

Neural Radiance Fields - NeRFs

Summer Term 2023

Bernhard Egger

Slide Credit: Marc Stamminger, NeuGleR -Neural Graphics and Inverse Rendering

Neural Radiance Fields

- Mildenhall et al.: "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020
 - > 3.309 citations (as of June 2022)
 - thousands of successor papers

NeRF

Representing Scenes as Neural Radiance Fields for View Synthesis

ECCV 2020 Oral - Best Paper Honorable Mention

Ben Mildenhall*
UC Berkeley

Pratul P. Srinivasan*
UC Berkeley

Matthew Tancik^{*} UC Berkeley Jonathan T. Barron Google Research

Ravi Ramamoorthi
UC San Diego

Ren Ng UC Berkeley

* Denotes Equal Contribution

Novel View Synthesis

Today

- We will motivate and learn about
 - Novel View Synthesis
 - Volume Rendering
- You already know quite a bit about artificial neural networks
- And will combine all this to introduce Neural Radiance Fields

Novel View Synthesis / Image-based Rendering

Remember: Computer Graphics

- Given a 3D model of a scene (triangle mesh)
- Project to 2D screen, rasterize, apply lighting and shading to determine pixel colors
- Textures can be applied to get visually richer objects
- Burden to generate 3D models and textures \rightarrow costly, tedious, annoying
- In particular annoying, if we have to re-model a real-world object or scene

 Classical Computer Vision task: Generate a 3D geometric model plus texture from a set of input images

→ lectures "Computer Vision" or "Computational Photography & Capture" (both in summer term)

doll images: agisoft metashape, www.agisoft.com

- Steps:
 - detect **feature points** in images

- Steps:
 - detect **feature points** in images
 - match feature points over multiple images

- Steps:
 - detect **feature points** in images
 - match feature points over multiple images
 - determine camera poses of input images

- Steps:
 - detect **feature points** in images
 - match feature points over multiple images
 - determine camera poses of input images
 - project matching feature points to 3D → sparse 3D point cloud

– Steps:

- detect **feature points** in images
- match feature points over multiple images
- determine camera poses of input images
- project matching feature points to 3D → sparse 3D point cloud
- densify point cloud → dense point cloud

– Steps:

- detect **feature points** in images
- match feature points over multiple images
- determine camera poses of input images
- project matching feature points to 3D → sparse 3D point cloud
- densify point cloud → dense point cloud
- convert point cloud to triangle mesh → 3D triangle mesh

– Steps:

- detect **feature points** in images
- match feature points over multiple images
- determine camera poses of input images
- project matching feature points to 3D → sparse 3D point cloud
- densify point cloud → dense point cloud
- convert point cloud to triangle mesh → 3D triangle mesh
- compute texture for triangle mesh
 - → Quality moderate, no specular effects

Image-based Rendering

- Most often used variant:
 - Given a set of photographs
 - Determine camera poses
 - Reconstruct (rough) 3D model of the object = proxy geometry
 - At render time:
 - render proxy geometry
 - shade pixels using colors from photographs

Image-based Rendering

- for each pixel, look up color in input images, which contain this point
- blend colors
- → improved quality, view-dependent effects
- → artifacts, if proxy geometry / poses not perfect

Novel View Synthesis

- Image-based rendering is an algorithm for "Novel View Synthesis"
- General problem:
 - Given a set of input images of an object
 - Generate novel views of the object

Volume Rendering

NeuGleR 2023 - NeRFs

And now for something completely different...

- Remember from CG:
 Volumetric Texture Mapping
- Given a 3D volumetric texture of density values, generate an image of this volume
- Can be rendered by rendering semi-transparent slices of the volume using alpha-blending
- Today, more often ray casting is used

Volumetric Texture Mapping

· e.g., slices from CT data form a volumetric texture

Volumetric Texture Mapping

How to render?
 → Polygonal slices with transparent textures

Computer Graphics 2022/23 - Texture Mapping

0.500 (4.600 (5.000 (4.0

Volume Rendering

- More formally using ray casting
- Given a volumetric density field $\sigma(x)$, where ρ is the optical density at position $x \in \mathbb{R}^3$
- For each image pixel, we cast a ray r(t) = o + tdthrough the volume and determine its color
- To determine color, we need a volumetric lighting model, e.g.:

$$\mathbf{C}(\mathbf{r}) = \int_{t \in [t_{in}, t_{out}]} T(t) \, \sigma(\mathbf{r}(t)) \, \mathbf{c}(\mathbf{r}(t), \mathbf{d}) \, dt$$

 $\boldsymbol{r}(t)$

$$C(r) = \int_{t \in [t_{in}, t_{out}]} T(t) \, \sigma(r(t)) \, c(r(t), d) \, dt$$

- r(t)
- t_{in}

- do simple ray casting
- use formula above to compute ray colors:

$$\mathbf{C}(\mathbf{r}) = \int_{t \in [t_{in}, t_{out}]} T(t) \sigma(\mathbf{r}(t)) \, \mathbf{c}(\mathbf{r}(t), \mathbf{d}) \, dt$$

 $\boldsymbol{r}(t)$

- -T(t): accumulated transmittance along the ray up to position t
 - If a photon starts at r(t) travelling towards r(0), how likely is it that it gets through and is not absorbed?
 - (Can be computed using Beer's law)

$$\mathbf{C}(\mathbf{r}) = \int_{t \in [t_{in}, t_{out}]} T(t) \, \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) dt$$

- as "color" of a point in the volume we use $\boldsymbol{c}(\boldsymbol{r}(t),\boldsymbol{d})$
- c varies in the volume, most often it is determined from the input density $\sigma(x)$ by a **transfer function**
 - e.g. in medical visualization:
 - − large σ → bone → color is white
 - medium $\sigma \rightarrow blood \rightarrow red$
- in this lighting model, color varies with the view direction $m{d}$ \rightarrow uncommon in medical visualization

 $\boldsymbol{r}(t)$

$$\boldsymbol{C}(\boldsymbol{r}) = \int_{t \in [t_{in}, t_{out}]} T(t) \boldsymbol{\sigma}(\boldsymbol{r}(t)) \boldsymbol{c}(\boldsymbol{r}(t), \boldsymbol{d}) dt$$

- but what is the color of air?
- air has zero density, so we cannot see it, so it has no color...
- we thus multiply the color at r(t) by its density $\sigma(r(t))$ \rightarrow the color of air is irrelevant
- separates density and color, allows for better handling

r(t)

How to compute

– Numerical integration: we step along the ray using step width δ :

$$t_i = t_{in} + i\delta$$

— We accumulate transmittance while stepping forward:

$$T_0 = 1$$

$$T_{i+1} = T_i \exp(-\sigma(\mathbf{r}(t_i)) \delta)$$

— We accumulate the final color:

$$C_0 = (0,0,0)$$

$$C_{i+1} = C_i + T_i \,\sigma(\mathbf{r}(t_i)) \,\mathbf{c}(\mathbf{r}(t_i),-d) \,\delta$$

 $\boldsymbol{r}(t)$

CT reconstruction

- With a lighting model like the above, we can simulate x-ray images
- x-rays are like light, but with higher frequency, so they penetrate bodies
- CT-reconstruction (CT = computed tomography)
 - given a number of such x-ray images from various directions, reconstruct a volumetric density function $\sigma(x)$, such that volumetric renderings are equivalent to the x-ray images \rightarrow in this context, color c(r(t), d) is assumed to be constant white
 - more formally: find a volumetric function $\sigma(x)$ that minimizes the difference between the observed images I^i and the volume rendered images \tilde{I}^i
 - Typical CT-reconstruction: represent volume as a voxel grid, e.g. with 256³ voxels, each storing a density
 - highly (or infinite)-dimensional optimization problem, but solvable

Radiance Fields

- We can apply all this for novel view synthesis → Radiance Fields
- A radiance field is
 - a function $\sigma(x)$ representing density at x within the bounding box of an object
 - a function $\boldsymbol{c}(\boldsymbol{r}(t),\boldsymbol{d})$ representing the color at \boldsymbol{x} when viewed from direction \boldsymbol{d}

– Idea:

- Given a set of input images with known poses
- We then determine a radiance field that under volume rendering generates the same images
 - → complex optimization like for CT reconstruction
- We can then render this radiance field from arbitrary views
 - → novel view synthesis

Radiance Fields

- How can we represent a radiance field?
- Option 1: Voxelization (like in CT reconstruction)
 - build a voxel grid, e.g. 256³ voxels
 - in each cell
 - store a density value σ
 - store a representation of the view-dependent color $oldsymbol{c}(oldsymbol{d})$
 - high memory costs
 - unclear how to store view-dependent color function
 - results vary with resolution

Radiance Fields

- How can we represent a radiance field?
- Option 2: Neural radiance fields
 - store and optimize radiance field as a **neural** function
 - → more precisely, as a multi-layer perceptron (MLP)

NeRFs Neural Radiance Fields – NeRFs

Novel View Synthesis by combining Volume Rendering and Deep Neural Networks

Neural Radiance Fields

- Represent radiance field as an MLP
 - with five inputs: $(x, y, z) \in \mathbb{R}^3$, direction described in polar coordinates $(\theta, \phi) \in \mathbb{R}^2$
 - and four outputs: $c(x, y, z, \theta, \phi) \in \mathbb{R}^3$ and $\sigma(x, y, z) \in \mathbb{R}^1$
- Optimize neural radiance field (NeRFs) so it reproduces input images
 - → costly optimization, slow
- Render novel views from NeRF by volume rendering
 - → rather fast

NeRF Rendering

- For each ray, sample the NeRF along the ray (with some predefined stepsize δ)
 - \rightarrow densities σ_i , colors \boldsymbol{c}_i

NeRF Rendering

- Blend the sampled values like in Section "Volume Rendering":
 - $c(r) = \sum_{i} T_i (1 \exp(-\sigma_i \delta)) c_i$ with $T_i = \exp(-\delta \sum_{j=1...i-1} \sigma_i)$
- can be derived w.r.t. σ_i and $oldsymbol{c}_i$ generate samples along rays

evaluate NeRF at sample positions

blend colors

NeRF Rendering – Functional View

- Given a ray (o, d)
- Generate samples: $S(\boldsymbol{o}, \boldsymbol{d}) = (\boldsymbol{o} + (t_{in} + \delta i)\boldsymbol{d})_i = (\boldsymbol{x}_i)_i = \boldsymbol{X}$
- Evaluate NeRF: $F(X) = (F(\theta; x_i))_i = F$ // evaluate NeRF for vector of samples \rightarrow network is a 9-layer / 256 channels per layer, ReLU, fully connected (details later)
- Blend values: $B(F) = \cdots = c \in \mathbb{R}^3$ // volume rendering
- Altogether: $c(\theta; o, d) = B(F(\theta; S(o, d)))$

- Input of the pipeline is a ray x = (o, d), output is its color y = c

NeRF Optimization

– More general:

- Each pixel i of each input image corresponds to one input ray (o_i, d_i) , its color c_i is the desired output

Training data:

Each i iterates over all pixels of all images

```
- input x_i = (o_i, d_i) of pixel i // for this, we need the camera poses

- y_i = color of pixel i // the color of the ray in the input image \rightarrow goal of optimization
```

– Training process:

– optimize θ , such that $\sum_{i} L\left(B\left(F\left(\boldsymbol{\theta};\ S(x_{i})\right)\right),y_{i}\right)$ is minimized

NeRF Optimization

Stochastic Gradient Descent Optimization of NeRFs:

Initialize θ with small random values For a bunch of rays (o_i,d_i) with target color c_i : compute $G=\frac{L\left(B\left(F\left(\theta;S\left(o_i,d_i\right)\right)\right),c_i\right)}{\partial\theta}$ update $\theta\leftarrow\theta-\lambda G$ // λ is learning rate Repeat upper loop until convergence

Neural Radiance Fields

NeRFs – View Dependence

 In general, we can drop the view dependence of the color, which simplifies the NeRF significantly. However, view-dependent effects such as glossy reflections get lost then.

NeRFs – Positional Encoding

- Normal MLPs tend to blur the represented function
- This improves significantly, if we input the coordinates encoded with different frequencies.

NeRFs – Positional Encoding

This idea is called "Positional Encoding"

see also later paper: Mildenhall et al.: "Fourier Features Let Networks Learn High
 Frequency Functions in Low Dimensional Domains", NeurIPS 2020

NeRFs – Positional Encoding

- Network architecture
 - $-\gamma(x)$: positional encoding
 - position is re-injected again into 5th layer
 → skip connection
 - direction d is injected very late only
 - 8th layer outputs density
 - last layer uses sigmoid as activation and outputs color

NeRFs – Hierarchical Training

- Generally, we consider very many "transparent" samples that don't contribute
 → inefficient
- Better: optimize a coarse and a fine NeRF
- First, sample the coarse NeRF
- Only in regions, where coarse NeRF has higher density, sample finer and update fine NeRF

NeRFs – Successors

- There is a huge number of successor papers and tools that improve on certain aspects
 - KiloNeRF
 - Instant Neural Graphics Primitives
 - Plenoxels
 - MobileNeRF
 - NeRFStudio
 - FlowCam
 - Radiance Field Gradient Scaling

Open Challenges

- Realtime training
- Few Input Images / Generalization
- Extract Physical Properties
- Control/Editing