

VECTOR SPACES

Deepthi Rao

Department of Science & Humanities

CLASS 1: CONTENT

- Definition of Vector Space
- Examples of Vector Space
- Definition of Subspace
- Examples of Subspaces

VECTOR SPACES: DEFINITION

A Real vector space V is a nonempty set of objects called vectors, together with (Scalar multiplication and Vector addition)satisfying the following axioms:

- I. If $u, v \in V$, then $u + v \in V \Rightarrow V$ is closed under vector addition.
- II. If $c \in R \& u \in V$, then $cu \in V \Rightarrow V$ is closed under scalar multiplication.

These operations satisfy the following properties for $u, v, w \in V \& c_1, c_1$ are scalars

a)
$$u + v = v + u$$
 (commutative law)

b)
$$u + (v + w) = (u + v) + w$$
(Associative law)

VECTOR SPACES

- c) there is a unique zero vector i.e., 0 such that 0+u=u+0=u
- (identity law) Additive identity '0' $\in V$
- d) for each u there is a unique vector (-u) such that

$$u + (-u) = (-u) + u = 0$$
 (Inverse law)

e)
$$c_1(u+v) = c_1u + c_1v$$

f)
$$(c_1 + c_2)u = c_1u + c_2u$$

g)
$$(c_1 + c_2)u = c_1u + c_2u$$

h) 1u = u, Where 1 is a multiplicative identity s.t. 1 £ R

Example 1 The following are examples of vector spaces:

- 1. The set of all real number ${\mathbb R}$ associated with the addition and scalar multiplication of real numbers.
- 2. The set of all the $\underline{\text{complex numbers}}$ $\mathbb C$ associated with the addition and scalar multiplication of complex numbers.
- 3. The set of all polynomials $R_n(x)$ with real coefficients associated with the addition

- 4. The set of all vectors of dimension n written as \mathbb{R}^n associated with the addition and
 - scalar multiplication as defined for 3-d and 2-d vectors for example.
- 5. The set of all matrices of dimension m imes n associated with the addition and scalar

multiplication as defined for matrices.

Example 1:

Prove that the set of all 2 by 2 matrices associated with the matrix addition and the

scalar multiplication of matrices is a vector space.

Solution: Consider
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $A' = \begin{bmatrix} a', b' \\ c' & d' \end{bmatrix}$ S.t. A, $A' \in V$
Let V be the set of all 2 by 2 matrices.

1) Addition of matrices gives

$$\left[egin{array}{cc} a & b \ c & d \end{array}
ight] + \left[egin{array}{cc} a' & b' \ c' & d' \end{array}
ight] = \left[egin{array}{cc} a+a' & b+b' \ c+c' & d+d' \end{array}
ight]$$

Adding any 2 by 2 matrices gives a 2 by 2 matrix and therefore the result of the addition

Scalar multiplication of matrices gives gives

$$regin{bmatrix} a & b \ c & d \end{bmatrix} = egin{bmatrix} ra & rb \ rc & rd \end{bmatrix}$$

Multiply any 2 by 2 matrix by a scalar and the result is a 2 by 2 matrix is an element of V.

3) Commutativity

$$egin{bmatrix} a & b \ c & d \end{bmatrix} + egin{bmatrix} a' & b' \ c' & d' \end{bmatrix} \ = egin{bmatrix} a + a' & b + b' \ c + c' & d + d' \end{bmatrix} \ = egin{bmatrix} a' + a & b' + b \ c' + c & d' + d \end{bmatrix} \ = egin{bmatrix} a' & b' \ c' & d' \end{bmatrix} + egin{bmatrix} a & b \ c & d \end{bmatrix}$$

4) Associativity of vector addition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix}$$

$$= \begin{bmatrix} a+a' & b+b' \\ c+c' & d+d' \end{bmatrix}$$

$$= \begin{bmatrix} a'+a & b'+b \\ c'+c & d'+d \end{bmatrix}$$

$$= \begin{bmatrix} a'+a & b'+b \\ c'+c & d'+d \end{bmatrix}$$

$$= \begin{bmatrix} a'+a' & b'+b' \\ c'+c' & d+d' \end{bmatrix} + \begin{bmatrix} a'' & b'' \\ c'' & d'' \end{bmatrix}$$

$$= \begin{bmatrix} a'+a' & b'+b' \\ c'+c' & d+d' \end{bmatrix} + \begin{bmatrix} a'' & b'' \\ c'' & d'' \end{bmatrix}$$

$$= \begin{bmatrix} (a+a')+a'' & (b+b')+b'' \\ (c+c')+c'' & (d+d')+d'' \end{bmatrix}$$

$$= \begin{bmatrix} a+(a'+a'') & b+(b'+b'') \\ c+(c'+c'') & d+(d'+d'') \end{bmatrix}$$

$$= \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{pmatrix} \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} + \begin{bmatrix} a'' & b'' \\ c'' & d'' \end{bmatrix}$$

5) Associativity of multiplication

6) Zero vector

$$egin{bmatrix} a & b \ c & d \end{bmatrix} + egin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix} \ = egin{bmatrix} a+0 & b+0 \ c+0 & d+0 \end{bmatrix} = egin{bmatrix} a & b \ c & d \end{bmatrix}$$

7) Negative vector

$$egin{bmatrix} a & b \ c & d \end{bmatrix} + egin{bmatrix} -a & -b \ -c & -d \end{bmatrix} \ = egin{bmatrix} a + (-a) & b + (-b) \ c + (-c) & d + (-d) \end{bmatrix} \ = egin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$$

8) Distributivity of sums of matrices:

$$r\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix}\right) \qquad (r+s)\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} (r+s)a \\ (r+s)b \end{bmatrix}$$

$$= \begin{bmatrix} r(a+a') & r(b+b') \\ r(c+c') & r(d+d') \end{bmatrix} \qquad = \begin{bmatrix} ra+sa & rb+sb \\ rc+sc & rd+sd \end{bmatrix}$$

$$= \begin{bmatrix} ra+ra' & rb+rb \\ rc+rc' & rd+rd \end{bmatrix} \qquad = \begin{bmatrix} ra & rb \\ rc & rd \end{bmatrix} + \begin{bmatrix} sa & sb \\ sc & sd \end{bmatrix}$$

$$= r\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) + r\left(\begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix}\right) \qquad = r\begin{bmatrix} a & b \\ c & d \end{bmatrix} + s\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

9) Distributivity of sums of real numbers:

$$egin{aligned} & (r+s) egin{bmatrix} a & b \ c & d \end{bmatrix} = egin{bmatrix} (r+s)a & (r+s)b \ (r+s)c & (r+s)d \end{bmatrix} \ &= egin{bmatrix} ra + sa & rb + sb \ rc + sc & rd + sd \end{bmatrix} \ &= egin{bmatrix} ra & rb \ rc + sc & rd + sd \end{bmatrix} \ &= egin{bmatrix} ra & sb \ sc & sd \end{bmatrix} \ &= r egin{bmatrix} a & b \ c & d \end{bmatrix} + s egin{bmatrix} a & b \ c & d \end{bmatrix} \end{aligned}$$

10) Multiplication by 1.

$$1egin{bmatrix} a & b \ c & d \end{bmatrix} = egin{bmatrix} 1a & 1b \ 1c & 1d \end{bmatrix} = egin{bmatrix} a & b \ c & d \end{bmatrix}$$

Example 2:

Show that the set of all real polynomials with a degree $n \leq 3$ associated with the addition of polynomials and the multiplication of polynomials by a scalar form a vector space.

Solution

The addition of two polynomials of degree less than or equal to 3 is a polynomial of degree lass than or equal to 3.

The multiplication, of a polynomial of degree less than or equal to 3, by a real number results in a polynomial of degree less than or equal to 3

Hence the set of polynomials of degree less than or equal to 3 is closed under addition

and scalar multiplication (the first two conditions above).

The remaining 8 rules are automatically satisfied since the polynomials are real.

Example 3:

Show that the set of integers associated with addition and multiplication by a real number

IS NOT a vector space

Solution:

The multiplication of an integer by a real number may not be an integer.

Example: Let x=-2

If you multiply x by the real number $\sqrt{3}$ the result is NOT an integer.

VECTOR SPACE

Few examples:

1. R = the set of all real numbers

2.
$$R^2 = \{ (x, y) / x, y \in R \}$$

3.
$$R^3 = \{ (x, y, z) / x, y, z \in R \}$$

4.
$$R^n = \{ (x1, x2, ..., xn) / xi \in R \}$$

5.
$$R^{\infty} = \{ (x1, x2, ...,) / xi \in R \}$$

Problem 1:

Verify whether the following

$$V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix}; x \ge 0, y \ge 0, x, y \in r \right\}$$

Is a vector space

under usual vector addition and scalar multiplication.

VECTOR SPACES

- Closure property holds good.
- Associative property holds
- $\exists 0 \in V \exists u + 0 = u = 0 + u$,

•
$$\forall u \in V \exists -u \notin V$$

$$\left[Eg : u = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in V, -u = \begin{bmatrix} -1 \\ -2 \end{bmatrix} \notin V \right]$$

Therefore Inverse law doesn't hold

Hence *V* is not a vector space.

Problem 2:
$$V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 / x + y = 0 \right\} u, v \in V$$

All the properties holds good

Hence V is a vector space

VECTOR SPACES

Precisely,

We can add any two vectors and we can multiply all vectors by scalars. In other words, we can take linear combinations.

SUBSPACES: DEFINITION

SUBSPACES

A nonempty subset of a vector space is called a subspace of V, if it is itself a vector space under the same operations of vector addition and scalar multiplication as defined in vector space .

The following are the properties satisfied by a subspace of V

- i) $0 \in W$ (zero vector always belongs to a subspace)
- ii) if $u, v \in W$ Then $u + v \in W$
- iii) If 'c' is a scalar and $u \in W$ then $cu \in W$

SUBSPACES: DEFINITION

If W is a subset of a vector space V and if W is itself a vector space under the inherited

operations of addition and scalar multiplication from V, then W is called a subspace

To show that the W is a subspace of V, it is enough to show that

- 1. W is a subset of V
- 2. The zero vector of V is in W
- 3. For any vectors and in W, $\mathbf{u} + \mathbf{v}$ is in W. (closure under addition)
- 4. For any vector \mathbf{u} and scalar r, $r \cdot \mathbf{u}$ is in W. (closure under scalar multiplication).

SUBSPACES: DEFINITION

SUBSPACES: EXAMPLES

Example 1

The set W of vectors of the form (x,0) where $x\in\mathbb{R}$ is a subspace of \mathbb{R}^2 because:

W is a subset of \mathbb{R}^2 whose vectors are of the form (x,y) where $x\in\mathbb{R}$ and $y\in\mathbb{R}$

The zero vector (0,0) is in W

$$(x_1,0)+(x_2,0)=(x_1+x_2,0)$$
 , closure under addition

 $r\cdot(x,0)=(rx,0)$, closure under scalar multiplication

SUBSPACES: EXAMPLES

Example 2

The set W of vectors of the form (x,y) such that $x\geq 0$ and $y\geq 0$ is not a subspace of

 \mathbb{R}^2 because it is not closed under scalar multiplication.

Vector $\mathbf{u}=(2,2)$ is in W but its negative -1(2,2)=(-2,-2) is not in W.

SUBSPACES:

• Note: If U and W are two subspaces of a vector space V, intersection $U \cap W$ is also a subspace of V.

 $0\in U$ and $0\in W$ since U and W are subspaces they must contain '0' . $0\in U\cap W$

 The intersection of any number of subspaces of a vector space V is a subspace of V

SUBSPACES

Subspace of \mathbb{R}^3

- i. \mathbb{R}^3 itself
 ii. zero vector i.e., $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- iii. line passing through origin
- iv. plane passing through origin
- v. In general, if $V=R^n$, the possible subspaces are , lines through origin, 2-d planes through origin, 3-d planes through origin,, (n-1)- d planes through origin and the space itself.

THANK YOU

Deepthi Rao

Department of Science & Humanities