ALGEBRA LINIOWA 2

dr Joanna Jureczko

Politechnika Wrocławska Wydział Elektroniki Katedra Telekomunikacji i Teleinformatyki

Karcie Przedmiotu

Niniejsza prezentacja stanowi jedynie skrypt do wykładu.

wybranych twierdzeń przykłady, wskazówki do zadań itp. Dodatkowe informacje dotyczące programu znajdują się w

Wykład będzie wzbogacony o dodatkowe informacje, tj. dowody

WYKŁAD 5

Ciało Ciało \mathbb{Z}_p Podciało Rozszerzenie ciała Ciało Galois proste i rozszerzone

CIAŁO \mathbb{Z}_{p}

Ciałem K nazywamy pierścień przemienny z jedynką, w którym

1) $0 \neq 1$ 2) dla każdego $a \in K \setminus \{0\}$ istnieje $b \in K$ $a \cdot b = 1$.

Jeśli K jest ciałem, to $U(K) = K^* = K \setminus \{0\}$.

W szczególności K nie zawiera właściwych dzielników zera, (tzn. jeśli ab=0, to a=0 lub b=0 dla wszelkich $a,b\in K$).

Przykłady

Ciałami są $\mathbb{Q}, \mathbb{R}, \mathbb{C},$

 \mathbb{Z}_p , gdy p jest liczbą pierwszą, (o tym za chwilę).

Ciałami nie są \mathbb{N}, \mathbb{Z} ,

 \mathbb{Z}_n , gdy n jest liczbą złożoną, tzn. większą od 1 i nie jest liczbą pierwszą.

Ciało \mathbb{Z}_n

Liczbę całkowitą p nazywamy **liczbą pierwszą**, jeżeli jest większa od 1 i jedynymi dzielnikami tej liczby są 1 i p.

Niech p będzie liczbą pierwszą i niech

$$\mathbb{Z}_p = \{0, 1, ..., p-1\}$$

Zbiór \mathbb{Z}_p z działaniami \oplus , \odot , gdzie $a \oplus b = (a+b)_p$ oraz $a \odot b = (a \cdot b)_p$ jest ciałem.

Przyjmijmy

$$U(\mathbb{Z}_p) = \mathbb{Z}_p^* = \{1, 2, ..., p-1\}.$$

tylko wtedy, *m* jest liczbą pierwszą.

Twierdzenie 5.1. Pierścień klas reszt $\mathbb{Z}/m\mathbb{Z}$ jest ciałem wtedy i

Podciało

Załóżmy, że L jest ciałem. Podzbiór $K \subset L$ nazywamy **podciałem** ciał L, jeśli dla każdego $a, b \in K$ 1) $0, 1 \in K$,

- 2) $a b \in K$
- 3) $ab^{-1} \in K$.

Oznaczenie K < L.

Przykłady podciał

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$$
 jest podciałem ciała \mathbb{R} . $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} : a, b \in \mathbb{Q}\}$ jest podciałem ciała \mathbb{R} .

Ciała $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3})$ to najmniejsze ciała zawierające wszystkie liczby wymierne i liczby $\sqrt{2}$ i $\sqrt{3}$ odpowiednio.

Mówimy, że ciało L jest **rozszerzeniem** ciała K, gdy K < L.

Rozszerzeniem ciał nazywamy parę L/K (czyt. $L \mod K$) taka, że K < L.

Przykład. $\mathbb{Q}(\sqrt{2})$ oraz $\mathbb{Q}(\sqrt{3})$ są rozszerzeniami ciała \mathbb{Q} . Oczywiście $\mathbb{Q}(\sqrt{2}) \not\subseteq \mathbb{Q}(\sqrt{3})$ oraz $\mathbb{Q}(\sqrt{3}) \not\subseteq \mathbb{Q}(\sqrt{2})$.

Ciało *K* nazywamy **ciałem prostym**, gdy nie zawiera podciał

Twierdzenie 5.2. Każde ciało zawiera pewne ciało proste.

właściwych, tzn. podciał różnych od K.

Twierdzenie 5.3. Niech *L* będzie rozszerzeniem ciała *K*. Wtedy

L jest przestrzenią liniową nad K.

(Definicja przestrzeni liniowej i wymiaru przestrzeni - wykład 6).

Stopniem rozszerzenia ciała L ciała K, oznaczamy [L:K], nazywamy wymiar L jako przestrzeni liniowej nad K.

Twierdzenie 5.4. Ciało L jest **skończonym rozszerzeniem**, jeśli stopień [L:K] jest skończony.

Przykład

 $[\mathbb{C}:\mathbb{R}]=2.$

 $[\mathbb{R}:\mathbb{Q}]=\infty$.

Elementy algebraiczne

Niech K bedzie ciałem. Element $a \in K$ nazywamy **elementem** algebraicznym, gdy istnieje niezerowy wielomian o współczynnikach z ciała K, którego ten element jest

pierwiastkiem. Pozostałe elementy z tego ciała to **elementy** przestępne.

Przykład.

Każda liczba wymierna q oraz każda liczba niewymierna np. $\sqrt{2}, \sqrt[5]{3}$ są pierwiastakmi pewnych wielomianów o

współczynnikach wymiernych. Tutaj odpowiednio $x-q, x^2-2, x^5-3$. Ale dla π oraz e nie istnieją takie

wielomiany. Liczby π oraz e jest elementem algebraicznym względem ciała \mathbb{R} ale jest elementem przestępnym względem ciała Q.

Wielomian, którego pierwiastkiem jest dany element algebraiczny nie jest wyznaczony jednoznacznie np. $\sqrt{2}$ jest pierwiastkiem x^2-2 oraz x^4-4 .

Wielomian nazywamy **nierozkładalnym**, gdy nie jest on iloczynem wielomianów stopnia niższego. Oczywiście współczynniki wielomianów w rozkładzie muszą należeć do

współczynniki wielomianów w rozkładzie muszą należeć do ciała K.

Przykład. Wielomian $x^2 + 1$ jest rozkładalny w \mathbb{C} ale nie jest

rozkładalny w \mathbb{R} .

Każdy wielomian stopnia dodatniego o współczynnikach z ciała K jest albo nierozkładalny albo jest iloczynem wielomianów nierozkładalnych o współczynnikach z ciała K. Rozkład wielomianu na czynniki nierozkładalne jest jednoznaczny.

Dla każdego elementu algebraicznego $a \in K$ istnieje wielomian nierozkładalny. Jest on wyznaczony jednoznacznie. **Stopniem elementu** a nazywamy stopień wielomianu nierozkładalnego, którego a jest pierwiastkiem. Taki wielomian nazywamy wielomianem minimalnym.

Wtedy **stopień rozszerzenia** L/K jest równy stopniowi wielomianu minimalnego. Oznaczamy [L:K].

Rozważmy pierścień K[x] wszystkich wielomianów o współczynnikach z ciała K. Załóżmy, że istnieje wielomian

 $f \in K[x]$, który nie jest rozkładalny na czynniki liniowe nad ciałem K. Wtedy ciało K trzeba rozszerzyć do ciała L, w którym wielomian f będzie rozkładalny na czynniki liniowe. Ciało L będziemy nazywać **ciałem rozkładu** wielomianu f Zależy nam

będziemy nazywać **ciałem rozkładu** wielomianu *f*. Zależy nam przy tym na tym, aby znaleźć najmniejsze takie ciało *L* rozszerzające *K*.

Przykład. Rozważmy element $\sqrt{2}$. Wielomianem minimalnym

dla niego jest $x^2 - 2$. Taki wielomian jest nierozkładalny w \mathbb{Q} . Wtedy rozszerzamy \mathbb{Q} do ciała $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$

Oczywiście $(x^2-2)(x^2-3)$ nie jest rozkładalny nad $\mathbb{Q}(\sqrt{2})$ oraz $x^2 - 3$ nie jest rozkładalny nad $\mathbb{Q}(\sqrt{3})$. Wtedy takim rozszerzeniem będzie $\mathbb{Q}(\sqrt{2},\sqrt{3})$.

Przykład. Rozważmy element $\sqrt[3]{2}$. Wielomianem dla niego jest $x^3 - 2$. Ale wielomian ten, jak wiadomo ma trzy pierwiastki

 χ^3 – 2. Ale wielomian ten, jak wiadomo ma trzy pierwiastki $\sqrt[3]{2}, \xi_3 \sqrt[3]{2}, \xi_3^2 \sqrt[3]{2}$, gdzie dwa ostatnie są liczbami zespolonymi. Zatem nie jest rozkładalny w $\mathbb{Q}(\sqrt[3]{2})$. Szukamy teraz

wielomianu minimalnego dla elementu
$$\xi_3\sqrt[3]{2}$$
 o współczynnikach z $\mathbb{Q}(\sqrt[3]{2})$. Wielomian x^3-2 jest za duży, więc podzielimy go przez $(x-\sqrt[3]{2})$ i otrzymamy $x^2+\sqrt[3]{2}x+(\sqrt[3]{2})^2$. Mamy $\mathbb{Q}<\mathbb{Q}(\sqrt[3]{2})<\mathbb{Q}(\sqrt[3]{2})(\xi_3\sqrt[3]{2})=\mathbb{Q}(\sqrt[3]{2},\xi_3\sqrt[3]{2})$. Czyli stopień rozszerzenia

Czyli stopień rozszerzenia $[\mathbb{Q}(\sqrt[3]{2},\xi\sqrt[3]{2}):\mathbb{Q}] \cdot [\mathbb{Q}(\sqrt[3]{2},\xi\sqrt[3]{2}):\mathbb{Q}(\sqrt[3]{2})] = 3 \cdot 2 = 6.$

Niech dane będzie rozszerzenie L/K. Rozważmy grupę automorfizmów ciała L/K, tzn. odwzorowań postaci $\sigma \colon L \to L$ takich, że $\sigma(x) = x$ dla $x \in K$, (takie punkty nazywamy

punktami stałymi).

Obserwując punkty stałe wspomnianych automorfizmów badamy w istocie najmniejsze rozszerzenie ciała, w którym dany wielomian rozkłada się na czynniki liniowe (tzn. ma wszystkie pierwiastki).

Załóżmy, że L/K jest rozszerzeniem skończonym. Grupę

$$G(L/K) = \{ \sigma \in Aut(L) : \sigma | K = id_K \}$$

nazywamy grupą Galois rozszerzenia L/K.

Przykład. $L = \mathbb{C}, K = \mathbb{R}$. Wtedy $G(\mathbb{C}/\mathbb{R}) = \{identycznosc, sprzezenie\}.$

Évariste Galois (1811-1832) - francuski matematyk o dużych zasługach dla rozwoju algebry, w szczególności zagadnienia rozwiązywalności równań wielomianowych. Jeden z prekursorów teorii grup oraz nowoczesnej teorii równań algebraicznych (teoria Galois). Jako pierwszy użył nazwy grupa w odniesieniu do tej struktury algebraicznej. Mimo dużych zdolności, dwukrotnie nie zdał egzaminu do Ecole Polytechnique w Paryżu. Zginał w pojedynku w wieku 20 lat, choć istnieje też podejrzenie, że został zamordowany za sympatie republikańskie, a pojedynek jedynie upozorowano (dwa razy był więziony za publiczne wystapienia przeciw władzy króla Ludwika Filipa). W liście napisanym ostatniej nocy przed śmiercią zawarł swoje najważniejsze idee

i osiągniecia matematyczne.

Rozszerzenie skończone K < L nazywamy **rozszerzeniem**

Przykład. $\mathbb{R} < \mathbb{C}$ jest rozszerzeniem Galois.

Galois, gdy *K* jest ciałem elementów stałych względem pewnej grupy automorfizmów z ciała L.

Twierdzenie 5.5. Niech K < L będzie rozszerzeniem skończonym. Następujące warunki sa równowazne

 K < L jest rozszerzeniem Galois
 Każdy wielomian nierozkładalny nad ciałem K i mający pierwiastek w L rozkłada sie nad L na iloczyn czynników stopnia pierwszego.

3. *L* jest ciałem rozkładu pewnego wielomianu o współczynnikach z ciała *K*4. *K* jest ciałem elementów stałych względem *G(L/K)*.

Konstrukcja ciał skończonych

Niech p będzie liczbą pierwszą. Z Twierdzenia 5.1 wnosimy, że $\mathbb{Z}/p\mathbb{Z}$ jest ciałem mającym p elementów. Oznaczamy je GF(p) lub CG(p) (tj. Galois field,ciało Galois). Ciało to nazywamy ciałem prostym.

Niech p będzie liczbą pierwszą, n liczbą całkowitą dodatnią i niech f będzie wielomianem stopnia n o współczynnikach z

ciała $\mathbb{Z}/p\mathbb{Z}$. Zakładamy, że ten wielomian jest nierozkładalny, (tzn. nie można przedstawić go w postaci iloczynu f = gh, gdzie

g i h są wielomianami w $(\mathbb{Z}/p\mathbb{Z})[X]$ stopnia > 0). Jeśli wielomian nie jest nierozkładalny, to nazywamy go

rozkładalnym.

Elementy ciała skończonego, które skonstruujemy, są klasami reszt modulo f. Klasa reszt wielomianu $g \in (\mathbb{Z}/p\mathbb{Z})[X]$ składa się ze wszystkich wielomianów h w $(\mathbb{Z}/p\mathbb{Z})[X]$ takich, że g-h jest wielokrotnościa f. Te klase reszt oznaczamy

$$g + f(\mathbb{Z}/p\mathbb{Z})[X] = \{g + hf : h \in (\mathbb{Z}/p\mathbb{Z})[X]\}.$$

Powyżej zdefiniowalismy ciało mające p^m , gdzie $m \in \mathbb{N}$ to stopień wielomianu f. To ciało nazywać będziemy **rozszerzonym ciałem Galois** oznaczać będziemy $CG(p^m)$ (lub $GF(p^m)$)).

Ciało $CG(p^m)$ jest zbiorem wielomianów stopnia (m-1) o współczynnikach będących elementami z ciała CG(p). Ciało to ma p^m elementów.

Dodawanie w ciele $CG(p^m)$ to dodawanie wielomianów o współczynnikach w ciele CG(p).

Mnożenie w ciele $CG(p^n)$ to mnożenie wielomianów o współczynnikach w ciele CG(p).

Przykład. W ciele $CG(4) = CG(2^2)$ mamy dwa wielomiany stopnia pierwszego x, x + 1.

Wielomiany stopnia 2 nad CG(2) to

 $x^2 = x \cdot x$, $x^2 + 1 = x^2 + 2x + 1 = (x+1)^2 = (x+1)(x+1)$ $x^2 + x = x(x+1)$

 $x^2 + x + 1$. Ten wielomian jest nierozkładalny nad CG(2). Zatem CG(4) to reszty z dzielenia powyższych wielomianów przez wielomian $x^2 + x + 1$, czyli mamy kolejno $\{0, 1, x, x + 1\}$.

Ciało Galois służy do pozycyjnego zapisu liczb w oparciu o elementy ciała podstawowego.

Przykład. $CG(4) = CG(2^2) = \{0, 1, x, x + 1\}$ ma w zapisie pozycyjnym przedstawienie $\{00, 10, 01, 11\}$.

Element pierwotny ciała Galois

Zbiór elementów ciała Galois $CG(p^m)$ można przedstawić w postaci

$$CG(p^m) = \{a_0 + a_1 \alpha + ... + a_{m-1} \alpha^{m-1} : a_i \in \mathbb{Z}_p\}$$

gdzie α jest pierwiastkiem wielomianu f(x) stopnia m nierozkadalnego nad \mathbb{Z}_p .

O ile dodawaniw w $CG(p^m)$ jest łatwe, mnożenie jest bardziej skomplikowane. Dla ułatwienia tego działania stosujemy element α , taki, że

$$CG(p^m) = \{0, 1, \alpha, \alpha^2, \alpha^3, ..., \alpha^{p^m-2}\}, \text{ gdzie } \alpha^{p^m-1} = 1.$$

Taki element będziemy nazywać **elementem pierwotnym** w $CG(p^m)$. O ile ten zapis ułatwia mnożenie, gdyż sprowadza się

do obliczania poteg, to komplikuje dodawanie.

Wielomian f stopnia m o współczynnikach z ciała CG(p),

którego pierwiastkiem jest element pierwotny będziemy

nazywać wielomianem pierwotnym.

Przykład. Elementy 2 oraz 3 są elementami pierwotnymi ciała CG(5).

Istotnie mamy odpowiednio $2, 2^2 = 4, 2^3 = 3, 2^4 = 1$.

 $3.3^2 = 4.3^3 = 2.3^4 = 1.$ Element x jest elementem pierwotnym $CG(4) = CG(2^2)$. Mamy koleino $\alpha = x$, $\alpha^2 = x + 1$, $\alpha^3 = 1$.

Mamy zatem wielomian pierwotny $f(x) = x^2 + x + 1$, bo $f(\alpha) = \alpha^2 + \alpha + 1 = (x+1) + x + 1 = 0.$

Zatem mamy trzy reprezentacje elementów ciała

rozszerzonego

- reprezentacja wielomianowa np. dla CG(4) to 0,1,x,x+1, - reprezentacja pozycyjna np. dla CG(4) to 00,01,10,11 - reprezentacja potęgowa np. dla CG(4) to $\alpha^0, \alpha^1, \alpha^2$.