Data Exploration, Visualization, and Feature Engineering

Data Science Dojo

Agenda

- Why data exploration and visualization
- Exploration and visualization using R
 - Core R functionality iris dataset
 - lattice package mtcars dataset
 - ggplot2 package diamonds and G20 datasets
- Story-telling with data
 - Titanic data set

WHY DATA EXPLORATION AND VISUALIZATION

Data beats algorithm but...

- More data usually yields good generalization performance, even with a simple algorithm
- But there are caveats
 - Amount of data may have diminishing returns
 - Data quality and variety matters
 - A decent performing learning algorithm is still needed
 - Most importantly, extracting useful features out of data is important

Why feature engineering matters

■ 23:05:33 –5 UTC, April 3, 2014

Hour of date	Day of week	AM/PM
	+	•

Dispelling common myths

 There is NO single ML algorithm that will take raw data and give you the best model

 You do NOT need to know a lot of machine learning algorithms to build robust predictive models

Janitorial work is important

- Not spending time on understanding your data is a source of many problems!
- Remember the 80/20 rule
 - 80%: Data cleaning, data exploration, feature engineering, pre-processing etc...
 - 20%: Model building

EXPLORATION AND VISUALIZATION USING R

Objectives

- Develop an understanding of the high-level thinking process of data exploration
- Make sense of data using visualization techniques
- Learn to perform feature engineering
- Become a good storyteller

Anscombe's quartet

I		II		III		IV		
x	у	х	у	х	у	х	у	
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58	
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76	
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71	
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84	
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47	
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04	
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25	
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50	
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56	
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91	
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89	

Anscombe's quartet

I		II		III		IV	
X	У	X	у	X	у	X	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Consider the 4 following different datasets

Mean of X	9
Variance of X	11
Mean of Y	7.5
Variance of Y	4.125
Correlation between X & Y	0.816

Awareness

New to R?

■ Focus on ideas/concepts rather than exact syntax. R help is your friend. ©

```
?mean, ?sd
??melt (use two question marks for packages not loaded)
help()
example()
```

- All slides have code samples
- Sample code + slides: 'Data Exploration and Visualization' folder

Common graphical parameters

- Title of graph using the main function, main = "title"
- Label x- axis by using the xlab function, xlab = "label x axis"
- Label x- axis by using the ylab function, ylab = "label y axis"
- Colors controlled by col
- Get legends of layered plots with auto.key=TRUE

Exploring data commands

Commands	Description
read.csv() , read.table()	Load data/file into a dataframe
data()	Loads or resets a dataset
names()	List names of variables in a dataframe
head()	First 6 rows of data
tail()	Last 6 rows of data
str()	Display internal structure if R object
View()	View dataset in spreadsheet format in RStudio
dim()	Dimensions(rows and columns) of dataframe
summary()	Display 5-number summary and mean
colnames()	Provide column names

CORE R GRAPHICS

The iris dataset

```
data(iris)
head(iris)
```

```
> head(iris)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
           5.1
                        3.5
                                     1.4
                                                       setosa
2
           4.9
                        3.0
                                     1.4
                                                  0.2
                                                       setosa
           4.7
                        3.2
                                     1.3
                                                  0.2
                                                       setosa
           4.6
                       3.1
                                     1.5
                                                  0.2 setosa
5
           5.0
                       3.6
                                     1.4
                                                  0.2 setosa
           5.4
                        3.9
                                     1.7
                                                  0.4
                                                       setosa
```


Boxplots

Summarizes quantitative/numeric data

```
# Core Graphics
boxplot(
Sepal.Length ~ Species,
data=iris,
main="Sepal Length for
Various Species",
xlab="Species",
ylab="Sepal Length"
)
```

Sepal Length for Various Species

Anatomy of a boxplot

Plot

 Visual depiction of correlation between numeric variables

```
# Core Graphics
plot(Sepal.Length ~ Sepal.Width,
data=iris, xlab= "Sepal Length",
ylab= "Sepal Width")
```


LATTICE GRAPHICS

xyplot

Plot counterpart in lattice package.

• Similar output as core graphics, but easier to color and segment

points

```
# Lattice Graphics
library(lattice)
xyplot(Sepal.Width ~
Sepal.Length, data=iris,
groups=Species,
auto.key=TRUE
)
```


Density plots

Kernel Density of Petal Length

- Estimates density function from counts
- Area under the curve is always one
- Does not work with missing values

densityplot(iris\$Petal.Leng
th, main="Kernel Density of
Petal Length", xlab="Petal
Length")

Try adding plot.points=F

Multiple density plots

Density of Petal Width by Species


```
densityplot(~Petal.Width,
  data=iris,
  groups=Species,
  auto.key=TRUE,
  xlab="Kernel Density of
  Petal Width",
  ylab="Frequency",
  main=list(label="Density
  of Petal Width by
  Species"))
```


Scatterplot matrix

- Multiple relationships in one graph
- Good for initial explorations

```
# Core Graphics

pairs(
  iris[,1:4],
  main="Scatterplot Matrix"
)
```

Simple Scatter Matrix

Scatterplot matrix


```
# Lattice Graphics
splom(iris[1:4],
groups=iris$Species)
```


In-class Exercise

- Using the "mtcars" dataset, predict mpg based on other columns.
- Create at least 2 different plots illustrating useful relationships in data and summarize your findings.

The "mtcars" dataset

data(mtcars)
head(mtcars)

> head(mtcars)

	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

GGPLOT2 GRAPHICS

The "diamonds" dataset

library(ggplot2)
data(diamonds)
head(diamonds)

> head(diamonds)

```
cut color clarity depth table price
carat
0.23
         Ideal
                         SI2
                              61.5
                                      55
                                           326 3.95 3.98 2.43
                              59.8
0.21
       Premium
                         SI1
                                      61
                                           326 3.89 3.84 2.31
0.23
                         V51
                            56.9
                                      65
                                           327 4.05 4.07 2.31
          Good
0.29
     Premium
                         VS2
                              62.4
                                      58
                                           334 4.20 4.23 2.63
0.31
          Good
                         SI2
                              63.3
                                      58
                                           335 4.34 4.35 2.75
0.24 Very Good
                        VVS2
                              62.8
                                      57
                                           336 3.94 3.96 2.48
```


ggplot fundamentals

- ggplot() provides a blank canvas for plotting
- geom_*() creates actual graphical layers
 - geom_point()
 - geom_boxplot()
- aes() defines an "aesthetic" either globally or by layer

Layering

Density plot


```
ggplot(diamonds) +
geom_density(aes(x=carat),
fill="gray50")
```

Note the location of aes()

Scatterplot


```
ggplot(diamonds,
aes(x=carat,y=price)) +
geom_point()
```


ggplot object


```
# Store the plot for future
modification
g <- ggplot(diamonds,
aes(x=carat, y=price))

# add settings specific to
geom_point layer
g + geom_point(aes(color=color))</pre>
```


ggplot object


```
# Store the plot for future
modification
g <- ggplot(diamonds,
aes(x=carat, y=price))

# add settings specific to
geom_point layer
g +
geom_point(aes(color=clarity))</pre>
```


Separating segments


```
g +
geom_point(aes(color=color)) +
facet_wrap(~ color)
```


Separating segments


```
g +
geom_point(aes(color
=clarity)) +
facet_wrap(~ color)
```


More segments!


```
g +
geom_point(aes(color=color))+
facet_grid(cut ~ clarity)
```


More segments!


```
g +
geom_point(aes
(color=clarity
)) +
facet_grid(cut
~ clarity)
```


Heatmaps

- Helpful in understanding strength of relationship in a correlation or a distance matrix.
- Visualizes numbers by changing into colored cells.

Heatmaps


```
nba <-
read.csv("http://datasets.flowingdata.com/
ppg2008.csv", sep=",")</pre>
```

row.names(nba) <- nba\$Name

```
nba_matrix <- data.matrix(nba)
nba_heatmap <- heatmap(nba_matrix,
Rowv=NA, Colv=NA, col = cm.colors(256),
scale="column", margins=c(5,10))
```

Source: http://flowingdata.com

Heatmaps

Name G MIN MIN FGA FTA FTA FTA ORB ORB ORB TRB STL

```
nba <-
read.csv("http://datasets.flowingdata.com/
ppg2008.csv", sep=",")</pre>
```

row.names(nba) <- nba\$Name

```
nba_heatmap <- heatmap(nba_matrix,
Rowv=NA, Colv=NA, col =
heat.colors(256), scale="column",
margins=c(5,10))
```

Source: http://flowingdata.com

Treemap

- Powerful visualization of multi-dimensional values grouped by nested segments
- Provides an easy at-first-glance overview of a dataset's hierarchical structure
- Must specify variables for: area, fill, and label

Treemap

library(treemapify)

```
head(G20)
ggplot(G20, aes(area =
gdp_mil_usd, fill = hdi,
label = country)) +
geom_treemap() +
geom_treemap_text(color='whi
te', place='center',grow=T)
```


Summary

- ✓ Basics of R
- ✓ Graphing in R core, lattice, ggplot2, and treemapify
- ✓ Look at multiple types of graphs
- ✓ Visualize and segment data to gain more insights
- ✓ Identify key features
- ✓ Summarize findings

STORYTELLING WITH TITANIC

Finding the data set

- Set your working directory to the bootcamp root
- Load data in from "Datasets/titanic.csv"

Looking at the first few rows

```
titanic <- read.csv("titanic.csv")`
head(titanic)</pre>
```

What features should we consider?

What is the data type of each column?

str(titanic)

```
'data.frame':
              891 obs. of 12 variables:
$ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
$ Survived : int 0111000011...
$ Pclass : int 3 1 3 1 3 3 1 3 3 2 ...
$ Name
         : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 191 358 277 16 559 520 629 417 581 ...
$ Sex
         : Factor w/ 2 levels "female", "male": 2 1 1 1 2 2 2 2 1 1 ...
$ Age
          : num 22 38 26 35 35 NA 54 2 27 14 ...
$ SibSp
         : int 1101000301...
$ Parch
         : int 000000120...
$ Ticket
          : Factor w/ 681 levels "110152", "110413", ...: 524 597 670 50 473 276 86 396 345 133 ...
$ Fare
          : num 7.25 71.28 7.92 53.1 8.05 ...
$ Cabin : Factor w/ 148 levels "","A10","A14",..: 1 83 1 57 1 1 131 1 1 1 ...
$ Embarked : Factor w/ 4 levels ""."C^{6.0}Q"."S": 4 2 4 4 4 3 4 4 4 2 ...
```

Casting

Set target column as a factor

```
titanic$Survived <- as.factor(titanic$Survived)</pre>
```

Rename factors and columns

```
'data.frame': 891 obs. of 2 variables:
   $ Embarked: Factor w/ 4 levels
"Unknown", "Cherbourg", ...: 4 2 4 4 4 3 4 ...
   $ Survived: Factor w/ 2 levels "0", "1": 1 2 2 2
1 1 1 1 2 2 ...
61
```


Class distribution: Pie Chart

```
survivedTable <- table(titanic$Survived)
pie(survivedTable, labels=c("Died", "Survived"))</pre>
```


Is Sex a good predictor?

```
#Identify where sex = male for all columns
male <- titanic[titanic$Sex == "male",]</pre>
#Identify where sex = female for all columns
female <- titanic[titanic$Sex == "female",]</pre>
par(mfrow=c(1,2)) #two figures arranged in 1 row and 2
columns
pie(table(male$Survived), labels=c("Dead", "Survived"))
pie(table(female$Survived), labels=c("Dead", "Survived"))
```


Is Sex a good predictor?

Survival Proportion Among Men

Survival Proportion Among Women

Is Age a good predictor?

summary(titanic\$Age)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.42 20.12 28.00 29.70 38.00 80.00 177

How about by Survival?

summary(titanic[titanic\$Survived
=="Dead",]\$Age)

summary(titanic[titanic\$Survived
=="Survived",]\$Age)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 1.00 21.00 28.00 30.63 39.00 74.00 125

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.42 19.00 28.00 28.34 36.00 80.00 52

Sample solution


```
density(titanic$Age)
#NAs prevent this
> d <-
density(na.omit(titanic$Ag
e))
> plot(d, main="Kernel
Density of Age")
>
polygon(d,border="green",l
wd=3)
```


Is Age a good predictor for Survival?

densityplot(~Age,data=titani
c,groups=Survived,plot.point
s=F, lwd=3)

Note: won't work with missing values

Is Age a good predictor for Gender?


```
densityplot(~ Age,
data=titanic, groups=Sex,
plot.points=F, lwd=3)
```


QUESTIONS

