Overview

Kelli F. Johnson^{1,2}, Merrill B. Rudd¹, Maite Pons¹, Caitlin Allen Akselrud¹, Qi Lee¹, Felipe Hurtado-Ferro¹, Melissa A. Haltuch³, and Owen S. Hamel³

> University of Washington¹ Northwest Fisheries Science Center³

> > kfjohns@uw.edu2

June 10, 2015

Overview

- Distribution along the U.S. West Coast
- Growth and maturity
- 2 Data
 - Data sources included in the model
 - Fishery-dependent data
 - Fishery-independent data
 - Externally derived relationships
- Model
 - General model structure and assumptions
 - Changes from 2011
 - Results
 - 5 year retrospective analysis
 - Model convergence

Outline

- Overview
 - Distribution along the U.S. West Coast
 - Growth and maturity
- Data
- Model

Overview

•00

Coastwide distribution

Recent (2003 - 2010) trawl catches

Johnson et al. (UW) Sablefish-2015 June 10, 2015 4 / 83 Overview

90% Max size at ages 5 (females) & 8 (males)

Growth and maturity

Overview

Sablefish update from 2011

Sablefish-2015 June 10, 2015 6 / 83

Outline

- Overview
- 2 Data
 - Data sources included in the model
 - Fishery-dependent data
 - Fishery-independent data
 - Externally derived relationships
- Model

Included data

Catches

Johnson et al. (UW) Sablefish-2015 June 10, 2015 9 / 83

Landings are <ACL

Sablefish-2015 Johnson et al. (UW) June 10, 2015 10 / 83

Percent catch by gear in last decade

Table: Recent yearly sablefish landings (mt) by fleet, with their associated relative yearly proportion.

	Hook-and-Line		Pot		Trawl	
Year	mt	%	mt	%	mt	%
2005	2,807	45.25	997	16.08	2,399	38.67
2006	2,604	42.04	1,053	17.00	2,538	40.96
2007	2,060	39.34	688	13.13	2,489	47.53
2008	2,301	39.21	675	11.51	2,892	49.28
2009	3,274	45.48	863	11.99	3,061	42.53
2010	3,379	49.48	910	13.33	2,539	37.19
2011	3,231	50.46	1,449	22.62	1,724	26.92
2012	2,561	48.90	1,179	22.50	1,498	28.60
2013	1,865	45.33	846	20.57	1,402	34.09
2014	1,868	44.95	1,032	24.83	1,256	30.22

Johnson et al. (UW) Sablefish-2015 June 10, 2015 11 / 83

Index of abundance

Johnson et al. (UW) Sablefish-2015 June 10, 2015 12 / 83

NWFSC length compositions

Sablefish-2015 June 10, 2015 13 / 83

NWFSC age compositions

June 10, 2015 14 / 83 Johnson et al. (UW)

Externally derived relationships

Sex-specific weight-length relationship (survey data)

Prior on natural mortality (M)

Outline

- Overview
- 2 Data
- Model
 - General model structure and assumptions
 - Changes from 2011
 - Results
 - 5 year retrospective analysis
 - Model convergence

June 10, 2015

Stock Synthesis version 3.24u

Overview

General model structure and assumptions

- 1900 2014 Landings
- Max age == 35
- Lengths 20 90 (2 cm bins)
- Survey conditional age-at-length data
- Fixed steepness
- Sex-specific natural mortality (M)
- Bias-correction of recruitment deviations
- Vague priors except on M

Johnson et al. (UW) Sablefish-2015 June 10, 2015 19 / 83

Overview

Changes from 2011

- Stock Synthesis version 3.24u.
- Turn off initial F calculation.
- Delta-generalized linear mixed effect model (delta-GLMM) with strata &vessel effects.
- Survey composition data (unsexed assigned 50:50 sex ratio).
- Fishery composition data (standardized code; PacFIN_Utilities.R):
 - update discard ratios and mean weight;
 - asign unsexed assigned 50:50 sex ratio;
 - sex and data specific expansion factors.
- Update weight-length relationship (survey data only).
- Add full retention for trawl during catch-share program.
- Estimate M in phase 3 (instead of 8).
- Tune σ_r based on RMSE & update bias adjustment.

SSB comparisons on path to basemodel

Depletion comparisons on path to basemodel

SSB comparison during tune procedure

Depletion comparison during tune procedure

Results shown here

- Selectivity
- Fit to the index
- Fit to mean body weight from discard data
- Compsition data
- Recruitment
- Derived quantitities

Selectivity

Fit to AK Shelf survey (AKSHLF)

Results

Johnson et al. (UW) Sablefish-2015 Results

Fit to NW Slope survey (NWSLP)

Fit to NW Bottom trawl survey (NWFSCBO)

Results

Results

Fit to mean body weight from POT discard

Fishery age compositions

Results

Recruitment deviations

Johnson et al. (UW) Sablefish-2015 June 10, 2015

37 / 83

Depletion

Johnson et al. (UW)

1 - SPR

40 / 83

Forecasts

Table: Projection of potential sablefish OFL, ACL, and estimated spawning biomass and depletion for the base-case model based on the 40:10 correction to the $F_{45}\%$ overfishing limit/target (OFL) and an 8.7% reduction to approximate the P* approach. Catch allocation used for the forecast reflects the average distribution of fishing intensity among fleets (hook-and-line, pot, and trawl) during 2012-2013.

Year	OFL^1 (mt)	ABC^{1} (mt)	ACL^1 (mt)	Spawning	Relative
				biomass (mt)	depletion
2015	7,857	7,173	6,512	52,001	34.52 %
2016	8,526	7,784	7,121	54,044	35.88 %
2017	8,050	7,349	7,116	55,001	36.52 %
2018	8,329	7,604	7,419	56,153	37.28 %
2019	8,489	7,751	7,596	56,844	37.74 %
2020	8,648	7,896	7,755	57,185	37.97 %
2021	8,719	7,961	7,823	57,278	38.03 %
2022	8,659	7,905	7,767	57,236	38.00 %
2023	8,592	7,844	7,703	57,173	37.96 %
2024	8,529	7,787	7,645	57,121	37.92 %
2025	8,453	7,717	7,575	57,100	37.91 %
2026	8,369	7,641	7,501	57,114	37.92 %

Johnson et al. (UW) Sablefish-2015 June 10, 2015

41 / 83

Management reference points

Table: Summary of sablefish reference points as estimated using the base-case model. Yields include discard mortality. Given steepness is a fixed parameter, the uncertainty in these reference points remains grossly underestimated.

Quantity	Estimated value	\sim 95% interval
Unfished total biomass (mt)	440,648	323,201-558,095
Unfished 4+ biomass (mt)	413,038	303,832-522,244
Unfished spawning biomass (SB ₀ , mt)	150,622	114,728-186,516
Unfished recruitment (R_0 , thousands)	17,198	11,304-23,092
Reference points based on SB _{40%}		
MSY Proxy spawning biomass $(SB_{40\%}, mt)$	60,249	45,891-74,606
Relative spawning depletion at SB _{40%}	40%	
SPR resulting in SB _{40%}	50%	
Exploitation rate resulting in SB _{40%}	3.85%	3.37-4.32%
Yield with SPR _{SB40%} at SB _{40%} (mt)	7,476	5,171-9,781
Reference points based on SPR proxy for MSY		
Spawning biomass at SPR _{MSY - proxy} (SPR _{proxy} , mt)	51,212	39,008-63,415
Relative spawning depletion at SPR _{proxv}	34%	
SPR _{proxy}	45%	
Exploitation rate corresponding to SPR _{proxy}	4.58%	4.01-5.15%
Yield with SPR _{proxy} at SB _{SPR} (mt)	7,759	5,368-10,150
Reference points based on estimated MSY values		
Spawning biomass at MSY (SB _{MSY} , mt)	44,090	33,526-54,654
Relative spawning depletion at SB _{MSY}	29%	
SPR _{MSY}	41%	41-41%
Exploitation rate corresponding to SPR _{proxy}	5.26%	4.60-5.92%
Yield with SPR _{proxy} at SB _{SPR} (mt)	7,837	5,424-10,251

Johnson et al. (UW) Sablefish-2015 June 10, 2015

5 year retrospective analysis

Johnson et al. (UW)

Retrospective

Jitter

- 100 jitter iterations with jitter = 0.1
- 100 of 100 likelihoods == 4979.98

Table: Maximum percent difference in derived quantities from 100 iterations, using a jitter value of 0.1.

	Max perc diff
SSB_0	0.0013
$SSB_{initial}$	0.0014
F_{msy}	0.0019

Model convergence

Thank you

Johnson et al. (UW) Sablefish-2015 June 10, 2015 45 / 83

Additional slides

Data

Johnson et al. (UW) Sablefish-2015 June 10, 2015 47 / 83

Johnson et al. (UW) Sablefish-2015 June 10, 2015 49 / 83

Table of estimated biomass, recruitment, and depletion

Table: Recent trend in estimated sablefish spawning biomass (mt), recruitment (1000s), and relative depletion, with their associated \sim 95% intervals.

Year	Spawning	$\sim\!95\%$ interval	Recruitment	$\sim\!95\%$ interval	Depletion	~95%
	biomass		(1000s)			interval
	(mt)					
2005	75,200	42,559-107,841	642	196-1,088	50%	34-66%
2006	74,485	42,022-106,948	1,822	946-2,698	49%	33-66%
2007	72,609	40,664-104,554	1,317	546-2,088	48%	32-64%
2008	69,741	38,767-100,714	28,068	17,153-38,982	46%	31-62%
2009	65,698	35,976-95,419	1,681	661-2,701	44%	29-58%
2010	60,360	32,091-88,629	16,124	9,224-23,025	40%	26-54%
2011	57,637	29,961-85,314	5,183	2,603-7,764	38%	25-52%
2012	54,800	27,815-81,784	3,974	1,652-6,297	36%	23-50%
2013	53,841	27,015-80,668	46,247	24,209-68,285	36%	22-49%
2014	53,125	26,509-79,742	3,671	7-7,335	35%	22-48%
2015	52,001	25,698-78,303	13,067	0-38,041	35%	22-48%

Johnson et al. (UW) Sablefish-2015 June 10, 2015 50 / 83

Trend in relative spawning potential ratio and F

Table: Recent trend in relative spawning potential ratio (1-SPR/1-SPR Target=0.45) and relative exploitation rate (catch/biomass of age-4 and older fish).

Year	Relative	\sim 95% interval	Relative	\sim 95% interval
	SPR		exploitation	
			rate	
2005	77%	52-101%	2.73%	1.56-3.90%
2006	78%	53-103%	2.79%	1.58-3.99%
2007	72%	48-96%	2.47%	1.39-3.56%
2008	84%	58-109%	2.89%	1.61-4.16%
2009	103%	75-131%	3.89%	2.13-5.64%
2010	105%	76-133%	3.97%	2.13-5.81%
2011	105%	76-134%	4.00%	2.10-5.89%
2012	95%	66-124%	3.08%	1.62-4.54%
2013	82%	54-110%	2.55%	1.32-3.78%
2014	82%	54-110%	2.58%	1.34-3.83%

Johnson et al. (UW) Sablefish-2015 June 10, 2015 51 / 83

Trend in landings and estimated dead catch

Table: Recent trend in sablefish landings and estimated total dead catch (mt) relative to OFL (ABCs at the time) and ACLs (OYs at the time).

Year	OFL (mt) ¹	ACL (mt) ¹	Landings	Estimated
			(mt)	dead catch
				$(mt)^2$
2005	8471	7761	6203	6545.62
2006	8175	7634	6195	6515.59
2007	6210	5934	5237	5499.59
2008	6058	5934	5868	6163.55
2009	9914	8423	7198	7724.84
2010	9217	7729	6828	7276.24
2011	8808	6813	6404	6726.63
2012	8623	6605	5238	5493.75
2013	6621	5451	4113	4305.49
2014	7158	5909	4156	4460.99
2015	7857	6512		

Johnson et al. (UW) Sablefish-2015 June 10, 2015 52 / 83

Sensitivity

Overview

Maturity at length derived from literature values

- Analysis of variation in Maturity at Length
 - Head et al. (2014) presented findings suggesting new values for female maturity length and slope (β):
 - L₅₀ between 50 and 60 cm
 - β (female maturity slope) = -0.44
 - The 2011 sablefish assessment used $L_{50}=58$ cm and $\beta=-0.13$
 - The 2014 base model uses $L_{50}=58$ cm and $\beta=-0.13$
 - This sensitivity analysis examines:
 - L_{50} between 50 cm and 60 cm, $\beta = 0.13$
 - L_{50} between 50 cm and 60 cm, $\beta = -0.44$

SSB comparison

Depletion comparison

Maturity at length

Likelihood comparison

58 / 83 Johnson et al. (UW) Sablefish-2015 June 10, 2015

Overview

Sensitivity for steepness (*h*):

- base-case model h is fixed at 0.6;
- range from h = 0.3 to h = 0.9;
- a major source of unmodelled uncertainty;
- results in a change in B_0 with fairly consistent current SSB.

Johnson et al. (UW) Sablefish-2015 June 10, 2015 59 / 83

SSB comparison

Depletion comparison

Range in steepness (h) from 0.3 to 0.9

Likelihood comparison

Johnson et al. (UW) Sablefish-2015 June 10, 2015 62 / 83 Overview

Sensitivity to fixed values of R_0 :

- values explored include 9.7 to 10.3
- results display a shift in scale, with slightly greater shifts in SSB₀ than current SSB;
- data is not extremely informative.

Johnson et al. (UW) Sablefish-2015 June 10, 2015 63 / 83

SSB comparison

Depletion comparison

Likelihood comparison

Overview

Sensitivity to fixed values of female natural mortality (M_{fem}) :

- values explored range from 0.0675 to 0.0925
- results in a shift in scale of the SSB
- leads to somewhat smaller confidence intervals about *SSB* and relative depletion than when estimating the parameter;
- largest ranges in results around late 1970s when the largest catches were taken.

Johnson et al. (UW)

Sensitivity to fixed values of female natural mortality (M_{fem})

SSB comparison

Depletion comparison

Sensitivity to fixed values of female natural mortality (M_{fem})

Likelihood comparison

Johnson et al. (UW) Sablefish-2015 June 10, 2015 70 / 83

Overview

Estimating M in phase 8 (2011) or 3 (2015)

- 2011 M (female & male) estimated in phase 8 (terminal phase);
- 2015 prior to tuneing, M phase changed to 3;
- No difference in model output, only stability.

SSB comparison

Depletion comparison

Phase for natural mortality

Likelihood comparison

type	component	2011	2011: M	2015	2015: M
			(phase		(phase
			3)		3)
Derived	SBzero	182133.00	182133.00	180888.00	180888.00
	current_depletion	0.33	0.33	0.31	0.31
	last_years_SPRratio	0.94	0.94	0.95	0.95
	R0	22263.41	22263.41	21843.97	21843.97
Likelihoo	d-	3800.32	3800.32	4466.18	4466.18
	Discard	-57.56	-57.56	-79.65	-79.65
	Forecast_Recruitment	0.00	0.00	2.39	2.39
	Parm_priors	2.55	2.55	2.65	2.65
	Recruitment	22.11	22.11	20.65	20.65
Paramete	$Parameter M_fem$		0.08	0.08	0.08
	$M_{\text{-}}$ male	0.06	0.06	0.06	0.06

Johnson et al. (UW)

Overview

Maximum length used in 50:50 assignment of unsexed fish to males and females

- length below which all unsexed fish are assigned to males and females using a 50:50 ratio;
 - 2011 == 30 cm
 - 2015 == 71 cm
- above this length the ratio is determined from the observed sex ratio, or the observed ratio of the closest bin:
- no difference in model output.

SSB comparison

Depletion comparison

Likelihood comparison

type	component	30	45	60	75
Derived	SBzero	150752.00	150785.00	150851.00	150606.00
	current_depletion	0.35	0.35	0.35	0.35
	last_years_SPRratio	0.93	0.93	0.93	0.93
	R0	17193.90	17201.64	17212.31	17197.00
Likelihood	-	4980.34	4979.35	4978.68	4980.28
	Discard	-78.82	-78.82	-78.81	-78.81
	Parm_priors	3.04	3.04	3.04	3.05
	Recruitment	25.20	25.19	25.19	25.20
	Survey	-35.83	-35.83	-35.83	-35.84

Johnson et al. (UW) Sablefish-2015 June 10, 2015 78 / 83 Overview

Including an environmental index to inform recruitment

- Inclusion of an environmental index of recruitment using a 'survey'
 - Sea surface height (SSH) (W. Peterson 2015)
 - Zooplankton abundance (B. Black 2015)
- Recruitment success linked to productivity in California Current
 - Relationship is contentious
- Time series of indices extended to 2014
- SSH index resulted in slightly lower recruitment deviations
- Zooplankton index did not result in much change

Time series of environmental index

Johnson et al. (UW)

SSB comparison

Depletion comparison

Environmental index of recruitment

Likelihood comparisons

Johnson et al. (UW) Sablefish-2015 June 10, 2015 83 / 83