Sistemas Lineares Triangulares

Decomposição de Cholesky

A decomposição de Cholesky \acute{e} a decomposição de uma matriz simétrica e definida positiva no produto de uma matriz triangular inferior e sua transposta $(A=LL^t).$

Quando aplicável, a decomposição de Cholesky é aproximadamente duas vezes mais eficiente que a decomposição LU para resolver sistemas de equações lineares.

Foi descoberta por **André-Louis Cholesky (1875-1918)** e publicada postumamente em 1924.

Condições para a Decomposição de Cholesky

Simetria:

• A deve ser simétrica $(A = A^T)$.

Positividade:

- Todos os menores principais dominantes devem ser positivos.
- Todos os autovalores devem ser positivos.

Conceitos relacionados:

Menores Principais Dominantes

Determinantes das submatrizes de A formadas pelas primeiras k linhas e colunas.

Autovalores

Raízes do polinômio característico de ${\cal A}$

•

Exercício

Verifique se a matriz A é simétrica e definida positiva.

$$A = egin{bmatrix} 2 & 1 & 1 \ 1 & 3 & 1 \ 1 & 1 & 2 \end{bmatrix}$$

Teorema das Raízes Racionais

Para a equação com coeficientes inteiros

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 = 0,$$
 qualquer raiz racional $x = \frac{p}{q}$ irredutível satisfaz:

- p divide o termo constante a_0
- q divide o coeficiente líder a_n

Decomposição de Cholesky

Teorema:

Dada uma matriz simétrica e definida positiva A, existe uma única matriz triangular inferior L tal que $A=LL^T$.

Exemplo:

Vamos calcular a decomposição de Cholesky para a matriz A.

$$A = egin{bmatrix} 2 & 1 & 1 \ 1 & 3 & 1 \ 1 & 1 & 2 \end{bmatrix}$$

Algoritmo de Cholesky

Inicialize L como uma matriz triangular inferior de zeros.

$$L_{j,j} = \sqrt{A_{j,j} - \sum_{k=1}^{j-1} L_{j,k}^* L_{j,k}}, \ L_{i,j} = rac{1}{L_{j,j}} igg(A_{i,j} - \sum_{k=1}^{j-1} L_{j,k}^* L_{i,k}igg) \quad ext{para } i > j.$$

Demonstração da Decomposição de Cholesky:

Existência e Unicidade

1. Caso n = 1:

Para uma matriz 1 imes 1, seja: $A = [a_{11}]$.

Como A é definida positiva, $a_{11}>0$, então pode definir $L=\left[l_{11}\right]$ tal que:

$$A = LL^T \implies [a_{11}] = [l_{11}][l_{11}]^T = [l_{11}^2]$$

e, portanto, $l_{11}=\sqrt{a_{11}}$ existe e é único.

2. Passo Indutivo:

Assuma que qualquer matriz simétrica e definida positiva de ordem k pode ser decomposta como $A_k = L_k L_k^T$, onde L_k é triangular inferior única com entradas positivas na diagonal.

Considere agora uma matriz simétrica e definida positiva A_{k+1} de ordem k+1:

$$A_{k+1} = egin{bmatrix} A_k & \mathbf{b} \ \mathbf{b}^T & c \end{bmatrix}$$

onde A_k é uma matriz k imes k simétrica e definida positiva, ${f b}$ é um vetor coluna k imes 1, e c é um escalar positivo.

3. Decomposição de A_{k+1} :

Queremos encontrar L_{k+1} tal que: $A_{k+1} = L_{k+1}L_{k+1}^T$ Onde L_{k+1} tem a forma:

$$L_{k+1} = egin{bmatrix} L_k & \mathbf{0} \ \mathbf{d}^T & l_{k+1,k+1} \end{bmatrix}$$

Multiplicando $L_{k+1}L_{k+1}^T$:

$$L_{k+1}L_{k+1}^T = egin{bmatrix} L_kL_k^T & L_k\mathbf{d} \ \mathbf{d}^TL_k^T & \mathbf{d}^T\mathbf{d} + l_{k+1,k+1}^2 \end{bmatrix}$$

Comparando com A_{k+1} :

$$egin{cases} A_k = L_k L_k^T \ \mathbf{b} = L_k \mathbf{d} \ c = \mathbf{d}^T \mathbf{d} + l_{k+1,k+1}^2 \end{cases}$$

4. Resolução para ${f d}$ e $l_{k+1,k+1}$:

• Encontrando d:

$$\mathbf{d} = L_k^{-1} \mathbf{b}$$

Como L_k é triangular inferior não singular (devido a A_k ser definida positiva), ${f d}$ existe e é único.

• Encontrando $l_{k+1,k+1}$:

$$l_{k+1,k+1} = \sqrt{c - \mathbf{d}^T \mathbf{d}}$$

Como A_{k+1} é definida positiva, o menor valor de c satisfaz:

$$c > \mathbf{d}^T \mathbf{d}$$

Portanto, $l_{k+1,k+1}$ é real e positivo.

Exercícios

1. Implemente a função naive_cholesky em C.

2. Qual é a complexidade computacional da função naive_cholesky?

PERGUNTAS?