Sticky Traps

Marc Los Huertos

2025-04-09

R Read Data

```
stickytrap.csv <- "/home/mwl04747/RTricks/12_Sticky_Traps/insect_sticky_trap_counts_15_traps.csv"
stickytrap.df <- read.csv(stickytrap.csv)</pre>
head(stickytrap.df)
    Sticky.Trap.ID Distance..m.
##
                                             Taxon Count
## 1
              T0_1
                                     Aedes aegypti
## 2
              T0_1
                             0
                                     Culex pipiens
                                                      29
## 3
              T0_1
                             O Anopheles gambiae
                                                      23
              TO_1
## 4
                             0
                                    Sciaridae spp.
                                                      23
## 5
              T0_1
                             O Cecidomyiidae spp.
                                                      23
## 6
              T0_1
                              O Chironomidae spp.
                                                      27
names(stickytrap.df)<- c("Trap", "Distance", "Species", "Count")</pre>
str(stickytrap.df)
                   120 obs. of 4 variables:
## 'data.frame':
## $ Trap : chr "TO_1" "TO_1" "TO_1" "TO_1" ...
## $ Distance: int 0000000000...
## $ Species : chr "Aedes aegypti" "Culex pipiens" "Anopheles gambiae" "Sciaridae spp." ...
## $ Count : int 16 29 23 23 23 27 26 2 16 25 ...
```

Boxplot

```
# using r base
boxplot(Count ~ Species, data = stickytrap.df)
```


boxplot(Count ~ Distance, data = stickytrap.df)

Linear Model

```
# using r base
lm1 <- lm(Count ~ Species + Distance, data = stickytrap.df)
summary(lm1)</pre>
```

##

```
## Call:
## lm(formula = Count ~ Species + Distance, data = stickytrap.df)
## Residuals:
       Min
                 1Q Median
                                  3Q
## -12.4042 -4.3771 0.3542
                              3.5271 17.1083
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                      1.75122 11.309 < 2e-16 ***
                           19.80417
## SpeciesAnopheles gambiae
                            2.26667
                                       2.31891 0.977
                                                        0.3305
## SpeciesCecidomyiidae spp. 1.13333
                                       2.31891
                                                0.489
                                                       0.6260
## SpeciesChironomidae spp.
                            1.60000
                                       2.31891
                                               0.690
                                                       0.4916
## SpeciesCulex pipiens
                           -0.40000
                                       2.31891 -0.172
                                                       0.8634
## SpeciesSciaridae spp.
                           3.06667
                                       2.31891
                                               1.322
                                                       0.1887
## SpeciesSimuliidae spp.
                           -5.40000
                                       2.31891 -2.329
                                                        0.0217 *
                                       2.31891 0.144
                                                        0.8860
## SpeciesTipulidae spp.
                           0.33333
## Distance
                           -0.38250
                                       0.04099 -9.331 1.24e-15 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.351 on 111 degrees of freedom
## Multiple R-squared: 0.485, Adjusted R-squared: 0.4479
## F-statistic: 13.07 on 8 and 111 DF, p-value: 3.87e-13
anova(lm1)
## Analysis of Variance Table
##
## Response: Count
##
             Df Sum Sq Mean Sq F value
                                        Pr(>F)
             7 704.6 100.7 2.4958 0.02029 *
## Species
## Distance
           1 3511.3 3511.3 87.0651 1.243e-15 ***
## Residuals 111 4476.6
                         40.3
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Linear Model for each species

```
# using r base

lm2 <- lm(Count ~ Distance, data = subset(stickytrap.df, subset = Species == "Aedes aegypti"))
anova(lm2)

## Analysis of Variance Table

## Response: Count

## Df Sum Sq Mean Sq F value Pr(>F)

## Distance 1 480.00 480.00 11.451 0.004891 **

## Residuals 13 544.93 41.92

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

create a loop of species

```
species <- unique(stickytrap.df$Species)</pre>
#species
for (i in 1:length(species)) {
  print(species[i])
## [1] "Aedes aegypti"
## [1] "Culex pipiens"
## [1] "Anopheles gambiae"
## [1] "Sciaridae spp."
## [1] "Cecidomyiidae spp."
## [1] "Chironomidae spp."
## [1] "Tipulidae spp."
## [1] "Simuliidae spp."
plot with points
for (i in 1:length(species)) {
  temp.df <- subset(stickytrap.df, subset = Species == species[i])</pre>
plot (Count ~ Distance, data = temp.df)
  print(species[i])
                      0
     25
             0
                              0
     15
             0
                                                8
                              0
                      0
                              0
     10
                                                                                   0
     2
                                                                                   0
                                                0
                                                                                   0
     0
                              10
                                                                 30
             0
                                               20
                                                                                   40
                                            Distance
```

[1] "Aedes aegypti"

[1] "Culex pipiens"

[1] "Anopheles gambiae"

[1] "Sciaridae spp."

[1] "Cecidomyiidae spp."

[1] "Chironomidae spp."

[1] "Tipulidae spp."

[1] "Simuliidae spp."

Single Plot with Muplple Line

plot counts by distance but don't put points on the plot but scale xlim and ylim

Sticky Trap Counts

plot counts by distance but don't put points on the plot but scale xlim and ylim

Avoid psuedo replication

```
# calculate mean and sd for each species
stickytrap.mean <- aggregate(Count ~ Species + Distance, data = stickytrap.df, FUN = mean)</pre>
stickytrap.sd <- aggregate(Count ~ Species + Distance, data = stickytrap.df, FUN = sd)</pre>
plot(Count ~ Distance, data = stickytrap.mean,
     xlim = c(0, 40),
     ylim = c(0, 30),
     type = "n",
     main = "Sticky Trap Counts",
     xlab = "Distance",
     ylab = "Count",
     cex.main = 1.2)
for (i in 1:length(species)) {
  points(Count ~ Distance, data = subset(stickytrap.mean, subset=Species == species[i]),
         col = i,
         pch = 20)
  lines(Count ~ Distance, data = subset(stickytrap.mean, subset=Species == species[i]),
```

}

Sticky Trap Counts

Using ggplot2

Sticky Trap Counts

add legend