

TRAINING CONFIDENCE-CALIBRATED CLASSIFIERS FOR DETECTING OUT-OF-DISTRIBUTION SAMPLES

Kimin Lee* Honglak Lee^{§,†} Kibok Lee[†] Jinwoo Shin*
*Korea Advanced Institute of Science and Technology, Daejeon, Korea
[†]University of Michigan, Ann Arbor, MI 48109

§Google Brain, Mountain View, CA 94043

2023.03.24

TAEWON KIM

0. Contents

- 1. DETECTING OUT-OF-DISTRIBUTION DETECTOR DATASET
- 2. CONTRIBUTION
- 3. CONFIDENCE LOSS
- 4. ADVERSARIAL GENERATOR FOR OUT-OF-DISTRIBUTION
- 5. EXPERIMENTAL

1. Detecting Out of distribution Detector

1. Detecting Out of distribution Detector

1. Detecting Out of distribution Detector

- 이전 Out of Distribution Network 는 pretrain된 모델을 기반으로 동작
- inference 단계만 사용하기 때문에 training 결과에 많이 의존

2. CONTRIBUTION

(KL) divergence

generative adversarial network (GAN)

- KL-Div를 이용한 새로운 loss function을 제시
- GAN을 이용해 학습에 가장 효과적인 out-of-distribution Data를 생성

2. CONTRIBUTION

(KL) divergence

$$D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log igg(rac{P(x)}{Q(x)}igg).$$

Original Gaussian PDF's

KL Area to be Integrated

2. CONFIDENCE LOSS

$$\min_{\theta} \mathbb{E}_{P_{\text{in}}(\widehat{\mathbf{x}},\widehat{y})} \left[-\log P_{\theta} \left(y = \widehat{y} | \widehat{\mathbf{x}} \right) \right] + \beta \mathbb{E}_{P_{\text{out}}(\mathbf{x})} \left[KL \left(\mathcal{U} \left(y \right) \parallel P_{\theta} \left(y | \mathbf{x} \right) \right) \right]$$

Cross Entropy loss

KL-Div. Term for Out of-dist. data

- Cross Entropy loss 같은 경우는 In-distribution data가 올바른 클래스를 예측하는 데 얼마나 잘 수행되는지
- KL-Div. Term 은 out-of-distribution data가 uniform한 분포를 가지도록 유도하는 과정
- 결론적으로는 In-dist 와 out-of-dist data가 모두 필요

2. CONFIDENCE LOSS

Figure 1: Illustrating the behavior of classifier under different out-of-distribution training datasets. We generate the out-of-distribution samples from (a) 2D box $[-50, 50]^2$, and show (b) the corresponding decision boundary of classifier. We also generate the out-of-distribution samples from (c) 2D box $[-20, 20]^2$, and show (d) the corresponding decision boundary of classifier.

- (a) Out-of-distribution에 대한 전체 데이터 분포를 구성
- (b) CONFIDENCE CLASSIFIERS 을 이용해 학습한 데이터 분포
- (c) In-distribution 경계에 있는 Out-of-distribution 데이터 분포를 구성

3. ADVERSARIAL GENERATOR

3. ADVERSARIAL GENERATOR

Modified GAN

$$\min_{G} \max_{D} \beta \underbrace{\mathbb{E}_{P_{G}(\mathbf{x})} \left[KL \left(\mathcal{U} \left(y \right) \parallel P_{\theta} \left(y | \mathbf{x} \right) \right) \right]}_{\text{(a)}} + \underbrace{\mathbb{E}_{P_{\text{in}}(\mathbf{x})} \left[\log D \left(\mathbf{x} \right) \right] + \mathbb{E}_{P_{G}(\mathbf{x})} \left[\log \left(1 - D \left(\mathbf{x} \right) \right) \right]}_{\text{(b)}},$$

- (a) data가 out of distribution 과 비슷하게 만드는 Generator loss
- (b) in-distribution data 대해 올바르게 분류하고 생성자가 생성한 가짜 데이터가 실제와 구분 안되게 학습

3. JOINT OBJECT FUNCTION

JOINT TRAINING METHOD OF CONFIDENT CLASSIFIER AND ADVERSARIAL GENERATOR

KL-Div. Term for Out of-dist. data

Modified GAN objective function

In-dist	Out-of-dist	Classification accuracy	TNR at TPR 95%	AUROC	Detection accuracy	AUPR in	AUPR out
		Cross entropy loss / Confidence loss					
SVHN	CIFAR-10 (seen) TinyImageNet (unseen) LSUN (unseen) Gaussian (unseen)	93.82 / 94.23	47.4 / 99.9 49.0 / 100.0 46.3 / 100.0 56.1 / 100.0	62.6 / 99.9 64.6 / 100.0 61.8 / 100.0 72.0 / 100.0	78.6 / 99.9 79.6 / 100.0 78.2 / 100.0 83.4 / 100.0	71.6 / 99.9 72.7 / 100.0 71.1 / 100.0 77.2 / 100.0	91.2 / 99.4 91.6 / 99.4 90.8 / 99.4 92.8 / 99.4
CIFAR-10	SVHN (seen) TinyImageNet (unseen) LSUN (unseen) Gaussian (unseen)	80.14 / 80.56	13.7 / 99.8 13.6 / 9.9 14.0 / 10.5 2.8 / 3.3	46.6 / 99.9 39.6 / 31.8 40.7 / 34.8 10.2 / 14.1	66.6 / 99.8 62.6 / 58.6 63.2 / 60.2 50.0 / 50.0	61.4 / 99.9 58.3 / 55.3 58.7 / 56.4 48.1 / 49.4	73.5 / 99.8 71.0 / 66.1 71.5 / 68.0 39.9 / 47.0

Table 1: Performance of the baseline detector (Hendrycks & Gimpel, 2016) using VGGNet. All values are percentages and boldface values indicate relative the better results. For each in-distribution, we minimize the KL divergence term in (1) using training samples from an out-of-distribution dataset denoted by "seen", where other "unseen" out-of-distributions were only used for testing.

(a) Cross entropy loss

(b) Confidence loss in (1)

(c) ROC curve

Figure 3: The generated samples from original GAN (a)/(c) and proposed GAN (b)/(d). In (a)/(b), the grey area is the 2D histogram of training in-distribution samples drawn from a mixture of two Gaussian distributions and red points indicate generated samples by GANs.

