ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Образовательная программа бакалавриата «Программная инженерия»

ПРОВЕРКА ВОЗМОЖНОСТИ ТРЕХ ОТРЕЗКОВ БЫТЬ СТОРОНАМИ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА

Пояснительная записка

Исполнитель: студент группы БПИ-191 / В. Е. Бобров / «1» ноября 2020 г.

1. ТЕКСТ ЗАДАНИЯ

Разработать программу, которая по параметрам трёх отрезков (задаются декартовыми координатами концов отрезков в виде целых машинных слов без знака) решает, могут ли являться эти отрезки сторонами прямоугольного треугольника

2. РАСЧЕТНЫЕ МЕТОДЫ

При выполнении микропроекта использовалась теорема Пифагора. С ее помощью находились квадраты длин отрезков по их координатам, а также проверялось, могут ли эти отрезки быть сторонами прямоугольного треугольника.

3. ДОПУСТИМЫЕ ЗНАЧЕНИЯ

Для каждой из координат допустимым значением считается целое число от 0 до 65535 включительно.

4. ТЕСТОВЫЕ ДАННЫЕ

Вводится всегда 12 чисел по порядку: x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6. Первые 4- для первого отрезка, далее 4- для второго отрезка, последние 4- для третьего отрезка.

1) Проверим Пифагорову тройку (3 4 5)

Входные данные: 0 0 0 3 0 0 0 4 0 0 0 5

Выходные данные: Yes (см. скрин 1)

2) Проверим, что смещенные параллельно отрезки тоже работают

Входные данные: 1 2 1 5 3 4 3 8 6 7 6 12

Выходные данные: Yes (см. скрин 2)

3) Проверим "непифагорову" тройку (5 6 7)

Входные данные: 0 0 0 5 0 0 0 6 0 0 0 7

Выходные данные: No (см. скрин 3)

4) Проверим что смещенные параллельно отрезки тоже работают

Входные данные: 2 3 2 8 4 5 4 11 10 11 10 18

Выходные данные: No (см. скрин 4)

5) Проверим, что если отрезок нулевой длины, то это уже не треугольник (даже если теорема Пифагора выполняется)

Входные данные: 1 4 1 4 0 0 0 4 0 0 0 5

Выходные данные: No (см. скрин 5)

6) Проверим граничные длины (составим самый большой подходящий треугольник)

Входные данные: 0 0 0 65535 0 0 65535 0 0 65535 65535 0

Выходные данные: Yes (см. скрин 6)

7) Если на любом вводе ввести число, выходящее за границы, придется ввести заново (см. скрин 7)

5. ТЕКСТ ПРОГРАММЫ

format PE console

entry start

include 'win32a.inc'

section '.data' data readable writable

; Input data

- x1 dd?
- x2 dd?
- x3 dd?
- x4 dd?
- x5 dd?
- x6 dd?
- y1 dd?
- y2 dd?
- y3 dd?
- y4 dd?
- y5 dd?
- y6 dd?

; Temp data

- dx1 dd?; delta(x1, x2) = x1 x2
- dx2 dd?; delta(x3, x4)

```
dx3 dd?
```

sdx1 dd?; squared(delta(x1, x2)) =
$$(x1 - x2)^2$$

; strings for printf

strScanInt db '%d', 0

strScanUint db '%u', 0

strNewline db 10, 13, 0

strEnterSection1 db 'Enter section 1:', 10, 13, 0

strEnterSection2 db 'Enter section 2:', 10, 13, 0

strEnterSection3 db 'Enter section 3:', 10, 13, 0

strEnterX1Coordinate db 'Enter x1 coordinate: ', 0

strEnterY1Coordinate db 'Enter y1 coordinate: ', 0

strEnterX2Coordinate db 'Enter x2 coordinate: ', 0

```
strYes
                       db 'Yes', 10, 13, 0
                      db 'No', 10, 13, 0
    strNo
    NULL = 0
    tempStack
                 dd?; for returning from functions
section '.code' code readable executable
start:
    call Input; Input data
    call RightTriangle; Decide whether it can be a triangle
finish:
    call [getch]
    push NULL
    call [ExitProcess]
Input:
    mov [tempStack], esp ; remember stack position
    push strEnterSection1; enter section 1
```

strEnterY2Coordinate

db 'Enter y2 coordinate: ', 0

```
EnterX1:
                   ; enter x1
push strEnterX1Coordinate
call [printf]
push x1
push strScanInt
call [scanf]
cmp[x1], 0; reenter if out of bounds
jl EnterX1
cmp[x1], 65535
jg EnterX1
             ; same for all coordinates
EnterY1:
push strEnterY1Coordinate
call [printf]
push y1
push strScanInt
call [scanf]
cmp [y1], 0
jl EnterY1
```

cmp[y1], 65535

call [printf]

```
jg EnterY1
EnterX2:
push strEnterX2Coordinate
call [printf]
push x2
push strScanInt
call [scanf]
cmp [x2], 0
jl EnterX2
cmp[x2], 65535
jg EnterX2
EnterY2:
push strEnterY2Coordinate
call [printf]
push y2
push strScanInt
call [scanf]
cmp [y2], 0
```

jl EnterY2

cmp[y2], 65535

```
push strEnterSection2; same for all sections
call [printf]
EnterX3:
push strEnterX1Coordinate
call [printf]
push x3
push strScanInt
call [scanf]
cmp [x3], 0
jl EnterX3
cmp[x3], 65535
jg EnterX3
EnterY3:
push strEnterY1Coordinate
call [printf]
push y3
push strScanInt
```

jg EnterY2

call [scanf]

```
cmp [y3], 0
jl EnterY3
cmp[y3], 65535
jg EnterY3
EnterX4:
push strEnterX2Coordinate
call [printf]
push x4
push strScanInt
call [scanf]
cmp [x4], 0
jl EnterX4
cmp[x4], 65535
jg EnterX4
EnterY4:
push strEnterY2Coordinate
call [printf]
push y4
push strScanInt
call [scanf]
```

```
cmp [y4], 0
jl EnterY4
cmp[y4], 65535
jg EnterY4
push strEnterSection3
call [printf]
EnterX5:
push strEnterX1Coordinate
call [printf]
push x5
push strScanInt
call [scanf]
cmp [x5], 0
jl EnterX5
cmp[x5], 65535
jg EnterX5
EnterY5:
push strEnterY1Coordinate
call [printf]
push y5
```

```
push strScanInt
call [scanf]
cmp [y5], 0
jl EnterY5
cmp[y5], 65535
jg EnterY5
EnterX6:
push strEnterX2Coordinate
call [printf]
push x6
push strScanInt
call [scanf]
cmp [x6], 0
jl EnterX6
cmp[x6], 65535
jg EnterX6
EnterY6:
push strEnterY2Coordinate
call [printf]
push y6
```

```
push strScanInt
    call [scanf]
    cmp [y6], 0
    jl EnterY6
    cmp[y6], 65535
    jg EnterY6
    jmp EndInput; return from function
EndInput:
    mov esp, [tempStack]; restore stack position
    ret; return from function
RightTriangle:
    mov eax, [x1]; count x1 - x2
    sub eax, [x2]
    mov [dx1], eax
    mov ecx, [dx1]; count (x1 - x2)^2
    imul ecx, [dx1]
    mov [sdx1], ecx
    mov eax, [y1]; same for y1, y2
    sub eax, [y2]
```

```
mov [dy1], eax
mov ecx, [dy1]
imul ecx, [dy1]
mov [sdy1], ecx
mov eax, [sdx1]; count squared length of first section, using Pifagor's theorem
add eax, [sdy1]
mov [sl1], eax
cmp [sl1], 0; if section's length equals to 0, then it can't be a triangle
je No
mov eax, [x3]; same for all sections
sub eax, [x4]
mov [dx2], eax
mov ecx, [dx2]
imul ecx, [dx2]
mov [sdx2], ecx
mov eax, [y3]
sub eax, [y4]
mov [dy2], eax
mov ecx, [dy2]
imul ecx, [dy2]
mov [sdy2], ecx
mov eax, [sdx2]
add eax, [sdy2]
```

```
mov [sl2], eax
cmp [sl2], 0
je No
mov eax, [x5]
sub eax, [x6]
mov [dx3], eax
mov ecx, [dx3]
imul ecx, [dx3]
mov [sdx3], ecx
mov eax, [y5]
sub eax, [y6]
mov [dy3], eax
mov ecx, [dy3]
imul ecx, [dy3]
mov [sdy3], ecx
mov eax, [sdx3]
add eax, [sdy3]
mov [sl3], eax
cmp [sl3], 0
je No
mov eax, [sl1]; check three combinations of sides using Pifagor's theorem
add eax, [sl2]
```

```
cmp eax, [sl3]
je Yes
mov eax, [sl2]
add eax, [sl3]
cmp eax, [sl1]
je Yes
mov eax, [sl1]
add eax, [sl3]
cmp eax, [sl2]
je Yes
No: ; can't be a triangle
push strNo
call [printf]
jmp EndRightTriangle
Yes: ; can be a triangle
push strYes
call [printf]
jmp EndRightTriangle
```

```
EndRightTriangle:
     mov esp, [tempStack]
     ret
section '.idata' import data readable
     library kernel, 'kernel32.dll',\
          msvcrt, 'msvcrt.dll'
     import kernel,\setminus
          ExitProcess, 'ExitProcess'
     import msvcrt,\
          printf, 'printf',\
          getch, '_getch',\
          scanf, 'scanf'
```

источники:

1. YouTube Byte++ FASM [Электронный ресурс] – Режим доступа: https://www.youtube.com/playlist?list=PLH3y3SWteZd3Pwn81m_Z-iHp3imgkVUcs, свободный. (дата обращения: 01.11.20)