MATH-300 Andrew Jones

Worksheet 3

Let $A,\ B,\ and\ C$ be sets. Prove or disprove the following statements.

1.	If $A \cap B = \emptyset$ and $B \cap C = \emptyset$, then $A \cap C = \emptyset$
	<i>Proof.</i> Let $A=\{a\}$ and $C=\{a,c\}$ and $B=\{b\}$. Observe $\{a\}\cap\{b\}=\emptyset$ and $\{b\}\cap\{a,c\}=\emptyset$ while $\{a\}\cap\{a,c\}=\{a\}$
2.	If $A \not\subseteq B$ and $B \not\subseteq C$, then $A \not\subseteq C$
	<i>Proof.</i> Let $A=\{a\}$ and $C=\{a,c\}$ and $B=\{b\}$ Observe $\{a\}\not\subseteq\{b\}$ and $\{b\}\not\subseteq\{a,c\},$ while $\{a\}\subset\{a,c\}$
3.	If $A \subseteq \emptyset$, then $a = \emptyset$
	<i>Proof.</i> Assume the negation $A\subseteq\emptyset$ and $A\neq\emptyset$. If $A\neq\emptyset$ then $A\not\subseteq\emptyset$ by definition of \emptyset
4.	If $A \subseteq C$ and $B \subseteq C$, then $A \cap B \subseteq C$
	<i>Proof.</i> Fix $x \in A \cap B$ by defintion of intersection $x \in A$ and $x \in B$. From the inclusion $A \subseteq C$ it follows that $x \in C$.
5.	If $f:A\to B$ is injective and $g:B\to C$ is injective, then $g\circ f:A\to C$ is injective.
	<i>Proof.</i> Fix $x,y\in A$ and suppose $g(f(x))=g(f(y))$. By injectivity of g we have $f(x)=f(y)$ and by injectivity of f we conclude that $x=y$. \square
6.	If $f:A\to B$ is surjective and $g:B\to C$ is surjective, then $g\circ f:A\to C$ is surjective
	<i>Proof.</i> Fix $c \in C$. The surjectivity of g implies the existence of $b \in B$ with $g(b) = c$, while that of f yields an $a \in A$ with $f(a) = b$. We have, $g(f(a)) = g(b) = c$.
7.	Give an example of a function $f:A\to A$ that is injective but not surjective.
	<i>Proof.</i> Fix $b \in \mathbb{Z}$. $g: b \mapsto 2b$ maps to only the even co-domain. \square
8.	Give an example of a function $g:A\to A$ that is surjective but not injective.

Proof. Let $f: \mathbb{N} \to \mathbb{N}$ be given by

$$\begin{cases} k-1 & k \ge 1 \\ 0 & k=0 \end{cases}$$

9. Let $f:A\to B$ and $g:B\to A$. If $g\circ f=id_a$, then both f and g are bijections.

Proof. As previously proved the composition of two surjective functions are surjective and the same for injective, hence for $g \circ f$ to be bijective both f and g must also be bijective.

10. If $f: A \to A$ is surjective, and if A is a finite set, then f is injective.

Proof. By definition of surjective $\forall a \in A : \exists b \in A : f(b) = a$. By definition of a function no parameter may map to more than one value. Hence, if the domain and co-domain are both a finite set and the function is surjective then the function must be injective.

11. If $f: A \to A$ satisfies the property that $f \circ f = id_a$ then f is a bijection.

Proof. As previously proved the composition of two surjective functions are surjective and the same for injective, hence for $f \circ f$ to be bijective f must also be bijective.