

Contrôle final de Statistique I

Durée 2 heures

Exercice 1 : (12 points)

Les salaires annuels (en 1000 DH) de 100 employés d'une entreprise sont distribués de la façon suivante :

Salaires compris entre	Nombre des employés
25 et 32	20
32 et 40	30
40 et 45	22
45 et 55	28

- 1) Déterminer le pourcentage des employés qui gagnent moins que 42350 DH par an.
- 2) Calculer les quartiles Q_1 , Q_2 et Q_3 de cette distribution et représenter le diagramme de la boîte de Tukey. Interpréter cette représentation graphique.
- 3) Déterminer le salaire le plus fréquent.
- 4) Donner l'interprétation et la valeur de la médiane. Calculer la différence $\Delta M = Ml - Mé$. Comparer-la à l'étendue et conclure.
- 5) Calculer l'indice de concentration de GINI.
- 6) Tracer la courbe de concentration de Lorenz et interpréter sa forme selon le résultat trouvé dans la question précédente.

Exercice 2 : (8 points)

Dans un pays, on a étudié les exploitations agricoles de la région du nord et de la région du sud en fonction de la superficie. Les données se présentent comme suit :

Superficies en hectare	Nombre des exploitations dans la région du nord	Nombre des exploitations dans la région du sud
0 – 10	3	5
10 – 30	15	19
30 – 50	20	21
50 – 100	12	5

- 1) Calculer la superficie moyenne de la région du nord, de la région du sud et celle de tout le pays.
- 2) Calculer la variance de la région du nord, de la région du sud et celle de tout le pays.
- 3) Calculer la variance intra-région et la variance inter-région. Interpréter et conclure.
- 4) Comparer la dispersion des exploitations dans la région du nord et la région du sud, en utilisant le coefficient de variation.

C.F. de Statistique I

Exercice 1 :

$[e_{i-1}, e_i[$	n_i	c_i	$n_i c_i$	a_i	$h_i = \frac{n_i}{a_i}$	f_i	$f_i c_i^{\uparrow}$	$n_i c_i^{\uparrow} (n_i c_i)^c \uparrow$
$[25, 32[$	20	28,5	570	7	2,86	0,2	0,2	20
$[32, 40[$	30	36	1080	8	3,75	0,3	0,5	50
$[40, 45[$	22	42,5	935	5	4,4	0,22	0,75	72
$[45, 55[$	28	50	1400	10	2,8	0,28	1	100
	$N=100$		3985					

10/

$$\begin{array}{l}
 40\,000 \rightarrow 50\% \\
 42\,350 \rightarrow x \\
 45\,000 \rightarrow 75\%
 \end{array}
 \left\{
 \begin{array}{l}
 \Rightarrow \frac{45\,000 - 40\,000}{42\,350 - 40\,000} = \frac{75 - 50}{x - 50} \\
 \Rightarrow x - 50 = \frac{75 - 50}{45\,000 - 40\,000} \times (42\,350 - 40\,000) = \frac{25}{5000} \cdot 2350 \\
 \Rightarrow x = 61,75 \%
 \end{array}
 \right.$$

2/ les quartiles ;
 Q_1 ?

$\frac{N}{4} = 25 \Rightarrow$ On cherche cette valeur parmi les n^ec ↑

$\Rightarrow 50$ est la 1^{ere} valeur qui le dépasse $\Rightarrow [32, 40[$

⇒ Formule $\Rightarrow Q_1 = e_{i-1} + \frac{\frac{N}{4} - n_{i-1} c^{\uparrow}}{n_i}$ q_i

$$0,5 \Rightarrow Q_1 = 32 + \frac{25 - 20}{30} \cdot 8 = [33,33]$$

* $\frac{N}{4} \times 2 = 50 \Rightarrow$ cette valeur se trouve exactement parmi les n^ec ↑ \Rightarrow alors on prend $Q_2 = e_2$

$$0,5 \Rightarrow Q_2 = 40$$

* $\frac{N}{4} \times 3 = 75 \Rightarrow$ cette valeur n'existe pas exactement parmi les n^ec ↑

$\Rightarrow 100$ est la 1^{ere} valeur qui le dépasse
 $\Rightarrow [45, 55[$; la formule

$$Q_3 = e_{i-1} + \frac{\frac{N}{4} \times 3 - n_{i-1} c^{\uparrow}}{n_i} q_i$$

$$0,5 \Rightarrow Q_3 = 45 + \frac{75 - 72}{28} 20 = 46,07$$

La boîte de Tukey donne une vue rapide des caractéristiques élémentaires de la distribution statistique.

Q₂ indique le centre des données. La longueur de la boîte mesure la dispersion de la moitié centrale des données et la longueur des segments latéraux extérieurs, la dispersion de la 1^{re}-partie inférieure et supérieure, respectivement.

3) le mode :

les amplitudes sont différentes.

On va appliquer la formule (I) : $M_0 = l_{i-1} + \frac{h_{i+1}}{h_{i-1} + h_{i+2}} \cdot q_i$

Déterminons d'abord, la classe modale $\Rightarrow [40, 45[$

$$M_0 = 40 + \frac{2,8}{3,75 + 2,8} \times 5$$

$$M_0 = 40 + \frac{14}{6,55} = 42,14$$

le salaire le plus fréquent est 42,140 DH

4) Interprétation :

La médiane est la valeur de la variable qui diviserait la masse salariale totale en deux blocs égaux.

$$\frac{\sum m_i}{2} = \frac{3985}{2} = 1992,5$$

On cherche cette valeur parmi les $(n_i c_i)$ qui dépasse est 2585

la 1^{ere} valeur qui la dépasse est 2585

Donc la classe médiane est [40, 45[

On applique la formule $Ml = l_{i-1} + \frac{\sum n_i c_i - (n_{i-1} c_{i-1})}{n_i}$

$$Ml = 40 + \frac{1992,5 - 1650}{935} \times 5 = 41,83$$

* Calcul de ΔM :

$$0,5 \text{ on a } Q_2 = M_d' = 40$$

$$0,5 \quad \Delta M = 41,83 - 40 = 1,83$$

$$\text{or } I = \frac{\Delta M}{E} = \frac{1,83}{x_{\max} - x_{\min}} = \frac{1,83}{55 - 25} = \frac{1,83}{30} = 0,061$$

0,75 \Rightarrow Faible concentration.

5)	$P_i = \frac{n_i c_i}{N} \times 100$	$q_i = \frac{(n_i c_i) c_i}{\sum n_i c_i} \cdot 100$
1	20	14,30
	50	41,40
	72	64,87
	100	100
	242	220,57

4

$$I_G = 1 - \frac{\sum_{i=1}^{k-1} q_i}{\sum_{i=1}^{k-1} p_i}$$

$$I_G = 1 - \frac{120,57}{142}$$

$$I_G = 1 - 0,849$$

$$I_G = 0,151$$

6) Combe de Lorenz:

La courbe est proche de la 1^{ère} bisection, ce qui indique bien une faible concentration comme on a trouvé dans la question précédente $I_G = 0,151$
 \Rightarrow Faible concentration.

Exercise 2:

1) Nord:

$[e_{i-1}, e_i[$	n_i	a_i	$n_i a_i$	a_i^2	$n_i a_i^2$
$[0, 10[$	3	5	15	25	75
$[10, 30[$	15	20	300	400	6000
$[30, 50[$	20	40	800	1600	32000
$[50, 100[$	12	75	900	5625	67500
	$N=50$		2015		105575

$$0,5 \bar{x} = \frac{1}{N} \sum_i n_i a_i = \frac{2015}{50} = 40,3$$

Sud:

$[e_{i-1}, e_i[$	n_i	a_i	$n_i a_i$	a_i^2	$n_i a_i^2$
$[0, 10[$	5	5	25	25	125
$[10, 30[$	19	20	380	400	7600
$[30, 50[$	21	40	840	1600	33600
$[50, 100[$	5	75	375	5625	28125
	$N=50$	6		$\Sigma = 1620$	69450

0,5 $\bar{X} = \frac{1}{N} \sum_i m_i c_i = \frac{1620}{50} = 32,4$

Loyerne des pays:

(P) $\bar{X} = \frac{1}{N} (N_1 \bar{x}_1 + N_2 \bar{x}_2)$

0,5 $= \frac{1}{100} (50 \times 40,3 + 50 \times 32,4) = \frac{2015 + 1620}{100}$
 $= 36,35$

2) Nord:

Var(X) = $\frac{1}{N} \sum_i (c_i - \bar{x})^2 m_i = \left(\frac{1}{N} \sum_i m_i c_i^2 \right) - \bar{x}^2$
0,5 $= \frac{105575}{50} - (40,3)^2 = 2111,5 - 1624,09$
 $= 487,41$

Sud:

Var(X) = $\frac{69450}{50} - (32,4)^2 = 1389 - 1049,76$
0,5 $= 339,24$

⑦

Variance globale:

$[c_{i-1}, c_i[$	n_i	c_i	c_i^2	$n_i c_i^2$
$[0, 10[$	8	5	25	200
$[10, 20[$	34	20	400	13600
$[20, 30[$	41	40	1600	65600
$[30, 40[$	17	75	5625	95625
	100			175025

$$\text{Var}(x) = \frac{175025}{100} - (36,35)^2 = 1750,25 - 1321,25 \\ = 428,93$$

3) Variance Intra-region:

$$\text{Var}(x_i) = \frac{1}{N} [N_1 \text{Var}(x_1) + N_2 \text{Var}(x_2)]$$

$$= \frac{1}{100} [50 \times 487,41 + 86 \times 339,24]$$

$$= \frac{1}{100} [24370,5 + 16962] = 413,325$$

(8)

Variance Inter - régions :

$$\text{Var}(\bar{x}_i) = \frac{1}{N} \left[N_1 (\bar{x}_1 - \bar{x})^2 + N_2 (\bar{x}_2 - \bar{x})^2 \right]$$

$$= \frac{1}{100} \left\{ 50 (40,3 - 36,35)^2 + 50 (32,4 - 36,35)^2 \right\}$$

$$= \frac{1}{100} [50 \times 15,602] + 50 \times 15,602 = 15,602.$$

Conclusion :

$$\text{Var}(x) = \text{Var}(x_i) + \text{Var}(\bar{x}_i)$$

$$0,8 \quad " \quad 428,92 = 413,328 + 15,602$$

Interprétation :

La dispersion des exploitations dans ce pays n'explique qu'une faible part ($\text{inter.} \rightarrow 3,64\%$) par une dispersion des terres entre les régions, alors que la forte dispersion des terres, interne aux régions explique une grande partie ($\text{intra} \rightarrow 96,36\%$) à l'intérieur.

de la dispersion de terres ⑨

$$4) \text{CV}(\text{Nord}) = \frac{\sigma(x)}{\bar{x}} = \frac{\sqrt{\text{Var}(x)}}{\bar{x}}$$

$$= \frac{\sqrt{487,41}}{40,3} = \frac{22,077}{40,3} = 0,55$$

$$\text{CV}(\text{Sud}) = \frac{\sigma(x)}{\bar{x}} = \frac{\sqrt{339,24}}{32,4} = \frac{18,418}{32,4}$$

$$= 0,57$$

0,5 ist präziser bei in.

$$\text{Intra} \rightarrow x = \frac{413,325 \times 100}{428,93} = 96,36\%$$

$$\begin{array}{ccc} x & \rightarrow 100 \\ 413,325 & \rightarrow 428,93 \\ 15,602 & \rightarrow 428,93 \\ & 96,36 \% \end{array}$$

$$\text{Inter} \rightarrow n = \frac{15,602 \times 100}{428,93} = 3,64\%$$