Class 7: Combinatorics 2

Monday, September 13, 2021

Homework:

n pending, due Friday 9/17

First some review problems on Multiplication Principle, and on Permutations: (Solved Problems 1 and 2)

2.1.3 Unordered Sampling without Replacement:

Combinations

review from last class.

Then:

Example 2.6:

I choose 3 cards from the standard deck of cards. What is the probability that these cards contain

SOLU: Prob (a) least the ace) =
$$1 - P(no ace)$$

 $P(no ace) = \frac{100 ace}{1} = \frac{48 \cdot 47.46}{3} = \frac{48.47.46}{52.51.50} = 52.51.50$
 $\frac{48}{52}$ $\frac{48$

Note the **coefficient** in the Binomial Expansion:

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k}.$$

$$(a+$$

Equivalence of # combinations and # of partitions.

Partitions into two groups = # Combinations of selecting one of the groups (the other one "falls in place" by being the "leftovers"

The total number of ways to divide n distinct objects into two groups A and B such that group A consists of k objects and group B consists of n-k objects is $\binom{n}{k}$.

A new situation; 2 types of outcomes

Two Types of Objects: Binary Sampling (with Replacement

here: replacement is different from sampling from n individual different objects)

Two Types of Objects: Binary Sampling (with Replacement) here: replacement is different from sampling from n individual different objects) See Example 2.7 How many distinct sequences can we make using 3 letter "A"s and 5 letter "B"s? (AAABBBBB, AABABBBB, etc.) Think of tasks ("experiment") or trials A A assign on cutcome 1/8

1 2 3 8 to position i= 1,... n n: distinct positions in the sequence select k (= 3) to resign the A's & # partitions
The rest is filled and as B's Peruls = (8) (at k) Bernoulli Trials - Binomial Probabilities Ly Tossing a coin of 2 types - [H, T]

- n trials each with same 2 possible outcomes S surass of I

trials are independent, (candom ness)

- P(Success) = P(S) = p is constant accoss trials

(coding Interest: In trials k = # successes => k {0,1,..., n} n = 5, k = 3 eg: SSSFF = $P(S) \cdot P(S) \cdot P(S) \cdot P(F) \cdot P(F) = p (1-p)^{n-k}$ k Successes, n-k failures $p^{2}(1-p)^{2}$ hen about SFSFS P(SFSFS) = p3(1-p) Same!! $P(3 \text{ sucasses in 5 trials}) = (# \text{ sequences}) \cdot p^3 (1-p)^2 = (5) p^3 (1-p)$ Binomial Formula: (Probability) For n independent Bernoulli trials where each trial has success probability p, the probability of k successes is given by $P(k) = \binom{n}{k} p^k (1-p)^{n-k}.$ See Prob 3, 4 of Solved Problems:

Assume 0 ≤ k ≤ 20.

P(red in one trial) = 0.3 → constant dial)

An urn contains 30 red balls and 70 green balls. What is the probability of getting exactly k red balls in a sample of size 20 if

the sampling is done with replacement (repetition allowed)?

Assume
$$0 \le k \le 20$$
.

P(k) =
$$\binom{20}{k}$$
 $\binom{3}{k}$ $\binom{1-3}{k}$ $\binom{3}{k}$ $\binom{1-3}{k}$ $\binom{3}{k}$ $\binom{1-3}{k}$ $\binom{3}{k}$ $\binom{1-3}{k}$

P4:An urn consists of 30 red balls and 70 green balls. What is the probability of getting exactly *k*red balls in a sample of size 20 if the sampling is done **without** replacement (repetition not allowed)?

Binary Sampling Without Replacement:

(Hypergeometric Probabilities)

Wand P(5 red balls
$$\cap$$
 15 green balls)

If: all vorsible Size 20 selections of 100 balls)

[P] = (100) Event: R=Select 5 red balls from 30 red

[R] = 30

[R] = 30

[R] = 30

[R] = (70)

[S] event: 15 green balls

[G] = (75)

[P] = (100)

Multinomial Coefficients:

Discuss Ex: 2:10

Ten people have a potluck. Five people will be selected to bring a main dish, three people will bring drinks, and two people will bring dessert. How many ways can they be divided into these three groups?

Ten people have a potluck. Five people will be selected to bring a main dish, three people will bring drinks, and two people will bring dessert. How many ways can they be divided into these three groups?

Solution

We can solve this problem in the following way. First, we can choose 5 people for the main dish. This can be done in $\binom{10}{5}$ ways. From the remaining 5 people, we then choose 3 people for drinks, and finally the remaining 2 people will bring desert. Thus, by the multiplication principle, the total number of ways is given by

$$\binom{10}{5}\binom{5}{3}\binom{2}{2} = \frac{10!}{5!5!} \cdot \frac{5!}{3!2!} \cdot \frac{2!}{2!0!} = \frac{10!}{5!3!2!}.$$

generalizes: total nobjects redifferent select h, of first kinds
$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \dots n_r!}$$

$$N_1 of first kinds$$

$$N_2 of 2 hot$$

$$efc.$$

$$(x_1+x_2+\cdots+x_r)^n=\sum_{n_1+n_2+\cdots+n_r=n}inom{n}{n_1,n_2,\ldots,n_r}x_1^{n_1}x_2^{n_2}\ldots x_r^{n_r}$$
 (2.2)

$$inom{n}{n_1,n_2,\dots,n_r}p_1^{n_1}p_2^{n_2}\dots p_r^{n_r}=rac{n!}{n_1!n_2!\dots n_r!}p_1^{n_1}p_2^{n_2}\dots p_r^{n_r}.$$

2.1.4 Unordered Sampling with Replacement

h = 3
$$\times$$
 mush seled \times (= 2)

- 1,1 \rightarrow $(x_1, x_2, x_3) = (2, 0, 0);$
- 1,2 \rightarrow $(x_1,x_2,x_3)=(1,1,0)$;
- 1,3 \rightarrow $(x_1, x_2, x_3) = (1, 0, 1);$
- 2,2 \rightarrow $(x_1,x_2,x_3)=(0,2,0)$;
- 2,3 \rightarrow $(x_1,x_2,x_3) = (0,1,1);$
- 3,3 \rightarrow $(x_1, x_2, x_3) = (0, 0, 2)$.

Lemma 2.1

The total number of distinct k samples from an n-element set such that repetition is allowed and ordering does not matter is the same as the number of distinct solutions to the equation

$$x_1 + x_2 + \ldots + x_n = k$$
, where $x_i \in \{0, 1, 2, 3, \ldots\}$.

So far we have seen the number of unordered k-samples from an n element set is the same as the number of solutions to the above equation. But how do we find the number of solutions to that equation?

Theorem 2.1

The number of distinct solutions to the equation

$$x_1 + x_2 + \ldots + x_n = k$$
, where $x_i \in \{0, 1, 2, 3, \ldots\}$ (2.3)

is equal to

$$\binom{n+k-1}{k} = \binom{n+k-1}{n-1}.$$

School Examples her practice