3.3]

132

At least
$$(1-\frac{1}{k^2})$$
 of the observation fall within k standard deviations of the mean.

a) $k=2$ $1-\frac{1}{k^2}=1-\frac{1}{3^2}=0.75$
 $\overline{X}\pm 25 \rightarrow 85 \pm 2(16.1) = 85-2(16.1) \times = 85$
 52.7 to 117.2 and $85 \pm 2(16.1) = 85$
 52.7 to 117.2 and $85 \pm 2(16.1) = 85$
 52.7 to 117.2 and $85 \pm 2(16.1) = 85$
 52.7 to 117.2 and $85 \pm 2(16.1) = 85$
 75.7 to 133.3
 75.7 to 133.3
 75.7 are with 75.7 to 135.3
 75.7 to 135.3

12.86 to 23,42 mm

3.41 #171 66, 88), 96, 116, 147, 147 154, 154, 175.

soft: 57, 66, 88), 96, 116, 147, 147 154, 154, 175.

a) Quartile:
$$n=0 \rightarrow \frac{1}{2} = \frac{1}{2} = 5.5$$

Median $/02$: $116+147 = 131.5$

Q1: $n=5 \rightarrow \frac{1}{2} = 3$

Q3 = 154

b) $IQR = Q3 - Q1 = 154 - 88 = 66$
 56% of data fall 510 Q1 and Q3

 IQR is another measure of variability.

c) five number summary min - Q1 - Q3 - max

 57 , 88, 131.5, 154, 175

d) Outliers: upper and low limits

 1000 : $Q1 - 1.5$ $IQR = 88 - 1.5(60) = -11$
 1000 : $Q3 + 1.5$ $IQR = 154 + 1.5(60) = 253$

No potential outliers!

e) Baxplet

left skewd

left skewd

 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 100

adjacent pts: 57 and 175

3.225 (3.5)

Copperhead and tiger

Mt = 743,65g

Mc = 812.07g For 0 = 330.24g

ot = 336.369

Z = x-m

Two snake with beight 850g

 $Z_c = \frac{850 - 812.07}{330.24} = 0.115$

 $Z_{t} = \frac{850 - 743.65}{336.36} = 0.316$

The tiger snake is the larger for its species.