Green Development within Urban Environments

Evan Perry

Spellman Program

August 10, 2021

Review

Research Question

What characteristics of urban neighborhoods relate to the number of certified green commercial buildings?

Previously,

- Spatial equilibrium model of firm sorting and green building adoption
- Missing: Clear equilibrium, specific prediction, testable prediction

Overview

Today's Goal

Continue to investigate last week's model by clarifying its predictions and beginning to consider it empirically.

- 1 Model Review & Refinement
- 2 Simulation
- 3 Towards Empirical Work

Model Review & Refinement

Model Environment & Overview

 \mathcal{N} , a set of neighborhoods:

- Fixed number of workers N
- Ex ante, N is the only difference between neighborhoods
- Fixed amount of commercially developable land

Sorting Model: Where do different firms locate?

Adoption Model: Which firms go green?

Agents

Firms:

- Choose inputs (labor, real estate), design of real estate (green/brown), and neighborhood (N)
- Differ by:
 - Agglomeration Economies (sector)
 - Green Benefits (individual firms)

Developer:

- Chooses height, land footprint for green and brown buildings
- Higher material costs for green construction

Sorting

 Firms with higher Agglomeration Economies locate in larger (higher N) neighborhoods

2. Firms do not sort based on their Green Benefits

- 3. Within neighborhoods:
 - Agglomeration Economies are homogeneous
 - Firms differ only in their Green Benefits (*High*, *Low*)

Green Adoption

Differences in the proportion of Green real estate between neighborhoods come from the distribution of firm types:

Scenario #1: All Firms are equally likely to have a high Green Benefit

Scenario #2: Higher Agglomeration Economy Firms are more likely to have a high Green Benefit

Simulation

Price of Commercial Real Estate

Commercial Space

Firm Sorting

Scenario #1

Scenario #2

Towards Empirical Work

A Regression?

If sector *i* inhabits a neighborhood, then

$$\log(Rg) = \beta_0 + \beta_1 \log(N) + \beta_2 \log(\Psi_i(N)) + \beta_3 \log(\alpha_1 \mu_i + \alpha_2 (1 - \mu_i)) + \beta_4 \log\left(\alpha_3 \left(\frac{1 - \mu_i}{\mu_i}\right) + 1\right)$$

 R_g Quantity of Green Real Estate

No. of Workers

 Ψ_i Agglomeration Effect for Industry i

 μ_i Proportion of High Green Benefit Firms in i

 α, β 's Constants

Continued Work

Model Modifications and Extensions:

- Economies of Scale in Green Construction
- Dynamic Model
- Connect Agglomeration and Green Benefits

Empirically:

- Move towards variables that are measurable and known
- Methodologies for estimating unobserved costs/benefits

References

Gaubert, Cecile, "Firm sorting and agglomeration," *American Economic Review*, 2018, *108* (11), 3117–53.

Glaeser, Edward Ludwig, *Cities, agglomeration, and spatial equilibrium*, Oxford University Press, 2008.

Appendix

Firm Problem

Choose inputs (Number of workers, Real estate), Design (g, b), and neighborhood (N):

$$\max_{L,R,d,N} \left\{ \Psi_i(N) \lambda_{jd} L^{\beta} R^{\gamma} \bar{K} - \bar{W} N - p_d R - k_i \right\}$$

 Ψ_i Agglomeration effect to firm type i

 λ Benefit from design d to firm type j

 \bar{K} Fixed (tradeable) capital inputs

W Wage

 p_d Price per sq.ft. with design d

 k_i Fixed capital cost for firm type i

Developer Problem

Chooses height and ℓand for both green and brown real estate, subject to its land use constraint:

$$\max_{h_g,h_b,\ell_g,\ell_b} \left\{ \pi_g(h_g,\ell_g) + \pi_b(h_b,\ell_b) \right\} \quad \text{ s.t. } \quad \bar{\ell} = \ell_g + \ell_b$$

where

$$\pi_d(h,\ell) = p_d h \ell - c_d h^\delta \ell - p_\ell \ell$$

Assume $c_g > c_b$ and $\delta > 1$

Equilibrium Conditions

- 1. Labor Market Clearing
- 2. Green Real Estate Market Clearing
- 3. Brown Real Estate Market Clearing
- 4. Spatial Equilibrium Condition for Green Firms
- 5. Spatial Equilibrium Condition for Brown Firms

We derive these from the agents' problems and then proceed to solve the system of equations they create