Übungen zur Einführung in die

Astronomie und Astrophysik I, 9

- 1. Für ein Sonnenmodell erhält man im Zentrum ungefähr $T=1.5\times 10^7~{\rm K}$ und $\rho=10^5\,{\rm kg}\,{\rm m}^{-3}$; das mittlere Molekulargewicht sei $\mu=0.62$.
 - a) Wie groß ist das Verhältnis von Strahlungsdruck zu Gasdruck?
 - b) Bei welcher Sternmasse erreicht der zentrale Strahlungsdruck 20% des Gasdrucks. (Verwenden Sie die einfachen Skalierungs- bzw. Homologierelationen für Hauptreihensterne)

(3 Punkte)

- 2. Ein Stern von $10 M_{\odot}$ bestehe anfangs nur aus Wasserstoff. In einem Zentralbereich, der 20% der Sternmasse enthält, werde der Wasserstoff im Laufe der Entwicklung vollständig in 56 Fe umgewandelt.
 - a) Wieviel Kernenergie wird dabei freigesetzt?
 - b) Welcher Bruchteil davon entfällt auf die erste Stufe der Umwandlung zu ⁴He im sog. Hauptreihenstadium?
 - c) Wie lange dauert diese Hauptreihenphase? (Verwenden Sie die empirische Masse-Leuchtkraft-Relation für Hauptreihensterne: $L \propto M^{3,5}$)

Die Kernmassen (in atomaren Masseneinheiten $u, 1 u = 1,6605389 \times 10^{-27} \text{ kg}$) betragen: 1,0072766 für $^{1}\text{H}, 4,0015065$ für ^{4}He und 55,920679 für ^{56}Fe .

(3 Punkte)

3. Schätzen Sie die Zahl der pp-Reaktionen pro Sekunde für die Sonne ab. Wieviele Neutrinos $\nu_{\rm e}$ werden die Erde – als Resultat dieses Prozesses – pro Sekunde treffen? (Hinweis: Zur Vereinfachung sollen nur die pp1-Reaktionen betrachtet werden)

(2 Punkte)

- 4. Bei dem sog. Drei-Alpha-Prozess werden drei Heliumkerne (α -Teilchen) durch Kernfusionsreaktionen in Kohlenstoff umgewandelt.
 - a) Berechnen Sie zunächst die Kernmasse von $^{12}_{6}$ C in Einheiten von u. Warum lässt sich der Literaturwert von $11,9967096\,u$ nicht exakt mit der Massenbilanz $m_{\rm K}=m_{\rm A}-Z\,m_{\rm e}$ reproduzieren?
 - b) Welche Energie liefert der 3α -Prozess pro Kohlenstoffatom?
 - c) Schätzen Sie die Dauer des Heliumbrennens der Sonne ab. Dafür soll vereinfachend angenommen werden, dass sie als Roter Riese eine konstante Leuchtkraft von $100 L_{\odot}$ hat und 10% der Sonnenmasse für diesen Prozess zur Verfügung steht.

(2 Punkte)