1- Étapes Modélisation et conception de bases de données

- La modélisation des données est la première étape du processus de conception de base de données. haut niveau (entité-association)
- Cette étape est parfois considérée comme une phase de *conception abstraite* de haut niveau, également appelée *conception conceptuelle*.
- L'objectif de cette phase est de décrire :
 - Les données contenues dans la base de données (par exemple, les entités : étudiants, professeurs, cours, matières)
 - Les relations entre les éléments de données (par exemple, les étudiants sont supervisés par des professeurs ; les professeurs enseignent des cours)
 - Les contraintes sur les données (par exemple, le numéro d'étudiant a exactement huit chiffres ; une matière a uniquement quatre ou six crédits)
- La deuxième étape consiste à exprimer les éléments de données, les relations et les contraintes en utilisant les concepts fournis par le modèle de données de haut niveau.
- Parce que ces concepts n'incluent pas les détails de mise en œuvre, le résultat du processus de modélisation des données est une représentation (semi-)formelle de la structure de la base de données.
- Ce résultat est assez facile à comprendre, il est donc utilisé comme référence pour s'assurer que toutes les exigences de l'utilisateur sont respectées.
- La troisième étape est la conception de la base de données.
- Au cours de cette étape, nous pouvons avoir deux sous-étapes :
 - Une appelée conception logique de la base de données, qui définit une base de données dans un modèle de données d'un SGBD spécifique, (interne, les 3 types, inclus relationnel)
 - et une autre appelée conception physique de la base de données, qui définit la structure de stockage interne de la base de données, l'organisation des fichiers ou les techniques d'indexation.
 - Ces deux sous-étapes sont les étapes de mise en œuvre de la base de données et de création des opérations/interfaces utilisateur.

2- Définition d'un Modèles de données

- Dans les phases de *conception de la base de données*, les données sont représentées à l'aide d'un certain modèle de données.
- Le modèle de données est une collection de concepts ou de notations pour décrire les données, les relations entre les données, la sémantique des données et les contraintes de données.

• La plupart des modèles de données incluent également un ensemble d'opérations de base pour manipuler les données dans la base de données.

3- Degrés d'abstraction des données

Il existe 4 types de modèles de données : externes, conceptuels, internes, et physique

- Les modèles externes représentent la vue de l'utilisateur de la base de données.
- Les modèles conceptuels fournissent des capacités de structuration des données flexibles. (modèle de données relational, modèle de données réseau, modèle de données hiérarchique data model.)
- Les modèles internes considèrent une base de données comme une collection d'enregistrements de taille fixe.
- Modèles physiques: Représentent la représentation physique de la base de données.
 Ont le niveau d'abstraction le plus bas et décrivent comment les données sont stockée

4- Couche d'abstraction des données

- La couche d'abstraction des données permet de masquer la complexité des données aux utilisateurs de la base de données.
 - Elle fournit une interface cohérente aux données, indépendamment de la façon dont les données sont stockées et organisées physiquement.
 - La couche d'abstraction des données permet aux développeurs d'applications de se concentrer sur la logique métier de leurs applications, plutôt que sur les détails de stockage des données.

5- Types de modèles de données logiques basés sur des enregistrements

- Ces modèles fournissent des concepts que les utilisateurs peuvent comprendre, mais ils ne sont pas trop éloignés de la manière dont les données sont stockées dans l'ordinateur.
- Trois modèles de données bien connus de ce type sont les *modèles de données* relationnels, les modèles de données réseau et les modèles de données hiérarchiques.

5.1 Modèle relationnel

- Ce modèle représente les données sous forme de relations ou de tables.
 - Par exemple, dans le système d'adhésion à Science World, chaque adhésion a de nombreux membres
 - L'identifiant d'adhésion, la date d'expiration et les informations d'adresse sont des champs dans l'adhésion.
 - Les membres sont des individus tels que Mickey, Minnie, Mighty, Door, Tom, King, Man et Moose.
 - Chaque enregistrement est dit être une instance de la table d'adhésion.
 - terms utilisées: relation ou table, champs-attributs, enregistrement: record (row, tuple) instance

+	+	+	+	++
customer_id	store_id	first_name	last_name	email
1 2	1 1	 MARY PATRICIA	SMITH JOHNSON	MARY.SMITH@sakilacustomer.org PATRICIA.JOHNSON@sakilacustomer.org
3 4	1	LINDA	WILLIAMS	LINDA.WILLIAMS@sakilacustomer.org
	2	BARBARA	JONES	BARBARA.JONES@sakilacustomer.org
5] 1	ELIZABETH	BROWN	ELIZABETH.BROWN@sakilacustomer.org
	2	JENNIFER	DAVIS	JENNIFER.DAVIS@sakilacustomer.org
j 7		MARIA	MILLER	MARIA.MILLER@sakilacustomer.org

5.2 Modèle réseau

- Ce modèle représente les données sous forme de types d'enregistrement.
- Ce modèle représente également un type limité de relation un à plusieurs appelé type d'ensemble
- termes utilisés: enregistrement, ensemble

5.3 Modèle hiérarchique

- Ce modèle représente les données sous forme d'une structure arborescente hiérarchique.
- Chaque branche de la hiérarchie représente un certain nombre d'enregistrements liés.

6- Le modèle de données relationnel

Le modèle de données relationnel a été introduit par E. F. Codd en 1970. À l'heure actuelle, c'est le modèle de données le plus utilisé.

- Le modèle relationnel a fourni la base pour :
 - La recherche sur la théorie des données/relations/contraintes
 - De nombreuses méthodologies de conception de bases de données
 - Le langage standard d'accès aux bases de données appelé langage de requête structuré (SQL)
 - Presque tous les systèmes de gestion de bases de données commerciaux modernes
 - Le modèle de données relationnel décrit le monde comme « un ensemble de relations (ou tables) interdépendantes ».

6-1 Concepts fondamentaux du modèle de données relationnel

Relation = Table

- Une relation, également appelée table ou fichier, est un sous-ensemble du produit cartésien d'une liste de domaines caractérisée par un nom.
- Dans une table, chaque ligne représente un groupe de valeurs de données connexes.
- Une ligne, ou enregistrement, est également appelée un tuple.
- La colonne dans une table est un champ et est également appelés un attribut.
- Définition formelle:
 - Étant donné n domaines
 - Et r une relation défnie sur ces domaines
 - Alors: $r \subseteq D_1 \times D_2 \times \dots D_n$

Colonne:

 La principale unité de stockage dans une base de données est appelée: colonne, champs, ou attribut.

- ils abrites les composants de base des données dans lesquels votre contenu peut être décomposé.
- pour décider quels champs créer, vous pouvez par exemple:
- sélectionner les composants communs des informations que vous stockerez dans la base de données
- éviter les détails qui distinguent un élément d'un autre.

Domaine

- Un domaine est l'ensemble original de valeurs atomiques utilisé pour modéliser les données.
- valeur atomique signifie que chaque valeur dans le domaine est indivisible en ce qui concerne le modèle relationnel.
- exemples: Le domaine Prénom est l'ensemble des chaînes de caractères qui représentent les noms de personnes.
 - Le domaine État civil offre un ensemble de possibilités : Marié, Célibataire,
 Divorcé.

Enregistrements

- Les enregistrements contiennent des champs qui sont liés, tels qu'un client ou un employé.
- Comme indiqué précédemment, un tuple est un autre terme utilisé pour l'enregistrement. (ou bien une ligne)

Degré

 Le degré est le nombre d'attributs dans une table. Dans l'exemple de la figure au dessus, le degré est 5

6-2 Propriétés d'une table

- Une table a un nom qui est distinct de toutes les autres tables de la base de données.
- Il n'y a pas de lignes en double ; chaque ligne est distincte.
- Les entrées dans les colonnes sont atomiques. La table ne contient pas de groupes répétés ou d'attributs à valeurs multiples.

- Les entrées des colonnes appartiennent au même domaine en fonction de leur type de données, notamment :
 - nombre (numérique, entier, float, smallint,...)
 - caractère (chaîne)
 - date
 - logique (vrai ou faux)
- Les opérations combinant différents types de données ne sont pas autorisées.
- Chaque attribut a un nom distinct.
- La séquence des colonnes n'est pas significative.
- La séquence des lignes n'est pas significative.

Références Bibliographiques

Watt, Adrienne, and Nelson Eng. Database design. 2nd Edition. BCcampus, 2014