ECON 7310 Elements of Econometrics Week 2: Linear Regression with One Regressor

David Du¹

¹University of Queensland

Draft

Outline:

- ► The population linear regression model (LRM)
- ► The ordinary least squares (OLS) estimator and the sample regression line
- Measures of fit of the sample regression
- The least squares assumptions
- ▶ The sampling distribution of the OLS estimator

Linear Regression

- Linear regression lets us estimate the slope of the population regression line.
- ► The slope of the population regression line is the expected effect on Y of a unit change in X.
- ▶ Ultimately our aim is to estimate the causal effect on Y of a unit change in X – but for now, just think of the problem of fitting a straight line to data on two variables, Y and X.

Linear Regression

- The problem of statistical inference for linear regression is, at a general level, the same as for estimation of the mean or of the differences between two means.
- Statistical, or econometric, inference about the slope entails:
 - Estimation:
 - How should we draw a line through the data to estimate the population slope? Answer: ordinary least squares (OLS).
 - What are advantages and disadvantages of OLS?
 - Hypothesis testing:
 How to toot if the alone is zero
 - How to test if the slope is zero?
 - Confidence intervals:
 - How to construct a confidence interval for the slope?

The Linear Regression Model sw Section 4.1

The population regression line:

Test Score =
$$\beta_0 + \beta_1$$
 STR

- β_1 = slope of population regression line = change in test score for a unit change in student-teacher ratio (STR)
- ▶ Why are β_0 and β_1 "population" parameters?
- ▶ We would like to know the population value of β_1 .
- We don't know β_1 , so must estimate it using data.

The Population Linear Regression Model

Consider

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

for $i = 1, \ldots, n$

- ▶ We have *n* observations, (X_i, Y_i) , i = 1, ..., n.
- ► *X* is the independent variable or regressor or right-hand-side variable
- Y is the dependent variable or left-hand-side variable
- $ightharpoonup eta_0 = intercept$
- $ightharpoonup eta_1 = slope$
- $ightharpoonup u_i$ = the regression error
- ► The regression error consists of omitted factors. In general, these omitted factors are other factors that influence *Y*, other than the variable *X*. The regression error also includes error in the measurement of *Y*.

The population regression model in a picture

Observations on Y and X (n = 7); the population regression line; and the regression error (the "error term"):

The Ordinary Least Squares Estimator (SW Section 4.2)

▶ How can we estimate β_0 and β_1 from data? Recall that was the least squares estimator of μ_Y : solves, \overline{Y}

$$\min_{m}\sum_{i=1}^{n}(Y_{i}-m)^{2}$$

▶ By analogy, we will focus on the least squares ("ordinary least squares" or "OLS") estimator of the unknown parameters β_0 and β_1 . The OLS estimator solves,

$$\min_{b_0,b_1} \sum_{i=1}^n [Y_i - (b_0 + b_i X_i)]^2$$

In fact, we estimate the conditional expectation function E[Y|X] under the assumption that $E[Y|X] = \beta_0 + \beta_1 X$

Mechanics of OLS

► The population regression line:

Test Score
$$= \beta_0 + \beta_1$$
 STR

Mechanics of OLS

- ► The OLS estimator minimizes the average squared difference between the actual values of Y_i and the prediction ("predicted value") based on the estimated line.
- ▶ This minimization problem can be solved using calculus (Appendix 4.2).
- ▶ The result is the OLS estimators of β_0 and β_1 .

OLS estimator, predicted values, and residuals

The OLS estimators are

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

$$\widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \overline{X}$$

► The OLS predicted (fitted) values \hat{Y}_i and residuals \hat{u}_i are

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

$$\widehat{u}_i = Y_i - \widehat{Y}_i$$

- ► The estimated intercept, $\widehat{\beta}_0$, and slope, $\widehat{\beta}_1$, and residuals \widehat{u}_i are computed from a sample of n observations (X_i, Y_i) i = 1, ..., n.
- ▶ These are estimates of the unknown population parameters β_0 and β_1 .

Predicted values & residuals

One of the districts in the data set is Antelope, CA, for which STR = 19.33 and TestScore = 657.8

predicted value:
$$= 698.9 - 2.28 \times 19.33 = 654.8$$

residual: $= 657.8 - 654.8 = 3.0$

OLS regression: Stata output

```
regress testscr str, robust
                                           Number of obs = 420
Regression with robust standard errors
                                            F(1, 418) = 19.26
                                            Prob > F = 0.0000
                                            R-squared = 0.0512
                                            Root MSE
                                                        = 18.581
                     Robust
           Coef. Std. Err. t P>|t| [95% Conf. Interval]
testscr
         -2.279808 .5194892 -4.39 0.000 -3.300945 -1.258671
   str
           698.933 10.36436 67.44 0.000 678.5602 719.3057
  cons
     Test Score = 698.9 - 2.28 \times STR
   (We'll discuss the rest of this output later.)
```

Measures of fit Section 4.3

- Two regression statistics provide complementary measures of how well the regression line "fits" or explains the data:
- ► The regression R² measures the fraction of the variance of Y that is explained by X; it is unit free and ranges between zero (no fit) and one (perfect fit)
- ▶ The standard error of the regression (SER) measures the magnitude of a typical regression residual in the units of *Y*.

Regression R²

- ► The sample variance of $Y_i = \frac{1}{n} \sum_{i=1}^n (Y_i \overline{Y})^2$ The sample variance of $\widehat{Y}_i = \frac{1}{n} \sum_{i=1}^n (\widehat{Y}_i - \overline{\widehat{Y}})^2$, where in fact $\overline{\widehat{Y}} = \overline{Y}$. R^2 is simply the ratio of those two sample variances.
- ► Formally, we define R² as follows (two equivalent definitions);

$$\begin{split} R^2 &:= \frac{\text{Explained Sum of Squares (ESS)}}{\text{Total Sum of Squares (TSS)}} = \frac{\sum_{i=1}^n (\widehat{Y}_i - \overline{Y})^2}{\sum_{i=1}^n (Y_i - \overline{Y})^2} \\ R^2 &:= 1 - \frac{\text{Residual Sum of Squares (RSS)}}{\text{Total Sum of Squares}} = 1 - \frac{\sum_{i=1}^n \widehat{u}_i^2}{\sum_{i=1}^n (Y_i - \overline{Y})^2} \end{split}$$

- ▶ $R^2 = 0 \iff ESS = 0$ and $R^2 = 1 \iff ESS = TSS$. Also, $0 \le R^2 \le 1$
- For regression with a single X,
 R² = the square of the sample correlation coefficient between X and Y

The Standard Error of the Regression (SER)

▶ The SER measures the spread of the distribution of *u*. The SER is (almost) the sample standard deviation of the OLS residuals:?

$$SER := \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} \widehat{u}_{i}^{2}}$$

- ► The SER:
 - \blacktriangleright has the units of u_i , which are the units of Y_i
 - measures the average "size" of the OLS residual (the average "mistake" made by the OLS regression line)
- ► The root mean squared error (RMSE) is closely related to the SER:

$$RMSE := \sqrt{\frac{1}{n} \sum_{i=1}^{n} \widehat{u}_{i}^{2}}$$

▶ When n is large, SER ≈ RMSE.¹

 $^{^1}$ Here, n-2 is the degrees of freedom – need to subtract 2 because there are two parameters to estimate. For details, see section 18.4.

Example of the R^2 and the SER

- ► TestScore = $698.9 2.28 \times STR$, $R^2 = 0.05$, SER = 18.6
- ▶ STR explains only a small fraction of the variation in test scores.
 - Does this make sense?
 - ▶ Does this mean the *STR* is unimportant in a policy sense?

Least Squares Assumptions (SW Section 4.4)

- What, in a precise sense, are the properties of the sampling distribution of the OLS estimator? When will it be unbiased? What is its variance?
- ▶ To answer these questions, we need to make some assumptions about how Y and X are related to each other, and about how they are collected (the sampling scheme)
- ► These assumptions there are three are known as the Least Squares Assumptions.

Least Squares Assumptions (SW Section 4.4)

$$Y_i = \beta_0 + \beta_1 X_i + u_i, \quad i = 1, \ldots, n$$

- 1. The conditional distribution of u given X has mean zero, that is, E(u|X=x)=0.
 - ► This implies that OLS estimators are unbiased
- 2. $(X_i, Y_i), i = 1, \dots, n$, are i.i.d.
 - This is true if (X, Y) are collected by simple random sampling
 - ▶ This delivers the sampling distribution of $\widehat{\beta}_0$ and $\widehat{\beta}_1$
- 3. Large outliers in *X* and/or *Y* are rare.
 - Technically, X and Y have finite fourth moments
 - ▶ Outliers can result in meaningless values of $\widehat{\beta}_1$

Least squares assumption #1: E(u|X=x) = 0.

For any given value of X, the mean of u is zero:

Example: $TestScore_i = \beta_0 + \beta_1 STR_i + u_i$, $u_i = other factors$

- ▶ What are some of these "other factors"?
- ls E(u|X=x)=0 plausible for these other factors?

Least squares assumption #1: E(u|X=x) = 0 (continued)

- A benchmark for thinking about this assumption is to consider an ideal randomized controlled experiment:
- X is randomly assigned to people (students randomly assigned to different size classes; patients randomly assigned to medical treatments). Randomization is done by computer – using no information about the individual.
- Because X is assigned randomly, all other individual characteristics the things that make up u – are distributed independently of X, so u and X are independent
- ► Thus, in an ideal randomized controlled experiment, E(u|X=x)=0 (that is, LSA #1 holds)
- In actual experiments, or with observational data, we will need to think hard about whether E(u|X=x)=0 holds.

Least squares assumption #2: $(X_i, Y_i), i = 1, \dots, n$ are i.i.d.

- This arises automatically if the entity (individual, district) is sampled by simple random sampling:
 - ▶ The entities are selected from the same population, so (X_i, Y_i) are identically distributed for all i = 1, ..., n.
 - ▶ The entities are selected at random, so the values of (*X*, *Y*) for different entities are independently distributed.
- ► The main place we will encounter non-i.i.d. sampling is when data are recorded over time for the same entity (panel data and time series data)
 - we will deal with that complication when we cover panel data.

Least squares assumption #3: Large outliers are rare

Technical statement: $E(X^4) < \infty$ and $E(Y^4) < \infty$

- A large outlier is an extreme value of X or Y
- On a technical level, if X and Y are bounded, then they have finite fourth moments. (Standardized test scores automatically satisfy this; STR, family income, etc. satisfy this too.)
- ► The substance of this assumption is that a large outlier can strongly influence the results so we need to rule out large outliers.
- Look at your data! If you have a large outlier, is it a typo? Does it belong in your data set? Why is it an outlier?

OLS can be sensitive to an outlier:

- ▶ Is the lone point an outlier in *X* or *Y*?
- ▶ In practice, outliers are often data glitches (coding or recording problems). Sometimes they are observations that really shouldn't be in your data set. Plot your data before running regressions!

The Sampling Distribution of the OLS Estimator (SW Section 4.5)

The OLS estimator is computed from a sample of data. A different sample yields a different value of $\widehat{\beta}_1$. This is the source of the "sampling uncertainty" of $\widehat{\beta}_1$. We want to:

- quantify the sampling uncertainty associated with
- use $\widehat{\beta}_1$ to test hypotheses such as $\beta_1 = 0$
- \triangleright construct a confidence interval for β_1
- All these require figuring out the sampling distribution of the OLS estimator.

Sampling Distribution of $\widehat{\beta}_1$

- We can show that $\widehat{\beta}_1$ is unbiased, i.e., $E[\widehat{\beta}_1] = \beta_1$. Similarly for $\widehat{\beta}_0$.
- ▶ We do not derive $V(\widehat{\beta}_1)$, as it requires some tedious algebra. Moreover, we do not need to memorize the formula of it. Here, we just emphasize two aspects of $V(\widehat{\beta}_1)$.
- First, $V(\widehat{\beta}_1)$ is inversely proportional to n, just like $V(\overline{Y}_n)$. Combining $E[\widehat{\beta}_1] = \beta_1$, it is then suggested that $\widehat{\beta}_1 \stackrel{\rho}{\longrightarrow} \beta_1$, i.e., $\widehat{\beta}_1$ is consistent. That is, as sample size grows, $\widehat{\beta}_1$ gets closer to β_1 .
- ▶ Second, $V(\widehat{\beta}_1)$ is inversely proportional to the variance of X; see the graphs below.

Sampling Distribution of $\widehat{\beta}_1$

▶ Intuitively, if there is more variation in *X*, then there is more information in the data that you can use to fit the regression line.

Sampling Distribution of $\widehat{\beta}_1$

- ► The exact sampling distribution is complicated it depends on the population distribution of (Y, X) but when n is large we get some simple (and good) approximations:
- Let $SE(\widehat{\beta}_1)$ be the standard error (SE) of $\widehat{\beta}_1$, i.e., a consistent estimator for the standard deviation of $\widehat{\beta}_1$ which is $\sqrt{V(\widehat{\beta}_1)}$
- Then, it turns out that

$$\frac{\widehat{eta}_1 - eta_1}{SE(\widehat{eta}_1)} \overset{approx}{\sim} \mathcal{N}(0,1)$$

▶ Using this approximate distribution, we can conduct statistical inference on $\hat{\beta}_1$, i.e., hypothesis testing, confidence interval \Rightarrow Ch5.