PENGENALAN AKSARA INCUNG MENGGUNAKAN METODE HIDDEN MARKOV MODEL

SKRIPSI

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer Program Studi Informatika

Oleh:

Agung Kristanto 175314052

PROGRAM STUDI INFORMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS SANATA DHARMA
YOGYAKARTA
2021

RECOGNIZING THE INCUNG SCRIPT USING HIDDEN MARKOV MODEL METHOD

THESIS

Presented as Partial Fullfillment of the Requirements to Obtain *Sarjana Komputer* Degree in the Informatics Study Program

Created by:
Agung Kristanto
175314052

INFORMATICS STUDY PROGRAM FACULTY OF SCIENCE AND TECHNOLOGY SANATA DHARMA UNIVERSITY YOGYAKARTA 2021

HALAMAN PERSETUJUAN SKRIPSI PENGENALAN AKSARA INCUNG MENGGUNAKAN METODE HIDDEN MARKOV MODEL

HALAMAN PENGESAHAN SKRIPSI PENGENALAN AKSARA INCUNG MENGGUNAKAN

Dipersiapkan dan disusum oleh: Agung Kristanto 175314052

METODE HIDDEN MARKOV MODEL

Telah dipertahankan di depan Tim Penguji

Pada tanggal: 27 Juli 2021

Dan dinyatakan memenuhi syarat

Susunan Tim Penguji:

Tanda Tangan

: Dr. Anastasia Rita Widiarti, M.Kom.

Ketua

Sekretaris

Anggota

: Rosalia Arum Kumalasanti, M.T.

: Kartono Pinaryanto, S.T., M.Cs

Yogyakarta, 23. Agustus 2021

Fakultas Sains dan Teknologi Universitas Sanata Dharma

Dekan

Sudi Mungkasi, S.Si., M.Math.Sc., Ph.D.

iv

HALAMAN PERSEMBAHAN

"Percayalah kepada TUHAN dengan segenap hatimu, dan janganlah bersandar kepada pengertianmu sendiri. Akuilah Dia dalam segala lakumu, maka Ia akan meluruskan jalanmu."

Amsal 3:5-6

PERNYATAAN KEASLIAN KARYA

Saya menyatakan dengan sesungguhnya bahwa di dalam skripsi yang saya tulis ini tidak memuat karya atau bagian karya orang lain, kecuali yang telah disebutkan dalam kutipan dan daftar pustaka sebagaimana layaknya karya ilmiah.

Yogyakarta, 18 Agustus 2021

Penulis

Agung Kristanto

vi

LEMBAR PERNYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH

Yang bertanda tangan dibawah ini, saya mahasiswa Universitas Sanata Dharma:

Nama: Agung Kristanto

NIM : 175314052

Demi pengembangan ilmu pengetahuan, saya memberikan kepada perpustakaan Universitas Sanata Dharma karya ilmiah yang berjudul:

PENGENALAN AKSARA INCUNG MENGGUNAKAN METODE HIDDEN MARKOV MODEL

Dengan demikian saya memberikan kepada perpustakaan Universitas Sanata Dharma hak untuk menyimpan, menngalihkan dalam bentuk media lain, mengelolanya dalam bentuk pangkalan data mendistribusikan secara terbatas, dan mempublikasikannya di internet atau media lain untuk kepentingan akademis tanpa perlu meminta ijin dari saya maupun memberikan royaliti kepada saya selama tetap mencantumkan nama saya sebagai penulis.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di Yogyakarta,

Pada tanggal: 18 Agustus 2021

Yang menyatakan,

Agung Kristanto

ABSTRAK

Aksara Incung sebagai kebudayaan berupa tulisan aksara kuno yang berasal dari daerah Kerinci, Jambi. Dalam upaya untuk melestarikan aksara Incung supaya tidak punah, maka diperlukan sebuah sistem untuk mengenali aksara Incung. Ini dapat dilakukan dengan menggunakan metode *Hidden Markov Model* untuk proses pengenalan pada aksara Incung. Penulis menggunakan konsonan aksara Incung yang disusun oleh L.C Westenenk.

Setiap citra aksara yang sudah dilakukan proses *preprocessing* kemudian dilakukan proses ekstraksi ciri dengan metode *Intensity of Character dan Mark Direction*. Dari ciri tersebut digunakan untuk input pada metode *Hidden Markov Model* (HMM). Sehingga dari proses pengenalan ini diperoleh akurasi terbaik sebesar 89.3% dengan menggunakan ekstraksi ciri *Intensity of Character* berukuran 5x5 dengan nilai *K-Fold* 5.

Kata kunci: Aksara Incung, Intensity of Character, Mark Direction, Hidden Markov Model (HMM)

ABSTRACT

Incung script as a culture takes the form of ancient script from Kerinci, Jambi. In an effort to preserve the Incung script so that it does not become extinct, a system is needed to recognize the Incung script. This can be done using the Hidden Markov Model method for the recognition process of the Incung script. The author uses incung consonants compiled by L.C Westenenk.

Each character *image* that has been through the preprocessing process then goes throught the process of extracting features with the Intensity of Character and *Mark Direction* method. The output of this process is used for input on the Hidden Markov Model (HMM) method. So from this recognition process obtained the best accuracy of 89.3% by using the extraction of Intensity of Character size 5x5 the value of K-*Fold* 5.

Keywords : The Incung Script, Intensity of Character, Mark Direction, Hidden Markov Model (HMM)

KATA PENGANTAR

Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa, atas segala kebaikan dan kasih setia-Nya, sehingga penulis dapat menyelesaikan tugas akhir dengan judul "Pengenalan Aksara Incung Menggunakan Metode *Hidden Markov Model*".

Dalam penyelesaian tugas akhir ini tentunya tidak lepas dari bantuan berbagai pihak yang sudah mendukung baik secara langsung maupun tidak langsung. Oleh karena itu, dengan tulus hati penulis mengucapkan terima kasih kepada:

- 1. Bapak Kartono Pinaryanto, S.T., M.Cs. selaku dosen pembimbing yang telah bersedia memberikan waktu, arahan, motivasi, masukan serta bimbingan kepada penulis selama menyelesaikan tugas akhir ini.
- 2. Seluruh dosen Informatika Universitas Sanata Dharma yang telah mendidik dan memberikan ilmu pengetahuan kepada penulis yang digunakan sebagai bekal dalam menyelesaikan tugas akhir ini.
- 3. Keluarga tercinta Bapak Heru Prayitno, Ibu Kristi Handayani dan Adik Dwi Handoko yang selalu mendukung serta selalu mendoakan penulis sehingga penulis dapat menyelesaikan tugas akhir ini.
- 4. Saudari Geovani Putri Wiradi yang selalu memberikan dukungan dalam doa, memberikan perhatian, semangat dan motivasi kepada penulis dalam penyelesaian tugas akhir ini.
- 5. Saudara Joseph Hutagalung, Edrick Hernando, Atanasius Ivannoel Rio Aji, Gabriel Ryan Prima, dan Saudari Fransiska Apri Wulandari yang telah bersedia meluangkan waktunya untuk berdiskusi mengenai permasalahan dalam pengerjaan tugas akhir ini.
- 6. Semua pihak yang tidak bisa disebutkan satu persatu yang telah membantu atau terlibat dalam penulisan tugas akhir ini.

Penulis menyadari bahwa masih banyak kekurangan dari tugas akhir ini, sehingga penulis mengharapkan kritik dan saran yang bersifat membangun untuk menyempurnakannya. Semoga tugas akhir ini dapat bermanfaat bagi para pembaca, terutama bagi teman-teman Informatika.

Yogyakarta, 18 Agustus 2021

Penulis

Agung Kristanto

DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PERSETUJUANii	i
HALAMAN PERSEMBAHANv	7
HALAMAN PERNYATAANvi	i
ABSTRAKvii	i
ABSTRACTix	(
KATA PENGANTAR	(
DAFTAR ISIxi	i
DAFTAR ISI TABELxv	7
DAFTAR ISI GAMBARxvi	i
BAB I PENDAHULUAN1	L
1.1 Latar Belakang	L
1.2 Rumusan Masalah	2
1.3 Tujuan Penelitian	2
1.4 Manfaat Penelitian	2
1.5 Batasan Penelitian	3
1.6 Sistematika Penulisan2	ļ
BAB II LANDASAN TEORI5	5
2.1 Aksara Incung5	5
2.2 Pemrosesan Citra	5
2.2.1 Binerisasi	7
2.2.2 Reduksi Derau	7
2.2.3 Segmentasi	3
2.2.4 <i>Resize</i>	3
2.2.5 Penipisan	3
2.3 Pengenalan Pola)
2.5 Ekstraksi Ciri)
2.5.1 Intensity of Character10)
2.5.2 Mark Direction	1

2.6 Metode <i>Hidden Markov Model</i>	12
2.6.1 Algoritma <i>Hidden Markov Model</i>	15
2.6.2 Tahap Pelatihan HMM	18
2.6.3 Tahap Pengujian HMM	26
2.7 Metode Evaluasi K-Fold Cross Validation	29
BAB III METODE PENELITIAN	30
3.1 Data	30
3.2 Perancangan Sistem	31
3.2.1 Akusisi Data	31
3.2.2 Cropping	32
3.2.3 Preprocessing	32
3.2.4 Ekstraksi Ciri	34
3.2.2 Tahap Pelatihan HMM	37
3.2.3 Tahap Pengujian HMM	39
3.2.5 Skenario Pengujian	41
3.3 Kebutuhan Perangkat Lunak	42
3.4 Kebutuhan Perangkat Keras	42
3.5 Desain GUI	43
BAB IV HASIL DAN ANALISIS	44
4.1 Data	44
4.1.1 Akusisi Data	44
4.1.2 Cropping	45
4.2 Implementasi <i>Preprocessing</i>	45
4.2.1 Binerisasi Citra	45
4.2.2 Reduksi Derau	46
4.2.3 Segmentasi	47
4.2.4 <i>Resize</i> Citra	48

4.2.5 Penipisan Citra	49
4.3 Implementasi Ekstraksi Ciri	49
4.3.1 Data Ciri 1	51
4.3.2 Data Ciri 2	51
4.3.3 Data Ciri 3	52
4.3.4 Data Ciri 4	52
4.3.4 Data Ciri 5	52
4.3.4 Data Ciri 6	53
4.4 Implementasi Pembagian Data Pelatihan dan Pengujian	53
4.5 Implementasi Klasifikasi Hidden Markov Model	54
4.5.1 Inisialisasi parameter <i>Hidden Markov Model</i>	54
4.5.2 Tahap Pelatihan Hidden Markov Model	55
4.5.3 Tahap Pengujian Hidden Markov Model	55
4.6 Pengujian dan Evaluasi	56
4.6.1 Pengujian Data Ciri 1	56
4.6.2 Pengujian Data Ciri 2	59
4.6.3 Pengujian Data Ciri 3	62
4.6.4 Pengujian Data Ciri 4	66
4.6.5 Pengujian Data Ciri 5	70
4.6.6 Pengujian Data Ciri 6	74
4.6.7 Pengujian Data Tunggal	79
BAB V PENUTUP	86
5.1 Kesimpulan	86
5.2 Saran	86
DAFTAR PUSTAKA	87
I AMDIDAN	00

DAFTAR ISI TABEL

Tabel 2.1 Representasi Data Citra Ukuran 9x9	10
Tabel 2.2 Hasil Data Citra IoC 3x3	10
Tabel 2.3 Tabel Representasi Mark Direction (Vertikal)	11
Tabel 2.4 Tabel Representasi Mark Direction (Horizontal)	11
Tabel 2.5 Tabel Representasi Mark Direction (Diagonal Kiri)	11
Tabel 2.6 Tabel Representasi Mark Direction (Diagonal Kanan)	11
Tabel 2.7 Fungsi toolbox Inisialisasi HMM	13
Tabel 2.8 Fungsi <i>toolbox</i> Pelatihan HMM	14
Tabel 2.9 Fungsi toolbox Pengujian HMM	15
Tabel 2.10 Probabilitas Membawa Payung	17
Tabel 2.11 Estimasi Probabilitas	23
Tabel 3.1 Skenario Pengujian	42
Tabel 4.1 Kelas pada Aksara Incung	49
Tabel 4.2 Data Ciri 1	51
Tabel 4.3 Data Ciri 2	51
Tabel 4.4 Data Ciri 3	52
Tabel 4.5 Data Ciri 4	52
Tabel 4.6 Data Ciri 5	52
Tabel 4.7 Data Ciri 6	53
Tabel 4.8 Pembagian Data Latih 3 fold	53
Tabel 4.9 Pembagian Data Latih 3 fold	53
Tabel 4.10 Pembagian Data Latih 5 fold	54
Tabel 4.11 Pembagian Data Uji 5 fold	54
Tabel 4.12 Hasil Pengujian Data Ciri 1 dengan 3 fold	57
Tabel 4.13 Hasil Pengujian Data Ciri 1 dengan 5 fold	58
Tabel 4.14 Hasil Pengujian Data Ciri 2 dengan 3 fold	60
Tabel 4.15 Hasil Pengujian Data Ciri 2 dengan 5 fold	61
Tabel 4.16 Hasil Pengujian Data Ciri 3 dengan 3 fold	63
Tabel 4.17 Hasil Pengujian Data Ciri 3 dengan 5 fold	65
Tabel 4.18 Hasil Pengujian Data Ciri 4 dengan 3 fold	67

Tabel 4.19 Hasil Pengujian Data Ciri 4 dengan 5 fold	69
Tabel 4.20 Hasil Pengujian Data Ciri 5 dengan 3 fold	71
Tabel 4.21 Hasil Pengujian Data Ciri 5 dengan 5 fold	. 73
Tabel 4.22 Hasil Pengujian Data Ciri 6 dengan 3 fold	. 75
Tabel 4.23 Hasil Pengujian Data Ciri 6 dengan 5 fold	. 77
Tabel 4.24 Durasi Klasifikasi HMM	. 78
Tabel 4.25 Hasil Pengujian Data Tunggal	. 79
Tabel 4.26 Hasil Persentase Rata-rata Akurasi Keseluruhan	84

DAFTAR ISI GAMBAR

Gambar 2.1 Konsonan Surat Incung yang disusun oleh L.C Westenenk	<i>6</i>
Gambar 2.2 Struktur elemen tanda arah (Surinta, 2010)	11
Gambar 2.3 Representasi parameter HMM	15
Gambar 2.4 Ilustrasi dari operasi pada Baum-Welch	20
Gambar 2.5 Ilustrasi pencarian nilai terbaik dengan Viterbi	27
Gambar 2.6 Ilustrasi Model 3-Fold Cross Validation	29
Gambar 3.1 Angket Aksara Incung	30
Gambar 3.2 Diagram Perancangan Sistem	31
Gambar 3.3 Diagram Tahap Pelatihan	37
Gambar 3.4 Diagram Tahap Pengujian	39
Gambar 4.1 Contoh Angket Aksara Incung	44
Gambar 4.2 Data Citra Hasil Cropping	45
Gambar 4.3 Proses Binerisasi Citra Aksara Da	45
Gambar 4.4 Proses <i>Invers</i> Citra Aksara Da	46
Gambar 4.5 Proses Menghilangkan Derau Aksara Da	46
Gambar 4. 6 Hasil Citra Proses Imfill Citra Aksara Da	47
Gambar 4.7 Proses Invers Citra Aksara Da	47
Gambar 4.8 Proses Profil Proyeksi Citra	48
Gambar 4.9 Resize Citra	48
Gambar 4.10 Penipisan Citra	49
Gambar 4.11 Grafik Akurasi dengan IoC = 3 dan fold 3	56
Gambar 4.12 Grafik Akurasi dengan IoC = 3 dan fold 5	58
Gambar 4.13 Grafik Akurasi dengan IoC = 4 dan fold 3	59
Gambar 4.14 Grafik Akurasi dengan IoC = 4 dan fold 5	60
Gambar 4.15 Grafik Akurasi dengan IoC = 5 dan fold 3	62
Gambar 4.16 Grafik Akurasi dengan IoC=5 dan fold 5	64
Gambar 4.17 Grafik Akurasi dengan Mark Direction Horizontal dan Fold 3	66
Gambar 4.18 Grafik Akurasi dengan Mark Direction Horizontal dan Fold 5	68
Gambar 4.19 Grafik Akurasi dengan Mark Direction Vertikal dan Fold 3	70
Gambar 4.20 Grafik Akurasi dengan Mark Direction Vertikal dan Fold 5	72

Gambar 4.21 Grafik Akurasi dengan Mark Direction dan fold 3	74
Gambar 4.22 Grafik Akurasi dengan Mark Direction dan fold 5	76
Gambar 4.23 Tampilan Menu Pengujian Data Tunggal	78

BABI

PENDAHULUAN

1.1 Latar Belakang

Sebagai negara yang luas dan terdiri dalam kepulauan Indonesia memiliki warisan kekayaan budaya yang beragam, salah satu kebudayaan itu terwujud dalam bentuk aksara. Begitu banyak kebudayaan aksara di Indonesia salah satunya aksara Incung. Aksara Incung berasal dari kebudayaan masyarakat di daerah Kerinci, Jambi. Keberadaan aksara Incung telah digunakan secara luas pada abad ke 14 M (Powa, 2020).

Melestarikan kebudayaan aksara Incung ini sebagai upaya untuk memperkaya kebudayan daerah Kerinci maupun untuk bangsa Indonesia (Utnasari, 2018). Pada penelitian ini diharapkan mampu menarik minat generasi muda untuk mempelajari aksara Incung yang merupakan kebudayaan daerah Kerinci, Jambi sebagai kontribusi dalam pelestarian budaya bangsa Indonesia. Hal ini akan membawa pengaruh yang baik bagi orang-orang untuk mengenal kebudayan Indonesia. Sehingga warisan leluhur dapat terjaga dan lestari.

Perkembangan teknologi modern yang semakin pesat membuat permasalahan mampu dipecahkan melalui komputasi menggunakan komputer (Widyastuti, 2016). Salah satu model komputasi *machine learning* seperti *Hidden Markov Model* yang memberikan memanfaatkan kemampuan komputer dalam menangani masalah-masalah yang kompleks di antaranya adalah pengenalan pola, pengenalan wajah, pencitraan medis, prediksi saham dan lain sebagainya (Ganeshamoorthy, 2008).

Beberapa peneliti telah melakukan penelitian menggunakan metode *Hidden Markov Model*, para peneliti tersebut mendapatkan hasil akurasi yang tinggi. Berdasarkan penelitian yang dilakukan oleh Metwally, dkk, menggunakan metode HMM untuk pengenalan tulisan tangan Arab mendapatkan akurasi 87% (Metwally et al., 2017). Pada penelitian Pratiwi, dkk, melakukan pengenalan wajah menggunakan HMM mencapai akurasi 95.9% (Pratiwi et al., 2018). Lokhande telah menggunakan Hidden Makov Model untuk pengenalan tulisan tangan online yang menghasilkan 80% efisiensi (Lokhande, 2017).

Maka dengan hal ini, penulis ingin menguji tingkat keberhasilan pengenalan aksara Incung menggunakan metode *Hidden Markov Model*. Sehingga metode *Hidden Markov Model* akan diharapkan memberikan keberhasilan pada pengenalan aksara Incung.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah dibuat, maka dapat dirumuskan masalah dalam penelitian ini sebagai berikut:

- 1. Bagaimana penerapan metode *Hidden Markov Model* pada pengenalan aksara Incung?
- 2. Berapa akurasi yang diperoleh dari penerapan metode *Hidden Markov Model* untuk pengenalan aksara Incung?

1.3 Tujuan Penelitian

Tujuan dari penelitian ini adalah sebagai berikut:

- Menerapkan metode Hidden Markov Model untuk pengenalan aksara Incung.
- 2. Mengetahui tingkat akurasi dalam mengenali aksara Incung menggunakan metode *Hidden Markov Model*.

1.4 Manfaat Penelitian

Manfaat penelitian adalah sebagai berikut:

- 1. Membantu orang-orang untuk lebih mudah mengenali dan belajar mengenai aksara Incung sebagai kebudayaan dari Kerinci, Jambi.
- 2. Memberikan referensi bagi penelitian yang berkaitan pada pengenalan aksara Incung menggunakan metode *Hidden Markov Model*.

1.5 Batasan Penelitian

Batasan – batasan masalah dari penelitian ini adalah :

- Aksara yang digunakan adalah konsonan aksara Incung yang disusun oleh L.C Westenenk.
- Pada pengumpulan data aksara Incung menggunakan ukuran kertas A4 dengan ukuran pena 0.8 dan posisi responden duduk.
- 3. Data diperoleh dari 90 responden yang menuliskan aksara Incung kemudian hasil penulisan tersebut dipindai yang menghasilkan citra dalam format jpg.
- 4. Hasil citra aksara yang telah dipindai dilakukan pemotongan setiap aksara secara manual.
- 5. Ukuran citra aksara Incung yang digunakan berukuran 60x60 piksel.
- 6. Ekstraksi ciri menggunakan *Intensity of Character* dengan ukuran 3x3, 4x4, dan 5x5.
- 7. Ekstraksi ciri yang digunakan *Mark Direction* dengan ukuran 3x3.
- 8. Menggunakan validasi K-Fold Cross Validation dengan nilai k-3 dan 5.

1.6 Sistematika Penulisan

BAB 1: PENDAHULUAN

Bab ini berisi tentang latar belakang masalah, rumusan masalah, tujuan, manfaat, batasan masalah serta sistematika penulisan dari penelitian yang akan dilakukan

BAB 2: LANDASAN TEORI

Bab ini berisi tentang teori-teori dasar yang berkaitan dengan penelitian yang akan dilakukan, meliputi jenis data citra yang digunakan, metode *preprocessing*, ekstraksi ciri, dan metode untuk klasifikasi.

BAB 3: METODOLOGI PENELITIAN

Bab ini berisi tentang langkah-langkah yang dilakukan dalam penelitian yang bertujuan untuk menjawab dan menyelesaikan rumusan masalah yang dimiliki.

BAB 4: HASIL PENELITIAN DAN ANALISIS

Bab ini berisi tentang penjelasan mengenai sistem yang akan dibangun, penerapan algoritma serta rancangan yang telah dibuat, cara penggunaan sistem, serta hasil analisa dari pengujian-pengujian yang dilakukan.

BAB 5: PENUTUP

Bab ini berisi kesimpulan dari hasil penelitian serta saran yang diusulkan untuk dapat mengembangkan penelitian.

BAB II

LANDASAN TEORI

2.1 Aksara Incung

Surat Incung atau biasa disebut aksara Incung adalah salah satu aksara yang ada di Indonesia. Aksara Incung sebagai bentuk keragaman yang dimiliki oleh suku Kerinci. Aksara ini merupakan bagian dari surat Ulu yang banyak digunakan di Sumatera Selatan. Kozok melakukan pengelompokan terhadap surat Ulu menjadi tiga sub-kelompok yaitu surat Incung yang digunakan di wilayah Kerinci, surat Rencong di Bengkulu dan Sumatera Selatan termasuk Komering, Lebong, Lembak, Lintang, Ogan, Pasemah, Rejang, dan Serawai, dan Surat Lampung yang digunakan di wilayah Lampung (Kozok, 2006).

Naskah-naskah kuno aksara Incung berisi dua hal yaitu *tembo* dan *karang mindu* (Alimin dkk, 2003). *Tembo* merupakan histografi tradisional yang berisi perjalanan silsilah nenek moyang atau klan (bahasa lokal: *kelebu*, *luhah*) masyarakat Kerinci sebagai pemilik naskah. Banyak naskah *tembo* beraksara Incung dituliskan pada media tanduk kerbau dan tanduk kambing. Sedangkan *karang mindu* merupakan prosa berisi ratapan kesedihan dari pembuat naskah. Pada naskah karang beraksara Incung kebanyakan ditulis pada media bambu dan kertas lama.

Surat Incung merupakan bagian dari kelompok surat Ulu yang berkembang di Sumatera Selatan. Westenenk mengidentifikasi sebanyak 28 karakter huruf dalam Surat Incung yang memiliki beberapa varian. Keberadaan aksara Incung pertama kali dilaporkan oleh William Marsden di tahun 1834 M (Voorhoeve, 1970).

Gambar 2.1 Konsonan Surat Incung yang disusun oleh L.C Westenenk

Setiap konsonan dalam aksara Incung terdiri atas sebuah konsonan yang diikuti oleh vokal 'a' seperti: Setiap karakter huruf dapat diubah menggunakan sandangan. Sandangan tersebut merubah vokal a menjadi i dan u selain itu terdapat pula sandangan untuk menambah bunyi dan menghilangkan vokal a sebagai contoh konsonan. Namun untuk naskah surat Incung kuno tidak terdapat kata sandangan untuk mengubah vokal a menjadi e atau o.

2.2 Pemrosesan Citra

Citra merupakan suatu kumpulan titik yang diberi nama piksel (Kadir & Susanto, 2013). Titik- titik ini yang mengandung informasi untuk menyusun suatu citra, sehingga dapat memperoleh informasi dari citra tersebut. Citra digital dapat diartikan sebagai citra f (x, y) maupun nilai intensitas cahaya pada citra. Citra digital digambarkan sebagai matrik yang terdiri dari baris dan kolom, pada setiap baris dan kolom akan berisikan elemen atau nilai intensitas kecerahan tertentu untuk setiap f (x, y) atau piksel (titik) pada bidang citra digital (Widiarti & Himamunanto, 2013).

Pemrosesan citra merupakan pengolahan gambar menggunakan komputer supaya kualitas pada suatu citra menjadi lebih baik. Pada pengolahan atau pemrosesan citra dilakukan pada setiap (x, y) untuk mendapatkan hasil yang diinginkan. Pada dasarnya metode pemrosesan citra ini digunakan untuk memodifikasi setiap piksel atau titik dari bidang citra sesuai dengan kebutuhannya.

2.2.1 Binerisasi

Binerisasi merupakan tahap awal di dalam pengolahan tingkat piksel yaitu proses memisahkan objek dari latar belakang dengan cara menentukan nilai ambang *threshold* (Widiarti & Himamunanto, 2013). Pada citra biner adalah citra yang pikselnya memiliki kedalaman bit sebesar 1 bit sehingga hanya memiliki dua nilai intensitas warna yaitu 0 (hitam) dan 1 (putih). Binerisasi mengubah citra dengan dimensi dua menjadi citra hitam putih menjadi dimensi 1 dengan mengubah nilai elemen dalam matriks citra menjadi 1 dan 0 yang mana nilai 0 sebagai warna hitam dan nilai 1 sebagai warna putih.

2.2.2 Reduksi Derau

Pada citra aksara yang terdapat bintik-bintik, itu terjadi sebagai kotoran-kotoran pada citra aksara. Setiap gangguan tersebut disebut dengan *noise* atau derau. Dengan ini membutuhkan proses dalam menghilangkan derau tersebut agar citra lebih baik.

Reduksi derau sebagai tahapan penghilangan *noise* dari sebuah citra digital. Proses yang dapat dilakukan untuk mengurangi kesalahan pada pengenalan objek dengan mengurangi derau atau *noise*. Ini akan menghilangkan pikselpiksel yang tidak dibutuhkan (Widiarti & Himamunanto, 2013). Tujuan utama pada reduksi derau untuk mengurangi sebanyak mungkin derau sehingga diperoleh citra yang lebih baik.

Beberapa jenis *noise* yang mungkin dapat terjadi antar lain:

- a. *Gaussian noise* : *noise* berupa titik-titik yang berwarna yang memiliki jumlah sama dengan presentase *noise*.
- b. *Speckle noise* : *noise* berupa warna hitam pada titik yang terkena *noise*.
- c. *Salt and pepper noise*: *noise* yang berupa warna putih pada titik yang terkena *noise*.

2.2.3 Segmentasi

Segmentasi merupakan teknik untuk membagi suatu citra menjadi beberapa daerah di mana setiap daerah memiliki kemiripan atribut. Pada tahap segementasi ini untuk mendapatkan huruf tersebut secara individu dengan mendapatkan kolom-kolom karakter citra aksara dari baris yang telah dipotong. Tahap ini menggunakan profil proyeksi yang berfungsi memisahkan latar belakang dengan dipotong secara vertikal dan horizontal. Pada kolom citra diambil menggunakan proyeksi vertikal, sedangkan baris citra diambil menggunakan proyeksi horizontal.

2.2.4 *Resize*

Resize berfungsi untuk membuat setiap citra dapat diproses dengan ukuran yang sama. Melakukan hal ini yang bertujuan untuk meningkatkan nilai akurasi. Ukuran yang akan digunakan pada citra aksara Incung adalah 60x60 piksel.

2.2.5 Penipisan

Penipisan atau disebut *thinning* merupakan suatu operasi dalam proses *preprocessing*, yang berfungsi mereduksi suatu objek menjadi garis tengah yang menjadi kerangka dari objek tersebut (Widiarti & Himamunanto, 2013). Tujuan utama dari penipisan adalah membuat sederhana suatu objek menjadi suatu kerangka objek. Sehingga proses analisa pada objek menjadi lebih sederhana dan tidak mengambil memori terlalu besar.

2.3 Pengenalan Pola

Pengenalan pola merupakan disiplin ilmu yang bertujuan untuk klasifikasi suatu objek dalam beberapa kategori atau kelas (Theodoridis & Koutroumbas, 2008). Pola adalah suatu entitas yang terdefinisi dan dapat didefinisikan serta diberi nama. Pengertian dari pola itu sendiri adalah sekumpulan hasil atau pemantauan yang dapat dinyatakan ke dalam bentuk notasi vektor atau matriks (Putra, 2010).

Pengenalan pola dapat dilakukan sebagai tindakan dalam mengelola data mentah yang membuat suatu aksi berdasarkan pada kategori dari pola data tersebut. Pada pengenalan pola terdiri dari 3 langkah utama yaitu *preprocessing*, ekstraksi ciri, dan klasifikasi. *Preprocessing* sebagai langkah untuk memfokuskan objek data yang akan digunakan dan menghilangkan bagian yang tidak diperlukan dari objek data. Dalam hal pemrosesan awal yang dilakukan terhadap objek untuk mengubah citra digital menjadi citra biner. Ekstraksi ciri sebagai cara dalam menyederhanakan data dengan melakukan pengukuran dari ciri objek tertentu untuk mendapatkan informasi dasar dari data tersebut. Proses selanjutnya, klasifikasi yaitu suatu tindakan untuk pengelompokan data menjadi pola sesuai target atau kelas. Dalam proses klasifikasi dipilih ekstraksi ciri yang paling optimal untuk menghasillkan hasil terbaik pada tahap pengenalan aksara.

2.5 Ekstraksi Ciri

Ekstraksi ciri sebagai proses dalam pengambilan informasi atau ciri yang penting dari suatu citra sebagai pembeda dari suatu citra yang lain. Hasil ekstraksi ciri ini yang akan digunakan untuk membuat model pada *Hidden Markov Model*. Kemudian pada ciri diekstraksi untuk diproses dalam perhitungan saat pelatihan maupun pengujian. Pada langkah ini data yang diolah berupa aksara biner dengan ukuran tertentu yang telah dikenakan proses *preprocessing*.

2.5.1 Intensity of Character

Intensity of Character merupakan salah satu metode yang digunakan untuk melakukan ekstraksi ciri. Intensity of Character dalam bentuk matriks dengan ukuran NxN, dimana setiap unit 1x1 berisikan piksel hasil penjumlahan piksel yang memiliki nilai 0 (hitam). Proses ini data citra akan dibagi menjadi beberapa segmen yang lebih kecil sehingga lebih mudah dalam proses pencirian data. Sebagai contoh berikut merupakan proses gambaran untuk mendapatkan ciri IoC berukuran 3x3:

a. Terdapat citra berukuran sebesar 9x9, maka untuk setiap unit IoC 1x1 nya akan mencakup matriks sebesar 3x3.

Tabel 2.1 Representasi Data Citra Ukuran 9x9

1	1	1	1	1	1	1	0	0
1	0	1	1	1	1	0	1	1
1	0	0	1	1	0	0	1	1
1	0	1	0	1	0	1	1	1
1	0	1	1	0	1	1	1	1
1	1	0	0	0	0	0	1	1
1	1	0	1	0	1	0	1	1
1	1	1	1	0	1	1	0	1
1	1	1	1	1	1	1	0	1

b. Berikut bagian dari unit 1x1 yang menyimpan nilai yang merupakan banyaknya piksel yang berwarna hitam atau bernilai 0 untuk setiap area 3x3. Berikut pada tabel 2.2 sebagai bentuk IoC 3x3 yang telah dilakukan penjumlahan yang pada setiap bagian area 3x3 yang memiliki nilai 0.

Tabel 2.2 Hasil Data Citra IoC 3x3

3	1	4
3	6	1
1	2	3

2.5.2 Mark Direction

Ekstraksi ciri *Mark Direction* adalah ekstraksi ciri dari tanda arah horizontal, vertikal, diagonal ke kanan, dan diagonal ke kiri.

Gambar 2.2 Struktur elemen tanda arah (Surinta, 2010)

1. Dalam menentukan nilai arah vertikal yang memenuhi

Tabel 2.3 Tabel Representasi Mark Direction (Vertikal)

1	0	1
1	0	1
1	0	1

Tabel 2.4 Tabel Representasi Mark Direction (Horizontal)

1	1	1
0	0	0
1	1	1

Tabel 2.5 Tabel Representasi Mark Direction (Diagonal Kiri)

1	1	0
1	0	1
0	1	1

Tabel 2.6 Tabel Representasi Mark Direction (Diagonal Kanan)

0	1	1
1	0	1
1	1	0

2.6 Metode Hidden Markov Model

Metode klasifikasi pada pengenalan pola memiliki banyak jenis yang menghasilkan akurasi yang baik. Salah satu metode klasifikasi paling populer yang banyak digunakan yaitu metode *Hidden Markov Model* pada pengenalan pola. Dalam *Markov Model* dapat diasumsikan setiap keadaan dapat terlihat langsung oleh pengamat. Oleh karena itu, kemungkinan dari transisi antara kondisi menjadi satu-satunya parameter teramati. Dalam HMM itu suatu keadaan tidak terlihat secara langsung. Tetapi *output* yang bergantung terhadap keadaan tersebut terlihat.

Hidden Markov Model adalah model statistika dari suatu sistem yang diasumsikan dari rantai Markov dengan parameter yang tidak diketahui, dan memiliki tantangan dalam menentukan parameter-parameter tersembunyi (hidden) dari parameter-parameter yang dapat diamati (Przytycka, 2000). Pada parameter yang sudah ditentukan kemudian digunakan untuk analisis pada pengenalan pola.

Penulis menggunakan *toolbox* HMM dari Kevin Murphy pada tahap pembuatan sistem pengenalan aksara Incung menggunakan metode *Hidden Markov Model*. HMM *toolbox* mempunyai 3 fungsi utama yang digunakan untuk:

- 1. Estimasi parameter *likelihood* maksimum menggunakan algoritma *Baum-Welch*.
- 2. Klasifikasi deret, digunakan untuk mengevaluasi *log-likelihood* dari model yang sudah dilatih dengan data pengujian.
- 3. Menghitung deret dengan probabilitas tertinggi menggunakan algoritma *Viterbi*.

Beberapa hal dalam penggunaan HMM *toolbox* untuk inisialisasi HMM, pelatihan HMM, dan tahap pengujian.

1. Inisialisasi HMM

Sebelum melakukan tahap pelatihan dilakukan inisialisasi parameter pada HMM. Fungsi yang digunakan pada *toolbox* HMM.

Tabel 2.7 Fungsi *toolbox* Inisialisasi HMM

Fungsi pada toolbox	Output	Penjelasan
HMM		
mk_stochastic(rand(Q,Q))	Inisialisasi	Fungsi ini digunakan
	parameter	untuk menentukan
	distribusi	parameter A dengan
	peluang transisi	melakukan <i>random</i>
	keadaan (A)	berdasarkan pada nilai
		suatu keadaan (Q).
mixgauss_init(Q*M, data,	Inisialisasi	Dalam menentukan
cov_type	parameter	parameter tersebut.
	distribusi	Dengan mencari nilai
	probabilitas	mean dan sigma karena
	simbol	menggunakan distribusi
	observasi tiap	normal. Q sebagai
	keadaan (B). Ini	jumlah state. M sebagai
	dalam bentuk	jumlah <i>mixture</i> ini
	output mean dan	menggunakan nilai 1
	sigma sebagai	yang berarti tanpa
	nilai dari tiap	adanya <i>mixture</i> .
	keadaan (B).	Cov_type sebagai
		pengelompokan data
		menggunakan spherical.
normalise(rand(Q,1))	Inisilasisasi	Menentukan nilai
	suatu keadaan	parameter keadaan awal
	awal (π)	berdasarkan jumlah
		state dengan
		dinormalisasi random ke
		satu.

2. Tahap Pelatihan HMM

Pada tahap ini sebagai proses dalam membuat model dari HMM. Ini dilakukan dengan mencari nilai optimal dari setiap parameter dan *likelihood*.

Tabel 2.8 Fungsi toolbox Pelatihan HMM

Train_Data, prior0, transmat0, mu0, sigma0, optimal dari setiap parameter likelihood, prior1, transmat1, di mu1, Sigma1, mixmat1	
Train_Data, prior0, transmat0, mu0, sigma0, optimal dari setiap parameter likelihood, prior1, transmat1, di mu1, Sigma1, mixmat1	
mixmat0, max_iter', max_iter, 'cov_type', cov_type, 'verbose', verbose) di pr ni op se di ha	Parameter yang telah diinisialisasi digunakan untuk ahap pelatihan. Ditambahkan dengan max iter sebagai umlah iterasi yang ditentukan dalam proses menemukan dilai parameter yang peptimal. Verbose sebagai fungsi untuk ditampilan atau tidak masil proses iterasi ikelihood.

3. Tahap Pengujian HMM

Pada tahap ini fungsi yang digunakan untuk mencari *likelihood* terbesar dengan menggunakan parameter hasil dari pelatihan HMM menggunakan data dari aksara Incung. Ini akan berguna menentukan nilai *likelihood* yang terbesar sebagai hasil prediksi pada kelas dari aksara Incung.

Fungsi pada toolbox Output Penjelasan **HMM** log-likelihood Menemukan mhmm_logprob(data, hasil likelihood prior1, transmat1, dari mu1, Sigma1, parameter yang mixmat1) optimal dari hasil pelatihan HMM. max(log-likelihood) Likelihood Menemukan yang memiliki nilai terbesar likelihood yang terbesar dan menentukan dari hasil indeks atau kelas yang optimasi diprediksi.

Tabel 2.9 Fungsi toolbox Pengujian HMM

2.6.1 Algoritma Hidden Markov Model

Hidden Markov Model dapat dibangkitkan, mendapatkan ciri. Data ciri dari citra berupa diskret, sehingga dapat dibuat rangkaian state dengan angka probabilitas transisi sebagai penghubung. Bentuk pada Hidden Markov Model adalah setiap state saling terhubung dengan state yang lain.

menggunakan

pelatihan HMM.

hasil

parameter

Gambar 2.3 Representasi parameter HMM

x = Kondisi keadaan

y = Observasi yang mungkin

a = Kemungkinan keadaan transisi

b = Kemungkinan output contoh kasus HMM

Algoritma *Hidden Markov Model* dibangkitkan dari beberapa parameter yaitu:

$$\lambda = (N, M, A, B, \pi)$$
 (2.1)

Permodelan dengan parameter tersebut dapat dijelaskan sebagai berikut:

- 1. N, jumlah keadaan (*state*) dalam model. Setiap *state* dinotasikan sebagai S = $\{S_1, S_2, S_3, ..., S_N\}$ dan *state* pada waktu t ialah q_t ,
- 2. M, banyaknya simbol observasi tiap *state*. Simbol individual dinotasikan sebagai $V = \{V_1, V_2, V_3, ..., V_M\}$, simbol dengan panjang T sebagai Q_t
- 3. Matriks transisi probabilitas $A = \{a_{ij}\},\$

Di mana

$$a_{ij} = P(q_{t+1} = S_i | q_t = S_i), 1 \le i, \le N$$
 (2.2)

Dan dengan syarat
$$a_{ij} \ge 0$$
 dan $\sum_{i=1}^{N} a_{ij} = 1$ (2. 3)

4. Simbol distribusi probabilitas pada state j, $B = \{bj(k)\}$ di mana

$$b_j(k) \ge 0, 1 \le j \le N, 1 \le k \le M$$
 (2.4)

$$\sum_{k=1}^{M} b_j(k) = 1, 1 \le j \le N$$
 (2.5)

5. Probabilitas kondisi awal $\Pi = \{\pi_i\}$ dengan π_i ialah probabilitas bahwa model berada pada keadaan S_i saat t=0 dengan rumus untuk menentukan probabilitas kondisi awal

$$\pi_i = p \{ q_i = i \} \text{ dan } 1 \le i \le N$$
 (2.6)

Keterangan:

 π_i = Probabilitas kondisi awal

- i = Jumlah probabilitas pada kondisi awal
- N = Jumlah *state* atau keadaan pada model

2.6.1.1 Contoh Perhitungan HMM

Keadaan cuaca dapat diobservasi secara langsung. Pada *Hidden Markov Model*, cuaca-cuaca dalam keadaan "*hidden*". Hal ini dapat diilustrasikan jika kita dikunci di sebuah kamar untuk beberapa hari (tidak dapat melihat kondisi cuaca luar). Cuaca dapat diprediksi yang dilihat dari tanda pada orang-orang yang setiap hari datang ke kamar untuk membawa makanan membawa payung atau tidak.

Tabel 2.10 berikut merupakan tampilan dari probabilitas orang membawa payung berdasarkan keadaan cuaca. Jika orang tersebut membawa payung maka 0.1 cuaca hari itu "*sunny*", 0.5 cuaca hari itu "*rainy*" dan 0.3 cuaca "*foggy*".

Tabel 2.10 Probabilitas $P(x_i|q_i)$ membawa payung berdasarkan cuaca q_i pada hari i

Tabel 2.10 Probabilitas Membawa Payung

Cuaca	Probabilitas	
	membawa payung	
Sunny	0.1	
Rainy	0.8	
Foggy	0.3	

- a. Jika hari saat seseorang terkunci cuaca "*sunny*". Pada hari berikutnya orang itu yang membawa payung. Berapakah probabilitas masing-masing cuaca pada hari itu?
 - 1. Kemungkinan pada hari kedua adalah "sunny":

$$L(q_2 = sunny | q_1 = sunny, x_2 = bawa payung) =$$

$$P(x_2 = \text{membawa payung } | q_2 = sunny) *$$

$$P(q_2 = sunny | q_1 = sunny)$$

= 0.1 * 0.8 = 0.08

2. Kemungkinan pada hari kedua adalah "rainy":

L
$$(q_2 = rainy | q_1 = sunny, x_2 = Bawa payung) =$$

$$P(x_2 = membawa payung | q_2 = rainy) *$$

$$P(q_2 = rainy | q_1 = sunny) = 0.8 * 0.05 = 0.04$$

3. Kemungkinan pada hari kedua adalah "foggy":

L
$$(q_2 = foggy | q_1 = sunny, x_2 = bawa payung) =$$

 $P(x_2 = bawa payung | q_2 = foggy) * P(q_2 =$
 $foggy | q_1 = sunny) = 0.3 * 0.15 = 0.045$

b. Jika Anda tidak mengetahui cuaca pada hari Anda dikunci dalam kamar, tiga hari berturut-turut orang yang mengantarkan makanan tidak membawa payung. Berapakah *likelihood* cuaca tersebut adalah $\{q_1 = sunny, q_2 = foggy, q_3 = sunny\}$?

Jawab:

$$L(q_1 = sunny, = q_2 = foggy, q_3 = sunny \mid x_1 = tidak \ bawa \ payung, x_2 = tidak \ bawa \ payung, x_3 = tidak \ bawa \ payung) = P(x_1 = tidak \ bawa \ payung \mid q_1 = sunny)*$$

$$P(x_2 = tidak \ bawa \ payung \mid q_2 = foggy)*$$

$$P(x_3 = tidak \ bawa \ payung \mid q_3 = sunny)*$$

$$P(q_1 = sunny) * P(q_2 = foggy \mid q_1 = sunny) *$$

$$P(q_3 \ sunny \mid q_2 = foggy) = 0.9*0.7*0.9*1/3*0.15*0.2 = 0.0057$$

2.6.2 Tahap Pelatihan HMM

Pada tahap pelatihan HMM permasalahan yang ditemukan ketika menggunakan metode $Hidden\ Markov\ Model$ adalah perlu mengatur parameter model $\lambda = \{A, B, \pi\}$ agar probabilitas urutan observasi yaitu $P(O|\lambda)$ menjadi maksimal. Parameter di model $\lambda = \{A, B, \pi\}$ untuk memaksimalkan $P(O|\lambda)$ dapat diperoleh dengan prosedur iterasi yaitu dengan Algoritma forward-backward atau biasa disebut dengan metode Baum-Welch.

Variabel *forward* didefinisikan sebagai observasi parsial dan probabilitas *state* sekuens yang dilambangkan dengan O1, O2, ..., Ot (hingga waktu t) dan *state* Si pada waktu t, dengan model λ , dan α sebagai t(i). Pada variabel *backward* didefinisikan sebagai observasi parsial dari probabilitas *state* sekuens dari t+1 ke *state* sebelumnya, yang mana terdapat *state* Si pada waktu t, dengan model λ , dan α sebagai t(i).

Observasi dari probabilitas *state* sekuens ini dihitung dengan rumus:

$$P(O|\lambda) = \sum_{i=1}^{N} \alpha_t(i)\beta_t(i) = \sum_{i=1}^{N} \alpha_t(i)$$
 (2.7)

Keterangan:

O = Nilai pada fitur

 λ = Probabilitas model pada HMM

N = Jumlah keadaan

 α_t = *Alfa* sebagai nilai perhitungan dari *forward* yang memiliki probabilitas optimal

 β_t = *Beta* sebagai nilai perhitungan dari *backward* yang memiliki probabilitas optimal

i = Banyaknya perulangan yang dilakukan

Probabilitas pada saat berada pada *state* Si pada waktu t, dan diberikan sekuens observasi), dan model λ ialah:

$$\gamma_t = \frac{\alpha_t(i)\beta_t(i)}{P(0|\lambda)} \tag{2,8}$$

Keterangan:

y = Probabilitas dari suatu kondisi

a = Alfa sebagai hasil probabilitas pada *forward*

 β = Beta sebagai hasil probabilitas pada backward

O = Nilai pada fitur

t =Jumlah observasi

i =Jumlah perulangan yang digunakan

 λ = Probabilitas dari model HMM

Gambar 2.4 Ilustrasi dari operasi pada Baum-Welch

(a) Variabel Forward

(b) Variabel Backward

Perhitungan pada model *Hidden Markov Model* banyak sampel data dari kelas yang akan dimodelkan. Parameter ini yang dipetakan sebagai ekuivalensi dari Ot.

2.6.2.1 Contoh Perhitungan dengan Algoritma Baum-Welch

Diketahui:

$$A = \begin{bmatrix} 0.8 & 0.04 & 0.16 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.8 & 0.2 \\ 0.1 & 0.9 \\ 0.6 & 0.4 \end{bmatrix}$$

$$\pi = \begin{bmatrix} 0.8 \\ 0 \\ 0.2 \end{bmatrix}$$

Pada kasus perasaan orang yang masuk ke ruangan, setelah dilakukan obervasi selama tiga hari berturutturut adalah *happy*, *sad*, dan *happy*. Tentukan peluang barisan observasi $O = \{Happpy, Sad, Happy\}$ dengan model $\lambda = (A, B, \pi)$.

Solusi:

Algoritma Forward

1. Inisialisasi

$$a_1(1) = \pi_1 b_1(O_1) = (0.8)(0.8) = 0.64$$

 $a_1(2) = \pi_2 b_2(O_1) = (0)(0.1) = 0$
 $a_1(2) = \pi_2 b_2(O_1) = (0.2)(0.6) = 0.12$

2. Pengenalan

$$t = 2, O_2 = sad$$

$$a_2(j) = \left[\sum_{i=1}^{N} a_1(i) a_{ij}\right] b_j (O_2)$$

$$a_2(1) = \left[(0.64)(0.8) + (0) + (0.12)(0.1)\right] 0.2$$

$$= 0.1048$$

$$a_2(2) = \left[(0.0256) + (0) + (0.048)\right] 0.9$$

$$= 0.06624$$

$$a_2(3) = \left[(0.1024) + (0) + (0.06)\right] 0.4$$

$$= 0.06496$$

$$t = 3, O_2 = happy$$

$$a_3(j) = \left[\sum_{i=1}^{N} a_2(i)a_{ij}\right]b_j(O_3)$$

$$a_3(1) = [(0.08384) + (0.013248) + (0.006496)]0.8$$

= 0.08286

$$a_3(2) = [(0.04192) + (0.03974) + (0.002598)]0.1$$

= 0.00699

$$a_3(2) = [(0.016768) + (0.013248) + (0.03248)]0.6$$

$$= 0.03749$$

3. Terminasi

P(O = Happy, Sad, Happy |
$$\lambda$$
)
= $\sum_{i=1}^{N} a_T(i)$
= $a_3(1) + a_3(2) + a_3(3)$
= $0.08286 + 0.00699 + 0.03749 = 0.13$

Algoritma Backward

1. Inisialisasi

$$\beta_T(i) = 1$$

$$\beta_T(i) = 1$$

$$\beta_3(1) = \beta_3(2) = \beta_3(3) = 1$$

2. Pengenalan

$$t = 2, O_3 = Happy$$

$$\beta_2(i) = \sum_{i=1}^{N} b_j(O_3) \beta_3 (j) a_{ij}$$

$$\beta_2(1) = [(0.64) + (0.004) + (0.096)] = 0.74$$

$$\beta_2(2) = [(0.16) + (0.06) + (0.12)] = 0.34$$

$$\beta_2(3) = [(0.08) + (0.04) + (0.3)] = 0.42$$

$$t = 1, O_2 = Sad$$

$$\beta_2(i) = \sum_{i=1}^{N} b_i(O_2) \beta_2 (j) a_{ij}$$

$$\beta_2(1) = [(0.1184) + (0.01224) + (0.02688)]$$

$$= 0.15752$$

$$\beta_2(2) = [(0.0296) + (0.1836) + (0.0336)]$$

$$= 0.2468$$

$$\beta_2(3) = [(0.0148) + (0.0544) + (0.189)]$$

$$= 0.2582$$

3. Terminasi

P(O = Happy, Sad, Happy |
$$\lambda$$
)
= $\sum_{i=1}^{N} \beta_1(i) \pi(i) b_i(O_1)$
= $0.10081 + 0 + 0.03098 = 0.13$

Pada kasus suasana hati seorang yang masuk pada ruangan, setelah dilakukan observasi, urutan suasana hati *happy, sad, happy*.

Menentukan estimasi parameter $\bar{\lambda} = (\overline{A}, \overline{B}, \overline{\pi})$ untuk maksimal dari $P(O|\lambda)$.

Penyelesaian:

$$\xi_t(i,j) = \frac{a_t(1)a_{ij}b_j(O_{t+1})\beta_{t+1}(j)}{P(O|\lambda)}$$
(2.8)

Keterangan:

 $\xi_t(i, j)$ = probabilitas yang paling optimal

a = Probabilitas pada kondisi transisi

b = Probabilitas pengamatan

O = Nilai fitur dari model

 $\beta = Beta$ sebagai hasil probabilitas optimal pada

backward

 $\lambda = Lambda$ pada model HMM dengan nilai probabilitas

Tabel 2.11 Estimasi Probabilitas

For $t = 1$	For $t = 2$
1	

(0.64)(0.8)(0.2)(0.74)	(0.1048)(0.8)(0.8)(1)
$\xi_1(1,1) = \frac{(0.64)(0.8)(0.2)(0.74)}{0.13}$	$\xi_2(1,1) = \frac{(0.1048)(0.8)(0.8)(1)}{0.13}$
= 0.58289	= 0.51593
(0.64)(0.04)(0.9)(0.34)	(0.1048)(0.8)(0.2)(1)
$\xi_1(1,2) = \frac{(0.64)(0.04)(0.9)(0.34)}{0.13}$	$\xi_2(1,2) = \frac{(0.1048)(0.8)(0.2)(1)}{0.13}$
= 0.06025	= 0.00322
$\xi_1(1,3) = \frac{(0.64)(0.8)(0.2)(0.74)}{0.13}$	$\xi_2(1,3) = \frac{(0.1048)(0.8)(0.2)(1)}{0.13}$
$\zeta_1(1,3) = 0.13$	$\zeta_2(1,3) = 0.13$
= 0.58289	= 0.07739
$\xi_1(2,1) = \frac{(0)(0.2)(0.2)(0.74)}{0.13} = 0$	$\xi_2(2,1) = \frac{(0.06624)(0.8)(0.2)(1)}{0.13}$
0.13	0.13
	= 0.08152
(0)(0.6)(0.9)(0.34)	(0.06624)(0.6)(0.1)(1)
$\xi_1(2,2) = \frac{(0)(0.6)(0.9)(0.34)}{0.13} = 0$	$\xi_2(2,2) \equiv {0.13}$
	= 0.03057
$\xi_1(2,3) = \frac{(0)(0.2)(0.4)(0.42)}{0.13} = 0$	ξ (2.2) $=$ (0.06624)(0.2)(0.6)(1)
$\zeta_1(2,3) = {0.13}$	$\zeta_2(2,3) = 0.13$
	= 0.06114
$\xi_1(3,1) = \frac{(0.12)(0.1)(0.2)(0.74)}{0.13}$	$\xi_2(3,1) = \frac{(0.06496)(0.1)(0.8)(1)}{0.13}$
$\zeta_1(3,1) = 0.13$	$\zeta_2(3,1) = 0.13$
= 0.01366	= 0.03997
$\xi_1(3,2) = \frac{(0.12)(0.4)(0.2)(0.34)}{0.13}$	$\xi_2(3,2) = \frac{(0.06496)(0.4)(0.1)(1)}{0.13}$
$\zeta_1(3,2) = {0.13}$	$\zeta_2(3,2) = {0.13}$
= 0.11298	= 0.01998
$\xi_1(3,3) = \frac{(0.12)(0.5)(0.4)(0.42)}{0.13}$	$\xi_2(3,3) = \frac{(0.06496)(0.5)(0.6)(1)}{0.13}$
0.13	0.13
= 0.07753	= 0.14991

Mencari hasil dari nilai
$$\gamma_t(i) = \sum_{i=1}^N \xi_t(i,j)$$
 (2.9)
For t = 1
 $\gamma_1(1) = [0.58289 + 0.06025 + 0.13233] = 0.8$
 $\gamma_1(2) = [0 + 0 + 0] = 0$
 $\gamma_1(3) = [0.01366 + 0.11298 + 0.07753] = 0.2$
For t = 2
 $\gamma_2(1) = [0.51593 + 0.00322 + 0.07739] = 0.59$

$$\gamma_2(2) = [0.08152 + 0.03057 + 0.06114]$$

$$= 0.17$$

 $\gamma_2(3)=[0.03997 + 0.01998 + 0.14991]=0.21$ Kemudian, dengan menggunakan hasil perhitungan dapat ditemukan estimasi HMM $\bar{\lambda}=(\bar{A},\ \bar{B},\ \bar{\pi})$ Keterangan:

 \overline{A} = Estimasi *state* transisi probabilitas distribusi

 \bar{B} = Estimasi observasi probabilitas distribusi

 $\bar{\pi} = \text{Estimasi inisial } state \text{ distribusi}$

$$\bar{\pi} = \begin{bmatrix} \gamma_1(1) \\ \gamma_1(2) \\ \gamma_1(3) \end{bmatrix} = \begin{bmatrix} 0.8 \\ 0 \\ 0.2 \end{bmatrix}$$

 $\bar{\pi}$ adalah estimasi matriks probabilitas keadaan awal. Sehingga terpenuhi, probabilitas keadaan awal saat proses dalam keadaan "sunny" adalah 0.8 estimasi probabilitas keadaan awal saat proses dalam keadaan "rainy" state adalah 0 dan estimasi probabilitas keadaan awal saat proses dalam keadaan "cloudy" state adalah 0.2.

$$\bar{A} = \begin{bmatrix} \frac{\sum_{i=1}^{T} \xi_{t}(1,1)}{\sum_{i=1}^{T} \gamma_{t}(1)} & \frac{\sum_{i=1}^{T} \xi_{t}(1,2)}{\sum_{i=1}^{T} \gamma_{t}(1)} & \frac{\sum_{i=1}^{T} \xi_{t}(1,3)}{\sum_{i=1}^{T} \gamma_{t}(1)} \\ \frac{\sum_{i=1}^{T} \xi_{t}(2,1)}{\sum_{i=1}^{T} \gamma_{t}(2)} & \frac{\sum_{i=1}^{T} \xi_{t}(2,1)}{\sum_{i=1}^{T} \gamma_{t}(2)} & \frac{\sum_{i=1}^{T} \xi_{t}(2,3)}{\sum_{i=1}^{T} \gamma_{t}(2)} \\ \frac{\sum_{i=1}^{T} \xi_{t}(3,1)}{\sum_{i=1}^{T} \gamma_{t}(3)} & \frac{\sum_{i=1}^{T} \xi_{t}(3,2)}{\sum_{i=1}^{T} \gamma_{t}(3)} & \frac{\sum_{i=1}^{T} \xi_{t}(3,3)}{\sum_{i=1}^{T} \gamma_{t}(3)} \end{bmatrix} \\ = \begin{bmatrix} 0.8 & 0.05 & 0.15 \\ 0.5 & 0.2 & 0.3 \\ 0.1 & 0.3 & 0.6 \end{bmatrix}$$

 \bar{A} adalah estimasi matriks transisi A. jadi $P(O|\bar{\lambda}) \geq P(O|\lambda)$ terpenuhi, probabiilitas dari "sunny" state ke "sunny" state adalah 0.8, ke "rainy" state adalah 0.05 dan "cloudy"

$$\bar{B} = \begin{bmatrix} \frac{\sum_{i=1}^{T}, O_{t=1}\gamma_{t}(1)}{\sum_{i=1}^{T}\gamma_{t}(1)} & \frac{\sum_{i=1}^{T}, O_{t=2}\gamma_{t}(1)}{\sum_{i=1}^{T}\gamma_{t}(1)} \\ \frac{\sum_{i=1}^{T}, O_{t=1}\gamma_{t}(2)}{\sum_{i=1}^{T}\gamma_{t}(2)} & \frac{\sum_{i=1}^{T}, O_{t=2}\gamma_{t}(2)}{\sum_{i=1}^{T}\gamma_{t}(2)} \\ \frac{\sum_{i=1}^{T}, O_{t=1}\gamma_{t}(3)}{\sum_{i=1}^{T}\gamma_{t}(3)} & \frac{\sum_{i=1}^{T}, O_{t=2}\gamma_{t}(3)}{\sum_{i=1}^{T}\gamma_{t}(3)} \end{bmatrix} = \begin{bmatrix} 0.6 & 0.4 \\ 0 & 1 \\ 0.5 & 0.5 \end{bmatrix}$$

 \bar{B} adalah estimasi matriks emisi B. Sehingga $P(0|\bar{\lambda}) \ge$

 $P(O|\lambda)$ terpenuhi peluang penjaga dengan suasana hati "happy" saat cuaca di luar "sunny" adalah 0.6 saat cuaca di luar "rainy" adalah 0 dan saat cuaca luar "cloudy" adalah 0.5. Maka peluang dari seorang dengan suasana hati "sad" saat cuaca di luar "sunny" adalah 0.4 saat cuaca luar "rainy" adalah 1 dan saat cuaca luar "cloudy" adalah 0.5.

2.6.3 Tahap Pengujian HMM

Pada tahap ini dilakukan proses pencocokan kemiripan aksara dihitung dengan algoritma *Viterbi* dengan mencari nilai maksimum dari perbandingan probabilitas data baru dengan probabilitas dari masing-masing model HMM.

Algoritma *Viterbi* digunakan untuk menghitung sekuens state $Q = \{q_1 \ q_2 \ ... \ q_T\}$, yang paling dekat probabilitas dari sebuah sekuens observasi $O = \{O_1 \ O_2 \ ... \ O_T\}$ yang didefinisikan sebagai:

$$\delta_t(i) = \max_{q_1, q_2, \dots, q_3 P[q_1 q_2, \dots, q_t = i, O_1 O_2 \dots O_t \mid \lambda]}$$
(2.10)

 $\delta(i)$ merupakan nilai probabilitas terbaik pada waktu t, yang dihitung pada observasi t pertama dan diakhiri pada *state* S_i .

Gambar 2.5 Ilustrasi pencarian nilai terbaik dengan *Viterbi* Garis tebal menunjukkan nilai probabilitas terbaik antar *state*.

2.6.3.1 Contoh Perhitungan dengan Algoritma Viterbi

Dalam hal suasana hati seorang yang masuk ke ruangan, setelah dilakukan observasi, urutan suasana hati orang itu dalam tiga hari berturut-turut adalah *happy*, *sad*, *happy* dan diberi model $\lambda = (A, B, \pi)$. Memilih urutuan state tersembunyi yang paling optimal.

Penyelesaian:

1. Inisialisasi

$$\delta_{1}(i) = \pi_{1}b_{1}(O_{1})$$

$$\Psi_{1}(i) = 0$$

$$\delta_{1}(1) = \pi_{1}b_{1}(O_{1}) = (0.8)(0.8) = 0.64$$

$$\delta_{1}(2) = \pi_{2}b_{2}(O_{1}) = (0)(0.1) = 0$$

$$\delta_{1}(3) = \pi_{3}b_{3}(O_{1}) = (0.2)(0.6) = 0.12$$

$$\Psi_{1}(1) = \Psi_{1}(2) = \Psi_{1}(3) = 0$$

2. Rekursif

$$\begin{split} &\delta_{t}(i) = \max_{1 \leq i \leq N} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t}) \\ &\Psi_{t}(j) = \underset{1 \leq i \leq N}{\operatorname{argmax}} [\delta_{t-1}(i)a_{ij}] \\ &\text{For } t = 2, \ O_{2} = 2(Sad) \\ &\delta_{2}(1) = \max \left\{ (0.512), (0), (0.012) \right\} 0.2 = 0.1024 \end{split}$$

$$\delta_{2}(2) = max \{(0.0256),(0),(0.048)\}0.9 = 0.0432$$

$$\Psi_{2}(2) = 2(Cloudy)$$

$$\delta_{2}(3) = max \{(0.1024),(0),(0.06)\}0.4 = 0.04096$$

$$\Psi_{2}(3) = 3(Sunny)$$
For t = 3, $O_{3} = 1(Happy)$

$$\delta_{3}(1) = max \{(0.08192),(0.00864),(0.00409)\}0.8 = 0.06553$$

$$\Psi_{3}(1) = 1(Sunny)$$

$$\delta_{3}(2) = max \{(0.00409),(0.02592),(0.01638)\}0.1 = 0.00259$$

$$\Psi_{3}(2) = 2(Rainy)$$

$$\delta_{3}(3) = max \{(0.01638),(0.00864),(0.02048)\}0.6 = 0.01228$$

$$\Psi_{3}(3) = 3(Cloudy)$$
3. Terminasi
$$P^{*} = \max_{1 \le i \le N} [\delta_{T}(i)]$$

$$q_{T}^{*} = \max_{1 \le i \le N} [\delta_{T}(i)]$$

$$P^{*} = \max \{\delta_{3}(1), \delta_{3}(2), \delta_{3}(3)\}$$

$$= \max \{(0.06553),(0.00259),(0.01228)\} = 0.06553$$

$$q_{3}^{*} = argmax\{\delta_{3}(1), \delta_{3}(2), \delta_{3}(3)\} = 1 (Sunny)$$
4. Backtracking
$$q_{2}^{*} = \Psi_{3}(q_{3})^{*} = \Psi_{3}(1) = Sunny$$

$$q_{1}^{*} = \Psi_{2}(q_{2})^{*} = \Psi_{2}(1) = Sunny$$

Jadi, ketika seorang yang masuk ke ruangan dengan urutan suasana hati *happy*, *sad*, *happy* urutan keadaan tersembunyi dalam hal ini keadaan cuaca di luar yang optimal adalah

$$q^* = \{1(Sunny), 1(Sunny), 1(Sunny)\}.$$

 $\Psi_2(1) = 1(Sunny)$

2.7 Metode Evaluasi K-Fold Cross Validation

Proses yang telah dilakukan menggunakan *Hidden Markov Model* untuk mengukur tingkat keberhasilan dapat diukur menggunakan metode *K-fold cross validation*. Metode ini dilakukan dengan membagi tiap kelompok aksara menjadi beberapa kelompok data yang kemudian bergantian data untuk *testing* maupun *training* dalam beberapa langkah pengujian yang saling silang.

Hasil yang akan diperoleh menggunakan metode ini akan menampilkan hasil akurasi. Gambar 2.6 merupakan ilustrasi pembagian data menggunakan nilai k-fold cross validation dengan k = 3. Setiap fold di bagi 1/3 sebagai data testing dan 2/3 sebagai data training.

Gambar 2.6 Ilustrasi Model 3-Fold Cross Validation

BAB III

METODE PENELITIAN

3.1 Data

Sistem pengenalan aksara Incung ini digunakan untuk membuat model pada metode *Hidden Markov Model* dari tulisan tangan aksara Incung dari beberapa orang. Penelitian ini menggunakan data yang berupa citra aksara Incung yang berasal dari beberapa responden dalam menuliskan aksara Incung.

Gambar 3.1 Angket Aksara Incung

3.2 Perancangan Sistem

Pada tahap ini akan menunjukkan perancangan sistem yang akan dibuat pada penelitian ini. Desain alat uji pada sistem sebagai berikut:

Gambar 3.2 Diagram Perancangan Sistem

Sistem akan melakukan klasifikasi aksara Incung menggunakan metode *Hidden Markov Model*. Tulisan aksara Incung dari reponden kemudian dilakukan pindai untuk mengubah menjadi data citra digital. Citra hasil pindai tersebut sudah dilakukan proses akusisi pada data aksara Incung dengan proses *cropping* secara manual. Citra aksara akan dilakukan proses *preprocessing* dari setiap citra aksara. Hasil dari *preprocessing* dilakukan proses ekstraksi ciri menggunakan IoC atau *Mark Direction*. Ekstraksi ciri tersebut digunakan untuk proses klasifikasi dengan metode HMM. Itu akan mendapatkan hasil klasifikasi dalam bentuk label, maka akan di evaluasi untuk mendapatkan akurasi dari penggunaan metode klasifikasi dengan *Hidden Markov Model*.

3.2.1 Akusisi Data

Akusisi citra merupakan proses menangkap (*capture*) atau memindai (*scan*) suatu citra analog menjadi sebuah citra digital. Pada tahap ini diawali dengan melakukan pengambilan gambar pada objek dengan menggunakan media scanner. Objek yang berupa citra aksara Incung yang diambil dari 90 responden yang berbeda dengan kertas ukuran A4.

3.2.2 Cropping

Cropping merupakan metode untuk mendapatkan bentuk karakter aksara secara utuh, tanpa adanya 'ruang' lebih pada citra aksara. Metode yang digunakan untuk melakukan cropping atau pemotongan citra pada penelitian ini yaitu secara manual menggunakan Photoshop 2018.

3.2.3 Preprocessing

Citra aksara yang telah dipindai berupa RGB (*Red Green Blue*) yang perlu dilakukan proses *processing* supaya bisa diolah dalam proses pengenalan dan pengujian aksara. Dalam proses *preprocessing* yang diperlukan dalam sistem ini adalah proses binerisasi, reduksi derau, segmentasi, *resize*, dan penipisan.

Gambar 3.4 Diagram Blok Preprocessing

3.2.3.1 Binerisasi

Data citra yang akan dilakukan proses *preprocessing* untuk mempermudah proses ekstraksi ciri. Hal ini dilakukan setelah melakukan pemotongan citra aksara Incung. Binerisasi sebagai proses mengubah citra menjadi hitam putih. Dalam hal ini digunakan fungsi dari MATLAB yaitu *im2bw*.

3.2.3.2 Reduksi Derau

Pada tahap ini citra hasil binerisasi akan di tukar warna *background* yang sebelumnya putih (1) menjadi hitam (0) dan *foreground* sebelumnya hitam (0) menjadi putih (1). Digunakan *function* dari MATLAB yaitu *imcomplement*.

Reduksi derau ini dilakukan untuk menghilangkan derau pada citra. Dalam hal ini menggunakan *Area open* untuk menghilangkan piksel yang bukan bagian dari karakter aksara. Itu dilakukan dengan melihat jumlah piksel tersebut pada suatu area. Apabila kurang dari nilai batas yang ditentukan, maka piksel tersebut akan dijadikan *background*. Dalam hal ini menggunakan fungsi dari MATLAB yaitu *bwareaope*n. Kemudian untuk menghilangkan lubanglubang pada objek citra maka digunakan *function* dari MATLAB yaitu *imfill*.

Setelah itu dilakukan proses *invers* kembali untuk mengembalikan citra yang seperti awal yaitu di tukar warna *background* yang sebelumnya hitam (0) menjadi putih (1) dan *foreground* sebelumnya putih (1) menjadi hitam (0).

3.2.3.3 Segmentasi

Tahap yang digunakan untuk memotong tepi pada setiap aksara, agar dapat dilakukan ekstraksi ciri, sehingga ciri tersebut dapat digunakan untuk melakukan klasifikasi. Proses ini menggunakan metode profil proyeksi.

Algoritma metode profil proyeksi sebagai berikut:

1. Proyeksi Horizontal

Langkah 1: Hitung piksel berwarna hitam pada setiap baris pada citra.

Langkah 2: Lakukan pemotongan citra dengan batas baris yang bernilai 0

2. Proyeksi Vertikal

Langkah 3: Dari hasil pemotongan citra, hitung piksel berwarna hitam pada setiap kolom pada citra hasil pemotongan

Langkah 4: Lakukan pemotongan citra dengan batas kolom yang bernilai 0

Langkah 5: Selesai

3.2.3.4 *Resize*

Resize merupakan metode untuk mengubah ukuran citra menjadi besar atau menjadi kecil. Hal ini digunakan karena pada tahap sebelumnya ukuran citra masih berbedabeda. Pada penelitian ini, penulis akan menggunakan fungsi pada MATLAB yaitu *imresize*.

3.2.3.5 Penipisan

Penipisan yang akan dilakukan pada setiap aksara Incung menggunakan metode *Rosenfeld*. Pada metode *Rosenfeld* merupakan algoritma yang digunakan untuk melakukan penipisan (*thinning*) terhadap citra aksara, sehingga hanya akan menyisihkan citra kerangka aksara saja. Metode ini bekerja dengan cara membuang bagian piksel yang merupakan bagian tepi (*edge*) (Widiarti, 2011).

3.2.4 Ekstraksi Ciri

Ekstraksi ciri sebagai proses dalam memperoleh sifat pola dari suatu objek yang ada pada citra. Sehingga citra dapat dibedakan dengan citra yang lainnya. Dalam hal ini ekstraksi ciri yang digunakan adalah *Intensity of Character* dan *Mark Direction*.

1. Intensity of Character

Pada tahap ini data aksara yang telah melalui tahap *preprocessing* dan penipisan akan dilakukan proses ekstraksi ciri dengan IoC. Pada perhitungan IoC dilakukan dengan mengubah matrik hasil segmentasi menjadi matriks baru dengan ukuran NxN melalui cara menambahkan jumlah piksel hitam sebanyak ukuran gambar dibagi dengan ukuran matriks IoC.

Algoritma ekstraksi ciri menggunakan IoC

- 1. Buka berkas masukan, misal = aksara
- 2. Set tinggi = size(aksara,1)
- 3. Set lebar = size(aksara,2)
- 4. Bagi aksara menjadi bagian yang dikehendaki
- 5. Cari jumlahan piksel yang bernilai 0 di setiap bagian karakter hasil langkah 2
- 6. Simpan ciri tersebut menjadi ciri dari karakter yang bersangkutan ke dalam file ciriAksara.mat

2. Mark Direction

Pada tahap ini data aksara akan dilakukan ekstraksi ciri dengan menemukan jumlah hitam dalam bentuk diagonal kiri, diagonal kanan, horizontal, dan vertikal.

Algoritma Mark Direction

- 1. Mulai
- 2. Membaca kolom dan baris pada sebuah citra.
- 3. Membuat variabel baru bernama vert, horz, dig1, dig2
- 4. Membaca kolom mulai dari 1 dari banyaknya kolom
- 5. Membaca baris mulai dari 1 dari banyaknya baris.
- 6. Jika *image* (i, j) sama dengan 0 lakukan langkah 7
- 7. Jika *image* (i, j) + *image* (i-1, j) + *image* (i+1, j) sama dengan 0 lakukan langkah 8
- 8. Jika *image* (i-1, j-1) + *image* (i-1, j+1) + *image* (i, j+1) + *image* (i+1, j-1) + *image* (i+1, j+1) sama dengan 6, maka tambahkan counter vert=vert+1
- 9. Jika *image* (i, j) + *image* (i, j-1) + *image* (i, j+1) sama dengan 0 lakukan langkah 10
- 10. Jika image (i-1, j-1) + image (i-1, j) + image (i+1, j-1) + image (i+1, j) + image (i+1, j+1) sama dengan 6, maka tambahkan counter horz=horz+1
- 11. Jika image(i, j) + image(i-1, j-1) + image(i+1, j+1) sama dengan 0 lakukan langkah
- 12. Jika image (i-1, j) + image (i-1, j+1) + image (i, j-1) + image (i, j+1) + image (i, j+1) + image (i+1, j-1) + image (i+1, j) sama dengan 6, maka tambahkan counter dig1=dig1+1
- 13. Jika image(i, j) + image(i-1, j+1) + image(i+1, j-1) sama dengan 0 lakukan langkah 14
- 14. Jika image (i-1, j-1) + image (i-1, j) + image (I, j-1) + image (I, j+1) + image (i+1, j) + image (i+1, j+1) sama dengan 6, maka tambahkan counter dig2=dig2+1

15. Selesai

Nilai dari ekstraksi ciri *Mark Direction* yang terbentuk dari konvolusi matriks 3x3.

3.2.2 Tahap Pelatihan HMM

Ada dua permasalah pokok pada aplikasi HMM untuk pengenalan aksara. Masalah pertama adalah pembuatan model untuk mewakili suatu kontur aksara, digunakan algoritma *Baum-Welch* dengan re-estimasi dalam memecahkannya yang dilakukan pada tahap pelatihan (*training*). Gambar 3.3 ini sebagai tahap pelatihan yang dilakukan untuk mendapatkan parameter HMM.

Gambar 3.3 Diagram Tahap Pelatihan

3.2.2.1 Inisialisasi Elemen-elemen HMM

Pemodelan HMM terdiri dari 3 matriks probabilitas, yaitu matriks transisi antara state(A), matriks probabilitas pengamatan suatu state(B), dan matriks probabilitas awal $state(\pi)$. Jenis HMM yang digunakan merupakan tipe ergodic, dimana parameter HMM seperti matriks A, B, dan π dibangkitkan secara random dengan nilai yang dinormalisasi ke satu. Nilai matriks A, B dan π tersebut kemudian akan dilakukan re-estimasi melalui proses pelatihan untuk mendapatkan nilai parameter yang optimal.

3.2.2.2 Re-estimasi Parameter HMM

Re-estimasi parameter sebagai proses *training* pada HMM dengan menggunakan algoritma *Baum-Welch*. Dengan re-estimasi ini tiap model $\lambda = (A, B, \pi)$ awal akan diadaptasi berulang-ulang sampai diperoleh model terbaik. Iterasi untuk re-estimasi akan berhenti jika iterasi sudah mencapai nilai maksimal.

Pada $\lambda = (A, B, \pi)$ dimana, A, B, dan π berturut-turut menyatakan distribusi probabilitas transisi antara *state*, distribusi probabilitas simbol observasi, dan distribusi inisialisasi *state*. Pada simbol O sebagai objek pengamatan.

Nilai ϵ adalah nilai batasan dalam menentukan tingkat konvergensi model yang dibuat, sehingga nilai ϵ akan diambil cukup kecil, untuk meminimalkan selisih perubahan nilai *likelihood*. Pada sistem ini proses *training* dan *testing* menggunakan nilai $\epsilon = 10^{-3}$.

Algoritma Baum-Welch:

- 1. Estimasi sebuah model HMM sebagai $\lambda = (A, B, \pi)$.
- 2. Dengan nilai λ dan sekuens observasi O, menghitung sebuah model baru:

$$\bar{\lambda} = (\bar{A}, \bar{B}, \bar{\pi}), \text{ seperti P}(0 \mid \bar{\lambda}) > P(0 \mid \lambda)$$
 (3.1)

Keterangan:

 \overline{A} = estimasi *state* transisi probabilitas distribusi

 \bar{B} = estimasi observasi probabilitas distribusi

 $\bar{\pi} = \text{estimasi inisial } state \text{ distribusi}$

O = nilai fitur dari model

 λ = nilai probabilitas dari model HMM

3. Jika menghasilkan $\frac{P(O \mid \overline{\lambda}) - P(O \mid \lambda)}{P(O \mid \overline{\lambda})} < threshold$, maka (3.2) hentikan langkah ini. Jika tidak, maka memasukan nilai $\overline{\lambda}$ untuk menggantikan λ dan ulangi dilangkah 1.

3.2.3 Tahap Pengujian HMM

Pada tahap pengujian ini sebagai proses hasil dari pemodelan dengan HMM akan dibandingkan probabilitas perhitungan citra pelatihan dengan HMM setiap kelas yaitu dengan menghitung peluang maksimum suatu deretan observasi yang dibangkitkan oleh model dari aksara citra tertentu.

Proses klasifikasi citra aksara dilakukan dengan menghitung *likelihood* dari data pengujian. Ini akan dikenali terhadap semua model $\lambda = (A, B, \pi)$ setiap kelas telah dikenai proses pelatihan dengan HMM. *Output* dari proses pengujian ini akan memberikan indeks dari model kelas yang mempunyai *likelihood* paling besar. Pada indeks tersebut akan dicari dalam *database* dengan indeks *database* yang sudah disimpan pada proses pelatihan. Itu akan menampilkan dari jenis citra aksara sesuai dengan kelas pada aksara Incung. Gambar 3.4 sebagai proses pengujian dalam menemukan nilai maksimum pada *likelihood*.

Gambar 3.4 Diagram Tahap Pengujian

Langkah-langkah dalam algoritma *Viterbi* untuk menentukan barisan *state* terbaik yaitu:

1. Inisialisasi:

Rumus untuk mencari perubahan nilai probabilitas:

$$\delta_1(i) = \pi_i b_i(O_1) \tag{3.3}$$

$$\Psi_1(i) = 0 \tag{3.4}$$

Keterangan:

 δ = Perubahan nilai probabilitas yang optimal

 π = Distribusi kondisi awal

b = Probabilitas pengamatan

O = Nilai probabilitas yang terbesar

i =Jumlah perulangan yang digunakan

 Ψ = Fungsi *polygamma*

2. Rekursi:

Rumus perubahan nilai probabilitas yang convergen:

$$\delta_{t}(i) = \max_{1 \le i \le N} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t})$$
(3.5)

$$\Psi_t(j) = \underset{1 \le i \le N}{\operatorname{argmax}} [\delta_{t-1}(i)a_{ij}]$$
(3.6)

Keterangan:

N = Jumlah suatu (sate) keadaan

i =Jumlah perulangan

 δ = Perubahan nilai probabilitas yang optimal

 $\Psi = \text{fungsi } polygamma$

a = Probabilitas kondisi transisi

b = Probabilitas pengamatan

O = Nilai probabilitas terbesar

3. Terminasi:

Rumus untuk menentukan probabilitas yang optimal:

$$P^* = \max_{1 \le i \le N} [\delta_T(i)]$$
 (3.7)

$$q_T^* = \underset{1 \le i \le N}{\operatorname{argmax}} [\delta_T(i)]$$
 (3.8)

Keterangan:

 P^* = Nilai probabilitas optimal

i = Nilai pada probabilitas

 q^* = kondisi pada deret optimal

T = Jumlah observasi

N = Jumlah suatu (state) keadaan

 δ = Perubahan pada probabiltas

4. Lintasan (kondisi deret) jejak balik:

Rumus menentukan kondisi deret jejak balik:

$$q_t^* = \Psi_{t+1}(q_{t+1}^*), t = T - 1, T - 2, ..., 1$$
 (3.9)

Keterangan:

 q^* = Keadaan nilai probabilitas yang paling optimal

 $\psi = \text{Fungsi } polygamma$

T =Jumlah observasi

3.2.5 Skenario Pengujian

1. Pengujian Data Jamak

Pada penelitian ini hasil ekstraksi ciri yang digunakan adalah *Intensity of Character* dan *Mark Direction*. Pengujian yang akan dilakukan dengan memilih ukuran dari ektraksi ciri IoC dengan ukuran 3x3, 4x4, dan 5x5 menggunakan nilai *k-fold cross validation* adalah 3 dan 5. Kemudian menggunakan ekstraksi ciri *Mark Direction* pada bagian horizontal dan vertikal seperti yang ada pada Tabel 3.1 dan *Mark Direction* untuk diagonal kanan, diagonal kiri, horizontal dan vertikal.

9

36

 Nama Ciri
 Ekstraksi Ciri
 Jumlah Ciri

 Data Ciri 1
 IoC (3x3)
 9

 Data Ciri 2
 IoC (4x4)
 16

 Data Ciri 3
 IoC (5x5)
 25

Mark Direction (Dig1, Dig2, Horz, Vert)

Mark Direction (Horz)

Mark Direction (Vert)

Tabel 3.1 Skenario Pengujian Data Jamak

2. Pengujian Data Tunggal

Data Ciri 4

Data Ciri 5

Data Ciri 6

Pada pengujian data tunggal menggunakan satu responden yang mengisikan angket aksara Incung yang terdiri dari 53 aksara. Setiap aksara Incung akan dilakukan pengujian menggunakan model HMM yang telah dilakukan pelatihan data. Model HMM yang dipilih berdasarkan dari pengujian data jamak yang memiliki akurasi paling optimal yang akan digunakan untuk pengujian data tunggal.

3.3 Kebutuhan Perangkat Lunak

Kebutuhan perangkat lunak yang diperlukan adalah MATLAB R2014b digunakan untuk membuat dan menjalankan sistem. Dibutuhkan aplikasi Photoshop 2018 yang digunakan untuk melakukan pemotongan citra hasil pindai dari responden.

3.4 Kebutuhan Perangkat Keras

Kebutuhan perangkat keras dalam menyelesaikan tugas akhir ini adalah sebagai sistem komputer dengan spesifikasi sebagai berikut:

a. Prosesor : AMD Ryzen 3 3200U

b. Sistem Operasi : Windows 10 Home Single Language 64-bit

c. Memory : 8192 Mbyte

d. Media tampilan : AMD RadeonTM Vega 3 Graphics

e. Media masukan : Alat pindai (scanner)f. Media penyimpanan : Hard Disk Drive 1 TB

3.5 Desain GUI

🛦 hmm_gui	=		×
PENGENALAN AKSARA	INCUNG MENGGUNAKAN METODE HIDDEN MARKOV N	IODEL	
Uji Data Tunggal			
Pilih Aksara	Nama File		
Kenali	Dikenali Sebagai		

Gambar 3.4 Tampilan Pengenalan Aksara Incung

Di halaman ini pengguna dapat memasukan citra aksara Incung yang sudah dilakukan *cropping* dengan menekan tombol "Pilih Aksara". Citra aksara Incung akan tampil pada kotak citra. Tombol "Kenali" digunakan untuk melakukan proses pengenalan citra aksara Incung.

BAB IV

HASIL DAN ANALISIS

Pada bab ini membahas mengenai tahapan proses pengenalan aksara Incung dengan hasil pengujian pengenalan aksara Incung menggunakan metode *Hidden Markov Model*.

4.1 Data

Data yang digunakan adalah aksara Incung yang berasal dari Jambi. Tahap untuk memperoleh data aksara Incung dilakukan dengan metode kuisioner. Setiap responden akan menuliskan ulang aksara Incung pada kertas A4.

4.1.1 Akusisi Data

Data aksara yang digunakan berisikan aksara Incung yang diperoleh dari pengisian angket oleh responden. Berikut contoh dari angket dan beserta isinya. Kemudian di pindai menggunakan alat pindai dari seluruh pengumpulan angket aksara Incung.

Gambar 4.1 Contoh Angket Aksara Incung

4.1.2 Cropping

Pada tahap ini dilakukan *cropping* pada citra aksara Incung hasil pindai. Hal ini dilakukan secara manual menggunakan perangkat lunak Adobe Photoshop CC 2018. Hasil awal pindai citra aksara Incung terdiri dari kumpulan beberapa aksara Incung kemudian dilakukan pemotongan menjadi bagian-bagian dari satu aksara.

Gambar 4.2 Data Citra Hasil Cropping

4.2 Implementasi Preprocessing

Preprocessing adalah proses awal dalam membuat sistem pengenalan aksara, ini bertujuan untuk memastikan data yang diolah dalam keadaan bersih. Seperti terdapat *noise* pada citra, tulisan yang tidak jelas, dan masih banyak hal yang dipersiapkan agar data siap untuk diolah.

4.2.1 Binerisasi Citra

Binerisasi merupakan proses untuk mengubah citra input menjadi citra biner yang terdiri dari hitam dan putih. Fungsi yang akan digunakan dalam proses binerisasi menggunakan fungsi *im2bw* pada MATLAB, citra aksara yang sudah dilakukan *cropping* kemudian diubah menjadi citra hitam putih yang memiliki nilai piksel 0 dan 1.

Gambar 4.3 Proses Binerisasi Citra Aksara Da

4.2.2 Reduksi Derau

Dilakukan proses reduksi derau sebagai upaya untuk membuat citra data bersih dari *noise*. Jika hal ini tidak dilakukan pada citra yang terdapat *noise* akan mempengaruhi saat dilakukan proses klasifikasi.

Pada Gambar 4.4 proses *invers* citra aksara da sebelum dilakukan proses filtering terlebih dahulu diubah menjadi *backgound* hitam dan objek putih. Pada proses ini menggunakan *toolbox* dari MATLAB yaitu fungsi *imcomplement*.

Gambar 4.4 Proses Invers Citra Aksara Da

Pada Gambar 4.5 merupakan proses menghilangkan derau menggunakan *toolbox* dari MATLAB yaitu fungsi *bwareaopen* setelah dilakukan proses *invers*.

Gambar 4.5 Proses Menghilangkan Derau Aksara Da

Pada Gambar 4.6 merupakan proses mengisi bagian objek yang berlubang menggunakan *toolbox* dari MATLAB yaitu fungsi *imfill*.

Gambar 4.6 Hasil Citra Proses Imfill Citra Aksara Da

Pada Gambar 4.7 merupakan proses *invers* atau mengembalikan citra menjadi *background* putih dan objek hitam. Ini menggunakan *toolbox* dari MATLAB yaitu fungsi *imcomplement*.

Gambar 4.7 Proses *Invers* Citra Aksara Da

4.2.3 Segmentasi

Pada Gambar 4.8, citra aksara memiliki tepi pada bagian sisi kiri, atas, dan bawah. Proses reduksi derau sudah dilakukan, maka citra aksara tersebut perlu dilakukan segementasi untuk menghilangkan tepi-tepi batas dari citra. Tujuan dalam penghilangan tepi pada aksara ini berpengaruh pada proses ekstraksi ciri. Tepi-tepi pada citra aksara ini akan akan terkena proses ekstraksi ciri, hal ini akan mempengaruhi proses klasifikasi. Pada proses segmentasi ini dilakukan dengan menggunakan metode profil proyeksi.

Proyeksi dilakukan dua kali secara horizontal dan vertikal. Proyeksi secara horizontal dilakukan untuk mengetahui banyaknya piksel putih yang ada pada objek horizontal. Proyeksi vertikal dilakukan untuk mengetahui banyaknya piksel putih pada objek vertikal.

Fungsi ini digunakan untuk menghilangkan batas tepi dari setiap citra. Sehingga citra yang akan digunakan hanya citra aksara data yang dibutuhkan.

Gambar 4.8 Proses Profil Proyeksi Citra Aksara Da

4.2.4 Resize Citra

Tahap selanjutnya adalah mengubah ukuran citra menjadi ukuran 60x60 piksel. Tujuan dilakukan *resize* supaya mempermudah dalam proses ekstraksi ciri. Pada tahap ini menggunakan *toolbox* dari MATLAB yaitu fungsi *imresize*.

Gambar 4.9 Resize Citra Aksara Da

4.2.5 Penipisan Citra

Proses penipisan citra aksara dilakukan menggunakan fungsi *Rosenfeld* yang membuat ketebalan pada citra aksara menjadi 1 piksel.

Gambar 4.10 Penipisan Citra Aksara Da

4.3 Implementasi Ekstraksi Ciri

Pada proses ekstraksi ciri menggunakan metode *Intensity of Character* (IoC) dan *Mark Direction*. Metode ekstraksi ciri IoC digunakan untuk menghitung nilai piksel hitam atau nol. Metode ekstraksi ciri *Mark Direction* digunakan untuk menghitung nilai horizontal, vertikal, diagonal ke kanan, diagonal ke kiri dari setiap segmen yang memiliki ukuran 20 x 20 piksel. Data aksara Incung memiliki 53 kelas. Setiap kelas akan diberikan nama dengan angka, hal ini untuk mempermudah dalam proses pengujian atau pengenalan aksara Incung.

Tabel 4.1 Kelas pada Aksara Incung

Aksara	Kelas	Jumlah
Ba	1	90
Ба	2	90
	3	90
Ca	4	90
	5	90
D.	6	90
Da	7	90
Ga	8	90
Ga	9	90
A (he)	10	90
A(ha)	11	90
На	12	90

	13	90
	14	90
Ja	15	90
	16	90
Ka	17	90
	18	90
-	19	90
La	20	90
	21	90
Ma	22	90
Mba	23	90
	24	90
Mpa	25	90
NT	26	90
Na	27	90
Nca	28	90
	29	90
Nda	30	90
Nga	31	90
	32	90
Ngga	33	90
	34	90
Ngsa	35	90
Nja	36	90
Nito	37	90
Nta	38	90
Nivo	39	90
Nya	40	90
Do	41	90
Pa	42	90
Ra	43	90
Ka	44	90
Sa	45	90
Sa	46	90
Ta	47	90
1 a	48	90
Wa	49	90
vv a	50	90
	51	90
Ya	52	90
	53	90

Dari Tabel 4.1 merupakan pelabelan dari data citra aksara Incung dengan memberikan nama label angka dari 1 sampai 53. Setiap masing-masing data aksara Incung memiliki 90 data citra aksara. Pada tahap ini akan melakukan skenario pengujian berdasarkan Tabel 3.1 setiap tahap masing-masing data dilakukan ekstraksi ciri sesuai dengan tabel tersebut. Pada Tabel 3.1 akan melakukan skenario pengujian dengan data ciri 1, data ciri 2, data ciri 3, data ciri 4, data ciri 5 dan data ciri 6.

4.3.1 Data Ciri 1

Pada data ciri 1 menggunakan ekstraksi ciri IoC ukuran 3x3. Ketika dalam piksel memenuhi piksel berwarna 0 (hitam) maka akan bertambah 1.

Tabel 4.2 Data Ciri 1

4.3.2 Data Ciri 2

Pada data ciri 2 menggunakan ekstraksi ciri IoC ukuran 4x4 yang menghasilkan 16 segmen ciri.

Tabel 4.3 Data Ciri 2

# 4	770x17 double															
	1	2	3	4	5	6	7	8	9	10	- 11	12	13	14	15	16
1	8	9	0	0	15	0	0	0	19	15	15	16	24	0	0	0
2	17	0	0	0	15	10	15	13	21	5	0	3	23	0	0	0
3	18	0	0	0	22	15	15	4	31	0	0	12	24	0	0	0
4	26	0	0	0	23	15	15	18	15	0	0	0	20	3	0	0
5	17	1	0	0	15	0	0	0	22	15	15	15	27	0	0	0
6	16	1	0	0	15	11	15	11	19	4	0	6	24	0	0	0
7	16	0	0	0	15	0	0	0	20	15	15	18	18	0	0	0
8	16	0	0	0	15	0	0	0	22	15	15	17	25	0	0	0
9	0	16	0	0	0	15	0	0	14	15	15	16	27	0	0	0
10	20	0	0	0	15	0	0	0	18	15	15	17	22	0	0	0
11	0	18	0	0	0	15	0	0	14	15	15	16	25	0	0	0
12	18	2	0	0	15	0	0	2	20	15	15	13	28	0	0	0
13	18	0	0	0	15	0	0	0	21	15	15	17	21	0	0	0
14	18	0	0	0	19	15	15	16	15	0	0	0	24	0	0	0
15	2	17	0	0	18	15	15	18	15	0	0	0	28	0	0	0

4.3.3 Data Ciri 3

Pada data ciri 3 menggunakan ekstraksi ciri IoC ukuran 5x5 yang menghasilkan 25 segmen ciri.

Tabel 4.4 Data Ciri 3

4.3.4 Data Ciri 4

Pada data ciri 4 menggunakan ekstraksi ciri *Mark Direction* bagian horizontal ukuran 3x3. Ini akan menghasilkan 9 segmen ciri.

Tabel 4.5 Data Ciri 4

	1	2	3	4	5	6	7	8	9	10
1	13	9	10	0	0	0	0	0	0	1
2	13	11	12	0	0	0	0	0	0	1
3	10	10	9	0	0	0	0	0	0	1
4	9	8	12	0	0	0	0	0	0	1
5	6	12	12	0	0	0	0	0	0	1
6	13	9	8	0	0	0	0	0	0	1
7	11	11	10	0	0	0	0	0	0	1
8	12	12	10	0	0	0	0	0	0	1
9	13	9	5	0	0	0	0	0	0	1
10	13	9	7	0	0	0	0	0	0	1
11	0	7	4	7	0	0	0	0	0	1
12	9	11	10	0	0	0	0	0	0	1

4.3.4 Data Ciri 5

Pada data ciri 5 menggunakan ekstrasi ciri *Mark Direction* bagian vertikal ukuran 3x3. Ini akan menghasilkan 9 segmen ciri.

Tabel 4.6 Data Ciri 5

	1	2	3	4	5	6	7	8	9	10
1	0	7	3	0	16	0	0	13	0	1
2	0	10	1	0	18	0	0	13	0	
3	0	9	5	0	14	0	0	10	0	
4	2	6	0	0	18	0	0	15	0	
5	0	10	2	0	18	0	0	17	0	
6	0	6	1	0	18	0	0	15	0	
7	0	7	0	0	17	0	0	6	0	
8	0	9	0	0	18	0	0	10	0	
9	0	2	1	0	16	0	0	15	0	
10	0	5	1	0	12	0	0	17	0	
11	0	0	1	0	18	0	0	17	0	
12	0	7	2	0	16	0	0	14	0	

4.3.4 Data Ciri 6

Pada data ciri 6 menggunakan ekstrasi ciri *Mark Direction* yang terdiri dari dig1, dig2, horz, vert yang menghasilkan 36 segemen ciri.

Tabel 4.7 Data Ciri 6

	4770s	37 double															
	П	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
1	9	10	0	0	0	0	0	0	0	7	3	0	16	0	0	13	
2	11	12	0	0	0	0	0	0	0	10	1	0	18	0	0	13	
3	10	9	0	0	0	0	0	0	0	9	5	0	14	0	0	10	
4	8	12	0	0	0	0	0	0	2	6	0	0	18	0	0	15	
5	12	12	0	0	0	0	0	0	0	10	2	0	18	0	0	17	
6	9	8	0	0	0	0	0	0	0	6	1	0	18	0	0	15	
7	11	10	0	0	0	0	0	0	0	7	0	0	17	0	0	6	
8	12	10	0	0	0	0	0	0	0	9	0	0	18	0	0	10	
9	9	5	0	0	0	0	0	0	0	2	1	0	16	0	0	15	
10	9	7	0	0	0	0	0	0	0	5	1	0	12	0	0	17	
11	7	4	7	0	0	0	0	0	0	0	1	0	18	0	0	17	
12	11	10	0	0	0	0	0	0	0	7	2	0	16	0	0	14	
13	11	10	0	0	0	0	0	0	0	10	0	0	16	0	0	13	
14	7	- 11	0	0	0	0	0	0	0	5	1	0	14	0	0	10	
15	7	12	0	0	0	0	0	0	0	5	4	0	14	0	0	17	
16	9	11	0	0	0	0	0	0	0	2	0	0	13	0	0	15	
17	14	13	0	0	0	0	0	0	0	8	1	0	18	0	0	14	
18	11	11	0	0	0	0	0	0	0	- 11	0	0	16	0	0	15	
19	13	5	0	0	0	0	0	0	0	5	0	0	16	0	0	12	
20	8	9	0	0	0	0	0	0	0	4	1	0	18	0	0	16	
21	11	11	0	0	0	0	0	0	0	7	0	0	14	0	0	16	

4.4 Implementasi Pembagian Data Pelatihan dan Pengujian

Pada tahap ini setelah dilakukan proses *preprocessing* dan ekstraksi ciri maka data dapat dibagi. Data hasil ekstraksi ciri di bagi menjadi data *training* (data latih) dan data *testing* (data uji). Pembagian data latih dan data uji dilakukan berdasarkan dengan nilai *fold* yang akan digunakan untuk menghitung akurasi menggunakan *k-fold cross validation*.

Tabel 4.8 Pembagian Data Latih 3 fold

Tabel 4.9 Pembagian Data Latih 3 fold

Tabel 4.10 Pembagian Data Latih 5 fold

{}	1x5 <u>cell</u>					
	1	2	3	4	5	
1	3816x19 do	3816x19 do	3816x19 do	3816x19 do	3816x19 do	
2						

Tabel 4.11 Pembagian Data Uji 5 fold

{}	0 1x5 <u>cell</u>										
	1	2	3	4	5						
1	954x10 dou	954x10 dou	954x10 dou	954x10 dou	954x10 dou						
2											

4.5 Implementasi Klasifikasi Hidden Markov Model

Pada tahap ini terdiri dari beberapa langkah yang perlu dilakukan dalam implementasi pengenalan aksara Incung menggunakan metode HMM. Setelah data yang telah di ekstraksi ciri dan dilakukan proses *cross validation* sebagai evaluasi dari penggunaan sistem pengenalan menggunakan HMM. Dilakukan proses inisialisasi parameter pada HMM, kemudian tahapan pelatihan untuk menemukan paramter yang maksimal. Setelah itu dilakukan tahapan pengujian, hasil dari pelatihan yang akan digunakan dalam tahap pengujian untuk melihat tingkat akurasi dari pengenalan aksara Incung.

4.5.1 Inisialisasi parameter Hidden Markov Model

Tahap sebelum melakukan proses pelatihan menggunakan metode *Hidden Markov Model* terlebih dahulu menginisialisasi parameter yang akan digunakan pada dalam proses klasifikasi. Setiap data citra yang telah dibagi masing-masing akan dilakukan pengujian menggunakn *state* 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, dan 30.

1. Menentukan parameter π dengan Q adalah jumlah *state* yang akan digunakan:

```
phi = normalise(rand(Q,1));
```

2. Menentukan parameter nilai probabilitas transisi (A) nilai Q sebagai jumlah *state* yang digunakan.

```
A = mk_stochastic(rand(Q,Q));
```

3. Menentukan parameter nilai probabilitas emisi (B) dengan menginisialisasi nilai *mean* dan sigma.

```
[mu0, sigma0] = mixgauss_init(Q * M,
cell2mat(data), cov_type);
mu0 = reshape(mu0, [O Q M]);
sigma0 = reshape(sigma0, [O O Q M]);
mixmat0 = mk_stochastic(rand(Q, M));
```

4.5.2 Tahap Pelatihan Hidden Markov Model

Pada tahap pelatihan ini digunakan program HMM *toolbox* yang dikembangkan oleh Kevin Murphy, 2005 [Murphy]. Hasil pembagian data pelatihan akan digunakan untuk melakukan tahap pelatihan menggunakan algoritma *Baum-Welch*. Ini digunakan untuk membuat model sesuai dengan pembagian data latih.

```
[LL, prior1, transmat1, mu1, Sigma1, mixmat1] =
... mhmm_em(dataLatih, prior0, transmat0, mu0,
Sigma0, mixmat0);
```

Fungsi yang digunakan tersebut untuk menemukan estimasi parameter *likelihood* maksimum menggunakan algoritma *Baum-Welch*.

4.5.3 Tahap Pengujian Hidden Markov Model

Pada tahap pengujian ini dilakukan perbandingan pada setiap data *testing* yang telah dilakukan. Setiap data ini akan dilakukan klasifikasi deret, ini digunakan untuk mengevaluasi *log-likelihood* dari setiap model yang sudah dilatih dengan data pengujian.

```
loglik = mhmm_logprob(datauji, prior, transmat, mu,
Sigma, mixmat);
```

Fungsi yang digunakan untuk mencari *log-likelihood* dari data pengujian dan model pelatihan sebelumnya.

4.6 Pengujian dan Evaluasi

Sesuai dengan skenario pengujian yang akan dilakukan dengan ukuran citra *resize* 60x60 piksel dilakukan ekstraksi ciri menggunakan IoC dengan ukuran 3x3, 4x4, dan 5x5. Kemudian melakukan ekstraksi ciri *Mark Direction* (horizontal). Ciri yang digunakan dengan ekstraksi ciri *Mark Direction* (vertikal). Kemudian menggunakan data ekstraksi ciri *Mark Direction* terdiri dari diagonal ke kanan, diagonal ke kiri, horizontal, dan vertikal.

Pada proses klasifikasi data latih dan data uji menggunakan *k-fold cross validation*. Menggunakan nilai *k-fold cross validation* adalah 3 dan 5. Sehingga terdapat 6 jenis pengujian data citra aksara yang akan dilakukan.

4.6.1 Pengujian Data Ciri 1

a. Percobaan dengan 3-fold cross validation

Hasil pengujian dari data ciri 1 menggunakan ekstraksi ciri IoC ukuran 3x3. Menggunakan *3-fold cross validation* dengan jumlah *state* dari 2 hingga 30 dengan kenaikan 2.

Gambar 4.11 Grafik Akurasi dengan IoC = 3 dan *fold* 3

Tabel 4.12 Hasil Pengujian Data Ciri1dengan $3\,fold$

State	Persentase Akurasi (Fold ke)				
	Fold 1	Fold 2	Fold 3		
2	64.08805	57.04403	54.33962		
4	77.2327	71.88679	67.35849		
6	80.75472	76.16352	71.06918		
8	81.38365	77.42138	72.95597		
10	82.7044	77.54717	73.01887		
12	81.88679	78.11321	71.06918		
14	81.13208	76.66667	71.76101		
16	81.32075	77.42138	69.30818		
18	80.50314	75.78616	69.74843		
20	79.37107	76.60377	68.74214		
22	78.93082	76.72956	68.61635		
24	78.74214	76.3522	67.10692		
26	78.42767	75.78616	68.1761		
28	76.22642	75.53459	64.21384		
30	77.2956	74.71698	64.33962		

Dari Tabel 4.12 menunjukkan hasil akurasi paling besar pada *fold* 1 di *state* 10 dengan akurasi 82.70%.

b. Percobaan dengan 5-fold cross validation

Hasil pengujian dari data ciri 1 menggunakan ekstraksi ciri IoC ukuran 3x3. Menggunakan *5-fold cross validation* dengan jumlah *state* dari 2 hingga 30 dengan kenaikan 2.

Gambar 4.12 Grafik Akurasi dengan IoC = 3 dan fold 5 Tabel 4.13 Hasil Pengujian Data Ciri 1 dengan 5 fold

State		Persentase Akurasi (Fold ke)				
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
2	65.8281	58.805	63.2075	56.0797	54.9266	
4	78.7212	71.5933	76.3103	68.4486	68.9727	
6	84.0671	78.4067	79.1405	72.7463	71.5933	
8	82.5996	80.3983	80.5031	73.3753	72.2222	
10	85.0105	81.0273	79.979	72.7463	71.9078	
12	84.2767	80.3983	80.2935	73.0608	72.6415	
14	83.9623	80.7128	80.9224	71.6981	72.2222	
16	83.1237	79.2453	80.3983	70.7547	71.8029	
18	83.3333	80.608	79.5597	71.9078	70.021	
20	82.914	80.3983	79.7694	69.4969	70.3354	
22	84.1719	78.6164	79.7694	67.9245	70.1258	
24	79.5597	78.0922	79.5597	68.239	68.6583	
26	81.5514	78.0922	78.9308	64.9895	68.7631	
28	81.3417	79.7694	77.7778	67.9245	67.086	
30	80.9224	77.3585	78.7212	68.9727	66.2474	

Dari Tabel 4.13 menunjukkan hasil akurasi paling besar pada *fold* 1 di *state* 10 dengan akurasi 85.01%.

4.6.2 Pengujian Data Ciri 2

a. Percobaan dengan 3-fold cross validation

Hasil pengujian dari data ciri 2 menggunakan ekstraksi ciri IoC ukuran 4x4. Menggunakan 3-fold cross validation dengan jumlah *state* dari 2 hingga 30 dengan kenaikan 2.

Gambar 4.13 Grafik Akurasi dengan IoC = 4 dan *fold* 3

Tabel 4.14 Hasil Pengujian Data Ciri 2 dengan 3 fold

State	Persentas	se Akurasi ((Fold ke)
	Fold 1	Fold 2	Fold 3
2	56.0377	57.8616	53.522
4	76.0377	72.956	72.327
6	82.1384	76.9811	76.2264
8	84.5283	80.0629	77.4214
10	85.8491	80.566	79.7484
12	85.1572	80.566	78.239
14	85.1572	81.761	77.4214
16	86.2264	80.9434	77.4843
18	86.0377	81.5723	78.1761
20	85.9119	81.1321	77.2956
22	84.3396	81.3208	75.6604
24	85.2201	79.8742	74.5912
26	84.4654	80.3774	75.4717
28	85.9119	80	74.3396
30	85.2201	78.3648	73.8994

Dari Tabel 4.14 menunjukkan hasil akurasi paling besar pada *fold* 1 di *state* 16 dengan akurasi 86.22%.

b. Percobaan dengan 5-fold cross validation

Hasil pengujian dari data ciri 2 menggunakan ekstraksi ciri IoC ukuran 4x4. Menggunakan 5-fold cross validation dengan jumlah state dari 2 hingga 30 dengan kenaikan 2.

Gambar 4.14 Grafik Akurasi dengan IoC = 4 dan *fold* 5

Tabel 4.15 Hasil Pengujian Data Ciri 2 dengan 5 fold

State		Persentase Akurasi (Fold ke)				
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
2	58.2809	56.3941	58.0713	54.8218	52.4109	
4	78.4067	73.6897	75.891	70.4403	72.7463	
6	83.4382	80.2935	80.7128	75.6813	75.4717	
8	84.0671	81.3417	82.914	77.7778	76.7296	
10	87.1069	82.2851	85.5346	78.4067	78.3019	
12	88.0503	82.914	84.696	78.826	77.673	
14	87.9455	83.2285	83.6478	79.8742	76.9392	
16	86.478	83.543	85.9539	77.7778	76.8344	
18	88.6792	84.696	85.0105	78.3019	78.826	
20	87.0021	84.3816	84.2767	77.7778	78.0922	
22	88.0503	85.1153	84.9057	77.4633	76.9392	
24	86.6876	83.7526	84.9057	79.0356	76.6247	
26	86.3732	83.2285	83.543	75.5765	75.1572	
28	87.7358	83.2285	83.2285	75.9958	74.2138	
30	87.3166	83.7526	84.5912	75.7862	75.9958	

Dari Tabel 4.15 menunjukkan hasil akurasi paling besar pada *fold* 1 di *state* 18 dengan akurasi 88.67%.

4.6.3 Pengujian Data Ciri 3

a. Percobaan dengan 3-fold cross validation

Hasil pengujian dari data ciri 3 menggunakan ekstraksi ciri IoC ukuran 5x5. Menggunakan 3-fold cross validation dengan jumlah *state* dari 2 hingga 30 dengan kenaikan 2.

Gambar 4.15 Grafik Akurasi dengan IoC = 5 dan fold 3

Tabel 4.16 Hasil Pengujian Data Ciri 3 dengan 3 fold

State	Persentase Akurasi (Fold ke)			
	Fold 1	Fold 2	Fold 3	
2	54.3396	52.2013	51.195	
4	73.2075	71.6981	69.3711	
6	77.4214	76.6038	72.2013	
8	82.6415	78.0503	75.0943	
10	84.0881	79.6226	77.1069	
12	85.283	81.3836	78.239	
14	84.2767	82.1384	76.7925	
16	84.7799	82.8931	78.7421	
18	85.7233	82.6415	78.3648	
20	86.0377	81.9497	76.9811	
22	86.1006	82.3899	77.9874	
24	83.2075	81.9497	75.5975	
26	84.2767	80.7547	75.8491	
28	85.283	81.4465	77.9874	
30	83.3333	81.8239	73.7736	

Dari Tabel 4.16 menunjukkan hasil akurasi paling besar pada $fold\ 1$ di $state\ 22$ dengan akurasi 86.10%.

b. Percobaan dengan 5-fold cross validation

Hasil pengujian dari data ciri 3 menggunakan ekstraksi ciri IoC ukuran 5x5. Menggunakan 5-fold cross validation dengan jumlah *state* dari 2 hingga 30 dengan kenaikan 2.

Gambar 4.16 Grafik Akurasi dengan IoC=5 dan fold 5

Tabel 4.17 Hasil Pengujian Data Ciri 3 dengan 5 fold

State		Persentase Akurasi (Fold ke)				
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
2	54.717	53.9832	53.2495	50.2096	47.4843	
4	77.3585	72.7463	74.2138	69.0776	69.8113	
6	81.5514	75.6813	78.3019	74.9476	71.3836	
8	82.4948	78.0922	80.608	77.8826	75.891	
10	86.1635	83.2285	84.4864	80.3983	75.6813	
12	85.0105	81.9706	85.4298	79.3501	78.4067	
14	86.6876	83.0189	85.5346	79.4549	78.3019	
16	87.7358	82.1803	85.6394	79.1405	76.4151	
18	87.0021	83.8574	86.5828	79.5597	77.1488	
20	89.3082	82.914	86.1635	78.7212	77.5681	
22	87.5262	83.0189	85.5346	80.2935	75.891	
24	86.478	83.3333	86.478	79.8742	74.8428	
26	87.1069	83.9623	85.2201	78.7212	75.891	
28	87.4214	83.1237	85.3249	78.5115	76.3103	
30	86.6876	83.7526	85.6394	77.2537	76.4151	

Dari Tabel 4.17 menunjukkan hasil akurasi paling besar pada *fold* 1 di *state* 20 dengan akurasi 89.30%.

4.6.4 Pengujian Data Ciri 4

a. Percobaan dengan 3-fold cross validation

Hasil pengujian dari data ciri 4 menggunakan ekstraksi ciri *Mark Direction* Horizontal. Menggunakan 3-*fold* cross validation dengan jumlah *state* dari 2 hingga 30 dengan kenaikan 2.

Gambar 4.17 Grafik Akurasi dengan *Mark Direction*Horizontal dan *fold* 3

Tabel 4.18 Hasil Pengujian Data Ciri 4 dengan 3 fold

State	Persenta	Persentase Akurasi (Fold ke)				
	Fold 1	Fold 2	Fold 3			
2	24.3396	24.0881	23.1447			
4	30.0629	28.5535	28.7421			
6	32.8302	30.0629	30.566			
8	33.1447	31.6352	30.8176			
10	33.0818	31.0063	30.0629			
12	34.4025	31.0692	30.1258			
14	33.522	31.195	31.6981			
16	34.0881	32.956	29.7484			
18	35.4088	32.956	29.3082			
20	33.3962	31.761	29.8113			
22	34.7799	30.6289	30.1258			
24	33.522	32.3899	29.9371			
26	33.522	31.5723	29.4969			
28	32.8931	32.2013	28.9308			
30	32.4528	31.0692	29.7484			

Dari Tabel 4.18 menunjukkan hasil akurasi paling besar pada *fold* 1 di *state* 18 dengan akurasi 35.40%.

b. Percobaan dengan 5-fold cross validation

Hasil Pengujian dari data ciri 4 menggunakan ekstraksi ciri *Mark Direction* horizontal. Menggunakan 5-fold cross validation dengan jumlah state dari 2 hingga 30 dengan kenaikan 2.

Gambar 4.18 Grafik Akurasi dengan *Mark Direction* Horizontal dan *fold* 5

Tabel 4.19 Hasil Pengujian Data Ciri 4 dengan 5 fold

State		Persentase Akurasi (Fold ke)				
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
2	24.5283	25.2621	24.6331	20.6499	22.8512	
4	31.3417	28.6164	31.1321	29.0356	28.6164	
6	34.0671	33.3333	33.7526	28.7212	28.6164	
8	35.5346	33.3333	33.7526	28.9308	30.0839	
10	34.0671	31.5514	33.8574	30.2935	29.5597	
12	35.9539	34.5912	33.1237	31.761	28.826	
14	34.2767	34.5912	34.1719	29.4549	29.979	
16	35.0105	33.7526	34.0671	29.6646	29.6646	
18	34.4864	32.7044	34.2767	28.826	31.4465	
20	35.9539	32.3899	33.8574	29.1405	29.1405	
22	34.0671	32.0755	34.2767	28.7212	27.8826	
24	35.6394	33.3333	33.6478	30.0839	30.3983	
26	33.7526	31.6562	32.914	29.6646	29.6646	
28	34.3816	32.3899	33.6478	28.1971	27.7778	
30	33.8574	32.1803	34.0671	28.9308	29.4549	

Dari Tabel 4.19 menunjukkan hasil akurasi paling besar pada *fold* 1 di *state* 12 dengan akurasi 35.95%.

4.6.5 Pengujian Data Ciri 5

a. Percobaan dengan 3-fold cross validation

Hasil Pengujian dari data ciri 5 menggunakan ekstraksi ciri *Mark Direction* vertikal. Menggunakan 3-fold cross validation dengan jumlah state dari 2 hingga 30 dengan kenaikan 2.

Gambar 4.19 Grafik Akurasi dengan *Mark Direction* Vertikal dan *fold* 3

Tabel 4.20 Hasil Pengujian Data Ciri 5 dengan 3 fold

State	Persenta	Persentase Akurasi (Fold ke)				
	Fold 1	Fold 2	Fold 3			
2	34.7799	35.8491	33.8994			
4	40.6289	42.7044	40.1258			
6	43.1447	43.6478	40.4403			
8	43.6478	44.0881	40.9434			
10	43.8365	43.0818	40.2516			
12	42.8931	43.2704	40.2516			
14	42.8302	42.4528	38.4906			
16	41.761	42.0755	37.9874			
18	42.7044	41.3208	35.7862			
20	42.2642	38.3019	35.7862			
22	40.6918	38.4906	34.2767			
24	37.673	38.1761	34.2767			
26	40.3774	37.9874	33.3962			
28	37.7358	39.3082	30.3774			
30	37.9874	35.7233	31.761			

Dari Tabel 4.20 menunjukkan hasil akurasi paling besar pada $fold\ 1$ di $state\ 10$ dengan akurasi 43.83%.

b. Percobaan dengan 5-fold cross validation

Hasil Pengujian dari data ciri 5 menggunakan ekstraksi ciri *Mark Direction* vertikal. Menggunakan 5-fold cross validation dengan jumlah state dari 2 hingga 30 dengan kenaikan 2.

Gambar 4.20 Grafik Akurasi dengan *Mark Direction* Vertikal dan *fold* 5

Tabel 4.21 Hasil Pengujian Data Ciri ${\bf 5}$ dengan ${\bf 5}\,fold$

State		Persentase Akurasi (Fold ke)				
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
2	38.1551	35.4298	35.3249	33.9623	30.608	
4	41.9287	42.9769	43.2914	41.7191	36.3732	
6	43.7107	44.2348	44.0252	41.8239	38.7841	
8	43.0818	44.7589	47.7987	41.9287	39.413	
10	43.0818	44.6541	47.3795	42.5577	38.9937	
12	43.3962	43.6059	44.13	41.195	39.413	
14	44.9686	42.6625	45.1782	40.566	37.631	
16	44.6541	40.566	41.9287	37.5262	37.3166	
18	44.13	42.6625	43.3962	39.6226	35.3249	
20	43.7107	41.0901	43.2914	39.413	36.5828	
22	42.9769	40.0419	42.348	38.6792	35.0105	
24	43.1866	39.3082	41.9287	39.3082	34.9057	
26	39.6226	37.8407	40.9853	33.8574	33.543	
28	38.4696	41.2998	38.8889	37.7358	33.3333	
30	39.7275	39.5178	39.5178	33.3333	32.5996	

Dari Tabel 4.21 menunjukkan hasil akurasi paling besar pada *fold* 1 di *state* 14 dengan akurasi 44.96%.

4.6.6 Pengujian Data Ciri 6

a. Percobaan dengan 3-fold cross validation

Hasil Pengujian dari data ciri 6 menggunakan ekstraksi ciri *Mark Direction* yang terdiri dari diagonal kiri, diagonal kanan, horizontal, dan vertikal. Menggunakan 3-fold cross validation dengan jumlah state dari 2 hingga 30 dengan kenaikan 2.

Gambar 4.21 Grafik Akurasi dengan Mark Direction dan fold 3

Tabel 4.22 Hasil Pengujian Data Ciri 6 dengan 3 fold

State	Persentase Akurasi (Fold ke)			
	Fold 1	Fold 2	Fold 3	
2	63.8994	60.8805	58.1132	
4	79.2453	74.9686	71.6981	
6	80.3774	77.9874	74.2138	
8	81.6352	78.9937	74.2767	
10	82.327	78.8679	74.7799	
12	83.7107	77.9245	76.9811	
14	81.6352	77.8616	74.0881	
16	82.3899	78.0503	74.5912	
18	82.956	78.3019	74.9686	
20	82.7673	78.3648	74.2767	
22	83.6478	79.434	72.956	
24	82.4528	77.6101	74.0881	
26	82.5786	78.8679	73.522	
28	83.4591	78.1132	73.7736	
30	81.9497	77.1698	73.4591	

Dari Tabel 4.22 menunjukkan hasil akurasi paling besar pada *fold* 1 di *state* 12 dengan akurasi 83.71%.

b. Percobaan dengan 5-fold cross validation

Hasil Pengujian dari data ciri 6 menggunakan ekstraksi ciri *Mark Direction* yang terdiri dari diagonal kiri, diagonal kanan, horizontal, dan vertikal. Menggunakan 5-*fold cross validation* dengan jumlah *state* dari 2 hingga 30 dengan kenaikan 2.

Gambar 4.22 Grafik Akurasi dengan *Mark Direction* dan *fold* 5

Tabel 4.23 Hasil Pengujian Data Ciri 6 dengan 5 fold

State		Persentase Akurasi (Fold ke)				
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
2	63.7317	60.9015	61.9497	57.3375	54.1929	
4	80.9224	74.2138	76.8344	71.8029	69.2872	
6	81.6562	78.6164	79.8742	72.5367	71.8029	
8	82.2851	78.5115	80.9224	74.8428	70.9644	
10	83.543	78.3019	81.0273	76.4151	72.0126	
12	83.3333	80.2935	82.2851	75.5765	72.956	
14	83.8574	80.2935	83.3333	76.4151	72.956	
16	84.1719	80.2935	80.1887	76.9392	72.0126	
18	83.1237	80.0839	81.4465	76.3103	72.956	
20	84.4864	79.3501	81.5514	76.7296	73.6897	
22	85.3249	80.2935	81.2369	76.4151	72.6415	
24	84.3816	81.1321	82.914	76.4151	76.1006	
26	86.1635	80.2935	82.4948	76.4151	72.6415	
28	84.9057	81.6562	81.6562	74.6331	73.4801	
30	84.8008	78.7212	81.9706	74.6331	74.7379	

Dari Tabel 4.23 menunjukkan hasil akurasi paling besar pada *fold* 1 di *state* 26 dengan akurasi 86.16%.

Hasil dari grafik menunjukkan pemodelan yang memiliki akurasi paling besar terdapat pada data ciri 3 menggunakan ekstraksi ciri IoC dengan ukuran 5x5. Itu terdapat pada percobaan menggunakan nilai *k- fold* 5 pada *fold* 1 dan jumlah *state* 20 yaitu 89,39%. Pemodelan ini yang akan digunakan untuk melakukan pengujian data tunggal pada pengenalan aksara Incung.

Pada penelitian ini, diperoleh waktu proses komputasi dari setiap skenario pengujian dalam pengenalan aksara Incung. Skenario pengujian ini berdasarkan pada Tabel 3.1 skenario pengujian data jamak. Durasi yang dihitung dalam satuan detik sudah termasuk pada tahap pelatihan dan pengujian aksara Incung dengan metode HMM. Berikut ini durasi komputasi dari setiap skenario pengujian:

K-Fold			Skenario	Pengujian	gujian (detik)		
	Data Data		Data	Data	Data	Data	
	Ciri 1	Ciri 2	Ciri 3	Ciri 4	Ciri 5	Ciri 6	
Fold 3	8656.88	8418.70	10600.00	8863.51	9979.17	8358.63	
Fold 5	10365.29	13587.84	13281.12	12565.20	14877.31	10599.27	

Tabel 4.24 Durasi Klasifikasi HMM

Dari Tabel 4.24 durasi waktu yang paling sedikit pada data ciri 6 dengan ekstraksi ciri *Mark Direction* yang terdiri dari diagonal kiri, diagonal kanan, horizontal dan vertikal dengan 3 *fold cross validation* yaitu 8358.63 detik. Sedangkan durasi waktu yang paling banyak pada data ciri 5 dengan ekstraksi ciri *Mark Direction* menggunakan bagian vertikal dengan 3 *fold cross validation* yaitu 14877.31 detik.

Gambar 4.23 ini sebagai implementasi pengenalan aksara Incung menggunakan metode *Hidden Markov Model*. Ini sebagai tampilan yang digunakan dalam proses pengujian data tunggal setiap huruf data aksara Incung yang terdiri dari 53 huruf aksara Incung.

Gambar 4.23 Tampilan Menu Pengujian Data Tunggal

Proses yang dilakukan untuk pengenalan aksara Incung dengan mengklik tombol "Pilih Aksara". Ini akan diarahkan untuk memilih citra aksara Incung yang akan dilakukan proses pengenalan. Kemudian akan menampilkan hasil dari aksara yang telah dipilih. Ketika tekan tombol "Kenali" akan melakukan proses *preprocessing* pada citra aksara. Hasil *preprocessing* dikenakan ekstraksi ciri IoC dengan ukuran 5x5. Itu akan dilakukan proses pengujian menggunakan Algoritma *Viterbi* menggunakan hasil pemodelan yang telah didapatkan sebelumnya. Hasil dari pengujian tersebut akan menampilkan hasil aksara Incung yang dikenali.

4.6.7 Pengujian Data Tunggal

Pada tahap pelatihan diperoleh hasil akurasi terbaik dengan data ciri 3 dengan nilai k sama dengan 5 dengan jumlah *state* 20. Ini yang akan digunakan sebagai pemodelan untuk melakukan pengujian data tunggal aksara Incung.

Tabel 4.25 Hasil Pengujian Data Tunggal

No	Citra Aksara Incung	Huruf Aksara Incung	Hasil Pengenalan Aksara Incung	Status	
1	T		BA	BENAR	
2	+	BA	BA	BENAR	
3	%		CA	BENAR	
4	8	CA	BA	SALAH	
5	X		MA	SALAH	
6	4	DA	DA	BENAR	

7	5		DA	BENAR
8		GA	GA	BENAR
9	7		GA	BENAR
10		A(HA)	A(HA)	BENAR
11	1		GA	SALAH
12	7		НА	BENAR
13	7	НА	НА	BENAR
14	W	ĪΔ	JA	BENAR
15	5	JA	JA	BENAR
16			KA	BENAR
17		KA	НА	SALAH

18	57		KA	BENAR
19	Z		LA	BENAR
20	/	LA	NYA	SALAH
21	W	MA	MA	BENAR
22	\x/		MA	BENAR
23	1	MBA	MBA	BENAR
24	V	MPA	MPA	BENAR
25	1	MFA	MPA	BENAR
26	7	NA	NA	BENAR
27	M	1117	NA	BENAR
28	88	NCA	WA	SALAH
29	\sim	NDA	NDA	BENAR

30	**		NGGA	SALAH	
31	//	NGA	NGA	BENAR	
32	/	NGGA	NGGA	BENAR	
33	\	NICKA	NGA	SALAH	
34	/	NGKA	NGKA	BENAR	
35	-	NGSA	NGSA	BENAR	
36	~~	NJA	NJA	BENAR	
37	1		NTA	BENAR	
38	1	NTA	NTA	BENAR	
39	W	NYA	NYA	BENAR	
40	M		NGA	SALAH	
41	/	PA	PA	BENAR	
42	/		PA	BENAR	
43	12	RA	RA	BENAR	
44	D	IVI	WA	SALAH	
45	=	C A	SA	BENAR	
46	//	SA	SA	BENAR	

47	_	TA	TA	BENAR	
48	/		TA	BENAR	
49	X		WA	BENAR	
50	+	WA	BA	SALAH	
51	2	YA	YA	BENAR	
52	N		YA	BENAR	
53	\vee		MA	SALAH	

Setelah melakukan pengujian data tunggal mendapatkan hasil dikenali dengan benar sebanyak 41 huruf aksara Incung. Maka akurasi yang diperoleh dari pengujian data tunggal adalah sebesar:

Perbedaan hasil akurasi dari pengujian data jamak dengan akurasi pengujian data tunggal karena pengaruh pada jumlah pengujian. Proses pada pengujian data jamak menggunakan jumlah data lebih banyak dibandingkan dengan pengujian data tunggal. Disamping itu, setiap orang memiliki penulisan karakter yang berbeda sehingga mempengaruhi nilai akurasi.

Tabel 4.26 Hasil Persentase Rata-rata Akurasi Keseluruhan

Jumlah	Data	Ciri 1	Data	Ciri 2	Data	Ciri 3	Data Ciri 4		Data	Ciri 5	Data Ciri 6		
No	State	K-Fold	K-Fold	K-Fold	K-Fold	K-Fold	K-Fold	K-Fold	K-Fold	K-Fold	K-Fold	K-Fold	K-Fold
	210110	3	5	3	5	3	5	3	5	3	5	3	5
1	2	58.49	59.77	55.81	56	52.58	51.93	23.86	23.58	34.84	34.7	60.96	59.62
2	4	72.16	72.81	73.77	74.23	71.43	72.64	29.12	29.75	41.15	41.26	75.3	74.61
3	6	76	77.19	78.45	79.12	75.41	76.37	31.15	31.7	42.41	42.52	77.53	76.9
4	8	77.25	77.82	80.67	80.57	78.6	78.99	31.87	32.33	42.89	43.4	78.3	77.51
5	10	77.76	78.13	82.05	82.33	80.27	81.99	31.38	31.87	42.39	43.33	78.66	78.26
6	12	77.02	78.13	81.32	82.43	81.64	82.03	31.87	32.85	42.14	42.35	79.54	78.89
7	14	76.52	77.9	81.45	82.33	81.07	82.6	32.14	32.49	41.26	42.2	77.86	79.37
8	16	76.02	77.06	81.55	82.12	82.14	82.22	32.26	32.43	40.61	40.4	78.34	78.72
9	18	75.35	77.09	81.93	83.1	82.24	82.83	32.56	32.35	39.94	41.03	78.74	78.78
10	20	74.91	76.58	81.45	82.31	81.66	82.94	31.66	32.1	38.78	40.82	78.47	79.16
11	22	74.76	76.12	80.44	82.49	82.16	82.45	31.84	31.4	37.82	39.81	78.68	79.18
12	24	74.07	74.82	79.9	82.2	80.25	82.2	31.95	32.62	36.71	39.73	78.05	80.19
13	26	74.13	74.47	80.1	80.78	80.29	82.18	31.53	31.53	37.25	37.17	78.32	79.6
14	28	71.99	74.78	80.08	80.88	81.57	82.14	31.34	31.28	35.81	37.95	78.45	79.27
15	30	72.12	74.44	79.16	81.49	79.64	81.95	31.09	31.7	35.16	36.94	77.53	78.97

Dari Tabel 4.26 dapat dilihat hasil rata-rata akurasi menggunakan *k-fold* 3 dan *k-fold* 5. Penggunaan *k-fold* 5 menghasilkan akurasi lebih baik daripada menggunakan *k-fold* 3. Jumlah *state* tidak memiliki pengaruh pada hasil akurasi pengujian. Setiap kenaikan *state* tidak menampilkan kenaikan akurasi yang signifikan. Nilai rata-rata akurasi ini memperlihatkan data ciri yang menghasilkan akurasi yang lebih baik pada data ciri 2 dan data ciri 3. Sedangkan hasil akurasi yang tidak baik pada data ciri 4 dan data ciri 5.

Ini menunjukkan dalam pengujian semakin banyak jumlah ciri akan menghasilkan akurasi yang semakin baik. Itu dapat dilihat dari pengujian data ciri 1 dengan ukuran ciri 3x3 dibandingkan data ciri 3 dengan ukuran ciri 5x5 akan mengalami perbedaan nilai akurasi.

Pengujian data ciri 3 dengan nilai *k-fold* 5 menghasilkan akurasi yang lebih baik dari pengujian data ciri 1, data ciri 2, data ciri 4, data ciri 5, dan data ciri 6. Hal ini menunjukkan penggunaan ekstraksi ciri memiliki pengaruh dalam proses pengenalan aksara Incung menggunakan metode *Hidden Markov Model*.

BAB V

PENUTUP

5.1 Kesimpulan

Berdasarkan penelitian pada pengenalan aksara Incung menggunakan metode *Hidden Markov Model*, dapat disimpulkan sebagai berikut:

- Pengujian menggunakan ekstraksi ciri *Intensity of Character* dengan ukuran 5x5 menghasilkan 25 atribut ciri. Hasil akurasi terbaik pada pengujian 5fold cross validation dengan jumlah state 20 dengan data yang digunakan sebanyak 4770 aksara. Akurasi yang diperoleh dari pengujian tersebut mendapatkan sebesar 89.3%.
- 2. Berdasarkan akurasi rata-rata menggunakan ekstraksi ciri *Intensity of Character* dan *Mark Direction* yang telah didapatkan, dapat disimpulkan sistem berhasil dibuat untuk pengenalan aksara Incung menggunakan metode *Hidden Markov Model*.
- Pemodelan menggunakan metode Hidden Markov Model mampu mengenali aksara Incung dengan baik karena telah dilakukan uji data tunggal diluar data yang digunakan dalam proses pelatihan dengan nilai akurasi 77.35%.

5.2 Saran

Dari hasil penelitian pengenalan aksara Incung ini, ada beberapa saran yang dapat diberikan penulis untuk membuat sistem akan semakin baik, yaitu:

- 1. Pengujian menggunakan jumlah cross validation yang berbeda.
- Menggunakan metode ekstraksi ciri yang berbeda, seperti ekstraksi ciri ICZ-ZCZ, atau PCA.
- 3. Mengembangkan sistem ini pada aplikasi android untuk pengenalan aksara Incung menggunakan metode HMM.

DAFTAR PUSTAKA

- Alimin. (2003). *Sastra Incung Kerinci*. Sungaipenuh: Dinas Kebudayaan dan Pariwisata Kabupaten Kerinci.
- Coelho, P. (2019). *Theory and Implementation using Matlab* ®. Science Publishers Book.
- Dymarski, P. (2011). *HIDDEN MARKOV MODEL: Theory and Applications*. BoD–Books on Demand.
- Ganeshamoorthy, K., & Ranasinghe, D. N. (2008). On the performance of parallel neural network implementations on distributed memory architectures. 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid (CCGRID), 90–97.
- Indyaputra, O. G. (2019). Metode Backpropagation untuk alih aksara Jawa cetak menggunakan ciri ICZ-ZCZ. Skripsi. Program Studi Informatika. Univesitas Sanata Dharma.
- Kadir, A., & Susanto, A. (2013). Teori dan aplikasi pengolahan citra. *Yogyakarta: Andi*.
- Kozok, U. (2006). Kitab undang-undang Tanjung Tanah: naskah Melayu yang tertua. Yayasan Obor Indonesia.
- Lokhande, M. S. D. (2017). Online Handwriting Recognition using HMM. International Journal on Recent and Innovation Trends in Computing and Communication, 5(8), 206–210.
- Metwally, A. H., Khalil, M. I., & Abbas, H. M. (2017). Offline Arabic handwriting recognition using hidden Markov models and post-recognition lexicon matching. In 2017 12th International Conference on Computer Engineering and Systems (ICCES) (pp. 238-243). IEEE.
- Murphy, K. (2005), Hidden Markov Model (HMM) *Toolbox* for Matlab. https://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html diakses pada 26 Mei 2021
- Prarian, C., Tritoasmoro, I. I., Magdalena, R., Elektro, F. T., Telkom, U., & A, P. N. (2013). Analisis Pengenalan Aksara Lampung Menggunakan Modified

- Direction Feature (Mdf) Dan *Hidden Markov Model*. Skripsi. Program Studi Teknik Elektro. Universitas Telkom.
- Powa, J. E. (2020). Implemensi Aksara Incung di Sungai Penuh. *Jurnal Ilmiah Dikdaya*, 10(1), 111–118.
- Prasetyo, M. E. B. (2010). Teori Dasar *Hidden Markov Model*. *Makalah II 2092 Probabilitas Dan Statistik*.
- Pratiwi, N. W., Fauziah, F., Andryana, S., & Gunaryati, A. (2018). Deteksi Wajah Menggunakan Hidden Markov Model (HMM) Berbasis Matlab. *STRING* (Satuan Tulisan Riset Dan Inovasi Teknologi), 3(1), 44.
- Putra, D. (2010). Pengolahan citra digital. Penerbit Andi.
- Putri, A. R. (2017). Pengenalan Pola Aksara Batak Karo Menggunakan Metode Back Propagation. Skripsi. Program Studi Informatika. Universitas Sanata Dharma.
- Przytycka. (2007) "Encyclopedia Of The Human Genome: Hidden Markov Models, USA: Nature Publishing Group.
- Rabiner, L. R. (1989). Tutorial on HMM and Applications. In *Proceedings of the IEEE* (Vol. 77, pp. 257–286).
- Surinta, O., & Schomaker, L. (2010). Overview of handwritten Thai character recognition. *Lecture Notes Online*.
- Theodoridis, S., & Koutroumbas, K. (2008). Pattern recognition. *IEEE Transactions on Neural Networks*, 19(2), 376.
- Tumilaar, K., Langi, Y., & Rindengan, A. (2015). *Hidden Markov Model*. d'CARTESIAN: Jurnal Matematika dan Aplikasi, 4(1), 86-94.
- Utnasari, I. (2018). Penerapan Jaringan Syaraf Tiruan pada pengenalan karakter pola aksara Incung dengan metode Backpropagation. *Computer Based Information System Journal*, 7–11.
- Voorhoeve, P. (1970). Kerintji documents. *Bijdragen Tot de Taal-, Land-En Volkenkunde/Journal of the Humanities and Social Sciences of Southeast Asia*, 126(4), 369–399.
- Widiarti, Anastasia Rita & Himamunanto, A. R. (2013). *Teori dan Aplikasi Pengolahan Citra Digital: Transliterasi Otomatis Citra Dokumen Teks Aksara*

- Jawa. Lintang Pustaka Utama Yogyakarta.
- Westenenk, L. C. (1922). Rèntjong-schrift: II: beschreven hoorns in het landschap Krintji. Lange.
- Wibowo, T. A. (n.d.). Pengenalan Pola Tulisan Tangan Aksara Jawa Dengan Algoritma Backpropagation. Skripsi. Program Studi Informatika. Universitas Santa Dharma.
- Widiarti, A. R., & Wastu, P. N. (2009). Javanese character recognition using Hidden Markov Model. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 3(9), 2201–2204.
- Widiarti, A. R. (2011). Comparing Hilditch, Rosenfeld, Zhang-Suen, and Nagendraprasad-Wang-Gupta Thinning. *International Journal of Computer and Information Engineering*, *5*(6), 563-567.
- Widiarti, Anastasia Rita & Himamunanto, A. R. (2013). *Teori dan Aplikasi Pengolahan Citra Digital: Transliterasi Otomatis Citra Dokumen Teks Aksara Jawa*. Lintang Pustaka Utama Yogyakarta.
- Widyastuti, W. (2016). Pengenalan Aksara Pallawa dengan Model Hidden Markov. *ReTII*, 126–131.
- Yuwitaning, E. F., Hidayat, B., & Andini, N. (2014). Implementasi Metode *Hidden Markov Model* untuk Deteksi Tulisan Tangan. *E-Proceeding of Engineering*, *1*(1), 396–402.

LAMPIRAN

Lampiran 1 Angket Aksara Incung

Lampiran 2 Syntax GUI

```
function varargout = hmm gui(varargin)
gui Singleton = 1;
gui_State = struct('gui_Name',
                                      mfilename, ...
    'gui_Singleton', gui_Singleton, ...
         _OpeningFcn', @hmm_gui_OpeningFcn, ...
    'gui_OutputFcn', @hmm_gui_OutputFcn, ...
'gui_LayoutFcn', [], ...
    'gui Callback',
                      []);
if nargin && ischar(varargin{1})
    gui State.gui Callback = str2func(varargin{1});
end
if nargout
    [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
else
    gui mainfcn(gui State, varargin{:});
end
function hmm gui OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% --- Outputs from this function are returned to the command line.
function varargout = hmm_gui_OutputFcn(hObject, eventdata,
handles)
varargout{1} = handles.output;
% --- Executes on selection change in popupmenul.
function popupmenul Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all
properties.
function popupmenul CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
% --- Executes on button press in pushbutton1.
function pushbutton1 Callback(hObject, eventdata, handles)
```

```
[file data,nama path] = uigetfile({'*.jpg'}, 'membuka gambar');
%memilih gambar
if ~isequal(file data,0)
    I = imread(fullfile(nama path, file data));
    axes(handles.axes1);
    imshow(I);
    handles.I = I;
    guidata(hObject, handles)
else
    return
end
assignin('base','namaFile',file data);
set(handles.edit1, 'String', file data);
function edit1 Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all
properties.
function edit1 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
% --- Executes on button press in pushbutton2.
function pushbutton2 Callback(hObject, eventdata, handles)
dataName = evalin('base', 'namaFile');
namaData = 'ta1.jpg';
if strcmp(dataName, namaData)
    I = handles.I;
    assignin('base', 'hasil', I);
    %Mengubah citra keabuan menjadi citra hitam putih
    hasilakhir = preprocessing2 (I);
    fitur = ekstrakciri 6unit(hasilakhir);
else
    I = handles.I;
    assignin('base', 'hasil', I);
    %% Proses Preprocessing
    hasilakhir = preprocessing (I);
    %% Proses Ekstraksi Ciri dengan IoC 5x5
    fitur = ekstrakciri 5unit(hasilakhir);
end
HMM Models = evalin('base','HMM Models');
% HMM Models = evalin('base','modelF5');
hasil = hmmPengujian(fitur, HMM Models);
assignin('base','out',hasil);
```

```
if hasil == 1
   hasil huruf = 'BA';
elseif hasil == 2
   hasil_huruf = 'BA';
elseif hasil == 3
   hasil huruf = 'CA';
elseif hasil == 4
   hasil_huruf = 'CA';
elseif hasil == 5
   hasil_huruf = 'CA';
elseif hasil == 6
   hasil_huruf = 'DA';
elseif hasil == 7
   hasil huruf = 'DA';
elseif hasil == 8
   hasil huruf = 'GA';
elseif hasil == 9
   hasil huruf = 'GA';
elseif hasil == 10
   hasil huruf = 'A(HA)';
elseif hasil == 11
   hasil huruf = 'A(HA)';
elseif hasil == 12
   hasil huruf = 'HA';
elseif hasil == 13
   hasil huruf = 'HA';
elseif hasil == 14
   hasil_huruf = 'JA';
elseif hasil == 15
   hasil huruf = 'JA';
elseif hasil == 16
   hasil huruf = 'KA';
elseif hasil == 17
   hasil huruf = 'KA';
elseif hasil == 18
   hasil huruf = 'KA';
elseif hasil == 19
   hasil huruf = 'LA';
elseif hasil == 20
   hasil huruf = 'LA';
elseif hasil == 21
   hasil huruf = 'MA';
elseif hasil == 22
   hasil huruf = 'MA';
elseif hasil == 23
   hasil huruf = 'MBA';
elseif hasil == 24
   hasil huruf = 'MPA';
elseif hasil == 25
   hasil huruf = 'MPA';
elseif hasil == 26
    hasil huruf = 'NA';
elseif hasil == 27
    hasil huruf = 'NA';
elseif hasil == 28
```

```
hasil huruf = 'NCA';
elseif hasil == 29
    hasil_huruf = 'NDA';
elseif hasil == 30
    hasil huruf = 'NDA';
elseif hasil == 31
    hasil_huruf = 'NGA';
elseif hasil == 32
    hasil_huruf = 'NGGA';
elseif hasil == 33
    hasil_huruf = 'NGKA';
elseif hasil == 34
    hasil_huruf = 'NGKA';
elseif hasil == 35
    hasil huruf = 'NGSA';
elseif hasil == 36
    hasil huruf = 'NJA';
elseif hasil == 37
    hasil huruf = 'NTA';
elseif hasil == 38
    hasil huruf = 'NTA';
elseif hasil == 39
    hasil huruf = 'NYA';
elseif hasil == 40
    hasil huruf = 'NYA';
elseif hasil == 41
    hasil huruf = 'PA';
elseif hasil == 42
    hasil huruf = 'PA';
elseif hasil == 43
    hasil huruf = 'RA';
elseif hasil == 44
    hasil huruf = 'RA';
elseif hasil == 45
    hasil_huruf = 'SA';
elseif hasil == 46
    hasil huruf = 'SA';
elseif hasil == 47
    hasil_huruf = 'TA';
elseif hasil == 48
   hasil huruf = 'TA';
elseif hasil == 49
   hasil huruf = 'WA';
elseif hasil == 50
    hasil huruf = 'WA';
elseif hasil == 51
    hasil huruf = 'YA';
elseif hasil == 52
    hasil huruf = 'YA';
elseif hasil == 53
   hasil huruf = 'YA';
else
    return
end
assignin('base', 'hasil_huruf', hasil_huruf);
```

```
set(handles.edit2, 'String', hasil_huruf);
function edit2_Callback(hObject, eventdata, handles)
function edit2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
```

Lampiran 3 Syntax Inisialisasi Parameter HMM

```
function [prior0, transmat0, mu0, sigma0, mixmat0] =
initializeParam( ...
    data, Q, O, M,cov_type, model_type)
% model type: 1 - 'ergodic', 2 - 'bakis'
switch model type
    case 1
        % ergodic model
        prior0 = normalise(rand(Q, 1));
        transmat0 = mk stochastic(rand(Q,Q));
    case 2
        % bakis model
        level = 2; % levels of bakis model
        [prior0, transmat0] = initByBakis(Q, level);
end
%% menentukan nilai mu dan sigma
[mu0, Sigma0] = mixgauss init(Q*M, cell2mat(data), cov type);
mu0 = reshape(mu0, [O Q M]);
sigma0 = reshape(Sigma0, [O O Q M]);
mixmat0 = mk stochastic(rand(Q, M));
end
```

Lampiran 4 Syntax Pelatihan HMM

```
function HMM_Models = hmmTrain(TR_Actions, param, Q, 0)
%% training using hmm
%% HMM parameters
M = param.M;
cov_type = param.cov_type;
max_iter = param.max_iter;
verbose = param.verbose;

%% Preparation for HMM
training_number = length(TR_Actions);
all_labels = zeros(training_number, 1);

% get labels
for i = 1:training_number
    all labels(i) = TR Actions(i).label;
```

```
end
labels = unique(all labels);
label number = size(labels, 1);
HMM Models = struct;
%% Training models
for i = 1:label number
    Train Data = cell(1, 1);
    label = labels(i);
    HMM Models(i).label = label;
    %% Mendapatakan pelatihan data yang memiliki label yang sama
    for j = 1 : training_number
        if TR Actions(j).label == label
            len = size(Train_Data, 2);
            if isempty(Train_Data{len})
                Train_Data{len} = TR_Actions(j).Observations;
            else
                Train_Data{len + 1} = TR_Actions(j).Observations;
            end
        end
    end
    %% HMM training
    % initial guess (Ergodic model)
    model type = 2;
    [prior0, transmat0, mu0, sigma0, mixmat0] =
initializeParam(...
        Train Data, Q, O, M, cov type, model type);
    % improve guess by using iterations of EM
    [LL, prior1, transmat1, mu1, sigma1, mixmat1] = mhmm_em(...
        Train_Data, prior0, transmat0, mu0, sigma0, mixmat0,...
        'max_iter', max_iter, 'cov_type', cov_type, 'verbose',
verbose);
    HMM Models(i).LL = LL;
    HMM_Models(i).prior = prior1;
    HMM Models(i).transmat = transmat1;
    HMM_Models(i).mu = mu1;
    HMM_Models(i).sigma = sigma1;
    HMM_Models(i).mixmat = mixmat1;
end
```

Lampiran 5 Syntax Pengujian HMM

```
function [accuracy, predict label, true label, count] =
hmmTest(TE Actions, HMM_Models)
model_number = length(HMM_Models); % model number
test number = length(TE Actions);
true label = zeros(test number, 1);
predict_label = zeros(test_number, 1);
prob_scores = zeros(test_number, model_number);
count = 0;
for i = 1:test_number
    % get true label
    true label(i) = TE Actions(i).label;
    for j = 1:model number
        data = TE Actions(i).Observations;
        prob_scores(i, j) = mhmm_logprob(data,
HMM Models(j).prior,
            HMM Models(j).transmat, HMM Models(j).mu, ...
            HMM Models(j).sigma, HMM Models(j).mixmat);
    end
    [max prob, idx] = max(prob scores(i,:));
    predict_label(i) = HMM_Models(idx).label;
    if predict_label(i) == true_label(i)
        count = count + 1;
    end
end
% Hitung nilai akurasi
accuracy = (count / test number) *100;
end
```