Linear Algebra I

Ji, Yong-hyeon

July 8, 2025

We cover the following topics in this note.

Part I

- Linear Combination, Spanning Set
- Linearly Independent and Dependent
- Basis

Part II

- Partial Order; POSET
- Total Order (Linear Order); TOSET
- Maximal, Minimal, Hasse Diagram

Part III

- Chain, Zorn's Lemma
- Basis Theorem (Existence of Basis)
- Invariance of Basis Cardinality; Dimension of Vector Space

Vector Space

Definition. Let F be a field. A **vector space** over F (or a F-vector space) is a structure $(V, +, \cdot)$ satisfying the following axioms:

- (i) (V, +) is an abelian group with additive identity $\mathbf{0} \in V$.
- (ii) Define *scalar multiplication* as the function $\cdot: F \times V \to V$, $(a, \mathbf{v}) \mapsto a \cdot \mathbf{v}$.
- (iii) (Compatibility) For all $a, b \in F$ and $\mathbf{v}, \mathbf{w} \in V$,
 - (a) $a \cdot (\mathbf{v} + \mathbf{w}) = a \cdot \mathbf{v} + a \cdot \mathbf{w}$.
 - (b) $(a+b) \cdot \mathbf{v} = a \cdot \mathbf{v} + b \cdot \mathbf{v}$.
 - (c) $a \cdot (b \cdot \mathbf{v}) = (ab) \cdot \mathbf{v}$.
 - (d) $1_F \cdot \mathbf{v} = \mathbf{v}$.
 - (e) $0_F \cdot \mathbf{v} = \mathbf{0}$.

(Distributivity over vector addition)

(Distributivity over field addition)

(Associativity of scalar multiplication)

(Identity of scalar multiplication)

Remark. Consider a vector space V over a field F. Let $\mathbf{v} \in V$. Since $0_F = 0_F + 0_F$ (over F), we have

$$0_F \cdot \mathbf{v} = (0_F + 0_F) \cdot \mathbf{v} \stackrel{\text{(iii)-(b)}}{=} 0_F \cdot \mathbf{v} + 0_F \cdot \mathbf{v}.$$

Then

$$0_F \cdot \mathbf{v} + (-0_F \cdot \mathbf{v}) = 0_F \cdot \mathbf{v} + 0_F \cdot \mathbf{v} + (-0_F \cdot \mathbf{v}),$$

$$0 = 0_F \cdot \mathbf{v} + 0,$$

$$0 = 0_F \cdot \mathbf{v}.$$

Linear Combination and Spanning Set

Definition. Let *V* be a vector space over a field *F*, and let *S* be a subset of *V*

(1) A vector $\mathbf{v} \in V$ is called a **linear combination** of elements of S if there exists finite number of vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n \in S$ and scalars $a_1, a_2, \dots, a_n \in F$ such that

$$\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \dots + a_n \mathbf{b}_n = \sum_{i=1}^n a_i \mathbf{b}_i.$$

(2) The **subspace spanned by** *S* (or **spanning set** *S*), denoted by span(*S*), is the set of all finite linear combinations of elements of *S*:

$$\operatorname{span}(S) = \left\{ a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \dots + a_n \mathbf{b}_n \mid a_i \in F, \mathbf{b}_i \in S \text{ for all } i = 1, 2, \dots, n \right\}$$
$$= \left\{ \sum_{i=1}^n a_i \mathbf{b}_i \mid a_i \in F, \mathbf{b}_i \in S \text{ for all } i = 1, 2, \dots, n \right\}$$

Example. Consider the vector space \mathbb{R}^2 and the subset

$$S = \{\mathbf{b}_1, \mathbf{b}_2\}$$
 with $\mathbf{b}_1 = (2, 1)$ and $\mathbf{b}_2 = (1, 3)$.

• A vector $\mathbf{v} = (3,4) \in \mathbb{R}^2$ is a linear combination of \mathbf{b}_1 and \mathbf{b}_2 since

$$\mathbf{v} = (3,4) = (2 \cdot 1 + 1, 1 + 3 \cdot 1) = 1 \cdot (2,1) + 1 \cdot (1,3), \text{ i.e., } \mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

• Since \mathbf{b}_1 and \mathbf{b}_2 are not colinear (they are lineary independent), every vector in \mathbb{R}^2 can be expressed in the form $(2a_1 + a_2, a_1 + 3a_2)$ for some $a_1, a_2 \in \mathbb{R}$. Hence

$$\operatorname{span}(S) = \mathbb{R}^2$$
.

Linearly Independent and Dependent

Definition. Let *V* be a vector space over a field *F* and let $S \subseteq V$.

(1) The set S said to be **linearly independent** if, for any finite collection of distinct vectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n \in S$ and any scalars $a_1, a_2, \dots, a_n \in F$,

$$a_1\mathbf{b}_1 + a_2\mathbf{b}_2 + \dots + a_n\mathbf{b}_n = \mathbf{0} \implies a_1 = a_2 = \dots = a_n = 0.$$

(2) The set S is said to be **linearly dependent** (i.e., not linearly independent) if there exists finitely many distinct vectors $\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n \in S$ and scalars $a_1, a_2, \dots, a_n \in F$, not all zeros, such that

$$a_1\mathbf{b}_1 + a_2\mathbf{b}_2 + \dots + a_n\mathbf{b}_n = \mathbf{0}.$$

Remark. In (2), suppose that $a_1 \neq 0$, Then

$$a_1\mathbf{b}_1 = -a_2\mathbf{b}_2 - \dots - a_n\mathbf{b}_n \iff \mathbf{b}_1 = -a_1^{-1}(a_2\mathbf{b}_2 + \dots + a_n\mathbf{b}_n).$$

That is, a set *S* is linearly dependent if at least one vector in *S* can be expressed as a linear combination of the others.

Example.

Linearly Independent Vectors

Linearly Dependent Vectors (Collinear)

• The vectors $\mathbf{v}_1 = (1,2)$ and $\mathbf{v}_2 = (3,4)$ are linearly independent because the only solution to

$$a\mathbf{v}_1 + b\mathbf{v}_2 = \mathbf{0}$$

is a = 0 and b = 0.

• The vectors $\mathbf{u}_1 = (1,2)$ and $\mathbf{u}_2 = (2,4)$ are linearly dependent because \mathbf{u}_2 is a multiple of \mathbf{u}_1 ; nontrivial solutions exist for

$$a\mathbf{u}_1 + b\mathbf{u}_2 = \mathbf{0}.$$

Remark. In any vector space *V* , we can always find a subset of *S* such that

$$\operatorname{span}(S) = V$$
.

For instance, taking S = V gives span(S) = V. Since S = V, each vector $\mathbf{v} \in V$ can be expressed as a trivial linear combination $\mathbf{v} = 1 \cdot \mathbf{v}$. Thus, there exists a subset $S \subseteq V$ such that span(S) = V.

Remark.

- A singleton set $\mathcal{B} = \{\mathbf{b}\}$ is linearly independent since $k\mathbf{b} = 0 \implies k = 0$ for any $k \in F$.
- The empty set Ø is linearly independent; this holds vacuously.

★ (Hamel) Basis **★**

Definition. Let V be a vector space over a field F. A subset $\mathcal{B} \subseteq V$ is called a **(Hamel)** basis for V if it satisfies the following two conditions:

(i) (*Linearly Independent*) The set \mathcal{B} is linearly independent; that is, for any *finite* collection of distinct elements $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n \in \mathcal{B}$ and scalars $a_1, a_2, \dots, a_n \in F$,

$$a_1\mathbf{b}_1 + a_2\mathbf{b}_2 + \dots + a_n\mathbf{b}_n = 0 \implies a_1 = a_2 = \dots = a_n = 0.$$

(ii) (*Spanning Property*) The set \mathcal{B} spans V (span $\mathcal{B} = V$); that is, every vector $\mathbf{v} \in V$, there exist a positive integer $n \in \mathbb{Z}^+$, scalars $a_1, a_2, \ldots, a_n \in F$, and distinct elements $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n \in \mathcal{B}$ such that

$$\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \dots + a_n \mathbf{b}_n,$$

Remark (Schauder Basis). Let X be a Banach space (or more generally, a complete normed vector space) over the field F. A sequence $\{x_n\}_{n=1}^{\infty} \subseteq X$ is called a **Schauder basis** for X if it satisfies the following condition:

For every vector $x \in X$, there exits a unique sequence of scalars $\{a_n\}_{n=1}^{\infty} \subseteq F$ such that

$$x = \sum_{i=1}^{\infty} (a_n \cdot x_n),$$

where the series converges in the norm topology of X, i.e., $\lim_{N\to\infty} \left\| x - \sum_{n=1}^N (a_n \cdot x_n) \right\| = 0$.

Remark. A Hamel basis is unique in the sense that every vector in V has a unique representation as a finite linear combination of the elements of \mathcal{B} .

Partial Order

Definition. Let *S* be a nonempty set. A binary relation \leq on *S* is called a **partial order** if it satisfies the following three axioms for all $a, b, c \in X$,

- (i) (Reflexivity) $a \le a$;
- (ii) (Anti-symmetry) $a \le b$ and $b \le a \implies a = b$;
- (iii) (Transitivity) $a \le b$ and $b \le c \implies a \le c$.

Note. A **partially ordered set (POSET)** is an (S, \leq) , where S is a set and \leq is a partial order on S. **Example** (Poset of the Power Set with Set Inclusion). Let S be any set. Consider the power set of S:

$$2^S = \{A : A \subseteq S\}$$
 with binary relation \subseteq on 2^S .

We claim that $(2^S, \subseteq)$ is partially ordered set: for any $A, B, C \in 2^S$,

- (i) Reflexivity: $A \subseteq A$;
- (ii) Anti-symmetry: $A \subseteq B$ and $B \subseteq A \implies A = B$;
- (iii) Transitivity: $A \subseteq B$ and $B \subseteq C \implies A \subseteq C$.

Hence, $(2^S, \subseteq)$ forms a poset.

Total Order (Linear Order)

Definition. Let (S, \leq) be a poset; that is, \leq is a partial order on S. We say that \leq is a **total order** (or **linear order**) on S if it satisfies the *comparability condition*: for each $a, b \in S$, either

$$a \le b$$
 or $b \le a$.

Note. A **totally ordered set (TOSET)** is a poset (S, \leq) in which the relation \leq is a total order. In other words, (S, \leq) is totally ordered if every pair of elements in S is comparable.

Example. Consider all binary string of length 3:

$$\{000,001,010,011,100,101,110,111\}$$
.

They are ordered as follows:

$$000 \longrightarrow 001 \longrightarrow 010 \longrightarrow 011 \longrightarrow 100 \longrightarrow 101 \longrightarrow 110 \longrightarrow 111$$

Maximal and Minimal

Definition. Let (P, \leq) be a poset.

(1) An element $m \in P$ is said to be **maximal** in P if

$$\forall a \in P, (m \le a) \Longrightarrow (m = a).$$

In other words, there exits no element in P that is strictly greater than m.

(2) An element $m \in P$ is said to be **minimal** in P if

$$\forall a \in P, (a \le m) \Longrightarrow (a = m).$$

That is, there is no element in P that is strictly less than m.

Example. Consider the set

$$S = \{2, 3, 4, 6, 9, 12\} \subseteq \mathbb{N}$$

with the partial order defined by *divisibility* (i.e., $x \le y \iff x \mid y$). See the Hasse diagram:

In this example, the minimal elements here are: $\{2,3\}$.

Example. Consider the power set of $\{a,b\}$ with the usual subset relation \subseteq . The poset is

$$\{\emptyset, \{a\}, \{b\}, \{a, b\}\},\$$

partially ordered by "is a subset of."

- The *minimal element* here is Ø (there's nothing strictly smaller).
- The *maximal element* here is $\{a, b\}$ (there's nothing strictly bigger).

Chain

Definition. Let (P, \leq) be a poset. A subset $C \subseteq P$ is called a **chain** if

$$\forall a, b \in C$$
, either $a \le b$ or $b \le a$.

In other words, a chain in a poset is a subset in which every two elements are comparable (i.e.the subset is totally ordered).

Example. Consider a poset

$$P = \{1, 2, 3, 4, 5, 6, 8, 15\} \subseteq \mathbb{N}$$

with the partial order defined by divisibility. See the Hasse diagram:

Here, $C = \{1, 2, 4, 8\}$ is a *chain* under divisibility.

Example. Let $S = \{a, b, c\}$. Consider all the subsets of S under the subset relation \subseteq . The entire power set of S is

$$2^{S} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\} .$$

This set 2^S (the power set) is partially ordered by \subseteq : for any $A, B \in 2^S$,

$$A \leq B \iff A \subseteq B$$
.

Here, $C = \{\emptyset, \{a\}, \{a,b\}, \{a,b,c\}\}\$ is a *chain* in 2^S .

Zorn's Lemma

Axiom. Let (P, \leq) be a nonempty partially ordered set with property that every chain $C \subseteq P$ has an upper bound in P; that is, for every chain $C \subseteq P$,

$$\exists u \in P$$
 such that $\forall c \in C$, $c \leq u$.

Then *P* contains at least one maximal element; that is,

$$\exists m \in P \text{ such that } \forall a \in P, (m \le a) \Longrightarrow (m = a).$$

Observation (Existence of Basis). Let $\mathcal{L} := \{ S \subseteq \mathbb{R}^3 : S \text{ is linearly independent} \}.$

Hasse Diagram for a poset (\mathcal{L},\subseteq) in \mathbb{R}^3

Any chain C

 $U = \emptyset \cup \{\mathbf{u}_1\} \cup \{\mathbf{u}_1, \mathbf{u}_3\} \cup \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$

Upper Bound $U = \bigcup_{S \in C} S$

Maximal element $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$

★ Basis Theorem ★

Theorem. Every vector space V over a field F has a basis.

Proof.

Key Idea: "By considering all linearly independent subsets of *V* and partially ordering them by inclusion, we use Zorn's Lemma to guarantee a maximal linearly independent set exists."

Remark. This theorem and its proof is a classic demonstration of how abstract set-theoretic principles can yield concrete and essential results in linear algebra.

Definition. Consider any two sets S_1 and S_2 .

(1) (Equal Cardinalities) We write

$$|S_1| = |S_2|$$

if and only if there exists a bijective (one-to-one and onto) function $f: S_1 \to S_2$.

(2) (Strict Inequality of Cardinalities) We write

$$|S_1| < |S_2|$$

if and only if there exists an injective (one-to-one) function $f: S_1 \to S_2$ but no bijective function from S_1 onto S_2 exists.

Steinitz's Exchange Lemma

Lemma. Let V be a vector space over a field F. Suppose that

- (i) $X = \{x_1, x_2, ..., x_m\} \subseteq V$ is a linearly independent set, and
- (ii) $\mathcal{Y} = \{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n\} \subseteq V$ is a spanning set of V, i.e., span $\mathcal{Y} = V$.

Then $|X| \leq |\mathcal{Y}|$, that is, there exists an injective function $f: X \to \mathcal{Y}$.

Proof. TBA

Invariance of Basis Cardinality

Theorem. Let V be a vector space over a field F, and let \mathcal{B}_1 and \mathcal{B}_2 be two bases of V. Then

$$|\mathcal{B}_1| = |\mathcal{B}_2|$$
.

Proof. Suppose, for the contradiction, that

$$|\mathcal{B}_1| < |\mathcal{B}_2|$$
.

Since \mathcal{B}_1 is a basis, it spans V. Also since \mathcal{B}_2 is a basis, it is linearly independent. Applying the Steinitz's Exchange Lemma, we obtain

$$|\mathcal{B}_2| \leq |\mathcal{B}_1|$$
 4.

Thus, it is not possible to have bases \mathcal{B}_1 and \mathcal{B}_2 of V with different cardinalities.

Dimension of Vector Space

Definition. Let V be a vector space over a field F. The **dimension** of V, denoted by dim V, is defined as the cardinality of any basis \mathcal{B} of V:

$$\dim V := |\mathcal{B}|$$
.

Remark. By the Invariance of Basis Cardinality, this definition does not depend on the choice of the basis.