Indexing and Mining Topological Patterns for Drug Discovery

Sayan Ranu and Ambuj K. Singh

The Data Mining and Bioinformatics Lab

What is Drug Discovery?

Cancer, etc.

The Economics of Drug Discovery

Company	Total Revenues (USD billions)
Johnson & Johnson ^[2]	61.90 ^[3]
Pfizer ^[4]	50.01 ^[3]
Roche ^[5]	47.35 ^[3]
GlaxoSmithKline ^[6]	45.83 ^[3]
Novartis ^[7]	44.27 ^[3]
Sanofi ^[8]	41.99 ^[3]
AstraZeneca ^[9]	32.81 ^[10]
Abbott Laboratories ^[11]	30.76 ^[10]
Merck & Co. ^[12]	27.43 ^[10]
Bayer HealthCare ^[13]	22.30

New Drug:

Cost: \$880 M- \$1.3 B

Time: 15-16 years

Why?

Then Now

"Low hanging fruits" have already been picked!

Drug-Protein Binding

Common Prediction Approaches

Common Prediction Approaches

11/9/2018

Cation: (8,0,0) 0001000110000100... Donor: (4,6,1) Acceptor: (2,6,1) **Molecular Descriptors** Acceptor: (3,4,3) 3D Geometries Graphs Representing molecules in the virtual space 4----Mining Indexing

Queries

- Subgraph Searches
 - Find molecules *containing* a specific functional group
 - Find molecules containing a substructure with a known desired activity
 - Computer Science problem: subgraph isomorphism
 - NP-complete
- Similarity Searches
 - Find molecules *structurally similar* to a known active
 - − Computer Science problem: top-k/range search
 - Graph based distance measures

Subgraph Searches

Fragment Based Indexing

gIndex: Pruning Idea

- Cheaper to perform subgraph isomorphism on small graphs
- If graph fragment $x \in q$ and $x \notin g$, then $q \notin g$
 - q: query graph
 - g: a database graph

Which fragments to Index?

- Cost= $(|F| * c_f) + (|C| * c_q)$
 - -F = indexed fragments
 - $-c_f$ = average cost of subgraph isomorphism for fragments
 - C= candidate set
 - $-c_q$ = average cost of subgraph isomorphism on candidates

Number of fragments

gIndex: Discriminative Fragments

Discriminative Fragments

- ullet Indexed fragment set ${\mathbb F}$
- Should we index fragment X?
 - Discriminative ratio: Candidates without indexing X

•
$$r = \frac{|\bigcap_{f \in F_f \subseteq X} D_f|}{|D_x|}$$
 Candidates if X is *indexed*

- $-D_x$: number of database graphs containing fragment X
- Select X if $r \ge \theta$

Closure tree: Basic idea

- A closure is a *summary* of multiple graphs
- Let C be closure of graphs $g_1, \dots g_n$
 - if query $q \not\in C$, then $q \not\in g_i \not\vdash_i$

Graph Closures

11/9/2018

$$C_3$$
=closure(C_1 , C_2)

Closure Tree

11/9/2018

Advantage of Closure tree

- Easily adaptable to similarity queries
 - if query $d(q, C) \ge \theta$, then $d(q, g_i) \ge \theta$, $\forall g_i \in C$
 - C is a closure
 - $d(g_1,g_2)$ is *Edit Distance* between graphs

Graph Edit Distance

• Graph mapping ϕ

• $dist_{\phi}(g_1, g_2) = \sum_{v \in V_1^*} dist(v, \phi(v)) + \sum_{e \in E_1^*} dist(e, \phi(e))$

$$- d(g_1, g_2) = 3$$

Edit distance

-
$$dist(g_1, g_2) = \min_{\phi} \{ dist_{\phi}(g_1, g_2) \}$$

21

Top-k similarity search

0001000110000100... Cation: (8,0,0) Donor: (4,6,1) Acceptor: (2,6,1) **Molecular Descriptors** Acceptor: (3,4,3) -3D Geometries Graphs Representing molecules in the virtual space 4====== Mining Indexing

Graph Pattern Mining

• Identify hidden characteristics of a dataset

What are graph patterns?

- Given a function f(g) and a threshold θ , find all subgraphs g, such that $f(g) \ge \theta$.
- Example: frequent subgraph mining.

Given a graph dataset D, find subgraph g, s.t.

$$freq(g) \ge \theta$$

where freq(g) is the percentage of graphs in D that contain g.

(a) caffeine

(b) diurobromine

(c) viagra

FREQUENT SUBGRAPH

Θ=50%

Is this the only frequent subgraph?

NO!

Apriori Property

If a graph is frequent, all of its subgraphs are frequent.

Why is graph mining hard?

- Worst Case Scenario: A graph with n edges has 2^n subgraphs
- Exponential search space!

Join Based Approach

Pattern Growth Approach

Frequent Pattern Mining Approaches

K+1-edge frequent subgraph candidates

K+1-edge frequent subgraph candidates

Join based approach

Pattern growth approach

Are frequent patterns enough?

What are the *statistically significant* subgraphs?

Limitation of Frequent Subgraphs

- High frequency does not imply high significance and vice versa
- A subgraph with frequency 1% can be statistically significant if the *expected frequency* is 0.1%

Naïve Approach

Direct Mining of Significant Subgraphs

Significant Subgraphs

I FAP

Uses g-test score to quantify significance

$$G_t = 2m(p \cdot ln\frac{p}{q} + (1-p) \cdot ln\frac{1-p}{1-q})$$

- m: number of active molecules
- p, q: frequencies in active and inactive datasets
- Find subgraphs with g-test score $> \Theta$


```
lf,
Then,
         g-test(g_1)>g-test(g_2)
```

11/9/2018

EDBT 2012

Leap: Pruning Heuristics

• Vertical Pruning — Optimal

Horizontal Pruning

Non-optimal

Vertical Pruning

$$\max(F(p,\epsilon),F(\epsilon,q)) < \Theta$$

where, $\epsilon \sim 0$

Horizontal Pruning

$$g' \sim g'' \Rightarrow F(g') \sim F(g'')$$
.

$$F(g') \ll \Theta \qquad \Rightarrow F(g'') \ll \Theta$$

Horizontal Pruning: Example

Horizontal Pruning: Pruning Heuristic

if g' and g are close enough, cut branches except g'.

If freq(g)-freq(g')< ϵ then,

skip all sibling branches of g'

Experimental Results: Datasets

11 CancerDatasets

Dataset	size	# of actives	description
MCF-7	28972	1989	breast
MOLT-4	41810	3391	leukemia
NCI-H23	42164	2235	lung
OVCAR-8	42386	2255	ovarian
P388	46440	2549	leukemia
PC-3	28679	1692	prostate
SF-295	40350	1936	central nervous system
SN12C	41855	2123	renal
SW-620	42405	2623	colon
UACC-257	41864	1807	melanoma
yeast	83933	10257	yeast anticancer

Leap: Empirical Evaluation

Approach of GraphSig

GraphSig: Problem Formulation

• Find answer set:

- $-A = \{g \mid p\text{-value}(g) \le \Theta, g \subseteq G, G \in D\}$
- D : Graph Database
- $-\Theta$: Significance Threshold
- $-g \subseteq G : g$ is a subgraph of G
- *Lower* the *p*-value, *higher* is the significance

Random Walk with Restarts (RWR)

- RWR on each node of a graph
 - Captures distribution of edge-types around each node
 - Discretized into 10 bins

Sample Graph

Random Walk Results

ID	Starting Node	O-2-C	C-1-C	C-1-N
h ₁	0	4	2	2
h2	С	2	3	3
h3	С	2	4	2
h4	N	2	2	4

11/9/2018

Can we capture the presence of a common subgraph?

Vector	a-b	a-d	a-e	a-f	b-c	b-d	с-е	c-f	d-f
G_1	2	0	3	0	1	1	0	0	0
G_2	4	0	0	0	2	1	0	0	1
G_3	3	0	0	0	1	2	1	1	0
G_4	0	3	0	3	0	0	0	0	2

- *Floor* of G₁,G₂,G₃: [2,0,0,0,1,1,0,0,0]
- Floor of G_1, G_2, G_3, G_4 : [0,0,0,0,0,0,0,0,0]
- Can we measure the significance of the floors?

GraphSig Flowchart

Mapping Significant Vector to Significant Subgraph

46

Quality of Patterns: AIDS dataset

- Substructure of AZT
 - most widely adopted medicine to control the HIV virus
- Substructure of FDT
 - fluorinated analog of AZT. It is more active against AIDS than AZT
 - also displays a higher level of toxicity

Quality of Patterns

- Benzene was not reported as significant
- Subgraphs mined from molecules active against Leukemia
 - Sb and Bi are found at a frequency below 1%
 - Frequent subgraph miners are unable to scale to such low frequencies

Distribution of Significant Subgraphs

Significant Subgraph Mining: Summary

- Leap and GraphSig *overcome* the *scalability bottleneck* of frequent subgraph mining techniques
- Significant subgraphs correlate with biological activity
 - Provides excellent platform for molecular classification

BEDROC Metric [JCIM, 2007]

exponentially!

ROC

EDBT 2012

Performance Comparison on BEDROC

Data set	Daylight	GraphSig
MCF-7	0.41	0.61
MOLT-4	0.42	0.45
NCI-H23	0.44	0.63
OVCAR-8	0.40	0.65
P388	0.50	0.55
PC-3	0.33	0.62
SF-295	0.32	0.63
SN12C	0.40	0.62
SW-620	0.36	0.60
UACC-257	0.34	0.65
Yeast	0.38	0.38
average	0.39	0.57

11/9/2018

How applicable are the techniques?

Can the rest of the molecules be used to improve our knowledge of significant subgraphs?

How to estimate the activity of the unlabeled molecules?

Lab tested molecules

Real molecules

<u>Molecule</u>	P(active)
Molecule 1	0.05
Molecule 2	0.90
	55

pGraphSig: GraphSig on probabilistically labeled data [Molecular Informatics, 2011]

 How to compute the frequency of a subgraph under probabilistic class labels?

Estimated Support

• Due to probabilistic class labels, we can only *estimate* the support

- Support(x)= $\sum P(g)$, $\forall g \in \mathbb{S}$
 - -x is a subgraph
 - $-S = \{g \mid x \in g, g \in \mathbb{D} \}$
 - − D: graph database

Evaluation Framework

Entire Chemical
Space with binary
class labels

Ideal World

Current World

Chemical Space

Small gubact with

Small subset with *binary* class labels

Entire Chemical
Space with
probabilistic class
labels

Target World

Simulation of the Three Worlds

Evaluation Sets

Comparing the Answer Sets

Results: Similarity with Gold Standard

Dataset	Tanimoto		Edit Distance	
	GraphSig	pGraphSig	GraphSig	pGraphSig
BAZ	0.47	0.79	0.27	0.85
HLM	0.80	0.83	0.70	0.65
JMJ	0.61	0.72	0.32	0.54
TDP	0.69	0.77	0.67	0.87
Average	0.64	0.77	0.49	0.72

pGraphSig: Summary

- Addition of probabilistic information *expands* our knowledge base
- Ability to handle probabilistically labeled data significantly increases the applicability of pGraphSig

Geometry Based Representation

- Pharmacophore: based on modeling the *interactions* between a small molecule and protein target
- Higher level labeling of atoms

Graph Vs. 3D Geometry

Graph

- 1. Atoms
- 2. Well defined edges

3D Geometry

- 1. Pharmacophores
- 2. No edges
- 3. Dynamic structure
 - Multiple conformations per molecule

11/9/2018 EDBT 2012 66

Analysis of Geometric Patterns

Mining Statistically Significant Geometries [JCIM 2011]

- 1. What are the *statistically significant* geometries?
- 2. Can we *divide* the actives into groups based on their *binding mechanisms*?

Mining Workflow

Method: Triangle Extraction

Mining Workflow

Identifying significant clusters

Expected Ratio (ER): $\frac{\text{\# of triangles from actives in Database}}{\text{\# of triangles from inactives in Database}}$

Observed Ratio (OR): $\frac{\text{\# of triangles from actives in Cluster}}{\text{\# of triangles from inactives in Cluster}}$

11/9/2018 FDBT 2012

Evaluation: Datasets

- CDK5 inhibitors (single target setting)
 - 102 actives, 10,000 inactives
- DUD Datasets (multi-target setting)
 - 20 different targets
 - Actives and inactives corresponding to each target

Results: CDK-5 dataset

Each triangle-group is divided into 50 clusters

Expected Ratio: 0.01

cluster ID	triangle type	cluster size	OR	p-value
1	aromatic—aromatic—aromatic	268	0.24	1.75×10^{-68}
2	aromatic-aromatic-donor	455	0.38	1.71×10^{-223}
3	aromatic-aromatic-donor	545	0.19	5.54×10^{-94}
4	aromatic-aromatic-donor	625	0.08	1.31×10^{-31}
5	aromatic-donor-donor	436	0.25	4.47×10^{-123}
6	aromatic-donor-donor	353	0.3	4.56×10^{-118}
7	aromatic-donor-acceptor	461	0.22	6.38×10^{-102}
8	donor-donor-acceptor	469	0.22	6.92×10^{-104}

All active triangles in a single cluster!

74 11/9/2018

- Key questions:
 - Do significant clusters exist in the multi-target setting?
 - Can the actives be grouped based on their binding target?

Multi-target Molecular Dataset

11/9/2018

cluster ID	triangle type	cluster size	ER	OR	p-value
1	aromatic-aromatic-aromatic	468	0.012	0.35	8.39×10^{-184}
2	aromatic-donor-donor	508	0.012	0.69	0
3	acceptor-donor-donor	884	0.012	0.26	1.28×10^{-191}
4	acceptor-donor-donor	1840	0.012	0.33	0
5	aromatic-aromatic-aromatic	1089	0.014	0.38	0
6	aromatic—aromatic—aromatic	132	0.014	0.26	3.88×10^{-34}
7	aromatic-aromatic-donor	1049	0.014	0.24	9.49×10^{-218}
8	aromatic-aromatic-acceptor	2051	0.001	0.04	2.69×10^{-83}
9	aromatic—aromatic—aromatic	311	0.005	0.35	7.77×10^{-144}
10	aromatic-aromatic-donor	445	0.005	0.23	1.35×10^{-92}
11	aromatic-donor-donor	266	0.005	0.28	2.26×10^{-91}

- ✓ Do significant clusters exist in the multi-target setting?
- Does each significant cluster correspond to a single target?

Observed Ratio for each target

cluster ID	DHFR	EGFr	PARP	PDGFrb
1	0.34	0.01	0	0
2	0.69	0	0	0
3	0.23	0.03	0	0
4	0.27	0.01	0	0.05
5	0.05	0.33	0	0
6	0	0.26	0	0
7	0	0.24	0	0
8	0	0	0.04	0
9	0	0.04	0	0.31
10	0.03	0.03	0	0.17
11	0	0.03	0	0.25

Each significant cluster corresponds to a single target!

Summary

- Significant clusters exist in the multi-target setting.
- Significant clusters can be used to *group* actives *based* on their *binding mechanisms*.

Wrap UP

Graphs 3D Geometries Indexing Mining Mining

- Fragment based indexing
 - gIndex
- Closure tree

- Frequent Subgraph Mining
 - Join Based Approach
 - Pattern Growth Approach
- Significant Subgraph Mining
 - Leap
 - GraphSig and pGraphSig
 - Molecular Classification

Mining Significant Geometric Patterns

Future Research Directions

- Budget-aware querying and mining
 - Traditional top-*k* is not enough
- Drug Repurposing

Similarity search based prediction

Budget-aware subgraph mining

- Budget
 - -k
- Mine *k* best patterns
- How to quantify "best"?
 - Dimensionality reduction in vector space
 - How to model orthogonality in structural space?

Drug Repurposing

Conclusion

- Computer Science *plays a key role* in drug discovery
- Modeling *molecules as graphs* allows us to apply powerful graph analysis tools
- Future Directions: Range \rightarrow top-k
 - Maximize information content in top-k answer set

Thank You!

Conclusion

Graphs 3D Geometries Indexing Mining Mining

- gIndex
- Closure tree

- Frequent Subgraph Mining
 - Join Based Approach
 - Pattern Growth Approach
- Significant Subgraph Mining
 - Leap
 - GraphSig and pGraphSig

Mining Significant Geometric Patterns

Research Summary

- CS driven
 - A difficult problem in CS with applications in chemistry
 - Publish in CS conferences (SIGMOD, VLDB, ICDE, KDD etc.)
- Chemistry driven
 - Use CS techniques to solve a problem in chemistry
 - Publish in Chemistry Journals (JCIM, Bioinformatics etc.)

Horizontal Pruning: Verification

Many subgraphs share the same frequencies!

Mining Geometric Patterns

Mining Frequent Geometric Patterns [JCIM, 2009]

Representing Geometries as Cliques

3D Geometry → Clique

Mining frequent geometries → Mining frequent cliques

Managing the conformational space

Conformation Samples

What is the support? 2 or 1?

Computing Support

- $\sup(C) = |M|$,
 - where $M \subseteq \{M_1, ..., M_n\}$
 - each molecules in M has at least one conformer graph G that contains C

Conformation Samples Support=1

Mining frequent geometries

Graph Vs. 3D Geometry

- ✓ No edges
- ✓ Dynamic structure
 - ✓ Multiple conformations per molecule

Re-use frequent subgraph mining techniques!

Significant Pattern Mining [JCIM, 2011]

