Network Security

Internet

- Internet = Inter-net
 - Interconnection of heterogeneous networks
 - Unreliable communication
 - Layered architecture

Network access (data link) layer

Bridge, swtich

- Filtering: if a frame generated within LAN 1 is destined to LAN 1, it remains confined within LAN 1
- Relaying: if a frame originated within LAN 1 is destined to LAN 2, it is relayed by the bridge

Forwarding Data Base

- Filtering and Relaying are performed according to a local Forwarding Data Base
- A bridge is self-learning
 - Database: initially empty
 - Whenever a frame is received, associate the interface with the source MAC address in the frame
 - Delete switch table entries if they have not been used for some time

Forwarding Data Base attack

- Exploit size limit of Forwarding Data Base
 - Send bogus frames with random source MAC addresses
 - When table is full, legitimate traffic will be broadcast to all links
 - A host on any port can now see all traffic
 - Attack turns a bridge into a hub
- Countermeasure
 - Limit # addresses per port

Virtual Local Area Network

- (Vegentality ple VLANs over single switch infrastructure
 - VLAN Trunking

VLAN Hopping Attack

Switch spoofing

- Attacker spoofs as a switch with a trunk connection and become a member of all VLANs
- Can see all traffic of all VLANs

Countermeasures

- Disable unused ports
- Disable auto-trunking
- Explicitly configure trunking

ARP table Spoofing

- Address Resolution Protocol
 - Given IP address, find MAC address
- Based on ARP table
 - Filled by ARP queries
- ARP table poisoning
 - Attacker fakes responses to ARP queries by its own MAC address
- Countermeasures
 - Manually configure ARP entries
 - Ignore replies that are not associated with queries

DHCP Server Spoofing

- When joining a network: needs to be configured
 - Dynamic Host Configuration Protocol
 - Broadcasts a DHCP Discover message
- DHCP server sends back a response
 - IP address, subnet mask, gateway, DNS servers, lease time
- Attack: spoof responses by a valid DHCP server
- Countermeasures
 - Switch ports can be configured as trusted or untrusted
 - Only specific machines are allowed to send DHCP responses
 - Use DHCP data to track client behavior

Network Layer

- Machine to machine delivery of packets
 - Routing
 - Fragmentation
- No address authentication
 - Attacker can spoof source addresses
- Attack on routers
 - Denial of Service (DOS): flood the router
 - Routing table poisoning: send false routing update to create fake routes

BGP hijacking

Transport layer

- TCP: Transmission Control Protocol
 - Stateful, connection-oriented & reliable
 - Every packet contains a sequence number (byte offset)
 - Receiver assembles packets into correct order
 - Sends acknowledgements
 - Missing packets are retransmitted
 - Congestion control
- UDP: User Datagram Protocol
 - Stateless, connectionless & unreliable
 - Anyone can send forged UDP messages

TCP

Random sequence number

TCP SYN flooding

- Send lots of SYN
- Never complete handshake
- Cannot accept connections

 Do not allocate buffers and state when a SYN segment is received

Application layer: DNS vulnerabilities

- Domain Name System
 - Maps domain names to IP addresses
 - Via DNS servers
- How to find the right DNS server?
 - Start at the root
 - 13 root servers, 10 in US
- Attacks
 - DNS spoofing
 - DNS rebinding

SSL/TLS

What is SSL / TLS?

- Secure Sockets Layer and Transport Layer Security protocols
 - Same protocol design, different crypto algorithms
- End-to-end secure communications in presence of attacker
 - Attacker completely owns the network: controls Wi-Fi, DNS, routers,
 - Can listen to, modify, inject any packet
- De facto standard for Internet security
- Deployed in every Web browser; also VoIP, payment systems, distributed systems, etc.
- Scenario:
 - You are reading your email from an Internet café connected via a rooted
 Wi-Fi access point to a dodgy ISP in a hostile authoritarian country

What is SSL / TLS?

- Goal: provide a transport layer security protocol
- After setup, applications feel like they are using TCP sockets
 - SSL: Secure Socket Layer
- Created with HTTP in mind
 - Web sessions should be secure
 - Encrypted, tamper-proof, resilient to man-in-the-middle attacks
 - Mutual authentication is usually not needed
 - Client needs to identify server, but server not expected to know clients
- Rely on password authentication after secure channel is set up

SSL history

- SSL 1.0 internal Netscape design, early 1994?
 - Lost in the mists of time
- SSL 2.0 Netscape, Nov 1994
 - Several weaknesses
- SSL 3.0 Netscape and Paul Kocher, Nov 1996
- SSL evolved to TLS
- TLS 1.0 Internet standard, Jan 1999
 - Based on SSL 3.1, but not interoperable (different cryptographic algorithms)
- TLS 1.1 2006
- TLS 1.2 2008
- TLS 1.3 2018

TLS Protocol

Goal

- Provide authentication (usually one-way), privacy, & data integrity between two applications
- Data encryption
 - Use symmetric cryptography to encrypt data
 - Key exchange: keys generated at the start of each session
- Data integrity
 - Include a MAC with transmitted data to ensure message integrity
- Authentication
 - Use public key cryptography & X.509 certificates for authentication
 - Optional: can authenticate 0, 1, or both parties
- Interoperability & evolution
 - Support different key exchange, encryption, authentication protocols
 - negotiate what to use at the start of a session

SSL early version

Breaking SSL early version

SSL basics

- SSL consists of two protocols
- Handshake protocol
 - Uses public-key cryptography to establish secret keys between client and server
- Record protocol
 - Uses the secret keys for data exchange

Handshake Protocol

- Runs between client and server
 - For example, client = Web browser, server = website
- Negotiate version of the protocol and the set of cryptographic algorithms to be used
 - Interoperability between different implementations
- Authenticate server and client (optional)
 - Use digital certificates to learn public keys and verify identity
 - Often only the server is authenticated
- Use public keys to establish a shared secret

Handshake Protocol

ClientHello

ServerHello

ServerKeyExchange

ClientKeyExchange

Version Rollback Attack

Version Check in SSL 3.0

WEP security

WiFi

- Wireless medium
 - Broadcast

WiFi authentication

```
STA \rightarrow AP : STA
AP \rightarrow STA : r_{AP}
STA \rightarrow AP : \{r_{AP}, AP\}_k
```

- k: secret key shared between all STAs and AP
- Problems?

WiFi encryption: confidentiality

- Stream cipher RC4
 - IV: 24 bits, increments by 1 per pkt
 - Key: 40 bits
- Problems?

WiFi checksum: integrity

- Add Cyclic Redundancy Check (CRC) to pkt
 - M||CRC(M)|
 - Ciphertext M||CRC(M) XOR S

 $CRC(M \oplus M') = CRC(M) \oplus CRC(M')$

Problems?