2. [30 points] Incomplete, Positive-Only Labels

In this problem we will consider training binary classifiers in situations where we do not have full access to the labels. In particular, we consider a scenario, which is not too infrequent in real life, where we have labels only for a subset of the positive examples. All the negative examples and the rest of the positive examples are unlabelled.

That is, we assume a dataset $\{(x^{(i)}, t^{(i)}, y^{(i)})\}_{i=1}^m$, where $t^{(i)} \in \{0, 1\}$ is the "true" label, and where

$$y^{(i)} = \begin{cases} 1 & x^{(i)} \text{ is labeled} \\ 0 & \text{otherwise.} \end{cases}$$

All labeled examples are positive, which is to say $p(t^{(i)} = 1 \mid y^{(i)} = 1) = 1$, but unlabeled examples may be positive or negative. Our goal in the problem is to construct a binary classifier h of the true label t, with only access to the partial labels y. In other words, we want to construct h such that $h(x^{(i)}) \approx p(t^{(i)} = 1 \mid x^{(i)})$ as closely as possible, using only x and y.

Real world example: Suppose we maintain a database of proteins which are involved in transmitting signals across membranes. Every example added to the database is involved in a signaling process, but there are many proteins involved in cross-membrane signaling which are missing from the database. It would be useful to train a classifier to identify proteins that should be added to the database. In our notation, each example $x^{(i)}$ corresponds to a protein, $y^{(i)}=1$ if the protein is in the database and 0 otherwise, and $t^{(i)}=1$ if the protein is involved in a cross-membrane signaling process and thus should be added to the database, and 0 otherwise.

(a) [5 points] Suppose that each $y^{(i)}$ and $x^{(i)}$ are conditionally independent given $t^{(i)}$:

$$p(y^{(i)} = 1 \mid t^{(i)} = 1, x^{(i)}) = p(y^{(i)} = 1 \mid t^{(i)} = 1).$$

Note this is equivalent to saying that labeled examples were selected uniformly at random from the set of positive examples. Prove that the probability of an example being labeled differs by a constant factor from the probability of an example being positive. That is, show that $p(t^{(i)} = 1 \mid x^{(i)}) = p(y^{(i)} = 1 \mid x^{(i)})/\alpha$ for some $\alpha \in \mathbb{R}$.

Answer:

a
$$P(y=1|f=1,x) P(f=1|x) P(h) = P(y=1,f=1,x) = P(x=1|y=1,x)$$

$$P(y=1|x) P(y=1|x) P(y=1|x) P(y=1|x) P(y=1|x) P(y=1|x) P(y=1|x)$$
So, $P(x=1|x) P(x=1|x) P(x=1|$

(b) [5 points] Suppose we want to estimate α using a trained classifier h and a held-out validation set V. Let V_+ be the set of labeled (and hence positive) examples in V, given by $V_+ = \{x^{(i)} \in V \mid y^{(i)} = 1\}$. Assuming that $h(x^{(i)}) \approx p(y^{(i)} = 1 \mid x^{(i)})$ for all examples $x^{(i)}$, show that

$$h(x^{(i)}) \approx \alpha$$
 for all $x^{(i)} \in V_+$.

You may assume that $p(t^{(i)} = 1 \mid x^{(i)}) \approx 1$ when $x^{(i)} \in V_+$.

Answer:

(c) [5 points] Coding problem. The following three problems will deal with a dataset which we have provided in the following files:

Each file contains the following columns: x_1 , x_2 , y, and t. As in Problem 1, there is one example per row.

First we will consider the ideal case, where we have access to the true t-labels for training. In $\mathtt{src/p02cde_posonly}$, write a logistic regression classifier that uses x_1 and x_2 as input features, and train it using the t-labels (you can ignore the y-labels for this part). Output the trained model's predictions on the test set to the file specified in the code.

Answer:

(d) [5 points] Coding problem. We now consider the case where the t-labels are unavailable, so you only have access to the y-labels at training time. Add to your code in p02cde_posonly.py to re-train the classifier (still using x₁ and x₂ as input features), but using the y-labels only.

Answer:

(e) [10 points] Coding problem. Using the validation set, estimate the constant α by averaging your classifier's predictions over all labeled examples in the validation set:

$$\alpha \approx \frac{1}{|V_+|} \sum_{x^{(i)} \in V_+} h(x^{(i)}).$$

Add code in src/p02cde_posonly.py to rescale your classifier's predictions from part (d) using the estimated value for α .

Finally, using a threshold of $p(t^{(i)} = 1 \mid x^{(i)}) = 0.5$, make three separate plots with the decision boundaries from parts (c) - (e) plotted on top of the test set. Plot x_1 on the horizontal axis and x_2 on the vertical axis, and use two different symbols for the positive $(t^{(i)} = 1)$ and negative $(t^{(i)} = 0)$ examples. In each plot, indicate the separating hyperplane with a red line.

Answer:

Remark: We saw that the true probability $p(t \mid x)$ was only a constant factor away from $p(y \mid x)$. This means, if our task is to only rank examples (*i.e.* sort them) in a particular order (e.g., sort the proteins in order of being most likely to be involved in transmitting signals across membranes), then in fact we do not even need to estimate α . The rank based on $p(y \mid x)$ will agree with the rank based on $p(t \mid x)$.