Séries de Fonctions

1. Définitions et exemples.

- Dans toute ce paragraphe, X et Y sont des parties de \mathbb{C} , $X \subset Y$.
- Pour tout entier n, u_n est une fonction définie sur Y à valeurs dans \mathbf{C} , $u_n: Y \longrightarrow \mathbf{C}$.
- On s'intéresse à la convergence de la série $\sum u_n(x)$ pour $x \in Y$
 - * pour $x \in Y$, on se demande si la suite $(S_n(x))_{n\geq 0}$ possède une limite où

$$\forall x \in Y, \qquad S_n(x) = u_0(x) + u_1(x) + \ldots + u_n(x) = \sum_{k=0}^n u_k(x)$$

- * Si, lorsque $x \in X$, la suite $(S_n(x))_{n\geq 0}$ possède une limite, on note S(x) cette limite.
- \star On définit alors la fonction S en posant

$$\forall x \in X, \qquad S(x) = \sum_{n=0}^{+\infty} u_n(x) = \lim_{n \to +\infty} \sum_{k=0}^{n} u_k(x) = \lim_{n \to +\infty} S_n(x).$$

* On souhaite étudier les propriétés de la fonction S à l'aide de celles des fonctions u_n .

Exemple(s) (Série géométrique). • $Y = \mathbf{R}$, pour tout $n \in \mathbf{N}$, $u_n : x \longmapsto x^n$

• Pour tout $x \in \mathbf{R}$,

$$S_n(x) = 1 + x + x^2 + \dots + x^n = \begin{cases} n+1, & \text{si } x = 1, \\ \frac{1-x^{n+1}}{1-x}, & \text{si } x \neq 1 \end{cases}$$

- $(S_n(x))_{n\geq 0}$ possède une limite ssi |x|<1: la série $\sum u_n(x)$ converge ssi |x|<1
 - * On a X =]-1,1[!]
- Pour tout |x| < 1,

$$S(x) = \sum_{n=0}^{+\infty} x^n = \lim_{n \to +\infty} S_n(x) = \lim_{n \to +\infty} \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x}.$$

1.1. Convergence simple.

• Pour tout $n \in \mathbb{N}$, u_n est une fonction définie sur Y.

Définition. La série de fonctions $\sum u_n$ converge simplement sur $X \subset Y$ si, pour tout $x \in X$, la série numérique $\sum u_n(x)$ est convergente.

Dans ce cas, on désigne par S(x), la valeur de la limite :

$$\forall x \in X, \qquad S(x) = \sum_{n=0}^{+\infty} u_n(x) = \lim_{n \to +\infty} S_n(x).$$

- Lorsqu'on étudie la convergence simple de $\sum u_n$, c'est à dire lorsqu'on étudie la convergence de la série $\sum u_n(x)$ à x fixé tous les résultats sur les séries numériques sont applicables.
- L'ensemble $D = \{x \in Y : \sum u_n(x) \text{ converge} \}$ est appelé le domaine de convergence de la série de fonctions $\sum u_n$.

Exemple(s). 1. $Y = \mathbf{R}$, $u_n(x) = \frac{x^n}{n!}$, $n \ge 0$. D'après la règle de d'Alembert, pour tout $x \in \mathbf{R}$, $\sum u_n(x)$ converge absolument. $\sum u_n$ converge simplement sur \mathbf{R} .

2. $Y = \mathbf{R}$, $u_n(x) = (-1)^n / \sqrt{x^2 + n^2}$, $n \ge 1$. D'après le critère des séries alternées, pour tout $x \in \mathbf{R}$, $\sum u_n(x)$ est convergente. $\sum u_n$ converge simplement sur \mathbf{R} .

Remarque(s). • Si $\sum u_n$ converge simplement sur X, alors $\lim_{n\to\infty} u_n(x) = 0$, pour tout $x \in X$.

• La réciproque est fausse; prendre $u_n(x) = \frac{1}{n}$ pour tout $x \in \mathbf{R}$.

1.2. Convergence normale.

• Pour tout $n \in \mathbb{N}$, u_n est une fonction définie sur Y.

Définition. La série de fonctions $\sum u_n$ est normalement convergente sur $X \subset Y$ si la série numérique $\sum \sup_{x \in X} |u_n(x)|$ est convergente.

- Ceci signifie qu'il existe une suite $(\alpha_n)_{n\geq 0}$ de réels positifs telle que :
 - 1. pour tout $n \ge 0$ et tout $x \in X$, $|u_n(x)| \le \alpha_n$;
 - 2. $\sum \alpha_n$ est convergente.

Exemple(s). • La série $\sum_{n\geq 1} \frac{1}{n^{\alpha}+x^4}$ est normalement convergente sur **R** dès que $\alpha>1$.

• En effet, pour $n \ge 1$ et $x \in X$,

$$|u_n(x)| = \frac{1}{n^{\alpha} + x^4} \le \frac{1}{n^{\alpha}} = \alpha_n$$

• $\sum \alpha_n$ converge puisque $\alpha > 1$.

Proposition. Si la série de fonctions $\sum u_n$ converge normalement sur X alors $\sum u_n$ converge simplement sur X.

Remarque(s). • Attention la réciproque est fausse.

*
$$f_n(x) = (-1)^n / \sqrt{n^2 + x^2}$$
; $\sup_{x \in \mathbf{R}} |f_n(x)| = 1/n$.

• En fait, si $\sum u_n$ converge normalement sur X, pour tout $x \in X$, $\sum u_n(x)$ converge absolument.

Exemple(s). La série de t.g. $u_n(x) = \sin(x/n)/n$, $n \ge 1$, est normalement convergente sur [-a, a] pour tout a > 0 mais n'est pas normalement convergente sur \mathbf{R} .

______ 2012/2013 : fin du cours 8 _____

Remarque(s). • Si $\sum u_n$ converge normalement sur X, alors

$$R_n^* = \sum_{k>n} \sup_{x \in X} |u_k(x)| \longrightarrow 0, \quad \text{ si } n \to +\infty.$$

• S'il existe une suite de points de X, $(x_n)_{n\geq 0}$, telle que $\sum |u_n(x_n)|$ diverge, alors $\sum u_n$ ne converge pas normalement sur X.

Plan d'étude d'une série de fonctions.

- On commence par étudier la convergence simple de $\sum u_n$
 - \star On détermine à cette étape l'ensemble X
- On étudie la convergence normale de $\sum u_n$ sur X ou sur une partie de X

2. Régularité de la somme.

- Pour tout $n \in \mathbb{N}$, u_n est une fonction définie sur X
- Si $\sum u_n$ converge simplement sur X, on note S la fonction

$$\forall x \in X, \qquad S(x) = \sum_{n=0}^{+\infty} u_n(x).$$

Théorème (Interversion des limites). Soit x_0 un point adhérent à X. On suppose que

- 1. pour tout $n \ge 0$, $\lim_{x \to x_0} u_n(x) = l_n$,
- 2. la série de fonctions $\sum u_n$ converge **normalement** sur X.

Alors, la série $\sum l_n$ est (absolument) convergente et de plus

$$\lim_{x \to x_0} S(x) = \lim_{x \to x_0} \sum_{n=0}^{+\infty} u_n(x) = \sum_{n=0}^{+\infty} \lim_{x \to x_0} u_n(x) = \sum_{n=0}^{+\infty} l_n.$$

Remarque(s). • Si X =]a, b[, un point adhérent à X est soit un point de l'intervalle]a, b[soit l'une des extrémités a ou b.

• Si X contient un intervalle du type $[r, +\infty[$, le résultat est encore valable pour $x_0 = +\infty$. Idem avec $-\infty$!

Corollaire (Continuité). Supposons que la série de fonctions $\sum u_n$ converge **normalement** sur X et notons $S = \sum_{n\geq 0} u_n$. Alors,

- 1. si toutes les fonctions u_n sont continues au point $x_0 \in X$, S est continue au point x_0 ,
- 2. si toutes les fonctions u_n sont continues sur X, S est continue sur X.

Exemple(s). • $u_n(x) = \frac{1}{n^2 + x^4}$, $n \ge 1$; $\sum u_n$ converge normalement sur **R**.

- * Pour tout $n \ge 1$, $\lim_{x \to +\infty} u_n(x) = 0$.
- $\star \lim_{x \to +\infty} \sum_{n>0} u_n(x) = \sum_{n>0} 0 = 0$
- $u_n(x) = \frac{(-1)^n}{n(1+nx)}, x \ge 0, n \ge 1;$
 - $\star \sum u_n$ converge simplement sur $[0, +\infty[$;
 - * $\sum u_n$ converge normalement sur $[a, +\infty[$ pour tout a > 0;
 - \star comme toutes les u_n sont continues sur $[a, +\infty[, \sum_{n\geq 1} u_n \text{ est continue sur } [a, +\infty[;$
 - * ceci étant vrai pour tout a > 0, $\sum_{n>1} u_n$ est continue sur $]0, +\infty[$.

2012/2013 : fin du cours 9

Théorème (Intégration). On suppose les fonctions u_n continues par morceaux sur l'intervalle [a,b].

Si la série de fonctions $\sum u_n$ converge **normalement** sur [a,b], alors

- 1. la série $\sum_{n\geq 0} \int_a^b u_n(t) dt$ est (absolument) convergente;
- 2. d'autre part

$$\int_{a}^{b} \sum_{n>0} u_n(t) dt = \sum_{n>0} \int_{a}^{b} u_n(t) dt.$$

Exemple(s). • Pour tout $x \in]-1,1[,$

$$-\ln(1-x) = \sum_{n=1}^{+\infty} \frac{x^n}{n} = \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}.$$

- En effet, soit 0 < x < 1. $\sum t^n$ est NCV sur [0, x] et $\sum_{n \ge 0} t^n = 1/(1-t)$
- D'après le théorème,

$$-\ln(1-x) = \int_0^x \frac{dt}{1-t} = \int_0^x \sum_{n=0}^{+\infty} t^n dt = \sum_{n=0}^{+\infty} \int_0^x t^n dt = \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}.$$

Remarque(s). Plus généralement, si la série de fonctions $\sum u_n$ converge normalement sur [a,b], alors la série de fonctions de terme général $U_n(x) = \int_a^x u_n(t) dt$ est normalement convergente sur [a,b] et pour tout $x \in [a,b]$,

$$\int_{a}^{x} \sum_{n=0}^{+\infty} u_n(t) dt = \sum_{n=0}^{+\infty} \int_{a}^{x} u_n(t) dt = \sum_{n=0}^{+\infty} U_n(x).$$

Théorème (Dérivation). Soient I un intervalle de \mathbf{R} non réduit à un point et $\sum u_n$ une série de fonctions qui converge simplement sur I. On note, pour $x \in I$, $S(x) = \sum_{n=0}^{+\infty} u_n(x)$. On suppose que

- 1. pour tout n, u_n est dérivable (resp. C^1) sur I;
- 2. la série de fonctions $\sum u'_n$ converge normalement sur I.

Alors, la fonction S est dérivable (resp. C^1) sur I et

$$\forall x \in I, \qquad S'(x) = \left(\sum_{n=0}^{+\infty} u_n(x)\right)' = \sum_{n=0}^{+\infty} u'_n(x).$$

Remarque(s). • u est C^1 si u est dérivable et u' continue.

• Attention c'est la série des dérivées qui doit converger normalement.

Exemple(s). •
$$v_n(x) = ne^{-nx}, n \ge 0$$
. Déterminer $T(x) = \sum_{n=0}^{+\infty} v_n(x)$.

2012/2013 : fin du cours 10