Isomorphic Inversion

Time Limit 1 second

Let $\bf s$ be a given string of up to 10^6 digits. Find the maximal $\bf k$ for which it is possible to partition $\bf s$ into $\bf k$ consecutive contiguous substrings, such that the $\bf k$ parts form a palindrome.

More precisely, we say that strings $s_0, s_1, ..., s_{k-1}$ form a palindrome if $s_i = s_k$ -1-i for all $0 \le i < k$.

In the first sample case, we can split the string 652526 into 4 parts as 6|52|52|6, and these parts together form a palindrome. It turns out that it is impossible to split this input into more than 4 parts while still making sure the parts form a palindrome.

Input

• A nonempty string of up to 10^6 digits.

Output

• Print the maximal value of k on a single line.

Sample Input 1	Sample Output 1	
652526	4	
Sample Input 2	Sample Output 2	
12121131221	7	
Sample Input 3	Sample Output 3	
123456789	1	
Sample Input 4	Sample Output 4	
132594414896459441321	9	