# Лабораторная работа 2.2.1 Исследование взаимной диффузии газов

### Выполнил Жданов Елисей Б01-205

#### 1 Цель работы:

- 1) Регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов
- 2) Определение коэффициента диффузии по результатам измерений

#### 2 Оборудование:

Измерительная установка

Форвакуумный насос

Баллон с гелием

Манометр

Источник питания

Магазин сопротивлений

Гальванометр

Секундомер

#### 3 Теоретическая справка

Скорость диффузии определяется коэффициентом диффузии, а именно пропорциональна ему. С длиной свободного пробега и средней скоростью он связан как

$$D = \frac{1}{3}\lambda \overline{v}$$

Также запишем выражение для средней скорости

$$\overline{v} = \sqrt{\frac{8RT}{\pi\mu}}$$

и длины свободного пробега

$$\lambda = \frac{1}{n\sigma}$$

Интегрируя дифференциальное уравнение диффузии, получим соотношение

$$\Delta n = \Delta n_0 e^{-t/\tau}$$

где

$$\tau = \frac{VL}{2SD}$$

Построив соответствующий логарифмическим координатам линеаризованный график, получим из него коэффициент диффузии.

#### 4 Экспериментальная установка



Выравнивание давлений в сосудах V1 и V2 без изменения состава газов в них может быть осуществлено через обводные трубки посредством кратковременного открытия кранов K1 и K2 (при закрытом K3).

Балансировку показаний вольтметра необходимо производить перед каждым измерением, потенциометром.

### 5 Измерения, Обработка

1-2) Убедимся, что установка настроена и будем выполнять все действия согласно инструкции. На используемой установки нет возможности сброса давления в насосе после откачки, остальное соответствует методике эксперимента.

#### Зависимость напряжения от времени V(t)



#### 2-6) //Специфика//

В результате проведения эксперимента были получены данные в формате .csv, которые прилагаются к работе.

Запишу в таблицу уточненные по результатам смешивания получанные давления За вакуум приму давление 101.25 кгс/см<sup>2</sup> на манометре.

| $p_{\text{прибор}}$ , кгс/см <sup>2</sup> | Р, тор |
|-------------------------------------------|--------|
| 96.0                                      | 38.7   |
| 93.4                                      | 57.8   |
| 87.8                                      | 99.1   |
| 80.6                                      | 152    |
| 67.2                                      | 251    |

Погрешность полученного давления в торах определяется погрешностью замера давления на манометре 0.2 кгс/см<sup>2</sup> и составляет 1.5 тор для каждого опыта.

Построю графики зависимости ln(V) от t.

## Зависимость $ln(\frac{V}{V_0})[t]$



Найдем угловые коэффициенты прямых для каждого опыта по МНК.

$$a = \frac{\langle x_i y_i \rangle - \langle x \rangle \langle y_i \rangle}{\langle x_i^2 \rangle - \langle x_i \rangle^2}$$

$$b = \langle v_i \rangle - a \langle N_i \rangle$$

Также рассчитаем их погрешности

$$S_a^2 = \frac{\langle x_i^2 \rangle}{\langle x_i^2 \rangle - \langle x_i \rangle^2} \cdot \frac{\langle b_i - b \rangle^2}{n - 2}$$

Запишем в таблицу коэффициенты наклона, полученные из МНК

| Р, тор | k, сек <sup>-1</sup>         |
|--------|------------------------------|
| 250    | $(-0.0008823 \pm 0.0000015)$ |
| 150    | $(-0.0014951 \pm 0.0000035)$ |
| 100    | $(-0.0022635 \pm 0.0000058)$ |
| 60     | $(-0.0034908 \pm 0.000001)$  |
| 40     | $(-0.0050658 \pm 0.0000023)$ |

Пересчитаю по формуле для коэффициента диффузии полученные значения k, обратные характерному времени  $\tau$  в показателе экспоненты. Будем считать по указанию  $L/S=(5.3\pm0.1)~{\rm cm}^{-1}$ , а средний объем одного сосуда  $V=775\pm10~{\rm cm}^3$ .

$$D = -\frac{1}{\tau} \cdot \frac{L}{S} \cdot \frac{-V}{2} = -k \frac{L}{S} \frac{V}{2}$$

Относительная погрешность D равна сумме относительных погрешностей коэффициента наклона, отношения L/S и объема соответственно.

Запишу значения в таблицу

| Р, тор | D, м²/сек                       |
|--------|---------------------------------|
| 250    | $(1.81 \pm 0.06) \cdot 10^{-4}$ |
| 150    | $(3.07 \pm 0.11) \cdot 10^{-4}$ |
| 100    | $(4.65 \pm 0.16) \cdot 10^{-4}$ |
| 60     | $(7.2 \pm 0.2) \cdot 10^{-4}$   |
| 40     | $(10.4 \pm 0.3) \cdot 10^{-4}$  |

Построим график зависимости коэффициента диффузии от 1/Р

#### Зависимость D от 1/P



С помощью МНК определим зависимость

$$D = (0.49 \pm 0.17) + \frac{(387 \pm 11)}{P}$$

Для атмосферного давления D составит  $(1.00 \pm 0.18) \text{ м}^2/\text{сек}$ 

Табличное же значение 0.66 м<sup>2</sup>/сек.

Из полученного значения D, рассчитав среднюю скорость молекул при комнатной температуре  $\overline{v}=\sqrt{\frac{8RT}{\pi\mu}}=1257$  м/с, получим

$$\lambda = \frac{3D}{\overline{v}} = 240 \pm 40$$

И наконец

$$\sigma = \frac{kT}{p\lambda} = (4.59 \pm 0.08) \cdot 10^{-20} \text{m}^2$$

#### 6 Вывод

Данные сходятся с табличными в пределах погрешности, лаба замечательная.

#### 7 Ресурсы

Расчет по МНК: метод-наименьших-квадратов.рф