اهتمان شمادة ختم التعليم الأساسي العام * دورة 2013 *

الجمهورية التونسية وزارة التربية

الضارب: 2

المصة: ساعتسان

الافتجار: الرياضيـــات

التمرين الأوّل: (3 نقاط)

يلي كلِّ سؤال ثلاث إجابات، إحداها فقط صحيحة.

أنقل، في كلِّ مرة، على ورقة تحريرك رقم السؤال والإجابة الصحيحة الموافقة له.

1) العدد 4536a79b حيث a و b وقمان، يقبل القسمة على 15 إذا كان:

$$b = 5$$
 9 $a = 4$ (z

$$b = 0$$
 و $a = 2$ (ب

$$b = 2$$
 a = 5 (

39 (1

3) يحتوي صندوق على 40 كرة كُتب على كلّ منها ثمنها بالدينار كما يبيّن الجدول التالي:

20	15	10	5	الثمن بالدينار
11	13	4	12	عدد الكرات

إذا اخترنا بصفة عشوائية كرة من بين هذه الكرات فإنّ احتمال أن لا يتجاوز ثمنها 12 دينارا هو:

10 % (1

التمرين الثاني : (3.5 نقاط)

$$b=rac{\sqrt{5}-1}{2}$$
 و $a=rac{\sqrt{5}+1}{2}$ نعتبر العددين الحقيقيين

- a + b (1)
- . a مقلوب العدد b (بين أن أن أبين أن إلى المحدد b المحدد)
- 2) (وحدة قيس الطول هي الصّنتمتر) .

ABCD مربّع بحيث 1=AB و ا منتصف [AB].

الدائرة التي مركزها I و تمرّمن النقطة C تقطع نصف المستقيم (AB) في نقطة E.

$$BE = \frac{\sqrt{5} - 1}{2}$$
 و $AE = \frac{1 + \sqrt{5}}{2}$ بيّن أنّ

التمرين الثالث : (4.5 نقاط)

نعتبر العبارة
$$A = \frac{1}{3}(3x-2) + 2x - \frac{7}{3}$$
 عدد حقيقي.

$$A = 3x - 3$$
 أ) بين أن (1

$$3x-3 \ge 0$$
 المتراجحة $0 \le 3x-3$

2) لتكن العبارة
$$x = x^2 - (1 + \sqrt{2})x + \sqrt{2}$$
 عدد حقيقي.

$$x=\sqrt{2}$$
 القيمة العدديّة للعبارة B أحسب القيمة العدديّة العبارة B

$$B = (x-1)(x-\sqrt{2})$$
 بیّن آن (ب

$$B-A = (x-1)(x-\sqrt{2}-3)$$
 أ) بيّن أنّ (3

$$A = B$$
 بحيث x بحيث الأعداد الحقيقية

التمرين الرابع: (5 نقاط)

(وحدة قيس الطول هي الصنتمتر)

A و B نقطتان من المستوى حيث 6-AB و O منتصف قطعة المستقيم [AB].

C نقطة من الموسّط العمودي لقطعة المستقيم [AB]حيث OC=3.

1) بين أن G مركز ثقل المثلّث ABD.

2) المستقيم (AG) يقطع [BD] في النقطة £

أ) بيّن أنّ E منتصف [BD].

ب) بين أنّ المستقيمين (AB) و (BD) متعامدان و أنّ BD=6.

ج) بيّن أنّ AE=3√5 ثم أحسب AG.

ب) بيّن أنّ OECA متوازي الأضلاع. ماذا يمثل (EG) بالنسبة إلى المثلّث OEC ؟

ج) بيّن أنّ G مركز ثقل المثلّث OEC.

التمرين المامس : (4 نقاط)

(وحدة قيس الطول هي الصنتمتر)

 $AB = 2\sqrt{2}$ مربّع و ABCD حيث SABCD مربّع و ABCD يمثل الرسم المصاحب هرما

 $SA = 2\sqrt{5}$ و (AD) و (AB) المستقيم (SA) عموديّ على المستقيمين

1) أ) بين أنّ المستقيم (SA) عموديّ على المستوي (ABD).

ب) استنتج أنّ المثّلث SAC قائم الزاوية.

. AC أحسب البعد (1)

3) لتكن E منتصف [SC] . أحسب البعد 3

إصلاح إمتحان شهادة ختم التّعليم الأساسي العام لدورة 2013 في مادّة الرّياضيّات

التمرين الأوّل:

$$a+b = \frac{\sqrt{5}+1}{2} + \frac{\sqrt{5}-1}{2} = \frac{\sqrt{5}+1}{2} + \frac{\sqrt{5}-1}{2} = \frac{\cancel{2}\sqrt{5}}{\cancel{2}} = \sqrt{5}$$

$$a+b = \sqrt{5}$$

$$a+b = \sqrt{5}$$

$$a \times b = \left(\frac{\sqrt{5}+1}{2}\right) \times \left(\frac{\sqrt{5}-1}{2}\right) = \frac{\left(\sqrt{5}+1\right) \times \left(\sqrt{5}-1\right)}{2 \times 2} = \frac{\sqrt{5}^2-1^2}{4} = \frac{5-1}{4} = \frac{4}{4} = 1$$
 . فإنّ: a هو مقلوب العدد a

. [AB] حيث $\frac{AB}{2}$ حيث $IB = \frac{AB}{2}$ لأنّ $IB = \frac{AB}{2}$ حيث $IC^2 = IB^2 + BC^2$ المثلّث IBC القائم في IBC فإنّ: IBC

$$IC^2 = \frac{5}{4}$$
 يعني $IC^2 = \frac{1}{4} + 1$ يعني $IC^2 = \left(\frac{1}{2}\right)^2 + 1^2$ يعني $IC^2 = \left(\frac{AB}{2}\right)^2 + BC^2$

$$IC = \frac{\sqrt{5}}{2}$$
 : و منه $IC = \sqrt{\frac{5}{4}}$ يعني

ب- بما أنّ: IE=IC (يمثّلان شعاعيْ الدّائرة)

. [AB] لأنّ ا منتصف IB=IA=
$$\frac{AB}{2}$$
 : و

$$AE = \frac{1+\sqrt{5}}{2}$$
يعني $AE = \frac{1}{2} + \frac{\sqrt{5}}{2}$ يعني $AE = \frac{AB}{2} + IC$ يعني $AE = IA + IE$

$$BE = \frac{\sqrt{5} - 1}{2}$$
 يعني $BE = IC - \frac{AB}{2}$ يعني $BE = IE - IB$ يعني $BE = IE - IB$

التّمرين الثّالث:

$$A = \frac{1}{3}(3x - 2) + 2x - \frac{7}{3} = \frac{1}{3} \times 3x - \frac{1}{3} \times 2 + 2x - \frac{7}{3}$$

$$= x - \frac{2}{3} + 2x - \frac{7}{3}$$

$$= 3x - \frac{9}{3} = 3x - 3$$

$$[A = 3x - 3] : \downarrow \dot{}$$

$$S_{\mathbb{R}}=\left[1,+\infty
ight[:]$$
 و بالثّالي يعني $3x\geq 3$ يعني $3x\geq 3$ يعني $3x\geq 3$

$$\mathbf{B} = \sqrt{2}^2 - \left(1 + \sqrt{2}\right) \times \sqrt{2} + \sqrt{2} = 2 - 1 \times \sqrt{2} - \sqrt{2} \times \sqrt{2} + \sqrt{2} \quad \text{i.i.} \quad x = \sqrt{2} \quad \text{i.i.} \quad \mathbf{2}$$

$$=2\sqrt{2}/2+\sqrt{2}=0$$

$$B = (x - 1)(x - \sqrt{2}) = x \times x - x \times \sqrt{2} - 1 \times x + 1 \times \sqrt{2}$$

$$=x^2-\sqrt{2}x-x+\sqrt{2}$$

$$=x^{2}-(\sqrt{2}+1)x+\sqrt{2}$$

$$= x^{2} - (\sqrt{2} + 1)x + \sqrt{2}$$

$$B = (x - 1)(x - \sqrt{2})$$
 إذن:

B-A=
$$(x-1)(x-\sqrt{2})-(3x-3)=(x-1)(x-\sqrt{2})-3(x-1)$$

$$=(x-1)(x-\sqrt{2}-3)$$
(3

$$x - \sqrt{2} - 3 = 0$$
 يعني $A = B = 0$ يعني $A = B = 0$ يعني $A = B = 0$ يعني $A = B$

$$x = \sqrt{2} + 3$$
 يعني $x = 1$ أو

التّمرين الرّابع: 1) لدينا في المثلّث ABD:

- $\sim C$ منتصف [AD] يعني [BC] موسّط المثلّث ABD (لأنّ \sim و \sim متناظرتان بالنّسبة إلى \sim).
 - ✓ منتصف [AB] يعني [DO] موسطا للمثلّث ABD.

. ABD و بما أنّ [BC] و بما أنّ [BC] و بما أنّ [BC] و بما أنّ المثلّث [BC]

2) أ- بما أنّ G مركز ثقل المثلّث ABD ، فإنّ [AG] موسّطا للمثلّث ABD يعني المستقيم (AG) يقطع الضّلع [BD] في منتصفه، و بالتّالي : E منتصف [BD] .

- * لدينا: CA=CD لأن C منتصف (AD) ؛ و : CA=CB لأن C نقطة من الموسّط العمودي للقطعة (AB). ممّا يعني أنّ: CA=CD=CB و بما أنّ C منتصف [AD] ، فإنّ :ABD مثلّث قائم الزّاوية في B
 - $(AB) \perp (BD)$: و منه
 - ❖ لدينا في المثلّث ABD : O و C منتصفيْ [AB] و [AD] على التّوالي.

BD=6 cm و بالثّالي: $D=2\times 3=6$ يعني $D=2\times OC$ و بالثّالي: $D=2\times BD=2\times OC$

:AE حساب البعد

 $AE^2 = AB^2 + BE^2$: القائم في B ، فإنّ ABE بتطبيق نظريّة بيتاغور في المثلّث ABE

 $AE^2=45$ يعنى $AE^2=36+9$ يعنى $AE^2=6^2+3^2$

 $AE=3\sqrt{5}$ و منه : $AE=\sqrt{45}=\sqrt{9}\times\sqrt{5}=3\sqrt{5}$ و منه :

 $AG = \frac{2}{\cancel{3}} \times \cancel{3} \sqrt{5}$ يعني : $AG = \frac{2}{\cancel{3}} \times AE$ فإنّ ن ABD مركز ثقل المثلّث AG

 $AG=2\sqrt{5}$ إذن:

بما أنّ OEDC متوازي أضلاع ، فإن قطراه يتقاطعان في منتصفيهما يعني [OD] يقطع [CE] في منتصفه،
 و بما أنّ G نقطة من المستقيم (OD) فإنّ (OG) يقطع الضّلع [CE] في منتصفه،
 و بما أنّ G خامل لإحدى موسطات المثلّث OEC .

ب-

- ❖ لدينا في المثلّث ABD:
- . [AD] منتصف C ✓
- . [BD] منتصف E ✓

النا:
$$(CE)//(AB)$$
 و منه : $(CE)//(AO)$ و منه $(CE)//(AO)$ و منه $(CE)//(AB)$ و النا: $(CE)//(AB)$

بما أنّ OECA متوازي أضلاع ، فإنّ قطراه يتقاطعان في منتصفيْهما يعني [AE] يقطع [OC] في منتصفه،
 و بما أنّ G نقطة من المستقيم (AE) فإنّ (EG) يقطع الضلع [OC] في منتصفه،
 و بالتّالى : (EG) حامل لإحدى موسّطات المثلّث OEC .

ج- بما أنّ G نقطة تقاطع المستقيمين (OG) و (EG) حامليْ موسّطيْ للمثلّث OEC ، فإنّ :G تمثّل مركز ثقل المثلّث ABD

لتمرين الخامس:

(ABD) عمودي على (AB) على التّوالي في النّقطة A_{0} و (ABD) على التّوالي في النّقطة A_{0} و هما مستقيمين من المستوي (ABD).

$$(SA) \perp (ABD)$$
 فإنّ

- A و مارّ من A و مارّ من A و مارّ من A عمودي على المستوي (ABD) في النّقطة A ، فإنّ كلّ مستقيم محتو في المستوي (SA) و مارّ من A يعني A مثلّث قائم الزّاوية في A .
 - $\boxed{AC=4~cm}$ ، و بالتّالي: $AC=\sqrt{2}\times AB=\sqrt{2}\times 2\sqrt{2}=4~cm$ ، و بالتّالي: $AC=\sqrt{2}\times AB=\sqrt{2}\times 2\sqrt{2}=4~cm$ ، و بالتّالي: ABCD

$$SC^2 = 4^2 + \left(2\sqrt{5}\right)^2$$
 يعني $SC^2 = AC^2 + AS^2$ القائم في $SC^2 = 4^2 + \left(2\sqrt{5}\right)^2$ يعني $SC^2 = 4^2 + \left(2\sqrt{5}\right)^2$ القائم في $SC^2 = 4^2 + \left(2\sqrt{5}\right)^2$

$$SC=6 \ cm$$
 يعني $SC=\sqrt{36}=6 \ cm$ يعني $SC^2=36 \ cm$ و بالنّالي: $SC^2=16+20$

ن البعد عن رؤوسه الثّلاثة، A مثلّث قائم الزّاوية في A فإنّ منتصف وتره A متساوي البعد عن رؤوسه الثّلاثة،

$$AE=3 \text{ cm}$$
 و بما أنّ $AE=6=2 \text{ ex}$ و بما أنّ $E=6=3 \text{ ex}$ و بما أنّ $E=6=3 \text{ ex}$ و بما أنّ $E=6=3 \text{ ex}$