Résumé de cours : Semaine 15, du 10 janvier au 14.

Les espaces vectoriels (fin)

Notation. K désigne un corps quelconque.

1 Familles de vecteurs (fin)

Notation. On fixe un \mathbb{K} -espace vectoriel E et un ensemble quelconque I (éventuellement infini).

1.1 Base canonique

Propriété. Soit $n \in \mathbb{N}^*$. \mathbb{K}^n est un \mathbb{K} -espace vectoriel de dimension n dont une base est $c = (c_1, \ldots, c_n)$, où pour tout $i \in \{1, \ldots, n\}$, $c_i = (\delta_{i,j})_{1 \leq j \leq n}$. c est la base canonique de \mathbb{K}^n . Les coordonnées de $x \in \mathbb{K}^n$ dans la base c sont les composantes de x.

Propriété. Soit I un ensemble quelconque. Pour tout $i \in I$, on note $c_i = (\delta_{i,j})_{j \in I}$. Ainsi $c = (c_i)_{i \in I}$ est une famille de $\mathbb{K}^{(I)}$. C'est une base de $\mathbb{K}^{(I)}$, appelée la base canonique de $\mathbb{K}^{(I)}$. De plus, pour tout $x = (\alpha_i)_{i \in I} \in \mathbb{K}^{(I)}$: les coordonnées de x sont ses composantes. Il faut savoir le démontrer.

Corollaire. La base canonique de $\mathbb{K}[X]$ est la famille $(X^n)_{n\in\mathbb{N}}$. Soit $n\in\mathbb{N}$. $(1,X,\ldots,X^n)$ est la base canonique de $\mathbb{K}_n[X]$: $\dim(\mathbb{K}_n[X])=n+1$.

Corollaire. La base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$ est la famille des matrices élémentaires $(E_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}$ définie par : Pour tout $i \in \{1,\ldots,n\}$ et $j \in \{1,\ldots,p\}$, $E_{i,j} = (\delta_{a,i}\delta_{b,j})_{\substack{1 \leq a \leq n \\ 1 \leq b \leq p}}$.

1.2 Exemples

Propriété. Dans \mathbb{K}^2 , deux vecteurs $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ et $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ forment une base de \mathbb{K}^2 si et seulement si $u_1v_2 - u_2v_1 \stackrel{\Delta}{=} \det_c(u,v) \neq 0$.

Propriété. Toute sur-famille d'une famille génératrice est génératrice. Toute sous-famille d'une famille libre est libre.

Propriété. Une famille de vecteurs est libre si et seulement si toute sous-famille finie de cette famille est libre.

Théorème. $\dim(E_1 \times \cdots \times E_n) = \dim(E_1) + \cdots + \dim(E_n)$. Il faut savoir le démontrer.

1.3 Application linéaire associée à une famille de vecteurs

Propriété. Soit
$$x=(x_i)\in E^I$$
. Notons $\Psi_x: \mathbb{K}^{(I)} \longrightarrow E$ $(\alpha_i)_{i\in I} \longmapsto \sum_{i\in I} \alpha_i x_i$.

 Ψ_x est une application linéaire.

- x est une famille libre si et seulement si Ψ_x est injective.
- x est une famille génératrice si et seulement si Ψ_x est surjective.
- x est une base si et seulement si Ψ_x est un isomorphisme.

 Ψ_x est appelée l'application linéaire associée à la famille de vecteurs x.

Il faut savoir le démontrer.

Propriété. Soit $x = (x_i)_{i \in I}$ une famille de vecteurs de E. x est libre si et seulement si, pour tout $y \in \text{Vect}(x)$, il existe une unique famille presque nulle de scalaires $(\alpha_i)_{i \in I}$ telle que $y = \sum_{i \in I} \alpha_i x_i$.

Propriété. Si $e = (e_i)_{i \in I}$ est une base de E, alors E est isomorphe à $\mathbb{K}^{(I)}$.

1.4 Image d'une famille par une application linéaire

Notation. Si $u \in L(E, F)$ et $x = (x_i)_{i \in I} \in E^I$, on notera $(u(x_i))_{i \in I} = u(x)$.

Propriété. Avec cette notation, $\Psi_{u(x)} = u \circ \Psi_x$.

Théorème.

- L'image d'une famille libre par une injection linéaire est une famille libre.
- L'image d'une famille génératrice par une surjection linéaire est génératrice.
- L'image d'une base par un isomorphisme est une base.

Il faut savoir le démontrer.

Théorème. Deux espaces de dimensions finies ont la même dimension si et seulement si ils sont isomorphes.

Il faut savoir le démontrer.

Propriété. Soit E et F deux espaces de dimensions finies et soit $f \in L(E, F)$. Si f est injective, alors $\dim(E) \leq \dim(F)$. Si f est surjective, alors $\dim(E) \geq \dim(F)$.

Propriété. Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions quelconques. Soient $u \in L(E, F)$ et G un sous-espace vectoriel de E de dimension finie. Alors u(G) est de dimension finie et $\dim(u(G)) \leq \dim(G)$, avec égalité lorsque u est injective.

Propriété. L'image d'une famille génératrice par une application linéaire u engendre Im(u).

Propriété. L'image d'une famille liée par une application linéaire est liée.

Théorème.

On suppose que E est un \mathbb{K} -espace vectoriel admettant une base $e = (e_i)_{i \in I}$.

Soit $f = (f_i)_{i \in I}$ une famille quelconque de vecteurs d'un second K-espace vectoriel F.

Il existe une unique application linéaire $u \in L(E, F)$ telle que, $\forall i \in I$ $u(e_i) = f_i$.

De plus,
$$(f_i)_{i \in I}$$
 est
$$\begin{cases} & \text{libre} \\ & \text{génératrice si et seulement si u est} \end{cases} \begin{cases} & \text{injective} \\ & \text{surjective} \end{cases}.$$

Il faut savoir le démontrer.

Corollaire.

Soit E et F deux espaces vectoriels de dimensions finies et soit $u \in L(E, F)$. Si $\dim(E) = \dim(F)$, alors u injective $\iff u$ surjective $\iff u$ bijective.

```
Propriété. Soit E un \mathbb{K}-espace vectoriel de dimension finie et u \in L(E). Alors u inversible dans L(E) \iff u inversible à gauche dans L(E). \iff u inversible à gauche dans L(E).
```

Exercice. Soit A une \mathbb{K} -algèbre et B une sous-algèbre de A de dimension finie. Soit $b \in B$. Montrer que si b est inversible dans A, alors $b^{-1} \in B$.

Il faut savoir le démontrer.

Propriété. Si E admet une base $(e_i)_{i \in I}$, alors L(E, F) est isomorphe à F^I . Il faut savoir le démontrer.

Théorème. $\dim(L(E,F)) = \dim(E) \times \dim(F)$.

Les équations différentielles (début)

2 Equations différentielles linéaires d'ordre 1

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

On s'intéresse aux équations différentielles (E): y' = a(t)y + b(t) et (H): y' = a(t)y en l'inconnue y, où I est un intervalle, et où a et b sont deux applications continues de I dans \mathbb{K} . (H) est l'équation homogène (ou bien l'équation sans second membre, ESSM) associée à (E).

Définition. les courbes intégrales de (E) sont les graphes des solutions de (E).

Définition. Soit $y_0 \in \mathbb{K}$ et $t_0 \in I$. Le problème de Cauchy relatif à (E) et au couple (t_0, y_0) est la recherche des solutions y de (E) vérifiant la condition initiale $y(t_0) = y_0$.

Propriété. Notons S_H l'ensemble des solutions de (H) et S_E l'ensemble des solutions de (E). Si y_0 est une solution de (E), alors $S_E = \{y_0 + y/y \in S_H\} \stackrel{\Delta}{=} y_0 + S_H$. On dit que la solution générale de (E) s'obtient en ajoutant une solution particulière de (E) à la solution générale de (H). Il faut savoir le démontrer.

Principe de superposition des solutions : Si y_1 (resp : y_2) est solution de (E_1) : $y' = a(t)y + b_1(t)$ (resp : de (E_2) : $y' = a(t)y + b_2(t)$), alors pour tout $\alpha, \beta \in \mathbb{R}$, $\alpha y_1 + \beta y_2$ est solution de l'équation $y' = a(t)y + \alpha b_1(t) + \beta b_2(t)$.

Théorème. Notons A une primitive de a. Alors $y' = a(t)y \iff [\exists \lambda \in \mathbb{K} \quad \forall t \in I \quad y(t) = \lambda e^{A(t)}]$. Il faut savoir le démontrer.

Méthode de variation de la constante : avec les notations précédentes, on pose $y(t) = \lambda(t)e^{A(t)}$. Alors $(E) \iff \lambda'(t)e^{A(t)} = b(t)$.

Propriété. Pour tout problème de Cauchy relatif à (E), il y a existence et unicité d'une solution. Il faut savoir le démontrer.

3 Équations différentielles linéaires d'ordre 2 (début)

3.1 Équations à coefficients quelconques

Une équation différentielle linéaire d'ordre 2 est de la forme (E): y'' = a(x)y' + b(x)y + c(x) où a, b, c sont trois applications continues d'un intervalle I dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . L'équation homogène associèe est (H): y'' = a(x)y' + b(x)y.

Propriété. Notons S_H l'ensemble des solutions de (H) et S_E l'ensemble des solutions de (E). Si y_0 est une solution de (E), alors $S_E = \{y_0 + y/y \in S_H\} \stackrel{\Delta}{=} y_0 + S_H$.

Définition. Soit $(x_0, y_0, y'_0) \in I \times \mathbb{K} \times \mathbb{K}$. On appelle problème de Cauchy relatif à (E) et au triplet (x_0, y_0, y'_0) le problème de la recherche des solutions de (E) telles que $y(x_0) = y_0$ et $y'(x_0) = y'_0$.

Théorème de Cauchy-Lipschitz.

Pour tout $(x_0, y_0, y_0') \in I \times \mathbb{K} \times \mathbb{K}$, il y a existence et unicité au problème de Cauchy relatif à (E) et au triplet (x_0, y_0, y_0') .

Cas particulier où on connaît une solution φ_1 de (H) ne s'annulant pas sur I: on pose $y(x) = \lambda(x)\varphi_1(x)$. Alors (E) est équivalente à une équation linéaire d'ordre 1 en λ' . Il faut savoir le démontrer.