Week3

Qi'ao Chen 21210160025

March 15, 2022

Exercise 1. Show that the collection of formulas x>a for $a\in M$ generates a complete type $\tau_M(x)\in S_1(M)$. In other words, show that the partial type $\{(x>a):a\in M\}$ has a unique completion

Proof. Let $\Sigma(x)=\{x>a:a\in M\}$, $p,q\in S_1(M)$, $p,q\supseteq \Sigma(x)$, $p\neq q$. Since DLO has quantifier elimination, there is a quantifier free formula $\varphi(x)\in p\setminus q$. φ has the form

$$\bigwedge_{a \in A} x > a \land \bigwedge_{b \in B} x \le b \land \bigwedge_{c \in C} x \ne c \land \bigwedge_{d \in D} x = d$$

where A,B,C,D are finite. But since $p,q \supseteq \Sigma(x)$, $B=D=\emptyset$. Also $x \neq c$ is implied by $\Sigma(x)$. Thus if we choose $a'=\max\{a:a\in A\}$, then

$$M \vdash \varphi \leftrightarrow x > a'$$

Thus $\varphi \in q$, a contradiction. Hence p = q

Exercise 2. Show that τ_M is definable

Proof. By exercise 3 for each $N \succeq M$, τ_M has a unique heir and thus τ_M is definable \Box

Exercise 3. Suppose $N \succeq M$. Show that τ_N is an heir of τ_M

Proof. Let $q \in S_1(N)$ be an heir of τ_M and suppose $x \le a \in q(x)$ for some $a \in N$. Then there is $a' \in M$ s.t. $x \le a' \in \tau_M$, which is impossible. Thus $\{x > a : a \in N\} \subseteq q$ and $q = \tau_N$. Hence τ_N is the unique heir of τ_M by Exercise 1

Exercise 4. Suppose $N \succeq M$ and N is $|M|^+$ -saturated. Show that τ_N is not a coheir of τ_M

Proof. Since N is $|M|^+$ -saturated, there is $c \in N$ s.t. $N \models \tau_M(c)$. Then there is no $a \in M$ satisfying x > c. \square Exercise 5. If $N \succeq M$, show that τ_M has a unique coheirs over NProof. Suppose τ_M has two different coheirs $p, q \in S_1(N)$. Because p and q are the same thing as cuts, we may assume that there is $c \in N$ s.t. $x < c \in p$ and $x > c \in q$. But for any x realizing, x > m for all $m \in M$. Thus there is no $m \in M$ satisfying x > c. Hence p is not a coheir of τ_M , a contradiction \square Exercise 6. Give an example of models $M \preceq N$ of DLO where τ_N is a coheir of τ_M