

ES-333 Microcontroller and Embedded System

Project Supervisor:

Prof. Jhuma Saha

Mentors:

- 1. Purva Choukse,
- Kaushik Chandra

Team Members:

- 1. Nitesh Maurya
- 2. Pratik Raj
- 3. Sandeep Patel
- 4. Karan Bhardwaj

SMART FARMING SYSTEM

Implementation using NodeMCU and STM32F407 Microcontrollers.

About the Project

- ❖ We have implemented a smart farming system which copes with general challenges faced by the farmers.
- ♦ We have used STM32F4XX microcontroller along with node MCU microcontroller.
- ❖ We have used a few sensors like temperature, smoke, humidity, PIR.
- ❖ We have used NodeMCU with wifi module for remote monitoring.
- Deployed a web app in order to monitor and access the whole system remotely.
- ❖ Also created a module for the OLED display.

Challenges Faced by Farmers

Unexpected fires.

Irrigation not according to soil moisture content.

Unwanted Cattle Invading the fields and destroying crops.

Unavailability of farmers during irrigation period.

Solution Developed

- Developed an integrated system using the STM32 and NodeMCU microcontrollers that solves all the discussed challenges faced by farmers.
- The integrated system comprises of fire detection system, soil moisture calculator, cattle detection system and remote control water pump.
- The systems are designed with the help of sensors and modules.
- The integrated system is operated with the help of a web application that is user friendly.

Components Required

Serial No	Components	Quantity	Appox Amount	Purchase Link
1	STM32 Microcontroller	1	=	From Lab
2	NodeMCU	2	420	<u>link</u>
3	OLED Display	1	331	<u>Link</u>
4	Temperature Sensor	4	340	<u>Link</u>
5	Smoke Sensor	4	320	link
6	Humidity Sensor	2	126	<u>Link</u>
7	Speaker/Buzzer	1	-	From Lab
8	Breadboard	4	-	From Lab
9	Servo Motor	1	99	<u>Link</u>
10	Photo resistor	4	112	<u>Link</u>
11	Resistors/Capacitor			From Lab
12	PIR Sensor	1	62	<u>Link</u>
13	9VBattery	5	105	<u>Link</u>
14	Battery connector	6	27	<u>Link</u>
15	Relay Module	5	190	<u>Link</u>
16	Electric Lamps	4	-	From Lab
17	Jumper Wires	pack of 120 wire	114	<u>link</u>
18	LEDs	5	=	From Lab
19	DIP switches	10	-	From Lab
20	DC motor combo	1	192	<u>Link</u>
21	Glue gun	1	199	<u>link</u>
22	Glue Sticks	1	129	<u>Link</u>
	Total		2766	

Sensors Used

PIR Sensor

Smoke Sensor

Humidity Sensor

Temp Sensor

Threshold Value for Sensors

```
#define TEMP1_TH 250 // analog value
#define TEMP2_TH 250
#define MOIS_TH 1650 // analog value
```

```
#define SMOKE1_TH 340  // analog Value
#define SMOKE2_TH 340
#define WifiMode 0
#define WifiPriority 0
```

Circuit and Display

Web App for Monitoring

Work Distribution

- Reading Sensors (input) values and processing in STM32.
- ❖ Output Sensors drive with STM32 microcontroller.
- **♦** Making communication between NodeMCU and STM32.
- ❖ Interfacing master and slave nodeMCU using WiFi.
- ❖ Controlling Distance Control unit and display with nodeMCU.
- ❖ Making Physical Connection and Analog Circuit for Alarms.
- **❖** Installing components and radar system on prototype.

Thank You