به نام خدا

آز مدارمنطقی آزمایش ۵ – واحد محاسبات و منطق(ALU) سارا آذرنوش98170668

هدف: آشنایی با تراشه ۷۴۱۸۱

نحوه انجام: مطابق آنچه در دستور کار گفته شده است مداری با ۲ ماکس (تراشه ۷۴۱۵۷)، ۲ ثبات (تراشه ۸۱۵۷)، ۲ ثبات (تراشه ۸۱۷۷)، یک ALU (تراشه ۷۴۱۸۱) با ورودی و خروجی های مشخص شده میسازیم.

. کلاک بدین صورت است که A S1=0 کلاک میخورد و اگر B S1=1 کلاک بخورد

برای پیاده سازی کنترلر از یک دیکودر ۸-۳ استفاده میکنیم که \dagger خروجی اول مربوط به 50 تا 54 ۲ خروجی بعدی مربوط به 50 و 50 آخری مربوط به 50 هستند

با استفاده از کنترلر و حالاتی که میدهد در دیتاشیت موجود قسمت هایی که عملیات موجود ۱ شده اند را وارد گیت میکنیم تا هرگاه ۱ بود ورودی های A1 A2 A3 شود.

Selection				Active-low inputs & outputs		Active-high inputs & outputs	
S3	S2	S1	S0	Logic (M = 1)	Arithmetic (M = 0) (Cn = 0)	Logic (M = 1)	Arithmetic (M = 0) (Cn = 1)
0	0	0	0	\overline{A}	$m{A}$ minus $m{1}$	\overline{A}	A
0	0	0	1	\overline{AB}	AB minus $oldsymbol{1}$	$\overline{A+B}$	A + B
0	0	1	0	$\overline{A} + B$	$A\overline{B}$ minus 1	$\overline{A}B$	$A+\overline{B}$
0	0	1	1	Logical 1	-1	Logical 0	-1
0	1	0	0	$\overline{A+B}$	A plus $(A+\overline{B})$	\overline{AB}	A plus $(A\overline{B})$
0	1	0	1	\overline{B}	AB plus $(A+\overline{B})$	\overline{B}	$(A+B)$ plus $(A\overline{B})$
0	1	1	0	$\overline{A \oplus B}$	A minus B minus 1	$A \oplus B$	A minus B
0	1	1	1	$A+\overline{B}$	$A+\overline{B}$	$A\overline{B}$	$A\overline{B}$ minus 1
1	0	0	0	$\overline{A}B$	A plus $(A+B)$	$\overline{A} + B$	A plus AB
1	0	0	1	$A \oplus B$	A plus B	$\overline{A \oplus B}$	A plus B plus 1
1	0	1	0	В	$A\overline{B}$ plus $(A+B)$	В	$(A+\overline{B})$ plus AB
1	0	1	1	A + B	A + B	AB	AB minus $oldsymbol{1}$
1	1	0	0	Logical 0	A plus A	Logical 1	A plus A
1	1	0	1	$A\overline{B}$	AB plus A	$A+\overline{B}$	(A+B) plus A
1	1	1	0	AB	$A\overline{B}$ plus A	A + B	$(A+\overline{B})$ plus A
1	1	1	1	A	A	A	$m{A}$ minus $m{1}$

جدول ۲- عملیات صورت گرفته در مدار برحسب ورودیهای M0-M2

M2	M1	mo	Operation
0	0	0	$A \leftarrow D_3 - D_0$
0	0	7	$\mathcal{B} \leftarrow \mathcal{D}_3 - \mathcal{D}_0$
0	7	0	$A \leftarrow A$
0	7	7	$A \leftarrow B$
1	0	0	clear (A)
1	0	7	$A \leftarrow not(A)$
1	1	0	$A \leftarrow and(A,B)$
1	7	7	$A \leftarrow add(A,B)$

ابتدا مقدار 9 بیتی مورد نیاز برای 9 و 0 را میدهیم و با استفاده از 10 و خروجی 10 یک می شود و ورودی ها وارد ثبات 10 می شود سپس ورودی کنترلر 10 می دهیم خروجی 10 یک می شود و ورودی ها داخل ثبات 10 دخیره می شوند و ادامه پیدا میکند به ازای هر مقداری همان کار گفته شده را انجام میدهد 10 مقدار هر دو را اند و در 10 وارد میکند .

در حالت ۱۰۰ باید مدار reset شود sa دیکودر را با A clock اند کرده تا هرگاه هر ۲ یک بودندsa انجام شود B نیز در صورت کلید اتفاق می افتد

۶-۲ ساخت مدار داخلی ALU

در ابتدا مانند بالا کنترلر را با دیکودر ۳*۸ میسازیم اما شییفت در بالا وجود ندارد بنابراین یک ورودی میگذاریم تا هرگاه ۱ شود شیفت بخورد (میتوات از دیکودر ۴*۱۶ نیز استفاده کرد اما حالات نامطلوب نیز ایجاد میشود و نیاز نمیشود)

سپس در ALU های موجود ALU که دارای ۲ ورودی ۴ بیتی برای A B و ۴ ورودی می SO,s1,...) select میباشد و اگر نات میباشد را انتخاب میکنیم اگر ورودی ها را به همان صورت وارد کنیم به صورت میباشد و اگر نات ورودی ها را وارد کنیم active low میشود در جدول دیتا شیت active high جمع و عملیات مورد نظر موجود است بنابراین از ان استفاده میکنیم.

سپس مانند بالا با توجه به شماره حالتی که دیکودر میدهد و قسمت active high دیتاشیت موجود و امتحان کردن جاهایی که ۱ هستند را ایجاد میکنیم.

برای شیفت خواسته شده نیز بیت مورد نظر را با ورودی برای شیفت (ا یا ۴) اور کرده بیت قبلی نیز با خروجی آن بیت و نات ۲ ورودی پر ارزشتر اور کرده و بیت بعدی را با با خروجی آن بیت و نات پرزش ترین و ورودی اور کرده و درنهایت همه را اند میکنیم(اگر بیت اول یا آخر بود به جای بیتی که نداریم پاور قرار میدهیم)

