Protocol for the state-space model

1. Install "R" and "Rstudio"

https://rstudio-education.github.io/hopr/starting.html

2. Download R file, csv file, and stan file from our github

3. Input your wastewater data in the provided csv file and change the name of csv file

1	Α	В	С	D	Е
	date	number_of_tested_sa	number_of_positive_samples	concentration	
	2022/1/1				
	2022/1/2				
	2022/1/3	2	2	30955.34439	
	2022/1/4	3	3	24419.80553	
	2022/1/5				
	2022/1/6	NA	NA	NA	
	2022/1/7	NA	NA	NA	
	2022/1/8	2	1	1334.963692	
١	2022/1/9	5	3	1842.572202	
	2022/1/10	5	3	2632.292098	
!	2022/1/11	5	3	3171.828039	
ī	2022/1/12	4	3	2149.002467	
Ī	2022/1/13	5	2	4058.253557	
i	2022/1/14	4	1	13460.97495	

4. Open Rstudio and then, open R file and stan file

5. Check where you should upload csv file analyzed

6. Change the prior distribution of wastewater concentration (i.e., "mu") in the Stan file

Note

- normal(a, b): a is mean and b is standard deviation
- As a guideline for "a", the average of the data on log-transformed wastewater concentration (log₁₀ copies/L) might be a good choice.
- If you use viral load rather than viral concentration, the value of "a" is more than 10.
- If you changed the value, please save the file

7. Install R packages

Note

You no longer need to repeat this process once they are installed.

8. Check the threshold vale and name of your csv file.

```
| State space, model, with logistic. R × | State space, model with logistic. stan × | State space, model with logistics. stan violet with logistics. stan violet with logistics. stan violet with logistics. stan violet with logis
```

9. Run the state-space model (row from 25-87)

```
grade_space_model_with_logistic.R × state_space_model_with_logistic.stan ×
       Run Propries
 0
       #state-space model with logistic
data_stan <- data
data_stan <- data_stan %>% mutate(positive_rate = positive/count)
sample_size <- nrow(data_stan)</pre>
       sampte_street
*/*wector of row number used for the analysis
*pick row numbers for censored data
data_row_D <- data_frame(true = which((data_stanspositive_rate >= threshold)))
sample_size_D <- nrow(data_row_D)
*/pick row numbers for censored data</pre>
       #pick row numbers for censored data
data_row_CD <- data.frame(true = which(data_stan$count > 0))
state_space_model_with_logistic.R × 🥌 state_space_model_with_logistic.stan ×
       #check traceplots if you want
#mcmc_combo(mcmc, pars = c("c1", "c2", "s1", "s2"))
       colnames(result) <- c("low", "median", "upr")
data_estimated_concentration <- cbind(data, result)</pre>
```

10. Check the estimation result

```
state_space_model_with_logistic.R × 🥑 state_space_model_with_logistic.stan ×
    → Run | → ↑ → | → Source •
#figure
data_fig <- data_data_estimated_concentration

92 data_fig <- data_fig %% mutate(posi = if_else(count < 1, "no", if_else(positive >= threshold*count, "yes", "no")))
```

Note

- Change the range of date (row 101)
- Change the scale of y axis (row 102)

11. Export the estimation result

```
state space model_with_logistic.R' ×  state space model_with_logistic.stan ×  axis. line = element_line(linewidth = 1.0, lineend = "square"), text = element_text(colour = logistich = "none", size = 14), legend_position = "none", saxis.ticks = element_line(linewidth = 1.0), axis.ticks = element_line(linewidth = 1.0), axis.ticks.length = unit(-2, "mm"))

plot

111

112
                                                                                                                                                                                                                                                                                                                                                                → Run | → ↑ ↓ | → Source -
             #Export estimation result
#confirm the place where file should be loaded by using "getwd()": "C:/XXXX/"
#write file name: "2024xxxx_xx_xx,csv"
 write.csv(x = data_estimated_concentration, file = "C:/xxxx/2024xxxx_xx_xx.csv")
```