Vector Math Library C++ PPU Reference

Table of Contents

Introduction	23
Library Summary	24
Vectormath	25
Summary	
Vectormath	26
Vectormath::Aos	27
Summary	
Vectormath::Aos	
3-D Vector Functions	
absPerElem	
copySignPerElem	
cross	
crossMatrix	36
crossMatrixMul	
divPerElem	
dot	
length	40
lengthSqr	
lerp	
lerp	43
loadXYZArray	44
maxElem	45
maxPerElem	46
minElem	47
minPerElem	48
mulPerElem	49
normalize	50
operator *	51
operator *	52
outer	53
print	54
print	55
recipPerElem	56
rowMul	57
rsqrtPerElem	58
select	59
select	60
slerp	61
slerp	62
sqrtPerElem	63
storeHalfFloats	64
storeXYZ	65
storeXYZArray	66
sum	67

4-I	O Vector Functions	68
	absPerElem	68
	copySignPerElem	69
	divPerElem	70
	dot	71
	length	72
	lengthSqr	73
	lerp	74
	lerp	75
	maxElem	76
	maxPerElem	77
	minElem	78
	minPerElem	79
	mulPerElem	80
	normalize	81
	operator *	82
	operator *	
	outer	
	print	
	print	
	recipPerElem	
	rsgrtPerElem	
	select	
	select	
	slerp	
	slerp	
	sqrtPerElem	
	storeHalfFloats	
	sum	
о г		
J-L	D Point Functions	
	absPerElem	
	copySignPerElem	
	dist	
	distFromOrigin	
	distSqr	
	distSqrFromOrigin	
	divPerElem	
	lerp	
	lerp	
	loadXYZArray	
	maxElem	
	maxPerElem	
	minElem	
	minPerElem	
	mulPerElem	110
	print	. 111
	print	112
	projection	113

	recipPerElem	.114
	rsqrtPerElem	.115
	scale	.116
	scale	.117
	scale	.118
	select	.119
	select	120
	sqrtPerElem	121
	storeHalfFloats	122
	storeXYZ	123
	storeXYZArray	124
	sum	
Qι	aternion Functions	126
	conj	126
	dot	
	length	
	lerp	
	lerp	
	norm	
	normalize	
	operator *	
	operator *	
	·	
	print	
	print	
	rotate	
	select	
	select	
	slerp	
	slerp	
	squad	
	squad	
3x	3 Matrix Functions	144
	absPerElem	144
	appendScale	145
	determinant	146
	inverse	147
	mulPerElem	148
	operator *	149
	operator *	150
	prependScale	151
	print	152
	print	153
	select	
	select	
	transpose	
4x	4 Matrix Functions	
	absPerElem	
	affineInverse	
	······································	

	appendScale	159
	determinant	160
	inverse	161
	mulPerElem	162
	operator *	163
	operator *	164
	orthoInverse	165
	prependScale	166
	print	167
	print	168
	select	
	select	
	transpose	
(3x4 Transformation Matrix Functions	
	absPerElem	
	appendScale	
	inverse	
	mulPerElem	
	ortholnverse	
	prependScale	
	print	
	print	
	select	
	select	181
Vector	rmath::Aos::Matrix3	182
	Summary	183
(Summary	183
(Summary Vectormath::Aos::Matrix3	183 185
(Summary	183 185 185
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3	183 185 185 186 187
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Matrix3	183 185 186 187 188
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Matrix3	183 185 186 187 188
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Matrix3	183 185 186 187 188 189
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Operator Methods	183 185 186 187 188 189 190
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Operator Methods operator *	183 185 186 187 188 189 190 191
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Operator Methods operator * operator *	183 185 186 187 188 190 191 191
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Operator Methods operator * operator * operator * operator *	183 185 186 187 188 190 191 191 193
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Operator Methods operator *	183 185 186 187 188 190 191 191 192 193
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Operator Methods operator * operator * operator * operator * operator * operator *= operator *=	183 185 186 188 190 191 192 193 194 195
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Operator Methods operator * operator * operator * operator * operator * operator * operator *= operator *= operator *=	183 185 186 187 188 190 191 191 192 193 194 195
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Operator Methods operator * operator * operator * operator *= operator *= operator *= operator *= operator *= operator *=	183 185 186 188 190 191 191 192 193 195 196 197
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Operator Methods operator * operator * operator * operator *= operator *= operator *= operator *= operator *= operator += operator +=	183 185 186 188 189 191 191 192 193 195 196 197
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Operator Methods operator * operator * operator * operator *= operator *= operator *= operator += operator+=	183 185 186 187 188 190 191 191 192 194 195 196 197 198
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Operator Methods operator * operator * operator * operator *= operator *= operator *= operator+ operator+= operator-	183 185 186 188 190 191 192 193 194 195 196 197 198 199
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Operator Methods operator * operator * operator * operator *= operator *= operator += operator+= operator- operator-	183 185 186 187 188 190 191 191 192 193 194 195 196 197 198 199 200
(Summary Vectormath::Aos::Matrix3 Constructors and Destructors Matrix3 Matrix3 Matrix3 Matrix3 Matrix3 Operator Methods operator * operator * operator * operator *= operator *= operator *= operator+ operator+= operator-	183 185 186 188 190 191 191 192 193 194 195 196 197 198 199 200 201

	operator[]	204
	operator[]	
	Public Static Methods	
	identity	
	rotation	
	rotation	208
	rotation	209
	rotationX	210
	rotationX	.211
	rotationY	212
	rotationY	213
	rotationZ	214
	rotationZ	215
	rotationZYX	216
	scale	217
	Public Instance Methods	218
	getCol	218
	getCol0	219
	getCol1	220
	getCol2	221
	getElem	222
	getRow	223
	setCol	224
	setCol0	225
	setCol1	226
	setCol2	227
	setElem	228
	setElem	229
	setRow	230
Vecto	rmath::Aos::Matrix4	231
	Summary	232
	Vectormath::Aos::Matrix4	232
	Constructors and Destructors	234
	Matrix4	234
	Matrix4	235
	Matrix4	236
	Matrix4	237
	Matrix4	238
	Matrix4	239
	Matrix4	240
	Matrix4	241
	Operator Methods	242
	operator *	242
	operator *	
	operator *	244
	operator *	
	operator *	
	operator *	247

operator *	
operator *=	249
operator *=	
operator *=	251
operator *=	252
operator+	
operator+=	254
operator	
•	
•	257
•	258
•	
• -	
'	
	262
,	
•	
• •	
rotationZYX	
scale	
Public Instance Methods	
getCol	
getCol0	
getCol1	
getCol2	
getCol3	
getElem	
getRow	
getTranslation	
getUpper3x3	
setCol	287
setCol0	288
	289
	290
	291
	292
	293

setRow	294
setTranslation	295
setUpper3x3	296
Vectormath::Aos::Point3	297
Summary	
Vectormath::Aos::Point3	298
Constructors and Destructors	
	300
Point3	301
Point3	302
Point3	303
Point3	304
Point3	305
	306
Operator Methods	
•	
•	308
·	309
•	
•	311
•	
•	
Public Instance Methods	
•	
•	
S .	
_	
3	
	325
	326
Vectormath::Aos::Quat	
Summary	
Constructors and Destructors	
Quat	

	Quat	338
	Quat	
	Quat	
Or	perator Methods	
Οþ		
	operator *	
	operator *	
	operator *	
	operator *=	
	operator *=	
	operator *=	
	operator+	
	operator+=	
	operator	349
	operator-	350
	operator-=	351
	operator/	352
	operator/	353
	operator/=	354
	operator/=	355
	operator=	356
	operator[]	
	operator[]	
Pu	blic Static Methods	
	identity	
	rotation	
	rotation	
	rotation	
	rotationX	
	rotationX	
	rotationY	
	rotationY	
	rotationZ	
_	rotationZ	
Pu	blic Instance Methods	
	get128	
	getElem	
	getW	
	getX	372
	getXYZ	373
	getY	374
	getZ	375
	setElem	376
	setElem	377
	setW	378
	setW	379
	setX	380
	setX	
	setXYZ	

setY	
setY	
setZ	
setZ	
Vectormath::Aos::Transform3	
Summary	
Vectormath::Aos::Transform3	
Constructors and Destructors	
Transform3	
Operator Methods	
operator *	
operator *	
operator *	
operator *=	
operator=	
operator[]	
operator[]	
Public Static Methods	
identity	
rotation	
rotation	
rotation	
rotationX	
rotationX	
rotationY	
rotationY	
rotationZ	
rotationZ	
rotationZYX	
scale	
translation	
Public Instance Methods	
getCol	
•	
getCol1	
getCol3	
getCol2	
getCol3	
getElem	
getRow	
getTranslation	
getUpper3x3	
setCol	

setCol0	427
setCol1	428
setCol2	429
setCol3	430
setElem	431
setElem	432
setRow	433
setTranslation	434
setUpper3x3	435
Vectormath::Aos::Vector3	436
Summary	437
Vectormath::Aos::Vector3	437
Constructors and Destructors	439
Vector3	439
Vector3	440
Vector3	441
Vector3	442
Vector3	443
Vector3	444
Vector3	445
Operator Methods	446
operator *	446
operator *	447
operator *=	448
operator *=	449
operator+	450
operator+	451
operator+=	452
operator	453
operator	454
operator-=	455
operator/	456
operator/	457
operator/=	458
operator/=	459
operator=	460
operator[]	461
operator[]	462
Public Static Methods	463
xAxis	463
yAxis	464
zAxis	465
Public Instance Methods	466
get128	466
getElem	467
getX	468
getY	469
getZ	470

setElem	
setElem	472
setX	473
setX	474
setY	475
setY	476
setZ	477
setZ	478
Vectormath::Aos::Vector4	479
Summary	
•	480
Constructors and Destructors	
	483
	484
	489
	490
	491
	492
Operator Methods	
•	
•	
•	495
•	
•	
•	498
•	
•	
·	
·	501
•	
·	
·	504
•	
•	
Public Static Methods	
	510
•	511
	512
Public Instance Methods	
•	
getElem	514

	getW	515
	getX	516
	getXYZ	517
	getY	518
	getZ	519
	setElem	520
	setElem	521
	setW	522
	setW	523
	setX	524
	setX	525
	setXYZ	526
	setY	527
	setY	528
	setZ	
	setZ	530
Voctorm	nath::Soa	
	ımmary	
30	Vectormath::Soa	
2.1	D Vector Functions	
J-I		
	absPerElem	
	copySignPerElem	
	Cross	
	crossMatrix	
	crossMatrixMul	
	divPerElem	
	dot	
	length	
	lengthSqr	
	lerp	
	loadXYZArray	
	maxElem	
	maxPerElem	
	minElem	
	minPerElem	
	mulPerElem	
	normalize	
	operator *	
	outer	
	print	
	print	
	recipPerElem	557
	rowMul	558
	rsqrtPerElem	559
	select	560
	slerp	561
	sqrtPerElem	562
	storeHalfFloats	563

	storeXYZArray	. 564
	sum	. 565
4-I	O Vector Functions	. 566
	absPerElem	. 566
	copySignPerElem	. 567
	divPerElem	. 568
	dot	. 569
	length	. 570
	lengthSqr	
	lerp	
	maxElem	
	maxPerElem	
	minElem	
	minPerElem	
	mulPerElem	
	normalize	
	operator *	
	outer	
	print	
	print	
	recipPerElem	
	\cdot	
	rsqrtPerElem	
	select	
	slerp	
	sqrtPerElem	
	storeHalfFloats	
	sum	
3-I	D Point Functions	
	absPerElem	
	copySignPerElem	
	dist	
	distFromOrigin	. 593
	distSqr	. 594
	distSqrFromOrigin	. 595
	divPerElem	. 596
	lerp	. 597
	loadXYZArray	. 598
	maxElem	. 599
	maxPerElem	. 600
	minElem	. 601
	minPerElem	602
	mulPerElem	603
	print	. 604
	print	605
	projection	606
	recipPerElem	607
	rsqrtPerElem	. 608
	scale	. 609

scale	610
select	611
sqrtPerElem	612
storeHalfFloats	613
storeXYZArray	614
sum	615
Quaternion Functions	616
conj	616
dot	617
length	
lerp	
norm	
normalize	
operator *	
print	
print	
rotate	
select	
slerp	
squad	
3x3 Matrix Functions	
absPerElem	
appendScale	
determinant	
inverse	
mulPerElem	
operator *	
prependScale	
print	
print	
select	
transpose	
4x4 Matrix Functions	
absPerElem	
affineInverse	641
appendScale	642
determinant	643
inverse	644
mulPerElem	645
operator *	646
ortholnverse	647
prependScale	648
print	649
print	650
select	651
transpose	652
3x4 Transformation Matrix Functions	653
absPerElem	

appendS	Scale	654
inverse		655
mulPerE	lem	656
ortholnve	erse	657
prepends	Scale	658
print		659
•		
select		661
Vectormath::Soa	a::Matrix3	662
•	ath::Soa::Matrix3	
	s and Destructors	
	ethods	
•	*	
•	*	
•	*	
•	*=	
•	*=	
•	+	
•	+=	
•		
•	-	
•	-=	
•	=	
•		
·		
· ·	[]	
	C Methods	
	,	
	/	
	·	
	7	
	YX	
	M. O. J.	
	nce Methods	
•		
•		
•		
•		
getCol2.		697

getElem	698
getRow	699
setCol	
setCol0	701
setCol1	
setCol2	
setElem	
setRow	
Vectormath::Soa::Matrix4	
Summary	
Vectormath::Soa::Matrix4	
Constructors and Destructors	
Matrix4	
Matrix4	
Matrix4	
Matrix4	
Matrix4	
Operator Methods	
operator *	721
operator *	722
operator *	
operator *=	724
operator *=	725
operator *=	
operator+	727
operator+=	
operator	
operator	
operator-=	731
operator=	
operator[]	
operator[]	
Public Static Methods	
frustum	
identity	
lookAt	
orthographic	
perspective	
rotation	
rotation	
rotationX	
101011/1	

	rotationY	743
	rotationZ	744
	rotationZYX	745
	scale	746
	translation	747
	Public Instance Methods	748
	get4Aos	748
	getCol	749
	getCol0	750
	getCol1	751
	getCol2	752
	getCol3	753
	getElem	754
	getRow	755
	getTranslation	756
	getUpper3x3	757
	setCol	758
	setCol0	759
	setCol1	760
	setCol2	761
	setCol3	762
	setElem	763
	setRow	764
	setTranslation	765
	setUpper3x3	766
Vect	ormath::Soa::Point3	767
	Summary	768
	Vectormath::Soa::Point3	
	Constructors and Destructors	
	Point3	
	Point3	770
	Point3	771
	Point3	
	Point3	
	Point3	
	Point3	775
	Operator Methods	
	operator+	
	operator+=	
	operator	
	operator	779
	operator-=	780
	operator=	781
	operator[]	
	operator[]	1 0Z
	operator[]	
	• -	783
	operator[]	783 784
	operator[] Public Instance Methods	783 784 784

getX	786
getY	787
getZ	788
setElem	789
setX	790
setY	791
setZ	792
Vectormath::Soa::Quat	793
Summary	794
Vectormath::Soa::Quat	794
Constructors and Destructors	796
Quat	796
Quat	797
Quat	798
Quat	799
Quat	800
Quat	801
Quat	802
Quat	803
Quat	804
Operator Methods	805
operator *	805
operator *	806
operator *=	807
operator *=	808
operator+	809
operator+=	810
operator	811
operator	812
operator-=	813
operator/	814
operator/=	815
operator=	816
operator[]	817
operator[]	818
Public Static Methods	819
identity	819
rotation	820
rotation	821
rotationX	822
rotationY	823
rotationZ	824
Public Instance Methods	825
get4Aos	825
getElem	826
getW	827
getX	828
getXYZ	829

getY	830
getZ	831
setElem	832
setW	833
setX	834
setXYZ	835
setY	836
setZ	837
Vectormath::Soa::Transform3	838
Summary	
Vectormath::Soa::Transform3	
Constructors and Destructors	
Transform3	
Operator Methods	
operator *	
operator *	
operator *	
operator *=	
operator=	
operator[]	
operator[]	
Public Static Methods	
identity	
rotation	
rotation	
rotationX	
rotationY	
rotationZ	
rotationZYX	862
scale	863
translation	
Public Instance Methods	865
get4Aos	865
getCol	866
getCol0	867
getCol1	
getCol2	
getCol3	
getElem	871
getRow	
getTranslation	

getUpper3x3	874
setCol	875
setCol0	876
setCol1	877
setCol2	878
setCol3	879
setElem	880
setRow	881
setTranslation	882
setUpper3x3	
Vectormath::Soa::Vector3	
Summary	
Vectormath::Soa::Vector3	
Constructors and Destructors	
Vector3	
Vector3	
Vector3	
Vector3	
Vector3	
Vector3	
Vector3	
Operator Methods	
operator *	
operator *=	
operator+	
operator+	
operator+=	
operator	
operator	
operator-=	
operator/	
operator/=	
operator=	
operator[]	
operator[]	906
Public Static Methods	
xAxis	
yAxis	908
zAxis	909
Public Instance Methods	910
get4Aos	910
getElem	911
getX	912
getY	913
getZ	914
setElem	915
setX	916
setY	917

setZ	918
ormath::Soa::Vector4	919
Summary	920
Vectormath::Soa::Vector4	920
Constructors and Destructors	922
Vector4	922
Vector4	923
Vector4	924
Vector4	925
Vector4	926
Vector4	927
Vector4	928
Vector4	929
Vector4	930
Vector4	931
Operator Methods	932
operator *	932
operator *=	933
operator+	934
operator+=	935
operator	936
operator	937
operator-=	938
operator/	939
operator/=	940
operator=	941
operator[]	942
operator[]	943
Public Static Methods	944
wAxis	944
xAxis	945
yAxis	946
zAxis	947
Public Instance Methods	948
get4Aos	948
getElem	949
getW	950
getX	951
getXYZ	952
getY	
getZ	
setElem	
setW	
setX	
setXYZ	
setY	
setZ	

Introduction

Library Summary

Library Contents

Item	Description
<u>Vectormath</u>	The namespace containing the Vectormath library.
Vectormath::Aos	The namespace containing array-of-structures (AoS) classes.
Vectormath::Aos::Matrix3	A 3x3 matrix in array-of-structures format.
Vectormath::Aos::Matrix4	A 4x4 matrix in array-of-structures format.
Vectormath::Aos::Point3	A 3-D point in array-of-structures format.
Vectormath::Aos::Quat	A quaternion in array-of-structures format.
Vectormath::Aos::Transform3	A 3x4 transformation matrix in array-of-structures format.
Vectormath::Aos::Vector3	A 3-D vector in array-of-structures format.
Vectormath::Aos::Vector4	A 4-D vector in array-of-structures format.
Vectormath::Soa	The namespace containing structure-of-arrays (SoA) classes.
Vectormath::Soa::Matrix3	A set of four 3x3 matrices in structure-of-arrays format.
Vectormath::Soa::Matrix4	A set of four 4x4 matrices in structure-of-arrays format.
Vectormath::Soa::Point3	A set of four 3-D points in structure-of-arrays format.
Vectormath::Soa::Quat	A set of four quaternions in structure-of-arrays format.
Vectormath::Soa::Transform3	A set of four 3x4 transformation matrices in
	structure-of-arrays format.
Vectormath::Soa::Vector3	A set of four 3-D vectors in structure-of-arrays format.
Vectormath::Soa::Vector4	A set of four 4-D vectors in structure-of-arrays format.

Vectormath

Summary

Vectormath

The namespace containing the Vectormath library.

Definition

namespace Vectormath {}

Description

The namespace containing the Vectormath library.

Inner Classes, Structures,

and Namespaces

Item	Description
<u>Vectormath::Aos</u>	The namespace containing array-of-structures (AoS) classes.
Vectormath::Soa	The namespace containing structure-of-arrays (SoA) classes.

Vectormath::Aos

Summary

Vectormath::Aos

The namespace containing array-of-structures (AoS) classes.

Definition

namespace Aos {}

Description

The namespace containing array-of-structures (AoS) classes.

Function Summary

Function	Description
<u>absPerElem</u>	Compute the absolute value of a 3-D vector per element.
<u>absPerElem</u>	Compute the absolute value of a 4-D vector per element.
<u>absPerElem</u>	Compute the absolute value of a 3-D point per element.
<u>absPerElem</u>	Compute the absolute value of a 3x3 matrix per element.
<u>absPerElem</u>	Compute the absolute value of a 4x4 matrix per element.
<u>absPerElem</u>	Compute the absolute value of a 3x4 transformation matrix
	per element.
<u>affineInverse</u>	Compute the inverse of a 4x4 matrix, which is expected to be
	an affine matrix.
<u>appendScale</u>	Append (post-multiply) a scale transformation to a 3x3
	matrix.
<u>appendScale</u>	Append (post-multiply) a scale transformation to a 4x4
	matrix.
<u>appendScale</u>	Append (post-multiply) a scale transformation to a 3x4
	transformation matrix.
<u>conj</u>	Compute the conjugate of a quaternion.
<u>copySignPerElem</u>	Copy sign from one 3-D vector to another, per element.
<u>copySignPerElem</u>	Copy sign from one 4-D vector to another, per element.
<u>copySignPerElem</u>	Copy sign from one 3-D point to another, per element.
cross	Compute cross product of two 3-D vectors.
<u>crossMatrix</u>	Cross-product matrix of a 3-D vector.
<u>crossMatrixMul</u>	Create cross-product matrix and multiply.
<u>determinant</u>	Determinant of a 3x3 matrix.
<u>determinant</u>	Determinant of a 4x4 matrix.
<u>dist</u>	Compute the distance between two 3-D points.
<u>distFromOrigin</u>	Compute the distance of a 3-D point from the
	coordinate-system origin.
<u>distSqr</u>	Compute the square of the distance between two 3-D points.
<u>distSqrFromOrigin</u>	Compute the square of the distance of a 3-D point from the
	coordinate-system origin.
<u>divPerElem</u>	Divide two 3-D vectors per element.
<u>divPerElem</u>	Divide two 4-D vectors per element.
<u>divPerElem</u>	Divide two 3-D points per element.
dot	Compute the dot product of two 3-D vectors.
dot	Compute the dot product of two 4-D vectors.

Function	Description
dot	Compute the dot product of two quaternions.
inverse	Compute the inverse of a 3x3 matrix.
inverse	Compute the inverse of a 4x4 matrix.
inverse	Inverse of a 3x4 transformation matrix.
length	Compute the length of a 3-D vector.
length	Compute the length of a 4-D vector.
length	Compute the length of a quaternion.
lengthSqr	Compute the square of the length of a 3-D vector.
lengthSqr	Compute the square of the length of a 4-D vector.
lerp	Linear interpolation between two 3-D vectors.
lerp	Linear interpolation between two 3-D vectors (scalar data
	contained in vector data type).
lerp	Linear interpolation between two 4-D vectors.
lerp	Linear interpolation between two 4-D vectors (scalar data
- 	contained in vector data type).
lerp	Linear interpolation between two 3-D points.
lerp	Linear interpolation between two 3-D points (scalar data
- 	contained in vector data type).
lerp	Linear interpolation between two quaternions.
lerp	Linear interpolation between two quaternions (scalar data
	contained in vector data type).
loadXYZArray	Load four three-float 3-D vectors, stored in three
	quadwords.
loadXYZArray	Load four three-float 3-D points, stored in three quadwords.
maxElem	Maximum element of a 3-D vector.
maxElem	Maximum element of a 4-D vector.
maxElem	Maximum element of a 3-D point.
maxPerElem	Maximum of two 3-D vectors per element.
maxPerElem	Maximum of two 4-D vectors per element.
maxPerElem	Maximum of two 3-D points per element.
minElem	Minimum element of a 3-D vector.
minElem	Minimum element of a 4-D vector.
minElem	Minimum element of a 3-D point.
minPerElem	Minimum of two 3-D vectors per element.
minPerElem	Minimum of two 4-D vectors per element.
minPerElem	Minimum of two 3-D points per element.
mulPerElem	Multiply two 3-D vectors per element.
mulPerElem	Multiply two 4-D vectors per element.
mulPerElem	Multiply two 3-D points per element.
mulPerElem	Multiply two 3x3 matrices per element.
mulPerElem	Multiply two 4x4 matrices per element.
mulPerElem	Multiply two 3x4 transformation matrices per element.
norm	Compute the norm of a quaternion.
normalize	Normalize a 3-D vector.
normalize	Normalize a 4-D vector.
normalize	Normalize a quaternion.
operator *	Multiply a 3-D vector by a scalar.
operator *	Multiply a 3-D vector by a scalar (scalar data contained in
	vector data type).
operator *	Multiply a 4-D vector by a scalar.
operator *	Multiply a 4-D vector by a scalar (scalar data contained in
- <u></u>	vector data type).
operator *	Multiply a quaternion by a scalar.
<u></u>	1 manifest a dearest of a section.

Function	Description
operator *	Multiply a quaternion by a scalar (scalar data contained in
	vector data type).
operator *	Multiply a 3x3 matrix by a scalar.
operator *	Multiply a 3x3 matrix by a scalar (scalar data contained in
<u> </u>	vector data type).
operator *	Multiply a 4x4 matrix by a scalar.
operator *	Multiply a 4x4 matrix by a scalar (scalar data contained in
	vector data type).
orthoInverse	Compute the inverse of a 4x4 matrix, which is expected to be
	an affine matrix with an orthogonal upper-left 3x3
	submatrix.
orthoInverse	Compute the inverse of a 3x4 transformation matrix,
	expected to have an orthogonal upper-left 3x3 submatrix.
<u>outer</u>	Outer product of two 3-D vectors.
<u>outer</u>	Outer product of two 4-D vectors.
<u>prependScale</u>	Prepend (pre-multiply) a scale transformation to a 3x3
	matrix.
<u>prependScale</u>	Prepend (pre-multiply) a scale transformation to a 4x4
	matrix.
<u>prependScale</u>	Prepend (pre-multiply) a scale transformation to a 3x4
	transformation matrix.
<u>print</u>	Print a 3-D vector.
<u>print</u>	Print a 3-D vector and an associated string identifier.
<u>print</u>	Print a 4-D vector.
<u>print</u>	Print a 4-D vector and an associated string identifier.
<u>print</u>	Print a 3-D point.
<u>print</u>	Print a 3-D point and an associated string identifier.
print	Print a quaternion.
print	Print a quaternion and an associated string identifier.
print	Print a 3x3 matrix.
<u>print</u>	Print a 3x3 matrix and an associated string identifier.
print	Print a 4x4 matrix.
<u>print</u>	Print a 4x4 matrix and an associated string identifier.
<u>print</u>	Print a 3x4 transformation matrix.
<u>print</u>	Print a 3x4 transformation matrix and an associated string
	identifier.
projection	Scalar projection of a 3-D point on a unit-length 3-D vector.
<u>recipPerElem</u>	Compute the reciprocal of a 3-D vector per element.
<u>recipPerElem</u>	Compute the reciprocal of a 4-D vector per element.
<u>recipPerElem</u>	Compute the reciprocal of a 3-D point per element.
rotate	Use a unit-length quaternion to rotate a 3-D vector.
<u>rowMul</u>	Pre-multiply a row vector by a 3x3 matrix.
<u>rsqrtPerElem</u>	Compute the reciprocal square root of a 3-D vector per element.
rsqrtPerElem	Compute the reciprocal square root of a 4-D vector per
<u>isqrtr er Eiem</u>	element.
rsqrtPerElem	Compute the reciprocal square root of a 3-D point per
15qru ermem	element.
scalo	
scale scale	Apply uniform scale to a 3-D point. Apply uniform scale to a 3-D point (scalar data contained in
<u>scare</u>	vector data type).
scale	Apply non-uniform scale to a 3-D point.
select	Conditionally select between two 3-D vectors.
SEIECT	Conditionary select between two 5-D vectors.

Function	Description
select	Conditionally select between two 3-D vectors (scalar data
	contained in vector data type).
select	Conditionally select between two 4-D vectors.
select	Conditionally select between two 4-D vectors (scalar data
	contained in vector data type).
select	Conditionally select between two 3-D points.
select	Conditionally select between two 3-D points (scalar data
	contained in vector data type).
select	Conditionally select between two quaternions.
select	Conditionally select between two quaternions (scalar data
	contained in vector data type).
<u>select</u>	Conditionally select between two 3x3 matrices.
select	Conditionally select between two 3x3 matrices (scalar data
	contained in vector data type).
<u>select</u>	Conditionally select between two 4x4 matrices.
select	Conditionally select between two 4x4 matrices (scalar data
	contained in vector data type).
select	Conditionally select between two 3x4 transformation
	matrices.
select	Conditionally select between two 3x4 transformation
	matrices (scalar data contained in vector data type).
slerp	Spherical linear interpolation between two 3-D vectors.
slerp	Spherical linear interpolation between two 3-D vectors
	(scalar data contained in vector data type).
slerp	Spherical linear interpolation between two 4-D vectors.
slerp	Spherical linear interpolation between two 4-D vectors
	(scalar data contained in vector data type).
slerp	Spherical linear interpolation between two quaternions.
slerp	Spherical linear interpolation between two quaternions
	(scalar data contained in vector data type).
sqrtPerElem	Compute the square root of a 3-D vector per element.
sqrtPerElem	Compute the square root of a 4-D vector per element.
sqrtPerElem	Compute the square root of a 3-D point per element.
squad	Spherical quadrangle interpolation.
squad	Spherical quadrangle interpolation (scalar data contained in
	vector data type).
<u>storeHalfFloats</u>	Store eight 3-D vectors as half-floats.
<u>storeHalfFloats</u>	Store four 4-D vectors as half-floats.
<u>storeHalfFloats</u>	Store eight 3-D points as half-floats.
storeXYZ	Store x, y, and z elements of a 3-D vector in the first three
	words of a quadword. The value of the fourth word (the
	word with the highest address) remains unchanged.
<u>storeXYZ</u>	Store x, y, and z elements of a 3-D point in the first three
	words of a quadword. The value of the fourth word (the
200	word with the highest address) remains unchanged.
storeXYZArray	Store four 3-D vectors in three quadwords.
storeXYZArray	Store four 3-D points in three quadwords.
sum	Compute the sum of all elements of a 3-D vector.
sum	Compute the sum of all elements of a 4-D vector.
sum	Compute the sum of all elements of a 3-D point.
transpose	Transpose of a 3x3 matrix.
transpose	Transpose of a 4x4 matrix.

Inner Classes, Structures, and Namespaces

Item	Description
Vectormath::Aos::Matrix3	A 3x3 matrix in array-of-structures format.
Vectormath::Aos::Matrix4	A 4x4 matrix in array-of-structures format.
Vectormath::Aos::Point3	A 3-D point in array-of-structures format.
Vectormath::Aos::Quat	A quaternion in array-of-structures format.
Vectormath::Aos::Transform3	A 3x4 transformation matrix in array-of-structures format.
Vectormath::Aos::Vector3	A 3-D vector in array-of-structures format.
Vectormath::Aos::Vector4	A 4-D vector in array-of-structures format.

3-D Vector Functions

absPerElem

Compute the absolute value of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the absolute value of the corresponding element of vec

Description

Compute the absolute value of each element of a 3-D vector.

copySignPerElem

Copy sign from one 3-D vector to another, per element.

Definition

Arguments

vec0 3-D vectorvec1 3-D vector

Return Values

3-D vector in which each element has the magnitude of the corresponding element of vec0 and the sign of the corresponding element of vec1

Description

For each element, create a value composed of the magnitude of *vec0* and the sign of *vec1*.

cross

Compute cross product of two 3-D vectors.

Definition

Arguments

vec0 3-D vectorvec1 3-D vector

Return Values

Cross product of the specified 3-D vectors

Description

Compute cross product of two 3-D vectors.

crossMatrix

Cross-product matrix of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Cross-product matrix of vec

Description

Compute a matrix that, when multiplied by a 3-D vector, produces the same result as a cross product with that 3-D vector.

crossMatrixMul

Create cross-product matrix and multiply.

Definition

Arguments

```
vec 3-D vector
mat 3x3 matrix
```

Return Values

Product of cross-product matrix of vec and mat

Description

Multiply a cross-product matrix by another matrix.

Notes

Faster than separately creating a cross-product matrix and multiplying.

divPerElem

Divide two 3-D vectors per element.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

3-D vector in which each element is the quotient of the corresponding elements of the specified 3-D vectors

Description

Divide two 3-D vectors element by element.

Notes

Floating-point behavior matches standard library function divf4.

dot

Compute the dot product of two 3-D vectors.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

Dot product of the specified 3-D vectors

Description

Compute the dot product of two 3-D vectors.

length

Compute the length of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Length of the specified 3-D vector

Description

Compute the length of a 3-D vector.

lengthSqr

Compute the square of the length of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Square of the length of the specified 3-D vector

Description

Compute the square of the length of a 3-D vector.

lerp

Linear interpolation between two 3-D vectors.

Definition

Arguments

```
t Interpolation parametervec0 3-D vectorvec1 3-D vector
```

Return Values

Interpolated 3-D vector

Description

Linearly interpolate between two 3-D vectors.

Notes

Does not clamp *t* between 0 and 1.

lerp

Linear interpolation between two 3-D vectors (scalar data contained in vector data type).

Definition

Arguments

```
t Interpolation parametervec0 3-D vectorvec1 3-D vector
```

Return Values

Interpolated 3-D vector

Description

Linearly interpolate between two 3-D vectors.

Notes

Does not clamp *t* between 0 and 1.

loadXYZArray

Load four three-float 3-D vectors, stored in three quadwords.

Definition

Arguments

```
vec0An output 3-D vectorvec1An output 3-D vectorvec2An output 3-D vectorvec3An output 3-D vectorthreeQuadsArray of 3 quadwords containing 12 floats
```

Return Values

None

Description

Load four three-float 3-D vectors, stored in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$, into four 3-D vectors.

maxElem

Maximum element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Maximum value of all elements of vec

Description

Compute the maximum value of all elements of a 3-D vector.

maxPerElem

Maximum of two 3-D vectors per element.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

3-D vector in which each element is the maximum of the corresponding elements of the specified 3-D vectors

Description

Create a 3-D vector in which each element is the maximum of the corresponding elements of the specified 3-D vectors.

minElem

Minimum element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Minimum value of all elements of vec

Description

Compute the minimum value of all elements of a 3-D vector.

minPerElem

Minimum of two 3-D vectors per element.

Definition

Arguments

vec0 3-D vectorvec1 3-D vector

Return Values

3-D vector in which each element is the minimum of the corresponding elements of the specified 3-D vectors

Description

Create a 3-D vector in which each element is the minimum of the corresponding elements of two specified 3-D vectors.

mulPerElem

Multiply two 3-D vectors per element.

Definition

Arguments

vec0 3-D vectorvec1 3-D vector

Return Values

3-D vector in which each element is the product of the corresponding elements of the specified 3-D vectors

Description

Multiply two 3-D vectors element by element.

normalize

Normalize a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

The specified 3-D vector scaled to unit length

Description

Compute a normalized 3-D vector.

Notes

The result is unpredictable when all elements of vec are at or near zero.

operator *

Multiply a 3-D vector by a scalar.

Definition

Arguments

```
scalar Scalar valuevec 3-D vector
```

Return Values

Scalar product of vec and scalar

Description

Multiply a 3-D vector by a scalar.

operator *

Multiply a 3-D vector by a scalar (scalar data contained in vector data type).

Definition

Arguments

```
scalarscalar value (stored in vector data type)vec3-D vector
```

Return Values

Scalar product of vec and scalar

Description

Multiply a 3-D vector by a scalar.

outer

Outer product of two 3-D vectors.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

The 3x3 matrix product of a column-vector, vec0, and a row-vector, vec1

Description

Compute the outer product of two 3-D vectors.

print

Print a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

None

Description

Print a 3-D vector. Prints the 3-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

print

Print a 3-D vector and an associated string identifier.

Definition

Arguments

```
vec 3-D vectorname String printed with the 3-D vector
```

Return Values

None

Description

Print a 3-D vector and an associated string identifier. Prints the 3-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

recipPerElem

Compute the reciprocal of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the reciprocal of the corresponding element of the specified 3-D vector

Description

Create a 3-D vector in which each element is the reciprocal of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function recipf4.

rowMul

Pre-multiply a row vector by a 3x3 matrix.

Definition

Arguments

```
vec 3-D vector
mat 3x3 matrix
```

Return Values

Product of a row-vector and a 3x3 matrix

Description

Transpose a 3-D vector into a row vector and pre-multiply by 3x3 matrix.

Notes

Slower than column post-multiply.

rsqrtPerElem

Compute the reciprocal square root of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the reciprocal square root of the corresponding element of the specified 3-D vector

Description

Create a 3-D vector in which each element is the reciprocal square root of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function rsqrtf4.

select

Conditionally select between two 3-D vectors.

Definition

Arguments

```
vec03-D vectorvec13-D vectorselect1False selects the vec0 argument, true selects the vec1 argument
```

Return Values

Equal to vec0 if select1 is false, or to vec1 if select1 is true

Description

Conditionally select one of the 3-D vector arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch. Use the boolInVec version for better performance.

select

Conditionally select between two 3-D vectors (scalar data contained in vector data type).

Definition

Arguments

vec03-D vectorvec13-D vectorselect1False selects the vec0 argument, true selects the vec1 argument

Return Values

Equal to vec0 if select1 is false, or to vec1 if select1 is true

Description

Conditionally select one of the 3-D vector arguments.

Notes

This function uses a conditional select instruction to avoid a branch.

slerp

Spherical linear interpolation between two 3-D vectors.

Definition

Arguments

```
t Interpolation parameterunitVec0 3-D vector, expected to be unit-lengthunitVec1 3-D vector, expected to be unit-length
```

Return Values

Interpolated 3-D vector

Description

Perform spherical linear interpolation between two 3-D vectors.

Notes

The result is unpredictable if the vectors point in opposite directions. Does not clamp t between 0 and 1.

slerp

Spherical linear interpolation between two 3-D vectors (scalar data contained in vector data type).

Definition

Arguments

```
t Interpolation parameterunitVec0 3-D vector, expected to be unit-lengthunitVec1 3-D vector, expected to be unit-length
```

Return Values

Interpolated 3-D vector

Description

Perform spherical linear interpolation between two 3-D vectors.

Notes

The result is unpredictable if the vectors point in opposite directions. Does not clamp t between 0 and 1.

sqrtPerElem

Compute the square root of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the square root of the corresponding element of the specified 3-D vector

Description

Create a 3-D vector in which each element is the square root of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function sqrtf4.

storeHalfFloats

Store eight 3-D vectors as half-floats.

Definition

Arguments

vec0	3-D vector
vec1	3-D vector
vec2	3-D vector
vec3	3-D vector
vec4	3-D vector
vec5	3-D vector
vec6	3-D vector
vec7	3-D vector
+11-	A

threeQuads An output array of 3 quadwords containing 24 half-floats

Return Values

None

Description

Store eight 3-D vectors in three quadwords of half-float values. The output is $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7\}$.

storeXYZ

Store x, y, and z elements of a 3-D vector in the first three words of a quadword. The value of the fourth word (the word with the highest address) remains unchanged.

Definition

Arguments

vec 3-D vector

quad Pointer to a quadword in which x, y, and z will be stored

Return Values

None

Description

Store x, y, and z elements of a 3-D vector in the first three words of a quadword. The value of the fourth word (the word with the highest address) remains unchanged.

storeXYZArray

Store four 3-D vectors in three quadwords.

Definition

Arguments

```
vec03-D vectorvec13-D vectorvec23-D vectorvec33-D vectorthreeQuadsAn output array of 3 quadwords containing 12 floats
```

Return Values

None

Description

Store four 3-D vectors in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$.

sum

Compute the sum of all elements of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Sum of all elements of vec

Description

Compute the sum of all elements of a 3-D vector.

4-D Vector Functions

absPerElem

Compute the absolute value of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the absolute value of the corresponding element of vec

Description

Compute the absolute value of each element of a 4-D vector.

copySignPerElem

Copy sign from one 4-D vector to another, per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element has the magnitude of the corresponding element of vec0 and the sign of the corresponding element of vec1

Description

For each element, create a value composed of the magnitude of *vec0* and the sign of *vec1*.

divPerElem

Divide two 4-D vectors per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element is the quotient of the corresponding elements of the specified 4-D vectors

Description

Divide two 4-D vectors element by element.

Notes

Floating-point behavior matches standard library function divf4.

dot

Compute the dot product of two 4-D vectors.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

Dot product of the specified 4-D vectors

Description

Compute the dot product of two 4-D vectors.

length

Compute the length of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Length of the specified 4-D vector

Description

Compute the length of a 4-D vector.

lengthSqr

Compute the square of the length of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Square of the length of the specified 4-D vector

Description

Compute the square of the length of a 4-D vector.

lerp

Linear interpolation between two 4-D vectors.

Definition

Arguments

```
t Interpolation parametervec0 4-D vectorvec1 4-D vector
```

Return Values

Interpolated 4-D vector

Description

Linearly interpolate between two 4-D vectors.

Notes

Does not clamp *t* between 0 and 1.

lerp

Linear interpolation between two 4-D vectors (scalar data contained in vector data type).

Definition

Arguments

```
t Interpolation parametervec0 4-D vectorvec1 4-D vector
```

Return Values

Interpolated 4-D vector

Description

Linearly interpolate between two 4-D vectors.

Notes

Does not clamp *t* between 0 and 1.

maxElem

Maximum element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Maximum value of all elements of vec

Description

Compute the maximum value of all elements of a 4-D vector.

maxPerElem

Maximum of two 4-D vectors per element.

Definition

Arguments

vec0 4-D vectorvec1 4-D vector

Return Values

4-D vector in which each element is the maximum of the corresponding elements of the specified 4-D vectors

Description

Create a 4-D vector in which each element is the maximum of the corresponding elements of the specified 4-D vectors.

minElem

Minimum element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Minimum value of all elements of vec

Description

Compute the minimum value of all elements of a 4-D vector.

minPerElem

Minimum of two 4-D vectors per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element is the minimum of the corresponding elements of the specified 4-D vectors

Description

Create a 4-D vector in which each element is the minimum of the corresponding elements of two specified 4-D vectors.

mulPerElem

Multiply two 4-D vectors per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element is the product of the corresponding elements of the specified 4-D vectors

Description

Multiply two 4-D vectors element by element.

normalize

Normalize a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

The specified 4-D vector scaled to unit length

Description

Compute a normalized 4-D vector.

Notes

The result is unpredictable when all elements of vec are at or near zero.

operator *

Multiply a 4-D vector by a scalar.

Definition

Arguments

```
scalar Scalar value vec 4-D vector
```

Return Values

Scalar product of vec and scalar

Description

Multiply a 4-D vector by a scalar.

operator *

Multiply a 4-D vector by a scalar (scalar data contained in vector data type).

Definition

Arguments

```
scalarScalar value (stored in vector data type)vec4-D vector
```

Return Values

Scalar product of vec and scalar

Description

Multiply a 4-D vector by a scalar.

outer

Outer product of two 4-D vectors.

Definition

Arguments

vec0 4-D vectorvec1 4-D vector

Return Values

The 4x4 matrix product of a column-vector, vec0, and a row-vector, vec1

Description

Compute the outer product of two 4-D vectors.

print

Print a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

None

Description

Print a 4-D vector. Prints the 4-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

print

Print a 4-D vector and an associated string identifier.

Definition

Arguments

```
vec 4-D vectorname String printed with the 4-D vector
```

Return Values

None

Description

Print a 4-D vector and an associated string identifier. Prints the 4-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

recipPerElem

Compute the reciprocal of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the reciprocal of the corresponding element of the specified 4-D vector

Description

Create a 4-D vector in which each element is the reciprocal of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function recipf4.

rsqrtPerElem

Compute the reciprocal square root of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the reciprocal square root of the corresponding element of the specified 4-D vector

Description

Create a 4-D vector in which each element is the reciprocal square root of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function rsqrtf4.

select

Conditionally select between two 4-D vectors.

Definition

Arguments

```
vec04-D vectorvec14-D vectorselect1False selects the vec0 argument, true selects the vec1 argument
```

Return Values

Equal to vec0 if select1 is false, or to vec1 if select1 is true

Description

Conditionally select one of the 4-D vector arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch. Use the boolInVec version for better performance.

select

Conditionally select between two 4-D vectors (scalar data contained in vector data type).

Definition

Arguments

vec04-D vectorvec14-D vectorselect1False selects the vec0 argument, true selects the vec1 argument

Return Values

Equal to vec0 if select1 is false, or to vec1 if select1 is true

Description

Conditionally select one of the 4-D vector arguments.

Notes

This function uses a conditional select instruction to avoid a branch.

slerp

Spherical linear interpolation between two 4-D vectors.

Definition

Arguments

```
t Interpolation parameterunitVec0 4-D vector, expected to be unit-lengthunitVec1 4-D vector, expected to be unit-length
```

Return Values

Interpolated 4-D vector

Description

Perform spherical linear interpolation between two 4-D vectors.

Notes

The result is unpredictable if the vectors point in opposite directions. Does not clamp t between 0 and 1.

slerp

Spherical linear interpolation between two 4-D vectors (scalar data contained in vector data type).

Definition

Arguments

```
t Interpolation parameterunitVec0 4-D vector, expected to be unit-lengthunitVec1 4-D vector, expected to be unit-length
```

Return Values

Interpolated 4-D vector

Description

Perform spherical linear interpolation between two 4-D vectors.

Notes

The result is unpredictable if the vectors point in opposite directions. Does not clamp t between 0 and 1.

sqrtPerElem

Compute the square root of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the square root of the corresponding element of the specified 4-D vector

Description

Create a 4-D vector in which each element is the square root of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function sqrtf4.

storeHalfFloats

Store four 4-D vectors as half-floats.

Definition

Arguments

```
vec04-D vectorvec14-D vectorvec24-D vectorvec34-D vectortwoQuadsAn output array of 2 quadwords containing 16 half-floats
```

Return Values

None

Description

Store four 4-D vectors in two quadwords of half-float values. The output is $\{x0,y0,z0,w0,x1,y1,z1,w1,x2,y2,z2,w2,x3,y3,z3,w3\}$.

sum

Compute the sum of all elements of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Sum of all elements of vec

Description

Compute the sum of all elements of a 4-D vector.

3-D Point Functions

absPerElem

Compute the absolute value of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the absolute value of the corresponding element of pnt

Description

Compute the absolute value of each element of a 3-D point.

copySignPerElem

Copy sign from one 3-D point to another, per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element has the magnitude of the corresponding element of pnt0 and the sign of the corresponding element of pnt1

Description

For each element, create a value composed of the magnitude of pnt0 and the sign of pnt1.

dist

Compute the distance between two 3-D points.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

Distance between two 3-D points

Description

Compute the distance between two 3-D points.

distFromOrigin

Compute the distance of a 3-D point from the coordinate-system origin.

Definition

Arguments

pnt 3-D point

Return Values

Distance of a 3-D point from the origin

Description

Compute the distance of a 3-D point from the coordinate-system origin.

distSqr

Compute the square of the distance between two 3-D points.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

Square of the distance between two 3-D points

Description

Compute the square of the distance between two 3-D points.

distSqrFromOrigin

Compute the square of the distance of a 3-D point from the coordinate-system origin.

Definition

Arguments

pnt 3-D point

Return Values

Square of the distance of a 3-D point from the origin

Description

Compute the square of the distance of a 3-D point from the coordinate-system origin.

divPerElem

Divide two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the quotient of the corresponding elements of the specified 3-D points

Description

Divide two 3-D points element by element.

Notes

Floating-point behavior matches standard library function divf4.

lerp

Linear interpolation between two 3-D points.

Definition

Arguments

```
t Interpolation parameterpnt0 3-D pointpnt1 3-D point
```

Return Values

Interpolated 3-D point

Description

Linearly interpolate between two 3-D points.

Notes

Does not clamp *t* between 0 and 1.

lerp

Linear interpolation between two 3-D points (scalar data contained in vector data type).

Definition

Arguments

```
t Interpolation parameterpnt0 3-D pointpnt1 3-D point
```

Return Values

Interpolated 3-D point

Description

Linearly interpolate between two 3-D points.

Notes

Does not clamp *t* between 0 and 1.

loadXYZArray

Load four three-float 3-D points, stored in three quadwords.

Definition

Arguments

```
pnt0 An output 3-D point pnt1 An output 3-D point pnt2 An output 3-D point pnt3 An output 3-D point pnt3 An output 3-D point threeQuads Array of 3 quadwords containing 12 floats
```

Return Values

None

Description

Load four three-float 3-D points, stored in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$, into four 3-D points.

maxElem

Maximum element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Maximum value of all elements of pnt

Description

Compute the maximum value of all elements of a 3-D point.

maxPerElem

Maximum of two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the maximum of the corresponding elements of the specified 3-D points

Description

Create a 3-D point in which each element is the maximum of the corresponding elements of the specified 3-D points.

minElem

Minimum element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Minimum value of all elements of pnt

Description

Compute the minimum value of all elements of a 3-D point.

minPerElem

Minimum of two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the minimum of the corresponding elements of the specified 3-D points

Description

Create a 3-D point in which each element is the minimum of the corresponding elements of two specified 3-D points.

mulPerElem

Multiply two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the product of the corresponding elements of the specified 3-D points

Description

Multiply two 3-D points element by element.

print

Print a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

None

Description

Print a 3-D point. Prints the 3-D point transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

print

Print a 3-D point and an associated string identifier.

Definition

Arguments

```
pnt 3-D pointname String printed with the 3-D point
```

Return Values

None

Description

Print a 3-D point and an associated string identifier. Prints the 3-D point transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

projection

Scalar projection of a 3-D point on a unit-length 3-D vector.

Definition

Arguments

```
pnt 3-D pointunitVec 3-D vector, expected to be unit-length
```

Return Values

Scalar projection of the 3-D point on the unit-length 3-D vector

Description

Scalar projection of a 3-D point on a unit-length 3-D vector (dot product).

recipPerElem

Compute the reciprocal of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the reciprocal of the corresponding element of the specified 3-D point

Description

Create a 3-D point in which each element is the reciprocal of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function recipf4.

rsqrtPerElem

Compute the reciprocal square root of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the reciprocal square root of the corresponding element of the specified 3-D point

Description

Create a 3-D point in which each element is the reciprocal square root of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function rsqrtf4.

scale

Apply uniform scale to a 3-D point.

Definition

Arguments

```
pnt 3-D point
scaleVal Scalar value
```

Return Values

3-D point in which every element is multiplied by the scalar value

Description

Apply uniform scale to a 3-D point.

scale

Apply uniform scale to a 3-D point (scalar data contained in vector data type).

Definition

Arguments

```
pnt 3-D pointscaleVal Scalar value (stored in vector data type)
```

Return Values

3-D point in which every element is multiplied by the scalar value

Description

Apply uniform scale to a 3-D point.

scale

Apply non-uniform scale to a 3-D point.

Definition

Arguments

```
pnt 3-D point
scaleVec 3-D vector
```

Return Values

3-D point in which each element is the product of the corresponding elements of the specified 3-D point and 3-D vector

Description

Apply non-uniform scale to a 3-D point.

select

Conditionally select between two 3-D points.

Definition

Arguments

```
pnt0 3-D point pnt1 3-D point select1 False selects the pnt0 argument, true selects the pnt1 argument
```

Return Values

Equal to pnt0 if select1 is false, or to pnt1 if select1 is true

Description

Conditionally select one of the 3-D point arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch. Use the boolInVec version for better performance.

select

Conditionally select between two 3-D points (scalar data contained in vector data type).

Definition

Arguments

```
pnt0 3-D point pnt1 3-D point select1 False selects the pnt0 argument, true selects the pnt1 argument
```

Return Values

Equal to pnt0 if select1 is false, or to pnt1 if select1 is true

Description

Conditionally select one of the 3-D point arguments.

Notes

This function uses a conditional select instruction to avoid a branch.

sqrtPerElem

Compute the square root of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the square root of the corresponding element of the specified 3-D point

Description

Create a 3-D point in which each element is the square root of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function sqrtf4.

storeHalfFloats

Store eight 3-D points as half-floats.

Definition

Arguments

pnt0	3-D point
pnt1	3-D point
pnt2	3-D point
pnt3	3-D point
pnt4	3-D point
pnt5	3-D point
pnt6	3-D point
pnt7	3-D point
threeQuads	An output array of 3 quadwords containing 24 half-floats

Return Values

None

Description

Store eight 3-D points in three quadwords of half-float values. The output is $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7\}$.

storeXYZ

Store x, y, and z elements of a 3-D point in the first three words of a quadword. The value of the fourth word (the word with the highest address) remains unchanged.

Definition

Arguments

ont 3-D point

quad Pointer to a quadword in which x, y, and z will be stored

Return Values

None

Description

Store x, y, and z elements of a 3-D point in the first three words of a quadword. The value of the fourth word (the word with the highest address) remains unchanged.

storeXYZArray

Store four 3-D points in three quadwords.

Definition

Arguments

```
\begin{array}{ll} pnt0 & 3\text{-D point} \\ pnt1 & 3\text{-D point} \\ pnt2 & 3\text{-D point} \\ pnt3 & 3\text{-D point} \\ three \textit{Quads} & \text{An output array of 3 quadwords containing 12 floats} \end{array}
```

Return Values

None

Description

Store four 3-D points in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$.

sum

Compute the sum of all elements of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Sum of all elements of pnt

Description

Compute the sum of all elements of a 3-D point.

Quaternion Functions

conj

Compute the conjugate of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

Conjugate of the specified quaternion

Description

Compute the conjugate of a quaternion.

dot

Compute the dot product of two quaternions.

Definition

Arguments

quat0 Quaternion quat1 Quaternion

Return Values

Dot product of the specified quaternions

Description

Compute the dot product of two quaternions.

length

Compute the length of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

Length of the specified quaternion

Description

Compute the length of a quaternion.

lerp

Linear interpolation between two quaternions.

Definition

Arguments

```
t Interpolation parameterquat0 Quaternionquat1 Quaternion
```

Return Values

Interpolated quaternion

Description

Linearly interpolate between two quaternions.

Notes

Does not clamp *t* between 0 and 1.

lerp

Linear interpolation between two quaternions (scalar data contained in vector data type).

Definition

Arguments

```
t Interpolation parameterquat0 Quaternionquat1 Quaternion
```

Return Values

Interpolated quaternion

Description

Linearly interpolate between two quaternions.

Notes

Does not clamp *t* between 0 and 1.

norm

Compute the norm of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

The norm of the specified quaternion

Description

Compute the norm, equal to the square of the length, of a quaternion.

normalize

Normalize a quaternion.

Definition

Arguments

quat Quaternion

Return Values

The specified quaternion scaled to unit length

Description

Compute a normalized quaternion.

Notes

The result is unpredictable when all elements of quat are at or near zero.

operator *

Multiply a quaternion by a scalar.

Definition

Arguments

```
scalar Scalar value quat Quaternion
```

Return Values

Scalar product of quat and scalar

Description

Multiply a quaternion by a scalar.

operator *

Multiply a quaternion by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)
quat Quaternion

Return Values

Scalar product of quat and scalar

Description

Multiply a quaternion by a scalar.

print

Print a quaternion.

Definition

Arguments

quat Quaternion

Return Values

None

Description

Print a quaternion.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

print

Print a quaternion and an associated string identifier.

Definition

Arguments

quatQuaternionnameString printed with the quaternion

Return Values

None

Description

Print a quaternion and an associated string identifier.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

rotate

Use a unit-length quaternion to rotate a 3-D vector.

Definition

Arguments

```
unitQuat Quaternion, expected to be unit-length
vec 3-D vector
```

Return Values

The rotated 3-D vector, equivalent to unitQuat*Quat(vec,0)*conj(unitQuat)

Description

Rotate a 3-D vector by applying a unit-length quaternion.

select

Conditionally select between two quaternions.

Definition

Arguments

quat0 Quaternion
quat1 Quaternion

False selects the quat0 argument, true selects the quat1 argument

Return Values

Equal to quat 0 if select 1 is false, or to quat 1 if select 1 is true

Description

Conditionally select one of the quaternion arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch. Use the boolInVec version for better performance.

select

Conditionally select between two quaternions (scalar data contained in vector data type).

Definition

Arguments

quat0Quaternionquat1Quaternion

False selects the quat0 argument, true selects the quat1 argument

Return Values

Equal to quat 0 if select 1 is false, or to quat 1 if select 1 is true

Description

Conditionally select one of the quaternion arguments.

Notes

This function uses a conditional select instruction to avoid a branch.

slerp

Spherical linear interpolation between two quaternions.

Definition

Arguments

```
t Interpolation parameter

unitQuat0 Quaternion, expected to be unit-length
unitQuat1 Quaternion, expected to be unit-length
```

Return Values

Interpolated quaternion

Description

Perform spherical linear interpolation between two quaternions.

Notes

Interpolates along the shortest path between orientations. Does not clamp *t* between 0 and 1.

slerp

Spherical linear interpolation between two quaternions (scalar data contained in vector data type).

Definition

Arguments

```
t Interpolation parameter

unitQuat0 Quaternion, expected to be unit-length
unitQuat1 Quaternion, expected to be unit-length
```

Return Values

Interpolated quaternion

Description

Perform spherical linear interpolation between two quaternions.

Notes

Interpolates along the shortest path between orientations. Does not clamp *t* between 0 and 1.

squad

Spherical quadrangle interpolation.

Definition

Arguments

```
t Interpolation parameter

unitQuat0 Quaternion, expected to be unit-length

unitQuat1 Quaternion, expected to be unit-length

unitQuat2 Quaternion, expected to be unit-length

unitQuat3 Quaternion, expected to be unit-length
```

Return Values

Interpolated quaternion

Description

Perform spherical quadrangle interpolation between four quaternions.

squad

Spherical quadrangle interpolation (scalar data contained in vector data type).

Definition

Arguments

```
t Interpolation parameter

unitQuat0 Quaternion, expected to be unit-length

unitQuat1 Quaternion, expected to be unit-length

unitQuat2 Quaternion, expected to be unit-length

unitQuat3 Quaternion, expected to be unit-length
```

Return Values

Interpolated quaternion

Description

Perform spherical quadrangle interpolation between four quaternions.

3x3 Matrix Functions

absPerElem

Compute the absolute value of a 3x3 matrix per element.

Definition

Arguments

mat 3x3 matrix

Return Values

3x3 matrix in which each element is the absolute value of the corresponding element of the specified 3x3 matrix

Description

Compute the absolute value of each element of a 3x3 matrix.

appendScale

Append (post-multiply) a scale transformation to a 3x3 matrix.

Definition

Arguments

```
mat 3x3 matrix scaleVec 3-D vector
```

Return Values

The product of mat and a scale transformation created from scaleVec

Description

Post-multiply a 3x3 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

determinant

Determinant of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

The determinant of mat

Description

Compute the determinant of a 3x3 matrix.

inverse

Compute the inverse of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

Inverse of mat

Description

Compute the inverse of a 3x3 matrix.

Notes

Result is unpredictable when the determinant of mat is equal to or near 0.

mulPerElem

Multiply two 3x3 matrices per element.

Definition

Arguments

mat0 3x3 matrix
mat1 3x3 matrix

Return Values

3x3 matrix in which each element is the product of the corresponding elements of the specified 3x3 matrices

Description

Multiply two 3x3 matrices element by element.

operator *

Multiply a 3x3 matrix by a scalar.

Definition

Arguments

```
scalar Scalar value mat 3x3 matrix
```

Return Values

Scalar product of mat and scalar

Description

Multiply a 3x3 matrix by a scalar.

operator *

Multiply a 3x3 matrix by a scalar (scalar data contained in vector data type).

Definition

Arguments

```
scalar Scalar value (stored in vector data type)
mat 3x3 matrix
```

Return Values

Scalar product of mat and scalar

Description

Multiply a 3x3 matrix by a scalar.

prependScale

Prepend (pre-multiply) a scale transformation to a 3x3 matrix.

Definition

Arguments

```
scaleVec 3-D vector mat 3x3 matrix
```

Return Values

The product of a scale transformation created from scaleVec and mat

Description

Pre-multiply a 3x3 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

print

Print a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

None

Description

Print a 3x3 matrix. Unlike the printing of vectors, the 3x3 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

print

Print a 3x3 matrix and an associated string identifier.

Definition

Arguments

mat 3x3 matrixname String printed with the 3x3 matrix

Return Values

None

Description

Print a 3x3 matrix and an associated string identifier. Unlike the printing of vectors, the 3x3 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

select

Conditionally select between two 3x3 matrices.

Definition

Arguments

mat0 3x3 matrix mat1 3x3 matrix select1 False selects the mat0 argument, true selects the mat1 argument

Return Values

Equal to mat0 if select1 is false, or to mat1 if select1 is true

Description

Conditionally select one of the 3x3 matrix arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch. Use the boolInVec version for better performance.

select

Conditionally select between two 3x3 matrices (scalar data contained in vector data type).

Definition

Arguments

mat0 3x3 matrix mat1 3x3 matrix select1 False selects the mat0 argument, true selects the mat1 argument

Return Values

Equal to mat0 if select1 is false, or to mat1 if select1 is true

Description

Conditionally select one of the 3x3 matrix arguments.

Notes

This function uses a conditional select instruction to avoid a branch.

transpose

Transpose of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

mat transposed

Description

Compute the transpose of a 3x3 matrix.

4x4 Matrix Functions

absPerElem

Compute the absolute value of a 4x4 matrix per element.

Definition

Arguments

mat 4x4 matrix

Return Values

4x4 matrix in which each element is the absolute value of the corresponding element of the specified 4x4 matrix

Description

Compute the absolute value of each element of a 4x4 matrix.

affineInverse

Compute the inverse of a 4x4 matrix, which is expected to be an affine matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Inverse of the specified 4x4 matrix

Description

Naming the upper-left 3x3 submatrix of the specified 4x4 matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is inverse(M), whose translation vector is -inverse(M)*v, and whose bottom row is (0,0,0,1).

Notes

This can be used to achieve better performance than a general inverse when the specified 4x4 matrix meets the given restrictions. The result is unpredictable when the determinant of mat is equal to or near 0.

appendScale

Append (post-multiply) a scale transformation to a 4x4 matrix.

Definition

Arguments

```
mat 4x4 matrix scaleVec 3-D vector
```

Return Values

The product of mat and a scale transformation created from scaleVec

Description

Post-multiply a 4x4 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

determinant

Determinant of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

The determinant of mat

Description

Compute the determinant of a 4x4 matrix.

inverse

Compute the inverse of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Inverse of mat

Description

Compute the inverse of a 4x4 matrix.

Notes

Result is unpredictable when the determinant of mat is equal to or near 0.

mulPerElem

Multiply two 4x4 matrices per element.

Definition

Arguments

mat0 4x4 matrix
mat1 4x4 matrix

Return Values

4x4 matrix in which each element is the product of the corresponding elements of the specified 4x4 matrices

Description

Multiply two 4x4 matrices element by element.

operator *

Multiply a 4x4 matrix by a scalar.

Definition

Arguments

```
scalar Scalar value mat 4x4 matrix
```

Return Values

Scalar product of mat and scalar

Description

Multiply a 4x4 matrix by a scalar.

operator *

Multiply a 4x4 matrix by a scalar (scalar data contained in vector data type).

Definition

Arguments

```
scalarScalar value (stored in vector data type)mat4x4 matrix
```

Return Values

Scalar product of mat and scalar

Description

Multiply a 4x4 matrix by a scalar.

ortholnverse

Compute the inverse of a 4x4 matrix, which is expected to be an affine matrix with an orthogonal upper-left 3x3 submatrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Inverse of the specified 4x4 matrix

Description

Naming the upper-left 3x3 submatrix of the specified 4x4 matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is transpose(M), whose translation vector is -transpose(M)*v, and whose bottom row is (0,0,0,1).

Notes

This can be used to achieve better performance than a general inverse when the specified 4x4 matrix meets the given restrictions.

prependScale

Prepend (pre-multiply) a scale transformation to a 4x4 matrix.

Definition

Arguments

```
scaleVec 3-D vector mat 4x4 matrix
```

Return Values

The product of a scale transformation created from scaleVec and mat

Description

Pre-multiply a 4x4 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

print

Print a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

None

Description

Print a 4x4 matrix. Unlike the printing of vectors, the 4x4 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

print

Print a 4x4 matrix and an associated string identifier.

Definition

Arguments

mat 4x4 matrixname String printed with the 4x4 matrix

Return Values

None

Description

Print a 4x4 matrix and an associated string identifier. Unlike the printing of vectors, the 4x4 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

select

Conditionally select between two 4x4 matrices.

Definition

Arguments

mat0 4x4 matrix mat1 4x4 matrix select1 False selects the mat0 argument, true selects the mat1 argument

Return Values

Equal to mat0 if select1 is false, or to mat1 if select1 is true

Description

Conditionally select one of the 4x4 matrix arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch. Use the boolInVec version for better performance.

select

Conditionally select between two 4x4 matrices (scalar data contained in vector data type).

Definition

Arguments

mat0 4x4 matrix mat1 4x4 matrix select1 False selects the mat0 argument, true selects the mat1 argument

Return Values

Equal to mat0 if select1 is false, or to mat1 if select1 is true

Description

Conditionally select one of the 4x4 matrix arguments.

Notes

This function uses a conditional select instruction to avoid a branch.

transpose

Transpose of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

mat transposed

Description

Compute the transpose of a 4x4 matrix.

3x4 Transformation Matrix Functions

absPerElem

Compute the absolute value of a 3x4 transformation matrix per element.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

3x4 transformation matrix in which each element is the absolute value of the corresponding element of the specified 3x4 transformation matrix

Description

Compute the absolute value of each element of a 3x4 transformation matrix.

appendScale

Append (post-multiply) a scale transformation to a 3x4 transformation matrix.

Definition

Arguments

```
tfrm 3x4 transformation matrix scaleVec 3-D vector
```

Return Values

The product of tfrm and a scale transformation created from scaleVec

Description

Post-multiply a 3x4 transformation matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

inverse

Inverse of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Inverse of tfrm

Description

Compute the inverse of a 3x4 transformation matrix.

Notes

Result is unpredictable when the determinant of the left 3x3 submatrix is equal to or near 0.

mulPerElem

Multiply two 3x4 transformation matrices per element.

Definition

Arguments

```
tfrm0 3x4 transformation matrix tfrm1 3x4 transformation matrix
```

Return Values

3x4 transformation matrix in which each element is the product of the corresponding elements of the specified 3x4 transformation matrices

Description

Multiply two 3x4 transformation matrices element by element.

ortholnverse

Compute the inverse of a 3x4 transformation matrix, expected to have an orthogonal upper-left 3x3 submatrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Inverse of the specified 3x4 transformation matrix

Description

Naming the upper-left 3x3 submatrix of the specified 3x4 transformation matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is transpose(M), and whose translation vector is -transpose(M)*v.

Notes

This can be used to achieve better performance than a general inverse when the specified 3x4 transformation matrix meets the given restrictions.

prependScale

Prepend (pre-multiply) a scale transformation to a 3x4 transformation matrix.

Definition

Arguments

```
scaleVec 3-D vector

tfrm 3x4 transformation matrix
```

Return Values

The product of a scale transformation created from scaleVec and tfrm

Description

Pre-multiply a 3x4 transformation matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

print

Print a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

None

Description

Print a 3x4 transformation matrix. Unlike the printing of vectors, the 3x4 transformation matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

print

Print a 3x4 transformation matrix and an associated string identifier.

Definition

Arguments

tfrm 3x4 transformation matrixname String printed with the 3x4 transformation matrix

Return Values

None

Description

Print a 3x4 transformation matrix and an associated string identifier. Unlike the printing of vectors, the 3x4 transformation matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

select

Conditionally select between two 3x4 transformation matrices.

Definition

Arguments

tfrm0 3x4 transformation matrix
 tfrm1 3x4 transformation matrix
 select1 False selects the tfrm0 argument, true selects the tfrm1 argument

Return Values

Equal to tfrm0 if select1 is false, or to tfrm1 if select1 is true

Description

Conditionally select one of the 3x4 transformation matrix arguments.

Notes

This function uses a conditional select instruction to avoid a branch. However, the transfer of <code>select1</code> to a VMX register may use more processing time than a branch. Use the boolInVec version for better performance.

select

Conditionally select between two 3x4 transformation matrices (scalar data contained in vector data type).

Definition

Arguments

tfrm03x4 transformation matrixtfrm13x4 transformation matrixselect1False selects the tfrm0 argument, true selects the tfrm1 argument

Return Values

Equal to tfrm0 if select1 is false, or to tfrm1 if select1 is true

Description

Conditionally select one of the 3x4 transformation matrix arguments.

Notes

This function uses a conditional select instruction to avoid a branch.

Vectormath::Aos::Matrix3

Summary

Vectormath::Aos::Matrix3

A 3x3 matrix in array-of-structures format.

Definition

#include <vectormath/cpp/vectormath_aos.h>
class Matrix3;

Description

A class representing a 3x3 matrix stored in array-of-structures (AoS) format.

Methods Summary

Methods	Description
getCol	Get the column of a 3x3 matrix referred to by the specified
	index.
getCol0	Get column 0 of a 3x3 matrix.
getCol1	Get column 1 of a 3x3 matrix.
getCol2	Get column 2 of a 3x3 matrix.
getElem	Get the element of a 3x3 matrix referred to by column and
	row indices.
<u>getRow</u>	Get the row of a 3x3 matrix referred to by the specified
	index.
<u>identity</u>	Construct an identity 3x3 matrix.
Matrix3	Default constructor; does no initialization.
Matrix3	Copy a 3x3 matrix.
Matrix3	Construct a 3x3 matrix containing the specified columns.
Matrix3	Construct a 3x3 rotation matrix from a unit-length
	quaternion.
Matrix3	Set all elements of a 3x3 matrix to the same scalar value.
Matrix3	Set all elements of a 3x3 matrix to the same scalar value
	(scalar data contained in vector data type).
operator *	Multiply a 3x3 matrix by a scalar.
operator *	Multiply a 3x3 matrix by a scalar (scalar data contained in
	vector data type).
operator *	Multiply a 3x3 matrix by a 3-D vector.
operator *	Multiply two 3x3 matrices.
operator *=	Perform compound assignment and multiplication by a
	scalar.
operator *=	Perform compound assignment and multiplication by a
	scalar (scalar data contained in vector data type).
operator *=	Perform compound assignment and multiplication by a 3x3
	matrix.
operator+	Add two 3x3 matrices.
operator+=	Perform compound assignment and addition with a 3x3
	matrix.
operator-	Subtract a 3x3 matrix from another 3x3 matrix.
operator-	Negate all elements of a 3x3 matrix.

Methods	Description
operator-=	Perform compound assignment and subtraction by a 3x3
	matrix.
operator=	Assign one 3x3 matrix to another.
operator[]	Subscripting operator to set or get a column.
operator[]	Subscripting operator to get a column.
rotation	Construct a 3x3 matrix to rotate around a unit-length 3-D
	vector.
rotation	Construct a 3x3 matrix to rotate around a unit-length 3-D
	vector (scalar data contained in vector data type).
<u>rotation</u>	Construct a rotation matrix from a unit-length quaternion.
<u>rotationX</u>	Construct a 3x3 matrix to rotate around the x axis.
<u>rotationX</u>	Construct a 3x3 matrix to rotate around the x axis (scalar
	data contained in vector data type).
<u>rotationY</u>	Construct a 3x3 matrix to rotate around the y axis.
<u>rotationY</u>	Construct a 3x3 matrix to rotate around the y axis (scalar
	data contained in vector data type).
<u>rotationZ</u>	Construct a 3x3 matrix to rotate around the z axis.
<u>rotationZ</u>	Construct a 3x3 matrix to rotate around the z axis (scalar
	data contained in vector data type).
<u>rotationZYX</u>	Construct a 3x3 matrix to rotate around the x, y, and z axes.
scale	Construct a 3x3 matrix to perform scaling.
<u>setCol</u>	Set the column of a 3x3 matrix referred to by the specified
	index.
setCol0	Set column 0 of a 3x3 matrix.
setCol1	Set column 1 of a 3x3 matrix.
setCol2	Set column 2 of a 3x3 matrix.
<u>setElem</u>	Set the element of a 3x3 matrix referred to by column and
	row indices.
<u>setElem</u>	Set the element of a 3x3 matrix referred to by column and
	row indices (scalar data contained in vector data type).
<u>setRow</u>	Set the row of a 3x3 matrix referred to by the specified index.

Constructors and Destructors

Matrix3

Default constructor; does no initialization.

Definition

Arguments

None

Return Values

None

Description

Default constructor; does no initialization.

Copy a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

None

Description

Construct a copy of a 3x3 matrix.

Construct a 3x3 matrix containing the specified columns.

Definition

Arguments

col0 3-D vectorcol1 3-D vectorcol2 3-D vector

Return Values

None

Description

Construct a 3x3 matrix containing the specified columns.

Construct a 3x3 rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

None

Description

Construct a 3x3 matrix that applies the same rotation as the specified unit-length quaternion.

Set all elements of a 3x3 matrix to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

None

Description

Construct a 3x3 matrix with all elements set to the scalar value argument.

Set all elements of a 3x3 matrix to the same scalar value (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

None

Description

Construct a 3x3 matrix with all elements set to the scalar value argument.

Operator Methods

operator *

Multiply a 3x3 matrix by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Product of the specified 3x3 matrix and scalar

Description

Multiply a 3x3 matrix by a scalar.

operator *

Multiply a 3x3 matrix by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

Product of the specified 3x3 matrix and scalar

Description

Multiply a 3x3 matrix by a scalar.

operator *

Multiply a 3x3 matrix by a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Product of the specified 3x3 matrix and 3-D vector

Description

Multiply a 3x3 matrix by a 3-D vector.

operator *

Multiply two 3x3 matrices.

Definition

Arguments

mat 3x3 matrix

Return Values

Product of the specified 3x3 matrices

Description

Multiply two 3x3 matrices.

operator *=

Perform compound assignment and multiplication by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting 3x3 matrix

Description

Perform compound assignment and multiplication by a scalar.

operator *=

Perform compound assignment and multiplication by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

A reference to the resulting 3x3 matrix

Description

Perform compound assignment and multiplication by a scalar.

operator *=

Perform compound assignment and multiplication by a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

A reference to the resulting 3x3 matrix

Description

Perform compound assignment and multiplication by a 3x3 matrix.

operator+

Add two 3x3 matrices.

Definition

Arguments

mat 3x3 matrix

Return Values

Sum of the specified 3x3 matrices

Description

Add two 3x3 matrices.

operator+=

Perform compound assignment and addition with a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

A reference to the resulting 3x3 matrix

Description

Perform compound assignment and addition with a 3x3 matrix.

operator-

Subtract a 3x3 matrix from another 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

Difference of the specified 3x3 matrices

Description

Subtract a 3x3 matrix from another 3x3 matrix.

operator-

Negate all elements of a 3x3 matrix.

Definition

Arguments

None

Return Values

3x3 matrix containing negated elements of the specified 3x3 matrix

Description

Negate all elements of a 3x3 matrix.

operator-=

Perform compound assignment and subtraction by a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

A reference to the resulting 3x3 matrix

Description

Perform compound assignment and subtraction by a 3x3 matrix.

operator=

Assign one 3x3 matrix to another.

Definition

Arguments

mat 3x3 matrix

Return Values

A reference to the resulting 3x3 matrix

Description

Assign one 3x3 matrix to another.

operator[]

Subscripting operator to set or get a column.

Definition

Arguments

col Index, expected in the range 0-2

Return Values

A reference to indexed column

Description

Subscripting operator invoked when applied to non-const Matrix3.

operator[]

Subscripting operator to get a column.

Definition

Arguments

col Index, expected in the range 0-2

Return Values

Indexed column

Description

Subscripting operator invoked when applied to const Matrix3.

Public Static Methods

identity

Construct an identity 3x3 matrix.

Definition

Arguments

None

Return Values

The constructed 3x3 matrix

Description

Construct an identity 3x3 matrix in which non-diagonal elements are zero and diagonal elements are 1.

rotation

Construct a 3x3 matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

```
radians Scalar valueunitVec 3-D vector, expected to be unit-length
```

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around a unit-length 3-D vector by the specified radians angle.

rotation

Construct a 3x3 matrix to rotate around a unit-length 3-D vector (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)unitVec 3-D vector, expected to be unit-length

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around a unit-length 3-D vector by the specified radians angle.

rotation

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix that applies the same rotation as the specified unit-length quaternion.

rotationX

Construct a 3x3 matrix to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the x axis by the specified radians angle.

rotationX

Construct a 3x3 matrix to rotate around the x axis (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the x axis by the specified radians angle.

rotationY

Construct a 3x3 matrix to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the y axis by the specified radians angle.

rotationY

Construct a 3x3 matrix to rotate around the y axis (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the y axis by the specified radians angle.

rotationZ

Construct a 3x3 matrix to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the z axis by the specified radians angle.

rotationZ

Construct a 3x3 matrix to rotate around the z axis (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the z axis by the specified radians angle.

rotationZYX

Construct a 3x3 matrix to rotate around the x, y, and z axes.

Definition

Arguments

radiansXYZ 3-D vector

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

scale

Construct a 3x3 matrix to perform scaling.

Definition

Arguments

scaleVec 3-D vector

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

Public Instance Methods

getCol

Get the column of a 3x3 matrix referred to by the specified index.

Definition

Arguments

col Index, expected in the range 0-2

Return Values

The column referred to by the specified index

Description

Get the column of a 3x3 matrix referred to by the specified index.

getCol0

Get column 0 of a 3x3 matrix.

Definition

Arguments

None

Return Values

Column 0

Description

Get column 0 of a 3x3 matrix.

getCol1

Get column 1 of a 3x3 matrix.

Definition

Arguments

None

Return Values

Column 1

Description

Get column 1 of a 3x3 matrix.

getCol2

Get column 2 of a 3x3 matrix.

Definition

Arguments

None

Return Values

Column 2

Description

Get column 2 of a 3x3 matrix.

getElem

Get the element of a 3x3 matrix referred to by column and row indices.

Definition

Arguments

Index, expected in the range 0-2 row Index, expected in the range 0-2

Return Values

Element selected by col and row

Description

Get the element of a 3x3 matrix referred to by column and row indices.

getRow

Get the row of a 3x3 matrix referred to by the specified index.

Definition

Arguments

row Index, expected in the range 0-2

Return Values

The row referred to by the specified index

Description

Get the row of a 3x3 matrix referred to by the specified index.

Set the column of a 3x3 matrix referred to by the specified index.

Definition

Arguments

col Index, expected in the range 0-2vec 3-D vector

Return Values

A reference to the resulting 3x3 matrix

Description

Set the column of a 3x3 matrix referred to by the specified index.

Set column 0 of a 3x3 matrix.

Definition

Arguments

col0 3-D vector

Return Values

A reference to the resulting 3x3 matrix

Description

Set column 0 of a 3x3 matrix.

Set column 1 of a 3x3 matrix.

Definition

Arguments

coll 3-D vector

Return Values

A reference to the resulting 3x3 matrix

Description

Set column 1 of a 3x3 matrix.

Set column 2 of a 3x3 matrix.

Definition

Arguments

col2 3-D vector

Return Values

A reference to the resulting 3x3 matrix

Description

Set column 2 of a 3x3 matrix.

setElem

Set the element of a 3x3 matrix referred to by column and row indices.

Definition

Arguments

col Index, expected in the range 0-2row Index, expected in the range 0-2val Scalar value

Return Values

A reference to the resulting 3x3 matrix

Description

Set the element of a 3x3 matrix referred to by column and row indices.

setElem

Set the element of a 3x3 matrix referred to by column and row indices (scalar data contained in vector data type).

Definition

Arguments

col Index, expected in the range 0-2row Index, expected in the range 0-2val Scalar value (stored in vector data type)

Return Values

A reference to the resulting 3x3 matrix

Description

Set the element of a 3x3 matrix referred to by column and row indices.

setRow

Set the row of a 3x3 matrix referred to by the specified index.

Definition

Arguments

```
row Index, expected in the range 0-2 vec 3-D vector
```

Return Values

A reference to the resulting 3x3 matrix

Description

Set the row of a 3x3 matrix referred to by the specified index.

Vectormath::Aos::Matrix4

Summary

Vectormath::Aos::Matrix4

A 4x4 matrix in array-of-structures format.

Definition

#include <vectormath/cpp/vectormath_aos.h>
class Matrix4;

Description

A class representing a 4x4 matrix stored in array-of-structures (AoS) format.

Methods Summary

Methods	Description
frustum	Construct a perspective projection matrix based on frustum.
<u>getCol</u>	Get the column of a 4x4 matrix referred to by the specified
	index.
getCol0	Get column 0 of a 4x4 matrix.
getCol1	Get column 1 of a 4x4 matrix.
getCol2	Get column 2 of a 4x4 matrix.
getCol3	Get column 3 of a 4x4 matrix.
getElem	Get the element of a 4x4 matrix referred to by column and
	row indices.
<u>getRow</u>	Get the row of a 4x4 matrix referred to by the specified
	index.
<u>getTranslation</u>	Get the translation component of a 4x4 matrix.
getUpper3x3	Get the upper-left 3x3 submatrix of a 4x4 matrix.
<u>identity</u>	Construct an identity 4x4 matrix.
<u>lookAt</u>	Construct viewing matrix based on eye position, position
	looked at, and up direction.
Matrix4	Default constructor; does no initialization.
Matrix4	Copy a 4x4 matrix.
Matrix4	Construct a 4x4 matrix containing the specified columns.
Matrix4	Construct a 4x4 matrix from a 3x4 transformation matrix.
Matrix4	Construct a 4x4 matrix from a 3x3 matrix and a 3-D vector.
Matrix4	Construct a 4x4 matrix from a unit-length quaternion and a
	3-D vector.
Matrix4	Set all elements of a 4x4 matrix to the same scalar value.
Matrix4	Set all elements of a 4x4 matrix to the same scalar value
	(scalar data contained in vector data type).
operator *	Multiply a 4x4 matrix by a scalar.
operator *	Multiply a 4x4 matrix by a scalar (scalar data contained in
	vector data type).
operator *	Multiply a 4x4 matrix by a 4-D vector.
operator *	Multiply a 4x4 matrix by a 3-D vector.
operator *	Multiply a 4x4 matrix by a 3-D point.
operator *	Multiply two 4x4 matrices.
operator *	Multiply a 4x4 matrix by a 3x4 transformation matrix.

Methods	Description
operator *=	Perform compound assignment and multiplication by a
	scalar.
operator *=	Perform compound assignment and multiplication by a
	scalar (scalar data contained in vector data type).
operator *=	Perform compound assignment and multiplication by a 4x4
	matrix.
operator *=	Perform compound assignment and multiplication by a 3x4
	transformation matrix.
operator+	Add two 4x4 matrices.
operator+=	Perform compound assignment and addition with a 4x4
	matrix.
operator-	Subtract a 4x4 matrix from another 4x4 matrix.
operator-	Negate all elements of a 4x4 matrix.
operator-=	Perform compound assignment and subtraction by a 4x4
	matrix.
operator=	Assign one 4x4 matrix to another.
operator[]	Subscripting operator to set or get a column.
operator[]	Subscripting operator to get a column.
orthographic	Construct an orthographic projection matrix.
perspective	Construct a perspective projection matrix.
rotation	Construct a 4x4 matrix to rotate around a unit-length 3-D
	vector.
rotation	Construct a 4x4 matrix to rotate around a unit-length 3-D
	vector (scalar data contained in vector data type).
rotation	Construct a rotation matrix from a unit-length quaternion.
rotationX	Construct a 4x4 matrix to rotate around the x axis.
rotationX	Construct a 4x4 matrix to rotate around the x axis (scalar
	data contained in vector data type).
rotationY	Construct a 4x4 matrix to rotate around the y axis.
rotationY	Construct a 4x4 matrix to rotate around the y axis (scalar
	data contained in vector data type).
rotationZ	Construct a 4x4 matrix to rotate around the z axis.
rotationZ	Construct a 4x4 matrix to rotate around the z axis (scalar
	data contained in vector data type).
rotationZYX	Construct a 4x4 matrix to rotate around the x, y, and z axes.
scale	Construct a 4x4 matrix to perform scaling.
setCol	Set the column of a 4x4 matrix referred to by the specified
	index.
setCol0	Set column 0 of a 4x4 matrix.
setCol1	Set column 1 of a 4x4 matrix.
setCol2	Set column 2 of a 4x4 matrix.
setCol3	Set column 3 of a 4x4 matrix.
setElem	Set the element of a 4x4 matrix referred to by column and
_	row indices.
setElem	Set the element of a 4x4 matrix referred to by column and
	row indices (scalar data contained in vector data type).
setRow	Set the row of a 4x4 matrix referred to by the specified index.
<u>setTranslation</u>	Set translation component.
setUpper3x3	Set the upper-left 3x3 submatrix.
translation	Construct a 4x4 matrix to perform translation.
	1

Constructors and Destructors

Matrix4

Default constructor; does no initialization.

Definition

Arguments

None

Return Values

None

Description

Default constructor; does no initialization.

Copy a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

None

Description

Construct a copy of a 4x4 matrix.

Construct a 4x4 matrix containing the specified columns.

Definition

Arguments

```
col0 4-D vectorcol1 4-D vectorcol2 4-D vectorcol3 4-D vector
```

Return Values

None

Description

Construct a 4x4 matrix containing the specified columns.

Construct a 4x4 matrix from a 3x4 transformation matrix.

Definition

Arguments

mat 3x4 transformation matrix

Return Values

None

Description

Construct a 4x4 matrix whose upper 3x4 elements are equal to the 3x4 transformation matrix argument and whose bottom row is equal to (0,0,0,1).

Construct a 4x4 matrix from a 3x3 matrix and a 3-D vector.

Definition

Arguments

mat 3x3 matrix
translateVec 3-D vector

Return Values

None

Description

Construct a 4x4 matrix whose upper 3x3 elements are equal to the 3x3 matrix argument, whose translation component is equal to the 3-D vector argument, and whose bottom row is (0,0,0,1).

Construct a 4x4 matrix from a unit-length quaternion and a 3-D vector.

Definition

Arguments

Return Values

None

Description

Construct a 4x4 matrix whose upper-left 3x3 submatrix is a rotation matrix converted from the unit-length quaternion argument, whose translation component is equal to the 3-D vector argument, and whose bottom row is (0,0,0,1).

Set all elements of a 4x4 matrix to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

None

Description

Construct a 4x4 matrix with all elements set to the scalar value argument.

Set all elements of a 4x4 matrix to the same scalar value (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

None

Description

Construct a 4x4 matrix with all elements set to the scalar value argument.

Operator Methods

operator *

Multiply a 4x4 matrix by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Product of the specified 4x4 matrix and scalar

Description

Multiply a 4x4 matrix by a scalar.

Multiply a 4x4 matrix by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

Product of the specified 4x4 matrix and scalar

Description

Multiply a 4x4 matrix by a scalar.

Multiply a 4x4 matrix by a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Product of the specified 4x4 matrix and 4-D vector

Description

Multiply a 4x4 matrix by a 4-D vector.

Multiply a 4x4 matrix by a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Product of the specified 4x4 matrix and 3-D vector

Description

Multiply a 4x4 matrix by a 3-D vector treated as if it were a 4-D vector with the w element equal to 0.

Multiply a 4x4 matrix by a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Product of the specified 4x4 matrix and 3-D point

Description

Multiply a 4x4 matrix by a 3-D point treated as if it were a 4-D vector with the w element equal to 1.

Multiply two 4x4 matrices.

Definition

Arguments

mat 4x4 matrix

Return Values

Product of the specified 4x4 matrices

Description

Multiply two 4x4 matrices.

Multiply a 4x4 matrix by a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Product of the specified 4x4 matrix and 3x4 transformation matrix

Description

Multiply a 4x4 matrix by a 3x4 transformation matrix treated as if it were a 4x4 matrix with the bottom row equal to (0,0,0,1).

Perform compound assignment and multiplication by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting 4x4 matrix

Description

Perform compound assignment and multiplication by a scalar.

Perform compound assignment and multiplication by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

A reference to the resulting 4x4 matrix

Description

Perform compound assignment and multiplication by a scalar.

Perform compound assignment and multiplication by a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

A reference to the resulting 4x4 matrix

Description

Perform compound assignment and multiplication by a 4x4 matrix.

Perform compound assignment and multiplication by a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

A reference to the resulting 4x4 matrix

Description

Perform compound assignment and multiplication by a 3x4 transformation matrix.

operator+

Add two 4x4 matrices.

Definition

Arguments

mat 4x4 matrix

Return Values

Sum of the specified 4x4 matrices

Description

Add two 4x4 matrices.

operator+=

Perform compound assignment and addition with a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

A reference to the resulting 4x4 matrix

Description

Perform compound assignment and addition with a 4x4 matrix.

operator-

Subtract a 4x4 matrix from another 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Difference of the specified 4x4 matrices

Description

Subtract a 4x4 matrix from another 4x4 matrix.

operator-

Negate all elements of a 4x4 matrix.

Definition

Arguments

None

Return Values

4x4 matrix containing negated elements of the specified 4x4 matrix

Description

Negate all elements of a 4x4 matrix.

operator-=

Perform compound assignment and subtraction by a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

A reference to the resulting 4x4 matrix

Description

Perform compound assignment and subtraction by a 4x4 matrix.

operator=

Assign one 4x4 matrix to another.

Definition

Arguments

mat 4x4 matrix

Return Values

A reference to the resulting 4x4 matrix

Description

Assign one 4x4 matrix to another.

operator[]

Subscripting operator to set or get a column.

Definition

Arguments

col Index, expected in the range 0-3

Return Values

A reference to indexed column

Description

Subscripting operator invoked when applied to non-const Matrix4.

operator[]

Subscripting operator to get a column.

Definition

Arguments

col Index, expected in the range 0-3

Return Values

Indexed column

Description

Subscripting operator invoked when applied to const Matrix4.

Public Static Methods

frustum

Construct a perspective projection matrix based on frustum.

Definition

Arguments

```
leftScalar valuerightScalar valuebottomScalar valuetopScalar valuezNearScalar valuezFarScalar value
```

Return Values

The constructed 4x4 matrix

Description

Construct a perspective projection matrix based on frustum, equal to:

```
 2*z \text{Near}/(\text{right-left}) \quad 0 \qquad (\text{right+left})/(\text{right-left}) \quad 0 \\ 0 \qquad 2*z \text{Near}/(\text{top-bottom}) \quad (\text{top+bottom})/(\text{top-bottom}) \quad 0 \\ 0 \qquad 0 \qquad -(z \text{Far}+z \text{Near})/(z \text{Far}-z \text{Near}) \\ -2*z \text{Far}*z \text{Near}/(z \text{Far}-z \text{Near}) \\ 0 \qquad 0 \qquad -1 \qquad 0
```

identity

Construct an identity 4x4 matrix.

Definition

Arguments

None

Return Values

The constructed 4x4 matrix

Description

Construct an identity 4x4 matrix in which non-diagonal elements are zero and diagonal elements are 1.

lookAt

Construct viewing matrix based on eye position, position looked at, and up direction.

Definition

Arguments

```
eyePos 3-D point
100kAtPos 3-D point
upVec 3-D vector
```

Return Values

The constructed 4x4 matrix

Description

Construct the inverse of a coordinate frame that is centered at the eye position, with z axis directed away from lookAtPos, and y axis oriented to best match the up direction.

orthographic

Construct an orthographic projection matrix.

Definition

Arguments

```
leftScalar valuerightScalar valuebottomScalar valuetopScalar valuezNearScalar valuezFarScalar value
```

Return Values

The constructed 4x4 matrix

Description

Construct an orthographic projection matrix, equal to

perspective

Construct a perspective projection matrix.

Definition

Arguments

```
fovyRadiansScalar valueaspectScalar valuezNearScalar valuezFarScalar value
```

Return Values

The constructed 4x4 matrix

Description

Construct a perspective projection matrix, equal to:

rotation

Construct a 4x4 matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

radians Scalar valueunitVec 3-D vector, expected to be unit-length

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around a unit-length 3-D vector by the specified radians angle.

rotation

Construct a 4x4 matrix to rotate around a unit-length 3-D vector (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)unitVec 3-D vector, expected to be unit-length

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around a unit-length 3-D vector by the specified radians angle.

rotation

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix that applies the same rotation as the specified unit-length quaternion.

rotationX

Construct a 4x4 matrix to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the x axis by the specified radians angle.

rotationX

Construct a 4x4 matrix to rotate around the x axis (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the x axis by the specified radians angle.

rotationY

Construct a 4x4 matrix to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the y axis by the specified radians angle.

rotationY

Construct a 4x4 matrix to rotate around the y axis (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the y axis by the specified radians angle.

rotationZ

Construct a 4x4 matrix to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the z axis by the specified radians angle.

rotationZ

Construct a 4x4 matrix to rotate around the z axis (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the z axis by the specified radians angle.

rotationZYX

Construct a 4x4 matrix to rotate around the x, y, and z axes.

Definition

Arguments

radiansXYZ 3-D vector

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

scale

Construct a 4x4 matrix to perform scaling.

Definition

Arguments

scaleVec 3-D vector

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

translation

Construct a 4x4 matrix to perform translation.

Definition

Arguments

translateVec 3-D vector

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to perform translation, which is an identity matrix except for the translation component, with coordinates equal to those in *translateVec*.

Public Instance Methods

getCol

Get the column of a 4x4 matrix referred to by the specified index.

Definition

Arguments

col Index, expected in the range 0-3

Return Values

The column referred to by the specified index

Description

Get the column of a 4x4 matrix referred to by the specified index.

Get column 0 of a 4x4 matrix.

Definition

Arguments

None

Return Values

Column 0

Description

Get column 0 of a 4x4 matrix.

Get column 1 of a 4x4 matrix.

Definition

Arguments

None

Return Values

Column 1

Description

Get column 1 of a 4x4 matrix.

Get column 2 of a 4x4 matrix.

Definition

Arguments

None

Return Values

Column 2

Description

Get column 2 of a 4x4 matrix.

Get column 3 of a 4x4 matrix.

Definition

Arguments

None

Return Values

Column 3

Description

Get column 3 of a 4x4 matrix.

getElem

Get the element of a 4x4 matrix referred to by column and row indices.

Definition

Arguments

Index, expected in the range 0-3 row Index, expected in the range 0-3

Return Values

Element selected by col and row

Description

Get the element of a 4x4 matrix referred to by column and row indices.

getRow

Get the row of a 4x4 matrix referred to by the specified index.

Definition

Arguments

row Index, expected in the range 0-3

Return Values

The row referred to by the specified index

Description

Get the row of a 4x4 matrix referred to by the specified index.

getTranslation

Get the translation component of a 4x4 matrix.

Definition

Arguments

None

Return Values

Translation component

Description

Get the translation component of a 4x4 matrix.

getUpper3x3

Get the upper-left 3x3 submatrix of a 4x4 matrix.

Definition

Arguments

None

Return Values

Upper-left 3x3 submatrix

Description

Get the upper-left 3x3 submatrix of a 4x4 matrix.

setCol

Set the column of a 4x4 matrix referred to by the specified index.

Definition

Arguments

col Index, expected in the range 0-3vec 4-D vector

Return Values

A reference to the resulting 4x4 matrix

Description

Set the column of a 4x4 matrix referred to by the specified index.

setCol0

Set column 0 of a 4x4 matrix.

Definition

Arguments

col0 4-D vector

Return Values

A reference to the resulting 4x4 matrix

Description

Set column 0 of a 4x4 matrix.

setCol1

Set column 1 of a 4x4 matrix.

Definition

Arguments

coll 4-D vector

Return Values

A reference to the resulting 4x4 matrix

Description

Set column 1 of a 4x4 matrix.

setCol2

Set column 2 of a 4x4 matrix.

Definition

Arguments

col2 4-D vector

Return Values

A reference to the resulting 4x4 matrix

Description

Set column 2 of a 4x4 matrix.

setCol3

Set column 3 of a 4x4 matrix.

Definition

Arguments

col3 4-D vector

Return Values

A reference to the resulting 4x4 matrix

Description

Set column 3 of a 4x4 matrix.

setElem

Set the element of a 4x4 matrix referred to by column and row indices.

Definition

Arguments

col Index, expected in the range 0-3row Index, expected in the range 0-3val Scalar value

Return Values

A reference to the resulting 4x4 matrix

Description

Set the element of a 4x4 matrix referred to by column and row indices.

setElem

Set the element of a 4x4 matrix referred to by column and row indices (scalar data contained in vector data type).

Definition

Arguments

col Index, expected in the range 0-3row Index, expected in the range 0-3val Scalar value (stored in vector data type)

Return Values

A reference to the resulting 4x4 matrix

Description

Set the element of a 4x4 matrix referred to by column and row indices.

setRow

Set the row of a 4x4 matrix referred to by the specified index.

Definition

Arguments

```
row Index, expected in the range 0-3 vec 4-D vector
```

Return Values

A reference to the resulting 4x4 matrix

Description

Set the row of a 4x4 matrix referred to by the specified index.

setTranslation

Set translation component.

Definition

Arguments

translateVec 3-D vector

Return Values

A reference to the resulting 4x4 matrix

Description

Set the translation component of a 4x4 matrix equal to the specified 3-D vector.

Notes

This function does not change the bottom row elements.

setUpper3x3

Set the upper-left 3x3 submatrix.

Definition

Arguments

mat3 3x3 matrix

Return Values

A reference to the resulting 4x4 matrix

Description

Set the upper-left 3x3 submatrix elements of a 4x4 matrix equal to the specified 3x3 matrix.

Notes

This function does not change the bottom row elements.

Vectormath::Aos::Point3

Summary

Vectormath::Aos::Point3

A 3-D point in array-of-structures format.

Definition

#include <vectormath/cpp/vectormath_aos.h>
class Point3;

Description

A class representing a 3-D point stored in array-of-structures (AoS) format.

Methods Summary

Methods	Description
get128	Get vector float data from a 3-D point.
getElem	Get an x, y, or z element of a 3-D point by index.
getX	Get the x element of a 3-D point.
getY	Get the y element of a 3-D point.
<u>getZ</u>	Get the z element of a 3-D point.
operator+	Add a 3-D point to a 3-D vector.
operator+=	Perform compound assignment and addition with a 3-D
	vector.
operator-	Subtract a 3-D point from another 3-D point.
operator-	Subtract a 3-D vector from a 3-D point.
operator-=	Perform compound assignment and subtraction by a 3-D
	vector.
operator=	Assign one 3-D point to another.
operator[]	Subscripting operator to set or get an element.
operator[]	Subscripting operator to get an element.
Point3	Default constructor; does no initialization.
Point3	Construct a 3-D point from x, y, and z elements.
Point3	Construct a 3-D point from x, y, and z elements (scalar data
	contained in vector data type).
Point3	Copy elements from a 3-D vector into a 3-D point.
Point3	Set all elements of a 3-D point to the same scalar value.
Point3	Set all elements of a 3-D point to the same scalar value
	(scalar data contained in vector data type).
Point3	Set vector float data in a 3-D point.
<u>setElem</u>	Set an x, y, or z element of a 3-D point by index.
<u>setElem</u>	Set an x, y, or z element of a 3-D point by index (scalar data
	contained in vector data type).
<u>setX</u>	Set the x element of a 3-D point.
<u>setX</u>	Set the x element of a 3-D point (scalar data contained in
	vector data type).
<u>setY</u>	Set the y element of a 3-D point.
<u>setY</u>	Set the y element of a 3-D point (scalar data contained in
	vector data type).
<u>setZ</u>	Set the z element of a 3-D point.

Methods	Description
<u>setZ</u>	Set the z element of a 3-D point (scalar data contained in
	vector data type).

Constructors and Destructors

Point3

Default constructor; does no initialization.

Definition

Arguments

None

Return Values

None

Description

Default constructor; does no initialization.

Construct a 3-D point from x, y, and z elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value

Return Values

None

Description

Construct a 3-D point containing the specified x, y, and z elements.

Construct a 3-D point from x, y, and z elements (scalar data contained in vector data type).

Definition

Arguments

- x Scalar value (stored in vector data type)
- *y* Scalar value (stored in vector data type)
- z Scalar value (stored in vector data type)

Return Values

None

Description

Construct a 3-D point containing the specified x, y, and z elements.

Copy elements from a 3-D vector into a 3-D point.

Definition

Arguments

vec 3-D vector

Return Values

None

Description

Construct a 3-D point containing the x, y, and z elements of the specified 3-D vector.

Set all elements of a 3-D point to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

None

Description

Construct a 3-D point with all elements set to the scalar value argument.

Set all elements of a 3-D point to the same scalar value (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

None

Description

Construct a 3-D point with all elements set to the scalar value argument.

Set vector float data in a 3-D point.

Definition

Arguments

vf4 Scalar value

Return Values

None

Description

Construct a 3-D point whose internal vector float data is set to the vector float argument.

Operator Methods

operator+

Add a 3-D point to a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Sum of the specified 3-D point and 3-D vector

Description

Add a 3-D point to a 3-D vector.

operator+=

Perform compound assignment and addition with a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

A reference to the resulting 3-D point

Description

Perform compound assignment and addition with a 3-D vector.

operator-

Subtract a 3-D point from another 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Difference of the specified 3-D points

Description

Subtract a 3-D point from another 3-D point.

operator-

Subtract a 3-D vector from a 3-D point.

Definition

Arguments

vec 3-D vector

Return Values

Difference of the specified 3-D point and 3-D vector

Description

Subtract a 3-D vector from a 3-D point.

operator-=

Perform compound assignment and subtraction by a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

A reference to the resulting 3-D point

Description

Perform compound assignment and subtraction by a 3-D vector.

operator=

Assign one 3-D point to another.

Definition

Arguments

pnt 3-D point

Return Values

A reference to the resulting 3-D point

Description

Assign one 3-D point to another.

operator[]

Subscripting operator to set or get an element.

Definition

Arguments

idx Index, expected in the range 0-2

Return Values

VecIdx which holds a reference to the selected element

Description

Subscripting operator invoked when applied to non-const **Point3**.

operator[]

Subscripting operator to get an element.

Definition

Arguments

idx Index, expected in the range 0-2

Return Values

Indexed element

Description

Subscripting operator invoked when applied to const Point3.

Public Instance Methods

get128

Get vector float data from a 3-D point.

Definition

Arguments

None

Return Values

Internal vector float data

Description

Get internal vector float data from a 3-D point.

getElem

Get an x, y, or z element of a 3-D point by index.

Definition

Arguments

idx Index, expected in the range 0-2

Return Values

Element selected by the specified index

Description

Get an x, y, or z element of a 3-D point by specifying an index of 0, 1, or 2, respectively.

getX

Get the x element of a 3-D point.

Definition

Arguments

None

Return Values

x element of a 3-D point

Description

Get the x element of a 3-D point.

getY

Get the y element of a 3-D point.

Definition

Arguments

None

Return Values

y element of a 3-D point

Description

Get the y element of a 3-D point.

getZ

Get the z element of a 3-D point.

Definition

Arguments

None

Return Values

z element of a 3-D point

Description

Get the z element of a 3-D point.

setElem

Set an x, y, or z element of a 3-D point by index.

Definition

Arguments

idx Index, expected in the range 0-2value Scalar value

Return Values

A reference to the resulting 3-D point

Description

Set an x, y, or z element of a 3-D point by specifying an index of 0, 1, or 2, respectively.

setElem

Set an x, y, or z element of a 3-D point by index (scalar data contained in vector data type).

Definition

Arguments

idx Index, expected in the range 0-2value Scalar value (stored in vector data type)

Return Values

A reference to the resulting 3-D point

Description

Set an x, y, or z element of a 3-D point by specifying an index of 0, 1, or 2, respectively.

setX

Set the x element of a 3-D point.

Definition

Arguments

x Scalar value

Return Values

A reference to the resulting 3-D point

Description

Set the x element of a 3-D point to the specified scalar value.

setX

Set the x element of a 3-D point (scalar data contained in vector data type).

Definition

Arguments

x Scalar value (stored in vector data type)

Return Values

A reference to the resulting 3-D point

Description

Set the x element of a 3-D point to the specified scalar value.

setY

Set the y element of a 3-D point.

Definition

Arguments

y Scalar value

Return Values

A reference to the resulting 3-D point

Description

Set the y element of a 3-D point to the specified scalar value.

setY

Set the y element of a 3-D point (scalar data contained in vector data type).

Definition

Arguments

y Scalar value (stored in vector data type)

Return Values

A reference to the resulting 3-D point

Description

Set the y element of a 3-D point to the specified scalar value.

setZ

Set the z element of a 3-D point.

Definition

Arguments

z Scalar value

Return Values

A reference to the resulting 3-D point

Description

Set the z element of a 3-D point to the specified scalar value.

setZ

Set the z element of a 3-D point (scalar data contained in vector data type).

Definition

Arguments

z Scalar value (stored in vector data type)

Return Values

A reference to the resulting 3-D point

Description

Set the z element of a 3-D point to the specified scalar value.

Vectormath::Aos::Quat

Summary

Vectormath::Aos::Quat

A quaternion in array-of-structures format.

Definition

#include <vectormath/cpp/vectormath_aos.h>
class Quat;

Description

A class representing a quaternion stored in array-of-structures (AoS) format.

Methods Summary

Methods	Description
get128	Get vector float data from a quaternion.
<u>getElem</u>	Get an x, y, z, or w element of a quaternion by index.
getW	Get the w element of a quaternion.
getX	Get the x element of a quaternion.
<u>getXYZ</u>	Get the x, y, and z elements of a quaternion.
<u>getY</u>	Get the y element of a quaternion.
<u>getZ</u>	Get the z element of a quaternion.
<u>identity</u>	Construct an identity quaternion.
operator *	Multiply two quaternions.
operator *	Multiply a quaternion by a scalar.
operator *	Multiply a quaternion by a scalar (scalar data contained in
	vector data type).
operator *=	Perform compound assignment and multiplication by a
	quaternion.
operator *=	Perform compound assignment and multiplication by a
	scalar.
operator *=	Perform compound assignment and multiplication by a
	scalar (scalar data contained in vector data type).
operator+	Add two quaternions.
operator+=	Perform compound assignment and addition with a
	quaternion.
operator-	Subtract a quaternion from another quaternion.
operator-	Negate all elements of a quaternion.
operator-=	Perform compound assignment and subtraction by a
	quaternion.
operator/	Divide a quaternion by a scalar.
operator/	Divide a quaternion by a scalar (scalar data contained in
	vector data type).
operator/=	Perform compound assignment and division by a scalar.
operator/=	Perform compound assignment and division by a scalar
	(scalar data contained in vector data type).
operator=	Assign one quaternion to another.
operator[]	Subscripting operator to set or get an element.
operator[]	Subscripting operator to get an element.
Quat	Default constructor; does no initialization.

Methods	Description
Quat	Construct a quaternion from x, y, z, and w elements.
Quat	Construct a quaternion from x, y, z, and w elements (scalar
	data contained in vector data type).
Quat	Construct a quaternion from a 3-D vector and a scalar.
Quat	Construct a quaternion from a 3-D vector and a scalar (scalar
	data contained in vector data type).
Quat	Copy elements from a 4-D vector into a quaternion.
Quat	Convert a rotation matrix to a unit-length quaternion.
Quat	Set all elements of a quaternion to the same scalar value.
Quat	Set all elements of a quaternion to the same scalar value
	(scalar data contained in vector data type).
Quat	Set vector float data in a quaternion.
rotation	Construct a quaternion to rotate between two unit-length
	3-D vectors.
rotation	Construct a quaternion to rotate around a unit-length 3-D
	vector.
rotation	Construct a quaternion to rotate around a unit-length 3-D
	vector (scalar data contained in vector data type).
rotationX	Construct a quaternion to rotate around the x axis.
rotationX	Construct a quaternion to rotate around the x axis (scalar
	data contained in vector data type).
<u>rotationY</u>	Construct a quaternion to rotate around the y axis.
<u>rotationY</u>	Construct a quaternion to rotate around the y axis (scalar
	data contained in vector data type).
<u>rotationZ</u>	Construct a quaternion to rotate around the z axis.
<u>rotationZ</u>	Construct a quaternion to rotate around the z axis (scalar
	data contained in vector data type).
<u>setElem</u>	Set an x, y, z, or w element of a quaternion by index.
<u>setElem</u>	Set an x, y, z, or w element of a quaternion by index (scalar
	data contained in vector data type).
<u>setW</u>	Set the w element of a quaternion.
<u>setW</u>	Set the w element of a quaternion (scalar data contained in
	vector data type).
setX	Set the x element of a quaternion.
<u>setX</u>	Set the x element of a quaternion (scalar data contained in
	vector data type).
<u>setXYZ</u>	Set the x, y, and z elements of a quaternion.
<u>setY</u>	Set the y element of a quaternion.
<u>setY</u>	Set the y element of a quaternion (scalar data contained in
_	vector data type).
<u>setZ</u>	Set the z element of a quaternion.
<u>setZ</u>	Set the z element of a quaternion (scalar data contained in
	vector data type).

Constructors and Destructors

Quat

Default constructor; does no initialization.

Definition

Arguments

None

Return Values

None

Description

Default constructor; does no initialization.

Construct a quaternion from x, y, z, and w elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value
- w Scalar value

Return Values

None

Description

Construct a quaternion containing the specified x, y, z, and w elements.

Construct a quaternion from x, y, z, and w elements (scalar data contained in vector data type).

Definition

Arguments

- Scalar value (stored in vector data type)
- *y* Scalar value (stored in vector data type)
- z Scalar value (stored in vector data type)
- W Scalar value (stored in vector data type)

Return Values

None

Description

Construct a quaternion containing the specified x, y, z, and w elements.

Construct a quaternion from a 3-D vector and a scalar.

Definition

Arguments

xyz 3-D vectorw Scalar value

Return Values

None

Description

Construct a quaternion with the x, y, and z elements of the specified 3-D vector and with the w element set to the specified scalar.

Construct a quaternion from a 3-D vector and a scalar (scalar data contained in vector data type).

Definition

Arguments

xyz 3-D vector

w Scalar value (stored in vector data type)

Return Values

None

Description

Construct a quaternion with the x, y, and z elements of the specified 3-D vector and with the w element set to the specified scalar.

Copy elements from a 4-D vector into a quaternion.

Definition

Arguments

vec 4-D vector

Return Values

None

Description

Construct a quaternion containing the x, y, z, and w elements of the specified 4-D vector.

Convert a rotation matrix to a unit-length quaternion.

Definition

Arguments

rotMat 3x3 matrix, expected to be a rotation matrix

Return Values

None

Description

Construct a unit-length quaternion representing the same transformation as a rotation matrix.

Set all elements of a quaternion to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

None

Description

Construct a quaternion with all elements set to the scalar value argument.

Set all elements of a quaternion to the same scalar value (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

None

Description

Construct a quaternion with all elements set to the scalar value argument.

Set vector float data in a quaternion.

Definition

Arguments

vf4 Scalar value

Return Values

None

Description

Construct a quaternion whose internal vector float data is set to the vector float argument.

Operator Methods

operator *

Multiply two quaternions.

Definition

Arguments

quat Quaternion

Return Values

Product of the specified quaternions

Description

Multiply two quaternions.

operator *

Multiply a quaternion by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Product of the specified quaternion and scalar

Description

Multiply a quaternion by a scalar.

operator *

Multiply a quaternion by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

Product of the specified quaternion and scalar

Description

Multiply a quaternion by a scalar.

operator *=

Perform compound assignment and multiplication by a quaternion.

Definition

Arguments

quat Quaternion

Return Values

A reference to the resulting quaternion

Description

Perform compound assignment and multiplication by a quaternion.

operator *=

Perform compound assignment and multiplication by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting quaternion

Description

Perform compound assignment and multiplication by a scalar.

operator *=

Perform compound assignment and multiplication by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

A reference to the resulting quaternion

Description

Perform compound assignment and multiplication by a scalar.

operator+

Add two quaternions.

Definition

Arguments

quat Quaternion

Return Values

Sum of the specified quaternions

Description

Add two quaternions.

operator+=

Perform compound assignment and addition with a quaternion.

Definition

Arguments

quat Quaternion

Return Values

A reference to the resulting quaternion

Description

Perform compound assignment and addition with a quaternion.

operator-

Subtract a quaternion from another quaternion.

Definition

Arguments

quat Quaternion

Return Values

Difference of the specified quaternions

Description

Subtract a quaternion from another quaternion.

operator-

Negate all elements of a quaternion.

Definition

Arguments

None

Return Values

Quaternion containing negated elements of the specified quaternion

Description

Negate all elements of a quaternion.

operator-=

Perform compound assignment and subtraction by a quaternion.

Definition

Arguments

quat Quaternion

Return Values

A reference to the resulting quaternion

Description

Perform compound assignment and subtraction by a quaternion.

operator/

Divide a quaternion by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Quotient of the specified quaternion and scalar

Description

Divide a quaternion by a scalar.

operator/

Divide a quaternion by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

Quotient of the specified quaternion and scalar

Description

Divide a quaternion by a scalar.

operator/=

Perform compound assignment and division by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting quaternion

Description

Perform compound assignment and division by a scalar.

operator/=

Perform compound assignment and division by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

A reference to the resulting quaternion

Description

Perform compound assignment and division by a scalar.

operator=

Assign one quaternion to another.

Definition

Arguments

quat Quaternion

Return Values

A reference to the resulting quaternion

Description

Assign one quaternion to another.

operator[]

Subscripting operator to set or get an element.

Definition

Arguments

idx Index, expected in the range 0-3

Return Values

VecIdx which holds a reference to the selected element

Description

Subscripting operator invoked when applied to non-const Quat.

operator[]

Subscripting operator to get an element.

Definition

Arguments

idx Index, expected in the range 0-3

Return Values

Indexed element

Description

Subscripting operator invoked when applied to const Quat.

Public Static Methods

identity

Construct an identity quaternion.

Definition

Arguments

None

Return Values

The constructed quaternion

Description

Construct an identity quaternion equal to (0,0,0,1).

rotation

Construct a quaternion to rotate between two unit-length 3-D vectors.

Definition

Arguments

```
unitVec0 3-D vector, expected to be unit-lengthunitVec1 3-D vector, expected to be unit-length
```

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate between two unit-length 3-D vectors.

Notes

The result is unpredictable if unitVec0 and unitVec1 point in opposite directions.

rotation

Construct a quaternion to rotate around a unit-length 3-D vector.

Definition

Arguments

```
radians Scalar valueunitVec 3-D vector, expected to be unit-length
```

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around a unit-length 3-D vector by the specified radians angle.

rotation

Construct a quaternion to rotate around a unit-length 3-D vector (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)unitVec 3-D vector, expected to be unit-length

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around a unit-length 3-D vector by the specified radians angle.

rotationX

Construct a quaternion to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the x axis by the specified radians angle.

rotationX

Construct a quaternion to rotate around the x axis (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the x axis by the specified radians angle.

rotationY

Construct a quaternion to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the y axis by the specified radians angle.

rotationY

Construct a quaternion to rotate around the y axis (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the y axis by the specified radians angle.

rotationZ

Construct a quaternion to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the z axis by the specified radians angle.

rotationZ

Construct a quaternion to rotate around the z axis (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the z axis by the specified radians angle.

Public Instance Methods

get128

Get vector float data from a quaternion.

Definition

Arguments

None

Return Values

Internal vector float data

Description

Get internal vector float data from a quaternion.

getElem

Get an x, y, z, or w element of a quaternion by index.

Definition

Arguments

idx Index, expected in the range 0-3

Return Values

Element selected by the specified index

Description

Get an x, y, z, or w element of a quaternion by specifying an index of 0, 1, 2, or 3, respectively.

getW

Get the w element of a quaternion.

Definition

Arguments

None

Return Values

w element of a quaternion

Description

Get the w element of a quaternion.

getX

Get the x element of a quaternion.

Definition

Arguments

None

Return Values

x element of a quaternion

Description

Get the x element of a quaternion.

getXYZ

Get the x, y, and z elements of a quaternion.

Definition

Arguments

None

Return Values

3-D vector containing x, y, and z elements

Description

Extract a quaternion's x, y, and z elements into a 3-D vector.

getY

Get the y element of a quaternion.

Definition

Arguments

None

Return Values

y element of a quaternion

Description

Get the y element of a quaternion.

getZ

Get the z element of a quaternion.

Definition

Arguments

None

Return Values

z element of a quaternion

Description

Get the z element of a quaternion.

setElem

Set an x, y, z, or w element of a quaternion by index.

Definition

Arguments

idx Index, expected in the range 0-3value Scalar value

Return Values

A reference to the resulting quaternion

Description

Set an x, y, z, or w element of a quaternion by specifying an index of 0, 1, 2, or 3, respectively.

setElem

Set an x, y, z, or w element of a quaternion by index (scalar data contained in vector data type).

Definition

Arguments

idx Index, expected in the range 0-3value Scalar value (stored in vector data type)

Return Values

A reference to the resulting quaternion

Description

Set an x, y, z, or w element of a quaternion by specifying an index of 0, 1, 2, or 3, respectively.

setW

Set the w element of a quaternion.

Definition

Arguments

w Scalar value

Return Values

A reference to the resulting quaternion

Description

Set the w element of a quaternion to the specified scalar value.

setW

Set the w element of a quaternion (scalar data contained in vector data type).

Definition

Arguments

W

Scalar value (stored in vector data type)

Return Values

A reference to the resulting quaternion

Description

Set the w element of a quaternion to the specified scalar value.

setX

Set the x element of a quaternion.

Definition

Arguments

x Scalar value

Return Values

A reference to the resulting quaternion

Description

Set the x element of a quaternion to the specified scalar value.

setX

Set the x element of a quaternion (scalar data contained in vector data type).

Definition

Arguments

x Scalar value (stored in vector data type)

Return Values

A reference to the resulting quaternion

Description

Set the x element of a quaternion to the specified scalar value.

setXYZ

Set the x, y, and z elements of a quaternion.

Definition

Arguments

vec 3-D vector

Return Values

A reference to the resulting quaternion

Description

Set the x, y, and z elements to those of the specified 3-D vector.

Notes

This function does not change the w element.

setY

Set the y element of a quaternion.

Definition

Arguments

y Scalar value

Return Values

A reference to the resulting quaternion

Description

Set the y element of a quaternion to the specified scalar value.

setY

Set the y element of a quaternion (scalar data contained in vector data type).

Definition

Arguments

y Scalar value (stored in vector data type)

Return Values

A reference to the resulting quaternion

Description

Set the y element of a quaternion to the specified scalar value.

setZ

Set the z element of a quaternion.

Definition

Arguments

z Scalar value

Return Values

A reference to the resulting quaternion

Description

Set the z element of a quaternion to the specified scalar value.

setZ

Set the z element of a quaternion (scalar data contained in vector data type).

Definition

Arguments

z Scalar value (stored in vector data type)

Return Values

A reference to the resulting quaternion

Description

Set the z element of a quaternion to the specified scalar value.

Vectormath::Aos::Transform3

Summary

Vectormath::Aos::Transform3

A 3x4 transformation matrix in array-of-structures format.

Definition

#include <vectormath/cpp/vectormath_aos.h>
class Transform3;

Description

A class representing a 3x4 transformation matrix stored in array-of-structures (AoS) format.

Methods Summary

Methods	Description
<u>getCol</u>	Get the column of a 3x4 transformation matrix referred to by
	the specified index.
getCol0	Get column 0 of a 3x4 transformation matrix.
getCol1	Get column 1 of a 3x4 transformation matrix.
getCol2	Get column 2 of a 3x4 transformation matrix.
getCol3	Get column 3 of a 3x4 transformation matrix.
<u>getElem</u>	Get the element of a 3x4 transformation matrix referred to
	by column and row indices.
getRow	Get the row of a 3x4 transformation matrix referred to by the
	specified index.
<u>getTranslation</u>	Get the translation component of a 3x4 transformation
	matrix.
getUpper3x3	Get the upper-left 3x3 submatrix of a 3x4 transformation
	matrix.
identity	Construct an identity 3x4 transformation matrix.
operator *	Multiply a 3x4 transformation matrix by a 3-D vector.
operator *	Multiply a 3x4 transformation matrix by a 3-D point.
operator *	Multiply two 3x4 transformation matrices.
operator *=	Perform compound assignment and multiplication by a 3x4
	transformation matrix.
operator=	Assign one 3x4 transformation matrix to another.
operator[]	Subscripting operator to set or get a column.
operator[]	Subscripting operator to get a column.
rotation	Construct a 3x4 transformation matrix to rotate around a
	unit-length 3-D vector.
rotation	Construct a 3x4 transformation matrix to rotate around a
	unit-length 3-D vector (scalar data contained in vector data
	type).
rotation	Construct a rotation matrix from a unit-length quaternion.
rotationX	Construct a 3x4 transformation matrix to rotate around the x
	axis.
rotationX	Construct a 3x4 transformation matrix to rotate around the x
	axis (scalar data contained in vector data type).
rotationY	Construct a 3x4 transformation matrix to rotate around the y
	axis.

Methods	Description
rotationY	Construct a 3x4 transformation matrix to rotate around the y
	axis (scalar data contained in vector data type).
rotationZ	Construct a 3x4 transformation matrix to rotate around the z
	axis.
rotationZ	Construct a 3x4 transformation matrix to rotate around the z
	axis (scalar data contained in vector data type).
rotationZYX	Construct a 3x4 transformation matrix to rotate around the
	x, y, and z axes.
scale	Construct a 3x4 transformation matrix to perform scaling.
setCol	Set the column of a 3x4 transformation matrix referred to by
	the specified index.
setCol0	Set column 0 of a 3x4 transformation matrix.
setCol1	Set column 1 of a 3x4 transformation matrix.
setCol2	Set column 2 of a 3x4 transformation matrix.
setCol3	Set column 3 of a 3x4 transformation matrix.
setElem	Set the element of a 3x4 transformation matrix referred to by
	column and row indices.
setElem	Set the element of a 3x4 transformation matrix referred to by
	column and row indices (scalar data contained in vector data
	type).
<u>setRow</u>	Set the row of a 3x4 transformation matrix referred to by the
	specified index.
<u>setTranslation</u>	Set translation component.
setUpper3x3	Set the upper-left 3x3 submatrix.
<u>Transform3</u>	Default constructor; does no initialization.
<u>Transform3</u>	Copy a 3x4 transformation matrix.
<u>Transform3</u>	Construct a 3x4 transformation matrix containing the
	specified columns.
<u>Transform3</u>	Construct a 3x4 transformation matrix from a 3x3 matrix and
	a 3-D vector.
<u>Transform3</u>	Construct a 3x4 transformation matrix from a unit-length
	quaternion and a 3-D vector.
<u>Transform3</u>	Set all elements of a 3x4 transformation matrix to the same
	scalar value.
<u>Transform3</u>	Set all elements of a 3x4 transformation matrix to the same
	scalar value (scalar data contained in vector data type).
translation	Construct a 3x4 transformation matrix to perform
	translation.

Constructors and Destructors

Transform3

Default constructor; does no initialization.

Definition

Arguments

None

Return Values

None

Description

Default constructor; does no initialization.

Copy a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

None

Description

Construct a copy of a 3x4 transformation matrix.

Construct a 3x4 transformation matrix containing the specified columns.

Definition

Arguments

```
co10 3-D vectorco11 3-D vectorco12 3-D vectorco13 3-D vector
```

Return Values

None

Description

Construct a 3x4 transformation matrix containing the specified columns.

Construct a 3x4 transformation matrix from a 3x3 matrix and a 3-D vector.

Definition

Arguments

tfrm 3x3 matrix translateVec 3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix whose upper 3x3 elements are equal to the 3x3 matrix argument and whose translation component is equal to the 3-D vector argument.

Construct a 3x4 transformation matrix from a unit-length quaternion and a 3-D vector.

Definition

Arguments

Return Values

None

Description

Construct a 3x4 transformation matrix whose upper-left 3x3 submatrix is a rotation matrix converted from the unit-length quaternion argument and whose translation component is equal to the 3-D vector argument.

Set all elements of a 3x4 transformation matrix to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

None

Description

Construct a 3x4 transformation matrix with all elements set to the scalar value argument.

Set all elements of a 3x4 transformation matrix to the same scalar value (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

None

Description

Construct a 3x4 transformation matrix with all elements set to the scalar value argument.

Operator Methods

operator *

Multiply a 3x4 transformation matrix by a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Product of the specified 3x4 transformation matrix and 3-D vector

Description

Applies the 3x3 upper-left submatrix (but not the translation component) of a 3x4 transformation matrix to a 3-D vector.

operator *

Multiply a 3x4 transformation matrix by a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Product of the specified 3x4 transformation matrix and 3-D point

Description

Applies the 3x3 upper-left submatrix and the translation component of a 3x4 transformation matrix to a 3-D point.

operator *

Multiply two 3x4 transformation matrices.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Product of the specified 3x4 transformation matrices

Description

Multiply two 3x4 transformation matrices.

operator *=

Perform compound assignment and multiplication by a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Perform compound assignment and multiplication by a 3x4 transformation matrix.

operator=

Assign one 3x4 transformation matrix to another.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Assign one 3x4 transformation matrix to another.

operator[]

Subscripting operator to set or get a column.

Definition

Arguments

col Index, expected in the range 0-3

Return Values

A reference to indexed column

Description

Subscripting operator invoked when applied to non-const **Transform3**.

operator[]

Subscripting operator to get a column.

Definition

Arguments

col Index, expected in the range 0-3

Return Values

Indexed column

Description

Subscripting operator invoked when applied to const <u>Transform3</u>.

Public Static Methods

identity

Construct an identity 3x4 transformation matrix.

Definition

Arguments

None

Return Values

The constructed 3x4 transformation matrix

Description

Construct an identity 3x4 transformation matrix in which non-diagonal elements are zero and diagonal elements are 1.

rotation

Construct a 3x4 transformation matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

```
radians Scalar valueunitVec 3-D vector, expected to be unit-length
```

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around a unit-length 3-D vector by the specified radians angle.

rotation

Construct a 3x4 transformation matrix to rotate around a unit-length 3-D vector (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)unitVec 3-D vector, expected to be unit-length

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around a unit-length 3-D vector by the specified radians angle.

rotation

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix that applies the same rotation as the specified unit-length quaternion.

rotationX

Construct a 3x4 transformation matrix to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the x axis by the specified radians angle.

rotationX

Construct a 3x4 transformation matrix to rotate around the x axis (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the x axis by the specified radians angle.

rotationY

Construct a 3x4 transformation matrix to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the y axis by the specified radians angle.

rotationY

Construct a 3x4 transformation matrix to rotate around the y axis (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the y axis by the specified radians angle.

rotationZ

Construct a 3x4 transformation matrix to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the z axis by the specified radians angle.

rotationZ

Construct a 3x4 transformation matrix to rotate around the z axis (scalar data contained in vector data type).

Definition

Arguments

radians Scalar value (stored in vector data type)

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the z axis by the specified radians angle.

rotationZYX

Construct a 3x4 transformation matrix to rotate around the x, y, and z axes.

Definition

Arguments

radiansXYZ 3-D vector

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

scale

Construct a 3x4 transformation matrix to perform scaling.

Definition

Arguments

scaleVec 3-D vector

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

translation

Construct a 3x4 transformation matrix to perform translation.

Definition

Arguments

translateVec 3-D vector

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to perform translation, which is an identity matrix except for the translation component, with coordinates equal to those in *translateVec*.

Public Instance Methods

getCol

Get the column of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

col Index, expected in the range 0-3

Return Values

The column referred to by the specified index

Description

Get the column of a 3x4 transformation matrix referred to by the specified index.

Get column 0 of a 3x4 transformation matrix.

Definition

Arguments

None

Return Values

Column 0

Description

Get column 0 of a 3x4 transformation matrix.

Get column 1 of a 3x4 transformation matrix.

Definition

Arguments

None

Return Values

Column 1

Description

Get column 1 of a 3x4 transformation matrix.

Get column 2 of a 3x4 transformation matrix.

Definition

Arguments

None

Return Values

Column 2

Description

Get column 2 of a 3x4 transformation matrix.

Get column 3 of a 3x4 transformation matrix.

Definition

Arguments

None

Return Values

Column 3

Description

Get column 3 of a 3x4 transformation matrix.

getElem

Get the element of a 3x4 transformation matrix referred to by column and row indices.

Definition

Arguments

Index, expected in the range 0-3 row Index, expected in the range 0-2

Return Values

Element selected by col and row

Description

Get the element of a 3x4 transformation matrix referred to by column and row indices.

getRow

Get the row of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

row Index, expected in the range 0-2

Return Values

The row referred to by the specified index

Description

Get the row of a 3x4 transformation matrix referred to by the specified index.

getTranslation

Get the translation component of a 3x4 transformation matrix.

Definition

Arguments

None

Return Values

Translation component

Description

Get the translation component of a 3x4 transformation matrix.

getUpper3x3

Get the upper-left 3x3 submatrix of a 3x4 transformation matrix.

Definition

Arguments

None

Return Values

Upper-left 3x3 submatrix

Description

Get the upper-left 3x3 submatrix of a 3x4 transformation matrix.

Set the column of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

col Index, expected in the range 0-3vec 3-D vector

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set the column of a 3x4 transformation matrix referred to by the specified index.

Set column 0 of a 3x4 transformation matrix.

Definition

Arguments

col0 3-D vector

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set column 0 of a 3x4 transformation matrix.

Set column 1 of a 3x4 transformation matrix.

Definition

Arguments

coll 3-D vector

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set column 1 of a 3x4 transformation matrix.

Set column 2 of a 3x4 transformation matrix.

Definition

Arguments

col2 3-D vector

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set column 2 of a 3x4 transformation matrix.

Set column 3 of a 3x4 transformation matrix.

Definition

Arguments

col3 3-D vector

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set column 3 of a 3x4 transformation matrix.

setElem

Set the element of a 3x4 transformation matrix referred to by column and row indices.

Definition

Arguments

```
col Index, expected in the range 0-3row Index, expected in the range 0-2val Scalar value
```

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set the element of a 3x4 transformation matrix referred to by column and row indices.

setElem

Set the element of a 3x4 transformation matrix referred to by column and row indices (scalar data contained in vector data type).

Definition

Arguments

col Index, expected in the range 0-3row Index, expected in the range 0-2val Scalar value (stored in vector data type)

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set the element of a 3x4 transformation matrix referred to by column and row indices.

setRow

Set the row of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

```
row Index, expected in the range 0-2 vec 4-D vector
```

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set the row of a 3x4 transformation matrix referred to by the specified index.

setTranslation

Set translation component.

Definition

Arguments

translateVec 3-D vector

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set the translation component of a 3x4 transformation matrix equal to the specified 3-D vector.

setUpper3x3

Set the upper-left 3x3 submatrix.

Definition

Arguments

mat3 3x3 matrix

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set the upper-left 3x3 submatrix elements of a 3x4 transformation matrix equal to the specified 3x3 matrix.

Vectormath::Aos::Vector3

Summary

Vectormath::Aos::Vector3

A 3-D vector in array-of-structures format.

Definition

#include <vectormath/cpp/vectormath_aos.h>
class Vector3;

Description

A class representing a 3-D vector stored in array-of-structures (AoS) format.

Methods Summary

Methods	Description
get128	Get vector float data from a 3-D vector.
getElem	Get an x, y, or z element of a 3-D vector by index.
getX	Get the x element of a 3-D vector.
<u>getY</u>	Get the y element of a 3-D vector.
<u>getZ</u>	Get the z element of a 3-D vector.
operator *	Multiply a 3-D vector by a scalar.
operator *	Multiply a 3-D vector by a scalar (scalar data contained in
	vector data type).
operator *=	Perform compound assignment and multiplication by a
	scalar.
operator *=	Perform compound assignment and multiplication by a
	scalar (scalar data contained in vector data type).
operator+	Add two 3-D vectors.
operator+	Add a 3-D vector to a 3-D point.
operator+=	Perform compound assignment and addition with a 3-D
	vector.
operator-	Subtract a 3-D vector from another 3-D vector.
operator-	Negate all elements of a 3-D vector.
operator-=	Perform compound assignment and subtraction by a 3-D
	vector.
operator/	Divide a 3-D vector by a scalar.
operator/	Divide a 3-D vector by a scalar (scalar data contained in
	vector data type).
operator/=	Perform compound assignment and division by a scalar.
operator/=	Perform compound assignment and division by a scalar
	(scalar data contained in vector data type).
operator=	Assign one 3-D vector to another.
operator[]	Subscripting operator to set or get an element.
operator[]	Subscripting operator to get an element.
setElem	Set an x, y, or z element of a 3-D vector by index.
<u>setElem</u>	Set an x, y, or z element of a 3-D vector by index (scalar data
12/	contained in vector data type).
<u>setX</u>	Set the x element of a 3-D vector.
<u>setX</u>	Set the x element of a 3-D vector (scalar data contained in
	vector data type).

Methods	Description
<u>setY</u>	Set the y element of a 3-D vector.
<u>setY</u>	Set the y element of a 3-D vector (scalar data contained in
	vector data type).
<u>setZ</u>	Set the z element of a 3-D vector.
<u>setZ</u>	Set the z element of a 3-D vector (scalar data contained in
	vector data type).
<u>Vector3</u>	Default constructor; does no initialization.
Vector3	Construct a 3-D vector from x, y, and z elements.
<u>Vector3</u>	Construct a 3-D vector from x, y, and z elements (scalar data
	contained in vector data type).
Vector3	Copy elements from a 3-D point into a 3-D vector.
Vector3	Set all elements of a 3-D vector to the same scalar value.
Vector3	Set all elements of a 3-D vector to the same scalar value
	(scalar data contained in vector data type).
<u>Vector3</u>	Set vector float data in a 3-D vector.
<u>xAxis</u>	Construct x axis.
<u>yAxis</u>	Construct y axis.
zAxis	Construct z axis.

Constructors and Destructors

Vector3

Default constructor; does no initialization.

Definition

Arguments

None

Return Values

None

Description

Default constructor; does no initialization.

Construct a 3-D vector from x, y, and z elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value

Return Values

None

Description

Construct a 3-D vector containing the specified x, y, and z elements.

Construct a 3-D vector from x, y, and z elements (scalar data contained in vector data type).

Definition

Arguments

- x Scalar value (stored in vector data type)
- Y Scalar value (stored in vector data type)
- z Scalar value (stored in vector data type)

Return Values

None

Description

Construct a 3-D vector containing the specified x, y, and z elements.

Copy elements from a 3-D point into a 3-D vector.

Definition

Arguments

pnt 3-D point

Return Values

None

Description

Construct a 3-D vector containing the x, y, and z elements of the specified 3-D point.

Set all elements of a 3-D vector to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

None

Description

Construct a 3-D vector with all elements set to the scalar value argument.

Set all elements of a 3-D vector to the same scalar value (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

None

Description

Construct a 3-D vector with all elements set to the scalar value argument.

Set vector float data in a 3-D vector.

Definition

Arguments

vf4 Scalar value

Return Values

None

Description

Construct a 3-D vector whose internal vector float data is set to the vector float argument.

Operator Methods

operator *

Multiply a 3-D vector by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Product of the specified 3-D vector and scalar

Description

Multiply a 3-D vector by a scalar.

operator *

Multiply a 3-D vector by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

Product of the specified 3-D vector and scalar

Description

Multiply a 3-D vector by a scalar.

operator *=

Perform compound assignment and multiplication by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting 3-D vector

Description

Perform compound assignment and multiplication by a scalar.

operator *=

Perform compound assignment and multiplication by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

A reference to the resulting 3-D vector

Description

Perform compound assignment and multiplication by a scalar.

operator+

Add two 3-D vectors.

Definition

Arguments

vec 3-D vector

Return Values

Sum of the specified 3-D vectors

Description

Add two 3-D vectors.

operator+

Add a 3-D vector to a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Sum of the specified 3-D vector and 3-D point

Description

Add a 3-D vector to a 3-D point.

operator+=

Perform compound assignment and addition with a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

A reference to the resulting 3-D vector

Description

Perform compound assignment and addition with a 3-D vector.

operator-

Subtract a 3-D vector from another 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Difference of the specified 3-D vectors

Description

Subtract a 3-D vector from another 3-D vector.

operator-

Negate all elements of a 3-D vector.

Definition

Arguments

None

Return Values

3-D vector containing negated elements of the specified 3-D vector

Description

Negate all elements of a 3-D vector.

operator-=

Perform compound assignment and subtraction by a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

A reference to the resulting 3-D vector

Description

Perform compound assignment and subtraction by a 3-D vector.

operator/

Divide a 3-D vector by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Quotient of the specified 3-D vector and scalar

Description

Divide a 3-D vector by a scalar.

operator/

Divide a 3-D vector by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

Quotient of the specified 3-D vector and scalar

Description

Divide a 3-D vector by a scalar.

operator/=

Perform compound assignment and division by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting 3-D vector

Description

Perform compound assignment and division by a scalar.

operator/=

Perform compound assignment and division by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

A reference to the resulting 3-D vector

Description

Perform compound assignment and division by a scalar.

operator=

Assign one 3-D vector to another.

Definition

Arguments

vec 3-D vector

Return Values

A reference to the resulting 3-D vector

Description

Assign one 3-D vector to another.

operator[]

Subscripting operator to set or get an element.

Definition

Arguments

idx Index, expected in the range 0-2

Return Values

VecIdx which holds a reference to the selected element

Description

Subscripting operator invoked when applied to non-const <u>Vector3</u>.

operator[]

Subscripting operator to get an element.

Definition

Arguments

idx Index, expected in the range 0-2

Return Values

Indexed element

Description

Subscripting operator invoked when applied to const <u>Vector3</u>.

Public Static Methods

xAxis

Construct x axis.

Definition

Arguments

None

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector equal to (1,0,0).

yAxis

Construct y axis.

Definition

Arguments

None

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector equal to (0,1,0).

zAxis

Construct z axis.

Definition

Arguments

None

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector equal to (0,0,1).

Public Instance Methods

get128

Get vector float data from a 3-D vector.

Definition

Arguments

None

Return Values

Internal vector float data

Description

Get internal vector float data from a 3-D vector.

getElem

Get an x, y, or z element of a 3-D vector by index.

Definition

Arguments

idx Index, expected in the range 0-2

Return Values

Element selected by the specified index

Description

Get an x, y, or z element of a 3-D vector by specifying an index of 0, 1, or 2, respectively.

getX

Get the x element of a 3-D vector.

Definition

Arguments

None

Return Values

x element of a 3-D vector

Description

Get the x element of a 3-D vector.

getY

Get the y element of a 3-D vector.

Definition

Arguments

None

Return Values

y element of a 3-D vector

Description

Get the y element of a 3-D vector.

getZ

Get the z element of a 3-D vector.

Definition

Arguments

None

Return Values

z element of a 3-D vector

Description

Get the z element of a 3-D vector.

setElem

Set an x, y, or z element of a 3-D vector by index.

Definition

Arguments

idx Index, expected in the range 0-2value Scalar value

Return Values

A reference to the resulting 3-D vector

Description

Set an x, y, or z element of a 3-D vector by specifying an index of 0, 1, or 2, respectively.

setElem

Set an x, y, or z element of a 3-D vector by index (scalar data contained in vector data type).

Definition

Arguments

idx Index, expected in the range 0-2value Scalar value (stored in vector data type)

Return Values

A reference to the resulting 3-D vector

Description

Set an x, y, or z element of a 3-D vector by specifying an index of 0, 1, or 2, respectively.

setX

Set the x element of a 3-D vector.

Definition

Arguments

x Scalar value

Return Values

A reference to the resulting 3-D vector

Description

Set the x element of a 3-D vector to the specified scalar value.

setX

Set the x element of a 3-D vector (scalar data contained in vector data type).

Definition

Arguments

x Scalar value (stored in vector data type)

Return Values

A reference to the resulting 3-D vector

Description

Set the x element of a 3-D vector to the specified scalar value.

setY

Set the y element of a 3-D vector.

Definition

Arguments

y Scalar value

Return Values

A reference to the resulting 3-D vector

Description

Set the y element of a 3-D vector to the specified scalar value.

setY

Set the y element of a 3-D vector (scalar data contained in vector data type).

Definition

Arguments

y Scalar value (stored in vector data type)

Return Values

A reference to the resulting 3-D vector

Description

Set the y element of a 3-D vector to the specified scalar value.

setZ

Set the z element of a 3-D vector.

Definition

Arguments

z Scalar value

Return Values

A reference to the resulting 3-D vector

Description

Set the z element of a 3-D vector to the specified scalar value.

setZ

Set the z element of a 3-D vector (scalar data contained in vector data type).

Definition

Arguments

z Scalar value (stored in vector data type)

Return Values

A reference to the resulting 3-D vector

Description

Set the z element of a 3-D vector to the specified scalar value.

Vectormath::Aos::Vector4

Summary

Vectormath::Aos::Vector4

A 4-D vector in array-of-structures format.

Definition

#include <vectormath/cpp/vectormath_aos.h>
class Vector4;

Description

A class representing a 4-D vector stored in array-of-structures (AoS) format.

Methods Summary

Methods	Description
get128	Get vector float data from a 4-D vector.
getElem	Get an x, y, z, or w element of a 4-D vector by index.
getW	Get the w element of a 4-D vector.
getX	Get the x element of a 4-D vector.
<u>getXYZ</u>	Get the x, y, and z elements of a 4-D vector.
getY	Get the y element of a 4-D vector.
<u>getZ</u>	Get the z element of a 4-D vector.
operator *	Multiply a 4-D vector by a scalar.
operator *	Multiply a 4-D vector by a scalar (scalar data contained in
	vector data type).
operator *=	Perform compound assignment and multiplication by a
	scalar.
operator *=	Perform compound assignment and multiplication by a
	scalar (scalar data contained in vector data type).
operator+	Add two 4-D vectors.
operator+=	Perform compound assignment and addition with a 4-D
	vector.
operator-	Subtract a 4-D vector from another 4-D vector.
operator-	Negate all elements of a 4-D vector.
operator-=	Perform compound assignment and subtraction by a 4-D
	vector.
operator/	Divide a 4-D vector by a scalar.
operator/	Divide a 4-D vector by a scalar (scalar data contained in
	vector data type).
operator/=	Perform compound assignment and division by a scalar.
operator/=	Perform compound assignment and division by a scalar
	(scalar data contained in vector data type).
operator=	Assign one 4-D vector to another.
operator[]	Subscripting operator to set or get an element.
operator[]	Subscripting operator to get an element.
<u>setElem</u>	Set an x, y, z, or w element of a 4-D vector by index.
<u>setElem</u>	Set an x, y, z, or w element of a 4-D vector by index (scalar
	data contained in vector data type).
<u>setW</u>	Set the w element of a 4-D vector.

Methods	Description
setW	Set the w element of a 4-D vector (scalar data contained in
	vector data type).
setX	Set the x element of a 4-D vector.
setX	Set the x element of a 4-D vector (scalar data contained in
	vector data type).
setXYZ	Set the x, y, and z elements of a 4-D vector.
setY	Set the y element of a 4-D vector.
setY	Set the y element of a 4-D vector (scalar data contained in
	vector data type).
setZ	Set the z element of a 4-D vector.
setZ	Set the z element of a 4-D vector (scalar data contained in
	vector data type).
Vector4	Default constructor; does no initialization.
Vector4	Construct a 4-D vector from x, y, z, and w elements.
Vector4	Construct a 4-D vector from x, y, z, and w elements (scalar
	data contained in vector data type).
Vector4	Construct a 4-D vector from a 3-D vector and a scalar.
Vector4	Construct a 4-D vector from a 3-D vector and a scalar (scalar
	data contained in vector data type).
<u>Vector4</u>	Copy x, y, and z from a 3-D vector into a 4-D vector, and set
	w to 0.
<u>Vector4</u>	Copy x, y, and z from a 3-D point into a 4-D vector, and set
	w to 1.
<u>Vector4</u>	Copy elements from a quaternion into a 4-D vector.
<u>Vector4</u>	Set all elements of a 4-D vector to the same scalar value.
<u>Vector4</u>	Set all elements of a 4-D vector to the same scalar value
	(scalar data contained in vector data type).
<u>Vector4</u>	Set vector float data in a 4-D vector.
<u>wAxis</u>	Construct w axis.
<u>xAxis</u>	Construct x axis.
<u>yAxis</u>	Construct y axis.
zAxis	Construct z axis.

Constructors and Destructors

Vector4

Default constructor; does no initialization.

Definition

Arguments

None

Return Values

None

Description

Default constructor; does no initialization.

Construct a 4-D vector from x, y, z, and w elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value
- w Scalar value

Return Values

None

Description

Construct a 4-D vector containing the specified x, y, z, and w elements.

Construct a 4-D vector from x, y, z, and w elements (scalar data contained in vector data type).

Definition

Arguments

- x Scalar value (stored in vector data type)
- *y* Scalar value (stored in vector data type)
- z Scalar value (stored in vector data type)
- w Scalar value (stored in vector data type)

Return Values

None

Description

Construct a 4-D vector containing the specified x, y, z, and w elements.

Construct a 4-D vector from a 3-D vector and a scalar.

Definition

Arguments

xyz 3-D vectorw Scalar value

Return Values

None

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D vector and with the w element set to the specified scalar.

Construct a 4-D vector from a 3-D vector and a scalar (scalar data contained in vector data type).

Definition

Arguments

xyz 3-D vector

w Scalar value (stored in vector data type)

Return Values

None

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D vector and with the w element set to the specified scalar.

Copy x, y, and z from a 3-D vector into a 4-D vector, and set w to 0.

Definition

Arguments

vec 3-D vector

Return Values

None

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D vector and with the w element set to 0.

Copy x, y, and z from a 3-D point into a 4-D vector, and set w to 1.

Definition

Arguments

pnt 3-D point

Return Values

None

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D point and with the w element set to 1.

Copy elements from a quaternion into a 4-D vector.

Definition

Arguments

quat Quaternion

Return Values

None

Description

Construct a 4-D vector containing the x, y, z, and w elements of the specified quaternion.

Set all elements of a 4-D vector to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

None

Description

Construct a 4-D vector with all elements set to the scalar value argument.

Set all elements of a 4-D vector to the same scalar value (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

None

Description

Construct a 4-D vector with all elements set to the scalar value argument.

Set vector float data in a 4-D vector.

Definition

Arguments

vf4 Scalar value

Return Values

None

Description

Construct a 4-D vector whose internal vector float data is set to the vector float argument.

Operator Methods

operator *

Multiply a 4-D vector by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Product of the specified 4-D vector and scalar

Description

Multiply a 4-D vector by a scalar.

operator *

Multiply a 4-D vector by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

Product of the specified 4-D vector and scalar

Description

Multiply a 4-D vector by a scalar.

operator *=

Perform compound assignment and multiplication by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting 4-D vector

Description

Perform compound assignment and multiplication by a scalar.

operator *=

Perform compound assignment and multiplication by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

A reference to the resulting 4-D vector

Description

Perform compound assignment and multiplication by a scalar.

operator+

Add two 4-D vectors.

Definition

Arguments

vec 4-D vector

Return Values

Sum of the specified 4-D vectors

Description

Add two 4-D vectors.

operator+=

Perform compound assignment and addition with a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

A reference to the resulting 4-D vector

Description

Perform compound assignment and addition with a 4-D vector.

operator-

Subtract a 4-D vector from another 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Difference of the specified 4-D vectors

Description

Subtract a 4-D vector from another 4-D vector.

operator-

Negate all elements of a 4-D vector.

Definition

Arguments

None

Return Values

4-D vector containing negated elements of the specified 4-D vector

Description

Negate all elements of a 4-D vector.

operator-=

Perform compound assignment and subtraction by a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

A reference to the resulting 4-D vector

Description

Perform compound assignment and subtraction by a 4-D vector.

operator/

Divide a 4-D vector by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Quotient of the specified 4-D vector and scalar

Description

Divide a 4-D vector by a scalar.

operator/

Divide a 4-D vector by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

Quotient of the specified 4-D vector and scalar

Description

Divide a 4-D vector by a scalar.

operator/=

Perform compound assignment and division by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting 4-D vector

Description

Perform compound assignment and division by a scalar.

operator/=

Perform compound assignment and division by a scalar (scalar data contained in vector data type).

Definition

Arguments

scalar Scalar value (stored in vector data type)

Return Values

A reference to the resulting 4-D vector

Description

Perform compound assignment and division by a scalar.

operator=

Assign one 4-D vector to another.

Definition

Arguments

vec 4-D vector

Return Values

A reference to the resulting 4-D vector

Description

Assign one 4-D vector to another.

operator[]

Subscripting operator to set or get an element.

Definition

Arguments

idx Index, expected in the range 0-3

Return Values

VecIdx which holds a reference to the selected element

Description

Subscripting operator invoked when applied to non-const Vector4.

operator[]

Subscripting operator to get an element.

Definition

Arguments

idx Index, expected in the range 0-3

Return Values

Indexed element

Description

Subscripting operator invoked when applied to const <u>Vector4</u>.

Public Static Methods

wAxis

Construct w axis.

Definition

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (0,0,0,1).

xAxis

Construct x axis.

Definition

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (1,0,0,0).

yAxis

Construct y axis.

Definition

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (0,1,0,0).

zAxis

Construct z axis.

Definition

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (0,0,1,0).

Public Instance Methods

get128

Get vector float data from a 4-D vector.

Definition

Arguments

None

Return Values

Internal vector float data

Description

Get internal vector float data from a 4-D vector.

getElem

Get an x, y, z, or w element of a 4-D vector by index.

Definition

Arguments

idx Index, expected in the range 0-3

Return Values

Element selected by the specified index

Description

Get an x, y, z, or w element of a 4-D vector by specifying an index of 0, 1, 2, or 3, respectively.

getW

Get the w element of a 4-D vector.

Definition

Arguments

None

Return Values

w element of a 4-D vector

Description

Get the w element of a 4-D vector.

getX

Get the x element of a 4-D vector.

Definition

Arguments

None

Return Values

x element of a 4-D vector

Description

Get the x element of a 4-D vector.

getXYZ

Get the x, y, and z elements of a 4-D vector.

Definition

Arguments

None

Return Values

3-D vector containing x, y, and z elements

Description

Extract a 4-D vector's x, y, and z elements into a 3-D vector.

getY

Get the y element of a 4-D vector.

Definition

Arguments

None

Return Values

y element of a 4-D vector

Description

Get the y element of a 4-D vector.

getZ

Get the z element of a 4-D vector.

Definition

Arguments

None

Return Values

z element of a 4-D vector

Description

Get the z element of a 4-D vector.

setElem

Set an x, y, z, or w element of a 4-D vector by index.

Definition

Arguments

idx Index, expected in the range 0-3value Scalar value

Return Values

A reference to the resulting 4-D vector

Description

Set an x, y, z, or w element of a 4-D vector by specifying an index of 0, 1, 2, or 3, respectively.

setElem

Set an x, y, z, or w element of a 4-D vector by index (scalar data contained in vector data type).

Definition

Arguments

idx Index, expected in the range 0-3value Scalar value (stored in vector data type)

Return Values

A reference to the resulting 4-D vector

Description

Set an x, y, z, or w element of a 4-D vector by specifying an index of 0, 1, 2, or 3, respectively.

setW

Set the w element of a 4-D vector.

Definition

Arguments

w Scalar value

Return Values

A reference to the resulting 4-D vector

Description

Set the w element of a 4-D vector to the specified scalar value.

setW

Set the w element of a 4-D vector (scalar data contained in vector data type).

Definition

Arguments

W

Scalar value (stored in vector data type)

Return Values

A reference to the resulting 4-D vector

Description

Set the w element of a 4-D vector to the specified scalar value.

setX

Set the x element of a 4-D vector.

Definition

Arguments

x Scalar value

Return Values

A reference to the resulting 4-D vector

Description

Set the x element of a 4-D vector to the specified scalar value.

setX

Set the x element of a 4-D vector (scalar data contained in vector data type).

Definition

Arguments

x Scalar value (stored in vector data type)

Return Values

A reference to the resulting 4-D vector

Description

Set the x element of a 4-D vector to the specified scalar value.

setXYZ

Set the x, y, and z elements of a 4-D vector.

Definition

Arguments

vec 3-D vector

Return Values

A reference to the resulting 4-D vector

Description

Set the x, y, and z elements to those of the specified 3-D vector.

Notes

This function does not change the w element.

setY

Set the y element of a 4-D vector.

Definition

Arguments

y Scalar value

Return Values

A reference to the resulting 4-D vector

Description

Set the y element of a 4-D vector to the specified scalar value.

setY

Set the y element of a 4-D vector (scalar data contained in vector data type).

Definition

Arguments

y Scalar value (stored in vector data type)

Return Values

A reference to the resulting 4-D vector

Description

Set the y element of a 4-D vector to the specified scalar value.

setZ

Set the z element of a 4-D vector.

Definition

Arguments

z Scalar value

Return Values

A reference to the resulting 4-D vector

Description

Set the z element of a 4-D vector to the specified scalar value.

setZ

Set the z element of a 4-D vector (scalar data contained in vector data type).

Definition

Arguments

z Scalar value (stored in vector data type)

Return Values

A reference to the resulting 4-D vector

Description

Set the z element of a 4-D vector to the specified scalar value.

Vectormath::Soa

Summary

Vectormath::Soa

The namespace containing structure-of-arrays (SoA) classes.

Definition

namespace Soa {}

Description

The namespace containing structure-of-arrays (SoA) classes.

Function Summary

Function	Description
<u>absPerElem</u>	Compute the absolute value of a 3-D vector per element.
<u>absPerElem</u>	Compute the absolute value of a 4-D vector per element.
<u>absPerElem</u>	Compute the absolute value of a 3-D point per element.
<u>absPerElem</u>	Compute the absolute value of a 3x3 matrix per element.
<u>absPerElem</u>	Compute the absolute value of a 4x4 matrix per element.
<u>absPerElem</u>	Compute the absolute value of a 3x4 transformation matrix
	per element.
<u>affineInverse</u>	Compute the inverse of a 4x4 matrix, which is expected to be
	an affine matrix.
<u>appendScale</u>	Append (post-multiply) a scale transformation to a 3x3
	matrix.
<u>appendScale</u>	Append (post-multiply) a scale transformation to a 4x4
	matrix.
<u>appendScale</u>	Append (post-multiply) a scale transformation to a 3x4
	transformation matrix.
<u>conj</u>	Compute the conjugate of a quaternion.
<u>copySignPerElem</u>	Copy sign from one 3-D vector to another, per element.
<u>copySignPerElem</u>	Copy sign from one 4-D vector to another, per element.
<u>copySignPerElem</u>	Copy sign from one 3-D point to another, per element.
cross	Compute cross product of two 3-D vectors.
<u>crossMatrix</u>	Cross-product matrix of a 3-D vector.
<u>crossMatrixMul</u>	Create cross-product matrix and multiply.
<u>determinant</u>	Determinant of a 3x3 matrix.
<u>determinant</u>	Determinant of a 4x4 matrix.
dist	Compute the distance between two 3-D points.
<u>distFromOrigin</u>	Compute the distance of a 3-D point from the
	coordinate-system origin.
<u>distSqr</u>	Compute the square of the distance between two 3-D points.
<u>distSqrFromOrigin</u>	Compute the square of the distance of a 3-D point from the
	coordinate-system origin.
<u>divPerElem</u>	Divide two 3-D vectors per element.
<u>divPerElem</u>	Divide two 4-D vectors per element.
<u>divPerElem</u>	Divide two 3-D points per element.
dot	Compute the dot product of two 3-D vectors.
dot	Compute the dot product of two 4-D vectors.

Function	Description
dot	Compute the dot product of two quaternions.
inverse	Compute the inverse of a 3x3 matrix.
inverse	Compute the inverse of a 4x4 matrix.
inverse	Inverse of a 3x4 transformation matrix.
length	Compute the length of a 3-D vector.
length	Compute the length of a 4-D vector.
length	Compute the length of a quaternion.
lengthSqr	Compute the square of the length of a 3-D vector.
lengthSqr	Compute the square of the length of a 4-D vector.
lerp	Linear interpolation between two 3-D vectors.
lerp	Linear interpolation between two 4-D vectors.
lerp	Linear interpolation between two 3-D points.
lerp	Linear interpolation between two quaternions.
loadXYZArray	Load four three-float 3-D vectors, stored in three
	quadwords.
loadXYZArray	Load four three-float 3-D points, stored in three quadwords.
maxElem	Maximum element of a 3-D vector.
maxElem	Maximum element of a 4-D vector.
maxElem	Maximum element of a 3-D point.
maxPerElem	Maximum of two 3-D vectors per element.
maxPerElem	Maximum of two 4-D vectors per element.
maxPerElem	Maximum of two 3-D points per element.
minElem	Minimum element of a 3-D vector.
minElem	Minimum element of a 4-D vector.
minElem	Minimum element of a 3-D point.
minPerElem	Minimum of two 3-D vectors per element.
minPerElem	Minimum of two 4-D vectors per element.
minPerElem	Minimum of two 3-D points per element.
mulPerElem	Multiply two 3-D vectors per element.
mulPerElem	Multiply two 4-D vectors per element.
mulPerElem	Multiply two 3-D points per element.
mulPerElem	Multiply two 3x3 matrices per element.
mulPerElem	Multiply two 4x4 matrices per element.
mulPerElem	Multiply two 3x4 transformation matrices per element.
norm	Compute the norm of a quaternion.
normalize	Normalize a 3-D vector.
normalize	Normalize a 4-D vector.
normalize	Normalize a quaternion.
operator *	Multiply a 3-D vector by a scalar.
operator *	Multiply a 4-D vector by a scalar.
operator *	Multiply a quaternion by a scalar.
operator *	Multiply a 3x3 matrix by a scalar.
operator *	Multiply a 4x4 matrix by a scalar.
orthoInverse	Compute the inverse of a 4x4 matrix, which is expected to be
	an affine matrix with an orthogonal upper-left 3x3
	submatrix.
<u>orthoInverse</u>	Compute the inverse of a 3x4 transformation matrix,
_	expected to have an orthogonal upper-left 3x3 submatrix.
outer	Outer product of two 3-D vectors.
outer	Outer product of two 4-D vectors.
prependScale	Prepend (pre-multiply) a scale transformation to a 3x3
	matrix.

Function	Description
<u>prependScale</u>	Prepend (pre-multiply) a scale transformation to a 4x4
	matrix.
prependScale	Prepend (pre-multiply) a scale transformation to a 3x4
	transformation matrix.
print	Print a 3-D vector.
print	Print a 3-D vector and an associated string identifier.
<u>print</u>	Print a 4-D vector.
print	Print a 4-D vector and an associated string identifier.
print	Print a 3-D point.
print	Print a 3-D point and an associated string identifier.
<u>print</u>	Print a quaternion.
<u>print</u>	Print a quaternion and an associated string identifier.
<u>print</u>	Print a 3x3 matrix.
<u>print</u>	Print a 3x3 matrix and an associated string identifier.
print	Print a 4x4 matrix.
print	Print a 4x4 matrix and an associated string identifier.
<u>print</u>	Print a 3x4 transformation matrix.
<u>print</u>	Print a 3x4 transformation matrix and an associated string
	identifier.
<u>projection</u>	Scalar projection of a 3-D point on a unit-length 3-D vector.
<u>recipPerElem</u>	Compute the reciprocal of a 3-D vector per element.
<u>recipPerElem</u>	Compute the reciprocal of a 4-D vector per element.
<u>recipPerElem</u>	Compute the reciprocal of a 3-D point per element.
<u>rotate</u>	Use a unit-length quaternion to rotate a 3-D vector.
<u>rowMul</u>	Pre-multiply a row vector by a 3x3 matrix.
<u>rsqrtPerElem</u>	Compute the reciprocal square root of a 3-D vector per
	element.
<u>rsqrtPerElem</u>	Compute the reciprocal square root of a 4-D vector per
	element.
<u>rsqrtPerElem</u>	Compute the reciprocal square root of a 3-D point per
	element.
scale	Apply uniform scale to a 3-D point.
scale	Apply non-uniform scale to a 3-D point.
select	Conditionally select between two 3-D vectors.
select	Conditionally select between two 4-D vectors.
select	Conditionally select between two 3-D points.
select	Conditionally select between two quaternions.
select	Conditionally select between two 3x3 matrices.
select	Conditionally select between two 4x4 matrices.
select	Conditionally select between two 3x4 transformation matrices.
clore	
slerp	Spherical linear interpolation between two 3-D vectors. Spherical linear interpolation between two 4-D vectors.
slerp	Spherical linear interpolation between two 4-D vectors. Spherical linear interpolation between two quaternions.
<u>slerp</u> <u>sqrtPerElem</u>	Compute the square root of a 3-D vector per element.
sqrtPerElem	Compute the square root of a 3-D vector per element. Compute the square root of a 4-D vector per element.
<u>sqrtPerElem</u>	Compute the square root of a 4-D vector per element. Compute the square root of a 3-D point per element.
squad	Spherical quadrangle interpolation.
storeHalfFloats	Store eight slots of two SoA 3-D vectors as half-floats.
storeHalfFloats	Store four slots of two SoA 3-D vectors as half-floats. Store four slots of an SoA 4-D vector as half-floats.
storeHalfFloats	Store eight slots of two SoA 3-D points as half-floats.
storeXYZArray	Store four slots of two 50A 3-D points as nair-noats. Store four slots of an SoA 3-D vector in three quadwords.
storeXYZArray	Store four slots of an SoA 3-D vector in three quadwords. Store four slots of an SoA 3-D point in three quadwords.
SWIENIZAHAY	Store rour stors of an 30A 3-D point in three quadwords.

Function	Description
sum	Compute the sum of all elements of a 3-D vector.
sum	Compute the sum of all elements of a 4-D vector.
sum	Compute the sum of all elements of a 3-D point.
transpose	Transpose of a 3x3 matrix.
transpose	Transpose of a 4x4 matrix.

Inner Classes, Structures, and Namespaces

Item	Description
Vectormath::Soa::Matrix3	A set of four 3x3 matrices in structure-of-arrays format.
Vectormath::Soa::Matrix4	A set of four 4x4 matrices in structure-of-arrays format.
Vectormath::Soa::Point3	A set of four 3-D points in structure-of-arrays format.
Vectormath::Soa::Quat	A set of four quaternions in structure-of-arrays format.
Vectormath::Soa::Transform3	A set of four 3x4 transformation matrices in
	structure-of-arrays format.
Vectormath::Soa::Vector3	A set of four 3-D vectors in structure-of-arrays format.
Vectormath::Soa::Vector4	A set of four 4-D vectors in structure-of-arrays format.

3-D Vector Functions

absPerElem

Compute the absolute value of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the absolute value of the corresponding element of vec

Description

Compute the absolute value of each element of a 3-D vector.

copySignPerElem

Copy sign from one 3-D vector to another, per element.

Definition

Arguments

vec0 3-D vectorvec1 3-D vector

Return Values

3-D vector in which each element has the magnitude of the corresponding element of vec0 and the sign of the corresponding element of vec1

Description

For each element, create a value composed of the magnitude of *vec0* and the sign of *vec1*.

cross

Compute cross product of two 3-D vectors.

Definition

Arguments

vec0 3-D vectorvec1 3-D vector

Return Values

Cross product of the specified 3-D vectors

Description

Compute cross product of two 3-D vectors.

crossMatrix

Cross-product matrix of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Cross-product matrix of vec

Description

Compute a matrix that, when multiplied by a 3-D vector, produces the same result as a cross product with that 3-D vector.

crossMatrixMul

Create cross-product matrix and multiply.

Definition

Arguments

```
vec 3-D vector
mat 3x3 matrix
```

Return Values

Product of cross-product matrix of vec and mat

Description

Multiply a cross-product matrix by another matrix.

Notes

Faster than separately creating a cross-product matrix and multiplying.

divPerElem

Divide two 3-D vectors per element.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

3-D vector in which each element is the quotient of the corresponding elements of the specified 3-D vectors

Description

Divide two 3-D vectors element by element.

Notes

Floating-point behavior matches standard library function divf4.

dot

Compute the dot product of two 3-D vectors.

Definition

Arguments

vec0 3-D vectorvec1 3-D vector

Return Values

Dot product of the specified 3-D vectors

Description

Compute the dot product of two 3-D vectors.

length

Compute the length of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Length of the specified 3-D vector

Description

Compute the length of a 3-D vector.

lengthSqr

Compute the square of the length of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Square of the length of the specified 3-D vector

Description

Compute the square of the length of a 3-D vector.

lerp

Linear interpolation between two 3-D vectors.

Definition

Arguments

```
t Interpolation parametervec0 3-D vectorvec1 3-D vector
```

Return Values

Interpolated 3-D vector

Description

Linearly interpolate between two 3-D vectors.

Notes

Does not clamp *t* between 0 and 1.

loadXYZArray

Load four three-float 3-D vectors, stored in three quadwords.

Definition

Arguments

vec An output 3-D vector
threeQuads Array of 3 quadwords containing 12 floats

Return Values

None

Description

Load four three-float 3-D vectors, stored in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$, into four slots of an SoA 3-D vector.

maxElem

Maximum element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Maximum value of all elements of vec

Description

Compute the maximum value of all elements of a 3-D vector.

maxPerElem

Maximum of two 3-D vectors per element.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

3-D vector in which each element is the maximum of the corresponding elements of the specified 3-D vectors

Description

Create a 3-D vector in which each element is the maximum of the corresponding elements of the specified 3-D vectors.

minElem

Minimum element of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Minimum value of all elements of vec

Description

Compute the minimum value of all elements of a 3-D vector.

minPerElem

Minimum of two 3-D vectors per element.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

3-D vector in which each element is the minimum of the corresponding elements of the specified 3-D vectors

Description

Create a 3-D vector in which each element is the minimum of the corresponding elements of two specified 3-D vectors.

mulPerElem

Multiply two 3-D vectors per element.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

3-D vector in which each element is the product of the corresponding elements of the specified 3-D vectors

Description

Multiply two 3-D vectors element by element.

normalize

Normalize a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

The specified 3-D vector scaled to unit length

Description

Compute a normalized 3-D vector.

Notes

The result is unpredictable when all elements of vec are at or near zero.

operator *

Multiply a 3-D vector by a scalar.

Definition

Arguments

```
scalar Scalar valuevec 3-D vector
```

Return Values

Scalar product of vec and scalar

Description

Multiply a 3-D vector by a scalar.

outer

Outer product of two 3-D vectors.

Definition

Arguments

```
vec0 3-D vectorvec1 3-D vector
```

Return Values

The 3x3 matrix product of a column-vector, vec0, and a row-vector, vec1

Description

Compute the outer product of two 3-D vectors.

print

Print a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

None

Description

Print a 3-D vector. Prints the 3-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

print

Print a 3-D vector and an associated string identifier.

Definition

Arguments

```
vec 3-D vectorname String printed with the 3-D vector
```

Return Values

None

Description

Print a 3-D vector and an associated string identifier. Prints the 3-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

recipPerElem

Compute the reciprocal of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the reciprocal of the corresponding element of the specified 3-D vector

Description

Create a 3-D vector in which each element is the reciprocal of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function recipf4.

rowMul

Pre-multiply a row vector by a 3x3 matrix.

Definition

Arguments

```
vec 3-D vector
mat 3x3 matrix
```

Return Values

Product of a row-vector and a 3x3 matrix

Description

Transpose a 3-D vector into a row vector and pre-multiply by 3x3 matrix.

rsqrtPerElem

Compute the reciprocal square root of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the reciprocal square root of the corresponding element of the specified 3-D vector

Description

Create a 3-D vector in which each element is the reciprocal square root of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function rsqrtf4.

select

Conditionally select between two 3-D vectors.

Definition

Arguments

vec03-D vectorvec13-D vectorselect1For each or

For each of the four word slots, this mask selects either the 3-D vector in the corresponding slot of vec0 or the 3-D vector in the corresponding slot of vec1. A 0 bit selects from vec0 whereas a 1 bit selects from vec1. Identical bits should be set for each word of the mask.

Return Values

Each slot of the result is equal to the 3-D vector at the corresponding slot of vec0 or vec1, depending on the value of select1 at the corresponding slot. A value of 0 selects the slot of vec0, and a value of 0xFFFFFFFF selects the slot of vec1

Description

Conditionally select one of the 3-D vectors at each of the corresponding slots of vec0 or vec1.

Notes

This function uses a conditional select instruction to avoid a branch.

slerp

Spherical linear interpolation between two 3-D vectors.

Definition

Arguments

```
t Interpolation parameterunitVec0 3-D vector, expected to be unit-lengthunitVec1 3-D vector, expected to be unit-length
```

Return Values

Interpolated 3-D vector

Description

Perform spherical linear interpolation between two 3-D vectors.

Notes

The result is unpredictable if the vectors point in opposite directions. Does not clamp t between 0 and 1.

sqrtPerElem

Compute the square root of a 3-D vector per element.

Definition

Arguments

vec 3-D vector

Return Values

3-D vector in which each element is the square root of the corresponding element of the specified 3-D vector

Description

Create a 3-D vector in which each element is the square root of the corresponding element of the specified 3-D vector.

Notes

Floating-point behavior matches standard library function sqrtf4.

storeHalfFloats

Store eight slots of two SoA 3-D vectors as half-floats.

Definition

Arguments

vec0vec13-D vector3-D vector

threeQuads An output array of 3 quadwords containing 24 half-floats

Return Values

None

Description

Store eight slots of two SoA 3-D vectors in three quadwords of half-float values. Numbering slots of *vec0* as 0..3 and slots of *vec1* as 4..7, the output is {x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7}.

storeXYZArray

Store four slots of an SoA 3-D vector in three quadwords.

Definition

Arguments

vec 3-D vector
threeQuads An output array of 3 quadwords containing 12 floats

Return Values

None

Description

Store four slots of an SoA 3-D vector in three quadwords as {x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3}.

sum

Compute the sum of all elements of a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Sum of all elements of vec

Description

Compute the sum of all elements of a 3-D vector.

4-D Vector Functions

absPerElem

Compute the absolute value of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the absolute value of the corresponding element of vec

Description

Compute the absolute value of each element of a 4-D vector.

copySignPerElem

Copy sign from one 4-D vector to another, per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element has the magnitude of the corresponding element of vec0 and the sign of the corresponding element of vec1

Description

For each element, create a value composed of the magnitude of *vec0* and the sign of *vec1*.

divPerElem

Divide two 4-D vectors per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element is the quotient of the corresponding elements of the specified 4-D vectors

Description

Divide two 4-D vectors element by element.

Notes

Floating-point behavior matches standard library function divf4.

dot

Compute the dot product of two 4-D vectors.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

Dot product of the specified 4-D vectors

Description

Compute the dot product of two 4-D vectors.

length

Compute the length of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Length of the specified 4-D vector

Description

Compute the length of a 4-D vector.

lengthSqr

Compute the square of the length of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Square of the length of the specified 4-D vector

Description

Compute the square of the length of a 4-D vector.

lerp

Linear interpolation between two 4-D vectors.

Definition

Arguments

```
t Interpolation parametervec0 4-D vectorvec1 4-D vector
```

Return Values

Interpolated 4-D vector

Description

Linearly interpolate between two 4-D vectors.

Notes

Does not clamp *t* between 0 and 1.

maxElem

Maximum element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Maximum value of all elements of vec

Description

Compute the maximum value of all elements of a 4-D vector.

maxPerElem

Maximum of two 4-D vectors per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element is the maximum of the corresponding elements of the specified 4-D vectors

Description

Create a 4-D vector in which each element is the maximum of the corresponding elements of the specified 4-D vectors.

minElem

Minimum element of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Minimum value of all elements of vec

Description

Compute the minimum value of all elements of a 4-D vector.

minPerElem

Minimum of two 4-D vectors per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element is the minimum of the corresponding elements of the specified 4-D vectors

Description

Create a 4-D vector in which each element is the minimum of the corresponding elements of two specified 4-D vectors.

mulPerElem

Multiply two 4-D vectors per element.

Definition

Arguments

```
vec0 4-D vectorvec1 4-D vector
```

Return Values

4-D vector in which each element is the product of the corresponding elements of the specified 4-D vectors

Description

Multiply two 4-D vectors element by element.

normalize

Normalize a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

The specified 4-D vector scaled to unit length

Description

Compute a normalized 4-D vector.

Notes

The result is unpredictable when all elements of vec are at or near zero.

operator *

Multiply a 4-D vector by a scalar.

Definition

Arguments

```
scalar Scalar value vec 4-D vector
```

Return Values

Scalar product of vec and scalar

Description

Multiply a 4-D vector by a scalar.

outer

Outer product of two 4-D vectors.

Definition

Arguments

vec0 4-D vectorvec1 4-D vector

Return Values

The 4x4 matrix product of a column-vector, vec0, and a row-vector, vec1

Description

Compute the outer product of two 4-D vectors.

print

Print a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

None

Description

Print a 4-D vector. Prints the 4-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

print

Print a 4-D vector and an associated string identifier.

Definition

Arguments

```
vec 4-D vectorname String printed with the 4-D vector
```

Return Values

None

Description

Print a 4-D vector and an associated string identifier. Prints the 4-D vector transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

recipPerElem

Compute the reciprocal of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the reciprocal of the corresponding element of the specified 4-D vector

Description

Create a 4-D vector in which each element is the reciprocal of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function recipf4.

rsqrtPerElem

Compute the reciprocal square root of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the reciprocal square root of the corresponding element of the specified 4-D vector

Description

Create a 4-D vector in which each element is the reciprocal square root of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function rsqrtf4.

select

Conditionally select between two 4-D vectors.

Definition

Arguments

vec04-D vectorvec14-D vectorselect1For each of

For each of the four word slots, this mask selects either the 4-D vector in the corresponding slot of vec0 or the 4-D vector in the corresponding slot of vec1. A 0 bit selects from vec0 whereas a 1 bit selects from vec1. Identical bits should be set for each word of the mask.

Return Values

Each slot of the result is equal to the 4-D vector at the corresponding slot of vec0 or vec1, depending on the value of select1 at the corresponding slot. A value of 0 selects the slot of vec0, and a value of 0xFFFFFFFF selects the slot of vec1

Description

Conditionally select one of the 4-D vectors at each of the corresponding slots of vec0 or vec1.

Notes

This function uses a conditional select instruction to avoid a branch.

slerp

Spherical linear interpolation between two 4-D vectors.

Definition

Arguments

```
t Interpolation parameterunitVec0 4-D vector, expected to be unit-lengthunitVec1 4-D vector, expected to be unit-length
```

Return Values

Interpolated 4-D vector

Description

Perform spherical linear interpolation between two 4-D vectors.

Notes

The result is unpredictable if the vectors point in opposite directions. Does not clamp t between 0 and 1.

sqrtPerElem

Compute the square root of a 4-D vector per element.

Definition

Arguments

vec 4-D vector

Return Values

4-D vector in which each element is the square root of the corresponding element of the specified 4-D vector

Description

Create a 4-D vector in which each element is the square root of the corresponding element of the specified 4-D vector.

Notes

Floating-point behavior matches standard library function sqrtf4.

storeHalfFloats

Store four slots of an SoA 4-D vector as half-floats.

Definition

Arguments

vec 4-D vector

twoQuads An output array of 2 quadwords containing 16 half-floats

Return Values

None

Description

Store four slots of an SoA 4-D vector in two quadwords of half-float values. Numbering slots of *vec* as 0..3, the output is {x0,y0,z0,w0,x1,y1,z1,w1,x2,y2,z2,w2,x3,y3,z3,w3}.

sum

Compute the sum of all elements of a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Sum of all elements of vec

Description

Compute the sum of all elements of a 4-D vector.

3-D Point Functions

absPerElem

Compute the absolute value of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the absolute value of the corresponding element of pnt

Description

Compute the absolute value of each element of a 3-D point.

copySignPerElem

Copy sign from one 3-D point to another, per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element has the magnitude of the corresponding element of pnt0 and the sign of the corresponding element of pnt1

Description

For each element, create a value composed of the magnitude of pnt0 and the sign of pnt1.

dist

Compute the distance between two 3-D points.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

Distance between two 3-D points

Description

Compute the distance between two 3-D points.

distFromOrigin

Compute the distance of a 3-D point from the coordinate-system origin.

Definition

Arguments

pnt 3-D point

Return Values

Distance of a 3-D point from the origin

Description

Compute the distance of a 3-D point from the coordinate-system origin.

distSqr

Compute the square of the distance between two 3-D points.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

Square of the distance between two 3-D points

Description

Compute the square of the distance between two 3-D points.

distSqrFromOrigin

Compute the square of the distance of a 3-D point from the coordinate-system origin.

Definition

Arguments

pnt 3-D point

Return Values

Square of the distance of a 3-D point from the origin

Description

Compute the square of the distance of a 3-D point from the coordinate-system origin.

divPerElem

Divide two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the quotient of the corresponding elements of the specified 3-D points

Description

Divide two 3-D points element by element.

Notes

Floating-point behavior matches standard library function divf4.

lerp

Linear interpolation between two 3-D points.

Definition

Arguments

```
t Interpolation parameterpnt0 3-D pointpnt1 3-D point
```

Return Values

Interpolated 3-D point

Description

Linearly interpolate between two 3-D points.

Notes

Does not clamp *t* between 0 and 1.

loadXYZArray

Load four three-float 3-D points, stored in three quadwords.

Definition

Arguments

pnt An output 3-D point threeQuads Array of 3 quadwords containing 12 floats

Return Values

None

Description

Load four three-float 3-D points, stored in three quadwords as $\{x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3\}$, into four slots of an SoA 3-D point.

maxElem

Maximum element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Maximum value of all elements of pnt

Description

Compute the maximum value of all elements of a 3-D point.

maxPerElem

Maximum of two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the maximum of the corresponding elements of the specified 3-D points

Description

Create a 3-D point in which each element is the maximum of the corresponding elements of the specified 3-D points.

minElem

Minimum element of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Minimum value of all elements of pnt

Description

Compute the minimum value of all elements of a 3-D point.

minPerElem

Minimum of two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the minimum of the corresponding elements of the specified 3-D points

Description

Create a 3-D point in which each element is the minimum of the corresponding elements of two specified 3-D points.

mulPerElem

Multiply two 3-D points per element.

Definition

Arguments

```
pnt0 3-D point
pnt1 3-D point
```

Return Values

3-D point in which each element is the product of the corresponding elements of the specified 3-D points

Description

Multiply two 3-D points element by element.

print

Print a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

None

Description

Print a 3-D point. Prints the 3-D point transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

print

Print a 3-D point and an associated string identifier.

Definition

Arguments

```
pnt 3-D pointname String printed with the 3-D point
```

Return Values

None

Description

Print a 3-D point and an associated string identifier. Prints the 3-D point transposed, that is, as a row instead of a column.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

projection

Scalar projection of a 3-D point on a unit-length 3-D vector.

Definition

Arguments

```
pnt 3-D pointunitVec 3-D vector, expected to be unit-length
```

Return Values

Scalar projection of the 3-D point on the unit-length 3-D vector

Description

Scalar projection of a 3-D point on a unit-length 3-D vector (dot product).

recipPerElem

Compute the reciprocal of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the reciprocal of the corresponding element of the specified 3-D point

Description

Create a 3-D point in which each element is the reciprocal of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function recipf4.

rsqrtPerElem

Compute the reciprocal square root of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the reciprocal square root of the corresponding element of the specified 3-D point

Description

Create a 3-D point in which each element is the reciprocal square root of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function rsqrtf4.

scale

Apply uniform scale to a 3-D point.

Definition

Arguments

```
pnt 3-D point
scaleVal Scalar value
```

Return Values

3-D point in which every element is multiplied by the scalar value

Description

Apply uniform scale to a 3-D point.

scale

Apply non-uniform scale to a 3-D point.

Definition

Arguments

```
pnt 3-D point
scaleVec 3-D vector
```

Return Values

3-D point in which each element is the product of the corresponding elements of the specified 3-D point and 3-D vector

Description

Apply non-uniform scale to a 3-D point.

select

Conditionally select between two 3-D points.

Definition

Arguments

For each of the four word slots, this mask selects either the 3-D point in the corresponding slot of pnt0 or the 3-D point in the corresponding slot of pnt1. A 0 bit selects from pnt0 whereas a 1 bit selects from pnt1. Identical bits should be set for each word of the mask.

Return Values

Each slot of the result is equal to the 3-D point at the corresponding slot of <code>pnt0</code> or <code>pnt1</code>, depending on the value of <code>select1</code> at the corresponding slot. A value of 0 selects the slot of <code>pnt0</code>, and a value of 0xFFFFFFFF selects the slot of <code>pnt1</code>

Description

Conditionally select one of the 3-D points at each of the corresponding slots of pnt0 or pnt1.

Notes

This function uses a conditional select instruction to avoid a branch.

sqrtPerElem

Compute the square root of a 3-D point per element.

Definition

Arguments

pnt 3-D point

Return Values

3-D point in which each element is the square root of the corresponding element of the specified 3-D point

Description

Create a 3-D point in which each element is the square root of the corresponding element of the specified 3-D point.

Notes

Floating-point behavior matches standard library function sqrtf4.

storeHalfFloats

Store eight slots of two SoA 3-D points as half-floats.

Definition

Arguments

pnt0 3-D point pnt1 3-D point

threeQuads An output array of 3 quadwords containing 24 half-floats

Return Values

None

Description

Store eight slots of two SoA 3-D points in three quadwords of half-float values. Numbering slots of pnt0 as 0..3 and slots of pnt1 as 4..7, the output is {x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7}.

storeXYZArray

Store four slots of an SoA 3-D point in three quadwords.

Definition

Arguments

pnt 3-D pointthreeQuads An output array of 3 quadwords containing 12 floats

Return Values

None

Description

Store four slots of an SoA 3-D point in three quadwords as {x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3}.

sum

Compute the sum of all elements of a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Sum of all elements of pnt

Description

Compute the sum of all elements of a 3-D point.

Quaternion Functions

conj

Compute the conjugate of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

Conjugate of the specified quaternion

Description

Compute the conjugate of a quaternion.

dot

Compute the dot product of two quaternions.

Definition

Arguments

```
quat0 Quaternion quat1 Quaternion
```

Return Values

Dot product of the specified quaternions

Description

Compute the dot product of two quaternions.

length

Compute the length of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

Length of the specified quaternion

Description

Compute the length of a quaternion.

lerp

Linear interpolation between two quaternions.

Definition

Arguments

```
t Interpolation parameterquat0 Quaternionquat1 Quaternion
```

Return Values

Interpolated quaternion

Description

Linearly interpolate between two quaternions.

Notes

Does not clamp *t* between 0 and 1.

norm

Compute the norm of a quaternion.

Definition

Arguments

quat Quaternion

Return Values

The norm of the specified quaternion

Description

Compute the norm, equal to the square of the length, of a quaternion.

normalize

Normalize a quaternion.

Definition

Arguments

quat Quaternion

Return Values

The specified quaternion scaled to unit length

Description

Compute a normalized quaternion.

Notes

The result is unpredictable when all elements of quat are at or near zero.

operator *

Multiply a quaternion by a scalar.

Definition

Arguments

```
scalar Scalar value quat Quaternion
```

Return Values

Scalar product of quat and scalar

Description

Multiply a quaternion by a scalar.

print

Print a quaternion.

Definition

Arguments

quat Quaternion

Return Values

None

Description

Print a quaternion.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

print

Print a quaternion and an associated string identifier.

Definition

Arguments

quatQuaternionnameString printed with the quaternion

Return Values

None

Description

Print a quaternion and an associated string identifier.

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

rotate

Use a unit-length quaternion to rotate a 3-D vector.

Definition

Arguments

```
unitQuat Quaternion, expected to be unit-length
vec 3-D vector
```

Return Values

The rotated 3-D vector, equivalent to unitQuat*Quat(vec,0)*conj(unitQuat)

Description

Rotate a 3-D vector by applying a unit-length quaternion.

select

Conditionally select between two quaternions.

Definition

Arguments

quat0 quat1 select1 Quaternion Quaternion

For each of the four word slots, this mask selects either the quaternion in the corresponding slot of quat0 or the quaternion in the corresponding slot of quat1. A 0 bit selects from quat0 whereas a 1 bit selects from quat1. Identical bits should be set for each word of the mask.

Return Values

Each slot of the result is equal to the quaternion at the corresponding slot of quat0 or quat1, depending on the value of select1 at the corresponding slot. A value of 0 selects the slot of quat0, and a value of 0xFFFFFFFF selects the slot of quat1

Description

Conditionally select one of the quaternions at each of the corresponding slots of quat 0 or quat 1.

Notes

This function uses a conditional select instruction to avoid a branch.

slerp

Spherical linear interpolation between two quaternions.

Definition

Arguments

```
t Interpolation parameter

unitQuat0 Quaternion, expected to be unit-length
unitQuat1 Quaternion, expected to be unit-length
```

Return Values

Interpolated quaternion

Description

Perform spherical linear interpolation between two quaternions.

Notes

Interpolates along the shortest path between orientations. Does not clamp *t* between 0 and 1.

squad

Spherical quadrangle interpolation.

Definition

Arguments

```
t Interpolation parameter

unitQuat0 Quaternion, expected to be unit-length

unitQuat1 Quaternion, expected to be unit-length

unitQuat2 Quaternion, expected to be unit-length

unitQuat3 Quaternion, expected to be unit-length
```

Return Values

Interpolated quaternion

Description

Perform spherical quadrangle interpolation between four quaternions.

3x3 Matrix Functions

absPerElem

Compute the absolute value of a 3x3 matrix per element.

Definition

Arguments

mat 3x3 matrix

Return Values

3x3 matrix in which each element is the absolute value of the corresponding element of the specified 3x3 matrix

Description

Compute the absolute value of each element of a 3x3 matrix.

appendScale

Append (post-multiply) a scale transformation to a 3x3 matrix.

Definition

Arguments

```
mat 3x3 matrix scaleVec 3-D vector
```

Return Values

The product of mat and a scale transformation created from scaleVec

Description

Post-multiply a 3x3 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

determinant

Determinant of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

The determinant of mat

Description

Compute the determinant of a 3x3 matrix.

inverse

Compute the inverse of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

Inverse of mat

Description

Compute the inverse of a 3x3 matrix.

Notes

Result is unpredictable when the determinant of mat is equal to or near 0.

mulPerElem

Multiply two 3x3 matrices per element.

Definition

Arguments

mat0 3x3 matrix
mat1 3x3 matrix

Return Values

3x3 matrix in which each element is the product of the corresponding elements of the specified 3x3 matrices

Description

Multiply two 3x3 matrices element by element.

operator *

Multiply a 3x3 matrix by a scalar.

Definition

Arguments

```
scalar Scalar value mat 3x3 matrix
```

Return Values

Scalar product of mat and scalar

Description

Multiply a 3x3 matrix by a scalar.

prependScale

Prepend (pre-multiply) a scale transformation to a 3x3 matrix.

Definition

Arguments

```
scaleVec 3-D vector mat 3x3 matrix
```

Return Values

The product of a scale transformation created from scaleVec and mat

Description

Pre-multiply a 3x3 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

print

Print a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

None

Description

Print a 3x3 matrix. Unlike the printing of vectors, the 3x3 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

print

Print a 3x3 matrix and an associated string identifier.

Definition

Arguments

mat 3x3 matrixname String printed with the 3x3 matrix

Return Values

None

Description

Print a 3x3 matrix and an associated string identifier. Unlike the printing of vectors, the 3x3 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

select

Conditionally select between two 3x3 matrices.

Definition

Arguments

mat0 3x3 matrix
mat1 3x3 matrix
select1 For each of

For each of the four word slots, this mask selects either the 3x3 matrix in the corresponding slot of mat0 or the 3x3 matrix in the corresponding slot of mat1. A 0 bit selects from mat0 whereas a 1 bit selects from mat1. Identical bits should be set for each word of the mask.

Return Values

Each slot of the result is equal to the 3x3 matrix at the corresponding slot of mat0 or mat1, depending on the value of select1 at the corresponding slot. A value of 0 selects the slot of mat0 and a value of 0xFFFFFFFF selects the slot of mat1

Description

Conditionally select one of the 3x3 matrices at each of the corresponding slots of mat0 or mat1.

Notes

This function uses a conditional select instruction to avoid a branch.

transpose

Transpose of a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

mat transposed

Description

Compute the transpose of a 3x3 matrix.

4x4 Matrix Functions

absPerElem

Compute the absolute value of a 4x4 matrix per element.

Definition

Arguments

mat 4x4 matrix

Return Values

4x4 matrix in which each element is the absolute value of the corresponding element of the specified 4x4 matrix

Description

Compute the absolute value of each element of a 4x4 matrix.

affineInverse

Compute the inverse of a 4x4 matrix, which is expected to be an affine matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Inverse of the specified 4x4 matrix

Description

Naming the upper-left 3x3 submatrix of the specified 4x4 matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is inverse(M), whose translation vector is -inverse(M)*v, and whose bottom row is (0,0,0,1).

Notes

This can be used to achieve better performance than a general inverse when the specified 4x4 matrix meets the given restrictions. The result is unpredictable when the determinant of mat is equal to or near 0.

appendScale

Append (post-multiply) a scale transformation to a 4x4 matrix.

Definition

Arguments

```
mat 4x4 matrix scaleVec 3-D vector
```

Return Values

The product of mat and a scale transformation created from scaleVec

Description

Post-multiply a 4x4 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

determinant

Determinant of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

The determinant of mat

Description

Compute the determinant of a 4x4 matrix.

inverse

Compute the inverse of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Inverse of mat

Description

Compute the inverse of a 4x4 matrix.

Notes

Result is unpredictable when the determinant of mat is equal to or near 0.

mulPerElem

Multiply two 4x4 matrices per element.

Definition

Arguments

mat0 4x4 matrix
mat1 4x4 matrix

Return Values

4x4 matrix in which each element is the product of the corresponding elements of the specified 4x4 matrices

Description

Multiply two 4x4 matrices element by element.

operator *

Multiply a 4x4 matrix by a scalar.

Definition

Arguments

```
scalar Scalar value mat 4x4 matrix
```

Return Values

Scalar product of mat and scalar

Description

Multiply a 4x4 matrix by a scalar.

ortholnverse

Compute the inverse of a 4x4 matrix, which is expected to be an affine matrix with an orthogonal upper-left 3x3 submatrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Inverse of the specified 4x4 matrix

Description

Naming the upper-left 3x3 submatrix of the specified 4x4 matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is transpose(M), whose translation vector is -transpose(M)*v, and whose bottom row is (0,0,0,1).

Notes

This can be used to achieve better performance than a general inverse when the specified 4x4 matrix meets the given restrictions.

prependScale

Prepend (pre-multiply) a scale transformation to a 4x4 matrix.

Definition

Arguments

```
scaleVec 3-D vector mat 4x4 matrix
```

Return Values

The product of a scale transformation created from scaleVec and mat

Description

Pre-multiply a 4x4 matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

print

Print a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

None

Description

Print a 4x4 matrix. Unlike the printing of vectors, the 4x4 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

print

Print a 4x4 matrix and an associated string identifier.

Definition

Arguments

mat 4x4 matrixname String printed with the 4x4 matrix

Return Values

None

Description

Print a 4x4 matrix and an associated string identifier. Unlike the printing of vectors, the 4x4 matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

select

Conditionally select between two 4x4 matrices.

Definition

Arguments

mat0 4x4 matrix
mat1 4x4 matrix
select1 For each of

For each of the four word slots, this mask selects either the 4x4 matrix in the corresponding slot of mat0 or the 4x4 matrix in the corresponding slot of mat1. A 0 bit selects from mat0 whereas a 1 bit selects from mat1. Identical bits should be set for each word of the mask.

Return Values

Each slot of the result is equal to the 4x4 matrix at the corresponding slot of mat0 or mat1, depending on the value of select1 at the corresponding slot. A value of 0 selects the slot of mat0 and a value of 0xFFFFFFFF selects the slot of mat1

Description

Conditionally select one of the 4x4 matrices at each of the corresponding slots of mat 0 or mat 1.

Notes

This function uses a conditional select instruction to avoid a branch.

transpose

Transpose of a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

mat transposed

Description

Compute the transpose of a 4x4 matrix.

3x4 Transformation Matrix Functions

absPerElem

Compute the absolute value of a 3x4 transformation matrix per element.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

3x4 transformation matrix in which each element is the absolute value of the corresponding element of the specified 3x4 transformation matrix

Description

Compute the absolute value of each element of a 3x4 transformation matrix.

appendScale

Append (post-multiply) a scale transformation to a 3x4 transformation matrix.

Definition

Arguments

```
tfrm 3x4 transformation matrix scaleVec 3-D vector
```

Return Values

The product of tfrm and a scale transformation created from scaleVec

Description

Post-multiply a 3x4 transformation matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

inverse

Inverse of a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Inverse of tfrm

Description

Compute the inverse of a 3x4 transformation matrix.

Notes

Result is unpredictable when the determinant of the left 3x3 submatrix is equal to or near 0.

mulPerElem

Multiply two 3x4 transformation matrices per element.

Definition

Arguments

```
tfrm0 3x4 transformation matrix tfrm1 3x4 transformation matrix
```

Return Values

3x4 transformation matrix in which each element is the product of the corresponding elements of the specified 3x4 transformation matrices

Description

Multiply two 3x4 transformation matrices element by element.

ortholnverse

Compute the inverse of a 3x4 transformation matrix, expected to have an orthogonal upper-left 3x3 submatrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Inverse of the specified 3x4 transformation matrix

Description

Naming the upper-left 3x3 submatrix of the specified 3x4 transformation matrix as M, and its translation component as v, compute a matrix whose upper-left 3x3 submatrix is transpose(M), and whose translation vector is -transpose(M)*v.

Notes

This can be used to achieve better performance than a general inverse when the specified 3x4 transformation matrix meets the given restrictions.

prependScale

Prepend (pre-multiply) a scale transformation to a 3x4 transformation matrix.

Definition

Arguments

```
scaleVec 3-D vector

tfrm 3x4 transformation matrix
```

Return Values

The product of a scale transformation created from scaleVec and tfrm

Description

Pre-multiply a 3x4 transformation matrix by a scale transformation whose diagonal scale factors are contained in the 3-D vector.

Notes

Faster than creating and multiplying a scale transformation matrix.

print

Print a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

None

Description

Print a 3x4 transformation matrix. Unlike the printing of vectors, the 3x4 transformation matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

print

Print a 3x4 transformation matrix and an associated string identifier.

Definition

Arguments

tfrm 3x4 transformation matrixname String printed with the 3x4 transformation matrix

Return Values

None

Description

Print a 3x4 transformation matrix and an associated string identifier. Unlike the printing of vectors, the 3x4 transformation matrix is printed with the correct orientation (columns appear vertically).

Notes

Function is only defined when _VECTORMATH_DEBUG is defined.

select

Conditionally select between two 3x4 transformation matrices.

Definition

Arguments

tfrm0 tfrm1 select1 3x4 transformation matrix 3x4 transformation matrix

For each of the four word slots, this mask selects either the 3x4 transformation matrix in the corresponding slot of tfrm0 or the 3x4 transformation matrix in the corresponding slot of tfrm1. A 0 bit selects from tfrm0 whereas a 1 bit selects from tfrm1. Identical bits should be set for each word of the mask.

Return Values

Each slot of the result is equal to the 3x4 transformation matrix at the corresponding slot of tfrm0 or tfrm1, depending on the value of select1 at the corresponding slot. A value of 0 selects the slot of tfrm0 and a value of 0xFFFFFFFF selects the slot of tfrm1

Description

Conditionally select one of the 3x4 transformation matrices at each of the corresponding slots of tfrm0 or tfrm1.

Notes

This function uses a conditional select instruction to avoid a branch.

Vectormath::Soa::Matrix3

Summary

Vectormath::Soa::Matrix3

A set of four 3x3 matrices in structure-of-arrays format.

Definition

#include <vectormath/cpp/vectormath_soa.h>
class Matrix3;

Description

A class representing a set of four 3x3 matrices stored in structure-of-arrays (SoA) format.

Methods Summary

Methods	Description
get4Aos	Extract four AoS 3x3 matrices.
getCol	Get the column of a 3x3 matrix referred to by the specified
	index.
getCol0	Get column 0 of a 3x3 matrix.
getCol1	Get column 1 of a 3x3 matrix.
getCol2	Get column 2 of a 3x3 matrix.
getElem	Get the element of a 3x3 matrix referred to by column and
	row indices.
getRow	Get the row of a 3x3 matrix referred to by the specified
	index.
<u>identity</u>	Construct an identity 3x3 matrix.
Matrix3	Default constructor; does no initialization.
Matrix3	Copy a 3x3 matrix.
Matrix3	Construct a 3x3 matrix containing the specified columns.
Matrix3	Construct a 3x3 rotation matrix from a unit-length
	quaternion.
Matrix3	Set all elements of a 3x3 matrix to the same scalar value.
Matrix3	Replicate an AoS 3x3 matrix.
Matrix3	Insert four AoS 3x3 matrices.
operator *	Multiply a 3x3 matrix by a scalar.
operator *	Multiply a 3x3 matrix by a 3-D vector.
operator *	Multiply two 3x3 matrices.
operator *=	Perform compound assignment and multiplication by a
	scalar.
operator *=	Perform compound assignment and multiplication by a 3x3
	matrix.
operator+	Add two 3x3 matrices.
operator+=	Perform compound assignment and addition with a 3x3
	matrix.
operator-	Subtract a 3x3 matrix from another 3x3 matrix.
operator-	Negate all elements of a 3x3 matrix.
operator-=	Perform compound assignment and subtraction by a 3x3
	matrix.
operator=	Assign one 3x3 matrix to another.
operator[]	Subscripting operator to set or get a column.

Methods	Description
operator[]	Subscripting operator to get a column.
<u>rotation</u>	Construct a 3x3 matrix to rotate around a unit-length 3-D
	vector.
rotation	Construct a rotation matrix from a unit-length quaternion.
<u>rotationX</u>	Construct a 3x3 matrix to rotate around the x axis.
<u>rotationY</u>	Construct a 3x3 matrix to rotate around the y axis.
<u>rotationZ</u>	Construct a 3x3 matrix to rotate around the z axis.
<u>rotationZYX</u>	Construct a 3x3 matrix to rotate around the x, y, and z axes.
scale	Construct a 3x3 matrix to perform scaling.
<u>setCol</u>	Set the column of a 3x3 matrix referred to by the specified
	index.
setCol0	Set column 0 of a 3x3 matrix.
setCol1	Set column 1 of a 3x3 matrix.
setCol2	Set column 2 of a 3x3 matrix.
<u>setElem</u>	Set the element of a 3x3 matrix referred to by column and
	row indices.
<u>setRow</u>	Set the row of a 3x3 matrix referred to by the specified index.

Constructors and Destructors

Matrix3

Default constructor; does no initialization.

Definition

Arguments

None

Return Values

None

Description

Default constructor; does no initialization.

Copy a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

None

Description

Construct a copy of a 3x3 matrix.

Construct a 3x3 matrix containing the specified columns.

Definition

Arguments

co10 3-D vectorco11 3-D vectorco12 3-D vector

Return Values

None

Description

Construct a 3x3 matrix containing the specified columns.

Construct a 3x3 rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

None

Description

Construct a 3x3 matrix that applies the same rotation as the specified unit-length quaternion.

Set all elements of a 3x3 matrix to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

None

Description

Construct a 3x3 matrix with all elements set to the scalar value argument.

Replicate an AoS 3x3 matrix.

Definition

Arguments

mat AoS 3x3 matrix

Return Values

None

Description

Replicate an AoS 3x3 matrix in all four slots of an SoA 3x3 matrix.

Insert four AoS 3x3 matrices.

Definition

Arguments

```
mat0 AoS 3x3 matrixmat1 AoS 3x3 matrixmat2 AoS 3x3 matrixmat3 AoS 3x3 matrix
```

Return Values

None

Description

Insert four AoS 3x3 matrices into four slots of an SoA 3x3 matrix (transpose the data format).

Operator Methods

operator *

Multiply a 3x3 matrix by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Product of the specified 3x3 matrix and scalar

Description

Multiply a 3x3 matrix by a scalar.

operator *

Multiply a 3x3 matrix by a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Product of the specified 3x3 matrix and 3-D vector

Description

Multiply a 3x3 matrix by a 3-D vector.

operator *

Multiply two 3x3 matrices.

Definition

Arguments

mat 3x3 matrix

Return Values

Product of the specified 3x3 matrices

Description

Multiply two 3x3 matrices.

operator *=

Perform compound assignment and multiplication by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting 3x3 matrix

Description

Perform compound assignment and multiplication by a scalar.

operator *=

Perform compound assignment and multiplication by a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

A reference to the resulting 3x3 matrix

Description

Perform compound assignment and multiplication by a 3x3 matrix.

operator+

Add two 3x3 matrices.

Definition

Arguments

mat 3x3 matrix

Return Values

Sum of the specified 3x3 matrices

Description

Add two 3x3 matrices.

operator+=

Perform compound assignment and addition with a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

A reference to the resulting 3x3 matrix

Description

Perform compound assignment and addition with a 3x3 matrix.

operator-

Subtract a 3x3 matrix from another 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

Difference of the specified 3x3 matrices

Description

Subtract a 3x3 matrix from another 3x3 matrix.

operator-

Negate all elements of a 3x3 matrix.

Definition

Arguments

None

Return Values

3x3 matrix containing negated elements of the specified 3x3 matrix

Description

Negate all elements of a 3x3 matrix.

operator-=

Perform compound assignment and subtraction by a 3x3 matrix.

Definition

Arguments

mat 3x3 matrix

Return Values

A reference to the resulting 3x3 matrix

Description

Perform compound assignment and subtraction by a 3x3 matrix.

operator=

Assign one 3x3 matrix to another.

Definition

Arguments

mat 3x3 matrix

Return Values

A reference to the resulting 3x3 matrix

Description

Assign one 3x3 matrix to another.

operator[]

Subscripting operator to set or get a column.

Definition

Arguments

col Index, expected in the range 0-2

Return Values

A reference to indexed column

Description

Subscripting operator invoked when applied to non-const Matrix3.

operator[]

Subscripting operator to get a column.

Definition

Arguments

col Index, expected in the range 0-2

Return Values

Indexed column

Description

Subscripting operator invoked when applied to const Matrix3.

Public Static Methods

identity

Construct an identity 3x3 matrix.

Definition

Arguments

None

Return Values

The constructed 3x3 matrix

Description

Construct an identity 3x3 matrix in which non-diagonal elements are zero and diagonal elements are 1.

rotation

Construct a 3x3 matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

radians Scalar valueunitVec 3-D vector, expected to be unit-length

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around a unit-length 3-D vector by the specified radians angle.

rotation

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix that applies the same rotation as the specified unit-length quaternion.

rotationX

Construct a 3x3 matrix to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the x axis by the specified radians angle.

rotationY

Construct a 3x3 matrix to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the y axis by the specified radians angle.

rotationZ

Construct a 3x3 matrix to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the z axis by the specified radians angle.

rotationZYX

Construct a 3x3 matrix to rotate around the x, y, and z axes.

Definition

Arguments

radiansXYZ 3-D vector

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

scale

Construct a 3x3 matrix to perform scaling.

Definition

Arguments

scaleVec 3-D vector

Return Values

The constructed 3x3 matrix

Description

Construct a 3x3 matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

Public Instance Methods

get4Aos

Extract four AoS 3x3 matrices.

Definition

Arguments

result1 An output AoS 3x3 matrix result1 An output AoS 3x3 matrix result2 An output AoS 3x3 matrix result3 An output AoS 3x3 matrix

Return Values

None

Description

Extract four AoS 3x3 matrices from four slots of an SoA 3x3 matrix (transpose the data format).

Get the column of a 3x3 matrix referred to by the specified index.

Definition

Arguments

col Index, expected in the range 0-2

Return Values

The column referred to by the specified index

Description

Get the column of a 3x3 matrix referred to by the specified index.

Get column 0 of a 3x3 matrix.

Definition

Arguments

None

Return Values

Column 0

Description

Get column 0 of a 3x3 matrix.

Get column 1 of a 3x3 matrix.

Definition

Arguments

None

Return Values

Column 1

Description

Get column 1 of a 3x3 matrix.

Get column 2 of a 3x3 matrix.

Definition

Arguments

None

Return Values

Column 2

Description

Get column 2 of a 3x3 matrix.

getElem

Get the element of a 3x3 matrix referred to by column and row indices.

Definition

Arguments

Index, expected in the range 0-2 row Index, expected in the range 0-2

Return Values

Element selected by col and row

Description

Get the element of a 3x3 matrix referred to by column and row indices.

getRow

Get the row of a 3x3 matrix referred to by the specified index.

Definition

Arguments

row Index, expected in the range 0-2

Return Values

The row referred to by the specified index

Description

Get the row of a 3x3 matrix referred to by the specified index.

Set the column of a 3x3 matrix referred to by the specified index.

Definition

Arguments

col Index, expected in the range 0-2vec 3-D vector

Return Values

A reference to the resulting 3x3 matrix

Description

Set the column of a 3x3 matrix referred to by the specified index.

Set column 0 of a 3x3 matrix.

Definition

Arguments

col0 3-D vector

Return Values

A reference to the resulting 3x3 matrix

Description

Set column 0 of a 3x3 matrix.

Set column 1 of a 3x3 matrix.

Definition

Arguments

coll 3-D vector

Return Values

A reference to the resulting 3x3 matrix

Description

Set column 1 of a 3x3 matrix.

Set column 2 of a 3x3 matrix.

Definition

Arguments

col2 3-D vector

Return Values

A reference to the resulting 3x3 matrix

Description

Set column 2 of a 3x3 matrix.

setElem

Set the element of a 3x3 matrix referred to by column and row indices.

Definition

Arguments

col Index, expected in the range 0-2row Index, expected in the range 0-2val Scalar value

Return Values

A reference to the resulting 3x3 matrix

Description

Set the element of a 3x3 matrix referred to by column and row indices.

setRow

Set the row of a 3x3 matrix referred to by the specified index.

Definition

Arguments

row Index, expected in the range 0-2 vec 3-D vector

Return Values

A reference to the resulting 3x3 matrix

Description

Set the row of a 3x3 matrix referred to by the specified index.

Vectormath::Soa::Matrix4

Summary

Vectormath::Soa::Matrix4

A set of four 4x4 matrices in structure-of-arrays format.

Definition

#include <vectormath/cpp/vectormath_soa.h>
class Matrix4;

Description

A class representing a set of four 4x4 matrices stored in structure-of-arrays (SoA) format.

Methods Summary

Methods	Description
frustum	Construct a perspective projection matrix based on frustum.
get4Aos	Extract four AoS 4x4 matrices.
getCol	Get the column of a 4x4 matrix referred to by the specified
	index.
getCol0	Get column 0 of a 4x4 matrix.
getCol1	Get column 1 of a 4x4 matrix.
getCol2	Get column 2 of a 4x4 matrix.
getCol3	Get column 3 of a 4x4 matrix.
<u>getElem</u>	Get the element of a 4x4 matrix referred to by column and
	row indices.
getRow	Get the row of a 4x4 matrix referred to by the specified
	index.
<u>getTranslation</u>	Get the translation component of a 4x4 matrix.
getUpper3x3	Get the upper-left 3x3 submatrix of a 4x4 matrix.
<u>identity</u>	Construct an identity 4x4 matrix.
<u>lookAt</u>	Construct viewing matrix based on eye position, position
	looked at, and up direction.
<u>Matrix4</u>	Default constructor; does no initialization.
<u>Matrix4</u>	Copy a 4x4 matrix.
<u>Matrix4</u>	Construct a 4x4 matrix containing the specified columns.
<u>Matrix4</u>	Construct a 4x4 matrix from a 3x4 transformation matrix.
Matrix4	Construct a 4x4 matrix from a 3x3 matrix and a 3-D vector.
Matrix4	Construct a 4x4 matrix from a unit-length quaternion and a
	3-D vector.
Matrix4	Set all elements of a 4x4 matrix to the same scalar value.
Matrix4	Replicate an AoS 4x4 matrix.
Matrix4	Insert four AoS 4x4 matrices.
operator *	Multiply a 4x4 matrix by a scalar.
operator *	Multiply a 4x4 matrix by a 4-D vector.
operator *	Multiply a 4x4 matrix by a 3-D vector.
operator *	Multiply a 4x4 matrix by a 3-D point.
operator *	Multiply two 4x4 matrices.
operator *	Multiply a 4x4 matrix by a 3x4 transformation matrix.
operator *=	Perform compound assignment and multiplication by a
	scalar.

Methods	Description
operator *=	Perform compound assignment and multiplication by a 4x4
	matrix.
operator *=	Perform compound assignment and multiplication by a 3x4
	transformation matrix.
operator+	Add two 4x4 matrices.
operator+=	Perform compound assignment and addition with a 4x4
	matrix.
operator-	Subtract a 4x4 matrix from another 4x4 matrix.
operator-	Negate all elements of a 4x4 matrix.
operator-=	Perform compound assignment and subtraction by a 4x4
	matrix.
operator=	Assign one 4x4 matrix to another.
operator[]	Subscripting operator to set or get a column.
operator[]	Subscripting operator to get a column.
<u>orthographic</u>	Construct an orthographic projection matrix.
<u>perspective</u>	Construct a perspective projection matrix.
rotation	Construct a 4x4 matrix to rotate around a unit-length 3-D
	vector.
<u>rotation</u>	Construct a rotation matrix from a unit-length quaternion.
<u>rotationX</u>	Construct a 4x4 matrix to rotate around the x axis.
<u>rotationY</u>	Construct a 4x4 matrix to rotate around the y axis.
<u>rotationZ</u>	Construct a 4x4 matrix to rotate around the z axis.
<u>rotationZYX</u>	Construct a 4x4 matrix to rotate around the x, y, and z axes.
scale	Construct a 4x4 matrix to perform scaling.
<u>setCol</u>	Set the column of a 4x4 matrix referred to by the specified
	index.
setCol0	Set column 0 of a 4x4 matrix.
setCol1	Set column 1 of a 4x4 matrix.
setCol2	Set column 2 of a 4x4 matrix.
setCol3	Set column 3 of a 4x4 matrix.
<u>setElem</u>	Set the element of a 4x4 matrix referred to by column and
	row indices.
setRow	Set the row of a 4x4 matrix referred to by the specified index.
setTranslation	Set translation component.
setUpper3x3	Set the upper-left 3x3 submatrix.
translation	Construct a 4x4 matrix to perform translation.

Constructors and Destructors

Matrix4

Default constructor; does no initialization.

Definition

Arguments

None

Return Values

None

Description

Default constructor; does no initialization.

Copy a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

None

Description

Construct a copy of a 4x4 matrix.

Construct a 4x4 matrix containing the specified columns.

Definition

Arguments

```
col0 4-D vectorcol1 4-D vectorcol2 4-D vectorcol3 4-D vector
```

Return Values

None

Description

Construct a 4x4 matrix containing the specified columns.

Construct a 4x4 matrix from a 3x4 transformation matrix.

Definition

Arguments

mat 3x4 transformation matrix

Return Values

None

Description

Construct a 4x4 matrix whose upper 3x4 elements are equal to the 3x4 transformation matrix argument and whose bottom row is equal to (0,0,0,1).

Construct a 4x4 matrix from a 3x3 matrix and a 3-D vector.

Definition

Arguments

mat 3x3 matrix
translateVec 3-D vector

Return Values

None

Description

Construct a 4x4 matrix whose upper 3x3 elements are equal to the 3x3 matrix argument, whose translation component is equal to the 3-D vector argument, and whose bottom row is (0,0,0,1).

Construct a 4x4 matrix from a unit-length quaternion and a 3-D vector.

Definition

Arguments

Return Values

None

Description

Construct a 4x4 matrix whose upper-left 3x3 submatrix is a rotation matrix converted from the unit-length quaternion argument, whose translation component is equal to the 3-D vector argument, and whose bottom row is (0,0,0,1).

Set all elements of a 4x4 matrix to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

None

Description

Construct a 4x4 matrix with all elements set to the scalar value argument.

Replicate an AoS 4x4 matrix.

Definition

Arguments

mat AoS 4x4 matrix

Return Values

None

Description

Replicate an AoS 4x4 matrix in all four slots of an SoA 4x4 matrix.

Insert four AoS 4x4 matrices.

Definition

Arguments

```
mat0 AoS 4x4 matrix
mat1 AoS 4x4 matrix
mat2 AoS 4x4 matrix
mat3 AoS 4x4 matrix
```

Return Values

None

Description

Insert four AoS 4x4 matrices into four slots of an SoA 4x4 matrix (transpose the data format).

Operator Methods

operator *

Multiply a 4x4 matrix by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Product of the specified 4x4 matrix and scalar

Description

Multiply a 4x4 matrix by a scalar.

operator *

Multiply a 4x4 matrix by a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Product of the specified 4x4 matrix and 4-D vector

Description

Multiply a 4x4 matrix by a 4-D vector.

operator *

Multiply a 4x4 matrix by a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Product of the specified 4x4 matrix and 3-D vector

Description

Multiply a 4x4 matrix by a 3-D vector treated as if it were a 4-D vector with the w element equal to 0.

operator *

Multiply a 4x4 matrix by a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Product of the specified 4x4 matrix and 3-D point

Description

Multiply a 4x4 matrix by a 3-D point treated as if it were a 4-D vector with the w element equal to 1.

operator *

Multiply two 4x4 matrices.

Definition

Arguments

mat 4x4 matrix

Return Values

Product of the specified 4x4 matrices

Description

Multiply two 4x4 matrices.

operator *

Multiply a 4x4 matrix by a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Product of the specified 4x4 matrix and 3x4 transformation matrix

Description

Multiply a 4x4 matrix by a 3x4 transformation matrix treated as if it were a 4x4 matrix with the bottom row equal to (0,0,0,1).

operator *=

Perform compound assignment and multiplication by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting 4x4 matrix

Description

Perform compound assignment and multiplication by a scalar.

operator *=

Perform compound assignment and multiplication by a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

A reference to the resulting 4x4 matrix

Description

Perform compound assignment and multiplication by a 4x4 matrix.

operator *=

Perform compound assignment and multiplication by a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

A reference to the resulting 4x4 matrix

Description

Perform compound assignment and multiplication by a 3x4 transformation matrix.

operator+

Add two 4x4 matrices.

Definition

Arguments

mat 4x4 matrix

Return Values

Sum of the specified 4x4 matrices

Description

Add two 4x4 matrices.

operator+=

Perform compound assignment and addition with a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

A reference to the resulting 4x4 matrix

Description

Perform compound assignment and addition with a 4x4 matrix.

operator-

Subtract a 4x4 matrix from another 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

Difference of the specified 4x4 matrices

Description

Subtract a 4x4 matrix from another 4x4 matrix.

operator-

Negate all elements of a 4x4 matrix.

Definition

Arguments

None

Return Values

4x4 matrix containing negated elements of the specified 4x4 matrix

Description

Negate all elements of a 4x4 matrix.

operator-=

Perform compound assignment and subtraction by a 4x4 matrix.

Definition

Arguments

mat 4x4 matrix

Return Values

A reference to the resulting 4x4 matrix

Description

Perform compound assignment and subtraction by a 4x4 matrix.

operator=

Assign one 4x4 matrix to another.

Definition

Arguments

mat 4x4 matrix

Return Values

A reference to the resulting 4x4 matrix

Description

Assign one 4x4 matrix to another.

operator[]

Subscripting operator to set or get a column.

Definition

Arguments

col Index, expected in the range 0-3

Return Values

A reference to indexed column

Description

Subscripting operator invoked when applied to non-const Matrix4.

operator[]

Subscripting operator to get a column.

Definition

Arguments

col Index, expected in the range 0-3

Return Values

Indexed column

Description

Subscripting operator invoked when applied to const Matrix4.

Public Static Methods

frustum

Construct a perspective projection matrix based on frustum.

Definition

Arguments

```
leftScalar valuerightScalar valuebottomScalar valuetopScalar valuezNearScalar valuezFarScalar value
```

Return Values

The constructed 4x4 matrix

Description

Construct a perspective projection matrix based on frustum, equal to:

```
 2*z \text{Near}/(\text{right-left}) \quad 0 \qquad (\text{right+left})/(\text{right-left}) \quad 0 \\ 0 \qquad 2*z \text{Near}/(\text{top-bottom}) \quad (\text{top+bottom})/(\text{top-bottom}) \quad 0 \\ 0 \qquad 0 \qquad -(z \text{Far}+z \text{Near})/(z \text{Far}-z \text{Near}) \\ -2*z \text{Far}*z \text{Near}/(z \text{Far}-z \text{Near}) \\ 0 \qquad 0 \qquad -1 \qquad 0
```

identity

Construct an identity 4x4 matrix.

Definition

Arguments

None

Return Values

The constructed 4x4 matrix

Description

Construct an identity 4x4 matrix in which non-diagonal elements are zero and diagonal elements are 1.

lookAt

Construct viewing matrix based on eye position, position looked at, and up direction.

Definition

Arguments

```
eyePos 3-D point
1ookAtPos 3-D point
upVec 3-D vector
```

Return Values

The constructed 4x4 matrix

Description

Construct the inverse of a coordinate frame that is centered at the eye position, with z axis directed away from lookAtPos, and y axis oriented to best match the up direction.

orthographic

Construct an orthographic projection matrix.

Definition

Arguments

```
leftScalar valuerightScalar valuebottomScalar valuetopScalar valuezNearScalar valuezFarScalar value
```

Return Values

The constructed 4x4 matrix

Description

Construct an orthographic projection matrix, equal to

perspective

Construct a perspective projection matrix.

Definition

Arguments

```
fovyRadiansScalar valueaspectScalar valuezNearScalar valuezFarScalar value
```

Return Values

The constructed 4x4 matrix

Description

Construct a perspective projection matrix, equal to:

rotation

Construct a 4x4 matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

radians Scalar valueunitVec 3-D vector, expected to be unit-length

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around a unit-length 3-D vector by the specified radians angle.

rotation

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix that applies the same rotation as the specified unit-length quaternion.

rotationX

Construct a 4x4 matrix to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the x axis by the specified radians angle.

rotationY

Construct a 4x4 matrix to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the y axis by the specified radians angle.

rotationZ

Construct a 4x4 matrix to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the z axis by the specified radians angle.

rotationZYX

Construct a 4x4 matrix to rotate around the x, y, and z axes.

Definition

Arguments

radiansXYZ 3-D vector

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

scale

Construct a 4x4 matrix to perform scaling.

Definition

Arguments

scaleVec 3-D vector

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

translation

Construct a 4x4 matrix to perform translation.

Definition

Arguments

translateVec 3-D vector

Return Values

The constructed 4x4 matrix

Description

Construct a 4x4 matrix to perform translation, which is an identity matrix except for the translation component, with coordinates equal to those in *translateVec*.

Public Instance Methods

get4Aos

Extract four AoS 4x4 matrices.

Definition

Arguments

result1 An output AoS 4x4 matrix result1 An output AoS 4x4 matrix result2 An output AoS 4x4 matrix result3 An output AoS 4x4 matrix

Return Values

None

Description

Extract four AoS 4x4 matrices from four slots of an SoA 4x4 matrix (transpose the data format).

Get the column of a 4x4 matrix referred to by the specified index.

Definition

Arguments

col Index, expected in the range 0-3

Return Values

The column referred to by the specified index

Description

Get the column of a 4x4 matrix referred to by the specified index.

Get column 0 of a 4x4 matrix.

Definition

Arguments

None

Return Values

Column 0

Description

Get column 0 of a 4x4 matrix.

Get column 1 of a 4x4 matrix.

Definition

Arguments

None

Return Values

Column 1

Description

Get column 1 of a 4x4 matrix.

Get column 2 of a 4x4 matrix.

Definition

Arguments

None

Return Values

Column 2

Description

Get column 2 of a 4x4 matrix.

Get column 3 of a 4x4 matrix.

Definition

Arguments

None

Return Values

Column 3

Description

Get column 3 of a 4x4 matrix.

getElem

Get the element of a 4x4 matrix referred to by column and row indices.

Definition

Arguments

Index, expected in the range 0-3 row Index, expected in the range 0-3

Return Values

Element selected by col and row

Description

Get the element of a 4x4 matrix referred to by column and row indices.

getRow

Get the row of a 4x4 matrix referred to by the specified index.

Definition

Arguments

row Index, expected in the range 0-3

Return Values

The row referred to by the specified index

Description

Get the row of a 4x4 matrix referred to by the specified index.

getTranslation

Get the translation component of a 4x4 matrix.

Definition

Arguments

None

Return Values

Translation component

Description

Get the translation component of a 4x4 matrix.

getUpper3x3

Get the upper-left 3x3 submatrix of a 4x4 matrix.

Definition

Arguments

None

Return Values

Upper-left 3x3 submatrix

Description

Get the upper-left 3x3 submatrix of a 4x4 matrix.

Set the column of a 4x4 matrix referred to by the specified index.

Definition

Arguments

col Index, expected in the range 0-3vec 4-D vector

Return Values

A reference to the resulting 4x4 matrix

Description

Set the column of a 4x4 matrix referred to by the specified index.

Set column 0 of a 4x4 matrix.

Definition

Arguments

col0 4-D vector

Return Values

A reference to the resulting 4x4 matrix

Description

Set column 0 of a 4x4 matrix.

Set column 1 of a 4x4 matrix.

Definition

Arguments

coll 4-D vector

Return Values

A reference to the resulting 4x4 matrix

Description

Set column 1 of a 4x4 matrix.

Set column 2 of a 4x4 matrix.

Definition

Arguments

col2 4-D vector

Return Values

A reference to the resulting 4x4 matrix

Description

Set column 2 of a 4x4 matrix.

Set column 3 of a 4x4 matrix.

Definition

Arguments

col3 4-D vector

Return Values

A reference to the resulting 4x4 matrix

Description

Set column 3 of a 4x4 matrix.

setElem

Set the element of a 4x4 matrix referred to by column and row indices.

Definition

Arguments

col Index, expected in the range 0-3row Index, expected in the range 0-3val Scalar value

Return Values

A reference to the resulting 4x4 matrix

Description

Set the element of a 4x4 matrix referred to by column and row indices.

setRow

Set the row of a 4x4 matrix referred to by the specified index.

Definition

Arguments

```
row Index, expected in the range 0-3 vec 4-D vector
```

Return Values

A reference to the resulting 4x4 matrix

Description

Set the row of a 4x4 matrix referred to by the specified index.

setTranslation

Set translation component.

Definition

Arguments

translateVec 3-D vector

Return Values

A reference to the resulting 4x4 matrix

Description

Set the translation component of a 4x4 matrix equal to the specified 3-D vector.

Notes

This function does not change the bottom row elements.

setUpper3x3

Set the upper-left 3x3 submatrix.

Definition

Arguments

mat3 3x3 matrix

Return Values

A reference to the resulting 4x4 matrix

Description

Set the upper-left 3x3 submatrix elements of a 4x4 matrix equal to the specified 3x3 matrix.

Notes

This function does not change the bottom row elements.

Vectormath::Soa::Point3

Summary

Vectormath::Soa::Point3

A set of four 3-D points in structure-of-arrays format.

Definition

#include <vectormath/cpp/vectormath_soa.h>
class Point3;

Description

A class representing a set of four 3-D points stored in structure-of-arrays (SoA) format.

Methods Summary

Methods	Description
get4Aos	Extract four AoS 3-D points.
getElem	Get an x, y, or z element of a 3-D point by index.
getX	Get the x element of a 3-D point.
<u>getY</u>	Get the y element of a 3-D point.
<u>getZ</u>	Get the z element of a 3-D point.
operator+	Add a 3-D point to a 3-D vector.
operator+=	Perform compound assignment and addition with a 3-D
	vector.
operator-	Subtract a 3-D point from another 3-D point.
operator-	Subtract a 3-D vector from a 3-D point.
operator-=	Perform compound assignment and subtraction by a 3-D
	vector.
operator=	Assign one 3-D point to another.
operator[]	Subscripting operator to set or get an element.
operator[]	Subscripting operator to get an element.
Point3	Default constructor; does no initialization.
Point3	Copy a 3-D point.
Point3	Construct a 3-D point from x, y, and z elements.
Point3	Copy elements from a 3-D vector into a 3-D point.
Point3	Set all elements of a 3-D point to the same scalar value.
Point3	Replicate an AoS 3-D point.
Point3	Insert four AoS 3-D points.
<u>setElem</u>	Set an x, y, or z element of a 3-D point by index.
<u>setX</u>	Set the x element of a 3-D point.
<u>setY</u>	Set the y element of a 3-D point.
<u>setZ</u>	Set the z element of a 3-D point.

©SCEI Vector Math Library

Constructors and Destructors

Point3

Default constructor; does no initialization.

Definition

Arguments

None

Return Values

None

Description

Default constructor; does no initialization.

©SCEI Vector Math Library

Copy a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

None

Description

Construct a copy of a 3-D point.

Construct a 3-D point from x, y, and z elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value

Return Values

None

Description

Construct a 3-D point containing the specified x, y, and z elements.

Copy elements from a 3-D vector into a 3-D point.

Definition

Arguments

vec 3-D vector

Return Values

None

Description

Construct a 3-D point containing the x, y, and z elements of the specified 3-D vector.

Set all elements of a 3-D point to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

None

Description

Construct a 3-D point with all elements set to the scalar value argument.

©SCEI Vector Math Library

Replicate an AoS 3-D point.

Definition

Arguments

pnt AoS 3-D point

Return Values

None

Description

Replicate an AoS 3-D point in all four slots of an SoA 3-D point.

Insert four AoS 3-D points.

Definition

Arguments

```
pnt0 AoS 3-D pointpnt1 AoS 3-D pointpnt2 AoS 3-D pointpnt3 AoS 3-D point
```

Return Values

None

Description

Insert four AoS 3-D points into four slots of an SoA 3-D point (transpose the data format).

Operator Methods

operator+

Add a 3-D point to a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Sum of the specified 3-D point and 3-D vector

Description

Add a 3-D point to a 3-D vector.

operator+=

Perform compound assignment and addition with a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

A reference to the resulting 3-D point

Description

Perform compound assignment and addition with a 3-D vector.

operator-

Subtract a 3-D point from another 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Difference of the specified 3-D points

Description

Subtract a 3-D point from another 3-D point.

operator-

Subtract a 3-D vector from a 3-D point.

Definition

Arguments

vec 3-D vector

Return Values

Difference of the specified 3-D point and 3-D vector

Description

Subtract a 3-D vector from a 3-D point.

operator-=

Perform compound assignment and subtraction by a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

A reference to the resulting 3-D point

Description

Perform compound assignment and subtraction by a 3-D vector.

operator=

Assign one 3-D point to another.

Definition

Arguments

pnt 3-D point

Return Values

A reference to the resulting 3-D point

Description

Assign one 3-D point to another.

©SCEI Vector Math Library

operator[]

Subscripting operator to set or get an element.

Definition

Arguments

idx Index, expected in the range 0-2

Return Values

A reference to indexed element

Description

Subscripting operator invoked when applied to non-const **Point3**.

operator[]

Subscripting operator to get an element.

Definition

Arguments

idx Index, expected in the range 0-2

Return Values

Indexed element

Description

Subscripting operator invoked when applied to const **Point3**.

©SCEI Vector Math Library

Public Instance Methods

get4Aos

Extract four AoS 3-D points.

Definition

Arguments

```
result1 An output AoS 3-D point
result1 An output AoS 3-D point
result2 An output AoS 3-D point
result3 An output AoS 3-D point
```

Return Values

None

Description

Extract four AoS 3-D points from four slots of an SoA 3-D point (transpose the data format).

getElem

Get an x, y, or z element of a 3-D point by index.

Definition

Arguments

idx Index, expected in the range 0-2

Return Values

Element selected by the specified index

Description

Get an x, y, or z element of a 3-D point by specifying an index of 0, 1, or 2, respectively.

©SCEI Vector Math Library

getX

Get the x element of a 3-D point.

Definition

Arguments

None

Return Values

x element of a 3-D point

Description

Get the x element of a 3-D point.

getY

Get the y element of a 3-D point.

Definition

Arguments

None

Return Values

y element of a 3-D point

Description

Get the y element of a 3-D point.

getZ

Get the z element of a 3-D point.

Definition

Arguments

None

Return Values

z element of a 3-D point

Description

Get the z element of a 3-D point.

setElem

Set an x, y, or z element of a 3-D point by index.

Definition

Arguments

idx Index, expected in the range 0-2value Scalar value

Return Values

A reference to the resulting 3-D point

Description

Set an x, y, or z element of a 3-D point by specifying an index of 0, 1, or 2, respectively.

setX

Set the x element of a 3-D point.

Definition

Arguments

x Scalar value

Return Values

A reference to the resulting 3-D point

Description

Set the x element of a 3-D point to the specified scalar value.

setY

Set the y element of a 3-D point.

Definition

Arguments

y Scalar value

Return Values

A reference to the resulting 3-D point

Description

Set the y element of a 3-D point to the specified scalar value.

setZ

Set the z element of a 3-D point.

Definition

Arguments

z Scalar value

Return Values

A reference to the resulting 3-D point

Description

Set the z element of a 3-D point to the specified scalar value.

Vectormath::Soa::Quat

Summary

Vectormath::Soa::Quat

A set of four quaternions in structure-of-arrays format.

Definition

#include <vectormath/cpp/vectormath_soa.h>
class Quat;

Description

A class representing a set of four quaternions stored in structure-of-arrays (SoA) format.

Methods Summary

Methods	Description
get4Aos	Extract four AoS quaternions.
getElem	Get an x, y, z, or w element of a quaternion by index.
getW	Get the w element of a quaternion.
getX	Get the x element of a quaternion.
<u>getXYZ</u>	Get the x, y, and z elements of a quaternion.
<u>getY</u>	Get the y element of a quaternion.
getZ	Get the z element of a quaternion.
<u>identity</u>	Construct an identity quaternion.
operator *	Multiply two quaternions.
operator *	Multiply a quaternion by a scalar.
operator *=	Perform compound assignment and multiplication by a
	quaternion.
operator *=	Perform compound assignment and multiplication by a
	scalar.
operator+	Add two quaternions.
operator+=	Perform compound assignment and addition with a
	quaternion.
operator-	Subtract a quaternion from another quaternion.
operator-	Negate all elements of a quaternion.
operator-=	Perform compound assignment and subtraction by a
	quaternion.
operator/	Divide a quaternion by a scalar.
operator/=	Perform compound assignment and division by a scalar.
operator=	Assign one quaternion to another.
operator[]	Subscripting operator to set or get an element.
operator[]	Subscripting operator to get an element.
Quat	Default constructor; does no initialization.
Quat	Copy a quaternion.
Quat	Construct a quaternion from x, y, z, and w elements.
Quat	Construct a quaternion from a 3-D vector and a scalar.
Quat	Copy elements from a 4-D vector into a quaternion.
Quat	Convert a rotation matrix to a unit-length quaternion.
Quat	Set all elements of a quaternion to the same scalar value.
Quat	Replicate an AoS quaternion.

Methods	Description
Quat	Insert four AoS quaternions.
rotation	Construct a quaternion to rotate between two unit-length
	3-D vectors.
<u>rotation</u>	Construct a quaternion to rotate around a unit-length 3-D
	vector.
rotationX	Construct a quaternion to rotate around the x axis.
<u>rotationY</u>	Construct a quaternion to rotate around the y axis.
<u>rotationZ</u>	Construct a quaternion to rotate around the z axis.
<u>setElem</u>	Set an x, y, z, or w element of a quaternion by index.
<u>setW</u>	Set the w element of a quaternion.
<u>setX</u>	Set the x element of a quaternion.
<u>setXYZ</u>	Set the x, y, and z elements of a quaternion.
<u>setY</u>	Set the y element of a quaternion.
<u>setZ</u>	Set the z element of a quaternion.

Constructors and Destructors

Quat

Default constructor; does no initialization.

Definition

Arguments

None

Return Values

None

Description

Default constructor; does no initialization.

Copy a quaternion.

Definition

Arguments

quat Quaternion

Return Values

None

Description

Construct a copy of a quaternion.

Construct a quaternion from x, y, z, and w elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value
- w Scalar value

Return Values

None

Description

Construct a quaternion containing the specified x, y, z, and w elements.

Construct a quaternion from a 3-D vector and a scalar.

Definition

Arguments

xyz 3-D vectorw Scalar value

Return Values

None

Description

Construct a quaternion with the x, y, and z elements of the specified 3-D vector and with the w element set to the specified scalar.

Copy elements from a 4-D vector into a quaternion.

Definition

Arguments

vec 4-D vector

Return Values

None

Description

Construct a quaternion containing the x, y, z, and w elements of the specified 4-D vector.

Convert a rotation matrix to a unit-length quaternion.

Definition

Arguments

rotMat 3x3 matrix, expected to be a rotation matrix

Return Values

None

Description

Construct a unit-length quaternion representing the same transformation as a rotation matrix.

Set all elements of a quaternion to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

None

Description

Construct a quaternion with all elements set to the scalar value argument.

Replicate an AoS quaternion.

Definition

Arguments

quat AoS quaternion

Return Values

None

Description

Replicate an AoS quaternion in all four slots of an SoA quaternion.

Insert four AoS quaternions.

Definition

Arguments

```
quat0 AoS quaternionquat1 AoS quaternionquat2 AoS quaternionquat3 AoS quaternion
```

Return Values

None

Description

Insert four AoS quaternions into four slots of an SoA quaternion (transpose the data format).

Operator Methods

operator *

Multiply two quaternions.

Definition

Arguments

quat Quaternion

Return Values

Product of the specified quaternions

Description

Multiply two quaternions.

operator *

Multiply a quaternion by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Product of the specified quaternion and scalar

Description

Multiply a quaternion by a scalar.

operator *=

Perform compound assignment and multiplication by a quaternion.

Definition

Arguments

quat Quaternion

Return Values

A reference to the resulting quaternion

Description

Perform compound assignment and multiplication by a quaternion.

operator *=

Perform compound assignment and multiplication by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting quaternion

Description

Perform compound assignment and multiplication by a scalar.

operator+

Add two quaternions.

Definition

Arguments

quat Quaternion

Return Values

Sum of the specified quaternions

Description

Add two quaternions.

operator+=

Perform compound assignment and addition with a quaternion.

Definition

Arguments

quat Quaternion

Return Values

A reference to the resulting quaternion

Description

Perform compound assignment and addition with a quaternion.

operator-

Subtract a quaternion from another quaternion.

Definition

Arguments

quat Quaternion

Return Values

Difference of the specified quaternions

Description

Subtract a quaternion from another quaternion.

operator-

Negate all elements of a quaternion.

Definition

Arguments

None

Return Values

Quaternion containing negated elements of the specified quaternion

Description

Negate all elements of a quaternion.

operator-=

Perform compound assignment and subtraction by a quaternion.

Definition

Arguments

quat Quaternion

Return Values

A reference to the resulting quaternion

Description

Perform compound assignment and subtraction by a quaternion.

operator/

Divide a quaternion by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Quotient of the specified quaternion and scalar

Description

Divide a quaternion by a scalar.

operator/=

Perform compound assignment and division by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting quaternion

Description

Perform compound assignment and division by a scalar.

operator=

Assign one quaternion to another.

Definition

Arguments

quat Quaternion

Return Values

A reference to the resulting quaternion

Description

Assign one quaternion to another.

operator[]

Subscripting operator to set or get an element.

Definition

Arguments

idx Index, expected in the range 0-3

Return Values

A reference to indexed element

Description

Subscripting operator invoked when applied to non-const Quat.

operator[]

Subscripting operator to get an element.

Definition

Arguments

idx Index, expected in the range 0-3

Return Values

Indexed element

Description

Subscripting operator invoked when applied to const Quat.

Public Static Methods

identity

Construct an identity quaternion.

Definition

Arguments

None

Return Values

The constructed quaternion

Description

Construct an identity quaternion equal to (0,0,0,1).

rotation

Construct a quaternion to rotate between two unit-length 3-D vectors.

Definition

Arguments

```
unitVec0 3-D vector, expected to be unit-lengthunitVec1 3-D vector, expected to be unit-length
```

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate between two unit-length 3-D vectors.

Notes

The result is unpredictable if unitVec0 and unitVec1 point in opposite directions.

rotation

Construct a quaternion to rotate around a unit-length 3-D vector.

Definition

Arguments

```
radians Scalar valueunitVec 3-D vector, expected to be unit-length
```

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around a unit-length 3-D vector by the specified radians angle.

rotationX

Construct a quaternion to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the x axis by the specified radians angle.

rotationY

Construct a quaternion to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the y axis by the specified radians angle.

rotationZ

Construct a quaternion to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed quaternion

Description

Construct a quaternion to rotate around the z axis by the specified radians angle.

Public Instance Methods

get4Aos

Extract four AoS quaternions.

Definition

Arguments

result0 An output AoS quaternionresult1 An output AoS quaternionresult2 An output AoS quaternionresult3 An output AoS quaternion

Return Values

None

Description

Extract four AoS quaternions from four slots of an SoA quaternion (transpose the data format).

getElem

Get an x, y, z, or w element of a quaternion by index.

Definition

Arguments

idx Index, expected in the range 0-3

Return Values

Element selected by the specified index

Description

Get an x, y, z, or w element of a quaternion by specifying an index of 0, 1, 2, or 3, respectively.

getW

Get the w element of a quaternion.

Definition

Arguments

None

Return Values

w element of a quaternion

Description

Get the w element of a quaternion.

getX

Get the x element of a quaternion.

Definition

Arguments

None

Return Values

x element of a quaternion

Description

Get the x element of a quaternion.

getXYZ

Get the x, y, and z elements of a quaternion.

Definition

Arguments

None

Return Values

3-D vector containing x, y, and z elements

Description

Extract a quaternion's x, y, and z elements into a 3-D vector.

getY

Get the y element of a quaternion.

Definition

Arguments

None

Return Values

y element of a quaternion

Description

Get the y element of a quaternion.

getZ

Get the z element of a quaternion.

Definition

Arguments

None

Return Values

z element of a quaternion

Description

Get the z element of a quaternion.

setElem

Set an x, y, z, or w element of a quaternion by index.

Definition

Arguments

idx Index, expected in the range 0-3value Scalar value

Return Values

A reference to the resulting quaternion

Description

Set an x, y, z, or w element of a quaternion by specifying an index of 0, 1, 2, or 3, respectively.

setW

Set the w element of a quaternion.

Definition

Arguments

w Scalar value

Return Values

A reference to the resulting quaternion

Description

Set the w element of a quaternion to the specified scalar value.

setX

Set the x element of a quaternion.

Definition

Arguments

x Scalar value

Return Values

A reference to the resulting quaternion

Description

Set the x element of a quaternion to the specified scalar value.

setXYZ

Set the x, y, and z elements of a quaternion.

Definition

Arguments

vec 3-D vector

Return Values

A reference to the resulting quaternion

Description

Set the x, y, and z elements to those of the specified 3-D vector.

Notes

This function does not change the w element.

setY

Set the y element of a quaternion.

Definition

Arguments

y Scalar value

Return Values

A reference to the resulting quaternion

Description

Set the y element of a quaternion to the specified scalar value.

setZ

Set the z element of a quaternion.

Definition

Arguments

z Scalar value

Return Values

A reference to the resulting quaternion

Description

Set the z element of a quaternion to the specified scalar value.

Vectormath::Soa::Transform3

Summary

Vectormath::Soa::Transform3

A set of four 3x4 transformation matrices in structure-of-arrays format.

Definition

#include <vectormath/cpp/vectormath_soa.h>
class Transform3;

Description

A class representing a set of four 3x4 transformation matrices stored in structure-of-arrays (SoA) format.

Methods Summary

Methods	Description
get4Aos	Extract four AoS 3x4 transformation matrices.
getCol	Get the column of a 3x4 transformation matrix referred to by
	the specified index.
getCol0	Get column 0 of a 3x4 transformation matrix.
getCol1	Get column 1 of a 3x4 transformation matrix.
getCol2	Get column 2 of a 3x4 transformation matrix.
getCol3	Get column 3 of a 3x4 transformation matrix.
getElem	Get the element of a 3x4 transformation matrix referred to
	by column and row indices.
getRow	Get the row of a 3x4 transformation matrix referred to by the
	specified index.
<u>getTranslation</u>	Get the translation component of a 3x4 transformation
	matrix.
getUpper3x3	Get the upper-left 3x3 submatrix of a 3x4 transformation
	matrix.
<u>identity</u>	Construct an identity 3x4 transformation matrix.
operator *	Multiply a 3x4 transformation matrix by a 3-D vector.
operator *	Multiply a 3x4 transformation matrix by a 3-D point.
operator *	Multiply two 3x4 transformation matrices.
operator *=	Perform compound assignment and multiplication by a 3x4
	transformation matrix.
operator=	Assign one 3x4 transformation matrix to another.
operator[]	Subscripting operator to set or get a column.
operator[]	Subscripting operator to get a column.
rotation	Construct a 3x4 transformation matrix to rotate around a
	unit-length 3-D vector.
rotation	Construct a rotation matrix from a unit-length quaternion.
rotationX	Construct a 3x4 transformation matrix to rotate around the x
	axis.
rotationY	Construct a 3x4 transformation matrix to rotate around the y
	axis.
<u>rotationZ</u>	Construct a 3x4 transformation matrix to rotate around the z
	axis.

Methods	Description
rotationZYX	Construct a 3x4 transformation matrix to rotate around the
	x, y, and z axes.
scale	Construct a 3x4 transformation matrix to perform scaling.
<u>setCol</u>	Set the column of a 3x4 transformation matrix referred to by
	the specified index.
setCol0	Set column 0 of a 3x4 transformation matrix.
setCol1	Set column 1 of a 3x4 transformation matrix.
setCol2	Set column 2 of a 3x4 transformation matrix.
setCol3	Set column 3 of a 3x4 transformation matrix.
<u>setElem</u>	Set the element of a 3x4 transformation matrix referred to by
	column and row indices.
setRow	Set the row of a 3x4 transformation matrix referred to by the
	specified index.
<u>setTranslation</u>	Set translation component.
setUpper3x3	Set the upper-left 3x3 submatrix.
<u>Transform3</u>	Default constructor; does no initialization.
<u>Transform3</u>	Copy a 3x4 transformation matrix.
<u>Transform3</u>	Construct a 3x4 transformation matrix containing the
	specified columns.
<u>Transform3</u>	Construct a 3x4 transformation matrix from a 3x3 matrix and
	a 3-D vector.
<u>Transform3</u>	Construct a 3x4 transformation matrix from a unit-length
	quaternion and a 3-D vector.
<u>Transform3</u>	Set all elements of a 3x4 transformation matrix to the same
	scalar value.
<u>Transform3</u>	Replicate an AoS 3x4 transformation matrix.
<u>Transform3</u>	Insert four AoS 3x4 transformation matrices.
<u>translation</u>	Construct a 3x4 transformation matrix to perform
	translation.

Constructors and Destructors

Transform3

Default constructor; does no initialization.

Definition

Arguments

None

Return Values

None

Description

Default constructor; does no initialization.

Copy a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

None

Description

Construct a copy of a 3x4 transformation matrix.

Construct a 3x4 transformation matrix containing the specified columns.

Definition

Arguments

co10 3-D vectorco11 3-D vectorco12 3-D vectorco13 3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix containing the specified columns.

Construct a 3x4 transformation matrix from a 3x3 matrix and a 3-D vector.

Definition

Arguments

tfrm 3x3 matrix translateVec 3-D vector

Return Values

None

Description

Construct a 3x4 transformation matrix whose upper 3x3 elements are equal to the 3x3 matrix argument and whose translation component is equal to the 3-D vector argument.

Construct a 3x4 transformation matrix from a unit-length quaternion and a 3-D vector.

Definition

Arguments

Return Values

None

Description

Construct a 3x4 transformation matrix whose upper-left 3x3 submatrix is a rotation matrix converted from the unit-length quaternion argument and whose translation component is equal to the 3-D vector argument.

Set all elements of a 3x4 transformation matrix to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

None

Description

Construct a 3x4 transformation matrix with all elements set to the scalar value argument.

Replicate an AoS 3x4 transformation matrix.

Definition

Arguments

tfrm AoS 3x4 transformation matrix

Return Values

None

Description

Replicate an AoS 3x4 transformation matrix in all four slots of an SoA 3x4 transformation matrix.

Insert four AoS 3x4 transformation matrices.

Definition

Arguments

```
tfrm0 AoS 3x4 transformation matrix
tfrm1 AoS 3x4 transformation matrix
tfrm2 AoS 3x4 transformation matrix
tfrm3 AoS 3x4 transformation matrix
```

Return Values

None

Description

Insert four AoS 3x4 transformation matrices into four slots of an SoA 3x4 transformation matrix (transpose the data format).

Operator Methods

operator *

Multiply a 3x4 transformation matrix by a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Product of the specified 3x4 transformation matrix and 3-D vector

Description

Applies the 3x3 upper-left submatrix (but not the translation component) of a 3x4 transformation matrix to a 3-D vector.

operator *

Multiply a 3x4 transformation matrix by a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Product of the specified 3x4 transformation matrix and 3-D point

Description

Applies the 3x3 upper-left submatrix and the translation component of a 3x4 transformation matrix to a 3-D point.

operator *

Multiply two 3x4 transformation matrices.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

Product of the specified 3x4 transformation matrices

Description

Multiply two 3x4 transformation matrices.

operator *=

Perform compound assignment and multiplication by a 3x4 transformation matrix.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Perform compound assignment and multiplication by a 3x4 transformation matrix.

operator=

Assign one 3x4 transformation matrix to another.

Definition

Arguments

tfrm 3x4 transformation matrix

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Assign one 3x4 transformation matrix to another.

operator[]

Subscripting operator to set or get a column.

Definition

Arguments

col Index, expected in the range 0-3

Return Values

A reference to indexed column

Description

Subscripting operator invoked when applied to non-const **Transform3**.

operator[]

Subscripting operator to get a column.

Definition

Arguments

col Index, expected in the range 0-3

Return Values

Indexed column

Description

Subscripting operator invoked when applied to const <u>Transform3</u>.

Public Static Methods

identity

Construct an identity 3x4 transformation matrix.

Definition

Arguments

None

Return Values

The constructed 3x4 transformation matrix

Description

Construct an identity 3x4 transformation matrix in which non-diagonal elements are zero and diagonal elements are 1.

rotation

Construct a 3x4 transformation matrix to rotate around a unit-length 3-D vector.

Definition

Arguments

```
radians Scalar valueunitVec 3-D vector, expected to be unit-length
```

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around a unit-length 3-D vector by the specified radians angle.

rotation

Construct a rotation matrix from a unit-length quaternion.

Definition

Arguments

unitQuat Quaternion, expected to be unit-length

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix that applies the same rotation as the specified unit-length quaternion.

rotationX

Construct a 3x4 transformation matrix to rotate around the x axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the x axis by the specified radians angle.

rotationY

Construct a 3x4 transformation matrix to rotate around the y axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the y axis by the specified radians angle.

rotationZ

Construct a 3x4 transformation matrix to rotate around the z axis.

Definition

Arguments

radians Scalar value

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the z axis by the specified radians angle.

rotationZYX

Construct a 3x4 transformation matrix to rotate around the x, y, and z axes.

Definition

Arguments

radiansXYZ 3-D vector

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to rotate around the x, y, and z axes by the radians angles contained in a 3-D vector. Equivalent to rotationZ(radiansXYZ.getZ()) * rotationY(radiansXYZ.getY()) * rotationX(radiansXYZ.getX()).

scale

Construct a 3x4 transformation matrix to perform scaling.

Definition

Arguments

scaleVec 3-D vector

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to perform scaling, in which the non-diagonal elements are zero and the diagonal elements are set to the elements of <code>scaleVec</code>.

translation

Construct a 3x4 transformation matrix to perform translation.

Definition

Arguments

translateVec 3-D vector

Return Values

The constructed 3x4 transformation matrix

Description

Construct a 3x4 transformation matrix to perform translation, which is an identity matrix except for the translation component, with coordinates equal to those in *translateVec*.

Public Instance Methods

get4Aos

Extract four AoS 3x4 transformation matrices.

Definition

Arguments

result1 An output AoS 3x4 transformation matrix result1 An output AoS 3x4 transformation matrix result2 An output AoS 3x4 transformation matrix result3 An output AoS 3x4 transformation matrix

Return Values

None

Description

Extract four AoS 3x4 transformation matrices from four slots of an SoA 3x4 transformation matrix (transpose the data format).

Get the column of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

col Index, expected in the range 0-3

Return Values

The column referred to by the specified index

Description

Get the column of a 3x4 transformation matrix referred to by the specified index.

Get column 0 of a 3x4 transformation matrix.

Definition

Arguments

None

Return Values

Column 0

Description

Get column 0 of a 3x4 transformation matrix.

Get column 1 of a 3x4 transformation matrix.

Definition

Arguments

None

Return Values

Column 1

Description

Get column 1 of a 3x4 transformation matrix.

Get column 2 of a 3x4 transformation matrix.

Definition

Arguments

None

Return Values

Column 2

Description

Get column 2 of a 3x4 transformation matrix.

Get column 3 of a 3x4 transformation matrix.

Definition

Arguments

None

Return Values

Column 3

Description

Get column 3 of a 3x4 transformation matrix.

getElem

Get the element of a 3x4 transformation matrix referred to by column and row indices.

Definition

Arguments

Index, expected in the range 0-3 row Index, expected in the range 0-2

Return Values

Element selected by col and row

Description

Get the element of a 3x4 transformation matrix referred to by column and row indices.

getRow

Get the row of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

row Index, expected in the range 0-2

Return Values

The row referred to by the specified index

Description

Get the row of a 3x4 transformation matrix referred to by the specified index.

getTranslation

Get the translation component of a 3x4 transformation matrix.

Definition

Arguments

None

Return Values

Translation component

Description

Get the translation component of a 3x4 transformation matrix.

getUpper3x3

Get the upper-left 3x3 submatrix of a 3x4 transformation matrix.

Definition

Arguments

None

Return Values

Upper-left 3x3 submatrix

Description

Get the upper-left 3x3 submatrix of a 3x4 transformation matrix.

Set the column of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

col Index, expected in the range 0-3vec 3-D vector

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set the column of a 3x4 transformation matrix referred to by the specified index.

Set column 0 of a 3x4 transformation matrix.

Definition

Arguments

col0 3-D vector

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set column 0 of a 3x4 transformation matrix.

Set column 1 of a 3x4 transformation matrix.

Definition

Arguments

coll 3-D vector

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set column 1 of a 3x4 transformation matrix.

Set column 2 of a 3x4 transformation matrix.

Definition

Arguments

col2 3-D vector

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set column 2 of a 3x4 transformation matrix.

Set column 3 of a 3x4 transformation matrix.

Definition

Arguments

col3 3-D vector

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set column 3 of a 3x4 transformation matrix.

setElem

Set the element of a 3x4 transformation matrix referred to by column and row indices.

Definition

```
#include <vectormath/cpp/vectormath_soa.h>
namespace Vectormath {
    namespace Soa {
        class Transform3 {
            inline Transform3 &setElem()
            int col,
            int row,
            vec_float4 val
        );
    }
}
```

Arguments

```
col Index, expected in the range 0-3row Index, expected in the range 0-2val Scalar value
```

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set the element of a 3x4 transformation matrix referred to by column and row indices.

setRow

Set the row of a 3x4 transformation matrix referred to by the specified index.

Definition

Arguments

```
row Index, expected in the range 0-2 vec 4-D vector
```

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set the row of a 3x4 transformation matrix referred to by the specified index.

setTranslation

Set translation component.

Definition

Arguments

translateVec 3-D vector

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set the translation component of a 3x4 transformation matrix equal to the specified 3-D vector.

setUpper3x3

Set the upper-left 3x3 submatrix.

Definition

Arguments

mat3 3x3 matrix

Return Values

A reference to the resulting 3x4 transformation matrix

Description

Set the upper-left 3x3 submatrix elements of a 3x4 transformation matrix equal to the specified 3x3 matrix.

Vectormath::Soa::Vector3

Summary

Vectormath::Soa::Vector3

A set of four 3-D vectors in structure-of-arrays format.

Definition

#include <vectormath/cpp/vectormath_soa.h>
class Vector3;

Description

A class representing a set of four 3-D vectors stored in structure-of-arrays (SoA) format.

Methods Summary

Methods	Description
get4Aos	Extract four AoS 3-D vectors.
<u>getElem</u>	Get an x, y, or z element of a 3-D vector by index.
getX	Get the x element of a 3-D vector.
<u>getY</u>	Get the y element of a 3-D vector.
<u>getZ</u>	Get the z element of a 3-D vector.
operator *	Multiply a 3-D vector by a scalar.
operator *=	Perform compound assignment and multiplication by a
	scalar.
operator+	Add two 3-D vectors.
operator+	Add a 3-D vector to a 3-D point.
operator+=	Perform compound assignment and addition with a 3-D
	vector.
operator-	Subtract a 3-D vector from another 3-D vector.
operator-	Negate all elements of a 3-D vector.
operator-=	Perform compound assignment and subtraction by a 3-D
	vector.
operator/	Divide a 3-D vector by a scalar.
operator/=	Perform compound assignment and division by a scalar.
operator=	Assign one 3-D vector to another.
operator[]	Subscripting operator to set or get an element.
operator[]	Subscripting operator to get an element.
<u>setElem</u>	Set an x, y, or z element of a 3-D vector by index.
<u>setX</u>	Set the x element of a 3-D vector.
<u>setY</u>	Set the y element of a 3-D vector.
<u>setZ</u>	Set the z element of a 3-D vector.
<u>Vector3</u>	Default constructor; does no initialization.
<u>Vector3</u>	Copy a 3-D vector.
<u>Vector3</u>	Construct a 3-D vector from x, y, and z elements.
<u>Vector3</u>	Copy elements from a 3-D point into a 3-D vector.
<u>Vector3</u>	Set all elements of a 3-D vector to the same scalar value.
<u>Vector3</u>	Replicate an AoS 3-D vector.
Vector3	Insert four AoS 3-D vectors.
<u>xAxis</u>	Construct x axis.
<u>yAxis</u>	Construct y axis.

Methods	Description
<u>zAxis</u>	Construct z axis.

Constructors and Destructors

Vector3

Default constructor; does no initialization.

Definition

Arguments

None

Return Values

None

Description

Default constructor; does no initialization.

Copy a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

None

Description

Construct a copy of a 3-D vector.

Construct a 3-D vector from x, y, and z elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value

Return Values

None

Description

Construct a 3-D vector containing the specified x, y, and z elements.

Copy elements from a 3-D point into a 3-D vector.

Definition

Arguments

pnt 3-D point

Return Values

None

Description

Construct a 3-D vector containing the x, y, and z elements of the specified 3-D point.

Set all elements of a 3-D vector to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

None

Description

Construct a 3-D vector with all elements set to the scalar value argument.

Replicate an AoS 3-D vector.

Definition

Arguments

vec AoS 3-D vector

Return Values

None

Description

Replicate an AoS 3-D vector in all four slots of an SoA 3-D vector.

Insert four AoS 3-D vectors.

Definition

Arguments

```
vec0 AoS 3-D vectorvec1 AoS 3-D vectorvec2 AoS 3-D vectorvec3 AoS 3-D vector
```

Return Values

None

Description

Insert four AoS 3-D vectors into four slots of an SoA 3-D vector (transpose the data format).

Operator Methods

operator *

Multiply a 3-D vector by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Product of the specified 3-D vector and scalar

Description

Multiply a 3-D vector by a scalar.

operator *=

Perform compound assignment and multiplication by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting 3-D vector

Description

Perform compound assignment and multiplication by a scalar.

operator+

Add two 3-D vectors.

Definition

Arguments

vec 3-D vector

Return Values

Sum of the specified 3-D vectors

Description

Add two 3-D vectors.

operator+

Add a 3-D vector to a 3-D point.

Definition

Arguments

pnt 3-D point

Return Values

Sum of the specified 3-D vector and 3-D point

Description

Add a 3-D vector to a 3-D point.

operator+=

Perform compound assignment and addition with a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

A reference to the resulting 3-D vector

Description

Perform compound assignment and addition with a 3-D vector.

operator-

Subtract a 3-D vector from another 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

Difference of the specified 3-D vectors

Description

Subtract a 3-D vector from another 3-D vector.

operator-

Negate all elements of a 3-D vector.

Definition

Arguments

None

Return Values

3-D vector containing negated elements of the specified 3-D vector

Description

Negate all elements of a 3-D vector.

operator-=

Perform compound assignment and subtraction by a 3-D vector.

Definition

Arguments

vec 3-D vector

Return Values

A reference to the resulting 3-D vector

Description

Perform compound assignment and subtraction by a 3-D vector.

operator/

Divide a 3-D vector by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Quotient of the specified 3-D vector and scalar

Description

Divide a 3-D vector by a scalar.

operator/=

Perform compound assignment and division by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting 3-D vector

Description

Perform compound assignment and division by a scalar.

operator=

Assign one 3-D vector to another.

Definition

Arguments

vec 3-D vector

Return Values

A reference to the resulting 3-D vector

Description

Assign one 3-D vector to another.

operator[]

Subscripting operator to set or get an element.

Definition

Arguments

idx Index, expected in the range 0-2

Return Values

A reference to indexed element

Description

Subscripting operator invoked when applied to non-const <u>Vector3</u>.

operator[]

Subscripting operator to get an element.

Definition

Arguments

idx Index, expected in the range 0-2

Return Values

Indexed element

Description

Subscripting operator invoked when applied to const <u>Vector3</u>.

Public Static Methods

xAxis

Construct x axis.

Definition

Arguments

None

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector equal to (1,0,0).

yAxis

Construct y axis.

Definition

Arguments

None

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector equal to (0,1,0).

zAxis

Construct z axis.

Definition

Arguments

None

Return Values

The constructed 3-D vector

Description

Construct a 3-D vector equal to (0,0,1).

Public Instance Methods

get4Aos

Extract four AoS 3-D vectors.

Definition

Arguments

```
result1 An output AoS 3-D vector
result1 An output AoS 3-D vector
result2 An output AoS 3-D vector
result3 An output AoS 3-D vector
```

Return Values

None

Description

Extract four AoS 3-D vectors from four slots of an SoA 3-D vector (transpose the data format).

getElem

Get an x, y, or z element of a 3-D vector by index.

Definition

Arguments

idx Index, expected in the range 0-2

Return Values

Element selected by the specified index

Description

Get an x, y, or z element of a 3-D vector by specifying an index of 0, 1, or 2, respectively.

getX

Get the x element of a 3-D vector.

Definition

Arguments

None

Return Values

x element of a 3-D vector

Description

Get the x element of a 3-D vector.

getY

Get the y element of a 3-D vector.

Definition

Arguments

None

Return Values

y element of a 3-D vector

Description

Get the y element of a 3-D vector.

getZ

Get the z element of a 3-D vector.

Definition

Arguments

None

Return Values

z element of a 3-D vector

Description

Get the z element of a 3-D vector.

setElem

Set an x, y, or z element of a 3-D vector by index.

Definition

Arguments

idx Index, expected in the range 0-2value Scalar value

Return Values

A reference to the resulting 3-D vector

Description

Set an x, y, or z element of a 3-D vector by specifying an index of 0, 1, or 2, respectively.

setX

Set the x element of a 3-D vector.

Definition

Arguments

x Scalar value

Return Values

A reference to the resulting 3-D vector

Description

Set the x element of a 3-D vector to the specified scalar value.

setY

Set the y element of a 3-D vector.

Definition

Arguments

y Scalar value

Return Values

A reference to the resulting 3-D vector

Description

Set the y element of a 3-D vector to the specified scalar value.

setZ

Set the z element of a 3-D vector.

Definition

Arguments

z Scalar value

Return Values

A reference to the resulting 3-D vector

Description

Set the z element of a 3-D vector to the specified scalar value.

Vectormath::Soa::Vector4

Summary

Vectormath::Soa::Vector4

A set of four 4-D vectors in structure-of-arrays format.

Definition

#include <vectormath/cpp/vectormath_soa.h>
class Vector4;

Description

A class representing a set of four 4-D vectors stored in structure-of-arrays (SoA) format.

Methods Summary

Methods	Description
get4Aos	Extract four AoS 4-D vectors.
getElem	Get an x, y, z, or w element of a 4-D vector by index.
getW	Get the w element of a 4-D vector.
getX	Get the x element of a 4-D vector.
getXYZ	Get the x, y, and z elements of a 4-D vector.
<u>getY</u>	Get the y element of a 4-D vector.
<u>getZ</u>	Get the z element of a 4-D vector.
operator *	Multiply a 4-D vector by a scalar.
operator *=	Perform compound assignment and multiplication by a
	scalar.
operator+	Add two 4-D vectors.
operator+=	Perform compound assignment and addition with a 4-D
	vector.
operator-	Subtract a 4-D vector from another 4-D vector.
operator-	Negate all elements of a 4-D vector.
operator-=	Perform compound assignment and subtraction by a 4-D
	vector.
operator/	Divide a 4-D vector by a scalar.
operator/=	Perform compound assignment and division by a scalar.
operator=	Assign one 4-D vector to another.
operator[]	Subscripting operator to set or get an element.
operator[]	Subscripting operator to get an element.
<u>setElem</u>	Set an x, y, z, or w element of a 4-D vector by index.
<u>setW</u>	Set the w element of a 4-D vector.
<u>setX</u>	Set the x element of a 4-D vector.
<u>setXYZ</u>	Set the x, y, and z elements of a 4-D vector.
<u>setY</u>	Set the y element of a 4-D vector.
<u>setZ</u>	Set the z element of a 4-D vector.
<u>Vector4</u>	Default constructor; does no initialization.
<u>Vector4</u>	Copy a 4-D vector.
Vector4	Construct a 4-D vector from x, y, z, and w elements.
<u>Vector4</u>	Construct a 4-D vector from a 3-D vector and a scalar.
Vector4	Copy x, y, and z from a 3-D vector into a 4-D vector, and set w to 0.

Methods	Description
Vector4	Copy x, y, and z from a 3-D point into a 4-D vector, and set
	w to 1.
Vector4	Copy elements from a quaternion into a 4-D vector.
Vector4	Set all elements of a 4-D vector to the same scalar value.
Vector4	Replicate an AoS 4-D vector.
<u>Vector4</u>	Insert four AoS 4-D vectors.
<u>wAxis</u>	Construct w axis.
<u>xAxis</u>	Construct x axis.
<u>yAxis</u>	Construct y axis.
zAxis	Construct z axis.

Constructors and Destructors

Vector4

Default constructor; does no initialization.

Definition

Arguments

None

Return Values

None

Description

Default constructor; does no initialization.

Copy a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

None

Description

Construct a copy of a 4-D vector.

Construct a 4-D vector from x, y, z, and w elements.

Definition

Arguments

- x Scalar value
- y Scalar value
- z Scalar value
- w Scalar value

Return Values

None

Description

Construct a 4-D vector containing the specified x, y, z, and w elements.

Construct a 4-D vector from a 3-D vector and a scalar.

Definition

Arguments

xyz 3-D vectorw Scalar value

Return Values

None

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D vector and with the w element set to the specified scalar.

Copy x, y, and z from a 3-D vector into a 4-D vector, and set w to 0.

Definition

Arguments

vec 3-D vector

Return Values

None

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D vector and with the w element set to 0.

Copy x, y, and z from a 3-D point into a 4-D vector, and set w to 1.

Definition

Arguments

pnt 3-D point

Return Values

None

Description

Construct a 4-D vector with the x, y, and z elements of the specified 3-D point and with the w element set to 1.

Copy elements from a quaternion into a 4-D vector.

Definition

Arguments

quat Quaternion

Return Values

None

Description

Construct a 4-D vector containing the x, y, z, and w elements of the specified quaternion.

Set all elements of a 4-D vector to the same scalar value.

Definition

Arguments

scalar Scalar value

Return Values

None

Description

Construct a 4-D vector with all elements set to the scalar value argument.

Replicate an AoS 4-D vector.

Definition

Arguments

vec AoS 4-D vector

Return Values

None

Description

Replicate an AoS 4-D vector in all four slots of an SoA 4-D vector.

Insert four AoS 4-D vectors.

Definition

Arguments

```
vec0 AoS 4-D vectorvec1 AoS 4-D vectorvec2 AoS 4-D vectorvec3 AoS 4-D vector
```

Return Values

None

Description

Insert four AoS 4-D vectors into four slots of an SoA 4-D vector (transpose the data format).

Operator Methods

operator *

Multiply a 4-D vector by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Product of the specified 4-D vector and scalar

Description

Multiply a 4-D vector by a scalar.

operator *=

Perform compound assignment and multiplication by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting 4-D vector

Description

Perform compound assignment and multiplication by a scalar.

operator+

Add two 4-D vectors.

Definition

Arguments

vec 4-D vector

Return Values

Sum of the specified 4-D vectors

Description

Add two 4-D vectors.

operator+=

Perform compound assignment and addition with a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

A reference to the resulting 4-D vector

Description

Perform compound assignment and addition with a 4-D vector.

operator-

Subtract a 4-D vector from another 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

Difference of the specified 4-D vectors

Description

Subtract a 4-D vector from another 4-D vector.

operator-

Negate all elements of a 4-D vector.

Definition

Arguments

None

Return Values

4-D vector containing negated elements of the specified 4-D vector

Description

Negate all elements of a 4-D vector.

operator-=

Perform compound assignment and subtraction by a 4-D vector.

Definition

Arguments

vec 4-D vector

Return Values

A reference to the resulting 4-D vector

Description

Perform compound assignment and subtraction by a 4-D vector.

operator/

Divide a 4-D vector by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

Quotient of the specified 4-D vector and scalar

Description

Divide a 4-D vector by a scalar.

operator/=

Perform compound assignment and division by a scalar.

Definition

Arguments

scalar Scalar value

Return Values

A reference to the resulting 4-D vector

Description

Perform compound assignment and division by a scalar.

operator=

Assign one 4-D vector to another.

Definition

Arguments

vec 4-D vector

Return Values

A reference to the resulting 4-D vector

Description

Assign one 4-D vector to another.

operator[]

Subscripting operator to set or get an element.

Definition

Arguments

idx Index, expected in the range 0-3

Return Values

A reference to indexed element

Description

Subscripting operator invoked when applied to non-const Vector4.

operator[]

Subscripting operator to get an element.

Definition

Arguments

idx Index, expected in the range 0-3

Return Values

Indexed element

Description

Subscripting operator invoked when applied to const <u>Vector4</u>.

Public Static Methods

wAxis

Construct w axis.

Definition

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (0,0,0,1).

xAxis

Construct x axis.

Definition

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (1,0,0,0).

yAxis

Construct y axis.

Definition

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (0,1,0,0).

zAxis

Construct z axis.

Definition

Arguments

None

Return Values

The constructed 4-D vector

Description

Construct a 4-D vector equal to (0,0,1,0).

Public Instance Methods

get4Aos

Extract four AoS 4-D vectors.

Definition

Arguments

```
result1 An output AoS 4-D vector
result1 An output AoS 4-D vector
result2 An output AoS 4-D vector
result3 An output AoS 4-D vector
```

Return Values

None

Description

Extract four AoS 4-D vectors from four slots of an SoA 4-D vector (transpose the data format).

getElem

Get an x, y, z, or w element of a 4-D vector by index.

Definition

Arguments

idx Index, expected in the range 0-3

Return Values

Element selected by the specified index

Description

Get an x, y, z, or w element of a 4-D vector by specifying an index of 0, 1, 2, or 3, respectively.

getW

Get the w element of a 4-D vector.

Definition

Arguments

None

Return Values

w element of a 4-D vector

Description

Get the w element of a 4-D vector.

getX

Get the x element of a 4-D vector.

Definition

Arguments

None

Return Values

x element of a 4-D vector

Description

Get the x element of a 4-D vector.

getXYZ

Get the x, y, and z elements of a 4-D vector.

Definition

Arguments

None

Return Values

3-D vector containing x, y, and z elements

Description

Extract a 4-D vector's x, y, and z elements into a 3-D vector.

getY

Get the y element of a 4-D vector.

Definition

Arguments

None

Return Values

y element of a 4-D vector

Description

Get the y element of a 4-D vector.

getZ

Get the z element of a 4-D vector.

Definition

Arguments

None

Return Values

z element of a 4-D vector

Description

Get the z element of a 4-D vector.

setElem

Set an x, y, z, or w element of a 4-D vector by index.

Definition

Arguments

idx Index, expected in the range 0-3value Scalar value

Return Values

A reference to the resulting 4-D vector

Description

Set an x, y, z, or w element of a 4-D vector by specifying an index of 0, 1, 2, or 3, respectively.

setW

Set the w element of a 4-D vector.

Definition

Arguments

w Scalar value

Return Values

A reference to the resulting 4-D vector

Description

Set the w element of a 4-D vector to the specified scalar value.

setX

Set the x element of a 4-D vector.

Definition

Arguments

x Scalar value

Return Values

A reference to the resulting 4-D vector

Description

Set the x element of a 4-D vector to the specified scalar value.

setXYZ

Set the x, y, and z elements of a 4-D vector.

Definition

Arguments

vec 3-D vector

Return Values

A reference to the resulting 4-D vector

Description

Set the x, y, and z elements to those of the specified 3-D vector.

Notes

This function does not change the w element.

setY

Set the y element of a 4-D vector.

Definition

Arguments

y Scalar value

Return Values

A reference to the resulting 4-D vector

Description

Set the y element of a 4-D vector to the specified scalar value.

setZ

Set the z element of a 4-D vector.

Definition

Arguments

z Scalar value

Return Values

A reference to the resulting 4-D vector

Description

Set the z element of a 4-D vector to the specified scalar value.