試験開始の合図があるまで,この問題冊子の中を見てはいけません。

2014年度 第 2 回 全 統 マーク 模 試 問 題

「数学Ⅰ 数学Ⅰ・数学A) 数学①

(100点 60分)

2014年8月実施

I 注 意 事 項

1 解答用紙は、第1面(表面)及び第2面(裏面)の両面を使用しなさい。 解答用紙に、正しく記入・マークされていない場合は、採点できないことがあ ります。特に、解答用紙の**解答科目欄にマークされていない場合又は複数の科目 にマークされている場合は、**0点となることがあります。

解答科目については、間違いのないよう十分に注意し、マークしなさい。

2 出題科目、ページ及び選択方法は、下表のとおりです。

「新教育課程履修者」

出題科目			ページ	選	択	方	法	
	数	学	Ι	2~10	左の2科	目のうち	から1科目	を選択し,
	数	学Ⅰ・数学	Α	11~23	解答しなさ	170		

〔旧教育課程履修者〕

出題科目	ページ	選	択	方	法
数 学 I	2~10				
数学 I・数学 A	11~23	左の4科	目のうち	から1科目	目を選択し,
旧数学 I	24~31	解答しなさ	γ ₁ °		
旧数学 I · 旧数学 A	32~39				

- 3 試験中に問題冊子の印刷不鮮明、ページの落丁・乱丁及び解答用紙の汚れ等に 気付いた場合は、手を高く挙げて監督者に知らせなさい。
- 4 選択問題については、解答する問題を決めたあと、その問題番号の解答欄に解 答しなさい。ただし、**指定された問題数をこえて解答してはいけません**。
- 5 問題冊子の余白等は適官利用してよいが、どのページも切り離してはいけませ h.

Ⅱ 解答上の注意

解答上の注意は、裏表紙に記載してあるので、この問題冊子を裏返して必ず読み なさい。

河台塾

-1 -

数学I

(全 問 必 答)

第1問 (配点 20)

$$y = |x+1| + |x-\sqrt{5}| + 4$$
 とする。

$$(1) \quad \sqrt{5} \leq x \quad \mathcal{O} \geq \delta$$

$$y = \boxed{\mathcal{P}} x + \boxed{1} - \sqrt{5}$$

$$\boxed{\mathbf{D}} \leq x < \sqrt{5} \quad \mathcal{O} \geq \delta$$

$$y = \boxed{\mathbf{J}} + \sqrt{5}$$

$$x < \boxed{\mathbf{D}} \perp \mathcal{O} \geq \delta$$

$$y = \boxed{\mathbf{J}} + x + \boxed{\mathbf{J}} + \sqrt{5}$$

である。

(2)
$$y=7+\sqrt{5}$$
 とすると $x=\boxed{\texttt{5}}$ カコ , $\boxed{\texttt{+}}$ + $\sqrt{\boxed{\texttt{5}}}$ である。

(数学Ⅰ第1問は次ページに続く。)

- (4) 等式 $|x+1|+|x-\sqrt{5}|+4=\sqrt{5}x$ を満たす実数 x を α とすると, $n \le \alpha < n+1$ を満たす整数 n は セソ である。

数学 I

第2問 (配点 20)

次のデータは、A から J までの 10 人の生徒に対して行った二つのゲームの得点の結果である。ゲームの得点は 0 以上の整数値である。

	А	В	С	D	Е	F	G	Н	Ι	J
ゲーム1	8	10	3	6	7	4	5	8	4	5
ゲーム2	6	Х	3	3	4	0	3	7	Υ	2

以下、小数の形で解答する場合、指定された桁数の一つ下の桁を四捨五入し、解答せよ。途中で割り切れた場合、指定された桁まで①にマークすること。

(1) ゲーム1の得点のデータの平均値は ア . イ 点であり、分散は ウ . エオ ,標準偏差は カ . キ 点である。また、データの中央値は ク . ケ 点である。ただし、必要ならば 1.04 < √1.1 < 1.05 を用いてもよい。

(2) X>Y とする。ゲーム 2 の得点のデータの範囲(レンジ)が 8 点であるとすると X= コ

であり、さらに平均値が3.7点であるとすると

である。

(数学Ⅰ第2問は次ページに続く。)

ゲーム 1 とゲーム 2 の合計得点の上位 8 人でゲーム 3 を行った。ただし、ゲーム 3 の得点は整数値である。

ゲーム 1 とゲーム 2 の合計得点とゲーム 3 の得点の相関係数が -0.86 であるとすると、散布図として適切なものは $\boxed{\begin{tikzpicture}(20,0) \put(0,0) \put(0,0)$

ス . セ 点である。

シ に当てはまるものを、次の◎~③のうちから一つ選べ。

数学I

第3問 (配点 30)

 \triangle ABC kthirt, kAB=4, kBC=5, kCA=6 kEta. kCDkE

$$\cos \angle ABC = \frac{\boxed{P}}{\boxed{1}}, \quad \sin \angle ABC = \frac{\boxed{\dot{p}}\sqrt{\boxed{I}}}{\boxed{J}}$$

点Aから辺BCに垂線を下ろし、垂線と辺BCとの交点をDとすると

$$AD = \frac{\Box \sqrt{\forall}}{\Rightarrow}, \quad BD = \frac{\Box}{\forall}$$

である。

(数学Ⅰ第3問は次ページに続く。)

さらに、直線 AD と \triangle ABC の外接円との交点のうち A と異なる方を E とし、辺 AB上に点Fを ∠BCF = ∠BCE となるようにとる。また、線分 CF と線分 AE の 交点をGとする。このとき

 $\angle BFC = \boxed{m y}$ °, $BF = \boxed{m y}$ であり、 $\triangle DFG$ の外接円の半径は $\boxed{m r}$ である。

数学 I

第4問 (配点 30)

aを定数としてxの2次関数

$$y = x^2 - 6ax + 11a^2 - 2a - 4$$

について考える。関数①のグラフ Gの頂点の座標は

である。

(1) G が x 軸と共有点を持たないような a の値の範囲は

$$a < \boxed{fh}, \boxed{f} < a$$

であり、G が y 軸の負の部分と共有点を持つような a の値の範囲は

$$\begin{array}{c|c} \hline 2 & - & \hline \\ \hline 11 & & \\ \hline \end{array} < a < \begin{array}{c|c} \hline 2 & + & \hline \\ \hline \end{array} \begin{array}{c|c} \hline \\ \hline \end{array}$$

である。

(数学Ⅰ第4問は次ページに続く。)

(2) 関数①の $x \ge 1$ における最小値をmとする。

であり、m>0 となるようなaの値の範囲は

$$a < -\frac{\mathbb{R}}{\boxed{\mathcal{F}\Xi}}, \quad \boxed{\mathbb{R}} < a$$

である。

れるグラフをHとする。G、H がx 軸より切り取る線分をそれぞれ L_G 、 L_H とする。 L_G と L_H の共通部分が長さ2の線分になるのは

$$a = \frac{\sqrt{$$
 ネノ} - ハ } ヒフ

のときである。

(下書き用紙)

数学 I・数学A

問題	選択方法
第1問	必答
第2問	必 答
第3問	
第4問	いずれか2問を選択し,
第5問	

(注) 選択問題は、解答する問題を決めたあと、その問題 番号の解答欄に解答しなさい。ただし、指定された問 題数をこえて解答してはいけません。

数学Ⅰ・数学A (注) この科目には、選択問題があります。(11ページ参照。)

第 1 問 (必答問題) (配点 35)

[1] \triangle ABC において、AB=4、BC=5、CA=6 とする。このとき

$$\cos \angle ABC = \frac{\boxed{7}}{\boxed{1}}, \quad \sin \angle ABC = \frac{\boxed{7}\sqrt{\boxed{1}}}{\boxed{3}}$$

点 A から辺 BC に垂線を下ろし、垂線と辺 BC との交点を D とすると

$$AD = \frac{\Box \sqrt{\forall \forall}}{| \forall}, \quad BD = \frac{\Box}{\forall}$$

である。

(数学Ⅰ・数学Α第1問は次ページに続く。)

さらに、直線 AD と \triangle ABC の外接円との交点のうち A と異なる方をEとし、辺 AB 上に点 F を \angle BCF = \angle BCE となるようにとる。また、線分 CF と線分 AE の交点を G とする。このとき

であり、 $\triangle DFG$ の外接円の半径は $\frac{\sqrt{ extbf{f}}}{ extbf{v}}$ である。

(数学 I・数学 A 第 1 問 は次ページに続く。)

数学 I・数学A

[2] 次のデータは、AからJまでの10人の生徒に対して行った二つのゲームの得点の結果である。ゲームの得点は0以上の整数値である。

								Н		
ゲーム1	8	10	3	6	7	4	5	8	4	5
ゲーム2	6	Х	3	3	4	0	3	7	Υ	2

以下,小数の形で解答する場合,指定された桁数の一つ下の桁を四捨五入し,解答せよ。途中で割り切れた場合,指定された桁まで**②**にマークすること。

- (1) ゲーム1の得点のデータの平均値は テ.ト 点であり、分散は ナ.ニヌ である。
- (2) **X>Y** とする。ゲーム 2 の得点のデータの範囲 (レンジ) が 8 点であるとすると

であり、さらに平均値が3.7点であるとすると

である。

(数学 I・数学 A 第 1 問 は次ページに続く。)

(3) $\mathbf{X} = \begin{bmatrix} \dot{\mathbf{x}} \end{bmatrix}$, $\mathbf{Y} = \begin{bmatrix} \mathbf{J} \end{bmatrix}$ とする。

ゲーム 1 とゲーム 2 の合計得点の上位 8 人でゲーム 3 を行った。ただし、ゲーム 3 の得点は整数値である。

ゲーム 1 とゲーム 2 の合計得点とゲーム 3 の得点の相関係数が -0.86 であるとすると、散布図として適切なものは $\upbegin{cases} \upbegin{cases} \upbegin$

数学 I・数学A

第 2 問 (必答問題) (配点 25)

aを定数としてxの2次関数

$$y = x^2 - 6ax + 11a^2 - 2a - 4$$

について考える。関数①のグラフ Gの頂点の座標は

$$(\boxed{\mathcal{P}} a, \boxed{1} a^2 - \boxed{\dot{\mathcal{P}}} a - \boxed{\mathbf{I}}$$

である。

(1) G が x 軸と共有点を持たないような a の値の範囲は

$$a < \boxed{fh}, \boxed{f} < a$$

であり、G が y 軸の負の部分と共有点を持つような a の値の範囲は

$$\begin{array}{c|c} \hline 2 & - & \hline \\ \hline 11 & & \\ \hline \end{array} < a < \begin{array}{c|c} \hline 2 & + & \hline \\ \hline \end{array} \begin{array}{c|c} \hline \\ \hline \end{array}$$

である。

(数学 I・数学 A 第 2 問 は次ページに続く。)

(2) 関数①の $x \ge 1$ における最小値をmとする。

であり、m>0 となるような α の値の範囲は

$$a < -\frac{1}{\boxed{7}}, \quad \boxed{3} < a$$

である。

数学Ⅰ・数学A 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 3 問 (選択問題) (配点 20)

(1) 白色と黒色のカードが1枚ずつと赤色のカードが2枚あり、赤色のカードの一方には1,他方には2と番号がつけられている。この4枚のカードを横一列に並べる。

並べ方は全部で **アイ** 通りあり、そのうち白色と黒色のカードが隣り合っているものは **ウエ** 通りである。また、白色と黒色のカードの間に、番号1の赤色のカードだけがはさまっているものは **オ** 通りであり、番号1と番号2の赤色のカードがともにはさまっているものは **カ** 通りである。

(数学 I・数学 A 第 3 問 は次ページに続く。)

- (2) 箱の中に1から4までの番号がつけられた4枚の赤色のカードが入っている。この箱の中から2枚のカードを取り出し、白色と黒色のカードを1枚ずつ加えた合計4枚のカードを横一列に並べる。カードの並べ方は全部で**キクケ**通りある。カードの並びにより、次のように得点を定める。
 - ・白色と黒色のカードが隣り合っているときは、得点を0点とする。
 - ・白色と黒色のカードの間に赤色のカードがはさまっているときは はさまっているカードの枚数を x

とし, さらに

x=1 ならば、y=(はさまっているカードの番号) x=2 ならば、y=(はさまっている 2 枚のカードの大きい方の番号) とし、得点を y-x 点とする。

このとき,最高得点は コ 点であり,得点が コ 点になる確率は サ である。

数学Ⅰ・数学 A 「第3問~第5問は, いずれか2問を選択し, 解答しなさい。」

第 4 問 (選択問題) (配点 20)

(1) a=537, b=124 とする。a を b で割ったときの商と余りをそれぞれ q_1 , r_1 と し、 $b \in r_1$ で割ったときの商と余りをそれぞれ q_2 、 r_2 とすると

$$(q_1, r_1) = ($$
 ア $)$, イウ $)$, $(q_2, r_2) = ($ エ $)$, $オ)$

カ |と| キ |に当てはまるものを、次の0~3のうちから一つずつ選べ。

ただし、 カーと キーの解答の順序は問わない。

a は b の倍数である

- ① $a \geq b$ は互いに素である
- ② $aq_2 b(q_1q_2 + 1) = -r_2$ が成り立つ ③ $aq_2r_2 = bq_1r_1$ が成り立つ

(数学 I・数学 A 第 4 問 は次ページに続く。)

(2) 537 で割ると 2 余り、124 で割ると 1 余る自然数 n について考えよう。 n を 537、124 で割ったときの商をそれぞれ x、y とすると

$$537x - 124y = \boxed{77}$$
 ①

が成り立ち、① を満たす商x、yの組をxの値が小さい方から順に二つ書くと

$$(x, y) = (\Box, \forall y), (\exists y), (\exists$$

である。

n のとり得る値を小さい方から順に n_1 , n_2 , n_3 , … とする。 $2^k < n_2 < 2^{k+1}$ を満たす整数 k は $\fbox{ テト}$ であるから, n_2 を 2 進法で表すと $\fbox{ ナニ}$ 桁となる。

数学Ⅰ・数学A 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 5 問 (選択問題) (配点 20)

中心が A で半径が 2 の円と中心が B で半径が r の円が図のように点 C で外接している。ただし,r>2 である。点 C における円 A,円 B の共通接線を ℓ とし, ℓ とは異なる共通接線の一つを m とする。さらに,m と円 A,円 B の接点をそれぞれ D,E とし, ℓ と m の交点を F とする。

(1)
$$AB = r + \boxed{7}$$

であり

$$BE-AD=r-$$

である。

よって

であり、 $CF = \sqrt{6}$ ならば

$$r = \boxed{ I }$$

である。

(数学 I・数学 A 第 5 問 は次ページに続く。)

(2) r = エ とし、 $\triangle ADC$ の外接円の中心を G とする。

〇 円 G の内部にある① 円 G の周上にある② 円 G の外部にある

さらに、線分 BG と線分 CF の交点を H とし、直線 AH と線分 BF の交点を I とする。

△AFB にチェバの定理を用いると

であり、ΔBGF と直線 AI にメネラウスの定理を用いると

$$\frac{GH}{HB} = \frac{9}{2}$$

「旧教育課程履修者」だけが選択できる科目です。 「新教育課程履修者」は、選択してはいけません。

旧数学I

(全 問 必 答)

第1問 (配点 25)

[1]
$$x = \frac{1}{\sqrt{3} - \sqrt{2}}$$
, $y = \frac{1}{\sqrt{6} + 2}$ とする。
$$x + \sqrt{2}y = \boxed{\mathcal{P}} \sqrt{\boxed{1}}, \quad x - \sqrt{2}y = \boxed{\dot{\mathcal{P}}} \sqrt{\boxed{\mathbf{I}}}$$

であり

$$x^2 + 2y^2 = \boxed{ \ \ }$$
, $xy = \frac{\sqrt{\ \ }}{\boxed{\ \ }}$

である。

これらより

$$x^4 + 4y^4 = \boxed{\textbf{7} \, \exists}$$

であり、また $m \le 128y^4 < m+1$ を満たす整数 m は $\boxed{ + }$ であるから、 $n \le 32x^4 < n+1$ を満たす整数 n は $\boxed{ シスセソ }$ である。

(旧数学Ⅰ第1問は次ページに続く。)

[2] 整式 $P = 3x^2 - 19y^2 + 3xy^2 - 18xy - 19x + 114y$ を考える。

(1)
$$P = (\boxed{\cancel{g}} x - \boxed{\cancel{f}} y) y^{2}$$

$$- \boxed{\cancel{f}} (\boxed{\cancel{g}} x - \boxed{\cancel{f}} y) y + (\boxed{\cancel{g}} x - \boxed{\cancel{f}} y) x$$

$$= (\boxed{\cancel{g}} x - \boxed{\cancel{f}} y) (x + y^{2} - \boxed{\cancel{f}} y)$$

$$\text{\it cbs}_{3}.$$

(2)
$$y = \frac{3\sqrt{2} + \sqrt{3}}{2\sqrt{2} - \sqrt{3}}$$
 とすると $y = \boxed{\textbf{h}} + \sqrt{\boxed{\textbf{f}}}$ であり、このとき、 $P < 0$ を満たす x の値の範囲は

, cosce, 1 (0 e m/c) % os in

である。

(3) P < 0 を満たす 1 桁の自然数 x がちょうど 6 個であるような自然数 y のうち最も小さいものは \upsigma である。

旧数学I

第2問 (配点 25)

aを定数としてxの2次関数

$$y = x^2 - 6ax + 11a^2 - 2a - 4$$

について考える。関数①のグラフ Gの頂点の座標は

である。

(1) G が x 軸と共有点を持たないような a の値の範囲は

$$a < \boxed{fh}, \boxed{f} < a$$

であり、G が y 軸の負の部分と共有点を持つような a の値の範囲は

$$\begin{array}{c|c} \hline 2 & - & \hline \\ \hline 11 & & \\ \hline \end{array} < a < \begin{array}{c|c} \hline 2 & + & \hline \\ \hline \end{array} \begin{array}{c|c} \hline \\ \hline \end{array}$$

である。

(旧数学Ⅰ第2問は次ページに続く。)

(2) 関数①の $x \ge 1$ における最小値をmとする。

$$a < \frac{\cancel{\forall}}{\cancel{\flat}}$$
 のとき $m = \boxed{\cancel{\lambda}} + \boxed{\cancel{y}} + \boxed{\cancel{y}} = \boxed{\cancel{\beta}}$ のとき $m = \boxed{\cancel{\beta}} + \boxed{\cancel{y}} = \boxed{\cancel{y}}$

であり、m>0 となるようなaの値の範囲は

である。

れるグラフをHとする。G、H がx 軸より切り取る線分をそれぞれ L_G 、 L_H とする。 L_G と L_H の共通部分が長さ2の線分になるのは

のときである。

旧数学I

第3問 (配点 30)

 \triangle ABC kthirt, kAB=4, kBC=5, kCA=6 kEta. kCDkE

$$\cos \angle ABC = \frac{\nearrow}{\frown}, \quad \sin \angle ABC = \frac{\lnot \circlearrowleft \sqrt{\boxed{\mathtt{I}}}}{\boxed{\mathtt{J}}}$$

点Aから辺BCに垂線を下ろし、垂線と辺BCとの交点をDとすると

$$AD = \frac{\Box \sqrt{\forall \forall}}{| \Rightarrow |}, \quad BD = \frac{| \neg \neg \neg \neg}{| \forall |}$$

である。

(旧数学Ⅰ第3問は次ページに続く。)

さらに、直線 AD と \triangle ABC の外接円との交点のうち A と異なる方を E とし、辺 AB上に点Fを ∠BCF = ∠BCE となるようにとる。また、線分 CF と線分 AE の 交点をGとする。このとき

 $\angle BFC = \boxed{m y}$ °, $BF = \boxed{m y}$ であり、 $\triangle DFG$ の外接円の半径は $\boxed{m r}$ である。

旧数学I

第4問 (配点 20)

$$y = |x+1| + |x-\sqrt{5}| + 4$$
 とする。

$$(1) \quad \sqrt{5} \leq x \text{ のとき}$$

$$y = \boxed{\mathcal{P}} x + \boxed{\mathbf{1}} - \sqrt{5}$$

$$\boxed{\mathbf{DI}} \leq x < \sqrt{5} \text{ のとき}$$

$$y = \boxed{\mathbf{1}} + \sqrt{5}$$

$$x < \boxed{\mathbf{DI}} \text{ のとき}$$

$$y = \boxed{\mathbf{1}} + \sqrt{5}$$

$$x < \boxed{\mathbf{DI}} \text{ のとき}$$

$$y = \boxed{\mathbf{1}} + \sqrt{5}$$
である。

(2) $y = 7 + \sqrt{5}$ とすると

である。

(旧数学Ⅰ第4問は次ページに続く。)

(3) -2 < a < 0 ならば, x の方程式

$$|x+1| + |x-\sqrt{5}| + 4 = ax + \boxed{3} + \sqrt{5}$$

- の解は**, ス** と **セ** である。

し, スとて の解答の順序は問わない。

0

- $0 \frac{2\sqrt{5}}{a-2}$

「旧教育課程履修者」だけが選択できる科目です。
「新教育課程履修者」は、選択してはいけません。

旧数学 I・旧数学A

(全 問 必 答)

第1問 (配点 20)

[1]
$$x = \frac{1}{\sqrt{3} - \sqrt{2}}$$
, $y = \frac{1}{\sqrt{6} + 2}$ とする。
$$x + \sqrt{2}y = \boxed{\mathcal{P}} \sqrt{\boxed{1}}, \quad x - \sqrt{2}y = \boxed{\dot{\mathcal{P}}} \sqrt{\boxed{\mathbf{I}}}$$

であり

である。

これらより

$$x^4 + 4y^4 = \boxed{\text{51}}$$

であり, $m \le 128y^4 < m+1$ を満たす整数 m は $\boxed{}$ であるから,

 $n \le 32x^4 < n+1$ を満たす整数 n は $\boxed{$ シスセソ $\boxed{}$ である。

(旧数学 I・旧数学 A 第 1 問 は次ページに続く。)

[2] k を定数とする。実数 x に関する条件 p, q, r を次のように定める。

p: |2x-1| < 1

 $q: x^2 - x + k \le 0$

r: |2|2x-1|-1| < 1

条件qの否定を \overline{q} で表す。

(1) 不等式 |2x-1| < 1 の解は

タ < x < チ

である。

 $0 > 1 < 2 \ge 3 \le 4$

「すべての実数xに対して \overline{q} が成り立つ」が真となるようなkの値の範囲は

である。

(3) $k = \frac{\boxed{\bar{\tau}}}{\boxed{|\cdot|}}$ とする。 $r \mathop{\mathrm{lt}}(p \mathop{\hspace{0.04cm} h})$ であるための $\boxed{\hspace{0.04cm} \hspace{0.04cm} \hspace{0.04cm}$

- ◎ 必要十分条件である
- ① 必要条件であるが、十分条件ではない
- ② 十分条件であるが、必要条件ではない
- ③ 必要条件でも十分条件でもない

旧数学 I ・旧数学A

第2問 (配点 25)

aを定数としてxの2次関数

$$y = x^2 - 6ax + 11a^2 - 2a - 4$$

について考える。関数①のグラフ Gの頂点の座標は

$$(\boxed{\mathcal{P}} a, \boxed{1} a^2 - \boxed{\dot{\mathcal{P}}} a - \boxed{\mathbf{I}}$$

である。

(1) G が x 軸と共有点を持たないような a の値の範囲は

$$a < \boxed{fh}, \boxed{f} < a$$

であり、G が y 軸の負の部分と共有点を持つような a の値の範囲は

$$\begin{array}{c|c} \hline 2 & - & \hline \\ \hline 11 & & \\ \hline \end{array} < a < \begin{array}{c|c} \hline 2 & + & \hline \\ \hline \end{array} \begin{array}{c|c} \hline \\ \hline \end{array}$$

である。

(旧数学 I・旧数学 A 第 2 問 は次ページに続く。)

(2) 関数①の $x \ge 1$ における最小値をmとする。

であり、m > 0 となるような a の値の範囲は

$$a < -\frac{1}{\boxed{+} \pm \boxed{}}, \quad \boxed{\mathbf{X}} < a$$

である。

(3) $0 < a < \frac{ 2 - 11 }{11}$ とし、G を原点に関して対称移動して得ら

れるグラフをHとする。G、H がx 軸より切り取る線分をそれぞれ L_G 、 L_H とする。 L_G と L_H の共通部分が長さ2の線分になるのは

$$a = \frac{\sqrt{\boxed{\grave{x}} \sqrt{} - \boxed{} N}}{\boxed{\boxed{\texttt{E7}}}}$$

のときである。

旧数学 I ・旧数学A

第3問 (配点 30)

 \triangle ABC CABC CABC

$$\cos \angle ABC = \frac{\mathcal{P}}{1}, \quad \sin \angle ABC = \frac{\dot{\mathcal{P}}\sqrt{\mathbf{I}}}{\mathbf{J}}$$

点Aから辺BCに垂線を下ろし、垂線と辺BCとの交点をDとすると

$$AD = \frac{\Box \sqrt{\forall \forall}}{| \Rightarrow |}, \quad BD = \frac{| \neg \neg \neg \neg}{| \forall |}$$

である。

(旧数学 I・旧数学 A 第 3 問 は次ページに続く。)

さらに、直線 AD と \triangle ABC の外接円との交点のうち A と異なる方を E とし、辺 AB 上に点 F を \angle BCF = \angle BCE となるようにとる。また、線分 CF と線分 AE の 交点を G とする。このとき

$$DG = \frac{\boxed{y}\sqrt{\boxed{g}}}{\boxed{\boxed{fy}}}$$

であり、ΔBDF の外接円と直線 EF の交点のうち F と異なる方を H とすると

$$EH \cdot EF = \frac{\boxed{\overline{\tau}}}{\boxed{\mathsf{h} \, \tau}}$$

である。

旧数学 I・旧数学A

第4問 (配点 25)

(1) 白色と黒色のカードが1枚ずつと赤色のカードが2枚あり、赤色のカードの一方には1,他方には2と番号がつけられている。この4枚のカードを横一列に並べる。

並べ方は全部で**アイ** 通りあり、そのうち白色と黒色のカードが隣り合っているものは**ウエ** 通りである。また、白色と黒色のカードの間に、番号1の赤色のカードだけがはさまっているものは **オ** 通りであり、番号1と番号2の赤色のカードがともにはさまっているものは **カ** 通りである。

(旧数学 I・旧数学 A 第 4 問 は次ページに続く。)

- (2) 箱の中に1から4までの番号がつけられた4枚の赤色のカードが入っている。この箱の中から2枚のカードを取り出し、白色と黒色のカードを1枚ずつ加えた合計4枚のカードを横一列に並べる。カードの並べ方は全部で**キクケ**通りある。カードの並びにより、次のように得点を定める。
 - ・白色と黒色のカードが隣り合っているときは、得点を0点とする。
 - ・白色と黒色のカードの間に赤色のカードがはさまっているときは はさまっているカードの枚数を x

とし, さらに

x=1 ならば、y=(はさまっているカードの番号) x=2 ならば、y=(はさまっている 2 枚のカードの大きい方の番号) とし、得点を y-x 点とする。

 このとき、最高得点は
 コ 点であり、得点が コ 点になる確率は

 サ である。
 シス

 得点が 0 点になる確率は
 セソ であり、2 点になる確率は ア である。

 また、得点の期待値は
 トナ 点である。

 ニヌ 点である。

Ⅱ 解答上の注意

- 1 解答は、解答用紙の問題番号に対応した解答欄にマークしなさい。

例 アイウ に -83 と答えたいとき

なお,同一の問題文中に**ア**,**イウ** などが 2 度以上現れる場合,原則として,2 度目以降は, ア , イウ のように細字で表記します。

3 分数形で解答する場合,分数の符号は分子につけ、分母につけてはいけません。

また, それ以上約分できない形で答えなさい。

例えば, $\frac{3}{4}$ と答えるところを, $\frac{6}{8}$ のように答えてはいけません。

4 根号を含む形で解答する場合、根号の中に現れる自然数が最小となる形で答えなさい。

例えば, $\boxed{ + } \sqrt{ \boxed{ 2 } }$ に $4\sqrt{2}$ と答えるところを, $2\sqrt{8}$ のように答えてはいけません。

$$\frac{3+2\sqrt{2}}{2}$$
 と答えるところを, $\frac{6+4\sqrt{2}}{4}$ や $\frac{6+2\sqrt{8}}{4}$ のように答えてはいけません。

問題を解く際には、「問題」冊子にも必ず自分の解答を記録し、試験終了後に配付される「学習の手引き」にそって自己採点し、再確認しなさい。

© Kawaijuku 2014 Printed in Japan