Large vocabulary language modeling

Exact sciences Axioms & Deals with theorems Truth is Forever Mathematics Examples C.S. theory F.L. theory

	Exact sciences	Empirical sciences
Deals with	Axioms & theorems	Facts & theories
Truth is	Forever	Temporary
Examples	Mathematics C.S. theory F.L. theory	Physics Biology Linguistics

	Exact sciences	Empirical sciences	Engineering
Deals with	Axioms & theorems	Facts & theories	Artifacts
Truth is	Forever	Temporary	It works
Examples	Mathematics C.S. theory F.L. theory	Physics Biology Linguistics	Many, including applied C.S. e.g. NLP

Exact sciences Empirical sciences Engineering

morphological properties of words (facts)

Exact sciences

Empirical sciences

Engineering

morphological properties of words (facts)

optimality theory

Exact sciences

Empirical sciences

Engineering

optimality theory is finite-state morphological properties of words (facts)

optimality theory

Exact sciences

Empirical sciences

Engineering

optimality theory is finite-state morphological properties of words (facts)

optimality theory

represent
words using
finite-state
machines
(or continuousstate
machines, i.e.

NNs)

$$\mathbf{f}_i = [\overleftarrow{\mathbf{h}}_i; \overrightarrow{\mathbf{h}}_i]$$

 $\mathbf{F} \in \mathbb{R}^{2n imes |oldsymbol{f}|}$

Ich möchte ein Bier

Ich möchte ein Bier

Ich möchte ein Bier

Ich möchte ein Bier

Ich möchte ein Bier

Ich möchte ein Bier

Ich möchte ein Bier

Ich möchte ein Bier

How many output words can we predict?

Bengio et al. (2003)

$$p(\mathbf{e}) = \prod_{i=1}^{|\mathbf{e}|} p(e_i \mid e_{i-n+1}, \dots, e_{i-1})$$

$$p(e_i \mid e_{i-n+1}, \dots, e_{i-1}) =$$

Bengio et al. (2003)

$$p(\mathbf{e}) = \prod_{i=1}^{|\mathbf{e}|} p(e_i \mid e_{i-n+1}, \dots, e_{i-1})$$

Actually, this problem is even older...

Language modeling

For language modeling, we seek

$$p(\mathbf{e}) > 0 \quad \forall \mathbf{e} \in \Sigma^*$$

We will assume that Σ is known and finite.

Actually, this problem is even older...

Language modeling

For language modeling, we seek

$$p(\mathbf{e}) > 0 \quad \forall \mathbf{e} \in \Sigma^*$$

We will assume that Σ is known and finite.

When does this assumption make sense for language modeling?

Known and finite

 Practical problem: softmax computation is linear in vocabulary size.

Problems with this?

- Bengio et al.: "Rare words with frequency ≤ 3 were merged into a single symbol, reducing the vocabulary size to |V| = 16,383."
- Bahdanau et al.: "we use a shortlist of 30,000 most frequent words in each language to train our models. Any word not included in the shortlist is mapped to a special token ([UNK])."

Problems with this?

- Bengio et al.: "Rare words with frequency ≤ 3 were merged into a single symbol, reducing the vocabulary size to |V| = 16,383."
- Bahdanau et al.: "we use a shortlist of 30,000 most frequent words in each language to train our models. Any word not included in the shortlist is mapped to a special token ([UNK])."

Src | 日本の主要作物は米である。 Ref | the main crop of japan is rice. Hyp | the _UNK is popular of _UNK . _EOS

Approaches

Partition the vocabulary into smaller pieces.

$$p(w_i|h_i) = p(c_i|h_i)p(w_i|c_i,h_i)$$

Class-based LM

Approaches

 Partition the vocabulary into smaller pieces hierarchically (hierarchical softmax).

Brown clustering: hard clustering based on mutual information

Approaches

 Differentiated softmax: assign more parameters to more frequent words, fewer to less frequent words.

Figure 1: Final weight matrix W^{k+1} and hidden layer h^k for differentiated softmax for partitions A, B, C of the output vocabulary with embedding dimensions d_A, d_B, d_C ; non-shaded areas are zero.

Dataset	Train	Test	Vocab	OOV
PTB	1M	0.08M	10k	5.8%
gigaword	4,631M	279M	100k	5.6%
billionW	799M	8.1M	793k	

Table 1: Dataset statistics. Number of tokens for train and test set, vocabulary size and ratio of out-of-vocabulary words in the test set.

Dataset	Train	Test	Vocab	OOV
PTB	1M	0.08M	10k	5.8%
gigaword	4,631M	279M	100k	5.6%
billionW	799M	8.1M	793k	

Table 1: Dataset statistics. Number of tokens for train and test set, vocabulary size and ratio of out-of-vocabulary words in the test set.

	PTB	gigaword	billionW
KN	141.2	57.1	70.2
Softmax	123.8	56.5	108.3
D-Softmax	121.1	52.0	91.2
Sampling	124.2	57.6	101.0
HSM	138.2	57.1	85.2
NCE	143.1	78.4	104.7
Weaknorm	124.4	56.9	98.7
WeaknormSQ	122.1	56.1	94.9
KN+Softmax	108.5	43.6	59.4
KN+D-Softmax	107.0	42.0	56.3
KN+Sampling	109.4	43.8	58.1
KN+HSM	115.0	43.9	55.6
KN+NCE	114.6	49.0	58.8
KN+Weaknorm	109.2	43.8	58.1
KN+WeaknormSQ	108.8	43.8	57.7

Table 2: Test perplexity of individual models and interpolation with Kneser-Ney.

Noise contrastive estimation

	PIB	gigaword	billionW
KN	141.2	57.1	70.2
Softmax	123.8	56.5	108.3
D-Softmax	121.1	52.0	91.2
Sampling	124.2	57.6	101.0
HSM	138.2	57.1	85.2
NCE	143.1	78.4	104.7
Weaknorm	124.4	56.9	98.7
WeaknormSQ	122.1	56.1	94.9
KN+Softmax	108.5	43.6	59.4
KN+D-Softmax	107.0	42.0	56.3
KN+Sampling	109.4	43.8	58.1
KN+HSM	115.0	43.9	55.6
KN+NCE	114.6	49.0	58.8
KN+Weaknorm	109.2	43.8	58.1
KN+WeaknormSQ	108.8	43.8	57.7

Table 2: Test perplexity of individual models and interpolation with Kneser-Ney.

Skip normalization step altogether

PTB	gigaword	billionW
141.2	57.1	70.2
123.8	56.5	108.3
121.1	52.0	91.2
124.2	57.6	101.0
138.2	57.1	85.2
143.1	78.4	104.7
124.4	56.9	98.7
122.1	56.1	94.9
108.5	43.6	59.4
107.0	42.0	56.3
109.4	43.8	58.1
115.0	43.9	55.6
114.6	49.0	58.8
109.2	43.8	58.1
108.8	43.8	57.7
	141.2 123.8 121.1 124.2 138.2 143.1 124.4 122.1 108.5 107.0 109.4 115.0 114.6 109.2	141.2 57.1 123.8 56.5 121.1 52.0 124.2 57.6 138.2 57.1 143.1 78.4 124.4 56.9 122.1 56.1 108.5 43.6 107.0 42.0 109.4 43.8 115.0 43.9 114.6 49.0 109.2 43.8

Table 2: Test perplexity of individual models and interpolation with Kneser-Ney.

	PTB	gigaword	billionW
KN	141.2	57.1	70.2
Softmax	123.8	56.5	108.3
D-Softmax	121.1	52.0	91.2
Sampling	124.2	57.6	101.0
HSM	138.2	57.1	85.2
NCE	143.1	78.4	104.7
Weaknorm	124.4	56.9	98.7
WeaknormSQ	122.1	56.1	94.9
KN+Softmax	108.5	43.6	59.4
KN+D-Softmax	107.0	42.0	56.3
KN+Sampling	109.4	43.8	58.1
KN+HSM	115.0	43.9	55.6
KN+NCE	114.6	49.0	58.8
KN+Weaknorm	109.2	43.8	58.1
KN+WeaknormSQ	108.8	43.8	57.7

Room for improvement

Table 2: Test perplexity of individual models and interpolation with Kneser-Ney.

Bengio et al. (2003)

$$p(\mathbf{e}) = \prod_{i=1}^{|\mathbf{e}|} p(e_i \mid e_{i-n+1}, \dots, e_{i-1})$$

$$p(e_i \mid e_{i-n+1}, \dots, e_{i-1}) =$$

Known and finite

- Practical problem: softmax computation is linear in vocabulary size.
- Theorem. The vocabulary of word types is infinite.
 Proof 1. productive morphology and loanwords.
 - **Proof 2.** 1, 2, 3, 4, ...

Bengio et al. (2003)

$$p(\mathbf{e}) = \prod_{i=1}^{|\mathbf{e}|} p(e_i \mid e_{i-n+1}, \dots, e_{i-1})$$

$$p(e_i \mid e_{i-n+1}, \dots, e_{i-1}) =$$

Bengio et al. (2003)

$$p(\mathbf{e}) = \prod_{i=1}^{|\mathbf{e}|} p(e_i \mid e_{i-n+1}, \dots, e_{i-1})$$

$$p(e_i \mid e_{i-n+1}, \dots, e_{i-1}) =$$

