

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

VALIDAÇÃO DOS CÁLCULOS E RELATÓRIOS MAC015 - Resistência dos Materias

Júlia Zoffoli Caçador 202365520B

Robert Gonçalves Vieira de Souza 202365505B

Rubia Danielle Viol 202365515B

Link para o Colab da questão 1 Link para o Colab da questão 2 Link para o Colab da questão 3

Juiz de Fora, 2025

Sumário

1	Que	estão 1		
	1.1	Classe Retangulo		
		1.1.1 Atributos		
		1.1.2 Métodos		
	1.2	Função captura_retangulos		
		1.2.1 Funcionamento		
		1.2.2 Parâmetro		
	1.3	Função ordenar_vertices		
		1.3.1 Funcionamento		
	1.4	Função calcula_centroide		
		1.4.1 Funcionamento		
	1.5	Função calcula_momento_inercia		
		1.5.1 Funcionamento		
	1.6	Função plotagem		
		1.6.1 Funcionamento		
	1.7	Menu Interativo		
		1.7.1 Opções		
	1.8	Fluxo do Programa		
	1.9	Exemplo 1		
		Exemplo 2		
		•		
2	Que	estão 2		
	2.1	Utilização do Exercício 1		
	2.2	Refatoração do Exercício 1 da Atividade 2		
		2.2.1 Classe CarregamentoPontual		
		2.2.2 Classe CarregamentoDistribuido		
		2.2.3 Classe Apoio		
		2.2.4 Classe Viga		
	2.3	Função calcular_tensoes		
	2.4	Função calcula_tensoes_manual		
		2.4.1 Funcionamento:		
	2.5	Função calcula_tensoes		
		2.5.1 Funcionamento:		
	2.6	Função menu_tensoes		
	2.7	Exemplo 1		
	2.8	Exemplo 2		
3	Questão 3			
	3.1	Função calcular_j		
	3.2	Função calcular_tensao_cisalhamento_maxima		

3.4	Função main_interativo
	3.4.1 Funcionamento:
3.5	Função main_teste
	3.5.1 Funcionamento:
3.6	Função Menu Interativo
3.7	Exemplos de Execução
	3.7.1 Exemplo 1:
	3.7.2 Exemplo 2:

1 Questão 1

Para essa questão, foi desenvolvido um programa computacional que possa ser utilizado para calcular os momentos de inércia e e produto de inércia em relação aos eixos centroidais de seções transversais compostas por retângulos e visualizar a figura resultante.

1.1 Classe Retangulo

A classe Retangulo representa um retângulo e armazena suas propriedades geométricas.

1.1.1 Atributos

- pontos: Lista de tuplas contendo as coordenadas dos vértices do retângulo no formato (x, y).
- eh_vazamento: Booleano que indica se o retângulo é um "vazamento" (área que deve ser subtraída da figura principal).
- base: Diferença absoluta entre as coordenadas x dos dois primeiros vértices.
- altura: Diferença absoluta entre as coordenadas y dos vértices.
- area: Produto da base pela altura.
- centroide: Centro geométrico do retângulo, calculado pela média das coordenadas dos vértices.
- Ix_ e Iy_: Momentos de inércia do retângulo em relação aos seus próprios eixos centrais.

1.1.2 Métodos

• calcula_centroide_retangulo: Calcula o centroide do retângulo como a média das coordenadas x e y dos vértices. Retorna uma tupla (x_medio, y_medio).

1.2 Função captura_retangulos

Função que coleta os dados dos retângulos fornecidos pelo usuário.

1.2.1 Funcionamento

- 1. Solicita ao usuário o número de retângulos.
- 2. Para cada retângulo, solicita as coordenadas dos 4 vértices no formato x, y.
- 3. Ordena os vértices usando a função **ordenar_vertices** para garantir que o retângulo seja formado corretamente.

4. Cria uma instância da classe Retangulo e a adiciona à lista de retângulos.

1.2.2 Parâmetro

• eh_vazamento: Indica se os retângulos capturados são vazamentos.

1.3 Função ordenar_vertices

Esta função ordena os vértices de um retângulo para garantir que eles estejam na ordem correta para cálculos e plotagem.

1.3.1 Funcionamento

- 1. Ordena os vértices primeiro pela coordenada y (ascendente) e depois pela coordenada x (ascendente).
- 2. Separa os vértices inferiores e superiores.
- 3. Reorganiza os vértices na ordem correta para formar um retângulo.

1.4 Função calcula_centroide

Calcula o centroide da figura composta por múltiplos retângulos.

1.4.1 Funcionamento

- 1. Percorre todos os retângulos.
- 2. Para cada retângulo:
 - Se for um vazamento, subtrai sua área.
 - Se for um retângulo principal, soma sua área.
- 3. Calcula o centroide como a média ponderada dos centroides dos retângulos, usando a área como peso.
- 4. Retorna o centroide como uma tupla (x_centroide, y_centroide).

1.5 Função calcula_momento_inercia

Calcula os momentos de inércia da figura composta em relação aos eixos X e Y.

1.5.1 Funcionamento

- 1. Percorre todos os retângulos.
- 2. Para cada retângulo:
 - Calcula a distância entre o centroide do retângulo e o centroide da figura composta.
 - Usa o teorema dos eixos paralelos para calcular a contribuição do retângulo para os momentos de inércia total.
 - Se for um vazamento, subtrai a contribuição do retângulo.
- 3. Retorna os momentos de inércia totais (*Ix_total*, *Iy_total*).

1.6 Função plotagem

Plota a figura composta pelos retângulos e exibe o centroide e os momentos de inércia.

1.6.1 Funcionamento

- 1. Para cada retângulo:
 - Define a cor de preenchimento (roxo para retângulos principais, branco para vazamentos).
 - Plota o retângulo conectando os vértices.
- 2. Se o centroide for fornecido, plota um marcador no centroide.
- 3. Exibe os valores do centroide e dos momentos de inércia no gráfico.
- 4. Mostra o gráfico usando matplotlib.

1.7 Menu Interativo

O menu permite ao usuário interagir com o programa de forma intuitiva.

1.7.1 Opções

- Adicionar figura principal: Captura retângulos principais e os adiciona à lista. Plota a figura atualizada.
- Adicionar vazamento: Captura retângulos que representam vazamentos e os adiciona à lista. Plota a figura atualizada.
- Finalizar e calcular: Calcula o centroide e os momentos de inércia da figura composta. Exibe os resultados e plota a figura final.

1.8 Fluxo do Programa

- 1. O usuário inicia o programa e escolhe uma opção no menu.
- 2. Se o usuário escolher adicionar retângulos principais ou vazamentos, o programa solicita as coordenadas dos vértices.
- 3. Os retângulos são criados e adicionados à lista.
- 4. O usuário pode visualizar a figura atualizada a cada adição.
- 5. Quando o usuário finaliza, o programa calcula o centroide e os momentos de inércia.
- 6. O programa exibe a figura final com o centroide e os valores dos momentos de inércia.

1.9 Exemplo 1

Figura 1: Estrutura que será analisada.

$$I_x = 6.58(10^4) + 11.58(10^4) = 18.17(10^4) \text{ mm}^4$$

 $I_y = 7.58(10^4) + 2.58(10^4) = 10.17(10^4) \text{ mm}^4$

Figura 2: Resultado do Momento de Inércia retirado do livro HIBBELER, R.C. Estática: Mecânica para Engenharia.

Figura 3: Momento de Inércia calculado considerando uma figura com a combinação de dois retângulos.

 $Figura~4:~{\rm Momento~de~In\'ercia~calculado~considerando~um~retangulo~maior~e~um~vazamento~em~seu~canto~superior~direito}$

Observa-se que o Momento de Inércia foi calculado utilizando dois métodos diferentes:

- 1. Considerando uma figura com a combinação de dois retângulos.
- 2. Considerando uma figura com a combinação de um retângulo maior com um vazamento em seu canto superior direito

Ambos os métodos apresentaram o mesmo resultado.

1.10 Exemplo 2

Figura 1: Estrutura que será analisada e os resultados retirados do pdf "revisão cg + momento de inércia" disponibilizado pela UFPR.

Figura 4: Momento de Inércia calculado pelo programa considerando um retangulo maior com dois vazamentos.

2 Questão 2

Para essa questão, foi desenvolvido um programa computacional que possa ser utilizado para as máximas tensões de tração e de compressão, provocadas pelo momento fletor, em uma seção transversal de uma viga.

Nesta rotina, o usuário pode tanto descrever seções tranversal compostas por retângulos e o valor do momento fletor, quanto descrever a viga e suas cargas (para obter o momento fletor) e a sua seção tranversal.

Durante a execução desta rotina são tilizados os códigos refatorados dos exercícios 1 da Atividade 02 e 1 desta atual atividade.

2.1 Utilização do Exercício 1

Foram utilizadas as funções da primeira questão para o usuário descrever a estrutura da seção transversal e calcular os momentos de inércia, produto de inércia e o centróide, que são utilizados para calcular as tensões.

2.2 Refatoração do Exercício 1 da Atividade 2

Este código foi utilizado para fazer a inserção e cálculos relacionados às vigas e, consequentemente, o cálculo do momento fletor.

O mesmo possui a seguinte estrutura de classes:

2.2.1 Classe CarregamentoPontual

Modela um carregamento pontual na viga.

Atributos:

- fy, fx: Componentes vertical e horizontal da força.
- posicao: Posição do carregamento na viga.

Métodos:

• separaComponentes(): Separa a intensidade da força nas componentes x e y usando a angulação fornecida.

2.2.2 Classe CarregamentoDistribuido

Modela um carregamento distribuído que pode ser: retangular, triangular ou trapezoidal.

Atributos:

- tipo: Tipo de carregamento distribuído.
- w: Lista com os valores de carga inicial e final.
- p: Posições inicial e final do carregamento na viga.
- resultante: Força resultante da carga distribuída.
- centroide: Ponto de aplicação da força resultante.

Métodos:

• funcao_w(): Retorna a função matemática da carga distribuída.

2.2.3 Classe Apoio

Modela os apoios da viga, considerando os três tipos principais.

Atributos:

- letra: Identificação do apoio.
- tipo: Tipo de apoio (1°, 2° ou 3° gênero).
- posição: Posição do apoio na viga.
- fx, fy: Reações horizontais e verticais.

2.2.4 Classe Viga

Classe principal que reúne apoios e carregamentos, resolvendo as reações de apoio e esforços internos.

- lista_apoios, lista_carregamentos_pontuais, lista_carregamentos_distribuidos, lista_carregamentos: Armazenam as informações de apoios e carregamentos aplicados na viga.
- comprimento: Comprimento total da viga.
- solução: Dicionário contendo as soluções das reações de apoio.
- V_vals, M_vals: Armazenam os valores de esforço cortante e momento fletor ao longo da viga.

Métodos:

- gerar_numIncognitas(): Calcula o número de incógnitas baseado nos apoios.
- get_estabilidade(): Verifica a estabilidade da viga (hipoestática, isostática ou hiperestática).
- calcula_reacoes(): Monta as equações de equilíbrio para somatório de forças horizontais, verticais e momento.
- calcular_esforcos_internos(x): Calcula os esforços internos (V e M) em função da posição x na viga.
- calcular_Mx_Vx(): Identifica pontos de transição (início/fim de cargas e apoios) e calcula os valores de V(x) e M(x) ao longo da viga.
- plotar_diagramas(): Plota os diagramas de força cortante e momento fletor.

2.3 Função calcular_tensoes

A função calcular_tensoes é responsável por calcular as tensões máximas de tração e compressão na seção transversal.

• Parâmetros:

- M: Momento fletor (Nm).
- Ix: Momento de inércia da seção transversal (m^4) .
- y_centroide: Posição do centroide em relação à base da seção (m).
- altura_total: Altura total da seção transversal (m).

• Retorno:

- sigma_tracao: Tensão máxima de tração (Pa).
- sigma_compressao: Tensão máxima de compressão (Pa).

A função utiliza as seguintes equações para o cálculo das tensões:

$$\sigma_{\mathrm{tra}\tilde{\mathsf{qao}}} = rac{M \cdot c_{\mathrm{tra}\tilde{\mathsf{qao}}}}{I_r}$$

$$\sigma_{\text{compressão}} = \frac{M \cdot c_{\text{compressão}}}{I_{x}}$$

Onde:

- $c_{\text{tração}} = \text{altura_total} \text{y_centroide}$
- $c_{\text{compressão}} = y_{\text{centroide}}$

2.4 Função calcula_tensoes_manual

Essa função permite o cálculo das tensões utilizando um valor manual do momento fletor. O usuário define a seção transversal através de retângulos e informa o valor de M.

2.4.1 Funcionamento:

- Solicita a definição da seção transversal com retângulos.
- Recebe o valor do momento fletor M.
- Recebe a altura total da seção transversal.
- Calcula o centroide e o momento de inércia da seção.
- Calcula as tensões máximas utilizando a função calcular_tensoes.
- Exibe as tensões máximas de tração e compressão em MPa.

2.5 Função calcula_tensoes

Essa função calcula as tensões para uma viga isostática, onde o momento fletor é obtido automaticamente.

2.5.1 Funcionamento:

- Cria um objeto da classe Viga.
- Verifica o número de incógnitas na viga:
 - Caso seja diferente de 3, a viga é hiperestática ou hipoestática, e o cálculo não é realizado.
 - Caso seja isostática, as reações de apoio são calculadas.
- Solicita a definição da seção transversal com retângulos.
- Calcula o diagrama de momento fletor ao longo da viga.
- Determina o momento fletor máximo (M_{max}) .
- Calcula as tensões máximas utilizando a função calcular_tensoes.
- Exibe o valor de M_{max} e as tensões máximas em MPa.

2.6 Função menu_tensoes

Esta função apresenta o menu inicial para o usuário escolher o tipo de cálculo:

- Opção 1: Cálculo manual do momento fletor.
- Opção 2: Cálculo do momento fletor em uma viga isostática.

Caso uma opção inválida seja escolhida, o menu é exibido novamente.

2.7 Exemplo 1

Este exemplo utiliza a primeira opção de cálculo, no qual é feita a inserção da seção transversal e do momento fletor.

Figura 5: Estrutura que será analisada e os resultados retirados do pdf "mac-015-lista-07.pdf" disponibilizado no Classroom da disciplina.

```
Centroide: 0.04 m, 0.03 m

Momento de Inércia em X: 3.63e-07 m<sup>4</sup>

Momento de Inércia em Y: 9.33e-07 m<sup>4</sup>

Insira o valor do momento fletor (M): 75

Insira a altura total da seção transversal: 0.05

Tensão máxima de tração: 3.61 MPa

Tensão máxima de compressão: 6.71 MPa
```

Figura 6: Resultados obtidos pelo programa (sendo os valores de momento e as tensões máximas).

Figura 7: Gráfico ilustrativo da viga, suas cargas e reações de apoio.

2.8 Exemplo 2

Este exemplo utiliza a segunda opção de cálculo, no qual é feita a inserção da viga e o momento fletor é calculado automaticamente.

11. A viga abaixo está submetida ao carregamento mostrado. Se a=180 mm, determinar a tensão máxima na viga. R: $\sigma=105$ MPa.

Figura 8: Estrutura que será analisada e os resultados retirados do pdf "mac-015-lista-07.pdf" disponibilizado no Classroom da disciplina.

```
RESULTADO:
Carregamento 1:
Fx: 0.00
Fy: 80000.00
Posição: 1.00
Carregamento 2:
Fx: 0.00
Fy: 60000.00
Posição: 3.00
                                          Centroide: 0.09 m, 0.07 m
                                           Momento de Inércia em X: 5.99e-05 m⁴
                                           Momento de Inércia em Y: 3.64e-05 m<sup>4</sup>
Reações nos apoios:
A x: 0.00
                                           Insira a altura total da seção transversal (m): 0.18
A_y: 10000.00
                                           Momento fletor máximo: 59993.33 Nm
B y: 130000.00
                                           Tensão máxima de tração: 105.09 MPa
                                           Tensão máxima de compressão: 75.07 MPa
```

Figura 9: Resultados obtidos pelo programa (sendo desde as reações da viga aos valores de momento e, por fim, as tensões máximas).

Figura 10: Gráfico ilustrativo da viga, suas cargas e reações de apoio.

Figura 11: Gráfico ilustrativo da viga, suas cargas e reações de apoio.

3 Questão 3

Este código foi desenvolvido para realizar cálculos relativos a um eixo submetido a torção, considerando materiais com diferentes módulos de elasticidade. Ele permite calcular a tensão de cisalhamento máxima e o ângulo de torção de cada segmento de um eixo, além do cálculo do ângulo de torção total do eixo.

3.1 Função calcular_j

A função calcular j é responsável por calcular o momento de inércia polar (J) para um segmento do eixo.

• Parâmetros:

- diametro_externo: Diâmetro externo do segmento (m).
- diametro_interno: Diâmetro interno do segmento (m), sendo zero para segmentos sólidos.

• Retorno:

- J: Momento de inércia polar (J) do segmento (m^4) .

A função utiliza as seguintes equações para o cálculo de J:

$$J = \frac{\pi}{2} \cdot \left(\frac{\text{diâmetro externo}}{2}\right)^4$$

para segmentos sólidos, e

$$J = \frac{\pi}{2} \left[\left(\frac{\text{diâmetro externo}}{2} \right)^4 - \left(\frac{\text{diâmetro interno}}{2} \right)^4 \right]$$

para segmentos vazados.

3.2 Função calcular_tensao_cisalhamento_maxima

A função calcular_tensao_cisalhamento_maxima é responsável por calcular a tensão de cisalhamento máxima de um segmento.

• Parâmetros:

- T: Torque aplicado no segmento (Nm).
- diametro_externo: Diâmetro externo do segmento (m).
- diametro_interno: Diâmetro interno do segmento (m), sendo zero para segmentos sólidos.

• Retorno:

- tau max: Tensão máxima de cisalhamento (τ_{max}) (MPa).

A função utiliza a seguinte equação para calcular a tensão de cisalhamento máxima:

$$\tau_{\text{max}} = \frac{T \cdot r}{J}$$
, onde $r = \frac{\text{diâmetro externo}}{2}$.

3.3 Função calcular_angulo_torcao

A função calcular_angulo_torcao é responsável por calcular o ângulo de torção de um segmento.

• Parâmetros:

- segmento: Dicionário contendo os dados do segmento, incluindo o módulo de elasticidade (G), o torque (T), o comprimento (L) e os diâmetros $(d_{\text{interno}} e d_{\text{externo}})$.

• Retorno:

- angulo: Ângulo de torção (θ) (radianos).

A função utiliza a seguinte equação para calcular o ângulo de torção:

$$\theta = \frac{T \cdot L}{G \cdot J},$$

Onde T é o torque, L é o comprimento, G é o módulo de elasticidade e J é o momento de inércia.

3.4 Função main_interativo

Permite a inserção interativa de dados pelo usuário e ao final exibe os resultados.

3.4.1 Funcionamento:

- Exibe um menu com opções de materiais e solicita o número de segmentos.
- Para cada segmento, coleta informações como material, comprimento, diâmetros e torque.
- Realiza os cálculos chamando as funções anteriores e exibe os resultados (tensão de cisalhamento, ângulo de torção de cada segmento e ângulo total do eixo).

3.5 Função main_teste

Testar o código com exemplos pré-definidos no código e ao final exibe os resultados.

3.5.1 Funcionamento:

- Define um conjunto de segmentos com dados específicos.
- Calcula e exibe a tensão de cisalhamento e o ângulo de torção para cada segmento.
- Calcula o ângulo total de torção do eixo.

3.6 Função Menu Interativo

O menu interativo, implementado na função main_interativo, permite que o usuário escolha o material (Alumínio, Latão, Aço e Cobre) e insira os dados para cada segmento do eixo. Após a coleta dos dados, o programa realiza os seguintes passos:

- Calcula a tensão de cisalhamento máxima e o ângulo de torção para cada segmento.
- 2. Exibe os resultados de cada segmento.
- 3. Calcula e exibe o ângulo total de torção do eixo, convertido de radianos para graus.

3.7 Exemplos de Execução

Os resultados das execuções serão apresentados em formato de imagens. A seguir, são exibidos os exemplos de execução:

3.7.1 Exemplo 1:

• Entrada:

- Segmento 1: Alumínio, Comprimento = 0.4 m, Diâmetro Externo = 0.06 m, Diâmetro Interno = 0 m, Torque = 800 N·m.
- **Segmento 2:** Latão, Comprimento = 0.375 m, Diâmetro Externo = 0.06 m, Diâmetro Interno = 0 m, Torque = 1600 N⋅m.
- Segmento 3: Latão (vazado), Comprimento = 0.25 m, Diâmetro Externo
 = 0.06 m, Diâmetro Interno = 0.04 m, Torque = 1600 N⋅m.
- Saída: Resultados individuais de tensão de cisalhamento e ângulo de torção para cada segmento, além do ângulo total de torção do eixo.

Figura 12: Exemplo retirado do arquivo Atividade 3, no qual é composto por uma barra de alumínio ligada a uma barra de latão.

```
"material": "alumínio",
"G": 27e9,
"comprimento": 0.4,
"diametro externo": 0.06,
"diametro interno": 0,
"torque": 800
"material": "latão (cheio)",
"G": 39e9,
"comprimento": 0.375,
"diametro externo": 0.06,
"diametro interno": 0,
"torque": 1600
"material": "latão (vazado)",
"G": 39e9,
"comprimento": 0.25,
"diametro_externo": 0.06,
"diametro interno": 0.04,
"torque": 1600
```

Figura 13: Dados de entrada para resolução do exemplo.

```
Segmento 1 (alumínio):
  Tensão de cisalhamento máxima: 18.86 MPa Ângulo de torção: 0.53371°
Segmento 2 (latão (cheio)):
  Tensão de cisalhamento máxima: 37.73 MPa Ângulo de torção: 0.69279°
Segmento 3 (latão (vazado)):
  Tensão de cisalhamento máxima: 47.01 MPa Ângulo de torção: 0.57555°

Ângulo de torção total do eixo: 1.80205°
```

Figura 14: Resultados obtidos (Tensão de cisalhamento maximo, Ângulo de torção e Ângulo de torção total do eixo).

3.7.2 Exemplo 2:

• Entrada:

- **Segmento 1:** Aço (AB), Comprimento = 0.4 m, Diâmetro Externo = 0.03 m, Diâmetro Interno = 0 m, Torque = 250 N·m.
- **Segmento 2:** Aço (BC), Comprimento = 0.2 m, Diâmetro Externo = 0.06 m, Diâmetro Interno = 0 m, Torque = 2250 N·m.

- **Segmento 3:** Aço (CD), Comprimento = 0.6 m, Diâmetro Externo = 0.06 m, Diâmetro Interno = 0.044 m, Torque = 2250 N·m.N·m.
- Saída: Resultados individuais de tensão de cisalhamento e ângulo de torção para cada segmento, além do ângulo total de torção do eixo.

Figura 15: Exemplo retirado das Notas de Aula - Parte III.

```
"material": "aço (AB)",
"G": 77e9,
"comprimento": 0.4,
"diametro externo": 0.030,
"diametro interno": 0,
"torque": 250
"material": "aço (BC)",
"G": 77e9,
"comprimento": 0.2,
"diametro externo": 0.060,
"diametro interno": 0,
"torque": 2250
"material": "aço (CD)",
"G": 77e9,
"comprimento": 0.6,
"diametro_externo": 0.060,
"diametro_interno": 0.044,
"torque": 2250
```

Figura 16: Dados de entrada para resolução do exemplo.

```
Segmento 1 (aço (AB)):
  Tensão de cisalhamento máxima: 47.16 Pa Ângulo de torção: 0.93572°
Segmento 2 (aço (BC)):
  Tensão de cisalhamento máxima: 53.05 Pa Ângulo de torção: 0.26317°
Segmento 3 (aço (CD)):
  Tensão de cisalhamento máxima: 74.64 Pa Ângulo de torção: 1.11075°
Ângulo de torção total do eixo: 2.30964°
```

Figura 17: Resultados obtidos (Tensão de cisalhamento maximo, Ângulo de torção e Ângulo de torção total do eixo).