PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-090424

(43)Date of publication of application: 31.03.2000

(51)Int.CI.

G11B 5/66

(21)Application number : 10-257059

(71)Applicant : NEC CORP

(22)Date of filing:

10.09.1998

(72)Inventor: NORIHASHI HIROTAKA

TSUBOI SHINZO

TAGAMI MASAMICHI

(54) PERPENDICULAR MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDER

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a medium having the excellent stability of recording magnetization to external magnetic fields by overcoming the unstability of the recording magnetization of a perpendicular layer magnetic recording medium to the external magnetic fields. SOLUTION: The perpendicular magnetic recording medium 20 is made duller than heretofore in the reactivity of the magnetization of a ground surface soft magnetic film to the external magnetic fields by making the magnetic permeability of the ground surface soft magnetic film smaller than heretofore without forming the ground surface soft magnetic film as a film having good soft magnetic characteristics, by which the concentration of the magnetic flux of the external magnetic fields to the main magnetic pole of the perpendicular magnetic head is suppressed. Therefore, the perpendicular medium which with which the demagnetization or degaussing of the magnetization recorded on the perpendicular recording layer by the external magnetic fields generated from a motor for disk

rotation and a motor or the like used for head positioning hardly occurs and which has the excellent stability of the recording magnetization to the external magnetic fields may be obtd.

LEGAL STATUS

[Date of request for examination]

10.09.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application] (19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-90424 (P2000-90424A)

(43)公開日 平成12年3月31日(2000.3.31)

(51) Int.Cl.7

G11B 5/66

識別記号

F I

G11B 5/66

テーマコート*(参考) 5D006

請求項の数16 OL (全 27 頁)

(21)出願番号

特顯平10-257059

(22)出願日

平成10年9月10日(1998.9.10)

(71) 出願人 000004237

審査請求 有

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 法橋 宏高

東京都港区芝五丁目7番1号 日本電気株

式会社内

(72)発明者 坪井 眞三

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 100065385

弁理士 山下 穣平

最終頁に続く

(54) 【発明の名称】 垂直磁気記録媒体と磁気記録装置

(57)【要約】

【課題】 垂直2層磁気記録媒体の記録磁化の、外部磁界に対する不安定性を克服し、記録磁化の外部磁界に対する安定性に優れた媒体を提供する。

【解決手段】 垂直磁気記録媒体では、下地軟磁性膜を良好な軟磁気特性をもつ膜とせず、下地軟磁性膜の透磁率を従来よりも小さくすることにより、外部磁界に対する下地軟磁性膜の磁化の反応性を従来よりも鈍化させ、垂直磁気ヘッドの主磁極への外部磁場の磁束の集中を抑制している。このために、ディスク回転用のモーターやヘッド位置決め用に用いられるモーターなどから発生する外部磁界による、垂直記録層に記録された磁化の減磁、あるいは消磁が発生しにくく、外部磁場に対して記録磁化の安定性に優れた垂直媒体とすることができる。

【特許請求の範囲】

【請求項1】 下地軟磁性膜と垂直磁化膜を組み合わせた垂直磁気記録媒体において、前記下地軟磁性膜の透磁率が50以上1000以下であることを特徴とする垂直磁気記録媒体。

1

【請求項2】 下地軟磁性膜と垂直磁化膜を組み合わせた垂直磁気記録媒体において、前記下地軟磁性膜の透磁率が50以上500以下であることを特徴とする垂直磁気記録媒体。

【請求項3】 下地軟磁性膜と垂直磁化膜を組み合わせた垂直磁気記録媒体において、前記下地軟磁性膜の透磁率が50以上100以下であることを特徴とする垂直磁気記録媒体。

【請求項4】 請求項1乃至3のいずれか1項に記載の 垂直磁気記録媒体において、前記下地軟磁性膜の全体の 保磁力が20e以上300e以下であることを特徴とす る垂直磁気記録媒体。

【請求項5】 請求項4に記載の垂直磁気記録媒体において、前記下地軟磁性膜のうち該下地軟磁性膜において基板側から10nmまでの前記下地軟磁性膜の保磁力が300e以上であることを特徴とする垂直磁気記録媒体。

【請求項6】 請求項1乃至5のいずれか1項に記載の 垂直磁気記録媒体において、前記下地軟磁性膜の膜厚が 300nm以下であることを特徴とする垂直磁気記録媒 体。

【請求項7】 請求項1乃至6のいずれか1項に記載の 垂直磁気記録媒体において、前記下地軟磁性膜の材料が FeSiAl合金であることを特徴とする垂直磁気記録 媒体。

【請求項8】 請求項1乃至6のいずれか1項に記載の 垂直磁気記録媒体において、前記下地軟磁性膜の材料が Fe84.9SixAl15.1-x(8.0 \le X \le 12.0)で あることを特徴とする垂直磁気記録媒体。

【請求項9】 請求項1乃至6のいずれか1項に記載の 垂直磁気記録媒体において、前記下地軟磁性膜の材料が Fe&1.9Si9.6Al5.5(wt%)であることを特徴と する垂直磁気記録媒体。

【請求項10】 請求項1乃至9のいずれか1項に記載の垂直磁気記録媒体において、前記下地軟磁性膜の材料に元素Mを添加した合金とし、前記元素MとしてTa、Ti、Zr、Mo、Nbのうち任意の2つの元素を含むことを特徴とする垂直磁気記録媒体。

【請求項11】 請求項1乃至6のいずれか1項に記載の垂直磁気記録媒体において、前記下地軟磁性膜の材料がFeTaNであることを特徴とする垂直磁気記録媒体。

【請求項12】 請求項1乃至6のいずれか1項に記載の垂直磁気記録媒体において、前記下地軟磁性膜の材料がFeTaNR合金であり、前記RとしてLa、Pr、

2

Nd、Sm、Euのうち任意の2つの元素を含むことを特徴とする垂直磁気記録媒体。

【請求項13】 請求項1乃至12のいずれか1項に記載の垂直磁気記録媒体において、前記垂直磁化膜の材料がCoCrR合金であり、前記RとしてPt、Ta、La、Lu、Pr、Srのうち任意の3つの元素を含むことを特徴とする垂直磁気記録媒体。

【請求項14】 垂直磁気記録媒体に情報を記録・再生する磁気記録装置において、前記垂直磁気記録媒体は基板上に下地軟磁性膜と垂直磁化膜とを順に積層しており、前記下地軟磁性膜の透磁率が50以上100以下であることを特徴とする磁気記録装置。

【請求項15】 請求項14に記載の磁気記録装置において、前記下地軟磁性膜の材料に元素Mを添加した合金とし、前記元素MとしてTa、Ti、Zr、Mo、Nbのうち任意の2つの元素を含むことを特徴とする磁気記録装置。

【請求項16】 請求項14に記載の磁気記録装置において、前記垂直磁化膜の材料がCoCrR合金であり、前記RとしてPt、Ta、La、Lu、Pr、Srのうち任意の3つの元素を含むことを特徴とする磁気記録装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気ディスク等と して用いられる垂直磁気記録媒体及び該垂直磁気記録媒 体を用いる磁気記録装置に関する。

[0002]

【従来の技術】近年、パーソナルコンピュータやワークステーションの進歩に伴うハードディスクドライブの大容量化及び小型化により、記録媒体である磁気ディスクは、さらなる高面密度化が必要とされている。しかし、現在広く普及している磁気ディスクによる長手記録方では、高記録密度を実現しようとすると、記録ピットの微細化に伴う記録磁化の熱揺らぎの問題や、記録へッドの記録能力を超えかねない高保磁力化の問題が発生する。そこで、これらの問題を解決しつつ、面記録密度を大幅に向上できる手段として、垂直磁気記録媒体の一つとして、高透磁率の軟磁性膜と高い垂直異方性の垂直磁化膜からなる垂直2層媒体がある。

【0003】図51は、このような垂直磁気記録媒体の 従来例を示す概略断面図である。

【0004】この垂直磁気記録媒体50は、軟磁性裏打ち層52及び垂直磁化膜54がこの順に基板56上に形成されたものである。例えば、軟磁性膜としてはNiFe膜、垂直磁化膜としてはCoCr系合金が用いられる(日本応用磁気学会誌、Vol.8, No.1, 1984, p17)。

【0005】ここで、垂直磁気ヘッドの例を図52に示

して説明する。2層膜構造の垂直磁気記録媒体61は、表面にNiPメッキ処理、或いはアルマイト処理を施したアルミニウム、又はガラス等からなる非磁性のディスク基板62上に、例えば1μmの膜厚のNiFe膜からなる高透磁率の軟磁性層(軟磁性裏打ち層)63と、該軟磁性層63の膜厚方向に垂直な磁化容易軸を有する0.15μmの膜厚のCoCr膜からなる垂直記録層64とが順に積層された構成からなっている。

【0006】かかる構成の垂直磁気記録媒体61に対して情報の記録・再生を行う垂直磁気ヘッド65からり記録磁界は、垂直記録層64を垂直に磁化した後、その直下の軟磁性層63を水平方向に通過して、再び垂直記録層64を垂直に通って垂直磁気ヘッド65へ帰還する磁気回路により記録される。また、既に記録された垂直記録層64から漏洩する記録磁界により、垂直磁気ヘッド65の主磁極66が磁化され、それと鎖交するコイル67に生じる電圧を再生信号として出力することによって、再生を行うことができる。

[0007]

【発明が解決しようとする課題】しかしながら、図51のような従来媒体では、外部磁界に対する記録磁化の不安定性が問題である。これは、今まで下地軟磁性膜52の軟磁気特性を良好にしていたために、下地軟磁性膜52の透磁率が大きく、外部磁界に対して下地軟磁性膜52の磁化が敏感に反応し、これが上述した図52に示した垂直磁気ヘッド65の主磁極66への外部磁場の磁束の集中を促すためでる。このために、垂直記録層に記録された磁化の減磁、あるいは消磁が発生する。

【0008】このような外部からの浮遊磁界は、磁気ディスクと近接した位置に配置される磁気ディスク内のデ 30ィスク回転用のモーターや、ヘッド位置決め用に用いられるモーターなどから発生する。これらの磁界はきわめて微弱であるものの、垂直磁気ヘッドの主磁極先端に集中すると下地軟磁性膜の磁壁移動を誘発し、記録磁化を減磁あるいは消磁してしまうことがあり、情報記憶装置としては致命的な欠陥となる。

【0009】 [発明の目的] 本発明の目的は、外部磁界に対する記録磁化の不安定性を克服した、外部磁界に対する記録磁化の安定性に優れた、新規な垂直磁気記録媒体を提供することにある。

[0010]

【課題を解決するための手段】本発明による垂直磁気記録媒体は、下地軟磁性膜と垂直磁化膜を組み合わせた垂直磁気記録媒体において、下地軟磁性膜の透磁率が50以上1000以下であることを特徴とする。

【0011】また、本発明による垂直磁気記録媒体は、下地軟磁性膜と垂直磁化膜を組み合わせた垂直磁気記録 媒体において、下地軟磁性膜の透磁率が50以上500 以下であることを特徴とする。

【0012】また、本発明による垂直磁気記録媒体は、

4

下地軟磁性膜と垂直磁化膜を組み合わせた垂直磁気記録 媒体において、下地軟磁性膜の透磁率が50以上100 以下であることを特徴とする。

【0013】また、本発明による垂直磁気記録媒体は、 上記垂直磁気記録媒体において、下地軟磁性膜の全体の 保磁力が20e以上300e以下であることを特徴とす る。

【0014】また、本発明による垂直磁気記録媒体は、 上記垂直磁気記録媒体において、下地軟磁性膜のうち該 磁性膜において基板側から10nmまでの磁性膜の保磁 力が300e以上であることを特徴とする。

【0015】また、本発明による垂直磁気記録媒体は、 上記垂直磁気記録媒体において、下地軟磁性膜の膜厚が 300nm以下であることを特徴とする。

【0016】また、本発明による垂直磁気記録媒体は、 上記垂直磁気記録媒体において、下地軟磁性膜の材料が FeSiAl合金であることを特徴とする。

【0017】また、本発明による垂直磁気記録媒体は、上記垂直磁気記録媒体において、下地軟磁性膜の材料が $Fe84.9Si_xAl_{15.1-x}(8.0 \le X \le 12.0)$ であることを特徴とする。

【0018】また、本発明による垂直磁気記録媒体は、 上記垂直磁気記録媒体において、下地軟磁性膜の材料が Fe&4.9Si9.6Al5.5(wt%)であることを特徴と する。

【0019】また、本発明による垂直磁気記録媒体は、上記垂直磁気記録媒体において、下地軟磁性膜の材料に元素Mを添加した合金とし、MとしてTa、Ti、Zr、Mo、Nbのうち任意の2つの元素を含むことを特徴とする。

【0020】また、本発明による垂直磁気記録媒体は、 上記垂直磁気記録媒体において、下地軟磁性膜の材料が FeTaNであることを特徴とする。

【0021】また、本発明による垂直磁気記録媒体は、上記垂直磁気記録媒体において、下地軟磁性膜の材料がFeTaNR合金であり、RとしてLa、Pr、Nd、Sm、Euのうち任意の2つの元素を含むことを特徴とする。

【0022】また、本発明による垂直磁気記録媒体は、上記垂直磁気記録媒体において、垂直磁化膜の材料がCoCrR合金であり、RとしてPt、Ta、La、Lu、Pr、Srのうち任意の3つの元素を含むことを特徴とする。

【0023】また、本発明による磁気記録装置は、垂直磁気記録媒体に情報を記録・再生する磁気記録装置において、前記垂直磁気記録媒体は基板上に下地軟磁性膜と垂直磁化膜とを順に積層しており、前記下地軟磁性膜の透磁率が50以上100以下であることを特徴とする。

【0024】また、本発明による磁気記録装置におい 50 て、前記下地軟磁性膜の材料に元素Mを添加した合金と -

し、前記元素MとしてTa、Ti、Zr、Mo、Nbの うち任意の2つの元素を含むことを特徴とする。

【0025】また、本発明による磁気記録装置において、前記垂直磁化膜の材料がCoCrR合金であり、前記RとしてPt、Ta、La、Lu、Pr、Srのうち任意の3つの元素を含むことを特徴とする。

【0026】 [作用] 本発明の垂直磁気記録媒体では、 下地軟磁性膜を良好な軟磁気特性をもつ膜とせず、透磁 率を従来よりも小さくすることにより、外部磁界に対す る下地軟磁性膜の磁化の反応性を従来よりも鈍化させ、 垂直磁気ヘッドの主磁極への外部磁場の磁束の集中を抑 制している。

【0027】このために、垂直記録層に記録された磁化の減磁、あるいは消磁が発生しにくく、外部磁場に対して記録磁化の安定性に優れた垂直媒体とすることができる。

【0028】また、本発明の磁気記録装置では、上述の 垂直磁気記録媒体をもちいることにより、外部磁界に対 する下地軟磁性膜の磁化の反応性を最適化した透磁率と し、浮遊磁界の影響を容易に受けない装置とすることが できる。

[0029]

【発明の実施の形態】本発明による実施形態について、 図面を参照しつつ詳細に説明する。

【0030】 [構成の説明] 図1は、本発明に関わる垂直磁気記録媒体の一実施形態を示す概略断面図である。 【0031】本実施形態に関わる垂直磁気記録媒体20は、透磁率の小さい下地軟磁性膜24と、垂直磁化膜28とが基板22上に形成されたものである。

【0032】 [動作の説明] 下地軟磁性膜24として、以下の材料、すなわちFeSiAl膜、FeSiAlM膜、FeTaNM膜(Mは、Ta、Ti、Zr、Mo、Nbのうちの任意の2つの元素とする)を用い、下地軟磁性膜24の透磁率を低く抑えることにより、従来、下地軟磁性膜24の軟磁気特性が良好で大きな透磁率をもっていたときに発生する問題、すなわち外部磁場に対する記録磁化の不安定性を解決することができる。

[0033]

【実施例】 [実施例1]

[実施例1の構成の説明] 本発明の実施例について図2を参照して詳細に説明する。磁気ディスク径2.5インチの基板12上にスパッタ法により6インチのFe&4.9 Si9.6Al5.5 (wt%) ターゲットを用いて、Fe &4.9 Si9.6Al5.5 膜16を基板温度500℃で500 nm成膜した。成膜条件は、初期真空度5x10-7mTorrにおいて、投入電力0.5kw、アルゴンガス圧4mTorr、成膜速度3nm/secとした。その上にCo78Cr19PtLaLu(at%)ターゲットを用いてCo78Cr19PtLaLu膜18を100nm成膜した。更にその上にC保護膜を10

6

n m成膜した。この媒体を従来媒体A 1とする。これに対し、F e 84.9S i 9.6A 1 5.5膜成膜時の基板温度のみを変え、基板温度 4 0 0 $\mathbb C$ 、3 5 0 $\mathbb C$ 、3 0 0 $\mathbb C$ 、2 5 0 $\mathbb C$ 、2 0 0 $\mathbb C$ 、1 0 0 $\mathbb C$ 、及び室温で成膜して作製した媒体を、それぞれ本発明媒体A 2 、A 3 、A 4 、A 5 、A 6 、A 7 、A 8とする。また、本発明媒体A 2の下地軟磁性膜の膜厚を 2 5 0 n m 、3 5 0 n m とした媒体を本発明媒体A 9 、従来媒体A A 1とする。

【0034】 [実施例1の動作の説明] 各々の基板温度 10 で成膜したFe&4.9Si9.6Al5.5膜の透磁率、膜全体 の保磁力、Fe&4.9Si9.6Al5.5膜を10nmのみ成 膜した膜の保磁力を測定した。各々の測定値を図3に示 す。

【0035】図3において、従来媒体A1及び本発明媒体A2~A10の記録再生の実験は、単磁極ヘッド、 ID/MR複合ヘッドを用いて行った。ここで、 ID/MR複合ヘッド記録トラック幅は 4μ m、再生トラック幅は 3μ m、記録ギャップ長は 0.4μ m、再生ギャップ長は 0.32μ mである。また、単磁極ヘッドのトラック幅は 10μ m、主磁極膜厚は 0.4μ mである。評価は記録電流10mAop、センス電流12mA、周速度12.7m/s、浮上量45nm、ノイズのバンド帯域45MHzの条件下で行った。

【0036】まず、外部磁界に対する記録磁化の安定性を調べるために、従来媒体A1、AA1及び本発明媒体A2~A9に単磁極ヘッドで信号を記録後、ヘルムホルツコイルによって媒体に直流磁場を大きさ1~300eの範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図4に示す。ここでは、磁場印加前の再生出力に対する磁場印加後の再生出力を百分率で示してある。FeSiA1膜は元来、磁壁構造をとらないため、垂直2層媒体の下地軟磁性膜を用いた場合、NiFe膜等、磁壁構造をとらないため、垂直2層媒体の下地軟磁性膜を用いた場合、NiFe膜等、磁壁構造をといる下地軟磁性膜を用いた場合、NiFe膜等、磁壁構造をとらないため、垂直2層媒体の主磁を性膜として用いた場合、NiFe膜等、磁壁構造をとらないため、重度を対象を進度を使力を使力を変更を表現して、出力信号を外部磁場に対して安定化させやすいという利点がある。

【0037】図4から分かるように、従来媒体A1、AA1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体A2~A9の場合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減少しない。この時、保磁力の値は20e~300eの範囲に分布しているが、10nmのみ成膜した場合の各々の膜の保磁力(これを便宜上、初期保磁力と呼ぶことをする)を見ると、膜全体の保磁力が20e以上を示す場合、初期保磁力は300e以上の値を示していることが分かる。

【0038】一般に、膜の成長初期層の保磁力は大きい 50 が、この成長初期層の保磁力が大きいことで膜全体の保 磁力を大きくすることができる。本発明媒体A2~A9の場合、下地軟磁性膜の透磁率が小さいこと、及び膜全体の保磁力が大きいことにより、外部からの磁束を単磁極へッドの主磁極に集中しにくくすることができ、外部磁場に強い垂直2層媒体とすることができた。また、従来媒体AA1の場合、本発明媒体A2よりも下地軟磁性膜の膜厚が厚い分、膜全体の保磁力に占める初期保磁力の割合が小さくなり、膜全体の保磁力が本発明媒体A2よりも小さくなり、外部磁場に対して弱くなったと考えられる。

【0039】以上のことから、下地軟磁性膜の透磁率を1000以下、膜全体の保磁力を20e~300e、初期保磁力を300e以上、下地軟磁性膜の膜厚を300nm以下とすることにより、外部磁場に強い垂直2層媒体とすることができる。

【0040】次に、再生出力の測定を行った。再生出力 の記録密度依存性の測定結果を図5に示す。図5からわ かるように、再生出力の大きさは、下地軟磁性膜の透磁 率が大きいほど大きい。従来媒体A1、AA1、本発明 媒体A2、A3、A9は下地軟磁性膜の透磁率の大きさ が大きく、十分な再生出力を得ることができる。本発明 媒体A4、A5は下地軟磁性膜の透磁率の大きさが本発 明媒体A2、A3、A9よりも小さいため、再生出力が 小さくなるが、本発明媒体A2、A3、A9の再生出力 の約8割であり、依然再生出力の絶対値として十分であ ると言える。本発明媒体A6、A7は下地軟磁性膜の透 磁率の大きさが本発明媒体A4、A5よりも小さいた め、再生出力がさらに小さくなるが、本発明媒体A2、 A3、A9の再生出力の約6割であり、依然再生出力の 絶対値として十分であると言える。しかし、本発明媒体 30 A8の場合、下地軟磁性膜の透磁率が小さすぎるため、 再生出力が十分に取れない。

【0041】以上のことから、外部磁場に対する出力信号の耐久性の観点からは、本発明媒体A2~A9を用いる必要があるが、下地軟磁性膜の透磁率を下げすぎると、再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、より望ましくは50以上500以下であることが望ましい。

【0042】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用によって起こるため、垂直磁化膜の膜厚にはあまり依存しない。このため、垂直磁化膜の膜厚をある程度変化させても同様な結果となる。

【0043】 [実施例2] 実施例1においてCo78Cr19Pt LaLu (at%) ターゲットの代わりにCo78Cr19TaLaSr (at%) ターゲットを用いて実施例1と同様にして媒 体を作製した。実施例1と同様に作製した媒体を、実施 50 8

例1にならい、それぞれ従来媒体B1、BB1、本発明 媒体B2、B3、B4、B5、B6、B7、B8、B9 とする。各々の基板温度で成膜したFe84.9Si9.6A 15.5膜の透磁率を測定した。各々の透磁率の値を図6 に示す。

【0044】従来媒体B1、BB1及び本発明媒体B2 ~B9の記録再生の実験は、実施例1と同様な記録再生 条件の下で行った。

【0045】まず、外部磁界に対する記録磁化の安定性を調べるために、従来媒体B1、BB1及び本発明媒体B2~B9に単磁極ヘッドで信号を記録後、ヘルムホルツコイルによって媒体に直流磁場を大きさ1~300eの範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図7に示す。ここでは、磁場印加前の再生出力に対する磁場印加後の再生出力を百分率で示してある。

【0046】図7から分かるように、従来媒体B1、BB1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体B2~B9の場合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減少しない。この時、保磁力の値は20e~300eの範囲に分布しているが、10nmのみ成膜した場合の各々の膜の保磁力(これを便宜上、初期保磁力と呼ぶことがの保磁力が20e以上を示すする)を見ると、膜全体の保磁力が20e以上を示すよが分かる。一般に膜の成長初期層の保磁力は大きいが、この成長初期層の保磁力が大きいことで膜全体の保磁力を大きくすることができる。

【0047】本発明媒体B2~B9の場合、下地軟磁性膜の透磁率が小さいこと、及び膜全体の保磁力が大きいことにより、外部からの磁束を単磁極ヘッドの主磁極に集中しにくくすることができ、外部磁場に強い垂直2層媒体とすることができた。また、従来媒体BB1の場合、本発明媒体B2よりも下地軟磁性膜の膜厚が厚い分、膜全体の保磁力に占める初期保磁力の割合が小さくなり、原全体の保磁力が本発明媒体B2よりも小さくなり、外部磁場に対して弱くなったと考えられる。以上全体の保磁力を20e~300e、初期保磁力を300e以上、下地軟磁性膜の膜厚を300nm以下とすることができる。

【0048】次に、再生出力の測定を行った。再生出力の記録密度依存性の測定結果を図8に示す。図8から分かるように、再生出力の大きさは、下地軟磁性膜の透磁率が大きいほど大きい。従来媒体B1、BB1、本発明媒体B2、B3、B9は下地軟磁性膜の透磁率の大きさが大きく、十分な再生出力を得ることができる。本発明

媒体B4、B5は下地軟磁性膜の透磁率の大きさが本発明媒体B2、B3、B9よりも小さいため、再生出力が小さくなるが、本発明媒体B2、B3、B9の再生出力の約8割であり、依然再生出力の絶対値として十分であると言える。本発明媒体B6、B7は下地軟磁性膜の透磁率の大きさが本発明媒体B4、B5よりも小さいため、再生出力がさらに小さくなるが、本発明媒体B2、B3、B9の再生出力の約6割であり、依然再生出力の絶対値として十分であると言える。しかし、本発明媒体B8の場合、下地軟磁性膜の透磁率が小さすぎるため、再生出力が十分に取れない。

【0049】以上のことから、外部磁場に対する出力信号の耐久性の観点からは、本発明媒体B2~B9を用いる必要があるが、下地軟磁性膜の透磁率を下げすぎると再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、より望ましくは50以上100以下であることが望ましい。

【0050】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用によって起こるため、垂直磁化膜の膜厚にはあまり依存しない。このため、垂直磁化膜の膜厚をある程度変化させても同様な結果となる。

【0051】 [実施例3] 実施例1においてCo78Cr19Pt LaLu (at%) ターゲットの代わりにCo78Cr19PtLuPr (at%) ターゲットを用いて実施例1と同様にして媒体を作製した。実施例1と同様に作製した媒体を、実施例1にならい、それぞれ従来媒体C1、CC1、本発明媒体C2、C3、C4、C5、C6、C7、C8、C9とする。各々の基板温度で成膜したFe84.9Si9.6Al5.5膜の透磁率を測定した。各々の透磁率の値を図9に示す。

【0052】従来媒体C1、CC1及び本発明媒体C2 ~C9の記録再生の実験は、実施例1と同様な記録再生 条件の下で行った。

【0053】まず、外部磁界に対する記録磁化の安定性を調べるために、従来媒体C1、CC1及び本発明媒体C2~C9に単磁極ヘッドで信号を記録後、ヘルムホルツコイルによって媒体に直流磁場を大きさ1~300eの範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図10に示す。ここでは、磁場印加前の再生出力に対する磁場印加後の再生出力を百分率で示してある。

【0054】図10から分かるように、従来媒体C1、CC1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体C2~C9の場合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減少50

10

しない。この時、保磁力の値は20e~300eの範囲に分布しているが、10nmのみ成膜した場合の各々の膜の保磁力(これを便宜上、初期保磁力と呼ぶこととする)を見ると、膜全体の保磁力が20e以上を示す場合、初期保磁力は300e以上の値を示していることが分かる。一般に膜の成長初期層の保磁力は大きいが、この成長初期層の保磁力が大きいことで膜全体の保磁力を大きくすることができる。

【0055】本発明媒体C2~C9の場合、下地軟磁性膜の透磁率が小さいこと、及び膜全体の保磁力が大きいことにより、外部からの磁束を単磁極ヘッドの主磁極に集中しにくくすることができ、外部磁場に強い垂直2層媒体とすることができた。また、従来媒体CC1の場合、本発明媒体C2よりも下地軟磁性膜の膜厚が厚い分、膜全体の保磁力に占める初期保磁力の割合が小さくなり、外部磁場に対して弱くなったと考えられる。以上のことから、下地軟磁性膜の透磁率を1000以下、膜全体の保磁力を20e~300e、初期保磁力を300e以上、下地軟磁性膜の膜厚を300nm以下とすることにより、外部磁場に強い垂直2層媒体とすることができる。

【0056】次に、再生出力の測定を行った。再生出力の記録密度依存性の測定結果を図11に示す。図11から分かるように、再生出力の大きさは、下地軟磁性膜の透磁率が大きいほど大きい。従来媒体C1、CC1、本発明媒体C2、C3、C9は下地軟磁性膜の透磁率の大きさが大きく、十分な再生出力を得ることができる。本発明媒体B4、B5は下地軟磁性膜の透磁率の大きさが本発明媒体C2、C3、C9よりも小さいため、再生出力が小さくなるが、本発明媒体C2、C3、C9の再生出力の約8割であり、依然再生出力の絶対値として十分であると言える。

【0057】本発明媒体C6、C7は下地軟磁性膜の透磁率の大きさが本発明媒体C4、C5よりも小さいため、再生出力がさらに小さくなるが、本発明媒体C2、C3、C9の再生出力の約6割であり、依然再生出力の絶対値として十分であると言える。しかし、本発明媒体C8の場合、下地軟磁性膜の透磁率が小さすぎるため、再生出力が十分に取れない。

【0058】以上のことから、外部磁場に対する出力信号の耐久性の観点からは、本発明媒体C2~C9を用いる必要があるが、下地軟磁性膜の透磁率を下げすぎると再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、より望ましくは50以上500以下であることが望ましい。

【0059】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用

によって起こるため、垂直磁化膜の膜厚にはあまり依存 しない。このため、垂直磁化膜の膜厚をある程度変化さ せても同様な結果となる。

【0060】 [実施例4] 実施例1においてFe84.9Si9.6Al5.5 (wt%) ターゲットの代わりにFe84.9Si8.0Al7.1 (wt%) ターゲットを、Co78Cr19PtLaLu (at%) ターゲットを代わりにCo78Cr19PtLaLu (at%) ターゲットを用いて実施例1と同様にして媒体を作製した。ただし、Fe84.9Si8.0Al7.1 膜成膜時の基板温度を450 ℃、400 ℃、350 ℃、300 ℃、250 ℃、200 ℃、00 ℃、00 ℃ 及び室温で成膜して作製した媒体をそれぞれ本発明媒体00 2、00 ℃ 00 ℃ 000 ℃ 000 ℃ 000 ℃ 000 ℃ 000 ℃ 000 ℃ 000 ℃

【0061】各々の基板温度で成膜したFe84.9Si 8.0Al7.1膜の透磁率を測定した。各々の透磁率の値を 図12に示す。

【0062】従来媒体D1、DD1及び本発明媒体D2 ~D9の記録再生の実験は、実施例1と同様な記録再生 条件の下で行った。

【0063】まず、外部磁界に対する記録磁化の安定性を調べるために、従来媒体D1、DD1及び本発明媒体D2~D9に単磁極ヘッドで信号を記録後、ヘルムホルツコイルによって媒体に直流磁場を大きさ1~300eの範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図13に示す。ここでは、磁場印加前の再生出力に対する磁場印加後の再生出力を百分率で示してある。

【0064】図13から分かるように、従来媒体D1、DD1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体D2~D9の場合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減速しない。この時、保磁力の値は20e~300eの経囲に分布しているが、10nmのみ成膜した場合の各々の膜の保磁力(これを便宜上、初期保磁力と呼ぶことりを見ると、膜全体の保磁力が20e以上を示すよる)を見ると、膜全体の保磁力が20e以上を示すよが分かる。一般に膜の成長初期層の保磁力は大きいが、この成長初期層の保磁力が大きいことで膜全体の保磁力を大きくすることができる。

【0065】本発明媒体D2~D9の場合、下地軟磁性膜の透磁率が小さいこと、及び膜全体の保磁力が大きいことにより、外部からの磁束を単磁極ヘッドの主磁極に集中しにくくすることができ、外部磁場に強い垂直2層媒体とすることができた。また、従来媒体DD1の場合、本発明媒体D2よりも下地軟磁性膜の膜厚が厚い

12

分、膜全体の保磁力に占める初期保磁力の割合が小さくなり、膜全体の保磁力が本発明媒体D2よりも小さくなり、外部磁場に対して弱くなったと考えられる。以上のことから、下地軟磁性膜の透磁率を1000以下、膜全体の保磁力を20e~300e、初期保磁力を300e以上、下地軟磁性膜の膜厚を300nm以下とすることにより、外部磁場に強い垂直2層媒体とすることができる。

【0066】次に、再生出力の測定を行った。再生出力 の記録密度依存性の測定結果を図14に示す。図14か ら分かるように、再生出力の大きさは、下地軟磁性膜の 透磁率が大きいほど大きい。従来媒体D1、DD1、本 発明媒体D2、D3、D9は下地軟磁性膜の透磁率の大 きさが大きく、十分な再生出力を得ることができる。本 発明媒体D4、D5は下地軟磁性膜の透磁率の大きさが 本発明媒体D2、D3、D9よりも小さいため、再生出 力が小さくなるが、本発明媒体D2、D3、D9の再生 出力の約8割であり、依然再生出力の絶対値として十分 であると言える。本発明媒体D6、D7は下地軟磁性膜 の透磁率の大きさが本発明媒体D4、D5よりも小さい ため、再生出力がさらに小さくなるが、本発明媒体D 2、D3、D9の再生出力の約6割であり、依然再生出 力の絶対値として十分であると言える。しかし、本発明 媒体D8の場合、下地軟磁性膜の透磁率が小さすぎるた め、再生出力が十分に取れない。

【0067】以上のことから、外部磁場に対する出力信号の耐久性の観点からは、本発明媒体D2~D9を用いる必要があるが、下地軟磁性膜の透磁率を下げすぎると再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、より望ましくは50以上500以下であることが望ましい。【0068】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用によって起こるため、垂直磁化膜の膜厚にはあまり依存しない。このため、垂直磁化膜の膜厚をある程度変化させても同様な結果となる。

【0069】 [実施例5] 実施例1においてFe84.9S i 9.6A l 5.5 (w t %) ターゲットの代わりにFe84.9 S i 12.0A l 3.1 (w t %) ターゲットを、Co78C r 19Pt La Lu (a t %) ターゲットの代わりにCo78 C r 19Ta Pr Sr (a t %) ターゲットを用いて実施例1と同様にして媒体を作製した。ただし、Fe84.9S i 12.0A l 3.1膜成膜時の基板温度を450℃、400℃、350℃、300℃、250℃、200℃、及び室温で成膜して作製した媒体をそれぞれ本発明媒体E2、E3、E4、E5、E6、E7、E8とする。また、本発明媒体E2の下地軟磁性膜の膜厚を250nm、350nmとした媒体を本発明媒体E9、従来媒体EE1と

する。

【0070】各々の基板温度で成膜したFe84.9Si 12.0A 13.1膜の透磁率を測定した。各々の透磁率の値 を図15に示す。

【0071】従来媒体E1、EE1及び本発明媒体E2~E9の記録再生の実験は、実施例1と同様な記録再生条件の下で行った。まず、外部磁界に対する記録磁化の安定性を調べるために、従来媒体E1、EE1及び本発明媒体E2~E9に単磁極ヘッドで信号を記録後、ヘルムホルツコイルによって媒体に直流磁場を大きさ1~300eの範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図16に示す。ここでは、磁場印加前の再生出力に対する磁場印加後の再生出力を百分率で示してある。

【0072】図16から分かるように、従来媒体E1、EE1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体E2~E9の場合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減少しない。この時、保磁力の値は20e~300eの範囲に分布しているが、10nmのみ成膜した場合の各々の膜の保磁力。(これを便宜上、初期保磁力と呼ぶことの原の保磁力が20e以上を示する)を見ると、膜全体の保磁力が20e以上を示する。一般に膜の成長初期層の保磁力が大きいことで膜全体の保磁力を大きくすることができる。

【0073】本発明媒体E2~E9の場合、下地軟磁性膜の透磁率が小さいこと、及び膜全体の保磁力が大きいことにより、外部からの磁束を単磁極ヘッドの主磁極に集中しにくくすることができ、外部磁場に強い垂直2層媒体とすることができた。また、従来媒体EE1の場合、本発明媒体E2よりも下地軟磁性膜の膜厚が厚い分、膜全体の保磁力に占める初期保磁力の割合が小さくなり、原全体の保磁力が本発明媒体E2よりも小さくなり、外部磁場に対して弱くなったと考えられる。以上のことから、下地軟磁性膜の透磁率を1000以下とすることができる。

【0074】次に、再生出力の測定を行った。再生出力の記録密度依存性の測定結果を図17に示す。図17から分かるように、再生出力の大きさは、下地軟磁性膜の透磁率が大きいほど大きい。従来媒体E1、EE1、本発明媒体E2、E3、E9は下地軟磁性膜の透磁率の大きさが大きく、十分な再生出力を得ることができる。本発明媒体E4、E5は下地軟磁性膜の透磁率の大きさが本発明媒体E2、E3、E9よりも小さいため、再生出 50

14

力が小さくなるが、本発明媒体E2、E3、E9の再生出力の約8割であり、依然再生出力の絶対値として十分であると言える。本発明媒体E6、E7は下地軟磁性膜の透磁率の大きさが本発明媒体E4、E5よりも小さいため、再生出力がさらに小さくなるが、本発明媒体E2、E3、E9の再生出力の約6割であり、依然再生出力の絶対値として十分であると言える。しかし、本発明媒体E8の場合、下地軟磁性膜の透磁率が小さすぎるため、再生出力が十分に取れない。

【0075】以上のことから、外部磁場に対する出力信号の耐久性の観点からは、本発明媒体E2~E9を用いる必要があるが、下地軟磁性膜の透磁率を下げすぎると再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、より望ましくは50以上500以下、さらにより望ましくは50以上1000以下であることが望ましい。【0076】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用によって起こるため、垂直磁化膜の膜厚にはあまり依存しない。このため、垂直磁化膜の膜厚をある程度変化させても同様な結果となる。

【0077】 [実施例6] 実施例1においてFe84.9S i 9.6A l 5.5 (w t %) ターゲットの代わりにFe82.9 S i 9.6A l 5.5T a Z r (w t %) ターゲットを用いて実施例1と同様にして媒体を作製した。T a Z r の添加は、結晶粒を微細化する効果がある。実施例1と同様に作製した媒体を、実施例1にならい、それぞれ従来媒体F1、FF1、本発明媒体F2、F3、F4、F5、F6、F7、F8、F9とする。各々の基板温度で成膜したFe82.9S i 9.6A l 5.5T a Z r 膜の透磁率を測定した。各々の透磁率の値を図18に示す。

【0078】従来媒体F1、FF1及び本発明媒体F2 ~F9の記録再生の実験は、実施例1と同様な記録再生 条件の下で行った。

【0079】まず、外部磁界に対する記録磁化の安定性を調べるために、従来媒体F1、FF1及び本発明媒体F2~F9に単磁極ヘッドで信号を記録後、ヘルムホルツコイルによって媒体に直流磁場を大きさ1~300eの範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図19に示す。ここでは、磁場印加前の再生出力に対する磁場印加後の再生出力を百分率で示してある。

【0080】図19から分かるように、従来媒体F1、FF1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体F2~F9の場合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減少しない。この時、保磁力の値は20e~300eの範囲

に分布しているが、10nmのみ成膜した場合の各々の 膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす る)を見ると、膜全体の保磁力が20e以上を示す場 合、初期保磁力は300e以上の値を示していることが 分かる。一般に膜の成長初期層の保磁力は大きいが、こ の成長初期層の保磁力が大きいことで膜全体の保磁力を 大きくすることができる。

【0081】本発明媒体F2~F9の場合、下地軟磁性膜の透磁率が小さいこと、及び膜全体の保磁力が大きいことにより、外部からの磁束を単磁極ヘッドの主磁極に集中しにくくすることができ、外部磁場に強い垂直2層媒体とすることができた。また、従来媒体FF1の場合、本発明媒体F2よりも下地軟磁性膜の膜厚が厚い分、膜全体の保磁力に占める初期保磁力の割合が小さくなり、膜全体の保磁力が本発明媒体F2よりも小さくなり、外部磁場に対して弱くなったと考えられる。以上のことから、下地軟磁性膜の透磁率を1000以下、膜全体の保磁力を20e~300e、初期保磁力を300e以上、下地軟磁性膜の膜厚を300nm以下とすることにより、外部磁場に強い垂直2層媒体とすることができる。

【0082】次に、再生出力の測定を行った。再生出力 の記録密度依存性の測定結果を図20に示す。図20か ら分かるように、再生出力の大きさは、下地軟磁性膜の 透磁率が大きいほど大きい。従来媒体F1、FF1、本 発明媒体F2、F3、F9は下地軟磁性膜の透磁率の大 きさが大きく、十分な再生出力を得ることができる。本 発明媒体F4、F5は下地軟磁性膜の透磁率の大きさが 本発明媒体F2、F3、F9よりも小さいため、再生出 力が小さくなるが、本発明媒体F2、F3、F9の再生 出力の約8割であり、依然再生出力の絶対値として十分 であると言える。本発明媒体F6、F7は下地軟磁性膜 の透磁率の大きさが本発明媒体F4、F5よりも小さい ため、再生出力がさらに小さくなるが、本発明媒体下 2、F3、F9の再生出力の約6割であり、依然再生出 力の絶対値として十分であると言える。しかし、本発明 媒体F8の場合、下地軟磁性膜の透磁率が小さすぎるた め、再生出力が十分に取れない。

【0083】以上のことから、外部磁場に対する出力信号の耐久性の観点からは、本発明媒体F2~F9を用いる必要があるが、下地軟磁性膜の透磁率を下げすぎると再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、より望ましくは50以上500以下、さらにより望ましくは50以上100以下であることが望ましい。【0084】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用によって起こるため、垂直磁化膜の膜厚をある程度変化さ50

16

せても同様な結果となる。

【0085】 [実施例7] 実施例2においてFe84.9S i 9.6A l 5.5 (w t %) ターゲットの代わりにFe82.9 S i 9.6A l 5.5 T i Mo (w t %) ターゲットを用いて 実施例1と同様にして媒体を作製した。T i Moの添加は、結晶粒を微細化する効果がある。実施例1と同様に作製した媒体を、実施例1にならい、それぞれ従来媒体 G 1、G G 1、本発明媒体G 2、G 3、G 4、G 5、G 6、G 7、G 8、G 9とする。

【0086】各々の基板温度で成膜したFe82.9Si 9.6Al5.5TiMo膜の透磁率を測定した。各々の透磁 率の値を図21に示す。

【0087】従来媒体G1、GG1及び本発明媒体G2 ~G9の記録再生の実験は、実施例1と同様な記録再生 条件の下で行った。

【0088】まず、外部磁界に対する記録磁化の安定性を調べるために、従来媒体G1、GG1及び本発明媒体G2~G9に単磁極ヘッドで信号を記録後、ヘルムホルツコイルによって媒体に直流磁場を大きさ1~300eの範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図22に示す。ここでは、磁場印加前の再生出力に対する磁場印加後の再生出力を百分率で示してある。

【0089】図22から分かるように、従来媒体G1、GG1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体G2~G9の場合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減少しない。この時、保磁力の値は20e~300eの範囲に分布しているが、10nmのみ成膜した場合の各々の膜の保磁力(これを便宜上、初期保磁力と呼ぶこととする)を見ると、膜全体の保磁力が20e以上を示す場合、初期保磁力は300e以上の値を示していることが分かる。一般に膜の成長初期層の保磁力は大きいが、この成長初期層の保磁力が大きいことで膜全体の保磁力を大きくすることができる。

【0090】本発明媒体G2~G9の場合、下地軟磁性膜の透磁率が小さいこと、及び膜全体の保磁力が大きいことにより、外部からの磁束を単磁極ヘッドの主磁に集中しにくくすることができ、外部磁場に強い垂直2層媒体とすることができた。また、従来媒体GG1の場合、本発明媒体G2よりも下地軟磁性膜の膜厚が厚い分、膜全体の保磁力に占める初期保磁力の割合が小さくなり、原全体の保磁力が本発明媒体G2よりも小さくなり、外部磁場に対して弱くなったと考えられる。以上のことから、下地軟磁性膜の透磁率を1000以下、膜全体の保磁力を20e~300e、初期保磁力を300e以上、下地軟磁性膜の膜厚を300nm以下とすることにより、外部磁場に強い垂直2層媒体とすることができ

る。

【0091】次に、再生出力の測定を行った。再生出力 の記録密度依存性の測定結果を図23に示す。図23か ら分かるように、再生出力の大きさは、下地軟磁性膜の 透磁率が大きいほど大きい。従来媒体G1、GG1、本 発明媒体G2、G3、G9は下地軟磁性膜の透磁率の大 きさが大きく、十分な再生出力を得ることができる。本 発明媒体G4、G5は下地軟磁性膜の透磁率の大きさが 本発明媒体G2、G3、G9よりも小さいため、再生出 力が小さくなるが、本発明媒体G2、G3、G9の再生 出力の約8割であり、依然再生出力の絶対値として十分 であると言える。本発明媒体G6、G7は下地軟磁性膜 の透磁率の大きさが本発明媒体G4、G5よりも小さい ため、再生出力がさらに小さくなるが、本発明媒体G 2、G3、G9の再生出力の約6割であり、依然再生出 力の絶対値として十分であると言える。しかし、本発明 媒体G8の場合、下地軟磁性膜の透磁率が小さすぎるた め、再生出力が十分に取れない。

【0092】以上のことから、外部磁場に対する出力信 号の耐久性の観点からは、本発明媒体G2~G9を用い る必要があるが、下地軟磁性膜の透磁率を下げすぎると 再生出力の低下を招く。このことから、下地軟磁性膜の 透磁率は50以上である必要がある。そして、再生出力 の観点から、下地軟磁性膜の透磁率は50以上100以 下、より望ましくは50以上500以下、さらにより望 ましくは50以上1000以下であることが望ましい。 【0093】また、外部磁場に対する出力信号の耐久性 は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用 によって起こるため、垂直磁化膜の膜厚にはあまり依存 しない。このため、垂直磁化膜の膜厚をある程度変化さ せても同様な結果となる。

【0094】 [実施例8] 実施例3においてFe&4.9S i 9.6A 1 5.5 (w t %) ターゲットの代わりにFe 82.9 Sig.6Al5.5ZrNb(wt%)ターゲットを用いて 実施例1と同様にして媒体を作製した。 Ζr Nb の添加 は、結晶粒を微細化する効果がある。実施例1と同様に 作製した媒体を、実施例1にならい、それぞれ従来媒体 H1、HH1、本発明媒体H2、H3、H4、H5、H 6、H7、H8、H9とする。各々の基板温度で成膜し たFe 82.9S i 9.6A l 5.5Z r N b 膜の透磁率を測定し た。各々の透磁率の値を図24に示す。

【0095】従来媒体H1、HH1及び本発明媒体H2 ~H9の記録再生の実験は、実施例1と同様な記録再生 条件の下で行った。

【0096】まず、外部磁界に対する記録磁化の安定性 を調べるために、従来媒体H1、HH1及び本発明媒体 H2~H9に単磁極ヘッドで信号を記録後、ヘルムホル ツコイルによって媒体に直流磁場を大きさ1~300eの 範囲で印加し、磁場印加前の再生出力と磁場印加後の再 生出力の比較をおこなった。この結果を図25に示す。

18

ここでは、磁場印加前の再生出力に対する磁場印加後の 再生出力を百分率で示してある。

【0097】図25から分かるように、従来媒体H1、 HH1は、下地軟磁性膜の軟磁気特性が良好で透磁率が 十分大きく、保磁力が十分小さいため、4'Oeの外部磁 場で出力が減少し始めるが、本発明媒体H2~H9の場 合、透磁率を小さくし、保磁力を比較的大きくしたた め、いずれの媒体も200eの外部磁場まで出力は減少 しない。この時、保磁力の値は20e~300eの範囲 に分布しているが、10 nmのみ成膜した場合の各々の 膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす る) を見ると、膜全体の保磁力が20e以上を示す場 合、初期保磁力は300e以上の値を示していることが 分かる。一般に膜の成長初期層の保磁力は大きいが、こ の成長初期層の保磁力が大きいことで膜全体の保磁力を 大きくすることができる。

【0098】本発明媒体H2~H9の場合、下地軟磁性 膜の透磁率が小さいこと、及び膜全体の保磁力が大きい ことにより、外部からの磁束を単磁極ヘッドの主磁極に 集中しにくくすることができ、外部磁場に強い垂直2層 媒体とすることができた。また、従来媒体HH1の場 合、本発明媒体H2よりも下地軟磁性膜の膜厚が厚い 分、膜全体の保磁力に占める初期保磁力の割合が小さく なり、膜全体の保磁力が本発明媒体H2よりも小さくな り、外部磁場に対して弱くなったと考えられる。以上の ことから、下地軟磁性膜の透磁率を1000以下、膜全 体の保磁力を20e~300e、初期保磁力を300e 以上、下地軟磁性膜の膜厚を300nm以下とすること により、外部磁場に強い垂直2層媒体とすることができ

【0099】次に、再生出力の測定を行った。再生出力 の記録密度依存性の測定結果を図26に示す。図26か ら分かるように、再生出力の大きさは、下地軟磁性膜の 透磁率が大きいほど大きい。従来媒体H1、HH1、本 発明媒体H2、H3、H9は下地軟磁性膜の透磁率の大 きさが大きく、十分な再生出力を得ることができる。本 発明媒体H4、H5は下地軟磁性膜の透磁率の大きさが 本発明媒体H2、H3、H9よりも小さいため、再生出 力が小さくなるが、本発明媒体H2、H3、H9の再生 出力の約8割であり、依然再生出力の絶対値として十分 であると言える。本発明媒体H6、H7は下地軟磁性膜 の透磁率の大きさが本発明媒体H4、H5よりも小さい ため、再生出力がさらに小さくなるが、本発明媒体H 2、H3、H9の再生出力の約6割であり、依然再生出 力の絶対値として十分であると言える。しかし、本発明 媒体H8の場合、下地軟磁性膜の透磁率が小さすぎるた め、再生出力が十分に取れない。

【0100】以上のことから、外部磁場に対する出力信 号の耐久性の観点からは、本発明媒体H2~H9を用い る必要があるが、下地軟磁性膜の透磁率を下げすぎると

10

再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、より望ましくは50以上500以下であることが望ましい。【0101】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用によって起こるため、垂直磁化膜の膜厚をある程度変化させても同様な結果となる。

【0102】 [実施例9] 実施例4においてFe84.9S i 8.0A l 7.1 (w t %) ターゲットの代わりにFe82.9 S i 8.0A l 7.1 T a Z r (w t %) ターゲットを用いて 実施例4と同様にして媒体を作製した。T a Z r の添加は、結晶粒を微細化する効果がある。それぞれ本発明媒体J2、J3、J4、J5、J6、J7、J8とする。また、本発明媒体J2の下地軟磁性膜の膜厚を250 n m、350 n mとした媒体を本発明媒体J9、従来媒体JJ1とする。

【0103】各々の基板温度で成膜したFe82.9Si 8.0Al7.1TaZr膜の透磁率を測定した。各々の透磁 率の値を図27に示す。

【0104】従来媒体J1、JJ1及び本発明媒体J2 ~ J9の記録再生の実験は、実施例1と同様な記録再生 条件の下で行った。

【0105】まず、外部磁界に対する記録磁化の安定性を調べるために、従来媒体J1、JJ1及び本発明媒体J2~J9に単磁極ヘッドで信号を記録後、ヘルムホルツコイルによって媒体に直流磁場を大きさ1~300eの範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図28に示す。ここでは、磁場印加前の再生出力に対する磁場印加後の再生出力を百分率で示してある。

【0106】図28から分かるように、従来媒体J1、JJ1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体J2~J9の場合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減速しない。この時、保磁力の値は20e~300eの範囲に分布しているが、10nmのみ成膜した場合の各々の膜の保磁力(これを便宜上、初期保磁力と呼ぶことで原の保磁力は300e以上の値を示していることをする)を見ると、膜全体の保磁力が20e以上を示す場合、初期保磁力は300e以上の値を示していることが分かる。一般に膜の成長初期層の保磁力は大きいが、この成長初期層の保磁力が大きいことで膜全体の保磁力を大きくすることができる。

【0107】本発明媒体J2~J9の場合、下地軟磁性 膜の透磁率が小さいこと、及び膜全体の保磁力が大きい ことにより、外部からの磁束を単磁極ヘッドの主磁極に 20

集中しにくくすることができ、外部磁場に強い垂直2層 媒体とすることができた。また、従来媒体JJ1の場合、本発明媒体J2よりも下地軟磁性膜の膜厚が厚い分、膜全体の保磁力に占める初期保磁力の割合が小さくなり、原全体の保磁力が本発明媒体J2よりも小さくなり、外部磁場に対して弱くなったと考えられる。以上のことから、下地軟磁性膜の透磁率を1000以下、膜全体の保磁力を20e~300e、初期保磁力を300e以上、下地軟磁性膜の膜厚を300nm以下とすることにより、外部磁場に強い垂直2層媒体とすることができる。

【0108】次に、再生出力の測定を行った。再生出力 の記録密度依存性の測定結果を図29に示す。図29か ら分かるように、再生出力の大きさは、下地軟磁性膜の 透磁率が大きいほど大きい。従来媒体J1、JJ1、本 発明媒体J2、J3、J9は下地軟磁性膜の透磁率の大 きさが大きく、十分な再生出力を得ることができる。本 発明媒体 J4、 J5は下地軟磁性膜の透磁率の大きさが 本発明媒体J2、J3、J9よりも小さいため、再生出 力が小さくなるが、本発明媒体 J 2 、 J 3 、 J 9 の再生 出力の約8割であり、依然再生出力の絶対値として十分 であると言える。本発明媒体J6、J7は下地軟磁性膜 の透磁率の大きさが本発明媒体J4、J5よりも小さい ため、再生出力がさらに小さくなるが、本発明媒体 J 2、 J3、 J9 の再生出力の約6割であり、依然再生出 力の絶対値として十分であると言える。しかし、本発明 媒体J8の場合、下地軟磁性膜の透磁率が小さすぎるた め、再生出力が十分に取れない。

【0109】以上のことから、外部磁場に対する出力信号の耐久性の観点からは、本発明媒体J2~J9を用いる必要があるが、下地軟磁性膜の透磁率を下げすぎると再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、より望ましくは50以上500以下、さらにより望ましくは50以上100以下であることが望ましい。【0110】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用によって起こるため、垂直磁化膜の膜厚にはあまり依存しない。このため、垂直磁化膜の膜厚をある程度変化させても同様な結果となる。

【0111】[実施例10] 実施例5においてFe84.9 Si12.0Al3.1 (wt%) ターゲットの代わりにFe82.9Si12.0Al3.1TiMo (wt%) ターゲットを用いて実施例5と同様にして媒体を作製した。TiMoの添加は、結晶粒を微細化する効果がある。それぞれ本発明媒体K2、K3、K4、K5、K6、K7、K8とする。また、本発明媒体E2の下地軟磁性膜の膜厚を250nm、350nmとした媒体を本発明媒体K9、従来媒体KK1とする。

【0112】各々の基板温度で成膜したFe82.9Si 12.0Al3.1TiMo膜の透磁率を測定した。各々の透 磁率の値を図30に示す。

【0113】従来媒体K1、KK1及び本発明媒体K2 ~K9の記録再生の実験は、実施例1と同様な記録再生 条件の下で行った。

【0114】まず、外部磁界に対する記録磁化の安定性を調べるために、従来媒体K1、KK1及び本発明媒体K2~K9に単磁極ヘッドで信号を記録後、ヘルムホルツコイルによって媒体に直流磁場を大きさ1~300eの 10 範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図31に示す。ここでは、磁場印加前の再生出力に対する磁場印加後の再生出力を百分率で示してある。

【0115】図31から分かるように、従来媒体K1、KK1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体K2~K9の場合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減少しない。この時、保磁力の値は20e~300eの範囲に分布しているが、10nmのみ成膜した場合の各々としているが、10nmのみ成膜した場合の各々とする)を見ると、膜全体の保磁力が20e以上を示するりを見ると、膜全体の保磁力が20e以上を示する。分かる。一般に膜の成長初期層の保磁力が大きいことで膜全体の保磁力を大きくすることができる。

【0116】本発明媒体K2~K9の場合、下地軟磁性膜の透磁率が小さいこと、及び膜全体の保磁力が大きいことにより、外部からの磁束を単磁極ヘッドの主磁極に集中しにくくすることができ、外部磁場に強い垂直2層媒体とすることができた。また、従来媒体KK1の場合、本発明媒体K2よりも下地軟磁性膜の膜厚が厚い分、膜全体の保磁力に占める初期保磁力の割合が小さくなり、原全体の保磁力が本発明媒体KK2よりも小さくなり、外部磁場に対して弱くなったと考えられる。以上のことから、下地軟磁性膜の透磁率を1000以下、全体の保磁力を20e~300e、初期保磁力を300e以上、下地軟磁性膜の膜厚を300nm以下とすることにより、外部磁場に強い垂直2層媒体とすることができる。

【0117】次に、再生出力の測定を行った。再生出力の記録密度依存性の測定結果を図32に示す。図32から分かるように、再生出力の大きさは、下地軟磁性膜の透磁率が大きいほど大きい。従来媒体K1、KK1、本発明媒体K2、K3、K9は下地軟磁性膜の透磁率の大きさが大きく、十分な再生出力を得ることができる。本発明媒体K4、K5は下地軟磁性膜の透磁率の大きさが本発明媒体K2、K3、K9よりも小さいため、再生出

22

力が小さくなるが、本発明媒体K2、K3、K9の再生出力の約8割であり、依然再生出力の絶対値として十分であると言える。本発明媒体K6、K7は下地軟磁性膜の透磁率の大きさが本発明媒体K4、K5よりも小さいため、再生出力がさらに小さくなるが、本発明媒体K2、K3、K9の再生出力の約6割であり、依然再生出力の絶対値として十分であると言える。しかし、本発明媒体K8の場合、下地軟磁性膜の透磁率が小さすぎるため、再生出力が十分に取れない。

【0·118】以上のことから、外部磁場に対する出力信号の耐久性の観点からは、本発明媒体K2~K9を用いる必要があるが、下地軟磁性膜の透磁率を下げすぎると再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、より望ましくは50以上500以下、さらにより望ましくは50以上1000以下であることが望ましい。【0119】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用によって起こるため、垂直磁化膜の膜厚にはあまり依存しない。このため、垂直磁化膜の膜厚をある程度変化させても同様な結果となる。

【0120】 [実施例11] 実施例1においてFe84.9 Si9.6Al5.5 (wt%) ターゲットの代わりにFeTaNターゲットを用いて実施例1と同様にして媒体を作製した。実施例1と同様に作製した媒体を、実施例1にならい、それぞれ従来媒体L1、LL1、本発明媒体L2、L3、L4、L5、L6、L7、L8、L9とする。各々の基板温度で成膜したFeTaN膜の透磁率を測定した。各々の透磁率の値を図33に示す。

【0121】従来媒体L1、LL1及び本発明媒体L2 ~L9の記録再生の実験は、実施例1と同様な記録再生 条件の下で行った。

【0122】まず、外部磁界に対する記録磁化の安定性を調べるために、従来媒体L1、LL1及び本発明媒体L2~L9に単磁極ヘッドで信号を記録後、ヘルムホルツコイルによって媒体に直流磁場を大きさ1~300eの範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図34に示す。ここでは、磁場印加前の再生出力に対する磁場印加後の再生出力を百分率で示してある。

【0123】図34から分かるように、従来媒体L1、LL1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体L2~L9の場合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減少しない。この時、保磁力の値は20e~300eの範囲に分布しているが、10nmのみ成膜した場合の各々の膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす

24

る)を見ると、膜全体の保磁力が20e以上を示す場合、初期保磁力は300e以上の値を示していることが分かる。一般に膜の成長初期層の保磁力は大きいが、この成長初期層の保磁力が大きいことで膜全体の保磁力を大きくすることができる。

【0124】本発明媒体L2~L9の場合、下地軟磁性膜の透磁率が小さいこと、及び膜全体の保磁力が大きいことにより、外部からの磁束を単磁極ヘッドの主磁極に集中しにくくすることができ、外部磁場に強い垂直2層媒体とすることができた。また、従来媒体LL1の場合、本発明媒体L2よりも下地軟磁性膜の膜厚が厚い分、膜全体の保磁力に占める初期保磁力の割合が小さくなり、膜全体の保磁力が本発明媒体L2よりも小さくなり、外部磁場に対して弱くなったと考えられる。以上全体の保磁力を20e~300e、初期保磁力を300e以上、下地軟磁性膜の膜厚を300nm以下とすることができる。

【0125】次に、再生出力の測定を行った。再生出力 の記録密度依存性の測定結果を図35に示す。図35か ら分かるように、再生出力の大きさは、下地軟磁性膜の 透磁率が大きいほど大きい。従来媒体L1、LL1、本 発明媒体L2、L3、L9は下地軟磁性膜の透磁率の大 きさが大きく、十分な再生出力を得ることができる。本 発明媒体L4、L5は下地軟磁性膜の透磁率の大きさが 本発明媒体L2、L3、L9よりも小さいため、再生出 力が小さくなるが、本発明媒体L2、L3、L9の再生 出力の約8割であり、依然再生出力の絶対値として十分 であると言える。本発明媒体L6、L7は下地軟磁性膜 30 の透磁率の大きさが本発明媒体L4、L5よりも小さい ため、再生出力がさらに小さくなるが、本発明媒体し 2、L3、L9の再生出力の約6割であり、依然再生出 力の絶対値として十分であると言える。しかし、本発明 媒体L8の場合、下地軟磁性膜の透磁率が小さすぎるた め、再生出力が十分に取れない。

【0126】以上のことから、外部磁場に対する出力信号の耐久性の観点からは、本発明媒体L2~L9を用いる必要があるが、下地軟磁性膜の透磁率を下げすぎると再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、より望ましくは50以上500以下であることが望ましい。【0127】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用によって起こるため、垂直磁化膜の膜厚にはあまり依存しない。このため、垂直磁化膜の膜厚をある程度変化させても同様な結果となる。

【0128】 [実施例12] 実施例2においてFe84.9

Si9.6Al5.5(wt%)ターゲットの代わりにFeTaNターゲットを用いて実施例2と同様にして媒体を作製した。実施例2と同様に作製した媒体を、実施例2にならい、それぞれ従来媒体M1、MM1、本発明媒体M2、M3、M4、M5、M6、M7、M8、M9とする。

【0129】各々の基板温度で成膜したFeTaN膜の透磁率を測定した。各々の透磁率の値を図36に示す。 【0130】従来媒体M1、MM1及び本発明媒体M2

101301 従来媒体M1、MM1及び本発明媒体M2 ~M9の記録再生の実験は、実施例1と同様な記録再生 条件の下で行った。

【0131】まず、外部磁界に対する記録磁化の安定性を調べるために、従来媒体M1、MM1及び本発明媒体M2~M9に単磁極ヘッドで信号を記録後、ヘルムホルツコイルによって媒体に直流磁場を大きさ1~300eの範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図37に示す。ここでは、磁場印加前の再生出力に対する磁場印加後の再生出力を百分率で示してある。

【0132】図37から分かるように、従来媒体M1、MM1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体M2~M9の場合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減少しない。この時、保磁力の値は20e~300eの範囲に分布しているが、10nmのみ成膜した場合の各々の膜の保磁力(これを便宜上、初期保磁力と呼ぶこととする)を見ると、膜全体の保磁力が20e以上を示す場合、初期保磁力は300e以上の値を示していることが分かる。一般に膜の成長初期層の保磁力は大きいが、この成長初期層の保磁力が大きいことで膜全体の保磁力を大きくすることができる。

【0133】本発明媒体M2~M9の場合、下地軟磁性膜の透磁率が小さいこと、及び膜全体の保磁力が大きいことにより、外部からの磁束を単磁極ヘッドの主磁極に集中しにくくすることができ、外部磁場に強い垂直2層媒体とすることができた。また、従来媒体MM1の場合、本発明媒体M2よりも下地軟磁性膜の膜厚が厚い分、膜全体の保磁力に占める初期保磁力の割合が小さくなり、膜全体の保磁力が本発明媒体M2よりも小さくなり、外部磁場に対して弱くなったと考えられる。以上のことから、下地軟磁性膜の透磁率を1000以下、膜全体の保磁力を20e~300e、初期保磁力を300e以上、下地軟磁性膜の膜厚を300nm以下とすることにより、外部磁場に強い垂直2層媒体とすることができる。

【0134】次に、再生出力の測定を行った。再生出力の記録密度依存性の測定結果を図38に示す。図38から分かるように、再生出力の大きさは、下地軟磁性膜の

透磁率が大きいほど大きい。従来媒体M1、MM1、本発明媒体M2、M3、M9は下地軟磁性膜の透磁率の大きさが大きく、十分な再生出力を得ることができる。本発明媒体M4、M5は下地軟磁性膜の透磁率の大きさが本発明媒体M2、M3、M9よりも小さいため、再生出力が小さくなるが、本発明媒体M2、M3、M9の再生出力の約8割であり、依然再生出力の絶対値として十分であると言える。本発明媒体M6、M7は下地軟磁性膜の透磁率の大きさが本発明媒体M4、M5よりも小さいため、再生出力がさらに小さくなるが、本発明媒体M2、M3、M9の再生出力の約6割であり、依然再生出力の絶対値として十分であると言える。しかし、本発明媒体M8の場合、下地軟磁性膜の透磁率が小さすぎるため、再生出力が十分に取れない。

【0135】以上のことから、外部磁場に対する出力信号の耐久性の観点からは、本発明媒体M2~M9を用いる必要があるが、下地軟磁性膜の透磁率を下げすぎると再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、より望ましくは50以上500以下、さらにより望ましくは50以上1000以下であることが望ましい。【0136】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用によって起こるため、垂直磁化膜の膜厚をある程度変化させても同様な結果となる。

【0137】 [実施例13] 実施例3においてF e 84.9 S i 9.6A l 5.5 (w t %) ターゲットの代わりにF e T a Nターゲットを用いて実施例1と同様にして媒体を作製した。実施例1と同様に作製した媒体を、実施例1にならい、それぞれ従来媒体N1、NN1、本発明媒体N2、N3、N4、N5、N6、N7、N8、N9とする。

【0138】各々の基板温度で成膜したFeTaN膜の 透磁率を測定した。各々の透磁率の値を図39に示す。

【0139】従来媒体N1、NN1及び本発明媒体N2~N9の記録再生の実験は、実施例1と同様な記録再生条件の下で行った。まず、外部磁界に対する記録磁化の安定性を調べるために、従来媒体N1、NN1及び本発明媒体N2~N9に単磁極ヘッドで信号を記録後、ヘルムホルツコイルによって媒体に直流磁場を大きさ1~300eの範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図40に示す。ここでは、磁場印加前の再生出力に対する磁場印加後の再生出力を百分率で示してある。

【0140】図40からわかるように、従来媒体N1、NN1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体N2~N9の場 50

26

合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減少しない。この時、保磁力の値は20e~300eの範囲に分布しているが、10nmのみ成膜した場合の各々の膜の保磁力(これを便宜上、初期保磁力と呼ぶこととする)を見ると、膜全体の保磁力が20e以上を示す場合、初期保磁力は300e以上の値を示していることが分かる。一般に膜の成長初期層の保磁力は大きいが、この成長初期層の保磁力が大きいことで膜全体の保磁力を大きくすることができる。

【0141】本発明媒体N2~N9の場合、下地軟磁性膜の透磁率が小さいこと、及び膜全体の保磁力が大きいことにより、外部からの磁東を単磁極ヘッドの主磁極に集中しにくくすることができ、外部磁場に強い垂直2層媒体とすることができた。また、従来媒体NN1の場合、本発明媒体N2よりも下地軟磁性膜の膜厚が厚い分、膜全体の保磁力に占める初期保磁力の割合が小さくなり、膜全体の保磁力が本発明媒体N2よりも小さくなり、外部磁場に対して弱くなったと考えられる。以上でより、外部磁性膜の透磁率を1000以下、膜全体の保磁力を20e~300e、初期保磁力を300e以上、下地軟磁性膜の膜厚を300nm以下とすることにより、外部磁場に強い垂直2層媒体とすることができる。

【0142】次に、再生出力の測定を行った。再生出力 の記録密度依存性の測定結果を図41に示す。図41か ら分かるように、再生出力の大きさは、下地軟磁性膜の 透磁率が大きいほど大きい。従来媒体N1、NN1、本 発明媒体N2、N3、N9は下地軟磁性膜の透磁率の大 きさが大きく、十分な再生出力を得ることができる。本 発明媒体N4、N5は下地軟磁性膜の透磁率の大きさが 本発明媒体N2、N3、N9よりも小さいため、再生出 力が小さくなるが、本発明媒体N2、N3、N9の再生 出力の約8割であり、依然再生出力の絶対値として十分 であると言える。本発明媒体N6、N7は下地軟磁性膜 の透磁率の大きさが本発明媒体N4、N5よりも小さい ため、再生出力がさらに小さくなるが、本発明媒体N 2、N3、N9の再生出力の約6割であり、依然再生出 力の絶対値として十分であると言える。しかし、本発明 媒体N8の場合、下地軟磁性膜の透磁率が小さすぎるた め、再生出力が十分に取れない。

【0143】以上のことから、外部磁場に対する出力信号の耐久性の観点からは、本発明媒体N2~N9を用いる必要があるが、下地軟磁性膜の透磁率を下げすぎると再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、より望ましくは50以上500以下、さらにより望ましくは50以上100以下であることが望ましい。

【0144】また、外部磁場に対する出力信号の耐久性

は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用 によって起こるため、垂直磁化膜の膜厚にはあまり依存 しない。このため、垂直磁化膜の膜厚をある程度変化さ せても同様な結果となる。

【0145】 [実施例14] 実施例11においてFeTaNターゲットの代わりにFeTaNTaZrターゲットを用いて実施例11と同様にして媒体を作製した。TaZrの添加は、結晶粒を微細化する効果がある。実施例11と同様に作製した媒体を、実施例11にならい、それぞれ従来媒体P1、PP1、本発明媒体P2、P3、P4、P5、P6、P7、P8、P9とする。

【0146】各々の基板温度で成膜したFeTaNTa Zr膜の透磁率を測定した。各々の透磁率の値を図42 に示す。

【0147】従来媒体P1、PP1及び本発明媒体P2 ~P9の記録再生の実験は、実施例1と同様な記録再生 条件の下で行った。

【0148】まず、外部磁界に対する記録磁化の安定性を調べるために、従来媒体P1、PP1及び本発明媒体P2~P9に単磁極ヘッドで信号を記録後、ヘルムホルツコイルによって媒体に直流磁場を大きさ1~300eの範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図43に示す。ここでは、磁場印加前の再生出力に対する磁場印加後の再生出力を百分率で示してある。

【0149】図43から分かるように、従来媒体P1、PP1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体P2~P9の場合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減少しない。この時、保磁力の値は20e~300eの範囲に分布しているが、10nmのみ成膜した場合の各々の膜の保磁力(これを便宜上、初期保磁力と呼ぶことで原全体の保磁力が20e以上を示する)を見ると、膜全体の保磁力が20e以上を示すとよが分かる。一般に膜の成長初期層の保磁力が大きいことで膜全体の保磁力を大きくすることができる。

【0150】本発明媒体P2~P9の場合、下地軟磁性 膜の透磁率が小さいこと、及び膜全体の保磁力が大きいことにより、外部からの磁束を単磁極ヘッドの主磁極に集中しにくくすることができ、外部磁場に強い垂直2層媒体とすることができた。また、従来媒体PP1の場合、本発明媒体P2よりも下地軟磁性膜の膜厚が厚い分、膜全体の保磁力に占める初期保磁力の割合が小さくなり、膜全体の保磁力が本発明媒体P2よりも小さくなり、外部磁場に対して弱くなったと考えられる。以上のことから、下地軟磁性膜の透磁率を1000以下、膜全体の保磁力を20e~300e、初期保磁力を300e 50 28

以上、下地軟磁性膜の膜厚を300 n m以下とすること により、外部磁場に強い垂直2層媒体とすることができ る。

【0151】次に、再生出力の測定を行った。再生出力 の記録密度依存性の測定結果を図44に示す。図44か ら分かるように、再生出力の大きさは、下地軟磁性膜の 透磁率が大きいほど大きい。従来媒体P1、PP1、本 発明媒体 P 2 、 P 3 、 P 9 は下地軟磁性膜の透磁率の大 きさが大きく、十分な再生出力を得ることができる。本 10 発明媒体P4、P5は下地軟磁性膜の透磁率の大きさが 本発明媒体P2、P3、P9よりも小さいため、再生出 力が小さくなるが、本発明媒体P2、P3、P9の再生 出力の約8割であり、依然再生出力の絶対値として十分 であると言える。本発明媒体P6、P7は下地軟磁性膜 の透磁率の大きさが本発明媒体P4、P5よりも小さい ため、再生出力がさらに小さくなるが、本発明媒体P 2、P3、P9の再生出力の約6割であり、依然再生出 力の絶対値として十分であると言える。しかし、本発明 媒体P8の場合、下地軟磁性膜の透磁率が小さすぎるた め、再生出力が十分に取れない。

【0152】以上のことから、外部磁場に対する出力信号の耐久性の観点からは、本発明媒体P2~P9を用いる必要があるが、下地軟磁性膜の透磁率を下げすぎると再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、より望ましくは50以上500以下、さらにより望ましくは50以上1000以下であることが望ましい。

【0153】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用によって起こるため、垂直磁化膜の膜厚にはあまり依存しない。このため、垂直磁化膜の膜厚をある程度変化させても同様な結果となる。

【0154】 [実施例15] 実施例12においてFeTaNターゲットの代わりにFeTaNTiMoターゲットを用いて実施例12と同様にして媒体を作製した。TiMoの添加は、結晶粒を微細化する効果がある。実施例12と同様に作製した媒体を、実施例12にならい、それぞれ従来媒体Q1、QQ1、本発明媒体Q2、Q3、Q4、Q5、Q6、Q7、Q8、Q9とする。

【0155】各々の基板温度で成膜したFeTaNTi Mo膜の透磁率を測定した。各々の透磁率の値を図45 に示す。

【0156】従来媒体Q1、QQ1及び本発明媒体Q2 ~Q9の記録再生の実験は、実施例1と同様な記録再生 条件の下で行った。

【0157】まず、外部磁界に対する記録磁化の安定性 を調べるために、従来媒体Q1、QQ1及び本発明媒体 Q2~Q9に単磁極ヘッドで信号を記録後、ヘルムホル ツコイルによって媒体に直流磁場を大きさ1~300eの 範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図46に示す。 ここでは、磁場印加前の再生出力に対する磁場印加後の 再生出力を百分率で示してある。

【0158】図46から分かるように、従来媒体Q1、QQ1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体Q2~Q9の場合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減少しない。この時、保磁力の値は20e~300eの範囲に分布しているが、10nmのみ成膜した場合の各々の膜の保磁力(これを便宜上、初期保磁力と呼ぶことする)を見ると、膜全体の保磁力が20e以上を示す場合、初期保磁力は300e以上の値を示していることが分かる。一般に膜の成長初期層の保磁力は大きいが、この成長初期層の保磁力が大きいことで膜全体の保磁力を大きくすることができる。

【0159】本発明媒体Q2~Q9の場合、下地軟磁性膜の透磁率が小さいこと、及び膜全体の保磁力が大きいことにより、外部からの磁束を単磁極ヘッドの主磁を集中しにくくすることができ、外部磁場に強い垂直2層媒体とすることができた。また、従来媒体QQ1の場合、本発明媒体Q2よりも下地軟磁性膜の膜厚が厚い分、膜全体の保磁力に占める初期媒体Q2よりも小さくなり、外部磁場に対して弱くなったと考えられる。以上のことがの、下地軟磁性膜の透磁率を1000以下とすることがの保磁力を20e~300e、初期保磁力を300e以上、下地軟磁性膜の膜厚を300nm以下とすることができる。

【0160】次に、再生出力の測定を行った。再生出力 の記録密度依存性の測定結果を図47に示す。図47か ら分かるように、再生出力の大きさは、下地軟磁性膜の 透磁率が大きいほど大きい。従来媒体Q1、QQ1、本 発明媒体Q2、Q3、Q9は下地軟磁性膜の透磁率の大 きさが大きく、十分な再生出力を得ることができる。本 発明媒体Q4、Q5は下地軟磁性膜の透磁率の大きさが 本発明媒体Q2、Q3、Q9よりも小さいため、再生出 力が小さくなるが、本発明媒体Q2、Q3、Q9の再生 出力の約8割であり、依然再生出力の絶対値として十分 であると言える。本発明媒体Q6、Q7は下地軟磁性膜 の透磁率の大きさが本発明媒体Q4、Q5よりも小さい ため、再生出力がさらに小さくなるが、本発明媒体Q 2、Q3、Q9の再生出力の約6割であり、依然再生出 力の絶対値として十分であると言える。しかし、本発明 媒体M8の場合、下地軟磁性膜の透磁率が小さすぎるた め、再生出力が十分に取れない。

【0161】以上のことから、外部磁場に対する出力信 50

30

号の耐久性の観点からは、本発明媒体Q2~Q9を用いる必要があるが、下地軟磁性膜の透磁率を下げすぎると再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、より望ましくは50以上500以上500以下、さらにより望ましくは50以上1000以下であることが望ましい。【0162】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用

【0162】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用によって起こるため、垂直磁化膜の膜厚にはあまり依存しない。このため、垂直磁化膜の膜厚をある程度変化させても同様な結果となる。

【0163】 [実施例16] 実施例13においてFeTaNターゲットの代わりにFeTaNZrNbターゲットを用いて実施例13と同様にして媒体を作製した。ZrNbの添加は、結晶粒を微細化する効果がある。実施例13と同様に作製した媒体を、実施例13にならい、それぞれ従来媒体R1、RR1、本発明媒体R2、R3、R4、R5、R6、R7、R8、R9とする。

【0164】各々の基板温度で成膜したFeTaNZr Nb膜の透磁率を測定した。各々の透磁率の値を図48 に示す。

【0165】従来媒体R1、RR1及び本発明媒体R2 ~R9の記録再生の実験は、実施例1と同様な記録再生 条件の下で行った。

【0166】まず、外部磁界に対する記録磁化の安定性を調べるために、従来媒体R1、RR1及び本発明媒体R2~R9に単磁極ヘッドで信号を記録後、ヘルムホルツコイルによって媒体に直流磁場を大きさ1~300eの範囲で印加し、磁場印加前の再生出力と磁場印加後の再生出力の比較をおこなった。この結果を図49に示す。ここでは、磁場印加前の再生出力に対する磁場印加後の再生出力を百分率で示してある。

【0167】図49から分かるように、従来媒体R1、RR1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十分大きく、保磁力が十分小さいため、40eの外部磁場で出力が減少し始めるが、本発明媒体R2~R9の場合、透磁率を小さくし、保磁力を比較的大きくしたため、いずれの媒体も200eの外部磁場まで出力は減少しない。この時、保磁力の値は20e~300eの範囲に分布しているが、10nmのみ成膜した場合の各々の膜の保磁力(これを便宜上、初期保磁力と呼ぶことする)を見ると、膜全体の保磁力が20e以上を示す場合、初期保磁力は300e以上の値を示していることする)を見ると、膜全体の保磁力が20e以上を示す場合、初期保磁力は300e以上の値を示していることする)を見ると、膜全体の保磁力が20e以上を示す場合、初期保磁力は大きいが、この成長初期層の保磁力が大きいことで膜全体の保磁力を大きくすることができる。

【0168】本発明媒体R2~R9の場合、下地軟磁性 膜の透磁率が小さいこと、及び膜全体の保磁力が大きい ことにより、外部からの磁束を単磁極ヘッドの主磁極に €

集中しにくくすることができ、外部磁場に強い垂直2層 媒体とすることができた。また、従来媒体RR1の場合、本発明媒体R2よりも下地軟磁性膜の膜厚が厚い 分、膜全体の保磁力に占める初期保磁力の割合が小さく なり、膜全体の保磁力が本発明媒体R2よりも小さくな り、外部磁場に対して弱くなったと考えられる。以上の ことから、下地軟磁性膜の透磁率を1000以下、膜全 体の保磁力を20e~300e、初期保磁力を300e 以上、下地軟磁性膜の膜厚を300nm以下とすること により、外部磁場に強い垂直2層媒体とすることができ る。

【0169】次に、再生出力の測定を行った。再生出力 の記録密度依存性の測定結果を図50に示す。図50か ら分かるように、再生出力の大きさは、下地軟磁性膜の 透磁率が大きいほど大きい。従来媒体R1、RR1、本 発明媒体R2、R3、R9は下地軟磁性膜の透磁率の大 きさが大きく、十分な再生出力を得ることができる。本 発明媒体R4、R5は下地軟磁性膜の透磁率の大きさが 本発明媒体R2、R3、R9よりも小さいため、再生出 力が小さくなるが、本発明媒体R2、R3、R9の再生 出力の約8割であり、依然再生出力の絶対値として十分 であると言える。本発明媒体R6、R7は下地軟磁性膜 の透磁率の大きさが本発明媒体R4、R5よりも小さい ため、再生出力がさらに小さくなるが、本発明媒体R 2、R3、R9の再生出力の約6割であり、依然再生出 力の絶対値として十分であると言える。しかし、本発明 媒体R8の場合、下地軟磁性膜の透磁率が小さすぎるた め、再生出力が十分に取れない。

【0170】以上のことから、外部磁場に対する出力信号の耐久性の観点からは、本発明媒体R2~R9を用いる必要があるが、下地軟磁性膜の透磁率を下げすぎると再生出力の低下を招く。このことから、下地軟磁性膜の透磁率は50以上である必要がある。そして、再生出力の観点から、下地軟磁性膜の透磁率は50以上100以下、さらにより望ましくは50以上100以下であることが望ましい。【0171】また、外部磁場に対する出力信号の耐久性は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用によって起こるため、垂直磁化膜の膜厚をある程度変化させても同様な結果となる。

【0172】また、上記実施形態及び実施例では、記録 媒体を垂直2層記録媒体として説明したが、少なくとも 垂直磁化膜と透磁率の小さい軟磁性膜を用いるという技 術的思想を備えているものであるならば、垂直複数層の 記録媒体であってもよいことは勿論である。

[0173]

【発明の効果】本発明による垂直磁気記録媒体によれば、下地軟磁性膜を良好な軟磁気特性をもつ膜とせず、 下地軟磁性膜の透磁率を従来よりも小さくすることによ 50 32

り、外部磁界に対する下地軟磁性膜の磁化の反応性を従来よりも鈍化させ、垂直磁気ヘッドの主磁極への外部磁場の磁束の集中を抑制している。このために、垂直記録層に記録された磁化の減磁、あるいは消磁が発生しにくく、外部磁場に対して記録磁化の安定性に優れた垂直媒体とすることができる。

【図面の簡単な説明】

【図1】本発明に関わる垂直磁気記録媒体の一実施形態を示す概略断面図である。

【図2】本発明の実施例1における垂直磁気記録媒体の 形態を示す概略断面図である。

【図3】本発明の実施例1における、透磁率、全体保磁力、初期保磁力、膜厚の値を示す図表である。

【図4】本発明の実施例1における、外部磁場と磁場印加前後の再生出力の比を示すグラフである。

【図5】本発明の実施例1における、出力の記録密度依存性を示すグラフである。

【図 6 】本発明の実施例 2 における、透磁率、全体保磁力、初期保磁力、膜厚の値を示す図表である。

【図7】本発明の実施例2における、外部磁場と磁場印 加前後の再生出力の比を示すグラフである。

【図8】本発明の実施例2における、出力の記録密度依存性を示すグラフである。

【図9】本発明の実施例3における、透磁率、全体保磁力、初期保磁力、膜厚の値を示す図表である。

【図10】本発明の実施例3における、外部磁場と磁場印加前後の再生出力の比を示すグラフである。

【図11】本発明の実施例3における、出力の記録密度 依存性を示すグラフである。

【図12】本発明の実施例4における、透磁率、全体保磁力、初期保磁力、膜厚の値を示す図表である。

【図13】本発明の実施例4における、外部磁場と磁場 印加前後の再生出力の比を示すグラフである。

【図14】本発明の実施例4における、出力の記録密度 依存性を示すグラフである。

【図15】本発明の実施例5における、透磁率、全体保磁力、初期保磁力、膜厚の値を示す図表である。

【図16】本発明の実施例5における、外部磁場と磁場 印加前後の再生出力の比を示すグラフである。

【図17】本発明の実施例5における、出力の記録密度 依存性を示すグラフである。

【図18】本発明の実施例6における、透磁率、全体保磁力、初期保磁力、膜厚の値を示す図表である。

【図19】本発明の実施例6における、外部磁場と磁場 印加前後の再生出力の比を示すグラフである。

【図20】本発明の実施例6における、出力の記録密度 依存性を示すグラフである。

【図21】本発明の実施例7における、透磁率、全体保磁力、初期保磁力、膜厚の値を示す図表である。

【図22】本発明の実施例7における、外部磁場と磁場

33

印加前後の再生出力の比を示すグラフである。

【図23】本発明の実施例7における、出力の記録密度 依存性を示すグラフである。

【図24】本発明の実施例8における、透磁率、全体保磁力、初期保磁力、膜厚の値を示す図表である。

【図25】本発明の実施例8における、外部磁場と磁場 印加前後の再生出力の比を示すグラフである。

【図26】本発明の実施例8における、出力の記録密度 依存性を示すグラフである。

【図27】本発明の実施例9における、透磁率、全体保磁力、初期保磁力、膜厚の値を示す図表である。

【図28】本発明の実施例9における、外部磁場と磁場 印加前後の再生出力の比を示すグラフである。

【図29】本発明の実施例9における、出力の記録密度 依存性を示すグラフである。

【図30】本発明の実施例10における、透磁率、全体 保磁力、初期保磁力、膜厚の値を示す図表である。

【図31】本発明の実施例10における、外部磁場と磁 場印加前後の再生出力の比を示すグラフである。

【図32】本発明の実施例10における、出力の記録密度依存性を示すグラフである。

【図33】本発明の実施例11における、透磁率、全体 保磁力、初期保磁力、膜厚の値を示す図表である。

【図34】本発明の実施例11における、外部磁場と磁 場印加前後の再生出力の比を示すグラフである。

【図35】本発明の実施例11における、出力の記録密度依存性を示すグラフである。

【図36】本発明の実施例12における、透磁率、全体 保磁力、初期保磁力、膜厚の値を示す図表である。

【図37】本発明の実施例12における、外部磁場と磁 場印加前後の再生出力の比を示すグラフである。

【図38】本発明の実施例12における、出力の記録密 度依存性を示すグラフである。

【図39】本発明の実施例13における、透磁率、全体 保磁力、初期保磁力、膜厚の値を示す図表である。

【図40】本発明の実施例13における、外部磁場と磁 場印加前後の再生出力の比を示すグラフである。

【図41】本発明の実施例13における、出力の記録密 度依存性を示すグラフである。 34

*【図42】本発明の実施例14における、透磁率、全体 保磁力、初期保磁力、膜厚の値を示す図表である。

【図43】本発明の実施例14における、外部磁場と磁 場印加前後の再生出力の比を示すグラフである。

【図44】本発明の実施例14における、出力の記録密度依存性を示すグラフである。

【図45】本発明の実施例15における、透磁率、全体 保磁力、初期保磁力、膜厚の値を示す図表である。

【図46】本発明の実施例15における、外部磁場と磁 場印加前後の再生出力の比を示すグラフである。

【図47】本発明の実施例15における、出力の記録密 度依存性を示すグラフである。

【図48】本発明の実施例16における、透磁率、全体 保磁力、初期保磁力、膜厚の値を示す図表である。

【図49】本発明の実施例16における、外部磁場と磁 場印加前後の再生出力の比を示すグラフである。

【図50】本発明の実施例16における、出力の記録密度依存性を示すグラフである。

【図51】従来の垂直磁気記録媒体の形態を示す概略断 面図である。

【図52】従来の垂直磁気記録装置の磁気ヘッドと磁気 媒体の形態を示す概略断面図である。

【符号の説明】

10 垂直磁気記録媒体

12 基板

16 FeSiAl軟磁性膜

18 Co78Cr19PtLaLu垂直磁化膜

20 垂直磁気記録媒体

22 基板

24 透磁率の小さい軟磁性膜

28 垂直磁化膜

50,61 垂直磁気記録媒体

52,63 軟磁性裏打ち層

54,64 垂直磁化膜

56,62 基板

65 垂直磁気ヘッド

66 主磁極

67 コイル

【図1】

【図2】

【図3】

	従来媒体 A1	本発明部 体A2	本発明隊 体A3	本発明準 体A 4	本吳明年 体A5
透磁率	1200	1000	800	500	300
全体保健力 [Oa]		2.0	10.2	16.4	21.6
初期保险力[Oa]	28.2	80.2	30.7	31.0	30.1
AF [nm]	300	300	300	300	300
	本発明祭 体A 6	本獎明娜 体A7	本発明媒 体A8		
进载率			#A8	AAI	本発明線 体A 9 800
金件保磁力 [Oe]	#A 6 100 27.1	体A7	体A 8 10	AA1 1200	¢A9
	#A 6 100 27.1	体A 7 50	体A 8 10	AA1 1200	#A 9 800

【図4】

【図5】

【図6】

	従来媒体 日1	本発明媒 体B2	本発明媒 体B3	本與明維 体134	本発明原 体 18.5
透磁率	1220	990	820	500	250
全体保磁力 [Oa]	1	2.1	10.2	16.6	21.9
初初保証力 [Oa]	28.1	80.8	B1.4	31.9	30.6
UF [nm]	300	900	300	300	300 :
	本発明集 体日 5	本発明原 体B7	本発明媒 体38	従来集体 EB 1	本発明集 体BQ
透磁率			体38	HB 1	本発明媒 体 B 9 800
全体保磁力 [Oe]	作日 6 96 28.4	体日7	体33 8 6	BB 1 1150	体Bg
	作日 6 96 28.4	体B 7 52	体B 8 6 52.7	BB 1 1150 1.2	体 19 9 800

【図7】

【図8】

【図9】

從来條件	本発明係			本発明原
C1	件C2	体 C3	件C4	件C5
1210	980	780	490	280
1.6	2.0	10.7	16.4	22.2
28.9	80.1	31.7	92.5	31.4
900	300	800	300	900
本我明练	本発明部	本発明媒	從来條体	本異明媒
体 C6	体C7	体C8	∞_1	件C9
#C6	体C7 555			820
		9		
100-	56	9 32.2	11 40	820
	C1 1210 1.6 28.9 300 本典明編	C1 体C2 1210 980 1.6 2.0 28.9 30.1 300 300 本段明線 本発明線	C1 体C2 体C3 1210 880 780 1.6 2.0 10.7 28.9 80.1 31.7 300 300 800 本與明線 本発明線 本発明線	1210 980 780 490 1.6 2.0 10.7 16.4 28.9 30.1 31.7 32.5 300 300 800 300 本典明線 本発明線 本発明線 從來條件

【図10】

【図11】

【図12】

	從来無体 D1	本発明係 体D2	本発明係 体D3	本発明媒 作D4	本発明算 体105
透磁率	1260	960	860	480	910
全体保险力 [Oel	1.4	2.5	10.4	16.9	22.1
初期保磁力 [Oa]	28.2	90.7	91.4	92.6	91.1
漢字 [nm]	300	300	300	300	300
	本発明原 体D6	本発明媒 体D7		従来集体 DD1	本発明媒 体D9
透磁率					
透磁率 全体保磁力 [Oe]	件D6 96	件D7		DD1	# D9
全体保磁力 [Oe]	体D 6 96 28.5	件D7 60	1≱D8 7	DD1 1120	#D9 810

【図13】

【図14】

【図15】

	従来條件	本発明縣	本共甲集	水與明原	本発明師
	E 1	体医2	体区3	体B4	体型5
透遊率	1210	970	780	470	240
全体保健力 [Oal	1.4	2.6	10.7	16.2	22.9
初期保磁力 [Oa]	28.2	90.6	31.2	32.8	81.0
MF [nm]	300	300	300	300	900
	本発明媒 体配 6	本発明媒 体E7	本発明媒 体区8	提来媒体 EEC 1	本発明部 体EQ
透磁率	96	58			910 -
全体保磁力 [Os]	28.6	29.7	92.2	1.1	49
初期保险力 [Oe]	81.4	327	31.9	29.4	33.0
原子 [nm]	500			1	

【図16】

【図17】

【図18】

	従来無体 F1	本発明線 体F2	本発明集 体P3	本與明維 体P4	本発明解 体F 5
透磁率	1210	980	770 -	480	250
全体保健力 [Oe]	1.7	2.4	10.9	16.6	21.5
初期保祉力 [Oe]	28.2	30.1	31.2	327	31.5
段字 [nm]	300	300	300	900	500
	本発明原 体F6	本発明媒 体F7	本発明課 体F8	従来集体 FF1	本発明集 体F9
and the same	100	66	7		970
进磁率	100	00	′	1130	310
进版平 全体保磁力 [Oe]	28.6	30.0	92.7		47
	28.6			1.9	

【図19】

【図20】

【図21】

	従来媒体	本與明媒	本発明後		
İ	G1	#02	# G 3	伴(34	件(35
透磁率	1 250	1000	770	460	270
全体保磁力 [Oa]	1.8	2.4	10.4	16.2	21.4
初期保養力 [Oa]	28.9	31.1	31.3	92.8	80.8
DJF [nm]	300	300	300	800	300
	4		本発明媒	***	本兵明媒
	本発明係 体G6	体员7	体G8	GG1	体 G 9
透磁率	本発明機 体 G 6 87			GG1	
透磁率 全体保磁力 [Oe]	件 G 6 87	体 G7	体G8	GG1	体 G 9
7 7 2	# G 6 87 29.5	体G7 64	体G8 8	GG 1 1140	(‡ € 9 990

【図22】

【図23】

【図24】

	従来媒体 H 1	本発明係 体H2	本発明版 体H3	本発明媒 体H4	本発明維 体 H 5
透磁率	1240	1000	780	390	260
全体保磁力 [Oe]	1.8	2.4	10.8	16.2	21.1
初朝保磁力 [Oe]	28.6	31.2	321	929	90.1
原写 [nm]	300	300	900	900	300
	本発明係 体126	本発明原 体且7	本発明媒 体註8	從来媒体 HH 1	本幾明雄 体H9
透磁率					
造磁平 全体保磁力 [Oa]	体 班 6 100	体田7	体H8	HH 1	体H9
	学 <u>H</u> 6 100 29.5	体且7 67	体 H8 6	HH 1 1180	#H9 940

【図25】

【図26】

【図27】

			本発明媒		
	J1_	#J2	#J9	体J4	体15
进磁率	1 220	990	800	390	270
全体保健力 [Oe]	1.8	2.1	10.0	16.3	21.7
初期保磁力 [Oa]	28.5	81.6	31.7	82.6	30.4
MA [nw]	300	300	300	300	300
	本発明媒	本発明媒	水磁磁煤	经事集体	本発明媒
L	体 J6	体J7	 ♯ J 8	JJ 1	体 J9
进战率				JJ 1	
	体J6	体J7	⊈ J8	JJ 1 1180	体Jg
	↑ J 6 100 29.2	体J7 54-	⊈ J8 6	JJ 1 1180	Ø\$J9 940-

【図28】

【図29】

【図30】

	從采集体 K1	本発明係 体K2	本発明祭 体区3	本発明媒 体区4	本幾明錄 住於5
透磁率	1220	990	800	390	270
全体保磁力 [Oe]	1.4	2.7	9.9	16.7	21.4
初期保险力 [Oa]	28.6	31.9	31. 7	82.1	30.6
漢字 [nm]	300	300	300	00E	300 -
	本発明器	本發明集	本発明集	從来條体	-4- 170 -77 150
	体K6	キスタカボ 体K7	体K8	KK1	本発明課 体区9
透磁率		, , , , , , , , , , , , , , , , , , , ,		KK 1	
透電平 全体保電力 [Oe]	体K 5 100	体 K7	#K8	KK1 1160	体长9
	体K 5 100 29.2	体K7 54	体K8 6	KK1 1160	体K9 940

【図31】

【図32】

【図33】

	徒采海体 1.1	本発明媒 体L2	本発明線 体L3	本発明線 体L4	本発明鋼 体L5
透磁率	1210	960	810	490	280
全体保险力 [Oe]	1.2	2.4	9.8	18.1	21.4
初期保証力 [Oo]	28.6	91.1	31.9	321	30.2
[] [am]	300	300	300	300	300
	本発明係 体L6	本発明係 体L7	本発明原 体L8	従来媒体 LL 1	本発明課 体Lg
	114-12-0	174-14 /	1441.15		
透磁率	100	85	20	1160	960
遠磁率 全体保磁力 [Oe]	100			1160	
	100 29.2	65	20	1160 1.5	960

【図34】

【図35】

【図36】

	従来條件 近1	本発明媒 体M2	本発明媒 体M(8	本吳明縣 体 M 4	本発明係 体145
透微率	1220	970	810	Б00	290
金体保軽力 [Oe]	1.2	2.1	9.8	18.7	21.1
初期保職力 [Oe]	28.9	81.0	81.9	82.9	90.7
漢字 [nm]	800	300	300	300	300
		本與明傑			
	体106	体M7	体MB	140M 1	体业9
過磁率	100	体M7 58	20 B	1004 1 1140	1≱ № 9 980
通磁率 全体保磁力 [Oe]	100		20	1140	
	100 29.7	56	20	1140 1.7	880

【図37】

【図38】

【図51】

【図39】

		木発明係			
連發率	N 1 1210	件N2 980	学N 8 820	学N 4 490	体 N 5 280
全体保险力 [Oa]	1.2	2.1	10.8	15.1	21.9
初朝保護力 [0]	29.1	81.8	321	38.8	80.2
III [nm]	800	800	300	300	300
	本発明像 体N6	本発明課 体N7		従来條体 NN 1	
退磁率			体N8		本発明集 体 N 9 950
退磁率 全体保磁力 [Oa]	体N6 100	体N 7 57	1≄N8 32	NN 1 1180	体N9
	#N6 100 29.7	体N7 57 29.2	1≄N8 32	NN 1 1180 1.4	# N 9 950

【図40】

【図41】

【図42】

	従来媒体 P1	本発明媒 体P2	本発明年 体P3	本発明簿 体P4	本発明第 体 P 5
透磁率	1240	980	820	480	270
金体保健力(Oa)	ı	2.4	10.8	157	21.2
初期保险力 [Oe]	28.9	31.9	32.0	88.7	30.1
IXF [nm]	300	300	300	900	300
	本発明祭 体P6	本発明旗 体P7	本発明線 体P8		本発明維 体 P a
通磁率			件P8	PP 1	本発明維 体P9 890
通磁率 全体保磁力 [Oe]	件P6 100	体P7	住P8 27	PP 1 1150	件P9
	作P6 100 26.8	体P7 59	住P8 27	PP 1 1150 1.6	#P9 990

【図43】

【図44】

【図45】

	從采條件 Q1	本発明解 体Q2	本発明線 体Q3	水残明縣 体Q4	本発明解 体 Q5
进程率	1290	970	840	490	230
金件保敬力 [Oe]	1.2	2.3	11.1	15.9	22.7
初期保証力 [Oa]	28.9	31.5	320	33.4	90.9
inm]	300	300	300	300	300
	本発明族 体Q6	本発明集 体Q7	本発明媒 体Q8	從來媒体 QQ1	本発明算 体 Q 9
透破率			#Q8	QQ1	
透破率 全体保磁力 [Oe]	体Q6	#Q7	#Q8	QQ1	1 Q9
~	体Q6 100 26.7	#Q7 59	#Q8 23	QQ1 1170	1\$ Q9 940

【図46】

【図47】

【図48】

	従来媒体 R 1	本発明媒 体R2	本発明媒 体及3	本與明集 体B4	本発明原 体 R 5
进磁平	1270	980	870	450	210
全体保磁力 [Oe]	1.2	2.8	127	15.4	22.9
初期保磁力 [Oa]	28.9	31.2	32.0	39.7	30.9
度厚 [nm]	300	300	300	300	300
	本発明係 体R8	本幾明縣 体R7	本発明祭 体138	従来條体 ER 1	本幾明維 体R9
透磁率					
遊磁率 全体保磁力 [Oa]	体R 8 100	体 R7	#R8	HZR 1 1110	#R9
	100 28.7	体R.7 61	#R8 28	HZR 1 1110	1 R 9 920

【図49】

【図50】

【図52】

フロントページの続き

(72) 発明者 田上 勝通

東京都港区芝五丁目7番1号 日本電気株式会社内

F ターム(参考) 5D006 BB02 CA01 CA04 CA05 DA03 DA08 FA00