AUA CS108, Statistics, Fall 2020 Lecture 10

Michael Poghosyan

16 Sep 2020

Contents

- BoxPlot
- ► Sample Quantiles
- ► Theoretical Quantiles
- Q-Q Plots

Example (Quartiles and IQR)

Example: Find the Quartiles and IQR of

x: 1, 1, 2, 3, 1, 1, 3, 4, 5, 2

Remark: Note that the Quartiles $Q_1,\,Q_2,\,Q_3$ are not always Datapoints.

Remark: Note that the Quartiles Q_1, Q_2, Q_3 are not always Datapoints.

Note: Recall the idea of Quartiles: the points Q_1 , Q_2 , Q_3 on the real axis divide our Dataset into (almost) four equal-length portions:

ightharpoonup almost 25% of our Datapoints are to the left to Q_1

Remark: Note that the Quartiles Q_1, Q_2, Q_3 are not always Datapoints.

Note: Recall the idea of Quartiles: the points Q_1 , Q_2 , Q_3 on the real axis divide our Dataset into (almost) four equal-length portions:

- ightharpoonup almost 25% of our Datapoints are to the left to Q_1
- lacktriangle almost 25% of our Datapoints are between Q_1 and Q_2

Remark: Note that the Quartiles Q_1, Q_2, Q_3 are not always Datapoints.

Note: Recall the idea of Quartiles: the points Q_1 , Q_2 , Q_3 on the real axis divide our Dataset into (almost) four equal-length portions:

- lacktriangle almost 25% of our Datapoints are to the left to Q_1
- lacktriangle almost 25% of our Datapoints are between ${\it Q}_1$ and ${\it Q}_2$
- ightharpoonup almost 25% of our Datapoints are between Q_2 and Q_3

Remark: Note that the Quartiles Q_1, Q_2, Q_3 are not always Datapoints.

Note: Recall the idea of Quartiles: the points Q_1 , Q_2 , Q_3 on the real axis divide our Dataset into (almost) four equal-length portions:

- lacktriangle almost 25% of our Datapoints are to the left to Q_1
- lacktriangle almost 25% of our Datapoints are between Q_1 and Q_2
- ightharpoonup almost 25% of our Datapoints are between Q_2 and Q_3
- ightharpoonup almost 25% of our Datapoints are to the right to Q_3

Remark: Note that the Quartiles Q_1, Q_2, Q_3 are not always Datapoints.

Note: Recall the idea of Quartiles: the points Q_1 , Q_2 , Q_3 on the real axis divide our Dataset into (almost) four equal-length portions:

- lacktriangle almost 25% of our Datapoints are to the left to Q_1
- lacktriangle almost 25% of our Datapoints are between Q_1 and Q_2
- ▶ almost 25% of our Datapoints are between Q_2 and Q_3
- ightharpoonup almost 25% of our Datapoints are to the right to Q_3

Note: The interval $[Q_1, Q_3]$ contains almost the half of the Datapoints.

Remark: Note that the Quartiles Q_1 , Q_2 , Q_3 are not always Datapoints.

Note: Recall the idea of Quartiles: the points Q_1 , Q_2 , Q_3 on the real axis divide our Dataset into (almost) four equal-length portions:

- ightharpoonup almost 25% of our Datapoints are to the left to Q_1
- lacktriangle almost 25% of our Datapoints are between Q_1 and Q_2
- ▶ almost 25% of our Datapoints are between Q_2 and Q_3
- ightharpoonup almost 25% of our Datapoints are to the right to Q_3

Note: The interval $[Q_1, Q_3]$ contains almost the half of the Datapoints. So the IQR shows the Spread of the middle half of our Dataset, it is a measure of the Spread/Variability.

In ${\bf R}$, one can use the commands quantile(x, 0.25) and quantile(x, 0.75) to find Q_1 and Q_3 .

In \mathbf{R} , one can use the commands quantile(x, 0.25) and quantile(x, 0.75) to find Q_1 and Q_3 . For example,

```
x <- 1:10
quantile(x,0.25)
## 25%
## 3.25</pre>
```

In \mathbf{R} , one can use the commands quantile(x, 0.25) and quantile(x, 0.75) to find Q_1 and Q_3 . For example,

```
x <- 1:10
quantile(x,0.25)</pre>
```

```
## 25%
## 3.25
```

If you will not give a parameter to quantile, **R** will calculate 0% (minimum datapoint), 25%, 50%, 75% and 100% (maximum datapoint) quartiles:

```
x <- 1:10
quantile(x)
```

```
## 0% 25% 50% 75% 100%
## 1.00 3.25 5.50 7.75 10.00
```

Also, you can use the following commands:

```
x <- 1:10
fivenum(x)
## [1] 1.0 3.0 5.5 8.0 10.0
summary(x)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 3.25 5.50 5.50 7.75 10.00
```

x < -1:10

Also, you can use the following commands:

```
fivenum(x)
## [1] 1.0 3.0 5.5 8.0 10.0

summary(x)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 3.25 5.50 5.50 7.75 10.00

To calculate the IQR in R, we can use the IQR command:
x <- 1:10</pre>
```

```
## [1] 4.5
```

IQR(x)

Note

Note: Please note that \mathbf{R} is not using our definition of the Quartiles, so sometimes we will get different results when calculating by a hand or by \mathbf{R} .

BoxPlot (or Box and Whiskers Plot) is another very common method of visualization.

BoxPlot (or Box and Whiskers Plot) is another very common method of visualization. To draw the BoxPlot, we calculate the following:

BoxPlot (or Box and Whiskers Plot) is another very common method of visualization. To draw the BoxPlot, we calculate the following:

▶ The Quartiles $Q_1, Q_2 = Median, Q_3$

BoxPlot (or Box and Whiskers Plot) is another very common method of visualization. To draw the BoxPlot, we calculate the following:

- ▶ The Quartiles $Q_1, Q_2 = Median, Q_3$
- ▶ the Lower and Upper Fences $W_1 = \min\{x_i : x_i \ge Q_1 1.5 \cdot IQR\}$ and

$$W_2 = \max\{x_i : x_i \le Q_3 + 1.5 \cdot IQR\},\$$

BoxPlot (or Box and Whiskers Plot) is another very common method of visualization. To draw the BoxPlot, we calculate the following:

- ▶ The Quartiles $Q_1, Q_2 = Median, Q_3$
- the Lower and Upper Fences $W_1 = \min\{x_i : x_i \geq Q_1 1.5 \cdot IQR\}$ and $W_2 = \max\{x_i : x_i \leq Q_3 + 1.5 \cdot IQR\}$, i.e., the first and last observations lying in

$$\left[Q_1 - \frac{3}{2}IQR, \ Q_3 + \frac{3}{2}IQR\right];$$

BoxPlot (or Box and Whiskers Plot) is another very common method of visualization. To draw the BoxPlot, we calculate the following:

- ▶ The Quartiles $Q_1, Q_2 = Median, Q_3$
- ▶ the Lower and Upper Fences $W_1 = \min\{x_i : x_i \geq Q_1 1.5 \cdot IQR\}$ and $W_2 = \max\{x_i : x_i \leq Q_3 + 1.5 \cdot IQR\}$, i.e., the first and last observations lying in

$$\left[Q_1 - \frac{3}{2}IQR, \ Q_3 + \frac{3}{2}IQR\right];$$

the lines joining that fences to corresponding quartiles are the *Whiskers*;

BoxPlot (or Box and Whiskers Plot) is another very common method of visualization. To draw the BoxPlot, we calculate the following:

- ▶ The Quartiles $Q_1, Q_2 = Median, Q_3$
- the Lower and Upper Fences $W_1 = \min\{x_i : x_i \geq Q_1 1.5 \cdot IQR\}$ and $W_2 = \max\{x_i : x_i \leq Q_3 + 1.5 \cdot IQR\}$, i.e., the first and last observations lying in

$$\left[Q_1 - \frac{3}{2}IQR, \ Q_3 + \frac{3}{2}IQR\right];$$

the lines joining that fences to corresponding quartiles are the *Whiskers*;

the set of all Outliers

$$O = \left\{ x_i : x_i \not\in \left[Q_1 - \frac{3}{2}IQR, Q_3 + \frac{3}{2}IQR \right] \right\}$$

Then we draw the points W_1 , Q_1 , Q_2 , Q_3 , W_2 on the real line and add all outliers, and make a box over $[Q_1, Q_3]$.

Then we draw the points W_1 , Q_1 , Q_2 , Q_3 , W_2 on the real line and add all outliers, and make a box over $[Q_1, Q_3]$.

Example: Draw the Boxplot of

x: 0, -2, 2, 1, 5, 6, 4, 1, 2, 1, 12

Then we draw the points W_1 , Q_1 , Q_2 , Q_3 , W_2 on the real line and add all outliers, and make a box over $[Q_1, Q_3]$.

Example: Draw the Boxplot of

$$x: 0, -2, 2, 1, 5, 6, 4, 1, 2, 1, 12$$

Solution: OTB

Now, using R:

```
x <- c(0, -2, 2, 1, 5, 6, 4, 1, 2, 1, 12)
boxplot(x)
```


Another view:

```
x <- c(0, -2, 2, 1, 5, 6, 4, 1, 2, 1, 12)
boxplot(x, horizontal = T, col = "magenta")
```


Here are some Datasets' Histograms along with the BoxPlots:

```
x <- rnorm(1000, mean = -3, sd = 2)
par(mfrow=c(2,1)); hist(x)
boxplot(x, horizontal = T, col = "cyan")</pre>
```


Here are some Datasets' Histograms along with the BoxPlots:

```
x <- rexp(1000, rate = 0.2)
par(mfrow=c(2,1)); hist(x)
boxplot(x, horizontal = T, col = "lightgreen")</pre>
```


Here are some Datasets' Histograms along with the BoxPlots:

```
x <- rbeta(1000, shape1 = 4, shape2 = 2)
par(mfrow=c(2,1)); hist(x)
boxplot(x, horizontal = T, col = "red")</pre>
```


Here is the BoxPlot of our Quiz 01 grades: can you describe the result?

And here is the BoxPlot of our Quiz 01 grades along with the Histogram:

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 7.50 61.25 82.50 74.63 95.00 100.00