Practical Work 1 Problem Modeling

The Knapsack problem is a classic optimization challenge in computer science. It involves selecting items to maximize value while staying within a weight limit.

Instance: Let **X** be a set of n items $X = \{I_1, I_2, ... I_n\}$, each Item I_i has a value v_i and a weight w_i . **W** is the total knapsack capacity to not exceed.

Question: What are the items to take (put in the knapsack) to maximize its total value with respect to the total weight constraint?

Exemple: W = 50 Kg

Items Item₁ Item₂ Item₃ Item_₄ Item₅ Item₆ Item₇ Item₈ Value 5 10 6 18 12 20 10 13 20 32 Weight 5 16 8 4 21 19 Solution 1 0 1 0 1 1 1 0 0 Solution 2 1 1 1 0

Solution 1: valid solution

Total value = 10+18+12+20 = 60 Total weight = 5+32+8+4 = 49 ≤ W

Solution 2: invalid solution Total value = 5+6+18+10 = 39

Total weight = 20+16+32+21 = 80 > W

Modeling a problem means describing it in a scientific manner, translating a statement from everyday language into a formal representation. To achieve this, it is essential to thoroughly understand the problem and identify its variables or unknowns.

In metaheuristics, modeling an optimization problem mainly involves defining:

- **Solution**: The structure of a solution for a given problem.
- **Evaluation**: A method to assess the quality of a given solution.

To Do:

Thus, you are required to propose an appropriate modeling of the knapsack Problem. This modeling includes:

- Generating a random instance of the problem.
- Modeling a solution to the problem.
- Verifying the validity of a solution.
- Evaluating a solution.