1、麦克斯韦方程组的名称、积分形式、微分形式、相量形式

能理解方程所表示的物理含义、并能在直角坐标系下进行相应的分析、计算。 (1) 己知一圆柱形平板电容器,圆面半径为 R, 极板间距为 d, 两极板间施加工频交流电压 $u(t)=U_m\cos\omega t$ V,极板间为无损电介质,其介电常数为 ε ,磁导率为 μ ,忽略边缘效应。则电容器中 的电场强度 $\dot{E}(t)$ =______, $\nabla \times \dot{H}(t)$ =______,电容器内距离圆柱轴 心为 ρ (ρ <R)的圆环处 $\bar{H}(t)$ =_____。在上述计算过程中应用了 (2) 某恒定磁场的磁感应强度的表达式为 $\overline{B}=ax\overline{e}_x+2y\overline{e}_y$ T,依据 Maxwell's 方程组中的_____ _____。它对应的积分、微分、 相量形式分别为____、__、 (3) 空间某媒质中的时变电磁场,已知媒质中存在自由电荷的体密度为 $\rho(\bar{r}',t)=\rho_0\cos\omega t$,则在 媒质中任一点电位移矢量的散度 $\nabla \bullet \vec{D}(t)$ = 在上述计算过程中应用了 Maxwell's 方程组 中的 (名称)。它对应的积分、微分、相量形式分别为 (4) 自由空间中的时变电磁场,已知磁感应强度 $\bar{B}(t) = (2x\bar{e}_x - 2y\bar{e}_y)\sin \omega t$ Gs,则在空间中任一点 处电场强度的旋度 $\nabla \times \vec{E}(t) =$ ______。在上述计算过程中应用了 Maxwell's 方程组中 的 定律。它对应的积分、微分、相量形式分别为_____

2、动态电磁位相关基本概念

- (5) 为分析计算电磁场问题的需要,可引入位函数,如静电场的电位函数 $\varphi(r)$ 、恒定电流场(电源外)的电位函数 $\varphi(r)$ 、恒定磁场中的标量磁位函数 $\varphi_{nn}(r)$ 和矢量磁位函数A(r)。类似地,在动态电磁场中,也引入了辅助位函数,请回答:
- a. 动态电磁场中引入的辅助位函数是什么?
- b. 写出动态电磁场中辅助位函数分别与相应的基本场量之间的关系:
- c、写出动态电磁场中辅助位函数与相应场源 $\bar{J}(\vec{r}',t)$ 、 $\rho(\vec{r}',t)$ 之间的关系,即分别写出这些位函数 所遵循的基本方程——偏微分方程式。并写出此偏微分方程所应用的规范名称及公式。

- d. 基于计算辅助量描述恒定磁场的偏微分方程所应用的规范名称及公式。
- e. 简述规范给出的依据, 并回答规范是否唯一?

3、电准静态场与磁准静态场的基本概念

(6) 在时变电磁场中	,如果电场	远大于电灯	汤,则可看	作电准静态场;	如果
电流远大于	电流,则可看作磁	准静态场。			
在电磁场工程	星问题中,有一类时变	电磁场, 它在每一	瞬间场量的	的解答均可接	静态
场规律进行分析, 这	这类时变电磁场总称为	J		例如,电力系	统的
1.频高压电场,因	为满足可忽略	的物	ற理条件,	故称之为其	中的
; 而在	低频(如工频)工作	下的各类磁场问题	,如涡流门	问题,则因满	足可
忽略	的物理条件, 故	可归结为其中的_			_, -
般而言,对于	, 应先计算电均	汤, 然后计算磁场;	而对于		,
应先计算磁场,后;	十算电场。				

4、静电场、恒定电流场

4.1 电场中的边值问题列写

(6) 如图所示平板电容器,两种媒质均为有损电介质,媒质特性参数见图中给定,设极板面积为 S,两种介质的厚度分别为 d_1 和 d_2 。当 t=0 时,开关 K 闭合,电容器接通直流电源 U_0 充电,忽略极板的边缘效应。按图示的坐标系统,写出 $t=\infty$ 时求解该电场分布的边值问题(包括泛定方程、边界条件和分界面条件)。

4.2 电场场分布求解: 高斯定理、镜像法

(7) 如图所示

两同心球壳间的电压为 V_0 , 外球壳接地, 且在球心 O 相距 d 处有一点电荷 q. 试写出计算球内、外电场的计算模型(不需写出计算结果,可应用镜像法)

5 综合练习:场分布、参数、力

长直同轴电缆,实心内导体的半径为 a,外导体有一定厚度、内半径为 b、外半径为 c 的薄壳。导体及绝缘介质的媒质特性参数如图 5 所示。内导体中载有均匀分布的电流 I,方向为+z 方向,外导体中载有均匀分布的电流 I,方向为 -z 方向,试求:

- (1) 内导体中、内外导体间绝缘介质中、外导体中和电缆外空间的磁场强度;
- (2) 同轴电缆的单位长度自感;
- (3) 应用法拉第观点计算外导体内表面单位面积上所受的磁场力;
- (4) 内导体不变, 如果外导体为理想导体:
 - a. 外导体中的电流分布有什么规律,并计算相应的电流密度(包括体、面电流密度);
 - b. 计算此时该同轴电缆的单位长度自感;
- (5) 如果同轴电缆加载频率 f 的交流电流,导体中电流将不再均匀分布,请定性描述内、外导体中电流分布规律,同轴电缆单位长度的内自感、外自感随频率 f 的变化规律。

