

At B:

1. No longitudinal reaction because roller support is present.

Equilibrium Equations:

i)
$$\xrightarrow{+}$$
 $\Xi F_{n} = 0 \Rightarrow R_{An} = 0$

ii)
$$+\uparrow$$
 $\geq Fy = 0$ \Rightarrow $Ray + RB - 1 = 0$.

(onsider equations ii) and fii)

There are 2 equations but three unknown.

i. Statically indeterminant.

Equilibrium equations: -

1. Body I:
$$+\uparrow \geq Fy = 0 \Rightarrow R_0 \sin 45^* - 900 = 0$$

$$\Rightarrow R_0 = \sqrt{2} 900 \text{ N}.$$

$$\uparrow \Rightarrow \sum F_{N} = 0 \Rightarrow R_0 (0s45^* - R_c = 0)$$

$$\Rightarrow R_c = \sqrt{2} \times 900 \times \frac{1}{\sqrt{2}}$$

$$= 900 \text{ N}.$$

B: Pinned joint

A: Hinged

c: Roller support

ABC: equilateral triangle.

Equations of Equilibrium:

$$+5 \geq M_{A} = 0 \Rightarrow \alpha R_{C} - \frac{\alpha}{2} 450 = 0$$

$$+1$$
 ZFy =0 \Rightarrow (RA)y + Rc - 450 = 0

Equilibrium of Pin B:

Problem 1.11 (conta)

Equilibrium of joint c:

$$fac + FBc (0860 - 450 = 0)$$

Fac = 450 - 259.8 ($\frac{1}{2}$)

= 320 N. (compression)

Equation of Equilibrium:

$$+9 \ge M(=0) \Rightarrow -7 \times 2 + F_{AB} \times (2.6) = 0$$

$$\Rightarrow F_{AB} = \frac{14}{2.6}$$

$$= 5.39 \text{ N}.$$

Problem 1.14:

- No vertical reaction at A.

At B, the reaction is provided by bracket.

Equilibrium equations:

Problem 1.14 (contd)

Equations i) and v) gives

$$R_{BM} = -R_{AM} = 1800 \, \text{N} - \text{vi}$$

Equations ii) and iv) given

The reactions are

Assumptions:

- il inelastic contact
- ii) No friction anywhere
- iii) No deformation of rod

Assume equilibrium enists.

Equations of equilibrium:

$$\frac{+}{2} \sum_{m=0}^{+} F_{m} = 0 \quad \Rightarrow \quad F_{m} = F_{m} = F_{m} = 0$$

$$+ \uparrow \sum_{m=0}^{+} F_{m} = 0 \quad \Rightarrow \quad F_{m} = F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad F_{m} = 0$$

$$\Rightarrow \quad F_{m} = 0 \quad \Rightarrow \quad$$

From above equations (2 and 3)

$$m = \frac{b}{\cos^3 \theta}.$$

Forces in vector form:

$$Y_F = 1.2 i - 0.3 j m$$

Equilibrium equations

E Moment about A = Q >

Solving equations is and iil simultaneously

$$F = \frac{M \cos 15}{0.3} = \frac{0.145 \times \cos 15}{0.3}$$

Problem 1.24:

Assuming general friction coefficient f, when the Wedge is moving, tangential force at contact =

= f x normal force.

al Equilibrium of AB:

$$\sum M_{AZ} = 0$$
 \Rightarrow $-2000 \times \frac{1}{2} + F_B \cos 30^{\circ} \times 1 - f F_B \sin 30^{\circ} \times 1 = 0$

$$F_B = \frac{1000}{0.866 - \frac{1}{2}f}$$

Equilibrium of Wedge:

Solving above system gives:

$$P = 1000 (t + \frac{0.866 - 0.2 t}{0.866 + 0.1})$$

for
$$f = 0.3$$
 $p = 1000 \left(0.3 + \frac{0.866 \times 0.3 + 0.5}{0.866 - 0.5 \times 0.3}\right)$
= 1364 lb.

b) It fis very small, the wedge will slip out when force p is removed. The borderline occurs when the wedge is just prevented from slipping out by the the friction forces.

We go through the previous analysis, replacing f by-f everywhere, because the tendancy we are now investigating is 'slip in opposite direction.

Hence we get

$$b = 1000 \left[-t + \frac{0.860 + 0.2t}{0.2 - 0.860t} \right]$$

We require P=0 or

$$\frac{0.889 + 0.2t}{0.2 - 0.888t} - t = 0.$$

f = 0.27.

Free Body diagram of link for counterclockwise rotation.

F = f FN

Equilibrium equations:

$$+\int E M_A = 0 \Rightarrow$$

$$-F(L) \sin \theta - P \stackrel{1}{=} (0.00 + F_N) \cos \theta = 0$$

$$\Rightarrow F(\frac{1}{f} - \tan \theta) = P/2,$$
i.e. $F = \frac{Pf}{2(1 - f \tan \theta)}$

For <u>Cw. rotation</u> F is in the <u>opposite</u> direction.

$$F(1)\sin \theta - p \frac{1}{2}\cos \theta + F_{N1}\cos \theta = 0.$$

$$F = \frac{pf}{2(1+f\tan \theta)}.$$

The mechanism becomes fréction lock for c.c.w. din. Asia. F > 0 for f = tano.

Problem 1.27.

a Equilibrium equations:

$$ZF_{x}=0$$
 \Rightarrow $F_{8x}+F_{cx}-8000=0$ \longrightarrow $i)$
 $ZF_{y}=0$ \Rightarrow $F_{8y}+F_{8y}+F_{cy}-230,000=0$ \longrightarrow $ii)$
 $ZF_{z}=0$ \Rightarrow $F_{8z}+F_{cz}=0$

FBz, Fcz are indeterminate. A plausible anumption is FB7 = FCZ = 0.

ZM =0 at a point midwaway between B & c,

∑Mn=0 ⇒ FByxII = FcyxII -

≥ My = 0 ⇒ Fcm x11 - Fon x11 - 8000 x 46 = 0 - U)

Z Mz = 0 => -FAY x46 +8000 x8 +230,000 x4 = 0 - vi)

Solving above set of equations: (i, ii, iv, v, vi)

Fay = 21,3000 lb , FBy = fcy = 104,300 lb

 $F_{gn} = -12,700 \, lb$. $F_{cn} = 20.800 \, lb$.

Problem 1.27 (contd.)

b) coefficient of friction;

at wheel B:

$$f_s > \frac{12700}{104,300}$$

at wheel c:

$$f_s > \frac{20800}{104,300}$$

$$= f = 0.2$$

Became of the looser to have the contact as points A and B of the post

coefficient of friction between post and support f = 0.3

To Find: a so as to have no slip.

Equilibrium equations:

5 equations and 5 unknowns.

i)
$$\Rightarrow$$
 An $=$ Bn Then
iv) \Rightarrow Ay $+$ By $=$ 2 f Bn
ii) \Rightarrow 51 w $=$ 2 f Bn
 \therefore Bn $=$ $\frac{51}{2}$ w

Problem 1.33 (cartd)

$$By = \frac{51W}{2f} \times f = \frac{51W}{2}.$$

$$\frac{51 \, \text{W}}{2 \, \text{f}} \times 0.35 \, + \, \frac{51 \, \text{W}}{2} \times 0.1 \, - \, \text{H} \times 0.35 \, - \, 50 \, \, \text{W} (9.10.1) = 0$$

$$\frac{51 \times 0.35}{0.6} + \frac{51 \times 0.1}{2} - 0.35 - 500 - 5 = 0.$$

$$\chi = 0.539 \text{ m}.$$

Assume all logs to be of equal diameter.

When c is about to move f=0 and Fac=0.

Equilibrium equations:

For log c:
$$ZF_{m}=0$$

 F_{BC} cos60 —Wsino = 0.
 $Sino = \frac{F_{BC} \cos 60}{W}$. (1)

For log B:

(0530

$$= \frac{W(0S(0+60))}{(0S30)}, -(2)$$
(1) $4(2) \Rightarrow \sin \theta = \frac{W(0S(0+60))}{(0S60)}$

$$tano = \frac{2}{3} \frac{\cos^2 60}{\cos 30}$$

Cutter

2 force member

Handle.

1. To calculate x, a:

$$\alpha = \sin 1 \frac{25/2}{200} = 18.2^{\circ}$$

a = 25 sind = 7.8 mm.

Equilibrium of handle:

At points B, c there will be force in y-direction only due to the presence of 2 force member.

= 7794.9 N

Equilibrium of cutter:

$$F_{A} = \frac{F_{C} \times 62}{25} = \frac{7794.9 \times 62}{25}$$

FA = 19.331 KN

4)
$$\geq M_0 = 0 \Rightarrow P(a-\lambda a) - R_1 a = 0$$
.

$$R_1 = P(1 - \frac{\lambda a}{a}) - 0$$

$$R_1 + R_2 - P = 0$$

$$R_2 = P - R_1 = \frac{\lambda a}{a} P.$$

$$R_2 = P - R_1 = \frac{\lambda a}{a} P.$$

$$R_3 = 0 \Rightarrow R_2 a + F_{AM} \frac{a}{2} - F_{AY} \frac{a}{2} = 0. \quad (bar Ac) - 0$$

$$F_{AM} = -P$$

$$F_{AM} = -P$$

$$F_{AM} = -P (1 - \frac{\lambda a}{a}) + P \frac{\lambda a}{a}.$$

$$= -P(1 - \frac{2\lambda a}{a}).$$
Magnitude of the shear = $(F_{AM}^2 + F_{AY}^2)^{1/2}$

$$= P[1 + (1 - \frac{2\lambda a}{a})^2]^{1/2}.$$
Manimum shear = F_{2P} when $Aa = 0$.

- 1. In space lab, it is not possible to apply either force or torque to hold the drill in equilibrium.
 - 2. Legs of drill holder are provided with magnet.

3. Drilling torque = 15 N·m. Drilling force = 15 N $f_{W=0.4}$ between magnet and wall. f_{N_2}

To find, minimum holding force.

F.B.D.

F: magnetic force.

drilling torque = 15.

Due to symmetry
$$F_1 = F_2 = F_3 = F$$
 say $H_1 = H_2 = N_3 = N$, say

$$+1 \sum Fy = 0 \Rightarrow 8N + 50 = 8F - i)$$

 $+2 \sum My = 0 \Rightarrow 3x + N + 0.1 = 15 - ii)$
 $\Rightarrow N = \frac{15}{0.1 \times 3 \times 0.4} = 125 N.$
 $i) \Rightarrow F = N + \frac{50}{3} = 125 + 16.67$
 $= 141.67 N.$