

Suicide detection in social media posts

Done by: Kimberley Chen

Why I chose to take up this project?

Worldwide

- 1. More than 700 000 people die due to suicide every year.
- 2. Suicide is the fourth leading cause of death in 15-19-year-olds.

Regional

Article from Channel News Asia

Problem Statement

This project aims to apply machine learning abilities in particular text classification techniques in order to detect suicidal tendencies in social media posts.

Early detection of these risk factors can help in preventing or reducing the number of suicides and even provide help to parties that urgently need it.

Workflow

Introduction to Datasets used:

Reddit

- 1. From Kaggle
- Collection of posts from "SuicideWatch" and "depression" subreddits
- 3. "SuicideWatch" from Dec 16, 2008(creation) till Jan 2, 2021
- 4. "Depression posts" from Jan 1, 2009, to Jan 2, 2021

Twitter

- 1. Used Snscrape
- Key words such as "i want to kill myself", "depressed and suicidal", "sadness and hopelessness", "i am worthless", "no one cares"
- 3. Data was scraped between January to August 2020.

Original Datasets:

Reddit

- 1. No. of rows: 232,074
- 2. 2 columns:
 - a. Text, Class

Twitter

- 1. No. of rows: 3,000
- 2. 4 columns:
 - a. Datetime, Tweet ID, Text and Username.
- 3. Manually classified

Finalised Dataset

Total rows: 4000 Suicide (2,000) Non-suicide (2,000) 2 Columns: Text, Class

Text and Class

Rows:

- Suicide (1,000)
- Non-suicide (1,000)

Rows:

- Suicide (1,000) a.
- b. Non-suicide (1,000)

4 Columns:

Datetime, Tweet

ID, Text and

Username.

Data Cleaning / Data Processing

Data Cleaning

- 1. Removing of any URLs
- 2. Removing any mentions (@XXX)
- 3. Removing any hashtags (#XXX)

Natural Language Processing

- 1. Remove punctuation
- 2. Tokenise
- 3. Remove stopwords
- 4. Stemming
- 5. Lemmatization

Vectorization

- 1. Countvectorizer
- 2. TF-IDF

Based on Twitter Data

Weekdays vs Weekends

Fig 1: Twitter Weekdays vs Weekends

Day of the week

Fig 2: Twitter Day of the Week

Total tweets by part of day

Fig 3: Twitter Total tweets by part of day

Total tweets by hour

Fig 4: Twitter tweets by hour

Sentiment Analysis

Fig 5: Twitter Sentiment Analysis

Fig 6: Reddit Sentiment Analysis

Word Count

Fig 7: Twitter Word Count

Fig 8: Reddit Word Count

Word Cloud (Twitter)

Fig 9: Twitter (Suicide) Word Cloud

Fig 10: Twitter (Non-Suicide) Word Cloud

Word Cloud (Reddit)

Fig 11: Reddit (Suicide) Word Cloud

Fig 12: Reddit (Non-Suicide) Word Cloud

Combined EDA (2-gram)

(oof, oof)	286
(want, kill)	279
(filler, filler)	168
(im, going)	154
(like, im)	124

Fig 13: 2-gram

Combined EDA (3-gram)

(im, sorry, im)	32
(dont, know, im)	32
(sorry, im, sorry)	30
(dont, want, live)	26
((alt, alt, alt)	24

Fig 13: 3-gram

Count Vectorizer

(Baseline Score: 0.5)

	Accuracy (train)	Accuracy (test)	Sensitivity
Bernoulli NB	0.88	0.75	0.80
Gaussian NB	0.87	0.52	0.75
Logistic Regression	0.96	0.72	0.71
KNN (K-Nearest-Neighbor)	0.74	0.70	0.60
SVM Classifier	0.88	0.70	0.65

Count Vectorizer

(Area under the curve)

Fig 14: BernoulliNB
GaussianNB

Fig 15: Linear Regression KNN SVM

Count Vectorizer (Baseline Score: 0.5)

	Accuracy	Precision	Sensitivity
Random Forest Classifier	0.94	0.89	0.98
Neural Network	0.64	0.625	0.70
RNN (LTSM)	0.77	0.75	0.86

TF-IDF (Baseline Score: 0.5)

	Accuracy (train)	Accuracy (test)	Sensitivity
Bernoulli NB	0.88	0.75	0.80
Gaussian NB	0.89	0.52	0.6
Logistic Regression	0.96	0.66	0.67
KNN (K-Nearest-Neighbor)	0.72	0.69	0.90
SVM Classifier	0.96	0.64	0.6

TF-IDF (Area under the curve)

Fig 15: BernoulliNB
GaussianNB

Fig 16: Linear Regression KNN SVM

TF-IDF (Baseline Score: 0.5)

	Accuracy	Precision	Recall
Random Forest Classifier	0.94	0.92	0.98
Neural Network	0.606	0.60	0.71
RNN (LTSM)	0.79	0.78	0.81

The Best Model is: Random Forest Classifier (TF-IDF)

Suicide Example

ML App

Suicide

Suicide Detector

Results for Comment

Machine Learning App with Flask	
Suicide Detector	
Enter Your Message Here	
I like corn dog #awesome	
predict	

ML App

Suicide Detector

Results for Comment

Non-suicide

Limitations

- It is not possible to generalise all human behaviour into simple lines of code. Hence this model won't be able to capture every single aspect of human behaviour
- The data was limited to only Reddit and Twitter, other social media platforms data can also be introduced.

Recommendations (future projects)

- 1. Train with a bigger data set
- 2. Train with different language
- 3. Image classifier
- 4. Video classifier

Thank You!

Feel free to ask me any questions:)

CRÉDITOS: este modelo de apresentação foi criado pelo **Slidesgo**, inclui ícones da **Flaticon** e infográficos e imagens da **Freepik**

Por favor, mantenha este slide para atribuição

