$9_{17} (K9a_{14})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^7 + 2u^5 - u^4 + 2u^3 - u^2 - 1 \rangle$$

$$I_2^u = \langle u^{12} + u^{11} + 4u^{10} + 4u^9 + 7u^8 + 7u^7 + 5u^6 + 5u^5 + u^4 + u^3 + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 19 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^7 + 2u^5 - u^4 + 2u^3 - u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{6} + u^{5} - u^{4} + 2u^{3} - u^{2} + u \\ -u^{6} + u^{5} - 2u^{4} + 2u^{3} - 2u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{6} - u^{5} - u^{4} + 1 \\ -u^{6} - u^{5} - u^{4} - u^{3} + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{6} - u^{5} - u^{4} + 1 \\ -u^{6} - u^{5} - u^{4} - u^{3} + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^6 + 4u^5 4u^4 + 8u^3 8u^2 + 4u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5	$u^7 + 3u^6 + u^5 - 2u^4 + 2u^3 + 3u^2 + u + 2$
c_2, c_3, c_6 c_8	$u^7 + 2u^5 + u^4 + 2u^3 + u^2 + 1$
c_7, c_9	$u^7 + 4u^6 + 8u^5 + 7u^4 + 2u^3 - 3u^2 - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5	$y^7 - 7y^6 + 17y^5 - 16y^4 + 6y^3 + 3y^2 - 11y - 4$
c_2, c_3, c_6 c_8	$y^7 + 4y^6 + 8y^5 + 7y^4 + 2y^3 - 3y^2 - 2y - 1$
c_{7}, c_{9}	$y^7 + 12y^5 + 3y^4 + 22y^3 - 3y^2 - 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.468927 + 1.008510I	-2.15041 + 6.00484I	-4.26608 - 8.08638I
u = 0.468927 - 1.008510I	-2.15041 - 6.00484I	-4.26608 + 8.08638I
u = 0.824481	-3.34763	-1.23740
u = -0.391915 + 0.631080I	0.40799 - 1.46776I	1.41234 + 4.85424I
u = -0.391915 - 0.631080I	0.40799 + 1.46776I	1.41234 - 4.85424I
u = -0.489252 + 1.239920I	-10.5657 - 9.4746I	-7.52754 + 6.21855I
u = -0.489252 - 1.239920I	-10.5657 + 9.4746I	-7.52754 - 6.21855I

II. $I_2^u = \langle u^{12} + u^{11} + 4u^{10} + 4u^9 + 7u^8 + 7u^7 + 5u^6 + 5u^5 + u^4 + u^3 + 1 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{9} - 2u^{7} - u^{5} + 2u^{3} + u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{10} - 3u^{8} - 4u^{6} - u^{4} + u^{2} - u + 1 \\ -2u^{11} - u^{10} + \dots + u - 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{10} - 3u^{8} - 4u^{6} - u^{4} + u^{2} - u + 1 \\ -2u^{11} - u^{10} + \dots + u - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^9 12u^7 12u^5 + 4u^3 + 8u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5	$(u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1)^2$
c_2, c_3, c_6 c_8	$u^{12} - u^{11} + 4u^{10} - 4u^9 + 7u^8 - 7u^7 + 5u^6 - 5u^5 + u^4 - u^3 + 1$
c_7, c_9	$u^{12} + 7u^{11} + \dots + 2u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5	$(y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1)^2$
c_2, c_3, c_6 c_8	$y^{12} + 7y^{11} + \dots + 2y^2 + 1$
c_7, c_9	$y^{12} - 5y^{11} + \dots + 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.386547 + 0.899125I	-0.32962 - 1.97241I	-0.57572 + 3.68478I
u = -0.386547 - 0.899125I	-0.32962 + 1.97241I	-0.57572 - 3.68478I
u = 0.206575 + 1.062080I	-4.02872	-9.41678 + 0.I
u = 0.206575 - 1.062080I	-4.02872	-9.41678 + 0.I
u = -0.869654 + 0.049931I	-6.98545 + 4.59213I	-4.58114 - 3.20482I
u = -0.869654 - 0.049931I	-6.98545 - 4.59213I	-4.58114 + 3.20482I
u = 0.460851 + 1.226450I	-6.98545 + 4.59213I	-4.58114 - 3.20482I
u = 0.460851 - 1.226450I	-6.98545 - 4.59213I	-4.58114 + 3.20482I
u = -0.436607 + 1.253750I	-10.9500	-8.26950 + 0.I
u = -0.436607 - 1.253750I	-10.9500	-8.26950 + 0.I
u = 0.525382 + 0.335320I	-0.32962 - 1.97241I	-0.57572 + 3.68478I
u = 0.525382 - 0.335320I	-0.32962 + 1.97241I	-0.57572 - 3.68478I

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5	$(u^{6} - u^{5} - 3u^{4} + 2u^{3} + 2u^{2} + u - 1)^{2}$ $\cdot (u^{7} + 3u^{6} + u^{5} - 2u^{4} + 2u^{3} + 3u^{2} + u + 2)$
c_2, c_3, c_6 c_8	$(u^{7} + 2u^{5} + u^{4} + 2u^{3} + u^{2} + 1)$ $\cdot (u^{12} - u^{11} + 4u^{10} - 4u^{9} + 7u^{8} - 7u^{7} + 5u^{6} - 5u^{5} + u^{4} - u^{3} + 1)$
c_7, c_9	$(u^7 + 4u^6 + \dots - 2u - 1)(u^{12} + 7u^{11} + \dots + 2u^2 + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5	$(y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1)^2$ $\cdot (y^7 - 7y^6 + 17y^5 - 16y^4 + 6y^3 + 3y^2 - 11y - 4)$
$c_2, c_3, c_6 \ c_8$	$(y^7 + 4y^6 + \dots - 2y - 1)(y^{12} + 7y^{11} + \dots + 2y^2 + 1)$
c_7, c_9	$(y^7 + 12y^5 + \dots - 2y - 1)(y^{12} - 5y^{11} + \dots + 4y + 1)$