ECE108 Assignment 1

Yi Fan Yu (yf3yu@edu.uwaterloo.ca)

Feb 22, 2017

1 Set Operation

a)

$$R \subseteq S \iff R \subseteq ((S-T) \cup (R \cap T))$$

This statement is false because the implication is only unidirectional.

Proving
$$R \subseteq S \to R \subseteq ((S-T) \cup (R \cap T))$$

 $R \subseteq ((S-T) \cup (R \cap T))$ can be simplified to using distributivity

$$R \subseteq (((S-T) \cup R) \cap ((S-T) \cup T))$$
 where $(S-T) \cup R$ gives you a set X such that $R \subseteq X$ $(S-T) \cup T$ gives you S ...

So... we get $R \subseteq (X \cap S)$ since $R \subseteq X$ and from our assumption $R \subseteq S$. The intersection gives at least R as an answer. Therefore $R \subseteq R$ is true

The opposite way cannot be proved because R does'nt have to be \subseteq S Counter-example $S = \{4\}$ $R = \{1, 3, 5\}$ $T = R = \{1, 3, 5\}$ $S - T = \{4\}$ $R \cap T = \{1, 3, 5\}$ $R = (S - T) \cup (R \cap T) = \{1, 3, 4, 5\}$ in this case R is definitely not a subset of S

- a) $R \subseteq T$ proves it wrong then you are done
- 2.) Given sets A and B under what condition does A B = B A need to prove that $A = B \iff A B = B A$

starting with
$$A = B \rightarrow A - B = B - A$$
 if $A = B$, then $A - B = B - A = \emptyset$

continuing with $A = B \leftarrow A - B = B - A$

PBC if $A \neq B$ then $A \not\subseteq B \lor B \not\subseteq A$ then $\exists x \in A \mid x \not\in B$ OR $\exists x \in B \mid x \not\in A$

but by definition of difference of sets:

$$A - B = \{x \mid x \in A \land x \notin B\}$$

$$B - A = \{x \mid x \in B \land x \notin A\}$$

if
$$A - B = B - A$$

then it means that $\exists x \in A \mid x \notin B$

because of the equality but the same x must exists in B not in A we can see that no element satisfies this condition

We can then conclude that

 $A - B = \emptyset$ $B - A = \emptyset$ proving also that $\forall x \in A \mid x \in B \ \forall x \in B \mid x \in A$ therefor proving the equality

- i. Define $T\subseteq A2$ st $XTy\iff (xRyANDxSY)$ show T is refl sym and transitive to prove it
 - 4. Given poset (x, smaller Eq) prove or disprove (a) x $\not :=$ y iff y $\not :=$ 1 x

R-1 = (b,a) — (a,b)
$$\in$$
 R) (y,x) \in i= so it mean (x,y) \in i=-1

(b)
$$x := y \iff y := x (2,2)$$
 will prove it false;