Non-invasive and high-throughput electrophysiological analysis of apical and basolateral membranes of RPE cells

Colby F. Lewallen, Ph.D. National Eye Institute PI: Dr. Kapil Bharti

Outline

- Background of RPE electrophysiology
- Derivation of impedance model constraint
- Validation of impedance model constraint
- Testing using LCA16 iPSC-RPE line

Electrophysiology background

Key Features of RPE

Functions

Characteristics

- 1. Polarized
- 2. Pigmented
- 3. Hexagonal shape
- 4. Tight junctions
- 5. Tightly adhered
- 6. Non-proliferative

Validation of iPSC-Derived RPE

Sharma et al. (2019) Science Translational Medicine

Characteristics Validation

- **Cell purity:** flow cytometry
- Morphology: quantitative shape metrics Molecular markers: RPE-specific gene expression
- Membrane protein localization: Polarized distribution of proteins (Na+/K+ ATPase, ezrin, ZO-1)

Functional Validation

- **Polarized secretion:** VEGF secretion assays
- Phagocytosis & lysosomal function: Uptake and degradation of photoreceptor outer segments
- Barrier integrity: Trans-epithelial resistance
- Ion transport: Calcium signaling, ion flux assays (e.g., patch-clamp)
- Metabolism: Mitochondrial activity profiling

Snapshot of cell quality and function

Validation of iPSC-Derived RPE

Characteristics Validation

- Cell purity: flow cytometry
- Morphology: quantitative shape metrics Molecular markers: RPE-specific gene expression
- Membrane protein localization: Polarized distribution of proteins (Na+/K+ ATPase, ezrin, ZO-1)

Functional Validation

- Polarized secretion: VEGF secretion assays
- Phagocytosis & lysosomal function: Uptake and degradation of photoreceptor outer segments
- Barrier integrity: Trans-epithelial resistance
- Ion transport: Calcium signaling, ion flux assays (e.g., patch-clamp)
- Metabolism: Mitochondrial activity profiling

High throughput
assessment of these
properties is expensive
and impractical for
most studies

How can we minimize time and maximize measured quality indicators for high throughput analysis?

How can we increase the **sensitivity** of these measurements?

RPE polar properties represented by equivalent circuit

Example image of setup for measurements (historical)

 $R_{a/b/s/sol}$ - apical/basal/shunt/solution **resistance** $C_{a/b}$ - apical/ basal **capacitance**

ATP response of RPE

ATP response of RPE

One assay reveals complex functional health of epithelia

- Epithelial polarization
- Tight junction formation

- Cell-to-cell homogeneity
- Intracellular ionic composition
- General molecular mechanisms

Limitations

- 1. Difficult (requires training and precision)
- 2. Low throughput (1-3 measurements/day)
- 3. Expensive (>\$100k)
- 4. Unreliable (can lose cells, hard to make pipettes, etc.)
- 5. Invasive (requires puncturing/touching the cells)

Epithelial polarity facilitates essential retinal function

Current method to measure parameters of epithelial polarity

INVASIVE and **LOW-THROUGHPUT**

Goal: Develop a non-invasive and highthroughput method for the electrophysiological analysis of polarized epithelial cells using extracellular electrochemical impedance spectroscopy (EIS)

Derivation of impedance model

Derivation of equivalent impedance
$$Z_{eq}(w)$$

$$Z_{a}(\omega) = \frac{R_{a}}{1 + i\omega R_{a}C_{a}}$$

$$Z_{b}(\omega) = \frac{R_{b}}{1 + i\omega R_{b}C_{b}}$$

Imaginary number:
$$i = \sqrt{-1}$$

Derivation of equivalent impedance model: $Z_{eq}(w)$

Epithelial resistance and capacity parameters can be extrapolated from measured impedance

$$Z_{eq}(\omega) = R_{blank} + \frac{R_s \big(Z_a(\omega) + Z_b(\omega) \big)}{R_s + Z_a(\omega) + Z_b(\omega)}$$

$$\begin{split} R_{blank} &= Z_{eq}(\infty) \\ TER &= Z_{eq}(0) = R_{blank} + \frac{R_s(R_a + R_b)}{R_s + R_a + R_b} \\ \frac{1}{TEC} &= \frac{2}{\pi} \int_0^\infty \Re(Z_{eq}(\omega) - R_{blank}) \ d\omega \end{split}$$

Resolving underdetermined fit

Principle of fitting

No clear minimum when fitting Zeq(w)

Set target Cb during fitting to get distinct solution

- Cb should not change much between cell lines.
- Primarily growth substrate dependent.

Arvydas.png

Arvydas Maminishkis, MD, PhD

Simple constraint converges to distinct solution

Validation

Validate constraint accuracy with **SIMULATED** data

& Cb = constant

Accurate prediction of membrane parameters is not impacted by accuracy of constrained basal capacitance value Ra Cb Ra -15% Cb Error +5% Cb Error 0% Cb Error Percentage Simulated Change -15% Cb Error Rb Rs +5% Cb Error 0% Cb Error Simulated

Simulation Index

To do: Put sentence explaining the impact of

Biology validation: polarized mutation

Test model with biological data (RPE)

KCNJ13 variants cause LCA16, disrupting Kir7.1 and apical RPE K+ conductance

Insert schematic of iPSC->RPE

David Gamm, MD, PhD

Bikash Pattnaik, PhD

Omar Memon

Samuel Ramirez

Jair Montford

Casey Cargill

¹https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594557/

Kir maturation into RPE

Schematic depicting weekly measurements

Casey Cargill

SAM.png

Samuel Ramirez

Conclusion: We generated a **non-invasive** alternative to intracellular electrophysiological assays for **high-throughput** analysis of polarized epithelial cells

Acknowledgements!

To do: add lab/collaborator names

Questions