Due: Monday, March 10th

1. (a) Suppose that $A \subset \mathbb{R}$ and a is a limit point of A. If a sequence of functions $f_n : A \to \mathbb{R}$ converge uniformly to $f : A \to \mathbb{R}$ and, for each n, $\lim_{x \to a} f_n(x)$ exists, then

$$\lim_{n \to \infty} \lim_{x \to a} f_n(x) = \lim_{x \to a} f(x).$$

- (b) Show that the conclusion can be false if the convergence of the f_n is not uniform.
- (c) If $\sum_{k=1}^{\infty} a_k$ converges, find $\lim_{x\to 1^-} \sum_{k=1}^{\infty} a_k x^k$.
- 2. Do Exercise 8.3.C in the text.
- 3. Suppose, for functions $f_k: A \to \mathbb{R}$, we know that $\sum_{k=1}^{\infty} f_k(x)$ converges uniformly and absolutely on $A \subset \mathbb{R}$. Does it follows that $\sum_{k=1}^{\infty} |f_k(x)|$ converges uniformly on A?
- 4. (January 2003 Qual)
 - (a) Assume that $\sum_{k=1}^{\infty} a_k$ is a convergent series of nonnegative real numbers. Prove that the series $\sum_{k=1}^{\infty} a_k^x$ converges uniformly on $[1, +\infty)$.
 - (b) Prove: the series $\sum_{k=0}^{\infty} \frac{x^3}{(1+x^3)^k}$ converges uniformly on [a,b] for every 0 < a < b but the convergence is not uniform on [0,b] for any b > 0.
- 5. Do Exercise 8.5.H in the text. Stated slightly more precisely,
 - (a) Compute $f(x) = \sum_{n=0}^{\infty} (n+1)x^n$.
 - (b) Compute $\sum_{n=0}^{\infty} \frac{n}{3^n}$. Justify your method.
 - (c) Would the substitution of x = -1 in your formula from part (a) be justified?