Kapitola XIII. Turingovy stroje a obecné gramatiky

Alan Turing (1912 – 1954)

Turingovy stroje (TS)

Myšlenka: Výpočetní model s největší sílou

Poznámka: Δ = prázdné políčko

Turingovy stroje: Definice

Definice: Turingův stroj (TS) je šestice $M = (Q, \Sigma, \Gamma, R, s, F)$, kde

- Q je konečná množina stavů
- Σ je vstupní abeceda
- Γ je *pásková abeceda*; $\Delta \in \Gamma$; $\Sigma \subseteq \Gamma$
- R je konečná množina pravidel tvaru: $pa \rightarrow qbt$, $kde p, q \in Q, a, b \in \Gamma, t \in \{S, R, L\}$
- $s \in Q$ je počáteční stav
- $F \subseteq Q$ je množina koncových stavů

Matematická poznámka:

- Čistě matematicky, R je relace z $Q \times \Gamma$ do $Q \times \Gamma \times \{S, R, L\}$
- Místo relačního zápisu $(pa, qbt) \in R$ zapisujeme $pa \rightarrow qbt \in R$

Interpretace pravidel

• $pa \rightarrow qbS$: Pokud je aktuální stav p a čtecí hlava ukazuje na symbol a, přepiš na pásce a na b, změň aktuální stav z p na q a čtecí hlavu ponech na stejném políčku.

• $pa \rightarrow qbR$: Pokud je aktuální stav p a čtecí hlava ukazuje na symbol a, přepiš na pásce a na b, změň aktuální stav z p na q a posuň čtecí hlavu o jedno políčko vpravo.

• pa o qbL: Pokud je aktuální stav p a čtecí hlava ukazuje na symbol a, přepiš na pásce a na b, změň aktuální stav z p na q a posuň čtecí hlavu o jedno políčko vlevo.

Grafická reprezentace

- q označuje stav $q \in Q$
- \rightarrow označuje počáteční stav $s \in Q$
 - foznačuje koncový stav $f \in F$
 - $p \xrightarrow{a/b, S} q$ označuje $pa \rightarrow qbS \in R$
 - $p \xrightarrow{a/b, R} q$ označuje $pa \rightarrow qbR \in R$
 - (p) a/b, L q označuje $pa \rightarrow qbL \in R$

 $M = (Q, \Sigma, \Gamma, R, s, F)$ kde:

$$M = (Q, \Sigma, \Gamma, R, s, F)$$
 kde:

•
$$Q = \{s, p, q, f\};$$

$$M = (Q, \Sigma, \Gamma, R, s, F)$$
 kde:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b\}$;

$$M = (Q, \Sigma, \Gamma, R, s, F)$$
 kde:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b\}$;
- $\Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\Delta}\};$

$$M = (Q, \Sigma, \Gamma, R, s, F)$$
 kde:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b\};$
- $\Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \Delta\};$
- $R = \{ s\Delta \rightarrow f\Delta S,$


```
M = (Q, \Sigma, \Gamma, R, s, F)
kde:
```

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b\}$;
- $\Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \Delta\};$
- $R = \{ s\Delta \rightarrow f\Delta S, \\ sa \rightarrow paR, \}$


```
M = (Q, \Sigma, \Gamma, R, s, F)
kde:
• Q = \{s, p, q, f\};
```

- $\Sigma = \{a, b\}$;
- $\Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \Delta\};$
- $R = \{ s\Delta \rightarrow f\Delta S, \\ sa \rightarrow paR, \\ sb \rightarrow pbR, \}$


```
M = (Q, \Sigma, \Gamma, R, s, F)
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{\boldsymbol{a}, \boldsymbol{b}\};
• \Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \Delta\};
• R = \{ s\Delta \rightarrow f\Delta S,
              sa \rightarrow paR,
              sb \rightarrow pbR,
             pa \rightarrow paR,
```



```
M = (Q, \Sigma, \Gamma, R, s, F)
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
• \Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\Delta}\};
• R = \{ s\Delta \rightarrow f\Delta S,
             sa \rightarrow paR,
             sb \rightarrow pbR,
             pa \rightarrow paR,
            pb \rightarrow pbR,
```



```
M = (Q, \Sigma, \Gamma, R, s, F)
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
• \Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \Delta\};
• R = \{ s\Delta \rightarrow f\Delta S,
             sa \rightarrow paR,
             sb \rightarrow pbR,
            pa \rightarrow paR,
            pb \rightarrow pbR,
            p\Delta \rightarrow q\Delta L,
```



```
M = (Q, \Sigma, \Gamma, R, s, F)
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{\boldsymbol{a}, \boldsymbol{b}\};
• \Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \Delta\};
• R = \{ s\Delta \rightarrow f\Delta S,
              sa \rightarrow paR,
              sb \rightarrow pbR,
              pa \rightarrow paR,
              pb \rightarrow pbR,
              p\Delta \rightarrow q\Delta L,
              qa \rightarrow f\Delta S,
```



```
M = (Q, \Sigma, \Gamma, R, s, F)
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{\boldsymbol{a}, \boldsymbol{b}\};
• \Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \Delta\};
• R = \{ s\Delta \rightarrow f\Delta S,
              sa \rightarrow paR,
              sb \rightarrow pbR,
              pa \rightarrow paR,
             pb \rightarrow pbR,
              p\Delta \rightarrow q\Delta L,
              qa \rightarrow f\Delta S,
              qb \rightarrow f\Delta S
```



```
M = (Q, \Sigma, \Gamma, R, s, F)
 kde:
                                                                         \Delta/\Delta, S
• Q = \{s, p, q, f\};
• \Sigma = \{\boldsymbol{a}, \boldsymbol{b}\};
• \Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \Delta\};
                                                                    b/b, R
• R = \{ s\Delta \rightarrow f\Delta S,
                                               a/a, R
             sa \rightarrow paR,
                                                                               b/\Delta, S
             sb \rightarrow pbR,
             pa \rightarrow paR,
                                                                        b/b, R
                                              ala, R
             pb \rightarrow pbR,
             p\Delta \rightarrow q\Delta L,
              qa \rightarrow f\Delta S,
              qb \rightarrow f\Delta S
```

 a/Δ , S

```
M = (Q, \Sigma, \Gamma, R, s, F)
 kde:
                                                                     \Delta/\Delta, S
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
• \Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \Delta\};
                                                                b/b, R
• R = \{ s\Delta \rightarrow f\Delta S,
                                             a/a, R
            sa \rightarrow paR,
                                                                          b/\Delta, S
            sb \rightarrow pbR,
            pa \rightarrow paR,
                                                                    b/b, R
                                           a/a, R
            pb \rightarrow pbR,
            p\Delta \rightarrow q\Delta L,
                                                                         \Delta/\Delta,
             qa \rightarrow f\Delta S,
             qb \rightarrow f\Delta S
• F = \{f\}
```

 a/Δ , S

Pozn.: *M* smaže symbol před TS *M*: prvním výskytem symbolu ∆: Δ/Δ , S **Ilustrace:** b/b, Rala, R $\Delta/\Delta, L$

Konfigurace TS

Myšlenka: Instance popisu TS

Co vše musí být v konfiguraci popsáno?

1) Aktuální stav 2) Obsah pásky 3) Pozice hlavy

Konfigurace xpy

Definice: Necht' $M = (Q, \Sigma, \Gamma, R, s, F)$ je TS. *Konfigurace* TS M je řetězec $\chi = xpy$, kde $x \in \Gamma^*, p \in Q, y \in \Gamma^*(\Gamma - \{\Delta\}) \cup \{\Delta\}$.

Stacionární přechod

Definice: Nechť χ , χ' jsou dvě konfigurace TS M. Potom M může provést *stacionární přechod* z χ do χ' použitím r, zapsáno $\chi \vdash_S \chi'$ [r] nebo zjednodušeně $\chi \vdash_S \chi'$ pokud:

$$\chi = xpay$$
, $\chi' = xqby$ a $r: pa \rightarrow qbS \in R$

Ilustrace:

Stacionární přechod

Definice: Necht' χ , χ' jsou dvě konfigurace TS M. Potom M může provést *stacionární přechod* z χ do χ' použitím Γ , zapsáno $\chi \vdash_S \chi'$ $[\Gamma]$ nebo zjednodušeně $\chi \vdash_S \chi'$ pokud:

$$\chi = xpay$$
, $\chi' = xqby$ a $r: pa \rightarrow qbS \in R$

Ilustrace:

Stacionární přechod

Definice: Necht' χ , χ' jsou dvě konfigurace TS M. Potom M může provést *stacionární přechod* z χ do χ' použitím r, zapsáno $\chi \vdash_S \chi' [r]$ nebo zjednodušeně $\chi \vdash_S \chi'$ pokud: $\chi = xpay$, $\chi' = xqby$ a $r: pa \rightarrow qbS \in R$

Ilustrace:


```
Definice: Necht' \chi, \chi' jsou dvě konfigurace TS M.
Potom M může provést pravý přechod z \chi do \chi' použitím r, zapsáno \chi \vdash_R \chi' [r] nebo zjednodušeně \chi \vdash_R \chi', pokud: \chi = xpay, r: pa \rightarrow qbR \in R a současně: (1) \chi' = xbqy, y \neq \varepsilon nebo (2) \chi' = xbq\Delta, y = \varepsilon
```



```
Definice: Nechť \chi, \chi' jsou dvě konfigurace TS M. Potom M může provést pravý přechod z \chi do \chi' použitím r, zapsáno \chi \vdash_R \chi' [r] nebo zjednodušeně \chi \vdash_R \chi', pokud: \chi = xpay, r: pa \rightarrow qbR \in R a současně: (1) \chi' = xbqy, y \neq \varepsilon nebo (2) \chi' = xbq\Delta, y = \varepsilon
```


Definice: Nechť χ , χ' jsou dvě konfigurace TS M. Potom M může provést pravý přechod z χ do χ' použitím r, zapsáno $\chi \vdash_R \chi'$ [r] nebo zjednodušeně $\chi \vdash_R \chi'$, pokud: $\chi = xpay$, $r: pa \rightarrow qbR \in R$ a současně: $(1) \chi' = xbqy$, $y \neq \varepsilon$ nebo $(2) \chi' = xbq\Delta$, $y = \varepsilon$

Definice: Necht' χ , χ' jsou dvě konfigurace TS M. Potom M může provést pravý přechod z χ do χ' použitím r, zapsáno $\chi \vdash_R \chi'$ [r] nebo zjednodušeně $\chi \vdash_R \chi'$, pokud: $\chi = xpay$, $r: pa \rightarrow qbR \in R$ a současně: (1) $\chi' = xbqy$, $y \neq \varepsilon$ nebo (2) $\chi' = xbq\Delta$, $y = \varepsilon$ Prav.: $pa \rightarrow qbR$ Konfigurace Nová konfigurace

Definice: Necht' χ , χ' jsou dvě konfigurace TS M. Potom M může provést pravý přechod z χ do χ' použitím r, zapsáno $\chi \vdash_R \chi'$ [r] nebo zjednodušeně $\chi \vdash_R \chi'$, pokud: $\chi = xpay$, $r: pa \rightarrow qbR \in R$ a současně: (1) $\chi' = xbqy$, $y \neq \varepsilon$ nebo (2) $\chi' = xbq\Delta$, $y = \varepsilon$ Prav.: $pa \rightarrow qbR$ Konfigurace Nová konfigurace $Prav.: pa \rightarrow qbR$

Definice: Necht' χ , χ' jsou dvě konfigurace TS M. Potom M může provést pravý přechod z χ do χ' použitím r, zapsáno $\chi \vdash_R \chi'$ [r] nebo zjednodušeně $\chi \vdash_R \chi'$, pokud: $\chi = xpay$, $r: pa \rightarrow qbR \in R$ a současně: (1) $\chi' = xbqy$, $y \neq \varepsilon$ nebo (2) $\chi' = xbq\Delta$, $y = \varepsilon$ Prav.: $pa \rightarrow qbR$ Konfigurace Nová konfigurace Prav.: $pa \rightarrow qbR$ Nová konfigurace Konfigurace

Levý přechod

```
Definice: Necht' \chi, \chi' jsou dvě konfigurace TS M. Potom M může provést levý přechod z \chi do \chi' použitím r, zapsáno \chi \vdash_L \chi' [r] nebo zjednodušeně \chi \vdash_L \chi' pokud: (1) \chi = xcpay, \chi' = xqcby, y \neq \varepsilon or b \neq \Delta, r:pa \rightarrow qbL \in R nebo (2) \chi = xcpa, \chi' = xqc, r:pa \rightarrow q\Delta L \in R
```



```
Definice: Necht' \chi, \chi' jsou dvě konfigurace TS M. Potom M může provést levý přechod z \chi do \chi' použitím r, zapsáno \chi \vdash_L \chi' [r] nebo zjednodušeně \chi \vdash_L \chi' pokud: (1) \chi = xcpay, \chi' = xqcby, y \neq \varepsilon or b \neq \Delta, r:pa \rightarrow qbL \in R nebo (2) \chi = xcpa, \chi' = xqc, r:pa \rightarrow q\Delta L \in R
```



```
Definice: Necht' \chi, \chi' jsou dvě konfigurace TS M. Potom M může provést levý přechod z \chi do \chi' použitím r, zapsáno \chi \vdash_L \chi' [r] nebo zjednodušeně \chi \vdash_L \chi' pokud: (1) \chi = xcpay, \chi' = xqcby, y \neq \varepsilon or b \neq \Delta, r:pa \rightarrow qbL \in R nebo (2) \chi = xcpa, \chi' = xqc, r:pa \rightarrow q\Delta L \in R
```



```
Definice: Necht' \chi, \chi' jsou dvě konfigurace TS M. Potom M může provést levý přechod z \chi do \chi' použitím r, zapsáno \chi \vdash_L \chi' [r] nebo zjednodušeně \chi \vdash_L \chi' pokud: (1) \chi = xcpay, \chi' = xqcby, y \neq \varepsilon or b \neq \Delta, r:pa \rightarrow qbL \in R nebo (2) \chi = xcpa, \chi' = xqc, r:pa \rightarrow q\Delta L \in R
```


Konfigurace

```
Definice: Necht' \chi, \chi' jsou dvě konfigurace TS M. Potom M může provést levý přechod z \chi do \chi' použitím r, zapsáno \chi \vdash_L \chi' [r] nebo zjednodušeně \chi \vdash_L \chi' pokud: (1) \chi = xcpay, \chi' = xqcby, y \neq \varepsilon or b \neq \Delta, r:pa \rightarrow qbL \in R nebo (2) \chi = xcpa, \chi' = xqc, r:pa \rightarrow q\Delta L \in R
```



```
Definice: Nechť \chi, \chi' jsou dvě konfigurace TS M. Potom M může provést levý přechod z \chi do \chi' použitím r, zapsáno \chi \vdash_L \chi' [r] nebo zjednodušeně \chi \vdash_L \chi' pokud: (1) \chi = xcpay, \chi' = xqcby, y \neq \varepsilon or b \neq \Delta, r:pa \rightarrow qbL \in R nebo (2) \chi = xcpa, \chi' = xqc, r:pa \rightarrow q\Delta L \in R
```


Přechod

Definice: Necht' χ , χ' jsou dvě konfigurace TS M. Potom M může provést $p\check{r}echod$ z χ do χ' použitím r, zapsáno $\chi \vdash \chi' [r]$ nebo zjednodušeně $\chi \vdash \chi'$ pokud: $\chi \vdash_X \chi' [r]$ pro nějaké $X \in \{S, R, L\}$.

Sekvence přechodů 1/2

Myšlenka: několik výpočetních kroků po sobě

Definice: Nechť χ je konfigurace. M provede nula přechodů z χ do χ ; zapisujeme: χ [ε] nebo zjednodušeně χ [ε]

Definice: Nechť χ_0 , χ_1 , ..., χ_n je sekvence přechodů konfigurací pro $n \ge 1$ a $\chi_{i-1} \vdash \chi_i [r_i]$, $r_i \in R$ pro všechna i = 1, ..., n, což znamená: $\chi_0 \vdash \chi_1 [r_1] \vdash \chi_2 [r_2] \vdash ... \vdash \chi_n [r_n]$ Pak M provede n-přechodů z χ_0 do χ_n ; zapisujeme: $\chi_0 \vdash n \chi_n [r_1 r_2 ... r_n]$ nebo zjednodušeně $\chi_0 \vdash n \chi_n$

Sekvence přechodů 2/2

```
Pokud \chi_0 \vdash^n \chi_n [\rho] pro nějaké n \ge 1, pak \chi_0 \vdash^+ \chi_n [\rho].

Pokud \chi_0 \vdash^n \chi_n [\rho] pro nějaké n \ge 0, pak \chi_0 \vdash^* \chi_n [\rho].
```

Příklad: Uvažujme:

```
apbc |- aqac [1: pb \rightarrow qaS] a

aqac |- acrc [2: qa \rightarrow rcR].

Potom,

apbc |-^2 acrc [1 2],
apbc |-^+ acrc [1 2],
apbc |-^* acrc [1 2]
```

TS jako model pro přijímání jazyků

Myšlenka: *M* přijímá řetězec *w*, pokud provede sekvenci přechodů ze stavu *s* do koncového stavu

```
Definice: Necht' M = (Q, \Sigma, \Gamma, R, s, F) je TS.

Jazyk \ přijímaný TS M, L(M), je definován:

L(M) = \{w: w \in \Sigma^*, sw \mid -^* xfy; x, y \in \Gamma^*, f \in F\} \cup \{\varepsilon: s\Delta \mid -^* xfy; x, y \in \Gamma^*, f \in F\}
```

Ilustrace:

• Pro $w \neq \varepsilon$:

• Pro $w = \varepsilon$:

TS jako model pro přijímání jazyků: Příklad


```
saabb |-\Delta q_1 abb| - \Delta aq_1 bb| - \Delta abq_1 b| - \Delta abbq_1 \Delta |-\Delta abq_2 b| - \Delta aq_3 b| - \Delta q_3 ab| - q_3 \Delta ab| - \Delta sab| - \Delta \Delta q_1 b| - \Delta \Delta bq_1 \Delta |-\Delta \Delta q_2 b| - \Delta q_3 \Delta |-\Delta \Delta s \Delta |-\Delta \Delta f \Delta
Celkově: aabb \in L(M)
```

Pozn.: $L(M) = \{ a^n b^n : n \ge 0 \}$

TS jako výpočetní model

Definice: Necht' $M = (Q, \Sigma, \Gamma, R, s, F)$ je TS. TS M vyčísluje n-ární funkci ϕ následujícím způsobem: $s\Delta x_1\Delta x_2...\Delta x_n \vdash f\Delta y$, kde $f \in F$ právě tehdy, když $\phi(x_1, x_2, ..., x_n) = y$.

Illustrace:

TS jako výpočetní model: Příklad

Celkově: $\phi(11, 11) = 1111$

Pozn.: $\phi(x_1, x_2) = x_1 + x_2$, kde

- $x_1 = 1^a$ reprezentuje přirozené číslo a
- $x_2 = 1^b$ reprezentuje přirozené číslo **b**

Deterministický TS (DTS)

Myšlenka: Deterministický TS může provést z každé konfigurace maximálně jeden přechod

Definice: Necht' $M = (Q, \Sigma, \Gamma, R, s, F)$ je TS. M je deterministický TS, pokud pro každé pravidlo tvaru $pa \rightarrow qbt \in R$ platí, že množina $R - \{pa \rightarrow qbt\}$ neobsahuje žádné pravidlo s levou stranou pa.

Tvrzení: Pro každý TS M existuje ekvivalentní DTS M_d .

Důkaz: Viz str. 634 v knize [Meduna: Automata and Languages]

k-páskový Turingův stroj

Myšlenka: Turingův stroj s "k" páskami

Ilustrace:

Tvrzení: Pro každý k-páskový TS M_p existuje ekvivalentní TS M.

Důkaz: Viz str. 662 v knize [Meduna: Automata and Languages]

k-hlavý Turingův stroj

Myšlenka: Turingův stroj s "k" hlavami

Ilustrace:

Tvrzení: Pro každý k-hlavý TS M_h existuje ekvivalentní TS M.

Důkaz: Viz str. 667 v knize [Meduna: Automata and Languages]

TS s oboustranně nekonečnou páskou

Myšlenka: Turingův stroj s páskou, která je nekonečná směrem doleva i doprava

Ilustrace:

Tvrzení: Pro každý TS s oboustranně nekonečnou páskou M_o existuje ekvivalentní TS M.

Důkaz: Viz str. 673 v knize [Meduna: Automata and Languages]

Zakódování Turingova stroje

Myšlenka: Popis Turingova stroje pomocí řetězce obsahující nuly a jedničky

- Předpokládejme, že TS M má tvar $M = (Q, \Sigma, \Gamma, R, q_0, \{q_1\}),$ kde: $Q = \{q_0, q_1, ..., q_m\}, \Gamma = \{a_0, a_1, ..., a_n\}$ tak, že: $a_0 = \Delta$
- Nechť δ je zobrazení z ($Q \cup \Gamma \cup \{S, L, R\}$) do $\{0, 1\}^*$,

definováno:
$$\delta(S) = 01, \, \delta(L) = 001, \, \delta(R) = 0001,$$
 $\delta(q_i) = 0^{i+1}1$ pro všechna $i = 0, 1, ..., m,$ $\delta(a_i) = 0^{i+1}1$ pro všechna $i = 0, 1, ..., n$

• Pro každé $r: pa \rightarrow qbt \in R$ definujeme:

$$\delta(\mathbf{r}) = \delta(\mathbf{p})\delta(\mathbf{a})\delta(\mathbf{q})\delta(\mathbf{b})\delta(t)\mathbf{1}$$

• Necht' $R = \{r_0, r_1, ..., r_k\}$. Potom

$$\delta(M) = 111\delta(r_0)\delta(r_1)...\delta(r_k)$$
1 je zakódování TS M

Zakódování Turingova stroje: Příklad

```
M = (Q, \Sigma, \Gamma, R, q_0, \{q_1\}), \text{ kde}
Q = \{q_0, q_1\}; \Sigma = \{a_1, a_2\}; \Gamma = \{\Delta, a_1, a_2\};
R = \{1: q_0 a_1 \rightarrow q_0 a_2 R, 2: q_0 a_2 \rightarrow q_0 a_1 R, 3: q_0 \Delta \rightarrow q_1 \Delta S\}
Určeme: Zakódování TS M, \delta(M).
              \delta(S) = 01, \ \delta(L) = 001, \ \delta(R) = 0001,
              \delta(q_0) = 01, \, \delta(q_1) = 001,
              \delta(\Delta) = 01, \ \delta(a_1) = 001, \ \delta(a_2) = 0001.
 \delta(M) = 111\delta(1)\delta(2)\delta(3)1
           = 111\delta(q_0)\delta(a_1)\delta(q_0)\delta(a_2)\delta(R)
                    \delta(q_0)\delta(q_0)\delta(q_0)\delta(q_1)\delta(R)
                    \delta(q_0)\delta(\Delta)\delta(q_1)\delta(\Delta)\delta(S)11
            = 1110100101000100011
               0100010100100011
               0101001010111
```

Univerzální Turingův stroj

Myšlenka: Univerzální TS může odsimulovat libovolný DTS

Ilustrace:

Pozn.: Univerzální TS přečte zakódování TS *M* a vstupní řetězec *w* na pásce a pak odsimuluje přechody, které by prováděl TS *M* se vstupním řetězcem *w*.

Jazyk $L_{\text{PřiimeSámSebe}} 1/2$

Myšlenka: $L_{\text{PřijmeSámSebe}}$ je jazyk nad abecedou $\{0, 1\}$, který obsahuje řetězec $\delta(M)$, právě tehdy když DTS M přijímá $\delta(M)$.

```
Definice:
```

 $L_{\text{PřijmeSámSebe}} = \{\delta(M): M \text{ je DTS}, \delta(M) \in L(M)\}$

Illustrace:

TS M

Jazyk $L_{\text{PřijmeSámSebe}} 1/2$

Myšlenka: $L_{\text{PřijmeSámSebe}}$ je jazyk nad abecedou $\{0, 1\}$, který obsahuje řetězec $\delta(M)$, právě tehdy když DTS M přijímá $\delta(M)$.

Definice:

 $L_{\text{PřijmeSámSebe}} = \{ \delta(M) : M \text{ je DTS}, \delta(M) \in L(M) \}$

Illustrace:

TS M

Zakódování TS M: $\delta(M) = 1110...1$

Jazyk $L_{\text{PřijmeSámSebe}} 1/2$

Myšlenka: $L_{\text{PřijmeSámSebe}}$ je jazyk nad abecedou $\{0, 1\}$, který obsahuje řetězec $\delta(M)$, právě tehdy když DTS M přijímá $\delta(M)$.

Jazyk $L_{\text{P\'{r}ijmeS\'{a}mSebe}}1/2$

Myšlenka: $L_{\text{PřijmeSámSebe}}$ je jazyk nad abecedou $\{0, 1\}$, který obsahuje řetězec $\delta(M)$, právě tehdy když DTS M přijímá $\delta(M)$.

Jazyk $L_{\text{P\'rijmeS\'amSebe}} 1/2$

Myšlenka: $L_{\text{PřijmeSámSebe}}$ je jazyk nad abecedou $\{0, 1\}$, který obsahuje řetězec $\delta(M)$, právě tehdy když DTS M přijímá $\delta(M)$.

Jazyk $L_{\text{PřiimeSámSebe}}$ 2/2

Tvrzení: $L_{\text{PřijmeSámSebe}}$ je přijímán nějakým TS.

Důkaz (myšlenka):

- Sestrojme DTS *V*, který:
- 1) Zdvojí vstupní řetězec na pásce $w = \delta(M)$ na $\delta(M)\delta(M)$
- 2) Odsimuluje činnost univerzálního TS *U*.
- Potom, $L(V) = L_{P\check{r}ijmeS\acute{a}mSebe}$, tedy tvrzení platí.

Ilustrace:

Myšlenka: $L_{\text{NepřijmeSámSebe}} = L_{\text{PřijmeSámSebe}}$

Definice:

$$L_{\text{NepřijmeSámSebe}} = \{0, 1\}^* - L_{\text{PřijmeSámSebe}}$$

TS M

Myšlenka: $L_{\text{NepřijmeSámSebe}} = L_{\text{PřijmeSámSebe}}$

Definice:

$$L_{\text{NepřijmeSámSebe}} = \{0, 1\}^* - L_{\text{PřijmeSámSebe}}$$

TS M $\delta(M) = 1110...1$

Myšlenka: $L_{\text{NepřijmeSámSebe}} = L_{\text{PřijmeSámSebe}}$

Definice: $L_{\text{NepřijmeSámSebe}} = \{0, 1\}^* - L_{\text{PřijmeSámSebe}}$

Zakódování TS
$$M$$
:
$$\delta(M) = 1110...1$$

$$TS M$$

$$11110....1$$

$$\delta(M)$$

Myšlenka: $L_{\text{NepřijmeSámSebe}} = L_{\text{PřijmeSámSebe}}$

Definice: $L_{\text{NepřijmeSámSebe}} = \{0, 1\}^* - L_{\text{PřijmeSámSebe}}$

$$\begin{array}{c|c} TS \ M & Zakódování \ TS \ M: \\ \hline \delta(M) = 1110...1 \\ \hline \end{array}$$
 • Přijímá TS M řetězec $\delta(M) = 1110...1$?

Myšlenka: $L_{\text{NepřijmeSámSebe}} = L_{\text{PřijmeSámSebe}}$

Definice:

$$L_{\text{NepřijmeSámSebe}} = \{0, 1\}^* - L_{\text{PřijmeSámSebe}}$$

Tvrzení: $L_{\text{NepřijmeSámSebe}}$ není přijímám žádným TS.

Důkaz (sporem):

• Předpokládejme, že $L_{\text{NepřijmeSámSebe}}$ je přijímán nějakým TS.

Uvažujme následující nekonečnou tabulku:

M_i	$m_i = \delta(M_i)$	$P\check{r}ijmeS\acute{a}mSebe(M_i)$
M_1	111001001001101	Ano
M_2	111010101111100101	Ne
$ E M_3$	1110010001010001001001	Ano
	•	•
		•

Pozn.:

• PřijmeSámSebe (M_i) = Ano, pokud $m_i \in L(M_i)$ Ne, pokud $m_i \notin L(M_i)$.

- Poznámka: $L_{\text{NepřijmeSámSebe}} = \{ m_i : m_i \notin L(M_i), i = 1, ... \}$
- Necht' $L(M_k) = L_{\text{NepřijmeSámSebe}}$

- Poznámka: $L_{\text{NepřijmeSámSebe}} = \{ m_i : m_i \notin L(M_i), i = 1, ... \}$
- Nechť $L(M_k) = L_{\text{NepřijmeSámSebe}}$
- $P\check{r}ijmeS\acute{a}mSebe(M_k) = Ne$ implikuje

```
m_k \notin L(M_k) implikuje m_k \in L_{\text{NepřijmeSámSebe}} implikuje m_k \in L(M_k)
```

- Poznámka: $L_{\text{NepřijmeSámSebe}} = \{ m_i : m_i \notin L(M_i), i = 1, ... \}$
- Necht' $L(M_k) = L_{\text{NepřijmeSámSebe}}$
- $P\check{r}ijmeS\acute{a}mSebe(M_k) = Ne$ implikuje

```
m_k \notin L(M_k) implikuje
m_k \in L_{\text{NepřijmeSámSebe}} implikuje
m_k \in L(M_k)
spor
```

- Poznámka: $L_{\text{NepřijmeSámSebe}} = \{ m_i : m_i \notin L(M_i), i = 1, ... \}$
- Necht' $L(M_k) = L_{\text{NepřijmeSámSebe}}$
- $P\check{r}ijmeS\acute{a}mSebe(M_k) = Ne$ implikuje

```
m_k \notin L(M_k) implikuje m_k \in L_{\text{NepřijmeSámSebe}} implikuje m_k \in L(M_k) spor
```

• $P\check{r}ijmeS\acute{a}mSebe(M_k) = Ano implikuje$ $m_k \in L(M_k) implikuje$ $m_k \notin L_{\text{NepřijmeS\'{a}mSebe}} implikuje$ $m_k \notin L(M_k)$

Jazyk $L_{\text{NepřijmeSámSebe}}$ 3/3 • Poznámka: $L_{\text{NepřijmeSámSebe}} = \{m_i : m_i \notin L(M_i), i = 1, ...\}$

- Necht' $L(M_k) = L_{\text{NepřijmeSámSebe}}$
- $P\check{r}ijmeS\acute{a}mSebe(M_k) = Ne$ implikuje

```
m_k \notin L(M_k) implikuje

m_k \in L_{\text{NepřijmeSámSebe}} implikuje

m_k \in L(M_k)

spor
```

• *PřijmeSámSebe*(M_k) = Ano implikuje

```
m_k \in L(M_k) implikuje
m_k \notin L_{\text{NepřijmeSámSebe}} implikuje
m_k \notin L(M_k)
spor
```

Jazyk $L_{\text{NepřijmeSámSebe}} = \{m_i : m_i \notin L(M_i), i = 1, ...\}$ • Poznámka: $L_{\text{NepřijmeSámSebe}} = \{m_i : m_i \notin L(M_i), i = 1, ...\}$

- Necht' $L(M_k) = L_{\text{NepřijmeSámSebe}}$
- $P\check{r}ijmeS\acute{a}mSebe(M_k) = Ne$ implikuje

```
m_k \notin L(M_k) implikuje
m_k \in L_{\text{NepřijmeSámSebe}} implikuje
m_k \in L(M_k)
spor
```

• *PřijmeSámSebe*(M_k) = Ano implikuje

```
m_k \in L(M_k) implikuje
m_k \notin L_{\text{NepřijmeSámSebe}} implikuje
m_k \notin L(M_k)
snor
```

• $L_{\text{NepřijmeSámSebe}}$ není tedy přijímán žádným TS M_k

Rozhodnutelné jazyky

Myšlenka: Rozhodnutelné jazyky jsou přijímány TS, které vždy zastaví

Definice: Necht' L je jazyk. Pokud existuje DTS M, který vždy zastaví a pro který platí L = L(M), potom L je rozhodnutelný jazyk.

Tvrzení: Třída rozhodnutelných jazyků je uzavřena vůči doplňku.

Důkaz: Viz str. 693 v knize [Meduna: Automata and Languages]

Tvrzení: Třída rekurzivně spočetných jazyků není uzavřena vůči doplňku.

Důkaz: Viz jazyk $L_{\text{PřijmeSámSebe}}$

Další hierarchie jazyků

Obecné gramatiky: Definice

Myšlenka: Zobecnění BKG

Definice: *Obecná gramatika* (OG) je čtveřice G = (N, T, P, S), kde

- N je abeceda neterminálů
- T je abeceda terminálů, přičemž $N \cap T = \emptyset$
- P je konečná množina pravidel tvaru $x \to y$, kde $x \in (N \cup T)^*N(N \cup T)^*, y \in (N \cup T)^*$
- $S \in N$ je počáteční neterminál

Matematická poznámka k pravidlům:

- Čistě matematicky, P je konečná relace z $(N \cup T)^*N(N \cup T)^*$ do $(N \cup T)^*$
- Místo relačního zápisu $(x, y) \in P$ zapisujeme pravidla $x \to y \in P$

Myšlenka: Změna řetězce použitím pravidla

Definice: Necht' G = (N, T, P, S) je NG. Necht' $u, v \in (N \cup T)^*$ a $p: x \to y \in P$. Potom, uxv $p\check{r}imo\ derivuje\ uyv\ za\ použiti\ p\ v\ G,\ zapsáno <math>uxv \Rightarrow uyv\ [p]$ nebo zjednodušeně $uxv \Rightarrow uyv$.

Myšlenka: Změna řetězce použitím pravidla

```
Definice: Necht' G = (N, T, P, S) je NG. Necht' u, v \in (N \cup T)^* a p: x \to y \in P. Potom, uxv p\check{r}imo\ derivuje\ uyv\ za\ použiti\ p\ v\ G,\ zapsáno <math>uxv \Rightarrow uyv\ [p] nebo zjednodušeně uxv \Rightarrow uyv.
```


Pravidlo: $x \rightarrow y$

Myšlenka: Změna řetězce použitím pravidla

Definice: Necht' G = (N, T, P, S) je NG. Necht' $u, v \in (N \cup T)^*$ a $p: x \to y \in P$. Potom, uxv $p\check{r}imo\ derivuje\ uyv\ za\ použiti\ p\ v\ G,\ zapsáno <math>uxv \Rightarrow uyv\ [p]$ nebo zjednodušeně $uxv \Rightarrow uyv$.

Myšlenka: Změna řetězce použitím pravidla

Definice: Necht' G = (N, T, P, S) je NG. Necht' $u, v \in (N \cup T)^*$ a $p: x \to y \in P$. Potom, uxv $p\check{r}imo\ derivuje\ uyv\ za\ použiti <math>p\ v\ G$, zapsáno $uxv \Rightarrow uyv\ [p]$ nebo zjednodušeně $uxv \Rightarrow uyv$.

Pozn.: \Rightarrow^n , \Rightarrow^+ , \Rightarrow^* a L(G) je definováno stejně jako u bezkontextových gramatik.

Obecná gramatika: Příklad

```
G = (N, T, P, S), \text{ kde } N = \{S, A, B\}, T = \{a\}
P = \{ 1: S \rightarrow ASB,
                                               2: S \rightarrow a
                                                4:AB \rightarrow \varepsilon
         3: Aa \rightarrow aaA
S \Rightarrow a [2]
S \Rightarrow ASB [1] \Rightarrow AaB [2] \Rightarrow aaAB [3] \Rightarrow aa [4]
S \Rightarrow ASB [1] \Rightarrow AASBB [1] \Rightarrow AAaBB [2] \Rightarrow
       AaaABB [3] \Rightarrow aaAaABB [3] \Rightarrow
       aaaaAABB [3] \Rightarrow aaaaAB [4] \Rightarrow aaaa [4]
```

Pozn.: $L(G) = \{a^{2^n} : n \ge 0\}$

Rekurzivně spočetné jazyky

Definice: Necht' L je jazyk. L je rekurzivně spočetný jazyk, pokud existuje Turingův stroj M takový, pro který platí: L = L(M).

Tvrzení: Pro každou NG G existuje TS M, pro který platí: L(G) = L(M).

Důkaz: Viz str. 714 v knize [Meduna: Automata and Languages]

Tvrzení: Pro každý TS M, existuje NG G, pro kterou platí: L(M) = L(G).

Důkaz: Viz str. 715 v knize [Meduna: Automata and Languages]

Závěr: Fundamentální modely pro rekurzivně spočetné jazyky jsou:

1) Obecné gramatiky 2) Turingovy stroje

Kontextová gramatika (KG)

Myšlenka: Omezení OG

Definice: Nechť G = (N, T, P, S) je obecná gramatika. G je kontextová gramatika (KG), pokud každé pravidlo $x \rightarrow y \in P$ splňuje podmínku: $|x| \leq |y|$.

Pozn.: \Rightarrow , \Rightarrow ⁿ, \Rightarrow ^{*} a L(G) je definováno stejně jako u obecných gramatik.

Lineárně ohraničené automaty

Myšlenka: Turingův stroj s omezenou páskou na délku vstupního řetězce

Lineárně ohraničené automaty: Definice

Myšlenka: Se vstupním řetězcem w je páska omezena na pouze |w| políček

Definice: *Lineárně ohraničený automat* (LOA) je TS, který nemůže žádným pravidlem prodloužit pásku.

Ilustrace:

Kontextové jazyky

Definice: Nechť L je jazyk. L je *kontextový jazyk*, pokud existuje lineárně ohraničený automat M takový, pro který platí: L = L(M).

Tvrzení: Pro každou KG G existuje LOA M, pro který platí: L(G) = L(M).

Důkaz: Viz str. 732 v knize [Meduna: Automata and Languages]

Tvrzení: Pro každý LOA M, existuje KG G, pro kterou platí: L(M) = L(G).

Důkaz: Viz str. 734 v knize [Meduna: Automata and Languages]

Závěr: Fundamentální modely pro kontextové jazyky jsou:

- 1) Kontextové gramatiky
- 2) Lineárně ohraničené automaty

Pravé lineární gramatiky: Definice Myšlenka: BKG, ve které má každé pravidlo na pravé straně pouze řetězec terminálů

Definice: Necht' G = (N, T, P, S) je BKG. G je pravá lineární gramatika (PLG), pokud každé pravidlo $A \rightarrow x \in P$ splňuje: $x \in T^* \cup T^*N$.

následovaný max. jedním neterminálem

Příklad:

```
G = (N, T, P, S), kde N = \{S, A\}, T = \{a, b\}

P = \{1: S \rightarrow aS, 2: S \rightarrow aA, 3: A \rightarrow bA, 4: A \rightarrow b\}
```

- $S \Rightarrow a\underline{A}$ [2] $\Rightarrow ab$ [4]
- $S \Rightarrow aS[1] \Rightarrow aaA[2] \Rightarrow aab[4]$
- $S \Rightarrow a\underline{A}$ [2] $\Rightarrow ab\underline{A}$ [3] $\Rightarrow abb$ [4]

Pozn.:
$$L(G) = \{a^m b^n : m, n \ge 1\}$$

Gramatiky pro regulární jazyky

Tvrzení: Pro každou PLG G existuje KA M, pro

který platí: L(G) = L(M).

Důkaz: Viz str. 575 v knize [Meduna: Automata and Languages]

Tvrzení: Pro každý KA *M* existuje PLG *G*, pro

kterou platí: L(M) = L(G).

Důkaz: Viz str. 583 v knize [Meduna: Automata and Languages]

Závěr: Gramatiky pro regulární jazyky jsou

Pravé lineární gramatiky

Zobecňování

Gramatiky: Shrnutí

Jazyky	Gramatiky	Tvar pravidel $x \rightarrow y$
Rekurzivně spočetné	Obecné	$x \in (N \cup T)^* N(N \cup T)^*$ $y \in (N \cup T)^*$
Kontextové	Kontextové	$x \in (N \cup T)^* N(N \cup T)^*$ $y \in (N \cup T)^*, x \le y $
Bezkontextové	Bezkontextové	$x \in N$ $y \in (N \cup T)^*$
Regulární	Pravé lineární	$x \in N$ $y \in T^* \cup T^*N$

Specializování

Automaty: Shrnutí

•	
	a
>	
	Q

Jazyky	Přijímací model
Rekurzivně spočetné	Turingův stroj
Kontextové	Lineárně ohraničený automat
Bezkontextové	Zásobníkový automat
Regulární	Konečný automat

Specializování

Typ $3 \subset \text{Typ } 2 \subset \text{Typ } 1 \subset \text{Typ } 0$