ALFABETOS, SÍMBOLOS Y CADENAS

CONTENIDO

- Alfabetos, símbolos y cadenas.
- Lenguajes
- Operaciones con cadenas.
 - Concatenación de dos cadenas.
 - Prefijos y sufijos de una cadena.
 - Subcadena y subsecuencia.
 - Inversión de una cadena.
 - Potencia de una cadena

Alfabetos, símbolos y cadenas

- Se llama *alfabeto* a un conjunto finito, no vacío.
- Los elementos de un alfabeto se llaman *símbolos*.
- Un alfabeto se define por la enumeración de los símbolos que contiene.

$$\begin{split} & \Sigma_I = \{A, B, C, D, E, \dots, Z\} \\ & \Sigma_2 = \{0, 1\} \\ & \Sigma_3 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .\} \\ & \Sigma_4 = \{/, \setminus\} \\ & \sum_5 = \{x | x \text{ es una letra minúscula} \} \\ & \sum_5 = \{x | x \text{ es un dígito decimal} \} \end{split}$$

Cadena o palabra

- Se llama *palabra* o *cadena* a aquella formada con los símbolos de un alfabeto.
- Secuencia finita de símbolos de ese alfabeto.
- Se utilizarán letras minúsculas *x* o *y* para representar las cadenas de un alfabeto.

$$x=JUAN \ (cadena \ sobre \ \Sigma_1 = \{A,B,C,D,E,...,Z\})$$

 $y=1450 \ (cadena \ sobre \ \Sigma_3 = \{0,1,2,3,4,5,6,7,8,9,.\})$

Longitud de una cadena

- Se llama *longitud de una cadena* al número de símbolos que la componen.
- La longitud de la cadena x se representa con la notación /x/.
- La cadena cuya longitud es cero se llama cadena vacía y se representa con la letra griega lambda (λ) .
- Evidentemente, cualquiera que sea el alfabeto considerado, siempre puede formarse la cadena vacía.

```
\Sigma_1 = \{a,b,...,z\}
\Sigma_2 = \{la, ba, ca, da\}
```

"camisa" tiene longitud 6 sobre Σ_1 .

Con símbolos sería: $\omega = \text{camisa}, |\omega| = 6$

"cada" tiene longitud 4 sobre $\Sigma_{1.}$

Sin embargo: "cada" tiene longitud 2, si la consideramos sobre Σ_2

Lenguaje universal

- El conjunto de todas las cadenas que se pueden formar con las letras de un alfabeto se llama *lenguaje universal* de Σ y se denota como $W(\Sigma)$.
- Es evidente que $W(\Sigma)$ es un *conjunto infinito*. Incluso en el peor caso, si el alfabeto sólo tiene una letra.

$$\Sigma = \{a\}$$

$$W(\Sigma) = {\lambda, a, aa, aaa, ...}$$

6

Lenguaje

- Un lenguaje es un conjunto de palabras.
- Por tanto, el conjunto {1, 12, 123, 1234, 12345, 123456} es un lenguaje sobre el alfabeto compuesto por dígitos.

- 1. El lenguaje de todas las cadenas que constan de n ceros seguidos de n unos para cualquier $n \ge 0$: $\{\varepsilon, 01, 0011, 000111, \ldots\}$.
- 2. El conjunto de cadenas formadas por el mismo número de ceros que de unos:

$$\{\varepsilon, 01, 10, 0011, 0101, 1001, \ldots\}$$

OPERACIONES CON CADENAS

Concatenación de dos cadenas

• Sean u y v dos cadenas sobre el mismo alfabeto Σ , la concatenación de u y v es una nueva cadena ω que se obtiene yuxtaponiendo primero u y detrás v, escribimos:

$$\omega = uv$$

Ejemplos:

- Sea u = 01, v = 100 la concatenación de ambas es $\omega = uv = 01100$
- Sea u = mari, v = posa, la concatenación es $\omega = uv = mariposa$

Propiedades de la concatenación de dos cadenas

- 1. No es conmutativa, en general no es lo mismo uv que vu.
- 2. Es asociativa, es decir cualesquiera que sean las cadenas u, v y w sobre el mismo alfabeto, se tiene que (uv)w = u(vw).
 - Esta propiedad nos permite concatenar cualquier número finito de cadenas sin tener que poner los paréntesis. Escribiremos uvw.
- 3. |uv|=|u|+|v| es decir la longitud de la cadena formada por la concatenación de dos cadenas, es la suma de las longitudes de cada una de ellas.
- 4. La cadena vacía es el elemento neutro de la concatenación. En efecto $u\lambda = \lambda u = u$.

Prefijos y sufijos de una cadena

• Sea ω una cadena sobre cierto alfabeto Σ .

- Sean \boldsymbol{u} y \boldsymbol{v} dos cadenas sobre $\boldsymbol{\Sigma}$ tales que $\boldsymbol{\omega} = \boldsymbol{u}\boldsymbol{v}$.
- Decimos que u es un **prefijo** y que v es un **sufijo** de ω .

Un **prefijo de la cadena** S es cualquier cadena que se obtiene al eliminar cero o más símbolos del final de S.

Ejemplo:

velo, velocidad y λ son prefijos de ω =velocidad.

Un **sufijo de la cadena** S es cualquier cadena que se obtiene al eliminar cero o más símbolos del principio de S.

Ejemplo:

cidad, velocidad y λ son sufijos de ω =velocidad.

Subcadena y subsecuencia de una cadena

Una subcadena de S se obtiene al eliminar cualquier prefijo y cualquier sufijo de S.

Ejemplo:

velocidad, loci y λ son subcadenas de velocidad.

Los **prefijos, sufijos y subcadenas** *propios* de una cadena S son esos prefijos, sufijos y subcadenas, respectivamente, de S que no son λ ni son iguales a la misma S.

Subcadena y subsecuencia de una cadena

Una *subsecuencia* de *S* es cualquier cadena que se forma mediante la eliminación de cero o más posiciones no necesariamente consecutivas de *S*.

Ejemplo:

veoci es una subsecuencia de velocidad.

Inversión de una cadena

- Sea ω una cadena sobre cierto alfabeto Σ . Llamamos **inversa** (o reflejada) de la cadena ω , y la representamos por ω^{-1} , a la cadena obtenida al escribir los símbolos que constituyen la cadena ω en orden inverso.
- Si $\omega = a_1, a_2, ..., a_n$ su reflejada sería $\omega^{-1} = a_n, ..., a_2, a_1$

Ejemplo:

Si, ω = camisa, entonces ω^{-1} = asimac

Puede ocurrir que una cadena coincida con su inversa como es el caso de ω =ana; tales cadenas reciben el nombre de *palíndromos*.

Propiedades de la inversión y la concatenación de cadenas

1. (uv)⁻¹ = v⁻¹u⁻¹ es decir la cadena inversa (o reflejada) de la concatenación de dos cadenas es la concatenación de las cadenas inversas (o reflejadas) en orden contrario

```
u = hola
v = mundo
uv = holamundo

u<sup>-1</sup> = aloh
v<sup>-1</sup> = odnum

(uv)<sup>-1</sup> = odnumaloh
v<sup>-1</sup>u<sup>-1</sup> = odnumaloh
```

2. $|\omega^{-1}| = |\omega|$ es decir, la longitud de una cadena y su inversa coinciden siempre.

$$\omega$$
 = holamundo ω^{-1} = odnumaloh

$$|\boldsymbol{\omega}^{-1}| = 9$$

 $|\boldsymbol{\omega}| = 9$

Potencia de una cadena

Sea ω una cadena y k un número entero, definimos:

$$\omega^{k} = \begin{cases} \omega \dots^{k} \dots \omega & \text{si } k > 0 \\ \lambda & \text{si } k = 0 \end{cases}$$

$$\omega^{-1} \dots^{-k} \dots \omega^{-1} & \text{si } k < 0$$

Sea ω = 91 sobre el alfabeto Σ_1 ={0,1,...9}, entonces será: ω^3 = 919191 ω^{-1} = 19 ω^{-2} = 1919

 $\omega^0 = \lambda$

Sea $\omega = camisa$ sobre el alfabeto $\Sigma_2 = \{a,b,c,...,z\}$, entonces será:

$$\mathbf{\omega}^{-3} = (\mathbf{\omega}^{-1})^3 = (asimac)^3 = asimacasimacasimac$$

