

184.754 Seminar on Algorithms

Paper: Coloring the Vertices of 9-pt and 27-pt Stencils with Intervals

Camilo Tello Fachin December 5, 2023

Introduction

Interval Vertex Coloring (IVC)

Vertex Color Problem

Interval Vertex Coloring Problem

Simple Paragraphs

Special Case Analysis

Definitions

Heuristics

Application and Experiments

Footnotes

References

Block

This is a block.

Example

This is an example block.

Attention

This is an alert block.

• Given G(V,E)

- Given G(V,E)
- Find a vertex coloring s.t. colors on adjacent vertices differ

- Given G(V,E)
- Find a vertex coloring s.t. colors on adjacent vertices differ

Formal Definition of VCP given G(V,E)

find f(v):

 $\forall v \in V : \forall w \text{ in } \Gamma(v) : f(v) \neq f(w).$

- Given G(V,E)
- Find a vertex coloring s.t. colors on adjacent vertices differ

Formal Definition of VCP given G(V,E)

find f(v):

 $\forall v \in V : \forall w \text{ in } \Gamma(v) : f(v) \neq f(w).$

• Let G(V,E) be an undirected graph and $w:V\mapsto \mathbb{Z}^+$ the weights.

- Let G(V,E) be an undirected graph and $w: V \mapsto \mathbb{Z}^+$ the weights.
- A interval coloring of the vertices of G is a function start : $V \mapsto \mathbb{Z}^+$

G(V,E)

- Let G(V,E) be an undirected graph and $w: V \mapsto \mathbb{Z}^+$ the weights.
- A interval coloring of the vertices of G is a function start : $V \mapsto \mathbb{Z}^+$
- Vertex v is colored with open interval: [start(v), start(v) + w(v))

- Let G(V,E) be an undirected graph and $w: V \mapsto \mathbb{Z}^+$ the weights.
- A interval coloring of the vertices of G is a function start : $V \mapsto \mathbb{Z}^+$
- Vertex v is colored with open interval: [start(v), start(v) + w(v))
- Neighboring Vertices must have disjoint color intervals: $\forall (a, b) \in E$: [start(a), start(a) + w(a)) \cap [start(b), start(b) + w(b)) = \emptyset .

Formal IVC Problem Definition

• A interval coloring of the vertices of G is a function start : $V \mapsto \mathbb{Z}^+$

- A interval coloring of the vertices of G is a function start : $V \mapsto \mathbb{Z}^+$
- A particular coloring "start" of the vertices of G is said to use:

$$\max color = \max_{v \in V} start(v) + w(v) \quad colors.$$

Formal IVC Problem Definition

Interval Colored G(V,E) with maxcolor = 25

- A interval coloring of the vertices of G is a function start : $V \mapsto \mathbb{Z}^+$
- A particular coloring "start" of the vertices of G is said to use:

$$\mathsf{maxcolor} = \max_{v \in V} \mathsf{start}(v) + w(v) \quad \mathsf{colors}.$$

Formal IVC Problem Definition

Interval Colored G(V,E) with maxcolor = 25

- A interval coloring of the vertices of G is a function start : $V \mapsto \mathbb{Z}^+$
- A particular coloring "start" of the vertices of G is said to use:

$$\max \operatorname{color} = \max_{v \in V} \operatorname{start}(v) + w(v) \quad \operatorname{colors}.$$

Optimization Problem Instance:

Find a coloring start : $V \mapsto \mathbb{Z}^+$ that minimizes maxcolor.

 A maxcolor that is indeed minimal, is denoted with maxcolor*.

Title first category

Title second category

Lets see if the citation works in this part [1]. The second paper I use should appear in the bibliograph now [2] and the third one as well [3].

You can cite **Tan11**. Urls look like this: http://www.google.com/.

Its an empty frame to keep latex from compiling the movie!

hi there

hi there!

You can also place footnotes, e.g., here 1 and here 2 .

¹This is a footnote.

²This is a longer footnote going over two lines. So I've added some more blah blah. Lorem ipsum whatever.

D. Durrman and E. Saule, "Coloring the vertices of 9-pt and 27-pt stencils with intervals," in 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2022, pp. 963–973. DOI: 10.1109/IPDPS53621.2022.00098.

A. Hohl, E. Delmelle, W. Tang, and I. Casas, "Accelerating the discovery of space-time patterns of infectious diseases using parallel computing," Spatial and Spatio-temporal Epidemiology, vol. 19, pp. 10–20, 2016, ISSN: 1877-5845, DOI: https://doi.org/10.1016/j.sste.2016.05.002. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S187758451530040X.

E. Saule, D. Panchananam, A. Hohl, W. Tang, and E. M. Delmelle, "Parallel space-time kernel density estimation," 2017 46th International Conference on Parallel Processing (ICPP), pp. 483–492, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:6645797.