QCI

Day 3: Intro to Quantum Mechanics and Quantum Computing

Intro to QM

Is light a wave or a particle?

Is light a wave or a particle?

Interference patterns

Is light a wave or a particle?

Interference patterns

Send one photon in at a time

Wave Equation

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$

Quantum States

The Number Line Analogy

The Number Line Analogy

Infinite possible positions spaced distance dx apart

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Superposition

$$|\psi\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix}$$

Observer Effect

Observing a system changes its state

Observer Effect

Observing a system changes its state

Causes a superposition to collapse

Observer Effect

Observing a system changes its state

Causes a superposition to collapse

We cannot see a quantum state in superposition

Probabilities

$$|\psi\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix}$$

$$p(|x\rangle) = |\langle x|\psi\rangle|^2$$

$$p(|\psi\rangle) = 1$$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$\therefore \sqrt{|\alpha|^2 + |\beta|^2} = 1$$

$$|\alpha|^2 + |\beta|^2 = 1$$

$$|\alpha|^2 + |\beta|^2 = 1$$

$$|\psi\rangle = \cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$$

$$|\alpha|^2 + |\beta|^2 = 1$$

$$|\psi\rangle = \cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$$

$$\phi \text{ is the phase}$$

Comes from the wave-like nature of quantum

Comes from the wave-like nature of quantum

Does not affect probabilities

Comes from the wave-like nature of quantum

Does not affect probabilities

Can be used to cancel things out

Bloch Sphere and Phase

Phase on y-axis

Bloch Sphere and Phase

Phase on y-axis

Probabilities depend only on heta

Qiskit Exercise

Multi-Qubit States

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Entangled States

 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

Entangled States

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Cannot be factored!

Intro to Dynamics

Reversible Operations

Given a function and an output, you can find the input

Reversible Operations

Given a function and an output, you can find the input

Quantum operators are their own inverses

Questions

Is f(x) = 3x reversible? How about $f(x) = x^2$?

Questions

 $Is f(x) = 3x \text{ reversible? How about} f(x) = x^2?$

Which of our single-bit operations are reversible?

Questions

 $Is f(x) = 3x \text{ reversible? How about} f(x) = x^2?$

Which of our single-bit operations are reversible?

Is negation a valid quantum operator?

Quick Math!

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} |0\rangle$$

Quick Math!

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} |0\rangle$$
$$= |1\rangle$$

Quantum Computing: An Overview

Obeys quantum principles

Obeys quantum principles

Special quantum logic gates

Obeys quantum principles

Special quantum logic gates

Represented by superconducting chips

Obeys quantum principles

Special quantum logic gates

Represented by superconducting chips

Manipulated by microwave pulses

The Quantum Computer

Why Quantum?

Superposition

Why Quantum?

Superposition

Entanglement

Applications of QC Simulations

Applications of QC

Simulations

Computer security

Applications of QC

Simulations

Computer security

Computer science

References

- Yanofsky, Mannucci. Quantum Computing for Computer Scientists
- Wikipedia. Schrodinger Equation
- Qiskit Textbook. Representing Qubit States
- Quantum Computing for Computer Scientists.
 Youtube
- Towards Data Science. The Qubit Phase