HTML5

Three.js

WebGL

WebGL

- · 웹 브라우저에서 제공하는 3차원 그래픽 자바스크립트 API
- 플래시, 실버라이트, 유니티 등의 플러그인이 필요없음
- · GPU 가속을 사용한 높은 성능의 그래픽 구현

WebGL

어렵고, 복잡하고 디버깅 헬....

Three.js

Three.js

자바스크립트 이용한 경량 라이브러리

WebGL 좌표

기본 3가지

Renderer

Camera

Scene

Renderer

최종 결과물을 그려주는 객체

```
1 renderer = new THREE.WebGLRenderer(
2 );
3 renderer.setSize(innerWidth, innerH eight);
  document.body.appendChild(renderer. domElement);
```

Scene

화면을 구성하는 기본요소 여러개의 모델과 조명으로 구성

```
1 scene = new THREE.Scene();
2 
3 scene.add(object);
4 scene.add(mesh);
5 scene.add(light);
```

PerspectiveCamera

OrthographicCamera

바라보는 방향은 있지만 투시는 없음

OrthographicCamera

바라보는 방향은 있지만 투시는 없음

PerspectiveCamera vs OrthographicCamera

Mesh

도형과 질감을 적용한 물체 Mesh = Geometry + Material

Mesh

- CircleGeometry
- ConvexGeometry
- CubeGeometry
- CylinderGeometry
- ExtrudeGeometry
- IcosahedronGeometry
- LatheGeometry
- OctahedronGeometry
- ParametricGeometry

- PlaneGeometry
- PolyhedronGeometry
- SphereGeometry
- TetrahedronGeometry
- TextGeometry
- TorusGeometry
- TorusKnotGeometry
- TubeGeometry

Mesh

Animation

우리가 배운 RequestAnimation이 WebGL에서는 당연하게 쓰인다.

```
function draw() {
  requestAnimationFrame(draw);

mesh.rotation.x += .01;
  mesh.rotation.y += .02;

renderer.render(scene, camera);

draw();

draw();
```

Light

Light

Light

