Universidade Tecnológica Federal do Paraná

Campus Cornélio Procópio

Departamento Acadêmico de Eletrotécnica

IF32H – Lógica de Programação – Lista 2

- 1. Para cada item abaixo escreva um algoritmo conforme solicitado. Em cada item utilize ambas as estruturas: enquanto ... fimenquanto e para ... fimpara.
 - (a) Mostrar os números de 1 (inclusive) a 10 (inclusive) em ordem decrescente.
 - (b) Ler um valor inteiro N e mostrar todos os números ímpares entre 1 e N em ordem decrescente.
 - (c) Ler 5 números e mostrar somente os números maiores ou iguais a 10.
 - (d) Ler 5 números inteiros e para cada número mostrar se é **par** ou **ímpar**.
 - (e) Imprima a tabuada do número N que será fornecido pelo usuário.
 - (f) Ler 10 valores e escrever quantos destes valores são NEGATIVOS.

- (g) Ler 10 valores e escrever quantos destes valores estão no intervalo [10,20] e quantos deles estão fora deste intervalo.
- (h) Ler 10 números e mostrar qual o **menor** dos números lidos.
- (i) Ler 10 valores, calcular e escrever a média aritmética destes valores.
- (j) Ler o número N de alunos existentes em uma turma, ler a nota de cada aluno, calcular e escrever a média aritmética destas notas.
- (k) Calcular a soma de todos os números **múltiplos de três** existentes entre 1 à 500.
- (l) Mostrar quantos números são divisíveis por 7 entre 1 à 500.
- 2. Para um número N fornecido pelo usuário, calcular a seguinte soma:

soma =
$$\frac{1/3 + 1 + 1/3^2 + \sqrt{2} + 1/3^3 + \sqrt{3} + \dots + 1/3^N + \sqrt{N}}{N}.$$

3. Faça um algoritmo que calcula a distância de dois vetores de 10 posições conforme a fórmula abaixo:

$$dist = \frac{(E_1 - F_1)^2 + (E_2 - F_2)^2 + \dots + (E_{10} - F_{10})^2}{10}$$

 $\begin{array}{|c|c|c|c|c|c|}
\hline
1 & 2 & 3 \\
\hline
E_1 & E_2 & E_3 \\
\hline
\end{array}$ \cdots \frac{10}{E_{10}}

4. Faça um algoritmo para ler **dois vetores** de tamanho N e calcular o produto interno. Dica:

Produto =
$$\sqrt{E_1 * F1 + E_2 * F2 + ... + E_N * F_N}$$
.

 $\mathbf{E} \begin{array}{c|c} 1 & 2 & 3 \\ \hline E_1 & E_2 & E_3 \\ \hline \end{array} \dots \begin{array}{c|c} N \\ \hline E_N \\ \hline \end{array}$

$$F \mid_{F_1} \mid_{F_2} \mid_{F_3} \dots \mid_{F_N}$$

$$M = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 3 & 5 & 7 & 9 \\ \hline 4 & 7 & 10 & 13 \\ \hline 5 & 9 & 13 & 17 \end{bmatrix}$$

5. Faça um algoritmo que construa automaticamente a matriz ao lado.

6. Faça um algoritmo que construa um vetor de 16 posições, usando os valores da matriz acima, linha por linha, ou seja,

V	2	3	4	5	3	5	7	9	 17

- 7. Faça um algoritmo para ler e guardar a nota de N alunos, no qual N é informado pelo usuário.
- (a) Calcule e mostre a média aritmética.

$$Media = \frac{A_1 + A_2 + \ldots + A_N}{N}$$

- $\begin{array}{|c|c|c|c|c|c|c|c|}
 \hline
 1 & 2 & 3 & N \\
 \hline
 A_1 & A_2 & A_3 & \cdots & A_N
 \end{array}$
- (b) Mostre a qtde de alunos com nota acima da média da turma.
- (c) Mostre a qtde de alunos com nota inferior a 3.0.
- 8. Faça um algoritmo para ler um vetor de números de tamanho N, no qual N é informado pelo usuário, e efetue a sua **inversão** (veja exemplo ao lado). Dica: use um vetor auxiliar.

- 9. Faça um algoritmo para ler um vetor de números de tamanho N, no qual N deve ser sempre **um número par** informado pelo usuário. Faça algoritmo que: cada elemento da posição ímpar deve ser mantido e este elemento deve substituir o elemento par subsequente (veja exemplo ao lado). Dica: use um vetor auxiliar.
- 10. Faça um algoritmo para ler um vetor de números de tamanho N, no qual N deve ser sempre **um número multiplo de três** informado pelo usuário. Faça algoritmo que: cada elemento da posição múltiplo de três deve ser mantido e este elemento deve substituir os dois elementos anteriores (veja exemplo ao lado). Dica: use um vetor auxiliar.

- 11. Dado um vetor qualquer com 20 números reais, faça um algoritmo que informa se há ou não números repetidos nesse vetor.
 - 12. Faça um algoritmo que informa qual o menor valor de um vetor de 20 números reais **positivos**.
 - 13. Faça um algoritmo que transforma um vetor qualquer de 4 posições numa matriz de tamanho 2×2 .

a	b	c	d
e	f	g	h
i	j	k	ℓ
m	n	o	p

14. Faça um algoritmo para ler uma matriz de dimensão 4×4 e calcular a soma completa dos elementos localizados **acima da diagonal principal** (veja matriz ao lado).

$$Soma = b + c + d + g + h + \ell$$

15. Faça um algoritmo que construa uma matriz para guardar informações sobre produtos vendidos numa feira. A matriz deve possuir 10 linhas e 2 colunas, conforme abaixo:

no. de itens	valor R\$
vendidos	
6	12,45
3	0,25
	• • •
37	1,68
C	1 1 6 1

O algoritmo deve calcular o faturamento total da feira. (Exemplo: faturamento = $6 \times 12,45 + 3 \times 0,25 + \cdots 37 \times 1,68$).

16. Faça um algoritmo para ler uma matriz de tamanho 4×4 . Faça algoritmo para criar um vetor de tamanho 4 no qual cada elemento do vetor corresponde ao **mínimo da linha**, e outro algoritmo para vetor corresponde ao **mínimo da coluna**. (veja exemplo abaixo)

-1	6	2.3	-3	-	-3
3.8	4	1.7	8	→	1.7
5.5	2.1	2.2	2.4	→	2.1
1.4	1	-0.1	0.1	- ►	-0.1

-1	6	2.3	-3
3.8	4	1.7	8
5.5	2.1	2.2	2.4
1.4	1	-0.1	0.1
V	V	V	V
-1	1	-0.1	-3

17. Faça um algoritmo para ler uma matriz de tamanho $N \times N$ e o número N deve ser especificado pelo usuário. Faça algoritmo para criar um vetor de tamanho N no qual cada elemento do vetor corresponde ao **mínimo da linha**, e outro algoritmo para vetor corresponde ao **mínimo da coluna**. (veja exemplo abaixo)

- 18. Faça um algoritmo que realize a multiplicação de duas matrizes quadradas de dimensão três. O algoritmo deve também mostrar o resultado da multiplicação das matrizes.
- 19. Desenvolva um algoritmo que leia e guarde, num vetor V contendo 10 posições, somente números positivos. Faça um algoritmo que ordene em **ordem crescente** o vetor V, utilizando **qualquer** estratégia de ordenação.