- Q1(a) n=14; degrees of freedom = n-2
- (b) An increase of one ng/g of PCB in maternal milk decreases the IQ of the child by 0.0249
- (e) Let B be the true slope for the line relating PCB to mean IQ.

Test Ho: B=0 against H; B \$0

test slalistic t = estimate - hypothesised
3.e. (estimate)

 $= \frac{-0.024949}{0.0079775} = -3.1274$

p-value = $2 \times min \left\{ P\left(T_{12} \times -3.1274\right), P\left(T_{12} \left(-3.1274\right) \right\} \right\}$ = $2 \times P\left(T_{12} \in -3.1274\right)$

P(T12 5-3.055) = 0.005 and P(T12 6-3.930) = 0.001

The p-value is between 0.002 and 0.01. (exact value is 0.0087337). This is stronge evidence against the null hypothesis, suggesting an association between PCB levels and IQ.

(d) 95% CI estimate ± t12;0-975 × Se. (estimate)

129.44 ± 2.179, 7.3779 129.44 ± 16.0764 (IQ points). e) 129.44 - 0.024949 × 1400 = 94.5114 (IQ points)

Q2. Let u be the mean percentage of platelet aggregation increase after smoking one cigarette.

Test: Ho: 11=0 against H,: 11>0

Test statistic t = 10.5 - 0 = 4.2118-27/ $\sqrt{11}$

degrees of freedom = 11-1=10

p-value = P(T10 > 4.211)

From tables P(Tio > 4.144) = 0.001 and P(Tio > 4.587) = 0.0005

So the p-value is between 0.0005 and 0.001.

There is strong evidence against the null hypothesis, suggesting smoking increases the mean percentage of platelet aggregation.

Q3. First approach -

let pm and P= be the proportion of male and female students, respectively, who believe in god.

Test Ho: Pm = P= against H, : Pm + P=

 $\hat{p}_{M} = \frac{90}{90 + 89} = 0.5028$ $n_{M} = 90 + 89 = 179$

 $\hat{p}_F = 101 = 0.5706$ $n_F = 101 + 76 = 177$

$$\hat{p} = \frac{101 + 90}{177 + 179} = 0.5365$$

Test statistic (using pooled proportion)

$$Z = (\hat{p}_{M} - \hat{p}_{F}) - O = 0.5028 - 0.5706$$

$$\sqrt{\hat{p}(1-\hat{p})^{7}} \times \sqrt{h_{M} + h_{F}} = \sqrt{0.5365} \times (1-0.5365) \sqrt{177 + 179}$$

Test statistic (without pooled proportion)

$$Z = (\hat{p}_{m} - \hat{p}_{p}) - 0 = 0.5028 - 0.5706$$

$$\sqrt{\hat{p}_{m}(1-\hat{p}_{m})} + \hat{p}_{F}(1-\hat{p}_{F}) = \sqrt{0.5028 \times (1-0.5028) + 0.5706 \times (1-0.5706)}$$

$$\sqrt{n_{m}} = \sqrt{n_{p}} = \sqrt{n_{p$$

(I'll use the test steetistic with pooled proportion below.)

p-value = 2 × min {P(Z>-1-2831), P(Z<-1.2831)}

Z~N(0,1)

(without the pooled proportion, the p-value is 0.198)

There is no evidence against the null hypothesis, suggesting no difference in the proportion of males and females who believe in god.

Second approach -

Test Ho: 'Gender' and 'belief in god' are independent against H.: There is some association between "gender" and 'belief in god'.

	Observed	Courts			Expected	Counts
	Yes	No			Yes	No
Female	101	76	177	Female	94.96	82.04
Male	90	89	179	Male	96.04	82-96
	191	165	356			

 $X^2 = \sum_{i=1}^{\infty} \frac{(E_i - O_i)^2}{E_i}$ Expected counts $E_{11} = \frac{191 \times 177}{356} = 94.96$ $= \frac{(94.96 - 101)^2}{94.96} + \frac{(96.04 - 90)^2}{96.04}$ $E_{21} = 191 - 94.96 = 96.04$ E12 = 177 - 94.96 = 82.04 $+ \frac{(82.04 - 76)^2}{82.04} + \frac{(82.96 - 89)^2}{82.96}$ = 165 - 82.04 = 82.96

= 1.6466

82.04

degrees of freedom = $(10ws - 1) \times (columns - 1) = (2-1) \times (2-1) = 1$

p-value = P(X, > 1.6466)

From table $P(\chi^2, > 1.323) = 0.25$ and $P(\chi^2, > 2.706) = 0.00$

The pralue is between 010 and 0-25

There is no evidence against the null hypothesis, suggesting gender and belief in god are independent.