Schemas

Employee(employee_id, first_name, last_name, phone, email, title, department, business_unit, hired_date, status)

Lead(<u>lead_id</u>, name, country, status, probability, source, analysis, date_created, *owner_id*, *contact_id*)

Contact(<u>contact_id</u>, first_name, last_name, phone, email, title, organization)

Customer(<u>customer_id</u>, *owner_id*, *parent_entity_id*, legal_entity_name, country, address, industry, type, status, date_created)

Customer_Contact(customer_id, contact_id)

Opportunity(<u>opportunity_id</u>, *customer_id*, *sold_to_id*, *owner_id*, name, start_date, close_date, stage, est_revenue, date_created)

Quote(<u>quote_id</u>, *opportunity_id*, *bill_to_id*, *ship_to_id*, name, content, status, created_date, approved_date)

Screening_Record(<u>screening_record_id</u>, *modified_by_id*, *customer_id*, issue_type, status, source, pending_action, date_created, date_updated)

Prove the relational schema is in BCNF

Below analyze each relation and ensure that for every non-trivial functional dependency $X \to Y$, X is a superkey of the relation.

1. Employee

employee_id → first_name, last_name, phone, email, title, department, business_unit, hired_date, status

- employee id is the primary key
- All non-key attributes are functionally dependent on employee id
- No other non-trivial functional dependencies exist

2. Lead

lead_id → name, country, status, probability, source, analysis, date_created, owner_id, contact id

Schemas 1

- lead_id is the primary key
- All non-key attributes are functionally dependent on lead_id
- No other non-trivial functional dependencies exist

3. Contact

contact_id → first_name, last_name, phone, email, title, organization

- contact_id is the primary key
- All non-key attributes are functionally dependent on contact_id
- No other non-trivial functional dependencies exist

4. Customer

customer_id → owner_id, parent_entity_id, legal_entity_name, country, address, industry, type, status, date_created

- customer_id is the primary key
- All non-key attributes are functionally dependent on customer_id
- No other non-trivial functional dependencies exist

5. Customer Contact(customer id, contact id)

- (customer_id, contact_id) is the composite primary key
- No other attributes exist, so no other functional dependencies are possible

6. Opportunity

opportunity_id → customer_id, sold_to_id, owner_id, name, start_date, close_date, stage, est_revenue, date_created

- opportunity_id is the primary key
- All non-key attributes are functionally dependent on opportunity_id
- No other non-trivial functional dependencies exist

7. Quote

quote_id → opportunity_id, bill_to_id, ship_to_id, name, content, status, created_date, approved_date

• quote_id is the primary key

Schemas 2

- All non-key attributes are functionally dependent on quote_id
- No other non-trivial functional dependencies exist

8. Screening_Record

screening_record_id → modified_by_id, customer_id, issue_type, status, source, pending_action, date_created, date_updated

- screening_record_id is the primary key
- All non-key attributes are functionally dependent on screening_record_id
- No other non-trivial functional dependencies exist

In conclusion, all relations in the schema are in BCNF because for each relation:

- 1. The primary key is a superkey.
- 2. All non-key attributes are fully functionally dependent on the primary key.
- 3. There are no non-trivial functional dependencies where the left side is not a superkey.

This satisfies the definition of BCNF, where for all functional dependencies $\alpha \to \beta$, α is a superkey for the relation schema R.

Schemas 3