This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Original) An access control system, comprising:
- a surface acoustic wave sensor which outputs a signal indicative of a distorted print; and
- a processor which compares the distorted print signal to one or more identity patterns and controls access to a restricted item based on results of said comparison.
- 2. (New) The system of claim 1, wherein the sensor outputs the distorted print signal using a modifier.
 - 3. (New) The system of claim 2, wherein the modifier is a transfer function of the sensor.
- 4. (New) The system of claim 3, wherein the transfer function generates the print signal by distorting a print detected by the sensor in a predetermined manner.

- 5. (New) The system of claim 1, wherein the modifier is a frequency of an excitation signal input into the sensor.
- 6. (New) The system of claim 1, wherein the modifier is a mask pattern coupled to the sensor.
- 7. (New) The system of claim 6, wherein the mask pattern is included on a film placed over a print detecting surface of the sensor.
- 8. (New) The system of claim 7, wherein the mask pattern includes one or more projections which deform a piezoelectric material in the sensor.
- 9. (New) The system of claim 8, wherein the print signal represents a print which is distorted by the one or more projections in the mask pattern.
- 10. (New) The system of claim 6, wherein the mask pattern is formed on a piezoelectric layer of the sensor.
 - 11. (New) The system of claim 10, wherein the mask pattern is permanently

formed on the piezoelectric layer.

- 12. (New) The system of claim 10, wherein the mask pattern is temporarily formed on the piezoelectric layer.
- 13. (New) The system of claim 1, wherein the print is one of a fingerprint, thumb print, or palm print.
- 14. (New) The system of claim 1, wherein the identity patterns include distorted prints formed based on the modifier.
 - 15. (New) The system of claim 2, further comprising:
 a controller which changes the modifier,

wherein the surface acoustic wave sensor outputs a new signal indicative of a distorted print using the changed modifier and the processor compares the new distorted print signal to one or more identity patterns and controls access to a restricted item based on results of said comparison.

16. (New) The system of claim 1, wherein the restricted item is one of an object or place.

- 17. (New) The system of claim 16, wherein the object includes a computing system.
- 18. (New) The system of claim 16, wherein the place includes a room or building.
- 19. (New) An access control method, comprising:

 generating a distorted print signal using a surface acoustic wave sensor;

 comparing the distorted print signal to one or more identity patterns;

 controlling access to a restricted item based on results of said comparison.
- 20. (New) The method of claim 19, wherein the generating step includes: setting a modifier of the acoustic wave sensor to distort a print in a predetermined manner.
 - 21. (New) The method of claim 20, wherein the modifier is a transfer function of the sensor.
- 22. (New) The method of claim 20, wherein the modifier is a frequency of an excitation signal input into the sensor.

- 23. (New) The method of claim 19, wherein the generating step includes: coupling a mask pattern to the sensor for distorting the print in a predetermined manner.
- 24. (New) The method of claim 23, wherein the mask pattern is included on a film placed over a print detecting surface of the sensor.
- 25. (New) The method of claim 24, wherein the mask pattern includes one or more projections which deform a piezoelectric material in the sensor.
- 26. (New) The method of claim 25, wherein the print signal represents a print which is distorted by the one or more projections in the mask pattern.
- 27. (New) The method of claim 23, wherein the mask pattern is formed on a piezoelectric layer of the sensor.
- 28. (New) The method of claim 27, wherein the mask pattern is permanently formed on the piezoelectric layer.

- 29. (New) The method of claim 27, wherein the mask pattern is temporarily formed on the piezoelectric layer.
- 30. (New) The method of claim 19, wherein the print is one of a fingerprint, thumb print, or palm print.
 - 31. (New) The method of claim 20, further comprising: changing the modifier; and

generating a new distorted print signal with the surface acoustic wave sensor using the changed modifier; and

comparing the new distorted print signal to one or more identity patterns; controlling access to the restricted item based on a result of said comparing the new distorted print signal to said one or more identity patterns.

32. (New) The method of claim 23, further comprising: changing the mask pattern;

generating a new distorted print signal with the surface acoustic wave sensor using the changed mask pattern; and

comparing the new distorted print signal to one or more identity patterns;

Serial No. 10/748,743

Docket No. IQB-0022

controlling access to the restricted item based on a result of said comparing the new distorted print signal to said one or more identity patterns.

33. (New) An identification method, comprising:

combining two degrees of uniqueness, wherein the first degree of uniqueness is a print and the second degree of uniqueness is a print modifier; and determining an identity of the print based on the combined degrees of uniqueness.