به نام خدا

مجموعه تمارین نظریه اعداد جلسه سوم دوره تابستانی المپیاد ریاضی ۱۴۰۱ قضایای فرما و اویلر

- یست. $p \in \mathbb{P}$ مربع کامل نیست. برای هر عدد اول $p \in \mathbb{P}$ ثابت کنید
- ۲. فرض کنید $\mathbb S$ مجموعه همه اعدادی باشد که از سمت راست، جایگاههای فرد ارقام ناصفر و جایگاههای زوج تنها رقم صفر داشته باشند. ثابت کنید هر عدد طبیعی به فرم $x,y\in\mathbb N$ که در آن $x,y\in\mathbb N$ برقرار است یکی از اعضای $x,y\in\mathbb N$ را عاد می کند.
- $\{f(1),\cdots,f(3^{2020})\}$ تابع $f:\mathbb{N} o \mathbb{N}, f(1)=1, \forall n \in \mathbb{N}: f(n+1)=f(n)+2^{f(n)}$ تابع گزید مجموعه $f:\mathbb{N} o \mathbb{N}, f(1)=1, \forall n \in \mathbb{N}: f(n+1)=f(n)+2^{f(n)}$ تشکیل می دهد.
 - الست) برابر تعداد مقسوم علیه های مثبت $a^{d(b)}+b^{d(a)}$ الست) برابر تعداد مقسوم علیه های مثبت $a^{d(b)}+b^{d(a)}$ الست) برابر تعداد مقسوم علیه های مثبت $a^{d(b)}+b^{d(a)}$
 - ه. فرض کنید $k \in \mathbb{N}$ اعدادی طبیعیاند. ثابت کنید مضربی از n موجود است که تعداد ارقام ناصفر آن، دقیقا k تا از تعداد ارقام ناصفر n بیشتر است.
 - ع فرض کنید $\{a_1{}^t+\cdots+a_n{}^t\mid t\in\mathbb{N}\}$ همگی با هم برابر نباشند. ثابت کنید مجموعه
- ۷. فرض کنید $P(x)\in\mathbb{Z}[x]$ چندجملهای ناصفری با ضرایب صحیح باشد. ثابت کنید مجموعه $\{P(n)+2^n\mid n\in\mathbb{N}\}$ دارای نامتناهی عامل اول است.
 - م فرض کنید $k\in\mathbb{Z}$ عددی صحیح و ناصفر باشد. ثابت کنید مجموعه $\{2^{2^n}+k\mid n\in\mathbb{N}\}$ دارای نامتناهی عامل اول و نامتناهی عدد مرکب است.
 - ٩. ثابت كنيد در هر تصاعد حسابي با جمله اوليه و قدرنسبت طبيعي، نامتناهي جمله موجود است كه مجموعه عوامل اول أنها دقيقا يكسان باشند.
- ۱۰. فرض کنید $a,b\in\mathbb{N}$ اعدادی طبیعی باشند و a>1 . ثابت کنید مجموعه $\{a^n+b\mid n\in\mathbb{N}\}$ دارای نامتناهی عامل اول است. همچنین ثابت کنید نامتناهی عامل اول موجود است که هیچ یک از اعضای این مجموعه را عاد نکند.
- ۱۱. فرض کنید $p\in\mathbb{P}$ عددی اول و فرد به فرم k+2 باشد. مجموعه k+2 باشد. مجموعه خداکثر k+2 عضو بخشپذیر بر k دارد.
- $a^x+x\stackrel{c}{\equiv}b:$ عددی صحیح باشد. ثابت کنید نامتناهی $x\in\mathbb{N}$ موجود است به طوری که داشته باشیم. $b\in\mathbb{Z}$ عددی صحیح باشد. ثابت کنید نامتناهی
- برای هر $\{a,P(a),P(P(a)),\cdots\}$ موجود باشد به طوری که عدد طبیعی $a\in\mathbb{N}$ موجود است به طوری که دنباله $P(x)\in\mathbb{Z}[x]$ برای هر $k\in\mathbb{N}$ شامل یک توان kام کامل است. ثابت کنید $k\in\mathbb{N}$
 - اد. فرض کنید $a\in\mathbb{N}$ عددی طبیعی باشد. ثابت کنید برای هر $m\in\mathbb{N}$ دنباله $a\in\mathbb{N}$ دارای عضویست که بر m بخش پذیر است.
- اما عوامل اول $A\subseteq \mathbb{P}$ زیرمجموعهای از مجموعه اعداد اول باشد به طوری که برای هر تعداد متناهی عضو مثل $a_1,a_2,\cdots,a_n\in \mathbb{A}$ تمام عوامل اول .\alpha . $A=\mathbb{P}$ نیز در A وجود داشته باشند. ثابت کنید $A=\mathbb{P}$ نیز در A وجود داشته باشند. ثابت کنید
- ۱۶. ثابت کنید nامین عدد طبیعیای که نسبت به n اول است بزرگتر یا مساوی با $\sigma(n)$ است که در آن $\sigma(n)$ مجموع مقسوم علیه های n است. حالت تساوی را بیابید.
- . $\frac{c^{a_n}-c^{a_{n-1}}}{n}\in\mathbb{Z}$ داریم: $c,n\in\mathbb{N}$ طوری داده شده است که برای هر $n\in\mathbb{N}$ داریم: $n\in\mathbb{N}$ د
 - ۱۸. احکام زیر را ثابت کنید:
 - arphi(a)<arphi(b) از اعداد طبیعی موجود است به طوری که a>b و همچنین $a,b\in\mathbb{N}$ از اعداد طبیعی موجود است به طوری
 - (arphi) بامتناهی دنباله صعودی به طول n از اعداد طبیعی مثل $a_n>\dots>a_n$ موجود است به طوری که $(a_1)<\dots< a_n$.
- (ج) (اختیاری) برای هر جایگشت از اعداد n اعداد n مثل n مثل n ثابت کنید نامتناهی دنباله صعودی به طول n مثل n موجود n موجود n است به طوری که $(\varphi(a_{\pi_1}) < \cdots < \varphi(a_{\pi_n}) < \cdots$

ترفرار باشد که به ازای آنها $n\in\mathbb{N}$ دارای نامتناهی عامل اول است اگر و فقط اگر نامتناهی $p\in\mathbb{P}$ موجود باشد که به ازای آنها $n\in\mathbb{N}$ موجود باشد که $p\in\mathbb{N}$ برفرار باشد

- یکسان باشند. فرض کنید $a,b,c,d,k,l\in\mathbb{N}$ اعدادی طبیعی باشند به طوری که برای هر $n\in\mathbb{N}$ مجموعه عوامل اول $a,b,c,d,k,l\in\mathbb{N}$ یکسان باشند. a=b,c=d,k=l ثابت کنید
 - ۲. ثابت کنید $m\in\mathbb{N}$ طبیعی موجود است به طوری که معادله arphi(n)=m حداقل ۲۰۱۵ جواب برای n در مجموعه اعداد طبیعی داشته باشد.
 - $q^{p-1} \stackrel{p^2}{
 eq} 1, r^{p-1} \stackrel{p^2}{
 eq} 1$ عددی اول باشد. ثابت کنید $q, r \in \mathbb{P}$ موجودند به طوری که $q, r \in \mathbb{P}$ و همچنین $q, r \in \mathbb{P}$ عددی اول باشد. ثابت کنید $q, r \in \mathbb{P}$ موجودند به طوری که $q, r \in \mathbb{P}$ عددی اول باشد. ثابت کنید $q, r \in \mathbb{P}$ عددی اول باشد. ثابت کنید $q, r \in \mathbb{P}$ عددی اول باشد. ثابت کنید $q, r \in \mathbb{P}$ عددی اول باشد. ثابت کنید $q, r \in \mathbb{P}$ عددی اول باشد. ثابت کنید $q, r \in \mathbb{P}$ عددی اول باشد. ثابت کنید و بارد تابی اول باشد. ثابت کنید و بارد تابی و بارد