

Exploratory Data Analysis II and Plots with R

Santi Perez Hoyos santi.perezhoyos@vhir.org

Miriam Mota Foix miriam.mota@vhir.org

TABLE OF CONTENTS

- 1. Elegant graphics for data analysis
- 2. From univariate to bivariate analysis
- 3. Bivariate analysis
 - 1. Qualitative vs Qualitative
 - 2. Qualitative vs Quantitative
 - 3. Quantitative vs Quantitative

4. Correlation

- 1. Definition
- 2. Types of correlation (Pearson, Spearman)

TABLE OF CONTENTS

- 1. Elegant graphics for data analysis
- 2. From univariate to bivariate analysis
- 3. Bivariate analysis
 - 1. Qualitative vs Qualitative
 - 2. Qualitative vs Quantitative
 - 3. Quantitative vs Quantitative

4. Correlation

- 1. Definition
- 2. Types of correlation (Pearson, Spearman)

- R is a powerful tool to plot your data
- Hadley Wickam (2009) introduced a modern (and perhaps easier) way to plot your data
- Extensions to ggplot2
 - GGally, ggrepel, ...

Hadley Wickam book

http://moderngraphics11.pbworks.com/f/ggplot2-Book09hWickham.pdf https://ggplot2-book.org/

STHDA (Statistical tools for high-throughput data analysis) http://www.sthda.com/english/wiki/ggplot2-essentials

R Colors

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

How ggplot2 works?

- It is based on the *Grammar of Graphics* (Wilkinson 2005)
- Grammar tells us that a graphic maps the data to the aesthetic attributes (colour, shape, size) of geometric objects (points, lines, bars).
- Plot may also include statistical transformations of the data and information about plot's coordinate system

- Mapping components:
 - Layer: Geoms (what you actually see in the plot: points, lines,...), stats (summarise the data)
 - Scales: how we want to see the data (aesthetic). Color, shapes, legend, axes....
 - Coord: axes, gridlines
 - Facet: if you want to divide your data in different plots
 - Theme: Font size, background colors, ...

- How to install: install.packages("ggplot2")
- First steps. Three key components:
 - Data
 - Aesthetic mappings between variables
 - A least one layer. Usually created with a geom function

The data: (https://ggplot2.tidyverse.org/reference/mpg.html)
 head(mpg)

# A tibble: 6 >	x 11								
manufacturer	model	displ	year	cyl	trans	drv	cty	hwy fl	class
<chr></chr>	<chr>></chr>	<db1></db1>	<int></int>	<int></int>	<chr></chr>	<chr>></chr>	<int></int>	<int> <chr></chr></int>	<chr></chr>
1 audi	a4	1.8	<u>1</u> 999	4	auto(15)	f	18	29 p	compact
2 audi	a4	1.8	<u>1</u> 999	4	manual(m5)	f	21	29 p	compact
3 audi	a4	2	<u>2</u> 008	4	manual(m6)	f	20	31 p	compact
4 audi	a4	2	<u>2</u> 008	4	auto(av)	f	21	30 p	compact
5 audi	a4	2.8	1 999	6	auto(15)	f	16	26 p	compact
6 audi	a4	2.8	<u>1</u> 999	6	manual(m5)	f	18	26 p	compact

A data frame with 234 rows and 11 variables:

manufacturer. manufacturer name

model: model name

displ: engine displacement, in litres

year. year of manufacture

"type" of car

cyl: number of cylinders

trans: type of transmission

drv: the type of drive train, where f = front-wheel drive, r = rear wheel drive, 4 = 4wd

cty: city miles per gallon

hwy: highway miles per gallon

fl: fuel type

class

• The plot:

```
ggplot(mpg) aes(x = displ, y = hwy)) +
geom_point()
```



```
ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point()
```


ggplot(mpg, aes(x = displ, y = hwy, color = manufacturer)) +
 geom_point()

ggplot(mpg, aes(x = displ, y = hwy, color = manufacturer, shape = drv)) +
 geom_point()

TABLE OF CONTENTS

- 1. Elegant graphics for data analysis
- 2. From univariate to bivariate analysis
- 3. Bivariate analysis
 - 1. Qualitative vs Qualitative
 - 2. Qualitative vs Quantitative
 - 3. Quantitative vs Quantitative

4. Correlation

- 1. Definition
- 2. Types of correlation (Pearson, Spearman)

Last week we learned...

• We can analyse and describe each variable one by one:

1. With some measures:

Measures of central tendency

Measures of dispersion

2. Some graphics

• In univariate analysis only one variable is analyzed each time

the purpose of the analysis is descriptive

- If there are more than one variable in the dataset it could be interesting to guess if:
 - Does exist a relation between the two variables?
 - How important is this relation?
 - Which is the direction of the relation?

₩ os	teo											×
	registro	area	f_nac	edad	grupedad	peso	talla	bua	imc	clasific	me	
1	3	10	11659420800	57	55 - 59	70.0	168.0	69	24.80159	OSTEOPENIA		٨
2	4	10	11671689600	46	45 - 49	53.0	152.0	73	22.93975	OSTEOPENIA		
3	10	10	11721024000	45	45 - 49	64.0	158.0	81	25.63692	NORMAL		
4	11	10	11464416000	53	50 - 54	78.0	161.0	58	30.09143	OSTEOPENIA		
5	12	10	11690784000	46	45 - 49	56.0	157.0	89	22.71897	NORMAL		
6	15	10	11716012800	45	45 - 49	63.5	170.0	76	21.97232	NORMAL		
7	16	10	11623737600	48	45 - 49	86.0	161.0	87	33.17773	NORMAL		
8	17	10	11562307200	50	50 - 54	61.5	164.0	74	22.86585	NORMAL		
9	18	10	11538028800	51	50 - 54	60.5	158.0	58	24.23490	OSTEOPENIA		
10	20	10	11332483200	57	55 - 59	64.0	149.0	61	28.82753	OSTEOPENIA		
11	21	10	11631945600	48	45 - 49	70.3	160.0	67	27.46094	OSTEOPENIA		
12	22	10	11425536000	55	55 - 59	74.4	160.0	68	29.06250	OSTEOPENIA		
13	23	10	11553235200	50	50 - 54	55.5	154.5	73	23.25070	OSTEOPENIA		
14	24	10	11367302400	56	55 - 59	89.0	166.0	61	32.29787	OSTEOPENIA		
15	25	10	11585635200	49	45 - 49	50.6	157.0	68	20.52822	OSTEOPENIA		
16	26	10	11572156800	50	50 - 54	71.4	152.0	74	30.90374	NORMAL		
17	27	10	11590992000	49	45 - 49	78.0	157.0	62	31.64429	OSTEOPENIA		
18	28	10	11293516800	58	55 - 59	72.0	162.0	65	27.43484	OSTEOPENIA		
19	29	10	11215238400	61	60 - 64	68.0	155.5	65	28.12212	OSTEOPENIA		
20	30	10	11405664000	55	55 - 59	75.0	161.0	92	28.93407	NORMAL		
21	31	10	11633155200	48	45 - 49	66.5	153.0	11	28.40788	OSTEOPOROSIS		
22	32	10	11287728000	59		101.0	156.0	82	41.50230	NORMAL		
23	34	10	10992758400	68	65 – 69	66.5	145.0	57	31.62901	OSTEOPENIA		
24	35	10	10909382400	69	65 – 69	70.0	168.0	48	24.80159	OSTEOPOROSIS		
25	36	10	11643868800	48	45 - 49	60.1	153.0	86	25.67389	NORMAL		
26	37	10	11551420800	50	50 - 54	67.0	159.0	105	26.50212	NORMAL		
27	38	10	11043907200	66	65 – 69	67.0	144.0	79	32.31096	NORMAL		
28	39	10	10948089600	69	65 – 69	70.5	148.5	40	31.96953	OSTEOPOROSIS		
29	40	10	11051251200	66	65 – 69	66.5	147.0	48		OSTEOPOROSIS		
30	41	10	11333692800	57	55 - 59	58.5	142.0	80	29.01210	NORMAL		٧
	<	Ш									>	

os os	teo]	
	registro	area	f_nac	edad	grupedad	peso	talla	bua	imc	clasific	me	
1	3	10	11659420800	57	55 - 59	70.0	168.0	69	24.80159	OSTEOPENIA		^
2	4	10	11671689600	46	45 - 49	53.0	152.0	73	22.93975	OSTEOPENIA	Į.	
3	10	10	11721024000	45	45 - 49	64.0	158.0	81	25.63692	NORMAL		
4	11	10	11464416000	53	50 - 54	78.0	161.0	58	30.09143	OSTEOPENIA		
5	12	10	11690784000	46	45 - 49	56.0	157.0	89	22.71897	NORMAL		
6	15	10	11716012800	45	45 - 49	63.5	170.0	76	21.97232	NORMAL		
7	16	10	11623737600	48	45 - 49	86.0	161.0	87	33.17773	NORMAL		
8	17	10	11562307200	50	50 - 54	61.5	164.0	74	22.86585	NORMAL		
9	18	10	11538028800	51	50 - 54	60.5	158.0	58	24.23490	OSTEOPENIA		
10	20	10	11332483200	57	55 - 59	64.0	149.0	61	28.82753	OSTEOPENIA		
11	21	10	11631945600	48	45 - 49	70.3	160.0	67	27.46094	OSTEOPENIA		
12	22	10	11425536000	55	55 - 59	74.4	160.0	68	29.06250	OSTEOPENIA		
13	23	10	11553235200	50	50 - 54	55.5	154.5	73	23.25070	OSTEOPENIA		
14	24	10	11367302400	56	55 - 59	89.0	166.0	61	32.29787	OSTEOPENIA		
15	25	10	11585635200	49	45 - 49	50.6	157.0	68	20.52822	OSTEOPENIA		
16	26	10	11572156800	50	50 - 54	71.4	152.0	74	30.90374	NORMAL		
17	27	10	11590992000	49	45 - 49	78.0	157.0	62	31.64429	OSTEOPENIA		
18	28	10	11293516800	58	55 - 59	72.0	162.0	65	27.43484	OSTEOPENIA		
19	29	10	11215238400	61	60 - 64	68.0	155.5	65	28.12212	OSTEOPENIA		
20	30	10	11405664000	55	55 - 59	75.0	161.0	92	28.93407	NORMAL		
21	31	10	11633155200	48	45 - 49	66.5	153.0	11	28.40788	OSTEOPOROSIS		
22	32	10	11287728000	59	55 - 59	101.0	156.0	82	41.50230	NORMAL		
23	34	10	10992758400	68	65 - 69	66.5	145.0	57	31.62901	OSTEOPENIA		
24	35	10	10909382400	69	65 – 69	70.0	168.0	48	24.80159	OSTEOPOROSIS		
25	36	10	11643868800	48	45 - 49	60.1	153.0	86	25.67389	NORMAL		
26	37	10	11551420800	50	50 - 54	67.0	159.0	105	26.50212	NORMAL		
27	38	10	11043907200	66	65 – 69	67.0	144.0	79	32.31096	NORMAL		
28	39	10	10948089600	69	65 – 69	70.5	148.5	40	31.96953	OSTEOPOROSIS		
29	40	10	11051251200	66	65 – 69	66.5	147.0	48	30.77421	OSTEOPOROSIS		
30	41	10	11333692800	57	55 - 59	58.5	142.0	80	29.01210	NORMAL	•	V
	<	Ш									>	

4550											
os os	teo								<u> </u>	<u> </u>	<
	registro	area	f_nac	edad	grupedad	peso talla	bua	imc	clasific	me	
1	3	10	11659420800	57	55 - 59	70.0 168.0	69	24.80159	OSTEOPENIA		^
2	4	10	11671689600	46	45 - 49	53.0 152.0	73	22.93975	OSTEOPENIA	Į.	
3	10	10	11721024000	45	45 - 49	64.0 158.0	81	25.63692	NORMAL		
4	11	10	11464416000	53	50 - 54	78.0 161.0	58	30.09143	OSTEOPENIA		
5	12	10	11690784000	46	45 - 49	56.0 157.0	89	22.71897	NORMAL		
6	15	10	11716012800	45	45 - 49	63.5 170.0	76	21.97232	NORMAL		
7	16	10	11623737600	48	45 - 49	86.0 161.0	87	33.17773	NORMAL		
8	17	10	11562307200	50	50 - 54	61.5 164.0	74	22.86585	NORMAL		
9	18	10	11538028800	51	50 - 54	60.5 158.0	58	24.23490	OSTEOPENIA		
10	20	10	11332483200	57	55 - 59	64.0 149.0	61	28.82753	OSTEOPENIA		
11	21	10	11631945600	48	45 - 49	70.3 160.0	67	27.46094	OSTEOPENIA		
12	22	10	11425536000	55	55 - 59	74.4 160.0	68	29.06250	OSTEOPENIA		
13	23	10	11553235200	50	50 - 54	55.5 154.5	73	23.25070	OSTEOPENIA		
14	24	10	11367302400	56	55 - 59	89.0 166.0	61	32.29787	OSTEOPENIA		
15	25	10	11585635200	49	45 - 49	50.6 157.0	68	20.52822	OSTEOPENIA		
16	26	10	11572156800	50	50 - 54	71.4 152.0	74	30.90374	NORMAL		
17	27	10	11590992000	49	45 - 49	78.0 157.0	62	31.64429	OSTEOPENIA		
18	28	10	11293516800	58	55 - 59	72.0 162.0	65	27.43484	OSTEOPENIA		
19	29	10	11215238400	61	60 - 64	68.0 155.5	65	28.12212	OSTEOPENIA		
20	30	10	11405664000	55	55 - 59	75.0 161.0	92	28.93407	NORMAL		
21	31	10	11633155200	48	45 - 49	66.5 153.0	11	28.40788	OSTEOPOROSIS		
22	32	10	11287728000	59	55 - 59	101.0 156.0	82	41.50230	NORMAL		
23	34	10	10992758400	68	65 – 69	66.5 145.0	57	31.62901	OSTEOPENIA		
24	35	10	10909382400	69	65 – 69	70.0 168.0	48	24.80159	OSTEOPOROSIS		
25	36	10	11643868800	48	45 - 49	60.1 153.0	86	25.67389	NORMAL		
26	37	10	11551420800	50	50 - 54	67.0 159.0	105	26.50212	NORMAL		
27	38	10	11043907200	66	65 – 69	67.0 144.0	79	32.31096	NORMAL		
28	39	10	10948089600	69	65 – 69	70.5 148.5	40	31.96953	OSTEOPOROSIS		
29	40	10	11051251200	66	65 – 69	66.5 147.0	48	30.77421	OSTEOPOROSIS		
30	41	10	11333692800	57	55 - 59	58.5 142.0	80	29.01210	NORMAL		Y
	<	Ш								>	

TABLE OF CONTENTS

- 1. Elegant graphics for data analysis
- 2. From univariate to bivariate analysis
- 3. Bivariate analysis
 - 1. Qualitative vs Qualitative
 - 2. Qualitative vs Quantitative
 - 3. Quantitative vs Quantitative
- 4. Correlation
 - 1. Definition
 - 2. Types of correlation (Pearson, Spearman)

Bivariate analysis

• Involves the analysis of **two** variables for the purpose of determining the empirical relationship between them.

easiest way is to measure how those two variables simultaneously change together

Bivariate analysis

• Involves the analysis of **two** variables for the purpose of determining the empirical relationship between them.

easiest way is to measure how those two variables simultaneously change together

• Major differentiating point between univariate and bivariate analysis (a part from the number of variables implicated) is that bivariate analysis goes beyond simply descriptive, since it study the relationship between the two variables.

Why bivariate analysis?

Let's begin by asking if:

People tend to marry other people of about the same age?

Our experience tells us "yes", but how good is the correspondence?

Husband	36	72	37	36	51	50	47	50	37	41
Wife	35	67	33	35	50	46	47	42	36	41

Sample of spousal ages of 10 White American Couples

Why bivariate analysis?

Figure 1. Histograms of spousal ages.

	Mean	Standard Deviation
Husbands	49	11
Wives	47	11

Why bivariate analysis?

Figure 2. Scatter plot showing wife's age as a function of husband's age.

- The older the husband the older the wife.
- It is possible to know age of wives for an husband age.

Some plots to study the relationship between two variables...

os 🐺	teo									 	<
	registro	area	f_nac	edad	grupedad	peso talla	bua	imc	clasific	me	
1	3	10	11659420800	57	55 - 59	70.0 168.0	69	24.80159	OSTEOPENIA		^
2	4	10	11671689600	46	45 - 49	53.0 152.0	73	22.93975	OSTEOPENIA	l į	
3	10	10	11721024000	45	45 - 49	64.0 158.0	81	25.63692	NORMAL		
4	11	10	11464416000	53	50 - 54	78.0 161.0	58	30.09143	OSTEOPENIA		
5	12	10	11690784000	46	45 - 49	56.0 157.0	89	22.71897	NORMAL		
6	15	10	11716012800	45	45 - 49	63.5 170.0	76	21.97232	NORMAL		
7	16	10	11623737600	48	45 - 49	86.0 161.0	87	33.17773	NORMAL		
8	17	10	11562307200	50	50 - 54	61.5 164.0	74	22.86585	NORMAL		
9	18	10	11538028800	51	50 - 54	60.5 158.0	58	24.23490	OSTEOPENIA		
10	20	10	11332483200	57	55 - 59	64.0 149.0	61	28.82753	OSTEOPENIA		
11	21	10	11631945600	48	45 - 49	70.3 160.0	67	27.46094	OSTEOPENIA		
12	22	10	11425536000	55	55 - 59	74.4 160.0	68	29.06250	OSTEOPENIA		
13	23	10	11553235200	50	50 - 54	55.5 154.5	73	23.25070	OSTEOPENIA		
14	24	10	11367302400	56	55 - 59	89.0 166.0	61	32.29787	OSTEOPENIA		
15	25	10	11585635200	49	45 - 49	50.6 157.0	68	20.52822	OSTEOPENIA		
16	26	10	11572156800	50	50 - 54	71.4 152.0	74	30.90374	NORMAL		
17	27	10	11590992000	49	45 - 49	78.0 157.0	62	31.64429	OSTEOPENIA		
18	28	10	11293516800	58	55 - 59	72.0 162.0	65	27.43484	OSTEOPENIA		
19	29	10	11215238400	61	60 – 64	68.0 155.5	65	28.12212	OSTEOPENIA		
20	30	10	11405664000	55	55 - 59	75.0 161.0	92	28.93407	NORMAL		
21	31	10	11633155200	48	45 - 49	66.5 153.0	11	28.40788	OSTEOPOROSIS		
22	32	10	11287728000	59	55 - 59	101.0 156.0	82	41.50230	NORMAL		
23	34	10	10992758400	68	65 - 69	66.5 145.0	57	31.62901	OSTEOPENIA		
24	35	10	10909382400	69	65 – 69	70.0 168.0	48	24.80159	OSTEOPOROSIS		
25	36	10	11643868800	48	45 - 49	60.1 153.0	86	25.67389	NORMAL		
26	37	10	11551420800	50	50 - 54	67.0 159.0		26.50212	NORMAL		
27	38	10	11043907200	66	65 – 69	67.0 144.0		32.31096	NORMAL		
28	39	10	10948089600	69	65 – 69	70.5 148.5	40	31.96953	OSTEOPOROSIS		
29	40	10	11051251200	66	65 – 69	66.5 147.0	48	30.77421	OSTEOPOROSIS		
30	41	10	11333692800	57	55 - 59	58.5 142.0	80	29.01210	NORMAL		Y
	<	IIII								>	

The way to study the relation will depend on the variable types:

• Two qualitative variables: contingency table

Used for organizing categorical variables and testing hypothesis with the chisquared test for independence

The way to study the relation will depend on the variable types:

• Two qualitative variables: contingency table

Used for organizing categorical variables and testing hypothesis with the chisquared test for independence

 Count of individuals that simultaneously presents variable 1 (x) and variable 2 (y)

	<i>y</i> ₁	<i>y</i> ₁		Уp	
<i>X</i> ₁	n ₁₁	n ₁₂		n _{1p} n _{2p}	<i>n</i> _{1.}
<i>X</i> ₂	n ₂₁	n_{22}		n_{2p}	$n_{2.}$
:	÷	÷	÷	: n _{kp}	:
X_k	n_{k1}	n_{k2}		n_{kp}	$n_{k.}$
		n. ₂		n. _p	

Absolute

$$f_{ij} = \frac{n_{ij}}{N}$$

	<i>y</i> ₁	<i>y</i> ₁		Ур	$f_{i.}$
<i>X</i> ₁	f ₁₁	f ₁₂		f_{1p}	<i>f</i> _{1.}
<i>X</i> ₂	f ₂₁	f_{22}		f_{2p}	$f_{2.}$
÷	:	÷	: :	:	:
X_k	f_{k1}	f_{k2}		f_{kp}	$f_{k.}$
$f_{.j}$	f. ₁	f. ₂	• • •	f.p	1

relative

An study wants to know if there are differences about smoking habits in men and women.

Gender	Smoking habits	
1	1	
2	1	
1	0	
1	0	
1	0	
1	1	
2	1	
•••		

	Smokers	Non Smoking	Total
Men	120	60	180
Women	50	70	120
Total	170	130	300

Let's do in R:

Study if the group age (grupedad) of patients, influence in the illness type (classific):

```
osteoporosis <- rio::import("datasets/osteoporosis.csv",dec = ",")
require(gmodels)
gmodels::CrossTable(osteoporosis$grupedad, osteoporosis$clasific, prop.c
= F, prop.r = F,prop.chisq = F)</pre>
```


Total Observations in Table: 1000

	osteoporosis\$0	clasific		
osteoporosis\$grupedad	NORMAL	OSTEOPENIA	OSTEOPOROSIS	Row Total
45 - 49	233 0.233	138 0.138	0.007	378
50 - 54	113 0.113	113 0.113	7 0.007	233
55 - 59	67 0.067	100 0.100	0.009	176
60 - 64	38 0.038	74 0.074	17 0.017	129
65 - 69	18 0.018	42 0.042	24 0.024	84
Column Total	469 	467	64	1000

Barplot with R


```
ggplot(data = osteoporosis, aes(x = grupedad)) +
  geom_bar(aes(fill = clasific), position = "dodge")
```


Improving barplot

http://www.sthda.com/english/wiki/ggplot2-barplots-quick-start-guide-r-software-and-data-visualization

Change colors, legend position, labels and finally save it!

```
p + scale_fill_manual(values=c("#8618b1", "blanchedalmond", "red"))

p + theme(legend.position="bottom")

p + labs(x = "Age group", y = "Women", title = "Osteo disease classified by age group")

pdf("clasific_grupedad.pdf")
    p + labs(x = "Age group", y = "Women", title = "Osteo disease classified by age group")

dev.off()
```


Improving barplot

⊕ osteo □ □ □											
	registro	area	f_nac	edad	grupedad	peso talla	bua	imc	clasific	me	
1	3	10	11659420800	57	55 - 59	70.0 168.0	69	24.80159	OSTEOPENIA		^
2	4	10	11671689600	46	45 - 49	53.0 152.0	73	22.93975	OSTEOPENIA		
3	10	10	11721024000	45	45 - 49	64.0 158.0	81	25.63692	NORMAL		
4	11	10	11464416000	53	50 - 54	78.0 161.0	58	30.09143	OSTEOPENIA		
5	12	10	11690784000	46	45 - 49	56.0 157.0	89	22.71897	NORMAL		
6	15	10	11716012800	45	45 - 49	63.5 170.0	76	21.97232	NORMAL		
7	16	10	11623737600	48	45 - 49	86.0 161.0	87	33.17773	NORMAL		
8	17	10	11562307200	50	50 - 54	61.5 164.0	74	22.86585	NORMAL		
9	18	10	11538028800	51	50 - 54	60.5 158.0	58	24.23490	OSTEOPENIA		
10	20	10	11332483200	57	55 - 59	64.0 149.0	61	28.82753	OSTEOPENIA		
11	21	10	11631945600	48	45 - 49	70.3 160.0	67	27.46094	OSTEOPENIA		
12	22	10	11425536000	55	55 - 59	74.4 160.0	68	29.06250	OSTEOPENIA		
13	23	10	11553235200	50	50 - 54	55.5 154.5	73	23.25070	OSTEOPENIA		
14	24	10	11367302400	56	55 - 59	89.0 166.0	61	32.29787	OSTEOPENIA		
15	25	10	11585635200	49	45 - 49	50.6 157.0	68	20.52822	OSTEOPENIA		
16	26	10	11572156800	50	50 - 54	71.4 152.0	74	30.90374	NORMAL		
17	27	10	11590992000	49	45 - 49	78.0 157.0	62	31.64429	OSTEOPENIA		
18	28	10	11293516800	58	55 - 59	72.0 162.0	65	27.43484	OSTEOPENIA		
19	29	10	11215238400	61	60 – 64	68.0 155.5	65	28.12212	OSTEOPENIA		
20	30	10	11405664000	55	55 - 59	75.0 161.0	92	28.93407	NORMAL		
21	31	10	11633155200	48	45 - 49	66.5 153.0	11	28.40788	OSTEOPOROSIS		
22	32	10	11287728000	59		101.0 156.0	82	41.50230	NORMAL		
23	34	10	10992758400	68	65 – 69	66.5 145.0	57	31.62901	OSTEOPENIA		
24	35	10	10909382400	69	65 – 69	70.0 168.0	48	24.80159	OSTEOPOROSIS		
25	36	10	11643868800	48	45 - 49	60.1 153.0	86	25.67389	NORMAL		
26	37	10	11551420800	50	50 - 54	67.0 159.0	105	26.50212	NORMAL		
27	38	10	11043907200	66	65 – 69	67.0 144.0	79	32.31096	NORMAL		
28	39	10	10948089600	69	65 - 69	70.5 148.5	40	31.96953	OSTEOPOROSIS		
29	40	10	11051251200	66	65 - 69	66.5 147.0	48		OSTEOPOROSIS		
30	41	10	11333692800	57	55 - 59	58.5 142.0	80	29.01210	NORMAL		V
	<	Ш								>	

The way to study the relation will depend on the variable types:

• One qualitative variable and one quantitative variable: Table of statistics

Mean value of the variable in each category for each individual

Let's do it in R:

Osteoporosis dataset

Study if bone density (bua) changes depending the age group

```
library(dplyr)
osteoporosis %>%
  group_by(grupedad) %>%
  summarize(mean(edad))
```

```
45-49 50-54 55-59 60-64 65-69 78.75926 75.05150 71.43182 64.89147 60.66667
```


Study if bone density (bua) is related with the age group

```
bp <- ggplot(osteoporosis, aes(x = grupedad, y = bua)) +
   geom_boxplot(fill='#A4A4A4', color="darkred")
bp</pre>
```


Study if bone density (bua) is related with the age group

3. Bivariate analysis

Exercise

Study the relationship between *menop* and group of illness (*classific*)

Study the relationship between peso iand group of illness (classific).

The way to study the relation will depend on the variable types:

• Two quantitatives variables:

											-
	registro	area	f_nac	edad	grupedad	peso	talla	bua	imc	clasific	me
1	3	10	11659420800	57	55 - 59	70.0	168.0	69	24.80159	OSTEOPENIA	
2	4	10	11671689600	46	45 - 49	53.0	152.0	73	22.93975	OSTEOPENIA	
3	10	10	11721024000	45	45 - 49	64.0	158.0	81	25.63692	NORMAL	
4	11	10	11464416000	53	50 - 54	78.0	161.0	58	30.09143	OSTEOPENIA	
5	12	10	11690784000	46	45 - 49	56.0	157.0	89	22.71897	NORMAL	
6	15	10	11716012800	45	45 - 49	63.5	170.0	76	21.97232	NORMAL	
7	16	10	11623737600	48	45 - 49	86.0	161.0	87	33.17773	NORMAL	
8	17	10	11562307200	50	50 - 54	61.5	164.0	74	22.86585	NORMAL	
9	18	10	11538028800	51	50 - 54	60.5	158.0	58	24.23490	OSTEOPENIA	
10	20	10	11332483200	57	55 - 59	64.0	149.0	61	28.82753	OSTEOPENIA	
11	21	10	11631945600	48	45 - 49	70.3	160.0	67	27.46094	OSTEOPENIA	
12	22	10	11425536000	55	55 - 59	74.4	160.0	68	29.06250	OSTEOPENIA	
13	23	10	11553235200	50	50 - 54	55.5	154.5	73	23.25070	OSTEOPENIA	
14	24	10	11367302400	56	55 - 59	89.0	166.0	61	32.29787	OSTEOPENIA	
15	25	10	11585635200	49	45 - 49	50.6	157.0	68	20.52822	OSTEOPENIA	
16	26	10	11572156800	50	50 - 54	71.4	152.0	74	30.90374	NORMAL	
17	27	10	11590992000	49	45 - 49	78.0	157.0	62	31.64429	OSTEOPENIA	
18	28	10	11293516800	58	55 - 59	72.0	162.0	65	27.43484	OSTEOPENIA	
19	29	10	11215238400	61	60 - 64	68.0	155.5	65	28.12212	OSTEOPENIA	
20	30	10	11405664000	55	55 - 59	75.0	161.0	92	28.93407	NORMAL	
21	31	10	11633155200	48	45 - 49	66.5	153.0	11	28.40788	OSTEOPOROSIS	
22	32	10	11287728000	59	55 - 59	101.0	156.0	82	41.50230	NORMAL	
23	34	10	10992758400	68	65 – 69	66.5	145.0	57	31.62901	OSTEOPENIA	
24	35	10	10909382400	69	65 – 69	70.0	168.0	48	24.80159	OSTEOPOROSIS	
25	36	10	11643868800	48	45 - 49	60.1	153.0	86	25.67389	NORMAL	
26	37	10	11551420800	50	50 - 54	67.0	159.0	105	26.50212	NORMAL	
27	38	10	11043907200	66	65 – 69	67.0	144.0	79	32.31096	NORMAL	
28	39	10	10948089600	69	65 – 69	70.5	148.5	40	31.96953	OSTEOPOROSIS	
29	40	10	11051251200	66	65 – 69	66.5	147.0	48	30.77421	OSTEOPOROSIS	
30	41	10	11333692800	57	55 - 59	58.5	142.0	80	29.01210	NORMAL	4
	<										>


```
# Basic scatter plot
ggplot(osteoporosis, aes(x = peso, y = imc)) +
   geom_point()
```



```
# Change the point size, and shape
ggplot(osteoporosis, aes(x = peso, y = imc)) +
  geom_point(size = 1, shape = 1)
```



```
# Color the points depending of another variable
ggplot(osteoporosis, aes(x = peso, y = imc, color = clasific, shape = clasific)) +
  geom_point()
```


But not always the correlation is good!

ggplot(osteoporosis, aes(x = edad, y = imc)) +
 geom_point()

Whatever you compute Always look at the data!


```
library(GGally)
ggpairs(osteoporosis, columns = c("edad", "peso", "talla", "imc", "bua", "menarqui"),
ggplot2::aes(colour = clasific))
```


library(GGally)

ggpairs(osteoporosis, columns = c("edad", "peso", "talla", "imc", "bua", "menarqui"),
ggplot2::aes(colour = clasific))

TABLE OF CONTENTS

- 1. Elegant graphics for data analysis
- 2. From univariate to bivariate analysis
- 3. Bivariate analysis
 - 1. Qualitative vs Qualitative
 - 2. Qualitative vs Quantitative
 - 3. Quantitative vs Quantitative

4. Correlation

- 1. Definition
- 2. Types of correlation (Pearson, Spearman)

4. Correlation1. Definition

Main characteristics of correlation analysis:

- Correlation analysis allows
 - To study the way of relation between the two variables
 - To quantify the intensity of relation
- Correlation is not causation
 one thing does not causes the other
- In the correlation analysis, the two variables have the same weight
- The correlation coefficient measures the strength of a linear relation

2. Types of correlation

Pearson correlation coefficient

- Measures linear correlation between two variables
- It is represented by letter **r**. It has no dimensions (no units)
- Values go from -1 to +1
 - >r=0 indicates no linear relation between the variables
 - >r>0 indicates direct relation between the variables
 - >r<0 indicates indirect relation between the variables
 - >r=1/-1 indicates a perfect relation between the variables

2. Types of correlation

Pearson correlation coefficient. Examples

4. Correlation 2. Types of correlation

Study the relationship between *peso* and *body mass index (imc)*:

imc peso imc 1.0000000 0.8927967 peso 0.8927967 1.0000000

2. Types of correlation

Pearson correlation coefficient. How to in R?

Bone density and age are correlated?

```
cor(osteoporosis$bua, osteoporosis$edad, method = "pearson")
[1] -0.3601883
```

Don't forget to look the graphic!!

2. Types of correlation

Pearson correlation coefficient. How to in R-commander?

```
ggplot(osteoporosis, aes(x = edad, y = bua)) +
  geom_point()
```


4. Correlation2. Types of correlation

Pearson correlation coefficient. How to in R?

Exercise 1. Do you think that exists a relationship between *peso* and *talla*? What type of relationship? Show a scatterplot of the values.

2. Types of correlation

Non Parametric correlation: Spearman correlation coefficient

 Pearson correlation coefficient is severely affected by outliers and if the relation is not linear

Better to use **Spearman** correlation coefficient (use the ranks between the numbers instead the values) to calculate the correlation coefficient

• Evaluates the monotonic relationship between the variables (not the linear relationship as Pearson does).

The variables tend to change together but not necessarily at a constant rate

Vall d'Hebron Institut de Recerca

2. Types of correlation

Non Parametric correlation: Spearman correlation coefficient

2. Types of correlation

Comparison of Pearson and Spearman coefficients.

Always examine a scatterplot to determine the form of the relationship

2. Types of correlation

Spearman correlation coefficient. How to in R?

```
cor(osteoporosis$bua, osteoporosis$edad, method = "spearman")
```

[1] -0.3540295

2. Types of correlation

Correlation matrix

```
cor(osteoporosis[, c("edad", "peso", "talla", "imc", "bua", "menarqui")])
```

	edad	peso	talla	imc	bua	menarqui
edad	1.0000000	0.182629245	-0.16635268	0.26173285	-0.36018834	0.115901253
peso	0.1826292	1.000000000	0.23110585	0.89278635	0.09467837	-0.008526465
talla	-0.1663527	0.231105848	1.00000000	-0.22546438	0.13350207	0.070002843
imc	0.2617329	0.892786346	-0.22546438	1.00000000	0.03415938	-0.041607661
bua	-0.3601883	0.094678365	0.13350207	0.03415938	1.00000000	-0.085935539
menarqui	0.1159013	-0.008526465	0.07000284	-0.04160766	-0.08593554	1.000000000

4. Correlation. Exercises

Exercise 2. An hypothetic study, published last year that exists a relation between *age* and *systolic blood pressure (sbp)*? Do you think is it true? Show a scatterplot of the values? If not, find another variable in the dataset that has a good correlation with *systolic blood pressure*.

Use dataset Framingham250.csv