Notes on filtration of logics containing K5

Daniel Rogozin

1 Preliminaries

Definition 1. An n-normal modal logic is a set of formulas that contains all Boolean tautologies, formulas $\Diamond_i p \lor \Diamond_i q \leftrightarrow \Diamond_i (p \lor q)$ and $\Diamond_i \bot \leftrightarrow \bot$ for $i \leqslant n$, and is closed under modus ponens, substitution, and monotonicity: from $\varphi \to \psi$ infer $\Diamond_i \varphi \to \Diamond_i \psi$ for $i \leqslant n$.

Definition 2. An n-Kripke model is a triple $\mathcal{M} = \langle W, R_1, \dots, R_n, \vartheta \rangle$, where $R_i \subseteq W \times W$, $\vartheta : \text{PV} \to 2^W$, and the connectives have the following semantics:

- 1. $\mathcal{M}, w \models p \Leftrightarrow w \in \vartheta(p)$
- 2. $\mathcal{M}, w \models \varphi \Leftrightarrow \mathcal{M}, w \not\models \varphi$
- 3. $\mathcal{M}, w \models \varphi \lor \psi \Leftrightarrow \mathcal{M}, w \models \varphi \text{ or } \mathcal{M}, w \models \psi$
- 4. $\mathcal{M}, w \models \Diamond_i \varphi \Leftrightarrow \exists v \in R_i(w) \mathcal{M}, v \models \varphi$

By **K5** we mean the logic $\mathbf{K} \oplus A5$, where $A5 = \Diamond p \to \Box \Diamond p$. It is known that **K5** is the modal logic of all Euclidean frames. A frame is called Euclidean if for each x, y, z, xRy and xRz implies yRz.

Proposition 1. Let $\mathcal{F} = \langle W, R \rangle$ be an Euclidean frame.

- 1. For each $x, y, z \in W$, xRy and xRz implies either yRz or zRy.
- 2. $R \subseteq R$; R, that is, R is dense.
- 3. For each $x \in W$, $R^*(x) = \{x\} \cup R(R(x))$.
- 4. R^{-1} ; $R \subseteq R$.

Proposition 2. K5 proves

- 1. $\Box^3 p \leftrightarrow \Box^2 p$
- 2. $\Box^2 \Diamond p \leftrightarrow \Box \Diamond p$
- $3. \square \Diamond \square p \leftrightarrow \square \square p$
- 4. $\Box \diamondsuit^2 p \leftrightarrow \Box \diamondsuit p$

Proposition 3. Let \mathcal{M} be a K5 model, xRy for some $x, y \in W$ then one has

$$\mathcal{M}, x \models \Diamond \Box \varphi \text{ iff } \mathcal{M}, y \models \Diamond \Box \varphi.$$

1.1 Filtrations: general definitions

Let $\mathcal{M} = \langle W, R_1, \dots, R_n, \vartheta \rangle$ be a Kripke model and Γ a set of formulas closed under subformulas. An equivalence relation \sim is set to have a finite index if the quotient set W/\sim is finite. The equivalence relation \sim_{Γ} induced by Γ is defined as

$$w \sim_{\Gamma} v \Leftrightarrow \forall \varphi \in \Gamma (\mathcal{M}, w \models \varphi \Leftrightarrow \mathcal{M}, v \models \varphi).$$

If Γ is finite, then \sim_{Γ} has a finite index. An equivalence relation \sim respects \sim_{Γ} , if $w \sim v$ implies $w \sim_{\Gamma} v$.

Definition 3. Let $\mathcal{M} = \langle W, R_1, \dots, R_n, \vartheta \rangle$ be a Kripke model and Γ be a Sub-closed set formulas. A Γ -filtration of \mathcal{M} is a model $\widehat{\mathcal{M}} = \langle \widehat{W}, \widehat{R_1}, \dots, \widehat{R_n}, \widehat{\vartheta} \rangle$ such that:

- 1. $\widehat{W}=W/\sim$, where \sim is an equivalence relation having a finite index that respects Γ
- 2. $\hat{\vartheta}(p) = \{ [x]_{\sim} \mid x \in W \& x \in \vartheta(p) \}$
- 3. For each $i \in I$ one has $\widehat{R}_i^{min} \subseteq \widehat{R}_i \subseteq \widehat{R}_i^{max}$. $\widehat{R}_{i,\sim}^{min}$ is the i-th minimal filtered relation on \widehat{W} defined as

$$\hat{x}\hat{R}_{i,\sim}^{min}\hat{y} \Leftrightarrow \exists x' \sim x \; \exists y' \sim y \; xR_i y$$

 $\widehat{R}_{\Gamma,i}^{max}$ is the i-th maximal filtered relation on \widehat{W} induced by Γ defined as

$$\hat{x}\hat{R}_{\Gamma i}^{max}\hat{y} \Leftrightarrow \forall \Box_{i}\varphi \in \Gamma \left(\mathcal{M}, x \models \Box_{i}\varphi \Rightarrow \mathcal{M}, y \models \varphi\right)$$

If Φ is finite subset of Γ and $\sim = \sim_{\Phi}$, then $\widehat{\mathcal{M}}$ is a definable Γ -filtration of \mathcal{M} through Φ . If $\sim = \sim_{\Gamma}$, then such a filtration by means of the definition above is called *strict*.

Lemma 1. Let Γ be a finite set of formulas closed under subformulas and $\widehat{\mathcal{M}}$ a filtration of \mathcal{M} through Γ , then for each $x \in W$ and for each $\varphi \in \Gamma$ one has

$$\mathcal{M}, x \models \varphi \Leftrightarrow \widehat{\mathcal{M}}, \hat{x} \models \varphi$$

Definition 4. Let \mathbb{F} be a class of Kripke frames and Γ a finite set of formulas closed under subformulas. If for every model \mathcal{M} over $\mathcal{F} \in \mathbb{F}$ there exists a model that is a Γ -definable filtration of \mathcal{M} , then \mathbb{F} admits definable filtration. A class of models \mathbb{M} admits definable filtration if for every $\mathcal{M} \in \mathbb{M}$ there exists a model belonging to the same class that is a definable Γ -filtration of \mathcal{M} .

Lemma 2.

- 1. Let \mathcal{L} be a complete normal modal logic. If Frames(\mathcal{L}) admits filtration, then \mathcal{L} has the finite model property.
- 2. If the class of models $Mod(\mathcal{L})$ admits filtration, then \mathcal{L} has the finite model property and Kripke complete as well.

2 Filtration of Euclidean logics

First of all, let us ensure that a filtration of an Euclidean frame is not necessary finite. Let $[x] \sim_{\Gamma} [y]$ and $[x] \sim_{\Gamma} [z]$. Then for some $x' \in [x]$ $y' \in [y]$, one has x'Ry' and x''Rz' for some $x'' \in [x]$ and $z' \in [z]$. Clearly, we cannot claim that x' = x'' in general. Thus, minimal filtration does not preserve the required property.

Lemma 3. K5 admit filtration.

Proof. Let \mathcal{M} be a **K5**-model and Γ_0 a finite set of formulas closed under subformulas. Let us put $\Gamma = \Gamma_0 \cup \operatorname{Sub}(\{\Diamond \Box \psi \mid \Box \psi \in \Gamma_0\}) \cup \Psi$, where $\Psi = \nabla_1 \nabla_2 \dots \nabla_n \Box \psi$ for $\Box \psi \in \Gamma_0$ and $\nabla_i \in \{\Diamond, \Box\}$. By Proposition 2, any element of Φ has one of the four forms. Thus, $W \sim_{\equiv_{\Gamma}}$ has a finite index. We put $\hat{R} = R_{\Gamma}^{\max}$.

Definition 5. A relation R is called Horn, if it is defined with some first-order formula having the form

$$\forall x_1, \dots, x_n (x_{i_1} R x_{j_1} \wedge \dots \wedge x_{i_s} R x_{j_s} \rightarrow x_k R x_l)$$

Definition 6. Let H be a Horn property and $\langle W, R \rangle$ a Kripke frame. A Horn closure of a binary relation R is the minimal relation R^H containing R and satisfying H.

Lemma 4.
$$R^H = \bigcup_{n < \omega} R_n$$
 where

- 1. $R_0 = R$.
- 2. $R_{n+1} = R_n \cup \{(a,b) \in W \mid \exists \vec{c} \in W \ P(a,b,\vec{c})\}, \text{ where } P \text{ is a premise of } H.$

E-closure (an Euclidean Horn closure of a binary relation) has the following equivalent definitions:

Lemma 5. Let $\mathcal{F} = \langle W, R \rangle$ be a Kripke frame. The following conditions are equivalent:

- 1. R^E is the smallest Euclidean relation containing R.
- 2. $R^E = \bigcup_{i < \omega} R_i$, where
 - $R_0 = R$
 - $R_{n+1} = R_n \cup (R_n^{-1}; R_n)$
- 3. xR^Ey iff there exists $n < \omega$ such that $\exists x_1, \ldots, x_n$ with z_1Rx and $z_{n-1}Ry$ and for each $1 < i \le n$ one has either $z_{i-1}Rz_i$ or z_iRz_{i-1} .
- 4. $R^E = R \cup \bigcup_{i < \omega} (R^{-1}; (R; R^{-1})^n; R)$

Proof.

- 1. (1) \Rightarrow (2) Let us show that if R^E is the smallest Euclidean relation containing R, then $R^E = \bigcup_{i < \omega} R_i$. There are two inclusions:
 - $R^E \subseteq \bigcup_{i < \omega} R_i$. It is enough to show that $xR^E y$ implies $xR^n y$ for some $n < \omega$.

- $\bigcup_{i<\omega} R_i \subseteq R^E$. Let us show that xR_ny for each $n<\omega$ implies xR^Ey by induction on n. If n=0, then xRy, thus, xR^Ey , since R is a subrelation of R^E . Suppose n=m+1 and $xR_{m+1}y$. Let us show that xR^Ey . From $xR_{m+1}y$, one has $(x,y) \in R^n \cup (R_n^{-1}; R_n)$. There are two cases:
 - $-xR^ny$, one needs to merely apply the IH.
 - $-xR_n^{-1}$; R_ny . Then $\exists z \in W x R_n^{-1} z \& z R_n$. That is, zR_nx and zR_ny for some z. R_n is already a subrelation of R^E . Thus, zR^Ex and zR^Ey . That implies xR^Ey .
- 2. (2) \Rightarrow (3) Let xR^Ey , then $(x,y) \in \bigcup_{i < n} R_n$. That is, $(x,y) \in R_n \cup (R_n^{-1}; R_n)$ for some $n < \omega$. There are two cases.
 - $(x,y) \in R_n$ and that's it.
 - $(x,y) \in R_n^{-1}; R_n$, then $(z,x), (z,y) \in R_n$.
- $3. (3) \Rightarrow (4)$
- 4. $(4) \Rightarrow (1)$

Lemma 6. Let $\mathcal{M} = \langle W, R, \vartheta \rangle$ be an Euclidean model, Γ a set of Sub-closed formulas, and \sim an equivalence relation having a finite index that respects Γ . Then its E-closure of the minimal filtration of R is a filtration itself.

Proof. Let us show that $\widehat{R}^E = \bigcup_{n < \omega} (R_n)^{\min}_{\sim}$ is a filtration and $\langle W/\sim, \widehat{R}^E, \widehat{\vartheta} \rangle$ is an Euclidean model.

Let $\widehat{\mathcal{M}} = \langle \widehat{W}, \widehat{R}, \widehat{\vartheta} \rangle$ be a minimal filtration of an Euclidean model through \sim .

- 1. Suppose xRy, then $[x]\hat{R}[y]$ by the definition of a minimal filtration. \hat{R} is clearly a subrelation of \hat{R}^E , thus $[x]\hat{R}^E[y]$.
- 2. Suppose $[x]\widehat{R^E}[y]$ and $\mathcal{M}, x \models \Box \varphi$ for $\Box \varphi \in \Gamma$. then $([x], [y]) \in \bigcup_{n < \omega} R_n$. Then $([x], [y]) \in R_n$ for some $n < \omega$. There are two cases:
 - (a) n = 0, then $[x]\hat{R}[y]$, so, obviously, one has $\mathcal{M}, y \models \varphi$
 - (b) n = m+1. Suppose $[x]\hat{R}_{m+1}[y]$. Thus, $[x]\hat{R}_n \cup (\hat{R}^{-1}; \hat{R}_n)[y]$. There are the following two cases:
 - i. $([x], [y]) \in \hat{R}_n$, then the statement holds by IH.
 - ii. $([x], [y]) \in \widehat{R}^{-1}; \widehat{R}_n$. Then there exists [z] such that $[x]\widehat{R}^{-1}[z]$ and $[z]\widehat{R}_m[y]$, that is, $[z]\widehat{R}[x]$ and $[z]\widehat{R}_m[y]$. One has $\mathcal{M}, x \models \Box \varphi$, then $\widehat{\mathcal{M}}, [x] \models \Box \varphi$. So $\widehat{\mathcal{M}}, [z] \models \Diamond \Box \varphi$. On the other hand, $\mathcal{M}, z \models \Diamond \Box \varphi \to \Box \varphi$, so $\mathcal{M}, z \models \Box \varphi$ and, from that, $\widehat{\mathcal{M}}, [z] \models \Box \varphi$, and, thus, $\widehat{\mathcal{M}}, [y] \models \varphi$ and $\mathcal{M}, y \models \varphi$ by IH and the definition of a minimal filtration.

Corollary 1. K5 admit strict filtrations.

2.1 Clusters

Let $\mathcal{F} = \langle W, R \rangle$ be a transitive frame. Let us put $xR^{\bullet}y \Leftrightarrow xRy \& \neg (xRy)$. A point x is proper if xRx. Let us define the following equivalence relation:

$$x \equiv y \Leftrightarrow xRy \& yRx \lor x = y.$$

A cluster is an element of the quotient set W/\equiv . Given $x\in W$, C_x is a cluster containing x. Thus $C_x=\{x\}\cup\{y\,|xRyx\}$. The original relation lifts to the antisymmetric transitive relation on W/\equiv defined as C_xRC_y iff xRy. A cluster C is called maximal if CRC' implies C=C'. A point is R-maximal if C_x is a maximal cluster, that is, $R^{\bullet}(x)=\varnothing$. A degenerated cluster is a singleton $\{x\}$ with $\neg(xRx)$. A cluster is called simple if it has the form $\{x\}$ with xRx. If $\langle W', R' \rangle$ is an inner substructure of $\langle W, R \rangle$, then every R'-cluster is an R-cluster and every R-cluster that intersects W' is a subset of W' and is an R'-cluster itself. Given a Kripke model M, a set of formulas Γ is satisfied by a cluster C if every member of Γ is true at some point of C.

If clusters coincide then their poitns have the same theory in the original model:

Lemma 7.
$$C_x = C_y$$
 implies $\mathcal{M}, x \models \Box \varphi \Leftrightarrow \mathcal{M}, y \models \Box \varphi$

Let us describe the bulldozing technique allowing one to eliminate nondegenerated clusters [3]. Let \mathcal{L} be a transitive logic and \mathcal{F} its frame. We construct first a frame $\mathcal{F}^0 = \langle W^0, R^0 \rangle$ replacing every nondegenerated frame C of W by $C^0 = \{\langle x, i \rangle \mid x \in C, i < \omega\}$. We also replace each degenerated cluster C by $\{\langle x, 0 \rangle\}$. Elements of these subsets form W^0 . The relation R^0 is defined as

$$\langle x, i \rangle R^0 \langle y, j \rangle \Leftrightarrow x R^{\bullet} y \text{ or } (x \equiv y \& i < j) \text{ or } i = j \& x <_C y$$

where $<_C$ is an arbitrary strict ordering on the proper cluster C containing x and y.

Each nondegenrated cluster C is replaced by an infinite set C_0 such that $\langle C_0, R_0 \rangle$ is a strict linear order. Moreover, $\langle y, j \rangle$, a copy of y, occurs after $\langle y, j \rangle$, a copy of x.

Bulldozing might be extended to models $\mathcal{M} = \langle W, R, \vartheta \rangle$ defining ϑ^0 as follows

$$\vartheta^{0}(p_{i}) = \{\langle x, i \rangle \mid x \in \vartheta(p_{i}), i < \omega \}.$$

One may show inductively the following fact.

Lemma 8.
$$\mathcal{M}, x \models \varphi \Leftrightarrow \mathcal{M}^0, \langle x, i \rangle \models \varphi$$

Let us concretise the case of transitive Euclidean frames. First of all, we consider clusters in $\mathbf{K}45$ frames.

 $\mathbf{2.2}$

- 3 Transitive closure stuff
- 4 PDLisation of Euclidean logics
- 5 Transitive closure and fusion

References

[1] Philippe Balbiani, Dimiter Georgiev, and Tinko Tinchev. Modal correspondence theory in the class of all euclidean frames. *Journal of Logic and Computation*, 28(1):119–131, 2018.

- [2] Patrick Blackburn, Maarten De Rijke, and Yde Venema. *Modal logic*, volume 53. Cambridge University Press, 2002.
- [3] Robert Bull and Krister Segerberg. Basic modal logic. In *Handbook of philosophical logic*, pages 1–88. Springer, 1984.
- [4] Michael J Fischer and Richard E Ladner. Propositional dynamic logic of regular programs. Journal of computer and system sciences, 18(2):194–211, 1979.
- [5] Olivier Gasquet, Andreas Herzig, Bilal Said, and François Schwarzentruber. Modal logics with transitive closure. In *Kripke's Worlds*, pages 157–189. Springer, 2014.
- [6] Robert Goldblatt. Logics of time and computation. csli, 1987.
- [7] Robert Goldblatt and Ian Hodkinson. The finite model property for logics with the tangle modality. *Studia Logica*, 106(1):131–166, 2018.
- [8] Stanislav Kikot, Ilya Shapirovsky, and Evgeny Zolin. Filtration safe operations on frames. *Advances in modal logic*, 10:333–352, 2014.
- [9] Grigori Schwarz. In search of a "true" logic of knowledge: the nonmonotonic perspective. *Artificial Intelligence*, 79(1):39–63, 1995.
- [10] Krister Segerberg. An essay in classical modal logic (3 vols.). Filoso ska studier, (13), 1971.
- [11] Ilya Shapirovsky and Evgeny Zolin. On completeness of logics enriched with transitive closure modality. *Topology, Algebra and Categories in Logic 2015*, page 255, 2015.
- [12] Ilya B Shapirovsky. Glivenko's theorem, finite height, and local tabularity. arXiv preprint arXiv:1806.06899, 2018.