Quantifiers – exercises

Peter Rowlett

- 1. Rewrite the following using \forall and \exists .
 - (a) For all the integers x, x is odd or even.
 - (b) There exist two prime numbers such that their sum is prime.
 - (c) There exists a rational number greater than $\sqrt{2}$.
 - (d) If x is a real number, then x^2 is greater than x.
 - (e) For all $n \in \mathbb{N}$ there exists a prime p such that p > n.
- 2. Decide whether the following are true or false. Explain your answers.
 - (a) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ (x^2 = y).$
 - (b) $\forall y \in \mathbb{R} \ \exists x \in \mathbb{R} \ (x^2 = y).$
 - (c) $\forall x \in \mathbb{Z} \exists y \in \mathbb{Z} (x^2 = y)$.
 - (d) $\forall y \in \mathbb{Z} \ \exists x \in \mathbb{Z} \ (x^2 = y).$
 - (e) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ (x+y=0).$
 - (f) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ (x+y=1).$
 - (g) $\forall x \ p \implies \exists x \ p$, where p is some proposition.
 - (h) $\exists x \ p \implies \forall x \ p$, where p is some proposition.
 - (i) $\exists n \in \mathbb{N} \text{ such that } n^2 \leq n$.
- 3. Rewrite the following using \forall and \exists .
 - (a) If a and b are real numbers with $a \neq 0$, then ax + b = 0 has a solution.
 - (b) If a and b are real numbers with $a \neq 0$, then ax + b = 0 has a unique solution.
- 4. Negate the following.
 - (a) There exists a grey cat.
 - (b) For all cats there exists an owner.
 - (c) There exists a grey cat for all owners.
 - (d) Every fire engine is red and and every ambulance is white.
- 5. Negate the following.
 - (a) Some of the students in the class are not here today.
 - (b) Let $x, y, z \in \mathbb{N}$. For all x there exists y such that x = y + z.
 - (c) There exists unique x such that p is true.
 - (d) All mathematics students are hardworking.
 - (e) Only some of the students in the class are here today.
 - (f) The number \sqrt{x} is rational if x is an integer.
- 6. Show the following are true.
 - (a) $\exists N \in \mathbb{N}$ such that $\forall n \geq N, \frac{1}{n} < \frac{25}{37}$.
 - (b) $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $\frac{5n^2+2}{n^2} 5 < \frac{1}{1000}$