ЧУМ. Теоремы Мирского и Дилуорса

Бинарное отношение \preceq на множестве S называется om ношением частичного порядка, если для любых $x,\,y,\,z\in S$

- $x \leq x$ (рефлексивность);
- из $x \leq y, y \leq x$ следует, что x = y (антисимметричность);
- из $x \leq y, y \leq z$ следует, что $x \leq z$ (транзитивность).

Цепью (*антицепью*) в ЧУМе называется его подмножество, любые два элемента которого сравнимы (несравнимы).

- 1. (Мирский) Пусть S конечное частично упорядоченное множество. Докажите, что размер максимальной цепи в S равен минимальному числу непересекающихся антицепей, покрывающих всё множество S.
- **2.** (Эрдёш, Секереш) Докажите, что в последовательности из nm+1 различных чисел найдётся или возрастающая подпоследовательность из n+1 чисел или убывающая подпоследовательность из m+1 чисел.
- 3. На прямой нарисовано конечное множество отрезков. Среди любых n+1 нарисованных отрезков найдутся два пересекающихся. Докажите, что можно отметить на прямой n точек таким образом, что на каждом отрезке хотя бы одна точка окажется отмеченной.
- 4. Пусть $n \in \mathbb{N}$. Японский треугольник состоит из $1+2+\ldots+n$ одинаковых кругов, выложенных в форме равностороннего треугольника так, что для каждого $i=1,2,\ldots,n$ ряд с номером i состоит ровно из i кругов, в точности один из которых покрашен в красный цвет.

Путём ниндзя в японском треугольнике называется последовательность из n кругов, построенная следующим образом: начинаем с круга в ряде 1 и затем поочередно спускаемся вниз, переходя от круга к одному из двух кругов непосредственно под ним, пока не дойдём до ряда n (см. пример японского треугольника для n=6, а также пути ниндзя, содержащего два красных круга). При n=1023 найдите наибольшее число k такое, что в любом японском треугольнике существует путь ниндзя, содержащий хотя бы k красных кругов.

- **5.** (Дилуорс) Докажите, что размер максимальной антицепи в конечном ЧУМе S равен минимальному числу непересекающихся цепей, покрывающих всё S.
- **6.** На доске записали различные натуральные числа. Среди любых n+1 из них можно выбрать два числа так, что одно делится на другое. Докажите, что все числа можно покрасить в n цветов так, чтобы из любых двух чисел одного цвета одно делилось на другое.
- 7. В задании олимпиады *п* задач. Известно, что нет двух школьников, один из которых решил все задачи, решенные другим. Какое максимальное число школьников могло принимать участие в олимпиаде?
- 8. Докажите, что при любой правильной раскраске вершин графа G в $\chi(G)$ цветов найдётся путь длины $\chi(G)$, все вершины в котором разного цвета.
- 9. Какое наибольшее число шашек можно расставить в клетках таблицы $n \times n$ так, чтобы выполнялось условие: если шашка A находится ниже и правее шашки B, то они находятся в соседних по диагонали клетках?