MATH 302

Chapter 5

SECTION 5.2: CONSTANT COEFFICIENT HOMOGENEOUS EQUATIONS

Contents

What is a Constant Coefficient Homogeneous ODE?	2
Distinct Real Roots: $\sqrt{b^2 - 4ac} > 0$	3
Repeated Roots: $\sqrt{b^2 - 4ac} = 0$	4
Complex Roots: $\sqrt{b^2 - 4ac} < 0$	6
Complex Numbers	6

Created by: Pierre-Olivier Parisé Fall 2022 We restrict even further the second order ODE. A second order constant coefficient ODE is an ODE of the form

$$ay'' + by' + cy = f(x) \tag{1}$$

where a, b, c are fixed numbers and f is a continuous function.

Goal:

Find the solutions to

$$ay'' + by' + cy = 0.$$

We call this the **constant coefficient homogeneous ODE**.

Trick:

Gruss that
$$y(x) = e^{rx}$$
, for some r .
So, $y' = re^{rx}$ & $y'' = r^2 e^{rx}$

Replace in the ODE

$$\Rightarrow ar^{2}e^{rx} + bre^{rx} + ce^{rx} = 0$$

$$\Rightarrow (ar^{2} + br + c)e^{rx} = 0$$

$$\Rightarrow ar^{2} + br + c = 0$$

Threfore,
$$y(x) = e^{rx}$$
 is a solution if $f(x) = e^{rx}$ is a solution to $ar^2 + br + c = 0$.

Terminology:

Roots:
$$\Gamma = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} - \frac{3 cases}{2}$$

EXAMPLE 1. Find the general solution of

$$y = e^{rx} \rightarrow r^{2}e^{rx} + bre^{rx} + 5e^{rx} = 0$$

$$\Rightarrow r^{2} + br + 5 = 0$$

$$\Rightarrow r^{2} + br + 5 = 0$$

$$\Rightarrow r = -1 & r = -5 \text{ are the roots.}$$

$$\text{Thus fine, we have two functions:}$$

$$y_{1}(x) = e^{-x} & y_{2}(x) = e^{-x}$$

$$\Rightarrow y_{1}(x) = e^{-x} = e^{-4x} \text{ (not a constant).}$$

$$\Rightarrow c_{1}(x) = c_{1}e^{-x} + c_{2}e^{-x}$$

General Fact:

- If the roots of the characteristic polynomial are r_1 and r_2 , then $y_1(x) = e^{r_1x}$ and $y_2 = e^{r_2x}$ are solutions to the ODE.
- The general solutions is given by

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}.$$

Example 2.

a) Find the general solution of

$$y'' + 6y' + 9y = 0.$$

Solve the following IVP:

$$y'' + 6y' + 9y = 0$$
, $y(0) = 3$, $y'(0) = -1$.

(1) Polynomial:

$$r^{2} + 6r + 9 = 0 \implies r = -\frac{6 + \sqrt{36 - 36}}{2}$$

$$(r+3)^{2}$$

$$r = -\frac{6}{2} = -3$$

Apparently,
$$y_1(x) = e^{-3x}$$

2 Varia. of Params.

$$y = ue^{-3x}$$
 => $y' = u'e^{-3x} - 3ue^{-3x}$
 $y'' = u''e^{-3x} - 3u'e^{-3x} - 3u'e^{-3x} + 9ue^{-3x}$
Reduce $y', y''dy$ in the ODE.

Replace y', y''d y in the ODE.

$$y'' + 6y' + 9y = u'' e^{-3x}$$
 $\Rightarrow u'' e^{-3x} = 0 \Rightarrow u'' = 0$
 $\Rightarrow u'' = A \Rightarrow u = Ax + B$

Thurston,
$$y(38 = (Ax+B)e^{-3x}$$

A=0 & B=1 =>
$$y|x|=e^{-3x}$$

A=1 & B=0 => $y(x)=xe^{-3x}$
Take $y_1=e^{-3x}$ & $y_2=xe^{-3x}$
 $\frac{y_2}{y_1}=xe^{-3x}$ (not constant).
So, $\{y_1,y_2\}$ is a fund. set of solutions
 $\{y_1,y_2\}$ is a fund. set of solutions
 $\{y_1,y_2\}$ is a fund. set of solutions
 $\{y_1,y_2\}$ is a fund. set of solutions

General Facts:

- If the root of the characteristic polynomial is r_1 , then $y_1(x) = e^{r_1x}$ and $y_2(x) = xe^{r_1x}$ are solutions to the ODE.
- The general solution is given by

$$y(x) = e^{r_1 x} (c_1 + c_2 x).$$

Example 3.

a) Find the general solution of

$$y'' + 4y' + 13y = 0.$$

b) Solve the following IVP:

$$y'' + 4y + 13y = 0$$
, $y(0) = 2$, $y'(0) = -3$.

1 Polynomial

$$r^{2} + 4r + 13 = 0$$

$$\Rightarrow r = \frac{-4 \pm \sqrt{16 - 52}}{2} = \frac{-4 \pm \sqrt{-36}}{2}$$

A complex number is an expression of the form $z = \alpha + i\beta$

where α , β are real numbers and $i^2 = -1$ $(i = \sqrt{-1})$.

Consider $z = \alpha + i\beta$ and $w = \gamma + i\mu$.

- z = w if and only if $\alpha = \gamma$ and $\beta = \mu$.
- $zw = (\alpha \gamma \beta \mu) + i(\alpha \mu + \beta \gamma).$
- $z + w = (\alpha + \gamma) + i(\beta + \mu)$.
- $z/w = \frac{(\alpha+i\beta)(\gamma-i\mu)}{(\gamma+i\mu)(\gamma-i\mu)}$, if $w \neq 0$.

EXAMPLE 4. If z = 1 + i and w = 1 - i, find

a) z+w.

b) zw.

c) z/w.

(a) $Z+\omega = (1+i) + (1-i)i = 2 + 0 \cdot i = 2$

(c)
$$\frac{z}{\omega} = \frac{1+i}{1-i} \cdot \frac{1+i}{1+i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} = \frac{1+i+i+i^2}{2} = i$$

EXAMPLE 5. Complete the previous example.

(a)
$$r = -4 \pm \sqrt{-36} = -4 \pm \sqrt{(-1)36} = -4 \pm \sqrt{-1}\sqrt{36}$$

$$= -4 \pm i \cdot 6$$

$$= -4 \pm i \cdot 6$$

The solutions:

$$y_1(x) = e$$

$$y_2(x) = e$$

2 Van. of Panams.

$$y(x) = e^{-7x} \cdot \mu(x)$$

$$y'(x) = -2e^{-7x} \cdot \mu + e^{-7x} \cdot \mu'$$

$$y''(x) = 4e^{-7x} \cdot \mu - 2e^{-7x} \cdot \mu' - 2e^{-7x} \cdot \mu' + e^{-7x} \cdot \mu'$$

Replace in the ODE

$$= y'' + 4y' + 13y = u''e^{-7x} + 9ue^{-7x} = 0$$

$$= x'' + 9u = 0$$

Solutions:
$$u_1(x) = \cos(3x)$$
 & $u_2(x) = \sin(3x)$.

So,
$$y_1(x) = e^{-7x} \cos(3x) d y_2(x) = e^{-7x} \sin(3x)$$

 $\frac{4^2}{9!} = e^{\sin(3x)} = tan(3x) \pmod{not constant}$

Grenural solution:
$$y(x) = c_1 e^{-7x} (os(3x) + c_2 e^{-7x} sin(3x))$$

(b)
$$y(0) = 2$$
 $y'(x) = -2c_1e^{-7x} \cos(3x) - 3c_1e^{-7x} \sin(3x)$
 $y'(0) = -3$ $-2c_2e^{-7x} \sin(3x) + 3c_2e^{-7x} \cos(3x)$

$$y'(0) = -2c_1 + 3c_2 = -3 \implies -4 + 3c_2 = -3$$

$$\Rightarrow C_3 = \frac{1}{3}$$

So,
$$y(x) = Z e^{-7x} cos(3x) + \frac{1}{3} e^{-7x} sin(3x)$$
.

General Facts:

- If $r_1 = \alpha + \beta i$ and $r_2 = \alpha \beta i$ are the roots of the characteristic polynomial, then $y_1(x) = e^{\alpha x} \cos(\beta x)$ and $y_2(x) = e^{\alpha x} \sin(\beta x)$ are solutions to the ODE.
- The general solution has the form

$$y(x) = e^{\alpha x} (c_1 \cos(\beta x) + c_2 \sin(\beta x)).$$