P. Maurer

ENS Rennes

Leçon 191. Exemple d'utilisation des techniques d'algèbre en géométrie

Devs:

- Théorème de Gauss-Wantzel
- Théorème de Hahn-Banach géométrique en dimension finie

Références:

- 1. Audin, Géométrie
- 2. Tauvel, Géométrie
- 3. Caldero, H2G2
- 4. Carrega, Théorie des corps : constructions à la règle et au compas
- 5. Avez, Calcul différentiel
- 6. Rouvière, Petit guide du calcul différentiel
- 7. Peyré, L'algèbre discrète de la transformée de Fourier

« Il faut bien éviter l'écueil d'un catalogue fastidieux ou celui qui consisterait à recycler directement le contenu d'une autre lecon avec un vague habillage géométrique. »

Sont sympas, mais vu le temps qu'il me reste pour faire ce plan, je vais sauter à pied joints dans le deuxième écueil... Je conseille le plan d'Owen si vous voulez voir quelque chose de plus sérieux pour cette leçon.

1 Utilisation des groupes et des corps finis

1.1 Groupe affine et isométries affines

 $\mathcal E$ et $\mathcal F$ désignent des espaces affines, dirigés respectivement par E et par F des espaces vectoriels sur un corps k.

Définition 1. Une application $\varphi: \mathcal{E} \to \mathcal{F}$ est dite affine si il existe $O \in \mathcal{E}$ et une application linéaire $f \in \mathcal{L}(E, F)$ tel que :

$$\forall M \in \mathcal{E} \quad \varphi(\overrightarrow{OM}) = \overline{\varphi(O)\varphi(M)}$$

On dit que f est la partie linéaire de φ , et on note $f =: \vec{\varphi}$.

Proposition 2. Soit \mathcal{H} un espace affine dirigé par \mathcal{H} . Si $f: \mathcal{E} \to \mathcal{F}$ est affine et $g: \mathcal{F} \to \mathcal{H}$ est affine, alors leur composée $g \circ f: \mathcal{E} \to \mathcal{H}$ est encore affine, de partie linéaire $\overrightarrow{f \circ g} = \overrightarrow{f} \circ \overrightarrow{g}$.

Une application affine φ est bijective si et seulement si sa partie linéaire $\vec{\varphi}$ l'est. Les bijections affines de \mathcal{E} dans lui-même forment un groupe, le groupe affine $GA(\mathcal{E})$.

Théorème 3. L'application $\begin{cases} GA(\mathcal{E}) \to GL(E) \\ \varphi \mapsto \vec{\varphi} \end{cases}$ est un morphisme surjectif de groupes. Son noyau est le groupe des translations de \mathcal{E} , isomorphe au groupe (E, +).

Définition 4. On appelle espace affine euclidien sur l'espace euclidien $(E, \|.\|_E)$ un espace affine \mathcal{E} dirigé par E.

 \mathcal{E} est muni d'une distance donnée par $d_{\mathcal{E}}(A,B) = \|\overrightarrow{AB}\|_{E}$ pour tout $A,B \in \mathcal{E}$.

Dorénavent, $\mathcal E$ et $\mathcal F$ désignent des espaces affines euclidiens, dirigés respectivement par E et par F.

Définition 5.

On dit qu'une application $f: E \to F$ est une isométrie vectorielle si $||f(x)||_F = ||x||_E$ pour tout $x \in E$. On note O(E) l'ensemble des isométries vectorielles de $E \to E$.

On dit qu'une application $f: \mathcal{E} \to \mathcal{F}$ est une isométrie affine si $\|\varphi(A)\varphi(B)\|_F = \|\overrightarrow{AB}\|_E$ pour tout $A, B \in \mathcal{E}$. On note $\mathrm{Isom}(\mathcal{E})$ l'ensemble des isométries affines de $\mathcal{E} \to \mathcal{E}$.

Exemple 6. Une translation est une isométrie affine.

Une homothétie est une isométrie affine si et seulement si son rapport est 1 ou -1.

Une symétrie est une isométrie si et seulement si c'est une symétrie orthogonale.

Proposition 7. O(E) est un sous-groupe de GL(E), et Isom(E) est un sous-groupe de GA(E).

Si φ est une isométrie vectorielle, sont déterminant vaut -1 ou 1.

Proposition 8. Soit $\varphi: \mathcal{E} \to \mathcal{E}$ une application qui préserve les distances. Alors $\varphi \in \mathrm{Isom}(\mathcal{E})$.

Définition 9. On appelle groupe spécial orthogonal de E, et on note SO(E), le noyau du morphisme det: $E \rightarrow \{-1, 1\}$. C'est un sous-groupe distingué de O(E).

On appelle sous-groupe des déplacements de \mathcal{E} , et on note Isom $^+(\mathcal{E})$ le noyau du morphisme $\det: \mathcal{E} \to \{-1,1\}$ défini par $\det(\varphi) = \det(\vec{\varphi})$. C'est un sous-groupe distingué de Isom (\mathcal{E}) .

Une isométrie affine qui n'est pas un déplacement est appelée un anti-déplacement.

Théorème 10. Soit $v \in O(E)$. Alors $Ker(v - Id_E) = (Im(v - Id_E))^{\perp}$. En particulier, $E = Ker(v - Id_E) \oplus Im(v - Id_E)$.

Corollaire 11. Soit $f \in \text{Isom}(\mathcal{E})$. Il existe une isométrie $g \in \text{Isom}(\mathcal{E})$ admettant un point fixe, et $x \in \text{Ker}(v - \text{Id}_E)$ uniques, tels que $f = t_x \circ g$. De plus, g commute avec t_x .

L'expression (unique) $f = t_x \circ g$ de l'isométrie f est appelé la forme canonique de f.

1.2 Groupes d'isométries fixant une partie

Définition 12. Soit X une partie de \mathcal{E} . Le groupe d'isométries de X, note $\mathrm{Is}(X)$, est constitué des isométries affines qui laissent X invariant. C'est un sous-groupe de $\mathrm{GA}(\mathcal{E})$.

Le groupe des déplacements de X, noté $\operatorname{Is}^+(X)$, est le sous-groupe des appications de $\operatorname{Is}(X)$ dont le déterminant de la partie linéaire vaut 1.

Exemple 13. On considère $\mathcal{E} = \mathbb{R}^2$ en tant qu'espace affine euclidien.

Le groupe diédral $D_n = \{1, R, \dots, R^{n-1}, S, SR, \dots, SR^{n-1}\}$ est le groupe d'isométries d'un polygône régulier à n côtés.

Lemme 14. Le groupe d'isométries d'un ensemble convexe laisse stable ses points extrémaux.

Théorème 15. On considère $\mathcal{E} = \mathbb{R}^3$ en tant qu'espace affine euclidien.

Le groupe d'isométries du tétraèdre Δ_4 est isomorphe à S_4 , et son groupe des déplacements est isomorphe à A_4

Le groupe d'isométries du cube C_6 est isomorphe au produit $S_4 \times \mathbb{Z}/2\mathbb{Z}$, et son groupe des déplacements est isomorphe à S_4 .

Application 16. La table de caractère de S_4 est donnée par :

	[1]	[2]	[2, 2]	[3]	[4]
id	1	1	1	1	1
ε	1	-1	1	1	-1
χ_S	3	1	-1	0	-1
χ_C	3	-1	-1	0	1
χ_V	2	0	2	0	-1

1.3 Corps finis et nombres constructibles

Définition 17. Soit E un sous ensemble du plan \mathbb{R}^2 .

- On dit qu'un point (x, y) est constructible sur E en une étape si (x, y) est l'intersection de deux objets parmi :
 - 1. L'ensemble des droites affines qui passent par deux éléments distincts de E
 - 2. L'ensemble des cercles dont le centre est un élément de E et le rayon est la distance, entre deux points distincts de E.

On note C(E) l'ensemble des points constructibles sur E en une étape.

- On définit par récurrence l'ensemble $C_n(E)$ des points constructibles sur E en n étapes par $C_{n+1}(E) = C(C_n(E))$.
- On dit que le point (x, y) est constructible sur E si $(x, y) \in \bigcup_{n=0}^{\infty} C_n(E)$.
- Finalement, on dit qu'un nombre réel x est constructible si (x,0) est constructible sur $\{(0,0),(0,1)\}$.

Proposition 18. Soit x, y des nombres constructibles.

Alors:

- La somme x + y est constructible.
- La différence x y est constructible.
- Le produit x y est constructible.

- Si $y \neq 0$, le quotient x/y est constructible.
- La racine carrée \sqrt{x} est constructible.

Théorème 19. (Wantzel, 1837)

Un nombre réel a est constructible si et seulement si il existe $n \in \mathbb{N}$ et une suite finie de corps $(L_i)_{1 \le i \le n}$ tels que :

- $L_0 = \mathbb{Q}$,
- $\forall i \in [1, n-1]$ $L_i \subset L_{i+1}$ et $[L_{i+1}: L_i] = 2$,
- $a \in L_n$.

En particulier, tout nombre constructible est algébrique sur $\mathbb Q$ et son degré est une puissance de 2.

Définition 20. Soit $\theta \in \mathbb{R}$. On note $\hat{\theta}$ l'angle orienté dont une mesure en radian est θ . L'angle $\hat{\theta}$ est dit constructible si le point M du cercle de centre O = (0,0) et de rayon 1 tel que $(\overrightarrow{OI}, \overrightarrow{OM}) = \hat{\theta}$, où I = (1,0), est un point constructible.

Proposition 21. L'angle $\hat{\theta}$ est constructible si et seulement si le réel $\cos(\theta)$ est constructible.

Lemme 22.

- 1. Les angles de la forme $\frac{\widehat{2\pi}}{2^{\alpha}}$ sont constructibles pour $\alpha \in \mathbb{N}$.
- 2. Soient $n, m \in \mathbb{N}^*$ premiers entre eux. Alors l'angle $\frac{\widehat{2\pi}}{mn}$ est constructible si et seulement si les angles $\frac{\widehat{2\pi}}{m}$ et $\frac{\widehat{2\pi}}{n}$ le sont.

Développement 1 :

Théorème 23. (Gauss-Wantzel)

Soit p un nombre premier impair, et $\alpha \in \mathbb{N}^*$. Alors l'angle $\frac{\widehat{2\pi}}{p^{\alpha}}$ est constructible si et seulement si $\alpha = 1$ et p est un nombre premier de Fermat, c'est-à-dire $p = 1 + 2^{2^{\beta}}$ pour un certain $\beta \in \mathbb{N}$.

2 Utilisation de l'algèbre linéaire

2.1 En géométrie différentielle

Définition 24. Soit $n \in \mathbb{N}^*$. On dit qu'une partie $M \subset \mathbb{R}^n$ est une sous-variété de \mathbb{R}^n de dimension m en un point $x_0 \in M$ il existe un voisinnage ouvert U de x_0 et un \mathcal{C}^1 -difféomorphisme $\varphi: U \to \varphi(U) \subset \mathbb{R}^n$ vérifiant $\varphi(x_0) = 0$ et $\varphi(U \cap M) = \varphi(U) \cap (\mathbb{R}^m \times \{0\})$.

Proposition 25. On suppose qu'il existe $\varphi_1, \ldots, \varphi_{n-m}$ différentiables sur un ouvert U contenant x_0 , à valeurs réelles, telles que $\varphi_1(x_0) = \cdots = \varphi_{n-m}(x_0) = 0$ et que les formes linéaires $(D\varphi_i(x_0))_{0 \le i \le n-m}$ sont linéairement indépendantes.

Alors l'ensemble $M = \{x \in U: \varphi_1(x) = \cdots = \varphi_{n-m}(x) = 0\}$ est une sous-variété en x_0 de dimension m.

Définition 26. Soit $M \subset \mathbb{R}^n$ une sous-variété et $x_0 \in M$. On appelle espace tangent en $x_0 \ \text{à} \ M$ l'ensemble :

$$T_{x_0}(M) = \{ v \in \mathbb{R}^n : \exists I \in \mathcal{I} \quad \exists \gamma \in D^1(I, M), \quad \gamma(0) = x_0 \text{ et } \gamma'(0) = v \}$$

Où l'on a noté $\mathcal I$ l'ensemble des intervalles ouverts contenant 0, et $D^1(I,M)$ est l'ensemble des applications différentiables de I vers M, pour $I \in \mathcal I$.

On identifie le plus souvent l'espace vectoriel $T_{x_0}(M)$ à l'espace affine passant par x_0 et parallèle à $T_{x_0}(M)$:

Proposition 27. $T_{x_0}(M)$ est un sous-espace vectoriel de \mathbb{R}^n , de même dimension que M.

Théorème 28. Soit $\varphi_1, \ldots, \varphi_{n-m}$ différentiables sur un ouvert U de \mathbb{R}^n contenant x_0 , que $\varphi_1(x_0) = \cdots = \varphi_{n-m}(x_0) = 0$ tel que les formes linéaires $(D\varphi_i(x_0))_{0 \leq i \leq n-m}$ sont linéairement indépendantes.

On note $M = \{x \in U : \varphi_1(x) = \dots = \varphi_{n-m}(x) = 0\}$ la sous-variété associée. Alors on a :

$$T_{x_0}(M) = \bigcap_{i=1}^{n-m} \operatorname{Ker} (D\varphi_i(x_0))$$

Lemme 29. Soit v, u_1, \ldots, u_k des formes linéaires sur \mathbb{R}^n . Supposons que u_1, \ldots, u_k sont linéairement indépendantes, et que $\bigcap_{i=1}^k \operatorname{Ker}(u_i) \subset \operatorname{Ker}(v)$. Alors il existe $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ tels que $v = \sum_{i=1}^k \lambda_i u_i$.

Application 30. Théorème des extrema liés

Soit $f, g_1, ..., g_k : U \subset \mathbb{R}^n \to \mathbb{R}^n$ des applications de classe \mathcal{C}^1 , et $M = \{x \in U : g_1(x) = \dots = g_k(x) = 0\}$. On suppose que $f_{|M}$ admet un extremum local en $m \in M$, et que la famille $(Dg_i(m))_{0 \le i \le k}$ est libre. Alors il existe $\lambda_1, ..., \lambda_k \in \mathbb{R}$ tels que :

$$Df(m) = \sum_{i=1}^{k} \lambda_i Dg_i(m)$$

2.2 Sur les espaces affines

On se donne $(E, \|\cdot\|)$ un espace vectoriel normé, et \mathcal{E} un espace affine dirigé par E.

Définition 31. Si $C \subset E$, on dit que C est une partie convexe de E si pour tout $x_1, \ldots, x_k \in C$ et $\lambda_1, \ldots, \lambda_d \in [0, 1]$ tels que $\lambda_1 + \cdots + \lambda_d = 1$, la combinaison convexe $\lambda_1 x_1 + \cdots + \lambda_k x_k$ est encore un élément de C.

Exemple 32. Soit $(E, \|\cdot\|)$ un espace vectoriel normé réel. Alors la boule unité fermée de E est convexe.

Définition 33.

Soit $\mathcal C$ un ouvert convexe de E contenant zéro. On définit la jauge de $\mathcal C$ comme l'application

$$j_C: \left\{ \begin{array}{ll} E & \to & \mathbb{R}_+ \\ x & \mapsto & \inf \left\{ \lambda > 0 : x \in \lambda \mathcal{C} \right\} \end{array} \right.$$

Lemme 34. La jauge de C est bien définie sur E. Elle vérifie les propriétés suivantes, pour x et y des vecteurs de E:

- 1. $C = \{x \in E : j_C(x) < 1\},$
- 2. $\forall \mu > 0$ $j_C(\mu x) = \mu j_C(x)$, (j_C est positivement homogène)

3.
$$j_C(x+y) \leq j_C(x) + j_C(y)$$
. (j_C est sous-additive)

Théorème 35. (Hahn-Banach, forme analytique)

Soit $p: E \to \mathbb{R}$ positivement homogène et sous-additive. Soit G un sous-espace vectoriel de E et g une forme linéaire sur G telle que $g \le p$.

Alors il existe une forme linéaire f sur E telle que $f|_G = g$ et $f \le p$ sur E.

Définition 36. Soit φ une forme linéaire sur E. On appelle hyperplan affine de E tout ensemble H de la forme $H = \text{Ker}(\varphi - c)$, où c est un réel quelconque.

H est alors un espace affine dirigé par l'hyperplan vectoriel $Ker(\varphi)$.

Définition 37.

Soit H un hyperplan affine de E. On se donne $\varphi \in E^*$ et $c \in \mathbb{R}$ tels que $H = \operatorname{Ker}(\varphi - c)$.

• On appelle les demi-espaces limités par H les deux ensembles

$$E_1 = \{ x \in E : \varphi(x) \le c \}$$
 et $E_2 = \{ x \in E : \varphi(x) \ge c \}.$

• Etant donné A et B deux parties de E, on dit que H sépare A et B si $A \subset E_1$ et $B \subset E_2$ ou $A \subset E_2$ et $B \subset E_1$.

Développement 2 :

Lemme 38. Soit C un convexe ouvert de E non vide et $x_0 \in E \setminus C$. Alors il existe un hyperplan affine H de E séparant $\{x_0\}$ et C.

Théorème 39. (Hahn-Banach, forme géométrique)

Soit A et B deux convexes de E disjoints et non vides. Si A est ouvert, il existe un hyperplan affine H qui sépare A et B.