Machine Learning

Lecture 11
Intro to BML

Learning Outcomes

After this lecture you should know:

- What is the motivation for using bayesian approach
- What is prior and posterior
- Difference between MAP and MLE
- For Bayesian Linear Regression:
 - Derive posterior, MAP, MLE and predictive distribution

Consider 2 random variables: x, y

Join distribution p(x, y) (pdf) defines probabilities of all possibles pairs of x and y.

$$\int p(x,y) dxdy = 1 \quad \text{or} \quad \sum_{x} \sum_{y} p(x,y) = 1$$

Consider 2 random variables: x, y

Join distribution p(x, y) (pdf) defines probabilities of all possibles pairs of x and y.

$$\int p(x,y)dxdy = 1 \quad \text{or} \quad \sum_{x} \sum_{y} p(x,y) = 1$$

Marginal - pdf of a single r.v. (e.g. x) obtained from the joint distribution (sum rule)

Consider 2 random variables: x, y

Join distribution p(x, y) (pdf) defines probabilities of all possibles pairs of x and y.

$$\int p(x,y)dxdy = 1 \quad \text{or} \quad \sum_{x} \sum_{y} p(x,y) = 1$$

Marginal - pdf of a single r.v. (e.g. x) obtained from the joint distribution (sum rule)

$$p(x) = \int p(x, y)dy$$
 or $p(x) = \sum_{y} p(x, y)$

Gaussian distribution $p(x, y) = \mathcal{N}((x, y) | \mu, \Sigma)$

with
$$\mu = (\mu_x, \mu_y)$$
 and $\Sigma = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{bmatrix}$

Gaussian distribution $p(x, y) = \mathcal{N}((x, y) | \mu, \Sigma)$

with
$$\mu=(\mu_x,\mu_y)$$
 and $\Sigma=\begin{bmatrix}\sigma_{xx}&\sigma_{xy}\\\sigma_{yx}&\sigma_{yy}\end{bmatrix}$

Marginal $p(x) = \mathcal{N}(x | \mu_x, \sigma_{xx})$

Background Conditional Distribution

Conditional - probability of x given y (or distribution of x if we observe y)

$$p(x \mid y) = \frac{p(x, y)}{p(y)}$$

Background Conditional Distribution

Conditional - probability of x given y (or distribution of x if we observe y)

$$p(x \mid y) = \frac{p(x, y)}{p(y)}$$

Follows directly from the Product Rule

$$p(x, y) = p(x | y)p(y)$$

Gaussian distribution $p(x, y) = \mathcal{N}((x, y) | \mu, \Sigma)$

with
$$\mu = (\mu_x, \mu_y)$$
 and $\Sigma = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{bmatrix}$

Conditional p(x | y = 1)

Gaussian distribution $p(x, y) = \mathcal{N}((x, y) | \mu, \Sigma)$

with
$$\mu=(\mu_x,\mu_y)$$
 and $\Sigma=\begin{bmatrix}\sigma_{xx}&\sigma_{xy}\\\sigma_{yx}&\sigma_{yy}\end{bmatrix}$

Conditional $p(x | y = 1) = \mathcal{N}(x | \bar{\mu}, \bar{\sigma})$ $\bar{\mu} = \mu_x + \sigma_{xy}\sigma_{yy}^{-1}(y - \mu_y)$ $\bar{\sigma} = \sigma_{xx} - \sigma_{xy}\sigma_{yy}^{-1}\sigma_{yx}$

Background Example

sum rule

$$p(x) = \int p(x, y) dy$$

product rule

$$p(x, y) = p(x | y)p(y)$$

Example

Given p(x, y, z) compute p(y|x)

Background Example

sum rule

$$p(x) = \int p(x, y) dy$$

product rule

$$p(x, y) = p(x | y)p(y)$$

Example

Given p(x, y, z) compute p(y|x)

$$p(y|x) = \frac{p(y,x)}{p(x)} = \frac{\int p(x,y,z)dz}{\int p(x,y,z)dzdy}$$

Background Bayes Theorem

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$

Background Bayes Theorem

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

Consider \mathscr{D} - data that you observe, θ - unknown parameters

$$p(\theta \,|\, \mathcal{D}) = \frac{p(\mathcal{D} \,|\, \theta)p(\theta)}{p(\mathcal{D})} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Evidence}} = \text{Posterior}$$

Background Statistical Inference

Observe: i.i.d. samples $x_1, ..., x_N$ from distribution $p(x \mid \theta)$

Goal: infer information about θ

Frequentist approach (Maximum Likelihood)

Bayesian Approach

Background Statistical Inference

Observe: i.i.d. samples $x_1, ..., x_N$ from distribution $p(x | \theta)$

Goal: infer information about θ

Frequentist approach (Maximum Likelihood)

$$\theta^* = \arg \max_{\theta} p(X|\theta) = \arg \max_{\theta} \sum_{i} \log p(x_i|\theta)$$

Bayesian Approach

$$p(\theta | x_1, ..., x_N) = \frac{\prod_i p(x_i | \theta) p(\theta)}{\int \prod_i p(x_i | \theta) p(\theta) d\theta}$$

Motivation Advantages of Bayesian Approach

- Encode prior knowledge or desired properties
- Prior imposes regularisation
- Posterior provides uncertainty about unknown parameters
- Bayesian ensembling

Models Discriminative and Generative

Data:

 $\{x_1, ..., x_n\}$ - observed variables $\{y_1, ..., y_N\}$ - unobserved / target variables

Model with unknown parameters θ :

Discriminative

$$p(y, \theta | x) = p(y | x, \theta)p(\theta)$$

Generative

$$p(x, y, \theta) = p(x, y | \theta)p(\theta)$$

Models Training Time

Input:

- Dataset $\{x_n, y_n\}_{n=1}^N$
- Likelihood $p(y|x,\theta)$
- Prior $p(\theta)$

Output:

Posterior distribution

$$p(\theta | X, Y) = \frac{\prod_{n} p(y_n | x_n, \theta) p(\theta)}{\int \prod_{n} p(y_n | x_n, \theta) p(\theta) d\theta}$$

Models Testing Time

Input:

Posterior distribution
$$p(\theta | X, Y) = \frac{\prod_{n} p(y_n | x_n, \theta) p(\theta)}{\int \prod_{n} p(y_n | x_n, \theta) p(\theta) d\theta}$$

Test point: x^*

Output:

Predictive Distribution

$$p(y^* | x^*, \theta, X, Y) = \int p(y^* | x^*, \theta) p(\theta | X, Y) d\theta$$

Models: How to find posterior?

$$p(\theta | X, Y) = \frac{\prod_{n} p(y_n | x_n, \theta) p(\theta)}{\int \prod_{n} p(y_n | x_n, \theta) p(\theta) d\theta}$$

- Conjugacy
 For 'good' pairs of likelihood and prior
- MAP estimate (maximum a posteriori)
 Point estimate instead of distribution
- Approximate Inference Find something that looks like posterior, have samples like posterior

Linear Regression: Recap

Training Dataset: $X \in \mathbb{R}^{N \times d}$; $Y \in \mathbb{R}^{N}$

Model: a(X) = Xw

Cost function:
$$\mathcal{L}(a, X) = \frac{1}{N} ||Xw - Y||^2$$

$$w^* = (X^T X)^{-1} X^T Y$$

If we add regularization

$$w^* = (\lambda I + X^T X)^{-1} X^T Y$$

Linear Regression: Additive Noise

Training Dataset: $X \in \mathbb{R}^{N \times d}$; $Y \in \mathbb{R}^{N}$

Model:

$$p(y|w,x) = \mathcal{N}(y|x^Tw,\sigma^2)$$
 - likelihood $p(w) = \mathcal{N}(w|0,A^{-1})$ - prior

Recap Gaussian Distribution

Recap pdf of gaussian distribution

Recap Gaussian Distribution

Recap pdf of gaussian distribution

$$\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{|2\pi\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

We will be working with logarithms a lot:

Recap Gaussian Distribution

Recap pdf of gaussian distribution

$$\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{|2\pi\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

We will be working with logarithms a lot:

$$\log \mathcal{N}(x \mid \mu, \Sigma) = -\frac{1}{2}(x - \mu)^T \Sigma(x - \mu) + const$$

It is always true that:

 μ is mode of the distribution: $\mu = \arg \max \log \mathcal{N}(x | \mu, \Sigma)$

 Σ is the inverse Hessian: $\Sigma = -\left(\nabla_x^2 \log^{3} \mathcal{N}(x \mid \mu, \Sigma)\right)^{-1}$

Let's start with MLE:

$$p(Y|w,X) = \prod_{n=1}^{N} p(y_n|w,x_n)$$

$$w^{MLE} = \arg\max_{w} \sum_{n} \log \mathcal{N}(y_n | w, x_n)$$

Let's start with MLE:

$$p(Y|w,X) = \prod_{n=1}^{N} p(y_n|w,x_n)$$

$$w^{MLE} = \arg\max_{w} \sum_{n} \log \mathcal{N}(y_n | w, x_n) = (X^T X)^{-1} X^T Y$$

Now, MAP:
$$p(Y|w,X) = \prod_{n=1}^{N} p(y_n|w,x_n), \quad p(w) = \mathcal{N}(w \mid 0,A^{-1})$$
 Maximize Posterior
$$p(w\mid X,Y) = \frac{p(Y\mid w,X)p(w)}{\int p(Y\mid w,X)p(w)dw}$$

Now, MAP:
$$p(Y|w,X) = \prod_{n=1}^{N} p(y_n|w,x_n), \quad p(w) = \mathcal{N}(w|0,A^{-1})$$
 Maximize Posterior
$$p(w|X,Y) = \frac{p(Y|w,X)p(w)}{\int p(Y|w,X)p(w)dw}$$

$$w^{MAP} = (A + \frac{1}{\sigma^2} X^T X)^{-1} \frac{1}{\sigma^2} X^T Y$$

Now, MAP:
$$p(Y|w,X) = \prod_{n=1}^{N} p(y_n|w,x_n), \quad p(w) = \mathcal{N}(w|0,A^{-1})$$
 Maximize Posterior
$$p(w|X,Y) = \frac{p(Y|w,X)p(w)}{\int p(Y|w,X)p(w)dw}$$

$$w^{MAP} = (A + \frac{1}{\sigma^2} X^T X)^{-1} \frac{1}{\sigma^2} X^T Y$$
$$w^{MLE} = (X^T X)^{-1} X^T Y$$

Linear Regression: Posterior

$$p(Y|w,X) = \prod_{n=1}^{N} p(y_n|w,x_n), \quad p(w) = \mathcal{N}(w|0,A^{-1})$$

$$p(w|X,Y) = \frac{p(Y|w,X)p(w)}{\int p(Y|w,X)p(w)dw}$$

Linear Regression: Posterior

$$p(Y|w,X) = \prod_{n=1}^{N} p(y_n|w,x_n), \quad p(w) = \mathcal{N}(w|0,A^{-1})$$

$$p(w \mid X, Y) = \frac{p(Y \mid w, X)p(w)}{\int p(Y \mid w, X)p(w)dw} = \mathcal{N}(w \mid w^{MAP}, (A + \frac{1}{\sigma^2}X^TX)^{-1})$$

Linear Regression: Predictive Distribution

Given: posterior distribution p(w | X, Y)

New point: x^*

Predictive distribution:

Linear Regression: Predictive Distribution

Given: posterior distribution p(w|X,Y)

New point: x^*

Predictive distribution:

$$p(y^* | x^*, w, X, Y) = \int p(y^* | x^*, w) p(w | X, Y) dw = \mathcal{N}(y^* | x^{*T} \mu_w, \sigma^2 + x^{*T} \Sigma_w x^*)$$

Linear Regression: Hyperparameters

Where to get unknown A and σ^2 ?

Evidence maximization.

Linear Regression: Hyperparameters

Where to get unknown A and σ^2 ?

Evidence maximization. Consider hyperpameter $\alpha = \{A, \sigma^2\}$.

Impose uninformative prior $p(\alpha) \approx \text{const.}$ Then, MAP of the hyperparameter is:

Linear Regression: Hyperparameters

Where to get unknown A and σ^2 ?

Evidence maximization. Consider hyperpameter $\alpha = \{A, \sigma^2\}$.

Impose uninformative prior $p(\alpha) \approx \text{const.}$ Then, MAP of the hyperparameter is:

$$\arg \max_{\alpha} p(\alpha | X, Y) = \arg \max_{\alpha} \frac{p(Y | X, \alpha)p(\alpha)}{p(Y | X)} = \arg \max_{\alpha} p(Y | X, \alpha)$$

That is, we need to maximise evidence to get optimal hyperparameters.

Learning Outcomes

After this lecture you should know:

- What is the motivation for using bayesian approach
- What is prior and posterior
- Difference between MAP and MLE
- For Bayesian Linear Regression:
 - Derive posterior, MAP, MLE and predictive distribution