MTH 600: Computational Methods in Mathematics Lab 6 Exercise

Question 1.

Assume the stock price follows a geometric Brownian motion

$$dS = rSdt + \sigma SdZ_t.$$

The European Call option price, $V(S,\tau)$, satisfies the Black-Scholes equation, i.e,

$$V_{\tau} - \frac{\sigma^2}{2}S^2V_{SS} - rSV_S + rV = 0, \qquad V(S,0) = (S - K)^+,$$

where $\tau \equiv T - t$ is the time to maturity.

- a). Implement the **explicit** method with central differencing and upstream weighting to solve the B-S equation on a general grid $[0, S_{max}] \times [0, T]$ with $\Delta S = S_{max}/M$ and $\Delta \tau = T/N$.
- b). Compute the European call option price through your implementation in (a) with the current value of S as 1, $\sigma = 0.3$, r = 0.05, K = 1, T = 0.25, $S_{max} = 3$, M = 100 and N = 20.
- c). Call Matlab function bisprice to compute the European call option in (b) and compare with your computed result from (b).