基

础

物

理

学

第一章 质点运动学

运动学研究物质在空间位置的变化与时间的关系或运动的轨道问题。 它只研究物质的机械运动状态, 而不涉及引起运动和改变运动的原因。

1.1 参照系 坐标系 质点

一.参照系

1.什么是参照系?

研究物体运动状态时选作参照的物体.

2.选参照系的原则

使物体运动在该参照系中最简单.

3.运动描述的相对性

相对于不同参照系,同一运动物体表现出的运动规律是不一样的.

二. 坐标系

为标定物体空间位置而设置的坐标系统.

固定在参照系上, 相对于它,物体的位置、速度、加速 度和轨道能进行定量描述。

正交坐标系 (直角坐标系) 极坐标系

球面坐标系

圆柱面坐标系

在同一参照系下选用不同的坐标系,描出的同一运动的物体的运动的规律是一样的.

三.质点

物理学中的一个重要的模型

只有质量、位置,而没有形状、大小、结构的点。

可以作为质点处理的物体的条件:

大小和形状对运动没有影响或影响可以忽略。

- (1)物体的形状、大小与所研究的运动无关,即在研究两个物体之间的相对运动时,如果两者间的距离比物体本身的大小大得多;
- (2) 物体各部分运动情况相同,即物体上任意一点的运动可以代表整个物体的运动。

1.2 描述质点运动学的物理量

一.位置矢量 (位矢 \overrightarrow{r})

确定质点P某一时刻在坐标 系里的位置的物理量

从坐标原点O指向质点位置P的有向线段 \overrightarrow{op}

位置矢量直角坐标中的表示

位矢的大小

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$r = |\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$

位矢的方向 $\cos \alpha = x/r$, $\cos \beta = y/r$, $\cos \gamma = z/r$

质点的运动方程

$$\vec{r}_{(t)} = x_{(t)}\vec{i} + y_{(t)}\vec{j} + z_{(t)}\vec{k}$$
 — 矢量运动方程

$$x = x_{(t)}, y = y_{(t)}, z = z_{(t)}$$
 — 标量运动方程

质点的轨道方程

$$f_{(x,y,z)} = 0$$

二. 位 移△r

在运动过程中,质点的位置矢量随时间t而变,是时间t的函数

$$t$$
 时刻: $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$

$$t + \Delta t$$
 时刻: $\vec{r}' = x'\vec{i} + y'\vec{j} + z'\vec{k}$

 $\frac{A(t)}{Ar} = \frac{As}{R}(t + \Delta t)$

则质点在At时间内的位移为:

$$\Delta \vec{r} = \vec{r}' - \vec{r} = (x' - x)\vec{i} + (y' - y)\vec{j} + (z' - z)\vec{k}$$

其大小
$$\left| \Delta \vec{r} \right| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

方向 由 A指向B.

★ 路程As与位移Ar

位移是在Δt时间间隔内位矢的增量

路程(Δs)是在 Δt 时间间隔内质点运动的路径长度.

区别:

1. 路程△s: 标量; 位移△r: 矢量;

2. 一般
$$\Delta s$$
 $\neq |\overrightarrow{\Delta r}| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$ 但在 $\Delta t \rightarrow 0$ 时, $ds = |\overrightarrow{dr}|$

例、一个粒子在 t_1 位于 $\vec{r}_1 = 5\vec{i} - 7\vec{j}$,在 t_2 位于 $\vec{r}_2 = -3\vec{i} - 5\vec{j}$ 找出该时间间隔内的位移?

解:
$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$$

 $= (-3-5)\vec{i} + (-5+7)\vec{j}$
 $= -8\vec{i} + 2\vec{j}$

三. 速 度 \vec{v} —— 反映运动的快慢程度

$$\vec{v} = \frac{\Delta \vec{r}}{\Delta t}$$

$$\Delta t \rightarrow 0$$

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$
 — 瞬时速度(速度)

直角坐标系中

$$\vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$$

式中 $v_x=dx/dt$, $v_y=dy/dt$, $v_z=dz/dt$

大小

$$\left| \vec{\boldsymbol{v}} \right| = \sqrt{\boldsymbol{v}_x^2 + \boldsymbol{v}_y^2 + \boldsymbol{v}_z^2}$$

方向

质点所在位置的切线方向

单位: m/s

平均速率

$$\overline{v} = \Delta s / \Delta t$$

$$\Delta t \rightarrow 0$$

$$v = \lim \Delta s / \Delta t = ds / dt$$
 — 瞬时速率 $\Delta t \rightarrow 0$

在
$$\Delta t \rightarrow 0$$
时, $ds = |\overrightarrow{dr}|$

瞬时速率是瞬时速度的大小.

四. 加速度 \vec{a} — 描述速度随时间变化的物理量

平均加速度
$$\frac{\vec{a}}{a} = \frac{\Delta \vec{v}}{\Delta t}$$

$$\Delta t \to 0$$
 $\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \frac{d^2 \vec{r}}{dt^2}$

——瞬时加速度

直角坐标系中
$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$$

式中 $a_x = dv_x/dt = d^2x/dt^2$
 $a_y = dv_y/dt = d^2y/dt^2$
 $a_z = dv_z/dt = d^2z/dt^2$

大小:
$$a = |\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

X

单位: m/s²

★运动学中的两类问题

(1) 微分问题:
$$\vec{r} = \vec{r}(t)$$
 \Rightarrow $\vec{v} = \vec{v}(t)$ \Rightarrow $\vec{a} = \vec{a}(t)$

$$\vec{v} = \frac{d\vec{r}}{dt}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2r}{dt^2}$$

(2) 积分问题:

已知: $\vec{v} = \vec{v}(t)$ 和初始条件 $\vec{r}_0 = \vec{r}(t_0)$, 求 $\vec{r} = \vec{r}(t)$

$$\vec{r} = \vec{r}_0 + \int_{t_0}^t \vec{v}(t) \cdot dt$$

已知: $\vec{a} = \vec{a}(t)$ 和初始条件 $\vec{v}_0 = \vec{v}(t_0)$, 求 $\vec{v} = \vec{v}(t)$

$$\vec{v} = \vec{v}_0 + \int_{t_0}^t \vec{a}(t) \cdot dt$$

例: 一质点运动轨迹为抛物线

$$\begin{cases} x = -t^2 & \text{(SI)} \\ y = -t^4 + 2t^2 & \text{(SI)} \end{cases}$$
求: $x = -4$ m时 $(t > 0)$ 粒子的速度、速率、

粒子的速度、速率、 加速度。

解:
$$v_{x} = \frac{dx}{dt} = -2t$$

$$v_{x} = \frac{dx}{dt} = -2t$$

$$v_{x} = \frac{t}{t} = 2$$

$$v_{x} = -4m/s$$

$$v_{x} = -4m/s$$

$$v_y = \frac{dy}{dt} = -4t^3 + 4t$$
 $t = 2$ $v_y = -24m/s$

$$\vec{v} = -4\vec{i} - 24\vec{j} \ m/s$$
 $v = \sqrt{v_x^2 + v_y^2} = 4\sqrt{37} \ m/s$

$$a_x = \frac{dv_x}{dt} = \frac{d^2x}{dt^2} = -2ms^{-2}$$

练习
$$a_y = ?$$
 $a_y = -12t^2 + 4 = -44(ms^{-2})$ $\vec{a} = -2\vec{i} - 44\vec{j} \ m/s^2$

例. 设质点做二维运动: $r = 2ti + (2-t^2)j$ 求t=0秒及t=2秒时质点的速度,并求后者的大小和方向。

解:
$$\vec{v} = \frac{d\vec{r}}{dt} = 2\vec{i} - 2t\vec{j}$$

$$t = 0s \quad \vec{v}_0 = 2\vec{i} \quad t = 2s \quad \vec{v}_2 = 2\vec{i} - 4\vec{j}$$
大小: $v_2 = \sqrt{2^2 + 4^2} = 4.47m/s$
方向: $\theta = \arctan \frac{-4}{2} = -63^{\circ}26'$

$$\theta = \sqrt{2} + 2\pi \sin \theta$$

例 已知某质点的运动方程为:

$$\vec{r} = [(2t^2 - 1)\vec{i} + (2 - t^3)\vec{j}](m)(t > 0)$$

求:

- (1) 轨道方程;
- (2) t=0 (s) 至 t=2 (s) 内的平均速度;
- (3) t=0 (s) 和 t=2 (s) 时的瞬时速度;
- (4) t=0 (s) 至 t=2 (s) 内的平均加速度;
- (5) t=0 (s) 和 t=2 (s) 时的瞬时加速度。

解:

(1)
$$\begin{cases} x = 2t^2 - 1 \\ y = 2 - t^3 \end{cases} \rightarrow y = 2 - \left(\frac{x+1}{2}\right)^{3/2} (x > -1)$$

(2)
$$\vec{r}_0 = -\vec{i} + 2\vec{j}, \vec{r}_2 = 7\vec{i} - 6\vec{j} \rightarrow \Delta \vec{r} = (8\vec{i} - 8\vec{j})(m)$$

$$\frac{\vec{v}}{\vec{v}} = \frac{\Delta \vec{r}}{\Delta t} = (4\vec{i} - 4\vec{j})(m/s)$$

(3)
$$\vec{v} = \frac{d\vec{r}}{dt} = 4t\vec{i} - 3t^2\vec{j}$$

 $\vec{v}_0 = 0, \vec{v}_2 = (8\vec{i} - 12\vec{j})(m/s)$

(4)
$$\vec{v} = \frac{d\vec{r}}{dt} = 4t\vec{i} - 3t^2\vec{j} \rightarrow \vec{v}_0 = 0, \quad \vec{v}_2 = 8\vec{i} - 12\vec{j}$$

$$\bar{\vec{a}} = \frac{\Delta \vec{v}}{\Delta t} = (4\vec{i} - 6\vec{j})(m/s^2)$$

(5)
$$\vec{a} = \frac{d\vec{v}}{dt} = 4\vec{i} - 6t\vec{j}$$

 $\vec{a}_0 = \frac{d\vec{v}}{dt} = 4\vec{i} (m/s^2), \vec{a}_2 = (4\vec{i} - 12\vec{j})(m/s^2)$

例. 一质点在平面内依规律 $x=t^2$ 沿曲线 $y=x^3/320$ 运动,x、y的单位为cm,t为s,求第2秒末和第4秒末的瞬时速度?

解:

$$\therefore x = t^2, y = \frac{x^3}{320} = \frac{t^6}{320}$$

$$\therefore v_x = \frac{dx}{dt} = 2t \qquad v_y = \frac{dy}{dt} = \frac{3}{160}t^5$$

第2秒末

注意: 微分,细心,再细心!!

Carefully!!

$$v_{x2} = 4.0cm / s, v_{y2} = 0.6cm / s$$

$$\vec{v}_2 = v_{x2}\vec{i} + v_{y2}\vec{j} = 4.0\vec{i} + 0.6\vec{j}(cm/s)$$

例. 若某物体沿x轴正向运动,a=4t,t=0时,停在x=10m处,求:r?

解:
$$v = \int a dt = \int 4t dt = 2t^2 + c_1$$

 $t = 0$ $\exists t \in C_1 = 0$
 $\therefore c_1 = 0$
 $\therefore v = 2t^2 \text{ (m/s)}$
 $x = \int v dt = \int 2t^2 dt = 2t^3/3 + c_2$
 $t = 0$ $\exists t \in C_2 = 10$
 $\therefore c_2 = 10$
 $\therefore x = 2t^3/3 + 10 \text{ (m)}$

例. 一质点由静止开始作直线运动,初始加速度为 a_0 ,以后加速度均匀增加,每经过 τ 秒增加 a_0 ,求经过 t秒后质点的速度和运动的距离。

解:据题意知,加速度和时间的关系为:

$$a = a_0 + \frac{a_0}{\tau}t$$
 $\therefore a = \frac{dv}{dt} \therefore dv = adt$

(直线运动中可用标量代替矢量)

$$\mathbf{v} = \int \mathbf{a} dt = \int (\mathbf{a}_0 + \frac{\mathbf{a}_0}{\tau}t)dt = \mathbf{a}_0 t + \frac{\mathbf{a}_0}{2\tau}t^2 + \mathbf{c}_1$$

$$\therefore t = 0 \Rightarrow v = 0 \therefore c_1 = 0 \qquad v = a_0 t + \frac{a_0}{2\tau} t^2$$

$$a = a_0 + \frac{a_0}{\tau}t$$
 $v = \frac{dx}{dt}$ $dx = vdt$

$$\therefore x = \int v dt = \int (a_0 t + \frac{a_0}{2\tau} t^2) dt = \frac{a_0}{2} t^2 + \frac{a_0}{6\tau} t^3 + c_2$$

$$\therefore t = 0 \text{ if } x = 0 \therefore c_2 = 0 \qquad x = \frac{a_0}{2}t^2 + \frac{a_0}{6\tau}t^3$$

$$\int_0^v dv = \int_0^t (a_0 + \frac{a_0}{\tau}t)dt \qquad v = a_0 t + \frac{a_0}{2\tau}t^2$$

$$\int_0^x dx = \int_0^t (a_0 t + \frac{a_0}{2\tau}t^2)dt \qquad x = \frac{a_0}{2}t^2 + \frac{a_0}{6\tau}t^3$$

综合举例

例.已知一人以匀速 v_0 通过定滑轮拉动一小船,问小船距离岸为s时的瞬时速度v,瞬时加速度a?已知岸高为h.

解: 设船与人的距离为l,则 $s=\sqrt{l^2-h^2}$

接速度定义式,得 $v = \frac{ds}{dt} = \frac{2l\frac{dl}{dt}}{2\sqrt{l^2 - h^2}} = \frac{v_0\sqrt{h^2 + s^2}}{s}$

$$\alpha = \frac{dv}{dt} = \frac{dv}{ds} \cdot \frac{ds}{dt} = \frac{dv}{ds} \cdot v$$

$$=\frac{dv}{ds}\cdot\frac{\sqrt{h^2+s^2}}{s}\cdot v_0$$

$$=-\frac{h^2 \cdot v_0^2}{s^3}$$

1.3 直线运动

直线运动中,位移,速度,加速度各矢量都在同一直线上,所以可把有关各量用标量来表示.

$$x = x(t)$$
, $v = dx/dt$, $a = dv/dt = d^2x/dt^2$

- 一. 用图示法表示直线运动的运动情况
 - 1. 位移时间曲线 (x-t曲线)
- (1). 平均速度 \overrightarrow{v} 割线斜率 $x+\Delta x$
- (2). 瞬时速度 \vec{v} 切线斜率

(3). 质点运动方向 --- v>0, x轴正向 v<0, x轴负向

2. 速度时间曲线 (v-t曲线)

- (1). 瞬时加速度 \vec{a} 一切线的斜率
- (2). 位移的量值 阴影部分的面积

t₁到t₂时间段的位移为

$$\boldsymbol{x}_2 - \boldsymbol{x}_1 = \int_{t_1}^{t_2} \boldsymbol{v} dt$$

二. 几种常见直线运动

1. 匀速直线运动 (a=0)

$$x-x_0=vt$$
 $\therefore x=x_0+vt$

2. 匀变速直线运动 (a≠0,a 不变)

$$x - x_0 = \frac{v_0 + v}{2}t$$

$$v = v_0 + at$$

$$x - x_0 = v_0 t + \frac{1}{2}at^2$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

$$x - x_0 = \frac{v^2 - v_0^2}{2a}$$

3. 变速直线运动 (a ≠ 0, a 变化)

具体情况具体分析

1.4 曲线运动

- 一. 圆周运动
- 1. 匀速圆周运动 (速率恒定不变, 求不是常量)

在 Δt 内,速度变化 $\Delta \vec{v}$

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t}$$

$$\Delta t \to 0$$

$$a = v^2/R$$

方向指向圆心.

2. 变速圆周运动

在 Δt 内,速度变化 $\Delta \vec{v}$

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}_n}{\Delta t} + \lim_{\Delta t \to 0} \frac{\Delta \vec{v}_\tau}{\Delta t} = \vec{a}_n + \vec{a}_\tau$$

$$a_n = v^2/R$$
 — 法向加速度

$$a_t = dv/dt$$
 — 切向加速度

$$a = \sqrt{a_n^2 + a_t^2} \qquad tg \theta = \frac{a_n}{a_t}$$

三. 圆周运动的角量表示

- 1. 几个基本概念
 - (1). 角位置: θ
 - (2). 角位移: △θ

单位: 弧度 (rad)

逆时钟 正顺时钟 负

质点在At内 Aθ的角位移

$$\overline{w} = \Delta \theta / \Delta t$$
 — 平均角速度

$$\Delta t \rightarrow 0$$

$$w = \lim_{\Delta t \to 0} \Delta \theta / \Delta t = d\theta / dt$$

单位: 弧度/秒 (rad/s) 转/秒 (r/s) 转/分 (r/min)

(4). 角加速度 β

$$t \to t + \Delta t \qquad w \to w + \Delta w$$
$$\overline{\beta} = \frac{\Delta w}{\Delta t} \qquad \text{平均角加速度}$$
$$\Delta t \to 0$$

$$\beta = \lim_{\Delta t \to 0} \Delta w / \Delta t = dw / dt$$

单位: 弧度/秒² (rad/s²)

2. 运动方程

(1). 匀速圆周运动($\beta=0$)

$$\theta = \theta_0 + wt$$

(2). 匀加速圆周运动(β 是常量)

$$w = w_0 + \beta t$$
 $\theta = \theta_0 + w_0 t + \frac{1}{2} \beta t^2$
3. 线量与角量的关系

$$\begin{cases} v = wR \\ a_n = v^2/R = Rw^2 \\ a_t = dv/dt = d(Rw)/dt = R\beta \\ \Delta s = R\Delta\theta \end{cases}$$

例. 一质点以R为半径作圆周运动,质点沿圆周所经历的路程可表达为 $s = bt^2/2$,其中b是常数.求质点在时刻t的速率v,法向加速度 a_n 的大小,切向加速度 a_t 的大小及总加速度a?

解:

$$v = \frac{ds}{dt} = \frac{d}{dt} \left(\frac{1}{2} bt^2 \right) = bt$$

$$\therefore a_n = \frac{v^2}{R} = \frac{b^2 t^2}{R}$$

$$a_t = \frac{dv}{dt} = \frac{d}{dt}(bt) = b$$

$$\therefore a = \sqrt{a_n^2 + a_t^2} = b \cdot \sqrt{\frac{b^2 t^4}{r^2} + 1}$$

$$\tan \theta = \frac{a_n}{a_t} = \frac{bt^2}{R}$$

解: (1)
$$w = \frac{d\theta}{dt} = 12t^2$$
 , $\beta = \frac{dw}{dt} = 24t$

$$\therefore a_n = rw^2 = 144rt^4 \quad , a_t = r\beta = 24rt$$

$$t = 2s$$
 时, $a_n = 230.4m / s^2$, $a_t = 4.8m / s^2$

(2) 总加速度与半径成 5° 时, $a_n = a_n$

$$\Rightarrow t^3 = \frac{1}{6} \qquad \therefore \theta = 2.67 \, rad$$