Practical Spatial Statistics & Econometrics with R

Session 5: Computing Experimental Variograms - Part II

Saif Ali, IIIT Delhi

How to excel at spatial stats (or anything else)?

Understanding

Clear conceptual understanding

Listening, Reading, Thinking, Writing

Skill

Apply understanding to real world problems.

Doing, Trying, Failing, Coding

Watching to a lot of lectures (like this one)

Reading many programming books

Pause and Play frequently!

What should we know/will we learn in this session?

Understanding

What we should know:

- Anisotropy
- Binning

Skill

What we should have already done:

Estimated omnidirectional variograms using the meuse data set

What we will do now:

- Estimate anisotropic (directional) variogram
- Estimate a variogram using a new data set
- Play with the cutoff and width parameters

Direction of Maximum Continuity

In which direction is there most continuity (or the least variation)?

The first plot gives the variogram in the zero direction, which is North; 90 degrees is East. By default, point pairs are assigned to the directional variorgram panel with their nearest direction, so North contains everything between -22.5 and 22.5 degrees (North-West to North-East).

- gstat <u>tutorial</u>, page 13

Demo 4: Live Coding Session with R

Summary

- Estimated anisotropic variograms
- Considered the effect of cutoff and width parameters

There are many more advanced operations provided by the package. Please refer to the latest manual.

https://cran.r-project.org/web/packages/gstat/gstat.pdf