Supporting Information for

On the ground state of Pd₁₃

Andreas M. Köster, ** Patrizia Calaminici, ** Emilio Orgaz, ** Debesh R. Roy, *

José Ulises Reveles, ** and Shiv N. Khanna ***

^aDepartamento de Química, Cinvestav Avenida Instituto Politécnico Nacional 2508 A.P. 14-740, México D.F. 07000, México

bDepartamento de Física y Química Teórica, Facultad de Química Universidad Nacional Autónoma de México CP 04510, México, D.F. México

> ^cDepartment of Physics Virginia Commonwealth University Richmond, VA 23284-2000, USA

* Authors to whom correspondence should be addressed. E-mail Addresses: akoster@cinvestav.mx, snkhanna@vcu.edu

1. Validation of Methodology

We first study the influence of the choice of functional on the atomic states of the Pd atom. For this purpose we employ the local density approximation (LDA) with Dirac exchange and VWN correlation (VWN), the generalized gradient approximation (GGA) in form of the PBE functional and the meta-GGA level of approximation in form of the TPSS functional. All calculations are performed with the 18 valence electron quasi-relativistic effective core potential (QECP18) and the corresponding basis set proposed by Andrae et al. The GEN-A2* auxiliary function set is used. In order to avoid spin contamination the restricted open-shell Kohn-Sham (ROKS) method is employed. The D state is represented by the following one-determinant open-shell configuration:

$$\left(4d_{z^{2}}\right)^{1}\left(4d_{x^{2}-y^{2}}\right)^{2}\left(4d_{xy}\right)^{2}\left(4d_{xz}\right)^{2}\left(4d_{yz}\right)^{2}\left(5s\right)^{1}$$

The energy separations between the ¹S Pd ground state and the ³D first excited state are given in Table 1 in wavenumbers. As this table shows the state ordering is correct at all levels of approximation.

Table 1: Energies for the ${}^{1}S \rightarrow {}^{3}D$ excitation in the Pd atom calculated at LDA, GGA and meta-GGA level of theory.

E[cm ⁻¹]						
State	VWN	PBE	TPSS	Exp ^a	Configuration	
^{1}S	0	0	0	0	[Kr] 4d ¹⁰	
^{3}D	6737	6131	5126	6564	[Kr] 4d ⁹ 5s	

Best agreement with experiment is obtained at the LDA level of theory. However, it is well know that LDA is unreliable for binding energies. Therefore, we have chosen the PBE functional for our further studies.

Our next study focuses on the particular numerical procedure for solving the Kohn-Sham equations. In deMon2k two different Kohn-Sham methods are implemented. In the first one the variational fitting of the Coulomb potential is used but the exchange-correlation matrix elements are calculated with the Kohn-Sham orbital density. This approach is sometimes named in the literature RI-DFT (Resolution-of-the-Identity Density Functional Theory). In the second method, that is computationally much more efficient, not only the Coulomb potential but also the exchange-correlation matrix elements are calculated with the auxiliary function density. This approach is named auxiliary density functional theory (ADFT) and permits the calculations of large systems and Born-Oppenheimer molecular dynamics simulation on the nanosecond time scale. Tables 2 and 3 compare the optimized bond lengths, vibrational frequencies, zero-point

^a Experimental data from C.E. Moore, Atomic Energy Levels, Vol. III, NSRDS-NBS35 Washington, D.C. 1971. The experimental ³D energy refers to the ³D₃ state.

energies, relative energies and binding energies per atom (ZPE and BSSE corrected) of the lowest lying triplet, singlet and quintet states of Pd₂ from RI-DFT and ADFT calculations employing the PBE functionals and the above described QECP18 and GEN-A2* auxiliary function set.

Table 2: RI-DFT/GEN-A2* optimized bond lengths, r_e , vibrational frequencies, ω_e , zeropoint energies, ZPE, relative energies, ΔE , and binding energies per atom, BE, of the lowest lying triplet, singlet and quintet states of Pd₂.

				Energies[meV]	
Dimer	r _e [Å]	$\omega_{\rm e}[{\rm cm}^{\text{-}1}]$	ZPE	$\Delta \mathrm{E}$	BE
$^{3}\mathrm{Pd}_{2}$	2.51	204	9	0	716
$^{1}\mathrm{Pd}_{2}$	2.71	155	13	490	473
$^{5}\mathrm{Pd}_{2}$	2.53	181	13	1982	-278

Table 3: ADFT/GEN-A2* optimized bond lengths, r_e , vibrational frequencies, ω_e , zeropoint energies, ZPE, relative energies, ΔE , and binding energies per atom, BE, of the lowest lying triplet, singlet and quintet states of Pd₂.

				Energies[meV]	
Dimer	$r_{\rm e}[{ m \AA}]$	$\omega_{\rm e}[{\rm cm}^{\text{-}1}]$	ZPE	ΔΕ	BE
$^{3}\mathrm{Pd}_{2}$	2.50	213	9	0.0	703
$^{1}\mathrm{Pd}_{2}$	2.72	146	13	464	473
$^{5}\mathrm{Pd}_{2}$	2.54	172	9	2016	-304

The comparison of Table 2 and Table 3 reveals that RI-DFT and ADFT optimized bond lengths of Pd₂ differ at most by 1 pm. The corresponding vibrational frequencies agree within 10 cm⁻¹. Relative energies and (corrected) binding energies per atom differ by no more than 30 meV. All these differences are far beyond the intrinsic accuracy of the used density functionals. Therefore, we have performed the Pd₁₃ optimizations, frequency analyses and Born-Oppenheimer molecular dynamics simulations in the framework of the ADFT methodology.

Comparison of our ADFT Pd_2 results with experiment is rather satisfying. The estimated experimental bond length of 2.47 Å is in good agreement with our optimized bond length of 2.50 Å. The agreement with the more accurate determined experimental vibrational frequency of $210\pm10~{\rm cm}^{-1}$ is excellent. This indicates that the ADFT structure and electronic state description is of good quality, comparable to CCSD(T) results. However, the experimental binding energy estimate of $366\pm130~{\rm meV}$ is smaller than our calculated value. The observed overbinding is in the typical range for DFT transition metal calculations. Our previous studies of 3d transition metal dimers have shown that these errors can be mainly attributed to the atomic calculations and, thus, do not jeopardize the accuracy of the molecular results.

2. Cluster Structures and Energies

Energy: -1663.278095

Pd

Pd

Pd

Pd

Pd

Pd

Pd

Pd

-2.594903

2.021373

-2.591967

-2.570646

2.020777

-0.314501

-0.315781

3.614548

-2.221326

2.167280

2.224518

0.001273

-2.166867

1.379960

-1.377865

-0.000062

Total energies [a.u.] and Cartesian coordinates [Å] of ADFT optimized Pd₁₃ isomers. The (approximated) symmetry point group and molecular spin multiplicity are also given.

Energy: -1663.279198

-2.588755

2.018931

-2.587634

-2.593709

2.018796

-0.323630

-0.324082

3.614769

-2.230707

2.164124

2.231556

0.000160

-2.164258

1.371409

-1.371625

-0.000193

0.059758

-0.084403

0.059554

-1.437666

-0.084846

-1.072815

-1.072399

0.309222

Symmetry: C_s Symmetry: C_s Multiplicity: 3 Multiplicity: 1 Pd 1.022788 0.002862 1.050721 Pd 1.011355 0.002926 1.025824 Pd 0.002645 Pd 1.889379 0.004086 -1.807162 1.832291 -1.819236 Pd -0.238073 2.270997 1.560652 Pd -0.266507 2.248613 1.532559 Pd -1.652254 -0.015354 1.153729 Pd -1.616510 -0.003244 1.152215 Pd -0.226775 -2.285300 1.527876 Pd -0.227833 -2.270741 1.562690 Pd -2.471619 0.059322 Pd -2.461193 -2.267979 0.043731 -2.258231 1.978091 Pd 1.952394 2.156449 -0.126805 Pd 2.140804 -0.101848 -2.545231 2.218329 Pd -2.484017 2.249255 0.060063 Pd 0.069121 Pd Pd -2.611775 -2.575955 -0.005765 -1.448242 -0.014016 -1.447808 Pd -2.150320 -0.127523 Pd 1.966085 -2.106945 -0.125863 1.957410 Pd -0.342568 1.386240 -1.116803 Pd -0.344433 1.393801 -1.107324 Pd Pd -0.330837 -1.325054 -0.336122 -1.383023 -1.118374 -1.122482 Pd 3.539247 0.002813 0.336217 Pd 3.582662 0.006154 0.334751 Energy: -1663.280080 Energy: -1663.283902 Symmetry: C_s Symmetry: C_s Multiplicity: 7 (Global minimum) Multiplicity: 5 Pd 1.040108 -0.000463 1.059169 Pd 1.044347 -0.002177 1.064987 Pd Pd 1.905564 -0.000448 -1.742663 1.920013 -0.001976 -1.738972 -0.260675 Pd -0.273679 1.433611 Pd 2.328089 1.421585 2.275386 Pd -1.658238 Pd -1.682312 0.000607 1.163541 0.000170 1.163567 Pd -0.261442 -2.327813 1.421937 Pd -0.277270 -2.278752 1.429803

0.046985

-0.089376

0.046607

-1.459328

-0.089065

-1.064113

-1.063990

0.319311

Pd

Pd

Pd

Pd

Pd

Pd

Pd

Pd

Energy: -1663.276074 Energy: -1663.278279

 $\begin{array}{ccc} \text{Symmetry: } C_s & \text{Symmetry: } C_{3v} \\ \text{Multiplicity: } 9 & \text{Multiplicity: } 1 \end{array}$

Pd	1.051494	0.000087	1.080170	Pd	0.582713	1.519570	1.227204
Pd	1.888637	0.003137	-1.765220	Pd	2.974508	0.475662	1.166236
Pd	-0.269967	2.305379	1.478271	Pd	-1.897091	2.336911	1.168536
Pd	-1.641914	-0.001764	1.157350	Pd	-0.000825	-0.001043	-1.047868
Pd	-0.266708	-2.307922	1.477089	Pd	2.504099	-0.974213	-1.019293
Pd	-2.577095	-2.198545	0.047271	Pd	-2.510313	0.947393	-1.026594
Pd	1.999793	2.156416	-0.079412	Pd	2.074594	1.698652	-1.029214
Pd	-2.581808	2.194273	0.051981	Pd	1.026208	-1.263393	1.228491
Pd	-2.577545	-0.001320	-1.507417	Pd	-1.075573	-2.809584	1.169038
Pd	2.004008	-2.155344	-0.079811	Pd	-1.606125	-0.255143	1.227227
Pd	-0.325134	1.365359	-1.054900	Pd	-2.096104	-1.683025	-1.019760
Pd	-0.320985	-1.361852	-1.054015	Pd	0.433673	-2.647339	-1.025442
Pd	3.617223	0.002096	0.248645	Pd	-0.409766	2.655550	-1.018560

Energy: -1663.279087 Energy: -1663.279933

Symmetry: C_{3v} Symmetry: C_{3v} Multiplicity: 5

Pd	1.152260	1.041392	-1.284963	Pd	1.230180	0.796241	-1.253961
Pd	-0.665848	2.940921	-1.175347	Pd	-0.320339	2.943873	-1.255827
Pd	2.861876	-0.958811	-1.168419	Pd	2.750617	-1.362104	-1.147284
Pd	0.022720	0.013498	1.042310	Pd	0.030425	0.085519	1.038171
Pd	-1.761649	1.996126	1.088415	Pd	-1.538071	2.225581	0.987944
Pd	1.807057	-1.958225	1.079973	Pd	1.608470	-2.040136	1.143137
Pd	0.865119	2.562904	0.959068	Pd	1.133837	2.487376	0.946777
Pd	-1.570945	0.487214	-1.200631	Pd	-1.485224	0.565582	-1.254016
Pd	-2.256520	-2.031798	-1.160332	Pd	-2.489234	-1.860694	-1.079883
Pd	0.320282	-1.597637	-1.222373	Pd	0.140608	-1.760821	-1.151478
Pd	-0.801396	-2.545074	1.019428	Pd	-1.108806	-2.300565	1.166631
Pd	-2.620753	-0.543122	1.043513	Pd	-2.742644	-0.159526	0.978245
Pd	2.647798	0.592611	0.979359	Pd	2.790182	0.379674	0.881545

Energy: -1663.280263 Energy: -1663.273060

Symmetry: C_{3v} Symmetry: C_{3v} Multiplicity: 7 (local min. for C_{3v}) Multiplicity: 9

Pd	-1.385310	0.693516	1.207951	Pd	-0.977717	1.338983	1.215880
Pd	-0.030251	2.988845	1.257820	Pd	1.316996	2.649683	1.209592
Pd	-2.627909	-1.638916	1.105920	Pd	-3.221851	-0.049330	0.980455
Pd	-0.001413	0.076649	-0.998429	Pd	0.174323	0.005853	-1.000332
Pd	1.310965	2.417306	-0.948659	Pd	2.449871	1.418095	-0.844307
Pd	-1.320552	-2.253928	-1.094640	Pd	-2.180056	-1.364154	-1.111330
Pd	-1.392478	2.381779	-0.928391	Pd	0.085941	2.675134	-1.126516
Pd	1.368107	0.724992	1.207945	Pd	1.462609	0.019182	1.346719
Pd	2.666934	-1.575040	1.103850	Pd	1.400958	-2.612394	1.206439
Pd	0.021412	-1.719541	1.239483	Pd	-0.935322	-1.373647	1.211754
Pd	1.384860	-2.211322	-1.103981	Pd	0.157152	-2.668898	-1.123700
Pd	2.758058	0.098300	-1.018401	Pd	2.482855	-1.348763	-0.858042
Pd	-2.752423	0.017362	-1.030468	Pd	-2.215759	1.310255	-1.106613

Energy: -1663.255457 Energy: -1663.260749

 $\begin{array}{lll} \text{Symmetry: } \sim I_h & \text{Symmetry: } \sim I_h \\ \text{Multiplicity: } 1 & \text{Multiplicity: } 3 \end{array}$

Energy: -1663.264681

Symmetry: $\sim I_h$ Multiplicity: 5

Symmetry: $\sim I_h$ Multiplicity: 7

Pd	-0.000893	0.033709	0.000482	Pd	-0.000465	-0.002192	-0.001038
Pd	-1.648712	2.179689	0.000153	Pd	0.041051	2.547629	0.611730
Pd	1.544205	2.244555	0.003118	Pd	2.317922	1.308605	-0.532203
Pd	-0.037682	1.509883	2.099524	Pd	1.534194	0.709907	1.998400
Pd	0.028194	-1.414184	2.099324	Pd	0.091074	-1.673532	1.996294
				Pd	2.352814	-1.328532	0.345850
Pd	2.354151	0.025981	1.341153	Pd	-0.083130	1.680102	-1.985261
Pd	-0.033400	1.509441	-2.099142	Pd	-1.349622	0.719823	2.112712
Pd	-2.357744	-0.078011	1.331852				
Pd	2.358082	0.025071	-1.337070	Pd	1.338176	-0.723130	-2.122165
Pd	-1.372042	-2.303948	-0.002091	Pd	-2.318451	-1.315870	0.532084
Pd	1.477524	-2.243230	0.003651	Pd	-0.048246	-2.546094	-0.602520
Pd	-2.352090	-0.076950	-1.342722	Pd	-2.347586	1.331132	-0.343510
Pd	0.040407	-1.412006	-2.149068	Pd	-1.527732	-0.707847	-2.010373
ru	0.040407	-1.412000	-2.149008				

Energy: -1663.278977

Symmetry: $\sim I_h$ Multiplicity: 9 (local min. for $\sim I_h$)

Pd	-0.000703	0.000019	-0.000003
Pd	2.352075	1.390076	-0.100241
Pd	2.341531	-1.404633	-0.107268
Pd	1.534926	-0.008287	2.145189
Pd	-1.323742	0.002557	2.262398
Pd	0.063988	-2.216488	1.366389
Pd	1.322781	-0.000922	-2.263263
Pd	0.074668	2.215156	1.368069
Pd	-0.080114	-2.215557	-1.367020
Pd	-2.340774	1.406828	0.109003
Pd	-2.350870	-1.393037	0.099443
Pd	-0.060387	2.216291	-1.367013
Pd	-1.533379	0.007997	-2.145684

References

Dirac, P.A.M. Proc. Camb. Phil. Soc. 26, 376 (1930).
 Vosko, S.H.; Wilk, L.; and Nusair, M. Can. J. Phys. 58, 1200 (1980).
 Perdew, J.P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 77, 3865 (1996).
 Staroverov, V.N.; Scuseria, G.E.; Tao, J.; Perdew, J.P. Phys. Rev. B 69, 075102 (2004).

⁵ Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; and Preuss, H. Theor. Chim. Acta 77, 123 (1990).

⁶ Calaminici, P.; Janetzko, F.; Köster, A. M.; Mejia-Olvera, R.; and Zuniga-Gutierrez B. J. Chem. Phys. 126, 044108 (2007).

⁷ Jules, J.L.; and Lombardi, J.R. J. Phys. Chem. A 107, 1268 (2003).

⁸ Ho, J.; Ervin, K.M.; Polak, Gilles, M.K.; and Lineberger, W.C. J. Chem. Phys. 95, 4845 (1991).

⁹ Figgen, D.; Peterson, K.A.; and Stoll, H. J. Chem. Phys. 128, 034110 (2008).

¹⁰ Lin, S.S.; Strauss, B; and Kant, A. J. Chem. Phys. 51, 2282 (1969).