Liebmann technical documentation

2	
3	Laplace equation 2D (XY)
4	(Cartesian coordinates)
5	relaxation scheme explained
6	(5 - point star)
	authors Marsin Kulhaka
7	author: Marcin Kulbaka email: mkulbaka@onet.pl
8 9	project homepage: http://marcinkulbaka.prv.pl/Liebmann/index_en.html
10	license: GNU General Public License v.3.0+
11	version 7
12	2024.05.24

Lublin, Poland

14 Contents

15	1	Liebmann technical documentation series	4
16	2	Versions of this document	4
17	3	Solving Laplace equation using relaxation method	4
18	4	Explanation of symbols in calculations	5
19	5	Mesh XY - type A	6
20	6	Mesh XY - type B	7
21	7	Mesh XY - type C	8
22	8	Mesh XY - type D	9
23	9	Example of A-type mesh in ANSI C	10
24	10	Example of B-type mesh in ANSI C	12
25	11	Example of C-type mesh in ANSI C	13
26	12	Example of D-type mesh in ANSI C	15
27 28 29 30 31 32 33	13	Relaxation formula for node P1 13.1 Node description 13.2 Calculation of relaxation formula 13.3 Final forms of relaxation formula 13.3.1 xyLV_RELAX5_P1_A 13.3.2 xyLV_RELAX5_P1_B 13.3.3 xyLV_RELAX5_P1_C 13.3.4 xyLV_RELAX5_P1_D	16 16 17 17 17 17
35 36	14	Relaxation formula for node P2 14.1 Node description	18
37 38 39 40		14.2 Calculation of relaxation formula	18 19 19
41		14.3.2 XyLV_RELAX5_P2_C	19

43	15 Relaxation formula for node P3	20
44	15.1 Node description	
45	15.2 Calculation of relaxation formula	20
46	15.3 Final forms of relaxation formula	21
47	15.3.1 xyLV_RELAX5_P3_A	21
48	15.3.2 xyLV_RELAX5_P3_B	21
49	15.3.3 xyLV_RELAX5_P3_C	21
50	15.3.4 xyLV_RELAX5_P3_D	21
51	16 Relaxation formula for node P4	22
52	16.1 Node description	22
53	16.2 Calculation of relaxation formula	22
54	16.3 Final forms of relaxation formula	23
55	16.3.1 xyLV_RELAX5_P4_A	23
56	16.3.2 xyLV_RELAX5_P4_B	23
57	16.3.3 xyLV_RELAX5_P4_C	23
58	16.3.4 xyLV_RELAX5_P4_D	
59	17 Relaxation formula for node P5	24
60	17.1 Node description	24
61	17.2 Calculation of relaxation formula	
62	17.3 Final forms of relaxation formula	25
63	17.3.1 xyLV_RELAX5_P5_A	
64	17.3.2 xyLV RELAX5 P5 B	
65	17.3.3 xyLV_RELAX5_P5_C	
66	17.3.4 xyLV_RELAX5_P5_D	
67	18 Relaxation formula for node P6	26
68	18.1 Node description	26
69	18.2 Calculation of relaxation formula	
70	18.3 Final forms of relaxation formula	
71	18.3.1 xyLV_RELAX5_P6_A	
72	18.3.2 xyLV_RELAX5_P6_B	
73	18.3.3 xyLV_RELAX5_P6_C	
74	18.3.4 xyLV_RELAX5_P6_D	
75	19 Relaxation formula for node P7	28
75 76	19.1 Node description	28
76	19.2 Calculation of relaxation formula	
78	19.3 Final forms of relaxation formula	
78 79	19.3.1 xyLV_RELAX5_P7_A	
	19.3.2 xyLV_RELAX5_P7_B	
80	19.3.3 xyLV RELAX5_F7_B	
81	19.3.4 xvIV BELAX5_F7_0	29

83	20 Relaxation formula for node P8	30
84	20.1 Node description	30
85	20.2 Calculation of relaxation formula	30
86	20.3 Final forms of relaxation formula	31
87	20.3.1 xyLV_RELAX5_P8_A	31
88	20.3.2 xyLV_RELAX5_P8_B	31
89	20.3.3 xyLV_RELAX5_P8_C	31
90	20.3.4 xyLV_RELAX5_P8_D	
91	21 Relaxation formula for node P9	32
91 92	21 Relaxation formula for node P9 21.1 Node description	
•		32
92	21.1 Node description	32 32
92 93	21.1 Node description	32 32 33
92 93 94	21.1 Node description	32 32 33 33
92 93 94 95	21.1 Node description	32 32 33 33 33

1 Liebmann technical documentation series

- 1. Wyznaczanie rozkładu pola elektrostatycznego w próżni metodą relaksacyjną Liebmanna. (Polish version / wersja polska)
- 2. Determination of electrostatic field distribution by using Liebmann relaxation method. (English version / wersja angielska)
- 3. Graphics. Mapping voltages to colours (colormaps).
 - Laplace equation 2D (XY). (Cartesian coordinates). Relaxation scheme explained. (5 - point star)
- 5. Laplace equation 2D (ZR) (Cylindrical coordinates). Relaxation scheme explained. (5 point star)
 - 6. Liebmann source sode. (ANSI C programming language)

2 Versions of this document

1. version 1 - 2023.11.03

105

106

109

125

126

- 2. version 2 2024.01.26
- 3. version 3 2024.02.02
- 4. version 4 2024.02.05
- 5. version 5 2024.05.18
- 6. version 6 2024.05.23
- 7. version 7 2024.05.24

3 Solving Laplace equation using relaxation method

I tried to solve Laplace equation using mainly information from Pierre Grivet's
 book (Electron Optics) - [1].

There are few editions of this book (1965, 1972). Second edition (1972) contains explanation of relaxation method (page 38).

More generalized approaches has been drafted by James R. Nagel - [2]. https://my.ece.utah.edu/~ece6340/LECTURES/Feb1/ (visited 2023-03-01).

There are also publications edited by Albert Septier: Focusing of Charged Particles [3] and Applied Charged Particle Optics (part A). [4].

I have also found some ideas in publication of D W O Heddle: Electrostatic Lens Systems [5] (especially using PC computers to solve electrostatic problems).

I have also found (brief) description of by - hand solving of Laplace equation by Bohdan Paszkowski - [6] (Polish edition). English translation of this book also exists - [7].

133 134 135

136

137

138

139

140

143

128

129

130

131

132

I would like to thank many people, who helped me with this challenge. Especially prof. dr hab. Mieczysław Jałochowski (supervisor of my master's thesis), who enabled me to use SIMION and MATLAB software while writing master's thesis about electron optical systems at University of Maria Curie - Skłodowska in Lublin in 2008. I would also thank to prof. Marcin Turek for fruitful discussion about numerical methods. What is more, my colleague Bartosz in 2012 had explained me general problems with software efficiency. So he had also contributed significantly to the idea of Liebmann software (especially using C language).

4 Explanation of symbols in calculations

- P_i i-th mesh node
- V_i value of electrostatic potential at node P_i . Unit $[{
 m V}]$
- h mesh step (for example h_x mesh step in x direction). Unit [mm]
- $g_{i+/-}$ gradient in direction i (for example $g_{1x-}=rac{V_1-V_{1x-}}{h_x}$. Unit $\left[rac{
 m V}{
 m mm}
 ight]$
- i_{row} index of row in mesh. Values of $i_{row} = 1, 2, ..., \text{size_row}$
- i_{col} index of column in mesh. Values of $i_{col}=1,2,..,\mathrm{size_col}$

5 Mesh XY - type A

- 152
- $h_x \neq h_y \label{eq:hyper}$ gradient V outside a mesh exists

Figure 1: Mesh XY type A

6 Mesh XY - type B

155

 $h_x \neq h_y$ gradient V outside a mesh does not exist

Figure 2: Mesh XY type B

7 Mesh XY - type C

- $h_x = h_y = h$
- gradient V outside a mesh exists

Figure 3: Mesh XY type C

8 Mesh XY - type D

161

$$\begin{split} h_x &= h_y = h \\ \text{gradient } V \text{ outside a mesh does not exist} \end{split}$$

Figure 4: Mesh XY type D

9 Example of A-type mesh in ANSI C

163

Example of A- type mesh in ANSI C program. The mesh is represented by 2 dimensional array of double precision numbers. Rows and columns in mesh are numbered from 1 (this was my choice) instead of default 0 (as usual in C language). This choice nas pros and cons. Is is easier to calculate mesh size (size_row * size_col). Access to each node can be also more intuitive, but logic in each library function must contain this shift between node ordering styles.

Figure 5: ANSI C - mesh XY type A

```
• g_{x-} \equiv 	ext{double* ptr_gX_minus}
• g_{x+} \equiv 	ext{double* ptr_gX_plus}

• g_{y-} \equiv 	ext{double* ptr_gY_minus}
• g_{y+} \equiv 	ext{double* ptr_gY_plus}
• V \equiv 	ext{double* ptr_V}
• unsigned int size_row == 4
```

```
• unsigned int size_col == 6
• unsigned int i_row == 1, 2, ..., 4
• unsigned int i_col == 1,2, ..., 6
• double h_x == 1.0 [mm]
• double h_y == 2.0 [mm]
```

181

182

183

185

186

The following picture describes analogous version of ptr_V mesh, which can be dynamically allocated on heap by pointer metod. The mesh is represented by single block of memory. The numbers or rows and columns are also known, so each node can be also accessed by appropriate index (memory address).

Each mesh point has its unique index (let's say icp - (index of central point)), which can be determined, if we know indices of row and column (i_row, i_col).

$$icp == (i_row - 1) * size_col + i_col - 1$$
 (9.1)

For example for each point of a mesh indices of row and column have values:

192 10 Example of B-type mesh in ANSI C

Example of B- type mesh in ANSI C program. The mesh is analogous to A - type mesh. There are no electric field gradients on mesh borders.

Figure 6: ANSI C - mesh XY type B

```
• V \equiv \text{double* ptr_V}

• unsigned int size_row == 4

• unsigned int size_col == 6

• unsigned int i_row == 1, 2, ..., 4

• unsigned int i_col == 1,2, ..., 6

• double h_x == 1.0 [mm]

• double h_y == 2.0 [mm]
```

11 Example of C-type mesh in ANSI C

202

Example of C- type mesh in ANSI C program. The mesh is analogous to A - type mesh. Just mesh mesh step $h_x=h_y=h$.

Figure 7: ANSI C - mesh XY type C

```
• g_{x-} \equiv \mathtt{double*} ptr_gX_minus
205
          • g_{x+} \equiv \mathtt{double*}\ \mathtt{ptr\_gX\_plus}
206
          • g_{y-} \equiv 	exttt{double* ptr_gY_minus}
207
          • g_{y+} \equiv 	exttt{double* ptr_gY_plus}
208
          • V \equiv \mathtt{double*} \ \mathtt{ptr} \_ \mathtt{V}
209
          • unsigned int size_row == 4
210
          • unsigned int size_col == 6
211
          • unsigned int i_row == 1, 2, ..., 4
212
```

```
• unsigned int i_col == 1,2, .., 6
```

• double
$$h == 1.0 [mm]$$

215 12 Example of D-type mesh in ANSI C

Example of D- type mesh in ANSI C program. The mesh is analogous to B - type mesh. Just $h_x=h_y=h.$

Figure 8: ANSI C - mesh XY type D

```
• V \equiv double* ptr_V

• unsigned int size_row == 4

• unsigned int size_col == 6

• unsigned int i_row == 1, 2, ..., 4

• unsigned int i_col == 1,2, ..., 6

• double h == 1.0 [mm]
```

225 13.1 Node description

Left, botton corner of mesh XY.

227 13.2 Calculation of relaxation formula

Laplace equation at node P_1

$$\nabla^2 \left(V_{(x,y)} \right)_{P_1} = 0 \tag{13.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_1} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_2} = 0$$
(13.2)

Approximation of partial derivatives of $V_{(x,y)}$ at node P_1

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_1} \approx \frac{\frac{V_2 - V_1}{h_x} - \frac{V_1 - V_{1y-}}{h_x}}{h_x} = \frac{V_2 - V_1}{h_x^2} - \frac{g_{1x-}}{h_x} \tag{13.3}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_a} \approx \frac{\frac{V_4 - V_1}{h_y} - \frac{V_1 - V_{1y-}}{h_y}}{h_y} = \frac{V_4 - V_1}{h_y^2} - \frac{g_{1y-}}{h_y} \tag{13.4}$$

Let us substitute approximations to Laplace equation.

$$\frac{V_2 - V_1}{h_x^2} - \frac{g_{1x-}}{h_x} + \frac{V_4 - V_1}{h_y^2} - \frac{g_{1y-}}{h_y} = 0$$
 (13.5)

Let us find V_1

$$V_1 = ?$$
 (13.6)

$$\frac{V_2 - V_1}{h_x^2} + \frac{V_4 - V_1}{h_y^2} = \frac{g_{1x-}}{h_x} + \frac{g_{1y-}}{h_y}$$
 (13.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{13.8}$$

$$V_2 h_y^2 - V_1 h_y^2 + V_4 h_x^2 - V_1 h_x^2 = g_{1x} - h_x h_y^2 + g_{1y} - h_x^2 h^y$$
 (13.9)

$$V_1(h_x^2 + h_y^2) = V_2h_y^2 + V_4h_x^2 - g_{1x} - h_xh_y^2 - g_{1y} - h_x^2h_y$$
(13.10)

13.3 Final forms of relaxation formula

235 13.3.1 xyLV_RELAX5_P1_A

236

$$h_x \neq h_y$$

$$g_{1x-}, g_{1y-} \neq 0$$

$$V_1 = \frac{V_2 h_y^2 + V_4 h_x^2 - g_{1x-} h_x h_y^2 - g_{1y-} h_x^2 h_y}{h_x^2 + h_y^2}$$
(13.11)

237 13.3.2 xyLV_RELAX5_P1_B

$$h_x \neq h_y$$

$$g_{1x-}, g_{1y-} = 0$$

$$V_1 = \frac{V_2 h_y^2 + V_4 h_x^2}{h_x^2 + h_y^2}$$
(13.12)

238 13.3.3 xyLV_RELAX5_P1_C

$$h_x = h_y = h$$

$$g_{1x-}, g_{1y-} \neq 0$$

$$V_1 = \frac{V_2 + V_4 - g_{1x-}h - g_{1y-}h}{2}$$
(13.13)

239 13.3.4 xyLV_RELAX5_P1_D

$$h_x = h_y = h$$
 $g_{1x-}, g_{1y-} = 0$
 $V_1 = \frac{V_2 + V_4}{2}$ (13.14)

241 14.1 Node description

242 Bottom edge of mesh XY.

243 14.2 Calculation of relaxation formula

Laplace equation at node P_2

$$\nabla^2 \left(V_{(x,y)} \right)_{P_2} = 0 \tag{14.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_2} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_2} = 0$$
(14.2)

Approximation of partial derivatives of $V_{(x,y)}$ at node P_2

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_2} \approx \frac{\frac{V_3 - V_2}{h_x} - \frac{V_2 - V_1}{h_x}}{h_x} = \frac{V_1 + V_3 - 2V_2}{h_x^2} \tag{14.3}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_2} \approx \frac{\frac{V_5 - V_2}{h_y} - \frac{V_2 - V_{2y-}}{h_y}}{h_y} = \frac{V_5 - V_2}{h_y^2} - \frac{g_{2y-}}{h_y} \tag{14.4}$$

Let us substitute approximations to Laplace equation.

$$\frac{V_1 + V_3 - 2V_2}{{h_x}^2} + \frac{V_5 - V_2}{{h_y}^2} - \frac{g_{2y-}}{h_y} = 0$$
 (14.5)

Let us find V_2

245

246

$$V_2 = ?$$
 (14.6)

$$\frac{V_1 + V_3 - 2V_2}{h_x^2} + \frac{V_5 - V_2}{h_y^2} = \frac{g_{2y-}}{h_y}$$
 (14.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{14.8}$$

$$V_1 h_y^2 + V_3 h_y^2 - 2V_2 h_y^2 + V_5 h_x^2 = g_{2y} - h_x^2 h_y$$
 (14.9)

$$V_2(h_x^2 + h_y^2) = (V_1 + V_3)h_y^2 + V_5h_x^2 - g_{2y} - h_x^2 h_y$$
 (14.10)

250 14.3 Final forms of relaxation formula

251 14.3.1 xyLV_RELAX5_P2_A

$$h_x \neq h_y$$

$$g_{2y-} \neq 0$$

$$V_2 = \frac{(V_1 + V_3) h_y^2 + V_5 h_x^2 - g_{2y-} h_x^2 h_y}{h_x^2 + h_y^2}$$
(14.11)

252 14.3.2 xyLV_RELAX5_P2_B

$$h_x \neq h_y$$

$$g_{2y-} = 0$$

$$V_2 = \frac{(V_1 + V_3) h_y^2 + V_5 h_x^2}{h_x^2 + h_y^2}$$
(14.12)

253 14.3.3 xyLV_RELAX5_P2_C

$$h_x = h_y = h$$

$$g_{2y-} \neq 0$$

$$V_2 = \frac{V_1 + V_3 + V_5 - g_{2y-}h}{3}$$
(14.13)

254 14.3.4 xyLV_RELAX5_P2_D

$$h_x = h_y = h$$

$$g_{2y-} = 0$$

$$V_2 = \frac{V_1 + V_3 + V_5}{3}$$
 (14.14)

256 15.1 Node description

257 Right, botton corner of mesh XY.

258 15.2 Calculation of relaxation formula

Laplace equation at node P_3

$$\nabla^2 \left(V_{(x,y)} \right)_{P_2} = 0 \tag{15.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_2} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_2} = 0$$
(15.2)

Approximation of partial derivatives of $V_{(x,y)}$ at node P_3

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_2} \approx \frac{\frac{V_{3x+} - V_3}{h_x} - \frac{V_3 - V_2}{h_x}}{h_x} = \frac{g_{3x+}}{h_x} + \frac{V_2 - V_3}{h_x^2} \tag{15.3}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_2} \approx \frac{\frac{V_6 - V_3}{h_y} - \frac{V_3 - V_{3y-}}{h_y}}{h_y} = \frac{V_6 - V_3}{h_y^2} - \frac{g_{3y-}}{h_y} \tag{15.4}$$

Let us substitute approximations to Laplace equation.

$$\frac{g_{3x+}}{h_x} + \frac{V_2 - V_3}{h_x^2} + \frac{V_6 - V_3}{h_y^2} - \frac{g_{3y-}}{h_y} = 0$$
 (15.5)

Let us find V_3

260

$$V_3 = ?$$
 (15.6)

$$\frac{V_2 - V_3}{h_x^2} + \frac{V_6 - V_3}{h_y^2} = \frac{g_{3y-}}{h_y} - \frac{g_{3x+}}{h_x}$$
 (15.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{15.8}$$

$$V_2 h_y^2 - V_3 h_y^2 + V_6 h_x^2 - V_3 h_x^2 = g_{3y} - h_x^2 h_y - g_{3x} + h_x h_y^2$$
 (15.9)

$$V_3\left(h_x^2 + h_y^2\right) = V_2 h_y^2 + V_6 h_x^2 + g_{3x+} h_x h_y^2 - g_{3y-} h_x^2 h_y \tag{15.10}$$

265 15.3 Final forms of relaxation formula

$$h_x \neq h_y$$

$$g_{3x+}, g_{3y-} \neq 0$$

$$V_3 = \frac{V_2 h_y^2 + V_6 h_x^2 + g_{3x+} h_x h_y^2 - g_{3y-} h_x^2 h_y}{h_x^2 + h_y^2}$$
(15.11)

267 15.3.2 xyLV_RELAX5_P3_B

$$h_x \neq h_y$$

$$g_{3x+}, g_{3y-} = 0$$

$$V_3 = \frac{V_2 h_y^2 + V_6 h_x^2}{h_x^2 + h_y^2}$$
(15.12)

268 15.3.3 xyLV_RELAX5_P3_C

$$h_x = h_y = h$$

$$g_{3x+}, g_{3y-} \neq 0$$

$$V_3 = \frac{V_2 + V_6 + g_{3x+}h - g_{3y-}h}{2}$$
(15.13)

269 15.3.4 xyLV_RELAX5_P3_D

$$h_x = h_y = h$$
 $g_{3x+}, g_{3y-} = 0$

$$V_3 = \frac{V_2 + V_6}{2}$$
(15.14)

271 16.1 Node description

Left edge of mesh XY.

273 16.2 Calculation of relaxation formula

Laplace equation at node P_4

$$\nabla^2 \left(V_{(x,y)} \right)_{P_4} = 0 \tag{16.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_4} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_4} = 0$$
(16.2)

Approximation of partial derivatives of $V_{(x,y)}$ at node P_4

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_4} \approx \frac{\frac{V_5 - V_4}{h_x} - \frac{V_4 - V_{4x-}}{h_x}}{h_x} = \frac{V_5 - V_4}{h_x^2} - \frac{g_{4x-}}{h_x} \tag{16.3}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_4} \approx \frac{\frac{V_7 - V_4}{h_y} - \frac{V_4 - V_1}{h_y}}{h_y} = \frac{V_1 + V_7 - 2V_4}{h_y^2} \tag{16.4}$$

Let us substitute approximations to Laplace equation.

$$\frac{V_5 - V_4}{h_x^2} - \frac{g_{4x-}}{h_x} + \frac{V_1 + V_7 - 2V_4}{h_y^2} = 0$$
 (16.5)

Let us find V_4

$$V_4 = ?$$
 (16.6)

$$\frac{V_5 - V_4}{h_x^2} + \frac{V_1 + V_7 - 2V_4}{h_x^2} = \frac{g_{4x-}}{h_x}$$
 (16.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{16.8}$$

$$V_5 h_y^2 - V_4 h_y^2 + V_1 h_x^2 + V_7 h_x^2 - 2V_4 h_x^2 = g_{4x-} h_x h_y^2$$
 (16.9)

$$V_4 \left(2h_x^2 + h_y^2 \right) = \left(V_1 + V_7 \right) h_x^2 + V_5 h_y^2 - g_{4x} - h_x h_y^2 \tag{16.10}$$

280 16.3 Final forms of relaxation formula

281 16.3.1 xyLV_RELAX5_P4_A

$$h_x \neq h_y$$

$$g_{4x-} \neq 0$$

$$V_4 = \frac{(V_1 + V_7) h_x^2 + V_5 h_y^2 - g_{4x-} h_x h_y^2}{2h_x^2 + h_y^2}$$
(16.11)

282 16.3.2 xyLV_RELAX5_P4_B

$$h_x \neq h_y$$

$$g_{4x-} = 0$$

$$V_2 = \frac{(V_1 + V_7) h_x^2 + V_5 h_y^2}{2h_x^2 + h_y^2}$$
(16.12)

283 16.3.3 xyLV_RELAX5_P4_C

$$h_x = h_y = h$$

$$g_{4x-} \neq 0$$

$$V_4 = \frac{V_1 + V_5 + V_7 - g_{4x-}h}{3}$$
(16.13)

284 16.3.4 xyLV_RELAX5_P4_D

$$h_x = h_y = h$$
 $g_{4x-} = 0$

$$V_4 = \frac{V_1 + V_5 + V_7}{3}$$
(16.14)

286 17.1 Node description

Node inside a mesh XY.

285

288 17.2 Calculation of relaxation formula

Laplace equation at node P_5

$$\nabla^2 \left(V_{(x,y)} \right)_{P_{\mathsf{E}}} = 0 \tag{17.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_{\Xi}} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_{\Xi}} = 0$$
(17.2)

Approximation of partial derivatives of $V_{(x,y)}$ at node P_5

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_5} \approx \frac{\frac{V_6 - V_5}{h_x} - \frac{V_5 - V_4}{h_x}}{h_x} = \frac{V_4 + V_6 - 2V_5}{h_x^2} \tag{17.3}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_5} \approx \frac{\frac{V_8 - V_5}{h_y} - \frac{V_5 - V_2}{h_y}}{h_y} = \frac{V_2 + V_8 - 2V_5}{h_y^2} \tag{17.4}$$

Let us substitute approximations to Laplace equation.

$$\frac{V_4 + V_6 - 2V_5}{h_x^2} + \frac{V_2 + V_8 - 2V_5}{h_y^2} = 0$$
 (17.5)

Let us find V_5

291

$$V_5 = ?$$
 (17.6)

$$\frac{V_4 + V_6 - 2V_5}{h_x^2} + \frac{V_2 + V_8 - 2V_5}{h_y^2} = 0 ag{17.7}$$

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{17.8}$$

$$V_4 h_y^2 + V_6 h_y^2 - 2V_5 h_y^2 + V_2 h_x^2 + V_8 h_x^2 - 2V_5 h_x^2 = 0$$
 (17.9)

$$2V_5 \left(h_x^2 + h_y^2\right) = (V_2 + V_8) h_x^2 + (V_4 + V_6) h_y^2$$
(17.10)

295 17.3 Final forms of relaxation formula

296 17.3.1 xyLV_RELAX5_P5_A

$$h_x \neq h_y$$

No gradients g inside mesh are considered.

$$V_5 = \frac{(V_2 + V_8) h_x^2 + (V_4 + V_6) h_y^2}{2 (h_x^2 + h_y^2)}$$
(17.11)

298 17.3.2 xyLV_RELAX5_P5_B

$$h_x \neq h_y$$

299 Relaxation formula is the same as xyLV_RELAX5_P5_A

$$V_5 = \frac{(V_2 + V_8) h_x^2 + (V_4 + V_6) h_y^2}{2 (h_x^2 + h_y^2)}$$
(17.12)

17.3.3 xyLV_RELAX5_P5_C

$$h_x = h_y = h$$

No gradients g inside mesh are considered.

The formula simplifies, so no g and h terms are necessary.

$$V_5 = \frac{V_2 + V_4 + V_6 + V_8}{4} \tag{17.13}$$

303 17.3.4 xyLV RELAX5 P5 D

$$h_x = h_y = h$$

The formula also simplifies.

305 306

Relaxation formula is the same as xyLV_RELAX5_P5_C

$$V_5 = \frac{V_2 + V_4 + V_6 + V_8}{4} \tag{17.14}$$

308 18.1 Node description

309 Right edge of mesh XY.

307

310 18.2 Calculation of relaxation formula

Laplace equation at node P_6

$$\nabla^2 \left(V_{(x,y)} \right)_{P_c} = 0 \tag{18.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_6} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_6} = 0$$
(18.2)

Approximation of partial derivatives of $V_{(x,y)}$ at node P_6

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_2} \approx \frac{\frac{V_{6x+} - V_6}{h_x} - \frac{V_6 - V_5}{h_x}}{h_x} = \frac{g_{6x+}}{h_x} + \frac{V_5 - V_6}{h_x^2} \tag{18.3}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_6} \approx \frac{\frac{V_9 - V_6}{h_y} - \frac{V_6 - V_3}{h_y}}{h_y} = \frac{V_3 + V_9 - 2V_6}{h_y^2} \tag{18.4}$$

Let us substitute approximations to Laplace equation.

$$\frac{g_{6x+}}{h_x} + \frac{V_5 - V_6}{h_x^2} + \frac{V_3 + V_9 - 2V_6}{h_y^2} = 0$$
 (18.5)

Let us find V_6

$$V_6 = ?$$
 (18.6)

$$\frac{V_5 - V_6}{h_x^2} + \frac{V_3 + V_9 - 2V_6}{h_x^2} = -\frac{g_{6x+}}{h_x}$$
 (18.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{18.8}$$

$$V_5 h_y^2 - V_6 h_y^2 + V_3 h_x^2 + V_9 h_x^2 - 2V_6 h_x^2 = -g_{6x} + h_x h_y^2$$
(18.9)

$$V_6 \left(2h_x^2 + h_y^2 \right) = \left(V_3 + V_9 \right) h_x^2 + V_5 h_y^2 + g_{6x+} h_x h_y^2$$
(18.10)

18.3 Final forms of relaxation formula

18.3.1 xyLV_RELAX5_P6_A

$$h_x \neq h_y$$

$$g_{6x+} \neq 0$$

$$V_6 = \frac{(V_3 + V_9) h_x^2 + V_5 h_y^2 + g_{6x+} h_x h_y^2}{2h_x^2 + h_y^2}$$
(18.11)

319 18.3.2 xyLV_RELAX5_P6_B

$$h_x \neq h_y$$

$$g_{6x+} = 0$$

$$V_6 = \frac{(V_3 + V_9) h_x^2 + V_5 h_y^2}{2h_x^2 + h_y^2}$$
(18.12)

320 18.3.3 xyLV_RELAX5_P6_C

$$h_x = h_y = h$$

$$g_{6x+} \neq 0$$

$$V_6 = \frac{V_3 + V_5 + V_9 + g_{6x+}h}{3}$$
(18.13)

321 18.3.4 xyLV_RELAX5_P6_D

$$h_x = h_y = h$$

$$g_{6x+} = 0$$

$$V_6 = \frac{V_3 + V_5 + V_9}{3}$$
(18.14)

323 19.1 Node description

Left, upper corner of mesh XY.

325 19.2 Calculation of relaxation formula

 $_{
m 226}$ Laplace equation at node P_7

$$\nabla^2 \left(V_{(x,y)} \right)_{P_7} = 0 \tag{19.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_7} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_7} = 0$$
(19.2)

Approximation of partial derivatives of $V_{(x,y)}$ at node P_7

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_{z}} \approx \frac{\frac{V_8 - V_7}{h_x} - \frac{V_7 - V_{7x-}}{h_x}}{h_x} = \frac{V_8 - V_7}{h_x^2} - \frac{g_{7x-}}{h_x} \tag{19.3}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_{x}} \approx \frac{\frac{V_{7y+} - V_7}{h_y} - \frac{V_7 - V_4}{h_y}}{h_y} = \frac{V_4 - V_7}{h_y^2} + \frac{g_{7y+}}{h_y}$$
(19.4)

Let us substitute approximations to Laplace equation.

$$\frac{V_8 - V_7}{h_x^2} - \frac{g_{7x-}}{h_x} + \frac{V_4 - V_7}{h_y^2} + \frac{g_{7y+}}{h_y} = 0$$
 (19.5)

Let us find V_7

327

$$V_7 = ?$$
 (19.6)

$$\frac{V_8 - V_7}{h_x^2} + \frac{V_4 - V_7}{h_y^2} = \frac{g_{7x-}}{h_x} - \frac{g_{7y+}}{h_y}$$
 (19.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{19.8}$$

$$V_8 h_y^2 - V_7 h_y^2 + V_4 h_x^2 - V_7 h_x^2 = g_{7x} - h_x h_y^2 - g_{7y} + h_x^2 h_y$$
 (19.9)

$$V_7\left(h_x^2 + h_y^2\right) = V_4 h_x^2 + V_8 h_y^2 - g_{7x} - h_x h_y^2 - g_{7y} + h_x^2 h_y \tag{19.10}$$

19.3 Final forms of relaxation formula

333 19.3.1 xyLV_RELAX5_P7_A

$$h_x \neq h_y$$

$$g_{7x-}, g_{7y+} \neq 0$$

$$V_7 = \frac{V_4 h_x^2 + V_8 h_y^2 - g_{7x-} h_x h_y^2 + g_{7y+} h_x^2 h_y}{(h_x^2 + h_y^2)}$$
(19.11)

334 19.3.2 xyLV_RELAX5_P7_B

$$h_x \neq h_y$$

$$g_{7x-}, g_{7y+} = 0$$

$$V_7 = \frac{V_4 h_x^2 + V_8 h_y^2}{h_x^2 + h_y^2}$$
(19.12)

335 19.3.3 xyLV_RELAX5_P7_C

$$h_x = h_y = h$$

$$g_{7x-}, g_{7y+} \neq 0$$

$$V_7 = \frac{V_4 + V_8 - g_{7x-}h + g_{7y+}h}{2}$$
(19.13)

336 19.3.4 xyLV_RELAX5_P7_D

$$h_x = h_y = h$$
 $g_{7x-}, g_{7y+} = 0$
 $V_7 = \frac{V_4 + V_8}{2}$ (19.14)

338 20.1 Node description

Upper edge of mesh XY.

20.2 Calculation of relaxation formula

Laplace equation at node P_8

$$\nabla^2 \left(V_{(x,y)} \right)_{P_0} = 0 \tag{20.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_{\circ}} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_{\circ}} = 0$$
(20.2)

Approximation of partial derivatives of $V_{(x,y)}$ at node P_8

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_8} \approx \frac{\frac{V_9 - V_8}{h_x} - \frac{V_8 - V_7}{h_x}}{h_x} = \frac{V_7 + V_9 - 2V_8}{h_x^2} \tag{20.3}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_0} \approx \frac{\frac{V_{8y+} - V_8}{h_y} - \frac{V_8 - V_5}{h_y}}{h_y} = \frac{V_5 - V_8}{h_y^2} + \frac{g_{8y+}}{h_y} \tag{20.4}$$

Let us substitute approximations to Laplace equation.

$$\frac{V_7 + V_9 - 2V_8}{h_x^2} + \frac{V_5 - V_8}{h_y^2} + \frac{g_{8y+}}{h_y} = 0$$
 (20.5)

Let us find V_8

343

$$V_8 = ?$$
 (20.6)

$$\frac{V_7 + V_9 - 2V_8}{h_x^2} + \frac{V_5 - V_8}{h_y^2} = -\frac{g_{8y+}}{h_y}$$
 (20.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{20.8}$$

$$V_7 h_y^2 + V_9 h_y^2 - 2V_8 h_y^2 + V_5 h_x^2 - V_8 h_x^2 = -g_{8y} + h_x^2 h_y$$
 (20.9)

$$V_8 \left(h_x^2 + 2h_y^2 \right) = \left(V_7 + V_9 \right) h_y^2 + V_5 h_x^2 + g_{8y+} h_x^2 h_y \tag{20.10}$$

20.3 Final forms of relaxation formula

348 **20.3.1 xyLV_RELAX5_P8_A**

$$h_x \neq h_y$$

$$g_{8y+} \neq 0$$

$$V_8 = \frac{V_5 h_x^2 + (V_7 + V_9) h_y^2 + g_{8y+} h_x^2 h_y}{h_x^2 + 2h_y^2}$$
 (20.11)

349 20.3.2 xyLV_RELAX5_P8_B

$$h_x \neq h_y$$

$$g_{8y+} = 0$$

$$V_8 = \frac{V_5 h_x^2 + (V_7 + V_9) h_y^2}{h_x^2 + 2h_y^2}$$
(20.12)

350 20.3.3 xyLV_RELAX5_P8_C

$$h_x = h_y = h$$

$$g_{8y+} \neq 0$$

$$V_8 = \frac{V_5 + V_7 + V_9 + g_{8y+}h}{3}$$
(20.13)

351 20.3.4 xyLV_RELAX5_P8_D

$$h_x = h_y = h$$

$$g_{8y+} = 0$$

$$V_8 = \frac{V_5 + V_7 + V_9}{3}$$
 (20.14)

353 21.1 Node description

Right, upper corner of mesh XY.

355 21.2 Calculation of relaxation formula

Laplace equation at node P_9

$$\nabla^2 \left(V_{(x,y)} \right)_{P_0} = 0 \tag{21.1}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_0} + \left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_0} = 0$$
(21.2)

Approximation of partial derivatives of $V_{(x,y)}$ at node P_9

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial x^2}\right)_{P_0} \approx \frac{\frac{V_{9x+} - V_9}{h_x} - \frac{V_9 - V_8}{h_x}}{h_x} = \frac{V_8 - V_9}{h_x^2} + \frac{g_{9x+}}{h_x} \tag{21.3}$$

$$\left(\frac{\partial^2 V_{(x,y)}}{\partial y^2}\right)_{P_0} \approx \frac{\frac{V_{9y+} - V_9}{h_y} - \frac{V_9 - V_6}{h_y}}{h_y} = \frac{V_6 - V_9}{h_y^2} + \frac{g_{9y+}}{h_y} \tag{21.4}$$

Let us substitute approximations to Laplace equation.

$$\frac{V_8 - V_9}{h_x^2} + \frac{g_{9x+}}{h_x} + \frac{V_6 - V_9}{h_y^2} + \frac{g_{9y+}}{h_y} = 0$$
 (21.5)

Let us find V_9

$$V_9 = ?$$
 (21.6)

$$\frac{V_8 - V_9}{h_x^2} + \frac{V_8 - V_9}{h_x^2} = -\frac{g_{9x+}}{h_x} - \frac{g_{9y+}}{h_y}$$
 (21.7)

Let us multiply both sides

$$|\cdot h_x^2 h_y^2 \tag{21.8}$$

$$V_8 h_y^2 - V_9 h_y^2 + V_6 h_x^2 - V_9 h_x^2 = -g_{9x+} h_x h_y^2 - g_{9y+} h_x^2 h_y$$
 (21.9)

$$V_9\left(h_x^2 + h_y^2\right) = V_6 h_x^2 + V_8 h_y^2 + g_{9x+} h_x h_y^2 + g_{9y+} h_x^2 h_y \tag{21.10}$$

21.3 Final forms of relaxation formula

363 21.3.1 xyLV_RELAX5_P9_A

$$h_x \neq h_y$$

$$g_{9x+}, g_{9y+} \neq 0$$

$$V_9 = \frac{V_6 h_x^2 + V_8 h_y^2 + g_{9x+} h_x h_y^2 + g_{9y+} h_x^2 h_y}{h_x^2 + h_y^2}$$
(21.11)

364 21.3.2 xyLV_RELAX5_P9_B

$$h_x \neq h_y$$

$$g_{9x+}, g_{9y+} = 0$$

$$V_9 = \frac{V_6 h_x^2 + V_8 h_y^2}{h_x^2 + h_y^2}$$
(21.12)

365 21.3.3 xyLV_RELAX5_P9_C

$$h_x = h_y = h$$

$$g_{9x+}, g_{9y+} \neq 0$$

$$V_9 = \frac{V_6 + V_8 + g_{9x+}h + g_{9y+}h}{2}$$
(21.13)

366 21.3.4 xyLV_RELAX5_P9_D

$$h_x = h_y = h$$
 $g_{9x+}, g_{9y+} = 0$

$$V_9 = \frac{V_6 + V_8}{2}$$
(21.14)

References

- ³⁶⁸ [1] P. Grivet, *Electron Optics, Second (revised) English edition*. Pergamon Press Ltd., 1972.
- ³⁷⁰ [2] J. R. Nagel, "Solving the generalized poisson equation using the finite difference method (fdm).," 2012.
- [3] A. Septier(ed.), *Focusing of Charged Paticles. Volume I.* New York and London, Academic Press, 1967.
- ³⁷⁴ [4] A. Septier(ed.), *Applied Charged Paticle Optics, part A*. New York and London, Academic Press, 1980.
- 576 [5] D. W. O. Heddle, *Electrostatic Lens Systems. Second Edition*. Institute of Physics Publishing, Bristol and Philadelphia, 2000.
- ³⁷⁸ [6] B. Paszkowski, *Optyka Elektronowa, wydanie II, poprawione i uzupełnione.* Państwowe Wydawnictwa Naukowo Techniczne, Warszawa, 1965.
- [7] B. Paszkowski, Electron Optics [by] B.Paszkowski. Translated from the Polish by George Lepa. English translation edited by R. C. G. Leckey. London,
 Iliffe; New York, American Elsevier Publishing Company Inc., 1968.