9 Eigenschaften von Funktionen. Lineare Funktionen, Potenzen und Wurzeln

Jörn Loviscach

Versionsstand: 21. September 2013, 16:00

Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3L7h.de/videos.html

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

		<u></u>		
Bitte l	ier notieren, was beim Bearbeiten unklar gebl	ieben ist		

Eigenschaften von Funktionen

_	Monotonie:
1	

Umkehrbarkeit:
Symmetrie:
3
$\Pr_{^4}$
Die Periodenlänge einer periodischen Funktion ist nicht eindeutig bestimmt, wohl
aber ihre kürzestmögliche Periodenlänge.
2 Lineare Funktionen
Funktionen der Art $f: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto 2x + 3$ heißen linear. (Im nächsten Semester
geht es um <i>lineare Abbildungen</i> statt um <i>lineare Funktionen</i> . Das ist etwas Anderes!) Der Graph einer solchen Funktion ist eine Gerade, allerdings nie eine
genau vertikale Gerade. Der Faktor 2 vor dem x im Beispiel gibt die Steigung an,
die addierte Konstante 3 den y-Achsenabschnitt:
5

Angenommen, es gibt sowohl einen x-Achsenabschnitt (genannt a) wie auch einen y-Achsenabschnitt (genannt b) und sind beide nicht null:

6
Dann kann man die lineare Funktion in der Achsenabschnittsform angeben:
Haben x und y physikalische Einheiten, kann man diese Gleichung schon fast erraten. Dass diese Gleichung tatsächlich richtig ist, kann man so sehen: Sie beschreibt eine Gerade und stimmt für die beiden Schnittpunkte mit den Achsen. Eine andere Gerade als die gesuchte würde aber nicht durch diese beiden Schnittpunkte verlaufen.
Hat man zwei (voneinander verschiedene) Punkte $(x_1 y_1)$ und $(x_2 y_2)$ auf der Geraden, kann man die Steigung m ausrechnen:
Damit kann man die lineare Funktion hinschreiben:

3 Potenzfunktionen

Eine Funktion der Art $x\mapsto x^5$ heißt Potenzfunktion [power function]. Um den Definitionsbereich gleich $\mathbb R$ wählen zu können, betrachtet man typischerweise zunächst nur Exponenten aus $\mathbb N_0$. Sonst gäbe es schon Probleme mit x=0 und/oder mit negativen x. (Warum?) Aber eigentlich sind auch Funktionen wie $x\mapsto x^{-1/5}$ oder wie $x\mapsto x^\pi$ Potenzfunktionen.

Der Verlauf dieser Funktionen hängt entscheidend davon ab, ob der Exponent gerade oder ungerade ist:

4 Wurzelfunktionen

Eine Funktion der Art $x \mapsto \sqrt[5]{x} = x^{1/5}$ heißt Wurzelfunktion [root function]. (Genau genommen sind Wurzelfunktionen nur spezielle Potenzfunktionen!) Typischerweise betrachtet man nur die Wurzeln $\frac{2}{3}$, $\frac{3}{4}$ usw., nicht etwa $\frac{-4,23}{3}$.

Ungeradzahlige Wurzeln sind die Umkehrfunktionen der entsprechenden Potenzfunktionen. Beispiel: $f: \mathbb{R} \to \mathbb{R}$ sei gegeben durch $x \mapsto x^5$. Dann ist f^{-1} die fünfte Wurzel: $f^{-1}: \mathbb{R} \to \mathbb{R}$ mit $x \mapsto \sqrt[5]{x}$.

Geradzahlige Wurzeln sind *nicht* die Umkehrfunktionen der entsprechenden Potenzfunktionen. Beispiel: $f: \mathbb{R} \to \mathbb{R}$ sei gegeben durch $x \mapsto x^4$. Diese Funktion ist nicht umkehrbar:

Für geradzahlige Wurzeln betrachtet man stattdessen eingeschränkte Potenz-
funktionen wie $g:[0,\infty)\to[0,\infty)$ mit $x\mapsto x^4$. Diese Funktion ist umkehrbar; ihre
Umkehrung g^{-1} definiert die vierte Wurzel: $g^{-1}:[0,\infty)\to[0,\infty)$ mit $x\mapsto\sqrt[4]{x}$.
Geradzahlige Wurzeln liefern also nie negative Ergebnisse!
Wurzeln in Wolfram Alpha:
plot sqrt(x), $x^1/3$, $x^1/4$, $x^1/5$ from $x = 0$ to $x = 8$
Es gibt verschiedene Meinungen dazu, ob man ungerade Wurzeln aus negativen Zahlen ziehen darf oder ob doch lieber <i>alle</i> Wurzeln nur für reelle Zahlen ab 0 aufwärts definiert sein sollten. Mit Wolfram Alpha gibt es noch eine größere Überraschung: <code>cubic root of -8</code> wird dort eine komplexe Zahl – aus gutem Grund ("Hauptwert" der Wurzel, kommt später). Mit komplexen Zahlen gibt es bei den Potenzen und Wurzeln noch einige Überraschungen.
5 Rechenregeln für Potenzen und Wurzeln
Für das Produkt positiver ganzzahliger Potenzen a^n und a^m derselben Zahl $a \in \mathbb{R}$ gilt offensichtlich:

Damit diese Regel auch für den Exponenten 1, den Exponenten 0 und für negative ganzzahlige Exponenten gilt (wenn $a \neq 0$), muss man definieren:

Aber Vorsicht mit 0 und negativen Zahlen als Basis: