# NP-Complete Problems

Algorithm: Design & Analysis [20]

### In the last class...

- Simple String Matching
- KMP Flowchart Construction
- Jump at Fail
- KMP Scan

# NP-Complete Problems

- Decision Problem
- The Class P
- The Class NP
- NP-Complete Problems
  - Polynomial Reductions
  - *NP*-hard and *NP*-complete

## How Functions Grow

| Algorithm         | 1            | 2                       | 3                | 4             |                                |
|-------------------|--------------|-------------------------|------------------|---------------|--------------------------------|
| Time function(ms) | 33n          | 46 <i>n</i> lg <i>n</i> | $13n^{2}$        | $3.4n^3$      | $2^n$                          |
| Input size(n)     |              |                         | Solution time    |               |                                |
| 10                | 0.00033 sec. | 0.0015<br>sec.          | 0.0013 sec.      | 0.0034 sec.   | 0.001 sec.                     |
| 100               | 0.0033 sec.  | 0.03 sec.               | 0.13 sec.        | 3.4 sec.      | $4 \times 10^{16} \text{ yr.}$ |
| 1,000             | 0.033 sec.   | 0.45 sec.               | 13 sec.          | 0.94 hr.      |                                |
| 10,000            | 0.33 sec.    | 6.1 sec.                | 22 min.          | 39 days       |                                |
| 100,000           | 3.3 sec.     | 1.3 min.                | 1.5 days         | 108 yr.       |                                |
| Time allowed      |              | Maximum                 | solvable input s | ize (approx.) |                                |
| 1 second          | 30,000       | 2,000                   | 280              | 67            | 20                             |
| 1 minute          | 1,800,000    | 82,000                  | 2,200            | 260           | 26                             |

### Hanoi Tower Revisited

- It is **easy** to provide a recursive algorithm to resolve the problem of Hanoi Tower. The solution requires 2<sup>N</sup>-1 moves of disc.
- It is **extremely difficult** to achieve the result for an input of moderate size. For the input of 64, it takes half a million years even if the Tibetan priest has superhuman strength to move a million discs in a second.

# Max Clique: an Example

- A maximal complete subgraph of a graph G is called a **clique**, whose size is the number of vertices in it.
  - Optimization problem: Find the maximal clique in a given graph G.
  - **Decision problem**: Has G a clique of size at least *k* for some given *k*?

### Decision Problem

- Statement of a decision problem
  - Part 1: instance description defining the input
  - Part 2: question stating the actual yes-orno question
- A decision problem is a mapping from all possible inputs into the set { yes, no }

## Optimization vs. Decision

- Usually, a optimization problem can be rephrased as a decision problem.
- For some cases, it can be proved that the decision problem can be solved in polynomial time if and only if the corresponding optimization problem can.
- We can make the statement that if the decision problem cannot be solved in polynomial time then the corresponding optimization problem cannot either.

# Max Clique Revisited

- The max clique problem can be solved in polynomial time iff. the corresponding decision problem can be solved in polynomial time.
  - If the size of a max clique can be found in time g(n), the corresponding decision may be settled in that time of course.
  - If deciClique is algorithm for the decision problem with k in the complexity of f(n), then we apply the algorithm at most n time, for k=n, n-1, ..., 2, 1, and we can solve the optimization problem, and with the complexity no worse than nf(n), which is polynomial only if f(n) is polynomial.

# Some Typical Decision Problems

#### Graph coloring

■ Given a undirected graph *G* and a positive integer *k*, is there a coloring of *G* using at most *k* colors?

#### Job scheduling with penalties

• Given a group of jobs, each with its execution duration, deadline and penalty for missing the deadline, and a nonnegative integer k, is there a schedule with the total penalty bounded by k?

# Some Typical Decision Problems

#### Bin packing

Given k bins each of capacity one, and n objects with size  $s_1, ..., s_n$ , (where  $s_i$  is a rational number in (0,1]). Do the n objects fit in k bins?

#### Knapsack

• Given a knapsack of capacity C, n objects with sizes  $s_1, ..., s_n$  and "profits"  $p_1, ..., p_n$ , and a positive integer k. Is there a subset of the n objects that fits in the knapsack and has total profit at least k?

(Subset sum as a simplified version)

# Some Typical Decision Problems

#### CNF-Satisfiability

Given a CNF formula, is there a truth assignment that satisfies it?

#### Hamiltonian cycles or Hamiltonian paths

■ Given a undirected graph *G*. Does *G* have a Hamiltionian cycle of Hamiltonian path?

#### Traveling salesperson

• Given a complete, weighted graph and an integer k, is there a Hamiltonian cycle with total weight at most k?

# Theory of *NP*-Completeness

#### What it **cannot** do

- Provide a method of obtaining polynomial time algorithms for those "hard" problems
- Negate the existence of algorithms of polynomial complexity for those problems

#### What it can do

■ Show that many of the problems for which there is no known polynomial time algorithm are computationally related.

### The Class P

- A polynomially bounded algorithm is one with its worst-case complexity bounded by a polynomial function of the input size.
- A polynomially bounded problem is one for which there is a polynomially bounded algorithm.
- The class *P* is the class of decision problems that are polynomially bounded.

### Notes on the Class P

- Class *P* has a too broad coverage, in the sense that not every problems in *P* has an acceptable efficient algorithm. However, the problem not in *P* must be extremely expensive and probably impossible to solve in practice.
- The problems in *P* have nice "closure" properties for algorithm integration.
- The property of being in *P* is independent of the particular formal model of computation used.

# Nondeterministic Algorithm

```
void nondetA(String input)
String s=genCertif();
Boolean CheckOK=verifyA(input,s);
if (checkOK)
   Output "yes";
return;
```

Phase 2 Verifying: determining if *s* is a valid description of a object for answer, and satisfying the criteria for solution

Phase 1 Guessing: generating arbitrarily "certificate", i.e. proposed solution

The algorithm may behave differently on the same input in different executions: "yes" or "no output".

### Answer of Nondeterministic Algorithm

- For a particular decision problem with input *x*:
  - The answer computed by a nondeterministic algorithm is defined to be yes if and only if there is some execution of the algorithm that gives a yes output.
  - $\blacksquare$  The answer is *no*, if for **all** *s*, there is no output.

### Nondeterministic vs. Deterministic

```
In O(1)
void nondetSearch(int k; int[]S)
                                                    Note: \Omega(n) for
  int i =genCertif();
                                                    deterministic algorithm
  if (S[i]=k)
     Output "yes";
                                  void nondetSort(int[ ] S; int n)
  return;
                                    int i, j; int[] out=0;
                                    for i = 1 to n do
                                       j= genCertif();
 In O(n)
                                       if out[j \neq 0 then return;
                                       out[j]=S[i];
 Note: \Omega(n \log n) for
                                    for i = 1 to n-1 do
 deterministic algorithm
                                       if out[i]>out[i+1] then return;
                                    S=out;
                                    Output(yes);
                                  return
```

# Nondeterministic Graph Coloring

Problem instance *G*Input string:
4,5,(1,2)(1,4)(2,4)(2,3)(3,5)(2,5)(3,4)(4,5)



| S      | Output | Reason verified by                                       |
|--------|--------|----------------------------------------------------------|
| RGRBG  | false  | $v_2$ and $v_5$ conflict $\leftarrow$ phase 2            |
| RGRB   | false  | Not all vertices are colored                             |
| RBYGO  | false  | Too many colors used                                     |
| RGRBY  | true   | A valid 4-coloring $\rightarrow$ (G,4) $\rightarrow$ yes |
| R%*,G@ | false  | Bad syntax                                               |

generated by phase 1

### The Class NP

- A polynomial bounded nondeterministic algorithm is one for which there is a (fixed) polynomial function p such that for each input of size n for which the answer is yes, there is some execution of the algorithm that produces a yes output in at most p(n) steps.
- The **class** *NP* is the class of decision problems for which there is a polynomial bounded nondeterministic algorithm.

# Deterministic Interpretation

- Allowing unbounded parallelism in computation
  - One copy of the algorithm is made for each of the possible guess
  - All the copies are executing at the same time
  - The first copy output a "yes" terminates all other computations.

# Proof of Being in NP

- Graph coloring is in NP
  - Description of the input and the certificate
  - Properties to be checked for a answer "yes"
    - There are n colors listed:  $c_1, c_2, ..., c_n$  (not necessarily different)
    - Each  $c_i$  is in the range 1,...,k
    - Scan the list of edges to see if a conflict exists
  - Proving that each of the above statement can be checked in polynomial time.

# Max Clique Problem is in NP

```
void nondeteClique(graph G; int n, k)

set S=\phi;

for int i=1 to k do

int t=genCertif();

if t\in S then return;

S=S\cup\{t\};

for all pairs (i,j) with i,j in S and i\neq j do

if (i,j) is not an edge of G

then return;

Output("yes");
```

So, we have an algorithm for the maximal clique problem with the complexity of  $O(n+k^2)=O(n^2)$ 

# Satisfiability Problem

An example of propositional conjunctive normal form (CNF) is like this:

$$(p \lor q \lor s) \land (q \lor r) \land (p \lor r) \land (r \lor s) \land (p \lor s \lor q)$$

#### Satisfiability Problem

Given a CNF formula, is there a truth assignment that satisfies it?

In other words, is there a assignment for the set of propositional variable in the CNF, such that the value of the formula is **true**.

```
void nondetSat(E, n)
boolean p[];
for int i =1 to n do

    p[i] = genCertif(true, false);
if E(p[1], p[2], ..., p[n])=true
    then Output("yes");
```

So, the problem is in **NP** 

### Relation between P and NP

- An deterministic algorithm for a decision problem is a special case of a nondeterministic algorithm, which means:  $P \subseteq NP$ 
  - The deterministic algorithm is looked as the phase 2 of a nondeterministic one, which always ignore the *s* the phase 1 has written.
- Intuition implies that NP is a much larger set than P.
  - The number of possible s is exponential in n.
  - No one problem in *NP* has been proved not in *P*.

# Solving a Problem Indirectly



The correct answer for P on x is yes if and only if the correct answer for Q on T(x) is yes.

# Polynomial Reduction

- Let *T* be a function from the input set for a decision problem *P* into the input set for *Q*. *T* is a polynomial reduction from *P* to *Q* if:
  - T can be computed in polynomial bounded time
  - x is a yes input for  $P \rightarrow T(x)$  is a yes input for Q
  - x is a *no* input for  $P \rightarrow T(x)$  is a *no* input for Q

#### An example:

P: Given a sequence of Boolean values, does at least one of them have the value true?

Q: Given a sequence of integers, is the maximum of them positive?

 $T(x_1, ..., x_n) = (y_1, ..., y_n),$ where:  $y_i=1$  if  $x_i$ =true, and  $y_i=0$  if  $x_i$ =false

## Relation of Reducibility

- Problem P is **polynomially reducible** to Q if there exists a polynomial reduction from P to Q, denoted as:  $P \leq_P Q$
- If  $P ≤_P Q$  and Q is in P, then P is in P
  - The complexity of P is the sum of T, with the input size n, and Q, with the input size p(n), where p is the polynomial bound on T,
  - So, the total cost is: p(n)+q(p(n)), where q is the polynomial bound on Q.

(If  $P \leq_P Q$ , then Q is at least as "hard" to solve as P)

# NP-complete Problems

- A problem Q is NP-hard if every problem P in NP is reducible to Q, that is  $P \le_P Q$ .
  - (which means that Q is at least as hard as any problem in NP)
- A problem Q is NP-complete if it is in NP and is NP-hard.
  - (which means that *Q* is at most as hard as to be solved by a polynomially bounded nondeterministic algorithm)

# An Example of NP-hard problem

- Halt problem: Given an arbitrary deterministic algorithm *A* and an input *I*, does *A* with input *I* ever terminate?
  - A well-known **undecidable** problem, of course not in **NP**.
  - Satisfiability problem is reducible to it.
    - Construct an algorithm A whose input is a propositional formula X. If X has n variables then A tries out all  $2^n$  possible truth assignments and verifies if X is satisfiable. If it is satisfiable then A stops. Otherwise, A enters an infinite loop.
    - So, *A* halts on *X* iff. *X* is satisfiable.

### P and NP: Revisited

- Intuition implies that NP is a much larger set than P.
  - The number of possible s is exponential in n.
  - No one problem in **NP** has been proved not in **P**.
- If any *NP*-completed problem is in *P*, then  $NP = P_0$ .
  - Which means that every problems in NP can be purely to a problem in P!
  - Much more questionable!!

## First Known NP-Complete Problem

- Cook's theorem:
  - The satisfiability problem is *NP*-complete.
- Reduction as tool for proving NP-complete
  - Since *CNF-SAT* is known to be *NP*-hard, then all the problems, to which *CNF-SAT* is reducible, are also *NP*-hard. So, the formidable task of proving *NP*-complete is transformed into relatively easy task of proving of being in *NP*.

# Procedure for NP-Completeness

- Knowledge: P is NP-completeness
- Task: to prove that Q is NP-complete
- Approach: to reduce P to Q
  - For any  $R \in \mathbb{NP}$ ,  $R \leq_P P$
  - Show  $P \leq_P Q$
  - Then  $R \leq_P Q$ , by transitivity of reductions
  - $\blacksquare$  Done. Q is NP-complete

### Proof of Cook's Theorem

COOK, S. 1971.

The complexity of theorem-proving procedures.

In

Conference Record of 3rd Annual ACM Symposium on Theory of Computing. ACM New York, pp. 151–158.

Stephen Arthur Cook: b.1939 in Buffalo, NY. Ph.D of Harvard. Professor of Toronto Univ. 1982 Turing Award winner. The Turing Award lecture: "An Overview of Computational Complexity", CACM, June 1983, pp.400-8

# Home Assignment

- pp.600-
  - **13.1**
  - **13.3**
  - **13.4**
  - **13.6**