# Warnings....

- Format Warning:
- Today's slides are borrowed from CSE473 ed to this itclass sei google slidhttps://eduassistpro.github.io/
  - Coverage Warning/eChat edu\_assist\_pro
    - Included are some det e have not covered the background material for so we will gloss over some areas.

# CSE 523S: Systems Security Assignment Project Exam Help

Co https://eduassistpro.github.io/
Systemsat edu\_assist\_pro

Spring 2018
Jon Shidal
(slides borrowed from CSE473)

# Plan for Today

- Questions
- Assignment Project Exam Help
- System Desi
- erable? [x] Why are ohttps://eduassistpro.github.io/

  - Working with packets -- Next class
  - Network security revisited

# Assignment

- For Monday
  - HW2 Due
  - Readings
    - HTAOEASignant@5-P23ject Exam Help
- For Wednesday
  - https://eduassistpro.github.io/ Readings
- HTAOE: Ch. 3 115-132
  For Monday (2/19) dd WeChat edu\_assist\_pro
  - The following sections of Metasploit Unleashed
    - Introduction, Metasploit Fundamentals, Information Gathering, Vulnerability Scanning, Exploit Development

# Principles of Network Security/ Internet Attacks and Defenses

- Basic principlessignment Project Exam Help
- Symmetric encry
- Public-key encry <a href="https://eduassistpro.github.io/">https://eduassistpro.github.io/</a>
- Signatures, authentication mesedu assisityoro
- Denial-of-Service & Distributed ervice

John DeHart

Based on material from Jon Turner, Roch Guerin and Kurose & Ross

#### Four Elements of Network Security

#### Confidentiality

- » only sender, in soignmente Project Texamst Helpmessage
- » sender encrypts m
- https://eduassistpro.github.io/ Authentication

  - sender, receiver want to confirm id other
     Use of "certification of authenticity" edu\_assist\_sterentity
- Message integrity
  - » sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
- Access and availability
  - » services must be accessible and available to users

#### A Traditional Model of Security



- Alice & Bob want to communicate "securely"
- Trudy (intruder) may intercept, delete, add, and modify messages

## The Language of Cryptography



m plaintext message  $K_A(m)$  ciphertext, encrypted with key  $K_A$   $m = K_B(K_A(m))$  Note that  $K_A$  and  $K_B$  need not be identical *i.e.*, symmetric vs. asymmetric encryption

## Simple Encryption Scheme

- Substitution cipher
  - » substituting one thing for another
  - » Mono-alphabetic sigher emptitute on Eletter for apother

```
plaintext: abcd https://eduassistpro.github.io/
```

```
ciphertext: mnbvcxzasdfghjklp Add WeChat edu_assist_pro
```

```
plaintext: bob. i love you. alice
```

ciphertext: nkn. s gktc wky. mgsbc



Encryption key: mapping from set of 26 letters to set of 26 letters (26! Possible mappings to choose from)

#### Breaking an Encryption Scheme

- Cipher-text only attack
  - » Trudy just has ciphertext she can analyze
  - \* two approaches:
     \* brute force: search through all keys

    - statistical conalysin letter //eduassistpro.github.io/
- Known-plaintext a
  - » Trudy has at least same projected edu\_assistopiphertext » e.g., in mono-alphabetic cipher, Tru s pairings for
  - a,l,i,c,e,b,o,
- Chosen-plaintext attack
  - » Trudy can get ciphertext for chosen plaintext
- Ideally, an encryption scheme should be resistant to even a chosen-plaintext attack

## Block Cipher Encryption – (1)

- Transposition block cipher
  - » Changing the order of the input
  - » a.k.a. a scrambler. Assignment Project Exam Help

3-bit

https://eduassistpro.github.io/

3-bit transposed

input: 01Add WeChat edu\_assist\_pro

ciphertext: 110 101 010 100 000

Encryption key: permutation of k-bit blocks (k!=6 distinct permutations

for k=3, i.e., key of size  $\lceil \log_2 k! \rceil$  or  $\lceil \log_2 3! \rceil = 3$  bits)

Why 3 bits? What do we use the 3 bits to identify?

# Block Cipher Encryption – (2)

- Substitution block cipher
  - » Maps a k-bit block to another uniquely distinct k-bit block

  - \* k-bit block input is one out of 2<sup>k</sup> possible input Assignment Project Exam Help
     \* Substitution applies permutation to all possible 2<sup>k</sup> inputs



ciphertext: 111 001 011 100 101

Encryption key: permutation among  $2^3=8$  3-bit blocks (8!=40,320)

or distinct permutations, *i.e.*, key of size  $\lceil \log_2 8! \rceil = 16$  bits Why 16 bits? What do we use the 16 bits for?

# Symmetric Key Cryptography



- Symmetric key crypt
  - » Bob and Alice share same some edu\_assist\_pro
  - » e.g., key might be knowing the su tern in mono alphabetic substitution cipher
- Main issue: how do Bob and Alice agree on key value?
  - » need a separate, secure channel (to exchange key)
  - » governments can use couriers, but that's not a practical solution for individuals over the Internet

# **Block Ciphers**

- DES (Data Encryption Standard) is an example of a *block cipher*
- » encrypts fixed length chunks separately (each chunk is a letter in an alphabet of
- size 2<sup>k</sup>, where k is the chunk size in bits)

  Naive implementation and be vulnerable Exam Help
- ar-text lifleaks bilodkuise encry
  - repeated cipher-text <a href="https://eduassistpro.github.io/">https://eduassistpro.github.io/</a> » statistics of repeated blocks can aid atta
  - Cipher Block Chaining (Actor) Wsed hat edu\_assist\_pro
  - » makes identical clear-text blocks look di ncrypted
    - before encryption • start with random *Initialization Vector* (IV) and xor this with first block before encrypting (IV sent to receiver, but need not be secret)

» example: each clear-text block m is xor-ed with a different "random" value

• before encrypting each subsequent block, xor it with the ciphertext of the previous block

### General Cipher Block Chaining

Repeat across independent blocks



Any other cipher block encryption can be used in lieu of DES

#### Data Encryption Standard (DES)

- Block cipher with cipher block chaining
  - » 56-bit symmetric key, 64-bit plaintext input
- How secure is it?
  - » DES Challenge A56s pit rement Presentated potential (brute force) in less than a day in January 1999

  - » no known good anal
     » Has been withdrawn
     https://eduassistpro.github.io/
- More secure variant
  - » 3DES: encrypt 3 times with 3 different edu\_assist\_pro
  - » Advanced Encryption Standard (AES)
    - replaced DES in 2001
    - processes data in 128 bit blocks
    - 128, 192, or 256 bit keys
    - a computer that could break DES in one second (by brute force) would need 149 trillion years to break AES

#### DES Cipher

DES operation (encryption by obfuscation)

Assignment Project Exam Help encrypt 64 bit chunks

- initial permutatio https://eduassistpro.github.io/
- 16 identical "roun function application application we chat edu\_assist\_pro using different 48 bits of key
  - = F(56 bit key)
- final permutation

## Public Key Cryptography

- The problem with symmetric keys
  - » They require sender & receiver to know a shared secret key
- » ok for governments perhaps, but no good for public internet

  Public key cryptographygnment Project Exam Help
  - » radically different ap
- to combutte, about idea of "https://eduassistpro.github.io/ computationally diffic
  - Juses two keys
     Public key known to all (used to encr » uses two keys

    - private key known only to message recipient (used to decrypt)
  - » since no common shared key, allows communication with strangers over insecure network
  - » drawback: computationally expensive for large messages
    - in practice, used to encrypt and share symmetric keys

## Public Key Cryptography



## One-Way Functions

- Function that is easy to compute, hard to invert
  - » example: easy to multiply two large prime numbers, but hard to find prime factors of a large composite number
    - no known mensel graments Parting to Etx atmar Healpand error
    - a 300 digit numbe tors 150
- Key idea leading to prachttps://eduassistpro.github.io/
  while adding to prachttps://eduassistpro.github.io/

publie, womilpulteepprioduct of t

- RSA method based on this idea
  - » named for its inventors **R**ivest, **S**hamir and **A**delman
- Alternate one-way functions have been proposed
  - » based on variety of hard (NP-complete) computational problems

#### Background: Modulo Arithmetic

- $\mathbf{x} \mod n = \text{remainder of } x \text{ when divided by } n$
- Basic properties  $[(a \mod n) + (b \mod n)] \mod n = (a+b) \mod n$   $[(a \mod n) (Assign)] \mod PrejectbExamHelp$   $[(a \mod n) * (b \mod n)$
- Consequently,  $(a \mod n)^d \mod n = a^d$  https://eduassistpro.github.io/

```
= [(a mada)/wedchat(edu_assistoppomod n
```

Example: a=14, n=10, d=3:  $(a \mod n)^d \mod n = (14 \mod 10)^3 \mod 10$   $= 4^3 \mod 10$  $= 64 \mod 10 = 4$ 

$$a^d = 14^3 = 2744$$
  $a^d \mod 10 = 4$ 

## Creating an RSA Key Pair

- Choose two large prime numbers p, q (say, 1024 bits long) and compute n=pq
- 2. Choose a number e < (p-1)(q-1) with no common factor > 1 with (p-1)(q-1), i.e., e

  - and (p-1)(q-1) are **relatively prime**
- 3. Choose a number Assisting mane of iProjector Extagn-Holp) equivalently, d = (k itive integer)
- Public key  $K_{+}=(n,e)$ , pri https://eduassistpro.github.io/  ${f s}$ losm A) ${f d}$ vertise  $K_{oldsymbol{\perp}}$  but keep  $K_{oldsymbol{\perp}}$ p and q (if p and qare known, e and d can be easilwing that edu\_assist\_pro
  - Example with small numbers:

$$p=5, q=7, n=35, (p-1)(q-1)=24, e=5, d=29$$

$$(d = (6*4*6+1)/5 = 29 \text{ for } k=6, p-1=4, q-1=6, e=5)$$

Dependent on having an efficient way to generate large prime numbers and efficient ways to select e and d

#### RSA Encryption/Decryption

Sending encrypted message to owner of  $(K_{\perp} K_{\perp})$ 

- Given (n,e), (n,d) as discussed, and message m < n
- » m MUST be less than nament Project Exam Help Encrypt by computing  $K_{+}(m) = c = m^{e} \mod n$
- Decrypt by computing K d to know decrypt a message)
  https://eduassistpro.github.io/ d to successfully
- This works because

```
c^{d} \mod n = (m^{e} \mod n)^{d} \text{WeChat edu\_assist\_pro}
= m^{ed} \mod n
          = m^{ed \mod (p-1)(q-1)} \mod n *
          = m^1 \mod n = m^{**}
```

\* by the magic of number theory (details on next slide) \*\* since ed mod (p-1)(q-1) = 1 by construction of d and m < n From **number theory**, p & q prime with n = pq implies

ab mod Assignment Ptoject Frank Help

So that https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

Since  $ed=1 \mod (p-1)(q-1)$ by construction of d

#### Simple RSA Example

- 1. Pick p=7, q=11 prime
  - = pq = 77, z = (p-1)(q-1) = 60
- 2. Choose Encryption key e < z such that e & z are relatively prime:

  \*\* e = 17 Assignment Project Exam Help
- 3. pick Decryption key  $d = 53 (53 \times 17)$  https://eduassistpro.github.io/
- 4. Pub. Key: (n,e)=(77,17); Priv. Key: Add WeChat edu\_assist\_pro
  - Assume message value of m = 9encode it as  $c = 9^{17} \text{ [mod 77]} = 4$ , decode this as  $4^{53} \text{ [mod 77]} = 9$

Note: If too big, compute  $x^y \mod v$  progressively, i.e.,  $(x \mod v)^y \mod v$ 

### Simple RSA Example

```
encode it as c = 9^{17} [\text{mod } 77] = 4,
        decode this as 4^{53} [mod 77] = 9
Note: If too big, compute x^y \mod v progressively i.e., (x \mod v)^y \mod v progressively Exam Help
c = 9^{17} [\text{mod } 77] = ((9^2)^{17})
                     = ((81 https://eduassistpro.github.io/
                     = ((4 \mod 77)^8 * 9) \mod
                     = ((256 Anotal 7 We (2 treatmedu_assiste_pro
                     = (25 * 25 * 9) \mod 77
                     = ((125 \mod 77) * (5 * 9 \mod 77)) \mod 77
                     = (48 * 5 * 9) \mod 77
                     = ((240 \mod 77) * (9 \mod 77)) \mod 77
                     = (9 * 9) \mod 77
                     = 4
```

#### Simple RSA Example

```
encode it as c = 9^{17} [\text{mod } 77] = 4,
       decode this as 4^{53} [mod 77] = 9
Note: If too big Assimptont Project Exagne Brilely,
        i.e., (x mod
c = 9^{17} \text{ [mod } 777]7 = ((9^2 \text{ https://eduassistpro.github.io/})
                  = ((81 \mod 77)^8 * 9) \text{ m}
                  = ((4 nAcdd > We Chatedu_assist_pro
                  = ((4^6 \mod 77) * (4^2 * 9 \mod 77)) \mod 77
                  = ((4096 \mod 77) * (16 * 9 \mod 77)) \mod 77
                  = (15 * 16 * 9) \mod 77
                  = (3 * 80 * 9) \mod 77
                  = (3 * 3 * 9) \mod 77
                  = 4
```

#### More About RSA Operation

- To break RSA, need to find d, given e and n
  - » this can be done if we know (p-1)(q-1), but that requires knowing p and q
  - and q
     Assignment Project Exam Help
     and that requires being able to factor n, which is hard
- Session keys https://eduassistpro.github.io/ large exposentiation req
  - because multiplication time grow edu\_assist pronumber of bits in practice, use RSA to exchange "s for use with symmetric
    - » in practice, use RSA to exchange "s encryption method like AES
- Keys can also be "reversed" useful for authentication (coming next...)
  - $\gg$  Sign with  $K_{\perp}$  (private) and verify signature with  $K_{\perp}$  (public)

$$K_{-}(K_{+}(m)) = m^{ed} \mod n = m = m^{de} \mod n = K_{+}(K_{-}(m))$$

#### Elements of Network Security

- Confidentiality
  - » only sender, intended receiver should "understand" message
  - » sender encrypts spiesnagente Perojecte Expan Help
- Authentication
- other sender, receiver w https://eduassistpro.github.io/
  - Use of "certification of authenticity" sted entity
     Message integrity Add WeChat edu\_assist\_pro
  - - » sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
  - Access and availability
    - » services must be accessible and available to users

#### Digital Signatures

- Authentication
- Digital signatures allow user to "sign" a document in a way that can't be forged Ssignment Project Exam Help

docurtheintensures that u

- g. A can sign a mess https://eduassistpro.github4is/private key

  - message can then be "decrypted" u ic key
     so long as no one bath have chat edu\_assist\_key, the message must have come from A
  - A can also encrypt message using B's public key to provide privacy
    - $> K_{+B}(K_{-A}(m)) = c = > K_{+A}(K_{-B}(c)) = m$
    - » Only B can decrypt it and B can confirm it came from A.

#### Certificate Authorities

- Public-key systems require a secure way of making public keys available
- » can't simply start by exchanging public keys in the clear, as this allows a "man-in-the-middle" attack
- intruder, sithingianmentalamiectalismustlikepts own public key, 's public **kæy**sing A to enc
- encryptousitinguder can the https://eduassistpro.github.io/ key, so B can't
  - Certificate Authority (ﷺ owto best fort edu\_assist petoween a user and their public key
    - » CA provides Bob with signed certificate of Bob's identity
      - CA encrypts Bob's identifier and public key using CA's private key
    - » so, Alice decrypts certificate using CA's public key
      - public keys for "reputable" CAs "built in" to browsers
    - » security depends on trustworthiness/reliability of CAs

B's public

#### Elements of Network Security

- Confidentiality
  - only sender, intended receiver should "understand" message
     sender encrypts message, receiver decrypts
- Authentication https://eduassistpro.github.io/ other sender, receiver w
  - » Use of "certification of the the tigity" edu\_assisted entity
  - Message integrity
    - » sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
  - Access and availability
    - » services must be accessible and available to users

## Verifying Message **Integrity**

- How do we prevent an intruder from tampering with messages?
  - » can encrypt and sign messages, but is this necessary?
- Use a hash function has produce message places
  - » sender computes h
    - s is a shared se https://eduassistpro.github.io/lio/lio/code
  - » receivednyplutes

  - » received requires hash function that the contract that the contr functions"
- Can also use this to reduce effort for digital signatures
  - » sender encrypts h(m) and sends pair  $(m, K_{-}(h(m)))$
  - » receiver computes h(m) and compares it to received value, after decrypting it using sender's public key

#### Elements of Network Security

- Confidentiality
  - » only sender, intended receiver should "understand" message
  - » sender encrypts spiestagente Perojecte Expan Help
- Authentication
- other sender, receiver w https://eduassistpro.github.io/
  - Use of "certification of authenticity" sted entity
     Message integrity Add WeChat edu\_assist\_pro
  - - » sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
  - Access and availability
    - » services must be accessible and available to users

#### Traffic Attacks & Defenses Overview

- **Access and Availability**
- Traffic attacks: The goal is to overwhelm the target's resources at either the network or host/application level
  - » Network attacks
    - DNS amplification attack of reprine attack of the target? the target)

rate lots of transfired wild thou flooding: If

resorting to address spo https://eduassistpro.github.io/

» Application attacks

TCP SYN attack: Seeks to exhaust server state re

g lots of fake connections

- HTTP GET flood: Same concept by with Chiffat edu\_assist pro
   TCP "shrew" attacks: takes advantage of TCP's o on later slide)
- Defenses: Aimed at detecting, redirecting, and preventing attacking packets from reaching their target (or the target's network)
  - Address filtering: Primarily aimed at countering address spoofing
  - Unicast Reverse Path Filtering (uRPF): Discards traffic arriving from incorrect or invalid interface (only works when routing is symmetric)
  - Black holes and sink holes: Used to attract unwanted traffic (backscatter) or redirect traffic for attack target

#### First Some Definitions

- Bogon prefix
  - » route that should never appear in an internet routing table.
    - Private, reseasi, analonte Project Exam Help
  - » Often used by atta
- tains>bb/gkdA (istaternet Asshttps://eduassistpro.github.io/
  - » IPv4 bogon list is shrinking as addr sed up
  - Internet Background do Welfing edu\_assist\_pro
    - » Packets addressed to addresses or ports where there is no network device to receive them.
  - Backscatter
    - » IBN resulting from DDoS attack using spoofed addresses

#### Network Ingress Filtering

- Defeating Denial of Service Attacks which employ IP Source Address Spoofing – BCP 38 (RFC 2827)

  » BCP: Internet Best Europe Exam Help
- ichaddears waadeasinvol https://eduassistpro.github.io/ valid addresses
  - » The latter can translate into a "dou edu\_assist," the spoofed source may now be filtered by the domain may swamp the unwitting source, e.g., as with a DNS amplification attack
  - Filter traffic entering router from a known domain to ensure that source address is from that domain.

#### Black-Hole Router

- Helps identify attacks when they start, including on the network infrastructure Assignment Project Exam Help
- Also called Networ
- » Targets the dark/u https://eduassistpro.github.io/
- Advertise reachability to prefix in edu\_assist\_pro
   Inferring DDoS attacks from bac
- - » Assumes that attackers use randomly selected spoofed addresses, with "responses" from victims sent back to those random source addresses
  - » Extrapolates frequency, magnitude, and types of attacks from backscatter responses sent to address located in a "quiet" /8 network (1/256<sup>th</sup> of the Internet address space)

#### Sink Holes

- The network equivalent of a honey pot: One or more dedicated network/router that seeks to attract or divert attack traffic and support its analysis
  - » A double monitoring in the enterprise Project Exam Help
  - » Advertise host route for server under attack
  - Diverts all attack t » Advertise default rou https://eduassistpro.github.io/
     Advertise default rou https://eduassistpro.github.io/
    - Pulls in all internal (and external) "ju ., to bogon address space er uses Add WeChat edu\_assist\_pro
- Other uses
  - » Monitoring scanning of infrastructure addresses (pre-attack)
    - By advertising default route of routed for bogon IPs
  - » Monitoring activity on dark space (worms for locally infected clients)
  - » Capture backscatter, i.e., responses (from attack victims) to bogon address space and addresses spoofed by attackers

#### **DNS Attacks**

- Redirecting traffic to an attacker by hijacking DNS replies
  - » Faking a response to a query requires only spoofing a source address and guessing ansing the specific property and guessing and guess
- easy tthimpogetteet with ng the valuessistpro.github.io/
  - reply to a high value will ensure tha eep the fake answer for a long time) Add WeChat edu\_assist\_pro
    - » The scope of cache poisoning can range from a single client to a slave primary server handling an entire zone (the attack then targets the zone transfer messages)
    - » DNSSEC (RFCs 4033, 4035) adds one-way authentication to DNS responses, *i.e.*, provides data integrity and origin authentication

### DNS Attacks (continued)

- DNS Amplification Attack
  - » Attacker issues DNS request with source address spoofed to target machine
    Assignment Project Exam Help
- NY". Request asks fo es that Accomplification tisda f https://eduassistpro.github.io/

to the host under attack, and the si edu\_assist pro DNS records that can be used durin edu\_assist pro significantly augment the size of the DNS replies)

- DNSSEC does not prevent DNS amplification attacks
  - » They only require spoofing the source address of DNS queries, but depend on access to open DNS servers

# Application Layer attacks: Low-Rate TCP-Targeted

- Most servers now have mechanisms to defend against TCP SYN attacks, so attackers need to be a bit more creative
- Rather than blast Astrigument Parsiet, Example of TCP's behavior ow total ount effective atta
- of paradiets on sending prophttps://eduassistpro.github.io/ s for RTPacket bursts induce mu • RTO: Retransmission TimeQut WeChat edu\_assist\_pro
  - time-outs
  - Effective even in the presence of flows with heterogeneous RTO and RTT values
    - » Select appropriate intermediate RTO value
    - » Can actually force the time-out synchronization of heterogeneous flows
  - Neither router based schemes (RED-PD) nor end-host based schemes (RTO randomization) are able to successfully detect or diffuse the attacks

#### Assignment Project Exam Help

The End.

https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro