FLOOR SURFACE DETECTION

CE9010 GROUP ASSIGNMENT

TEAM 10

LIM SHU FANG [EDA, PCA, ML MODELS]

POH YONG KEAT [FEATURES EXTRACTION, NN MODELS]

STEP 3: DATA EXPLORATION

- IMU Values: Orientation (convert from quaternion to cartesian form), angular velocity & linear acceleration
- No missing/duplicate data

Frequency plot

Time-domain plot

Class distribution

STEP 4: PREPROCESSING & FEATURE EXTRACTION

9 new features per each old feature

STEP 5: DATA ANALYSIS

TRADITIONAL ML CLASSIFIERS

- Logistic Regression = 43%
 - Regularisation constant = 0.01
- SVM (rbf & poly kernels) = 48%
 - Regularisation constant = 10, type of kernel = polynomial

NEURAL NETWORKS

- Shallow MLP = 75%
 - Hidden Layer Neurons = 300, Dropout
 = 0.5, Epochs = 100
- LSTM Model = 60%
 - # LSTM Layers = 1, Dropout = 0.1

- Neural Networks perform better
- SVM has higher accuracy than LR
- LSTM limited by training epochs

STEP 6: SUMMARY OF RESULTS & CONCLUSION

- Relationships between statistical features and type of surface are non-linear.
- Neural Networks have high learning capacity, yielding good results.
- Handcrafting important features may improve performance.
- More potential for LSTM model.

REFERENCES

- External libraries used:
 - Tabulate [https://pypi.org/project/tabulate/]
 - Seaborn [https://pypi.org/project/seaborn/]
 - Scipy [https://pypi.org/project/scipy/]
 - Sklearn [https://pypi.org/project/scikit-learn/]
 - Keras [https://pypi.org/project/Keras/]
 - Plotly [https://pypi.org/project/plotly/

THANK YOU FOR YOUR KIND ATTENTION ©

https://github.com/pohyk123/CE9010-SurfaceML