Algorithms Backtrack Homework 1

Mostafa S. Ibrahim Teaching, Training and Coaching for more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / Msc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

Problem #1: LeetCode 797 - All Paths From Source to Target

Given a directed acyclic graph (**DAG**) of n nodes labeled from 0 to n-1, find all possible paths from node 0 to node n-1 and return them in **any order**.

The graph is given as follows: graph[i] is a list of all nodes you can visit from node i (i.e., there is a directed edge from node i to node graph[i][j]).

Constraints:

- n == graph.length
- 2 <= n <= 15
- 0 <= graph[i][j] < n
- graph[i][j] != i (i.e., there will be no self-loops).
- All the elements of graph[i] are unique.
- The input graph is guaranteed to be a DAG.

Example 1:

Input: graph = [[1,2],[3],[3],[]]

Output: [[0,1,3],[0,2,3]]

Explanation: There are two paths: $0 \rightarrow 1 \rightarrow 3$ and $0 \rightarrow 2 \rightarrow 3$.

Example 2:

Input: graph = [[4,3,1],[3,2,4],[3],[4],[]]
Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]

Problem #2: LeetCode 51 - N-Queens

The **n-queens** puzzle is the problem of placing n queens on an $n \times n$ chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the **n-queens puzzle**. You may return the answer in **any order**.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space, respectively.

1 <= n <= 9

Queen Move

- In chess, a queen can move and attack any cell in these directions
 - Its row
 - o Its col
 - Its normal diagonal
 - Its anti-diagonal

Input: n = 4

Output: [[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]

Explanation: There exist two distinct solutions to the 4-queens puzzle as

shown above

Example 2:

Input: n = 1
Output: [["Q"]]

Coding tips

- Say we code backtrack(row)
 - Where we try to put a queen in current row and move to next row
 - o Then after the end, we put all queen
- To put a queen, it must be in a place no other queen (from what we put so far)
 can attack it
 - So all directions are clear!
- There are N rows and columns in a grid
- There are 2N-1 normal and anti-diagonals
 - o Can you find trivial formula for them?
- So with boolean array (or sets),
 we can trivially mark visit status

Coding tips

Every square has value (row + col). Anti-diagonals share the same values

Every square has value (row - col). Diagonals share the same values

- row+col
- row-col
 - -ve

Problem #3: LeetCode 37 - Sudoku Solver

Write a program to solve a Sudoku puzzle by filling the empty cells.

A sudoku solution must satisfy all of the following rules:

- Each of the digits 1-9 must occur exactly once in each row.
- 2. Each of the digits 1-9 must occur exactly once in each column.
- 3. Each of the digits 1-9 must occur exactly once in each of the 9 3x3 sub-boxes of the grid.

The '.' character indicates empty cells.

Constraints:

- board.length == 9
- board[i].length == 9
- board[i][j] is a digit or '.'.
- It is guaranteed that the input board has only one solution.

Example

		_	7	4	8	0 0	6	5
6	6		120		- 9	9		3
						8		
Н	П			8			1	
			2		6		9	7
				3			5	
2	2							
8	8		S	8		6		3 8
_	Ť		6	1	3			

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Problem #4: LeetCode 46 - Permutations

Given an array nums of distinct integers, return all the possible permutations. You can return the answer in any order.

Constraints:

- 1 <= nums.length <= 6
- -10 <= nums[i] <= 10
- All the integers of nums are unique.

Example 1:

```
Input: nums = [1,2,3]
Output: [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
```

Example 2:

```
Input: nums = [0,1]
Output: [[0,1],[1,0]]
```

Example 3:

```
Input: nums = [1]
Output: [[1]]
```

Hint

- Let permute_bt(idx): be a function that generates all permutations starting from this idx (and previous values are fixed)
 - So for list [2, 1, 5, 9]
 - permute_bt(2) is generating all permutations from idx = 2
 - which are: [2, 1, 5, 9] and [2, 1, 9, 5]
- Think recursively: what not how

Problem #5: LeetCode 47 - Permutations II

Given a collection of numbers, nums, that might contain duplicates, return all possible unique permutations in any order.

- 1 <= nums.length <= 8
- -10 <= nums[i] <= 10
- Hint: use **frequency** array

Example 1:

```
Input: nums = [1,1,2]
Output:
[[1,1,2],
  [1,2,1],
  [2,1,1]]
```

Example 2:

```
Input: nums = [1,2,3]
Output: [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
```

Problem #6: Tower of Hanoi

- This is a popular math problem solved by recursion (not backtracking)
- We are given 3 rods (poles) and N disks. We want to move disks from rod A (source) to rod B (destination). We can use rod C (auxiliary)
 - Disks have different size
- You must follow these rules:
 - Only one disk can be moved at a time.
 - Move from top of a stack to another top of stack
 - No disk may be placed on top of a smaller disk.
- Your tasks
 - Simulate the process (with the minimum number of steps)
 - Given N, provide a simple formula for the total number of steps

Your task

- Define: towerOfHanoi(n, from_rod, to_rod, aux_rod)
 - o Initially: from_rod = 'A', to_rod = 'B', aux_rod = 'C'
 - Names for the 3 rods
- The function should print all the steps to move N disks from from_rod (A) to to_rod B
- Hint: Do tracing to N = 2 and N = 3
 - But think what not how. Code is 5 lines
- Note: internet has many gif visualizations.
- For n = 2, print:
 - Move disk 1 from rod A to rod B
 - Move disk 2 from rod A to rod C
 - Move disk 1 from rod B to rod C

For n = 3

- Move disk 1 from rod A to rod C
- Move disk 2 from rod A to rod B
- Move disk 1 from rod C to rod B
- Move disk 3 from rod A to rod C
- Move disk 1 from rod B to rod A
- Move disk 2 from rod B to rod C
- Move disk 1 from rod A to rod C

For n = 4

- Move disk 1 from rod A to rod B
- Move disk 2 from rod A to rod C
- Move disk 1 from rod B to rod C
- Move disk 3 from rod A to rod B
- Move disk 1 from rod C to rod A
- Move disk 2 from rod C to rod B
- Move disk 1 from rod A to rod B
- Move disk 4 from rod A to rod C
- Move disk 1 from rod B to rod C
- Move disk 2 from rod B to rod A
- Move disk 1 from rod C to rod A
- Move disk 3 from rod B to rod C
- Move disk 1 from rod A to rod B
- Move disk 2 from rod A to rod C
- Move disk 1 from rod B to rod C

- Given N, find a formula for the steps
 - \circ N = 2 \Rightarrow 3
 - \circ N = 3 \Rightarrow 7
 - \circ N = 4 \Rightarrow 15
 - \circ N = 5 \Rightarrow 31
- Can you justify mathematically the formula?

N = 4: Animation

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."