Tallinna Reaalkool

Gravitatsiooni mõju osakesete soojusmahtuvusele erinevates potentsiaalides

Uurimistöö

Kaarel Kivisalu

11. a

Juhendajad: prof Jaan Kalda

õp Toomas Reimann

Sisukord

Sissejuhatus			
Τä	histe l	loetelu	4
1	Üleva	aade kirjandusest ja teooriast	5
	1.1	Olümpiaadiülesande algne lahendus	5
	1.2	Algne lahendus rikub termodünaamika II seadust	5
	1.3	Statistiline mehaanika	6
	1.4	Kvaasi-klassikaline lähendus	7
	1.5	Ajast sõltumatu häiritusteooria	9
2	Sooju	ısmahtuvus erinevate potentsiaalide korral	.0
	2.1	Tükiti lineaarne potentsiaal	.0
	2.2	Häiritusega harmooniline ostsillaator	.5
		2.2.1 Harmooniline ostsillaator gravitatsiooniväljas	.5
		2.2.2 Häiritusega harmoolinine ostsillaator gravitatsiooniväljas	.7
Ko	kkuvõ	ite	21
Kasutatud materjalid			
Lisa 1 Maxima kood			
Abstract			
Resümee			
Kinnitusleht			

Sissejuhatus

I rahvusvahelisel füüsikaolümpiaadil 1967. aastal oli järgnev ülesanne (Problems of the... 1967: 6):

Kaks homogeenset ühesugust kera on sama algtemperatuuriga. Üks kera on liikumatult horisontaalse tasandil, teine ripub niidi küljes. Mõlemale kerale antakse võrdne soojushulk. Kas kerade lõpptemperatuur on sama või mitte. Soojuskadudega mitte arvestada.

Selle ülesande algses lahenduses leiti, et enamiku materjalide jaoks on on horisontaalsel tasandil oleva kera soojusmahtuvus on suurem riputatud kera omast. St, et tasandil oleva kera temperatuur on pärast soojushulga andmist väiksem. Hiljuti leiti Palma ja Sormani poolt, et efekt on hoopis vastupidine ja algne lahendus rikub termodünaamika II seadust. Samasugune tulemus saadi kasutades statistilist mehaanikat ja klassikalist termodünaamikat. Mõlemad lahendused seovad omavahel soojusmahtuvuse ja lineaarse soojuspaisumisteguri.

Käesolevas uurimistöös vaadatakse sarnast süsteemi Käesolevas töös uuritakse konkreetsete potentsiaalide korral konstantse gravitatsioonvälja mõju kerale sarnase, kuid lihtsustatud, süsteemi soojusmahtuvusele. Täpsemalt vaatatakse ühes dimensioonis Konstantse gravitatsioonivälja potentsiaal on lineaarne ja see selle saab liita süsteemi potentsiaalile. Vaadatakse soojusmahtuvuse erinevust juhtudel, kui on ainult süsteemi potentsiaal ja kera potentsiaalile on lisatud lineaarne gravitatsioonivälja potentsiaal. Käesolevas töös üritatakse siduda soojusmahtuvust ja süsteemi mikroparameetreid.

Töös on analüüsitud kuuppolünoompotentsiaali häirituse meetodil ja tükiti lineaarsestest funktsioonist koosnevat potentsiaali kvaasi-klassikaliselt.

Töö hüpoteesiks on, et sõltuvalt valitud potentsiaalist võib gravitatsioonväli nii tõsta kui ka langetada keha soojusmahtuvust. Varem tehtud uurimistöös Palma ja Sormani poolt leiti, et (Palma, Sormani 2015).

Tähiste loetelu

1 Ülevaade kirjandusest ja teooriast

1.1 Olümpiaadiülesande algne lahendus

Algne lahendus põhineb soojuspaisumisega seotud erinevustel. Kerale A soojust andes see paisub ja selle massikese tõuseb. Järelikult peab osa kerale A antavast soojushulgast kuluma kera massikeskme gravitatsioonilise potentsiaalse energia tõstmiseks ja lõpptemperatuur on madalam algsest. Vastupidiselt, kera B massikese langeb soojuspaisumise tõttu ja energiat saadakse juurde, järelikult on kera B lõpptemperatuur kõrgem. (Problems of the... 1967: 6-7)

Pannakse ka kirja tavapärasele lahendusele vastavad valemid. Olgu kerade soojusmahtuvus C_0 gravitatsioonivälja puudumisel. Tavapärase lahenduse korrale, kui kera A soojendatakse, siis selle massikese tõused $dR = \alpha R dT$ võrra, kus dT on temperatuuri tõus, α on soojuspaisumistegur ja R on kera raadius. Kera saab potentsiaalse energia $d\Phi = mg dR$, kus m on keha mass ja g on raskuskiirendus. Järelikult, kui soojushulk δQ antakse süsteemile, siis saadakse, et (Palma, Sormani 2015: 2-3)

$$\delta Q = C_0 dT + mq dR = C_0 dT + mq\alpha R dT = (C_0 + mq\alpha R)dT. \tag{1}$$

See on ekvivalentne väitega, et kera A soojusmahtuvus on:

$$C_A = C_0 + mg\alpha R. (2)$$

Analgoselt saame, et kera B soojusmahtuvus on

$$C_B = C_0 - mg\alpha R. (3)$$

Enamiku materjalide jaoks on $\alpha > 0$, millest tulenevalt $C_A > C_B$. Järelikult on tavapärase lahenduse kohaselt kera A lõpptemperatuur madalam kera B lõpptemperatuurist.

1.2 Algne lahendus rikub termodünaamika II seadust

Tavapärases lahenduses kaudselt eeldatakse, et keha siseenergia U ja raadius R sõltuvad ainult temperatuurist T, mitte aga raskuskiirendusest g. Vaadeltakse järgnevat tsüklit:

pall asub horisontaalsel külmal tasandil temperatuuriga T_1 ; pall ühendatakse soojema reservuaariga, mille temperatuur $T_2 = T_1 + dT > T_1$; pall riputatakse nööri külge ja horisontaalne tasand eemaldatakse; pall ühendatakse külma reservuaariga, mille temperatuur on T_1 . Selle protsessi kasutegur on tehtud töö ja neeldunud soojuse suhe ning avaldub kujul (Palma, Sormani 2015: 3-5)

$$\eta = \frac{2mg\alpha R}{C_0 + mg\alpha R}. (4)$$

Kasutegur η ei sõltu dT suurusest. Termodünaamika teist seadus saab sõastada järgnevalt: iga tsükkel, mis töötab ainult temperatuuride T_1 ja T_2 juures ei saa olla efektiivsem Carnot' tsüklist, mis töötab samade temperatuuride juures. Carnot' tsükli efektiivsus on (*Ibid.*: 3-5)

$$\eta_{Carnot'} = \frac{dT}{T_2} \tag{5}$$

Järelikult, kui dT on piisavalt väike, siis on palliga tsükli kasutegur suurem Carnot' tsükli kasutegurist. Teisisõnu rikub tavapärane lahendus termodünaamika II seadust.

1.3 Statistiline mehaanika

Kvantmehaanilises statistilises mehaanikas on mugav kasutada tihedusmaatriksit (ingl density matrix) $\hat{\rho}$ kvantmehaanilise operaatori ooteväärtuse (ingl expectation value) leidmiseks. Tihedusmaatriks on defineeritud järgnevalt (Kardar 2007: 172):

$$\hat{\rho}(t) \equiv \sum_{j} p_{j} |\Psi_{j}(t)\rangle \langle \Psi_{j}(t)|, \qquad (6)$$

kus $\sum_j p_j = 1$, $p_j > 0$ ja $|\Psi_j\rangle$ on puhas kvantolek (ingl pure quantum state). See kujutab segakvantolekut (ingl mixed quantum state), kus tõenäosusega p_j on süsteem puhtas kvantolekus $|\Psi_j\rangle$. Selles formalismis avaldub kvantmehaanilise operaatori ooteväärtuse ansambli keskväärtus järgnevalt (*Ibid.*: 172):

$$\overline{\langle \hat{O} \rangle} = \operatorname{tr}(\hat{\rho}\hat{O}), \tag{7}$$

kus jälg (ingltrace) $tr(\hat{A}) \equiv \sum_{n} \langle n|\hat{A}|n\rangle$. Kanoonilise ansambli¹ jaoks, mis on kvantmehaaniline ja diskreetne, avaldub kanooniline tihedusmaatriks järgnevalt (*Ibid.*: 174):

$$\hat{\rho}(\beta) = \frac{e^{-\beta \hat{H}}}{Z(\beta)},\tag{8}$$

¹Ansambel, kus süsteem on soojuslikus tasakaalus fikseeritud temperatuuriga reservuaariga.

kus $\beta \equiv 1/k_BT$, kus T on temperatuur ja k_B on Boltzmanni konstant, Kuna $\langle \Psi_j |$ on normaliseeritud, siis

$$\langle 1 \rangle = \operatorname{tr}(\hat{\rho}) = \sum_{n} \langle n | \hat{\rho} | n \rangle = \sum_{n,j} p_j |\langle n | \Psi_j \rangle|^2 = \sum_{j} p_j = 1.$$
 (9)

Võrranditest (8) ja (9) ning omadusest $\operatorname{tr}(c\hat{A}) = c\operatorname{tr}(\hat{A})$ saadakse kvantmehaaniline statistiline summa Z, mis avaldub kujul

$$Z = \operatorname{tr}(e^{-\beta \hat{H}}) = \sum_{n} e^{-\beta \hat{H}}.$$
(10)

Kasutades võrrandeid (7), (8) ja (10) saadakse hamiltoniaani \hat{H} keskmine ooteväärtus

$$\overline{\langle \hat{H} \rangle} = \operatorname{tr}(\hat{\rho}\hat{H}) = \frac{\operatorname{tr} \hat{H} e^{-\beta \hat{H}}}{Z} = -\frac{\partial \ln Z}{\partial \beta}.$$
 (11)

Hamiltoniaani keskmist ooteväärtust võib mõista kui süsteemi energait. Kuna ollakse huvitatud temperatuuri muutusel kui süsteemile antakse mingi enerigiahulk, siis on kasulik defineerida soojusmahtuvus kui

$$C = \frac{\partial \overline{\langle \hat{H} \rangle}}{\partial T}.$$
 (12)

Kombineerides võrrandeid (11) ja (12) saadakse, et

$$C = kT^2 \frac{\partial^2 \ln Z}{\partial \beta^2} \tag{13}$$

Kasutades selles osas saadud seoseid on võimalik leida kera soojusmahtuvuse sõltuvus gravitatsioonist (Palma, Sormani 2015: 10-13):

$$\frac{\partial C(g,T)}{\partial g} = -mTY\left(\alpha^2 + \frac{\partial \alpha}{\partial T}\right),\tag{14}$$

kus C on soojusmahtuvus, g on raskuskiirenuds, m on kera mass, T on kera temperatuur, Y on massikeskme kõrgus, α on lineaarne soojuspaisumistegur.

1.4 Kvaasi-klassikaline lähendus

Schrödingeri võrrandi

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi \tag{15}$$

saab ümber kirjutada järgnevalt:

$$\frac{d^2\psi}{dx^2} = -\frac{p^2}{\hbar^2}\psi,\tag{16}$$

kus

$$p(x) \equiv \sqrt{2m[E - V(x)]} \tag{17}$$

on klassikaline valem osakese impulsi jaoks koguenergiaga E ja potentsiaalse energiaga V(x). Piirkonnas, kus E > V(x), on p(x) reaalne. Seda piirkonda kutsutakse "klassikaliseks", kuna klasskikaliselt on osake piiratud selles piirkonnas. Üldiselt on ψ kompleksfunktsioon, mida saab avaldada klassikalises piirkonnas amplituudi A(x) ja faasi $\phi(x)$ kaudu, mis mõlemad on reaalsed (Griffiths 2005: 316):

$$\psi(x) = A(x)e^{i\phi(x)}. (18)$$

Kas oleks Eeldades, et amplituud A muutub aeglaselt 2 , avaldub lainefunktsioon klassikalises piirkonvaja tule- nas kujul (Ibid.: 316-318)

tuskäiku?

$$\psi = \frac{C_1}{\sqrt{p(x)}} \exp\left(\frac{i}{\hbar} \int p(x) \, dx\right) + \frac{C_2}{\sqrt{p(x)}} \exp\left(-\frac{i}{\hbar} \int p(x) \, dx\right),\tag{19}$$

kus C_1 ja C_2 on kompleksarvulised konstandid. Valemi (19) saab ka kirja panna kujul (Shankar 1994: 446)

$$\psi(x) = \frac{A}{\sqrt{p(x)}} \cos\left[\frac{1}{\hbar} \int p(x) \, dx + B\right],\tag{20}$$

kus A ja B on reaalsed parameetrid. Kahjuks ei kehti (20) kui $E \approx V(x)$, kuna $\sqrt{p(x)} \to 0$. Kas oleks Olgu $V(x_1) = V(x_2) = E$, $x_1 < x_2$ ja lõigul (x_1, x_2) on V(x) < E. On siiski võimalik vaja tule- vaadeldes lainefunktsiooni x_1 lähedal näidata, et lõigul (x_1, x_2) on lainefunktsioon järgmine tuskäiku? (Landau, Lifshitz 2005: 167-170):

$$\psi(x) = \frac{A}{\sqrt{p(x)}} \cos\left[\frac{1}{\hbar} \int_{x_1}^x p(x) dx - \frac{\pi}{4}\right],\tag{21}$$

kui x_2 lähedal on lainefunktsioon

$$\psi(x) = \frac{A'}{\sqrt{p(x)}} \cos\left[\frac{1}{\hbar} \int_{x_2}^x p(x) dx + \frac{\pi}{4}\right]. \tag{22}$$

Selleks, et need kaks lahendit ühtiksid, peavad A ja A' olema sama magnituudiga ja koosinuste faaside vahe peab olema π kordne (Shankar 1994: 446):

$$\frac{1}{\hbar} \int_{x_1}^x p(x) \, dx - \frac{1}{\hbar} \int_{x_2}^x p(x) \, dx - \frac{\pi}{2} = n\pi \tag{23}$$

või

$$\int_{x_1}^{x_2} p(x) \, dx = \left(n + \frac{1}{2}\right) \pi \hbar. \tag{24}$$

Täpsemalt eeldatakse, et $A''/A \ll (\phi')^2$ ja $A''/A \ll p^2/\hbar^2$.

1.5 Ajast sõltumatu häiritusteooria

Schrödingeri võrrandit täpselt lahendada on võimalik ainult lihtsamatel juhtudel, keerulisemate juhtude jaoks on vaja teha lähendusi. Ajast sõltumatu häiritusteooria (edaspidi häiritusteooria) on lähendusmeetod, mida saab rakendada järgnevas olukorras: teades lahendit hamiltoniaani \hat{H}^0 omaväärtusülesandele (ingl eigenvalue problem), tahetakse leida lahendit $\hat{H} = \hat{H}^0 + \hat{H}^1$, kus \hat{H}^1 on suhteliselt väike võrreldes \hat{H}^0 -ga. Eeldatakse, et iga \hat{H}^0 kidumata omaketi (ingl eigenket) $|n^0\rangle$ omaväärtusega E_n^0 jaoks leidub \hat{H} kidumata omaket $|n\rangle$ omaväärtusega E_n . Siis eeldades, et H omaketid ja omaväärtused võib kirja panna häiritusseerias (Shankar 1994: 451):

$$|n\rangle = |n^0\rangle + |n^1\rangle + |n^2\rangle + \dots \tag{25}$$

$$E_n = E_n^0 + E_n^1 + E_n^2 + \dots (26)$$

Iga liikme ülaindeks k näitab millise \hat{H}^1 astmega eeldatakse, et iga liige on võrdeline. Selleks, et leida liikmeid $|n\rangle$ ja E_n arenduses, alustatakse omaväärtusvõrrandiga (*Ibid*.: 451-452):

$$\hat{H}|n\rangle = E_n|n\rangle \tag{27}$$

või

$$(\hat{H}^0 + \hat{H}^1)(|n^0\rangle + |n^1\rangle + \dots) = (E_n^0 + E_n^1 + \dots)(|n^0\rangle + |n^1\rangle + \dots). \tag{28}$$

Vaadates võrrandis (28) nullindat järku liikmeid saadakse võrrand

$$\hat{H}^0|n^0\rangle = E_n^0|n^0\rangle. \tag{29}$$

Eelduse järgi on see võrrand lahendatud ja omaket $|n^0\rangle$ ja omaväärtused E_n^0 on teada. Vaadates võrrandis (28) esimest järku liikmeid saadakse võrrand

$$\hat{H}^{0}|n^{1}\rangle + \hat{H}^{1}|n^{0}\rangle = E_{n}^{0}|n^{1}\rangle + E_{n}^{1}|n^{0}\rangle. \tag{30}$$

Korrutades võrrandi (30) mõlemad pooled $\langle n^0|$ -ga ning kasutades omadusi $\langle n^0|\hat{H}^0=\langle n^0|E_n^0|$ ja $\langle n^0|n^0\rangle=1$ saadakse, et

$$E_n^1 = \langle n^0 | \hat{H}^1 | n^0 \rangle. \tag{31}$$

On võimalik leida ka kõrgemat järku energia parandid, kuid neid käesolevas töös ei kasutata ja tuletuskäiku nende jaoks ei hakata välja tooma.

2 Soojusmahtuvus erinevate potentsiaalide korral

2.1 Tükiti lineaarne potentsiaal

Vaadeldakse potentsiaali kujuga

$$V(x) = \begin{cases} (-a + mg)x, & x < 0, \\ (b + mg)x, & x \ge 0, \end{cases}$$

$$(32)$$

kus a ja b on positiivsed reaalarvulised konstandid ning -a + mg < 0 ja b + mg > 0. Kvaasi-klassikalises lähenduses saame leida vastava energiatasemed:

$$\left(n + \frac{1}{2}\right)\pi\hbar = \int_{x_1}^{0} \sqrt{2m[E_n - (-a + mg)x]} \, dx + \int_{0}^{x_2} \sqrt{2m[E_n - (b + mg)x]} \, dx, \quad (33)$$

kus $n \in \{0,1,2,\ldots\}, \; x_1 = \frac{E_n}{-a+mg}$ ja $x_2 = \frac{E_n}{b+mg}.$ Integreerides saadakse, et

$$\left(n + \frac{1}{2}\right)\pi\hbar = \sqrt{2m} \left[-\frac{2(E_n - (-a - mg)x)^{\frac{2}{3}}}{3(-a + mg)} \right] \Big|_{x_1}^{0} + \sqrt{2m} \left[-\frac{2(E_n - (b - mg)x)^{\frac{2}{3}}}{3(b + mg)} \right] \Big|_{x_2}^{0} \\
= -\frac{2\sqrt{2m}E_n^{\frac{3}{2}}}{3(-a + mg)} + \frac{2\sqrt{2m}E_n^{\frac{3}{2}}}{3(b + mg)}.$$
(34)

 E_n avaldades saadakse, et

$$E_n = \left[\frac{3\pi}{2\sqrt{2}} \frac{\hbar}{\sqrt{m}} \frac{(-a+mg)(b+mg)}{a+b} \right]^{\frac{2}{3}} \left(n + \frac{1}{2} \right)^{\frac{2}{3}}.$$
 (35)

Asendades võrrandisse (36) $c = \left[\frac{3\pi}{2\sqrt{2}} \frac{\hbar}{\sqrt{m}} \frac{(-a+mg)(b+mg)}{a+b}\right]^{\frac{2}{3}}$ avaldub statistiline summa järgnevalt:

$$Z = \sum_{n=0}^{\infty} \exp\left(-\beta c \left(n + \frac{1}{2}\right)^{\frac{2}{3}}\right). \tag{36}$$

Kui $\beta c \ll 1$, siis saab summa asendada integraaliga ja $n + \frac{1}{2} \approx n$:

$$Z \approx \int_0^\infty e^{-\beta c n^{\frac{2}{3}}} dn = \left[\frac{3\sqrt{\pi} \operatorname{erf}\left(n^{\frac{1}{3}}\sqrt{\beta c}\right)}{4(\beta c)^{\frac{3}{2}}} - \frac{3n^{\frac{1}{3}} e^{-\beta c n^{\frac{2}{3}}}}{2\beta c} \right]_0^\infty = \frac{3\sqrt{\pi}}{4(\beta c)^{\frac{3}{2}}}.$$
 (37)

Võrrandist (13) ja (38) saadakse, et

$$C = kT^2 \frac{\partial^2}{\partial \beta^2} \ln \frac{3\sqrt{\pi}}{4(\beta c)^{\frac{3}{2}}} = -k_B T^2 \frac{\partial}{\partial \beta} \frac{3}{2\beta} = \frac{3k_B}{2}$$
 (38)

See tähendab, et kõrgetel temperatuuridel ei sõltu süsteemi soojusmahtuvus temperatuurist. Üldisemalt avaldub soojusmahtuvus võrranditest (13) ja (37) järgnevalt:

$$C = kT^{2} \frac{\partial^{2}}{\partial \beta^{2}} \ln Z$$

$$= kT^{2} \frac{\partial}{\partial \beta} \frac{1}{Z} \frac{\partial Z}{\partial \beta}$$

$$= kT^{2} \frac{\partial}{\partial \beta} \frac{1}{Z} \sum_{n=0}^{\infty} \frac{\partial}{\partial \beta} \exp\left(-\beta c \left(n + \frac{1}{2}\right)^{\frac{2}{3}}\right)$$

$$= kT^{2} \frac{\partial}{\partial \beta} \frac{\sum_{n=0}^{\infty} -c \left(n + \frac{1}{2}\right)^{\frac{2}{3}} \exp\left(-\beta c \left(n + \frac{1}{2}\right)^{\frac{2}{3}}\right)}{\sum_{n=0}^{\infty} \exp\left(-\beta c \left(n + \frac{1}{2}\right)^{\frac{2}{3}}\right)}$$

$$= kT^{2} \frac{c^{2} \sum_{n=0}^{\infty} \left(n + \frac{1}{2}\right)^{\frac{4}{3}} \exp\left(-c \left(n + \frac{1}{2}\right)^{\frac{2}{3}}\beta\right)}{\sum_{n=0}^{\infty} \exp\left(-c \left(n + \frac{1}{2}\right)^{\frac{2}{3}}\beta\right)}$$

$$- \frac{c^{2} \left(\sum_{n=0}^{\infty} \left(n + \frac{1}{2}\right)^{\frac{2}{3}} \exp\left(-c \left(n + \frac{1}{2}\right)^{\frac{2}{3}}\beta\right)\right)^{2}}{\left(\sum_{n=0}^{\infty} \exp\left(-c \left(n + \frac{1}{2}\right)^{\frac{2}{3}}\beta\right)\right)^{2}}$$

$$(39)$$

Kui $\beta c \gtrsim 1$, siis avaldise (40) väärtus on võimalik küllaltki heas lähenduses leida vaadates ainult summade esimesi liikmeid.³ Väärtuste arvutamiseks ja jooniste tegemiseks on kasutanud töö autor programmi Maxima. Kasutatud käsklused on toodud välja lisas 1. Joonistel on kõik väärtused SI ühikutes ja N tähistab summeeritud liikmete arvu.

Kas (osa)
jooniseid
peaks
olema
lisades?

Jooniselt 1 on näha, et madalatel temperatuuridel on soojusmahtuvus väikse. Gravitatsioonivälja muutus võib nii tõsta kui ka langetada soojusmahtuvust. Kuna potentsiaal (33) on mingi kindla g väärtuse jaoks sümmeetriline nullpunkti suhtes, siis nii välja suurendamine kui ka vähendamine mõjutavad soojusmahtuvust samamoodi. Jooniselt 1 on näha, et soojusmahtuvus on minimaalne teatud temperatuuril, kui potentsiaal (33) on sümmeetriline nullpunktisuhtes, ja kasvab, kui muuta gravitatsioonivälja.

Joonis 2 erineb joonisest 1 b väärtuse poolest. On näha, et üldine kuju on mõlemal juhul sama. Joonise 2 jaoks on sümmeetriatelg nihutatud. Tõenäoliselt on sümmeetriatelg alati g sellise väärtuse juures, kus potentsiaal (33) on sümmeetriline nullpunkti suhtes. Võrrandist (33) on lihtne näha, et sümmeetria esineb, kui

$$a - mg = b + mg \tag{40}$$

 $^{^3\}beta c=1$ jaoks piisab küllaltki hea täpsuse jaoks mõnesajast liikmest.

Joonis 1. Soojusmahtuvuse sõltuvus gravitatsiooniväljast ja temperatuurist tükiti lineaarse potentsiaal korral, kus $a=1\,\mathrm{N},\ b=1\,\mathrm{N},\ m=1\,\mathrm{kg}$ ja N=400. Allikas: Autori erakogu.

ehk
$$g = \frac{a-b}{2m}. \tag{41}$$

Joonised 3 ja 4 erinevad ainult summeeritud liikmete arvu poolest. On näha mõlemal joonisel, et madalatel temperatuuridel on soojusmahtuvus väike, tõustes mingi väärtuseni ja siis hakates sümmeetriateljest kaugemal vähenema. Kuna maksimaalne väärtus on mõlemal juhul ligikaudu sama avaldise (39) väärtusega, siis tõenäoliselt on tingitud sümmeetriateljest kaugemal vähenemine summeerimise ebatäpsusest ja tegelikult seda

Joonis 2. Soojusmahtuvuse sõltuvus gravitatsiooniväljast ja temperatuurist tükiti lineaarse potentsiaal korral, kus $a=1\,\mathrm{N},\ b=2\,\mathrm{N},\ m=1\,\mathrm{kg}$ ja N=400. Allikas: Autori erakogu.

ei esine. Seda väidet kinnitab ka täpsemal joonisel (joonis 4) väiksem soojusmahtuvuse vähenemine sümmeetriateljest kaugemal.

Joonis 3. Soojusmahtuvuse sõltuvus gravitatsiooniväljast ja temperatuurist tükiti lineaarse potentsiaal korral, kus $a=1\,\mathrm{N},\ b=1\,\mathrm{N},\ m=1\,\mathrm{kg}$ ja N=100. Allikas: Autori erakogu.

Joonis 4. Soojusmahtuvuse sõltuvus gravitatsiooniväljast ja temperatuurist tükiti lineaarse potentsiaal korral, kus $a=1\,\mathrm{N},\ b=1\,\mathrm{N},\ m=1\,\mathrm{kg}$ ja N=400. Allikas: Autori erakogu.

2.2 Häiritusega harmooniline ostsillaator

Siin osas vaadeltakse harmoonilist ostsillaatorit, millele on lisatud kuuphäiritus, gravitatsiooniväljas.

2.2.1 Harmooniline ostsillaator gravitatsiooniväljas

Selleks, et leida häirituse mõju süsteemile lahendatakse kõigepealt omaväärtusprobleem harmoonilise ostsillatori jaoks gravitatsiooniväljas. Järgnev on sarnane tuletuskäiguga tavalise harmoonilise ostsillaatori jaoks, kuid erineb detailide poolest ja seega on siiski siin ära toodud. Tavalise harmoonilise ostsillaatori jaoks võib leida tuletuskäigu Shankari materjalist (*Ibid.*: 202-216). Gravitatsiooniväljas oleva ostsillaatorile vastav hamiltoonian on

$$\hat{H}^0 = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} + mg\hat{x} = \hbar\omega(A^{\dagger}A + 1/2) - k_1, \tag{42}$$

kus $k_1 = \frac{mg^2}{2\omega^2}$ ja

$$A = \sqrt{\frac{m\omega}{2\hbar}} \left[\left(\hat{x} + \frac{g}{\omega^2} \right) + \frac{i}{m\omega} \hat{p} \right],$$

$$A^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left[\left(\hat{x} + \frac{g}{\omega^2} \right) - \frac{i}{m\omega} \hat{p} \right],$$
(43)

 A^{\dagger} on A kaasoperaator. Defineeritakse operaator \mathcal{H} järgnevalt:

$$\mathcal{H} = \frac{\hat{H}^0}{\hbar\omega} = (A^{\dagger}A + 1/2) - \frac{k_1}{\hbar\omega}.$$
 (44)

Tahetakse leida omaväärtused järgmisele võrrandile:

$$\mathcal{H}|\varepsilon\rangle = \varepsilon|\varepsilon\rangle. \tag{45}$$

Kehtivad järgnevad kasulikud omadused:

$$\left[A, A^{\dagger}\right] = 1,\tag{46}$$

$$[A, \mathcal{H}] = A,\tag{47}$$

$$[A^{\dagger}, \mathcal{H}] = -A^{\dagger}. \tag{48}$$

Operaatorid A ja A^{\dagger} on kasulikud kuna need genereerivad uusi omaseisundeid. Kuna

$$\mathcal{H}A|\varepsilon\rangle = (A\mathcal{H} - [A, \mathcal{H}])|\varepsilon\rangle$$

$$= (A\mathcal{H} - A)|\varepsilon\rangle$$

$$= (\varepsilon - 1)A|\varepsilon\rangle,$$
(49)

siis peab oleama $A|\varepsilon\rangle$ omaseisundeid omaväärtusega $\varepsilon-1$, st

$$A|\varepsilon\rangle = C_{\varepsilon}|\varepsilon - 1\rangle,\tag{50}$$

kus C_ε on konstant ja $|\varepsilon-1\rangle$ ja $|\varepsilon\rangle$ on normaliseeritud omaketid. Sarnaselt nähakse, et

$$\mathcal{H}A^{\dagger}|\varepsilon\rangle = \left(A^{\dagger}\mathcal{H} - [A^{\dagger}, \mathcal{H}]\right)|\varepsilon\rangle$$

$$= (A^{\dagger}\mathcal{H} + A^{\dagger})|\varepsilon\rangle$$

$$= (\varepsilon + 1)A^{\dagger}|\varepsilon\rangle, \tag{51}$$

nii et

$$A^{\dagger}|\varepsilon\rangle = C_{\varepsilon+1}|\varepsilon+1\rangle. \tag{52}$$

Kuna \mathcal{H} omaväärtused ei saa lõputult väheneda, siis peab olema seisund $|\varepsilon_0\rangle$, mida ei saa enam alandada:

$$A|\varepsilon_0\rangle = 0. (53)$$

Korrutades võrrandi (54) läbi operaatoriga A^{\dagger} saadakse, et

$$A^{\dagger}A|\varepsilon_0\rangle = 0. \tag{54}$$

Võrranditest (45) ja (55) saadakse, et

$$\left(\mathcal{H} - 1/2 + \frac{k_1}{\hbar\omega}\right)|\varepsilon_0\rangle = 0 \tag{55}$$

või

$$\mathcal{H}|\varepsilon_0\rangle = \left(\frac{1}{2} - \frac{k_1}{\hbar\omega}\right)|\varepsilon_0\rangle \tag{56}$$

või

$$\varepsilon_0 = \frac{1}{2} - \frac{k_1}{\hbar \omega}.\tag{57}$$

Kasutades operaatorit A^{\dagger} korduvalt saab suurendada seisundit $|\varepsilon_0\rangle$ lõputult. Seega avalduvad ostsillatori energiatasemed järgnevalt:⁴

$$\varepsilon_n = \left(n + \frac{1}{2}\right) - \frac{k_1}{\hbar\omega}, \qquad n = 0, 1, 2, \dots$$
 (58)

või

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right) - k_1, \qquad n = 0, 1, 2, \dots$$
 (59)

⁴Kuna ühes dimensioonis pole kidumist, siis on ainsad energiatasemed (Shankar 1994: 176-177).

Nüüd tahetakse leida võrranditest (51) ja (53) konstandid C_{ε} ja $C_{\varepsilon+1}$. Kuna $\varepsilon = n + 1/2 - k_1/\hbar\omega$, tähistame kette täisarvuga n. Tahetakse leida konstant C_n järgmisest võrrandist:

$$A|n\rangle = C_n|n-1\rangle. \tag{60}$$

Võrrandi (61) kaasvõrrand on

$$\langle n|A^{\dagger} = \langle n-1|C_n^*. \tag{61}$$

Kombineerides võrrandid (61) ja (62) saadakse, et

$$\langle n|A^{\dagger}A|n\rangle = \langle n-1|C_n^*C_n|n-1\rangle \tag{62}$$

$$\langle n|\mathcal{H} - \frac{1}{2} + \frac{k_1}{\hbar\omega}|n\rangle = C_n^* C_n \tag{63}$$

$$\langle n|n|n\rangle = |C_n|^2 \tag{64}$$

$$|C_n|^2 = n (65)$$

$$C_n = \sqrt{n}e^{i\phi}. (66)$$

Kuna ϕ väärtus on vabalt valitav, siis on mugav võtta selle väärtus nulliks. Siis saadakse, et

$$A|n\rangle = \sqrt{n}|n-1\rangle. \tag{67}$$

Analoogselt saab näidata, et

$$A^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle. \tag{68}$$

2.2.2 Häiritusega harmoolinine ostsillaator gravitatsiooniväljas

Nüüd vaadatakse harmoonilist ostsillaatorit, millele on lisatud kuuphäiritus, gravitatsiooniväljas. Sellele vastav hamiltoniaan on

$$\hat{H} = \hat{H}^0 + \hat{H}^1, \tag{69}$$

kus

$$\hat{H}^{1} = \lambda \hat{x}^{3} = \lambda \left[\sqrt{\frac{\hbar}{2m\omega}} (A^{\dagger} + A) - \frac{g}{\omega^{2}} \right]^{3} = \lambda \left(\frac{\hbar}{2m\omega} \right)^{\frac{3}{2}} (A^{\dagger} + A - k_{2})^{3}, \tag{70}$$

kus $k_2 = g\sqrt{\frac{2m}{\hbar\omega^3}}$. Kuna sellele hamiltoniaanile vastava omaväärtusülesande täpselt lahendamine pole tõenäoliselt võimalik, siis kasutatakse häiritusteooriat. Võrrandi (31) järgi on esimene parand omaväärtustele

$$E_n^1 = \langle n|\hat{H}^1|n\rangle = \lambda \left(\frac{\hbar}{2m\omega}\right)^{\frac{3}{2}} \langle n|(A^{\dagger} + A - k_2)^3|n\rangle, \tag{71}$$

Kuna A^{\dagger} ja A muudavad omaseisundit, siis peab olema neid hulkliikme $(A^{\dagger} + A + k_2)^3$ üksliikmes sama palju, et eelnev avaldis poleks null. Seega annavad avaldises (72) nullist erinevad liikmed ainult üksliikmed $-k_2^3$, $-3k_2A^{\dagger}A$ ja $-3k_2AA^{\dagger}$. Järelikult

$$E_{n}^{1} = \lambda \left(\frac{\hbar}{2m\omega}\right)^{\frac{3}{2}} \langle n| - k_{2}^{3} - 3k_{2}A^{\dagger}A - 3k_{2}AA^{\dagger}|n\rangle$$

$$= -\lambda \left(\frac{\hbar}{2m\omega}\right)^{\frac{3}{2}} (k_{2}^{3} + 3k_{2}\sqrt{n}\sqrt{n} + 3k_{2}\sqrt{n+1}\sqrt{n+1})$$

$$= -\lambda \left(\frac{\hbar}{2m\omega}\right)^{\frac{3}{2}} [k_{2}^{3} + 3k_{2}(2n+1)]. \tag{72}$$

Võrranditest (60) ja (73) saadakse, et

$$E_n \approx \left(n + \frac{1}{2}\right) - k_1 - \lambda \left(\frac{\hbar}{2m\omega}\right)^{\frac{3}{2}} [k_2^3 + 3k_2(2n+1)].$$
 (73)

Võrranditest (10) ja (74) saadakse, et statistiline summa on

$$Z = \sum_{n=0}^{\infty} \exp\left(-\beta \left(\left(n + \frac{1}{2}\right) - k_1 - \lambda \left(\frac{\hbar}{2m\omega}\right)^{\frac{3}{2}} (k_2^3 + 3k_2(2n+1))\right)\right).$$
 (74)

Tegu on geomeetrilise rea summaga. See koondub järgmisel tingimusel:

$$\frac{3}{\sqrt{2}}k_2\lambda \left(\frac{\hbar}{m\omega}\right)^{\frac{3}{2}} < 1\tag{75}$$

või

$$3\lambda\hbar g < m\omega^3. \tag{76}$$

Selle eelduse kehtimisel on

$$Z = \frac{\exp\left(\beta \left(\lambda (k_2^3 + 3k_2) \left(\frac{\hbar}{2m\omega}\right)^{\frac{3}{2}} + k_1 - \frac{1}{2}\right)\right)}{1 - \exp\left(\beta \left(6k_2\lambda \left(\frac{\hbar}{2m\omega}\right)^{\frac{3}{2}} - 1\right)\right)}.$$
 (77)

Siit pole raske leida soojusmahtuvuse avaldist, kuid kuna see on küllaltki pikka ja otseselt sellest valemist pole võimalik järeldusi teha, siis ei hakata seda siin välja tooma.

Kasutades Maxima programmi üritas autor teha graafikuid soojusmahtuvuse sõltuvuse kohta temperatuuris ja gravitatsiooniväljast, kuid \hbar ja k_B tegelike väärtuste korral ei õnnestunud luua ühtegi graafikut. See on tõenäoliselt tingitud sellest, et väärtused lähevad liiga väikseks programmi Maxima jaoks. Teatud väärtuste (vt joonis 5 ja 6) jaoks õnnestus siiski luua soojusmahtuvuse ja soojusmahtuvuse tuletise gravitatsioonivälja järgi graafikud. Graafikute tegemisel on arvestatud, et eeldus (77) kehtiks. Kuna soojusmahtuvus muutub lubatud g muutumispiirkonnas väga vähe, siis on joonise 6 usaldusväärsus kaheldav ja võib olla tingitud arvutuslikest ebatäpsustest.

Joonis 5. Soojusmahtuvuse sõltuvus gravitatsiooniväljast ja temperatuurist häiritusega harmoonilise ostsillaatori jaoks gravitatsiooniväljas, kus $\hbar=1,\,k_B=1,\,m=1,\,\omega=1$ ja $\lambda=1\times 10^{-3}.$

Allikas: Autori erakogu.

Joonis 6. Soojusmahtuvuse tuletise gravitatsioonivälja suhtes sõltuvus gravitatsiooniväljast ja temperatuurist häiritusega harmoonilise ostsillaatori jaoks gravitatsiooniväljas, kus $\hbar=1,\ k_B=1,\ m=1,\ \omega=1$ ja $\lambda=1\times 10^{-3}$. Allikas: Autori erakogu.

Kokkuvõte

Töös leiti ligikaudsed soojusmahtuvuse avaldised kahe kvantmehaanilise süsteemi jaoks. Tükiti lineaarse potentsiaali jaoks gravitatsiooniväljas õnnestus leida, et väga kõrgetel temperatuuridel ei sõltu soojusmahtuvus gravitatsioonivälja tugevusest. Madalatel temperatuuridel leiti, et potentsiaali sümmeetrilisuse tõttu võib soojusmahtuvus nii tõusta kui ka langeda. Häiritusega harmoonilise ostsillaatori jaoks gravitatsiooniväljas ei leitud küll hästi analüüsitavat tulemust ja soojusmahtuvuse sõltuvus gravitatsioonist on kaheldav, kuid selle eest leiti täpne avaldis statistilise summa jaoks, millest pole raske jõuda soojusmahtuvuse avaldiseni.

Hüpotees sai kinnitust, et on võimalik soojusmahtuvust nii suurendada kui ka vähendada.

Tulemuste leidmine osutus ootamatult keeruliseks. On väga vähe potentsiaale, mille jaoks on Schrödingeri võrrand analüütiliselt lahenduv. Autor ei leidnud ühtegi potentsiaali, milles oleks lineaarselt koordinaadist sõltuv osa ja mille jaoks soojusmahtuvus sõltuks gravitatsioonivälja tugevusest.

Edaspidi tasuks uurida sama teemat, aga teistsuguste potentsiaalide jaoks. Kõige lihtsam oleks ilmselt uurida potentsiaale, mis on analüütiliselt lahenduvad ilma gravitatsioonivälja komponendita, häirituse meetodil.

Kasutatud materjalid

Griffiths, D. J. (2005) Introduction to quantum mechanics. Upple Saddle River: Prentice Hall

Kardar, M. (2007) Statistical Physics of Particles. New York: Cambridge University Press

Landau, L. D., Lifshitz, E. M. (2005) Quantum Mechaincs (Non-relativistic Theory). Oxford: Butterworth-Heinemann

Palma, G. D., Sormani, M. C. (2015) "Counterintuitive effect of gravity on the heat capacity of a metal sphere: re-examination of a well-known problem". American Journal of Physics, nr 83 (723)

Problems of the 1st International Physics Olympiad (1967). Loetud: http://ipho.org/problems-and-solutions/1967/1st_IPhO_1967.pdf, 18.11.2018

Shankar, R. (1994) Principles of quantum mechanics. New York: Plenum Press

Lisa 1 Maxima kood

```
E n: (3^{(2/3)}*\%pi^{(2/3)}*(g^{2}*m^2+b*g*m-a*g*m-a*b)^{(2/3)}
(\% i 1)
   *(2*n+1)^(2/3)*hbar^(2/3))/(2^(5/3)*(b+a)^(2/3)*m^(1/3));
         (3^{(2/3)}*\%pi^{(2/3)}*(g^2*m^2+b*g*m-a*g*m-a*b)^{(2/3)}*(2*n)
(E n)
   +1)^{(2/3)} *hbar^{(2/3)} /(2^{(5/3)} *(b+a)^{(2/3)} *m^{(1/3)})
(\% i 2)
         Z: sum(\%e^(-E_n*beta), n, 0, 400)$
(\% i3)
         diff(log(Z), beta, 1)$
(\% i 4)
         subst(1/(k_B*T), beta, \%o3)$
(\% i 5)
         diff(\%o4, T, 1)$
         C: -\%05$
(\% i6)
(\% i7)
         subst (1, m, C)$
         subst(1,a,\%o7)$
(\% i 8)
(\% i 9)
         subst (1, b, % o8)$
(\%i10)
         subst(1.38064852e-23,k_B,\%o9)$
(\% i 11)
         subst(1.054571800e-34,hbar,\%o10)$
         plot3d(\%o11, [g, -0.9, 0.9], [T, 0, 1], [grid, 50, 50], [
(\% i 1 2)
   zlabel , "C"] , [gnuplot_pm3d , true]);
```

Abstract

Resümee

${\bf Kinnitusleht}$

Kinnitan, et
• koostasin uurimistöö iseseisvalt. Kõigile töös kasutatud teiste autorite töödele ja
andmeallikatele on viidatud;
• olen teadlik, et uurimistööd ei edastata teistele tulu teenimise eesmärgil ega jagata
teadlikult plagieerimiseks.
kuupäev / nimi / allkiri
Tunnistan uurimistöö kaitsmisvalmiks.
Tumistan uurimistoo kantsiinsvamiks.
Juhendajad
kuupäev / nimi / allkiri
Kuupuev / IIIIII / WIKIII
kuupäev / nimi / allkiri
1 / /