M3/M4 S1

Imperial College London

BSc, MSci and MSc EXAMINATIONS (MATHEMATICS)

May - June 2013

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science.

Statistical Theory I

Date: Wednesday, 22 May 2013. Time: 2.00pm. Time allowed: 2 hours.

This paper has FOUR questions.

Candidates should use ONE main answer book.

Supplementary books may only be used after the main book is full.

Statistical tables will not be provided.

- DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.
- Answer all the questions. Each question carries equal weight.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.
- Affix one of the labels provided to each answer book that you use, but DO NOT USE THE LABEL WITH YOUR NAME ON IT.
- Calculators may not be used.

- 1. (a) What is meant by each of the following?
 - (i) Parameter θ is estimable.
 - (ii) Estimator T_n of θ based on a sample of size n is consistent.
 - (iii) Statistic t(x) is sufficient for a family of distributions parameterised by θ .
 - (iv) Statistic a(x) is ancillary for a family of distributions parameterised by θ .
 - (b) Let $x = \{x_1, x_2, \dots, x_n\}$ be a random sample from $Poisson(\theta)$, with unknown $\theta > 0$.
 - (i) Show that $z = \sum_{1}^{n} x_k$ is a minimal sufficient statistic for $Poisson(\theta)$.
 - (ii) Find the maximum likelihood estimate of θ^2 and its bias.
 - (iii) Obtain an unbiased estimator of θ^2 that has minimum variance. Give your reasoning.
- 2. (a) For a single random variable X from $N(\theta, c^2\theta)$, with $\theta > 0$ and known constant c, find
 - (i) the efficient score $U(\theta)$,
 - (ii) the Fisher information $I(\theta)$.
 - (b) Let $x = \{x_1, x_2, \dots, x_n\}$ be a random sample from $N(\theta, c^2\theta)$, as in (a) above.
 - (i) Show that the likelihood $\ell(\theta;x)$ is a function of sufficient statistics $(\overline{x},\,s^2)$.
 - (ii) Show that the efficiency of the unbiased estimate \overline{x} of θ is $\frac{2\theta}{2\theta+c^2}$.
 - (iii) Find the efficiency of the unbiased estimate s^2/c^2 of θ .

[For a random sample of size n from $N(\mu, \sigma^2)$,

$$Z = (n-1)S^2/\sigma^2$$
 is χ^2_{n-1} with $E(Z) = n-1$ and $var(Z) = 2(n-1)$.

- 3. (a) Consider a size α test of composite hypotheses $H_0: \theta \in \Theta_0$ against $H_1: \theta \notin \Theta_0$. What is meant by each of the following?
 - (i) The size of the test.
 - (ii) The test is similar.
 - (iii) The test is unbiased.

- 3. (b) Let $x = \{x_1, x_2, \dots, x_m\}$ and $y = \{y_1, y_2, \dots, y_n\}$ be independent random samples respectively from $Exponential(\xi)$ and $Exponential(\eta)$.
 - (i) To test $H_0: \xi = \eta$ against $H_1: \xi \neq \eta$, calculate the ratio of maximised likelihoods test statistic

$$\lambda(oldsymbol{x},oldsymbol{y}) \; = \; rac{\ell_{H_1}(\,\widehat{\xi_1},\,\widehat{\eta_1}\,\,;\,oldsymbol{x},oldsymbol{y})}{\ell_{H_0}(\,\widehat{\xi_0}\,\,;\,oldsymbol{x},oldsymbol{y})} \; ,$$

where $\widehat{\xi}_1$ and $\widehat{\eta}_1$ are the maximum likelihood estimates of ξ and η respectively under H_1 , and $\widehat{\xi}_0$ is the maximum likelihood estimate of the common value of ξ and η under H_0 .

[You may write down the maximum likelihood estimates without proof.]

- (ii) Show that $\lambda(x,y)$ depends only on the ratio of the means, $z = \overline{x}/\overline{y}$.
- (iii) Show that $\Lambda(x,y) = \ln \lambda(x,y)$ has a unique minimum (at z=1), which implies that the null hypothesis is rejected if z is too large or too small.
- (iv) By observing that z has a sampling distribution proportional to an F-distributed random variable, show how you would find values c_1 and c_2 for the critical region $\{z: (z < c_1) \cup (z > c_2)\}$ of the test of size α .
- 4. (a) Let a single random variable X be from a distribution having probability density function $f(x \mid \theta) \ = \ \tfrac{1}{2} \left(1 + \theta x \right) \qquad (-1 < x < 1),$ where $-1 < \theta < 1$.
 - (i) Obtain the efficient score $U(\theta)$.
 - (ii) Show that the Fisher information $I(\theta)$ is $\frac{1}{2\theta^3} \ln\left(\frac{1+\theta}{1-\theta}\right) \frac{1}{\theta^2}$.
 - (b) Let $x = \{x_1, x_2, \dots, x_n\}$ be a random sample from the distribution in (a).
 - (i) Find the method of moments estimator $\widehat{\theta}_0$ of θ .
 - (ii) Find the efficiency of $\widehat{\theta}_0$ as an estimator of θ .
 - (iii) Write down the log likelihood function $\chi(\theta; x)$ and its derivative $L'(\theta; x) = \frac{\partial}{\partial \theta} \ln L(\theta; x)$.

Observe that the minimal sufficient statistic is the entire set of order statistics, making calculation of the maximum likelihood estimate $\widehat{\theta}$ difficult.

Expand $L'(\widehat{\theta_0} \,|\, \boldsymbol{x})$ (ie $L'(\theta \,|\, \boldsymbol{x})$ evaluated at $\widehat{\theta_0}$) about the MLE $\widehat{\theta}$, and obtain a consistent estimate $\widehat{\theta_1}$ of θ that is more efficient than $\widehat{\theta_0}$. [You are not required to obtain the efficiency of $\widehat{\theta_1}$.]

	M3S1/M4S1 EXAMINATION SOLUTIONS 2012-13	Course M351 M451
Question		Marks & seen/unseen
Parts a) i) ii) iii) b) i)	There is at least one unbiased estimator of θ . To converges to θ as $n \to \infty$. When any statistic $z(x)$ is such that $f_{Z T,\theta}(z t,\theta)$ does not depend on θ . I.e. $f_{X T,\theta}(x t,\theta)$ is the same for all $\theta \in \Theta$. The conditional distribution of $a \theta$ is the same for all θ . $f_{X \theta}(x \theta) = \prod_{k=1}^{\infty} \frac{e^{-\theta}\theta^{x_k}}{x_k!} = \frac{1}{\prod(x_k!)} \frac{e^{-n\theta}\theta^{Zx_k}}{e^{-n\theta}\theta^{Zx_k}} = h(x)g(Zx_k,\theta)$ So $z = Zx_k$ is sufficiently for θ by Neyman Factorisation, minimal since it has only one element dimension rank $Z = Zx_k \qquad f_{Z \theta}(z \theta) = e^{-n\theta}(n\theta)^Z$ $\lim_{x \to \infty} f_{Z \theta}(z \theta) = -n\theta + z\ln n + z\ln \theta - \ln(z!)$	Bookwork 1 2 2 Similar seen 3 Unreen
iii)	$\frac{\partial \ln f_{Z \theta}(z \theta)}{\partial \theta} = -n + \frac{z}{\theta} = \frac{n}{\theta} \left(\frac{z}{n} - \theta \right) \text{so} \hat{\theta} = \frac{z}{n} \text{ is MLE for } \theta$ • By invariance under transformation $\hat{\theta}^2 = \frac{z^2}{n^2}$ is MLE for θ^2 • $E(Z) = n\theta$, $var(Z) = n\theta$ so $E(Z^2) = var(Z) + \{E(Z)\}^2$ $= n\theta + n^2\theta^2$ So $E(\hat{\theta}^2) = \frac{\theta}{n} + \theta^2$ and $bias(\hat{\theta}^2) = \frac{\theta}{n}$ $\frac{1}{n^2}E(Z^2 - Z) = \theta^2 \text{so} \frac{1}{n^2}(Z^2 - Z) \text{is imbiased for } \theta^2$	3 3
	This unbiased estimator is a function only of minimal sufficient statistic z, so it is MVUE for o'by Lehmann-Scheffe Theorem.	2
	Setter's initials Checker's initials	Page number

	M3S1/M4S1 EXAMINATION SOLUTIONS 2012-13	Course M3SI M4SI
Question 2		Marks & seen/unseen
Parts a)	$f(x \theta) = \frac{1}{\sqrt{2\pi c^2 \theta}} e^{-\frac{1}{2c^2 \theta}} (x-\theta)^2$ $\ln f(x \theta) = \ln \left(\frac{1}{\sqrt{2\pi c^2}}\right) - \frac{1}{2} \ln \theta - \frac{1}{2c^2 \theta} (x^2 - 2x\theta + \theta^2)$	Unseen
(i)	$U(\theta) = \frac{\partial}{\partial \theta} \ln f(X \theta) = -\frac{1}{2\theta} + \left(\frac{1}{2c^2}\right) \frac{X^2}{\theta^2} - \frac{1}{2c^2}$	3
(ii)	$\frac{\partial U(\theta)}{\partial \theta} = \frac{1}{2\theta^2} - \frac{X^2}{c^2} \frac{1}{\theta^3}$ $I(\theta) = E\left(-\frac{\partial U(\theta)}{\partial \theta}\right) = -\frac{1}{2\theta^2} + \frac{1}{c^2\theta^3} \left(var(X) + \{E(X)\}^2\right)$	
15 75	$= -\frac{1}{2\theta^2} + \frac{1}{c^2 \theta^3} c^2 \theta + \frac{1}{c^2 \theta^3} \theta^2 = \frac{c^2 + 2\theta}{2c^2 \theta^2}$	4
5) (1)	$f(x \theta) = \left(\frac{1}{\sqrt{2\pi c^2}}\right)^n \theta^{-\frac{n}{2}} e^{-\frac{1}{2c^2\theta}} \sum (x_i - \theta)^2$ $\sum (x_i - \theta)^2 = \sum \{(x_i - \overline{x}) + (\overline{x} - \theta)\}^2$ $= \sum (x_i - \overline{x})^2 + 2(\overline{x} - \theta) \sum (x_i - \overline{x}) + n(\overline{x} - \theta)^2$ $= (n-1)s^2 + O + n(\overline{x} - \theta)^2$	e
	50 $f(x \theta) = (\frac{1}{\sqrt{2\pi}c^2})^n \theta^{-\frac{n}{2}} \exp\left\{-\frac{1}{2c^2\theta}\left[(n-1)s^2 + n(\bar{x}-\theta)^2\right]\right\}$ $= g(\bar{x}, s^2, \theta)$ so (\bar{x}, s^2) are sufficient statistics by Neyman Factorisation Theorem	4
(ũ)	By(a) $CRLB = \frac{1}{n\Gamma(\theta)}$ & $vav(\overline{X}) = \frac{c^2\theta}{n}$ Efficiency $(\mathbb{R}) = \frac{1/c^2\theta}{(c^2+2\theta)/2c^2\theta^2} = \frac{2\theta}{2\theta+c^2}$	3
(iii)	Efficiency $\binom{5^2}{c^2} = \frac{1/var(\frac{5^2}{c^2})}{\sqrt{2}}$	847
	$Z = \frac{(n-1)S^{2}}{\sigma^{2}} = \frac{(n-1)S^{2}}{c^{2}\theta} var(Z) = \frac{(n-1)^{2}}{\theta^{2}} \left(\frac{S^{2}}{c^{2}}\right) = \lambda(n-1)$	
	$\operatorname{Var}\left(\frac{S^{2}}{c^{2}}\right) = \frac{2\theta^{2}}{n-1}$ $\operatorname{Efficiency}\left(\frac{S^{2}}{c^{2}}\right) = \frac{n-1}{2\theta^{2}} / \frac{n(c^{2}+2\theta)}{2c^{2}\theta^{2}} = \frac{n-1}{n} \cdot \frac{c^{2}}{2\theta+c^{2}}$	6
	Setter's initials Checker's initials	Page number

Question	M3S1/M4S1 EXAMINATION SOLUTIONS 2012-13	Course M3SI M4SI
3		Marks & seen/unseen
Parts a) i)	sup $\alpha(\theta)$ where $\alpha(\theta) = P(X \in R \mid \theta \in \mathcal{O}_{\theta})$ type leaver probability $\theta \in \mathcal{O}_{\theta}$	Bookwork 2
ũ)	$\alpha(\theta) = \alpha$ a constant for all $\theta \in \Theta$	1
ùì)	The power $\beta(0) = P(X \in R \mid 0)$ satisfies	
	$\beta(\theta)$ $\begin{cases} \leq \alpha & \theta \in \mathcal{O}_0 \\ \geqslant \alpha & \theta \in \overline{\mathcal{O}}_0 \end{cases}$	2
b) i)	$\hat{\xi}_1 = \frac{1}{2} \hat{\gamma}_2 = \frac{1}{2} \hat{\xi}_0 = \frac{m+n}{m \times 1 + n \sqrt{2}}$	All unseen
	fy(x,y \$1,2)= ま e-ち(mえ), ne-て(ny) → MLE + 発言気,行言	
	fHo(x,y 50) = 50 m+n e-50 (m 72 + ny) => MLE \$0 = m+n mx + ny	3
ù)		
	(min min min min min min min min min min	98
	$= \frac{1}{2^{m}} \cdot \frac{1}{y} \cdot \frac{(m\overline{x} + n\overline{y})^{m+n}}{(m+n)^{m+n}} = \frac{m^{m+n}}{(m+n)^{m+n}} \left(\frac{\overline{x}}{y} + \frac{n}{m}\right)^{m+n} \left(\frac{\overline{x}}{y}\right)^{m}$	
	$= \frac{1}{\left(1 + \frac{\eta}{m}\right)^{m+n}} \left(z + \frac{\eta}{m}\right)^{m+n} \frac{1}{z^m}$	3
	The test is reject to if $\lambda(z,y)$ is too large	
iii)	$\Lambda(z,y) = \ln \lambda(z,y) = -(m+n)\ln(1+\frac{\pi}{m}) + (m+n)\ln(z+\frac{\pi}{m}) - m\ln z$	
	$\frac{\partial \Lambda}{\partial z} = \frac{m+n}{z+\frac{n}{m}} - \frac{m}{z}, = 0 \text{ when } z_{m+z_{n}} = z_{m+n}$ $\frac{\partial^{2} \Lambda}{\partial z} = \frac{m+n}{z+\frac{n}{m}} - \frac{m}{z}, = 0 \text{ when } z_{m+z_{n}} = z_{m+n}$ i.e. when $z=1$ if $z=y$	
	$\frac{\sqrt{1-x^2}}{\sqrt{2+x^2}} = -\frac{m+n}{(z+\frac{n}{m})^2} + \frac{m}{z^2} = m\left\{1 - \frac{1+\frac{n}{m}}{(1+\frac{n}{m})^2}\right\} = m\left(1 - \frac{1}{1+\frac{n}{m}}\right)$	9
	50 $\lambda(x,y)$ has a unique minimum at $z=1$ 50 reject \dot{y} $z=\frac{\bar{x}}{y}$ is bod large or two small	1,
	reject y z= = is boo large or too small	4
	cfd.	
	Setter's initials Checker's initials	Page number

. Se

3 dd Marks &	e 8	M3S1/M4S1 EXAMINATION SOLUTIONS 2012–13	Course M3S1 M4S1
b) iv) $2\xi(m\overline{X})$ is χ^2_{2m} independent of $2\eta(n\overline{Y})$ which is χ^2_{2n} (sums of exponential rvs) so $\frac{1}{2m}(2\xi m\overline{X}) = \frac{\xi}{2}Z$ is $F_{2m,2n}$ Under $H_0: \xi = \eta$, Z is $F_{2m,2n}$	Question 3 chd		Marks & seen/unseen
		(sums of exponential rvs) so $\frac{1}{2m} (2\xi m \overline{X}) = \frac{\xi}{2} \overline{Z}$ is $F_{2m,2n}$ Under $H_0: \xi = \eta$, Z is $F_{2m,2n}$	

V.S.

M3S1/M4S1 EXAMINATION SOLUTIONS 2012-13	Course M3SI M4SI
Question	Marks & seen/unseen
Parts $en f(x \theta) = en(\frac{1}{2}) + en(1+\theta x)$	All unseen
i) $u(\theta) = \frac{\partial \ln f(X \theta)}{\partial \theta} = \frac{X}{1+\Theta X}$	2
$ I(\theta) = \mathbb{E}\{U^2(\theta)\} \left(=\mathbb{E}\{-\frac{\partial U(\theta)}{\partial \theta}\}\right)$	
$= \int_{-1}^{1} \frac{x^2}{(1+\theta x)^2} \cdot \frac{1}{2} (1+\theta x) dx = \frac{1}{2} \int_{-1}^{1} \frac{x^2}{1+\theta x} dx$	
$= \frac{1}{20^3} \int_{1-0}^{1+0} \frac{(z-1)^2}{z} dz \qquad (z=1+0z)$	82
$= \frac{1}{20^3} \int_{1-\theta}^{1+\theta} (z-2+\frac{1}{z}) dz = \frac{1}{20^3} \left[\frac{1}{2} z^2 - 2z + \ln z \right]_{1-\theta}^{1+\theta}$	
$= \frac{1}{203} \ln \left(\frac{1+0}{1-0} \right) - \frac{1}{0^2}$ $= \frac{1}{2} \left\{ \frac{(2-2)^{2}}{(0-1)^2} - (-1-0)^2 \right\}$	4
b) i) $E(X) = \int_{-1}^{1} \frac{1}{2} (x + \theta x^{2}) dx = \theta \int_{0}^{1} x^{2} dx = \frac{\theta}{3}$ so $\theta = 3E(X)$	ii ii
ii) $E(X^2) = \int_{0}^{1} \frac{1}{2}(x^2 + \theta x^3) dx = \int_{0}^{1} x^2 dx = \frac{1}{3}$	Sk.
$var(X) = \frac{1}{3} - \frac{\theta^2}{9} = \frac{1}{9}(3 - \theta^2)$ so $var(\sqrt{3}X) = \frac{1}{3}(3 - \theta^2)$	
$Efficiency(\hat{\theta}_0) = \frac{1/nI(\theta)}{var(\hat{\theta}_0)} = \frac{1/I(\theta)}{3-\theta^2}$	6
[Check: $\theta = \frac{1}{2} \Rightarrow \frac{2.53}{2.75} \sim 0.92$] iii) $L(\theta;x) = \sum_{i=1}^{n} e_{i}(x;1A) = \sum_{i=1}^{n} e_{i}(\frac{1}{2}) + \sum_{i=1}^{n} e_{i}(1+0)$	
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
$\frac{\partial L(\theta; x)}{\partial \theta} = \sum_{i=1}^{\infty} \frac{x_i}{1 + \theta x_i}$	
- problematic	
Expansion about MLE 8:	
$L'(\hat{\theta}_o) = \frac{\partial L}{\partial \theta} \Big _{\theta = \hat{\theta}_o^{>3} \overline{\mathcal{X}}} = L'(\hat{\theta}) + (\hat{\theta}_o - \hat{\theta}) L''(\hat{\theta}) + \cdots$	
so $\theta \approx \theta_0 + \frac{L'(\theta_0)}{-L''(\hat{\theta})}$ $L''(\theta) = \frac{Z}{(1+\theta x_0)^2}$	
so $\hat{\theta} \approx \hat{\theta}_0 + \frac{L'(\hat{\theta}_0)}{-L''(\hat{\theta})}$ $L''(\theta) = \frac{z}{l} \frac{z_l^2}{(l+\theta z_l)^2}$ $-L''(\hat{\theta}) \approx I_s(\hat{\theta}) \approx I_s(\hat{\theta}_0)$ by counstancy of $\hat{\theta}_0$	
Setter's initials Checker's initials	Page number

.

	M3S1/M4S1 EXAMINATION SOLUTIONS 2012-13	Course M351 M451
Auestion 4uestion		Marks & seen/unseen
arts b) iii)	$50 \hat{\theta}_{1} \approx 3\bar{x} + \frac{\sum_{t=1+(3\bar{x})x_{t}}^{x_{t}}}{n \mathrm{L}(3\bar{x})}$	8
		9
=		8
		100
		· ·
	Setter's initials Checker's initials	Page number

ş