Student Id: A0237497M

4.1 transform_homography():

- 1. Homogenize the input to make a N-by-3 matrix
- 2. Apply homography matrix to src
- 3. De-homogenize the output and return it's transpose

4.2 wrap_image()

- 1. Construct N-by-2 matrix that contain all coordinate in image
- 2. Apply the inverse of homography to the matrix
- 3. Apply remap function based on the transformed points
- 4. Cover the original image by the wrapped image

5.1 compute_affine_rectification()

- 1. Find l based on two set of parallel lines
- 2. Compute \boldsymbol{H}_p^T based on $l = [l_1, l_2, l_3]$
- 3. Apply inverse and transpose on \boldsymbol{H}_p^T and that is the final homography. We assume that the affinity matrix is identity matrix

5.2 compute_metric_rectification_step2()

- 1. Construct 2-by-3 matrix \boldsymbol{A} based on give 2 set of orthogonal lines
- 2. Solve the equation $\mathbf{A}\mathbf{s} = 0$ using SVD
- 3. Construct matrix $\mathbf{S} = \begin{bmatrix} s_1 & s_2 \\ s_2 & s_3 \end{bmatrix}$
- 4. Compute \boldsymbol{K} from \boldsymbol{S} using Cholesky
- 5. Construct $\boldsymbol{H}_a = \begin{bmatrix} \boldsymbol{K} & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix}$ and return it's inverse

$compute_metric_rectification_onestep()$ Implementation:

- 1. Construct 5-by-6 matrix M using 5 orthogonal line pairs.
- 2. Use SVD to solve Mc = 0
- 3. Suppose that $\mathbf{c} = [a, b, c, d, e, f]$, construct

$$C_{\infty}^{*'} = \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$$

Student Id: A0237497M

- 4. Apply SVD on $C_{\infty}^{*'}$: $U, S, V = SVD(C_{\infty}^{*'})$
- 5. Notice that $C_{\infty}^{*'}$ may be corrupted by noise such that $S \neq C_{\infty}^{*}$. In this case, we need to manually construct C_{∞}^{*} :

$$C_{\infty}^{*'} = UA^{-1}ASA^{T}A^{-T}V$$

such that $\mathbf{A}\mathbf{S}\mathbf{A}^T = \mathbf{C}_{\infty}^*$. It is found that $\mathbf{A} = diag(\frac{1}{\sqrt{s_1}}, \frac{1}{\sqrt{s_2}}, 1)$ where s_1 and s_2 are singular value of $\mathbf{C}_{\infty}^{*'}$.

6. Then \boldsymbol{H} can be computed by:

$$H = (UA^{-1})^{-1} = AU^{-1}$$

compute_homography_error()

Just implement the equation

 $compute_homography_ransac$

Just follow the procedure in lecture note