ISE 5103 Intelligent Data Analytics

Homework 8 - Clustering

Daniel Carpenter

December 2022

Contents

1	Dat	a	2				
	1.1	General Description	2				
	1.2 Data Understanding						
		1.2.1 Numeric Data Quality Report	2				
		1.2.2 Factor Data Quality Report	2				
	1.3	Review Actual Groupings within Unadjusted, or Nominal Data	3				
2	Per	Form Clustering Analysis	4				
	2.1	Discover Automically Suggested Number of Clusters	4				
2.2 K-Means Clustering							
		2.2.1 Percentage Confusion Matrix	5				
		2.2.2 Visualization of Clusters	5				
		2.2.3 Interpretation	5				
2.3 Hierarchical Clustering							
		2.3.1 Percentage Confusion Matrix	6				
		2.3.2 Visualization of Clusters	6				
		2.3.3 Interpretation	6				
2.4 K-Medoid Clustering							
		2.4.1 Percentage Confusion Matrix	7				
		2.4.2 Visualization of Clusters	7				
		2.4.3 Interpretation	7				

1 Data

For general data preparation, please see conceptual steps below. See .rmd file for detailed code.

1.1 General Description

- Data used within model is from the datasets R package, called ChickWeights. Source of data located here.
- This data represents an experiment performed on 50 recently hatched chicks.
- The experimenter fed the chicks 4 separate diets while tracking their respective weights over the period of the trials.
- The four groupings of chicks had differing outcomes of weights, which can be seen later visuals.

6.8

0

4

10

16

• This model attempts to cluster the chicks based on their weight and the time performed, thus *predicting* the diet fed to each.

1.2 Data Understanding

Create a data quality report of numeric and factor data

1.2.1 Numeric Data Quality Report

Num Numeric Variables | Total Observations

	2			578							
variable	n_missing	com	nplete_	rate	mean	sd	p0	p25	p50	p75	p100
weight	0			1	122	71.1	35	63	103	164	373

11

1.2.2 Factor Data Quality Report

Num Factor Variables

Time

0

• Note that there are four distinct values within the factor field "Diet".

Total Observations

• Later we will attempt to replicate these 4 groupings through clustering.

-		2	<u>578</u>	
variable	n_missing	complete_rate	n_unique	top_counts
Chick	0	1	50	13: 12, 9: 12, 20: 12, 10: 12
Diet	0	1	4	1: 220, 2: 120, 3: 120, 4: 118

1.3 Review Actual Groupings within Unadjusted, or Nominal Data

- Below shows data grouped by each chick over multiple periods of time within the study.
- The color associates with the diet few to the four groupings of chicks.
- The four lines indicate the general trend of weight gain from the diet provided to the chicks. For example,
 - Diet 1 provides the least amount of weight gain over all periods, relative to the other diet groups.
 - Diet 2 offers the second least weight gain over all periods.
 - Diet 3 and 4 stimulate similar weight gain until ~14 days since the chick hatched; however, diet 3 surpasses diet 4 after day 14.

How Experimental Diets Affect Chick Weights (Nominal Data)

Grouped by individual chick on a given day since birthed

2 Perform Clustering Analysis

- Simply, the model will attempt cluster the chicks by the diet fed to them, without knowing what diet was actually given to them.
- The three models will display how the cluster of chicks' weights trend over time, as the past graph has shown.

2.1 Discover Automically Suggested Number of Clusters

- Using the "elbow" method, a plot can visually indicate the number of potential clusters that exist within the data set (assuming we do no know the actual number).
- The below elbow plots, as well the hidden results of the NbClust function suggest that there are around 3-5 clusters present within the data (based on the time, weight, and chick identifier).
- Knowing that there are 4 distinct clusters, as well the suggestion of the elbow point below, the k-mean and k-medoid models will attempt to discover four clusters.

2.2 K-Means Clustering

2.2.1 Percentage Confusion Matrix

• Note that this confusion matrix shows the percentage of diet classified as the correct or incorrect class.

```
## predicted
## actual 1 2 3 4
## 1 0.00 0.24 0.00 0.76
## 2 0.00 0.70 0.30 0.00
## 3 0.10 0.00 0.90 0.00
## 4 1.00 0.00 0.00 0.00
```

2.2.2 Visualization of Clusters

How Experimental Diets Affect Chick Weights (K–Means Clustering) Note Adjusted for time since chick birthed

Grouped by individual chick on a given day since birthed

2.2.3 Interpretation

- Note that this model performs the clustering 100 times with 100 different initial seeds.
- As seen visually or within the confusion matrix, diet 1 and 4 incorrectly clustered 100% of the time. Diets 2 and 3 separated well, given by the percentage-based confusion matrix.

2.3 Hierarchical Clustering

2.3.1 Percentage Confusion Matrix

##	I				
##	actual	1	2	3	4
##	1	0.54	0.46	0.00	0.00
##	2	0.00	0.38	0.62	0.00
##	3	0.00	0.00	0.50	0.50
##	4	0.00	0.00	0.00	1.00

2.3.2 Visualization of Clusters

How Experimental Diets Affect Chick Weights (Hierarchical Clustering) Note Adjusted for time since chick birthed

Grouped by individual chick on a given day since birthed

2.3.3 Interpretation

- As seen visually or within the confusion matrix, diet 1, 2, and 3 have poor levels of clustering prediction.
- Diet 4 was correctly classified 100% of the time. E.g., the model was certain when predicting that the chicks within the diet 4 group were fed diet 4.

2.4 K-Medoid Clustering

2.4.1 Percentage Confusion Matrix

##	predicted							
##	actual	1	2	3	4			
##	1	0.84	0.16	0.00	0.00			
##	2	0.00	0.90	0.10	0.00			
##	3	0.00	0.00	1.00	0.00			
##	4	0.00	0.00	0.00	1.00			

2.4.2 Visualization of Clusters

How Experimental Diets Affect Chick Weights (K–Medoid Clustering) Note Adjusted for time since chick birthed

Grouped by individual chick on a given day since birthed

2.4.3 Interpretation

- As seen visually or within the confusion matrix, the model predicted accuracy is the following:
 - Diet: 84% correct. Misclassification between diets 1 and 2.
 - Diet : 90% correct. Misclassification between diets 2 and 3
 - Diet: 100% correctDiet: 100% correct
- Overall, the K-Medoid model offers the highest level of accuracy when clustering the chicks into their fed diets, given their identification, weight, and time since birthed.