Gassian Process.

(1) Book ground:

Consider a particle in time Laration 7. Set: Eug)

15 L.f of the particle moves η units on a line.

5t. euq) = eu-q). So: $\int_{\gamma_{c}} \eta euq$) = 0.

Penote: $D = \int_{\gamma_{c}} \eta^{2} euq$, $d\eta$, f(x,t): the number of particles at x at time t. Suppose f(0,0) = c.

O Conservation Law: (To find fix.t))

By assumption: We have: $f(x,t+z) = \int_{\mathcal{X}} f(x-\eta,t) \log |A\eta|$ From expansion: $\begin{cases} f(x,t+z) = f(x,t) + \frac{\partial f}{\partial t}z + O(z) \\ f(x-\eta,t) = f(x,t) - \frac{\partial f}{\partial x}\eta + \frac{1}{z}\frac{\partial f}{\partial x^2}\eta^2 + O(\eta^2). \end{cases}$

Ignire infestimal terms. Replace in the equation: $\frac{\partial f}{\partial t} = \frac{D}{2\nu} \frac{\partial^2 f}{\partial x^2} \implies \text{Solve } f(x,t) = \frac{1}{\sqrt{2\nu}} \frac{-x^2/\nu}{2\nu} e^{-x^2/\nu} e^{-x^2/\nu}$

O Entropy:

Actually, the process above has max entropy.

Rmk: More entropy means more randomness!

Consider Moxi = - Six fxcts bog fxct) At. X N fx.

Which defines the entropy of r.v. X.

Suppose E(X) = M. $E(X^2) = \sigma^2$ $G(f) = -\int f_X \log f_X + \lambda \cdot (\int f_X - 1) + \lambda \cdot (\int X f_X - M)$ $+ \lambda \cdot (\int X^2 f_X - \sigma^2)$.

By variation Method: If fo is optimal solution, $H(t) = Gc f_0 + t g_0$ for func. g. Note: $M(0) \ge M(t)$. $\Rightarrow \frac{\partial M}{\partial t}|_{t=0} = 0 \Rightarrow \int_{\mathbb{R}^2} g_{c} - log f_{x} + \widetilde{\lambda}_{i} + \lambda_{k} \times + \lambda_{3} \times^{-}) = 0 \cdot \forall g$ So $log f_{x} = \widetilde{\lambda}_{i} + \lambda_{k} \times + \lambda_{3} \times^{-}$, $f_{x} = e^{\lambda_{3} \times^{-} + \lambda_{k} \times + \lambda_{3}}$. $\widetilde{\lambda}_{i} = \lambda_{i} + 1$ which is $l \cdot f$ has same form in O.

Emk: i) If Xiws take value in 1/4. ignore $E(x^2) = r^2$.

i.e. Riscard "As $\int x^2 f_X - \sigma^2$ ". Then: $f_X = e^{\lambda_2 x + \lambda_1}$ which is exponential Rist.

ii) If XCW & [n.b]. Without moment constraint.

Then fx is h.f of uniform hist.

(2) GANSSIAN VERTORS:

(1) Gaussian 1.v.'s:

Def: $\chi(w) \in \mathcal{K}'$ is standard Gaussian variable if $\chi \sim P_X = \frac{1}{\sqrt{2\pi}} e^{-\chi'/2}$. χ' is Gaussian with $\chi(m, \sigma^2) - \lambda(st)$. if $\chi = \sigma \chi + m$.

ii) by i). (σn) . (mn) are bld. 50: $Snp E |X_n|^2 < \omega$. $\forall 2 \ge 1$. by property of normal list. $\Rightarrow (X_n)$ is n.i. busides $X_n \stackrel{?}{\rightarrow} X$.

@ Vertors:

Def: E is A-lim Enclidean space. < , > is inner product.

Xew) take values in E is called Gaussian vector

if the EE. < u. X > is Gaussian variable.

 $\frac{Pmk: \exists mx \in E. \ 2_x \ 2^{nnd} rntic \ form \ on \ E. \ 5t. \ \forall nt \in E.}{E < u. \ x > = < u. \ mx > . \ Var < u. \ x > = 2 \times cn) \ 30.}$ $5 \sim < u. \ x > \sim N C < u. \ mx > . \ 2 \times cn)$

prop. (Li), is o.n.b of E. Xk = < li, X>. Then:

(Xk), indept (CoveXi, Xk)) is lingmal

i.e. 1x is lingmal form.

Rrk: For ex. \exists unique symmetric endomorphism yx of E. 5t. 2x(n) = < u. $y_x(n) > and$ $y_x(n) = < v$. $y_x(n) > and$ $y_x(n) = < v$.

7hm. For centered Gaussian Vector (i.e mx=0)

- 1) I nonnegative symmetric endomorphim y of E.

 Then: IX Gaussian Vector. St. Yx=Y.
- ii) X is centered Gaussian Vertor. $(\Sigma i)^{A}$ is basis of E, St. Y_{X} is diagram. $Y_{X} \Sigma_{j} = \lambda_{j} \Sigma_{j}$. $I \in j \in A$. Where $\lambda_{i} \geq \lambda_{2} \geq \cdots \lambda_{Y} > 0 = \lambda_{Y+1} \cdots = \lambda_{A} = 0$. Then: $X = \sum_{i=1}^{L} Y_{i} \Sigma_{i} \cdot (Y_{i})^{A}_{i} \text{ indept. Variey:} = \lambda_{i} \cdot I \in i \in Y$ $S_{0} = If \quad X \sim P_{X} \cdot Supp(P_{X}) = Span(\Sigma_{i})^{A}_{i} \cdot \text{ and}$ $P_{X} \ll \text{Lebesgue measure of } E \iff Y = A.$
 - Pf: i) $(\xi_i)^A$ is $\delta_i n.b$ of E. St. Y is diagram. $Y(\xi_i) = \lambda_i \xi_i$. Let Y_i Gaussian variables $Vare Y_i) = \lambda_i$. Let $X = \sum_{i=1}^{A} Y_i \xi_i$.
 - ii) $X = \stackrel{\leftarrow}{\Sigma} Y_i \Sigma_i$. So: $V_{NIC} Y_i) = 0$. $\forall I < i \le A$. $\Rightarrow Y_i = 0.a.s$. $\Rightarrow X = \stackrel{\leftarrow}{\Sigma} Y_i \Sigma_i$. $V_{NIC} Y_i) = \lambda_i$. Supple P_X) = Span $(\Sigma_i)^T$.

 It's easy to check the latter. Since Y_i indept. $P_C = A_i \times Y_i \times b_i$. $|\Sigma_i \times K_i| = T_i P_C = A_i \times Y_i \times b_i$. $\Rightarrow Y < A = P_X \perp M_E$.

- Ref: i) Gamssian space is closed linear space of Lier. 8. P). Contains only Gamssian Variables.
- ii) LE, E) measurable space. A random process

 With values in E. is collection (Xt) et.

 5t. Xt cw) 6 E. It's Gaussian process if:

 Any finite linear combination of CXt) et 15

 Gaussian variable CE = 1R'. E = By: 1.
 - PMK: CLS (Xt)ter is a Gaussian space generally by Gaussian process X. Since L'Ilimit of Xt is Still Gaussian.
 - 7hm. M is centered Gaussian space. (Mi)ieI is collection of linear subspace of M. Then: Mi L Mj. i *j \(\exists \)

 scMi). i \(\text{I} \). indept.
 - Pf. (\Leftarrow) Indept implies: $\langle X.Y \rangle_{i=1} = \int_{N} XYAP = E(XY) = 0$ (\Rightarrow) Find on.b. $(S_{i}^{i})_{i=1}^{n_{i}}$ for $(M_{ii})_{j=1}^{r_{i}} = (M_{i})_{i \in I}$ $(S_{i}^{i} \cdots S_{n_{i}}^{i}) \cdots (S_{i}^{i}, \cdots S_{n_{i}}^{i})$ indept.
 - Cor. $k \in M$. CLS. For $X \in M$. Then $E(X|T(K)) = P_k X$ pmk: For general $Y.V. X. E(X|T(K)) = P_k(X)$ k is much smaller than L(x).F(x)
 - Cor. for $M_i \subseteq M$. i=1:2. If $E(X_i, X_{-i}) = E(f_k(X_i)) f_k(X_{-i})$ for $\forall X_i \in M_i$. $X_{-i} \in M_i$. Then: $\sigma(M_i)$. $\sigma(M_{-i})$ are conditionally indept given $\sigma(K_i)$.

Pf: For $X_1' \cdots X_{n_i}' \subseteq M_1$. $X_1' \cdots X_m \subseteq M_2$.

Show: $E: I_{SXi} \in A_{i-1}^i \in I_{SXi} \in A_{i-2}^i = J(\sigma(k))$ $= E(I_{B_i} \mid \sigma(k)) \mid E(I_{B_i} \mid \sigma(k)) \mid \cdots \mid f(k)$ Replan (X_i') by $(Z_i^j)_{ij} \cdot o.n.b.$ of $Span(X_i')$ Then use $M \in T$. to obtain $E: E(M_i)$ From condition: $E(Z_i' - ikZ_i') \cdot Z_j' - ikZ_i') = 0$ When $Y = S \cdot i \neq j$. or $Y \neq S \cdot \forall i \neq j$.

Set $Y_i' = Z_i' - ikZ_i'$. Toplace $Z_i' = in(k)$ Note $P_{E}(Z_i') \in S(k)$. So (X_i') bulls!

Thm. I: TxT \rightarrow 1R'. Symmetric. positive type. Then:

there exists prob. Space (1.7.8) and Gamssian

process (Xt)tet. St. Covariance function is I

If: If finite subset 5 of T \rightarrow exists (Xi)ies. for Ilsus

Check the dist satisfies consistency condition.

Then apply kolmogorov Extension Thm.

(4) Ganssian White Noise:

Def: CE.E.) mustace span. M is G-finite measure.

A Gaussian white noise with intensity M is: $G: L^{\dagger}CE.E.M.$) $\xrightarrow{isometry}$ Gaussian span. (mx=0) $EME: For: f.geL^{\dagger}cE.E.M.$. EcG(f)G(g,) $E(G(f).G(g,)) = (f.g) L^{\dagger}cE.E.M.$

In particular, $f = I_A \Rightarrow Demte G(A) = G(I_A)$ V N(0, M(A)). For (Ai) hisjoine, finite measure. (G(Ai)) are indept.

prop. (E, E) measurable span with 6-finite measure M. Then there exists prob. space $(\Lambda, \mathcal{F}, P)$ a Gaussian white noise with intensity M on it.

Pf: (fi) is I is I is I in I of I^2 (I is I in I in I in I in I in I in I is I in I in I in I in I is I is I in I in I in I in I is I is I in I is I in I is I in I

prof. Spren can only contain countable indept v.v.s.

prof. G. Gaussian white noise with M on (E, E). A & E. St.

 $M(A) < \infty$. If $\exists (A_i^i)_{i=1}^{ki}$. It. $A = \sum_{i=1}^{kn} A_i^n$. whose mesh $\rightarrow 0$ i.e. $\lim_{n \to \infty} s_n m(A_i^n) = 0$. Then: $\sum_{i=1}^{kn} G(A_i^n)^n \xrightarrow{L} M(A) \cdot (n \rightarrow \infty)$

Pf: For fix n. $(G(A_i^n))_{i=1}^{kn}$ is inhere. $E(A_i^n) = M(A_i^n)$ Where $E \mid \tilde{\Xi} G(A_i^n) - M(A_i^n) = \tilde{\Xi} V_{MCC} C(A_i^n)^n = 2\tilde{\Xi} M(A_i^n)^n$ follows from $V_{MCC}(X^n) = 28^n$ if $X \sim N(0, 8^n)$.

Phs = $C_{MC}(X^n) = 28^n$ if $X \sim N(0, 8^n)$.

PMK: It provides a way to recover MCA) by

Values of G on atoms of finer partition

of A.