Cloud Computing Assignment2

Nureen Ehab Mahmoud Mohamed Barakat 20221465124

Intelligent Systems

Analysis of Popular Books dataset

Note: plots are more obvious in notebook.

- 1) Shape of dataset: (1354, 23).
- 2) Missing values were detected and dropped; number of rows become 1153.
- 3) There are no duplicates.
- 4) Get the following statistical values of each numerical column: count, mean, standard deviation, min, max, The first quartile (Q1), The second quartile (Q2), The third quartile (Q3).
- Get the following statistical values of each categorical column: count, top, unique, frequency.
- 6) Harry potter books analysis:
 - The most selling Harry Potter book depending on rating count is **Harry Potter and the Sorcerer's Stone** book followed by **Harry Potter and the Prisoner of Azkaban** book, and so on.
 - A. The average rating of Harry Potter books by calculating the mean of average rate column is **4.491000000000005**.
 - B. The count of unique Harry Potter books is 10.
 - C. Plot the unique values of Harry Potter books:

D. The distribution of ratings count for Harry Potter books:

E. Analyze the sales trend over time by plotting sales against the original publication year:

F. Plot the distribution of languages in which the Harry Potter books were published:

G. Plot the authorship of the Harry Potter books and see if there are multiple authors:

7) Encode categorical columns.

- 8) Calculate correlation_matrix which is a matrix or a data structure that contains correlations between numerical columns and 'ratings_count'

 Top 5 correlated features are:
 - 1. work_ratings_count with 0.998813
 - 2. ratings_4 with 0.986129
 - 3. ratings_5 with 0.974663
 - 4. ratings_3 with 0.933926
 - 5. work_text_reviews_count with 0.838081
- 9) Plot the correlation with heatmap where each cell's color represents the strength and direction of correlation between the variables:

10) Display pair plot which is a grid of scatterplots where each variable is plotted against every other variable, forming a matrix of plots. It allows us to visualize the relationships between pairs of variables and identify potential patterns or correlations. Sample of output:

11) Display scatter plots for pairs of numerical variables with KDE plots along the diagonal, providing additional insights into the distribution of each numerical variable:

Sample of output:

- 12) Outliers were detected and treated using the Interquartile Range (IQR) method by checking which data points fall below the lower bound or above the upper bound.
 - After removing the outliers, the shape of dataset becomes (932, 23).
 - Last iteration after removing the outliers:

```
Iteration 3: Outliers after removal

Column 'book_id' has 0 outliers after removal.

Column 'goodreads_book_id' has 0 outliers after removal.

Column 'best_book_id' has 0 outliers after removal.

Column 'work_id' has 0 outliers after removal.

Column 'work_id' has 0 outliers after removal.

Column 'isbn' has 0 outliers after removal.

Column 'isbn' has 0 outliers after removal.

Column 'authors' has 0 outliers after removal.

Column 'original_publication_year' has 0 outliers after removal.

Column 'original_title' has 0 outliers after removal.

Column 'ittle' has 0 outliers after removal.

Column 'language_code' has 0 outliers after removal.

Column 'average_rating' has 0 outliers after removal.

Column 'work_ratings_count' has 0 outliers after removal.

Column 'work_ratings_count' has 1 outliers after removal.

Column 'work_text_reviews_count' has 1 outliers after removal.

Column 'ratings_1' has 0 outliers after removal.

Column 'ratings_1' has 0 outliers after removal.
```

Example of lower and upper bounds for 'ratings_count' column:

Lower bound for ratings_count: -53777.0 Upper bound for ratings count: 139183.0

Example of outliers found before removal for 'ratings_count' column.
 Sample of output (last iteration):

```
Iteration 3: Outliers before removal
    book_id goodreads_book_id best_book_id work_id books_count isbn \
     615 22205 22205 132402 42 251
667 5664985 5664985 5836517 41 1001
145
        isbn13 authors original_publication_year original_title \dots \
135 9.780143e+12 437
145 9.780670e+12 437
                                          2002.0
                                          2009.0
    ratings_count work_ratings_count work_text_reviews_count ratings_1 \
          151829 155107 4597 2714
151721 156330 6238 2588
135
145
    ratings_2 ratings_3 ratings_4 ratings_5 image_url small_image_url
        8175 32346 49750 62122 667
7073 30314 52171 64184 859
135
145
[2 rows x 23 columns]
```

Example of outliers found after removal for 'ratings_count' column.

Sample of output (last iteration):

```
Iteration 3: Outliers after removal
Empty DataFrame
Columns: [book id, goodreads_book_id, best_book_id, work_id, books_count, isbn, isbn13, authors, original_publication_year, original_title, title, language_code, average_rating, ratings_count, work_ratings_count, work_text_reviews_count, ratings_1, ratings_2, ratings_3, ratings_4, ratings_5, image_url, small_image_url]
Index: []
[0 rows x 23 columns]
```

13) Numeric features were scaled using MinMaxScaler to ensure uniformity of scale for modeling.

Now the dataset is cleaned, scaled, and ready for modeling.

Steps of creating Dockerfile to run Jupyter Notebook when the container launches

14) Pull the image (Jupyter Notebook)

15) Create a Dockerfile

1. Create a directory

- 2. Create a Dockerfile inside the directory
- Add commands inside Dockerfile

```
**Dockerfile X

C: > Users > merna > ** Dockerfile > ...

1  # Use an official Python runtime as a parent image

FROM python:3.8

# Set the working directory to /app

**WORKDIR /app

# COPY /app

# COPY /app

# Install any needed packages specified in requirements.txt

RUN pip install --no-cache-dir -r requirements.txt

# Make port 8888 available to the world outside this container

EXPOSE 8888

**EPOSE 8888

**Define environment variable

# Run Jupyter Notebook when the container launches

**THY NAME World

# Run Jupyter Notebook when the container launches

**COP ["jupyter", "notebook", "--ip="0.0.0.0", "--port=8888", "--no-browser", "--allow-root"]
```

4. Create a `requirements.txt` file for adding dependences

```
pandas
seaborn
matplotlib==3.6.2
numpy==1.23.4
scikit-learn
```

5. Change directory to the created one

PS D:\FCDS\Sixth Term\cloud Computing\Docker> cd "C:\Users\merna\jupyter"

6. Run docker container

```
PS C:\Users\merna\jupyter> docker run -p 8888:8888 jupyter\datascience-notebook
Entered start.sh with angs: jupyter lab
Running hooks in \u00fcvsr\colon=10\text{in\u00edar}\square\text{ani\u00edar}\text{in\u00edar}\square\text{ani\u00edar}\text{in\u00edar}\text{ani\u00edar}\text{in\u00edar}\text{ani\u00edar}\text{in\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\u00edar}\text{ani\
                           [2024-04-23 22:12:13.355 ServerApp] jupyter lsp | extension was successfully loaded.
[2024-04-23 22:12:13.356 ServerApp] jupyter server_mathjax | extension was successfully loaded.
[2024-04-23 22:12:13.380 ServerApp] jupyter_server_proxy | extension was successfully loaded.
[2024-04-23 22:12:13.382 ServerApp] jupyter_server_terminals | extension was successfully loaded.
[2024-04-23 22:12:13.382 ServerApp] jupyter_lab extension loaded from /opt/conda/lib/python3.11/site-packages/jupyter_lab
[2024-04-23 22:12:13.402 LabApp] Supyter_lab palication directory is /opt/conda/share/jupyter/lab
[2024-04-23 22:12:13.426 ServerApp] jupyter_lab | extension was successfully loaded.
[2024-04-23 22:12:13.436 ServerApp] jupyter_lab | extension was successfully loaded.
[2024-04-23 22:12:13.359 ServerApp] holdine | extension was successfully loaded.
[2024-04-23 22:12:13.595 ServerApp] holdine | extension was successfully loaded.
[2024-04-23 22:12:13.601 ServerApp] Serving notebooks from local directory: /home/jovyan
[2024-04-23 22:12:13.601 ServerApp] Serving notebooks from local directory: /home/jovyan
[2024-04-23 22:12:13.602 ServerApp] http://3075cflab3f:8888/labftoken=7f3128de9204fde36b2f8f09a95b42afb9605c47a1953ac9
[2024-04-23 22:12:13.602 ServerApp] Use Control-C to stop this server and shut down all kernels (tvice to skip confirmation).
                                             To access the server, open this file in a browser:
file:///home/jovyan/.local/share/jupyter/runtime/jpserver-8-open.html
or copy and paste one of these URLs:
http://jofbcfil438f:8888/lab?token-2f3128de9204fde36b2f8f99a95b42afb9605c47a1953ac9
                                 http://309cfil1438f:8888/lab/token=73128de9204fde3eb/f8f99a95b42afb966cd7a1953ac9
http://27.0.e.118888/lab/token=73128de9204fde3eb/f8f99a95b42afb966cd7a1953ac9
2024-04-23 22:12:19.409 ServerApp] Skipped non-installed server(s): bash-language-server, dockerfile-language-server-nodejs, javascript-typescrip
langserver, jedi-language-server, julia-language-server, pyright, python-language-server, python-lsp-server, r-languageserver, sql-language-server
texlab, typescript-language-server, unified-language-server, vscode-css-languageserver-bin, vscode-html-languageserver-bin, vscode-json-languageserver-bin, vscode-json-languageserver-bin, vscode-html-languageserver-bin, vscode-json-languageserver-bin, vscode-json-languageserver-bin, vscode-json-languageserver-bin, vscode-html-language-server-bin, vscode-json-languageserver-bin, vscode-html-language-server-bin, vscode-json-languageserver-bin, vscode-json-languageserver-bin, vscode-json-languageserver-bin, vscode-html-language-server-bin, vscode-json-languageserver-bin, vscode-json-languageserver
                                                                                                                                                                                                                          86adcbe360e8 jupyter/datascience Running
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0% 2 minutes ago
```

7. Access Jupyter Notebook by the defined port (http://localhost:8888)