Sprawozdanie 1

Jan Bronicki Nr indeksu: 249011

U(V)	u(U)[V]	I[mA]	u(I)[mA]	$R[\Omega]$	$u_c(R)[\Omega]$	$\bar{R}[\Omega]$	$u(\bar{R})[\Omega]$	$R_w[\Omega]$	$u_c(R_w)[\Omega]$
3.29	0.02	18.7	0.2	175.94	± 2.08	175	±3.12		
4.78	0.02	27.8	0.3	171.94	± 1.71				
6.35	0.02	36.1	0.3	175.90	± 1.61				
7.89	0.03	44.9	0.4	175.72	± 1.59				
9.50	0.03	54.2	0.4	175.28	± 1.50				
12.44	0.04	71.0	0.6	175.21	± 1.47				

Przykładowe obliczenia:

$$\begin{split} \Delta u(U) &= 0.5\% \cdot rdg + 1 \cdot dgt = \frac{0.5}{100} \cdot 3.29 + 0.01 = 0.0264 \approx 0.03 \\ u(U) &= \frac{\Delta u(U)}{\sqrt{3}} = 0.015 \approx 0.02 \\ \Delta u(I) &= 1.2\% \cdot rdg + 1 \cdot dgt = \frac{1.2}{100} \cdot 18.7 + 0.1 = 0.3244 \\ u(I) &= \frac{\Delta u(I)}{\sqrt{3}} \approx 0.2 \\ R &= \frac{U}{I} = \frac{3.29}{0.0187} \approx 175.94\Omega \\ u_c(R) &= \sqrt{\sum_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 u^2(x_j)} = \sqrt{\frac{u^2(U)}{I^2} + \frac{U^2 \cdot u^2(I)}{I^4}} = = \sqrt{\frac{\left(\frac{0.02}{1000}\right)^2}{0.0187^2} + \frac{3.29^2 \cdot \left(\frac{0.2}{1000}\right)^2}{0.0187^4}} \approx 2.16 \\ \bar{R} &= \frac{\sum_{i=1}^n x_i}{n} = 174.9983333 \approx 175[\Omega] \\ u(\bar{R}) &= \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n(n-1)}} \approx 3.12 \end{split}$$