Optimization and Computational Linear Algebra for Data Science Homework 10: Regression

Due on November 26, 2019

- Unless otherwise stated, all answers must be mathematically justified.
- Partial answers will be graded.
- You can work in groups but each student must write his/her own solution based on his/her own understanding of the problem. Please list on your submission the students you work with for the homework (this will not affect your grade).
- Problems with a (*) are extra credit, they will not (directly) contribute to your score of this homework. However, for every 4 extra credit questions successfully answered your lowest homework score get replaced by a perfect score.
- \bullet If you have any questions, feel free to contact me (1m4271@nyu.edu) or to stop at the office hours.

DRAFT

Problem 10.1 (2 points). Let $A \in \mathbb{R}^{n \times m}$. Show that if A has linearly independent columns, then $A^{\dagger} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}$.

Problem 10.2 (2 points). Let $A \in \mathbb{R}^{n \times d}$ and $y \in \mathbb{R}^n$. The Ridge regression adds a ℓ_2 penalty to the least square problem in order to "select" a solution of smaller norm. The Ridge regression problem is then:

minimize
$$||Ax - y||^2 + \lambda ||x||^2$$
 with respect to $x \in \mathbb{R}^d$, (1)

for some penalization parameter $\lambda > 0$. Show that (1) admits a unique solution given by

$$x^{\text{Ridge}} = (A^{\mathsf{T}}A + \lambda \text{Id})^{-1}A^{\mathsf{T}}y.$$

Problem 10.3 (3 points).

Problem 10.4 (3 points).

Problem 10.5 (\star) .

