

Booklet No.:

GVR2

Electrical & Electronics Engineering

Duration of Test : 2 Hours						Max. Marks: 100			
	Hall Ticket No.								
Name of the Candidate :									

INSTRUCTIONS

- 1. This Question Booklet consists of **100** multiple choice objective type questions to be answered in **2** hours.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

GVR2-A

ELECTRICAL AND ELECTRONICS ENGINEERING (EE)

PART – A

A	2	EI								
	(D) the flux increases as the load increases									
	(C) the speed increases non-linearly as the torque increases									
	(B) the speed falls non-linearly as the torque increases									
0.	(A) the speed is constant as the torque increases									
8.	In a differentially compounded dc motor									
	(D) the residual magnetism is equal to zero									
	(C) the field winding resistance is more than the critical resistance									
	(B) magnetization characteristic is non-linear									
7.	A shunt generator develops stable output voltage if (A) magnetization characteristic is linear									
7	A shout conceptor develops stable output stalts as if									
	(D) directly proportional to the square of magnetic flux density									
	(C) directly proportional to the magnetic flux density									
	(B) directly proportional to the absolute permeability									
6.	The energy density of magnetic field in a magnetic circuit is (A) inversely proportional to magnetic flux density	The energy density of magnetic field in a magnetic circuit is								
_										
3.	A 1100 kVA, 11 kV/1.1 kV conventional two-winding transformer is connect 12.1 kV/11 kV step-down auto-transformer. The rating of the auto-transformer is (A) 1000 kVA (B) 1100 kVA (C) 11000 kVA (D) 12100 kVA									
5.	Δ 1100 kVΔ 11 kV/1 1 kV conventional two-winding transformer is connect	ted as a								
	(D) in proportion to the zero phase displacement									
	(C) in proportion to the voltage ratio									
	(A) equally(B) in proportion to the respective ratings									
	connected load									
4.	Two transformers having the same p.u. impedance connected in parallel sh	nare the								
	(C) furnace loads (D) single-phase loads									
3.	The main application of delta/zig-zag connected 3-phase transformer is to supply (A) balanced loads (B) unbalanced loads									
	(A) $\cos \phi = \frac{x_{eq}}{r_{eq}}$ (B) $\cos \phi = \frac{r_{eq}}{x_{eq}}$ (C) $\tan \phi = -\frac{r_{eq}}{x_{eq}}$ (D) $\tan \phi = \frac{x_{eq}}{r_{eq}}$									
	resistance, r_{eq} , equivalent reactance, x_{eq} , and load power factor angle, ϕ , is									
2.	The condition for maximum regulation of a single-phase transformer with eq	uıvalent								
_										
	(A) 100 (B) 200 (C) 222 (D) 400									
1.	The primary turns of a 444 V/222 V, 50 Hz single-phase transformer with a cor sectional area of 100 cm ² , and a maximum flux density of 1.0 T is	e cross-								
4	T1 '									

	(A) small voltage at slip frequency	(B) large voltage at rotor frequency								
	(C) zero voltage at zero frequency	(D) large voltage at slip frequency								
10.	induction motor, based on two-revolving field theory, at any slip, s are									
	(A) $\frac{r_2'}{s}$ and $\frac{r_2'}{1-s}$ (C) $\frac{r_2'}{2s}$ and $\frac{r_2'}{2(1-s)}$	(B) $\frac{r_2}{s}$ and $\frac{r_2}{2-s}$ (D) $\frac{r_2}{2s}$ and $\frac{r_2}{2(2-s)}$								
	(C) $\frac{r_2}{2s}$ and $\frac{r_2}{2(1-s)}$	(D) $\frac{r_2}{2s}$ and $\frac{r_2}{2(2-s)}$								
11.	For a 210 MW, turbo-alternator in a thermal power plant, the possible specifications of rotor diameter, stator core length, and number of poles, respectively, are									
	(A) 4.4 m, 1.2 m, 12	(B) 1.2 m, 4.4 m, 2								
	(C) 4.4 m, 1.2 m, 24	(D) 1.2 m, 4.4 m, 8								
12.	quadrature axis reactance, x_d and x_q , r									
	(A) $x_d - x_q$ (B) $x_d \times x_q$	(C) $\frac{1}{x_d} - \frac{1}{x_q}$ (D) $\frac{1}{x_q} - \frac{1}{x_d}$								
13.	When two alternators are operating in (A) increase in the excitation of one	parallel, the cause for circulating current is								

A 3-phase induction motor under locked rotor condition and with stator supply, induces

(A) 0.5 p.u.

(B) (C)

(B) 0.96 p.u.

increase in the driving torque of one machine

reduction in angular velocity of one machine

- (C) 1.5 p.u.
- (D) 1.8 p.u.

- **15.** A synchronous capacitor is
 - (A) an unloaded and under excited 3-phase synchronous motor

identical speed/load characteristics of both machines

- (B) a loaded and over excited 3-phase synchronous generator
- (C) an unloaded and over excited 3-phase synchronous motor
- (D) a 3-phase synchronous generator loaded with a capacitor bank
- 16. In the capacitor-start, capacitor-run single-phase induction motor
 - (A) two capacitors are connected across the main winding
 - (B) when the centrifugal switch opens, the permanent capacitor is left in the auxiliary winding circuit
 - (C) when the centrifugal switch opens, the permanent capacitor is left in the main winding circuit

3

(D) two capacitors are connected across the auxiliary winding.

9.

17.	The main purpose of permanent magne (A) to avoid the need for field supply (C) to provide control over flux level	(B) to provide high flux density
18.		esistive load of a single-phase bride converter odes, operating at any firing delay angle, α and
	(A) $\frac{200}{\sqrt{2}\pi}\cos\alpha$	(B) $\frac{\sqrt{2} \times 200}{\pi} \cos \alpha$
	(C) $\frac{\sqrt{2} \times 200}{\pi} (1 + \cos \alpha)$	(D) $\frac{200}{\sqrt{2}\pi}(1+\sin\alpha)$

19. In a dc-ac 3-phase MOSFET bridge inverter circuit, the switches are marked in a sequence as 1, 2, 3 in the top-half and 4, 5, 6 in the bottom half of the bridge. The triggering sequence of switches that gives balanced output voltage is

```
(A) 1, 2, 3, 4, 5, 6

(C) 1, 6, 2, 4, 3, 5

(B) 1, 5, 3, 4, 2, 6

(D) 1, 4, 2, 5, 3, 6

20. In a dc-dc converter, the switch duty ratio is defined as
```

 $(A) \quad \frac{\text{turn - off time}}{\text{time period}} \qquad (B) \quad \frac{\text{sawtooth voltage}}{\text{control voltage}}$ $(C) \quad \frac{\text{control voltage}}{\text{peak value of sawtooth voltage}} \qquad (D) \quad \frac{\text{control voltage}}{\text{sawtooth voltage}}$

21. In a four-quadrant dc motor drive system controlled by two phase controlled converters, the current and voltage of converter 1 operating in I and IV quadrants, respectively, are

(A)
$$I_a - ve, V_a + ve$$
 and $I_a + ve, V_a - ve$

(B)
$$I_a + ve, V_a + ve$$
 and $I_a + ve, V_a - ve$

(C)
$$I_a - ve, V_a + ve$$
 and $I_a - ve, V_a - ve$

(D)
$$I_a + ve, V_a + ve$$
 and $I_a - ve, V_a - ve$

22. In a 3-phase inverter fed induction motor drive the total harmonic distortion is 4 %. If the maximum value of fundamental component of load current is 4 A. The rms value of net harmonic current is

(A)
$$0.08 \text{ A}$$
 (B) $0.08 \sqrt{2} \text{ A}$ (C) 0.16 A (D) $0.16 \sqrt{2} \text{ A}$

23. In a power generating station the Demand Factor and Load Factor are 0.5 and 0.2, respectively. If the connected load is 400 MW, the average demand is

(A) 40 MW (B) 100 MW (C) 140 MW (D) 280 MW

24. The constants B and C, respectively, of a medium transmission line by nominal T model are

(A)
$$1 + \frac{YZ}{2}$$
, Z (B) $1 + \frac{YZ}{2}$, Y (C) Z, $Y(1 + \frac{YZ}{4})$ (D) $Z(1 + \frac{YZ}{4})$, Y

A		5	EE
33.	Reactive power compensation in feede (A) poor voltage profile (B) improved voltage profile (C) negative and zero sequence curre (D) expensive voltage regulators		s to
	(C) $\sqrt[3]{e^{-0.5}r \times 2r \times 2r}$	(D)	$\sqrt[3]{e^{-0.25}r \times 2r \times 2r}$ $\sqrt[3]{e^{-\frac{1}{3}}r \times 2r \times 2r}$
32.	The Geometric Mean Radius of a cond the form of a triangle is (A) $\sqrt[3]{r \times r \times r}$		naving 3- strands each of radius, r placed in $\sqrt[3]{e^{-0.25}r \times 2r \times 2r}$
31.	synchronous reactance of 1.0 p.u. The (A) 2/15 p.u. (B) 5/6 p.u.	per uni (C)	V 3-phase synchronous generator has a t value to a 90 MVA base and 30 kV is 1.0 p.u. (D) 1.2 p.u.
30.	The corona loss of a 3-phase transmis 50 kV/phase. The disruptive critical vo (A) 40 kV (B) 43.6 kV	oltage is	
29.	The Geometric Mean Radius of a phasmarked as 1, 2, 3, 4 each of radius, r and (A) $(rd_{12}d_{13}d_{14})^{1/4}$ (C) $(re^{-1/4}d_{12}d_{13}d_{14})^{1/2}$	nd spac (B)	actor composed of four bundled conductors ed at a distance, d from each other is $(re^{-1/4}d_{12}d_{13}d_{14})$ $(re^{-1/4}d_{12}d_{13}d_{14})^{1/4}$
28.	and earth to the self capacitance of each 8 kV, then the string voltage is	ch unit	restem the ratio of capacitance between pin is 1/4. If the potential across the top unit is 26 kV (D) 32.5 kV
27.	<u> </u>	respect	same
26.	A travelling wave of surge resistance, resistance, R _L . If R _L > R _o then there is (A) no reflected wave (B) partial reflection of reversal of control (C) partial reflection of reversal of volume (D) reflection of reversal of both currents.	urrent o	only
25.	The main limitation for power handlin cables is (A) power factor (C) thermal effect limit	(B) (D)	•

34.	The system voltage is enhanced during load condition by using	g heav	vy load condition and reduced during light				
	(A) shunt capacitor	(B)	shunt reactor				
	(C) active power filter	(D)	static VAR Compensator				
35.	zero and positive sequence components	s , $I_a{}^0$ ar	from a balanced 3-phase, 4-wire supply. The nd I_a^+ of the line current, I_a are 50 A, 0 (D) 50 A, 50 A				
36.	sequence reactances of 0.25 p.u., 0.2 through a reactance of 0.1 p.u. For a sin	25 p.u 1gle-lii					
	(A) $\frac{1}{j0.3}$ (B) $\frac{1}{j0.7}$	(C)	$\frac{1}{j0.9}$ (D) $\frac{3}{j0.7}$				
37.	± • • • • • • • • • • • • • • • • • • •		t the positive, negative and zero sequence				
	voltages V_{a1} , V_{a2} , V_{a0} , respectively, for	phase	voltage, V_a are related as				
	(A) $V_{a1} + V_{a2} + V_{a0} = V_a$	(B)	$V_{al} = V_{a2} = V_{a0}$				
	$(C) V_{a1} = V_{a2}$	(D)	$V_{a1} + V_{a2} + V_{a0} = 0$				
38.							
	magnetic fields derived from (A) current in the potential coil						
	(B) both voltage and current in the rel	lav wii	indings				
	(C) directional element and non-directional element along the element and non-directional element along the element along the element and non-directional element along the element along th	•	•				
	(D) non-directional element and the tr						
39.	The operating characteristics of a reacta	ance ty	ype distance relay				
	(A) a stepped waveform for increasing	g react	etance				
	(B) a straight line for a constant react	ance					
	(C) a circle for a constant reactance						
	(D) a set of circles for variable reactar	nces					
40.	The prospective voltage across the circ L and shunt capacitance, C is	uit bre	eaker contacts for a given series inductance,				
	(A) directly proportional to (LC)						
	(B) inversely proportional to (LC)						
	(C) directly proportional to $\sqrt{(L/C)}$						
	(D) inversely proportional to $\sqrt{(L/C)}$						
41.	Transient stability studies of a power sy	/stem a	are usually carried out over a time period of				
	(A) two or more seconds	(B)					
	(C) time interval of first swing	(D)	sustained oscillations				
A		6	EF				

42.	The swing equation for a synchronous machine is based on (A) relative motion between load angle and stator magnetic field (B) maximum power flow possible through a particular point (C) net torque and angular displacement (D) relation between excitation voltage and excitation current								
43.	The (A)	cascade amplifi CE-CC	ier is a	_	_	ation of CC-CB	(D)	CB-CC	
44.		0 pF capacitor 1.5 V/μs		maximum char 1.05 V/μs		current of 150 p 0.15mV/s		hat is the slew rate? 10.5 mV/s	
45.	input	output frequent frequency) $2f_{in} \& f_{in}$						respectively are $(f_{in}$ $2f_{in} \& f_{in}/2$	is
46.	An io (A) (C)	deal Op-Amp is voltage contro current contro	olled c	urrent source	(B) (D)	_		Č	
47.	Whil (A) (B) (C) (D)	e biasing JFET device will we device will ge device will we device will no	ork no t dam ork bu	ormally aged at value of drain		-			
48.	powe	er and Bulb 2 uit will consume	ses 20		If bull			Bulb 1 uses 40 W d to the 120 V source 180 W	
49.	A network consists of several inductances connected in parallel. The equivalent inductance of the network is given by (A) the sum of the individual inductances. (B) the reciprocal of the sum of the individual inductances. (C) the sum of the reciprocals of individual inductances. (D) the reciprocal of the sum of reciprocals of individual inductances.								
50.	resist					mum power di		resistance of 1.5Ω. ed in the load is 20 W	A
A					7				EE

- 51. At a particular instant, the R-phase voltage of a balanced 3-phase system is + 30 V, and the Y-phase voltage is -90 V. The voltage of B-phase at that instant is
 - (A) + 120 V
- (B) -120 V
- (C) -60 V
- (D) +60 V
- A coil of inductance 240 mH and resistance 75 Ω is connected in parallel with a 52. capacitor across a 30 V, variable frequency supply. The current drawn by the circuit is found to be minimum when the supply frequency is 1 kHz. The approximate values of Q-factor and bandwidth are, respectively
 - (A) 40, 400 Hz (B) 10, 100 Hz (C) 20, 50 Hz (D) 50, 20 Hz

- A series R-L-C circuit is connected to a d.c. source at t = 0. The transient voltage 53. response across capacitor C shows no oscillations. Then,
 - (A) $\left(\frac{R}{2L}\right)^2 > \left(\frac{1}{LC}\right)$

(B) $\left(\frac{R}{2L}\right)^2 = \left(\frac{1}{LC}\right)$

(C) $\left(\frac{R}{2I}\right)^2 < \left(\frac{1}{IC}\right)$

- (D) R = 0
- 54. A Two-Port Network is said to be symmetrical when the following equalities hold good
 - (A) $Z_{11} = Z_{22}$ and $Z_{12} = Z_{21}$
- (B) $Z_{11} = Z_{22}$

(C) $Y_{12} = Y_{21}$

- (D) $Y_{11} = Y_{22}$ and $Y_{12} = Y_{21}$
- Referring to the circuits of Fig. 1 and Fig. 2, which of the following statements is correct 55. with respect to V in the figures?
 - (A) Circuit 1 is stable and Circuit 2 is unstable.
 - Both circuits are stable. (B)
 - Both circuits are unstable. (C)
 - (D) Circuit 1 is unstable and Circuit 2 is stable.

56. Fig.3 shows a signal flow graph. The transmittance from A to B is

Fig. 3

- (A) 3
- (B) zero
- 4/3
- (D) 3/4

57.	The unit-step response of a system is given by $c(t) = 4 + 3t - 4e^{-t}$
	The system has the fllowing poles and zeros

- (A) one pole at origin, one pole at -1, and one zero at -3/7
- (B) one pole at origin, one pole at $-\frac{3}{7}$, and one zero at -1
- (C) one zero at 4, two poles at $-\frac{3}{7}$ and 4
- (D) One zero at 4, two poles at $-\frac{3}{7}$ and 4

A type-2 system has zero steady-state error for **58.**

(A) Ramp input

- (B) Parabolic input
- Both Ramp, and parabolic inputs (D) (C)
 - Step input only

59. The closed-loop transfer function of a system is

$$\frac{10}{S[(S+3)(S+4)+K]}$$

The system is stable for

(A) Any value of K

(B) No value of K

(C) K = 10

(D) 3 < K < 12

60. Which statement is INCORRECT in relation to NYQUIST and BODE analyses?

- Number of closed-loop poles in the right-half S-plane can be determined using Nyquist Criterion.
- Bode analysis uses two plots, one for magnitude and another for phase angle. (B)
- Nyquist analysis uses two plots, one for magnitude and another for phase angle. (C)
- (D) Relative stability can be assessed from both Nyquist and Bode analyses.

61. Which of the following is CORRECT with respect to a LAG-LEAD compensator?

- (A) It is similar to PI controller
- It acts as Band-pass filter (B)
- It is Second-order system with one zero, and two poles (C)
- It acts as a Band-reject filter

62. Whether a given point in the S-plane lies on the Root Locus of a system can be determined by

- (A) Magnitude criterion
- (B) Angle Criterion
- Both Magnitude and Angle Criteria (D) Break-in and Break-away Criteria

The state equation of a system is $\overline{\dot{X}} = \overline{A} \overline{X} + \overline{B} \overline{U}$ 63.

Where $\overline{A} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$. The state transition matrix is

(A)
$$\begin{bmatrix} te^t & 0 \\ e^t & e^t \end{bmatrix}$$

(B)
$$\begin{bmatrix} te^{-t} & 0 \\ e^{-t} & e^{-t} \end{bmatrix}$$

(A)
$$\begin{bmatrix} te^t & 0 \\ e^t & e^t \end{bmatrix}$$
 (B) $\begin{bmatrix} te^{-t} & 0 \\ e^{-t} & e^{-t} \end{bmatrix}$ (C) $\begin{bmatrix} e^{-t} & 0 \\ te^{-t} & e^{-t} \end{bmatrix}$ (D) $\begin{bmatrix} e^t & 0 \\ te^t & e^t \end{bmatrix}$

(D)
$$\begin{bmatrix} e^t & 0 \\ te^t & e^t \end{bmatrix}$$

64.	The pointer of a moving coil ammeter deflects from zero and comes to rest at 2A marking. In the steady deflected position (A) Deflecting torque T _D is zero.										
	(B)										
	 (B) Control torque T_C is zero. (C) Both T_D and T_C are zero. Damping Torque T_d is proportional to 2A. 										
		-	C are	z zero. Dai	inping roic	lue 1 _d is p	торогионат	10 ZA.			
	(D)	$T_d = 0$									
65.	Volt mete	potential coil age across the	e load i 0 W. A	s 220 V. V Approxima	With the potental	otential con ge error d	il connected ue to wattme	on the load eter connection	side, the		
	(A)	11%	(B)	9%	(C)	1.1%	(D)	3%			
66.		disc of a sinutes. Meter Co							ons in 6		
	(A)	1.2 kW	(B)	1 kW	(C)	600 W	(D)	500 W			
(7	A = ==			C 1		. :	1:41-				
67.	Accurate measurement of very low resistances is possible with (A) Megger (B) Wheatstone Bridge										
	(C)		uble Bi	ridge	` ,		s Earthing D	Device			
	(0)	110111111111111111111111111111111111111	uoie Bi	1450	(2)	,, agiiei	s Eurumig E				
68.	Dielectric loss in a capacitor is best measured by										
	(A)	•									
	(B)	Schering Br	_								
	(C)	Anderson Br	_								
	(D)	Heaviside-C	ampbe	II Equal R	atio Bridge	•					
69.	The	transducer wi	th nega	tive temp	eratue co-e	fficient of	resistance is	S			
	(A)	Thermistor		-			ce Thermom				
	(C)	Strain Gauge	e		(D)	Thermoo	ouple				
70.	l: Le	Distance betweength of Defle	ection p	lates		Deflectio	n plates				
	u	Accelerating v			<i>7</i> 1						
	-	the above no			on sensitivi	tv of a Cl	RT using ele	ectrostatic m	ethod of		
		ection is given		,		•	8				
	(A)	$\frac{2E_{a}l}{Dl_{d}}$	(B)	$\frac{\mathrm{D}l}{2l_{\mathrm{d}}\mathrm{E}_{\mathrm{a}}}$	(C)	$\frac{\mathrm{D}l_{\mathrm{d}}}{2l\mathrm{E}_{\mathrm{a}}}$	(D)	$\frac{\mathrm{DE_{a}}}{2ll_{\mathrm{d}}}$			
A					10				EE		
					10				1919		

71. A sum of ₹ 700 has to be used to give seven cash prizes to the students of a school for their overall academic performance. If each prize is ₹ 20 less than its preceding prize, then what is the least value of the prize?

- (A) ₹30
- (B) ₹40
- (C) ₹ 60
- (D) ₹80

72. In a class of 45 students, a boy is ranked 20th. When two boys joined, his rank was dropped by one. What is his new rank from the end?

- (A) 25th
- (B) 26th
- (C) 27th
- (D) 28th

73. Three views of the cube are given below:

What is letter opposite to A?

- (A) H
- (B) P
- (C) B
- (D) M

74. With reference to the figure given below, the number of different routes from S to T without retracing from U and/or V, is

- (A) 3
- (B) 6
- (C) 9
- (D) 18

75. Two sets of 4 consecutive positive integers have exactly one integer in common. The sum of the integers in the set with greater numbers is how much greater than the sum of the integers in the other set?

11

- (A) 4
- (B) 7
- (C) 8
- (D) 12

76.	X can do a work in 10 days and Y in 20 days. If they work on it together for 4 days, then the fraction of the work that is left is											
	(A)	1/5	(B) 2/5		(C)	3/5		(D)	4/5			
77.		re giving some up to standard.				it some	work t	hey h	ave co	omplet	ed whi	ch
	(A) Point out everything that they did wrong											
	(B)	Base your fee	dback on v	vhat you l	nave he	eard from	m other	'S				
	(C)	Criticize them	-									
	(D) Suggest where improvements can be made and agree on a plan											
78.	Which of the following will NOT help you to be more persuasive?											
	(A) Mirror body language and tone											
	(B)	Use words that	it the other	person ag	grees v	vith						
	(C)	Talk about yo	ur own int	erests and	goals							
	(D)	Make your air	ns appear	to put the	other 1	person a	ıt an ad	vantag	ge			
79.	5, 12	, 17, 29, 46, 75	, 121, <u>?</u>	_								
	(A)	185			(B)	196						
	(C)	192			(D)	188						
80.		A				9						
ου.				ШШ								
	(A)				(B)							
	(C)	-			(D)							
81.	Verv	e: Enthusiasm										
	(A)	Loyalty: Dup	licity		(B)	Devoti	on : Re	veren	ce			
	(C)	Intensity: Col	lour		(D)	Emine	nce : A	nonyn	nity			
A					12							EE

82.	Out	of the natural n	umbe	rs upto 127, ho	w mai	ny are even nui	nbers	?		
	(A)	62			(B)	63				
	(C)	64			(D)	65				
83.	five. Roge	Nurse Miller h	nas wo Nurse	orked fifteen n Calvin has wo	ight sh orked e	ifts in a row, n	nore th	gers, who has worked nan Nurses Kemp and row, less than Nurse		
	(A)	Eight	(B)	Nine	(C)	Ten	(D)	Eleven		
84.	Find	the odd number	er amo	ong the followi	ng:					
	(A)	7	(B)	11	(C)	27	(D)	29		
85.	The school principal has received complaints from parents about bullying in the school yard during recess. He wants to investigate and end this situation as soon as possible, she has asked the recess aides to watch closely. Which situation should the recess aide report to the principal?									
(A) A girl is sitting glumly on a bench reading a book and not interacting wi peers.								t interacting with her		
	(B)	Four girls ar backpack.	e sur	rounding anot	her gi	irl and seem	to hav	ve possession of her		
	(C)	Two boys are last basket sco		ing a one-on-o	one gai	me of basketba	ıll and	are arguing over the		
	(D)	Three boys as on school gro		dled over a ha	andhel	d video game,	which	n isn't supposed to be		
86.	'n' is	s a natural num	ber. If	n ⁵ is odd, wh	ich of	the following is	s true '	?		
	(I)	n is odd.	(II)	n^3 is odd.	(III)	n ⁴ is even.				
	(A)	I only	(B)	II only	(C)	III only	(D)	I and II		
87.	Wha	t will be the ne	xt nur	nber in the seq	uence	6, 11, 21, 36,	56,	_?		
	(A)	76	(B)	72	(C)	81	(D)	91		
A					13			EE		

88.	Here diona	are so ot means oak	ome tree	words tr	ranslated	from	an a	artificial	language.
	blyor	not means oal	k leaf						
	blycr	in means ma	ple leaf						
	Whic	h word could	d mean '	"maple syru	p"?				
	(A)	blymuth	(B)	hupponot	(C)	patricrin	(D)	crinweel	
89.	A is I to D	B's sister. C	is B's m	nother. D is	C's father	:. E is D's n	nother. T	hen, how is	s A related
	(A)	Grandfather	(B)	Grandmoth	ner (C)	Daughter	(D)	Granddau	ghter
90.	ticket	bus tickets f ts from city A ties B and C	A to B	and two tick			•		
	(A)	₹ 4, ₹ 23	(B)	₹ 13, ₹ 17	(C)	₹ 15, ₹ 14	(D)	₹ 17, ₹ 13	
91.	husba	e are six pers and. D is the mother in th	father o	of A and gra	ndfather	of F. There			
	(A)	A	(B)	В	(C)	C	(D)	E	
92.	If Z =	= 52 and AC	$\Gamma=48,1$	then BAT w	ill be equ	ıal to			
	(A)	39	(B)	41	(C)	44	(D)	46	
93.	equal	lor had a nu length into t in 24 minut	10 piece	-					
	(A)	32 rolls	(B)	54 rolls	(C)	108 rolls	(D)	120 rolls	
94.		en & 6 wom		-		-			vomen can
	(A)	35 days	(B)	40 days	(C)	30 days	(D)	25 days	
A					14				EE

95.	In a class of 100 students, 50 students passed in Mathematics and 70 passed in English, 5 students failed in both Mathematics and English. How many students passed in both the subjects?							
	(A)	50	(B)	40	(C)	35	(D)	25
96.	A man on tour travels first 160 km at 64 km/hr and the next 160 km at 80 km/hr. The average speed for the first 320 km of the tour is							
	(A)	71.11 km/hr	(B)	36 km/hr	(C)	71 km/hr	(D)	36.33 km/hr
97.	The length of a rectangular field is thrice its breadth. If the cost of cultivating the field at ₹ 367.20 per square metre is ₹ 27,540, then what is the perimeter of the rectangle?							
	(A)	47 m	(B)	39 m	(C)	52 m	(D)	40 m
98.	In an examination, a student was asked to find 3/14 of a certain number. By mistake, he found 3/4 of it. His answer was 150 more than the correct answer. Find the given number.							
	(A)	190	(B)	250	(C)	280	(D)	350
99.	A cube with all the sides painted was divided into small cubes of equal measurement. The side of a small cube is exactly one fourth as that of the big cube. Therefore, the number of small cubes with only one side painted is							
	(A)	64	(B)	36	(C)	24	(D)	12
100.	Shyam walks 5 km towards East and then turns left and walks 6 km. Again he turns right and walks 9 km. Finally he turns to his right and walks 6 km. How far is he from the starting point?							
	(A)	26 km	(B)	21 km	(C)	14 km	(D)	9 km
A					15			EE

SPACE FOR ROUGH WORK