ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ИНДИВИДУАЛЬНЫХ ФАЗ, ОБРАЗУЮЩИХСЯ В СИСТЕМЕ PrO_z – ½Fe₂O₃ – NiO

Соломахина Е.Е., Рудюк В.Д., Урусова А.С., Черепанов В.А. Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

В ходе изучения фазовых равновесий в системе $PrO_z - \frac{1}{2}Fe_2O_3 - NiO$ при 1373 К было установлено образование двух типов твердых растворов: со структурой орторомбически искаженного перовскита $PrFe_{1-x}Ni_xO_3$ ($0.0 \le x \le 0.5$) и со структурой Раддлесдена—Поппера $Pr_4Ni_{3-y}Fe_yO_{10-\delta}$ ($0.7 \le y \le 1.1$).

Рентгенограммы всех однофазных оксидов $PrFe_{1-x}Ni_xO_3$ ($0.0 \le x \le 0.5$) были проиндексированы в рамках орторомбической элементарной ячейки пространственной группы Pbnm. Параметры элементарных ячеек были уточнены методом полнопрофильного анализа Ритвелда. Уменьшение параметров элементарной ячейки, представленных в таблице, можно объяснить разницей ионных радиусов железа и никеля.

Аналогичное исследование кристаллической структуры было проведено для твердого раствора $Pr_4Ni_{3-y}Fe_yO_{10-\delta}$. В ходе рентгеноструктурного уточнения было определено, что сложные оксиды кристаллизуются в орторомбической ячейке (пр. гр. *Fmmm*). Параметры, полученные в ходе уточнения методом полнопрофильного метода Ритвелда

Параметры элементарных ячеек сложных оксидов $PrFe_{1-x}Ni_xO_{3-\delta}$

110punit 1 ph strong than 1 to the strong than 2 to 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				
X	0.0	0.1	0.3	0.5
a, Å	5.4811(1)	5.4773(2)	5.4762(1)	5.4536(2)
$b, \mathrm{\AA}$	5.5681(1)	5.5589(2)	5.5331(1)	5.4791(2)
c, Å	7.7824(2)	7.7727(2)	7.7600(2)	7.7193(3)
V, Å	237.51(1)	236.66(1)	235.13(1)	230.66(3)
R _f , %	5.30	6.92	4.69	5.20
R_{Br} , %	7.10	10.1	7.42	7.78
3–δ	3.02(1)	3.01(1)	2.99(1)	3.01(1)

С помощью метода высокотемпературной термогравиметрии была изучена кислородная нестехиометрия для образцов $PrFe_{1-x}Ni_xO_{3-\delta}$ ($x=0.1;\ 0.3;\ 0.5$) и $Pr_4Ni_{3-y}Fe_yO_{10-\delta}$. Установлено, что в исследуемых образцах слабо выражена зависимость кислородной нестехиометрии от температуры, а абсолютное содержание кислорода во всех образцах близко к стехиометричному.

Температурная зависимость относительного линейного расширения сложных оксидов была измерена в интервале температур 298—1373 К на воздухе. Из полученных данных были рассчитаны коэффициенты термического расширения. Электротранспортные свойства были изучены 4-контактным методом на воздухе в интервале температур 298—1373 К.