\checkmark

Wprowadzenie do sieci

1 Komunikacja sieciowa dziś

Podstawy konfiguracji przełącznika i urządzenia końcowego

Protokoły i modele

3.0 Wprowadzenie

3.1 Reguly

3.2 Protokoły

3.3 Zestawy protokołów

3.3.1 Zestawy protokołów sieciowych

3.3.2 Ewolucja zestawów protokołów

3.3.3 Przykład protokołu TCP/IP

3.3.4 Zestaw protokołów TCP/IP

3.3.5 Proces komunikacji TCP/IP

3.3.6 Sprawdź, czy zrozumiałeś – Zestawy protokołów

3.4 Organizacje normalizacyjne

3.4.1 Otwarte standardy

🏫 / Protokoły i modele / Dostęp do danych

Dostęp do danych

3.7.1

Adresy

Jak właśnie się nauczyłeś, konieczne jest segmentowanie wiadomości w sieci. Ale te segmentowane wiadomości nigdzie nie trafią, jeśli nie zostaną odpowiednio zaadresowane. W tym temacie omówiono adresy sieciowe. Otrzymasz również szansę na skorzystanie z narzędzia Wireshark, które pomoże Ci "wyświetlić" ruch sieciowy.

Warstwy sieci i łącza danych są odpowiedzialne za dostarczanie danych z urządzenia źródłowego do urządzenia docelowego. Jak pokazano na rysunku, protokoły na obu warstwach zawierają adres źródłowy i docelowy, ale ich adresy mają różne cele:

- Adresy źródłowe i docelowe warstwy sieci Odpowiedzialne za dostarczenie pakietu IP z oryginalnego źródła do końcowego miejsca docelowego, które może znajdować się w tej samej sieci lub w sieci zdalnej.
- Adres źródłowy i docelowy warstwy łącza danych Odpowiedzialne za dostarczenie ramki łącza danych z jednej karty interfejsu sieciowego do innej karty sieciowej w tej samej sieci.

Komunikacja sieciowa dziś Podstawy konfiguracji przełącznika i urządzenia końcowego Protokoły i modele Wprowadzenie Reguly 3.1 Protokoły Zestawy protokołów Zestawy protokołów sieciowych 3.3.1 Ewolucja zestawów protokołów 3.3.2 Przykład protokołu TCP/IP 3.3.3 Zestaw protokołów TCP/IP 3.3.4 Proces komunikacji TCP/IP 3.3.5 Sprawdź, czy zrozumiałeś -3.3.6 Zestawy protokołów Organizacje normalizacyjne Otwarte standardy 3.4.1

Adres logiczny warstwy 3

Adres IP to adres logiczny warstwy sieci lub warstwy 3 używany do dostarczania pakietu IP z oryginalnego źródła do ostatecznego miejsca docelowego, jak pokazano na rysunku.

Pakiet IP zawiera dwa adresy IP:

- Źródłowy adres IP Adres IP urządzenia wysyłającego, który jest oryginalnym źródłem pakietu.
- Docelowy adres IP Adres IP urządzenia odbierającego, który jest ostatecznym miejscem docelowym pakietu.

Adresy IP wskazują pierwotny źródłowy adres IP i końcowy docelowy adres IP. Dotyczy to przypadków, gdy źródło i miejsce docelowe znajdują się w tej samej sieci IP, lub w różnych sieciach IP.

Adres IP zawiera dwie części.

- Część sieciowa (IPv4) lub prefiks (IPv6) Część adresu po lewej stronie wskazująca sieć, której członkiem jest adres IP.
 Wszystkie urządzenia w tej samej sieci będą miały tę samą część sieciową adresu.
- Część indentyfikująca hosta (IPv4) lub identyfikator interfejsu (IPv6) Pozostała część adresu identyfikująca określone urządzenie w sieci. Ta część jest unikatowa dla każdego urządzenia lub interfejsu w sieci.

Uwaga: Maska podsieci (IPv4) lub długość prefiksu (IPv6) służy do rozgraniczenia części sieciowej adresu IP od części hosta.

1	Komunikacja sieciowa dziś	~
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~
3	Protokoły i modele	^
3.0	Wprowadzenie	~
3.1	Reguly	~
3.2	Protokoły	~
3.3	Zestawy protokołów	~
3.3.1	Zestawy protokołów sieciowy	ch
3.3.2	Ewolucja zestawów protokołó	w
3.3.3	Przykład protokołu TCP/IP	
3.3.4	Zestaw protokołów TCP/IP	
3.3.5	Proces komunikacji TCP/IP	
3.3.6	Sprawdź, czy zrozumiałeś - Zestawy protokołów	
3.4	Organizacje normalizacyjne	~
3 4 1	Otwarte standardy	

3.7.3

Urządzenia w tej samej sieci

W niniejszym przykładzie mamy do czynienia z komputerem klienta PC1, który łączy się z serwerem FTP, znajdującym się w tej samej sieci IP.

- Źródłowy adres IPv4 adres IPv4 urządzenia wysyłającego, komputera klienckiego PC1: 192.168.1.110.
- Docelowy adres IPv4 adres IPv4 urządzenia odbierającego, serwera FTP: 192.168.1.9

Zauważ na rysunku, że część sieciowa zarówno źródłowego adresu IPv4, jak i docelowego adresu IPv4 to ta sama sieć. Część sieciowa źródłowego adresu IPv4 i część sieciowa docelowego adresu IPv4 są takie same i dlatego; źródło i miejsce docelowe znajdują się w tej samej sieci.

Adresy MAC są fizycznie wbudowane w kartach sieciowych Ethernet.

• Źródłowy adres MAC - Jest to adres łącza danych, adres Ethernetowy MAC urządzenia, które wysyła pakiet IP. Adres MAC karty sieciowej Ethernet komputera PC1 to AA-AA-AA-AA-AA, zapisany w notacji szesnastkowej.

'	Komunikacja sieciowa dzis	~
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~
3	Protokoły i modele	^
3.0	Wprowadzenie	~
3.1	Reguly	~
3.2	Protokoły	~
3.3	Zestawy protokołów	~
3.3.1	Zestawy protokołów sieciowyc	ch
3.3.2	Ewolucja zestawów protokołó	W
3.3.3	Przykład protokołu TCP/IP	
3.3.4	Zestaw protokołów TCP/IP	
3.3.5	Proces komunikacji TCP/IP	
3.3.6	Sprawdź, czy zrozumiałeś - Zestawy protokołów	
3.4	Organizacje normalizacyjne	~
3.4.1	Otwarte standardy	

• Docelowy adres MAC - gdy urządzenie odbierające znajduje się w tej samej sieci co urządzenie wysyłające, jest to adres łącza danych urządzenia odbierającego. W tym przykładzie docelowym adresem MAC jest adres MAC serwera FTP: CC-CC-CC-CC-CC, zapisany w notacji szesnastkowej.

Pakiet IP opakowany w ramkę Ethernet można bezpośrednio przesłać z PC1 do serwera FTP.

3.7.5

Urządzenia w sieci zdalnej

Ale jakie są role adresu warstwy sieci i adresu warstwy łącza danych, gdy urządzenie komunikuje się z urządzeniem w sieci zdalnej? W tym przykładzie mamy komputer kliencki PC1 komunikujący się z serwerem o nazwie Serwer sieci Web w innej sieci IP

3.7.6

Rola adresów warstwy sieci

Gdy nadawca pakietu znajduje się w innej sieci niż jego odbiorca, adresy IP źródła i celu będą reprezentować hosty w różnych sieciach. Jest to widoczne w części sieciowej adresu IP hosta docelowego, która jest inna niż w przypadku adresu IP nadawcy.

- Źródłowy adres IPv4 adres IPv4 urządzenia wysyłającego, komputera klienckiego PC1: 192.168.1.110.
- Docelowy adres IPv4 adres IPv4 urządzenia odbierającego, serwera, serwera WWW: 172.16.1.99.

Zauważ na rysunku, że część sieciowa źródłowego adresu IPv4 i docelowego adresu IPv4 są różne.

Gdy nadawca i odbiorca, batotu i znajdują się w różnych sieciach, ramki łącza danych Ethernet nie mogą być wysyłane bezpośrednio do hosta docelowego, ponieważ host nie jest bezpośrednio osiągalny w sieci nadawcy. W takim przypadku ramkę Ethernet należy przesłać do innego urządzenia znanego jako brama domyślna lub router. W naszym przykładzie, funkcję bramy domyślnej pełni R1. R1 ma adres łącza danych Ethernet, który jest w tej samej sieci co PC1. Umożliwia to komputerowi PC1 przesłanie danych bezpośrednio do routera.

- Źródłowy adres MAC Ethernetowy adres MAC urządzenia wysyłającego, w tym przypadku PC1. Adres MAC Ethernetowej karty sieciowej klienta PC1 ma postać: AA-AA-AA-AA-AA.
- **Docelowy adres MAC** Gdy urządzenie odbiorcze znajduje się w innej sieci niż urządzenie wysyłające, to adresem docelowym MAC w ramce jest adres bramy domyślnej (routera). W tym przykładzie docelowym adresem MAC jest adres MAC interfejsu Ethernet R1, 11-11-11-11-11. Jest to interfejs dołączony do tej samej sieci co PC1, jak pokazano na rysunku.

Po przygotowaniu tak zaadresowanej ramki Ethernetowej wraz z enkapsulowanym pakietem IP, może być ona przesłana bezpośrednio do R1. Następnie R1 przesyła pakiet do celu, którym w tym przypadku jest Web Server. Oznacza to, że R1 przesyła pakiet do innego routera lub bezpośrednio do Web Serwera, jeżeli znajduje się on w sieci bezpośrednio podłączonej do R1.

docelowego w sieciach zdalnych są wysyłane do bramy domyślnej. Adresy MAC Ethernet i brama domyślna są omówione bardziej szczegółowo w innych modułach.

Adres fizyczny warstwy łącza danych, czyli warstwy 2 pełni nieco odmienną rolę, gdyż dotyczy lokalnych połączeń. Umożliwia on poprawne dostarczenie ramki łącza danych z jednego interfejsu sieciowego do innego interfejsu sieciowego znajdującego się w tej samej sieci.

Przed wysłaniem poprzez sieć (przewodową lub bezprzewodową) pakiet IP musi zostać opakowany w odpowiednią ramkę łącza danych, aby mógł być transmitowany przez fizyczne medium.

Kliknij każdy przycisk, aby wyświetlić ilustrację zmiany adresów warstwy łącza danych w każdym skoku ze źródła do miejsca docelowego

Z hosta do routera Z routera do routera Z routera do serwera DHCP

Wprowadzenie do sieci

1	Komunikacja sieciowa dziś		
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~	
3	Protokoły i modele	^	
3.0	Wprowadzenie	~	
3.1	Reguly	~	
3.2	Protokoły	~	
3.3	Zestawy protokołów	~	
3.3.1	Zestawy protokołów sieciowyc	ch	
3.3.2	Ewolucja zestawów protokołów	v	
3.3.3	Przykład protokołu TCP/IP		
3.3.4	Zestaw protokołów TCP/IP		
3.3.5	Proces komunikacji TCP/IP		
3.3.6	Sprawdź, czy zrozumiałeś - Zestawy protokołów		
3.4	Organizacje normalizacyjne	~	
3.4.1	Otwarte standardy		

Host do routera

Gdy pakiet IP przemieszcza się od hosta do routera, routera do routera i wreszcie routera do hosta, w każdym punkcie na drodze pakiet IP jest enkapsulowany w nowej ramce łącza danych. Każda ramka łącza danych zawiera adres źródła danych karty sieciowej wysyłającej ramkę oraz adres łącza danych docelowych karty sieciowej odbierającej ramkę.

Protokół łącza danych warstwy 2 służy wyłącznie do dostarczania pakietu z karty sieciowej do karty sieciowej w tej samej sieci. Router usuwa informacje warstwy 2, gdy są odbierane na jednej karty sieciowej a dodaje nowe informacje łącza danych przed przekazaniem wyjściową kartą sieciową w drodze do miejsca docelowego.

Pakiet IP jest enkapsulowany w ramce łącza danych, która zawiera następujące informacje o łączu danych:

- Adres źródłowy łącza danych adres fizyczny karty, który wysyła ramkę łącza danych.
- Adres docelowy łącza danych adres fizyczny karty, który odbiera ramkę łącza danych. Adres ten jest albo routerem następnego przeskoku lub adresem urządzenia końcowego docelowego.

1	Komunikacja sieciowa dziś	~
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~
3	Protokoły i modele	^
3.0	Wprowadzenie	~
3.1	Reguły	~
3.2	Protokoły	~
3.3	Zestawy protokołów	~
3.3.1	Zestawy protokołów sieciowyc	ch
3.3.2	Ewolucja zestawów protokołów	W
3.3.3	Przykład protokołu TCP/IP	
3.3.4	Zestaw protokołów TCP/IP	
3.3.5	Proces komunikacji TCP/IP	
3.3.6	Sprawdź, czy zrozumiałeś - Zestawy protokołów	
3.4	Organizacje normalizacyjne	~
3.4.1	Otwarte standardy	

Laboratorium - Instalacja programu Wireshark

Wireshark jest programowym analizatorem protokołów sieciowych, czasem zwany bywa snifferem pakietów. Używany jest do analizy sieci, diagnozowania problemów, wspierania rozwoju różnego rodzaju oprogramowania i nowych protokołów. Jego głównym zastosowaniem jest również edukacja. Wireshark jest używany przez cały kurs do demonstracji koncepcji sieciowych. W tym laboratorium pobierzesz i zainstalujesz Wireshark.

▲ Instalacja programu Wireshark

3.7.10

Laboratorium - Wykorzystanie programu Wireshark do badania ruchu sieciowego

W tym ćwiczeniu będziemy wykorzystywali program Wireshark, który służy do przechwytywania i analizowania ruchu.

¥ Wykorzystanie programu Wireshark do badania ruchu sieciowego

3.7.11

Sprawdź, czy zrozumiałeś - Dostęp do danych

(i) Sprawdź swoją wiedzę na temat enkapsulacji danych, wybierając NAJLEPSZĄ odpowiedź na poniższe pytania.

 Prawda czy fałsz? Ramki wymieniane między urządzeniami w różnych sieciach IP muszą być przesyłane do bramy domyślnej.

Prawda

W

/prowadzenie do sieci			Falsz	
1	Komunikacja sieciowa dziś	~	Co służy do określenia części sieciowej adresu IPv4? maska podsieci	
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~	adres MAC prawa części adresu IP lewa część adresu MAC	
3	Protokoły i modele	^	 Które z poniższych stwierdzeń są prawdziwe w odnie sieciowej i adresów warstwy łącza danych? (Wybierz 	
3.0	Wprowadzenie	~	Adresy warstwy łącza danych są logiczne i adresy fizyczne.	
3.1	Reguly	~	Adresy warstwy sieciowej są wyrażone jako 12 cy adresy warstwy łącza danych są dziesiętne.	
3.2	Protokoły	~	Adresy warstwy sieciowej są logiczne a adresy łą jako 12 cyfr szesnastkowych.	
3.3	Zestawy protokołów	~	Adresy warstwy łącza danych są fizyczne i adresy logiczne.	
3.3.1	Zestawy protokołów sieciowy	/ch	Adresy warstwy sieciowej mają długość 32 lub 12	
3.3.2	Ewolucja zestawów protokołó	ów	Adresy warstwy łącza danych mają długość 32 bi	
3.3.3	Przykład protokołu TCP/IP		5. Jaka jest kolejność dwóch adresów w ramce łącza da	
2.4	Zastow protokolów TCD/ID		źródłowy MAC, docelowy MAC	
3.3.4	Zestaw protokołów TCP/IP		docelowy MAC, źródłowy IP	
3.3.5	Proces komunikacji TCP/IP		docelowy IP, źródłowy IP docelowy MAC, źródłowy MAC	
3.3.6	Sprawdź, czy zrozumiałeś - Zestawy protokołów		źródłowy IP, docelowy IP	
3.4	Organizacje normalizacyjne	~	 Prawda czy fałsz? Adresy łącza danych są fizyczne, v w ramce łącza danych ze źródła do miejsca docelowa 	
3.4.1	Otwarte standardy		Prawda	

Fałsz

Prawda czy fałsz? Prawa część adresu IP służy do identyfikacji sieci, do której	
należy urządzenie.	
Prawda	
Falsz	
3. Co służy do określenia części sieciowej adresu IPv4?	
maska podsieci	
adres MAC	
prawa części adresu IP	
lewa część adresu MAC	
4. Które z poniższych stwierdzeń są prawdziwe w odniesieniu do warstwy sieciowej i adresów warstwy łącza danych? (Wybierz trzy odpowiedzi).	
Adresy warstwy łącza danych są logiczne i adresy warstwy sieciowej są fizyczne.	
Adresy warstwy sieciowej są wyrażone jako 12 cyfr szesnastkowych, a adresy warstwy łącza danych są dziesiętne.	
Adresy warstwy sieciowej są logiczne a adresy łącza danych są wyrażone jako 12 cyfr szesnastkowych.	
Adresy warstwy łącza danych są fizyczne i adresy warstwy sieciowej są logiczne.	
Adresy warstwy sieciowej mają długość 32 lub 128 bitów.	
Adresy warstwy łącza danych mają długość 32 bitów.	
5. Jaka jest kolejność dwóch adresów w ramce łącza danych?	
źródłowy MAC, docelowy MAC	
docelowy MAC, źródłowy IP	
docelowy IP, źródłowy IP	
docelowy MAC, źródłowy MAC	
źródłowy IP, docelowy IP	
 Prawda czy fałsz? Adresy łącza danych są fizyczne, więc nigdy nie zmieniają się w ramce łącza danych ze źródła do miejsca docelowego. 	Sprawdź
Prawda	Rozwiązanie

Wprowadzenie do sieci

Komunikacja sieciowa dziś Podstawy konfiguracji przełącznika i urządzenia końcowego Protokoły i modele Wprowadzenie \checkmark Reguly 3.1 Protokoły 3.2 Zestawy protokołów \vee Zestawy protokołów sieciowych 3.3.1 Ewolucja zestawów protokołów 3.3.2 Przykład protokołu TCP/IP 3.3.3 Zestaw protokołów TCP/IP 3.3.4 Proces komunikacji TCP/IP 3.3.5 Sprawdź, czy zrozumiałeś -3.3.6 Zestawy protokołów Organizacje normalizacyjne

3.4.1

Otwarte standardy