HUB X Switch

HUB: Um hub redistribui pacotes para todos os dispositivos conectados, porém apenas aquele com o endereço mac especificado no header do pacote o receberá

Switch: Distribui pacotes apenas para o dispositivo especificado no header do pacote

Camadas OSI

Camada física: Transmissão de dados físicos (sinais elétricos, ópticos);

Camada de Enlace: Controla o acesso e meio de detecção de erros da camada física;

Camada de Rede: Gerencia o roteamento de dados através da rede usando IP's (camada onde o roteador opera)

Camada de transporte: Serviços de comunicação fim a fim, garantindo entrega e segurança dos dados

Camada de sessão: Estabelece mantém e encerra sessões de comunicação dentre apps em sistemas diferentes

Camada de Aplicação: Fornece interfaces para o Usuário final se comunicar com a rede

Camada de apresentação: camada que cuida da tradução, compressão e criptografia dos dados

Protocolo HTTP

Protocolo de rede da internet. Permite que navegadores solicitem páginas da web através de servidores e exibam o conteúdo para o end-user. Esse protocolo opera no modelo cliente-servidor e possui métodos como GET, POST, PUT e DELETE;

Protocolo DNS

Um sistema que traduz nomes de domínio de ip's para links, usado para localizar servidores na internet

Protocolo ARP

Protocolo usado para mapear endereços IP e MAC em uma rede local, permitindo que dispositivos se descubram em uma rede. Normalmente enviado de roteadores ao iniciar para reconhecer os dispositivos de uma rede e os armazenar em cache

Protocolo DHCP

Atribui automaticamente configurações de rede, como IP, máscara de rede e servidores DNS, esse processo é feito por um servidor DHCP, quando recebe uma request de um dispositivo novo na rede

Endereços MAC e IP

O endereço IP é o endereço universal de uma rede, permitindo o dispositivo a se comunicar e acessar a rede. O endereço IP pode ser dividido em classes baseado em seus bits finais

A -> 1 - 126; B -> 128 - 191; C -> 192 - 223; D -> 224 - 239 E -> 240 - 255;

As classes A, B e C são usadas para endereçamento de hosts em redes, enquanto as classes D e E são reservadas.

Um endereço ip identifica qual a rede um dispositivo pertence, com o endereço de broadcast de uma rede (o último ip da rede) se comunicando com todos os dispositivos conectados e o endereço de gateway (primeiro endereço disponível) sendo o endereço do roteador

O endereço MAC de um dispositivo é associado com seu hardware, permitindo uma rede enviar um pacote ARP para esse dispositivo, assim fazendo com que ele seja mapeado na rede local

lp's e máscaras de sub rede

Uma máscara de sub rede é o que define o número de hosts em uma rede específica, sendo o cálculo para fazê-la

 2^n-2 Onde N é o número de bits no último campo. Essa conta especifica o número de hosts suportados na rede

255.255.255.**0**

11111111. 11111111. 11111111.00000000

CIDR	MÁSCARA DE SUB-REDE	MÁSCARA CORINGA	Nº DE ENDEREÇOS IP	ENDEREÇOS IP USÁVEIS
/32	255.255.255	0.0.0.0	1	1
/31	255.255.255.254	0.0.0.1	2	2*
/30	255.255.255.252	0.0.0.3	4	2
/29	255.255.255.248	0.0.0.7	8	6
/28	255.255.255.240	0.0.0.15	16	14
/27	255.255.255.224	0.0.0.31	32	30
/26	255.255.255.192	0.0.0.63	64	62
/25	255.255.255.128	0.0.0.127	128	126
/24	255.255.255.0	0.0.0.255	256	254

O endereço de broadcast será sempre o (número de de hosts + a máscara de rede) + 1

O endereço de getway(roteador) será sempre o primeiro endereço host disponível

Vlan vs Subrede

Uma Vlan é uma subrede virtual criada na camada de enlace, isolando o tráfego em redes virtuais segmentadas, mesmo que os usuários não estejam na mesma rede local, virtualmente estão na mesma rede

Já a SubRede é apenas a subdivisão de uma rede em redes menores usando máscaras de rede de forma local e física