

SRM Institute of Science and Technology Ramapuram Campus

Department of Mathematics

18MAB101T - Calculus And Linear Algebra

Year/Sem: I/I

Branch: Common to ALL B.Tech. except B.Tech. (Business Systems)

Unit - IV

DIFFERENTIAL CALCULUS

Part - B

1. Envelope of the curve $y = mx + \frac{a}{m}$ (where *m* is the parameter) is

(A)
$$x^2 + ay = 0$$
 (B) $x + 4ay = 0$

(B)
$$x + 4 a y = 0$$

(C)
$$y^2 - 4 a x = 0$$
 (D) $y^2 + 4ax = 0$

(D)
$$y^2 + 4ax = 0$$

Solution: Given: $y = mx + \frac{a}{m}$

$$y = \frac{m^2 x + a}{m}$$

$$m^2x - y m + a = 0$$

The above equation is a quadratic equation in m.

The discriminant is $b^2 - 4ac = 0$.

The envelope of the curve is $y^2 - 4$ a x = 0. (Option C)

2. The radius of curvature of the curve $y = e^x$ at x = 0 is

- (A) $2\sqrt{2}$ (B) $\sqrt{2}$
- (C) 2
- (D) 4

Solution:

$$y_1 = e^x$$
 at $x = 0$ is 1

$$y_2 = e^x$$
 at $x = 0$ is 1

$$\rho = \frac{\left(1 + y_1^2\right)^{\frac{3}{2}}}{y_2}$$

$$\rho = 2\sqrt{2}$$

(Option A)

- 3. The radius of curvature of the curve $y = 4 \sin x$ at $x = \frac{\pi}{2}$ is

 - (A) $\frac{1}{2}$ (B) $\frac{-1}{2}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$

Solution:

$$y_1 = 4\cos x \ at \ x = \frac{\pi}{2}is \ 0$$

$$y_2 = -4\sin x \, at \, x = \frac{\pi}{2}is - 4$$

$$\rho = \frac{\left(1 + y_1^2\right)^{\frac{3}{2}}}{y_2}$$

$$|\rho| = \frac{1}{4}$$

(Option C)

- **4.** The envelope of family of lines $y = mx + am^2$ (where m is the parameter) is
 - (A) $x^2 + 2ay = 0$
- (B) $x^2 + 4 a y = 0$
- (C) $y^2 + 2ax = 0$ (D) $x^2 + 4 a x = 0$

Solution:

The given equation is quadratic in m.

The discriminant is $b^2 - 4ac = 0$.

Envelope of the family of lines is $x^2 + 4ay = 0$. (Option B)

5. The envelope of the family of lines $\frac{x}{t} + y t = 2c$, t being the parameter is

(A)
$$x^2 + y^2 = c^2$$
 (B) $x y = c^2$

(B)
$$x y = c^2$$

(C)
$$x^2 y^2 = c^2$$

(C)
$$x^2 y^2 = c^2$$
 (D) $x^2 - y^2 = c^2$

Solution:

Simplifying the equation
$$\frac{x}{t} + y t = 2c$$
, we get $yt^2 - 2ct + x = 0$

The discriminant is $b^2 - 4ac = 0$.

Envelope of the family of lines is $x y = c^2$.

(Option B)

6. The radius of curvature of the curve $r = e^{\theta}$ at any point on it is

(a)
$$2\sqrt{2}$$
 (b) $\sqrt{2} r$ (c) 2 (d) 4

(b)
$$\sqrt{2} n$$

Solution:

$$r' = e^{\theta}$$

$$r'' = e^{\theta}$$

$$\rho = \frac{\left(r^2 + r'^2\right)^{\frac{3}{2}}}{r^2 - rr'' + 2r'^2}$$

$$\rho = \sqrt{2} r$$

7. The radius of curvature at the point (3, 4) on the curve $x^2 + y^2 = 25$ is

Solution:

We know that the radius of curvature of the circle is equal to its radius.

$$\rho$$
 = 5 (Option A)

- 8. B (5/2, 1/2) =_____.
 - (A) 1

(B) 4

(C) $\pi/2$

(D) π

Solution:

$$B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$

$$B(5/2,1/2) = \frac{\Gamma(5/2)\Gamma(1/2)}{\Gamma(3)} = \frac{\pi}{2}$$
 (Option C)

- **9.** $\Gamma(-5/2) =$ ______.
 - (A) 1
- (B) 4

(C) 1/2

(D) $\frac{-8\sqrt{\pi}}{3}$

Solution:

$$\Gamma\left(-n+\frac{1}{2}\right) = \frac{\left(-2\right)^n}{1 \cdot 3 \cdot 5 \cdots (2n-1)} \sqrt{\pi}$$

$$\Gamma\left(-\frac{5}{2}\right) = \Gamma\left(\frac{-6+1}{2}\right)$$

$$= \Gamma\left(-3+\frac{1}{2}\right) = \frac{-8}{3} \sqrt{\pi}$$

(Option D)

- 10. Evaluate $\int_{0}^{\infty} e^{-x} x^4 dx$.
 - (A) 1

- (A) 1 (C) 1/2
- (B) 24
 (D) $\frac{-8\sqrt{\pi}}{3}$

Solution

$$\Gamma(n) = \int_{0}^{\infty} e^{-x} x^{n-1} dx$$

$$\int_{0}^{\infty} e^{-x} x^{4} dx = \int_{0}^{\infty} e^{-x} x^{5-1} dx = \Gamma(5) = 4! = 24$$

(Option B)

* * * * *