Chapter 1 Functions and Limits

1.1 Four Ways of Representing a Function

A **function** f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Machine visualization.

Domain:

Range:

Graph of a function.

range $\begin{cases} y \\ y = f(x) \end{cases}$ domain

Dependant variable.

Independant variable.

EXAMPLE 1 The graph of a function f is shown in Figure 6.

- (a) Find the values of f(1) and f(5).
- (b) What are the domain and range of f?

EXAMPLE 2 Sketch the graph and find the domain and range of each function. (a) f(x) = 2x - 1 (b) $g(x) = x^2$

(a)
$$f(x) = 2x - 1$$

(b)
$$q(x) = x^2$$

EXAMPLE 3 If $f(x) = 2x^2 - 5x + 1$ and $h \ne 0$, evaluate $\frac{f(a+h) - f(a)}{h}$.

Representations of functions.

There are four possible ways to represent a function:

• verbally (by a description in words)

• numerically (by a table of values)

• visually (by a graph)

• algebraically (by an explicit formula)

EXAMPLE 5 A rectangular storage container with an open top has a volume of 10 m³. The length of its base is twice its width. Material for the base costs \$10 per square meter; material for the sides costs \$6 per square meter. Express the cost of materials as a function of the width of the base.

Domain of functions given by an explicit formula.

EXAMPLE 6 Find the domain of each function.

(a)
$$f(x) = \sqrt{x+2}$$

(b)
$$g(x) = \frac{1}{x^2 - x}$$

The Vertical Line Test A curve in the *xy*-plane is the graph of a function of *x* if and only if no vertical line intersects the curve more than once.

- (a) This curve represents a function.
- (b) This curve doesn't represent a function.

Example. The parabola $\ x=y^2-2$ is not the graph of a function. Show it using the Vertical Line Test.

Piece-wise Functions.

The functions in the following four examples are defined by different formulas in different parts of their domains. Such functions are called **piecewise defined functions**.

EXAMPLE 7 A function f is defined by

$$f(x) = \begin{cases} 1 - x & \text{if } x \le -1\\ x^2 & \text{if } x > -1 \end{cases}$$

Evaluate f(-2), f(-1), and f(0) and sketch the graph.

Absolute Value.

$$|a| = a$$
 if $a \ge 0$

$$|a| = -a$$
 if $a < 0$

Properties:

EXAMPLE 8 Sketch the graph of the absolute value function f(x) = |x|.

EXAMPLE 9 Find a formula for the function f graphed in Figure 17.

Symmetries.

Even functions

Odd functions.

EXAMPLE 11 Determine whether each of the following functions is even, odd, or neither even nor odd. (a) $f(x) = x^5 + x$

(a)
$$f(x) = x^5 + x$$

(b)
$$g(x) = 1 - x^4$$
 (c) $h(x) = 2x - x^2$

$$(c) h(x) = 2x - x$$

A function f is called **increasing** on an interval I if

$$f(x_1) < f(x_2)$$

whenever $x_1 < x_2$ in I

It is called **decreasing** on I if

$$f(x_1) > f(x_2)$$

whenever $x_1 < x_2$ in I

- · From A to B:
- From B to C:
- . From C to D:

Example. Where the function $f(x)=x^2$ is increasing? Where is it decreasing?