La retta

Definizione:

La retta è il secondo ente geometrico fondamentale della geometria Euclidea ed è quindi un'entità per cui non esiste una vera e propria definizione; tuttavia possiamo pensare a una linea retta come ad un insieme formato da infiniti punti che corrono lungo la stessa direzione, senza un principio né una fine.

Equazione della retta in forma esplicita

L'equazione di una retta in forma esplicita è y = mx+q se la retta non è parallela all'asse delle ordinate mentre è x = k se la retta è parallela all'asse delle ordinate, x e y sono variabili, mentre m, q, k sono coefficienti.

Esempio:

Y = 2x + 3

Significato del coefficiente angolare e dell'intercetta

Coefficiente angolare:

Il **coefficiente angolare** è indicato dalla lettera m ed è costituito dal coefficiente della x nell'equazione della retta. Esso esprime quantitativamente la pendenza della retta, intesa come il rapporto tra la variazione dell'ordinata e la variazione dell'ascissa.

Intercetta:

L'intercetta corrisponde alla lettera q nell'espressione esplicita della equazione, e ha un significato molto semplice: è l'ordinata del punto di intersezione della retta con l'asse delle ordinate.

Rette particolari: orizzontali e verticali

Retta verticale:

Se k = 0, si ottiene x = 0, quindi la retta coincide con l'asse delle ordinate.

Se k > 0 la retta si interseca con il semiasse delle ascisse positive.

Se k < 0 la retta si interseca con il semiasse delle ascisse negative.

Hanno coefficiente angolare pari a 0 (m=0), quindi hanno un equazione in cui y = q, mentre le rette che passano dall'origine hanno l'intercetta q = 0, quindi l'equazione sarà

Y = mx.

Equazioni delle bisettrici dei quadranti

L'equazione della bisettrice del I e III quadrante equivale a x = y

L'equazione della bisettrice del II e IV quadrante equivale a x = -y

Come capire se un punto appartiene ad una retta

Al fine di poter verificare l'appartenenza di un punto ad una retta è necessario che le sue coordinate siano una soluzione dell'equazione della retta. Sia che questa sia in forma esplicita o implicita, sostituendo alle generiche variabili x e y dell'equazione il valore delle coordinate del punto di interesse, l'equivalenza deve essere verificata. Consideriamo quindi un punto P di coordinate xp yp ed una retta di equazione

Come capire se due rette sono parallele o perpendicolari

Due rette sono parallele quando non si intersecano mai e le loro equazioni hanno lo stesso coefficiente angolare.

Due rette perpendicolari sono due rette che nel piano, intersecandosi formano quattro angolo retti.

Due rette sono perpendicolari solo se i coefficienti angolari sono l'uno reciproco dell'opposto dell'altro.

esempio di come trovare algebricamente il punto d'intersezione tra due rette

Calcolare il punto di intersezione delle seguenti rette: 3x +2y-3=0 e 2x+y-2=0.

Mettiamo a sistema le due equazioni:

$$\begin{cases} 3x + 2y - 3 = 0 \\ 2x + y - 2 = 0 \end{cases}$$

in questo caso risolviamo il sistema di equazioni mediante il metodo di sostituzione. La seconda equazione, infatti, può essere espressa in forma esplicita: y=-2x+2. Possiamo sostituire questo valore alla seconda equazione:

$$\begin{cases} 3x + 2(-2x + 2) - 3 = 0 \\ y = -2x + 2 \end{cases} \Rightarrow \begin{cases} 3x - 4x + 4 - 3 = 0 \\ y = -2x + 2 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = -2x + 2 \end{cases}$$

Otteniamo come risultato il valore x=1. Sostituiamo tale valore alla seconda equazione. Otterremo:

$$\begin{cases} x = 1 \\ y = -2(1) + 2 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = 0 \end{cases}$$

Il punto di intersezione A(1,0) è il punto di intersezione delle due rette. Completare l'esercizio, disegnando le due rette e verificando graficamente il punto di intersezione calcolato

Trovare l'equazione di una retta passante per un punto e con coefficiente angolare noto

Calcolare la retta passante per il punto A(1,1) e parallela alla retta -4x+2y-1=0.

Per prima cosa, è necessario rappresentare la retta -4x+2y-1=0 in forma esplicita. Si ottiene y=2x+1/2

Il coefficiente angolare della retta è quindi m=2.

Calcolare l'equazione della retta passante per il punto A(1,1) ed avente coefficiente angolare m=2-Applicare la formula:

$$y - y_A = m(x - x_A)$$

si ottiene:

$$-y-1=2(x-1)$$

$$-y-1=2x-2$$

$$-y=2x-1$$

La retta ottenuta è passante per il punto A(1,1) e parallela alla retta data.

FONTI:

- -YouMath
- -WeSchool
- -MeetTheSkilled