

Engineering Solutions & Electromagnetic Compatibility Services

FCC & IC Certification Report

4RF Limited
26 Glover Street, Ngauranga
PO Box 13-506
Wellington 6032
New Zealand
Contact: Paul Young

Aprisa SR+ Model SQ400M131

FCC ID: UIPSQ400M131 IC: 6772A-SQ400M131

November 21, 2013

Standards Referenced for	Standards Referenced for this Report			
FCC Part 2 Frequency Allocations and Radio Treaty Matters; General Rules and Regulations (10-01-12)				
FCC Part 90	Private Land Mobile Radio Services (10-01-12)			
RSS-119 Issue 11 Land Mobile and Fixed Radio Transmitters and Receivers Operating Frequency Range 27.41- 960 MHz				
SRSP-501; Issue 5 October 2004	Technical Requirements for Land Mobile and Fixed Radio Services Operating in the Bands 406.1-430 MHz and 450-470 MHz			
ANSI TIA-603-C-2004 Land Mobile FM or PM Communications Equipment Measureme Performance Standards				

Frequency Range (MHz)	Transmit Power Conducted (W)	Measured Frequency Tolerance (ppm)	Emission Designator
406.1-420, 421-430, 450-470 (FCC) 406.1-430, 450-470 (IC)	0.01 – 5.0	1.3	10K5D7W
406.1-420, 421-430, 450-470 (FCC) 406.1-430, 450-470 (IC)	0.01 – 5.0	1.3	19K3D7W

Report Prepared by Test Engineer: Daniel W. Baltzell

Document Number: 2013202

This report may not be reproduced, except in full, without the full written approval of Rhein Tech Laboratories, Inc. and 4RF Limited. Test results relate only to the item tested.

These tests are accredited and meet the requirements of ISO/IEC 17025 as verified by ANSI-ASQ National Accreditation Board/ACLASS. Refer to certificate and scope of accreditation AT-1445.

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Table of Contents

1		Result Summary	6
2	Gene	eral Information	6
	2.1	Test Facility	6
	2.2	Tested System Details	6
3	FCC	Part 2.1033(c)(8) Voltages and Currents Through The Final Amplifying Stage	8
4	FCC	Part 2.1046(a): RF Power Output: Conducted, Part 90.541(b)/90.542(a)(6); IC RSS-119 4.1	8
	4.1	Test Procedure	8
	4.2	Test Data	8
5	FCC	Part 2.1051, 90.210: Conducted Spurious Emissions	9
	5.1	Test Procedure	
	5.2	Test Data	9
6	FCC	Part 90.210(g), 2.1053(a): Field Strength of Spurious Radiation; IC RSS-119 5.8.9.2	46
	6.1	Test Procedure	
	6.2	Test Data	46
7	FCC	Part 2.1049(c)(1), 90.210: Occupied Bandwidth; IC RSS-119 5.5	51
	7.1	Test Procedure	
	7.2	Test Data	52
8	FCC	Part 2.1055, 90.213: Frequency Stability; IC RSS-119 5.3	64
	8.1	Test Procedure	
	8.2	Test Data	64
	8.2.1	Temperature Frequency Stability	64
	8.2.2	Frequency Stability/Voltage Variation	65
9	FCC	Rules and Regulations Part 90.214; RSS-119 5.9: Transient Frequency Response	
	9.1	Test Procedure	
1(0 FCC	Part 2.1047: Modulation Characteristics; IC RSS-119 5.8 Types of Modulation	92
1	1 FCC	Part 2.1049: Occupied Bandwidth; IC RSS-Gen Occupied Bandwidth	93
	11.1	Bandwidth Test Procedure	93
	11.2	Bandwidth Test Data	
1:	2 Cond	clusion1	06

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Table of Plots

Plot 5-1:	Conducted Spurious Emissions – 406.1 MHz; Narrowband; QPSK	10
Plot 5-2:	Conducted Spurious Emissions – 406.1 MHz; Narrowband; 16QAM	11
Plot 5-3:	Conducted Spurious Emissions – 406.1 MHz; Narrowband; 64QAM	12
Plot 5-4:	Conducted Spurious Emissions – 406.1 MHz; Wideband; QPSK	
Plot 5-5:	Conducted Spurious Emissions – 406.1 MHz; Wideband; 16QAM	14
Plot 5-6:	Conducted Spurious Emissions – 406.1 MHz; Wideband; 64QAM	15
Plot 5-7:	Conducted Spurious Emissions – 418 MHz; Narrowband; QPSK	16
Plot 5-8:	Conducted Spurious Emissions – 418 MHz; Narrowband; 16QAM	17
Plot 5-9:	Conducted Spurious Emissions – 418 MHz; Narrowband; 64QAM	18
Plot 5-10:	Conducted Spurious Emissions – 418 MHz; Wideband; QPSK	
Plot 5-11:	Conducted Spurious Emissions – 418 MHz; Wideband; 16QAM	
Plot 5-12:	Conducted Spurious Emissions – 418 MHz; Wideband; 64QAM	
Plot 5-13:	Conducted Spurious Emissions – 430 MHz; Narrowband; QPSK	
Plot 5-14:	Conducted Spurious Emissions – 430 MHz; Narrowband; 16QAM	
Plot 5-15:	Conducted Spurious Emissions – 430 MHz; Narrowband; 64QAM	
Plot 5-16:	Conducted Spurious Emissions – 430 MHz; Wideband; QPSK	
Plot 5-17:	Conducted Spurious Emissions – 430 MHz; Wideband; 16QAM	
Plot 5-18:	Conducted Spurious Emissions – 430 MHz; Wideband; 64QAM	
Plot 5-19:	Conducted Spurious Emissions – 450 MHz; Narrowband; QPSK	
Plot 5-20:	Conducted Spurious Emissions – 450 MHz; Narrowband; 16QAM	29
Plot 5-21:	Conducted Spurious Emissions – 450 MHz; Narrowband; 64QAM	
Plot 5-22:	Conducted Spurious Emissions – 450 MHz; Wideband; QPSK	
Plot 5-23:	Conducted Spurious Emissions – 450 MHz; Wideband; 16QAM	
Plot 5-24:	Conducted Spurious Emissions – 450 MHz; Wideband; 64QAM	
Plot 5-25:	Conducted Spurious Emissions – 460 MHz; Narrowband; QPSK	
Plot 5-26:	Conducted Spurious Emissions – 460 MHz; Narrowband; 16QAM	
Plot 5-27:	Conducted Spurious Emissions – 460 MHz; Narrowband; 64QAM	
Plot 5-28:	Conducted Spurious Emissions – 460 MHz; Wideband; QPSK	
Plot 5-29:	Conducted Spurious Emissions – 460 MHz; Wideband; 16QAM	
Plot 5-30:	Conducted Spurious Emissions – 460 MHz; Wideband; 64QAM	
Plot 5-31:	Conducted Spurious Emissions – 470 MHz; Narrowband; QPSK	
Plot 5-32:	Conducted Spurious Emissions – 470 MHz; Narrowband; 16QAM	
Plot 5-33:	Conducted Spurious Emissions – 470 MHz; Narrowband; 64QAM Conducted Spurious Emissions – 470 MHz; Wideband; QPSK	
Plot 5-34: Plot 5-35:	Conducted Spurious Emissions – 470 MHz; Wideband; 16QAM	
Plot 5-36:	Conducted Spurious Emissions – 470 MHz; Wideband; 64QAM	
Plot 7-1:	Occupied Bandwidth – 406.1 MHz; Mask D	
Plot 7-1:	Occupied Bandwidth – 400.1 MHz; Mask D	
Plot 7-2:	Occupied Bandwidth – 410.0 MHz; Mask D	
Plot 7-3:	Occupied Bandwidth – 450.0 MHz; Mask D	
Plot 7-4:	Occupied Bandwidth – 460.0 MHz; Mask D	
Plot 7-6:	Occupied Bandwidth – 470.0 MHz; Mask D	
Plot 7-7:	Occupied Bandwidth – 470.0 MHz; Mask C; 25 kHz Channel Spacing	
Plot 7-7:	Occupied Bandwidth – 400.1 MHz; Mask C; 25 kHz Channel Spacing	
Plot 7-9:	Occupied Bandwidth – 430.0 MHz; Mask C; 25 kHz Channel Spacing	
Plot 7-10:	Occupied Bandwidth – 450.0 MHz; Mask C; 25 kHz Channel Spacing	
Plot 7-11:	Occupied Bandwidth – 460.0 MHz; Mask C; 25 kHz Channel Spacing	
Plot 7-12:	Occupied Bandwidth = 470.0 MHz; Mask C: 25 kHz Channel Spacing	

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119 Report Number: 2013202

Plot 9-1:	Transient Frequency Behavior - On Time; 406.1 MHz; 12.5 kHz Channel Spacing	68
Plot 9-2:	Transient Frequency Behavior - On Time; 418.0 MHz; 12.5 kHz Channel Spacing	69
Plot 9-3:	Transient Frequency Behavior - On Time; 430.0 MHz; 12.5 kHz Channel Spacing	70
Plot 9-4:	Transient Frequency Behavior - On Time; 450.0 MHz; 12.5 kHz Channel Spacing	71
Plot 9-5:	Transient Frequency Behavior - On Time; 460.0 MHz; 12.5 kHz Channel Spacing	72
Plot 9-6:	Transient Frequency Behavior - On Time; 470.0 MHz; 12.5 kHz Channel Spacing	73
Plot 9-7:	Transient Frequency Behavior - Off Time; 406.1 MHz; 12.5 kHz Channel Spacing	74
Plot 9-8:	Transient Frequency Behavior - Off Time; 418.0 MHz; 12.5 kHz Channel Spacing	75
Plot 9-9:	Transient Frequency Behavior – Off Time; 430.0 MHz; 12.5 kHz Channel Spacing	
Plot 9-10:	Transient Frequency Behavior - Off Time; 450.0 MHz; 12.5 kHz Channel Spacing	77
Plot 9-11:	Transient Frequency Behavior – Off Time; 460.0 MHz; 12.5 kHz Channel Spacing	78
Plot 9-12:	Transient Frequency Behavior – Off Time; 470.0 MHz; 12.5 kHz Channel Spacing	79
Plot 9-13:	Transient Frequency Behavior – On Time; 406.1 MHz; 25 kHz Channel Spacing	80
Plot 9-14:	Transient Frequency Behavior – On Time; 418.0 MHz; 25 kHz Channel Spacing	81
Plot 9-15:	Transient Frequency Behavior – On Time; 430.0 MHz; 25 kHz Channel Spacing	82
Plot 9-16:	Transient Frequency Behavior – On Time; 450.0 MHz; 25 kHz Channel Spacing	83
Plot 9-17:	Transient Frequency Behavior – On Time; 460.0 MHz; 25 kHz Channel Spacing	84
Plot 9-18:	Transient Frequency Behavior – On Time; 470.0 MHz; 25 kHz Channel Spacing	85
Plot 9-19:	Transient Frequency Behavior – Off Time; 406.1 MHz; 25 kHz Channel Spacing	86
Plot 9-20:	Transient Frequency Behavior – Off Time; 418.0 MHz; 25 kHz Channel Spacing	87
Plot 9-21:	Transient Frequency Behavior – Off Time; 430.0 MHz; 25 kHz Channel Spacing	88
Plot 9-22:	Transient Frequency Behavior – Off Time; 450.0 MHz; 25 kHz Channel Spacing	89
Plot 9-23:	Transient Frequency Behavior – Off Time; 460.0 MHz; 25 kHz Channel Spacing	90
Plot 9-24:	Transient Frequency Behavior – Off Time; 470.0 MHz; 25 kHz Channel Spacing	91
Plot 11-1:	Occupied Bandwidth 406.1 MHz; 12.5 kHz Channel Spacing	94
Plot 11-2:	Occupied Bandwidth 406.1 MHz; 25 kHz Channel Spacing	95
Plot 11-3:	Occupied Bandwidth 418.0 MHz; 12.5 kHz Channel Spacing	
Plot 11-4:	Occupied Bandwidth 418.0 MHz; 25 kHz Channel Spacing	
Plot 11-5:	Occupied Bandwidth 430.0 MHz; 12.5 kHz Channel Spacing	
Plot 11-6:	Occupied Bandwidth 430.0 MHz; 25 kHz Channel Spacing	99
Plot 11-7:	Occupied Bandwidth 450.0 MHz; 12.5 kHz Channel Spacing	
Plot 11-8:	Occupied Bandwidth 450.0 MHz; 25 kHz Channel Spacing	
Plot 11-9:	Occupied Bandwidth 460.0 MHz; 12.5 kHz Channel Spacing	
Plot 11-10:	Occupied Bandwidth 460.0 MHz; 25 kHz Channel Spacing	
Plot 11-11:	Occupied Bandwidth 470.0 MHz; 12.5 kHz Channel Spacing	
Plot 11-12:	Occupied Bandwidth 470.0 MHz; 25 kHz Channel Spacing	105

Table of Figures

Client: 4RF Limited Model: SQ400M131

ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Table of Tables

Table 2-1:	Equipment Under Test (EUT)	7
Table 2-2:	Ports and Cabling (EUT)	
Table 2-3:	Support Equipment	
Table 4-1:	RF Conducted Output Power – Measured	
Table 4-2:	Test Equipment Used For Testing RF Power Output - Conducted	
Table 5-1:	Test Equipment Used For Testing Spurious Emissions	45
Table 6-1:	Field Strength of Spurious Radiation – 406.1 MHz	
Table 6-2:	Field Strength of Spurious Radiation – 418 MHz	47
Table 6-3:	Field Strength of Spurious Radiation – 430 MHz	47
Table 6-4:	Field Strength of Spurious Radiation – 450 MHz	48
Table 6-5:	Field Strength of Spurious Radiation – 460 MHz	
Table 6-6:	Field Strength of Spurious Radiation – 470 MHz	
Table 6-7:	Test Equipment Used For Testing Field Strength of Spurious Radiation	
Table 7-1:	Test Equipment Used For Testing Occupied Bandwidth	
Table 8-1:	Temperature Frequency Stability – 418 MHz	
Table 8-2:	Temperature Frequency Stability – 460 MHz	
Table 8-3:	Frequency Stability/Voltage Variation – 418 MHz	
Table 8-4:	Frequency Stability/Voltage Variation – 460 MHz	
Table 8-5:	Test Equipment Used For Testing Frequency Stability	
Table 9-1:	Test Equipment Used For Testing Transient Frequency Behavior	
Table 11-1:	99% Bandwidth Test Data	
Table 11-3:	Test Equipment Used For Testing Transient Frequency Behavior	105
	Table of Appendixes	
Appendix A:	FCC Part 1.1307, 1.1310, 2.1091, 2.1093: RF Exposure	107
Appendix B:	FCC Agency Authorization	108
Appendix C:	FCC Confidentiality Request Letter	
Appendix D:	Spectrum Efficiency Attestation	110
Appendix E:	IC Letters	111
Appendix F:	IC Confidentiality Request Letter	112
Appendix G:	Canadian Based Representative Attestation Letter	
Appendix H:	ID Label & Location	
Appendix I:	Operational Description	
Appendix J:	Parts List	
Appendix K:	Test/Tune Procedure	
Appendix L:	Schematics	
Appendix M:	Block Diagram	
Appendix N:	Manual	
Annondiv ()		121
Appendix O:	Test Configuration Photographs	
Appendix P:	External Photographs	123
		123
Appendix P:	External Photographs	123
Appendix P:	External PhotographsInternal Photographs	123
Appendix P:	External PhotographsInternal Photographs	123 124

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119 Report Number: 2013202

1 Test Result Summary

Test	FCC Reference	Result
RF Power Output	2.1046(a)	Complies
Spurious Emissions at Antenna Terminals	2.1051, 90.210	Complies
Field Strength of Spurious Radiation	2.1053(a)	Complies
Occupied Bandwidth/Emission Masks	2.1049(c)(1)	Complies
Frequency Stability vs. Temperature and Voltage	2.1055, 90.213	Complies
Modulation Characteristics	2.1047(a)(b)	Not Applicable (Digital Modulation)

2 General Information

The following Certification Report is prepared on behalf of **4RF Limited** in accordance with the Federal Communications Commission and Industry Canada rules and regulations. The Equipment Under Test (EUT) was Model # SQ400M131, **FCC ID: UIPSQ400M131, IC: 6772A-SQ400M131.** The test results reported in this document relate only to the item that was tested.

Please note: Under current FCC rules CFR Part 90.207(i) this equipment may only be used for voice and other non-telemetry applications.

All measurements contained in this application were conducted in accordance with FCC Rules and Regulations CFR 47 Parts 2 and 101. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

2.1 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc., 360 Herndon Parkway, Suite 1400, Herndon, Virginia, 20170.

2.2 Tested System Details

The EUT is a point to multipoint radio that operates in the 406.1-470 MHz bands. The rated RF output power is 37.0 dBm. The EUT is digitally modulated using either a QPSK, 16 QAM, or 64 QAM modulation type.

The test samples were received on October 3, 2013. Listed below are the identifiers and descriptions of all equipment, cables, and internal devices used with the EUT for this test, as applicable.

Model # Tested	SQ400M131
Frequency Band	406.1 - 470 MHz
Modulation Type	QPSK, 16 QAM, and 64 QAM
Channel Step Size	12.5 and 25 kHz
Authorized Channel Bandwidth	20 kHz
Primary Power	10-30 VDC
Rated Transmitter Output Power	37.0 dBm

Table 2-1: Equipment Under Test (EUT)

Part	Manufacturer	Model Number	Serial Number	RTL Bar Code
Aprisa SR+ Radio	4RF Limited	SQ400M131	N/A	21104

Table 2-2: Ports and Cabling (EUT)

Port	Cable Type	Quantity	Length (meter)	Shield
AC Power	N/A	1m	N/A	No
TX/Ant.	N/A	1	N/A	N/A
Ethernet	RJ-45	4	4.5	No
Alarm	RJ-45	1	2	No
Management	USB to A-Micro B with two ferrites	1	1	No
Aux.	N/A	4	1.5	No
RX	N/A	1	N/A	No

Table 2-3: Support Equipment

Part	Manufacturer	Model	PN/SN	ID	RTL Bar Code
Laptop Computer	Sony	Vaio	N/A	N/A	N/A

Figure 2-1: Configuration of Tested System

Client: 4RF Limited Model: SQ400M131

ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

3 FCC Part 2.1033(c)(8) Voltages and Currents Through The Final Amplifying Stage

Final PA Voltage: 13 VDC Final PA Current 0.7 A @ 5 W

4 FCC Part 2.1046(a): RF Power Output: Conducted, Part 90.541(b)/90.542(a)(6); IC RSS-119 4.1

4.1 Test Procedure

ANSI/TIA/EIA-603-2004, section 2.2.1

The EUT was connected to a coaxial attenuator having a 50 Ω load impedance.

Manufacturer's rated power: 0.01 - 5 W.

4.2 Test Data

Table 4-1: RF Conducted Output Power – Measured

Frequency (MHz)	Power (dBm)	Power (W)
406.1	37.1	5.1
418	37.1	5.1
430	37.3	5.4
450	37.1	5.1
460	37.2	5.3
470	37.0	5.0

Table 4-2: Test Equipment Used For Testing RF Power Output - Conducted

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz - 26.5 GHz)	MY51250846	4/16/14
901537	Aeroflex	48-40-34	40 dB Attenuator	CB6628	12/14/13

Test Personnel:

Daniel Baltzell

EMC Test Engineer

Signature

October 4, 2013

Date of Test

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

5 FCC Part 2.1051, 90.210: Conducted Spurious Emissions

5.1 Test Procedure

ANSI/TIA/EIA-603-2004, Section 2.2.13

The transmitter is terminated with a 50 Ω load and interfaced with a spectrum analyzer.

Device with digital modulation: Modulated to its maximum extent using a pseudo-random data sequence.

5.2 Test Data

Frequency range of measurement per Part 2.1057: 9 kHz to 10 x Fc

Limits:

Narrowband: (50 + 10 LOG P(W)) Wideband: (43+ 10 LOG P(W))

The following channels (in MHz) were investigated:

MHz
406.1
418.0
430.0
450.0
460.0
470.0

Both high and low power settings were checked; high power was found to be worst case and is presented. All modes were investigated and those within 20 dB of the limits are presented. Only 406.1 MHz had amplitudes within 20 dB of the limit and are shown as representative data.

Plot 5-1: Conducted Spurious Emissions – 406.1 MHz; Narrowband; QPSK

Client: 4RF Limited Model: SQ400M131
ID's: UIPSQ400M131/6772A-SQ400M131
Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Plot 5-2: Conducted Spurious Emissions – 406.1 MHz; Narrowband; 16QAM

Plot 5-3: Conducted Spurious Emissions – 406.1 MHz; Narrowband; 64QAM

Plot 5-4: Conducted Spurious Emissions – 406.1 MHz; Wideband; QPSK

Plot 5-5: Conducted Spurious Emissions – 406.1 MHz; Wideband; 16QAM

Plot 5-6: Conducted Spurious Emissions – 406.1 MHz; Wideband; 64QAM

Plot 5-7: Conducted Spurious Emissions – 418 MHz; Narrowband; QPSK

Plot 5-8: Conducted Spurious Emissions – 418 MHz; Narrowband; 16QAM

Plot 5-9: Conducted Spurious Emissions – 418 MHz; Narrowband; 64QAM

Client: 4RF Limited Model: SQ400M131
ID's: UIPSQ400M131/6772A-SQ400M131
Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Plot 5-10: Conducted Spurious Emissions – 418 MHz; Wideband; QPSK

Plot 5-11: Conducted Spurious Emissions – 418 MHz; Wideband; 16QAM

Plot 5-12: Conducted Spurious Emissions – 418 MHz; Wideband; 64QAM

Plot 5-13: Conducted Spurious Emissions – 430 MHz; Narrowband; QPSK

Plot 5-14: Conducted Spurious Emissions – 430 MHz; Narrowband; 16QAM

Plot 5-15: Conducted Spurious Emissions – 430 MHz; Narrowband; 64QAM

Plot 5-16: Conducted Spurious Emissions – 430 MHz; Wideband; QPSK

Plot 5-17: Conducted Spurious Emissions – 430 MHz; Wideband; 16QAM

Plot 5-18: Conducted Spurious Emissions – 430 MHz; Wideband; 64QAM

Plot 5-19: Conducted Spurious Emissions – 450 MHz; Narrowband; QPSK

Client: 4RF Limited Model: SQ400M131
ID's: UIPSQ400M131/6772A-SQ400M131
Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Plot 5-20: Conducted Spurious Emissions – 450 MHz; Narrowband; 16QAM

Plot 5-21: Conducted Spurious Emissions – 450 MHz; Narrowband; 64QAM

Plot 5-22: Conducted Spurious Emissions – 450 MHz; Wideband; QPSK

Plot 5-23: Conducted Spurious Emissions – 450 MHz; Wideband; 16QAM

Plot 5-24: Conducted Spurious Emissions – 450 MHz; Wideband; 64QAM

Plot 5-25: Conducted Spurious Emissions – 460 MHz; Narrowband; QPSK

Plot 5-26: Conducted Spurious Emissions – 460 MHz; Narrowband; 16QAM

Plot 5-27: Conducted Spurious Emissions – 460 MHz; Narrowband; 64QAM

Client: 4RF Limited Model: SQ400M131
ID's: UIPSQ400M131/6772A-SQ400M131
Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Plot 5-28: Conducted Spurious Emissions – 460 MHz; Wideband; QPSK

Plot 5-29: Conducted Spurious Emissions – 460 MHz; Wideband; 16QAM

Plot 5-30: Conducted Spurious Emissions – 460 MHz; Wideband; 64QAM

Plot 5-31: Conducted Spurious Emissions – 470 MHz; Narrowband; QPSK

Plot 5-32: Conducted Spurious Emissions – 470 MHz; Narrowband; 16QAM

Plot 5-33: Conducted Spurious Emissions – 470 MHz; Narrowband; 64QAM

Plot 5-34: Conducted Spurious Emissions – 470 MHz; Wideband; QPSK

Client: 4RF Limited Model: SQ400M131
ID's: UIPSQ400M131/6772A-SQ400M131
Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Plot 5-35: Conducted Spurious Emissions – 470 MHz; Wideband; 16QAM

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Plot 5-36: Conducted Spurious Emissions – 470 MHz; Wideband; 64QAM

Table 5-1: Test Equipment Used For Testing Spurious Emissions

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz - 26.5 GHz)	MY51250846	4/16/14
901537	Aeroflex	48-40-34	40 dB Attenuator	CB6628	12/14/13

Test Personnel:

Daniel Baltzell

EMC Test Engineer

Signature

Daniel W. Bolget

October 5, 2013

Date of Test

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

6 FCC Part 90.210(g), 2.1053(a): Field Strength of Spurious Radiation; IC RSS-119 5.8.9.2

6.1 Test Procedure

ANSI/TIA-603-2004, section 2.2.12

The device uses digital modulation modulated to its maximum extent using a pseudo-random data sequence.

The spurious emissions levels were measured, and the device under test was replaced by a substitution antenna connected to a signal generator. This signal generator level was then corrected by subtracting the cable loss from the substitution antenna to the signal generator, and the gain of the antenna (dBd) was added to achieve the ERP level, then converted from the corrected signal generator level (dBm) to dBc and compared to the limit.

6.2 Test Data

Table 6-1: Field Strength of Spurious Radiation – 406.1 MHz

Conducted Power 37.1 dBm; 5.1 W; Limit=50+10LogP=57.1 dBc

Frequency (MHz)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss to Transmit Antenna (dB)	Substitution Antenna Gain (dBd)	Corrected Signal Generator Level (dBc)	Margin (dB)
812.2	50.6	-68.5	0.2	0.6	105.2	-48.1
1218.3	36.4	-82.3	0.2	3.3	116.3	-59.2
1624.4	45.7	-69.2	0.3	6.9	99.7	-42.6
2030.5	38.1	-75.8	0.3	6.4	106.8	-49.7
2436.6	28.3	-84.5	0.3	7.6	114.3	-57.2
2842.7	30.3	-81.4	0.4	8.1	110.8	-53.7
3248.8	36.1	-74.6	0.4	7.4	104.8	-47.7
3654.9	25.4	-84.2	0.5	7.4	114.4	-57.3
4061.0	26.0	-80.5	0.4	7.9	110.1	-53.0

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Table 6-2: Field Strength of Spurious Radiation – 418 MHz

Conducted Power 37.1 dBm; 5.1 W; Limit=50+10LogP=57.1 dBc

Frequency (MHz)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss to Transmit Antenna (dB)	Substitution Antenna Gain (dBd)	Corrected Signal Generator Level (dBc)	Margin (dB)
836.0	41.3	-77.8	0.2	0.7	114.4	-57.3
1254.0	32.5	-83.4	0.2	3.7	117.0	-59.9
1672.0	45.9	-68.9	0.3	7.2	99.0	-41.9
2090.0	36.0	-77.7	0.3	6.4	108.8	-51.7
2508.0	23.8	-88.8	0.3	7.6	118.7	-61.6
2926.0	25.3	-86.2	0.4	8.1	115.6	-58.5
3344.0	31.1	-79.3	0.5	7.3	109.5	-52.4
3762.0	25.8	-84.7	0.2	7.2	114.8	-57.7
4180.0	26.4	-79.9	0.9	8.5	109.4	-52.3

Table 6-3: Field Strength of Spurious Radiation – 430 MHz

Conducted Power 37.3 dBm; 5.4 W; Limit=50+10LogP=57.3 dBc

Frequency (MHz)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss to Transmit Antenna (dB)	Substitution Antenna Gain (dBd)	Corrected Signal Generator Level (dBc)	Margin (dB)
860.0	50.8	-68.8	0.2	0.7	105.6	-48.3
1290.0	25.1	-90.7	0.3	4.1	124.2	-66.9
1720.0	44.8	-69.9	0.4	7.4	100.2	-42.9
2150.0	37.5	-76.0	0.5	6.9	106.9	-49.6
2580.0	30.7	-81.7	0.5	7.5	112.0	-54.7
3010.0	25.1	-86.2	0.6	7.8	116.3	-59.0
3440.0	35.0	-75.2	0.6	7.5	105.6	-48.3
3870.0	19.5	-89.5	0.7	7.2	120.3	-63.0
4300.0	21.1	-85.5	0.8	8.8	114.8	-57.5

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Table 6-4: Field Strength of Spurious Radiation – 450 MHz

Conducted Power 37.1 dBm; 5.1 W; Limit=50+10LogP=57.1 dBc

Frequency (MHz)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss to Transmit Antenna (dB)	Substitution Antenna Gain (dBd)	Corrected Signal Generator Level (dBc)	Margin (dB)
900.0	43.6	-73.2	0.3	0.9	109.7	-52.6
1350.0	30.1	-85.5	0.2	4.5	118.3	-61.2
1800.0	36.5	-78.0	0.3	7.5	107.9	-50.8
2250.0	35.9	-77.4	0.3	7.5	107.3	-50.2
2700.0	35.1	-77.0	0.4	7.8	106.7	-49.6
3150.0	21.1	-89.8	0.4	7.4	119.9	-62.8
3600.0	28.6	-81.1	0.2	7.5	111.0	-53.9
4050.0	19.4	-86.8	0.5	7.9	116.5	-59.4
4500.0	18.7	-87.7	0.7	8.9	116.6	-59.5

Table 6-5: Field Strength of Spurious Radiation – 460 MHz

Conducted Power 37.2 dBm; 5.3 W; Limit=50+10LogP=57.2 dBc

Frequency (MHz)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss to Transmit Antenna (dB)	Substitution Antenna Gain (dBd)	Corrected Signal Generator Level (dBc)	Margin (dB)
920.0	46.7	-70.1	0.3	1.0	106.6	-49.4
1380.0	40.5	-75.1	0.2	4.6	107.9	-50.7
1840.0	34.6	-79.8	0.2	7.2	110.1	-52.9
2300.0	38.7	-74.5	0.3	7.7	104.2	-47.0
2760.0	28.9	-83.0	0.4	8.0	112.6	-55.4
3220.0	21.3	-89.4	0.4	7.4	119.7	-62.5
3680.0	27.4	-82.1	0.7	7.3	112.6	-55.4
4140.0	19.0	-87.3	0.5	8.3	116.7	-59.5
4600.0	19.8	-86.7	0.3	9.0	115.3	-58.1

Client: 4RF Limited Model: SQ400M131
ID's: UIPSQ400M131/6772A-SQ400M131
Standards: FCC Part 90/IC RSS-119

Standards: FCC Part 90/IC RSS-119 Report Number: 2013202

Table 6-6: Field Strength of Spurious Radiation – 470 MHz

Conducted Power 37.0 dBm; 5.0 W; Limit=50+10LogP=57.0 dBc

Frequency (MHz)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss to Transmit Antenna (dB)	Substitution Antenna Gain (dBd)	Corrected Signal Generator Level (dBc)	Margin (dB)
940.0	46.7	-70.0	0.3	1.1	106.2	-49.2
1410.0	32.1	-83.4	0.2	4.8	115.8	-58.8
1880.0	36.1	-78.2	0.3	6.8	108.7	-51.7
2350.0	36.3	-76.7	0.3	7.7	106.3	-49.3
2820.0	31.9	-79.9	0.4	8.1	109.2	-52.2
3290.0	19.6	-91.0	0.4	7.3	121.1	-64.1
3760.0	25.5	-83.8	0.2	7.2	113.8	-56.8
4230.0	18.3	-88.0	1.0	8.7	117.3	-60.3
4700.0	18.8	-87.7	1.0	9.1	116.6	-59.6

Client: 4RF Limited Model: SQ400M131

ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Table 6-7: Test Equipment Used For Testing Field Strength of Spurious Radiation

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
900932	Hewlett Packard	8449B OPT H02	Preamplifier (1 - 26.5 GHz)	3008A00505	8/27/14
900878	Rhein Tech Laboratories	AM3-1197-0005	3 meter Antenna Mast, polarizing	OATS1	N/A
901592	Insulated Wire Inc.	KPS-1503-3600- KPR	SMK RF Cables 20'	NA	8/27/14
901593	Insulated Wire Inc.	KPS-1503-360- KPR	SMK RF Cables 36"	NA	8/27/14
901594	Insulated Wire Inc.	KPS-1503-360- KPR	SMK RF Cables 36"	NA	8/27/14
901242	Rhein Tech Laboratories	WRT-000-0003	Wood rotating table	N/A	N/A
900791	Chase	CBL6111B	Bilog Antenna (30 MHz – 2000 MHz)	N/A	2/1/14
900321	EMCO	3161-03	Horn Antennas (4 – 8 GHz)	9508-1020	4/19/14
900772	EMCO	3161-02	Horn Antenna (2 - 4 GHz)	9804-1044	4/19/14
900928	Hewlett Packard	83752A	Synthesized Sweeper (0.01 - 20 GHz)	3610A00866	3/20/15
900905	Rhein Tech Laboratories	PR-1040	OATS 1 Preamplifier 40dB (30 MHz – 2 GHz)	1006	9/4/14
900323	EMCO	3160-07	Horn Antenna (8.2 - 12.4 GHz)	9605-1054	4/19/14
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz - 26.5 GHz)	MY51250846	4/16/14

Test Personnel:

Daniel Baltzell

Test Engineer

Daniel Baltzell

Signature

October 7, 2013

Date of Tests

Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Client: 4RF Limited

7 FCC Part 2.1049(c)(1), 90.210: Occupied Bandwidth; IC RSS-119 5.5

Occupied Bandwidth - Compliance with the Emission Masks

7.1 Test Procedure

ANSI/TIA/EIA-603-2004, section 2.2.11

Device with digital modulation: Modulated to its maximum extent using a pseudo-random data sequence.

Applicable Emission Masks						
Frequency Band (MHz)	Mask for Equipment With Audio Low Pass Filter	Mask for Equipment Without Audio Low Pass Filter				
Below 25 ¹	A or B	A or C				
25–50	В	С				
72–76	В	С				
150–174 ²	B, D, or E	C, D, or E				
150 Paging-only	В	С				
220–222	F	F				
421–512 ²	B, D, or E	C, D, or E				
450 Paging-only	В	G				
806-809/851-854	В	Н				
809–824/854–869 ³	В	G				
896-901/935-940	I	J				
902–928	K	K				
929–930	В	G				
4940–4990 MHz	L or M	L or M				
5850–5925 ⁴ · · · · · · · · · · · · · · · · · · ·						
All other bands	В	С				

¹ Equipment using single sideband J3E emission must meet the requirements of Emission Mask A. Equipment using other emissions must meet the requirements of Emission Mask B or C, as applicable.

² Equipment designed to operate with a 25 kHz channel bandwidth must meet the requirements of Emission Mask B or C, as applicable. Equipment designed to operate with a 12.5 kHz channel bandwidth must meet the requirements of Emission Mask D, and equipment designed to operate with a 6.25 kHz channel bandwidth must meet the requirements of Emission Mask E.

³ Equipment used in this licensed to TA and TA.

³ Equipment used in this licensed to EA or non-EA systems shall comply with the emission mask provisions of §90.691.

⁴ DSRCS Roadside Unit equipment in the 5850–5925 MHz band is governed under subpart M of this part.

Client: 4RF Limited Model: SQ400M131
ID's: UIPSQ400M131/6772A-SQ400M131
Standards: FCC Part 90/IC RSS-119
Report Number: 2013202

7.2 Test Data

Plot 7-1: Occupied Bandwidth – 406.1 MHz; Mask D

Plot 7-2: Occupied Bandwidth – 418.0 MHz; Mask D

Plot 7-3: Occupied Bandwidth – 430.0 MHz; Mask D

Plot 7-4: Occupied Bandwidth – 450.0 MHz; Mask D

Plot 7-5: Occupied Bandwidth – 460.0 MHz; Mask D

Plot 7-6: Occupied Bandwidth – 470.0 MHz; Mask D

Plot 7-7: Occupied Bandwidth – 406.1 MHz; Mask C; 25 kHz Channel Spacing

Plot 7-8: Occupied Bandwidth – 418.0 MHz; Mask C; 25 kHz Channel Spacing

Plot 7-9: Occupied Bandwidth – 430.0 MHz; Mask C; 25 kHz Channel Spacing

Client: 4RF Limited Model: SQ400M131
ID's: UIPSQ400M131/6772A-SQ400M131
Standards: FCC Part 90/IC RSS-119
Report Number: 2013202

Plot 7-10: Occupied Bandwidth – 450.0 MHz; Mask C; 25 kHz Channel Spacing

Plot 7-11: Occupied Bandwidth – 460.0 MHz; Mask C; 25 kHz Channel Spacing

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Plot 7-12: Occupied Bandwidth – 470.0 MHz; Mask C; 25 kHz Channel Spacing

Table 7-1: Test Equipment Used For Testing Occupied Bandwidth

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz - 26.5 GHz)	MY51250846	4/16/14
901139	Weinschel Corp.	48-20-34 DC- 18GHz	Attenuator, 100W 20dB	BK5859	3/25/16
900948	Weinschel Corporation	47-10-43	Attenuator DC-18 GHz 10 dB 50W	BH1487	3/18/14

Test Personnel:

Daniel Baltzell

EMC Test Engineer

Daniel W. Bolgel

Signature

October 7-8, 2013

Dates of Test

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

8 FCC Part 2.1055, 90.213: Frequency Stability; IC RSS-119 5.3

8.1 Test Procedure

ANSI/TIA-603-C-2004, section 2.2.2.

The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

The EUT was evaluated over the temperature range -30°C to +60°C.

The temperature was initially set to -30°C and a 2-hour period was observed for stabilization of the EUT. The EUT was then operated in standby mode for 15 minutes before proceeding. The frequency stability was measured within one minute after application of primary power to the transmitter. The temperature was raised at intervals of 10°C through the range. A ½ hour period was observed to stabilize the EUT at each measurement step, and the frequency stability was measured within one minute after application of primary power to the transmitter. Additionally, the power supply voltage of the EUT was varied +/-15% nominal input voltage.

Limit for frequency block 400-470 MHz for Base Station: 1.5 ppm

The worst case test data are shown below in Table 8-1 and Table 8-2.

8.2 Test Data

8.2.1 Temperature Frequency Stability

Table 8-1: Temperature Frequency Stability – 418 MHz

Temperature (°C)	Measured Frequency (Hz)	ppm
-30	417.999586	-0.99
-20	417.999591	-0.98
-10	417.999751	-0.60
0	417.999899	-0.24
10	418.000021	0.05
20 (reference)	418.000000	0.00
30	417.999843	-0.38
40	417.999883	-0.28
50	417.999877	-0.29
60	417.999879	-0.29

Client: 4RF Limited Model: SQ400M131
ID's: UIPSQ400M131/6772A-SQ400M131
Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Table 8-2: Temperature Frequency Stability – 460 MHz

Temperature (°C)	Measured Frequency (Hz)	ppm
-30	459.999537	-1.01
-20	459.999554	-0.97
-10	459.999714	-0.62
0	459.999893	-0.23
10	460.000019	0.04
20 (reference)	460.000000	0.00
30	459.999813	-0.41
40	459.999870	-0.28
50	459.999862	-0.30
60	459.999877	-0.27

8.2.2 Frequency Stability/Voltage Variation

Table 8-3: Frequency Stability/Voltage Variation – 418 MHz

Voltage (VDC)	Measured Frequency (Hz)	ppm	
10.0	418.000023	0.06	
11.5	418.000022	0.05	
20.0	418.000000	0.00	
25.5	418.000024	0.06	
30.0	418.000024	0.06	

Table 8-4: Frequency Stability/Voltage Variation – 460 MHz

Voltage (VDC)	Measured Frequency (Hz)	ppm
10.0	460.000600	1.30
11.5	460.000600	1.30
20.0	460.000000	0.00
25.5	460.000607	1.32
30.0	460.000617	1.34

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Table 8-5: Test Equipment Used For Testing Frequency Stability

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
900946	Tenney Engineering, Inc.	TH65	Temperature Chamber with Humidity	11380	1/13/14
901300	Agilent Technologies	53131A	Frequency Counter	MY40001345	7/18/14
900948	Weinschel Corporation	47-10-43	Attenuator DC-18 GHz 10 dB 50W	BH1487	3/18/14
901350	Meterman	33XR	Multimeter	040402802	3/20/15
901594	Insulated Wire Inc.	KPS-1503- 360-KPR	SMK RF Cables 36"	NA	8/27/14

Test Personnel:

Daniel Baltzell

EMC Test Engineer

Signature

October 5, 2013

Date of Test

Client: 4RF Limited Model: SQ400M131
ID's: UIPSQ400M131/6772A-SQ400M131
Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

9 FCC Rules and Regulations Part 90.214; RSS-119 5.9: Transient Frequency Response

9.1 Test Procedure

ANSI/TIA-603-C-2004 Section 2.2.3

Test Exceptions: The transmitter was unable to operate in an unmodulated mode and the plots show between t2 and t3 this unmodulated condition; this is why the plots deviate greater than when a normal unmodulated carrier is used.

When a transmitter is turned on, the radio frequency may take some time to stabilize. During this initial period, the frequency error or frequency difference (i.e. between the instantaneous and the steady state frequencies) shall not exceed the limits as follows.

Transient Frequency	Time Intervals	Maximum	Transient Duration Limit (ms)		
Behavior Channel Spacing (kHz)		Frequency Difference (kHz)	138-174 MHz	*421 - 512 MHz *(406.1 IC)	
25	t1	±25	5	10	
	t2	±12.5	20	25	
	t3	±25	5	10	
12.5	t1	±12.5	5	10	
	t2	±6.25	20	25	
	t3	±12.5	5	10	
6.25	t1	±6.25	5	10	
	t2	±3.125	20	25	
	t3	±6.25	5	10	

Plot 9-1: Transient Frequency Behavior – On Time; 406.1 MHz; 12.5 kHz Channel Spacing

Plot 9-2: Transient Frequency Behavior – On Time; 418.0 MHz; 12.5 kHz Channel Spacing

Plot 9-3: Transient Frequency Behavior – On Time; 430.0 MHz; 12.5 kHz Channel Spacing

Plot 9-4: Transient Frequency Behavior – On Time; 450.0 MHz; 12.5 kHz Channel Spacing

Plot 9-5: Transient Frequency Behavior – On Time; 460.0 MHz; 12.5 kHz Channel Spacing

Plot 9-6: Transient Frequency Behavior – On Time; 470.0 MHz; 12.5 kHz Channel Spacing

Plot 9-7: Transient Frequency Behavior – Off Time; 406.1 MHz; 12.5 kHz Channel Spacing

Plot 9-8: Transient Frequency Behavior – Off Time; 418.0 MHz; 12.5 kHz Channel Spacing

Plot 9-9: Transient Frequency Behavior – Off Time; 430.0 MHz; 12.5 kHz Channel Spacing

Plot 9-10: Transient Frequency Behavior – Off Time; 450.0 MHz; 12.5 kHz Channel Spacing

Plot 9-11: Transient Frequency Behavior – Off Time; 460.0 MHz; 12.5 kHz Channel Spacing

Plot 9-12: Transient Frequency Behavior – Off Time; 470.0 MHz; 12.5 kHz Channel Spacing

Plot 9-13: Transient Frequency Behavior – On Time; 406.1 MHz; 25 kHz Channel Spacing

Plot 9-14: Transient Frequency Behavior – On Time; 418.0 MHz; 25 kHz Channel Spacing

Plot 9-15: Transient Frequency Behavior – On Time; 430.0 MHz; 25 kHz Channel Spacing

Plot 9-16: Transient Frequency Behavior – On Time; 450.0 MHz; 25 kHz Channel Spacing

Plot 9-17: Transient Frequency Behavior – On Time; 460.0 MHz; 25 kHz Channel Spacing

Plot 9-18: Transient Frequency Behavior – On Time; 470.0 MHz; 25 kHz Channel Spacing

Plot 9-19: Transient Frequency Behavior – Off Time; 406.1 MHz; 25 kHz Channel Spacing

Plot 9-20: Transient Frequency Behavior – Off Time; 418.0 MHz; 25 kHz Channel Spacing

Plot 9-21: Transient Frequency Behavior – Off Time; 430.0 MHz; 25 kHz Channel Spacing

Plot 9-22: Transient Frequency Behavior – Off Time; 450.0 MHz; 25 kHz Channel Spacing

Plot 9-23: Transient Frequency Behavior – Off Time; 460.0 MHz; 25 kHz Channel Spacing

Plot 9-24: Transient Frequency Behavior – Off Time; 470.0 MHz; 25 kHz Channel Spacing

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Table 9-1: Test Equipment Used For Testing Transient Frequency Behavior

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901118	Hewlett Packard	8901A Opt. 002-003	Modulation Analyzer	2406A00178	4/1/15
901514	Tektronix	TDS7404B	Oscilloscope	B010161	4/20/14
900917	Hewlett Packard	8648C	Synthesized Signal Generator (9 kHz - 3200 MHz)	3537A01741	2/12/14
901337	Narda Microline	766-10	Attenuator (DC-4GHz, 10 dB, 20W)	6242	9/3/14
900948	Weinschel Corp.	47-10-43	Attenuator (DC-18GHz, 40 dB, 25W)	BH1487	3/18/14
901536	Aeroflex	48-40-34	40 dB Attenuator	CB6627	12/14/13
901511	Pasternack	PE 2003	Power Divider (10 MHz - 1 GHz)	NA	N/A
901463	Werlatone Inc.	C1795	Directional Coupler, 100W, 40 dB, 1 - 1000 MHz	4067	12/14/13
901263	Agilent Technologies	.01-12 GHz	SMA Detector	2936A05505	N/A

Test	Personnel:
------	------------

	Daniel W. Bolget		
Daniel Baltzell		October 3, 2013	
Test Engineer	Signature	Date of Test	

10 FCC Part 2.1047: Modulation Characteristics; IC RSS-119 5.8 Types of Modulation

No data is presented since the radio is digitally modulated.

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

11 FCC Part 2.1049: Occupied Bandwidth; IC RSS-Gen Occupied Bandwidth

11.1 Bandwidth Test Procedure

The bandwidths per FCC and IC RSS-Gen were measured using a 50-ohm spectrum analyzer. The carrier was adjusted on the analyzer so that it was displayed entirely on the spectrum analyzer. The sweep time was set to auto and allowed through several sweeps in peak detector mode. The resolution and video bandwidths were set to auto. The bandwidths were measured using the spectrum analyzer auto function. The table below contains the bandwidth measurement results.

11.2 Bandwidth Test Data

Table 11-1: 99% Bandwidth Test Data

Frequency (MHz)	99% Bandwidth (kHz) 12.5 kHz Channel Spacing	99% Bandwidth (kHz) 25 kHz Channel Spacing	
406.1	10.4	19.3	
418.0	10.5	18.5	
430.0	10.3	18.4	
450.0	10.5	18.5	
460.0	10.4	18.7	
470.0	10.4	18.5	

Client: 4RF Limited Model: SQ400M131
ID's: UIPSQ400M131/6772A-SQ400M131
Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Plot 11-1: Occupied Bandwidth 406.1 MHz; 12.5 kHz Channel Spacing

Plot 11-2: Occupied Bandwidth 406.1 MHz; 25 kHz Channel Spacing

Client: 4RF Limited Model: SQ400M131
ID's: UIPSQ400M131/6772A-SQ400M131
Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Plot 11-3: Occupied Bandwidth 418.0 MHz; 12.5 kHz Channel Spacing

Plot 11-4: Occupied Bandwidth 418.0 MHz; 25 kHz Channel Spacing

Plot 11-5: Occupied Bandwidth 430.0 MHz; 12.5 kHz Channel Spacing

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119 Report Number: 2013202

Plot 11-6: Occupied Bandwidth 430.0 MHz; 25 kHz Channel Spacing

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Plot 11-7: Occupied Bandwidth 450.0 MHz; 12.5 kHz Channel Spacing

Client: 4RF Limited Model: SQ400M131
ID's: UIPSQ400M131/6772A-SQ400M131
Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Plot 11-8: Occupied Bandwidth 450.0 MHz; 25 kHz Channel Spacing

Plot 11-9: Occupied Bandwidth 460.0 MHz; 12.5 kHz Channel Spacing

Plot 11-10: Occupied Bandwidth 460.0 MHz; 25 kHz Channel Spacing

Client: 4RF Limited Model: SQ400M131
ID's: UIPSQ400M131/6772A-SQ400M131
Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Plot 11-11: Occupied Bandwidth 470.0 MHz; 12.5 kHz Channel Spacing

Client: 4RF Limited Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Plot 11-12: Occupied Bandwidth 470.0 MHz; 25 kHz Channel Spacing

Table 11-2: Test Equipment Used For Testing Transient Frequency Behavior

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz - 26.5 GHz)	MY51250846	4/16/14
901139	Weinschel Corp.	48-20-34 DC-18GHz	Attenuator, 100W 20dB	BK5859	3/25/16
900948	Weinschel Corporation	47-10-43	Attenuator DC-18 GHz 10 dB 50W	BH1487	3/18/14

Test Personnel:

Daniel Baltzell

Test Engineer

Danie DW. Bolgs

Signature

October 7-11, 2013
Dates of Test

Model: SQ400M131 ID's: UIPSQ400M131/6772A-SQ400M131 Standards: FCC Part 90/IC RSS-119

Report Number: 2013202

Client: 4RF Limited

12 Conclusion

The data in this measurement report shows that the **4RF Limited Aprisa SR+ Model SQ400M131**, **FCC ID: UIPSQ400M131**, **IC: 6772A-SQ400M131**, complies with the applicable requirements of FCC Parts 2 and 90 and Industry Canada RSS-119.