微隔离技术小贴士

云计算让传统安全手段难以适应

企业在选择私有云、虚拟化技术已经成为不可阻挡的趋势。但是云 计算和虚拟化已经改变了传统的网络安全架构(见图1)。

相当长一段时间,企业内部通过划分安全域,做边界的防护来保证客户机、服务器的安全通信。比如DMZ区就放一些允许被外部访问的服务器,Trust域内的物理服务器可以互访,受限制访问域的服务器可以互访,而Trust域的物理服务器可以访问DMZ区域的物理服务器。这些区域间有可能是物理隔离的,或者是通过交换机和安全设备(一般是防火墙)提供安全域间的连接。在这些安全设备上配置的是白名单模式的策略,只允许符合规则的流量才通过,其它的都阻断掉。除了安全设备,还部署类似入侵防御系统来识别防火墙误放过的威胁。

但是,当云计算和虚拟化取代了以前的物理服务器、网络设备和网线,情况发生了变化。数据中心里,是以虚拟化环境中的一群虚拟机的形式存在的,物理边界消失了。尽管虚拟化环境中也还有物理服务器和其它设备,物理拓扑已经不再决定逻辑拓扑了。如果按照传统的概念,可能在一台物理服务器上的几十台虚机就分别属于多

个安全域。怎么办?

使用云计算和虚拟化的好处不言而喻,但不意味着风险可以被忽略。相反,终端间未授权的通信和攻击带来的风险更大,因此网络安全仍然会在虚拟化环境中发挥主要作用。

借鉴传统物理域的资源池划分

一些用户和厂家在借鉴传统的边界防护理念,只是在不同的安全域中采用虚拟化技术来建设,通过边界的安全设备如防火墙、IPS等设备做边界防护,阻断未经授权或不符合要求的流量。

这种粗线条的划分,对于一些经费充裕的客户是可以考虑的。他们可以忍受几台服务器组成一个小的计算资源池,买一套独立的虚拟化软件,上面只运行了不多的虚机。这种组网会带来的问题:

- 1、成本高。
- 2、虚机无法在多个资源池迁移,浪费有限的计算资源。
- 3、无法限制云内部的安全威胁。
- 4、管理上更麻烦。

Untrust域 — 防火墙/IPS等安全设备 DMZ — 防火墙/IPS等安全设备 Trust域 — 防火墙/IPS等安全设备 受限域

微隔离——虚机的贴身保镖

微隔离(Microsegmentation)曾经是一个老名词,在云计算和虚拟化时代里有了新含义。虽然不同厂商在微隔离上的做法不同,都是要解决云计算中边界消失后,无法有效提供安全防护的难题,提供小到虚机级的防护,为虚机提供贴身保镖!

微隔离(Microsegmentation)这个名词诞生于网络交换领域。提出时恰逢以太网交换机面世,逐步取代集线器、同轴电缆等共享介质组网方式。在那个时代,微隔离指通过限制以太网的冲突域,来提升整个网络的性能,也就是从10Mbps共享到桌面(用HUB或者铜缆串接)发展到10Mbps交换到桌面。

在云计算时代,微隔离又有了新的含义,主要是指利用软件或者硬件的技术手段,在云计算或虚拟化环境中,划分更多逻辑上的安全域,形成逻辑的安全边界,实现访问控制、威胁检测与阻断、监控和审计等等安全功能。

微隔离是个新概念,不同厂家的技术背景不同,对云计算安全的理解不同,所以不同的厂家提供的微隔离方案在实现机理、功能上均不相同,解决问题的侧重点也不同。

从厂商维度看,微隔离产品技术方案分那么几大流派:云计算/虚拟化产品供应商、网络产品供应商、网络安全供应商和主机安全供应商。

从实现的技术方案维度看, 微隔离产品技术方案又分以下几个流派:

- 用物理安全设备隔离虚拟化环境
- 主机代理
- 虚拟交换机隔离
- 基于Hypervisor的控制
- 不基于Hypervisor的网络安全方案

应该说不同的厂家实现思路不同,也有跨界的组合。

实现架构	安全控制方法	策略执行	环境依赖性	代表厂家
物理安全设备隔离虚	独立安全设备进行安	报文头、内容和行为做策略	不依赖	传统网络安全厂商
拟化环境	全域隔离			
主机代理	在每个虚机上加载代	对进出虚机流量,虚机内应	对虚机操作系	主机安全厂商塞门铁
	理软件	用、内容进行控制	统强依赖	克、趋势等
利用虚拟交换机的能力	在虚拟交换机(物理交	在虚拟网卡对虚拟机的识别	取决于虚拟交	思科、vMware 微软等、
	换机) 上进行控制, 如	和报文头做策略	换机能力	开源系统
	VLAN ACL			
基于 Hypervisor 的控制	在 Hypervisor (通过	在虚拟网卡上对基于虚拟机	依赖虚拟化平	思科、vmware
	API)再加上虚拟机上	的识别、报文头或内容做策	台的 API	CheckPoint 、趋势、
	安装的安全软件	略		Juniper 等
不基于 Hypervisor 的	在一个虚拟机或外部	在安全域或隔离边界上基于	不依赖虚拟化	思科、山石网科、飞塔、
网络安全控制	物理设备上实现功能	虚拟机的识别、报文头或内	环境,需要引流	IBM、Juniper 、Palo
		容做策略		Alto

微隔离是个新技术领域,即使是每个分类各个厂家实现思路也不同,比如山石网科的山石云•格,就是一个不基于Hypervisor,采用全分布式架构的微隔离产品。

云计算是一个API驱动的技术,所以在微隔离技术领域里,并非是"非黑即白","有你没我"的态势。在微隔离领域不同的技术门派相互合作共赢将成为主流!

山石网科与云计算平台、虚拟化产品供应商的深度合作陆续展开!