Data Structures

19. Graphs

Graphs

Consider this collection of vertices

$$- V = \{V_1, V_2, \ldots, V_9\}$$

- Where |V| = n

Undirected Graphs

- Associated with these vertices are | E | = 5 edges
 - E = { $\{v_1, v_2\}, \{v_3, v_5\}, \{v_4, v_8\}, \{v_4, v_9\}, \{v_6, v_9\}\}$
- Pair $\{v_i, v_k\}$ indicates following relations
 - Vertex v_i is adjacent to vertex v_k
 - Vertex v_k is adjacent to vertex v_i

Undirected Graphs – Example

• Given |V| = 7 vertices and |E| = 9 edges

Applications Of Graphs

- Driving Map
 - Vertex = Intersection, destinations
 - Edge = Road
- Airline Traffic
 - Vertex = Cities serviced by the airline
 - Edge = Flight exists between two cities
- Computer networks
 - Vertex = Server nodes, end devices, routers
 - Edge = Data link

Graphs

5

Applications Of Graphs

- Many real-world applications concern large graphs
- Web document graph 1 trillion webpages
 - Vertex = Webpage
 - Edge = Hyperlink
- Social networks 1.3 billion users
 - Vertex = Users
 - Edge = Friendship relation

Undirected Graphs – Definition

- An undirected Graph is defined as G=(V,E) consisting of
 - Set V of vertices: $V = \{v_1, v_2, \ldots, v_n\}$
 - ➤ Number of vertices is denoted by |V| = n
 - Set E of unordered pairs $\{v_i, v_i\}$ termed edges
 - > Edges connect the vertices
- Maximum number of edges in an undirected graph is O(|V|²)

$$|E| \le {|V| \choose 2} = \frac{|V|(|V|-1)}{2} = O(|V|^2)$$

- Assumption: A vertex is never adjacent to itself
- For example, $\{v_1, v_1\}$ will not define an edge
- Many data structures can implement abstract undirected graphs
 - Adjacency matrices, Adjacency lists

Degree

- Degree of a vertex is defined as the number of adjacent vertices
 - degree(A) = degree(D) = degree(C) = 3
 - degree(B) = degree(E) = 4
 - degree(F) = 1
 - degree(G) = 0

Vertices adjacent to a given vertex are its neighbors

Subgraph

- A sub-graph of a graph G is defined by
 - Subset of the vertices
 - Subset of the edges that connected the subset of vertices in the original graph
- Every graph is a subgraph of itself

Path

- Path in an undirected graph is an ordered sequence of vertices
 - Consecutive vertices are connected through edges
- Path from vertex 0 to vertex k is $(v_0, v_1, v_2, \ldots, v_k)$
 - where $\{v_j 1, v_j\}$ is an edge for $j = 1, \ldots, k$
- Length of a path is equal to the number of edges
- Example: Path from A to F
 - Path: (A, B, E, C, F)
 - Length of the path is 4

Path – Example

- Path of length 5: (A, B, E, C, B, D)
 - Repitition of vertex B

Path – Example

• A trivial path of length 0: (A)

Simple Path

- A simple path has no repetitions other than perhaps the first and last vertices
- A simple cycle is a simple path of at least two vertices with the first and last vertices equal
 - Note: these definitions are not universal
- A loop is an edge from a vertex onto itself

Connectedness

- Two vertices v_i, v_j are said to be connected if there exists a path from v_i to v_j
- A graph is connected if there exists a path from every vertex to every other vertex

Weighted Graphs

- A weight may be associated with each edge in a graph
 - This could represent distance, energy consumption, cost, etc.
 - Such a graph is called a weighted graph
- Pictorially, we will represent weights by numbers next to the edges

Weighted Graphs

- Length of a path within a weighted graph is the sum of all of the edges which make up the path
- The length of the path (A, D, G) in the following graph is 8.8

Weighted Graphs – Example

- Different paths may have different weights
 - Another path is (A, C, F, G) with length 1.2 + 1.4 + 4.5 = 7.1

Weighted Graphs – Example

- Find the shortest path between two vertices A and G
- Shortest path is (A, C, F, D, E, G) with length 5.7

18

Trees

- A graph is a tree if it satisfies the following two conditions
 - Graph is connected
 - There is a unique path between any two vertices

- Consequences
 - The number of edges is |E| = |V| 1
 - The graph is acyclic, that is, it does not contain any cycles
 - Adding one more edge must create a cycle
 - Removing any one edge creates two disjoint non-empty sub-graphs

Graphs 19

same 8 vertices

Trees

- Any tree can be converted into a rooted tree by
 - Choosing any vertex to be the root
 - Defining its neighboring vertices as its children
- Recursively defining
 - All neighboring vertices other than that one designated as parent to be that vertex children

Tree rooted at A

Trees – Example

A A D B H

Tree rooted at C

Trees – Example

Unrooted Tree

Tree rooted at B

Forest

- A forest is any graph that has no cycles
- Consequences
 - The number of edges is |E| < |V|
 - The number of trees is |V| |E|
 - Removing any one edge adds one more tree to the forest

- Forest with 22 vertices and 18 edges
- Four trees

Directed Graphs

- In a directed graph, the edges on a graph are associated with a direction
 - Edges are ordered pairs (v_j , v_k) denoting a connection from v_j to v_k
 - The edge (v_j, v_k) is different from the edge (v_k, v_j)
- Streets are directed graphs
 - In most cases, you can go two ways unless it is a one-way street

Directed Graphs

- Given our graph of nine vertices $V = \{v_1, v_2, ... v_9\}$
 - These six pairs (v_i, v_k) are directed edges

- E = {
$$(v_1, v_2)$$
, (v_3, v_5) , (v_5, v_3) , (v_6, v_9) , (v_8, v_4) , (v_9, v_4) }

25

In and Out Degree

- Degree of a vertex must be modified to consider both cases:
 - Out-degree of a vertex is the number of vertices which are adjacent to the given vertex
 - > Number of outgoing edges
 - In-degree of a vertex is the number of vertices which this vertex is adjacent to
 - > Number of incoming edges
- In this graph:
 - In-degree(v_1) = 0 out-degree(v_1) = 2
 - In-degree(v_5) = 2 out-degree(v_5) = 3

Path

- A path in a directed graph is an ordered sequence of vertices
 - $(v_0, v_1, v_2, \ldots, v_k)$
 - where $(v_j 1, v_j)$ is an edge for j = 1, ..., k
- A path of length 5 in this graph is

$$-(v_1, v_4, v_5, v_3, v_5, v_2)$$

A simple cycle of length 3 is

$$-(v_8, v_4, v_5, v_8)$$

Connectedness

- Two vertices v_j , v_k are said to be connected if there exists a path from v_j to v_k
 - A graph is strongly connected if there exists a directed path between any two vertices
 - A graph is weakly connected if there exists a path between any two vertices that ignores the direction

Connectedness – Example

- The sub-graph $\{v_3, v_4, v_5, v_8\}$ is strongly connected
- The sub-graph $\{v_1, v_2, v_3, v_4, v_5, v_8\}$ is weakly connected

Weighted Directed Graphs

- Each edge is associated with a value
- If both (v_i, v_k) and (v_i, v_k) are edges
 - It is not required that they have the same weight

Representation

- How do we store the adjacency relations?
 - Adjacency matrix
 - Adjacency list

Adjacency Matrix

- Two dimensional matrix of size $n \times n$ where n = |V|
- a[i, j] = 0 (F) if there is no edge between vertices v_i and v_j
- a[i, j] = 1 (T) if there is an edge between vertices v_i and v_j
- Adjacency matrix of undirected graphs is symmetric

$$- a[i, j] = a[j, i]$$

	0	1	2	3	4	5
0	F	Т	ш	Т	F	Т
1	Т	F	Т	Т	Т	Т
2	F	Т	F	Т	F	F
3	Т	Т	Т	F	Т	F
4	F	Т	F	Т	F	F
5	Т	Т	F	F	F	F

Adjacency Matrix – Weighted Graph

- The matrix entry [j, k] is set to the weight of the edge (v_j, v_k)
- How to indicate absence of an edge in the graph?

	0	1	2	3	4	5
0		0.83		0.65		0.51
1	0.83		0.67	0.72	0.46	0.90
2		0.67		0.39		
3	0.65	0.72	0.39		0.24	
4		0.46		0.24		
5	0.51	0.90				

Adjacency Matrix – Directed Graph

• For directed graph the matrix would not necessarily be symmetric

Adjacency Matrix – Analysis

	1	2	3	4	5	6	7	8	9
1		1		1					
2									
3					1				
4		1			1				
5		1	1					1	
6									1
7									1
8				1					
9									

- Requires memory: 0(|V|²)
- Determining if v_j is adjacent to v_k: 0(1)
- Finding all neighbors of v_j: O(|V|)

Graphs

35

Adjacency Matrix – Problem

- Very sparsely populated
 - Out of 81 cells only 11 are 1 (or T)

	1	2	3	4	5	6	7	8	9
1		1		1					
2									
3					1				
4		1			1				
5		1	1					1	
6									1
7									1
8				1					
9									

Adjacency List

- Each vertex is associated with a list of its neighbors
 - A vertex w is inserted in the list for vertex v if edge (v, w) exists

$$\begin{array}{cccc}
1 & \bullet \rightarrow 2 \rightarrow 4 \\
2 & \bullet \\
3 & \bullet \rightarrow 5 \\
4 & \bullet \rightarrow 2 \rightarrow 5 \\
5 & \bullet \rightarrow 2 \rightarrow 3 \rightarrow 8 \\
6 & \bullet \rightarrow 9 \\
7 & \bullet \rightarrow 9 \\
7 & \bullet \rightarrow 9 \\
8 & \bullet \rightarrow 4 \\
9 & \bullet
\end{array}$$

• Requires memory: O(|V| + |E|)

Adjacency List – Weighted Graphs

- An adjacency list for a weighted graph contains two elements
 - First element for the vertex

- When the vertices are identified by a name (i.e., string)
 - Hash-table of lists is used to implement the adjacency list

Adjacency List – Implementation

Node to store adjacent vertex and weight of the edge

```
class SingleNode {
    private:
        int adjacent_vertex;
        double edge_weight;
        SingleNode * next_node;
};
```

Define and create Array

```
SingleNode * array;
array = new SingleNode[16];
```


Graph Problems – Euler Tour

- A sequence of vertices that traverse all edges in the graph exactly once
 - Leonhard Euler in 1736
 - Laid the foundations of graph theory
- Problem: To devise a walk through the city that would cross each of the seven bridges of Königsberg once and only once
 - Euler proved problem has no solution

Graph Problems – Hamiltonian Cycle

- Is there a simple cycle that connects all vertices in the graph
 - NP-Complete
- Knight's Tour of chessboard
 - A sequence of knight's moves
 - Visit every square of a chessboard precisely once
 - Returns to its initial square

Graph Problems – Traveling Salesman

- A salesman wishes to
 - Visit a number of towns, and then
 - Return to his starting town
- Given the travelling times between towns, how should the travel be planned, so that:
 - He visits each town exactly once, and
 - He travels in as short time as possible

Problem: Given a weighted graph G, provide shortest cycle that

Graphs

contains all vertices in G

NP-Hard problem

Graph Problems – Others

- Minimum-cost spanning tree
 - Given a weighted graph G, determine a spanning tree with minimum total edge cost
- Single-source shortest path

 Given a weighted graph G and a source vertex v in G, determine the shortest paths from v to all other vertices in G

Any Question So Far?

