Reinforcement Learning: Introduction to RL

CSIP5403 – Research Methods and AI Applications

Dr. Nathanael L. Baisa

Lecture Content

- Introduction
- Characteristics of Reinforcement Learning (RL)
- Sequential Decision Making
- Agent and Environment
- ► Fully and Partially Observable Environments
- Major Components of a RL Agent
- Categorizing RL Agents
- Exploration and Exploitation
- Learning and Planning
- Conclusion
- References

Session Outcomes

- Acquire basic knowledge of Machine Learning with focus on Reinforcement Learning (RL).
- Understand Agent and Environment in RL.
- Understand the major of components of a RL Agent and categorization of Agents.
- Understand what Learning and Planning mean in Robotics.

- Machine learning (ML) is a core subfield of AI.
- ML is a study of algorithms that enable systems to learn and improve from experience without being explicitly programmed.

ML has 3 main branches for different applications:

- Supervised learning: learns a model from a labelled training data.
 - \rightarrow Labelled training data: for each input sample data x_i , there is label y_i .
 - Regression predicts continuous valued output. E.g. linear regression, non-linear regression, etc.
 - Classification predicts discrete valued output. E.g. logistic regression, perceptron, neural networks, decision trees, SVM, etc.
- Unsupervised learning: Unlabelled training data.
 - Discovers hidden patterns in unlabelled data i.e. knowledge discovery. E.g. kmeans clustering, principal component analysis (PCA), etc.
- ▶ **Reinforcement learning:** No training data.
 - Learns through trial and error. It learns from its mistakes. It uses input from the environment. E.g. Q-learning, Temporal Difference (TD) learning, etc.

- ▶ Reinforcement learning (RL) allows an AI-driven system (sometimes referred to as an **agent**) to learn through trial and error using feedback from its actions.
- ► This feedback is either negative or positive, signalled as punishment or reward, with the aim of maximising the reward function.
- RL's goal is to find the most suitable action model to maximise total cumulative reward for the RL agent.
- ▶ With no training dataset, the RL problem is solved by the agent's own actions with input from the environment.
- RL mimics natural intelligence as it learns from its mistakes.
- RL algorithms are used in autonomous vehicles, in learning to play a game against a human opponent, etc.
 - Robot Learns to Flip Pancakes: https://www.youtube.com/watch?v=W_gxLKSsSIE

Characteristics of Reinforcement Learning

- What makes reinforcement learning different from other machine learning paradigms?
 - > There is no supervisor, only a reward signal. A reward is scalar feedback signal.
 - > Feedback is delayed, not instantaneous.
 - > Time really matters (sequential, non independent and identically distributed data).
 - > Agent's actions affect the subsequent data it receives.
 - > The agent's job is to maximise cumulative reward.
- Assume you want to make a humanoid robot walk,
 - What is a positive reward?
 - > What is a negative reward?

Characteristics of Reinforcement Learning

- What makes reinforcement learning different from other machine learning paradigms?
 - > There is no supervisor, only a reward signal. A reward is scalar feedback signal.
 - > Feedback is delayed, not instantaneous.
 - > Time really matters (sequential, non independent and identically distributed data).
 - > Agent's actions affect the subsequent data it receives.
 - > The agent's job is to maximise cumulative reward.
- Assume you want to make a humanoid robot walk,
 - What is a positive reward? Positive reward for forward motion.
 - > What is a negative reward? Negative reward for falling over.

Sequential Decision Making

- ▶ Goal: select actions to maximise total future reward.
- Actions may have long term consequences.
- Reward may be delayed.
- ▶ It may be better to sacrifice immediate reward to gain more long-term reward.
- Examples:
 - A financial investment (may take months to mature).
 - > Refuelling a helicopter (might prevent a crash in several hours).

Agent and Environment

- At each step t the agent:
 - Executes action A_t
 - Receives observation O_t
 - Receives scalar reward R_t
- ▶ The environment:
 - Receives action A_t
 - Emits observation O_{t+1}
 - \rightarrow Emits scalar reward R_{t+1}
- t increments at environment step.
- Agent interacts with an environment via states, actions and rewards.

History and State

The history is the sequence of observations, actions, rewards.

$$H_t = O_1$$
, R_1 , A_1 , ..., A_t , O_t , R_t

- > i.e. all observable variables up to time t.
- > i.e. the sensorimotor stream of a robot or embodied agent.
- What happens next depends on the history:
 - > The agent selects actions.
 - > The environment selects observations/rewards.
- **State** is the information used to determine what happens next.
- Formally, state is a function of the history:

$$S_t = f(H_t)$$

Environment State

- The **environment state** S_t^e is the environment's private representation.
- ▶ i.e. whatever data the environment uses to pick the next observation/reward.
- ► The environment state is not usually visible to the agent.
- Even if S_t^e is visible, it may contain irrelevant information.

Agent State

- The **agent state** S_t^a is the agent's internal representation.
- ▶ i.e. whatever information the agent uses to pick the next action.
- i.e. it is the information used by reinforcement learning algorithms.
- It can be any function of history:

$$S_t^a = f(H_t)$$

By performing an action A_t, the agent transitions from state to state.

Information State

- ► An **information state** (a.k.a. **Markov state**) contains all useful information from the history.
- A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1} \mid S_t] = \mathbb{P}[S_{t+1} \mid S_1, ..., S_t]$$

▶ The future is independent of the past given the present.

$$H_{1:t} \rightarrow S_t \rightarrow H_{t+1:\infty}$$

- Once the state is known, the history may be thrown away.
- ▶ i.e. the state is a sufficient statistic of the future.
- ▶ The environment state S_t^e is Markov.
- ► The history H₊ is Markov.

Fully Observable Environments

► **Full observability:** agent directly observes environment state.

$$O_t = S_t^a = S_t^e$$

- Agent state = environment state = information state.
- Formally, this is a Markov decision process (MDP).

Partially Observable Environments

- Partial observability: agent indirectly observes environment:
 - > A robot with camera vision isn't told its absolute location.
- Now agent state is not equal environment state.
- Formally, this is a partially observable Markov decision process (POMDP).
- \triangleright Agent must construct its own state representation S_t^a , e.g.
 - \gt Complete history: $S_t^a = H_t$ OR
 - Beliefs of environment state: $S^a_t = (\mathbb{P}[S^e_t = s^1], ..., \mathbb{P}[S^e_t = s^n])$ OR
 - Recurrent neural network: $S_t^a = \sigma(S_{t-1}^a W_s + O_t W_o)$

- A RL agent may include one or more of these components:
 - Policy: agent's behaviour function.
 - Value function: how good is each state and/or action.
 - Model: agent's representation of the environment.

Policy:

- A policy is the agent's behaviour. It is the strategy which dictates the actions the agent takes as a function of the agent's state as well as the environment.
- > It is a map from state to action, e.g.
 - > Deterministic policy: $a = \pi(s)$
 - > Stochastic policy: $\pi(a|s) = P[A_t = a|S_t = s]$

Value Function:

- > Value function is a prediction of future reward.
- Used to evaluate the goodness/badness of states.
- > And therefore to select between actions, e.g.

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$$

 $0 < \gamma < 1$ is discount factor

Model:

- > A model predicts what the environment will do next.
- \succ Transitions: ${\cal P}$ predicts the next state.
- \triangleright Rewards: $\mathcal R$ predicts the next (immediate) reward, e.g.

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$

 $\mathcal{R}_{s}^{a} = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$

Maze Example:

- A **maze** is a path or collection of paths, typically from an entrance to a goal.
- > Rewards: -1 per time-step.
- > Actions: N, E, S, W.
- > States: Agent's location.

- Maze Example: Policy
 - \rightarrow Arrows represent policy $\pi(s)$ for each state s.

- Maze Example: Value Function
 - > Numbers represent value $v_{\pi}(s)$ of each state s.

Maze Example: Model

- Agent may have an internal model of the environment.
- > Dynamics: how actions change the state.
- > Rewards: how much reward from each state.
- > The model may be imperfect.
- ightarrow Grid layout represents transition model $\mathcal{P}^a_{ss'}$
- Numbers represent immediate reward \mathcal{R}_s^a from each state s (same for all a).

Categorizing RL Agents

- Based on policy and value function:
 - Value Based
 - No Policy (Implicit)
 - Value Function
 - E.g. Q-Learning, TD Learning, Monte Carlo, SARSA (State—action—reward—state—action), etc.
 - Policy Based
 - Policy
 - No Value Function
 - E.g. REINFORCE, Proximal Policy Optimization (PPO), etc.
 - Actor Critic
 - Policy
 - Value Function
 - E.g. Asynchronous Advantage Actor-Critic (A3C), etc.

Categorizing RL Agents

- Based on existence of model of the environment:
 - Model Free
 - > Policy and/or Value Function.
 - No Model.
 - E.g. Q-Learning, TD Learning, Monte Carlo, SARSA, A3C, etc.
 - Model Based
 - > Policy and/or Value Function.
 - Model.
 - > Has limited applications in practice.
 - > E.g. Dynamic Programming (DP), etc.

RL Agent Taxonomy

Learning and Planning

- ► Two fundamental problems in sequential decision making.
 - > Reinforcement Learning:
 - > The environment is initially unknown.
 - > The agent interacts with the environment.
 - > The agent improves its policy.
 - Planning:
 - > A model of the environment is known.
 - > The agent performs computations with its model (without any external interaction).
 - > The agent improves its policy.
 - > a.k.a. deliberation, reasoning, introspection, pondering, thought, search.

Exploration and Exploitation

- Reinforcement learning is like trial-and-error learning.
- The agent should discover a good policy.
 - > From its experiences of the environment.
 - Without losing too much reward along the way.
- Exploration finds more information about the environment.
- Exploitation exploits known information to maximise reward.
- ▶ It is usually important to explore as well as exploit.
- Example:
 - Oil drilling
 - > Exploitation: Drill at the best known location.
 - > Exploration: Drill at a new location.

Prediction and Control

- ▶ Prediction: evaluate the future.
 - > Given a policy.
- Control: optimise the future.
 - > Find the best policy.

Conclusion

- ► There are 3 main branches of machine learning: supervised, unsupervised and reinforcement learning.
- Reinforcement learning (RL) allows an agent to learn through trial and error using feedback from its actions.
- RL's goal is to find the most suitable action model to maximise total cumulative reward for the RL agent.
- ▶ RL mimics natural intelligence as it learns from its mistakes.
- ► The major components of a RL agent are policy, value function and model.
- ▶ RL algorithms are used in autonomous vehicles, in learning to play a game against a human opponent, etc.

References

- R. Sutton and A. Barto, 'Reinforcement Learning: An Introduction, 2nd Edition', MIT press, 2018.
- C. Szepesvari, 'Algorithms for Reinforcement Learning', Morgan & Claypool Publishers, 2010.
- https://online.york.ac.uk/what-is-reinforcement-learning/
- https://github.com/dennybritz/reinforcement-learning
- Awesome RL: https://github.com/aikorea/awesome-rl