

MODULE: PROPOSITIONAL LOGIC

Natural Deduction: Rules for Negation

22-08-2017 Sundar B. CS&IS, BITS Pilani 0

ND: Negation–Elimination Rule

This rule is also referred to as <u>contradiction introduction</u> (_|_ introduction)

ND: Contradiction-Elimination Rule

You can infer anything from a contradiction!

ND: Negation-Introduction Rule

Exercise: Prove:

i_am_god --> happy, i_am_god --> ¬ happy |-- ¬ i_am_god

MODULE: PROPOSITIONAL LOGIC

Natural Deduction: Rules for Double Negation

22-08-2017 Sundar B. CS&IS, BITS Pilani 4

ND – Rules for Double negation

Double Negation – Example

Exercise:

Prove the following sequent: \mathbf{p} , $\neg \neg (\mathbf{q} \land \mathbf{r}) \mid -- \neg \neg \mathbf{p} \land \mathbf{r}$

	Deduction	Explanation
1	р	Premise
2	¬¬ (q∧r)	Premise
3	q∧r	––e 2
4	r	∧e2 3
5	¬¬ p	¬¬i 1
6		∧i 3,4

MODULE: PROPOSITIONAL LOGIC

Natural Deduction: Rules for Disjunction

22-08-2017 Sundar B. CS&IS, BITS Pilani 7

ND: Proof Rules: OR-introduction

Rules for Disjunction Introduction

ND: Proof Rules: OR Elimination

Rule for Disjunction Elimination

- Recall from Boolean algebra, the distribution rule
 - $p \land (q \lor r)$ "is equivalent to" $(p \land q) \lor (p \land r)$
- To prove that the <u>two formulas are equivalent</u>
 - we must prove that <u>one of them can be derived from the</u> <u>other</u> and vice versa
- For this example:
 - We will prove
 - $p \wedge (q \vee r) \mid -- (p \wedge q) \vee (p \wedge r)$
 - and this will be an exercise for you:
 - $(p \land q) \lor (p \land r) \mid --p \land (q \lor r)$

• Prove:

• $p \wedge (q \vee r) \mid -- (p \wedge q) \vee (p \wedge r)$

	Deduction	Explanation
	$p \wedge (q \vee r)$	Premise
3	q∨r	
	q	Assumption
		Sub-proof
3	(p∧q) ∨ (p∧r)	
	r	Assumption
	•••	_ Sub-proof
2	(p∧q) ∨ (p∧r)	_
1	$(p \wedge q) \vee (p \wedge r)$	∨e ?-2, ?-?,

• Prove:

• $p \wedge (q \vee r) \mid -- (p \wedge q) \vee (p \wedge r)$

	Deduction	Explanation
	$p \wedge (q \vee r)$	Premise
	р	
3	q∨r	
	q	Assumption
5	$(p \land q) \lor (p \land r)$	
4	r	Assumption
3	p∧r	∧i ?, 4 Sub-proof
2	(p∧q) ∨ (p∧r)	∨i ₂ 3
1	$(p \wedge q) \vee (p \wedge r)$	∨e 4-2,?-5,

12

• Prove:

•
$$p \wedge (q \vee r)$$
 |-- $(p \wedge q) \vee (p \wedge r)$

	Deduction	Explanation
10	p ∧ (q ∨ r)	Premise
9	р	^e ₁ 10
8	q r	^e ₂ 10
7	q	Assumption
6	p∧q	∧i 9,7 Sub-proof
5	(p∧q) ∨ (p∧r)	∨i₁ 6
4	r	Assumption
3	p∧r	∧i 9,4
2	(p∧q) ∨ (p∧r)	√ i ₂ 3
1	$(p \wedge q) \vee (p \wedge r)$	∨e 4-2, 7-5 ,

- Consider the following program fragment in C:
 - if $(x>y) \{ m = x; \}$
 - else /* x <= y */ { m = y; }</pre>
- Prove the post-condition (i.e. condition after execution)
 - m holds the maximum of the two values x and y
- How would the proof proceed?
 - **1** φ is _____
 - **2** ψ is _____
 - $\mathbf{3} \quad \phi \lor \psi \text{ is true.}$
 - **4** χ is _____
 - 5 Now, apply disjunction elimination.

- Exercise: Prove:
 - rains | wet_road | -- rains --> wet_road

MODULE: PROPOSITIONAL LOGIC

Natural Deduction: Derived Rules

Modus Tollens

MT (modus tollens)

What is the relation between this and modus ponens?

How do you derive it?

Proof by Contradiction

- •One can infer anything from a contradiction.
- •But in this case the contradiction resulted from an assumption i.e. $\neg \phi$.
 - •Therefore it is meaningful to infer φ that the assumption led to the contradiction
 - Implicit meta-assumption: that the proof is sound!
- In fact one must infer ϕ to eliminate the assumption $\neg \phi$.
 - Why?

