Column Generation Techniques for GAP

immediate

February 26, 2019

1 Literature Review

- Branch-and-Price: Column Generation for Solving Huge Integer Programs (Barnhart, et. al., 1998)
- A Branch-and-Price Algorithm for the Generalized Assignment Problem (Savelsbergh and Martin, 1997)
 - Dantzig-Wolfe decomposition for GAP (construct master and sub problems)
 - Column generation : additional columns of the restricted master problem are generated by solving the pricing problem.
 - Branching strategies : variable dichotomy(sing variable) and GUB dichotomy(set of variables)
- Chebyshev center based column generation (Lee and Park, 2011)
 - The column generation procedure based on the simplex algorithm often shows desperately slow convergence. (zig-zag movement)
 - Chebyshev center based column generation techniques
 - * Chebyshev center
 - * Proximity adjusted Chebyshev center
 - * Chebyshev center + Stabilization
 - * Proximity adjusted Chebyshev center + Stabilization
 - Computational experiments on the binpacking, VRP, GAP
 - The proposed algorithm could accelerate the column generation procedure.
- Comparison of bundle and classical column generation (O.Briant, et. al., 2006)
 - Bundle method: the dual solution is often constrained to a given interval, and any deviation from the interval is penalized by a penalty function.
 - The penalty function for stabilized column generation : a simple V-shaped function (stabilizing center, ϵ)
- Stabilized Column Generation (O. Du Merle, et. al., 1997)

2 Problems

2.1 A case study: Generalized Assignment Problem

Dantzig-Wolfe Decomposition

$$\begin{aligned} \text{(P)} & \min \ \sum_{i \in I} \sum_{k \in K} c_k^i x_k^i, \\ & \text{s.t.} \ \sum_{i \in I} \sum_{k \in K_i} \delta_k^j x_k^i \geq 1, \quad j \in J, \\ & - \sum_{k \in K_i} x_k^i \geq -1, \quad \forall i \in I, \\ & x_k^i \geq 0, \quad \forall k \in K_i, i \in I. \end{aligned}$$

(D)
$$\max \sum_{j \in J} \pi_j - \sum_{i \in I} \phi_i$$
,
s.t. $\sum_{j \in J} \delta_k^j \pi_j - \phi_i \le c_k^i$, $\forall k \in K_i, i \in I$,
 $\pi_j \ge 0$, $\forall j \in J$,
 $\phi_i \ge 0$, $\forall i \in I$.

The GAP oracle finds an assignment pattern while satisfying the knapsack constraints:

$$\max \sum_{j \in J} (\pi_j - c_{ij}) \, \delta_j, \quad \text{s.t. } \sum_{j \in J} a_{ij} \delta_j \le b_i, \delta_j \in \{0, 1\}, \quad \forall j \in J$$

Stabilization

$$(\tilde{P}) \min \sum_{i \in I} \sum_{k \in K} c_k^i x_k^i + \sum_{j \in J} \delta_j (\gamma_j^+ - \gamma_j^-) + \sum_{i \in I} \phi_i (y_i^+ - y_i^-),$$
s.t.
$$\sum_{i \in I} \sum_{k \in K_i} \delta_k^j x_k^i + \gamma_j^+ - \gamma_j^- \ge 1, \quad \forall j \in J,$$

$$- \sum_{k \in K_i} x_k^i + y_i^+ - y_i^- \ge -1, \quad \forall i \in I,$$

$$\gamma_j^+ \le \epsilon, \ \gamma_j^- \le \epsilon, \quad \forall j \in J,$$

$$y_i^+ \le \epsilon, \ y_i^- \le \epsilon, \quad \forall i \in I,$$

$$x_k^i \ge 0, \quad \forall k \in K_i, i \in I,$$

$$y_i^+ \ge 0, \quad \forall k \in K_i, i \in I.$$

¹The written mathematical formulation are from (Lee and Park, 2011)

3 New Column Generation Approach

Consider $J = J_1 \cup J_2$ and the dual solutions π_j for all $j \in J_2$ are fixed to $\Pi' = \bigcup_{j \in J_2} \pi'_j$ (π' is a feasible solution). Then, the reformulation of the dual problem and its primal are as follows:

$$\begin{aligned} \text{(D)} & \max \sum_{j \in J} \pi_j - \sum_{i \in I} \phi_i, \\ & \text{s.t.} & \sum_{j \in J} \delta_k^j \pi_j - \phi_i \leq c_k^i, \quad \forall k \in K_i, i \in I, \\ & \pi_j \leq \pi_j' \quad \forall j \in J_2 \\ & \pi_j \geq 0, \quad \forall j \in J, \\ & \phi_i \geq 0, \quad \forall i \in I. \end{aligned}$$

$$\begin{split} \text{(P)} & \min \ \sum_{i \in I} \sum_{k \in K} c_k^i x_k^i + \sum_{j \in J_2} \pi_j' y_j, \\ & \text{s.t.} \ \sum_{i \in I} \sum_{k \in K_i} \delta_k^j x_k^i \geq 1, \quad j \in J_1, \\ & \sum_{i \in I} \sum_{k \in K_i} \delta_k^j x_k^i + y_j \geq 1, \quad j \in J_2, \\ & - \sum_{k \in K_i} x_k^i \geq -1, \quad \forall i \in I, \\ & x_k^i \geq 0, \quad \forall k \in K_i, i \in I, \\ & y_j \geq 0, \quad \forall j \in J. \end{split}$$

Stabilization

$$\begin{split} (\tilde{P}) & \min \sum_{i \in I} \sum_{k \in K} c_k^i x_k^i + \sum_{j \in J_2} \pi_j' y_j + \sum_{j \in J} \delta_j (\gamma_j^+ - \gamma_j^-) + \sum_{i \in I} \phi_i (y_i^+ - y_i^-), \\ & \text{s.t.} \quad \sum_{i \in I} \sum_{k \in K_i} \delta_k^j x_k^i + \gamma_j^+ - \gamma_j^- \geq 1, \quad j \in J_1, \\ & \sum_{i \in I} \sum_{k \in K_i} \delta_k^j x_k^i + y_j + \gamma_j^+ - \gamma_j^- \geq 1, \quad j \in J_2, \\ & - \sum_{k \in K_i} x_k^i + y_i^+ - y_i^- \geq -1, \quad \forall i \in I, \\ & \gamma_j^+ \leq \epsilon, \ \gamma_j^- \leq \epsilon, \quad \forall j \in J, \\ & y_i^+ \leq \epsilon, \ y_i^- \leq \epsilon, \quad \forall i \in I, \\ & x_k^i \geq 0, \quad \forall k \in K_i, i \in I, \\ & y_j \geq 0, \quad \forall j \in J. \end{split}$$

Algorithm 1 Column generation for GAP

```
1: tolerance \leftarrow 0.000001
 2: \Pi_2 \leftarrow \mathbf{0}
 3: iteration \leftarrow 0
 4: criteria \leftarrow True
 5: while any(criteria) do
        iteration += 1
 6:
        if iteration \% 2 == 0 then
 7:
            Solve M1 with fixed \Pi_1
 8:
            \Pi_2 \leftarrow \text{optimal dual solution}
 9:
            Solve S
10:
            if Reduced cost < tolerance then
11:
                 Add the column to M1 ad M2
                                                                           \Pi_1 is fixed.
12:
            else
13:
                criteria \leftarrow False
14:
            end if
15:
16:
        else
            Solve M2 with fixed \Pi_2
17:
            \Pi_1 \leftarrow \text{optimal dual solution}
18:
19:
            Solve S
            if Reduced cost < tolerance then
20:
                                                                           \Pi_2 is fixed.
                 Add the column to M1 ad M2
21:
22:
            else
                 criteria \leftarrow False
23:
            end if
24:
        end if
25:
26: end while
```

4 Preliminary Tests

Github page: https://github.com/mody3062/CG

Testing algorithms

- Classical column generation (Kelly's cutting plane)
- Stabilized column generation (O. Du Merle, et. al., 1997)
- Separation + Classical column generation
- Separation + Stabilized column generation

Algorithmic parameters RMP was constructed with a single decision variable which is dummy. The coefficient of the dummy variable on the objective function was set to a sufficiently large value, which is the sum of listed values such that np.sum(c,axis=1). For stabilized column generation algorithm, I changed the parameter ϵ from 0.01 to 0.0001 for every 100 trials. (I am not sure whether I could understand the criteria for changing the parameter value(ϵ) well.)

		Kelly			Stab.			Sep.		Š	ep.+Stab.	
	iteration	total(s)	M(%)	iteration	total(s)	M(%)	iteration	total(s)	M(%)	iteration	total(s)	M(%)
d05100	2485	26.13	25%	2216	33.27	32%	2296	44.57	61%	2321	49.8	%99
d10100	1223	7.83	25%	1068	11.49	42%	949	6.38	32%	858	7.25	40%
d10200	4485	133.04	54%	4423	199.37	61%	3253	132.49	%29	3703	193.21	73%
d20100	852	3.67	26%	782	6.63	49%	673	3.24	29%	629	4.15	41%
d20200	2513	38.59	41%	2549	65.75	55%	1862	32.86	51%	2288	52.38	29%
e05100	2577	15.03	42%	2356	27.73	51%	3487	74.37	%98	2761	37.61	%92
e10100	1345	6.83	36%	1405	12.45	52%	1160	6.64	54%	1261	8.93	28%
e10200	6273	153.91	212%	6580	271.2	%08	4328	186.97	87%	4455	218.22	%88
e20100	942	3.13	32%	626	7.4	52%	711	2.81	36%	644	3.5	46%
e20200	3273	37.77	22%	3374	76.73	%69	2390	44.17	75%	2713	61.78	28%

(P) min
$$x^T Q x + c^T x$$

s.t. $Ax \ge b$,
 $x \in \mathbb{R}^n_+$

(P) min
$$\mathbf{d}^T \Omega \mathbf{d} - \lambda \mathbf{d}^T \boldsymbol{\alpha}$$
 (1)

s.t.
$$d_i = w_i - w_i^{bench}, \quad \forall i \in N,$$
 (2)

$$w_i \ge 0, \quad \forall i \in N,$$
 (3)

$$\sum_{i \in N} w_i = 1,\tag{4}$$

$$\underline{\mathbf{A}}_i \le d_i \le \overline{\mathbf{A}}_i, \quad \forall i \in N,$$
 (5)

$$\underline{\mathrm{SE}}_s \le \sum_{i \in N_s} d_i \le \overline{\mathrm{SE}}_s, \quad \forall s \in S,$$
 (6)

$$\underline{\mathrm{MC}}_k \le \sum_{i \in N_k} d_i \le \overline{\mathrm{MC}}_k, \quad \forall k \in K, \tag{7}$$

$$\underline{\mathbf{B}} \le \sum_{i \in \mathcal{N}} \beta_i d_i \le \overline{\mathbf{B}},\tag{8}$$

$$\underline{K} \le card(w_i \ne 0) \le \overline{K},\tag{9}$$

$$\underline{AS} \le 1 - \sum_{i \in N} \min\{w_i, w_i^{bench}\} \le \overline{AS}, \tag{10}$$

$$TE < \sqrt{d^T \Omega d} < \overline{TE},$$
 (11)

Proposition 1. Constraint (9) can be replaced by the following set of constraints:

$$y_i \ge w_i - 0.001, \quad \forall i \in N,$$

 $y_i \le w_i + 0.999, \quad \forall i \in N,$
 $\underline{K} \le \sum_{i \in N} y_i \le \overline{K},$
 $y_i \in \{0, 1\}, \quad \forall i \in N.$

Proposition 2. Constraint (10) can be replaced by the following set of constraints:

$$\underline{AS} \leq 1 - \sum_{i \in N} v_i \leq \overline{AS},$$

$$w_i - z_i \leq v_i \leq w_i, \quad \forall i \in N,$$

$$w_i^{bench} - 1 + z_i \leq v_i \leq w_i^{bench}, \quad \forall i \in N,$$

$$z_i \in \{0, 1\}, \quad \forall i \in N.$$