

Low Cost, High Performance, CMOS Rail-to-Rail Output Operational Amplifier

AD8692

FEATURES

Offset voltage: $400 \, \mu V \, typ$

Low offset voltage drift: 6 μV/°C maximum Very low input bias currents: 1 pA maximum

Low noise: 8 nV/√Hz Low distortion: 0.0006% Wide bandwidth: 10 MHz

Unity gain stable

Single-supply operation: 2.7 V to 6 V

APPLICATIONS

Photodiode amplification
Battery-powered instrumentation
Medical instruments
Multipole filters
Sensors
Portable audio devices

PIN CONFIGURATIONS

Figure 1. 8-Lead MSOP Pin Configuration

Figure 2. 8-Lead SOIC Pin Configuration

GENERAL DESCRIPTION

The AD8692 is a low cost, dual rail-to-rail output, single-supply amplifier featuring low offset voltage, low input voltage and current noise, and wide signal bandwidth. The combination of low offset, low noise, very low input bias currents, and high speed makes this amplifier useful in a wide variety of applications. Filters, integrators, photodiode amplifiers, and high impedance sensors all benefit from the combination of performance features. Audio and other ac applications benefit from the wide bandwidth and low distortion.

Applications for this amplifier include PA controls, laser diode control loops, portable and loop-powered instrumentation, audio amplification for portable devices, and ASIC input and output amplifiers.

The AD8692 is specified over the extended industrial temperature range of -40° C to $+125^{\circ}$ C. The AD8692 is available in the micro-SOIC and 8-lead narrow SOIC surface-mount packages.

AD8692

TABLE OF CONTENTS

Electrical Characteristics	. 3
Absolute Maximum Ratings	. 5
Thermal Characteristics	. 5
FSD Caution	5

Typical Performance Characteristics	6
Outline Dimensions	11
Ordering Guide	11

REVISION HISTORY

10/04—Revision 0: Initial Version

ELECTRICAL CHARACTERISTICS

 V_{S} = 2.7 V, V_{CM} = V_{\text{S}}/2, T_{A} = 25°C, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = -0.3 \text{ V to } +1.6 \text{ V}$		0.4	2.0	mV
		$V_{CM} = -0.1 \text{ V to } +1.6 \text{ V}; -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$			3.0	mV
Input Bias Current	I _B			0.2	1	рА
		-40 °C < T_A < $+85$ °C			50	рА
		-40 °C < T_A < $+125$ °C			260	рА
Input Offset Current	los			0.1	0.5	рА
		-40 °C < T_A < $+85$ °C			20	рА
		-40°C < T _A < +125°C			75	рА
Input Voltage Range			-0.3		+1.6	٧
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.3 \text{ V to } +1.6 \text{ V}$	70	90		dB
		$V_{CM} = -0.1 \text{ V to } +1.6 \text{ V}; -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$	65	85		dB
Large Signal Voltage Gain	Avo	$R_L = 2 \text{ k}\Omega$, $V_O = 0.5 \text{ V to } 2.2 \text{ V}$	90	250		V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			1.3	6.0	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$I_L = 1 \text{ mA}$	2.64	2.66		V
		-40°C < T _A < +125°C	2.6			V
Output Voltage Low	V _{OL}	$I_L = 1 \text{ mA}$		25	40	mV
		-40°C < T _A < +125°C			50	mV
Short-Circuit Current	I_{SC}			±20		mA
Closed-Loop Output Impedance	Z _{OUT}	$f = 1 \text{ MHz, } A_V = 1$		12		Ω
POWER SUPPLY						
Power-Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 5.5 \text{ V}$	80	95		dB
		-40°C < T _A < +125°C	75	95		dB
Supply Current/Amplifier	I _{SY}	$V_0 = 0 V$		0.85	0.95	mA
		-40 °C < T_A < $+125$ °C			1.2	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		5		V/µs
Settling Time	ts	To 0.01%		1		μs
Gain Bandwidth Product	GBP			10		MHz
Phase Margin	Øo			60		Degrees
Total Harmonic Distortion + Noise	THD+N	$G = 1$, $R_L = 600 \Omega$, $f = 1 \text{ kHz}$, $V_O = 250 \text{ mV p-p}$		0.003		%
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		1.6	3.0	μV p-p
Voltage Noise Density	en	f = 1 kHz		8	12	nV/√ Hz
	en	f = 10 kHz		6.5		nV/√ Hz
Current Noise Density	in	f = 1 kHz		0.05		pA/√Hz

AD8692

 $V_S = 5.0 \text{ V}$, $V_{CM} = V_S/2$, $T_A = 5$ °C, unless otherwise noted.

Table 2.

				A Grade		
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = -0.3 \text{ V to } +3.9 \text{ V}$		0.4	2.0	mV
		$V_{CM} = -0.1 \text{ V to } +3.9 \text{ V}; -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$			3.0	mV
Input Bias Current	IB			0.2	1	рА
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			50	pА
		-40°C < T _A < +125°C			260	pА
Input Offset Current	los			0.1	0.5	pА
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			20	pА
		-40°C < T _A < +125°C			75	pА
Input Voltage Range			-0.3		+3.9	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.3 \text{ V to } +3.9 \text{ V}$	75	95		dB
		$V_{CM} = -0.1 \text{ V to } +3.9 \text{ V}; -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$	70	95		dB
Large Signal Voltage Gain	A _{VO}	$V_0 = 0.5 \text{ V to } 4.5 \text{ V}, R_L = 2 \text{ k}\Omega, V_{CM} = 0 \text{ V}$	250	2,000		V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			1.3	6	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$I_L = 1 \text{ mA}$	4.96	4.98		V
		I _L = 10 mA	4.7	4.78		V
		-40°C to +125°C	4.6			V
Voltage Low	V _{OL}	$I_L = 1 \text{ mA}$		16.5	40	mV
		I _L = 10 mA		165	210	mV
		-40°C to +125°C			290	mV
Short-Circuit Current	Isc			±80		mA
Closed-Loop Output Impedance	Z _{оит}	$f = 1 \text{ MHz, } A_V = 1$		10		Ω
POWER SUPPLY						
Power-Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 5.5 \text{ V}$	80	95		dB
		-40°C < T _A < +125°C	75	95		dB
Supply Current/Amplifier	I _{SY}	$V_O = 0 V$		0.95	1.05	mA
		-40°C < T _A < +125°C			1.3	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		5		V/µs
Settling Time	ts	To 0.01%		1		μs
Full Power Bandwidth	BW _P	<1% distortion		360		kHz
Gain Bandwidth Product	GBP			10		MHz
Phase Margin	Øo			65		Degrees
Total Harmonic Distortion + Noise	THD+N	$G = 1$, $R_L = 600 \Omega$, $f = 1 \text{ kHz}$, $V_O = 1 \text{ V p-p}$		0.0006		%
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		1.6	3.0	μV p-p
Voltage Noise Density	e _n	f = 1 kHz		8	12	nV/√ Hz
	1		1			
	e _n	f = 10 kHz		6.5		nV/√Hz

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Parameters	Ratings
Supply Voltage	6 V
Input Voltage	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
Differential Input Voltage	±6 V
Output Short-Circuit Duration to Gnd ¹	Observe derating curves
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	−40°C to +125°C
Junction Temperature Range	−65°C to +150°C
Lead Temperature Range (Soldering, 60 s)	300℃

 $^{^{1}}$ θ_{JA} is specified for the worst-case conditions, that is, the device soldered in the circuit board for surface-mount packages.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Table 4.

Package Type	θја	Ө лс	Unit
8-Lead MSOP (RM)	210	45	°C/W
8-Lead SOIC (R)	158	43	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

 $V_S = +5 \text{ V or } \pm 2.5 \text{ V}.$

Figure 3. Input Offset Voltage Distribution

Figure 4. Input Offset Voltage Drift Distribution

Figure 5. Input Offset Voltage vs. Common-Mode Voltage

Figure 6. Input Bias Current vs. Temperature

04991-

Figure 7. Supply Current vs. Supply Voltage

Figure 8. Supply Current vs. Temperature

Rev. 0 | Page 6 of 12

Figure 9. Output Voltage to Supply Rail vs. Load Current

Figure 10. Output Voltage Swing vs. Temperature (IL = 1 mA)

Figure 11. Output Voltage Swing vs. Temperature (IL = 10 mA)

Figure 12. Open-Loop Gain and Phase vs. Frequency

Figure 13. CMRR vs. Frequency

Figure 14. PSRR vs. Frequency

Figure 16. Small Signal Overshoot vs. Load Capacitance

VOLTAGE (50mV/DIV)

Figure 17. Small Signal Transient Response

Figure 18. Large Signal Transient Response

04991-018

04991-019

04991-020

Figure 19. Positive Overload Recovery

Figure 20. Negative Overload Recovery

04991-015

04991-016

04991-017

04991-023

04991-024

Figure 21. THD + N vs. Frequency

04991-021

04991-022

Figure 22. 0.1 Hz to 10 Hz Input Voltage Noise

Figure 23. Voltage Noise Density

Figure 24. Channel Separation

AD8692

 $V_S = +2.7 \text{ V or } \pm 1.35 \text{ V}.$

Figure 25. Input Offset Voltage Distribution

Figure 26. Input Offset Voltage vs. Common-Mode Voltage

Figure 27. Output Voltage to Supply Rail vs. Load Current

Figure 28. Output Voltage Swing vs. Temperature

Figure 29. Large Signal Transient Response

04991-029

Rev. 0 | Page 10 of 12

04991-026

04991-027

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187AA

Figure 30. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 31. 8-Lead Standard Small Outline Package [SOIC] (R-8) Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
AD8692ARMZ-R2 ¹	−40°C to +125°C	8-Lead MSOP	RM-8	APA
AD8692ARMZ-REEL ¹	−40°C to +125°C	8-Lead MSOP	RM-8	APA
AD8692ARZ ¹	-40°C to +125°C	8-Lead SOIC	R-8	
AD8692ARZ-REEL ¹	-40°C to +125°C	8-Lead SOIC	R-8	
AD8692ARZ-REEL7 ¹	−40°C to +125°C	8-Lead SOIC	R-8	

 $^{^{1}}$ Z = Pb-free part.

AD8692			

NOTES

