고급수학 및 연습 1 중간고사

(2014년 4월 19일 오후 1:00-3:00)

학번: 이름:

모든 문제의 답에 풀이과정을 명시하시오. (총점 200점)

Problem 1. [40 pts] Determine whether each of the following series is convergent or divergent.

(a) (10 pts)
$$\sum_{n=1}^{\infty} \left(\sin^2 \frac{1}{n} - \frac{1}{2^n} \right)$$

(b) (10 pts)
$$\sum_{n=2}^{\infty} \left(\frac{n}{n-1} \right)^{n^2}$$

(c) (10 pts)
$$\sum_{n=1}^{\infty} \frac{e^n}{n! - 3^n + 2014}$$

(d) (10 pts)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \arctan \frac{1}{n} \right)$$

Problem 2. [20 pts] Find the values of s for which the series $\sum_{n=1}^{\infty} \frac{n-\sqrt{n-1}}{2n^s+1}$ is convergent.

Problem 3. [20 pts] Find the values of x for which each of the following series converges.

(a) (10 pts)
$$\sum_{n=0}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n}) x^n$$

(b) (10 pts)
$$\sum_{n=1}^{n=0} \left(1 - \cos \frac{1}{n}\right) x^n$$

Problem 4. [15 pts] Find the values of x for which each of the following series converges.

(a) (5 pts)
$$\sum_{n=0}^{\infty} \sqrt{n} x^n$$

(b) (10 pts)
$$\sum_{n=0}^{\infty} nx^{n^2}$$

Problem 5. [15 pts] Let $x = \tanh^{-1} y$ be the inverse function of $y = \tanh x$. Show that

$$\tanh^{-1} y = \sum_{n=0}^{\infty} \frac{y^{2n+1}}{2n+1}$$
 for $|y| < 1$

Problem 6. [20 pts] For the function $f(x) = e^x + e^{2x}$, show that y = f(x) has the well-defined inverse function x = g(y) for y > 0, and find the 2nd-degree Taylor polynomial $T_2^2 g(y)$ at y = 2.

Problem 7. [15 pts] Calculate the following integral

$$\int_0^{\frac{1}{10}} \frac{dx}{1+x^4}$$

within an error of less than 10^{-10} .

Problem 8. [15 pts] Find all real numbers x which satisfy the following equation.

$$1 + \frac{x}{2!} + \frac{x^2}{4!} + \frac{x^3}{6!} + \dots = 0$$

Problem 9. [20 pts]

- (a) (10 pts) Sketch the curve defined by the polar equation $r^2 = 2a^2 \cos 2\theta$ (a > 0) in polar coordinates. For the point A on the curve with $\theta = \frac{5\pi}{6}$, and for the points B(-a,0) and C(a,0) in rectangular coordinates, find $\angle BAC$.
- (b) (10 pts) For the curve given by $r=1+\cos\theta$ in polar coordinates and the line given by y=x in rectangular coordinates, express all their intersection points in terms of rectangular coordinates.

Problem 10. [20 pts] Sketch the surface defined by

$$\rho = 2\cos\varphi + 2\sin\varphi\sin\theta, \quad \rho > 0$$

in spherical coordinates. Find the ranges of ρ , φ and θ respectively on this surface.