

Electric Vehicle Infrastructure Location Identification Tools

A planning framework for states, local governments, utilities, developers...

Nicholas School of the Environment February 6, 2020

What are we talking about?

What question are we answering?

What locations may be suited for electric vehicle fast charging infrastructure, taking into account state and other stakeholder priorities?

How did we answer this question?

MJB&A utilized a GIS platform to collect and organize data on over 13,500 miles of key corridors in 13 states—the Transportation & Climate Initiative region (including D.C.) and North Carolina

- Assessed DC fast charging opportunities along all designated federal corridors plus additional state priority corridors
- Focused on interstate exits and other key intersections
- Worked with state participants to refine dataset, parameters, and metrics
- Developed metrics for each possible location that can be weighted and combined into one final score
- Produced an Excel model and two online Visualization Maps for stakeholders to run scenarios and compare results

What factors did we consider?

Proximity to Existing Charging	Traffic Volume	Commercial Activity	Population Density
Including all or a subset based on plug type:Distance to nearest DCFC stationDensity of existing stations	 Roadway segment: Average annual daily traffic (AADT) Peak traffic factor (k-factor) Peak traffic volume (AADT*k-factor) 	Number of stores, restaurants, gas stations, etc. within 1 mile of each exit	Population density of surrounding census tract

How did we source the data?

Primary Considerations

- Scalability & Consistency → National or regional datasets
- Cost → Free or public datasets
- Quality → Reputable sources
- Relevance → Recent and regularly updated datasets
- Ease of Use → Commonly used and understood metrics and data sources

Metric	Data	Data Vintage	Source
Proximity to Existing Charging	Public, non-Tesla DCFC stations within 5-mile radius of node (roadway exit or intersection)	December 2019 (will be updated in next refresh)	Department of Energy (DOE) Alternative Fuels Data Center (AFDC)
Traffic Volume	Average Annual Daily Traffic (AADT)	2016 (will be updated when NPMRDS is updated)	Federal Highway Administration (FHWA) Highway Performance Monitoring System (HPMS, by state); User Guide
	Peak traffic factor (k-factor)	2017 (unknown update frequency)	FHWA National Performance Management Research Dataset (NPMRDS, by state); data merge using 2016 HPMS and 2017 Transportation Management Center
Commercial Activity	Restaurants, shops/stores, gas stations, other points of interest	June 2019	Proprietary (root data source is OpenStreet Map [OSM]); supplemented with additional OSM queries*
Population Density	Census tract population density	2017 (will be updated with 2018 in next refresh)	U.S. Census Bureau 2017 American Community Survey (5-year estimates)

^{*}Example of OSM query system; other resources can be used to query OSM

What were the key steps of the analysis?

Analysis Flow

Data Compilation

DCFC Locations (AFDC)

Traffic Volume (HPMS & NPMRDS)

Commercial Activity (OSM)

Population Density (U.S. Census ACS)

Data **Preparation**

1. Roadway Network

 Created first to enable exit/node database generation

Source: HPMS

2. Exit/Node Database

 Roadway network, non-network roadways, and HPMS to locate exit on-ramp locations and major intersections

Spatial Analysis

	Ц			
Distance from node to				
nearest DCFC				
 # of DCFC ports w/in 				

Proximity

• # of DCFC ports w/in 5-/10-/20-mile radius of node

AADT of roadway at node

Traffic Volume

 K-factor (and DHV) of roadway at node # of points w/in 1-mile radius of node

Commercial

Activity

Population density (pop./mi²) of census tract in which node is located

Population

Density

Final Processing

Score between 1 & 10 given to each metric of each node (distributed by decile)

 Example: 1 for population density (very low density), 10 for proximity (no/few existing DCFC nearby) Decile designations for each metric and node are combined to assign a cumulative score for each node

 Deciles are redistributed when node groups change (only one county vs. whole state

Analyses Not Undertaken

- Network Analyst / roadbased distance measurements (analysis and budget constraints; usability)
- Trip-based traffic flows (data cost and modeling constraints)
- Utility electric system data (lack of data and privacy concerns)
- Level 2 or local siting analysis (state interest and planning needs)

What do the results show?

How can the tools be used, and who uses them?

Uses

- Scenario and planning analysis based on customized priorities
- Scoping analysis for state infrastructure development initiatives
- Support for Public Utilities
 Commission electric vehicle proceedings
- Utility or private developer review / comparison of potential development locations

Users

Concord, MA

Headquarters

47 Junction Square Drive Concord, MA 02145 USA

T: +1 978 369 5533 F: +1 978 369 7712

Washington, DC

1225 Eye Street, NW, Suite 200 Washington, DC 20005 USA

T: +1 202 525 5770

For more information, visit www.mjbradley.com