<u>Program Structure and Algorithms</u> <u>Assignment - 4 Parallel Sort</u>

Name: Prathamesh Mahesh Sahasrabuddhe

NUID: 002117703

TASK:

- 1. A cutoff (defaults to, say, 1000) which you will update according to the first argument in the command line when running. It's your job to experiment and come up with a good value for this cutoff. If there are fewer elements to sort than the cutoff, then you should use the system sort instead.
- 2. Recursion depth or the number of available threads. Using this determination, you might decide on an ideal number (t) of separate threads (stick to powers of 2) and arrange for that number of partitions to be parallelized (by preventing recursion after the depth of *lg t* is reached).
- 3. An appropriate combination of these.

CONCLUSION:

We can easily say that four threads would be a good choice and using any thread beyond them would be useless and wastage of resources.

For number of threads(T) and recursion depth(d), we can easily deduce that:

 $T = 2^d$

Or the maximum recursion depth would be

Ig(size of array/cutoff)

At any moment, the depth will not be more than maximum depth as array reaches the cutoff.

EVIDENCE:

Array Size = 20000

			Threads			
cutoff	2		8	16	32	64
10000	68	9	8	9	7	7
20000	19	8	7	8	7	7
30000	13	9	10	9	10	9
40000	14	10	9	9	9	9
50000	11	9	10	9	10	9
60000	10	10	9	9	9	10
70000	13	9	9	9	9	9
80000	14	10	10	9	10	8
90000	13	9	9	9	9	9
100000	9	9	9	8	9	10
110000	10	10	9	9	9	9
120000	9	9	9	10	9	9
130000	9	9	9	9	9	8
140000	9	9	9	8	9	9
150000	10	10	9	10	9	9

Array Size = 40000

			Till Caas			
cutoff	2		8	16	32	64
10000	108	14	15	12	13	13
20000	15	12	11	11	13	11
30000	16	16	14	15	15	15
40000	15	15	14	14	15	15
50000	20	20	20	20	20	20
60000	21	21	19	19	19	20
70000	20	20	19	19	18	19
80000	19	19	19	19	19	19
90000	21	19	20	18	20	19
100000	23	19	18	18	19	19
110000	24	19	19	19	19	19
120000	23	19	19	19	19	19
130000	29	18	19	20	19	20
140000	26	19	20	19	18	18
150000	23	20	19	18	19	20

Array Size = 80000

					_
ς	М	2	ro	h	- 11
١	(1	а	10	ΙI	- 11

			Till Caus			
cutoff	2		8	16	32	64
10000	158	26	24	21	22	23
20000	24	25	20	22	21	21
30000	27	28	23	25	22	23
40000	42	26	22	22	24	23
50000	59	32	28	29	29	28
60000	28	32	29	29	29	31
70000	29	32	29	28	30	29
80000	31	32	29	29	31	28
90000	48	43	40	40	40	40
100000	43	41	41	41	41	41
110000	43	42	42	42	40	39
120000	43	39	40	40	41	41
130000	41	40	44	40	40	40
140000	40	40	41	40	41	41
150000	43	41	40	42	41	40

