

802.15.4 Family of RF Modules

High Performance and Long Range

DiZiC 802.15.4 DZ-ZB RF Modules

Quickly add wireless capability with these high performance ZigBee compliant modules

The DiZiC DZ-ZB 802.15.4 Modules allow you to quickly add wireless networking capabilities to your products. These ZigBee-compliant modules are ready-to-use, simple to operate, and available in a wide range of configurations. They are ideal for industrial sensors, consumer remote controls, home appliances, and more.

Features

- STM32W108 ZigBee / IEEE 802.15.4 SoC
 - Complete System-on-Chip
 - 32-bit ARM® Cortex-M3 processor
 - 2.4 GHz IEEE 802.15.4 transceiver & lower MAC
 - · Supports 16 channels
 - 128 kB flash, 8 kB SRAM memory
 - 128-bit AES encryption accelerator
 - Flexible ADC, SPI/UART/TWI serial communications, and general purpose timers
 - 24 highly configurable GPIO with Schmitt trigger inputs
 - · Data rate up to 250 kbit/s
- Low power consumption, advanced management:
 - RX Current (w/ CPU): 27 mA
 - TX Current (w/ CPU, +3 dBm TX): 31 mA
 - Low deep sleep current with retained RAM and CRIO:
 - 400 nA/800 nA with/without sleep timer
 - Low-frequency internal RC oscillator for low-power sleep timing
 - High-frequency internal RC oscillator for fast (100 µsec) processor start-up from sleep
- Innovative network and processor debug:
 - · Serial Wire/JTAG interface
 - Standard ARM debug capabilities: Flash Patch & Breakpoint; Data Watch-point & Trace; Instrumentation Trace Macrocell
- Exceptional RF Performance
 - Normal mode Link Budget up to 102 dB; configurable up to 107 dB
 - -99 dBm normal RX sensitivity; configurable to -100 dBm (1%PER, 20 byte packet)
 - +3 dB normal mode output power; configurable up to
 - · Robust WiFi and Bluetooth coexistence

- Application Flexibility:
 - Single voltage operation: 2.1 V to 3.6 V
 - Optional 32.768 kHz crystal for higher timer accuracy
 - Low external component count with single 24 MHz crystal
 - · External power amplifier versions
- Peripherals
 - 24 GPIOs, SPI, USART, and I2C
 - · 12-bit ADC with up to 6 inputs
 - · 2x 16-bit timers
 - DMA controller
- Power Level Options:
 - standard power level (+7 dBm)
 - Or two RF Front End (PA and LNA, +20 dBm) versions.
- RF Output Options:
 - · Chip antenna
 - · U.FL connector
 - · Single port 50 Ohm RF pad.
- ZigBee Software Stack Options:
 - · EmberZNet PRO ZigBee stack
 - · RF4CE stack
 - · Low level PHY / MAC stack.
- EMI Options:
 - · Standard version without shielding
 - · Metal shielding protection

Target Applications

- Smart Energy
- Building automation and control (HVAC)
- · Home automation and control
- · Security and monitoring
- · AMR/AMI
- Logistic & Asset tracking
- Medical
- General ZigBee wireless sensor networking
- Active RFID
- · Wireless hand-held terminals
- · Industry telemetry /automatic data collection
- Temperature and humidity control systems
- · Traffic and control for street lamp

Table of Contents

List of Tables	
1. Product Approvals	
1.1. FCC Approvals	
1.2. IC (Industry Canada) Approvals	
1.3. European Certification (ETSI)	
2. Configurations	
2.1. Power Level Options: Codes [S] [R] or [T]	
2.2. RF Output Options: Codes [A] [P] or [U]	
2.3. ZigBee Stack Options: Codes [F] [X] or [Z]	
2.4. EMI Protection Options: [M] or [S]	
2.5. Configuration Options Matrix	
3. Block Diagram	
4. Absolute Maximum Ratings	
4.1. Voltage Characteristics	
4.2. Current Characteristics	
4.3. Thermal Characteristics	
5. Components	
5.1. STM32W108 – System-on-Chip Transceiver	
5.2.1. IEEE 802.15.4 Compliant Transceiver	
5.3.2. Operation Modes	
5.4.3. Flash and RAM Memory	
5.5.4. Integrated MAC Functions	10
5.6.5. Power Management	10
5.7.6. Peripherals	10
5.8.7. Interfaces	10
5.9. + 20 dBm Front End (PA and LNA) with RF Output Power Level Detector	11
5.10. + 20 dBm RF Front End Front End (PA and LNA)	
5.11. ZigBee Stacks	
6. Electrical Characteristics	
6.1. Parameter conditions	15
6.2.1. Minimum and Maximum Values	
6.3.2. Typical values	
6.4. Operating Conditions	
6.5.1. General Operating Conditions	
6.6.2. Electrostatic Discharge (ESD)	
6.7.3. DC Characteristics	
6.8. RF Characteristic	
6.9.1. Receiver Characteristics	
6.10.2. Transmitter Characteristics	
7. Mechanical Characteristics	
7.1. Module Pad Diagram	
7.2. Module Pads	
7.3. Package Mechanical Dimensions	
8. Soldering	
8.1. Solder Temperature Profile	
8.2.1. Reflow Profile	
8.3. Profile Parameters	
8.4. Recommended Footprint	
9. Ordering Information	
10. Acronyms	37
11. References	39

List of Tables

Table 1: Power level options	4
Table 2: Output Options	4
Table 3: ZigBee Stack Options	4
Table 4: SEMI Protection Options	5
Table 5: DZ-ZB module options set	5
Table 6: Configuration options matrix	5
Table 7: Voltage characteristics	8
Table 8: Current characteristics	8
Table 9: Thermal characteristics	8
Table 10: Functional description of the Front End signals	
Table 11: Functional description of the Front End signals	3
Table 12: General operating conditions	5
Table 13: ESD absolute maximum ratings	6
Table 14: DC electrical characteristics	
Table 15: Receiver characteristics	
Table 16: Transmitter characteristics	
Table 17: Pad description	:1
Table 18: Solder Reflow Parameters	3

List of Figures

Figure 1: DZ-ZB module configurations	3
Figure 2: Block diagram of DZ-ZB RF Modules	7
Figure 3: Block diagram of System-on-Chip STM32W108	ć
Figure 4: Module block diagram with front end incorporating RF power level detector (Power level option "R")	11
Figure 5: Block diagram of the module with front end (Power level option "T")	12
Figure 6: Available stacks	13
Figure 7: Pad connection diagram for modules (top view)	21
Figure 8: Standard module dimensions without metal shielding	30
Figure 9: Dimensions with metal shielding (Enhanced EMI protection)	30
Figure 10: Reflow profile	33
Figure 11: Recommended footprint for modules (top view)	34
Figure 12: Recommended "Copper-Keep-Out" Area (top view) – only for modules with Output Option "A"	35

1 Product Approvals

The DZ-ZB-S-A has been designed to meet all national regulations for world-wide use.

1.1 FCC Approvals

The DZ-ZB-S-A with integrated Antenna has been tested to comply with **FCC CFR Part 15** (USA) The devices meet the requirements for modular transmitter approval as detailed in the **FCC public notice DA00.1407.transmitter**.

FCC statement:

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC ID: YCMDZZBSA

The FCC requires the user to be notified that any changes or modifications made to this device that are not expressly approved by DiZiC Co., Ltd. may void the user's authority to operate the equipment.

[Paragraph Number] FCC Labelling Requirements

When integrating the DZ-ZB-S-A into a product it must be ensured that the FCC labelling requirements are met. This includes a clearly visible label on the outside of the finished product specifying the DiZiC FCC identifier (FCC ID: YCMDZZBSA) as well as the FCC notice shown on the previous page. This exterior label can use wording such as "Contains Transmitter Module FCC ID: YCMDZZBSA" or "Contains FCC ID: YCMDZZBSA" although any similar wording that expresses the same meaning may be used. [Paragraph Number]

1.2 IC (Industry Canada) Approvals

The DiZiC DS-ZB-S-A with integrated Antenna has been tested to comply with IC.

IC-ID: 9022A-DZZBSA

The labelling requirements for Industry Canada are similar to those of the FCC. Again, a clearly visibly label must be placed on the outside of the finished product stating something like "Contains Transmitter Module, IC: 9022A-DZZBSA", although any similar wording that expresses the same meaning may be used.

The integrator is responsible for the final product to comply to IC ICES-003 and FCC Part 15, Sub. B - Unintentional Radiators.

1.3 European Certification (ETSI)

The DZ-ZB-S-A has been certified to the following standards:

Radio: EN 300 328:V1.7.1EMC: EN 301 489-17:V2.1.1

Safety: EN 60950-1:2005 (Ed. 2.0)

If the DZ-ZB-S-A module is incorporated into an OEM product, the OEM product manufacturer must ensure compliance of the final product to the European Harmonised EMC, and low voltage/

1 Product Approvals

DiZiC 802.15.4 DZ-ZB RF Modules

safety standards. A Declaration of Conformity must be issued for each of these standards and kept on file as described in Annex II of the R&TTE Directive. The final product must not exceed the specified power ratings, antenna specifications and installation requirements as specified in this user manual. If any of these specifications are exceeded in the final product then a submission must be made to a notified body for compliance testing to all of the required standards.

The 'CE' marking must be applied to a visible location on any OEM product. For more information please refer to http://ec.europa.eu/enterprise/faq/ce-mark.htm. Customers assume full responsibility for learning and meeting the required guidelines for each country in their distribution market.

2 Configurations

Four set of options are used to configure the *DZ-ZB Modules* based on user requirements: Output Options, Power Level Options, ZigBee Stack Options, and EMI Protection Options (not shown below).

EMI	Power		Output Option						
Protection Option	Level Option	50 Ohm RF Pad	U.FL Connector	Embedded Antenna					
(bu	Standard +7 dBm	DZ_ZB_S-P-a-S	DZ_ZB_S-U-a-S	DZ_ZB_S-A-a-S					
Standard (No shielding)	Front End +20 dBm	DZ_ZB_T-P-a-S	DZ_ZB_T-U-a-S	DZ_ZB_T-A-a-S					
<i>t</i> s	Front End +20 dBm with Power Level Detector	DZ_ZB_R-P-a-S	DZ_ZB_R-U-a-S	DZ_ZB_R-A-a-S					
otection	Standard +7 dBm	DZ_ZB_S-P-a-M	DZ_ZB_S-U-a-M	DZ_ZB_S-A-a-M					
Enhanced Interference Protection	Front End +20 dBm	DZ_ZB_T-P-a-M	DZ_ZB_T-U-a-M	DZ_ZB_T-A-a-M					
Enhanc	Front End +20 dBm with Power Level Detector	DZ_ZB_R-P-a-M	DZ_ZB_R-U-a-M	DZ_ZB_R-A-a-M					
F RF4CE St X Proprietar	where "a" represents Stack Option, one of: F RF4CE Stack X Proprietary Stack Z EmberZNet Pro Stack								

Figure 1: DZ-ZB module configurations

 July 2010
 Doc ID: PB-ZB-MOD-003-20DS
 Page 3

2.1 Power Level Options: Codes [S] [R] or [T]

Three power level options are available, including a standard module without a power amplifier and two modules with power amplifiers sourced from two vendors.

Table 1: Power level options

Selector	Option	Description
[S]	Standard + 7dBm	STM32W chip: System on Chip - where radio, microcontroller, program/user memory, RAM, ZigBee protocols stack are integrated in one chip.
[R]	Front End (PA and LNA) with RF output power level detector + 20 dBm	ADD DESCRIPTION
[T]	Front End (PA and LNA) + 20 dBm	ADD DESCRIPTION

2.2 RF Output Options: Codes [A] [P] or [U]

Three RF output options are available, including an onboard antenna, an RF pad, and an U.FL connector.

Table 2: Output Options

Selector	Option	Description
[A]	Embedded SMD Antenna	ADD DESCRIPTION
[P]	Single ended 50 Ω RF Pad	ADD DESCRIPTION
[U]	U.FL 50 Ω coaxial connector	ADD DESCRIPTION

2.3 ZigBee Stack Options: Codes [F] [X] or [Z]

Three ZigBee stack options are available, including an RF4CE stack, a stack from Ember, and a proprietary stack. Programming instructions for each of the ZigBee stacks are included on the product CD.

Table 3: ZigBee Stack Options

Selector	Option	Description
[F]	RF4CE stack	ADD DESCRIPTION
[X]	Proprietary stack	ADD DESCRIPTION
[Z]	EmberZnet PRO stack	ADD DESCRIPTION

2.4 EMI Protection Options: [M] or [S]

A metal shield cap can be added to the module for EMI protection.

Table 4: SEMI Protection Options

Selector	Option	Description
[M]	Metal shield cap	Enables enhanced level of electromagnetic immunity (EMI) protection.
[S]	Standard module	RF Module without metal shielding.

2.5 Configuration Options Matrix

Table 5 below shows all the available options for the DZ-ZB Module.

Table 5: DZ-ZB module options set

RF Output		Outp	ut Power Level	Softv	vare Stack	EMI Protection		
Cod e	Description	Cod e	Description	Cod e	Description	Cod e	Description	
А	Embedded SMD Antenna	S	Standard + 7dBm	F	RF4CE stack	М	Metal shield cap	
Р	Single ended 50 Ω RF Pad	R	Front End (PA and LNA) with RF out- put power level detector + 20 dBm	X	Proprietary stack	S	Standard module	
U	U.FL 50 Ω coaxial connector	Т	Front End (PA and LNA) + 20 dBm	Z	EmberZnet PRO stack			

With these options, a total of 54 configurations of the *DZ-ZB module* are possible. Table 6 provides a matrix of these configurations and the associated codes, which are used when ordering the module.

Table 6: Configuration options matrix

				A			P U											
		F)	(2	Z	F)	(:	Z		F)	(2	Z
	М	S	М	S	М	S	М	S	М	S	М	S	М	S	М	S	М	S
S	ASFM	ASFS	ASXM	ASXS	AFZM	AFZS	PSFM	PSFS	PSXM	PSXS	PSZM	PSZS	USFM	USFS	MXSN	SXSN	MZSN	USZS
Œ	ARFM	ARFS	ARXM	ARXS	ARZM	ARZS	PRFM	PRFS	PRXM	PRXS	PRZM	PRXS	URFM	URFS	URXM	URXS	URZM	URZS
H	ATFM	ATFS	MXTA	ATZM	ATXS	ATZS	AOFM	AOFS	AOXM	AOXS	AOZM	AOZS	NTFM	UTFS	MXLN	SXLN	MZLN	UTZS

2 Configurations

DiZiC 802.15.4 DZ-ZB RF Modules

3 Block Diagram

The *DZ-ZB Module* is low-power, highly sensitivity IEEE 802.15.4 / ZigBee-compliant module. This multi-functional device is based on the *STMicroelectronics* STM32W108 fully integrated System-on-Chip^[1] (STM32W108CBU6x version).

This STM32W108 SoC integrates a 2.4 GHz IEEE 802.15.4-compliant transceiver, a 32-bit ARM® Cortex™- M3 microprocessor, Flash and RAM memory, as well as peripherals for use by designers of ZigBee-based systems [2].

Figure 2 below shows a block diagram of the DZ-ZB Module.

Figure 2: Block diagram of DZ-ZB RF Modules

4 Absolute Maximum Ratings

Stresses above the absolute maximum ratings listed in this section may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

4.1 Voltage Characteristics

Table 7: Voltage characteristics

Ratings	Min.	Max.	Unit
Regulator input voltage (VDD_PADS)	-0.3	+3.6	V
RF Input Power (for max level for correct packet reception Receive characteristics) RX signal into a lossless balun		15	dBm
Voltage on any GPIO (PA[7:0], PB[7:0], PC[7:0]), SWCLK, nRESET, VREG_OUT	-0.3	VDD_PADS +0.3	V

4.2 Current Characteristics

Table 8: Current characteristics

Symbol	Ratings	Max.	Unit
IVDD	Total current into VDD/VDDA power lines (source)	150	mA
IVSS	Total current out of VSS ground lines (sink)	150	mA
IIO	Output current sunk by any I/O and control pin	25	mA

4.3 Thermal Characteristics

Table 9: Thermal characteristics

Symbol	Ratings	Value	Unit
TSTG	Storage temperature range	-40 to +140	℃
TJ	Maximum junction temperature	150	.€

5 Components

This section describes the key components of the *DZ-ZB Modules* including the STM32W108 SoC, the RF Front End with RF Output Power Level Detector, the RF Front End (FE), and the Zig-Bee stacks.

5.1 STM32W108 – System-on-Chip Transceiver

The STM32W108 is a fully integrated System-on-Chip that includes:

- 2.4 GHz, IEEE 802.15.4 compliant transceiver
- 32-bit ARM® Cortex™ -M3 microprocessor
- Flash and RAM memory
- Peripherals for use of designers of ZigBee-based systems.

Figure 3 below shows the block diagram of STM32W108.

Figure 3: Block diagram of System-on-Chip STM32W108

5.2.1 IEEE 802.15.4 Compliant Transceiver

This SoC transceiver utilizes an efficient architecture that exceeds the dynamic range requirements imposed by the IEEE 802.15.4-2003 standard by over 15 dB. The integrated receive channel filtering allows for robust

co-existence with other communication standards in the 2.4 GHz spectrum such as IEEE 802.11 and Bluetooth. The integrated regulator, VCO, loop filter, and power amplifier keep the external component count low. An optional high performance radio mode (boost mode) is software-selectable to boost dynamic range.

5.3.2 Operation Modes

The integrated 32-bit ARM® Cortex[™]-M3 microprocessor is highly optimized for high performance, low power consumption, and efficient memory utilization. With its integrated MPU, the STM32W108 supports two different modes of operation: System mode and Application mode.

The networking stack software runs in System Mode with full access to all areas of the chip. Application code, however, runs in Application Mode with limited access to STM32W108 resources. This allows for the scheduling of events by the application developer while preventing modification of restricted areas of memory and registers. This architecture results in increased stability and reliability of deployed solutions.

5.4.3 Flash and RAM Memory

The STM32W108 has 128 Kbytes of embedded Flash memory and 8 Kbytes of integrated RAM for data and program storage. The STM32W108 HAL software employs an effective wear-levelling algorithm that optimizes the lifetime of the embedded Flash.

5.5.4 Integrated MAC Functions

To maintain the strict timing requirements imposed by ZigBee and IEEE 802.15.4-2003 standards, the STM32W108 IC integrates a number of MAC functions into the hardware. The MAC hardware handles automatic ACK transmission and reception, automatic back off delay, and clear channel assessment for transmission, as well as automatic filtering of received packets. A packet trace interface is also integrated in the MAC hardware allowing complete, non-intrusive capture of all packets to and from the STM32W108 IC.

5.6.5 Power Management

The STM32W108 IC offers a number of advanced power management features that enables long battery life. A high-frequency internal RC oscillator allows the processor core to begin code execution quickly upon waking. Various deep sleep modes are available with less than 1 μ s power consumption while retaining RAM contents.

5.7.6 Peripherals

To support user-defined applications, on-chip peripherals include UART, SPI, TWI, ADC, general-purpose timers, and up to 24 GPIOs. Additionally, an integrated voltage regulator, power-on-reset circuit, and sleep timer are available.

5.8.7 Interfaces

The STM32W108 IC utilizes standard Serial Wire and JTAG interfaces for powerful software debugging and programming of the ARM Cortex-M3 core. The STM32W108 IC integrates the standard ARM system debug components including Flash Patch and Breakpoint (FPB), Data Watch-point and Trace (DWT), and Instrumentation Trace Macrocell (ITM).

5.9 + 20 dBm Front End (PA and LNA) with RF Output Power Level Detector

This optional *Front End* (FE) available with the DZ-ZB Module (code [R]) is a fully integrated, single-chip, single-die microwave IC which incorporates all the RF functionality needed for today's wireless communications. The architecture of this FE IC integrates the following all in a BiCMOS single-chip device:

- RF power Level (at PA output) detect circuit
- A Power Amplifier (PA) and a Low Noise Amplifier (LNA)
- TX and RX switching circuitry
- Associated matching network
- Harmonic filter

Combining superior performance, high sensitivity and efficiency, low noise, small form factor, and low cost, this FE is the perfect solution for applications requiring extended range and bandwidth and can result in a potential 10x range increase.

The block diagram of the module with the RF Front End is shown in figure 4 below:

Figure 4: Module block diagram with front end incorporating RF power level detector (Power level option "R")

The table below summarizes the functional description of the signals controlling front end.

Table 10: Functional description of the Front End signals

FE Signal name	Direction	Description	STM32W108 port name
TX_ON	Digital input to FE	When RX_ON = 1: TX_ON = 1:Transmit Mode TX_ON = 0: Receive Mode	PC5, TX_ACTIVE
RX_ON	Digital input to FE	RX_ON = 0: FE in shut down mode RX_ON = 1: FE enabled Transmit / Receive function is determined by TX_ON signal	PC6, nTX_ACTIVE

 July 2010
 Doc ID: PB-ZB-MOD-003-20DS
 Page 11

Table 10: Functional description of the Front End signals

FE Signal name	Direction	Description	STM32W108 port name
PA_DETECT	Analog output from FE	PA_DETECT voltage is proportional to generated RF power at FE output pin. For RF output power between: +5 dBm to +20 dBm PA_DETECT voltage is between 20 mV to 1200 mV respectively	PB5, ADC0

5.10 + 20 dBm RF FRONT END Front End (PA and LNA)

This optional RF Front End is a cost-effective and high performance IC for low-power and low-voltage 2.4-GHz wireless applications. It extends the range for all existing and future 2.4-GHz low-power RF transceivers, transmitters and System-on-Chip products. It increases the link budget by providing a power amplifier for increased output power, and an LNA with low noise figure for improved receiver sensitivity. This FE for high performance wireless applications consists of

- A 20 dBm Power Amplifier (PA) and a Low Noise Amplifier (LNA)
- RF switching circuitry
- RF impedance matching circuits
- Balun

The block diagram of the 20 dBm RF Front End is shown in figure 5 below.

Figure 5: Block diagram of the module with front end (Power level option "T")

Table 11 below summarizes the functional description of the signals controlling front end.

rable 11.1 unclibral description of the Front End signals					
FE Signal name	Direction	Description	STM32W108 port name		
TxRx	Digital input to FE	When ENABLE = 1: TxRx = 1: Transmit Mode TxRx = 0: Receive Mode	PC5, TX_ACTIVE		
HIGH_GAIN	Digital input to FE	Receive only (ENABLE = 1, TxRx = 0): HIGH_GAIN = 1: LNA is in High Gain Mode. LNA Gain = approx. 11dB HIGH_GAIN = 0: LNA is in Low Gain Mode. LNA Gain = approx. 1 dB	PB5, ADC0		
ENABLE	Digital input to FE	ENABLE = 1: FE Enabled ENABLE = 0: FE in power down mode	PC6, nTX_ACTIVE		

Table 11: Functional description of the Front End signals

5.11 ZigBee Stacks

Three ZigBee stacks are available:

- RF4CE (Radio Frequency for Consumer Electronics) stack, which is used primarily for a wide range of remotely-controlled audio/visual consumer electronics products.
- Proprietary ZigBee stack, which is a robust ZigBee protocol software package for wireless control and monitoring applications.
- EmberZNet PRO stack, which is a complete ZigBee protocol software package containing all the elements required for robust and reliable mesh networking applications.

Figure 6 below shows the a block diagram of the three optional ZigBee stacks.

 July 2010
 Doc ID: PB-ZB-MOD-003-20DS
 Page 13

6 Electrical Characteristics

6.1 Parameter conditions

Note: Unless otherwise specified, all voltages are referenced as VSS.

6.2.1 Minimum and Maximum Values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation, and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3).

6.3.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25\,^{\circ}\text{C}$, $VDD = 3.3\,\text{V}$ (for the $2V\,\text{VDD}$ 3.6 $V\,\text{Voltage}$ range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range.

6.4 Operating Conditions

6.5.1 General Operating Conditions

Table 12: General operating conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD_PADS	Regulator input voltage (VDD_PADS)	2.1	-	3.6	V
TOP	Operating temperature range	-40	_	85	℃

6.6.2 Electrostatic Discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts x (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Table 13: ESD absolute maximum ratings

Symbol	Ratings	Conditions	Class	Maximum value	Unit
VESD (HBM)	Electrostatic discharge volt- age (Human Body Model)	TA = +25 ℃ conforming to JESD22-A114	2	±2000	V
VESD (CDM)	Electrostatic discharge volt- age (Charge Device Model) for non-RF pins	TA = +25 ℃ conforming to JESD22-C101	II	±400	
	Electrostatic discharge volt- age (Charge Device Model) for RF pins			±225	
MSL	Moisture sensitivity level	_	_	MSL3	-

6.7.3 DC Characteristics

Table 14: DC electrical characteristics

Table 11. De dictilial characteristics					
Parameter	Conditions	Typical value for module (Power Level Option)			Unit
	Conditions	"S" Standard	"R" Front End	"T" Front End	O.I.I.
Regulator input voltage (VDD_PADS)	-	2.0 - 3.6	-	-	V
Deep Sleep Current					
Quiescent current, internal RC oscillator	-40 °C, VDD_PADS = 3.6 V	0.4	_	_	Α
disabled	+25℃, VDD_PADS = 3.6 V	0.4	5.4	0.7	Α
	+85℃, VDD_PADS = 3.6 V	0.6	_	_	Α
Quiescent current, including internal	-40°C, VDD_PADS = 3.6 V	0.7	_	_	Α
RC oscillator	+25℃, VDD_PADS = 3.6 V	0.8	5.8	1.1	Α
	+85 °C, VDD_PADS = 3.6 V	1.2	_	_	Α
Quiescent current, including 32.768 kHz oscillator	-40°C, VDD_PADS = 3.6V	1.2	_	_	Α
ing 32.700 ki iz oscillator	+25℃, VDD_PADS = 3.6 V	1.3	6.3	1.6	Α
	+85 °C, VDD_PADS = 3.6 V	1.7	_	_	Α
Quiescent current, including internal RC oscillator	-40 °C, VDD_PADS = 3.6V	1.4	_	_	Α
and 32.768 kHz oscillator	+25 °C, VDD_PADS = 3.6V	1.5	6.5	1.8	Α
	+85 °C, VDD_PADS = 3.6 V	2	_	_	Α
Simulated deep sleep (debug mode) current	With no debugger activity	200	_	_	A

Table 14: DC electrical characteristics (Continued)

	Conditions	Typical value for module (Power Level Option)			
Parameter		"S" Standard	"R" Front End	"T" Front End	- Unit
Reset current					•
Quiescent current, nRESET asserted	Typical at 25 ℃/3 V Max at 85 ℃/3.6 V	1.2	1.2	1.2	mA
Processor and peripheral	currents				
ARM® Cortex-M3, RAM, and flash memory	25℃, 1.8 V memory and 1.25 V core ARM® Cortex- M3 running at 12 MHz from crystal oscillator Radio and all peripherals off	8.0	8.0	8.0	mA
ARM® Cortex-M3, RAM, and flash memory	25℃, 1.8 V memory and 1.25 V core ARM® Cortex- M3 running at 24 MHz from crystal oscillator Radio and all peripherals off	9.0	9.0	9.0	mA
ARM® Cortex-M3, RAM, and flash memory sleep current	25°C, 1.8 V memory and 1.25 V core ARM® Cortex- M3 clocked at 12 MHz from the crystal oscillator Radio and all peripherals off	4.0	4.0	4.0	mA
ARM® Cortex-M3, RAM, and flash memory sleep current	25℃, 1.8 V memory and 1.25 V core ARM® Cortex- M3 clocked at 6 MHz from the high frequency RC oscil- lator Radio and all peripher- als off	2.0	2.0	2.0	mA
Serial controller current	For each controller at maximum data rate	0.2	0.2	0.2	mA
General purpose timer current	For each timer at maximum clock rate	0.1	0.1	0.1	mA
General purpose ADC current	At maximum sample rate, DMA enabled	1.1	1.1	1.1	mA
RX current					
Radio receiver, MAC, and baseband	ARM® Cortex-M3 sleeping	20	27	24	mA
Total RX current (Radio receiver, MAC and base- band, CPU + IRAM, and Flash memory)	VDD_PADS = 3,0 V, 25 ℃, ARM® Cortex-M3 running at 12 MHz	27	34	31	mA
VDD_PADS = 3,0 V, 25 °C, ARM® Cortex-M3 running at 24 MHz	-	28	35	32	mA

Table 14: DC electrical characteristics (Continued)

		`	,		
Parameter	Conditions	Typical value for module (Power Level Option)			Unit
	Conditions	"S" Standard	"R" Front End	"T" Front End	Oilit
Boost mode total RX current (Radio receiver, MAC and baseband, CPU+ IRAM, and Flash memory)	VDD_PADS = 3,0 V, 25 °C, ARM® Cortex-M3 running at 12 MHz	28	35	32	mA
VDD_PADS = 3,0 V, 25 °C, ARM® Cortex-M3 running at 24 MHz	_	29	36	33	mA
TX current					
Radio transmitter, MAC, and baseband	25°C and 1.8 V core; max. power out (+3 dBm typical) ARM® Cortex-M3 sleeping	26	136	138	mA
Total TX current (Radio transmitter, MAC and baseband, CPU +	VDD_PADS = 3.0 V, 25 °C; maximum power setting (+7dBm); running at 24 MHz	40	150	152	mA
IRAM, and Flash memory)	VDD_PADS = 3.0 V, 25 °C; +3 dBm power setting; ARM® Cortex-M3 running at 24 MHz	32	142	144	mA
	VDD_PADS = 3.0 V, 25 °C; 0dBm power setting; ARM® Cortex-M3 running at 24 MHz	30	140	142	mA
	VDD_PADS = 3.0 V, 25 °C; minimum power setting; ARM® Cortex-M3 running at 24 MHz	24	134	136	mA

6.8 RF Characteristic

6.9.1 Receiver Characteristics

Table 15: Receiver characteristics

Parameter	Conditions	Typical value for module (Power Level Option)			IIia
		[S] Standard	[R] Front End	[T] FrontEnd	Unit
Frequency range	-	2400 - 2500			MHz
Sensitivity (boost mode)	1% PER, 20 byte packet defined by IEEE 802.15.4- 2003	-100	TBD	-105	dBm

Table 15: Receiver characteristics

Parameter	Conditions	Typical value for module (Power Level Option)			Unit
	Conditions	[S] Standard	[R] Front End	[T] FrontEnd	Onic
Sensitivity	1% PER, 20 byte packet defined by IEEE 802.15.4- 2003	-99	TBD	-104	dBm
Co-channel rejection	IEEE 802.15.4 signal at -82 dBm	-6	-	_	dBc
Relative frequency error (2 x 40 ppm required by IEEE 802.15.4)	-	-120 +120	_	_	ppm
Relative timing error (2 x 40 ppm required by IEEE 802.15.4)	-	-120 +120	_	_	ppm
Linear RSSI range	As defined by IEEE 802.15.4	40	-	_	dB
RSSI Range	-	-9030	-	_	dBm

6.10.2Transmitter Characteristics

Table 16: Transmitter characteristics

Parameter	Conditions	Typical value for module (Power Level Option)			- Unit
- Tarameter		[S] Standard	[R] Front End	[T] Front End	Onic
Maximum output power (boost mode)	At highest power setting	7	20	20	dBm
Maximum output power	At highest power setting	3	20	20	dBm
Minimum output power	At lowest power setting	-32	-9	-9	dBm
Error vector magnitude	As defined by IEEE 802.15.4, which sets a 35% maximum	5 15			%
Carrier frequency error	-	-40 +40		ppm	
PSD mask relative	3.5 MHz away	-20	_	_	dB
PSD mask absolute	3.5 MHz away	-30	_	_	dBm

6 Electrical Characteristics

DiZiC 802.15.4 DZ-ZB RF Modules

7 Mechanical Characteristics

7.1 Module Pad Diagram

Figure 7: Pad connection diagram for modules (top view)

7.2 Module Pads

Table 17: Pad description

Pad	Signal	Direction	Description
1	GND	Power	Ground supply pad.
2	GND	Power	Ground supply pad.
3	VCC	Power	Power supply pad.
4	VCC	Power	Power supply pad.
5	nRESET	I	Active low chip reset (internal pull-up).
6	PC5	I/O	Digital I/O.
	TX_ACTIVE	0	Logic-level control for external Rx/Tx switch. - The STM32W108 baseband controls TX_ACTIVE and drives it high (VDD_PADS) when in Tx mode. - Select alternate output function with GPIO_PCCFGH[7:4].
7	PC6	I/O	Digital I/O.
	OSC32B	I/O	32.768 kHz crystal oscillator Select analogue function with GPIO_PCCFGH[11:8].
	nTX_ACTIVE	0	Inverted TX_ACTIVE signal (see PC5) Select alternate output function with GPIO_PCCFGH[11:8].

 July 2010
 Doc ID: PB-ZB-MOD-003-20DS
 Page 21

Table 17: Pad description (Continued)

Pad	Signal	Direction	Description	
8	PC7	I/O	Digital I/O.	
	OSC32A	I/O	32.768 kHz crystal oscillator Select analogue function with GPIO_PCCFGH[15:12].	
	OSC32_EXT	I	Digital 32 kHz clock input source.	
9	PA7	I/O High cur- rent	Digital I/O Disable REG_EN with GPIO_DBGCFG[4]. Timer 1 Channel 4 output. Enable timer output with TIM1_CCER. Select alternate output function with GPIO_PACFGH[15:12]. Disable REG_EN with GPIO_DBGCFG[4].	
	TIM1CH4	0		
		I	Timer 1 Channel 4 input. Cannot be remapped.	
	REG_EN	0	External regulator open drain output. (Enabled after reset).	
10	PB3	I/O	Digital I/O	
	TIM2_CH3 See also Pad 13	0	Timer 2 channel 3 output. Enable remap with TIM2_OR[6]. Enable timer output in TIM2_CCER. Select alternate output function with GPIO_PBCFGL[15:12].	
		I	Timer 2 channel 3 input Enable remap with TIM2_OR[6].	
	UART_CTS	I	UART CTS handshake of Serial Controller 1 Enable with SC1_UARTCFG[5] Select UART with SC1_MODE.	
	SC1SCLK	0	SPI master clock of Serial Controller 1. - Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[6] Enable master with SC1_SPICFG[4]. - Select SPI with SC1_MODE. - Select alternate output function with GPIO_PBCFGL[15:12].	
		I	SPI slave clock of Serial Controller 1. Enable slave with SC1_SPICFG[4]. Select SPI with SC1_MODE.	

Table 17: Pad description (Continued)

Pad	Signal	Direction	Description
11	PB4	I/O	Digital I/O
	TIM2_CH4 See also Pad 15	0	Timer 2 channel 4 outputEnable remap with TIM2_OR[7] Enable timer output in TIM2_CCER Select alternate output function with GPIO_PBCFGH[3:0].
		I	Timer 2 channel 4 input Enable remap with TIM2_OR[7].
	UART_RTS	0	UART RTS handshake of Serial Controller 1 Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[7] Enable with SC1_UARTCFG[5] Select UART with SC1_MODE Select alternate output function with GPIO_PBCFGH[3:0].
	SC1nSSEL	I	SPI slave select of Serial Controller 1 Enable slave with SC1_SPICFG[4] Select SPI with SC1_MODE.
12	PA0	I/O	Digital I/O
	TIM2_CH1 See also Pad 20	0	Timer 2 channel 1 output. - Disable remap with TIM2_OR[4]. - Enable timer output in TIM2_CCER. - Select alternate output function with GPIO_PACFGL[3:0].
		I	Timer 2 channel 1 inputDisable remap with TIM2_OR[4].
	SC2MOSI	0	SPI master data out of Serial Controller 2. - Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[4]. - Enable master with SC2_SPICFG[4]. - Select SPI with SC2_MODE. - Select alternate output function with GPIO_PACFGL[3:0].
		I	SPI slave data in of Serial Controller 2 - Enable slave with SC2_SPICFG[4] Select SPI with SC2_MODE

Table 17: Pad description (Continued)

Pad	Signal	Direction	Description
13	PA1	I/O	Digital I/O
	TIM2_CH3 See also Pad 10	0	Timer 2 channel 3 output. - Disable remap with TIM2_OR[6]. - Enable timer output in TIM2_CCER. - Select alternate output function with GPIO_PACFGL[7:4].
		I	Timer 2 channel 3 input - Disable remap with TIM2_OR[6]
	TIM2_OR[6] Select TWI with SC2_MODE Select alternate open-drain output function GPIO_PACFGL[7:4]. SC2MISO O SPI slave data out of Serial Controller 2 Either disable timer output in TIM2_CCER, TIM2_OR[6] Enable slave with SC2_SPICFG[4] Select SPI with SC2_MODE.		- Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[6] Select TWI with SC2_MODE. - Select alternate open-drain output function with
			- Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[6] Enable slave with SC2_SPICFG[4].
		I	SPI master data in of Serial Controller 2 Enable slave with SC2_SPICFG[4].
14	GND	Power	Ground supply pad.
15	PA2	I/O	Digital I/O.
	TIM2_CH4 See also Pad 11	0	Timer 2 channel 4 output. - Disable remap with TIM2_OR[7]. - Enable timer output in TIM2_CCER. - Select alternate output function with GPIO_PACFGL[11:8].
	I Timer 2 channel 4 input - Disable remap with TIM2_OR[7].		
- Either disable ti TIM2_OR[7] Select TWI with - Select alternate	TWI clock of Serial Controller 2. - Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[7]. - Select TWI with SC2_MODE. - Select alternate open-drain output function with GPIO_PACFGL[11:8].		
	SC2SCLK	0	SPI master clock of Serial Controller 2. - Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[7]. - Enable master with SC2_SPICFG[4]. - Select SPI with SC2_MODE. - Select alternate output function with GPIO_PACFGL[11:8].
		I	SPI slave clock of Serial Controller 2 Enable slave with SC2_SPICFG[4] Select SPI with SC2_MODE.

Table 17: Pad description (Continued)

Pad	Signal	Direction	Description	
16	PA3	I/O	Digital I/O.	
	SC2nSSEL	I	SPI slave select of Serial Controller 2 Enable slave with SC2_SPICFG[4] Select SPI with SC2_MODE.	
	TRACECLK See also Pad 27	0	Synchronous CPU trace clock. - Either disable timer output in TIM2_CCER, or enable remap with TIM2_OR[5]. - Enable trace interface in ARM core. - Select alternate output function with GPIO_PACFGL[15:12].	
	TIM2_CH2 See also Pad 21	0	Timer 2 channel 2 output. - Disable remap with TIM2_OR[5]. - Enable timer output in TIM2_CCER. - Select alternate output function with GPIO_PACFGL[15:12].	
		I	Timer 2 channel 2 input Disable remap with TIM2_OR[5].	
17	PA4	I/O	Digital I/O.	
	ADC4	Analog	ADC Input 4 - Select analogue function with GPIO_PACFGH[3:0].	
	PTI_EN	0	Frame signal of Packet Trace Interface (PTI). - Disable trace interface in ARM core. - Select alternate output function with GPIO_PACFGH[3:0].	
	TRACEDATA2	0	Synchronous CPU trace data bit 2 Select 4-wire synchronous trace interface in ARM core Enable trace interface in ARM core Select alternate output function with GPIO_PACFGH[3:0].	
18	PA5	I/O	Digital I/O.	
	ADC5	Analog	ADC Inputs - Select analog function with GPIO_PACFGH[7:4].	
	PTI_DATA	0	Data signal of Packet Trace Interface (PTI). - Disable trace interface in ARM core. - Select alternate output function with GPIO_PACFGH[7:4].	
	nBOOTMODE	I	Embedded serial boot-loader activation out of reset Signal is active during and immediately after a reset on nRESET.	
	TRACEDATA3	0	Synchronous CPU trace data bit 3. - Select 4-wire synchronous trace interface in ARM core. - Enable trace interface in ARM core. - Select alternate output function with GPIO_PACFGH[7:4].	
19	PA6	I/O High cur- rent	Digital I/O.	
	TIM1_CH3	0	Timer 1 channel 3 output Enable timer output in TIM1_CCER Select alternate output function with GPIO_PACFGH[11:8].	
		I	Timer 1 channel 3 input - Cannot be remapped.	

Table 17: Pad description (Continued)

Pad	Signal	Direction	Description
20	PB1	I/O	Digital I/O.
	SC1MISO	0	SPI slave data out of Serial Controller 1. Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[4]. Select SPI with SC1_MODE. Select slave with SC1_SPICR. Select alternate output function with GPIO_PBCFGL[7:4].
	TIM2_OR[4] Select SPI with SC1_MODE. Select master with SC1_SPICR.		Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[4] Select SPI with SC1_MODE.
	SC1SDA	I/O	TWI data of Serial Controller 1. - Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[4]. - Select TWI with SC1_MODE. - Select alternate open-drain output function with GPIO_PBCFGL[7:4].
	SC1TXD	0	UART transmit data of Serial Controller 1. - Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[4]. - Select UART with SC1_MODE. - Select alternate output function with GPIO_PBCFGL[7:4].
	TIM2_CH1 See also Pad 12	0	Timer 2 channel 1 output. - Enable remap with TIM2_OR[4]. - Enable timer output in TIM2_CCER. - Select alternate output function with GPIO_PACFGL[7:4].
		I	Timer 2 channel 1 input Disable remap with TIM2_OR[4].

Table 17: Pad description (Continued)

Pad	Signal	Direction	Description	
21	PB2	I/O	Digital I/O	
	SC1MISO	I	SPI master data in of Serial Controller 1 Select SPI with SC1_MODE Select master with SC1_SPICR.	
	SC1MOSI	I	SPI slave data in of Serial Controller 1 Select SPI with SC1_MODE Select slave with SC1_SPICR.	
	SC1SCL	I/O	TWI clock of Serial Controller 1. - Either disable timer output in TIM2_CCER, or disable remap with TIM2_OR[5]. - Select TWI with SC1_MODE. - Select alternate open-drain output function with GPIO_PBCFGL[11:8].	
	SC1RXD	I	UART receive data of Serial Controller 1 Select UART with SC1_MODE.	
	TIM2_CH2 See also Pad 16	0	Timer 2 channel 2 output. - Enable remap with TIM2_OR[5]. - Enable timer output in TIM2_CCER. - Select alternate output function with GPIO_PBCFGL[11:8].	
		I	Timer 2 channel 2 input Enable remap with TIM2_OR[5].	
22	SWCLK	I/O	Serial Wire clock input/output with debugger Selected when in Serial Wire mode (see JTMS description, Pad 26).	
	JTCK	1	JTAG clock input from debugger Selected when in JTAG mode (default mode, see JTMS descrition, Pad 26) Internal pull-down is enabled.	
23	PC2	I/O	Digital I/O Enable with GPIO_DBGCFG[5].	
	JTDO	0	JTAG data out to debugger Selected when in JTAG mode (default mode, see JTMS description, Pad 26).	
	SWO	0	Serial Wire Output asynchronous trace output to debugger Select asynchronous trace interface in ARM core Enable trace interface in ARM core Select alternate output function with GPIO_PCCFGL[11:8] Enable Serial Wire mode (see JTMS description, Pad 26) Internal pull-up is enabled.	
24	PC3	I/O	Digital I/O Either enable with GPIO_DBGCFG[5], or enable Serial Wire mode (see JTMS description, Pad 26)	
	JTDI	1	JTAG data in from debugger Selected when in JTAG mode (default mode, see JTMS description, Pad 26) Internal pull-up is enabled.	

Table 17: Pad description (Continued)

Pad	Signal	Direction	Description
25	GND	Power	Ground supply pad.
26	PC4	I/O	Digital I/O Enable with GPIO_DBGCFG[5].
	JTMS	I	JTAG mode select from debugger Selected when in JTAG mode (default mode) JTAG mode is enabled after power-up or by forcing nRESET low Select Serial Wire mode using the ARM-defined protocol through a debugger Internal pull-up is enabled.
	SWDIO	I/O	Serial Wire bidirectional data to/from debugger Enable Serial Wire mode (see JTMS description) - Select Serial Wire mode using the ARM-defined protocol through a debugger - Internal pull-up is enabled.
27	PB0	I/O	Digital I/O.
	VREF	Analog O	ADC reference output Enable analog function with GPIO_PBCFGL[3:0].
	VREF	Analog I	ADC reference input Enable analog function with GPIO_PBCFGL[3:0] Enable reference output with an STM system function.
	IRQA	I	External interrupt source A.
	TRACECLK See also Pad 16	0	Synchronous CPU trace clock Enable trace interface in ARM core Select alternate output function with GPIO_PBCFGL[3:0].
	TIM1CLK	I	Timer 1 external clock input.
	TIM2MSK	I	Timer 2 external clock mask input.
28	GND	Power	Ground supply pad.
29	PC1	I/O	Digital I/O.
	ADC3	Analog	ADC Inputs Enable analog function with GPIO_PCCFGL[7:4]
	SWO See also Pad 23	0	Serial Wire Output asynchronous trace output to debugger Select asynchronous trace interface in ARM core Enable trace interface in ARM core Select alternate output function with GPIO_PCCFGL[7:4].
	TRACEDATA0	0	Synchronous CPU trace data bit 0 Select 1-, 2- or 4-wire synchronous trace interface in ARM core Enable trace interface in ARM core Select alternate output function with GPIO_PCCFGL[7:4].

Table 17: Pad description (Continued)

Pad	Signal	Direction	Description	
30	PC0	I/O High cur- rent	Digital I/O Either enable with GPIO_DBGCFG[5], or enable Serial Wire mode (see JTMS description, Pad 26) and disable TRACEDATA1.	
	JRST	I	JTAG reset input from debugger Selected when in JTAG mode (default mode, see JTMS description) and TRACEDATA1 is disabled Internal pull-up is enabled.	
	IRQD1	I	Default external interrupt source D	
	TRACEDATA1	0	Synchronous CPU trace data bit 1 Select 2- or 4-wire synchronous trace interface in ARM core Enable trace interface in ARM core Select alternate output function with GPIO_PCCFGL[3:0].	
31	PB7	I/O High cur- rent	Digital I/O.	
	ADC2	Analog	ADC Input 2 Enable analog function with GPIO_PBCFGH[15:12].	
	IRQC1	I	Default external interrupt source C.	
	TIM1_CH2	0	Timer 1 channel 2 output Enable timer output in TIM1_CCER Select alternate output function with GPIO_PBCFGH[15:12].	
		I	Timer 1 channel 2 input.(Cannot be remapped).	
32	PB6	I/O High cur- rent	Digital I/O. ADC Input 1 Enable analog function with GPIO_PBCFGH[11:8]. External interrupt source B.	
	ADC1	Analog		
	IRQB	I		
	TIM1_CH1	0	Timer 1 channel 1 output Enable timer output in TIM1_CCER Select alternate output function with GPIO_PBCFGH[11:8].	
		I	Timer 1 channel 1 input. (Cannot be remapped).	
33	PB5	I/O	Digital I/O.	
ADC0 Analog ADC Input 0 Enable analog funct		Analog	ADC Input 0 Enable analog function with GPIO_PBCFGH[7:4].	
	TIM2CLK	I	Timer 2 external clock input.	
	TIM1MSK	I	Timer 2 external clock mask input.	
34	GND	Power	Ground supply pad.	
35	GNDRF	RF Ground	Ground pad for RF port.	
36	RF	Analog	RF port with 50 Ohm impedance.	

Table 17: Pad description (Continued)

Pad	Signal	Direction	Description
37	GNDRF	RF Ground	Ground pad for RF port.

7.3 Package Mechanical Dimensions

Module dimensions are 25 mm x 19 mm x 2 mm. Figures 8 and 9 below shows a detailed drawing of the package dimensions.

Figure 8: Standard module dimensions without metal shielding

Figure 9: Dimensions with metal shielding (Enhanced EMI protection)

7 Mechanical Characteristics

DiZiC 802.15.4 DZ-ZB RF Modules

8 Soldering

8.1 Solder Temperature Profile

Figure 10 below shows the solder temperature profile for the DZ-ZB RF Module. This temperature profile is similar for other RoHS compliant packages, but manufacturing lines should be programmed with this profile in order to guarantee proper solder connection to the PCB.

Note: The module can be soldered only once.

8.2.1 Reflow Profile

Figure 10: Reflow profile

8.3 Profile Parameters

Table 18 below describes the temperature profile parameters.

Warning: The module should be processed according to recommended temperature profile only once.

Table 18: Solder Reflow Parameters

Parameter	Value
Average Ramp Up Rate (from Tsoak _{max} to Tpeak)	3℃ per second max
Average Ramp Up Rate (from 25°C to Tsoak _{min})	2°C to 4°C per second max
Minimum Soak Temperature (Tsoak _{mjn})	150℃
Maximum Soak Temperature (Tsoak _{max})	200℃
TL	220℃
Time above TL	30 to 60 seconds
Minimum Peak Temperature Tpeak _{min}	230℃
Maximum Peak Temperature Tpeak _{max}	250℃

 July 2010
 Doc ID: PB-ZB-MOD-003-20DS
 Page 33

Table 18: Solder Reflow Parameters

Parameter	Value
Ramp Down Rate	6℃ per second max

8.4 Recommended Footprint

Figure 11 below shows the recommended footprint for the module.

Figure 11: Recommended footprint for modules (top view)

With modules configured with output option "A", that is, with the embedded SMD antenna, the presence of any conductive materials in proximity of the module's antenna must be prevented. This requirement is valid also for copper traces, ground planes, wires, and connectors.

Figure 12 below shows the recommended "Copper-Keep-Out" area where the presence of any copper (and any conductive material as well) should be avoided.

Figure 12: Recommended "Copper-Keep-Out" Area (top view) – only for modules with Output Option "A"

9 Ordering Information

When ordering DZ-ZB modules, the following code is used:

DZ_ZB_ [P] [O] [S] [E]

where: DZManufactured by DiZiC ZB ZigBee Module [P] Power Level Options S.....Standard + 7dBm RFront End with RF Output Power Level Detector + 20 dBm T...... Front End + 20 dBm [O]Output options: A..... Embedded SMD Antenna assembled on module P......Single ended 50 Ohm RF Pad [S] Stack options F......RF4CE stack X......Proprietary stack Z...... EmberZNet PRO stack [E] Electromagnetic Interference (EMI) protection options:

MMetal Shield, for enhanced EMI protection

10 Acronyms

This chapter defines a collection of terms that are commonly used when talking about networks in general or ZigBee in particular.

AC	Alternating Current
ACK	
ADC	Analogue-to-Digital Converter
API	Application Programming Interface
ARM	Advanced RISC Machines Ltd, now ARM Holdings
BiCMOS	Bipolar junction transistors combined with CMOS technology
BER	Bit Error Rate
CMOS	
CPU	
CTS	Clear To Send
dB	decibel, logarithmic unit of measurement that
	expresses the magnitude of a physical quantity
dBm Pov	ver ratio in decibels of the measured power referenced to one milliwatt (1 mW)
DC	Direct Current
DWT	Data Watch-point and Trace
EEPROM	Electrically Erasable Programmable Read-Only Memory
EMI	Electromagnetic Interference
ESD	Electrostatic Discharge
FE	Front End
FPB	Flash Patch and Breakpoint
GPIO	General Purpose Input/Output
HAL	
НВМ	Human Body Model
HF	High Frequency
HVAC	
I ² C	Inter-Integrated Circuit bus
IEEE	Institute of Electrical and Electronics Engineers
IRQ	Interrupt Request
ISM	Industrial, Scientific and Medical radio band
ITM	
JTAG	Joint Test Action Group, digital interface for debugging of embedded device
LNA	Low Noise Amplifier
MAC	
MCU	Microcontroller Unit
MPU	
ΡΔ	Power Amplifier

PC	Printed Circuit Board
PER	Package Error Ratio
PSD	Power Spectral Density
PTI	Packet Trace Interface
RAM	Random Access Memory
RF	Radio Frequency
RF4CE	Radio Frequency for Consumer Electronics consortium
RSSI	Received Signal Strength Indicator
RX	Receiver
SMD	Surface Mounted Device
SPI	Serial Peripheral Interface
STMSTMicroelectroni	cs, an Italian-French electronics and semiconductor manufacture
TWI	Two Wire Interface, a variant of I2C
TX	Transmitter
UART	Universal Asynchronous Receiver/Transmitter
U.FL	Miniature coaxial RF connector (up to 6 GHz)
	manufactured by Hirose Electric Group in Japar
VCO	
ZigBee, ZigBee PRO	Wireless networking standards targeted at low-power applications
802.15.4	The IEEE 802.15.4-2003 standard applicable to
	low-rate wireless Personal Area Network

11 References

- [1] STM32W108HB, STM32W108CB, High-performance, 802.15.4 wireless system-on-chip, Data brief, 20-Aug-2009, Rev. 1
- [2] STM32W108HB, STM32W108CB, High-performance, 802.15.4 wireless system-on-chip, Preliminary data, 01-Mar-2010, Rev. 4
- [3] RN0034, Release notes, STM32W108xx starter and extension kits EmberZNet 4.0.2 GA, Doc ID 16225, 16-Feb-2010, Rev. 2
- [4] RN0047, Release notes, STM32W108xx starter and extension kits ZigBee RF4CE, Doc ID 17098, 23-Feb-2010, Rev. 1
- [5] RN0046, Release note, STM32W108xx starter and extension kits for Simple MAC library, Doc ID 16996, 04-March-2010, Rev. 1
- [6] UM0894, User Manual, STM32W-SK and STM32W-EXT starter and extension kits for STM32W108xx, Doc ID 16999, 05-Feb-2010, Rev. 1
- [7] UM0847, User Manual, IAR customization for STM32W108 system-on-chip, Doc ID 16551, 16-Nov-2009, Rev. 1.

11 References

DiZiC 802.15.4 DZ-ZB RF Modules

DOCUMENT INFORMATION

Document Name: DiZiC 802.15.4 DZ-ZB RF Modules

Document ID: PB-ZB-MOD-003-20DS

Document Status: PRELIMINARY DATA SHEET

Release Date (YYYY-DD-YY) Preliminary

Current Printing: July 21, 2010

REVISION HISTORY

Date	Version	Description
Preliminary	1.0	Initial version.