Phép nhân hai ma trận chỉ thực hiện được khi số cột của ma trận bên trái bằng số dòng của ma trận bên phải. Nếu ma trận A có kích thước $m \times n$ và ma trận B có kích thước $n \times p$, thì ma trận tích $C = A \times B$ có kích thước $m \times p$, phần tử đứng ở hàng thứ i, cột thứ j xác định bởi:

$$c_{i,j} = a_{i,1}b_{1,j} + a_{i,2}b_{2,j} + \dots + a_{i,n}b_{n,j}$$

Nếu A là một ma trận có kích thước $m \times n$ với các giá trị a_{ij} tại hàng i, cột j, thì ma trận chuyển vị $B = A^T$ là ma trận có kích thước $n \times m$ mà $b_{ij} = a_{ji}$.

Yêu cầu: Cho ma trận $Q = (q_{ij})$ là ma trận đối xứng kích thước $n \times n$, các hàng được đánh số từ 0 đến n-1, các cột được đánh số từ 0 đến n-1. Hãy tìm vecto nhị phân x gồm n thành phần, $x = (x_1, x_2, ..., x_n)$, sao cho hàm f(x) đạt giá trị lớn nhất:

$$f(x) = x^{t}Qx = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} q_{ij}x_{i}x_{j}$$

Input

- Dòng đầu chứa hai số nguyên n, m, trong đó n là kích thước ma trận Q, m là số phần tử của ma trận Q có giá trị khác 0 ($n \le 500$);
- m dòng sau, mỗi dòng chứa 3 số nguyên i,j,q_{ij} $(i=0,1,2,...,n-1;\ j=0,1,2,...,n-1;\ |q_{ij}|\leq 10^9);$

Output

- Gồm một dòng chứa một số nguyên là giá trị f(x) tìm được.

NP.INP	NP.OUT
2 2	5
0 0 5	
1 1 -5	