# Antibiotic resistance and pathogenicity factors in *Staphylococcus* aureus isolated from mastitic Sahiwal cattle

RAVINDER KUMAR<sup>1, 2</sup>. BR YADAV<sup>1,\*</sup> and RS SINGH<sup>2</sup>

<sup>1</sup>Livestock Genome Analysis Laboratory, National Dairy Research Institute, Karnal 132 001, India <sup>2</sup>Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, India

\*Corresponding author (Fax, +91-184-2250042; Email, bry@ndri.res.in)

Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious problem in dairy animals suffering from mastitis. In the present study, the distribution of mastitic MRSA and antibiotic resistance was studied in 107 strains of S. aureus isolated from milk samples from 195 infected udders. The characterizations pathogenic factors (adhesin and toxin genes) and antibiotic susceptibility of isolates were carried out using gene amplification and disc diffusion assays, respectively. A high prevalence of MRSA was observed in the tested isolates (13.1%). The isolates were also highly resistant to antibiotics, i.e. 36.4% were resistant to streptomycin, 33.6% to oxytetracycline, 29.9% to gentamicin and 26.2% each to chloramphenicol, pristinomycin and ciprofloxacin. A significant variation in the expression of pathogenic factors (Ig, coa and clf) was observed in these isolates. The overall distribution of adhesin genes ebp, fib, bbp, fnbB, cap5, cap8, map and cna in the isolates was found to be 69.1, 67.2, 6.5, 20.5, 60.7, 26.1, 81.3 and 8.4%, respectively. The presence of fib, fnbB, bbp and map genes was considerably greater in MRSA than in methicillin-susceptible S. aureus (MSSA) isolates. The proportions of toxin genes, namely, hlb, seb, sec, sed, seg and sei, in the isolates were found to be 94.3, 0.9, 8.4, 0.9, 10.2 and 49.5%, respectively. The proportions of agr genes I, II, III and IV were found to be 39.2, 27.1, 21.5 and 12.1%, respectively. A few isolates showed similar antibiotic-resistance patterns, which could be due to identical strains or the dissemination of the same strains among animals. These findings can be utilized in mastitis treatment programmes and antimicrobials strategies in organized herds.

[Kumar R, Yadav BR and Singh RS 2011 Antibiotic resistance and pathogenicity factors in *Staphylococcus aureus* isolated from mastitic Sahiwal cattle. *J. Biosci.* **36** 175–188] **DOI** 10.1007/s12038-011-9004-6

#### 1. Introduction

Mastitis is an infectious disease that is associated with massive financial losses in the dairy sector. Among the various causative agents, Staphylococcus aureus is one of the most prevalent and contagious pathogens of intramammary infections in dairy cattle globally. The evolution of antibiotic resistance in S. aureus strains is a serious cause of concern in dairy animals (Wang et al. 2008). Strains of S. aureus resistant to  $\beta$ -lactam antibiotics are known as methicillin-resistant S. aureus (MRSA). These strains in intra-mammary dissemination often produce incurable se-

vere intra-herd infections (Moon *et al.* 2007; Kumar *et al.* 2010). MRSA strains have been observed to be multi-drug resistant, such as aminoglycosides, macrolides, lincosamides, streptogramins, tetracyclines, etc., which are often used in the treatment of mastitis (Wang *et al.* 2008; Kumar *et al.* 2010). The transmission of bovine MRSA to humans is possible and may contribute to outbreaks in animal and human populations (Lee 2003). Hence, it is necessary to know which endemic strains of *S. aureus* in dairy cattle populations are highly pathogenic and methicillin-resistant.

MRSA strains show pathogenic and epidemiological characteristics in various ways such as mutation, clonal

Keywords. Antibiotic resistance; cattle; mastitis; MRSA; pathogenic genes

evolution (Fitzgerald et al. 2001) and horizontal gene transfer (Brody et al. 2008). These evolutionary processes enhance the pathogenic and antimicrobial-resistant properties of S. aureus strains. However, a limited diversity of S. aureus strains or clones cause most of the mastitic infections in each geographical region, as these isolates are better adapted to infect animals (Annemüller et al. 1999; Salasia et al. 2004; El-Sayed et al. 2006; Moon et al. 2007). Various molecular techniques have been explored and used to analyse the pathogenesis and distribution of pathogenic genes in strains of S. aureus (Fitzgerald et al. 2001; Peacock et al. 2002; Løvseth et al. 2004). Identification and early elimination of pathogenic MRSA strains at the herd level is possible by the use of different molecular microbiology tools. The available information is limited regarding the genetic heterogeneity of MRSA strains in mastitic cattle under subtropical conditions i.e. in the Indian environment. The present investigation was carried out with the objective to determine the distribution of MRSA genetic variants of S. aureus isolates from mastitic cattle in a closed herd located in northwest India.

# 2. Materials and methods

# 2.1 Identification and biochemical characterization

Milk samples (195) from animals of the Sahiwal herd suffering from mastitis were screened using the California mastitis test. The isolation of S. aureus stains was carried out using the standard method (Kumar et al. 2010). Briefly, an aliquot of 100 µl of aseptically collected milk samples from each infected animal was spread over a Baird Parker agar plate and incubated at 37°C for 24 h. After incubation, colonies were selected and subjected to Gram staining, catalase test and morphological identification. The Gramand catalase-positive cocci were characterized for carbohydrates fermentation (Hicarbohydrate<sup>TM</sup> kit containing 34 different carbohydrate; Himedia, India), which was followed by urease, ortho-nitrophenyl-β-galactoside (ONPG), Vogues-Proskauer, arginine utilization, lysostaphin sensitivity, coagulase, clumping factor, thermonuclease, haemolysin, capsule, bio-film and slime production tests as explained by Kumar et al. (2010).

# 2.2 Antibiotic susceptibility

The antibiotic-susceptibility profile of isolates was prepared using the disk diffusion method on Mueller-Hinton agar as recommended by Clinical and Laboratory Standards Institute (2008). In brief, *S. aureus* isolates were grown overnight on blood agar at 37°C, and the colonies were suspended in

sterile saline water equivalent to a 0.5 McFarland standard. The suspension (100 µl) was spread over the medium plate. Then, the antibiotic disk was transferred aseptically on to the surface of the inoculated medium, and methicillin was incubated further at 30°C, and other antibiotics at 35°C, for a period of 24 h. Staphylococcus aureus ATCC 25923 and S. aureus NCDC 110 were used as controls. The antibiotics and their concentrations used are as follows: amikacin (30 µg), amoxicillin (10 µg), amoxicillin-sulbactum (20 ug), amoxicillin-clavulanate (20 μg), ampicillin (25 μg), cephalexin (30 μg), chloramphenicol (30 µg), ciprofloxacin (30 µg), clindamycin (10 μg), cloxacillin (30 μg), gentamicin (20 μg), kanamycin (20 μg), cefixime (5 μg), lincomycin (15 μg), methicillin (5, 10 and 15 µg), ofloxacin (5 µg), oxacillin (5 µg), oxytetracycline (30 µg), penicillin-G (10 units), pristinomycin (15 µg), rifampicin (20 µg), vancomycin (10 µg) and streptomycin (20 µg).

# 2.3 Partial amplification of 16S rDNA, mecA and nuc genes

Subsequent to biochemical characterizations, staphylococcal isolates were further subjected to species-specific gene amplification (16S rDNA). DNA from the isolates was extracted as per procedure reported previously (Kumar et al. 2010). Information about annealing temperatures and oligonucleotide primers used is given in table 1. The reaction mixture (25 µl) used for gene amplification contained: 2 µl dNTPs (200 µm/µl), 2.5 µl of 10× Taq buffer consisting of 15 mM MgCl<sub>2</sub> (Banglore Genei, India), 1 µl each forward and reverse oligonucleotide primers (10 pm/µl; Sigma Aldrich, USA), 0.35 µl Taq DNA polymerase (3 U/µl; Banglore Genei, India), 1 µl DNA (30 ng/ul) and 17.2 ul distilled water. The amplification was carried out in 0.2 ml PCR tubes in thermal cycler (Løvseth et al. 2004). Isolates were tested for the presence of nuc (Brakstad et al. 1992) and mecA genes (Murakami et al. 1991). Segments of mecA and nuc genes were amplified using primers and annealing temperatures as listed in table 1. The amplified products were imaged by running them in 1.5% agarose containing 0.5 µg/ml ethidium bromide.

# 2.4 PCR amplification of genes encoding putative pathogenic factors

Identified *S. aureus* isolates were studied for putative pathogenic factors (adhesins, enterotoxins, toxic shock syndrome toxin and exfoliative toxins). All the oligonucleotide primers used were selected from earlier reports as mentioned in table 1. Amplifications of genes encoding the

Table 1. Oligonucleotide primers and amplification conditions

| Cones                    | Oligonuslaatida Saguanaas                                | Location               | Accession<br>number | Annealing and other temperature conditions* | Product   | References                  |
|--------------------------|----------------------------------------------------------|------------------------|---------------------|---------------------------------------------|-----------|-----------------------------|
| Genes                    | Oligonucleotide Sequences                                | of primer              |                     |                                             | size (bp) |                             |
| 16S rDNA F<br>16S rDNA R | GTAGGTGGCAAGCGTTACC<br>CGCACATCAGCGTCAG                  | 545–564<br>773–758     | X68417              | 64°C                                        | 228       | Løvseth et al. (2004)       |
| nuc F<br>nuc R           | GCGATTGATGGTGATACGGTT<br>ACGCAAGCCTTGACGAACTAAAGC        | 511532<br>786–766      | V01281              | 55°C                                        | 280       | Brakstad<br>et al. (1992)   |
| mecA F<br>mecA R         | AAAATCGATGGTAAAGGTTGGC<br>AGTTCTGCAGTACCGGATTTTGC        | 1282–1303<br>1814–1793 | Y00688              | 55°C                                        | 533       | Murakami<br>et al. (1991)   |
| spa F<br>spa R           | TCAAGCACCAAAAGAGGAAGA<br>GTTTAACGACATGTACTCCGTTG         | 1522–1544<br>1806–1784 | X61307              | 60°C                                        | Variable  | Montesinos et al. (2002)    |
| Ig F<br>Ig R             | CACCTGCTGCAAATGCTGCG<br>GGC TTGTTGTTG TCT TCC TC         | 789–808<br>1698–1679   | M18264              | 58°C                                        | Variable  | Seki <i>et al.</i> (1998)   |
| clf F<br>clf R           | GGCTTCAGTGCTTGTAGG<br>TTTTCAGGGTCAATATAAGC               | 354–372<br>1329–1309   | Z18852              | 57°C                                        | Variable  | Stephan et al. (2001)       |
| coa F<br>coa R           | AACAAAGCGGCCCATCATTAAG<br>TAAGAAATATGCTCCGATTGTCG        | 1303–1325<br>2176–2153 | X17679              | 50°C 8 cycles<br>55°C 25 cycles             | Variable  | Montesinos et al. (2002)    |
| fnbA F<br>fnbA R         | GCGGAGATCAAAGACAA<br>CCATCTATAGCTGTGTGG                  | 524–540<br>1802–1785   | J04151              | 50°C                                        | 1280      | Booth <i>et al.</i> (2001)  |
| fnbB F<br>fnbB R         | GGAGAAGGAATTAAGGCG<br>GCCGTCGCCTTGAGCGT                  | 1132–1149<br>1944–1928 | X62992              | 50°C                                        | 820       | Booth <i>et al.</i> (2001)  |
| cna F<br>cna R           | AGTGGTTACTAATACTG<br>CAGGATAGATTGGTTTA                   | 1719–1735<br>3457–3441 | M81736              | 55°C                                        | Variable  | Peacock et al. (2002)       |
| bbp F<br>bbp R           | AACTACATCTAGTACTCAACAACA<br>ATGTGCTTGAATAACACCATCATCT    | 524–549<br>1098–1073   | Y18653              | 55°C                                        | 575       | Tristan et al. (2003)       |
| eno F<br>eno R           | ACG TGCAGCAGCTGACT<br>CAACAGCATYCTTCAGTACCTTC            | 464–481<br>766–743     | AF065394            | 55°C                                        | 302       | Tristan et al. (2003)       |
| ebp F<br>ebp R           | CATCCAGAACCAATCGAAGAC<br>CTTAACAGTTACATCATCATGTTTATCTTTG | 384–405<br>570–539     | U48826              | 55°C                                        | 186       | Tristan et al. (2003)       |
| fib F<br>fib R           | CTACAACTACAATTGCCGTCAACAG<br>GCTCTTGTAAGACCATTTTCTTCAC   | 180–205<br>585–560     | X72014              | 55°C                                        | 404       | Tristan et al. (2003)       |
| cap 5 F<br>cap 5 R       | ATGACGATGAGGATAGCG<br>CTCGGATAACACCTGTTGC                | 7621–7638<br>8501–8483 | U81973              | 57°C                                        | 880       | Moore and<br>Lindsay (2001) |
| cap 8 F<br>cap 8 R       | ATGACGATGAGGATAGCG<br>CACCTAACATAAGGCAAG                 | 7691–7708<br>8838–8821 | U73374              | 52°C                                        | 1147      | Moore and<br>Lindsay (2001) |
| map F<br>map R           | TAACATTTAATAAGAATCAA<br>CCATTTACTGCAATTGT                | 128–147<br>1076–1060   | AJ223806            | 45°C                                        | 940       | Peacock et al. (2002)       |
| agr-1 F<br>agr-1R        | ATGCACATGGTGCACATGC<br>GTCACAAGTACTATAAGCTG CGAT         | 1990–2008<br>2428–2405 | X52543              | 55°C                                        | 439       | Lina <i>et al.</i> (2003)   |
| agr-2 F<br>agr-2R        | ATGCACATGGTGCACATGC<br>TATTACTAATTGAAAAGTGCCATAGC        | 215–233<br>786–761     | AF001782            | 55°C                                        | 572       | Lina <i>et al.</i> (2003)   |
| agr-3 F<br>agr-3R        | ATGCACATGGTGCACATGC<br>GTAATGTAATAGCTTGTATAATAATACCCAG   | 215–233<br>535–505     | AF001783            | 55°C                                        | 321       | Lina <i>et al</i> . (2003)  |
| agr-4 F<br>agr-4R        | ATGCACATGGTGCACATGC<br>CGATAATGCCGTAATACCCG              | 932–950<br>1588–1569   | AF288215            | 55°C                                        | 657       | Lina <i>et al.</i> (2003)   |
| hla F<br>hla R           | GGTTTAGCCTGGCCTTC<br>CATCACGAACTCGTTCG                   | 55–71<br>589–573       | X55185              | 53°C                                        | 550       | Booth <i>et al.</i> (2001)  |
| hlb F<br>hlb R           | GCCAAAGCCGAATCTAAG<br>GCGATATACATCCCATGG C               | 286–303<br>1116–1101   | X61716              | 62°C                                        | 840       | Booth <i>et al</i> . (2001) |
| eta F<br>eta R           | GCAGGTGTTGATTTAGCATT<br>AGATGTCCCTATTTTTGCTG             | 775–794<br>867–848     | M17347              | 57°C                                        | 93        | Mehrotra et al. (2000)      |
| etb F<br>etb R           | ACAAGCAAAAGAATACAGCG<br>GTTTTTGGCTGCTTCTCTTG             | 509–528<br>734–715     | M17348              | 57°C                                        | 226       | Mehrotra et al. (2000)      |

Table 1. (continued)

| Genes                 | Oligonucleotide Sequences                          | Location of primer     | Accession<br>number | Annealing<br>and other<br>temperature<br>conditions* | Product<br>size (bp) | References                    |
|-----------------------|----------------------------------------------------|------------------------|---------------------|------------------------------------------------------|----------------------|-------------------------------|
| sea F<br>sea R        | GCAGGGAACAGCTTTAGGC<br>GTTCTGTAGAAGTATGAAACACG     | 126–144<br>646–624     | M18970              | 68°C 15 cycles<br>64°C 20 cycles                     | 521                  | Løvseth <i>et al</i> . (2004) |
| seb F<br>seb R        | ACATGTAATTTTGATATTCGCACTG<br>TGCAGGCATCATGTCATACCA | 267–291<br>934–913     | M11118              | Same as for sea                                      | 667                  | Løvseth <i>et al.</i> (2004)  |
| secF<br>sec R         | CTTGTATGTATGGAGGAATAACAA<br>TGCAGGCATCATATCAT      | 524–547<br>807–787     | X05815              | Same as for sea                                      | 284                  | Løvseth <i>et al.</i> (2004)  |
| sed F<br>sed R        | GTGGTGAAATAGATAGGACTGC<br>ATATGAAGGTGCTCTGTGG      | 659–680<br>1043–1025   | M28521              | Same as for sea                                      | 385                  | Løvseth <i>et al.</i> (2004)  |
| see F<br>see R        | TACCAATTAACTTGTGGATAGAC<br>CTCTTTGCACCTTACCGC      | 446–468<br>616–599     | M21319              | Same as for sea                                      | 171                  | Løvseth <i>et al.</i> (2004)  |
| seg F<br>seg R        | CGTCTCCACCTGTTGAAGG<br>CCAAGTGATTGTCTATTGTCG       | 317–335<br>644–624     | AF064773            | Same as for sea                                      | 328                  | Løvseth <i>et al.</i> (2004)  |
| seh F<br>seh R        | CAACTGCTGATTTAGCTCAG<br>GTCGAATGAGTAATCTCTAGG      | 452–471<br>810–790     | U11702              | Same as for sea                                      | 359                  | Løvseth <i>et al.</i> (2004)  |
| sei F<br>sei R        | CAACTCGAATTTTCAACAGGTACC<br>CAGGCAGTCCATCTCCTG     | 325–347<br>790–773     | AF064774            | Same as for sea                                      | 466                  | Løvseth <i>et al.</i> (2004)  |
| sej F<br>sej R        | CATCAGAACTGTTGTTCCGCTAG<br>CTGAATTTTACCATCAAAGGTAC | 1381–1403<br>1522–1500 | AF053140            | Same as for sea                                      | 142                  | Løvseth <i>et al.</i> (2004)  |
| tsst -1 F<br>tsst-1 R | GCTTGCGACAACTGCTACAG<br>TGGATCCGTCATTCATTGTTAT     | 63–82<br>623–601       | J02615              | Same as for sea                                      | 559                  | Løvseth <i>et al.</i> (2004)  |

<sup>\*</sup>Initial denaturation step (5 min at 94°C) followed by 30 cycles of amplification (denaturation for 30 s at 94°C, annealing temperature [given in table] for 30 s and elongation for 1 min at 72°C) terminated with a 5 min incubation step at 72°C.

X-region of protein A (*spa*), immunoglobulin-binding region (*Ig*), clumping factor (*clf*), collagen-binding protein (*cna*), capsular polysaccharide 5 and 8 (*cap* 5 and *cap* 8), major histocompatibility complex class II analogue protein (*map*), fibronectin-binding proteins A and B (*fnb*A and *fnb*B), accessory gene regulator alleles (*agr* I-IV) and α- and β-haemolysin (*hla* and *hlb*) were carried out using PCR. Oligonucleotide primers and annealing temperatures used for these genes are presented in table 1. The composition of the reaction mixture was the same in all PCR amplifications as explained for 16S rDNA gene.

The genes encoding elastin-binding protein (*ebp*), laminin-binding protein (*eno*), bone-sialoprotein-binding protein (*bbp*), fibrinogen-binding protein (*fib*), enterotoxins (*sea*, *seb*, *sec*, *sed*, *see*, *seg*, *seh*, *sei* and *sej*), toxic shock syndrome toxin (*tsst*-1) and exfoliative toxins (*eta* and *etb*) were amplified using multiplex PCR (Mehrotra *et al.* 2000; Tristan *et al.* 2003; Løvseth *et al.* 2004). Strains of *S. aureus*, namely, *S. aureus* NCDC 109, *S. aureus* NCDC 110, *S. aureus* NCDC 133 and *S. aureus* NCDC 237, were used as controls for toxin genes. The annealing temperatures and conditions used are presented in table 1. The reaction mixture (25 μl) for multiplex PCR consisted of 2 μl dNTPs (200 μm/μl), 2.5 μl 10× *Taq* buffer, 1.5 μl 25 mM MgCl<sub>2</sub>, 0.5 μl of each forward and

reverse oligonucleotide primer (25 pm/ $\mu$ l), 0.75  $\mu$ l of Taq DNA polymerase (3 U/ $\mu$ l), 5  $\mu$ l DNA (30 ng/ $\mu$ l) and the final volume was made with distilled water. The amplified PCR products were subjected to electrophoresis in 1.5% agarose gel containing 0.5  $\mu$ g/ml ethidium bromide.

# 2.5 PCR-RFLP of coagulase gene

Primers used for coa gene analysis were selected from a previous study (Montesinos et~al.~2002). The mixture for PCR was prepared in the same manner as for 16S rDNA gene amplification vide~supra. Amplicons were digested with HaeIII (Fermentas, India). In brief, PCR products (10  $\mu$ l) were incubated with 10 units of restriction enzyme in 0.2 ml tubes at 37°C for 3 h. The generated fragments were separated by electrophoresis in 2.75% agarose containing 0.5  $\mu$ g/ml ethidium bromide.

#### 2.6 Statistical analysis

The Pearson  $\chi^2$  test was used to analyse the results of pathogenic genes amplification and antimicrobial resistance

Table 2. Antibiotic resistance in MRSA and MSSA isolates

|                              |                 | Resistance           | Recistance           | Resistance             |             | agr və    | agr variants |           |                      |                     | coa va     | coa variants |           |         |
|------------------------------|-----------------|----------------------|----------------------|------------------------|-------------|-----------|--------------|-----------|----------------------|---------------------|------------|--------------|-----------|---------|
| Antibiotic groups Antibiotic | Antibiotic      | (%) in MRSA $(n=14)$ | (%) in MSSA $(n=93)$ | (%) in total $(n=107)$ | I<br>(n=42) | II (n=29) | III $(n=23)$ | IV (n=13) | A<br>( <i>n</i> =38) | B<br>( <i>n</i> =8) | C $(n=13)$ | D (n=33)     | E $(n=2)$ | F (n=2) |
| β-Lactam                     | Methicillin     | 100                  | 0.0                  | 13.1                   | 4.8         | 13.8      | 26.1         | 15.4      | 5.3                  | 12.5                | 15.4       | 15.2         | 100.0     | 0.0     |
|                              | Penicillin-G    | 100                  | 18.3                 | 28.9                   | 23.8        | 34.5      | 30.4         | 30.8      | 34.2                 | 37.5                | 30.8       | 21.2         | 100.0     | 0.0     |
|                              | Cloxacillin     | 100                  | 15.1                 | 26.2                   | 23.8        | 34.5      | 21.7         | 23.1      | 28.9                 | 37.5                | 30.8       | 18.2         | 100.0     | 0.0     |
|                              | Ampicillin      | 100                  | 19.4                 | 29.9                   | 23.8        | 34.5      | 39.1         | 23.1      | 28.9                 | 37.5                | 30.8       | 33.3         | 100.0     | 0.0     |
|                              | Amoxicillin     | 100                  | 12.9                 | 24.3                   | 23.8        | 27.6      | 21.7         | 23.1      | 34.2                 | 25.0                | 38.5       | 9.1          | 100.0     | 0.0     |
| Amino penicillin             | Amoxicillin-    | 71.4                 | 10.8                 | 18.7                   | 16.7        | 20.7      | 21.7         | 15.4      | 28.9                 | 12.5                | 23.1       | 12.1         | 50.0      | 0.0     |
|                              | clavulanate     | 100                  | 15.1                 | ι 9ι                   | 101         | 27.0      | 30.4         | 73.1      | 27.5                 | 275                 | 30.8       | 18.3         | 1000      |         |
|                              | sulbactum       | 001                  | 1.0.1                | 7.07                   | 13.1        |           | t.00         | 1.67      | 7:<br>1:             | C./C                | 0.00       | 10.7         | 100.0     | 0.0     |
| Cephalosporins               | Cephalexin      | 71.4                 | 7.5                  | 15.9                   | 14.3        | 10.3      | 26.1         | 15.4      | 23.7                 | 12.5                | 23.1       | 9.1          | 50.0      | 0.0     |
|                              | Cefixime        | 64.2                 | 11.8                 | 18.7                   | 16.7        | 13.8      | 26.1         | 23.1      | 21.1                 | 25.0                | 15.4       | 18.2         | 50.0      | 0.0     |
| Aminoglycosides              | Gentamicin      | 78.5                 | 22.6                 | 29.9                   | 21.4        | 27.6      | 43.5         | 38.5      | 47.4                 | 37.5                | 23.1       | 15.2         | 100.0     | 50.0    |
|                              | Streptomycin    | 78.5                 | 30.1                 | 36.4                   | 35.7        | 27.6      | 47.8         | 38.5      | 39.5                 | 37.5                | 53.8       | 33.3         | 100.0     | 0.0     |
|                              | Amikacin        | 71.4                 | 21.5                 | 28.0                   | 21.4        | 20.7      | 39.1         | 46.2      | 34.2                 | 37.5                | 38.5       | 18.2         | 100.0     | 0.0     |
|                              | Kanamycin       | 71.4                 | 31.2                 | 36.4                   | 38.1        | 31.0      | 43.5         | 30.8      | 44.7                 | 25.0                | 69.2       | 21.2         | 100.0     | 50.0    |
| Fluoroquinolones             | Ciprofloxacin   | 71.4                 | 19.4                 | 26.2                   | 19.1        | 20.7      | 43.5         | 30.8      | 39.5                 | 37.5                | 23.1       | 12.1         | 50.0      | 50.0    |
|                              | Ofloxacin       | 78.5                 | 7.6                  | 18.7                   | 14.3        | 10.3      | 34.8         | 23.1      | 23.7                 | 12.5                | 23.1       | 15.2         | 100.0     | 0.0     |
| Lincosamide                  | Clindamycin     | 71.4                 | 10.8                 | 18.7                   | 14.3        | 17.2      | 30.4         | 15.4      | 26.3                 | 12.5                | 30.8       | 6.1          | 100.0     | 50.0    |
|                              | Lincomycin      | 85.7                 | 16.1                 | 25.2                   | 21.4        | 17.2      | 34.8         | 38.5      | 31.6                 | 12.5                | 23.1       | 24.2         | 50.0      | 0.0     |
| Streptogramins               | Pristinomycin   | 71.4                 | 19.4                 | 26.2                   | 23.8        | 17.2      | 39.1         | 30.8      | 34.2                 | 50.0                | 30.8       | 15.2         | 50.0      | 0.0     |
| Tetracyclines                | Tetracycline    | 78.5                 | 26.9                 | 33.6                   | 28.6        | 37.9      | 43.5         | 23.1      | 39.5                 | 37.5                | 30.8       | 33.3         | 100.0     | 0.0     |
| Rifampin                     | Rifampicin      | 85.7                 | 16.1                 | 25.2                   | 19.1        | 20.7      | 39.1         | 30.8      | 34.2                 | 37.5                | 23.1       | 18.2         | 50.0      | 0.0     |
| Amphenicols                  | Chloramphenicol | 85.7                 | 17.2                 | 26.2                   | 21.4        | 20.7      | 39.1         | 30.8      | 31.6                 | 37.5                | 23.1       | 21.2         | 50.0      | 0.0     |
| Macrolide                    | Erythromycin    | 85.7                 | 23.7                 | 31.8                   | 28.6        | 37.9      | 26.1         | 38.5      | 42.1                 | 25.0                | 38.5       | 24.2         | 100.0     | 0.0     |
| Glycopeptides                | Vancomycin      | 0.0                  | 0.0                  | 0.0                    | 0.0         | 0.0       | 0.0          | 0.0       | 0.0                  | 0.0                 | 0.0        | 0.0          | 0.0       | 0.0     |
|                              |                 |                      |                      |                        |             |           |              |           |                      |                     |            |              |           |         |

Table 3. Distribution of pathogenic genes among the isolates

|                                                 | Genes   | Genes studied |                                                               |                   | Ť               | Toxin ge      | nes dis       | genes distribution |                       |                   |             | Haemolysin        | lysin          | Accessory   | ry gene   | gene regulation (agr) | n (agr)   |                        |                              |
|-------------------------------------------------|---------|---------------|---------------------------------------------------------------|-------------------|-----------------|---------------|---------------|--------------------|-----------------------|-------------------|-------------|-------------------|----------------|-------------|-----------|-----------------------|-----------|------------------------|------------------------------|
| Genetic determinant of <i>S. aureus</i>         | Gene    | Pattern       | $ \begin{array}{ccc} seb & sec \\ (n=1) & (n=6) \end{array} $ | sec 3 (0=u) (0=0) | sed $sed$ $sed$ | seg ( $n=5$ ) | sei<br>(n=46) | sec/ $seg$ $(n=1)$ | sec/sei $sei$ $(n=2)$ | seg/sei ( $n=5$ ) | (n=0) (n=0) | hla hla (n=107) ( | hlb<br>(n=101) | I<br>(n=42) | II (n=29) | III (n=23)            | IV (n=13) | MRSA isolates $(n=14)$ | Total observations $(n=107)$ |
| Protein A                                       | spa     |               | 100.0                                                         |                   | 0.0             | 0.0           | 4.3           | 0.0                | 0.0                   | 0.0               |             | 2.8               | 2.9            | 2.3         | 0.0       | 8.7                   | 0.0       | 0.0                    | 2.8                          |
| (X-region)                                      |         | 4 R           | 0.0                                                           | 0.0               | 0.0             | 0.0           | 0.0           | 0.0                | 0.0                   |                   |             | 6.0               | 6.0            | 0.0         | 3.4       | 0.0                   | 0.0       | 0.0                    | 6.0                          |
|                                                 |         | 7 R           | 0.0                                                           | 0.0               | 0.0             | 20.0          | 15.2          | 0.0                | 0.0                   |                   |             | 7.8               | 14.8           | 9.5         | 27.6      | 13.0                  | 30.8      | 14.3                   | 17.8                         |
|                                                 |         | 8 R           | 0.0                                                           | 2.99              | 100.0           | 40.0          | 58.7          | 100.0              | 100.0                 |                   | 0.0         | 7.9               | 60.3           | 2.99        | 51.7      | 52.2                  | 7         | 57.1                   | 57.9                         |
|                                                 |         | 9 R           | 0.0                                                           | 33.3              | 0.0             | 40.0          | 9.61          | 0.0                | 0.0                   |                   |             | 5.9               | 14.5           | 16.7        | 17.2      | 17.4                  | 7.7       | 28.6                   | 15.9                         |
|                                                 |         | 10 R          | 0.0                                                           | 0.0               | 0.0             | 0.0           | 2.2           | 0.0                | 0.0                   | 20.0              |             | 2.8               | 2.9            | 8.4         | 0.0       | 0.0                   | 7.7       | 0.0                    | 2.8                          |
|                                                 |         | 11 R          | 0.0                                                           | 0.0               | 0.0             | 0.0           | 0.0           | 0.0                | 0.0                   |                   |             | 1.9               | 1.9            | 0.0         | 0.0       | 8.7                   | 0.0       | 0.0                    | 1.9                          |
| lg-binding                                      | $g_{I}$ | а             | 0.0                                                           | 0.0               | 0.0             | 0.0           | 17.4          | 0.0                | 0.0                   |                   | 0.0         | 4.9               | 12.8           | 19.0        | 13.8      | 13.0                  | 7.7       | 14.3                   | 14.9                         |
| protein                                         |         | þ             | 100.0                                                         | 2.99              | 0.0             | 80.0          | 56.5          | 100.0              | 100.0                 |                   | 0.0         | 5.1               | 56.4           | 47.6        | 62.1      | 52.2                  | 69.2      | 42.9                   | 55.1                         |
|                                                 |         | ပ             | 0.0                                                           | 33.3              | 100.0           | 20.0          | 26.1          | 0.0                | 0.0                   |                   | 0.0         | 6.6               | 30.7           | 33.3        | 24.1      | 34.8                  | 23.1      | 42.9                   | 29.9                         |
| Clumping                                        | clf     | Ι             | 0.0                                                           | 0.0               | 0.0             | 0.0           | 2.2           | 0.0                | 0.0                   |                   |             | 3.7               | 3.9            | 2.3         | 0.0       | 8.7                   | 7.7       | 0.0                    | 3.7                          |
| factor                                          |         | П             | 0.0                                                           | 2.99              | 0.0             | 0.09          | 76.1          | 100.0              | 100.0                 |                   |             | 0.1               | 71.3           | 71.4        | 82.8      | 52.2                  | 69.2      | 64.3                   | 70.1                         |
|                                                 |         | H             | 100.0                                                         | 33.3              | 100.0           | 40.0          | 17.4          | 0.0                | 0.0                   |                   |             | 9.0               | 20.8           | 19.0        | 13.8      | 34.8                  | 15.4      | 28.6                   | 20.6                         |
| Coagulase                                       | coa     | A             | 0.0                                                           | 16.7              | 0.0             | 0.09          | 50.0          | 0.0                | 0.0                   |                   |             | 5.5               | 37.6           | 26.2        | 48.3      | 30.4                  | 46.2      | 28.6                   | 35.5                         |
|                                                 |         | В             | 0.0                                                           | 33.3              | 0.0             | 20.0          | 8.7           | 0.0                | 100.0                 |                   |             | 7.5               | 7.9            | 7.1         | 6.9       | 13.0                  | 0.0       | 7.1                    | 7.5                          |
|                                                 |         | C             | 100.0                                                         | 33.3              | 0.0             | 0.0           | 8.7           | 0.0                | 0.0                   |                   |             | 2.1               | 11.9           | 11.9        | 10.3      | 17.4                  | 7.7       | 14.3                   | 12.1                         |
|                                                 |         | О             | 0.0                                                           | 16.7              | 0.0             | 0.0           | 23.9          | 0.0                | 0.0                   |                   |             | 8.0               | 30.7           | 38.1        | 27.6      | 21.7                  | 30.8      | 35.7                   | 30.8                         |
|                                                 |         | 田             | 0.0                                                           | 0.0               | 100.0           | 0.0           | 2.2           | 0.0                | 0.0                   |                   |             | 1.9               | 1.9            | 0.0         | 0.0       | 8.7                   | 0.0       | 14.3                   | 1.9                          |
|                                                 |         | ഥ             | 0.0                                                           | 0.0               | 0.0             | 0.0           | 0.0           | 100.0              | 50.0                  | 0.0               |             | 1.9               | 1.9            | 2.3         | 0.0       | 4.3                   | 0.0       | 0.0                    | 1.9                          |
| Elastin-binding                                 | epb     |               | 0.0                                                           | 2.99              | 0.0             | 0.09          | 80.4          | 100.0              | 100.0                 | _                 |             | 9.2               | 71.3           | 29          | 75.9      | 6.09                  | 69.2      | 64.3                   | 69.2                         |
| protein<br>Laminin-binding                      | eno     |               | 100.0                                                         | 100.0 100.0 100   | 0:              | 100.0         | 100.0         | 100.0              | 100.0                 | 100.0             | 0.0 100     | 100.0             | 0.001          | 100.0       | 100.0     | 100.0                 | 100.0     | 100.0                  | 100.0                        |
| protein<br>Fibrinogen-binding                   | qy      |               | 100.0                                                         | 50.0              | 0.0             | 0.09          | 78.3          | 100.0              | 100.0                 | 0.09              | 0.0         | 67.3              | 69.3           | 0.69        | 79.3      | 52.2                  | 53.8      | 50.0                   | 67.3                         |
| protein<br>Bonesialo-binding                    | dqq     |               | 0.0                                                           | 0.0               | 0.0             | 0.0           | 4.3           | 0.0                | 0.0                   | 0.0               | 0.0         | 6.5               | 6.9            | 11.9        | 6.9       | 0.0                   | 0.0       | 0.0                    | 6.5                          |
| protein<br>Fibronectin-binding <i>fnbA</i>      | fhbA    |               | 100.0                                                         | 100.0 100.0 100   | 0:              | 100.0         | 100.0         | 100.0              | 100.0                 | 100.0             | 0.0         | 100.0             | 0.001          | 100.0       | 100.0     | 100.0                 | 100.0     | 100.0                  | 100.0                        |
| proteins A<br>Fibronectin-binding fnbB          | fhbB    |               | 100.0                                                         | 0.0               | 0.0             | 20.0          | 23.9          | 0.0                | 0.0                   | 20.0              | 0.0         | 20.6              | 21.8           | 16.7        | 13.8      | 30.4                  | 30.8      | 28.6                   | 20.6                         |
| proteins B<br>Capsular                          | cap5    |               | 0.0                                                           | 83.3              | 100.0           | 80.0          | 6.09          | 0.0                | 100.0                 | 40.0              | 0.0 60.7    |                   | 62.4           | 73.8        | 55.2      | 43.5                  | 61.5      | 50.0                   | 60.7                         |
| polysaccharide 5<br>Capsular                    | cap8    |               | 100.0                                                         | 16.7              | 0.0             | 0.0           | 40.4          | 100.0              | 0.0                   | 20.0              | 0.0 26.2    |                   | 25.7           | 14.3        | 27.6      | 43.5                  | 30.8      | 42.9                   | 26.2                         |
| MHC class II                                    | тар     |               | 100.0 100.0                                                   | 100.0             | 100.0           | 100.0         | 84.8          | 100.0              | 50.0                  | 100.0             | 0.0 81.3    |                   | 83.2           | 81.0        | 75.9      | 82.6                  | 92.3      | 85.7                   | 81.3                         |
| analogue protein<br>Collagen-binding<br>protein | спа     |               | 0.0                                                           | 16.7              | 0.0             | 0.0           | 8.7           | 0.0                | 0.0                   | 40.0              | 0.0         | 4.                | 8.9            | 8.8         | 3.4       | 21.7                  | 7.7       | 7.1                    | 8.4                          |
| •                                               |         |               |                                                               |                   |                 |               |               |                    |                       |                   |             |                   |                |             |           |                       |           |                        |                              |

\*sea, see, seh, sej, tsst-1, eta and etb genes; a, 500 bp; b: 1,000 bp; c, 1,100 bp; I, 950 bp; II, 1,000 bp; III, 1,100 bp; R=repeats in X-region; A, B, C, D, E and F=RFLP patterns of coagulase genes.

for significant association using SYSTAT 12. *P*-value≤0.05 was considered significant.

#### 3. Results

# 3.1 Identification and biochemical characterization

Biochemical tests revealed 107 isolates of *S. aureus*. All these isolates were positive (100.0%) for catalase, bio-films and the presence of capsules. The isolates that were also positive for urease, the Vogues-Proskauer test, arginine hydrolysis, lysostaphin sensitivity, clumping factor, DNase, coagulase,  $\beta$ -haemolysin,  $\alpha$ -haemolysin, slime production and TNase were in the proportions of 98.1, 63.5, 59.8, 96.2, 90.6, 86.9, 78.5, 77.5, 22.4, 65.4 and 57.0%, respectively.

# 3.2 Antibiotic susceptibility

Antibiotic-susceptibility assays revealed that, among the 107 isolates, 34 were susceptible to all the antibiotics used in this study. All the isolates (100.0%) were also susceptible to vancomycin. Higher resistance was observed to streptomycin (36.4% of the isolates), oxytetracycline (33.6%) gentamicin and ampicillin (29.9%), penicillin-G (28.9%), chloramphenicol, pristinomycin, ciprofloxacin (26.2% each), and rifampicin and lincomycin (25.2% each). However, some isolates were highly susceptible to cephalexin (84.1%), amoxicillin-clavulanate, ofloxacin and clindamycin (81.3%). Fourteen isolates were found to be methicillin-resistant, while the remaining (93) were methicillin-susceptible. Of the 14 MRSA isolates, only 10 were resistant to amoxicillin-clavulanate. The majority of the MRSA isolates showed resistance to cloxacillin, penicillin-G, chloramphenicol and rifampicin (table 2). MSSA isolates were also resistant to streptomycin (30.1% of the isolates), followed by oxytetracycline (26.9%), gentamicin (22.6%) and amikacin (21.5%), and they were also highly susceptible to cephalexin (92.5%), ofloxacin (90.3%), amoxicillin-clavulanate and clindamycin (89.2%). MRSA isolates were significantly (P < 0.05) more resistant to different antibiotics than MSSA isolates. Statistical analysis revealed that the association between the antibiotics was highly significant (P<0.01).

#### 3.3 Detection of 16S rDNA, mecA and nuc genes

The partial amplification of specific 16S rDNA confirmed that all the 107 isolates belonged to *S. aureus* and were also positive for the *nuc* gene. Of the 14 methicillin-resistant isolates, only 10 gave the band for *mec*A gene.

# 3.4 Molecular characterization for pathogenic factors

Molecular characterization revealed that the recovered isolates were positive for fnbA, hla, eno, spa, and Igbinding genes (table 3). Amplification of the spa gene (X-region) showed seven amplicons of 3, 4, 7, 8, 9, 10 and 11 repeats (R). The most frequent number of repeats was eight (in 57.9% of the isolates) followed by seven (17.7%) and nine (15.8%). Polymorphic band patterns were also observed in Ig-binding (figure 1) and clf genes. The sizes of the amplicons for Ig-binding genes were 500 (in 14.9% of the isolates), 1000 (55.1%) and 1100 bp (29.9%) and for *clf*, 950 (3.7%), 1000 (70.0%) and 1100 bp (20.5%). All the isolates with more than 7R were found to express a large number of pathogenic factors when compared with other categories (table 4). Isolates with 3R, 4R, 7R, 8R, 9R, 10R and 11R were positive (100.0%) with four (eno, fnbA, cap8 and map), three (eno, fnbA and cap5), two (eno and fnbA), two (eno and fnbA), two (eno and fnbA), five (eno, ebp, fib, fnbA and map) and four (eno, fnbA, cap8 and map) genes, respectively. In addition, isolates consisting 3R, 9R, 10R and 11R were not positive for two (bbp and cap5), one (bbp), two (cap8 and cna) and five (ebp, bbp, fnbB, cap5 and cna) genes, respectively. The details of spa repeats and associations with different genes are presented in table 4. The majority of MRSA isolates revealed more than seven repeats in the spa gene (table 3).

The isolates were positive in high proportion for *ebp*, *eno* and fib as compared with those for bbp (table 3; figure 2). The distribution of accessory gene regulators I, II, III and IV in isolated bacterial strains was found to be 39.2, 27.1, 21.5 and 12.1%, respectively. The occurrence of pathogenic genes between MRSA and MSSA isolates was uneven (table 3). The percentage-wise distribution of pathogenic genes cap8 (42.9, 23.7), fnbB (28.6, 19.4), map (85.7, 80.6) and coa (100.0, 88.2) was greater in MRSA than in MSSA isolates. However, the occurrence of bbp (0.0, 7.5), ebp (64.3, 69.9), fib (50.0, 69.9), clf (92.9, 94.6), cna (8.6, 7.1) and cap5 (50.0, 62.4) genes was slightly lower in MRSA than in MSSA isolates. Table 5 shows that the antibiotic resistance was high in isolates that had the hlb, ebp, fib and map genes; whereas the proportion was less in isolates showing the presence of cna, fnbB and bbp genes. The overall presence of capsular genes (cap5 and cap8) in isolates was significantly associated with antibiotic resistance. However, category-wise antibioticresistance differences in isolates with cap5 and cap8 were non-significant (table 5). The presence of genes, namely, fnbA, eno, hla and nuc, did not show any relation to antibiotic resistance, because all the tested isolates were positive for these genetic determinants.

Among the 67 enterotoxin-producing isolates, 59 were involved in the production of only one type of enterotoxin



**Figure 1.** PCR amplicons of genes encoding for immunoglobulin-binding gene (*Ig*-binding). Lane M: 100-bp-molecular-size DNA ladder; lane 1 and 2: 500 bp amplicons; lane 3: amplicons of 1100 bp; lane 4: amplicons of 1050 bp.

(seb - 1, sec - 6, sed - 1, seg - 5and sei - 46isolates) as shown in figure 3. Only eight isolates amplified more than one enterotoxin gene (sec/seg - 1, sec/sei - 2) and seg/sei - 5

isolates). The enterotoxin *sei* was the most frequent among these isolates (42.9%). All the isolates lacked amplification of *sea*, *see*, *seh*, *sej*, *tsst*-1, *eta* and *etb* genes (table 3). Statistical analysis for association was found to be significant (*P*<0.05) between *fnb*B and *cna*, *hlb* and *map*, *ebp* and *cap5*, *hlb* and *ebp*, *clf* and *hlb*, *hlb* and *coa*, *fib* and *coa*, *ebp* and *sei*, *fib* and *sei*, *sei* and *mecA*, and *cna* and *seg/sei*.

# 3.5 PCR-RFLP of coagulase gene

The amplicons digested with *Hae* III generated six different RFLP patterns (A-F) as shown in figure 4. The number of fragments produced during digestion varied in size (50 to 850 bp). The RFLP patterns A and D (both account for 66.3%) dominated within the isolated population (table 3). The isolates with RFLP pattern F showed susceptibility for methicillin, penicillin-G, oxacillin, amoxicillin-clavulanate, amoxicillin, cloxacillin, lincomycin, pristinomycin and cephalexin, while isolates revealing RFLP pattern E were resistant to these antibiotics. The antibiotic-resistant isolates showed RFLP patterns A (38.4% of the isolates), C (10.9%) and D (35.6%). Statistical analysis showed that the association between coagulase and antibiotics, namely, amoxicillin, clindamycin, gentamicin, oxytetracycline, amoxicillinclavulanate and ofloxacin was significant (P<0.05). The patterns A, C and E were associated with the pathogenic factors; whereas the B, E and F patterns were negative for the factors (table 4).



**Figure 2.** Multiplex PCR amplicons of genes encoding for *ebp* (186 bp), *eno* (302 bp), *bbp* (575 bp) and *fib* (404 bp). Lane M: 100-bp-molecular-size DNA ladder; lane 1–7: example of amplification of above mentioned genes.



**Figure 3.** Multiplex PCR amplicons of toxin genes. Lane M: 100-bp-molecular-size DNA ladder; lane A–E: example of amplification of above toxin genes in isolated population. 228 bp, 16S-rDNA; 466 bp-sei; 667 bp, seb; 328 bp, seg.

#### 4. Discussion

The present investigation on the distribution of MRSA, putative pathogenic genes and antibiotic-resistance of S. aureus isolates from mastitic cattle showed diverse biochemical characteristics. Mastitic S. aureus strains have been reported as expressing atypical characteristics (Aarestrup et al. 1999). The distribution of  $\alpha$ ,  $\beta$ -haemolysin and coagulase was in agreement with earlier findings (Aarestrup et al. 1999; Boerlin et al. 2003; Kumar et al. 2010). Identification of isolates was also confirmed by molecular assay because biochemical tests sometimes give false results or identities.

In the present study, the *S. aureus* isolates were typed for antibiotic resistance to obtain vital information that could help evolving a strategy for prevention and treatment of mastitis in cattle. A large number of isolates were observed to show resistance to multiple antibiotics (table 2). Appearance of resistance against a particular antibiotic in a specific region may be due to its frequent and long-term use (Sabour *et al.* 2004; Moon *et al.* 2007; Kumar *et al.* 2010). The results of the present study revealed that a significant number of isolates showed resistance to antibiotics (penicillin-G, gentamicin, streptomycin, ampicillin, ciprofloxacin, oxytetracycline, etc.) that are frequently used in mastitic animals (table 2). The proportion of penicillin-G-resistant isolates (29.0%) in this study was closer to those in

American herds (Erskine et al. 2002; Makovec and Ruegg 2003) than European herds (Vintov et al. 2003). The occurrence of isolates resistant to streptomycin, lincomycin, cloxacillin, ciprofloxacin, pristinomycin and clindamycin (table 2) was less frequent than that observed by Wang et al. (2008) in Chinese bovine herds. However, it was slightly higher than that reported from India (Kumar et al. 2010), Argentina (Gentilini et al. 2000), Europe and the United States (De Oliveira et al. 2000). Such differences can be attributed to diverse antibiotics administrated during mastitis infection. There was a higher prevalence of MRSA (13.0%) as compared with those in similar reports in the literature (Lee 2003; Moon et al. 2007; Van den Eede et al. 2009; Kumar et al. 2010). Among MRSA isolates, four showed poor expression of mecA genes or production of methicillinase (alteration of PBP subtypes) or seemed to be overproducing β-lactamase, as these isolates remained susceptible to amoxicillin-clavulanate (Moon et al. 2007; Turutoglu et al. 2009; Kumar et al. 2010). Moreover, the resistant proportion was higher in MRSA than in MSSA isolates for various antibiotics, as the MRSA generally express resistance to multiple drugs (Wang et al. 2008; Kumar et al. 2010).

The molecular characterization of isolates also showed variations in pathogenic genes. Polymorphic patterns in protein A, *Ig*-binding, coagulase and clumping factor genes revealed significant genetic heterogeneity among *S. aureus* 

Table 4. Association of protein-A and coagulase with other pathogenic genes

|                  | F (n=2)                                                           | 100.0*                        | 100.0* | 100.0*                        | $0.0^{*}$  | 100.0* | $0.0^{\#}$ | $50.0^{\ddagger}$ | $50.0^{\ddagger}$ | $50.0^{\ddagger}$             | 0.0#       |
|------------------|-------------------------------------------------------------------|-------------------------------|--------|-------------------------------|------------|--------|------------|-------------------|-------------------|-------------------------------|------------|
|                  | E $(n=2)$                                                         | 0.0#                          | 100.0* | $0.0^{\#}$                    | $0.0^{\#}$ | 100.0* | 50.0       | 100.0*            | $0.0^{\#}$        | 100.0*                        | $0.0^{\#}$ |
| riants           | D ( <i>n</i> =33)                                                 | 57.6‡                         | 100.0* | $51.5^{\ddagger}$             | 6.1 §      | 100.0* | 18.2 §     | $57.6^{\ddagger}$ | 76.9 <sup>‡</sup> | 72.7                          | 3.0 §      |
| coa variants     | C $(n=13)$                                                        | <sup>‡</sup> 6.9 <sup>‡</sup> | 100.0* | <sup>‡</sup> 6.9 <sup>‡</sup> | 7.7 §      | 100.0* | 38.4 §     | $61.5^{\ddagger}$ | 23.1 §            | <sup>‡</sup> 6.9 <sup>‡</sup> | 30.8 §     |
|                  | B (n=8)                                                           | 62.5‡                         | 100.0* | $50.0^{\ddagger}$             | $0.0^{\#}$ | 100.0* | $0.0^{\#}$ | $50.0^{\ddagger}$ | 25.0              | 87.5                          | 0.0#       |
|                  | A $(n=38)$                                                        | $81.6^{\dagger}$              | 100.0* | \$8.8 <sup>†</sup>            | § 6.7      | 100.0* | 23.7 §     | $65.8^{\ddagger}$ | 26.3 §            | $92.1^{\dagger}$              | 10.5 §     |
|                  | 11R (n=2)                                                         | 0.0                           | 100.0* | $50.0^{\ddagger}$             | $0.0^{\#}$ | 100.0* | $0.0^{\#}$ | $0.0^{\#}$        | 100.0*            | 100.0*                        | 0.0#       |
|                  | 10R (n=3)                                                         | 100.0*                        | 100.0* | 100.0*                        | 33.3 §     | 100.0* | £.99       | £.99              | $0.0^{*}$         | 100.0*                        | 0.0#       |
| ats              | 9R (n=17)                                                         | 70.6                          | 100.0* | $70.6^{\ddagger}$             | $0.0^{\#}$ | 100.0* | 23.5 §     | 64.7              | 35.3 §            | $94.1^{*}$                    | 11.8 §     |
| spa gene repeats | 8R ( <i>n</i> =62)                                                | 72.6‡                         | 100.0* | $72.6^{\ddagger}$             | 4.8 §      | 100.0* | 17.8 §     | 67.7‡             | 25.8 §            | 82.3*                         | 6.5 §      |
| S.               | 7R (n=19)                                                         | 68.4‡                         | 100.0* | 47.4 §                        | 15.8 §     | 100.0* | 15.8 §     | 47.4 §            | 5.3 §             | $63.2^{\ddagger}$             | 10.5 §     |
|                  | 4R $(n=1)$                                                        | 0.0                           | 100.0* | $0.0^{\#}$                    | $0.0^{\#}$ | 100.0* | $0.0^{\#}$ | 100.0*            | $0.0^{\#}$        | $0.0^{\#}$                    | $0.0^{\#}$ |
|                  | 3R (n=3)                                                          | 33.3 §                        | 100.0* | 66.7                          | $0.0^{\#}$ | 100.0* | £2.99      | $0.0^{\#}$        | 100.0*            | 100.0*                        | 33.3 §     |
|                  | Adhesins genes $\overline{3R}$ $(n=3)$ $4R$ $(n=1)$ $7R$ $(n=19)$ | ebp                           | eno    | fib                           | dqq        | fnbA   | fnbB       | cap5              | cap8              | тар                           | cna        |

<sup>†</sup>75–100% of the isolates of 8R and 9R of spa and A, B, C and D of coa were positive with 1, 1, 3, 1, 3 and 1 different genes, respectively. respectively.

\*100% of the isolates of 3R, 4R, 7R, 8R, 9R, 10R and 11R of spa and A, B, C, D, E and F of coa were positive with 4, 3, 2, 2, 2, 5, 4, 2, 2, 2, 4 and 4 different genes,

§ 1-50% of the isolates 3R, 7R, 8R, 9R and 10R of spa and A, B, C and D of coa were positive with 2, 6, 4, 3, 1, 4, 1, 4 and 3 different genes, respectively.

<sup>‡</sup> 50–75% of the isolates 3R, 7R, 8R, 9R, 10R and 11R of spa and A, B, C, D, E and F of coa were positive with 2, 2, 3, 3, 2, 1, 1, 3, 1, 4, 1 and 3 different genes, respectively.

#0% of the isolates 3R, 4R, 9R, 10R and 11R of spa and B, E and F of coa were positive with 2, 7, 1, 2, 5, 3, 5 and 3 different genes, respectively.

Table 5. Association between antibiotic-resistant and pathogenic genes

| Antibiotic                  | hlb<br>(n=101) | ebp<br>(n=74) | fib<br>(n=72) | map<br>(n=87) | bbp<br>(n=07) | cna<br>(n=09) | cap5<br>(n=65) | cap8<br>(n=28) | fnbB<br>(n=22) | eno & fnbA<br>(n=107) | Total observations (n=107) |
|-----------------------------|----------------|---------------|---------------|---------------|---------------|---------------|----------------|----------------|----------------|-----------------------|----------------------------|
| Methicillin                 | 13             | 9             | 07            | 12            | 00            | 01            | 07             | 06             | 04             | 14                    | 14                         |
| Penicillin-G                | 29             | 20            | 18            | 28            | 02            | 02            | 18             | 11             | 08             | 31                    | 31                         |
| Cloxacillin                 | 26             | 18            | 16            | 25            | 02            | 02            | 16             | 11             | 07             | 28                    | 28                         |
| Ampicillin                  | 31             | 21            | 20            | 27            | 02            | 02            | 19             | 10             | 07             | 32                    | 32                         |
| Amoxicillin                 | 24             | 18            | 17            | 25            | 02            | 03            | 15             | 10             | 08             | 26                    | 26                         |
| Amoxicillin-<br>clavulanate | 19             | 13            | 11            | 18            | 02            | 02            | 12             | 07             | 08             | 20                    | 20                         |
| Amoxicillin-<br>sulbactum   | 27             | 20            | 17            | 24            | 01            | 02            | 14             | 13             | 08             | 28                    | 28                         |
| Cephalexin                  | 16             | 10            | 09            | 16            | 02            | 02            | 10             | 06             | 07             | 17                    | 17                         |
| Cefixime                    | 19             | 13            | 13            | 18            | 00            | 03            | 11             | 07             | 06             | 20                    | 20                         |
| Gentamicin                  | 31             | 22            | 21            | 28            | 02            | 03            | 20             | 10             | 11             | 32                    | 32                         |
| Streptomycin                | 37             | 25            | 24            | 33            | 03            | 03            | 25             | 10             | 13             | 39                    | 39                         |
| Amikacin                    | 28             | 18            | 16            | 24            | 01            | 02            | 17             | 10             | 10             | 30                    | 30                         |
| Kanamycin                   | 38             | 27            | 25            | 32            | 02            | 03            | 23             | 10             | 13             | 39                    | 39                         |
| Ciprofloxacin               | 26             | 18            | 16            | 24            | 02            | 02            | 16             | 09             | 07             | 28                    | 28                         |
| Ofloxacin                   | 19             | 10            | 09            | 19            | 02            | 02            | 11             | 07             | 08             | 20                    | 20                         |
| Clindamycin                 | 20             | 13            | 12            | 18            | 01            | 02            | 13             | 06             | 07             | 20                    | 20                         |
| Lincomycin                  | 25             | 17            | 16            | 25            | 02            | 04            | 15             | 10             | 09             | 27                    | 27                         |
| Pristinomycin               | 26             | 20            | 18            | 25            | 02            | 03            | 16             | 10             | 09             | 28                    | 28                         |
| Tetracycline                | 35             | 25            | 23            | 30            | 03            | 02            | 23             | 11             | 10             | 36                    | 36                         |
| Rifampicin                  | 25             | 18            | 17            | 24            | 02            | 03            | 14             | 12             | 09             | 27                    | 27                         |
| Chloramphenicol             | 26             | 19            | 17            | 24            | 02            | 02            | 16             | 11             | 08             | 28                    | 28                         |
| Erythromycin                | 32             | 24            | 21            | 28            | 01            | 02            | 21             | 10             | 10             | 34                    | 34                         |
| Vancomycin                  | 00             | 00            | 00            | 00            | 00            | 00            | 00             | 00             | 00             | 00                    | 00                         |

isolates. Genetic variations in pathogenic genes were found in isolates of S. aureus in the herd studied, and similar observations within a single herd have also been reported earlier (Sabour et al. 2004). The variants of spa have been used to discriminate epidemic and non-epidemic MRSA and MSSA strains (Montesinos et al. 2002; Reinoso et al. 2008; Kumar et al. 2010). In the present study, spa variants also showed utility in distinguishing the isolates (table 4). Fragments of different sizes in Ig and clf were observed, which differed from those in earlier reports (Akineden et al. 2001; Salasia et al. 2004; Reinoso et al. 2008). Coagulase genotype differs with geographic area, and polymorphic patterns have been reported to discriminate the pathogenicity of strains of S. aureus (Phonimdaeng et al. 1990; Annemüller et al. 1999; Montesinos et al. 2002; Moon et al. 2007; Kumar et al. 2010). In the present study, six different RFLP patterns were observed, whereas in the study by Montesinos et al. (2002) only four patterns were reported. In addition, like the spa genes, Ig-binding, RFLP variants of coagulase genes were quite useful in distinguishing the isolates on the basis of pathogenesis and antibiotic resistance (tables 2 and 4).

Adhesin genes of S. aureus play a significant role in causing infection, colonization and invasion in the host (Peacock et al. 2002). All the isolates studied were found to be positive for hla, eno, fnbA and nuc genes expression. Similar observations have been reported for their significant role in S. aureus pathogenicity in cattle (Salasia et al. 2004; El-Sayed et al. 2006). Binding of S. aureus to fibroblasts and epithelial cells increase significantly with fib and map, while *ebp* enhances binding with peptides and tropoelastin (Palma et al. 1999; Zecconi et al. 2005). A significant number of isolates were positive for ebp, fib and map genes (table 3), and possibly these are essential for colonization and pathogenesis in mastitis. In these observations, only seven S. aureus isolates showed the bbp gene. Only a few isolates revealed genetic determinants of *fnb*B and *cna* genes (table 3); however, their role in mastitis could not be established. Earlier reports also did not show the influence of fnbB and cna in bovine mammary gland infection (Lammers et al.



Figure 4. PCR-RFLP fragments of coagulase gene. Lane M: 100-bp-molecular-size DNA ladder; lanes show A-F patterns.

1999; Salasia *et al.* 2004; El-Sayed *et al.* 2006). Capsular types 5 and 8 predominated in isolates, and these results are in agreement with earlier studies (El-Sayed *et al.* 2006; Reinoso *et al.* 2008). The findings are also comparable with different forms of *agr* I to IV gene distribution as reported earlier (Gilot and van Leeuwen 2004; Reinoso *et al.* 2008). The relation of *agr* gene distribution to mastitic isolates still remains unclear. Significant association of *agr* variants with antibiotic resistance was not found in the present investigation (table 2).

The antibiotic-resistant isolates showed the presence of *hlb*, ebp, fib and map. A few pathogenic factors (cna, fnbB, bbp) were not significantly associated with the antibiotic resistance or were less frequent. Conversely, the antibiotic-susceptible isolates were also found to reveal these pathogenic factor genes (table 5). The presence or absence of these genes may have no relation to antibiotic-resistant or antibioticsusceptibile aspects. Genetic determinants of antibiotics and pathogenic factors have not been reported to reside on the same loci (Brody et al. 2008; Fournier 2008). The expressions of pathogenic factors depend on the accessory gene regulator (agr) and the staphylococcal accessory regulator. The majority of antibiotic-resistant genes have been shown on reside mobile plasmids (Brody et al. 2008; Kumar et al. 2010). Capsular formations have been reported to contribute in pathogenesis in order to reduce antibiotic susceptibility (Seaman et al. 2004). The observations in the present study revealed the presence of capsular genes in both antibiotic-resistant and antibioticsusceptible isolates. The association of antibiotics with agr and *coa* has been reported in isolates (Moon *et al.* 2007). The coagulase gene RFLP patterns (A, D and E) were found to be significantly associated with antibiotic resistance (table 2). Moreover, the expression of some pathogenic factors (*nuc*, *fnbA* and *hla*) did not show any correlations with antibiotics, as all isolates were positive for the presence of these genes. Similarly, the uneven presence of pathogenic factors in MRSA and MSSA indicated non- significant correlation (table 3).

The isolates tested for super-antigen toxins showed only enterotoxin genes (seb, sec, sed, seg and sei), and sei was most frequently encountered in this study. Toxins are supposed to modulate immune response through super-antigen activity and give rise to various diseases (Peacock et al. 2002). However, information is limited on the role of staphylococcal toxins in mastitis pathogenicity. Various enterotoxins, namely, sea, seb, sec, sed, see, seh, seg, sei, sej and tsst-1, have been reported among the S. aureus populations isolated from bovines (Akineden et al. 2001; Stephan et al. 2001; Salasia et al. 2004; Zschöck et al. 2004). All the isolates tested failed to amplify the tsst-1 gene, although its prevalence in bovine isolates has been reported in association with sec and sed (Akineden et al. 2001; Stephan et al. 2001; Salasia et al. 2004). Isolates also lacked the amplification eta and etb genes. The occurrences of exfoliative toxins have been rarely reported among S. aureus isolates from mastitic cattle (Akineden et al. 2001; Salasia et al. 2004; El-Sayed et al. 2006). Expression of toxin genes varies with location, and no specific reason has been reported (Akineden et al. 2001; Stephan et al. 2001; Salasia et al. 2004; Zschöck et al. 2004).

In conclusion, the present study generated information on genotypic and antimicrobial typing of MRSA and MSSA isolates. The investigations revealed considerable variations in the prevalence of different adhesin and toxin genes among isolates. The unusual prevalence of bonesialoprotein-binding protein and the absence of toxic shock syndrome toxins showed atypical characteristics of mastitic isolates. High prevalence of MRSA among mastitic cases is another significant finding. The uneven distribution of pathogenic factors between MRSA and MSSA emphasized the fact that molecular characterization is equally important in conjunction with antibioticsusceptibility tests in order to distinguish the isolates. The prevalence of multiple-drug-resistant isolates of S. aureus among the mastitic cases needs special attention for the eradication of such infection. These findings could be useful in the treatment and segregation or culling in the case of mastitic animals.

# Acknowledgements

This work was supported by a grant from the National Fellow Scheme of Indian Council of Agriculture Research, New Delhi, India. The authors are extremely thankful to Dr Raman Seth (NDRI) for his critical evaluation of manuscript and the staff of Livestock Genome Analysis Laboratory for their assistance in carrying out this work.

#### References

- Aarestrup FM, Lartsen HD, Eriksen NH, Elsberg CS and Jensen NE 1999 Frequency of alpha- and beta-haemolysin in Staphylococcus aureus of bovine and human origin. A comparison between pheno- and genotype and variation in phenotypic expression. APMIS 107 425–430
- Akineden Ö, Annemüller C, Hassan AA, Lämmler C, Wolter W and Zschöck M 2001 Toxin genes and other characteristics of Staphylococcus aureus isolates from milk of cows with mastitis. Clin. Diagn. Lab. Immunol. 8 959–964
- Annemüller C, Lammler CH and Zschöck M 1999 Genotyping Staphylococcus aureus isolated from bovine mastitis. Vet. Microbiol. 69 217–224
- Boerlin P, Kuhnert P, Hüssy D and Schaellibaum M 2003 Methods for identification of *Staphylococcus aureus* isolates in cases of bovine mastitis. *J. Clin. Microbiol.* **41** 767–771
- Booth MC, Pence LM, Mahasreshti P, Callegan MC and Gilmore MS 2001 Clonal associations among *Staphylococcus aureus* isolates from various sites of infection. *Infect. Immun.* **69** 345–352
- Brakstad OG, Aasbakk K and Maeland JA 1992 Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 30 1654–1660

- Brody T, Yavatkar AS, Lin Y, Ross J, Kuzin A, Kundu M, Fann Y and Odenwald WF 2008 Horizontal gene transfers link a human MRSA pathogen to contagious bovine mastitis bacteria. *PLoS ONE* **3** e3074
- Clinical and Laboratory Standards Institute 2008 Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals.
- De Oliveira AP, Watts JL, Salmon SA and Aarestrup FM 2000 Antimicrobial susceptibility of *Staphylococcus aureus* isolated from bovine mastitis in Europe and the United States. *J. Dairy Sci.* **83** 855–862
- El-Sayed A, Alber J, Lämmler C, Jäger S, Wolter W and Castañeda-Vázquez H 2006 Comparative study on genotypic properties of *Staphylococcus aureus* isolated from clinical and sub clinical mastitis in Mexico. *Vet. Mex.* 37 165–179
- Erskine RJ, Walker RD, Bolin CA, Bartlett PC and White DG 2002 Trends in antibacterial susceptibility of mastitis pathogens during a seven-year period. *J. Dairy Sci.* **85** 1111–1118
- Fitzgerald JR, Sturdevant DE, Mackie SM, Gill SR and Musser JM 2001 Evolutionary genomics of *Staphylococcus aureus*: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. *Proc. Natl. Acad. Sci. USA* **98** 8821–8826
- Fournier B 2008 Global regulators of *Staphylococcus aureus* virulence genes; in *Staphylococcus molecular genetics* (ed.) JA Lindsay (Norfolk: Caister Academic Press) pp 131–183
- Gentilini E, Denamiel G, Llorente P, Godaly S, Rebuelto M and DeGregorio O 2000 Antimicrobial susceptibility of *Staphylo-coccus aureus* isolated from bovine mastitis in Argentina. *J. Dairy Sci.* 83 1224–1227
- Gilot P and van Leeuwen W 2004 Comparative analysis of agr locus diversification and overall genetic variability among bovine and human *Staphylococcus aureus* isolates. *J. Clin. Microbiol.* **42** 1265–1269
- Kumar R, Yadav BR and Singh RS 2010 Genetic Determinants of antibiotic resistance in *Staphylococcus aureus* isolates from milk of mastitic crossbred cattle. *Curr. Microbiol.* **60** 379–386
- Lammers A, Nuijten JM and Smith E 1999 The fibronectin binding proteins of *Staphylococcus aureus* are required for adhesion to and invasion of bovine mammary gland cells. *FEMS Microbiol. Lett.* **180** 103–109
- Lee JH 2003 Methicillin (oxacillin)-resistant *Staphylococcus aureus* strains isolated from major food animals and their potential transmission to humans. *Appl. Environ. Microbiol.* **69** 6489–6494
- Lina G, Boutite F, Tristan A, Bes M, Etienne J and Vandenesch F 2003 Bacterial competition for human nasal cavity colonization: role of staphylococcal agr alleles. Appl. Environ. Microbiol. 69 18–23
- Løvseth A, Loncarevic S and Berdal K G 2004 Modified multiplex PCR method for detection of pyrogenic exotoxin genes in staphylococcal isolates. *J. Clin. Microbiol.* 42 3869–3872
- Makovec JA and Ruegg PL 2003 Antimicrobial resistance of bacteria isolated from dairy cow milk samples submitted for bacterial culture: 8905 samples (1994–2001). *J. Am. Vet. Med. Assoc.* 222 1582–1589
- Mehrotra M, Wang G and Johnson WM 2000 Multiplex PCR for detection of genes for *Staphylococcus aureus* enterotoxins

- exfoliative toxins toxic shock syndrome toxin 1 and methicillin resistance. *J. Clin. Microbiol.* **38** 1032–1035
- Montesinos I, Salido E, Delgado T, Cuervo M and Sierra A 2002 Epidemiological genotyping of methicillin resistant *Staphylococcus aureus* by pulsed field gel electrophoresis at a university hospital and comparison with antibiotyping and protein A and coagulase gene polymorphisms. *J. Clin. Microbiol.* 40 2119–2125
- Moon JS, Lee AR, Kang HM, Lee ES, Kim MN, Paik YH, Park YH, Joo YS and Koo HC 2007 Phenotypic and genetic antibiogram of methicillin-resistant staphylococci isolated from bovine mastitis in Korea. *J. Dairy Sci.* **90** 1176–1185
- Moore PCL and Lindsay JA 2001 Genetic variation among hospital isolates of methicillin-sensitive *Staphylococcus aureus*: evidence for horizontal transfer of virulence genes *J. Clin. Microbiol.* **39** 2760–2767
- Murakami K, Minamide W, Wada K, Nakamura E, Teraoka H and Watanabe S 1991 Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. *J. Clin. Microbiol.* **29** 2240–2244
- Palma M, Haggar A and Flock JI 1999 Adherence of *Staphylococcus aureus* Is enhanced by an endogenous secreted protein with broad binding activity. *J. Bacteriol.* **181** 2840–2845
- Peacock SJ, Moore CE, Justice A, Kantzanou M, Story L, Mackie K, O'Neill G and Day NPJ 2002 Virulent combinations of adhesins and toxin genes in natural populations of *Staphylococcus aureus*. *Infect. Immun.* 70 4987–4996
- Phonimdaeng P, O'Reilly M, Nowlan P, Bramley AJ and Foster TJ 1990 The coagulase of *Staphylococcus aureus* 8325–4 sequence analysis and virulence of site-specific coagulase deficient mutants. *Mol. Microbiol.* 4 393–404
- Reinoso EB, El-Sayed A, Lämmler C, Bognia C and Zschöck M 2008 Genotyping of *Staphylococcus aureus* isolated from humans bovine subclinical mastitis and food samples in Argentina. *Microbiol. Res.* **163** 314–322
- Sabour PM, Gill JJ, Lepp D, Pacan JC, Ahmed R, Dingwell R and Leslie K 2004 Molecular typing and distribution of *Staphylococcus aureus* isolates in Eastern Canadian dairy herds. *J. Clin. Microbiol.* **42** 3449–3455
- Salasia SIO, Khusnan Z, Lämmler C and Zschöck M 2004 Comparative studies on pheno- and genotypic properties of *S. aureus* isolated from bovine subclinical mastitis in central java in Indonesia and Hesse in Germany. *J. Vet. Sci.* **5** 103–109

- Seaman P, Day M, Denver Russell A and Ochs D 2004 Susceptibility of capsular Staphylococcus aureus strains to some antibiotics, triclosan and cationic biocides. J. Antimicrob. Chemother. 4 696–698
- Seki K, Sakurada J, Seong HK, Murai M, Tachi H, Ishii H and Masuda S 1998 Occurrence of coagulase serotype among Staphylococcus aureus strains isolated from healthy individuals-special reference to correlation with size of protein-A gene. Microbiol. Immunol. 42 407–409
- Stephan R, Annemüller C, Hassan AA and Lämmler C 2001 Characterization of enterotoxigenic *Staphylococcus aureus* strains isolated from bovine mastitis in north-east Switzerland. *Vet. Microbiol.* **78** 373–382
- Tristan A, Ying L, Bes M, Etienne J, Vandenesch F and Lina G 2003 Use of multiplex PCR to identify *Staphylococcus aureus* adhesins involved in human hematogenous infections. *Clin. Microbiol.* 41 4465–4467
- Turutoglu H, Hasoksuz M, Ozturk D, Yildirim M and Sagnak S 2009 Methicillin and aminoglycoside resistance in Staphylococcus aureus isolates from bovine mastitis and sequence analysis of their mecA genes. Vet. Res. Commun. 33 945–956
- Van den Eede A, Martens A, Lipinska U, Struelens M, Deplano A, Denis O, Haesebrouck F, Gasthuys F and Hermans K
   2009 High occurrence of methicillin-resistant Staphylococcus aureus ST398 in equine nasal samples. Vet. Microbiol.
   133 138–144
- Vintov J, Aarestrup FM, Zinn CE and Olsen JE 2003 Association between phage types and antimicrobial resistance among bovine *Staphylococcus aureus* from 10 countries. *Vet. Microbiol.* 95 133–147
- Wang Y, Wu CM, Lu LM, Ren GWN, Cao XY and Shen JZ 2008 Macrolide-lincosamide-resistant phenotypes and genotypes of Staphylococcus aureus isolated from bovine clinical mastitis. Vet. Microbiol. 130 118–125
- Zecconi A, Binda E, Borromeo V and Piccinini R 2005 Relationship between some Staphylococcus aureus pathogenic factors and growth rates and somatic cell counts. J. Dairy Res. 72 203–208
- Zschöck M, Risse K and Sommerhauser J 2004 Occurrence and clonal relatedness of sec/tst-gene positive *Staphylococcus aureus* isolates of quarter milk samples of cows suffering from mastitis. *Lett. Appl. Microbiol.* **38** 493–498

MS received 25 June 2010; accepted 16 December 2010

ePublication: 14 March 2011

Corresponding editor: SATISH KUMAR