ECUACIONES DIFERENCIALES I Grado en Informática y Matemáticas

Relación de ejercicios 1: Métodos elementales de resolución de EDOs

Ecuaciones diferenciales en variables separadas

1.- La población P(t) de un suburbio de una gran ciudad en un instante cualquiera se rige por

 $\frac{dP}{dt} = P(10^{-1} - 10^{-7}P), \qquad P(0) = 5000,$

en donde t se mide en meses. ¿Cuál es el valor límite de la población? ¿En qué momento será la población igual a la mitad de su valor límite?

2.- Resuelve las siguientes ecuaciones diferenciales:

(a)
$$x' = e^t - \frac{2t}{t^2 - 1}$$
 (b) $(x^2 + 9)y' + xy = 0$
(c) $\frac{dy}{dx} = 2xe^{-y}$ (d) $x' = \frac{1+t}{t^2x^2}$
(e) $x' = e^{t+x}$

- 3.- Un reactor transforma plutonio 239 en uranio 238 que es relativamente estable para uso industrial. Después de 15 años se determina que 0.0043 por ciento de la cantidad inicial A_0 de plutonio se ha desintegrado. Determina la semivida (tiempo necesario para que la cantidad inicial de los átomos se reduzca a la mitad) de este isótopo si la rapidez de desintegración es proporcional a la cantidad restante.
- **4.-** Dadas dos funciones f y g derivables, sabemos que la identidad (fg)' = f'g' es falsa en general. Si fijamos $f(x) = e^{x^3+2x}$, determina las funciones g que verifican dicha identidad.

Ecuaciones homogéneas y reducibles a homogéneas

5.- Resuelve las siguientes ecuaciones diferenciales:

(a)
$$3x + y - 2 + y'(x - 1) = 0$$
 (b) $(t^2x^2 - 1)x' + 2tx^3 = 0$, haciendo $x = z^{\alpha}$ (c) $x + (x - t)x' = 0$ (d) $2t + 3x + (x + 2)x' = 0$

6.- Encontrar la curva plana que pasa por el punto (1,1) y verifica que dado un punto cualquiera (x,y), al considerar el corte de la recta tangente a la curva en ese punto con el eje de ordenadas y el corte de la recta normal con el eje de abscisas, su distancia al origen es la misma.

Ecuaciones diferenciales exactas y factores integrantes

7.- Encuentra las soluciones de las siguientes ecuaciones diferenciales buscando (si es el caso) factores integrantes de la forma que se indica:

(a)
$$\operatorname{sen}(tx) + tx \cos(tx) + t^2 \cos(tx)x' = 0$$

(b) $\frac{\operatorname{sen}(2x)}{y} + x + \left(y - \frac{\operatorname{sen}^2 x}{y^2}\right)y' = 0$
(c) $(3xy^2 - 4y) + (3x - 4x^2y)y' = 0 \operatorname{con}\mu(x,y) = \mu(x^ny^m)$
(d) $xy'(y-1) - y = 0 \operatorname{con}\mu(x,y) = \mu(y)$
(e) $(t+1)^2 + (1+t^2)x' = 0 \operatorname{con}\mu(x,y) = \mu(x+y)$
(f) $(1+xy+y^2) + (1+xy+x^2)y' = 0 \operatorname{con}\mu(x,y) = \mu(xy)$
(g) $(x+y^2) + 2(y^2+y+x-1)y' = 0 \operatorname{con}\mu(x,y) = \mu(e^{ax+by})$
(h) $2xyy' = x^2 + y^2 + 1 \operatorname{con}\mu(x,y) = \mu(y^2 - x^2)$
(h) $t^3 - tx^2 - x + (t^2x - x^3 + t)x' = 0 \operatorname{con}\mu(t,x) = \mu(t^2 - x^2)$

Ecuaciones diferenciales lineales

- 8.- Contesta razonadamente a las siguientes cuestiones:
 - (a) ¿Puede ser la función $\phi(t)=t^2$ (definida para $t\in \mathbb{R}$) solución de una ecuación lineal de primer orden homogénea? ¿Y de una ecuación lineal de primer orden no homogénea?
 - (b) ¿Pueden ser las funciones $\phi(t) = e^t$ y $\psi(t) = e^{-t}$ (definidas para $t \in \mathbb{R}$) soluciones de una misma ecuación lineal de primer orden homogénea? ¿y de una ecuación lineal de primer orden no homogénea?

En caso afirmativo proporciona un ejemplo explícito.

- **9.-** Calcula los valores de la constante $\mu \in \mathbb{R}$ que hacen que la ecuación diferencial $x' = (\mu + \cos^2 t)x$ tenga una solución π -periódica (es decir, $x(t) = x(t + \pi) \ \forall t \in \mathbb{R}$) no trivial.
- 10.- Resuelve las siguientes ecuaciones diferenciales lineales usando el método de variación de constantes:

(a)
$$x' - tx = 3t$$
 (b) $y' = 5y + \cos x$
(c) $x' = \left(\frac{2t}{t^2+1}\right)x + t^3$ (d) $x' - 2x = 4e^{2t}$

ecuaciones diferenciales lineales

11.- Resuelve los siguientes problemas de valores iniciales mediante la fórmula de variación de las constantes:

(a)
$$x' + 3x = e^{-3t}$$
, $x(1) = 5$
(b) $x' - \frac{x}{t} = \frac{1}{1+t^2}$, $x(2) = 0$
(c) $x' = \cosh(t) x + \operatorname{senh}(t)$, $x(0) = 1$

12.- Sean $a, b : \mathbb{R} \to \mathbb{R}$ funciones continuas tales que $a(t) \geq c > 0$ para todo $t \in \mathbb{R}$ y

$$\lim_{t \to \infty} b(t) = 0.$$

Demostrar que todas las soluciones de la ecuación diferencial x' = -a(t)x + b(t) tienden a cero cuando $t \to \infty$. (Indicación: usa la regla de L'Hôpital en el segundo término de la fórmula de variación de las constantes).

Ecuaciones diferenciales de Bernouilli y Ricatti

13.- Resuelve las siguientes ecuaciones diferenciales de Bernouilli:

(a)
$$3tx' - 2x = \frac{t^3}{x^2}$$
 (b) $x' = e^t x^7 + 2x$ (c) $y' + \frac{y}{x} = \frac{\ln(x)}{x} y^2$

14.- Resuelve las siguientes ecuaciones diferenciales de Riccati usando la solución particular proporcionada:

(a)
$$y' = y^2 - xy + 1$$
 con $y_p(x) = x$
(b) $y' = x^{-4} - y^2$ con $y_p(x) = \frac{1}{x} - \frac{1}{x^2}$

15.- Se considera la ecuación diferencial de Riccati

$$y' = -\frac{1}{x^2} - \frac{y}{x} + y^2.$$

- (a) Busca una solución particular de la forma $y = x^{\alpha}$ con $\alpha \in \mathbb{R}$.
- (b) Encuentra la solución de la ecuación que cumple y(1) = 2 y calcula, si es posible, el límite cuando $x \to \infty$ de dicha solución.

Algunas +

16.- Resuelve las siguientes ecuaciones diferenciales usando el método que convenga en cada caso:

(a)
$$3e^t \tan(x) + (2 - e^t) \sec^2(x)x' = 0$$
 (b) $(3t^2x + x^3)x' + 2t^3 = 0$

(c)
$$xy' + y = y^2 \log(x)$$
 (d) $t \cos(x)$

(d)
$$t\cos(t+x) + \sin(t+x) + t\cos(t+x)x' = 0$$

(e)
$$(3tx + x^2) + (3tx + t^2)x' = 0$$

(f)
$$tx \cos(tx) + \sin(tx) + (t^2 \cos(tx) + e^x)x' = 0$$

(h) $x' = \frac{1}{x+t}$

(g)
$$3x + 3e^t x^{\frac{2}{3}} + tx' = 0$$

(h)
$$x' = \frac{1}{x+t}$$

(j) $xy' + y = y^2 \ln(x)$

(i)
$$y' = \frac{y}{2y \ln(y) + y - x}$$

(k) $y' = e^x - \frac{2x}{x^2 - 1}$
(m) $y' = 1 + e^{2x}$

$$(j) xy + y = y^{-} \ln(x)$$

(k)
$$y' = e^x - \frac{2x}{x^2 - 1}$$

(1)
$$y + (y - x)y' = 0$$

(m)
$$y' = 1 + e^{2x}$$

(n)
$$(x^2 + 9)y' + xy = 0$$

(o)
$$y' = \frac{1+x}{x^2y^2}$$

(p)
$$y' = \frac{y}{x}(\log(y) - \log(x))$$

$$(q) xy' + y = 2x$$

$$(\mathbf{r}) \ y' = \ln(x^y)$$

17.- Decide de forma razonada si las siguientes afirmaciones son verdaderas o falsas:

- (a) Una solución del problema de valores iniciales $x' = x^2 + t^2$, x(1) = 2, definida en un intervalo abierto que contenga a [1, 2] satisface x(2) = 1.
- (b) La ecuación de Ricatti $y' + y + y^2 + e^x = 0$ se transforma en una ecuación diferencial lineal de orden dos z'' + a(x)z' + b(x)z + c(x) = 0 mediante el cambio de variable $y = \frac{z'}{z}$ (Septiembre 03).
- 18.- La ley de Newton del enfriamiento de los cuerpos establece que la variación de temperatura en un cuerpo es proporcional a la diferencia entre la temperatura del mismo y la del medio ambiente. Asimismo, desde el punto de vista médico, se sabe que la temperatura media de un ser humano con vida es de 98.6 °F. En la noche del 4 de Julio de 1954 la esposa del Dr. Sheppard fue asesinada. La policía llegó a las 12 de la noche observando el forense que la temperatura del cadáver era de 85 °F. La temperatura del aire esa noche fue de 68 °F. El Dr. Sheppard fue avisado del suceso mientras asistía a una reunión médica que había empezado a las 22h 30min. Cuando el forense volvió a tomar la temperatura del cuerpo a las 2 de la madrugada, ésta era de 74 °F. El Dr. Sheppard fue acusado del crimen y juzgado por ello. ¿Qué hora estableció el forense como hora aproximada de la muerte? ¿Asesinó en Dr. Sheppard a su esposa? (NOTA: El Dr. Sheppard fue condenado a cadena perpetua. Diez años más tarde un nuevo jurado lo declaró no culpable. El caso sigue sin resolverse y ha dado lugar a la serie televisiva y película cinematográfica El fuqitivo).
- 19.- Calcular el haz ortogonal a cada una de las siguientes familias uniparamétricas de curvas:

1.
$$x^3 - 3xy^2 = c, c \in \mathbb{R}$$
.

2.
$$y^2 = 2x^2(1 - cx), c \in \mathbb{R}$$
.

3.
$$y = ce^{-x}, c \in \mathbb{R}$$
.