

快快编程1805

快快编程1804

思路A简化问题

思路A简化为链状

f[k]代表剩k点单向链所需次数期望

初始化	f[0]=0	f[1]=1	
怎么解			
递推式	f[k]=1+1/k*(f[0]+f[1]++f[k-1])		
差分	f[k+1]=1+1/(k+1)*(f[0]+f[1]++f[k])		
抵消	f[k+1]*	(k+1)-f[k]*k=	:1+f[k]
累加	f[k+1]-f[k]=1/(k+1)		
	f[n]=1+1/2+1/3++1/n		

总结结论,诠释公式,尝试推广

思路B期望要素

B期望要素等

转换角度

求个体对期望的贡献

链状问题

求E[X],其中随机变量X的含义为 这次随机试验里删了几次才删完

单点贡献

拆解 $X=I_1+I_2+...+I_n$

 $E[X]=E[I_1]+E[I_2]+...+E[I_n]$

其中随机01变量I_u的含义为 这次随机试验里是否选中u号删除

思路B期望要素

$E[I_1]=1$	代表在所有随机试验中1号点
	被选中直接删除的次数期望
E[I ₂]=1/2	代表在所有随机试验中2号点
	被选中直接删除的次数期望

选2号前,1,2一定都在,两者等概率被选中

 $E[I_k]=1/k$ 选k号前,k所有前驱也都在,都等概率

 $E[I_1]=1$ $E[I_2]=1/2$ $E[I_1]=1/3$ $E[I_1]=1/4$ $E[I_1]=1/5$

思路B期望要素

I_u是个随机01变量,其含义为 这次随机试验里是否选中u号删除

E[I_u]代表在所有随机试验中u号点被选中直接删除的次数期望

$$E[I_k]=1/c[k]$$

c[k]代表图里有几个点可能走到k号点

链状	c[k]=k号点的排位
树状	c[k]=k号点的深度
有向图	c[k]如何求解?

```
15 const int N=1009;
16 bitset<N> G[N];
35
        for(int u=1;u<=n;++u)G[u][u]=1;
        for(int u=1;u<=n;++u){</pre>
36∮
            int k, v;
37
38
            cin>>k;
            while(k--){
39∮
40
                 cin>>v;
                 G[u][v]=1;
41
42
43
        floyd();
44
```

```
19 void floyd(){
         for(int u=1;u<=n;++u)</pre>
20
               for(int v=1; v<=n; ++v)</pre>
21
                                     G[v] = G[u];
22
23
         ans=0;
24 \Diamond
         for(int u=1;u<=n;++u){
25
26
27
28
29
30<sup>⊥</sup>}
```

总结

请同学写总结: 如何想到解法

简化问题

用极简形式2点3点问题能启发出递推式

单点对期望贡献

链状形态使用单点对期望贡献效果最佳

链状整体思维保留了部分全局观

2,3点整体性较弱,局部递推视野不宽阔

快快编程1806

潜在思路

A简化问题

不能修改,静态求危险路径

B简化问题

原始共1条危险路,2条,...

C 补集转换

补集转换, 求不危险路径

算法步骤

危险边当做断边

求出各个连通块重新编号

补集转换

连通块块内路径都不危险

x号连通块大小为 C_x 时,块内路径数 $C_x*(C_x-1)/2$

每种修桥方案会连通两个连通块a和b 增加路径数C_a*C_b 求最优方案

点对距离和

一棵树有n个节点,n-1条边边长均为1。 求所有点对的距离总和是多少?

点对距离和

枚举点对 O(n²)对枚举对象,再算距离 枚举起点 O(n)个枚举对象 快速换根 u号为起点的单源多汇距离要1次DFS u为起点的距离和记作f[u] 把起点从u号换到儿子v号时 f[v]对比f[u] 少了sz[v],多了n-sz[v] 0(1)换根 f[v]=f[u]-sz[v]+n-sz[v]

点对距离和

C 个体贡献

每条边在距离总和里共计算几次

树上所有边都是桥

对于边e(u,v),进过e的路径两端 必定1端在v这边,另1端在u这边

> 假定u是v的父节点 v这边共sz[v]点 u这边共n-sz[u]点

随机路径

树上共n点,随机取两个不同点u,v, 求dst(u,v)的期望

随机2点路径

树上共n点,随机取两个不同点u,v, 求u到v距离d(u,v)的期望

期望定义

```
E[d(u,v)]
= sum {选中(x,y)概率*d(x,y)}
```

= 1/n * 1/(n-1) *2*点对距离和

随机遍历

按照1到n的随机排列顺序访问树上n个节点, 求每次随机访问的路径总长度的期望

按照1到n的全排列中的每种顺序访问树上n个节点, 求所有访问的路径总长度的总和

排列1234

总长=6

随机遍历

个体贡献

在每轮访问求路径总长里 "个体"选什么?点/边/路径?

"个体"选路径

有多少种排列里u后面紧接着出现v? (n-1)!

特定的路径起点u到终点v 出现在某轮随机访问中的概率是1/n

每对点对的路径在访问中出现的概率2/n E[单轮访问总长]=所有点对的距离和*2/n

随机3点路径

树上共n点,随机取3个不同点x,y,z 求距离d(x,y)+d(y,z)+d(z,x)的期望

快快编程1807

思路分析

一棵树n点,任意相隔1个点的2点连1条新边, 连接两个有公共邻居的点,问所有点对的距离之和。

重要思想: 树加边不真的去加, 还是用树结构计算

新边和旧边造成路径不唯一 注意力集中在旧边

新路径长度大概是旧路一半

原树中长度p为偶数的路径两端点在新图里距离p/2原树中长度q为奇数的路径两端点在新图里距离(q+1)/2

思路分析

首先dfs求出深度d[],子树大小sz[]

原图点对距离和 x=sum_u sz[u]*(n-sz[u])

新图点对距离和 y

- =原图偶数距离和/2+(原图奇数距离和+奇数距离路径数)/2
 - =(原图偶数距离和+原图奇数距离和+奇数距离路径数)/2 =(原图点对距离和x+奇数距离路径数)/2

其中奇数距离路径数怎么算?

其中奇数距离路径数=两端点深度一奇一偶的路径数 = 奇数深度点数*偶数深度点数

版 KKCOding.net

快快编程作业

1804	
1805	
1806	

拓展题 1807

1807, 1808, 1809