Programowanie Funkcyjne WPPT

Lista zadań

Jacek Cichoń, WPPT, PWr, 2022/23

Zadania oznaczone * są nieco trudniejsze od zadań bez gwiazdki. Zadania oznaczone ** są jeszcze trudniejsze.

1 Wstęp

1.1 Teoria

Iloczynem kartezjańskim funkcji $f:X\to Y$ i $g:A\to B$ nazywamy funkcję $f_1\times f_2:X\times A\to Y\times B$ określoną wzorem

$$(f_1 \times f_2)((x,y)) = (f_1(x), f_2(y)).$$

Jeśli $f:X\to A$ oraz $g:X\to B$, to przez (f,g) oznaczamy funkcję $(f,g):X\to A\times B$ określoną wzorem

$$(f,g)(x) = (f(x),g(x)).$$

Zadanie 1 — Pokaż, że

- 1. $(\alpha, \beta) \circ f = (\alpha \circ f, \beta \circ g)$
- 2. $(\alpha \times \beta) \circ (f \times g) = (\alpha \circ f) \times (\beta \circ g)$ dla dowolnych funkcji α, β, f, g dla których złożenia $\alpha \circ f$ oraz β są dobrze określone.
- 3. Pokaż, że $(f,g)=(f\times g)\circ \Delta_X$ gdzie $\Delta_X:X\to X\times X:x\to (x,x)$ oraz $f,g:X\to Y.$

Zadanie 2 — Niech $f: X \to X$ i $g: X \times X \to X$. Przedstaw następujące funkcje jako złożenie funkcji $f, g, id_X: X \to X: x \to x, \Delta_X: X \to X \times X: x \to (x,x), fst_X: X \times X \to X: (x,y) \to x, snd_X: X \times X \to X: (x,y) \to y$:

$$1.h_0(x) = f(f(x)),$$

$$2.h_1(x) = g(x, x)$$

$$3.h_2(x) = g(f(x), x)$$

$$4.f_3(x) = g(g(x,x), g(x,x))$$

Dla ustalonych zbiorów A, B, C definiujemy $\operatorname{curry}_{A,B,C}: C^{A\times B} \to (C^B)^A$ wzorem

$$\operatorname{curry}_{A.B.C}(f)(a) = \lambda y.f(a, y).$$

* Zadanie 3 — Niech $f: A \to A'$. Pokaż, że

$$(curry_{A',B,C}(\phi)) \circ f = curry_{A,B,C}(\phi \circ (f \times id))$$

dla wszystkich $\phi: A' \times B \to C$

* Zadanie 4 — Niech $f: C \to D$. Pokaż, że

$$\operatorname{curry}_{A.B.D}(f \circ \phi) = (\lambda x).(\lambda y).f\left((\operatorname{curry}_{A.B.C}(\phi)(x))(y)\right)$$

dla wszystkich $\phi: C \to D$.

Zadanie 5 — Niech
$$pr:(A\times B)\times C\to (A\times B\times C:((x,y),z)\to (x,y,z)$$
 oraz
$$curry3\ f=curry(curry(f\circ pr))\ .$$

Pokaż, że $curry3: D^{A \times B \times C} \to D^{C^{B^A}}$.

Zadanie 6 — Funkcją Ackermana nazywamy funkcję $A: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ zdefiniowaną za pomocą wzoru

$$A(m,n) = \begin{cases} n+1 & : m=0\\ A(m-1,1) & : m>0 \land n=0\\ A(m-1,A(m,n-1) & : \text{w pozostałych przypadkach} \end{cases}$$

- * 1. Pokaż, że funkcja Ackermana jest poprawnie określona.
 - 2. Pokaż, że A(1,y) = y + 2, A(2,y) = 2y + 3, $A(3,y) = 2^{y+3} 3$
 - 3. Pokaż, że

$$A(4,y) = \underbrace{2^{2^{1}}}_{y+3}^{2} - 3$$

1.2 Praktyka

Zadanie 7 — Uprość następujące wyrażania:

- 1. $(\lambda x.(x y))(\lambda x.x)$.
- 2. $(\lambda x.(x y))(\lambda z.z)$
- 3. $((\lambda x.((\lambda y.(x\ y)))x))(\lambda z.w)$

Zadanie 8 — Rozważ my funkcję

$$f(x,y) = (\lambda x.(\lambda y.x + 2 * y))(x * y).$$

- 1. Zapisz tę funkcję w językach JavaScript (arrow notation), Python oraz w języku Haskell.
- 2. Zastosuj alfa transformacje i beta redukcje do uproszczenia funkcji f.

Zadanie 9 — Rozważmy następujące definicje

```
f(x) = x * x

g(y) = f(f y)

h(x) = g \setminus circ g

Uprość funkcję h.
```

Zadanie 10 — Rozważmy następujące funkcje

```
function f(x) {
  let y = Math.sin(x);
  return y*y + y + x;
}
```

Wyeliminuj zmienną y z tego kodu, bez pogarszania jego efektywności. Uprość funkcję h.

Zadanie 11 — Oprogramuj w językach JavaScript i Python rekurencyjne wersje funkcji, które na wejściu mają podaną listę liczb rzeczywistych $[x_1, \dots x_n]$ i jako wynik zwracają:

- 1. $\sum_{i=1}^{n} x_i$
- 2. $\prod_{i=1}^{n} x_i$
- 3. $\min\{x_i : i = 1, \dots, n\}$
- 4. $\max\{x_i : i = 1, \dots, n\}$

Zadanie 12 — Wyeliminuj z następującego kodu pętlę (zastąp ją rekursją i, oczywiście, pozbądź się zmiennej pomocniczej s)

```
function sum_of_squares(n) {
  let s = 0;
  for (let i = 0; i <= n;i++) {
    s = s + i * i
  }
  return s
}</pre>
```

Zadanie 13 — Oprogramuj funkcję Ackermana w języku JS lub Python i wyznacz jej wartości dla małych wartości m i n.

- 1. Pierwsze rozwiązanie oprzyj bezpośrednio na rekurencyjne definicji.
- 2. Drugie rozwiązanie oprzyj na metodzie "memoizacji".

2 Wprowadzenie do Haskell'a

Zadanie 14 — Zrób wszystkie zadania z książki Real World Haskell po rozdziale pierwszym.

Zadanie 15 — Oblicz w GHCI wartości wyrażeń $2 \wedge 3 \wedge 2$, $(2 \wedge 3) \wedge 2$ i $2 \wedge (2 \wedge 3)$. Dowiedz się jaka jest łączność operatora \wedge za pomocą polecenia :i (\wedge) .

Zadanie 16 — Funkcją Eulera ϕ nazywamy funkcję określoną wzorem

$$\phi(n) = \operatorname{card}(\{k \le n : \gcd(k, n) = 1\}).$$

o dziedzinie \mathbb{N}^+ .

- 1. Oprogramuj funkcję ϕ (funkcja gcd jest w bibliotece Prelude)
- 2. Napisz funkcję, która dla danej liczby naturalnej n wyznacza liczbę $\sum_{k|n} \phi(k)$.

Zadanie 17 — Trójkę liczb naturalnych (a,b,c) nazywamy właściwą trójką pitagorejską jeśli $a^2=b^2+c^2$ oraz gcd(b,c)=1. Wyznacz wszystkie właściwe trójki pitegorejskie takie, że $a\leq 200$.

Zadanie 18 — Zaimplementuj na kilka sposobów funkcję służącą do wyznaczania liczb Fibbonacciego: rekurencyjnie, rekurencyjnie za pomocą wzorców.

Zadanie 19 — Zaimplementuj funkcję $\binom{n}{k}$. Nie stosuj tożsamości $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ - jest to kosztowne rozwiązanie; zastosuj wzór rekurencyjny na $\binom{n+1}{k+1}$.

Zadanie 20 — Liczbę naturalną n nazywamy doskonałą jeśli $n = \sum \{d : 1 \le d < n \land d | n\}$. Np. 6 jest liczbą doskonałą, bo 6 = 1 + 2 + 3. Wyznacz wszystkie liczby doskonałe mniejsze od 10000.

Zadanie 21 — Zapisz operacje binarne (+), (*) za pomocą lambda wyrażeń.

Zadanie 22 — Niech ff = (2 ^) oraz gg = (^ 2). Podaj interpretacją tych funkcji.

Zadanie 23 — Sprawdź wartości wyrażeń

```
map (^ 2) [1..5]
oraz
map (2 ^) [1..5]
i wyjaśnij otrzymane wyniki.
```

Zadanie 24 — Dowiedz się jak można przekonwertować elementy typu Int oraz Integer na typy Float i Double. Dowiedz się jaki jest format funkcji typu round z Float to Int.

Zadanie 25 — Oszacuj złożoność obliczeniową następującej (kiepskiej) funkcji służącej do odwracania listy:

```
rev :: [a] -> [a]
rev [] = []
rev (x:xs) = (rev xs) ++[x]
```

Zadanie 26 — Oprogramuj funkcję fib, która wyznacza n-tą liczbę Fibonacciego w czasie liniowym (zakładając, że operacje arytmetyczne wykonywane są w czasie stałym). Wskazówka: przyglądnij się parze (f_{n+1}, f_n) .

3 Listy

Część z tych zadań może być omówionych na wykładzie. Mimo to samodzielnie zaimplementuj te funkcje i przzetestuje je w GHCi. Po przetestowaniu zapisz ich kody w pliku o nazwie testy.hs

Zadanie 27 — Napisz funkcje mymap:: (a->b) -> [a] -> [b] która listę $[x_1, \ldots, x_n]$ przekształca w listę $[fx_1, \ldots, fx_n]$.

Zadanie 28 — Korzystając z funkcjii mymap z poprzedniego zadania napisz kody następujących funkcji:

- 1. mysum: $[x_1, ..., x_n] \to \sum_{i=1}^n x_i$
- 2. myproduct: $[x_1, \ldots, x_n] \to \prod_{i=1}^n x_i$
- 3. myfact: $n \rightarrow n!$

Zadanie 29 — Napisz funkcje mynub, która usunie z listy wszystkie duplikaty, np. mynub [1,1,2,2,2,1,4,1] == [1,2,4]

Zadanie 30 — Napisz funkcję myinits, która dla danej listy wyznaczy listę wszystkich jej odcinków początkowych, np.

```
myinits [1,2,3,4] == [[],[1],[1,2],[1,2,3],[1,2,3,4]]
```

Zadanie 31 — Napisz funkcję mytails, która dla danej listy wyznaczy listę wszystkich jej odcinków początkowych, np.

```
mytails [1,2,3,4] == [[],[4],[3,4],[2,3,4],[1,2,3,4]]
```

Zadanie 32 — Napisz funkcję partitions, która dla danej listy xs wyznaczy liste wszystkich par (ys,zs) takich, że xs == ys++zs.

Zadanie 33 — Napisz funkcję nondec :: Ord(a) -> [a] -> Bool, która sprawdza, czy podany argument $[x_1, \ldots, x_n]$ jest ciągiem niemalejącym, czyli czy $x_1 \le x_2 \le \ldots \le x_n$.

Zadanie 34 — Zaimplementuj samodzielnie funkcję zip (nazwij ją myzip).

Zadanie 35 — Napisz funkcje permutations, która dla danej listy wyznaczy listę wszystkich jej permutacji (możemy założyć, ze wszystkie elementy listy wejściowej sa różne).

* Zadanie 36 — Napisz funkcję, która oblicza iloma zerami (w układzie dziesiętnym) kończy się liczba n!.

Uwaga: taki pomysł: "mam dane n; obliczam n!; zamieniam na łańcuch s; odwracam go; liczę ilość początkowych zer" traktujemy jako kompletnie beznadziejny.

Wskazówka: Jaka wyznaczyć największą potegę liczby 5 która dzieli daną liczbę n?.

Zadanie 37 — Ulepsz następującą "klasyczną" implementację funkcji quick-sort:

```
qs [] = []
qs (x:xs) = qs [t|t <- xs,t<=x] ++ [x] ++ qs [t|t <- xs, t>x]
Wskazówka: Czy warto z rekursją schodzić do list jednoelementowych?.
```

Zadanie 38 — Niech mmap f = map (map f) oraz mmmap f = map (map f)).

- 1. Zbadaj typy tych odwzorowań.
- 2. Przetestuj ich działanie
- 3. Pokaż, że mmap = map . map oraz mmmap = map . map . map

4 Funkcje fold

Zadanie 39 — Sprawdź typy i przetestuj działanie funkcji sum, product, all i any.

Zadanie 40 — Przetestuj działanie funkcji foldl (+) 0 xs, foldr (+) 0 xs, foldl' (+) xs, foldr' (+) xs oraz sum X na dużych listach liczb X.

Wskazówka: skorzystaj z polecenia GHCi :set +s; w celu usunięcia wyświetlania informacji skorzystaj z polecenia :unset +s.

Zadanie 41 — Zdefiniuj za pomocą funkcji foldr funkcję, które dla listy liczb $[a_1, \ldots, a_n]$ oblicza ile liczb parzystych występuje w tej liście.

Zadanie 42 — Napisz funkcją nondec, która sprawdza czy dany ciąg $[x_1, \ldots, x_n]$ jest niemalejący, czyli, czy $x_1 \le x_2 \le \ldots \le x_n$. Znajdź implementację rekurencyjną oraz implementację opartą na zbadaniu listy zip xs (tail xs).

Zadanie 43 — Która z następujących równości jest prawdziwa?

```
1.foldl (-1) e xs = e - sum xs
2.foldr (-1) e xs = e - sum xs
```

Zadanie 44 — Dla danej listy $xs = [x_1, \dots, x_n]$ funkcja ssm xs wyznacza najdłuższą listę $[x_{j_1}, \dots, x_{j_k}]$ taką, że $j_1 = 1$ oraz $x_{j_a} < x_{j_{a+a}}$ dla wszystkich $a = 1 \dots, k-1$.

Na przykład, dla ciągu xs = [3,2,1,5,3,2,6,2,3,8] mamy ssm xs = [3,5,6,8]. Zdefiniuj funkcję ssm za pomocą funkcji foldl.

Zadanie 45 — Funkcja remdupl usuwa z listy przylegające duplikaty, np. remdupl [1,1,2,1,1,3,3,4,4] = [1,2,1,3,4]. Oprogramuj tę funkcję za pomocą foldr lub foldl.

Zadanie 46 — Zdefiniuj za pomocą funkcji foldr funkcję, które dla listy liczb $[a_1, \ldots, a_n]$ oblicza ile liczb parzystych występuje w tej liście.

Zadanie 47 — Korzystając z funkcji foldl i foldr napisz funkcję approx n zdefiniowaną następująco

$$\operatorname{approx}(n) = \sum_{k=1}^{n} \frac{1}{k!}$$

Zadanie 48 — Napisz, korzystając z funkcji foldl, funkcję która dla ciągu liczb $[a_1, \ldots, a_n]$ oblicza $\sum_{k=1}^n (-1)^{k+1} a_k$

Zadanie 49 — Funkcja filter może myć zdefiniowana za pomocą funkcji map i concat:

```
filter p = concat . map box where box x =
```

Podaj definicję tej funkcji box.

Zadanie 50 — Funkcje takeWhile i dropWhile są podobne do funkcji take i drop, jednakże ich pierwszym argumentem jest funkcja boolowska zamiast liczby naturalnej. Na przykład

```
takeWhile even [2,4,6,7,8,9] = [2,4,6] oraz dropWhile even [2,4,6,7,8,9] = [7,8,9] Podaj rekurencyjne definicje tych funkcji.
```

Zadanie 51 — Napisz funkcję która dla zadanej listy $[a_1, \ldots, a_n]$ elementu typu [Fractional a] wyznaczy średnią arytmetyczną oraz wariancję ciągu (a_1, \ldots, a_n) . Skorzystaj tylko raz z funkcji fold.

Zadanie 52 — Pokaż, że map f (xs ++ ys) = (map f xs) ++ (map f ys). Wywnioskuj z tego następującą własność (map f). concat = concat . map (map f).

5 Zadania dodatkowe

Zadanie 53 — Na wykładzie sformułowaliśmy następujące twierdzenie:

Jeśli $R\subseteq X\times X$ jest ufundowana oraz $F:V\times X\to V$ (gdzie V oznacza klasę wszystkich zbiorów), to istnieje dokładnie jedna funkcja $g:X\to V$ taka, że

$$(\forall x \in X)(g(x) = F(g \upharpoonright prec(x), x)),$$

$$\text{gdzie } prec(x) = \{t \in X : (t, x) \in R\}.$$

Oto dowód tego twierdzenia rozbity na kilka kroków:

1. Pokaż, że relacja $R\subseteq X\times X$ jest ufundowana wtedy i tylko wtedy, gdy

$$(\forall A \subseteq X)(A \neq \emptyset \rightarrow (\exists a \in A)(A \times prec(a) = \emptyset)).$$

- 2. Niech GPF (good partial functions) oznacza rodziną wszystkich funkcji f takich, że $dom(f) \subseteq X$ oraz dla każdego $x \in dom(f)$ mamy $prec(x) \subset dom(f)$ oraz $f(x) = F(f \upharpoonright prec(x), x)$. Pokaż, że jeśli $f_1, f_2 \in GPF$ i $x \in dom(f_1) \cap dom(f_2)$ to $f_1(x) = f_2(x)$.
- 3. Pokaż, że dla każdego $x \in X$ istnieje $f \in GPF$ taka, że $x \in dom(f)$.
- 4. Udowodnij twierdzenie.

C.D.N.

Powodzenia, Jacek Cichoń