Math 3100

Sample Exam 2 – Version 2

No calculators. Show your work. Give full explanations. Good luck!

1. (15 points)

- (a) Carefully state the definition of what it means to say that $\sum_{n=1}^{\infty} a_n$ is convergent.
- (b) Use this definition to prove that if $\sum_{n=1}^{\infty} a_n$ is convergent and $\sum_{n=1}^{\infty} b_n$ is divergent (not convergent), then $\sum_{n=1}^{\infty} (a_n + b_n)$ is divergent.
- (c) Prove that if $0 \le a_n \le c_n$ and $\sum_{n=1}^{\infty} c_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is also convergent.

2. (15 points)

- (a) Show that if $\lim_{n\to\infty} \sqrt{n}a_n = 2$, then $\sum_{n=1}^{\infty} a_n$ diverges.
- (b) Find all $x \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \frac{x^n}{n3^{n+1}}$ converges.
- (c) Find a sequence $\{a_n\}$ so that $\sum_{n=1}^{\infty} a_n x^n = \frac{4x}{2-x}$ for all |x| < 2.

3. (15 points)

- (a) Carefully state the ε - δ definition of what it means for a function $f: \mathbb{R} \to \mathbb{R}$ to be *continuous* at a point $x_0 \in \mathbb{R}$. Use this to show that $f(x) = \frac{2x+1}{x^2+1}$ is continuous at $x_0 = 2$.
- (b) Prove that if a function $f: \mathbb{R} \to \mathbb{R}$ is *continuous* at x_0 , then $\lim_{n \to \infty} f(x_n) = f(x_0)$ for all sequences $\{x_n\}$ with $\lim_{n \to \infty} x_n = x_0$. Use this to show that

$$g(x) = \begin{cases} \cos(x^{-2}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

is not continuous at $x_0 = 0$.

- 4. (5 points) Give examples of the following, no proofs are required:
 - (a) A function that is continuous at 0 and discontinuous on $\mathbb{R} \setminus \{0\}$.
 - (b) A series with bounded partial sums that is divergent.
 - (c) Bonus Points:

A sequence $\{b_n\}$ with $0 \le b_n \le \frac{1}{n}$ for each $n \in \mathbb{N}$, but for which $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ diverges.

Math 3100 - Sample Exam 2 (Version 2) - SOLUTIONS

- 1 (a) ∑an converges (lim (a,+a2+-+an) exists.
 - (b) Claimi

 If som convs & som divs, then some (anthon) diverges.

Since I an conv we know lim (a,+...+an) exists.

Since & bn div we know lim (bi+ ... + bn) dues not exist:

If 5 (author) converged this would mean that

limi ((a,+b,)+...+ (an+bn)) exists.

Since bit ... + by = ((a,+b)+...+ (a+th))- (a,+...+an)

convergent sequence convergent sequence

Ω.

this would contradict Zan conv & Z bu div

(c) Claim (Direct Companisa Test).

If $0 \le a_n \le c_n & \sum_{n=1}^{\infty} c_n \text{ convergent}$, then $\sum_{n=1}^{\infty} a_n$ converges

Proof Let L= Imi (CI+···+Cn). Since Of an & Cn Vn ENV it follows that (ai+···+an) & L Vn ENV. Since the seq of partial some {ai+···+an} is also increasing it follows from the MCT that Imi (ai+···+an) exists () Ean converges.

Proof

Since \sqrt{n} an = $\frac{a_n}{\sqrt{n}} \rightarrow 2$ and $\frac{\sqrt{n}}{\sqrt{n}}$ diverges

it fullows from the "limit comparison test" that I an diverges

(b) Claimi $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 3^{n+1}}$ converges $\iff x \in [-3,3)$

Proof Let an= xn .

Since $\left|\frac{a_{n+1}}{a_n}\right| = \frac{n}{n+1} \cdot \frac{1}{3} |x| \rightarrow \frac{1}{3} |x|$ it follows from the "Rahio Test" that $\sum_{n=1}^{\infty} a_n \cos u$, als. if |x| < 3

and diverges if 1×1>3.

If x=3 then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{3n}$ which diverges.

If x=-3 then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n \frac{1}{3n}$ which converges

by the Alt. Senier Test since in 10.

(c) Since $\frac{4x}{2-x} = 2x \frac{1}{1-\frac{x}{2}} = \frac{x^{n-1}}{2} =$

(ii) Claim:
$$f(x) = \frac{2x+1}{x^2+1}$$
 is continuous at $x_0 = 2$.

ynce
$$|x-z| < \frac{\varepsilon}{3}$$

If
$$|x-x_0| < \delta$$
, then
$$\left| \frac{2x+1}{x^2+1} - 1 \right| = \frac{|x|}{x^2+1} |x-2| \le |x||x-2| < 3|x-2| < 3\left(\frac{\varepsilon}{3}\right) = \varepsilon$$
Since $|x-x_0| < \delta$, then
$$\left| \frac{2x+1}{x^2+1} - 1 \right| = \frac{|x|}{x^2+1} |x-2| \le |x||x-2| < 3|x-2| < 3\left(\frac{\varepsilon}{3}\right) = \varepsilon$$

$$\left| \frac{1}{x^2+1} - 1 \right| = \frac{|x|}{x^2+1} |x-2| \le |x||x-2| < 3|x-2| < 3\left(\frac{\varepsilon}{3}\right) = \varepsilon$$

Take
$$x_n = \sqrt{2\pi n}$$
 and $y_n = \sqrt{2\pi n + \frac{\pi c}{2}}$ for each $n \in \mathbb{N}$.

Clearly xn-0 and yn-0, while g(xn)=1 & g(yn)=0 VncN

(b)
$$\sum_{n=1}^{\infty} (-1)^n$$