Docking and macromolecular complexes

Structural Bioinformatics

Outline

- Some Reminders
- Concepts, definitions
- Small-molecule docking
- Protein docking
 - Ab-initio docking
 - Data-driven docking
 - Assessment

Molecular recognition

- All macromolecules work through recognition processes
 - Protein-ligand.
 - Enzymes, membrane receptors, transport proteins, Drugs
 - Protein-protein
 - Regulation of enzyme activity (signal transduction), multi-subunit protein and complexes
 - Protein-NA
 - NA metabolism, gene regulation
 - NA-Ligand
 - Drugs
 - NA-NA
 - Transcription, replication, protein synthesis, ...
- Recognition is selective. It depends on the participating groups.
- Recognition is dynamic
 - Induced fit / Conformational selection
 - Complexes can be permanent, but most of them are transient

Energy considerations

- Entropic
 - Conformational, hydrophobic
- Enthalpic
 - Vdw
 - Shape and contacts
 - Hbond
 - Define geometry, must be complete
 - Electrostatic
 - Severe solvation penalty

Structural complementarity

Lisozyme + (NAG)₃

- Complex formation implies to bury new interactions
 - Unstable (hydrophobic) surfaces in water may indicate binding regions.

Proteins do not act alone

- Protein protein complexes:
 - Permanent associations ("quaternary structure")
 - Enzyme substrate (transient)
 - Regulatory associations
 - Multi protein clusters/groups
 - (Nuclear porus, cytochroms, ...)
- Protein NA complexes
 - Transcription factors
 - Replication, Splicing, Transcription machineries
 - Ribosomes

• ...

Concepts, definitions

- Docking: Prediction of the structure of complexes
 - Ligand-protein docking, protein docking
- Receptor, ligand: the actors
- Pose: Binding mode
 - how the ligand positions on the receptor site
- Interface: Contact region in a complex

Concepts, definitions

Binding energy (does not need presentation)

 Scoring: How the binding is evaluated (tries to approach to the binding energy)

• (Virtual | Reverse) screening: test for the feasibility of binding among a high number of ligands/receptors

Docking evaluation: How to test the success of the docking

Protein docking terms

- Interaction prediction
 - Whether two protein interact to each other (no 3D structure)
- Interface prediction
 - Determine regions where complex components interact
- Protein docking
 - Predict poses (structure of the complex)

- Bound vs. Unbound docking
 - Docking using conformations in the complex (bound) or free (unbound)
- Flexible vs. Rigid docking
 - Whether proteins' flexibility is taken into account
- Local vs. global docking
 - Whether binding site is roughly known

Docking stategy

- Protein representation
- Search method
- Scoring method
- Refinement?

Ligand-Protein Docking

Molecular Docking

- Prediction of 3D structure of ligand-protein or protein-protein complexes.
- One receptor one or few ligands
- Quality of the structure is the main objective.
 Realistic binding energies
- Usually combined with other techniques, as MD
- Experimental information can be considered

Virtual screening

- Identification of possible ligands from compound databases
- One receptor multiple ligands (> 10⁶)
- Calculation should be fast >10000 ligand-receptor dockings / day / proc.)
- The main objective is to select "some" ligands, that can be optimized with other methods

Reverse Screening

- Identification of possible receptors for a known ligand
- One ligand multiple receptors
- Points to possible side effects

Active site prediction

Identification of binding regions

Ligand-Protein Docking

- Complete atomic representation
 - Large cost, high resolution
- Simplified representations
 - Quick and robust. Low resolution.
- 3D Grid representations (receptor)
 - Easier energy calculation
 - Definition of "pharmacophores" (MIPs)
- Flexibility (Ligand and receptor)
 - Ensembl docking

Scoring

- When to score
 - Score associated to the search process
 - Scoring a posteriori
- Structural complementarity
 - Robust, low resolution
- Classical force-fields, Statistical Pot.
 - High resolution
 - Easy to transfer
- Empirical functions
 - ΔG_{bind} obtained from function fitted to experimental data

$$\Delta G = \Delta G_0 + \Delta G_{\text{rot}} \times N_{\text{rot}} \tag{1}$$

$$+\Delta G_{\rm hb} \sum_{\rm neutral\ H\text{-bonds}} f(\Delta R, \Delta \alpha)$$
 (2)

$$+\Delta G_{\text{io}} \sum_{\text{ionic int.}} f(\Delta R, \Delta \alpha)$$
 (3)

$$+\Delta G_{\rm aro} \sum_{\rm aro\ int.} f(\Delta R, \Delta \alpha)$$
 (4)

$$+\Delta G_{\text{lipo}} \sum_{\text{lipo. cont.}} f^*(\Delta R)$$
 (5)

Ligand protein software

 https://en.wikipedia.org/wiki/List of proteinligand docking software

- Most popular:
 - DOCK
 - AutoDock (Vina)
 - GOLD
 - FlexX
 - Glide (Commercial)

Protein Docking

- Large systems
 - Typical contact area: 1,500-3,000 Å²
- Large number of degrees of freedom and large conformational flexibility
- Few "easy" interactions
 - Hydrophobic contacts
 - Average 1 H-bond / 170 Å^{2 (*)}
 - 1 water / 100 Å^{2 (*)}

Basic strategies

- "Pure" Ab Initio docking
 - Only information about ligand and receptor structures is known
 - Pseudo-random approaches (simulation, optimization)
 - Directed search (Geometric hashing)
 - Brute-Force approaches (Grid-based, FFT)
- Data driven docking (template based)
 - Experimental, homology data is used
 - Machine-learning methods
 - Co-evolution methods
 - Can be combined to help ab initio approaches

Ab initio Rigid-Body docking (1)

- Proteins are mapped onto 3D grids. Each grid point is evaluated as inner (<0 for receptor, >0 for ligand), Surface (1), outer (0).
- Blind 6Dim (3 translations x 3 rotations) search
- Score is based in 3D complementarity: i.e. matches among the "Surface" points (calculated with from the product of grid points)
- Fast Fourier Transforms to speed up translational (Fast Fourier Transform, FFT) or rotational (Spherical Polar Fourie SPF) searches.
- Computational cost can decrease by >10⁴ (from N^6 to $N^3 \ln N^3$)

0	0	0	0	0	0	0
0	0	1	2	2	1	0
0	1	3	p	P	1	0
0	1		15	5	2	0
0	1	3	10		1	0
0	0	1	2	2	1	0
0	0	0	0	0	0	0

Dava Dissavani Tada

Orc1/Sir1 "Difficult", Interface: 1,300Å²

TolB/Pal "Easy" Interface: 2,600Å²

Complexes with larger buried interfaces are easier to predict

Ab initio Rigid-Body docking (2)

 Geometric hash, Surface are pre-processed to detect possible matching regions

Solvation/desolvation can be mapped into Surface properties

 Most favourable poses are re-scored with better scoring functions

Less efficient for pure blind docking (better with additional information)

Additional tricks

- Flexible docking
 - Traditional MD
 - Too costly (limited sampling)
 - Used to refine structures after docking
 - Conformational sampling
 - Rigid docking with set of posible conformations (experimental or produced from PCA)
 - Conformational search added to position and orientation (usually MC)
 - Combined cycles of docking and simulation
 - RosettaDock combines rigid body MonteCarlo for orientation/traslation + MonteCarlo among rotamer libraries (very expensive)

Soft docking

- Backbone is still rigid
- Sidechain flexibility is mimicked using "soft" VdW potentials, and/or coarser FFT grids

Rigid-body limitations: flexible cases

Docking with Distance Constraints

A complex of Rlma2 methyltransferase of *S. pneumoniae* and a 74 nucleotide RNA transcript

Ab-Initio Protein Docking Software

- FFT-based search
 FTDock, GRAMM, DOT, ZDOCK, MolFit, PIPER,
 F2DOCK, SDOCK, ASPDock, Cell-Dock
- Spherical Fourier transform-based search HEX, FRODOCK
- Direct search in Cartesian space SOFTDOCK, BIGGER, SKE-DOCK
- Local shape feature matching Distance geometry algorithm
 DOCK
- Geometric hashing PatchDock, SymmDock, LZerD
- Genetic algorithm GAPDOCK

- Randomized search Monte Carlo search
 RosettaDock, ICM-DISCO, ATTRACT, HADDOCK
- Particle swarm optimization
 SwarmDock, LightDock

SIPPER, PIE, MDockPP, etc.

- Genetic algorithm
 AutoDock
- Post-docking approach using advanced scoring functions
 RPScore, ZRANK, PyDock, EMPIRE, DARS, DECK,
- Considering protein flexibility
 MultiDock, SmoothDock, RDOCK, FireDock,
 FiberDock, EigenHex

Data – driven methods

- Homology/threading based methods
 - Template based, use data from homologues

- Co_evolution methods
 - Growing popularity in protein structure prediction (Alphafold)
 - Uses data from "massive" multiple sequences alignment

- Interface prediction
 - To reveal interfaces without structure prediction

Dimeric threading

Monomer threading and oligomer mapping

Template-based docking

Data-driven Protein docking software

- Dimeric Threading
 Interactome3D (R), InterPreTS, Multiprospector, Coev2Net, Struct2Net, iWrap,
 HOMBACOP (R), HOMCOS(R), THSWP
- Dimeric Threading and Template Based ABCLM (M), KA
- Monomer threading and oligomer Mapping SPRING
- Dimeric Threading and Full complex simulation TACOS(R), M-TASSER(R)
- Template Based
 PrePPI, PRISM (M), SKV (M)

M: Complete models unrefined

R: Refined Structure

Co-evolution methods

- Rely in multiple sequence alignments and correlated mutations to define correlated positions > 3D contacts
- Predicted contacts become restrains

Interface/hot-spot prediction

- The hot-spot/O-ring model. Hot-spots make the real interactions, O-Ring (residues sourrounding the hot-spot) help to exclude solvent
 - Detecting solvent excluding (hydrophobic) regions help to detect interfaces
- Residue packing at the interface is similar to protein core.
- Residue conservation does not help (except for specific interactions)
 - Amino acid composition
 - Interface propensities (statistical models)
 - Machine learning approaches
- Definition of interface residues on training structures is key
 - Geometric (Distance based)
 - Optimal Docking Area (ODA), based in desolvation energy (ASA)

"Good docking" criteria

- Low Free Energy (!?)
- Low pseudo-energy (Scoring)
- Large Surface burial ($\sim 1,600 \pm 400 \text{ Å}^2$)
- Low VdW overlaps
- No large cavities on the interface
- Good H-bonding (~1HB / 100 Ų), Polar-polar contacts
- Good charge complementarity

Scoring functions

- Free energy (Forcefields)
- Solvation Score
 - Optimize hydrophobic solvation
- Statistical potentials
- Gometric scores
 - Buried surface
 - Surface shape complementarity
 - Volume of intersection
- Phylogenetic scores
 - Based on conservation
 - Correlated mutations >contacts
- Re-scoring and consensous

Terms in Scoring Functions

Assessment of docking performance

F_{nat}: fraction of native contacts (within 5Å)

 I-RMSD: RMSD on second protein after superposition on first target n

> near-native: L-RMSD < 10Å

target prediction

RMSD

RMSD

i-RMSD: RMSD on interface residues (within 10 Å)

Assessment of docking performance

Best rank NN

Assessment of docking performance

complex i

complex 1

complex 2

Protein-protein docking benchmark

- 176 protein-protein complexes
 - http://zlab.umassmed.edu/benchmark/
- Unique structural family combinations
- Diverse biological roles

	I-RMSD	fnat	fnon-nat	N
Rigid-body	0.9	79%	21%	121
Medium	1.76	63%	35%	30
Difficult	3.76	51%	51%	25

I-RMSD: RMSd bound-unbound. fnat, fnon-nat: Fraction of conserved contacts

Conclusions

- Protein docking works
 - (Much less efficient than ligand docking)
- Lots of methods exists, no clear winner
- Data-driven methods can generate better models if data is available
- Flexibility, conformational changes are the major problems
- Interface and interaction predictions (without docking) are possible and useful