배깅(Bagging)

Bagging(Bootstrap+Aggregating)

- Bootstrapping: 전체 데이터로부터 여러 개의 데이터 세트를 중첩되게 무작위로 샘플링하는 방식
- Aggregating: 여러 모델을 사용하여 얻은 결과들을 취합하여 최종 클래스 결정

의사결정나무 분류

```
import seaborn as sns
titanic = sns.load_dataset("titanic")
data = titanic[["sex", "age", "sibsp", "adult_male", "parch"]].copy()
t = titanic["survived"]
data["age"].fillna(30, inplace = True)
data["sex"].replace("male", 1, inplace = True)
data["sex"].replace("female", 0, inplace = True)

from sklearn.model_selection import train_test_split
train_data, test_data, train_target, test_target = train_test_split(
    data, t, test_size = 0.3, random_state = 42, stratify = t)
```

```
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(max_depth_=_3, random_state_=_42)
```

```
model.fit(train_data, train_target)
print("Train-Eval:", model.score(train_data, train_target))
print("Test-Eval :", model.score(test_data, test_target))
```

Train-Eval: 0.8314606741573034 Test-Eval: 0.8134328358208955

랜덤포레스트(Random Forest)

- 여러 분류기들의 결과를 결합하여 최종 예측을 수행하는 앙상블(Ensemble) 학습 사용
- 일부 특징을 무작위로 선택하여 여러 개의 의사결정나무를 만들고 숲을 구성한 뒤, 숲을 통해 최종 예측
- 의사결정나무 각각의 결정을 다수결로 최종 판단하거나, 확률을 평균하여 최종 클래스 예측

sklearn.ensemble.RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None) [source]

A random forest classifier.

A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the max_samples parameter if bootstrap=True (default), otherwise the whole dataset is used to build each tree.

n_estimators: int, default=100

The number of trees in the forest.

max_depth: int, default=None

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

feature_importances_: ndarray of shape (n_features,)

The impurity-based feature importances.

랜덤포레스트 분류

```
import seaborn as sns
titanic = sns.load_dataset("titanic")
data = titanic[["sex", "age", "sibsp", "adult_male", "parch"]].copy()
t = titanic["survived"]
data["age"].fillna(30, inplace = True)
data["sex"].replace("male", 1, inplace = True)
data["sex"].replace("female", 0, inplace = True)

from sklearn.model_selection import train_test_split
train_data, test_data, train_target, test_target = train_test_split(
    data, t, test_size = 0.3, random_state = 42, stratify = t)
```

```
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(random_state = 42)
model.fit(train_data, train_target)
```

```
print("Train-Eval:", model.score(train_data, train_target))
print("Test-Eval :", model.score(test_data, test_target))
```

Train-Eval: 0.8956661316211878 Test-Eval : 0.7723880597014925

```
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(random_state_=_42)
model.fit(train_data, train_target)
```

```
print("Train-Eval:", model.score(train_data, train_target))
print("Test-Eval :", model.score(test_data, test_target))
```

Train-Eval: 0.8956661316211878 Test-Eval : 0.753731343283582

의사결정나무 수

from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators_=_10, random_state_=_42)
model.fit(train_data, train_target)

n_estimators : int, default=100

The r	number	of	trees	in	the	forest.
11161	IUIIIDEI	OI	CICCS	111	LITE	IOICSL.

n_estimators	train_score	test_score	
10	0.889	0.743	
20	0.891	0.743	
30	0.889	0.754	
40	0.892	0.765	
50	0.896	0.772	
60	0.894	0.776	
70	0.896	0.776	
80	0.896	0.776	
90	0.896	0.772	
100	0.896	0.772	

그리드서치(max_depth)

```
rint("Train-Eval:", model.score(train_data, train_target))
print("Test-Eval:", model.score(test_data, test_target))
```

Train-Eval: 0.8314606741573034 Test-Eval: 0.8097014925373134

import matplotlib.pyplot as plt 구현 plt.show()

그리드서치(n_estimators, max_depth)

max_depth 7 10							
n_esti	mators	3	5	7	10		
_	10	1	6	11	16		
	30	2	7	12	17		
	50	3	8	13	18		
	70	4	9	14	19		
	100	5	10	15	20		

랜덤포레스트 (max_depth, n_estimators)

Train-Eval: 0.8346709470304976 Test-Eval: 0.8097014925373134

lt.xticks(range(1, 21), range(1, 21))

엑스트라트리(Extra Trees)

- 의사결정나무에 더 무작위성을 추가 (Extremely Randomized Trees)
- 랜덤포레스트와 비슷하게 일부 특징들을 무작위로 선택하여 의사결정트리 생성
- 무작위로 선택된 특징들마다의 분할 기준도 무작위로 결정
- 학습 데이터 구성 시 부트스트래핑 샘플링이 아닌 전체 데이터 활용
- 특징을 무작위로 선택하기 때문에 랜덤포레스트 보다 연산속도가 빠름

sklearn.ensemble.ExtraTreesClassifier

class sklearn.ensemble.ExtraTreesClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=False, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None) [source]

An extra-trees classifier.

This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.

n_estimators: int, default=100

The number of trees in the forest.

max_depth : int, default=None

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

feature_importances_: ndarray of shape (n_features,)

The impurity-based feature importances.

특징 중요도

titanic[["sex", "age", "sibsp", "adult_male", "parch"]

참고자료

- 지능기전공학부 최유경 교수님 자료, https://github.com/sejongresearch/2021.MachineLearning
- 코랩(Colab), https://colab.research.google.com/
- 파이썬(Python), https://www.python.org/doc/
- 사이킷런(sckit-learn), https://scikit-learn.org/stable/index.html
- 판다스(pandas), https://pandas.pydata.org/
- 맷플롯립(matplotlib), https://matplotlib.org/
- 씨본(seaborn), https://seaborn.pydata.org/
- 캐글(Kaggle), https://www.kaggle.com/
- 넘파이(numpy), https://numpy.org/doc/stable/
- 스택오퍼플러우(stackoverflow), https://stackoverflow.com/

