

Sprint N° 2

-

Análisis de los requerimientos del cliente

Materia

Práctica Profesionalizante 1

Profesor

Alejandro Mainero

Integrantes

José Emiliano Arce - emiliano 1191@gmail.com

Violeta Evangelina Mercado - evangelina 1977@gmail.com

Mario Horacio Pelliza - pellizamario519@gmail.com

Juan José Arato - juanjosearato23@gmail.com

Juan Diego Gonzaléz Antoniazzi - juandi19972008@gmail.com

Fecha de entrega

Martes 03 de Septiembre 2024

Cohorte 2023

Índice

Optimización de Piataforma de Venta Unine con Tecnologia	as 4.u
Análisis de Requerimientos	
a. Requerimientos técnicos	
• Hardware	
• Software	4
Conectividad	4
• Seguridad	4
Integración con sistemas existentes	5
b. Requerimientos funcionales	6
Monitoreo en tiempo Real:	6
Control Remoto de Dispositivos:	6
Gestión de Inventario:	6
Reportes y análisis:	6
Interfaz de usuario intuitiva:	6
2. Plan de Proyecto	7
Diagrama de Gantt	8
Cronograma de Actividades del Sprint 2	8
Cronograma de Trabajo	9
3. Requerimientos Técnicos de Apps	9
Arquitectura de la Aplicación	9
Requerimientos del FrontEnd	9
Tecnologías Frontend	9
Almacenamiento y Distribución	9
Requerimientos No Funcionales	9
Requerimientos del Backend	10
Tecnologías Backend	10
Software	10
Arquitectura General	10
API Gateway y Comunicación	10
Autenticación y Autorización	10
Seguridad y Cifrado	
Requerimientos No Funcionales	11
Flujo de Trabajo del Backend	11

Optimización de Plataforma de Venta Online con Tecnologías 4.0

Este documento se irá actualizando a medida que se avance en el desarrollo del proyecto

1. Análisis de Requerimientos

Requerimientos

a. Requerimientos técnicos

Hardware

Sensores:

- Sensores de inventario: RFID para el seguimiento de productos en almacén.
- Sensores de temperatura y humedad: Para monitorear las condiciones del almacén.
- Sensores de movimiento: Para detectar intrusos o actividad inusual

 Gateways IoT: para integración de sensores y envío de datos a la nube.

Actuadores:

- Sistemas de control de acceso (cerraduras inteligentes, etc.).
- Sistemas de control de iluminación.
- Dispositivos móviles: Para acceder a la plataforma desde cualquier lugar

Software

- Plataforma IoT en la Nube: AWS IoT Core, Azure IoT Hub, Google Cloud IoT u otra plataforma similar.
- Base de Datos: MongoDB, DynamoDB, o una base de datos relacional como PostgreSQL.
- o Backend: Desarrollado en Python con Django o Node.js.
- Frontend: Desarrollado con React, Angular, Vue.js u otro framework similar.
- API RESTful: Para la comunicación entre el frontend, el backend y los dispositivos IoT

Conectividad

- **Wi-Fi**: Para la conexión de dispositivos en el almacén.
- o **Red Celular**: Para la conectividad de dispositivos en movimiento.
- o Protocolos de comunicación: MQTT, HTTP, CoAP.

Seguridad

- Cifrado de datos en reposo y en tránsito (TLS/SSL).
- o Autenticación de dispositivos y usuarios (JWT, OAuth 2.0).

- o Control de acceso basado en roles (RBAC).
- o Firewall y sistemas de detección de intrusos (IDS).
- Integración con sistemas existentes
 - o APIs: creación de APIs para conectar diferentes sistemas y servicios.

ID	Descripción	Categoría	Detalle	
RT01	Plataforma IoT en la Nube	Software	AWS IoT Core	
RT02	Base de Datos	Software	MongoDB	
RT03	Backend	Software	Python con Django	
RT04	Frontend	Software	React / JavaScript	
RT05	Sensores de Inventario	Hardware	RFID: Radio-Frequency Identification (Identificación por Radiofrecuencia)	
RT06	Sensores de Temperatura y Humedad	Hardware	DHT22: Sensor de temperatura y humedad	
RT07	Gateway IoT	Hardware	Raspberry Pi: Microcomputador de placa única	
RT08	Conectividad	-	Wi-Fi, Red Celular	
RT09	Protocolos de Comunicación	-	MQTT, HTTP	
RT10	Seguridad	-	Cifrado TLS/SSL, Autenticación JWT (JSON Web Token / Token Web JSON), RBAC (Role-Based Access Control / Control de Acceso Basado en Roles), Firewall (Cortafuegos), IDS (Intrusion Detection System / Sistema de Detección de Intrusos)	

b. Requerimientos funcionales

- Monitoreo en tiempo Real:
 - Visualización en tiempo real del estado de los recursos y dispositivos conectados (máquinas sensores).
 - Alertas automáticas para eventos críticos (fallos, sobrecargas etc.).
- Control Remoto de Dispositivos:
 - Capacidad para controlar dispositivos loT de manera remota (activar/desactivar, ajustar parámetros).
- Gestión de Inventario:
 - Sistema de seguimiento automático de inventarios de materias primas y productos terminados.
 - Generación automática de órdenes de reposición cuando los niveles de inventarios sean bajos.
- Reportes y análisis:
 - Generación de reportes detallados sobre el rendimiento de las operaciones (producción y tiempo de inactividad).
 - Análisis predictivo para anticipar fallos en la maquinaria o necesidades de mantenimiento.

Innovación con Tecnologías 4.0 Cohorte 2023

- Interfaz de usuario intuitiva:
 - Desarrollo integral de usuario amigable y fácil de usar para acceder a todas las funcionalidades del sistema

ID	Descripción	Prioridad	Criterios de Aceptación	
RF01	Monitorear el stock de productos en tiempo real	Alta	Mostrar el stock disponible de cada producto en la interfaz web. Generar alertas automáticas cuando el stock esté por debajo de un umbral definido	
RF02	Automatizar la generación de órdenes de reposición	Alta	Generar automáticamente órdenes de compra a proveedores cuando el stock de un producto esté por debajo del mínimo establecido	
RF03	Seguimiento de envíos en tiempo real	Alta	Mostrar la ubicación actual del envío en un mapa. Notificar al cliente sobre el estado del envío	
RF04	Controlar la temperatura y humedad del almacén remotamente	Alta	Permitir al usuario ajustar los parámetros de temperatura y humedad del almacén desde la interfaz web. Generar alertas en caso de que los valores excedan los rangos predefinidos.	
RF05	Generar reportes de ventas y análisis de datos	Media	Permitir al usuario generar reportes de ventas por producto, período de tiempo y ubicación geográfica. Proveer herramientas de análisis de datos para identificar tendencias y patrones de compra	

2. Plan de Proyecto

Diagrama de Gantt

Cronograma de Actividades del Sprint 2

	ID :	Name :	Start Date :	End Date :	Duration :
00	1	▼ Sprint 1: Inicialización del Proyecto	Aug 20, 2024	Aug 26, 2024	7 days
0	2	Definir roles y metodología	Aug 20, 2024	Aug 20, 2024	1 day
23	3	Definir la problemática	Aug 21, 2024	Aug 22, 2024	2 days
88	4	Justificar la importancia del proyecto	Aug 22, 2024	Aug 23, 2024	2 days
74 6 9 8	5	Establecer objetivos SMART	Aug 23, 2024	Aug 24, 2024	2 days
14 14	6	Crear video de Presentacion del equipo	Aug 25, 2024	Aug 26, 2024	2 days
B	7	▼ Sprint 2: Análisis de Requerimientos	Aug 27, 2024	Sep 03, 2024	8 days
17	8	Investigar requerimientos técnicos	Aug 27, 2024	Aug 28, 2024	2 days
23	9	Investigar requerimientos funcionales	Aug 28, 2024	Aug 30, 2024	3 days
23	10	Documentar requerimientos (hardware, software, redes)	Aug 30, 2024	Sep 01, 2024	3 days
23	11	Diseñar Diagrama de Gantt	Sep 02, 2024	Sep 03, 2024	2 days
22	12	Sprint 3: Diseño de la arquitectura de la solución	Sep 04, 2024	Sep 17, 2024	14 days
17	13	Sprint 4: Desarrollo e Implementación	Sep 18, 2024	Oct 01, 2024	14 days
13	14	Sprint 5: Pruebas y Despliegue	Oct 02, 2024	Oct 08, 2024	7 days
Ω	15	Sprint 6: Cierre del Proyecto	Oct 09, 2024	Oct 15, 2024	7 days

Cronograma de Trabajo

3. Requerimientos Técnicos de Apps

Arquitectura de la Aplicación

La aplicación seguirá una arquitectura cliente-servidor, donde el frontend (la aplicación web) se comunicará con el backend a través de una API RESTful. El backend se

encargará de la lógica de la aplicación, el acceso a la base de datos, la gestión de dispositivos loT y la integración con los servicios de AWS

Requerimientos del FrontEnd

Tecnologías Frontend

Cohorte 2023

- Framework: React.js para crear una interfaz dinámica y responsiva.
- **Diseño:** CSS3, Sass y Bootstrap para una apariencia moderna y adaptativa.
- Componentes: Implementación de componentes reutilizables para gráficos, tablas y paneles de control.

Almacenamiento y Distribución

- Amazon S3: Almacenamiento de activos estáticos (imágenes, estilos, scripts).
- **CloudFront CDN:** Distribución de contenido a través de CloudFront para una entrega rápida y global.

Requerimientos No Funcionales

- **Escalabilidad:** AWS Auto Scaling para manejar picos de carga y un diseño modular para futuras expansiones.
- **Rendimiento:** Tiempo de respuesta inferior a 2 segundos, optimización de recursos y uso de caché.
- Disponibilidad: Alta disponibilidad con múltiples Availability Zones y failover automático.
- Seguridad: HTTPS, AWS Cognito para autenticación y gestión de usuarios, AWS IAM para control de acceso, protección contra ataques con AWS Shield y WAF, cifrado de datos con AWS KMS.
- Usabilidad: Experiencia de usuario intuitiva (UX), accesibilidad según WCAG
 2 1
- Mantenibilidad: Código limpio, documentado y modular, control de versiones con Git y pipeline de CI/CD.
- Compatibilidad: Multiplataforma y compatible con diferentes navegadores y dispositivos. Compatibilidad con versiones anteriores del backend.

Requerimientos del Backend

Tecnologías Backend

- API Gateway: AWS API Gateway para manejar las solicitudes del frontend.
- AWS Lambda: Funciones serverless para procesar la lógica de negocio.
- Base de Datos:
 - Amazon DynamoDB para operaciones en tiempo real.
 - Amazon RDS (MySQL) para consultas transaccionales.

Software

- Lenguaje y Framework: Python con Django para manejar grandes volúmenes de datos y requests.
- Base de Datos:
 - MongoDB para almacenar metadatos y datos históricos (se utilizará djongo o MongoEngine para la integración con Django).
 - AWS S3 para almacenar archivos a gran escala.

Arquitectura General

- Se implementará un enfoque de microservicios dentro del framework Django.
- Las apps principales serán:
 - o Gestión de Dispositivos: Manejo de CRUD para dispositivos IoT.
 - Gestión de Usuarios: Autenticación, autorización y roles de usuario.
 - Datos y Análisis: Almacenamiento y consulta de datos en tiempo real e históricos.
 - APIs REST: Exposición de funcionalidades a través de APIs RESTful.

API Gateway y Comunicación

- Django REST Framework para implementar las APIs RESTful.
- AWS IoT Core como broker MQTT para la comunicación con los dispositivos IoT.

Autenticación y Autorización

- JWT (JSON Web Tokens) para la autenticación.
- Control de Acceso Basado en Roles (RBAC) para la autorización.

Seguridad y Cifrado

- Cifrado de datos en reposo en MongoDB con AWS KMS.
- Cifrado de datos en tránsito con TLS/SSL.

Requerimientos No Funcionales

- Escalabilidad y Disponibilidad:
 - Arquitectura distribuida para escalar horizontalmente.
 - AWS Auto Scaling y balanceo de carga para manejar picos de tráfico.
 - Políticas de backup y replicación de datos para asegurar la disponibilidad.
- Seguridad: Cifrado de datos en reposo y en tránsito, autenticación robusta con JWT, soporte para OAuth 2.0.
- Monitoreo y Logging: Monitoreo con AWS CloudWatch, registro detallado de operaciones para auditoría y resolución de problemas.

Flujo de Trabajo del Backend

- Autenticación: El usuario se autentica mediante JWT.
- Gestión de Dispositivos: Los dispositivos loT se registran y gestionan a través de endpoints específicos. Los datos se envían a través de MQTT y se almacenan en MongoDB.

- Almacenamiento de Datos: Los datos en tiempo real se guardan en MongoDB y los datos históricos se consultan a través de APIs REST.
- **Exposición de APIs:** El backend expone las funcionalidades a través de APIs RESTful.

