This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(II)等許出頭公開番号 特開2002-161121 (P2002-161121A)

(43)公開日 平成14年6月4日(2002.6.4)

(51) Int.Cl.⁷
C 0 8 G 18/40

// (C 0 8 G 18/40
101:00)

識別記号 FI

テーマコート*(参考) 4 J O 3 4

C 0 8 G 18/40 (C 0 8 G 18/40

101:00)

審査請求 未請求 請求項の数2 OL (全 7 頁)

(21)出願番号

特質2000-360919(P2000-360919)

(71)出願人 000000077

アキレス株式会社

(22)出頭日

平成12年11月28日 (2000.11.28)

東京都新宿区大京叮22番地の5

(72)発明者 前田 慎一

群馬県太田市新道叮137-3

(72)発明者 川村 健治

栃木県足利市堀込叮1669-2

(72)発明者 門馬 利明

栃木県足利市赤松台2-20-4

(74)代理人 100104329

弁理士 原田 卓治 (外1名)

最終頁に続く

(54) 【発明の名称】 難燃性発泡体

(57)【要約】

【課題】 難燃性の一層の向上を図ることができるとともに、剛性などの他の特性にも優れた難燃性発泡体を提供すること。

【解決手段】 有機ポリイソシアネート成分とポリオール成分との反応により、連続的に発泡成形される難燃性発泡体であって、前記ポリオール成分として重質油またはピッチ類をベースとして得られるフェノール多核体に低粘度ポリエーテルポリオールを20/80~50/50の重量比率の範囲で希釈するとともに、この希釈物30~60重量部と芳香族ポリエステルポリオール70~40重量部を混合したものを用い、かつイソシアネート基/水酸基の当量比を3.0~5.0の範囲とする。

【特許請求の範囲】

【請求項1】 有機ポリイソシアネート成分とポリオー ル成分との反応により、連続的に発泡成形される難燃性 発泡体であって、前記ポリオール成分として重質油また はピッチ類をベースとして得られるフェノール多核体に 低粘度ポリエーテルポリオールを20/80~50/5 0の重量比率の範囲で希釈するとともに、この希釈物3 0~60重量部と芳香族ポリエステルポリオール70~ 40重量部を混合したものを用い、かつイソシアネート 基/水酸基の当量比を3.0~5.0の範囲とすること 10 を特徴とする難燃性発泡体。

【請求項2】 前記低粘度ポリエーテルポリオールの粘 度は、2000mPa・s以下とするとともに、分子量 が200~400のポリエチレングリコール、ジエチレ ングリコール、トリエチレングリコール、グリセリンま たはこれらの混合物としたことを特徴とする請求項 1 記 載の難燃性発泡体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は難燃性発泡体に関 20 し、特に天井、床、壁などの建築用断熱材として好適な ものである

[0002]

【従来の技術】硬質ウレタンフォームやポリスチレンフ ォームなどの発泡体は、優れた断熱特性を有することか ら建築用断熱材等として天井、床、壁等の断熱に広く用 いられている。

【0003】しかし、このような硬質ウレタンフォーム やポリスチレンフォームなどの発泡体を断熱材として用 は燃焼し易く、公共施設や防火、準防火地域では建築規 制により使用が制限されていること。

【0004】また、最近の建築基準法の改正により、断 熱材に対して発熱性試験法が導入され、難燃性の評価法 も大幅に変更になっていること。

【0005】さらに、近年、住宅に住む高齢者等の弱者 に対する火災時の避難誘導を考慮する必要があること。 そこで、これらの問題を解消するためには、断熱材等と して用いられる発泡体に対する要求特性の一つに難燃性 の向上がある。

【0006】このため従来から硬質ウレタンフォームや ポリスチレンフォームなどの発泡体に代え、フェノール フォーム、ポリイソシアヌレートフォーム、ポリカルボ ジイミドフォーム、ポリイミドフォーム等が開発されて きた。

【0007】また、特開2000-1599号公報に は、重質油類またはピッチ類をベースとして得られる高 反応性変成フェノール樹脂を用い、ポリオール類、イソ シアネート類、発泡剤、および触媒から得られる樹脂に よって難燃性の発泡体が得られるとされている。

[0008]

【発明が解決しようとする課題】ところが、いずれの発 泡体もこれまでの発泡体に比べ、難燃性は向上するもの の、未だ十分でなく難燃性の一層の向上を図る必要があ る。また、フェノールフォームの場合には、ホルムアル デヒド発生の問題や錆発生の問題があり、ポリイソシア ヌレートフォームなどの場合には、脆いために脚性がな く、施工時に割れるなどの問題がある。この発明はかか る従来技術の課題に鑑みてなされたもので、難燃性の一 層の向上を図ることができるとともに、剛性などの他の 特性にも優れた難燃性発泡体を提供しようとするもので ある。

[0009]

【課題を解決するための手段】上記課題を解決するた め、本発明者らは鋭意研究と実験を重ねた結果、有機ポ リイソシアネート成分とポリオール成分とを主原料と し、これに発泡剤や触媒などを配合して製造される発泡 体のポリオール成分として、重質油類またはピッチ類を ベースとして得られる高反応性変成フェノール樹脂を主 成分とするフェノール多核体を調整して用いることで、 硬質ポリウレタンフォームの剛性を生かして難燃性を付 与した難燃性発泡体を得ることを見出だし、この発明を 完成したものである。

【0010】すなわち、上記従来技術が有する課題を解 決するためこの発明の請求項1記載の難燃性発泡体は、 有機ポリイソシアネート成分とポリオール成分との反応 により、連続的に発泡成形される難燃性発泡体であっ て、前記ポリオール成分として重質油またはピッチ類を ベースとして得られるフェノール多核体に低粘度ポリエ いる場合には、次のような問題がある。これらフォーム 30 ーテルポリオールを20/80~50/50の重量比率 の範囲で希釈するとともに、この希釈物30~60重量 部と芳香族ポリエステルポリオール70~40重量部を 混合したものを用い、かつイソシアネート基/水酸基の 当量比を3.0~5.0の範囲とすることを特徴とする ものである。

> 【0011】この難燃性発泡体によれば、密度、圧縮強 度、熱伝導率、脆性等の特性が硬質ポリウレタンフォー ムと同等以上で、炎貫通試験(米国鉱山局基準)や発熱 性試験(準不燃材料試験のコーンカロリーメータ試験: ISO5660による測定)等による難燃性に優れたも 40 のとなり、特に建築用断熱材として好適なものとなる。 【0012】また、この発明の請求項2記載の難燃性発 泡体は、請求項1記載の構成に加え、前記低粘度ポリエ ーテルポリオールの粘度は、2000mPa・s以下と するとともに、分子量が200~400のポリエチレン グリコール、ジエチレングリコール、トリエチレングリ コール、グリセリンまたはこれらの混合物としたことを 特徴とするものである。

> 【0013】このようにして調製したポリオール成分に 50 より常温で固体のフェノール多核体を希釈することで粘

度を適正にすることができ、従来から用いられている発 泡体成型ラインで難燃性に優れた発泡体を得ることがで きるようになる。

[0014]

【発明の実施の形態】以下、この発明の難燃性発泡体の 一実施の形態について詳細に説明する。この難燃性発泡 体は、有機ポリイソシアネート成分とポリオール成分と の反応により、連続的に発泡成形される難燃性発泡体で あって、前記ポリオール成分として重質油またはピッチ 類をベースとして得られるフェノール多核体に低粘度ポ 10 リエーテルポリオールを20/80~50/50の重量 比率の範囲で希釈するとともに、この希釈物30~60 重量部と芳香族ポリエステルポリオール70~40重量 部を混合したものを用い、かつイソシアネート基/水酸 基の当量比を3.0~5.0の範囲としたものである。

【0015】この難燃性発泡体の有機ポリイソシアネー ト成分とポリオール成分との反応による連続発泡成形で は、有機ポリイソシアネート成分とポリオール成分とを 主成分とし、さらに必要な整泡剤、発泡剤、触媒等の存 在下での反応により連続的に発泡成形が行われ、例えば 20 ダブルコンベア装置で一方の面材上にエアレススプレー などの手段で混合液を吹き付け、発泡硬化の進む段階 で、もう一方の面材を当てて所定の厚さの発泡体が連続 成形される。

【0016】この難燃性発泡体で用いられるポリオール 成分は、フェノール多核体を特定量の低粘度ポリエテー ルポリオールで希釈し、これに特定量の芳香族ポリエス テルポリオールを混合したものである。

【0017】この難燃性発泡体で用いられるポリオール 類をベースとして得られるものを使用する。

【0018】このフェノール多核体としては、特開20 00-1599号公報で高反応性変性フェノール樹脂と して知られているものを使用することができる。

【0019】この高反応性変成フェノール樹脂は、重質 油類またはピッチ類と、平均分子量から算出した原料油 1モルに対して、0.3~10モルのフェノール類、ホ ルムアルデヒド換算で0.2~9モルのホルムアルデヒ ド化合物、および0.01~3.0モルの酸触媒とを混 合し、加熱撹拌して、前記成分を重縮合させて得ること 40 ができるものである。

【0020】この高反応性変成フェノール樹脂の重縮合 反応で原料として用いられる重質油類またはピッチ類と しては、石油系および石炭系のいずれの原料油を用いて も良く、石油系では、原油の蒸溜残油、水添分解残油、 接触分解残油、接触改質残油、ナフサまたはLPGの熱 分解残油およびこれら残油の減圧蒸溜物、溶剤抽出によ るエキストラクトあるいは熱処理物、石油精製過程にお ける熱分解および接触分解等の分解工程で得られる特定 の抽出油または残渣油およびこれら残油の減圧蒸溜物等 50 重縮合反応において、重質油類またはピッチ類、酸触媒

を例示でき、石炭系では、石炭乾留におけるコールター ルを蒸留して得られる特定の分留成分および石炭液化に おける重質油などを例示できる。

【0021】また、この高反応性変成フェノール樹脂の 重縮合反応で原料として用いられるフェノール類として は、ヒドロキシベンゼン化合物およびヒドロキシナフタ レン化合物等を例示でき、ヒドロキシベンゼン化合物と しては、例えば、フェノール、クレゾール、キシレノー ル、レゾルシン、ヒドロキノン、カテコール、フェニル フェノール、ビニルフェノール、ノニルフェノール、p ーtertーブチルフェノール、ピスフェノールA、ビ スフェノールFなどを挙げることができ、ヒドロキシナ フタレン化合物としては、例えばαーナフトールおよび β-ナフトールなどのモノヒドロキシナフタレン化合 物、1,2-ジヒドロキシナフタレン、1,3-ジヒド ロキシナフタレン、1、4-ジヒドロキシナフタレンお よび2,3ージヒドロキシナフタレン、3,6ージヒド ロキシナフタレン、1,5-ジヒドロキシナフタレン、 1,6-ジヒドロキシナフタレン、1,7-ジヒドロキ シナフタレン、2,6-ジヒドロキシナフタレン、2, 7-ジヒドロキシナフタレン等のジヒドロキシナフタレ ン化合物、およびアルキル基と、芳香族基、ハロゲン原 子などの置換基を有する上記モノまたはジヒドロキシナ フタレン化合物、例えば2-メチル-1-ナフトール、 4-フェニルー1-ナフトール、1-ブロムー2-ナフ トール、6ーブロムー2ーナフトール等を例示すること ができる。これらフェノール類は、単独で用いても、2 種以上を組み合わせて用いても良い。

【0022】さらに、この高反応性変成フェノール樹脂 成分のうち、フェノール多核体は、重質油またはピッチ 30 の重縮合反応で原料として用いられるホルムアルデヒド 化合物としては、ホルムアルデヒドに加えて、パラホル ムアルデヒド、ポリオキシメチレン (特に、オリゴマ 一) などの線状重合物、トリオキサンなどの環状重合物 を例示できる。

> 【0023】また、この高反応性変成フェノール樹脂の 重縮合反応では、重質油類またはピッチ類、ホルムアル デヒド化合物およびフェノール類を重縮合させるために 酸触媒が用いられ、この酸触媒としては、ブレンステッ ド酸もしくはルイス酸が使用できるが、好ましくはブレ ンステッド酸が用いられる。ブレンステッド酸として は、シュウ酸、トルエンスルホン酸、キシレンスルホン 酸およびギ酸等の有機酸、塩酸および硫酸等の無機酸、 および酸性陽イオン交換樹脂などの固体酸を挙げること ができる。

【0024】このような特定量の重質油類またはピッチ 類、ホルムアルデヒド化合物、フェノール類および酸触 媒を予め混合し、次いで得られる混合物を加熱撹拌して 重縮合反応を行うことで高反応性変成フェノール樹脂を 製造したり、これら原料および酸化触媒を加熱撹拌する

10

およびホルムアルデヒド化合物の少なくともいずれかを 逐次添加して重縮合反応を行うことで高反応性変成フェ ノール樹脂を製造する。

【0025】このような高反応性変成フェノール樹脂で 構成されるフェノール多核体は、常温では固体のため使 用しにくいことから、70~80℃に加熱して液化し、 低粘度のポリエーテルポリオールを用い、フェノール多 核体とポリエーテルポリオールとの比(フェノール多核 体/ポリエーテルポリオール)が20/80~50/5 ①の重量比率の範囲で希釈したものを使用する。

【0026】このフェノール多核体の希釈に用いる低粘 度ポリエーテルポリオールは、その粘度が、20℃にお いて2000mPa・s以下のポリエーテルポリオール が好ましく、これを越える粘度では、希釈物の粘度が高 くなり好ましくない。

【0027】また、フェノール多核体とポリエーテルポ リオールとの重量比率(フェノール多核体/ポリエーテ ルポリオール)が20/80より小さい場合には、難燃 性の向上を図ることができなくなり、一方、重量比率が 50/50を越えると、希釈物の粘度が高く、正常な発 20 などが使用できる。 泡体を得ることができなくなる。

【0028】ここで使用する低粘度ポリエーテルポリオ ールとは、ポリイソシアヌレートフォームの原料となる ような分子量が200~400のポリエチレングリコー ル、あるいはジエチレングリコール、トリエチレングリ コール、グリセリンなどまたはこれらの混合物が好まし 11

【0029】フェノール多核体の希釈物と組み合わせる 芳香族ポリエステルポリオールは、廃PET、無水フタ 190~300mgKOH/gのものが使用できる。

【0030】フェノール多核体希釈物30~60重量部 に対して芳香族ポリエステルポリオールは70~40重 量部混合することが好ましい。フェノール多核体希釈物 が30重量部より少ないと、必要な難燃性を得ることが 出来ず、例えば建築用断熱材として要求される準不燃グ レードが得られない。逆にフェノール多核体希釈物が6 0重量部を越えると、発泡体とした場合にセル荒れが発 生し、脆性や熱伝導率が悪化し、良好な断熱材としての 特性を得ることができない。

【0031】次に、この難燃性発泡体で使用する有機ポ リイソシアネート成分は、一般的に用いられている芳香 族ポリイソシアネート、脂環式ポリイソシアネート、あ るいは脂肪族ポリイソシアネートなどを使用することが できる。

【0032】具体例としては、トリレン2、4-ジイソ シアネート、トリレン2,6-ジイソシアネート、およ びこれらの混合物、ジフェニルメタン4、4~一ジイソ シアネート、3-メチルジフェニルメタン4,4 -ジ イソシアネートおよびこれらの混合物、ヘキサメチレン 50 ~5については表1に示す重量部で、比較例1~6につ

ジイソシアネート等が使用できる。

【0033】そして、フェノール多核体希釈物と芳香族 ポリエステルポリオールの混合物のイソシアネート基と 水酸基の当量比 (NCO/OHインデックス)を3.0 ~5.0の範囲とする。このイソシアネート基と水酸基 の当量比が3.0より小さいと、発泡成形の際の収縮が 大きく、形状保持が出来ず、良好な発泡体が得られな い。また、この当量比が5.0を越えると、発泡体が脆 くなって実用上の問題が生じる。

【0034】この難燃性発泡体の製造に際して整泡剤、 発泡剤、触媒などを配合することができる。整泡剤とし ては、従来から使用されているシリコン系界面活性剤が 好ましく、例えば東レダウ製のSH-193、日本ユニ カー製のL-5420、L-5421、SZ-164 2、SZ-1669などを挙げることができる。

【0035】また、発泡剤としてはHCFC-141 b、HFC-245fa、HFC-365mfc、炭化 水素系、例えばシクロペンタン、nーペンタン、iーペ ンタンあるいはこれら混合物、または水を併用したもの

【0036】さらに、触媒としては、例えばジメチルメ タノールアミン、トリエチレンジアミン、テトラメチル ヘキサメチレンジアミンなどの第3級アミン類、酢酸カ リウム、オクチル酸カリウム等の金属触媒などを挙げる ことができる。

【0037】以上の原料からこの発明の難燃性発泡体を 製造する具体的手段としては、上記原料を均一に混合で きる装置であればいかなるものでも良く、例えば発泡機 を用いて原料を均一に連続的に混合して一方の面材上に ール酸、DMT残査をエステル交換反応した水酸基価が 30 エアレススプレーなどの手段で混合液を吹き付け、発泡 硬化の進む段階で、もう一方の面材を当ててダブルコン ベア装置で所定の厚さの発泡体を連続成形することで製 造することができる。

> 【0038】このような難燃性発泡体は、炎貫通試験や 発熱性試験などによって評価される難燃性に優れるとと もに、密度、圧縮強度、熱伝導率、脆性等の特性にも優 れたものとなり、特に建築用断熱材としてこれまでの断 熱材に比べ非常に優れたものとなる。

[0039]

【実施例】以下、この発明の難燃性発泡体の実施例につ いて具体的に説明するが、この発明はこれら実施例に何 等限定するものでない。

(実施例1~5) および (比較例1~6)

フェノール多核体とポリエチレングリコールAあるいは ポリエチレングリコールBとで実施例1~5については 表1の重量比率(重量%)で、比較例1~6については 表2の重量比率 (重量%) のフェノール希釈物を得る。 【0040】このフェノール希釈物とポリエステルポリ オールAあるいはポリエステルポリオールBを実施例1

いては表2に示す重量部で混合するとともに、整泡剤、 発泡剤1あるいは発泡剤2、触媒、水などを配合した 後、NCO/OHインデックスが実施例1~5について は表1に示す値、比較例1~6については表2に示す値 となるように有機ポリイソシアネート成分を加えて撹拌 混合し、80℃に加温した50×300×300mmの アルミニウム製モールドに発泡させて発泡体を得た。

7

【0041】得られた発泡体を2日間放置した後、所定の大きさに裁断して密度、圧縮強度、熱伝導率、脆性の測定および炎貫通試験、発熱性試験などを行った。なお、ここでは、厚さを25mmとして測定および試験を行った。

【0042】これらの測定結果および評価結果をまとめて実施例1~5については表1に示し、比較例1~6について表2に示した。なお、表1および表2に記載の各成分としては下記のものを使用した。

【0043】フェノール多核休(鹿島石油製TSP20 0、水酸基価:125)

ポリエチレングリコールA(三洋化成製PEG200、 水酸基価:540、平均分子量200)

ポリエチレングリコールB(三洋化成製PEG400、

水酸基価:270、平均分子量400)

ポリエステルポリオールA (芳香族ポリエステルポリオール、オキシド製テロール250、水酸基価:250) ポリエステルポリオールB (芳香族ポリエステルポリオール、ヘキスト・セラニーズ製テレート2541、水酸基価:240)

整泡剤(東レシリコーン製SH-193)

発泡剤1(水)

発泡剤2(HCFC-141b)

触媒(オクチル酸カリウム/トリエチレンジアミン=2 /1)

有機ポリイソシアネート成分(三井化学製M-100 (粗製MD1))

また、各性能の測定および試験は以下の方法により行った。

【0044】密度(kg/m³): JIS A9511 10 による測定

圧縮強度 (N/c m²): JIS A9511による測定

熱伝導率(mW∕mK):JIS - A1412による**測** 宝

脆性(%): ASTM C421による測定

炎貫通試験:米国鉱山局基準による測定

なお、表中には、基準を満たすものを○、満たさないものを×で示した。

【0045】発熱性試験:準不燃材料試験のコーンカロ 20 リーメータ試験

ISO5660による測定

[0046]

【表1】

10

	実施例1	実施例2	実施例3	実施例4	実施例5
フェノール多核体 (重量%)	20	40	50	40	40
ポリエチレングリコールA (重量%)	8.0				
ポリエチレングリコールB (重量%)		60	50	60	60
上記フェノール希釈物 (重量部)	50	50	50	3 0	60
ボリエステルボリオールA (重量部)	50		50		
ポリエステルポリオールB (重量部)		50		70	40
整泡剤 (重量部)	2	2	2	2	2
触 媒 (重量部)	3	3	3	2 3	2 3
発泡剤1 (重量部)	1	1	1	1	1
発泡剤2(重量部)	41	46	49	40	42
有機ポリイソシアネート (重量部)	232	276	303	230	244
NCO/OHインデックス	3. 5	3. 5	4. 0	3. 0	5. 0
密度(kg/m³)。	3 5	34	3 5	33	3 7
圧縮過度 (N/cm ²)	18	28	18	17	20
熱伝導率 (mW/mK)	2 1	21	21	21	22
脆 性(%)	12	12	10	14	10
炎貫通試験(10分間)	0	0	0	0	0
光熱性試験					
最大光熱速度(kW/m ²)	146	72	46	163	36
総発熱量(MJ/m²)	7. 9	7. 2	6.9	7.8	6. 4
判定	0	0	0	0	Õ
	1		l	L	I

[0047]

* *【表2】

	13021					
	比較例(比較例2	比較例3	比較例4	比較例5	比較例6
フェノール多核体 (重量%)	10	60	40	40	50	50
ポリエチレングリコールA (重量%)	90					
ボリエチレングリコールB (重量%)		40	60	60	50	50
上記フェノール希釈物 (重量部)	5 0	50	25	6.5	50	50
ボリエステルボリオールA (重量部)	50	50			50	50
ボリエステルボリオールB (重量部)		ļ	7.5	3 5		
弊泡剤 (重量部)	2	2	2	2	2	2
触 媒 (重量部)	3	3	3	3	3	3
発起的1 (重量部)	ĺ	1	1	1	i	1
発泡剤2(重量部)	4.5	48	19	51	35	49
有機ポリイソシアネート (重量部)	269	294	304	323	189	303
NCO/OHインデックス	4. 0	4. 0	4. 0	4. 0	2. 5	5. 5
密度(kg/m³)。	34	3 4	35	3 5	3 3	36
压精波 (N/cm²)	18	12	17	13	16	10
熱伝導率 (mW/mK)	2 2	28	22	21	22	28
脆性(%)	1 2	36	16	44	13	44
炎黃連城 (10分間)	×	×	×	0	×	0
<u> </u>						
最大発熱速度 (kW/m²)	223	121	184	78	167	52
総発熱量 (MJ/m²)	13.1	10.6	12.7	9.8	10.6	4. 9
判定	×	×	×	×	×	0

【0048】(比較例7,8)比較例7,8は表3に示 ※ノールフォームについての上記と同様の性能の測定およすように、従来のポリイソシアヌレートフォームとフェ※50 び試験を行ったものである。

1 1

【0049】比較例7のポリイソシアメレートフォームは、上記PEG200に整泡剤、触媒、発泡剤などを配合した後、NCO/OHインデックスが4.0になるように粗製MDIを加えて撹拌混合し、60℃に加温したモールドに発泡して発泡体を得た。

【0050】比較例8のフェノールフォームは、レゾール系フェノール樹脂に、整泡剤、発泡剤などを配合した後、酸触媒としてpートルエンスルホン酸をフェノール樹脂100重量部に対して20重量部加えて撹拌混合し、80℃に加温したモールドに発泡して発泡体を得た。

[0051]

【表3】

	-,	
	比较例7	比较例8
	ポリイソシア	フェノール
	ヌレートフォーム	フォーム
密度 (kg/m³)。	3 5	42
H級強度 (N/cm²)	18	15
熱伝導率 (mW/mK)	21	29
践性(%)	1.5	38
炎質通試験(10分間)	0	0
発熱性試験		
最大発熱速度(kW/m²)	113	89
総免熱量(MJ/m ²)	11.5	16.4
判 定	×	×

【0052】以上のようにこの発明の各実施例では、炎 貫通試験および発熱性試験結果から難燃性に優れるもの であることが分かるとともに、密度、圧締強度、熱伝導 率および脆性の測定結果から発泡体としての諸特性にも 優れていることが分かる。

12

[0053]

【発明の効果】以上実施の形態とともに、説明したようにこの発明の請求項1記載の難燃性発泡体によれば、密度、圧縮強度、熱伝導率、脆性等の特性が硬質ポリウレ タンフォームと同等以上で、炎貫通試験(米国鉱山局基準)や発熱性試験(準不燃材料試験のコーンカロリーメータ試験: ISO5660による測定)等による難燃性に優れたものとなり、特に建築用断熱材として好適なものとなる。

【0054】また、この発明の請求項2記載の難燃性発 泡体によれば、常温で固体のフェノール多核体を希釈す ることで粘度を適正にすることができ、従来から用いら れている発泡体成型ラインで難燃性に優れた発泡体を容 易に得ることができる。

20

フロントページの続き

Fターム(参考) 4J034 BA08 DA01 DB03 DC02 DF14

DF21 DF22 DG02 DG03 DJ08

HA01 HC03 HC12 NA01 NA03

NA05 QA03 QC01 QD02