

인공지능과 알고리즘

IC-PBL Project2: Unity ML-Agent 기반의 강화학습 구현

김준우 2019066917 최태훈 2020011994 김지훈 2020045123 I. 예제 설명

Ⅱ. 구현 코드 설명

Ⅲ. 시연

장애물을 넣어 에이전트가 장애물에 닿으면 페널티를 주는 부분을 추가

Kart Racing Game with Machine Learning

보상 Checkpoint -> 페널티 Checkpoint

코드 실행 흐름 요약

1.에피소드 시작 시 OnEpisodeBegin()에서 환경 초기화.

2.매 스텝마다 OnActionReceived()에서 에이전트의 행동을 수행하고 보상/페널티 계산.

3.블록이 목표 지점에 도달하면 ScoredAGoal()로 보상 부여 및 에피소드 종료.

4.충돌 이벤트는 OnCollisionEnter()에서 처리.

클래스 개요

PushAgentBasic 클래스는 ML-Agents의 Agent 클래스를 상속받아 강화학습 에이전트를 정의한다.

1. State (상태)

- 상태는 에이전트가 현재 환경에서 관찰할 수 있는 정보이다.
- 이 정보를 바탕으로 에이전트는 최적의 행동을 결정한다.
- PushAgentBasic 코드에서 상태는 에이전트의 위치, 블록의 위치, 목표의 위치 등으로 구성된다.

에이전트의 위치: transform.position

블록의 위치: block.transform.position

목표 위치: goal.transform.position

에이전트와 블록의 속도: m_AgentRb.velocity, m_BlockRb.velocity

2. Action (행동)

- 행동은 MoveAgent(ActionSegment<int> act)에서 처리된다.
- 행동은 이산형(Discrete) 행동 공간으로 설정되어 있으며,
 아래과 같은 동작이 가능하다:

- 1: 앞으로 이동.
- 2: 뒤로 이동.
- 3: 오른쪽으로 회전.
- 4: 왼쪽으로 회전,
- 5: 왼쪽으로 이동(평행이동).
- 6: 오른쪽으로 이동(평행이동).

```
/// Moves the agent according to the selected action.
public void MoveAgent(ActionSegment<int> act)
    var dirToGo = Vector3.zero;
    var rotateDir = Vector3.zero;
    var action = act[0];
    switch (action)
       case 1:
            dirToGo = transform.forward * 1f;
            break;
            dirToGo = transform.forward * -1f;
            break;
       case 3:
            rotateDir = transform.up * 1f;
            break;
        case 4:
            rotateDir = transform.up * -1f;
            break;
        case 5:
            dirToGo = transform.right * -0.75f;
            break;
        case 6:
            dirToGo = transform.right * 0.75f;
            break;
    transform.Rotate(rotateDir, Time.fixedDeltaTime * 200f);
    m AgentRb.AddForce(dirToGo * m PushBlockSettings.agentRunSpeed,
        ForceMode.VelocityChange);
```


3. Reward (보상)

- 보상은 에이전트가 학습 과정에서 자신의 행동이 얼마나 효과적인지 평가받는 기준이다.
- 긍정적인 보상은 원하는 행동을 강화하고, 부정적인 보상(페널티)은 잘못된 행동을 억제한다.

```
1) 목표 달성 보상
                                         2) 시간 기반 페널티
/// </summary>
                                         /// </summary>
public void ScoredAGoal()
                                         public override void OnActionReceived(ActionBuffers actionBuffers)
    // We use a reward of 10.
    AddReward(10f);
                                             // Move the agent using the action.
                                             MoveAgent(actionBuffers.DiscreteActions);
                                             // Penalty given each step to encourage agent to finish task guickly.
                                             AddReward(-1f / MaxStep);
3) 잘못된 행동 페널티
void OnCollisionEnter(Collision collision)
    if (collision.collider.CompareTag("PenaltyZone"))
        // 감점 부여
        AddReward(-1f/MaxStep); / -1/MaxStep 감점
        Debug.Log("Penalty applied: Collided with PenaltyZone!");
```

🐷 한양대학교 ERICA 캠퍼.

기본 예제 수정

• 에이전트가 장애물에 닿으면 페널티를 주는 부분 추가

```
void OnCollisionEnter(Collision collision)
{
    if (collision.collider.CompareTag("PenaltyZone"))
    {
        // 감점 부여
        AddReward(-1f/MaxStep); // -1/MaxStep 감점
        Debug.Log("Penalty applied: Collided with PenaltyZone!");
    }
}
```

• 블록을 밀었을 때의 보상 증가

```
/// </summary>
public void ScoredAGoal()
{
    // We use a reward of 10.
    AddReward(10f);
```


• 학습 컴퓨팅 환경

CPU: Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz

• RAM: 32GB

CPU: NVIDIA GeForce RTX 2070

• 학습 시간

8시간

• 학습 파라미터

DQN vs PPO

Max_steps: 200,000-> 100,000,000

```
behaviors:
  PushBlock:
   trainer_type: ppo
    hyperparameters:
      batch size: 128
      buffer size: 2048
      learning rate: 0.0003
      beta: 0.01
      epsilon: 0.2
      lambd: 0.95
      num epoch: 3
      learning rate schedule: linear
    network settings:
      normalize: false
      hidden units: 256
      num layers: 2
      vis encode type: simple
    reward signals:
      extrinsic:
        gamma: 0.99
        strength: 1.0
    keep checkpoints: 5
   max steps: 100000000
   time horizon: 64
    summary freq: 60000
```


• 학습 결과 시각화

• 학습 결과 시각화

• 학습 결과 시각화

학습 완료

그래프의 결과와 에이전트 목표 달성 관찰을 통하여 학습이 제대로 완료됨을 알 수 있다.

