Лема 0.1. Нека $f: \mathbb{N} \to \mathbb{R}^+$ е ненамаляваща функция, а b > 1 е цяло и a, c са положителни реални числа. Ако $T: \mathbb{N} \to [0, \infty]$ удовлетворява неравенствата:

$$T(n) \le a npu n < b$$

 $T(n) \le cT(\lceil n/b \rceil) + f(n),$

mo

$$T \in O\left(n^{\log_b c} + \sum_{j=0}^{\lceil \log_b n \rceil - 1} c^j f(\lceil n/b^{j+1} \rceil)\right).$$

Доказателство. Тъй като c>0 и f(0)>0, то достатъчно е да докажем резултата при $f(0)\geq a$. Да означим с $T':\mathbb{N}^+\to [0,\infty]$ функцията:

$$T'(n) = \max\{T(m) \mid m < n\}.$$

Тогава е ясно, че $T(n) \leq T'(n)$ за всяко $n \in \mathbb{N}$. Поради това е достатъчно да докажем, че T' принадлежи на желания клас. Да забележим, че:

$$T'(n) \le a$$
 sa $n < b$.

Освен това за $k \ge 1$ имаме:

$$\begin{split} T'(b^{k+1}) &= & \max\{T(m) \, | \, m \leq b^{k+1}\} \\ &\leq & \max(\{T(m) \, | \, m < b\} \cup \{T(m) \, | \, b \leq m \leq b^{k+1}\}) \\ &\leq & \max(\{a\} \cup \{cT(\lceil m/b \rceil) + f(m) \, | \, b \leq m \leq b^{k+1}\}) \\ &= & \max(\{a\} \cup \{cT(m) + f(b^{k+1}) \, | \, m \leq b^k\}), \end{split}$$

където използвахме, че от монотонността на $f, f(m) \le f(b^{k+1})$ за $m \le b^{k+1}$, а след това, че $m \le b^{k+1}$, влече, че $m/b \le b^k$, откъдето, понеже b е цяло, то и $\lceil m/b \rceil \le b^k$. Така получаваме, че:

$$T'(b^{k+1}) \le \max(a, cT'(b^k) + f(b^{k+1})).$$

Тъй като $f(0) \ge a$, и f е монотонна, то $f(b^{k+1}) \ge a$, откъдето:

$$T'(b^{k+1}) \le cT'(b^k) + f(b^{k+1}).$$

Сега с индукция по k ще покажем, че:

$$T'(b^k) \le c^k a + \sum_{j=1}^k c^{k-j} f(b^j).$$

За k=0, твърдението следва, от $T'(b^0)=T'(1)\leq a$, защото 1< b. За индуктивната стъпка, нека:

$$T'(b^k) \le c^k a + \sum_{j=1}^k c^{k-j} f(b^j).$$

Тогава:

$$\begin{split} T'(b^{k+1}) & \leq & cT'(b^k) + f(b^{k+1}) \\ & \overset{\text{\tiny H.X.}}{\leq} & c\left(c^k a + \sum_{j=1}^k c^{k-j} f(b^j)\right) + f(b^{k+1}) \\ & = & c^{k+1} a + \sum_{j=1}^k c^{k+1-j} f(b^j) + f(b^{k+1}) \\ & = & c^{k+1} a + \sum_{j=1}^{k+1} c^{k+1-j} f(b^j), \end{split}$$

което искахме да докажем. Накрая, нека $n \in \mathbb{N} \setminus \{0\}$ и нека k е най-малкото естествено число, за което $n \leq b^k$. Тогава $n > b^{k-1}$, защото n > 0. Сега имаме, че:

$$k-1 < \log_b n \le k$$
, toect $\log_b n \le k < \log_b n + 1$.

При $c \ge 1$, това означава, че $c^k \le c^{\log_b n + 1} = c n^{\log_b c}$. Докато при c < 1 имаме, че $c^k \le c^{\log_b n} = n^{\log_b c}$. Така че, $ac^k \le c' n^{\log_b c}$ за някоя константа $c' = \max(ac, a)$. Накрая, тъй като f е растяща и $b^{k-1} < n \le b^k$:

$$f(b^j) = f(b^{k-1}b^{j-k+1}) \le f(\lceil n/b^{j-k+1} \rceil).$$

С това получаваме, че:

$$T(n) \leq T'(b^k) \leq c' n^{\log_b c} + \sum_{j=1}^k c^{k-j} f(b^j)$$

$$\leq c' n^{\log_b c} + \sum_{j=1}^k c^{k-j} f(\lceil n/b^{j-k+1} \rceil)$$

$$= c' n^{\log_b c} + \sum_{j=0}^{k-1} c^j f(\lceil n/b^{j+1} \rceil)$$

$$= c' n^{\log_b c} + \sum_{j=0}^{\lceil \log_b n \rceil - 1} c^j f(\lceil n/b^{j+1} \rceil).$$

Това и искахме да докажем.

Следствие 0.1. При условията от предишната лема, ако:

1.
$$f(n) \in O(n^{\alpha})$$
 $c \alpha < \log_b c$, mo $T \in O(n^{\log_b c})$.

2.
$$f(n) \in O(n^{\alpha})$$
 $c \mid \alpha > \log_b c$, mo $T \in O(n^{\alpha})$.

3.
$$f(n) \in \Theta(n^{\log_b c})$$
, mo $T \in O(n^{\log_b c} \log_b n)$.

Доказателство.

Когато $f(n) = n^{\alpha}$ при n > 0 имаме, че:

$$\sum_{j=0}^{\lceil \log_b n \rceil - 1} c^j f(\lceil n/b^{j+1} \rceil) = \sum_{j=0}^{\lceil \log_b n \rceil - 1} c^j (\lceil n/b^{j+1} \rceil)^{\alpha}$$

$$\leq \sum_{j=0}^{\lceil \log_b n \rceil - 1} c^j (n/b^j)^{\alpha},$$

защото когато $n/b^{j+1} \ge 1, \ (n/b^j - n/b^{j+1}) = (b-1)n/b^{j+1} \ge b-1 \ge 1$ съдържа цяло число. Следователно:

$$\sum_{j=0}^{\lceil \log_b n \rceil - 1} c^j f(\lceil n/b^{j+1} \rceil) \leq \sum_{j=0}^{\lceil \log_b n \rceil - 1} c^j (n/b^j)^{\alpha}$$

$$= n^{\alpha} \sum_{j=0}^{\lceil \log_b n \rceil - 1} (c/b^{\alpha})^j$$

$$= \begin{cases} n^{\alpha} \lceil \log_b n \rceil, \text{ axo } c = b^{\alpha} \\ n^{\alpha} \frac{(c/b^{\alpha})^{\lceil \log_b n \rceil} - 1}{c/b^{\alpha} - 1} \end{cases}$$

Сега, ако $f \in \Theta(n^{\log_b c})$, знаем, че $f(n) \le c' n^\alpha$ за някое c' > 0 с $\alpha = \log_b c$, тоест в сила е първия случай, $c = b^\alpha$ и тогава:

$$T \in O(n^{\log_b c} + n^{\log_b c}(\log_b(n+1) + 1)) = O(n^{\log_b c} \log_b(n+1)).$$

Когато $\alpha \neq \log_b c$ имаме, че:

$$\sum_{j=0}^{\lceil \log_b n \rceil - 1} c^j f(\lceil n/b^{j+1} \rceil) \le c' \frac{n^{\log_b c} - n^{\alpha}}{c/b^{\alpha} - 1}.$$

Сега, ако $\alpha < \log_b c$, което се случва, когато $f \in O(n^\alpha)$ с $\alpha < \log_b c$ получаваме, че

$$\sum_{j=0}^{\lceil \log_b n \rceil - 1} c^j f(\lceil n/b^{j+1} \rceil) \le c' \frac{n^{\log_b c} - n^{\alpha}}{c/b^{\alpha} - 1} \in \Theta(n^{\log_b c}).$$

Когато $\alpha > \log_b c$, което се случва, когато $f \in \Omega(n^\alpha)$ с $\alpha > \log_b c$, получаваме:

$$\sum_{j=0}^{\lceil \log_b n \rceil - 1} c^j f(\lceil n/b^{j+1} \rceil) \le c' \frac{n^{\log_b c} - n^{\alpha}}{c/b^{\alpha} - 1} \in \Theta(n^{\alpha}).$$

Като отчетем, че $n^{\log_b c} + n^\alpha \in O(n^{\max(\log_b c, \alpha)}),$ оценките за T следват.