SRG applied to Quantum Dots - what I have done so far

Sarah Reimann

Department of Physics, University of Oslo, Norway

November 13, 2012

Aim of the thesis

- Study the ground state of closed-shell systems of quantum dots in two dimensions
- Method: Similarity renormalization group (SRG) method
- Use of the same methodology discussed in the paper 'Similarity renormalization group for nucleon-nucleon interactions' by S.K.Bogner et al.

Implemented equations

The Hamiltonian:

$$H = T_{\rm rel} + V$$

 $T_{\rm rel}$: relative kinetic energy, V: interaction part

Flow of the Hamiltonian:

$$\frac{dH_s}{ds} = [\eta_s, H_s]$$

Choice of generator:

$$\eta_s = [T_{\rm rel}, H_s] = [T_{\rm rel}, V_s]$$

Only interaction part V dependent on flow parameter s!

Chosen basis: Harmonic oscillator basis

$$T_{\text{rel}} = \left(egin{array}{cccc} T_0 & 0 & \dots & 0 \\ 0 & T_1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & T_n \end{array}
ight)$$

with $T_i = \sum\limits_{i=1}^N \epsilon_i = \sum\limits_{i=1}^N \hbar \omega (2n_i + |m_i| + 1), \ N$ - number of particles.

Implemented equations

With this choice of $T_{\rm rel}$:

$$\eta_{ij}(s) = (\epsilon_i - \epsilon_j) V_{ij}(s).$$

The flow of the matrix elements is then given by

$$\frac{dH_{ij}}{ds} = \frac{dV_{ij}}{ds} = -(\epsilon_i - \epsilon_j)^2 V_{ij}(s) + \sum_k (\epsilon_i + \epsilon_j - 2\epsilon_k) V_{ik}(s) V_{kj}(s). \tag{1}$$

General procedure

- 1) Specify the number of particles/shells.
- 2) Set up the **basis states in M-scheme**, using binary representation. Since I am interested in the ground state, I take only those states where $M=M_s=0$ (H is block diagonal).
- 3) Set up of the **initial Hamiltonian matrix**, dimension $n \times n$. Interaction matrix elements are computed using the code of S. Kvaal.
- 4) Solve the system of n(n+1)/2 coupled first-order differential equations using the SRG method (since the Hamiltonian is symmetric, I only consider the upper triangular part)

Details - SRG method

- ODE solver: Algorithm by Lawrence Shampine, Marilyn Gordon. C++ version found on netlib.org
- Derivative function
 - Flow parameter s, related to λ by: $\lambda = s^{-1/2}$
 - In terms of λ , this means for the flow

$$\frac{dV_{ij}(s(\lambda))}{ds} = -\frac{2}{\lambda^3} \frac{dV_{ij}(\lambda)}{d\lambda}$$

- Alltogether: Each time the derivative-function is called, compute for each interaction element $V_{ij}(s)$

$$\frac{dV_{ij}(s(\lambda))}{ds} = -\frac{2}{\lambda^3} \left\{ -(\epsilon_i - \epsilon_j)^2 V_{ij}(\lambda) + \sum_k (\epsilon_i + \epsilon_j - 2\epsilon_k) V_{ik}(\lambda) V_{kj}(\lambda) \right\}.$$

Some results for the ground state energy

	R = 3		R =	= 4	R = 5	
N	SRG	FCI	SRG	FCI	SRG	FCI
2	3.038604576	3.038604576	3.025230582	3.025230582	3.01760623	3.01760623
6	21.42058830	21.42058830	20.41582765	20.41582765		
12	-	-	70.31250219	70.31250218		

Table: E_0 in units of $\hbar\omega=2.84$ meV. For N=2 particles I performed calculations up to R=9 shells and obtained always exactly the same result as with exact diagonalization.

Pro: SRG converges to the exact ground state energy for all studied systems.

Con: The required timed is exceedingly large, much larger than exact diagonalization, therefore until now just very small systems in reasonable times possible (see next slides)

Pro: convergence of $E_0!$

Pro: Suppression of off-diagonal matrix elements!

Figure: Example with ${\cal N}=2$ particles and ${\cal R}=4$ shells

Con: Time usage compared to simple exact diagonalization ...

Example: N=6, R=4, on one processor

λ	E_0	CPU time in s
20.0	2 2.20366072	660
10.0	2 2.05448854	1756
3.0	2 0.99839817	2908
2.0	20 .57836962	3363
1.4	20.4 3153289	4608
1.0	20.416 04434	6813
0.8	20.41582 988	9126
0.6	20.41582765	14039

Table: E_0 in units of $\hbar\omega=2.84$ meV, from $\lambda=s^{-1/2}$ follows that $[\lambda]=[E]$. The bold letters indicate correct digits.

Time exact diagonalization (standard Armadillo method): $3s~(E_0=20.41582765)$ About 90% of the time spent in derivative function, increasing with dimension of H

Problem: Fast increase of number basis states

N	R = 3	R = 5	R = 7
2	8	29	72
6	64	16451	594118
12	-	1630953	579968

Table. Number n of relevant basis states in M-scheme with constraint $M=M_s=0$.

Problem: Each call of the derivative function is of order $\mathcal{O}(n^3/2)$!!! This explains the large CPU time ...

Strategy 1: Reduce gradually size of the problem

- Idea: After some integration, matrix elements far off the diagonal are vanished and will stay zero
- ⇒ those indices i, j not needed any more when computing the derivatives

$$\frac{dV_{ij}}{ds} = -(\epsilon_i - \epsilon_j)^2 V_{ij}(s) + \sum_k (\epsilon_i + \epsilon_j - 2\epsilon_k) V_{ik}(s) V_{kj}(s)$$

Therefore:

- Save a list with all elements i, j that are needed for the derivative
- In certain intervals, delete those elements which are not needed any more (= where $V_{ij}(s)$ and $dV_{ij}(s)/ds$ are zero)

◆ロト ◆園ト ◆園ト ◆園ト ■ めので

12 / 15

Strategy 1: Reduce gradually size of the problem

(a) $N = 2, R = 8, n = 104$						
λ	10.0	5.0	1.0	0.6	0.4	
skipped	0	0	0	459	1943	

(b)
$$N = 2, R = 9, n = 145$$

λ	10.0	5.0	1.0	8.0	0.6	0.4
skipped	0	0	12	393	1829	4921

(c)
$$N=6, R=4, n=1490$$
, Final time: 4162s vs. 4264s

$\overline{\lambda}$	20.0	10.0	1.0	0.9	0.8	0.7	0.6
skipped	7869	8036	8055	8578	11304	25072	68732

Table: Reducing the size of the problem. Second line shows number of skipped matrix elements.

Strategy 2: Usage of optimized library routines

Second attempt: Take benefit of optimized matrix-matrix multiplication routines Flow equation

$$\frac{dV_s}{ds} = [\eta_s, H_s]$$

can be implemented as matrix-matrix multiplication with $\eta_{ij}(s)=(\epsilon_i-\epsilon_j)\,V_{ij}(s)$ and $H_{ij}(s)=\epsilon_i\delta_{ij}+V_{ij}(s)$

Usage: Blas routine for symmetric matrices $(V_{ij}(s) = V_{ji}(s))$

Result:

\overline{N}	R	time [s]	time _{strategy1} [s]
2	9	15.78	3.7
_ 2	10	26.9	10.8

Table: Time comparison between both methods to reduce CPU time

Reasons for more time:

- ullet The matrix multiplication involves **more flops** than the pre-computed expression in Eq.(1)
- No skipping of elements possible as in the ansatz of the previous slides

Open questions

Until now correct results, but exceedingly slow

- How to get a speedup?
- The problem lies in the $\mathcal{O}(n^3/2)$ flops each time the derivative function is called For possibly larger systems
 - The required memory to store the whole matrix explodes with number of particles/shells
 - Is there a smart way not to store the whole matrix (all interaction elements for the ODE solver)?