPL recovery tests conducted in April 1994 are summarized in Tables F-3 and F-4. As anticipated, the lower water table during this portion of the year resulted in greater LNAPL thicknesses in the formation and higher product recovery rates. Product thicknesses of up to 2.72 ft were measured in POL area wells, with estimated formation thicknesses of up to 0.54 ft in well 05-W-2. Skimming tests conducted in well 05-RW-2, which had an estimated product thickness of 0.45 ft, succeeded in recovering 4.68 gallons of LNAPL in less than eight hours of operation. Although operational difficulties associated with ice formation complicated the 1994 skimming tests, the 1994 product recovery rate was more than five times that measured during July 1993 tests.

Conclusions

Based on the baildown testing and hydrocarbon skimming tests that were performed at the Galena Airport, we offer the following conclusions:

• The maximum true product thickness observed in the POL area during the summer and fall is about 0.15 ft;

- The maximum true product thickness estimated in the summer 1993 was about 0.4 ft, based on an approximate method;
- The maximum true product thickness estimated in April 1994 was 0.54 ft.
- The SOS Recovery System is capable of recovering the product which is found in the upper silty or lower gravelly sand zones of the unconfined aquifer below the POL;
- During the April 1994 recovery testing, the system recovered much more product than the volume that was originally present in the well; and
- Implementation of an LNAPL recovery system at the POL is feasible.

Interpretation and Recommendations

Baildown and skimming tests conducted during the fall 1992, summer 1993, and late winter 1994 on six groundwater wells in the POL and Million Gallon Hill areas detected a thin LNAPL layer in the silty aquifer increasing in thickness as the water table drops into the lower gravelly sand horizon during the winter months. The tests indicated that a product-only recovery system like the SOS system would be capable of removing the floating LNAPL layer, albeit at a slow rate during the summer months. Possible reasons that the recovery tests were not able to precisely define the product thicknesses were presented earlier.

Substantially different hydrologic conditions exist during low water table periods than during summer months. Baildown tests conducted during April 1994, when the LNAPL layer resides primarily in the gravelly sand layer indicate that a significant product thickness (greater than 0.50 ft) is present.

Skimming test conducted at this time succeeded in recovering more than four gallons of LNAPL from one well in less than eight hours; several times the recovery rate observed in earlier tests.

Detailed conclusions and recommendations are included in the *Treatability Study* Final Report (USAF/Radian, January 1995).

References

USAF/Radian Treatability Study Final Report. January 1995

Testa, S.M. and M.T. Paczkowski. "Volume Determination and Recoverability of Free Hydrocarbon." Ground Water Monitoring Review. p. 120-128. Winter 1989.

Gruszczenski, T.S. "Determination of a Realistic Estimate of the Actual Formation Product Thickness Using Monitor Wells: A Field Bailout Test." In: *Proceedings of Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection, and Restoration.* NWWA, Houston, Texas. 1987.

Table 1
Galena Hydrocarbon Recovery Summary

Well ID	05-RW-1	05-RW-2	05-MW-04	05-MW-10	09-MW-08	
Initial Measurements						
Original Product Level	13.73	13.48	13.42	15.63	18.68	
Original Water Level	15.73	13.65	14.00	16.79	19.68	
Original Product Thickness	2.00	0.17	0.58	1.16	1.00	
Original Volume	2.94 gal.	0.25 gal	0.09 gal	0.19 gal	0.16 gal	
Recovery Results						
Time = 0 Thickness	0.00	0.02	0.00	0.00	0.01	
1 Hour Thickness	0.00 (0.0%)	0.02 (11.8%)	0.00 (0.0%)	0.50 (43.9%)	0.07 (7.0%)	
6 Hour Thickness	0.02 (1.0%)	0.03 (17.6%)	0.01 (1.7%)	0.80 (69.0%)	0.15 (15.0%)	
24 Hour Thickness	0.09 (4.5%)	0.03 (17.6%)	0.01 (1.7%)	0.85 (73.3%)	0.30 (30.0%)	
30 Hour Thickness	0.10 (5.0%)	0.03 (17.6%)	0.00 (0.0%)	0.92 (79.3%)	0.30 (30.0%)	
48 Hour Thickness	0.25 (12.5%)	0.01 (5.9%)	0.00 (0.0%)	0.91 (78.4%)	0.32 (32.0%)	
Estimated Formation Thickness	0.40	0.03	0.12	0.23	0.20	
Skimming Results						
Well Skimmed?	Yes	Yes	No	Yes	No	
Recovered Volume	5.23 gal (178%)	0.16 gal (64%)		0.46 gal (243%)		

Note: All results in feet.

Table 2
Estimated Hydrocarbon Recovery Rates

Well ID	05-RW-1	05-RW-2	05-MW-10
Hourly Recovery (gph)	0.005	0.002	0.08
Daily Recovery (gpd)	0.116	0.06	2.0
Yearly Recovery (gpy)	42	21	715

Table F-3
Phase III LNAPL Thickness Survey (Winter 1994)

Date	Time	Well ID	Product Depth (ft)	Water Depth (ft)	Product Thickness (ft)	Comments
4/13/94	1500	05-MW-04	27.7	30.08	2.38	
4/13/94	1512	05-MW-03	30.24	30.85	0.61	
4/13/94	1530	05-MW-02	No product	32.01	0	
4/13/94	1547	05-MW-37	No product	No water	0	Dry well 28.50 depth to bottom
4/13/94	1620	05-MW-05	27.69	27.69	Sheen	Sheen
4/13/94	1640	05-MW-01	27.86	30.19	2.33	
4/13/94	1655	05-MW-10	28.88	No water	1.52	30.40 depth to bottom
4/13/94	1705	W-5	No product	33.03	0	Treatability study well
4/13/94	1710	05-MW-01	28.41	29.64	1.23	29.9 depth to bottom
4/13/94	1730	05-MW-08	No product	27.93	0	
4/13/94	1740	05-MW-09	No product	No water	0	28.3 depth to bottom
4/13/94	1745	05-MW-11	No product	No water	0	27.6 depth to bottom
4/13/94	1800	05-MW-13	No product	No water	0	27.6 depth to bottom
4/13/94	1805	05-MW-12	No product	No water	0	24.9 depth to bottom
4/13/94	1815	KV-1	No product	No water	0	23.4 depth to bottom
4/13/94	1820	KV-6	No product	27.95	0	
4/13/94	1828	6" Pump Well	No product	26.71	0	
4/13/94	1830	KV-2	No product	27.13	0	
4/13/94	1835	KV-4	No product	27.84	0	
4/13/94	1840	KV-3	No product	22.84	0	23.10 depth to bottom
4/13/94	1845	05-MW-06	No product	27.38	0	Has a transducer in it
4/13/94	1850	KV-5	No product	28	0	
4/14/94	1750	05-MW-15				Could not open, well cap damaged
4/14/94	1800	05-MW-14				Could not locate, covered by 2 in. of ice
4/14/94	1820	05-MW-38				Could not locate under 2 ft of snow
4/14/94	1820	05-MW-39		- 1,		Could not locate under 2 ft of snow
4/16/94	845	05-MW-07	30.33	31.14	0.81	

Table F-4
Phase III Hydrocarbon Recovery Summary (Winter 1994)

Well ID	05-MW-04	05-RW-2	05-W-2	05-MW-07	06-MW-04		
Initial Measurements							
Original Product Level	27.77	27.93	28.42	30.33	25.09		
Original Water Level	30.20	30.20	31.14	30.93	26.93		
Original Product Thickness	2.43	2.27	2.72	0.60	1.84		
Original Volume (gal.)	0.39	3.33	0.43	0.10	0.29		
Recovery Results							
Time = 0 Thickness	0.15	0.41	0.92	0.00	0.11		
1-Hour Thickness	0.66 (27.2%)	1.04 (45.8%)	2.50 (91.9%)	0.02 (3.3%)	0.97 (52.7%)		
6-Hour Thickness	1.88 (77.4%)	1.68 (74.0%)	2.52 (92.6%)	0.07 (11.7%)	1.14 (62.0%)		
12-Hour Thickness	2.23 (91.8%)	1.92 (84.6%)	2.4 (88.2%)	0.2 (33.3%)	Not measured		
30-Hour Thickness	Not measured	2.00 (88.1%)	Not measured	Not measured	Not measured		
48-Hour Thickness	Not measured	2.18 (96.0%)	Not measured	Not measured	Not measured		
Estimated Formation Thickness	0.49	0.45	0.54	0.16	0.37		
Skimming Results							
Well Skimmed?	No	Yes	No	No	No		
Recovered Volume (gal.)		4.68 (141%)					

Note: All results in feet unless noted otherwise"

5000 4000 05-RW-01 (1992) 3000 Figure 1 Baildown Test Water Minutes Product 2000 1000 -18 Fluid Depth (ft) $\frac{1}{\infty}$ -17.5 -19.5 -19

F-12

Figure 2

Figure 3

Baildown Testing and Skimming Results Figure 4

Skimming Baildown Testing and Skimming Results **Весо**ивлу Figure 5 Baildown 05 MW-10 (1993) -15.5 -15 -16 -16.5 -17 Fluid Depth (ft)

16000

14000

12000

10000

8000 Minutes

0009

4000

2000

Product

Water

0 minutes = 7/13/93 at 1615

F-16

Figure 6

Baildown Testing and Skimming Results Figure 7

GALENA AFS HYDROCARBON RECOVERY TESTING 05-RW-1

Baildown Test: Hydrocarbon Recovery Well

Date	Time	Elapsed Time (min)	Product Level (feet)	Water Level (feet)	Product Thickness (feet)
09/17/92	13:00	0	17.75	19.3	1.55
09/17/92	14:15	76	18.1	18.25	0.15
09/17/92	14:19	80	18.1	18.25	
09/17/92	14:24	85	18.1	18.25	
09/17/92	14:30	90	18.1	18.25	
09/17/92	14:44	105	18.08	18.27	0.19
09/17/92	15:00	120	18.08	18.27	
09/17/92	15:15	135	18.07	18.28	0.21
09/17/92	15:29	150	18.07	18.28	•
09/17/92	15:45	165	18.07	18.28	
09/17/92	16:00	180	18.06	18.28	0.22
09/17/92	16:14	195	18.06	18.28	
09/17/92	16:30	210	18.06	18.28	
09/17/92	16:59	240	18.06	18.29	0.23
09/17/92	17:30	270	18.05	18.28	
09/17/92	18:30	330	18.07	18.31	0.24
09/17/92	19:30	390	18.07	18.32	
09/18/92	07:30	1110	18.12	18.44	0.32
. 09/18/92	08:30	1170	18.12	18.44	
09/18/92	10:30	1290	18.12	18.47	0.35
09/18/92	14:30	1530	18.16	18.52	0.36
09/18/92	16:30	1650	18.17	18.53	
09/19/92	08:30	2610	18.26	18.66	0.4
09/19/92	10:30	2730	18.26	18.66	
09/19/92	12:29	2850	18.29	18.66	
09/19/92	16:30	3090	18.29	18.66	
09/20/92	13:30	4350	18.39	18.78	
09/20/92	17:55	4615	18.47	18.87	

Date	Тіте	Baseline	Product Height	Water Height	Water Height Product Thickness	Pump		Comments
13-Jul-93	1620	5	-13.61	-14.5	0.89			
14-Jul-93	006	1005	-13.73	-15.73	2.00			
	Began Skimming	٠				Ö	Č	
	1346	1291	-13.69	-15.75	2.06	, c	5 0	
	1419	1324	-13.74	-15.63	1.89	l)	
	1432	1337	-13.79	-15.52	1.73			
	1515	1380	-13.86	-15.19	1.33	-	20	Replaced Batteries in Probe
	1530	1395	-13.89	-15.05	1.16			
	1603	1428	-13.91	-14.91	1.00			
	1625	1450	-13.95	-14.85	0.90			
	1647	1472	-13.97	-14.71	0.74			
	1701	1486	-13.98	-14.73	0.75			
	1714	1499	-14	-14.67	0.67			
	1728	1513	-14.02	-14.61	0.59			
15-Jul-93	815	2400	-14.03	-14.8	0.77			
	Began Skimming							
	820	2405	-14.03	-14.8	0 77	v	7	
	851	2436	-14,04	-14.76	27.0		4 r	
	916	2461	-14.06	-14.7	0.64	-	3	
	934	2479	-14.09	-14.6	0.51			
	1005	2510	-14.09	-14.58	0.49			
	1042	2547	-14.11	-14.56	0.45			
	1150	2615	-14.11	-14.55	0.44			Skimmer Lowered at 1104
	1300	2685	-14.11	-14.59	0.48			Compressor Motor Overheating
	1326	2711	-14.12	-14.49	0.37			
	1343	2728	-14.12	-14.48	0.36			
	4425	5//0	-14.14	-14.34	0.20			
	1520	2825	-14.13	-14.48	0.35			Compressor Motor Overheating
	1530	2835	-14.11	-14.48	0.37			
	1540	2845	-14.11	-14.48	0.37			
	0001	7863	-14.12	-14.43	0.31			
	1622	2887	-14.14	-14.38	0.24			
	1001	2030	-14.13	-14.36	0.23			
	1642	2907	-14.15	-14.35	0.20			
	1703	2928	-14.16	-14.3	0.14			
	1/16	2941	-14.17	-14.25	0.08			
	1758	1767	-14.1/	14.23	0.06			
	00/1	2303	-14.18	-14.23	0.05			

		180	135	30		
			L	က		
0.05	0.22 0.22	0.22 0.10 0.16	0.00 0.09 0.08 0.03 0.03	0.00 0.03 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0:30
-14.25	-14.41 -14.4	-14.4 -14.29 -14.36 -14.32	-14.26 -14.27 -14.29 -14.27 -14.23	-14.2 -14.23 -14.19	4.24.2 4.24.2 4.24.2 4.42.2 4.42.2 4.42.2 4.43.3 4.54.4 5.54.4 5.54.4 5.55.4 5.55.4 5.56.4 5.66.4 5.	-14.67
-14.18	-14.19 -14.18	-14.18 -14.19 -14.2 -14.2	- 4- - 4- - 4- - 4- - 4- - 4- - 4- - 4-	-14.2 -14.19	14.27 14.27 14.27 14.27 14.27 14.27 14.31 14.31	-14.37
3020	3795 3970	3983 4025 4147 4177	4208 4237 4266 4327 4370 4396	4425 4460 4470	4478 4480 4488 4488 4488 4488 4488 6725 6888 6940 7058 7330	8170
1835	730 1025	Began Skimming 1038 1120 1322 1352	1423 1452 1521 1551 1705 1731	1800 1835 1845	Begin Baildown Test 1853 1854 1855 1855 1859 1900 1901 1903 2023 743 773 1729 820 1103 1155 1353 1510 1713	825
	16-Jul-93				17-Jul-93 18-Jul-93	19-Jul-93

0.29 0.32	0.36 0.37 0.39	0.41 0.45	0.51 0.52 0.40	0.58
-14.66 -14.65	-14.72 -14.72 -14.73	-14.81 -14.83	-14.96 -14.98 -14.87	-15.15 -15.21
-14.37 -14.33	14.36 -14.35 -14.34	-14.4 -14.38	-14.45 -14.46 -14.47	-14.57
8490 8860	9483 9783 10163	10927 11385	12382 12762 13065	13866 14245
1345 1955	618 1118 1738	622 1400	637 1257 1800	721 1340 1737
	20-Jul-93	21-Jul-93	22-Jul-93	23-Jul-93

GALENA AFS HYDROCARBON RECOVERY TESTING 05-RW-2

	Comments																														
																	5	120		-		195	06		75	09	*				
	Pump	,															ő	-				-	Ø		0	-					
	ď						- \$											- 7.0													
	rod. Th	0.17	0.16	0.15	0.17	0.15	0.16	0.15	0.17	0.17	0.10	0.70	0.18	0.16	0.16	0.16		0.17	0.15	0.12	0.0	0.00	0.05	0.05	0.05	0.05		0.04	0.00	0.03	
	Nater Ht. F	-13.65 0.17	-13.76	-13.75	-13.75	-13.73	-13.8	-13.77	-13.8	-13.79	-13.72	13.78	-13.84	-13.82	-13.83	-13.82		-13.95	-13.93	-13.91	-13.89	-13.8	₹	┰	-13.83	~		-13.92	-13.89	-13.88	
	Prod. Ht.	-13.48	-13.6	-13.6	-13.58	-13.58	-13.64	-13.62	-13.63	-13.62	-13.62	13.02	-13.66	-13.66	-13.67	-13.66		-13.78	-13.78	-13.79	-13.8	-13.8	-13.81	-13.81	-13.81	-13.81		-13.88	-13.89	-13.85	
	(Baseline)		1005	1312	1440	1505	2400	2467	2550	2750	2890	C967	3795	3970	4113	4230		7100	7115	7140	7170	7205	7250	7301	7325	7345		8166	8495	8855	
y Well 2	Time (E		006	1407	1615	1720	815	922	1045	1405	1625	000	730	1025	1248	1445	ing	1435	1450	1515	1545	1620	1705	1756	1820	1840	2/8	821	1350	1950	
Site 5 Recovery Well 2	Date	13-Jul-93	14-Jul-93				15-Jul-93				- An		16-Jul-93				Begin Skimming	18-Jul-93									Regan Baildown	19-Jul-93			

	Comments											
	Ch. Pump	03	0.04			0.02	75)5	0.01	 33		33
	Vater Ht. Prod. Th. Pump	-13.91 0.	-13.92 0.	-13.88 0.0	-13.94 0.0		-14.03 0.0		-14.03 0.0	-14.15 0.(-14.18 0.01	-14.22 0.0
	Time (Baseline) Prod. Ht. Wat	-13.88	-13.88	-13.87	-13.91	-13.93	-13.99	-14.01	-14.02	-14.12	-14.17	-14.19
	(Baseline)	9480	9280	10160	10925	11382	12380	12760	13060	13863	14234	14479
ary Well 2	Time (615	1115	1735	620	1357	635	1255	1755	718	1329	1734
Site 5 Recovery Well 2	Date	20-Jul-93			21-Jul-93		22-Jul-93			23-Jul-93		

GALENA AFS HYDROCARBON RECOVERY TESTING 05-MW-04

	Comments												•															
	Pump								····•									-										
	ater Ht. Prod. Th.	0.58			0.00			0.0		0.01		0	5	0.05	0.00	0.00	0.01		0.00	0.00				0.00			0	0.00
	Water Ht.	-14		-13.5	-13.5	-13.5	-13.5	- 13.5	-13.5	-13.51	-13.51 -13.5	13.5	9	-13.59	-13.58	-13.59	-13.60	-13.60	-13.66	-13.67	-13.63	-13.66	-13.67	-13.98	-14 70	-13.71	-13.79	-13.81 -13.81
	Prod, Ht.	31.		-13.5	-13.5	-13.5		-13.5	1	-13.5	-13.5	-13 49	2	-13.57	-13.58	-13.59	-13.59		-13.66	-13.67				-13.98			3	-13.81
	(Baseline)			2806	2807	2808	5810	5813	5816	5824	5830 5840	5926	3	6833	6895	2002	7265	7340	8180	8475	8875	9490	9788	10170	10935	11374	12390	12/66
ng Well 4		99	Ę	1701	1702	1703	1705	1708	1711	1719	1725	1901	2	1014	1110	1358	1720	1835	835	1330	2010	625	1123	1745	630	1349	645	1301 1803
Site 5 Monitoring Well 4	Date	17-Jul-93	Begin Baildown							3-				18-Jul-93					19-Jul-93			20-Jul-93			21 - 111-93	2	22-Jul-93	ē

	Comments			
	E E			
	පි			
	h. Pump			
	Pu			
	Th.			
	. Prod. Th			
	±.	9	95	66
	Vater Ht	-13.	-13.95	-13.99
	Wa	•		•
	ij			
	Prod, Ht			
		69	25	75
	(Baseline)	13869	14225	14475
	(Bas			
1 4		724	1320	1730
3 We	Time	·	-	-
orin				
lonit	O	_ 93		
Site 5 Monitoring Well	Date	23-Jul-93		
Site		23		

GALENA AFS HYDROCARBON RECOVERY TESTING 05-MW-10

Baildown Test: 05-MW-10

Date	Time	Elapsed Time (min)	Product Level (feet)	Water Level (feet)	Product Thickness (feet)
09/18/92	14:30	0	19.04	20.47	1.43
09/18/92	14:53	23	19.34	19.37	0.03
09/18/92	14:55	25	19.34	19.39	
09/18/92	14:57	28	19.34	19.39	
09/18/92	15:00	30	19.34	19.39	
09/18/92	15:04	35	19.33	19.41	
09/18/92	15:09	40	19.33	19.43	0.1
09/18/92	15:15	45	19.33	19.43	
09/18/92	15:20	50	19.33	19.45	
09/18/92	15:24	55	19.33	19.46	
09/18/92	15:29	60	19.32	19.46	
09/18/92	15:35	65	19.33	19.47	
09/18/92	15:45	75	19.33	19.49	
09/18/92	15:54	85	19.32	19.49	
09/18/92	16:05	95	19.32	19.5	
09/18/92	16:14	105	19.32	19.5	`
09/18/92	16:30	120	19.32	19.51	
09/18/92	16:45	135	19.32	19.52	0.2
09/18/92	16:59	150	19.32	19.53	
. 09/18/92	17:15	165	19.32	19.53	
09/18/92	17:30	180	19.32	19.53	
09/19/92	08:30	1080	19.39	19.7	0.31
09/19/92	09:29	1140	19.39	19.73	
09/19/92	10:30	1200	19.41	19.72	
09/19/92	12:29	1320	19.41	19.75	
09/19/92	14:30	1440	19.43	19.72	
09/19/92	16:30	1560	19.42	19.78	
09/20/92	13:30	2820	19.52	19.93	0.41
09/20/92	17:55	3085	19.56	19.92	

	Comments																															
	Prod. Th. Pump	1.16	1.10	1.11	1.10	1.10	7.) +	- 6		1.09	1.07	1.10	1.19	1.08	1.10	0.92		0.00	0.03	90:0	0.13	0.15	0.25	0.33	0.39	0.46	0.50	0.53	0.55	09.0	0.59
	Water Ht.	-16.79	-16.75		-16.71	-16.72	16.8	-16 78	- 16.86			·	-16.81	-16.88	-16.78	-16.78	-16.17		-15.41	-15.44	-15.47	-15.53	-15.56	-15.64	-15.71	-15.77	-15.83	-15.88	-15.9	-15.91	-15.95	-15.94
	Prod. Ht.				_	-15.62	-15.67						-15.71	-15.69			-15.25											-15.38			-15.35	-15.35
1 10	(Baseline)		Ì			1510	2400						3795	3970		4235	5750		5886	5887.5	2888	2889	2890	5892.5	5894.5	2896	2899	5901	5905	5908.5	5911	5914
oring We	Time	900	1403	1535	1611	1725	815		1045	1405	1625	1800	730	1025	1250	1450	1605	lown	1821	1823	1823	1824	1825	1828	1830	1831	1834	1836	1840	1844	1846	1849
Site 5 Monitoring Well 10	Date	14-Jul-93				w	 15-Jul-93						 16-Jul-93				17-Jul-93	Begin Baildown)		****											

	nts											ì																					
	Th. Pump Comments		0.56	0.90		00.00	00:00	0.00	0.01	0.00	0.01	0.00	0.00	-01	0.01	04	0.02	05	60.0	60	60	0.16	17	18	16	20	36	0.33	0.50	0.77	0.79	0.80	
	Water Ht. Prod. Th.		-15.9	-16.22				-15.51 0.												-15.6	-15.61	-15.67	-15.69	-15.7	-15.68	-15.69	-15.85	-15.79	-15.94	-16.14	-16.15	-16.16	-16.18
	Prod. Hi	17 -15.34	20 -15.34	35 -15.32		30 -15.51	ī	Ī	1	ī	<u>T</u>	<u></u>	-15.51	-15.51	1	ī	Ī	T	<u></u>	T	ī	94 -15.51	T	ī	Ī	<u> </u>	ī	ī	T	T	T	T	<u> </u>
ing Well 10	Time (Baseline)		1855 5920	830 6735	own	915 6780		9		9		9	919 6784	919.5 6784.5								929 6794								1058 6883		1504 7129	
Site 5 Monitoring Well 10	Date			18-Jul-93	Repeat Baildown			-																				•					

	2,000	21112																										
	7																											
													9#	90	135		165	135	165	135		150	165					
	g.	2							-				O	-	-		-	1.5	1.5	.5		1.5	5.					
	Prod Th	0.85	0.94	0.87	0.85	0.95	0.94	0.87	0.86	1.01	1.03	1.00	-	1.00		0.31		0.70	0.25	0.41	0.01	0.60	0.11	0.11	0.32		0.11	0.15
	Water Ht P		-16.37	-16.29	-16.27	-16.37	- 16.35	-16.32	-16.32	-16.52	-16.56	- 16.53		-16.53		-15.99		-16.32	-15.95	-16.09	-15.73	-16.33	-15.95	-15.93	-16.13	-15.89	-16	-16.04
	Prod H	-15.42	-15.43	-15.42	-15.42	-15.42	19.4	-15.45	-15.46	-15.51	-15.53	-15.53		-15.53		-15.68		-15.62	-15.7	-15.68	-15.72	-15.73	-15.84	-15.82	-15.81		-15.89	-15.89
110	(Baseline)	8172	8455	8865	9485	9785	200	10931	1138/	12385	12530	12560		12575	12600	12750	12770	12835	12890	12955	13085	13935	13995	14070	14250	14345	14420	14485
ring We	Time	1	1310	2000	620	1120	5	626	1402	640	905	935	guir	950	1015	1245	1305	1410	1505	1610	1820	830	930	1045	1345	1520	1635	1740
Site 5 Monitoring Well 10	Date	19-Jul-93			20-Jul-93			21-Jul-93		22-Jul-93			Begin Skimming									23-Jul-93						
S		-			ŭ			Ö		ñ			ш	·								23						

GALENA AFS HYDROCARBON RECOVERY TESTING 09-MW-08

Well ID: 09-MW-08	Time (Baseline)	45		955 5380	1020 5405	ιĊ		ß		1037.5 5422.5		Ŋ		1039.5 5424.5		1040.5 5425.5		ù				1045 5430												1102 5447
	Prod. Ht.	0 18.68		-18.69	1 1	1	İ	Ì	Ì	i	Ì	Ì	Ì	Ì	Ì	Ì	Ì	`i 	`ı —	ì	i 	Ì	Ī	Ī	ì	ì	ï	ī	ī	ī	T	ī	-	7 -18.45
	Water Ht. P	11		- 19.68	18.43	18 49	-18.48	-18.62	-18.47	-18.46	-18.47	-18.47	-18.62	-18.64	-18.63	-18.64	-18.63	-18.64	-18.64	-18.46	-18.48	-18.63	-18.44	-18.45	-18.62	-18.62	-18.62	-18.63	-18.64	-18.63	-18.64	- 18.63	-18.64	-18.64
	Prod. Th.	1.00		0.99	0.02		0.03	0.18	0.05	0.01	0.03	0.05	0.17	0.19	0.18	0.20	0.19	0.21	0.20	0.01	0.04	0.18	0.01	0.01	0.17	0.18	0.17	0.18	0.19	0.18	0.19	0.17	0.20	0.19
	Pump																																	
	Comment				· · · · · · ·															*****	4vi=4													
	nert																																	
																•																		

	Commont																															
	Pi mp		0.23		01	01		01							22	90	1	80)5		2/2	90	2/	8(2	ψ.	2	0	6	<u> </u>	<u> </u>	N ×
	Water Ht Brod Th				-18.48 0.01	-18.47 0.01	-18.47 0.0		-18.46 0.0	-18.47 0.01	-18.46 0.(-18.47 0.0			-18.46 0.0	-18.55 0.08				-18.52 0.06	-18.54 0.07			-18.79 0.26			-18.81 0.29	18 95 03	10.30 0.30	
		3.45	-18.42		-18.47	-18.46	-18.46	-18.46	-18.45	-18.46	-18.45	-18.46	-18.45	-18.46	-18.45		-18.45	-18.47	-18.46	-18.46	-18.47	-18.46	-18.47	-18.46	-18.41	-18.53	-18.53	-18.52	-18.52	-18 59	1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 16.5/ 18.5
	(Baseline)	5449	5611		5618.5	5619	5619.5	5620	5621	5622	5623	5624	5625	5630	2639	5641.5	5644	5646	2650	5653	2657	5661	5995	2220	2882	8299	6904	7070	7280	8186	8580	8845
1W-08	Time	1104	1346	C _A	1353.5	1354	1354.5	1355	1356	1357	1358	1359	1400	1405	1414	1416.5	1419	1421	1425	1428	1432	1436	1440	1625	2000	733	1119	1405	1735	841	1515	1940
Well ID: 09-MW-08	Date			Retry Baildown				,									2		W3.5.							18-Jul-93		•		19-Jul-93)))	

Well ID: 09-MW-08	1W-08						
Date	Time	(Baseline) Prod. Ht. Water Ht. Prod. Th. Pump	Prod. Ht. V	Vater Ht. P	rod. Th.	Pump	Comment
20-Jul-93	605	9470	-18.57	-18.95	0.38		
	1105	9770	-18.57	-18.93	0.36		
	1730	10155	-18.52	-18.94	0.45		*
21-Jul-93	615	10920	-18.63	-19.07	0.44		
	1349	11374	-18.6	-19.06	0.46		
22-Jul-93	625	12370	-18.72	-19.24	0.52		
	1311	12776	-18.73	-19.43	0.70		
	1812	13077	-18.71	-19.24	0.53		
-	ì	L	0	9	i i		
23-Jul-93	010	13855	- 18.85	-19.43	0.58		
	1315	14220	-18.9	-19.45	0.55		
	1725	14470	-18.93	-19.5	0.57		

Results of Analysis for Free Product from the POL Tank Farm

RADIAN

MEMORANDUM

TO:

Mike McGhee, AFCEE/ESR

FROM:

Mike Green

DATE:

May 31, 1994

COPY:

Wes Lannen, 11CEOS/CEVR

SUBJECT: Galena Airport - Analysis of Recovered Hydrocarbons

Please find the attached table of analytical results for a liquid sample collected from a drum of free-phase product which is currently being stored in the current Waste Accumulation Area (Bldg. 1488) at Galena Airport. This sample was collected and analyzed according to the instructions of Wes Lannen. The waste drum contains fluids recovered during baildown and skimming tests conducted during July, 1993 and April, 1994. The analyte list was selected by the 11CEOS.

|--|

nalyte	TCLP Limit	Concentra	ation/dl
TCLP VOC's (mg/L)			
Benzene	0.5	2260	(164)
Carbon tetrachloride	0.5	ND	(362)
Chlorobenzene	100.0	ND	(252)
Chloroform	6.0	ND ND	(150)
1,2-Dichloroethane	0.5	ND	(355)
1,1-Dichloroethene	0.7	ND	(480)
Methyl ethyl ketone	200.0	690	(690)
Tetrachloroethene	0.7	ND	(365)
Trichloroethene	0.5	ND	(390)
Vinyl chloride	0.2	ND	(308)
TCLP SVOC's (mg/L)*			
1,4-Dichlorobenzene	7.5	ND X	(707)
2,4-Dinitrotoluene	0.13	ND X	(769)
Hexachlorobenzene	0.13	ND X	(528)
Hexachlorobutadiene	0.5	ND X	(657)
Hexachloroethane	3.0	ND X	(1000)
4-Methylphenol/3-Methylphen	200.0	ND X	(1240)
2-Methylphenol	200.0	ND X	(790)
Nitrobenzene	2.0	ND X	(389)
Pentachlorophenol	100.0	ND X	(192)
Pyridine	5.0	ND X	(1800)
2,4,5-Trichlorophenol	400.0	ND X	(586)
2,4,6-Trichlorophenol	2.0	ND X	(485)
TCLP Metals (mg/kg)			
Arsenic, SW6010	5.0	0.2	
Barium, SW6010	100.0	0.00649	
Cadmium, SW6010	1.0	<0.0171	
Chromium, SW6010	5.0	<0.0162	
Lead, SW6010	5.0	4.93	
Silver, SW6010	5.0	<0.0109	
Selenium, SW7740	1.0	0.466	
Mercury, SW7471	0.2	0.099	
Total Chlorine (mg/kg)	-	ND	(1320)
Ignitability (deg. F) XAnalyzed at lowest dilution possible	<u> </u>	76.0	•

X--Analyzed at lowest dilution possible due to sample matrix effects.

^{*--} Reported in mg/kg and converted to mg/L.

APPENDIX G

Geophysics and Soil Gas Reports

Geophysics Report

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1-1
2.0	INVESTIGATION BACKGROUND AND METHODOLOGY 2.1 Ground Penetrating Radar	2-1
3.0	RESULTS OF THE INVESTIGATION 3.1 Ambient Site	3-10 3-20
4.0	CONCLUSIONS	4-1
5.0	RECOMMENDATIONS	5-1

LIST OF FIGURES

	Page
1-1	Locations of Geophysical Surveys 1-2
3-1	Outline of EM Grid and Location GPR Lines at the Ambient Site 3-3
3-2	Conductivity Contour Map of the Ambient Site 3-4
3-3	In-Phase Contour Map of the Ambient Site
3-4	GPR Line BASE3 Showing Crossing of EM Anomaly 3-6
3-5	GPR Lines Showing Permafrost
3-6	Contour Map of Interpreted Top of Permafrost 3-8
3-7	GPR Lines Showing Radar Anomalies
3-8	Data Grid for EM and GPR Survey at the FTA
3-9	Contour Map of Quadrature Phase EM Data, Vertical Dipole Orientation
3-10	Contour Map of In-Phase EM Data, Vertical Dipole Orientation
3-11	Contour Map of Quadrature Phase EM Data, Horizontal Dipole Orientation
3-12	Contour Map of the In-Phase EM Data, Horizontal Dipole Orientation
3-13	GPR Lines Showing Channel Feature
3-14	Contour Map of the Depth of the Channel
3-15	GPR Lines Showing Potential Permafrost
3-16	Location of Potential Permafrost Anomalies
3-17	Outline of the EM Grid and Location of GPR Lines at the Alternate Landfill

LIST OF FIGURES

		Page
3-18	Contour Map of Quadrature EM Data Showing Locations of Anomalies	. 3-25
3-19	Contour Map of In-Phase EM Data Showing Locations of Isolated Anomalies	. 3-26
3-20	GPR Lines Showing Depth of Alternate Landfill	. 3-27
3-21	Outline of the EM Grid and Locations of the GPR Lines at the Southwest Landfill	. 3-29
3-22	Conductivity Contour Map of the Southwest Landfill	. 3-31
3-23	In-Phase Contour Map of the Southwest Landfill	. 3-32
3-24	GPR Lines WLFAS2, WLFAS3, and WLFAS4 Showing Disrupted Bedding	. 3-33
3-25	Enlarged Area from Figure 3-21 Showing GPR Anomalies	3-34
3-26	GPR Line WLFAS5 Showing Isolated Anomaly and Disrupted Bedding	. 3-36
3-27	GPR Line WLFNW1 Over Anomalous Zone on the EM Data	. 3-37
3-28	GPR Lines WLFAS5b Showing EM Anomaly in Area 4	3-38
3-29	Enlarged Area from Figure 3-21 Showing GPR Anomalies	3-39
3-30	GPR Lines WLFNE1 and WLFNE4 Showing Trench	3-40
3-31	GPR Line WLFNE5 Showing Broken Reflectors Which Correspond to the EM Anomaly	3-42

1.0 Introduction

Geophysical surveys utilizing both ground penetrating radar (GPR) and induction electromagnetic methods (EM) were performed at four sites at the Galena Air Force Station between 25-July 1993 and 9-August 1993. These surveys were carried out to address two objectives. First, GPR and EM were utilized at the Fire Training Area (FTA) and the Ambient Site to determine the depth to permafrost. Second, EM and GPR data were used to identify potential buried hazards at two sites identified as areas of waste disposal, the Southwest Landfill and the Alternate Landfill. The data from all sites were analyzed in the field and used to guide subsequent soil gas/groundwater field screening sample collection.

The FTA is located north of the east end of the runway inside of the perimeter dike and has been used to train fire fighters. The Ambient Site is located due east of the FTA in a baseball park used for the Galena community. This area was investigated to establish background as the area has not been used for base operations. The Alternate Landfill Site is located north of the former runway radar tower on the north side of the dike road. This site has served as a landfill for solid waste when access to the active landfill was not possible. Initially it was believed that a small dumping pit was located adjacent to the outer dike road and the Yukon River, southwest of the western end of the runway. This site was designated the Southwest Landfill Area. After discussions with local persons familiar with the Southwest Landfill, it was apparent that the entire area west of the runway may have been used for disposal. Figure 1-1 shows the locations of all four of the sites on a map of the Galena area.

This report discusses the methods and results of the geophysical surveys, and presents recommendations for future action to assist in subsequent field efforts. This document discusses general data collection theory, instrument parameters and field methods for the entire site.

Figure 1-1. Locations of Geophysical Surveys

2.0 Investigation Background and Methodology

Two geophysical instruments were used at the Galena AFS sites. A Sensors and Software, Inc. PulseEkko IV instrument was used for the collection of the GPR data and a Geonics EM-31 terrain conductivity meter was used to collect the conductivity data. Both tools were used at all investigation sites. At the Ambient and FTA Sites, radar data were collected initially, followed by the EM-31 data. At the Alternate Landfill Site and the West Landfill Site, the EM-31 was used first to locate potential anomalies, followed by GPR to determine the boundaries and depths of these anomalies.

2.1 Ground Penetrating Radar

GPR works by transmitting a radar impulse of a selected bandwidth into the ground via a transmitter, and receiving a reflected signal back from objects/strata in the subsurface. The strength of the reflected signal and the delay for its return vary with the electrical properties and depth of the reflectors. These readings are displayed as a graph of signal intensity on a profile with horizontal locations along the X axis and time along the Y axis. The time axis can be converted to depth using approximate velocities of the travel time of the radar wave in the soil. Using several profiles collected across a subsurface feature or anomaly, a contour map of this feature can be created.

The frequency of radar antennae used determine both the resolution of the survey and the depth of penetration. In general, the higher the antenna frequency the shallower the depth of resolution. Three antenna frequencies were available for use at Galena, 50 megahertz (MHz), 100 MHz, and 200 MHz. The antenna were chosen for each site depending on what depth of investigation was desired.

The GPR equipment used at the Galena AFS consisted of several components. The Sensors and Software GPR consists of separate transmitting and receiving antennae which can be moved independently of each other or in tandem. These antennae

are attached to PVC handles, which also carry the transmitter and receiver assembly. These are attached to a control box datalogger and a 12-volt battery which were pulled behind the radar antennae in a small cart.

Having the transmitting and receiving antennae separated allows the system to be "tuned" for various frequencies and depths. For each frequency of antenna, various spacings between the transmitting and receiving antennae can be tried to determine which gives the best resolution.

In the field, the datalogger displays the radar data as they are being collected. The data can be reviewed on a screen during collection in order to verify that the instrument is working properly and that data are being recorded. In addition, the datalogger automatically writes the data to a disk so it can be used for more advanced signal processing at a later date.

Data Display

GPR data are normally displayed with horizontal location along the X axis and time along the Y axis. This time data can be converted to depth if the proper velocities of the propagated wave through the soil are known. The displays presented in this report were generated using proprietary display routines developed for the commercial software MATLAB®. The "depths" are given as two-way travel times to the event in nanoseconds (ns) with an estimation of the true depth in parentheses. An average velocity of .225 feet/ns (two-way travel time) was assumed for the soil velocity at Galena. Using this velocity, each 100 ns in time represents about 11 feet in depth.

Equipment Setup and Methods of Data Collection

Prior to running the actual surveys, several test lines were run at the FTA to determine which antenna frequency would give the best resolution and depth of penetration.

The initial survey lines indicated that the 100 MHz antenna would be sufficient for resolution of the subsurface in the first 15 feet and that the 50 MHz antenna would be used to achieve deeper depths of penetration. A spacing of 5 feet between the 50 MHz antennae and 3 feet between the 100 MHz antenna was determined to give the best resolution for each of the two frequencies used.

Since the target depth at the FTA was the deep permafrost, the 50 MHZ antennae were used. The 50 MHz antennae would allow for the deepest penetration of the radar signal. At the Alternate Landfill and the West Landfill Sites where resolution of shallower features was desired, the 100 megahertz antennae were used to define the lower boundaries of the landfills and the depths to any potential anomalies.

After the proper antenna spacing and trace-to-trace spacing was established, the survey lines were located. The results section describes the locations of the survey lines for each area. The collection of the GPR data was done in the following manner:

- Stretch out a cloth or fiberglass tape along the length of the GPR line to be collected;
- Collect the data by moving the GPR antenna along the tape in 1-foot increments, and
- Move the tape and collect the next line.

At the end of each day, the GPR data were downloaded from the datalogger on to 3.5" computer disks and reviewed for quality of data and potential anomalies.

2.2 Electromagnetic Survey

The EM instrument measures the ground conductivity by inducing a magnetic field into the ground by running an alternating current through the transmitter coil. This magnetic field induces small currents in the earth, which in turn generate a secondary

magnetic field. The electrical instrument receiver records both the primary and secondary magnetic fields, and displays a terrain conductivity based on the ratio of the primary to secondary magnetic fields (Quadrature), or as an absolute reading of the secondary magnetic field (In-phase).

The EM-31 device measures ground conductivity with an effective depth of investigation of 10 to 18 feet. The instrument consists of a fixed-spaced transmitter and receiver located on either end of a 12-foot boom. The instrument is strapped over the shoulder and held at waist height. The electronics of the instrument are located in the middle of the boom and continuously display the data on a digital or analog screen. A datalogger records this data automatically at pre-determined time increments or by manually pushing a button at grid nodes.

Two types of readings can be obtained from the instrument, a quadrature (out-of-phase) reading and an in-phase reading. The quadrature phase reading measures the ground conductivity and is more sensitive to disturbed soil while the in-phase reading is more sensitive to buried metallic objects. Comparison of these readings allows the determination of the source of an anomaly.

In addition to the two types of readings, data can be recorded with the transmitter/receiver dipoles oriented either horizontally or vertically. The vertical position is the normal mode of operation. The instrument can be rotated 90° and put in the horizontal dipole mode with receiving coils oriented in a vertical position. When oriented in the vertical dipole position, the instrument response comes from the entire depth of penetration. For the horizontal dipole configuration, most of the instrument response comes from the first 6 feet of depth. When comparing data taken in both orientations, one can get a relative determination as to the depth of the anomaly. This technique was used at the FTA to determine if shallow permafrost was present.

Data Display

All of the EM data was processed for display in the field. After collection of the EM data, the data points were downloaded from the datalogger and converted to data points on a cartesian grid. Contour maps of the gridded points of both readings were then generated to determine the locations of the potential anomalies. The contour maps presented in the following report are shown in color scale to accentuate the anomalous zones.

Equipment Setup and Methods of Data Collection

Prior to collection of the EM data, the instrument was calibrated and checked following the manufacturers instructions. All calibrations were done near the FTA in the open field between the runway and the north edge of the dike road in an area expected to be free from subsurface metal. No problems were encountered with the initial calibration of the equipment.

EM data for each site were collected at predetermined grid nodes after the establishment of the grid corners. At the FTA, Alternate Landfill Site, and West Landfill Site, the grid nodes were established by stretching out a pre-marked rope along the edges of the grid and collecting the data at the marked nodes. The data at the Ambient Site was collected using pace and compass techniques as a result of obstructions such as the baseball diamond and the tall grass. The data were then fitted to the map based on the known locations of the end of the grid lines.

3.0 Results of the Investigation

The geophysical investigation yielded excellent results for the definition of past waste disposal sites. The combination of the EM and GPR data worked effectively to delineate the size and depth of the waste pits. Unfortunately, the geophysical techniques met with mixed results in determining the location and depth of permafrost. The results of the surveys at each site are presented in the following sections.

3.1 Ambient Site

EM and GPR data were collected at the Ambient Site to help in defining geophysical anomalies that could be the result of shallow permafrost. These data were collected to help in determining the response of permafrost on GPR and EM instruments for interpretation of the FTA data. Permafrost is known to be present at the Ambient Site as several boreholes were abandoned during the 1992 RI field season after encountering shallow permafrost in the area of the baseball field.

Data Grid and Data Collection

Initially, six GPR lines were collected at the Ambient Site to determine if a radar anomaly would result from the presence of shallow permafrost. Since it was known that the permafrost was detected around 10-feet bgl at this site in the past, 100 megahertz antennae were used with the GPR to get better resolution of the shallower features.

In addition to the GPR transects, an irregular grid of approximately 700-feet by 400-feet was used for an EM survey. Grid node spacing was approximately 40-feet by 20-feet. Because of high grass and the man-made obstructions around the baseball field, the lines along which the EM data were collected were determined by compass bearing, and paced distances. A rope marked in 20-foot increments was stretched out on the ground along the same line as radar profile BASE2. This line was used as the northern base line

for subsequent data collection. All transects were taken at 90-degrees to this baseline. After the EM survey was complete, the data were adjusted to fit landmarks on the basemap to the known locations of the ends of the lines. Figure 3-1 shows the location of the EM grid and the GPR lines at the Ambient Site.

Results

Figure 3-2 is a contour map of the ground conductivity data collected at the Ambient site. A linear anomaly can clearly be seen trending northwest from well 04-MW-03. The anomaly seen in the ground conductivity map is also visible in the in-phase map (Figure 3-3), but is not as pronounced. This anomaly crosses GPR line BASE3 from trace 150 to 200 (Figure 3-4). In comparison to the features identified during the GPR survey, the origin of the anomaly is not clear. Based on the in-phase response, it is probable that the middle part of the anomaly may represent a metallic object. A similar anomaly was detected on the west edge of the grid. This anomaly also is likely to represent an isolated piece of buried metallic debris.

A continuous anomaly exhibited on the GPR lines at the Ambient site could be interpreted to represent shallow permafrost. This event is clear on GPR lines BASE1, BASE2, and BASE4 (Figure 3-5) and is represented by the curved surface at about 100 ns (11 feet) on the records. A downward dipping reflector which may be the edge of the permafrost can clearly be seen on lines BASE1 at trace 550 and BASE4 at trace 425. This anomaly is approximately 10-feet to 14-feet deep and extends over the area of where the baseball field is located. Figure 3-6 is a contour map of the top of this anomaly and its approximate limits, where detectible. This area corresponds to the area where numerous holes were drilled and permafrost was encountered during the 1992 field investigation.

Two other distinct anomalous events were also detected with the GPR records. a convex-downward anomaly can be seen on line BASE2 (Figure 3-7) at trace 300 and on

Figure 3-1. Outline of EM Grid and Location GPR Lines at the Ambient Site

Figure 3-2. Conductivity Contour Map of the Ambient Site

Figure 3-3. In-Phase Contour Map of the Ambient Site

Figure 3-4. GPR Line BASE3 Showing Crossing of EM Anomaly

Figure 3-5. GPR Lines Showing Permafrost

Figure 3-6. Contour Map of Interpreted Top of Permafrost

Figure 3-7. GPR Lines Showing Radar Anomalies

BASE1 at trace 325 to 375. These are highlighted on Figure 3-6. It is not known if these anomalies form a continuous event and there origin is unclear.

3.2 Fire Training Area

The geophysical investigation at the FTA was undertaken to determine if continuous permafrost could be detected under the site in order to assess the effect of the permafrost layer on groundwater flow. This information was also intended to be used to identify drilling locations free from permafrost, as permafrost has frequently caused problems during previous drilling operations at Galena AFS. One target of particular interest at the FTA Site was the permafrost layer encountered at approximately 25 feet below ground level (bgl) in well 01-MW-06 and at 80 feet bgl in 01-MW-01.

Data Grid and Data Collection

A 300-foot by 280-foot grid was established at the site and the corners were marked with survey stakes (Figure 3-8). After the four corners of the survey grid were established, two ropes that were marked every 20 feet were laid out north-south along the east and west edges of the grid. Fifteen 300-foot radar lines were collected in the east-west direction and 3 lines were collected in the north-south direction. The GPR data was collected using a fiberglass tape as discussed in section 2. The EM data were collected using the same technique, but with ropes marked at 10-foot intervals.

Quadrature and in-phase data were collected in both the vertical and horizontal dipole orientation at the FTA. The data were collected with the instrument placed on the ground to insure a uniform sampling height and to collect data around the mock airplane which was still at the site. As the mock airplane was elevated above ground, the instrument could be placed under the plane and data could be collected at the established grid nodes beneath the plane.

Figure 3-8. Data Grid for EM and GPR Survey at the FTA

Results

Contour maps of the EM data (Figures 3-9 through 3-12) did not indicate the presence of any detectable trend of shallow permafrost. Figures 3-9 and 3-11 are the quadrature phase (conductivity) contour maps for the vertical and horizontal dipole orientations, respectively. The distinct anomalies located in the center ring of the FTA pit are probably derived from the mock airplane. Two linear anomalies trend from the center of the FTA pit, one due south and the other to the southeast in the direction of well 01-MW-06. The nature of these anomalies is not clearly known, although they may be fuel lines used to spray fuel on the mock plane. Comparison of the vertical and horizontal conductivity contour (Figures 3-10 and 3-12, respectively) indicate that the two linear anomalies probably come from greater than six feet in depth.

The GPR was utilized at the FTA to attempt to detect the permafrost encountered in wells 01-MW-01 and 01-MW-06. A total of fifteen, 300-foot long, east-west lines and three north-south, cross-lines were collected at the site (Refer to Figure 3-8). No continuous permafrost layer was detected on any of the GPR lines. Based on the difference in the dielectric constant of ice and saturated sand (3-4 versus 20-30), permafrost should have been detected on the GPR records, if it were present.

Several factors probably contributed to the inability to detect permafrost. The most likely is that it was not there. The shallow permafrost zones encountered in the previously drilled wells may have melted. Drilling at several areas at the Galena AFS has demonstrated that the "permafrost" encountered during drilling may be isolated lenses of frozen soil, and may not be present from year to year. Based on both the EM and GPR data obtained this summer, there appears to be no continuous permafrost beneath the site which is higher than about 70-feet below ground level (The limit of depth resolution for the radar).

Figure 3-9. Contour Map of Quadrature Phase EM Data,
Vertical Dipole Orientation

Figure 3-10. Contour Map of In-Phase EM Data, Vertical Dipole Orientation

Figure 3-11. Contour Map of Quadrature Phase EM Data, Horizontal Dipole Orientation

Figure 3-12. Contour Map of the In-Phase EM Data, Horizontal Dipole Orientation

Another reason the permafrost may not have been detected is the high conductivity of the groundwater (roughly 1200 ms/m from water samples at the site) which could have interfered with or destroyed the radar signal within the saturated zone. Based on previous drilling logs, the permafrost was encountered below were the depth that the water level was during the GPR survey. Still another problem may have been that radar reflections from the mock airplane obliterated reflections from permafrost. For this particular radar system, the antenna are not shielded from above ground interference and the GPR records will show reflections from above ground metallic objects.

Despite the inability to map any continuous permafrost, the radar survey provided important insight into the site stratigraphy. Figure 3-13 shows GPR lines FTA2, FTA7, and FTA13. These lines show a well developed channel between traces 50 and 150, from the surface to approximately 120 to 150 ns (16 feet bgl). The records also show the hummocky cross-bedded stratigraphy expected from an accretionary complex associated with lateral stream migration. Figure 3-14 is a contour map of the base of the channel, and depicts the interpreted environments of deposition. The north-south trend to the channel and the shallow depth indicate that it probably was a fairly recent tributary or slough which cut across the large point bar on which Galena AFS is constructed.

The detection of this channel feature helps explain why boring logs at different locations at the FTA have been difficult to correlate in the first 20 feet to 25 feet below ground level. This channel may also serve as a potential pathway for contaminant migration during high river stages, and may be affecting the groundwater flow at the site.

Another feature clearly seen on the radar record in Figure 3-13 are the strong reflections from the mock airplane. Mapping of the crest of the structure formed by the air arrivals (signals reflected from above ground features) indicate that they come from the mock airplane. By calculating the velocity of the radar wave in air (.95 ft/ns), any point along these strong reflectors can be calculated to be the distance from the ground location of the corresponding radar trace to the mock airplane.

Figure 3-13. GPR Lines Showing Channel Feature

Figure 3-14. Contour Map of the Depth of the Channel

Three other radar anomalies were detected at the FTA. These were on lines FTA2 and FTACR3 in the southeast corner of the grid. Two anomalies appear on line FTA2 between traces 260 and 280 from 60 to 120 ns (7 to 13 feet bgl), and one on line FTACR3 from trace 260 to 290 between 50 and 200 (6 to 22 feet bgl)ns (Figure 3-15). Figure 3-16 shows the location of these anomalies. These could represent shallow, isolated lenses of frozen soil such as have been encountered elsewhere at Galena AFS.

3.3 Alternate Landfill Site

The EM and GPR surveys were performed at the Alternate Landfill Site to determine areas of buried metallic objects (caches of drums, etc.), and if possible, the areal extent and the depth of the landfill debris. The site is a relatively flat, cleared area approximately 300-feet by 150-feet. Little vegetation is growing over the exposed area. Much of the eastern and northern sides of the site has remnants of drums, metal machinery (mars) pads, and scrap metal debris exposed on the surface. The northeast corner of the site has a natural depression 3 to 4 feet below the rest of the grade. In addition to the EM data, two GPR lines were collected at the site to determine the depth of the landfill.

Data Grid and Data Collection

A 120-foot by 260-foot grid was established in the clearing at the site for collection of the EM data. Data were collected on a 10-foot node spacing at the site. Quadrature and in-phase data were collected in the vertical dipole position only. The corners of the grid were later surveyed and the data were tied into the basemap of the site. The outline of the EM grid and the locations of the GPR lines are shown in Figure 3-17.

Figure 3-15. GPR Lines Showing Potential Permafrost

Figure 3-16. Location of Potential Permafrost Anomalies

Figure 3-17. Outline of the EM Grid and Location of GPR Lines at the Alternate Landfill

Results

The EM and GPR surveys identified several areas which potentially have buried metallic objects. Figures 3-18 and 3-19 are contour maps of the quadrature and inphase data collected at the site. Two main areas of EM anomalies were defined by the surveys, one in the northeast corner of the grid (Area A) and the other across the southeast corner of the grid (Area B, Figure 3-18). These areas appear as the yellow to bluish shaded zones on the contour plots. The in-phase contour plot (Figure 3-19), which is more susceptible to metallic objects, confirms that the areas represent buried metallic objects and are not changes in ground conductivity as a result of disturbed soil. Metallic debris was evident on the surface over much of the ground in Area A and on the east side of Area B. Drums were also visible on the ground north of the north end of GPR line ALTL 2. The survey was successful in locating other metallic objects not visible on the surface. Metallic objects were not noted on the surface in the southern end of Area B, yet the EM detected several anomalies. In addition, several isolated anomalies appear more enhanced on the in-phase plot. These are labeled I1 through I5, and probably represent isolated bodies of buried metallic or metal-bearing objects.

Analysis of the GPR lines collected at the site (Figure 3-20) indicates that the depth of the Alternate Landfill is at approximately 100 ns (8 to 12 feet). The interpreted depth of the landfill is shown in the outlined area in Figure 3-20. Also shown on GPR line ALTL 2 is the interpreted depth of the landfill. The two anomalies on the south end of the line closely correspond to the zones of metallic objects observed on the EM contour plots. The anomaly between traces 100 and 140 does not appear to correspond to any obvious metallic objects and its origin is not clear.

3.4 Southwest Landfill Site

The EM and GPR surveys were performed at the Southwest Landfill Site to determine areas of buried metallic objects (caches of drums, etc.) and, if possible, the areal

Figure 3-18. Contour Map of Quadrature EM Data Showing Locations of Anomalies

Figure 3-19. Contour Map of In-Phase EM Data Showing Locations of Isolated Anomalies

Figure 3-20. GPR Lines Showing Depth of Alternate Landfill

extent and the depth of any landfill debris. After review of aerial photographs and discussions with local base personnel, it was suspected that virtually the entire 8+ acre field west of the runway had been used for waste disposal, and at one time, asphalt manufacturing. It was decided in the field that the EM survey would be the most effective method of investigation and this method was used to cover the entire area of interest. The Southwest Landfill Site which was originally scoped for the EM survey was investigated by brief reconnaissance EM survey. No anomalies were detected and it was decided that a regular grid of data would not be collected at this location.

After a field review of the EM data collected during this survey, several GPR lines were collected to investigate the source and depth of the main anomalies detected using EM. Because of the size of the expanded area of investigation and the difficulty of access for the GPR equipment, it was not feasible to collect a regular grid of GPR data over the entire area.

Data Grid and Data Collection

Initially, a 1120-foot baseline was established along the east edge of the site, and survey markers were placed every 20 feet along the length of this line. Stations were established every 40 feet on the west edge of the site by taking a 90-degree bearing from the original baseline markers. The data were collected on a 20-foot x 20-foot grid by laying out ropes marked in 20-foot increments between the survey markers. Quadrature and inphase data were taken in the vertical dipole position at the site. Several points around the grid were later surveyed to tie the data back to the basemap for the site.

GPR lines collected at the site were referenced to the survey stakes for the EM grid. Figure 3-21 shows the outline of the EM grid and the locations of the GPR lines.

Figure 3-21. Outline of the EM Grid and Locations of the GPR Lines at the Southwest Landfill

Results

The EM-31 survey revealed five distinct anomalies in the ground conductivity readings. Figure 3-22 is a contour of the conductivity data for the site, with each of the separate areas outlined. Unlike the Alternate Landfill, metallic objects were rarely seen exposed on the surface at this site. Two anomalies in the upper part of the site (Area 6) are the result of an old concrete bunker and numerous 24-inch culvert pipes stacked at the end of the field. The anomalous readings are probably a result of rebar in the concrete. No large anomalies were detected in the southern half of the survey area. There is a gradual increase in background conductivity from the 10 to 20 millisiemen/meter (mS/m) range to the 20 to 25 mS/m range about 200 feet north of the southern edge of the site. It could not be determined from this geophysical investigation if this represents a natural fluctuation in the soil, or if this could potentially indicate a groundwater plume.

The in-phase contour map (Figure 3-23) indicates that most of the anomalies are either mostly or partially derived from metallic debris. The anomalies on this map are the same shape as on the conductivity map, but tend to pinpoint the individual areas of metallic waste. One anomaly that appears on the in-phase map (Area 7), but not on the conductivity map (as a result of the different contour interval), probably represents a single metallic object buried just under the surface. As previously stated, there are no major anomalies in the southern part of the site.

A total of 11 GPR profiles were collected. These covered parts of four of the five anomalous areas at the site. Four lines were collected in Area 1. Line WLFAS5 was continued as line WLFAS 5b north to the road. One line was collected across the major anomalies in area 3, and one line was collected across area 4. Both of these lines intersected line WLFAS 5. Five radar lines were collected in Area 5.

Figure 3-24 shows GPR lines WLFAS 2, WLFAS 3, and WLFAS 4, which were collected over the EM anomaly in Area 1 (Figure 3-25). All three lines show the

Figure 3-22. Conductivity Contour Map of the Southwest Landfill

Figure 3-23. In-Phase Contour Map of the Southwest Landfill

Figure 3-24. GPR Lines WLFAS2, WLFAS3, and WLFAS4 Showing Disrupted Bedding

Figure 3-25. Enlarged Area from Figure 3-21 Showing GPR Anomalies

characteristic discontinuous reflectors and hummocky patterns above 100 ns (12 feet bgl)(see outlined areas), indicating disturbed soils or trenches. Reflectors in disturbed bedding generally show a lack of continuity and parabolic shapes resulting from diffractions of the radar wave off of the edge of the event. At the north end of Line WLFAS 3 at approximately 25 ns (6 feet bgl) to trace 140 at 100 ns (12 feet bgl), the reflectors are dipping down to the south. This could indicate the edge of a former trench.

Line WLFAS 5 (Figure 3-26) shows a localized anomaly at trace 30 at 50 ns (6 feet bgl). This anomaly was not detected with the EM and may represent a buried hollow, non-metallic object. Line WLFAS 5 also shows the disrupted bedding from trace 60 to trace 150 at 40 to 90 ns (4 to 10 feet bgl), and is probably indicative of trenches.

Line WLFNW1 runs over the top of the strongest EM anomaly in Area 3. The GPR data (Figure 3-27) indicate one anomalous zone from about trace 60 to trace 90, and strongly distorted reflectors from trace 150 to the end of the line. These distorted reflectors correspond to the areas where the EM data detected the presence of metal.

A strong anomaly is present on line WLFAS 5b at trace 260 and on line WLFNW 2 at trace 60 (Figure 3-28). This point is the approximate intersection of these two lines and corresponds with the EM anomaly in Area 4. The GPR data indicate that the source of this anomaly is just under the surface. Several small anomalies also appear on line WLFNW 2, as indicated by the discontinuous reflectors. These minor anomalies were not detected by the EM survey, and may be natural features in the soil stratigraphy.

The GPR lines collected in area 5 (Figure 3-29) clearly indicate the edges and depth of the pit that create this L-shaped anomaly. Figure 3-30 shows lines WLFNE 1 and WLFNE 4. On line WLFNE 1, a westward sloping reflector can be seen from trace 62, 10 ns (1.5 feet bgl) to trace 80, 80 (9 feet bgl)ns. On line WLFNE4, The same event can be seen sloping from trace 80, 10 ns (1.5 feet bgl), to trace 90, 80 ns (9 feet bgl). This event

Figure 3-26. GPR Line WLFAS5 Showing Isolated Anomaly and Disrupted Bedding

Figure 3-27. GPR Line WLFNW1 Over Anomalous Zone on the EM Data

Figure 3-28. GPR Lines WLFAS5b and WLFNW2 Showing EM Anomaly in Area 4

3-39

Figure 3-30. GPR Lines WLFNE1 and WLFNE4 Showing Trench

slopes back to the surface at trace 140, 80 ns (9 feet bgl) to the end of the line. The regular shape of this feature suggests that it is not a natural soil feature but is rather, a trench.

In Figure 3-31, Line WLFNE 5, the northern leg of the L-shaped anomaly can clearly be seen. Note the broken reflectors between trace 90 and trace 120 from about 40 to 80 ns (4 feet to 9 feet bgl). This zone corresponds to the anomaly detected by the EM survey. The GPR data here indicate that this part of the trench is on the order of 9 feet deep or less.

Figure 3-31. GPR Line WLFNE5 Showing Broken Reflectors Which Correspond to the EM Anomaly

4.0 Conclusions

It is apparent from the comparison of the results at the Ambient Site versus the FTA that shallow permafrost is detectable, and that it is not continuous at the FTA as it is at the Ambient site. The GPR data also provided a detailed depiction of the complex stratigraphy at the FTA, and this stratigraphic model may prove to have some bearing on the contaminant transport during high water periods.

The geophysical surveys at the landfill sites indicated that the combination of EM and ground penetrating radar can provide an effective means for determining the lateral extent and depth of areas of waste burial and proved effective for locating soil borings and wells for more detailed investigation. Comparisons of the results of the geophysical surveys and the field screening methods will be addressed in the Galena RI Report.

5.0 Recommendations

Based on the success of the geophysical surveys at the landfill sites, it is recommended that a combination of EM and GPR surveys be carried out at all potential dumping sites at the Galena AFS prior to other field screening methods and the location of projected soil borings and monitoring wells. This data is useful for identifying areas of subsurface metal and disturbed soil and is also useful for defining subsurface stratigraphy. Because of the high conductivity of the groundwater, it is not recommended that GPR be used to detect permafrost which occurs below groundwater. Seismic refraction surveys might be better suited for this purpose.

Soil Gas Investigation Report

TABLE OF CONTENTS

	Pa	age
1.0	SCOPE OF INVESTIGATION	1-1
	1.1 Site Screening	1-1 1-3
2.0	DATA RESULTS	2-1
	2.1 FT01: Fire Protection Training Area (FTA) 2.2 ST05: North POL Area 2.3 ST05: South POL Area 2.4 ST09: Million Gallon Hill 2.5 ST10 JP-4 Fillstands 2.6 Building 1845 (Existing Vehicle Maintenance Building) 2.7	2-3 2-5 2-7 -10
	LIST OF FIGURES	
	Pa	age
2-1	Concentration contour map of FID detectable organic vapors in soil gas at the Fire Protection Training Area (FT01), Galena Airport, AK	2-2
2-2	Concentration contour map of PID detectable organic vapors in soil gas at the North POL Area (ST05), Galena Airport, AK 2	2-4
2-3	Concentration contour map of PID detectable organic vapors in soil gas at the South POL Area (ST05), Galena Airport, AK	2-6
2-4	Concentration contour map of PID detectable organic vapors in soil gas at Million Gallon Hill (ST09) and the JP-4 Fillstand (ST10), Galena Airport, AK	2-9
2-5	Concentration contour map of PID detectable organic vapors in soil gas at Building 1845, Vehicle Maintenance Building, Galena Airport, AK	-12

1.0 SCOPE OF INVESTIGATION

Several areas of groundwater contamination resulting from the release of fuels and/or chlorinated solvents have been identified at Galena Airport, Alaska. Soil gas investigations were conducted at these sites by Radian Corporation in the summer of 1993 to locate the downgradient extent of groundwater contamination and to aid in the positioning of proposed monitoring wells. This report presents the graphical results of these surveys in the form of concentration contour maps.

1.1 Site Screening

The accompanying soil gas concentration contour maps illustrate the data collected through field screening activities conducted during the 1993 field season at Galena Airport, AK. Field screening was used as a tool to define the downgradient lateral extent of groundwater contamination at the following previously identified sites:

- FT01: Fire Protection Training Area #1 (FTA);
- ST05: North POL Area;
- ST05: South POL Area;
- ST09: Million Gallon Hill; and
- ST10: JP-4 Fillstands (previously referred to as the Proposed Vehicle Maintenance Building).

In addition to these sites, field screening was performed at the area surrounding Building 1845, the existing Vehicle Maintenance Building. The purpose of the screening in this area was to locate the most probable source of the TCE that was detected in the groundwater collected from monitoring well 06-MW-01.

The soil gas screening task was executed in two phases. During the first phase, grid delineation, the field team established a 100-ft square grid across each site using a Leitz Set 4A EDM Total Station with a Sokkia reflecting prism and prepared site maps.

Grid nodes were assigned number/letter designations (e.g. B-3, A-2, G-5, etc.), and marked with surveyor's flags, hubs, or spray paint. Some of the points however, were moved several feet from proposed grid nodes to allow for easier sampling (by minimizing sampling through concrete and asphalt), to avoid building foundation fill material, and to accommodate utility clearances. The final soil gas contour maps show the exact location of all sampling points.

The second phase of site screening consisted of collecting soil gas data using portable photoionization (PID) and flame ionization (FID) detectors. Soil gas samples were initially collected using an Arts Manufacturing and Supply (AMS) soil vapor probe. However, after several occurrences of equipment failure, the AMS equipment was replaced by a new, more robust Geoprobe System, that could withstand the physical demands required to sample soil gas at Galena Airport. The following list describes the method used to collect soil gas data:

- 1. The sampling point was located and identified using base maps and field notes from grid delineation.
- 2. The PID and FID were attached to a section of teflon® tubing, an adapter, and clean drive-tip. A background measurement was recorded to assess the cleanliness of the sampling train prior to sample collection. If measurable organic vapor was detected during the background screening, the tip and adapter were recleaned and attached to new teflon® tubing.
- 3. The tip was attached to the drive tubes and the soil vapor probe was driven to the desired depth (6 to 8 feet below ground level) using a hand operated, electric, rotary hammer drill.
- 4. The teflon® tubing and adapter were lowered through the vapor probe drive tubing, and screwed onto the drive tip.
- 5. Using a jack, the drive tubes were extracted several inches to extend and release the retractable drive tip.

- 6. The PID and FID were attached directly to the teflon® tubing and the instrument's internal pumps were used to draw the soil gas sample through the PID and FID. The maximum peak detected by each instrument was recorded at each sampling location. If the volume of organic vapors present in the soil gas exceeded the upper limits of the analytical equipment or if the flame in the FID was extinguished due to low oxygen concentrations in the soils, the highest recorded value was logged in the field notebook and flagged with a plus sign (+). This was used to indicate that the recorded value may be biased low. All data from the soil gas analysis (time, depth, background air, background tube/tip, PID reading, FID reading, and comments) were recorded in the field logbook.
- 7. After collection of the soil gas sample, the tubing was removed and the drive tubes were extracted from the soil using a hand operated jack.

 Following extraction, the retractable tip and the lead drive tube (if contaminated) was decontaminated.

1.2 Soil Gas Data Analysis

In general, the trends identified from the results of both the PID and FID analysis of the soil vapors were similar. However, the PID results were used to graphically represent the contamination at most sites. FID measurements were less reliable and more sporadic due to frequent flame-outs caused by low oxygen content in the vadose zone. The results of the soil gas surveys were contoured using the Radian contouring software CPS3®. The contours reflect total volatile organic vapors detected by photoionization and were generated using data collected from sampling soil vapor 6 to 8 feet below ground level.

2.0 DATA RESULTS

2.1 FT01: Fire Protection Training Area (FTA)

The soil gas survey at FT01 was performed to determine the downgradient extent of the benzene plume that extended past the southernmost well, 01-MW-01. Soil gas samples were collected at 26 sampling points across the site. Figure 2-1 shows the concentration of organic vapors in soil gas as measured by an FID. As shown in the figure, two areas of hydrocarbon contamination were detected by the FID analysis. The PID instrument did not detect the high level of organic vapor observed in the southern portion of the site. Field notes suggest that the PID may have malfunctioned after exposure to rain water and therefore, this data was not used to generate contours.

The area of contamination in the northern portion of the site corresponds to the soil and groundwater contamination previously identified by soil and groundwater sampling during the 1992 field investigation. The source of the contamination is thought to be the release of fuels within the burn pit during fire protection training exercises. The results of the soil gas survey were used in conjunction with groundwater flow direction calculations to locate a new downgradient monitoring well.

During the soil gas survey a second area of contamination was detected approximately 300 feet south of the burn pit. This area is topographically higher than the burn pit and located hydrologically side/down gradient. The source of the organic contamination is unclear. However, a pipe and valve used for the transfer of fuels was discovered sticking out of the ground when the high grass vegetating the area was mowed in preparation of the soil gas and geophysical surveys. It is possible that during fire protection training exercises, fuel was fed to the burning mock-up within the burn pit via an underground pipe. Spills may have occurred in conjunction with these activities. A monitoring well was installed in the area of observed soil contamination to confirm the

Concentration contour map of FID detectable organic vapors in soil gas at the Fire Protection Training Area (FT01), Galena Airport, AK Figure 2-1

presence or absence of hydrocarbon contamination in groundwater from this newly identified probable source area.

2.2 ST05: North POL Area

The purpose of site screening at the POL North was to define the downgradient extent of BTEX contamination in the groundwater that was originally identified at monitoring well 05-MW-11 during the Stage 3 Remedial Investigation. A grid was established across a 600' by 500' plot surrounding 05-MW-11. Figure 2-2 illustrates the results of the soil gas survey as measured at 39 sampling points.

The low concentration of organic vapors noted in the southeastern portion of the site is related to the contamination in the southern POL and is discussed in Section 2.3. The central area of contamination that extends from the MOGAS and AVGAS valve rack to the southwest reflects soil and groundwater contamination that originated from spill/releases at the valve rack. This corresponds to the groundwater contamination that was observed in monitoring well 05-MW-11 during the 1992 field season. The southwesterly trend in the contaminant plume, as defined by soil gas analysis, correlates well to the observed groundwater flow direction at the site. Based on the results of the soil gas survey and calculated groundwater flow direction, a downgradient monitoring well was installed southwest of the observed plume.

The two areas of elevated organic vapors detected in the northwest portion of the site may be related. These areas correspond to the former location of abandoned fuel tanks and fillstands that were removed prior to the construction of Building 1872. A soil gas sample collected from the area between the two wings of Building 1872 contained no measurable hydrocarbons. However, the sample could have been collected in clean fill material that replaced potentially contaminated soil after excavation and construction.

Concentration contour map of PID detectable organic vapors in soil gas at the North POL Area (ST05), Galena Airport, AK Figure 2-2

Two soil borings were completed and sampled within this area of contamination to confirm and quantify the hydrocarbon content of the soils.

2.3 ST05: South POL Area

Groundwater contamination from the spill/release of fuels in the South POL area was identified by Woodward Clyde Consultants (WCC) and investigated by Radian during the summer of 1992. Free phase floating product (LNAPL) and high levels of dissolved benzene were identified in the downgradient monitoring well at the site. A soil gas survey was conducted across the site to define the downgradient extent of the dissolved hydrocarbon contamination observed in the monitoring wells. Thirty-one soil gas samples were collected and used to create the contour map presented in Figure 2-3.

Three areas of potential contamination can be identified on the soil gas map. They include: 1) the area west of Building 1556, 2) the area north of the Mark Air Building, and 3) the area south of the MOGAS tanks. The source of the organic vapors detected in the area to the west of Building 1556, the Galena Airport Fire Station, is uncertain. A diesel fillstand was located approximately 100 feet west of the sampling point but was removed prior to the installation of the fillstands at site ST10. The low levels of organic compounds detected in the soil gas may be the results of historical spills that occurred at the fillstands.

The isolated area of organic contamination detected north of the Mark Air Services Building is also of uncertain origin. The area occurs in the vicinity of a JP-4 and diesel pipeline that crosses the site. However, there have been no reported releases of fuels from the pipelines in this area.

The large area of hydrocarbon contamination that extends from the POL Tank Farm to the flight service buildings is easily recognized in Figure 2-3. The soil gas results suggest the occurrence of two lobes of contamination indicating multiple source

Concentration contour map of PID detectable organic vapors in soil gas at the South POL Area (ST05), Galena Airport, AK Figure 2-3

areas. The western plume extend below Larry's Flying Service and the Mark Air Express building. The eastern plume occurs in the area east of the Galena Air Service building. Both contaminant plumes exhibit a southerly trend which is consistent with computed groundwater flow directions at the site.

The trends observed in the area of the flight services buildings are similar to the trends defined by the 11th CEOS during their soil gas analysis. Since soil gas samples collected by the 11th CEOS were analyzed for BTEX constituents, the results of their analysis cannot be directly compared to measurements of total organic compounds detectably by photoionization. Therefore, the 11th CEOS data was not included in the soil gas map shown on Figure 2-3. However, the trends defined by both investigations can be compared. The data from the 11th CEOS also indicate the presence of two lobes of contamination that extend in a southerly direction. The two lobes extend below Larry's Flying Service and the area between Mark Air Express and Galena Air Service and combined, cover the same area as the large western plume identified by Radian. This difference in the precise location of the plume is the result of sample placement and sampling density. The information gathered by the 11th CEOS is more tightly clustered around the flight service buildings providing higher resolution and more accurate definition of contaminant extent. The eastern plume that was defined by Radian is not apparent from the 11th CEOS data. No sampling points, however, were installed by the 11th CEOS east of the Galena Air Service building.

Based on the results of the soil gas survey, two monitoring wells were located and installed south of the POL. One well was located in the area south of the main western plume and one was located south of the Galena Air Services building.

2.4 ST09: Million Gallon Hill

Field screening for Million Gallon Hill was conducted to determine the downgradient extent of known hydrocarbon contamination resulting from past spill/releases from UST Nos. 37 and 38. Contamination from petroleum hydrocarbons was detected in soil and groundwater during the 1993 field season, appearing to have originated in the fuel storage facility, with free product detected in 09-MW-08, 09-MW-12, and 06-MW-04. The purpose of defining the downgradient extent was to aid in the placement of monitoring wells outside the contaminant plume.

A grid was established south and east of the fuel storage area, extending south of the CAC hangar. A total of 33 soil gas samples were collected and analyzed using both PID and FID. Many of the proposed sampling locations directly southeast of the large USTs were in deep brush and were inaccessible. Low oxygen levels in the fairly tight soil also prevented the collection of FID data from a majority of the sampling points. Moreover, soil gas samples taken in areas where free product was known to exist contained only slightly elevated hydrocarbon concentrations as detected by the PID. The hydrocarbon contaminant present may be either aging diesel or newer JP-8 which contain very low levels of volatile constituents. This would explain the difficulty experienced detecting soil and groundwater contamination via the soil gas survey.

The data from PID analysis of soil gas was used to generate the western portion of the soil gas map presented in Figure 2-4. In general, the measurable organic vapor from the contamination migrating from Million Gallon Hill was less than 20 ppmv. This was substantially less than the level of contamination observed at other sites. The JP-4 Fillstand Site, for comparison, is shown on the eastern portion of Figure 2-4 and contains up to 283 ppmv organic vapor.

Concentration contour map of PID detectable organic vapors in soil gas at Million Gallon Hill (ST09) and the JP-4 Fillstand (ST10), Galena Airport, AK Figure 2-4

High levels of organic contamination was detected in a small area west of Building 1429, the CAC hangar. The source contaminant at this site contains significantly more volatile constituents than the hydrocarbons responsible for the contamination originating from Million Gallon Hill. This isolated occurrence of high levels of organic vapor could be a result of surface spills on the tarmac area, historic leaks from the CAC UST located in the general area, or the spill/leak of fuels from bowsers or other mobile fuel storage tanks were stored in this area. A soil boring was completed and sampled in this area. Based on the results of the screening activities, a downgradient monitoring well was installed south of the contaminant plume.

2.5 ST10: JP-4 Fillstands (formerly Proposed Vehicle Maintenance Building)

The investigation around the JP-4 fillstands, or Proposed Vehicle Maintenance Building, was directed to find the source and lateral extent of groundwater contamination which was identified during the 1992 field season. Twenty-one soil gas samples were taken throughout the fillstand area and tarmac. The results from PID analysis of the soil gas samples were used to generate the contoured data on the eastern portion of Figure 2-4.

Based on the soil gas results, two soil borings were placed in the fillstand area to document the lateral and vertical extent of the soil contamination. Also using the results of the soil gas survey and groundwater flow calculations, a monitoring well was placed approximately 100 ft. east of the CAC hangar to document the extent of contaminant migration.

2.6 Building 1845 (Existing Vehicle Maintenance Building) Spill Site

The existing Vehicle Maintenance Building Area was targeted for soil gas screening to identify the source of TCE detected in groundwater collected from

06-MW-01 during the 1992 field investigation. It was believed that Building 1845, the Vehicle Maintenance Building, was the most probable source of the TCE. A total of 23 soil gas were sampled and analyzed with PID and FID. The contours shown in Figure 2-5 illustrate the contaminant plumes identified during the survey.

During the survey, a previously unidentified area of concern was discovered near the southwest corner of Building 1700. This building has been used for the maintenance of the airplane refueling trucks. The elevated hydrocarbon readings may be the result of fuel spills or releases associated with maintenance activities that occurred in Building 1700. Preliminary results from soil samples collected from a soil boring placed near the southwest corner of the building indicate that the soils are contaminated with BTEX constituents, probably originating as fuels, and not from the release of chlorinated solvents. Unfortunately, the analytical equipment used in the soil gas survey, PID and FID, were unable to differentiate between the two plumes consisting of TCE and fuel contamination.

The area of contamination that occurs south of Buildings 1845 and 1342 is the result of TCE contamination. Due to limited low density sampling between these two buildings, it is difficult to pinpoint the exact spill/leak location. However, the results do suggest that the upgradient extent of the plume does not extend north of Building 1847. Based on the results of the soil gas survey, a monitoring well was installed north of Building 1847 to document the upgradient extent of contamination.

Concentration contour map of PID detectable organic vapors in soil gas at Building 1845, Vehicle Maintenance Building, Galena Airport, AK Figure 2-5

END

OF DOCUMENT AS RECEIVED BY DTIC