Digital electronics 1 - 03 vivado

Multiplexer 4-to-1

Table with connections

Connector	Pin	Program
SW0	J15	a_i
SW1	L16	a_i
SW2	M13	b_i
SW3	R15	b_i
SW4	R17	c_i
SW5	T18	c_i
SW6	U18	d_i
SW7	R13	d_i
SW14	U11	sel_i
SW15	V10	sel_i
LED0	H17	f_o
LED1	K15	f_o

Source code of architecture syntax

Source code of testbench file

```
p_stimulus : process
    begin
         -- Report a note at the begining of stimulus process
         report "Stimulus process started" severity note;
         s_d \leftarrow "00"; s_c \leftarrow "00"; s_b \leftarrow "00"; s_a \leftarrow "10"; wait for 100 ns;
         s_sel <= "00"; wait for 100 ns;</pre>
         s_d <= "00"; s_c <= "00"; s_b <= "11"; s_a <= "00"; wait for 100 ns;
         s_sel <= "10"; wait for 100 ns;</pre>
         s_d \leftarrow "11"; s_c \leftarrow "00"; s_b \leftarrow "01"; s_a \leftarrow "10"; wait for 100 ns;
         s_sel <= "11"; wait for 100 ns;</pre>
         s_d \leftarrow "10"; s_c \leftarrow "00"; s_b \leftarrow "01"; s_a \leftarrow "01"; wait for 100 ns;
         s_sel <= "01"; wait for 100 ns;</pre>
         s d <= "10"; s c <= "11"; s b <= "00"; s a <= "10"; wait for 100 ns;
         s sel <= "00"; wait for 100 ns;
         -- Report a note at the end of stimulus process
         report "Stimulus process finished" severity note;
         wait;
    end process p_stimulus;
```

Screenshot with simulated time waveforms

Vivado tutorial

Click project and new, next window click next

Type your project name and choose directory to save it

Choose RTL Project

Choose target language and simulation language VHDL and create file

Type name of design file and choose file type VHDL and click OK

In constraints click next

Click on boards in top panel and find Nexys A7-50T, choose it and click next

Finaly check project summary and click on finish

If you want, add some I/O ports definition

Click file and add sources

Check add or create simulation sources and click next

Type tb_ as testbench and file name tb_name, click OK

?

project directory.

Next >

Finish

Cancel

< Back

Click again file, add sources and choose add or create constraints, click next

Click create file, when created click finish

Type name of file and click OK

Your project was created

For run simulation click flow -> run simulation -> run behavioral simulation

mux_2bit_4to1 - [C:/Users/jofad/Documents/GitHub/VS Code/Digital-electronics-1/Labs/03-vivado/mux_2bit_4to1/mux

GitHub repository