يسم الله الرحمن الرحيم

نظریه زبانها و ماشینها

جلسه ۲

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

یافتن اتوماتای قوی تر

تاکنون با FA معین سر و کار داشتیم که در آن حالت فعلی و سمبل فعلی، حالت بعدی را دقیقا تعیین میکردند.

آیا DFA همه زبانها را تشخیص میدهد؟

چگونه میتوانیم یک DFA را توسعه دهیم؟

- اکنون قصد داریم FA نامعین را معرفی کنیم که دو تفاوت اصلی با FA معین دارد:
- در NFA، می توان برای هر سمبل ورودی، صفر یا چندین فلش خروجی داشت. همچنین می توان برای سمبل ϵ نیز فلش خروجی داشت.

€-transition

- اکنون قصد داریم FA نامعین را معرفی کنیم که دو تفاوت اصلی با FA معین دارد:
- در NFA، می توان برای هر سمبل ورودی، صفر یا چندین فلش خروجی داشت. همچنین می توان برای سمبل ϵ نیز فلش خروجی داشت.
 - در NFA، ممکن است به طور همزمان در چندین حالت بود.

۰ معین و نامعین

○ عملي؟

کاربردها؟

- را می توان به شکل محاسبه موازی دید. همه مسیرهای ممکن جستجو می شوند تا در صورت امکان به یک حالت پذیرش برسد.
- میتوان این طور دید که حدس میزند و حدس خود را بررسی میکند؛ درحالی که همواره حدس درست زده است.
 - برای بسیاری از مسائل، ساخت NFA ساده تر است.

ورودى 0101100

یک NFA که یک رشته باینری را تشخیص دهد
که سومین حرف از آخر برابر 1 باشد.

یک NFA که یک رشته باینری را تشخیص دهد
که سومین حرف از آخر برابر 1 باشد.

یک DFA که یک رشته باینری را تشخیص دهد
که سومین حرف از آخر برابر 1 باشد.

یک DFA که زبان (11) را تشخیص دهد.

o زبان NFA زير چيست؟ DFA متناظر را بنويسيد. (الفباى o و d)

یک NFA که به 101 ختم شود.

- یک NFA طراحی کنید که رشتههای پذیرش شده، با 0 شروع شوند و با 1 خاتمه یابند.
 - یک DFA برای همان زبان طراحی کنید.

 \circ NFA که رشتههایی را میپذیرد که به \circ ختم شوند یا فقط شامل \circ باشند.

یک NFA طراحی کنید که رشتههای پذیرش شده، تعداد فرد 0 دارند یا تعداد 1ها مضرب سه نباشد.

مجموعه تواني

Q برای مجموعه Q، مجموعه توانی به صورت زیر تعریف می شود (شامل همه زیرمجموعههای Q):

$$\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$$

○ مثال:

$$\mathcal{P}(\{0,1,2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{1,0\}, \{1,2\}, \{0,2\}, \{0,1,2\}\}\$$

DEFINITION 1.37

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

$$\Sigma_{\epsilon} = \Sigma \cup {\epsilon}$$

IUT-ECE

Recall the NFA N_1 :

مثال

 $\delta(q_1, 1) = \{q_1, q_2\}$

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

2.
$$\Sigma = \{0,1\},$$

3.
$$\delta$$
 is given as

	0	1	ε		
\overline{q}	$\{q_1\}$	$\{q_1,q_2\}$	Ø		`
q_2	$\{q_3\}$	\emptyset	$\{q_3\}$	$\delta(q_2, \epsilon) = \{q_3$	}
q_3	3 Ø	$\{q_4\}$	Ø	ϵ -transition	
q_{4}	$ \{q_4\} $	$\{q_4\}$	$\emptyset,$	e cranstation	

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$

سوال

زبان ماشین؟