TD 13 : Mouvement de particules chargées

1 Grandeurs cinétiques d'une particule chargée dans un champ magnétique

Une particule de charge q, de masse m et de vitesse \overrightarrow{v}_0 pénètre dans une région où règne un champ magnétique \overrightarrow{B} constant et uniforme avec $\overrightarrow{v}_0 \perp \overrightarrow{B}$. Comparer les valeurs des quantités suivantes à l'entrée et à la sortie de la zone :

- 1. énergie cinétique,
- 2. quantité de mouvement,
- 3. moment cinétique par rapport au centre de la trajectoire.

2 Mouvement de gouttelettes chargées

On disperse un brouillard de fines gouttelettes sphériques d'huile, de masse volumique $\rho_h = 1, 3 \cdot 10^3 \,\mathrm{kg \cdot m^{-3}}$, dans l'espace séparant les deux plaques horizontales d'un condensateur plan, distantes de $d = 2 \cdot 10^{-2} \,\mathrm{m}$. Les gouttelettes sont chargées négativement et sans vitesse initiale. Toutes les gouttelettes ont même rayon R mais pas forcément la même charge q < 0. En l'absence de champ électrique E, une gouttelette est soumise à son poids $(g = 9,81 \,\mathrm{m \cdot s^{-2}})$, à la poussée d'Archimède de l'air ambiant de masse volumique $\rho_a = 1,3 \,\mathrm{kg \cdot m^{-3}}$ et à une force de frottement visqueux $f = -k \,\overline{v}$, avec $k = \alpha R$ et $\alpha = 3,4 \cdot 10^{-4} \,\mathrm{SI}$.

- 1. Mouvement en l'absence de champ électrique.
- **1.a.** Déterminer la vitesse limite \vec{v}_0 .
- **1.b.** Déterminer l'expression de la vitesse des gouttes $\vec{v}(t)$. On fera apparaître un temps caractéristique τ .
- **1.c.** On mesure $v_0 = 2 \cdot 10^{-4} \,\mathrm{m \cdot s^{-1}}$, déterminer la valeur de R.
- **2.** On applique une différence de potentiel $U = V_1 V_2$ de manière à avoir un champ électrique \vec{E} dirigé vers le bas.
- **2.a.** Déterminer l'expression de \overrightarrow{E} .
- **2.b.** Une gouttelette est immobilisée pour $U = 3200\,\mathrm{V}$. Calculer la charge q.