Distributional Reinforcement Learning

Marc Bellemare, Will Dabney, Georg Ostrovski, Mark Rowland, Rémi Munos

Deep RL is already a successful empirical research domain

Can we make it a *fundamental* research domain?

Related fundamental works:

- RL side: tabular, linear TD, ADP, sample complexity, ...
- Deep learning side: VC-dim, convergence, stability, robustness, ...

Nice theoretical results, but how much do they tell us about deepRL?

Can we make it a *fundamental* research domain?

Related fundamental works:

- RL side: tabular, linear TD, ADP, sample complexity, ...
- Deep learning side: VC-dim, convergence, stability, robustness, ...

Nice theoretical results, but how much do they tell us about deepRL?

What is specific about RL when combined with deep learning?

Distributional-RL

Shows interesting interactions between RL and deep-learning

Outline:

- The idea of distributional-RL
- The theory
- How to represents distributions?
- Neural net implementation
- Results
- Why does this work?

Random immediate reward

Expected immediate reward

$$\mathbb{E}[R(x)] = \frac{1}{36} \times (-2000) + \frac{35}{36} \times (200) = 138.88$$

Random variable reward:

$$R(x) = \begin{cases} -2000 \text{ w.p. } 1/36\\ 200 \text{ w.p. } 35/36 \end{cases}$$

The return = sum of future discounted rewards

- Returns are often complex, multimodal
- Modelling the expected return hides this intrinsic randomness
- Model all possible returns!

The r.v. Return $Z^{\pi}(x,a)$

$$\sum_{t=0}^{\infty} \gamma^t r_t = +10$$

Captures intrinsic randomness from:

- Immediate rewards
- Stochastic dynamics
- Possibly stochastic policy

The r.v. Return $Z^{\pi}(x,a)$

$$Z^{\pi}(x,a) = \sum_{t\geq 0} \gamma^t r(x_t, a_t) \big|_{x_0 = x, a_0 = a, \pi}$$

The expected Return

The value function
$$Q^{\pi}(x,a)=\mathbb{E}[Z^{\pi}(x,a)]$$

Satisfies the Bellman equation

$$Q^{\pi}(x,a) = \mathbb{E}[r(x,a) + \gamma Q^{\pi}(x',a')]$$

where $x' \sim p(\cdot|x,a)$ and $a' \sim \pi(\cdot|x')$

Distributional Bellman equation?

We would like to write a Bellman equation for the distributions:

$$Z^{\pi}(x, a) \stackrel{D}{=} R(x, a) + \gamma Z^{\pi}(x', a')$$
where $x' \sim p(\cdot | x, a)$ and $a' \sim \pi(\cdot | x')$

Does this equation make sense?

Example

Reward = Bernoulli ($\frac{1}{2}$), discount factor $\gamma = \frac{1}{2}$

Bellman equation:
$$V=rac{1}{2}+rac{1}{2}V$$
 , thus V = 1

Return
$$Z = \sum_{t \ge 0} 2^{-t} R_t$$
 Distribution?

Example

Reward = Bernoulli ($\frac{1}{2}$), discount factor $\gamma = \frac{1}{2}$

Bellman equation:
$$V=rac{1}{2}+rac{1}{2}V$$
 , thus V = 1

Return
$$Z = \sum_{t \geq 0} 2^{-t} R_t$$
 Distribution? $\mathcal{U}([0,2])$ (rewards = binary expansion of a real number)

Example

Reward = Bernoulli ($\frac{1}{2}$), discount factor $\gamma = \frac{1}{2}$

Bellman equation:
$$V=rac{1}{2}+rac{1}{2}V$$
 , thus V = 1

Return
$$Z = \sum_{t \geq 0} 2^{-t} R_t$$
 Distribution? $\mathcal{U}([0,2])$

Distributional Bellman equation: $Z=\mathcal{B}(\frac{1}{2})+\frac{1}{2}Z$

In terms of distribution:
$$\eta(z) = \frac{1}{2} \big(\delta(0) + \delta(1)\big) * 2\eta(2z)$$

$$= \eta(2z) + \eta(2(z-1))$$

Distributional Bellman operator

$$T^{\pi}Z(x,a) = R(x,a) + \gamma Z(x',a')$$

Does there exists a fixed point?

Properties

Theorem [Rowland et al., 2018]

 T^π is a contraction in Cramer metric

$$\ell_2(X,Y) = \left(\int_{\mathbb{R}} \left(F_X(t) - F_Y(t)\right)^2 dt\right)^{1/2}$$

Theorem [Bellemare et al., 2017]

 T^π is a contraction in Wasserstein metric,

$$w_p(X,Y) = \left(\int_{\mathbb{R}} \left(F_X^{-1}(t) - F_Y^{-1}(t)\right)^p dt\right)^{1/p}$$

(but not in KL neither in total variation) Intuition: the size of the support shrinks.

Wasserstein

Distributional dynamic programming

Thus T^π has a unique fixed point, and it is Z^π

Policy evaluation:

For a given policy π , iterate $Z \leftarrow T^\pi Z$ converges to Z^π

Distributional dynamic programming

Thus T^π has a unique fixed point, and it is Z^π

Policy evaluation:

For a given policy π , iterate $Z \leftarrow T^\pi Z$ converges to Z^π

Policy iteration:

- For current policy π_k , compute Z^{π_k}
- Improve policy

$$\pi_{k+1}(x) = \arg\max_a \mathbb{E}[Z^{\pi_k}(x,a)]$$

Does Z^{π_k} converge to the return distribution for the optimal policy?

Distributional Bellman optimality operator

$$TZ(x,a) \stackrel{D}{=} r(x,a) + \gamma Z(x',\pi_Z(x'))$$

where $x' \sim p(\cdot|x, a)$ and $\pi_Z(x') = \arg \max_{a'} \mathbb{E}[Z(x', a')]$

Is this operator a contraction mapping?

Distributional Bellman optimality operator

$$TZ(x,a) \stackrel{D}{=} r(x,a) + \gamma Z(x',\pi_Z(x'))$$

where
$$x' \sim p(\cdot|x, a)$$
 and $\pi_Z(x') = \arg \max_{a'} \mathbb{E}[Z(x', a')]$

Is this operator a contraction mapping?

No!

It's not even continuous

The dist. opt. Bellman operator is not smooth

Consider distributions $\,Z_{\epsilon}\,$

If $\varepsilon > 0$ we back up a bimodal distribution

If ε < 0 we back up a Dirac in 0

Thus the map $Z_{\epsilon}\mapsto TZ_{\epsilon}$ is not continuous

Distributional Bellman optimality operator

Theorem [Bellemare et al., 2017]

if the optimal policy is unique, then the iterates $Z_{k+1} \leftarrow TZ_k$ converge to Z^{π^*}

Intuition: The distributional Bellman operator preserves the mean, thus the mean will converge to the optimal policy π^* eventually. If the policy is unique, we revert to iterating T^{π^*} , which is a contraction.

How to represent distributions?

Categorical

Inverse CDF for specific quantile levels

Parametric inverse CDF

$$\tau \mapsto F_Z^{-1}(\tau)$$

Categorical distributions

Distributions supported on a finite support $\{z_1,\ldots,z_n\}$

Discrete distribution $\{p_i(x,a)\}_{1 \le i \le n}$

$$Z(x,a) = \sum_{i} p_i(x,a)\delta_{z_i}$$

Projected distributional Bellman operator

Let Π_n be the projection onto the support (piecewise linear interpolation)

Theorem:
$$\Pi_n T^\pi$$
 is a contraction (in Cramer distance)

Intuition: Π_n is a non-expansion (in Cramer distance).

Its fixed point $\, Z_n \,$ can be computed by value iteration $Z \leftarrow \Pi_n T^\pi Z \,$

Theorem:
$$\ell_2^2(Z_n, Z^\pi) \leq \frac{1}{(1-\gamma)} \max_{1 \leq i < n} |z_{i+1} - z_i|$$
 [Rowland et al., 2018]

Projected distributional Bellman operator

Policy iteration: iterate

- Policy evaluation: $Z_k = \prod_n T^{\pi_k} Z_k$

- Policy improvement: $\pi_{k+1}(x) = \arg\max_{a} \mathbb{E}[Z^{\pi_k}(x,a)]$

Assume there is a unique optimal policy. Z_k converges to $Z_n^{\pi^*}$, whose greedy policy is optimal.

Categorical distributional Q-learning

Observe transition samples $x_t, a_t \stackrel{r_t}{\rightarrow} x_{t+1}$

Update:

$$Z(x_t, a_t) = (1 - \alpha_t)Z(x_t, a_t) + \alpha_t \Pi_C(r_t + \gamma Z(x_{t+1}, \pi_Z(x_{t+1})))$$

Theorem

Under the same assumption as for Q-learning, assume there is a unique optimal policy π^* , then $Z \to Z_n^{\pi^*}$ and the resulting policy is optimal.

[Rowland et al., 2018]

DeepRL implementation

DQN

[Mnih et al., 2013]

Actions DeepMind

[Bellemare et al., 2017]

C51 (categorical distributional DQN)

- 1. Transition x, $a \rightarrow x'$
- 2. Select best action at x'
- 3. Compute Bellman backup
- 4. Project onto support
- Update toward projection (e.g., by minimize a kl-loss)

Categorical DQN

Randomness from future choices

Results on 57 games Atari 2600

	Mean	Median	>human
DQN	228%	79%	24
Double DQN	307%	118%	33
Dueling	373%	151%	37
Prio. Duel.	592%	172%	39
C51	701%	178%	40

Categorical representation

Quantile Regression Networks

Inverse CDF learnt by Quantile Regression

I2-regression

11-regression

1/4-quantile-regression

3/4-quantile-regression

many-quantiles-regression

Inverse CDF learnt by Quantile Regression

Quantile Regression DQN

$$z \sim Z_{\tau}(x_t, a_t)$$

$$z' \sim Z_{\tau}(x_{t+1}, a^*)$$

$$\delta_t = r_t + \gamma z' - z$$

QR loss:
$$\rho_{\tau}(\delta) = \delta(\tau - \mathbb{I}_{\delta < 0})$$

Quantile Regression = projection in Wasserstein!

(on a uniform grid)

QR distributional Bellman operator

Theorem:
$$\Pi_{QR}T^{\pi}$$
 is a contraction (in Wasserstein)

[Dabney et al., 2018]

Intuition: quantile regression = projection in Wasserstein

Reminder:

- T^{π} is a contraction (both in Cramer and Wasserstein)
- $\Pi_n T^{\pi}$ is a contraction (in Cramer)

DQN

DQN

QR-DQN

Quantile-Regression DQN

	Mean	Median
DQN	228%	79%
Double DQN	307%	118%
Dueling	373%	151%
Prio. Duel.	592%	172%
C51	701%	178%
QR-DQN	864%	193%

Implicit Quantile Networks (IQN)

Learn a parametric inverse CDF

$$\tau \mapsto F_Z^{-1}(\tau)$$

QR-DQN

Actions Actions Actions

<u>IQN</u>

Implicit Quantile Networks for TD

$$au \sim \mathcal{U}[0,1], \quad z = Z_{\tau}(x_t, a_t)$$
 $au' \sim \mathcal{U}[0,1], \quad z' = Z_{\tau}(x_{t+1}, a^*)$

$$\delta_t = r_t + \gamma z' - z$$
QR loss: $\rho_{\tau}(\delta) = \delta(\tau - \mathbb{I}_{\delta < 0})$

Implicit Quantile Networks

	Mean	Median	Human starts
DQN	228%	79%	68%
Prio. Duel.	592%	172%	128%
C51	701%	178%	116%
QR-DQN	864%	193%	153%
IQN	1019%	218%	162%

Implicit Quantile Networks

	Mean	Median	Human starts
DQN	228%	79%	68%
Prio. Duel.	592%	172%	128%
C51	701%	178%	116%
QR-DQN	864%	193%	153%
IQN	1019%	218%	162%
Rainbow	1189%	230%	125%

Almost as good as SOTA (Rainbow/Reactor) which combine prio/dueling/categorical/...

Why does it work?

• In the end we only use the mean of these distributions

Why does it work?

In the end we only use the mean of these distributions

When we use deep networks, maybe:

- Auxiliary task effect:
 - Same signal to learn from but more predictions
 - More predictions → richer signal → better representations
 - Reduce state aliasing (disambiguate different states based on return)
- Density estimation instead of I2-regressions
 - RL uses same tools as deep learning
 - Lower variance gradient
- Other reasons?

Algorithms

Policy:

- Risk-neutral
- Risk seeking/averse
- Exploration: (optimism, Thompson sampling)

Algorithms:

- Value-based
- Policy-based

Evaluation

Agents:

DQN, A3C, Impala, DDPG, TRPO, PPO, ...

Distribution over

- Returns
- Policies

Other:

- State aliasing
- Reward clipping
- Undiscounted RL

Distributional RL

Environments

Atari, DMLab30, Control suite, Go,...

Deep Learning impact:

- Lower variance gradients
- Richer representations

Convergence analysis

- Contraction property
- Control case SGD friendly

Distributional loss

- Wasserstein
- Cramer
- other?

Representation of distributions

- Categorical
- Quantile regression
- Mixture of Gaussians
- Generative models

Theory

Deep Learning

References

- A distributional perspective on reinforcement learning, Bellemare, Dabney, Munos, ICML2017
- An Analysis of Categorical Distributional Reinforcement Learning, Rowland, Bellemare, Dabney, Munos, Teh, AISTATS2018
- Distributional reinforcement learning with quantile regression, Dabney, Rowland, Bellemare, Munos, AAAI2018
- Implicit Quantile Networks for Distributional Reinforcement Learning,
 Dabney, Ostrovski, Silver, Munos, ICML2018