Chapitre 4: Notion de distribution dans \mathbb{R}^n

Adnène Arbi

ENSTAB

December 15, 2022

Plan de cours

- Introduction
- ② Convergence dans \mathbb{R}^n
- 3 Espaces des distributions sur \mathbb{R}^n
- 4 Exemples de distribution
- $footnote{\circ}$ Multiplication d'une distribution par une fonction de classe c^{∞}
- 6 Dérivation des distributions
- Convergence des distributions
- Support d'une distribution
- 9 Les distributions à supports compacts

Introduction

- En analyse mathématique, une distribution (également appelée fonction généralisée) est un objet qui généralise la notion de fonction et de mesure.
- La théorie des distributions étend la notion de dérivée à toutes les fonctions localement intégrables et est utilisée pour formuler des solutions à certaines équations aux dérivées partielles.
- Elles sont importantes en physique et en ingénierie où beaucoup de problèmes discontinus conduisent naturellement à des équations différentielles dont les solutions sont des distributions plutôt que des fonctions ordinaires.

Convergence dans \mathbb{R}^n

Définition 1

Soit $(\varphi_k)_k$ une suite d'éléments de $D(\mathbb{R}^n)$.

On dit que $(\varphi_k)_k$ converge vers φ dans $D(\mathbb{R}^n)$ si:

- $\exists K$ compact de \mathbb{R}^n tel que $\forall k \in \mathbb{N}$, $Supp(\varphi_k) \subset K$ et $Supp(\varphi) \subset K$.
- Pour tout multi-indice $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$, on a $\|\partial^{\alpha}(\varphi_k \varphi)\|_{\infty} \longrightarrow 0$, lorsque $k \longrightarrow +\infty$

Proposition 1

Soit $\varphi \in D(\mathbb{R}^n)$, vérifiant $\varphi \geq 0$ et $\int_{\mathbb{R}^n} \varphi(x) dx = 1$.

On désigne par $(\varphi_k)_k$ la suite de $D(\mathbb{R}^n)$ définie par:

$$\varphi_k(x) = k^n \varphi(kx).$$

Alors $\forall \psi \in D(\mathbb{R}^n)$ on a $(\varphi_k * \psi) \in D(\mathbb{R}^n)$ et $(\varphi_k * \psi)_k$ converge vers ψ dans $D(\mathbb{R}^n)$.

Espaces des distributions sur \mathbb{R}^n

Définition 2

On appelle Distribution sur R^n , toute forme linéaire $T:D(\mathbb{R}^n)\longrightarrow \mathbb{C}$ telle que si $(\varphi_k)_k$ est une suite convergente vers 0 dans $D(\mathbb{R}^n)$ alors $T(\varphi_k)$ converge vers 0 dans \mathbb{C} .

Notations 1

- Pour $\varphi \in D(\mathbb{R}^n)$, on notera: $T(\varphi) = \langle T, \varphi \rangle$.
- $D'(\mathbb{R}^n)$ l'ensemble des distributions sur \mathbb{R}^n .

Remarques 1

- $D'(\mathbb{R}^n)$ est un \mathbb{C} -espace vectoriel.
- $D'(\mathbb{R}^n)$ est par définition, l'espace des formes linéaires continues sur $D(\mathbb{R}^n)$.

Espaces des distributions sur \mathbb{R}^n

Remarques 2

• L'espace $D(\mathbb{R}^n)$ se présente comme l'union des espaces $D_{\mathcal{K}}(\mathbb{R}^n)$, avec

$$D_{\mathcal{K}}(\mathbb{R}^n) = \{ \varphi \in D(\mathbb{R}^n / Spp(\varphi) \subset \mathcal{K} \}$$

où K parcourt la famille de tous les compacts de \mathbb{R}^n .

• On considère la famille dénombrable de semi-normes sur $D(\mathbb{R}^n$ définie par:

$$P_{K,m}(\varphi) = Sup_{x \in K, |\alpha| \le m} |\partial^{\alpha} \varphi(x)|.$$

La donnée de cette famille induit une topologie sur $D_K(\mathbb{R}^n)$, un système fondamental de voisinage de 0 pour cette topologie étant donné par les ensembles

$$V_{K,m,\epsilon} = \{ \varphi \in D(\mathbb{R}^n), P_{K,m}(\varphi) < \epsilon \}$$

Théorème 1

Une forme linéaire $T:D(\mathbb{R}^n)\longrightarrow \mathbb{C}$ est une Distribution si et seulement si, pour tout compact $K\subset \mathbb{R}^n$, il existe $m\in \mathbb{N}$, et une constante $C_K>0$, tels que

$$|| \le C_K P_{K,m}(\varphi) = C_K \sup_{|\alpha| \le m} \|D^{\alpha}\varphi\|_{\infty}, \ \forall \varphi \in D(\mathbb{R}^n)$$

Exemple 1

Proposition 2

Pour tout $f \in L^1_{loc}(\mathbb{R}^n)$ (" $\forall K \subset \mathbb{R}^n, \int_K |f(x)| dx < \infty$ "), l'application notée $T_f: D(\mathbb{R}^n) \longrightarrow \mathbb{C}$, $\varphi \longrightarrow \langle T_f, \varphi \rangle = \int_{\mathbb{R}^n} f(x) \varphi(x) dx$ est une distribution sur \mathbb{R}^n .

Exemple 2

Proposition 3

Pour tout $a \in \mathbb{R}^n$ l'application notée δ_a définie par $\delta_a : D(\mathbb{R}^n) \longrightarrow \mathbb{C}$, $\varphi \longrightarrow <\delta_a, \varphi>= \varphi(a)$ est une distribution sur \mathbb{R}^n . De plus il n'existe pas $f \in L^1_{loc}(\mathbb{R}^n)$ tel que $\delta_a = T_f$.

Autres exemples

• La distribution $v_p(\frac{1}{x})$ "valeur principale de $\frac{1}{x}$ " est une distribution. Soit $\varphi \in D(\mathbb{R}^n)$, on pose:

$$< \nu_{\rho}(\frac{1}{x}), \varphi> = \lim_{\epsilon \longrightarrow 0} \left\{ \int_{|x| > \epsilon} \frac{\varphi(x)}{x} dx \right\}.$$

• La distribution "partie finie de $\frac{1}{x^2}$ ", notée $Pf(\frac{1}{x^2})$ et définie par:

$$< Pf(\frac{1}{x^2}), \varphi > = \lim_{\epsilon \longrightarrow 0} \left\{ \int_{|x| > \epsilon} \frac{\varphi(x)}{x^2} dx - 2 \frac{\varphi(0)}{\epsilon} \right\},$$

c'est une distribution.

Multiplication d'une distribution par une fonction de classe c^{∞}

Proposition 4

Soient $f \in c^{\infty}(\mathbb{R}^n)$ et $T \in D'(\mathbb{R}^n)$. L'application f.T définie par: $f.T:D(\mathbb{R}^n) \longrightarrow \mathbb{C}$, $\varphi \longmapsto \langle f.T, \varphi \rangle = \langle T, f.\varphi \rangle$ est une distribution sur \mathbb{R}^n appelée "Produit de T par f".

Exemples

- si $f \in c^{\infty}(\mathbb{R}^n)$, $\delta_a \in D'(\mathbb{R}^n)$, alors $f.\delta_a = f(a).\delta_a$.
- ullet si $f\in c^\infty(\mathbb{R}^n)$, $g\in L^1_{loc}(\mathbb{R}^n)$, alors $f.T_g=T_{fg}$
- $x.v_p(\frac{1}{x}) = T_1$, où 1 est la fonction identiquement égale à 1.
- $x.Pf(\frac{1}{x^2}) = v_p(\frac{1}{x}).$

Dérivation des distributions

Proposition 5

Soit $T \in D'(\mathbb{R}^n)$. Pour tout multi-indice $\alpha \in \mathbb{N}^n$, l'application notée $\partial^\alpha T$ définie par: $\partial^\alpha T : D(\mathbb{R}^n) \longrightarrow \mathbb{C}$, $\varphi \longrightarrow <\partial^\alpha T, \varphi >= (-1)^{|\alpha|} < T, \partial^\alpha \varphi >$ est une distribution sur \mathbb{R}^n . Appelée la dérivée d'ordre α de T.

Notations

• Dans $D'(\mathbb{R})$ on adopte les notations suivantes:

$$T' = \partial T = \frac{dT}{dx}; \ T^{(k)} = \partial^k T = \frac{d^k T}{dx^k}.$$

- $T^{(0)} = T$.
- $T \in D'(\mathbb{R}^n)$; $\partial^{\alpha} T = \frac{\partial^{|\alpha|} T}{\partial x_1^{\alpha_1} ... \partial x_n^{\alpha_n}}$

En particulier:

$$\frac{\partial^k T}{\partial x_i^k} = \partial^\alpha T,$$

où $\alpha = (0, ..., 0, k, 0, ..., 0)$.

Remarques et exemples

Remarques

- $\forall \alpha, \beta \in \mathbb{N}^n$, on a $\partial^{\alpha}(\partial^{\beta}T) = \partial^{\alpha+\beta}T$.
- L'application $D'(\mathbb{R}^n) \longrightarrow D'(\mathbb{R}^n)$, $T \longmapsto \partial^{\alpha} T$ est linéaire.

Exemples

- Soit $f: \mathbb{R}^n \longrightarrow \mathbb{C}$ de classe $C^1 \ \forall j \in \{1,...,n\}; \ \frac{\partial}{\partial x_j}(T_f) = T_{\frac{\partial f}{\partial x_i}}$.
- Soit H la fonction d'Heaviside définie par

$$H(x) = \begin{cases} 1, & \text{si } x \ge 0, \\ 0, & \text{si } x < 0 \end{cases}$$

$$(T_H)'=$$
?
Soit $\varphi \in D(\mathbb{R})$
 $<(T_H)', \varphi>=-< T_H, \varphi'>=\varphi(0)=<\delta_0, \varphi>$.
Donc $(T_H)'=\delta_0$.

Formules

Formule des sauts

Soit $f : \mathbb{R} \longrightarrow \mathbb{C}$. Soit $a \in \mathbb{R}$, tel que

- f est de classe C^1 sur $\mathbb{R} \setminus \{a\}$.
- les limites à gauche et à droite existent en a.
- la dérivée f' sur $\mathbb{R} \setminus \{a\}$ et localement intégrable. Alors

$$(T_f)' = T_{f'} + (f(a^+) - f(a^-))\delta_a.$$

En particulier si f est continue on f: $(T_f)' = T_{f'}$.

Formule de Leibniz

Soit $f \in C^{\infty}(\mathbb{R}^n)$ et $T \in D'(\mathbb{R}^n)$ alors $\forall \alpha \in \mathbb{N}^n$,

$$\partial^{\alpha}(f.T) = \sum_{\beta+\gamma=\alpha} C_{\alpha}^{\beta} \partial^{\beta} f. \partial^{\gamma} T.$$

Définition et remarques

Définition

Soit $(T_k)_{k\in\mathbb{N}}$ une suite dans $D'(\mathbb{R}^n)$.

On dit que $(T_k)_k$ converge vers $T \in D'(\mathbb{R}^n)$ si

$$\lim_{k \to +\infty} \langle T_k, \varphi \rangle = \langle T, \varphi \rangle, \ \forall \varphi \in D(\mathbb{R}^n).$$

Remarques

Soit $(T_k)_k$ une suite d'éléments de $D'(\mathbb{R}^n)$. On suppose que $T_k \longrightarrow 0$.

Alors

- $\partial^{\alpha} T_k \longrightarrow 0$.
- $\forall f \in C^{\infty}$, $f.T_k \longrightarrow 0$.

Théorème

Soit $T \in D'(\mathbb{R}^n)$ alors T est constante si et seulement si

 $\frac{\partial T}{dx_i}$, $\forall j \in \{1, ..., n\}$

Support d'une distribution

Définition

Soit $T \in D'(\mathbb{R}^n)$. On appelle ouvert de nullité de T tout ouvert U de \mathbb{R}^n tel que $\prec T, \varphi \succ = 0$, $\forall \varphi \in D_U(\mathbb{R}^n)$. $D_U(\mathbb{R}^n) = \{ \varphi \in D(\mathbb{R}^n) / Supp(\varphi) \subset U \}$.

On écrit T/U = 0.

Exemples

- \mathbb{R}^* est un ouvert de nullité de δ_0 . En effet, si $\varphi \in D(\mathbb{R})$ tel que $Supp(\varphi) \subset \mathbb{R}^*$ alors on a $\prec \delta, \varphi \succ = \varphi(0) = 0$.
- \mathbb{R}^- est un ouvert de nullité de T_H .

Proposition

Soit $T \in D'(\mathbb{R}^n)$. La réunion de tous les ouverts de nullité de T est encore ouvert de nullité de T.

Définition, remarques et exemples

Définition

Soit $T \in D'(\mathbb{R}^n)$. On appelle support de T le complémentaire du plus grand ouvert de nullité. On note Supp(T).

Remarques

- Supp(T) est un fermé dans \mathbb{R}^n .
- Si $T \in D'(\mathbb{R}^n)$, $\varphi \in D(\mathbb{R}^n)$ tel que $Supp(T) \cap Supp(\varphi) = \emptyset$ alors $\prec T, \varphi \succ = 0$.

Exemples

- $Supp(T) = \emptyset \iff T = 0$.
- Soit $a \in \mathbb{R}$, $Supp(\delta_a) = \{a\}$.
- $\forall \alpha \in \mathbb{N}^n$, $Supp(\partial^{\alpha} \delta_a) = \{a\}$.

Proposition

Proposition

Soit f localement intégrable alors

$$Supp(T_f) = Supp(f).$$

En particulier si f est de classe C^{∞} , alors

$$Supp(T_f) = Supp(f).$$

Remarque

Si $T = \delta$ et f(x) = x alors $x.\delta = 0$ donc $Supp(x.\delta) = \emptyset$ or $Supp(f) \cap Supp(T) = \{0\} \square \emptyset$

Les distributions à supports compacts

- On note $\xi(\mathbb{R}^n) = C^{\infty}(\mathbb{R}^n)$.
- Cet espace peut être muni d'une distance qui en fait un espace métrique complet.
- La convergence dans cette espace pour cette métrique est définie par la manière suivante:

```
Une suite (\varphi_k)_k converge vers \varphi dans \xi(\mathbb{R}^n) si et ssi: \forall K \sqsubset \mathbb{R}^n compact, et \forall \alpha \in \mathbb{N}^n, on a: \sup_{x \in K} \mid D^{\alpha} \varphi_k(x) - D^{\alpha} \varphi(x) \mid \longrightarrow 0, \text{ qd } k \longrightarrow +\infty
```

Remarque

• $D(\mathbb{R}^n)$ est dense dans $\xi(\mathbb{R}^n)$.

Proposition

L'ensemble des distributions sur \mathbb{R}^n à support compact est un sous-espace vectoriel de $D'(\mathbb{R}^n)$.

Proposition

Soit T une distribution à support compact, soit $\Gamma \in D(\mathbb{R}^n)$ tel que $\gamma(x)=1$ au voisinage de Supp(T), alors $\gamma.T=T$.

Dual topologique

Définition

On notera $\xi'(\mathbb{R}^n)$ le dual topologique de $\xi(\mathbb{R}^n)$.

théorème

Toute distribution $T \in D'(\mathbb{R}^n)$ à support compact se prolonge de façon unique en un élément $\tilde{T} \in \xi'(\mathbb{R}^n)$ tel que:

$$\prec \tilde{T}, \varphi \succ = \prec T, \gamma \varphi \succ, \forall \varphi \in \xi(\mathbb{R}^n)$$

et tout $\gamma \in D(\mathbb{R}^n)$ avec $\gamma = 1$ dans un voisinage de Supp(T).

Proposition

 $\xi'(\mathbb{R}^n)$ est dense dans $D'(\mathbb{R}^n)$. i.e. toute distribution $T \in D'(\mathbb{R}^n)$ est limite dans $D'(\mathbb{R}^n)$ d'une suite $(T_k)_k$ de distribution à supports compacts.

Merci pour votre attention