Agrégation Interne

Fonctions analytiques réelles

I étant un intervalle réel ouvert non vide, on dit qu'une fonction $f: I \to \mathbb{C}$ est analytique sur I, si elle est développable en série entière au voisinage de tout point x_0 de I, ce qui signifie qu'il existe un réel $r_0 > 0$ tel que $[x_0 - r_0, x_0 + r_0] \subset I$ et une suite $(a_k)_{k \in \mathbb{N}}$ de nombres complexes tels que :

$$\forall x \in [x_0 - r_0, x_0 + r_0], \ f(x) = \sum_{k=0}^{+\infty} a_k (x - x_0)^k$$

On rappelle qu'une telle fonction est indéfiniment dérivable sur I.

- I - Un théorème de Bernstein

À toute fonction f à valeurs réelles et de classe C^{∞} sur un voisinage]-r,r[de 0 avec r>0, on associe les suites de fonctions $(P_{n,f})_{n\in\mathbb{N}}$ et $(R_{n,f})_{n\in\mathbb{N}}$ définies sur]-r,r[par :

$$P_{n,f}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}, \ R_{n,f}(x) = f(x) - P_{n,f}(x)$$

- 1. Donner, pour $f \in \mathcal{C}^{\infty}(]-r,r[\,,\mathbb{R})$ et $x \in]-r,r[\,,$ une expression intégrale de $R_{n,f}(x)$.
- 2. Soit $f \in \mathcal{C}^{\infty}(]-r,r[\,,\mathbb{R})$ telle que $f^{(k)}(x) \geq 0$ pour tout $k \in \mathbb{N}$ et tout $x \in]-r,r[\,$. Montrer que :
 - (a) pour tout $n \in \mathbb{N}$ et tout $x \in]0, r[$, on a $0 \le R_{n,f}(x) \le f(x)$;
 - (b) pour tout $n \in \mathbb{N}$, la fonction $x \mapsto \frac{R_{n,f}(x)}{x^{n+1}}$ est croissante sur l'intervalle]0, r[;
 - (c) f est développable en série entière au voisinage de 0 avec un rayon de convergence au moins égal à r.
- 3. On suppose que $f \in \mathcal{C}^{\infty}(]-r,r[\,,\mathbb{R})$ est paire telle que $f^{(2k)}(x) \geq 0$ pour tout $k \in \mathbb{N}$ et tout $x \in]-r,r[\,$. Montrer que :
 - (a) pour tout $k \in \mathbb{N}$ et tout $x \in]0, r[$, on a $f^{(2k+1)}(x) \ge 0$;
 - (b) f est développable en série entière au voisinage de 0 avec un rayon de convergence au moins égal à r.
- 4. On suppose que $f \in \mathcal{C}^{\infty}(]-r,r[\,,\mathbb{R})$ est telle que $f^{(2k)}(x) \geq 0$ pour tout $k \in \mathbb{N}$ et tout $x \in]-r,r[$. On associe à cette fonction, la fonction g définie sur]-r,r[par g(x)=f(x)+f(-x). Montrer que :
 - (a) g est de classe C^{∞} sur]-r,r[, paire et telle que $g^{(2k)}(x) \geq 0$ pour tout $k \in \mathbb{N}$ et tout $x \in]-r,r[$;
 - (b) $0 \le R_{2n-1,f}(x) \le R_{2n-1,g}(x)$, pour tout $n \in \mathbb{N}^*$ et tout $x \in]-r,r[$;
 - (c) f est développable en série entière au voisinage de 0 avec un rayon de convergence au moins égal à r.

- 5. Soit $f \in \mathcal{C}^{\infty}(]-r, r[\,,\mathbb{R})$ telle que $f^{(2k+1)}(x) \geq 0$ pour tout $k \in \mathbb{N}$ et tout $x \in]-r, r[\,$. Montrer que f est développable en série entière au voisinage de 0 avec un rayon de convergence au moins égal à r.
- 6. Montrer que la fonction tan est développable en série entière sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$.
- 7. Soit f une fonction à valeurs réelles de classe C^{∞} sur un intervalle ouvert I non vide telle que $f^{(2k)}(x) \geq 0$ pour tout $k \in \mathbb{N}$ et tout $x \in I$ [resp. $f^{(2k+1)}(x) \geq 0$ pour tout $k \in \mathbb{N}$ et tout $x \in I$]. Montrer que f est développable en série entière au voisinage de tout point de I (théorème de Bernstein).

- II - Un théorème de Borel

On sait qu'une fonction développable en série entière sur un voisinage $]x_0, -\alpha, x_0 + \alpha[$ d'un point x_0 est indéfiniment dérivable sur ce voisinage. On s'intéresse ici à la réciproque de ce résultat.

- 1. Montrer que les fonctions définies sur \mathbb{R} par :
 - (a) f(0) = 0 et $f(x) = e^{-\frac{1}{x^2}}$ pour $x \in \mathbb{R}^*$;

(b)
$$g(x) = \sum_{n=0}^{+\infty} e^{-n(1-inx)}$$
;

(c)
$$h(x) = \int_0^{+\infty} e^{-t(1-itx)} dt$$
;

sont indéfiniment dérivables et non développables en série entière au voisinage de 0.

- 2. On se propose de montrer un théorème de Borel qui nous permet de construire des fonctions indéfiniment dérivables sur \mathbb{R} qui ne sont pas développables en série entière au voisinage de 0.
 - (a) Montrer que, pour tout entier naturel non nul n et tout réel x on a, en notant $y = \arctan(x)$:

$$\arctan^{(n)}(x) = (n-1)! \cos^n(y) \sin\left(n\left(y + \frac{\pi}{2}\right)\right)$$

En déduire que $\left|\arctan^{(n)}(x)\right| \leq \frac{(n-1)!}{(1+x^2)^{\frac{n}{2}}}$.

- (b) Pour tout réel $\alpha \geq 0$, on désigne par φ_{α} la fonction définie sur \mathbb{R} par $\varphi_{\alpha}(x) = \frac{1}{1 + \alpha^2 x^2}$. Montrer que, pour tout entier naturel n et tout réel non nul x, on a $\left|\varphi_{\alpha}^{(n)}(x)\right| \leq \frac{n!}{|x|^n} \frac{1}{\sqrt{1 + \alpha^2 x^2}}$.
- (c) On se donne une suite $(a_n)_{n\in\mathbb{N}}$ de nombres réels et on lui associe la suite de fonctions $(u_n)_{n\in\mathbb{N}}$ définie par $u_0(x)=a_0$ pour tout réel x et $u_n(x)=\frac{a_nx^n}{1+n!a_n^2x^2}$ pour tout entier $n\geq 1$ et tout réel x.
 - i. Montrer que, pour tout entier $n \ge 1$ et tout réel x, on a $|u_n(x)| \le \frac{|x|^{n-1}}{\sqrt{n!}}$. En déduire que la fonction $f = \sum_{n=0}^{+\infty} u_n$ est bien définie et continue sur \mathbb{R} .

- ii. Montrer que, pour tout entier $p \ge 1$, tout entier $n \ge p+1$ et tout réel x, on a $\left|u_n^{(p)}(x)\right| \le \frac{\left|x\right|^{n-p-1}}{\sqrt{n!}} p! (n+1)^p$.
- iii. En déduire que la fonction f est indéfiniment dérivable sur \mathbb{R} avec $f(0) = a_0$, $f'(0) = a_1$ et $f^{(n)}(0) = \sum_{k=1}^{n-1} u_k^{(n)}(0) + n! a_n$ pour tout entier $n \geq 2$.
- (d) Déduire de ce qui précède que, pour tout suite $(b_n)_{n\in\mathbb{N}}$ de nombres réels, il existe une fonction f indéfiniment dérivable sur \mathbb{R} telle que $f^{(n)}(0) = b_n$ pour tout entier n (théorème de Borel).
- 3. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction indéfiniment dérivable et paire.
 - (a) Justifier l'existence d'une fonction $h: \mathbb{R} \to \mathbb{R}$ indéfiniment dérivable telle que $\frac{h^{(n)}(0)}{n!} = \frac{f^{(2n)}(0)}{(2n)!}$.
 - (b) Montrer que la fonction φ définie sur \mathbb{R} par $\varphi(x) = f(x) h(x^2)$ est telle que $\varphi^{(n)}(0) = 0$ pour tout entier naturel n.
 - (c) Montrer que la fonction $\theta: x \mapsto \varphi\left(\sqrt{|x|}\right) = f\left(\sqrt{|x|}\right) h\left(x\right)$ est indéfiniment dérivable de série de Taylor en 0 nulle.
 - (d) Déduire de ce qui précède, l'existence d'une fonction $g: \mathbb{R} \to \mathbb{R}$ indéfiniment dérivable telle que $f(x) = g(x^2)$ pour tout réel x.

- III - Une caractérisation des fonctions analytiques réelles

- 1. Soient $f: I \to \mathbb{C}$ une fonction analytique et x_0 un point de I.
 - (a) Montrer qu'il existe deux réels positifs α_0 et β_0 tels que :

$$\forall n \in \mathbb{N}, \ \forall x \in \left] x_0 - \frac{r_0}{2}, x_0 + \frac{r_0}{2} \right[, \ \left| f^{(n)}(x) \right| \le n! \alpha_0 \beta_0^n$$

(b) Montrer que pour tout segment K contenu dans I, il existe deux réels positifs α_K et β_K tels que :

$$\forall n \in \mathbb{N}, \ \forall x \in K, \ \left| f^{(n)}(x) \right| \le n! \alpha_K \beta_K^n$$
 (1)

(on pourra utiliser le fait que du recouvrement du compact K par les ouverts $\left]x_0 - \frac{r_0}{2}, x_0 + \frac{r_0}{2}\right[$, où x_0 décrit K, on peut extraire un sous-recouvrement fini).

2. Réciproquement, montrer que si $f: I \to \mathbb{C}$ est une fonction de classe \mathcal{C}^{∞} telle que pour tout segment $K \subset I$, il existe α_K et β_K dans \mathbb{R}^+ tels que :

$$\forall n \in \mathbb{N}, \ \forall x \in K, \ \left| f^{(n)}(x) \right| \leq n! \alpha_K \beta_K^n$$

alors f est analytique sur I.

3. Montrer que la somme et le produit de deux fonctions analytiques, les primitives d'une fonction analytique et l'inverse d'une fonction analytique à valeurs dans \mathbb{C}^* sont analytiques.

- 4. Montrer que la fonction arctan est analytique sur \mathbb{R} .
- 5. Soit $\varphi : \mathbb{R}^+ \to \mathbb{C}$ une fonction continue telle que la fonction $t \mapsto \varphi(t) e^t$ soit bornée. Montrer que la fonction $f : x \mapsto \int_0^{+\infty} \varphi(t) e^{-ixt} dt$ est analytique sur \mathbb{R} .

- IV - Le théorème des zéros isolés

- 1. Soient $f: I \to \mathbb{C}$ une fonction analytique et x_0 un point de I. Montrer que les propriétés suivantes sont équivalentes :
 - (a) f(x) = 0 pour tout $x \in I$;
 - (b) il existe un réel r > 0 tel que f(x) = 0 pour tout $x \in]x_0 r, x_0 + r[$;
 - (c) $f^{(n)}(x_0) = 0$ pour tout entier naturel n.
- 2. Montrer que si f, g sont deux fonctions analytiques sur I qui coïncident au voisinage d'un point x_0 de I, elles sont alors égales.
- 3. Soient $f: I \to \mathbb{C}$ une fonction analytique non identiquement nulle et $x_0 \in I$ un zéro de f. Montrer qu'il existe un entier $m \ge 1$ et une fonction analytique $g: I \to \mathbb{C}$ ne s'annulant pas sur un voisinage de x_0 tels que $f(x) = (x x_0)^m g(x)$ pour tout $x \in I$.
- 4. Soit $f: I \to \mathbb{C}$ une fonction analytique non identiquement nulle. Montrer que l'ensemble des zéros de f est une partie fermée et discrète de I. En particulier pour tout compact K contenu dans I, l'ensemble des zéros dans K de f est fini.