Øving 9 IFYX1002

Oppgave 1

I et gammeldags TV-apparat tegnes bildet opp av elektroner som akselereres gjennom et elektrisk felt, og som deretter produserer en lysprikk når elektronet treffer en fosforbelagt skjerm.

I et bestemt TV-apparat akselereres et elektron i det homogene feltet mellom to parallelle metallplater med plateavstand $d=20~{\rm cm}$, der spenningen mellom platene er $\Delta V=2,0~{\rm kV}$. Se figuren under.

- a) Bestem farten til et elektron som akselereres med null startfart fra den negative plata, idet elektronet når den positive plata.
- b) Hva er den elektriske feltstyrken ${\cal E}$ mellom platene?

Oppgave 2

a) Bestem den ekvivalente kapasitansen mellom de to markerte punktene a og b i kretsen under, når kondensatorene har kapasitanser $C_1=3,0~\mu\mathrm{F}$, $C_2=6,0~\mu\mathrm{F}$, $C_3=2,0~\mu\mathrm{F}$.

Anta at spenningen mellom a og b er $V_{
m ab}=12~{
m V}.$

- b) Bestem mengden ladning lagret på hver av kondensatorene.
- c) Bestem spenningen over hver av kondensatorene.

Oppgave 3

Kobber har resistivitet $ho_{Cu}=1,68\cdot 10^{-8}~\Omega m$, mens aluminium har $ho_{Al}=2,65\cdot 10^{-8}~\Omega m$. Vi skal konstruere to kabler, én med kobberleder og én med aluminiumsleder.

Hva må forholdet mellom diameteren til hhv. aluminiums- og kobberlederen være for at kablene skal ha samme resistans R pr. lengdeenhet?

Oppgave 4

En krets består av en motstand med resistans $R=1,00~\mathrm{M}\Omega$, en kondensator med kapasitans $C=5,00~\mu\mathrm{F}$, et batteri med ems $\varepsilon=30,0~\mathrm{V}$ og en bryter koblet i serie. Bryteren er i utgangspunktet åpen, og lukkes ved tiden t=0.

- a) Bestem tidskonstanten for kretsen.
- b) Bestem strømmen gjennom motstanden en tid $t=10,0~\mathrm{s}$ etter at bryteren er lukket.
- c) Hvor lang tid tar det før kondensatoren er oppladet til 80 % av den maksimale ladningen den er i stand til å lagre?