Algebra

 $Hoyan\ Mok^1$

2020年8月31日

 $^{^{1}\}mathrm{E\text{-}mail:}$ victoriesmo@hotmail.com

笔记说明

本笔记是笔者学习线性代数时的教材, 主要参考资料是[2].

笔记假定读者已经熟悉朴素集合论的术语与符号,并已经学习了以矩阵和行列式运算为主的初级线性代数. 但本笔记力求自足,将矩阵与行列式运算,置换和多项式等内容附在附录中,以资读者在阅读正文时可以随时查阅.

笔记后附有符号列表和索引,方便读者 (也是方便笔者自己) 查阅.

你可以在https://github.com/HoyanMok/NotesOnMathematics/tree/master/Algebra获得本笔记最新的 PDF 与 TEX 源文档. 封面的来源是https://commons.wikimedia.org/wiki/File:Rubik%27s_cube.svg.

目录

笔记说明	<mark>月</mark>	j
目录		ii
第一部	分 线性代数	1
第一章	群. 环. 域	2
§ 1	代数运算	2
§ 2	群	3
§ 3	环	7
§ 4	域	9
第二章	线性空间 线性空间	11
§ 5	线性空间	11
§ 6	对偶空间	16
§ 7	多重线性型	19
§ 8	二次型	21
第三章	线性算子 ····································	22
§ 9	线性映射	22
§ 10	线性算子代数	23
§11	不变子空间与特征向量	26
第四章	内积空间	28
第五章	张量	29

目录	iii
附录 A 置換 §1 置换群	30 . 30
附录 B 矩阵和行列式 §2 矩阵 §3 行列式	
附录 C 多项式 §4 多项式环 §5 多项式的根	
参考文献	40
符号列表	41
·····································	43

iv

第一部分

线性代数

第一章 群.环.域

§1 代数运算

Definition 1.1 (二元运算). 集合的 Cartesian 平方到自身的映射 *: $X^2 \to X$ 称为其上的一个二元运算. 通常我们记 *(a,b) := a * b. 当 X 上定义了二元运算 * E, 称 * 定义了 E 上的一种代数结构 (E,*),也称代数系统.

当指代是明确的时候, 我们将混用集合及其代数结构.

作为习惯, 如果 \cdot , $+ \in X^{X^2}$, 我们记 $ab := a \cdot b$ 并称其为 a 和 b 的积, 称 a + b 为 a 和 b 的**和**. 这些只是约定.

若 a*b=b*a 则称 * 或 (X,*) 是交换的, 而若 (a*b)*c=a*(b*c) 则称 * 或 (X,*) 为结合的.

若 $\exists e \in X$ 满足 $\forall x \in A(e * x = x * e = x)$, 则称其为 * 的一个**单位元** (identity), 这时可把 (X,*) 记作 (X,*,e). 可以证明一个代数结构最多只有一个单位元. 乘法单位元通常记为 1, 而加法单位元 (也叫零元) 记为 0.

Definition 1.2 (半群和幺半群). 若 * 是结合的, 称 (X,*) 是**半群** (semigroup); 若 * 还有一个单位元, 则称 (X,*,e) 是**幺半群** (monoid).

倘若幺半群 (M, *, e) 是有限的 (即其元素有限), 称 card M 为有限幺半群的阶.

作为重要的例子,**置换幺半群** 定义为 $(X^X, \circ, \mathrm{id}_X)$,有幺半群结构的 X^X 通常记作 M(X). 半群中,括号的位置是不重要的 (可用数学归纳法证明). 通常我们记 $x_1x_2\cdots x_n$ 为:

$$\prod_{i=1}^{1} x_i = x_1, \ \prod_{i=1}^{n+1} x_i = \left(\prod_{i=1}^{n} x_i\right) x_n; \tag{1-1}$$

同理 $x_1 + x_2 + \cdots + x_n$ 为:

$$\sum_{i=1}^{1} x_i = x_1, \ \sum_{i=1}^{n+1} x_i = \left(\sum_{i=1}^{n} x_i\right) + x_n. \tag{1-2}$$

在半群不交换的场合,指出递推式右端的顺序是重要的.这种记法称为左正规.

若 $x := x_1 = x_2 = \cdots = x_n$, 记 $\sum_{i=1}^n x_i = nx$, $\prod_{i=1}^n x_i = x^n$, 分别表示 x 的 n 倍和 x 的 n 次幂. 它们满足:

$$nx + mx = (n+m)x, \ n(mx) = nmx, \qquad n, m \in \mathbb{N}_+;$$
 (1-3)

$$x^n x^m = x^{n+m}, (x^m)^n = x^{nm}, \quad n, m \in \mathbb{N}_+.$$
 (1-4)

在幺半群中, 还可以令 $x^0 = 1$, 0x = 0.

若半群 S 有子集 S', 使得 (S',*) 是半群, 那么称其为半群 (S,*) 的**子半群**. 同理有幺半群M 的**子幺半**群M'.

若半群 (S, *, e) 的元素 a 满足 $\exists a' \in S(aa' = a'a = e)$, 那么称 a 为**可逆的** (invertible), a' 称为其**逆元** (inverse element) **或逆** (inverse). 通常加法逆元记为 -a, 乘法逆元记为 a^{-1} , 且为可逆元素引入 na, a^n 的概念, 其中 $n \in \mathbb{Z}$. 当 n 为负数时, na = -(-na), $a^n = (a^{-n})^{-1}$.

因为群未必是 Abelian, 我们可以也用弱化的**左可逆** $\exists y \text{ s.t. } y * x = 1 \text{ 或$ **右可逆** $的概念.}$

§**2** 群

可逆幺半群 G 称为群, 即:

Definition 2.1 (群). 设有集合 G. 若:

- G1) 定义了二元运算 $:: G^2 \to G; (x, y) \mapsto xy.$
- G2) 结合性: $\forall x, y, z \in G$, (xy)z = x(yz).
- G3) 单位元: $\exists e \in G \forall x \in G, xe = ex = x.$
- G4) 可逆性: $\forall x \in G \exists x^{-1} \in G, xx^{-1} = x^{-1}x = e.$

则称 (G,\cdot) 为群.

交换群又叫做 Abelian 群.

作为重要的例子, 设 X 是一个集合, $S(X) = \{f \in X^X \mid f$ 是双射 $\}$. 我们断言, $(S(X), \circ, \mathrm{id}_X)$ 是一个群, 称为**变换群**或**置换群**, 其中 \circ 是函数的复合, id_X 是恒等变换. 当它的阶数 $\mathrm{card}\, X = n$ 是有限的时候, 记 $S_n := S(X)$.

群也有子群的概念. 设 (G,\cdot,e) 是一个群. 当一个集合 $G' \subset G$ 满足:

- SG1) $e \in G'$;
- SG2) $\forall x, y \in G', xy \in G';$
- SG3) $x \in G' \to x^{-1} \in G'$,

则称 (G',\cdot,e) 是一个 G 的子群. 倘若还有 $G' \neq G$ 则称其为一个真子群¹.

 $^{^{1}}$ [1] 等文献把**平凡群** $\{e\}$ 也排在真子群的定义外.

Theorem 2.1. 非空的 G' 是群 $(G,\cdot,1)$ 的子群 $\leftrightarrow \forall x,y \in G'(xy^{-1} \in G')$.

Proof. 根据子群的定义, → 是显然的, 下给出 \leftarrow 的证明:

- SG1) $\forall x \in G'(xx^{-1} = 1 \in G);$
- SG2) $\forall x, y \in G', x1^{-1}1y^{-1^{-1}} = xy \in G';$
- SG3) $\forall x \in G', 1x^{-1} = x^{-1} \in G'.$

这里将不加证明地给出:

Lemma 1. # G 的子群族 $\mathcal{H} = \{H \mid H \not\in G \text{ 的子群}\}$ 的交 $\cap \mathcal{H}$ 也是 G 的子群.

设 G 有子集 S , 我们说群 $(G,\cdot,1)$ 是由 S 生成的, 意思是说 G 没有包含 S 的真子群. 记为 $G=\langle S \rangle$.

Theorem 2.2.
$$\langle S \rangle = \left\{ \prod_{i=0}^{n-1} s_i \middle| \forall i \in n (s_i \in S \vee s_i^{-1} \in S) \right\}.$$

Proof. 根据群的定义, 形如 $\prod_{i=0}^{n-1} s_i$ 的将构成一个群. 如果存在一个不能写成这种形式的元素, 那么它们将构成一个真子群, 这和 $\langle S \rangle$ 的定义相违背.

我们把半群的公式 (1-4) 推广到整数次幂, 证明在此忽略了.

Theorem 2.3. $\forall g \in G, \ \forall n, m \in \mathbb{Z},$

$$g^m g^n = g^{m+n}, \quad (g^m)^n = g^{mn}.$$
 (2-1)

Definition 2.2 (循环群). 设 $(G,\cdot,1)$ 是一个乘法群, $\exists g_0 \in G$, 使得 $\forall g \in G$, $\exists n \in \mathbb{Z}$, $a^n = g$, 那么我们称它是一个循环群, g_0 是一个生成元 (generator), 并记作 $G = \langle g_0 \rangle$.

对于群 G 中任意元素 g, 我们称 $\operatorname{card}\langle g\rangle$ 为元 g 的**阶数**, 或称 g 为 n **阶元**. 而且它将满足:

Theorem 2.4. 任意群 G 中若有 $g \in \mathbb{Z}$ 阶元 g, 则 $\langle g \rangle = \{e, g, \dots, g^{q-1}\}$, 且:

$$g^n = e \leftrightarrow n = kq, \qquad n \in \mathbb{Z}.$$
 (2-2)

证明利用带余除法和定理 2.3, 证明是显然的. 从该定理, 我们可以论断: 循环群都是 Abelian 群.

Definition 2.3 (同构). 两个群 (G,*), (G',\circ) 如若满足: $\exists f: G \to G'$ s.t.

i)
$$\forall a, b \in G$$
, $f(a * b) = f(a) \circ f(b)$;

§2 群 5

ii) f 是双射,

则称 f 是一个同构映射或同构 (isomorphism), 并认为两个群是互相同构的 (isomorphic), 记为 $G \simeq G'$.

同构关系的自反性, 传递性和对称性是平凡的.

Theorem 2.5. 设群 $(G, *, 1), (G', \circ, 1')$ 被 f 见证同构, 那么 f(1) = 1'.

Proof.
$$\forall g' \in G'$$
, 记 $g := f^{-1}(g')$, 那么 $f(g) \circ f(1) = f(g*1) = g' = f(1*g) = f(1) \circ f(g)$. 从 而 $f(1) = 1'$.

Theorem 2.6. 设群 $(G, *, 1), (G', \circ, 1')$ 被 f 见证同构, 那么 $\forall g \in G, f(g^{-1}) = f(g)^{-1}$.

Proof.
$$f(g) \circ f(g^{-1}) = f(g * g^{-1}) = f(1) = 1' = f(g^{-1} * g) = f(g^{-1}) \circ f(g).$$

Theorem 2.7.

$$\operatorname{card}\langle g_0 \rangle = \operatorname{card}\langle g_0' \rangle \to \langle g_0 \rangle \simeq \langle g_0' \rangle$$
.

Proof. 倘若 $\operatorname{card}\langle g_0 \rangle = \infty$, 那么 $\not \exists n \in \mathbb{Z} - \{0\}$, s.t. $g_0^n = e$; 这意味着, 存在这样的双射 $f: \mathbb{Z} \to \langle g_0 \rangle$, 满足 $f(n) = g_0^n$, 见证了 $(\mathbb{Z}, +, 0) \simeq (\langle g_0 \rangle, *, e)$.

如果阶数是有限的, 只需令
$$f: g^k \to g'^k$$
, 其中 $k = 0, 1, \dots, \operatorname{card}\langle g_0 \rangle$.

Theorem 2.8 (*Cayley* 定理). 设 (G, *, e) 任意 n 阶有限群. $\exists H \subset S_0$ s.t. (H, \circ, id_X) 是 S_n 的子群且 $G \simeq H$.

Proof. 取 $H:=\{L_g\mid g\in G\}$, 其中 $L_g\colon G\to G; g'\mapsto gg'$ 可以证明是双射. 那么 $L\colon G\to H; g\mapsto L_g$ 见证了 $H\simeq G$.

若 φ : $G \to G$ 见证了 $G \simeq G$ (如 id_G), 那么称 φ 是群 G 的一个 **自同构** (automorphism). 所有自同构组成的集合 $\mathrm{Aut}(G)$ 和其上的函数复合。构成了 S(G) 的一个子群, 称为 G 的**自同构**.

自同构群有一特殊的子群 $Inn(G) := \{I_a : g \mapsto aga^{-1} \mid a \in G\}$, 称为**内自同构群** (inner isomorphism), 其元素称为**共轭映射** (conjugation).

Definition 2.4 (共轭). 设 G 是一个群, $a,b \in G$. 如果 $\exists I_g \in \text{Inn}(G)$, 使得 $I_g(a) = b$, 那么我们称 a 和 b 互为共轭 (conjugate).

我们毫不费力地就能证明共轭关系是等价关系, 而且当 G 是 Abelian 群的时候, 其任意元素的共轭都是其自身.

Definition 2.5 (共轭类). 设 G 是一个群. 由共轭规定的等价类称为**共轭类** (Conjugacy class), 记为 Cl(g), g 为其代表元. 称 $card\{Cl(g) \mid g \in G\}$ 为 G 的**类数** (class number). 如果有一个函数 f 满足 $g' \in Cl(g) \to f(g) = g(g')$, 那么称 f 是一个 **类函数** (class function).

Definition 2.6 (正规子群). 设 G 是一个群, N 是其子群. 倘若 $\forall I \in \text{Inn}(G), I(N) = N$, 即 其在共轭映射下不变, 则称其为 G 的一个正规子群 (normal subgroup), 记为 $N \triangleleft G$.

可以看出 Abelian 群的所有子群都是正规子群. 以下是正规子群的另一种定义方法:

Theorem 2.9.

$$N \triangleleft G \leftrightarrow \forall g, h \in G (gh \in N \leftrightarrow hg \in N).$$

Proof. 只需注意到 $I_g(gh) = g^{-1}ghg = hg$.

Definition 2.7 (同态). 设有群 (G, *, e) 和 (G', \circ, e') , 映射 $f: G \to G'$ 若满足

$$\forall a, b \in G, \quad f(a * b) = f(a) \circ f(b),$$

则称其为群 (G,*) 到群 (G',\circ) 的一个同态 (homomorphism), 也叫态射 (morphism). 类似映射, 可定义单态射 (monomorphism), 满态射 (epimorphism).

集合 $\ker f := f^{-1}(\{e'\})$ 叫做同态 f 的核 (kernel). 群到自身的同态映射称为**自同态** (endomorphism).

同态 f 的核是 G 的正规子群, 即 ker $f \triangleleft G$, 而 G 在同态下的像是 G' 的子群.

Theorem 2.10. 如果同态的核是平凡群 (即, $\ker f = \{e\}$), 那么这个同态是单的.

Proof. 如果 $\exists g_1, g_2 \in G$, s.t. $f(g_1) = f(g_2)$, 那么

$$f(g_1 * g_2^{-1}) = f(g_1) \circ f(g_2^{-1}) = f(g_1) \circ f(g_2)^{-1} \circ f(g_2) \circ f(g_2^{-1}) = e' \circ f(e) = e'$$

从而 $g_1 * g_2^{-1} \in \ker f$, 同理 $g_2^{-1} * g_1 \in \ker f$, 即 $g_1^{-1} = g_2^{-1}$ 或 $g_1 = g_2$, 即: f 是单的.

作为例子, 映射

$$f: G \to \operatorname{Inn}(G); g \mapsto I_g$$

满足同构的条件 i), 因 $f(a) \circ f(b) = I_{ab} = f(ab)$; 但它不一定是双射, 因而是一个同态.

Definition 2.8 (陪集). 设 (G, *, e) 是一个群, S 是其子群, $g \in G$, 那么我们称 $g * S := \{g * s \mid s \in S\}$ 为 S 在 G 内的**左陪集** (left coset); 同理 $S * g := \{s * g \mid s \in S\}$ 为 S 在 G 内的**右陪集** (right coset). 这里我们称 g 是一个代表元. 如果 g * S = S * g, 则称其为**陪集**.

§3 环

Theorem 2.11.

$$N \triangleleft G \ \leftrightarrow \ \forall g \in G, \ g*N = N*g.$$

Definition 2.9 (商群). 如果 $N \triangleleft G$, 那么我们记 $G/N := \{g * N \mid g \in G\}$, 称为 G 对 N 的**商** 群. 这个群的乘法定义为子群元素的积的集合:

$$(g * N) \cdot (g' * N) := \{s * t \mid s \in g * N, t \in g; *N\} = (g * g') * N$$

,单位元是 e*N=N 自身.

§**3** 环

Definition 3.1 (环). 集合 R 非空, 其上定义了加法 + 和乘法 ·, 且满足:

- R1) (R, +, 0) 是 Abelian 群;
- R2) (R,·) 是半群;
- R3) 乘法对加法有分配律:

$$(a+b)c = ac + bc,$$
 $c(a+b) = ca + cb$

对 $\forall a, b, c \in R$ 成立.

那么, 我们称 $(R, +, \cdot)$ 是一个**环** $(\text{ring})^2$. 而且唤 (R, +) 作其加法群, 称 (R, \cdot) 为其乘法半群. 倘若 (R, \cdot) 还有单位元 1, 那么我们称 $(R, +, \cdot)$ 为有单位元的环.

若环 R 非空的子集 L 满足

$$\forall x, y \in L(x - y \in L \land xy \in L)$$
,

则称 $L \in R$ 的一个子环.

若环的乘法半群是交换的,则称这个环是一个交换环.

作为例子, $(\mathbb{Z}, +, \cdot)$ 是我们熟悉的**整数环**, $n\mathbb{Z} := \{nk \mid k \in \mathbb{Z}\}$ 是它的一个子环 $(n \in \mathbb{Z})$. 交换环 R 上的所有 n 阶方阵之集合 $M_n(R)$ 也是环.

Definition 3.2 (同态). 设 R 和 R' 是两个环, 有一个映射 f 对加法群和乘法半群都是同态 (保持运算), 即:

$$f(x)f(y) = f(xy), \quad f(x) + f(y) = f(x+y),$$

那么, 我们称其为 R 到 R' 的一个**同态**或**态射**, 集合 $\ker f := \{a \in R \mid f(a) = 0\}$ 称为同态的 **核**. 同态 f 的核是 R 的子环. 类似地我们也有**单同态**, 满**同态**和**同构**的概念. 两个环同构记为 $R \cong R'$.

 $^{^{2}}$ 如果 (R,\cdot) 不结合, 通常称**非结合环**.

设 $(R, +, \cdot)$ 是环, X 是一个集合, 在 R^X 上定义加法和乘法:

$$f + g: x \mapsto f(x) + g(x); \qquad fg: x \mapsto f(x)g(x),$$

就得到了**函数环** $(R^X, +, \cdot)$, 其零元是 $0_X : x \mapsto 0$. 如果 R 有单位元 1, 那么 R^X 也有单位元 $1_X : x \mapsto 1, \forall x \in X$.

作为例子,考虑到将 $[k]_n \in \mathbb{Z}/\equiv \operatorname{mod} n$ 映射到 $n^{\mathbb{Z}} \ni \operatorname{mod} n := \{(m,k) \in \mathbb{Z} \times m \mid n \equiv k \operatorname{mod} n\}$ 的同构,模 n 的剩余类环 $(\mathbb{Z}_n, +, \cdot)$ 即可看作函数环 $n^{\mathbb{Z}}$ 的一个交换子环,其中 $\mathbb{Z}_n := \{[k]_n \mid k \in n\}$. 同构关系让我们也能用剩余类的代表元组成的集合 n 代替剩余类本身进行运算,这种情况下,n 称为模 n 的剩余类的导出集,我们能用加法表和乘法表给出它的代数结构.

Definition 3.3 (整环). 环 R 中, $a \in R$, 如果 $\exists b \in R - \{0\}$ s.t. ab = 0, 则称 a 为环 R 的一个零因子; 类似则可定义右零因子³. 左零因子和右零因子统称零因子. 零元 0 则称为平凡零因子.

若非平凡的交换环 R 带单位元 $1 \neq 0$, 且没有非平凡零因子, 则称 R 是一个**整环** (entire ring 或 integral domain).

也有将无非平凡左零因子的带单位的非平凡环称为 domain 的.

Theorem 3.1 (消去律). 设 R 是带单位元 $1 \neq 0$ 的交换环. 环 R 是整环 $\leftrightarrow \forall x, y, c \in R$, $cx = cy \land c \neq 0 \rightarrow x = y$.

Proof. 如果 R 满足消去律, 那么 ab = 0 = 0b = a0 将给出 $a = 0 \lor b = 0$ 的论断; 如果 R 是整环, 那么 cx = cy 即 c(x - y) = 0 将得出 $c = 0 \lor x = y$; 倘若 $c \ne 0$, 那么这就是消去律.

有单位元的环 R 中元素 x 的可逆性往往指关于乘法的可逆性.

Theorem 3.2. 设 R 是带单位元 1 的环, $U(R) := \{x \in R \mid x \text{ 可逆}\}$ 是一个乘法群.

Proof. 单位元 1 当然可逆. 由定义可逆元素的逆也是可逆的. 如果 $x,y \in R$ 可逆, 那么

$$(xy)(y^{-1}x^{-1}) = x(yy^{-1})x^{-1} = xx^{-1} = 1 = y^{-1}x^{-1}xy = (xy)^{-1}(xy),$$

即 *xy* 可逆.

如果 $U(R) = R - \{0\}$, 那么我们称 R 是一个除环 (division ring), 也称斜域或反对称域 (skew field). 除环没有零因子.

³[1] 中把 0 排除在外了.

§4 域

交换除环 F 称为域 (field)⁴. 群 $P^* = U(P)$ 称为域的乘法群. 如果 $y \neq 0$, 那么我们通常 记 $x/y = \frac{x}{y} := xy^{-1}$.

我们可类似环, 定义同构和自同构. 同态的意义不大, 因为如果 F 到 F' 的同态 f 的核 $\ker f \neq \{0\}$, 那么 $\ker f = F$. 如果 F' 是域 F 的子环, 而且也是一个域, 则称其为 F 的一个子域, 反之称 F 为 F' 的一个**扩**域.

类似群的生成, 包含 $F \cup \{a\}$ 的最小 F 的扩域, 记为 F(a). 如有理数域 \mathbb{Q} 的扩域 $\mathbb{Q}(\sqrt{2})$.

Theorem 4.1. 有限剩余类环 \mathbb{Z}_p 是域, 当且仅当 p 是素数.

Proof. 记 \mathbb{Z}_p 的元素为 [0], [1], ..., [p-1]. 由素数的定义, $\forall [k] \in \mathbb{Z}_p^* := \mathbb{Z}_p - \{[0]\}$,

$$[k], [2k], \cdots, [(p-1)k]$$

都不为 [0], 而且两两不等. 进而, $\exists i \in \mathbb{N}_+$ s.t. $i . 又 <math>\mathbb{Z}_p$ 是交换环, 可知这个 $[i] = [k]^{-1}$, 即 \mathbb{Z}_p 的乘法组成一个群.

出于 \mathbb{Z}_p 的这个性质, 我们也记其为 \mathbb{F}_p 或 $\mathrm{GF}(p)$. 值得一提的是, p^n 元有限域 $\mathrm{GF}(p^n)$ 也是存在的.

Corollary 1 (*Fermat* 小定理). 设 p 是素数, $a \in \mathbb{N}$ 且 $a \nmid p$.

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof. 当 $[k] \in \mathbb{Z}_p^*$ 时, $I_{[k]} \colon \mathbb{Z}_p^* \to \mathbb{Z}_p^*$; $[n] \mapsto [kn]$ 如定理 4.1 是 $S(\mathbb{Z}_p^*)$ 的元素. 从而:

$$\left(\prod_{k=1}^{p-1} [k]\right) [a]^{p-1} = \prod_{k=1}^{p-1} [k].$$

因为域都是整环, 满足消去律 3.1, 从而 $[a]^{p-1} = [1]$.

Definition 4.1 (素域). 若域 P 不含任何非平凡真子域,则称其为**素域** (prime field).

Lemma 2. \mathbb{Q} 和 \mathbb{Z}_p 是素域.

Proof. 让集合 $\{0,1\}$ 对加法, 减法, 乘法和除法封闭, 我们将得到 \mathbb{Q} 或 \mathbb{Z}_p 的导出集 p, 取决于 1 在加法群中的阶数.

 $^{^4}$ 作为总结:域上定义了加法和乘法,加法是 Abelian 群,乘法是 Abelian 幺半群,而且零元以外的元素都关于乘法可逆,最后,乘法对加法有分配律.

Theorem 4.2. 任意非平凡域 F 必含且只含一个素子域 P, 而且它将同构于 $\mathbb Q$ 或 $\mathbb Z_p$, 其中 p 是素数.

Proof. 若有两个素子域,它们的交必然也是 F 的子域,根据素域的定义,这个交不可能是真子域,从而这两个素域相等. 这就保证了,如果存在这么一个素子域 P,它一定是唯一的. 接下来我们研究它的存在性.

定义 \mathbb{Z} 到 F 的同态 f(n) = ne, 其中 e 是 F 的单位元. 其核为 $\ker f = m\mathbb{Z}$, 其中 $m \in \mathbb{N}$. 如果 m = 0, 那么 $ne \neq o$, 其中 o 是 F 的零元, 只要 $n \neq 0$. 考虑 f 在 \mathbb{Q} 上的扩张, 可以证明 $P := f(\mathbb{Q}) = \{ne \mid n \in \mathbb{Z}\}$ 即构成了与 \mathbb{Q} 同构的素子域.

如果 $m \neq 0$, 那么 m = p 是素数. 如果 m 不是素数, 假设它有两个 (m 和 1 以外的) 因数 a,b,abe = o 意味着 ae = o 或 be = o (定理 3.1), 将与 $\ker f = m\mathbb{Z}$ 矛盾. 考虑 f 在 p (作为 \mathbb{Z}_p 的导出集) 上的限制, $P := \{o,e,2e,\cdots,(p-1)e\}$ 即构成了与 \mathbb{Z}_p 同构的素子域.

在刚才的证明中, 我们已经遭遇了:

Definition 4.2 (特征). 设域 F 的单位元和零元分别是 e, o. 若存在 $p \in \mathbb{N}$ 使得 pe = o, 则称 p 为域的**特征** (characteristic), 记为 $\operatorname{char}(F) = p$; 特别地, 定义 $\operatorname{char}(F) = 0$, 如果不存在这样的 p.

第二章 线性空间

§5 线性空间

Definition 5.1 (线性空间). 设 \mathbb{F} 是一个域, $(V, +, \mathbf{0})$ 是一个 Abelian 群. 如果定义标量乘积运算: $\mathbb{F} \times V \to V$; $(\lambda, \boldsymbol{x}) \mapsto \lambda \boldsymbol{x}$ 且满足:

- 1) $1x = x, \forall x \in V$ (酉性);
- 2) $(\alpha\beta)\boldsymbol{x} = \alpha(\beta\boldsymbol{x}), \forall \alpha, \beta \in \mathbb{F}, \forall \boldsymbol{x} \in V;$
- 3) $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}, \forall \alpha, \beta \in \mathbb{F}, \forall \mathbf{x} \in V;$
- 4) $\lambda(\mathbf{x} + \mathbf{y}) = \lambda \mathbf{x} + \lambda \mathbf{y}$,

那么, 我们称 $V \in \mathbb{F}$ 上的一个**线性空间**, 或称**向量空间**, 其元素称为**向量**, 相对而言 \mathbb{F} 的元素则被称为**纯量**.

通常我们称 $(x_i)_{i \in I}$ 为向量组, I 是指标集.

Definition 5.2 (线性组合). 设 $V \in \mathbb{F}$ 上的线性空间. 倘若 $\forall i \in n, \lambda_i \in \mathbb{F}, x_i \in V, n$ 是正整数, 那么

$$\sum_{i \in \mathcal{I}} \lambda_i oldsymbol{x}_i$$

称为向量组 $(x_i)_{i \in n}$ 的一个系数为 $(\lambda_i)_{i \in n}$ 的线性组合, $i \in n$.

可数向量甚至不可数个向量之和的研究,将在泛函分析中得到更加细致的讨论.

Definition 5.3 (线性包络). 设 V 是 \mathbb{F} 上的线性空间, $(\boldsymbol{x}_i)_{i \in n}$ 是其中的一个向量组, n 是正整数. 其**线性包络** (linear span) 定义为

$$\langle oldsymbol{x}_i
angle_{i \in n} = \left\{ \sum_{i \in n} \lambda_i oldsymbol{x}_i \middle| (\lambda_i)_{i \in n} \in \mathbb{F}^n
ight\} \,.$$

或者, 设 $M \subset V$, 那么其线性包络定义为

$$\langle M \rangle = \left\{ \sum_{i \in n} \lambda_i \boldsymbol{x}_i \middle| n \in \mathbb{N}, \, \forall i \in n (\lambda_i \in \mathbb{F} \, \wedge \, \boldsymbol{x}_i \in M) \right\} \, .$$

12 第二章 线性空间

Definition 5.4 (子空间). 设 V' 是 \mathbb{F} 上的线性空间 V 的加法子群, 且对标量乘积封闭, i.e. $\forall x \in V', \forall \lambda \in \mathbb{F}, \lambda x \in V',$ 那么, 我们称 V' 是 V 的一个 (线性) **子空间**.

显然 $\langle M \rangle$ 对 $\forall M \in 2^V$ 都是 V 的子空间 (而且是包含 M 的最小的那个), 从而我们也说这种情况下 $\langle M \rangle$ 是 M 张出 (span) 或生成的线性空间.

Definition 5.5 (线性相关). 设 $V \in \mathbb{F}$ 上的线性空间, 其中有线性组 $(\boldsymbol{x}_i)_{i \in n}$. 若 $\exists (\alpha_i)_{i \in n} \in \mathbb{F}^n$ s.t. $\exists i \in n (\alpha_i \neq 0)$ 且

$$\sum_{i \in n} \alpha_i \boldsymbol{x}_i = \boldsymbol{0} \,,$$

那么称向量组 $(x_i)_{i \in n}$ 是线性相关的. 反之则称它们线性无关或线性独立.

Theorem 5.1. 向量组 $(x_i)_{i \in n}$ 是线性相关的, 当且仅当 $\exists i \in n \ s.t.$

$$\exists (\beta_j)_{j \in n-\{i\}} \in 2^{\mathbb{F}} \quad s.t. \quad \boldsymbol{x}_i = \sum_{j \in n-\{i\}} \beta_j \boldsymbol{x}_j.$$

Proof. 证明此定理只需取 i 使得见证线性相关的线性组合中 x_i 的系数不为 0 即可.

Definition 5.6 (维数). 设 $V \in \mathbb{F}$ 上的线性空间. 若 $\exists n \in \mathbb{N}$, 满足

$$n = \max\{r \mid \exists (x_i)_{i \in r} \text{ s.t. } 它们是线性独立的)\},$$

那么称 $n \in V$ 的**维数**, 记为 $\dim V = n$, $V \in n$ **维线性空间**. 倘若不存在这样的 n, 则 $V \in \mathcal{T}$ **穷维线性空间**.

特别地, $\dim\{\mathbf{0}\} = 0$.

Definition 5.7 (基底). 设 $V \in \mathbb{F}$ 上的 n 线性空间, $(\hat{e}_i)_{i \in n}$ 倘若线性无关, 则称其为 V 的一组基底. 特别地, 如果 $\dim V = 0$, 空集 \varnothing 是它的一组基底.

因为基底的顺序并不重要, 有时我们也有基底向量的集合 $\{\hat{e}_i\}_{i \in n}$ 表示它.

Theorem 5.2 (唯一分解). 设 $V \in \mathbb{F}$ 上的 n 线性空间, $(\hat{e}_i)_{i \in n}$ 是其一组基底. 那么 $\forall v \in V$, $\exists ! (v_i)_{i \in n}$ (称为 v 在基底 $(\hat{e}_i)_{i \in n}$ 下的坐标), s.t.

$$\boldsymbol{v} = \sum_{i \in n} v_i \hat{\boldsymbol{e}}_i.$$

Proof. 唯一性只需要假定有两组分解, 相减并利用基底的线性独立性即可证明. 下面只证存在性: 根据维数的定义, $(\boldsymbol{v}, \hat{\boldsymbol{e}}_0, \cdots, \hat{\boldsymbol{e}}_{n-1})$ 线性相关, 从而 $\exists \alpha \in \mathbb{F} \exists (\alpha_i)_{i \in n} \in \mathbb{F}^n \text{ s.t. } (\alpha, \alpha_0, \cdots, \alpha_{n-1})$ 不全为 0 且

$$\alpha \mathbf{v} + \sum_{i \in n} \alpha_i \hat{\mathbf{e}}_i = \mathbf{0} \,,$$

§5 线性空间 13

考虑到基底的线性独立性, $\alpha \neq 0$, 由域的可逆性, 我们得出了一组线性组合系数 $(-\alpha_i/\alpha)_{i \in n}$.

根据这个定理, 我们断言线性空间 V 的基底 $(\hat{e}_i)_{i \in n}$ 张出 V 本身, i.e. $V = \langle \hat{e}_i \rangle_{i \in n}$ 若 v 在基底 $\hat{e} = (\hat{e}_i)_{i \in n}$ 下的坐标为 $(v_i)_{i \in n}$, 记之为 $v|_{\hat{e}}$.

Corollary 2. 设 V' 是 V 的子空间. 如果 $V' \subseteq V$, 那么 $\dim V' < \dim V$.

Corollary 3. 如果线性无关的向量组 $(e_i)_{i \in n}$ 满足 $\forall j \in n, e_i \in \langle f_i \rangle_{i \in m}$, 那么 $n \leq m$.

我们称一个向量组中, 如果存在 r 个线性无关的向量, 且所有 r+1 个向量都线性相关, 则我们称 r 为向量组的**秩** (rank), 而那 r 个线性无关的向量是**最大线性无关组**. 我们接下来证明这样的最大线性无关组总是存在, 而且其个数等于向量组张出的线性空间之维数:

Theorem 5.3. 设 $(x_i)_{i \in m}$ 是线性空间 V 的向量组.

$$\dim \langle \boldsymbol{x}_j \rangle_{j \in m} = r \ \leftrightarrow \ \exists \{\boldsymbol{x}_{j_k}\}_{k \in r} \in 2^{\{\boldsymbol{x}_j\}_{j \in m}} \left((\boldsymbol{x}_{j_k})_{k \in r} \ \text{ \mathcal{L} \mathbb{R} \mathcal{L} \mathbb{K} \mathbb{K} \mathbb{K} \mathbb{M} }\right).$$

Proof. 由维数的定义, r + 1 个线性无关的向量将不可能张出维数为 r 的线性空间. 倘若不存在 r 个线性无关向量, 在 $\langle x_j \rangle_{j \in m}$ 中取出一组基底共 r 个线性无关的向量, 这是违背推论 3 的. 因而, 最大线性无关组总是存在, 而且其个数等于向量组张出的线性空间之维数.

Theorem 5.4 (Steintz 替换). 设 $V \in \mathbb{F}$ 上的 n 线性空间, $(\hat{e}_i)_{i \in n}$ 是其一组基底. 任意线性 无关组 $(\hat{f}_i)_{i \in s}$, 都可从基底中取出 $(\hat{e}_{i_k})_{i_k \in n, k \in t}$ 使得

$$(\hat{m{f}}_0,\cdots,\hat{m{f}}_{s-1},\hat{m{e}}_{i_0},\cdots,\hat{m{e}}_{i_{t-1}})$$

是V的一组基底.

Proof. 取 i_0 使得 $\hat{e}_{i_0} \notin \langle \hat{f}_i \rangle_{i \in s}$;接着取 i_{k+1} 使得 $\hat{e}_{i_{k+1}} \notin \langle \hat{f}_0, \cdots, \hat{f}_{s-1}, \hat{e}_{i_k} \rangle$,直到不能进行下去,剩下的基底全部都可由前面的向量组线性表出,令此时 k = t-1.从而: V 中任何向量都可由基底 $(\hat{e}_i)_{i \in n}$ 表出,从而也就可以由 $(\hat{f}_0, \cdots, \hat{f}_{s-1}, \hat{e}_{i_0}, \cdots, \hat{e}_{i_{t-1}})$ 表出,从而 $s+t \geq n$.另一方面,不难通过归纳得知, $(\hat{f}_0, \cdots, \hat{f}_{s-1}, \hat{e}_{i_0}, \cdots, \hat{e}_{i_{t-1}})$ 是线性无关的,由维数的定义,我们断言 $t+s \leq n$.即 t+s=n,我们已然得到 V 的一组基底了.

设 \mathbb{F} 上的 n 维线性空间有两组基底 $\hat{e} = (\hat{e}_i)_{i \in n}, \hat{f} = (\hat{f}_i)_{i \in n},$ 考虑定理 5.2, 我们写出:

$$\hat{\boldsymbol{f}}_i = \sum_{j \in n} a_{ji} \hat{\boldsymbol{e}}_j , \qquad \forall i \in n .$$
 (5-1)

这里的 a_{ii} 决定了矩阵

$$\mathbf{A} = (a_{ij})_{i,j \in n} = \begin{pmatrix} a_{00} & a_{01} & \cdots & a_{0,n-1} \\ a_{10} & a_{11} & \cdots & a_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1,0} & a_{n-1,1} & \cdots & a_{n-1,n-1} \end{pmatrix} . \tag{5-2}$$

矩阵 (5-2) 被称为 \hat{e} 到 \hat{f} 的一个**转换矩阵**. 值得注意的是下标的位置 (这与有限维向量空间的线性映射的矩阵差了一个转置, 见 §9). 让我们引入矩阵和与积的概念¹, 用 \hat{f} 把 \hat{e} 表出, 就可以得到转换矩阵的逆 A^{-1} . 这两个矩阵之间的关系是 $AA^{-1} = A^{-1}A = I$.

设 $\boldsymbol{v} \in V$,

$$oldsymbol{v} = \sum_{i \in n} v_i \hat{oldsymbol{e}}_i = \sum_{i \in n} v_i' \hat{oldsymbol{f}}_i = \sum_{i \in n} v_i' \sum_{j \in n} a_{ji} \hat{oldsymbol{e}}_j$$

那么,

$$|oldsymbol{v}|_{\hat{e}} = \left(\sum_{j \in n} a_{ij} v_j'\right)_{i \in n}$$

或 $\boldsymbol{v}|_{\hat{e}} = \boldsymbol{A} \boldsymbol{v}|_{\hat{f}}$. 同理 $\boldsymbol{v}|_{\hat{f}} = \boldsymbol{A}^{-1} \boldsymbol{v}|_{\hat{e}}$.

Definition 5.8 (同构). 如果 \mathbb{F} 上的线性空间 V, W 之间存在 $f: V \to W$ s.t.

- 1) f 是双射;
- 2) $\forall \alpha, \beta \in \mathbb{F}, \forall \boldsymbol{u}, \boldsymbol{v} \in V, f(\alpha \boldsymbol{v} + \beta \boldsymbol{u}) = \alpha f(\boldsymbol{v}) + \beta f(\boldsymbol{u}),$

那么, 两个线性空间被认为是同构的.

我们指出同构关系具有等价关系的性质, 并且将基底映射到基底, 并保持维数, 这里不再一一验证了. 类似地, 我们建立线性空间**同态**的概念, 即保持线性结构的映射, 双同态即是同构. 线性空间 V 到 U 的同态集记作 $\mathcal{L}(V,U)$.

Theorem 5.5. 所有 \mathbb{F} 上的 n 维线性空间都同构于 (坐标空间) \mathbb{F}^n .

Proof. 任取 \mathbb{F} 上的 n 维线性空间 V 中的向量 \mathbf{v} 和一组基底 \hat{e} , 向量 \mathbf{v} 到它的坐标 $\mathbf{v}|_{\hat{e}} \in \mathbb{F}^n$ 都是一个同构.

线性空间的交依然是线性空间, 但是它们的并却不一定.

Definition 5.9 (子空间的和). 设 $\forall i \in m, U_i$ 都是 V 的子空间, 定义²

$$\sum_{i \in m} U_i := \left\langle \bigcup_{i \in m} U_i \right\rangle = \left\{ \sum_{i \in m} \boldsymbol{u}_i \middle| (\boldsymbol{u}_i)_{i \in m} \in \prod_{i \in m} U_i \right\}$$

¹本笔记不想再重复了,请参见任意一本初等线性代数教材,或[1].

²这里不用 + 表示集合的并.

§5 线性空间 15

为 U 和 W 的和. 若 $\forall i \in m, U_i \cap \sum_{j \in m; j \neq i} U_i = \{\mathbf{0}\}$, 那么记 $\bigoplus_{i \in m} U_i := \sum_{i \in m} U_i$, 称为**直和**.

Theorem 5.6 (Grassmann 恒等式).

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W).$$

Proof. 设 dim $(U \cap W) = m$, 有基底 $\hat{e} = (\hat{e}_i)_{i \in m}$, dim U = k, dim $W = \ell$. 由定理, dim U = 0 取基底 $(\hat{e}_0, \dots \hat{e}_{m-1}; \hat{f}_0, \dots, \hat{f}_{k-m-1})$, dim U = 0 可取基底 $(\hat{e}_0, \dots \hat{e}_{m-1}; \hat{g}_0, \dots, \hat{g}_{\ell-m-1})$, 那么

$$U+W=\langle \hat{\boldsymbol{e}}_0,\cdots \hat{\boldsymbol{e}}_{m-1};\ \hat{\boldsymbol{f}}_0,\cdots,\hat{\boldsymbol{f}}_{k-m-1};\ \hat{\boldsymbol{g}}_0,\cdots,\hat{\boldsymbol{g}}_{\ell-m-1}\rangle.$$

接下来我们证明向量组

$$\hat{e}_0, \dots \hat{e}_{m-1}; \ \hat{f}_0, \dots, \hat{f}_{k-m-1}; \ \hat{g}_0, \dots, \hat{g}_{\ell-m-1}$$

线性独立. 若存在非平凡的线性组合:

$$\sum_{s \in m} arepsilon_s \hat{m{e}}_s + \sum_{i \in k-m} arphi_i \hat{m{f}}_i + \sum_{j \in \ell-m} \gamma_j \hat{m{g}}_j = m{0} \,,$$

但是前两项是 U 中的元素, 第三项是 W 中的元素, 这将说明它们都属于 $U \cap W$, 这意味着第三项可用 \hat{e} 表出, 这是一个矛盾.

Corollary 4. $U = \sum_{i \in m} U_i$ 是直和, 当且仅当:

$$\dim U = \sum_{i \in m} \dim U_i.$$

Proof. 利用 Grassmann 恒等式 5.6 和数学归纳法易证.

Theorem 5.7 (向量在直和上分解的唯一性). 设 $U = \sum_{i \in m} U_i$. $U = \sum_{i \in m} U_i$ 还是直和,当且仅当:

$$\forall u \in U \exists ! (u_i)_{i \in m} \in \prod_{i \in m} U_i \left(u = \sum_{i \in m} u_i \right).$$

Proof. ←: 假设 ∃ $u \in U$ s.t. ∃ $i, j \in m(i \neq j \land u \in U_i \cap U_j)$, 那么 u_0 在其上的分解式不唯一: u_i 和 u_j 可以其中一个取 u, 另一个取 0.

 \rightarrow : 这相当于证明 $\sum_{i \in m} \mathbf{u}_i = \mathbf{0} \rightarrow \forall i \in m(\mathbf{u}_i = \mathbf{0})$, 其逆否命题的成立, 只需要将非零项移至另一侧并用直和的定义即可验证.

Theorem 5.8. 域 \mathbb{F} 上的 n 维线性空间 V 的任意 m 维线性子空间 U, 都能找到 V 的线性子空间 W 使得 $V = U \oplus W$ (称 V 和 W 是互补的子空间).

16 第二章 线性空间

Proof. 证明用 Steintz 替换 5.4 即可.

 $\ \overrightarrow{U} \operatorname{codim} U = \dim V - \dim U.$

当 $L \in V$ 的一个子空间时, 我们记线性空间作为加法群的陪集 $x + L := \{x + y \mid y \in L\}$, 并记其代表元为. 考虑到线性空间作为加法群是 Abelian 群, 其所有子群 (子空间蕴含了加法子群) 都是正规子群, 从而:

Definition 5.10 (商空间). 域 \mathbb{F} 上的线性空间 V 有子空间 L, 记线性空间作为加法群的商群 V/L, 并在 $\mathbb{F} \times V/L$ 上定义标量乘法:

$$\alpha(\boldsymbol{x} + L) := \alpha \boldsymbol{x} + L,$$

那么称 V/L 是一个**商空间**. 不难验证商空间是一个线性空间.

我们记商空间上的同余等价类:

$$x \equiv x' \mod L \leftrightarrow x - x' \in L$$
.

Theorem 5.9. 设 V 的子空间 U 和 W 互余, 那么

$$f: W \to V/U; \ \boldsymbol{w} \mapsto \boldsymbol{w} + U$$

见证了 W 和 V/U 的同构.

Proof. 映射 f 对线性结构的保持是平凡的.

设 $v + U \in V/U$. 因为 $V \oplus U + W$, $\exists u \in U$, $\exists w \in W$ s.t. v = u + w. 从而

$$v + U = (u + w) + U = (x + U) + (w + U) = U + (w + U) = w + U = f(w)$$

所以 f 是满的. 满射 f 的单性由

$$\ker f = \{ w \in W \mid f(w) = U \} = \{ w \in W \mid w \in U \} = W \cap U = \{ \mathbf{0} \}$$

保证.

§6 对偶空间

Definition 6.1 (线性型). 设 V 是一个域 \mathbb{F} 上的线性空间. 同态 $f: V \to \mathbb{F}$ 被称为 V 上的一个线性型 (linear form). 在不同的情景, 它也可能被称作**线性泛函** (linear functional), **线性函数**等.

§6 对偶空间 17

作为 n 维有限维空间的例子, 设有线性型 ℓ , 它作用于 $x \in V$ 时, 设基底为 \hat{e} , 那么:

$$\ell \colon \boldsymbol{x} \mapsto \boldsymbol{\ell}|_{\hat{a}} \boldsymbol{x}|_{\hat{a}}$$

其中 $\ell|_{\hat{e}}$ 是 $1 \times n$ 的行向量. 坐标变换到 \hat{f} 时, 设转换矩阵是 P, 那么:

$$|oldsymbol{\ell}|_{\hat{e}}|oldsymbol{x}|_{\hat{e}} = |oldsymbol{\ell}|_{\hat{e}}|oldsymbol{P}|oldsymbol{x}|_{\hat{f}} = |oldsymbol{\ell}|_{\hat{f}}|oldsymbol{x}|_{\hat{f}}|_{\hat{f}}$$

即:

$$\ell|_{\hat{f}} = P \; \ell|_{\hat{e}} \; . \tag{6-1}$$

定义线性型的线性组合 $\alpha f + \beta g$ 为:

$$(\alpha f + \beta g)(\mathbf{x}) := \alpha f(\mathbf{x}) + \beta g(\mathbf{x}), \quad \forall \mathbf{x} \in V \forall \alpha, \beta \in \mathbb{F}.$$

如此我们注意到 V 上所有的线性型构成了一个线性空间, 其中零元是 $0_V: x \mapsto 0$.

Definition 6.2 (对偶空间). 线性空间 V 上所有的线性型构成线性空间 V^* , 称为 V 的对偶空间 (dual space), 线性组合和零元已定义如前. 通常对偶空间的元素可称为余向量 (covector), 或共变向量 (covariant vector, 与此同时, V 的元素对应地称为反变向量, contravariant vector).

为区别两种向量,有用 x^i 表示反变向量而用 ℓ_i 表示共变向量,并引入 Einstein 求和约定的,见之后第五章.

我们继续以 n 维线性空间为例子. 设 V 中有基底 $\hat{e} = (\hat{e}_i)_{i \in n}$, 取 V^* 的基底 $\hat{e}^* := (\hat{e}_i^*)_{i \in n}$, 使得 $\hat{e}_i^*(\hat{e}_i) = \delta_{ij}$, 其中 δ_{ij} 是 Kronecker 符号, 当且仅当 i = j 时取值为 1, 否则为 0.

不难证明它们是线性独立的,而且能线性表示所有余向量.这组基底称为**对偶基底**.而且 作为推论:

Theorem 6.1. 设 V 是有限维线性空间, 那么

$$\dim V^* = \dim V.$$

考虑到 $V^{**} := (V^*)^*$ 和 V 的维数也当相同, 它们之间应该存在同构关系. 这个同构有一个自然的构造:

Theorem 6.2 (自然同构). 设 $V \in \mathbb{R}$ 维线性空间, 映射 $\varepsilon: V \to V^{**}$ 定义如下:

$$x \mapsto \varepsilon_x ; \quad \varepsilon_x \colon V^* \to \mathbb{F} ; f \mapsto f(x) .$$

映射 ε 是一个同构.

Proof. 事实 ε ∈ $\mathcal{L}(V, V^{**})$ 的验证是枯燥的. 这里我们只证明它是个双射:

选取
$$V$$
 的基底 $\hat{e} = (\hat{e}_i)_{i \in n}$,就能立马得出结论 $\hat{\varepsilon} = (\varepsilon_{\hat{e}_i})_{i \in n}$ 是 V^{**} 的基底.

这个同构被称为**自然同构**, 这样得到的 $\hat{e}^* = (e_i^*)_{i \in n}$ 被称为 \hat{e} 的**对偶基底**.

Lemma 3. 设 L 是 n 维线性空间 V 的子空间, $\hat{f} := (f_i)_{i \in n}$ 是对偶空间 V^* 的一组基底. 倘若 $(f_i|_L)_{i \in n}$ 表示基底各自在 L 上的限制, 那么 $L^* = \langle f_i|_L \rangle_{i \in n}$.

Proof. 首先, 显然 $\langle f_i|_L \rangle_{i \in n} \subseteq L^*$. 设 $r := \dim L$, $\hat{e} := (\hat{e}_i)_{i \in r}$ 是 L 的基底. 由定理 5.4, 将其扩充至 V 的基底 $(\hat{e}_i)_{i \in n}$.

 $\forall f \in L^*$, 取线性型 $\tilde{f} := \sum_{i \in n} \beta_i f_i \in V^*$ 满足 $\forall i' \leq r$, $\tilde{f}(\hat{e}_{i'}) = 0$. 显然 $f = \tilde{f}\Big|_{L} = \sum_{i \in n} \beta_i f_i\Big|_{L}$.

Lemma 4. 设线性空间 V 中有线性相关的向量组 $(x_j)_{j\in m}$, 而 $\forall i\in m,\, f_i\in V^*$. 那么:

$$\det (f_i(\boldsymbol{x}_j))_{i,j\in m} = 0.$$

Proof. 根据定理 5.1, $\exists j_0 \in m$ 使得 \boldsymbol{x}_{j_0} 是其他 $(\boldsymbol{x}_j)_{j \in m; j \neq j_0}$ 的线性组合. 根据行列式的性质, 将 j_0 列减去其他各列 $(j \neq j_0)$ 乘上线性组合的系数 λ_j , 不改变行列式的值, 但该列变成了

$$f_i(\boldsymbol{x}_{j_0}) - \sum_{j \in m; \ j \neq j_0} \alpha_j f_i(\boldsymbol{x}) = f_i \left(\boldsymbol{x}_{j_0} - \sum_{j \in m; \ j \neq j_0} \alpha_j \boldsymbol{x}_j \right) = f_i(\boldsymbol{0}) = 0.$$

这给出了 $\det(f_i(\boldsymbol{x}_j))_{i,j\in m} = 0$. 的证明.

Lemma 5. 设 V 是 n 维线性空间, 而 $\hat{f}:=(f_i)_{i\in n}$ 是对偶空间 V^* 的一组基底. 向量组 $(x_j)_{j\in n}$ 线性无关当且仅当

$$\det(f_i(\boldsymbol{x}_j))_{i,j\in n}\neq 0.$$

Proof. 由引理 4, 我们已经证明了行列式非零则线性无关. 反过来, 若线性无关, 取 $\hat{e} = \hat{f}^*$ 即 \hat{f} 的对偶基底. 考虑到 $\hat{x} = (x_j)_{j \in n}$ 也是一组基底, 那么存在转换矩阵 **P**, 而且它的行列式恰是 $\det(f_i(x_j))_{i,j \in n}$. 转换矩阵是可逆的, 它的行列式非零.

Theorem 6.3. 设 V 是 n 维线性空间,而 $\hat{f}:=(f_i)_{i\in n}$ 是对偶空间 V^* 的一组基底. 那么 V 的子空间 $\langle x_j \rangle_{j\in m}$ 的维数 r 等于

$$(f_i(\boldsymbol{x}_i))_{i \in n, j \in m}$$

的最大非零子式的阶数,

§7 多重线性型 19

Proof. 由引理 4, 阶数比 r 大的子式必为 0, 我们只需证明有 r 阶非零子式.

取 $(x_j)_{j\in m}$ 中的一组线性无关组 $(x_{j_k})_{k\in r}$, 再在 $\hat{f}\Big|_{\langle x_j\rangle_{j\in m}}$ 中取出线性无关组 $(\bar{f}_k)_{k\in r}:=$ $\left(f_{i_k}\Big|_{\langle x_j\rangle_{j\in m}}\right)_{k\in r}$ (引理 3), 引理 5 告诉我们

$$\det(\bar{f}_i(\boldsymbol{x}_{i_k}))_{i,k\in r}\neq 0.$$

Corollary 5. 设 V 是 n 维线性空间, 有基底 \hat{e} , 向量组 $(x_j)_{j \in m}$ 的维数等于矩阵 $(x_j|_{\hat{e}})_{j \in m}$ 的最大非零子式的阶数...

Proof. 在定理 6.3 中令 $\hat{f} = \hat{e}^*$ 即可.

§7 多重线性型

Definition 7.1 (多重线性型). 设 $V_0, V_1, ..., V_{p-1}, U$ 是 \mathbb{F} 上的线性空间. 若映射

$$f \colon \prod_{i \in p} V_i \to U$$

满足 $\forall i \in p$,

$$\forall (\boldsymbol{a}_j)_{j \in p; \ j \neq i} \in \prod_{j \in p; \ j \neq i} V_j, \quad f_i \colon V_i \to U; \ \boldsymbol{x} \mapsto f(\boldsymbol{a}_0, \cdots, \boldsymbol{a}_{i-1}, \boldsymbol{x}, \boldsymbol{a}_{i+1}, \cdots, \boldsymbol{a}_{p-1}) \in \mathcal{L}(V_i, U),$$

则称 $f \in V_0, ..., V_{p-1}$ 上的**多重线性型**, 或 p-线性型. 这些多重线性型的集合记为 $\mathcal{L}(V_0, \cdots, V_{p-1}; U)$.

如 $V_0 = V_1 = \cdots = V_{p-1}$, 那么我们记 V^p 上的多重线性型的集合为 $\mathcal{L}_p(V; U)$. 当 $U = \mathbb{F}$ 时, 我们也可省略 \mathbb{F} 不写.

Definition 7.2 (对称与反对称). 若 V, U 是 \mathbb{F} 上的线性空间, $f \in \mathcal{L}_p(V,U)$. 如果 $\forall \pi \in S_p$, $\forall (\boldsymbol{x}_i)_{i \in p} \in V^p$,

$$f\left(\boldsymbol{x}_{\pi(i)}\right)_{i\in p} = f(\boldsymbol{x}_i)_{i\in p},$$

那么我们称 f 为**对称的**. 如 $\forall \pi \in S_p, \forall (\boldsymbol{x}_i)_{i \in p} \in V^p$,

$$f\left(\boldsymbol{x}_{\pi(i)}\right)_{i\in p} = \varepsilon_{\pi} f(\boldsymbol{x}_i)_{i\in p},$$

那么我们称 f 为反对称的.

我们可以给出行列式的公理化构造,它在实数上的计算方法我们已经在线性代数课程中非常熟悉了:

20 第二章 线性空间

Definition 7.3 (行列式). 设 \mathbb{F} 是一个域. 多重线性型 $\det \in \mathcal{L}_n(\mathbb{F})$ 若满足:

- 1) det 是反对称的;
- 2) $\det \mathbf{I} = 1, \, \sharp + \mathbf{I} = (\delta_{ij})_{i,j \in n},$

记方阵 $X := (x_i)_{i \in n}$, 则称 $\det X \in X$ 的行列式.

多重线性型中我们特别关注**双线性型** (bilinear form), 也就是 2-线性型在 $V_0 = V_1$ 的特殊情况.

选定 n 维线性空间 V 的基底 \hat{e} , 我们能将双线性型 $\mathcal{B} \in \mathcal{L}_2(V)$ 表成矩阵的形式:

$$\mathscr{B}(\boldsymbol{x},\boldsymbol{y}) = \mathscr{B}\left(\sum_{i \in n} x_i \hat{\boldsymbol{e}}_i, \sum_{j \in n} y_j \hat{\boldsymbol{e}}_j\right) = \sum_{i \in n} x_i \mathscr{B}\left(\hat{\boldsymbol{e}}_i, \sum_{j \in n} y_j \hat{\boldsymbol{e}}_j\right) = \sum_{i \in n} \sum_{j \in n} x_i \mathscr{B}(\hat{\boldsymbol{e}}_i, \hat{\boldsymbol{e}}_j) y_j.$$

 $\Leftrightarrow B = (\mathscr{B}(\hat{e}_i, \hat{e}_j))_{i,j \in n},$ 得:

$$\mathscr{B}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{x}|_{\hat{e}}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{y}|_{\hat{e}} . \tag{7-1}$$

这说明, 只要给出一组基底, 我们就有一个 $\mathcal{L}_2(V;\mathbb{F})$ 到 $M_n(\mathbb{F})$ 的同构. 而且我们能看到: 对称双线性型 (其集合记为 $\mathcal{L}^+(V;\mathbb{F})$) 将对应对称矩阵, 而反对称双线性型 ($\mathcal{L}^-(V;\mathbb{F})$) 对应一个反对称矩阵.

Theorem 7.1 (对称与反对称). 如果 $char \mathbb{F} \neq 2$, 那么

$$\mathcal{L}_2(V;\mathbb{F}) = \mathcal{L}_2^+(V;\mathbb{F}) \oplus \mathcal{L}_2^-(V;\mathbb{F})$$

Proof. 对于任意 $\mathcal{B} \in \mathcal{L}_2(V; \mathbb{F})$, 令 \mathcal{B}^T 表示 $\mathcal{B}^T(x, y) = \mathcal{B}(y, x)$, 那么 \mathcal{B} 总能写成对称双线性型 $(\mathcal{B} + \mathcal{B}^T)/2$ 的和. 也就是说 $\mathcal{L}_2(V; \mathbb{F}) = \mathcal{L}_2^+(V; \mathbb{F}) + \mathcal{L}_2^-(V; \mathbb{F})$.

设 $\mathcal{B} \in \mathcal{L}_2^+(V;\mathbb{F}) \cap \mathcal{L}_2^-(V;\mathbb{F})$. $\forall x,y \in V$, $\mathcal{B}(y,x) = -\mathcal{B}(x,y) = \mathcal{B}(x,y)$. 移项得 $2\mathcal{B}(x,y) = 0$, 如果 $\operatorname{char} \mathbb{F} = 2$, 这将对 $\mathcal{B}(x,y)$ 的任意取值恒成立; 但如果 $\operatorname{char} \mathbb{F} \neq 2$, 这只能说明 $\mathcal{B}(x,y) = 0$, 即 $\mathcal{B} = \mathcal{O}$. 这里 \mathcal{O} 表示 $(x,y) \mapsto 0$ 的零双线性型.

Theorem 7.2 (双线性型的坐标变换). 设 \hat{e} , \hat{f} 是 n 维线性空间 V 的两组基底, 它们之间的转换矩阵是 P; 双线性型 $\mathcal{B} \in \mathcal{L}_2(V)$ 在 \hat{e} , \hat{f} 下的矩阵分别是 B, B', 有:

$$B' = P^{\mathrm{T}}BP$$
.

这个定理说的是: 双线性型在不同基底下的矩阵是合同的.

§8 二次型

Definition 8.1 (二次型). 令 V 为域 \mathbb{F} 上的线性空间, $q \in \mathbb{F}^V$. 如果 q 满足:

- i) $\forall \boldsymbol{x} \in V, q(-\boldsymbol{x}) = -q(\boldsymbol{x});$
- ii) \mathscr{B} : $(x,y) \mapsto (q(x+y)-q(x)-q(y))/2$ 是 V 上的双线性型,

那么, 我们称 $q \in V$ 上的**二次型**, 其得到的双线性型 \mathcal{B} 是极化的或说是与二次型 q 配极的双线性型.

倘若 $\mathcal{B} \in L_2^+(V;\mathbb{F})$,我们记 $q_{\mathcal{B}} \colon \boldsymbol{x} \mapsto \mathcal{B}(\boldsymbol{x},\boldsymbol{x})$. 显然 $q_{\mathcal{B}}$ 是一个二次型. 而且 $q_{\mathcal{B}}$ 将和 \mathcal{B} 配极.

通过这种二次型和对称双线性型的关系, 我们可以称有限维线性空间中的对称双线性型的 矩阵就是与之配极的二次型的矩阵. 之后我们会混用对称双线性型和二次型的术语.

Definition 8.2 (规范型). 我们称 n 维线性空间的二次型 q 在基底 \hat{e} 下具有标准型, 意思是其对应的矩阵就是一个对角矩阵 $\mathbf{B} = \operatorname{diag}(\lambda_i)_{i \in n}$. 与此同时, 我们也称 \hat{e} 为 q 的一组规范基底.

Theorem 8.1 (二次型的规范型存在). $\forall \mathcal{B} \in \mathcal{L}_2^+(V; \mathbb{F}), \exists$ 基底 \hat{e} s.t. \mathcal{B} 在该基底下的矩阵是对角的 i.e. $\mathbf{B} = \operatorname{diag}(\lambda_i)_{i \in n}$.

Proof. 定理对 dim V = 1, $\mathcal{B} = \mathcal{O}$ 都显然成立.

假设 $\forall k \in n+1$, $\dim V = k$ 的情况定理都成立. 在 $\mathcal{B} \neq \mathcal{O}$ 的情况, 必然有一个 $\hat{\boldsymbol{e}}_n \in V$ 使得与 \mathcal{B} 配极的 $q(\hat{\boldsymbol{e}}_n) \neq 0$ (否则, \mathcal{B} 将与零二次型配极). 设 $\ell : \boldsymbol{x} \mapsto \mathcal{B}(\boldsymbol{x}, \hat{\boldsymbol{e}}_n)$, 显然 ℓ 是一个非零的线性型. 从而 $\ker \ell \in V$ 的真子空间, 亦即 $\dim \ker \ell \leq n$.

设 $(\hat{e}_i)_{i\in n}$ 是 $\mathscr{B}|_{\ker\ell}$ 的一组规范基底. 因为 $\forall i\in n, \hat{e}_i\in \ker\ell$, 我们有 $\ell(\hat{e}_i)=\mathscr{B}(\hat{e}_i,\hat{e}_n)=0$. 结论要呼之欲出了: 如此得到的 $\left(\mathscr{B}(\hat{e}_i,\hat{e}_j)\right)_{i,j\in n+1}$ 确实是一个对角矩阵.

可是我们还没有确定 $(\hat{e}_i)_{i \in n+1}$ 是线性无关的. 设有线性组合 $\sum_{i \in n+1} \alpha_i \hat{e}_i = \mathbf{0}$, 作用 ℓ , 得:

$$\ell\left(\sum_{i\in n+1}\alpha_i\hat{\boldsymbol{e}}_i\right) = \alpha_n\ell(\hat{\boldsymbol{e}}_n) = \alpha_nq(\hat{\boldsymbol{e}}_n),$$

因 $q(\hat{e}_n) \neq 0$, 我们得到了 $\alpha_n = 0$; 又 $(\hat{e}_i)_{i \in n}$ 是线性无关的, $\sum_{i \in n} \alpha_i \hat{e}_i + 0 \hat{e}_n = \sum_{i \in n} \alpha_i \hat{e}_i = \mathbf{0}$ 只能给出 $\forall i \in n, \alpha_i = 0$. 这就是 $(\hat{e}_i)_{i \in n+1}$ 线性无关的证据.

第三章 线性算子

§9 线性映射

Definition 9.1 (线性映射). 设 V, W 是域 \mathbb{F} 上的线性空间. 如映射 $\mathscr{A} \in \mathcal{L}(V,W)$, 即 \mathscr{A} 是 V 到 W 的一个同态, 那么我们称 \mathscr{A} 是 V 到 W 的一个线性映射, 并称其为线性的. 特别地, 如果它还是自同态, 我们称其为线性变换¹或线性算子.

Theorem 9.1. 设 $\mathscr{A} \in \mathcal{L}(V, W)$, 倘若 $(\mathbf{v}_i)_{i \in s} \in V^s$,

$$f(\langle \boldsymbol{v}_i \rangle_{i \in s}) = \langle f(\boldsymbol{v}_i) \rangle_{i \in s}$$
.

Corollary 6. 设 $\mathcal{A} \in \mathcal{L}(V, W)$, 而 $U \neq V$ 的有限维子空间, 那么 dim $f(U) \leq \dim U$.

我们将指出, 我们在这里所说的线性映射在某基底下可表为矩阵. 设 V, W 分别是 m, n 维线性空间, 给定各自的基底 \hat{e} , \hat{f} , 那么我们可以用矩阵

$$\mathscr{A}|_{\hat{e},\,\hat{f}} := \mathbf{A} = (a_{ij})_{i\in n,\,j\in m} = \left(f(\hat{e}_j)|_{\hat{f}}\right)_{j\in m}$$
 (9-1)

来表示 $\mathscr{A} \in \mathcal{L}(V, W)$.

Theorem 9.2. 由式 (9-1) 决定的线性映射和 \mathbb{F} 上的 $m \times n$ 矩阵是一一对应的, 且:

$$(\mathscr{B} \circ \mathscr{A})|_{\hat{e},\,\hat{g}} = BA, \qquad (9-2)$$

其中 $\mathscr{A}: V \to U, \mathscr{B}: U \to W, V, U$ 和 W 分别有基底 \hat{e}, \hat{f} 和 \hat{g} .

Proof. 由线性映射到矩阵的单性由式 (9-1) 易证 (意思是, 只需假定有两个线性映射共用矩阵, 它们将由 5.2 得出是同一个映射). 而满性只需验证由 $f(\boldsymbol{v})|_{\hat{f}} = \boldsymbol{A} \boldsymbol{v}|_{\hat{e}}$ 决定的映射是 $\mathcal{L}(V,W)$ 的元素.

¹也有将线性映射统称为线性变换的.

§10 线性算子代数 23

同态的复合依然是同态是显然的 (可以进行枯燥的验证, 但没必要). 式 (9-2) 则由下式给出:

$$\left. (\mathscr{B} \circ \mathscr{A})(\boldsymbol{v}) \right|_{\hat{g}} = \left. \mathscr{B} \big(\mathscr{A}(\boldsymbol{v}) \big) \right|_{\hat{g}} = \boldsymbol{B} \, \left. \mathscr{A}(\boldsymbol{v}) \right|_{\hat{f}} = \boldsymbol{B} \boldsymbol{A} \, \boldsymbol{v} |_{\hat{e}} \,\, .$$

Definition 9.2 (秩). 设 $\mathscr{A} \in \mathcal{L}(V, W)$, 记 rank $\mathscr{A} := \dim \mathscr{A}(V)$ 为线性映射 \mathscr{A} 的**秩**. 同时我们称 dim ker \mathscr{A} 为其亏数或零化度 (nullity).

Theorem 9.3. 若 V, W 都是有限维向量空间. 任取它们分别的基底 \hat{e} , \hat{f} , 都有 $\operatorname{rank} \mathcal{A} = \operatorname{rank} \mathbf{A}$, 其中 $\mathbf{A} = \mathcal{A}|_{\hat{e},\hat{f}}$.

Proof. 由定义式 (9-1), 矩阵的列向量组将张出 $\mathcal{A}(V)$. 由5.3, 这就给出了我们的定理².

Theorem 9.4. 设 V 是域 $\mathbb F$ 上的有限维线性空间, W 是域 $\mathbb F$ 上的线性空间, $\mathscr A \in \mathcal L(V,W)$, 那么

$$\dim \ker \mathscr{A} + \dim \mathscr{A}(V) = \dim V.$$

Proof. $i \exists \dim V = n, \dim \mathscr{A} = r, \dim \ker \mathscr{A} = k.$

取 ker Ø 的一组基底 $(\hat{e}_i)_{i \in k}$ (显然 $k \leq n$), 并将它扩充为 V 的基底 \hat{e} (我们又用了 Steintz 替换原则 5.4). 考虑到 Ø $(V) = \langle \mathscr{A}(\hat{e}_i) \rangle_{i \in n}$. 但 $\langle \mathscr{A}(\hat{e}_i) \rangle_{i \in k} = \{\mathbf{0}\}$. 利用 Ø 的线性, 我们给出 $\forall (\lambda_i)_{i \in n} \in \mathbb{F}^n$:

$$\sum_{i \in n} \lambda_i \mathscr{A}(\hat{m{e}}_i) = \sum_{i \in n \, \wedge \, i
otin k} \lambda_i \mathscr{A}(\hat{m{e}}_i) + \mathscr{A}\left(\sum_{i \in k} \lambda_i \hat{m{e}}_i
ight) = \sum_{i \in n \, \wedge \, i
otin k} \lambda_i \mathscr{A}(\hat{m{e}}_i).$$

即是: $\left(\mathscr{A}(\hat{e}_i)\right)_{i\in n \wedge i\notin k}$ 将构成 $\mathscr{A}(V)$ 的一组基底. 从而:

$$r + k = n$$
.

在 $\mathcal{L}(V,W)$ 上定义加法和数乘, 可以验证它是一个线性空间.

§10 线性算子代数

域 \mathbb{F} 上的线性空间 V 的自同态 $\mathcal{L}(V,V)$ 可记作 $\mathcal{L}(V)$ 或 $\mathrm{End}(V)$. 如前已述, 它的元素唤作线性算子. 给定 n 维线性空间 V 的一组基底 \hat{e} (同时作为定义域和到达域的基底), $\mathcal{L}(V)$ 的

²矩阵的秩的最大非零子式定义和列向量组定义等价已由推论 5保证.

元素可用 n 阶方阵表示. 其中恒等变换 id_V 对应的矩阵通常记作 I, 即 n 阶单位阵. 零映射记为 $\mathcal{O}: \boldsymbol{x} \mapsto \boldsymbol{0}$.

习惯上记 $\mathscr{A}x := \mathscr{A}(x), \mathscr{A}\mathscr{B} := \mathscr{A} \circ \mathscr{B}.$

Definition 10.1 (逆算子). 设 $\mathscr{A}, \mathscr{B} \in \mathcal{L}(V)$. 若

$$\mathscr{A}\mathscr{B} = \mathscr{B}\mathscr{A} = \mathrm{id}_V$$

则称它们互为**逆算子**, 记 $\mathscr{A} = \mathscr{B}^{-1}$ 或 $\mathscr{B} = \mathscr{A}^{-1}$.

Theorem 10.1. 设 V 是有限维线性空间, $\mathscr{A} \in \mathcal{L}(V)$.

$$\exists \mathscr{B} \in \mathcal{L}(V) \left(\mathscr{A} = \mathscr{A}^{-1} \right) \iff \operatorname{rank} \mathscr{A} = \dim V \iff \ker \mathscr{A} = \left\{ \mathbf{0} \right\}.$$

Proof. 利用定理 9.4 立刻就能证明.

Definition 10.2 (代数). 如果一个环 A 同时是域 \mathbb{F} 上的线性空间, 而且数乘满足:

$$\forall \lambda \in \mathbb{F} \, \forall \mathscr{A}, \mathscr{B} \in A \left(\lambda (\mathscr{A} \mathscr{B}) = (\lambda \mathscr{A}) \mathscr{B} = \mathscr{A} (\lambda \mathscr{B}) \right),$$

那么我们称 $A \in \mathbb{F}$ 上的一个**代数** (algebra)³. 若 A' 同时作为 A 的子环和子空间, 那么 A' 是 A 的一个子代数.

在这个意义上, $\mathcal{L}(V)$ 被称为线性算子代数.

多项式环 $\mathbb{F}[X]$ 即是 \mathbb{F} 上的无穷维代数的例子, 而它在 $X = \mathcal{A} \in \mathcal{L}(V)$ 时的取值, 即 $\mathbb{F}[\mathcal{A}]$ (我们记 $\mathcal{A}^0 := \mathrm{id}_V$), 可以验证是 $\mathcal{L}(V)$ 的子代数.

考虑到 \mathbb{F} 是交换的, $\mathbb{F}[\mathscr{A}]$ 也是交换的.

Definition 10.3 (极小多项式). 设 V 是域 \mathbb{F} 上的线性空间, $\mathscr{A} \in \mathcal{L}(V)$, $P(X) \in \mathbb{F}[X]$. 如果 $P(\mathscr{A}) = \mathscr{O}$, 那么称多项式 P(X) **零化**线性算子 \mathscr{A} . 首项系数为 1 的零化 \mathscr{A} 的多项式称为其 **极小多项式**, 可记为 $\mu_{\mathscr{A}}(X)$.

Theorem 10.2 (极小多项式存在). 设 V 是域 \mathbb{F} 上的 n 维线性空间. $\forall \mathscr{A} \in \mathcal{L}(V)$, 都存在极小多项式 $\mu_{\mathscr{A}}(X)$, 且 $\deg \mu_{\mathscr{A}}(X) = \dim \mathbb{F}[\mathscr{A}]$.

Proof. 考虑到 $\mathbb{F}[\mathscr{A}]$ 是 $\mathcal{L}(V)$ 的子代数, $\dim \mathbb{F}[\mathscr{A}] < \dim \mathcal{L}(V)$.

如果次数 $< n^2 + 1$ 的非零多项式 P(X) 都不能零化 \mathscr{A} , 我们即可说: $\mathrm{id}_V, \mathscr{A}, \cdots, \mathscr{A}^{n^2 + 1}$ 的任意非平凡线性组合都不为 0, 我们在维数小于 n^2 维的线性空间里找到了 $n^2 + 1$ 个线性无关的向量, 这显然是不可能的.

³实际上这里是结合的,有单位元的代数. 出于简单在本部分我们还是径直称其为代数.

§10 线性算子代数 25

Theorem 10.3 (极小多项式唯一). 设 V 是域 \mathbb{F} 上的线性空间, $\mathscr{A} \in \mathcal{L}(V)$. 若 $P(X) = X^n + \sum_{i \in n} p_i X^i$, $Q(X) = X^n + \sum_{i \in n} q_i X^i$ 都是 \mathscr{A} 的极小多项式, 那么 $(p_i)_{i \in n} = (q_i)_{i \in n}$.

Proof. 因为 $\mathbb{P}[\mathscr{A}]$ 是一个代数, $P(\mathscr{A}) - Q(\mathscr{A}) = \sum_{i \in n} (p_i - q_i) \mathscr{A}^i = \mathscr{O}$. 我们得到了一个能零化 \mathscr{A} 次数小于 n 的多项式. 如果它不是零多项式,记 $m = \deg \left(P(X) - Q(X)\right)$,那么 $\frac{1}{p_m - q_m} \sum_{i \in n} (p_i - q_i) X^i = \mathscr{O}$ 将是一个首项为 1 的零化 \mathscr{A} 但其次数小于极小多项式的次数,这是违背极小多项式的定义的.

Theorem 10.4 (可逆算子与极小多项式的常数项). 设 V 是域 \mathbb{F} 上的 n 维线性空间, $\mathscr{A} \in \mathcal{L}(V)$, 其极小多项式是 $\mu_{\mathscr{A}}(X)$. 算子 \mathscr{A} 可逆当且仅当 $\mu_{\mathscr{A}}$ 的常数项非零.

Proof. 如果极小多项式常数项为 0, 即 $\mu_{\mathscr{A}}(X) = \sum_{i \in n - \{0\}} p_i X^i$, 那么由线性空间的分配律与方幂的分解.

$$\mathscr{A}\left(\sum_{i\in n-\{0\}} p_i \mathscr{A}^{i-1}\right) = \mathscr{O}.$$

由极小多项式的定义, $\sum_{i \in n - \{0\}} p_i \mathscr{A}^{i-1} \neq \mathscr{O}$. 那么, $\exists x \in V$, $\sum_{i \in n - \{0\}} p_i \mathscr{A}^{i-1} x \in \ker \mathscr{A} - \{\mathbf{0}\}$,这表明 $\operatorname{rank} \mathscr{A} < n$,即不可逆.

如果极小多项式常数项不为 0,

$$\mathscr{A}\frac{1}{-p_0}\left(\sum_{i\in n-\{0\}}p_i\mathscr{A}^{i-1}\right)=\mathrm{id}_V\,,$$

给出了 🖋 的逆.

Theorem 10.5 (化零算子的多项式是极小多项式的倍式). 设 V 是域 \mathbb{F} 上的线性空间. 能零化 $\mathscr{A} \in \mathcal{L}(V)$ 的多项式 $P(X) \in \mathbb{F}[X]$ 一定是 $\mu_{\mathscr{A}}(X)$ 的倍式.

Proof. 作带余除法 $P(X) = Q(X)\mu_{\mathscr{A}}(X) + R(X)$, 其中 $\deg R(X) < \deg \mu_{\mathscr{A}}(X)$. 如果 $R(X) \neq 0$, 那么 $R(\mathscr{A}) = P(\mathscr{A}) - Q(\mathscr{A})\mu_{\mathscr{A}}(X) = \mathscr{O}$ 说明 R(X) 是次数比 $\mu_{\mathscr{A}}(X)$ 还小的能化零 \mathscr{A} 的多项式, 这与极小多项式的定义是矛盾的.

Definition 10.4 (幂零算子). 设 V 是域 \mathbb{F} 上的线性空间. 线性算子 $\mathscr{A} \in \mathcal{L}(V)$ 如果满足 $\exists m \in \mathbb{N}_+$ 使得 $\mathscr{A}^m = \mathscr{O}$, 那么称其是一个幂零算子 (nilpotent operator). 数 $d := \min\{m \in \mathbb{N}_+ \mid \mathscr{A}^m = \mathscr{O}\}$ 则被称为幂零算子的幂零指数.

由域作为零环的性质, 我们很容易验证 (只需要显式设出极小多项式):

Theorem 10.6 (幂零算子的极小多项式). 设 V 是域 \mathbb{F} 上的线性空间. 若 $\mathscr{A} \in \mathcal{L}(V)$ 的幂零指数为 d, 那么其极小多项式就是 X^d .

26 第三章 线性算子

通过枯燥的运算可以得出:

Theorem 10.7 (线性算子在不同基底下的矩阵). 设 V 是域 \mathbb{F} 上的 n 维线性空间. 若 A 和 A' 分别是 $\mathscr{A} \in \mathcal{L}(V)$ 在基底 \hat{e} 和 \hat{e}' 下的矩阵, 那么:

$$A' = P^{-1}AP.$$

其中 P 是 \hat{e} 到 \hat{e}' 的转换矩阵.

也就是说:相似矩阵是同一线性算子在不同基底下的坐标表示.借相似关系,行列式和迹的性质:

Theorem 10.8 (不变量). 设 $A, A' \in M_n(\mathbb{F})$. 设 V 是域 \mathbb{F} 上的 n 维线性空间. 若 A 和 A' 分别是 $\mathcal{A} \in \mathcal{L}(V)$ 在基底 \hat{e} 和 \hat{e}' 下的矩阵, 那么:

$$\det \mathbf{A} = \det \mathbf{A}', \quad \operatorname{tr} \mathbf{A} = \operatorname{tr} \mathbf{A}'.$$

如此我们可以径直称 $\det \mathscr{A} := \det A$ 为线性算子的**行列式** (determinent), 而不必指出基底; 而 $\operatorname{tr} \mathscr{A} := \operatorname{tr} A$ 为线性算子的**迹** (trace).

§11 不变子空间与特征向量

Definition 11.1 (正交等方算子组). 设 V 是线性空间, $\forall i \in m, \mathscr{P}_i \in \mathcal{L}(V)$. 倘若 $\{\mathscr{P}_i\}_{i \in m}$ 满足

$$\forall i, j \in m, \quad \mathscr{P}_i \mathscr{P}_j = \delta_{ij} \mathscr{P}_i,$$

则称其为一个正交等方算子组,其中每一个算子都称为等方算子或投影 (projection). 它们对应的矩阵组 $\{P_i\}_{i\in m}$ 则称为正交等方矩阵组.

如果正交等方算子组 $\{\mathscr{P}_i\}_{i\in m}$ 还满足 $\sum_{i\in m}\mathscr{P}_i=\mathrm{id}_V$, 那么称它是一个**完备正交组**.

以下事实很容易得到验证: 一个正交等方算子组中的算子满足 $\mathscr{P}_i^2 = \mathscr{P}_i, \mathscr{P}_i \mathscr{P}_j = \mathscr{O}$ 若 $i \neq j$; 而且如果 $i \neq j, \mathscr{P}_i(V) \subseteq \ker \mathscr{P}_i$.

Theorem 11.1 (线性空间用正交完备算子组的像直和分解). 设 V 是线性空间, $\{\mathcal{P}_i\}_{i \in m}$ 是 正交完备算子组.

$$V = \bigoplus_{i \in m} \mathscr{P}_i(V) .$$

Proof. $\forall x \in V$,

$$oldsymbol{x} = \mathrm{id}_V(oldsymbol{x}) = \sum_{i \in m} \mathscr{P}_i oldsymbol{x} \, ,$$

注意到 $\mathscr{P}_i \mathbf{x} \in \mathscr{P}_i(V)$, 从而 $V = \sum_{i \in m} \mathscr{P}_i(V)$.

现在要证它是一个直和. $\forall i \in m \ \forall x \in \mathscr{P}_i(V) \cap \left(\sum_{j \in m; \ j \neq i} \mathscr{P}_j(V)\right)$,

$$\exists (x_j)_{j \in m} \in V^m \text{ s.t. } \boldsymbol{x} = \mathscr{P}_i \boldsymbol{x}_i = \sum_{j \in m: \ j \neq i} \mathscr{P}_j \boldsymbol{x}_j ,$$

将上式两侧同时作用算子 \mathcal{P}_i 即有

$$\mathscr{P}_i oldsymbol{x} = \mathscr{P}_i^2 oldsymbol{x}_i = \mathscr{P}_i oldsymbol{x}_i = oldsymbol{x} = \sum_{j \in m; \ j
eq i} \mathscr{P}_i \mathscr{P}_j (oldsymbol{x}_j) = oldsymbol{0} \, .$$

Definition 11.2 (不变子空间). 设 V 是线性空间, U 是其子空间, $\mathscr{A} \in \mathcal{L}(V)$. 倘若 $\mathscr{A}(U) \subseteq U$, 我们称 U 是线性算子 \mathscr{A} 的一个不变子空间 (invariant subspace).

Definition 11.3 (特征向量). 设 V 是域 \mathbb{F} 上的线性空间, $\mathscr{A} \in \mathcal{L}(V)$, U 是 \mathscr{A} 的一个一维不变子空间 (uni-dimensional invariant subspace) i.e. dim U=1, 那么我们称 $\forall x \in U - \{0\}$ 是一个 \mathscr{A} 的特征向量 (eigenvector, or characteristic vector).

根据定义, 特征向量满足 $\mathscr{A} x = \lambda x$, $\lambda \in \mathbb{F}$.

Definition 11.4 (特征值). 设 V 是域 \mathbb{F} 上的线性空间, $\mathscr{A} \in \mathcal{L}(V)$, x 是 \mathscr{A} 的一个特征向量, 且有 $\mathscr{A}x = \lambda x$. 那么我们称 $\lambda \in \mathbb{F}$ 是 \mathscr{A} 的一个 (x 对应的) 特征值 (eigenvalue).

由
$$A'x' = P^{-1}APP^{-1}x = P^{-1}Ax = \lambda P^{-1}x = \lambda x'$$
 可以验证, 特征值是坐标无关的.

Definition 11.5 (几何重数). 设 V 是域 \mathbb{F} 上的线性空间, $\mathscr{A} \in \mathcal{L}(V)$, $\lambda \in \mathbb{F}$ 是 \mathscr{A} 的一个特征值. 与特征值 λ 相伴的**特征空间** (eigenspace) $E_{\mathscr{A}}(\lambda) := \{x \in V \mid \mathscr{A}x = \lambda x\}$ 的维数 $\gamma_{\mathscr{A}}(\lambda) := \dim E_{\mathscr{A}}(\lambda)$ 则被称为特征值 λ 的几何重数 (geometic multiplicity).

我们说 x 是对应特征值 λ 的特征向量, 也可以说是 $x \in \ker(\mathscr{A} - \lambda \mathrm{id}_V)$. 从而 $\det(\mathscr{A} - \lambda \mathrm{id}_V) = 0$. 考虑到行列式和坐标无关, 且对非退化方阵 P:

$$\det(\mathbf{A}' - \lambda \mathbf{I}) = \det(\mathbf{P}^{-1}\mathbf{A}\mathbf{P} - \lambda\mathbf{P}^{-1}\mathbf{P}) = \det(\mathbf{P}^{-1}\det(\mathbf{A} - \lambda\mathbf{I})\det\mathbf{P} = \det(\mathbf{A} - \lambda\mathbf{I}),$$

我们可以定义与坐标无关的特征多项式:

Definition 11.6 (特征多项式). 设 V 是域 \mathbb{F} 上的线性空间, $\mathscr{A} \in \mathcal{L}(V)$. $\chi_{\mathscr{A}}(X) := \det(\mathscr{A} - X \mathrm{id}_V) \in \mathbb{F}[X]$ 被称为算子 \mathscr{A} 的特征多项式 (characteristic polynomial). 方程 $\chi_{\mathscr{A}}(X) = 0$ 被称为特征方程或久期方程.

第四章 内积空间

第五章 张量

附录 A 置换

§1 置换群

置换群 S_n 的定义已在正文的 §2 中给出, 我们在此重复一遍: 有限集 $n \in \mathbb{N}_+$ 上的**置换** 群 S_n 定义为 n^n 中的双射的集合, 乘法定义为函数的复合, 单位元是 id_n .

不难证明 card $S_n = P_n^n = n!$.

设 $\pi \in S_n$. 元素 $i, j \in n$ 如果满足 $\exists k \in \mathbb{N}, \pi^k(i) = j$, 那么我们称 i 和 j 是 π -等价的. 不难证明这是等价关系, 而且把 n 分成等价类 $\{n_k\}_{k \in p}, p \in \mathbb{N}_+$. 每个等价类 n_k 称为置换 π 的轨道, 其元素个数 $\ell_k := \operatorname{card} n_k$ 称为轨道 n_k 的长度.

为方便, 我们定义 π_k 为:

$$\pi_k(i) = \begin{cases} \pi(i) & i \in n_k \\ \mathrm{id}_n & i \notin n_k \end{cases},$$

我们得到了 $\pi = \prod_{k \in p} \pi_k$, 这是轨道间不相交的结论.

若置换 π 至多只有一个轨道的长度大于 1 i.e. $\exists k_0 \in p \, \forall k \in p (k \neq k_0 \to \ell_k = 1)$, 我们称这个置换为**轮换或循环**, 并径直称 ℓ_{k_0} 为这个轮换的**长度**. 轮换 π 可记为 $(\pi^k(i))_{k \in \ell_{k_0}}$ 其中 $i \in n_k$. 不难验证 i 在 n_k 中的选择无关紧要. 我们记 $\mathrm{id}_n = (0)$. 当 $\ell_{k_0} = 2$ 时, 我们也唤轮换 π 为对换.

我们称两个轮换**不相交**, 如果它们的长度 ≤ 2 , 且最长轨道不相交.

以上的叙述可以总结为:

Theorem 1.1. 置换群 S_n 中的每一个置换, 要么是 id_n , 要么存在唯一的不相交长度 ≤ 2 的 轮换的集合 $\{\pi_k\}_{k\in p}$, 使得 $\pi=\prod_{k\in p}\pi_k$.

Theorem 1.2. 置换群 S_n 中的每一个置换 π 都可写为对换 $(\sigma_k)_{k\in q}$ 的乘积, 即 $\pi=\prod_{k\in q}\sigma_k^{-1}$. 而且, 倘若存在 $(\sigma_k')_{k\in q'}$ 也满足 $\pi=\prod_{k\in q'}\sigma_k'$, 那么 $q\equiv q'\pmod 2$.

 $^{^{1}}$ 注意, 这时不可对调 σ_{k} 间的位置.

§1 置换群 31

Proof. 因为每个长为 r 的轮换都可写成:

$$(\pi^k(i))_{k \in r} = \prod_{k \in r} (i, \pi^{r-k}(i)),$$

则由定理 1.1, 每一个置换都可以写成对换的乘积.

我们先证明, 若 $\mathrm{id}_n = \prod_{k \in q} \sigma_k,$ 其中 $\forall k \in q,\, \sigma_k$ 是对换, 那么 $q \equiv 0 \pmod{2}.$

我们用递归的方法证明这点. 设 $\sigma_{q-1}=(S,T),\,S,T\in n$. 为方便, 我们记 $p:=\max\{k\mid \sigma_k=(S,t),t\in n\}.$ 令 $(\sigma'_k)_{k\in q}:=(\sigma_k)_{k\in q},\,\sigma'_p:=(S,t).$

除非出现以下情况:

- a) p = 0.
- b) $p \neq 0 \ \text{\'et} \ \sigma'_{p-1} = (S, t).$

否则,不断重复下列过程:

1) 如果 $\sigma_{p-1} = (S, r)$, 其中 $r \neq t$: 由于

$$(S,r)(S,t) = (S,t,r) = (t,r,S) = (t,S)(t,r) = (S,t)(t,r)$$

那么重新令

$$\sigma'_{p-1} = (S, t), \ \sigma'_p = (t, r)$$
 其他不变,

将仍然满足 $\mathrm{id}_n = \prod_{k \in q} \sigma'_k$. 执行 4).

2) 如果 $\sigma_{p-1} = (t, r)$: 由于

$$(t,r)(S,t) = (t,S,r) = (r,t,S) = (r,S)(r,t) = (S,r)(r,t)$$

那么重新令

$$\sigma'_{n-1} = (S, r), \ \sigma'_n = (r, t)$$
 其他不变,

将仍然满足 $\mathrm{id}_n = \prod_{k \in q} \sigma'_k$. 执行 4).

3) 如果 $\sigma_{p-1} = (r, u)$, 其中 $\{r, u\} \cap \{S, t\} = \emptyset$: 由于

$$(r, u)(S, t) = (S, t)(r, u),$$

那么重新令

$$\sigma'_{n-1} = (S, t), \ \sigma'_n = (r, u)$$
 其他不变,

将仍然满足 $\mathrm{id}_n = \prod_{k \in q} \sigma'_k$. 执行 4).

4) 重新令 $p := \max\{k \mid \sigma'_k = (S, t), t \in n\}$ 以及 $\sigma'_p = (S, t)$.

32 附录 A 置换

直到满足 a) 或 b) 为止. 这个循环将总是能在有限次结束, 因为每次 p 都减小了 1.

当过程到结束时, 如果满足 a), 那么 $\prod_{k \in q} \sigma'_k(S) = (S,t) \prod_{k \in q, k \neq 0} \sigma'_k(S) = (S,t)(S) = t \neq S$, 与 id_n(S) = S 矛盾; 那么, 只可能是满足 b), 此时因 $(S,t)(S,t) = \mathrm{id}_n$, 将它们消去, 我们得到了 id_n 的 q' = q - 2 个对换的分解.

重复这样的过程直到 q'=0 或 q'=1 为止, 而后者是不可能的, 因为 id_n 永远不可能等于对换. 所以: $q\equiv 0\pmod{2}$.

最后,我们断言,任意置换和它的逆分解成的对换数目之和是偶数. 即,考虑 π 的两种分解, $\pi = \prod_{k \in q} \sigma_k = \prod_{k \in q'} \sigma_k'$,那么 $\mathrm{id}_n = \pi \pi^{-1} = \prod_{k \in q} \sigma_k^{-1} \prod_{k \in q'} \sigma_k' = \prod_{k \in q} \sigma_k \prod_{k \in q'} \sigma_k'$,由前 $q + q' \equiv 0 \pmod{2}$.

据此我们把置换群的元素分为**奇置换** (分解得到奇数个对换) 和**偶置换** (分解得到偶数个对换), 并引入置换的**符号或奇偶性** ε_{π} , 其值对于偶置换是 1, 奇置换是 0.

所有偶置换的集合 A_n 是 S_n 的子群.

附录 B 矩阵和行列式

以下只是一些定义的罗列,与一些术语的规定,矩阵与行列式的性质则散见于正文中.如果读者感到陌生,可参阅任意一本初等线性代数教材,如[1].

§2 矩阵

Definition 2.1 (矩阵). 设 \mathbb{F} 是一个域. 将 $\{a_{ij}\}_{i \in m, j \in n} \in 2^{\mathbb{F}} (n, m \in \mathbb{N}_{+})$ 排成一个长方形的表:

$$\mathbf{A} := (a_{ij})_{i \in m, j \in n} = \begin{pmatrix} a_{00} & a_{01} & \cdots & a_{0,n-1} \\ a_{10} & a_{11} & \cdots & a_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m-1,0} & a_{m-1,1} & \cdots & a_{m-1,n-1} \end{pmatrix} . \tag{2-1}$$

式 (2-1) 定义的 A 被称为 \mathbb{F} 上的 $m \times n$ 的**矩阵**, $m \times n$ 被称为它的尺寸或大小, $\{a_{ij}\}_{i \in m, j \in n}$ 是它的元素. 所有 \mathbb{F} 上的 $m \times n$ 矩阵的集合记为 $M_{m \times n}(\mathbb{F})$.

元素全为 0 的矩阵记为 O, 有时为了强调它的尺寸, 将之写在右下角 i.e. $O_{m\times n}$.

通常, 我们称 $1 \times n$ 或 $n \times 1$ 的矩阵为 n 维**向量**, 前者是**行向量**, 后者是**列向量**. 列向量的集合也可记为 \mathbb{F}^n , 即认为它是 \mathbb{F} 的 n 次 Cartesian 幂的元素. 但是, 当上下文明确时, 我们不特意在术语上区分行向量和列向量.

我们也常把矩阵写成列向量组的形式,即

$$\mathbf{A} := (\mathbf{x}_j)_{j \in n}, \qquad \forall j \in n (\mathbf{x}_j \in \mathbb{F}_n).$$
 (2-2)

设矩阵 **A** 的尺寸为 $n \times n$, 我们称其为 n 维**方阵**, 其集合记为 $M_n(\mathbb{F})$.

Definition 2.2 (对角矩阵). 若方阵 **A** 的元素只有对角线上的元素非零 i.e. $a_{ij} \neq 0 \rightarrow i = j$, 称其为**对角矩阵**, 记为 $\operatorname{diag}(a_{ii})_{i \in n}$. 特别地 $\boldsymbol{I} := \operatorname{diag}(1)_{i \in n}$ 称为 n 维单位阵.

П

Definition 2.3 (转置). 设 $\mathbf{A} = (a_{ij})_{i \in m, j \in n} \in M_{m \times n}(\mathbb{F})$. 我们称 $(a_{ji})_{j \in n, i \in m} \in M_{n \times n}(\mathbb{F})$ 为矩阵 \mathbf{A} 的转置, 记为 \mathbf{A}^{T} .

如果 \mathbb{F} 是复数域 \mathbb{C} , 我们通常更加关注**共轭转置** $A^{\dagger} := \overline{A}^{\mathrm{T}}$.

Definition 2.4 (和). 在 $M_{m \times n}$ 上定义和:

$$A + B = (a_{ij})_{i \in m, j \in n} + (b_{ij})_{i \in m, j \in n} = (a_{ij} + b_{ij})_{i \in m, j \in n}.$$

不难验证, $(M_{m \times n}, +, \mathbf{O}_{m \times n})$ 构成了一个 Abelian 群.

Definition 2.5 (积). 在 $M_{m \times \ell}(\mathbb{F})$ 和 $M_{\ell \times n}(\mathbb{F})$ 间定义积 $(\cdot: M_{m \times \ell}(\mathbb{F}) \times M_{\ell \times n}(\mathbb{F}) \to M_{m \times n}(\mathbb{F}))$:

$$\mathbf{AB} = (a_{ij})_{i \in m, j \in \ell} (b_{ij})_{i \in \ell, j \in n} = \left(\sum_{k \in \ell} a_{ik} b_{kj}\right)_{i \in m, j \in n}.$$

由域的性质, 我们能验证矩阵的乘法运算是结合的, 而且满足对和的分配律.

Theorem 2.1 (积的转置). 设 $A \in M_{m \times \ell}(\mathbb{F}), B \in M_{\ell \times n}(\mathbb{F}).$

$$(\boldsymbol{A}\boldsymbol{B})^{\mathrm{T}} = \boldsymbol{B}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}$$
.

Corollary 7 (积的共轭转置). 设 $A \in M_{m \times \ell}(\mathbb{C}), B \in M_{\ell \times n}(\mathbb{C}).$

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}$$
.

Definition 2.6 (逆). 设方阵 $\mathbf{A} \in M_n(\mathbb{F})$. 若 $\exists \mathbf{B} \in M_n(\mathbb{F})$, s.t. $\mathbf{B}\mathbf{A} = \mathbf{A}\mathbf{B} = \mathbf{I}$ 则称其为 \mathbf{A} 的**逆**, 并记为 \mathbf{A}^{-1} , 同时称 \mathbf{A} 是可逆的.

Theorem 2.2 (逆的转置). 设 $\boldsymbol{A} \in M_n(\mathbb{F})$ 且可逆. 其转置 $\boldsymbol{A}^{\mathrm{T}}$ 也可逆, 且 $(\boldsymbol{A}^{\mathrm{T}})^{-1} = (\boldsymbol{A}^{-1})^{\mathrm{T}}$.

Proof. 写出逆的定义, 两边取转置, 并应用 $I^{T} = I$ 和定理 2.1.

Theorem 2.3 (逆的共轭转置). 设 $\mathbf{A} \in M_n(\mathbb{C})$ 且可逆. 其共轭转置 \mathbf{A}^{\dagger} 也可逆, 且 $(\mathbf{A}^{\dagger})^{-1} = (\mathbf{A}^{-1})^{\dagger}$.

Definition 2.7 (相似). 设 $A, A' \in M_n(\mathbb{F})$. 如果 $\exists B \in M_n(\mathbb{F})$ s.t. B 可逆且有 $A' = B^{-1}AB$, 那么我们称 A 和 A' 相似 (similar), 记为 $A \sim A'$.

不难看出,相似关系是一个等价关系.

Definition 2.8 (合同矩阵). 设 $A, A' \in M_n(\mathbb{F})$. 如果 $\exists B \in M_n(\mathbb{F})$ s.t. B 可逆且有 $A' = B^T A B$, 那么我们称 A 和 A' 合同 (congruence).

§3 行列式

Definition 2.9 (迹). 设 $\mathbf{A} = (a_{ij})_{i,j \in n} \in M_n(\mathbb{F})$. 方阵 \mathbf{A} 的迹定义为 $\operatorname{tr} \mathbf{A} := \sum_{i \in n} a_{ii}$.

Theorem 2.4 (迹的交换性). 设 $A, B \in M_n(\mathbb{F})$. tr(AB) = tr(BA).

Proof.

$$AB = \left(\sum_{k \in n} a_{ik} b_{kj}\right), \quad BA = \left(\sum_{k \in n} b_{ik} a_{kj}\right).$$

从而

$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \sum_{i \in n} \sum_{k \in n} a_{ik} b_{ki} = \sum_{k \in n} \sum_{i \in n} b_{ki} a_{ik} = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A}).$$

§3 行列式

行列式的公理化构造我们在定义 7.3 中已经给出了. 我们这里做出一个不加解释的定义 1 ,并不加证明地给出它的一些性质.

Definition 3.1 (行列式). 方阵 $A \in M_n(\mathbb{F})$ 的行列式 $\det A := |a_{ij}|_{i,j \in n}$ 定义为:

$$\det \mathbf{A} = |a_{ij}|_{i,j \in n} = \sum_{\pi \in S_n} \varepsilon_{\pi} \prod_{i \in n} a_{i,\pi(i)}$$

Theorem 3.1 (行列式的反对称性). 设 $\mathbf{A} = (\mathbf{a}_j)_{j \in n}$, 那么 $\forall \pi \in S_n$, $|\mathbf{a}_{\pi(j)}|_{j \in n} = \varepsilon_{\pi} \det \mathbf{A}$.

Theorem 3.2. $\det A = \det A^{\mathrm{T}}$.

Theorem 3.3 (行列式的线性 1). 设 $A = (a_j)_{j \in n}$, $A' = (a'_j)_{j \in n}$, 其中 $j \neq j_0$ 时 $a'_j = a_j$; 但 $a'_{j_0} = \lambda a_{j_0}$, $\lambda \in \mathbb{F}$.

$$\det \mathbf{A}' = \lambda \det \mathbf{A}.$$

Theorem 3.4 (行列式的线性 2). 设 $A = (a_j)_{j \in n}$, $A' = (a'_j)_{j \in n}$, 其中 $j \neq j_0$ 时 $a'_j = a_j$.

$$\det \mathbf{A} + \det \mathbf{A}' = |\mathbf{a}''_j|_{j \in n},$$

其中 $j \neq j_0$ 时 $\mathbf{a}_j'' = \mathbf{a}_j$; $\mathbf{a}_{j_0}'' = \mathbf{a}_{j_0}' + \mathbf{a}_{j_0}$.

设 $I, J \in \mathcal{P}(n)$, 而 |I| = |J|. 记 $M_{IJ} := |a_{k\ell}|_{k \in n-I; \ell \in n-J}$ 为 A 的子式 (minor), 而代 数子式 (cofactor) 则是定义为 $A_{IJ} := (-1)^{\sum_{i \in I} i + \sum_{j \in J} j} M_{IJ}$. 如果 |I| = |J| = 1, 那么我们称 $M_{ij} := M_{\{i\}\{j\}}$ 为首子式 (first minor), 对应的代数子式也可记为 A_{ij} . 那么,以下的定理将给出一种计算行列式的递推方法:

35

¹几何解释可见于 [1].

Theorem 3.5 (行列式按行 (列) 展开). $\forall k \in n$,

$$\det \mathbf{A} = \sum_{i \in n} a_{ik} A_{ik}; \quad \det \mathbf{A} = \sum_{j \in n} a_{kj} A_{kj}.$$

以下的定理确保了定义 7.3 和定义 3.1 的一致性, 并且这是唯一的构造方式.

Theorem 3.6 (行列式的唯一性). 设 $\mathcal{D} \in \mathcal{L}_n(\mathbb{F}^n; \mathbb{F})$ (即 $\mathcal{D}: M_n(\mathbb{F}) \to \mathbb{F}$ 而且是 n 重线性的). 倘若 \mathcal{D} 还是反对称的,即 $\forall \pi \in S_n$, $\mathcal{D}(\boldsymbol{x}_{\pi(j)})_{j \in n} = \varepsilon_{\pi} \mathcal{D}(\boldsymbol{x}_j)_{j \in n}$,那么 $\forall \boldsymbol{A} \in M_n(\mathbb{F})$, $\mathcal{D}(\boldsymbol{A}) = \mathcal{D}(\boldsymbol{I}) \det \boldsymbol{A}$.

它的证明需要利用线性和反对称性,利用行变换将矩阵转换为对角的. 取 $\mathcal{D}(\boldsymbol{I})=1$,我们就得到了 $\mathcal{D}=\det$.

取 $\mathcal{D}(I) = \det B$ 推出的一个重要的性质是:

Theorem 3.7 (行列式的积). $\forall A, B \in M_n(\mathbb{F}), \det(AB) = \det A \det B$.

附录 C 多项式

§4 多项式环

Definition 4.1 (多项式环). 设 R 是一个交换环, $\langle X \rangle := \{X^n \mid n \in \mathbb{N}\}$ 是 X 生成的幺半群, 记 $I := X^0$. 若形如 $P(X) := \sum_{i \in \mathbb{N}} p_i X^i$ 的形式 (称为**多项式**, 其中只有有限个 p_i 非零) 的集合¹:

$$R[X] := \left\{ \sum_{i \in \mathbb{N}} p_i X^i \middle| (p_i)_{i \in \mathbb{N}} \in R^{<\mathbb{N}} \right\}$$

上定义了加法:

$$P(X) + Q(X) := \sum_{i \in \mathbb{N}} p_i X^i + \sum_{i \in \mathbb{N}} q_i X^i = \sum_{i \in \mathbb{N}} (p_i + q_i) X^i$$

和乘法:

$$P(X)Q(X) := \left(\sum_{i \in \mathbb{N}} p_i X^i\right) \left(\sum_{i \in \mathbb{N}} q_i X^i\right) = \sum_{\ell \in \mathbb{N}} \sum_{i+j=\ell} p_i q_j X^\ell,$$

那么, 我们称 R[X] 是 R 上变元 X 的**多项式环**. 在变元是明确的时候, 多项式 P(X) 也简记为 P.

记 $\deg P(X) := \max\{n \mid p_n \neq 0\}$ 为多项式 P(X) 的次数. 而 $(p_n)_{n \in \deg P(X)+1}$ 是多项式的系数, 其中 p_0 是常数项, 而 $p_{\deg P(X)}$ 是最高次项系数或首项系数.

所有系数都为 0 的多项式被称为零多项式, 次数为 1 的多项式被称为线性多项式.

不难验证, R[X] 的单位元和零元分别是 R 的单位元和零元.

以下给出一些不难证明的定理, 如果读者感到困难, 请翻阅参考资料 [1]:

Theorem 4.1. $\forall P(X), Q(X) \in A[A], \deg(P(X) + Q(X)) \leq \max\{\deg P(X), \deg Q(X)\}, \deg(P(X)Q(X)) \leq \deg P(X) + \deg Q(X).$

Theorem 4.2. 如果 A 是整环, A[X] 也是整环².

 $^{{}^{1}}R^{<\mathbb{N}} := \bigcup_{n\in\mathbb{N}} R^{n}$

 $^{^{2}}$ 考虑到 A 是 A[X] 的子环, 逆命题也成立.

Theorem 4.3 (多项式环的泛性). 设 R 是一个交换环, A 是 R 的子环. $\forall t \in R$, $\exists!\Pi_t \in \text{Hom}(A[X],R)$, s.t. $\Pi_t(X) = t \land \forall a \in A(\Pi_t(a) = a)$.

Proof. 不难验证

$$\Pi_t \colon \sum_{n \in \mathbb{N}} p_n X^n \mapsto \sum_{n \in \mathbb{N}} p_n t^n$$

即所求.

我们把这样的 $\Pi_t(P) =: P(t)$ 称为 P 在 X = t 时的取值, 或者说用 t 替换 X. 当两个多项式不相等时, 它们的值却可能相等.

Definition 4.2 (代数元和超越元). 若 $t \in R$ 满足 $\exists P \in A[X]$ s.t. $\exists n \in \mathbb{N} (p_n \neq 0) \land P(t) = 0$, 那么 $t \in A$ 上的一个代数元. 若 $t \in R$ 满足 Π_t 是单的, 那么我们称其为 A 上的一个超越元.

对于 $A = \mathbb{Q}$, $R = \mathbb{C}$ 的情况, 代数元和超越元又被称为**代数数**和**超越数**.

类似于整数的带余除法, 我们可以建立整的多项式环上的带余除法理论.

Theorem 4.4 (多项式的带余除法). 设 A 是整环, $F(X) \in A[X]$, 其首项系数在 A 中可逆. $\forall G(X) \in A[X], \exists! Q(X), R(X) \in A[X]$ s.t.

$$F(X) = Q(X)G(X) + R(X) \wedge \deg R(X) < \deg G(X).$$

Proof. 设 $F(X) = \sum_{i \in n^+} f_i X^i$, $G(X) = \sum_{j \in m^+} g_j X^j$, 其中 $n = \deg F(X)$, $m = \deg G(X)$. 3 我们采取归纳法证明这样的 Q(X), R(X) 的存在性: n = 0 时, 倘 m > 0, 则令 Q(X) = 0, R(X) = F(X); 倘 m = 0, 则令 R(X) = 0, $Q(X) = f_0 g_0^{-1}$.

若 n > 0, 倘 m > n, 则令 Q(X) = 0, R(X) = F(X) 即可; 倘 $m \le n$, 记

$$\bar{F}(X) := F(X) - f_0 g_0^{-1} X^{n-m} G(X)$$
.

因 $\deg \bar{F}(X) < \deg F(X)$, 如若 $\bar{F}(X)$ 满足可找到 $\bar{Q}(X)$ 和 R(X) s.t. $\bar{F}(X) = \bar{Q}(X)G(X) + R(X)$, 则令 $Q(X) = f_0 g_0^{-1} X^{n-m} + \bar{Q}(X)$. 这里的 Q(X), R(X) 即所要找的.

综上, $\forall n \in \mathbb{N}$ 都成立.

现在我们还需要证明唯一性.

倘若 F(X) = Q(X)G(X) + R(X) = Q'(X)G(X) + R'(X), 那么

$$[Q(X) - Q'(X)]G(X) = R(X) - R'(X)$$
(4-1)

由定理 4.1, 再考虑到 A 是一个整环, 假设 $Q(X) \neq Q'(X)$, $R(X) \neq R'(X)$ 我们能得到

$$\deg (R(X) - R'(X)) = \deg (Q(X) - Q'(X)) + \deg G(X).$$

³这里排除了零多项式, 事实上, 它的情况是非常简单的, 只需让 Q(X) = R(X) = 0 即可.

§5 多项式的根 39

从而我们得到 $\max\{\deg R(X),\deg R'(X)\}\geq \deg(R(X)-R'(X))\geq G(X)$,这和 $\deg R(X)<\deg G(X)$ 矛盾. 从而,要么 Q(X)=Q'(X),要么 R(X)=R'(X),而这两者因式 4-1 能互相推 出.

在整的多项式环中, 由首项可逆的 G(X) 和 F(X) 得到 F(X) = Q(X)G(X) + R(X) 的运算称为**多项式的带余除法** (polynomial long division). 这里 F(X) 被称为被除式 (dividend), G(X) 称为除式 (divisor); 得到的 Q(X) 称为商 (quotient) 而 R(X) 称为余式 (remainder).

倘若余式 R(X)=0, 则称 G(X) 整除 F(X), 或 F(X) 被 G(X) 整除, 此时 G(X) 被称为 F(X) 的一个因式 (factor), 而 F(X) 则是 G(X) 的一个倍式 (multiple).

§5 多项式的根

参考文献

- [1] A.I. Kostrikin. *Introduction to Algebra*. Universitext Springer-Verlag. Springer-Verlag, 1982. ISBN: 9783540907114. URL: https://www.springer.com/gp/book/9780387907116.
- [2] 柯斯特利金 (俄罗斯). 代数学引论 (第 2 卷). 线性代数. 3rd ed. 俄罗斯教材选译. 高等教育出版社, 1991. ISBN: 9787040214918. URL: http://gen.lib.rus.ec/book/index.php?md5=aed6abf2e5b956fd92baf7bd6298dec6.

符号列表

这里列出了笔记中出现的重要符号.

```
A^{-1}, 34
                                                                                                              g*S, 6
m{A}^\dagger,\, m{34}
                                                                                                              G/N, 7
A_{IJ}, \, 35
                                                                                                              G \simeq G', 5
A_{ij}, \frac{35}{}
                                                                                                              \gamma_{\mathscr{A}}(\lambda), \frac{27}{2}
(a_{ij})_{i\in m,\,j\in n},\,\frac{33}{3}
                                                                                                              I, 33
|a_{ij}|_{i,j\in n}, \frac{35}{5}
                                                                                                              Inn(G), 5
A_n, 32
\boldsymbol{A}^{\mathrm{T}},\, \boldsymbol{34}
                                                                                                              [k]_n, \frac{8}{8}
Aut(G), 5
                                                                                                              \ker f, 6
char(F), \frac{10}{}
                                                                                                              \mathcal{L}^-(V;\mathbb{F}), \frac{20}{20}
                                                                                                              \mathcal{L}_p(V; U), 19
\chi_{\mathscr{A}}(X), 27
                                                                                                              \mathcal{L}^+(V;\mathbb{F}), \, {\color{red} 20}
Cl(g), 6
                                                                                                              \mathcal{L}(V), 23
deg P(X), 37
                                                                                                              \mathcal{L}(V_0, \cdots, V_{p-1}; U), 19
\det, 20
                                                                                                              \mathcal{L}(V,U), \, \mathbf{14}
\operatorname{diag}(a_{ii})_{i\in n}, \, 33
                                                                                                              M_{IJ}, \, 35
E_{\mathscr{A}}(\lambda), \frac{27}{2}
                                                                                                              M_{ij}, \, \frac{35}{}
End(V), 23
                                                                                                              M_{m\times n}(\mathbb{F}), \frac{33}{3}
\varepsilon_{\pi},\,32
                                                                                                               M_n(\mathbb{F}), \frac{33}{3}
\mathbb{F}_p, \frac{9}{9}
                                                                                                              N \triangleleft G, 6
\langle g_0 \rangle, 4
                                                                                                              O, 33
```

 $\mathcal{O}, \frac{24}{}$

 $O_{m \times n}, \, \frac{33}{3}$

 $P(X), \frac{37}{}$

 $R\cong R', \, 7$

 $R[X], \frac{37}{}$

 $\langle S \rangle$, 4

S*g, 6

 $S_n, \, \frac{3}{3}, \, \frac{30}{30}$

S(X), 3

tr, 35

U(R), 8

 V^* , 17

 $(X,*), \frac{2}{}$

 $(X, *, e), \frac{2}{}$

 $(\boldsymbol{x}_j)_{j\in n},\, \frac{33}{3}$

 $x + L, \frac{16}{}$

 $\mathbb{Z}_n, \frac{8}{8}$

 $\mathbb{Z}_p^*,\, 9$

索引

Abelian 群, 3	代数元, <mark>38</mark>
Cayley 定理, 5	代数子式, 35
	代数数, <mark>38</mark>
domain, 8	代数系统, 2
	代数结构, 2
Fermat 小定理, 9	余向量, 17
Grassmann 恒等式, 15	余式, <mark>39</mark>
n 维向量, <mark>33</mark>	倍式, <mark>39</mark>
n 阶元, 4	偶置换, <mark>32</mark>
16 617u, 1	元素, <mark>33</mark>
<i>p</i> -线性型, 19	共变向量, 17
π-等价, <mark>30</mark>	共轭, 5
Steintz 替换, 13	共轭映射,5
	共轭类, 6
不变子空间, 27	共轭转置, <mark>34</mark>
不相交, 30	内自同构群,5
久期方程, <mark>27</mark>	几何重数, <mark>27</mark>
二元运算, <mark>2</mark>	函数环, 8
二次型, <mark>21</mark>	分配律, <mark>7</mark>
亏数, <mark>23</mark>	列向量, <mark>33</mark>
互补, 1 5	剩余类环,8
交换环, 7	半群, <mark>2</mark>
交换的, <mark>2</mark>	单位元, <mark>2</mark>
代数, 24	单位阵, 33

44 索引

单同态, 7	子幺半群,3
单态射, 6	子式, 35
双线性型, 20	子环, <mark>7</mark>
反变向量, 17	子空间, 12
反对称域,8	子群, 3
反对称的, 19	完备正交组, <mark>26</mark>
变换群, 3	对偶基底, 17, 18
可逆的, <mark>3</mark>	对偶空间, 17
右可逆, <mark>3</mark>	对称的, 19
右陪集, 6	对角矩阵, 33
右零因子,8	左可逆, 3
合同, <mark>34</mark>	左正规, 3
同态, 6, 7, 14	左陪集, 6
同构, 5, 7, 14	常数项, 37
同构映射, 5	幂零指数, 25
向量, 11 , 33	幂零算子, 25
向量空间, <mark>11</mark>	平凡群, 3
向量组, <mark>11</mark>	平凡零因子,8
和, <mark>2, 15</mark>	幺半群, 2
商, <mark>39</mark>	张出, <mark>12</mark>
商空间, <mark>16</mark>	循环, <mark>30</mark>
商群, <mark>7</mark>	循环群, 4
因式, 39	
坐标, <mark>12</mark>	态射, 6, 7
域, <mark>9</mark>	扩域, <mark>9</mark>
基底, 12	投影, <mark>26</mark>
多重线性型, 19	整数环,7
多项式, 37	整环, 8
多项式环, 37	整除, <mark>39</mark>
多项式的带余除法, 39	斜域, 8
奇偶性, <mark>32</mark>	方阵, <mark>33</mark>
奇置换, <mark>32</mark>	无穷维线性空间, 12
子半群, 3	最大线性无关组, 13
子域, <mark>9</mark>	最高次项系数,37

索引 45

有限幺半群, 2	类数, <mark>6</mark>
极化的, <mark>21</mark>	系数, <mark>37</mark>
极小多项式, 24	素域, 9
标准型, <mark>21</mark>	纯量, <mark>11</mark>
核, 6, 7	线性函数, 16
模 n 的剩余类的导出集, 8	线性包络, 11
模 n 的剩余类环, 8	线性变换, <mark>22</mark>
次数, <mark>37</mark>	线性型, 16
正交等方矩阵组, 26	线性多项式, 37
正交等方算子组, 26	线性无关, 12
正规子群, 6	线性映射, <mark>22</mark>
满同态, 7	线性泛函, 16
满态射, 6	线性独立, 12
	线性的, <mark>22</mark>
特征, 10	线性相关, 12
特征值, <mark>27</mark>	线性空间, <mark>11</mark>
特征向量, 27	线性算子, <mark>22</mark>
特征多项式, 27	线性算子代数, 24
特征方程, 27	线性组合, <u>11</u>
特征空间, 27	结合的, 2
环, 7	维数, <mark>12</mark>
生成, 12	置换幺半群,2
生成元, 4	置换群, 3, 30
直和, 15	群, <mark>3</mark>
相似, 34	
真子群, 3	自同态, 6
矩阵, <mark>33</mark>	自同构, 5
矩阵的和, 34	自同构群,5
矩阵的积, 34	自然同构, 18
秩, 13, 23	行列式, 20, 26, 35
积, <mark>2</mark>	行向量, <mark>33</mark>
符号, 32	被除式, 39
等方算子, <mark>26</mark>	规范基底, 21
类函数, 6	超越元, 38

46

超越数, 38 轨道, 30 轨道长度, 30 转换矩阵, 14 转置, 34 轮换, 30 轮换长度, 30 迹, 26 逆, 3, 34 逆元, 3 逆第子, 24 酉性, 11 配极, 21 阶, 2 阶数, 4 除式, 39 除环, 8 陪集, 6 零元, 2 零化, 24 零化度, 23 零因开式, 37 非结合式, 35 首项系数, 37