

Amendments to the Specification:

Please replace paragraph [0083] of the specification with the following amended paragraph:

[0083] After the total number of tasks (V) present on the first row is distributed in operation 62, the local mean number (M_r) of tasks for each PE, in the row is calculated in operation 63. In the current embodiment, the local mean value is computed using the rounding function $M_r = \text{Trunc}((V + E_r)/N)$ (where M_r represents the local mean for PE_r, N represents the total number of PEs 30 in the row, and E_r represents a number in the range of 0 to $(N-1)$, as derived in conjunction with the general method illustrated in Table #1 and Table #2), to ensure that no instructions are lost or “gained” during the rounding process if the value of V/N is not an integer (i.e., to ensure that $V = \sum_{i=0}^{i=N-1} M_i$, where N represents the number of PEs 30 in the row, and M_i represents the local mean of tasks associated with a local PE_i in the row). The rounding function is discussed in more detail in U.S. Patent Application Serial No. [[_____]] 10/689,382 entitled “Method for Rounding Values for a Plurality of Parallel Processing Elements” filed October 20, 2003 _____ (DB001064-000, Micron no. 02-1269) and incorporated in its entirety by reference herein.