Cryptanalysis Part II: Cryptanalysis of Hash Constructions

André Schrottenloher

Inria Rennes Team CAPSULE

2 Second Preimage on Merkle-Dåmgard

3 Nostradamus Attack

Merkle-Dåmgard

Let
$$H:\underbrace{\{0,1\}^n}_{\text{Chaining value}} \times \underbrace{\{0,1\}^m}_{\text{Message block}} \to \{0,1\}^n$$

$$pad(M) = \underbrace{M_1 \qquad M_2 \qquad M_3 \qquad M_4}_{h_1} + \underbrace{H}_{h_2} + \underbrace{H}_{h_2} + \underbrace{H}_{h_2} + \underbrace{H}_{h_3} + \underbrace{H}_{h_2} + \underbrace{H}_{h_3} + \underbrace{H}_{h_3}$$

Fact

If H is collision-resistant, and pad is an appropriate padding scheme, $\mathcal{H} = MD[H]$ is collision-resistant.

Collisions

From a given chaining value h, find two blocks x, x' such that H(h, x) = H(h, x'): $\mathcal{O}(2^{n/2})$.

Preimage

From a given chaining value h and target t, find a block x such that H(h,x)=t: $\mathcal{O}(2^n)$.

Multi-target preimage

From a given chaining value h and set of targets T, $|T| = 2^t$, find a block x such that $H(h,x) \in T$: $\mathcal{O}(2^{n-t})$.

 \implies all of this assumes nothing of the function H.

Length Extension on Merkle-Dåmgard

Length extension attack

Attack

Given $\mathcal{H}(x)$, where x is unknown, obtain $\mathcal{H}(x||pad(x)||y)$ for arbitrary suffix y.

Length extension attack

Attack

Given $\mathcal{H}(x)$, where x is unknown, obtain $\mathcal{H}(x||pad(x)||y)$ for arbitrary suffix y.

- We know the final state after absorbing $x \| \operatorname{pad}(x)$
- Restart from this state and compute the next chaining values ourselves (incl. padding)

Avoiding this

Solution

Use a different compression function for the last call.

Second Preimage on Merkle-Dåmgard

Second preimage attack

Consider a very long message $x = x_0 || x_1 \dots || x_{2^k-1}$, with 2^k chaining values.

Objective

Given x, $\mathcal{H}(x)$, find $y \neq x$ such that $\mathcal{H}(y) = \mathcal{H}(x)$.

If the padding did not depend on the message length, this would be easy:

- Find z such that $\mathcal{H}(z)$ falls on a chaining value (time $\mathcal{O}(2^{n-k})$)
- Concatenate z with the rest of the message

Problem: the two messages have different lengths.

Interlude: multicollisions in MD

- Start from a chaining value h_0
- Find a collision from h_0 : let h_1 be the output
- Find a collision from h_1 : let h_2 be the output
- . . .

Every choice of message $(m_1 \text{ or } m_1') \| (m_2 \text{ or } m_2') \| \dots \| (m_r \text{ or } m_r') \text{ leads}$ to the same value h_r .

We can compute a 2^r -collision in time $\mathcal{O}(r2^{n/2})$.

Expandable message

- So far all the messages in the multicollision have the same length.
- New idea: use messages of different block lengths.

$$2^{1} + 1 \ bl. \ 2^{2} + 1 \ bl. \ 2^{3} + 1 \ bl. \ 2^{4} + 1 \ bl. \ 2^{5} + 1 \ bl. \ 2^{6} + 1 \ bl. \ 2^{7} + 1 \ bl.$$

$$\text{IV} \underbrace{m_{1}/m_{1}'}_{1} \underbrace{m_{2}/m_{2}'}_{2} \underbrace{m_{3}/m_{3}'}_{3} \underbrace{m_{4}/m_{4}'}_{4} \underbrace{m_{5}/m_{5}'}_{5} \underbrace{m_{6}/m_{6}'}_{6} \underbrace{m_{7}/m_{7}'}_{7} \underbrace{m_{7}/m_{7}'}_{7} \underbrace{m_{7}/m_{7}'}_{1} \underbrace{m_{7}/m_{7$$

- First collision: 1 block vs. $2^1 + 1$ block
- Second collision: 1 block vs. 2² + 1 block

Theorem

For any $r \leq j < r + 2^r$, we can produce a message (by choosing m_i or m_i' blocks) with output h_r and length i blocks. The EM structure is constructed in time $\mathcal{O}(2^{r+n/2})$.

⇒ multicollision with length control.

Second preimage attack (ctd.)

- 1. construct a 2^k -expandable message: $\mathcal{O}(2^{k+n/2})$ with output h_k
- 2. find x^* such that $H(h_k, x^*)$ is one of the chaining values: $\mathcal{O}(2^{n-k})$
- 3. select in the EM the message having the right length

Total:
$$\mathcal{O}(2^{k+n/2}) + \mathcal{O}(2^{n-k})$$
, optimal when $k = n/4$ (time $\mathcal{O}(2^{3n/4})$).

Avoiding this

Solution

- Increase the internal state (wide-pipe construction): instead of *n* bits, have 2*n* bits
- At the end, compress the 2n bits into n bits (typically: truncate)

Nostradamus Attack

Nostradamus attack scenario

Nostradamus says: "I can predict the lottery output".

- Nostradamus publishes a hash output h
- After the lottery outputs x, Nostradamus shows that $h = \mathcal{H}(x||s)$ where s is an arbitrary (garbage) suffix

Nostradamus concludes: "I have correctly predicted x".

Chosen target forced prefix pre-image resistance:

Given x and h, find s such that $h = \mathcal{H}(x||s)$.

For Merkle-Dåmgard, CTFP is easier than preimage.

The diamond structure

Find many messages leading to the same hash value.

The diamond structure (ctd.)

- 1. Start from 2^k random chaining values.
- 2. Find message pairs which map the 2^k chaining values to 2^{k-1} (many collisions)
- 3. Find message pairs to map the 2^{k-1} values to 2^{k-2}
- 4. ...

Naive complexity: $\mathcal{O}(2^k \times 2^{n/2})$.

The diamond structure (ctd.)

- 1. Start from 2^k random chaining values.
- 2. Find message pairs which map the 2^k chaining values to 2^{k-1} (many collisions)
- 3. Find message pairs to map the 2^{k-1} values to 2^{k-2}
- 4. ...

Naive complexity: $\mathcal{O}(2^k \times 2^{n/2})$.

Better complexity:

- At each level, select $2^{n/2+k/2}$ extensions $(2^{n/2-k/2}$ per current value).
- Expect $(2^{n/2+k/2})^2 2^{-n} = 2^k$ collisions (enough to form all collision pairs).

Result: $\widetilde{\mathcal{O}}(2^{k/2+n/2})$.

The herding attack

- 1. Nostradamus creates a diamond structure, publishes the output h
- 2. On challenge x, Nostradamus finds a message m such that h(x, m) is in the first level of the diamond

Complexity: $2^{n/2+k/2} + 2^{n-k}$, balanced with $k = n/3 \implies \mathcal{O}(2^{2n/3})$.

Conclusion

- All of these attacks are **generic**: they are limitations from the constructions, not the primitives.
- Basic Merkle-Dåmgard has many hurdles: exercise caution
- Modern hash functions (SHA-3) are more often built using Sponges than MD