Corolário (derivada da função inversa):

Seja f uma função diferenciável e injectiva definida num intervalo $\mathbf{I} \subseteq IR$. Seja $x_0 \in \mathbf{I}$ tal que $f'(x_0) \neq 0$, então f^{-1} é derivável em $y_0 = f(x_0)$ e

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

Exercício:

Determine a derivada de arcsen(x) para $x \in [-1,1]$.

Resolução:

A função *arcsen* é inversa da função *sen* na restrição $\left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$. Ora f(x) = senx é uma função diferenciável e injectiva em $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

Seja $y_0 = sen(x_0)$ então o corolário anterior firma que

$$\left(arcsen(y_0)\right)' = \frac{1}{\left(sen(x_0)\right)'} = \frac{1}{\cos(x_0)}$$

Pela fórmula fundamental da trigonometria temos

$$sen^{2}(x_{0}) + cos^{2}(x_{0}) = 1 \implies cos(x_{0}) = \sqrt{1 - sen^{2}(x_{0})} = \sqrt{1 - y_{0}^{2}}$$

(note que como $x_0 = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$, $\cos(x_0)$ é positivo e nunca se anula) e portanto

$$(arcsen(x))' = \frac{1}{\sqrt{1-x^2}}.$$

Exercício: Determine

a) $(\arccos(x))'$ para $x \in]-1,1[$

c) (arccotg(x))' para $x \in IR$;

b) (arctg(x))' para $x \in IR$

d) $(\log_a(x))'$ para $x \in IR^+ (a > 0);$

Temos portanto as seguintes fórmulas

1. função logaritmo $a > 0$:	$f(x) = \log_a x$	$f'(x) = \frac{1}{x \ln(a)}$
2. função arcsen	f(x) = arcsen(x)	$f'(x) = \frac{1}{\sqrt{1 - x^2}}$

3. função arccos	$f(x) = \arccos(x)$	$f'(x) = -\frac{1}{\sqrt{1 - x^2}}$
4. função arctg	f(x) = arctg(x)	$f'(x) = \frac{1}{1+x^2}$
5. função arccotg	f(x) = arccotg(x)	$f'(x) = -\frac{1}{1+x^2}$

Tabelas de Derivadas

Tendo em conta a derivada das funções elementares atrás referidas e a derivada da função composta, podemos escrever as seguintes fórmulas de derivação:

Sejam u e v funções deriváveis, k e a > 0 constantes:

1.
$$(u+v)'=u'+v'$$

2.
$$(uv)' = u'v + uv'$$

$$3. \quad \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

4.
$$(ku)' = ku'$$

$$5. \quad \left(u^{k}\right) = ku^{k-1}u'$$

6.
$$(a^u) = u'a^u \ln a$$

7.
$$(u^{v}) = v'u^{v} . \ln u + v.u^{v-1}.u'$$

8.
$$(\log_a u)' = \frac{u'}{u \ln a}$$

9.
$$(sen(u))=u'\cos(u)$$

10.
$$(\cos(u))' = -u' sen(u)$$

11.
$$(tg(u))' = u' \sec^2(u)$$

12.
$$(\cot g(u))' = -u' \cos ec^2(u)$$

13.
$$(arcsen(u))' = \frac{u'}{\sqrt{1-u^2}}$$

14.
$$(\arccos(u))' = -\frac{u'}{\sqrt{1-u^2}}$$

15.
$$(arctg(u))' = \frac{u'}{1+u^2}$$

16.
$$(arc \cot g(u))' = -\frac{u'}{1+u^2}$$

5.5 Derivadas de ordem superior

Dada uma função f diferenciável, então f' é também uma função real de variável real. Assim podemos falar na função derivada de f', ou seja na segunda derivada de f. Em termos práticos f'' obtém-se de f derivando esta duas vezes, ou seja,

$$f''(x) = (f'(x))'$$

Notação: Se y = f(x):

- primeira derivada de f: f ou, na notação de Leibniz, $\frac{df}{dx}$ ou $\frac{dy}{dx}$;
- segunda derivada de f: f' ou, na notação de Leibniz, $\frac{d^2 f}{dx^2}$ ou $\frac{d^2 y}{dx^2}$;
- terceira derivada de f: f'' ou, na notação de Leibniz, $\frac{d^3 f}{dx^3}$ ou $\frac{d^3 y}{dx^3}$;
- quarta derivada de f: $f^{(4)}$ ou, na notação de Leibniz, $\frac{d^4 f}{dx^4}$ ou $\frac{d^4 y}{dx^4}$;
- ...
- n-ésima derivada de f: $f^{(n)}$ ou, na notação de Leibniz, $\frac{d^n f}{dx^n}$ ou $\frac{d^n y}{dx^n}$, $n \in IN$.

Exercício:

Calcule as três primeiras derivadas da função $f(x) = \ln(x)$.

5.6 Teoremas fundamentais sobre derivação

Teorema de Rolle: Seja $f: [a,b] \rightarrow IR$ uma função <u>contínua</u> no intervalo fechado [a,b] e <u>derivável</u> no intervalo]a,b[.

Se f(a) = f(b) então existe pelo menos um $c \in [a,b[: f'(c) = 0]]$.

Interpretação geométrica:

O teorema de Rolle afirma entre dois pontos de uma função ($\underline{\text{contínua}}$ e $\underline{\text{diferenciável}}$) com a mesma imagem existe pelo menos um ponto do gráfico de f onde a recta tangente é horizontal.

Se alguma das condições do teorema falhar a conclusão do teorema pode não se verificar, por exemplo:

1. Consideremos uma função f cuja representação gráfica é:

f não é contínua em x = b.

Não existe nenhum ponto do intervalo [a,b] cuja recta tangente seja horizontal.

- \therefore é essencial a continuidade no intervalo fechado [a,b]
- **2.** Seja f(x) = |x|, $x \in [-4,4]$. A representação gráfica de f é:

f não admite derivada em x = 0

Não existe nenhum ponto do intervalo [-4,4] cuja recta tangente seja horizontal.

 \therefore é essencial a derivabilidade no intervalo aberto a,b.

Corolário 1: Seja $f:[a,b] \to IR$ uma função <u>contínua</u> no intervalo fechado [a,b] e com <u>derivada</u> no intervalo [a,b].

Se a e b são dois zeros de f então existe pelo menos um $c \in [a,b]$: f'(c) = 0.

Interpretação geométrica:

O corolário afirma que entre dois zeros de uma função (contínua e derivável) existe pelo menos um zero da derivada.

Se alguma das condições do teorema falhar a conclusão do teorema pode não se verificar. (Exercício: encontrar exemplos...)

Corolário 2: Seja $f: I \rightarrow IR$ uma função derivável $e[a,b] \subset I$.

Se a e b são dois zeros de f, então f tem no máximo um zero entre a e b.

Interpretação geométrica:

Se a hipótese da derivabilidade falhar no intervalo [a,b] então a conclusão do corolário pode deixar de ser válida.

Por exemplo:

a e b são dois zeros consecutivos da derivada mas entre a e b existe dois zeros da função.

 \therefore é essencial a derivabilidade no intervalo fechado [a,b]

Exercício:

A equação $e^x = 1 + x$ admite x = 0 como solução.

Mostre que esta equação não pode ter mais nenhuma solução real.

Resolução:

Em primeiro lugar, há que observar que x = 0 é efectivamente uma solução da equação dada: $e^0 = 1 + 0$ (proposição verdadeira).

Defina-se
$$f(x) = e^x - 1 - x$$
.

Vamos supor que f outro zero: $a \neq 0$.

Então pelo primeiro corolário do teorema de Rolle, existe um ponto entre 0 e *a* (exclusive) tal que a derivada é nula.

Mas $f'(x) = e^x - 1$ e f'(x) = 0 \Leftrightarrow $e^x = 1$ \Leftrightarrow x = 0 – absurdo pois o teorema de Rolle afirma a existência de um zero da derivada entre 0 e a (exclusive).

O absurdo resultou de supor que f admitia mais do que um zero.

Logo f tem um único zero e portanto a equação dada tem uma única raiz.

Teorema de Darboux: Seja $f:[a,b] \to IR$ uma função <u>contínua</u> no intervalo fechado [a,b] e <u>derivável</u> no intervalo [a,b].

Então f'(x) toma todos os valores entre f'(a) e f'(b).

Exemplo: A função

$$f'(x) = \begin{cases} -1 & , x < 0 \\ 1 & , x \ge 0 \end{cases}$$

não pode ser a derivada de nenhuma outra função, pois no intervalo [-1,1],

$$f'(-1) = -1$$
, $f'(1) = 1$ e $f'(x)$ não toma valores entre -1 e 1.

Teorema do valor médio ou de Lagrange: Seja $f: [a,b] \rightarrow IR$ uma função contínua no intervalo fechado [a,b] e <u>derivável</u> no intervalo [a,b].

Então existe
$$c \in]a,b[$$
 tal que $f'(c) = \frac{f(b)-f(a)}{b-a}$.

Interpretação geométrica:

O teorema de Lagrange afirma que existe um ponto no gráfico de f cujo declive da recta tangente é igual ao da recta que passa nos pontos (a, f(a)) e (b, f(b)).

Corolário: Seja $f: I \to IR$ uma função <u>contínua</u> (I um intervalo) $e \ c \in I$. Se f tem derivada em $I \setminus \{c\}$ e se existem e são iguais $\lim_{x \to c^+} f'(x) = L = \lim_{x \to c^-} f'(x)$

então existe f'(c) e f'(c) = L.

Exemplo: A função

$$g(x) = \begin{cases} x & , x > 0 \\ arctg(x) & , x \le 0 \end{cases}$$

é contínua (verifique que é contínua em x = 0), e temos que para $x \ne 0$ g'(x) é

$$g'(x) = \begin{cases} 1 & , x > 0 \\ \frac{1}{1 + x^2} & , x < 0 \end{cases}$$

Como g é <u>contínua</u> e $\lim_{x\to 0^+} g'(x) = 1 = \lim_{x\to 0^-} g'(x)$ então pelo corolário anterior existe g'(x) em x = 0, e g'(0) = 1.

Aplicação ao cálculo dos limites nas indeterminações $\frac{0}{0}$ e $\frac{\infty}{\infty}$.

O cálculo de limites por vezes não é simples. Utilizando derivação há um resultado, que em certas condições, nos facilita muito esse cálculo:

Proposição (Regra de Cauchy): Sejam f e g duas funções definidas em]a,b[e $c \in [a,b]$, tal que:

- $f e g s \tilde{a} o deriv \acute{a} v e i s e m]a,b[\setminus \{c\}]$
- $g'(x) \neq 0$, $x \in [a,b] \setminus \{c\}$
- $\bullet \quad \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0} \quad ou \quad \frac{\infty}{\infty}$
- $\lim_{x \to c} \frac{f'(x)}{g'(x)}$ existe ou $\acute{e} \propto (*)$

Então

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

Observação:

A regra de Cauchy também se aplica para limites no infinito, $c = \pm \infty$, e para limites laterais, $c = b^-$ ou $c = a^+$.

Repare que "(*)" não se trata da derivada do quociente!!!

Por vezes esta regra é também designada por regra de L'Hospital (ou L'Hôpital), mas esta é não é tão geral e só é formulada para aplicar à indeterminação $\frac{0}{0}$.

Exercícios: Calcule os seguintes limites:

1.
$$\lim_{x\to o}\frac{sen(x)}{x}$$

<u>resolução</u>: temos uma indeterminação $\frac{0}{0}$, aplicando a regra de Cauchy,

$$\lim_{x\to o} \frac{sen(x)}{x} = \lim_{x\to o} \frac{cos(x)}{1} = 1.$$

$$2. \lim_{x\to 0} \frac{\ln(x+1)}{x}$$

<u>resolução</u>: temos uma indeterminação $\frac{0}{0}$, aplicando a regra de Cauchy,

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = \lim_{x \to 0} \frac{\frac{1}{x+1}}{1} = 1.$$

3.
$$\lim_{x \to +\infty} \frac{e^x}{x^n} \qquad n \in IN$$

 $\underline{resolução}$: temos uma indeterminação $\frac{\infty}{\infty}$, aplicando a regra de Cauchy (n

vezes),
$$\lim_{x\to +\infty} \frac{e^x}{x^n} = \dots = \lim_{x\to +\infty} \frac{e^x}{n!} = +\infty$$
.

4.
$$\lim_{x\to 0} \frac{e^x - 1}{x}$$

<u>resolução</u>: temos uma indeterminação $\frac{0}{0}$, aplicando a regra de Cauchy,

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x}{1} = 1.$$

$$5. \quad \lim_{x \to +\infty} \frac{\ln(x)}{x}$$

<u>resolução</u>: temos uma indeterminação $\frac{\infty}{\infty}$, aplicando a regra de Cauchy,

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{1} = 0.$$

$$6. \quad \lim_{x \to +\infty} \frac{\ln(x)}{2x+1}$$

7.
$$\lim_{x\to 0} \frac{e^{x^2}-1}{sen^2(x)}$$
 (é necessário aplicar a Regra de Cauchy duas vezes)

8.
$$\lim_{x\to 0} \frac{x-sen(x)}{e^x-e^{sen(x)}}$$
 (é necessário aplicar a Regra de Cauchy duas vezes)

Obs:

Quando temos indeterminações da forma $\infty.0$ ou $\infty-\infty$ por vezes, podemos transformá-las em indeterminações da forma $\frac{\infty}{\infty}$ ou $\frac{0}{0}$ para podermos aplicar a regra de Cauchy, como podemos ver nos exemplos seguintes:

9.
$$\lim_{x\to -\infty} xe^{-x^2}$$

resolução: temos uma indeterminação $\infty.0$, não podemos aplicar a regra de Cauchy directamente, mas como $\lim_{x \to -\infty} x e^{-x^2} = \lim_{x \to -\infty} \frac{x}{e^{x^2}}$ ficamos com uma indeterminação $\frac{\infty}{\infty}$ e agora podemos aplicar a regra de Cauchy $\lim_{x \to -\infty} x e^{-x^2} = \lim_{x \to -\infty} \frac{x}{e^{x^2}} = \lim_{x \to -\infty} \frac{1}{2xe^{x^2}} = \frac{1}{-\infty} = 0$.

10.
$$\lim_{x \to +\infty} \left[x - \ln(3e^x - 1) \right]$$

resolução: temos uma indeterminação $\infty - \infty$, não podemos aplicar a regra de Cauchy directamente, mas como

$$\lim_{x \to +\infty} \left[x - \ln(3e^x - 1) \right] = \lim_{x \to +\infty} \left[\ln e^x - \ln(3e^x - 1) \right]$$

$$= \lim_{x \to +\infty} \ln \left[\frac{e^x}{3e^x - 1} \right]$$

$$= \ln \left[\lim_{x \to +\infty} \frac{e^x}{3e^x - 1} \right] \quad pois \quad \ln(x) \in continua$$

ficámos com uma indeterminação $\frac{\infty}{\infty}$ e agora podemos aplicar a regra de Cauchy

Outras indeterminações:

No cálculo de limites da forma $\lim_{x\to a} f(x)^{g(x)}$ por vezes somos conduzidos às seguintes indeterminações:

$$1^{\infty}$$
 0^0 ∞^0

Estas indeterminações levantam-se recorrendo à seguinte igualdade:

$$\lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} g(x) \ln f(x)}$$

onde f(x) > 0, $\forall x \in D_f$ e $a \in IR \cup \{-\infty, +\infty\}$

Prova:

Se existe e é positivo, $\lim_{x\to a} f(x)^{g(x)}$ então

$$\lim_{x \to a} f(x)^{g(x)} = A \iff e^{\ln\left[\lim_{x \to a} f(x)^{g(x)}\right]} = A \qquad (pois \ e^{\ln(x)} = x)$$

$$\Leftrightarrow e^{\lim_{x \to a} \ln\left[f(x)^{g(x)}\right]} = A \qquad (pois \ \ln(x) \ \acute{e} \ continua)$$

$$\Leftrightarrow e^{\lim_{x \to a} g(x) \cdot \ln f(x)} = A \qquad (propriedades \ da \ função \ ln)$$

Nota:

$$\lim_{\substack{x \to \pm \infty \\ x \to \pm \infty}} \left(1 + \frac{k}{x} \right)^x = e^k \qquad k \in IR$$

Exercícios:

Calcule os seguintes limites:

11.
$$\lim_{x\to 0^+} x^x$$

<u>resolução</u>: temos uma <u>indeterminação</u> 0^0 , fazendo $\lim_{x\to 0^+} x^x = e^{\lim_{x\to 0^+} [x \ln(x)]}$ temos

uma indeterminação $0.\infty$, fazendo $\lim_{x\to 0^+} x^x = e^{\lim_{x\to 0^+} \left[\frac{\ln(x)}{\frac{1}{x}}\right]}$ temos uma

indeterminação $\frac{\infty}{\infty}$ e podemos aplicar a regra de Cauchy:

$$\lim_{x \to 0^{+}} x^{x} = e^{\lim_{x \to 0^{+}} \left[\frac{\ln(x)}{\frac{1}{x}} \right]} = e^{\lim_{x \to 0^{+}} \left[\frac{\frac{1}{x}}{-\frac{1}{x}} \right]} = e^{\lim_{x \to 0^{+}} \left[\frac{-x^{2}}{x} \right]} = e^{\lim_{x \to 0^{+}} \left[-x^{2}} = e^{0} = 1.$$