

合肥工业大学 计算机与信息学院 实验报告

课	程:_	单片机原理与应用
专业	班级:_	物联网工程 19-2 班
学	号:_	2019217819
姓	名:_	付炎平
老	师:_	欧阳一鸣
		2022年5月22日

目录

1	头粒-	一 跑马灯买验	3
	1.1	实验目的与要求	. 3
	1.2	实验设备	. 3
	1.3	实验内容	. 3
	1.4	实验原理图	. 3
	1.5	实验步骤	. 3
	1.6	参考程序	. 4
		实验结果	
2	-	二 74HC138 译码器实验	
		实验目的与要求	
		实验设备	_
		实验内容	
		实验原理图	
		实验步骤	
		演示程序	
		实验结果	
_		实验扩展及思考	
3		三 PWM 电压转换实验(选做)	
		实验目的	
		实验设备	
		实验内容	
		实验原理图	
		实验步骤	
		演示程序	
		实验结果	
_		实验扩展及思考	
4		四 8255 控制交通灯实验	
		实验目的与要求	
		实验设备	
		实验内容	
		实验原理图	
		实验步骤	
		演示程序	
		实验结果	
		实验扩展及思考	
		实验总结	
5		五 键盘、数码块实验(选做)	
		实验目的与要求	
		实验设备	
		实验内容	
		实验原理图	
		实验步骤	
	5.6	演示程序	18

1 实验一 跑马灯实验

1.1 实验目的与要求

熟悉星研集成环境软件或熟悉 Keil C51 集成环境软件的使用方法。 熟悉 MCS51 汇编指令,能自己编写简单的程序,控制硬件。

1.2 实验设备

SUN 系列实验仪一套、PC 机一台

1.3 实验内容

①熟悉星研集成环境软件或熟悉 Keil C51 集成环境软件的安装和使用方法。 ②照接线图编写程序:使用 P1 口控制 F5 区的 8 个指示灯,循环点亮,瞬间只有一个灯亮。

③观察实验结果,验证程序是否正确。

1.4 实验原理图

1.5 实验步骤

①连线说明:注意: JP51 对应于 P1.0, P1.1, ······P1.7 共用到了 8 个引脚

A3 ⊠: JP51 —— F5 ⊠: JP65

②编写程序或将参考程序中3个空白的地方填完整。

③实验结果:通过 F5 区的 LED 指示灯(8个指示灯轮流点亮),观察实验的输出结果是否正确。

1.6 参考程序

	ORG <u>LJMP</u>	0000H START	;在 0000H 处放一条跳转指令, 跳到 START 处
CTADT.	ORG	0100H	
START:	MOV MOV	SP, #60H A, #0FFH	
	CLR	С	
START1:	<u>RL</u>	A	;连同符号位 C 进行循环左移
	MOV	P1, A	
	ACALL	Delay	
	SJMP	START1	
Delay:	MOV	R5,#2	;延时
Delay1:	MOV	R6,#0	
Delay2:	MOV	R7,#0	
	DJNZ	R7,\$	
	<u>DJNZ</u>	R6, Delay2	;将 R6 中的数减 1,不为 0 就跳转
	DJNZ	R5, Delay1	
	RET		
	END		

如果读者使用星研集成环境软件,请考虑以下问题?

- 1、运行程序前,打开变量窗;
- 2、使用单步进入命令,运行到第六行后,运行过程中变量窗有何变化?将鼠标停留在 A、SP 上一秒后,出现什么?,它与变量窗使用场合的区别?
- 3、第九行是调用延时子程序,如何进入延时子程序(使用单步进入命令)? 如何将延时子程序一下子运行完毕(使用单步命令;也可以将光标移到下一行, 使用运行到光标处命令;)?单步进入命令与单步命令有何区别?
- 4、运行几次后,在第十行设置一个断点,使用全速断点命令运行几次,观察运行结果,它与运行到光标处命令有何区别?
 - 5、Delay 是一个延时子程序,改变延时常数,使用全速运行命令,显示发

生了什么变化?

- 6、观察寄存器,有哪几种方法?
- 1) 在工作区窗的通用寄存器标签视中;
- 2) 变量窗
- 3) 鼠标停留在寄存器上
- 4) 观察窗
- 5) 寄存器窗

2 实验二 74HC138 译码器实验

2.1 实验目的与要求

①掌握 74HC138 译码器的工作原理,熟悉 74HC138 译码器的具体运用连接方法,了解 74HC138 是如何译码的。

②认真预习本节实验内容,尝试自行编写程序,填写实验报告

2.2 实验设备

SUN 系列实验仪一套、PC 机一台

2.3 实验内容

①编写程序:使用单片机的 P1.0、P1.1、P1.2 控制 74HC138 的数据输入端,通过译码产生 8 选 1 个选通信号,轮流点亮 8 个 LED 指示灯。

②运行程序, 验证译码的正确性。

2.4 实验原理图

2.5 实验步骤

①连线说明:注意:此处只用到了P1.0, P1.1, P1.2 共 3 个引脚,这和上

个实验不同的。

G2 ⊠: A, B, C	 A3 ⊠: P1.0, P1.1, P1.2
G2 ⊠: G1、G2A、G2B	 C1 ⊠: VCC、GND、GND
G2 ⊠: JP35	 F5 区: JP65 (LED 指示灯)

②调试程序,查看运行结果是否正确。

2.6 演示程序

START:

138 译码器实验(跑马灯), P1.0--A, P1.1---B, P1.2--C, /G2B--GND, /G2A--GND

ORG 0000H

LJMP START

ORG 0100H MOV SP, #60H

<u>CLR</u> A ;使累加器 A 清 0

START1: MOV P1, A ; 初值,第一次0位LED亮

LCALL DLTIME ;调用延迟子程序 DLTIME

INC A

CLR ;使 ACC 的第 3 位为 0

SJMP START1

DLTIME: MOV R5, #20
DLTIME1: MOV R6, #100
DLTIME2: MOV R7, #100

DJNZ R7,\$

DJNZ R6, DLTIME2 DJNZ R5, DLTIME1

RET

END

在单片机系统中,74HC138 通常用来产生片选信号,请读者考虑一下,应 如何处理?

答: 取三根底地址线,接到38译码器的输入端,译码产生,8个使能控制信号。

3 实验三 PWM 电压转换实验(选做)

3.1 实验目的

- ①了解 PWM 电压转换原理
- ②掌握单片机控制的 PWM 电压转换

3.2 实验设备

SUN 系列实验仪一套、PC 机一台

3.3 实验内容

- ①PWM 电压转换原理:
- (1)将一定频率的输入信号转换为直流电;
- (2)通过调节输入信号占空比调节输出的直流电电压,输出电压随着占空比增大而减小
 - ②实验过程
- (1)输入 15kHZ 左右的方波, 经 LM358 进行 PWM 电压转换,输出直流电,驱动直流电机
- (2)通过按键调整占空比来改变 PWM 输出电压,直流电机的转速会随之变化

3.4 实验原理图

3.5 实验步骤

①连线说明:

E2 ⊠: IN	 A3 区: P1.2, 方波输入
E2 ⊠: OUT	 E2 ⊠: IN1
E2 ⊠: OUT1	 E1 区: CTRL,直流电机电源输入
A3 ⊠: JP51	 F5 ⊠: JP74

②通过 F5 区的 1、2 键调整占空比来改变 PWM 输出电压,直流电机的转速会随之变化:

1号键减少占空比;2号键增加占空比

3.6 演示程序

IN	<u>BIT</u>	P1. 2	; PWM 方波输入, 定义 IN 代表 P1.2
PWM_LOW	DATA	30H	;低电平时间
PWM_HIGH	DATA	31H	;高电平时间,控制频率在 15kHZ 左右
periods	EQU	ОЕОН	;周期 64us
	ORG	0000Н	
	LJMP	START	
	ORG	000ВН	
	LJMP	iTIMERO	
	ORG	0100Н	
START:	MOV	SP, #60H	
	MOV	PWM LOW, #period	ds
	MOV	PWM HIGH, #perio	
	MOV	THO,#periods	
	MOV	TLO,#periods	
	MOV	TMOD, #02H	
	<u>SETB</u>	EA	; 使 EA 置 1
	SETB	ET0	
	SETB	TRO	
START1:	ACALL	ScanKey	
	JNZ	Key1	
KeyO:	MOV	A, PWM_HIGH	;增加占空比
	CJNE	A, #0FBH, Key0_1	
	SJMP	START1	;大于这个值,对定时中断已反应不过来
Key0_1:	INC	PWM_HIGH	
	<u>DEC</u>	PWM_LOW	;低电平时间减1,从而增加占空
			;比
	SJMP	START1	

Key1: MOV A, PWM_LOW ;减少占空比

CJNE A, #0FBH, Key1_1

SJMP START1 ;大于这个值,对定时中断已反应不过来

Key1_1: INC PWM_LOW ;低电平时间加 1,从而减少占空

;比

DEC PWM_HIGH

SJMP START1

iTIMERO: JBC IN, iTIMERO_1

MOV TLO, PWM_HIGH

SETB IN

RETI

iTIMERO_1: MOV TLO, PWM_LOW

NOP

RETI

ScanKey: JNB P1.0, ScanKey1 ;键扫描

JB P1.1, ScanKey

ScanKey1: ACALL Delay20ms ;消抖动

ACALL Delay20ms

JNB P1.0, ScanKey2 JB P1.1, ScanKey

MOV A, #1

SJMP ScanKey3

ScanKey2: CLR A

ScanKey3: JNB P1.0,\$

JNB P1.1,\$

RET

Delay20ms: MOV R6, #10
Delay1: MOV R7, #100

DJNZ R7,\$

DJNZ R6, Delay1

RET

END

①改变 PWM 的输入频率,使用示波器观看 LM358 的输出,由此加深对 PWM 电压转换的了解。

4 实验四 8255 控制交通灯实验

4.1 实验目的与要求

①了解 8255 芯片的工作原理,熟悉其初始化编程方法以及输入、输出程序设计技巧。学会使用 8255 并行接口芯片实现各种控制功能,如本实验(控制交通灯)等。

②熟悉 8255 内部结构和与单片机的接口逻辑, 熟悉 8255 芯片的 3 种工作方式以及控制字格式。

③认真预习本节实验内容,尝试自行编写程序,填写实验报告。

4.2 实验设备

SUN 系列实验仪一套、PC 机一台

4.3 实验内容

①编写程序: 使用 8255 的 PA0..2、PA4..6 控制 LED 指示灯,实现交通灯功能。

②连接线路验证 8255 的功能,熟悉它的使用方法。

4.4 实验原理图

4.5 实验步骤

①连线说明:

B6 ⊠: CS、A0、A1	 A3 ⊠: CS1、A0、A1
B6 ⊠: JP56 (PA □)	 F5 ⊠: JP65

②观察实验结果,是否能看到模拟的交通灯控制过程。

4.6 演示程序

COM_ADD	XDATA	0F003H	
PA_ADD	XDATA	0F000H	
PB_ADD	XDATA	0F001H	
PC_ADD	XDATA	0F002H	
	ORG	0000Н	
	LJMP	STAR	
	ORG	0100Н	
STAR:	MOV	SP, #60H	
	MOV	DPTR, #COM_ADD	
	MOV	А, #80Н	;PA、PB、PC 为基本输出模式
	MOVX	@DPTR, A	
	MOV	DPTR, #PA_ADD	;灯全熄灭
	MOV	A, #OFFH	
	MOVX	@DPTR, A	;将累加器 A 的值送到片外 RAM 中
START1:	MOV	А, #37Н	
	MOVC	A, @A+PC	
	MOVX	@DPTR, A	;东西绿灯,南北红灯
	<u>LCALL</u>	DL5S	;调用延时 5S 的子程序
	MOV	R4, #6	
START2:	MOV	А, #30Н	
	MOVC	A, @A+PC	
	MOVX	@DPTR, A	;东西绿灯闪烁,南北红灯
	ACALL	DL500ms	
	MOV	А, #29Н	
	MOVC	A, @A+PC	
	MOVX	@DPTR, A	
	ACALL	DL500ms	
	DJNZ	R4, START2	
	MOV	А, #23Н	;东西黄灯亮,南北红灯
	MOVC	A, @A+PC	
	MOVX	@DPTR, A	
	ACALL	DL3S	
	MOV	A, #1EH	;东西红灯,南北绿灯

	MOVC MOVX ACALL	A, @A+PC @DPTR, A DL5S	
	MOV	R4,#6	
START3:	MOV	A, #17H	;东西红灯,南北绿灯闪烁
	MOVC	A, @A+PC	
	MOVX	@DPTR, A	
	ACALL	DL500ms	
	MOV	A,#10H	
	MOVC	A, @A+PC	
	MOVX	@DPTR, A	
	ACALL	DL500ms	
	DJNZ	R4, START3	
	MOV	A,#OAH	;东西红灯,南北黄灯亮
	MOVC	A, @A+PC	
	MOVX	@DPTR, A	
	ACALL	DL3S	
	<u>SJMP</u>	START1	;跳转到 START1 处
	DB	01111110B	;东西绿灯,南北红灯
	DB	11111110B	;东西绿灯闪烁,南北红灯
	DB	10111110B	;东西黄灯亮,南北红灯
	DB	11011011B	;东西红灯,南北绿灯
	DB	11011111B	;东西红灯,南北绿灯闪烁
	DB	11011101B	;东西红灯,南北黄灯亮
DL500ms:	MOV	R5, #25	
DL500ms1:	MOV	R6, #100	
DL500ms2:	MOV	R7, #100	
	DJNZ	R7,\$	
	<u>DJNZ</u>	R6, DL500ms2	;将 R6 减 1, 不为 0 就跳转。
	DJNZ	R5, DL500ms1	
	RET		
DL3S:	MOV	R4,#6	
DL3S1:	LCALL	DL500ms	
	DJNZ	R4, DL5S1	
	RET		
DL5S:	MOV	R4, #10	
DL5S1:	LCALL	DL500ms	
	DJNZ	R4, DL5S1	
	RET		

4.7 实验结果

END

①如何对 8255 的 PC 口进行位操作?

答:8255 控制字 D7=1 时,D6~DO 为口模式控制,D7=O 时控制字为 PC 口的位操作模式,如控制字=00H, PCO 复位;控制字=01H, PCO 置位;控制字=OEH, PC7 复位;控制字=OFH, PC7 置位; 其中 D6~D4 没定义,D3~D1 从 000B~111B 分别指定 PCO~PC7 脚,DO 位为相应的电平高低,0 为低电平,1 为高电平。

4.9 实验总结

通过本次试验,我了解了8255 芯片的工作原理,熟悉其初始化编程方法以及输入、输出程序设计技巧。学会使用8255 并行接口芯片实现控制交通灯。熟悉8255 内部结构和与8088的接口逻辑,熟悉8255 芯片的3种工作方式以及控制字格式。

5 实验五 键盘、数码块实验(选做)

5.1 实验目的与要求

- ①进一步掌握 8255 的设计、编程方法。
- ②掌握矩阵键盘的扫描方法
- ③掌握动态扫描数码块的方法
- ④认真预习,做好实验前的准备工作,填写实验报告

5.2 实验设备

SUN 系列实验仪一套、PC 机一台

5.3 实验内容

- ①编写程序:扫描键盘,如有按键,键号显示于数码管。
- ②连接线路,验证8255的功能,熟悉它的使用方法。

5.4 实验原理图

5.5 实验步骤

①连线说明:

```
B6 ⋈: CS、A0、A1 — A3 ⋈: CS1、A0、A1
B6 ⋈: JP53(PB □)、JP75(B)、JP79(C)、JP52(PC □) — F4 ⋈: A、B、C、D
```

②运行程序,观察实验结果(任意按下 F4 区 4X4 键盘几个键,它上面的 8 个 LED 显示器会将按键的编码从左至右依次显示出来),可依此验证对程序的正确性。

5.6 演示程序

```
#define u8 unsigned char
xdata u8 COM 8255 at 0xF003;
xdata u8 PA 8255 at 0xF000;
xdata u8 PB 8255 at 0xF001;
xdata u8 PC 8255 at 0xF002;
u8 buffer[8];
                          //8 个字节显示缓冲区
void DL1()
{
   u8 i,j;
   i = 0x2;
   do
       j = 250;
       while(--j)
        {;}
   } while(--i);
}
code const u8 SegArray[] =
{0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0
x8e,0xff;
void DIR()
{
   u8 i = 0xfe;
   u8* pBuffer = buffer;
   while(i != 0xff)
       PA 8255 = SegArray[*pBuffer++]; //段数据->8255 PA 口
       PB 8255 = i;
                                      //扫描模式->8255 PB 口
```

```
DL1();
                                    //延迟 1ms
       i = ((i << 1) \mid 0x1);
       PB 8255 = 0xff;
}
u8 AllKey()
   PB 8255 = 0x0;
                                    //全"0"->扫描口
   return ~PC_8255 & 0x3;
                                    //读键状态, 取低二位
}
u8 keyi()
   u8 i,j;
   while (1)
                                    //调用判有无闭合键子程序
       if(AllKey() == 0)
           DIR();
                                    //调用显示子程序,延迟 6ms
           DIR();
           continue;
       }
       DIR();
       DIR();
       if(AllKey() == 0)
                                   //调用判有无闭合键子程序
           DIR();
           continue;
       i = 0xfe;
       j = 0;
       while(i != 0xff)
           PB 8255 = i;
           if ((PC 8255 \& 0x1) == 0)
                                        //0 行有键闭合
              break;
           else if ((PC 8255 & 0x2) == 0)
                                        //1 行有键闭合
              i += 8;
              break;
```

```
j++;
                                      //列计数器加1
           i = ((i << 1) | 1);
                                      //完成一次扫描,没有键按下
       if (i == 0xff)
           continue;
       do
           DIR();
       }while(AllKey() != 0);
                                          //判断释放否
       return j;
                                      //键号
    }
}
void main()
{
   u8 i;
                                          //PA、PB 输出,PC 输入
   COM_8255 = 0x89;
   for (i = 0; i < 8; i++)
                                      //0x10-消隐
       buffer[i] = 0x10;
   DIR();
   while(1)
    {
       for (i = 0; i < 8; i++)
           buffer[i] = keyi();
    }
}
```


⊕显示程序中延时函数起什么作用?如何调节数码块亮度?

答:在每段程序后面,都有一个延时和消影。消影的主要作用是避免下段代码受到干扰,而延时的作用是区分显示和消影,避免无法观察的数字的现象。调节数码块亮度:增大电压。