Review of Linear Algebra Midterm 2

Additional Notes Summarized by Yourself

You can fill in this empty block to summarize the course contents that are not listed in this file.

Vector Spaces

Definition:

A vector space is a non-empty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms listed below. The axioms must hold for all vectors \mathbf{u}, \mathbf{v} , and \mathbf{w} in V and for all scalars c and d.

- 1. The sum of **u** and **v**, denoted by $\mathbf{u} + \mathbf{v}$, is in V.
- 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$.
- 4. There is a zero vector $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each \mathbf{u} in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. The scalar multiple of \mathbf{u} by c, denoted by $c\mathbf{u}$, is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$.
- 10. $1\mathbf{u} = \mathbf{u}$.

Examples:

- 1. The spaces \mathbb{R}^n , where n > 1.
- 2. The set \mathbb{P}_n of polynomials of degree at most n, where $n \geq 0$.
- 3. The set $M_{m \times n}$ of all $m \times n$ matrices with real entries, where m and n are positive integers.
- 4. The set of all real-valued functions defined on a set \mathbb{D} .

Subspaces

$\underline{\text{Definition}} :$

A subspace of a vector space V is a subset H of V that has three properties:

- 1. The zero vector of V is in H
- 2. H is closed under vector addition. That is, for each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u} + \mathbf{v}$ is in H.
- 3. H is closed under multiplication by scalars. That is, for each \mathbf{u} in H and each scalar c, the vector $c\mathbf{u}$ is in H.

Examples:

- 1. In every vector space V, the subsets $\{\mathbf{0}\}$ and V are subspaces.
- 2. A line through the origin in \mathbb{R}^2 or \mathbb{R}^3 .
- 3. A plane through the origin in \mathbb{R}^3 . For example, the solutions to the homogeneous equation 3x + 4y + 5z = 0 is a plane through the origin in \mathbb{R}^3 .
- 4. All polynomials in \mathbb{P}_n such that $\mathbf{p}(a) = 0$ for some fixed $a \in \mathbb{R}$ and positive integer n.
- 5. The set of all 3×3 symmetric matrices. Note we say an $n \times n$ matrix A is said to be symmetric if $A^T = A$. (Exercise 7 in the Lecture Notes §4.1).

Subspaces (continued)

Non-Examples:

- 1. A line in \mathbb{R}^2 or \mathbb{R}^3 not containing the origin.
- 2. A plane in \mathbb{R}^3 not containing the origin. For example, the solutions to the non-homogeneous equation 3x+4y+5z=6is a plane not containing the origin in \mathbb{R}^3 . It is not a subspace of \mathbb{R}^3 .
- 3. The first quadrant in \mathbb{R}^2 .
- 4. All polynomials in \mathbb{P}_n such that $\mathbf{p}(a) = 3$ for some fixed $a \in \mathbb{R}$ and positive integer n.

Basis, Dimension

Basis: A basis for a subspace H of a vector space V is a linearly inde-

pendent set in H that spans H.

Dimension: If a vector space V is spanned by a finite set, then V is said to be

finite-dimensional, and the dimension of V, written as dim V, is

the number of vectors in a basis for V.

Col A, Nul A, Row A

 $\operatorname{Col} A$: - The $column\ space$ of a matrix A is the set $Col\ A$ of all linear combinations of the columns of A.

- Col A is a subspace of \mathbb{R}^m if A is $m \times n$.
- The pivot columns of a matrix A form a basis for the column space of A.
- $-\operatorname{rank} A = \dim \operatorname{Col} A$

 $\operatorname{Nul} A$: - The null space of a matrix A is the set Nul A of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

- To test whether a given vector \mathbf{v} is in Nul A, just compute $A\mathbf{v}$ to see whether $A\mathbf{v}$ is the zero vector.
- To find a basis for Nul A, we solve the equation $A\mathbf{x} = \mathbf{0}$ and write the solution for x in parametric vector form. The vectors in the parametric form give us a basis for Nul A.
- The nullity of a matrix A is the dimension of its NulA.

- The set of all linear combinations of the row vectors of A is called $\operatorname{Row} A$: the row space of A, and is denoted by Row A.

- Row A is a subspace of \mathbb{R}^n if A is $m \times n$.
- If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of Bform a basis for the row space of A as well as for that of B.
- Row $A = \operatorname{Col} A^T$
- dim Row $A = \dim \operatorname{Col} A = \operatorname{rank} A$

 $\operatorname{rank} A + \operatorname{nullity} A = \operatorname{number} \operatorname{of} \operatorname{columns} \operatorname{in} A$ Rank Thm:

Linearly Independent Sets

<u>Definition</u>: A set $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ of vectors in a vector space V is said to be linearly independent if the only solution to the equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$$

is $c_1 = c_2 = \cdots = c_p = 0$. Otherwise the vectors are called *linearly* dependant (which also means that at least one of them can be written as a linear combination of the others).

Eigenvalues and Eigenvectors

A scalar λ is called an eigenvalue of A if $|\mathbf{A} - \lambda \mathbf{I}| = 0$ (characte-Definition:

ristic equation).

An eigenvector associated with the eigenvalue λ is a nonzero vec-

tor **v** such that $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$.

Given a particular eigenvalue λ of the n by n matrix A, the set Eigenspace:

 $E = \{ \mathbf{v} : (A - \lambda I)\mathbf{v} = \mathbf{0} \}$ is called the *eigenspace* of A associated

with λ .

- If $A\mathbf{x} = \lambda \mathbf{x}$, then $A^k \mathbf{x} = \lambda^k \mathbf{x}$ for any positive integer k. So λ^k is Properties: an eigenvalue for A^k . Check Practice Problems # 2 on Page 279.

Solutions are on Page 282.

- If $A\mathbf{x} = \lambda \mathbf{x}$, then $s\lambda$ is an eigenvalue of sA for any real number

- The eigenvalues of a triangular matrix are the entries on its main
- If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is linearly independent.

Similarity

If A and B are $n \times n$ matrices, then A is similar to B if there is Definition:

an invertible matrix P such that $P^{-1}AP = B$, or, equivalently,

 $A = PBP^{-1}.$

Properties: - Any square matrix A is similar to itself. (Reflexivity)

- A is similar to B if and only if B is similar to A. (Symmetry)

- If A is similar to B and B is similar to C, then A is similar to

C. (Transitivity)

- If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

- If A and B are similar, then $\det A = \det B$ (Example 4 in §5.2).

- Similar matrices have the same rank.

Warnings: - It is not true that if two matrices have the same eigenvalues implies they are similar. Check the Lecture Notes §5.2 for an example.

> - Similarity is not the same as row equivalence. Row operations on a matrix usually change its eigenvalues.

Diagonalization

<u>Definition</u>: A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that is, if $A = PDP^{-1}$ for some

invertible matrix P and some diagonal matrix D.

Properties:

- An $n \times n$ matrix A is diagonalizable if and only if A has

n linearly independent eigenvectors.

- An $n\times n$ matrix with n distinct eigenvalues is diagonali-

zable.

Diagonalizing A:

Check Example 3 in Lecture Notes §5.3 as an exercise.

Step 1. Find the eigenvalues of A

Step 2. Find n linearly independent eigenvectors of A if A

is $n \times n$. (A is not diagonalizable if this step fails.

Step 3. Construct P with the eigenvectors found in Step 2.

Step 4. Construct the diagonal matrix D with the the cor-

responding eigenvalues from columns of P.

Warnings:

- When A has fewer than n distinct eigenvalues, it is still possible to diagonalize A. (Example 3 in Lecture Notes $\S 5.3$)

- Diagonalizable $\not\Rightarrow$ Invertible. For example, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is diagonalizable but not invertible.

- Invertible $\not\Rightarrow$ Diagonalizable. For example, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is invertible but not diagonalizable.

- Diagonalizable $\not\Rightarrow$ no zero eigenvalues. For example, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is diagonalizable and 0 is an eigenvalue.

Applications to Differential Equations

Constant Coeff. Homogeneous: $\mathbf{x}' = A\mathbf{x}$

Solution: $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \cdots,$

where \mathbf{x}_i are fundamental solutions from eigenvalues & eigenvectors. The method is described as below.

The Eigenvalue Method for x' = Ax in §5.7:

We consider A to be 2×2 , then the general solution is $\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)$, with the fundamental solutions $\mathbf{x}_1(t), \mathbf{x}_2(t)$ found has follows.

- Distinct Real Eigenvalues. $\mathbf{x}_1(t) = \mathbf{v}_1 e^{\lambda_1 t}, \mathbf{x}_2(t) = \mathbf{v}_2 e^{\lambda_2 t}$
- Complex Eigenvalues. $\lambda_{1,2} = p \pm qi$. (suggestion: use an example to review the method)

If $\mathbf{v} = \mathbf{a} + i\mathbf{b}$ is an eigenvector associated with $\lambda = p + qi$, then

$$\mathbf{x}_1(t) = e^{pt}(\mathbf{a}\cos qt - \mathbf{b}\sin qt), \ \mathbf{x}_2(t) = e^{pt}(\mathbf{b}\cos qt + \mathbf{a}\sin qt).$$

Trajectories for the System $\mathbf{x}' = A\mathbf{x}$:

- attractor: A has distinct negative real eigenvalues.
- repeller: A has distinct positive real eigenvalues.
- saddle point: A has real eigenvalues of opposite sign.
- spiral point: A has complex conjugate eigenvalues with nonzero real parts.
- center: A has purely imaginary eigenvalues.

Suggested Concepts from Midterm 1 Material

Below is a list of topics from Midterm 1 that we suggest you to be familiar with for preparing Midterm 2. You can find the summary of the formula sheet via Brightspace:

- Existence and Uniqueness Theorem
- Row Reduction Method
- Matrix Equation $A\mathbf{x} = \mathbf{b}$
- Linear Combination and Span
- $\bullet\,$ Transformation, Domain, Codomain, Image and Range
- Linear Transformation
- Determinant and its properties

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. Note the item 19 is new after Midterm 1.

- 1. A is an invertible matrix.
- 2. A is row equivalent to the $n \times n$ identity matrix.
- 3. A has n pivot positions.
- 4. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 5. The columns of A form a linearly independent set.
- 6. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- 7. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- 8. The columns of A span \mathbb{R}^n .
- 9. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- 10. There is an $n \times n$ matrix C such that CA = I.
- 11. There is an $n \times n$ matrix D such that AD = I.
- 12. A^T is an invertible matrix.
- 13. The columns of A form a basis of \mathbb{R}^n .
- 14. $\operatorname{Col} A = \mathbb{R}^n$.
- 15. $\operatorname{rank} A = n$.
- 16. $\dim \text{Nul} A = 0$, i.e., nullity A = 0
- 17. Nul $A = \{0\}$.
- 18. $\det A \neq 0$.
- 19. The number 0 is not an eigenvalue of A.