Analytics & Machine Learning in Data Systems (Part 2)

Course Textbook Chapters 26

Newer Material:

- Data Lake: https://en.wikipedia.org/wiki/Data_lake
- K-Means: https://en.wikipedia.org/wiki/K-means clustering

Joseph E. Gonzalez jegonzal@cs.berkeley.edu

Machine Learning Lifecycle

- Typically a time consuming iterative batch process
 - Feature engineering
 - Validation

- Focus is on making fast robust predictions
 - Monitoring and tracking feedback
 - Materialization + fast model inference

Supervised Learning Reinforcement & Bandit Learning

Unsupervised Learning

Regression

Classification

Dimensionality Reduction

Clustering

➤ Given a collection of images cluster them into meaningful groups.

➤ Given a collection of images cluster them into meaningful groups.

➤ Given a collection of images cluster them into meaningful groups.

- ➤ Unsupervised: The labels of the groups are not given in the training data
- > Exploratory: overlaps with data mining

➤ Given a collection of images cluster them into

meaningful groups.

Simplified Illustration

Image Id	Average Red	Average Green
1	123	200
2	212	103
3	55	35

- How many clusters?
- Where are the clusters?

➤ Given a collection of images cluster them into

meaningful groups.

Features

 Image Id
 Average Red
 Average Green

 1
 123
 200

 2
 212
 103

 3
 55
 35

- Where are the clusters?
- How many clusters?

➤ Given a collection of images cluster them into

meaningful groups.

Average Red		2 3
	Average Green	→

 Image Id
 Average Red
 Average Green

 1
 123
 200

 2
 212
 103

 3
 55
 35

What makes a good clustering?

- All points are near the cluster center
- Spread between clusters > spread within clusters

➤ Given a collection of images cluster them into

meaningful groups.

-			Green
	1	123	200
	2	212	103
	3	55	35
Average Green		What hap when a nearrives?	-

➤ Given a collection of images cluster them into

Image Id

Average

Red

123

212

55

meaningful groups.

Average Red		2 3
_	Average Green	→

What happens

when a new point arrives?

Average

Green

200

103

35

Predict "label" based on existing clusters (Yellow)

➤ Given a collection of images cluster them into

meaningful groups.

		2
Average Red		3
	Average Green	→

How do we automatically cluster data?

Average

Red

123

212

55

Average

Green

200

103

35

Image Id

How do we Compute a Clustering?

Many different clustering models and algorithms:

- Feature Based Clustering: Points in Rd
 - K-Means: EM on Symmetric Gaussians ← We will learn this one
 - Mixture Models: Generalized k-means
 - ...
- Spectral Methods: Similarity Function Between Items
 - Similarity based clustering: A and B are co-purchased
 - Graph clustering: Cities based on road network
 - ...
- ➤ Hierarchical Clustering: clustering nested items
 - Latent Dirichlet Allocation: Documents based on words
 - Developed at Berkeley and widely used!
 - ...

- ➤ Input K: The number of clusters to find
- ➤ Pick an initial set of points as cluster centers

For each data point find the cluster nearest center

For each data point find the cluster nearest center

➤ Compute mean of points in each "cluster"

>Adjust cluster centers to be the mean of the cluster

- ➤Improved?
- **≻**Repeat

>Assign Points

≻Assign Points

➤ Compute cluster means

➤ Update cluster centers

- ➤ Repeat?
 - Yes to check that nothing changes → Converged!

centers ← pick k initial Centers

```
while (centers are changing) {
   // Compute the assignments (E-Step)
   asg ← [(x, nearest(centers, x)) for x in data]
```

What do we mean by "nearest":

A: Euclidean Distance

$$\arg \min_{c \in \text{centers}} ||c - x||_2^2 = \sum_{i=1}^a (c_i - x_i)^2$$

```
centers ← pick k initial Centers
                                              Compute the
                                           "Expected" Assignment
while (centers are changing) {
   // Compute the assignments (E-Step)
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
   // Compute the new centers (M-Step)
   for i in range(k):
                            Find centers that maximize the
      centers[i] =
                                data "likelihood"
         mean([x for (x, c) in asg if c == i])
```

```
centers ← pick k initial Centers
```

```
while (centers are changing) {
   // Compute the assignments (E-Step)
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
   // Compute the new centers (M-Step)
   for i in range(k):
      centers[i] =
         mean([x for (x, c) in asg if c == i])
                                   To a local
                                                Depends on
     Guaranteed to
                    ... to what?
                                  optimum. 🕾
                                               Initial Centers
       converge!
```

```
centers ← pick k initial Centers
   How do we pick initial centers?
while (centers are changing) {
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
   for i in range(k):
      centers[i] =
         mean([x for (x, c) in asg if c == i])
                    ... to what?
```

Picking the Initial Centers

- >Simple Strategy: select k points at random
 - What could go wrong?

Picking the Initial Centers

- > Better Strategy: kmeans++
 - Randomized approx. algorithm
 - Intuition select points that are not near existing centers

K-Means++ Algorithm

```
centers ← set(randomly select a single point)
while len(centers) < k:</pre>
  # Compute the distance of each point
  # to its nearest center dSq = d^2
  dSq \leftarrow (x, dist to nearest(centers, x)^2) for x in data
  # Sample a new point with probability
  # proportional to dSq
  c ← sample_one(data, prob = dSq / sum(dSq))
  # Update the clusters
  centers.add(c)
```

How do we choose K?

- ➤ Basic Elbow Method (Easy and what you do in HW)
 - Try range of K-values and plot average distance to centers
- Cross-Validation (Better)
 - Repeatedly split the data into training and validation datasets
 - Cluster the training dataset
 - Measure Avg. Dist. To Centers on validation data

K-Means +

How do we run k-means on the data warehouse / data lake?

Interacting With the Data

Good for smaller datasets

Faster more natural Request Data Sample interaction

Lots of tools!

Compute Locally

> $f_{\theta}(r)$ $r \in Data$

> > Learning Algorithm

Sample of Data

Can we send the computation to Computation the data?

Yes!

Statistical Query Pattern

Common Machine Learning Pattern

>Computing aggregates of user defined functions

 f_{θ} : User defined function [**UDF**]

: User defined aggregate [**UDA**]

Interacting With the Data

Good for smaller datasets

Faster more natural Request Data Sample interaction

Lots of tools!

Compute Locally

 $f_{\theta}(r)$ $r \in Data$

Learning Algorithm

Sample of Data

Good for bigger datasets and compute intensive tasks

Query: f_{θ}

Cluster Compute

Learning Algorithm

Can we express K-Means in the Statistical Query Pattern?

```
centers ← pick k initial Centers
                                                          Merge with M-Step
                                          Query returns all
while (centers are changing):
                                            the data ...
                                                           Statistical Query
   // Compute the assignments (E-Step)
                                                               Pattern
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
   for i in range(k): // Compute the new centers (M-Step)
       centers[i] = mean([x for (x, c) in asg if c == i])
centers ← pick k initial Centers
while (centers are changing):
   for i in range(k):
       new_centers[i] =
           mean([x for x in data if nearest(centers, x) == i])
   centers = new centers
```

Can we express K-Means in the Statistical Query Pattern?

```
centers ← pick k initial Centers
while (centers are changing):
    for i in range(k):
        new_centers[i] =
            mean([x for x in data if nearest(centers, x) == i])
    centers = new_centers
```

Group by query:

```
SELECT nearest_UDF(centers, x) AS cid, mean_UDA(x) FROM data GROUPBY cid
```

K-Means in Map-Reduce

- ➤ MapFunction(old_centers, x)
 - Compute the index of the nearest old center
 - Return (**key** = *nearest_centers*, **value** = (x, 1))
- > ReduceFunction combines values and counts
 - For each cluster center (Group By)
- > Data system returns aggregate statistics:

$$s_i = \sum_{x \in \text{Cluster } i} x_i \quad \text{and} \quad n_i = \sum_{x \in \text{Cluster } i} 1$$

 \blacktriangleright ML algorithm computes new centers: $\mu_i = s_i/n_i$

Can we express K-Means++ in the Statistical Query Pattern?

- > Yes, however there is a better version: K-Means | |
 - More complex but much faster
- ➤ Or you can parallelize K-Means++ directly
 - Requires more passes
- ➤ Challenging Step?
 - Parallel weighted sampling:

```
sample_one(data, prob = dSq / sum(dSq))
```

How do you select one point uniformly at random?

Res-A: weighted reservoir sampling

➤ Goal: Sample k records from a stream where record i is included in the sample with probability proportional to w_i

How would we normally sample k records?

Draw a random number uniformly between **0** and **3.7**

Sample the corresponding record and remove the weight.

Draw a random number uniformly between 0 and 3.1

We want to do this in **one pass** without ever knowing the **sum** of the weights!

Res-A: weighted reservoir sampling

ightarrow Goal: Sample k records from a stream where record i is included in the sample with probability proportional to w_i

>Algorithm:

For each record i draw a uniform random number:

$$u_i \sim \mathbf{Unif}(0,1)$$

• Select the top-k records ordered by: u_i^{1/w_i}

Common ML Pattern?

- Query Function: [pow(rand(), 1 / record.w), record]
- Agg. Function: top-k heap

Illustrating Res-A Algorithm

Basic Analysis Behind Res-A

- \blacktriangleright Define the random variable: $X_i = u_i^{1/w_i}$
- ➤Then:

$$\mathbf{P}(X_i < \alpha) = \mathbf{P}\left(u_i^{1/w_i} < \alpha\right) = \mathbf{P}\left(u_i < \alpha^{w_i}\right) = \alpha^{w_i}$$

$$\mathbf{p}(X_i = \alpha) = w_i \alpha^{w_i - 1}$$
Derivative of CDF \rightarrow PDF

- \triangleright Suppose we want to pick just one element (k=1)
 - Probability of selecting X_i is:

$$\int_{0}^{1} \mathbf{p} (X_{i} = \alpha) \prod_{j \neq i} \mathbf{P} (X_{j} < \alpha) d\alpha = \int_{0}^{1} (w_{i} \alpha^{w_{i} - 1}) \prod_{j \neq i} \alpha^{w_{j}} d\alpha$$

$$= \frac{w_{i}}{\sum_{i} w_{j}}$$
We won't test you

on this derivation

People who like Res-A also like...

- ➤ Algorithm R
 - Another reservoir filtering algorithm (recitation?)
- ➤ Bloom Filters
 - Efficient set membership with limited memory
- >Count-Min
 - Efficient key-counting with limited memory
- ➤ Heavy Hitters Sketch
 - Top-k Elements with limited memory

Implementation Details: Statistical Query Pattern

- ➤ Iterative ML → Data caching is important
 - Motivation behind Spark project

Map Reduce Dataflow View

Spark Opt. Dataflow

10-100× faster than network and disk

Spark Opt. Dataflow View

What happened to map-reduce?

Implementation Details: Common Machine Learning Pattern

- ➤ Iterative ML → Data caching is important
 - Motivation behind Spark project
- \triangleright Need to watch out for large θ and Σ

Summary of Clustering

Supervised Learning Reinforcement & Bandit Learning

Unsupervised Learning

Regression

Classification

Dimensionality

Clustering

