

Computer Systems Algorithm Design & Analysis: Efficiency & Complexity

Motivation

- We want to build computer systems that work
- And that work well!
- To do this we need to think about several factors:
- They must give the correct answer
 - Is this ALWAYS true?
- They must be reliable, maintainable, quick to produce, cheap ...
 - Again, is this always true?
 - They must be usable by the user of the system
- They must be efficient

Overview

Algorithm Design & Analysis

- Motivation
- Efficiency and Space complexity
- Efficiency: Time complexity
 - Of algorithms
 - Of problems
- Conclusions and lessons

Efficient?

We want our software to:

- Run as quickly as possible
- Respond as quickly as possible
- Use as little memory as possible
- Use as little network bandwidth as possible
- Use as little power as possible
- •

Efficient?

So, we are actually trying to optimise many things:

The balance will depend on our problem

One serious issue we need to consider is:

- Our solution may work very well for 'small' problems
- But, if the problem gets more complex how does its performance change?
 - Does it get worse?
 - Does it get MUCH worse?
 - Does it get MUCH, MUCH worse?

What are we interested in?

Actually, there are several things to consider:

- Is our implementation of our algorithm or data representation efficient:
 - Could we improve our code to make it run faster?
 - This might speed things up a bit
 - or a lot ... maybe 10 or 100 times
 - Could we improve our data representation so it uses less memory?
 - Again we might improve things dramatically
- But what if our *algorithm* is <u>inherently</u> going to perform worse as the amount of data increases?
- What if our *problem* is inherently hard and gets much harder as the size of the problem grows?

So?

We need to understand how our problem and/or algorithm changes in complexity as it gets larger.

Usually, we focus more on time complexity – how much computation is involved in solving a problem:

 For instance, if we <u>double</u> the size of our problem (e.g. twice as much data) then what happens to the computation time:

- Does it stay the same?
- Does it get a bit harder? Maybe +30%
- Does it get a lot harder? Maybe +100%
- Does it get even worse? Maybe +400% or +800% or worse?
- Usually, we are interested in an almost qualitative measure

Usually, space (or bandwidth) complexity is not considered in the same way as computational complexity:

- Memory and bandwidth are limited by practical constraints
- We can add memory (and bandwidth or processing) to cope with a bigger problem
- We can constrain our problem to the practical constraints
 - We restrict the resolution of videos to what is practical
 - We restrict the resolution of 3D models to what is practical
 - We can use other techniques to reduce the memory demands (e.g. compression or streaming)

An Example: video

Typical HD video:

- 1920x1080 pixels (4 bytes per pixel):
 - ~2MPixels, ~8Mbytes
- 25 frames per second
 - 200 Mbytes/sec (~1.6 Gbps connection)!

Solution:

- Compression (up to 200:1)
 - Using empirical knowledge of human vision & video streams
 - Lossy compression (cf. lossless compression)
- Reduce frame rate or resolution
 - Constrained by practical constraints

How does the problem change with resolution?

If we double the resolution of a 2D image

- We x4 the number of pixels (n²)
- If we have a 3D image (e.g. from an MRI scanner)
 - If we double the resolution then: x8 (n³)

The same problem will occur with 2D models and will be even worse as the number of dimensions increases:

• n², n³

Time complexity

To develop a *basic* understanding of algorithm design and efficiency in terms of worst case time complexity.

Outline / Topics

- Algorithm Design and Analysis
- Efficiency
- **◆** Time Complexity
- Big-O Notation
- Examples
- Lessons

What is an Algorithm?

In mathematics, computer science, and related subjects, an algorithm is an effective method for solving a problem expressed as a finite sequence of instructions.

- Abu Abdullah Muhammad bin Musa Al-Khwarizmi
 - a Muslim mathematician
 - o invented *algorithms* to solve quadratic equations
 - the word algorithm derived from his Latin name
 Algorithmi
- An even earlier *algorithm* is the *sieve of Eratosthenes*

Algorithm: question?

Which one is an algorithm?

- ◆ A recipe for making tomato soup?
- A procedure to sort 1000 numbers into ascending numeric order?
 - \rightarrow A procedure to recognize a particular face in a crowd?
- \longrightarrow A method to order objects according to beauty?

Algorithm Design and Analysis

- Multiple algorithms often exist for the same task:
 - All of them give correct results
 - How do we select the best one?
 - Many possible (and often conflicting) criteria:
 - Efficiency
 - **?**
 - simplicity, clarity
 - elegance, proofs of correctness
 - We need to ask
 - is my algorithm correct?
 - does my algorithm always terminate?
 - does an algorithm even exist?

Algorithm Efficiency

- Resource usage of an algorithm
 - typically: time (runtime) and space (computer memory)
 - also: network usage, hardware requirements, ...
 - consider trade-offs between resources
- → → How do we measure the run-time of an algorithm?
 - benchmarking on representative set of inputs: empirical analysis
 - analyse the (time) complexity

Algorithm Efficiency - Empirical Analysis

◆ Idea: Implement the algorithm (a program) and time it

Question: How can we time a program?

Manual: Using stopwatch

Automatic: Using some timer function

Run the program for various input sizes and measure run time.

data	a size	time (ms)
	250	(5)
٨	500	8
	1000	10
	2000	15
	4000	30
	8000	50 V
1	6000	75

Algorithm Efficiency - Time Complexity

- Time complexity:
 - the number of operations that an algorithm requires to execute, in terms of the size of the input or problem

Note:

- algorithm, not implementation
 - so: pseudocode; no fixed programming language, computer architecture
- "in terms of" complexity defined as a function $T(\vec{n})$
- Questions:
 - what do we mean by operations?
 - what do we mean by size?
 - we usually focus on *worst-case*, not *average-case*, analysis

Example # 1

100

Look up a value v in an array x of integers

1	4	17	3	90	79	4	6	81
^	_			<u> </u>				

- ◆ Algorithm: Linear Search
 - inputs: array x of size n, integer v
 - return: index of first occurrence of v in x, or -1 if none

```
for i=0...n-1:
    if x[i] == v:
        return i
    return -1
```

Example # 2

- Matrix-Vector Multiplication: x = Ab
 - n x n matrix A, vector of b size n
- Algorithm
 - inputs: matrix A, vector b
 - \blacksquare result stored in vector \mathbf{x} (initially all 0)

```
for i=0...n-1:

for j=0...n-1:

x[i] = x[i] + A[i][j] * b[j]
```


Consider the two functions

$$f(n) = n^2$$

 $g(n) = n^2 - 3n + 2$

Around n = 3, they look very different

Around n = 10, they look similar

Around n = 100, they are almost the same

Around n = 1000, the difference is indistinguishable!

Asymptotic

The absolute difference is large, such that,

$$f(1000) = 1000000$$

 $g(1000) = 997002$

but the relative difference is very small,

$$\left| \frac{f(1000) - g(1000)}{f(1000)} \right| = 0.002998 < 0.3\%$$

and this difference goes to zero as $n \rightarrow \infty$

Big-O Notation

- Usually we don't need exact complexity T(n)
 - it suffices to know the complexity class
 - we ignore constant factors/overheads, lower orders
 - focus on performance for large n ("asymptotic")
- Big-O notation
 - for example: $O(n^2)$ "O of n squared" "on the order of n^2 "
- Examples
 - $T(n) = n \Longrightarrow complexity class \not\in O(n)$
 - $T(n) = n+2 \implies complexity class = O(n)$
 - $T(n) = 2n^2 \implies \text{complexity class} \neq O(n^2)$

Big-O Notation

More Examples

- T(n) = $10n^3 + 1$ \Longrightarrow complexity class = $0(n^3)$ T(n) = 5(n+2) \Longrightarrow complexity class = 0(n)
- $T(n) \neq 1000 \implies$ complexity class = O(1)
- $1 + 1 \implies$ complexity class = $O(n^2)$

- Determining the complexity class
 - intuitively, it suffices to count the number of loops and the number of times they are executed

Big-O Notation: Common Complexity Classes

- Some common complexity classes:
 - O(1) = "Constant"
 - $O(\log_2 n) = \text{``Logarithmic''}$
 - O(n) ="Linear"
 - $O(n \log_2 n) = "Log Linear"$
 - $O(n^2) = "Quadratic"$
 - $O(n^3) = "Cubic"$
 - ${lue{\square}}$ O(2ⁿ) = "Exponential"

- ♦ Polynomial: O(n), $O(n^2)$, $O(n^3)$, ... "tractable"
- ◆ Exponential: O(2ⁿ), O(Cⁿ), "intractable"

Some concrete numbers ...

How many operations needed for an algorithm?

with complexity T(n) = f(n) and input size n

					1
f(n)	(n = 4	n = 16	n = 256	n = 1024	n = 1048576
1	1		1	1.00 x 10°	1.00 x 10 ⁰
log ₂ log ₂ n	1	2	3	3.32 x 10 ⁰	4.32 x 10°
log ₂ n	2	4	8	1.00 x 10 ¹	2.00 x 10 ¹
n	4	16	256	(1.02×10^3)	1.05 x 10 ⁶
n log ₂ n	8	64	2.05 x 10 ³	1.02 x 10 ⁴	2.10 x 10 ⁷
n ²	16	256	6.55 x 10 ⁴	1.05 x 10 ⁶	1.10 x 10 ¹²
\mathbb{N}^3	(64)	4.10×10^3	1.68 x 10 ⁷	1.07 x 10 ⁹	1.15 x 10 ¹⁸
2 n	16	65536	1.16 x 10 ⁷⁷	1.80 x 10 ³⁰⁸	6.74 x 10 ³¹⁵⁶⁵²

Some concrete numbers ...

- How much time needed for an algorithm?
 - assuming 1 million operations per second

f(n)	n = 4	n = 16	n = 256	n = 1024	n = 1048576
1	1 usec	1 usec	1 usec	1 usec	1 usec
log ₂ log ₂ n	1 usec	2 usec	3 usec	3.32 usec	4.32 usec
log ₂ n	2 usec	4 usec	8 usec	10 usec	20 usec
n	4 usec	16 usec	256 usec	1.02 msec	1.05 sec
n log ₂ n	8 usec	64 usec	2.05 msec	10.2 msec	21 sec
n ²	n ² 16 usec 256 usec		65.5 msec	1.05 sec	12.72 days
\mathbb{N}^3	64 usec	4.1 msec	16.8 sec	17.83 min	36559 yrs
> 2 ⁿ	16 usec	65.5 msec	3.7 x 10 ⁶³ yrs	5.7 x 10 ²⁹⁴ yrs	2.14 x 10 ³¹⁵⁶³⁹ yrs

Example # 1 (again)

V=90

Look up a value v in an array x

1	4	17	3	90	79	4	6	81	
---	---	----	---	----	----	---	---	----	--

Example # 1 (again)

Look up a value v in a sorted array x

1	3	4	4	6	17	79	81	90	
---	---	---	---	---	----	----	----	----	--

Example # 1 (again)

Look up a value v in a sorted array x

1	3	1	1	6 17	70/	ู้ 21	an
	J	_	—			01	30

- Algorithm: Binary Search
 - inputs: sorted array x of size n, integer v
 - return: index of first occurrence of v in x, or -1 if none
- Complexity = $O(\log_2 n)$

```
left = 0; right = n-1
while left < right:
    mid = (left+right)/2
    if x[mid] < v:
        left = mid+1
    else:
        right = mid
if x[left] == v:
    return left
else:
    return -1</pre>
```

Computing Complexity Classes

- Determine total algorithm complexity
 - from the complexities of its components

- 1) Sequential algorithm phases
- 2) Function / Method calls

Sequential Algorithm Phases $O(n) + O(n^2)$

- ightharpoonup Example: matrix-vector multiplication: x = Ab
 - matrix-vector multiplication x = Ab
 - initialise vector \mathbf{x} (all 0), then add values to \mathbf{x}

```
for i=0...n-1:
    x[i] = 0
    for i=0...n-1:
        for j=0...n-1:
        x[i] = x[i] + A[i][j] * b[j]
```

- Complexity: $O(n) + O(n^2) = O(n^2)$
 - In general: "maximum" of complexities

0 (n logn)

Function/Method calls

Example: n array look-ups

```
for i=0...n-1:

binary_search(x, v_i)
```

- ightharpoonup Complexity: O(n) x O(log n) = O(n log n)
- In general: "multiplication" of complexities

Computing Complexity Classes

- Determine total algorithm complexity
 - from the complexities of its components
- 1) Sequential algorithm phases: "maximum"
- \rightarrow e.g. O(n) + O(n²) = O(n²)
 - e.g. $O(n) + O(\log n) \neq O(n)$
 - 2) Function / Method calls: "multiplication"
 - \blacksquare e.g. O(n) x O(log n) = O(n log n)
 - e.g. $O(n^2) \times O(1) = O(n^2)$

Question # 1

Given the following code fragment, what is its Big-O running time?

```
1  test = 0
2  for i in range(n):
3   for j in range(n):
4   test = test + i * j
```

- a) O(n)
 - (0) O(100)
 - c) O(log n)
 - d) O(n³)

Question # 2

Given the following code fragment, what is its Big-O running time?

```
1  test = 0
2  for i in range(n):
3    test = test + 1
4
5  for j in range(n):
6  test = test - 1
```

- \rightarrow a) O(n)
 - b) O(n²)
 - c) O(log n)
 - d) O(n³)

Question #3

Given the following code fragment, what is its Big-O

- a) O(n)
- b) O(n²)
- c) O(log n)
- d) O(n³)

Some Harder Problems

Traveling Salesman Problem (TSP)

given n cities and the distances between them, what is the shortest possible route that visits each city exactly once and then returns to the first city?

91 = 9x8x7x.

"A naive approach to solving TSP would be the brute-force solution, which means finding all possible routes given a certain number of nodes. This is a very expensive way to solve it, with a time complexity of O(n!)."

https://tonicanada.medium.com/introduction-to-the-travelling-salesman-problem-

5ace44932cb5

https://www.youtube.com/watch?v=SC5CX8drAtU

Some Harder Problems

- Boolean Satisfiability Problem (SAT)
 - Given a Boolean formula $F(x_1, x_2, x_3, ..., x_n)$
 - Can F evaluate to 1 (true)?
 - If yes, return values of x_i 's (satisfying the assignment) that make F true.
- ◆ In both cases (TSP & SAT):
 - lots of practical applications (Operations Research, Optimization, Logistics, Model Checking, Software Verification, ... etc.)
 - also important problems in theoretical computer science

Algorithms vs. Problems

- Algorithm complexity
 - worst-case run-time of algorithm "efficiency"
 - actually an upper bound: algorithm A is in O(f(n)) if the worst-case run-time is at most f(n)
 - usually use tightest (most informative) complexity
- Problem complexity
 - complexity class = set of problems
 - problem X is in complexity class O(f(n)) if there exists an algorithm to solve it in O(f(n)) – "difficulty"
 - again: this is an upper bound (and uses the tightest possible)
 - sometimes consider lower bounds:
 - e.g. sorting: O(n log n)

- Complexity classes
 - ${lue{ }}{lue{ }}{$
 - polynomial time (PTIME or P) assumed to be "tractable"
- Another famous class: NP (Non-deterministic polynomial time)
 - if we can "guess" a solution, it can be checked efficiently (efficiently = in polynomial time). e.g. Sudoku, Chess (more <u>at this link</u>)

In contrast, polynomial time (or P) problems are those where

finding the answer is easy.

◆ NP-hard problems

e.g. travelling salesman problem, SAT, ...

only exponential time algorithms are known

but some efficient heuristics exist in practice

P =	NP?

Nobody knows ...

◆ <u>US\$1,000,000</u> prize if you solve it!

				3	7	6		
			6				9	
		8						4
	9							1
6								9
6 3 7							4	
7						8		
	1				9			
		2	5	4				

Summary

- Algorithm design and analysis:
- Efficiency
 - Time Complexity
 - (worst-case) number of operations an algorithm needs to execute, in terms of the size of the input or problem: T(n)
 - Big-O notation
 - complexity classes: O(n), O(n log n), O(2ⁿ), ...
 - focus on large values of n (i.e. asymptotic behaviour)
 - ignore constants, lower factors
 - count loops/iterations, decompose algorithm
 - complexities for algorithms/problems

Lessons

- Data Representation/Algorithms are tightly linked
- Some algorithms are just better than others:
 - But sometimes the 'best' depends on the problem
- Some problems are inherently hard (in the complexity sense)
 - This doesn't mean they cannot be solved
 - We may need to reformulate the problem
 - Constrain it

 - Relax conditions
 E.g. instead of "find the best" we "find a very good"

Books / References

- Goldschlager and Lister: Computer Science: a Modern Introduction (Prentice Hall, 2nd edition 1988)
 - Chapter 3
- ◆ Aho & Ullman: Foundations of Computer Science (Freeman, 1992)
 - Chapter 3
 - http://infolab.stanford.edu/~ullman/focs.html