микросхемы интегральные серии км1801

Общие данные

ГАБАРИТНЫЙ ЧЕРТЕЖ

Масса не более 20 г

Нумерация выводов показана условно.

внешние воздеиствующие факторы

Синусоидальная вибрация:	
диапазон частот, Гц	1 - 2000
амплитуда ускорения, м/c² (g) · · ·	200 (20)
Механический удар одиночного действия:	
пиковое ударное ускорение, м/c² (g).	1500 (150)
длительность действия ударного ускорения,	·.
MC .	0,1-2,0
Механический удар многократного действия:	
пиковое ударное ускорение, м/с² (g)	1500 (150)
длительность действия ударного ускорения,	
MC	1—5

МИКРОСХЕМЫ ИНТЕГРАЛЬНЫЕ СЕРИИ КМ1801

Общие данные

Линейное ускорение, м/с² (g)	5000 (500)
Пониженная рабочая температура среды, в	С минус 10
Повышенная рабочая температура среды, оо	C 70
Повышенная предельная температура сред	ы,
°C	. 85
Изменения температуры среды, °C	 от минус 60 до +85

НАДЕЖНОСТЬ

Минимальная наработка*,	ч.			,	*	,	15 000
Срок сохраняемости*, лет	Γ.	 •	•.	.•			

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Микросхемы следует применять и эксплуатировать в соответствии с ГОСТ 18725—83 и требованиями, изложенными ниже.

Пайка микросхем на печатную плату одножальным паяльником должна производиться по следующему режиму:

температура жала паяльника не более 280°C;

время касания каждого вывода не более 3 с; /

интервал между пайками соседних выводов не менее 3 с;

расстояние от корпуса до края расплавленного припоя (по длине вывода) не менее 1 мм.

Операцию очистки печатных плат с микросхемами от паяльных флюсов производить жидкостями, не оказывающими влияние на покрытие, маркировку и материалы корпуса.

Сушку печатных плат с микросхемами после очистки от флюсов производить при температуре не выше 60°С.

После распайки микросхем на платы с целью влагозащиты микросхемы с платами должны быть защищены лаком УР-231 или ЭП-730 не менее, чем в три слоя. Метод нанесения лака должен обеспечить наличие покрытия на поверхности микросхем. Оптимальная толщина покрытия лаком УР-231—35÷55 мкм, лаком ЭП-730—35÷100 мкм.

Температура сушки (полимеризации) лаком должна соответствовать указанной в технических условиях, но не должна быть выше допустимой температуры эксплуатации.

^{*} В условиях и режимах, допускаемых ОТУ или ТУ.

МИКРОСХЕМЫ ИНТЕГРАЛЬНЫЕ СЕРИИ КМ1801

Общие данные

При конструировании аппаратуры для повышения надежности рекомендуется обеспечить такой тепловой режим, чтобы температура корпуса не превышала 70°C.

При измерениях и эксплуатации микросхем должны быть приняты меры, исключающие возможность накопления электростатических зарядов на выводах микросхемы.

На рабочих местах все металлические и электропроводные неметаллические части технологического, испытательного и измерительного оборудования должны быть заземлены, независимо от применения других методов защиты от статического электричества.

Допустимые значения электростатического потенциала не более 100 В.

•

КМ1801 ВМ3 (A, Б, В)

ОДНОКРИСТАЛЬНЫЙ ШЕСТНАДЦАТИРАЗРЯДНЫЙ МИКРОПРОЦЕССОР

ФУНКЦИОНАЛЬНАЯ СХЕМА

- 1 сигнал управления вводом данных
- 2 сигнал управления вывода данных
- 3 сигнал синхронизации обмена
- 4 сигнал синхронизации устройства
- 5 сигнал ответа приемника информации
- 6 сигнал разрешения прямого доступа к памяти
- 7 сигнал подтверждения запроса прямого доступа к памяти
- 8 сигнал запроса прямого доступа к памяти
- 9 сигнал разрешения преобразования адресов системной магистрали
- 10 нулевой разряд адреса/данных системной магистрали
- 11 первый разряд адреса/данных системной магистрали
- 12 второй разряд адреса/данных системной магистрали
- 13 третий разряд адреса/данных системной магистрали

ОДНОКРИСТАЛЬНЫЙ ШЕСТНАДЦАТИРАЗРЯДНЫЙ МИКРОПРОЦЕССОР

KM1801BM3 (A, Б, В)

```
14 — четвертый разряд адреса/данных системной магистрали
   15 — пятый разряд адреса/данных системной магистрали
   16 — шестой разряд адреса/данных системной магистрали
   17 — седьмой разряд адреса/данных системной магистрали
   18 — восьмой разряд адреса/данных системной магистрали
   19 — девятый разряд адреса/данных системной магистрали
   20 — десятый разряд адреса/данных системной магистрали
   21 — одиннадцатый разряд адреса/данных системной магистрали
   22 — двенадцатый разряд адреса/данных системной магистрали
   23 — тринадцатый разряд адреса/данных системной магистрали
   24 — четырнадцатый разряд адреса/данных системной магистрали
   25 — пятнадцатый разряд адреса/данных системной магистрали
   26 — шестнадцатый разряд адреса/данных системной магистрали
   27 — семнадцатый разряд адреса/данных системной магистрали
   28 — восемнадцатый разряд адреса/данных системной магистрали
   29 — девятнадцатый разряд адреса/данных системной магистрали
   30 — двадцатый разряд адреса/данных системной магистрали
   31 — сигнал адрес/инструкция
   32 — общий вывод
   33 — сигнал установки
   34 — обращение к внешним устройствам
   35 — сигнал выборки при HLT моде
   36 — сигнал выдачи адреса
   37 — сигнал разрешения преобразования адреса
   38 — общий вывод
39—41 — свободные выходы
   42 — общий вывод
   43 — вывод питания от источника напряжения
   44 — сигнал радиального прерывания
   45 — сигнал разрешения зависания
   46 — сигнал включения источника питания переменного напряжения
   47 — сигнал останова
   48 — сигнал запроса на прерывание с приоритетом 7
   49 — сигнал запроса на прерывание с приоритетом 6
   50 — сигнал запроса на прерывание с приоритетом 5
   51 — сигнал запроса на прерывание с приоритетом 4
    52 — сигнал включения источника питания постоянного напряжения
   53 — сигнал прерывания
   54 — сигнал готовности
   55 — сигнал отладочного режима
    56 — сигнал готовности данных
```

60 — тактовый импульс

59 — сигнал включения

61 — сигнал загрузки команды

57 — признак двойной точности

58 — признак длинного целого

62 — сигнал разрешения запроса на прерывание

63 — сигнал управления запись — байт

64 - 5 B

КМ1801 ВМ3 (A, Б, В)

ОДНОКРИСТАЛЬНЫЙ ШЕСТНАДЦАТИРАЗРЯДНЫЙ МИКРОПРОЦЕССОР

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

(при температуре 25 ± 10 °C)

	T T	
	Напряжение питания, В	$5\pm5\%$
	Ток потребления, мА, не более	310
	Ток утечки на входе, мкА, не более	1
	Ток утечки на выходе, мкА, не более	10
	Выходное напряжение низкого уровня, В,	I U
не	более	0,45
	Выходное напряжение высокого уровня, В,	
не	менее	2,45
	Максимальная тактовая частота функциони-	2,10
por	зания, не менее	6
	ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ	ПАВАМЕТВОЕ
	И РЕЖИМОВ ЭКСПЛУАТАЦИ	HAPAMEIPUE Ta
	TI PENCHMOD SKCHIJIYATALIYI	.V1
	Максимальное напряжение питания, В	5,25
	Максимальное входное напряжение, В	5,25
	Минимальное входное напряжение, В	0,20
	· · · · · · · · · · · · · · · · · · ·	U:

Максимальная емкость нагрузки, пФ . . .