Algorithmen und Komplexität

Dr. Bruno Becker

Übungsblatt 2

Aufgabe 1

Beim Sortierverfahren Bubblesort geht man wie folgt vor:

- Man durchläuft die Liste und vergleicht jeweils benachbarte Elemente a[i] und a[i+1]. Ist a[i]>a[i+1], vertauscht man die beiden Element.
- Danach durchläuft man die Liste erneut und zwar solange, bis keine Vertauschung mehr in einem Durchgang erfolgt. Dann ist die Liste sortiert
- a) Erstellen Sie rekursiven Algorithmus für Bubblesort.
- b) Wann ist Bubblesort besonders günstig, wann besonders ungünstig?
- c) Ist Bubblesort stabil?

Aufgabe 2

Für welche der folgenden Paare von Funktionen f und g gilt f(n) = O(g(n)), $f(n) = \Omega(g(n))$, $f(n) = \Theta(g(n))$?

a. $f(n) = n^2$	$g(n) = n \log n$
b. $f(n) = \sqrt{n}$	g(n) = 500 n
c. $f(n) = 3 \log n$	g(n) = In n
d. $f(n) = 47 n^2 - 12$	$n+18 g(n)=n^2$

Aufgabe 3

Gegeben sei folgende Zahlenfolge:

8	2	1	5	4	6	9	3	7

- a) Sortieren Sie die Folge mittels Insertion Sort. Geben Sie die Folge nach jedem Schleifendurchlauf an.
- b) In welchem Fall benötigt Insertion Sort nur O(n) Vergleiche?

Aufgabe 4

- a) Erläutern Sie die Funktionsweise von Quicksort
- b) Gegeben sei die folgende Zahlenfolge

11	7	23	17	15	8

Sortieren Sie diese Folge aufsteigend mit Quicksort. Verwenden Sie das linke Element als Pivotelement. Notieren Sie die Zwischenschritte des Algorithmus.

Aufgabe 5

Geben Sie für die unten angegebenen Zahlenfolgen jeweils die Laufzeit der Sortierverfahren Selection Sort, Insertion Sort und Bubblesort in O-Notation an (mit Begründung).

a)
$$1, \frac{N}{2} + 1, 2, \frac{N}{2} + 2, ..., \frac{N}{2}$$
, N (N gerade)

b) N, 1, N-1, 2, N-2,3,..., N -
$$\frac{N}{2}$$
 +1, $\frac{N}{2}$ (N gerade)