EPC103-DP

DPort-ECT 评估板

DS01010101 0.92 Date:2024/4/26

概述

EPC103-DP 是广州致远电子股份有限公司推出的一款基于 STM32F103VCT6 处理器开发的 DPort-ECT 模块评估单板。评估单板接口主要有 1 路标准 DPort-ECT 接口、1 路 CAN 接口、1 路 RS485 接口、1 路 Type-C 接口、1 路高速 TF 卡接口、1 路 JTAG 调试接口,扩展 IO 接口包含 RS485、SPI、I²C、ADC、PWM等。

EPC103-DP 工作温度范围是-40℃~+85℃,支持9V~24V宽压电源输入,应用于评估 DPort-ECT 模块。

产品特性

- ◆ 工作温度-40°C~+85°C;
- ◆ 支持 9V~24V 宽压供电;
- ◆ 支持一组 EtherCAT 输入输出通信接口;
- ◆ 支持一路 CAN 接口;
- ◆ 支持一路 Type-C 接口;
- ◆ 支持一路 RS485 接口;
- ◆ 支持一路 I²C 接口;
- ◆ 支持六路 GPIO 接口;
- ◆ 支持一路高速 TF 卡;
- ◆ 支持四路 PWM 接口;
- ◆ 支持一路 SPI 通信接口;
- ◆ 支持一路 JTAG 调试接口;
- ◆ 支持两路 12 位精度 ADC。

产品应用

- ◆ 自动化产线
- ◆ 工业控制
- ◆ 运动控制
- ◆ 机器人控制
- ◆ 半导体

- 订购信息

型号	温度范围	安装方式
EPC103-DP	-40°C ~ +85°C	-

产品图片

EPC103-DP

DPort-ECT 评估板 DataSheet

修订历史

版本	日期	原因	
V0.90	2024/04/15	文档发布	
V0.91	2024/04/23	RTC 电池图片更新	
V0.92	2024/04/26	新增 JtagLink-Pack 配件说明	

DPort-ECT 评估板

目 录

1.	产品介绍		1
		· 产品简介	
		产品特性	
2.		-	
	3.1	电源接口	
	3.2	JTAG 接口	3
	3.3	通信接口	
	3.4	DPort-ECT 接口	
	3.5	Type-C 接口	
	3.6	RTC 电池接口	
	3.7	TF 卡接口	7
	3.8	扩展 IO 接口	7
4	免责声明		9

1. 产品介绍

1.1 产品简介

EPC103-DP 是基于 STM32F103VCT6 处理器开发的 DPort-ECT 模块评估单板,评估单板接口主要有 1 路标准 DPort-ECT 接口、1 路 CAN 接口、1 路 RS485 接口、1 路 Type-C 接口、1 路高速 TF 卡接口、1 路 JTAG 调试接口,扩展 IO 接口包含 RS485、SPI、I²C、ADC、PWM 等。

EPC103-DP 工作温度范围是-40℃~+85℃,支持 9V~24V 宽压电源输入,可应用于评估 DPort-ECT 模块。

1.2 产品特性

EPC103-DP产品的特性如下:

- 硬件特性:
 - > 32 位 Cortex-M3 内核, 72MHz 主频 CPU;
 - ▶ 支持 9V~24V 宽压供电,典型工作电流 60mA;
 - ▶ 支持一组 EtherCAT 输入输出通信接口;
 - ▶ 支持一路 CAN 接口;
 - ▶ 支持一路 Type-C 接口;
 - ▶ 支持一路 RS485 接口;
 - ▶ 支持一路 I²C 接口;
 - ▶ 支持一路高速 TF 卡;
 - ▶ 支持四路 PWM 接口;
 - ▶ 支持一路 SPI 通信接口;
 - ▶ 支持一路 JTAG 调试接口;
 - ▶ 支持六路 GPIO 接口;
 - ▶ 支持两路 12 位精度 ADC;
 - ➤ 工作温度: -40°C~+85°C。

2. 外观尺寸

EPC103-DP 评估板尺寸: 100.00mm×65.00mm(长×宽)。 外观尺寸如图 2.1-2.2 所示。

图 2.1 EPC103-DP 评估板 A 面

图 2.2 EPC103-DP 评估板 B 面

DataSheet

DPort-ECT 评估板

3. 接口说明

3.1 电源接口

EPC103-DP 评估单板的电源典型输入值为 12V DC, 电源接口连接器的物理形式为 5.08mm-3PIN 间距 OPEN 座子接口, 如图 3.1 所示,输入电源规格如表 3.1 输入电源规格 所示。

图 3.1 电源接口图

表 3.1 输入电源规格

参数	最小	典型	最大	单位
工作电压	9	12	24	V
工作电流	_	60	_	mA

3.2 JTAG 接口

EPC103-DP 评估单板采用 1.27mm-10PIN 的 JTAG 座,如图 3.2 所示,JTAG 座引脚定义如表 3.2 所示。为方便使用,可选用如图 3.3 所示的 JtagLink-Pack 配件,具体使用说明可参考 https://manual.zlg.cn/web/#/p/5319e2127a8c4a186be2070c304f8110。

图 3.2 JTAG 接口图

引脚	名称	说明
1	3.3V	+3.3V 电源
2	TMS	测试模式控制
3	GND	电源地
4	TCK	测试串口时钟
5	GND	电源地
6	TDO	测试数据输出
7	NC	悬空
8	TDI	测试数据输入
9	nTRST	测试复位信号
10	RST	系统复位信号

表 3.2 JTAG 座引脚定义表

图 3.3 JtagLink-Pack 配件

3.3 通信接口

EPC103-DP 评估单板提供 1 路通信接口,包含 1 路 CAN 接口和 1 路 RS485 接口。CAN 的最大通信速率可达到 1Mbps,如图 3.4 所示,通信接口引脚定义如表 3.3 所示。

图 3.4 通信接口图

©2024 Guangzhou ZHIYUAN Electronics Co., Ltd.

引脚	名称	说明
1	485A	RS485 A 线
2	485B	RS485 B 线
3	GND	信号地
4	CAN0_H	CAN 高信号
5	CAN0_L	CAN 低信号

表 3.3 通信接口引脚定义

3.4 DPort-ECT 接口

EPC103-DP 评估单板提供 1 路 DPort-ECT 接口,模块有关资料,请在官网查看,接口如图 $3.5~\mathrm{fh}$ 示。

图 3.5 DPort-ECT 接口图

3.5 Type-C 接口

EPC103-DP 评估单板提供 1 路 Type-C 接口,作为系统供电,可用于系统调试,该电源不建议用于现场工作中,Type-C 接口如图 3.6 所示,接口引脚定义如表 3.4 Type-C 接口引脚定义表所示。

图 3.6 Type-C 接口图

表 3.4 Type-C 接口引脚定义表

引脚	名称	功能	备注
1	USB_VBUS	5V 电源输入	不建议用于现场工作中
2	USB_D_N	USB Device 数据引脚	
2		DATA (-)	_
3	USB_D_P	USB Device 数据引脚	_
3		DATA (+)	_
4	GND	电源地	系统电源地

3.6 RTC 电池接口

EPC103-DP 评估单板的 RTC 电池接口采用 1.25mm 间距的插座,接口如图 3.7 所示,支持的电池类型如图 3.8 所示,接口引脚定义如表 3.5 所示。

图 3.7 RTC 电池接口图

图 3.8 RTC 电池示意图

表 3.5 RTC 电池接口引脚定义

工位号	标识	功能	信号	说明
BT1 BAT	外部 RTC 供电	1: BAT_VDD	电池电压 3V	
		2: BAT_GND	円4匹円/正 3 Ⅴ	

DPort-ECT 评估板 DataSheet

3.7 TF 卡接口

EPC103-DP 评估单板提供了一路 TF 卡接口,连接器物理形式为标准 TF 插座,单板标志为 "TF Card",如图 3.9 所示。

图 3.9 TF 卡接口图

3.8 扩展 IO 接口

EPC103-DP 评估单板提供 40PIN 扩展接口,已在板上预留了 2.54mm-2×20PIN 的孔位,如图 3.10 所示,可根据实际应用情况在主板的正面或者背面焊接排针或者排母,引脚定义如表 3.6 所示。

图 3.10 扩展 IO 接口图

表 3.6 扩展 IO 接口引脚定义

引脚号	名称	默认功能	参考电平	输入/输出	处理器对应引脚
1	5V	5V	5V	输出	-
2	GND	GND	-	-	-
3	3.3V	3.3V	3.3V	输出	-
4	GND	GND	-	-	-
5	RS485_A	RS485 A 线	-	输入/输出	-
6	RS485_B	RS485 B 线	-	输入/输出	-
7	NC	悬空	-	-	-

DPort-ECT 评估板

续上表

引脚号	名称	默认功能	参考电平	输入/输出	处理器对应引脚
8	NC	悬空	-	-	-
9	NC	悬空	-	-	-
10	NC	悬空	-	-	-
11	NC	悬空	-	-	-
12	NC	悬空	-	-	-
13	NC	悬空	-	-	-
14	NC	悬空	-	-	-
15	NC	悬空	-	-	-
16	NC	悬空	-	-	-
17	NC	悬空	-	-	-
18	NC	悬空	-	-	-
19	NC	悬空	-	-	-
20	NC	悬空	-	-	-
21	I ² C2_SCL	I ² C2_时钟	3.3V	输出	PB10
22	I ² C2_SDA	I ² C2_数据	3.3V	输入/输出	PB11
23	SPI2_MOSI	SPI2 主出从入	3.3V	输出	PB15
24	SPI2_MISO	SPI2 主入从出	3.3V	输入	PB14
25	SPI2_CS	SPI2 芯片选择	3.3V	输出	PB12
26	SPI2_SCLK	SPI2 时钟	3.3V	输出	PB13
27	GND	GND	-	-	
28	GND	GND	-	-	
29	ADC0	ADC0 输入,支持 12 位	3.3V	输入	PB0
30	ADC1	ADC1 输入,支持 12 位	3.3V	输入	PB1
31	PWM0	PWM 通道 0 输出	3.3V	输出	PD12
32	PWM1	PWM 通道 1 信号输出	3.3V	输出	PD13
33	PWM2	PWM 通道 2 信号输出	3.3V	输出	PD14
34	PWM3	PWM 通道 3 信号输出	3.3V	输出	PD15
35	PE0	通用 GPIO	3.3V	输入/输出	PE0
36	PE1	通用 GPIO	3.3V	输入/输出	PE1
37	PE2	通用 GPIO	3.3V	输入/输出	PE2
38	PE3	通用 GPIO	3.3V	输入/输出	PE3
39	PE4	通用 GPIO	3.3V	输入/输出	PE4
40	PE5	通用 GPIO	3.3V	输入/输出	PE5

DPort-ECT 评估板

4. 免责声明

本着为用户提供更好服务的原则,广州致远电子股份有限公司(下称"致远电子")在 本手册中将尽可能地为用户呈现详实、准确的产品信息。但介于本手册的内容具有一定的时 效性,致远电子不能完全保证该文档在任何时段的时效性与适用性。致远电子有权在没有通 知的情况下对本手册上的内容进行更新,恕不另行通知。为了得到最新版本的信息,请尊敬 的用户定时访问致远电子官方网站或者与致远电子工作人员联系。感谢您的包容与支持!

诚信共赢,持续学习,客户为先,专业专注,只做第一

