1、 原理图

(1) 低功耗内部 DCDC 供电原理图

(2) 低成本、电池(1.8-3.6V)直接供电原理图

2、 物料清单

Quantity	Reference	Value	Manufacturer	Spec	Description
		主芯片部分			
1	PHY6202	PHY6202	PHY	QFN32	芯片
2	32.768k	32.768k		C-001R (3.0*8.0mm)	晶振
2	16M	16Mhz		3225	晶振
	C3	10nF		`0402	电容
2	C20	10nF		`0402	电容
2	C19	0.1uF		'0402	电容
2	C21	0.1uF		`0402	电容
1	C1	1uF		`0402	电容
1	C8	4.7uF		`0402	电容
1	L1	10uH		`0603	电感
1	R1	10K		`0402	电阻
1	R11	0R/NC		`0402	电阻

- 3、 PCB 指导
- 1) 晶振应靠近芯片引脚,且连线被 GND 铜皮包裹。晶振背面要有完整的 GND 平面,以保证晶振性能最优。
- 2) RF 天线合适的阻抗匹配是必要的,一般控制 50ohm,可加入∏型 电路匹配。
- 3) RF 天线区域不能有走线和铺铜,一般铺铜及走线离 RF 天线 3 倍 (RF 天线线宽)以上。
- 4)VDD 走线应尽量短,VDD 旁路电容应该尽量靠近 IC 管脚,(C3 尽量靠近 TRX_VDD、LNA_VDD。L1 和 C1 尽量靠近 DCDC_SW。C8 尽量靠近 DVDD3,C21 靠近 AVDD3,比较小的板子 C8 和 C21 可以放置在靠近 DVDD3 引脚。例如 PCB layout 实例)
- 5) GND 铺铜应保证顶底层完整,尽量多打接地过孔。
- 6) 芯片散热焊盘需要打孔接地,尽量多打孔,保证散热。

4、 PCB layout 实例

1) 两层板, 板厚 1.6mm, 尺寸 18.9mm X 13.50mm, 表面工艺: 沉金

(Top silk layer)

(top layer)

(bottom layer) (底层一般不摆放器件)