Exploring Time Series Data Using StatsModels

Janani Ravi
CO-FOUNDER, LOONYCORN
www.loonycorn.com

Overview

Specialized models for time-series data, x-axis denotes time

Autoregressive models have y variables which depend on previous y values

White noise error terms

Moving average models over white noise

ARMA models combine autoregression and moving averages

Stationarity and Time Series Data

Time Series

A time series is a sequence of data taken at successive and usually equally spaced points in time.

Time Series

A time series is a sequence of data taken at successive and usually equally spaced points in time.

Time Series

A time series is a sequence of data taken at successive and usually equally spaced points in time

Types of Time Series Models

AR(p)

Autoregressive models

MA(q)

Moving average models

ARMA(p,q)

Combination of other two

Time series models are especially vulnerable to problems of non-stationarity

Non-stationary Data

Mean changes over time
Variance changes over time
Autocorrelation changes over time

Varying Mean

Time series that trends over time is non-stationary - mean is changing over time

Varying Variance

Time series that has periods of higher volatility is non-stationary - variance is changing over time

Varying Autocorrelation

The spread in the data becomes further away and then closer

Stationary Data

Mean of time series does not change over time

Variance of time series does not change over time (homoscedasticity)

Autocorrelation does not change over time

Stationary Data

Applying regression to non-stationary data yields poor model

Inflated R²

Problems associated with heteroscedasticity

Stationary Data

Statistical tests exist to test for non-stationarity

In practice, simple forms of non-stationarity can be found from plotting data

More complex forms require statistical tests

Beware of Non-stationary Data

Smoothly trending data will lead to poor quality regression and time series models

Convert Series to Returns

$$y'_{12} = \log y_2 - \log y_1$$

$$x'_{12} = \log x_2 - \log x_1$$

Log Differences

$$y'_{12} = (y_2 - y_1)/y_1$$

$$X'_{12} = (X_2 - X_1)/X_1$$

Returns

Take first differences of smooth data converting either to log differences or returns

Autoregressive and Moving Average Models

X Causes Y

Cause Independent variable

EffectDependent variable

Linear Regression

$$y = A + Bx$$

$$y_1 = A + Bx_1$$
 $y_2 = A + Bx_2$
 $y_3 = A + Bx_3$
...
 $y_n = A + Bx_n$

Linear Regression

$$y = A + Bx$$

$$y_1 = A + Bx_1 + e_1$$

 $y_2 = A + Bx_2 + e_2$
 $y_3 = A + Bx_3 + e_3$
...
$$y_n = A + Bx_n + e_n$$

Yt-1 Causes Yt

CauseRain yesterday

Effect
Rain today as well

Autoregression

$$y_t = A + By_{t-1}$$

$$y_1 = A + By_0$$
 $y_2 = A + By_1$
 $y_3 = A + By_2$
...
 $y_n = A + By_{n-1}$

Autoregression

$$y_t = A + By_{t-1}$$

$$y_1 = A + By_0 + e_1$$

 $y_2 = A + By_1 + e_2$
 $y_3 = A + By_2 + e_3$
...
$$y_n = A + By_{n-1} + e_n$$

$$Y_t = C + \sum_{j=1}^{p} \phi_j X_t + \epsilon_t$$

General Form of Linear Model

The error terms \in_t in OLS are assumed to be zero-mean, constant-variance and normally distributed

$$Y_{t} = C + \sum_{i=1}^{p} \phi_{i} Y_{t-i} + \in_{t}$$

General Form of Autoregressive Model

Notice that Y is now on both sides of the equation - hence the name

$$Y_{t} = C + \sum_{i=1}^{p} \phi_{i} Y_{t-i} + \in_{t}$$

General Form of Autoregressive Model

Notice that Y is now on both sides of the equation - hence the name

$$Y_{t} = C + \sum_{i=1}^{p} \phi_{i} Y_{t-i} + \in_{t}$$

AR(p) Model

Because last p values of Y influence current value of Y

Autoregressive Models

Future values of Y depend on past values of Y and on current value of white noise

$$Y_t = C + \sum_{i=1}^{p} \phi_i Y_{t-i} + \boxed{\in t}$$

White Noise Error Terms

The error terms \in_t in AR(p) are still assumed to be zero-mean, constant-variance and normally distributed

White Noise Error Terms

Error terms form a white noise process

- Mean zero
- Constant variance
- Normally distributed
- Independent and Identically Distributed (IID)

White Noise Error Terms

AR models define Y_t ~ Y_{t-1} Y_{t-2} ... Y_{t-p}

Have a single error term ∈t

Can also define Y_t ~ ∈t-1 ∈t-2 ... ∈t-q

Such models are called MA models

MA(q) ~ Moving Average of last q values of ∈

$$Y_{t} = C + \sum_{i=1}^{p} \phi_{i} Y_{t-i} + \in_{t}$$

AR(p) Model

Because last p values of Y influence current value of Y

$$Y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q}$$

MA(q) Model

Value of Y depends on last q values of the white noise process

Moving Average Models

Future values of Y depend on **past** values of white noise alone

$$Y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q} + \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p}$$

ARMA(p,q) Model

Combine AR(p) and MA(q)

$$Y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q} + \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p}$$

 μ is the mean (constant)

$$Y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q} + \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p}$$

 \in_{t} is the current period error; zero-mean, constant-variance, normally distributed

$$Y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q} + \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p}$$

MA(q) component of the ARMA(p,q)

$$Y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q} + \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p}$$

AR(p) component of the ARMA(p,q)

ARMA Models

Future values of Y depend on past values of Y and on current and past values of white noise

Specifying AR, MA and ARMA Models

Finding p,q in AR(p) and MA(q)

Correlation

The measure of the relationship between two items or variables

Positive and Negative Correlation

As X increases, Y increases linearly

Correlation = -1

As X increases, Y decreases linearly

Correlation = 0

Changes in X independent* of changes in Y

self

Autocorrelation

Measures the relationship between a variable's current value and past value

Partial Autocorrelation

Conceptually similar to autocorrelation; based on partial correlation of a series with lagged versions of itself

More likely

Today

Tomorrow

Less likely

Today

Tomorrow

Same time series is used twice

Original form

Same time series is used twice

Lagged over one or more time periods

Same time series is used twice

Lagged over one or more time periods

Lagged over one or more time periods

Lagged over one or more time periods

Perfect positive correlation

Perfect negative correlation

ACF Plot

Lag-0 acf always = 1

ACF Plot

Lag-1 and lag-2 series also correlated

Finding p,q in AR(p) and MA(q)

ACF and PACF Plots

The ACF plot of an MA(q) process cuts off after q lags

The PACF plot of an AR(p) process cuts off after p lags

ACF Plot and MA(q)

PACF Plot and AR(p)

Principle of Parsimony: Keep plant and q as small as possible

QQ-plot

Q-Q plot (Quantile-Quantile plot)

Graph used to compare data to a standard distribution, usually to verify visually whether data is normally distributed

Plot is constructed by sorting data from low to high

- blue points

Then plotting against expected number of points in each quantile

- solid orange line
- Standard normal N(0,1)

Perfectly normal data will lie entirely along line

Sample data and theoretically expected data agree perfectly

Offset from orange line indicates mean of data is not zero

Remember that orange line represents standard normal N(0,1)

Too many data points at low quantiles (small values)

Too few data points at high quantiles (large values)

Data is negatively skewed

Demo

Working with time series data

Summary

Specialized time series models

Autoregressive models

White noise error terms

Moving Average models

ARMA models combine AR and MA

Introduction to Machine Learning

Understanding Machine Learning with Python

Building Machine Learning Models in Python with scikit-learn

Python Packages for Data Science

Pandas Fundamentals

Introduction to Data Visualization in Python

Building Data Visualizations Using Plotly