NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 1 EXAMINATION 2017-2018

MA3005 – CONTROL THEORY MA3705 – AEROSPACE CONTROL THEORY MP3001 – DYNAMICS & CONTROL

November/December 2017

Time Allowed: 2½ hours

INSTRUCTIONS

- 1. This paper contains FIVE (5) questions and comprises SEVEN (7) pages including TWO (2) pages of Appendix.
- 2. Answer ALL questions.
- 3. Marks for each question are as indicated.
- 4. This is a **RESTRICTED-OPEN BOOK** examination. One double sided A4 reference sheet is allowed.
- 1(a) What is the major effect of the left-half pole location on the step response of a system?

 (3 marks)
- (b) Without evaluating f(t), find the final value of the time function, f(t), with its Laplace function given as:

$$F(s) = \frac{5s^2 + 19s + 20}{s(s^2 + 4s + 5)}$$

(4 marks)

(c) Verify your answer of question (1b), by evaluating the time function, f(t), from its Laplace form, F(s).

(6 marks)

(d) Check the stability of a unity feedback system with a forward-loop transfer function (FLTF) of $G(s) = \frac{1}{s^3 + s^2 + 2s + 23}$

Specify how many poles in the right-hand plane (or on imaginary axis) if the system is not stable.

(6 marks)

Note: Question 1 continues on page 2.

(e) The two feedback control systems in Figure 1 have two different pairs of complex conjugate poles coming from their characteristic equations. System#1 has a pair of poles at $p_{1,2} = -A \pm jB$ and System#2 has a pair of poles at $p_{3,4} = -C \pm jD$.

The locations of the pairs of the complex conjugate poles are represented in Figure 2, where the numbers (1 to 4) in the figure represent the location of the respective pole number.

Express the following parameters:

- (i) the damping factors of the System#1 (ζ_1) and System#2 (ζ_2) in terms of system parameters (A, B, C, D, θ_1 and θ_2)
- (ii) the damped frequency of the System#1 (ω_{d1}) and System#2 (ω_{d2}) in terms of system parameters (A, B, C, D, θ_1 and θ_2) (5 marks)

Figure 1: A block diagram.

Figure 2: Poles locations.

Note: Question 1 continues on page 3.

- (f) Given a unity feedback system as shown in Figure 3, where $G(s) = \frac{1}{s(s+2)}$
 - (i) determine the type number of the system in Figure 3. (2 marks)
 - (ii) determine the steady state error, e_{ss} , for a given input, r(t), when $R(s) = \frac{1}{s^2}$.

(2 marks)

(iii) calculate the corresponding e_{ss} for K = 20 and discuss the role of K. (2 marks)

Figure 3: A unity feedback system.

2(a) Find the equivalent transfer function that correlate input, r, and output, c, in Figure 4. (6 marks)

Figure 4: A block diagram.

Note: Question 2 continues on page 4.

- (b) The dynamic structure of a turning tool can be represented as a two-degree-of-freedom system as shown in Figure 5, where m_1 is the equivalent mass of the tool post and m_2 is that of the cutting tool. The turning machine body is considered as a rigid structure.
 - (i) derive the equation of motion that correlate the cutting force input, f, and the machine body output, x_1 , in <u>Laplace domain</u>. (5 marks)

(ii) find the steady state displacement output, x_1 , when a <u>unit</u> step is applied as an input.

(4 marks)

Figure 5: A turning tool dynamic model.

A unity feedback system has the following forward-loop transfer function (FLTF):

$$G(s) = \frac{1}{s^2 + 8s + 15}$$

- (a) Derive the unit step response of the system (in time domain). (3 marks)
- (b) Derive the response of the system (in time domain) to an impulse input. (3 marks)
- (c) Derive the response of the system (in time domain) to the input, $r(t) = 3\frac{du(t)}{dt} + 2u(t)$.

 (4 marks)
- (d) Sketch the unit step response in question (3a) of the system and by using the definition of settling time, show that the 2% settling time of the response is 1.45 (sec.).

 (5 marks)

- 4. Given a feedback system shown in Figure 6, where $KG(s) = \frac{K}{s(s+1)(s+3)(s+4)}$.
- (a) Find the initial poles location (K = 0) and the final poles location $(K = \infty)$. (6 marks)
- (b) Determine the break in/out points.

(6 marks)

- (c) Determine the intersection of the root locus with the imaginary axis
 (6 marks)
- (d) Sketch the root locus of the system in Figure 6 for K > 0.

(7 marks)

Figure 6: A block diagram.

Given a system with a transfer function of $G(s) = \frac{(s+10)}{s(s^2+10s+100)}$, sketch the Bode Diagram for magnitude and phase indicating the corner frequency and the asymptotic plot. The real plot can be sketched qualitatively.

(15 marks)

APPENDIX: Tables of formulas

1. Time Domain specifications:

Transient (2nd Order Systems)

$\sigma = \zeta \omega_n$	$\beta = \cos^{-1}(\zeta)$	$\omega = \omega_n \sqrt{1 - \zeta^2}$	$\%M_p = e^{-\sigma\pi/\omega}100$	(1)
$t_{\rm S} = \frac{4}{\zeta \omega_{\rm n}}$	$t_{\rm r} = \frac{\pi - \beta}{\omega}$	$t_{\rm p} = \frac{\pi}{\omega}$	$\zeta = \frac{-ln(\%M_{P}/100)}{\sqrt{\pi^2 + ln^2(\%M_{p}/100)}}$	(2)
	Statio	Error Constants (U	Jnity feedback only)	
	$K_{\rm p} = \lim_{s \to 0} G(s) :$	$K_{V} = \lim_{s \to 0} sG(s)$	$K_{\rm a} = \lim_{s \to 0} s^2 G(s)$	(3)

2. Frequency Response

$$\gamma = \tan^{-1} \frac{2\zeta}{\sqrt{-2\zeta^2 + \sqrt{1 + 4\zeta^4}}}; \text{ or } \zeta = \frac{\tan(\gamma)}{2\left(\sqrt[4]{1 + \tan^2(\gamma)}\right)}$$

$$\tag{4}$$

$$\omega_{b} = \omega_{n} \sqrt{(1 - 2\zeta^{2}) + \sqrt{4\zeta^{4} - 4\zeta^{2} + 2}}$$
 (5)

APPENDIX: Laplace Transform Pairs

APPENDIX: Laplace Transform Pairs	
f(t)	F(s)
(Impulse) $\delta(t)$	1
(Step) 1(t)	$\frac{1}{s}$
(Ramp) t	$\frac{1}{s^2}$
(Parabolic) $\frac{t^2}{2}$	$\frac{1}{s^3}$
e ^{-at}	$\frac{1}{s+a}$
$\frac{1}{(b-a)} \left(e^{-at} - e^{-bt} \right)$	$\frac{1}{(s+a)(s+b)}$
$\frac{1}{ab}\left[1+\frac{1}{(a-b)}\left(be^{-at}-ae^{-bt}\right)\right]$	$\frac{1}{s(s+a)(s+b)}$
$\frac{c - s_1}{s_2 - s_1} \cdot e^{-s_1 t} - \frac{c - s_2}{s_2 - s_1} \cdot e^{-s_2 t}$	$\frac{s+c}{(s+s_1)(s+s_2)}$
$\frac{\omega_n}{\sqrt{1-\zeta^2}} \cdot e^{-\zeta \omega_n t} \cdot \sin \left(\omega_n \sqrt{1-\zeta^2} t \right), \zeta < 1$	$\frac{{\omega_n}^2}{s^2 + 2\zeta\omega_n s + {\omega_n}^2}$
$\frac{-1}{\sqrt{1-\zeta^2}} \cdot e^{-\zeta \omega_n t} \cdot \sin\left(\omega_n \sqrt{1-\zeta^2} t - \phi\right)$ $\tan(\phi) = \frac{\sqrt{1-\zeta^2}}{\zeta}, \ \zeta < 1$	$\frac{s}{s^2 + 2\zeta \omega_n s + {\omega_n}^2}$
$1 - \frac{1}{\sqrt{1 - \zeta^2}} \cdot e^{-\zeta \omega_n t} \cdot \sin\left(\omega_n \sqrt{1 - \zeta^2} t + \phi\right)$ $\tan(\phi) = \frac{\sqrt{1 - \zeta^2}}{\zeta}, \ \zeta < 1$	$\frac{{\omega_n}^2}{s(s^2 + 2\zeta\omega_n s + {\omega_n}^2)}$

END OF PAPER

la	Damping.
6	$F(s) = \frac{5s^2 + (4s + 2s)}{s(s^2 + 4s + s)}$
, -	2(2 +43(3)
	lim P(4) = (im . E(4) lim & 552+195+20
	$\lim_{t\to\infty} f(t) = \lim_{s\to 0} f(s) = \lim_{s\to 0} \frac{5s^2 + 19s + 20}{s(s^2 + 4s + 5)}$
	= 25
	= 4. #
	•
10.	Let $F(s) = \frac{5s^2 + 19s + 2s}{5(s^2 + 4s + 5)} = \frac{A}{s} + \frac{Rs + C}{s^2 + 4s + 5}$
(0	5s2+19s+20 = As2+4As+5A+Bs2+Cs
	Compare constants: $20 = 5A \Rightarrow A = 4$
	Compare s: 19 = 4A+C => C=3
	Compare $S^{\perp}: S = A+B \Rightarrow B=1$
	C+2 4 2+3
	$f(s) = \frac{4}{5} + \frac{s+3}{s^2+4s+5}$
	2 4 <u>5+3</u> 4 (<u>5+2)</u> 2+1 5+2 4 <u>5+2</u>
	$= \frac{4}{5} + \frac{5+3}{(5+2)^2+1}$ $= \frac{4}{5} + \frac{5+2}{(5+2)^2+1} + \frac{5+2}{(5+2)^2+1}$
	: $f(t) = 4 + e^{-2t} \cos t + e^{-2t} \sin t$
	ling ACE) = 4 *
ı	
ld.	FLIF = 52+52+25+23
(6.	$CLTF = \frac{1+5^{3}+5^{4}+25+22}{1+5^{3}+5^{4}+25+22} = \frac{5^{3}+5^{2}+25+24}{5^{3}+5^{4}+25+24}$
	CZ (F - 1 +5°+5° +25+25 - 5°+5°+25 +24
-	z³ (2
	S ² 1 24
	$S' = \frac{2-2f}{2} = -22$
	S° 24
-	
ľ	2 sign changes :- 2 right-hand poles
ŀ	2 sign changes - 2 right-hand poles
lei.	COS Q. COS Q2
`~'`	$\cos \theta_1$, $\cos \theta_2$
ies.	G'D
Γ	
	○ · · · · · · · · · · · · · · · · · · ·
	DISCLAIMER: The solutions are done by students who scored A or above
	in this subject. MAE Club and Campus supplies are not liable or responsible
	for any errors in the contents of these solutions. Students are advised to take the solutions as a guide rather than absolute answers to exam paper.
	::::::::::::::::::::::::::::::::::::::
ľ	Should there be any mistake identified, please proceed to the Facebook
	link encoded in the QR code to feedback or submit correct answers. The
-	ink is: http://bit.ly/2lW2C32
L	- ···· ··· · · · · · · · · · · · · · ·

261. X, <XL Cix, $-k_{1}x_{1}-c_{1}x_{1}+k_{2}(x_{2}-x_{1})+c_{2}(x_{2}-x_{1})=m_{1}x_{1}$ a, x, + (C,+(2) x, + (K,+K2) x, = C, x2+ k2x2-0 $-k_{2}(x_{2}-x_{1})-c_{2}(x_{2}-x_{1})+f=m_{2}x_{2}$ M_X2 + C2×2 + K2×2 = C2×, + K2×, +f -Liplace Transform eq (1), assuming zero initial conditions, $X_1 (M_1S^2 + (C_1+C_2)_S + K_1+K_2) = X_2 (C_2S + K_2)$ $V_{\alpha} = X_{\alpha} \left(M_{\alpha} S^{2} + \left(C_{\alpha} + C_{\alpha} \right) S + K_{\alpha} + K_{\alpha} \right)$ Leglace Transform of D, assuming zero initial conditions, $X_2 \left(M_2 S^2 + C_2 S + E_2 \right) = X_1 \left(C_2 S + E_2 \right) + F$ Sub X2 into this quation, X. (M, s2+ (Citcl)S+ K, tk2) (M, s2+ C2S+k2) = X. (C2S+k2) +F C2S+K2 - (M, 52+ (C,+(2)s + K,+(e_) (M252+C25+K2) - (C25+K2)2 $= \lim_{t \to \infty} x_{i}(t) = \lim_{s \to s} s \times_{i}(s)$ $= \lim_{s \to s} s(\frac{t}{s}) \frac{c_{2}s + k_{2}}{(m_{1}s^{2} + CG + G_{2}) + k_{1}k_{2})(m_{2}s^{2} + GS + k_{2}) - (C_{2}s + k_{2})^{2}}$ 2811 When P=5 (Kitk2)(E2) - K2 **DISCLAIMER:** The solutions are done by students who scored A or above in this subject. MAE Club and Campus supplies are not liable or responsible for any errors in the contents of these solutions. Students are advised to take the solutions as a guide rather than absolute answers to exam paper. Should there be any mistake identified, please proceed to the Facebook link encoded in the QR code to feedback or submit correct answers. The

link is: http://bit.ly/21W2C32

6(2)2 5. Comer Frequencies: W, = 10 2069 Ja01 WZW., 1900)las 2 20kg Jiou - 2069 W = -20 dB/dec. w>w. 20log w (RGW) las = - EsdB/du 1645468 Dodslaw 40 LB/060 Phase (6Gm) $\omega < \omega$ -25°. /G(j~) The second F~ w>w 7@m, -90 -1802 DISCLAIMER: The solutions are done by students who scored A or above in this subject. MAE Club and Campus supplies are not liable or responsible for any errors in the contents of these solutions. Students are advised to take the solutions as a guide rather than absolute answers to exam paper. Should there be any mistake identified, please proceed to the Facebook link encoded in the QR code to feedback or submit correct answers. The link is: http://bit.ly/2lW2C32

NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 2 EXAMINATION 2017-2018

MA3005 – CONTROL THEORY MA3705 – AEROSPACE CONTROL THEORY

April/May 2018

Time Allowed: 2½ hours

INSTRUCTIONS

- This paper contains FIVE (5) questions and comprises SIX (6) pages including TWO
 pages of Appendix.
- 2. Answer ALL questions.
- 3. Marks for each question are as indicated.
- 4. This is a **RESTRICTED-OPEN BOOK** examination. One double sided A4 reference sheet is allowed.
- 1(a) The relationship between the input, y(t), and the output, x(t), of a first order system is represented by the following differential equation:

$$T\dot{x}(t) + x(t) = y(t)$$

Show that the response (in time domain) of the system to $\beta u_s(t)$, when the initial condition of the system $x(0) = \alpha$ is

$$\beta + (\alpha - \beta)e^{-t/T}$$

[Note: $u_s(t)$ is a unit step function and $\beta u_s(t)$ is a step function with magnitude of β]

(6 marks)

(b) Find the final value of the response in Question 1(a), if it exists.

(2 marks)

(c) Find the value of the response in Question 1(a) when t = T.

(2 marks)

(d) Estimate the time constant of a first order system from its response to a non-unity step input with non-zero initial condition as shown in Figure 1 on page 2.

(Note: In Figure 1, please note that the temperature in the vertical axis does not start from zero)

(5 marks)

Note: Question 1 continues on page 2. Figure 1 appears on page 2.

Figure 1: A non-unity step response of a 1st order system.

(e) This is a multiple choice question. No justification is required.

Which of these transfer functions is that of a band-pass filter?

- (i) $s^2 + 2s + 100$
- (ii) $\frac{s^2+2s+100}{2s}$
- (iii) $\frac{1}{s^2+2s+100}$

 $\mathcal{I}_{\mathcal{Z}_{i}}$

(iv) $\frac{2s}{s^2+2s+100}$

(v) None of the above

(5 marks)

5.

7.

-4

٠,٠٠

(f) This is a multiple choice question. No justification is required.

A unity feedback system is shown in Figure 2. Determine the stability of the system, when K=3.

Figure 2: A unity feedback system.

- (i) Stable, overdamped
- (ii) Stable, critically damped
- (iii) Stable, underdamped
- (iv) Marginally stable
- (v) Unstable

(5 marks)

2. Consider a non-unity feedback system shown in Figure 3.

Figure 3: A non-unity feedback system.

(a) Derive the closed-loop transfer function of the system.

(3 marks)

(b) Using Routh-Hurwitz method, define the stability of the system.

(7 marks)

(c) Find the final value of the unit step response of the system, if it exists.

(5 marks)

- 3. An auxiliary system consisting of a block of mass m_2 is attached to a primary system through a spring k_2 . The primary system has a mass of m_1 that is supported to the ground through two parallel springs with identical stiffness of k_1 (see Figure 4).
- (a) Define the two differential equations that correlate the input force f(t) to each outputs x(t) and y(t), where x(t) is the displacement of m_1 and y(t) is the displacement of m_2 as depicted in Figure 4.

(8 marks)

(b) Rewrite the two differential equations obtained from question 3(a) in Laplace domain, assuming all initial conditions equal to zero.

(6 marks)

(c) Derive the transfer function that correlates the input F(s) to the output X(s), where F(s) is the Laplace of f(t) and X(s) is the Laplace of x(t).

(6 marks)

Figure 4: A two-degree-of-freedom system.

4. Consider a unity feedback system as shown in Figure 5.

Figure 5: A unity feedback system.

(a) Determine the poles and zeros of the system.

(2 marks)

(b) Determine the number of the asymptotes of the root locus, their configuration and their intersection.

(2 marks)

(c) Find the angles of departure from the start points.

(5 marks)

(d) Find the location(s) of the crossing point(s) at the imaginary axis and the corresponding gain(s) K. For which values of K is the system stable?

(5 marks)

(e) Sketch the root locus of the system.

(5 marks)

- (f) What is the steady-state error of the unit step response of the system when K=2? (2 marks)
- (g) Design a lag compensator to decrease the steady-state error of the system to 10% of the error found in Question 4(f), when K=2.

(4 marks)

- 5. Consider a system with the transfer function $G(s) = \frac{a}{s^2 + s + b}$.
- (a) For a = 10 and b = 100, sketch the Bode gain (or magnitude) plot of the system. Detail the steps.

(7 marks)

(b) For a = 10 and b = 100, sketch the Bode phase shift (or angle) plot of the system. Detail the steps.

(3 marks)

- (c) Determine a and b so that the system is a low-pass filter with the following properties:
 - The gain at low frequencies is 0 dB;
 - The corner frequency is at 0.1 Hz.

(5 marks)

APPENDIX: Tables of formulas

1. Time Domain specifications:

Transient (2nd Order Systems)

$\sigma = \zeta \omega_n$	$\beta = \cos^{-1}(\zeta)$	$\omega = \omega_n \sqrt{1 - \zeta^2}$	$\%M_p = e^{-\sigma \pi/\omega} 100$	(1)
$t_{\rm S} = \frac{4}{\zeta \omega_{\rm n}}$	$t_{\rm r} = \frac{\pi - \beta}{\omega}$	$t_{\rm p} = \frac{\pi}{\omega}$	$\zeta = \frac{-\ln(\%M_{\rm p}/100)}{\sqrt{\pi^2 + \ln^2(\%M_{\rm p}/100)}}$	(2)

Static Error Constants (Unity feedback only)

$K_{p} = \lim_{s \to 0} G(s) ;$	$K_{v} = \lim_{s \to 0} sG(s);$	$K_{a} = \lim_{s \to 0} s^{2}G(s)$	(3)

2. Frequency Response

$$\gamma = \tan^{-1} \frac{2\zeta}{\sqrt{-2\zeta^2 + \sqrt{1 + 4\zeta^4}}}; \text{ or } \zeta = \frac{\tan(\gamma)}{2(\sqrt[4]{1 + \tan^2(\gamma)})}$$
 (4)

$$\omega_{b} = \omega_{n} \sqrt{(1 - 2\zeta^{2}) + \sqrt{4\zeta^{4} - 4\zeta^{2} + 2}}$$
 (5)

APPENDIX: Laplace Transform Pairs

f(t)	F(s)
(Impulse) $\delta(t)$	1
(Step) $1(t) = u_s(t)$	$\frac{1}{s}$
(Ramp) t	$\frac{1}{s^2}$
(Parabolic) $\frac{t^2}{2}$	$\frac{1}{s^3}$
e ^{-at}	$\frac{1}{s+a}$
$\frac{1}{(b-a)} \left(e^{-at} - e^{-bt} \right)$	$\frac{1}{(s+a)(s+b)}$
$\frac{1}{ab} \left[1 + \frac{1}{(a-b)} \left(be^{-at} - ae^{-bt} \right) \right]$	$\frac{1}{s(s+a)(s+b)}$
$\frac{c - s_1}{s_2 - s_1} \cdot e^{-s_1 t} - \frac{c - s_2}{s_2 - s_1} \cdot e^{-s_2 t}$	$\frac{s+c}{(s+s_1)(s+s_2)}$
$\frac{\omega_n}{\sqrt{1-\zeta^2}} \cdot e^{-\zeta \omega_n t} \cdot \sin\left(\omega_n \sqrt{1-\zeta^2} t\right), \zeta < 1$	$\frac{{\omega_n}^2}{s^2 + 2\zeta\omega_n s + {\omega_n}^2}$
$\frac{-1}{\sqrt{1-\zeta^2}} \cdot e^{-\zeta \omega_n t} \cdot \sin\left(\omega_n \sqrt{1-\zeta^2} t - \phi\right)$ $\tan(\phi) = \frac{\sqrt{1-\zeta^2}}{\zeta}, \ \zeta < 1$	$\frac{s}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
$1 - \frac{1}{\sqrt{1 - \zeta^2}} \cdot e^{-\zeta \omega_n t} \cdot \sin\left(\omega_n \sqrt{1 - \zeta^2} t + \phi\right)$ $\tan(\phi) = \frac{\sqrt{1 - \zeta^2}}{\zeta}, \ \zeta < 1$	$\frac{{\omega_n}^2}{s(s^2 + 2\zeta\omega_n s + {\omega_n}^2)}$

END OF PAPER

MA3005 2017/18 San 2 (April / May 2018)	
(1) a) Laplace transform the equation	
T (sx - x(0)) + x = L (B W(+))	
$T(sX - x(0)) + X = L(\beta W(t))$ $T(sX - \alpha) + X = \frac{1}{5}$	
$\times (T_{S}+1) = \frac{G}{S} + \alpha T$	
$X = \frac{\beta}{Ts(s+\frac{1}{\tau})} + \frac{\lambda T}{T(J+\frac{1}{\tau})}$	
(++ひ) (++2)2T	
= β 	
「といす」 を 2 4 年 一年	
$x(t) = L^{-1}(X) = \beta(1 - e^{-\frac{1}{2}}) + \alpha e^{-\frac{1}{2}}$	
$= \beta + (\alpha - \beta) e^{\frac{\pi}{4}}$	
$\frac{1}{6} + \frac{1}{6} \times \frac{1}$	
c) $\times (T) = \beta + (\alpha - \beta) e^{-\frac{1}{2}}$	
d) Using solution from (a) -> x (+) = B + (d-B) e ?	
c) $x(T) = \beta + (d - \beta) e^{-1}$ d) Using solution from (a) $\rightarrow x(t) = \beta + (d - \beta) e^{-1}$ $x(0) = 25 = \beta + (d - \beta) e^{\circ} = d$	
$\chi(\infty) = 20 = \beta$ _E	
$\chi(\infty) = 20 = \beta$ _= _= _= _= _= $\chi(+) = 20 + (25 - 20)e_{\perp} = 20 + 5e^{-\frac{1}{2}}$ $\chi(4) = 21 = 20 + 5e^{-\frac{1}{2}}$	
$x(4) = 21 = 20 + 5e^{-\frac{1}{7}}$ $-\frac{1}{5} = e^{-\frac{1}{7}} \rightarrow \ln(0.2) = -\frac{1}{7} \rightarrow 7 = 2.485 \text{ s}$	
$\frac{1}{5} = e^{-\frac{1}{7}} \rightarrow \ln(0.2) = -\frac{1}{7} \rightarrow 7 = 2.485 \text{ s}$	
e) (iv) Band pass filter will filter out low and high frequency To justify: F(0) = \frac{1}{0+0+100} = 0	
To justify: F(0) = 0+0+100 =0	
$\frac{\lim_{S \to \infty} F(s) = \lim_{S \to \infty} \frac{2s}{S^2 + 2s + 10} = \lim_{S \to \infty} \frac{s}{s}$	
5-00 5-421+10 5-00 1+3+10 = 0	<u></u>
f) CLTF = $\frac{3}{S^2 + 2S + 1}$ 3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
S ² +2s+1	
s² /1 4 First column all positive → stable	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	<u></u>
K (J ₀ ²	
Compare CLTF with 2nd order system response = 52+2EWs + Wn2	
$ \begin{array}{c c} \omega_n = \sqrt{4} = 2 \\ 2 \mathcal{L} \omega_n = 2 \end{array} $	
$(=)2h(2)=2 \rightarrow L=2 \rightarrow \text{und} \text{rdamped} \rightarrow \text{ANS}: (iii)$	
DISCLAIMER: The solutions are done by students who score	d A or
above in this subject. MAE Club and Campus supplies are not lie	
responsible for any errors in the contents of these solutions. Stude advised to take the solutions as a guide rather than absolute answer.	
exam paper.	
1 ****** ****	
	cebook
Should there be any mistake identified, please proceed to the Facility in the QR code to feedback or submit correct answers.	

a) Continued $-4 \pm \sqrt{16-20}$ Roots of $S^2 + 41 + 5 = 0 \implies S = \frac{2}{2} = -2 \pm \frac{1}{3}$	
Roots of $S^2 + 41 + 5 = 0 \rightarrow S = \frac{2}{2} = -2 \pm j$ Roots of $S^2 + 25 + 2 = 0 \rightarrow S = \frac{-2 \pm \sqrt{4 - 8}}{2} = -1 \pm j$	
Frots of 5-72172 =0 -3 12 -2	
Poles: P1= -2+j; P2 = -2-j; P3 = -(+j; P4 = -1-j	
b) No of asymptotes = $4-0=4$	
-24) 2 3 -(1) -(-)	
4-0 2 , 2	
c) $\angle (p, \neg p_2) = \angle (-2-j + 2-j) = \angle (-2j) = -90^2$	
$L(p_2 \rightarrow p_i) = L(2j) = 50^\circ$	
$L(p_1 - p_3) = L(-1 + j + 2 - j) = L(1) = 0^{\circ}$	
$L(p_3 \rightarrow p_1) = L(-1) = 180^\circ$	
$L(p_1 \rightarrow p_4) = L(-1-j+2-j) = L(1-2j) = -63.43^{\circ}$	
L(p4 -> p,) = L(-(+2j) = 116.57°	
$\angle (\rho_2 \rightarrow \rho_3) = \angle (-1+j+2+j) - \angle (1+2j) = 63.43^{\circ}$	
$L(p_3 \rightarrow p_2) = L(-1-2j) = -116.57$	
$L(p_2 \rightarrow p_4) = L(-1-j+2+j) = L(1) = 0^{\circ}$	
$\angle (p_4 \rightarrow p_2) = \angle (-1) = 180^{\circ}$	
L(p3-1p4) = L(-1-j+1-j) = L(-25) = -30°	
$L(p_4 \rightarrow p_3) = L(2i) = 50^\circ$	
>> dua (p1) = 180° - 90° - 170° - 116.57° = - 206.57° = 153.43°	
» dus (pz) = 180° + 90° + 116.57° - 180° = 206.57°	
$> 0/1.$ (02) = $180^{\circ} - 0^{\circ} - 63.43^{\circ} - 90^{\circ} = 26.57^{\circ}$	
-> dup (P4) = 180° + 63.43° - 0° + 90° = 333.43° = -26.57°	
d) $K + (-\omega^2 + 4j\omega + 5)(-\omega^2 + 2j\omega + 2) = 0$	
(K + W4 -15W2+10) +) (-6W3+18W) = 0	
→ -6W3 + 18W = 0 → W=0, ±53	
H U=0 -> K+0-0+10=0-> K=-10 <0	_
AL W=417 - K + 9 - 45 +10 =0 - K = 26	
System is stable at $0 < K < 26$	
System is stable at 0 < K < 26	

DISCLAIMER: The solutions are done by students who scored A or above in this subject. MAE Club and Campus supplies are not liable or responsible for any errors in the contents of these solutions. Students are advised to take the solutions as a guide rather than absolute answers to exam paper.

Should there be any mistake identified, please proceed to the Facebook link encoded in the QR code to feedback or submit correct answers. The link is: http://bit.ly/2lW2C32

link is: http://bit.ly/21W2C32

6 Continued	<u> </u>	.				
	· 14 =	20 10	10 - 201210 -	20 - 400		
Dha.	Gan = $y = 20 \log \left(\frac{10}{1}\right) - 20(2) = 20 - 40 = 20$ Phase: $A = \frac{10}{1} > 0 \rightarrow y = -(2) = -\pi$					
⇒ (°a	.)	. المام	3 9 - 6/2 - 11			
» Sam	pling in	(0	10	$\frac{\omega^2}{\omega^2} = \frac{(-\tan^{-1}(\frac{\omega}{100-\omega^2}))}{2G(J\omega)}$		
6 9 1	~) = - (12-tiu+	100 √(100-ω²)²+	Chi Chia Chia Chia		
		<u> </u>		ZG ya)		
		1.5 11.5	- 			
~		2	20 log 16 19 WI	ZG (jw)		
0-25	1.	H8	-19.72	-0.018		
0-5	3.	.16	-19.03	- 0.035		
0.75	5	- 62	-16.73	- 0.081		
(0	0	- 1.27		
1-25	13	г- 8	-26.75	- 3.059		
1-2	3	1-6	-33.08	-3.106		
1-75		h-2	-49.71	-3.123		
3) Samp	ling near	נסראנר	frequency			
, ×		<u>ω</u>	20 You 1 G 1 jul	2 6 Yw)		
0.8		.079	-14.05	-0.141		
0.5	<u>`</u>	-943	-11.54	-0.212		
0.5		.912	-7.01	-0.403		
[-0]		220	-9.01	- 2.733		
	1-1 (2.589 -15.54 -2.330 1.15 14.125 -20.04 -3.001					
	-20 1 oc-16 1	1-125	-20.04	-3-001		
<u>a</u> -	a) 0 20 103 +6 y, w) + (AB)					
- 10 -		1	'			
-20		ļ <u></u>	*			
-30		 		<u> </u>		
			- 1			
-90-	· · · · · · · · · · · · · · · · · · ·	· 	 	.		
		1		1		
-57	 			i w(raily)		
→ · · i	رق : ۲۰:۲: تا:۰:	<u> </u>	(0° 101	6, 103 M 11)		
	DISCLAIMER: The solutions are done by students who scored A or above					
	in this subject. MAE Club and Campus supplies are not liable or responsible for any errors in the contents of these solutions. Students are advised to take					
M	the solutions as a guide rather than absolute answers to exam paper.					
		:::: ::::: Sho	ould there he any mistake it	lentified, please proceed to the Facebook		
	link encoded in the QR code to feedback or submit correct answers. The					
	(3)					
				raco		

link is: http://bit.ly/2lW2C32

MA3005/MA3705

NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 2 EXAMINATION 2018-2019

MA3705 - CONTROL THEORY MA3705 - AEROSPACE CONTROL THEORY

April/May 2019

Time Allowed: 21/2 hours

INSTRUCTIONS

- This paper contains FIVE (5) questions and comprises NINE (9) pages including TWO (2) pages of Appendix.
- Answer ALL questions.

2

- Marks for each question are as indicated. 'n
- One double sided A4 This is a RESTRICTED-OPEN BOOK examination, reference sheet is allowed.
- For a function f(t), where the Laplace transformation is I(a)

$$F(s) = \frac{3s + 8}{s^2 + 2s + 10}$$

Without evaluating f(t), find the initial value of f(t), the final value of f(t) and the initial value of $\frac{d}{dt}f(t)$ (4 marks)

Which system among those whose pole-zero plots (from A to F) shown in Figure 1(a), might result in a step response as shown in Figure 1(b)? Explain your answer (your rationale is compulsory). 9

(6 marks)

Note: Question 1 continues on page 2. Figure 1 appears on page 2.

ATTENTION: The Singapore Coopsight Act espiles to the use of this document. Nameng Technological University Linuxy

MA3005/MA3705

(x indicates pole and o indicates zero)

(a) Pole-zero plots.

(b) Step response of a dynamic system.

Figure 1

Determine (graphically) the system type and system order of a unity feedback system whose open-loop transfer function, G(s), has a Bode plot (magnitude) as shown in Figure 2. No justification is required. <u>છ</u>

(5 marks)

Note: Question 1 continues on page 3. Figure 2 appears on page 3.

Figure 2: Bode plot (magnitude).

(d) Considering the root-locus plot shown in Figure 3, determine (graphically) the departure angle(s) (in degrees) from the pole at -3+2j and the number of asymptotes. No justification is required.

(5 marks)

Figure 3: Root-locus plot,

ATTENTION: The Singapore Copyright Ad applies to the use of this abcument, Nenyang Technological University Library

MA3005/MA3705

2(a) Figure 4 shows a complex block diagram of a system. Determine the equivalent single block diagram correlating the response C and the input R. Show the working steps in detail. (6 marks)

Figure 4: A block diagram.

(b) In the case where $G_3(s) = H_1(s) = 0$, the block diagram in Figure 4 can be redrawn as shown in Figure 5.

If it is known that $G_1(s) = \frac{1}{s+2}$, $G_2(s) = \frac{1}{s^4+2s^3+5s^2+4s+39}$ and $H_2(s) = 1$, check the stability of the system using Routh-Hurwitz method (if the system is unstable, specify how many poles in RHP).

(6 marks)

Figure 5: Simplified block diagram.

(c) Determine the steady-state <u>unit</u>-step response of the system in 2(b), if it exists.

shaft with stiffness of k_2 . Disk J_1 is supported to the ground by a bearing with damping value of c_1 and disk J_2 by bearing with damping of c_2 . The system is driven from the first disk through a flexible shaft with the stiffness k_1 by an angular Figure 6 shows a rotational system comprising two disks with moment of inertia J_1 and J2, respectively. The two disks are interconnected to each other through a flexible displacement input $\varphi(x)$. 3(a)

Define the transfer function, $\frac{\Theta_2(s)}{\Phi(s)}$, that correlates the displacement output on the second disk, θ_{s} , to the displacement input, $\varphi(x)$. Show the working steps.

(8 marks)

Figure 6: Rotational system.

- moment of inertia of the disk, k is the stiffness of the shaft and c is the damping value Figure 7 illustrates a single degree-of-freedom rotational system, where J is the from the bearing. The system is driven by an angular displacement input $\varphi(x)$ through the shaft, while the displacement output from the disk is $\theta(x)$. Ð
- Derive the transfer function that correlates the input and output of the system. Θ
- If a <u>unit</u>-step (radian) displacement input $\varphi(x)$ is given to the system, the displacement response is shown in Figure 8. Ξ

From the response, estimate the stiffness values, k_0 and k_1 and the damping value of the systems, c, if the moment of inertia $J = 5 \text{ kg·m}^2$.

(7 marks)

Figure 7: Single degree-of-freedom rotational system.

Question 3 continues on page 6. Figure 8 appears on page 6. Note:

S

ATTENTION: The Singepore Cosynight Act explies to the use of this clocumant. Henyarg Technological University Library

MA3005/MA3705

Figure 8: Unit-step response of the system.

- Represent again the transfer function by correlating the displacement input to (You can use was the notation of the velocity output). the velocity output of the system. \blacksquare
- If a unit-ramp displacement input is given to the system, $\varphi(t) = t$, find the steady-state velocity output, a(t), of the system. 3

(3 marks)

9

MA3005/MA3705

MA3005/MA3705

Consider the unity-feedback system as shown in Figure 9. 4.

Figure 9: Unity-feedback system.

(a) Determine the poles and zeros of the system.

(2 marks) Determine the number of asymptotes, their configuration and their intersection. <u>@</u>

(2 marks)

Determine the location(s) of the break-in/break-out point(s), if any.

(4 marks)

Determine the location(s) of the crossing(s) of the imaginary axis, if any, and the corresponding gain(s), K. For which values of K is the system stable? (4 marks) ਉ

Sketch the root locus of the system.

<u>ම</u>

(5 marks)

Determine graphically the root s such that the system has a damping value of 0.707. (Hint: $\cos(\pi/4) \approx 0.707$) \mathfrak{S}

(3 marks)

Determine numerically the root, s, and the corresponding gain, K, so that the system has a damping value of 0.707. Comment on the validity of the second-order approximation at that gain K. <u></u>

(5 marks)

Consider a system with transfer function $G(s) = \frac{1}{s^2 + 5s + 100}$ ς:

Sketch the Bode plot (magnitude) of G(s). Detail the steps. æ Sketch the Bode plot (phase shift) of G(s). Detail the steps. Ð

(4 marks)

(6 marks)

Determine numerically, with 3 significant digits, the frequency, ω_{peak} , for which the amplitude $|G(j\omega)|$ is maximum. (Hint: $|G(j\omega)|$ is maximum if $1/|G(j\omega)|$ is minimum)

Determine the amplitude at ω_{peak} and the amplitude at the corner frequency. Give comments on the results.

(5 marks)

APPENDIX: Tables of formulas

1. Time Domain specifications:

Transient (2nd Order Systems)

(1)	(2)		(8)
$^{9/a}M_{p}=e^{-\sigma\eta^{a}}100$	$\frac{-ln(\%M_{\rm P}/100)}{\sqrt{\pi^2 + ln^2(\%M_{\rm P}/100)}}$	feedback only)	$K_{\mathbf{a}} = \lim_{s \to 0} {}^{2}G(s)$
$\omega = \omega_n \sqrt{1 - \zeta^2}$	$t_{\rm p} = \frac{\pi}{\omega}$ $\zeta =$	Static Error Constants (Unity feedback only)	$K_{\mathbf{v}} = \lim_{s \to 0} sG(s);$
$\beta = \cos^{-1}(\zeta)$	$t_{\mathbf{r}} = \frac{\pi - \beta}{\omega}$	Static Er	$K_{\mathrm{p}} = \lim_{s \to 0} G(s)$;
$\sigma = \zeta \omega_n$	$\frac{2\%}{t_{\rm s} = \frac{4}{\zeta \omega_{\rm n}}}$		

2. Frequency Response

$$\gamma = \tan^{-1} \frac{2\zeta}{\sqrt{-2\xi^2 + \sqrt{1 + 4\xi^4}}}; \text{ or } \zeta = \frac{\tan(\gamma)}{2\left(\sqrt{1 + \tan^2(\gamma)}\right)}$$
 (4)

$$\omega_{b} = \omega_{n} \sqrt{[1 - 2\zeta^{2}] + \sqrt{4\zeta^{4} - 4\zeta^{2} + 2}}$$
 (5)

22+ 25+10

MA3005/MA3705 - CONTROL THEORY.

01+25+25 Ø65

by initial value theorem,	for L[f(4)] = F(3),
lim f(+) = lim 5. F(s)	[\frac{1}{2} + (\theta) = \(\frac{1}{2} + (\theta) \)
t30 5300	= SF(1) - F(0)
= 1im s(35+8)	= 352+85 -3
330 32+25+10	52+25+10
= lim 3s ² +8s	= 352+85-352-65-

**	3+ 8/5	2	25-30
2-300	1 + 3/5 + 19/52	•	52+ 25+10

= 3 #	: by initial value theorem,
D(S) = 52+25+10	lim [de f(+)] = lim s. L [de f(+)]
- (CTI)3T 8	t+0 0+2

D(2) = 0	= lim	2(52-30)
0= 9 + 4(1+2)	a é è	52+25+10

$$S = -1 \pm 3j$$

$$= \lim_{S \to \infty} 2S^2 - 3OS$$
real part of all poles are

negative and non-zero = $\lim_{S\to\infty} 2-\frac{3}{5}$: final value exitly $3\to\infty$ $1+\frac{2}{5}+\frac{1}{5}$

: by Rinal value theorem = 2 & lim f(t) = 1 im 5. F(s) theorem = 2 & lim 5. F(s)

= 1im 3s2+8s

330 32+ 25+10

- 0 #

DISCLAIMER: The solutions are done by students who scored A or above in this subject. MAE Club and Campus supplies are not liable or responsible for any errors in the contents of these solutions. Students are advised to take the solutions as a guide rather than absolute answers to exam paper.

Should there be any mistake identified, please proceed to the Facebook link encoded in the QR code to feedback or submit correct answers. The link is: http://bit.ly/2lW2C32

г				·
1. (5)	from Fig. 115),		1. (d) x de	
	the response is dis	tagent	= 7 -	Exposes >p + Exzeros +p
	and does not conve	rge to		0° - 90° + 135°
ĺ	a Heady-Hate 11	aine.	+ ((180°- 71.6°)
	: syttem is unstab		= 33	3.40
1	there are poled		= -3	16.6° 4 (1dp).
	real parts are p			
	non-zero ie. p			
	the Right Hand			(-3,2)
	. eliminale & C. I			1/2 1350
		•		(-2,1)
	from response, th	ere is		
	clear oscillatory be			
	: there must als			€180°-0.
	complex conjugate			0((-2,-1)
	eliminate & A		· ·	
		·		₹ 190°
	· C. Have it B.		`	(-3,-2)
	: syttem is B #		-	(-3,)
L 445	1004 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4		-lav	(Q = (3)
1. (6)	slope = - 20k/dec	- A a		: 0 = tar-1(3) = 71.6° (18p)
	- 20K = 100-146			12,
		_		
	= -40			,
	oyeten type, K	- 4		
•	1 - 10 1			
	right asymptote:			
	slope = - JOR / de	ecode		
	- JOVI = 0	4 0		
	: system order,	WEO#		
				:
		 .		
	O MAE	DISCLAIMER: The solutions are done by students who scored A on in this subject. MAE Club and Campus supplies are not liable or respective for any errors in the contents of these solutions. Students are advised the solutions as a guide rather than absolute answers to exam paper.		mpus supplies are not liable or responsible hese solutions. Students are advised to take
	•	Should there be link encoded in link is: http://bi	the QR code to	entified, please proceed to the Facebook feedback or submit correct answers. The

1.(4)	:. C = G1G3 + G2H2 G1G2 + G	2H1H2 + H1 = G1G2 + G2H1H2 + H1 G2 1 + G1G3 + G2H2
		-
	R(5) GIG2+G2H1H2+H1	
	1 . 0.03 . 051.15	*
- "	5 6 0:T5 - 6 1):	· · · · · · · · · · · · · · · · · · ·
3.(0)	FLTF = G2, OLTF = G2H2	: characteritic equation : 55+454+963+1452+486+80=0
	CLTF = (52	3 + 10 + 10 + 10 + 100 +
		S# H 14 80
	2 C = G1G2 R 1+ G2H2	S ³ 1/2 28 0
		S ² -79/11 80 0
	$= \frac{(3+2)(24+323+52+42+39)}{1}$	S1 68% 2 0
		0 0
	3++25 ² +55 ² +H5+39	$\frac{P' = -\frac{1}{4} \left[(1)(14) - (4)(4) \right] = \frac{1}{4}}{2 \cdot 1 \cdot 80}$
	3 (13 (13 (13 (13 (13 (13 (13 (13 (13 (1	PT = - # [(1)(80)-(4)(48)]= 78
	$= \frac{(s+2)(s^4+2s^3+5s^2+4s+39)}{(s+2)(s^4+2s^3+5s^2+4s+39)}$	$C^{1} = -\frac{11}{2} \left[(4)(78) - (\frac{7}{17}\chi_{80}) \right] = -\frac{11}{30}$
	(5 ⁴ + 25 ³ + 55 ² + 45 + 40)	C2 = -= [(4)(0)-(½)(80)] = 80
	$\frac{(5^{4} + 25^{3} + 55^{2} + 45 + 40)}{(5^{4} + 25^{3} + 55^{2} + 45 + 39)}$	$q' = \frac{4}{11} \left[(\frac{7}{7})(80) - (-\frac{36}{36})(78) \right] = \frac{2}{680}$
	(3 + 23 + 43 + 31)	61 = - = = [(-1/2)(0) - (1/2) (80)]=80
	= (s+2)(54+253+552+45+40)	
	(372)(3723734	there are 2 charges in sign
	55 + 454 + 953 + 1452 + 485 + 80	of wefficients found in first when st Routh-Humitz
	3 / 10 / 10 / 110 / 133 / 13	
		· syttem is unitable #
ř.		and no. of poles in RHP
		= 2 #
		4
1 (0)	ه کام احداد کام	to ade - Hale Value
J- (C)	since syttem is unstable, a s response to a unit - thep inpu	t does not exist.
	181 BULL 19 TOWN 118 LIBERT	3 3361 31 31 11
		-
	<u> </u>	
		e solutions are done by students who scored A or above Club and Campus supplies are not liable or responsible
	for any errors in the	contents of these solutions. Students are advised to take
	the solutions as a gu	side rather than absolute answers to exam paper.
	Should there be an	y mistake identified, please proceed to the Facebook
	link encoded in the	QR code to feedback or submit correct answers. The
	link is: http://bit.ly/	2IW2C32

a) (5) (52	B K2 B B	7,	A (F)	
	messer-10	1 (F)	3 888800-6	· · · · · · · · · · · · · · · · · · ·
	<u> </u>			Fi)
		7		<u> </u>
T2 = C202		ciói		
assume 4>0,>02				
: F1 = K1 (4-01)		cub.	Hitule (2) in	o u1.
F2 = K2 (01-02)	•	Kı Œ	+ K2⊖2	
		<u> </u>	[Jis2+Cis+ Ki+1	c2)[JE3+C25+K2]
for Ji disk,				
むT=JK		∵ ₭ነው		
F1-F2-T1 = J1 01			J152+C15+K1+K2]	1224 CS1+K5]-K3
K1 (4-01) - K2 (01-02)	~ CI O = JI OI		K2	
K14- K101-K201 + K2		.: ⊖₂ ,	. *	ر الاي
K14 + K202 = J101			[J152+C15+K1+10	2][322+425+12]
assuming zero with				
KID + K202 = J1826		L) <i>(</i> 01		<u> </u>
. KI \$ + K102 = OI[
	-			· -
for Jz disk,		3.6)(i)	7	6_ K,
&7 = 7k	1	· . /e	0×10/	of 1888-40
F2-T2 = J2X2		-10000 (E)	(4) 4 (F)	1 46
K2(01-02)-C202 = J2		· · · · · ·	(m)	
K201-K202-C202=J	4	for J dis	k, &T = JX	<u> </u>
$k_20_1 = J_2\ddot{0}_2 + C_2\dot{0}_2$		F1-F0-		
essuming zero init		K1 (4-0)	- K00-c0=	JÖ
K201 = 721202 + C216	•		10-160-cò	
K201 = 02 [J202+ C)			0 + c 0 + (16.	
$\therefore \Theta_1 = \frac{\Theta_2}{K_2} \left[J_2 J^2 + C \right]$			g zero initial	
		K1 \$ = 2	520 + CSO +	(16+K1) A
			+ 22 + ² 2] E	
		. Θ .	K ₁	-
		<u> </u>	Js2+ CS + Ko	+K1 4
				
O ∴ O	DISCLAIMER: The in this subject. MA. responsible for any enadvised to take the seexam paper:	E Club and Corrors in the cont	ampus supplies a ents of these soluti	re not liable or ions. Students are
•	Should there be any link encoded in the Q link is: http://bit.ly/2l	R code to feedb		

(17)(4).6

_		
<i>(ii)</i> (ط).	Θ = K1	from Fig. 8, Mp = 0.625 - 0.5
	\$ 122+c2+ (kotk1)	= 0.122
	Φ 2+ 2+ 2+ 2+ 2+ 4+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+	tp = 1.405
Ī	Φ S2+ 6/2 C+ KO+KT	p= -In(Mp) = 0.870 (348)
Ī	2nd order system general lown;	$g = \frac{-\ln(mp)}{\sqrt{\pi^2 + \ln^2(mp)}} = 0.870(3sp)$
F	C - KW2 -(2)	
	C = KW2 -(2) R 52+29W15+W2	tp = T Nu 1 - 92
	By compacing (1) and (2) form:	: Dw = "" = 4,545 (W4)
	KLW2 = KI	: DN= T = 4.545 (W4)
-	29Wx = 5	:. K=0.5, Wn=4.545, g=0.870.
-	Wn2 = KOTKI	Kuh2 = 121
-		
,	since given, unit step input,	= (0.5)(5)(4.545)2
	from Fig.P., Heady-Hall volve = 0.500	= 51.6 (\$4£).
		29wn = 5
	: gan K = 0.5 : 0.5 Wn2 = #1	:. C = 2950u
	13.2 = 3K1	= (2)(0.870)(5)(4.545)
ŀ	12 2 KO4K1	= 39.5 (3sf).
	$Wh^2 = \frac{3k!}{J}$ $Wh^2 = \frac{k_0 + k!}{J}$ $\frac{2k!}{J} = \frac{k_0 + k!}{J}$	2 3 (1.3 (301))
		: c=39.5 # Ko=51.6 # K1=51.6 #
	Ko = K1	C23/3 # 2020.0 # 14 5 0 #
3 .165(11)	<u> </u>	3.46)(14)
3 (4)(0.()	1[w] = L[i] = SO + O(0)	4(+) = t
		$\overline{\Phi}(c) = \frac{\sqrt{c}}{\sqrt{c}}$
	CHIBACU DOHIA OLSO grimullo	to _ Kis
	Let 1[w] = H	▼ J32+C3+(K0+K1)
-	∴ 10=30	by final-value theorem.
	-	lim w(+) = lim s. 10(s)
	$\frac{\Phi}{\Theta} = \frac{2c_3 + c_7 + (k^0 + k^1)}{k^1}$	t-90 5-90
'		= 1 im S. 12. KIS
	$\frac{1}{2} \frac{1}{2} \frac{1}$	5-50 122+C2+(K0+K1)
	<u> </u>	<u> </u>
		= Kotk1
		= 0.5 4 (Ko=Ki).

DISCLAIMER: The solutions are done by students who scored A or above in this subject. MAE Club and Campus supplies are not liable or responsible for any errors in the contents of these solutions. Students are advised to take the solutions as a guide rather than absolute answers to exam paper.

Should there be any mistake identified, please proceed to the Facebook link encoded in the QR code to feedback or submit correct answers. The link is: http://bit.ly/2IW2C32

FLTF = OLTF = (3+1)	K for break-inlout points:
(2+1)((2+44+5) D(5/= ((+1)(62+45+5)
CLTF = (C+1)(12+H)	7+3P+522+9C+5
1+ (2+17(52+H	P+201+2E = (2)'D'(C)=
_ K	N'(5) D(6) - D'(5) H(1) =0.
K+ (S+1)(S2+4S	45) 0 - (352410549)(1) =0
: charecteritiz equa	Kon 8 52+ 10/5 5+3=0
K + (5+1)(52+45+5)	
K·N(8) + D(8) = 0	$\therefore \mathcal{G} = -\frac{2}{3} \pm \frac{\sqrt{3}}{3};$
N(\$)=1	K <o :="" break-in="" in<="" lout="" no="" points="" td=""></o>
2+24+2)(1+2) = (2) C	
D(5) = 0	for nesection poats,
(5+1)(52+H5+5)=0	1x + (8+1)(42+48+5) =0
S+1=0 S2+HS+5=	0 K+ 32+532+98+5 =0
(5+2)2+1:	**
S=-1 or S=-21;	K + (jw)2 + 5(jw)2+9(jw)+5 =0
there are 3 pol	es = K - w3j - 5w2 + 9wj +5 =0
S = -1 4	$(K+5-5\omega^{2})+(9\omega-\omega^{3})j=0$
8 = - 5 + 1 + 8 = - 5.	-i4 9N-W3=0 K+5-5W2=0
N(S)=0	$w(w^2-9)=0$ $K=5w^2-5=0$
no folkions.	w=0 or w=±3 ;f w=0, K=-5
. there are no ze	sos ne
	if W==23, K=40
no. of asymptotes	: poxts where locus cross
= Mpoles - Mzeros	imaginary axis are (0,8) 4 (0,-3)
= 3 <i>H</i>	the corresponding K value = 40#
Ja = Epoles - Eze	ල්
n poles - nze	rol : range of values of 14 for
= (-1)+(-2)+(-	2) which lythem remains Hable!
3-0	OEKEHOL
= - 3	
:. intersection post	
of asymptotes: (5,0),
3 (<u> </u>
O MAE	DISCLAIMER: The solutions are done by students who scored A or above in this subject. MAE Club and Campus supplies are not liable or responsible for any errors in the contents of these solutions. Students are advised to take the solutions as a guide rather than absolute answers to exam paper. Should there be any mistake identified, please proceed to the Facebook link arounded in the OR code to facility or submit correct around.
0	link encoded in the QR code to feedback or submit correct answers. The link is: http://bit.ly/2IW2C32

_			
.5.	$\frac{G(s) = 1}{s^2 + 5s + 100} $ sythem type, $k = 0$		
	system order, n = 2-0 = 2		
	corner frequency: War = 11) N(0) = 1 = 1	
	War =10 log(War) = 1		
	0.1Wcor = 1 log(0.1Wcor) = 1	2 A =	
	10 Wor = 100 log(10 Wor) =	2 well of D	
. (a)	gen plat &	5.161 phone plot 8	
	left asymptie:	$\frac{12 Planter = \frac{1}{100} \cdot 50}{\frac{N(0)}{100} = \frac{1}{100} \cdot 50}$	
	for 0 < 10 < 0.1 Weer		
	Slope = -201c/decade	: y=-k I	
	= 0/decede	7=0 (K=0)	
	Mercept = 2010g NO)	: left asymptote: L6(iw) =0.	
	= 20100 1001		
	= - 40	right asymptote: for 1000corkux 200.	
	: left asymptok:	A=1,70	
	2010g G(jw) = 0.10g(w).	· (-40) 4 = - 2 1 2	
	2010g 6(ju) = -40.	7 =	
	-	:. right asymptote: LG(Jw) = - TT.	
i	right csymptete:	(plot on next page). (n=2)	
	6 1000ct 400		
	slope = - 20n / decade		
	= - 40/decade		
	intercept = 20 log 1 Al		
-	= 20 log 11)		
	= 0		
	: right osymptie:		
	2000/16(jw) = - 4010g(w) 4	0	
ļ	20 109 16 (ju) = - 40 109 (w)),	
	(plot on next page).		
<u> </u>			
	in this for an the so	LAIMER: The solutions are done by students who scored A or above subject. MAE Club and Campus supplies are not liable or responsible y errors in the contents of these solutions. Students are advised to take lutions as a guide rather than absolute answers to exam paper. If there be any mistake identified, please proceed to the Facebook needed in the QR code to feedback or submit correct answers. The http://bit.ly/21W2C32	
Ĺ			

Ö

MA3005/MA3705

NANYANG TECHNOLOGICAL UNIVERSITY

MA3005/MA3705

SEMESTER 1 EXAMINATION 2019-2020

MA3705 - AEROSPACE CONTROL THEORY

November/December 2019

Time Allowed: 21/2 hours

INSTRUCTIONS

This paper contains FIVE (5) questions and comprises SEVEN (7) pages including TWO (2) pages of Appendix.

Answer ALL questions.

Marks for each question are as indicated.

This is a RESTRICTED-OPEN BOOK examination. One double sided A4 reference sheet is allowed.

What is the stability of a system that contains some LHP poles, three imaginary poles, one negative-real zero and a pair of RHP zero as illustrated in Figure 1? Will the system oscillate as a response to a step input? Give the rationale of your answer.

1(a)

(5 marks)

E

Figure 1: s-plane for the system.

Note: Question 1 continues on page 2.

(b) The transfer function of a second order system is $G(s) = \frac{1}{s^2 - 2s + 5}$.

(2 marks) Is the system stable, marginally stable or unstable? Explain your answer.

(5 marks) Find, mathematically, the impulse response of the system, G(s).

Based on your answer in (ii), what is the frequency of oscillation of the system? (3 marks)

 \equiv

 \equiv

(c) Consider the unity-feedback system shown in Figure 2.

Figure 2: Unity feedback system.

Determine the number of break-in/break-out points on the real axis. No justification is required.

(5 marks)

(d) Consider a system with the Bode plots shown in Figure 3.

Figure 3: Bode plots.

Suppose that the input to the system is $r(t) = 50\cos(0.01t + 0.5)$, determine the output of system. No justification is required.

(5 marks)

An electronic company is planning to carry out a drop test on its product. A drop test is an elevated hook of a crane (see Figure 4). The manufacturer aims to test the durability of the product under impact at a testing velocity $v_i = 25 m/s$, where the mass of the test meant to evaluate the durability of the product by releasing the product to free fall (with initial velocity, $v_0 = 0$) from a target altitude, where typically the product is dropped from item is 0.2kg. ď

It is known that the damping coefficient of air is 0.1Ns/m, and the gravitational acceleration is 10m/s².

Figure 4: Drop test for the system.

(a) Show that no matter how high the initial position of the product before it is dropped, the specified testing velocity, w, will never be reached. This is to say that the drop test cannot

Hint: Determine the final velocity of the product under the test).

(8 marks)

In order to achieve the goal, the test engineer considers to give an initial velocity to the test item ($v_0 \neq 0$). **a**

(7 marks) Discuss whether it is a good idea or not to achieve the testing velocity target ($v_1 = 25m/s$). If it is, find the ideal initial velocity for the test product to reach the testing velocity.

MA3005/MA3705

Figure 5 shows the block diagram model of a dynamic system. Determine the equivalent transfer function of the system that correlates the output, C, to the input R. 3(a)

(5 marks)

Figure 5: A block diagram.

(b) Referring to the problem in 3(a), if it is known that:

 $G_1(s) = 127$

 $H_1(s) = 0$

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

$$G_{2}(s) = \frac{1}{s^{8} + 3s^{7} + 10s^{6} + 24s^{5} + 48s^{4} + 96s^{3} + 128s^{2} + 192s + 127}$$
, and

Check the stability of the system using Routh-Hurwitz method. If the system is unstable, specify the number of poles in RHP. (4 marks) Figure 6 shows a rotational system comprising two disks with moment of mertia J₁ and Js, respectively. The two disks are interconnected to each other through a flexible shaft with stiffness of k. The first disk J is supported to the ground by a bearing with damping value of c, while and disk J is freely spinning without bearing support (no damping effect). The system is driven on the second disk (J₂) by a torque input $\tau(t)$. છ

Figure 6: A rotational system

With the help of a free-body-diagram, define the transfer function, $\frac{\Omega_1(s)}{\Gamma(s)}$, that correlates the angular velocity output on the second disk, ω_1 , to the torque input, $\pi(t)$. Show the working step. Θ

Hint: $\Omega_1 = \mathcal{L}[\omega_1]$, where velocity ω_1 is the first derivative of θ_1 .)

(5 marks)

Find the steady state angular velocity output as, if a step torque input is given to the system, $\pi(t) = 1$. €

(6 marks)

Consider the PD-controlled system shown in Figure 7.

Figure 7: A PD-controlled system.

(a) In this question, we assume that $z_c = 1$. Determine the open-loop pole(s) and open-loop zero(s) and sketch the root locus of the system.

(4 marks)

(b) In this question, we assume that $z_c = 4$.

Determine the open-loop pole(s) and open-loop zero(s). Determine the location(s) of the break-in/break-out point(s), if any. €

(4 marks)

(ii) Determine the location(s) of the closed-loop pole(s) when K=5.

(3 marks)

(iii) Sketch the root locus of the system.

(5 marks)

(iv) Show numerically that $s = -5 \pm 2j$ does not belong to the root locus.

(3 marks)

(c) Find the value of z_c such that $s = -5 \pm 2j$ belongs to the root locus.

(6 marks)

5. Consider a lead-lag compensator with the following transfer function: $G(s) = K \cdot \frac{(s + \frac{1}{7})(s + \frac{1}{7})}{(s + \frac{a}{7})(s + \frac{1}{7})}$

(a) For K = 1, $T_1 = 10$, $T_2 = 1000$ and $\alpha = 10$, sketch

the Bode plot (magnitude) of G(s).

€

(ii) the Bode plot (phase) of G(s).

(4 marks)

(6 marks)

(b) In this question, we assume only that K>0, $T_1>0$, $T_2>0$ and $\alpha>0$. Let $\alpha_1=\frac{1}{\sqrt{T_1\cdot T_2}}$. Show

that $\angle G(\omega_1) = 0$.

(5 marks)

S

la

M 40003	Brought to you by MAE Clu
Nov /Dec 2019	
Nov/Dec 2019 F(s) = 35+	. 8
5 ² +2	s+10
a lan e	1 35+8 1:m 35F%
NT = 100 8.	(35+0) - (im 35+8) - 5+00 5+2+1=
	$= \lim_{s \to \infty} (s) \qquad 3 + \frac{3}{5} $
	(5) 1+2912°
	= 7 = 3.
FVT: \$500 s. 3	
526	f2sf10 = 0 (case 2 function).

DISCLAIMER: The solutions are done by students who scored A or above in this subject. MAE Club and Campus supplies are not liable or responsible for any errors in the contents of these solutions. Students are advised to take the solutions as a guide rather than absolute answers to exam paper.

Should there be any mistake identified, please proceed to the Facebook link encoded in the QR code to feedback or submit correct answers. The link is: http://bit.ly/2lW2C32

C. O draw left asymptote & right asymptote.
left asymptate:
$gradient: \frac{20-60}{-2-(-3)} = -40$
$\frac{9^{1000004} - 2^{-(-3)}}{2} = -40$
n gradient.
$equate : y = 20/05 \left(\frac{N(0)}{D(0)} - 20/C \log(w) \right)$
20 c = 40 where $ c $ is system type. k = 2 in System type 2.
k = 2 : (45/2 m fall 2.
75,500
0.14
Right asymptote:
gradient = 0.
easet": y = 20/09/Al -201/09(a)
20 = 0 when == C C C C C C C C C C C C C C C C C C
20n = 0 where n = 5 system is order of. = System order 0.
= >yslem order 0.
DISCLAIMER: The solutions are done by students who scored A o above in this subject. MAE Club and Campus supplies are not liable or responsible for any errors in the contents of these solutions. Students and advised to take the solutions as a guide rather than absolute answers to exam paper.
Should there be any mistake identified, please proceed to the Facebook link encoded in the QR code to feedback or submit correct answers. The link is: http://bit.ly/2IW2C32

link encoded in the QR code to feedback or submit correct answers. The

link is: http://bit.ly/2lW2C32

R(5) -> (5) -> c(5) -> c(5)
R(3) -> -> -> C(5)
11/202 10/03 17/202 16/03
R(5) 6,62+H,+14,H262 > c(5)
$R(s) \rightarrow \begin{cases} 6,62+H,+H,H_262 \\ 1+H_262+G,G_3 \end{cases} \rightarrow c(s)$
DISCLAIMER: The solutions are done by students who scored A or above in this subject. MAE Club and Campus supplies are not liable or
above in this subject. MAE Club and Campus supplies are not tuble of responsible for any errors in the contents of these solutions. Students are
advised to take the solutions as a guide rather than absolute answers to
exam paper.
Should there be any mistake identified, please proceed to the Facebook
link encoded in the QR code to feedback or submit correct answers. The

3.(4)

responsible for any errors in the contents of these solutions. Students are advised to take the solutions as a guide rather than absolute answers to exam paper.

Should there be any mistake identified, please proceed to the Facebook link encoded in the QR code to feedback or submit correct answers. The link is: http://bit.ly/2lW2C32

	19-1-	
		·
o) (1) JO+CO+	KO+KO = K, P	
TSO f CSO	9 + (K, +ko) (9 = K)	V-T
(T5+6c+	k, f Ko) 田= k, 重	
	V.	
700	Js2 f(sf Kitko	
ĺ		<u> </u>
	Casi Koon	
(ii) typical 20pe : ($F(s) = \frac{C(s)}{E(s)} = \frac{Kevn^2}{s^2 + 2s\omega_0}$	Stalp ²
		76
<u> </u>	+ = 5 + K+ + + + + + + + + + + + + + + + +	
<u> </u>	+ 등 s + 트를	
		Malaz
unif response when	t > 0 50 5c(s) = 50	8. 5. 052+256475 +W12
	= ic :	-0.<
	= k = k = k = k = k = k = k = k = k = k	8· £ - \
		202 (Se Kitko
	Li	- Della (6)
T-reduced:	= 10,40	= 0.5 (because Steady State regionse is 2 of will sho imput.
	<u></u>	15 7 500 7 5Kg infort
to = at (from gra	al (- 11600)	k=0.5)
		By comparison => 0.500, 2 = 4
$\frac{4}{100} = 2.236$	rads	
to ad	from graph, tr = 0.914)	$(c_1 = 0.5(2.51)^2 (5)$
63-05(x-tr.6)	d) = 0.455	= (5.75 M/m
CU = CV1 11-32		
On = 2.236 = 3	-SI rads	Uni = Icites
		Ko = Wn2(J) - K,
		=(2-51)(5) -15.75
		= 45 KJ.75N/m
		25Cn = ==
		(= 2(0.45K)(251)(S)
		= 11.42 Ms/en.
	·	
		<u></u>
	DISCLAIMER: The solution	ns are done by students who scored A or
	above in this subject. MAE (Club and Campus supplies are not liable or
		the contents of these solutions. Students are
MAE	exam paper.	as a guide rather than absolute answers to

		identified, please proceed to the Facebook
		to feedback or submit correct answers. The
	link is: http://bit.ly/2lW2C32	

link is: http://bit.ly/2lW2C32

DISCLAIMER: The solutions are done by students who scored A or above in this subject. MAE Club and Campus supplies are not liable or responsible for any errors in the contents of these solutions. Students are advised to take the solutions as a guide rather than absolute answers to exam paper.

Should there be any mistake identified, please proceed to the Facebook link encoded in the QR code to feedback or submit correct answers. The link is: http://bit.ly/2lW2C32

use inoffer alpha
to check if root locus
is down properly.

Type "root locus plot".

5.		(s)			
/-	C+6c +100				
a)	5° +55 +100 Wn = Jioo = 10 (Wmm, Wmgx)				
•()	O-1 Wayen = I rads 100 Wingo = 100 rads				
	left asymptote: G(5) = st	5) have K=0			
	[N(0)] (p(0)] = 0.01				
ļ	(p(o) {	(0 0 1 F(0) 1			
	iy = 20 (og	N(0) -20 k (0g(W)			
ļ	1 106 N(2) 20 1	in tencept (0,-45)			
-	phase shiff = $\frac{N(0)}{b(0)} > 0$: $y = 0$				
	210 00 1120	∀ (s)			
	Right asymptote = GCD =	p(S)			
}	in - don(n)	dan(N)			
	1 - aug (b) -	- deg(N) = 2-0 = 2			
	:. y: 20 lg Al	- 2010 120 (vý)			
_	y: 21 m	105 (w) intersept (0,0).			
ŀ	phase shiff = A>0 : y = -				
	9	100			
-	× W 20/29 (6(jw))	(GC)(M) = (JM)245(JM) +100			
	0 1 - 42	-0.03			
	J.S J.2 _ 39.20	-Co. 11			
	0.8 6.3 -36.66	-27.58			
	1 10 -33-98	- 90			
	1.2 15.9 -44.72	-152.51			
_	1.5 31.6 -59.20	-170.03			
	2/100/-79.92	-(77-12.			
_					
-					
-					
F	* * * * * * * * * * * * * * * * * * * *				
	above in responsib	IMER: The solutions are done by students who scored A or this subject. MAE Club and Campus supplies are not liable or le for any errors in the contents of these solutions. Students are to take the solutions as a guide rather than absolute answers to the solutions as a guide rather than absolute answers to the solutions as a guide rather than absolute answers to the solutions as a guide rather than absolute answers to the solutions as a guide rather than absolute answers to the solutions are done by students who scored A or this subject.			
	link encode	ere be any mistake identified, please proceed to the Facebook ded in the QR code to feedback or submit correct answers. The tp://bit.ly/2lW2C32			

DISCLAIMER: The solutions are done by students who scored A or above in this subject. MAE Club and Campus supplies are not liable or responsible for any errors in the contents of these solutions. Students are advised to take the solutions as a guide rather than absolute answers to exam paper.

Should there be any mistake identified, please proceed to the Facebook link encoded in the QR code to feedback or submit correct answers. The link is: http://bit.ly/2lW2C32

(jew)2 (jew)2 (5) 2 (w)
= 1-62 + 100 + 5500
= J(-62+102)2+ (5a)2
100) 1 (50)
(-c12 + 100)2 + (5c1)2
1 04-175W2 f10'000
Then minimum, tw (ax - 17562+ 10'000)=0
342-3904 20 42 = 116.67
Wp = 10.8 rads
G(jerp) = 0.0177
"-the results are similar.
16 (just) 1 = 0.02 the peak usually happers alose to where frequency.
to womer frequency.
DISCLAIMER: The solutions are done by students who scored A or above in this subject. MAE Club and Campus supplies are not liable or responsible for any errors in the contents of these solutions. Students are advised to take the solutions as a guide rather than absolute answers to exam paper. Should there be any mistake identified, please proceed to the Facebook link encoded in the QR code to feedback or submit correct answers. The
'i :::"in::":i' i': ! link is: http://bit.ly/2lW2C32

