Пример применения алгоритма минимизации

Минимизируем данный автомат:

Автомат полный, в нем нет недостижимых вершин — продолжаем. Строим обратное δ отображение.

δ^{-1}	0	1		
A		В		
В	_	A		
\mathbf{C}	ΑВ	_		
D	$^{\mathrm{C}}$	$^{\mathrm{C}}$		
\mathbf{E}	D	_		
\mathbf{F}	E F	DFG		
G	\mathbf{G}	${ m E}$		

Отмечаем в таблице и добавляем в очередь пары состояний, различаемых словом ε : все пары, один элемент которых — терминальное состояние, а второй — не терминальное состояние. Для данного автомата это пары (A,F),(B,F),(C,F),(D,F),(E,F),(A,G),(B,G),(C,G),(D,G),(E,G)

Дальше итерируем процесс определения неэквивалентных состояний, пока очередь не оказывается пуста. (A, F) не дает нам новых неэквивалентных пар. Для (B, F) находится 2 пары: (A, D), (A, G). Первая пара не отмечена в таблице — отмечаем и добавляем в очередь. Вторая пара уже отмечена в таблице, значит, ничего делать не надо. Переходим к следующей паре из очереди. Итерируем дальше, пока очередь не опустошится.

Результирующая таблица (заполнен только треугольник, потому что остальное симметрично) и порядок добавления пар в очередь.

	A	В	\mathbf{C}	D	E	F	G
A							
В							
С	√	√					
D	✓	\checkmark	✓				
\mathbf{E}	√	✓	√	✓			
\mathbf{F}	✓	\checkmark	✓	\checkmark	✓		
G	√	\checkmark	√	\checkmark	\checkmark		

Очередь:

(A, F), (B, F), (C, F), (D, F), (E, F), (A, G), (B, G), (C, G), (D, G), (E, G), (C, F), (C,

(B, D), (A, D), (A, E), (B, E), (C, E), (C, D), (D, E), (A, C), (B, C))

В таблице выделились классы эквивалентных вершин: $\{A,B\},\{C\},\{D\},\{E\},\{F,G\}$. Остается только нарисовать результирующий автомат с вершинами-классами. Переходы добавляются тогда, когда из какогонибудь состояния первого класса есть переход в какое-нибудь состояние второго класса. Минимизированный автомат:

