Using $(*_2)$, we also have

$$||f_m(u)|| \le ||f_m|| \, ||u|| \le (||f_n|| + \epsilon) \, ||u|| \quad \text{for all } m, n \ge N,$$

that is,

$$||f_m(u)|| \le (||f_n|| + \epsilon) ||u|| \quad \text{for all } m, n \ge N.$$
 (*3)

Hold $n \geq N$ fixed and let m tend to $+\infty$ in $(*_3)$. Since the norm is continuous, we get

$$||f(u)|| \le (||f_n|| + \epsilon) ||u||,$$

which shows that f is continuous.

Step 4. The function f is the limit of (f_n) for the operator norm.

Recall $(*_1)$:

$$||f_m(u) - f_n(u)|| \le \epsilon ||u|| \quad \text{for all } m, n \ge N.$$

Hold $n \geq N$ fixed but this time let m tend to $+\infty$ in $(*_1)$. By continuity of the norm we get

$$||f(u) - f_n(u)|| = ||(f - f_n)(u)|| \le \epsilon ||u||.$$

By definition of the operator norm,

$$||f - f_n|| = \sup\{||(f - f_n)(u)|| \mid ||u|| = 1\} \le \epsilon \text{ for all } n \ge N,$$

which proves that f_n converges to f for the operator norm.

As a special case of Theorem 37.62, if we let $F = \mathbb{R}$ (or $F = \mathbb{C}$ in the case of complex vector spaces) we see that $E' = \mathcal{L}(E;\mathbb{R})$ (or $E' = \mathcal{L}(E;\mathbb{C})$) is complete (since \mathbb{R} and \mathbb{C} are complete). The space E' of continuous linear forms on E is called the *dual* of E. It is a subspace of the *algebraic dual* E^* of E which consists of *all* linear forms on E, not necessarily continuous.

It can also be shown that if E, F and G are normed vector spaces, and if G is a Banach space, then $\mathcal{L}_2(E, F; G)$ is a Banach space. The proof is essentially identical.

37.12 Completion of a Normed Vector Space

An easy corollary of Theorem 37.53 and Theorem 37.52 is that every normed vector space can be embedded in a complete normed vector space, that is, a Banach space.

Theorem 37.63. If $(E, \| \|)$ is a normed vector space, then its completion $(\widehat{E}, \widehat{d})$ as a metric space (where E is given the metric $d(x,y) = \|x-y\|$) can be given a unique vector space structure extending the vector space structure on E, and a norm $\| \|_{\widehat{E}}$, so that $(\widehat{E}, \| \|_{\widehat{E}})$ is a Banach space, and the metric \widehat{d} is associated with the norm $\| \|_{\widehat{E}}$. Furthermore, the isometry $\varphi \colon E \to \widehat{E}$ is a linear isometry.