Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 17

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V3.	Mark:					
Determine if the vectors	$\begin{bmatrix} 8 \\ 21 \\ -7 \end{bmatrix},$	$\begin{bmatrix} -3 \\ -8 \\ 3 \end{bmatrix},$	$\begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$, and	$\begin{bmatrix} 4 \\ 11 \\ -5 \end{bmatrix}$	span \mathbb{R}^3 .

Solution:

$$RREF\left(\begin{bmatrix} 8 & -3 & -1 & 4\\ 21 & -8 & -3 & 11\\ -7 & 3 & 2 & -5 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 1 & -1\\ 0 & 1 & 3 & -4\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the rank is less than 3, they do not span \mathbb{R}^3 .

Standard V4.

Mark:

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x + y + z = 0 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Solution: Yes, because z = -x - y and $a \begin{bmatrix} x_1 \\ y_1 \\ -x_1 - y_1 \end{bmatrix} + b \begin{bmatrix} x_2 \\ y_2 \\ -x_2 - y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + bx_2 \\ ay_1 + by_2 \\ -(ax_1 + bx_2) - (ay_1 + by_2) \end{bmatrix}$. Alternately, yes because W is isomorphic to \mathbb{R}^2 .

Standard S2.

Mark:

Determine if the set $\{x^3 - x, x^2 + x + 1, x^3 - x^2 + 2, 2x^2 - 1\}$ is a basis of \mathcal{P}_3

Solution:

$$RREF \left(\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 2 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix is not the identity matrix, it is not a basis.

Additional Notes/Marks