OM4: GFDL's 1/4° ice-ocean model component for CMIP6

Alistair Adcroft

GFDL MOM6 team includes Raphael Dussin, Robert Hallberg, Stephen Griffies, Matthew Harrison, Hae-Cheol Kim, John Krasting, Marshall Ward, Niki Zadeh

Other contributors for presentation: Malte Jansen, Andrew Shao

Horizontal resolution, spurious mixing, and eddies

- Delworth et al., 2012, coupled model series (CM2-1deg, CM2.5, CM2.6):
 - 50 km atmosphere
 - 1°, ¼° and 0.1° ocean
- Ilicak et al., 2012, and others
 - much heat uptake at ¼° was spurious

- Griffies et al., 2015, diagnosed how transient eddies in a 0.1° ocean transport heat upwards
 - Has least heat uptake of CM2.x series
- For CMIP6, we could afford ¼° ocean

NORR

OM4

c.f. HYCOM, Bleck 2002

- OM4 is the ice-ocean component of GFDL's latest coupled model CM4 (Held et al., 2019)
- OM4 configuration
 - Identical setup/parameters to CM4
 - Developed almost exclusively in coupled mode
 - Uncoupled OM4
 - Nominally eddy-permitting ¼° horizontal resolution
 - Non-eddying ½° with eddy parameterization (GM+EKE scheme)

Ingredients:

- MOM6
 - using hybrid z-p vertical coordinates
- ePBL
 - Reichl and Hallberg, 2019
- Scale-aware MLE restratification
 - Fox-Kemper et al., 2011
- Shear-dependent mixing
 - Jackson et al., 2008
- Internal-wave driven mixing
 - Melet et al., 2012
- BBL
 - Legg et al., 2006

Adcroft et al., JAMES 2019

OM4: Why finer resolution than 1°?

- Justification for ½° and ¼° horizontal resolutions in OM4
 - ½° produces much stronger boundary currents
 - $\frac{1}{4}$ ° begins to permit large eddies across many basins

(used for ESM4)

(used for CM4)

Horizontal speed at 2500m depth [m/s]

GFDL'S OM4

CESM MOM6 Webinar

OM4: Minimal spurious mixing?

- Using z-coordinates incurs ~0.5°K / century trend in main thermocline
- Hybrid z-p coordinates have much less spurious mixing
 - Suggested in earlier studies, e.g. Chassignet et al., 2003; Megann et al., 2010
- Coarser ½° requires GM parameterization to retain minimal drift

NORR

Balancing heat transfer by eddies and mixing

- Comparing z* to hybrid coordinate provides magnitude of spurious numerical mixing
- Reducing resolution from ¼° to ½° (eddying to non-eddying) inhibits resolved re-stratification
 - ½° requires eddy parameterization
- Refining resolution from ¼° to ½° reduces heat uptake:
 - more efficient eddies
 - and/or less numerical mixing?

CESM MOM6 Webinar GFDL'S OM4 6

When do we need finer resolution?

- We just showed sensitivity of OHU to resolution
- Deformation radius is regionally variable
 - Not permitting/resolving eddies everywhere
- Qualitatively refinement not always obvious locally

OM4 CORE IAF hybrid & z* coordinates

50 year change of zonal average temperature [°C]

2nd cycle CORE-IAF

From Durack & Wiffels, 2010

OM4 JRA55-do 1/8° & 1/4°

50 year change of zonal average temperature [°C]

3rd cycle JRA55-do forcing

From Durack & Wiffels, 2010

OM4 AMOC

AMOC (OM4p25) years 1988-2007

AABW/NADW interface ~ 3000m

1750

1800

1850

1900

1950

2000

1700

13

a)

Overflows and mixing rates

Density, Natl overflows

Diffusivities along FBC

Summary and conclusions

- OM4 represents a step forward in being able to make statements about ocean heat uptake
 - Pragmatic configuration to avoid drift even though we do not fully understand what is wrong in the balance of heat transfer processes
- We recognize that there are still compensating errors including:
 - Missing parameterizations of unresolved eddies (e.g. backscatter)
 - Incomplete parameterizations of diabatic processes
 - Some unknown numerical mixing
- A hierarchy of finer-resolution models is under development to try to understand how OHU depends on resolution

NORR

CESM MOM6 Webinar GFDL'S OM4 13