計算認知神經科學計算視覺

Edge

Color often not a powerful feature

However, these are all images of people but the colors in each image are very different.

Where do Edges Come From?

Where do Edges Come From?

Where do Edges Come From?

邊緣(edge)

在A、B兩個區域內的像素灰階值是非常相近的,而兩個區域之間的灰階值會出現「急劇變化(Abrupt change)」,可以把該區域之灰階值做一次微分,並繪製成二維示意圖來觀察

How do you find the edge of this signal?

intensity plot

How do you find the edge of this signal?

intensity plot

Using a derivative filter:

derivative plot

What's the problem here?

Differentiation is very sensitive to noise

When using derivative filters, it is critical to blur first!

Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

"zero crossings" at edges

Image filtering: Convolution operator Important Filter: Sobel operator

$$k(x,y) = \begin{array}{|c|c|c|c|c|} \hline 1 & 0 & -1 \\ \hline 2 & 0 & -2 \\ \hline 1 & 0 & -1 \\ \hline \end{array}$$

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

1	0	-1				1				1	0	-1
2	0	-2		=		2		*	1	D de	eriva	tive
1	0	-1				1				fi	ilter	
Sobel filter		•		Wh	at fi	ter						
					is	this	?					

1	0	-1			1				1	0	-1
2	0	-2	=		2		*	1	D de	eriva	tive
1	0	-1			1				fi	lter	
Sob	el fil	ter	•	Bl	urrir	ig					

Horizontal Sober filter:

1	0	-1
2	0	-2
1	0	-1

=

*

What does the vertical Sobel filter look like?

Horizontal Sober filter:

1	0	-1
2	0	-2
1	0	-1

=

*

Vertical Sobel filter:

*

Filters We've Seen

Gaussian Derivative

Sobel Filter

$$egin{bmatrix} 1 & 0 & -1 \ 2 & 0 & -2 \ 1 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Why would anybody use the bottom filter?

Filters We've Seen

Smoothing

Example

Gaussian

Deriv. of gauss

Derivative

Goal

Remove noise

Find edges

Only +?

Yes

No

Sums to

1

Why sum to 1 or 0, intuitively?

Sobel filter example

original

which Sobel filter?

which Sobel filter?

Sobel filter example

original

horizontal Sobel filter

vertical Sobel filter

Sobel filter example

original

horizontal Sobel filter

vertical Sobel filter

Several derivative filters

Sobel

1	0	-1
2	0	- 2
1	0	-1

1	2	1
0	0	0
-1	-2	-1

Scharr

3	0	-3
10	0	-10
3	0	-3

3 10 3 0 0 0 -3 -10 -3

Prewitt

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Roberts

0	1
-1	0

1	0
0	-1

- How are the other filters derived and how do they relate to the Sobel filter?
- How would you derive a derivative filter that is larger than 3x3?

Sampling

Very simple example: a sine wave

How would you discretize this signal?

Sampling

Very simple example: a sine wave

Sampling

Very simple example: a sine wave

How many samples should I take?

Can I take as *mαny* samples as I want?

Image matching

Pick a point in the image. Find it again in the next image.

What type of feature would you select?

Pick a point in the image. Find it again in the next image.

What type of feature would you select?

Pick a point in the image. Find it again in the next image.

What type of feature would you select?

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

1. Compute image gradients over a small region (not just a single pixel)

array of x gradients

$$I_x = \frac{\partial I}{\partial x}$$

array of y gradients

$$I_y = \frac{\partial I}{\partial y}$$

What does the distribution tell you about the region?

distribution reveals edge orientation and magnitude

Which error surface indicates a good image feature?

flat

edge 'line'

corner 'dot'

eigenvalue

$$Moldsymbol{e}=\lambdaoldsymbol{e}$$
 eigenvector

$$(M - \lambda I)\boldsymbol{e} = 0$$

eigenvalue

$$(M - \lambda I)\mathbf{e} = 0$$

1. Compute the determinant of $M-\lambda I$ (returns a polynomial)

$$M - \lambda I$$

eigenvalue

$$(M - \lambda I)\mathbf{e} = 0$$

1. Compute the determinant of (returns a polynomial)

$$M-\lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(M - \lambda I) = 0$$

eigenvalue

$$(M - \lambda I)\mathbf{e} = 0$$

1. Compute the determinant of (returns a polynomial)

$$M-\lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(M - \lambda I) = 0$$

3. For each eigenvalue, solve (returns eigenvectors)

$$(M - \lambda I)\mathbf{e} = 0$$

interpreting eigenvalues

interpreting eigenvalues

interpreting eigenvalues

Finding + Matching

Finding and Matching

- 1: find corners+features
- 2: match based on local image data