Results of the 'bym_exposure_only' model

Implementation of the model

```
data {
  int<lower=0> N;
  int<lower=0> N_edges;
  int<lower=1, upper=N> node1[N_edges]; // node1[i] adjacent to node2[i]
  int<lower=1, upper=N> node2[N_edges]; // and node1[i] < node2[i]</pre>
  int<lower=0> y[N];
                                 // count outcomes
 vector<lower=0>[N] E;
                                // exposure
}
transformed data {
  vector[N] log_E = log(E);
parameters {
 real beta0;
                            // intercept
 real<lower=0> tau_theta; // precision of heterogeneous effects
 real<lower=0> tau phi;
                            // precision of spatial effects
 vector[N] theta;
                     // heterogeneous effects
  vector[N - 1] phi_std_raw; // raw, standardized spatial effects
transformed parameters {
  real<lower=0> sigma_theta = inv(sqrt(tau_theta)); // convert precision to sigma
  real<lower=0> sigma_phi = inv(sqrt(tau_phi));
                                                    // convert precision to sigma
  vector[N] phi;
 phi[1:(N - 1)] = phi_std_raw;
 phi[N] = -sum(phi_std_raw);
model {
 y ~ poisson_log(log_E + beta0 + phi * sigma_phi + theta * sigma_theta);
 target += -0.5 * dot_self(phi[node1] - phi[node2]);
 beta0 \sim normal(0, 5);
 theta ~ normal(0, 1);
 tau_theta ~ gamma(3.2761, 1.81); // Carlin WinBUGS priors
  tau_phi ~ gamma(1, 1);
                                   // Carlin WinBUGS priors
}
generated quantities {
  vector[N] mu = exp(log_E + beta0 + phi * sigma_phi + theta * sigma_theta);
  vector[N] SMR = exp(beta0 + phi * sigma_phi + theta * sigma_theta);
}
```

Fitting the model to Spain's mortality data

```
library(rstan)
```

```
library(spdep)
# options(mc.cores = parallel::detectCores())
options(mc.cores = 3)
source("mungeCARdata4stan.R")
load("../../Mortalidad nacional/DatosSinTemporal.Rdata")
Veci <- nb2WB(CartoMuniSinIslas.nb)</pre>
nbs = mungeCARdata4stan(Veci$adj, Veci$num);
N = nbs$N;
node1 = nbs$node1;
node2 = nbs$node2;
N_edges = nbs$N_edges;
tcomp02 <- system.time(mod.BYM <- stan_model("bym_exposure_only.stan"))</pre>
# Compilation in 59 seconds
save(mod.BYM, file = "mod.bym_exposure_only.Rdata")
# load("bym_exposure_only.Rdata")
Ejecuta.BYM.Stan <- function(Sexo, Causa){</pre>
 y <- MorTabu[Sexo, Causa, ]
 E <- Esperados[Sexo, Causa, ]</pre>
  datos <- list(N, N_edges, node1, node2, y, E)</pre>
  param <- c("SMR", "mu", "beta0", "sigma_phi", "tau_phi", "sigma_theta", "tau_theta")</pre>
  Res.t <- system.time(Res <- sampling(object = mod.BYM, data = datos, chains = 3, iter = 4400,
                                         warmup = 400, thin = \max(1, floor(3 * (4400 - 400) / 1000)),
                                         cores = 3, pars = param))
  Res.BYM[[Sexo]][[Causa]] <<- list()</pre>
  Res.BYM[[Sexo]][[Causa]]$tiempo <<- Res.t</pre>
  Res.BYM[[Sexo]][[Causa]]$summary <<- Res</pre>
  Res.BYM[[Sexo]][[Causa]]$RR <<- summary(Res)$summary[1:7907, 1]</pre>
  Res.BYM[[Sexo]][[Causa]]$P.RR <-- apply(extract(Res, pars="SMR")$SMR, 2, function(x) {mean(x > 1)})
}
Res.BYM <- list(Hombres = list(), Mujeres = list())</pre>
for(i in c(9:18, 22, 28, 30, 31, 33, 35:37, 41)){
  Ejecuta.BYM.Stan(1, i)
  save(Res.BYM, file = "Res.bym_exposure_only.Rdata")
}
```

Descriptive principals

Cause	Time	sigma_phi	$sigma_theta$	\max . Rhat	${\rm min.n_eff}$
(9) Mouth and pharynx	9114.0	$0.3058 \ [0.2729, 0.3412]$	0.1959 [0.1782,0.2139]	1.01	440.91
(10) Esophagus	4989.3	$0.2878 \ [0.2567, 0.3205]$	$0.1885 \ [0.1727, 0.2065]$	1.01	371.81
(11) Stomach	5390.3	0.2847 [0.2617, 0.311]	$0.161 \ [0.1497, 0.1729]$	1.01	434.41
(12) Colon	6790.3	$0.2304 \ [0.208, 0.252]$	0.1575 [0.146, 0.1691]	1.01	505.98
(13) Rectum	11156.4	$0.2264 \ [0.1976, 0.2557]$	$0.1889 \ [0.1731, 0.2068]$	1.01	486.39

Cause	Time	sigma_phi	sigma_theta	max.Rhat	min.n_eff
(14) Liver	10734.0	$0.2334 \ [0.1002, 0.3273]$	$0.1668 \ [0.0996, 0.2135]$	36.68	1.51
(15) Pancreas	5548.5	0.2194 [0.1946, 0.2474]	0.1669 [0.1545, 0.1801]	1.01	343.59
(16) Other digestives	6427.1	$0.2303 \ [0.1965, 0.2654]$	0.2005 [0.1821, 0.2191]	1.02	403.09
(17) Larynx	6106.1	0.5428 [0.2774, 1.018]	0.3407 [0.1818, 0.6253]	128.35	1.50
(18) Lung	5636.5	0.3235 [0.3064, 0.341]	0.1467 [0.1378, 0.1565]	1.01	426.97
(22) Other skin	5753.4	$0.2714 \ [0.2301, 0.3186]$	$0.2301 \ [0.2046, 0.2571]$	1.01	376.17
(28) Prostate	6295.1	0.1891 [0.1701, 0.2094]	$0.1432 \ [0.1336, 0.1528]$	1.01	509.68
(30) Kidney	5818.6	0.2753 [0.2392, 0.314]	0.1994 [0.1801, 0.2207]	1.02	438.21
(31) Bladder	6126.6	$0.2749 \ [0.2497, 0.3024]$	0.1674 [0.1548, 0.181]	1.01	554.39
(33) Brain	6672.4	0.2104 [0.184, 0.2401]	0.1866 [0.1683, 0.2048]	1.01	382.78
(35) Poorly defined	5970.2	0.2222 [0.2003, 0.2444]	$0.164 \ [0.1512, 0.1757]$	1.01	386.60
(36) Other lymphatics	6060.5	0.2059 [0.1823, 0.2319]	0.1677 [0.1537, 0.1821]	1.02	485.64
(37) Leukemias	5106.0	0.2007 [0.1746, 0.2274]	0.1765 [0.1616, 0.1911]	1.01	428.56
(41) Other tumors	5087.5	$0.2805 \ [0.2468, 0.3164]$	0.1915 [0.1738, 0.2099]	1.01	490.96
Median	6060.5	0.23	0.18	1.01	428.56