Abstract Algebra

: Lecture 19

Leo 2024.12.05 E mots. fwef(x).

Definition 1. Let E/F be a finite extension. Let $f(x) \in F[x]$. The smallest subfield of E which contains all of the roots of f is called the splitting field of f over F, or a splitting extension of F.

Example 2. Let $F = \mathbb{Q}$, and $f(x) = x^3 - 2 \in F[x]$. Then $\alpha = \sqrt[3]{2}$ is a root of f. Let $K = F(\alpha)$. Is K the splitting field of f over F? At most 3 rosts.

No, since K does not contain the other roots of f. Let $\beta = \alpha e^{2\pi i/3}$, $\gamma = \alpha e^{4\pi i/3}$ then β, γ are also roots of f. Let $\omega = e^{2\pi i/3}$ the splitting field of f over F should be $F(\alpha, \omega) = F(\alpha + c\omega)$ for some $c \in \mathbb{Q} - \{0\}$.

Definition 3. For E/F an automorphism σ of E which fixes F pointwise is called an F-automorphism of E. All automorphism of E which fix F pointwise form a group, called the Galois group of E/F, denoted by Gal(E/F) or Gal(E:F). If E is the splitting field of some $f(x) \in F[x]$, then Gal(E/F) is called the Galois group of f over F, denoted by Gal(f).

Proposition 4. Let $F < K \leq E$, K is the splitting field of some $f(x) \in F[x]$ over F.

(1). K is unique; \int .

(2). Each F-automorphism of E induces an F-automorphism of K. Which is due to the fact that σ fixes f(x) and permutes the roots of f(x).

Example 5. Let $F = \mathbb{R}$ and $E = \mathbb{C}$. Then E is a splitting field of F and Gal(E/F) is isomorphic to $Z_2 = \langle \sigma \rangle$ where $\sigma: a+bi \mapsto a-bi$, $a,b \in \mathbb{R}$. Actually, $E \simeq F[x]/(x^2+1)$. $\Longrightarrow Gal(C/R) \cong \langle G \rangle$

Example 6. Let $E = \mathbb{Q}(\sqrt{2}) \simeq \mathbb{Q}[x]/(x^2 - 2)$. Then what is the Galois group of E/\mathbb{Q} ? $Z_2 = <\sigma>$. Where $\sigma: a + b\sqrt{2} \mapsto a - b\sqrt{2}$, $a,b \in \mathbb{Q}$ fixes $x^3 - 1$ \longrightarrow Gal (R(5)/Q) \Longrightarrow Example 7. Let $x^3 - 2 \in \mathbb{Q}[x]$. Then the splitting field of $x^3 - 2$ over \mathbb{Q} is $E = \mathbb{Q}(\alpha,\omega)$. $6: \text{A+b} F \mapsto \alpha - bF$.

 $Gal(E/\mathbb{Q}) = ?$ Suppose $\sigma \in Gal(E/\mathbb{Q})$ then let $(2^{1/3})^{\sigma} = \beta$, we have $2 = 2^{\sigma} = ((2^{1/3})^3)^{\sigma} = \beta^3$ i.e.

 $\beta = 2^{1/3}$ i.e. $\sigma = 1$. Hence $Gal(E/\mathbb{Q}) = 1$. DID d.

Aut(Q)={Id}.

Recall, Aut(P)={id} as field automorphism.