Session 11: Optimality conditions

Optimization and Computational Linear Algebra for Data Science

Contents

- 1. Unconstrained optimization
- 2. Constrained optimization and Lagrange multipliers
- 3. Convex constrained optimization problems

Unconstrained optimization

Questions about the video?

- **Proof** Global minimizer ⇒ local minimizer ⇒ saddle point.
- Critical point + positive definite Hessian ⇒ local minimizer.

Hessian at a critical point

The Hessian at \boldsymbol{x} is:

- $1. \ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
 - $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 3. $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$
- 4. $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$

Hessian at a critical point

The Hessian at x is:

- $1. \ \begin{pmatrix} 1 & 0 \\ 0 & -3 \end{pmatrix}$
- $2. \ \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$
- 3. $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$
- 4. $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$

Hessian at a critical point

The Hessian at \boldsymbol{x} is:

- 1. $\begin{pmatrix} 1 & 0 \\ 0 & -3 \end{pmatrix}$
- $2. \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$
- 3. $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$
- $4. \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$

Constrained optimization

General formulation

Constrained optimization problems take the form:

```
minimize f(x) subject to g_i(x) \leq 0, \quad i=1,\ldots,m h_i(x)=0, \quad i=1,\ldots,p,
```

with variable $x \in \mathbb{R}^n$.

Question

If x is a solution to

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p,$

do we have $\nabla f(x) = 0$?

Feasible points

Definition

A point $x \in \mathbb{R}^n$ is *feasible* if it satisfies all the constraints: $g_1(x) \leq 0, \dots, g_m(x) \leq 0$ and $h_1(x) = 0, \dots, h_p(x) = 0$.

Constrained optimization

Constrained optimization

Theorem

If x is a solution and if $\nabla h_1(x),\ldots,\nabla h_p(x),\{\nabla g_i(x)\,|\,g_i(x)=0\}$ are linearly independent, then there exists $\lambda_1,\ldots,\lambda_m\geq 0$ and $\nu_1,\ldots,\nu_p\in\mathbb{R}$ such that:

$$\nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x) = 0.$$
 (1)

Moreover, for all $i \in \{1, ..., m\}$, if $g_i(x) < 0$ then $\lambda_i = 0$.

Example

Let $u \in \mathbb{R}^n$. Solve: $\begin{array}{ll} \text{minimize} & \langle x,u \rangle \\ \text{subject to} & \|x\|^2 = 1. \end{array}$

13/18

Constrained optimization

Convex constrained optimization

General formulation

We say that the constrained optimization problem

minimize
$$f(x)$$

subject to $g_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p,$ (2)

is convex when f, g_1, \ldots, g_m are convex and h_1, \ldots, h_p are affine.

Theorem

Assume that the problem is convex and that there exists a feasible point x_0 such that $g_i(x_0)<0$ for all i.

Then x is a solution if and only if x is feasible and there exists $\lambda_1, \ldots, \lambda_m \geq 0, \nu_1, \ldots, \nu_p \in \mathbb{R}$ such that:

$$\begin{cases} \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x) = 0. \\ \lambda_i g_i(x) = 0, \text{ for all } i \in \{1, \dots, p\}. \end{cases}$$

Lagragian

Define the Lagragian:

$$L(x, \lambda, \nu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{p} \nu_i h_i(x),$$

Convex constrained optimization

(3)

Example

Convex constrained optimization

Let $u, v \in \mathbb{R}^n$ such that ||v|| = 1. Solve:

minimize $||x - u||^2$

subject to $x \perp v$.

(4)

18/18

Example

Convex constrained optimization

Let $u, v \in \mathbb{R}^n$ such that ||v|| = 1. Solve:

minimize $||x - u||^2$

subject to $x \perp v$.

(4)

18/18

Questions?

Questions?

