Claims

	2		
	3	1.	Piezoelectric actuator having
	4	_	a piezoelectric element (2; 21) for actuating a mechanical component with
	5		a pulling or pushing force, and a compensating element (3; 22), wherein
	6		the piezoelectric element (2) and the compensating element (3; 22)
	7		basically have the same temperature expansion coefficients, and wherein
	8	_	the compensating element (3; 22) is mechanically coupled to the
	9		piezoelectric element (2; 21) in such a fashion that the temperature-
	10		induced expansions of the piezoelectric element (2; 21) and the
	11		compensating element (3; 22) cancel each other out in the effective
	12	$^{\lambda}$	direction in such a fashion that the actuating element remains in its
	13	,	position.
	14		
I	15	2.	Piezoelectric actuator according to claim 1, characterized in that
T.	16	-	a heat transfer compound (12) is located between the piezoelectric
	17		element (2; 21) and the compensating element (3; 22).
	18		
	19	3.	Piezoelectric actuator according to claim 1 [or 2], characterized in that
	20	_	the piezoelectric element (2; 21) is supported on one end on a fixed
	21		support plate (9), which fixed support plate (9) bears against the housing
	22		(7) for the piezoelectric actuator (1; 20) via a spring (10) and which is
	23		connected at the other end to a pretensioning spring (6; 23) via a pressing
	24		plate (11; 24), which pretensioning spring (6; 23), in turn, is held against
	25		the fixed support plate (9) with its other end, and that
	26	-	the compensating element (3; 22) basically lies parallel to the piezoelectric
	27		element (2; 21) and is also held against the fixed support plate (9) with
	28		one end and solidly abuts the housing (7) with the other end.
	29		
	30	4.	Piezoelectric actuator according to claim 3, characterized in that

1	-	the pretensioning spring (6) and the piezoelectric element (2) are located
2		in tandem.
3		
4	5.	Piezoelectric actuator according to claim 4, characterized in that
5	-	the movable end of the piezoelectric element (2) is connected to the
6		pressing plate (5) via a tightening strap (8).
7		
8	6.	Piezoelectric actuator according to claim 3, characterized in that
9	-	the pretensioning spring (23) and the piezoelectric element (21) are
10		situated parallel to each other.
11		
12	7.	Piezoelectric actuator according to [one of the preceding claims] claim 1,
13		characterized in that
14	-	the pretensioning spring is formed out of at least one zigzag spring (6; 23).
15		
16	8.	Piezoelectric actuator according to [one of the preceding claims] claim 1,
17		characterized in that
18	-	the piezoelectric element (2; 21) is composed of a multilayer structure of
19		transversely arranged, ceramic piezoelectric plies that become longer in
20		the effective direction when an external electric voltage is applied, and the
21		compensating element (3; 22) is made of ceramic.
22		
23	9.	Piezoelectric actuator according to [one of the claims 1 through 6] claim 1,
24		characterized in that
25	-	the piezoelectric element (2, 21) is composed of a multilayer structure of
26		transversely arranged, ceramic piezoelectric plies that become longer in
27		the effective direction when an external electric voltage is applied, and that
28		
29	-	the compensating element (3; 22) is composed of piezoelectric plies
30		arranged in the longitudinal direction that become shorter in the effective
31		direction when an external electric voltage is applied.

Consideration and allowance of the present application is most respectfully requested.

Respectfully submitted,

Michael J. Striker
Attorney for Applicant(s)

Reg. No. 27233