

Prediagnostic Cardiovascular Health Monitoring

Michael MacLean, Mickey Smith, Scott Guidoboni

1. Introduction

Market
Plethysmography overview
Inflection point area ratio

2. Methods - Data Gathering

Test methods
Patient demographic

3. Methods/Results - Algorithm

Moving average filter
Waveform derivatives
Calculate critical waveform points
Exclusion criteria

4. Discussion

Algorithm faults
Clinical relevance

5. Conclusion

Introduction

Market Need Cardiovascular Monitoring

Problem People lack a convenient and consistent way to monitor cardiovascular health outside of a medical facility.

Need There is a need for a mobile device that can consistently monitor cardiovascular health during an individual's everyday life.

Target PPG Signal

Critical Locations

- 1. Diastolic Trough
- 2. Systolic Peak
- 3. Dicrotic Notch

Solution Inflection Point Area (IPA)

$$IPA = \frac{A2}{A1}$$

Measure of

Relationship between diastolic and systolic activity [2,3]

Correlated with

Blood pressure

Peripheral resistance

Vascular distensibility

Methods - Data Gathering

Methods - Data Gathering

Data Gathering Protocol

seconds	minutes,seconds	Action
0	0	Start test (when empatica indicates start)
30	30s	take first BP
109	1min 49s	take second BP
188	3min 8s	take third BP
218	3min 58s	stop test

Back against chair

[1]

Data Statistics

Includes

- 28 subjects: 23 men & 5women
- □ Age range: 21-30 y/o
 - Excludes clinical patient
- ☐ Height range: 160-195 cm
- ☐ Weight range: 53-97 kg [8]

Patient Number

Retrieving Data

Storing Data

Methods/Results - Algorithm

Filtering Moving Average Filter

Goal

First step Smooth the signal to remove small peaks/troughs that cause false positives

PPG Waveform Derivatives

Original Signal

First Derivative

Second Derivative

Systolic Peaks

Dicrotic Notches

$$IPA = \frac{A2}{A1}$$

[2,3]

Criteria for Calculation

Pulse width

HR < 240 bpm

HR > 20 bpm

Amplitude

Above min threshold

Below max threshold

Morphology defects

0 < peaks detected <= 2

Single dicrotic notch

Discussion/Statistical Analysis

Statistical Analysis (Healthy Participants)

Statistical Analysis (Post-Surgery)

Algorithm Faults/Waveform Morphology

(a) A traditional waveform with a dicrotic peak, type 1, IPA = 0.60

(c) A left justified waveform with a left peak, type 3, IPA = 1.16

(e) A waveform with two peaks of roughly equal height, type 5, IPA = 1.04

(b) A traditional waveform with only a dicrotic incisura, type 2, IPA = 0.62

(d) A left justified waveform with a left incisura, type 4, IPA = 0.25

(f) A relatively smooth waveform, type 6, IPA = 0.24

Conclusion

DTU

IPA/Program untapped potential

Machine learning feature generation IPA as standalone biometric

Use as consumer prediagnostic tool

IPA vs. invasive metrics correlations

Vascular distensibility Peripheral resistance Heartbeat irregularity

Poor PPG signal repeatability

Citations

- [1] Empatica. Empatica E4 Technical Specifications, 11 2014. Rev 001.
- [2] Wearable device revenue worldwide 2016-2022 statistic.
- [3] L. Wang, E. Pickwell-Macpherson, Y.p. Liang, and Y.t. Zhang. Noninvasive cardiac output estimation using a novel photoplethysmogram index. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009.
- [4] Mohamed Elgendi. On the analysis of fingertip photoplethysmogram signals. Current Cardiology Reviews, 8(1):14–25, Jan 2012.
- [5] John Allen. Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites. Physiological Measurement, 24(2):297–307, 2003.
- [6] Jae Mok Ahn. New aging index using signal features of both photoplethysmograms and acceleration plethysmograms. Healthcare Informatics Research, 23(1):53, 2017.
- [7] Omron. Omron Model M2 Basic: Instruction Manual, 02 2010. Rev 002. [8] Average height of men and women worldwide