기상자료와 의학자료를 이용한 천식악화 방지

조이름: 3실

조원: 문석주 김기현 초혜원

목차 / List

1장 공모내경

2장 활용데이터 정의

3장 데이터 처리방안 및 활용분석 기법

4장 번쾌

5장 세신활용방안

6장 세신기대효과

1 공모배경

'달랑 2개' 국민건강 대착

미세먼지만큼 답답

면 정국은 뒤덮으면서 국민들의 분노도 들끊고 있다.

정부가 사상 처음 미세먼지 비상지감경보를 닷대해

발령하는 등 총리율 기본이지만 상황은 점검하는 수

준에 그치고, 정작 건강을 위험받는 시민들이 제강할

만한 대책은 부족하기 때문이다. 정부의 대책이 '마스 크 책용' 롸 '재난 문자 활송' 뿐이라는 자조까지 나오 하곳에 달한다. 문해 조등학교에 압학한 남자

부모라고 밝힌 한 청원자는 "암학식에서 학인한 이

지않았다"면서 "나라의 바레가 될 아이들에게 최소

의 건강을 지킬 수 있도록 모든 초등학교에 설치해 등

폭염과 강추위의 발생

2018년, 과거 경험하지 못한 강한한파로 관측 이래 <u>기장 낮은 최저기온을 보인</u> 반면, 장기간 지속된 폭염으로일 <u>최고 기온 최고치</u>를 경신하는 등 극한의 기온 변화를 보였다.

대기오염, 미세먼지의 심각성

발암물질인 []]네먼지가 사회적 이슈로 부각되면서, 국민들의 불안과 우려의 증가로 인해 현재 이에 대응하는 많은 조사, 분석이 이루어지고 있다.

Outdoor air pollution and asthma

Michael Guarnieri, MD and John R. Balmes, MD

체내 섬모에서 여과되지 않고 혈관에까지 침투하면 신체 여러 부분에서 염증을 통해 다양한 호흡기 질환을 발생시킴.

이 중 가장 흔하게 발생하는 천식의 경우,

OECD 국가 천식 입원율

천식은 적절한 대응으로 증상 악화 및 입원을 예방할 수 있는 대표적인 <u>민감성 질환</u>이다.

하지만 한국에서는
'꾸준하게 치료를 해야하는 만성질환'이라는
인식이 상대적으로 <u>부족한 상황이다</u>.

따라서 <u>천식이 악화되기 전</u> 미리 예방 할 필요가 있다

천식이란, 폐로 연결되는 통로인 '기관지'의 질환으로, 특정한 유발 원인 물질에 노출되었을 때 기관지의 염증에 의해 기관지가 심하게 좁아져 기침, 천명, 호흡곤란, 가슴 답답함이 반복적으로 발생하는 질환

천식의 구분

유전적 인자	환경 인자
① 비만 ② 성별	 알레르기 항원 다양한 바이러스의 감염 작업성 감작물질 흡연 실내/실외 공기 오염 음식

2 활용 데이터 정의

2. 활용데이터 정의

항목	세부내용	날짜
천식진료정보	 기도지역 : 서울, 대구, 광주, 부산, 인천 발생건수 : 천식 발생 건수(윌별) 	2014.01.01. ~ 2018.06.31
기상관측정보	• 평균기온(°C), 평균일교차(°C), 평균상대습도(%) 월합강수량(mm)	2014.01.01. ~ 2018.06.31
대기환경정보	• S02(ppm) : 이황산가스, N02(ppm) : 이산화질소 C0(ppm) : 일산화탄소, PM-10(ug/m3) : 미네먼지	2014.01.01. ~ 2018.06.31

2. 활용데이터 정의

항목	세뷔내용	날짜	
시군구별 주민등록인구	• 총인구수(명)	2014.01.01. ~ 2018.06.31	
국민건강 영양 조사	• 천식, 고혈압, 당뇨병유무, LЮI, 음주량, 흡연여부, BMIXI수	2014 ~ 2017	

3 데이터 처리 방안 및 활용 분석 기법

3.1 분석 계획

3.2 데이터 전치리

3.1 데이터 처리 방안 및 활용 분석 기법 – 분석계획

① 다중 회귀 분석을 통한 천식과 기상환경과의 관련성 분석

② 시계열 모형과 머신 리닝 기법을 이용하여 천식 환자 수 예측

③ 독립성 검정을 통한 내부적 특성과 천식의 관련성 분석

④ 로지스틱 회귀 분석을 통한 내부적 특성 파악

3.2 데이터 처리 방안 및 활용 분석 기법 – 데이터 전처리

① 삼관관계 (Correlation plot)

높은 상관관계를 띄는 변수 (0.60 상)

평균기온과 CO (0.75), CO와 NO2 (0.72) 평균기온과 NO2 (0.66)

다중공선성 우려

기상변수 간 상관관계가 높으므로 회귀분석 시 다중공산성이 우려된다.

인자분석 고려

다중공선성의 문제를 해결하기 위해 차원을 축소한다.

3.2 데이터 처리 방안 및 활용 분석 기법 - 데이터 전처리

> df_all_weather_factor\$values

[1] 3.9404963 1.7554692 0.7725439 0.4811832 0.4514339 0.3341012 0.1515123 0.1132601

② 인자분석 (Scree plot)

주성분 방법을 통한 인자 수 결정

> 고유값이 1이상 주성분까지 선택

3.2 데이터 처리 방안 및 활용 분석 기법 - 데이터 전처리

② 인자분석 (Scree plot)

- 첫번째 인자 (RC1): 미세먼지가 높고 기온이 낮을 때 높은 점수를 갖는 변수
- 두번째 인자 (RC2): 일교차가 작고 습도와 강수량이 많을 때 높은 점수를 갖는 변수

```
> df_all_weather_varimax
Principal Components Analysis
Call: principal(r = df_all_weather, nfactors = 2, rotate = "varimax")
Standardized loadings (pattern matrix) based upon correlation matrix
                         RC1 RC2 h2 u2 com
평균기온(°C)
                     -0.77 0.40 0.75 0.25 1.5
평균일교차(°C)
                     -0.24 -0.91 0.88 0.12 1.1
                      -0.33 0.79 0.73 0.27 1.3
월합강수량(00~24h만)(mm) -0.48 0.60 0.60 0.40 1.9
502(ppm)
                        0.79 0.29 0.71 0.29 1.3
NO2(ppm)
                        0.85 -0.20 0.77 0.23 1.1
CO(ppm)
                        0.83 -0.12 0.70 0.30 1.0
PM-10(ua/m3)
                        0.60 -0.45 0.56 0.44 1.8
                      RC1 RC2
SS loadings
                    3.39 2.30
Proportion Var
                    0.42 0.29
                                          선택된 인자가 전체 분산 중
Cumulative Var
                    0.42 0.71
Proportion Explained 0.60 0.40
                                           71%를 설명
Cumulative Proportion 0.60 1.00
Mean item complexity = 1.4
Test of the hypothesis that 2 components are sufficient.
The root mean square of the residuals (RMSR) is 0.09
with the empirical chi square 145.15 with prob < 2e-24
Fit based upon off diagonal values = 0.96
                                               MSA=0.67로 인자분석이
> KMO(cor(df[,c(6,9:15)]))
Kaiser-Meyer-Olkin factor adequacy
                                               적합하다고 할 수 있음
Call: KMO(r = cor(df[, c(6, 9:15)]))
Overall MSA = 0.67
MSA for each item =
                   평균일교차(°C)
평균기온(°C)
                                        평균상대습도(%) 월합강수량(00~24h만)(mm)
                               0.40
        0.72
                                                       0.63
                                                                               0.91
    SO2(ppm)
                            NO2(ppm)
                                                     CO(ppm)
                                                                       PM-10(uq/m3)
        0.54
                                0.81
                                                                               0.71
```

4 분석결과

- 4.1 환경 요인
- 4.2 내부적 요인
- 4.3 결과

① 탐색적 자료 분석 (천식 환자 수)

시도지역 별, 계절 별 추이

- ✓ 시도지역 별
 - : 지역의 따라 환자 수가 다름 지역에 따라 분석 및 예측 필요
- √ 계절 별
 - : 겨울에 증가하고 여름에 감소하는 패턴

② 탐색적 자료 분석 (날씨 환경)

지역 별 날씨 차이

날씨는 지역별로 차이가 LIEI남

- ✓ 부산, 인천 (해안가)
 - : 겨울 철 온도와 습도가 높음
- ✓ 서울 등 내륙
 - : 겨울 철 온도와 습도가 낮음

③ 탐색적 자료 분석 (대기오염)

지역 별 대기오염 차이

대기오염은 지역별로 차이가 나타남

✓ NO2(이산화질소): 서울 높음

✓ S02(아황산가스): 서울, 인천 높음

✓ CO(일산화탄소): 서울, 인천 높음

④ 탐색적 자료 분석 (종합)

천식 환자 수

날川 환경

대기오염

천식은 계절성이 있어 날씨, 대기오염과 밀접한 관련성이 있다. 지역별로 날씨 환경, 대기오염, 지역 인구 수에 따라 천식 환자 수가 다르기 때문에 **지역에 따른 분석과 예측** 필요

⑤ 다중 회귀분석

Multiple R-squared: 0.9339,

F-statistic: 556.3 on 8 and 315 DF, p-value: < 2.2e-16

```
> summary(df_model)
Call:
lm(formula = log(`월평균 발생건수(건)`) ~ pc1 + pc2 + pc1 * pc2 +
   시도지역, data = df)
                                    정규성 만족을 위해 로그변환을 하여 분석 진행
Residuals:
             10 Median
    Min
                             30
                                    Max
-0.39401 -0.11083 0.01211 0.11424 0.44507
                                                                 모든 인자
Coefficients:
                                                              인자가 교호 작용
           Estimate Std. Error t value Pr(>|t|)
                                                                 지역 변수
(Intercept) 7.07441
                   0.02316 305.428 < 2e-16 ***
           0.17807 0.01154 15.434 < 2e-16 ***
                                                                모두 유의함
pc1
pc2
           -0.03266 0.01332 -2.452
                                    0.0147 *
시도지역대구 0.30171
                   0.03077 9.804 < 2e-16 ***
시도지역대전 -0.27899
                   0.03050 -9.146 < 2e-16 ***
시도지역부산 0.49595
                   0.03354 14.786 < 2e-16 ***
시도지역서울 1.34975
                   0.03321 40.639 < 2e-16 ***
시도지역인천 0.21878
                    0.04342
                           5.039 7.90e-07 ***
       0.07631
                     0.01303
                              5.856 1.19e-08 ***
pc1:pc2
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1582 on 315 degrees of freedom
```

Adjusted R-squared: 0.9322

첫번째 변수 (pc1)

: 미세먼지 농도가 높고 온도가 낮을 때 높은 점수를 갖는 변수 -> 발생수를 증가시킨다. Exp(0.178)

두번째 변수 (pc2)

: 일교차가 낮고 습도, 강수량이 높을 때 높은 점수를 갖는 변수 -> 발생수를 감소시킴 Exp(-0.033)

교호작용 (pc1:pc2)

-> 환자수를 증가시킴

지역

■ R-square : 0.93

-> 광주를 기준으로 광주보다 인구가 많은 지역이 발생 수가 더 증가

⑤ 다중 회귀분석

```
> summary(df_model)
Call:
lm(formula = log(`월평균 발생건수(건)`) ~ pc1 + pc2 + pc1 * pc2 +
   시도지역, data = df)
                                       정규성 만족을 위해 로그변환을 하여 분석 진행
Residuals:
             10 Median
    Min
                             30
                                     Max
-0.39401 -0.11083 0.01211 0.11424
                                0.44507
                                                                  모든 인자
Coefficients:
                                                               인자가 교호 작용
           Estimate Std. Error t value Pr(>|t|)
                                                                  지역 변수
(Intercept) 7.07441
                      0.02316 305.428 < 2e-16 ***
            0.17807
                   0.01154 15.434 < 2e-16 ***
                                                                  모두 유의함
pc1
pc2
           -0.03266
                    0.01332 -2.452
                                     0.0147 *
시도지역대구 0.30171
                    0.03077 9.804 < 2e-16 ***
시도지역대전 -0.27899
                    0.03050 -9.146 < 2e-16 ***
시도지역부산 0.49595
                    0.03354 14.786 < 2e-16 ***
시도지역서울 1.34975
                    0.03321 40.639 < 2e-16 ***
시도지역인천 0.21878
                    0.04342
                             5.039 7.90e-07 ***
         0.07631
                      0.01303
                               5.856 1.19e-08 ***
pc1:pc2
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1582 on 315 degrees of freedom
                            Adjusted R-squared: 0.9322
Multiple R-squared: 0.9339,
                                                            ● ¦ R-square : 0.93 |
```

F-statistic: 556.3 on 8 and 315 DF, p-value: < 2.2e-16

석

- ✓ 온도와 습도가 높을 경우 천식 환자 수 감소
- 미세먼지가 높을 경우 천식 환자 수 증가
- ✓ 교호작용을 통하여 습도가 높고 미세먼지가 많을 경우,

습도가 높더라도 천식 환자 수가 오히려 증가

⑤ 다중 회귀분석

Fitted values

Leverage

정규성, 등분산성, 왜도, 첨도 **회귀분석의 가정**을 만족

> summary(gvmodel)

3.13	Value	p-value		Decision
Global Stat	4.197e+00	0.3801	Assumptions	acceptable.
Skewness	4.375e-01	0.5083	Assumptions	acceptable.
Kurtosis	2.469e+00	0.1161	Assumptions	acceptable.
Link Function	4.335e-05	0.9947	Assumptions	acceptable.
Heteroscedasticity	1.290e+00	0.2561	Assumptions	acceptable.

인자분석을 통해 다중 공선성(VIF<5) 문제 해결

> vif(df_model)

	GVIF	Df	$GVIF^{(1/(2*Df))}$
pc1	1.717122	1	1.310390
pc2	2.287630		1.512491
시도지역	3.414404	5	1.130659
pc1:pc2	1.615757	1	1.271124

⑤ 다중 회귀분석

⑤ 다중 회귀분석

Regression plot

⑥ 천식 환자 수 예측 기법

Seasonal ARIMA 모형

시계열분석

: 시간의 흐름에 따라 종속변수를 예측하는 것

Seasonal ARIMA 모형

: 계절성이 띄고 종속변수의 흐름이 정상성을 띌 때 사용 하며, **예측 시 바로 전 시점을 사용.**

Random Forest

랜덤 포레스트

: 앙상블 기법 중 하나로 의사결정나무의 알고리즘을 사용. 배깅을 통하여 예측력을 높임.

예측 시 기상변수와 대기오염 변수 인구변수 사용.

Support Vector Machine

Support Vector Machine

: 자료 분석을 위한 지도 학습이며 분류, 회귀에 이용. 두 데이터를 가장 잘 나눌 수 있는 초평면을 찾아 예측함.

예측 시 기상변수와 대기오염 변수 인구변수 사용.

⑥ 천식 환자 수 예측 기법 (Seasonal ARIMA 모형 예측)

⑥ 천식 환자 수 예측 기법 (Random Forest)

Hyperparameter ²⁸

: 오차를 최소화 하는 tree수 결정

⑥ 천식 환자 수 예측 기법 (Random Forest 예측)

⑥ 천식 환자 수 예측 기법 (Support Vector Machine)

Hyperparameter ²⁸

: 오차를 최소화 하는 epsilon, cost 결정

> print(tune_result)

윒

Parameter tuning of 'svm':

- sampling method: 10-fold cross validation

- best parameters: epsilon cost 0 2

- best performance: 301106.4

> print(tune_result)

광주

Parameter tuning of 'svm':

- sampling method: 10-fold cross validation

- best parameters: epsilon cost 0.3 2

- best performance: 23360.31

> print(tune_result)

Parameter tuning of 'svm':

- sampling method: 10-fold cross validation

- best parameters: epsilon cost 0.15 4

- best performance: 41486.81

> print(tune_result)

Parameter tuning of 'svm':

- sampling method: 10-fold cross validation

- best parameters:
epsilon cost
 0.35 2

- best performance: 14722.5

> print(tune_result)

Parameter tuning of 'svm':

- sampling method: 10-fold cross validation

- best parameters: epsilon cost O 2

- best performance: 61111.16

> print(tune_result)

Parameter tuning of 'svm':

- sampling method: 10-fold cross validation

best parameters:epsilon cost0.27 4

- best performance: 43769.16

⑥ 천식 환자 수 예측 기법 (Support Vector Machine 예측)

⑥ 천식 환자 수 예측 기법(최종모형)

MAE 평균이 가장 나은 Support Vector machine 모델을 최종 모형으로 결정.

① 독립성 검정 (천식과 관련성)

성별 (p-value = 0.2923)

> chisq.test(data\$asthma,data\$sex)

Pearson's Chi-squared test with Yates' continuity correction

data: data\$asthma and data\$sex X-squared = 1.1091, df = 1, p-value = 0.2923

비만 유병 여부 (p-value = 0.01726)

> chisq.test(data\$asthma,data\$obesity)

Pearson's Chi-squared test with Yates' continuity correction

data: data\$asthma and data\$obesity X-squared = 5.6695, df = 1, p-value = 0.01726

음주량 (p-value < 0.01)

> chisq.test(data\$asthma,data\$alcohol)

Pearson's Chi-squared test

data: data\$asthma and data\$alcohol X-squared = 12.601, df = 2, p-value = 0.001836

고혈압 유병 여부 (p-value < 0.01)

> chisq.test(data\$asthma,data\$hypertension)

Pearson's Chi-squared test with Yates' continuity correction

data: data\$asthma and data\$hypertension X-squared = 33.547, df = 1, p-value = 6.955e-09

흡연 여부 (p-value = 0.03584)

> chisq.test(data\$asthma,data\$smoking)

Pearson's Chi-squared test

data: data\$asthma and data\$smoking X-squared = 6.6572, df = 2, p-value = 0.03584

음주량, 흡연 여부, 비만 유병 여부, 고혈압 유병 여부와 **천식은 관련성이 있음**.

② T-test 검정

LHOI (p-value < 0.01)

수축기 혈압 (p-value <0.01)

이완기혈압 (p-value < 0.01)

> 천식 유병 여부에 따라 나이, 수축기 혈압, 이완기 혈압의 차이가 있다.

③ 로지스틱 회귀 분석

```
Step: AIC=746.38
asthma ~ sex + age + smoking + obesity + hypertension
```

```
Df Deviance
                            AIC
                   732.38 746.38
<none>
                  734.77 746.77
obesity
- hypertension 1
                  734.78 746.78
+ alcohol
                 730.02 748.02
- smoking
               2 738.48 748.48
               1 736.79 748.79
- sex
                  778.71 790.71
- age
```

```
독립성 검정과
T-test에서 검정한
변수들을 사용하여
로지스틱 회귀분석 진행
```

Stepwise 방법을 이용하여

변수 선택 및 최종 모형 결정

```
Call: glm(formula = asthma ~ sex + age + smoking + obesity + hypertension,
    family = binomial(link = "logit"), data = data)
```

Coefficients:

(Intercept) sex2 age smoking2 smoking3 obesity1 hypertension1 -2.25440 0.47210 0.03749 0.58104 0.49790 0.30030 0.35043

Degrees of Freedom: 611 Total (i.e. Null); 605 Residual

Null Deviance: 829.3

Residual Deviance: 732.4 AIC: 746.4

③ 로지스틱 회귀 분석

```
> summary(model)

Call:
glm(formula = asthma ~ sex + age + smoking + obesity + hypertension,
    family = binomial(link = "logit"), data = data)

Deviance Residuals:
    Min     1Q     Median     3Q     Max
-2.1064 -1.0298     0.6305     0.9102     1.8134

Coefficients:
```

```
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
            -2.254400
                       0.345548 -6.524 6.84e-11 ***
(Intercept)
                      0.226476
sex2
             0.472103
                               2.085 0.0371 *
             0.037491
                      0.005738 6.534 6.41e-11 ***
age
smoking2 0.581038
                      0.258955 2.244 0.0248 *
                      0.276346 1.802 0.0716 .
smoking3 0.497903
                               1.541 0.1234
obesity1
          0.300297
                      0.194902
hypertension1 0.350433
                      0.226423
                               1.548 0.1217
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

```
Null deviance: 829.25 on 611 degrees of freedom
Residual deviance: 732.38 on 605 degrees of freedom
AIC: 746.38
```

Number of Fisher Scoring iterations: 4

Pr(>|z|)

- ✓ Pr(>|z|) < 0.1
 성별, LiOI, 흡연 여부(비흡연자, 흡연 경력이 있는 사람, 흡연자)가 유의하다
 ⇒> 천식이 위험성을 높임.
- ✓ Pr(>|z|) ≈ 0.1
 비만유병여부,고혈압유병여부영향을 □ は는 변수라고생각할 수 있다.

Estimate

- ✓ 성별: 여성일 경우 exp (0.472130) = 1.6배 높음
- ✓ LЮI: LЮI가 1단위 증기할 때 exp (0.037491) = 1.03배 높음
- ✓ 흡연: 흡연자인경우 exp (0.497903) = 1.64배 높음
- ✓ 비만:비만일경우exp(0.300297)=1.35배높음
- ✓ 고혈압: 고혈압일 경우 exp (0.350433) =1.41배 높음
- => 천식은 성별, LIOI, 흡연여부, BIMI, 혈압에 [[다] 위험률이 달긴잔[다].

③ 로지스틱 회귀 분석

Logistic Regression Plot

> vif(model) _

	GVIF	Df	$GVIF^{(1/(2*Df))}$
sex	1.531918	1	1.237707
age	1.323887	1	1.150603
smoking	1.594501	2	1.123715
obesity	1.051262	1	1.025310
hypertension	1.315021	1	1.146743

VIF(분산 팽창 지수 <5)

: 다중 공선선이 존재하지 않는다

= Hosmer와 Lemeshow 검정 =

단계	카이제곱	자유도	유의확률
1	7.107	8	.525

Hosmer Lemeshow 검점

(p-value = 0.525) : 모형이 적합하다.

③ 로지스틱 회귀 분석

ROC Curve

: 민감도와 특이도가 어떤 관계를 갖고 있는지를 표현한 그래프

- ✓ 민감도(Sensitivity) : 69.4%: 천식 환자를 천식 환자라고 판단 할 확률
- ✓ 특이도(Specificity) : 69%: 비 천식환자를 천식환자라고 판단하지 않을 확률
- ✓ AUC(Area Under The Curve) : 0.724: ROC 곡선 아래 영역

4.3 분석결과 - 결과

Regression plot

- ✓ 기온과 습도가 높으면 천식 발생률 감소
- ✓ 대기 오염이 높으면 발생률이 증가

BUT 습도가 높고 대기오염이 같이 높은 경우 오히려 **천식 발생률이 증가**한다.

Support Vector Machine

- ✓ 기상 데이터를 이용하여 정확한 예측이 가능
- ✓ 기상 변수를 이용한 SVM, Random Forest가 예측력이 좋다.

Logistic Regression Plot

- ✓ 유전적 요인(비만, 성별)과
 천식 위험성과 밀접한 관련이 있음
- ✓ 내부적 요인(술, 담배, 혈압)은 천식 위험성과 밀접한 관련이 있음

5 서비스 활용 방안

5. 세비스 활용 밤안

① 천식 알람 서비스 강화 (어플 활용 예시)

한달에 한번 ●

2주 1회 〇

주 2~4회 〇

국민건강 알람서비스

현재 알람 서비스 활용 정보

- ✓ 지상기상 관측정보
- ✓ 대기오염 통계정보

맞춤화 서비스 강화

알람서비스에 개인정보 입력

- ✓ 유전적 요인(비만, 성별)
- ✓ 내부적 환경 요인 (술, 담배, 혈압)

5. 서비스 활용 방안

② 천식 환자를 위한 주개입지 선정에 활용

활용 대상

제공

- · 날씨와 대기오염 정도를 통하여 <u>천식 위험지수</u>를 예측
- 평균적으로 가장 <u>적합한 환경</u>을 제공하는 지역을 선정

천식 위험성이 낮은 지역으로 선정된 도시는 추후 이를 **도시 홍보**에 사용 가능

5. 서비스 활용 방안

③ 천식 악화 방지 환경을 조성하는 IOT기술 개발

에어컨

기습기

공기청정기

에어컨, 가습기, 공기청정기와 같은 제품에 10T기술을 적용하여 자동적으로 천식 환자에게 적합한 환경을 제공하는 기술을 개발 할 수 있다.

6 서비스 기대 효과

6. 서비스 기대효과

기존의 알람 서비스 기상변수에 따른 지역적 특성만 고려

개인적 특성을 고려

개인의 특성에 맞춰 천식악화방지 방법 고안

천식뿐이나라다른호흡기질환에도사용

기상데이터를 이용하여 예측하는 방법과 개인적 특성을 고려하는 방식을 천식 이외의 호흡기 질환과 관련하여 위험성 및 악화 방지 방안을 고안할 수 있다.

참고문헌

- Sang Heon Cho, Yoon Keun Kim, Yoon Seok Chang, Sun Sin Kim, Kyung Up Min, You Young Kim. Original Articles : Asthma insights and reality in Korea. The Korean Journal of Medicine 2006;70(1): 69-77.
- Trokart, Demarche, Schleich, Paquot, Louis. Asthma and obesity. Rev Med Liege 2017 May;72(5):241–245.
- Dunn, Busse, Wechsler. Asthma in the elderly and late-onset adult asthma. Allergy. 2018 Feb;73(2):284-294. doi: 10.1111/all.13258. Epub 2017 Sep 7.
- Guarnieri, Balmes. Outdoor air pollution and asthma. Lancet. 2014 May 3;383(9928):1581-92. doi: 10.1016/S0140-6736(14)60617-6.
- Nasreen S1, Nessa A, Islam F, Khanam A, Sultana R, Alam, Naznin, Tajkia, Rahman, Hossain, Sultana, Kamal. Interaction between Hypertension and Asthma in Adult. Mymensingh Med J. 2018 Jan;27(1):34-40.
- Underner, Perriot, Peiffer, Meurice. Influence of tobacco smoking on the risk of developing asthma. Rev Mal Respir. 2015 Feb;32(2):110–37. doi: 10.1016/j.rmr.2014.07.014. Epub 2014 Oct 18.
- 기후과학국 기후정책과 보도자료 , 기상청 기후정보포털 2018년 이상기후 보고서
- 지난 3월 6일자 경향신문, 조선일보, 동아일보, 한국일보 1면에 실린 기사 갈무리. 디자인=안혜나기자
- [출처] 미세먼지가 건강에 미치는 영향과 우리나라 정부 R&D 동향. 한국보건산업진흥원 이명성. NICE. 제 3권 제 4호
- [출처] 건강보험심사평가원. 2015년 기준 OECD 보건통계 해설서

감사합니다