

Departamento de Ciencias Básicas - División Matemática

Análisis Matemático II (11082)

Ejercicios de evaluaciones anteriores

1.- Resolver las siguientes ecuaciones

a)
$$y'' - y' - 2y = 0$$

b)
$$y''-y'-2y=4x^2$$

2.- Dada la superficie $z=x^2y^2+\sin\left(xy\right)+2x+2y$, escribir una ecuación de la recta normal y del plano tangente en correspondencia al punto (x,y)=(0,1)

3.- Calcular el volumen del sólido T definido por

$$4x^2 + 4y^2 \le 36$$
, $z^2 \le x^2 + y^2$, $z \ge 0$.

4.- Sea el campo $F = (xy, x^2)$ y el triángulo T de vértices A=(0,0); B=(1,0) C=(1,1).

a) Calcular la integral de $\,F\,$ sobre la frontera de T en el sentido ABCA.

b) Calcular
$$\iint_T x \, dx \, dy$$

5.- Hallar la longitud de la curva $\,r=e^{\,4\theta}$, en el intervalo $\,1\!\leq\!\theta\!\leq\!2\,$

6.- Dada la función $z(x, y) = \log(4 - x^2 - y^2)$

a) Determinar y graficar el conjunto de definición

b) Estudiar las curvas de nivel.

7.- Hallar el máximo y el mínimo de la función $f(x, y) = x^2 - y^2 - 2x + \frac{1}{2}y$ en el dominio $x \ge 0, \ 0 \le y \le 1 - x$.

8.- Sea el sector plano D de la figura determinado por $r(\theta)$, con $\alpha \leq \theta \leq \beta$

Demostrar que el área de D puede calcularse con la integral $\frac{1}{2}\int_{\alpha}^{\beta}(r(\theta))^2\,d\theta$

- 9.- Dada la superficie $z = xy + e^{xy}$
 - a) Hallar el punto de intersección con la recta X(t) = (t, 0, 3t 5)
 - b) Escribir la ecuación del plano tangente a la superficie en el punto (2,0,1)
- 10.- Hallar la ecuación cartesiana de la recta tangente a la espiral de ecuación polar $r = 2\theta$ en el punto $(x,y)=(0,\pi)$
- 11.- Calcular el área del dominio plano limitado por el arco de cicloide

$$C(t) = (t - sent, 1 - cost), 0 \le t \le 2\pi$$
 y el eje x.

12.- Calcular el máximo y el mínimo de la función z = y (x - 1) (y - x) con las restricciones

$$0 \le x \le 1, 0 \le y \le x$$

- 13.- Calcular $\oint_c (\sin(x^2) y^3) dx + (x^3 + e^{\cos y}) dy$ donde C es la circunferencia $x^2 + y^2 = 1$ recorrida en sentido antihorario.
- 14.- Calcular mediante una integral el volumen del sólido T definido por

$$x^{2} + y^{2} + z^{2} \le 4$$
, $x \ge 0$, $y \ge 0$

15.- Resolver las siguientes ecuaciones diferenciales

a)
$$(2y - x)dx + x dy = 0$$

b)
$$y'' - 9y = e^{-3x}$$

- 16.- Indicar si las siguientes afirmaciones son verdaderas o falsas. Es esencial justificar las respuestas.
- a) La máxima velocidad de crecimiento de la función $f(x,y)=x^2+y^2$ en el punto (1,1) es 2.
- b) Dada la integral triple $\iiint_T f(x,y,z) dx dy dz$ si f(x,y,z) = 1, el resultado de la integral es positivo.
- 17.- Aplicando la transformada de Laplace, resolver la ecuación y' + 2y = 0 con y(0) = 1
- 18.- Resolver las siguientes ecuaciones

a)
$$y'' - y' - 2y = 0$$

b)
$$y'' - y' - 2y = e^{2x}$$

19.- Calcular el volumen del sólido T definido por

$$x^2 + y^2 + z^2 \le 2$$
, $z^2 \ge x^2 + y^2$, $x \ge 0$, $y \ge x$, $z \ge 0$.

20.- Calcular la integral del campo $F=(3y^2,x-y)$ desde el punto (1,2) al punto (0,0), a lo largo de $y=2x^2$.

- 21.- Dada la superficie $z = xy^2 + e^{xy}$, escribir la ecuación de la recta normal y del plano tangente en el punto correspondiente a (x, y) = (1, -1)
- 22.- Dada la función $z(x, y) = \sqrt{\frac{1}{xy}}$
 - a) Determinar y graficar el conjunto de definición
 - b) Estudiar las curvas de nivel.
- 23.- Resolver las siguientes ecuaciones.

a)
$$y'-2 = \frac{y}{x}$$
, $y(1) = -1$

b)
$$y'=1+y^2$$
, $x(1)=\frac{\pi}{2}$

- 24.- Calcular $\iiint_D 2z \ dx \ dy \ dz$, donde D está definido por $x^2 + y^2 \le 1$, $x^2 + y^2 + z^2 \le 4$, $z \ge 0$
- 25.- Hallar la ecuación vectorial de la recta tangente y la ecuación cartesiana del plano normal a la curva $C(t)=(t, 3 t^2, t^3)$ en el punto (1, 3, 1)
- 26.- Calcular el área del dominio encerrado por la curva de ecuación polar $r = \sqrt{1 \cos\theta}$
- 27.- Calcular $\oint x^2 y dx + y^4 dy$ sobre la circunferencia de centro en el origen y radio 1 recorrida en sentido antihorario.
- 28.- Calcular el volumen del sólido generado por la rotación alrededor del eje x del dominio limitado por $x^2 \le y \le 2-x \ , \ x \ge 0$
- 29.- Calcular los valores de las variables que minimizan la función f(x,y)=2x-3y+4 con las restricciones $0 \le x \le 2$, $x \le y \le 2$
- 30.- Sea $z(x, y) = x^3 + e^{xy}$, con $x = s + t^2$, y = st. Calcular $\frac{dz}{dt}$ para t = 1, s = 0.
- 31.- Calcular $\iiint_D 3\sqrt{x^2+y^2} \ dx \, dy \, dz$, donde D queda definido por $z \ge x^2+y^2$, $1 \le z \le 2$.
- 32.- Calcular $\iint_D (x+2y)dxdy$ en el dominio $D \begin{cases} 0 \le x \le y \\ x+y \le 2 \end{cases}$
- 33.- a) Resolver la ecuación diferencial $y'\sin x + y\cos x = 2x$, y hallar la integral particular que verifica la condición inicial $y\left(\frac{\pi}{2}\right) = 0$