TUTORIAL: SysTick Interrupt

Timer and Time Delay

Name: 김은찬 ID: 21801017

I. Introduction

In this tutorial, we will learn how to use SysTick interrupt. We will create functions to count up numbers at a constant rate using SysTick.

The objectives of this tutorial are how to

- Configure SysTick with NVIC
- Create your own functions for configuration of interrupts

Hardware

NUCLEO -F411RE

Software

Keil uVision IDE, CMSIS, EC_HAL

Documentation

STM32 Reference Manual

II. Basics of SysTick

A. Register List

List of SysTick registers for this tutorial. [Programming Manual ch4.3, ch10.2]

Туре	Register Name	Description
SYSCFG_	SysTick_CTRL	Clock Control and Status
	SysTick_LOAD	Reload Value
	SysTick_VAL	Current Value

Schematic

FIGURE 9.15

A simplified block diagram of SysTick timer

B. Register Setting

(RCC system clock)

1. PLL, HCLK= 84MHz

(System Tick Configuration)

- 1. Disable SysTick Timer
- SysTick->CTRL ENABLE=0
- 2. Choose clock signal: System clock or ref. clock(STCLK)
- SysTick->CTRL CLKSOURCE = 0 or 1
- 3. Choose to use Tick Interrupt (timer goes 1->0)
- SysTick->CTRL TICKINT = 0 or 1
- 4. Write reload Counting value (24-bit)
- SysTick->LOAD RELOAD = (value-1)
- 5. Start SysTick Timer
- SysTick->CTRL ENABLE=1
- 6. (option) Read or Clear current counting value
- · Read from SysTick->VAL
- · Write clears value

(NVIC Configuration)

- NVIC SysTick Interrupt priority
- NVIC SysTick Enable

III. Tutorial

A. Register Configuration

Fill in the table

Port/Pin	Description	Register setting		
SYSTICK	Disable SysTick Timer	SysTick->CTRL = 0<<0		
	Choose clock signal: System clock	SysTick->CTRL = 1<<2		
	Write reload Counting value Make it 1ms / 1s	SysTick-> LOAD = 16000000 / 1000 - 1		
	Start SysTick Timer	SysTick-> CTRL = 1<<0		
	Read from SysTick value	val = SysTick -> VAL		
	Clear from SysTick value	SysTick ->VAL = 0		
	Set SysTick Interrupt priority =15	NVIC_SetPriority(SysTick_IRQn, 16)		
NVIC	NVIC SysTick Enable	NVIC_EnableIRQ(SysTick_IRQn)		

B. Programming

Procedure

- Create a new folder 'EC/Tutorial/TU_ SysTick /'
- Open the program 'Keil uVision5' and create a new project.
- Name the project as 'TU_ SysTick'.
- Create a new item called 'TU_SysTick.c'
- Use the given source code <u>Click here to download</u>
- · This is an example code for turning LED on/off with the button input trigger.
- Fill in the empty spaces in the code.
- Run the program and check your result.
- Your tutorial report must be submitted to LMS

Exercise

- Create a simple program that turns LED on/off at 1 second period.
- Set the SysTick to be 1msec.
- You can define the necessary timer or time wait function in the handler function of void Systick_Handler(void)

Example:

```
void SysTick_Handler(void){ msTicks++;}
```

- There are other methods for making time delay functions. Check here for examples
- You can check some sample codes here

```
#include "stm32f4llxe.h"
#include "ecRCC.h"
#include "ecGPIO.h"
 #define MCU_CLK_PLL 84000000
#define MCU_CLK_HSI 16000000
volatile uint32_t msTicks = 0;
volatile uint32_t curTicks;
void setup(void);
void SysTick_Handler(void);
int main(void) {
 // System CLOCK, GPIO Initialization -----
   setup();
 // SysTick Initialiization ------
   // SysTick Control and Status Register
                       // Disable SysTick IRQ and SysTick Counter
  SysTick->CTRL = 0;
  // Select processor clock
   // 1 = processor clock; 0 = external clock
  SysTick->CTRL |= 1<<2;
   // uint32 t MCU CLK=EC SYSTEM CLK
   // SysTick Reload Value Register
                                               // lms
  SysTick->LOAD = MCU_CLK_HSI / 1000 - 1;
   // Clear SysTick Current Value
   SysTick -> VAL = 0;
   // Enables SysTick exception request
  // 1 = counting down to zero asserts the SysTick exception request
SysTick->CTRL |= 1<<1;</pre>
// Enable SysTick IRQ and SysTick Timer
  SysTick->CTRL |= 1<<0;
  NVIC_SetPriority(SysTick_IRQn, 16);  // Set Priority to 1
NVIC_EnableIRQ(SysTick_IRQn);  // Enable interrupt in NVIC
// While loop -----
  msTicks = 0;
  while(1){
    curTicks = msTicks;
    while ((msTicks - curTicks) < 1000);
    msTicks = 0;
   bit_toggling(GPIOA,LED_PIN);
void SysTick Handler(void) {
 msTicks++;
void setup(void)
 RCC PLL init();
                                              // System Clock = 84MHz
  GPIO init(GPIOA, LED PIN, OUTPUT); // calls RCC GPIOA enable()
```

Appendix

See here for MCU resources

1. Pin Configuration of NUCLE-F401RE

Figure 18. NUCLEO-F401RE

Table 29. ST morpho connector on NUCLEO-F401RE, NUCLEO-F411RE, NUCLEO-F446RE

NUCLEO-F411RE, NUCLEO-F446RE										
CN7 odd pins		CN7 even pins		CN10 odd pins		CN10 even pins				
Pin	Name	Name	Pin	Pin	Name	Name	Pin			
1	PC10	PC11	2	1	PC9	PC8	2			
3	PC12	PD2	4	3	PB8	PC6	4			
5	VDD	E5V	6	5	PB9	PC5	6			
7	ВООТО ⁽¹⁾	GND	8	7	AVDD	U5V ⁽²⁾	8			
9	-	-	10	9	GND	-	10			
11	-	IOREF	12	11	PA5	PA12	12			
13	PA13 ⁽³⁾	RESET	14	13	PA6	PA11	14			
15	PA14 ⁽³⁾	+3.3V	16	15	PA7	PB12	16			
17	PA15	+5V	18	17	PB6	-	18			
19	GND	GND	20	19	PC7	GND	20			
21	PB7	GND	22	21	PA9	PB2	22			
23	PC13	VIN	24	23	PA8	PB1	24			
25	PC14	-	26	25	PB10	PB15	26			
27	PC15	PA0	28	27	PB4	PB14	28			
29	PH0	PA1	30	29	PB5	PB13	30			
31	PH1	PA4	32	31	PB3	AGND	32			
33	VBAT	PB0	34	33	PA10	PC4	34			
35	PC2	PC1 or PB9 ⁽⁴⁾	36	35	PA2	-	36			
37	PC3	PC0 or PB8 ⁽⁴⁾	38	37	PA3	-	38			

Default state of BOOT0 is 0. It can be set to 1 when a jumper is on pin5-7 of CN7. Two unused jumpers are available on CN11 and CN12 (bottom side of the board).

^{2.} U5V is 5 V power from ST-LINK/V2-1 USB connector and it rises before +5V.

PA13 and PA14 share with SWD signals connected to ST-LINK/V2-1, it is not recommend to use them as IO pins if ST-LINK part is not cut.

^{4.} Refer to Table 10: Solder bridges for details.

2. LED/Button Circuit Diagram

