CS 188: Artificial Intelligence Fall 2010

Lecture 20: Particle Filtering 11/4/2010

Dan Klein - UC Berkeley

Robot Localization

- In robot localization:
 - We know the map, but not the robot's position
 - Observations may be vectors of range finder readings
 - State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
 - Particle filtering is a main technique
- [Demos]

P4: Ghostbusters 2.0 (beta)

- Plot: Pacman's grandfather, Grandpac, learned to hunt ghosts for sport.
- He was blinded by his power, but could hear the ghosts' banging and clanging.
- Transition Model: All ghosts move randomly, but are sometimes biased
- Emission Model: Pacman knows a "noisy" distance to each ghost

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

DBNs with evidence at leaves are (in principle) HMMs

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until P(X_T|e_{1-T}) is computed

 Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

13

DBN Particle Filters

- A particle is a **complete** sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: **G**₁^a = (3,3) **G**₁^b = (5,3)
- Elapse time: Sample a successor for each particle
 - Example successor: **G**₂^a = (2,3) **G**₂^b = (6,3)
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(\mathbf{E_1}^a | \mathbf{G_1}^a) * P(\mathbf{E_1}^b | \mathbf{G_1}^b)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

[Demo

HMMs: MLE Queries

- HMMs defined by
 - States X
 - Observations E
 - Initial distr: $P(X_1)$
 - Transitions: $P(X|X_{-1})$
 - Emissions: P(E|X)
- Query: most likely

explanation:

$$\operatorname*{arg\,max}_{x_{1:t}} P(x_{1:t}|e_{1:t})$$

16

State Path Trellis

· State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1}
 ightarrow x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is the seq's probability
- Can think of the Forward (and now Viterbi) algorithms as computing sums of all paths (best paths) in this graph

Viterbi Algorithm $x_{1:T}^* = \underset{x_{1:T-1}}{\operatorname{arg \, max}} P(x_{1:T}|e_{1:T}) = \underset{x_{1:T}}{\operatorname{arg \, max}} P(x_{1:T},e_{1:T})$ $m_t[x_t] = \underset{x_{1:t-1}}{\operatorname{max}} P(x_{1:t-1},x_t,e_{1:t})$ $= \underset{x_{1:t-1}}{\operatorname{max}} P(x_{1:t-1},e_{1:t-1}) P(x_t|x_{t-1}) P(e_t|x_t)$ $= P(e_t|x_t) \underset{x_{t-1}}{\operatorname{max}} P(x_t|x_{t-1}) \underset{x_{1:t-2}}{\operatorname{max}} P(x_{1:t-1},e_{1:t-1})$ $= P(e_t|x_t) \underset{x_{t-1}}{\operatorname{max}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$ $= P(e_t|x_t) \underset{x_{t-1}}{\operatorname{max}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$

