Matemática atuarial

Seguros Aula 4

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

Introdução

- > A matemática atuarial é o ramo da Matemática intimamente ligada ao segmento de seguros..
 - > Avaliar riscos.
 - Avaliar sistemas de investimentos.

- > A matemática atuarial atua fornecendo meios para apuração de prêmios de seguros ligados à vida...
 - Produtos atuariais do ramo vida
 - > Seguros,
 - Planos de previdência,
 - > Planos de benefício

Seguros

Seguro é todo contrato pelo qual uma das partes, segurador, se obriga a indenizar a outra, segurado, em caso de ocorrência de sinistro, em troca do recebimento de um prêmio seguro.

- Características do contrato de seguros
 - Aleatório: Depende de elementos futuros e incertos;
 - Bilateral: Há obrigações para as duas partes;
 - Oneroso: Segurado e segurador possuem ônus e vantagens econômicas;
 - Solene: Há uma formalidade materializada na forma de apólice;

- Seguros de vida são contratos de seguro estabelecidos com base no risco de morte.
 - Garante ao beneficiário um capital ou renda determinada no caso de morte.
 - Mediante coberturas adicionais, pode cobrir invalidez permanente.
 - Os benefícios podem ser pagos de uma só vez ou durante um determinado período estipulado na apólice.
 - Refletem uma característica única nos seres humanos.

- Para a apuração dos prêmios ligados à vida é necessário uma avaliação do risco de morte:
- Como o risco é uma Probabilidade de ocorrência de eventos desfavoráveis, logo:
 - È necessário identificar e caracterizar a variável aleatória trabalhada.
 - > Tempo de vida restante.
- ➤ Diferente do risco de danos, no risco de vida a seguradora com certeza terá que pagar algum dia o valor de indenização.

Suponha que a seguradora deseja guardar hoje o valor presente do gasto que ela terá com o segurado no futuro. Qual deverá ser esse valor?

Lembrando da matemática financeira temos que

$$F_0 = F\left(\frac{1}{1+i}\right)^n$$

ou

$$F_0 = F v^n$$

Como é usual chamar de b o benefício pago ao segurado temos:

$$F_0 = bv^n$$

n nesse caso corresponde ao tempo de vida do segurado, e quanto é esse tempo?

- \triangleright Seja x o indivíduo de idade x que faz seguro de vida inteiro (vitalício).
- \triangleright Seja T, o tempo de vida futuro (ou adicional) de x.
 - ightharpoonup T é uma variável aleatório tal que $T \in (0, \infty)$

- ightharpoonup Logo o tempo, n, que a seguradora irá guardar o dinheiro corresponde a variável aleatória T (tempo adicional do indivíduo), que pode ser caraterizada por.
 - > Tábua de vida.
 - Função de distribuição.

> Exemplo 1

Para que um beneficiário receba um valor financeiro de R\$10000,00 ao final do ano de morte do segurado, daqui T anos. Qual deve ser o valor presente F_0 ou V.P.? Resp.

$$V.P. = 100000 \left(\frac{1}{1+i}\right)^{T+1} = 100000 v^{T+1}$$

> EXEMPLO 1 (continuação)

Para o caso de i=5% ao ano, então

$$v = \frac{1}{1 + 0.05} = 0.9524$$

Assim pode-se por exemplo calcular qual o valor presente necessário à indenização de R\$100000,00 para os casos em que:

 \triangleright O indivíduo x (segurado) morra em 4 anos.

$$V.P.=$$

 \triangleright O indivíduo x (segurado) morra em 31 anos.

$$V.P.=$$

 \triangleright O indivíduo x (segurado) morra em 49 anos.

$$V.P.=$$

> EXEMPLO 1 (continuação)

Para o caso de i=5% ao ano, então

$$v = \frac{1}{1 + 0.05} = 0.9524$$

Assim pode-se por exemplo calcular qual o valor presente necessário à indenização de R\$100000,00 para os casos em que:

 \triangleright O indivíduo x (segurado) morra em 4 anos.

$$V.P. = 100000v^{4+1} = 100000(0,9524)^5 = R$78360,45$$

 \triangleright O indivíduo x (segurado) morra em 31 anos.

$$V.P. = 100000v^{31+1} = 100000(0,9524)^{32} = R$21000,05$$

 \triangleright O indivíduo x (segurado) morra em 49 anos.

$$V.P. = 100000v^{49+1} = 100000(0,9524)^{50} = R$8720,37$$

Em resumo temos que a uma taxa de 5% ao ano para um beneficiário poder ganhar b=R\$100000,00 reais depois de 4, 31 e 49 anos, tempos que ter os seguintes valores presentes.

T(anos)	V. P. (R\$)
4	R\$78360,45
31	R\$21000,05
49	R\$8720,37

Imagine que T é uma variável aleatória e esses são os únicos valores que ele pode assumir. Então que é o valor presente esperado que o individuo x deveria pagar hoje por este seguro de modo que a seguradora receba o necessário para pagar a indenização b de R\$100000,00?

- A resposta a essa questão está relacionada a esperança matemática (valor esperado ou média probabilística) de uma função de variável aleatória.
- Para o caso em questão seja T uma variável aleatória e $V.P = g(T) = bv^{T+1}$ então tem-se que:

$$E[g(T)] = \begin{cases} \sum_{j} g(t_{j}) P(T = t_{j}), T \text{ discreto} \\ \int_{-\infty}^{\infty} g(t) f_{T}(t) dt, T \text{ continuo} \end{cases}$$

Assim considerando que não existe despesas administrativas, imposto e lucro, o valor a ser cobrado deveria ser valor esperado de bv^{T+1} , logo:

$$E(V.P.) = E(bv^{T+1}) = bE(v^{T+1})$$

Assim considerando que não existe despesas administrativas, imposto e lucro, o valor a ser cobrado deveria ser valor esperado de bv^T , logo:

$$E(V.P.) = E(bv^{T+1}) = bE(v^{T+1})$$

$$E(V.P.) = 100000(0,9524)^{5}P(T=5) + 100000(0,9524)^{32}P(T=32) + 100000(0,9524)^{50}P(T=50)$$

$$E(V.P.) = 100000[(0,9524)^5P(T=5) + (0,9524)^{32}P(T=32) + (0,9524)^{50}P(T=50)]$$

$$E(V.P.) = 100000 E(v^{T+1})$$

> Também chamado de valor presente atuarial V.P.A.

- ➢ Para calcular o valor necessário que se deve ter hoje para pagar, em média, o benefício futuro, foi necessário entender o comportamento da variável aleatória T (tempo de vida adicional do segurado).
- Para prosseguirmos com a teoria até aqui apresentada, faz-se necessário a apresentação de alguns conceitos e definições que serão utilizados.

 \blacktriangleright Definição: Seja T a variável aleatória associada ao tempo de vida futuro, ou seja, o tempo entre a emissão da apólice do seguro e a morte do segurador, Então:

$$b_T = b(T)$$
 \rightarrow Função benefício;

$$v_T = v^{T+1}$$
 \rightarrow Função desconto;

$$Z(T) = Z_T = b(T)v^{T+1} \rightarrow$$
 Função de valor presente.

- Chame de Prêmio Puro a parcela do prêmio, suficiente para pagar sinistros.
 - ➤ Neste sentido o Prêmio Puro é o prêmio que propõe o pagamento de despesas relacionadas ao risco que está sendo assumido pela seguradora.
 - O valor esperado de todas as indenizações que a seguradora compromete a pagar.
 - Em geral é estabelecido em um dado período, normalmente um ano.
 - > O termo puro significa que ao valor considerado não foram adicionadas quaisquer cargas técnicas.
 - > De gestão ou comerciais

- Como Calcular do V.P.A desse Benefício?
 - Calcular a esperança matemática da variável aleatória " quanto devo ter hoje para pagar o benefício devido em relação a um segurado?"

> EXEMPLO 2

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro onde caso esse segurado faleça antes de completar 30 anos, o beneficiário receberá uma quantia de 1.u.m Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

Idade	q_X
25	0,00077
26	0,00081
27	0,00085
28	0,00090 0,00095
29	
30	0,00100
31	0,00107
32	0,00114
33	0,00121
34	0,00130
35	0,00139

➤ Resp.:

 $b_T = \begin{cases} 1 & t \leq 5 \\ 0 & c.c. \end{cases}$ benefício (caso o tempo de vida adicional seja menor que o tempo de contrato, caso morra antes);

 $v_T = v^{T+1}$ $t \ge 0$ \rightarrow desconto (caso o tempo de vida adicional seja maior que zero, caso o segurado não morra no primeiro período do contrato);

 $Z(T) = \begin{cases} v^{T+1} & T \leq 5 \\ 0 & c.c. \end{cases}$ \rightarrow valor presente atuarial(VPA) (o valor presente necessário para que a seguradora cubra a apólice contratada).

 $b_T = 1.u.m, i = 4\%$

Idade	$q_X =_1 q_X$	$p_X =_1 p_x = 1 - q_x$	$_{1}l_{x}=\frac{l_{x+1}}{p_{x}}$
25	0,00077	0,99923	100000
26	0,00081	0,99919	99923
27	0,00085	0,99915	99842
28	0,00090	0,99910	99757
29	0,00095	0,99905	99667
30	0,00100	0,99900	99572
31	0,00107	0,99893	99472
32	0,00114	0,99886	99365
33	0,00121	0,99879	99251
34	0,00130	0,99870	99131
35	0,00139	0,99861	99002

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

Importante $P(T_x = t)$ corresponde a probabilidade do tempo de vida adicional ser exatamente no tempo t, no caso a probabilidade que indivíduo "morra" durante o intervalo t e t+1 é determinado

$$P(t < T_x < t + 1) = P(T_x > t) - P(T_x > t + 1)$$

$$P(t < T_x < t + 1) = {}_t p_x - {}_{t+1} p_x$$

Lembrando da relação $_{m+l}p_x=_{m}p_x\times_{l}p_{x+m}$

$$P(t < T_x \le t + 1) = {}_t p_x - {}_t p_{x \cdot 1} p_{(x+t)}$$

$$P(t < T_x \le t + 1) = {}_t p_x (1 - p_{(x+t)})$$

$$P(T_x = t) = ({}_t p_x) (q_{x+t}) = {}_t | q_x$$

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

$$E(Z_T) = v^1_{0}p_{25}q_{25} + v^2_{125}q_{26} + v^3_{21}p_{25}q_{27} + v^4_{3}p_{25}q_{28} + v^5_{4}p_{25}q_{29}$$

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

$$E(Z_T) = v^1 q_{25} + v^2 p_{25} q_{26} + v^3 p_{25} q_{27} + v^4 p_{25} q_{28} + v^5 p_{25} q_{29}$$

$$E(Z_T) = \left(\frac{1}{1,04}\right) q_{25} + \left(\frac{1}{1,04}\right)^2 p_{25} q_{26} + \left(\frac{1}{1,04}\right)^3 \left(\frac{l_{27}}{l_{25}}\right) q_{27} + \left(\frac{1}{1,04}\right)^4 \left(\frac{l_{28}}{l_{25}}\right) q_{28} + \left(\frac{1}{1,04}\right)^5 \left(\frac{l_{29}}{l_{25}}\right) q_{29}$$

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

$$E(Z_T) = v^1 q_{25} + v^2 p_{25} q_{26} + v^3 p_{25} q_{27} + v^4 p_{25} q_{28} + v^5 p_{25} q_{29}$$

$$E(Z_T) = \left(\frac{1}{1,04}\right)q_{25} + \left(\frac{1}{1,04}\right)^2p_{25}q_{26} + \left(\frac{1}{1,04}\right)^3\left(\frac{l_{27}}{l_{25}}\right)q_{27} + \left(\frac{1}{1,04}\right)^4\left(\frac{l_{28}}{l_{25}}\right)q_{28} + \left(\frac{1}{1,04}\right)^5\left(\frac{l_{29}}{l_{25}}\right)q_{29}$$

$$E(Z_T)$$
= $\left(\frac{1}{1,04}\right)^{0,00077} + \left(\frac{1}{1,04}\right)^{2} 0,99923 0,00081 + \left(\frac{1}{1,04}\right)^{3} 0,99842 0,00085$
+ $\left(\frac{1}{1,04}\right)^{4} 0,99757 0,00090 + \left(\frac{1}{1,04}\right)^{5} 0,996670,00095$

 $E(Z_T) \approx 0.003788 \text{ u.m.}$

Outra opção seria:

$$b_T = \begin{cases} 1 & 0 \le t \le 5 \\ 0 & c.c. \end{cases} \qquad v_T = v^{T+1} \ t \ge 0 \qquad \mathbf{Z_T} = \begin{cases} v^{T+1} & 0 \le T \le 5 \\ 0 & c.c. \end{cases}$$

$$V.P.A = E(Z_T)$$

$$E(Z_T) = v^1 q_{25} + v^2 p_{25} q_{26} + v^3 p_{25} q_{27} + v^4 p_{25} q_{28} + v^5 p_{25} q_{29}$$

Como $_{m+l}p_x={}_mp_x\times{}_lp_{x+m}$, então:

$$E(Z_T) = v^1 q_{25} + v^2 p_{25} q_{26} + v^3 p_{25} p_{26} q_{27} + v^4 p_{25} p_{26} p_{27} q_{28} + v^5 p_{25} p_{26} p_{27} p_{28} q_{29}$$

$$E(Z_T) \approx 0.003788 \text{ u. m}$$

$$E(Z_T) = v^1 P(T_{25} = 0) + v^2 P(T_{25} = 1) + v^3 P(T_{25} = 2) + v^4 P(T_{25} = 3) + v^5 P(T_{25} = 4)$$

\overline{x}	T. vida adicional	Z(t)	$S_T(t) = {}_t p_x$	$F_T(t) = {}_1 q_x$
25	t = 0	υ	T(25) > 0	$T(25) \le 1$
26	t = 1	v^2	T(25) > 1	$T(25) \le 2$
27	t = 2	v^3	T(25) > 2	$T(25) \le 3$
28	t = 3	v^4	T(25) > 3	$T(25) \le 41$
29	t = 4	v^5	T(25) > 4	$T(25) \le 5$

$$E(Z_T) = \sum_{t=0}^{4} v^{t+1} t^{t+1} p_{25} q_{25+t} \approx 0,003788 u.m$$

$$A_{x^{1}:\overline{n|}} = \sum_{t=0}^{n-1} v^{t+1} {}_{t} p_{x} q_{x+t} = \sum_{t=0}^{n-1} v^{t+1} {}_{t|} q_{x}$$

 $A_{25^1:\overline{5}|} \approx 0,003788 u.m$

 \succ O Seguro de **Vida Temporário por** n anos é o seguro que pagará uma unidade monetária (u.m.) somente se o segurado morre dentro de n anos.

Notação:

$$A_{x^1:\overline{n|}}$$

Lê-se: Seguro temporário por n anos após a idade x do individuo, somente será pago para o caso de morte dentre de n anos. Caso em que o tempo é contado de <u>forma discreta</u>.

$$\bar{A}_{\chi^1:\overline{n|}}$$

Lê-se: Seguro temporário por n anos após a idade x do individuo, somente será pago para o caso de morte dentre de n anos. Caso em que o tempo é contado de forma contínua.

 $x \rightarrow \text{idade no m. do seguro}$

 $n \rightarrow \text{Tempo de cobertura do}$ seguro

Barra indica que *T* é contínuo

"1" acima do "x" indica que o seguro é pago se "x" expirar antes que "n".

A	1
1 1	x:n

caso discreto

A^1	
x:n	

caso contínuo

- ➤ Observe que, no caso de Seguro de Vida Temporário:
 - Existe a incerteza sobre a ocorrência ou não da indenização.
 - Existe incerteza sobre o momento do pagamento.

Seguro de vida Inteiro

> Exemplo 3:

Uma pessoa de 25 anos deseja fazer um seguro de **vida inteiro** que paga 1 u.m. ao fim do ano de morte. O tempo de sobrevida desse segurado pode ser bem modelado pela tábua AT-49 e a seguradora promete remunerar o capital em 5% ao ano. Qual deverá ser o Prêmio Puro Único pago por esse segurado?

Seguro de vida Inteiro

> Exemplo 3:

$$A_{\mathcal{X}} = \sum_{t=0}^{\infty} v^{t+1} \,_t p_{\mathcal{X}} q_{\mathcal{X}+t}$$

$$A_{25} = \sum_{t=0}^{90} \left(\frac{1}{1,05}\right)^{t+1} t p_{25} q_{25+t}$$

$$A_{25} = \left(\frac{1}{1,05}\right)^{1} q_{25} + \left(\frac{1}{1,05}\right)^{2} p_{25} q_{26} + \left(\frac{1}{1,05}\right)^{3} p_{25} q_{27} + \dots + \left(\frac{1}{1,05}\right)^{91} p_{25} q_{115} = 0.11242$$

Seguro de vida Inteiro

➤ Exemplo 3:

$$A_{25} = \left(\frac{1}{1,05}\right)^{1} q_{25} + \left(\frac{1}{1,05}\right)^{2} p_{25}q_{26} + \left(\frac{1}{1,05}\right)^{3} p_{25}q_{27} + \dots + \left(\frac{1}{1,05}\right)^{91} p_{0}p_{25}q_{115} = 0.11242$$

$$A_{25} = \left(\frac{1}{1,05}\right)^{1} \mathbf{1}q_{25} + \left(\frac{1}{1,05}\right)^{2} p_{25}q_{26} + \dots + \left(\frac{1}{1,05}\right)^{91} (p_{25}p_{26}p_{27} \dots p_{114})q_{115} = 0,11242$$

Exemplo 4

A seguradora irá pagar um benefício de 1 u.m. por um seguro temporário caso o segurado faleça T(105) dentre um período de 4 anos. Considere uma taxa de juros de 4% ao ano e tabua at-2000 Masculina . Calcule o prêmio puro:

	x	q_x	p_x
	105	0.37240	0.62760
,	106	0.40821	0.59179
	107	0.44882	0.55118
	108	0.49468	0.50532
	109	0.54623	0.45377
	110	0.60392	0.39608
	111	0.66819	0.33181
3	112	0.73948	0.26052
.4	113	0.81825	0.18175
5	114	0.90495	0.09505
5	115	1.00000	0.00000

$$A_{105^{1}:\overline{4}|} = \sum_{t=0}^{3} v^{t+1} {}_{t} p_{105} q_{105+t}$$

Função que recebe como entrada, a taxa de rentabilidade(i) anual, a idade do segurado (idade), o numero de anos de cobertura (n) e o valor do benefício (b).

cobertura				
	p_x	q_x	х	
prêmio<-	0.62760	0.37240	105	106
V	0.59179	0.40821	106	107
ţ	0.55118	0.44882	107	108
	0.50532	0.49468	108	109
(0.45377	0.54623	109	110
Д	0.39608	0.60392	110	111
r	0.33181	0.66819	111	112
	0.26052	0.73948	112	113
$A_{105^1:\bar{4} } = $	0.18175	0.81825	113	114
	0.09505	0.90495	114	115
	0.00000	1.00000	115	116

```
function( i, idade, n,b) {
/ <-(1/(i+1))^(1:n)
pxx <- c(1, cumprod( px[(idade+1):(idade+n-1)]) )
              \# 1, p_{105}, p_{105}, p_{105}, p_{105}
gxx <- c(qx[(idade+1):(idade+n)])
              \# q_{105}, q_{106}, q_{107}, q_{108}
4x <- b* sum(v*pxx*qxx)
return (Ax)
prêmio(0.04,105,4,1)
```

NOTAÇÃO: SEGURO DE VIDA TEMPORÁRIO

NOTAÇÃO: SEGURO DE INTEIRO OU VITALÍCIO

> Caso discreto

$$A_{x^{1}:\overline{n}|} = \sum_{t=0}^{n-1} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$A_{x^1:\overline{n}|}$$
 = prêmio(i,x,n,b)

> Caso discreto

$$A_{x} = \sum_{t=0}^{\infty} v^{t+1} p_{x} q_{x+t}$$

 $A_x = \text{prêmio}(i,x,\max(x)-x,b)$

Matemática atuarial

Seguros Aula 5

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

Seja T ou T(0) a variável ser o tempo de vida adicional do individuo recém nascido (de idade 0). Então a função de sobrevivência, $S_{T(0)}(t)$, é a probabilidade de viver além da idade futura t.

$$S_{T(0)}(t) = 1 - F_{T(0)}(t) = p(T(0) > t)$$

Ou

$$S_T(t) = 1 - F_T(t) = p(T > t)$$

Seja T(x) a variável ser o tempo de vida adicional do individuo de idade x. Então a função de sobrevivência, $S_{T(x)}(t)$, é a probabilidade de viver além da idade futura t.

$$S_{T(x)}(t) = 1 - F_{T(x)}(t) = p(T(x) > t)$$

Se T é a variável aleatória que representa o tempo de vida expresso em anos de um recém nascido, então nota-se que para T(x)>t, implica aceitar que T(0)>x+t e T(0)>x.

 \triangleright A probabilidade de uma pessoa de idade x atingir (viva) a idade x + t, tem-se:

$$_{t}p_{x} = S_{T(x)}(t) = p(T(x) > t) = P(T(0) > t + x|T(0) > x)$$

 \triangleright A probabilidade de uma pessoa de idade x atingir (viva) a idade x + t, tem-se:

$$_{t}p_{x} = S_{T(x)}(t) = p(T(x) > t) = P(T(0) > t + x|T(0) > x)$$

$$_{t}p_{x} = \frac{S(x+t)}{S(x)} = \frac{P(T > t+x)}{P(T > x)}$$

 \triangleright A probabilidade de uma pessoa de idade x morrer antes de atingir a idade x + t, é dado por:

$$tq_x = 1 - \frac{S(x+t)}{S(x)} = F_{T(x)}(t)$$

Logo:

$$_{t}q_{x}+_{t}p_{x}=1$$

Exemplo 5

Suponha que o tempo de vida adicional da pessoa ao nascer, possa ser modelada por meio da função de densidade:

$$f_{T(0)}(t) = \frac{1}{140} I_{(0,140]}(t)$$

• Calcule $_tp_x$ e $_tq_x$.

$$S_{T(x)}(t) = P(T(x) > t) = {}_t p_x$$

Contudo nota-se que para T(x)>t , implica aceitar que T(0)>x+t e T(0)>x. Assim $S_{T(x)}(t)=P(T(x)>t)=P(T(0)>x+t|T(0)>x)$

$$S_{T(x)}(t) = \frac{P(T(0) > x + t, T(0) > x)}{P(T(0) > x)}$$

$$S_{T(x)}(t) = \frac{P(T > x + t)}{P(T > x)} = \frac{\frac{140 - (x + t)}{140}}{\frac{140 - (x)}{140}} = \frac{140 - x - t}{140 - x}$$

$$_{t}p_{x} = \frac{140 - x - t}{140 - x}$$

$$_{t}q_{x} = 1 - \frac{140 - x - t}{140 - x} = \frac{t}{140 - x}$$

A força de mortalidade -transição instantânea de transição do estado vivo para o morto, e define-se pelo limite:

$$\mu_{x+t} = \lim_{h \to 0} \frac{{}_{h}q_{x+t}}{h}$$

$$\mu_{x+t} = \lim_{h \to 0} \frac{P(T(x+t) < h)}{h} = \lim_{h \to 0} \left[\frac{1 - P(T(x+t) > h)}{h} \right]$$

$$\mu_{x+t} = \lim_{h \to 0} \left[\frac{1 - \frac{P(T(x) > t + h)}{P(T(x) > t)}}{h} \right] = \lim_{h \to 0} \left[\frac{1 - \frac{S_{T(x)}(t+h)}{S_{T(x)}(t)}}{h} \right]$$

$$\mu_{x+t} = \lim_{h \to 0} \left[\frac{1 - \frac{P(T(x) > t + h)}{P(T(x) > t)}}{h} \right] = \lim_{h \to 0} \left[\frac{1 - \frac{S_{T(x)}(t + h)}{S_{T(x)}(t)}}{h} \right]$$

$$\mu_{x+t} = \lim_{h \to 0} \left[\frac{s_{T(x)}(t) - s_{T(x)}(t+h)}{h \, s_{T(x)}(t)} \right]$$

$$\mu_{x+t} = \lim_{h \to 0} \left[\frac{1 - \frac{P(T(x) > t + h)}{P(T(x) > t)}}{h} \right] = \lim_{h \to 0} \left[\frac{1 - \frac{S_{T(x)}(t + h)}{S_{T(x)}(t)}}{h} \right] = \lim_{h \to 0} \left[\frac{s_{T(x)}(t) - S_{T(x)}(t + h)}{h \cdot s_{T(x)}(t)} \right]$$

$$\mu_{x+t} = -\frac{1}{s_{T(x)}(t)} \lim_{h \to 0} \left[\frac{S_{T(x)}(t+h) - s_{T(x)}(t)}{h} \right]$$

$$\mu_{x+t} = -\frac{s'_{T(x)}(t)}{s_{T(x)}(t)} = \frac{f_{T(x)}(t)}{1 - F_{T(x)}(t)}$$

A força de mortalidade - transição instantânea do estado vivo para o morto, e define-se pelo limite:

$$S(x) = S_{T(0)}(x) = p(T(0) > x)$$

$$\mu_{x} = \frac{f_{T(0)}(x)}{1 - F_{T(0)}(x)}$$

$$\mu_{x+t} = \frac{f_{T(x)}(t)}{1 - F_{T(x)}(t)}$$

 $\triangleright \mu_x$ é uma medida relativa da mortalidade em que a idade x é atingida, enquanto q_x mede a mortalidade ao logo do ano.

Exemplo6

Suponha que o tempo de vida adicional da pessoa ao nascer, possa ser modelada por meio da função de densidade:

$$f_{T(0)}(t) = \frac{1}{140} I_{(0,140]}(t)$$

• Calcule μ_{x+t} . Lembrando do exercício anterior que :

$$_{t}p_{x} = \frac{140 - x - t}{140 - x}$$

logo

$$q_x = \frac{t}{140 - x}$$

Exemplo 6

$$\mu_{x+t} = \frac{f_{T(x)}(t)}{1 - F_{T(x)}(t)}$$

Como $1 - F_{T(x)}(t) = {}_t p_x$, então :

$$_t q_x = \frac{1}{140 - x}$$

Considerando que $\frac{dF_{T(x)}(t)}{dt} = f_{T(x)}(t)$, assim:

$$\frac{d\mathbf{F}_{T(x)}(t)}{dt} = \frac{d}{dt} \left(\frac{t}{140 - x} \right) = \frac{1}{140 - x} = \mathbf{f}_{T(x)}(t)$$

Logo

$$\mu_{x+t} = \frac{\frac{1}{140 - x}}{\frac{140 - x - t}{140 - x}} = \frac{1}{140 - x - t}$$

 \triangleright A densidade de $F_{T(x)}(t)$ é obtida por meio de :

$$\mu_{x+t} = \frac{f_{T(x)}(t)}{1 - F_{T(x)}(t)}$$

$$f_{T(x)}(t) = \left[\mathbf{1} - \mathbf{F}_{T(x)}(t)\right] \mu_{x+t}$$

> Assim

$$f_{T(x)}(t) = {}_t p_x \mu_{x+t}$$

 \triangleright O produto $_tp_x\mu_{x+t}$ pode ser interpretado como a probabilidade de uma pessoa que tem hoje a idade x estar viva daqui t anos, e falecer num intervalo de tempo infinitesimal..

Assim considerando que não existe despesas administrativas, imposto e lucro, o valor a ser cobrado deveria ser valor esperado de $be^{-\delta T}$, logo:

$$E(V.P.) = E(be^{-\delta T}) = bE(e^{-\delta T})$$

Lembrando que $\delta = ln(1+i)$.

 \succ Também chamado de valor presente atuarial V.P.A \rightarrow E (Z_T)

SEGURO DE VIDA TEMPORÁRIO

SEGURO DE INTEIRO OU VITALÍCIO

Caso Contínuo

$$\bar{A}_{x^1:\overline{n|}} = \int_0^n Z(t) f_T(t) dt \qquad \bar{A}_x = \int_0^\infty Z(t) f_T(t) dt$$

$$\bar{A}_{x^1:\overline{n|}} = \int_0^n e^{-\delta T} {}_t p_x \mu_{x+t} dt \quad \bar{A}_x = \int_0^\infty e^{-\delta T} {}_t p_x \mu_{x+t} dt$$

SEGURO DE VIDA TEMPORÁRIO

> Exemplo 7

Considere a função de sobrevivencia e força de mortalidade de uma pessoa de idade 30 anos em dada população seja de:

$$_{t}p_{30} = \frac{70-t}{70}$$
 e $\mu_{30+t} = \frac{1}{70-t}$ para $t > 0$

Esse indivíduo decide fazer um seguro de vida temporário no período de 20 anos. Admita que a taxa de rentabilidade constante, e suponha que i=5% a.a.

Calcule o VPA (ou prêmio puro) que paga $1\,u.m.$ de benefício no momento da morte do segurado.

> Exemplo 7

$$\bar{A}_{30^1:\overline{20|}}$$
 $i = 5\%$ a.a. $v = e^{-\ln 1.05}$

$$b_T = 1 , 0 \le t \le 20$$

$$v_T = e^{-\delta t}$$
 , $0 \le t \le 20$

$$b_T = 1 , 0 \le t \le 20$$
 $v_T = e^{-\delta t}, 0 \le t \le 20$ $Z_T = \begin{cases} e^{-\delta t}; 0 \le t \le 20 \\ 0; c.c. \end{cases}$

Exemplo 7

$$\bar{A}_{30^1:\overline{20|}}$$
 , $v=e^{-\ln 1.05}$

$$V.P.A = E(Z_T) = \overline{A}_{30^1:\overline{20}|}$$

$$b_T = 1 , 0 \le t \le 20$$

$$v_T = e^{-\delta t}$$
, $0 \le t \le 20$

$$b_T = 1 , 0 \le t \le 20$$
 $v_T = e^{-\delta t}, 0 \le t \le 20$ $Z_T = e^{-\delta t}; 0 \le t \le 20$

$$\bar{A}_{30^{1}:\overline{20|}} = \int_{0}^{20} e^{-\delta t} f_{T}(t) dt = \int_{0}^{20} e^{-\delta T} {}_{t} p_{x} \mu_{x+t} dt = \int_{0}^{20} e^{-0.04879t} \frac{1}{70} dt$$

$$\bar{A}_{30^{1}:\overline{20|}} = \frac{e^{-0.04879t}}{70(-0.04879)} \bigg|_{t=0}^{t=20} = \frac{1}{-3.4153} \left[e^{20(-0.04879)} - e^{0(-0.04879)} \right]$$

$$\bar{A}_{30^{1}:\overline{20|}} = \frac{1}{-3,4153} (e^{-0.9758} - 1) \approx 0.182446$$

> Exemplo 7

 \blacktriangleright Veja que, é suficiente para o segurado pagar 0.182446~u.m. hoje de forma a receber (o beneficiário) 1.00~u.m. na ocorrência de sinistro.

O exemplo considerou que a indenização seria de $1\ u.m.$, e caso o segurado contratasse um seguro que paga R\$ 250 mil reais no momento de morte? Quanto deveria ser o Prêmio Puro Único pago por ele???

$$ar{A}_{30^1:\overline{20|}}$$
 , $T_{30}\sim U_c(0.70)$ e $i=5\%$ a.a. $v=e^{-\ln 1.05}$ $b=2500000$.

$$\bar{A}_{30^1:\overline{20|}} = 0,182446$$

$$250000 \, \bar{A}_{30^1:\overline{20|}} = 45611,53$$

Caso o valor do benefício seja R\$ 250 mil, o prêmio a ser pago pelo segurado deverá ser (arredondando no centavo) de R\$ 45611,53 (considerando a mesma taxa de juros).

SEGURO DE VIDA TEMPORÁRIO

> Exemplo 8

Para proteger seu filho de 5 anos, uma pessoa de 30 anos decide fazer um contrato de seguro de vida temporário com benefício variável no tempo (Considere distribuição $T(30) \sim U_c(0,70)$). Considere i=5 a.a.

- I) Se morrer dentro de 10 anos o benefício será de R\$ 100000,00.
- II) Se morrer entre 10 e 20 anos, o benefício será: 150000 5000t.

Veja que, para esse caso, o benefício é diferente dependendo do momento de morte do segurado, então:

$$Z_T = b(t)e^{-\delta T} = \begin{cases} 100000 \ e^{-\ln 1,05T}; & T \le 10 \\ (150000 - 5000T)e^{-\ln 1,05T}; & 10 < T \le 20 \end{cases}$$

Portanto:

$$V.P.A = \int_0^{10} \frac{100000e^{-\ln 1,05t}}{70} dt + \int_{10}^{20} \frac{(150000 - 5000t)e^{-\ln 1,05T}}{70} dt$$

$$V.P.A = V.P.A_1 + V.P.A_2$$

$$V.P.A_1 = \int_0^{10} \frac{100000e^{-\ln(1,05)t}}{70} dt$$

$$V.P.A_1 = \frac{10000e^{-0.04879t}}{7(-0.04879)} \Big|_{t=0}^{t=10} = \frac{10000e^{-0.4879} - 10000}{-0.34153}$$

$$V.P.A_1 \approx 11304,59$$

> Exemplo 8

$$V.P.A_2 = \int_{10}^{20} \frac{(150000 - 5000t)e^{-\ln(1,05)t}}{70} dt$$

Por partes:

$$\int u dr = ur - \int r du$$

então

$$u = 150000 - 5000t$$
;

$$du = -5000dt$$

$$dr = \frac{e^{-\ln(1,05)t}}{70}dt$$

$$r = \frac{e^{-0.04879t}}{70(-0.04879)}$$

$$V.P.A_2 = (150000 - 5000t) \frac{e^{-0.04879t}}{70(-0.04879)} \bigg|_{t=10}^{t=20} - \int_{10}^{20} -\frac{e^{-0.04879t}}{70(-0.04879)} 5000 dt$$

> Exemplo 8

$$V.P.A_2 = \int_{10}^{20} \frac{(150000 - 5000t)e^{-\ln(1,05)t}}{70} dt$$

. . .

$$V.P.A_2 = (150000 - 5000t) \frac{e^{-0.04879t}}{70(-0.04879)} \bigg|_{t=10}^{t=20} + \int_{10}^{20} \frac{e^{-0.04879t}}{70(-0.04879)} 5000dt$$

$$V.P.A_2 = (150000 - 5000t) \frac{e^{-0.04879t}}{70(-0.04879)} \bigg|_{t=10}^{t=20} + \frac{e^{-0.04879t}}{7(-0.04879)^2} 500 \bigg|_{t=10}^{t=20}$$

$$V.P.A_2 = \frac{5000e^{-0.04879(20)} - 10000e^{-0.04879(10)}}{7(-0.04879)} + \frac{500(e^{-0.04879(20)} - e^{-0.04879(10)})}{7(-0.04879)^2}$$

 $V.P.A_2 \approx 12457,73 - 7112,165 \approx 5345,565$

Veja que, para esse caso, o benefício é diferente dependendo do momento de morte do segurado, então:

$$V.P.A = \int_0^{10} \frac{100000e^{-\ln(1,05)t}}{70} dt + \int_{10}^{20} \frac{(150000 - 5000t)e^{-\ln(1,05)t}}{70} dt$$

$$V.P.A = V.P.A_1 + V.P.A_2$$

$$V.P.A = 11304,59 + 5345,565 \approx R$16650,15$$

SEGURO DE VIDA TEMPORÁRIO

Caso Contínuo

$$\bar{A}_{x^1:\overline{n|}} = \int_0^n Z(t) f_T(t) dt$$

$$\bar{A}_{x^1:\overline{n|}} = \int_0^n e^{-\delta T} {}_t p_x \mu_{x+t} dt$$

Caso discreto

$$A_{\chi^1:\overline{n|}} = \sum_{t=0}^{n-1} Z(t)P(T=t)$$

$$A_{x^{1}:\overline{n|}} = \sum_{t=0}^{n-1} v^{t+1} {}_{t} p_{x} q_{x+t}$$

SEGURO DE INTEIRO OU VITALÍCIO

Caso Contínuo

$$\bar{A}_{x} = \int_{0}^{\infty} Z(t) f_{T}(t) dt$$

$$\bar{A}_{x} = \int_{0}^{\infty} e^{-\delta T} t p_{x} \mu_{x+t} dt$$

Caso discreto $A_{x} = \sum_{t=0}^{\infty} Z(t)P(T=t)$

$$A_{x} = \sum_{t=0}^{\infty} v^{t+1} \,_{t} p_{x} q_{x+t}$$

$$Z_T = \begin{cases} v^{T+1} & T \leq n \\ 0 & c. c. \end{cases} \quad \boldsymbol{A_{x^1:\overline{n}|}} = \sum_{t=0}^{n-1} \boldsymbol{Z_{T}} \boldsymbol{p_x} \boldsymbol{q_{x+t}}$$

$$Z_T = e^{-\delta t}; \ 0 \le t \le n \quad \overline{A}_{x^1:\overline{n|}} = \int_0^n Z_T \, t p_x \mu_{x+t} dt$$

$$Z_T = \begin{cases} v^{T+1} & T \leq \infty \\ 0 & c. c. \end{cases} \mathbf{A}_{x} = \sum_{t=0}^{\infty} Z_{Tt} \mathbf{p}_{x} \mathbf{q}_{x+t}$$

$$Z_T = e^{-\delta t}$$
; $t \ge 0$ $\overline{A}_x = \int_0^\infty Z_T t p_x \mu_{x+t} dt$

$$E(Z_T)$$

$$b_{T} = 1$$

$$P(T_{x} = t) = {}_{t} p_{x} q_{x+t}$$

$$f_{T_{x}}(t) = {}_{t} p_{x} \mu_{x+t}$$

Matemática atuarial

Seguros Aula 6

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

- Uma característica importante de uma variável aleatória é sua variabilidade :
 - Em geral, é avaliada pela discrepância de seus valores em relação à média ou à mediana.
 - ➤ A média dos desvios é sempre zero e, portanto, nada informativa.
- ➤ Tomando o quadrado dos desvios e, então, calculando o valor esperado, chegamos a uma das mais importantes medidas de variabilidade.

ightharpoonup A definição matemática da variância de uma variável aleatória Z é tal que:

$$var(Z) = E\{[Z - E(Z)]^2\} = \sigma_Z^2$$

- \triangleright A raiz quadrada da variância é denominada de desvio-padrão e representado por σ .
- Pode se calcular a variância também por:

$$var(Z) = E(Z^2) - [E(Z)]^2$$

 \blacktriangleright Lembrando que Z nesse caso é Z_T ou Z(T), ou seja, uma função de variável aleatória e por consequência também uma variável aleatória.

$$var(\mathbf{Z}) = var(b(T)v^T) = \mathbf{b}(\mathbf{T})^2 var(v^T)$$

> Supondo b(T) = 1 a fim de simplificação, tem-se:

$$var(Z) = var(v^T) = E\{[v^T - E(v^T)]^2\}$$

$$var(Z) = var(v^{T}) = E(v^{2T}) - E(v^{T})^{2}$$

ightharpoonup Caso de T contínuo: $var(Z_T) = \overline{{}^2A_{\chi^1:\overline{n}|}} - \left(\overline{A_{\chi^1:\overline{n}|}}\right)^2$

$$var(Z_T) = E(e^{-2\delta T}) - E(e^{-\delta T})^2 = \int_0^n e^{-2\delta t} f_T(t) dt - \left[\int_0^n e^{-\delta t} f_T(t) dt\right]^2$$

ightharpoonup Caso de T discreto: $var(Z_T) = {}^2A_{\chi^1:\overline{n|}} - \left(A_{\chi^1:\overline{n|}}\right)^2$

$$var(Z_T) = E(v^{2T+2}) - E(v^{T+1})^2 = \sum_{t=0}^{n-1} w^{t+1} {}_t p_x q_x - \left[\sum_{t=0}^{n-1} v^{t+1} {}_t p_x q_x\right]^2$$

 $v^2 = w \rightarrow$ Chamado de fator de desconto

ightharpoonup Caso de T contínuo: $var(Z_T) = \overline{^2A}_{\chi} - (\bar{A}_{\chi})^2$

$$var(Z_T) = E(e^{-2\delta T}) - E(e^{-\delta T})^2 = \int_0^\infty e^{-2\delta t} f_T(t) dt - \left[\int_0^\infty e^{-\delta t} f_T(t) dt\right]^2$$

ightharpoonup Caso de T discreto: $var(Z_T) = {}^2A_x - (A_x)^2$

$$var(Z_T) = E(v^{2T+2}) - E(v^{T+1})^2 = \sum_{t=0}^{\infty} w^{t+1} {}_t p_x q_x - \left[\sum_{t=0}^{\infty} v^{t+1} {}_t p_x q_x\right]^2$$

 $v^2 = w \rightarrow$ Chamado de fator de desconto

Exemplo de Cálculo da variância

➤ Exemplo 9

Calcule a variância de $E(Z_t)$.

$$b_T = 1$$
 , $0 \le t \le 5$ v^{t+1} , $t \ge 0$ $Z_T = \begin{cases} v^{t+1}; & 0 \le t \le 5 \\ 0; & c.c. \end{cases}$

Lembramos que $A_{25^1:\overline{5|}} = 0,0037888$ e i = 4%.

Dados do exemplo 9

$$i = 4\%$$

Idade	$q_X =_1 q_X$	$p_X =_1 p_x = 1 - q_x$	$_{1}l_{x}=\frac{l_{x+1}}{p_{x}}$
25	0,00077	0,99923	100000
26	0,00081	0,99919	99923
27	0,00085	0,99915	99842
28	0,00090	0,99910	99757
29	0,00095	0,99905	99667
30	0,00100	0,99900	99572
31	0,00107	0,99893	99472
32	0,00114	0,99886	99365
33	0,00121	0,99879	99251
34	0,00130	0,99870	99131
35	0,00139	0,99861	99002

> Exemplo 9

$$var(Z_t) = {}^{2}A_{25^{1}:\overline{5}|} - (0,0037888)^{2}$$

$$var(Z_t) = \sum_{t=0}^{4} \left[\left(\frac{1}{1,04} \right)^2 \right]^{t+1} t^{t+1} p_{25} q_{25+t} - (0,0037888)^2$$

$$var(Z_T) = \left[\left(\frac{1}{1,04} \right)^2 q_{25} + \left(\frac{1}{1,04} \right)^4 {}_1 p_{25} q_{26} + \left(\frac{1}{1,04} \right)^6 {}_2 p_{25} q_{27} + \left(\frac{1}{1,04} \right)^8 {}_3 p_{25} q_{28} + \left(\frac{1}{1,04} \right)^{10} {}_4 p_{25} q_{29} \right] - (0,0037888)^2$$

$$var(Z_t) = 0.1224543$$

SEGURO DE VIDA TEMPORÁRIO

> Exemplo 10

Novamente vamos considerar uma pessoa de idade 30 anos que decide fazer um seguro de vida temporário no período de 20 anos. Admita que o tempo de vida adicional T desta pessoa possa ser modelado pela distribuição uniforme contínua de parâmetros 0 e 70, ou seja:

$$T_{30} \sim U_c(0.70).$$

Considere i = 5% a.a.

Sabemos pela resolução do problema que $\bar{A}_{30^1:\overline{20|}}\approx 0.182446$. A partir dessas informações obtenha a variância para esse seguro.

> Exemplo 10

$$b_T = 1 , 0 \le t \le 20$$
 $e^{\delta t}, t \ge 0$ $Z_T = \begin{cases} e^{\delta t}; & 0 \le t \le 20 \\ 0; & c.c. \end{cases}$

$$var(Z_T) = \int_0^{20} e^{-2\delta t} \frac{1}{70} dt - (0,182446)^2$$

$$var(Z_T) = \frac{1 - e^{-40\delta}}{140\delta} - (0,182446)^2 = 0,09231757$$

$$\sigma_{Z_T} = \sqrt{0,09231757} = 0,3038381$$

> Exemplo 11

Imagine um carteira com 100 indivíduos (todos de mesma idade) que contratam hoje um seguro de vida inteiro. Considere $T_x \sim exp(0.04)$ e a taxa instantânea de juros, $\delta = 0.06$.

Qual o prêmio puro a ser cobrado de cada segurado, considerando um benefício de 1 u.m.? E o prêmio total da carteira?

> Exemplo 11

$$E(Z_t) = \int_0^\infty z_T f_T(t) dt = \bar{A}_X$$

$$\bar{A}_X = \int_0^\infty e^{-0.06t} 0.04 e^{-0.04t} dt = \int_0^\infty 0.04 e^{-0.1t} dt$$

$$\bar{A}_X = -0.4 e^{-0.1t} \Big|_{t=0}^{t\to\infty} = \lim_{t\to\infty} 0.4 e^{-0.1t} + 0.4 e^0$$

$$\bar{A}_X = 0.4 \text{ u. m.}$$

- \blacktriangleright Veja que, o gasto médio com pagamento de sinistros será de 0,40~u.m por segurado.
- \succ Considerando que existem 100 pessoas na carteira, o prêmio total cobrado será de 40~u.m. para que a seguradora consiga honrar seus compromissos relativos à sinistros.

Para visualizar o que ocorre com os segurados individuais, vamos imaginar um conjunto de 3000 segurados, todos com tempos de vida futura modelados por $T_x \sim U_c(0,70)$ e independentes.

$$E(T) = 35$$

 $var(T) = 102,83$

 \triangleright Simulando cada um dos tempos de vida adicionais, $t_1, t_2, ..., t_{3000}$, podemos imaginar 3000 segurados (ou 3000 cenários possíveis de sobrevida de um único segurado), ou seja, sabemos o tempo de vida de 3000 segurados.

 \triangleright De 0 a 70 foram gerados 3000 valores de T_x , e para essa simulação em verificamos pelo histograma acima como os dados se distribuem.

- Não sabemos qual é o tempo de vida adicional de cada segurado.
 - > O valor total a ser pago pela seguradora para um beneficiário é uma variável aleatória.
 - ➤ Por isso a necessidade do calculo da estimativa do prêmio puro único.

$$T_x \sim U_c(0.70)$$
 $i = 5\% \text{ a.a.}$ $b(t) = R$200000,00$

$$V.P.A = \int_0^{70} z_T f_T(t) dt = \int_0^{70} 200000 e^{-\ln 1,05t} \frac{1}{70} dt$$

$$V.P.A = -\frac{200000e^{-\ln 1,05t}}{70 \ln 1,05} \bigg|_{t=0}^{t=70} = \frac{200000}{70 \ln 1,05} \left[-e^{-\ln(1,05)70} + e^{-\ln(1,05)0} \right]$$

$$V.P.A = 58559,81(-e^{-3,415} + 1) \approx 56634,57$$

- Caso soubéssemos com certeza o dia exato em que o segurado irá morrer. Então o valor que devemos ter hoje para pagar esse benefício futuro seria apenas o benefício do futuro trazido a valor presente.
- Levando em consideração que "sabemos" previamente a sobrevida de cada segurado (dados simulados). Os valores presentes necessários a indenização de cada segurado pode ser calculada.

> Assim:

$$Z_t = b(t)v^t = 200000e^{-\delta t} = 200000e^{-\ln 1,05t}$$

- A distribuição Uniforme para modelar a sobrevida do segurado, leva a um valor de prêmio alto, pois essa supõem que chance da pessoa morrer "cedo" é igual a de morrer "tarde".
- Apesar das limitações estimativa se mostrou próxima da média verificada posteriori.

- ➤ Devido à variabilidade elevada, pode ser interessante calcular determinar o valor presente a partir de um quantil predeterminado.
- Ou seja, obter um valor presente de baseado nas probabilidades das indenizações futuras serem inferiores ao estipulado.

$$P(Z \leq \Pi) = \alpha$$

Ou seja, obter um valor presente de baseado nas probabilidades das indenizações futuras serem inferiores ao estipulado.

$$P_{VP}(VP \le \Pi) = \alpha$$

$$P(be^{-\delta T} \le \Pi) = \alpha$$

$$P\left(e^{-\delta T} \le \frac{\Pi}{b}\right) = \alpha$$

$$P(-\delta T \le \ln \Pi - \ln b) = \alpha$$

$$P_{T}\left(T \ge \frac{\ln b - \ln \Pi}{\delta}\right) = \alpha$$

$$P(Z \le \Pi_{t_{\alpha}}) = \alpha$$

$$P(T \ge t_{\alpha}) = \alpha \angle$$

$$\Pi_{t_{\alpha}} = be^{-\delta t_{\alpha}}$$

Assim:

$$t_{\alpha} = \frac{\ln b - \ln \Pi_{t_{\alpha}}}{\delta}$$

Como a variável aleatória de comportamento conhecido é o tempo (T), é mais conveniente lidar com sua distribuição do que com a distribuição dos valor presente atuarial.

Exemplo 12

Seja um seguro de vida vitalício de uma pessoa de 30 anos que deseja receber um benefício de b=R\$20000,00. Onde o tempo de vida adicional T desta pessoa possa ser modelado como $T_x\sim U_c(0,70)$. Suponha que i=5% a.a.

 \triangleright Supondo que 90% das pessoas sobrevivem além do tempo t. Qual o valor presente mínimo necessário para cobrir 90% das apólices?

Exemplo 12

$$> b = R$20000,000.$$
 $T_x \sim U_c(0,70).$ $i = 5\%$ a.a. $\alpha = 0.9$

$$P(T \ge t_{90\%}) = 0.9$$

$$P(T \ge t_{90\%}) = 1 - F_T(t_{90\%}) = 1 - \int_0^{t_{90\%}} \frac{1}{70} dt = \boxed{\frac{70 - t_{90\%}}{70}} = 0.9$$

$$\frac{70 - t_{90\%}}{70} = 0.9$$

$$t_{90\%} = 7$$

$$P(T \ge 7) = 0.9$$

$$P\left(T \ge \frac{ln(b) - ln(\Pi)}{\delta}\right) = P\left(T \ge \frac{ln(20000) - ln(\Pi)}{0,048}\right) = 0.9$$

$$\frac{9,903 - ln(\Pi)}{0,048} = 7$$

$$\Pi = R$14285,5$$

Histograma do tempo de vida adicional, T

Quanto maior o tempo de vida adicional menor o valor presente.
 Valores grandes de t se geram valores pequenos e próximos de VPA

> Exemplo 13

Imagine um carteira com 100 indivíduos, todos de mesma idade, que contratam hoje um seguro de vida inteira. Seja a taxa instantânea de juros, $\delta = 0.06$. Considere também que ainda $T_x \sim \exp(0.04)$.

$$f_T(t) = 0.04e^{-0.04T}, T > 0$$

Determine o tempo de sobrevida do qual 90% das pessoas venham a falecer. E determine o valor presente mínimo necessário a cobrir 10% dessas apólices?

Lembrando que $E(Z_t) = 0.4 u.m.$

> Exemplo 13

Determine o tempo de sobrevida do qual 90% das pessoas venham a falecer...

$$P(T_x < t) = 0.9 \rightarrow P(T_x > t) = 0.1$$

...E determine o valor presente mínimo necessário a cobrir essas 10% dessas apólices?

$$P(Z < \Pi) = 0.1$$

Logo
$$\alpha = 0.1$$

Exemplo 13

$$P(T \geq t_{10\%}) = 0.1$$

$$P(T \geq t_{10\%}) = 1 - F_T(t_{10\%}) = 1 - \int_0^{t_{10\%}} 0.04e^{-0.04t} dt$$

$$P(T \geq t_{10\%}) = 1 - (1 - e^{-0.04t_{10\%}}) = 0.1$$

$$e^{-0.04t_{10\%}} = 0.1$$

$$0.04t_{10\%} = 2.3$$

$$t_{10\%} = 57.5$$

A probabilidade de que as pessoas venham a morrer no período de 57,5 anos é de 90%, ou seja, espera-se que somente 10% das pessoas superem esse tempo de vida adicional.

$$b = 1 u.m.$$
 (por indivíduo)

$$T_{\chi} \sim \exp(0.04), \qquad \delta = 0.06$$

$$\delta = 0.06$$

$$\alpha = 0,1.$$

Considerando que:

$$P(T \ge 57,5) = 0,1$$

Então

$$\frac{\ln(1) - \ln(\Pi)}{0.06} = 57.5$$

$$\Pi \approx R$$
\$ 0,031

O valor presente mínimo necessário para cobrir as indenizações em 10% dos casos deve ser de 0,031 u.m.

Exemplo 13

- \succ Considerando que temos 100 indivíduos na carteira. O valor presente necessário mínimo necessário a essa condição deve ser de 3,1 u.m.
- ➤ Observe que o valor de 0,031 u.m só diz respeito a uma reserva suficiente para cobrir 10% dos casos de indenizações.
- \triangleright Vimos anteriormente que o valor <u>médio</u> necessário a cobrir todas as indenizações seria de 0,40~u.m. por segurado.

Histograma do tempo de vida adicional,T

- ➤ Gráfico da simulação de 100 apólices (ou 100 cenários) com as condições do exemplo 13.
 - A distribuição exponencial é assimétrica, onde 63,21% das observações são menores que a média.

Histograma com os valores presentes dos benefícios futuros para cada um dos 100 T

- \blacktriangleright Dado que temos informações sobre a distribuição de T e consequentemente informações sobre a média e variância de Z_T .
 - \blacktriangleright Desejamos saber qual o valor que a seguradora deve ter hoje de modo que a probabilidade de que haja fundo para efetuar todos os pagamentos no momento de morte seja aproximadamente α .

> Definição: Teorema central do limite.

Seja S_n uma variável aleatória correspondente a uma soma de n variáveis aleatórias $X_1, X_2, X_3, ..., X_n$ independentes e identicamente distribuídas, cada qual com esperança $\mu = E(X)$, e variância $\sigma^2 = var(Z)$. Então, se n tende ao infinito, a variável:

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}} \to Z \sim N(0,1)$$

$$S_n = X_1 + X_2 + X_3 + \dots + X_n$$

$$Z_n = \frac{S_n - nE(X)}{\sqrt{var(X)}\sqrt{n}} \to Z \sim N(0,1)$$

Logo

$$S_n \sim N(nE(X), nvar(X))$$

O teorema central do limite sugere uma metodologia aproximada para a obtenção de valores para distribuição da soma de variáveis independentes, consequentemente também para a distribuição da média de variáveis aleatórias.

$$\bar{X} \sim N\left(\frac{E(X)}{n}, \frac{var(X)}{n}\right)$$

 \triangleright Chamando de S a soma dos valores presentes necessários a cobrir as indenizações dos sinistros ocorridos, queremos encontrar o valor h tal que:

$$P(S \le h) = \alpha$$

$$P\left(\frac{S - E(Z_T)}{\sqrt{var(Z_T)}} \le \frac{h - E(Z_T)}{\sqrt{var(Z_T)}}\right) = \alpha$$

$$P\left(Z \le \frac{h - E(Z_T)}{\sqrt{var(Z_T)}}\right) = \alpha$$

$$\frac{h - E(Z_T)}{\sqrt{var(Z_T)}} = z_{\alpha}$$

Levando em conta que o V.P.A = 0.4 com variância $var(z_T) = 0.09$ por segurado, temos para os 100 segurados (exemplo 11):

$$V.P.A = 40 u.m.$$
 $var(Z_t) = 9 (u.m.)^2$

Assim fazendo uma aproximação para distribuição da variável aleatória S como sendo normal $S \sim N(40,9)$, podemos verificar o valor h cuja probabilidade do valor total a ser pago pela seguradora seja inferior a 95%:

$$P(S \le h) = 0.95$$

$$P\left(\frac{S - 40}{\sqrt{9}} \le \frac{h - 40}{\sqrt{9}}\right) = 0.95$$

$$\frac{S-40}{\sqrt{9}} = Z \sim N(0,1) \qquad \frac{h-40}{\sqrt{9}} = Z_{0,9}$$

$$\frac{h - 40}{\sqrt{9}} = Z_{0,95}$$

$$\frac{h - 40}{\sqrt{9}} = 1,645$$

$$\frac{h - 40}{\sqrt{9}} = 1,645$$

$$h = 44,94$$

> Baseado no fato de que o valor presente esperado seja de 40 u.m com desvio padrão de 3 u.m. o prêmio a cobrar de cada um deles deveria ser 44,94 é aquele que cuja chances de solvência sejam de 95%.