

APRENDIZAJE AUTOMÁTICO

TEMA I: Introducción

TEMA I

- Introducción al aprendizaje automático
 - Concepto de aprendizaje
 - Aprendizaje natural
- Paradigmas de aprendizaje
- Aprendizaje inductivo
- Teoremas No Free Lunch

TEMA I

- Introducción al aprendizaje automático
 - Concepto de aprendizaje
 - Aprendizaje natural
- Paradigmas de aprendizaje
- Aprendizaje inductivo
- Teoremas No Free Lunch

- Motivación:
 - El desarrollo de software es un cuello de botella
 - Programación
 - ¿Y si podemos desarrollar sistemas sin programarlos?
 - Sistemas que se desarrollen solos: aprendan
 - Para que aprendan, es necesario mostrarles el conocimiento a través de ejemplos
 - Introducir conocimiento a través de ejemplos es atractivo

- Motivación:
 - Introducir conocimiento a través de ejemplos es atractivo
 - Especialmente cierto en los problemas:
 - en los que no existen algoritmos
 - No se pueden programar
 - mal definidos
 - propuestos informalmente

• Programación "clásica":

• Programación automática:

Algunos ejemplos:

- Sanidad: cómo diagnosticar mejor una enfermedad
- Domótica: cómo autorregular eficientemente el consumo de energía, cómo limpiar el suelo
- Banca: por qué conceder un crédito hipotecario, cuándo aceptar el cargo a una tarjeta
- Marketing: qué tipo de personas compran cerveza los viernes, qué perfil de compra tiene la familia Martínez
- Personalización: qué tipo de noticias le gusta leer los viernes por la mañana al usuario
- Seguridad: qué perfil de uso de Linux tiene un determinado usuario, cuándo se produce una entrada ilegal
- Videojuegos: en qué orden le gusta explorar el terreno al usuario

- Algunos ejemplos:
 - •
- La sociedad de la información genera una explosión de datos
 - No hay suficiente gente que pueda analizar tal cantidad de datos
- Necesario conocimiento a base de ejemplos!!!
 - El sistema debe aprender de los mismos

- Definiciones del concepto de aprendizaje:
 - "Aprender es construir o modificar representaciones de aquello con lo que se está experimentando" [McCarthy]
 - "El aprendizaje denota cambios en el sistema que permiten que se realice la misma tarea más eficiente y eficazmente la próxima vez" [Simon]
 - "Aprender es hacer cambios útiles en nuestra mente" [Minsky]

- Definiciones del concepto de aprendizaje:
 - · "Aprender es un fenómeno que abarca muchas facetas como son: la adquisición de conocimiento declarativo, el desarrollo de habilidades cognitivas a través de la práctica, la organización del conocimiento adquirido dentro de un entorno genérico, la representación efectiva y el descubrimiento de nuevos hechos y teorías por medio de la observación y la experimentación" [Carbonell y otros]

- Definiciones del concepto de aprendizaje:
 - "Un sistema se dice que aprende si puede modificar su comportamiento después de un conjunto de experiencias, de forma que pueda realizar la tarea con mayor precisión o más eficientemente o realizar tareas más allá de sus capacidades previas" [Carbonell]

- Definiciones del concepto de aprendizaje:
 - "Un sistema organizado puede definirse como aquel que transforma un cierto mensaje de entrada en uno de salida, de acuerdo con algún principio de transformación. Si tal principio está sujeto a un criterio de validez de funcionamiento y si el método de transformación se ajusta a fin de que tienda a mejorar el funcionamiento del sistema de acuerdo con ese criterio, se dice que el sistema aprende" [Wiener]

- Definiciones del concepto de aprendizaje:
 - Resumiendo:
 - Sistema que interactúa con un entorno o que lo observa.
 - Modificación del comportamiento del sistema o de su representación interna.
 - Mejora del sistema de acuerdo a algún criterio de evaluación.
 - ¿Cómo funciona el aprendizaje en los animales?

- Aprendizaje natural:
 - Difícil definirlo, mejor describirlo
 - Desde distintas perspectivas:
 - Conductista
 - Fisiológica
 - Aprendizaje humano

- Perspectiva conductista:
 - Habituación
 - Aprendizaje asociativo
 - Impronta
 - Imitación

- Perspectiva conductista:
 - Habituación:
 - El sistema aprende a no prestar atención de ciertos inputs y nos habituamos a ello y no lo consideramos importante.
 - Es muy complicado en sistemas artificiales decidir cuáles aspectos son importantes y hemos de prestarles atención.
 - Aprendizaje asociativo
 - Impronta
 - Imitación

- Perspectiva conductista:
 - Habituación
 - Aprendizaje asociativo:
 - Aprenden asociando elementos que llegan a estar asociados
 - Varios tipos:
 - Condicionamiento clásico
 - Prueba y error
 - Aprendizaje latente
 - Impronta
 - Imitación

- Perspectiva conductista:
 - Habituación
 - Aprendizaje asociativo:
 - Aprenden asociando elementos que llegan a estar asociados
 - Varios tipos:
 - Condicionamiento clásico:
 - Consiste en responder a un estímulo con la misma acción que se utilizaría en respuesta al estímulo asociado.
 - Ejemplo: Paulov: perro, comida y campanilla.
 - Impronta
 - Imitación

- Perspectiva conductista:
 - Habituación
 - Aprendizaje asociativo:
 - Aprenden asociando elementos que llegan a estar asociados
 - Varios tipos:
 - Prueba y error:
 - Consiste en realizar acciones aleatoriamente hasta encontrar la acción asociada a la recompensa buscada.
 - Impronta
 - Imitación

- Perspectiva conductista:
 - Habituación
 - Aprendizaje asociativo:
 - Aprenden asociando elementos que llegan a estar asociados
 - Varios tipos:
 - Aprendizaje latente:
 - No se obtiene una asociación con una respuesta inmediata, sino un conocimiento del entorno que permite aprender posteriormente de una forma mucho más rápida
 - Impronta
 - Imitación

- Perspectiva conductista:
 - Habituación
 - Aprendizaje asociativo
 - Impronta:
 - Es un proceso biológico de aprendizaje, por el cual las crías se identifican con los adultos de su especie y aprenden de ellos, mediante observación e imitación, los distintos métodos de supervivencia, búsqueda de alimento y refugio, así como modelos de defensa, ataque, convivencia, apareamiento....
 - Durante un periodo de cierto tiempo de su vida todo lo que el ser ve lo sigue como a una madre.
 - No existe dentro de la inteligencia artificial.
 - En las primeras fases de la vida la impronta es más fuerte que en las fases posteriores
 - Imitación

- Perspectiva conductista:
 - Habituación
 - Aprendizaje asociativo
 - Impronta
 - Imitación:
 - Importante en sistemas biológicos.
 - · Consiste en imitar el comportamiento de otro ser.
 - No existe dentro de sistemas artificiales.

- Perspectiva fisiológica:
 - Conexionismo
 - Consiste en estudiar la estructura del sistema nervioso de los animales y su capacidad de aprendizaje y almacenamiento de conocimientos mediante las características del conexionado de neuronas
 - Aprendizaje genético
 - Estudia la evolución de las especies por medio de cruces y mutaciones en los cromosomas de los individuos.
 - La adaptación al medio funciona como criterio de selección a la hora de evaluar el fruto de los cambios genéticos de los individuos

- Perspectiva del aprendizaje humano:
 - Aprendizaje deductivo
 - Aprendizaje inductivo
 - Aprendizaje por analogía

- Perspectiva del aprendizaje humano:
 - Aprendizaje deductivo
 - Capacidad de obtener nuevos conocimientos a partir de una información previa por medio de razonamientos lógicos
 - Aprendizaje inductivo
 - Consiste en la obtención de conceptos y relaciones a partir de una serie de ejemplos y contraejemplos
 - Aprendizaje por analogía
 - Se basa en la capacidad de afrontar nuevas situaciones estudiando la analogía con otras situaciones ya conocidas, adaptando un conocimiento previo a la nueva situación

TEMA I

- Introducción al aprendizaje automático
 - Concepto de aprendizaje
 - Aprendizaje natural
- Paradigmas de aprendizaje
- Aprendizaje inductivo
- Teoremas No Free Lunch

- ¿Cómo clasificar los tipos de aprendizaje automático?
 - Según distintos criterios (flexibles):
 - En base a la información respecto al comportamiento deseado
 - En base al tipo de respuesta deseada
 - En base a la interacción entre los datos de entrenamiento y el algoritmo de aprendizaje
 - En base a la representación del conocimiento obtenido

• etc.

- Clasificación en base a la información respecto al comportamiento deseado
 - Aprendizaje supervisado
 - Aprendizaje no supervisado
 - Aprendizaje por refuerzo

- Clasificación en base a la información respecto al comportamiento deseado
 - Aprendizaje supervisado
 - El comportamiento deseado se representa por medio de un conjunto de ejemplos etiquetados
 - Es decir, se conoce la respuesta deseada para cada ejemplo
 - Estos ejemplos permiten definir un criterio para evaluar el comportamiento real del sistema
 - El objetivo es aprender una función que mapee las entradas a las salidas correctas
 - Aprendizaje no supervisado
 - Aprendizaje por refuerzo

Paradigmas de Aprendizaje

- Clasificación en base a la información respecto al comportamiento deseado
 - Aprendizaje supervisado
 - Aprendizaje no supervisado:
 - No se tienen etiquetas en los ejemplos de entrenamiento
 - El objetivo es encontrar estructuras o relaciones intrínsecas en los datos sin la guía de una salida deseada
 - Aprendizaje por refuerzo

- Clasificación en base a la información respecto al comportamiento deseado
 - Aprendizaje supervisado
 - Aprendizaje no supervisado
 - Aprendizaje por refuerzo:
 - El agente aprende a través de la interacción con un entorno
 - Se le proporcionan señales de recompensa o penalización en función de sus acciones
 - El objetivo es aprender una política que maximice la recompensa acumulada a largo plazo

- Clasificación en base al tipo de respuesta deseada
 - Aprendizaje de clasificación
 - Aprendizaje de regresión
 - Aprendizaje de secuencias

Paradigmas de Aprendizaje

- Clasificación en base al tipo de respuesta deseada
 - Aprendizaje de clasificación
 - · La respuesta deseada es una etiqueta o categoría discreta
 - El objetivo es asignar nuevas instancias a una o varias clases predefinidas
 - Aprendizaje de regresión
 - La respuesta deseada es un valor numérico o un conjunto de valores continuos
 - El objetivo es aprender una función que prediga o estime valores numéricos para nuevas instancias
 - Aprendizaje de secuencias

- Clasificación en base al tipo de respuesta deseada
 - Aprendizaje de clasificación
 - Aprendizaje de regresión
 - Aprendizaje de secuencias
 - La respuesta deseada es una secuencia o una serie ordenada de valores
 - Se utiliza en aplicaciones como el procesamiento de lenguaje natural, la traducción automática o el reconocimiento de voz

- Clasificación en base a la interacción entre los datos de entrenamiento y el algoritmo de aprendizaje
 - Aprendizaje estático
 - Aprendizaje en línea
 - Aprendizaje por lotes (batch)

- Clasificación en base a la interacción entre los datos de entrenamiento y el algoritmo de aprendizaje
 - Aprendizaje estático
 - El modelo se entrena una vez con un conjunto fijo de datos y no se actualiza con nuevos datos a medida que llegan
 - No hay una interacción en tiempo real entre el modelo y el entorno
 - Aprendizaje en línea
 - Aprendizaje por lotes (batch)

- Clasificación en base a la interacción entre los datos de entrenamiento y el algoritmo de aprendizaje
 - Aprendizaje estático
 - Aprendizaje en línea
 - El modelo se actualiza continuamente a medida que llegan nuevos datos, incorporando la información más reciente para adaptarse a cambios o tendencias en el entorno
 - Es útil cuando los datos están en constante evolución
 - Aprendizaje por lotes (batch)

- Clasificación en base a la interacción entre los datos de entrenamiento y el algoritmo de aprendizaje
 - Aprendizaje estático
 - Aprendizaje en línea
 - Aprendizaje por lotes (batch)
 - El modelo se entrena en lotes, utilizando conjuntos completos de datos de entrenamiento
 - Los parámetros del modelo se ajustan después de procesar todos los datos del lote
 - Esto puede ser más eficiente en términos de tiempo de entrenamiento y memoria requerida

- Clasificación en base a la representación del conocimiento obtenido
 - Aprendizaje simbólico
 - Aprendizaje no simbólico
 - Aprendizaje mixto

- Clasificación en base a la representación del conocimiento obtenido
 - Aprendizaje simbólico
 - Se utilizan representaciones explícitas de conocimiento en forma de símbolos
 - Se enfoca en la interpretabilidad y la explicabilidad
 - Se utiliza en aplicaciones donde comprender y justificar el razonamiento del modelo es importante
 - Aprendizaje no simbólico
 - Aprendizaje mixto

- Clasificación en base a la representación del conocimiento obtenido
 - Aprendizaje simbólico
 - Aprendizaje no simbólico
 - Se trata de adquirir un conocimiento representado por medio de factores numéricos no relacionados directamente con un concepto determinado
 - Por ejemplo:
 - · Pesos en una red neuronal
 - Cromosomas en un sistema genético
 - Aprendizaje mixto

- Clasificación en base a la representación del conocimiento obtenido
 - Aprendizaje simbólico
 - Aprendizaje no simbólico
 - Aprendizaje mixto
 - Combina ambos tipos para aprovechar sus ventajas:
 - La capacidad del aprendizaje simbólico para el razonamiento abstracto, la interpretación y la explicabilidad
 - La capacidad del aprendizaje no simbólico para la captura de patrones complejos, la representación de datos de alta dimensionalidad y el reconocimiento de características sutiles
 - Ejemplo de aplicación: procesamiento del lenguaje natural

- Un paradigma de aprendizaje se refiere a un conjunto de principios, supuestos y técnicas que definen un marco conceptual para abordar problemas de aprendizaje
 - Una «metodología» de aprendizaje
 - Una forma de aprender
- Algunos de los tipos anteriores se pueden considerar paradigmas
 - Por ejemplo: aprendizaje supervisado, aprendizaje en línea
 - Describen cómo es el proceso de aprendizaje
- Otros no se pueden considerar paradigmas
 - Por ejemplo: aprendizaje simbólico, aprendizaje de clasificación
 - Describen alguna característica importante (como el objetivo), pero no cómo se realiza el aprendizaje en sí

- Existen varios paradigmas de aprendizaje en el campo de la inteligencia artificial y el aprendizaje automático
 - Cada uno de ellos ofrece enfoques y técnicas únicas para abordar diferentes tipos de problemas de aprendizaje y modelado de datos
 - La elección del paradigma adecuado depende de la naturaleza del problema y de los datos disponibles
- Es importante tener en cuenta que la siguiente clasificación de los paradigmas de aprendizaje no es estricta, y muchos enfoques se solapan o combinan características de varios paradigmas
 - Además, el campo del Aprendizaje Automático y la IA continúa evolucionando, y se pueden desarrollar nuevos paradigmas y técnicas a medida que avanza la investigación

Aprendizaje supervisado

- Un modelo se entrena utilizando un conjunto de datos etiquetados, donde se proporciona la respuesta correcta para cada ejemplo.
- El objetivo es aprender una función que pueda mapear nuevas entradas a salidas deseadas

Aprendizaje no supervisado

- El conjunto de datos no está etiquetado
- El objetivo es encontrar patrones, estructuras o relaciones intrínsecas en los datos sin información previa sobre las salidas esperadas

Aprendizaje por refuerzo

- Un agente aprende a tomar decisiones secuenciales en un entorno mediante la interacción con él
- El agente recibe recompensas o castigos según sus acciones
- Su objetivo es aprender una política que maximice la recompensa acumulada a lo largo del tiempo

Aprendizaje semi-supervisado

- Combina elementos del aprendizaje supervisado y no supervisado
- Se utiliza cuando se dispone de un conjunto de datos con algunas etiquetas, pero la mayoría de los datos no están etiquetados
- El objetivo es utilizar tanto los datos etiquetados como los no etiquetados para mejorar el rendimiento del modelo

Aprendizaje basado en ensemble

 Se combinan múltiples modelos de aprendizaje para mejorar el rendimiento predictivo

Aprendizaje evolutivo

- Este paradigma se basa en principios inspirados en la evolución biológica y la selección natural, o, en general, en el comportamiento de especies naturales
- Utiliza algoritmos genéticos, programación genética y otros enfoques evolutivos para mejorar automáticamente los modelos y encontrar soluciones óptimas o cercanas a lo óptimo en problemas de aprendizaje y optimización

Aprendizaje basado en instancias

- Este paradigma se basa en la idea de que los ejemplos individuales o instancias del conjunto de datos son importantes para el aprendizaje
- En lugar de construir un modelo general, el aprendizaje se realiza almacenando ejemplos y sus correspondientes etiquetas
- Para predecir la etiqueta de una nueva instancia, se busca en el conjunto de datos de entrenamiento instancias similares y se utiliza su etiqueta como predicción

Aprendizaje basado en similitud

- El aprendizaje se realiza comparando la similitud entre ejemplos
- El enfoque principal es encontrar instancias similares en el conjunto de datos y utilizar esa similitud para realizar predicciones o clasificaciones
- Muy usado para resolver problemas de clustering en aprendizaje no supervisado
- Algunos algoritmos de aprendizaje basado en similitud incluyen k-medias, k-prototipos y vecinos más cercanos ponderados.

Paradigmas de Aprendizaje

Aprendizaje profundo:

- Redes neuronales artificiales con múltiples capas ocultas
- Estas redes son capaces de aprender automáticamente características y representaciones de alto nivel a partir de los datos, lo que las hace especialmente adecuadas para el procesamiento de datos complejos como imágenes, texto y audio

Aprendizaje por transferencia:

- El conocimiento y las experiencias adquiridas al resolver un problema se utilizan para mejorar el rendimiento en la resolución de un problema relacionado pero distinto
- Se transfieren los conocimientos previos de un dominio fuente a un dominio objetivo,
 lo que puede acelerar el proceso de aprendizaje y mejorar la precisión
- Algunos enfoques de aprendizaje por transferencia incluyen el aprendizaje basado en casos y el aprendizaje de representación

Aprendizaje por transferencia profunda

- Combina el aprendizaje profundo con el aprendizaje por transferencia
- Se basa en la idea de que los conocimientos y las representaciones aprendidas en un dominio fuente se pueden transferir y aprovechar en un dominio objetivo relacionado
- Se utilizan modelos pre-entrenados en grandes conjuntos de datos y se ajustan o se extienden para adaptarse al nuevo problema o dominio

Paradigmas de Aprendizaje

Aprendizaje no supervisado profundo

- Se combina el aprendizaje no supervisado con el aprendizaje profundo
- Se utilizan técnicas de redes neuronales profundas para aprender representaciones o características útiles de los datos sin requerir etiquetas o información explícita de salida
- Estas representaciones aprendidas se pueden utilizar posteriormente en tareas de aprendizaje supervisado o como base para otras técnicas de análisis de datos

Aprendizaje activo

- El modelo tiene la capacidad de seleccionar las instancias más informativas o difíciles de etiquetar y solicitar al usuario que las etiquete
- Esto se utiliza para reducir la cantidad de datos etiquetados necesarios para entrenar un modelo efectivo

Aprendizaje jerárquico

- Este paradigma se centra en aprender modelos jerárquicos que capturan las relaciones y la estructura entre diferentes niveles de información
- Se utiliza para problemas donde los datos tienen una estructura jerárquica, como el procesamiento de lenguaje natural, la clasificación de imágenes en múltiples niveles de granularidad o el aprendizaje de características a diferentes escalas

Aprendizaje multi-instancia

- En este paradigma, se trabaja con conjuntos de datos donde cada ejemplo está compuesto por varias instancias o subinstancias
- En lugar de asignar una etiqueta a cada instancia individual, se asigna una etiqueta al conjunto de instancias en su totalidad
- El objetivo es aprender una función que clasifique correctamente los conjuntos de instancias
- El aprendizaje multi-instancia se utiliza en problemas donde solo se conocen las etiquetas de los conjuntos y no de las instancias individuales, como el reconocimiento de objetos en imágenes o la detección de anomalías.

Aprendizaje por refuerzo inverso

- A diferencia del aprendizaje por refuerzo convencional, donde el agente aprende a través de recompensas explícitas, el aprendizaje de refuerzo inverso se enfoca en aprender la función de recompensa o el modelo subyacente a partir de las acciones observadas de un experto
- Se utiliza para aprender el comportamiento deseado o las políticas de un experto humano y puede aplicarse en la programación de robots, la toma de decisiones y la planificación

Aprendizaje basado en conocimiento

- Se utiliza el conocimiento experto o previo sobre el dominio del problema para guiar el proceso de aprendizaje
- El conocimiento se incorpora en forma de reglas, restricciones o relaciones lógicas que se utilizan junto con los datos para mejorar la precisión y el rendimiento del modelo
- Algunos enfoques de aprendizaje basado en conocimiento incluyen los sistemas basados en reglas, los sistemas expertos y la lógica difusa

Aprendizaje incremental

- El modelo se actualiza y mejora continuamente a medida que llegan nuevos datos
- En lugar de entrenar el modelo desde cero cada vez que se obtiene un nuevo conjunto de datos, se utilizan técnicas para incorporar de manera eficiente los nuevos datos y adaptar el modelo existente
- Esto permite una adaptación continua a medida que los datos cambian con el tiempo
- Este enfoque se utiliza en aplicaciones donde los datos están en constante evolución,
 como la detección de fraudes o el análisis de datos en tiempo rea
- Forma más típica: Stream Learning

Aprendizaje probabilístico

- En este paradigma, se utilizan modelos probabilísticos para representar las relaciones entre las variables en un conjunto de datos
- El aprendizaje se realiza mediante la estimación de las distribuciones de probabilidad y la inferencia de las variables desconocidas

Aprendizaje bayesiano

- Se basa en el teorema de Bayes y utiliza la inferencia bayesiana para realizar el aprendizaje
- Este paradigma incorpora conocimientos previos o creencias iniciales sobre los parámetros del modelo y los actualiza a medida que se obtienen datos observados
- Permite modelar la incertidumbre y realizar predicciones probabilísticas

etc.

- Y además:
- Aprendizaje inductivo
 - Inferencia de hipótesis a partir de ejemplos específicos o datos de entrenamiento
 - Se centra en la generalización a partir de casos particulares hacia reglas o hipótesis más generales
 - Se asume que los ejemplos de entrenamiento representan una muestra de datos más amplia y se busca encontrar modelos que se apliquen a instancias no vistas previamente
 - Esto implica la extracción de características relevantes y la construcción de un modelo que pueda realizar predicciones o clasificaciones en nuevos datos

Aprendizaje deductivo

- Opera de manera inversa al inductivo
- Se parte de reglas generales o conocimiento previo y se utilizan para inferir conclusiones específicas a partir de ejemplos o datos observados
- Se utiliza la lógica deductiva para aplicar reglas generales y extraer información concreta
- En este enfoque, se razona desde lo general hacia lo particular.

TEMA I

- Introducción al aprendizaje automático
 - Concepto de aprendizaje
 - Aprendizaje natural
- Paradigmas de aprendizaje
- Aprendizaje inductivo
- Teoremas No Free Lunch

- Consiste en la adquisición de un nuevo conocimiento por la inferencia inductiva sobre los datos del entorno
- Inducir es suponer que lo que vemos es siempre así:
 - Si vemos que un gato tiene 4 patas, todos los gatos tienen 4 patas.

- Consiste en la adquisición de un nuevo conocimiento por la inferencia inductiva sobre los datos del entorno
- Inducir es suponer que lo que vemos es siempre así:

 - Si vemos un número suficiente de gatos con 4 patas, todos los gatos tienen 4 patas.

 Caracterizar los ejemplos positivos para distinguirlos de los negativos:

- Algunas definiciones:
 - Atributo: característica que define a un elemento de un conjunto
 - Instancia: colección de valores de atributos
 - Clase: cada uno de los subconjuntos disjuntos en los que se quiere dividir el conjunto de instancias
 - Ejemplo (positivo) de una clase: instancia que pertenece al subconjunto definido por la clase
 - Ejemplo (negativo) de una clase: instancia que no pertenece al subconjunto definido por la clase
 - Generalización de un conjunto de ejemplos de una clase (hipótesis): descripción que representa al subconjunto de instancias de la clase y no representa a instancias de las otras clases

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - Formalizando:
 - 5 atributos, 2 clases, 7 instancias:

Ej.	Cabeza	Cuello	Forma Cuerpo	Color Cuerpo	Cola	Clase
1	Círculo	Recto	Círculo	Rayado	Abajo	+
2	Triángulo	Curvo	Cuadrado	Negro	Recta	-
3	Cuadrado	Triangular	Triángulo	Blanco	Abajo	-
4	Círculo	Curvo	Cuadrado	Rayado	Abajo	+
5	Triángulo	Triangular	Triángulo	Rayado	Recta	-
6	Cuadrado	Recto	Círculo	Blanco	Arriba	-
7	Cuadrado	Triangular	Triángulo	Rayado	Abajo	+

 El aprendizaje inductivo se basa en la siguiente hipótesis:

 Si una hipótesis describe bien el concepto, de acuerdo a un número suficientemente grande/significativo de ejemplos de aprendizaje, también describirá bien el concepto en futuros ejemplos

Por lo tanto:

 Si se consigue desarrollar una hipótesis que describa bien el concepto, de acuerdo a un número suficientemente grande/significativo de ejemplos de aprendizaje, esa hipótesis también describirá bien el concepto en futuros ejemplos

Por lo tanto:

Si se consigue desarrollar un Sistema AA que describa bien el concepto, de acuerdo a un número suficientemente grande/significativo de ejemplos de aprendizaje, es Sistema AA ambién describirá bien el concepto en futuros ejemplos

- Inducción / Deducción:
 - Deducción = razonamiento de lo general a lo específico
 - Preserva la verdad
 - Siempre es correcto
 - Inducción = razonamiento desde lo específico a lo general

el inverso de la deducción

- No preserva la verdad
- Puede haber evidencia estadística

DEDUCCIÓN

Todos los hombres son mortales

Sócrates es un hombre

Sócrates es mortal

INDUCCIÓN

Sócrates es mortal

Sócrates es un hombre

Todos los hombres son mortales

Proceso:

Inductivo:

 Aprendizaje / entrenamiento: Desarrollar un sistema de AA que describa bien el concepto para un número suficientemente significativo de ejemplos

Deductivo:

Aplicar ese sistema de AA a nuevos ejemplos

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - Formalizando:
 - 5 atributos, 2 clases, 7 instancias:

Ej.	Cabeza	Cuello	Forma Cuerpo	Color Cuerpo	Cola	Clase
1	Círculo	Recto	Círculo	Rayado	Abajo	+
2	Triángulo	Curvo	Cuadrado	Negro	Recta	-
3	Cuadrado	Triangular	Triángulo	Blanco	Abajo	-
4	Círculo	Curvo	Cuadrado	Rayado	Abajo	+
5	Triángulo	Triangular	Triángulo	Rayado	Recta	-
6	Cuadrado	Recto	Círculo	Blanco	Arriba	-
7	Cuadrado	Triangular	Triángulo	Rayado	Abajo	+

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - Desarrollar el sistema de AA que realice la siguiente operación:

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - Problema: pocas instancias:

Ej.	Cabeza	Cuello	Forma Cuerpo	Color Cuerpo	Cola	Clase
1	Círculo	Recto	Círculo	Rayado	Abajo	+
2	Triángulo	Curvo	Cuadrado	Negro	Recta	-
3	Cuadrado	Triangular	Triángulo	Blanco	Abajo	-
4	Círculo	Curvo	Cuadrado	Rayado	Abajo	+
5	Triángulo	Triangular	Triángulo	Rayado	Recta	-
6	Cuadrado	Recto	Círculo	Blanco	Arriba	-
7	Cuadrado	Triangular	Triángulo	Rayado	Abajo	+

 ¿Las reglas generadas son válidas para nuevas instancias?

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - Problema: pocas instancias:
 - ¿Las reglas generadas son válidas para nuevas instancias?
 - «Si vemos un número suficiente de gatos con 4 patas, todos los gatos tienen 4 patas»
 - ¿¿Cuántos gatos es necesario observar???
 - ¿Es suficiente con observar 144.234.234 gatos?
 - ¿Es esta cantidad lo más importante?

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - Problema: pocas instancias:
 - ¿Las reglas generadas son válidas para nuevas instancias?
 - «Si vemos un número suficiente de camellos con 2 jorobas, todos los camellos tienen 2 jorobas»
 - Observamos (en Asia) 763.231.921 camellos con 2 jorobas
 - ¿Todos los camellos tienen 2 jorobas?
 - ¡¡¡Los camellos africanos (dromedarios) no!!!
 - Se ha intentado aplicar la hipótesis en un entorno distinto de aquél donde pertenecen los datos observados (conjunto de entrenamiento)

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - Problema: pocas instancias:
 - ¿Las reglas generadas son válidas para nuevas instancias?
 - ¿Qué ocurre si se presentan patrones en alguna región donde en el entrenamiento no hubo patrones?

• ¿Qué ocurre si se presentan como patrones camellos africanos a un sistema que sólo ha aprendido a trabajar con camellos asiáticos?

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - Problema: pocas instancias:
 - ¿Las reglas generadas son válidas para nuevas instancias?
 - El conjunto de entrenamiento debe:
 - Ser significativo:
 - Número suficiente de ejemplos
 - Si el conjunto de entrenamiento es reducido, el modelo no será capaz de resolver el problema de forma eficaz
 - Ser representativo:
 - Ejemplos diversos: todas las regiones del espacio de estados deben estar suficientemente cubiertas.

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - Problema: pocas instancias:
 - ¿Las reglas generadas son válidas para nuevas instancias?
 - El conjunto de entrenamiento debe:
 - Ser significativo
 - Ser representativo
 - Ejemplo:
 - ¿Todos los gatos tienen pelo?
 - No es tan importante observar muchos como que todas las razas estén representadas

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - · Además, necesario escoger el método AA
 - Cada método acepta las entradas / salidas y codifica el conocimiento de una manera distinta

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - Escoger el método de AA:
 - ¿Y si el sistema de AA no acepta entradas/salidas categóricas?
 - Necesario codificar esa entrada o salida
 - 2 formas de hacerlo:
 - Como números naturales
 - Como valores booleanos

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - Codificar esa entrada o salida
 - Como números naturales
 - Se asigna a cada posible valor de la categoría un número natural distinto
 - Números consecutivos
 - Ejemplo: Cabeza:
 - Círculo: I
 - Triángulo: 2
 - Cuadrado: 3
 - · Apropiado cuando existe una ordenación en el mundo real
 - · Asignar los números naturales siguiendo un orden similar

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - Codificar esa entrada o salida
 - Como valores booleanos
 - Más común
 - 2 posibilidades:
 - 2 categorías (A/-A, -/+, A/B, etc.)
 - Más de 2 categorías (one-hot encoding)

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - Codificar esa entrada o salida
 - Como valores booleanos
 - 2 posibilidades:
 - 2 categorías (A/-A, -/+, A/B, etc.)
 - Se cambia la entrada / salida por un valor booleano
 - Ejemplo: salida: 1/0

- Ejemplo: Anterior:
 - Caracterizar los ejemplos positivos para distinguirlos de los negativos:
 - Codificar esa entrada o salida
 - Como valores booleanos
 - 2 posibilidades:
 - Más de 2 valores (one-hot encoding)
 - Cada entrada / salida se cambia por un conjunto de variables booleanas, una para cada valor que puede tomar
 - Cada variable toma el valor I si esa instancia toma el valor correspondiente, 0 en caso contrario
 - Ejemplo: Cabeza:
 - Círculo: (1, 0, 0) Triángulo: (0, 1, 0) Cuadrado: (0, 0, 1)

Ejemplo: Anterior:

• Si no acepta entradas/salidas categóricas:

TEMA I

- Introducción al aprendizaje automático
 - Concepto de aprendizaje
 - Aprendizaje natural
- Paradigmas de aprendizaje
- Aprendizaje inductivo
- Teoremas No Free Lunch

- "No Free Lunch" (Wolpert y MacReady, 1997)
- Conjunto de resultados teóricos en el campo de la inteligencia artificial y la optimización que establecen ciertas limitaciones fundamentales
- El concepto básico detrás de los teoremas NFL es que no hay un algoritmo de optimización universalmente superior para resolver todos los problemas
 - Es decir, no existe un único algoritmo que sea el mejor en todas las situaciones
 - Esto se aplica especialmente a problemas de búsqueda y optimización en espacios de soluciones amplios
 - Si se consideran todos los problemas posibles y se promedian los resultados sobre esos problemas, no hay un algoritmo que supere a todos los demás en todos los problemas

- Considerando dos algoritmos A y B
 - Si el algoritmo A es mejor que el algoritmo B en cierto conjunto de problemas, entonces, en promedio, el algoritmo B será mejor que el algoritmo A en otro conjunto de problemas
 - En resumen, no hay un algoritmo que sea el mejor en todos los problemas
- Los teoremas NFL destacan la importancia de seleccionar el algoritmo adecuado para un problema específico y tener en cuenta las características y restricciones particulares de ese problema
 - Dependiendo de la estructura del problema, ciertos algoritmos pueden ser más efectivos que otros

- Es importante tener en cuenta que los teoremas NFL no niegan la posibilidad de mejoras en algoritmos o métodos de optimización en contextos específicos
 - De hecho, la investigación en IA y optimización se centra en encontrar soluciones efectivas y eficientes para problemas específicos

- Para demostrarlos, por reducción al absurdo:
 - Se supone que existe un algoritmo universalmente superior que es el mejor en todos los problemas
 - Luego, se construye un "oráculo" que genera problemas de manera aleatoria y se utiliza para evaluar los algoritmos
 - Si el algoritmo superior es realmente el mejor, debería superar a todos los demás algoritmos en la mayoría de los problemas generados por el oráculo
 - Sin embargo, utilizando argumentos probabilísticos y técnicas de teoría de la información, se demuestra que no es posible que un algoritmo supere a todos los demás en la mayoría de los problemas generados por el oráculo
 - Esto se debe a la diversidad y complejidad de los problemas
 - · Imposibilidad de hacer afirmaciones generales sobre todos los posibles problemas
 - Y a la limitación de cualquier algoritmo para adaptarse y superar todos ellos

Conclusiones:

- Los teoremas NFL demuestran que no existe un algoritmo de optimización que sea el mejor en todos los problemas
 - Si se compara un algoritmo con otro, o incluso con búsqueda aleatoria, y
 el primero se comporta mejor en cierto tipo de problemas, siempre
 habrá otro tipo de problemas donde se comporte peor
 - No se puede elegir entre dos algoritmos sólo basándose en lo bien que trabajaron con anterioridad
 - Sin conocer nada sobre el dominio del problema
 - Por ello es importante tener conocimiento del tipo de problema, antes de aplicarle un algoritmo
- Resaltan la importancia de adaptar los enfoques de optimización a las características particulares de cada problema