COMP9517 Computer Vision

2025 Term 1 Week 3

A/Prof Yang Song

Feature Representation

Part 1

Topics and learning goals

- Explain the need for feature representation Robustness, descriptiveness, efficiency
- Discuss major categories of image features
 Colour features, texture features, shape features
- Understand prominent feature descriptors
 Haralick features, local binary patterns, scale-invariant feature transform
- Show examples of use in computer vision applications
 Image matching and stitching

What are image features?

- Image features are vectors that are a compact representation of images
- They represent important information shown in an image
- Examples of image features:
 - Blobs
 Edges
 Corners
 Ridges
 Circles
 Example
 - Lines

Why do we need image features?

- We need to represent images as feature vectors for further processing in a more efficient and robust way
- Examples of further processing include:
 - Object detection
 - Image segmentation
 - Image classification
 - Image retrieval
 - Image stitching
 - Object tracking

Example: object detection

Example: image segmentation

Example: image classification

Airplane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Boat

Truck

Training set

Unseen test image

Class?

Example: image retrieval

Database

Given image

Find most similar image

Example: image stitching

Example: object tracking

Need for image features

- Why not just use pixel values directly as features?
 - Pixel values change with light intensity, colour, angle
 - They also change with camera orientation
 - And they are highly redundant

1,000 x 1,000 pixels = 1,000,000 values x 3 channels = 3,000,000 values

Truck!

Desirable properties of features

- Reproducibility (robustness)
 - Should be detectable at the same locations in different images despite changes in illumination and viewpoint
- Saliency (descriptiveness)
 - Similar salient points in different images should have similar features
- Compactness (efficiency)
 - Fewer features
 - Smaller features

General framework

Object detection

Image segmentation

Image classification

Image retrieval

Image stitching

Object tracking

. . .

Types of image features

Colour features

Part 1

- Colour histogram
- Colour moments
- Texture features
 - Haralick texture features
 - Local binary patterns (LBP)
 - Scale-invariant feature transform (SIFT)

Shape features

Part 2

- Basic shape features
- Shape context
- Histogram of oriented gradients (HOG)

Colour features

- Colour is the simplest feature to compute
- Invariant to image scaling, translation and rotation
- Example: colour-based image retrieval

http://labs.tineye.com/multicolr/

Colour histogram

- Represent the global distribution of pixel colours in an image
 - Step 1: Construct a histogram for each colour channel (R, G, B)
 - Step 2: Concatenate the histograms (vectors) of all channels as the final feature vector

Colour moments

 f_{ij} = value of the *i*th colour component of pixel *j* N = number of pixels in the image

Another way of representing colour distributions

First-order moment

Second-order moment

Third-order moment

$$\mu_i = \frac{1}{N} \sum_{j=0}^{N-1} f_{ij}$$

(Mean)

$$\sigma_i = \sqrt[2]{\frac{1}{N} \sum_{j=0}^{N-1} (f_{ij} - \mu_i)^2}$$

(Standard Deviation)

$$s_{i} = \sqrt[3]{\frac{1}{N} \sum_{j=0}^{N-1} (f_{ij} - \mu_{i})^{3}}$$

(Skewness)

- Moments based representation of colour distributions
 - Gives a feature vector of only 9 elements (for RGB images)
 - Lower representation capability than the colour histogram

Example application

Colour-based image retrieval

https://doi.org/10.1016/j.csi.2010.03.004

Using only colour histogram information

Using colour + texture + shape information

Texture features

- Visual characteristics and appearance of objects
- Powerful discriminating feature for identifying visual patterns
- Properties of structural homogeneity beyond colour or intensity
- Especially used for texture classification

https://arxiv.org/abs/1801.10324

- Array of statistical descriptors of image patterns
- Capture spatial relationship between neighbouring pixels
- Step 1: Construct the gray-level co-occurrence matrix (GLCM) representing the frequency of pixel intensity pairs occurring at a specific offset and direction
- Step 2: Compute the Haralick feature descriptors from the GLCM that summarises texture information (how pixel intensities are spatially related)

https://doi.org/10.1109/TSMC.1973.4309314

- Step 1: Construct the GLCMs
 - Given distance d and orientation angle a
 - Compute co-occurrence count $p_{(d,a)}(i_1,i_2)$ of going from gray level i_1 to i_2 at d and a
 - Construct matrix $P_{(d,a)}(i_1,i_2)$ with elements (i_1,i_2) being $p_{(d,a)}(i_1,i_2)$
 - If an image has L distinct gray levels, the matrix size is $L \times L$

Example image:

$$L = 4$$

0	0	0	0	1	1	1	2
0	0	0	1	1	2	2	3
0	0	1	1	2	2	3	3
0	2	2	3	3	2	2	1
2	2	3	3	3	2	1	1
2	3	3	3	2	2	1	0
3	3	2	2	1	1	0	0
3	2	2	1	1	0	0	0

- Step 1: Construct the GLCMs
 - For computational efficiency L can be reduced by binning (similar to histogram binning) Example: L = 256/n for a constant factor n
 - Different co-occurrence matrices can be constructed by using various combinations of distance d and angular orientation a
 - On their own these co-occurrence matrices do not provide any measure of texture that can be easily used as texture descriptors
 - The information in the co-occurrence matrices needs to be further extracted as a set of feature values such as the Haralick descriptors

- Step 2: Compute the Haralick descriptors from the GLCMs
 - One set of Haralick descriptors for each GLCM for a given d and a

No	Features	Formula
1	Angular Second Moment	$\Sigma i \Sigma j p(i,j)^2$
2	Contrast	$\sum_{n=0}^{Ng-1} n^2 \left\{ \sum_{i=1}^{Ng} \sum_{j=1}^{Ng} p(i,j) \right\}, i-j = n$
3	Correlation	$\frac{\sum i\sum j(ij)p(i,j)-\mu_x\mu_y}{\sum i\sum j(ij)p(i,j)}$
4	Sum of Squares: Variance	$\Sigma_i \Sigma_j (i - \mu)^2 p(i, j)$
5	Inverse Difference Moment	$\Sigma_{i}\Sigma_{j}(i-\mu)^{2}p(i,j)$ $\Sigma_{i}\Sigma_{j}\frac{1}{1+(i-j)^{2}}p(i,j)$
6	Sum Average	$\sum_{i=2}^{2N_g} i p_{x+y}(i)$
7	Sum Variance	$\sum_{i=2}^{2N_g} (i - f_{8)}^2 p_{x+y}(i)$
8	Sum Entropy	$-\sum_{i=2}^{2N_g} p_{x+y}(i) \log\{p_{x+y}(i)\} = f_8$
9	Entropy	$-\Sigma_i \Sigma_j p(i,j) \log(p(i,j))$
10	Difference Variance	$\sum_{n=0}^{Ng-1} i^2 p_{x-y}(i)$
11	Difference Entropy	$-\sum_{n=0}^{Ng-1} p_{x-y}(i) \log\{p_{x-y}(i)\}\$
12	Info. Measure of Collection 1	$\frac{HXY - HXY1}{\max\{HX, HY\}}$
13	Info. Measure of Collection 2	$(1 - \exp[-2(HXY2 - HXY)])^{\frac{1}{2}}$
14	Max. Correlation Coefficient	The square root of the second largest eigenvalue of Q, where $Q(i,j) = \sum_k \frac{p(i,k)p(j,k)}{p_x(i)p_y(k)}$

- Example:
 - Often used in medical imaging studies due to their simplicity and interpretability

- 1. Preprocess the MRI images
- Extract Haralick, run-length, and histogram features
- 3. Apply feature selection
- Classify using machine learning algorithms

Yang et al., Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma, Medical Physics, 2015.

- Describe the spatial structure of local image texture
 - Divide the image into cells of $N \times N$ pixels (for example N = 16 or 32)
 - Compare each pixel in a given cell to each of its 8 neighbouring pixels
 - If the centre pixel value is greater than the neighbour value, write 0, otherwise write 1
 - This gives an 8-digit binary pattern per pixel, representing a value in the range 0...255

Example:

0	0	0	0	1	1	1	2
0	0	0	1	1	2	2	3
0	0	1	1	2	2	3	3
0	2	2	3	3	2	2	1
2	2	3	3	3	2	1	1
2	3	3	3	2	2	1	0
3	3	2	2	1	1	0	0
3	2	2	1	1	0	0	0
2	3	3	3	2	2	1	0

- Describe the spatial structure of local image texture
 - Count the number of times each 8-digit binary number occurs in the cell
 - This gives a 256-bin histogram (also known as the LBP feature vector)
 - Combine the histograms of all cells of the given image
 - This gives the image-level LBP feature descriptor

Example:

0	0	0	0	1	1	1	2
0	0	0	1	1	2	2	3
0	0	1	1	2	2	3	3
0	2	2	3	3	2	2	1
2	2	3	3	3	2	1	1
2	3	3	3	2	2	1	0
3	3	2	2	1	1	0	0
3	2	2	1	1	0	0	0

- Describe the spatial structure of local image texture
 - Count the number of times each 8-digit binary number occurs in the cell
 - This gives a 256-bin histogram (also known as the LBP feature vector)
 - Combine the histograms of all cells of the given image
 - This gives the image-level LBP feature descriptor

- LBP can be multiresolution and rotation-invariant
 - Multiresolution: vary the distance between the centre pixel and neighbouring pixels and vary the number of neighbouring pixels

T. Ojala, M. Pietikainen, T. Maenpaa (2002) https://doi.org/10.1109/TPAMI.2002.1017623
Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7):971-987

- LBP can be multiresolution and rotation-invariant
 - Rotation-invariant: vary the way of constructing the 8-digit binary number by performing bitwise shift to derive the smallest number

```
Example: 11110000 = 240

11100001 = 225

11000011 = 195

10000111 = 135

00001111 = 15

00011110 = 30

00111100 = 60

01111000 = 120
```

Note: not all patterns have 8 shifted variants (e.g. 11001100 has only 4)

- LBP can be multiresolution and rotation-invariant
 - Rotation-invariant: vary the way of constructing the 8-digit binary number by performing bitwise shift to derive the smallest number

This reduces the LBP feature dimension from 256 to 36

Example application of LBP

Texture classification

$P_{i}R$	$LBP_{P,R}$				
1,11	BINS	RESULT			
8,1	10	88.2			
16,2	18	98.5			
24,3	26	99.1			
8,1+16,2	10+18	99.0			
8,1+24,3	10+26	99.6			
16,2+24,3	18+26	99.0			
8,1+16,2+24,3	10+18+26	99.1			

https://doi.org/10.1109/TPAMI.2002.1017623

Scale-invariant feature transform

- SIFT feature describes texture in a localised region around a keypoint
- SIFT descriptor is invariant to various transformations

Recognising that this is the same object requires invariance to scaling, rotation, and shift, and robustness against affine distortion, illumination changes, ...

https://www.analyticsvidhya.com/blog/2019/10/detailed-guide-powerful-sift-technique-image-matching-python/

SIFT algorithm overview

Find maxima/minima in DoG images across scales

Discard low-contrast keypoints and eliminate edge responses

Achieve rotation invariance by orientation assignment

Compute gradient orientation histograms

D. G. Lowe (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2):91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

SIFT extrema detection

• Detect maxima and minima in the scale space of the image

$$L(x, y, \sigma) = I(x, y) * G(x, y, \sigma)$$

$$D(x, y, \sigma) = L(x, y, k\sigma) - L(x, y, \sigma)$$

(Fixed factor k between adjacent scales)

SIFT keypoint localization

- Improve and reduce the set of found keypoints
 - Use 3D quadratic fitting in scale-space to get subpixel optima
 - Reject low-contrast and edge points using Hessian analysis

Initial keypoints from scale-space extrema

Keypoints after rejecting low-contrast points

Final keypoints after rejecting edge points

SIFT orientation assignment

- Estimate keypoint orientation using local gradient vectors
 - Make an orientation histogram of local gradient vectors
 - Find the dominant orientation from the main peak of the histogram
 - Create additional keypoint for second highest peak if >80%

$$M(x,y)=\sqrt{G_x^2+G_y^2}$$

$$heta(x,y) = an^{-1}\left(rac{G_y}{G_x}
ight)$$

SIFT keypoint descriptor

- Represent each keypoint by a 128D feature vector
 - 4 x 4 array of gradient histogram weighted by magnitude
 - 8 bins in gradient orientation histogram
 - Total $8 \times 4 \times 4$ array = 128 dimensions

https://en.wikipedia.org/wiki/Scale-invariant_feature_transform

Scale-invariant feature transform

- SIFT feature describes texture in a localised region around a keypoint
- SIFT descriptor is invariant to various transformations

Recognising that this is the same object requires invariance to scaling, rotation, and shift, and robustness against affine distortion, illumination changes, ...

https://ics.uci.edu/~majumder/VC/211HW3/vlfeat/doc/overview/sift.html

Matching two partially overlapping images

- Matching two partially overlapping images
 - Compute SIFT keypoints for each image

- Matching two partially overlapping images
 - Find best match between SIFT keypoints in 128D feature space

Descriptor matching

Using the nearest neighbour distance ratio (NNDR)

NNDR =
$$\frac{d_1}{d_2} = \frac{\|D_A - D_B\|}{\|D_A - D_C\|}$$

- Distance d_1 is to the first nearest neighbour
- Distance d_2 is to the second nearest neighbour
- Nearest neighbours in 128D feature space
- Reject matches with NNDR > 0.8

Stitching two partially overlapping images

- Stitching two partially overlapping images
 - Find SIFT keypoints and feature correspondences

- Stitching two partially overlapping images
 - Find the right spatial transformation

Types of spatial transformation

Original

Translation

Rigid transformations

Scaling

Affine

Perspective

Nonrigid transformations

Spatial coordinate transformation

Scale:
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Shear:
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & r_{\chi} \\ r_{\chi} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotate:
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Translate:
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Affine:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Perspective:
$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Least-squares (LS) fitting of corresponding keypoints $(\mathbf{x}_i, \mathbf{x}_i')$
 - Find the parameters \mathbf{p} of the transformation T that minimize the squared error E

$$E = \sum_{i} ||T(\mathbf{x}_i; \mathbf{p}) - \mathbf{x}_i'||^2$$

– Example for affine transformation of coordinates $\mathbf{x}_i = (x_i, y_i)$ into $\mathbf{x}_i' = (x_i', y_i')$:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \Rightarrow \qquad \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} a \\ b \\ d \\ e \\ c \\ f \end{bmatrix} = \begin{bmatrix} \vdots \\ x'_i \\ y'_i \\ \vdots \end{bmatrix}$$

$$\mathbf{p} = [\mathbf{A}^T \mathbf{A}]^{-1} \mathbf{A}^T \mathbf{b} \qquad \Longleftrightarrow \qquad \mathbf{A} \mathbf{p} = \mathbf{b}$$

- RANdom SAmple Consensus (RANSAC) fitting
 - Least-squares fitting is hampered by outliers
 - Some kind of outlier detection and rejection is needed
 - Better use a subset of the data and check inlier agreement
 - RANSAC does this in an iterative way to find the optimum

RANSAC example (line fitting model)

- 1. Sample (randomly) the number of points required to fit the model
- 2. Solve for the model parameters using the samples
- 3. Score by the fraction of inliers within a preset threshold of the model Repeat 1-3 until the best model is found with high confidence

RANSAC example (line fitting model)

- 1. Sample (randomly) the number of points required to fit the model
- 2. Solve for the model parameters using the samples
- 3. Score by the fraction of inliers within a preset threshold of the model Repeat 1-3 until the best model is found with high confidence

RANSAC example (line fitting model)

- 1. Sample (randomly) the number of points required to fit the model
- 2. Solve for the model parameters using the samples
- 3. Score by the fraction of inliers within a preset threshold of the model Repeat 1-3 until the best model is found with high confidence

RANSAC example (line fitting model)

- 1. Sample (randomly) the number of points required to fit the model
- 2. Solve for the model parameters using the samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC example (line fitting model)

- 1. Sample (randomly) the number of points required to fit the model
- 2. Solve for the model parameters using the samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting and alignment summary

- Estimate the transformation given matched points *A* and *B*
 - Example for translation:

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Alignment by least squares

- Estimate the transformation given matched points *A* and *B*
 - Write down the system of equations: Ap = b
 - Solve for the parameters: $\mathbf{p} = [\mathbf{A}^T \mathbf{A}]^{-1} \mathbf{A}^T \mathbf{b}$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} t_x \\ t_y \end{bmatrix} = \begin{bmatrix} x_1^B - x_1^A \\ y_1^B - y_1^A \\ x_2^B - x_2^A \\ y_2^B - y_2^A \\ x_3^B - x_3^A \\ y_3^B - y_3^A \end{bmatrix}$$

Alignment by random sample consensus

- Estimate the transformation given matched points *A* and *B*
 - 1. Sample a set of matching points (one pair)
 - 2. Solve for transformation parameters
 - 3. Score parameters with number of inliers

Repeat N times

Summary

- Feature representation is essential in solving many computer vision problems
- Most commonly used image features:
 - Colour features (Part 1)Colour moments and histogram
 - Texture features (Part 1)
 Haralick, LBP, SIFT
 - Shape features (Part 2)
 Basic, shape context, HOG

Summary

- Other techniques discussed (Part 1)
 - Descriptor matching
 - Least squares and RANSAC
 - Spatial transformations
- Techniques to be discussed (Part 2)
 - Feature encoding (Bag-of-Words)
 - K-means clustering
 - Shape matching
 - Sliding window detection

Further reading on discussed topics

Chapters 4 and 6 of Szeliski

Acknowledgements

- Some content from slides of James Hays, Michael A. Wirth, Cordelia Schmit
- From BoW to CNN: Two decades of texture representation for texture classification
- And other resources as indicated by the hyperlinks

Example exam question

Which one of the following statements about feature descriptors is incorrect?

- A. Haralick features are derived from gray-level co-occurrence matrices.
- B. SIFT achieves rotation invariance by computing gradient histograms at multiple scales.
- C. LBP describes local image texture and can be multiresolution and rotation-invariant.
- D. Colour moments have lower representation capability than the colour histogram.