Anmerkungen und Lösungen zu

Einführung in die Algebra

Blatt 6

Jendrik Stelzner

Letzte Änderung: 22. Dezember 2017

Aufgabe 3

Es sei R ein euklidischer Ring und es seien $a_1, \ldots, a_n \in R$ paarweise teilerfremd. Wir wollen erklären, wie man für $b_1, \ldots, b_n \in R$ das System simultaner Kongruenzen

$$\begin{cases} x \equiv b_1 & \pmod{a_1}, \\ x \equiv b_2 & \pmod{a_2}, \\ \vdots & \vdots \\ x \equiv b_{n-1} & \pmod{a_{n-1}}, \\ x \equiv b_n & \pmod{a_n} \end{cases}$$

mithilfe des euklidischen Algorithmus systematisch lösen kann: Nach dem chinesischen Restsatz ist die Lösungsmenge von der Form

$$b + (a_1 \cdots a_n)R$$
,

wobei b ein konkrete Lösung ist. Es gilt also, eine entsprechende Lösung zu finden. Wir geben zwei Möglichkeiten an, wie dies mithilfe des euklidischen Algorithmus getan werden kann:

- Die erste Möglichkeit besteht darin, je zwei Kongruenzen durch eine äquivalente einzelne Kongruenz zu ersetzen:
 - \circ Wir betrachten zunächst den Fall n=2, also das System von Kongruenzen

$$\begin{cases} x \equiv b_1 \pmod{a_1}, \\ x \equiv b_2 \pmod{a_2}. \end{cases}$$
 (1) Da a_1 und a_2 teilerfremd sind, gibt es $c_1, c_2 \in R$ mit $1 = c_1 a_1 + c_2 a_2$. Dann gilt

$$\begin{cases} c_2 a_2 \equiv 1 \pmod{a_1}, \\ c_1 a_1 \equiv 1 \pmod{a_2}, \end{cases}$$

und somit

$$\left\{\begin{array}{lll} b_1c_2a_2&\equiv&b_1&\pmod{a_1}\,,\\ b_2c_1a_1&\equiv&b_2&\pmod{a_2}\,. \end{array}\right.$$

Also ist $b := b_1c_2a_2 + b_2c_1a_1$ eine der gesuchten Lösungen. Nach dem chinesischen Restsatz ist (1) somit äquivalent zu der einzelnen Kongruenz

$$x \equiv b \pmod{(a_1 a_2)}$$
.

• Im allgemeinen Fall

$$\begin{cases}
x \equiv b_1 & (\text{mod } a_1), \\
x \equiv b_2 & (\text{mod } a_2), \\
x \equiv b_3 & (\text{mod } a_3), \\
\vdots & \vdots & \vdots \\
x \equiv b_{n-1} & (\text{mod } a_{n-1}), \\
x \equiv b_n & (\text{mod } a_n)
\end{cases} (2)$$

können wir nach mit bereits betrachteten Fall n=2 eine Lösung b des Systems

$$\begin{cases} x \equiv b_1 \pmod{a_1}, \\ x \equiv b_2 \pmod{a_2}, \end{cases}$$
 (3)

finden, und das System (3) anschließend durch die einzelne Kongruenz

$$x \equiv b \pmod{(a_1 a_2)}$$

ersetzen. Wir können daher das System (2) durch das äquivalente System

$$\begin{cases} x \equiv b & \pmod{(a_1 a_2)}, \\ x \equiv b_3 & \pmod{a_3}, \\ \vdots & & \\ x \equiv b_{n-1} & \pmod{a_{n-1}}, \\ x \equiv b_n & \pmod{a_n} \end{cases}$$

ersetzen. Da $a_1, a_2, a_3, \ldots, a_n$ teilerfremd sind, können wir dieses Vorgehen iterativ fortsetzen, um schließlich eine Lösung von (2) zu erhalten.

• Für alle i = 1, ..., n sind a_i und $a_1 \cdots a_{i-1} a_{i+1} \cdots a_n$ teilerfremd, we shalb sich mit dem euklidischen Algorthimus $c_1^{(i)}, c_2^{(i)} \in R$ bestimmen lassen, so dass

$$c_1^{(i)}a_i + c_2^{(i)}a_1 \cdots a_{i-1}a_{i+1} \cdots a_n = 1$$

gilt. Für das Element $k_i \coloneqq c_2^{(i)} a_1 \cdots a_{i-1} a_{i+1} \cdots a_n$ gilt dann

$$\begin{cases} k_i \equiv 0 \pmod{a_1}, \\ \vdots \\ k_i \equiv 1 \pmod{a_i}, \\ \vdots \\ k_i \equiv 0 \pmod{a_n}. \end{cases}$$

Deshalb ist

$$b \coloneqq b_1 k_1 + \dots + b_n k_n$$

eine konkrete Lösung.

(c)

Es gilt das System

$$\begin{cases} x \equiv 4 \pmod{7}, \\ x \equiv 7 \pmod{12} \end{cases}$$

zu lösen. Da es nur zwei Kongruenzen gibt, ist die Rechnung für beide Möglichkeiten die gleiche: Es gilt

$$1 = c_1 \cdot 7 + c_2 \cdot 12$$

für die Koeffizienten $c_1 = -5$ und $c_2 = 3$. Eine konkrete Lösung ist also durch

$$b = 4 \cdot (3 \cdot 12) + 7 \cdot ((-5) \cdot 7) = 144 - 245 = -101$$

gegeben. Die Lösungsmeneg ist also durch

$$-101 + 84\mathbb{Z} = 67 + 84\mathbb{Z}$$

gegeben.

(d)

Es gilt das System

$$\left\{ \begin{array}{lll} x & \equiv & 4 & \pmod{6} \,, \\ x & \equiv & 33 & \pmod{35} \,, \\ x & \equiv & 10 & \pmod{11} \end{array} \right.$$

zu lösen. Wir geben drei mögliche Vorgehensweisen an:

• Wir schreiben das System zunächst zu

$$\begin{cases} x \equiv -2 \pmod{6}, \\ x \equiv -2 \pmod{35}, \\ x \equiv -1 \pmod{11} \end{cases}$$

um. Für die ersten beiden Gleichungen ist -2 eine konkrete Lösung, weshalb wir das System durch

$$\left\{ \begin{array}{ll} x & \equiv & -2 \qquad \pmod{210} \,, \\ x & \equiv & -1 \qquad \pmod{11} \,. \end{array} \right.$$

ersetzen können. Es gilt

$$1 = c_1 \cdot 210 + c_2 \cdot 11$$

mit $c_1=1$ und $c_2=-19$. Eine konkrete Lösung ist also durch

$$b = -2 \cdot ((-19) \cdot 11) - 1 \cdot (1 \cdot 210) = 208$$

gegeben. Die Lösungsmenge ist somit

$$208 + 2310\mathbb{Z}$$
.

• Wir lösen zunächst das System

$$\begin{cases} x \equiv 4 \pmod{6}, \\ x \equiv 33 \pmod{35}. \end{cases} \tag{4}$$

Es gilt

$$1 = c_1 \cdot 6 + c_2 \cdot 35$$

mit $c_1 = 6$ und $c_2 = -1$. Eine konkrete Lösung ist somit durch

$$b' = 4 \cdot ((-1) \cdot 35) + 33 \cdot (6 \cdot 6) = 1048$$

gegeben. Das System (4) können wir also durch die einzelne Kongruenz

$$x \equiv 1048 \pmod{210}$$

ersetzen, also die Kongruenz

$$x \equiv 208 \pmod{210}$$
.

Wie bereits oben gesehen, ist

$$1 = c_1 \cdot 210 + c_2 \cdot 11$$

für $c_1 = 1$ und $c_2 = -19$, und es ergibt sich nun die konkrete Lösung

$$b = 208 \cdot ((-19) \cdot 11) + 10 \cdot (1 \cdot 210) = -41372$$
.

Die Lösungsmenge ist somit

$$-41372 + 2310\mathbb{Z} = 4828 + 2310\mathbb{Z} = 208 + 2310\mathbb{Z}$$
.

• Es gelten

$$\begin{array}{rclrcl} 1 & = & c_1 \cdot 6 & + & c_2 \cdot 35 \cdot 11 \\ 1 & = & d_1 \cdot 35 & + & d_2 \cdot 6 \cdot 11 \\ 1 & = & e_1 \cdot 11 & + & e_2 \cdot 6 \cdot 35 \end{array}$$

für die Koeffizienten

$$c_1 = -64, c_2 = 1,$$
 $d_1 = 17, d_2 = -9,$ $e_1 = -19, e_2 = 1.$

Eine konkrete Lösung ist deshalb

$$b = 4 \cdot c_2 \cdot 35 \cdot 11 + 33 \cdot d_2 \cdot 6 \cdot 11 + 10 \cdot e_2 \cdot 6 \cdot 35 = -15962.$$

Die Lösungsmenge ist somit

$$-15962 + 2310\mathbb{Z} = 7138 + 2310\mathbb{Z} = 208 + 2310\mathbb{Z}$$
.

Aufgabe 4

Für ein Elemente $x \in R$ bezeichnen wir im Folgenden eine Zerlegung $x = \varepsilon p_1 \cdots p_n$ in eine Einheit $\varepsilon \in R^{\times}$ und irreduzible Elemente $p_1, \ldots, p_n \in R$ als eine *Primfaktorzerlegung* von x. Man beachte, dass a priori nicht gefordert wird, dass die p_i prim sind.

(a)

Wir formulieren zunächst einige (intuitive) Aussagen über Primfaktorzerlegungen in faktoriellen Ringen:

Lemma 1. Es seien $x, y \in R$ mit $x, y \neq 0$, so dass x ein Teiler von y ist. Dann lässt sich jede Primfaktorzerlegung $x = \varepsilon p_1 \cdots p_n$ von x zu einer Primfaktorzerlegung $y = \varepsilon' p_1 \cdots p_n p_{n+1} \cdots p_m$ von y ergänzen.

Beweis. Es gibt $z \in R$ mit xz = y, und es gilt $z \neq 0$, da $y \neq 0$ gilt. Also besitzt z eine Primfaktorzerlegung $z = \delta p_{n+1} \cdots p_m$. Dann gilt

$$y = xz = \varepsilon \delta p_1 \cdots p_n p_{n+1} \cdots p_m$$

und die Aussage ergibt sich mit $\varepsilon' := \varepsilon \delta$.

Für $x \in R$, $x \neq 0$ mit Primfaktorzerlegung $x = \varepsilon p_1 \cdots p_n$ bezeichnen wir mit $\nu(x) := n$ die Anzahl der insgesamt vorkommenden Primfaktoren (inklusive Vielfachheit). Die Zahl $\nu(x)$ ist wohldefiniert, da die Primfaktorzerlegung von x bis auf Permutation und Einheiten eindeutig ist.

Lemma 2. Es seien $x, y \in R$ mit $x, y \neq 0$.

- 1. Es gilt genau dann $\nu(x) = 0$, wenn x eine Einheit ist.
- 2. Es gilt $\nu(xy) = \nu(x) + \nu(y)$.
- 3. Ist x ein Teiler von y, so gilt $\nu(x) \leq \nu(y)$.
- 4. Ist x ein echter Teiler von y, also $(y) \subseteq (x)$, so gilt $\nu(x) < \nu(y)$.

Beweis.

- 1. In der Primfaktorzerlegung $x = \varepsilon p_1 \cdots p_n$ gilt n = 0 und somit $x = \varepsilon \in R^{\times}$. Falls x eine Einheit ist, so ist für die Einheit $\varepsilon := x$ die Zerlegung $x = \varepsilon$ bereits eine Primfaktorzerlegung.
- 2. Da R ein Integritätsbereich ist, gilt auch $xy \neq 0$, weshalb $\nu(xy)$ definiert ist. Es seien $x = \varepsilon p_1 \cdots p_n$ und $y = \delta q_1 \cdots q_m$ Primfaktorzerlegungen. Dann ist

$$xy = (\varepsilon \delta)p_1 \cdots p_n q_1 \cdots q_m$$

eine Primfaktorzerlegung von xy und somit

$$\nu(xy) = n + m = \nu(x) + \nu(y).$$

3. Es gibt $z \in R$ mit y = xz. Es gilt $z \neq 0$, da $y \neq 0$ gilt, weshalb $\nu(z)$ definiert ist. Somit gilt

$$\nu(y) = \nu(xz) = \nu(x) + \nu(z) \ge \nu(x).$$

4. In der obigen Situation gilt andernfalls $\nu(z)=0$, weshalb z dann eine Einheit ist. Deshalb gilt dann

$$(y) = (xz) = (x).$$

(i)

Es sei $p \in R$ irreduzibel, und es seien $x, y \in R$ mit $p \mid xy$. Gilt x = 0 oder y = 0, so gilt $p \mid x$ oder $p \mid y$.

Andernfalls gibt es Primfaktorzerlegungen $x = \delta q_1 \cdots q_n$ und $y = \delta' q_1' \cdots q_m'$. Dann ist

$$xy = (\delta \delta')q_1 \cdots q_n q_1' \cdots q_m' \tag{5}$$

eine Primfaktorzerlegung von xy. Da p irreduzibel ist und $p\mid xy$ gilt, lässt sich p nach Lemma 1 zu einer Primfaktorzerlegung

$$xy = \varepsilon p p_2 \cdots p_r \tag{6}$$

ergänzen. Da R faktoriell ist, sind die beiden Primfaktorzerlegungen (5) und (6) eindeutig bis auf Einheiten und Permutation. Es gilt deshalb $p \mid q_i$ oder $p \mid q'_i$ für passendes i, und somit $p \mid x$ oder $p \mid y$.

(ii)

Wir nehmen an, dass nicht jede aufsteigende Kette von Hauptidealen stabilisieren würde. Dann gibt es eine unendliche, echt aufsteigende Kette von Hauptidealen

$$(a_0) \subsetneq (a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq (a_4) \subsetneq \cdots$$

Dann gilt $a_i \neq 0$ für alle $i \geq 1$ (denn sonst wäre $(a_i) = 0$ für ein solches i, und dann würde $(a_i) = \cdots = (a_0) = 0$ gelten). Nach Lemma 2 erhalten wir eine unendliche absteigende Kette

$$\nu(a_1) > \nu(a_2) > \nu(a_3) > \nu(a_4) > \cdots$$

Dies ist aber nicht möglich.

(b)

Wir müssen zeigen, dass es für jedes Element $x \in R$ mit $x \neq 0$ eine Primfaktorzerlegung

$$x = \varepsilon p_1 \cdots p_n$$

gibt, und dass diese eindeutig bis auf Einheiten und Permutation ist.

Existenz

Lemma 3. Es sei $x \in R$, und es sei x = yz ein Zerlegung mit $z \notin R^{\times}$. Dann gilt $(x) \subseteq (y)$.

Beweis. Es gilt $y \mid x$ und somit $(x) \subseteq (y)$. Wäre (x) = (y), so gebe es ein $z' \in R$ mit y = xz'. Dann wäre x = yz = xzz' und somit 1 = zz', da R ein Integritätsbereich ist. Dann wäre z eine Einheit mit $z^{-1} = z'$, im Widerspruch zu $z \notin R^{\times}$.

Wir nehmen an, dass es ein Element $x \in R$ mit $x \neq 0$ gibt, dass keine Primfaktorzerlegung besitzt. Dann ist x inbesondere keine Einheit und auch nicht irreduzibel. Es gibt deshalb nicht-Einheiten $y,z \in R$ mit x=yz; dabei gelten $y,z \neq 0$ da $x \neq 0$ gilt. Würden x und z beide eine Primfaktorzerlegung besitzten, so würden sich diese zu einer Primfaktorzerlegung von x kombinieren lassen. Also hat x oder y keine Primfaktorzerlegung; wir können o.B.d.A. davon ausgehen, dass y keine hat. Da z keine Einheit ist, gilt $(x) \subsetneq (y)$ nach Lemma 3.

Wir setzen $a_0 := x$ und $a_1 := y$. Durch induktives Wiederholen der obigen Argumentation erhalten wir eine unendliche aufsteigende Kette von Hauptidealen

$$(a_0) \subsetneq (a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq \cdots$$

Dies steht im Widerspruch zur Annahme (ii).

Eindeutigkeit

Für zwei Primfaktorzerlegungen

$$x = \varepsilon p_1 \cdots p_n = \delta q_1 \cdots q_m$$

zeigen wir die gewünschte Eindeutigkeit per Induktion über n:

Gilt n=0, so ist $x=\varepsilon\in R^\times$ eine Einheit. Dann gilt $q_j\mid x\mid 1$ für alle j, weshalb jedes q_j eine Einheit ist. Irreduzible Elemente sind aber per Definition keine Einheiten, weshalb m=0 gelten muss. Dann ist also $x=\varepsilon=\delta$, und die beiden Zerlegungen stimmen überein.

Es sei nun n > 0. Nach Annahme (i) ist p_1 prim. Aus

$$p_1 \mid x = \delta q_1 \cdots q_m$$

folgt damit, dass $p_1 \mid \delta$ gilt, oder dass $p_1 \mid q_j$ für ein j gilt. Würde $p_1 \mid \delta$ gelten, so wäre p_1 eine Einheit, im Widerspruch zur Irreduziblität von p_1 . Also gilt $p_1 \mid q_j$ für ein j; wir können o.B.d.A. davon ausgehen, dass $p_1 \mid q_1$ gilt. Es gibt also $\delta' \in R$ mit $q_1 = p_1 \delta'$. Da q_1 irreduzibel ist, folgt dabei, dass bereits p_1 oder δ' eine Einheit ist; p_1 ist wegen Irreduziblität keine Einheit, so dass δ' eine Einheit ist. Also sind p_1 und q_1 bis auf die Einheit δ' gleich.

Es gilt nun

$$x = \varepsilon p_1 \cdots p_n = \delta q_1 \cdots q_m = \delta \delta' p_1 q_2 \cdots q_m. \tag{7}$$

DaRein Integritätsbereich ist, können wir die obige Gleichung durch $p_1\neq 0$ teilen, und erhalten, dass bereits

$$\varepsilon p_2 \cdots p_n = (\delta \delta') q_2 \cdots m$$
 (8)

gilt. Nach Induktionsvoraussetzung sind beide Seiten von (8) bis auf Einheiten und Permutation gleich. Damit sind in (7) bereits beide Zerlegungen bis auf Einheiten und Permutation gleich, da auch p_1 und q_1 bis auf Einheit gleich ist.