肺部電腦斷層掃描之非小細胞癌 PD-L1 表現預測: 結合多任務自監督學習與生成對抗網路

TAI, WEI HSUAN

August 2025

Outline

- 緒論
- 研究目標
- 研究方法
- 研究結果與討論
- 結論與未來展望

Section 1

緒論

研究動機

- 癌症是全球主要的死亡原因之一,肺癌是最常見的癌症之一。
- 肺癌是台灣癌症死亡率最高的癌症類型。

113 台灣癌症統計資料

113年十大癌症死因								
癌症別	死亡人 (人)	數 年增率 (%)	死亡 (每十萬)		標準化3			
所有癌症死亡原因	54,032	1.7	230.8	1.4	113.3	-1.9		
1.氣管、支氣管和肺癌	10,495	1.4	44.8	1.1	21.2	-2.2		
2.肝和肝內膽管癌	7,513	-2.7	32.1	-3.0	15.3	-6.3		
3.結腸、直腸和肛門癌	7,007	3.2	29.9	2.9	14.2	-0.4		
4.女性乳癌	3,050	2.6	25.7	2.2	13.2	-0.8		
5.前列腺(攝護腺)癌	1,897	4.5	16.4	4.4	7.8	1.5		
6.口腔癌	3,687	2.1	15.7	1.8	8.5	-1.5		
7.胰臟癌	2,970	3.2	12.7	2.9	6.1	-0.9		
8.胃癌	2,221	-4.6	9.5	-4.8	4.5	-8.3		
9.食道癌	2,076	0.6	8.9	0.3	4.7	-2.4		
10.卵巢癌	799	6.4	6.7	5.9	3.6	5.1		

Figure: 113 年台灣癌症統計資料

2025 美國癌症統計資料

Figure: 2025 年美國癌症統計資料

Siegel, Rebecca L et al. "Cancer Statistics, 2025." CA: a cancer journal for clinicians. 75.1 (2025): 10–45. Web.

癌症的分類

- 小細胞肺癌 (Small-cell lung carcinoma, SCLC):
 - 佔肺癌的約 15 %。
 - 通常與吸煙有關。
 - 生長迅速,易於轉移。
- 非小細胞肺癌(Non-small-cell lung carcinoma, NSCLC):
 - 佔肺癌的約85%。
 - 包括腺癌、鱗狀細胞癌和大細胞癌等類型。
 - 生長較慢,預後較好。

癌症的治療方法

- 手術:切除腫瘤組織。
- 放射治療:使用高能輻射殺死癌細胞。
- 化學治療:使用藥物殺死癌細胞。
- 免疫治療:利用免疫系統對抗癌症。
- 靶向治療:針對特定分子或基因突變進行治療。

免疫療法的限制

免疫治療的原理是隔斷 PD-1 與 PD-L1 的結合,解除免疫抑制,使 T 細胞重新啟動並攻擊腫瘤細胞,因此細胞表面的 PD-L1 會直接影響治療的結果,判斷 PD-L1 表現的準確性對於免疫療法的成功至關重要。小細胞肺癌患者的 PD-L1 表現通常較低,且對免疫治療的反應較差,因此在臨床上,非小細胞肺癌患者的 PD-L1 表現預測更為重要。

Figure: 左: PD-L1 表現 >50%; 右: PD-L1 表現 <50%

圖片來源:周姵妤學姐碩士論文

Section 2

研究目標

研究目標

- 建立以 MTMAE 為基礎之 PD-L1 表現預測模型
- 探討加入對比學習對自監督表徵學習的增強效果。
- 在 ViT encoder 中嵌入 GNN,建構 patch 間關聯性以提升特徵整合 能力。
- 評估多模型集成(ensemble)策略對預測穩定性與泛化能力的影響。

Section 3

研究方法

研究方法

- 實驗材料
- 模型介紹
- 性能指標

實驗材料

- 資料來源:台大醫院、台大醫院新竹分院、台大醫院雲林分院
- 資料類型:非小細胞肺癌患者 CT 與 PD-L1 標記資料
- 總樣本數:188 例病患
- PD-L1 表現分布:
 - PD-L1 expression ≥ 50% (+): 49 例
 - PD-L1 expression < 50% (-): 139 例

GAN 生成的影像

為了解決資料稀缺問題,本專案使用實驗室先前所開發之 Gabor-GAN模型,使用公開資料庫 LIDC-IDRT(Lung Image Database Consortium and Image Database Resource Initiative)生成 518,064 張 2D 的樣本以進行預訓練。

模型介紹

本專題使用或參考了以下的幾個模型及架構:

- Mask Image Model (MIM)
- Masked Autoencoder (MAE)
- Vision Transformer (ViT)
- Multi-task Masked Autoencoder (MT-MAE)
- Simple Contrastive Learning (SimCLR)
- Global Contrastive Masked Autoencoder (GCMAE)
- Contrastive Masked Autoencoder (CMAE)

Masked Image Model (MIM)

- 分成 pretrain, finetune
- 利用 Transfer Learning 的概念,將 pretrain 的 encoder 應用於下游任務
- pretrain 階段,將輸入影像隨機遮蔽一部分,並預測被遮蔽的部分 以學習特徵

Masked Autoencoder (MAE)

- MIM 的一種變體
- 利用 Autoencoder 補全被遮蔽的部分以學習特徵
- 將 pretrain 的 encoder 應用於下游任務(如:應用於 ViT 模型以進行 分類任務)

Figure: Masked Autoencoder (MAE) 的架構

圖片來源:周姵妤學姐的碩士論文

Vision Transformer (ViT)

- 將影像分割成 patches,並將其視為序列輸入到 Transformer 模型中
- 利用自注意力機制學習影像特徵
- 使用 CLS token 或是 GAP 處理 token 之後丟到 linear layer 進行分類

Figure: Vision Transformer (ViT) 的架構

圖片來源:https://arxiv.org/abs/2010.11929

Multi-task Masked Autoencoder (MT-MAE)

- 使用大量 GAN 生成的影像進行 pretrain
- 在 pretrain 階段將 MAE 與分割任務結合,使用混合的 Loss 進行優化
- 使用訓練好的 encoder 作為下游分割任務的 backbone

Figure: Multi-task Masked Autoencoder (MT-MAE) 的架構

圖片來源:周姵妤學姐的碩士論文

Simple Contrastive Learning (SimCLR)

- 诱過對比學習學習影像特徵
- 對同一張影像進行不同的增強,並將其視為正樣本;將不同的影像 祖為負樣本,使模型學習拉折正樣本,遠離負樣本
- 使用 NT-Xent loss 進行優化

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{k \neq i} \exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_k)/\tau)}$$

Figure: SimCLR 架構圖

Global Contrastive Masked Autoencoder (GCMAE)

- 結合 MAE 與 SimCLR 的思想
- 利用 MAE 學習局部特徵;結合 GCLR 學習全局特徵

Figure: Global Contrastive Masked Autoencoder (GCMAE) 的架構

圖片來源:https://arxiv.org/abs/2205.09048

Contrastive Masked Autoencoder (CMAE)

- 一樣結合 MAE 與對比學習
- 利用孿生網路結構,結合 MAE 與 CL

Figure: Contrastive Masked Autoencoder (CMAE) 的架構

圖片來源:https://arxiv.org/abs/2207.13532

TAI, WEI HSUAN

性能指標

- 正確率(Accuracy):預測正確的樣本數與總樣本數之比。
- 靈敏度(Sensitivity):預測為正樣本的實際正樣本數與總實際正樣 本數之比。
- 特異度(Specificity):預測為負樣本的實際負樣本數與總實際負樣 本數之比。
- AUC(Area Under the Curve): ROC 曲線下的面積,用於評估模型 在不同閾值下的分類性能。

Figure: ROC 曲線及其 AUC 值

圖片來源:https://www.blog.trainindata.com/auc-roc-analysis/

Section 4

研究結果與討論

對照組-還原論文的結果

- 参考周姵妤學姐的碩士論文,重現 MTMAE 模型的架構與訓練流程:
 - 利用 PyTorch 框架實現模型,並使用學姐留下來的 CT 影像與 PD-L1標記資料進行訓練
 - ② 進行 200 個 epoch 的預訓練之後得到 MTMAE 模型的權重
 - 使用真實的醫學影像進行微調,並評估模型在 PD-L1 表現預測任務上的準確率
- 最終多次實驗得到的 AUC 平均值為 0.6168
- 結果與學姐論文中所報告相差甚遠,推測是因為資料量太少,不同的排列順序會導致模型預測結果有很大差異

微調的方法

Figure: 微調階段的架構

SimCLR 的訓練

Figure: SimCLR 的訓練方式

SimCLR 的訓練結果

	純粹使用 simCLR	MTMAE + SimCLR 微調
AUC	0.4395	0.5000
ACC	0.4839	0.4355

Table: SimCLR 方法實驗結果比較

由結果可知,純粹使用 SimCLR 訓練的模型表現較差,可能是破壞了原有的特徵學習結構。查閱資料後,我找到了 CMAE 的方法,這個方法結合了 MAE 與 SimCLR 的優點,能夠更好地學習影像特徵。

CMAE 的訓練

由於完整使用 CMAE 預訓練的時間太長,因此我使用了 CMAE 的預訓練權重,和 MAE 的權重進行對比。這兩個權重都是在 ImageNet 上預訓練的。

	CMAE	MAE
AUC	0.5625	0.5584
ACC	0.7419	0.6452

Table: CMAE 方法實驗結果比較

雖然效果不彰,但仍可看出 CMAE 在某些指標上優於 MAE,或許代表了 CMAE 的潛力。

類似模型集成的方法

	5-fold(輪流遮住資料)	5-fold(訓練資料固定	150 個 epoch
AUC	0.6984	0.5645	0.6644
ACC	00.7419	0.5421	0.7419

Table: 5-fold 方法實驗結果比較

Section 5

結論與展望

結論與展望

- 結合 SimCLR 與 MAE 的方式有些問題,或許可以參考 CMAE 或是 GCMAE 的方法。
- CMAE 的方法有一定的潛力
- 未來預計嘗試:
 - 使用完整的 CMAE 模型進行預訓練
 - ② 使用孿生網路的概念結合 MT-MAE 與 CMAE
 - 動 讓模型不再僅判斷正負,而是將 PD-L1 的表現分成不同層級
 - 嘗試將正確的 k-fold 模型集成策略應用於微調階段,將多個不同的模型進行集成

參考資料

- 周姵妤,肺部電腦斷層掃描之非小細胞癌 PD-L1 表現預測: 結合遮蓋圖像模型與 生成對抗網路,碩士論文,國立臺灣大學,2024。
- Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers). 2019.
- Bao, Hangbo, et al. "Beit: Bert pre-training of image transformers." arXiv preprint arXiv:2106.08254 (2021).
- He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.
- Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PmLR, 2020.
- Quan, Hao, et al. "Global contrast-masked autoencoders are powerful pathological representation learners." Pattern Recognition 156 (2024): 110745.
- Huang, Zhicheng, et al. "Contrastive masked autoencoders are stronger vision learners." IEEE Transactions on Pattern Analysis and Machine Intelligence 46.4 (2023): 2506-2517.

肺部電腦斷層掃描之非小細胞癌 PD-L1 表現預