

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Tarea 1

Ecuaciones Diferenciales Ordinarias - MAT2500 Fecha de Entrega: 2019-08-30 Agradecimientos a las siguientes personas: Maximiliano Norbu, Agustín Oyarce, Camilo Sánchez, Benjamín Cortez, Felipe Guzmán

${\bf \acute{I}ndice}$

Problema 1	1
Problema 2	1
Problema 3	2
Problema 4	4
Problema 5	5
Problema 6	5
Problema 7	6
Problema 8	6

Problema 1:

Transforme las siguientes EDOs en sistemas autónomos de primer orden:

- (a) $\ddot{x} + t\sin(\dot{x}) = x$.
- (b) $\ddot{x} = -y, \ddot{y} = x$.

Solución problema 1: Se toman los siguientes sistemas autónomos de primer orden, y se nota que son equivalentes a los correspondientes:

- (a) $\dot{t} = 1$, $z = \dot{x}$, $\dot{z} + t\sin(z) = x$
- (b) $w = \dot{x}, y = -\dot{w}, x = \dot{z}, z = \dot{y}$

Problema 2:

Encuentre soluciones a las siguientes EDOs:

- (a) $\dot{x} = x(1-x)$
- (b) $\dot{x} = \sin(t) \exp(x)$

Solución problema 2:

(a) Notemos que $x(t) \equiv 0$ y $x(t) \equiv 1$ son soluciones, por lo que se puede asumir que $x \neq 1$ y $x \neq 0$ localmente. Usando un poco de álgebra se llega a la siguiente ecuación:

$$\frac{\dot{x}}{x(1-x)} = 1$$

La cual se puede integrar, quedando lo siguiente:

$$\int_{x(t_0)}^{x(t)} \frac{\mathrm{d}x}{x(1-x)} = \int_{t_0}^t \mathrm{d}s$$

Se nota que $\frac{1}{x(1-x)} = \frac{1}{x} + \frac{1}{1-x}$, por lo que la ecuación anterior se ve de la siguiente forma:

$$\ln(x(t)) - \ln(x(t_0)) - \ln(1 - x(t)) + \ln(1 - x(t_0)) = t - t_0$$

Con lo que se ve que

$$\frac{x(t)}{x(t_0)} \cdot \frac{1 - x(t_0)}{1 - x(t)} = \exp(t - t_0)$$

Y por un poco de álgebra se tiene lo siguiente:

$$x(t) = \frac{\frac{x(t_0)}{1 - x(t_0)} \exp(t - t_0)}{1 + \frac{x(t_0)}{1 - x(t_0)} \exp(t - t_0)}$$

La cual es una solución local.

(b) Se nota que la EDO es equivalente a la siguiente:

$$\dot{x}\exp(-x) = \sin(t)$$

Por lo que se puede integrar, consiguiendo lo siguiente:

$$\int_{x(t_0)}^{x(t)} \exp(-x) \, \mathrm{d}x = \int_{t_0}^t \sin(s) \, \mathrm{d}s$$

Solucionando las integrales y haciendo un poco de álgebra se tiene que:

$$x(t) = -\ln(\cos(t) - \cos(t_0) + \exp(-x(t_0)))$$

Lo cual nos da una solución local.

Problema 3:

Encuentre soluciones a las siguientes EDOs

(a)
$$\dot{x} = \frac{3x - 2t}{t}$$

(b)
$$y' = y^2 - \frac{y}{x} - \frac{1}{x^2}$$

(c)
$$y' = \frac{y}{x} - \tan(\frac{y}{x})$$

Solución problema 3:

(a) La EDO correspondiente se puede escribir de la siguiente manera¹:

$$\dot{x} - \frac{3x}{t} = -2$$

¹Recordando que $t \neq 0$

Tomando el factor integrante exp $\left(\int_{t_0}^t -3/t \, dt\right)$, se llega a la siguiente igualdad:

$$\left(x \exp\left(\int_{t_0}^t -3/s \, \mathrm{d}s\right)\right)' = -2 \exp\left(\int_{t_0}^t -3/s \, \mathrm{d}s\right)$$

Desarrollando el factor integrante e integrando en ambos lados se consigue lo siguiente:

$$x(t) \cdot \left(\frac{t_0}{t}\right)^3 - x(t_0) = 2t_0^3 \left(\frac{1}{t^4} - \frac{1}{t_0^4}\right)$$

Con lo que se ve que las soluciones son de la siguiente forma:

$$x(t) = x(t_0) \cdot \left(\frac{t}{t_0}\right)^3 + 2\left(\frac{1}{t} - \frac{t^3}{t_0^4}\right)$$

Consiguiendo lo pedido.

(b) Para esta EDO se nota que la sustitución de Ricatti funciona, por lo que se necesita una solución particular. Notamos que $y(x) = \frac{1}{x}$ es una solución particular², por lo que se usa la sustitución $u = \frac{1}{y - \frac{1}{x}}$ y algo de álgebra para llegar a la siguiente EDO:

$$u' + \frac{u}{x} = -1$$

La cual se puede solucionar multiplicando por el factor integrante:

$$\left(u \exp\left(\int_{x_0}^x \frac{1}{s} \, \mathrm{d}s\right)\right)' = -\exp\left(\int_{x_0}^x \frac{1}{s} \, \mathrm{d}s\right)$$

Ahora, integrando de nuevo y solucionando el factor integrante se llega a lo siguiente:

$$u(x) \cdot \frac{x}{x_0} - u(x_0) = \frac{x}{x_0} - 1$$

Con lo que tenemos la forma general de u(x):

$$u(x) = \frac{x_0}{r}u(x_0) - \frac{x_0}{r} + 1$$

Deshaciendo la sustitución se llega a lo siguiente:

$$y(x) = \frac{1}{x} + \frac{1}{\frac{x_0}{x}u(x_0) - \frac{x_0}{x} + 1}$$

$$\frac{1}{2}y' = -\frac{1}{x^2} = \frac{1}{x^2} - \frac{1}{x} \cdot \frac{1}{x} - \frac{1}{x^2} = y^2 - \frac{y}{x} - \frac{1}{x^2}$$

Lo que nos da la forma general de una solución.

(c) Se ve que si se usa la sustitución $u = \frac{y}{x}$, esto nos simplifica la EDO a lo siguiente:

$$u'x + u = u - \tan(u)$$

Si es que u=0, la función idénticamente cero es solución, por lo que se verán soluciones localmente no cero. Con esto se puede resolver la EDO escribiéndola de la siguiente forma:

$$\frac{u'}{\tan(u)} = -\frac{1}{x}$$

Esto se puede integrar, y reordenar algebraicamente para conseguir esto:

$$u(x) = \arcsin\left(\frac{x_0}{x}\sin(u(x_0))\right)$$

Deshaciendo la sustitución, se consigue lo siguiente:

$$y(x) = x \arcsin\left(\frac{x_0}{x} \sin\left(\frac{y(x_0)}{x_0}\right)\right)$$

Donde $x \neq 0$ e $y(x_0) \neq 0$, con lo que tenemos una solución local.

Problema 4:

Sean $\tau > 0$ y $\gamma > 0$ constantes. Considere

$$\dot{x} = \gamma \sqrt{|x|} - \tau x, \quad x(0) = x_0$$

- (a) Resuelva el problema. (Sugerencia: La EDO es de tipo Bernoulli)
- (b) Analice la unicidad de la solución, y determine el intervalo máximo de definición. Si hay falla de unicidad, explique porqué esto no contradice el teorema de Picard-Lindelöf.
- (c) Analice el comportamiento a largo plazo, $t \to \infty$, cuando $x_0 > 0$.

Solución problema 4:

(a) Se nota que la EDO es autónoma, por lo que al solucionar el problema localmente para t=0, se soluciona localmente para cualquier t_0 . Dado esto que la función $x(t) \equiv 0$ es solución si $x_0=0$. También se nota que f es lipschitz con respecto a x para todo

 $x \neq 0$, y al ser autónoma es uniformemente continua con respecto t, por lo que dado una condición inicial $x_0 \neq 0$ se tiene solución única, por el teorema de Picard-Lindelöf. Sea $x_0 > 0$ entonces localmente se puede hacer la sustitución $x = y^2$, lo que nos da la siguiente EDO:

$$\dot{y} = \frac{\gamma}{2} - y\frac{\tau}{2}$$

Una EDO separable, por lo que integrando directamente y reordenando se llega a:

$$y(t) = \frac{\gamma}{\tau} - \left(\frac{\gamma}{\tau} - x_0^2\right) \exp\left(-\frac{\tau \cdot t}{2}\right)$$

Se recuerda la sustitución que se uso, y se deshace, pero se considera que $x(0) = x_0 > 0^3$. Con eso se llega a la presente solución:

$$x(t) = \sqrt{\frac{\gamma}{\tau} - \left(\frac{\gamma}{\tau} - x_0^2\right) \exp\left(-\frac{\tau \cdot t}{2}\right)}$$

Problema 5:

Sea $J \subseteq \mathbb{R}$ un intervalo abierto. Suponga que el problema de valor inicial

$$\begin{cases} \dot{x} = f(t, x) & (t, x) \in J \times \mathbb{R}, \quad f \in C(J \times \mathbb{R}) \\ x(t_0) = x_0 \end{cases}$$

tiene una solución C^1 definida localmente en tiempo para todos datos iniciales $(t_0, x_0) \in J \times \mathbb{R}$. Demuestre que si el intervalo máximo de definición de una solución x(t) es $(T_-, T_+) \subseteq J$, entonces $\lim_{x \downarrow T_-} |x(t)| = \infty$ y $\lim_{x \uparrow T_+} |x(t)| = \infty$. (Sugerencia: Argumente por contradicción. Primero demuestre que si hay dos sucesiones $\{a_i\}$ y $\{b_j\}$ con $a_i \uparrow T_+$ y $b_j \uparrow T_+$ tales que $x(a_i) \to x_1$ y $x(b_j) \to x_2$, entonces $x_1 = x_2$. Úselo para probar que x(t) se puede extender como una solución después del momento T_+).

Solución problema 5:

Problema 6:

³Al usar $x = y^2$ se pierde la noción de positividad, por lo que al deshacer la sustitución, se necesita considerarla.

Considere el problema de valor inicial

$$\begin{cases} \dot{x} = x^3 - \exp(t^2)x^2 & (t, x) \in [0, \infty) \times \mathbb{R} \\ x(0) = \xi \end{cases}$$

- (a) Identifique y dibuje la 0-isoclina de la ecuación.
- (b) Demuestre que para $\xi \in [0,1]$, la solución x(t) está definida para todos $t \geq 0$, y que $\lim_{t \to \infty} x(t) = 0$.
- (c) Pruebe que cuando $\xi \geq K$ es suficientemente grande, x(t) explota en tiempo finito. (Sugerencia: Construya una subsolución de la forma $y(t) = \exp(t^2)g(t)$ que explota en tiempo finito).

Solución problema 6:

Problema 7:

Sea $C \subseteq X$ un subconjunto cerrado del espacio de Banach X. Suponga que para la función $K: C \to C$, su n-ésima iteración $K^n: C \to C$ es una contracción. Demuestre que K tiene un único punto fijo en C.

Solución problema 7: Por pto. fijo de Banach, se tiene que K^n tiene un pto. fijo único, el cual se denotará como \overline{x} , luego

$$K^n(K(\overline{x})) = K^{n+1}(\overline{x})$$

= $K(K^n(\overline{x}))$
= $K(\overline{x})$ ya que \overline{x} es pto. fijo de K^n

Entonces $K(\overline{x})$ es pto. fijo de K^n , pero este es único, por lo que $K(\overline{x}) = \overline{x}$. Lo que significa que K tiene un pto. fijo.

Problema 8:

(La Desigualdad de Gronwall): Suponga que $\psi(t)$ satisface

$$\psi(t) \le \alpha(t) + \int_0^t \beta(s)\psi(s) \,\mathrm{d}s, \quad t \in [0, T]$$

con $\alpha(t) \in \mathbb{R}$ y $\beta(t) \geq 0$. Entonces

$$\psi(t) \le \alpha(t) + \int_0^t \alpha(s)\beta(s) \exp\left(\int_s^t \beta(r) dr\right) ds, \quad t \in [0, T]$$

Es más, si además $\alpha(s) \leq \alpha(t)$ para $s \leq t,$ entonces

$$\psi(t) \le \alpha(t) \exp\left(\int_0^t \beta(s) ds\right), \quad t \in [0, T].$$

Demuestre la última desigualdad.

Solución problema 8: