بسم الله الرحمن الرحيم

برنامهریزی نیمهمعین برای طراحی الگوریتمهای تقریبی

جلسه شانزدهم: تابع درجه ۲ روی گراف (انتهای رنگ کردن گرافهای ۳_ رنگپذیر)

رنگ آمیزی گرافهای ۳_رنگ پذیر باقی مانده از جلسه قبل

رنگ کردن گرافهای ۳_ رنگ پذیر

- $?\chi(G) = 3$ اگر •
- اگر P + NP، با ۴ رنگ نمی توان رنگ کرد
- اگر «فرض ۲ _ به _ ۱ »، با تعداد ثابتی رنگ نمی توان رنگ کرد

الگوریتمهای ابتدایی برای رنگ کردن گرافهای ۳_رنگپذیر

- با n رنگ
- با بیشترین درجه + ۱ رنگ
 - با $O(\sqrt{n})$ رنگ
- D یک راس با درجه حداقل \bullet
- همسایهها ۲_رنگپذیر (دوبخشی)
- همه را با ۳ راس رنگ میکنیم و حذف میکنیم
 - حداکثر O(n/D) رنگ مصرف می شود
 - D >در نهایت، درجهها
 - بقیه با D رنگ
 - O(n/D+D)= کل رنگ

الگوریتمهای ابتدایی برای رنگ کردن گرافهای ۳_رنگپذیر

- با n رنگ
- با بیشترین درجه + ۱ رنگ
- با $O(\sqrt{n})$ رنگ (تکنیک ویگدرسون)
 - تكنيك بلوم:

$$\tilde{O}(n^{0.375})$$

ایده

- ۳_رنگپذیر ==(با SDP)==> ۳_رنگپذیر برداری
 - يالها از هم دورند
 - با یک صفحه راسها را جدا کنیم
 - مجموعه مستقل بزرگی پیدا کنیم.

الگوريتم

الگوريتم

$$\mathbf{E}[|I_0|] = \sum_{i=1}^n \operatorname{Prob}[i \in I_0] = \sum_{i=1}^n \operatorname{Prob}[\boldsymbol{\gamma}^T \mathbf{v}_i \ge t] = nN(t)$$

$$\mathbf{E}[|I_0 \setminus I|]$$

$$=\sum_{i=1}^{n}\operatorname{Prob}[i\in I_{0} \text{ and } j\in I_{0} \text{ for some edge } \{i,j\}]$$

$$\leq \sum_{i=1}^{N} \sum_{\{i,j\} \in E} \operatorname{Prob}[i,j \in I_0]$$

$\operatorname{Prob}[i, j \in I_0] = \operatorname{Prob}[\boldsymbol{\gamma}^T \mathbf{v}_i \ge t \text{ and } \boldsymbol{\gamma}^T \mathbf{v}_j \ge t] \le N(2t)$

تحليا

$$\mathbf{E}[|I|] \ge n(N(t) - \Delta N(2t))$$

$$\mathbf{E}[|I_0|] = \sum_{i=1}^n \operatorname{Prob}[i \in I_0] = \sum_{i=1}^n \operatorname{Prob}[\boldsymbol{\gamma}^T \mathbf{v}_i \ge t] = nN(t)$$

$$\mathbf{E}[|I_0 \setminus I|]$$

$$=\sum_{i=1}^{n} \operatorname{Prob}[i \in I_0 \text{ and } j \in I_0 \text{ for some edge } \{i, j\}]$$

$$\leq \sum_{i=1}^n \sum_{\{i,j\} \in E} \left[\operatorname{Prob}[i,j \in I_0]
ight] \ \leq N(2t)$$

$$\leq n\Delta N(2t)$$

$\mathbf{E}[|I|] \ge n(N(t) - \Delta N(2t))$

Lemma. For all $t \geq 0$, we have

$$\left(\frac{1}{t} - \frac{1}{t^3}\right) \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \le N(t) \le \frac{1}{t} \frac{1}{\sqrt{2\pi}} e^{-t^2/2}.$$

$$N(t) - \Delta N(2t) \ge \frac{1}{\sqrt{2\pi}} \left(\left(\frac{1}{t} - \frac{1}{t^3} \right) e^{-t^2/2} - \frac{\Delta}{2t} e^{-4t^2/2} \right)$$

$$= \frac{1}{\sqrt{2\pi}} \left(\left(\frac{1}{t} - \frac{1}{t^3} \right) e^{-t^2/2} - \frac{\Delta}{2t} e^{-4t^2/2} \right)$$

$$= \Omega \left(\Delta^{-1/3} / \sqrt{\ln \Delta} \right)$$

$$N(t) - \Delta N(2t) \ge \frac{1}{\sqrt{2\pi}} \left(\left(\frac{1}{t} - \frac{1}{t^3} \right) e^{-t^2/2} - \frac{\Delta}{2t} e^{-4t^2/2} \right)$$

 $2^{-t^2/2} = e^{-\ln(\Delta)/3} = \Delta^{-1/3}$

 $t := (\frac{2}{3} \ln \Delta)^{1/2}$

$$= \Omega((\frac{1}{t} - \frac{1}{t^3})\Delta^{-1/3} - \frac{\Delta}{2t}(\Delta^{-1/3})^4)$$

$$= \Omega((\frac{1}{t} - \frac{1}{t^3})\Delta^{-1/3} - \frac{\Delta^{-1/3}}{2t})$$

$$= \Omega((\frac{1}{t} - \frac{1}{t^3} - \frac{1}{2t})\Delta^{-1/3}) = \Omega(\frac{1}{8t}\Delta^{-1/3})$$

$$= \Omega((\Delta^{-1/3}/\sqrt{\ln \Delta}) = \tilde{\Omega}(\Delta^{-1/3}n)$$

$$= \Omega\left(\Delta^{-1/3}/\sqrt{\ln \Delta}\right) = \tilde{\Omega}(\Delta^{-1/3}n)$$

$$\mathbf{E}[|I|] \ge n(N(t) - \Delta N(2t)) >$$

$$= \tilde{\Omega}(\Delta^{-1/3}n)$$

با
$$O(n^{0.25})$$
 رنگ

$$D = n^{0.75}$$

- O(n/D) <=بزرگتر از D را با تکنینک ویگدرسون
 - گراف باقی مانده،

با
$$O(n^{0.25})$$
 رنگ

رنگ
$$O(n^{0.25})$$
 با $O(n/n^{0.75})$ رنگ مجموعه مستقل با اندازه حداقل

حداکثر
$$n^{0.25}$$
 بار مجموعه مستقل $=>$ هر کدام یک رنگ

$$O(n/D+D^{1/3}) = O(n/D+D^{1/3})$$

با
$$O(n^{0.25})$$
 رنگ

$$O(n^{\frac{1}{4}})$$

گرافهای سخت

Proposition. There exists a constant $\delta > 0$ such that for infinitely many values of n, one can construct an n-vertex graph with vector chromatic number at most 3 and with chromatic number at least n^{δ} .

مشابه جواب بهینه SDP

مشابه جواب بهينه واقعي

گراف G: با سه پارامتر d و s و t

$$[d] := \{1, 2, \dots, d\}$$

گراف G: با سه پارامتر d و s و t

$$[d] := \{1, 2, \dots, d\}$$

راسها:
$$V(G) := \{A \subseteq [d] : |A| = s\}$$

گراف G: با سه پارامتر d و s و

$$[d] := \{1, 2, \dots, d\}$$

$$\begin{pmatrix} d \\ s \end{pmatrix}$$
 عداد = $V(G):=\{A\subseteq [d]: |A|=s\}$

گراف G: با سه پارامتر d و s و t

$$[d] := \{1, 2, \dots, d\}$$

$$\begin{pmatrix} d \\ s \end{pmatrix}$$
 عداد = $V(G) := \{A \subseteq [d] : |A| = s\}$

يالها: $E(G):=\{\{A,B\}:A,B\subseteq [d],|A\cap B|\leq t\}$

گراف G: با سه پارامتر d و s و t

• پارامترهای مناسب:

$$[d] := \{1, 2, \dots, d\}$$

$$V(G) := \{ A \subseteq [d] : |A| = s$$

 $egin{pmatrix} d \\ s \end{pmatrix}$ تعداد $V(G) := \{A \subseteq [d] : |A| = s\}$ تعداد $E(G) := \{\{A,B\} : A,B \subseteq [d], |A\cap B| \leq t\}$

$$d = 8t$$
 $s = 4t$

سەرنگپذیری برداری G:

رنگپذیر برداری
$$\mathbf{v}_i^T\mathbf{v}_j \leq -rac{1}{k-1}.$$

سەرنگىذىرى بردارى G:

رنگپذیر برداری
$$\mathbf{v}_i^T \mathbf{v}_j \leq -rac{1}{k-1}.$$

$$(\mathbf{v}_A)_i := \left\{ egin{array}{l} d^{-1/2} & ext{if } i \in A \ -d^{-1/2} & ext{if } i
otin A \end{array}
ight.$$

سەرنگىذىرى بردارى G:

رنگپذیر برداری
$$\mathbf{v}_i^T \mathbf{v}_j \leq -rac{1}{k-1}.$$

$$(\mathbf{v}_A)_i := \left\{ egin{array}{l} d^{-1/2} & ext{if } i \in A \ \\ -d^{-1/2} & ext{if } i
ot\in A \end{array}
ight.$$

 $\mathbf{v}_A^T \mathbf{v}_B \leq \frac{1}{d}(d-4s+4t)$.

سهرنگیذیری برداری G:

رنگپذیر برداری
$$\mathbf{v}_i^T\mathbf{v}_j \leq -rac{1}{k-1}.$$

$$\mathbf{v}_A^T \mathbf{v}_B \leq \frac{1}{d}(d-4s+4t)$$
.

سهرنگیذیری برداری G:

رنگپذیر برداری
$$\mathbf{v}_i^T\mathbf{v}_j \leq -rac{1}{k-1}.$$

d-2s+t -(s-t) t -(s-t)

$$\mathbf{v}_A^T \mathbf{v}_B \leq \frac{1}{d}(d-4s+4t)$$
.

سەرنگىذىرى بردارى G:

$$\mathbf{v}_i^T \mathbf{v}_j \le -\frac{1}{k-1}.$$

d-2s+t - (s-t) t - (s-t)

$$\mathbf{v}_A^T \mathbf{v}_B \le \frac{1}{d} (d - 4s + 4t) = \frac{1}{8t} (-4t) = -\frac{1}{2}$$

Proposition. There exists a constant $\delta > 0$ such at for infinitely many values of n, one can construct an n-vertex graph with vector chromatic number at most 3 and with chromatic number at least n^{δ} .

مشابه جواب بهینه SDP

مشابه جواب بهينه واقعيي

Proposition. There exists a constant $\delta > 0$ such at for infinitely many values of n, one can construct an n-vertex graph with vector chromatic number at most 3 and with chromatic number at least n^{δ} .

مشابه جواب بهینه SDP

مشابه جواب بهينه واقعي

 $\chi(G) \ge n/\alpha(G)$

Proposition. There exists a constant $\delta > 0$ such at for infinitely many values of n, one can construct an n-vertex graph with vector chromatic number at most 3 and with chromatic number at least n^{δ} .

مشابه جواب بهینه SDP

مشابه جواب بهينه واقعى

$$\chi(G) \ge n/\alpha(G)$$

$$\alpha(G) \leq n^{1-\delta}$$

$$|\mathcal{F}| \le {d \choose 0} + {d \choose 1} + \dots + {d \choose s-t-1}.$$

$$|\mathcal{F}| \le {d \choose 0} + {d \choose 1} + \dots + {d \choose s-t-1}.$$

$$|\mathcal{F}| \le {d \choose 0} + {d \choose 1} + \dots + {d \choose s-t-1}.$$

$$|F| \le \sum_{i=0}^{3t-1} \binom{8t}{i}$$

$$|\mathcal{F}| \le {d \choose 0} + {d \choose 1} + \dots + {d \choose s-t-1}.$$

$$|F| \le \sum_{i=0}^{3t-1} {8t \choose i} = 3t2^{dH(8t/3t)}$$

$$|\mathcal{F}| \le {d \choose 0} + {d \choose 1} + \dots + {d \choose s-t-1}.$$

$$d = 8t$$
 and $s = 4t$

$$|F| \le \sum_{i=0}^{3t-1} {8t \choose i} = 3t2^{dH(8t/3t)} = 3t2^{0.9544d}$$

$$|\mathcal{F}| \le {d \choose 0} + {d \choose 1} + \dots + {d \choose s-t-1}.$$

$$d = 8t$$
 and $s = 4t$

$$|F| \le \sum_{i=0}^{3t-1} {8t \choose i} = 3t2^{dH(8t/3t)} = 3t2^{0.9544d}$$

= $2^{0.9544d + \log d}$

$$|\mathcal{F}| \le {d \choose 0} + {d \choose 1} + \dots + {d \choose s-t-1}.$$

$$d = 8t$$
 and $s = 4t$

$$|F| \le \sum_{i=0}^{3t-1} {8t \choose i} = 3t2^{dH(8t/3t)} = 3t2^{0.9544d}$$

= $2^{0.9544d + \log d} \le 2^{0.955d}$

9.5.5 Theorem. Let \mathcal{F} be a system of s-element subsets of $\{1, 2, \ldots, d\}$ such that every two distinct $A, B \in \mathcal{F}$ satisfy $|A \cap B| \ge t + 1$. Then

$$|\mathcal{F}| \le {d \choose 0} + {d \choose 1} + \dots + {d \choose s-t-1}.$$

$$d = 8t$$
 and $s = 4t$

$$|F| \le \sum_{i=0}^{3t-1} {8t \choose i} = 3t2^{dH(8t/3t)} = 3t2^{0.9544d}$$

= $2^{0.9544d + \log d} \le 2^{0.955d}$

$$n = 2^{nH(4t/8t)} = 2^d$$

مشابه شكاف صحيح

Proposition. There exists a constant $\delta > 0$ such at for infinitely many values of n, one can construct an n-vertex graph with vector chromatic number at most 3 and with chromatic number at least n^{δ} .

مشابه جواب بهینه SDP

مشابه جواب بهينه واقعى

$$\chi(G) \ge n/\alpha(G)$$

$$\chi(G) \ge 2^d / 2^{0.955d}$$

- با n رنگ
- با بیشترین درجه + ۱ رنگ
- با $O(\sqrt{n})$ رنگ (تکنیک ویگدرسون)
 - $ilde{O}(n^{0.375})$ تکنیک بلوم: $oldsymbol{ ilde{O}}$
 - روش SDP:
- $ilde{O}(n^{0.25})$ روش SDP بلوم: •
- $O(n^{0.2111})$: Karger–Motwani–Sudan روش ullet
 - $ilde{O}(n^{0.2072})$ Chlamtac روش

MaxQP

چند مسئله کاربردی (حالت خاص)

چهار مسئله جزئي

- ۱ برش با بیشینه نفع
- ۲ حالت بهینه مدل آیزینگ
- ۳ خوشەبندى همبستگى مبنا
 - ۴_ نرم برشی

۱_ برش با بیشینه نفع

 $\text{MaxCut}-\frac{1}{2}|E|$

۱_ برش با بیشینه نفع

 $\mathrm{MaxCut-}\frac{1}{2}|E|$ =: نفع

۱_ برش با بیشینه نفع

$$\text{MAXCUT} - \frac{1}{2}|E| =:$$
 \bullet

• چرا تقریب نفع مهمتر است؟

$$\frac{1}{2}|E| + |E|^{0.9}$$
 $\frac{1}{2}|E| + 10$

Maximize
$$\sum_{\{i,j\}\in E} \frac{1-z_i z_j}{2}$$
subject to $z_i \in \{-1,1\}, i=1,\ldots,n.$

Maximize
$$\sum_{\{i,j\}\in E} \frac{1-z_i z_j}{2}$$
subject to $z_i \in \{-1,1\}, i=1,\ldots,n.$

MAXCUT
$$-\frac{1}{2}|E| = |A| - \frac{1}{2}|E|$$

Maximize
$$\sum_{\{i,j\}\in E} \frac{1-z_i z_j}{2}$$
subject to $z_i \in \{-1,1\}, i=1,\ldots,n.$

MAXCUT
$$-\frac{1}{2}|E| = |A| - \frac{1}{2}|E| = \frac{1}{2}|A| + \frac{1}{2}|A| - \frac{1}{2}|E|$$

Maximize
$$\sum_{\{i,j\}\in E} \frac{1-z_i z_j}{2}$$
subject to $z_i \in \{-1,1\}, i=1,\ldots,n.$

MAXCUT
$$-\frac{1}{2}|E| = |A| - \frac{1}{2}|E| = \frac{1}{2}|A| + \frac{1}{2}|A| - \frac{1}{2}|E|$$
$$= \frac{1}{2}|A| - \frac{1}{2}(|E| - |A|)$$

Maximize
$$\sum_{\{i,j\}\in E} \frac{1-z_i z_j}{2}$$
subject to $z_i \in \{-1,1\}, i=1,\ldots,n.$

$$\begin{aligned} \mathbf{MAXCUT} - \frac{1}{2}|E| &= |A| - \frac{1}{2}|E| = \frac{1}{2}|A| + \frac{1}{2}|A| - \frac{1}{2}|E| \\ &= \frac{1}{2}|A| - \frac{1}{2}(|E| - |A|) = \frac{1}{2}|A| - \frac{1}{2}|E - A| \end{aligned}$$

Maximize
$$\sum_{\{i,j\}\in E} \frac{1-z_i z_j}{2}$$
subject to $z_i \in \{-1,1\}, i=1,\ldots,n.$

MAXCUT
$$-\frac{1}{2}|E| = |A| - \frac{1}{2}|E| = \frac{1}{2}|A| + \frac{1}{2}|A| - \frac{1}{2}|E|$$

$$= \frac{1}{2}|A| - \frac{1}{2}(|E| - |A|) = \frac{1}{2}|A| - \frac{1}{2}|E - A|$$

$$\max \left\{ \sum_{\{i,j\} \in E} \frac{-x_i x_j}{2} : x_1, \dots, x_n \in \{\pm 1\} \right\}$$

۲_ مدل آیزینگ

• كريستال

۲_ مدل آیزینگ

• كريستال

$$-\sum_{\{i,j\}\in E} J_{ij}x_ix_j$$

۲_ مدل آیزینگ

• كريستال

$$-\sum_{\{i,j\}\in E} J_{ij}x_ix_j$$

مسئله: پیدا کردن حالت با کمترین انرژی

- گراف با ۲ نوع یال:
- راسهای مشابه
- راسهای مخالف

- گراف با ۲ نوع یال:
- راسهای مشابه
- راسهای مخالف
- خوشهبندی مناسب: تعداد یالهای متناسب با خوشهبندی

- گراف با ۲ نوع یال:
- راسهای مشابه
- راسهای مخالف
- خوشهبندی مناسب: تعداد یالهای متناسب با خوشهبندی
- قضیه: خوشهبندی ۲ _ خوشهای، تقریب ۱/۳ برای خوشهبندی کلی است!

- گراف با ۲ نوع یال:
- راسهای مشابه
- راسهای مخالف

- خوشهبندی مناسب: تعداد یالهای متناسب با خوشهبندی
- قضیه: خوشهبندی ۲ _ خوشهای، تقریب ۱/۳ برای خوشهبندی کلی است!

$$\max \left\{ \sum_{\{i,j\} \text{ similar}} x_i x_j - \sum_{\{i,j\} \text{ dissimilar}} x_i x_j : x_1, \dots, x_n \in \{\pm 1\} \right\}$$

قضیه: خوشهبندی ۲_خوشهای، تقریب ۱/۳ برای خوشهبندی کلی است.

$$\max \left\{ \left| \sum_{i \in I, j \in J} a_{ij} \right| : I \subseteq \{1, 2, \dots, m\}, J \subseteq \{1, 2, \dots, n\} \right\}$$

$$\max \left\{ \left| \sum_{i \in I, j \in J} a_{ij} \right| : I \subseteq \{1, 2, \dots, m\}, J \subseteq \{1, 2, \dots, n\} \right\}$$

به چه دردی میخورد؟ برشهای بیشینه

$$\max \left\{ \left| \sum_{i \in I, j \in J} a_{ij} \right| : I \subseteq \{1, 2, \dots, m\}, J \subseteq \{1, 2, \dots, n\} \right\}$$

به چه دردی می خورد؟ برشهای بیشینه

ماتريس A

$$\max \left\{ \left| \sum_{i \in I, j \in J} a_{ij} \right| : I \subseteq \{1, 2, \dots, m\}, J \subseteq \{1, 2, \dots, n\} \right\}$$

به چه دردی می خورد؟ برشهای بیشینه

$$\max \left\{ \left| \sum_{i \in I, j \in J} a_{ij} \right| : I \subseteq \{1, 2, \dots, m\}, J \subseteq \{1, 2, \dots, n\} \right\}$$

به چه دردی میخورد؟ برشهای بیشینه

ماتریس B:

اضافه کردن یک سطر و یک ستون که

جمع سطرها و ستونها = ٥

جمع كل=٥

$$\max \left\{ \left| \sum_{i \in I, i \in I} a_{ij} \right| : I \subseteq \{1, 2, \dots, m\}, J \subseteq \{1, 2, \dots, n\} \right\}$$

به چه دردی می خورد؟ برشهای بیشینه

ماتريس B:

اضافه کردن یک سطر و یک ستون که

جمع سطرها و ستونها = ٥

جمع كل=٥

$$||A||_{\text{cut}} = ||B||_{\text{cut}}$$

\circ برای ماتریس \mathbf{B} با جمع سطر و ستون

$$||B||_{\text{cut}} = \frac{1}{4} \max \left\{ \sum_{i=1}^{m+1} \sum_{j=1}^{n+1} b_{ij} x_i y_j : x_1, \dots, x_{m+1}, y_1, \dots, y_{n+1} \in \{\pm 1\} \right\}$$

$$\max \left\{ \left| \sum_{i \in I, j \in J} a_{ij} \right| : I \subseteq \{1, 2, \dots, m\}, J \subseteq \{1, 2, \dots, n\} \right\}$$

مسئله MaxQP

مسئله كلي

MaxQP[G]: maximizing a quadratic form on a graph G = (V, E)

$$\max \left\{ \sum_{\{i,j\}\in E} a_{ij} x_i x_j : x_1, \dots, x_n \in \{\pm 1\} \right\},\,$$

where a_{ij} are real weights on edges, generally both positive and negative.

مسئله کلی

MaxQP[G]: maximizing a quadratic form on a graph G = (V, E)

$$\max \left\{ \sum_{\substack{j:j \in E}} a_{ij} x_i x_j : x_1, \dots, x_n \in \{\pm 1\} \right\},\,$$

where a_{ij} are real weights on edges, generally both positive and negative.

- حالت خاص
- ۱ برش با بیشینه نفع
 ۲ حالت بهینه مدل آیزینگ
- ۳_ خوشهبندی همبستگی مبنا
 - ۴ نرم برشی

مسئله كلي

MaxQP[G]: maximizing a quadratic form on a graph G = (V, E)

$$\max \left\{ \sum_{\{i,j\}\in E} a_{ij} x_i x_j : x_1, \dots, x_n \in \{\pm 1\} \right\},\,$$

where a_{ij} are real weights on edges, generally both positive and negative.

مسئله کلی

MaxQP[G]: maximizing a quadratic form on a graph G = (V, E)

$$\max \left\{ \sum_{\{i,j\}\in E} a_{ij} x_i x_j : x_1, \dots, x_n \in \{\pm 1\} \right\},\,$$

where a_{ij} are real weights on edges, generally both positive and negative.

• آرامسازی؟

MaxQP[G]: maximizing a quadratic form on a graph G = (V, E)

$$\max \left\{ \sum_{\{i,j\}\in E} a_{ij} x_i x_j : x_1, \dots, x_n \in \{\pm 1\} \right\},\,$$

- آرامسازی؟
 الف) 1

MaxQP[G]: maximizing a quadratic form on a graph G = (V, E)

$$\max \left\{ \sum_{\{i,j\}\in E} a_{ij} x_i x_j : x_1, \dots, x_n \in \{\pm 1\} \right\},\,$$

- آرامسازی؟
 الف) 1=>1-

مسئله کلی

MaxQP[G]: maximizing a quadratic form on a graph G = (V, E)

$$\max \left\{ \sum_{\substack{j:j \in E}} a_{ij} x_i x_j : x_1, \dots, x_n \in \{\pm 1\} \right\},\,$$

- آرامسازی؟
- -1<=xi<=1 (الف
- جواب فرق نمی کند
 می توانیم جواب صحیح بسازیم

مسئله کلی

MaxQP[G]: maximizing a quadratic form on a graph G = (V, E)

$$\max \left\{ \sum_{\{i,j\}\in E} a_{ij} x_i x_j : x_1, \dots, x_n \in \{\pm 1\} \right\},\,$$

- آرامسازی؟
- -1<=xi<=1 (الف
- جواب فرق نمی کند
- میتوانیم جواب صحیح بسازیم
 - برداری

MaxQP[G]: maximizing a quadratic form on a graph G = (V, E)

$$\max \left\{ \sum_{\{i,j\} \in E} a_{ij} x_i x_j : x_1, \dots, x_n \in \{\pm 1\} \right\},\,$$

where a_{ij} are real weights on edges, generally both positive and negative.

SDP relaxation of MaxQP[G]

$$S_{\max} := \max \left\{ \sum_{\{i,j\} \in E} a_{ij} \mathbf{v}_i^T \mathbf{v}_j : \|\mathbf{v}_1\|, \dots, \|\mathbf{v}_n\| \le 1 \right\}$$

SDP relaxation of MaxQP[G]

$$S_{\max} := \max \left\{ \sum_{\{i,j\} \in E} a_{ij} \mathbf{v}_i^T \mathbf{v}_j : \|\mathbf{v}_1\|, \dots, \|\mathbf{v}_n\| \leq 1 \right\}$$

SDP relaxation of MaxQP[G]

$$S_{\max} := \max \left\{ \sum_{\{i,j\} \in E} a_{ij} \mathbf{v}_i^T \mathbf{v}_j : \|\mathbf{v}_1\|, \dots, \|\mathbf{v}_n\| \le 1 \right\}$$

الگوريتم: ؟

SDP relaxation of MaxQP[G]

$$S_{\max} := \max \left\{ \sum_{\{i,j\} \in E} a_{ij} \mathbf{v}_i^T \mathbf{v}_j : \|\mathbf{v}_1\|, \dots, \|\mathbf{v}_n\| \le 1 \right\}$$

الگوريتم: ؟

روش GW:؟

SDP relaxation of MaxQP[G]

$$S_{\max} := \max \left\{ \sum_{\{i,j\} \in E} a_{ij} \mathbf{v}_i^T \mathbf{v}_j : \|\mathbf{v}_1\|, \dots, \|\mathbf{v}_n\| \le 1 \right\}$$

الگوريتم: ؟ روش GW:؟

به ازای هر یال ρ ما >= بهینه

SDP relaxation of MaxQP[G]

$$S_{\max} := \max \left\{ \sum_{\{i,j\} \in E} a_{ij} \mathbf{v}_i^T \mathbf{v}_j : \|\mathbf{v}_1\|, \dots, \|\mathbf{v}_n\| \leq 1 \right\}$$

الگوريتم: ؟ روش GW:؟

به ازای هر یال

$$ho$$
 ما $>=$ بهينه

اگر P/=NP، یک c>0 هست که هیچ الگوریتم تقریبی با ضریب بهتر از $\log^c n$ برای $\max (P/=NP)$ مسئله $\max (P/=NP)$ و جود ندارد.

- اگر P/=NP، یک c>0 هست که هیچ الگوریتم تقریبی با ضریب بهتر از c>0 برای $MaxQP[K_n]$ مسئله $MaxQP[K_n]$
 - است. $\Omega(\log n)$ محاف صحیح SDP، حداقل •

- اگر P/= NP، یک c>0 هست که هیچ الگوریتم تقریبی با ضریب بهتر از $\log^c n$ برای مسئله $\max \operatorname{QP}[K_n]$ وجود ندارد.
 - است. $\Omega(\log n)$ حداقل $\Omega(\log n)$ است.
 - اگر UGC، با ضریب بهتر از $\Omega(\log n)$ نمی توان تقریب زد.

Let G be a (loopless) graph. The Grothendieck constant K_G of G is defined as

 $\sup \frac{S_{\max}}{\mathsf{Opt}},$

where Opt is the optimum value of MaxQP[G], S_{max} is the optimum of the SDP relaxation, and the supremum is over all choices of the edge weights a_{ij} (not all zeros).

Let G be a (loopless) graph. The Grothendieck constant K_G of G is defined as

$$\sup \frac{S_{\max}}{\mathsf{Opt}},$$

where Opt is the optimum value of MAXQP[G], S_{max} is the optimum of the SDP relaxation, and the supremum is over all choices of the edge weights a_{ij} (not all zeros).

Theorem (Alon et al. [AMMN06]). For every graph G, we have

$$K_G = O(\log \vartheta(\overline{G})),$$

سختی MaxQP برای گراف کامل

- اگر P/=NP، یک c>0 هست که هیچ الگوریتم تقریبی با ضریب بهتر از $\log^c n$ برای مسئله $\max QP[K_n]$ وجود ندارد.
 - شکاف صحیح SDP، حداقل $\Omega(\log n)$ است.
 - اگر UGC، با ضریب بهتر از $\Omega(\log n)$ نمی توان تقریب زد.

Theorem (Alon et al. [AMMN06]). For every graph G, we have

$$K_G = O(\log \vartheta(\overline{G})),$$

مثال:گراف تھی
$$artheta(G)$$
 = n $\mathbf{c} = \sum_{i=1}^n \mathbf{u}_i / \sqrt{n}$ $\mathbf{u}_i = \mathbf{e}_i$

$$\vartheta(\overline{G}) \leq \chi(G)$$

Theorem (Alon et al. [AMMN06]). For every graph G, we have

$$K_G = O(\log \vartheta(\overline{G})),$$

$$\vartheta(\overline{G}) \leq \chi(G)$$

- => تقریب با ضریب ثابت
 - گرافهای ۲_بخشی
 - آیزینگ، نرم برشی
- گرافهای با بزرگترین درجه ثابت

Theorem (Alon et al. [AMMN06]). For every graph G, we have

$$K_G = O(\log \vartheta(\overline{G})),$$

پایان