Nome, cognome, matricola

Calcolatori Elettronici (12AGA) - esame del 27.6.2017 - A

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande). Non è possibile consultare alcun tipo di materiale. Tempo: 15 minuti.

1	Si consideri un decoder con 3 ingressi e senza segnali di enable. Quante sono le sue linee di uscita?			
2	Si consideri un circuito sequenziale che adotta il modello di		A	
	Huffman. Assumendo che la parte combinatoria abbia un ritardo pari a 100ns, quale tra i valori a lato può corrispondere alla frequenza massima di funzionamento del circuito?		B C D	
3	Si consideri un'unità di controllo microprogrammata la cui memoria di microcodice contiene 1580 parole da 71 bit. Quanti	7	A	
	bit compongono il μPC?	11 18	C D	
4	A che cosa serve il rinfresco nelle memorie DRAM?	A ridurre gli effetti dei guasti indotti dalle radiazioni A risolvere il problema creato dal fenomeno del Destructive Read-Out A permettere alla memoria di mantenere nel tempo le informazioni	A B C D	
5	Si consideri il meccanismo della memoria virtuale. Quale delle seguenti affermazioni è vera?	riferimento a indirizzi fisici		
		Il meccanismo della memoria virtuale è supportato interamente dal software Il meccanismo della memoria virtuale è supportato interamente dall'hardware Il meccanismo della memoria virtuale permette di scrivere programmi indipendenti	B C D	
6	Nella fase di programmazione del sistema, i 5 bit inviati all'8259 tramite la ICW2 sono 00110. Qual è il codice messo sul bus dall'8259 quando deve essere servita la periferica connessa a IR7?	dalla dimensione della memoria fisica esistente nel sistema		
7	Si confrontino le tecniche CAV e CLV. Quale delle affermazioni a destra è vera?	La tecnica CAV permette di massimizzare la quantità di dati memorizzata sul disco. La tecnica CAV permette di minimizzare la complessità del controllore del disco.	A B	
		La tecnica CAV permette di massimizzare il numero di tracce presenti sul disco.	С	
0		La tecnica CAV permette di massimizzare la quantità di dati memorizzata in ciascuna traccia sul disco.	D	
8	A quale delle seguenti istruzioni corrisponde un codice macchina su 6 byte?	ADD AX, 3580 MUL 3580	A	
		SUB VAR, 3580	С	
		MOV AX, 3580	D	
9	Si scriva un frammento di codice in Assembler x86 che determini quale tra i valori con segno presenti in AX e BX è più grande. Il frammento deve scrivere nella variabile X di tipo byte il valore 0 se AX contiene un valore maggiore o uguale a quello di BX, il valore 1 diversamente.			

Risposte corrette

1	2	3	4	5	6	7	8	9
8	В	С	С	D	55 (37h)	В	С	

Domanda 9 (esempio di soluzione)

AX, BX CMP L1 X, 1 JGE

MOV JMP FINE

L1: MOV X, 0

FINE:

	Domande a risposta aperta (sino a 5 punti per ogni domanda) – Non è possibile consultare alcun materiale - Tempo: 40 minuti. A
10	Si disegni il circuito ottimizzato che implementa la funzione ab' + abc + a'b'c' + a'bcd.
11	Si consideri un sistema composto da 6 moduli che possono diventare master del bus, e si disegnino le connessioni tra i 6 moduli e l'arbitro nel caso si utilizzi il meccanismo del polling, illustrandone il funzionamento.

2	C::1:	:	:	: :	.:. I DII
. 2	di 8 linee da 32 byte cias	a microprocessore dotato di	i una memoria di 4Kbyte e d	i una cache set associative a 2	vie LRU composta
			seguenza ai seguenti blocch	i (tra parentesi il corrispondent	e esadecimale): 25
	(19), 50 (32), 60 (3C), 6	61 (3D), 100 (64), 122 (7)	A), 31 (1F), 35 (23). Al teri	mine di tale sequenza di acces	si la posizione dei
				ad accedere in memoria, accede	
	blocchi 41 (29), 50 (32),	52 (34), 60 (3C), 61 (3D),	62 (3E).		•
	Si riporti nella figura di c	destra il contenuto finale de	lla cache.		
		60			
	Insieme 0	100	Insieme 0		
		25	_		
	Insieme 1	61	Insieme 1		
		50	_		
	Insieme 2	122	Insieme 2		
		31	_		
	Insieme 3	35	Insieme 3		
		33			
13	Si elenchino le caratterist	tiche di un processore RISC	C		

Nome, cognome, matricola

Esercizio di programmazione

sino a 12 punti – è possibile consultare solamente il foglio con l'instruction set Intel fornito - tempo: 60 minuti

Un problema comune per compilatori ed editor di testo consiste nel determinare se le parentesi all'interno di una stringa sono bilanciate e correttamente annidate. Ad esempio:

1. (((1+2)*3)-(4-8)) OK: parentesi bilanciate e correttamente annidate

2. (1+2)+)4-1(NO: parentesi non correttamente annidate

3. (1+2*(5-3)) NO: parentesi non bilanciate

Si scriva in linguaggio Assembly 8086 una procedura **verificaParentesi** che controlli la correttezza delle parentesi all'interno di una stringa. La lunghezza della stringa DIM è definita tramite costante. La procedura riceve l'offset della stringa tramite stack. Non è ammesso l'uso di variabili.

La procedura verificaParentesi deve restituire attraverso il registro BX:

- il valore DIM se le parentesi sono bilanciate e correttamente annidate
- altrimenti, la posizione della prima parentesi che non soddisfa i requisiti di bilanciamento e annidamento.

Negli esempi proposti, il valore restituito è:

```
1. (((1+2)*3)-(4-8)) BX = DIM
2. (1+2)+)4-1( BX = 6
3. (1+2*(5-3)) BX = 0
```

Una possibile realizzazione dell'algoritmo in pseudocodice è la seguente:

```
char s[DIM];
int par = 0;
for (i=0; i<DIM; i++)
    {
    if (s[i] == '(')
        {
        par++;
        push(i);
      }
    else if (s[i] == ')')
        {
        par--;
        if (par < 0) return i;
        else pop();
      }
    }
if (par!=0)
    return pop();
return DIM;</pre>
```

Di seguito un esempio di programma chiamante:

```
DIM EQU 17
.MODEL small
.STACK
.DATA
string DB "(((1+2)*3)-(4-8))"
.CODE
.STARTUP
...
PUSH OFFSET string
CALL verificaParentesi
ADD SP, 2
...
.EXIT
```