

ЭТИКЕТКА

СЛКН.431242.004 ЭТ

Микросхема интегральная 564 ИД1В Функциональное назначение – Двоично-десятичный дешифратор

Климатическое исполнение УХЛ Схема расположения выводов Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Выход	9	Выход
2	Выход	10	Вход
3	Выход	11	Вход
4	Выход	12	Вход
5	Выход	13	Вход
6	Выход	14	Выход
7	Выход	15	Выход
8	Общий	16	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = (25 \pm 10) °C) Таблица 1

Изименования параметра, атинина измерения, разлим измерения	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, В, при: $U_{CC} = 5$ В, 10 В	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5~B$ $U_{CC} = 10~B$	Uoн	4,99 9,99	-
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B	U _{OH min}	4,2 9,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15~\mathrm{B}$	${ m I}_{ m IL}$	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15~{\rm B}$	I_{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC}=5~B,~U_O=0,5~B$ $U_{CC}=10~B,~U_O=0,5~B$	I_{OL}	0,6 1,2	-
8. Выходной ток высокого уровня, мА, при: $U_{CC}=5~B,~U_O=4,5~B\\ U_{CC}=10~B,~U_O=9,5~B$	I_{OH}	/-0,5/ /-1,0/	-

Продолжение таблицы 1				
1	2	3	4	
9. Ток потребления, мкА, при: $U_{CC} = 5 B$ $U_{CC} = 10 B$ $U_{CC} = 15 B$	I_{CC}	- - -	5,0 10,0 20,0	
$10.$ Ток потребления в динамическом режиме, мА, при: $U_{CC}=10$ B, $C_{L}=50$ пФ	I _{occ}	-	0,55	
11. Время задержки распространения при включении, нС, при: U_{CC} = 5 B, C_L = 50 пФ U_{CC} = 10 B, C_L = 50 пФ	$t_{ m PHL}$	- -	300 200	
12. Время задержки распространения при выключении, нС, при: $U_{CC}=5$ B, $C_L=50$ пФ $U_{CC}=10$ B, $C_L=50$ пФ	t _{PLH}		300 200	
13. Входная емкость, п Φ , при: $U_{CC} = 10~B$	C_{I}	-	7,5	

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г, серебро г, в том числе: г/мм на 16 выводах, длиной мм.

2 НАДЕЖНОСТЬ

Цветных металлов не содержится.

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5$ В \pm 10% - не менее $120000\,$ ч.

Гамма – процентный ресурс (T_{DY}) микросхем устанавливают в ТУ при $\gamma = 95\%$ и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

3.1 <u>Гарантии предприятия – изготовителя – по ОСТ В 11 0398 – 2000:</u>

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Цена договорная

Микросхемы 564 ИДІВ соответствуют техническим условиям бК0.347.064 ТУ11/02 и признаны годными для эксплуатации.

Приняты по(извещение, акт и др.)	ОТ	
Место для штампа ОТК		Место для штампа ВП
Место для штампа «Перепроверка г	роизведена	
Приняты по(извещение, акт и др.)	ОТ(дата)	
Место для штампа ОТК		Место для штампа ВП

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.