Kapitel 1

Kombinatorik

1.1 Grundformeln

Seien A, B endliche Mengen.

Summenregel: $A \cap B = \emptyset \Rightarrow |A \cup B| = |A| + |B|$

Produktregel: $|A \times B| = |A||B|$

Gleichheitsregel: \exists bijektive Abbildung $f: A \rightarrow B \Rightarrow |A| = |B|$

Sei n := |A| und k := |B|.

Variationen mit Wiederholung:

Anzahl aller Abbildungen von A in $B=k^n$

Variationen ohne Wiederholung:

Anzahl aller injektiven Abbildungen von A in $B = (k)_n := k(k-1) \dots (k-n+1)$ (fallende Faktorielle)

Permutationen ohne Wiederholung:

Anzahl aller bijektiven Abbildungen von A auf A = n!

Permutationen mit Wiederholung:

Sei $i_1 + \cdots + i_k = n$. Anzahl aller Abbildungen $f: A \to \{b_1, \dots, b_k\}$, bei denen i_j Elemente von A auf b_j abgebildet werden $= \binom{n}{i_1, \dots, i_k} := \frac{n!}{i_1! \dots i_k!}$

Kombinationen ohne Wiederholung:

Anzahl aller k-elementigen Teilmengen von $A = \binom{n}{k}$

Kombinationen mit Wiederholung:

Anzahl aller Abbildungen $f:\{a_1,\ldots,a_n\}\to\mathbb{N}$ mit $f(a_1)+\cdots+f(a_n)=k=\binom{n+k-1}{k}$

Satz 1.2.4. Sei $(y_n^{(s)})$ eine spezielle Lösung der inhomogenen LRGL (1.3). $(y_n^{(a)})$ ist Lösung von (1.3) $\Leftrightarrow \exists$ Lösung $(y_n^{(H)})$ von (1.4), sodass $y_n^{(a)} = y_n^{(s)} + y_n^{(H)}$ für alle n ist, d.h., die allgemeine Lösung der inhomogenen LRGL ist Summe aus einer speziellen Lösung der inhomogenen LRGL und einer beliebigen Lösung der zugehörigen homogenen LRGL.

Ähnlich wie bei DGL kann man spezielle Lösungen mittels Variation der Konstanten bestimmen, was wir hier nicht im Einzelnen behandeln.

Außerdem kann man wie bei DGL bei speziellen rechten Seiten spezielle Lösungen durch analoge Ansätze erhalten, hier nur zwei Beispiele:

- 1. b_n ist Polynom in n. Dann Ansatz $(y_n^{(s)})$ als Polynom in n mit unbekannten Koeffizienten, die man aus Koeffizientenvergleich durch Einsetzen in (1.3) erhält.
- 2. b_n ist Potenz in n, deren Basis nicht Nullstelle des charakteristischen Polynoms ist. Dann Ansatz $(y_n^{(s)})$ als gleiche Potenz in n mit unbekanntem Faktor, den man aus Einsetzen in (1.3) erhält.

1.3 Das Prinzip von Inklusion und Exklusion

Satz 1.3.1 (Prinzip von Inklusion und Exklusion). Seien A_1, \ldots, A_n endliche Mengen. Dann gilt:

$$|A_1 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \dots + (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} |A_{i_1} \cap \dots \cap A_{i_k}| \pm \dots + (-1)^{n-1} |A_1 \cap \dots \cap A_n|$$

Folgerung 1.3.1. Seien die Mengen A_1, \ldots, A_n alle in einer endlichen Menge Ω enthalten. Sind die Mächtigkeiten der Durchschnitte von beliebigen k Mengen immer gleich einer festen Zahl w(k), $k = 1, \ldots, n$, und setzt man $w(0) := |\Omega|$, so gilt

$$|\Omega \setminus (A_1 \cup \cdots \cup A_n)| = \sum_{k=0}^n (-1)^k \binom{n}{k} w(k).$$

Folgerung 1.3.2. Für die Anzahl D_n aller fixpunktfreien Permutationen von $\{1, \ldots, n\}$ gilt

$$D_n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}.$$

Charakteristische Gleichung: $p(\lambda) = a_k \lambda^k + a_{k-1} \lambda^{k-1} + a_{k-2} \lambda^{k-2} + \dots + a_0 = 0$ $c_1 y_n^{(1)} + c_2 y_n^{(2)} + c_3 y_n^{(3)} + \dots + c_k y_n^{(k)} \to \text{c ausrechnen Anzahl aller surjektiven}$ Abbildungen von A (n) auf B (k) $\sum_{i=0}^k (-1)^i \binom{n}{k} (k-i)^n$

1

2 Körper und Strukturen

R reflexiv: \forall a aRa R symmetrisch: \forall a,b \in A aRb \Rightarrow bRa R transitiv: \forall a,b,c \in A aRb \land bRc \Rightarrow aRc R Aquivalenzrelation: \Leftrightarrow R reflexiv, transitiv, symmetrisch Stirling-Zahlen 2. Art (Anzahl der n-elemtigen Mengen in k Klassen): $S_{0,0} = 1, S_{n,0} = S_{0,k} = 0, n, k \neq 0$ $S_{n,k} = S_{n-1,k-1} + kS_{n-1,k}$ für n,k ≥ 1 $S_{n,k} = \frac{1}{k!} \sum_{i=0}^k (-1)^i \binom{k}{i} (k-1)^n$

2.1 Zahlentheorie

jede Zahl lässt sich in endlich viele Primfaktoren zerlegen $ggT(a,b) = ggT(b, a-qb) = ggT(b, a \mod b)$

 \forall (a,b) \neq (0,0) \exists α , β ggTa,b) = α a + β b \rightarrow erweiterter euklidischer algorithmus

a	b	q	α_0 (init: 1)	α_1 (init: 0)	β_0 (init: 1)	β_1 (init: 0)	alt
b	a mod b	[a/b]	α_1	α_0 - $q_{neu}\alpha_1$	eta_1	β_0 - $q_{neu}\beta_1$	neu (ohne neu sind die alten)

Ausgabe: α , α_0 , β_0

2.2 Halb- und Gruppen

 $(\mathrm{H}, \odot) \text{ ist Halbgruppe: } \Leftrightarrow \forall a, b, c \in H : a \odot (b \odot c) = (a \odot b) \odot c \\ \text{abelsch: } \Leftrightarrow \forall \ a, b \in \mathrm{H: } a \odot b = b \odot a \\ \text{Neutrales Element e: } \Leftrightarrow \forall \ a \in \mathrm{H: } a \odot \mathrm{e} = \mathrm{e} \odot = \mathrm{a} \\ (\mathrm{H}, \odot) \text{ Monoid: } \Leftrightarrow \text{Halbgruppe mit neutralem Element} \\ (\mathrm{H}, \odot) \text{ Gruppe: } \Leftrightarrow \text{Monoid und alle Elemente invertierbar:} \\ \forall \ a \in \mathrm{H} \ \exists \ a' \in \mathrm{H: } a \odot a' = \mathrm{e} \\ \forall \ a, b \in \mathrm{H: } (a \odot b)^{-1} = b^{-1} \odot a^{-1} \\ \mathrm{a}^i = \mathrm{a} \odot \cdots \odot \mathrm{a} \to \mathrm{Potenzgesetze} \\ \mathrm{isomorph: } (\mathrm{G1}, \circ_1) \ \mathrm{zu} \ (\mathrm{G2}, \circ_2) \ \mathrm{seinen \ Gruppen} \\ \exists \ \forall \mathrm{d}, \mathrm{b} \in G_1 : \ \mathrm{f}(\mathrm{a} \circ_1 \ \mathrm{b}) = \mathrm{f}(\mathrm{a}) \circ_2 \ \mathrm{f}(\mathrm{b})$

2.3 Ringe & Körper

$$(R, +, \cdot)$$
 Ring: \Leftrightarrow

- (R,+) ist abelsche Gruppe
- (R, \cdot) ist Halbgruppe
- $\forall a,b,c: a \cdot (b+c) = a \cdot b + a \cdot c \text{ und } (a+b) \cdot c = a \cdot c + b \cdot c$

Kommutativ: Halbgruppe ist abelsch sec

Algorithmen 3

RSA 3.1

Absender A, Empfänger E E: wählen p,q Primzahlen, n: = p*qE: m:= $\phi(n) = (p-1)*(q-1)$, ermitteln g teilerfremd m, 1<g<m, wählt kg = 1 E: sendet k und n A: sendet $e = a^k \mod n$ B: $a := e^g \mod n$

Lineare Optimierung

Merke: Normalumformung, Basisberechnung via Gauß (or other means), Simplexalgorithmus

5 Grundefinitionen Stochastik

 Ω Ereignismenge f(ω) , $\omega\in\Omega$ Wahrscheinlichkeiten Diskreter W.raum: $\Omega\neq\emptyset,$ f : $\Omega \to \mathbb{R}$ $\sum_{\Omega} f(\underline{\omega}) = 1$ Potenzmenge: $\mathbb{B}, \mathbb{P} : \mathbb{B} \to \mathbb{R}$, Rechengesetze für Mengen

	geordnete Stichproben	n^k	$\frac{n!}{(n-k)!}$	
	ungeordnete Stichproben	$\binom{n+k-1}{k}$	$\binom{n}{k}$	
Seien X,	\mathbb{Y} Ereignismengen $\mathbb{P}(X = x)$	$(x) = \sum_{y \in \mathbb{Y}} x^y$	$\mathbb{P}(X = x$,Y=y)

Verteilungen

Bernoulli 6.1

$$\Omega = \!\! \{0,\!1\}$$
 , f(1)=p, (0)=1-p

Binomialverteilung

$$f(k) := \binom{n}{k} p^k (1-p)^{n-k}$$
$$\mathbb{E}(X) = np$$

 $f(k):=\binom{n}{k}p^k(1-p)^{n-k}$ $\mathbb{E}(X)=np$ $\mathbb{E}(X)^2=n^2p^2+np(1-p)$ Approximation bei großem n und kleinem p durch Poisson

Hypergeometrisch

$$f(k) := \frac{\binom{r}{k}\binom{s}{n-k}}{\binom{r+s}{n}}$$
$$\mathbb{E}(X) = \frac{nr}{r+s}$$

 $f(k) := \frac{\binom{r}{k}\binom{s}{n-k}}{\binom{r+s}{n}}$ $\mathbb{E}(X) = \frac{nr}{r+s}$ Approximation für sehr großes $n \to \infty$: $\binom{n}{k}p^k(1-p)^{n-k} = Binomial(n,p)(\{k\})$

Poisson 6.4

Erhöhung der Versuche auf unendlich (Erfolge bleiben gleich) $\lim_{n\to\infty} \binom{n}{k} p^k (1-p)^{n-k} = \tfrac{1}{k!} \lambda^k e^{-\lambda}$ $\mathbb{E}(X) = \delta$ $\mathbb{E}^{\nvDash}(X^2) = \lambda^2 + \lambda$

6.5 Geometrisch

Wiederholung desselben Versuches bis Erfolg (k Stufen)

$$\Omega\{0,1\}^{k}$$

$$f(k) := (1-p)^{k-1}p$$

$$\mathbb{E}(X) = \frac{1}{p}$$

$$\mathbb{E}(X^{2}) = \frac{1}{p^{2}}$$

6.6 Gleichverteilung

$$f(x) = \frac{1}{b-a} \mathbf{1}_{(a,b)}(x), \, \infty < a < b < \infty$$

6.7 Exponential verteilung

$$\begin{split} f(x) &:= \lambda e^{-\lambda x} \mathbf{1}_{(0,\infty)(x)}, \lambda > 0 \\ \mathbb{E}(X) &= \frac{1}{\frac{1}{\lambda}} \\ \mathbb{E}(X^2) &= \frac{1}{\lambda^2} + \frac{1}{\lambda} \end{split}$$

6.8 Normalverteilung

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}, \mu \in \mathbb{R}, \sigma \in (0, \infty)$$
$$\mathbb{E}(X) = \mu$$

6.9 stetiges Wahrscheinlichkeitsmaß

$$f(\mathbf{x}), \text{ stetig W.dichte}$$

$$\mathbb{P}(I) = \int_I f(x) dx = \mathbb{P}([a,b] = F(b) - F(a)) = \int \int f_{(X,Y)}(x,y) \ dy \ dx$$

7 Bedingte Wahrscheinlichkeit

$$\begin{split} \mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \\ \text{Unabhängigkeit:} \mathbb{P}(A|B) = \mathbb{P} \Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) \end{split}$$

8 Allgemeiner Erwartungswert / Varianz

diskret:
$$\mathbb{E}X = \sum_{x \in \mathbb{X}} x \mathbb{P}(X = x), \mathbb{E}|X| = \sum_{x \in \mathbb{X}} |x| \mathbb{P}(X = x) < \infty$$
 stetig:
$$\mathbb{E}X = \int_{-\infty}^{\infty} x f(x) dx$$

$$\mathbb{E}X^n = \int_{-\infty}^{\infty} x^n f(x) dx$$
 Regeln: $\mathbb{E}(h \circ X) = \sum_{x \in \mathbb{X}} (h(y)) x \mathbb{P}(X = x) = \int_{-\infty}^{\infty} h(x) x f(x) dx$

8.1 Varianz und Kovarianz

Varianz:
$$\mathbb{V}ar(X) := \mathbb{E}((X - \mathbb{E}X)^2)$$
 Standartabweichung: $\sigma(X) := \sqrt{\mathbb{V}ar(X)}$ Kovarianz: $\mathbb{C}ov(X,Y) := \mathbb{E}((X - \mathbb{E}X)(Y - \mathbb{E}Y))$ Korrelationskoeffizient: $\rho(X,Y) = \frac{\mathbb{C}ov(X,Y)}{\sqrt{\mathbb{V}ar(X)\cdot\mathbb{V}ar(Y)}}$ Kovarianz postiv \to postive Korrelation """ negativ \to negative Korrelation """ $0 \to \text{keine Korrelation}$

Satz (Rechenregeln für Erwartungwerte).

Es seien X und Y Zufallsgrößen, so dass $\mathbb{E}(X)$ und $\mathbb{E}(Y)$ existieren, und $a,b,c\in\mathbb{R}$.

- (a) $\mathbb{E}(aX + bY)$ existiert, und $\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$. (Linearität)
- (b) Aus $X \leq Y$ folgt $\mathbb{E}(X) \leq \mathbb{E}(Y)$. (Monotonie)
- (c) $\mathbb{E}(c) = c$.
- (d) Sind X,Y <u>unabhängig</u>, so existiert $\mathbb{E}(XY)$, und es gilt $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$. (Multiplikationssatz)

Satz 4.18 (Eigenschaften der Varianz). Seien X und Y Zufallsgrößen mit $\mathbb{E}X^2 < \infty$ und $\mathbb{E}Y^2 < \infty$ und $a, b \in \mathbb{R}$. Dann gilt:

- (a) $\operatorname{Var}(X) \ge 0$, wobei $\operatorname{Var}(X) = 0 \Leftrightarrow \exists c \in \mathbb{R} : \mathbb{P}(X = c) = 1$.
- (b) $\operatorname{Var}(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2$. (Verschiebungssatz)
- (c) Var(X + b) = Var(X).
- (d) $\operatorname{Var}(aX) = a^2 \operatorname{Var}(X)$.
- (e) $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\mathbb{E}((X-\mathbb{E}X)(Y-\mathbb{E}Y))$.

Gesetze der großen Zahlen

schwache 9.1

$$\begin{split} & \mathbf{P}\left(|R_n - p| \geq \varepsilon\right) \leq \frac{\sigma^2}{\varepsilon^2} = \frac{p(1 - p)}{n\varepsilon^2} \\ & \to \forall \epsilon > 0 \lim_{n \to \infty} \mathbf{P}\left(|R_n - p| \geq \varepsilon\right) = 0 \end{split}$$

9.2 starke

$$P\left(\limsup_{n\to\infty}|\overline{X}_n|=0\right)=1$$

9.3 zentraler Grenzwert

$$\frac{S_n - n\mu}{\sqrt{n\sigma^2}} \underline{d} Z$$

Approximation 10

Sei S_n die Summe einer n-stelligen Reihe mit unabhängigen Zufallsgrößen, μ Erwartungswert, σ^2 Varianz normal-aproximierbar mit (gut bei
n über 30)

$$\int_{\frac{a-n\mu}{\sqrt{1-a^2}}}^{\frac{b-n\mu}{\sqrt{n\sigma^2}}}$$

 $\int_{\frac{a-n\mu}{\sqrt{n\sigma^2}}}^{\frac{b-n\mu}{\sqrt{n\sigma^2}}}\int_{\frac{a-n\mu}{\sqrt{n\sigma^2}}}^{\frac{a-n\mu}{\sqrt{n\sigma^2}}}$ Normalapproximation der Binomialverteilung:

$$P(a \le S_n \le b) \approx \int_{\frac{a-np}{\sqrt{npq}}}^{\frac{b-np}{\sqrt{npq}}} \varphi(x) dx = \phi(\frac{b-np}{\sqrt{npq}}) - \phi(\frac{a-np}{\sqrt{npq}}), q := 1-p$$

Statistik 11

Produktdichte:
$$f_{\varphi}(x) := \prod_{i=1}^{n} \tilde{f}_{\varphi}(x_i)$$

- (a) Cov(X, X) = Var(X).
- (b) $\mathbb{C}ov(X,Y) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$. (Verschiebungssatz)

80

- (c) $\mathbb{C}ov(X+c,Y+d) = \mathbb{C}ov(X,Y)$.
- $\begin{array}{c} (d) \ \mathbb{C}\mathrm{ov}(aX,Y) = a \, \mathbb{C}\mathrm{ov}(X,Y). \\ \mathbb{C}\mathrm{ov}(X,bY) = b \, \mathbb{C}\mathrm{ov}(X,Y). \end{array}$
- $\begin{array}{c} (e) \ \, \mathbb{C}\mathrm{ov}(X+Y,Z) = \mathbb{C}\mathrm{ov}(X,Z) + \mathbb{C}\mathrm{ov}(Y,Z). \\ \mathbb{C}\mathrm{ov}(X,Y+Z) = \mathbb{C}\mathrm{ov}(X,Z) + \mathbb{C}\mathrm{ov}(X,Y). \end{array}$
- (f) $\mathbb{C}ov(X,Y) = \mathbb{C}ov(Y,X)$. (Symmetrie)

Zähldichte:

 $f_{\varphi}(x) := \binom{n}{k} p^k (1-p)^{n-k} \to L_k(p) = \binom{n}{k} p^k (1-p)^{n-k}$, k ist Beobachtungswert Maximum-Likehood-Schätzer: Nimm die größte Likelihoodfunktion Likelihood-Funktion:

$$L_x(\mu)(\vartheta_{ML}(x)) = \max_{\vartheta \in \Theta} L_x(\vartheta)$$

 $L_x(\mu)(\vartheta_{ML}(x)) = \max_{\vartheta \in \Theta} L_x(\vartheta) :$ $f_{\mu}(x) \to \max$ Log-Likelihood: $\text{lx}(\mu) = logL_x(\mu)$, hat dieseelben Maxima und Minima wie die Likehood-funktion

 $[\]overline{^{12}\,\text{Dieser Satz}}$ ist in der Vorlesung mit Ausnahme von Teil (b) übersprungen