

# **Product Sales Forecasting Solution**

Jacob Battles, Ko-Jen Kang, Pin-Shiuan Liang, Tsai-Ning Lin, Vikhyat Tomar

### **Our Goal**



#### Predict item sales at stores in various locations for 28-day time periods

Used bottom-up solution, getting the best predictive model with lowest Weighted Root Mean Squared Scaled Error (WRMSSE)





### **Data Source**





Contains information about the price of the products are sold per store and date



### **Process Map**





#### **Data Consolidation**

Merge 3 data sources into 1 combined file



#### **Feature engineering**

Generate additional meaningful features



#### **Data Preprocessing**

- Normalization
- Handling missing values



#### **Model training**

(LightGBM/ Sequence2Sequence)



#### **Generate predictions**

Predict future 28 days sales for each item in each store



### **Rationale of Feature Engineering**



| Category           | Rationale                                                                        | Features                                                              |
|--------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Lag sales features | Capture sales patterns from previous time points to model seasonality and trends | lag_7, lag_28                                                         |
| Rolling sales mean | Smooth short-term fluctuations and highlight underlying sales trends             | rolling_mean_7, rolling_mean_28                                       |
| Calendar features  | Account for <b>time-based effects</b> and recurring patterns in sales            | dayofweek, month, year, is_weekend, days since the product being sold |
| Event flag         | Capture <b>demand spikes</b> caused by special events or promotions              | is_event                                                              |
| Price features     | Reflect how <b>price changes or discounts</b> influence sales                    | price_change_rate, price_event_interaction                            |





### **Single LightGBM**



**LightGBM** is a fast, smart machine learning tool that makes predictions from data.

- Builds lots of small decision trees
- Learns from mistakes to improve accuracy
- Great for large datasets and quick results

#### **Example:**

Predicting house prices based on size, location, and number of rooms.

Using one single LightGBM Model gives us a good baseline to compare against when building more complex models.







| Model                                                        | Model Performance<br>(WRMSSE)                                                              | Logic                                                                                                     | Training data                                                                                                                             |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Single LightGBM<br>(Recursive)                               | 0.71393 (Regression, no tuning)<br>0.72501 (Optuna Tuning)<br>0.79857 (Tweedie, no tuning) | Tuned using Optuna.  Recursive: Uses all available history, including predictions, to predict future days | d_1~d_1913 as training data<br>d_1914~d_1941 as validation<br>data<br>Predict d_1942~d_1969                                               |
| Ensembled LightGBM<br>(60% Recursive + 40%<br>Non-recursive) | 1.00917                                                                                    | Two models per store:  (1) Recursive (day-by-day) prediction (2) Non-recursive (one-shot) prediction      | d_1~d_1913 as training data<br>d_1914~d_1941 as validation<br>data<br>Predict d_1942~d_1969                                               |
| Sequence-to-sequence<br>(LSTM for both encoder & decoder)    | 4.07210                                                                                    | Using past <b>two years</b> to predict the following 28 days                                              | d_423 ~ d_1153 as input for<br>encoder<br>d_1154 ~ d_1182 as target for<br>decoder<br>d_1211~ d_1941 as input to<br>predict d_1942~d_1969 |

### **Ensembled LightGBM**



#### Why "Ensembled"?

We applied weighted average (60% recursive + 40% non-recursive)

#### Recursive

Predicts day-by-day recursively (yesterday → today)

#### **Non-recursive**

Predicts all 28 days in a single shot (direct prediction)









- Combine the strengths of both models
- Balance both long and short term accuracy

**Pros**: captures daily sales patterns **Cons**: may accumulate errors

**Pros**: offers a more stable, overall forecast

**Cons**: may accumulate errors





| Model                                                        | Model Performance<br>(WRMSSE)                                                              | Logic                                                                                                     | Training data                                                                                                                             |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Single LightGBM<br>(Recursive)                               | 0.71393 (Regression, no tuning)<br>0.72501 (Optuna Tuning)<br>0.79857 (Tweedie, no tuning) | Tuned using Optuna.  Recursive: Uses all available history, including predictions, to predict future days | d_1~d_1913 as training data<br>d_1914~d_1941 as validation<br>data<br>Predict d_1942~d_1969                                               |
| Ensembled LightGBM<br>(60% Recursive + 40%<br>Non-recursive) | 1.00917                                                                                    | Two models per store:  (1) Recursive (day-by-day) prediction  (2) Non-recursive (one-shot) prediction     | d_1~d_1913 as training data<br>d_1914~d_1941 as validation<br>data<br>Predict d_1942~d_1969                                               |
| Sequence-to-sequence<br>(LSTM for both encoder & decoder)    | 4.07210                                                                                    | Using past <b>two years</b> to predict the following 28 days                                              | d_423 ~ d_1153 as input for<br>encoder<br>d_1154 ~ d_1182 as target for<br>decoder<br>d_1211~ d_1941 as input to<br>predict d_1942~d_1969 |

### Sequence-to-sequence

# \*

#### What is Seq-2-Sequence?

A Sequence-to-Sequence model (Seq2Seq) is a type of deep learning model that:

- Takes a **sequence of past events** as input (In our case past 2 years of sales)
- Outputs a **sequence of future** predictions (Next 28 days of sales)



This makes it perfect for **time-series** forecasting - like predicting future product demand based on historical trends.

#### How does it work?

- **1. Encoder:** It looks at the past data (Sales) and summarizes all the important patterns into a compressed "memory" called a context vector.
- **2. Decoder:** It takes that memory and generates the forecast, one day at a time, learning from the context built by the encoder.
- **3. Prediction Phase:** It uses recursive prediction, meaning each predicted value is fed back into the model to generate the next day's forecast repeated for all 28 days.

Together, they form a pipeline:

Past sales → Encoder → Context → Decoder → Future sales



| Model                                                        | Model Performance<br>(WRMSSE)                                                              | Logic                                                                                                     | Training data                                                                                                                             |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Single LightGBM<br>(Recursive)                               | 0.71393 (Regression, no tuning)<br>0.72501 (Optuna Tuning)<br>0.79857 (Tweedie, no tuning) | Tuned using Optuna.  Recursive: Uses all available history, including predictions, to predict future days | d_1~d_1913 as training data<br>d_1914~d_1941 as validation<br>data<br>Predict d_1942~d_1969                                               |
| Ensembled LightGBM<br>(60% Recursive + 40%<br>Non-recursive) | 1.00917                                                                                    | Two models per store:  (1) Recursive (day-by-day) prediction  (2) Non-recursive (one-shot) prediction     | d_1~d_1913 as training data<br>d_1914~d_1941 as validation<br>data<br>Predict d_1942~d_1969                                               |
| Sequence-to-sequence<br>(LSTM for both encoder &<br>decoder) | 4.07210                                                                                    | Using past <b>two years</b> to predict the following 28 days                                              | d_423 ~ d_1153 as input for<br>encoder<br>d_1154 ~ d_1182 as target for<br>decoder<br>d_1211~ d_1941 as input to<br>predict d_1942~d_1969 |



| Model                                                        | Model Performance<br>(WRMSSE)                                                        | Logic                                                                                                     | Training data                                                                                                                             |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Single LightGBM<br>(Recursive)                               | 0.71393 (Regression, no tuning) 0.72501 (Optuna Tuning) 0.79857 (Tweedie, no tuning) | Tuned using Optuna.  Recursive: Uses all available history, including predictions, to predict future days | d_1~d_1913 as training data<br>d_1914~d_1941 as validation<br>data<br>Predict d_1942~d_1969                                               |
| Ensembled LightGBM<br>(60% Recursive + 40%<br>Non-recursive) | 1.00917                                                                              | Two models per store:  (1) Recursive (day-by-day) prediction (2) Non-recursive (one-shot) prediction      | d_1~d_1913 as training data<br>d_1914~d_1941 as validation<br>data<br>Predict d_1942~d_1969                                               |
| Sequence-to-sequence<br>(LSTM for both encoder &<br>decoder) | 4.07210                                                                              | Using past <b>two years</b> to predict the following 28 days                                              | d_423 ~ d_1153 as input for<br>encoder<br>d_1154 ~ d_1182 as target for<br>decoder<br>d_1211~ d_1941 as input to<br>predict d_1942~d_1969 |



| Model                | Advantage                                                                                                     | Disadvantage                                                                                                                                 |
|----------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Single LightGBM      | <ul><li>Fast and lightweight</li><li>Handles tabular features well</li></ul>                                  | <ul> <li>Recursive error accumulation</li> <li>Ignores temporal correlation explicitly</li> <li>Less robust to long horizons</li> </ul>      |
| Ensembled LightGBM   | <ul> <li>Balances short- and long-term         accuracy</li> <li>Robust to different time horizons</li> </ul> | <ul><li> More complex to manage</li><li> Longer training time</li></ul>                                                                      |
| Sequence-to-sequence | <ul> <li>Captures temporal dynamics</li> <li>Multi-step forecasting in one pass</li> </ul>                    | <ul> <li>Computationally expensive</li> <li>Hard to interpret</li> <li>Training instability</li> <li>Recursive error accumulation</li> </ul> |



# Summary

#### Simple LightGBM achieved the best performance/efficiency

- From simple baselines to complex architectures, we found that simple LightGBM generalized the best in the unseen data.
- LightGBM also provides fast, efficient, and accurate predictions for large-scale data.

#### **Next steps**

- Enhance accuracy by adding more features.
- Deploy the LightGBM model to support demand forecasting.
- Monitor performance and update the model as new data comes in.
- Share forecasts through dashboards to guide business decisions.



# Thank you for listening!

