数学的帰納法に関するメモ

2023年8月24日

1 記号

 $\mathbb N$ は非負整数全体のなす集合, $\mathbb Z_{>0}$ は正の実数全体のなす集合.

n! は階乗,つまり, $n\in\mathbb{Z}_{>0}$ に対し, $n!=\prod_{i=1}^n i;\,0!=1$.

n!! は二重階乗,つまり, $k\in\mathbb{Z}_{>0}$ に対し, $(2k-1)!!=\prod_{i=1}^k(2i-1),\,(2k)!!=\prod_{i=1}^k(2i);\,0!!=1.$ $\binom{x}{n}$ は二項係数,つまり, $x\in\mathbb{R},\,n\in\mathbb{N}$ に対し, $\binom{x}{n}=\frac{\prod_{i=0}^{n-1}(x-i)}{n!}.$

通常の数学的帰納法によるもの

等式に関するもの

2.1.1 整数や整式の和に関するもの

Proposition 1. $\forall n \in \mathbb{N}, \ \sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$ p:20230630

> 証明 1.1. $0=\frac{0(0+1)}{2}$ である。また, $n+\sum_{i=0}^{n-1}i=\sum_{i=0}^ni$, $n+\frac{(n-1)n}{2}=\frac{n(n+1)}{2}$ であるので,n に関する数 学的帰納法により示せる.

証明 1.2. P(n) を次の命題とする:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$\sum_{i=0}^{0} i = 0,$$
$$\frac{0(0+1)}{2} = 0.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=0}^{n-1} i = \frac{(n-1)n}{2}$ であるので、

$$\sum_{i=0}^{n} i = n + \sum_{i=0}^{n-1} i$$

$$= n + \frac{(n-1)n}{2}$$

$$= \frac{2n + (n-1)n}{2}$$

$$= \frac{2n + n^2 - n}{2}$$

$$= \frac{n^2 + n}{2}$$

$$= \frac{n(n+1)}{2}.$$

注 1.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$\sum_{i=0}^{n} i = \frac{\sum_{i=0}^{n} i + \sum_{i=0}^{n} i}{2}$$

$$= \frac{\sum_{i=0}^{n} i + \sum_{i=0}^{n} (n-i)}{2}$$

$$= \frac{\sum_{i=0}^{n} (i+n-i)}{2}$$

$$= \frac{\sum_{i=0}^{n} n}{2}$$

$$= \frac{n \sum_{i=0}^{n} 1}{2}$$

$$= \frac{n(n+1)}{2}.$$

注 1.4. 数学的帰納法を用いず, 以下のように示すこともできる:

$$X = \{ (t_1, t_2) \mid 0 \le t_1 < t_2 \le n \}$$

$$X_i = \{ (t_1, i) \mid 0 \le t_1 < i \}$$

とおく. このとき,

$$\coprod_{i=0}^{n} X_i = X$$

であり、

$$|X| = \binom{n+1}{2} = \frac{n(n+1)}{2}$$
$$|X_i| = i$$

であるので,

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$

注 1.5. Propositions 12 and 13 は, この一般化である.

Proposition 2. $\forall n \in \mathbb{N}, \ \sum_{i=0}^{n} 2i = n(n+1).$

証明 2.1. $2\cdot 0=0=0(0+1)$ である。また, $2n+\sum_{i=0}^{n-1}2i=\sum_{i=0}^{n}2i$,2n+(n-1)n=n(n+1) であるので,n に関する数学的帰納法により示せる.

証明 2.2. P(n) を次の命題とする:

$$\sum_{i=0}^{n} 2i = n(n+1).$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$\sum_{i=0}^{0} 2i = 2 \cdot 0 = 0,$$

$$0(0+1) = 0.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=0}^{n-1} 2i = (n-1)n$ であるので、

$$\sum_{i=0}^{n} 2i = 2n + \sum_{i=0}^{n-1} 2i$$

$$= 2n + (n-1)n$$

$$= 2n + n^{2} - n$$

$$= n^{2} + n$$

$$= n(n+1).$$

注 2.3. Proposition 1 をみとめ、数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$\sum_{i=0}^{n} 2i = 2\sum_{i=0}^{n} i = 2\frac{n(n+1)}{2} = n(n+1).$$

Proposition 3. $\forall n \in \mathbb{Z}_{>0}, \ \sum_{i=1}^{n} (2i-1) = n^2.$

証明 3.1. $2\cdot 1-1=1=1^2$ である。また, $(2n-1)+\sum_{i=1}^{n-1}(2i-1)=\sum_{i=1}^n(2i-1), (2n-1)+(n-1)^2=n^2$ であるので,n に関する数学的帰納法により示せる.

証明 3.2. P(n) を次の命題とする:

$$\sum_{i=1}^{n} (2i - 1) = n^2.$$

このとき、全ての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$\sum_{i=1}^{1} (2i - 1) = 2 \cdot 0 - 1 = 1,$$
$$1^{2} = 1.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=1}^{n-1} (2i-1) = (n-1)^2$ であるので、

$$\sum_{i=1}^{n} (2i-1) = 2n - 1 + \sum_{i=0}^{n-1} (2i-1)$$
$$= 2n - 1 + (n-1)^{2}$$
$$= 2n - 1 + n^{2} - 2n + 1$$
$$= n^{2}.$$

注 3.3. Proposition 1 をみとめ、数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$\sum_{i=1}^{n} (2i-1) = 2\sum_{i=1}^{n} i - \sum_{i=1}^{n} 1 = 2\frac{n(n+1)}{2} - n = n(n+1) - n = n^{2}.$$

Proposition 4. $\forall n \in \mathbb{N}, \ \sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.

証明 4.1. $0^2=0=\frac{0\cdot 1\cdot 1}{6}$ である。また, $n^2+\sum_{i=0}^{n-1}i^2=\sum_{i=0}^ni^2$, $n^2+\frac{(n-1)n(2n-1)}{6}=\frac{2n^3-3n^2+n+6n^2}{6}=\frac{2n^3+3n^2+n}{6}=\frac{n(n+1)(2n+1)}{6}$ であるので,n に関する数学的帰納法により示せる.

証明 4.2. P(n) を次の命題とする:

$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$\sum_{i=1}^{1} i^2 = 0^2 = 0,$$
$$\frac{0(0+1)(2\cdot 0+1)}{6} = 0.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=0}^{n-1} i^2 = \frac{(n-1)n(2n-1)}{6}$ であるので、

$$\sum_{i=1}^{n} i^2 = n^2 + \sum_{i=0}^{n-1} i^2$$

$$= \frac{6n^2 + 2n^3 - 3n^2 + n}{6}$$

$$= \frac{2n^3 + 3n^2 + n}{6}$$

$$= \frac{n(n+1)(2n+1)}{6}.$$

注 4.3. Proposition 1 をみとめ、数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$S = \sum_{i=0}^{n} i^{2}$$

$$T = \sum_{i=1}^{n} (i^{3} - (i-1)^{3})$$

とする. このとき,

$$T = \sum_{i=1}^{n} i^{3} - \sum_{i=1}^{n} (i-1)^{3}$$

$$= \sum_{i=1}^{n} i^{3} - \sum_{i=0}^{n-1} i^{3}$$

$$= (n^{3} + \sum_{i=1}^{n-1} i^{3}) - (\sum_{i=1}^{n-1} i^{3}) + 0^{3})$$

$$= n^{3}$$

一方次のようにも計算できる:

$$T = \sum_{i=1}^{n} (i^3 - (i^3 - 3i^2 + 3i - 1))$$

$$= \sum_{i=1}^{n} (3i^2 - 3i + 1)$$

$$= 3\sum_{i=1}^{n} i^2 - 3\sum_{i=1}^{n} i + \sum_{i=1}^{n} 1$$

$$= 3S - 3\frac{n(n+1)}{2} + n.$$

したがって、

$$n^{3} = 3S - 3\frac{n(n+1)}{2} + n$$

$$3S = n^{3} + 3\frac{n(n+1)}{2} - n$$

$$= \frac{2n^{3} + 3n(n+1) - 2n}{2}$$

$$= \frac{n(2n^{2} + 3(n+1) - 2)}{2}$$

$$= \frac{n(2n^{2} + 3n + 1)}{2}$$

$$= \frac{n(n+1)(2n+1)}{2}$$

$$S = \frac{n(n+1)(2n+1)}{6}$$
.

p:20230706

Proposition 5. $\forall n \in \mathbb{Z}_{>0}, \ \sum_{i=1}^{n} (2i-1)^2 = \frac{n(2n-1)(2n+1)}{3}.$

証明 5.1. $1^2 = 1 = \frac{1 \cdot 1 \cdot 3}{3}$ である. また,

$$(2n-1)^2 + \sum_{i=1}^{n-1} (2i-1)^2 = \sum_{i=1}^n (2i-1)^2$$
$$(2n-1)^2 + \frac{(n-1)(2n-3)(2n-1)}{3} = \frac{3(2n-1)^2 + (n-1)(2n-3)(2n-1)}{3}$$
$$= \frac{(2n-1)(3(2n-1) + (n-1)(2n-3))}{3}$$

$$= \frac{(2n-1)(6n-3+n^2-5n+3)}{3}$$

$$= \frac{(2n-1)(2n^2+n)}{3}$$

$$= \frac{n(2n-1)(2n+1)}{3}$$

であるので、n に関する数学的帰納法により示せる.

証明 5.2. P(n) を次の命題とする:

$$\sum_{i=1}^{n} (2i-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$

このとき、全ての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$\sum_{i=1}^{1} (2i - 1)^2 = 1^2 = 1,$$
$$\frac{1(2 \cdot 1 - 1)(2 \cdot 1 + 1)}{3} = 1.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=1}^{n-1} (2i-1)^2 = \frac{(n-1)(2n-3)(2n-1)}{3}$ であるので、

$$\sum_{i=1}^{n} (2i-1)^2 = (2n-1)^2 + \sum_{i=0}^{n-1} (2i-1)^2$$

$$= (2n-1)^2 + \frac{(n-1)(2n-3)(2n-1)}{3}$$

$$= \frac{3(2n-1)^2 + (n-1)(2n-3)(2n-1)}{3}$$

$$= \frac{(2n-1)(3(2n-1) + (n-1)(2n-3))}{3}$$

$$= \frac{(2n-1)((6n-3) + (2n^2 - 5n + 3))}{3}$$

$$= \frac{(2n-1)(2n^2 + n)}{3}$$

$$= \frac{n(2n-1)(2n+1)}{3}.$$

注 5.3. Propositions 1 and 4 をみとめ、数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$\sum_{i=1}^{n} (2i-1)^2 = 4\sum_{i=1}^{n} i^2 - 4\sum_{i=1}^{n} i + \sum_{i=1}^{n} 1$$

$$= 4\frac{n(n+1)(2n+1)}{6} - 4\frac{n(n+1)}{2} + n$$

$$= \frac{4n(n+1)(2n+1) - 12n(n+1) + 6n}{6}$$

$$= \frac{n(4(n+1)(2n+1) - 12(n+1) + 6)}{6}$$

$$= \frac{n((n+1)(4(2n+1) - 12) + 6)}{6}$$

$$= \frac{n((n+1)(8n-8)+6)}{6}$$

$$= \frac{n(8(n+1)(n-1)+6)}{6}$$

$$= \frac{n(8(n^2-1)+6)}{6}$$

$$= \frac{n(8n^2-2)}{6}$$

$$= \frac{n(4n^2-1)}{3}$$

$$= \frac{n(2n-1)(2n+1)}{3}.$$

Proposition 6. $\forall n \in \mathbb{N}, \ \sum_{i=0}^{n} (2i)^2 = \frac{2n(n+1)(2n+1)}{3}$.

証明 6.1. $0^2=0=\frac{2\cdot 0\cdot 1\cdot 1}{3}$ である。 また, $(2n)^2+\sum_{i=1}^{n-1}(2i)^2=\sum_{i=1}^n(2i)^2$, $(2n)^2+\frac{2(n-1)n(2n-1)}{3}=\frac{2n(n+1)(2n+1)}{3}$ であるので,n に関する数学的帰納法により示せる.

証明 6.2. P(n) を次の命題とする:

$$\sum_{i=0}^{n} (2i)^2 = \frac{2n(n+1)(2n+1)}{3}$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$\sum_{i=0}^{0} (2i)^2 = 0^2 = 0,$$
$$\frac{2 \cdot 0(0+1)(2 \cdot 0+1)}{3} = 0.$$

Induction Step: P(n-1) \Longrightarrow P(n) を示す. 仮定から $\sum_{i=0}^{n-1}(2i)^2=\frac{2(n-1)n(2n-1)}{3}$ であるので、

$$\sum_{i=1}^{n} (2i)^{2} = (2n)^{2} + \sum_{i=0}^{n-1} (2i)^{2}$$

$$= (2n)^{2} + \frac{2(n-1)n(2n-1)}{3}$$

$$= \frac{3(2n)^{2} + 2(n-1)n(2n-1)}{3}$$

$$= \frac{2n(6n + (n-1)(2n-1))}{3}$$

$$= \frac{2n(6n + 2n^{2} - 3n + 1)}{3}$$

$$= \frac{2n(2n^{2} + 3n + 1)}{3}$$

$$= \frac{2n(n+1)(2n+1)}{3}.$$

注 6.3. Proposition 4 をみとめ、数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$\sum_{i=1}^{n} (2i)^2 = \sum_{i=1}^{n} 4i^2 = 4\sum_{i=1}^{n} i^2 = 4\frac{n(n+1)(2n+1)}{6} = \frac{2n(n+1)(2n+1)}{3}.$$

p:20230709 Proposition 7. $\forall n \in \mathbb{Z}_{>0}, \sum_{i=1}^{2n} (-1)^i i^2 = n(2n+1).$

証明 7.1. $-1+2^2=3=1\cdot(2\cdot1+1)$ である。また、 $(2n)^2-(2n-1)^2+\sum_{i=1}^{2(n-1)}(-1)^ii^2=\sum_{i=1}^{2n}(-1)^ii$ 、 $(2n)^2-(2n-1)^2+(n-1)(2n-1)=n(2n+1)$ であるので、n に関する数学的帰納法により示せる。

証明 7.2. P(n) を次の命題とする:

$$\sum_{i=1}^{2n} (-1)^i i^2 = n(2n+1)$$

このとき、全ての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$\sum_{i=1}^{2} (-1)^{i} i^{2} = -1 + 4 = 3,$$

1(2 \cdot 1 + 1) = 3.

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=1}^{2(n-1)} (-1)^i i^2 = (n-1)(2n-1)$ であるので、

$$\begin{split} \sum_{i=1}^{2n} (-1)^i i^2 &= (2n)^2 - (2n-1)^2 + \sum_{i=1}^{2n-2} (-1)^i i^2 \\ &= (2n)^2 - (2n-1)^2 + (n-1)(2n-1) \\ &= (2n+2n-1)(2n-2n+1) + (n-1)(2n-1) \\ &= 4n-1+2n^2-3n+1 \\ &= 2n^2+n \\ &= n(2n+1). \end{split}$$

注 7.3. Proposition 1 をみとめ、数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$\sum_{i=1}^{2n} (-1)^{i} i^{2} = \sum_{i=1}^{n} (-1)^{2i-1} (2i-1)^{2} + \sum_{i=1}^{n} (-1)^{2i} (2i)^{2}$$

$$= \sum_{i=1}^{n} -(2i-1)^{2} + \sum_{i=1}^{n} (2i)^{2}$$

$$= \sum_{i=1}^{n} (-(2i-1)^{2} + (2i)^{2})$$

$$= \sum_{i=1}^{n} (2i-2i+1)(2i+2i-1)$$

$$= \sum_{i=1}^{n} (4i-1)$$

$$= 4 \sum_{i=1}^{n} i - \sum_{i=1}^{n} 1$$

$$= 4 \frac{n(n+1)}{2} - n$$

$$= 2n(n+1) - n$$

$$= n(2(n+1) - 1)$$

$$= n(2n+1).$$

p:20230710 **Proposition 8.** $\forall n \in \mathbb{N}, \ \sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4}$

証明 8.1. $0^3=0=\frac{0^2\cdot 1^2}{4}$ である。また, $n^3+\sum_{i=0}^{n-1}i^3=\sum_{i=0}^ni^3$, $n^3+\frac{(n-1)^2n^2}{4}=\frac{4n^3+(n-1)^2n^2}{4}=\frac{n^2(4n+(n-1)^2)}{4}=\frac{n^2(4n+(n-1)^2)}{4}$ であるので,n に関する数学的帰納法により示せる.

証明 8.2. P(n) を次の命題とする:

$$\sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$\sum_{i=0}^{0} i^3 = 0,$$
$$\frac{0^2 (0+1)^2}{4} = 0.$$

Induction Step: P(n-1) \Longrightarrow P(n) を示す. 仮定から $\sum_{i=0}^{n-1} i^3 = \frac{(n-1)^2 n^2}{4}$ であるので、

$$\sum_{i=0}^{n} i^3 = n^3 + \sum_{i=0}^{n-1} i^3$$

$$n^3 + \frac{(n-1)^2 n^2}{4}$$

$$= \frac{4n^3 + (n-1)^2 n^2}{4}$$

$$= \frac{n^2 (4n + (n-1)^2)}{4}$$

$$= \frac{n^2 (4n + n^2 - 2n + 1)}{4}$$

$$= \frac{n^2 (n^2 + 2n + 1)}{4}$$

$$= \frac{n^2 (n+1)^2}{4}.$$

注 8.3. Propositions 1 and 4 をみとめ、数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$S = \sum_{i=0}^{n} i^{3}$$

$$T = \sum_{i=1}^{n} (i^{4} - (i-1)^{4})$$

とする. このとき,

$$T = \sum_{i=1}^{n} i^{4} - \sum_{i=1}^{n} (i-1)^{4}$$

$$= \sum_{i=1}^{n} i^{4} - \sum_{i=0}^{n-1} i^{4}$$

$$= (n^{4} + \sum_{i=1}^{n-1} i^{4}) - (\sum_{i=1}^{n-1} i^{4}) + 0^{4})$$

$$= n^{4}$$

一方次のようにも計算できる:

$$T = \sum_{i=1}^{n} (i^4 - (i^4 - 4i^3 + 6i^2 - 4i + 1))$$

$$= \sum_{i=1}^{n} (4i^3 - 6i^2 + 4i - 1)$$

$$= 4\sum_{i=1}^{n} i^3 - 6\sum_{i=1}^{n} i^2 + 4\sum_{i=1}^{n} i - \sum_{i=1}^{n} 1)$$

$$= 4S - 6\frac{n(n+1)(2n+1)}{6} + 4\frac{n(n+1)}{2} - n$$

$$= 4S - n(n+1)(2n+1) + 2n(n+1) - n$$

$$= 4S + n(-(n+1)(2n+1) + 2(n+1) - 1)$$

$$= 4S + n((n+1)(-(2n+1) + 2) - 1)$$

$$= 4S + n((n+1)(-2n+1) - 1)$$

$$= 4S + n(-2n^2 - n + 1 - 1)$$

$$= 4S + n(-2n^2 - n)$$

$$= 4S + n^2(-2n - 1)$$

したがって,

$$n^{4} = 4S + n^{2}(-2n - 1)$$

$$4S = n^{4} + n^{2}(2n + 1)$$

$$4S = n^{2}(n^{2} + (2n + 1))$$

$$4S = n^{2}(n^{2} + 2n + 1)$$

$$4S = n^{2}(n + 1)^{2}$$

$$S = \frac{n^{2}(n + 1)^{2}}{4}.$$

Proposition 9. $\forall n \in \mathbb{N}, \ \left(\sum_{i=0}^{n} i\right)^2 = \sum_{i=0}^{n} i^3.$

証明 9.1. $0^2 = 0 = 0^3$ である. また,

$$\left(\sum_{i=0}^{n} i\right)^{2} - \left(\sum_{i=0}^{n-1} i\right)^{2} = \left(\sum_{i=0}^{n} i - \sum_{i=0}^{n-1} i\right) \left(\sum_{i=0}^{n} i + \sum_{i=0}^{n-1} i\right)$$

$$= n\left(-n + 2\sum_{i=0}^{n} i\right)$$

$$= n(-n + n(n+1))$$

$$= n^{3},$$

$$\sum_{i=0}^{n} i^{3} - \sum_{i=0}^{n-1} i^{3} = n^{3}$$

であるので、n に関する数学的帰納法により示せる.

証明 9.2. P(n) を次の命題とする:

$$\left(\sum_{i=0}^{n} i\right)^{2} = \sum_{i=0}^{n} i^{3}.$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$\left(\sum_{i=0}^{0} i\right)^{2} = 0^{2} = 0$$
$$\sum_{i=0}^{0} i^{3} = 0^{3} = 0.$$

Induction Step: $P(n-1) \implies P(n)$ を示す.

$$\left(\sum_{i=0}^{n} i\right)^{2} - \left(\sum_{i=0}^{n-1} i\right)^{2} = \left(\sum_{i=0}^{n} i - \sum_{i=0}^{n-1} i\right) \left(\sum_{i=0}^{n} i + \sum_{i=0}^{n-1} i\right)$$

$$= n\left(-n + 2\sum_{i=0}^{n} i\right)$$

$$= n(-n + 2\frac{n(n+1)}{2})$$

$$= n(-n + n(n+1))$$

$$= nn^{2}$$

である. 仮定から $\left(\sum_{i=0}^{n-1}i\right)^2=\sum_{i=0}^{n-1}i^3$ であるので,

$$\left(\sum_{i=0}^{n} i\right)^{2}$$

$$= n^{3} + \left(\sum_{i=0}^{n-1} i\right)^{2}$$

$$= n^{3} + \sum_{i=0}^{n-1} i^{3}$$
$$= \sum_{i=0}^{n} i^{3}.$$

注 9.3. Propositions 1 and 8 をみとめ、数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$
$$\sum_{i=0}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

であるので,

$$\left(\sum_{i=0}^{n} i\right)^{2} = \left(\frac{n(n+1)}{2}\right)^{2}$$
$$= \sum_{i=0}^{n} i^{3}.$$

Proposition 10. $\forall n \in \mathbb{N}, \ \sum_{i=0}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$

証明 10.1. $0(0+1)=0=\frac{0(0+1)(0+2)}{3}$ である。また, $\sum_{i=0}^n i(i+1)-\sum_{i=0}^{n-1} i(i+1)=n(n+1)$, $\frac{n(n+1)(n+2)}{3}-\frac{(n-1)n(n+1)}{3}=\frac{n(n+1)((n+2)-(n-1))}{3}=n(n+1)$ であるので,n に関する数学的帰納法により示せる.

証明 10.2. P(n) を次の命題とする:

$$\sum_{i=0}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}.$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$0 \cdot 1 = 0,$$
$$\frac{0 \cdot 1 \cdot 2}{3} = 0.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=0}^{n-1} i(i+1) = \frac{(n-1)n(n+1)}{3}$ であるので、

$$\sum_{i=0}^{n} i(i+1) = n(n+1) + \sum_{i=0}^{n-1} i(i+1)$$

$$= n(n+1) + \frac{(n-1)n(n+1)}{3}$$

$$= \frac{3n(n+1) + (n-1)n(n+1)}{3}$$

$$= \frac{n(n+1)(3+(n-1))}{3}$$

$$= \frac{n(n+1)(n+2)}{3}.$$

注 10.3. Propositions 1 and 4 をみとめ、数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$\begin{split} \sum_{i=0}^{n} i(i+1) &= \sum_{i=0}^{n} (i^2 + i) \\ &= \sum_{i=0}^{n} i^2 + \sum_{i=0}^{n} i \\ &= \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \\ &= \frac{n(n+1)(2n+1) + 3n(n+1)}{6} \\ &= \frac{n(n+1)((2n+1) + 3)}{6} \\ &= \frac{n(n+1)(2n+4)}{6} \\ &= \frac{n(n+1)(n+2)}{3}. \end{split}$$

注 10.4. Proposition 13 は、この一般化である.

p:20230719 Proposition 11. $\forall n \in \mathbb{Z}_{>0}, \sum_{i=1}^{n} (2i-1)2i = \frac{n(n+1)(4n-1)}{3}$.

証明 11.1. $1 \cdot 2 = 2 = \frac{1(1+1)(4-1)}{3}$ である。また、 $\sum_{i=1}^{n}(2i-1)2i - \sum_{i=1}^{n-1}(2i-1)2i = (2n-1)2n$ 、 $\frac{n(n+1)(4n-1)}{3} - \frac{(n-1)n(4n-5)}{3} = \frac{n(n+1)(4n-1)-(n-1)n(4n-5)}{3} = \frac{n((n+1)(4n-1)-(n-1)(4n-5))}{3} = \frac{n(4n^2+3n-1-4n^2+9n-5)}{3} = \frac{n(12n-6)}{3} = \frac{6n(2n-1)}{3}2n(2n-1)$ であるので、n に関する数学的帰納法により示せる。

証明 11.2. P(n) を次の命題とする:

$$\sum_{i=1}^{n} (2i-1)2i = \frac{n(n+1)(4n-1)}{3}.$$

このとき、全ての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$1 \cdot 2 = 2,$$

$$\frac{1 \cdot 2 \cdot 3}{3} = 2.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=1}^{n-1} (2i-1)2i = \frac{(n-1)n(4n-5)}{3}$ であるので、

$$\sum_{i=1}^{n} (2i-1)2i = (2n-1)2n + \sum_{i=1}^{n-1} (2i-1)2i$$

$$= (2n-1)2n + \frac{(n-1)n(4n-5)}{3}$$

$$= \frac{(2n-1)6n + (n-1)n(4n-5)}{3}$$

$$= \frac{n((2n-1)6 + (n-1)(4n-5))}{3}$$

$$= \frac{n(12n-6 + 4n^2 - 9n + 5)}{3}$$

$$= \frac{n(4n^2 + 3n - 1)}{3}$$
$$= \frac{n(n+1)(4n+1)}{3}.$$

注 11.3. Propositions 1 and 4 をみとめ、数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$\sum_{i=1}^{n} (2i-1)2i = \sum_{i=1}^{n} (4i^{2}-2i)$$

$$= 4\sum_{i=1}^{n} i^{2} - 2\sum_{i=1}^{n} i)$$

$$= 4\frac{n(n+1)(2n+1)}{6} - 2\frac{n(n+1)}{2}$$

$$= \frac{2n(n+1)(2n+1)}{3} - n(n+1)$$

$$= \frac{2n(n+1)(2n+1) - 3n(n+1)}{3}$$

$$= \frac{n(n+1)(2(2n+1) - 3)}{3}$$

$$= \frac{n(n+1)(4n+1)}{3}.$$

p:20230717

Proposition 12. $\forall k \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ \sum_{i=0}^{n} {i+k \choose k} = {n+k+1 \choose k+1}$

証明 12.1. $k\in\mathbb{N}$ とする.このとき, $\binom{k}{k}=1=\binom{k+1}{k+1}$ である.また, $\sum_{i=0}^n\binom{i+k}{k}-\sum_{i=0}^{n-1}\binom{i+k}{k}=\binom{n+k}{k}$,($\binom{n+k+1}{k+1}-\binom{n-1+k+1}{k+1}=\binom{n+k+1}{k+1}-\binom{n+k}{k+1}-\binom{n+k}{k+1}=\binom{n+k}{k}$ であるので,n に関する数学的 帰納法により示せる

証明 12.2. $k \in \mathbb{N}$ とする.

P(n) を次の命題とする:

$$\sum_{i=0}^{n} \binom{i+k}{k} = \binom{n+k+1}{k+1}.$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$\sum_{i=0}^{0} \binom{i+k}{k} = \binom{k}{k} = 1$$
$$\binom{0+k+1}{k+1} = \binom{k+1}{k+1} = 1.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=0}^{n-1} \binom{i+k}{k} = \binom{n+k}{k+1}$ であるので,

$$\sum_{i=0}^{n} {i+k \choose k} = {n+k \choose k} + \sum_{i=0}^{n-1} {i+k \choose k}$$
$$= {n+k \choose k} + {n+k \choose k+1}$$

$$= \binom{n+k}{k} + \binom{n+k}{k+1}$$
$$= \binom{n+k+1}{k+1}.$$

注 12.3. 数学的帰納法を用いず、以下のように示すこともできる:

$$X = \{ (t_1 \dots, t_k, t_{k+1}) \mid 1 \le t_1 < \dots < t_k < t_{k+1} \le n + k + 1 \}$$

$$X_i = \{ (t_1 \dots, t_k, k + 1 + i) \mid 1 \le t_1 < \dots < t_k < k + 1 + i \}$$

とおく. このとき,

$$\coprod_{i=0}^{n} X_i = X$$

であり,

$$|X| = \binom{n+k+1}{k+1}$$
$$|X_i| = \binom{i+k}{k}$$

であるので,

$$\sum_{i=0}^{n} {i+k \choose k} = \sum_{i=0}^{n} |X_i| = \left| \prod_{i=0}^{n} X_i \right| = |X| = {n+k+1 \choose k+1}.$$

Proposition 13. $\forall m \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ \sum_{i=0}^{n} \prod_{k=1}^{m} (i+k) = \frac{\prod_{k=1}^{m+1} (n+k)}{m+1}.$

証明 13.1. $m\in\mathbb{N}$ とする. このとき, $\prod_{k=1}^m(k)=rac{\prod_{k=1}^{m+1}(k)}{m+1}$ である. また,

$$\begin{split} \sum_{i=0}^{n} \prod_{k=1}^{m} (i+k) - \sum_{i=0}^{n-1} \prod_{k=1}^{m} (i+k) &= \prod_{k=1}^{m} (n+k) \\ \frac{\prod_{k=1}^{m+1} (n+k)}{m+1} - \frac{\prod_{k=1}^{m+1} (n-1+k)}{m+1} &= \frac{\prod_{k=1}^{m+1} (n+k) - \prod_{k=1}^{m+1} (n-1+k)}{m+1} \\ &= \frac{\prod_{k=1}^{m+1} (n+k) - \prod_{k=0}^{m} (n+k)}{m+1} \\ &= \frac{\prod_{k=1}^{m} (n+k) \cdot ((n+m+1) - n)}{m+1} \\ &= \frac{\prod_{k=1}^{m} (n+k) \cdot (m+1)}{m+1} \\ &= \prod_{k=1}^{m} (n+k) \end{split}$$

であるので, n に関する数学的帰納法により示せる.

証明 13.2. $m \in \mathbb{N}$ とする.

P(n) を次の命題とする:

$$\sum_{i=0}^{n} \prod_{k=1}^{m} (i+k) = \frac{\prod_{k=1}^{m+1} (n+k)}{m+1}$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$\sum_{i=0}^{0} \prod_{k=1}^{m} (i+k) = \prod_{k=1}^{m} k = m!.$$

$$\frac{\prod_{k=1}^{m+1} k}{m+1} = \frac{(m+1)!}{m+1} = m!.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=0}^{n-1} \prod_{k=1}^m (i+k) = \frac{\prod_{k=1}^{m+1} (n-1+k)}{m+1}$ であるので、

$$\begin{split} \sum_{i=0}^{n} \prod_{k=1}^{m} (i+k) &= \prod_{k=1}^{m} (n+k) + \sum_{i=0}^{n-1} \prod_{k=1}^{m} (i+k) \\ &= \prod_{k=1}^{m} (n+k) + \frac{\prod_{k=1}^{m+1} (n-1+k)}{m+1} \\ &= \frac{(m+1) \prod_{k=1}^{m} (n+k) + \prod_{k=1}^{m+1} (n-1+k)}{m+1} \\ &= \frac{(m+1) \prod_{k=1}^{m} (n+k) + \prod_{k=0}^{m} (n+k)}{m+1} \\ &= \frac{(m+1) + (n) \prod_{k=1}^{m} (n+k)}{m+1} \\ &= \frac{(n+m+1) \prod_{k=1}^{m} (n+k)}{m+1} \\ &= \frac{\prod_{k=1}^{m+1} (n+k)}{m+1}. \end{split}$$

注 13.3. Proposition 12 を認めれば、数学的帰納法を用いず、以下のように示すこともできる:

$$\sum_{i=0}^{n} \binom{i+m}{m} = \binom{n+m+1}{m+1}$$

$$\sum_{i=0}^{n} \frac{\prod_{k=1}^{m} (i+k)}{m!} = \frac{\prod_{i=1}^{m+1} (n+k)}{(m+1)!}$$

$$m! \sum_{i=0}^{n} \frac{\prod_{k=1}^{m} (i+k)}{m!} = m! \frac{\prod_{i=1}^{m+1} (n+k)}{(m+1)!}$$

$$\prod_{k=1}^{m} (i+k) = \frac{\prod_{i=1}^{m+1} (n+k)}{m+1}.$$

Proposition 14. $\forall x \neq 0, \ \forall n \in \mathbb{N}, \ \sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x}.$

証明 14.1. $x \neq 0$ とする. このとき, $x^0 = 1 = \frac{x-1}{x-1}$ である. また,

$$\sum_{i=0}^{n} x^{i} - \sum_{i=0}^{n-1} x^{i} = x^{n}$$

$$\frac{1 - x^{n+1}}{1 - x} - \frac{1 - x^{n}}{1 - x} = \frac{-x^{n+1} + x^{n}}{1 - x} = \frac{x^{n}(-x + 1)}{1 - x} = x^{n}$$

であるので、n に関する数学的帰納法により示せる。

証明 14.2. $x \neq 0$ とする.

P(n) を次の命題とする:

$$\sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}.$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$\sum_{i=0}^{0} x^{i} = 1,$$
$$\frac{1 - x^{1}}{1 - x} = 1.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=0}^{n-1} x^i = \frac{1-x^n}{1-x}$ であるので、

$$\overline{1-x}=1.$$
 $P(n)$ を示す.仮定から $\sum_{i=0}^{n-1}x^i=rac{1-x^n}{1-x^n}$ $\sum_{i=0}^nx^i=x^n+\sum_{i=0}^{n-1}x^i$ $=x^n+rac{1-x^n}{1-x}$ $=rac{x^n(1-x)+1-x^n}{1-x}$ $=rac{x^n-x^{n+1}+1-x^n}{1-x}$ $=rac{-x^{n+1}+1}{1-x}$ $=rac{1-x^{n+1}}{1-x}$.

注 14.3. 数学的帰納法を用いず、以下のように示す方が一般的だと思う: $x \neq 1$ とし、 $S = \sum_{i=0}^n x^i$ とおく.

$$(1-x)S = \sum_{i=0}^{n} x^{i} - x \sum_{i=0}^{n} x^{i}$$

$$= \sum_{i=0}^{n} x^{i} - \sum_{i=0}^{n} x^{i+1}$$

$$= \sum_{i=0}^{n} x^{i} - \sum_{i=1}^{n+1} x^{i}$$

$$= x^{0} - x^{n+1} + \sum_{i=1}^{n} x^{i} - \sum_{i=1}^{n} x^{i}$$

$$= 1 - x^{n+1}.$$

$$S = \frac{1 - x^{n+1}}{1 - x}.$$

Proposition 15. $\forall x \neq 0, \ \forall n \in \mathbb{N}, \ \sum_{i=0}^{n} ix^i = \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(x-1)^2}.$

証明 15.1. $x \neq 0$ とする. このとき, $x^0 = 1$. $\frac{0x^2 - x^1 + x}{(x-1)^2} = 0$ である. また,

であるので、n に関する数学的帰納法により示せる.

証明 15.2. $x \neq 0$ とする.

P(n) を次の命題とする:

$$\sum_{i=0}^{n} ix^{i} = \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(x-1)^{2}}.$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$\sum_{i=0}^{0} ix^{i} = 0,$$

$$\frac{0x^{0+2} - (0+1)x^{0+1} + x}{(x-1)^{2}} = \frac{0 - x + x}{(x-1)^{2}} = 0.$$

Induction Step: P(n-1) \Longrightarrow P(n) を示す. 仮定から $\sum_{i=0}^{n-1} ix^i = \frac{(n-1)x^{n+1} - nx^n + x}{(x-1)^2}$ であるので、

$$\sum_{i=0}^{n} ix^{i} = nx^{n} + \sum_{i=0}^{n-1} ix^{i}$$

$$= nx^{n} + \frac{(n-1)x^{n+1} - nx^{n} + x}{(x-1)^{2}}$$

$$= \frac{nx^{n}(x-1)^{2} + (n-1)x^{n+1} - nx^{n} + x}{(x-1)^{2}}$$

$$= \frac{nx^{n}(x^{2} - 2x + 1) + (n-1)x^{n+1} - nx^{n} + x}{(x-1)^{2}}$$

$$= \frac{nx^{n+2} - 2nx^{n+1} + nx^{n} + (n-1)x^{n+1} - nx^{n} + x}{(x-1)^{2}}$$

$$= \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(x-1)^{2}}.$$

注 15.3. Proposition 14 を認めて、数学的帰納法を用いず、以下のように示す方が一般的だと思う: $x \neq 1$ とし、 $S = \sum_{i=0}^n ix^i$ とおく.

$$(1-x)S = \sum_{i=0}^{n} ix^{i} - x \sum_{i=0}^{n} ix^{i}$$

$$= \sum_{i=0}^{n} ix^{i} - \sum_{i=0}^{n} ix^{i+1}$$

$$= \sum_{i=0}^{n} ix^{i} - \sum_{i=1}^{n+1} (i-1)x^{i}$$

$$= 0x^{0} - nx^{n+1} + \sum_{i=1}^{n} ix^{i} - \sum_{i=1}^{n} (i-1)x^{i}$$

$$= -nx^{n+1} + \sum_{i=1}^{n} (ix^{i} - (i-1)x^{i})$$

$$= -nx^{n+1} + \sum_{i=1}^{n} x^{i}$$

$$= -nx^{n+1} - 1 + \sum_{i=0}^{n} x^{i}$$

$$= -nx^{n+1} - 1 + \frac{x^{n+1} - 1}{x - 1}$$

$$= \frac{-(nx^{n+1} + 1)(x - 1) + x^{n+1} - 1}{x - 1}$$

$$= \frac{-nx^{n+2} - x + nx^{n+1} + 1 + x^{n+1} - 1}{x - 1}$$

$$= \frac{-nx^{n+2} + (n+1)x^{n+1} - x}{x - 1}$$

$$S = \frac{-nx^{n+2} + (n+1)x^{n+1} - x}{(1-x)(x-1)}$$

$$= \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(1-x)^{2}}.$$

注 **15.4.** Proposition 14 を認めて、数学的帰納法を用いず、以下のように示す方が一般的だと思う: $x \neq 1$ とし, $S(x) = \sum_{i=0}^n x^i$ とおく.

$$S(x) = \sum_{i=0}^{n} x^{i}.$$

$$S(x) = \frac{x^{n+1} - 1}{x - 1}.$$

$$\frac{d}{dx}S(x) = \sum_{i=0}^{n} ix^{i-1}.$$

$$\frac{d}{dx}S(x) = \frac{(n+1)x^{n}(x-1) - (x^{n+1} - 1)}{(x-1)^{2}}$$

$$= \frac{(n+1)(x^{n+1} - x^{n}) - x^{n+1} + 1}{(x-1)^{2}}.$$

$$= \frac{nx^{n+1} - (n+1)x^{n} + 1}{(x-1)^{2}}.$$

$$x\frac{d}{dx}S(x) = \sum_{i=0}^{n} ix^{i}.$$

$$x\frac{d}{dx}S(x) = \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(x-1)^{2}}.$$

Proposition 16. $\forall n \in \mathbb{Z}_{>0}, \ \sum_{i=1}^{n} (3i-2)2^{i-1} = (3n-5)2^n + 5.$

証明 16.1. $(3-2)2^{1-1} = 1 = (3-5)2^1 + 5$ である. また、

$$\sum_{i=1}^{n} (3i-2)2^{i-1} - \sum_{i=1}^{n-1} (3i-2)2^{i-1} = (3n-2)2^{n-1}$$

$$(3n-5)2^{n} + 5 - ((3(n-1)-5)2^{n-1} + 5) = (2(3n-5) - (3(n-1)-5))2^{n-1}$$

$$= (6n-10-3n+8)2^{n-1}$$

$$= (3n-2)2^{n-1}$$

であるので,n に関する数学的帰納法により示せる.

証明 16.2. P(n) を次の命題とする:

$$\sum_{i=1}^{n} (3i-2)2^{i-1} = (3n-5)2^{n} + 5.$$

このとき、全ての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$\sum_{i=0}^{1} (3i-2)2^{i-1} = (3i-1)2^{1-1} = 1,$$
$$(3n-5)2^{n} + 5 = (3-5)2^{1} + 5 = -4 + 5 = 1.$$

Induction Step: P(n-1) \Longrightarrow P(n) を示す. 仮定から $\sum_{i=1}^{n-1}(3i-2)2^{i-1}=(3n-8)2^{n-1}+5$ であるので、

$$\begin{split} \sum_{i=1}^{n} (3i-2)2^{i-1} &= (3n-2)2^{n-1} + \sum_{i=1}^{n-1} (3i-2)2^{i-1} \\ &= (3n-2)2^{n-1} + (3n-8)2^{n-1} + 5 \\ &= 2^{n-1}3n - 2^{n-1}2 + 2^{n-1}3n - 2^{n-1}8 + 5 \\ &= 2^{n-1}3n + 2^{n-1}3n - 2^{n-1}2 - 2^{n-1}8 + 5 \\ &= 2 \cdot 2^{n-1}3n - 2^{n-1}(2+8) + 5 \\ &= 2 \cdot 2^{n-1}3n - 2^{n-1}10 + 5 \\ &= 2^n 3n - 2^n 5 + 5 \\ &= (3n-5)2^n + 5. \end{split}$$

注 16.3. Proposition 14 を認めて、数学的帰納法を用いず、以下のように示す方が一般的だと思う: $S=\sum_{i=1}^n (3i-2)2^{i-1}$ とおく.

$$(1-2)S = \sum_{i=1}^{n} (3i-2)2^{i-1} - 2\sum_{i=1}^{n} (3i-2)2^{i-1}$$
$$= \sum_{i=1}^{n} (3i-2)2^{i-1} - \sum_{i=1}^{n} (3i-2)2^{i}$$

$$\begin{split} &= \sum_{i=0}^{n-1} (3i+1)2^i - \sum_{i=1}^n (3i-2)2^i \\ &= (3\cdot 0+1)2^0 - (3n-2)2^n + \sum_{i=1}^{n-1} (3i+1)2^i - \sum_{i=1}^{n-1} (3i-2)2^i \\ &= 1 - (3n-2)2^n + \sum_{i=1}^{n-1} ((3i+1)2^i - (3i-2)2^i) \\ &= 1 - (3n-2)2^n + \sum_{i=1}^{n-1} 3 \cdot 2^i \\ &= 1 - (3n-2)2^n + 3 \cdot 2 \sum_{i=1}^{n-1} \cdot 2^{i-1} \\ &= 1 - (3n-2)2^n + 3 \cdot 2 \sum_{i=0}^{n-2} \cdot 2^i \\ &= 1 - (3n-2)2^n + 3 \cdot 2 \frac{1-2^{n-1}}{1-2} \\ &= 1 - (3n-2)2^n - 6 + 3 \cdot 2^n \\ &= -5 + (-3n+5)2^n. \end{split}$$

2.1.2 整数や整式の積に関するもの

p:20230723

Proposition 17. $\forall n \in \mathbb{N}, (2n)!! = 2^n n!.$

証明 17.1. $0!! = 1 = 2^0 0!$ である. また,

$$\frac{(2n)!!}{(2n-2)!!} = 2n$$

$$\frac{2^n n!}{2^{n-1}(n-1)!} = \frac{2^n}{2^{n-1}} \frac{n!}{(n-1)!} = 2n$$

であるので、n に関する数学的帰納法により示せる.

証明 17.2. P(n) を次の命題とする:

$$(2n)!! = 2^n n!.$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$0!! = 1.$$

$$2^00! = 1.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $(2n-2)!! = 2^{n-1}(n-1)!$ であるので、

$$(2n)!! = 2n(2n-2)!!$$

$$= 2n2^{n-1}(n-1)!$$

$$= 2^{n}n(n-1)!$$

$$= 2^{n}n!.$$

注 17.3. 数学的帰納法を用いず、以下のように示す方が一般的だと思う: n=0 のときは、定義から $0!!=1=2^00!$. n>0 のときは、

$$(2n)!! = \prod_{i=1}^{n} (2i)$$

$$= \prod_{i=1}^{n} 2 \prod_{i=1}^{n} i$$

$$= 2^{n} n!.$$

p:20230724 Proposition 18. $\forall n \in \mathbb{N}, (2n+1)!! = \frac{(2n+1)!}{2^n n!}$.

証明 18.1. $1!! = 1 = \frac{1}{2^0 \cdot 1!}$ である. また,

$$\frac{(2n+1)!!}{(2n-1)!!} = 2n+1$$

$$\frac{\frac{(2n+1)!}{2^n n!}}{\frac{(2n-1)!}{2^{n-1}(n-1)!}} = \frac{(2n+1)! \cdot 2^{n-1}(n-1)!}{2^n n! \cdot (2n-1)!} = \frac{(2n+1)!}{(2n-1)!} \frac{(n-1)!}{n!} \frac{2^{n-1}}{2^n} = \frac{2n(2n+1) \cdot 1 \cdot 1}{1 \cdot 2 \cdot n} = 2n+1$$

であるので、n に関する数学的帰納法により示せる.

証明 18.2. P(n) を次の命題とする:

$$(2n+1)!! = \frac{(2n+1)!}{2^n n!}.$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$1!! = 1.$$
$$\frac{(0+1)!}{2^0 0!} = 1.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $(2n-1)!! = \frac{(2n-1)!}{2^{n-1}(n-1)!}$ であるので、

$$(2n+1)!! = (2n+1) \cdot (2n-1)!!$$

$$= (2n+1) \cdot \frac{(2n-1)!}{2^{n-1}(n-1)!}$$

$$= \frac{(2n+1)2n}{2n} \cdot \frac{(2n-1)!}{2^{n-1}(n-1)!}$$

$$= \frac{(2n+1)!}{2^n n!}.$$

注 18.3. Proposition 17 をみとめて、数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$(2n+1)!! = \frac{(2n+1)!}{(2n)!!} = \frac{(2n+1)!}{2^n n!}.$$

Proposition 19. $\forall n \in \mathbb{Z}_{>0}, \ \frac{(2n)!}{n!} = 2^n (2n-1)!!.$

証明 19.1. $\frac{2!}{1!} = 2 = 2^1 1!$ である. また,

$$\frac{\frac{(2n)!}{n!}}{\frac{(2n-2)!}{(n-1)!}} = \frac{(2n)!(n-1)!}{(2n-2)!n!} = \frac{2n \cdot 2n - 1}{n} = 2(2n-1)$$

$$\frac{2^n(2n-1)!!}{2^{n-1}(2n-3)!!} = 2(2n-1)$$

であるので、n に関する数学的帰納法により示せる.

証明 19.2. P(n) を次の命題とする:

$$\frac{(2n)!}{n!} = 2^n(2n-1)!!.$$

このとき、全ての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$\frac{2!}{1!} = 2,$$
$$2^{1}1! = 2.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\frac{(2(n-1))!}{(n-1)!} = 2^{n-1}(2n-3)!!$ であるので、

 $\frac{(2n)!}{n!} = \frac{2n \cdot (2n-1)}{n} \frac{(2n-2)!}{(n-1)!}$ $= 2(2n-1) \frac{(2(n-1))!}{(n-1)!}$ $= 2(2n-1)2^{n-1}(2n-3)!!$ $= 2^{n}(2n-1)!!.$

注 19.3. Proposition 17 をみとめて、数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$n! \cdot 2^{n}(2n-1)!! = 2^{n}n! \cdot (2n-1)!! = (2n)!!(2n-1)!! = (2n)!.$$
$$2^{n}(2n-1)!! = \frac{(2n)!}{n!}.$$

2.1.3 有理式などの和に関するもの

Proposition 20. $\forall n \in \mathbb{Z}_{>0}, \ \sum_{i=1}^{2n} \frac{(-1)^{i+1}}{i} = \sum_{i=1}^{n} \frac{1}{n+i}.$

証明 20.1. $\frac{1}{1} - \frac{1}{2} = \frac{1}{2} = \frac{1}{1+1}$ である. また,

$$\begin{split} \sum_{i=1}^{2n} \frac{(-1)^{i+1}}{i} - \sum_{i=1}^{2n-2} \frac{(-1)^{i+1}}{i} &= \frac{1}{2n-1} - \frac{1}{2n} \\ &= \frac{2n - (2n-1)}{2n(2n-1)} \\ &= \frac{1}{2n(2n-1)} \\ \sum_{i=1}^{n} \frac{1}{n+i} - \sum_{i=1}^{n-1} \frac{1}{n-1+i} &= \sum_{i=1}^{n} \frac{1}{n+i} - \sum_{i=0}^{n-2} \frac{1}{n+i} \\ &= (\frac{1}{2n} + \frac{1}{2n-1} + \sum_{i=1}^{n-2} \frac{1}{n+i}) - (\frac{1}{n} + \sum_{i=0}^{n-2} \frac{1}{n+i}) \\ &= \frac{1}{2n} + \frac{1}{2n-1} - \frac{1}{n} \\ &= \frac{2n-1+2n-2(2n-1)}{2n(2n-1)} \\ &= \frac{1}{2n(2n-1)} \end{split}$$

であるので、n に関する数学的帰納法により示せる.

証明 20.2. P(n) を次の命題とする:

$$\sum_{i=1}^{2n} \frac{(-1)^{i+1}}{i} = \sum_{i=1}^{n} \frac{1}{n+i}.$$

このとき、全ての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$\frac{1}{1} - \frac{1}{2} = \frac{1}{2}.$$
$$\frac{1}{1+1} = \frac{1}{2}.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=1}^{2n-2} \frac{(-1)^{i+1}}{i} = \sum_{i=1}^{n-1} \frac{1}{n+i-1}$ であるので、

$$\begin{split} \sum_{i=1}^{2n} \frac{(-1)^{i+1}}{i} &= -\frac{1}{2n} + \frac{1}{2n-1} + \sum_{i=1}^{2n-2} \frac{(-1)^{i+1}}{i} \\ &= -\frac{1}{2n} + \frac{1}{2n-1} + \sum_{i=1}^{n-1} \frac{1}{n+i-1} \\ &= -\frac{1}{2n} + \frac{1}{2n-1} + \sum_{i=0}^{n-2} \frac{1}{n+i} \\ &= -\frac{1}{2n} + \sum_{i=0}^{n-1} \frac{1}{n+i} \\ &= -\frac{1}{2n} + \frac{1}{n} + \sum_{i=1}^{n-1} \frac{1}{n+i} \end{split}$$

$$= \frac{1}{2n} + \sum_{i=1}^{n-1} \frac{1}{n+i}$$
$$= \sum_{i=1}^{n} \frac{1}{n+i}.$$

Proposition 21. $\forall n \in \mathbb{Z}_{>0}, \ \sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}.$

証明 21.1. $\frac{1}{1(2)} = \frac{1}{2} = \frac{1}{1+1}$ である. また、

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} - \sum_{i=1}^{n-1} \frac{1}{i(i+1)} = \frac{1}{n(n+1)}$$
$$\frac{n}{n+1} - \frac{n-1}{n} = \frac{n^2 - (n+1)(n-1)}{n(n+1)} = \frac{n^2 - (n^2 - 1)}{n(n+1)} = \frac{1}{n(n+1)}$$

であるので, n に関する数学的帰納法により示せる.

証明 21.2. P(n) を次の命題とする:

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}.$$

このとき、全ての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$\frac{1}{1(1+1)} = \frac{1}{2}.$$
$$\frac{1}{1+1} = \frac{1}{2}.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=1}^{n-1} \frac{1}{i(i+1)} = \frac{n-1}{n}$ であるので、

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{1}{n(n+1)} + \sum_{i=1}^{n-1} \frac{1}{i(i+1)}$$

$$= \frac{1}{n(n+1)} + \frac{n-1}{n}$$

$$= \frac{1 + (n+1)(n-1)}{n(n+1)}$$

$$= \frac{1 + n^2 - 1}{n(n+1)}$$

$$= \frac{n^2}{n(n+1)}$$

$$= \frac{n}{(n+1)}.$$

注 21.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$\begin{split} \sum_{i=1}^n \frac{1}{i(i+1)} &= \sum_{i=1}^n (\frac{1}{i} - \frac{1}{i+1}) \\ &= \sum_{i=1}^n \frac{1}{i} - \sum_{i=1}^n \frac{1}{i+1} \\ &= \sum_{i=1}^n \frac{1}{i} - \sum_{i=2}^{n+1} \frac{1}{i} \\ &= (1 + \sum_{i=2}^n \frac{1}{i}) - (\frac{1}{n+1} + \sum_{i=2}^n \frac{1}{i}) \\ &= 1 - \frac{1}{n+1} \\ &= \frac{n}{n+1}. \end{split}$$

p:20230728 Proposition 22. $\forall m \in \mathbb{Z}_{>0}, \ \forall n \in \mathbb{Z}_{>0}, \ \sum_{i=1}^{n} \prod_{k=0}^{m} \frac{1}{i+k} = \frac{1}{m} \left(\frac{1}{m!} - \prod_{k=1}^{m} \frac{1}{n+k} \right)$

証明 22.1.

$$\prod_{k=0}^{m} \frac{1}{1+k} = \frac{1}{(m+1)!}$$

$$\frac{1}{m} \left(\frac{1}{m!} - \prod_{k=1}^{m} \frac{1}{1+k} \right) = \frac{1}{m} \left(\frac{1}{m!} - \frac{1}{(1+m)!} \right) = \frac{1}{m} \left(\frac{m+1}{(m+1)!} - \frac{1}{(1+m)!} \right) = \frac{1}{m} \frac{m}{(1+m)!} = \frac{1}{(m+1)!}$$

である. また

$$\sum_{i=1}^{n} \prod_{k=0}^{m} \frac{1}{i+k} - \sum_{i=1}^{n-1} \prod_{k=0}^{m} \frac{1}{i+k} = \prod_{k=0}^{m} \frac{1}{n+k}$$

$$\frac{1}{m} \left(\frac{1}{m!} - \prod_{k=1}^{m} \frac{1}{n+k} \right) - \frac{1}{m} \left(\frac{1}{m!} - \prod_{k=1}^{m} \frac{1}{n-1+k} \right) = \frac{1}{m} \left(-\prod_{k=1}^{m} \frac{1}{n+k} + \prod_{k=1}^{m} \frac{1}{n-1+k} \right)$$

$$= \frac{1}{m} \left(\frac{-n+n+m}{\prod_{k=0}^{m} n+k} \right)$$

$$= \frac{1}{m} \frac{m}{(n+m)!}$$

$$= \frac{1}{(n+m)!}$$

であるので,nに関する数学的帰納法により示せる.

証明 22.2. $\forall m \in \mathbb{Z}_{>0}$ とする. P(n) を次の命題とする:

$$\sum_{i=1}^{n} \prod_{k=0}^{m} \frac{1}{i+k} = \frac{1}{m} \left(\frac{1}{m!} - \prod_{k=1}^{m} \frac{1}{n+k} \right).$$

このとき、全ての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$\prod_{k=0}^{m} \frac{1}{1+k} = \frac{1}{(m+1)!}.$$

$$\frac{1}{m} \left(\frac{1}{m!} - \prod_{k=1}^{m} \frac{1}{1+k} \right) = \frac{1}{m} \left(\frac{1}{m!} - \frac{1}{(1+m)!} \right) = \frac{1}{m} \left(\frac{m+1}{(m+1)!} - \frac{1}{(1+m)!} \right) = \frac{1}{m} \frac{m}{(1+m)!} = \frac{1}{(m+1)!}.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=1}^{n-1} \prod_{k=0}^m \frac{1}{i+k} = \frac{1}{m} \left(\frac{1}{m!} - \prod_{k=1}^m \frac{1}{n-1+k} \right)$ であるので、

$$\sum_{i=1}^{n} \prod_{k=0}^{m} \frac{1}{i+k} = \prod_{k=0}^{m} \frac{1}{n+k} + \sum_{i=1}^{n-1} \prod_{k=0}^{m} \frac{1}{i+k}$$

$$= \prod_{k=0}^{m} \frac{1}{n+k} + \frac{1}{m} \left(\frac{1}{m!} - \prod_{k=1}^{m} \frac{1}{n-1+k} \right)$$

$$= \frac{1}{\prod_{k=0}^{m} (n+k)} + \frac{1}{m} \left(\frac{1}{m!} - \frac{1}{\prod_{k=1}^{m} (n-1+k)} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m!} + \frac{m}{\prod_{k=0}^{m} (n+k)} - \frac{1}{\prod_{k=0}^{m-1} (n+k)} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m!} + \frac{m}{\prod_{k=0}^{m} (n+k)} - \frac{n+m}{\prod_{k=0}^{m} (n+k)} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m!} + \frac{m-(n+m)}{\prod_{k=0}^{m} (n+k)} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m!} - \frac{n}{\prod_{k=0}^{m} (n+k)} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m!} - \frac{1}{\prod_{k=1}^{m} (n+k)} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m!} - \frac{1}{\prod_{k=1}^{m} (n+k)} \right)$$

証明 22.3. Proposition 21 から,

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

$$\frac{1}{1} \left(\frac{1}{1!} - \prod_{k=1}^{1} \frac{1}{n+k} \right) = \left(1 - \frac{1}{n+1} \right) = \frac{n}{n+1}$$

である. また.

$$\sum_{i=1}^{n} \prod_{k=0}^{m} \frac{1}{i+k} = \sum_{i=1}^{n} \frac{1}{\prod_{k=0}^{m} (i+k)}$$
$$= \frac{1}{m} \sum_{i=1}^{n} \frac{m}{\prod_{k=0}^{m} (i+k)}$$

$$\begin{split} &= \frac{1}{m} \sum_{i=1}^{n} \frac{m+i-i}{\prod_{k=0}^{m}(i+k)} \\ &= \frac{1}{m} \sum_{i=1}^{n} \left(\frac{m+i}{\prod_{k=0}^{m}(i+k)} - \frac{i}{\prod_{k=0}^{m}(i+k)} \right) \\ &= \frac{1}{m} \sum_{i=1}^{n} \left(\frac{1}{\prod_{k=0}^{m-1}(i+k)} - \frac{1}{m} \sum_{k=1}^{m} \frac{1}{\prod_{k=1}^{m}(i+k)} \right) \\ &= \frac{1}{m} \sum_{i=1}^{n} \frac{1}{\prod_{k=0}^{m-1}(i+k)} - \frac{1}{m} \sum_{i=1}^{n} \frac{1}{\prod_{k=1}^{m}(i+k)} . \\ &= \frac{1}{m} \sum_{i=1}^{n} \frac{1}{\prod_{k=0}^{m-1}(i+k)} - \frac{1}{m} \sum_{i=2}^{n+1} \frac{1}{\prod_{k=1}^{m}(i-1+k)} \\ &= \frac{1}{m} \sum_{i=1}^{n} \frac{1}{\prod_{k=0}^{m-1}(i+k)} - \frac{1}{m} \sum_{i=2}^{n+1} \frac{1}{\prod_{k=0}^{m-1}(i+k)} + \frac{1}{m} \frac{1}{\prod_{k=0}^{m-1}(1+k)} \\ &= \frac{1}{m} \left(\sum_{i=1}^{n} \frac{1}{\prod_{k=0}^{m-1}(i+k)} - \sum_{i=1}^{n+1} \frac{1}{\prod_{k=0}^{m-1}(i+k)} + \frac{1}{m} \frac{1}{\prod_{k=0}^{m-1}(1+k)} \right) \\ &= \frac{1}{m} \left(\sum_{i=1}^{n} \frac{1}{\prod_{k=0}^{m-1}(i+k)} - \sum_{i=1}^{n+1} \frac{1}{\prod_{k=0}^{m-1}(i+k)} + \frac{1}{m!} \right) \end{split}$$

であるが,

$$\begin{split} &\frac{1}{m} \left(\frac{1}{m-1} \left(\frac{1}{(m-1)!} - \prod_{k=1}^{m-1} \frac{1}{n+k} \right) - \frac{1}{m-1} \left(\frac{1}{(m-1)!} - \prod_{k=1}^{m-1} \frac{1}{n+1+k} \right) + \frac{1}{m!} \right) \\ &= \frac{1}{m} \left(\frac{1}{m-1} \left(-\frac{1}{\prod_{k=1}^{m-1} (n+k)} \right) - \frac{1}{m-1} \left(-\frac{1}{\prod_{k=1}^{m-1} (n+1+k)} \right) + \frac{1}{m!} \right) \\ &= \frac{1}{m} \left(\frac{1}{m-1} \left(-\frac{1}{\prod_{k=1}^{m-1} (n+k)} + \frac{1}{\prod_{k=1}^{m} (n+k)} \right) + \frac{1}{m!} \right) \\ &= \frac{1}{m} \left(\frac{1}{m-1} \left(-\frac{1}{\prod_{k=1}^{m} (n+k)} + \frac{n+1}{\prod_{k=1}^{m} (n+k)} \right) + \frac{1}{m!} \right) \\ &= \frac{1}{m} \left(\frac{1}{m-1} \frac{1-m}{\prod_{k=1}^{m} (n+k)} + \frac{1}{m!} \right) \\ &= \frac{1}{m} \left(-\frac{1}{\prod_{k=1}^{m} (n+k)} + \frac{1}{m!} \right) \\ &= \frac{1}{m} \left(-\frac{1}{\prod_{k=1}^{m} (n+k)} + \frac{1}{m!} \right) \\ &= \frac{1}{m} \left(\frac{1}{m!} - \frac{1}{\prod_{k=1}^{m} (n+k)} \right) \end{split}$$

であるので、m に関する数学的帰納法により示せる.

証明 22.4. $\forall n \in \mathbb{Z}_{>0}$ とする. P(m) を次の命題とする:

$$\sum_{i=1}^{n} \prod_{k=0}^{m} \frac{1}{i+k} = \frac{1}{m} \left(\frac{1}{m!} - \prod_{k=1}^{m} \frac{1}{n+k} \right).$$

このとき、全ての $m \in \mathbb{Z}_{>0}$ で P(m) が成り立つことを、数学的帰納法で示す.

Base Case:

$$\begin{split} \sum_{i=1}^n \frac{1}{i(i+1)} &= \sum_{i=1}^n (\frac{1}{i} - \frac{1}{i+1}) \\ &= \sum_{i=1}^n \frac{1}{i} - \sum_{i=1}^n \frac{1}{i+1} \\ &= \sum_{i=1}^n \frac{1}{i} - \sum_{i=2}^{n+1} \frac{1}{i} \\ &= (1 + \sum_{i=2}^n \frac{1}{i}) - (\frac{1}{n+1} + \sum_{i=2}^n \frac{1}{i}) \\ &= 1 - \frac{1}{n+1} \\ &= \frac{n}{n+1}. \end{split}$$

であるので, P(1) が成り立つ.

Induction Step: $P(m-1) \implies P(m)$ を示す. 仮定から

$$\sum_{i=1}^{n} \prod_{k=0}^{m-1} \frac{1}{i+k} = \frac{1}{m-1} \left(\frac{1}{(m-1)!} - \prod_{k=1}^{m-1} \frac{1}{n+k} \right)$$

$$\sum_{i=1}^{n+1} \prod_{k=0}^{m-1} \frac{1}{i+k} = \frac{1}{m-1} \left(\frac{1}{(m-1)!} - \prod_{k=1}^{m-1} \frac{1}{n+1+k} \right)$$

であるので,

$$\begin{split} \sum_{i=1}^{n} \prod_{k=0}^{m} \frac{1}{i+k} &= \sum_{i=1}^{n} \frac{1}{\prod_{k=0}^{m} (i+k)} \\ &= \frac{1}{m} \sum_{i=1}^{n} \frac{m}{\prod_{k=0}^{m} (i+k)} \\ &= \frac{1}{m} \sum_{i=1}^{n} \frac{m+i-i}{\prod_{k=0}^{m} (i+k)} \\ &= \frac{1}{m} \sum_{i=1}^{n} \left(\frac{m+i}{\prod_{k=0}^{m} (i+k)} - \frac{i}{\prod_{k=0}^{m} (i+k)} \right) \\ &= \frac{1}{m} \sum_{i=1}^{n} \left(\frac{1}{\prod_{k=0}^{m-1} (i+k)} - \frac{1}{\prod_{k=1}^{m} (i+k)} \right) \\ &= \frac{1}{m} \sum_{i=1}^{n} \frac{1}{\prod_{k=0}^{m-1} (i+k)} - \frac{1}{m} \sum_{i=1}^{n} \frac{1}{\prod_{k=1}^{m} (i+k)}. \end{split}$$

$$\begin{split} &=\frac{1}{m}\sum_{i=1}^{n}\frac{1}{\prod_{k=0}^{m-1}(i+k)}-\frac{1}{m}\sum_{i=2}^{m-1}\frac{1}{\prod_{k=0}^{m-1}(i+k)}\\ &=\frac{1}{m}\sum_{i=1}^{n}\frac{1}{\prod_{k=0}^{m-1}(i+k)}-\frac{1}{m}\sum_{i=2}^{n+1}\frac{1}{\prod_{k=0}^{m-1}(i+k)}\\ &=\frac{1}{m}\sum_{i=1}^{n}\frac{1}{\prod_{k=0}^{m-1}(i+k)}-\frac{1}{m}\sum_{i=1}^{n+1}\frac{1}{\prod_{k=0}^{m-1}(i+k)}+\frac{1}{m}\frac{1}{\prod_{k=0}^{m-1}(1+k)}\\ &=\frac{1}{m}\left(\sum_{i=1}^{n}\frac{1}{\prod_{k=0}^{m-1}(i+k)}-\sum_{i=1}^{n+1}\frac{1}{\prod_{k=0}^{m-1}(i+k)}+\frac{1}{m!}\right)\\ &=\frac{1}{m}\left(\sum_{i=1}^{n}\frac{1}{\prod_{k=0}^{m-1}(i+k)}-\sum_{i=1}^{n+1}\frac{1}{\prod_{k=0}^{m-1}(i+k)}+\frac{1}{m!}\right)\\ &=\frac{1}{m}\left(\frac{1}{m-1}\left(\frac{1}{(m-1)!}-\prod_{k=1}^{m-1}\frac{1}{n+k}\right)-\frac{1}{m-1}\left(\frac{1}{(m-1)!}-\prod_{k=1}^{m-1}\frac{1}{n+1+k}\right)+\frac{1}{m!}\right)\\ &=\frac{1}{m}\left(\frac{1}{m-1}\left(-\frac{1}{\prod_{k=1}^{m-1}(n+k)}\right)-\frac{1}{m-1}\left(-\frac{1}{\prod_{k=1}^{m-1}(n+1+k)}\right)+\frac{1}{m!}\right)\\ &=\frac{1}{m}\left(\frac{1}{m-1}\left(-\frac{1}{\prod_{k=1}^{m-1}(n+k)}+\frac{1}{\prod_{k=1}^{m-1}(n+1+k)}\right)+\frac{1}{m!}\right)\\ &=\frac{1}{m}\left(\frac{1}{m-1}\left(-\frac{n+m}{\prod_{k=1}^{m}(n+k)}+\frac{n+1}{\prod_{k=1}^{m}(n+k)}\right)+\frac{1}{m!}\right)\\ &=\frac{1}{m}\left(\frac{1}{m-1}\left(-\frac{1}{\prod_{k=1}^{m}(n+k)}+\frac{1}{m!}\right)\\ &=\frac{1}{m}\left(\frac{1}{m-1}\frac{1-m}{\prod_{k=1}^{m}(n+k)}+\frac{1}{m!}\right)\\ &=\frac{1}{m}\left(-\frac{1}{\prod_{k=1}^{m}(n+k)}+\frac{1}{m!}\right)\\ &=\frac{1}{m}\left(-\frac{1}{\prod_{k=1}^{m}(n+k)}+\frac{1}{m!}\right). \end{split}$$

p:20230729 Proposition 23. $\forall n \in \mathbb{Z}_{>0}, \sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}$.

証明 23.1. $\frac{1}{1\cdot 3} = \frac{1}{3} = \frac{1}{2\cdot 1+1}$ である. また,

$$\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} - \sum_{i=1}^{n-1} \frac{1}{(2i-1)(2i+1)} = \frac{1}{(2n-1)(2n+1)}$$

$$\frac{n}{2n+1} - \frac{n-1}{2n-1} = \frac{n(2n-1) - (n-1)(2n+1)}{(2n-1)(2n+1)}$$

$$= \frac{(2n^2 - n) - (2n^2 - n - 1)}{(2n-1)(2n+1)}$$

$$= \frac{1}{(2n-1)(2n+1)}$$

であるので、n に関する数学的帰納法により示せる.

証明 23.2. P(n) を次の命題とする:

$$\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}.$$

このとき、全ての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$\frac{1}{1 \cdot 3} = \frac{1}{3}$$

$$\frac{1}{2 \cdot 1 + 1} = \frac{1}{3}$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=1}^{n-1} \frac{1}{(2i-1)(2i+1)} = \frac{n-1}{2n-1}$ であるので、

$$\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{1}{(2n-1)(2n+1)} + \sum_{i=1}^{n-1} \frac{1}{(2i-1)(2i+1)}$$

$$= \frac{1}{(2n-1)(2n+1)} + \frac{n-1}{2n-1}$$

$$= \frac{1+(2n+1)(n-1)}{(2n-1)(2n+1)}$$

$$= \frac{1+(2n^2-n-1)}{(2n-1)(2n+1)}$$

$$= \frac{2n^2-n}{(2n-1)(2n+1)}$$

$$= \frac{n(2n-1)}{(2n-1)(2n+1)}$$

$$= \frac{n}{2n+1}.$$

注 23.3. 数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$\begin{split} \sum_{i=1}^n \frac{1}{(2i-1)(2i+1)} &= \frac{1}{2} \sum_{i=1}^n \frac{2}{(2i-1)(2i+1)} \\ &= \frac{1}{2} \sum_{i=1}^n \frac{(2i+1) - (2i-1)}{(2i-1)(2i+1)} \\ &= \frac{1}{2} \sum_{i=1}^n \left(\frac{(2i+1)}{(2i-1)(2i+1)} - \frac{(2i-1)}{(2i-1)(2i+1)} \right) \\ &= \frac{1}{2} \sum_{i=1}^n \left(\frac{1}{2i-1} - \frac{1}{2i+1} \right) \\ &= \frac{1}{2} \left(\sum_{i=1}^n \frac{1}{2i-1} - \sum_{i=1}^n \frac{1}{2i+1} \right) \\ &= \frac{1}{2} \left(\sum_{i=0}^{n-1} \frac{1}{2i+1} - \sum_{i=1}^n \frac{1}{2i+1} \right) \\ &= \frac{1}{2} \left(\frac{1}{2 \cdot 0 + 1} + \sum_{i=1}^{n-1} \frac{1}{2i+1} - \frac{1}{2n+1} - \sum_{i=1}^{n-1} \frac{1}{2i+1} \right) \end{split}$$

$$= \frac{1}{2} \left(1 - \frac{1}{2n+1} \right)$$

$$= \frac{1}{2} \frac{2n+1-1}{2n+1}$$

$$= \frac{1}{2} \frac{2n}{2n+1}$$

$$= \frac{n}{2n+1}.$$

p:20230730 Proposition 24. $\forall n \in \mathbb{Z}_{>0}, \sum_{i=1}^{n} \frac{i}{2^{i}} = 2 - \frac{n+2}{2^{n}}.$

証明 24.1. $\frac{1}{2^1} = \frac{1}{2} = 2 - \frac{1+2}{2^1}$ である. また,

$$\sum_{i=1}^{n} \frac{i}{2^{i}} - \sum_{i=1}^{n-1} \frac{i}{2^{i}} = \frac{n}{2^{n}}$$
$$2 - \frac{n+2}{2^{n}} - (2 - \frac{n+1}{2^{n-1}}), = -\frac{n+2}{2^{n}} + \frac{n+1}{2^{n-1}} = -\frac{n+2}{2^{n}} + \frac{2n+2}{2^{n}} = \frac{n}{2^{n}}$$

であるので、n に関する数学的帰納法により示せる.

証明 24.2. P(n) を次の命題とする:

$$\sum_{i=1}^{n} \frac{i}{2^i} = 2 - \frac{n+2}{2^n}.$$

このとき、全ての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$\frac{1}{2^1} = \frac{1}{2}.$$

$$2 - \frac{1+2}{2^1} = 2 - \frac{3}{2} = \frac{1}{2}.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=1}^{n-1} \frac{i}{2^i} = 2 - \frac{n+1}{2^{n-1}}$ であるので、

$$\sum_{i=1}^{n} \frac{i}{2^{i}} = \frac{n}{2^{n}} + \sum_{i=1}^{n-1} \frac{i}{2^{i}}$$

$$= \frac{n}{2^{n}} + 2 - \frac{n+1}{2^{n-1}}$$

$$= 2 + \frac{n}{2^{n}} - \frac{n+1}{2^{n-1}}$$

$$= 2 + \frac{n}{2^{n}} - \frac{2(n+1)}{2^{n}}$$

$$= 2 - \frac{n+2}{2^{n}}.$$

注 24.3. Proposition 15 つまり

$$\sum_{i=0}^{n} ix^{i} = x \frac{d}{dx} \sum_{i=0}^{n} x^{i}$$

$$= x \frac{d}{dx} \frac{1 - x^{n}}{1 - x}$$

$$= x \frac{nx^{n+1} - (n+1)x^{n} + 1}{(x-1)^{2}}$$

INTO LOCATE HERO.

をみとめ、数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$\begin{split} \sum_{i=1}^{n} \frac{i}{2^{i}} &= \frac{1}{2} \frac{n \frac{1}{2^{n+1}} - (n+1) \frac{1}{2^{n}} + 1}{(\frac{1}{2} - 1)^{2}} \\ &= \frac{1}{2} \frac{\frac{n}{2^{n+1}} - \frac{(n+1)}{2^{n}} + 1}{\frac{1}{2^{2}}} \\ &= \frac{2^{2}}{2} \left(\frac{n}{2^{n+1}} - \frac{(n+1)}{2^{n}} + 1 \right) \\ &= \frac{n}{2^{n}} - \frac{2(n+1)}{2^{n}} + 2 \\ &= 2 - \frac{n+2}{2^{n}}. \end{split}$$

Proposition 25. $\forall n \in \mathbb{Z}_{>0}, \ \sum_{i=1}^{n} \frac{1}{\sqrt{i+\sqrt{i+1}}} = \sqrt{n+1} - 1.$

証明 **25.1.** $\frac{1}{1+\sqrt{2}} = \frac{(-1+\sqrt{2})}{(1+\sqrt{2})(-1+\sqrt{2})} = (-1+\sqrt{2})$ である. また、

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i} + \sqrt{i+1}} - \sum_{i=1}^{n-1} \frac{1}{\sqrt{i} + \sqrt{i+1}} = \frac{1}{\sqrt{n} + \sqrt{n+1}}$$

$$= \frac{-\sqrt{n} + \sqrt{n+1}}{(\sqrt{n} + \sqrt{n+1})(-\sqrt{n} + \sqrt{n+1})}$$

$$= \frac{-\sqrt{n} + \sqrt{n+1}}{-n+n+1}$$

$$= -\sqrt{n} + \sqrt{n+1}$$

$$(\sqrt{n+1} - 1) - (\sqrt{n} - 1) = \sqrt{n+1} - \sqrt{n}$$

であるので、n に関する数学的帰納法により示せる.

証明 25.2. P(n) を次の命題とする:

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i} + \sqrt{i+1}} = \sqrt{n+1} - 1.$$

このとき、全ての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$\frac{1}{\sqrt{1}+\sqrt{1+1}} = \frac{1}{1+\sqrt{2}} = \frac{(-1+\sqrt{2})}{(1+\sqrt{2})(-1+\sqrt{2})} = -1+\sqrt{2}.$$

$$\sqrt{1+1}-1 = \sqrt{2}-1.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $\sum_{i=1}^{n-1} \frac{1}{\sqrt{i+\sqrt{i+1}}} = \sqrt{n} - 1$ であるので、

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i} + \sqrt{i+1}} = \frac{1}{\sqrt{n} + \sqrt{n+1}} + \sum_{i=1}^{n-1} \frac{1}{\sqrt{i} + \sqrt{i+1}}$$

$$= \frac{1}{\sqrt{n} + \sqrt{n+1}} + \sqrt{n} - 1$$

$$= \frac{-\sqrt{n} + \sqrt{n+1}}{(\sqrt{n} + \sqrt{n+1})(-\sqrt{n} + \sqrt{n+1})} + \sqrt{n} - 1$$

$$= \frac{-\sqrt{n} + \sqrt{n+1}}{-n+n+1} + \sqrt{n} - 1$$

$$= -\sqrt{n} + \sqrt{n+1} + \sqrt{n} - 1$$

$$= \sqrt{n+1} - 1.$$

注 25.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$\begin{split} \sum_{i=1}^{n} \frac{1}{\sqrt{i} + \sqrt{i+1}} &= \sum_{i=1}^{n} \frac{-\sqrt{i} + \sqrt{i+1}}{(\sqrt{i} + \sqrt{i+1})(-\sqrt{i} + \sqrt{i+1})} \\ &= \sum_{i=1}^{n} \frac{-\sqrt{i} + \sqrt{i+1}}{-i+i+1} \\ &= \sum_{i=1}^{n} (-\sqrt{i} + \sqrt{i+1}) \\ &= -\sum_{i=1}^{n} \sqrt{i} + \sum_{i=1}^{n} \sqrt{i+1}) \\ &= -\sum_{i=1}^{n} \sqrt{i} + \sum_{i=2}^{n} \sqrt{i}) \\ &= -\sqrt{1} - \sum_{i=2}^{n} \sqrt{i} + \sqrt{n+1} + \sum_{i=2}^{n} \sqrt{i}) \\ &= -\sqrt{1} + \sqrt{n+1} \\ &= \sqrt{n+1} - 1. \end{split}$$

2.1.4 合同式に関するもの

Proposition 26. $\forall n \in \mathbb{N}, 7^n - 2n - 1 \equiv 0 \pmod{4}$.

証明 **26.1.** $7^0 - 2 \cdot 0 - 1 = 1 - 0 - 1 = 0$ である. また、

$$(7^{n} - 2n - 1) = 7(7^{n-1} - 2(n-1) - 1) + 12n - 8$$

であるので,n に関する数学的帰納法により示せる.

証明 26.2. P(n) を次の命題とする:

$$7^n - 2n - 1 \equiv 0 \pmod{4}.$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$7^0 - 2 \cdot 0 - 1 = 1 - 0 - 1 = 0.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $7^{n-1} - 2(n-1) - 1 \equiv 0 \pmod{4}$ であるので、

$$7^{n} - 2n - 1 = 7(7^{n-1} - 2(n-1) - 1) + 12n - 8$$

$$\equiv 7 \cdot 0 + 0n - 0 \pmod{4}$$

$$= 0.$$

証明 26.3. $7^0 - 2 \cdot 0 - 1 = 1 - 0 - 1 = 0$, $7^1 - 2 \cdot 1 - 1 = 7 - 2 - 1 = 4 \equiv 0 \pmod{4}$ である. また、

$$(7^n-2n-1)-(7^{n-2}-2(n-2)-1)=7^{n-2}(7^2-1)-4=7^{n-2}48-4=4(7^{n-2}12-1)\equiv 0\pmod 4$$

であるので、n に関する数学的帰納法により示せる.

証明 26.4. P(n) を次の命題とする:

$$7^n - 2n - 1 \equiv 0 \pmod{4}.$$

また, P(2n) を P'(n) とし, P(2n+1) を P''(n) とおく. このとき, 全ての $n \in \mathbb{N}$ で P(n) が成り立つことを示すには, 全ての $n \in \mathbb{N}$ で P'(n) が成り立つことと全ての $n \in \mathbb{N}$ で P''(n) が成り立つことを示せば良い.

まず, P(n-2) \Longrightarrow P(n) を示す. 仮定から $7^{n-2}-2(n-2)-1=7^{n-2}-2n+3\equiv 0\pmod 4$ であるので、

$$7^{n} - 2n - 1 = 7^{2}(7^{n-2} - 2n + 3) + 96n - 148$$
$$= 7^{2}(7^{n-2} - 2n + 3) + 4(24n - 37)$$
$$\equiv 0 \pmod{4}.$$

次に、全ての $n \in \mathbb{N}$ で P'(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$7^0 - 2 \cdot 0 - 1 = 1 - 0 - 1 = 0.$$

Induction Step: P(n-2) \Longrightarrow P(n) はすでに示した. したがって, P(2n-2) \Longrightarrow P(2n) が成り立つ. つまり, P'(n-1) \Longrightarrow P'(n) が成り立つ.

Base Case: P(1) が成り立つことは、以下から明らか:

$$7^1 - 2 \cdot 1 - 1 = 7 - 2 - 1 = 4 \equiv 0 \pmod{4}$$
.

Induction Step: P(n-2) \Longrightarrow P(n) はすでに示した. したがって, P(2n-1) \Longrightarrow P(2n+1) が成り立つ. つまり, P''(n-1) \Longrightarrow P''(n) が成り立つ.

注 26.5. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$7^n - 2n - 1 \equiv (-1)^n - 2n - 1 \pmod{4}$$

である. n=2k のとき,

$$(-1)^n - 2n - 1 = (-1)^{2k} - 2(2k) - 1 = 1 - 4k - 1 = 4k \equiv 0 \pmod{4}.$$

n=2k-1 のとき、

$$(-1)^n - 2n - 1 = (-1)^{2k-1} - 2(2k-1) - 1 = -1 - 4k + 2 - 1 = 4k \equiv 0 \pmod{4}.$$

注 **26.6.** 数学的帰納法を用いず、以下のように示す方が一般的だと思う: n=2k のとき、

$$\begin{split} 7^n - 2n - 1 &= 7^{2k} - 2(2k) - 1 \\ &= -2(2k) - 1 + 7^{2k} \\ &= -4k - 1 + 7^{2k} \\ &= -4k - 1 + (8-1)^{2k} \\ &= -4k - 1 + \sum_{i=0}^{2k} \binom{2k}{i} (-1)^{2k-i} 8^i \\ &= -4k - 1 + (-1)^{2k} 8^0 + \sum_{i=0}^{2k} \binom{2k}{i} (-1)^{2k-i} 8^i \\ &= -4k - 1 + 1 + \sum_{i=1}^{2k} \binom{2k}{i} (-1)^{2k-i} 8^i \\ &= -4k + \sum_{i=1}^{2k} \binom{2k}{i} (-1)^{2k-i} 8^i \\ &= -4k + \sum_{i=0}^{2k-1} \binom{2k}{i} (-1)^{2k-i} 8^i \\ &= -4k + 8 \sum_{i=0}^{2k-1} \binom{2k}{i} (-1)^{2k-i} 8^i \\ &= 4 \left(-k + 2 \sum_{i=0}^{2k-1} \binom{2k}{i} (-1)^{2k-i} 8^i \right). \end{split}$$

n=2k+1 のとき、

$$\begin{split} 7^n - 2n - 1 &= 7^{2k+1} - 2(2k+1) - 1 \\ &= -2(2k+1) - 1 + 7^{2k+1} \\ &= -4k - 3 + (8-1)^{2k+1} \\ &= -4k - 3 + \sum_{i=0}^{2k+1} \binom{2k+1}{i} (-1)^{2k+1-i} 8^i \\ &= -4k - 3 + (-1)^{2k+1} 8^0 + \sum_{i=1}^{2k+1} \binom{2k+1}{i} (-1)^{2k+1-i} 8^i \\ &= -4k - 3 - 1 + \sum_{i=1}^{2k+1} \binom{2k+1}{i} (-1)^{2k+1-i} 8^i \\ &= -4k - 4 + \sum_{i=1}^{2k+1} \binom{2k+1}{i} (-1)^{2k+1-i} 8^i \end{split}$$

$$= -4k - 4 + \sum_{i=1}^{2k+1} {2k+1 \choose i} (-1)^{2k+1-i} 8^{i}$$

$$= -4k - 4 + \sum_{i=0}^{2k} {2k+1 \choose i} (-1)^{2k+1-i} 8^{i+1}$$

$$= -4k - 4 + 8 \sum_{i=0}^{2k} {2k+1 \choose i} (-1)^{2k+1-i} 8^{i}$$

$$= 4 \left(-k - 1 + 2 \sum_{i=0}^{2k} {2k+1 \choose i} (-1)^{2k+1-i} 8^{i}\right).$$

Proposition 27. $\forall n \in \mathbb{N}, 1000^n + (-1)^{n-1} \equiv 0 \pmod{7}.$

証明 27.1. $1000^0 + (-1)^{-1} = 1 - 1 = 0$ である. また、

$$\begin{aligned} 1000^n + (-1)^{n-1} &= 1000(1000^{n-1} + (-1)^{n-2}) + 1000(-1)^{n-1} + (-1)^{n-1} \\ &= 1000(1000^{n-1} + (-1)^{n-2}) + 1001(-1)^{n-1} \\ &= 1000(1000^{n-1} + (-1)^{n-2}) + 7 \cdot 143(-1)^{n-1} \end{aligned}$$

であるので、n に関する数学的帰納法により示せる.

証明 27.2. P(n) を次の命題とする:

$$1000^n + (-1)^{n-1} \equiv 0 \pmod{7}.$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$1000^0 + (-1)^{-1} = 1 - 1 = 0.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $1000^{n-1} + (-1)^{n-2} \equiv 0 \pmod{7}$ であるので、

$$\begin{aligned} 1000^n + (-1)^{n-1} &= 1000(1000^{n-1} + (-1)^{n-2}) + 1000(-1)^{n-1} + (-1)^{n-1} \\ &= 1000(1000^{n-1} + (-1)^{n-2}) + 1001(-1)^{n-1} \\ &= 1000(1000^{n-1} + (-1)^{n-2}) + 7 \cdot 143(-1)^{n-1} \\ &\equiv 1000 \cdot 0 + 0 \cdot 143(-1)^{n-1} \pmod{7} \\ &= 0. \end{aligned}$$

注 27.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$1000^{n} + (-1)^{n-1} \equiv (-1)^{n} + (-1)^{n-1} \pmod{7}$$
$$= (-1)^{n} - (-1)^{n}$$
$$= 0.$$

[p:20230803] **Proposition 28.** $\forall n \in \mathbb{N}, 3^{3n} - 2^n \equiv 0 \pmod{25}$.

証明 **28.1.** $3^0 - 2^0 = 1 - 1 = 0$ である. また、

$$(3^{3n} - 2^n) - 3^3(3^{3n-3} - 2^{n-1}) = (3^{3n} - 2^n) - (3^{3n} - 3^32^{n-1})$$

$$= -2^n + 3^32^{n-1}$$

$$= 2^{n-1}(-2 + 3^3)$$

$$= 2^{n-1}(-2 + 27)$$

$$= 2^{n-1}25$$

であるので、n に関する数学的帰納法により示せる.

証明 28.2. P(n) を次の命題とする:

$$3^{3n} - 2^n \equiv 0 \pmod{25}.$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$3^0 - 2^0 = 1 - 1 = 0.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $3^{3n-3}-2^{n-1}\equiv 0\pmod{25}$ であるので、

$$3^{3n} - 2^n = 3^3(3^{3n-3} - 2^{n-1}) + 3^32^{n-1} - 2^n$$

$$= 3^3(3^{3n-3} - 2^{n-1}) + 2^{n-1}(3^3 - 2)$$

$$= 3^3(3^{3n-3} - 2^{n-1}) + 2^{n-1}(27 - 2)$$

$$= 3^3(3^{3n-3} - 2^{n-1}) + 2^{n-1}(25)$$

$$\equiv 3^30 + 2^{n-1}0 \pmod{25}$$

$$= 0.$$

注 28.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$3^{3n} - 2^n = (3^3)^n - 2^n = 27^n - 2^n = (25 + 2)^n - 2^n \equiv 2^n - 2^n \pmod{25}$$

= 0

Proposition 29. $\forall n \in \mathbb{N}, 3^n - 2n + 3 \equiv 0 \pmod{4}$.

証明 29.1. $3^0 - 2 \cdot 0 + 3 = 1 - 0 + 3 = 4$ である. また、

$$3^{n} - 2n + 3 = 3(3^{n-1} - 2(n-1) + 3) - 3(-2(n-1) + 3) - 2n + 3$$

$$= 3(3^{n-1} - 2(n-1) + 3) + 6n - 15 - 2n + 3$$

$$= 3(3^{n-1} - 2(n-1) + 3) + 4n - 12$$

であるので, n に関する数学的帰納法により示せる.

証明 29.2. P(n) を次の命題とする:

$$3^n - 2n + 3 \equiv 0 \pmod{4}.$$

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$3^0 - 2 \cdot 0 + 3 = 1 - 0 + 3 = 4.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $3^{n-1}-2(n-1)+3\equiv 0\pmod 4$ であるので、

$$3^{n} - 2n + 3 = 3(3^{n-1} - 2(n-1) + 3) - 3(-2(n-1) + 3) - 2n + 3$$

$$= 3(3^{n-1} - 2(n-1) + 3) + 6n - 15 - 2n + 3$$

$$= 3(3^{n-1} - 2(n-1) + 3) + 4n - 12$$

$$= 3(3^{n-1} - 2(n-1) + 3) + 4(n-3)$$

$$\equiv 3 \cdot 0 + 0 \cdot (n-3) \pmod{4}$$

$$= 0.$$

注 29.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$3^n - 2n + 3 \equiv (-1)^n - 2n - 1 \pmod{4}$$
.

n=2k のとき、

$$(-1)^{2k} - 2(2k) - 1 = 1 - 4k - 1 = 4k \equiv 0 \pmod{4}.$$

n=2k+1 のとき、

$$(-1)^{2k+1}-2(2k+1)-1=-1-4k-2-1=4k-4=4(k-1)\equiv 0\pmod 4.$$

Proposition 30. $\forall n \in \mathbb{Z}_{>0}, \ 3^{3n+1} + 7^{2n-1} \equiv 0 \pmod{11}$

証明 30.1. $3^{3+1} + 7^{2-1} = 81 + 7 = 88 = 8 \cdot 11 \equiv 0 \pmod{11}$ である. また、

$$\begin{split} 3^{3n+1} + 7^{2n-1} &= 3^3(3^{3n-2} + 7^{2n-3}) - 7^{2n-3}3^3 + 7^{2n-1} \\ &= 3^3(3^{3n-2} + 7^{2n-3}) + 7^{2n-3}(-3^3 + 7^2) \\ &= 3^3(3^{3n-2} + 7^{2n-3}) + 7^{2n-3}(-27 + 49) \\ &= 3^3(3^{3n-2} + 7^{2n-3}) + 7^{2n-3}22 \\ &= 3^3(3^{3n-2} + 7^{2n-3}) + 7^{2n-3}2 \cdot 11 \end{split}$$

であるので, n に関する数学的帰納法により示せる.

証明 30.2. P(n) を次の命題とする:

$$3^{3n+1} + 7^{2n-1} \equiv 0 \pmod{11}.$$

このとき、全ての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$3^{3+1}+7^{2-1}=81+7=88=8\cdot 11\equiv 0\pmod{11}.$$

Induction Step: $P(n-1) \implies P(n)$ を示す. 仮定から $3^{3n-2}+7^{2n-3}\equiv 0\pmod{11}$ であるので、

$$\begin{split} 3^{3n+1} + 7^{2n-1} &= 3^3 (3^{3n-2} + 7^{2n-3}) - 7^{2n-3} 3^3 + 7^{2n-1} \\ &= 3^3 (3^{3n-2} + 7^{2n-3}) + 7^{2n-3} (-3^3 + 7^2) \\ &= 3^3 (3^{3n-2} + 7^{2n-3}) + 7^{2n-3} (-27 + 49) \\ &= 3^3 (3^{3n-2} + 7^{2n-3}) + 7^{2n-3} 22 \\ &= 3^3 (3^{3n-2} + 7^{2n-3}) + 7^{2n-3} 2 \cdot 11 \\ &\equiv 3^3 \cdot 0 + 7^{2n-3} 2 \cdot 0 \pmod{11} \\ &= 0. \end{split}$$

注 30.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$3^{3n+1} + 7^{2n-1} = 3^{3n}3 + 7^{2n-2}7$$

$$= 27^{n}3 + 49^{n-1}7$$

$$\equiv 5^{n}3 + 5^{n-1}7 \pmod{11}$$

$$= 5^{n-1}(5 \cdot 3 + 7)$$

$$= 5^{n-1}22$$

$$= 5^{n-1}2 \cdot 11$$

$$\equiv 0 \pmod{11}.$$

注 ${f 30.4.}$ ${\Bbb Z}/11{\Bbb Z}$ は体であり, ${f 7}^{-1}$ が存在する. この意味で, この命題は n=0 のときも成り立つ.

p:20230807

Proposition 31. $\forall n \in \mathbb{Z}_{>0}, \ 4 \cdot 3^{2n-1} + 2^{4n} \equiv 0 \pmod{28}$

証明 31.1. $4 \cdot 3^1 + 2^4 = 12 + 16 = 28 \equiv 0 \pmod{28}$ である. また、

$$4 \cdot 3^{2n-1} + 2^{4n} = 3^{2}(4 \cdot 3^{2n-3} + 2^{4n-4}) - 3^{2}2^{4n-4} + 2^{4n}$$

$$= 3^{2}(4 \cdot 3^{2n-3} + 2^{4n-4})2^{4n-4}(-3^{2} + 2^{4})$$

$$= 3^{2}(4 \cdot 3^{2n-3} + 2^{4n-4})2^{4n-4}(-9 + 16)$$

$$= 3^{2}(4 \cdot 3^{2n-3} + 2^{4n-4}) - 2^{4n-4}7$$

であるので、n に関する数学的帰納法により示せる.

証明 31.2. P(n) を次の命題とする:

$$4 \cdot 3^{2n-1} + 2^{4n} \equiv 0 \pmod{28}.$$

このとき、全ての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$4 \cdot 3^{2-1} + 2^4 = 12 + 16 \equiv 0 \pmod{28}$$

Induction Step: n>1 とする. $P(n-1)\implies P(n)$ を示す. 仮定から $4\cdot 3^{2n-3}+2^{4n-4}\equiv 0\pmod{28}$ であるので,

$$\begin{split} 4 \cdot 3^{2n-1} + 2^{4n} &= 3^2 (4 \cdot 3^{2n-3} + 2^{4n-4}) - 3^2 2^{4n-4} + 2^{4n} \\ &= 3^2 (4 \cdot 3^{2n-3} + 2^{4n-4}) + 2^{4n-4} (-3^2 + 2^4) \\ &= 3^2 (4 \cdot 3^{2n-3} + 2^{4n-4}) + 2^{4n-4} (-9 + 16) \\ &= 3^2 (4 \cdot 3^{2n-3} + 2^{4n-4}) - 2^{4n-4} 7. \end{split}$$

n>1 であるので, $4n-4\geq 4$ である. したがって,

$$4 \cdot 3^{2n-1} + 2^{4n} = 3^2 (4 \cdot 3^{2n-3} + 2^{4n-4}) - 2^{4n-4}7$$

$$\equiv 3^2 \cdot 0 - 0 \pmod{28}$$

$$= 0.$$

注 31.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$9^{n-1}3 + 16^{n-1}4 \equiv 2^{n-1}3 + 2^{n-1}4 \pmod{7}$$

= $2^{n-1}(3+4)$
= $2^{n-1}7$
 $\equiv 0 \pmod{7}$.

であるので,

$$\begin{aligned} 4 \cdot 3^{2n-1} + 2^{4n} &= 4(3^{2n-1} + 2^{4n-2}) \\ &= 4(9^{n-1}3 + 16^{n-1}4) \\ &\equiv 0 \pmod{28}. \end{aligned}$$

2.2 不等式に関するもの

2.2.1 冪に関するもの

p:20230808

Proposition 32. $\forall n \in \mathbb{N}, 2^n > n$.

証明 **32.1.** $2^0=1>0$ である. また, n=(n-1)+1 であるが, $n\geq 1$ に対し, $2^{n-1}+1\leq 2^{n-1}+2^{n-1}=2^n$ であるので, n に関する数学的帰納法により示せる.

証明 32.2. P(n) を次の命題とする:

$$2^n > n$$
.

このとき、全ての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$2^0 = 1 > 0.$$

Induction Step: $n\geq 1$ とする. $P(n-1)\implies P(n)$ を示す. 仮定から $2^{n-1}>n-1$ である. また, $n\geq 1$ であるので $2^{n-1}\geq 1$ であるので,

$$n = (n-1) + 1 < 2^{n-1} + 1 \ge 2^{n-1} + 2^{n-1} = 2^{n-1}(1+1) = 2^n.$$

注 32.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$f(x) = 2^x - x$$

とおく.

$$\frac{d}{dx}f(x) = \log 2 \cdot 2^x - 1$$

であるので、 $x\geq 0$ において、 $\frac{d}{dx}f(x)>0$. したがって、f(x) は $x\geq 0$ において単調増加. また f(0)=1>0 であるので、 $x\geq 0$ において $f(x)\geq 0$. よって、 $x\geq 0$ において $2^x>x$.

注 **32.4.** 数学的帰納法を用いず、以下のように示すこともできる: $2^0 = 1 > 0$ である. また、 $n \ge 1$ に対し、

$$2^{n} = (1+1)^{n} = \sum_{i=0}^{n} \binom{n}{i} \ge \binom{n}{0} + \binom{n}{1} = 1 + n > n.$$

p:20230809

Proposition 33. $n \in \mathbb{N}, n \geq 2 \implies 2^n \geq n+2$.

証明 33.1. $2^2=4=2+2$ である. また, $2^n=2\cdot 2^{n-1}=2^{n-1}+2^{n-1}$ であるが, $n\geq 2$ に対し, $2^{n-1}>1$ であるので, n に関する数学的帰納法により示せる.

証明 33.2. P(n) を次の命題とする:

$$2^n \ge n + 2.$$

このとき, 2 以上の整数 n で P(n) が成り立つことを, 数学的帰納法で示す.

Base Case: P(2) が成り立つことは、以下から明らか:

$$2^2 = 4 = 2 + 2$$
.

Induction Step: $n\geq 3$ とする. P(n-1) \Longrightarrow P(n) を示す. 仮定から $2^{n-1}\geq n+1$ である. また, $n\geq 3$ であるので $2^{n-1}\geq 1$ であるので,

$$2^n = 2^{n-1}(1+1) = 2^{n-1} + 2^{n-1} \ge n + 1 + 2^{n-1} \ge n + 1 + 1 = n + 2.$$

注 33.3. 数学的帰納法を用いず, 以下のように示す方が一般的だと思う:

$$f(x) = 2^x - x - 2$$

とおく.

$$\frac{d}{dx}f(x) = \log 2 \cdot 2^x - 1$$

であるので, $x\geq 0$ において, $\frac{d}{dx}f(x)>0$. したがって, f(x) は $x\geq 0$ において単調増加. また f(2)=0 であるので, $x\geq 2$ において $f(x)\geq 0$. よって, $x\geq 2$ において $2^x>x+2$.

注 33.4. 数学的帰納法を用いず、以下のように示すこともできる: $n \geq 2$ に対し、

$$2^{n} = (1+1)^{n} = \sum_{i=0}^{n} \binom{n}{i} \ge \binom{n}{0} + \binom{n}{1} + \binom{n}{n} = 1 + n + 1 = n + 2.$$

 $\boxed{\textbf{p:20230810}} \qquad \textbf{Proposition 34.} \ n \in \mathbb{N}, n \geq 3 \implies 2^n \geq n+5.$

証明 **34.1.** $2^3=8=3+5$ である。また、 $2^n=2\cdot 2^{n-1}=2^{n-1}+2^{n-1}$ であるが、 $n\geq 2$ に対し、 $2^{n-1}>1$ であるので、n に関する数学的帰納法により示せる。

証明 34.2. P(n) を次の命題とする:

$$2^n > n + 5$$
.

このとき、3 以上の整数 n で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(3) が成り立つことは、以下から明らか:

$$2^3 = 8 = 3 + 5$$
.

Induction Step: $n \ge 4$ とする. $P(n-1) \implies P(n)$ を示す. 仮定から $2^{n-1} \ge n+4$ である. また, $n \ge 1$ であるので $2^{n-1} \ge 1$ であるので,

$$2^{n} = 2^{n-1}(1+1) = 2^{n-1} + 2^{n-1} \ge n+4+2^{n-1} \ge n+4+1 = n+5.$$

注 34.3. 数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$f(x) = 2^x - x - 5$$

とおく.

$$\frac{d}{dx}f(x) = \log 2 \cdot 2^x - 1$$

であるので, $x\geq 0$ において, $\frac{d}{dx}f(x)>0$. したがって, f(x) は $x\geq 0$ において単調増加. また f(3)=0 であるので, $x\geq 3$ において $f(x)\geq 0$. よって, $x\geq 3$ において $2^x>x+3$.

注 34.4. 数学的帰納法を用いず、以下のように示すこともできる: $n \ge 3$ に対し、 $n+2 \ge 5$ であるから、

$$2^{n} = (1+1)^{n} = \sum_{i=0}^{n} \binom{n}{i} \ge \binom{n}{0} + \binom{n}{1} + \binom{n}{n-1} + \binom{n}{n} = 1 + n + n + 1 = n + (n+2) \ge n + 5.$$

 $\boxed{ \textbf{p:20230813} } \qquad \textbf{Proposition 35.} \ n \in \mathbb{N}, n \geq 3 \implies 2^n > 2n+1.$

証明 **35.1.** $2^3=8>7=6+1$ である。また、 $2^n=2\cdot 2^{n-1}=2^{n-1}+2^{n-1}$ であるが、 $n\geq 2$ に対し、 $2^{n-1}\geq 2$ であるので、n に関する数学的帰納法により示せる.

証明 35.2. P(n) を次の命題とする:

$$2^n > 2n + 1$$
.

このとき、3 以上の整数 n で P(n) が成り立つことを、数学的帰納法で示す。

Base Case: P(3) が成り立つことは、以下から明らか:

$$2^3 = 8 > 7 = 6 + 1.$$

Induction Step: $n \geq 4$ とする. $P(n-1) \implies P(n)$ を示す. 仮定から $2^{n-1} \geq 2n-1$ である. また, $n \geq 2$ であるので $2^{n-1} \geq 2$ であるので,

$$2^{n} = 2^{n-1}(1+1) = 2^{n-1} + 2^{n-1} \ge 2n - 1 + 2^{n-1} \ge 2n - 1 + 2 = 2n + 1.$$

注 35.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$f(x) = 2^x - 2x - 1$$

とおく.

$$\frac{d}{dx}f(x) = \log 2 \cdot 2^x - 2$$

であるので、 $x\geq 1$ において、 $\frac{d}{dx}f(x)>0$. したがって、f(x) は $x\geq 1$ において単調増加. また f(3)=8-6-1=1 であるので、 $x\geq 3$ において f(x)>0. よって、 $x\geq 3$ において $2^x>2x+1$.

注 **35.4.** 数学的帰納法を用いず、以下のように示すこともできる: $n \geq 3$ に対し、

$$2^{n} = (1+1)^{n} = \sum_{i=0}^{n} \binom{n}{i} \ge \binom{n}{0} + \binom{n}{0} + \binom{n}{n-1} + \binom{n}{n-1} + \binom{n}{n} = 1 + n + n + 1 = 2n + 2 > 2n + 1.$$

p:20230814

Proposition 36. $n \in \mathbb{N}, n \ge 4 \implies 2^n > 3n$.

証明 36.1. $2^4=16>12=3\cdot 4$ である。また、 $2^n=2\cdot 2^{n-1}=2^{n-1}+2^{n-1}$ であるが、 $n\geq 3$ に対し、 $2^{n-1}\geq 3$ であるので、n に関する数学的帰納法により示せる。

証明 36.2. P(n) を次の命題とする:

$$2^n > 3n$$
.

このとき, 4 以上の整数 n で P(n) が成り立つことを, 数学的帰納法で示す.

Base Case: P(4) が成り立つことは、以下から明らか:

$$2^4 = 16 > 12 = 3 \cdot 4.$$

Induction Step: $n\geq 5$ とする. $P(n-1)\implies P(n)$ を示す. 仮定から $2^{n-1}\geq 3n-3$ である. また, $n\geq 3$ であるので $2^{n-1}\geq 4$ であるので,

$$2^{n} = 2^{n-1}(1+1) = 2^{n-1} + 2^{n-1} \ge 3n - 3 + 2^{n-1} \ge 3n - 3 + 4 = 3n + 1 > 3n.$$

注 36.3. 数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$f(x) = 2^x - 3x$$

$$\frac{d}{dx}f(x) = \log 2 \cdot 2^x - 3$$

であるので、 $x\geq 2$ において、 $\frac{d}{dx}f(x)>0$. したがって、f(x) は $x\geq 2$ において単調増加. また f(4)=16-12=4 であるので、 $x\geq 4$ において f(x)>0. よって、 $x\geq 4$ において $2^x>3x$.

注 36.4. 数学的帰納法を用いず、以下のように示すこともできる: $n \geq 4$ に対し、 $\frac{n+2}{2} \geq 3$

$$2^{n} = (1+1)^{n} = \sum_{i=0}^{n} \binom{n}{i} > \binom{n}{1} + \binom{n}{2} + \binom{n}{n-1}$$
$$= n + \frac{n(n-1)}{2} + n$$
$$= \left(\frac{n+3}{2}\right)n$$
$$= \left(\frac{n+2}{2} + \frac{1}{2}\right)n > 3n.$$

p:20230815

Proposition 37. $n \in \mathbb{N}, n \geq 4 \implies 2^n \geq n^2$.

証明 37.1. $2^4=16\geq 16$ である. また, $2^n=2\cdot 2^{n-1}$ であるが, $n\geq 4$ に対し, $2(n-1)^2-n^2=n^2-4n+1=(n-2)^2-3\geq 1>0$ であるので, n に関する数学的帰納法により示せる.

証明 37.2. P(n) を次の命題とする:

$$2^n > n^2$$
.

このとき、4 以上の整数 n で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(4) が成り立つことは、以下から明らか:

$$2^4 = 16 = 4^2.$$

Induction Step: $n \ge 5$ とする. $P(n-1) \implies P(n)$ を示す. 仮定から $2^{n-1} \ge (n-1)^2$ である. また、

$$2(n-1)^2 - n^2 = n^2 - 4n + 1 = (n-2)^2 - 3$$

であり, $n \ge 3$ であるので, $2(n-1)^2 - n^2 > 0$, つまり

$$2(n-1)^2 > n^2.$$

よって,

$$2^n = 2 \cdot 2^{n-1} \ge 2(n-1)^2 > n^2.$$

注 37.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$f(x) = 2^x - x^2$$

$$\frac{d}{dx}f(x) = \log 2 \cdot 2^x - 2x$$
$$\frac{d^2}{dx^2}f(x) = (\log 2)^2 \cdot 2^x - 2$$

であるので、 $x \ge 1$ において、 $\frac{d^2}{dx^2}f(x) > 0$. また、 $\frac{d}{dx}f(1) > 0$ であるので、 $x \ge 1$ において、 $\frac{d}{dx}f(x) > 0$. したがって、f(x) は $x \ge 1$ において単調増加.また f(4) = 16 - 16 = 0 であるので、 $x \ge 4$ において $f(x) \ge 0$. よって、 $x \ge 4$ において $2^x \ge x^2$.

注 37.4. 数学的帰納法を用いず、以下のように示すこともできる: n=4 に対し、 $2^4=16=4^2$. $n\geq 5$ に対し、

$$2^{n} = (1+1)^{n} = \sum_{i=0}^{n} \binom{n}{i} > \binom{n}{1} + \binom{n}{2} + \binom{n}{n-2} = n + \frac{n(n-1)}{2} + \frac{n(n-1)}{2} = n^{2}.$$

Proposition 38. $n \in \mathbb{N}, n \ge 5 \implies 2^n > n^2 - 2n + 15$.

証明 38.1. $n^2-2n+15=(n-1)^2+14$ である. $2^5=32>30=4^2+14$ である. また, $2^n=2\cdot 2^{n-1}$ であるが, $n\geq 6$ に対し, $2((n-2)^2+14)-((n-1)^2+14)=2(n^2-4n+4)-(n^2-2n+1)+14=n^2-6n+21=(n-3)^2+12>0$ であるので, n に関する数学的帰納法により示せる.

証明 38.2. P(n) を次の命題とする:

$$2^n > n^2 - 2n + 15.$$

このとき, 5 以上の整数 n で P(n) が成り立つことを, 数学的帰納法で示す.

Base Case: P(5) が成り立つことは、以下から明らか:

$$2^5 = 32$$
$$5^2 - 2 \cdot 5 + 15 = 30.$$

Induction Step: $n \ge 6$ とする. $P(n-1) \implies P(n)$ を示す. 仮定から $2^{n-1} > (n-1)^2 - 2(n-1) + 15$ である. また、

$$2((n-1)^2 - 2(n-1) + 15) - (n^2 - 2n + 15) = 2(n^2 - 4n + 4) - (n^2 - 2n + 1) + 14 = n^2 - 6n + 21 = (n-3)^2 + 12 > 0$$

であるので,

$$2((n-1)^2 - 2(n-1) + 15) > n^2 - 2n + 15.$$

よって,

$$2^{n} = 2 \cdot 2^{n-1} > 2((n-1)^{2} - 2(n-1) + 15) > n^{2} - 2n + 15.$$

注 38.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$f(x) = 2^x - (x^2 - 2x + 15)$$

$$\frac{d}{dx}f(x) = \log 2 \cdot 2^x - 2x + 2$$
$$\frac{d^2}{dx^2}f(x) = (\log 2)^2 \cdot 2^x - 2$$

であるので、 $x \geq 1$ において、 $\frac{d^2}{dx^2}f(x)>0$. また、 $\frac{d}{dx}f(1)=2\log 2>0$ であるので、 $x \geq 1$ において、 $\frac{d}{dx}f(x)>0$. したがって、f(x) は $x \geq 1$ において単調増加.また f(5)=32-25+10-15=2>0 であるので、 $x \geq 5$ において f(x)>0. よって、 $x \geq 5$ において $2^x>x^2$.

注 **38.4.** 数学的帰納法を用いず、以下のように示すこともできる: $n \geq 5$ に対し、 $n-(-2n+15) = 3n-15 \geq 0$ であるので、n > -2n+15. よって、

$$2^{n} = (1+1)^{n} = \sum_{i=0}^{n} \binom{n}{i} > \binom{n}{1} + \binom{n}{2} + \binom{n}{n-2} + \binom{n}{n-1}$$
$$= n + \frac{n(n-1)}{2} + \frac{n(n-1)}{2} + n$$
$$= n^{2} + n$$
$$> n^{2} - 2n + 5.$$

p:20230817

Proposition 39. $n \in \mathbb{N}, n \ge 10 \implies 2^n > 10n^2$.

証明 39.1. $2^{10}=1024>1000=10n^2$ である。また、 $2^n=2\cdot 2^{n-1}$ であるが、 $n\geq 6$ に対し、 $2\cdot 10(n-1)^2-10n^2=10(n^2-4n+2)=10((n-2)^2-4)\geq 0$ であるので、n に関する数学的帰納法により示せる。

証明 39.2. P(n) を次の命題とする:

$$2^n > 10n^2$$
.

このとき、10 以上の整数 n で P(n) が成り立つことを、数学的帰納法で示す。

Base Case: P(10) が成り立つことは、以下から明らか:

$$2^{10} = 1024$$
$$10 \cdot 10^2 = 1000$$

Induction Step: $n \geq 11$ とする. $P(n-1) \implies P(n)$ を示す. 仮定から $2^{n-1} > 10(n-1)^2$ である. また、

$$2 \cdot 10(n-1)^2 - 10n^2 = 10(n^2 - 4n + 2) = 10((n-2)^2 - 4) \ge 0$$

であるので,

$$2 \cdot 10(n-1)^2 > 10n^2.$$

よって,

$$2^n = 2 \cdot 2^{n-1} > 2(10(n-1)^2) > 10n^2.$$

注 39.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$f(x) = 2^x - 10x^2$$

とおく.

$$\frac{d}{dx}f(x) = \log 2 \cdot 2^x - 10x$$
$$\frac{d^2}{dx^2}f(x) = (\log 2)^2 \cdot 2^x - 10$$

であるので, $x\geq 4$ において, $\frac{d^2}{dx^2}f(x)>0$. また, $\frac{d}{dx}f(6)>0$ であるので, $x\geq 6$ において, $\frac{d}{dx}f(x)>0$. したがって, f(x) は $x\geq 6$ において単調増加. また f(10)=1024-1000=24>0 であるので, $x\geq 10$ において f(x)>0. よって, $x\geq 10$ において $2^x>10x^2$.

 $\boxed{\textbf{p:20230818}} \quad \textbf{Proposition 40.} \quad n \in \mathbb{N}, n \geq 10 \implies 2^n \geq n^3.$

証明 40.1. $2^{10}=1024>1000=n^3$ である。また, $2\cdot(11-1)^3=2000$, $11^3=1331$ であることから, $n\geq 11$ に対し, $2\cdot(n-1)^3>n^3$ である.したがって, $2^n=2\cdot 2^{n-1}$ であることから,n に関する数学的帰納法により示せる.

証明 40.2. P(n) を次の命題とする:

$$2^n \ge n^3$$
.

このとき、10 以上の整数 n で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(10) が成り立つことは、以下から明らか:

$$2^{10} = 1024,$$
$$10^3 = 1000.$$

Induction Step: $n\geq 11$ とする. $P(n-1)\implies P(n)$ を示す. 仮定から $2^{n-1}>10(n-1)^2$ である. また, $2\cdot (11-1)^3=2000,\, 11^3=1331$ であることから, $n\geq 11$ に対し,

$$2 \cdot (n-1)^3 > n^3$$

であることがわかる. よって,

$$2^{n} = 2 \cdot 2^{n-1} > 2(n-1)^{3} > n^{3}.$$

注 40.3. 数学的帰納法を用いず、以下のように示す方が一般的だと思う:

$$f(x) = 2^x - x^3$$

$$\frac{d}{dx}f(x) = \log 2 \cdot 2^x - 3x^2$$

$$\frac{d^2}{dx^2}f(x) = (\log 2)^2 \cdot 2^x - 6x$$

$$\frac{d^3}{dx^3}f(x) = (\log 2)^3 \cdot 2^x - 6$$

であるので、 $x\geq 3$ において、 $\frac{d^3}{dx^3}f(x)>0$. よって、 $\frac{d^2}{dx^2}f(x)$ は、 $x\geq 3$ において単調増加. また、 $\frac{d^2}{dx^2}f(5)>0$ であるから、 $x\geq 5$ において、 $\frac{d^2}{dx^2}f(x)>0$. よって、 $\frac{d}{dx}f(x)$ は、 $x\geq 5$ において単調増加. また、 $\frac{d}{dx}f(8)>0$ であるので、 $x\geq 8$ において、 $\frac{d}{dx}f(x)>0$. したがって、f(x) は $x\geq 8$ において単調増加. また f(10)=1024-1000=24>0 であるので、 $x\geq 10$ において f(x)>0. よって、 $x\geq 10$ において f(x)>0.

 $\boxed{\textbf{p:20230819}} \qquad \textbf{Proposition 41.} \ n \in \mathbb{N} \implies 3^n \geq 2n+1.$

証明 41.1. $3^0=1=2\cdot 0+1$ である。また、 $n\geq 1$ に対し $3^{n-1}\geq 1$ であり、 $3^n=3^{n-1}+2\cdot 3^{n-1}$ であることから、n に関する数学的帰納法により示せる.

証明 41.2. P(n) を次の命題とする:

$$3^n \ge 2n + 1$$
.

このとき、すべての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$3^0 = 1$$
$$2 \cdot 0 + 1 = 1.$$

Induction Step: P(n-1) \implies P(n) を示す. 仮定から $3^{n-1} \geq 2n-1$ である. また, $n \geq 1$ に対し, $3^n \geq 1$ であるので,

$$3^{n} = 3 \cdot 3^{n-1} = (1+2)3^{n-1} = 3^{n-1} + 2 \cdot 3^{n-1} \ge 2n - 1 + 2 \cdot 3^{n-1} \ge 2n - 1 + 2 = 2n + 1.$$

注 41.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$f(x) = 3^x - (2x+1)$$

とおく.

$$\frac{d}{dx}f(x) = \log 3 \cdot 3^x - 2$$

であるので, $x\geq 1$ において, $\frac{d}{dx}f(x)>0$. したがって, f(x) は $x\geq 1$ において単調増加. また f(1)=3-3=0 であるので, $x\geq 1$ において $f(x)\geq 0$. よって, $x\geq 1$ において $3^x\geq 2x+1$. また, $f(0)=3^0-(2\cdot 0+1)=0$ であるので, x=0 のときも, $3^x\geq 2x+1$.

注 41.4. 数学的帰納法を用いず、以下のように示すこともできる: n=0 に対し、 $3^0=1=2\cdot 0+1$. $n\geq 1$ に対し、

$$3^{n} = (1+2)^{n} = \sum_{i=0}^{n} \binom{n}{i} 2^{i} \ge \binom{n}{0} + \binom{n}{1} 2 = 1 + 2n.$$

Proposition 42. $n \in \mathbb{N}, n \ge 3 \implies 3^n > 4n + 10.$

証明 42.1. $3^3=27>22=4\cdot 3+10$ である。また、 $n\geq 2$ に対し $3^{n-1}\geq 2$ であり、 $3^n=3^{n-1}+2\cdot 3^{n-1}$ であることから、n に関する数学的帰納法により示せる。

証明 42.2. P(n) を次の命題とする:

$$3^n > 4n + 10.$$

このとき、3 以上の整数 n で P(n) が成り立つことを、数学的帰納法で示す。

Base Case: P(3) が成り立つことは、以下から明らか:

$$3^3 = 27$$
$$4 \cdot 3 + 10 = 22.$$

Induction Step: $n \geq 4$ とし, P(n-1) \Longrightarrow P(n) を示す. 仮定から $3^{n-1} > 4n+6$ である. また, $n \geq 2$ に対し, $3^{n-1} \geq 2$ であるので,

$$3^{n} = 3 \cdot 3^{n-1} = (1+2)3^{n-1} = 3^{n-1} + 2 \cdot 3^{n-1} > 4n + 6 + 2 \cdot 3^{n-1} \ge 4n + 6 + 2 \cdot 2 = 4n + 10.$$

注 42.3. 数学的帰納法を用いず,以下のように示す方が一般的だと思う:

$$f(x) = 3^x - (4x + 10)$$

とおく.

$$\frac{d}{dx}f(x) = \log 3 \cdot 3^x - 4$$

であるので、 $x\geq 2$ において、 $\frac{d}{dx}f(x)>0$. したがって、f(x) は $x\geq 2$ において単調増加. また f(3)=27-24=3>0 であるので、 $x\geq 1$ において $f(x)\geq 0$. よって、 $x\geq 3$ において $3^x>4x+10$.

注 42.4. 数学的帰納法を用いず、以下のように示すこともできる: n=0 に対し、 $3^0=1=2\cdot 0+1$. $n\geq 3$ に対し、 $2n\geq 6$ 、 $2^{n-1}\geq 4$ 、 $2^n\geq 8$ であるので

$$3^{n} = (1+2)^{n} = \sum_{i=0}^{n} \binom{n}{i} 2^{i} \ge \binom{n}{0} + \binom{n}{1} 2 + \binom{n}{1} 2^{n-1} + 2^{n} = 1 + 2n + 2^{n-1}n + 2^{n} \ge 1 + 6 + 4n + 8 = 4n + 15 > 4n + 10.$$

 $extbf{p:20230821}$ Proposition 43. t>0 とする. $\forall n\in\mathbb{N},\ (1+t)^n\geq 1+nt.$

証明 43.1. $(1+t)^0=1=1+0\cdot t$ である. また, $(1+t)^n=(1+t)(1+t)^{n-1}=(1+t)^{n-1}+t(1+t)^{n-1}$ であることから, n に関する数学的帰納法により示せる.

証明 43.2. t > 0 とする. P(n) を次の命題とする:

$$(1+t)^n \ge 1 + nt.$$

このとき、すべての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$(1+t)^0 = 1$$

 $1+0 \cdot t = 1$.

Induction Step: $n\geq 1$ とし, P(n-1) \Longrightarrow P(n) を示す. 仮定から $(1+t)^{n-1}>1+t(n-1)$ である. また, t>0 であるので, $n\geq 1$ に対し $t^2(n-1)\geq 0$ である. よって,

$$(1+t)^{n} = (1+t)(1+t)^{n-1}$$

$$= (1+t)^{n-1} + t(1+t)^{n-1}$$

$$\geq (1+t(n-1)) + t(1+t(n-1))$$

$$= 1+tn+t^{2}(n-1)$$

$$\geq 1+tn.$$

注 43.3. 数学的帰納法を用いず、以下のように示す方が一般的だと思う: n=0 に対し、 $(1+t)^0=1=1+t\cdot 0$. $n\in\mathbb{Z}_{>0}$ に対し、

$$(1+t)^n = \sum_{i=0}^n \binom{n}{i} t^i \ge \binom{n}{0} + \binom{n}{1} t = 1 + nt.$$

p:20230823 **Proposition 44.** t > 0 とする. $\forall n \in \mathbb{N}, (1-t)^n \ge 1 - nt$.

証明 44.1. $(1+t)^0=1=1+0\cdot t$ である. また, $(1-t)^n=(1-t)(1-t)^{n-1}=(1-t)^{n-1}-t(1-t)^{n-1}$ であることから, n に関する数学的帰納法により示せる.

証明 44.2. t>0 とする. P(n) を次の命題とする:

$$(1-t)^n \ge 1 - nt.$$

このとき、すべての $n \in \mathbb{N}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(0) が成り立つことは、以下から明らか:

$$(1-t)^0 = 1$$
$$1 - 0 \cdot t = 1.$$

Induction Step: $n\geq 1$ とし, P(n-1) \Longrightarrow P(n) を示す. 仮定から $(1-t)^{n-1}>1-t(n-1)$ である. また, t>0 であるので, $n\geq 1$ に対し $t^2(n-1)\geq 0$ である. よって,

$$(1-t)^{n} = (1-t)(1-t)^{n-1}$$

$$= (1-t)^{n-1} - t(1-t)^{n-1}$$

$$\geq (1-t(n-1)) - t(1-t(n-1))$$

$$= 1 - tn + t^{2}(n-1)$$

$$\geq 1 - tn.$$

Proposition 45. $\forall n \in \mathbb{Z}_{>0}, n^2 \leq (\sum_{i=1}^n i) (\sum_{i=1}^n \frac{1}{i}).$

証明 45.1. $1^2 = 1 \cot 1$ である. また,

$$\left(\sum_{i=1}^{n} i\right) \left(\sum_{i=1}^{n} \frac{1}{i}\right) = n + \left(\sum_{i=2}^{n} \frac{n}{i}\right) + \left(\sum_{i=1}^{n-1} i\right) \left(\sum_{i=1}^{n} \frac{1}{i}\right)$$

$$\geq 2n - 1 + \left(\sum_{i=1}^{n-1} i\right) \left(\sum_{i=1}^{n} \frac{1}{i}\right)$$

$$\geq 2n - 1 + \left(\sum_{i=1}^{n-1} i\right) \left(\sum_{i=1}^{n-1} \frac{1}{i}\right)$$

であることから, n に関する数学的帰納法により示せる.

証明 45.2. P(n) を次の命題とする:

$$n^2 \le \left(\sum_{i=1}^n i\right) \left(\sum_{i=1}^n \frac{1}{i}\right).$$

このとき、すべての $n \in \mathbb{Z}_{>0}$ で P(n) が成り立つことを、数学的帰納法で示す.

Base Case: P(1) が成り立つことは、以下から明らか:

$$1^2 = 1 \cdot 1$$
.

Induction Step: $P(n-1) \implies P(n)$ を示す。仮定から $(n-1)^2 \leq \left(\sum_{i=1}^{n-1} i\right) \left(\sum_{i=1}^{n-1} \frac{1}{i}\right)$ である。また、t>0 であるので、 $n\geq 1$ に対し $t^2(n-1)\geq 0$ である。よって、

$$\left(\sum_{i=1}^{n} i\right) \left(\sum_{i=1}^{n} \frac{1}{i}\right) = \left(n + \sum_{i=1}^{n-1} i\right) \left(\sum_{i=1}^{n} \frac{1}{i}\right)$$

$$= n \left(\sum_{i=1}^{n} \frac{1}{i}\right) + \left(\sum_{i=1}^{n-1} i\right) \left(\sum_{i=1}^{n} \frac{1}{i}\right)$$

$$= n \cdot 1 + n \left(\sum_{i=2}^{n} \frac{1}{i}\right) + \left(\sum_{i=1}^{n-1} i\right) \left(\sum_{i=1}^{n} \frac{1}{i}\right)$$

$$= n \cdot 1 + \left(\sum_{i=2}^{n} \frac{n}{i}\right) + \left(\sum_{i=1}^{n-1} i\right) \left(\sum_{i=1}^{n} \frac{1}{i}\right)$$

$$\geq n \cdot 1 + \left(\sum_{i=2}^{n} 1\right) + \left(\sum_{i=1}^{n-1} i\right) \left(\sum_{i=1}^{n} \frac{1}{i}\right)$$

$$= n + n - 1 + \left(\sum_{i=1}^{n-1} i\right) \left(\sum_{i=1}^{n} \frac{1}{i}\right)$$

$$= 2n - 1 + \left(\sum_{i=1}^{n-1} i\right) \left(\sum_{i=1}^{n} \frac{1}{i}\right)$$

$$\geq 2n - 1 + (n - 1)^{2}$$

$$= 2n - 1 + n^{2} - 2n + 1$$

3 制限された数学的帰納法 (Limited mathematical induction)

4 Todo

Proposition 46. $a_1 = 7$, $a_n = a_n^3$ $a_n \equiv 1 \pmod{3^n}$

Proposition 47. $\forall p, q, n \in \mathbb{N}, \binom{p+q}{n} = \sum_{i=0}^{n} \binom{p}{i} \binom{q}{n-i}.$

Proposition 48. $\sum_{i=1}^{n} \frac{1}{i} \geq \frac{2n}{n+1}$.

Proposition 49. $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} < 2\sqrt{n}$.

Proposition 50. $n \in \mathbb{N}$ とする. $n \geq 2$ ならば, $\sum_{k=1}^{n} \frac{1}{k^2} < 2 - \frac{1}{n}$.

Proposition 51. $\frac{a^n+b^n}{2} \ge \left(\frac{a+b}{2}\right)^n$

Proposition 52. $a_i > 0$ &5, $\left(\frac{\sum_{i=1}^n a_i}{n}\right)^m \leq \frac{\sum_{i=1}^n a_i^m}{n}$.

Proposition 53. $x \in \mathbb{R}$ と $n \in \mathbb{N}$ に対し, $|\sin(nx)| \le n |\sin(x)|$.

Proposition 54. $n \ge 2 \ \text{$\mbox{t}} \ \text{$\mbox{$t$}}, \ \sum_{i=1}^n \frac{1}{i^2} < 2 - \frac{1}{n}.$

Proposition 55. f を凸関数とする. $a_i \geq 0$, $\sum_{i=1}^n a_i = 1$ ならば, $\sum_i^n a_i f(x_i) \geq \sum_i^n f(a_i x_i)$.

Proposition 56. $n \in \mathbb{N}$ とする. $n \geq 12$ ならば, n = 4x + 5y を満たす $x, y \in \mathbb{N}$ が存在する.

Proposition 57. a_n を fibonacci 数列とする. $a_n=rac{arphi^n-\psi^n}{arphi-\psi}$, ただし $arphi=rac{1+\sqrt{5}}{2}$, $\psi=rac{1-\sqrt{5}}{2}$ とする.

Proposition 59. $a_1=1,\ a_2=2,\ a_3=6,\ a_n=(n^3-3n^2+2n)a_{n-3}.$ $\texttt{ZOLE},\ a_n=n!.$

Proposition 60. $a, b \in \mathbb{Z}$. α, β は $x^2 - ax + b = 0$ の 2 つの解. このとき, $n \in \mathbb{N}$ に対し, $\alpha^n + \beta^n \in \mathbb{Z}$.

Proposition 61. $a, b \in \mathbb{Z}, (2+\sqrt{3})^n = a + \sqrt{3}b$ **\$\text{\$b\$** II, $(2-\sqrt{3})^n = a - \sqrt{3}b$.

Proposition 63. $(3 + 2\sqrt{2})^n + (3 - 2\sqrt{2})^n \in \mathbb{Z}$.

Proposition 64. $\frac{(5+2\sqrt{6})^n+(5-2\sqrt{6})^n}{2} \in \mathbb{Z}$.

Proposition 65. $x + \frac{1}{x} \in \mathbb{Z}$ ならば, $x^n + \frac{1}{x^n} \in \mathbb{Z}$.

Proposition 66. $x^4 + y^4 = z^4$ となる整数は存在しない.

Proposition 67. p が素数なら \sqrt{p} は無理数.

Proposition 68. Fibonacci 数列は互いに素.

Proposition 69. $n \ge 4 \ \text{ts} \ n! > 2^n$

Proposition 70. $\frac{\sum_{i=1}^{n} a_i}{n} \geq \sqrt[n]{\prod \sum_{i=1}^{n} a_i}$.

Proposition 71. $\frac{d^n}{dx^n}(fg) = \sum_{i=0}^n \binom{n}{i} \frac{d^i}{dx^i} f \cdot \frac{d^{n-i}}{dx^{n-i}} g$

Proposition 72. $0 \le 3a_n \le \sum_{i=0}^n a_i$ をみたす a_n は $a_n = 0$.

Proposition 73. $|\sum_{i=1}^n a_i| \leq \frac{1}{n}$ をみたす $a_i \in \left\{\frac{1}{i}, -\frac{1}{i}\right\}$ が存在する.

Proposition 74. 一筆書き.

Proposition 75. ほうじょ原理

 ${f Proposition}$ 76. $n \geq 4$ とする. 凸 n 角形の対角線の総数は ${n(n-3) \over 2}$.

 $oxed{ ext{Proposition 77.}}$ 一般の位置にある平面上の n 本の直線は、平面を $rac{n^2+n+2}{2}$ 個の領域に分ける.

Proposition 78. 素因数分解の一意性.

Proposition 79. あまりの存在.

Proposition 80. ユークリドごじょほう. 整数, 多項式, ふち.

Proposition 81. 1変数多項式かんの単項式順序はただ一つ

Proposition 82. Dickson の補題

Proposition 83. た変数多項式の Hilbert の基底定理.

Proposition 84. まっこーれいの定理.

Proposition 85. GBによるた変数割り算アルゴリズムの標準形の存在.

Proposition 86. $\bigcap_{Y : \triangle, X \subset Y} Y = \{ \sum t_i x_i \mid t_i \geq 0, \sum t_i = 1 \}$

Proposition 87. ヒルベルトの基底定理

Proposition 88. 標準次数のときのネーターのせいきかていり

Proposition 89. 分解たいの存在.

Proposition 90. 延長の存在.

Proposition 91. 有限次ぶんりかくだいたいは単純

Proposition 92. $charF = p, f \in F[x]$ がきやくなら、ぶんり多項式 h をつかって $f(x) = h(x^{p^e})$ とかける.

Proposition 93. E/F 有限次拡大. G を E の F 上の自己同型群とする. E は F[X] のある分離多項式 f の 最小分解体であるなら, $E^G=F$.

Proposition 94. G=(V,E) が $simple\ graph\ {\mathfrak C}\ V>2.\ \forall v,\ v\ {\mathfrak O}$ じすうは 2以上. このとき, G に閉路が

ある.

Proposition 95. C, C_1, \ldots, C_k , 閉路, どの 2 つも辺を共有しない. C は各 C_i と頂点を共有する. C, C_1, \ldots, C_k の全ての辺を使った閉路がある.

Proposition 96. G=(V,E) 連結. $\forall v,\,v$ のじすうは 2 の倍数. このとき, G にオイラー閉路がある.

Proposition 97. きほんたいしょうしきは代数独立

Proposition 98. (Matsumoto's theorem) 最短表示同士は braid relation で移り合う.