الأعدد المقديسة

سلسلة التماريان

السنة الدراسية : 2012-2011 الثانية باك علوم رياضيـة

 $-\cosrac{\pi}{7}+i\sinrac{\pi}{7}$ و $\cosrac{\pi}{7}-i\sinrac{\pi}{7}$ و $\left(rac{\sqrt{3}-i}{i-1}
ight)^{12}$ و $\sin heta + 2i\sin^2\left(rac{ heta}{2}
ight)$ و $-\cosrac{\pi}{7} - i\sinrac{\pi}{7}$ و $(\theta \in]0;\pi[$ حيث $\cos \theta + i(1+\sin \theta)$

أكتب $Z_o=rac{5+3\sqrt{3}i}{1-2\sqrt{3}i}$ على الشكل الجبري ؛ ثم $oldsymbol{\mathfrak{G}}$

 Z_o^{15} أحسب Z_o^2 و Z_o^3 و Z_o^3 و Z_o^2 المعادلات التالية: $\overline{z}+|z|=6+2i$ و \overline{z} $.iz^2-2\overline{z}+2-i=0$ و $z^2-4\overline{z}+4=0$

 $A=\sqrt{2-\sqrt{3}-i\sqrt{2}+\sqrt{3}}$ نعتبر العدد العقدي $oldsymbol{0}$

 A^2 عمدة A^2 عمدة A^2 عمدار و عمدة $z'=rac{z+2}{z-2i}$ نضع: $\mathbb{C}ackslash\{2i\}$ ككل z من

حدد ثم أنشئ في المستوى العقدي ($\widehat{\mathscr{P}}$) المجموعات :

 $(\Gamma_1) = \{M(z) \in (P) \ / \ |z'| = 1\}$

 $(\Gamma_2)=\{M(z)\in (P)\ /\ z'\in \mathbb{R}\}$

 $(\Gamma_3)=\{M(z)\in (P)\ /\ z'\in i\mathbb{R}^*\}$

 $(\Gamma_4) = \{M(z) \in (P) \ / \ \arg(z') = \pi[2\pi]\}$

بدد ثم أنشئ في المستوى العقدي (\mathscr{P}) المجموعة \mathbb{Q}

 $(\Sigma) = \{ M(z) \in (P) \ / \ z + \overline{z} + z \overline{z} = 0 \}$

تمرین 3 . أسئلة هذا التمرین مستقلة فیما بینها.

 $B(\sqrt{3})$ و A(i) نعتبر النقطتين $oldsymbol{0}$

حدد Z_C لحق النقطة C التي يكون من أجلها المثلث

مباشرا و متساوي الأضلاع. ABC مباشرا و متساوي الأضلاع. M(z) من المستوى حدد ثم أنشى مجموعة النقط M(z) من المستوى العقدي M(z) التي من أجلها النقط M(z) و M(z) و M(z) و M(z)مستقیمیه P(-3i)

1+zz'
eq 0 ليكن z و z' من z' عيث: z'=|z'|=|z'|

 $eta\in\mathbb{R}$ بين أن

ليكن $rac{\pi}{2} < lpha < rac{3\pi}{2}$ ليكن $rac{\pi}{2}$

 $z^2-2z+1+\cos(2lpha)-i\sin(lpha)=0$ المعادلة: $z'=1+i\sqrt{3}$ نعتبر الأعداد $z'=1+i\sqrt{3}$ و $z'=1+i\sqrt{3}$

 Z^{z} اكتب على الشكل المثلثي كل من z و z^{z} و z^{z} .

(-) أكتب Z على الشكل الجبري ثم استنتج $\frac{\pi}{12}$ و -

5-5i : أكتب على الشكل الأسي الأعداد العقدية التالية $ar{f \Theta}$ و $(\sqrt{6}+i\sqrt{2})i$ و $(-1+i\sqrt[7]{3})^3$ و $-i(1+\sqrt{3}i)$ و و $(1+i)^3+(1-i)^3$ و $rac{1-i\sqrt{3}}{1+i}$ و $rac{i}{(\sqrt{6}+i\sqrt{2})^2}$

تمرین 1 أسئلة هذا التمرین مستقلة فیما بینها.

نضع z=1-2 و z=3-i . أكتب على الشكل $oldsymbol{0}$

 $rac{z}{z'}:rac{1}{z}+rac{1}{z'}:z^2z':z^2-z'^2:zz':z^2+z':$ الجبري: $(1-i)\overline{z}=1+i:$ المعادلات التالية: $\overline{z}=1+i:$

 $rac{z-i}{z+i} = -2 : i\overline{z} + 2z = -i : 2z - \overline{z} = 2i$

z+i $2i\overline{z}^2-(1+i)\overline{z}=0$: $\overline{z}+iz=i\overline{z}-z$ f(-i) و $f(z)=1+z+z^2+z^3$ نعتبر f(z)=1+z

f(z)=0 و f(i+1) و f(i+1) ثم حل في z=1 المعادلة: z=1 المعادلة: z=1 في z=1 للعدد عدد الشكل الجبري للعدد عدد ثم حل في z=1 المعادلة: z=1 المعادلة: z=1

 $\dfrac{z+i}{i\overline{z}+3}$ حدد مجموعة النقط M(z) بحيث يكون ${f 5}$

حدد مجموعة النقط M(z) بحيث يكون $rac{z+i}{i\overline{z}+3}$ عددا

 $ig(orall z \in \mathbb{C}ackslash \{i\}ig): rac{1-iz}{1+iz} \in \mathbb{R} \Longrightarrow z \in i\mathbb{R}$ بين أن: $oldsymbol{0}$

نضع Z^2 نضع Z^2 احسب Z^3 و Z^3

ثم بین أن $Z^{12n}\in\mathbb{R}$ $z'=rac{2-3i}{3+4i}$ و خصا بدون حسابر $z'=rac{2-3i}{3+4i}$ و خصا بدون $z'=rac{2-3i}{3+4i}$

أن z+z' عدد حقيقي و أن z-z' تخيلي صرف. \mathbb{C} نعتبر النقط A(6-i) و B(-2+i) و B بين أن A و B و C نقط مستقيمية.

تمرين 2 . أسئلة هذا التمرين مستقلة فيما بينها.

حدد و أنشئ مجموعة النقط M(z) من المستوى العقدي بحيث:

$$(\sqrt{2}+i)\overline{z}=(i-\sqrt{2})z-1;2z\overline{z}=3(z+\overline{z})$$

أحسب معيار كل من الأعداد العقدية التالية: $(1+3i)^3$ و $(1+i\sqrt{6})(5-i\sqrt{3})$ و $(2-i\sqrt{3})^2$ $-\left(rac{\sqrt{6}}{2}+irac{\sqrt{2}}{2}
ight)$ و و $\left(rac{1-i}{1+i\sqrt{3}}
ight)^4$ و

. C(4-3i) و B(3+2i) و B(4-3i) و B(3+2i)أحسب المسافات $\stackrel{\cdot}{AB}$ و $\stackrel{\cdot}{AC}$ و $\stackrel{\cdot}{BC}$ ثم استنتج طبيعة المثلث ABC.

بين هندسيا ثم جبريا أن مجموعة النقط M(z) من $oldsymbol{\Phi}$

المستوى العقدي $|\mathscr{P}|$ بحيث: |z+1|=2 هي دائرة

 $1{+}i\sqrt{3}$ و $2\sqrt{3}$ و $1{+}i$ و $1{-}i$ و $1{-}i$ و $i{-}\sqrt{3}$ و $i{-}i\sqrt{3}$

و $lpha \in \left| rac{\pi}{2}; \pi
ight| ; 1 + i an lpha$ و $rac{5\sqrt{2}}{1-i}$ و $(\sqrt{3}-i)^{17}$. $lpha \in \left] -rac{\pi}{2}; rac{\pi}{2}
ight[; \sin 2lpha - 2i\cos^2lpha$

:نضع: $f(z)=rac{z+i}{1+iz}$ نضع: $\mathbb{C}ackslash\{i\}$ بين أن \mathcal{C}

$$\operatorname{Re}ig(f(z)ig) = rac{1}{2} \iff \operatorname{Re}(z) = rac{|1+iz|^2}{4}$$

 $rac{\sqrt{3}}{2} + rac{1}{2}i$ حدد الجدور الرابعة للعدد العقدي: $oldsymbol{3}$

 $\cos \frac{\pi}{24}$ دم استنتج قلمني $\cos \frac{\pi}{12}$

حل في المجموعة $oldsymbol{0}$ المعادلة : $z^5=1$ ثم أنشئ صور $z^5=1$. $\cos rac{2\pi}{5} + \cos rac{4\pi}{5} = -rac{1}{2}$ الحلول . و استنتج أن

 $\cos \frac{2\pi}{5}$ بدلالة $\cos \frac{2\pi}{5}$ ثم استنتج قيمتي $\cos \frac{4\pi}{5}$

 \bar{w} حدد التمثيل العقدي لكل من التحويلات التالية: $\bar{w}(2-i)$ الازاحة التي متجهتها $\bar{w}(2-i)$

التحاكي الذي مركزه $\mathcal{I}(i)$ و نسبته $\overline{\mathcal{I}}$ التحاكي الذي

 $\mathcal{L}(2-i)$ التحاكي الذي مر كزه $\mathcal{A}(i)$ و يحو ل $\mathcal{B}(5i)$ إلى $\mathcal{L}(2-i)$

الدوران الذي مركزه $\Omega(-1+i)$ و زاويته $\Omega(-1+i)$

تمرين 4 . أسئلة هذا التمرين مستقلة فيما بينها.

 $\sin^3(x)$: \blacktriangleleft أخطط التعابير التالية: $>\sin^3(x)\cos^4(x)$: $<\cos^6(x)$: $<\sin^3(x)\cos^3(x)$: حدد ثم أنشئ مجموعة النقط M(z) التو $oldsymbol{arphi}$

 $|1+iz|\,=\,|z-2|$:حقق المتساويات التالية: $\arg(z) \equiv \frac{n}{2}[2\pi] : \blacktriangleleft |2\overline{z} + 2 - i| = 4 : \blacktriangleleft$

 $\operatorname{arg}\left(\frac{z+2i}{z-1}\right) \equiv \frac{\pi}{2}[\pi] : \blacktriangleleft \operatorname{arg}(\overline{z}) \equiv -\frac{\pi}{4}[2\pi] : \blacktriangleleft$

 $\arg\left(\frac{\sqrt{3+i}}{z}\right) \equiv \frac{\pi}{3}[2\pi] : \blacktriangleleft \arg\left(\frac{i}{z}\right) \equiv \pi[2\pi] : \blacktriangleleft$

 $z^2+4=0:$ حل في المجموعة ${\mathbb C}$ المعادلات التالية: lacktriangleright

 $2z^2 + \sqrt{2}z + 1 = 0 : \blacktriangleleft z^2 - z + 2 = 0 : \blacktriangleleft$

 $.4z^2 - 12z + 25 = 0 : \blacktriangleleft$

 $z^4+z^2+1=0$ حل في ${\mathbb C}$ المعادلات التالية: ${\mathbb C}$

 $z^2 - (3+2i)z + 5 + i = 0 \qquad : \blacktriangleleft$

 $(4+2i)z^2 - (7-i)z - 1 - 3i = 0$:

 $z^4 + (3 - 6i)z^2 + 2(16 - 63i) = 0 \quad : \blacktriangleleft$

بین أنه لکل z و z' من $\mathbb C$ لدینا:

 $|z+z'|^2 + |z-z'|^2 = 2(|z|^2 + |z'|^2)$

 $orall n \in \mathbb{N}: \ \left(rac{5+3i\sqrt{3}}{1-2i\sqrt{3}}
ight)^{3n+2} = -2^{3n+1}(1+i\sqrt{3})$

في الحالات التالية حدد مركز و زاوية الدوران z'-1=i(z-1) الذي تمثيله العقدي كالآتي: . $z'-i=e^{irac{2\pi}{3}}(z-i): \blacktriangleleft \qquad z'=rac{1+i}{\sqrt{2}}z: \blacktriangleleft$ $A=e^{ix}+e^{iy}$: نضع x عن x ككل x و y من xأ) حدد الصيغة المثلثية للعدد A
eq 0 أ). $(n\in\mathbb{N});\left(1+e^{ix}
ight)^n$ ب $\left(1+e^{ix}
ight)^n$ أحسب بطريقتين مختلفتين ج) استنتج أن:

$$\sum_{k=0}^n C_n^k \cos(kx) = 2^n \cos^n\left(rac{x}{2}
ight) \cos\left(rac{nx}{2}
ight)$$

$$\sum_{k=0}^{n}C_{n}^{k}\sin(kx)=2^{n}\cos^{n}\left(rac{x}{2}
ight)\sin\left(rac{nx}{2}
ight)$$
 و

<u>تمرین 5</u> . ــ

 ${\mathbb C}$ من ${\mathbb C}$ نضع

$$P(z) = z^4 - 6z^3 + 24z^2 - 18z + 63$$

. $P(-i\sqrt{3})$ و $P(i\sqrt{3})$ أحسب $oldsymbol{0}$ $P(z)=(z^2+3)(z^2+az+b)$ حدد a و b بحيث b $C(3+2i\sqrt{3})$ و $B(-i\sqrt{3})$ و $A(i\sqrt{3})$ و $D(3-2i\sqrt{3})$ تنتمى إلى دائرة محددا شعاعها و لحق

A و B و B و A و A و Aلتكن E مماثلة D بين أن $oldsymbol{\Phi}$

EBC و استنتج طبيعة المثلث $rac{Z_C-Z_B}{Z_E-Z_B}=$

تمرین 6 .

نعتبر في المجموعة C الحدودية:

$$P(z) = z^3 - 2(\sqrt{3} + i)z^2 + 4(1 + i\sqrt{3})z - 8i$$

 z_o بين أن المعادلة P(z)=0 تقبل حلا تخيليا صرفا $oldsymbol{0}$

ينبغي تحديده. $P(z)=(z-z_o)(z^2+az+b)$.P(z)=0 عدد a $oldsymbol{arphi}_2$ حدد العددين $oldsymbol{z}_1$ و $oldsymbol{z}_2$ حلي المعادلة $oldsymbol{arphi}_1$

 $\lim_{z \to z} \left(z_2 \right) < 0$ کین $z^2 - 2\sqrt{3}z + 4 = 0$

نعتبر النقط $A(z_o)$ و $B(z_1)$ و $A(z_o)$. أكتب على $oldsymbol{\Phi}$ z_1-z_o الشكل المثلثي الأعداد العقدية z_0 و z_1 و و و z_2-z_0 ثم استنتج أن الرباعي OABC معين.

تمرین 7 .

لكل m من $\mathbb R$ نعتبر في المجموعة \emptyset المعادلة .

$$(E): z^3 + 2(1-i)z^2 + (1+m^2-4i)z - 2i(1+m^2) = 0$$

بين أن المعادلة (E) تقبل حلا تخيليا صرفا z_o ينبغي $oldsymbol{0}$ تحديده ، ثم استنتج بدلالة m الحلين الآخرين. C(-1-im) و B(-2-2i) و A(2i) نعتبر النقط $oldsymbol{O}$ و D(-1+im). بين أن ABCD متوازي الأضلاع مهما ABCD يكن m من $\mathbb R$ ، ثم حدد m لكي يكون الرباعي

6 بين أن:

 $w=\cosrac{2\pi}{5}+i\sinrac{2\pi}{5}$ نعتبر العدد العقدي $w^5-1=0$ و أن $\cosrac{2\pi}{5}=rac{1}{2}\left(w+rac{1}{w}
ight)$ و أن $oldsymbol{0}$ $1+w+w^2+w^3+w^4=0$. ثم استنتج أن $\cosrac{2\pi}{5}$ نضع $x=w+rac{1}{w}$ تحقق أن $x=w+rac{1}{w}$ استنتج $x=w+rac{1}{w}$

 $z_o = \cos rac{2\pi}{7} + i \sin rac{2\pi}{7}$ نعتبر العدد العقدي $T=z_o^3+z_o^5+z_o^6$ نضع $S=z_o+z_o^2+z_o^2+z_o^4$ نضع $S=z_o+z_o^2+z_o^4$ و $S=z_o+z_o^4$ بین آن: $S=z_o+z_o^4$ عددین عقدیین مترافقین و آن: $S=z_o+z_o^4$ ST و S ثم استنتج قيمتي S+T أحسب S+T

تمرين 10 .ـ

 $(E): z^2 - wz + \left(rac{1}{2} + irac{\sqrt{3}}{2}
ight) = 0:$ نعتبر المعادلة z_0 عدد عقدي. ليكن z_0 و z_0 عدد z_0 عدد z_0 ليكن z_0 اين أن: $z_0|.|z_1|=1$ و $z_0|.|z_1|=1$ $oldsymbol{v}$:نضع $heta\in\mathbb{R}$ حيث $oldsymbol{z}_o=e^{i heta}$ بين أن $oldsymbol{\mathcal{Q}}$

$$w=2\cos\left(heta-rac{\pi}{6}
ight)e^{irac{\pi}{6}}$$

:استنتج أنه إذا كان $z_o=i$ فإن ${f 3}$

$$1 + iw - w^2 - iw^3 + w^4 + iw^5 = 0$$

نفترض أن $z_1 = rac{\sqrt{2}}{2}(1+i)$ أكتب z_1 على شكليه $oldsymbol{0}$ $\sin \frac{\pi}{12}$ المثلثي و الجبري ، ثم استنتج قيمتي $\cos \frac{\pi}{12}$ د أكتب العدد w على شكليه المثلثي و البجبري .

في المستوى المنسوب لمعلم متعامد ممنظم مباشر $oldsymbol{\Theta}$ في المستوى المنسوب لمعلم \mathcal{R} الذي يربط كل نقطة $(O; \vec{u}; \vec{v})$

$$z'=\left(rac{\sqrt{3}}{2}-rac{1}{2}i
ight)z$$
 حيث: $M'(z')$ بالنقطة $M(z)$ حيث عتبر النقط A و M_0 التي ألحاقها على التوالي

$$z_o = rac{\sqrt{2}}{2}(1+i)$$
 و z_o و z_o و w

 $\mathscr{R}(M_o)=M_1$. $\mathscr{R}(M_o)=M_1$ عدد طبيعة التحويل \mathscr{R} و بين أن

 OM_oAM_1 ب) استنتج طبيعة الرباعي

. w استنتج معيار و عمدة العدد العقدي

 $(O; ec{u}; ec{v})$ المستوى منسوب لمعلم متعامد ممنظم مباشر نعتبر النقطتين A و B اللتين لحقاهما على التوالي: $b=1-i\sqrt{3}$, $a=1+i\sqrt{3}$. [AB] حدد c' لحق النقطة C' منتصف القطعة

 $\mathscr{R}\left(O;rac{n}{2}
ight)$ حدد c لحق النقطة C صورة A بالدوران c $\mathscr{H}\left(C;rac{2}{3}
ight)$ حدد m لحق النقطة M صورة C' بالتحاكي \mathfrak{G} M ماذا تمثل M بالنسبة للمثلث ABC ، أنشئ C' و M ماذا تمثل M بالنسبة $\mathcal{S}_{2ec{u}}$ عدد M لحق النقطة M صورة M بالازاحة $\mathcal{S}_{2ec{u}}$

(AB) ot (CN) أحسب $rac{c-b}{n-a}$ ، استنتاج ؟ بين أن $rac{c-b}{n-a}$ N ماذا تمثل N بالنسبة للمثلث ABC ، أنشئ النقطة Ω $S_{(AB)}$ حدد p لحق النقطة P صورة N بالتماثل المحورى Φ $\stackrel{oldsymbol{P}}{oldsymbol{Q}}$ بين أن النقط A و B و C و C متداورة . أنشئ النقطة $\stackrel{oldsymbol{Q}}{oldsymbol{Q}}$

المستوى منسوب م م م م م $(O; \overrightarrow{u}; \overrightarrow{v})$ لتكن A و B نقطتين لمستوى منسوب م م م م $a \neq b$ بحيث $a \neq b$ لتكن $a \neq b$ بحيث $a \neq b$ $k \in \mathbb{R}_+^*$ و $rac{MA}{MB} = k$ مجموعة النقط M بحيث . k=1 في حالة (E) في حدد المجموعة $oldsymbol{0}$

نفترض أن k
eq 1 و ليكن w لحق النقطة Ω مرجح $\left\{(A;1);(B;-k^2)
ight\}$ النظمة المتزنة

 $M(z)\in (E)\Longleftrightarrow |z-w|=k.rac{|a-b|}{|1-k^2|}$:بين أن

المستوى منسوب لمعلم م م م $(O; \overrightarrow{u}; \overrightarrow{v})$ نعتبر المعادلة $-rac{\pi}{2}< heta<rac{\pi}{2}$ حیث $(E):\ z^2-2z+rac{1}{\cos^2(heta)}=0$ $oldsymbol{0}$ حل في المجموعة $\mathbb C$ المعادلة: $oldsymbol{0}$

 $\operatorname{Im}(z_1) = an heta$ ليكن \mathring{z}_1 و z_2 حلي المعادلة: (E) حيث z_2 z_2 و z_1 أكتب على الشكل المثلثى أ z_2 و

و نعتبر النقط $M_1(z_1)$ و $M_2(z_2)$. بين أن المثلث $oldsymbol{\vartheta}$ Oمتساوي الساقين في OM_1M_2

ليكن n من \mathbb{N}^* . أكتب على الشكل المثلثي حلول $oldsymbol{\Phi}$ $z^{2n}-2z^n+rac{1}{\cos^2(heta)}=0$ المعادلة الثانية:

. $z^2-2iz-2=0$ حل في المحموعة ${\Bbb C}$ المعادلة: ${f 0}$ ثم أكتب الحلول على الشكل المثلثي.

يكن heta من $[0;\pi[$ حل في المجموعة $\mathbb C$ المعادلة:

$$z^2 - 2ze^{i\theta} + e^{2i\theta} - 1 = 0$$

نعتبر النقط A و B و C . التي ألحاقها على التوالي $oldsymbol{\mathfrak{G}}$ $Z_C=-1+e^{i heta}$ و $Z_B=2e^{i heta}$ و $Z_A=1+e^{i heta}$ و $Z_A=1+e^{i heta}$ را کتب $Z_A=1+e^{i heta}$ مستطیل الاسی بین $Z_A=1+e^{i heta}$ مستطیل ا ب) حدد العدد الحقيقي heta من $[0;\pi[$ نكي يكون OABC مربعا

 $f(z)=z+rac{4}{z}$: نضع z نضع z

جدد f(z) = -2 جدد Z_2 و Z_2 جدد Z_2 جدد و Z_1 بحيث الشكّل المثلثي .

 $Z_1^{2002} + Z_2^{2002} = 2^{2002}$ بین أن

نعتبر النقط A و B و C . التي ألحاقها على التوالي $oldsymbol{\Theta}$ و Z_1 و Z_2 حيث lpha عدد حقيقي موجب.

) حدد lpha لكي يكون المثلث ABC متساوي الأضلاع.

بین أنه لکل z من \mathbb{C}^* لدینا:

$$(z\in\mathbb{C}^*):f(z)=\overline{f(z)}\Longleftrightarrow (z-\overline{z})(z\overline{z}-4)=0$$

ج) استنتج (Γ) مجموعة النقط M(z) التي من أجلها يكون f(z) عددا حقيقيا.

 (Γ) د (Γ) د تحقق أن النقط (Γ) و (Γ) و (Γ) تنتمي إلى

تمرین 16

الأعداد العقلية z التي تحقق $z^4=1$ الأعداد العقلية $z^4=1$

$$\int \left(rac{z-i}{z+i}
ight)^4 = 1$$
 . المعادلة: $\mathbb C$ حلي في $\mathbb C$ المعادلة: $\mathbf C$

 $\mathbb C$ ليكن lpha من n و n من n^* . $\hat{\mathbb N}^*$ من n و n من n المعادلة: $\left(\frac{z-i}{z+i}\right)^n=e^{ilpha}$ المجاري.

نعتبر $\lambda \in \mathbb{R}$ حيث $P(z)=z^3-\overline{4z}+\lambda$ نعتبر P(z)=0 حيث أنه إذا كانت المعادلة P(z)=0 تقبل حلا عقديا

فإن العدد $\overline{z_o}$ هو أيضا حل لها. P(z)=0 استنتج أن المعادلة P(z)=0 تقبل على الأقل حلا

P(z)=0 حلا حقيقيا P(z)=0 حلا حقيقيا معياره 2 ثم حل المعادلة لأجل القيمة التي تم تحديدها P(z)=0 حلا عقديا غير حدد λ لكي تقبل المعادلة P(z)=0 حلا عقديا غير حقيقي معياره 2 ثم حل المعادلة لأجل القيمة التي تم إيجادها . ثم حدد معيار و عمدة كل من الحلول.

تمرین 18 . ـــ

بين أنه لكل عدد حقيقي x لدينا:

$$\left(orall z \in \mathbb{C}
ight) : (z - e^{ix})(z - e^{-ix}) = z^2 - 2z\cos(x) + 1$$

بین أنه لكل عدد عقدي z لدینا: $oldsymbol{arphi}$

$$z^{5} - 1 = (z - 1)\left(z^{2} - 2z\cos\frac{2\pi}{5} + 1\right)\left(z^{2} - 2z\cos\frac{4\pi}{5} + 1\right)$$

 $\cosrac{4\pi}{5}$ و $\cosrac{2\pi}{5}$ ، حدد قيمتي $\cosrac{2\pi}{5}$ ه حدد $z^5=1$ المعادلة $\mathbb C$

تمرین 19

. z نقطة من المستوى العقدي لحقها M نقطة من المستوى العقدي لحقها M نعتبر الدورانين $\mathcal{R}_2\left(M;\frac{\pi}{3}\right)$ و $\mathcal{R}_1\left(M;-\frac{\pi}{3}\right)$ نضع b' و A' نظع a' نظع A' و ليكن A' لحق A' و ليكن A' الحق A' الحق A'

$$.\overrightarrow{MA'}+\overrightarrow{MB'}=\overrightarrow{MC}$$
 بین أن $($ ب

ج) نفترض أن
$$a=1$$
 و $b=j$ و $a=1$ حدد (ج مجموعة النقط M بحيث تكون النقط M مستقيمية .

z و z ثم حدد a' بدلالة a و z ثم حدد a' بدلالة a'

تمرین 20 ا

 $(E):\ mz^2-2z+\overline{m}=0$ حل في ${\mathbb C}$ المعادلة: $\sqrt{2}$ معياره $\sqrt{2}$ معياره عدد عقدي معياره $\sqrt{2}$

lpha نضع $m=\sqrt{2}e^{ilpha}$ حيث $lpha\in\mathbb{R}$ ، بين أن حلي المعادلة $z_2=e^{-i\left(rac{\pi}{4}+lpha
ight)}$ و $z_1=e^{i\left(rac{\pi}{4}-lpha
ight)}$ و $M'(z_1)$ و $M'(z_1)$ و $M'(z_1)$ و $M''(z_1)$ مربع. OM'MM'' و أن الرباعي OM'MM'' مربع.

تمرین 21

المستوى العقدي (\mathscr{P}) منسوب إلى م م م م $(v; \vec{u}; \vec{v})$ نعتبر النقط A(2+3i) و A(2+3i) و التحويلين $\mathscr{R}': \mathscr{P} \longrightarrow \mathscr{P}$

 $egin{aligned} \mathscr{R}':\mathscr{P} &\longrightarrow \mathscr{P} & \mathscr{R}:\mathscr{P} &\longrightarrow \mathscr{P} \ M(z) &\longmapsto M''((1+j)z) & M(z) &\longmapsto M'(jz) \end{aligned}$

بين أن المثلث ABC قائم الزاوية في B و أن \mathcal{R} و \mathcal{R}' دورانين ينبغي تحديد مركزيهما و زاويتيهما. \mathcal{R}' لتكن (\mathcal{R}') الدائرة المحيطة بالمثلث ABC ، حدد ثم أنشئ في المستوى العقدي الدائرتين (\mathcal{R}') \mathcal{R}' و (\mathcal{R}') \mathcal{R}' = \mathcal{R}' ليكن (\mathcal{L}) مستقيم أو لير، أكتب معادلة ديكارتية لـ \mathcal{R}' على شكل \mathcal{R}' = \mathcal{R}' + \mathcal{R}' = \mathcal{R}'

 $a_z = \mathscr{R}(v)$ و $a_z = \mathscr{R}(v)$ و $a_z = \mathscr{R}(v)$ و $a_z = \mathscr{R}(v)$ المستقيم أو لير، أكتب معادلة ديكارتية لـ $a_z = a(z+\overline{z}) + bi(z-\overline{z}) + c = 0$ حيث $a_z = a(z+\overline{z}) + bi(z-\overline{z}) + c = 0$ حيث $a_z = a(z+\overline{z}) + bi(z-\overline{z}) + c = 0$ و $a_z = a(z+\overline{z}) + bi(z-\overline{z}) + c = 0$ و $a_z = a(z+\overline{z}) + bi(z-\overline{z}) + c = 0$ و $a_z = a(z+\overline{z}) + a(z+\overline{z}) + c = 0$ و $a_z = a(z+\overline{z}) + a(z+\overline{z})$

تذكير:

مستقيم أو لير هو المستقيم المار من H و Ω و G حيث ABC هي مركز تعامد المثلث Ω هي مركز الدائرة المحيطة بالمثلث ΔBC هي مركز ثقل المثلث ΔBC .

تمرین 22

المستوى العقدي (\mathscr{P}) منسوب إلى م م م م $(O; \vec{u}; \vec{v})$. لكل $z \neq -i$ نعتبر التطبيق f لمعرف بما يلي:

$$\begin{array}{ccc}
f : \mathbb{C} & \longrightarrow & \mathbb{C} \\
z & \longmapsto & \frac{iz+3}{z+i}
\end{array}$$

و لتكن M'(z') صورة M(z) بالتطبيق M'(z') حدد ثم أنشئ في المستوى (\mathscr{P}) المجموعات التالية:

$$(\Delta)=\{M(z)\in (\mathscr{P})/\left|f(z)\right|=1\}$$

$$(\Gamma)=\{M(z)\in (\mathscr{P})/f(z)\in \mathbb{R}\}$$

$$(\Gamma_+) = \left\{ M(z) \in (\mathscr{P})/f(z) \in \mathbb{R}^{+*}
ight\}$$

$$(\Gamma_-)=ig\{M(z)\in (\mathscr{P})/f(z)\in \mathbb{R}^{-*}ig\}$$

$$egin{aligned} \left(orall z \in \mathbb{C} ackslash \left\{ -i
ight\}
ight) \colon \left(f(z) - i
ight) (z+i) = 4 \end{aligned}$$
 بين أن $egin{aligned} egin{aligned} egin{aligned} \bullet \end{array} \end{aligned}$

 $\left(ec{u};BM^{\prime}
ight)\equiv-\left(ec{u};\overrightarrow{AM}
ight)[2\pi]$ و $AM.BM^{\prime}=4$ استنتج أن $Z_B=i$ و B لحقاهما على التوالي $Z_A=-i$ و

 (\mathscr{C}) حدد ثم أنشئ في المستوى (\mathscr{P}) صورة الدائرة \bullet التي مركزها A و شعاعها r بالتطبيق f.

حدد ثم أنشئ في المستوى (\mathscr{P}) صورتي نصفا $oldsymbol{\mathfrak{G}}$ $(\mathscr{C}_+) \ = \ \{M(z) \in (\mathscr{C})/\mathrm{Im}(z) \geqslant extstyle -1 \}$ الدائر تين

f بالتطبيق $(\mathscr{C}_{-})=\{M(z)\in (\mathscr{C})/\mathrm{Im}(z)\leqslant -1\}$ نعتبر المعادلة: $(z-a)^n-(z-b)^n=0$ نعتبر المعادلة: $oldsymbol{\mathfrak{G}}$ و b عددین عقدیین a
eq b و a عدد صحیح طبیعي a

ا) بين أن صور حلول المعادلة (E) نقط مستقيمية.

ب) بين أن حلول المعادلة (E) تكتب على شكل:

$$z_k = rac{a+b}{2} + i rac{a-b}{2} \mathrm{cotan}\left(rac{k\pi}{n}
ight)$$

 $k\in\{1;2;\cdots;n-1\}$ حيث

تمرين 23 ماكالورياع. رياضية يوليوز 2005

 $\dfrac{iz-1}{(z+1)^2}$ نضع: $\mathbb{C}ackslash\{-1\}$ لكل z من

f(iy)=iy حدد العدد الحقيقي y بحيث $oldsymbol{0}$ (E) ولا في المجموعة $\stackrel{\circ}{\mathbb{C}}$ المعادلة: f(z)=zنرمز بـ z_o و z_1 و z_2 لحلول المعادلة (E)حم $\operatorname{Re}(z_1) > \operatorname{Re}(z_2)$ و $\operatorname{Re}(z_o) = 0$

 $1+z_2=e^{irac{7\pi}{6}}$ و $1+z_1=e^{irac{11\pi}{6}}$ (۱

 z_2 ب z_1 استنتج الكتابة المثلثية لكل من العددين

. $0<lpha<\pi$ نفتر ض أن $z=e^{ilpha}$ نفتر ف

 $.\overline{f(z)}=izf(z)$) بین أن

 $f(z)+\overline{f(z)}=0$ ب ϕ إذا علمت أن lpha

ج) أكتب $f(z)=re^{iarphi}$ على الشكل f(z)=f(z) حيث $(r;arphi)\in]0;+\infty[{
m x}\mathbb{R}$

نعتبر التطبيق: $f \; : \; \mathbb{C} \backslash \{i\} \; \longrightarrow \; \mathbb{C} \backslash \{i\}$ $z \longmapsto rac{iz}{}$

في المستوى العقدي (\mathscr{P}) المنسوب إلى م م م M و نربط كل نقطة B(i) نعتبر النقطة B(i) و نربط كل نقطة $O; ec{u}; ec{v})$ ىلحقها 2.

 $(E_1)=\{M(z)\in (\mathscr{P})/f(z)\in \mathbb{R}\}$ حدد المجموعتين: $oldsymbol{0}$ $(E_2) = \{M(z) \in (\mathscr{P})/f(z) \in i\mathbb{R}\}$ و

 $\mathbb{C}ackslash\{i\}$ حل في المجموعة $\mathbb{C}ackslash\{i\}$ المعادلة \mathcal{C}

 $z-i=re^{ilpha}$ لكل z من $\mathbb{C}ackslash\{i\}$ نضع \mathfrak{G}

ا) أكتب f(z)-i على الشكل المثلثى.

$$(\mathscr{C}) = \left\{ M(z) \in (\mathscr{P}) / \left| f(z) - i
ight| = \sqrt{2}
ight\}$$
ب $(\mathscr{D}) = \left\{ M(z) \in (\mathscr{P}) / \operatorname{arg}\left(f(z) - i
ight) \equiv rac{\pi}{4} [2\pi]
ight\}$ و

 $f(z_o) = 1 + 2i$ جدد z_o بحيث (ج

 $(\mathscr{C})\cap (\mathscr{D})$ د) لتكن A لحقها z_o . تحقق أن A تنتمى إلى z_o ثم أنشئ (\mathscr{D}) و (\mathscr{D}) .

تمرین 25

 $\stackrel{f e_2}{=}$ المستوى العقدي (\mathscr{P}) المنسوب إلى م م م C(c) وعتبر B(b) و A(a) و $(O; \overrightarrow{e_1}; \overrightarrow{e_2})$ $ext{Aff}(ec{v})=z'$ المتجهتين $ec{u}$ و $ec{v}$ بحيث المتجهتين المتجهتين المت $z\overline{z'}-\overline{z}z'=0 \Longleftrightarrow$ بين أن: $ec{v}$ و $ec{v}$ مستقيميتان $ec{v}$

$$ec{u}\cdotec{v}=rac{1}{2}ig(z\overline{z'}+\overline{z}z'ig)$$
 بین آن: $oldsymbol{arphi}$

 $ec{u}oldsymbol{\perp}ec{v}\Longleftrightarrow \dfrac{2}{zz'}+\overline{z}z'=0$ بين أن: $oldsymbol{artheta}$

$$w$$
 ليكن $i=-rac{1}{2}+irac{\sqrt{3}}{2}$ ليكن $j=-rac{1}{2}+irac{\sqrt{3}}{2}$

M'(z') نعتبر الدوران $\Re\left(\Omega;rac{\pi}{3}
ight)$ بين أنه إذا كانت

M(z) هي صورة M(z) بالدوران $\mathscr R$ فإن ب) استنتج أن ABC متساوي الأضلاع

$$\iff a+bj+cj^2=0 \ ou \ a+bj^2+cj=0 \ \Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0$$

 $\iff (a-b)^2 + (b-c)^2 + (c-a)^2 = 0$

ج) حدد الأعداد العقدية z التى من أجلها يكون المثلث c=iz و b=z و a=i و ABC

و بين أن \iff و B و A|a b c| = 0

 $.ig(orall x\in\mathbb{R}ig):\ e^{2ix}-1=2i\sin(x)e^{ix}$ بين أن: $oldsymbol{0}$

 $\mid \overline{a} \mid \overline{b} \mid \overline{c} \mid$

 $n\in\mathbb{N}^*$ عو \mathbb{R} $(z+1)^n=e^{2ina}$ عد \mathbb{C} عد في \mathbb{C} المعادلة \mathbb{C} عد \mathbb{C} \mathbb{C} عد \mathbb{C}

تمرین 27 . ــ

فى المستوى العقدي (\mathscr{P}) المنسوب إلى م م م لنتي ألحاقها على ($O; \overrightarrow{e_1}; \overrightarrow{e_2})$ نعتبر النقط A و B و C التي ألحاقها على a=8 التوالي هي a=8 و b=6j و C مسورة B بالدوران $C(rac{\pi}{3})$ لتكن A' صورة $\mathscr{R}''\left(B;rac{\pi}{3}
ight)$ بالدوران $A''\left(A;rac{\pi}{3}
ight)$ و A'' صورة A''أنشئ النقط A و B و C و B' و B' و A' انشئ النقط A' و B' على التوالي ألحاق النقط A' و A' و A' على التوالي ألحاق النقط A'

 $a' \in \mathbb{R}$: و تحقق أنa' . a'

 $O\in (BB'):$ ب $b'=16e^{-irac{\pi}{3}}:$ بb' بين أن

 $.c'=7+7i\sqrt{3}$ بین أن: (

(CC') و (BB') و (AA') و أن المستقيمات (AA')تتلاقى فى النقطة O .

MA+MB+MC فيما يلى نو د أن نبين أن المسافة Θ $M \equiv O$ تكون دنوية إذا كان

أ) أحسب OA + OB + OC. بين أن: OA + OB + OC و أن $1 + j + j^2 = 0$

ب) لتكن M نقطة لحقها z . تحقق مما سبق أن:

$$\left| (a-z) + (b-z)j^2 + (c-z)j \right| = \left| a+bj+cj^2 \right| = 22$$

 $|z+z'+z''|\leqslant |z|+|z'|+|z''|$ ج(z+z'+z'') نقبل أن (z+z'+z'')بين أن المسافة MA + MB + MC تكون دنوية إذا $M \equiv O$ ڪان

تمرین 28

 $\mathbb{C}ackslash\{i\}$ نضع $\mathbb{C}\setminus\{i\}$ لکل z من

$$f(z)=-rac{1}{z}$$
 ول في $f(z)=2$ المعادلتين: $\mathbf{0}$

$$(orall z \in \mathbb{C} \setminus \{i\}): f(z) = 1 \iff |z| = 1$$
 أثبت أن: 2

$$ig(orall z\in\mathbb Cackslash\{i\}ig):f(z)=1\Longleftrightarrow |z|=1$$
 : أثبت أن: Δ أثبت أن: Δ Δ اثبت أن: Δ أثبت أن: Δ حدد المجموعة: Δ حدد المجموعة: Δ

$$rgig(f(z)ig) \stackrel{ ext{$igsigma}}{=} -rac{\pi}{2} + rgig(rac{z+i}{z-i}ig)\,[2\pi]$$
 بین آن: $oldsymbol{0}$

$$(E) = \left\{ M(z) \in (\mathscr{P})/f(z) \in \mathbb{R}^+
ight\}$$
 حدد المجموعة: $oldsymbol{\mathfrak{G}}$

 $(O; ec{e_1}; ec{e_2})$ المستوى العقدي (\mathscr{P}) المنسوب إلى م م م نعتبر التطبيق F الذي يربط كل نقطة M(Z) بالنقطة $\left(rac{-1}{Z}
ight)$ بحيث M'(Z')

Fحل المعادلة $Z'=Z:(\star)$ و استنتج النقط الصامدة بـ $oldsymbol{0}$

أكتب الحلول على الشكل المثلثي.

 $oldsymbol{3}$ ليكن Z_1 و Z_2 حلي المعادلة $oldsymbol{4}(\star).$

. $\left(orall n \in \mathbb{N}
ight) \colon \ Z_1^{8n} + Z_2^{8n} = 2^{4n+1}$ $Z_B = \hat{1} - i$ و B لتكن A و B لتكن A

١) أثبت أن:

 $\left(orall z \in \mathbb{C} ackslash \{Z_A; Z_B\}
ight) \colon \, rac{Z' - Z_B}{Z' - Z_A} = i rac{Z - Z_B}{Z - Z_A}$

ب) استنتج أن:
$$rac{M'B}{M'A} = rac{MB}{MA}$$
 و أعط قياسا للزاوية $(\widetilde{M'A}; \widetilde{M'B})$ بدلالة أحد قياسات الزاوية $(\widetilde{MA}; \widetilde{MB})$

F جدد صورة المستقيم (AB) بالتطبيق

نضع $Z=e^{i\theta}$ حيث $\theta\in[0;\pi]$ على الشكل نضع المثلثي ، ثم حدد مجموعة النقط M'(Z') التي من أجلها $[0;\pi]$ يتغير $\hat{ heta}$ في المجال

O و مضلعا منتظما و $(A_o;A_1;A_2;A_3;A_4;)$ ليكن $.ec{u}=OA_o^{'}$ مرکزہ . نعتبر م م م $(O;ec{u};ec{v})$ بحیث حدد w_o و w_1 و w_2 و w_3 و w_4 على التوالى ألحاق w_o A_4 و A_3 و A_2 و A_1 و A_0 . $ig(orall k \in \{0;1;2;3;4\}ig): \ w_k = w_1^k$ بين أن $ig(oldsymbol{arphi}_k \in \{0;1;2;3;4\}ig)$ $1 + w_1 + w_1^2 + w_1^3 + w_1^4 = 0$ بين أن: $oldsymbol{0}$ استنتج أن $\frac{2\pi}{5}$ هو أحد حلي المعادلة : $\cosrac{2\pi}{5}$. ثم استنتج قیمة $4z^2+2z-1=0$ $.\sqrt{5}$ لتكن B(-1) . أحسب BA_2 بدلالة B(-1) ثم بدلالة Bلتكن $I\left(rac{\imath}{2}
ight)$. نعتبر الدائرة $I\left(rac{\imath}{2}
ight)$ و لتكن J نقطة $oldsymbol{G}$ تقاطع (\mathscr{C}) و نصف المستقيم (BI). أحسب BI و B. $m{0}$ باستعمال المسطرة و المزواة فقط ، أنشئ خماسيا منتظما.

 $(O; ec{u}; ec{v})$ في المستوى العقدي (\mathscr{P}) المنسوب إلى م م م م نعتبر النقطتين A(i) و A'(-i) و التحويل:

$$f(z) = rac{iz}{z-i}$$
 حيث $F: \mathscr{P}ackslash\{A\} \longrightarrow \mathscr{P}ackslash\{A\} \ M(z) \longmapsto M'(f(z))$

• حدد النقط الصامدة بالتطبيق F.

 ${
m F}^{-1}$ بين أن ${
m F}$ تقابل من ${
m \mathscr{P}}ackslash\{A\}$ نحو ${
m \mathscr{P}}ackslash\{A\}$ ثم حدد ${
m \mathscr{P}}$ $f(z) \in \mathbb{R} \iff |z|^2 = Im(z)$ أ) بين أن) igoplus f(z) $f(z) \in i\mathbb{R} \iff \overline{z} = -z$

ب) استنتج طبيعة المجموعتين:

 $(\mathscr{D})=\{M(z)\in \mathscr{P}/f(z)\in i\mathbb{R}\}$ $M(\mathscr{C})=\{M(z)\in \mathscr{P}/f(z)\in \mathbb{R}\}$

 $A: ig(orall z \in \mathbb{C} ackslash \{i\}ig): f(z) - i = rac{1}{z}$

.F بالتطبيق $\Gamma(A;r)$ بالتطبيق بالتطبيق $N(\overline{z})$ و M'ig(f(z)ig) و M(z) عتبر M(z)(AM') / (A'N)بين أن:

نضع $Z=e^{i heta}$ حيث Z=0 . حدد الشكل المثلثي Gل $\left|0;rac{\pi}{2}
ight|$ ، ثم استنتج أنه عندما يتغير heta على $\left|0;rac{\pi}{2}
ight|$ ، فإن

يتغير على منحنى يتم تحديده. M'ig(f(z)ig)

 $(E_n):(z-i)^n=(iz)^n$ ليكن n من \mathbb{N}^* . نعتبر المعادلة \mathfrak{G} أ) بين أن صور حلول المعادلة (E_n) نقط مستقيمية. ب بين أِن حلولِ المعادلة (E_n) تكتب على

 $\frac{1}{2}\left(i- an\left(rac{k\pi}{n}+rac{\pi}{4}
ight)
ight)$

 $k \in \{0; 1; \cdots; n-1\}$

 $P(z)=(z-i)^{4p+1}-(iz)^{4p+1}$ ، نضع: $p\in\mathbb{N}$ من أجل $oldsymbol{\hat{q}}$ أ) بين أن P حدودية محددا درجتها و معامل حدها الأكبر درجة.

ب) بین أن: $P(z) = (1-i) \prod (z-z_k)$ استنتج أن:

 $\prod\limits_{k=0}^{4p}\cos\left(rac{k\pi}{n}+rac{\pi}{4}
ight)$ ثم حدد قیمة $\sum\limits_{k=0}^{n}z_{k}=1$