Контрольные вопросы и задачи к главе 2, раздел 10

Задание 1. (Сходимость положительных числовых рядов.)

1.1. Исследуйте сходимость числовых рядов с помощью признаков сравнения:

a)^O
$$\sum_{n=1}^{\infty} \frac{n^2 + 4n - 1}{3n^3 + 4}$$

a)
$$\sum_{n=1}^{\infty} \frac{n^2 + 4n - 1}{3n^3 + 4};$$
 6) $\sum_{n=1}^{\infty} \frac{n+3}{4n^4 + \sqrt{n} + 1};$ B) $\sum_{n=1}^{\infty} \frac{2n + \sqrt{n} + 3}{n\sqrt{n}};$

$$\mathbf{B)} \sum_{n=1}^{\infty} \frac{2n + \sqrt{n} + 3}{n \sqrt{n}}$$

$$\Gamma) \sum_{n=1}^{\infty} \sin \frac{1}{n^2 + 1}$$

r)
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^2 + 1}$$
. a b $\sum_{n=1}^{\infty} \ln \left(1 - \frac{3}{n^2} \right)$; b c e $\sum_{n=1}^{\infty} \frac{\arctan (1/\sqrt{n})}{n^2 + n - 1}$.

e)
$$\sum_{n=1}^{\infty} \frac{\arctan(1/\sqrt{n})}{n^2 + n - 1}$$

a)
$$\sum_{n=1}^{\infty} \frac{2n+3}{2^n}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{n^5 + 6n + 3}{3^{n-1}(2n+7)}$$

a)^O
$$\sum_{n=1}^{\infty} \frac{2n+3}{2^n};$$
 6) $\sum_{n=1}^{\infty} \frac{n^5+6n+3}{3^{n-1}(2n+7)};$ **B)** $\sum_{n=1}^{\infty} \frac{2^{n/2}}{3^{5n+1}(n^2+3)};$

$$\Gamma$$
) $\sum_{n=1}^{\infty} \frac{3^n}{(n+1)!}$

$$\Gamma) \sum_{n=1}^{\infty} \frac{3^n}{(n+1)!}. \qquad \Pi) \sum_{n=2}^{\infty} \frac{1}{2^n} \left(1 + \frac{1}{n}\right)^{n^2}; \qquad e) \sum_{n=2}^{\infty} \left(\frac{n-1}{n+1}\right)^{n(n-1)};$$

e)
$$\sum_{n=2}^{\infty} \left(\frac{n-1}{n+1} \right)^{n(n-1)}$$

$$\mathbf{x}) \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot \ldots \cdot (2n-1)}{n!}.$$

1.3. Исследуйте сходимость рядов с помощью интегрального признака Коши:

$$\mathbf{a})^{\mathbf{O}} \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

$$\mathbf{6)} \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2};$$

a)^O
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n};$$
 6) $\sum_{n=2}^{\infty} \frac{1}{n (\ln n)^2};$ **B)** $\sum_{n=2}^{\infty} \frac{1}{(n+1)\sqrt{\ln n}}.$

1.4. Даны ряды с положительными членами: $\sum_{n=1}^{\infty} a_n$ (1) и $\sum_{n=1}^{\infty} b_n$ (2), $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{2}$. С помощью признаков сходимости знакоположительных рядов установите какое из нижеследующих утверждений справедливо: A) ряд (2) сходится, если $b_n = na_n$; B) ряд (2) расходится, если $b_n > a_n$, $n \ge 10$; C) ряд (2) расходится, если $b_n = 3^n a_n$; D) ряд (2) сходится, если $\lim b_n = 1$.

Ответы на контрольные вопросы и задачи к главе 2, раздел 10

Задание 1. (Сходимость положительных числовых рядов.)

- 1.1. а) расходится; б) сходится. в) расходится; б) сходится. г) сходится. д) сходится. е) сходится.
- 1.2. а) сходится; б) сходится. в) сходится; б) сходится. г) сходится. д) расходится. е) сходится. ж) расходится.
- 1.3. а) расходится. б) сходится. в) расходится
- **1.4.** A), C).