ON A PROBLEM OF PÁLFY AND SAXL

WILLIAM DEMEO

1. Introduction

In the paper [1], Péter Pálfy and Jan Saxl pose the following

PROBLEM. Let **A** be a finite algebra with Con $\mathbf{A} \cong M_n$, $n \geqslant 4$. If three nontrivial congruences of **A** pairwise permute, does it follow that every pair of congruences of **A** permute?

These notes collect some notation and facts that might be useful for attacking this problem. Throughout, X denotes a finite set and Eq(X) denotes the lattice of equivalence relations on X. For $\alpha \in \text{Eq}(X)$ and $x \in X$, we let x/α denote the equivalence class of α containing x, and X/α denotes the set of all equivalence classes of α . That is,

$$x/\alpha = \{y \in X : x \alpha y\}$$
 and $X/\alpha = \{x/\alpha : x \in X\}.$

We often refer to equivalence classes as "blocks," and we denote by $\nu(\alpha)$ the number of blocks of the relation α . That is, $\nu(\alpha) = |X/\alpha|$, and we may use either $\nu(\alpha)$ or $|X/\alpha|$ to denote the number of blocks of α . For a given $\alpha \in \text{Eq}(X)$ the map $\varphi_{\alpha} : x \mapsto x/\alpha$ is a function from X into the power set $\mathscr{P}(X)$ with kernel ker $\varphi_{\alpha} = \alpha$. The block-size function $x \mapsto |x/\alpha|$ is a function from X into $\{1, 2, \ldots, |X|\}$.

We will often abuse notation and identify an equivalence relation with the corresponding partition of the set X. For example, we identify the relation

$$\alpha = \{(0,0), (1,1), (2,2), (3,3), (0,1), (1,0), (2,3), (3,2)\}$$

with the partition |0,1|2,3|, and will even write $\alpha = |0,1|2,3|$.

We say that α has uniform blocks if all blocks of α have the same size; or, equivalently, the block-size function is constant: for all $x, y \in X$, $|x/\alpha| = |y/\alpha|$. In this case we will use $|x/\alpha|$ without specifying a particular x to denote this block size. Thus, if α has uniform blocks, then

$$|X| = |x/\alpha||X/\alpha| = |x/\alpha| \nu(\alpha)$$
 (for all $x \in X$).

We say that two equivalence relations with uniform blocks have *compatible uniform* block structure (CUBS) if the number of blocks of one is equal to the block size of the other. That is, α and β have CUBS iff $|x/\alpha||y/\beta| = |X|$ (for all x and y).

If α and β are binary relations on X, then the relation

$$(1.1) \qquad \alpha \circ \beta = \{(x, y) \in X^2 : (\exists z) \ x \ \alpha \ z \ \beta \ y\}$$

is called the *composition of* α *and* β . If $\alpha \circ \beta = \beta \circ \alpha$ then we call α and β *permuting* relations and we say that α and β *permute*. It is not hard to see that $\alpha \circ \beta \subseteq \alpha \vee \beta$ with equality if and only if α and β permute.

 $Date \hbox{: November 13, 2013.}$

From the definition (1.1) it is clear that $(x, y) \in \alpha \circ \beta$ if and only if $y \in z/\beta$ for some $z \in x/\alpha$. Thus, for every $x \in X$,

(1.2)
$$x/(\alpha \circ \beta) = \bigcup_{z \in x/\alpha} z/\beta.$$

The largest and smallest equivalence relations on X are denoted by $1_X = X^2$ and $0_X = \{(x, x) : x \in X\}$, respectively.

We say that α and β are complementary equivalence relations on X provided $\alpha \vee \beta = 1_X$ and $\alpha \wedge \beta = 0_X$. If Γ is a set of equivalence relations, we say that Γ consists of pairwise-permuting pairwise-complements (PPPC) if the following conditions hold for all $\gamma \neq \delta$ in Γ : (i) $\gamma \circ \delta = \delta \circ \gamma$; (ii) $\gamma \wedge \delta = 0_X$; (iii) $\gamma \vee \delta = 1_X$.

2. Basic observations

Lemma 1. Suppose α and β are complementary equivalence relations on X. Then α and β permute if and only if they have CUBS. That is,

$$\alpha \circ \beta = 1_X \iff (\forall x)(\forall y) |x/\alpha||y/\beta| = |X|.$$

Corollary 1. Suppose α_1 , α_2 , α_3 are pairwise complementary equivalence relations on the finite set X. Then α_1 , α_2 , α_3 pairwise permute if and only if they all have uniform blocks of size $\sqrt{|X|}$. That is,

$$(\forall i)(\forall j) (i \neq j \longrightarrow \alpha_i \circ \alpha_j = 1_X) \iff (\forall i)(\forall x) |x/\alpha_i| = \sqrt{|X|}.$$

In this case, $|x/\alpha_i| = \nu(\alpha_i)$.

Proof of Lemma 1. Suppose α and β are complementary equivalence relations. Then the union in (1.2) is disjoint since $\alpha \wedge \beta = 0_X$. We denote this by writing

(2.1)
$$x/(\alpha \circ \beta) = \coprod_{z \in x/\alpha} z/\beta.$$

Also, since $\alpha \circ \beta = \alpha \vee \beta = 1_X$, we have $x/(\alpha \circ \beta) = X$ for every $x \in X$. Thus the union in (2.1) is all of X, so every block of β appears in this union. It follows that the size of the block x/α is exactly $\nu(\beta)$. As x was arbitrary, α has uniform blocks of size $\nu(\beta)$. The same argument with the roles of α and β reversed gives $x/(\beta \circ \alpha) = \coprod_{z \in x/\beta} z/\alpha = X$, and $|x/\beta| = \nu(\alpha)$ for all $x \in X$. Therefore, for all $x, z \in X$ we have

$$|x/\alpha||z/\beta| = |x/\alpha| \nu(\alpha) = |X|.$$

To prove the converse, suppose α and β are pairwise complements with complementary blocks. Then $|x/\alpha||y/\beta| = |X|$, so $|y/\beta| = |x/\alpha|^{-1}|X| = \nu(\alpha)$. Therefore, for all $x \in X$,

$$|x/(\alpha \circ \beta)| = |\prod_{y \in x/\alpha} y/\beta| = \sum_{y \in x/\alpha} |y/\beta|$$
$$= \sum_{y \in x/\alpha} \nu(\alpha)$$
$$= |x/\alpha| \nu(\alpha) = |X|.$$

This proves that $\alpha \circ \beta = 1_X$, as desired.

FIGURE 1. The Wheatstone Bridge which defines the relation $\tau(\alpha_1, \alpha_2, \beta)$ as follows: $(x, y) \in \tau(\alpha_1, \alpha_2, \beta)$ if and only if there exist $a, b \in X$ satisfying the relations in the diagram.

Proof of Corollary 1. Since α_1 and α_2 permute and are complements, Lemma 1 implies they have complementary blocks, so

$$(2.2) |x/\alpha_1| = |x/\alpha_2|^{-1}|X| = \nu(\alpha_2).$$

(This holds for all $x \in X$. Recall that complementary blocks are always uniform.) Similarly, since α_1 and α_3 permute, we have $|x/\alpha_1| = |x/\alpha_3|^{-1}|X| = \nu(\alpha_3)$. Therefore, $\nu(\alpha_2) = \nu(\alpha_3)$. Since α_2 and α_3 permute, we have

$$(2.3) |x/\alpha_2| = |x/\alpha_3|^{-1}|X| = \nu(\alpha_3),$$

and the latter is equal to $\nu(\alpha_2)$. Therefore, $|X| = |x/\alpha_2| \nu(\alpha_2) = |x/\alpha_2| |x/\alpha_2|$, so $|x/\alpha_2| = \sqrt{|X|}$. By (2.2) and (2.3), it follows that $|x/\alpha_i| = \sqrt{|X|} = \nu(\alpha_i)$ for i = 1, 2, 3.

The converse is obvious since, if α_i and α_j are complementary equivalence relations on X with $|x/\alpha_i| = \sqrt{|X|}$, then $\nu(\alpha_i) = \sqrt{|X|}$, so $\alpha_i \circ \alpha_j = 1_X$.

Define the set $S \subseteq Eq(X)$ as follows:

$$S = \{ \alpha \in \text{Eq}(X) : (\forall x) | x/\alpha | = \sqrt{|X|} = \nu(\alpha) \}.$$

From Corollary 1 we see that the Pálfy-Saxl problem can be rephrased as follows:

PROBLEM. Let **A** be a finite algebra with Con $\mathbf{A} \cong M_n$, $n \geqslant 4$. If the set \mathcal{S} contains three atoms of Con **A**, does it follow that \mathcal{S} contains every atom of Con **A**?

To prove that the answer is "yes," it suffices to show that whenever $M_n \cong L \leqslant \text{Eq}(X)$ has 3 atoms in \mathcal{S} and an atom β with $|x/\beta| < \sqrt{|X|}$, then L is not a congruence lattice.

3. Graphical Compositions

Suppose α_1 , α_2 , and α_3 are PPPC in Eq(X), and let $\beta \in \text{Eq}(X)$ be complementary to each α_i , so that

$$L = \{0_X, \alpha_1, \alpha_2, \alpha_3, \beta, 1_X\} \cong M_4.$$

Define the relation $\tau = \tau(\alpha_1, \alpha_2, \beta) \subseteq X \times X$ as follows:

$$x \tau y \iff (\exists (a,b) \in \beta) \ x \alpha_1 \ a \alpha_2 \ y \alpha_1 \ b \alpha_2 \ x.$$

Graphically, $x \tau y$ if and only if there exist $a, b \in X$ satisfying the relations depicted in Figure 1.

It is clear that τ is a tolerance, that is, a reflexive and symmetric binary relation. Let $f \in X^X$ be a unary function and suppose that f is compatible with each relation $\theta \in \{\alpha_1, \alpha_2, \beta\}$, that is, $(u, v) \in \theta \longrightarrow (f(u), f(v)) \in \theta$. Then f is also compatible with τ . (Consider the diagram in Figure 1, and give each vertex u the label f(u).)

Fact 3.1. If
$$L = \{0_X, \alpha_1, \alpha_2, \alpha_3, \beta, 1_X\} \cong M_4$$
, then

$$\alpha_1 \cap \tau(\alpha_1, \alpha_2, \beta) = 0_X = \alpha_2 \cap \tau(\alpha_1, \alpha_2, \beta),$$

$$\alpha_1 \cap \tau(\alpha_1, \alpha_3, \beta) = 0_X = \alpha_3 \cap \tau(\alpha_1, \alpha_3, \beta),$$

$$\alpha_2 \cap \tau(\alpha_2, \alpha_3, \beta) = 0_X = \alpha_3 \cap \tau(\alpha_2, \alpha_3, \beta).$$

Proof. Fix $(x,y) \in \alpha_1 \cap \tau(\alpha_1, \alpha_2, \beta)$ and suppose a and b satisfy the diagram in Figure 1. Then $(x,y) \in \alpha_1$ implies $(a,b) \in \alpha_1 \wedge \beta = 0_X$, so a=b. Therefore, $(x,y) \in \alpha_1 \wedge \alpha_2 = 0_X$, so x=y. Proofs of the other identities are similar. \square

4. Functions Derived from Graphical Compositions

Let R_{12}^{β} be the relation on $X^2 \times X^2$ defined by

$$(a,b)$$
 $R_{12}^{\beta}(x,y) \longleftrightarrow (a,b) \in \beta$ and $x \alpha_1 a \alpha_2 y \alpha_1 b \alpha_2 x$.

Define R_{13}^{β} and R_{23}^{β} similarly. Graphically, (a,b) R_{12}^{β} (x,y) holds if and only if the relations in Figure 1 are satisfied.

Lemma 2. Suppose α_i and α_j are complementary equivalence relations on X with uniform blocks of size $\sqrt{|X|}$. Then the relation R_{ij}^{β} restricted to $\beta \times X^2$ is a one-to-one function from β into X^2 .

Proof. First we note that each pair $(a,b) \in \beta$ has at most one image. For if (a,b) R_{ij}^{β} (x,y) and (a,b) R_{ij}^{β} (u,v), then $(x,u) \in \alpha_i \wedge \alpha_j = 0_X$ and $(y,v) \in \alpha_i \wedge \alpha_j = 0_X$, so (x,y) = (u,v).

Next, since both α_i and α_j have $\sqrt{|X|}$ blocks, and since each of these blocks has size $\sqrt{|X|}$, we see that each block of α_i intersects each block of α_j at exactly one point. That is, for all $a,b\in X$, the set $a/\alpha_i\cap b/\alpha_j$ is a singleton. Therefore, to each $(a,b)\in\beta$ there corresponds precisely one $(x,y)\in X^2$ such that (a,b) R_{ij}^β (x,y) holds. Specifically, $\{x\}=a/\alpha_i\cap b/\alpha_j$ and $\{y\}=b/\alpha_i\cap a/\alpha_j$. Thus, R_{ij}^β is a function.

From now on, we let $R_{ij}^{\beta}((a,b))$ denote the image of (a,b) under R_{ij}^{β} ; that is, $R_{ij}^{\beta}((a,b))$ denotes the ordered pair (x,y) satisfying (a,b) $R_{ij}^{\beta}(x,y)$.

Suppose
$$R_{ij}^{\beta}((a,b)) = R_{ij}^{\beta}((c,d))$$
. Then $(a,c) \in \alpha_i \wedge \alpha_j = 0_X$ and $(b,d) \in \alpha_i \wedge \alpha_j = 0_X$, so $(a,b) = (c,d)$. Therefore, R_{ij}^{β} is one-to-one.

If, in addition to the assumptions of Lemma 2, we assume that the image of β under R_{ij}^{β} is contained in β , then $R_{ij}^{\beta}:\beta\to\beta$ is a bijective involution. That is, R_{ij}^{β} is one-to-one and onto, and $R_{ij}^{\beta}\circ R_{ij}^{\beta}$ is the identity map.

5. Final piece of the puzzle

As above, suppose $L = \{0_X, \alpha_1, \alpha_2, \alpha_3, \beta, 1_X\} \cong M_4$ is a congruence lattice and suppose $\{\alpha_i\}_{i=1}^3$ is PPPC. Suppose $R_{ij}^\beta: \beta \to \beta$ holds for all $i, j \in \{1, 2, 3\}$.

Lemma 3. If $a \alpha_1 z \beta w$, then one of the following holds:

- $(1) (a, w) \in \alpha_2,$
- (2) $(a, w) \in \alpha_3$,
- $(3) (a, w) \in \beta,$
- (4) $a/\alpha_2 \cap z/\alpha_3 \cap w/\alpha_1 \neq \emptyset$,
- (5) $a/\alpha_3 \cap z/\alpha_2 \cap w/\alpha_1 \neq \emptyset$.

If Lemma 3 is true, then we can prove the following:

Theorem 1. If $L = \{0_X, \alpha_1, \alpha_2, \alpha_3, \beta, 1_X\} \cong M_4$ is a congruence lattice with α_i PPPC, then β permutes with each α_i .

Proof. We will show $\alpha_1 \circ \beta \subseteq \beta \circ \alpha_1$. Assume $a \alpha_1 z \beta w$. We consider each of the cases in Lemma 3 in turn and, in each case, find b satisfying $a \beta b \alpha_1 w$.

- (1) If $(a, w) \in \alpha_2$, then let $b = z/\alpha_2 \cap w/\alpha_1$. Then $R_{12}^{\beta}(z, w) = (a, b)$ and since $R_{12}^{\beta}: \beta \to \beta$, we have $(a, b) \in \beta$, so $a \beta b \alpha_1 w$, as desired.
- (2) If $(a, w) \in \alpha_3$, then let $b = z/\alpha_3 \cap w/\alpha_1$. Use the same argument as in the first case, but replace R_{12}^{β} with R_{13}^{β} .
- (3) If $(a, w) \in \beta$, then let b = a.
- (4) If $a/\alpha_2 \cap z/\alpha_3 \cap w/\alpha_1 \neq \emptyset$, then let y denote the element in this set. Let $x = z/\alpha_1 \cap w/\alpha_3$, and let $b = x/\alpha_2 \cap y/\alpha_1$. Then $(R_{12}^{\beta} \circ R_{13}^{\beta})(z,w) = R_{12}^{\beta}(x,y) = (a,b)$, so $(a,b) \in \beta$. Now, $b \alpha_1 y \alpha_1 w$, so $a \beta b \alpha_1 w$, as desired.
- (5) If $a/\alpha_3 \cap z/\alpha_2 \cap w/\alpha_1 \neq \emptyset$, then let y denote this element, let $x = z/\alpha_1 \cap w/\alpha_2$, and let $b = x/\alpha_3 \cap y/\alpha_1$. Then $(R_{13}^{\beta} \circ R_{12}^{\beta})(z, w) = R_{12}^{\beta}(x, y) = (a, b)$, so $(a, b) \in \beta$. Now, $b \alpha_1 y \alpha_1 w$, so $a \beta b \alpha_1 w$, as desired.

6. Proof of Lemma 3

Consider the relation θ_{ij} defined as follows:

$$x \theta_{ij} y \longleftrightarrow (\exists a, b) a \alpha_i x \alpha_j b \beta y \alpha_j a.$$

Easy arguments similar to those above establish that

$$\theta_{ij} \cap \alpha_i = \theta_{ij} \cap \alpha_j = \theta_{ij} \cap \beta = 0_X.$$

On the other hand, since L is a congruence lattice, it must be the case that the transitive closure of θ_{ij} is contained in L.

TODO: complete proof of Lemma 3 (if possible).

APPENDIX A. EXAMPLE

Let X be a set. It is useful to represent partitions of X as lists of lists, and write them as (possibly nonrectangular) arrays, where each row represents a single block. We do this in the following example, which aids our intuition when thinking about the Palfy-Saxl problem.

Let $X = \{0, 1, 2, ..., 15\}$, and consider the equivalence relations $\alpha_1, ..., \alpha_5$ and β , generating the following sublattice of Eq(X):

where $\alpha_1, \ldots, \alpha_5$, and β correspond to the following partitions of X:

	α_1				α_2				α_3		
[0	1	2	3]	[0	4	8	12]	[0	5	10	15]
[4	5	6	7]	[1	5	9	13]	[1	4	11	14
[8	9	10	11]	[2	6	10	14]	[2	7	8	13]
[12]	13	14	15]	[3	7	11	15]	[3	6	9	12

The relations $\alpha_1, \ldots, \alpha_5$ are PPPC. Also, for each α_i , with $i \neq 3$, it's clear that β and α_i are nonpermuting complements. Here are some other facts that aid intuition.

Fact A.1. Each M_3 sublattice with all α 's for atoms is a congruence lattice. In other words, if i, j, k are three distinct numbers in $\{1, 2, ..., 5\}$, then the sublattice $\{0_X, \alpha_i, \alpha_i, \alpha_k, 1_X\}$ is closed.

Fact A.2. Consider any M_4 having all α 's for atoms. The closure is the M_5 lattice $\{0_X, \alpha_1, \ldots, \alpha_5, 1_X\}$.

Fact A.3. Each M_4 generated by β and three α 's complementary to β is not closed. The closure will have many relations in it.

Regarding the last fact, I've forgotten how many relations are in the closure. TODO: Check this; also check whether α_3 and the other omitted α always end up in the closure.

Fact A.4. The M_3 sublattice $\{0_X, \alpha_1, \alpha_2, \beta, 1_X\}$ is closed.

Fact A.5. The relation $\tau = \tau(\alpha_1, \alpha_2, \beta)$ defined via the Wheatstone Bridge (Figure 2) is a subset of β .

FIGURE 2. The Wheatstone Bridge which defines the relation $\tau(\alpha_1, \alpha_2, \beta)$ as follows: $(x, y) \in \tau(\alpha_1, \alpha_2, \beta)$ if and only if there exist $a, b \in X$ satisfying the relations in the diagram.

What follows is an informal discussion of the motivation that led to the relation β given in this example. (This and other parts of the Appendix are verbose and inelegant; all of this will be removed eventually.)

Regarding Fact A.5, β was constructed specifically to provide a nontrivial example where this fact might hold. That is, we wanted to know if an example existed in which β has smaller height than α_i (so that $|x/\beta| \leq |y/\alpha_i| < \nu(\beta)$, and so β would not permute with α_1 and α_2), and such that $\tau(\alpha_1, \alpha_2, \beta) \subseteq \beta$, so that the Wheatstone Bridge of Figure 2 would not generate an equivalence relation that isn't already contained in $\{0_X, \alpha_1, \alpha_2, \beta, 1_X\}$.

To construct β , we started by assuming $0/\beta = \{0, 5, 10, 15\}$, which is the main diagonal of both α_1 and α_2 . Then we considered the Wheatstone Bridge involving α_1 and α_2 and noticed that, if $\tau \subseteq \beta$, then β must contain all pairs that are at "opposite corners" (defined below) relative to pairs on the main diagonal $\{0, 5, 10, 15\}$.

By "opposite corners" we mean the following. Fix a pair in β , say, $(0, 10) \in \beta$, and consider the squares this pair generates in α_1 and α_2 ; that is, the squares with 0 and 10 at diagonal corners. We see that 2 and 8 appear at the remaining corners of such squares. We call the corners labeled 2 and 8 the "opposite corners" relative to 0 and 10.

The relation τ defined by the Wheatstone Bridge satisfies

$$0 \beta 10 \longrightarrow 2 \tau 8$$
,

and, by symmetry of α_1 and α_2 ,

$$2\;\beta\;8 \quad \longrightarrow \quad 0\;\tau\;10.$$

Let us make this more general and precise. Recall the relation $\tau = \tau(\alpha_1, \alpha_2, \beta) \subseteq X \times X$ is defined by

$$(A.1) x \tau y \longleftrightarrow (\exists (a,b) \in \beta) \ x \alpha_1 \ a \alpha_2 \ y \alpha_1 \ b \alpha_2 \ x.$$

Graphically, $x \tau y$ if and only if there exist $a, b \in X$ satisfying the relations depicted in Figure 2.

Let us order the elements of the equivalence classes of α_1 and α_2 according to the row-column arrangements given in the array representations above, and denote by $\alpha_1(i,j)$ the j-th element of the i-th equivalence class of α_1 —that is $\alpha_1(i,j)$ is the element in row i and column j of the array representation of α_1 .

Consider the Wheatstone Bridge diagram and note that, if (x, y) and (a, b) satisfy this diagram, so that (A.1) holds, then we have

(A.2)
$$x \in a/\alpha_1 \cap b/\alpha_2$$
 and $y \in b/\alpha_1 \cap a/\alpha_2$.

Suppose $a = \alpha_1(i,j)$ and $b = \alpha_2(k,\ell)$. Then, by (A.2), x is the point where the i-th row of α_1 intersects the k-th row of α_2 . But notice that, in this example, the array representing α_2 happens to be the transpose of the array representing α_1 . Therefore, the k-th row of α_2 is the k-th column of α_1 , so x is the element contained in the i-th row and k-th column of α_1 , that is, $x = \alpha_1(i,k)$. Similarly, $y = \alpha_1(j,\ell)$. More generally, for all i, j, r, s in $\{1, 2, 3, 4\}$, we have

$$\alpha_1(i,j) \beta \alpha_1(r,s) \longrightarrow \alpha_1(i,s) \tau \alpha_1(j,r).$$

For example, looking at the array representing α_1 , we see that if, say, (2, 15) were to belong to β , then the pair (3, 15) at the opposite corners must belong to $\tau(\alpha_1, \alpha_2, \beta)$.

References

[1] P. P. Pálfy and J. Saxl, "Congruence lattices of finite algebras and factorizations of groups," *Comm. Algebra*, vol. 18, no. 9, pp. 2783–2790, 1990, ISSN: 0092-7872.