Diskretne strukture UNI Vaje 9

1. Na množici naravnih števil \mathbb{N} definiramo relacijo R:

$$xRy \Leftrightarrow 5 \text{ deli } x + 4y.$$

Pokaži, da je R ekvivalenčna relacija in določi ekvivalenčne razrede.

2. Na množici $A = \{0, 1, 2, \dots, 11\}$ definiramo relacijo

$$xRy \Leftrightarrow |x-y| \in \{2,4\}$$

- (a) Nariši grafe relacije R, R^2 in R^+
- (b) Katere izmed relacij so refleksivne, simetrične, tranzitivne?
- (c) Določi ekvivalenčne razrede tistih od relacij R, R^2 in R^+ , ki so ekvivalenčne.
- 3. Naj bo B_n množica naravnih števil od 0 do 2^n-1 . Ta števila predstavimo v dvojiškem zapisu; število $b \in B_n$ zapišemo kot $b = \mathsf{b}_n \cdots \mathsf{b}_2 \mathsf{b}_1$, kjer so števke b_i enake 0 ali 1. Na B_n definiramo relacijo $\leq \mathsf{z}$

$$a \leq b \quad \Leftrightarrow \quad \forall i \, (\mathsf{a}_i \leq \mathsf{b}_i).$$

- (a) Ali velja: $2 \le 3, 5 \le 8, 4 \le 5$?
- (b) Prepričaj se, da je ≼ relacija delne urejenosti.
- (c) Skiciraj Hassejev diagram te delne urejenosti v primeru n=3.
- (d) Ali je \leq relacija linearne urejenosti? Za kateri n oziroma zakaj ne? Kako to sledi iz Hassejevega diagrama?
- (e) Preveri, da velja implikacija: Če $a \leq b$, potem $a \leq b$.
- 4. Na množici števil $\mathbb{N} \setminus \{0\}$ definiramo relacijo R:

$$aRb \Leftrightarrow \gcd(a,b) > 3.$$

- (a) Pokaži, da je $R \subseteq R^2$.
- (b) Ali je relacija R refleksivna, simetrična ali tranzitivna?
- (c) Ali je relacija R^2 refleksivna, simetrična ali tranzitivna?
- 5. V množici celih števil \mathbb{Z} je dana relacija

$$xRy \Leftrightarrow 7 \text{ deli } x^2 - y^2.$$

- (a) Dokaži, da je relacija R ekvivalenčna.
- (b) Določi ekvivalenčni razred $[1]_R$ števila 1.
- (c) Določi moč faktorske množice \mathbb{Z}/R .
- 6. Na množici $\mathbb{N} \setminus \{0\}$ je dana relacija:

$$aRb \Leftrightarrow a \text{ deli } b^2.$$

- (a) Dokaži, da je relacija R refleksivna.
- (b) Ali je R tranzitivna? Dokaži ali pa poišči protiprimer!
- (c) Dokaži implikacijo: Če obstaja $k \in \mathbb{N}$, da a deli b^{2^k} , potem velja aR^*b .