

Painel > Meus cursos > Câmpus Florianópolis > DAELN - Departamento Acadêmico de

Iniciado em segunda, 9 Mai 2022, 09:12

Estado Finalizada

Concluída em segunda, 9 Mai 2022, 10:41

Tempo empregado 1 hora 29 minutos

Avaliar Ainda não avaliado

Informação

Representações numéricas: ponto fixo e ponto flutuante

Questão 1

Completo

Vale 1,00 ponto(s).

O que representa Q1.15?

É especificar apenas o comprimento da parte fracionária. Isso é baseado na suposição de que o comprimento da palavra é conhecido por um determinado processador. Para um processador que tenha um comprimento de palavra de 16 bits, podemos simplesmente dizer que estamos usando o formato Q15 para representar os números. Isso significa que estamos colocando 15 bits à direita do ponto binário e um bit à esquerda. Nesse caso, o formato Q15 é equivalente ao formato Q1.15.

Questão 2

Completo

Vale 1,00 ponto(s).

Como converter um número de ponto flutuante para ponto fixo Q1.15?

xf=0; print(float(xf))

x15=0;print(int(x15))

x15 = (int(xf*32768)); print(x15)

Questão 3 Atingiu 0,00 de 1,00 Incorreto A que número corresponde 0,46 no formato Q1.15? Resposta: 0,001011010111011 A resposta correta é: 15073 Questão 4 Incorreto Atingiu 0,00 de 1,00 Converta 22399 do formato Q1.15 para o formato float. Resposta: 101 A resposta correta é: 0,684 Questão 5 Correto Atingiu 1,00 de 1,00 Qual o tema da norma IEEE 754? Escolha uma opção: a. Software Reviews and Audits b. Floating point arithmetic specifications c. SystemVerilog d. Logical Link Control (LLC) e. Remote media access control (MAC) bridging Sua resposta está correta. A resposta correta é: Floating point arithmetic specifications

Questão 6 Correto Atingiu 1,00 de 1,00

No contexto de formatos em ponto flutuante, associe o tamanho da palavra ao tipo de precisão.

Sua resposta está correta.

A resposta correta é: single precision \rightarrow 32 bits, half precision \rightarrow 16 bits, double precision \rightarrow 64 bits.

Questão 7

Completo

Finite Impulse Response (FIR) Interpolator

Vale 1,00 ponto(s).

Na biblioteca CMSIS-DSP, que opções de precisão (ponto fixo/flutuante e número de bits) estão disponíveis para um filtro FIR?

Filtering Functions
Content
High Precision Q31 Biquad Cascade Filter
Biquad Cascade IIR Filters Using Direct Form I Structure
Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure
Convolution
Partial Convolution
Correlation
Finite Impulse Response (FIR) Decimator
Finite Impulse Response (FIR) Filters
Finite Impulse Response (FIR) Lattice Filters
Finite Impulse Response (FIR) Sparse Filters
Infinite Impulse Response (IIR) Lattice Filters
Least Mean Square (LMS) Filters
Normalized LMS Filters

Todas as funções pode usar o ponto flutuante com exceção da High Precision Q31 Biquad Cascade Filter.

fonte; https://www.keil.com/pack/doc/CMSIS_Dev/DSP/html/group__groupFilters.ht ml

Informação

Famílias de DSPs

Questão 8 Incorreto Atingiu 0,00 de 1,00

O processador TMS320C5535 opera com ponto flutuante em hardware.

Escolha uma opção:

- Verdadeiro X
- Falso

A resposta correta é 'Falso'.

Questão 9 Incorreto Atingiu 0,00 de 1,00

O processador ADSP-BF609 opera com ponto flutuante diretamente em hardware.

Escolha uma opção:

- Verdadeiro X
- Falso

A resposta correta é 'Falso'.

Questão 10 Correto Atingiu 1,00 de 1,00

O processador STM32F407VGT6 opera com ponto flutuante em hardware.

Escolha uma opção:

- Verdadeiro
- Falso

A resposta correta é 'Verdadeiro'.

Questão 11 Completo Vale 1,00 ponto(s).

Qual a diferença entre as instruções SADD, ADDDP e ADDSP no processador TMS320C6748?

SADD Add Two Signed Integers With Saturation

ADDDP Add Two Double-Precision Floating-Point Values

ADDSP — Add Two Single-Precision Floating-Point Values

Escolha dois processadores específicos de famílias ou fabricantes diferentes e faça uma análise comparativa em relação a:

- Representação em ponto fixo e/ou flutuante
- Se oferecem instruções para operações com saturação
- Instrução MAC: nome, tamanho dos sinais de entrada e número de ciclos
- Custo do componentes: unitário e por 1000 unidades

Processador mais básico;

TMS320C5535

Representação ponto flutuante? Sim.

Instruções de operação com saturação? Não

Instrução MAC? Sim.

Custo do componentes;

Unitário = \$8.45 e 1000 unidade = \$5.52. Desconto considerável.

no site;

https://br.mouser.com/ProductDetail/Texas-Instruments/TMDSLCDK6748? qs=B%252B1bdHOmWBMnuDqa5VDS%2FQ%3D%3D&gclid=EAlalQobChMl346X5sL S9wIVs3xvBB1hRgxvEAAYASAAEgKJqfD_BwE

Processador mais robusto;

TMS320C6748

Representação ponto flutuante? Sim.

Instruções de operação com saturação? Sim.

Instrução MAC? Sim.

Custo do componentes;

Unitário = \$259.35 e 1000 unidade = \$259,350.00. Não tem desconto no site;

https://br.mouser.com/ProductDetail/Texas-Instruments/TMDSLCDK6748? qs=B%252B1bdHOmWBMnuDqa5VDS%2FQ%3D%3D&gclid=EAlaIQobChMI346X5sL S9wIVs3xvBB1hRgxvEAAYASAAEgKJqfD_BwE