Prediction:

$$p(t) = \sum_{i} A_{i} \cos(2\pi f_{i} t - \phi_{i})$$
Unknown amplitude Known frequency phase

Transformation:

$$p(t) = \sum_{i} \frac{A_{i} \cos \phi_{i}}{c} \cos(2\pi f_{i}t) + \frac{A_{i} \sin \phi_{i}}{c} \sin(2\pi f_{i}t)$$

$$C_{i}$$

$$S_{i}$$

Observation: o_1 , o_2 , ..., o_M at time t = 1, 2, ..., M

Linear regression model:

$\cos(2\pi f_1 * 1)$	$\sin(2\pi f_1*1)$	 $\cos(2\pi f_N*1)$	$\cos(2\pi f_N*1)$
$\cos(2\pi f_1*2)$	$\sin(2\pi f_1*2)$	 $\cos(2\pi f_N*2)$	$\cos(2\pi f_N*2)$
i i	i i	 :	:
$\cos(2\pi f_1 * M)$	$\sin(2\pi f_1*M)$	 $\cos(2\pi f_N * M)$	$\cos(2\pi f_N * M)$