# Обобщенная жадная градиентная оптимизация гиперпараметров

К.Д. Яковлев iakovlev.kd@phystech.edu

Москва, Московский физико-технический институт Научный руководитель: к.ф.-м.н. Бахтеев Олег Юрьевич

# Цель исследования

#### Цель

Предложить градиентный метод оптимизации гиперпараметров с линейейной по количеству параметров и гиперпараметров сложностью итерации и затратами памяти.

#### Проблема

Существующие методы не гарантируют выполнения следующих условий одновременно: 1) отсутствие требований на сходимость внутренней процедуры оптимизации к единственному решению, 2) отсутствие смещения из-за короткого горизонта, 3) линейная сложность итерации и затраты памяти.

#### Метод решения

Предлагаемый метод основан на агрегации жадных гиперградиентов без дополнительных вычислительных затрат.

#### Агрегация жадных гиперградиентов

Пусть задано  $\gamma \in (0,1)$ . Тогда аппроксимация гиперградиента запишется как:

$$\hat{d}_{\alpha}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}; \gamma) = \nabla_{\alpha}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}) + \sum_{t=1}^{\mathcal{T}} \gamma^{\mathcal{T}-t} \nabla_{\mathbf{w}_{t}} \mathcal{L}_{\mathsf{val}}(\mathbf{w}_{t}, \boldsymbol{\alpha}) \mathbf{B}_{t}.$$

|                    | IFT      | RMD          | DrMAD | T1 - T2      | Ours     |
|--------------------|----------|--------------|-------|--------------|----------|
| Онлайн оптимизация | ×        | ✓            | ×     | <b>√</b>     | <b>✓</b> |
| Длинный горизонт   | ✓        | $\checkmark$ | ✓     | ×            | ✓        |
| Линейная сложность | <b>√</b> | ×            | ✓     | $\checkmark$ | ✓        |

## Постановка задачи оптимизации гиперпараметров

lacktriangle Пусть задан вектор параметров модели lacktriangle и вектор гиперпараметров  $lpha\in\mathbb{R}^h$ . Задача оптимизации:

$$\begin{split} \boldsymbol{\alpha}^* &= \text{arg} \min_{\boldsymbol{\alpha}} \mathcal{L}_2(\boldsymbol{w}^*, \boldsymbol{\alpha}), \\ \mathrm{s.t.} \quad \boldsymbol{w}^* &= \text{arg} \min_{\boldsymbol{w}} \mathcal{L}_1(\boldsymbol{w}, \boldsymbol{\alpha}). \end{split}$$

ightharpoonup Пусть внутренняя задача решается с помощью оптимизатора  $\Phi(.,.)$ :

$$\mathbf{w}_{t+1}(lpha) = \mathbf{\Phi}(\mathbf{w}_t, lpha), \quad t = \overline{1, T}; \quad \mathbf{\Phi}(\mathbf{w}_t, lpha) = \mathbf{w}_t - \eta \nabla_{\mathbf{w}_t} \mathcal{L}_{ ext{train}}(\mathbf{w}_t, lpha)$$

Гиперградиент запишется как:

$$\begin{split} & d_{\alpha}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{T}, \alpha) = \nabla_{\alpha}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{T}, \alpha) + \sum_{t=1}^{T} \nabla_{\mathbf{w}_{T}}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{T}, \alpha) \left(\prod_{k=t+1}^{T} \mathbf{A}_{k}\right) \mathbf{B}_{t}, \\ & \mathbf{A}_{k} = \frac{\partial \mathbf{\Phi}(\mathbf{w}_{k-1}, \alpha)}{\partial \mathbf{w}_{k-1}}, \quad \mathbf{B}_{t} = \frac{\partial \mathbf{\Phi}(\mathbf{w}_{t-1}, \alpha)}{\partial \alpha}. \end{split}$$

# Аппроксимация гиперградиента

Пусть задано  $\gamma \in (0,1)$ . Тогда аппроксимация гиперградиента запишется как:

$$\hat{d}_{\alpha}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{\mathcal{T}}, \alpha; \gamma) = \nabla_{\alpha}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{\mathcal{T}}, \alpha) + \sum_{t=1}^{T} \gamma^{\mathsf{T}-t} \nabla_{\mathbf{w}_{t}}\mathcal{L}_{\mathsf{val}}(\mathbf{w}_{t}, \alpha) \mathbf{B}_{t}.$$



# Обобщение метода T1-T2

#### Определение

Аппроксимация гиперградиента, определяемая методом T1-T2 запишется как:

$$\hat{d}_{\alpha}^{T1-T2}\mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}},\alpha) = \nabla_{\alpha}\mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}},\alpha) + \nabla_{\mathbf{w}_{\mathcal{T}}}\mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}},\alpha)\mathbf{B}_{\mathcal{T}}.$$

## Теорема (Яковлев, 2024)

Пусть  $\hat{d}_{\alpha}(\mathbf{w}_T, \alpha; \gamma)$  — предложенная аппроксимация гиперградиента. Тогда имеет место следующий предел:

$$\lim_{\gamma \to 0^+} \hat{d}_{\boldsymbol{\alpha}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}; \gamma) = \nabla_{\boldsymbol{\alpha}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}) + \nabla_{\mathbf{w}_{\mathcal{T}}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}) \mathbf{B}_{\mathcal{T}}.$$

Таким образом, предложенный подход является обобщением T1-T2.

# Достаточное условие спуска

#### Предположения

- 1.  $\mathcal{L}_{\mathrm{val}}(., \alpha)$  является L-гладкой and  $\mu$ -сильно выпуклой для любого  $\alpha$ .
- 2.  $\frac{\partial \Phi(.,\alpha)}{\partial \alpha}$  является  $C_B$ -Липшицевой для любого  $\alpha$ .
- 3.  $\|\frac{\partial \widehat{\Phi}(\mathbf{w}, \alpha)}{\partial \alpha}\| \leq B$  для любой пары  $(\mathbf{w}, \alpha)$  для некоторого  $B \geq 0$ .
- 4. **w** принадлежит некоторому выпуклому множеству с диаметром  $D < \infty$ .
- 5.  $\Phi(\mathbf{w}, \alpha) = \mathbf{w} \eta \nabla_{\mathbf{w}} \mathcal{L}_{\text{train}}(\mathbf{w}, \alpha)$  для некоторого  $\eta \geq 0$ .
- 6.  $\nabla^2_{\mathbf{w}} \mathcal{L}_{\mathrm{train}}(., \alpha) = \mathbf{I}$  для любого  $\alpha$ , а также  $\nabla_{\alpha} \mathcal{L}_{\mathrm{val}}(\mathbf{w}, \alpha) = \mathbf{0}$  для любого  $\mathbf{w}$ .
- 7.  $\mathbf{B}_t \mathbf{B}_t^{\top} \succeq \kappa \mathbf{I}$  для некоторого  $\kappa > 0$ .
- 8. Определим  $\mathbf{w}_{\infty} := \arg\min_{\mathbf{w}} \mathcal{L}_{\mathrm{train}}(\mathbf{w}, \boldsymbol{\alpha}), \ \mathbf{w}_{2}^{*} := \arg\min_{\mathbf{w}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}, \boldsymbol{\alpha}).$  Пусть  $\|\mathbf{w}_{\infty} \mathbf{w}_{2}^{*}\| \geq 2De^{-\mu\eta T} + \delta$ , для некоторого  $\delta > 0$ .

#### Теорема (Яковлев, 2024)

Пусть  $\gamma=1-\eta\in(0,1)$ . Пусть также выполнены предположения (1-8), тогда найдется достаточно большое T и универсальная константа c>0 такая, что:

$$d_{\boldsymbol{\alpha}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}_{T}, \boldsymbol{\alpha}) \hat{d}_{\boldsymbol{\alpha}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}_{T}, \boldsymbol{\alpha}; \boldsymbol{\gamma})^{\top} \geq c \|d_{\boldsymbol{\alpha}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}_{T}, \boldsymbol{\alpha})\|_{2}^{2}.$$

#### Постановка вычислительного эксперимента

- ▶ Цель сравнение качества предложенного подхода с существующими методами подсчета гиперградиента.
- ▶ Эксперимент проводится на задаче мета-обучения.

$$\alpha^* = \arg\min_{\boldsymbol{\alpha}} \mathbb{E}_{\mathcal{T}} \mathbb{E}_{\mathcal{S}|\mathcal{T}} \mathcal{L}_{\mathrm{val}}(\mathbf{w}^*, \boldsymbol{\alpha}; \mathcal{S}),$$
 s.t. 
$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathcal{L}_{\mathrm{train}}(\mathbf{w}, \boldsymbol{\alpha}; \mathcal{S}).$$

В сравнении участвуют следующие базовые методы:

$$\begin{aligned} & \text{(FO)}: \quad \hat{d}^{\mathsf{FO}}_{\alpha}\mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}) = \nabla_{\boldsymbol{\alpha}}\mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}), \\ & \text{(IFT)}: \quad \hat{d}^{\mathsf{IFT}}_{\alpha}\mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}) = \nabla_{\boldsymbol{\alpha}}\mathcal{L}_{\mathrm{val}} - \nabla_{\mathbf{w}}\mathcal{L}_{\mathrm{val}} \left( \sum_{j \leq i} \left[ \mathbf{I} - \nabla^2_{\mathbf{w}, \mathbf{w}} \mathcal{L}_{\mathrm{train}} \right]^j \right) \nabla^2_{\mathbf{w}, \boldsymbol{\alpha}} \mathcal{L}_{\mathrm{train}} \bigg|_{(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha})}, \\ & \text{(T1-T2)}: \quad \hat{d}^{\mathsf{T1-T2}}_{\alpha}\mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}) = \nabla_{\boldsymbol{\alpha}}\mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}) + \nabla_{\mathbf{w}_{\mathcal{T}}}\mathcal{L}_{\mathrm{val}}(\mathbf{w}_{\mathcal{T}}, \boldsymbol{\alpha}) \mathbf{B}_{\mathcal{T}}. \end{aligned}$$

# Результаты вычислительного эксперимента

- Рассматриваются задачи классификации на n классов с k примерами на каждый класс (n-way, k-shot).
- Приводится точность предсказаний на мета-контроле, а также вычислительная сложность итерации подсчета гиперградиента.

| Method                 | #JVPs | 3-way, 10-shot                     | 4-way, 10-shot                   | 5-way, 10-shot                   |
|------------------------|-------|------------------------------------|----------------------------------|----------------------------------|
| FO                     | 0     | $43.48 \pm 0.69$                   | $34.15\pm0.53$                   | $28.59\pm0.47$                   |
| T1 - T2                | 1     | $42.96 \pm 0.79$                   | $33.95\pm0.64$                   | $27.59\pm0.46$                   |
| IFT                    | 11    | $40.14 \pm 0.73$                   | $33.23\pm0.41$                   | $27.20\pm0.52$                   |
| Ours ( $\gamma=0.99$ ) | 10    | $\textbf{46.10} \pm \textbf{0.82}$ | $\textbf{36.94}\pm\textbf{1.07}$ | $\textbf{29.79}\pm\textbf{0.62}$ |

Из таблицы видно, что предложенный метод превосходит существующие методы градиентной оптимизации гиперпараметров в терминах точности предсказаний на мета-контроле, имея сопоставимые вычислительные затраты.

#### Выносится на защиту

- Рассмотрена задача оптимизации гиперпараметров.
- Предложен метод оптимизации гиперпараметров, удовлетворяющий одновременно трем условиям:
  - онлайн оптимизация
  - ▶ отсутствие смещения из-за короткого горизонта
  - линейная сложность итерации и затраты памяти.
- Продемонстрирована работоспособность предлагаемого решения.
- Проведен теоретический анализ предложенного метода.

# Список публикаций

- (core-A\*) Yakovlev K. et al. GEC-DePenD: Non-Autoregressive Grammatical Error Correction with Decoupled Permutation and Decoding //Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). – 2023. – C. 1546-1558.
- ➤ (core-A\*) Yakovlev K. et al. Sinkhorn Transformations for Single-Query Postprocessing in Text-Video Retrieval //Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023. C. 2394-2398.
- ➤ Yakovlev K. D. et al. Neural Architecture Search with Structure Complexity Control //International Conference on Analysis of Images, Social Networks and Texts. Cham : Springer International Publishing, 2021. C. 207-219.

# Выступления на конференциях

- Яковлев К.Д. Обобщенная жадная градиентная оптимизация гиперпараметров. //Труды 66-й Всероссийской научной конференции МФТИ. 2024.
- Яковлев К.Д. Поиск согласованных нейросетевых моделей в задаче мультидоменного обучения. //Труды 65-й Всероссийской научной конференции МФТИ в честь 115-летия Л.Д. Ландау. - 2023.
- Яковлев К.Д., Гребенькова О.С., Бахтеев О.Ю., Стрижов В.В. Выбор архитектуры модели с контролем сложности // Труды 64-й Всероссийской научной конференции МФТИ. - 2021.