Advanced Linear Algebra Week 15

Jamie Gabe

Recall from now on \mathcal{F} denotes \mathbb{R} or \mathbb{C} .

Definition

A map $\langle \cdot, \cdot \rangle \colon V \times V \to \mathcal{F}$ is an inner product on V if

- (a) $x \mapsto \langle x, y \rangle$ is a linear map $V \to \mathcal{F}$ for every $y \in \mathcal{F}$;
- (b) $\langle y, x \rangle = \overline{\langle x, y \rangle}$ for all $x, y \in V$;
- (c) $\langle x, x \rangle > 0$ for every non-zero $x \in V$.

A vector space equipped with an inner product is called an inner product space.

Recall that in general V is not equal to $U \oplus U^{\perp}$. However Theorem (8.12)

Assume U is a finite dimensional subspace of V. Then $V=U\oplus U^{\perp}.$

Proof.

U is itself an inner product space, so by Theorem 8.7 it has an orthonormal basis $\{x_1, \ldots, x_r\}$.

For $y \in V$ let $u := \sum_{i=1}^r \langle y, x_i \rangle x_i \in U$. By Lemma 8.6(iii), $y - u \in U^{\perp}$.

Hence
$$y = u + (y - u) \in U + U^{\perp}$$
. Consequently $V = U + U^{\perp}$ and $U \cap U^{\perp} = \{0\}$, so $V = U \oplus U^{\perp}$.

Let V be an inner product space. For every $v \in V$ we obtain a linear map $x \mapsto \langle x, v \rangle$. In other words, $v \in V$ induces a linear functional $\Phi(v) \in V'$ given by

$$\Phi(v)(x) = \langle x, v \rangle, \qquad x \in V.$$

We thus get a map $\Phi \colon V \to V'$.

This map Φ is anti-linear (as inner products are anti-linear in the second variable), i.e. it is additive $(\Phi(v_1 + v_2) = \Phi(v_1) + \Phi(v_2))$,

$$(\Phi(v_1 + v_2) = \Phi(v_1) + \Phi(v_2))$$

and $\Phi(\alpha v) = \overline{\alpha}\Phi(v)$.

In particular, if $\mathcal{F} = \mathbb{R}$, then Φ is linear.

 $v \in V$ induces a linear functional $\Phi(v) \in V'$ given by

$$\Phi(v)(x) = \langle x, v \rangle, \qquad x \in V.$$

We thus get a map $\Phi \colon V \to V'$.

Consider \mathbb{C}^2 with the standard inner product

$$\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \rangle = x_1 \overline{y}_1 + x_2 \overline{y}_2.$$

Consider $z \in (\mathbb{C}^2)'$ given by $z \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1 3 - x_2 i$ for all

 $x_1,x_2\in\mathbb{C}$.

Question: Which is true?

- (1) $z = \Phi(3 + i)$
- (2) $z = \Phi(3 i)$
- (3) $z = \Phi \begin{pmatrix} 3 \\ i \end{pmatrix}$

(4)
$$z = \Phi \begin{pmatrix} 3 \\ -i \end{pmatrix}$$
.

 $v \in V$ induces a linear functional $\Phi(v) \in V'$ given by

$$\Phi(v)(x) = \langle x, v \rangle, \qquad x \in V.$$

We thus get a map $\Phi \colon V \to V'$.

Consider \mathbb{C}^2 with the standard inner product

$$\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \rangle = x_1 \overline{y}_1 + x_2 \overline{y}_2.$$

Consider
$$z \in (\mathbb{C}^2)'$$
 given by $z \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1 3 - x_2 i$ for all $x_1, x_2 \in \mathbb{C}$.

Theorem (8.13)

Let $z \in V'$.

- (a) There exists at most one $v \in V$ such that $z = \Phi(v)$, i.e. such that $z(x) = \langle x, v \rangle$ for all $v \in V$;
- (b) If dim $V < \infty$ then such a vector v exists.

Recall: for vector spaces U, V and $A \in \operatorname{Hom}(U, V)$, the adjoint $A' \in \operatorname{Hom}(V', U')$ is given by $A'(z) = z \circ A$. We will give an alternative description which is almost the same. To make things confusing, this is also called the adjoint (yep...), but is denoted A^* instead of A'.

Main difference: $A \mapsto A^*$ is anti-linear, whereas $A \mapsto A'$ is linear.

However, $A^* \in \text{Hom}(V, U)$ whereas $A' \in \text{Hom}(V', U')$.

Definition

Let U, V be inner product spaces over \mathcal{F} and let $A \in \operatorname{Hom}(U, V)$. We say that A has an adjoint if there exists $A^* \in \operatorname{Hom}(V, U)$ such that

$$\langle Ax, y \rangle = \langle x, A^*y \rangle, \quad \forall x \in U, \forall y \in V.$$

When this is the case, A^* is called the adjoint of A.

Definition

Let U, V be inner product spaces over \mathcal{F} and let $A \in \operatorname{Hom}(U, V)$. We say that A has an adjoint if there exists $A^* \in \operatorname{Hom}(V, U)$ such that

$$\langle Ax, y \rangle = \langle x, A^*y \rangle, \qquad \forall x \in U, \forall y \in V.$$

When this is the case, A^* is called the adjoint of A.

Consider $\mathbb C$ with the inner product $\langle x,y\rangle=x\overline{y}$.

Consider $A \in \operatorname{End}(\mathbb{C})$ given by Ax = (2+i)x.

Question: Which of the following is true?

- (1) $A^*y = (2+i)y$;
- (2) $A^*y = (2-i)y$;
- (3) $A^*y = 2y$;
- (4) A does not have an adjoint.

Definition

Let U, V be inner product spaces over \mathcal{F} and let $A \in \operatorname{Hom}(U, V)$. We say that A has an adjoint if there exists $A^* \in \operatorname{Hom}(V, U)$ such that

$$\langle Ax, y \rangle = \langle x, A^*y \rangle, \quad \forall x \in U, \forall y \in V.$$

When this is the case, A^* is called the adjoint of A. Consider $\mathbb C$ with the inner product $\langle x,y\rangle=x\overline{y}$. Consider $A\in\mathrm{End}(\mathbb C)$ given by Ax=(2+i)x.

Lemma (8.16)

If an adjoint exists, then it is unique. When dim $U < \infty$ then every $A \in \operatorname{Hom}(U, V)$ has an adjoint.

The following can easily be checked:

$$(A+B)^* = A^* + B^*, \quad (\alpha A)^* = \overline{\alpha} A^* \quad (AB)^* = B^* A^* \quad A^{**} = A.$$

Lemma (8.17)

$$N(A^*) = R(A)^{\perp}$$
.

We consider the case U = V and $A \in \text{End}(V)$.

Definition

 $A \in \operatorname{End}(V)$ is called self-adjoint if

$$\langle x, Ay \rangle = \langle Ax, y \rangle, \quad \forall x, y \in V.$$

In other words, A is its own adjoint.

Sometimes this property is called "symmetric" or "Hermitian" (instead of self-adjoint).

Lemma (8.19)

Suppose V is finite-dimensional and let $A \in \operatorname{End}(V)$. Let \mathcal{B} be an orthonormal basis for V (Theorem 8.7), and let $_{\mathcal{B}}[A]_{\mathcal{B}}$ be the induced matrix. Then $_{\mathcal{B}}[A^*]_{\mathcal{B}}$ is the conjugate transpose of $_{\mathcal{B}}[A]_{\mathcal{B}}$.

Consider \mathbb{C}^3 with the standard inner product, and let $A \in \operatorname{End}(\mathbb{C}^3)$ be the linear map given by

$$A\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_1 & +ix_2 \\ -ix_1 & +(1+i)x_3 \\ & (1-i)x_2 & +ix_3 \end{pmatrix}$$

Question Which is true?

- (1) A is self-adjoint
- (2) A^* exists, but $A^* \neq A$
- (3) A does not have an adjoint.

Consider \mathbb{C}^3 with the standard inner product, and let $A \in \operatorname{End}(\mathbb{C}^3)$ be the linear map given by

$$A\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_1 & +ix_2 \\ -ix_1 & +(1+i)x_3 \\ (1-i)x_2 & +ix_3 \end{pmatrix}$$

Theorem (8.20)

Let $E \in \operatorname{End}(V)$ be an idempotent $(E^2 = E)$. The following are equivalent:

- (1) E is an orthogonal projection;
- (2) E is self-adjoint.

Let U, V be inner product spaces. Then $A \in \text{Hom}(U, V)$ is said to preserve inner products if

$$\langle Ax, Ay \rangle = \langle x, y \rangle \quad \forall x, y \in U.$$

A linear isomorphism which preserves inner products is called a unitary isomorphism.

Lemma (8.23)

Assume dim $U = \dim V < \infty$ and let $A \in \operatorname{Hom}(U, V)$ be an isomorphism. The following are equivalent:

- (i) A preserves inner products;
- (ii) A carries orthonormal bases to orthonormal bases;
- (iii) $A^*A = I$;
- (iv) A is a unitary isomorphism.

Proof.

Omitted

Definition

A linear map $A \in \operatorname{End}(V)$ is called a unitary if it is a unitary isomorphism. When $\mathcal{F} = \mathbb{R}$ these are sometimes called "orthogonal maps".

When $\mathcal{F} = \mathbb{C}$ the set of unitaries in $\operatorname{End}(V)$ is denoted $\operatorname{U}(V)$, and is called the unitary group of V.

When $\mathcal{F} = \mathbb{R}$ the set of unitaries in $\operatorname{End}(V)$ is denoted $\operatorname{O}(V)$ and is called the orthogonal group of V.

Both U(V) and O(V) are subgroups of GL(V); the group of linear isomorphisms in Hom(V, V).

