Universidad de Santiago de Chile Facultad de Administración y Economía Departamento de Economía

Ayudantía #6

1) Desarrolle el modelo de 2 países

Respuesta:

Comenzamos considerando una que las poblaciones son:

$$L_1 = L_2 = L$$

es decir, ambos países cuentan con la misma cantidad de población total y podemos generalizar quitando el subindice.

Por otro lado, consideraremos que las productividades son distintas entre países, por lo que $A_1 \ge A_2$. De la ayudantía anterior sabemos una representación para la función de producción per cápita:

$$y = A(1 - \gamma_A)$$

Simplemente lo que haremos es considerar la misma expresión pero con distintos subindices:

$$y_1 = A_1(1 - \gamma_{A,1})$$

$$y_2 = A_2(1 - \gamma_{A,2})$$

Consideraremos que la proporción de población que se dedica a investigar y desarrollar es mayor en el país 1. A este país lo llamaremos país Lider en tecnología, mientras que el país 2 será el país Seguidor en tecnología.

El supuesto anterior queda:

$$\gamma_{A,1} > \gamma_{A,2}$$

La expresión para la tasa de crecimiento de la productividad del país lider es:

$$\hat{A}_1 = \frac{\gamma_{A,1} L_1}{\mu_i}$$

esta función es conocidad de la ayudantía anterior.

En cuanto para el país seguidor tenemos:

$$\hat{A}_2 = \frac{\gamma_{A,2} L_2}{\mu_c}$$

Notemos que esta expresión es levemente distinta a lo que vimos para el lider. La principal diferencia viene dada por la inclusión de un coste de copiar μ_c . Para representar el coste de copiar, consideraremos:

$$\mu_c = c \left(\frac{A_1}{A_2} \right)$$

Notamos que la función de coste de imitar tiene pendiente negativa, ya que el coste de imitar cae a medida que aumenta la brecha tecnológica; además notamos que si el ratio $\frac{A_1}{A_2} \to \infty$ el coste de imitar tiende a 0. Por último si $\frac{A_1}{A_2} \to 1$ tenemos que el coste de imitar se aproxima a μ_i .

Por último debemos encontrar la condición en Estado Estacionario. Esperamos que ambos países crezcan a la misma tasa:

$$\hat{A}_{1} = \hat{A}_{2}$$

$$\frac{\gamma_{A,1}L_{1}}{\mu_{1}} = \frac{\gamma_{A,2}L_{2}}{\mu_{c}}$$

$$\frac{\gamma_{A,1}L}{\mu_{1}} = \frac{\gamma_{A,2}L}{\mu_{c}}$$

$$\frac{\gamma_{A,1}L}{\mu_{1}} = \frac{\gamma_{A,2}L}{\mu_{c}}$$

$$\mu_{c} = \frac{\gamma_{A,2}}{\gamma_{A,1}}\mu_{1}$$