layer_transformations_v1

October 21, 2025

OSI Mapping (One-Page Summary)

L7 (Application)

- cFS app cmds/tlm \rightarrow serialize fields (big-endian), assign MsgIDs/APIDs, seq cnt.
- Wrap in CCSDS Space Packets (primary + optional secondary header/time).
- Optional L7 services: CFDP (file delivery), compression, encryption, MIC/CRC.
- Below the SP body everything is payload-agnostic.

L4/L3 (Transport/Network)

• UDP/IP for bench/LAN legs only (COSMOS⇔cFS, sims); does not cross RF unless explicitly designed to tunnel IP.

L2 (Data Link)

- TM/TC or AOS framing (VCID/SCID, FHP/segmentation, VC/MC as needed).
- Insert ASM; randomize; FEC (RS+Conv or LDPC/Turbo) with interleave/puncture.
- Optional OCF (CLTU/BC/AC) and frame CRC; AOS MAP mux of multiple APIDs.
- Idle frames/idle fill when no payload.

L1 (Physical)

- Bit—symbol mapping (QPSK/OQPSK, offset on Q), RRC shaping, resampling/DUC.
- TX gating/TDMA windows; RF front-end.
- RX mirror: AGC/DC/IQ fix, CFO/phase/timing recovery, RRC, soft LLRs, decisions.

1 Purpose and Scope

This document explains how cFS application messages traverse the OSI stack on a CCSDS-compliant link. The key idea: *meaning* (commands/telemetry semantics) is confined to Layer 7; Layers 2 and 1 simply move opaque bytes with reliability and timing guarantees.

2 Layer 7: Application (cFS → CCSDS Space Packets)

2.1 Message Formation

a) **Serialization:** Pack each command/telemetry field into a byte-accurate layout using bigendian ordering for multi-octet integers and IEEE-754 for floats. Avoid compiler padding by using explicit field sizes.

- b) **Identification:** Assign a cFS/cFE MsgID that maps to a CCSDS APID. Maintain a per-APID sequence counter for duplicate detection.
- c) Space Packetization: Create the CCSDS primary header (version, type, sec hdr flag, APID, sequence flags/count, packet length). Optionally prepend a secondary header (e.g., COARSE/FINE time).

2.2 Optional L7 Services

- CFDP: Adds file-delivery PDUs on top of Space Packets for reliable/acknowledged file transfer
- Compression/Encryption/MIC: If used at L7, apply to the Space-Packet user data so L2 remains agnostic.

2.3 Interfaces

On benches and in simulation, the same L7 bytes may be carried over UDP sockets (e.g., COSMOS \leftrightarrow cFS). Across the RF link, the L7 payload is carried only as Space Packets inside L2 frames.

3 Layers 4/3: Transport/Network (Bench Use Only)

Use UDP/IP solely for lab legs (telemetry display, automation, or hardware-in-the-loop). Do
not assume IP exists across the space link unless you explicitly design and test an IP-overCCSDS tunnel.

4 Layer 2: Data Link (TM/TC/AOS)

4.1 Core Functions

- a) **Framing/Segmentation:** Pack Space Packets into TM/TC or AOS frames. Use First Header Pointer (FHP) to indicate where a new packet begins; segment long packets as needed.
- b) **Synchronization:** Prepend the Attached Sync Marker (e.g., 0x1ACFFC1D) to form a CADU.
- c) Randomization: Apply the CCSDS polynomial scrambler to decorrelate long bit runs.
- d) **FEC:** Choose RS+Convolutional (with interleaver, optional puncturing) or modern LDPC/Turbo per link budget and latency goals.
- e) **OCF/CRC:** Optionally include Operational Control Field for return channel control and a frame-level CRC when the standard calls for it.
- f) MAP Mux: With AOS, multiplex multiple APIDs via Virtual Channels and MAPs; idle frames when no payload is ready.

4.2 Design Notes

Keep L2 throughput fixed and deterministic: frame size, code rate, and interleave depth define the service rate available to L7. L2 does not inspect or alter L7 semantics.

5 Layer 1: Physical (Waveform and RF)

5.1 Transmit Path

- a) **Bit Mapping:** Map coded bits to QPSK or OQPSK symbols (OQPSK uses a half-symbol offset on Q).
- b) **Pulse Shaping:** Apply an RRC filter (roll-off α and span chosen per spectral mask and latency).
- c) Rate Conversion: Resample and digitally upconvert (DUC) to the DAC/RF chain; gate TX for TDMA windows as required.

5.2 Receive Path (Mirror)

- a) **Front-End Corrections:** AGC, DC/IQ imbalance mitigation, coarse/fine frequency and phase recovery, timing recovery.
- b) Matched Filtering & Decisions: RRC matched filter, soft LLR generation for FEC, then de-randomize and deframe at L2 to yield original Space Packets for L7.

6 End-to-End Invariance

No matter which cFS command (HS, FM, CF, LC, etc.) you send, nothing in L2/L1 changes. Only L7 cares about message meaning; L2/L1 provide synchronization, protection, and spectrum efficiency.