Package 'TSCS'

October 12, 2022

October 12, 2022
Version 0.1.1
Title Time Series Cointegrated System
Maintainer Tianjian Yang <yangtj5@mail2.sysu.edu.cn></yangtj5@mail2.sysu.edu.cn>
Description A set of functions to implement Time Series Cointegrated System (TSCS) spatial interpolation and relevant data visualization.
Depends R (>= $3.4.2$)
Imports stats, ggplot2 (>= 2.2.1), tseries (>= 0.10-42), rgl (>= 0.98.1), grDevices
License GPL (>= 2.0)
RoxygenNote 6.0.1
Encoding UTF-8
LazyData true
Suggests knitr, rmarkdown, R.rsp
VignetteBuilder knitr, R.rsp
NeedsCompilation no
Author Tianjian Yang [aut, cre]
Repository CRAN
Date/Publication 2017-10-02 11:19:48 UTC
24147 ubileution 2017 10 02 11.17110 010
R topics documented:
appraisal_index plot3D_dif plot3D_map plot3D_NA plot_compare plot_dif plot_map plot_NA 1 TSCS
tscsEstimate

2 appraisal_index

	tscsEstimate3D . tscsRegression	 	 		 											17
Index	tscsRegression3D	 	 • •	 •	 	•	 •	 •	 ٠	•	 •	•	•	•		18 21

appraisal_index

Compute Appraisal Index of Interpolation/Prediction Result

Description

Two appraisal indexes used for evaluating the result of interpolation/prediction - RMSE and standard deviation of error.

Usage

```
appraisal_index(est, true)
```

Arguments

est a numeric vector; estimations.
true a numeric vector; true values.

Details

- The first appraisal index is RMSE, abbr. of root-mean-square error. It is used for measuring the differences between estimated values by a method and the values actually observed. Smaller RMSE means more accurate interpolation/prediction.
- The second appraisal index is standard deviation of error, which is used for measuring how far the errors are spread out from their mean, namely, stability of errors. Smaller value means greater stability of errors, suggesting that errors would not fluctuate heavily due to difference of data.

Value

A list of 2 is returned, including:

RMSE numeric; RMSE.

std numeric; standard deviation of error.

See Also

plot_compare

plot3D_dif

Examples

```
## Not run:
## TSCS spatial interpolation procedure:
basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01); # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1); # estimation
str(est)

## comparison of estimates and true values:

plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index

## data visualization:

plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data
## End(Not run)</pre>
```

plot3D_dif

Plot Interior Spatial Locations and System Boundary - 3D Map

Description

plot3D_dif differentiates boundary and interior spatial locations in a spatial domain (a collection of spatial locations with their coordinates). Since TSCS method is only capable of interpolation but not extrapolation, it is necessary to highlight the difference between interior spatial locations and system boundary.

Usage

```
plot3D_dif(coords, h1, h2, v, xlab = NULL, ylab = NULL, zlab = NULL,
  title = NULL, cex = 3)
```

Arguments

coords	data frame; should only contain the three variables: X coordinate, Y coordinate and Z coordinate. Each row uniquely denotes a spatial location. (coordinates must be numeric)
h1	numeric; side length of the unit cubic grid in X coordinate direction (horizontal).
h2	numeric; side length of the unit cubic grid in Y coordinate direction (horizontal).
V	numeric; side length of the unit cubic grid in Z coordinate direction (vertical).

4 plot3D_map

```
a label for the x axis, defaults to the name of X coordinate.

ylab a label for the y axis, defaults to the name of Y coordinate.

zlab a label for the z axis, defaults to the name of Z coordinate.

title a main title for the plot.

cex numeric; size of point to be plotted for each spatial location. (default: 3)
```

Details

- The resulting plot is interactive, where the red points are interior spatial locations while the black points denote system boundary.
- plot3D_dif is exclusive to 3D rectangular grid system. Similarly, if you want to fathom how this package handles 2D rectangular grid system, please refer to plot_dif.

See Also

```
plot_dif, plot3D_NA, plot3D_map
```

Examples

```
## Not run:
## TSCS spatial interpolation procedure:
basis <- tscsRegression3D(data = data, h1 = 3.75, h2 = 2.5, v = 5, alpha = 0.01);
basis$percentage
est <- tscsEstimate3D(matrix = basis$coef_matrix, newdata = newdata, h1 = 3.75, h2 = 2.5, v = 5);
str(est)

## comparison of estimates and true values:

plot_compare(est = est$estimate[,4], true = true)
index <- appraisal_index(est = est$estimate[,4], true = true);
index

## data visualization:

plot3D_dif(data = data[,1:3], h1 = 3.75, h2 = 2.5, v = 5)
plot3D_NA(newdata = newdata)
plot3D_map(newdata = newdata)

## End(Not run)</pre>
```

plot3D_map

Visualize Spatial(Cross-Section) Data of a Given Time Point - 3D Map

Description

plot_map draws a three-dimensional spatial map. It is plotted based on the cross-section data of a given time point, which is also often extracted from spatio-temporal data.

plot3D_map 5

Usage

```
plot3D_map(newdata, xlab = NULL, ylab = NULL, zlab = NULL, title = NULL,
  cex = 9, colorNA = "white")
```

Arguments

newdata	data frame; should only contain the four variables in order: X coordinate, Y coordinate, Z coordinate and observation. This is the cross-section data or pure spatial data of a particular time point you have selected, with missing observations that you want to predict. (coordinates must be numeric)
xlab	a label for the x axis, defaults to the name of X coordinate.
ylab	a label for the y axis, defaults to the name of Y coordinate.
zlab	a label for the z axis, defaults to the name of Z coordinate.
title	a main title for the plot.
cex	numeric; size of plotting point for each spatial locations. (default: 9)
colorNA	colour for missing values/observations. (default: "white")

Details

- The resulting plot is interactive.
- plot3D_map is exclusive to 3D rectangular grid system. Similarly, if you want to fathom how this package handles 2D rectangular grid system, please refer to plot_map.

See Also

```
plot_map, plot3D_NA, plot3D_dif
```

```
## Not run:
## TSCS spatial interpolation procedure:
basis <- tscsRegression3D(data = data, h1 = 3.75, h2 = 2.5, v = 5, alpha = 0.01);
basis$percentage
est <- tscsEstimate3D(matrix = basis$coef_matrix, newdata = newdata, h1 = 3.75, h2 = 2.5, v = 5);
str(est)

## comparison of estimates and true values:

plot_compare(est = est$estimate[,4], true = true)
index <- appraisal_index(est = est$estimate[,4], true = true);
index

## data visualization:

plot3D_dif(data = data[,1:3], h1 = 3.75, h2 = 2.5, v = 5)
plot3D_NA(newdata = newdata)</pre>
```

6 plot3D_NA

```
plot3D_map(newdata = newdata)
## End(Not run)
```

plot3D_NA

Visualize the Spatial Distribution of Missing Observations - 3D Map

Description

plot3D_NA shows spatial locations with or without missing observation. It is plotted based on the cross-section data of a given time point, which is also often extracted from spatio-temporal data.

Usage

```
plot3D_NA(newdata, xlab = NULL, ylab = NULL, zlab = NULL, title = NULL,
  cex = 3, color = "orange", colorNA = "blue")
```

Arguments

newdata	data frame; should only contain the four variables in order: X coordinate, Y coordinate, Z coordinate and observation. This is the cross-section data or pure spatial data of a particular time point you have selected, with missing observations that you want to predict. (coordinates must be numeric)
xlab	a label for the x axis, defaults to the name of X coordinate.
ylab	a label for the y axis, defaults to the name of Y coordinate.
zlab	a label for the z axis, defaults to the name of Z coordinate.
title	a main title for the plot.
cex	numeric; size of plotting point for each spatial location. (default: 3)
color	colour to be used to fill the spatial locations. (default: "orange")
colorNA	colour for denoting missing values/observations. (default: "blue")

Details

- The resulting plot is interactive.
- plot3D_NA is exclusive to 3D rectangular grid system. Similarly, if you want to fathom how this package handles 2D rectangular grid system, please refer to plot_NA.

See Also

```
plot_NA, plot3D_map, plot3D_dif
```

plot_compare 7

Examples

```
## Not run:
## TSCS spatial interpolation procedure:
basis <- tscsRegression3D(data = data, h1 = 3.75, h2 = 2.5, v = 5, alpha = 0.01);
basis$percentage
est <- tscsEstimate3D(matrix = basis$coef_matrix, newdata = newdata, h1 = 3.75, h2 = 2.5, v = 5);
str(est)

## comparison of estimates and true values:

plot_compare(est = est$estimate[,4], true = true)
index <- appraisal_index(est = est$estimate[,4], true = true);
index

## data visualization:

plot3D_dif(data = data[,1:3], h1 = 3.75, h2 = 2.5, v = 5)
plot3D_NA(newdata = newdata)
plot3D_map(newdata = newdata)

## End(Not run)</pre>
```

plot_compare

Graphic Comparison Between Estimates and True Values

Description

Provided that you have the true values of missing observations, you can compare them with the results of interpolation. plot_compare visualizes the comparison between estimates and true values. (NB: this plotting function can also be used in other similar situations involving comparison between estimates and true values.)

Usage

```
plot_compare(est, true, cex = 1, width = 1, P = 6/7, AI = TRUE)
```

Arguments

est	a numeric vector; estimations.
true	a numeric vector; true values.
cex	numeric; size of point to be plotted. (default: 1)
width	numeric; width of fitted straight line. (default: 1)
Р	numeric, between 0 and 1; position for superimposing values of appraisal indexes. (default: 6/7)
AI	logical; TRUE for presenting appraisal indexes while FALSE for not. (default: TRUE)

8 plot_compare

Details

Attentions:

• The values in est and true vectors should be arranged in the same order, in correspondence with the sequence of observations.

• If the maximum value of either est or true is greater than 1000, or the minimum is smaller than -1000, please make appropriate transformation that limits your data to bound [-1000,1000].

In the plot:

- The big red point is the origin.
- The red line stands for straight line y = x.
- The blue line stands for fitted straight line.

See Also

```
appraisal_index
```

```
## Not run:
## TSCS spatial interpolation procedure:
basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01) # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1) # estimation
str(est)

## comparison of estimates and true values:

plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index

## data visualization:

plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data
## End(Not run)</pre>
```

plot_dif

plot_dif	Plot Interior Spatial Locations and System Boundary - 2D Map

Description

plot_dif differentiates boundary and interior spatial locations in a spatial domain (a collection of spatial locations with their coordinates). Since TSCS method is only capable of interpolation but not extrapolation, it is necessary to highlight the difference between interior spatial locations and system boundary.

Usage

```
plot_dif(coords, h, v, xlab = NULL, ylab = NULL, title = NULL, cex = 1)
```

Arguments

coords	data frame; should only contain the two variables: X coordinate and Y coordinate. Each row uniquely denotes a spatial location. (coordinates must be numeric)
h	numeric; side length of the unit grid in X coordinate direction.
V	numeric; side length of the unit grid in Y coordinate direction.
xlab	a label for the x axis, defaults to the name of X coordinate.
ylab	a label for the y axis, defaults to the name of Y coordinate.
title	a main title for the plot.
cex	numeric; size of plotting point for each spatial location. (default: 1)

Details

plot_dif is exclusive to 2D rectangular grid system. Similarly, if you want to fathom how this package handles 3D rectangular grid system, please refer to plot3D_dif.

See Also

```
plot3D_dif, plot_NA, plot_map
```

```
## Not run:
## TSCS spatial interpolation procedure:
basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01); # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1); # estimation
str(est)</pre>
```

10 plot_map

```
## comparison of estimates and true values:
plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index

## data visualization:

plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data
## End(Not run)</pre>
```

plot_map

Visualize Spatial(Cross-Section) Data of a Given Time Point - 2D Map

Description

plot_map draws a two-dimensional spatial map. It is plotted based on the cross-section data of a given time point, which is also often extracted from spatio-temporal data.

Usage

```
plot_map(newdata, xlab = NULL, ylab = NULL, title = NULL, cex = 2,
    shape = 15, low = "blue", mid = "yellow", high = "red",
    na.value = "white", midpoint = NULL)
```

Arguments

newdata	data frame; should only contain the three variables in order: X coordinate, Y coordinate and observation. This is the cross-section data or pure spatial data of a particular time point you have selected, with missing observations that you want to predict. (coordinates must be numeric)
xlab	a label for the x axis, defaults to the name of X coordinate.
ylab	a label for the y axis, defaults to the name of Y coordinate.
title	a main title for the plot.
cex	numeric; size of plotting point for each spatial locations. (default: 2)
shape	either an integer specifying a symbol or a single character to be used as the default in plotting points. (default: 15)
low, high	colours for low and high ends of the gradient. (default: "blue", "red")
mid	colour for midpoint of the gradient. (default: "yellow")
na.value	colour for missing values/observations. (default: "white")
midpoint	numeric; the midpoint of the gradient scale, defaults to the midpoint value of index presented.

plot_NA

Details

plot_map is exclusive to 2D rectangular grid system. Similarly, if you want to fathom how this package handles 3D rectangular grid system, please refer to plot3D_map.

See Also

```
plot3D_map, plot_NA, plot_dif
```

Examples

```
## Not run:
## TSCS spatial interpolation procedure:
basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01); # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1); # estimation
str(est)

## comparison of estimates and true values:

plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index

## data visualization:

plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data
## End(Not run)</pre>
```

plot_NA

Visualize the Spatial Distribution of Missing Observations - 2D Map

Description

plot_NA shows spatial locations with or without missing observation. It is plotted based on the cross-section data of a given time point, which is also often extracted from spatio-temporal data.

Usage

```
plot_NA(newdata, xlab = NULL, ylab = NULL, title = NULL, cex = 1)
```

12 plot_NA

Arguments

newdata	data frame; should only contain the three variables in order: X coordinate, Y coordinate and observation. This is the cross-section data or pure spatial data of a particular time point you have selected, with missing observations that you want to predict. (coordinates must be numeric)
xlab	a label for the x axis, defaults to the name of X coordinate.
ylab	a label for the y axis, defaults to the name of Y coordinate.
title	a main title for the plot.
cex	numeric; size of plotting point for each spatial location. (default: 1)

Details

plot_NA is exclusive to 2D rectangular grid system. Similarly, if you want to fathom how this package handles 3D rectangular grid system, please refer to plot3D_NA.

See Also

```
plot3D_NA, plot_map, plot_dif
```

```
## Not run:
## TSCS spatial interpolation procedure:
basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01); # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1); # estimation
str(est)

## comparison of estimates and true values:

plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index

## data visualization:

plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data
## End(Not run)</pre>
```

A Package for TSCS Spatial Interpolation Method

TSCS

Description

This package provides functions to implement TSCS spatial interpolation and relevant data visualization. For TSCS method, the current version is only able to make use of spatio-temporal data whose spatial domain is a 2D or 3D rectangular grid system.

Details

- TSCS (abbr. of Time Series Cointegrated System) method is a spatial interpolation method based on analysis of historical spatio-temporal data. It can be regarded as a desirable alternative to spatio-temporal interpolation in some cases where we merely intend to interpolate a series of cross-section data at each observed time point for a given spatial domain.
- 2. The basic assumption of TSCS method is that, for any spatial location within the spatial domain of spatio-temporal data, its time series and the time series of its adjacent spatial locations are cointegrated (long-term equilibrium relationships).
- 3. As to TSCS method, package of the current version is only able to make use of spatio-temporal data whose spatial domain is a 2D or 3D rectangular grid system.

Package Functions

- tscsRegression, tscsRegression3D: obtains regression coefficient matrix, the first step of TSCS for 2D and 3D rectangular grid system respectively.
- tscsEstimate, tscsEstimate3D: estimates the missing observations within a cross-section data (pure spatial data) of a particular time point you have selected, the second step of TSCS for 2D and 3D rectangular grid system respectively.
- plot_dif, plot3D_dif: differentiates boundary and interior spatial locations in a spatial domain.
- plot_NA, plot3D_NA: shows spatial locations with or without missing observation in a spatial domain.
- plot_map, plot3D_map: draws the spatial map for a cross-section data.
- plot_compare : visualizes the comparison between estimates and true values (if you have).
- appraisal_index : computes the two appraisal indexes used for evaluating the result of interpolation/prediction RMSE and standard deviation of error. (if you have the true values)

Author(s)

Tianjian Yang <yangtj5@mail2.sysu.edu.cn>

14 tscsEstimate

		_		٠			
ts	CS	۶. ا	it.	1	ma	١t	e

The Second Step of TSCS for 2D Rectangular Grid System - Estimation

Description

tscsEstimate estimates the missing observations within the cross-section data (pure spatial data) of a particular time point you have selected, namely, the interpolation process.

Usage

```
tscsEstimate(matrix, newdata, h, v)
```

Arguments

matrix	data frame; the first return value coef_matrix of function tscsRegression in the first step of TSCS.
newdata	data frame; should only contain the three variables in order: X coordinate, Y coordinate and observation. This is the cross-section data or pure spatial data of a particular time point you have selected, with missing observations that you want to predict. (coordinates must be numeric)
h	numeric; side length of the unit grid in X coordinate direction.
V	numeric; side length of the unit grid in Y coordinate direction.

Details

- The first step of TSCS spatial interpolation should be carried out by function tscsRegression, which is the prerequisite of tscsEstimate.
- For 3D rectangular grid system, the procedure of TSCS stays the same. Please see tscsRegression3D and tscsEstimate3D.
- Attentions: Since TSCS is only capable of interpolation but not extrapolation, please make sure that the missing observations in a given spatial domain are all located at interior spatial locations. Otherwise, extrapolation would occur with an error following.

Value

A list of 3 is returned, including:

estimate data frame; estimate of missing observations which contains the 3 variables in order: X coordinate, Y coordinate and estimation.

complete data frame; an updated version of the cross-section data (pure spatial data) newdata, with all of its missing observations interpolated.

NA_id an integer vector; reveals the instance ID, in data frame newdata, of spatial locations with missing observation.

See Also

tscsRegression, tscsEstimate3D, plot_NA, plot_map

tscsEstimate3D 15

Examples

```
## Not run:

## TSCS spatial interpolation procedure:

basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01); # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1); # estimation
str(est)

## comparison of estimates and true values:

plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index

## data visualization:

plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data
## End(Not run)</pre>
```

tscsEstimate3D

The Second Step of TSCS for 3D Rectangular Grid System - Estimation

Description

tscsEstimate estimates the missing observations within the cross-section data (pure spatial data) of a particular time point you have selected, namely, the interpolation process.

Usage

```
tscsEstimate3D(matrix, newdata, h1, h2, v)
```

Arguments

matrix	data frame; the first return value coef_matrix of function tscsRegression3D in the first step of TSCS.
newdata	data frame; should only contain the four variables in order: X coordinate, Y coordinate, Z coordinate and observation. This is the cross-section data or pure spatial data of a particular time point you have selected, with missing observations that you want to predict. (coordinates must be numeric)
h1	numeric; side length of the unit cubic grid in X coordinate direction (horizontal).
h2	numeric; side length of the unit cubic grid in Y coordinate direction (horizontal).
V	numeric; side length of the unit cubic grid in Z coordinate direction (vertical).

16 tscsEstimate3D

Details

• The first step of TSCS spatial interpolation should be carried out by function tscsRegression3D, which is the prerequisite of tscsEstimate3D.

- For 2D rectangular grid system, the procedure of TSCS stays the same. Please see tscsRegression and tscsEstimate.
- Attentions: Since TSCS is only capable of interpolation but not extrapolation, please make sure that the missing observations in a given spatial domain are all located at interior spatial locations. Otherwise, extrapolation would occur with an error following.

Value

A list of 3 is returned, including:

estimate data frame; estimate of missing observations which contains the 4 variables in order: X coordinate, Y coordinate, Z coordinate and estimation.

complete data frame; an updated version of the cross-section data (pure spatial data) newdata, with all of its missing observations interpolated.

NA_id an integer vector; reveals the instance ID, in data frame newdata, of spatial locations with missing observation.

See Also

tscsRegression3D, tscsEstimate, plot3D_NA, plot3D_map

```
## Not run:
## TSCS spatial interpolation procedure:
basis <- tscsRegression3D(data = data, h1 = 3.75, h2 = 2.5, v = 5, alpha = 0.01);
basis$percentage
est <- tscsEstimate3D(matrix = basis$coef_matrix, newdata = newdata, h1 = 3.75, h2 = 2.5, v = 5);
str(est)

## comparison of estimates and true values:

plot_compare(est = est$estimate[,4], true = true)
index <- appraisal_index(est = est$estimate[,4], true = true);
index

## data visualization:

plot3D_dif(data = data[,1:3], h1 = 3.75, h2 = 2.5, v = 5)
plot3D_NA(newdata = newdata)
plot3D_map(newdata = newdata)

## End(Not run)</pre>
```

tscsRegression 17

tscsRegression	The First Step of TSCS for 2D Rectangular Grid System - Regression
tscsRegression	The First Step of TSCS for 2D Rectangular Gria System - Regression

Description

To implement TSCS spatial interpolation for a spatial domain that is a 2D rectangular grid system, the first step is obtaining regression coefficient matrix, which can be done by function tscsRegression. It is the prerequisite of TSCS interpolation process because the 'matrix' derived from historical spatio-temporal data is the initial value of the second step - estimating missing observations.

Usage

```
tscsRegression(data, h, v, alpha = 0.05)
```

Arguments

data	data frame; should contain these variables in order: X coordinate, Y coordinate and observations as time goes on. That is to say, each row should include X and Y coordinate first, and then a time series. This is the historical spatio-temporal data that you intend to analyze as the basis for interpolation later on in tscsEstimate.
h	numeric; side length of the unit grid in X coordinate direction.
V	numeric; side length of the unit grid in Y coordinate direction.
alpha	numeric; specify the significance level for ADF test, to test if the time series of a group of spatial locations are cointegrated. (default: 0.05)

Details

- The second step of TSCS spatial interpolation should be carried out by function tscsEstimate, where you have to input the cross-section data or pure spatial data of a particular time point you have selected, with missing observations that you want to predict.
- For 3D rectangular grid system, the procedure of TSCS stays the same. Please see tscsRegression3D and tscsEstimate3D.
- Attentions: (1) Since TSCS is only capable of interpolation but not extrapolation, it is necessary to highlight the difference between interior spatial locations and system boundary. Function plot_dif can help. (2) NA value in historical spatio-temporal data data is not allowed. Please handle them beforehand (such as filling these NA values through spatio-temporal kriging).

Value

A list of 2 is returned, including:

coef_matrix data frame; regression coefficient matrix to be used as input parameter of function tscsEstimate in the second step of TSCS interpolation.

percentage numeric; percentage of cointegrated relationships, a measurement of the degree it satisfies the assumption of cointegrated system. It is highly affected by parameter alpha, the significance level you have set. Explicitly, smaller alpha results in smaller percentage.

18 tscsRegression3D

See Also

tscsEstimate, tscsRegression3D, plot_dif

Examples

```
## Not run:
  ## TSCS spatial interpolation procedure:
 basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01); # regression
 basis$percentage # see the percentage of cointegrated relationships
 \texttt{est} \leftarrow \texttt{tscsEstimate}(\texttt{matrix} = \texttt{basis\$coef\_matrix}, \, \texttt{newdata} = \texttt{newdata}, \, \texttt{h} = \texttt{1}, \, \texttt{v} = \texttt{1}); \, \texttt{\#} \, \texttt{estimation}
  str(est)
  ## comparison of estimates and true values:
 plot_compare(est = est$estimate[,3], true = true) # graphic comparison
  index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std</pre>
  index
  ## data visualization:
 plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
 plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
 plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data
  ## End(Not run)
tscsRegression3D
                             The First Step of TSCS for 3D Rectangular Grid System - Regression
```

Description

To implement TSCS spatial interpolation for a spatial domain that is a 3D rectangular grid system, the first step is obtaining regression coefficient matrix, which can be done by function tscsRegression3D. It is the prerequisite of TSCS interpolation process because the 'matrix' derived from historical spatio-temporal data is the initial value of the second step - estimating missing observations.

Usage

```
tscsRegression3D(data, h1, h2, v, alpha = 0.05)
```

Arguments

data

data frame; should contain these variables in order: X coordinate, Y coordinate, Z coordinate and observations as time goes on. That is to say, each row should include X, Y and Z coordinate first, and then a time series. This is the historical spatio-temporal data that you intend to analyze as the basis for interpolation later on in tscsEstimate3D.

tscsRegression3D 19

h1	numeric; side length of the unit cubic grid in X coordinate direction (horizontal).
h2	numeric; side length of the unit cubic grid in Y coordinate direction (horizontal).
V	numeric; side length of the unit cubic grid in Z coordinate direction (vertical).
alpha	numeric; specify the significance level for ADF test, to test if the time series of
	a group of spatial locations are cointegrated. (default: 0.05)

Details

- The second step of TSCS spatial interpolation should be carried out by function tscsEstimate3D, where you have to input the cross-section data or pure spatial data of a particular time point you have selected, with missing observations that you want to predict.
- For 2D rectangular grid system, the procedure of TSCS stays the same. Please see tscsRegression and tscsEstimate.
- Attentions: (1) Since TSCS is only capable of interpolation but not extrapolation, it is necessary to highlight the difference between interior spatial locations and system boundary. Function plot3D_dif can help. (2) NA value in historical spatio-temporal data data is not allowed. Please handle them beforehand (such as filling these NA values through spatio-temporal kriging).

Value

A list of 2 is returned, including:

coef_matrix data frame; regression coefficient matrix to be used as input parameter of function tscsEstimate in the second step of TSCS interpolation.

percentage numeric; percentage of cointegrated relationships, a measurement of the degree it satisfies the assumption of cointegrated system. It is highly affected by parameter alpha, the significance level you have set. Explicitly, smaller alpha results in smaller percentage.

See Also

```
tscsEstimate3D, tscsRegression, plot3D_dif
```

```
## Not run:
## TSCS spatial interpolation procedure:
basis <- tscsRegression3D(data = data, h1 = 3.75, h2 = 2.5, v = 5, alpha = 0.01);
basis$percentage
est <- tscsEstimate3D(matrix = basis$coef_matrix, newdata = newdata, h1 = 3.75, h2 = 2.5, v = 5);
str(est)
## comparison of estimates and true values:
plot_compare(est = est$estimate[,4], true = true)
index <- appraisal_index(est = est$estimate[,4], true = true);
index</pre>
```

20 tscsRegression3D

```
## data visualization:
plot3D_dif(data = data[,1:3], h1 = 3.75, h2 = 2.5, v = 5)
plot3D_NA(newdata = newdata)
plot3D_map(newdata = newdata)
## End(Not run)
```

Index

```
appraisal_index, 2, 8

plot3D_dif, 3, 5, 6, 9, 19
plot3D_map, 4, 4, 6, 11, 16
plot3D_NA, 4, 5, 6, 12, 16
plot_compare, 2, 7
plot_dif, 4, 9, 11, 12, 18
plot_map, 5, 9, 10, 12, 14
plot_NA, 6, 9, 11, 11, 14

TSCS, 13
TSCS-package (TSCS), 13
tscsEstimate, 14, 16, 18
tscsEstimate3D, 14, 15, 19
tscsRegression, 14, 17, 19
tscsRegression3D, 16, 18, 18
```