CHAPTER 6

ENZYMES

- **6.1** An introduction to enzymes
- 6.2 How enzymes work
- 6.3 Enzyme kinetics as an approach to understanding mechanism
- 6.4 Examples of enzymatic reactions
- 6.5 Regulatory enzymes

- •In the <u>1850s</u>, <u>Louis Pasteur</u> came to the conclusion that <u>the fermentation of sugar to</u> <u>alcohol by yeast was catalyzed by a vital force contained within the yeast cells called <u>"ferments"</u>, <u>which were thought to be inseparable from the organisms</u>. This view, called <u>vitalism</u>, prevailed for decades.</u>
- •In <u>1877</u>, German physiologist <u>Wilhelm Frederick Kühne</u> first used the term *enzyme*, which comes from Greek, "in yeast", to describe this process. Notably, in 1876, Kühne discovered the protein-digesting enzyme trypsin.
- ●In <u>1897</u>, <u>Eduard Buchner</u> found that the <u>sugar was fermented even when there were no</u> <u>living yeast cells in the mixture</u>. He named the enzyme that brought about the fermentation of sucrose "zymase". <u>In 1907</u>, <u>he received the Nobel Prize in Chemistry</u> "for his biochemical research and his discovery of cell-free fermentation".
- ●In <u>1926</u>, <u>James B. Sumner</u> showed that the enzyme <u>wrease</u> was a pure protein and <u>crystallized</u> it. The conclusion that pure proteins can be enzymes was definitively proved by <u>Northrop and Stanley</u>, who worked on the digestive enzymes <u>pepsin</u> (1930), <u>trypsin and chymotrypsin</u>. These three scientists were awarded the 1946 Nobel Prize in Chemistry. "for his discovery that enzymes can be crystallized" and "for their preparation of enzymes and virus proteins in a pure form".
- Lysozyme was the second protein structure and the first enzyme structure to be solved via X-ray diffraction methods by a group led by David Chilton Phillips and published in 1965. This high-resolution structure of lysozyme revealed how enzymes work at an atomic level of detail.
- Many enzymes have been named by adding the suffix \sim to the name of their substrates (e.g., urease catalyzes the hydrolysis of urea) or the type of reaction (e.g., DNA polymerase forms DNA polymers).

Most enzymes are proteins

- With the exception of a small group of catalytic RNA molecules (<u>Ribozyme</u>, <u>and ribosomal RNA</u>), all enzymes are proteins.
- Their catalytic activity depends on the integrity of their native protein conformation.
- Some enzymes require no chemical groups for activity other than their amino acid residues. Others require an additional chemical component called a cofactor—either one or more inorganic ions such as Fe²⁺, Mg²⁺, Mn²⁺, or Zn²⁺, or a complex organic or metalloorganic molecule called a coenzyme.

TABLE 6-1

Some Inorganic Ions That Serve as Cofactors for Enzymes

lons	Enzymes
Cu ²⁺	Cytochrome oxidase
Fe ²⁺ or Fe ³⁺	Cytochrome oxidase, catalase, peroxidase
K ⁺	Pyruvate kinase
Mg ²⁺	Hexokinase, glucose 6-phosphatase, pyruvate kinase
Mn ²⁺	Arginase, ribonucleotide reductase
Мо	Dinitrogenase
Ni ²⁺	Urease
Se	Glutathione peroxidase
Zn ²⁺	Carbonic anhydrase, alcohol dehydrogenase, carboxypeptidases A and B

•	Formula of dominal manustrum formed	Ni-t
Coenzyme	Examples of chemical groups transferred	Dietary precursor in mammals
Biocytin	CO ₂	Biotin
Coenzyme A	Acyl groups	Pantothenic acid and other compounds
5'-Deoxyadenosylcobalamin (coenzyme B ₁₂)	H atoms and alkyl groups	Vitamin B ₁₂
Flavin adenine dinucleotide	Electrons	Riboflavin (vitamin B ₂)
Lipoate	Electrons and acyl groups	Not required in diet
Nicotinamide adenine dinucleotide	Hydride ion (:H ⁻)	Nicotinic acid (niacin)
Pyridoxal phosphate	Amino groups	Pyridoxine (vitamin B ₆)
Tetrahydrofolate	One-carbon groups	Folate
Thiamine pyrophosphate	Aldehydes	Thiamine (vitamin B ₁)

Note: The structures and modes of action of these coenzymes are described in Part II.

- A coenzyme or metal ion that is very tightly or even covalently bound to the enzyme protein is called a prosthetic group.
- A complete, catalytically active enzyme together with its bound coenzyme and/or metal ions is called a holoenzyme.
- The protein part of such an enzyme is called the apoenzyme or apoprotein.
- Some enzyme proteins are modified covalently by phosphorylation, glycosylation, and other processes.

Enzymes are classified by the reactions they catalyze

- Many enzymes have been named by adding the suffix "-ase" to the name of their substrate or to a word or phrase describing their activity.
- Other enzymes were named by their discoverers for a broad function, before the specific reaction catalyzed was known.

Enzyme Commission number (E.C. number)

TABLE 6–3 International C		lassification of Enzymes
Class no.	Class name	Type of reaction catalyzed
1	Oxidoreductases	Transfer of electrons (hydride ions or H atoms)
2	Transferases	Group transfer reactions
3	Hydrolases	Hydrolysis reactions (transfer of functional groups to water)
4	Lyases	Addition of groups to double bonds, or formation of double bonds by removal of groups
5	Isomerases	Transfer of groups within molecules to yield isomeric forms
6	Ligases	Formation of C—C, C—S, C—O, and C—N bonds by condensation reactions coupled to cleavage of ATP or similar cofactor

What is enzyme kinetics?

- Kinetics is the study of the rate at which compounds react
- Rate of enzymatic reaction is affected by
 - –Enzyme
 - -Substrate
 - -Effectors
 - Temperature

Why study enzyme kinetics?

- Quantitative description of biocatalysis
- Determine the order of binding of substrates
- Elucidate acid-base catalysis
- Understand catalytic mechanism
- Find effective inhibitors
- Understand regulation of activity

動力學公式的意義

可求得 V_{max} 及 K_m

$$v_0 = V_{\text{max}} \times K = k_3 \text{ [Et]} \times K$$

$$v_o = \frac{V_{\text{max}}[S]}{K_m + [S]}$$

與酵素量成正比

[S] = 固定濃度

Steady State 時 ES 的濃度恆定

Km是基質親和力的指標

動力學實驗操作

1) 先取固定量的 酵素

 \rightarrow

2) 加入各種不同濃度的 基質

 \rightarrow S (x \rightleftharpoons

)3) 在一定時間內測生成物量(P/t)

- $\rightarrow v_o$ (y \rightleftharpoons h)
- 4) (x, y) 作圖得 雙曲線 之一股推 漸近點
- $\rightarrow V_{\text{max}}$
- 5) 當 y = $1/2 V_{max}$ 時求其 x (即 [S]) 即得 $\rightarrow K_m$

Michaelis-Menten plot

Lineweaver-Burk plot (double reciprocal plot)

Eadie-Hofstee Plot

An advantage of an Eadie-Hofstee plot over a Lineweaver Burk plot is that the

Eadie-Hofstee plot does not require a long extrapolation to calculate Km

酵素的抑制

可逆性抑制

不可逆抑制

抑制劑與酵素非共價結合

抑制劑與酵素行共價性修飾

Competitive

Non-competitive

(Mixed inhibition)

Uncompetitive

Penicillin 青黴素

重金屬 (Hg, Pb)

DFP, TPCK Sarin (-Ser) PCMB (-Cys)

(a) Competitive inhibition

(b) Uncompetitive inhibition

Vmax 變小

Km 變小 (親和力變大)

(c) Mixed inhibition (Noncompetitive)

$$E + S \Longrightarrow ES \longrightarrow E + P$$

$$\downarrow I \qquad \downarrow I \qquad \downarrow S$$

$$\downarrow K_{I} \qquad \downarrow K_{I}' \qquad \downarrow S$$

$$EI + S \Longleftrightarrow ESI \qquad \boxed{1}$$

Vmax 變小

Km 變大 (親和力變小)

