

Introduction to Neural Networks

Johns Hopkins University

Engineering for Professionals Program

605-447/625-438

Dr. Mark Fleischer

Copyright 2013 by Mark Fleischer

Module 3.1: Basic Symbolic Logic

This Sub-Module Covers ...

- Basic review of Symbolic Logic and Truth Tables.
- Rules of Inference.
- The Truth Value of Compound Statements
- Perceptrons and Logic.

What is ...

... information or statements on which we can act with confidence.

Meaningful ... but vague!

Learning Truth

Young children and babies often learn how to assess things in their brand new world, but often in a very dualistic fashion!

Let's keep things simple...

- Avoid all the vagaries of the human condition.
- Simplify issues ... make them amenable to analysis.
- Provide for a rich set of possibilities ...
 allow encoding of all the shades of gray.

True = 1False = 0

AND OR

Α	В	A∧B
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	A∨B
0	0	0
0	1	1
1	0	1
1	1	1

NAND

A	В	A∧B
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	Ā	B	A v B
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	0	0	

Α	В	A	В	A v B
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

NAND

Α	В	Ā∧B
0	0	1
0	1	1
1	0	1
1	1	0

Not A OR Not B

Α	В	AvB
0	0	1
0	1	1
1	0	1
1	1	0

Logically Equivalent

$$\overline{A \wedge B} \equiv \overline{A \vee B}$$

Rules of Inference

What does $A \Rightarrow B$ mean?

Recited often as

A implies B... or If A then B...

But what does this mean?

Answer:

If A is a true statement, then B is a true statement.

Sometimes stated as:

A is sufficient for B, or

B is a necessary consequence of A.

Truth Table of $A \Rightarrow B$

Α	В	$A \Rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

NAND XOR

Α	В	Ā∧B
0	0	1
0	1	1
1	0	1
1	1	0

A	В	A⊗B
0	0	0
0	1	1
1	0	1
1	1	0

Evaluating Compound Statements

NAND

Α	В	Ā∧B
0	0	1
0	1	1
1	0	1
1	1	0

Not A OR Not B

Α	В	AvB
0	0	1
0	1	1
1	0	1
1	1	0

How would we determine the truth value of this statement?

$$\overline{A \wedge B} \Rightarrow \overline{A} \vee \overline{B}$$

A'

$$\mathsf{B}'$$

Compound Statements

Α	В	$A \Rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

A' B'

Α	В	Ā∧B	A v B	$\overline{A \wedge B} \Rightarrow \overline{A \vee B}$
0	0	1	1	1
0	1	1	1	1
1	0	1	1	1
1	1	0	0	1

Tautology

Really Compound Statements!

$$[(A \Rightarrow B) \land (B \Rightarrow C)] \Rightarrow (A \Rightarrow C)$$

Rule of Inference Basis of Deductive Reasoning

A | B | C | A
$$\Rightarrow$$
 B | B \Rightarrow C | (A \Rightarrow B) \land (B \Rightarrow C) | A \Rightarrow C | [(A \Rightarrow B) \land (B \Rightarrow C)] \Rightarrow (A \Rightarrow C)

0 0 0 1 1 1 1 1 1

Can Perceptrons Model AND?

Α	В	A۸B
0	0	0
0	1	0
1	0	0
1	1	1

$$A = W_1X_1 + W_2X_2 + \theta = 1 + 1 - 1.5 = 0.5$$

We can now input this value into the activation function.

Threshold Logic

Threshold Logic

Output =
$$\begin{cases} 1 & \text{if } f(A) \ge C \\ 0 & \text{otherwise} \end{cases}$$

Activation Function

$$f(A) = \frac{1}{1 + e^{-A}}$$

A New Angle to Perceptrons

