Apprentissage automatique

Séance 1

Bruno Bouzy

bruno.bouzy@parisdescartes.fr

www.mi.parisdescartes.fr/~bouzy

Objectif

Apercu de l'apprentissage automatique (AA)

Techniques fondamentales et représentatives

Problématiques:

Classification
 oui surtout

Optimisationoui un peu

Predictionoui un peu

Décision d'un (des) agent(s) situé(s) dans environnement: non (M2)

Techniques abordées

- Apprentissage symbolique
- Réseaux bayésiens
- Réseaux de neurones
- Machine a vecteurs support
- Arbres de décision
- Bagging Boosting
- Méthodes des différences temporelles
- Evolution artificielle
- Algorithmes « bandit »

Techniques représentatives

- « Machine Learning » top-cited papers (2011):
 - Quinlan 1986, induction of decision trees (~3000)
 - Cortes & vapnik 1995, support vector networks (~2000)
 - Sutton 1988, learning to predict by methods of temporal differences
 - Breiman 2001, random forests (bagging) (~1000)
 - Aha 1991, instance-based learning algorithms
 - Cooper Herskovits 1992, a bayesian method for the induction of probabilistic networks from data (~900)
 - Shapire 1999, improved boosting algo... (~800)
 - etc.

Techniques fondamentales

- Mise a niveau
 - Approximation polynomiale
 - Descente de gradient
 - Probabilités
- Réseaux de neurones
 - Perceptron
- Evolution artificielle
- Apprentissage symbolique
 - Induction dans l'espace des versions

Guide du cours

Probabilités Réseaux bayésiens Approximation polynomiale SVN Réseaux de neurones Descente de gradient Bagging boosting Arbres de décision Apprentissage symbolique

Evolution artificielle

Différences temporelles

Algorithmes « bandit »

Apprentissage symbolique

Probabilités Réseaux bayésiens Approximation polynomiale SVN Réseaux de neurones Descente de gradient Bagging boosting Arbres de décision Apprentissage symbolique

Evolution artificielle

Différences temporelles

Algorithmes « bandit »

Apprentissage numérique

Probabilités Réseaux bayésiens **Approximation polynomiale** SVN Réseaux de neurones Descente de gradient **Bagging boosting** Arbres de décision Apprentissage symbolique

Evolution artificielle

Différences temporelles

Algorithmes « bandit »

Classification

Probabilités Réseaux bayésiens Approximation polynomiale **SVN** Réseaux de neurones Descente de gradient **Bagging boosting** Arbres de décision Apprentissage symbolique

Evolution artificielle

Différences temporelles

Algorithmes « bandit »

Prediction

Probabilités Réseaux bayésiens Approximation polynomiale SVN Réseaux de neurones Descente de gradient Bagging boosting Arbres de décision Apprentissage symbolique

Evolution artificielle

Différences temporelles

Algorithmes « bandit »

Optimisation

Probabilités Réseaux bayésiens Approximation polynomiale SVN Réseaux de neurones Descente de gradient Bagging boosting Arbres de décision Apprentissage symbolique

Evolution artificielle

Différences temporelles

Algorithmes « bandit »

Apprentissage supervisé

Probabilités Réseaux bayésiens Approximation polynomiale SVN Réseaux de neurones Descente de gradient **Bagging boosting** Arbres de décision Apprentissage symbolique

Evolution artificielle

Différences temporelles

Algorithmes « bandit »

Apprentissage supervisé ou non?

- Supervisé
 - Un oracle classe les exemples
 - L'apprenant apprend à classer comme l'oracle

- Non supervisé
 - L'apprenant apprend par lui-même

à classer

à décider d'une action

- Langage courant:
 - Expliquer
 - Prédire, classifier
 - Faire simple

- Jargon de l'apprentissage automatique:
 - Engendrer des hypothèses
 - ...plus ou moins simples

Exemples non classifiés

1 oracle classifie les exemples

$$(x_1, u_1), (x_2, u_2), ..., (x_m, u_m).$$

- L'apprenant apprend (phase d'apprentissage)
 - En recherchant une hypothèse h(, α)
 permettant de classifier au mieux les exemples
- L'apprenant classifie (phase de test)
 - les exemples nouveaux en utilisant l' hypothèse apprise

 Apprentissage automatique

Les espaces et ensembles

- X: espace des exemples x
- H: espace des hypothèses h
- F: espace des fonctions cibles f
- S: échantillon (sample)
- S₊: ensemble des exemples positifs
- S_: ensemble des exemples négatifs S = S₊ + S₋
- A: ensemble d'apprentissage
- T: ensemble de test S = A + T

Biais et variance

- Apprentissage d'une hypothèse h dans H.
- h*: hypothèse optimale dans H.
- h h*: « variance » ou « erreur d'estimation ».
- Exemples classifiés idéalement avec une fonction cible optimale f* dans F ≠ H.
- h* f*: « biais » ou « erreur d'approximation ».
- h f* : erreur totale.

Compromis biais-variance

- Erreur totale =
 - erreur d'estimation + erreur d'approximation
 - variance + biais
- Plus H est complexe...
 - plus H se rapproche de F, plus le biais diminue.
 - plus 2 hypothèses donnent des résultats différents, plus la variance augmente.
- H de complexité intermédiaire pour minimiser l'erreur totale

Compromis biais-variance

Compromis biais-variance

- Reconnaitre les hommes et les femmes...
 - Modèle simple: la taille pour classifier
 - Les hommes sont plus grands que les femmes.
 - biais important: hommes petits et femmes grandes (erreur d'approximation)
 - variance faible: seuil de taille précisément calculé
 - Modèle plus complexe: taille, longueur cheveux, poids, timbre de la voix, pilosité.
 - biais moins important,
 - variance plus importante.

Environnement X:

Engendre des **exemples** x_i tirés indépendamment suivant une distribution D_x .

Oracle:

Pour chaque x_i, fournit une **étiquette u**_i dans U (avec une distribution de probabilité F(u|x) inconnue)

Apprenant:

Construit une **hypothèse h** dans H telle que:

 $h(x_i) = u_i$ pour chaque x_i .

Perte (loss) de décider sur x, avec h:

 $L(u_i,h(x_i))$ coût de la décision $h(x_i)$.

Risque réel d'une hypothèse h:

$$R_{r\acute{e}el}(h) = \int_{X \times U} L(u_i, h(x_i)) dF(x, u)$$

- Principe inductif: minimiser R_{réel}(h)
- Problème: F est inconnue, R_{réel} inconnu
- $h^* = \operatorname{argmin}_h(R_{réel}(h))$

 Risque empirique d'une hypothèse h sur un échantillon S:

$$R_{emp}(h,S) = 1/m \sum_{i=1,m} L(u_i,h(x_i))$$

Perte moyenne mesurée sur l'échantillon S

- Minimiser R_{emp}(h,S).
- Empirical Risk Minimization (ERM)
- $h_S^* = \operatorname{argmin}_h(R_{emp}(h,S))$

Risque empirique et risque réel

 $R_{réel}(h)$ inconnu, f* inconnu, $R_{emp}(h,S_m)$ connu

- (0) $R_{réel}(f^*)=0$ (par définition)
- (1) $R_{réel}(h^*)>0$ (biais) (par définition)
- (2) $R_{reel}(h^*) < R_{reel}(h^*_S)$ (par définition)
- (3) $R_{emp}(h_{S}^{^{\prime}}) < R_{emp}(h^{*})$
- (4) $R_{emp}(h_s^{\circ})$ augmente si m-> ∞ (plus S grand, plus difficile de minimiser)
- (5) $R_{reel}(h_s)$ diminue si m-> ∞ (plus S grand, plus monde réel couvert)

Risque empirique et risque réel

Références

[1] Antoine Cornuéjols & Laurent Miclet,
 « Apprentissage artificiel, concepts et algorithmes », (préface de Tom Mitchell),
 Eyrolles.

 [2] Stuart Russell & Peter Norvig, « Artificial Intelligence: a modern approach ».

[3] Machine Learning.