PART B: TFSA 7.0 Tutorial

Prof. B. Boashash

^a Centre for Clinical Research, University of Queensland, Herston, QLD 4029, Australia

^b College of Engineering, Qatar University, Doha, Qatar

^C formerly Director, SPRC, Queensland University of Technology, Brisbane, Australia

TFSA Toolbox

- Time-Frequency Signal Analysis Matlab[®] Toolbox
- Developed by Prof. Boualem Boashash
- Graphical User Interface
- MEX formatting
- UNIX and WINDOWS
- 20 years of development
- Additional information can be found at:

http://www.time-frequency.net/downloads.html

Content

- The toolbox addresses the issues of
 - Nonstationary signal generation
 - Analytic signal generation
 - Quadratic time-frequency distributions
 - Instantaneous frequency estimation
 - Time-frequency signal synthesis

Signal Generation

- Types of signal generated
 - Linear FM
 - Quadratic FM
 - Cubic FM
 - Hyperbolic FM
 - Sinusoidal FM
 - Stepped FM
 - Noise
 - Gaussian
 - Uniform
 - Signal + Noise
 - SNR
 - Real or Complex

Example: - Quadratic FM + noise

Generate a real quadratic FM signal (length = 128 samples) that ranges from 0.1 to 0.4 Hz (normalised) with AWGN (SNR = 20dB).

Generated Signal

>> plot(QFM_noise)

Demo Signals

- Database of real world nonstationary example signals
 - Whale Song
 - Bat
 - Newborn EEG
 - HRV
 - Arbitrary test signal

Example

Bat echolocation >> plot(bat1)

Analytic Signal Generation

 The analytic signal is an important fundamental concept in time-frequency signal analysis (chapter 1)

$$z(t) = s(t) + j \left| s(t) * \frac{1}{\pi t} \right|$$

In polar form

$$z(t) = a(t)e^{-j\phi(t)}$$

 TFSA generates the analytic signal using a frequency domain method.

Analytic Signal Example

Generate the analytic signal of the quadratic FM signal

Analytic Signal Example

>> plot(real(QFM_anl)); hold; plot(imag(QFM_anl,'r'))

IF estimation

 Analytic signal can be used to directly estimate the IF of a signal (chapter 1)

$$IF(t) = \frac{1}{2\pi} \frac{d\phi(t)}{dt}$$

 The IF can also be estimated using several differentiation schemes, adaptive techniques, the peaks of a TFD, and zero crossings.

TFSA IF Estimation

Estimate the IF of a quadratic FM in the presence of noise

TFSA IF Estimation

>> plot(if_est1); hold; plot(if_est2,'r')); plot(if_est3)

Quadratic TFDs

- Quadratic class of TFDs (Chapter 3, pp 59)
 - Wigner-Ville
 - Smoothed WVD
 - Spectrogram
 - B-distribution
 - Modified B-distribution
 - Ext Modified B-distribution
 - CKD
 - MDD
 - ...
- Cross WVD
- Ambiguity

Visualisation

 Provides an array of visualisation options for the 3-D distribution (energy-time-

frequency)

Specific TFD plot

- Waterfall
- Image
- Logarithmic
- Colormap

Quadratic TFD example

Estimate the TFD of the

quadratic FM signal.

Quadratic TFD example

Quadratic TFD example

-WVD

- win length = 15, nfft = 128, tres = 1
- Spectrogram
 - win length = 15, nfft = 128, tres = 1, smooth win = 'hamm', smooth win length = 15
- Choi-Williams
 - win length = 15, nfft = 128, tres = 1, sigma = 20
- B-distribution
 - win length = 15, nfft = 128, tres = 1, beta = 0.01

Quadratic TFDs Example

Bat echolocation

Wigner-Ville distribution

win len = 63,
$$nfft = 256$$
, $tres = 2$

Modified B-distribution

win len = 63, nfft = 256,
tres = 2, beta =
$$0.01$$

- Signal Synthesis
 - STFT (overlap and add)
 - STFT (IDFT)
 - Modified STFT
 - Modified Spectrogram
 - -WVD
- Time frequency filtering

Example

- Perform signal synthesis on a WVD of a linear FM signal
 - Generate LFM $(f_{range} = 0.1 0.4, len = 128)$
 - Find TFD using WVD (tres = 1, win len = 127)
 - Synthesise using WVD method
 - Find TFD of synthesised window

B.Boashash, Signal Processing Research and Consulting, UQCCR

>> tfd =double(rgb2gray(imread('signal1.jpg','jpg')))';

Modified Spectrogram

Original TFD

Synthesised TFD

TFD generated using the spectrogram (win len = 127, tres = 3, smth win = 'hamm', smth win len = 127, nfft = 512)

 Try for 'signal2.jpg' with the same parameters as the previous example

```
>> tfd =double(rgb2gray(imread('signal2.jpg','jpg')))';
```

Modified Spectrogram

TFD (signal2.jpg)

Synthesised TFD

Other tools

- Scale analysis
 - Wavelet Transform
 - Daubauchies
- Toolbox Demo
- Higher Order TFDs
- Power Spectral Estimation
 - Periodogram