Lecture #4 Sort (1)

Algorithm
JBNU Spring 2021
Jinhong Jung

In Previous Lecture

Recursive complexity

 Complexity of a recursive algorithm is also represented recursively as recurrence relation

How to analyze a recursive complexity function

- Repeated substitution
 - Repeatedly substitute the complexity function whose input size decreases toward a base case
- Mathmetical induction
 - Estimate the closed form of a recursive complexity, and then prove it by induction
- Master theorem
 - Can solve any function in form of T(n) = aT(n/b) + f(n)
- For some cases, changing variables makes an equation simple

In This Lecture

Sorting problem

Basic sorting algorithms

- Selection Sort
- Bubble Sort
- Insertion Sort

Outline

Sorting problem

Basic sorting algorithms

- Selection Sort
- Bubble Sort
- Insertion Sort

Sorting Problem

What is sort in CS?

- To rearrange elements in an array in an order
 - If it contains numbers, an order is numerical order
 - If it contains characters, an order is alphabetical order
- Sorting algorithms aim to efficiently sort an arbitrary array in a certain order

Classical Sorting Algorithms

Comparison based sorting

- Basic sorting algorithms
 - \circ Show $\Theta(n^2)$ time complexity for a worst case
 - Selection sort, Bubble sort, Insertion sort
- Advanced sorting algorithms
 - \circ Show $\Theta(n \log n)$ time complexity for a worst case
 - Merge sort, Quick sort, Heap sort

Non-comparison based sorting

- Special sorting algorithms
 - \circ Show $\Theta(n)$ time complexity for special cases (not general)
 - Radix sort, Counting sort

Before Going Further

Notes

- The index of an array A starts from 1
- An array A will be sorted in the ascending order

$$\circ$$
 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \cdots

- A[1 ··· i] indicates elements from index 1 to i
- Sorted area (colored by light green)
 - Consecutive sorted partial part in an array while it is sorted by a sorting algorithm
- Unsorted area (colored by white)
 - Remaining part except the sorted area

Unsorted area	Sorted area

Sorted area	Unsorted area
·	\r\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Outline

Sorting problem

Basic sorting algorithms

■ Selection Sort حِيْلًا

- Bubble Sort
- Insertion Sort

Selection Sort (1)

Idea of selection sort

Or move the minimum to the front

- Move the maximum to the end of unsorted area
 - Find the maximum & swap it with the end of unsorted area
 - Repeat these until the unsorted area becomes empty

Selection Sort (2)

Pseudocode of selection sort

```
def selection_sort(A, n):
    for end ← n downto 2:
        # at this step, unsorted area is [1, end]

    # selection stage
        k ← find the maximum's index among A[1···end]
        swap A[k] and A[end]

# at this step, unsorted area is [1, end-1]
```

Correctness

- \circ Obviously true since for each step, the sorted area is expanded correctly, and finally its size becomes n at the end
- **T.M.I.**: $k \leftarrow$ find the maximum's index among A[1···end]

$$k = \underset{i \in [1, \text{end}]}{\operatorname{argmax}} A[i]$$

Selection Sort (3)

Time complexity of selection sort

Time complexity analysis

- \circ The for-loop repeats the selection process n-1 times
- In the selection stage,
 - Main operations are comparisons for linearly searching the maximum's index
 - i-1 comparisons are required for i-th selection process

$$T(n) = (n-1) + (n-2) + \dots + 2 + 1 = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} \in \Theta(n^2)$$

Outline

Sorting problem

Basic sorting algorithms

Selection Sort

■ Bubble Sort حِيرًا

Insertion Sort

Bubble Sort (1)

Idea of bubble sort

- Move the maximum to the end of unsorted area
 - Bubble it up by repeatedly doing swap unsorted adjacent pairs
 - Repeat these until the unsorted area becomes empty

Bubble Sort (2)

Idea of bubble sort

- Move the maximum to the end of unsorted area
 - Bubble it up by repeatedly doing swap unsorted adjacent pairs
 - Repeat these until the unsorted area becomes empty

Bubble up

This sort bubbles the **minimum** up each stage

Bubble Sort (3)

Pseudocode of bubble sort

```
def bubble_sort(A, n):
    for end ← n downto 2:
        # at this step, unsorted area is [1, end]

# bubble up stage (push the maximum to the end)
    for i ← 1 to end - 1:
        if A[i] > A[i+1]:
        swap A[i] and A[i+1]

# at this step, unsorted area is [1, end-1]
```

Correctness

 \circ Like selection sort, the sorted area is expanded correctly, and finally its size becomes n at the end

Bubble Sort (4)

Time complexity of bubble sort

```
def bubble_sort(A, n):
    for end \leftarrow n downto 2:
        # bubble up stage
        for i \leftarrow 1 to end - 1:
            if A[i] > A[i+1]:
            swap A[i] and A[i+1]

Bubble up stage
```

Time complexity analysis

- \circ The outer for-loop repeats the bubble up stage n-1 times
- In the bubble up stage
 - Main operations are comparison and swap having the same # of operations
 - i-1 comparisons are required for the i-th bubble up stage

$$T(n) = (n-1) + (n-2) + \dots + 2 + 1 = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} \in \Theta(n^2)$$

Outline

Sorting problem

Basic sorting algorithms

- Selection Sort
- Bubble Sort
- Insertion Sort 🖘

Insertion Sort (1)

Idea of insert sort

- Pick the front of unsorted area
- Insert it into its right position in sorted area

Insertion Sort (2)

Pseudocode of insertion sort

```
def insertion_sort(A, n):
    for i ← 2 to n:
        # at this step, sorted area is [1, i-1]

    # insertion stage
        insert A[i] into its right position in A[1···i]

# at this step, sorted area is [1, i]
```

Correctness

- \circ For base case (i = 1), A[i] is already sorted
- Assume it correctly works for i = k (i.e., A[1 ··· k] is sorted)
- \circ Then, the insertion stage will correctly insert A[k+1] into the sorted area, meaning A[$1\cdots k+1$] is also sorted
- \circ Thus, for i=n, A[1 ··· n] will be sorted correctly (by induction)

Insertion Sort (3)

Pseudocode of insertion sort

```
def insertion sort(A, n):
             for i \leftarrow 2 to n:
                  # at this step, sorted area is [1, i-1]
                  # insertion stage
                  insert A[i] into its right position in A[1...i]
                  # at this step, sorted area is [1, i]
                                                                                    item=3
# i-th insertion stage
loc \leftarrow i - 1
item \leftarrow A[i]
while loc >= 1 and item < A[loc]:
    A[loc+1] \leftarrow A[loc]
    loc \leftarrow loc - 1
A[loc+1] \leftarrow item
                                  Back of 2 is the right position of 3
```

Insertion Sort (4)

Time complexity of insertion sort

```
def insertion_sort(A, n):
    for i \leftarrow 2 to n:
        # insertion stage
        insert A[i] into its right position in A[1...i]
```

Time complexity analysis

- \circ The outer for-loop repeats the insertion stage n-1 times
- \circ The i-th insertion stage performs at most i operations (comparisons)

$$T(n) = 1 + 2 + \dots + (n-2) + (n-1) = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} \in \Theta(n^2)$$

What You Need To Know

Sorting problem

■ To efficiently rearrange elements in an array in an order

Basic sorting algorithms

Selection Sort

- Move the maximum to the end of unsorted area
 - Find the maximum directly by linearly searching

Bubble Sort

- Move the maximum to the end of unsorted area
 - Move the maximum by bubbling it up

Insertion Sort

- Pick the front of unsorted area
- Insert it into its right position in sorted area

In Next Lecture

Discussion on basic sorting algorithms

- Selection Sort
- Bubble Sort
- Insertion Sort

Advanced sorting algorithms

- Merge Sort
- Quick Sort

Thank You