

Introduction to Digital Signal Processing

Digital Signal Processing

- Perform useful transformations on signals represented in discrete form
- Challenges
 - Process information *fast*
 - Often deal with real world signals
 - Process **enough** information
 - Ensure no useful information is lost

Why is DSP so popular

- Repeatability
 - component tolerances very high
- Versatility
 - can be reprogrammed
- Simplicity
 - many transformations done easily in digital domain

Typical DSP flow

Digitization Issues

- Sampling clock errors
 - bad for timing
- Sample measurement accuracy
 - bad for small changes
- Finite length of sampling
 - bad for slow changes
- Finite sample intervals
 - bad for fast changes

Effect of low sampling-rate

Miss glitches

 Miss high frequency components

Aliasing

 Interpret a high frequency as a lower one wrongly

Aliasing

Nyquist: : sampling-rate >= 2*largest_sig_freq

- Avoiding aliasing
 - use antialiasing filter before sampling
 - inhibits freq components > 0.5*sampling_rate

Time domain processing

Correlation

$$r(n) = \sum_{k=0}^{N-1} x(k) \times y(n+k)$$

Correlation

- Autocorrelation
 - extract signal from noisy environment

Correlation

- Cross correlation
 - correlate input signal with library of signals

Convolution

$$X(\boldsymbol{\omega}) = \sum_{k=0}^{N-1} x(k) \times e^{-\frac{j2\pi\omega k}{N}} Y(\boldsymbol{\omega}) = \sum_{p=0}^{N-1} y(p) \times e^{-\frac{j2\pi\omega p}{N}}$$

$$R(\boldsymbol{\omega}) = X(\boldsymbol{\omega}) \times Y(\boldsymbol{\omega}) = \sum_{k=0}^{N-1} x(k) \times e^{-\frac{j2\pi\omega k}{N}} \times \sum_{p=0}^{N-1} y(p) \times e^{-\frac{j2\pi\omega p}{N}}$$

$$= \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} x(k)y(n-k) \times e^{-\frac{j2\pi\omega n}{N}}$$

$$R(\omega) = \sum_{n=0}^{N-1} r(n) \times e^{-\frac{j2\pi\omega n}{N}}$$

Convolution

$$R(\omega) = X(\omega) \times Y(\omega) \Longrightarrow$$

$$r(n) = \sum_{k=0}^{N-1} x(k)y(n-k)$$

 Multiplication in frequency domain => convolution in time-domain

Convolution

$$r(n) = \sum_{k=0}^{N-1} x(k) \times y(n-k)$$

Time domain processing

Correlation

$$r(n) = \sum_{k=0}^{N-1} x(k) \times y(n+k)$$

Convolution

$$r(n) = \sum_{k=0}^{N-1} x(k) \times y(n-k)$$

 Multiply/accumulate are the most widely used core functions for DSP

Conclusions

- Why DSP is popular
- Effect of sampling
- Aliasing
- Correlation
- Convolution

VLSI Signal Processing in FPGAs

Sudip K Nag (Xilinx Inc.)
Hare K Verma (Xilinx Inc.)
Kaushik Roy (Purdue Univ.)

Sections

- Introduction to DSP
- VIRTEX Architecture
- Filters in FPGAs
- FFTs in FPGAs
- MPEG decoding in FPGAs
- Cordic Algorithms in FPGAs
- Low-power solutions
- Specific DSP architectures as FPGAs

