Эконометрика. Лекция 6. Автокорреляция

11 декабря 2014 г.

Автокорреляция!

Для проверки гипотез мы предполагали условную некоррелированность ошибок:

$$E(\varepsilon_i \varepsilon_j | X) = 0$$
 при $i \neq j$

Что произойдет если эта предпосылка будет нарушена?

Когда логично ожидать автокорреляцию?

- <> наблюдений во времени или в пространстве
- наличие ненаблюдаемого фактора, действующего на <> наблюдения

Автокорреляцию подробно изучают!

- анализ временных рядов
- пространственная эконометрика

Автокорреляция бывает небезобидной

ullet может привести к несостоятельности оценок \hat{eta}

Чудо-доска

$$arepsilon_1=arepsilon_2=\ldots=arepsilon_n=\pm 1$$

отметим, что $E(arepsilon_1arepsilon_2|x)=1$

Автокорреляция может иметь очень сложную богатую структуру

• AR, MA, ARMA, ARIMA, VAR, VMA, VARMA, VECM, ARCH, GARCH, EGARCH, FIGARCH, TARCH, AVARCH, ZARCH, CCC, DCC, BEKK, VEC, DLM, ...

(тут можно страшными сокращениями заполнить весь экран)

Мы рассмотрим автокорреляцию порядка р

• Начнем с автокорреляции первого порядка, p=1

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

Предпосылки

- $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$
- u_t независимы между собой,
- \bullet u_t независимы от регрессоров
- \bullet *u_t* одинаково распределены
- $E(u_t) = 0$, $Var(u_t) = \sigma_u^2$

упражнение у чудо-доски

Как выглядит $Corr(\varepsilon_t, \varepsilon_{t-k})$ при автокорреляции первого порядка?

Автокорреляция порядка **р**:

$$\varepsilon_{t} = \phi_{1}\varepsilon_{t-1} + \phi_{2}\varepsilon_{t-2} + \ldots + \phi_{p}\varepsilon_{t-p}u_{t}$$
допускает более богатую структуру $Corr(\varepsilon_{i}, \varepsilon_{j})$
Как и в случае автокорреляции первого порядка,

$$\lim_{k\to\infty} \mathit{Corr}(\varepsilon_t, \varepsilon_{t-k}) = 0$$

условная автокорреляция и другие предпосылки

- автоматом нарушена предпосылки о незавимости наблюдений (x_i, y_i)
- ullet во временных рядах обычно нарушена предпосылка $E(arepsilon_t|X)=0$

например, использование y_{t-1} в качестве регрессора нарушает $E(\varepsilon_t|X)=0$

(сказать про остальные предпосылки, и более слабые варианты)

12 / 38

Мы используем прежние формулы:

- Для оценок коэффициентов: $\hat{\beta} = (X'X)^{-1}X'y$
- Для оценки ковариационной матрицы оценок коэффициентов, $\widehat{Var}(\hat{\beta}|X) = \frac{RSS}{n-k}(X'X)^{-1}$
- В частности, $\widehat{Var}(\hat{\beta}_j|X) = \frac{\hat{\sigma}^2}{RSS_i}$ и $se(\hat{\beta}_j) = \sqrt{\widehat{Var}(\hat{\beta}_j)}$

Три группы свойств:

- \bullet конечная выборка без предположения о нормальности ε
- ullet конечная выборка с предположением о нормальности arepsilon
- асимптотические свойства (без предположения о нормальности ε)

Что происходит в каждом случае?

14 / 38

Конечная выборка без предположения о нормальности

- Линейность по у
- Условная несмещенность, $E(\hat{\beta}|X) = \beta$
- (—) Оценки неэффективны

Конечная выборка с предположением о нормальности

$$\bullet \ (-) \ \frac{\hat{\beta}_j - \beta_j}{\operatorname{se}(\hat{\beta}_j)} | X \sim t_{n-k}$$

$$\bullet \ (-) \ \tfrac{RSS}{\sigma^2} | X \sim \chi^2_{n-k}$$

• (-)
$$\frac{(RSS_R - RSS_{UR})/r}{RSS_{UR}/(n-k)} \sim F_{r,n-k}$$

Асимптотические свойства:

$$\bullet \ \hat{\beta} \to \beta$$

•
$$\frac{RSS}{n-k} \rightarrow \sigma^2$$

$$ullet$$
 $(-)$ $rac{\hat{eta}_j - eta_j}{\operatorname{se}(\hat{eta}_j)}
ightarrow \mathit{N}(0,1)$

$$\bullet \ (-) \ \tfrac{RSS_R - RSS_{UR}}{RSS_{UR}/(n-k)} \to \chi^2_r$$

Мораль:

- ullet Сами \hat{eta} можно интерпретировать и использовать
- ullet Стандартные ошибки $\mathit{se}(\hat{eta}_{j})$ несостоятельны
- ullet Не можем строить доверительные интервалы для eta_i и проверять гипотезы

Что делать?

- Исправить стандартные ошибки!
- Другая формула для оценки $\widehat{Var}_{HAC}(\hat{\beta}|X)$
- Следовательно, другие $se_{HAC}(\hat{\beta}_i)$

Робастная (устойчивая) к условной гетероскедастичности и автокорреляции оценка ковариационной матрицы

• BMECTO $\widehat{Var}(\hat{\beta}|X) = \frac{RSS}{n-k}(X'X)^{-1}$

использовать

$$\widehat{Var}_{HAC}(\hat{eta}|X) = (X'X)^{-1}\hat{\Phi}(X'X)^{-1}$$

• Нью-Вест (Newey-West), 1987 (Существует много вариантов)

$$\hat{\Phi} = \sum_{j=-k}^{k} \frac{k - |j|}{k} \left(\sum_{t} \hat{\varepsilon}_{t} \hat{\varepsilon}_{t+j} x'_{t} . x_{t+j} . \right)$$

Суть корректировки:

Мы меняем $se(\hat{\beta}_i)$ на $se_{HAC}(\hat{\beta}_i)$

Какие проблемы решены?

•
$$\frac{\hat{\beta}_j - \beta_j}{se_{HAC}(\hat{\beta}_j)} \rightarrow N(0, 1) \text{ (YPA!)}$$

Какие проблемы не решены?

(-) оценки $\hat{\beta}$ не меняются и остаются неэффективными даже при предположении о нормальности ε :

• (-)
$$\frac{\hat{\beta}_j - \beta_j}{se(\hat{\beta}_j)}|X \sim t_{n-k}$$

• (-)
$$\frac{RSS}{\sigma^2}|X \sim \chi^2_{n-k}$$

• (-)
$$\frac{(RSS_R - RSS_{UR})/r}{RSS_{UR}/(n-k)} \sim F_{r,n-k}$$

С практической точки зрения:

- Новая формула для $\widehat{Var}_{HAC}(\hat{\beta}|X)$, и, следовательно, для $se_{HAC}(\hat{\beta}_i)$
- ковариационная матрица в R:

• С ней жизнь прекрасна!

$$rac{\hat{eta}_{j}-eta_{j}}{se_{HAC}(\hat{eta}_{i})}
ightarrow N(0,1)$$

Когда следует использовать

• Когда мы подозреваем наличие автокорреляции и не хотим заниматься её моделированием

Обнаружение автокорреляции

- Оцениваем интересующую нас модель с помощью МНК
- Строим график остатков в осях $\hat{\varepsilon}_{t-1}$, $\hat{\varepsilon}_t$

/здесь пришлю три графика/

Формальные тесты на автокорреляцию

- тест Дарбина-Уотсона (Durbin-Watson)
- тест Бройша-Годфри (Breusch-Godfrey)

Тест Дарбина-Уотсона предпосылки:

• Автокорреляция первого порядка в остатках

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

- ullet нормальность ошибок arepsilon
- ullet сильная экзогенность, $E(arepsilon_t|X)=0$
- H_0 об отсутствии автокорреляции, $\rho=0$

процедура теста Дарбина-Уотсона

- Шаг 1. Оценить основную регрессию, получить $\hat{\varepsilon}_i$
- Шаг 2. Посчитать статистику

$$DW = \frac{\sum_{i=2}^{n} (\hat{\varepsilon}_i - \hat{\varepsilon}_{i-1})^2}{\sum_{i=1}^{n} \hat{\varepsilon}_i^2}$$

Распределение статистики *DW*

- H_0 об отсутствии автокорреляции, $\rho = 0$
- ullet Точный закон распределения сложным образом зависит от X
- ullet Если $\hat{
 ho}$ выборочная корреляция остатков, то $DW=2(1-\hat{
 ho})$

Качественные выводы по статистике *DW*

$$DW = 2(1 - \hat{\rho})$$
, поэтому $0 < DW < 4$

- $DW \approx 0$ означает положительную автокорреляцию $\hat{\rho} \approx 1$
- $DW \approx 2$ означает отсутствие автокорреляции $\hat{\rho} \approx 0$
- ullet DW pprox 4 означает отрицательную автокорреляцию $\hat{
 ho} pprox -1$

иллюстрация (рисунок прилагается: график про Дарбина-Уотсона)

теховские надписи для графиков:

 H_0 не отвергается H_0 отвергается DW_{cr} H_0 : $\rho = 0$

С практической точки зрения:

- R рассчитывает точные P-значения для теста *DW*
- существуют таблицы диапазонов критических значений

32 / 38

Тест Бройша-Годфри (Breusch-Godfrey)

• для тестирования автокорреляции порядка р в ошибках

$$\varepsilon_t = \phi_1 \varepsilon_{t-1} + \ldots + \phi_p \varepsilon_{t-p} + u_t$$

- не требуется нормальность остатков
- ullet верен при ряде нарушений предпосылки $E(arepsilon_t|X)=0$
- асимптотический

$$H_0$$
: $\phi_1 = \phi_2 = \ldots = \phi_p = 0$

Процедура теста Бройша-Годфри

- ullet Шаг 1. Оцениваем исходную модель, получаем остатки $\hat{arepsilon}_t$
- Шаг 2. Строим вспомогательную регрессию $\hat{\varepsilon}_t$ на исходные регрессоры, $\hat{\varepsilon}_{t-1}, \, \hat{\varepsilon}_{t-2}, \, \dots, \, \hat{\varepsilon}_{t-p}, \,$ находим R_{aux}^2
- Шаг 3. Считаем статистику $BG = (n-p)R_{aux}^2$

Тест Бройша-Годфри продолжение

• При верной H_0 об отсутствии автокорреляции

$$H_0$$
: $\phi_1 = \phi_2 = \ldots = \phi_p = 0$

$$BG = (n-p)R_{aux}^2 \sim \chi_p^2$$

Здесь график распределения ВС (рисунок прилагается) Подписи на графике:

 H_0 не отвергается H_0 отвергается χ^2_{cr} H_0 : $\phi_1 = \phi_2 = \ldots = \phi_p = 0$

Тест Бройша-Годфри требует меньше предпосылок

Вставка с чудо-доской

Тест Дарбина-Уотсона и Бройша-Годфри (уже снят) здесь в задаче было дано DW, надо было найти $\hat{\rho}$ и провести тест Бройша-Годфри

Мораль

- Мы рассмотрели ситуацию нарушения предпосылки условной некоррелированности ошибок модели
- Нарушена во временных рядах и пространственных данных
- В простейшем случае достаточно использовать специальные стандартные ошибки зенас
- Большое количество специальных моделей