To find the machine learning regression method using in R2 value 1, Multiple linear regression (R^2 value) = 0.9358

2, Support vector machine:

S.no	Hyper parameter	Linear R value	RBF(Nonlinear R value)	POLY (R value)	SIGMOID (value)
1	c10	0.5380	-0.057	0.0253	-0.057
2	c100	-107.97	-030	0.465	-0.058
3	c200	-468.644	-0.001	0.578	-0.060

The SVM Regression use R² value (Linear) and hyper parameter (C10) = 0.5380

3,Decision Tree regressor:

SI.No	CRITERION	Splitter	R2 value
1	squared_error	best	0.925
2	squared_error	random	0.861
3	friedman_mse	best	0.922
4	friedman_mse	random	0.920
5	absolute_error	best	0.951
6	absolute_error	random	0.194
7	poisson	best	0.916
8	poisson	random	0.936

The Decision Tree use R² value (absolute_error) and Splitter (best) = 0.951