Mathematik 3 für Physikstudierende

Winter 2023/24 Dr. Peter Gladbach Dr. Adrien Schertzer

Hausaufgabenblatt 6.

Abgabe bis Mi, 29.11.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (10 Punkte)

Sei $U \subseteq \mathbb{C}$ offen, sternförmig (eine Menge $U \subseteq \mathbb{C}$ heißt sternförmig, wenn es ein $u_0 \in U$ gibt, so dass für alle $u \in U$ die Strecke $[u_0, u] := \{u_0 + t(u - u_0), t \in [0, 1]\}$ eine Teilmenge von U ist) und sei $\gamma : [a, b] \to U$ einfache geschlossene Kurve.

- (i) Finden Sie ein nicht Sternförmiges Gebiet,
- (ii) Skizzieren Sie γ , Int γ und U,
- (iii) Beweisen Sie, dass $Int \gamma \subseteq U$.

Aufgabe 2. (10 Punkte)

Berechnen Sie folgende Wegintegrale über den Weg $\gamma = \partial B_2(0)$ mit einer positiven Orientierung.

- (i) $\int_{\gamma} \frac{z^3 + 5}{z i} dz,$
- (ii) $\int_{\gamma} \frac{e^z}{i\pi z} dz$,
- (iii) $\int_{\gamma} \frac{z^3+5}{(z+3)(z-1)} dz$.

Aufgabe 3. (10 Punkte)

Zeigen Sie, dass $\int_0^{2\pi} e^{\cos(\theta)} \cos(\theta + \sin(\theta)) = \int_0^{2\pi} e^{\cos(\theta)} \sin(\theta + \sin(\theta)) = 0$. Hinweis: Summieren Sie das erste Integral mit dem zweiten Integral mal i.