CS 4248 Natural Language Processing

Professor NG Hwee Tou

Department of Computer Science
School of Computing
National University of Singapore
nght@comp.nus.edu.sg

Chapter 18: Computational Semantics

- Principle of compositionality
 - The meaning of a sentence can be composed from the meanings of its parts
- The meaning of a sentence is dependent on the ordering, grouping, and relations among the words in the sentence (i.e., its syntactic structure)

 Augment CFG rules with semantic attachments

```
A \rightarrow \alpha_1 \dots \alpha_n \quad \{ f(\alpha_j.sem, \dots, \alpha_k.sem) \}
```

 A semantic attachment describes how to compute the meaning representation of the LHS constituent (A.sem) using the meaning representations of the RHS constituents (α_i.sem)

Grammar Rule	Semantic Attachment
$S \rightarrow NP VP$	$\{NP.sem(VP.sem)\}$
$NP \rightarrow Det Nominal$	$\{Det.sem(Nominal.sem)\}$
$NP \rightarrow ProperNoun$	$\{ProperNoun.sem\}$
$Nominal \rightarrow Noun$	{Noun.sem}
$VP \rightarrow Verb$	$\{Verb.sem\}$
$VP \rightarrow Verb NP$	$\{Verb.sem(NP.sem)\}$
$Det \rightarrow every$ $Det \rightarrow a$ $Noun \rightarrow restaurant$	$\{\lambda P.\lambda Q. \forall x P(x) \Rightarrow Q(x)\} $ $\{\lambda P.\lambda Q. \exists x P(x) \land Q(x)\} $ $\{\lambda r. Restaurant(r)\} $
ProperNoun → Matthew ProperNoun → Franco	$\{\lambda m.m(Matthew)\}\$ $\{\lambda f.f(Franco)\}$
ProperNoun → Frasca	$\{\lambda f. f(Frasca)\}$
$Verb \rightarrow closed$	$\{\lambda x. \exists eClosed(e) \land ClosedThing(e,x)\}$
$Verb \rightarrow opened$	$\{\lambda w. \lambda z. w(\lambda x. \exists eOpened(e) \land Opener(e,z)\}$
	$\land \frac{Opened}{(e,x))}$

- Associating complex, function-like λ -expressions with lexical items
- Copying of semantic values from children to parents in non-branching rules
- Function-like application of the semantics of one of the children of a rule to the semantics of the other children of the rule via λ -reduction

- Lambda expression: λx P(x)
- λ-reduction: apply a lambda expression to a term
 - Replace the λ variable by the term, then remove λx
- Examples:
 - $-\lambda x P(x)(A)$ gives P(A)
 - λxλy Near(x,y)(NUS) gives λy Near(NUS,y)
 - λy Near(NUS,y)(AYE) gives Near(NUS, AYE)

Idioms and Compositionality

- Idioms violate the assumption of compositionality
- "The SEC's allegations are only the tip of the iceberg."
 - NP → the tip of the iceberg { Beginning }
- "These comments describe only the tip of a 1,000page iceberg."
- "The 10 employees represent the merest tip of the iceberg."
 - NP → TipNP of IcebergNP { Beginning }