<u>Sistemas Embarcados I – Laboratório 02</u>

Objetivo: Verificar a codificação básica das instruções dos microprocessadores 8086/8088 e os seus modos de endereçamento da memória.

Ao se escrever uma instrução do tipo:

MOV destino, fonte

O montador pode gerar diversas formas de codificação das instruções de máquina, dependendo dos registros envolvidos e do modo de endereçamento utilizado na instrução.

O formato de uma instrução típica do 8086/8088 pode ser visto abaixo:

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
opcode	Mod reg rm	Lo desloc	Hi desloc	Lo data	Hi data

Onde os bytes 3,4,5 e 6 podem existir ou não dependendo do tipo da instrução.

O formato de cada um dos bytes é mostrado abaixo, com o significado de cada campo, para uma instrução típica. (existem exceções em relação ao formato típico).

Byte 1

W = 0 Instrução de byte

= 1 Instrução de word

D =0 Fonte da instrução especificada no campo REG

=1 Destino da instrução especificado no campo REG

Byte 2

7					0
Mo	OD	REG		R/M	

MOD

Código	Significado						
00	Modo Memória. Sem deslocamento. Exceto quando R/M=110						
	então é endereçamento direto (deslocamento de 16 bits)						
01	Modo Memória. Deslocamento de 8 bits						
10	Modo Memória. Deslocamento de 16 bits						
11	Modo registro. Sem deslocamento.						

REG

REG	W=0	W=1
000	AL	AX
001	CL	CX
010	DL	DX
011	BL	BX
100	AH	SP
101	СН	BP
110	DH	SI
111	ВН	DI

MOD=11 Register Mode

11102 11 110818001 111001		
R/M	W=0	W=1
000	AL	AX
001	CL	CX
010	DL	DX
011	BL	BX
100	AH	SP
101	СН	BP
110	DH	SI
111	ВН	DI

Cálculo do endereço efetivo:

R/M	MOD=00	MOD=01	MOD=10
000	[BX+SI]	[BX+SI+D8]	[BX+SI+D16]
001	[BX+DI]	[BX+DI+D8]	[BX+DI +D16]
010	[BP+SI]	[BP+SI+D8]	[BP+SI+D16]
011	[BP+DI]	[BP+DI+D8]	[BP+DI+D16]
100	[SI]	[SI+D8]	[SI+D16]
101	[DI]	[DI+D8]	[DI+D16]
110	END.DIRETO	[BP+D8]	[BP+D16]
111	[BX]	[BX+D8]	[BX+D16]

Desta forma, os modos de endereçamento possíveis do 8086/8088 são:

Modo de endereçamento	Exemplo		Seg.
Registro indireto	MOV	AX,[BX]	DS
	MOV	AX,[BP]	SS
	MOV	AX,[SI]	DS
	MOV	AX,[DI]	DS
De Base	MOV	AX,[BX+DESL]	DS
	MOV	AX,[BP+DESL]	SS
Direto	MOV	AX,[1000]	DS
Indexado	MOV	AX,[SI+DESL]	DS
	MOV	AX,[DI+DESL]	DS
De Base Indexado	MOV	AX,[BX+SI+DESL]	DS
	MOV	AX,[BX+DI+DESL]	DS
	MOV	AX,[BP+SI+DESL]	SS
	MOV	AX,[BP+DI+DESL]	SS

Parte Prática:

1- Usando o comando R do debug, mantenha CS apontando para o segmento estabelecido pelo debug. Modifique DS,ES e SS para que apontem para parágrafos adjacentes a partir do segmento CS (Diferença de 16 bytes na memória =1 parágrafo).

- 2- Na posição 100H do segmento de código, codifique as instruções da tabela anterior. Usando o comando U, verifique os bytes gerados para cada instrução e compare com os campos definidos no formato da instrução típica. (faça para umas 4 instruções).
- 3- Inverta a ordem dos operandos e repita o procedimento anterior. Codifique a instrução MOV WORD PTR [BX],1000 na posição 100h e verifique os bytes gerados pelo debug. Tente outras variações desta instrução e repita o procedimento.
- 4- Codifique os bytes para a instrução MOV AX,[1000], de acordo com as tabelas. Coloque estes bytes no endereço CS:200. Execute o comando U200 e compare os bytes gerados para esta instrução com os bytes gerados no item 2.
- 5- Supondo que existam duas variáveis do tipo word na memória, com offsets 1000H e 2000H, faça um programa que some estas duas variáveis, colocando o resultado em uma terceira com offset 3000H.
- 6- Modifique o programa anterior para testar outros modos de endereçamento. Quando o modo de endereçamento usar o registro BP, faça com que uma das variáveis esteja na pilha. (Use MOV BP,SP para endereçar a partir do topo da pilha.)
- 7- Monte um programa que some dois vetores de bytes de 5 posições cada um, colocando o resultado em um terceiro vetor. Repita para um dos vetores localizado na pilha. Utilize a instrução PUSH para colocar o vetor na pilha.
- 8- Modifique o programa anterior para somar um vetor no segmento CS com outro vetor localizado no segmento ES, colocando o resultado em um vetor no segmento DS. (Use os prefixos CS: e ES: para endereçar nestes segmentos.)
- 9- Modifique os programas dos itens 7 e 8, utilizando um modo de endereçamento diferente do inicialmente usado.

Atenção:

Escreva os programas no papel antes de entrar no comando A do debug. Gaste um tempo pensando na solução.

Teste todos os programas com alguns valores diferentes.