Complex Variables Qualifying Exam Spring 1991

In what follows \mathbb{R} is the real numbers, \mathbb{C} the complex numbers, \mathbb{D} the open unit disc centered at 0 and \mathbb{T} the boundary of \mathbb{D} . The set of functions holomorphic in Ω is denoted $H(\Omega)$.

- **1.** Let f be a continuous function on \mathbb{D} which satisfies $\int_{\Delta} f = 0$ for each triangle $\Delta \subset \mathbb{D}$ such that one side on Δ lies on \mathbb{R} and another side of Δ is parallel to $i\mathbb{R}$. Show that f is holomorphic.
- **2.** Prove that 1/z is not uniformly approximable on \mathbb{T} by polynomials in z.
- **3.** Let Ω be a region in \mathbb{C} , $f \in H(\Omega) \setminus \{0\}$, n a positive integer. Suppose that $|z|^n f(z)|$ attains a maximum over Ω at some point of Ω . Show that $0 \notin \Omega$.
- **4.** Prove that for all z in the open right half-plane \mathbb{H} the integral $\int_1^\infty e^{-t}t^{z-1}dt$ exists and defines a holomorphic function of $z \in \mathbb{H}$.
- **5.** (i) If f is holomorphic in a neighborhood of $\overline{\mathbb{D}}$, then

$$|f(z)| \leq \frac{1}{\sqrt{1-|z|^2}} \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f(e^{i\theta}) \right|^2 d\theta \right]^{1/2} \quad \forall z \in \mathbb{D}.$$

- (ii) Use (i) to draw the same conclusion in case f is only continuous on $\overline{\mathbb{D}}$, holomorphic in \mathbb{D} .
- **6.** f and g are each holomorphic in a neighborhood of 0, f(0) = 0 with multiplicity m, g(0) = 0 with multiplicity n. What is the multiplicity of 0 as a zero of $f \circ g$?
- 7. (i) Use the function $f(t) := e^{it}$, $t \in [0, 2\pi]$, to show that the Mean-Value Theorem of differential calculus fails (generally) for complex-valued functions.
 - (ii) Prove that, in spite of (i), if F is holomorphic in a convex region Ω and $|F'| \leq M$, then

$$|F(z_2) - F(z_1)| \le M|z_2 - z_1| \quad \forall z_1, z_2 \in \Omega.$$

- **8.** Let Ω be a bounded region in \mathbb{C} , $f:\overline{\Omega}\to\mathbb{C}$ a continuous non-constant function which is holomorphic in Ω and maps $\partial\Omega$ into \mathbb{T} .
 - (i) Show that $0 \in f(\Omega)$.
 - (ii) Show that $f(\Omega) = \mathbb{D}$.

Hint: To get "\(\times\)", apply (i) to $\phi \circ f$ for certian holomorphic maps ϕ of \mathbb{D} into \mathbb{D} .

9. f is continuous on $\overline{\mathbb{D}}$, holomorphic in \mathbb{D} and $\operatorname{diam} f(\mathbb{T}) \leq 1$. Show that $\operatorname{diam} f(r\mathbb{T}) \leq r$ for each $0 \leq r \leq 1$.

Hint: diam $f(r\mathbb{T}) := \max\{|f(ru_1) - f(ru_2)| : u_1, u_2 \in \mathbb{T}\}$. If this is achieved at u_1, u_2 consider the holomorphic function $F(z) := f(zu_1) - f(zu_2)$.

- **10.** $h: \mathbb{C} \to \mathbb{R}$ is harmonic and non-constant.
 - (i) Prove that h is not bounded above.
 - (ii) Prove that h is not bounded below.
 - (iii) Prove that $h(\mathbb{C}) = \mathbb{R}$.