Университет ИТМО Факультет ПИиКТ. Кафедра ВТ.

Домашнее задание №1 по дисциплине

Моделирование

Вариант 21/1

Выполнил: Шишкин Никита Дмитриевич Группа Р3300

Преподаватель: Муравьева-Витковская Людмила Александровна

Санкт-Петербург 2019 год.

Постановка задачи и исходные данные.

Цель работы

Изучить метод Марковских случайных процессов и его применение для исследования простейших моделей – систем массового обслуживания (СМО) с однородным потоком заявок.

Этапы исследования

- Описание системы.
- Выбор способа кодирования состояний системы.
- Построение графа переходов.
- Построение матрицы интенсивностей.
- Решение СЛАУ для нахождения стационарных вероятностей.
- Вычисление характеристик системы.
- Сравнение систем на основе критерия эффективности.

Параметры структурной и функциональной организации исследуемых систем:

Ромионт	СИСТІ	EMA_1	СИСТІ	EMA_2	Критерий
Вариант	$\underline{\Pi}$	<u>EH</u>	$\underline{\Pi}$	<u>EH</u>	эффективности
21	2	0/4	<u>3</u>	0/0/1	(a)

Параметры нагрузки:

Вариант	Интенс. потока	Ср. длит. обслуж.	Вероятности занятия приборов				
	λ (1/c)	B (c)	$\Pi 1 (q_1)$	$\Pi 2 (q_2)$	$\Pi 3 (p_3)$		
1	0.1	25	1/3	1/3	1/3		

Описание исследуемых систем.

Система_1.

Система представляет собой СеМО из двух узлов:

- 1. Одноканальная СМО с прибором П1 без накопителя.
- 2. Одноканальная СМО с прибором П2 и накопителем г емкости 4.

Кодирование состояний случайного процесса.

Для описания состояний марковского случайного процесса будем использовать распределение заявок между узлами. Закодируем состояния следующим образом: (M_1, M_2) , где M_i – количество заявок в узле i

Состояние		E_0	E_1	E_2	E_3	E_4	E_5	E_6	E_7
Количество	M_1	0	1	0	0	0	0	0	1
заявок в узле	M_2	0	0	1	2	3	4	5	1
		E_8	E_9	E_{10}	E ₁₁				_
	\mathbf{M}_1	1	1	1	1				
	M_2	2	3	4	5				

Размеченный граф переходов Марковского процесса.

Матрица интенсивностей переходов.

E_{i}	0	1	2 1	3	4	5	6	7	8	9	10	11
0	$-\frac{1}{10}$	$\frac{1}{30}$	1 15	0	0	0	0	0	0	0	0	0
1	0.04	$-\frac{8}{75}$	0	0	0	0	0	$\frac{1}{15}$	0	0	0	0
2	0.04	0	-0.14	$\frac{1}{15}$	0	0	0	$\frac{1}{30}$	0	0	0	0
3	0	0	0.04	-0.14	$\frac{1}{15}$	0	0	0	$\frac{1}{30}$	0	0	0
4	0	0	0	0.04	-0.14	$\frac{1}{15}$	0	0	0	$\frac{1}{30}$	0	0
5	0	0	0	0	0.04	-0.14	$\frac{1}{15}$	0	0	0	$\frac{1}{30}$	0
6	0	0	0	0	0	0.04	$-\frac{11}{150}$	0	0	0	0	$\frac{1}{30}$
7	0	0.04	0.04	0	0	0	0	$-\frac{11}{75}$	$\frac{1}{15}$	0	0	0
8	0	0	0	0.04	0	0	0	0.04	$-\frac{11}{75}$	$\frac{1}{15}$	0	0
9	0	0	0	0	0.04	0	0	0	0.04	$-\frac{11}{75}$	$\frac{1}{15}$	0
10	0	0	0	0	0	0.04	0	0	0	0.04	$-\frac{11}{75}$	1 15
11	0	0	0	0	0	0	0.04	0	0	0	0.04	-0.08

Система линейных алгебраических уравнений для определения стационарных вероятностей.

$$-0.1p_0 + 0.04(p_1 + p_2) = 0$$

$$p_0/30 - 8p_1/75 + 0.04p_7 = 0$$

$$p_0/15 - 0.14p_2 + 0.04(p_3 + p_7) = 0$$

$$p_2/15 - 0.14p_3 + 0.04(p_4 + p_8) = 0$$

$$p_3/15 - 0.14p_4 + 0.04(p_5 + p_9) = 0$$

$$p_4/15 - 0.14p_5 + 0.04(p_6 + p_{10}) = 0$$

$$\begin{aligned} p_5/15 - 11p_6/150 + 0.04p_{11} &= 0 \\ p_1/15 + p_2/30 - 11p_7/75 + 0.04p_8 &= 0 \\ p_3/30 + p_7/15 - 11p_8/75 + 0.04p_9 &= 0 \\ p_4/30 + p_8/15 - 11p_9/75 + 0.04p_{10} &= 0 \\ p_5/30 + p_9/15 - 11p_{10}/75 + 0.04p_{11} &= 0 \\ p_6/30 + p_{10}/15 - 0.08p_{11} &= 0 \\ p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8 + p_9 + p_{10} + p_{11} &= 1 \end{aligned}$$

Значения стационарных вероятностей Системы_1:

Номер состояния	Обозначение	Вероятность
1	$E_0(0,0)$	0.0178
2	$E_1(1,0)$	0.0148
3	$E_2(0,1)$	0.0297
4	$E_3(0,2)$	0.0494
5	$E_4(0,3)$	0.0824
6	$E_5(0,4)$	0.1373
7	$E_6(0,5)$	0.2289
8	$E_7(1,1)$	0.0247
9	$E_8(1,2)$	0.0412
10	$E_9(1,3)$	0.0687
11	$E_{10}(1,4)$	0.1144
12	$E_{11}(1,5)$	0.1907

Характеристики системы 1:

Хар-ка	Прибор	Расчетная формула	Значение
	П1	$y_1 = \lambda q_1 / \mu$	0.833
Нагрузка	П2	$y_2 = \lambda(q_2 + q_3) / \mu$	1.667
	Сумм.	$y=y_1+y_2$	2.5
	П1	$\rho_1 = p_1 + p_7 + p_8 + p_9 + p_{10} + p_{11}$	0.4545
Загрузка	П2	$\rho_2 = p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8 + p_9 + p_{10} + p_{11}$	0.9674
	Сумм.	$\rho = (\rho_1 + \rho_2)/2$	0.7109
П	П1	$1_1 = 0$	0
Длина	П2	$1_2 = p_3 + 2p_4 + 3p_5 + 4p_6 + p_8 + 2p_9 + 3p_{10} + 4p_{11}$	2.826
очереди	Сумм.	$1=l_1+l_2$	2.826
Число	П1	$m_1 = \rho_1 + l_1 = p_1 + p_7 + p_8 + p_9 + p_{10} + p_{11}$	0.4545
заявок	П2	$m_2 = \rho_2 + l_2 = p_2 + 2p_3 + 3p_4 + 4p_5 + 5p_6 + p_7 + 2p_8 + 3p_9 + 4p_{10} + 5p_{11}$	3.7934

	Сумм.	$m=m_1+m_2=p_1+p_2+2p_3+3p_4+4p_5+5p_6+2p_7+3p_8+4p_9+5p_{10}+6p_{11}$	4.2479
D., 2255	П1	$\mathbf{w}_1 = 0$	0
Время	П2	$\mathbf{w}_2 = \mathbf{l}_2 / \lambda_2'$	73.2124
ожидания	Сумм.	$\mathbf{w} = (\lambda_1' \mathbf{w}_1 + \lambda_2' \mathbf{w}_2) / \lambda' = 1 / \lambda'$	49.7535
D	П1	$u_1 = m_1 / \lambda_1' = w_1 + b$	25.1104
Время	П2	$u_2 = m_2 / \lambda_2' = w_2 + b$	98.2746
пребывания	Сумм.	$\mathbf{u} = (\lambda_1, \mathbf{u}_1 + \lambda_2, \mathbf{u}_2) / \lambda = \mathbf{m} / \lambda = \mathbf{w} + \mathbf{b}$	74.7869
Dog TV	П1	$\pi_1 = p_1 + p_7 + p_8 + p_9 + p_{10} + p_{11}$	0.4545
Вер-ть	П2	$\pi_2 = p_6 + p_{11}$	0.4196
потери	Сумм.	$\pi = \pi_1 q_1 + \pi_2 (q_2 + q_3)$	0.4312
Песиорони	П1	$\lambda_1' = (1 - \pi_1)\lambda q_1$	0.0181
Производи- тельность	П2	$\lambda_2' = (1 - \pi_2)\lambda(q_2 + q_3)$	0.0386
	Сумм.	$\lambda' = (1 - \pi)\lambda = \lambda_1' + \lambda_2'$	0.0568

Система_2.

Система представляет собой СеМО из трех узлов:

- 1. Одноканальная СМО с прибором П1 без накопителя.
- 2. Одноканальная СМО с прибором П2 без накопителя.
- 3. Одноканальная СМО с прибором П3 и накопителем г емкости 1.

Кодирование состояний случайного процесса.

Для описания состояний марковского случайного процесса будем использовать распределение заявок между узлами. Закодируем состояния следующим образом: (M_1, M_2, M_3) , где M_i – количество заявок в узле і

Состояние		E_0	E_1	E_2	E_3	E_4	E_5	E_6	E_7
Количество	\mathbf{M}_1	0	1	0	1	0	1	0	1
заявок в	\mathbf{M}_2	0	0	1	1	0	0	1	1
узле	M_3	0	0	0	0	1	1	1	1
		E_8	E_9	E_{10}	E_{11}				
	\mathbf{M}_1	0	1	0	1				
	\mathbf{M}_2	0	0	1	1				
	M_3	2	2	2	2				

Размеченный граф переходов Марковского процесса.

Матрица интенсивностей переходов.

Ei	0	1	2	3	4	5	6	7	8	9	10	11
0	-0.1	1 30	$\frac{1}{30}$	0	1 30	0	0	0	0	0	0	0
1	0.04	- 8 75	0	1 30	0	1 30	0	0	0	0	0	0
2	0.04	0	- <mark>8</mark> - 7 5	$\frac{1}{30}$	0	0	$\frac{1}{30}$	0	0	0	0	0
3	0	0.04	0.04	- 17 150	0	0	0	$\frac{1}{30}$	0	0	0	0
4	0.04	0	0	0	-0.14	$\frac{1}{30}$	$\frac{1}{30}$	0	$\frac{1}{30}$	0	0	0
5	0	0.04	0	0	0.04	$-\frac{11}{75}$	0	$\frac{1}{30}$	0	$\frac{1}{30}$	0	0
6	0	0	0.04	0	0.04	0	- 11 - 75	$\frac{1}{30}$	0	0	$\frac{1}{30}$	0
7	0	0	0	0.04	0	0.04	0.04	$-\frac{23}{150}$	0	0	0	$\frac{1}{30}$
8	0	0	0	0	0.04	0	0	0	- <mark>8</mark> - 7 5	$\frac{1}{30}$	$\frac{1}{30}$	0
9	0	0	0	0	0	0.04	0	0	0.04	- 17 150	0	1 30
10	0	0	0	0	0	0	0.04	0	0.04	0	- 17 150	1 30
11	0	0	0	0	0	0	0	0.04	0	0.04	0.04	-0.12

Система линейных алгебраических уравнений для определения стационарных вероятностей.

$$-0.1p_0 + 0.04(p_1 + p_2 + p_4) = 0$$

$$p_0/30 - 8p_1/75 + 0.04(p_3 + p_5) = 0$$

$$p_0/30 - 8p_2/75 + 0.04(p_3 + p_6) = 0$$

$$(p_1 + p_2)/30 - 17p_3/150 + 0.04p_7 = 0$$

$$p_0/30 - 0.14p_4 + 0.04(p_5 + p_6 + p_8) = 0$$

$$(p_1 + p_4)/30 - 11p_5/75 + 0.04(p_7 + p_9) = 0$$

$$(p_2 + p_4)/30 - 11p_6/75 + 0.04(p_7 + p_{10}) = 0$$

$$(p_3 + p_5 + p_6)/30 - 23p_7/150 + 0.04p_{11} = 0$$

$$p_4/30 - 8p_8/75 + 0.04(p_9 + p_{10}) = 0$$

$$(p_5 + p_8)/30 - 17p_9/150 + 0.04p_{11} = 0$$

$$(p_6 + p_8)/30 - 17p_{10}/150 + 0.04p_{11} = 0$$

$$(p_7 + p_9 + p_{10})/30 - 0.12p_{11} = 0$$

$$p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8 + p_9 + p_{10} + p_{11} = 1$$

Значения стационарных вероятностей Системы_2:

Номер состояния	Обозначение	Вероятность
1	$E_0(0,0,0)$	0.1177
2	$E_1(1,0,0)$	0.0980
3	$E_2(0,1,0)$	0.0980
4	$E_3(1,1,0)$	0.0817
5	$E_4(0,0,1)$	0.0980
6	$E_5(1,0,1)$	0.0817
7	$E_6(0,1,1)$	0.0817
8	$E_7(1,1,1)$	0.0681
9	$E_8(0,0,2)$	0.0817
10	$E_9(1,0,2)$	0.0681
11	$E_{10}(0,1,2)$	0.0681
12	$E_{11}(1,1,2)$	0.0567

Характеристики системы 2:

Хар-ка	Прибор	Расчетная формула	Значение
	П1	$y_1 = \lambda q_1 / \mu$	0.833
Цоградово	П2	$y_2 = \lambda q_2 / \mu$	0.833
Нагрузка	П3	$y_3 = \lambda q_3 / \mu$	0.833
	Сумм.	$y=y_1+y_2+y_3$	2.5
	П1	$\rho_1 = p_1 + p_3 + p_5 + p_7 + p_9 + p_{11}$	0.4543
20Enviore	П2	$\rho_2 = p_2 + p_3 + p_6 + p_7 + p_{10} + p_{11}$	0.4543
Загрузка	П3	$\rho_3 = p_4 + p_5 + p_6 + p_7 + p_8 + p_9 + p_{10} + p_{11}$	0.6041
	Сумм.	$\rho = (\rho_1 + \rho_2 + \rho_3)/3$	0.5042

	П1	$1_1 = 0$	0
Длина	П2	$l_2 = 0$	0
очереди	П3	$l_3 = p_8 + p_9 + p_{10} + p_{11}$	0.1929
	Сумм.	$1=1_1+1_2+1_3$	0.1929
	П1	$m_1 = \rho_1 + l_1 = \rho_1$	0.4543
Число	П2	$m_2 = \rho_2 + l_2 = \rho_2$	0.4543
заявок	П3	$m_3 = \rho_3 + l_3 = p_4 + p_5 + p_6 + p_7 + 2p_8 + 2p_9 + 2p_{10} + 2p_{11}$	0.797
	Сумм.	$m=m_1+m_2+m_3$	1.7056
	П1	$\mathbf{w}_1 = 0$	0
Время	П2	$w_2 = 0$	0
ожидания	П3	$\mathbf{w}_3 = \mathbf{l}_3 / \lambda_3$	7.97
	Сумм.	$w = (\lambda_1' w_1 + \lambda_2' w_2 + \lambda_3' w_3) / \lambda' = 1 / \lambda'$	3.1999
	П1	$u_1 = m_1 / \lambda_1' = w_1 + b = b$	25.009
Время	П2	$u_2 = m_2 / \lambda_2' = w_2 + b = b$	25.009
пребывания	П3	$u_2 = m_3 / \lambda_3' = w_3 + b$	32.938
	Сумм.	$u = (\lambda_1' u_1 + \lambda_2' u_2 + \lambda_3' u) / \lambda' = m / \lambda' = w + b$	28.285
	П1	$\pi_1 = p_1 + p_3 + p_5 + p_7 + p_9 + p_{11}$	0.4543
Вер-ть	П2	$\pi_2 = p_2 + p_3 + p_6 + p_7 + p_{10} + p_{11}$	0.4543
потери	П3	$\pi_3 = p_8 + p_9 + p_{10} + p_{11}$	0.2746
	Сумм.	$\pi = \pi_1 q_1 + \pi_2 q_2 + \pi_3 q_3$	0.3944
	П1	$\lambda_1' = (1 - \pi_1)\lambda q_1$	0.0181
Производи-	П2	$\lambda_2' = (1 - \pi_2)\lambda q_2$	0.0181
тельность	П3	$\lambda_3' = (1 - \pi_3)\lambda q_3$	0.0242
	Сумм.	$\lambda' = (1 - \pi)\lambda = \lambda_1' + \lambda_2' + \lambda_3'$	0.0603

Сравнение систем:

Хар-ка	Прибор	Система 1	Система 2
Нагрузка	П1	0.833	0.833
	П2	1.667	0.833
	П3	-	0.833
	Сумм.	2.5	2.5
Загрузка	П1	0.4545	0.4543
	П2	0.9674	0.4543
	П3	-	0.6041
	Сумм.	0.7109	0.5042
Длина очереди	П1	0	0
	П2	2.826	0
	П3	-	0.1929
	Сумм.	2.826	0.1929
Число заявок	П1	0.4545	0.4543

	П2	3.7934	0.4543
	П3	-	0.797
	Сумм.	4.2479	1.7056
Время ожидания Время пребывания	П1	0	0
	П2	73.2124	0
	П3		7.97
	Сумм.	49.7535	3.1999
	П1	25.1104	25.099
	П2	98.2746	25.099
	П3		32.938
	Сумм.	74.7869	28.285
Вероятность потери	П1	0.4545	0.4543
	П2	0.4196	0.4543
	П3	-	0.2746
	Сумм.	0.4312	0.3944
Производи- тельность	П1	0.0181	0.0181
	П2	0.0386	0.0181
	П3	-	0.0242
	Сумм.	0.0568	0.0603

Выводы по работе:

Вычислив различные характеристики двух данных систем, можно сделать следующие выводы:

- Наилучшим вариантом организации системы в соответствии с критерием эффективности (максимальная производительность системы) является Система 2 с производительностью 0.0603 против 0.0568 у Системы 1.
- Кроме того, Система 2 превосходит Систему 1 по большинству остальных характеристик. В особенности можно отметить время ожидания заявки (разница почти в 16 раз) и время пребывания (разница в 2,5 раза).
- Также, несмотря на отсутствие большей емкости накопителя (как у Системы 1), за счёт наличия дополнительного Прибора, Система 2 обладает меньшей вероятностью потери.

На основании всех вышеперечисленных фактов, можно сделать вывод, что наилучший вариант организации (по критерию эффективности и не только) предоставляет Система_2.