Strategies for ggplot2::geom_smooth when outcome domain is not the real line

Holger Sennhenn-Reulen® Northwest German Forest Research Institute (NW-FVA), Germany.

August 22, 2024

This short manuscript gives pragmatic strategies for how to use ggplot2::geom_smooth when the outcome domain is not the real line.

Contents

1	Software	2
2	Organize R Session	2
3	Simulation build-up	2
4	Linear model	3
5	Gamma-GLM 5.1 works for strictly positive values	
6	Tweedie-GAM 6.1 works	
7	Betaregression as a pragmatic solution in three steps 7.1 Transform values so that all values in the interval $[c, 10 - c]$, e.g. with $c = 0.01$ 7.2 Now divide all values by 10 in order to be able to apply beta regression 7.3 Rescale y-axis	9
D,	oformos	11

1 Software

We use the statistical software environment R (R Core Team, 2024), and R add-on package ggplot2 (Wickham, 2016) for graphical visualizations.

This document is produced using *Quarto* (Allaire et al., 2024).

2 Organize R Session

```
rm(list = ls())
library("ggplot2")
```

3 Simulation build-up

```
N <- 300
set.seed(123)
x <- runif(N)
y <- rgamma(n = N, shape = 1, scale = exp(.5 + 3*x))
df <- data.frame(x = x, y = y)</pre>
```

4 Linear model

Here, due to the simulation setup, we also get negative values for the conditional expected value if method = "lm":

```
ggplot(data = df, aes(x = x, y = y)) +
  geom_point()+
  geom_smooth(formula = y ~ x, method = "lm")
```


5 Gamma-GLM ...

5.1 ... works for strictly positive values

5.2 ... no longer works if value(s) exactly on $\boldsymbol{0}$

Gamma-GLM no longer works with a value exactly equal to 0:

6 Tweedie-GAM ...

6.1 ... works

As an alternative we can use a Tweedie-GAM if at least one value is exactly equal to 0:

... setting p=1.5 is a bit rough, but maybe it's okay as a pragmatic solution for now?!

6.2 ... doesn't worl properly if we set values beyond 10 on the value 10

What to do if values between 0 and 10, with exactly equal to 0 and exactly equal to 10?

The uncertainty interval goes beyond 10.

7 Betaregression as a pragmatic solution in three steps

7.1 Transform values so that all values in the interval [c,10-c], e.g. with c = 0.01.

7.2 Now divide all values by 10 in order to be able to apply beta regression

7.3 Rescale y-axis

```
times_ten <- function(x){
  x * 10
  }
p +
  scale_y_continuous(labels = times_ten) +
  labs(y = "y")</pre>
```


References

- Allaire, J. J., Teague, C., Scheidegger, C., Xie, Y., & Dervieux, C. (2024). *Quarto (Version 1.4.553)*. https://doi.org/10.5281/zenodo.5960048
- R Core Team. (2024). *R: A Language and Environment for Statistical Computing (Version 4.4.1).* R Foundation for Statistical Computing.
- Wickham, H. (2016). *ggplot2: Elegant graphics for data analysis*. Springer-Verlag New York. https://ggplot2.tidyverse.org