Universal Hyperbolic Geometry

Summary of N. J. Wildberger's online lecture series http://www.youtube.com/watch?v=EvP8VtyhzXs

Martin Pitt (martin@piware.de)

1 Notation

Conics: intersections of a (double-sided) cone with a plane: point, circle, elipse, parabola, hyperbola (consists of two separate parts)

Null conic: Single fixed given circle or other conic; symbol $\mathfrak C$

Points: points have lower-case variables (a, p); points on \mathcal{C} have lower-case greek variables (α, η) ; the product of two points ab is the line that goes through a and b algebraic coordinate notation: a = [x] (one-dimensional), a = [x, y] (two-dimensional)

Lines: lines have upper-case variables (A, B); tangents on \mathcal{C} have upper-case greek variables (Γ) ; the product of two lines AB is their intersection, i. e. a point algebraic coordinate notation: A := (a:b:c) representing ax + by = c

2 Polarity

http://www.youtube.com/watch?v=AjVM5Q-pvjw

Pole: The pole a of a line A is the inversion point of A's closest point to \mathcal{C} . $\mathbf{a} = \mathbf{A}^{\perp}$

Polar: The line A is the polar of the pole point a. $\mathbf{A} = \mathbf{a}^{\perp}$

Construction of polar of a:

- Find null points $\alpha, \beta, \gamma, \delta$ on \mathcal{C} so that $(\alpha\beta)(\gamma\delta) = a$ (i. e. select two secants of \mathcal{C} which pass through a)
- Define $b := (\alpha \delta)(\beta \gamma)$ and $c := (\alpha \gamma)(\beta \delta)$, i. e. the two intersections of the other diagonals of the quadrangle $\alpha \beta \gamma \delta$
- Then $A = a^{\perp} = bc$. Also, $b^{\perp} = ac$ and $c^{\perp} = ab$ (three-fold symmetry of polars and poles produced by the three intersections of diagonals)

Construction of pole of A: Choose any two points $b, c \in A$. Then $a = (b^{\perp}c^{\perp})$.

Polar Independence Theorem: The polar $A=a^{\perp}$ does not depend on the choice of lines through a, i. e. the choice of $\alpha, \beta, \gamma, \delta$.

Polar Duality Theorem: For any two points a and b: $a \in b^{\perp} \Leftrightarrow b \in a^{\perp}$

Construction of polar of null point γ :

- Chose any two secants A, B that pass through γ
- Construct their poles A^{\perp} , B^{\perp}
- Polar $\Gamma = \gamma^{\perp}$ is the tangent $(A^{\perp}B^{\perp})$

3 Harmonic conjugates

http://www.youtube.com/watch?v=t7oXlrcPBb4

Four collinear points a, b, c, d are a **harmonic range** if a and c are **harmonic conjugates** to b, d, i. e. if they divide \overline{bc} internally and externally by the same ratio:

$$\frac{\vec{ab}}{\vec{ad}} = -\frac{\vec{cb}}{\vec{cd}}$$

In that case, b and d are then harmonic conjugates to a and c:

$$\frac{\vec{ba}}{\vec{bc}} = -\frac{\vec{da}}{\vec{dc}}$$

Note: \vec{ab} measures displacements on a linear scale, not distances. (affine geometry only, no units)

Harmonic Ranges Theorem: The image of a harmonic range under a projection from a point onto another line is another harmonic range.

 \rightarrow harmonic ranges are not dependent on the choice of a scale (affine geometry), but are really part of projective geometry

If a, b, c, d are a harmonic range, and p a point not on the line abcd, then the four lines ap, bp, cp, dp are a **harmonic pencil**. By the previous theorem, the intersections of any line through these four lines are harmonic ranges.

Harmonic Pole/polar Theorem: For a point a and any secant through a that meets \mathcal{C} at two points β , γ there is a point $c = (\beta \gamma)a^{\perp}$. The points a, β, c, δ are a harmonic range.

Harmonic Bisectors Theorem: If C, D are the two bisectors of two non-parallel lines A, B, then A, C, B, D is a harmonic pencil.

Harmonic Vectors Theorem: If \vec{a}, \vec{b} are linearly independent vectors, then the lines spanned by \vec{a}, \vec{b} are harmonic conjugates to the lines spanned by $\vec{a} + \vec{b}, \vec{a} - \vec{b}$

Harmonic Quadrangle Theorem: If \overline{pqrs} is a quadrangle, find the two intersections a=(ps)(qr) and c=(pq)(rs) and then b=(pr)(ac), d=(sq)(ac). Then a,b,c,d are a harmonic range.

2

4 Cross ratios

http://www.youtube.com/watch?v=JJbh0iJ1Agc

Cross ratio of four collinear points a, b, c, d:

$$R(a,b:c,d) := \frac{\vec{ac}}{\vec{ad}} / \frac{\vec{bc}}{\vec{bd}} = \frac{a-c}{a-d} / \frac{b-c}{b-d}$$

a, b, c, d are a harmonic range if R(a, b : c, d) = -1.

Cross-ratio Transformation Theorem: If $R(a, b : c, d) = \lambda$ then

$$R(b, a:c,d) = R(a,b:d,c) = \frac{1}{\lambda}$$

and

$$R(a,c:b,d) = R(d,b:c,a) = 1 - \lambda$$

Four points determine 24 possible cross ratios, but only 6 will generally be different (permutations of λ , $\frac{1}{\lambda}$, $1 - \lambda$, $\frac{1}{1-\lambda}$, $\frac{\lambda-1}{\lambda}$, $\frac{\lambda}{\lambda-1}$).

Cross-ratio Theorem: The cross ratio is invariant under projection from a point p to another line L: With a' := (pa)L, b' := (pb)L, c' := (pc)L, d' := (pd)L:

$$R(a, b : c, d) = R(a', b' : c', d')$$

Therefore the cross-ratio can be transferred to lines:

$$R(pa, pb, pc, pd) := R(a, b, c, d)$$

Chasles Theorem: If $\alpha, \beta, \gamma, \delta$ are fixed points on a null conic \mathcal{C} and η a fifth point on \mathcal{C} , then $R(\alpha\eta, \beta\eta: \gamma\eta, \delta\eta)$ is independent of the choice of η .

5 Introduction to hyperbolic geometry

http://www.youtube.com/watch?v=UXQas-B50bQ

5.1 Definitions

Hyperbolic geometry : Geometry on a projective plane and a single fixed given circle \mathcal{C} ; only tool is a straightedge

Duality: Terminology of pole and polar get replaced by simply **duality**: the dual of a point a is the line a^{\perp} , and vice versa; points and lines are completely dual concepts

Line perpendicularity: $A \perp B \Leftrightarrow B^{\perp} \in A \Leftrightarrow A^{\perp} \in B$ (A is p. to B if A passes through the dual of B)

Point perpendicularity: $a \perp b \Leftrightarrow a \in b^{\perp} \Leftrightarrow b \in a^{\perp}$ (a is p. to b if a lies on the dual of b)

Quadrance between points: $q(a_1, a_2) := R(a_1, b_2 : a_2, b_1)$ with $b_1 := (a_1 a_2) a_1^{\perp}$ and $b_2 := (a_1 a_2) a_2^{\perp}$

Spread between lines: $S(A_1, A_2) := R(A_1, B_2 : A_2, B_1)$ with $B_1 := (A_1 A_2) A_1^{\perp}$ and $B_2 := (A_1 A_2) A_2^{\perp}$

5.2 Basic theorems

Quadrance–Spread duality: $q(a_1,a_2)=S(a_1^{\perp},a_2^{\perp})$

Pythagoras: If $a_1a_3 \perp a_2a_3$, and $q_1 = q(a_2, a_3)$, $q_2 = q(a_1, a_3)$, $q_3 = q(a_1, a_2)$: $q_3 = q_1 + q_2 - q_1q_2$

If $A_1A_3 \perp A_2A_3$, and $S_1 = S(A_2, A_3)$, $S_2 = S(A_1, A_3)$, $S_3 = S(A_1, A_2)$: $S_3 = S_1 + S_2 - S_1S_2$

Triple Spread/Quadrance:

If a_1, a_2, a_3 are collinear: $(q_1 + q_2 + q_3)^2 = 2(q_1^2 + q_2^2 + q_3^2) + 4q_1q_2q_3$

If A_1, A_2, A_3 are concurrent: $(S_1 + S_2 + S_3)^2 = 2(S_1^2 + S_2^2 + S_3^2) + 4S_1S_2S_3$

Spread Law: For a triangle: $\frac{S_1}{q_1} = \frac{S_2}{q_2} = \frac{S_3}{q_3}$

Cross law: $(q_1q_2S_3 - (q_1 + q_2 + q_3) + 2)^2 = 4(1 - q_1)(1 - q_2)(1 - q_3)$

Relation to Beltrami-Klein model:

For points a_1, a_2 inside $\mathcal{C}: q(a_1, a_2) = -\sinh^2 d(a_1, a_2)$

For lines A_1, A_2 inside $C: S(A_1, A_2) = \sin^2 \angle (A_1, A_2)$

6 Calculations with Cartesian coordinates

http://www.youtube.com/watch?v=YDGUnGGkaTs, http://www.youtube.com/watch?v=XomxP2pxYnw

Point/line duality: $a = [x_0, y_0] \Leftrightarrow a^{\perp} = (x_0 : y_0 : 1)$

Point on null circle: Parameterized by $t \in \mathbb{Q}$: $e(t) := \left[\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right]$

This reaches any point except [-1,0], which corresponds to $e(\infty)$

Line through points: $[x_1, y_1][x_2, y_2] = (y_1 - y_2 : x_2 - x_1 : x_2y_1 - x_1y_2)$

Line through null points: $e(t_1)e(t_2) = (1 - t_1t_2 : t_1 + t_2 : 1 + t_1t_2)$

Line relation to \mathcal{C} : The line (a:b:c)

- is tangent to $\mathcal{C} \Leftrightarrow a^2 + b^2 = c^2$
- meets C at two points $\Leftrightarrow a^2 + b^2 c^2$ is a square
- does not meet $\mathcal{C} \Leftrightarrow a^2 + b^2 c^2$ is a non-square (negative or no rational root)

Quadrance: If $a_1 = [x_1, y_1]$ and $a_2 = [x_2, y_2]$, then $q(a_1, a_2) = 1 - \frac{(x_1 x_2 + y_1 y_2 - 1)^2}{(x_1^2 + y_1^2 - 1)(x_2^2 + y_2^2 - 1)}$

Spread: If $L_1 = (l_1 : m_1 : n_1)$ and $L_2 = (l_2 : m_2 : n_2)$, then $S(L_1, L_2) = 1 - \frac{(l_1 l_2 + m_1 m_2 - n_1 n_2)^2}{(l_1^2 + m_1^2 - n_1^2)(l_2^2 + m_2^2 - n_2^2)}$

4

Point perpendicularity: $[x_1,y_1]\perp [x_2,y_2] \Leftrightarrow x_1x_2+y_1y_2-1=0$

Line perpendicularity: $(l_1:m_1:n_1)\perp (l_2:m_2:n_2) \iff l_1l_2+m_1m_2-n_1n_2=0$

7 Projective homogeneous coordinates

http://www.youtube.com/watch?v=gzalbNLcwGI, http://www.youtube.com/watch?v=KhxVy75NetE

In affine geometry, lines from a 3D object through the projective plane are parallel, and projections maintain linear spacing. In projective geometry, they meet in two points ("observer" or "horizon"), and projections distort linear spacing.

In **one-dimensional geometry**, the projective vector space is an one-dimensional subspace of twodimensional \mathbb{V}^2 , i. e. a line through [0,0]). This is specified by a proportion [x:y] (**projective point**); canonically, either [x:1], or [x:0] for the special case of the subspace being the x axis (representing "point at ∞ ")

In **two-dimensional geometry**, the projective plane \mathbb{P}^2 is described with a three-dimensional vector space \mathbb{V}^3 , **projective points** a = [x : y : z] (lines through the origin) and **projective lines** $A = (l : m : n) \Leftrightarrow lx + my - nz = 0$ (planes through the origin).

In particular, we introduce a **viewing plane** $y_{z=1}$. Then any projective point $[x:y:z], z \neq 0$ meets the viewing plane at $[\frac{x}{z}:\frac{y}{z}:1]$. Any projective point [x:y:0] corresponds to the two-dimensional equivalent [x:y], representing the "point at ∞ in the direction [x:y]". So the projective plane \mathbb{P}^2 corresponds to the affine plane \mathbb{A}^2 plus the projective line \mathbb{P}^1 for the points at infinity.

Any projective line $(l:m:n), l, m \neq 0$ meets the viewing plane at the line lx + my = n (which is (l:m:n) in the viewing plane).

Coordinates in the viewing plane are called $X := \frac{x}{z}$ and $Y := \frac{y}{z}$.

The unit circle $X^2 + Y^2 = 1$ in the viewing plane corresponds to the cone $(\frac{x}{z})^2 + (\frac{y}{z})^2 = 1 \Rightarrow x^2 + y^2 - z^2 = 0$ in \mathbb{A}^3 .

8 Calculations with homogenous coordinates

http://www.youtube.com/watch?v=tk58sBLWzHk, http://www.youtube.com/watch?v=N2T0bg_DJLQ, http://www.youtube.com/watch?v=PSFr6_EhchI

(Hyperbolic) Point: a proportion a := [x:y:z] with $x, y, z \in \mathbb{Q}$ and not all zero

(Hyperbolic) Line: a proportion L := (l:m:n) with $l, m, n \in \mathbb{Q}$ and not all zero

Duality: $a = [x:y:z] \Leftrightarrow a^{\perp} = (x:y:z)$ $L = (l:m:n) \Leftrightarrow L^{\perp} = [l:m:n]$

Line/Point Incidence: [x:y:z] lies on $(l:m:n) \Leftrightarrow (l:m:n)$ goes through $[x:y:z] \Leftrightarrow lx + my - nz = 0$

Line through two points: $[x_1:y_1:z_1][x_2:y_2:z_2] = (y_1z_2 - y_2z_1 : z_1x_2 - z_2x_1 : x_2y_1 - x_1y_2)$

Point on two lines: $(l_1:m_1:n_1)(l_2:m_2:n_2) = [m_1n_2 - m_2n_1 : n_1l_2 - n_2l_1 : l_2m_1 - l_1m_2]$

Quadrance: If $a_1 = [x_1:y_1:z_1]$ and $a_2 = [x_2:y_2:z_2]$, then $q(a_1,a_2) = 1 - \frac{(x_1x_2 + y_1y_2 - z_1z_2)^2}{(x_1^2 + y_1^2 - z_1^2)(x_2^2 + y_2^2 - z_2^2)}$

 $a_1 \perp a_2 \Leftrightarrow q(a_1, a_2) = 1$

Spread: If $L_1 = (l_1 : m_1 : n_1)$ and $L_2 = (l_2 : m_2 : n_2)$, then $S(L_1, L_2) = 1 - \frac{(l_1 l_2 + m_1 m_2 - n_1 n_2)^2}{(l_1^2 + m_1^2 - n_1^2)(l_2^2 + m_2^2 - n_2^2)}$ $L_1 \perp L_2 \iff S(L_1, L_2) = 1$

9 Triangle geometry

http://www.youtube.com/watch?v=PbA4Js3qKOQ, http://www.youtube.com/watch?v=Drs8hUPzRPO

Side: A side $\overline{a_1a_2}$ is a set of two points $\{a_1, a_2\}$.

Vertex: A vertex $\overline{L_1L_2}$ is a set of two lines $\{L_1, L_2\}$.

Couple: A couple \overline{aL} is a set consisting of a point and a line: $\{a, L\}$. A couple is **dual** if $a = L^{\perp}$.

Triangle: A triangle $\overline{a_1a_2a_3}$ is a set of three non-collinear points $\{a_1, a_2, a_3\}$. A triangle is **dual** if one of its points is dual to its opposite side.

Dual trilateral: $\overline{a_1 a_2 a_3}^{\perp} := \overline{a_1^{\perp} a_2^{\perp} a_3^{\perp}}$ (similar for dual triangle)

Trilateral: A trilateral $\overline{L_1L_2L_3}$ is a set of three non-concurrent lines $\{L_1, L_2, L_3\}$.

Altitude Line Theorem: For any non-dual couple \overline{aL} there is an unique line N passing through a and perpendicular to L, called **altitude**. $N = aL^{\perp}$

Altitude Point Theorem: For any non-dual couple \overline{aL} there is an unique point n which lies on L and is perpendicular to a, called **altitude point**. $n = a^{\perp}L = N^{\perp}$

Triangle Altitudes: In a triangle \overline{abc} , altitudes are determined in the usual way: e. g. the altitude of a goes through a and is perpendicular to bc. Thus the altitude of a is $a(bc)^{\perp}$.

Orthocenter: Point h where the three altitudes meet; always exists

Ortholine: Line H on which the three altitude points are collinear; $H = h^{\perp}$

Desargues Theorem: In the projective plane, if two triangles $\overline{a_1a_2a_3}$ and $\overline{b_1b_2b_3}$ are perspective from a point p (a_1b_1, a_2b_2, a_3b_3) are concurrent) then they are perspective from a line L (where $(a_1a_2)(b_1b_2), (a_2a_3)(b_2b_3), (a_3a_1)(b_3b_1)$ are collinear). **Desargues polarity:** $L = \hat{p}$

Definitions relative to fixed triangle: Orthic axis $S = \hat{h}$, Orthostar $s = S^{\perp}$, Ortho-axis A = hs, Ortho-axis point $a = A^{\perp}$ (lies on ortholine)

Orthic triangle: Triangle $\overline{b_1b_2b_3}$ of the base points of altitudes of triangle $\overline{a_1a_2a_3}$; $b_1=(a_1h)(a_2a_3)$

Base center: A triangle and its dual orthic triangle are perspective from some point, called the **base center**, i. e. the intersection of all lines through a triangle point with its corresponding dual orthic triangle point. It lies on the ortho-axis A = hs.

Base triple orthocenter theorem: Suppose that the triangle $\overline{a_1a_2a_3}$ has the orthic triangle $\overline{b_1b_2b_3}$. Suppose that h_1, h_2, h_3 are the respective orthocenters of $\overline{a_1b_2b_3}$, $\overline{a_2b_1b_3}$, and $\overline{a_3b_1b_2}$. Then the orthocenter of $\overline{h_1h_2h_3}$ is the base center b of $\overline{a_1a_2a_3}$. Also, b is the center of perspectivity between $\overline{a_1a_2a_3}$ and $\overline{h_1h_2h_3}$.

$$\begin{aligned} \textbf{Quadrea:} \ \ A(\overline{a_1a_2a_3}) &= q_1q_2S_3 = q_2q_3S_1 = q_1q_3S_2 = \\ & \left| \begin{array}{ccc} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{array} \right|^2 \\ & - \frac{\left| \begin{array}{ccc} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{array} \right|}{(x_1^2 + y_1^2 - z_1^2)(x_2^2 + y_2^2 - z_2^2)(x_3^2 + y_3^2 - z_3^2)} \end{aligned}$$

(most important triangle invariant)

Equilateral Triangle Theorem: If a triangle has three equal non-zero quadrances q, then it also has three equal spreads S, and $(1 - Sq)^2 = 4(1 - S)(1 - q)$.

6

Thales Theorem: Immediately following from the spread law: in a right triangle with $S_3 = 1$:

$$S_1 = \frac{q_1}{q_3}$$
 and $S_2 = \frac{q_2}{q_3}$.

Corollary: If h_3 is the quadrance of the altitude of a_3 to a_1a_2 , then the quadrea $A = h_3q_3$. (Similar for the other two altitudes)

Napier's rules: In a right triangle $(S_3 = 1)$, if any two of S_1, S_2, q_1, q_2, q_3 are known, the other three follow from Pythagoras' and Thales' theorems.

10 Null points and null lines

http://www.youtube.com/watch?v=IhEXH5etvog

Null point: A point a = [x:y:z] is null $\Leftrightarrow a$ is incident with $a^{\perp} \Leftrightarrow x^2 + y^2 - z^2 = 0$

Null line: A line L=(l:m:n) is null $\Leftrightarrow L$ is incident with $L^{\perp} \Leftrightarrow l^2+m^2-n^2=0$

Null point parameterization: $\alpha = e(t:u) := [u^2 - t^2 : 2ut : u^2 + t^2]$

Null line parameterization: $\Phi = E(t:u) := (u^2 - t^2 : 2ut : u^2 + t^2)$

Join of null points: $e(t_1:u_1)e(t_2:u_2)=(u_1u_2-t_1t_2:t_1u_2+t_2u_1:u_1u_2+t_1t_2)$

Meet of null lines: $E(t_1:u_1)E(t_2:u_2) = [u_1u_2 - t_1t_2 : t_1u_2 + t_2u_1 : u_1u_2 + t_1t_2]$

11 Reflections

http://www.youtube.com/watch?v=faPCRHyzPGM, http://www.youtube.com/watch?v=elDCJmDQBfc

Unlike the Euclidean plane, the projective plane is not orientable. A reflection σ_a in a point a is the same as a reflection σ_L in a line if $a = L^{\perp}$.

Lines are reflected to lines $(M = \sigma_a L)$, null points to null points, null lines to null lines.

Construction: To determine the reflection $c = b\sigma_a$ of a point b in a point a:

- Choose a line through b which crosses \mathcal{C} in two points β_1 and β_2 . (c does not depend on this choice)
- Determine the two other intersections γ_1 and γ_2 with \mathcal{C} of the two lines $a\beta_1$ and $a\beta_2$.
- Now $c = (ab)(\gamma_1 \gamma_2)$.

Reflection matrix: A point a = [x:y:z] defines a reflection matrix $m_a = \begin{bmatrix} y & x+z \\ x-z & -y \end{bmatrix}$

For any m_a : $m_a^2 = 1$, so that $m_a^{-1} = m_a$

For null points $\alpha = e(t:u)$: $m_{\alpha} = \begin{bmatrix} tu & u^2 \\ -t^2 & -tu \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} t \\ u \end{bmatrix} \begin{bmatrix} t & u \end{bmatrix}$

For any m_{α} : $m_{\alpha}^2 = \mathbf{0}$, det $m_{\alpha} = 0$

Reflection of null points: With projective linear algebra, a reflection at the point a = [x:y:z] sends the null point $\alpha_1 = e(t_1:u_1)$ to another null point $\alpha_2 = e(t_2:u_2)$. Then $[t_2u_2] = [t_1u_1] m_a$. Also, $m_{\alpha_2} = m_{\alpha}m_{\alpha_1}m_{\alpha}$ (reflection matrix conjugation theorem).

7

Reflection of an arbitrary point: $c = b\sigma_a \Leftrightarrow m_c = m_a m_b m_a$

Null reflection theorem: If α is a null point, then $b\sigma_{\alpha} = \alpha$ for any point b. $m_{\alpha}m_{b}m_{\alpha} = m_{\alpha}$.

Matrix perpendicularity theorem: For any points a, b: $a \perp b \Leftrightarrow \operatorname{tr}(m_a m_b) = 0$

Reflection preserves perpendicularity: For any two points b, c, and a non-null point a:

$$b \perp c \Leftrightarrow b\sigma_a \perp c\sigma_a$$

Reflection preserves lines: If a is a non-null point, then b, c, d are collinear $\Leftrightarrow b\sigma_a, c\sigma_a, d\sigma_a$ are collinear.

12 Midpoints and bisectors

http://www.youtube.com/watch?v=gYqp_m7at2

Midpoint: The non-null point a is a midpoint of the side $\overline{bc} \Leftrightarrow b\sigma_a = c \Leftrightarrow c\sigma_a = b$ In general there are two different points with that property for \overline{bc} , if both points are interior or exterior.

Geometrical construction of midpoints: For points b, c:

- Construct $(bc)^{\perp}$
- Construct the lines $b(bc)^{\perp}$ and $c(bc)^{\perp}$, yielding four null points $\alpha, \beta, \gamma, \delta$
- The other two diagonal points of $\overline{\alpha\beta\gamma\delta}$ are the two midpoints of \overline{bc} .

Sometimes that constructions does not work because $b(bc)^{\perp}$ and $c(bc)^{\perp}$ don't meet \mathcal{C} . In that case:

- Construct b^{\perp} and c^{\perp} , which meet \mathcal{C} in four null points $\alpha, \beta, \gamma, \delta$
- The other two diagonal points of $\overline{\alpha\beta\gamma\delta}$ are the two midpoints of \overline{bc} .

Bisector: A is a bisector of the vertex $\overline{BC} \Leftrightarrow A^{\perp}$ is a midpoint of side $\overline{B^{\perp}C^{\perp}}$

13 The J function, SL(2) and the Jacobi identity

http://www.youtube.com/watch?v=f68eYuDCsjw

SL(2): Lie algebra/group of 2x2 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with tr(A) = 0 and a **bracket** operation [A, B] := AB - BA (closed operation as tr(AB - BA) = tr(AB) - tr(BA) = 0)

Properties of bracket operation: [] is not associative, and anticommutative ([A, B] = -[B, A])

Jacobi identity: [[A, B], C] + [[B, C], A] + [[C, A], B] = 0

Projective matrix algebra: If a, b are projective matrices, scaling with non-zero scalars does not change the matrix. m+n is not well defined. The product ab and bracket [a, b] = ab-ba are well defined.

Bracket theorem: If a and b are distinct points: $[m_a, m_b] = m_c$ with $c = (ab)^{\perp}$

The bracket operation gives a multiplication of points and computes their join: $[a, b] \simeq (ab)^{\perp}$. It is commutative, as the negative of a projective matrix is identical to the matrix.

Meaning of Jacobi identity: For three points a, b, c the term [[a, b], c] is the altitude point (dual of the altitude) of c to ab. As all three altitudes/altitude points sum up to 0, they are linearly dependent and thus concurrent/collinear. \Rightarrow simplified proof that ortholine/orthocenter always exist.

14 Miscellaneous

Pappus' Theorem: If a_1, a_2, a_3 are collinear and b_1, b_2, b_3 are collinear: $c_1 := (a_2b_3)(a_3b_2), c_2 := (a_1b_3)(a_3b_1), c_3 := (a_2b_3)(a_3b_2)$ are collinear.

Zero Quadrance Theorem: If a_1, a_2 are distinct points, then $q(a_1, a_2) = 0 \Leftrightarrow a_1 a_2$ is a null line.

Zero Spread Theorem: If L_1, L_2 are distinct lines, then $S(L_1, L_2) = 0 \Leftrightarrow L_1L_2$ is a null point.

Right Parallax Theorem: If a right triangle $\overline{a_1a_2a_3}$ has spreads $S_1=0$ (i. e. a_1 is a null point), $S_2:=S\neq 0$, and $S_3=1$, then it will have only one defined quadrance $q=q(a_2,a_3)=\frac{S-1}{S}$.

Isosceles Parallax Theorem: If $\overline{a_1a_2a_3}$ is a non-null isosceles triangle with $S_1=0$ (i. e. a_1 is a null point) and $S_2=S_3:=S$, then $q=q(a_2,a_3)=\frac{4(S-1)}{S^2}$.