Math 164 Homework 2

Nick Monozon

3.3 Consider two bases of \mathbb{R}^3 , $\{e_1, e_2, e_3\}$ and $\{e_1', e_2', e_3'\}$, where $e_1 = 2e_1' + e_2' - e_3'$, $e_2 = 2e_1' - e_2' + 2e_3'$, and $e_3 = 3e_1' + e_3'$. Suppose that a linear transformation has a matrix representation in $\{e_1, e_2, e_3\}$ of the form

$$A = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Find the matrix representation of this linear transformation in the basis $\{e_1', e_2', e_3'\}$. *Solution.* Firstly, we have that

$$\begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} = \begin{bmatrix} e'_1 & e'_2 & e'_3 \end{bmatrix} \begin{bmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{bmatrix}.$$

So the transformation matrix from $\{e_1',e_2',e_3'\}$ to $\{e_1,e_2,e_3\}$ is given by

$$T = \begin{bmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{bmatrix}.$$

Consider the linear transformation $\mathcal{T}: \mathbb{R}^3 \to \mathbb{R}^3$ given by the matrix A with respect to the basis $\{e_1, e_2, e_3\}$ and B with respect to the basis $\{e_1', e_2', e_3'\}$. Let y = Ax and $\tilde{y} = B\tilde{x}$. Then, we have that

$$\tilde{y} = Ty = T(Ax) = TA(T^{-1}\tilde{x}) = (TAT^{-1})\tilde{x}.$$

So it follows that

$$B = TAT^{-1} = \begin{bmatrix} 3 & -10 & -8 \\ -1 & 8 & 4 \\ 2 & -13 & -7 \end{bmatrix}$$

is the matrix representation of \mathcal{T} with respect to $\{e_1', e_2', e_3'\}$.

3.4 Consider two bases of \mathbb{R}^4 , $\{e_1, e_2, e_3, e_4\}$ and $\{e_1', e_2', e_3', e_4'\}$, where $e_1' = e_1$, $e_2' = e_1 + e_2$, $e_3' = e_1 + e_2 + e_3$, and $e_4' = e_1 + e_2 + e_3 + e_4$. Suppose that a linear transformation has a matrix representation in $\{e_1, e_2, e_3, e_4\}$ of the form

$$A = \begin{bmatrix} 2 & 0 & 1 & 0 \\ -3 & 2 & 0 & 1 \\ 0 & 1 & -1 & 2 \\ 1 & 0 & 0 & 3 \end{bmatrix}.$$

Find the matrix representation of this linear transformation in the basis $\{e_1', e_2', e_3', e_4'\}$.

Solution. We have that

$$\begin{bmatrix} e_1 & e_2 & e_3 & e_4 \end{bmatrix} = \begin{bmatrix} e'_1 & e'_2 & e'_3 & e'_4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

So the transformation matrix from $\{e_1', e_2', e_3', e_4'\}$ to $\{e_1, e_2, e_3, e_4\}$ is given by

$$T = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

1

Consider the linear transformation $\mathcal{T}: \mathbb{R}^4 \to \mathbb{R}^4$ given by the matrix A with respect to the basis $\{e_1, e_2, e_3, e_4\}$ and by the matrix B with respect to the basis $\{e_1, e_2, e_3, e_4\}$. Let y = Ax and $\tilde{y} = B\tilde{x}$. It follows that

$$\tilde{y} = Ty = T(Ax) = TA(T^{-1}\tilde{x}) = (TAT^{-1})\tilde{x}.$$

Hence, we have that

$$B = TAT^{-1} = \begin{bmatrix} 5 & 3 & 4 & 3 \\ -3 & -2 & -1 & -2 \\ -1 & 0 & -1 & -2 \\ 1 & 1 & 1 & 4 \end{bmatrix}$$

is the matrix representation of \mathcal{T} with respect to $\{e'_1, e'_2, e'_3, e'_4\}$.

3.6 Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of the matrix $A \in \mathbb{R}^{n \times n}$. Show that the eigenvalues of the matrix $I_n - A$ are $1 - \lambda_1, \ldots, 1 - \lambda_n$.

Proof. Let $A \in \mathbb{R}^{n \times n}$. Suppose that $v_1, v_2, ..., v_n$ are eigenvectors of A with corresponding eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$. Then for each i such that $1 \le i \le n$, we have that

$$(I_n - A)v_i = v_i - Av_i = v_i - \lambda_i v_i = (1 - \lambda_i)v_i.$$

As such, we have shown that $1 - \lambda_1, 1 - \lambda_2, \dots, 1 - \lambda_n$ are the eigenvalues of the matrix $I_n - A$.

3.11 Let \mathcal{V} be a subspace. Show that $(\mathcal{V}^{\perp})^{\perp} = \mathcal{V}$. *Hint*: Use Exercise 3.10.

Proof. We first show that $\mathcal{V} \subset (\mathcal{V}^{\perp})^{\perp}$. Let $x \in \mathcal{V}$ and $y \in \mathcal{V}^{\perp}$. By definition, we have that

$$\langle x, y \rangle = 0.$$

Since $(\mathcal{V}^{\perp})^{\perp}$ contains all vectors which are orthogonal to every vector in \mathcal{V}^{\perp} , it follows that $\mathcal{V} \subset (\mathcal{V}^{\perp})^{\perp}$. We will now show that $(\mathcal{V}^{\perp})^{\perp} \subset \mathcal{V}$. Let $\{a_1, a_2, ..., a_l\}$ be a basis for \mathcal{V} and $\{b_1, b_2, ..., b_k\}$ be a basis for $(\mathcal{V}^{\perp})^{\perp}$. Define the matrix A such that a_i is the ith column of A for each i = 1, 2, ..., l and also B such that b_i is the ith column of B for each i = 1, 2, ..., k. We clearly have that $\mathcal{R}(A) = \mathcal{V}$ and $\mathcal{R}(B) = (\mathcal{V}^{\perp})^{\perp}$. From Exercise 3.10, we want to show that $\mathcal{R}(B) \subset \mathcal{R}(A)$, so we must show that $\mathcal{N}(A^{\top}) \subset \mathcal{N}(B^{\top})$. Let $x \in \mathcal{N}(A^{\top})$. We know that by definition

$$x \in \mathcal{N}(A^{\top}) = \mathcal{R}(A)^{\perp} = \mathcal{V}^{\perp}.$$

From this, for any $w \in (\mathcal{V}^{\perp})^{\perp}$,

$$(Bw)^{\top}x = w^{\top}B^{\top}x = 0 \Rightarrow B^{\top}x = 0.$$

so $x \in \mathcal{N}(B^{\top})$. Hence $(\mathcal{V}^{\perp})^{\perp} \subset \mathcal{V}$. We therefore have shown that $\mathcal{V} \subset (\mathcal{V}^{\perp})^{\perp} \subset \mathcal{V}$, so $\mathcal{V} = (\mathcal{V}^{\perp})^{\perp}$.

3.13 Let \mathcal{V} be a subspace of \mathbb{R}^n . Show that there exist matrices V and U such that $\mathcal{V} = \mathcal{R}(V) = \mathcal{N}(U)$.

Proof. Let $m = \dim \mathcal{V}$. We fix a basis $\{\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n\}$ and let the ith column of the matrix V be v_i for each i = 1, 2, ..., n. Clearly then $\mathcal{R}(\mathcal{V}) = \mathcal{V}$, as the number of linearly independent columns of V is equal to the dimension of V. Now suppose that we let $\{\boldsymbol{w}_1, \boldsymbol{w}_2, ..., \boldsymbol{w}_{n-m}\}$ be a basis for \mathcal{V}^{\perp} . Let the ith row of the matrix \boldsymbol{U} be \boldsymbol{w}_i^{\top} for each i = 1, 2, ..., n-m. We then have that $\mathcal{R}(\boldsymbol{U}^{\top}) = \mathcal{V}^{\perp}$. Hence, using the results of Exercise 3.11 and Theorem 3.4, it follows that

$$(\mathcal{V}^{\perp})^{\perp} = \mathcal{V} = \mathcal{R}(\mathbf{U}^{\top})^{\perp} = \mathcal{N}((\mathbf{U}^{\top})^{\top}) = \mathcal{N}(\mathbf{U}).$$

So we have constructed matrices V and U such that $V = \mathcal{R}(V) = \mathcal{N}(U)$.

- **3.14** Let P be an orthogonal projector onto a subspace \mathcal{V} . Show that
 - (a) Px = x for all $x \in \mathcal{V}$.

Proof. Note that for any $x \in \mathcal{V}$, we can write x = Px + (I - P)x, which is an orthogonal decomposition of x with respect to \mathcal{V} where $Px \in \mathcal{V}$ and $(I - P)x \in \mathcal{V}^{\perp}$. However, x = x + 0 is also an orthogonal decomposition. Since orthogonal decompositions are unique, this implies that x = Px for all $x \in \mathcal{V}$.

(b) $\mathcal{R}(\mathbf{P}) = \mathcal{V}$.

Proof. Let P be an orthogonal projector onto \mathcal{V} . By definition, we have that $\mathcal{R}(P) \subset \mathcal{V}$. From part (a), we showed that Px = x for all $x \in \mathcal{V}$, so we also have that $\mathcal{V} \subset \mathcal{R}(P)$. Combining these, we have that $\mathcal{V} \subset \mathcal{R}(P) \subset \mathcal{V}$, and therefore $\mathcal{R}(P) = \mathcal{V}$.

- **3.18** For each of the following quadratic forms, determine if it is positive definite, negative definite, positive semidefinite, negative semidefinite, or indefinite.
 - (a) $f(x_1, x_2, x_3) = x_2^2$ Solution. We have that

$$f(x_1, x_2, x_3) = x_2^2 = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

Hence

$$Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

where the eigenvalues of Q are $\lambda_1 = 0$, $\lambda_2 = 0$, and $\lambda_3 = 1$. So this quadratic form is positive semidefinite.

(b) $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 - x_1x_3$ Solution. We have that

$$f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 - x_1 x_3 = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 2 & 0 \\ -\frac{1}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

Therefore

$$Q = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 2 & 0 \\ -\frac{1}{2} & 0 & 0 \end{bmatrix},$$

where the eigenvalues of Q are $\lambda_1 = 2$, $\lambda_2 = (1 - \sqrt{2})/2$, and $\lambda_3 = (1 + \sqrt{2})/2$. This quadratic form is indefinite.

(c) $f(x_1, x_2, x_3) = x_1^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$ Solution. We have that

$$f(x_1, x_2, x_3) = x_1^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

Therefore

$$Q = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix},$$

where the eigenvalues are $\lambda_1 = 0$, $\lambda_2 = 1 - \sqrt{3}$, and $\lambda_3 = 1 + \sqrt{3}$. This quadratic form is therefore indefinite.

3.20 Consider the quadratic form

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + 5x_3^2 + 2\xi x_1 x_2 - 2x_1 x_3 + 4x_2 x_3.$$

Find the values of the parameter ξ for which this quadratic form is positive definite. *Solution.* This quadratic form can be written as

$$f(x) = x^{\top} Q x$$

where we have that

$$Q = \begin{bmatrix} 1 & \xi & -1 \\ \xi & 1 & 2 \\ -1 & 2 & 5 \end{bmatrix}$$

for some $\xi \in \mathbb{R}$. The leading principal minors of Q are $\Delta_1 = 1$, $\Delta_2 = 1 - \xi^2$, and $\Delta_3 = -5\xi^2 - 4\xi$. By Sylvester's Criterion, Q is positive definite if and only if all leading principal minors of Q are positive. Hence we want to find the values of ξ such that $1 - \xi^2 > 0$ and $-5\xi^2 - 4\xi > 0$. We know that $1 - \xi^2 > 0$ for $\xi \in (-1,1)$. Furthermore, we have that

$$\xi = -\frac{4 \pm 4}{10} \Rightarrow \quad \xi = 0, -\frac{4}{5},$$

meaning that since $-5\xi^2-4\xi$ has a negative leading coefficient, $-5\xi^2-4\xi>0$ when $\xi\in(-\frac{4}{5},0)$. Therefore, since $(-1,1)\cup(-\frac{4}{5},0)=(-\frac{4}{5},0)$, Q is positive definite when $\xi\in(-\frac{4}{5},0)$.