

Report No. FAA-RD-78-56, V

7070A

TIME DEGRADATION FACTORS FOR TURBINE ENGINE EXHAUST EMISSIONS

VOLUME V JT3D-3B TEST DATA

MAY 1978

INTERIM REPORT

Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151

Prepared for

U. S. DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION

Systems Research & Development Service
Washington, D.C. 20590

DDC FILE COP

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

12 75pe

		(11)	
itle and Subjects	for Tuebies Fasies	/Hay 1978	
Time Degradation Factors Exhaust Emissions, Volum		6. Performing Organi penson Co	-
ata a state and	Ne 4 3130-38 1831		
400		6. Parlamena Organization Co	part No.
	(1	FAA-NA-77-179 NREC - 1238 -	10+
orforming Organi patton Hamo and Address	(-	16. ONE CHIT RE (TWAIS)	10
forthern Research and En	igineering Corporation	1	
119 Vassar Street	02139	DOT-FA74NA-110	0
ambridge, Massachusetts	1 02139	1). Type of Report and Period	
personing Agency Home and Address	(a	Interim Report	
Department of Transporta EDERAL AVIATION ADMINIS	\ \ \	August 1974 -	
systems Research and Dev		14. Spansaring Agency Code	
ashington, D. C 20591			
This investigation was p	performed under a sector	ant administrated b	
lational Aviation Facili	ties Experimental Cant	er. Atlantic City	y the
lew Jersey	tros tapor mentor tent	er, Actomete city,	
betract			
		a concernies the	
This is the fifth volume	or eight-volume repor	t concerning the	
This is the fifth volume degradation of turbine o	engine emissions. This	volume contains a	
degradation of turbine e compilation of all emiss	engine emissions. This sion test data and anal	volume contains a ysis data used in	the
degradation of turbine e compilation of all emiss development of degradati	engine emissions. This sion test data and anal ion factors for the JT3	volume contains a ysis data used in D-3B engine type.	the In
degradation of turbine of compilation of all emissible development of degradation addition, the volume con	engine emissions. This sion test data and anal ion factors for the JT3 ntains maintenance data	volume contains a ysis data used in D-38 engine type. for the test unit	the In
degradation of turbine e compilation of all emiss development of degradati addition, the volume con during the period of tes	engine emissions. This sion test data and analion factors for the JT3 ntains maintenance data sting, as well as analy	volume contains a ysis data used in D-3B engine type. for the test unit ses of the samples	the In
degradation of turbine e compilation of all emiss development of degradati addition, the volume con during the period of tes	engine emissions. This sion test data and analion factors for the JT3 ntains maintenance data sting, as well as analy	volume contains a ysis data used in D-3B engine type. for the test unit ses of the samples	the In
degradation of turbine e compilation of all emiss development of degradati addition, the volume con during the period of tes	engine emissions. This sion test data and analion factors for the JT3 ntains maintenance data sting, as well as analy	volume contains a ysis data used in D-3B engine type. for the test unit ses of the samples	the In
degradation of turbine of compilation of all emissions development of degradation addition, the volume conduring the period of testing the lused in each testing the conduction of turbine of the conduction of turbine of turbine of the conduction of turbine of turbi	engine emissions. This sion test data and anal ion factors for the JT3 ntains maintenance data sting, as well as analy	volume contains a ysis data used in D-38 engine type. for the test unit ses of the samples	the In s of
degradation of turbine of compilation of all emissions development of degradation addition, the volume conduring the period of testing the last reach testing the second testing testing the second testing te	engine emissions. This sion test data and anal ion factors for the JT3 ntains maintenance data sting, as well as analy	volume contains a ysis data used in D-38 engine type. for the test unit ses of the samples	the In s of
degradation of turbine of compilation of all emissions development of degradation addition, the volume conduring the period of testing the last reach testing the second testing testing the second testing te	engine emissions. This sion test data and anal ion factors for the JT3 ntains maintenance data sting, as well as analy	volume contains a ysis data used in D-38 engine type. for the test unit ses of the samples	the In s of
degradation of turbine of compilation of all emissions development of degradation addition, the volume conduring the period of testing the last reach testing the second testing te	engine emissions. This sion test data and anal ion factors for the JT3 ntains maintenance data sting, as well as analy	volume contains a ysis data used in D-38 engine type. for the test unit ses of the samples	the In s of
degradation of turbine of compilation of all emissions development of degradation addition, the volume conduring the period of testing the lused in each testing the conduction of the standard conduction and the standard conductions are standard conductive.	engine emissions. This sion test data and anal ion factors for the JT3 ntains maintenance data sting, as well as analy	volume contains a ysis data used in D-38 engine type. for the test unit ses of the samples	the In s of
degradation of turbine of compilation of all emissions development of degradation addition, the volume conduring the period of testing the lused in each testing the conduction of the standard conduction and the standard conductions are standard conductive.	engine emissions. This sion test data and analion factors for the JT3 ntains maintenance data sting, as well as analy	volume contains a ysis data used in D-38 engine type. for the test unit ses of the samples	the In s of
degradation of turbine of compilation of all emissions development of degradation addition, the volume conduring the period of testing the lused in each testing the conduction of turbine of the conduction of turbine of turbine of the conduction of turbine of turbi	engine emissions. This sion test data and anal ion factors for the JT3 ntains maintenance data sting, as well as analy	volume contains a ysis data used in D-38 engine type. for the test unit ses of the samples	the In s of
degradation of turbine of compilation of all emissions development of degradation addition, the volume conduring the period of testing the lused in each testing the conduction of turbine of the conduction of turbine of turbine of the conduction of turbine of turbi	engine emissions. This sion test data and anal ion factors for the JT3 ntains maintenance data sting, as well as analy	volume contains a ysis data used in D-38 engine type. for the test unit ses of the samples	the In s of
degradation of turbine of compilation of all emissions development of degradation of the conduction, the volume conduring the period of testing the period of testing the last in each testing the period of the conduction of turbine of turbine of the conduction of turbine o	engine emissions. This sion test data and anal ion factors for the JT3 ntains maintenance data sting, as well as analy	volume contains a ysis data used in D-38 engine type. for the test unit ses of the samples	the In s of
degradation of turbine of compilation of all emissions development of degradation of the volume conduring the period of test fuel used in each test.	engine emissions. This sion test data and analytic in factors for the JT3 intains maintenance data sting, as well as analytic A-RD, TA	volume contains a ysis data used in D-3B engine type. for the test unit ses of the samples	of
degradation of turbine of compilation of all emissions development of degradation of the volume conduring the period of test fuel used in each test.	engine emissions. This sion test data and analytic in factors for the JT3 intains maintenance data sting, as well as analytic in the JT3 intains maintenance data sting, as well as analytic in the JT3 intains maintenance data sting, as well as analytic in the JT3 interest in the JT3 int	volume contains a ysis data used in D-3B engine type. for the test unit ses of the samples	of public
degradation of turbine of compilation of all emissions development of degradation of the volume conduring the period of test fuel used in each test.	engine emissions. This sion test data and analytic for the JT3 hains maintenance data sting, as well as analytic for the JT3 analytic f	volume contains a ysis data used in D-3B engine type. for the test unit ses of the samples	of public ical
degradation of turbine of compilation of all emissions development of degradation of the standard of the stand	engine emissions. This sion test data and analytic for the JT3 hairs maintenance data sting, as well as analytic for the JT3	is available to the National Technion Service, Spring	of public ical
degradation of turbine of compilation of all emissions development of degradation of the standard didition, the volume conduring the period of test fuel used in each test.	engine emissions. This sion test data and analytic for the JT3 hairs maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair mai	is available to the National Technion Service, Spring	of public ical
degradation of turbine of compilation of all emissions development of degradation addition, the volume conduring the period of test fuel used in each test. Aircraft Turbine Engine Exhaust Emissions Time Degradation Factor	ingine emissions. This is ion test data and analy ion factors for the JT3 intains maintenance data sting, as well as analy information of the street of the	volume contains a ysis data used in D-38 engine type. for the test unit ses of the samples A A A A A A A A A A A A A A A A A A A	of public ical
degradation of turbine of compilation of all emissions development of degradation of the standard of the stand	engine emissions. This sion test data and analytic for the JT3 hairs maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair maintenance data sting, as well as analytic for the JT3 hair mai	volume contains a ysis data used in D-3B engine type. for the test unit ses of the samples A A A A A A A A A A A A A A A A A A A	ne public ical gfield,

2.60 350

TABLE OF CONTENTS

1.	. INTRODUCTION		•	1
	1.1 Content of Volume			1
2.	. ENGINE TEST AND MAINTENANCE CHPJNOLOGY			3
3.	. NOMENCLATURE			9
4.	EMISSIONS AND ANALYSIS DATA			21
	Baseline Test Series			23
	600 Hour Test Series			80
	1200 Hour Test Series			137
	1800 Hour Test Series			194
	2400 Hour Test Series			251
	3000 Hour Test Series			308
5.	FUEL ANALYSIS DATA			365
6.	. REFERENCES			369

NTIS	GRA&I
DDC TA	AB T
Unann	ounced
Justin	ication
	lability Codes
	Avail and/or
list	special
1	
	1

LIST OF FIGURES

Figure	١.	Mean EPR versus N2 Curve in the Idle Regime	11
Figure	2.	Estimated Engine Thrust versus Engine Pressure	
		Ratio Characteristic with NAFEC Emissions Sampling Rake installed	13
Figure	3.	Estimated Engine Thrust versus Corrected High Rotor Speed in the Idle Regime	14
Figure	4.	1.pical Production Engine Performance	18

I. INTRODUCTION

This is the fifth volume of an eight-volume report concerning the degradation of turbine engine emissions. This volume contains test data obtained for the JT3D-38 engine type as installed on the DC-8-61 aircraft. The engines, owned and operated by UAL, were tested in San Francisco by UAL personnel.

The other volumes of the report are listed below:

Volume 1 - Program Description and Results

Volume 11 - JT80-9 Test Data

Volume III - JT80-7 Test Data

Volume IV - JT3D-7 Test Data

Volume VI - JT90-3A Test Data

Volume VII - RB211-22B Test Data

Volume VIII - CF700-2D Test Data

Regarding the test data, is should be noted that EPA test specifications were not followed where they conflicted with the interests of degradation testing. Hence, comparison of absolute emission levels presented in this report with EPA standards may be misleading.

1.1 CONTENT OF VOLUME

There are four sections that make up the volume: Engine Test and Maintenance Chronology; Nomenclature; Emissions and Analysis Data; and Fuel Analysis Data.

The Engine Test and Maintenance Chronology section contains a chronological, unit-by-unit, listing of noteworthy events occurring to a particular engine in the course of the program. This includes test dates, dates and descriptions of maintenance, and the dates of installations onto other aircraft that may have occurred. If an engine was removed from the program, the date and reason are also included.

The Nomenclature section contains a listing and description of all the titles and column headings used in the two succeeding sections. This includes all equations used in the various calculations.

The Emissions and Analysis Data section includes all data gathered during a test, plus the results of any calculations performed on that data

It consists of a number of tables arranged according to test series. For the JT3D-3B engine there were six such series; Baseline; 600 Hour; 1200 Hour; 1800 Hour; 2400 Hour; and 3000 Hour. The hour designations represent the nominal value of time since baseline (TSB) for each engine tested. The actual values of TSB are scattered about the nominal values. Within each test series, the data is further subdivided into a table of data pertinent to an entire test for an engine and a series of seven tables for each of the eight modes tested. Thus there are a total of 57 tables for each test series. In addition, the section begins with a set of notes documenting the data.

The Fuel Analysis Data section contains a unit-by-unit listing of the results of analyses performed on samples of jet fuel used during the emission tests. During each engine test, a sample of fuel was taken from the same fuel tank as used during the test and subsequently analyzed. The results of the analyses include API gravity, hydrogen-carbon ratio and the percentages of paraffins, olefins and aromatics.

2. ENGINE TEST AND MAINTENANCE CHRONOLOGY

7/9/75	Original Test A/C No. 2470, Position No. 1
7/9/75	original lest A/C No. 24/0, Position No. 1
1/3/12 1	Baseline Emission Test
0/2/75	
	Throttle rigged out of rig
	Accomplished FCU trim
	"600-Hour" Emission Test
	Down-trimmed engine 35 clicks
	"1200-Hour" Emission Test
	FCU replaced
3/30/76	"1800-Hour" Emission Test
6/16/76	"2400-Hour" Emission Test
8/20/76	"3000-Hour" Emission Test
9/14/76	Retrimmed engine down
	Original Test A/C No. 2470 , Position No. 2
7/9/75	Baseline Emission Test
9/23/75	"600-Hour" Emission Yest
10/10/75	Down-trimmed engine 35 clicks
12/3/75	"1200-Hour" Emission Test
3/30/76	"1800-Hour" Emission Test
6/16/76	"2400-Hour" Emission Test
8/20/76	'3000-Hour' Emission Test
9/14/76	Retrimmed engine up
	Original Test A/C No. 2470, Position No. 3
7/9/75	Baseline Emission Test
	"600-Hour" Emission Test
	Engine removed due to metal in oil screen
	Original Test A/C No. 2470, Position No. 4
8/27/75	Baseline Emission Test
	"600-Hour" Emission Test
	8/20/76 9/14/76 7/9/75 9/23/75 10/10/75 12/3/75 3/30/76 6/16/76 8/20/76

Unit No./ Serial No.	Pate	1
	tate	! tem
4/6444408 Continued	2/25/76	"1200-Hour" Emission Test
Continued	4/6/76	Engine removed due to compressor damage
5/642511		Original Test A/C No. 2598, Position No. 2
	7/14/75	Baseline Emission Test
	8/8/75	Replaced pneumatic regulator actuator output low
	10/2/75	"600-Hour" Emission Test
	1/12/76	"1200-Hour" Emission Test
	3/16/76	"1800-Hour" Emission Test
	5/24/76	'2400-Hour' Emission Test
	6/28/76	Engine removed from program due to N_{\parallel} shaft out of limits
6/669235		Original Test A/C No. $\underline{2598}$, Position No. $\underline{3}$
	7/14/75	Baseline Emission Test
	10/2/75	"600-Hour" Emission Test
	1/12/76	"1200-Hour" Emission Test
	1/14/76	Engine removed from program due to deteriorated hot section
7/669338		Original Test A/C No. 2478, Position No. 1
	7/21/75	Baseline Emission Test
	7/30/75	Anti-ice valve open replaced valve
	10/7/75	"600-Hour" Emission Test
	10/8/75	Anti-ice valve open in flight, replaced
	1/13/76	"1200~Hour" Emission Test
	3/22/76	"1800~Hour" Emission Test
	7/14/76	'2400~Hour' Emission Test
	8/30/76	"3000~Hour" Emission Test
9.6660221		Original Test A/C No. 2079 Porision No. 2
8/669234	7/21/75	Original Test A/C No. <u>2478</u> , Position No. <u>2</u> Baseline Emission Test
	7/21/75	
	10/6/75	Anti-ice valve inoperative, replaced

いっというというないないないというというというという

4

Unit No./ Serial No.	Date	l tem
8/669234 Continued	10/7/75	"600-Hour" Emission Test
00	1/13/76	"1200-Hour" Emission Test
	3/22/76	"1800-Hour" Emission Test
	4/5/76	Pneumatic relief open, adjusted valve
	7/14/76	'2400-Hour" Emission Test
	7/15/76	Engine removed from program due to compressor disk limit
9/669533		Original Test A/C No. 2478, Position No. 3
	7/21/75	Baseline Emission Test
	7/30/75	Pneumatic heat exchanger leaking, replaced
	10/7/75	"600-Hour" Emission Test
	1/19/76	"1200-Hour" Emission Test
	3/22/76	"1800-Hour" Emission Test
	4/24/76	Engine removed due to burner can shift
10/643983		Original Test A/C No. 2478, Position No. 4
.0,0.,5,05	7/21/75	Baseline Emission Test
	10/7/75	"600-Hour" Emission Test
	1/13/76	"1200-Hour" Emission Test
	3/22/76	"1800-Hour" Emission Test
	7/14/76	''2400-Hour'' Emission Test
	8/30/76	"3000-Hour" Emission Test
11/645348		Original Test A/C No. 2595, Position No. 1
	9/9/75	Baseline Emission Test
	12/9/75	"600-Hour" Emission Test
	2/19/76	Engine retrimmed
	2/24/76	"1200-Hour" Emission Test
	5/7/76	"1800-Hour" Emission Test
	7/21/76	"2400-Hour" Emission Test
	8/31/76	Retrimmed engine
	9/9/76	Engine removed from program due to disk limit

No the second

アンソンなが、アンメング、イングストライ

Unit No./ Serial No.	Date	l tem
12/669646		Original Test A/C No. 2595, Position No. 2
	9/9/75	Baseline Emission Test
	12/9/75	"600-Hour" Emission Test
	2/19/76	Engine retrimmed
	2/24/76	"1200-Hour" Emission Test
	5/7/76	"1800-Hour" Emission Test
	7/21/76	"2400-Hour" Emission Test
	10/14/76	"3000-Hour" Emission Test
13/669477		Original Test A/C No. 2595, Position No. 3
	9/9/75	Baseline Emission Test
	12/9/75	''600-Hour'' Emission Test
	2/19/76	Retrimmed engine
	3/2/76	"1200-Hour" Emission Test
	5/7/76	"1800-Hour" Emission Test
	5/14/76	Up-trimmed idle screw; retrimmed engine in part power; rerigged throttle
	7/21/76	"2400-Hour" Emission Test
	10/14/76	"3000~Hour" Emission Test
14/644947		Original Test A/C No. <u>2595</u> , Position No. <u>4</u>
	9/9/75	Baseline Emission Test
	12/9/75	"600-Hour" Emissio . Test
	2/19/76	Retrimmed engine
	3/2/76	"1200-Hour" Emission Test
	5/7/76	"1800-Hour" Emission Test
	5/27/76	Engine removed due to high oil consumption
15/645448		Original Test A/C No. 2499, Position No. 1
	9/11/75	Baseline Emission Test
	11/24/75	Engine removed due to second stage fan damage

被一

Will's

28x ..

到的一种人们是

Unit No./ Serial No.	Date	I tem
16/669373		Original Test A/C No. <u>2499</u> , Position No. <u>2</u>
	9/11/75	Baseline Emission Test
	11/4/75	Engine removed due to foreign object damage
17/644804		Original Test A/C No. <u>2499</u> , Position No. <u>3</u>
	9/11/75	Baseline Emission Test
	12/2/75	"600-Hour" Emission Test
	3/11/76	"1200~Hour" Emission Test
	5/12/76	Replaced pneumatic on/off valve
	5/21/76	"1800-Hour" Emission Test
	7/20/76	Retrimmed engine
	7/27/76	"2400-Hour" Emission Test
	7/30/76	Engine removed from program due to compressor T-1 disk limit
18/645024		Original Test A/C No. 2499, Position No. 4
	9/11/75	Baseline Emission Test
	12/2/75	"600-Hour" Emission Test
	3/11/76	"1200-Hour" Emission Test
	5/21/76	"1800-Hour" Emission Test
	7/20/76	Retrimmed engine
	7/24/76	Engine removed from program due to compressor disk limit

一种一个一个

3. NOMENCLATURE

Name	Symbo!	Description	Unit
TSO	TSO	Time Since Overhaul	hrs
TSB	TSB	Time Since Baseline	hrs
AMB TEMP	Ta	Ambient temperature	deg R
AMB PRESS	Pa	Barometric pressure	in Hg abs
AMB HUMID	н	Ambient humidity	15m H2O per 15m dry air
MODE 1		Idle, initial - 60 per cent N ₂ nominal	
MODE 2		Idle "plus", initial - 64 per cent N2	
MODE 3		Take-off - T.O. EPR from airline engine operating guide	
MODE 4		Climb - EPR corresponding to 85 percent T.O. thrust	
MODE 5		Intermediate - EPR corresponding to 60 percent T.O. thrust	
MODE 6		Approach - EPR corresponding to 30 T.O. thrust	
MODE 7		Idle "plus", final - see MODE 2	
MODE 3		Idle, final - see MODE I	
NI SPEED	N ₁	Rotational speed of low pressure turbine, given as a percent of design speed (7000 rpm)	percent
N2 SPEED	142	Rotational speed of high pressure turbine, given as a percent of design speed (9655 rpm)	percent
CORR NI	N ₁ '	N ₁ speed corrected to standard ambient conditions	percent
		$N_1' = N_1 \times \sqrt{518.7/T_a} \text{ (Ref 1)}$	

Name	Symbol	Description	Unit
CORR N2	н2,	Corrected N ₂ speed (Ref 1) N ₂ = N ₂ $\times \sqrt{518.7/T_a}$	percent
FUEL FLOW	F	Fuel Flow	lbm per hr
CB F/A	(F/A) _{CB}	Carbon balance fuel-air ratio (Ref 2, dry b	asis)
		$(F/A)_{CB} = \frac{(12+a) \times 4.77(1+0.25a)}{(1+0.25a)(32+3.73\times28+0.04\times40)} +$	
		$\left[\frac{\frac{100}{\text{CO+CO}_2 + \text{HC}}}{\frac{10^4}{10^4}} + 0.25a - \frac{1}{2} \left(\frac{\frac{\text{CO/10}^4}{\text{CO+CO}_2 + \text{HC}}}{\frac{\text{CO}}{10^4}}\right) - \frac{(1+0)^4}{\frac{\text{CO}}{10^4}}\right] - \frac{1}{2} \left(\frac{\frac{1}{10^4}}{\frac{\text{CO}}{10^4}}\right) - \frac{1}{2} \left(\frac{\frac{1}{10^4}}{\frac{\text{CO}}{10^4}}\right)$	0.25a) HC/10 ⁴ 0+C0 ₂ +HC 10 ⁴
		where a is the hydrogen-carbon ratio of the fuel as obtained in the fuel analysis. (A mean value was used when the analysis was not available; amean = 1.90)	
PERF F/A	(F/A) _{PF}	Performance fuel-air ratio, obtained iteratively from	
		$(F/A)_{PF} = \frac{F \sqrt{T_{T7/3600}}}{W \times CD \times ARN \times A_{rat} \times EPR \times P_a}$	
		where EPR is obtained from curve shown in Figure 1 for modes 1, 2, 7 and 8. Actual test data is used for other modes.	
		W(nozzle flow parameter) =	
		$\frac{M\sqrt{\gamma_g/R}}{(1 + \frac{\gamma - 1}{2} M^2)^{\frac{\gamma}{1 - 4}}}$	
		M(nozzle discharge Nach Number) =	
		$\left[\frac{\text{EPR}\frac{\gamma-1}{\gamma}-1}{\frac{\gamma-1}{2}}\right]^{1/2}$	
		g = 32.174 ft per sec ²	
		ARN(nozzle discharge area) = 548 sq in	
		γ (nozzle specific heat ratio) =	
		1.3837 -0.685 (F/A) _{PF}	
		-0.0000636 (T _{T7} -950)	

Figure 1. Mean EPR versus N_2 Curve in the Idle Regime

Name	Symbol	Description	Unit
PERF F/A Cont i nued		R(nozzle gas constant) = 53.342 + 4.797 (F/A) _{PF} A _{rat} (nozzle thermal growth ratio) = 1 + 0.000015 (T _{T7} -200) CD(nozzle discharge coefficient) = 0.88 + 0.0667 (EPR -1) Initially, (F/A) _{CB} is used in the	
π7		calculation of Y and R	deg R
EPR	T _{T7}	Exhrust gas temperature Engine pressure ratio	beg k
THRUST	TH	Thrust (obtained from TH = TH'x(Pa/29.92)	1bf
CORR FU FL	F'	(Ref 1) Corrected fuel flow (Ref 1)	1bm per hr
COR CB F/A	(F/A) cB	F' = F ×(29.92/P _a)× $\sqrt{518.7/T_a}$ Corrected carbon balance fuel-air ratio (Ref 1) (F/A) $^{\prime}_{CB}$ = (F/A) $^{\prime}_{CB}$ ×(518.7/T _a)	
COR PF F/A	(F/A) ;	Corrected performance fuel-air ratio (Ref 1) $(F/A)_{PF}^{\dagger} = (F/A)_{PF} \times (518.7/T_a)$	
CORR TT7	тт7'	Corrected exhaust gas temperature $T_{T7}' = T_{T7} \times (518.7/T_a)$	dag R
COR THRUST	ТН	Corrected thrust (obtained from curve shown in Fig for modes 3 through 6 and from the curve shown in Fig 3 for modes 1, 2, 7 and 8)	16f

Figure 2. Estimated Engine Thrust versus Engine Pressure Ratio Characteristic with NAFEC Emissions Sampling Rake Installed

Corrected High Rotor Speed, N2 (percent)

Figure 3. Estimated Engine Thrust versus Corrected High Rotor Speed in the Idle Regime

Name	Symbol	Description	Unit
CO2 COMC	. co2	Concentration of carbon dioxide	per cent
CO CONC	со	Concentration of carbon monoxide	ppm
HC CONC	нс	Concentration of hydorcarbons (propane)	ppm
NO CONC	NO	Concentration of NO	ppm
NOX CONC	NO _×	Concentration of NO _X	ppm
C02 E1	EICO2	Emission index of carbon dioxide (Ref 3)	ibm per 1000 ibm fuel
		$E_{CO2} = \frac{M_{CO2} \times CO_2 \times 1000}{(M_C + a \times M_H) (\frac{CO}{10^4} + \frac{+CO_2 + HC}{10^4})}$	TOM TOET
		where: M _C = atomic weight of carbon	
		M _H = atomic weight of hydrogen M _{CO2} = molecular weight of CO ₂	
CO EI	EICO	Emission index of carbon monoxide (Ref 3) $EI_{EO} = \frac{M_{CO} \times \frac{CO}{10^{14}} \times 1000}{(M_{C} + a \times M_{H}) \frac{(CO + CO_{2} + HC)}{10^{14}}}$	lbm per 1000 lbm fuel
		where: M _{CO} = molecular weight of CO	
HC EI	EIHC	Emission index of hydrocarbons (Ref 3) $EI_{HC} = \frac{\kappa_{HC}}{(M_C + a \times M_H)} \times \frac{1000}{(C_C + C_C)} \times \frac{\kappa_{HC}}{(C_C + C_C)} \times \frac{\kappa_{HC}}{(C_C + C_C)}$	lbm per 1000 lbm fuel
		where: M = molecular weight of methane	
NO EI	E I NO	Emission index of NO (Ref 3) $EI_{NO} = \frac{M_{NO_2} \times \frac{NO}{10} 4 \times 1000}{(M_C + a \times M_H) (\frac{CO}{10} + \frac{CO}{2}) + \frac{HC}{10} 4}$	lbm per 1000 lbm fuel
		where: MNO ₂ = molecular weight of NO ₂	

Name	Symbo1	Description	Unit
NOX EI	(EI _{NO×}	Emission index of NO _x (Ref 3) $EI_{NO} = M_{NO_2} \times \frac{NO_x}{10^4} \times 1000$	
		EINOx MO2 x 1000 (Mc +a xMH) (CO +CO2 +HC) 104	
SMK NUMBER FRONT SIDE	SN	Smoke Number (Ref 3) SN = 100 × (1-RS/RW)	
		where RS = smoke spot reflectance RW = reflectance of clean filter paper	
SMK NUMBER CORRECTED	SN'	Smoke Number corrected in manner shown in Appendix III of Volume I	
NREC CO EI	(EI _{CO}) _{std}	Appendix () of foliame ()	1bm per 1000 1bm fuel
		$(EI_{CO})_{std} = \frac{F_{CO}}{(F_{CO})_{std}} \times EI_{CO}$	
NREC HC EI	(EIHC) td	Appendix II of torume I/	1bm per 1000 1bm fuel
		(EI _{HC}) _{std} * FHC * EI _{HC}	
NRE CND EI	(EI _{NO}) _{std}	NREC corrected NO emission index (see Appendix II of Volume I) (EINO) std = \frac{F_{NO}}{F_{NO}} std × EINO FNO	ibm per 1000 ibm fuel
NR CNOX EI	(EI _{NO}) _{std}	NREC corrected NO _x emission index (see Appendix II of Volume I) $\frac{(EI_{NO_x})_{std} = \frac{(F_{NO})_{std} \times EI_{NO_x}}{F_{NO}}$	1bm per 1000 1bm fuel
FC0	Fco	CO emission factor	
		$F_{CO} = \begin{bmatrix} P_{b,obs} \\ b,ref \end{bmatrix}^{3/4} \begin{bmatrix} T_{b,obs} \\ T_{b,ref} \end{bmatrix}^{1/2}$	

はなしとくと

Name	Symbol	Description
FCO Continued		$\frac{\left(e^{\text{Tb},\text{obs/2000}}\right)}{\left(e^{\text{Tb},\text{ref}/(400-\text{F/A}_{\text{ref}} \times 10^{4})}\right)} \text{ for modes } 1,2,7,8}$ $\frac{\left(e^{\text{Tb},\text{ref}/(400-\text{F/A}_{\text{obs}} \times 10^{4})}\right)}{\left(e^{\text{Tb},\text{ref}/(400-\text{F/A}_{\text{ref}} \times 10^{4})}\right)} \text{ for modes } 3,4,5,6}$ $\text{where: } P_{\text{b,ref}} = P_{\text{a,ref}} \cdot f_{1} \left(\frac{1}{2},\text{ref} \sqrt{\frac{1}{518.7}}\right)$
		$T_{b,ref} = T_{a,ref} \cdot f_{2} \left(\frac{1}{2,ref} \sqrt{\frac{T_{a,ref}}{518.7}} \right)$ $P_{b,obs} = P_{a,obs} \cdot f_{1} \left(\frac{1}{2,ref} \sqrt{\frac{T_{a,obs}}{518.7}} \right)$ $T_{b,obs} = \frac{T_{a,obs}}{518.7} \cdot f_{2} \left(\frac{1}{2,obs} \sqrt{\frac{T_{a,obs}}{518.7}} \right)$
		where the functions f ₁ and f ₂ are obtained from curves supplied by P&WA (see Fig 4) Subscript "obs" refers to actual values or values observed for a particular test and mode.
•		Subscript "ref" refers to reference values, arbitrarily chosen as the average values for the baseline tests (and at take-off power where appropriate) The reference values were:
FHC	F _{HC}	The reference values were: $F/A,_{ref} = 0.0156$ $N_{2,ref} = 9858 \text{ rpm}$ $P_{a,ref} = 29.95 \text{ in Hg abs}$ $T_{a,ref} = 520.0 \text{ deg R}$ HC emission factor $F_{HC} = \left[\frac{P_{b,obs}}{P_{b,ref}}\right]^{1.8} \left[\frac{T_{b,obs}}{T_{b,ref}}\right]^{1/2}.$
		e 0.00714 (Tb,obs -Tb, ref)

Figure 4. Typical Production Engine Performance

Name	Symbol	Description	Unit
FNO	F _{NO}	NO emission factor FNO = [P _{b,obs}] 1/2 . e 0.00148 (T _{b,obs} -T _{b,ref})	-19н}
STD FCO	(F _{CO}) _{std}	Corrected CO emission factor	
		$(F_{CO})_{std} = \left[\frac{P_{b,std}}{P_{b,ref}}\right]^{3/4} \cdot \left[\frac{T_{b,std}}{T_{b,ref}}\right]^{1/2}$.	
		$\frac{e^{\text{Tb},\text{std}/2000} \qquad \text{for modes 1, 2, 7, 8}}{e^{\text{Tb},\text{ref}/(400-F/A_{ref} \times 10^4)}}$	
		$ \frac{T_{b,std}/\{400-T_{a,std}(F/A_{obs}/T_{a,obs}) \times 10^{4}\}}{E_{b,ref}/(400-F/A_{ref} \times 10^{4})} $ for 5 a	modes 3,4, nd 6
		where: $P_{b,std} = P_{a,std} \cdot f_1 \left(\frac{N_{2,std}}{\sqrt{\frac{T_{a,std}}{518.7}}} \right)$	
		$T_{b,std} = T_{a,std}$ $f_2(N_{2,std} \sqrt{\frac{T_{a,std}}{518.7}})$	
		The values of the engine operating parameters in the standardized emission factors may be obtained by assuming that corrected thrust remains constant. Therefore,	
		$\frac{F/A}{T_a}$ and $\frac{N_2}{T_a}$	
		remain constant, and the equations for $T_{b,tc}$ and $P_{b,std}$ should be modified to read: $P_{b,std} = P_{a,std} f_1 \left(\frac{N_{2,obs}}{\sqrt{\frac{T_{a,obs}}{518.7}}} \right)$	
		$T_{b,std} = f_2(N_{2,obs} / \frac{T_{a,obs}}{518.7})$	
		Subscript "std" refers to standard day condit (i.e., 518.7 deg R, 29.92 in Hg abs and 0.0 1 H ₂ 0/lbm dry air), or a value corrected to staday condition.	bm

THE REPORT OF THE PARTY OF THE

Name	Symbol	Description	Unit
STD FHC	(F _{HC}) _{std}	Corrected HC emission index $ (F_{HC})_{std} = \begin{bmatrix} P_{b,std} \\ P_{b,ref} \end{bmatrix}^{1.8} \cdot \begin{bmatrix} T_{b,std} \\ T_{b,ref} \end{bmatrix}^{1/2} \cdot \begin{bmatrix} P_{b,std} \\ T_{b,ref} \end{bmatrix}^$	
STD FNO	(F _{NO}) _{std}	Corrected NO emission index $ (F_{NO})_{std} = \begin{bmatrix} P_{b,std} \\ P_{b,ref} \end{bmatrix}^{1/2} \cdot \begin{array}{c} 0.00148 \ (T_{b,std} - T_{b,ref}) \\ e \end{array} $	
АРІ		Specific gravity of jet fuel measured at 60 deg F using 'Relative Density or Density of Liquid-Balance Method' and converted to API gravity using a conversion table.	
H/C RATIO	a	Hydrogen-carbon ratio as determined using a Sandacarlo Erba Model 1100 elemental analyzer and the indium sample encapsulation technique.	
FIA		Fluorescent Indicator Absorption - Fuel samples were analyzed for apraffin, olefin, and aromatic content using the ASTM Method D1319-70.	

これと ひというという

4. EMISSIONS AND ANALYSIS DATA

The data which appears on the following pages consists of actual test data as well as calculated values which were used for analysis purposes. In examining this data, certain points should be noted, as listed below:

- Data has been rounded off to no more than 4 significant figures.
- 2. In some instances, the NO analyzer gave higher readings than the NO $_{\rm X}$ analyzer. In these cases, the NO $_{\rm X}$ emission index and the NREC corrected emission index were set equal to the corresponding NO vales. The NO $_{\rm X}$ concentration and the FAA corrected emission index were not changed.
- In certain tests, smoke data could not be obtained for a particular mode. Values of 0.0 are printed in the tables for these cases.
- 4. The baseline test of unit 1 was performed before UAL began to routinely trim the engines before each test. This is believed to be the reason for the unusually high idle and idle plus rotor speeds.
- 5. Fuel flow readings for unit 10, modes 3 and 4, were consistently low throughout the testing program.
- 6. The calibration gas concentrations for NO and NO_X were questionable for the nominal 50 ppm bottle for tests conducted between 10/10/75 and 6/14/76; and for the nominal 200 ppm bottle for tests conducted between 11/18/75 and 4/22/76. The test data was processed in two different ways: the first assuming the stated concentrations were correct, and the second using calculated values for the concentrations. This is discussed in detail in Appendix IV of Volume 1. In the following tables, the concentrations and emission indices of NO and NO_X are based on the stated calibration gas concentrations, while the NREC corrected emission indices are based on the calculated values.

スタンツ

and the same of th

7. The following items of data were found to be erroneous and were changed in the data base:

Unit	Test		
Number	Series	Mode	Quantity
2	"600-Hour"	7	Fuel Flow
2	"1200-Hour"	6	N1
4	"Baseline"	8	Fuel Flow
5	"Baseline"	6	EPR
5	"1 200-Hour"	8	N1 ·
6	"1 200-Hour"	6	N2
10	"Baseline"	4	Fuel Flow
13	"Baseline"	5	EPR
17	" 600-Hour"	6	TT7

JT30-38 . PASELINE TEST SERIES .

UNIT	TSO HR	TSR HR	AMR TEMP DEG R	AMR PRESS IN HG	AMR HUMIN
1	2044A.	0.	517.7	30.02	.009750
S	21074.	0.	519.2	30.02	.008710
3	20506.	0.	519.2	30.02	.008710
4	23054.	0.	519.2	29.95	.008160
5	19962.	0.	520.7	29.88	.008410
6	22641.	0.	520.7	29.44	.008410
7	20351.	0.	518.2	30.01	.009050
8	20734.	0.	518.2	30.01	.009050
9	19754.	0.	518.2	30.01	.009050
10	22342.	0.	518.2	30.01	.009050
11	21349.	0.	522.2	29.97	.009820
12	146 3.	0.	522.2	29.97	.009820
13	20020.	0.	522.2	29.97	.009820
14	26148.	0.	522.2	29.97	.009820
15	25551.	0.	520.2	29.88	.009110
16	22787.	0.	520.2	29.97	.009110
17	31248.	0.	520.2	29.88	.009110
18	25771.	0.	520.2	29.89	.009100

JT30-38 . RASELINE TEST SERIES .

MODE 1

UNIT	PER CENT			
1	-36.00			
2	32.00	59.00	31.9A	58.97
3	32.00	60.00	31.98	59.97
	33.00	60.00	32.98	59.97
5	35.00	-63.00	34.93	-62.88
6	35.00	65.00	34.93	61.88
7	32.80	59.90	32.82	59.93
6	32.80	61.00	32.82	61.03
9	33.00	60.00	33.02	60.03
10	33,50	61.00	33.52	61.03
11	32.50	61.50	32.39	61.29
12	32.00	60.50	31.89	60.30
13	33.00	59.50	32.89	59.30
14	33.00	60.00	32.89	59.80
15	34.00	60.00	33.95	59.91
16	35.00	-62.40	34.95	-62.31
17	34.60	61.50	34.55	61.41
18	32,00	60.00	32.95	59.91

JT30-38 . BASELINE TEST, SERIES .

MODE 1

	51151 F1 611	CD 544	DEDE EAA		-00	THOUSE
UNIT	FUEL FLOW	CR F/A X100	PERF F/A	TT7 DEG R	EPR	LRF
	•••••					
1	1330.	.7970	7540	-906.	1.030	-1408.
5	-1190.	7230	.8080	1014.	1.020	1064.
3	1240.	.8860	.8070	996.	1.020	1134.
4	1280.	7640	.8350	996.	1.050	1137.
5	1310*	.9060	.8050	1032.	1.030	-1357.
6	1230.	.8430	7720	1023.	1.050	1273.
7	1270.	.8340	.8150	-960.	1.030	1132.
A	-1380.	.9030	.8890	1032.	1.050	1209.
9	1240.	.8720	.8250	1041.	1.050	1139.
10	1290.	.8730	.8310	1032.	1.050	1209.
11	-1190.	7740	7510	1014.	1.020	1228.
15 -	1240.	.8080	.8040	1014.	1.050	1159.
13	1260.	.8190	.8500	1032.	1.020	1089.
14	1320.	.8130	.4530	974.	-1.010	1124.
15	1300.	. 8260	.8730	1050.	1.030	1136.
16	1280.	7430	.7950	1053.	1.050	-1309.
17	1300.	.7890	.A270	1023.	1.030	1240.
18	1290.	.8220	.8580	1032.	1.040	1135.

JT30-38 . RASELINE TEST SERIES .

MODE 1

UNIT	CORR FU FL LBM/HR	COR CB F/A C	COR PF F/A C	ORR TT7 COR	THRUST
1	1333.	.7980	7560	-907.	-1413.
2	-1195.	7230	.8070	1013.	1068.
3	1245.	.8860	.8070	995.	1138.
4	1292.	7640	.4350	995.	1134.
5	1311.	.9030	.8020	1028.	-1355.
6	1231.	.8400	7690	1019.	1272.
7	1273.	.8350	.A160	-961.	1135.
8	-1383.	.9040	.8900	1033.	1212.
9	1243.	.8730	.8260	1042.	1142.
10	1293.	.8740	.9320	1033.	1212.
11	-1196.	7680	7460	1007.	1231.
12	1246.	.8020	.7990	1007.	1161.
13	1266.	.8140	.8440	1025.	1091 •
14	1327.	.8070	.8480	-971.	1126.
15	1300.	.8240	.8700	1047.	1134.
16	1279.	7410	.7930	1020.	-1306.
17	1300.	.7870	.A240	1020.	1239.
18	1291.	.8200	.8560	1029.	1134.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

26

Lift y

JT30-38 . BASELINE TEST SERIES .

MODE 1

UNIT	COZ CONC	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.421	910.4	506.7	5.6	11.3
5	-1.209	972.0	673.9	7.5	9.7
3	1.541	1001.4	700.7	5.1	A,6
4	-1.336	901.9	569.4	8.1	13.0
5	-1.652	897.9	517.9	9.7	12.9
6	1.522	908.8	-503.3	7.6	11.8
7	1.472	915.3	605.8	9.6	11,3
A	-1.597	1001.8	649.0	10.0	11.6
9	1.527	1015.1	652.3	7.5	10.8
10	1.538	256.1	643.7	8.9	11.0
11	1.364	A67.5	546.5	A.A	11.6
12	1.429	894.8	560.9	11.2	12.1
13	1.432	952.0	609.2	10.5	12.0
14	1.403	941.2	664.3	9.8	11.6
15	1.494	901.4	-490.0	11.9	12.4
16	-1.313	-850,4	514.1	11.2	12.3
17	1.398	A54.3	552.4	10.4	12.1
19	1.447	967.9	581.6	10.7	12.2

JT3D-38 . BASELINE TEST SERIES .

MODE 1

UNIT	COS ET	CO EI LB/KLB FU	HC EI LB/KLR FU	NO EI LB/KLB FU	NOX EI LR/KLB FU	SMK NUMBER FRONT SIDE
1	2693.	109.79	104.98	1.11	2.25	-6,76
5	-2528.	-129,31	154.02	1.64	2.12	21,50
3	2625.	108,57	130.51	.90	1.53	19.81
. 4	2640.	113.45	123.04	1.68	2.69	-14,53
5	-2750.	-95,12	-94.26	1.69	2.24	21.33
6	-2725.	103.55	-98.51	1.42	2.21	17.07
7	2666.	105,51	119.96	1.61	2.14	22.40
8	2668.	106,53	118.55	1.75	2.03	21.33
9	2646.	111.91	123.54	1.35	1.96	22.40
10	2661.	105.26	121.75	1.62	1.99	21.16
11	2664.	107.82	116.69	1.80	2.37	20.88
12	2672.	106,48	114.67	2.20	2.37	18,46
13	2641.	111.74	122.83	2.02	2.31	19,25
14	. 2608.	111.36	135.03	1.71	2.25	17,99
15	-2728.	104.79	-95.85	-2.27	2.37	15.54
16	2669.	110.04	114.29	-2.38	2.61	16.89
17	2675.	104.06	115.59	2.09	2.42	19.73
18	265A.	113.11	116.76	2.06	2.33	17.45

JT30-38 . BASELINE TEST SERIES .

MODE 1

UNIT	FC0 X100	FHC X100	FN0 X100	STO FCO	STD FHC X100	STO FNO
1	2270	0940	16.7330	2270	0940	-20.1450
5	.2040	.0630	15.5890	.2030	.0620	18.3460
3	.2080	.0680	15.8670	.2070	.0670	18.6730
4	.2070	.0680	16.0130	.2070	.0670	18.6730
5	2220	0A90	16.9150	2220	0870	-19.7A20
6	.2160	.0800	16.5070	.2150	.07A0	19.3050
7	.2070	.0670	15.7170	.2070	.0670	18.6590
A	.2120	.0730	16.0230	.2120	.0730	19.0220
9	.20A0	.0680	15.7450	.2070	.0680	18.6920
10	.2120	.0730	16.0230	.2120	.0730	19.0>20
11	.2140	.0760	15.9750	.2130	.0750	19.1100
12	.2100	.0720	15.6390	.2080	.0690	18.7800
13	.2060	.0660	-15.4240	.2040	.0640	18.4530
14	-2080	.0690	15.5610	.2060	.0670	18,6160
15	.2070	.0680	15.7210	.2070	.0670	18.6540
16	2180	0830	16.4160	2180	.0820	-19.4R10
17	.2140	.0770	16.1410	.2130	.0760	19.1490
18	.2070	.0680	15.7270	.2070	.0670	18.6540

JT30-38 . RASELINE TEST SERIES .

HODE 1

U -	NIT	NREC CO EI LB/KLB FU		The second secon	NR CNOX EI LR/KLR FU	
	1	109.89	104.52	1.34	2.70	-6.76
	2	-129.74	-155.72	1.93	2.50	21.50
	3	108.92	131.95	1.06	1.81	19.81
	4	113.61	123.85	1.96	3.14	-14.53
	5	-95.33	-95,98	1.97	2.62	21.33
	6	103.78	100.30	1.66	2.59	17.07
	7	105,65	119.97	2.15	2.54	22.40
	8	106.67	118,56	2.08	2.42	21.33
	9	112.06	123,55	1.60	2.32	22.40
	10	105.40	121.75	1,92	2.36	21.16
	11	108.56	121.27	2.16	2.83	20.88
	12	107.21	119.13	2.63	2.84	18.46
	13	112.50	127.57	2.47	2.77	19.25
	14	112.12	140.26	2.28	2.69	17.99
	15	104.92	-97.04	-2.69	2.81	15.54
	16	110.16	115.67	-2.82	3.09	16.89
	17	104.20	117.08	2.48	2.87	19.73
	18	113.29	118.31	2.44	2.77	17.45

JT3D-38 . RASELINE TEST SERIES .

MODE 2

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORP NI PER CENT	CORR NZ
••••	********		******	
1	-40.50	-68.00	-40.54	-68.07
. 5	-35.00	-63.00	-34.98	-62.97
3 .	36.00	64.00	35.9A	63.97
. 4	36.10	64.00	34.08	63.97
5	-39.50	-67.00	-39,42	-66.87
6	-39.00	-66.00	-34.93	-65.A7
7	36.50	64.00	36.52	64.03
8	36.50	65.00	36.52	65.03
9	36.00	64.00	36.02	64.03
10	37.00	65.00	37.62	65.03
11	37.50	-65.50	37.37	65.28
15	36.00	64.50	35.85	64.28
13	36.20	63.50	36.08	63.29
14	37.00	64.50	36.88	64.28
15	37.00	64.00	36.95	63.91
16	-39.20	-66.40	-39.14	-66.30
17	-38.80	-65.50	-38.74	65.41
18	37.00	64.20	36.95	64-11

NODE 2

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	-1495.	.7820	.7680	996.	1.030	-1882.
2	-1280.	6840	.7730	1005.	1.030	-1358.
3	1360.	.8710	.7980	996.	1.030	1443.
4	1330.	.7600	.7830	996.	1.050	1446.
5	1450.	.8790	.7940	1032.	1.030	-1736.
6	1370.	.8280	.7830	1023.	1.050	-1611.
7	1380.	9550	.7970	-963.	1.040	1449.
8	-1470.	.8650	.85A0	1032.	1.050	1533.
9	1390.	.8520	.8340	1041.	1.060	1449.
10	1400.	.8500	.8180	1032.	1.060	1533.
11	1340.	7460	.7710	1023.	1.030	1556.
12	1365.	.7770	.8040	1023.	1.050	1472.
13	1360.	.8160	.8230	1032.	1.040	1387.
14	1325.	.7930	.7630	978.	-1.010	1472.
15	1390.	.8220	.8410	1050.	1.030	1444.
16	1410.	7410	.7910	1023.	1.050	-1663.
17	1430.	.7750	.8760	1023.	1.030	1572.
18	1400.	.8170	.8360	1032.	1.050	1461.

MODE S

UNIT	CORR FU FL LBM/HR	COR CB F/A CO		G R	THRUST LBF
1	-1499.	.7830	.7700	998.	-1889.
5	-1295.	6930	.7720	1004.	-1362.
3	1365.	.8700	.7970	995.	1447.
4	1332.	7590	.7820	995.	1447.
5	1451.	.8750	.7910	1028.	-1733.
6	1371.	.8240	.7800	1019.	-1609.
7	1383.	9560	.7980	-964.	1453.
A	-1473.	.8650	.8590	1033.	1534.
9	1397.	.8530	.A350	1042.	1453.
10	1403.	.8510	.8180	1033.	153A.
11	1347.	7410	.7660	1016.	1559.
12	1372.	.7720	.7980	1016.	1474.
13	1367.	.8110	.8180	1025.	1389.
14	1332.	.7880	.7580	-971.	1474.
15	1390.	.8190	•8390	1047.	1442.
16	1409.	7390	.7880	1020.	-1660.
17	1430.	.7730	.A230	1020.	1569.
18	1401.	.8140	.8330	1029.	1459.

HODE 2

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.433	801.8	-400.3	6.0	12.2
2.	-1.165	880.9	574.1	7.5	10.2
3	1.561	886.2	565.1	5.3	10.5
4	1.358	818.1	494.9	7.4	13.6
5	-1.646	780.0	-389.7	9.7	14.1
6	1.542	791.0	-371.8	7.7	13.0
7	-1.758	854.0	528.9	7.5	12,3
8	1.574	888.9	492.5	10.3	12.6
9	1.538	914.7	519.0	7.5	11.4
10	1.548	852.1	489.3	9.2	12.2
11	1.355	-751.6	-426.9	7.9	12,6
12	1.405	783.3	464.8	9.9	12.9
13	1.457	881.3	534.3	9.2	12.6
14	1.415	825.3	529.3	9.1	12,6
15	1.503	821.4	445.4	11.2	13.2
16	-1.342	-760.3	435.1	11.3	13.2
17	1.404	764.8	465.6	10.9	13,1
18	1.470	875.5	496.6	10.9	12.9

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

サインスンナーアーノスノーサーナー

MODE 2

UNIT	COS ET	CO EI LB/KLB FU	HC ET LB/KLR FU	NO EI LR/KLB FU	NOX EI LR/KLB FU	SMK NUMBER FRONT SIDE
1	2767.	98.52	-84.52	1.21	2.47	-29.46
2	-257A.	-124.01	-138.85	1.75	2.36	23.03
3	2706.	97.77	107.11	•97	1.90	20.45
4	269A.	103.48	107.53	1.54	2.82	-14.23
5	-2A24.	-85.18	-73.11	1.73	2.53	21.33
6	185-	-91.77	-74.11	1.48	2.48	18.11
7	-2775.	-85.79	91.28	1.23	2.04	20.32
8	2747.	98.74	93.99	1.87	2.30	21.33
9	2723.	103.08	100.48	1.39	2.11	20.73
10	2749.	96.28	94.97	1.70	2.26	20.00
11	2747.	96,82	94.47	1.67	2.66	20.30
12	2730.	96.86	98.74	2.00	5.65	19.46
13	2694.	103.73	108.03	1.79	2.43	19.73
14	2694.	100.01	110.19	1.82	2.50	20.49
15	2760.	95.99	89.43	2.15	2.53	15.78
16	2735.	98.64	96.99	-2.41	2.82	17.01
17	2735.	94.80	99.14	2.21	2.67	21.35
18	2719.	103.01	100.38	2.10	2.49	16.49

MODE 2

UNIT	FCO	FHC	FNO	STD FCO	STD FHC	STD FNO
	X100	X100	x100	X100	X100	X100
1	2630	1600	-18.9230	2630	1600	-22.7A30
2	2230	.0890	-16.8510	2220	0880	-19.8300
3	.2310	.1000	17.3040	.2300	.0990	20.3430
4	.2300	.0990	17.4630	.2300	.0990	20.3630
5	2520	1390	-18.7610	2510	1360	-21.9370
6	2440	1250	18.2930	-,2440	1220	-21.3900
7	.2310	a 0990	17.1800	.2300	.0990	20.3960
8	.2390	.1110	17.6330	.2380	.1110	20.9340
9	.2310	.0990	17.1800	.2300	.0990	20.3960
10	.2380	.1110	17.6330	.2380	-1110	20.9340
11	.2410	1190	17.6180	.2390	.1140	21.0680
12	.2340	.1060	17.1670	.2320	.1020	20,5310
13	.2260	.0950	-16.7210	.2250	.0910	19.9990
14	.2340	.1060	17.1670	.2320	.1020	20.5310
15	.2300	.0990	17.1360	.2290	.0980	20.3300
16	2470	1300	18.2250	2470	1280	-21.6260
17	.2410	1180	17.8190	.2400	.1160	21,1360
18	.2310	.1020	17.2320	.2310	.1000	20.4370

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

THE WALL STATE OF THE PARTY OF

The state of the Partie which have been the training

JT3D-38 . RASELINE TEST SERIES .

MODF 2

UNIT	NREC CO ET	NREC HC ET	NRE CHO ET	NR CHOY ET	SHK NUMBER
	LB/KLR FU	LA/KLA FU	LB/KLA FU	LB/KLB FU	CORRECTED
1	98.61	-84-11	1.46	2.97	-29.46
5	-124.42	-140.40	2.05	2.77	23.03
3	98.09	108,32	1.14	2.23	20.45
4	103.63	108.26	1.80	3.29	-14.23
5	-85.37	-74,51	2.03	2.96	21.33
6	-91.98	-75,51	1.72	2.90	18.11
7	-85.90	91.28	1.46	2,42	20.32
A	98.87	93.97	5.55	2.73	21.33
9	103.22	100.47	1.65	2.51	20.73
10	96.40	94.95	2.02	2,68	20.00
11	97.49	98.31	1.99	3.18	20.30
12	97.54	102,72	2.39	3.13	19.46
13	104.44	112.34	2.14	2.90	19.73
14	100.71	114.62	2.17	2.99	20.49
15	96.12	90.59	2.55	3.00	15.78
16	98.75	98.22	-2.86	3.34	17.01
17	94.93	100.47	2.62	3.17	21.35
18	103.19	101.78	2.49	2.95	16.49

HODE 3

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT
1	103.00	101.50	103.10	101-60
2	104.00	102.50	103.95	102.45
3	105.00	103.00	104.95	-102.95
•	-105.50	103.00	-105.45	-102.95
5	104.50	102.00	104.30	101.80
6	105.00	102.50	104.80	102.30
7	104.40	102.00	104.45	102.05
8	104.00	103.00	104.05	-103.05
9	105.00	103.00	105.05	-103.05
10	103.20	102.00	103.25	102.05
:1	104.00	102.90	103.65	102.55
12	104.40	102.80	104.05	102.45
13	105.20	102.40	104.85	102.06
14	105.00	-103.50	104.65	-103.15
15	104.70	101.00	104.55	100.85
16	105.10	102.00	104.95	101.85
17	104.60	101.00	104.45	100.85
18	104.00	101.50	103.85	101.35

MODE 3

UNIT	FUEL FLOW LRM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	9300.	-1.3820	1.2780	1383.	1.860	14107.
5	9700.	1.6740	1.3720	-1464.	1.460	18107.
3	9700.	1.6360	1.3880	-1500.	1.860	18107.
4	9480.	1.5810	1.3010	1374.	1.860	14153.
5	9600.	1.6350	1.3300	1395.	1.860	14192.
6	10000.	1.6290	1.4030	1478.	1.860	19192.
7	9900.	1.6420	1.3480	1356.	1.860	14117.
Ą	10000.	1.4980	1.3880	1410.	1.860	18117.
9	9610.	1.6300	1.3510	-1446.	1.860	19117.
10	9620.	1.6410	1.3270	1392.	1.860	18117.
11	9480.	1.6080	1.2960	1365.	1.860	19138.
.15	9650.	1.6250	1.3320	1392.	1.860	19138.
13	9950.	-1.6930	1.3920	1428.	1.960	19138.
14	9700.	-1.6900	1.3580	1410.	1.860	19138.
15	9600.	1.6730	1.3340	1401.	1.860	14195.
16	9600.	-1.7050	1.3300	1392.	1.860	18201.
17	9200.	1.6320	-1.2570	1356.	1.860	19192.
18	9900.	-1.6830	1.3710	1392.	1.860	18186.

MODE 3

1	UNIT	CORR FU FL LBM/HR	COR CB F/A	COR PF F/A	CORR TT7 COR	THRUST LBF
1	1	9322.	-1.3840	1.2800	1385.	18168.
,	2	9737.	1.6720	1.3700	-1462.	18168.
The same	3	9737.	1.6340	1.3870	-1498.	18168.
	4	9492.	1.5800	1.3000	1372.	18168.
-1	5	9606.	1.6280	1.3240	1386.	18168.
1	6	19006.	1.6210	1.3980	1422.	18168.
12	7	9923.	1.6440	1.3490	-1357.	18168.
1	8	-10024.	1.5000	1.3900	1411.	18168.
Ar Ti	9	9633.	1.6320	1.3520	1447.	18168.
200	10	9643.	1.6420	1.3280	1393.	16168.
	11	9528.	1.5970	1.2870	-1356.	18168.
	12	9699.	1.6140	1.3240	1382.	18168.
	13	10000.	-1.4820	1.3820	1418.	18168.
.,	14	9749.	1.6780	1.3390	1400.	18168.
- frag	15	9599.	1.6680	1.3306	1397.	18168.
17	16	9596.	-1.7000	1.3260	1388.	18168.
1.	17	9201.	1.6280	-1.2540	-1352.	18168.
1	18	9904.	1.6780	1.3670	1388.	18168.

MODE 3

UNIT	COZ CONO PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	-2.905	26.0	-12.4	101.6	98.8
5	3.521	19.4	-43.9	100.7	100.3
3	3.442	18.7	-32.9	96.7	100.9
4	3.336	16.8	7.1	-106.A	-110.2
5	3.451	23.7	9.6	101.A	101.8
6	3.478	21.2	5.3	-105.3	105.6
7	3.472	23.6	5.5	102.7	103.4
8	3.163	17.4	4.0	-109.3	-112.0
9	3.447	20.8	3.0	105.1	103.6
10	3.469	20.1	4.7	102.8	102.7
11	3.387	16.9	-20.4	100.2	98,6
15	3.427	19.7	-10.0	96.9	100.5
13	-3.573	19.7	9.5	99.9	105.4
14	-3.566	18.5	A.5	104.1	-127.1
15	3.533	20.4	7.9	101:8	102.9
16	-3.601	19 ′	7.1	1	102.3
17	3.446	ic 1		42.2	96.8
18	-3.554	19.4	1,1	93.5	99.8

MODE 3

UNIT	COS EI	CO EI	HC ET	NO EI LB/KLR FU	NOX EI LB/KLB FU	SMK NUMBER FRONT STOE
	4046469466					
1	3147.	-1.79	-1.47	-11.51	-11.51	-42.32
S	-3140.	1.10	-4.28	9.39	9.39	56.67
3	-3143.	1.09	-3.28	9,23	9.63	44.81
	3152.	1.01	.74	-10.55	-10.89	43.66
5	3153.	1.38	.95	9.72	9.72	44.67
6	3155.	1.24	.53	10.11	10.13	-42.09
7	3158.	1.37	•55	9.76	9.83	47.17
8	3158.	1.10	.44	-11.41	-11.69	50.53
9	3158.	1.21	•30	10.07	10.07	55.33
10	3157.	1.17	.47	9.78	9.78	56.24
11	-3146.	1.00	-2.07	9.73	9.73	52.96
12	3149,	1.15	1.01	9.31	9.66	58.28
13	3149.	1.10	.92	9.21	9.71	56.83
14	3150.	1.04	.82	9.61	-11.27	60.57
15	3152.	1.16	.77	9.50	9.60	48.67
16	3152.	1.09	. 68	9.07	9.36	54.86
17	3152.	1.11	.75	8.82	9.26	53.53
18	3153.	1.09	.46	8.67	9.26	57.94

MODE 3

UNIT	FC0 X100	FHC ×100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1	67.5920	89.4750	81.1830	69.4850	90.4820	97.8720
5	-133.1010	108.9410	86.4100	-131.8600	107.3500	101.6090
3	-129.4190	-120.3510	AA.3150	-12A.2270	-118.5A50	-103.8480
4	115.1890	-119.8110	-89.1280	114.3670	-118.5850	-103.8480
5	115.0540	97.3A50	84.6980	111.4930	94.3080	98.7450
6	119.8740	107.6570	86.5800	116.1510	104.2290	100.9540
7	117.3820	98.7150	84.0350	118.4000	99.0660	99.8370
A	97.7800	-120.5020	87.7870	98.5130	-120.9470	-104,2970
9	-127.9410	-120.5020	87.7670	-129.0560	-120.9470	-104.2970
10	117.0810	98.7150	84.0350	118.0950	99,0660	99,8370
11	120.3950	-116.8520	85.7840	113.5040	109.6000	102.0720
12	-123.4870	-114.5400	85.4100	116.3410	107.4410	101.6280
13	-137.0920	105.7230	A7.9240	-12A.7930	99.2070	99.8680
14	-154.0950	-131.6820	88.0570	-144.6460	-123.4420	-104.7640
15	111.5810	79.6520	79.9830	109.0340	77.8560	94.6950
16	-134.0600	97.4150	83.5880	-130.9060	95.2390	98.9780
17	102.3600	79.6760	79,9920	100.0830	77.8560	94.6950
18	120.6420	88.2160	81.8080	117.8010	R6.1320	96.8190

MODE 3

UNIT	LB/KLB FU	NREC HC EI	LB/KLB FU		CORRECTED
		-1 45	-12.00		42.33
1	-1.77	-1,45	-13.48	-13.88	-42.32
2	1.11	-4.35	11.04	11.04	56.67
3	1.10	-3.33	10.85	11.33	44.81
4	1.01	.75	-12.29	-12.69	43.66
5	1.42	.99	11.34	11.34	44.67
6	1.28	.55	11.78	11.82	-42.09
7	1.36	.22	11.60	11.68	47-17
8	1.10	.43	-13.55	-13.88	50.53
9	1.20	.30	11.96	11.96	55.33
10	1.16	.47	11.62	11.62	56.24
11	1.06	-2.21	11.58	11.58	52.96
12	1.22	-1.07	11.08	11.49	58.28
13	1.18	.98	10.96	11.56	58.83
14	1.11	.88	11.43	-13.41	30.57
15	1.19	.79	11.24	11.37	48.67
16	1.12	.69	10.74	11.08	54.86
17	1.14	.77	10.44	10.96	53.53
18	1.12	.47	10.26	10.95	57.94

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

TO KIND THE WAY

MODE 4

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT

1	97.00	98.50	97.09	98.60
. 5	96.50	99.00	96.45	98.95
3 .	97.00	100.00	96.95	99.95
4	98.40	100.00	98.35	99.95
5	98.00	100.00	97.81	99.81
6	-98.50	100.00	98.31	99.81
7	97.10	98.90	97.15	98.95
8	97.30	100.00	97.35	100.05
9	98.00	100.10	98.05	100.15
10	-93.70	97.90	-93.75	97.95
11	97.00	99.80	96.67	99.46
15	97.50	99.90	97.17	99.46
13	98.00	99.50	97.67	99.17
14	-98.50	100.00	98.17	99.66
15	98.10	98.50	97.96	98.36
16	-99.00	99.10	-9A.86	98.96
17	-98.80	98.50	-98.66	98.36
18	97.10	98.50	96.96	98.36

MODE 4

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TTT DEG R	EPR	THRUST LAF
1	7900.	-1.2110	1.2000	1284.	1.660	15301.
2	7600.	1.4230	1.1590	1293.	1.660	15301.
3	7700.	1.4140	1.1760	1284.	1.660	15301.
4	8000.	1.3750	1.2010	-1248.	1.660	15339.
5	7800.	1.4430	1.2070	1320.	1.660	15373.
6	8000.	1.4180	1.2380	1320.	1.660	15373.
7	8000.	1.4350	1.2370	1329.	1.660	15309.
8	8200.	1.3700	1.2640	1320.	1.660	15309.
9	-8300.	1.4200	-1.2RRO	1338.	1.660	15309.
10	7980.	1.3540	1.2040	1266.	1.660	15309.
11	8050.	1.3860	1.2250	1284.	1.660	15326.
12	7800.	1.4170	1.2030	1320.	1.660	15326.
13	7900.	-1.4650	1.2190	1320.	1.660	15326.
14	7850.	1.4530	1.2030	1302.	1.660	15326.
15	7800.	1.4490	1.2110	1329.	1.660	15375.
16	7700.	-1.4860	1.1920	1320.	1.660	15380.
17	7600.	1.4380	1.1600	1284.	1.660	15373.
18	8100.	-1.4730	1.2620	1338.	1.660	15367.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

MODE 4

UNIT	CORR FU FL LRM/HR	COR CR F/A COR		R TT7 COR	THRUST
1	7919.	-1.2130	1.2030	1286.	15352.
2	7629.	1.4220	1.1570	1291.	15352•
3	7729.	1.4120	1.1690	1282.	15352•
4	8011.	1.3740	1.2000	-1247.	15352.
5	7905.	1.4370	1.2020	1315.	15352.
6	8105.	1.4130	1.2330	1315.	15352•
7	8019.	1.4360	1.2340	1330.	15352•
A	8219.	1.3710	1.2650	1321.	15352•
9	-8320.	1.4210	1.2890	1339.	15352+
10	7999.	1.3550	1.2060	1267.	15352.
11	8091.	1.3770	1.2170	1275.	15352•
12	7839.	1.4080	1.1950	1311.	15352.
13	7940.	1.4560	1.2110	1311.	15352•
14	7890.	1.4440	1.1950	1293.	15352•
15	7800.	1.4450	1.2080	1325.	15352.
16	7697.	-1.4810	1.1890	1316.	15352 •
17	7601.	1.4340	1.1570	1280.	15352•
18	8104.	-1.4690	1.2580	1334.	15352•

MODE 4

UNIT	COZ CONC	CO CONC	HC CONC	NO CONC	NOX CONC
	********	******	*******	********	*******
1	-2,542	33.2	5.9	74.5	75.5
2.	2.987	27.5	-31.5	71.0	72.2
3	2.970	27.6	-20.4	-80.3	-84.5
4 .	2.894	22.7	6.0	-83.8	-88.0
5	3.041	29.7	6.4	-81.5	-84.9
6	2.989	26.9	3.6	76.1	81.0
7.	3.026	31.6	1.9	77.6	81.7
8	2.889	21.0	3.3	-85.3	-89.1
9	2.994	.29,2	2.5	74.9	77.2
10	2.852	35.7	3.3	72.0	76,5
11	2.913	22.9	-15.4	72.5	74.6
12	2,981	27.0	-8.2	71.5	77.2
13	-3.085	27.5	-7.3	71.8	79.9
14	3.059	26.1	-6.5	75.2	-94.1
15	3.052	28.0	6.0	14.2	78.6
16	-3,131	24.7	5.1	75.3	79.9
17	3.030	25.4	5.1	71.0	77.2
18	-3.104	29.2	3.3	69.2	76.6

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

A VENTER DAY TO SELLEN DE LE LES DE LE LES DE LES D

JT3D-38 * RASELINE TEST SERIFS *

MODE 4

UNIT	CO2 FT LB/KLB FU	CO EI	HC EI		NOX EI	
1	3147.	-2.62	80	-9.64	-9.7R	-30.14
2	-3141.	1.84	-3,63	7.81	7.94	49.73
3	-3144.	1.86	-2.36	A.49	-9.35	46.62
4	3151.	1.57	.71	-9.54	-10.02	-41.37
5	3153.	1.96	.72	A.84	9.20	46.67
6	3154.	1.81	.41	A.61	8.93	45.33
7	3157.	2.10	.22	R.47	8.91	46.93
8	3157.	1.46	.40	-9.75	-10.18	46.81
9	3157.	1.89	.29	8.25	9.51	49.46
10	3155.	2.51	.40	A.33	8.85	49.24
11	3146.	1.58	-1.82	A.19	8.43	48.14
12	3148.	1.81	95	7.89	8.52	49.40
13	3149.	1.79	82	7.56	8.53	50.47
14	3149.	1.71	.73	8.10	-10.12	47.03
15	3151.	1.84	.67	8.01	8.48	46.52
16	3152.	1.58	•56	7.93	8.40	11
17	3152.	1.68	.59	7.72	8.39	E 2
18	3152.	1.89	.37	7.35	8.13	46.58

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

IAIL A.

MODE 4

UNIT	FC0 X100	FHC ×100	FN0 X100	STD FCO X100	STO FHC X100	STO FNO
1	37,8430	48,4490	70.9310	-3A.2470	48.9570	85.4990
2	55.5510	53.4820	73.9020	55.1010	52.7240	86.9090
3	60.8710	-65.7150	77.3330	60.3740	64.7760	90.9410
4	56.8870	65.4190	7A.0450	56.5350	64.7760	90.9410
5	-63,7350	64.8750	77.4670	-62.0720	62.8910	90.3520
6	-61.0540	64.8750	77.4670	59.4890	62.8910	90.3520
7	56.0550	52.5080	73.1440	56.4150	52.6740	86.8910
8	56.5700	-65.8490	76.8850	56.9150	-66.0660	9:.3370
9	-62.1720	-67.2090	77.2320	-62.5740	-67.4320	91.7490
10	43.8440	42.1930	69.6580	44.0950	42.3210	82.7470
11	56.6520	62.3150	74.7220	53.9890	58.6130	88.9610
12	59.6880	62.3150	74.7220	56.8250	58.6130	88.9610
13	-62.8720	58.5720	73.7090	59.7710	55.1070	97.7600
14	-64.9950	64.9350	75.4030	61.7920	61.0660	89.7680
15	54.6870	47.5850	71.4010	53.6730	46.5580	84,5520
16	-62.3240	53.9200	73.3940	61.1410	52.7760	86.9280
17	53.7270	47.5990	71.4090	52.7310	46.5580	84.5520
18	57.0740	47.6280	71.4260	55.9750	46.5580	84.5520

MODE 4

TO THE THE PROPERTY OF THE PRO

UNIT	BIKLR FU	NREC HC EI LB/KLA FU	NRE CNO FI LAZKLA FU	NR CNOX ET	CORRECTED
1	-2.59	80	-11.62	-11.78	-30-14
5	1.45	-3.68	9.19	9.33	49.73
3	1.97	-2.40	10.45	10.99	46.62
4	1.58	.72	-11.11	-11.67	-41.37
5	2.01	.74	10.31	10.73	46-67
4	1.96	.43	10.05	10.42	45.33
7	2.08	.21	10.06	10.59	46.93
R	1.45	.40	-11.58	-17.09	46.A1
9	1.48	.29	9.80	10.11	49.46
10	-2.50	.40	9,89	10.51	48.24
11	1.65	-1.93	9.75	10.03	48.14
12	1.91	-1.01	9.40	10.14	49.40
13	1.48	87	9.12	10.16	50.47
14	1.90	77	9.64	-12.05	47.03
15	1.88	.69	9.49	10.05	46.52
16	1.42	.57	9.39	9.95	47.11
17	1.71	.59		9.94	51.22
18	1.92	.39	-8.70	9.62	46.58

NOTE- KINUS SIGNS DENOTE OUTLYING VALUES

于我人了了人工,你不了了了,并

MODE 5

UNIT	N1 SPEED PER CENT		CORR NI PER CENT	CORR NZ PER CENT
•		*********	•••••	******
1	86.00	93.50	86.08	93.59
5	85.50	94.00	A5.46	93.95
3	87.00	-95.50	A6.96	-95.45
•	87.00	95.00	86.96	94.95
5	86.50	94.00	86.33	93.82
6	-88.00	95.00	-87.83	94.82
7	86.30	94.00	86.34	94.05
8	86.30	95.00	R6.34	95.05
9	86.80	95.40	86.84	-95.45
10	85.20	94.00	5.24	94.65
11	A5.50	94.50	85.21	94.18
12	-87.50	95.40	R7.21	95.08
13	87.00	94.70	86.71	94.38
14	-88.00	-95.50	-R7.70	95.18
15	87.00	93,50	A6.87	93.37
16	-88.00	94.50	-67.87	94.36
17	87.40	94.20	A7.27	94.06
18	86.40	94.00	86.28	93.86

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

2 12 -11/1/11/11/11/11

MODE 5

UNIT	FUEL FLOW	CR F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST
1	5400.	-1.0210	1.0010	-1140.	1.400	10914.
2	5200.	1.1870	.9780	1176.	1.400	10914.
3	5500.	1.2040	1.0350	1176.	1.400	10914.
4	5050.	1.1230	•9520	1176.	1.400	10941.
5	5400.	1.1930	1.0360	1212.	1.400	10965.
6	5700.	1.1680	1.0860	1194.	1.400	10965.
7	5600.	1.2030	1.0860	-1249.	1.400	10919.
A	5600.	1.1670	1.0700	1212.	1.400	10919.
9	5600.	1.1850	1.0740	1221.	1.400	10919.
10	5711.	1.1720	1.0830	1194.	1.400	10919.
11	5300.	-1.0800	.9990	1176.	1.400	10932.
15 .	5300.	1.1540	1.0290	-1248.	1.400	10932.
13	5600.	1.1940	1.0710	1212.	1.400	10932.
14	5200.	1.1960	.9900	1176.	1.400	10932.
15	5300.	1.1650	1.0240	1230.	1.400	10966.
16	5600.	1.2090	1.0750	1515.	1.400	10970.
17	5200.	1.1490	9830	1176.	1.400	10965.
16	SANO.	1.2000	1.1190	1556.	1.400	10961.

MODE 5

UNIT	CORR FU FL LBM/HR	X100	COR PF F/A	DEG R	THRUST LBF
1	5413.				
2	5220.	1.1860	.9770	1175.	10950.
3	5521.	1.2030	1.0340	1175.	10950.
	5057.	1.122	.9520	1175.	10950.
5	5403.	1-1880	1.0320	1207.	10950.
6	5703.	1.1640	1.0810	1189.	10950.
7	5613.	1.2040	1.0870	1249.	10950.
8	5613.	1.1680	1.0710	1213.	10950.
9	5613.	1.1860	1.0750	1222.	10950.
10	5723.	1.1730	1.0840	1195.	10950.
11	5327.	-1.0720	.9920	1168.	10950.
12	5327.	1.1460	1.0220	1239.	10950.
13	5629.	1.1860	1.06-0	1204.	10950.
14	5226.	1.1880	.9730	1168.	10950.
15	5300.	1.1610	1.0210	1226.	10950.
16	5598.	1.2050	1.0720	1208.	10950.
17	5201.	1.1460	.9800	1172.	10950.
18	5803.	1.1960	1.1160	1223.	10950.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

54

MODE 5

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
1	-2.135	73.9	5.0	46.5	54.4
2	2.481	67.0	-23.9	44.9	52.8
3	2.522	55.4	-12.9	47.6	54.6
4	2.354	-52.4	-6.1	49.2	57.6
5	2.502	70.9	5.4	47.4	54.5
6	2.453	57.1	3.5	45.9	52.8
7	2.527	76.8	3.0	46.3	53.9
8	2.451	-48.1	3.6	-50.9	58.1
9	2.489	63.0	3.1	47.6	55.3
10	2.459	82.5	4.0	48.2	-55.2
11	-2.257	57.9	-13.5	45.7	53.7
12	2.417	57.4	-8.0	48.6	56.1
13	2.501	64.9	-7.2	43.7	54.8
14	2.506	60.2	-6.2	49.7	-64.2
15	2.441	66.6	-6.2	47.3	55.5
16	-2.537	57.3	4.8	48.3	55.2
17	2.409	61.0	4.9	45.4	52.4
18	2.515	79.3	3.8	46.7	55.1

MODE 5

UNIT	CO2 EI	CO EI	HC EI LB/KLB FU	NO EI LB/KLR FU	NOX EI LR/KLB FU	SMK NIMMER FRONT SIDE
1	3141.	6,92	.80	-7.16	-8.37	-28.86
. 5	-3136.	5,39	-3,30	5.94	6.97	51.25
3	3142.	4,39	-1.90	6.20	. 7.11	46.31
. •	3146.	4,46	89	-6.87	-8.05	-41.49
5	3147.	5,67	.74	6.23	7.17	46.81
6	3150.	4,67	.49	6.17	7.09	-27.50
7	3150.	6.09	.40	6.03	7.02	48.25
8	-3153.	-3,94	•51	-6.85	-7.81	47.37
9	-3151.	5.08	.42	6.30	7.32	47.33
10	314A.	6.72	.56	6.46	7.39	49.07
11	3140.	5.13	-2.05	6.64	-7.80	47.61
12	3143.	4.75	-1.14	6.61	7.62	50.99
13	3143.	5.19	99	5.74	7.20	48.67
14	3144.	4,81	.85	6.52	-8.42	46.14
15	3145.	5,46	88	6.38	7.48	45.27
16	3147.	4.52	.64	6.26	7.17	47.57
17	3146.	5.07	.70	6.20	7.15	50.20
18	3145.	6.31	.52	6.11	7.20	48.24

MONE 5

UNIT	FC0 X100	FHC X100	FN0 ×100	STD FCO	STD FHC X100	STD FNO
1	16.6290	14.4480	53.8400	-16.7640	14.5900	64.8790
2	21.5530	16.2280	56.3620	21.4000	16.0090	66.2910
3	-26.4440	-23.6790	61.4320	-26.2520	-23.3050	-72.2510
4	22.3510	20.7860	60.2680	22.2350	20.5950	70.2370
5	21.5450	15.9020	56.3490	21.1150	15.4640	65.7450
6	23.5670	20.4780	59.7190	23.0950	19.9040	69.6900
7	0180.55	16.3420	56.1090	22.1780	16.3930	66,6450
8	23.7530	21.0130	59.4400	23.8560	21.0690	70.6040
9	-25.5270	-23.1960	60.7990	-25.6400	-23.2590	-72.2190
10	21.1930	16.3420	56.1090	21.2820	16.3830	66.6450
11	19.7830	17.9500	56.3720	19.0710	16.9660	67.1R20
12	24.2070	-22.4980	59.3680	23.2850	21.2471	70.7400
13	23.4510	18.8820	57.0310	22.5460	17.8430	67.9650
14	-25.8960	-23.0630	59.7050	-24.8840	-21.77R0	71.1410
15	19.5540	14.0310	54.0350	19.2790	13.7550	64.0140
16	23.4320	18.1130	57.3010	23.0930	17.7610	67.8920
17	20.9020	16.8010	56.3270	20.6040	16.4610	66.7180
18	21.7820	15.9750	55.6930	21.4580	15.6430	65.9400

MODE 5

UNIT	NREC CO EI LB/KLB FU			NR CNOX ET	
1	6.87	.80	-8.63	-10.09	-28.86
2	5.43	-3,34	6.98	A.20	51.25
3	4.42	-1.92	7.29	8.36	46.31
4	4.48	90	-8.01	-9.38	-41.49
5	5.79	.76	7.27	8.36	46.81
6	4.76	.50	7.20	8.27	-27.50
7	6.07	.40	7.16	9.34	48.25
8	-3.92	.51	-8.14	9.27	47.37
9	5.06	.42	7.48	A.70	47.33
10	6.69	•55	7.67	8.78	49.07
11	5.32	-2.17	-7.92	9.30	47.61
12	4.94	-1.21	7.88	9.08	50.99
13	5.40	-1.05	6.84	A.5A	48.67
14	5.01	90	7.76	-10.03	46.14
15	5.54	90	7.55	8.86	45.27
16	4.59	.66	7.42	8.49	47.57
17	5.14	.71	7.34	8.47	50.20
18	6.41	.53	7.23	8.53	48.24

MODE 6

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORP N1 PER CENT	CORR N2 PER CENT
****	*******			
1	69.00	86.50	69.07	86.58
. 5	68.00	85.50	67.97	86.46
3 .	68.00	87.00	67.97	86.95
•	69.40	A7.00	69.37	86.95
5	69.50	A7.00	69.37	86.83
6	70.00	87.00	69.87	86.83
7	67.20	85.80	67.23	85.84
•	69.00	87.50	69.53	87.54
9	68.80	A7.50	68.83	87.54
10	67.00	86.00	67.03	86.04
11	67.50	86.50	67.27	86.21
12	70.00	-87.90	49.77	87.60
13	-71.00	87.50	70.76	87.21
14	-71.00	-89.00	70.76	87.70
15	68.90	85,50	68.80	85.38
16	69.60	86.50	69.50	86.38
17	67.50	85.20	67.40	85.08
18	68.00	86.00	67.90	85.88

MODE 6

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LAF
1	3130.	.8760	.8740	1086.	1.170	5661.
5	3020.	•9320	.8370	1068.	1.170	5661.
3	2990.	.9410	.8280	1068.	1.170	5661.
4	3110.	.8480	.8640	1068.	1.170	5675.
5	3070.	.9310	.8680	1104.	1.170	5688.
6	3100.	.8950	.9630	1068.	1.170	5688.
7	2970.	.9070	.8500	-1140.	1.170	5664.
8	3220.	.9270	.9070	1104.	1.170	5664.
9	3040.	•9260	.8630	1122.	1,170	5664.
10	3030.	.9010	.8400	1068.	1.170	5664.
11	2910.	8140	.8080	1068.	1.170	5671.
12	3170.	.8850	.9010	1122.	1.170	5671.
13	3245.	.9270	9150	1104.	1.170	5671.
14	3270.	.9060	.9070	1068.	1.170	5671.
15	3050.	.8790	.8630	1104.	1.170	5689.
16	3040.	•9050	.8600	1104.	1.170	5690.
17	2970.	.8520	.A270	1068.	1.170	5688.
18	3050.	•9150	.8660	1113.	1.170	5686.

400E 6

UNIT	CORR FU FL LRM/HR		x100 D	EG R	THRUST LBF
1	3137.	.8780	.8760	1088.	5680 •
2	3032.	.9310	·8360	1067.	5680 •
3	3001.	.9400	.8280	1067.	5680+
4	3114.	.8490	·A630	1067.	5680 •
5	3072.	.9270	.8650	1099.	5690 •
6	310?.	.8920	.8600	1064.	5640.
7	2977.	.9080	.8510	-1141.	5680.
A	322A.	.9270	.9080	1105.	5690.
9	3047.	.9270	.8640	1123.	5680 •
10	3037.	.9020	.8410	1069.	5690.
11	2925.	8080	.8020	1061.	5680 •
15	3186.	.8790	.8950	1114.	5680.
13	3261.	.9210	.9090	1096.	5680 •
14	-3286.	•9000	.9010	1061.	5580 •
15	3050.	.8760	.8600	1101.	5680.
16	3039.	.9020	.95R0	1101.	5690.
17	2970.	.8490	.9740	1065.	5690.
18	3051.	.9120	.9630	1109.	5690 •

MODE 6

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.811	202.3	16.6	28.5	31.7
2.	1.928	173.8	-28.1	27.5	29,8
3	1.948	173.2	22.7	21.9	29.7
•	1.757	161.2	18.4	26.6	32,3
5	1.931	185.2	15.9	29.3	31.0
6	1.859	163.2	12.4	24.7	31,2
7	1.876	215.9	23.8	26.7	26,7
8	1.924	180.9	15.8	-30.2	32,3
9	1.925	171.9	13.4	25.2	31,6
10	1.864	208.8	24.2	26.5	30,1
11	-1.679	178.1	24.8	26.4	30,1
12	1.435	156.4	17.4	29.7	32,0
13	1.922	157.9	17.4	24.3	32,4
14	1.876	167.0	18.0	28.7	-36.7
15	1.819	183.0	19.2	27.4	31,3
16	1.878	155.1	12.7	29.5	31.6
17	1.764	175.7	14.5	23.0	29.0
18	1.898	172.1	13.6	28.5	31.4

MODE !

UNIT	CO2 EI LB/KL9 FU	CO EI LB/KLB FU	HC ET	NO ET LB/KLR FU	NOX EI LR/KLB FU	SMK NUMBER FRONT STDE
1	3110.	22.12	3.12	5.11	5.49	38.01
2	3112.	17.85	4.96	4,65	5.03	40.00
3	3115.	17,63	3.97	3,67	4.96	39.60
4	3119.	18.20	3,56	4,94	-6.00	15.60
5	3121.	19.05	2.80	4.95	5.24	41.74
6	3124.	17.46	2.28	4.34	5.49	-24.93
7	3113.	22.50	4.32	4.64	4.97	19.60
A	3127.	18.69	2.81	5.13	5.48	43.93
9	3126.	17.77	2.38	4.28	5.37	41.72
10	3117.	55.50	4.47	4.62	5.26	40.40
11	3107.	20.97	-5.01	5.11	5.93	40.11
12	3114.	16.91	3.24	5.27	5.69	43.07
13	3120.	16.31	3.09	4.12	5.49	42.27
14	3117.	17.66	3.27	4.90	-6.37	40.08
15	3115.	19.94	3.60	4.91	5.61	45.42
16	3174.	16.41	2.31	5.12	5.50	18.79
17	3117.	19.76	2.80	4.25	5.36	37.33
18	3121.	18.01	2.45	4.91	5.40	36.99

MODE 6

UNIT	FC0 X100	FHC X100	FN0 X100	STO FCO X100	STO FHC X100	STD FNO
1	7.1440	3.1900	37.8910	7.1880	3.2150	45.6470
2	7.5290	3.1800	38,5900	7.4820	3.1390	45.3950
3	7.9340	3.4970	39.4480	7.8840	3.4520	46.4040
4	7.2470	3.4810	39.8110	7.2160	3.4520	46.4040
5	7.8230	3.4560	39.5190	7.7030	3.3710	46.1500
6	7,5570	3.4560	39.5190	7.4430	3.3710	46.1500
7	6.9120	2.7830	37.1870	6.9290	2.7870	44.1620
8	8.1700	3.8460	40.0760	8.1920	3.8520	47.5950
9	8.1660	3.8460	40.0760	8.1880	3.8520	47.5950
10	6,9960	2.8936	37.5220	7.0140	2.8970	44.5600
11	6.7140	3.1480	37.6260	6.5260	2.9930	44.8960
12	8.0990	-4.1040	40.0030	7,8590	3.8980	47.7230
13	8.1510	3.8070	39.3180	7.9050	3.6170	46.9080
14	-8.3320	-4.1810	40.1750	8.0820	3.9710	47.9280
15	6.5220	2.5900	36.4A20	6.4540	2.5460	43.2410
16	7.3000	3.1430	38.1520	7.2220	3,0890	45.2280
17	6.1940	2.4430	35.9890	6.1300	2.4000	42.6520
18	7.0500	2.8580	37.3310	6.9810	2.8060	44.2300

17 17 - 1480 1 1 11. 1

JT3D-38 . RASELINE TEST SERIES .

MODE 6

		NRE CNO ET			UNIT
*******				*********	
38.01	6.86	6.16	3.10	21.98	1
40.00	5.91	5.47	-5.02	17.96	5
39.60	5,83	4.31	4.02	17.74	3
35.60	6.99	5.76	3,59	18.28	4
41.74	6.13	5.78	2.87	19.35	5
-24.93	6.41	5.07	2,34	17.73	6
39.60	5.90	5.51	4.32	27.74	7
43.93	4.51	6.09	2.81	18.64	8
41.72	6.37	5.09	2.37	17.73	9
40.40	4.25	5.49	4.41	27.14	10
40-11	6.96	6.09	-5.27	21.58	11
43.07	6.79	6.29	3.41	17.43	12
42.27	6.56	4.91	3.25	16.92	13
40.08	-7.59	5.95	3.44	18.20	14
45.42	6,65	5.82	3.67	20.16	15
38.79	6.51	6.08	2.34	16.59	16
37.33	6.35	5.03	2.85	19.97	17
36.99	6.40	5.81	2.49	18.21	18

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

HODE 7

٠.	UNIT	N1 SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT

4	1	-40.00	-68.00	-40.04	-68.07
•	5	35.00	63.00	34.98	-62.97
•	3	36.00	64.50	35.98	64.47
1	4	36.80	64.00	36.78	63.97
,*	5	-39.00	-67.00	-34.93	-66.87
	6	-38.00	-66.00	-37.93	-65.A7
	7	36.00	64.00	36.02	64.03
•	8	36.20	65.00	36.22	65.03
	9	35.60	64.00	35.62	64.03
,	10	36.10	65.00	36.12	65.03
1	11	37.00	-65.50	36.88	65.28
	12	37.00	64.00	36.AA	63.79
*	13	35,50	63.50	35.38	63.24
	14	36.00	64.00	35.88	63.79
7	15	37.00	64.00	36.95	63.91
,	16	-38.60	-66.00	-38.54	-65.90
,	17	37.50	65.00	37.45	64.91
1	18	36,76	64.30	36.65	64.21

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

的例外不不知识了人,并是

MODE 7

UNIT	FUEL FLOW LAM/HR	CR F/A X100	PERF F/A X100	TTT DEG R	EPR	THRUST LRF
1	-1450.	.7670	.7520	1014.	1.040	-1892.
2	-1250.	.8340	.7510	996.	1.030	-1358.
3	1320.	8530	.7660	996.	1.030	1485.
4	1310.	.7390	.7710	996.	1.050	1446.
5	-1390.	.8320	.7680	1050.	1.030	-1736.
6	1290.	.7990	.7340	1014.	1.050	-1611.
7	1310.	.8250	.7990	-1077.	1.040	1449.
8	-1440.	.8470	8410	1032.	1.050	1533.
9	1290.	.8490	.7770	1050.	-1.060	1449.
10	1320.	.6330	.7710	1032.	-1.060	1533.
11	1290.	7180	.7430	1023.	1,030	1556.
12.	1280.	.7740	.7660	1032.	1,850	1429.
13	1290.	.7800	.7750	1032.	1,040	1387.
14	1320.	. 7560	-7660	-969.	-1.010	1429.
15	1360.	.7710	.8230	1050.	1.040	. 1444.
16	1360.	.7780	.7810	1032.	1.050	-1615.
17	1350.	.7590	.7850	1014.	1.030	1529.
18	1330.	.8010	.7990	1050.	1.050	1469.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

67

JT30-38 . BASELINE TEST SERIES .

MODE 7

U	TIP	CORR FU FL	COR CR F/A	COR PF F/A	CORR TT7 COR	THRUST LBF
•		*****		********	*******	
	1	-1453.	.7680	.7530	1016.	-1889.
	s	1255.	.8330	.7510	995.	-1362.
	3	1325.	.8520	.7650	995.	1490.
	4	1312.	.7380	.7700	995.	1447.
	5	1391.	.8290	.7650	1046.	-1733.
	6	1891.	.7960	7310	1010.	-1609.
	7	1313.	.8250	.8000	-1078.	1453.
	8	-1443.	.8480	.8420	1033.	1538.
	9	1293.	.8500	.7780	1051.	1453.
	10	1327.	.8340	.7720	1033.	1538•
	11	1297.	7130	.7380	1016.	1559•
	12	1286.	.7690	.7600	1025.	1432•
	13	1286.	.7750	.7700	1025.	1389.
	14	1327.	.7510	.7610	-962.	1432.
	15	1360.	.7690	.8210	1047.	1442.
	16	1359.	.7750	.7780	1029.	-1612.
	17	1350.	.7570	.7830	1011.	1527.
	18	1331.	.7990	.7960	1047.	1468.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

The state of the

JT3D-38 * RASELINE TEST SERIES *

MODE 7

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.415	779.3	-365.5	11.3	13.4
2	1.509	842.6	497.0	9.7	10.9
3	-1.541	856.3	522.5	6.9	11,1
4	1.314	802.9	496.4	11.0	14,6
5	-1.555	762.5	-370.5	13.0	14,1
6	1.482	780.9	-377.9	9.4	12.7
7	1.478	846.6	543,8	12.1	12,3
A	-1.543	860.3	487.8	12.6	13,1
9	-1.537	900.9	504.2	10.5	12,2
10	1.509	841.5	502.0	11.8	12.9
11	1.300	-740.0	-417.4	11.8	13,6
12	1.396	783.3	471.2	12.9	13.4
13	1.390	A30.9	520.3	11.5	12.6
14	1.327	A2A.3	558.1	12.4	14.5
15	1.396	800.8	450.6	12.5	13,3
16	1.412	781.5	452.1	13.7	13.9
17	1.367	763.0	475.0	11.1	12.9
18	1.448	858.9	470.7	12.5	13,3

JT3D-38 * BASELINE TEST SERIES *

MODE 7

UNIT	COS EI	COEI	HC EI	NO FI	NOX ET	SMK NUMBER
	LB/KLB FU	LB/KLB FU	LB/KLB FU	LR/KLR FU	FRAKER FO	FRONT SIDE
1	-2784.	97,61	-78.64	2.33	2.75	18.92
. 5	2731.	97.05	98.35	1.83	2.06	21.66
3	2725.	96.39	101.04	-1.28	2.05	20.00
. 4	2687.	104.53	111.02	2.35	3.13	-15.60
5	-2819.	-87.95	-73.43	2,47	2.67	20.40
6	-2797.	-93.81	-77.98	1.86	2.51	17.12
7	2707.	98,66	108.87	2.33	2.36	21.44
8	2749.	97.55	94.05	2.35	2.44	23.33
9	2732.	101.89	97.96	1.95	2.27	22.87
10	2735.	97.05	99.46	2.23	2.45	21.52
11	2734.	99,10	96.02	2.60	2.98	20.93
12	2725.	97.30	100.54	2.64	2.73	22.00
13	2691.	102.34	110.09	2.33	2.56	21.81
14	2653.	105.37	121.96	2.59	3.04	90.86
15	2734.	99.83	96.51	2.56	2.72	-14.86
16	2741.	96.56	95.97	-2.77	2.83	19.47
17	2720.	96.64	103.36	2.31	2.68	22.80
18	272A.	102.97	96.94	2.46	2.62	18.70

JT30-39 . RASELINE TEST SERIES .

MODE 7

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO	STO FHC	STD FNO

1	2630	1600	-18.9230	-,2630	1600	-22.7A30
S	.2230	.0890	16.8510	2220	.0880	-19.8300
3	.2740	.1060	17.5320	.2330	.1040	20.6310
4	.2300	.0990	17.4630	.2300	.0990	20,3630
5	2520	1390	-18.7610	-,2510	1360	-21.9370
6	-,2440	1250	18.2930	2440	1220	-21.3900
7	.2310	.0990	17.1900	.2300	.0990	20.3960
A	.2390	.1110	17.6330	.2380	.1110	20,9340
9	.2310	.0990	17.1800	.2300	.0990	20.3960
10	.2340	.1110	17.6330	.2380	.1110	20.9340
11	2410	1190	17.6180	.2390	.1140	21.0680
12	.2300	.1010	16.9430	0855.	.0970	20.2640
13	.2250	.0950	-16.7210	.2250	.0910	19.9990
14	.2300	.1010	16.9430	.2290	.0970	20.2640
15	.2300	.0990	17.1360	.2290	.0980	20.3300
16	2440	1240	12.0410	2440	1230	-21.4080
17	.2370	.1110	17.5910	.2370	.1100	20.8660
18	.2320	.1030	17.2770	.2320	.1010	20.4900

JT30-38 * RASELINE TEST SERIES *

MODE 7

UNIT	NREC CO EI LB/KLB FU		NRE CNO EI LB/KLB FU		
1	97.70	-78.26	2.81	3.31	18.92
2	97.37	99.45	2.15	2.43	21.66
3	96.71	102.18	-1.50	2.41	20.00
4	104.68	111.76	2.74	3.65	-15.60
5	-8A.15	-74.83	2.89	3.12	20.40
6	-94.02	-79.46	2.18	2.93	17.12
7	98.79	108.86	2.76	2.81	21.44
8	97.67	94.03	2.79	2.90	23.33
9	102.03	97.96	2.32	2.69	22.87
10	97.18	99.44	2.64	2.91	21.52
11	99.79	99,92	3.11	3.57	20.93
12	97.98	104.57	3.15	3.26	22.00
13	103.05	114.48	2.79	3.06	21.81
14	106.11	-126.85	3.10	3.64	20.86
15	99.96	97.76	3.04	3.23	-14.86
16	96.66	97.19	-3.29	3.35	19.47
17	96.78	104.74	2.74	3.18	22.80
18	103.15	98,29	2.92	3.11	18.70

JT3D-38 . RASELINE TEST SERIES .

一年 ノバーンス 大大

MODE 8

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI PEP CENT	CORR NZ PER CENT
1	-37.00	-64.50	-37.04	-64.56
. 5	33.00	60.50	12.98	60.47
3 .	33.00	61.50	32.98	61.47
	34.00	69.00	33.98	59.97
5	34.00	61.00	33.93	60.88
6	-36.00	62.00	-35.93	61.88
. 7	34.00	61.00	34.02	61.03
A	32.70	61.00	32.72	61.03
•	32.20	60.00	32.22	60.03
10	33,50	61.00	33.52	61.03
11	35.50	-63.50	35.38	-63.29
12	35.50	60.50	35.38	60.30
13	33.50	60.50	33.39	60 30
14	34.00	61.00	33.89	60.80
15	35.20	62.00	35.15	61.91
16	-15.80	-62.70	-35.75	-62.61
17	-35.80	-63.00	-35.75	-62.91
18	34.50	62.00	34.45	61.91

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

WIA. C. Fo

JT30-38 . RASELINE TEST SERIES .

MODE 8

UNIT	FUFL FLOW LGM/HR	CB F/A X100	PERF F/A X100	TTT DEG R	EPR	THRUST LRF
1	1335.	.7980	.7810	1014.	1.030	-1493.
2	1190.	.8560	7290	-906.	1.020	1169.
3	1250.	8900	.7810	996.	1.030	1239.
4	1230.	.7550	.8030	996.	1.050	1137.
5	1245.	.8740	.8090	1041.	1.030	1203.
6	1210.	.6210	7560	1014.	1.050	1273.
7	1260.	.8320	.8280	-1073.	1.030	1209.
8	-1350.	9450	8700	1032.	1.040	1209.
9	1240.	.8860	.8290	1050.	1.050	1139.
10	1260.	,8590	,8120	1032.	1.040	1209.
11	1240.	7300	7410	1005.	1.020	-1387.
12	1240.	.7900	.8110	1032.	1.050	1159.
13	1230.	.8060	.8050	1032.	1.040	1159.
14	1315.	.7900	.8270	978.	-1.010	1194.
15	-1350.	.8270	.8620	1059.	1.040	1276.
16	1290.	.7890	.7990	1032.	1.050	-1334.
17	1320.	.7710	.8040	1014.	1.030	-1359.
18	1280.	.8150	.8130	1050.	1.040	1275.

JT30-38 . PASELINE TEST SERIES .

MODE 8

UNIT	COPR FU FL	COR CR F/A C	OR PF F/A (DEG R	R THRUST LAF
1	1338.	.8000	.7A30	1016.	-1498.
2	1195.	.8550	7290	-905.	1173.
3	1255.	.8890	.7800	995.	1243.
4	1232.	.7540	.8020	995.	1138.
5	1746.	.8710	.8060	1037.	1202.
6	1211.	.8180	7530	1010.	1272.
7	1263.	.8330	.8280	-1074.	1212.
8	-1353.	9460	.9710	1033.	1212.
9	1243.	.8870	.8290	1051.	1142•
10	1267.	.8600	.8130	1033.	1212.
11	1246.	7260	7360	998.	=1359.
12	1246.	.7850	.8060	1025.	1161.
13	1236.	.8010	.7990	1025.	1161.
14	1322.	.7850	.8210	-971.	1196•
15	-1350.	.8250	.8590	1056.	1274.
16	1289.	.7870	.7970	1029.	-1332.
17	1320.	.7680	.8020	1011.	-1357•
18	1281.	.8130	.8110	1047.	1274.

JT30-38 * BASELINE TEST SERIES *

MODE 8

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.432	878.9	-491,0	9.5	12.0
2.	1.517	912.0	597.0	8.9	10.1
3	-1.572	953.6	638.3	5.8	10.2
4	1.311	872.6	593.1	9.5	13.7
5	-1.570	918.8	558.2	11.3	12.6
6	1.491	865.4	-469.0	8.3	11.6
7	1.459	913.5	639.0	10.9	11.6
	-1.690	966.0	641.4	11.5	12.0
. 9	-1.557	1018.8	652.9	9.2	11.0
10	1.522	930.1	611.1	10.4	11.8
11	1.303	-783.7	-477.3	10.9	12.9
12	1.396	850.5	564.1	11.9	12,6
13	1.406	910.4	619.8	10.3	12,1
14	1.367	899.1	640.5	10.9	14.2
15	1.481	882.7	533.9	11.3	13,0
16	1.396	851.0	562.5	-12.8	13,1
17	1.370	-799.2	533.4	10.3	12,3
18	1.441	913.9	572.7	11.7	12.7

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

スナルを対グ、ためなったが

JT30-38 . BASELINE TEST SERIES .

HODE 8

UNIT	COS EI	CO ET	HC E!	NO EI L9/KL9 FU	NOX EI	SMK NUMBER FRONT SIDE
	*******					~~~~~~
ı	-2709.	105.78	-101.54	1.88	2.38	18.67
5	2677.	102.42	115.18	1.65	1.85	21.38
3	2667.	102.98	118.41	-1.03	1.82	20.05
4	2625.	111.22	129.88	1.98	2.86	-14.65
5	-2711.	-100.94	-105.35	2.03	2.27	20.00
6	-2741.	101.25	-94.26	1.60	2.26	17.34
7	2647.	105.50	126.78	2.06	2.20	21.79
8	2699.	-98.16	111.96	1.92	2.01	22.40
9	2653.	110.48	121.65	1.65	1.97	23.13
10	2675.	104.02	117.42	1.91	2.17	20.40
11	2695.	103.16	107.93	2.36	2.79	19.14
12	2668.	103.42	117.85	2.3A	2.51	20.38
13	2635.	108.58	126.99	2.01	2.38	20.86
14	2614.	109.46	133,95	2.18	2.94	17.50
15	2703.	102.51	106.52	2.16	2.47	-15.54
16	2670.	103.62	117.68	-2.56	2.63	17.84
17	2686.	-99.70	114.30	2.12	2.51	22.30
15	266A.	107.71	115.36	2.26	2.47	18.30

JT3D-38 * RAULINE TEST SERIES *

MODE 8

UNIT	FCO X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1	2340	1050	-17.1790	-,2340	1060	-20.6410
2	.2100	.0710	16.0070	.2090	.0700	18.8370
3	.2140	.0770	16.2890	.2140	.0760	19.1680
4	.2070	.0680	16.0130	.2070	.0670	18.6730
5	.2110	.0740	16.2230	.2110	.0730	18.9730
6	-2160	.0800	16.5070	.2150	.07A0	19.3050
7	.2120	.0730	16.0230	.2120	.0730	19,0220
c	.2120	.0730	16.0230	.2120	.0730	19.0220
9	.2080	.0680	-15.7450	.2070	.0680	18.6920
10	.2120	.0730	16.0230	.2120	.0730	19.0220
11	2260	0950	16.7210	2250	0910	-19.9990
12	.2100	.0720	-15.6990	.2080	.0690	18.7500
13	.2100	.0720	-15.6990	.2080	.0690	18.7800
14	.2120	.0750	15.8370	.2110	.0720	18.9440
15	.2160	.0800	16.2800	.2150	.0790	19,3150
16	2200	0850	16.5490	7200	0840	-19.6390
17	-,2270	0890	16.6890	2550	0870	-19.7980
18	.2160	.0800	16.2850	.2150	.0790	19.3150

JT30-38 * RASELINE TEST SERIES *

MODE A

UNIT	NREC CO ET	LB/KLB FU		NR CNOX ET	
	•••			********	*******
1	105.88	-101.09	2.26	2.86	18.67
>	102.76	116.45	1.94	2.18	21.3A
3	103.32	119.73	-1.21	2.14	20.05
4	111.38	130.73	2.31	3.34	-14.65
5	101.16	107.24	2.38	2.66	50.00
6	101.47	-95.97	1.98	2.65	17.34
7	105.64	126.79	7.44	2.61	21.79
8	-98.29	111.97	2.29	2.38	22.40
9	110.63	121.66	1.95	2.34	23.13
10	104.16	117.43	7.27	2.5A	20.40
11	103.47	112.24	7.87	3.33	19.14
12	104.13	122.44	-2.R5	3.00	86.05
13	109.37	131.93	2.40	7.84	20.86
15	110.21	139.18	2.61	3.39	17.50
15	102.65	107.87	2.57	7.94	-15.54
16	103.73	119.11	-3.03	3.12	17.84
17	-99.R4	115.80	2.51	2.98	55.30
18	107.89	117.53	2.69	2.92	18.30

NOTE- MINUS SIGNS DENOTE DUTLYING VALUES

· 大概一年7月

JT30-36 . 600 HOUR TEST SERIES .

UNIT	TSO	TSB	ANR TEMP	ANR PRESS	AMR HUMID
	HR	HR	DEG R	IN HG	LB H20/ATR
			•••••	********	
1	21069.	621.	518.7	30.08	.008230
5	21695.	621.	518.7	30.10	.008230
3	21127.	621.	518.7	30.11	.008220
4	23653.	591.	515.2	30.20	.007890
5	20646.	684.	520.7	30.00	.008480
6	23325.	684.	520.7	30.00	.008480
7	20975.	624.	518,5	29.99	.008370
8	21354.	624.	518.5	30.00	.008370
9	20378.	624.	518.5	30.02	.008360
10	22964.	624.	518.5	30.03	.008360
11	2199A.	649.	512.2	30.04	.006630
12	18327.	649.	516.2	30.05	.006640
13	20669.	649.	518.7	30.05	.006710
14	26797.	649.	518.7	30.04	.007130
17	31894.	646.	512.2	30.24	.006470
18	26417.	646.	512.2	30.24	.006470

JT30-39 . ANN HOUR TEST SERIES .

MODE 1

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORP NI PER CENT	CORR NZ PER CENT
1	33.50	61.00	33.50	61.00
2	32.80	60.50	32.80	60.50
3	33.00	60.00	33.00	60.00
4	33,20	60.00	33.31	60.70
5	34.00	61.00	37.93	60.89
6	34.00	61.00	33.93	60.88
7	33.00	60.10	33.01	60.11
A	32.00	60.00	32.01	60.01
9	32.00	59,50	32.01	59.51
10	32.00	59.00	12.01	59.01
11	33.50	60.20	33.71	60.59
12	32.00	60.00	32.08	60.15
13	32.80	59.30	32.80	59.30
14	33.50	60.00	33.50	60.00
17	33,40	60.50	33.61	60.88
14	34.20	61.00	34.42	61.39

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

一个人一个一个一个

JT30-38 . 600 HO'R TEST SERIES .

MODE 1

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	1290.	.7800	.8050	987.	1.020	1204.
2	1230.	.7790	.4010	1032.	1.015	1168.
3	1280.	.8190	.8380	1014.	1.020	1133.
4	1280.	.8380	.8430	1032.	1.050	1144.
5	1325.	.8500	.9540	1032.	1.020	1199.
6	1235.	.7930	.7820	996.	1.050	1199.
7	1300.	.8290	.A520	1014.	1.035	1145.
8	-1370.	.8840	8960	1005.	1.050	1138.
9	1270.	.8900	.8550	1035.	1.050	1103.
10	1250.	.8680	.8480	1014.	1.030	1067.
11	-1210.	.8220	.7830	996.	1.020	1176.
12	1280.	.8420	.9210	969.	1.020	1145.
13	12A0.	.8570	.8630	1023.	1.020	1086.
14	1300.	.8070	.9310	-960.	1.020	1135.
17	1330.	.8670	.8470	996.	1.020	1189.
18	1340.	.8580	.9420	996.	1.050	1224.

JT3D-38 . 600 HOUR TEST SERIES .

MODE 1

UNIT	CORR FU FL	COR CR F/A	X100	CORR TT7 COR	THRUST LRF
1	1247.	.7800	.9050	987.	1210.
2	1237.	.7790	.4010	1032.	1175.
3	1244.	.8190	.4340	1014.	1140.
4	1744.	.8430	.4490	1039.	1154.
5	1331.	.8470	.9510	1024.	1202.
6	1241.	.7900	.7790	992.	1202.
7	1303.	.8300	.8530	1014.	1148.
R	-1373.	.8840	4970	1065.	1141.
9	1274.	.8900	.8550	1032.	1106.
10	1254.	.8690	.9490	1014.	1071.
11	1207.	. 8320	.7930	1008.	1181.
12	1282.	. A460	.8250	973.	1150.
13	1286.	.A570	0528	1023.	1091.
14	1305.	.8070	.8310	-960.	1140.
17	1336.	.9780	.8590	1003.	1202.
18	1346.	.8680	.9530	1008.	1237.

JT3C-38 . 600 HOUR TEST SERIES .

MODE 1

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.375	892.0	560.9	6.9	10.7
. 5	1.360	905.1	598.5	7.3	10.8
3	1.463	921.0	533.A	8.1	11.0
. 4	1.410	994.3	-802.8	11.6	12.5
5	1.500	886.7	624.2	11.7	13.9
6	1.389	485.9	595.0	-12.2	13,8
. 7	1.441	913.7	662.2	-12.3	-15,3
8	1.529	-1036.4	708.2	-13.7	-15.7
9	1.557	1011.9	666.4	-12.5	13,4
10	1.475	999.3	787.6	11.7	-14.7
11	1.414	929.2	693.6	7.3	12.6
12	1.448	923.5	717.5	7.5	12.6
13	1.472	986.1	724.1	6.3	12.4
14	1.369	942.4	730.0	5.9	11.9
17	1.510	912.7	715.0	9.0	14.1
16	1.496	966.7	680.1	8.5	-14.5

JT3D-38 . 600 HOUR TEST SERIES .

MODE 1

UNIT	COS ET	CO ET	HC FT LR/KLR FU	NO FI LR/KLR FU	NOX EI	SMK NIJMRER FRONT STOE
1	2662.	109.90	118.73	1.40	2.16	20.67
2	2637.	111.67	126.85	1.48	2.19	18,21
3	2596.	108.03	107.57	1.57	2.12	19,33
4	-2544.	114.19	-158.38	2.19	2.36	27.38
5	2664.	-100.20	121-17	2.18	2.58	23.19
6	2645.	107.35	123.88	-2.43	2.75	74.84
7	2625.	105.93	131.90	-2.33	-2.92	22.98
8	2617.	112.71	132.31	-2.45	-2.80	21.06
9	2643.	109.29	123.66	2.22	2.3A	22.12
10	256A.	110.75	149.96	2.13	2.69	20.26
11	2594.	108.69	139.38	1.41	2.41	23.79
12	2579.	105.4R	140.80	1.40	2.37	22.37
13	2595.	110.60	139.53	1.16	2.29	23.34
14	2545.	112.36	149.53	1.15	2.32	22.28
17	2632.	101.25	136.28	1.65	2.57	25.7A
18	2635.	108.37	130.9R	1.55	2.69	21.89

JT30-38 * 600 HOUR TEST SERIES *

MODE 1

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1	.2120	.0740	16.3030	.2120	.0730	19.0120
2	.2100	.0710	16.1670	.2090	.0700	18.8470
3	.2080	.0680	16.0290	.2070	.0680	18.6920
4	.2080	.0670	16.1090	.2080	.0690	18.7490
5	.2120	.0740	16.2320	.2110	.0730	18.9730
6	.2120	.0740	16.2320	.2110	.0730	18.9730
7	.2080	.0680	:5.9780	.2080	.0680	18.7200
8	.2080	.0680	15.9530	.2070	.0680	18.6470
9	.2060	.0650	15.8190	.2050	.0650	18.5230
10	.2030	.0630	15.6930	.2030	.0630	18.3600
11	.20A0	.0670	16.4650	.2100	.0710	18.8730
12	.2080	.0670	16.4700	.2080	.0680	18.7300
13	.2050	.0650	16.2800	.2040	.0640	18.4530
14	.2080	.0680	16.3470	.2070	.0680	18.6820
17	.2100	•0690	16.6610	.2110	.0730	18,9730
18	.2130	.0720	16.8070	.2130	.0750	19.1400

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

アメヤーニーナンン

JT30-38 . 600 HOUR TEST SERIES .

MODE 1

UNIT	NREC CO EI LB/KLB FU	NREC HC EI LB/KLB FU		NR CNOX ET	SMK NUMBER CORRECTED
				•••••	
1	110.34	119.87	1.63	2.52	20.67
5	112.16	128,19	1.73	2.56	18.21
3	108.53	108.77	1.43	2.47	19.33
	114.34	-155.49	2.55	2.74	27.39
5	-100.72	124.24	2.54	3.01	23.19
6	107.91	127.02	-2.84	3.22	24.84
7	106.08	132.12	-2.74	-3.42	89.55
A	112.49	132.61	-2.87	3.28	21.06
9	109.51	124.06	2.60	2.79	55.15
10	111.00	-150.53	2.50	3.14	20.26
11	107.98	131.49	1.74	2.97	23.79
12	. 165.40	138.38	1.72	2.89	22.37
13	110.96	140.62	1.41	2.79	23.34
14	112.69	-150.61	1.41	2.45	22.28
17	101.00	130.08	2.01	3.14	25.78
19	108.10	124.99	1.91	3.27	21.85

JT30-38 . 600 HOUR TEST SERIES .

MODE 2

UNIT	N1 SPEED PER CENT	N2 SPEED PER CENT	CORR NI PER CENT	CORR N2 PER CENT

1	37,50	-65.50	37.50	65.50
5	37.00	64.50	37.00	64.50
3	36.40	64.90	36.40	64.00
4	35.80	64.00	35.92	64.22
5	-38.00	-65.00	37.93	-65.87
6	-39.00	65.00	37.93	64.88
7	37.00	64.50	37.01	64.52
8	36.00	64.00	36.01	64.02
9	36.00	64.00	36.01	64.02
10	-35.00	-63.00	-35.01	-63.02
11	36,50	64.10	36.73	64.51
12	35.50	64.00	35.59	64.15
13	37.00	64.00	37.00	64.00
14	36.00	64.00	36.00	64.00
17	37.00	64.00	37.23	64.40
18	36.40	64.00	36.63	64.40

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

では、一方は、一方は、これのでは、

JT3D-38 * 600 HOUR TEST SERIES *

HODE 2

UNIT	FUEL FLOW LRM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	1410.	.7760	.7980	996.	1.020	1569.
2	1370.	.7660	. 9070	1032.	1.020	1484.
3	1390.	.8180	.8210	1014.	1.020	1441.
4	1390.	.8220	.A250	1032.	1.050	1455.
5	1430.	.8190	.9170	1032.	1,040	-1605.
6	1370.	.7780	.7900	1005.	1.050	1520.
7	1410.	.8150	.8260	1014.	1.040	1490.
A	-1470.	.8530	.8670	1005.	1.050	1447.
9	1420.	.8560	.8480	1032.	1.050	1447.
10	1350.	.8440	.8190	1014.	1.030	-1362.
11	1320.	.7960	.7720	996.	1.030	1487.
12	1370.	.8200	.7930	969.	1.030	1457.
13	1400.	.8280	.A320	1023.	1.030	1444.
14	1310.	.8050	7550	-960.	1.030	1444.
17	1450.	.8370	.8450	996.	1.020	14.9.
18	1400.	.8450	.9160	996.	1.050	1469.

JT3D-38 * 600 HOUR TEST SERIES *

MODE 2

UNIT	CORR FU FL LBM/HR	COR CB F/A CO	OR PF F/A CC X100	ORR TT7 COR DEG R	THRUST LBF
1	1418.	.7760	.7980	996.	1578.
2	1378.	7660	.8070	1032.	1493.
3	1399.	.8180	.8210	1014.	1450.
4	1398.	.8280	.8310	1039.	1468.
5	1437.	.8160	.8140	1028.	-1609.
6	1376.	.7750	.7870	1001.	. 1524.
7	1413.	.8150	.8260	1014.	1494.
8	-1474.	.8530	.8680	1005.	1451.
. 9	1424.	.8560	.8490	1032.	1451.
10	1354.	.8450	.8190	1014.	-1360.
11	1317.	.8070	.7820	1008.	1493.
12	1373.	.8240	.7960	-973.	1463.
13	1406.	.8280	.6320	1023.	1450.
14	1315.	.8050	~.7550	-960.	1450.
17	1456.	.8480	.8560	1008.	1484.
18	1406.	.8560 .	.8260	1004.	1484.

JT30+38 * 600 HOUR TEST SERIES *

MODE 2

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.400	805.9	479.7	7.2	12.3
2	1.385	787.9	464.3	7.3	12.0
3	1.494	836.4	479.9	7.5	11.7
4	1.437	911.3	-638.1	11.7	13,3
5	1.491	791.1	471.9	-11.A	15.3
6	1.414	792.3	442.8	-12.6	14.9
7	1.466	A3A.6	507.A	11.6	-15.9
8	1.522	924.3	558.0	-13.6	-16.3
9	1.551	887.1	493.7	-12.7	-17.0
10	1.490	899.5	-610.4	-11.9	15.5
11	1.416	432.5	544.1	6.9	13.1
12	1.457	A3A.4	570.5	7.3	13.4
13	1.440	872,7	535.7	6.3	13,3
14	1.407	984.2	-613.0	5.7	13.0
17	4.509	807.2	550.3	8.1	14.8
18	1.504	910.2	584.2	8.4	14.8

JT30-38 * 600 HOUR TEST SERIES *

MODE 2

UNIT	CO2 ET	CO EI LB/KLB FU	HC EI LB/KLB FU	NO EI LB/KLB FU	NOX EI LB/KLB FJ	SMK NUMBER FRONT SIDE
1	2724.	99.81	102.06	1.47	2.51	20.90
2	2731.	98,41	100.14	1.50	2.48	21.07
3	2740.	98.27	96.85	1.45	2.25	20.77
4	-2639.	-106.53	-128.15	2.24	₹.56	25.16
5	2747.	-92.76	95.07	~2.2A	2.95	22.66
6	2742.	97.83	93.92	-2.55	3.03	22.85
7	2716.	98.90	102.88	2.25	3.08	20.98
8	2694.	104.10	107.97	-2.52	3.02	22.21
9	2736.	99.57	95.20	-2.34	-3.14	23.53
10	2665.	102.40	119.39	5.57	2.89	21.77
11	2684.	100,46	112.80	1.37	2.60	23.61
12	2682.	98.24	114.84	1.41	2.57	23.77
13	2699.	101.28	106.80	1.17	2.54	23.39
14	-2540.	105.59	-125.76	1.12	2,55	22.34
17	27??.	-92,67	108.54	1.53	2.79	25.23
18	2689.	103,54	114.17	1.56	2.77	22.18

JT3D-38 . 600 HOUR TEST SERIES .

MODE S

UNIT	FCO X100	FHC X100	FNO X100	STD FCO X100	STO FHC X100	STO FNO X100
1	2470	1180	18.1690	.2410	.1170	21.1880
5	.2350	.1060	17.7120	.2340	.1050	20,6470
3	.2310	.1000	17.4950	.2300	.0990	20,3790
4	•2320	.1000	17.6050	.2320	.1020	20,4950
5	2450	-,1250	18.3040	2440	1550	-21.3900
6	.2380	.1120	17.8400	.7360	.1090	20.8490
7	.2340	.1050	17.6300	.2340	.1050	20.6560
8	.2300	\$6.50	17.4050	.2300	.0990	20.3870
9	.2310	,1000	17.4110	.2300	.0990	20.3870
10	2230	.0890	16.9590	-,2230	0690	-19.8540
11	.2320	.0990	18.0100	.2340	.1050	20.6500
12	.2310	.0990	17.9890	.2310	.1010	20.4620
13	.2310	.1000	17.9800	.2300	.0990	20.3790
14	.2310	.1000	17.8320	.2300	.0990	20.3790
17	.2320	.0990	18.0780	.2330	.1040	20.5960
18	.2320	.0990	18.0780	.2330	.1040	20.5960

JT30-38 * 600 HOUR TEST SERIES *

MODE 2

UNIT	NREC CO FI LH/KLA FU		NRE CNO EI	NR CNCX FI LR/KLR FU	
1	100.21	103.04	1.72	2.93	20.00
?	98.84	101.20	1.75	2.89	21.07
3	98.72	97.95	1.68	2.62	20,77
4	-106.67	-125.65	2,61	2.98	25.16
5	91.25	97.57	2.66	3.45	55.66
6	98.14	96.38	-2.9A	1.54	22.85
7	99.04	103.04	2.64	3.61	20.98
A	104.27	108.21	-2.95	3.54	55.51
9	99,77	95.50	-2.74	-3.6R	23.53
10	102.63	-119,83	2.61	3.39	21.77
11	99.70	106.15	1.69	3.20	53.61
12	98.16	112.77	1.72	3.14	23.77
13	101.61	107.64	1.45	3.10	23.39
14	-105.91	-126.67	1.37	3.13	22.34
17	-92.43	103.38	1.44	3.47	25.23
19	103.27	108.74	1.91	3,39	22.18

JT3D-38 . 600 HOUR TEST SERIES .

MODE 3

NI SPEED PER CENT	NE SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT
101.50	101.00	-101.50	101.00
102.40	100.80	102.40	100.80
105.00	100.30	102.00	100.30
104.50	102.00	104.85	102.35
104.00	101.00	103.80	100.81
105.00	102.00	104.80	101.80
. 103.00	101.00	103.02	101.02
103.00	107.00	103.02	102.02
104.00	102.50	104.03	102.52
103,00	102.00	103.02	102.02
102.50	101.00	103.15	101.64
102.50	100.50	102.75	100.74
102.80	100.60	102.80	100.60
192,80	101.00	102.80	101.00
102.10	99.50	102.75	100.13
102,10	99.00	102.75	-99.63
	PER CENT 101.50 102.40 102.00 104.50 104.00 103.00 103.00 104.00 102.50 102.50 102.80 102.80 102.10	PER CENT PER CENT 101.50 101.00 102.40 100.80 102.00 100.30 104.50 102.00 104.00 101.00 105.00 102.00 103.00 107.00 104.00 102.50 103.00 102.00 102.50 101.00 102.50 100.60 102.80 100.60 102.80 101.00 102.10 99.50	PER CENT PER CENT PER CENT 101.50

JT30-3R * 600 HOUR TEST SERIES *

MODE 3

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST LRF
1	9420.	1.5280	1.3280	1356.	-1.800	-17248.
5	9200.	1.5980	1.3140	1392.	-1.800	-17239.
3	-9100.	1.6100	1.2990	1392.	-1.800	-17233.
4	9600.	1.5230	1.3230	1392.	1.850	17893.
5	9400.	1.6390	1.3210	1410.	1.840	17860.
6	9500.	1.5950	1.3350	1410.	1.840	17860.
7	9650.	1.5520	1.3480	1392.	1.840	17866.
8	9800.	1.5910	1.3690	1392.	1.640	17860.
9	9750.	1.5450	1.3770	1424.	1.840	17851.
10	9250.	. 1.6220	1.2910	1392.	1.840	17845.
11	9600.	1.4990	1.7210	1356.	1.840	17836.
12	9300.	1.5030	1.2950	1388.	1.840	17831.
13	9500.	1.5510	1.3240	1392.	1.840	17931.
14	9200.	1.5140	1.2790	1383.	1.840	17836.
17	9450.	1.5400	1.2920	1354.	1.940	17718.
18	9700.	1.5100	1.1350	1374.	1.440	17716.

JT3D-38 * 600 HOUR TEST SERIES *

MODE 3

UNIT	CORR FU FL LBM/HR	COR CB F/A CO		R TT7 COR	THRUST LBF
1	9470.	1.5280	1.3280	-1356.	-17340.
5	9254.	1.5980	1.3140	1392.	-17340.
3	-9156.	1.6100	1.2990	1392.	-17340.
4	9657.	1.5330	1.3320	1401.	18050.
5	9443.	1.6320	1.3160	1404.	17908.
6	9544.	1.5890	1.3300	1404.	1790R.
7	9670.	1.5530	1.3490	1392.	17908.
3	9824.	1.5910	1.3690	1392.	17908.
9	9779.	1.5460	1.3780	1425.	17908.
10	9280.	1.6230	1.2910	. 1392.	1790A.
11	9578.	1.5180	1.3380	1373.	17908.
12	9318.	1.5100	1.3010	1395.	17908.
13	9541.	1.5510	1.3240	1392.	1790A.
14	9237.	1.5140	1.2790	1383.	17908.
17	9491.	1.5590	1.3080	1373.	17908.
18	9742.	1.5300	1.3520	1391.	17908.

JT30-38 * 600 HOUR TEST SERIES *

MODE 3

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
1	3.224	20.0	9.2	AA.9	92.4
. 2	3.37A	16.6	6.0	96.4	99.6
3	3.403	18.1	6.0	96.3	97.4
4	3.214	25.3	4.3	95.4	91.4
5	3.458	22.8	2.2	A9.7	91.2
6	3.345	19.9	2.1	95.1	. 97.5
7	3.277	. 23.7	2.3	91.6	92.1
A	3.354	-29.9	4.1	98.8	100.3
9	3.257	20.2	2.A	93.5	95.7
10	3.423	19.7	2.3	95.2	98.9
11	3.156	22.1	5.9	98.1	92.4
12	3.163	-29.9	6.4	88.1	. 85.5
13	3.266	24.3	4.3	90.0	87.4
14	3.189	24.6	3.1	95.9	96.7
17	3.256	26.3	4.4	99.3	94.4
18	3.191	-40.1	5.4	A5.3	86.5

JT30-38 . 600 HOUR TEST SERIES .

MODE 3

UNIT	COS EI	CO EI LB/KLB FU	HC ET LB/KLB FU	NO EI L9/KLB FU	NOX EI LR/KLB FU	SMK NUMRER FRONT SIDE
1	3156.	1.25	.98	9.09	9.46	46,62
5	3157.	.99	.61	9.42	9.73	50.34
3	3157.	1.07	•61	9.34	9.45	50.99
4	3154.	1,58	.46	9.83	9.83	52.63
5	3151.	1.32	•22	8.54	8.69	61.48
6	3151.	1,19	•55	9.31	9.55	-75.91
7	3151.	1,45	.25	9.22	9.27	-62.24
8	3150.	-1.79	.42	9.70	9.85	54.63
9	3151.	1.24	.30	9.46	9.68	-63.33
10	3151.	1.15	.23	9.16	9.52	-75.56
11	3147.	1.4:	.64	10.23	10.23	46.89
12	-3146.	-1.89	.70	9.16	9.16	50.91
13	3148.	1.49	.46	9.07	9.07	50.85
14	3148.	1.54	.33	9.90	9,98	47.98
17	-3161.	1.62	.47	10.08	10.08	54.07
18	-3159.	-2.53	.58	8.83	8.96	53.12

JT30-38 * 600 HOUR TEST SERIES *

MODE 3

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STO FHC X100	STD FNO X100
1	A3.5290	80.9640	81.7320	83.3360	80.1900	95.3120
5	93.9260	77.8160	A1.0350	93,6910	77.0040	94.4660
3	90.9400	70.3300	79.2600	90.6910	69.5540	92.3770
4	92.7360	100.5880	84.4390	97,5760	105.1270	101.1440
5	103.9420	80.1440	81.0700	100.4580	77.0950	94.4910
6	106.2450	98.0900	84.7460	102.7800	94.3080	98.7650
7	87.3920	80.5820	81.4100	87.7420	80.5870	95.4150
8	105.3760	98.6260	85.1090	105.8050	98.5790	99.7290
9	101.5680	109.0950	87.0240	101.9210	108.9490	101.9390
10	112.6140	98.7740	85.1570	113.0250	98.5790	99.7290
11	79.3480	A2.1590	84.7340	67.7200	91.2290	98.0490
12	75.5760	73.5260	82.5580	78.4160	76.1190	94.2270
13	H3.4720	74.5160	82.6030	R3.3450	73.9370	93.6260
14	81.3380	A0.7700	A3.3980	A1.22A0	RO.1900	95.3120
17	73.0850	61.3770	79.7740	PO.4680	67.1720	91.6710
18	65.5180	55.4100	77,9970	71.9090	60.5890	-89.6130

JT30-38 . 600 HOUR TEST SERIES .

MODE 3

UNIT	NOEC CO ET	NREC HC EI	NOE CHO ET	NO CHOY ET	SMK NUMBER
0.41	LB/KLB FU		LB/KLB FU		CORRECTED
****		********			
1	1.25	.99	10.60	11.03	46.62
2	.99	•65	10.98	11.34	50.34
3	1.07	.61	10.89	11.01	50.99
4	1.50	.44	11.51	11.51	52.63
5	1.37	.23	-9.96	-10.12	61.48
6	1.23	.23	10.85	11.12	-75.91
7	1.44	.25	10.81	10.87	-62.24
8	-1.78	.42	11.37	11.54	54.63
. 9	1.24	.30	11.08	11.34	-63.33
10	1.15	.23	10.73	11.14	-75.56
11	1.27	.58	-12.72	-12.72	48.89
12	-1.A3	.67	11.23	11.23	50.91
13	1.49	.46	11.04	11.04	50.85
14	1.55	.33	-12.15	12.25	47.98
17	1.47	.43	11.59	11.59	54.07
18	-2.30	.53	10.90	11.05	53.12

JT30-38 * 600 HOUR TEST SERIES *

MODE 4

UNIT	NI SPEED PER CENT	N2 SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT
1	96.00	99.00	96.00	99.00
2	95.40	98.00	96.40	98.00
3	96.00	97.50	96.00	97.50
4	98.00	99,00	98.33	99.34
5	98.00	98.00	97.81	97.81
6	-98.50	99.00	98.31	94.41
7	96.50	98.00	96.52	98.02
A	96,50	99.00	96.52	99.02
9	97,00	99.50	97.02	99.52
10	96.00	99.00	96.02	99.02
11	96.50	99.00	97.11	99.63
12	97.00	98.90	97.23	99.14
13	97.20	98.50	97.20	98.50
14	97.50	99.00	97.50	99.00
17	-95.20	97.00	95.80	97.61
18	96.00	97.00	96.61	97.61

MODE 4

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST
1	7900.	1.3720	1.2370	1284.	-1.620	-14705.
2	7500.	1.4030	1.1860	1311.	-1.620	-14698.
3	7500.	1.3950	1.1690	1275.	-1.620	-14693.
4	7900.	1.3560	1.2100	1320.	1.660	15210.
5	7500.	1.4320	1.1570	1302.	1.650	15169.
6	7600.	1.3980	1.1770	1311.	1.650	15169.
7	7800.	1.3650	1.1960	1284,	1.650	15174.
8	8000.	1.4170	1.2340	1302.	1,650	15169.
9	7950.	1.3250	1.2350	1320.	1,650	15162.
10	7500.	1.3520	1.1480	1284.	1,650	15157.
11	8000.	1.3300	1.2160	1266.	1,650	15149.
15	7700.	1.3590	1.1860	1302.	1.650	15144.
13	8000.	1.4190	1.2320	1302.	1,650	15144.
14	7800.	1.3630	1.1940	1284.	1.650	15149.
17	7600.	1.3540	1.1470	1266.	1.650	15049.
18	8000.	1.3490	1.2250	1302.	1,650	15049.

MODE 4

UNIT	CORR FU FL LRM/HR	COR CR F/A	COR PF F/A	CORR TT7 DEG R	COR THRUST
1	7942.	1.3720	1.237	0 128	414784.
2	7544.	1.4030	1.186	0 131	114784.
3	7546.	1.3950	1.169	0 127	514784.
4	7947.	1.3650	1.218	0 132	9. 15352.
5	7535.	1.4270	1.153	0 129	7. 5210.
6	7635.	1.3930	1.172	0 130	· 15210 ·
7	7816.	1.3660	1.196	0 128	4. 15210.
8	8019.	1.4180	1.235	0 130	2. 15210.
9	7973.	-1.3250	1,235	0 132	0. 15210.
10	7525.	1.3530	1.149	0 128	4. 15210.
11	7987.	1.3470	1.231	n 12A	2. 15210.
15	7715.	1.3650	1.197	0 139	8. 15210.
13	8035.	1.4190	1.232	0 130	2. 15210.
14	7831.	1.3630	1.194	0 128	4. 15210.
17	7633.	1.3710	1.162	0 128	2. 15210.
18	8035.	1.3660	1.240	0 131	8. 15210.

MODE 4

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	2.890	27.4	5.9	74.4	-83.4
2	2.958	23.5	4.1	70.3	76.2
3	2.942	25.1	4.0	69.2	73.7
4	2.856	32.8	2.2	72.6	71.9
5	3.015	33.2	1.1	73.4	76,5
6	2.943	27.5	1.1	76.9	79.7
7	2.871	33,5	1.5	75.1	77.7
8	2.983	30,6	2.1	-79.2	81.3
9	2.784	28.0	-7.6	76.3	80.0
10	2.844	27.5	1.3	75.3	80.5
11	2.794	27.8	3.0	75.5	72.9
12	2.855	-36.5	3.0	68.5	69,3
13	2.985	30.6	2.3	71.3	71.9
14	2.865	31,9	2.0	73.3	77.4
17	2.857	-36,5	2.6	71.5	70.7
18	2.845	-50.1	2.7	64.6	68,3

MODE 4

UNIT	CO2 ET LB/KLB FU	CO ET LB/KLR FU	HC FI LR/KLR FU	NO ET LR/KLR FII	NOX ET	SMK NUMBER FRONT SIDE
1	3156.	1,91	.71	8.50	-9.52	47.33
5	3157.	1.60	.48	7.84	8.50	49.47
3	3156.	1.72	.47	7.76	8.26	49.54
•	3154.	2,30	.27	A.38	8.38	54.87
5	3150.	2.20	•12	9.02	8.35	48.09
6	3150.	1.88	•13	R.61	8.92	56,90
7	3149.	2,34	.18	A.62	8.91	52.03
R	3150.	2.06	.25	A.74	8.97	51.73
9	3148.	2.02	94	-9.02	-9.46	51.93
10	3150.	1,94	.15	A.72	-9.32	55.67
11	3147.	1.99	.37	A.49	8.89	50.20
15	3146.	-2.56	• 36	7.89	7.98	51.26
13	3147.	5.06	.26	7.86	7.92	50.99
14 .	3147.	5,23	.23	R.42	8.89	48.68
17	-3166.	-2.57	.32	A.27	8.27	55.13
18	-3159.	-3,54	•33	7.50	7.93	53.29

MODE 4

UNIT	FC0 X100	FHC X100	FNO X100	STD FCO X100	STD FHC X100	STO FNO
1	51.0670	53.7610	74.6890	50.9240	53,2480	87.0980
S	48.0760	43.2970	71.1900	47.9300	42.8450	92.9780
3	44.7480	38.5370	69.3330	44.6000	38.1110	80.8070
•	50.1020	54.7580	75.6250	52.2390	57.0720	88.4400
5	50.1880	42.5570	70.4650	48.7820	41.0010	82.1560
6	53.1720	53.1580	74.0640	51.6920	51.1880	R6.3440
7	45.1320	43.0870	70.8900	45.2610	43.0810	83.0810
8	55.0150	53.5470	74.4140	55.1740	53.5110	37.1930
9	49.8450	59.4200	76.1510	49.9530	59.3290	89.1990
10	49.4070	53.6280	74.4560	49,5050	53,5110	87.1930
11	47,9650	54.7520	77.4990	52.2400	60.5890	A9.6130
12	49,5550	52.9920	76.8150	51.1590	54.8030	87.6530
13	52.3000	48.3740	75.1040	52.2020	47.9970	85.1760
14	50.2900	53.6330	76.2110	50.2040	53.2480	R7.0980
17	40.1940	35.9190	70.8090	43.5060	39.1420	81.2970
18	39.8820	35.9190	70.8090	43.1540	39.1420	A1.2970

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

:

HODE 4

UNIT	NREC CO FI LB/KLR FU	NREC HC EI LB/KLR FU		NR CNOX ET	SMK NUMBER CORRECTED
1	1.91	.71	9.91	11.11	47.33
5	1.40	.49	9.14	9.91	49.47
3	1.72	.47	9.04	9.63	49.54
4	2.21	.25	9.80	9.80	54.87
5	2.27	.13	9.35	9.73	48.09
6	1.93	.14	10.03	10.39	56.90
7	2.13	.18	10.10	10.44	52.03
A	2.05	.25	10.24	10.51	51.73
9	2.01	94	10.56	11.08	51.93
10	1.94	.15	10.01	10.92	55.67
11	1.83	.34	-11.04	11.04	50.20
15	-2.4A	.35	9.66	9,78	51.26
13	5.06	•26	9.57	9,65	50.99
14	5.23	.24	10.33	10.91	48.68
17	2.17	.29	10.19	10.19	55.13
18	-3.27	.30	9.25	9.78	53.29

MODE 5

UNIT	NI SPEED	NZ SPEED PER CENT	CORR NI	CORR N2
••••		PER CENT	PER CENT	PER CENT
1	85.00	94.00	A5.00	94.00
. 5	85.30	93,20	85.30	93.20
3 .	65.50	95.00	A5.50	95.00
	87.00	95.00	A7.30	-95.32
5	86.00	94.00	A5.83	93.82
6	87.00	94.00	86.83	93.82
. •	85.00	93.50	A5.02	93.52
8	85.00	94.90	45.02	94.92
9	86.00	95.00	86.02	95.02
10	45.00	94.00	A5.02	94.02
11	85.40	94.00	A5.94	94.59
12 .	86.20	94.20	86.41	94,43
13	86.60	94.00	R6.60	94.00
14	87.20	94.70	87.20	94.70
17	94.70	93.00	85.24	93.59
18	84.60	-92.00	A5.14	-92.58

MODE 5

UNIT	FUEL FLOW LRM/HR	C8 F/A X100	PERF F/A X100	TTT DEG R	EPR	THRIIST LRF
1	5500.	1.1080	1.0600	1176.	-1.3RO	-10454.
5	5200.	1.1290	1.0170	1515.	-1.380	-10449.
3	5400.	1.1370	1.0400	1176.	-1,380	-10445.
4	5500.	1.1320	1.0540	1212.	1.390	10631.
5	5030.	1.1550	.9740	1212.	1.390	10701.
6	5075.	1.1930	.9680	1176.	1.390	10701.
7	5040.	1.1100	.9610	1176.	1,390	10705.
9	5600.	1.1720	1.0720	1195.	1.390	10701.
9	5060.	1.1490	.9790	1212.	1,390	10696.
10	5010.	1.1650	.9550	1176.	1,390	10692.
11	5500.	1.1060	1.0440	1167.	1,390	10687.
12	5200.	1.1280	1.0050	1212.	1.390	10684.
13	5600.	1.1840	1.0780	1203.	1.390	10684.
14	5600.	1.1570	1.0630	1167.	1.390	10687.
17	5300.	1.1270	.9910	1149.	1.390	10616.
18	5500.	1.1210	1.0490	1194.	1.390	10616.

MODE 5

UNIT	CORR FU FL LAM/HR	COR CB F/A X100	COR PF F/A	CORR TT7 CO DEG R	R THRUST
1	5529.	1.1080		1176.	-10510•
2	5230.	1.1290	1.0170	1212.	-10510.
3	5437.	1.1370	1.0400	1176.	-10510
4	5533.	1.1400	1.0650	1220.	10730.
5	5053.	1.1510	.9700	1207.	10730.
6	5098.	1.1880	.964	1171.	10730.
7	5051.	1.1110	.9620	1176.	10730.
8	5614.	1.1730	1.0730	1185.	10730.
9	5075.	1.1500	.9790	1212.	10730.
10	5026.	1.1650	•9550	1176.	10730.
11	5487.	1.1200	1.0570		10730.
12	5210.	1.1340	1.0100	1218.	10730.
13	5624.	1.1840	1.0780	1203.	10730.
14	5622.	1.1570	1.0630	1167.	10730.
17	5323.	1.1420	1.0040	1163.	10730.
18	5524.	1.1350	1.0620	1209.	10730.

MODE 5

UNIT	CO2 CONC PER CENT.	CO CONC	HC CONC	NO CONC	NOX CONC
1	5.322	73.0	5.3	44.5	53,6
. 2	2.36R	67.4	4.2	45.0	53.8
3	. 2.385	66.1	3.9	42.7	51.7
. 4	2.373	75.1	2.8	45.0	50.0
5	2.418	78.5	4.2	44.5	52,3
6	2.501	63.8	. 2.1	47.6	57.1
7	2.323	83.3	2.7	45.8	52.4
8	2.457	65.1	2.2	49.9	56.0
9	2.408	. 68.2	2.3	48.0	55.0
10	2.441	72.2	2.3	46.6	55.7
11	2.315	66.5	3.0	45.1	48.7
12	2.360	77.6	2.8	42.4	48.0
13	2.479	71.6	2.7	43.1	50.1
14	2.472	70.7	2.5	43.1	52,3
17	2.366	91.7	4.3	40.4	47,5
18	2.351	-111.6	4.5	37.3	46.3

MODE 5 .

UNIT	CO2 EI LB/KLB FU	CO EI LB/KLB FU	HC ET LB/KLB FU	NO EI LB/KLR FU	NOX EI LR/KLB FU	SMK NIMRER FRONT SIDE
1	3148.	6.30	.79	6.31	7.59	46.93
S	3150.	5,71	•62	6.26	7.49	49.14
3	3150.	5,55	•56	5.90	7.14	51.11
4	3147.	6,34	.40	6.24	6.93	55,84
5	3142.	6,49	.60	6.04	7.10	47,63
6	3145.	5.11	.28	6.26	7.50	50.26
7	3141.	7.17	.40	6.48	7.41	50.40
8	3144.	5,30	•31	6.68	7.49	50.34
9	3144.	5.67	•33	6.55	7.51	51.01
10	3143.	5,92	.33	6.27	7.50	51.04
11	3141.	5.74	.45	6.39	6.91	50.60
12	3140.	6,57	.41	5.90	6.68	51.97
13	3141.	5.77	.38	5.71	6.63	49.93
14	3141.	5,83	• 36	5.85	7.08	49,21
17	-3151.	7.77	.63	5.63	6.61	55,92
18	3148.	-9.51	.66	5.23	6.49	52.63

MODE 5

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO
1	19,5450	16.3510	56.9980	19.4820	16.1950	66.4680
5	18.2020	13.3270	54.3820	18.1370	13.1880	63.3960
3	22.8650	21.0630	60.4210	22.7790	20.8300	70.4200
4	23.0080	-21.7250	61.3720	23.7600	-22.5600	-71.7170
5	20.5770	16.0170	56.3820	20.1150	15.4640	65.7650
6	21.6080	16.0170	56.3820	21.1130	15.4640	65.7650
7	18.4220	14.3330	55.1400	18.4520	14.3270	64.6190
8	23.6190	20.4540	59.8390	23.4580	20.4350	70.1110
9	23.2120	20.9880	60.2010	23.2410	20.9490	70.5120
10	20.9940	16.3290	56.9370	21.0180	16.2890	66.5560
11	19.8830	17.1570	59.6090	21.2620	18.8240	6R.8040
12	20.6950	17.5080	59.7580	21.1960	18.0510	68.1450
13	21.5150	16.3220	58.6420	21.4640	16.1950	66.4680
14	22.6140	19.4680	60.5700	22.5660	19.3280	69.2>30
17	18.1740	13.4640	56.5830	19.3340	14.5720	64.8720
18	16.1950	10.7340	53.6990	-17.2060	11.6000	-61.5460

MODE 5

UNIT	NREC CO EI LB/KLB FU		NRE CNO EI LB/KLR FU	NR CNOX EI LB/KLB FU	SMK NUMBER CORPECTED
1	6.32	.79	7.35	8.85	46.93
2.	5.73	.62	7.29	8.73	49.14
3	5.58	,56	6,88	8.33	51.11
4	6.14	.39	7.29	8.10	55.84
5	6.64	.62	7.05	8.28	47.63
6	5,23	.29	7,30	8.75	50.26
7	7.16	40	7.59	8.69	50.40
8	5.29	.31	7.A3	8.78	50.34
. 9	5.66	.34	7.68	8.80	51.01
10	5.92	.33	7,35	8.79	51.04
11	5.37	.41	-7.92	8.57	50.60
12	6.41	.40	7.22	8.18	51.97
13	5.79	,38	6.95	8.08	49.93
14	5.85	.36	7.18	8.70	49.21
17	7.31	•58	6.93	8.14	55.92
18	-8.96	.61	6,43	7.99	52.63

MODE 6

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR N1 PER CENT	CORR NZ PER CENT
1	-65.50	85.50	-65.50	85.50
5	68.00	85.50	68.00	85.50
3	66.00	85.00	66.00	85.00
•	-72.10	-88.00	-72.34	-88.30
5	59.00	86.00	68.87	85.A3
6	70.00	86.50	69.87	86.33
7	67.00	85.50	67.02	85.52
A	68.00	A7.00	68.02	87.02
9	67.50	87.00	67.52	87.02
10	56.00	86.00	66.02	86.02
11	68.50	86.80	68.93	87.35
12	69.00	87.00	69.17	87.21
13	68,90	86.00	68.90	86.00
14	70.50	87.30	70.50	87.30
17	67.80	85.00	68.23	85.54
18	66.60	84.40	67.02	54.93

MODE 6

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LAF
1	-2820.	.8350	.8490	-1194.	-1.160	-5361.
2	3090.	.8440	.8950	1104.	-1-160	-5359.
3	2890.	.8600	.8200	1059.	-1.160	-5357.
4	-3370.	.9190	9470	1113.	1.170	5627.
5	3000.	•9200	.8450	1104.	1.170	5665.
6	3230.	.9040	.8950	1068.	1,170	5665.
. 7	2910.	.8560	.8070	1068.	1.170	5667.
8	-2780.	.9450	7770	1086.	1.170	5665.
9	2960.	.9130	.8340	1104.	1.170	5662.
10	2950.	.8760	.8070	1041.	1.170	5660.
11	3040.	.8810	.8420	1068.	1.170	5657.
12	3090.	.8760	.8620	1086.	1.170	5655.
13	3100.	.8990	.8620	1077.	1.170	5655.
14	3260.	.9000	.8950	1050.	1.170	5657.
17	3140.	.9020	.9560	1050.	1.170	5620.
18	2960.	.8890	.8210	1086.	1.170	5620.

MODE 6

UNIT	CORR FU FL LBM/HR	COR CR F/A	COR PF F/A	CORR TT7 COR	THRUST LBF
1	-2835.	8350	.8490	-1194.	~5390•
. 2	3108.	.8440	.A950	1104.	-5390•
3	2908.	.8600	.9200	1059.	-5390•
4	-3390.	.9250	9530	1120.	5680.
5	3014.	.9170	.8470	1099.	5690•
6	3245.	.9010	.8920	1064.	5680.
7	2916.	.A370	.8070	1068.	5680.
8	-2787.	.9460	7770	1086.	5640.
9	2969.	.9130	.8340	1104.	5680.
10	2960.	.8770	.8070	-1041.	5680.
11	3033.	.8930	.A520	1081.	5680 •
12	3096.	.8800	.9660	1091.	5680.
13	3113.	.8990	.8620	1077.	5680 •
14	3273.	.9000	.8950	1050.	5680 •
17	3154.	.9140	.8670	1063.	5680.
18	2.773.	.9000	.8310	1099.	5680.

MODE 6

TINU	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NUX CONC
1	1.721	222.9	26.1	24.0	28,8
5	1.750	172.2	17.2	26.2	30,2
3	1,782	175.8	17.4	19.6	27.6
4	1.709	167.2	14.6	28.3	32,6
5	1.906	183.2	18.2	28.3	31.2
6	1.876	163.3	12.7	25.9	32.5
7	1.763	231.5	26.4	28.0	30.9
8	1.961	176.1	11.8	-31.7	.34,6
9	1.891	183.6	15.1	25.1	32,7
10	1.806	219.8	26.0	26.2	31.2
11	1.821	193.0	17.2	25.8	28.7
12	1.811	184.9	14.5	25.7	28.8
13	1.858	196.9	18.7	20.0	28,5
14	1.862	183.9	16.2	21.5	30,4
17	1.877	170.3	14.3	23.8	30.1
18	1.839	-23-,6	23.7	22.9	29.5

MODE 6

UNIT	COS EI	CO EI LB/KL3 FU	HC ET LR/KLR FU	NO EI LR/KLR FU	NOX EI LR/KLB FU	SMK NUMBER FRONT SIDE
1	3106.	25.60	-5.14	4.52	5.44	35.76
S	3121.	19.54	3.15	4.8R	5.63	40.77
3	3121.	19.37	3.12	3.59	5.06	38,62
4	3124.	17.42	2.60	4.95	5.57	51.03
5	3115.	19.06	3.26	4,83	5.34	41.06
6	3120.	17.29	2.31	4.51	5.65	44.27
7	-3099.	-25.90	-5.07	5.14	5.67	41.72
A	3120.	17.84	2.05	5.27	5.76	41.22
9	3116.	19.25	2.71	4.32	5.64	41.50
10	-3102.	24.03	4.89	4.71	5.60	39.06
11	3110.	20.97	3.22	4.60	5.12	45.95
12	3112.	20.23	2.73	4.67	5.17	46.12
13	3109.	20.97	3.43	3.66	4.99	43.27
14	3112.	19.57	2.96	3.75	5.31	45.54
17	-3129.	18.08	2.61	4.15	5.25	47.06
18	3113.	25,27	4.19	4.06	5.23	42.86

MODE 6

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1	6.3030	2.6330	37.2890	6.2800	2.6080	43,4850
2	6.3600	2.6360	37.3020	6.3350	2.6080	43,4850
3	6.1710	2.3900	36.4660	6.1450	2.3640	42.5010
•	-8.5640	-4.3510	-42.2620	-8.77i0	-4.4930	-49.3290
5	7.1130	2.8740	37.8230	6.9850	2.7840	44.1480
6	7.3200	3.1650	38.6780	7.1880	3.0650	45.1450
7	6.4170	2.6210	37,1440	6.4210	2.6190	43.5260
8	7.9670	3.4980	39.7180	7,9730	3,4930	46.5320
9	7.7220	3.5010	39.7310	7.7240	3,4930	46.5320
10	6.8350	2.8940	38.0210	6.8350	5.8860	44.5190
11	7.3920	3.4220	40.9790	7.7870	3.7160	47.2000
12	7.4660	3.5250	41.1760	7.6020	3.6200	46.9170
13	6.9870	2.8970	39.2410	6.9670	2.8740	44.4780
14	7,8300	3.7080	41.2120	7.8110	3.6820	47.1000
17	6,4750	2.4540	38.0790	6.7830	2.6270	43.5590
18	6.0610	2.1800	37.0450	6.3430	2.3330	42.3710

MODE 6

UNIT	NREC CO EI LB/KLR FU		NRE CNO EI LB/KLR FU		SMK NUMBER CORRECTED
1	-25.69	-5,19	5.27	6.34	35.76
2	19.42	3.39	5.69	6.57	40.77
3	19.45	3.36	4.18	5.90	38.62
4	17.01	2,52	5.66	6.50	51.03
5	19.41	3,36	5.64	6.23	41.06
6	17.61	2.39	5.26	6.60	44.27
7	-25.AR	-5.07	6.02	6.65	41.72
8	17.83	2.05	6.17	6.75	41.22
9	19.25	7.72	5.06	6.60	41.50
19	24.03	-4.91	5,52	6.56	39.05
11	19.91	2.96	5,69	6.34	45.95
12	19.87	2.66	5.66	6.32	46.12
13	21.03	3.45	4.46	6.08	43.27
14	19.61	2.98	4.60	6.52	45.54
17	17.26	2.44	5.10	6.45	47.06
18	24.15	4.10	4.98	6.42	42.86

MODE 7

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR N2 PER CENT
1	37.00	-65.50	37.00	-65.50
. 5	35.70	63.70	35.70	63.70
3	35,70	64.00	35.70	64.00
. •	36.70	64.20	36.82	64.42
5	37.00	64.00	36.93	63.88
6	37.50	. 65.00	37.43	64.88
. 7	36.00	64.00	36.01	64.02
	35.50	64.00	35.51	64.02
9	. 35.00	63,50	35.01	63.52
10	35.00	63,50	35.01	63.52
11	35.80	64.00	36.03	64.40
12	37.50	64.00	37.59	64.15
13	36.00	64.00	36.00	64.00
14	35,80	64.00	35.80	64.00
17	35.80	64.00	36.03	64.40
16	36.80	64.00	37.03	64.40

MODF 7

UNIT	FUEL FLOW LAM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	1370.	.7610	.7790	1005.	-1.020	1569.
S	1290.	.7450	.7740	1032.	-1.020	1416.
3	1340.	.7850	.7880	1005.	1.030	1441.
4	1350.	.7880	.7980	1032.	1.050	1472.
5	1350.	.8070	.9070	1032.	1.040	1436.
6	1300.	.7490	.7490	1005.	1.050	1520.
7	1320.	.7810	.7820	1014.	1.040	1448.
8	-1420.	.8280	8410	1014.	-1.060	1447.
9	1265.	.7980	.7650	1032.	1.050	1404.
10	1300.	.7820	.7770	996.	1,040	1404.
11	1280.	.7730	.7510	996.	1.030	1478.
12	1310.	.7850	.7710	1005.	1.030	1457.
13	1320.	.8040	.7840	1023.	1.030	1444.
14	1310.	.7830	.7550	-960.	1.030	1444.
17	1350.	.8050	.7870	996.	1.030	1469.
18	1370.	.8150	.8120	1032.	1.050	1469.

MODE 7

UNIT	CORR FU FL LBM/HR	COR CB F/A COR		TTT COR	THRUST LBF
1	1377.	•7610	.7790	1005.	-157A.
2	1298.	•7450	.7740	1032.	1425.
3	1348.	.7850	.7880	1005.	1450•
4	1358.	.7940	.8030	1039.	1486.
5	1356.	.8040	.8040	1028.	1440.
6	1306.	.7460	.7470	1001.	1524.
7	1323.	.7810	.7830	1014.	1451 •
8	-1423.	.8290	.8420	1014.	1451.
9	1269.	.7980	.7650	1032.	1409.
10	1304.	.7820	.7720	996.	1409.
11	1277.	.7830	.7600	1008.	1484.
12	1313.	.7890	.7750	1010.	1463.
13	1326.	.8040	.7840	1023.	1450•
14	1315.	.7830	•7550	-960.	1450.
17	1356.	.8150	.7970	1008.	1484.
18	1376.	.8260	.8220	1045.	1484.

MODE 7

UNIT	COZ CONC	CO CONC	HC CONC	NO CONC	NOX CONC

1	1.377	801.6	453.7	10.4	13.3
. 2	1.345	786.5	450.5	10.5	12.5
3	1.411	8.55P	499.9	8.6	11.1
. 4	1.381	866.8	600.6	12.1	13.7
- 5	1.453	821.0	504.5	13.3	14.8
6	1.340	763.7	-423.0	13.5	14.7
7	1.383	A36.3	545.4	-14.0	-16.3
	1.475	907.7	548.R	-14.3	16.0
9	1.411	899.1	551.3	13.5	15.8
10	1.382	£49.1	552.7	13.4	15.5
11	1.370	818.3	536.2	10.1	13.6
15	1.392	804.6	549.0	10.9	13.7
13	1.427	849.1	555.2	8.2	13.5
14	1.358	871.0	627.4	8.3	13,1
17	1.419	906.7	619.9	9,3	14.2
18	1.440	869.0	540.7	10.8	14.9

JT3D-3B + 600 HOUR TEST SERIES +

MODE 7

UNIT	COS EI	CO EI LB/KLB FU	HC EI LB/KLB FU	NO FI LB/KLB FU	NOX EI LB/KLB FU	SMK NUMBER FRONT SIDE
1	2731.	101.20	98.41	2.15	2.76	21.33
2	2727.	101.47	99.85	5.53	2.65	23.68
3	2714.	100.73	105.12	1.72	2.23	20.67
4	2647.	105.73	125.85	2.43	2.74	24.36
5	2717.	97.69	103.14	2.60	2.89	23.73
6	2744.	98.04	93,30	-2.84	3.11	-0.00
7	2675.	102.98	115.39	-2.83	-3.30	22.28
8	268A.	105.31	109.39	2.73	3.04	23.24
9	2670.	108.29	114.07	2.67	3.12	24.00
10	2669.	104.40	116.75	2.72	3.14	21.81
11	2677.	101.78	114.57	2.07	2.77	25.71
12	2680.	98.55	115.52	2.19	2.76	23.51
13	2679.	101.45	113.96	1.60	2.64	23,68
14	-2620.	106.92	-132.33	1.67	2.64	23.28
17	2664.	96.38	127.24	1.42	2.79	26.32
78	2704.	102.43	109.49	2.08	2.89	21.36

MODE 7

UNIT	FCO X100	FHC X100	FN0 X100	STD FCO	STO FHC X100	STO FNO
1	2420	-,1180	18.1690	2410	1170	-21.1880
2	.2290	.0970	17.3440	.2280	.0960	20.2190
3	.2310	.1000	17.4850	.2300	.0990	20.3790
4	.2330	.1020	17.6970	.2330	.1040	20.6030
5	.2300	.1000	17.3800	.2290	.0980	20.3130
5	.2340	.1120	17.8400	.2360	.1090	20.8490
7	.2300	.0990	17.4010	.2300	.0990	20.3870
8	.2300	.0990	17.4050	.2300	.0990	20.3470
9	.2270	.0940	17.1830	.2260	.0940	20.1200
10	.2270	.0940	17.1860	.2260	.0940	20.1200
11	.2310	.0980	17.9630	.2330	.1040	20.5960
12	.2310	.0990	17.9890	.2310	.1010	20.4620
13	.2310	.1000	17.9800	.2300	.0990	20.3790
14	.2310	.1000	17.8320	.2300	.0950	20.3790
17	.2320	.0990	18.0780	.2330	.1040	20.5960
18	.2320	.0990	18.0780	.2330	.1040	20,5960

HODE 7

UNIT	NREC CO ET	NREC HC EI LB/KLB FU	The same of the sa	The second secon	The state of the s
	*********				********
1	101.61	99,36	2.51	3.21	21.33
2 .	101.92	100.90	2.59	3.08	23.68
3	101.20	106.29	5.00	2.60	20.67
4	105.87	123,38	2.83	3.19	24.36
5	98.21	105,82	3.04	3.38	23.73
6	98.56	95.73	-3,32	3.63	0.00
7	103.12	115.57	-3.32	-3.86	22.28
8	105.47	109.63	3.19	3.56	23.24
.9	108.51	114.43	3.13	3.66	24.00
10	104.64	.117.18	3.18	3.67	21.81
11	101.01	107.83	2,55	3.41	25.71
15	98.47	113.44	2.68	3.37	23.51
13	101.78	114.86	1.95	3.22	23.68
14	107.25	-133.29	2.05	3.24	83.28
17	96.12	121.19	2.23	3.41	26.32
18	102.16	104.28	2.55	3,54	21.36

MODE 8

UNIT	N1 SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT
	********			*******
1	34,40	62.00	34.40	62.00
5	34,50	61.50	34.50	61.50
3	32.00	59.50	32.00	59.50
4	33.40	60.20	33.51	60.40
5	35.00	65.00	34.93	61.88
6	35.00	62.00	34.93	61.88
7	34.50	62.00	34.51	62.01
Ą	32.00	60.00	32.01	60.01
9	33.00	60.00	33.01	60.01
10	34.00	62.00	34.01	62.01
11	32.50	60.00	32.71	60.38
12	35.10	60,30	35.18	60.45
13	33.40	60.00	33.40	60.00
14	32.50	60.00	32.50	60.00
17	33.00	60.00	33.21	60.38
18	35.00	61.00	35.22	61.39

MODE 8

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST
1	1280.	.7820	.7910	1005.	1.020	1273.
5	1260.	.7580	.7990	1032.	1.020	1238.
3	1250.	.8130	.8280	1005.	1.020	1098.
4	1270.	-8180	.8310	1032.	1.050	1157.
5	1325.	•8150	.8320	1032.	1.020	1268.
6	1230.	.78.	7590	996.	1.050	1248.
. 7	1300.	.8030	.8090	1014.	1.040	1278.
8	1340.	•8720	8810	1014.	1.050	1138.
9	1280.	•7990	.8480	1032.	1.050	1137.
10	1290.	•7680	.7950	996.	1.030	1277.
11	1180.	.8010	.7680	996.	1,020	1162.
12	1250.	.8200	.8060	996.	1.020	1166.
13	1260.	.8350	.8300	1023.	1.020	1135.
14	1300.	.7910	.8270	-951.	1.020	1135.
17	1250.	.8260	.8080	996.	1,030	1154.
18	1320.	.8360	.8440	1032.	1.050	1224.

HODE 8

UNIT	CORR FU FL LRM/HR	COR CR F/A	COR PF F/A X100	CORR TT7 COR	THRUST LRF
1	1287.	.7820	.7910	1005.	1250.
2	1267.	.7580	.7990	1032.	1245.
3	125A.	.8130	.8280	1005.	1105.
4	1278.	.8230	.8370	1039.	1168.
5	1331.	.8120	.878	1024.	1272.
6	1236.	.7780	7560	992.	1272.
7	1303.	.8030	.8100	1014.	1281+
8	1343.	.8730	881	1014.	1141•
9	1284.	.7990	.848	0 1032.	1141.
10	1294.	.7680	.796	996.	1281.
11	1177.	.8120	.777	0 1008.	1167.
12	1252.	.8240	.810	0 1001.	1171.
13	1265.	.8350	.830	0 1023.	1140.
14	1305.	.7910	.827	0 -951.	1140.
17	1255.	.8360	.818	0 1008.	1167.
18	1326.	.8460	.855	0 1045.	1237.

MODE 8

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
	*******	*********			
1	1.381	871.6	559.9	9.2	12.2
S	1.355	-820.8	-499.3	9.8	12.2
3	1.416	924.4	638.3	7.3	10.3
4	1.379	968.0	774.8	11.3	13.0
5	1.441	858.7	583.4	-12.8	14.8
6	1.348	845.5	526.4	11.7	13.9
7	1,401	489.3	618.8	-13.6	-15.7
8	1.512	1014.7	691.2	-14.2	-15.4
9	1.372	977.9	657.8	12.2	15.3
10	1.331	893.1	608.1	8.51-	-15.4
11	1.371	917.2	694.5	8.8	12.6
12	1.416	896.2	6R3.9	9.7	13.0
13	1,440	949.9	688.5	7.2	12.8
14	1.329	945.3	752.9	7.3	12.1
17	1.416	890.6	746.6	8.1	13,7
18	1.471	931.3	624.0	9.6	14.6

MODE 8

UNIT	COS EI	CO EI	HC FI	NO EI	NOX EI	SHK NIMBER
	LB/KLB FU	LB/KLB FU	LAJKLA FU	LAJKLA FU	LANKLA PU	FRONT SIDE
1	2668.	107.13	118.22	1.86	2.46	55.55
2	2699.	104.04	103.73	2.05	2.55	22.59
3	2633.	109.36	129.74	1.41	5.00	21.12
4	2549.	113.91	156.63	2.18	2.51	24.18
5	2670.	101.27	118.20	-2.4R	2.87	22.73
6	2695.	104.05	111.29	2,37	2.81	22.37
7	2637.	106.51	127.31	-2.67	-3.08	25.61
8	2619.	111.82	130.47	-2.57	2.78	22.72
9	2595.	-117.73	136.05	-2.42	-3.02	23.73
10	2419.	111.83	130.81	-2.63	-3.16	21.16
11	2585.	110.08	143.20	1.73	2.49	24,48
15	2608.	105.09	137.77	1.86	2,50	23.14
13	2606.	109.37	136.18	1.36	2,42	24.77
14	-2539.	114.95	-157.30	1.45	2.42	20.53
17	2592.	103.74	149.40	1.55	2.61	25.68
18	2658.	107.15	123.34	1.82	2.76	21.83

MODE 8

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STO FNO X100
1	.2170	.0800	16.5890	.2160	.0790	19.3450
2	.2150	.0770	16.4510	.2140	.0760	19.1780
3	•5060	.0660	15.8890	.2050	.0650	18.5180
•	.2090	,0690	16.1650	.2090	.0700	18.8150
5	.2160	.0800	16.5170	.2150	.0780	19.3050
6	.2160	.0800	16.5170	.2150	.0780	19,3050
7	•2160	.0790	16.5160	.2160	.0790	19,3500
8	0805.	.0680	15.9530	.2070	.0680	18.6870
9	.2080	.0680	15.9590	.2070	.0680	18.6870
10	.2160	.0790	16.5290	.2160	.0790	19.3500
11	.2070	.0660	16.4110	.2090	.0700	1R.8070
12	.2090	.0690	16.5560	.2090	.0700	18.8290
13	.2080	.0680	16.4830	.2075	.0680	18,6920
14	.2080	.0680	16.3470	.2070	.0680	18.6820
17	.2080	.0670	16,5160	.2090	.0700	18.8070
18	•2130	.0720	16.8070	.2130	.0750	19.1400

MONF 8

UNIT	NREC CO EI	NREC HC ET	NRE CNO ET	NR CNOX ET	SMK NUMBER CORRECTED
1	107.56	119.37	2.16	2.86	25.22
5	104.50	109.88	2.39	2.97	22.59
3	109.87	131.19	1.65	2.13	21.12
	114.07	-153.77	2.54	5.95	24.18
5	101.40	121.21	-2.90	3,35	22.73
6	104.59	114.13	2.77	3.58	22.37
7	106.45	127.52	-3.18	-3.61	22.61
9	112.00	131.17	-3.01	3.26	22.72
9	-117.96	136,49	2.83	3.53	23.73
10	112.08	131.31	-3.08	-3.70	21.16
11	109.26	135.10	2.13	3.07	24.48
12	105.01	135.40	2.28	3.06	23.14
13	109.73	137.25	1.56	2.95	24.77
14	115.30	-158.44	1.78	2.97	20.53
17	103.49	142.64	1.90	3.20	25.69
18	106.88	117.70	2.23	3.3A	21.83

JT30-38 * 1200 HOUR TEST SERIES *

UNIT	TSO HR	TSB HR	AMR TEMP DEG R	AMR PRESS IN HG	STANOSH BLA
1	21640.	1192.	507.7	30.08	.006720
5	22265.	1191.	507.7	30.08	.006720
٠ 4	24236.	1174.	510.2	30.32	.005920
5	. 21314.	1352.	505.7	30.25	.005550
. 6	23993.	1352.	505.7	30.25	.005550
7	21583.	1232.	505.2	30.28	.004760
8	21967.	1233.	505.2	30.26	.004760
9	21042.	1248.	516.7	29.98	.004640
10	23574.	1232.	505.2	30.28	.004760
11	22562.	1213.	508.7	30.21	.006290
12	18886.	1213.	508.7	30.24	.006280
13	21279.	1259.	501.7	29.84	.005300
14	27407.	1259.	501.7	29.83	.006200
17	32506.	1258.	512.7	30.05	.006910
18	27029.	1258.	512.7	30.07	.006910

MODE 1

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORP NI PER CENT	CORR NZ PER CENT

1	-36.50	-64.50	-36.89	-65.20
S	34.00	61.00	34.37	61.66
4	34.00	60.00	34.28	60.50
5	33.00	60.00	13.42	60.77
6	34.00	60.00	14.43	60.77
7	33.20	60.00	31.64	60.80
8	32.80	60.00	33.24	60.80
9	34.50	62.00	34.57	62.12
10	32.20	60.00	12.63	60.80
11	-39.00	-67.00	-39.38	-67.66
15	32.50	60.00	32.82	60.59
13	33.00	59.50	33.55	60.50
14	33.20	60.00	33.76	61.01
17	34.10	61.00	34.30	61.36
14	33.80	60.00	34.00	60.15

MODE 1

TINU	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST LAF
					-	
1	-1380.	.8580	.7890	969.	1.030	-1544.
5	1220.	.8330	7710	996.	1.020	1249.
4	1300.	.8580	.8530	1032.	1.040	1159.
5	1360.	.8950	9020	1050.	1.030	1181.
6	1260.	.8420	.8140	996.	1.050	1181.
7	1300.	7660	.8540	1032.	1.060	1182.
8	-1420.	.7850	9170	996.	1.060	1182.
9	1350.	.7840	.8520	1041.	1.020	1288.
10	1240.	7480	.8260	996.	1,030	1182.
11	-1420.	.8080	-,7560	996.	1.030	-1818.
12	1280.	.8380	.8350	1014.	1.060	1169.
13	1280.	.8400	.8670	1032.	1.030	1178.
14	1300.	.8100	.8370	-960.	1.030	1214.
17	1320.	.8370	.8420	1014.	1.040	1230.
18	1300.	.8910	.8670	1050.	1.050	1159.

MODE 1

UNIT	CORR FU FL	COR CR F/A	COR PF F/A	CORR TT7 COR	THRUST LBF
1	-1372.	.8760	.8060	990.	-1552.
. 2	1213.	.8510	.7870	1017.	1256.
4	1307.	.8720	.9670	1049.	1175.
. 5	1354.	.9180	9250	-1077.	1194.
6	1258.	.8640	.8350	1021.	1194.
7	1299.	.7850	9770	1059.	1196.
9	-141R.	.8060	9410	1022.	1196•
9	1350.	.7870	. 4550	1045.	1290.
10	127A.	7680	.9490	1022.	1196.
11	-1420.	.9230	7710	1015.	-1835.
12	1281.	.8540	.8510	1034.	1191•
13	. 1255.	.8590	. 4960	1067.	1175.
14	1274.	.8380	.8650	992.	1211.
17	131A.	.8460	.8520	1026.	1235.
18	1299.	.9020	.A770	1062.	1165.

MODE 1

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.537	937.2	545.4	8.0	13.6
5	1.448	953.7	662.4	7.6	12.4
4	1.467	992.7	753.7	6.7	9,9
5	1.571	1002.1	665.6	8.8	13.6
6	1.482	947.7	611.2	5.8	12.9
7	-1.318	877.4	644.6	6.2	13,9
8	1.372	910.0	592.5	7.6	13,5
9	1.391	872.9	534.9	7.5	14,3
10	-1.780	855.4	651.0	5.5	13.7
11	1.492	-751.8	-402.3	5.1	11.3
12	1.454	911.2	682.3	6.9	10,4
13	1.427	969.7	771.7	5.3	9,5
14	1.340	953.4	-849.7	4.6	9,1
17	1.488	905.1	566.9	6.2	10.6
18	1.568	987.6	655.8	6.8	10.3

MODE 1

UNIT	COS EI	CO EI LR/KLB FU	HC ET LB/KLR FII	NO FI LB/KLR FU	NOX EI LR/KLB FU	SMK NUMBER FRONT SIDE
1	2705.	104.99	104.96	1.46	2.50	22.24
2	2625.	110.05	131.32	1.44	2.36	72.73
4	2583.	111.25	145.10	1.24	1.82	23.14
5	2650.	107.57	122.75	1.55	2.40	23.09
6	2657.	108.13	119.80	1.09	2.42	21.11
7	2601.	110.21	139.08	1.29	-2.87	16.05
8	2639.	11.44	124.64	1.53	2.71	17.91
9	2679.	106.98	112.62	1.51	-2.89	-0.00
10	2544.	110.09	143.93	1.17	-2.90	16.67
11	-2789.	-89.41	-82.19	.99	2.20	26.97
18	2620.	104.53	134.47	1.30	1.95	25.97
13	2565.	110.98	151.74	.99	1.79	25.82
14	-2502.	113.27	-173.42	.89	1.77	24.80
17	2684.	103.97	111.97	1.18	2.01	27.79
18	2655.	196.45	121.42	1.21	1.82	22.58

MODE 1

UNIT	FCO X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO
1	2350	1020	-18.1520	2390	1130	-21.0220
2 .	.2110	.0700	16.6200	.2146	.0770	19.2310
4	.2090	.0660	16.6830	.2090	.0700	18.8460
5	.2080	.0640	16.7180	.2100	.0720	18.9350
6	.2080	.0640	16.7180	.2100	.0720	18.9350
7	.2080	.0640	16.9720	.2110	.0720	18,9450
8	.2040	.0640	16.9720	.2110	.0720	18,9450
9	-2160	.0790	-17.6990	.2160	.0800	19.3850
10	.2080	.0640	16.9720	.2110	.0720	18,9450
11	2560	-,1380	-19.6170	2590	1510	-22.4530
12	.2080	.0650	16.5260	.2100	.0710	18.8750
13	.2030	.0590	16.4800	.2090	.0700	18.8470
14	.2050	.0610	16.3410	.2120	.0730	19.0150
17	.2120	.0710	16.6210	.2130	.0750	19.1300
:8	.2070	.0660	16.3410	.2090	.0700	18.7970

MODE 1

UNIT	NREC CO FI LB/KLR FU	NREC HC EI	NRE CNO EI LB/KLR FU	NR CNOX ET	SMK NUMBER CORRECTED
1	103.51	-94.35	1.82	3.11	22.24
2	108.54	118.56	1.79	2.93	22.73
4	110.84	136.42	1.51	2.21	23.14
5	106.20	109.80	1.87	2.91	23.09
6	106.76	197.16	1.33	2.95	21.11
7	108.80	123.99	1.54	-3.44	16.05
8	110.01	111.12	1.93	3.25	17.91
9	106.80	110.75	1.78	-3.39	-0.00
10	108.68	128.32	1.40	-3.47	16.67
11	-88.57	-75.07	1.22	2.71	26.97
12	103.68	123,92	1.59	2.39	25.97
13	107.75	127.22	1.22	5.50	25.82
14	109.93	145.17	1.11	5.51	24.80
17	103.30	106.09	1.46	2.48	27.79
18	105.02	115.34	1.49	2.24	22.5A

MODE 2

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT
****		*******	*******	
1	36,50	64.50	36.89	65.20
2	37.00	64.50	37.40	65.20
•	37.00	64.00	37.31	64.53
5	37.50	65.00	37.98	-65.83
6	37.00	64.00	37.47	64.82
7	37.00	64.00	37.49	64.85
. 8	36.40	65.00	36.88	-65.86
9	-39.00	-66.00	-39.08	-66-13
10	36.40	64.00	36.88	64.85
11	36,00	64.00	36.35	64.63
12	36,00	64.00	36.35	64.63
13	37.00	64.00	37.62	65.08
14	37.00	64.00	37.62	65.08
17	36.80	64.00	37.01	64.37
18	36,60	64.00	36.81	64.37

MODE 2

UNIT	FUEL FLOW LRM/HR	CR F/A X100	PERF F/A X100	TY7 DEG R	EPR	THRUST
1	1380.	.8480	.7890	969.	1.030	1544.
. 2	1340.	.8190	.7760	996.	1.030	1543.
4	1400.	.8290	.8280	1032.	1.050	1475.
5	1450.	.8300	.8330	1014.	1.040	-1588.
6	1370.	.8150	.7910	974.	1,050	1503.
7	1430.	7480	.8470	1032.	1.060	1504.
8	-1500.	.7840	.8610	1014.	1.060	-1589.
9	-1510.	.7630	.8570	1041.	1.030	-1633.
10	1390.	7440	.8090	996.	1.030	1504.
11	1340.	.8210	.7920	996.	1.030	1489.
12	1390.	.8190	.8110	1014.	1.050	1487.
13	1410.	.8120	.8470	1032.	1.030	1546.
14	1300.	.8010	-,7540	-960.	1.040	1546.
17	1440.	.8090	.8520	1014.	1.040	1475.
18	1400.	.8830	.8420	1050.	1.050	1474.

HODE 2

UNIT	CORR FU FL LBM/HR	X100		G R	THRUST LRE

1	1372.	.8670	.9060	990.	1552.
5	1333.	.8370	.7930	1017.	1552.
4	1407.	.8430	.8420	1049.	1495.
5	1448.	.8510	.8540	1040.	-1606.
6	1368.	.8360	.8110	1003.	1519.
7	1428.	.7680	.8690	1059.	1522.
8	-1498,	.8050	.8840	1041.	-160A.
9	-1510.	7660	.8700	1045.	-1637.
10	1388.	7640	.8300	1022.	1522.
11	1340.	.8370	.7970	1015.	1503.
12	1381.	.8350	.8270	1034.	1503.
13	1383.	.8390	.8760	1067.	1541 •
14	-1274.	.8280	.7800	992.	1541.
17	1439.	.8180	.8620	1026.	1452.
18	1399	8930	.8520	1062.	1482.

S 30CM

UNIT	COZ CONC PER CENT	CO CUNC	HC CONC	NO CONC	NOX CONC
1	1.515	934.3	554.2	7.6	13.7
S	1.471	866.2	517.1	7.6	13.2
	1.470	A84.5	581.3	6.4	10.7
5	1.502	436.1	499.0	7.6	14.2
6	1.47R	850.2	474.3	5.7	14.5
7	-1.339	784.5	489.1	6.3	14.9
A	1.431	796.3	-427.5	7.7	15.2
9	1.413	-741.3	-363.R	7.7	-15.6
10	-1.329	767.8	495.6	5.1	15.0
11	1.482	A26.0	498.7	4.6	10.4
12	1.473	811.8	519.8	6.7	11.1
13	1.440	954.2	569.6	5.0	10.2
14	1.391	863.7	-652.2	4.6	9.8
17	1.477	909.6	444.4	6.2	11.4
18	-1.595	8,200	532.5	6.9	11.1

MODE 2

UNIT	COS EI	CO EI	HC EI	NO EI LB/KLB FU	NOX EI	SMK NUMBER FRONT STOE
1	2696.	105.83	107.85	1.41	2.55	23.06
2	2712.	101.65	104.25	1.46	2.55	24.52
4	2677.	102.54	115.78	1.55	2.03	25.59
5	2732.	96.77	99.22	1.45	5.69	23.09
6	2735.	100.16	95.99	1.10	2.88	22.08
7	2702.	100.78	107.73	1.32	-3.14	18.13
8	2756.	97.57	90.00	1.54	3.07	17,98
9	-2793.	93.30	-78.66	1.59	-3.23	-0.00
10	2694.	99.21	110.02	1.12	-3.18	16.36
11	2727.	96.68	100.28	.88	1.09	28,24
12	2716.	95.27	104.79	1.30	2.13	26.92
13	2679.	101.14	115.86	.97	1.99	26.89
14	-2624.	163.70	-134.52	.90	1.93	24,48
17	2756.	96.17	90.69	1.21	5.25	27.57
18	2727.	98.99	99.53	1.23	1.99	72.08

MODE S

UNIT	FCO X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STO FNO
1	.2350	.1020	18.1520	.2390	.1130	21.0220
2	.2350	.1020	18.1540	.2390	.1130	21.0220
4	.2330	.0990	19.2400	.2340	.1050	20.6640
5	.2400	.1080	-18.8400	2440	1220	-21.3470
6	.2310	.0970	18.3620	.2360	.1090	20.8180
7	.2330	.0970	18.6460	.2360	.1090	20.8360
A	.2410	.1080	-19.1320	7440	1220	-21.3950
9	2450	1240	-19.6530	2460	1260	-21.5290
10	.2130	.0970	18.6460	.2360	.1090	20.8360
11	.2120	.0970	18.1110	.2350	.1060	20.7150
12	.2330	.0980	18.1220	.2350	.1060	20.7150
13	.2310	.0930	18.2980	.2380	.1170	20.9580
14	.2310	.0930	17.9850	,2380	.1120	20.9580
17	.2310	.0980	17.8740	.2330	.1030	20.5790
18	.2310	.0980	17.8810	.>330	.1030	20.5/90

MODE S

UNIT				NR CNOX EI LB/KLB FU	SMK NUMBER CORRECTED
	********		********	*******	********
1	104.34	96,96	1.76	3.17	23.06
. 5	100.23	93,75	1.81	3.18	24.52
4	102.13	108,49	1.48	2.46	25.59
. 5	95.50	88.18	1.77	3.28	23.09
6	98.85	85.42	1.34	3.41	80.55
7	99.46	95,53	. 1.59	-3.77	18-13
. 8	96.28	-79.70	1.85	-3.68	17.88
9	93.13	-77.29	1.87	-3.81	-0.00
10	97.91	. 97.57	1.35	-3.82	16.36
11	95.80	91.90	1.08	2.45	28.24
12	94.47	96,20	1.60	2.62	26.92
13	. 98.15	96,42	1.19	2.45	26.89
14	100.60	111.85	1.13	2.42	24.48
17	95.54	85,85	1.50	2.75	27.57
18	98.39	94.34	1.52	2.46	82.08

MODE 3

UNIT	NI SPEFD PER CENT	NZ SPFED PER CENT	CORR NI PER CENT	CORR NZ
	*****			********
1	102.00	100.00	103.10	101.08
5	102.00	99.50	103.10	100.57
4	102.00	100.50	102.85	101.03
5	102.00	100.00	103.30	101.29
6	103.50	100.00	104.82	101.28
7	102.50	99.00	103.86	100.31
А	101.90	100.00	103.25	101.33
9	-100.30	101.00	-100.49	101.20
10	101.80	101.00	103.15	102.34
11	102.00	101.00	103.00	101.09
15	103.00	100.00	104.01	100.98
13	103.30	100.50	105.04	102.19
14	103,80	101.00	-105.54	102.70
17	103,00	100.00	103.60	100.58
18	103,10	99.50	103.70	100.09

MODE 3

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRIJST LRF
1	9500.	1.5130	1.3060	1356.	1.840	17816.
2	9500.	1.5710	1.3140	1374.	1.840	17813.
4	9400.	1.5030	1.2820	1356.	1.840	17672.
5	9420.	1.5280	1.2960	1374.	1.840	17713.
6	-9000.	1.5630	-1.2460	1392.	1.840	17713.
7	9700.	1.4850	1.3510	1410.	1.840	17695.
8	9820.	1.5320	1.3500	1374.	1.840	17695.
9	9600.	1.5510	1.3500	1410.	1.840	17872.
10	9200.	1.4930	-1.2640	1374.	1.840	17695.
11	9600.	1.5030	1.3230	1374.	1.840	17736.
12	9300.	1.5320	1.2880	1392.	1.840	17718.
13	9700.	1.5770	1.3710	1410.	1.840	17956.
14	9400.	1.5850	1.3200	1392.	1.840	17965.
17	9700.	1.5400	1.3440	1374.	1.840	17831.
18	9800.	1.5820	1.3740	1410.	1.840	17819

MODE 3

CORR FU FL LBM/HR	COR CH F/A C	OR PF F/A (ORR TT7 COR	THRUST LBF
9447.	1.5460	1.3340	1385.	1790A.
9449.	1.6050	1.3430	1403.	1790A.
9447.	1.5280	1.3030	1378.	1790A.
9404.	1.5670	1.3790	1409.	1790A.
-8985.	1.6030	1.2780	1427.	1790A.
9698.	1.5240	1.3A70	1447.	1790A.
9808.	1.5730	1.3860	1410.	17908.
9601.	1.5570	1.3550	1415.	17909.
9189.	1.5330	1.2980	1410.	1790A.
9599.	1.5320	1.3490	1401.	1790A.
9308.	1.5620	1.3140	1419.	1790A.
9514.	1.6310	-1.4170	-1457.	17908.
9215.	1.6390	1.3650	1439.	1790A.
9686.	1.5580	1.3590	1390.	17908.
9792.	1.6010	1.3900	1426.	17909.
	9447. 9447. 9447. 9447. 94048985. 9698. 9601. 9189. 9599. 9308. 9514. 9215.	9447. 1.5460 9449. 1.6050 9447. 1.5280 9404. 1.5670 -8985. 1.6030 9698. 1.5240 9808. 1.5730 9601. 1.5570 9189. 1.5330 9599. 1.5320 9308. 1.5620 9514. 1.6310 9215. 1.6390 9686. 1.5580	LBM/HR X100 X100 9447. 1.5460 1.3340 9449. 1.6050 1.3430 9447. 1.5280 1.3030 9404. 1.5670 1.3290 -8985. 1.6030 1.2780 9698. 1.5240 1.3870 9808. 1.5730 1.3860 9601. 1.5570 1.3550 9189. 1.5330 1.2980 9599. 1.5320 1.3490 9308. 1.5620 1.3140 9514. 1.6310 -1.4170 9215. 1.6390 1.3650 9686. 1.5580 1.3590	LBM/HR X100 X100 DEG R 9447. 1.5460 1.3340 1385. 9449. 1.6050 1.3430 1403. 9447. 1.5280 1.3030 1378. 9404. 1.5670 1.3290 1409. -8985. 1.6030 1.2780 1427. 9688. 1.5240 1.3870 1447. 9808. 1.5730 1.3860 1410. 9601. 1.5570 1.3550 1415. 9189. 1.5330 1.2980 1410. 9599. 1.5320 1.3490 1401. 9308. 1.5620 1.3140 1419. 9514. 1.6310 -1.4170 -1457. 9215. 1.6390 1.3650 1439. 9686. 1.5580 1.3590 1390.

MODE 3

UNIT	CORR FU FL LBM/HR	COR CH F/A	COR PF F/A	CORR TT7 C	OR THRUST
1	9447.	1.5460	1.3340	1385.	1790A.
2	9449.	1.6050	1.3430	1403.	1790A.
4	9447.	1.5280	1.3030	1378.	1790A.
5	9404.	1.5670	1.3790	1409.	1790A.
6	-8985.	1.6030	1.2780	1427.	1790R.
7	9698.	1.5240	1.3870	1447.	17908.
9	9808.	1.5730	1.3860	1410.	17908.
9	9601.	1.5570	1.3550	1415.	17904.
10	9189.	1.5330	1.2980	1410.	17908.
11	9590.	1.5320	1.3490	1401.	1790A.
12	9308.	1.5620	1.3140	1419.	1790A.
13	9514.	1.6310	-1.4170	-1457.	17908.
14	9215.	1.6390	1.3650	1439.	17904.
17	9696.	1.5580	1.3590	1390.	17908.
18	9792.	1.6010	1.3900	1426.	17909.

MODE 3

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	3.191	-30.2	4.7	84.0	81.8
2	3.315	27.3	6.7	87.0	84.5
4	3.168	55.5	2.7	90.2	89.4
5	3,220	25.9	5.9	86.6	82.2
6	3,297	27.6	2.5	85.0	81.7
7	3,128	25.1	6.4	91.1	94.7
8	3,231	20.5	4.3	96.0	98.0
9	3.272	24.1	1.9	89.0	86,3
10	3.148	23.6	2.4	91.0	90.7
11	3.166	20.9	4.8	94.4	94.5
12	3.228	55.5	4.8	90.9	91.8
13	3.328	20.9	4.4	95.2	91.6
14	3,345	18.5	3,9	99.4	97.0
17	3.250	17.6	3.2	102.5	100.0
18	3.339	19.3	3.4	94.2	93.1

MODE 3

UNIT	COS EI	CO EI LB/KLR FU	HC EI LB/KLB FU	NO EI LR/KLR FU	NOX EI	SMK NUMBER FRONT SIDE
1	3154.	-1.90	•51	A.68	8.68	52.82
5	3154.	1.65	.70	A.65	8.65	52.10
4	3153.	1.40	•30	9.39	9.39	51.38
5	3152.	1.61	•63	A.86	8.86	49,80
6	3153.	1.68	•26	A.49	-8.49	52.70
7	3151.	1.61	.71	9.60	9.97	49.40
8	3153.	1.29	.46	9.80	10.00	46.32
9	3153.	1.48	.20	8.96	8.96	48.04
10	3153.	1.50	.26	9.53	9.53	48.18
11	3150.	1.32	.52	9.82	9.83	51.56
12	3150.	1.38	•51	9.28	9.37	53.78
13	3153.	1.26	.46	9,43	9.43	54.75
14	3153.	1.11	.40	9.80	9.80	49.74
17	3153.	1.09	.34	-10.40	-10.40	54.10
18	3153.	1.16	•35	9.30	9.30	54.19

MODE 3

FC0 x100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
73.3340	68.1390	81.3560	87.0220	81.4590	95.6410
77.4670	61.6060	79.5760	92,5370	73.5190	93,5100
73.8640	71.4930	83.4540	83,6230	80.6990	95.4440
75.7820	69.2360	83.5970	92.7300	84.8140	96.4920
81.0490	69.2360	83.5970	99.7650	A4.8140	96.4920
62.9430	56.7480	81.2560	76.8040	69.7530	92.4350
76.5190	69.4540	84.9480	94.4170	A5.6770	96.7070
87.2180	80.9090	87.5300	90.0900	A3.4220	96.1420
79.2210	84.8280	-88.7600	97.4300	105.0150	101.1210
80.3770	83.7420	85.8250	93.6430	97.8560	99,5680
76.1980	68,6230	82.1720	88.8110	79.8360	95.2190
87.2790	75.4570	85.6090	116,9460	101.8700	100.4490
93.6130	83.2550	85.9980	-125,9990	-112.7540	102.7080
76.9230	67.0870	80.6010	84.4820	73.6880	93.5570
78.8660	60.6670	78.8500	86,7870	66.5040	91.4700
	X100 73.3340 77.4670 73.8640 75.7820 81.0490 62.9430 76.5190 87.2180 79.2210 80.3770 76.1980 87.2790 93.6130 76.9230	X100 X100 73.3340 68.1390 77.4670 61.6060 73.8640 71.4930 75.7820 69.2360 81.0490 69.2360 62.9430 56.7480 76.5190 69.4540 87.2180 80.9090 79.2210 84.8280 80.3770 83.7420 76.1980 68.6230 87.2790 75.4570 93.6130 83.2550 76.9230 67.0870	X100 X100 X100 73.3340 68.1390 81.3560 77.4670 61.6060 79.5760 73.8640 71.4930 83.4540 75.7820 69.2360 83.5970 81.0490 69.2360 83.5970 62.9430 56.7480 81.2560 76.5190 69.4540 84.9480 87.2180 80.9090 87.5300 79.2210 84.8280 -88.7600 80.3770 83.7420 85.8250 76.1980 68.6230 82.1720 87.2790 75.4570 85.6090 93.6130 83.2550 85.9980 76.9230 67.0870 80.6010	X100 X100 X100 X100 73.3340 68.1390 81.3560 87.0220 77.4670 61.6060 79.5760 92.5370 73.8640 71.4930 83.4540 83.6230 75.7820 69.2360 83.5970 92.7300 81.0490 69.2360 83.5970 99.7650 62.9430 56.7480 81.2560 76.8040 76.5190 69.4540 84.9480 94.4170 87.2180 80.9090 87.5300 90.0900 79.2210 84.8280 -88.7600 97.4300 80.3770 83.7420 85.8250 93.6430 76.1980 68.6230 82.1720 88.8110 87.2790 75.4570 85.6090 116.9460 93.6130 83.2550 85.9980 -125.9990 76.9230 67.0870 80.6010 84.4820	X100 X100

MODE 3

UNIT	NREC CO FI LB/KLB FU			NR CNOX ET	
1	1.60	.42	10.95	10.95	52.82
5	1.38	.59	10.92	10.92	52.10
4	1.24	.26	11.53	11.53	51.39
5	1.32	.51	10.98	10.98	49.80
6	1.37	.21	10.53	10.53	52.70
7	1.32	.58	10.92	11.35	49.40
8	1.03	.37	11.15	11.38	46.32
9	1.43	.20	10.57	10.57	48.04
10	1.22	.21	11.65	11.65	48.18
11	1.14	.44	11.39	11.41	51.56
12	1.19	.44	11.55	11.66	53.78
13	.94	.34	11.07	11.07	54.75
14	.42	.30	11.70	11.70	49.74
17	.99	.31	12.07	12.07	54.10
18	1.95	.32	10.79	10.79	54.19

MODE 4

UNIT	NI SPEED PER CENT	N2 SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT
	********		~~~~~	
1	96.00	98.50	97.03	99.56
2	95.50	97.00	96.53	98.05
4	96.00	98.20	96.80	99.01
5	96.00	97,50	97.23	98.75
6	97.00	97.50	98.24	98.75
7	96.30	97.00	97.58	98.29
. 6	95.60	98.00	96.87	99.30
9	96.50	98.00	96.69	98.19
10	95.80	98.00	97.07	99.30
11	97.00	99.00	97.95	99.97
12	96.50	98.00	97.44	98.96
13	96,40	97.50	98,02	95.14
14	96.80	98.50	98.43	100.15
17	95,80	97.50	96.36	99.07
18	96,50	97.00	97.06	97.57

MODE 4

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST LRF
1	8000.	1.3560	1.2230	1284.	1.650	15132.
2	7530.	1.3850	1.1510	1284.	1.650	15129.
4	7500.	1.3480	1.1520	1284.	1.650	15009.
5	-7250.	1.3670	-1.1020	1294.	1.650	15044.
6	-8320.	1.4040	1.2560	1266.	1.650	15044.
7	8100.	-1.3090	1.2470	1320.	1.650	15029.
8	7990.	1.3590	1.2130	1284.	1.650	15029.
9	8000.	-1.3070	1.2440	1320.	1,650	15180.
10	7600.	1.3260	1.1540	1284.	1.650	15029.
11	8200.	1.3630	1.2480	1284.	1.650	15064.
12	7600.	1.3340	1.1630	1302.	1.650	15049.
13	7900.	1.3820	1.2260	1302.	1.650	15251.
14	7700.	1.3820	1.1870	1284.	1.650	15254.
17	7800.	1.3430	1.1850	1266.	1.650	15144.
18	8100.	1.4000	1.2640	1338.	1.650	15134.

MODE 4

UNIT	CORR FU FL LBM/HR	COR CB F/A CC	R PF F/A CORP	R TT7 COR	THRUST LBF
1	7956.	1.3860	1.2490	1312.	15210.
2	7490.	1.4150	1.1760	1312.	15210.
4	763A.	1.3710	1.1710	1305.	15210.
5	-7238.	1.4020	-1.1300	1317.	15210.
6	-8306.	1.4400	1.2880	1298.	15210•
7	A090.	1.3440	1.2800	-1355.	15210.
A	7980.	1.3960	1.2450	1318.	15210•
9	8001.	-1.3120	1.2490	1325.	15210•
10	7591.	1.3610	1.1850	1318.	15210.
11	8199.	1.3900	1.2720	1309.	15210.
12	7607.	1.3600	1.1860	1327.	15210.
13	7749.	1.4290	1.2670	1346.	15210•
14	7549.	1.4280	1.2270	1327.	15210.
17	77AP.	1.3590	1.1990	1281.	15210.
18	8093.	1.4170	1.2790	1353.	15210•

MODE 4

UNIT	COS CONC	CO CONC	HC CONC	NO CONC	NOX CONC
1	2.456	-3A.1	2.3	65.9	67.3
2	2.917	35.8	2.7	65.4	67.3
4	2.878	8.95	1.9	68.4	70.5
5	2.877	34.2	2.6	69.5	65.6
6	2.957	34.6	1.3	67.3	67.0
7	-2.754	31.4.	3.1	68.4	71.4
۴	2.842	26.4	2.3	72.5	74.9
9	-2.749	31.2	1.3	71.3	71.6
10	2.790	31.4	1.3	67.5	71.6
11	2.867	26.3	2.8	74.5	77.0
12	2.905	29.9	2.7	69.3	72.5
1.3	2.909	30.3	2.3	68.1	69,1
14	2.909	28.2	2.2	49.A	72.9
17	2.828	25.3	1.8	73.5	74.4
18	2.949	24.2	1.9	69.2	70.3

MODE 4

UNIT	COZ ET	CO EI	HC EI LB/KLR FU	NO FI LB/KLR FU	NOX ET	SMK NUMBER FRONT SIDE
1	3151.	-2.68	.28	7.60	7.76	52.37
2	3153.	2.46	•32	7.39	7.60	55.61
4	3152.	2.10	.23	7.94	8.19	54.29
5	3151.	2.39	•31	7,95	7.95	54.01
6	3152.	2,35	•15	7.50	7.50	51.26
7	3151.	2,29	.39	8.18	8.60	51.84
8	3152.	1.85	.28	8.35	8.62	48.29
9	3152.	2,28	.16	8.55	8.58	49,48
10	3152.	2.26	.16	7.97	8.46	47.95
11	3150.	1.84	.33	8.55	8.84	53,23
12	3149.	2.14	.34	8.13	8.51	55.03
13	3152.	2.09	.28	7.71	7.83	56.36
14	3152.	1.95	.26	7.90	8.26	53.31
17	3152.	1.79	.21	A.56	8.67	55.42
18	3152.	1,92	•55	7.73	7.86	56.32

MODE 4

UNIT	FC0 ×100	FHC X100	FNO X100	STD FCO X100	STD FHC ×100	STO FNO
1	47.7200	50.2290	76.0740	55.3450	59.7870	89.3510
5	42.4370	36.5460	70.ARA0	49.1900	43.29A0	83.1760
4	45.8130	47.5280	76.2780	50.9310	53.4090	87.1570
5	43.9200	41.5860	74.7170	52.0940	50.5090	86.0900
6	46.6760	41.5860	74.7170	55.5A30	50.5000	86.0900
7	38.1220	37.5310	74.1630	45.1040	45.8050	84.2410
8	45.8330	46.2620	77.6780	54.7390	56.6620	89.3000
9	41.3130	43.4940	76.3260	42.3730	44.7750	83.8090
10	43.4860	46.2620	77.6780	51.7050	56.6620	88.3000
11	50.9590	55.9130	78.5310	58.1810	64.9950	91.0090
12	43.8340	45.6170	75.1040	49.7610	52.7930	86.9340
13	44.7060	41.1360	74.9100	56.R740	54.7910	87.5490
14	49.6440	50.4230	77.0240	-63.4420	-67.5740	91.7770
17	41.6770	39.7930	71.8050	45.0220	43.5370	83.2400
18	43.0230	35.4490	69.9610	46.5800	38.7070	A1.0920

MODE 4

UNIT		NREC HC EI LB/KLR FU		NR CNOX ET	
1	2.31	.24	9.59	9.79	52+37
. 2	2.12	.27	9.31	9.5A	55.61
4	1.89		9.75	10.05	54.29
5	2.01	.25	9.84	9.84	54.01
6	1.97	.12	9.28	9.28	51.26
7	1.93	.32	9.98	10.49	51.84
8	1.55	.23	10.19	10.52	48.29
9	5.22	.16	10.08	10.12	49.48
10	1.90	.13	9.73	10.33	47.95
11	1.61	.29	10.64	11.00	53.23
٤,	1.88	.29	10.11	10.58	55.03
13	1.64	.21	9.69	9.84	56.36
14	1.52	.19	10.12	10.57	53.31
17	1.66	.20	-10.66	10.80	55.42
18	1.77	.20	9.63	9.78	56.32

MODE 5

UNIT	N1 SPFFO PER CENT	NZ SPEEN PER CENT	CORR NI PER CENT	CORR NZ
	**********	********		
1	85.00	93.50	A5.92	94.51
2	A5.00	92,50	A5.92	93.50
4	A5.50	93.50	86.21	94.28
5	-93,50	-92.00	A4.57	93.19
6	86.00	93.00	A7.10	94.19
7	85.80	92.50	86.94	93.73
A	85.00	92.50	A6.13	93.73
9	85.50	93.00	85.67	93.19
10	84.20	93.00	85.32	94.23
11	45.50	94.00	86.34	94.92
12	85.50	94.00	A6.34	94.92
13	85.90	93.00	A7.34	94.56
14	96.00	93.50	87.44	95.07
17	85.10	93.00	A5.60	93.54
19	95.50	92.50	86.00	93.04

MODE 5

UNIT	FUEL FLOW LBM/HR	CB F/4 X100	PERF F/A	TT7 DEG R	EPR	THRUST LRF
1	5600.	1.1340	1.0610	1167.	1.390	10675.
2	5170.	1.1470	.9910	1194.	1.390	10673.
4	5200.	1.1130	.9890	1194.	1.390	10588.
5	4950.	1.1120	9290	1158.	1.390	10613.
6	5000.	1.1610	,9380	1158.	1.390	10613.
7	5800.	-1.0670	1.1130	1212.	1.390	10602.
8	5610.	1.1270	1.0680	1194.	1.390	10602.
9	5600.	-1.0640	1.0850	1212.	1.390	10709.
10	5100.	-1.0690	.9490	-1140.	1.390	10602.
11	5500.	1.1150	1.0420	1176.	1.390	10627.
12	5200.	1.1330	.9990	1212.	1.390	10616.
13	5500.	1.1330	1.0630	1194.	1.390	10759.
14	5200.	1.1320	.9900	1158.	1.390	10764.
17	5300.	1.1160	1.0170	1194.	1.390	10684.
18	5200.	1.1690	1.0040	1212.	1.390	10676.

MODE 5

UNIT	CORR FU FL LBM/HR	COR CB F/A COR		R TT7 COR	THRUST LBF
1	5569.	1.1580	1.0840	1192.	10730•
. 2	5142.	1.1720	1.0120	1220.	10730.
4	5226.	1.1320	1.0050	1214.	10730.
5	4941.	1.1400	.9530	1187.	10730.
6	4991.	1.1910	.9630	1197.	10730.
7	5793.	-1.0950	1.1420	1244.	10730.
8	5603.	1.1570	1.0970	1226.	10730.
9	5600.	-1.0680	1.0890	1216.	10730.
10	5094.	-1.0980	.9740	1170.	10730.
11	5500.	1.1370	1.0620	1199.	10730.
12	5205.	1.1550	1.0180	1236.	10730•
13	5395.	1.1710	1.0990	1234.	10730.
14	509A.	1.1710	1.0240	1197.	10730.
17	5292.	1.1290	1.0290	1208.	10730.
18	5196.	1.1830	1.0160	1226.	10730.

MODE 5

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	2.377	81.7	2.8	40.7	46.6
2	2.405	81.0	3.2	40.2	46.1
4	2.331	82.7	3.2	37.5	45,5
5	2.326	-94.3	3.6	40.9	42.7
6	2.434	74.1	2.1	41.1	47.5
7	-2.232	78.0	3.7	40.7	48,4
8	2.362	66.0	2.1	43.2	51.3
9	-2.278	72.2	2.3	40.8	47.7
10	-2.238	82.4	2.8	38.0	48.0
11	2.335	69,3	2.9	40.6	47.8
12	2.373	74.1	3.1	41.0	46,8
13	2.374	79.2	3.2	38.7	45.9
14	2.371	81.1	3.4	38.3	46.8
17	2.339	71.6	2.4	41.1	48,3
18	2.450	84.7	3.0	38.4	46.0

MODE 5

UNIT	CO2 ET	CO ET LB/KLR FU	HC ET LB/KLR FU	NO EI LB/KLR FU	NOX EI LB/KLB FU	SMK NUMBER FRONT STOE
1	3146.	6.89	.41	5.63	6.46	51.05
2	3146.	6.74	.46	5.50	6.31	52.42
4	3143.	7.10	.47	5.29	6.42	55.40
5	3142.	-8.11	.53	5.77	6.03	53,17
6	3145.	6.09	.30	5.56	6.42	50.80
7	3143.	6.99	.57	6.00	7.13	49.93
A	3146.	5,59	.31	6.01	7.14	48.29
9	3145.	6.49	•35	6.02	7.04	48.56
10	3143.	7.36	.44	5.5A	7.05	47.71
11	3143.	5.93	.47	5.72	6.73	50.00
12	3147.	6.24	.45	5.68	6.49	55.12
13	3144.	6.67	.46	5.36	6.36	55.77
14	3144.	6.94	.50	5.30	6.49	53.77
17	3145.	6.13	.36	5.7A	6.79	55.53
18	3144.	6.92	.43	5.15	6.18	55.79

MODE 5

UN	IT	FC0 X100	FHC X100	FN0 X100	STD FCO	STO FHC	STO FNO
							-
	1	19.6620	15.7000	58.4640	22.0920	18.4160	68,4600
	2 .	17.7080	12.1720	55.1380	19.8750	14.2320	64.5190
	6	19.1310	15.6220	59.2450	20.7550	17.3700	67.5460
,	5	16.1370	11.0100	55.1730	18.3590	13,1200	63.3200
	6	19.3550	14.2060	58.5130	22.1740	16.9870	67.2020
	7	16.2860	12.5790	57.7790	18.5620	15,1050	65.4100
	8	17.4990	12.5790	57.7790	20.0530	15.1050	65.4100
	9	16.5010	12.7910	57.7110	-16.8240	13.1330	63.3350
1	0	17.3460	14.2880	59.5000	19.7990	17.1890	67.3840
1	1	20.3990	17.7980	60.6540	22.5810	20,4170	70.0970
1	2	20.8730	17.8300	60,6920	23.1180	20.4170	70.6976
1	3	18.7310	14.3090	58,9450	22.6190	18.6730	68.6770
1	4	19.8490	16.1940	59.6190	24.0140	21.2010	70.7640
1	7	17.8190	13.2570	55.8650	18.9350	14.4010	64.6960
1	8	17.9680	11.7680	54.3570	19.1170	12.7580	62.9130

MODE 5

UNIT				NR CNOX EI LB/KLR FU	
1	6.13	.35	7.0A	8.12	51.05
2	6.01	.39	6.91	7.92	52.42
4	6,55	.43	6.47	7.86	55.40
5	7.12	.45	7.11	7.44	53.17
6	5.32	.25	6.86	7.91	50.80
7	6.13	.47	7.29	8.66	49,93
8	4.88	.26	7.31	A.68	48.29
9	6.36	.34	7.10	8.30	48.56
10	6.45	.36	5.78	8.57	47.71
11	5.36	.37	7.10	8.35	50.00
12	5.64	.39	7.05	8.04	55-12
13	5.53	.36	6.71	7.96	55.77
14	5.65	.38	6.75	8.26	53.77
17	5.77	.13	7.19	8.45	55.53
19	6.50	.39	6.40	7.68	55.79

MODE 6

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR N2 PER CENT
1	67.00	86.00	67.72	86.93
2	66,50	84.50	67.22	85.41
4	67.50	85.50	68.06	86.21
5	68.00	85.50	68.87	86.59
6	69.50	85.50	70.39	86.59
7	70.00	86.00	-70.93	87.14
9	66,90	85.00	67.79	86.13
9	66.50	85.00	66.63	85.16
10	66.80	85.00	67.69	86.13
11	67.00	86.00	67.66	86.84
12	67.50	87.00	68.16	87.85
13	69.00	85.00	70.16	86.43
14	70.50	86.50	-71.68	-87.95
17	67.40	85.00	67.79	85.50
18	67.50	85.00	67.89	85.50

JT30-39 * 1200 HOUR TEST SERIES *

MODE 6

UNIT	FUEL FLOW	CB F/A X100	PERF F/A X100	TT7 DEG P	EPR	THRUST
1	2970.	.4870	.8080	-1032.	1.170	5651.
5	3030.	.8700	.8380	1068.	1.170	5650.
4	2990.	.8930	.8270	1086.	1.170	-5605.
5	3040.	.8730	.8430	1086.	1.170	5618.
. 6	3250.	.9000	.8790	-1032.	1.170	5618.
7	-3290.	8160	.9040	1068.	1.170	-5612.
8	-2780.	A240	7640	1068.	1.170	-5612.
9	2900.	8060	.8110	1086.	1.170	5669.
10	3050.	7850	.9310	1050.	1.170	-5612.
11	2930.	.8380	.8070	1068.	1.170	5625.
15	3020.	.8620	.8370	1086.	1.170	5620.
13	3120.	.8700	.8770	1086.	1.170	5695.
14	. 3230.	.8930	.8930	1050.	1.170	5698.
17	3110.	.8620	.9610	1068.	1.170	5655.
18	3080.	.9220	.8730	1122.	1,170	5652.

JT3D-38 * 1200 HOUR TEST SERIES *

MODE 6

UNIT	CORR FU FL LBM/HR	COR CB F/A COR		R TT7 COR	THRUST
1	2954.	.9060	·8250	1054.	5680.
2	3014.	.8890	.8560	1091.	5680.
4	3005.	.9080	.8410	1104.	5680.
5	3035.	.8960	.8640	1114.	5680.
6	3244.	.9230	.9010	1058.	5680.
7	-3286.	8380	9280	1096.	5680.
8	-2777.	.8460	7840	1096.	5680.
9	2900.	8100	.8140	1090.	5680.
10	3046.	8060	.8530	1078.	5680.
11	293c.	.8540	.8220	1089.	5680.
12	3021.	.8790	.8540	1107.	5680.
13	3060.	.9000	.9060	1122.	5680.
14	3167.	.9230	-,9240	1085.	5680.
17	3105.	e8720	.8710	1080.	5680.
18	3077	.9330	.8830	1135.	5680.

JT3D-38 * 1200 HOUR TEST SERIES *

MODE 6

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.830	-244.5	22.6	24.2	28.0
2	1.798	220.0	19.5	24.5	27.6
4	1.848	195.4	17.9	20.6	26.6
5	1.805	203.2	18.2	25.7	27.3
6	1.865	191.5	14.1	9.09	30.4
7	-1.685	191.3	20.1	24.7	30.1
8	1.703	191.8	16.3	24.1	29.4
9	-1.449	177.7	12.3	20.4	28.4
10	-1.619	204.0	21.7	-18.3	28.8
-11	1.729	203.4	16.3	21.5	25.3
12	1.780	213.0	16.2	23.9	26.4
13	1.900	189.9	18.9	18.9	26.0
14	1.849	187.9	19.0	21.0	27.9
17	1.784	186.6	15.0	19.8	26.6
18	1.919	207.4	17.6	21.2	26.9

MODE 6

UNIT	COS EI	CO EI	HC EI LB/KLB FU	NO EI LR/KLR FU	NOX ET	SMK NUMBER FRONT SIDE
1	3105.	-26,40	4.20	4.28	4.97	38.50
. 2	3110.	24.22	3,69	4.43	4.99	42.60
4	3114.	20.96	3.29	3.64	4.69	47.64
5	3111.	22.30	3.42	4,64	4.92	45.78
6	3117.	20.37	2.57	3,65	5.30	46.10
7	3109.	22.47	4,06	4.76	5.81	43.01
	3112.	22.31	3.26	4.61	5.61	39,79
9	3116.	21.11	2.50	3.98	5.55	37.66
10	3104.	24.90	4.56	3,68	5.78	37.66
11	310A.	23,27	3.20	4.04	4.76	48.48
12	310A.	23,67	3.09	4.36	4,83	48.89
13	3113.	20,90	3.57	3.42	. 4.71	47.58
14	3115.	19.61	3.50	3.69	4.91	46.96
17	3115.	20.74	2.87	3.61	4.86	48.09
18	3113.	21.53	3,14	3.62	4.59	46,53

HODE 6

UNIT	FC0 x100	FHC 3100	FN0 x100	STD FCO X100	STD FHC	STD FNO
1	6,9610	2.9780	39.7220	7,6090	3.4320	46.3400
5	6.0110	2.2350	37.1510	6.5510	2.5630	43.3080
•	6.7330	2.7310	39.4970	7.1590	2.9930	44.8960
5	6.6190	2.7500	39.9330	7.3160	3.2200	45.6640
6	6.7970	2.7500	39.9310	7.5150	3.2200	45.6440
7	6.5670	3.0320	41.4800	7.2620	3.5740	46.7770
R	6.0590	2.5060	39.6890	6.7060	2.9460	44.7330
9	5.A760	2.3860	39.0470	-5.9610	2.4420	42.8230
10	5.8480	2.5060	39.6890	6.4690	2.9460	44.7330
11	6.6700	5.9960	40.0940	7.1870	3.3760	46.1670
15	7.4320	3.6200	-41.8950	8.0190	-4.0800	48.2290
13	6.2720	2.4630	39.1490	7.2390	3.1210	45.3340
14	7.2940	3.2640	41.0750	-R.4500	-4.1590	-48.4419
17	6.2060	2.4230	37.6190	6.4970	2.6060	43.4770
18	6.5670	2.4260	37.6350	6.8840	5.6060	43.4770

JT3D-38 * 1200 HOUR TEST SERIES *

MODE 6

UNIT	NREC CO EI LB/KLB FU	NREC HC EI LB/KLB FU	NRE CNO EI LB/KLB FU		SMK NUMBER CORRECTED
1	24.15	3.64	5.37	6.23	38.50
2	55.55	3.22	5,55	6.25	42.60
4	19.71	3.00	4.44	5.73	47.64
5	20.17	2.92	5.70	6.04	45.78
6	18.40	2.19	4.49	6.51	46.10
7	20.32	3,45	5.77	7.03	43.01
8	20.19	2.77	5,58	6.79	39.79
9	20.81	2.44	4.69	6.54	37.66
10	22.59	3.88	4.45	7.00	37.66
11	21.59	2.84	4.99	5.88	48.48
12	21.94	2.74	5.38	5.97	48.89
13	18.11	2.82	4.25	5.85	47.58
14	16,91	2.75	4.6R	6.23	46.96
17	19.81	2.67	4.49	6.03	48.09
18	20.54	2.92	4.49	5.69	46.53

MODE 7

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI	CORR NZ PER CENT
	*********		******	
1	35.50	64.00	36.89	64.69
,	36.00	64.00	35.39	64.69
4	36.50	64.00	36.80	64.53
5	36.00	64.00	36.46	64.42
6 .	37.00	64.00	37.47	64.R2
7	36.50	64,00	36.98	64.85
8	35.20	63.00	35.67	63.84
9	37.50	65.00	37.57	65.13
10	35.10	63.00	35.57	63.84
11	37.00	65.00	37.36	-65.64
12	36.00	64.00	36.35	64.63
13	36.00	64.00	36-60	65.08
14	36.10	64.00	36.71	65.09
17	36.00	64.00	36.21	64.37
18	36.80	64.00	37.01	54.37

MODE 7

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	1310.	.8130	.7540	-960.	1.030	1501.
2	1270.	.7900	.7500	1014.	1.030	1501.
4	1370.	.7910	.8100	1032.	1.040	1475.
5	-1390.	.7960	.A170	1014.	1.040	1503.
6	1320.	.7940	.7620	978.	1.050	1503.
7	1350.	7030	.7990	1032.	-1.060	1504.
8	-1450.	.7580	8640	996.	1.050	1419.
9	1370.	7130	.8040	1041.	1.040	1543.
10	1300.	7090	.7680	978.	1.030	1419.
11	1330.	.7540	.7580	996.	1.040	-1574.
12	1320.	.7940	.7760	1014.	1.050	1487.
13	1310.	.7850	.7870	1032.	1.040	15 .
14	1300.	.7710	.7540	-960.	1.040	1546.
17	1320.	.7760	.7810	1014.	1.030	1475.
18	1350.	.9380	.8180	-1068.	1.040	1474.

JT3D-38 * 1200 HOUR TEST SERIES *

MODE 7

UNIT	CORR FU FL	COR CR F/A	COR PF F/A	CORR TT7 DEG R	COR THRUST
1	1303.	.8310	.770	0 -980	. 1509.
2	1263.	.8080	.767	0 1036	1509.
4	1377.	.8040	.824	0 1049	1495.
5	1344.	.8160	.838	0 1040	. 1519.
6	1318.	.8140	.787	0 1003	1519.
7	1348.	7220	.821	0 1059	1522.
A	-1448.	.7780	887	0 1022	1436.
9	1370.	7160	.807	0 1045	1546.
10	1298.	7280	.789	0 1004	. 1436•
11	1330.	.7690	.773	0 1019	1599.
12	1321.	.8090	.791	0 1034	. 1503.
13	1285.	.8120	.814	0 1067	1541.
14	1274.	.7970	.780	0 992	1541•
17	1318.	.7850	.790	0 1026	1482.
18	1349.	.8480	.828	0 -1080	1482.

MODE 7

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.435	920.1	577.0	10.8	13.7
5	1.408	867.5	527.1	11.0	13.8
4	1.371	879.3	-645.5	9.1	10.5
5 .	1.412	848.6	554.0	10.3	14.1
6	1.432	840.5	478.6	7.6	15,8
7.	1.238	763.7	513.8	9.1	15.0
8	1.348	836.5	506.1	9.5	15,5
9	-1.290	-748.8	-419.7	8.3	14.7
10	-1.254	758.9	502.1	7.7	15.8
11	1.358	779.7	462.9	8.6	10.9
12	1.417	804.3	533.4	10.1	11.5
13	1.374	849.3	602.7	7.1	10.6
14	1.322	854.4	-673.4	7.3	10.3
17	1.405	784.1	460.2	8.3	.11.5
18	1.505	881.1	527.8	9.4	11.4

MODE 7

UNIT	CO2 ET	CO ET	HC EI LR/KLR FU	NO EI LR/KLR FU	NOX EI LR/KLB FU	SMK NUMBER FRONT STOE
1	2656.	108.79	117.19	2.10	2.66	22.53
,	2690.	105.49	110.12	2.20	2.75	25.75
	-2618.	106.87	-134.79	1.82	2.10	26.05
4	-2017.	100,67	-[,4./4	1.02	2.10	20.03
5	2679.	102.49	114.95	2.03	2.79	23.73
6	2723.	101.75	99.54	1.51	3.15	22.44
7	2660.	104.49	120.77	2.04	-3.37	20.65
8	2686.	106.13	110.31	1.99	3.22	19.69
9	2731.	100.92	97.18	1.83	-3.26	20.85
10	2673.	102.99	117.05	1.72	-3.53	17.32
11	2719.	99.38	101.36	1.80	5.29	29.34
12	2696.	97.41	110.98	5.00	2.30	26.25
13	2644.	104.03	126.84	1.42	2.12	27.27
14	-2592.	106.63	-144.37	1.49	2.11	74.74
17	2715.	97.13	97.92	1.69	2.2A	27.45
19	2712.	101.05	103.98	1.78	2.14	22.88

MODF 7

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	5.0 FNO X100
1	•5350	.0960	17,9180	.2350	.1070	20.7490
2	•2320	•0960	17,9200	.2350	.1070	20.7490
4	.2330	.0990	18.2900	.2340	.1050	20.6640
5	.2330	.0970	18.3620	.2360	.1090	20,8180
6	•2330	.0970	18.3620	.2360	.1090	20.3180
7	•2330	.0970	-18.6460	.2360	.1090	20.8360
8	.2260	.0860	18.1640	.2290	.0970	20.2910
9	.2380	.1110	-19.1570	.2380	.1120	20.9450
10	•5560	.0860	18.1640	.2290	.0970	20.2910
11	.2400	.1090	18.5850	2420	1190	-21.2410
12	.2330	.0980	18.1220	.2350	.1060	20.7150
13	.2310	.0930	18.2980	.2380	.1120	20,9580
14	.2310	.0930	17.9850	.2380	.1120	20.9580
17	.2310	.0980	17.8740	.2330	.1030	20.5790
18	.2310	.0980	17.8810	.2330	.1030	20.5790

JT3D-38 * 1200 HOUR TEST SERIES *

MODE 7

UNIT	NREC CO FI LO/KLR FU		NRE CNO EI LB/KLB FU	NR CNOX EI LB/KLR FU	SMK NUMBER CORRECTED
1	107.26	105.42	2.61	3.31	22.53
5	104.02	99.09	2.74	3.42	25.75
4	106.45	-126.31	2.21	2.55	26.05
. 5	101.15	105.29	2.48	3.40	23.73
6	100.42	-88.58	1.84	3.83	22.88
.7	103.12	107.10	2.45	-6.04	20.65
8	104.75	97.96	2.38	-3.87	19.69
9	100.74	95.50	. 2.16	3.83	20.45
10	101.45	103.95	2.07	-4.23	17.32
11	98.47	92.79	2.21	2.81	29.34
:5	96.59	101.88	2.46	2.82	26.25
13	100.96	105.56	1.75	2.61	27.27
14	103.43	120.04	1.86	2.64	24.74
17	. 96.49	92.70	2.09	2.82	27.45
18	100.44	98.55	2.20	2.64	22.88

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

·il.

JT3D-38 * 1200 HOUR TEST SERIES *

MODE 8

UNIT	N1 SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR N2 PER CENT
1	33,00	60.00	33.36	60.65
S	33,50	61.00	33.86	61.66
4	33.00	60.00	33.27	60.50
5	32,50	59.00	32.92	59.75
6	34.00	60.50	34.43	61.27
7	33,80	60.50	34.25	61.30
8	32.00	59.00	32.42	59.78
9	33,50	60.50	33.56	60.62
10	32,40	60.00	32.83	60.80
11	34.00	61.00	34.33	61.60
12	33.00	59.50	33.32	60.08
13	33.10	59,50	33.66	60.50
14	32.60	59.50	33.15	60.50
17	33.10	. 60.20	33.29	60.55
18	34.20	61.20	34.40	61.56

MODE 8

UNIT	FUEL FLOW LBM/HR	CB F/4 X100	PERF F/A	TT7 DEG R	EPR	THRUST LRF
1	1260.	.8530	.8040	-960.	1.020	1179.
5	1230.	.8180	.7840	1014.	1.020	1249.
4	1270.	.9310	.8260	1014.	1.030	1159.
5	1230.	.8380	.8210	996.	1.030	1110.
6	1240.	.8190	.7A30	978.	1.050	1216.
7	1290.	7230	.8350	1032.	-1.060	.1217.
8	-1370.	.7920	9140	996.	1.050	1111.
9	1260.	7400	.A270	1041.	1.030	1181.
10	1240.	7270	.7930	974.	1.030	1192.
11	1230.	.7940	.7740	996.	1.030	1240.
12	1230.	.8230	.8150	1014.	1.050	1134.
13	1250.	.8170	.8460	1032.	1.940	1178.
14	1300.	.8030	.8500	-960.	1.030	1179.
17	1240.	.8030	.8090	1014.	1.030	1173.
18	1300.	.8660	.8380	1050.	1.040	1243.

MODE 8

UNIT	CORR FU FL LRM/HR	COR CB F/A COP		R YTT COR	THRUST LBF
1	1253.	.8710	.8220	980.	1185.
2	1223.	.8360	.8010	1036.	1256.
4	1276.	.8440	.8400	1031.	1175.
5	1228.	.8600	.8420	1021.	1123.
6	1238.	.8400	.8030	1003.	1229:
7	1288.	7420	.8580	1059.	1231.
. 8	-1368.	.8130	9380	1022.	1125.
9	1260.	7430	.8310	1045.	1183.
10	1238.	7460	.8140	1004.	1196.
11	1230.	.8090	.7890	1015.	1252.
12	1231.	.8390	.8310	1034.	1146.
13	1226.	.8450	.8750	1067.	1175.
14	1274.	.8300	8790	992.	1175.
17	1238.	.8120	.8180	1026.	1179.
18	1299.	.8760	.8480	1062.	1249.

MODE 8

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.463	1017.4	726.6	8.9	12.9
5	1.423	937.6	446.5	9.9	13.1
4	1.387	984.8	-R29.R	8.3	9,6
5	1.440	960.9	716.7	8.7	13.4
6	1.439	926.8	600.2	6.1	15.1
7	-1.240	834.2	619.4	7.4	14.2
	1.366	934,8	649.6	8.8	14.7
9	-1.294	864.6	584.4	7.3	14.0
10	-1.250	-822.9	618.0	6.4	15.1
11	1.382	883.9	622.4	7.2	9,8
12	1.412	915.8	714.2	9.0	10.6
13	1.341	949.4	769.4	6.1	2.7
14	1.329	945.0	-839.5	6.5	9.4
17	1.409	899.8	592.9	7.2	10.4
18	1.522	957.8	641.2	8.4	10.6

MODE 8

UNIT	COO ET LR/KLR FU	CO ET	HC ET	NO ET LR/KLR FU	NOX EI LR/KLR FU	SMK NUMBER FRONT STOR
1	2592.	114.72	140.76	1.65	2.40	20.00
S	2627.	110.17	130.51	1.91	2.53	25.75
4	-2524.	114.0A	-165.13	1.58	1.42	25.92
5	2595.	110.20	141.21	1.64	2.52	22.16
6	2451.	108.78	121.02	1.18	2.91	21.96
,	2591.	111.02	141.60	1.63	-3.10	18.90
9	2606.	113.47	135.45	1.75	2.93	19.40
9	2621.	112.35	130.47	1.55	-3.00	20.57
10	2599.	108.90	140.50	1.49	-3.29	18.44
11	2670.	107.05	129.51	1.44	1.95	26.96
12	2592.	107.01	143.37	1.73	2.03	25.53
13	2553.	111.76	155.60	1.18	1.88	27.27
14	-2501.	113,33	-172.95	1.23	1.85	24.58
17	2452.	107.75	121.97	1.41	2.05	28.31
18	2654.	106.27	122.21	1.54	1.93	23.61

MODE 8

UNIT	FC0 X100	FHC X100	FN0 X100	STO FCO	STD FHC X100	STD FNO
1	.2070	.0640	16.3310	.2100	.0710	18.8950
. 5	.2110	.0700	16.6200	.2140	.0770	19.2310
4	.2090	.0660	16,6830	.2090	.0700	18.8460
5	.2040	.0590	16.4270	.2060	.0660	18.6010
6	.2100	.0670	14.8640	.2130	.0750	19.1030
7	.2100	.0670	-17.1210	.2130	.0750	19.1130
8	.2040	.0590	16.6770	.2060	.0670	18,6110
9	.2090	.0700	-17.2440	.2100	.0710	18.8450
10	.2040	.0640	-16.9720	.2110	.0720	18.9450
- 11	.2120	.0700	16,2060	.2140	.0770	19,2110
12	.2050	.0630	16.3820	.2080	.0680	16.7090
13	.2030	.0590	16,4800	,5000	,0700	18,8470
14	.2030	.0590	16.1990	.2090	.6700	18.8470
17	2080	.0670	16.3910	.2100	.0710	16,8640
18	.2130	.0730	16.6860	.2140	.0760	19,1970

MODE 8

UNIT	NREC CO FI LR/KLR FU		NRE CNO ET	NR CNOX ET	SMK NUMBER CORRECTED
		********			********
1	113.14	127.15	2.05	2.9A	20.00
,	109.66	117.82	2.37	3.15	25.75
4	113-65	-155.25	1.91	2.21	25.92
5	104.41	126.44	2.00	3.06	22.16
6	107.40	108.19	1.44	1.55	21.96
7	109.60	126.16	1.95	-3.72	18.90
	112.03	120.89	2.10	3.52	19.40
9	112.16	128.33	1.42	3.52	20.57
10	107.51	125.24	1.78	-1.94	18.44
11	106.10	119.05	1.77	2.39	26.95
12	106.15	132.18	7.17	2.49	25.53
13	108.52	130.46	1.45	2.31	27.27
14	103.99	144.84	1.54	2.31	24.59
17	107.06	115.72	1.74	2.54	28,31
18	105.64	116.03	1.90	2.39	23.61

UNIT	TSO	TSB	AMR TEMP	AMR PRESS	AMR HUMIN	
	HR	HR	DEG R	IN HG	LB H20/4IR	
				******	********	
1	22305.	1857.	507.7	30.12	.005700	
S	22930.	1856.	508.2	30.13	.005640	
5	21808.	1846.	513.2	30.11	.005780	
7	22146.	1795.	516.2	30.11	.007150	
8	22530.	1796.	516.2	30.11	.007150	
9	21549.	1795.	516.2	30.11	.007150	
10	24137.	1795.	516.2	30.11	.007150	
11	23164.	1815.	518.2	29.98	.007270	
12	194RR.	1815.	519.7	29.94	.007470	
13	21835.	1815.	519.7	29.98	.007470	
14	27963.	1815.	524.2	29.98	.008160	
17	33039.	1791.	512.2	29.99	.006150	
18	27562.	1791.	512.7	30.00	.006420	

MODE 1

UNIT	NI SPEED PER CENT	N2 SPFED PER CENT	CORR NI PER CENT	CORR N2 PER CENT
1	33.10	60.00	33.46	60.65
. 2	32.70	59.80	33.04	60.41
5	34.60	62.00	34.7A	-62.33
7	34.00	60.00	34.08	60.15
A .	32.00	60.00	32.08	60.15
. 9	33.50	60.00	13.5A	60.15
10	32.50	60.00	32.58	60.15
11	32.50	59.50	32.52	59.53
.15	33.00	60.50	12.97	60.44
13	33.00	59.50	12.97	59.44
14	34.00	61.00	13.82	60.68
17	34.10	61.00	34.32	61.39
19	32.80	59.00	12.99	59.34

HODE 1

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LAF
1	1290.	.8490	.8440	1014.	1.030	1177.
S	1240.	.3470	.A240	1032.	1.030	1161.
5	1340.	.8690	.8380	1032.	1.040	-1300.
7	1310.	.8570	.8690	1041.	1.040	1143.
8	1230.	9410	.8230	1059.	1.050	1143.
9	1320.	.8900	9770	-1158.	1.020	1143.
10	1270.	.8630	.8350	1023.	1.030	1143.
11	-1190.	.8580	.7880	996.	1.030	1105.
12	1260.	.8530	.8170	1014.	1.040	1169.
13	1270.	.8610	.8560	1032.	1.040	1099.
14	1270.	.8220	.8050	996.	1.040	1185.
17	1310.	.8440	.8300	996.	1.030	1234.
18	1280.	.8700	.8770	1032.	1.060	1091.

MODE 1

UNIT	CORR FU FL	COR CB F/A	COR PF F/A	CORR TT7 COR	THRUST LRF
1	1245.	.8690	.863	1036.	1185.
S	1234.	.8640	.841	1053.	1169.
5	1341.	.8790	.847	1043.	-130A.
7	1315.	.8610	.873	1046.	1150.
8	1235.	9450	.827	1064.	1150•
9	1325.	.8940	926	-1163.	1150.
10	1275.	.8670	.839	1028.	1150+
11	-1192.	.8580	.789	997.	1107.
12	1264.	.8510	.815	1012.	1171•
13	1274.	.8590	.854	1030.	1101.
14	1279.	.8130	.797	985.	1.88.
17	1305.	.8550	.441	0 1004.	1237.
18	1276.	.880	.887	0 1044.	1094.

MODE 1

UNIT	COZ CONC	CO CONC	HC CONC	NO CONC	NOX CONC
		*******	******		******
1	1.492	968.0	665.2	8.1	9.8
2	1.446	991.9	754.8	7.9	9.0
5	1.530	923.8	652.A	8.6	10.6
7	1.499	951.5	655.2	8.4	10.0
8	-1,662	-1058.8	665.7	9.1	10.8
9	1.566	1006.4	646.7	7.7	9.9
10	1.460	983.2	-814.0	6.9	9,4
11	1.493	976.5	672.7	8.2	9,5
12	1.480	935.6	695.9	9.2	10.2
13	1.484	993.5	717.4	8.9	9,9
14	1.406	947.0	715.7	7.6	9.4
17	1.458	887.5	721.3	5.7	9,6
18	1.485	1001.5	776.4	6.6	9,5

MODE 1

UNIT	COS EI	CO ET	HC FI LR/KLR FU	NO EI LR/KLR FU	NOX EI LR/KLB FU	SHK NIMBER FRONT STOE
1	2636.	109.59	129.37	1.51	1.83	21.10
5	2582.	112.68	147.31	1.47	1.69	23.92
5	2654.	102.11	123.97	1.56	1.93	27.02
7	2642.	106.74	126.27	1.55	1.A5	23.10
A	2666.	108.07	116.74	1.53	1.82	24.2R
9	2654.	108.65	119.95	1.37	1.76	25.81
10	-2556.	109.55	-155.83	1.27	1.71	23.33
11	2679.	109.44	129.51	1.52	1.75	26.54
12	2621.	105.45	134.74	1.70	1.88	25.56
13	2604.	110.95	137.63	1.63	1.81	23.40
14	2587.	110.86	143.93	1.47	1.80	25.06
17	2610.	-101.10	141.16	1.06	1.40	-28.87
19	2578.	110.67	147.38	1.20	1.73	25.00

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

一大人ははいくとい

1 300M

UNIT	FC0 x100	FHC X100	FNO X100	STD FCO	STO FHC X100	STD FNO X100
1	.2070	.0640	16.6630	.2100	.0710	18.8950
2	.2070	.0640	16.6340	.2090	.0700	18.8190
5	2170	.0780	-17.3350	2180	.0820	-19.4920
7	.2080	.0670	16.3270	.2080	.06R0	18.7300
8	.2080	.0670	16.3270	.2080	.06A0	18.7300
9	.2080	.0670	16.3270	.2080	.0680	18.7300
10	.2080	.0670	16.3270	.2080	.0680	18.7300
11	.2050	.0650	16.1380	.2050	.0650	18.5280
12	.2100	.0710	16.3830	.2090	.0700	18.8280
13	.2050	.0660	16.0970	.2050	.0650	18,4990
14	.2120	.0760	16.3770	.2100	.0710	18,9060
17	.2110	.0710	16.8410	.2130	.0750	19.1400
18	.2030	.0610	16.1850	.2040	.0640	18.4670

MODE 1

UNIT				NR CNOX FT	
	LB/KLB FU	L9/KL9 FU	FHYKEH FO	LA/KLA FU	CORRECTED
1	108.20	117.18	1.94	5.22	21.10
7	111.38	134.21	1.79	2.05	23.92
5	101.68	118.49	1.88	2.33	27.02
. 7	104.82	124.55	1.91	2.28	23.10
A	108.15	115.15	1.89	2.24	24.28
9	108.73	118.32	1.69	2.17	25.A1
10	109.63	-153.71	1.56	2.11	23.33
11	109.51	129.29	1.87	2.16	26.54
12	105.77	136.60	2.10	2.32	25.56
13	111.29	139.51	2.01	2.24	23.40
14	112.01	-152.68	1.82	2.23	25.06
17	-100.23	132.71	1.30	2.19	-28.A7
18	109.82	139.45	1.47	2.12	25.00

MODE 2

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NA
	••••••		PER CENT	
1	36.80	64.10	37.20	64.79
2	36.80	64.40	37.1A	65.06
5	36.20	64.00	36.39	64.34
7	37.00	64.00	37.09	64-15
8	36.00	64.00	36.09	64.15
9	37.00	64.00	37.09	64.15
10	36.00	64.00	36.09	64.15
11	36.00	64.00	36.02	64.03
12	36.20	64.50	36.17	64.44
13	36.50	64.00	36.46	63.94
14	37.00	65.00	36.81	64.66
17	37.30	64.00	37.54	64.40
18	37.50	64.00	37.72	64.37

JT30-38 * IROO HOUR TEST SERIES *

NODE S

UNIT	FUEL FLOW LAM/HR	CR F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST LAF
1	1390.	.8300	.4140	1014.	1.030	1507.
5	1370.	.A200	.9080	1032.	1.030	1530.
5	1370.	.8550	.8190	1041.	1.040	1470.
7.	1410.	.8280	.8390	1032.	1.040	1454.
R	1420.	9170	.9600	1068.	1.050	1454.
9	1420.	.8620	.8600	106A.	1.020	1454.
10	1340.	,8420	4450	-1203.	1.030	1454.
11	1310.	.8300	.7700	996.	1.040	1450.
12	1350.	.8290	.7980	1032.	1.050	1484.
13	1380.	.A320	.9250	1032.	1.045	1442.
14	-1290.	.8010	7410	996.	1.040	1503.
17	1420.	.8200	.8340	996.	1.030	1481.
19.	1440.	.8610	.8610	1032.	1.060	. 1478.

MODE 2

UNIT	CORR FU FL	COR CR F/A	COR PF F/A	CORR TT7 COR	THRUST LBF
	********	*******			
1	1384.	.8480	.8360	1036.	1517.
2	1366.	.8370	.8240	1053.	1540•
5	1371.	.8640	.8280	1052.	1479.
7	1416.	.8320	.8440	1037.	1463.
8	1426.	9210	.8640	1073.	1463.
9	1426.	.8660	.8640	1073.	1463.
10	1385.	.8460	8890	-1209.	1463.
11,	1312.	.8300	.7710	997.	1453•
12	1354.	.8260	.7960	1030.	1487.
13	1384.	.8300	.8240	1030.	1445•
14	-1299.	.7920	7330	985.	1506.
17	1414.	.8300	.8450	1008.	1484.
:a	1435.	.8710	.8710	1044.	1482.

MODE S

UNIT	COZ CONC	CO CONC	HC CONC	NO CONC	NOX CONC

1	1.493	878.7	527.0	7.7	10.4
S	1.456	875.0	579.6	8.1	10.2
5	1.525	A77.7	589.3	A.3	10.9
7	1.485	A51.3	532.3	8.2	10,6
٩	-1.678	932.0	491.9	9.7	11.6
9	1.561	903.9	501.1	7.6	10.7
10	1.471	A99.4	-661.1	6.9	10.0
11	1.490	A63.6	527.1	8.1	10.3
12	1.484	930.6	542.4	9,3	10.9
13	1.482	S-168	556.9	9.3	10.6
14	1.417	861.9	564.8	7.6	10.0
17	1.458	797.A	582.6	5,6	10.4
18	1.545	1.988	555.3	6.7	10.6

MODE 2

UNIT	COS EI	CO EI LB/KLB FU	HC EI LR/KLB FU	NO EI LR/KLR FU	NOX EI LR/KLB FU	SHK NUMBER FRONT STOE
1	2715.	101.70	104.79	1.47	1.98	20.39
5	2681.	102.54	116.68	1.56	1.95	23,34
.5	2691.	98,61	113.74	1.54	2.00	26.40
7	2709.	98.83	106.16	1.56	2.03	23.86
8	2760.	97.55	88.45	1.67	2.03	23.60
9	2734.	100.77	95.97	1.39	1.96	24.84
10	-2639.	102.66	-129.64	1.29	1.88	24.48
11	2711.	100.01	104.88	1.54	1.96	26.47
12	. 270R.	96.43	108.19	1.77	2.05	25.56
13	2691.	102.98	110.54	1.77	2.00	25.03
14	2674.	103,48	116.49	1.50	1.98	24.05
17	2687.	93.55	117.37	1.07	2.01	-30.07
18	2708.	99.18	106.41	1.23	1.95	23.78

٠.

40DE 2

UNIT	FCO X100	FHC ×100	FN0 X100	STD FCO	STO FHC X100	STO FNO
1	.2370	.0980	18.3300	.2360	.1080	20.8040
2	.2350	.1010	18.5000	.2380	.1120	20.9500
5	.2310	.0980	18.2830	.2320	.1030	20.5430
7	.2310	.0990	17.8330	.2310	.1010	20.4620
A	.2310	.0990	17.8330	.2310	.1010	20.4620
9	.2310	.0990	17.8330	.8310	.1010	20.4420
10	.2310	.0990	17.8330	.2310	.1010	20.4620
11	.2300	.0990	17.7650	.3300	.0990	20.3960
12	.2340	.1060	17.9390	.2330	.1040	20.6140
13	.2300	.1000	17.7060	.2300	.0980	20.3460
14	.2370	.1130	17.9670	.2350	.1070	20.7320
17	.2310	.0970	18.1150	.2330	.1040	20.5960
18	.2310	.0980	18.0260	.2330	.1030	20.5790

MODE 2

UNIT	NREC CO EI	NREC HC EI	NRE CHO ET	NR CNOX ET	SHK NUMBER
	LB/KLB FU	LB/KLB FU	BAKLA FU	LB/KLB FU	CORRECTED
1	100.38	94.50	1.79	2.42	20.39
5	101.32	105.81	1.89	2.38	23.34
5	98.18	108.59	1.86	2.42	26.40
7	98.90	104.62	1.93	2.50	23.86
8	97.62	87.17	2.06	2.50	23.60
9	100.84	94.57	1.72	2.42	24.84
10	102.73	-127.75	1.59	2.32	24.48
11	100.07	104.68	1.90	2.42	26.47
12	96.74	109.72	2.18	2.53	25.56
13	103.30	112.10	2.19	2.47	25.03
14	104.57	-123,83	1.86	2.45	24.05
17	92.73	110.13	1.31	2.45	-30.07
18	98.39	100.40	1.50	2.39	23.78

MODE 3

UNIT	N1 SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT .
	******			********
1	162.00	100.10	103.10	101.19
5	102.00	100.50	103.05	101.53
. 5	103.70	101.00	104.25	101.54
7	103.50	100.00	103.75	100.24
9	102.50	101.00	102.75	101.24
q	103.00	101.00	103.25	101.24
10	102.00	101.00	102.25	. 101-24
11	103.50	101.50	103.55	101.55
12	103.00	101.50	102.90	101.40
13	104.00	101.50	103.90	101.40
14	104.00	102.00	103.45	101.46
17	145.40	99.00	102.65	-99.63
18	103,40	99.80	104.00	100.38

MOOF 3

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TTT DEG R	EPR	THRUST
1	9700.	1.4990	1.3490	1392.	1.840	17789.
2	9800.	1.5530	1.3800	1428.	1.840	17783.
5	9300.	1.5750	1.3020	1410.	1.840	17798.
7	9500.	1.5070	1.3300	1410.	1.940	17795.
8	9900.	1.5360	1.3780	1392.	1.840	17795.
9	9700.	1.5390	1.3670	1428.	1.640	17795.
10	-90nn.	1.5320	-1.2520	1392.	1.840	17795.
11	9900.	1.6180	1.3750	1374.	1.840	17875.
12	9400.	1.5570	1.3220	1410.	1.840	17872.
13	9300.	1.5720	1.3160	1428.	1.840	17872.
14	9600.	1.5710	1.3500	1410.	1.840	17872.
17	9700.	1.6090	1.3370	1356:	1 . 840	17866-
18	9900.	1.6300	1.3830	1392.	1.840	17863.

MODE 3

UNIT	CORR FU FL LBM/HR	COR CR F/A	COR PF F/A	CORR TT7 COR	THRUST LRF
1	9661.	1.531	1.3780	1422.	1790A.
5	976A.	1.5850	1.4090	-1457.	17908.
5	930A.	1.5920	1.3160	1425.	17908.
7	9537.	1.5150	1.3370	1417.	17908.
8	9939.	1.5440	1.3940	1398.	1790A.
9	973A.	1.5460	1.3740	1435.	1790A.
10	-9035.	1.5400	-1.25A0	1394.	17908.
11	9913.	1.6200	1.3760	1375.	17908.
12	9478.	1.5540	1.3190	1407.	1790A.
13	937A.	1.5690	1.3140	1425.	1790g.
14	9670.	1.5540	1.3360	1395.	1790A.
17	9662.	1.6290	1.3540	1373.	17904.
18	9867.	1.6490	1.3990	1408.	17908.

MODE 3

UNI	T COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	3.166	18.6	5.7	91.3	89.9
2	3.283	20.0	4.6	94.5	92.4
5	3.326	25.6	4.6	88.9	89.7
. 7	3.179	18.3	1.5	95.2	94.3
A	3.741	15.0	1.4	95.5	92,3
9	3.246	21.2	2.0	87.5	84.6
10	3.232	21.7	3.2	88.8	86,7
11	3.417	17.4	4.7	100.3	94.0
12	3.284	21.0	5.0	85.9	83,5
13	3.317	55.6	6.2	93.2	88.7
14	3.314	18.6	5.0	97.0	91.4
17	3.396	18.2	5.0	95.0	93.7
18	3.440	20.5	4.3	90.0	88,5

MODE 3

UNIT	COS EI		HC FI LR/KLB FU	NO FI LB/KLR FU	NOX ET LR/KLB FU	SMK NUMBER FRONT STOE
1	3159.	1.18	.62	9.52	9.52	51.69
2	-3159.	1.22	.49	9.51	9.51	52.50
5	3154.	1.55	.47	A.81	8.89	54.00
7	3154.	1.15	•16	9.87	9.87	54.74
A	3154.	.93	.15	9.72	9.72	51.37
9	3153.	1.31	.27	A.89	8.89	54.90
10	3151.	1.35	.34	9.06	9.06	54.55
11	3153.	1.02	.47	9.68	9.68	54.19
12	3152.	1.28	.53	R.62	8.62	56.04
13	3152.	1.37	.64	9.26	9.26	54.66
14	3151.	1.13	•52	9.45	9.65	48.34
17	3153.	1.08	.61	9.22	9.22	-63.82
18	3153.	1.20	.43	A.62	8.62	56.73

MODE 3

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STO FHC	STD FNO
1	72.3330	69.7140	83.3790	85.6010	83.1410	96.0710
2	83.6380	75.4970	84.9310	98.9710	89.3040	97.5910
5	91.9990	82.2670	86.1310	100.4820	89.4260	97.6200
7	72.2260	66.6530	80.0310	74.8140	68.7330	92.1360
A	85.0850	81.6490	83.6820	88.2720	84.2530	96.3520
9	85.5180	81.6490	83.6820	88.7280	A4.2530	96.3520
10	84.4400	81.6490	83.6820	87,5910	84.2530	96.3520
11	105.5310	89.1210	85.0020	106.4930	A9.5930	97,6600
12	93.1100	88.8080	84.5550	91.6430	86.9840	97.0290
13	96.0390	88.8080	84.5550	94,5120	86.9840	97.0290
14	100.9070	97.1300	84.9590	92.3120	88.0630	97.2920
17	78.4650	54.5880	78.1550	87.3690	60.5890	-89.6130
18	89.5070	64.2030	80.5650	99.1140	70.7310	92,7180

MODE 3

UNIT			NRE CNO ET		
	LB/KLB FU	LB/KLB FU	LH/KLH FU	LAZKLA FU	CORRECTED
1	1.00	.52	11.78	11.78	51.69
5	1.03	.41	11.74	11.74	52.50
5	1.42	.44	10.73	10.82	54.00
. 1	1.11	.15	11.36	11.36	54.74
А		.15	11.19	11.19	51.37
.9	1.26	.21	10.99	10.99	54.90
10	1.30	.33	11.20	11.20	54.55
11	1.01	.47	11.12	11.12	54.19
-12	1.31	.54	10.67	10.62	56.04
13	1.39	.65	11.41	11.41	54.66
14	1.23	.58	11.05	11.05	48.34
17	.97	•55	11.35	11.35	-63.A2
19	1.08	.39	10.66	10.66	56.73

40DE 4

UNIT	NI SPEED	NZ SPEED	COPR NI	CORR N2
	PER CENT	PER CENT	PER CENT	PER CENT
••••	********			
1	96.70	98.10	97.74	99.16
5	95.00	98.00	96.99	99.01
5	98.00	98.00	98.52	98.52
7	97.50	98.00	97.74	98.24
8	96.50	98.50	96.73	98.74
9	97.10	98.00	97.23	98.24
10	96.00	98.50	96.23	98.74
11	97.00	99.50	97.05	99.55
12	97.00	99.00	96.91	98.90
13	98.00	99.50	97.91	99.40
14	98.00	99.50	97.48	98.98
17	95.30	97.00	95.90	97.61
18	96.30	97.00	96.86	97.57

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

一人 ちゃかとう

MODE 4

UNIT	FUFL FLOW LRM/HR	CR F/A ×100	PERF F/A	TT7 DEG R	EPR	THRUST
1	8100.	1.3530	1.7410	1293.	1.650	15109.
2	7900.	1.3770	1.2720	1320.	1.450	15104.
5	7700.	1.5940	1.1840	1302.	1.650	15117.
7	8000.	1.3540	1.2430	1329.	1.650	15114.
А	8000.	1.3830	1.2300	1302.	1.650	15114.
9	8000.	1.3690	1.2470	1338.	1.650	15114.
10	7500.	1.3790	1.1450	1284.	1.650	15114.
11	8100.	1.4120	1.2420	1284.	1.650	15182.
12	7600.	1.3800	1.1730	1305.	1.650	151RO.
13	8100.	1.3930	1.2590	1320.	1.650	15180.
14	7800.	1.7990	1.2130	1320.	1.650	15180.
17	7900.	1.3880	1.2020	1266.	1.650	15174.
18.	alon.	1.4330	1.2590	1320.	1.650	15172.

MODE 4

UNIT	CORR FU FL LBM/HR	COR CB F/A	COR PF F/A	CORR TT7 COR	THRUST LBF
1	8067.	1.3820	1.2680	1321.	15210•
2	7875.	1.4060	1.2470	1347.	15210.
5	7706.	1.4190	1.1970	1316.	15210.
7	8031.	1.3610	1.2490	1335.	15210+
8	8031.	1.3900	1.2360	1308.	15210.
9	8031.	1.3760	1.2530	1344.	15210.
10	7529.	1.3860	1.1500	1290.	15210.
11	8111.	1.4140	1.2440	1285.	15210.
12	7623.	1.3780	1.1710	1299.	15210.
13	8124.	1.3910	1.2570	1317.	15210.
14	7857.	1.3740	1.2000	1306.	15210.
17	7869.	1.4050	1.2180	1282.	15210.
18	8073.	1.4490	1.2730	1335.	15210•

MODE 4

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
1	2.953	25.7	5.6	70.5	71.6
S	2.905	2R.4	2.4	69.6	68.8
5	2.958	32.7	2.4	67.1	69.6
7	2.851	25.2	2.7	71.6	70.6
Ą	2.913	-20.0	1.1	73.4	72.3
9	2.AA3	8.AS	1.4	66.3	66.5
10	2.904	25.3	1.7	67.7	68.2
11	2.975	24.2	2.4	71.7	69.0
12	2.906	24.7	2.6	65.6	65.6
13	2.934	24.6	7.5	69.9	68.1
14	2.924	25.3	2.3	72.0	71.3
17	2.922	26.5	3.0	68.3	70.1
18	3.018	29.7	2.4	66.4	68.2

MODE 4

UNIT	COS ET		HC EI LB/KLR FU		NOX EI	SMK NUMBER FRONT STOE

1	-3159.	1.81	•31	8.16	8.29	54.72
2	-3159.	1.96	.29	7.91	7.91	56.66
. 5	3154.	2.22	.28	7.4A	7.76	56.93
7	3152.	1.77	•32	8.27	8.27	56.31
8	3153.	-1.38	.13	8.30	8.30	55.19
9	3152.	2.00	•17	7.5A	7.60	55.39
10	3153.	1.75	.20	7.69	. 7.74	56.56
11	3157.	1.63	.28	7.94	7.94	55.71
12	3152.	1.98	.30	7.44	7.44	57.40
13	3152.	1.96	.30	7.A5	7.85	54.87
14	3152.	1.73	.27	8.12	8.12	51.32
17	3152.	1.82	•35	7.71	7.91	56.56
18	3152.	1.97	.27	-7.26	7.45	58.82

MODE 4

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO
1	45.5450	46.3900	76.2260	52.6930	55.0050	87.7240
2	46.8330	45.3950	75.9340	53.9180	53.3270	87.1270
5	48.6470	44.5650	75.2560	52.3350	48.2350	A5.2190
7	44.6990	43.9590	73.0000	46.0370	45.2720	84.0190
A	49.4730	48.9560	74.7710	51.0180	50.4350	86.0620
9	45.7850	43.9590	73.0000	47.1850	45,2720	A4.0190
10	49.1350	48.9550	74.7710	50.6650	50.4350	86.0620
11	57.5390	59.3240	77.7270	57.9470	59.6230	A9.2970
12	51.6230	53.2670	75.5620	50.9140	52.2070	86.7200
13	55.6630	59.0670	77.3030	54.8880	57.8840	AR.7160
14	55.0030	58.2380	75.9210	51.0090	52.9910	A7.0060
17	42.1160	35.3860	70.9530	45.9696	39.1420	81.2970
14	45.2550	35.2900	70.5270	49.1870	38.7070	81.0920

MODE 4

UNIT	NREC CO EI LB/KLB FU	NREC HC EI LB/KLB FU	NRE CNO EI LB/KLB FU	NR CNOX EI LB/KLB FU	SMK NUMBER CORRECTED
1	1.56	.26	10.09	10.24	54.72
2	1.70	.24	9.75	9.75	56.66
5	2.06	.25	9.10	9,43	56.93
7	1.72	.31	10.23	10.23	56.31
8	-1.33	.13	10.27	10.27	55.19
9	1.94	.17	9.37	9.40	55.39
10	1.70	.20	9.50	9.57	56.56
11	1.62	.28	9.12	9.12	55.71
12	2.01	.31	9.17	9.17	57.40
13	1.99	.30	9.68	9.68	54.87
14	1.87	.30	9.99	9,99	51.32
17	1.66	•32	9.49	9.74	56.58
18	1.81	.25	8.96	9.20	58.82

MODE 5

UNIT	NI SPEFD PER CENT	N2 SPEED PER CENT	CORR NI	CORR NO

1	84.70	93.60	A5.61	94.61
2	84.50	93.00	A5.37	93.96
5	86.00	93.00	86.46	93.50
7	86.50	93.50	A6.71	93.73
A	85.50	94.00	95.71	94.23
9	86.50	94.50	A6.71	94.73
10	85.00	93.50	A5.21	93.73
11	86.00	94.50	86.04	94.55
12	86.00	94.50	A5.92	94.41
13	87.00	94.50	A6.92	94.41
14	87.00	95.00	86.54	94.50
17	85.00	93.00	85.54	93.59
18	85.40	-92.00	85.90	-92.54

MODE 5

UNIT	NI SPEFD PER CENT	NZ SPEED PER CENT	CORR NI	CORR NZ
1	84.70	93.60	A5.61	94.61
2	84.50	93.00	A5.37	93.96
5	86.00	93.00	86.46	93.50
7	96.50	93.50	A6.71	93.73
8	85.50	94.00	A5.71	94.23
9	86.50	94.50	A5.71	94.73
10	85.00	93.50	A5.21	93.73
11	86.00	94.50	86.04	94.55
12	86.00	94.50	A5.92	94.41
13	87.00	94.50	A6.92	94.41
14	87.00	95.00	A6.54	94.50
17	85.00	93.00	85.54	93.59
19	85.40	-92.00	85.90	-92.54

MODE 5

UNIT	FUEL FLOW LBM/HR	C8 F/A X100	PERF F/A X100	TTT DEG R	EPR	THRUST LAF
1	5500.	1.1120	1.0530	1194.	1.390	10659.
2	5600.	1.1120	1.0790	1212.	1.390	10655.
5	5200.	1.1330	.9690	-1131.	1.390	10664.
7	5800.	1.1390	1.1200	1215.	1.390	10662.
8	5600.	1.1550	1.0720	1194.	1.390	10662.
9	5700.	1.1550	1.1030	1221.	1,390	10662.
10	5000.	1.1430	.9430	1158.	1,390	10662.
11	5500.	1.1450	1.0500	1176.	1.390	10710.
12	5100.	1.1360	.9880	1212.	1.390	10709.
13	5600.	1.1420	1.0850	1212.	1.390	10709.
14	5700.	-1.0600	1.0960	1194.	1.390	10709.
17	500.	1.1490	1.0410	1158.	1.390	10705.
18	5700.	1.1770	1.1040	1212.	1.390	10703.

MODE 5

UNIT	CORR FU FL LRM/HR	COR CH F/A COR			THRUST LBF
1	547A.	1.1360	1.0760	1220.	10730.
S	5592.	1.1350	1.1020	1237.	10730.
5	5204.	1.1450	.9800	-1147.	10730.
7	5823.	1.1450	1.1260	1221.	10730.
A	5622.	1.1610	1.0770	1199.	10730.
9	5722.	1.1610	1.1090	1227.	10730.
10	50.7.	1.1480	.9470	1163.	10730.
11	5507.	1.1460	1.0510	1177.	10730.
12	5115.	1.1340	.9860	1209.	10730.
13	5617.	1.1400	1.0830	1209.	10730•
14	5742.	-1.0490	1.0850	list.	10730.
17	547A.	1.1640	1.0550	1172.	10730•
18	5681.	1.1910	1.1170	1226.	10730.

MODE 5

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	2.335	75.7	2.6	41.1	45.5
2	2.332	85.3	3.6	39.6	43,1
5	2.375	89.6	3.3	38.2	42.9
7	2.388	66.0	2.4	43.4	47.3
8	2.423	54.4	1.5	43.1	47.4
9	2.422	65.1	2.1	40.3	45,3
10	2.395	72.7	5.6	38.3	44,7
11	2.400	73.3	2.7	40.4	45,1
12	2.380	78.1	5.9	39.3	43.0
13	2,393	69.9	2.6	42.4	45.4
14	-2,220	59.9	5.6	37.6	41.0
17	2.408	76.2	3.6	36.4	45,5
18	2.467	80.4	3.6	37.8	45.2

MODE 5

UNIT	CO2 FI	CO EI	HC EI LB/KLB FU	NO FI LR/KLR FU	NOX ET	SMK NUMBER FRONT STDE
1	-3151.	6.51	.39	5.81	6.42	52.49
2	3150.	7.33	.53	5.59	6.09	53.99
5	3145.	7.55	.47	5.29	5.95	56.00
7	3146.	5.53	.34	5.9A	6.52	55,67
A	3148.	4.50	.21	5.45	6.44	53.59
9	3147.	5.38	.30	5.47	6.16	53,83
10	3145.	6.08	.37	5.25	6.14	56.13
11	3145.	6.11	. 19	5.54	6.18	56.03
12	3144.	6.56	.47	5.42	5.94	-5A.55
13	3146.	5.85	.38	5.82	6.24	55.19
14	3146.	5.41	.40	5.58	6.08	53.68
17	3145.	6.34	-51	5.24	6.21	55.79
18	3144.	6.52	.51	5.0%	6.03	56.60

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

一部一十二十五十二一一大大一一大大一大大

MODE 5

UNIT	FC0 X100	FHC X100	FNO X) 00	STD FCO X100	STD FHC X100	STD FNO X100
1	19.3950	16.1420	59.9980	21.7360	18.8900	68.8600
2	18,0090	13.8230	57.9460	20.0420	16.0130	66.2960
5	18.1860	13.2460	57.0630	19.2090	14.2330	64.5200
7	19.2900	14.7040	56.8620	19.7350	15.0990	65.4040
8	20.9180	16.7050	58.5550	21.4120	17.1580	67.3570
9	22.2190	18,9460	60.2720	22.7490	19.4670	69.3360
10	19.3750	14.7040	56.8620	19.8240	15.0990	65,4040
11	21.7360	18.5130	59.7290	21.8430	18.5940	68.6100
12	21.4010	18.3080	59.2980	21.1580	17.9650	68.0710
13	21.5510	18.3080	59.2980	21.3060	17.9650	68.0710
14	20.3780	20.0730	59.6330	19.2470	18.3830	68.4310
17	18.5590	13.2650	56.6980	19,8870	14,5720	64,8720
18	17.2300	10.5570	53.4960	18,3640	11.4900	-61.4110

MODE 5

UNIT			The same of the sa	NR CNOX ET	And the control of th
	•••••	•••••		•••••	
1	5.41	.33	7.16	7.92	52.49
5	6.59	.45	6.86	7.48	53.99
5	7.15	.44	6.42	7.22	56.00
. 1	5.41	.33	7.38	8.05	55.67
Ą	4.19	.20	7.23	7.96	53.59
. 9	5.25	.29	6.76	7.61	53.83
10	5.94	.36	6.49	7.5A	56.13
11	6.08	.39	· 6.83	7.62	56.03
12	6.64	.43	6.6R	7.32	-58.55
13	5.91	.38	7.1R	7.70	55-19
14	5.72	.44	6.A7	7.50	53.68
17	5.91	.47	6.43	7.63	55.79
18	6.12	.46	-6.21	7.43	56.60

MODE 6

UNIT	NI SPEED PER CENT		CORR NI PER CENT	CORR NZ
1	67.50	86.00	68.23	86.93
2	68.00	A5.50	68.70	86.38
5	68.80	86.00	69.17	86.46
7	70.00	86.50	70.17	86.71
R	68.50	86.50	68.67	86.71
9	67.50	85.50	67.66	85.71
10	66.50	85.50	66.66	85.71
11	69.00	87.50	69.03	87.54
12	69.50	87.50	69.43	87.42
13	-71.00	A7.50	-70.93	87.42
14	70.00	A7.50	69.63	87.04
17	66.80	85.00	67.22	85.54
18	67.80	84.90	68.20	85.29

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

PRYACHARA () 新电影 NF C CONTAC CAR CAR CAR X 1 25 X 1 2 1 3

MODE 6

UNIT	FUEL FLOW	CB F/A x100	PERF F/A	TT7 NEG R	EPR	THRUST
1	3040.	.6740	.A390	1069.	1.170	5642.
5	3080.	.A700	.9640	1104.	1.170	5640.
5	5650.	.8910	.8200	1104.	1.170	5645.
7	3230.	.8950	.9140	1155.	1.170	5644.
A	3070.	0626	. 9620	1105.	1,170	5644.
9	3000.	.9010	.8470	1104.	1.170	5644.
10	3030.	.8810	. 4300	1050.	1.170	5644.
11	3040.	.9040	.8550	1068.	1.170	5670.
12	3150.	.9080	.9800	1104.	1.170	5669.
13	3280.	•9000	9250	1104.	1.170	5669.
14	3220.	7020	.9930	1068.	1.170	5669.
17	3090.	.8910	.9470	1050.	1.170	5667.
18.	3130.	.9390	. 8680	106R.	1.170	5666.

MODE 6

UNIT	CORR FU FL LBM/HR	COR CR F/A X100	COR PF F/A	CORR TT7 C	OR THRUST
1	3028.	.8930	.858	1091.	5680•
2	3070.	.8880	.882	1127.	5680.
5	2922.	•9010	.829	1116.	5640.
7	3243.	•9000	.918	1127.	5680•
8	3082.	•9330	.866	1109.	5690•
9	3012.	•9060	.846	1109.	5680+
10	3042.	.8860	.R34	0 1055.	5680.
11	3084.	.9050	.855	0 1069.	5680.
12	3129.	•9060	.878	0 1102.	5680.
13	-3290.	.8980	923	0 1102.	5680.
14	3244.	6940	.884	0 1057	5680.
17	3068.	.9020	.858	0 1063.	5680.
18	3120.	9500	.878	0 1080.	5680•

MODE 6

UNIT	COS CONC	CO CONC	HC CONC	NO CONC	NOX CONC
	PER CENT	PDM	ррм	ррм	PPM
1	1.809	217.1	19.2	24.5	26.3
S	1.806	182.3	13.5	25.1	26.3
5	1.946	189.0	16.7	24.7	25.9
7	1.853	197.6	18.1	26.4	27.7
A	1.928	149.4	11.7	26.8	28.3
9	1.869	174.9	12.5	20.5	25,8
10	1.414	218.3	-76.A	20.6	25,4
11	1.474	160.7	10.5	25.5	27,4
12	1.445	161.2	11.5	76.4	27,6
13	1.867	159.1	12.9	23.5	27.5
14	-1.453	-120.7	10.7	-18.7	-21.3
17	1.848	166.4	15.2	19.7	26.5
18	1.945	189.9	20.1	21.3	26,9

HODE 6

TINU	COS EI	CO EI	HC EI LB/KLR FU	NO FI LB/KLB FU	NOX EI LR/KLB FU	SMK NIMMER FRONT STOE
		*******		*******		~~~~~
1	3115.	23.79	3,62	4.47	4.73	41.59
5	3124.	20.07	2.56	4,54	4.75	44.31
. 5	3118.	20.32	3,08	4.35	4.57	47.30
7	3114.	21.13	3,33	4.64	4.86	47.37
8	3123.	17.46	2.07	4.53	4.78	48,31
9	3120.	18.58	2.29	3.58	4.51	44.91
10	3105.	23.73	5.00	3.6A	4.54	43.36
11	3124.	17.02	1.91	4.43	4.76	49.61
12	3123.	17.00	2.08	4.58	4.79	50.65
13	3123.	16.94	2.36	4.10	4.R0	50.26
14	3123.	16.51	2,52	4.19	4.79	47.11
17	3120.	17.89	08.5	3.48	4.68	49.08
18	3116.	19.37	3.52	3.56	4.50	48,31

MODE 6

UNIT	FC0 x100	FHC X100	FN0 X100	STO FCO X100	STD FHC	STD FNO
1	6.8870	2.9860	40.5290	7.5140	3.4320	46.3400
5	6.5700	2.7140	39.6750	7.1300	3.0920	45.2350
5	6.9710	2.9460	40.2170	7.2670	3.1400	45.3980
7	7.2970	3.2190	39.9360	7.4200	3.2930	45.9000
8	7.5370	3.2190	39.9360	7.6660	3.2930	45.9000
9	6.7220	2.6550	34.1940	6.8330	2.7150	43.8940
10	6.5960	2.6530	38.1740	6.7040	2.7150	47.8940
11	7.9870	3.8390	41.4400	8.0140	3.8520	47.5950
12	8.0120	3.8290	41.2220	7.9360	3.7620	47.3360
13	7.9440	3.8290	41.2220	7.8720	7.7620	47.3760
14	6.6130	3.7940	40.5090	6.3380	3.5060	46.5700
17	6.3690	2.4170	34.1560	6.7100	2.6270	43,5590
18	6.5400	2.3220	37.5960	6.8700	2.5050	43.0900

MODE 6

UNIT	NREC CO EI		NRE CHO ET		SMK NUMBER CORRECTED
	**********	•••••		•••••	
1	21.81	3.15	5.43	5.81	41.59
2	18.50	2.24	5.55	5.82	44.31
5	19.49	2.89	5.28	5.54	47.30
7	20.78	3,25	5.73	6.00	47.37
8	17.16	2.03	5.59	5.90	48.31
9	14.28	2.24	4.42	5.56	44.91
10	23.35	-4,89	4.54	5.60	43.36
11	16.96	1.90	5.47	5.87	49.61
12	17.16	2.11	5.65	5.90	50.65
13	17.10	2.40	5.06	5.92	50.26
14	17.23	2.72	5.18	5.92	47.11
17	16.98	2,58	4.27	5.73	49.08
18	18.44	3.26	4.39	5.54	48.31

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

MODE 7

UNIT	NI SPEED	NZ SPEED	CORP NI	CORR NZ
	PER CENT	PER CENT	PER CENT	PER CENT .
1	. 35.10	63.00	35.48	63.68
2	36,50	64.00	36.88	64.66
5	36.00	64.00	36.19	64.34
7	36.00	63,50	36.09	63.65
9	35,50	64.00	35.59	64.15
9	36.00	63,50	36.09	63-65
10	36.00	64.00	36.09	. 64.15
11	36.00	64.00	36.02	64.03
12	37.00	64.50	36.96	64.44
13	36.50	63,50	36.46	63.44
14	37.00	65.00	36.81	64.66
17	36.00	64.00	36.23	64.40
18	34.60	64.00	36.81	64.37

MODE 7

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	1290.	.7900	.7730	996.	1.030	1413.
5	1320.	.7840	.7850	1032.	1.030	1495.
5	1380.	.8210	.A220	1032.	1.040	1470.
7	1350.	.7820	.8170	1041.	1.040	1412.
8	-1420.	.8180	8450	1032.	1.050	1454.
9	1340.	.8330	.8140	1050.	1.030	1412.
10	1320.	.8100	.7830	1023.	1.030	1454.
11	-1250.	.7910	.7350	996.	1.040	1450.
12	1300.	.7960	.7680	1032.	1.050	1484.
13	1320.	.7950	.8050	1050.	1.050	1399,
14	1290.	5360	.7410	996.	1.035	1503.
17	1310.	.7960	.7700	996.	1.040	1481 .
18	1360.	.8340	.8200	1050.	1.050	1478.

MODE 7

UNIT	CORR FU FL	COR C9 F/A C	OR PF F/A	CORR TT7 COR	THRUST LBF
		×100	vino	DF.() K	F01
1	1285.	.8070	.7900	1017.	1423.
2	1316.	.8000	.4020	1053.	1506.
5	1381.	.8300	.8310	1043.	1479.
7	1355.	.7860	.8210	1046.	1421.
8	-1426.	.8220	8500	2037.	1463.
9	1345.	.8370	.8180	1055.	1421.
10	1325.	.8130	.7860	1028.	1463.
11	1252.	.7920	.7350	997.	1453.
12	1304.	.7940	.7670	1030.	1487.
13	1324.	.7930	.8040	1048.	1402.
14	1799.	5300	.7330	985.	1506.
17	1305.	.B060	.7790	1008.	1484.
18	1356.	.8430	.8290	1062.	1482.

MODE 7

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.388	885.2	590.5	10 5	10.3
2	1.388	863.4	558.1	10.5	10.3
5	1.452	868.7	592.6	10.7	10.8
7	1.378	883.2	559.5		10.2
8	1.460	887.0	536.5	9.9	10.9
9	1.494	897.0	524.8	9.0	10.6
10	1.427	843.1	601.9	9.1	10,6
11	1.409	844.3	529.3	10.9	10,8
12	1.419	816.7	542.0	11.1	11.1
13	1.409	856.3	552.8	10.2	10.8
14	949	-578.2	-370.9	6.9	-7.5
17	1.394	804.1	629.7	8.1	10.3
18	1.486	891.8	559.0	9.5	11.0

MODE 7

UNIT	COS ET	CO ET	HC ET	NO EI LB/KLR FU	NOX EI LR/KLR FU	SMK NUMBER FRONT STOE

1	2655.	107.77	123.50	2.10	2.10	22.47
5	2674.	105.88	117.5A	2.16	2.17	26.63
5	2671.	101.72	119.20	2.05	2.08	27.27
7	2661.	108.52	118.12	1.99	2.06	25.78
A	2695.	104.23	108.37	1.98	2.11	26.26
9	2709.	103.50	104.03	1.70	2.01	26.68
10	2662.	100.12	122.7A	1.78	2.07	24.15
11	2691.	102.62	110.52	2.17	2.17	26.14
12	2692.	98.67	112.49	2.20	2.20	25.86
13	2678.	103.55	114.85	2.03	2.14	27.36
14	267A.	103.92	114.50	2.05	2.22	20.00
17	2645.	97.10	130.62	1.62	2.04	-30.26
18	2691.	102.79	110.70	1.91	2.08	26.05

MODE 7

		•				
UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO Xlon	STD FHC X100	STD FNO X100
1	.2250	.0860	17.8090	.2280	.0960	20.2070
2	.2320	.0970	18.3090	.2350	.1070	20.7320
5	.2310	.0980	18.2830	.2320	.1030	20.5630
7	.2280	.0940	17.6000	.2270	.0950	20.1940
8	.2310	.0990	17.8330	.2310	.10;0	20.4620
9	.2280	.0940	17.6000	.2270	.0950	20.1940
10	.2310	.0990	17.8330	.2310	.1010	20.4620
11	.2300	.0990	17.7650	.2300	.0990	20,3960
12	.2340	.1060	17.9390	.2330	.1040	20.6140
13	.2270	.0940	17.4740	.2260	.0930	20.0790
14	.2370	1130	17.9670	.2350	.1070	20.7320
17	.2310	.0970	18.1150	.2330	.1040	20.5960
18	.2310	.0980	18.0260	.2330	.1030	20.5790

400F 7

UNIT	NREC CO ET			NR CNOX ET	
	L8/KLB FU	LHYKLH FU	LA/KLA FU	LA/KLA FU	CORRECTED
1	106.39	111.52	2.56	2.56	22.47
2	104.62	106.68	2.63	2.64	26.63
5	101.27	113.81	2.48	2.51	27.27
. 1	108.60	116.41	2.45	2.54	25.78
Ą	104.30	106.74	7.44	2.59	26.26
. 9	103.57	102.53	2.09	2.4A	26.68
10	100.1A	121.00	2.20	2.55	24.15
11	102.67	110.31	2.67	2.67	26.14
12	98.98	114.08	2.72	2.77	25.86
13	103.88	116.46	2.50	2.45	27.34
14	105.01	121.72	2.54	2.75	20.00
17	96.24	122.57	1.97	2.49	-30.26
19	101.98	104.45	2.22	2.55	26.05

MODE A

UNIT	N1 SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NZ

1	32.00	-58.50	32.34	59.13
2	32.80	59.80	33.14	60.41
5	32.30	59.00	32.47	59.32
7	33.00	59.50	33.0A	59.64
8	32.50	60.00	32.58	60.15
9	33.00	60.00	33.08	60.15
10	33.50	61.00	33.58	61.15
11	32.00	59.50	32.02	59.53
12	35.00	61.00	34.97	60.94
13	33.50	60.00	33.47	59.94
14	34.00	61.00	33.82	60.69
17	33.10	60.00	33.31	60.38
18	32.90	60.00	33.09	60.35

MODE 8

INIT	FUEL FLOW	CR F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST
1	1.20.	.8280	.A320	996.	1.030	1077.
>	1230.	.8300	.8170	1032.	1.030	1161.
5	1200.	.8640	.4190	1032.	1.030	1085.
7	1260.	.8140	.9490	1041.	1.040	1108.
A	1236.	.8640	.5120	1072.	1.050	1143.
9	1340.	.9650	8920	1050.	1.030	1143.
10	1290.	.8350	.A250	1053.	1.030	1213.
11	-1170.	.8260	.76R0	978.	1.030	1105.
12	1260.	.8270	.9060	1014.	1.040	1203.
13	1250.	.8300	.R290	1032.	1.040	1134.
14	1290.	5490	.9110	978.	1.020	1185.
17	1210.	.8270	.7890	994.	1.030	1164.
19.	1280.	.8580	.8490	1032.	1.050	1162.

MODE 8

TINU	CORR FU FL LRM/HR	COR CB F/A CO		RR TT7 COR	THRUST LBF
1	1215.	.8460	.8500	1017.	1079.
2	1226.	.8470	.8340	1053.	1169.
5	1201.	.8770	.82A0	1043.	1092.
7	1265.	.8180	.9530	1046.	1115.
8	1235.	.8690	·A160	1037.	1150.
9	1345.	.8690	8970	1055.	1150.
10	1295.	.8390	.8290	1028.	1550.
11	-1172.	.8270	.7690	979.	1107.
12	1264.	.8250	.8040	1012.	1206.
13	1254.	.8280	.8270	1030.	1136.
14	1299.	5430	.8020	-967.	1188.
17	1205.	.8380	.7990	1008.	1167.
18	1276.	.8680	.8580	1044.	1165.

IN WILL I TO THE THE STATE OF

JT30-38 * 1800 HOUR TEST SERIES *

MODE 8

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.410	985.4	748.0	9.4	9.8
5	1.415	975.0	748.R	9.6	0,9
5	1.483	991.2	774.2	9.R	10.2
7	1.398	940.0	691.3	9.3	9,9
A	1.505	1000.2	672.2	9.7	10.4
9	1.516	992.4	641.9	8.0	10.1
10	1.440	920.1	705.8	8.1	10.0
11	1.425	956.1	6R4.0	10.0	10.1
12	1.439	900.4	661.4	10.2	10.3
13	1.479	961.4	693.6	9.5	9.9
14	93A	-643.9	-472.3	6.3	-6.9
17	1.402	A98.5	784.A	7.2	9.7
18	1.472	998.5	735.2	8.2	9.9

MODE 8

UNIT	COS EI	CO ET	HC EI LB/KLB FU	NO EI LR/KLR FU	NOX EI LB/KLB FU	SMK NUMBER FRONT SIDE
1	2573.	114.49	149.30	1.79	1.86	23.87
2	2576.	113.00	149.08	1.84	1.88	25.78
. 5	2581.	109.82	147.36	1.79	1.85	26.81
7	2596.	111.09	140.34	1.80	1.92	25.42
8	2629.	111.23	128.42	1.76	1.89	25.91
9	2646.	110.28	122.53	1.46	1.84	25.66
10	2605.	105,92	140.17	1.53	1.88	74,48
11	2606.	111.26	136.74	1.91	1.94	26,42
12	2629.	104.70	132.12	1.94	1.97	27,14
13	2602.	111.42	138.09	1.81	1.88	26,63
14	25AA.	113.01	142.42	1.81	1.99	19.21
17	2562.	104,48	156.79	1.37	1.85	-36.00
18	2592.	111.86	141.50	1.50	1.83	25.23

MODE 8

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO	STO FHC X100	STD FNO X100
1	2010	0570	16.2290	.2040	.0630	18.3970
2	.2070	.0640	14.6340	.2090	.0700	18.8190
5	.2010	.0610	16.4200	.2040	.0640	18,4580
7	.2060	.0650	16.1840	.2060	.0560	18.5450
A	.2040	.0670	16.3270	.2080	.0680	18.7300
9	.2080	.0670	16.3270	.2080	.0680	18.7300
10	.2120	.0730	14.6150	.2120	.0740	19.0610
11	.2050	.0650	16.1390	.2050	.0650	18.5280
12	.2120	.0740	16.5270	.2110	.0730	14.9930
13	.2090	.0680	16.2400	.2070	.0670	18.6630
14	.2120	.0760	16.3770	.2100	.0710	18.9060
17	.2070	.0660	14.5500	.2090	.0700	18.8070
19	.2070	.0660	16.4730	.2090	.0700	18.7970

HODE 8

UNIT	NREC CO EI		LB/KLR FU	NR CNOX EI	CORRECTED
		•••••			*********
1	113.05	135.41	2.18	2.27	23.87
2	111.69	135.82	2.23	2.28	25.79
5	109.36	141.06	5.16	5.53	26.81
7	111.17	138.45	5.55	2.37	25.42
8	111.31	126.68	2.17	2.33	25.91
9	110.36	120.86	1.79	5.56	25.66
10	105.99	138.24	1.89	2.32	24.48
11	111.32	136.51	2.35	2.39	26.42
12	105.03	133.95	2.40	2.43	27.14
13	111.76	139.98	2.23	2.32	26.63
14	114.18	-151.08	2.25	2.47	19.21
17	103.57	147.48	1.67	2.25	~30.00
18	111.00	133.81	1.84	2.24	25.23

UNIT	TSO HR	TSR	AMR TEMP	AMR PRESS	AMR HUMID
1	22919.	2471.	514.7	29.82	.008110
5	23544.	2470.	514.2	29.82	.007800
5	22361.	2399.	511.7	79.99	.006650
. 7	23015.	2664.	517.2	29.88	.007640
A	23799.	2665.	517.7	29.88	.007960
10	25006.	2664.	517.2	29.89	.007630
11	23714.	2365.	517.7	30.01	.006830
12	20034.	2365.	517.7	30.01	007370
13	22385.	2365.	517.7	30.01	.007370
17	3362A.	2380.	517.7	29.88	.009090

MODE 1

PER CENT PER CENT PER CENT PER CENT 1 34.00 61.00 34.13 61. 2 33.90 61.00 34.05 61. 5 32.50 59.00 32.72 59. 7 34.50 61.20 34.55 61. 8 33.00 60.20 33.03 60. 10 33.00 60.50 33.05 60. 11 33.50 59.50 33.53 59. 12 34.00 60.50 34.03 60. 13 34.50 61.00 34.53 61.					
1 34.00 61.00 34.13 61. 2 33.90 61.00 34.05 61. 5 32.50 59.00 32.72 59. 7 34.50 61.20 34.55 61. 8 33.00 60.20 33.03 60. 10 33.00 60.50 33.05 60. 11 33.50 59.50 33.53 59. 12 34.00 60.50 34.03 60. 13 34.50 61.00 34.53 61.	UNIT				CORR NZ
2 33.90 61.00 34.05 61. 5 32.50 59.00 32.72 59. 7 34.50 61.20 34.55 61. 8 33.00 60.20 33.03 60. 10 33.00 60.50 33.05 60. 11 33.50 59.50 33.53 59. 12 34.00 60.50 34.03 60. 13 34.50 61.00 34.53 61.			********	********	
5 32,50 59,00 32.72 59. 7 34,50 61,20 34,55 61. 8 33,00 60,20 33,03 60. 10 33,00 60,50 33,05 60. 11 33,50 59,50 33,53 59. 12 34,00 60,50 34,03 60. 13 34,50 61,00 34,53 61.	1	34.00	61.00	34.13	61.24
7 34.50 61.20 34.55 61. 8 33.00 60.20 33.03 60. 10 33.00 60.50 33.05 60. 11 33.50 59.50 33.53 59. 12 34.00 60.50 34.03 60. 13 34.50 61.00 34.53 61.	2	33.90	61.00	34.05	61.27
8 33.00 60.20 33.03 60. 10 33.00 60.50 33.05 60. 11 33.50 59.50 33.53 59. 12 34.00 60.50 34.03 60. 13 34.50 61.00 34.53 61.	5	32,50	59.00	32.72	59.40
10 33.00 60.50 33.05 60. 11 33.50 59.50 33.53 59. 12 34.00 60.50 34.03 60. 13 34.50 61.00 34.53 61.	7	34.50	61.20	34.55	61.29
11 33.50 59.50 33.53 59. 12 34.00 60.50 34.03 60. 13 34.50 61.00 34.53 61.	8	33.00	60.20	33.03	60.26
12 34.00 60.50 34.03 60. 13 34.50 61.00 34.53 61.	10	33,00	60,50	33.05	60.59
13 34.50 61.00 34.53 61.	11	33,50	59,50	33.53	59.56
	12	34.00	60,50	34.03	60.56
17 33.00 59.00 33.03 59.	13	34.50	61.00	34.53	61.06
	17	33.00	59.00	33.03	59.06

MODE 1

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A ×100	TTT DEG R	EPR	THRUST LRF
1	1280.	.8770	.8330	1041.	1.030	1231.
2	1280.	.8450	.8300	1032.	1.040	1233.
5	1240.	.8620	.4500	1032.	1.030	1096.
7	1330.	.8400	.8630	1050.	1.030	1232.
A	1290.	.8700	.9460	1014.	1.050	1160.
10	1270.	.8430	.8190	996.	1.030	1182.
11	-1210.	.8310	.8010	996.	1.030	1106.
12	1290.	.8440	0958.	1014.	1.040	1176.
13	1320.	.8540	.8580	1050.	1.040	1210.
17	1300.	.9870	.8790	996.	1.030	1075.

MODE 1

UNIT	CORR FU FL LBM/HR	COR CB F/A	COR PF F/A X100	CORR TT7 CO DEG R	R THRUST
1	1271.	.8840	.8400	1049.	1227.
2	1270.	.8520	.8370	1041.	1229.
5	1234.	.8740	.8610	1046.	1098.
. 7	1326.	.8420	.8660	1053.	1230.
8	1287.	.8710	.8480	1016.	1158.
10	1267.	.8450	.8210	999.	1181.
11	1212.	.8320	.8020	998.	1109.
12	1283.	.8450	.8310	1016.	1179.
13	1323.	.8560	.8590	1052.	1214.
17	1297.	.8890	.8800	998.	1074.

HODE 1

UNIT	COP CONC	CO CONC	HC CONC	NO CONC	NOX CONC
			*		*******
1	1.539	980.5	660.1	10.9	9.7
2	1.473	952.6	658.6	10.1	10.0
5	1.471	990.0	771.5	8.9	9.2
7	1.464	939.6	656.7	6.7	9.8
8	1.530	991.7	627.2	11.0	11.2
10	1.463	942.4	681.0	9.5	10.0
11	1.438	940.0	689.9	7.7	9.4
12	1.454	917.4	734.4	A.7	10.1
13	1.497	1010.0	636.9	7.6	10.1
17	1.526	988.3	764.9	10.5	10.4

MODE 1

UNIT	CO2 ET	CO EI	HC EI	NO EI	NOX EI	SHK NUMBER FRONT SIDE
	ED/NED PU			CONTO 10	FBYKE FO	-4000000
1	2649.	107.41	124.23	1.95	1.95	18.16
5	2635.	108.40	128.76	1.88	1.88	20.05
5	2579.	110.43	147.86	1.62	1.69	27.50
7	2633.	107.53	129.11	1.27	1.85	22.37
8	2657.	109.58	119.06	2.00	2.04	20.78
10	2621.	107.48	133,43	1.72	1.88	20.39
11	2615.	108.81	137.21	1.47	1.80	26.01
12	2604.	104.57	143.81	1.62	1.88	25,29
13	2646.	113.64	123.12	1.41	1.86	24.68
17	2597.	107.08	142.36	1.87	1.87	24.28

MODF 1

UNIT	F'CO X100	FHC X100	FN0 ×100	STD FCO	STD FHC	STO FNO
1	.2110	.0710	16.2130	.2130	.0750	19.0910
2	.2110	.0710	16.3030	.2130	.0750	19.1010
5	.2030	.0600	16.1000	.2050	.0650	18.4860
. 1	.2120	.0740	16.4700	.2130	.0750	19,1080
A	.2080	.0680	16.0920	.2080	.0690	18.7470
10	.2090	.0700	16.2730	.2100	.0710	18.8760
11	.2050	.0650	16.2740	.2050	.0650	14.5370
12	.2100	.0700	16.3950	.2100	.0710	18.8460
13	.2120	.0730	16.5340	.2120	.0740	19,0320
17	.2030	.0620	-15.4190	.2030	.0630	18.3740

MODE 1

UNIT	NREC CO EI	NREC HC EI	NRE CNO ET		SMK NUMBER CORRECTED
			~~~~~~	********	
1	106.46	118.58	2.30	2.30	18.16
5	107.35	122.28	2.20	2.20	20.05
5	109.39	138,46	5.00	2.09	27.50
7	107.16	126.86	1.47	2.14	22.37
8	109.30	117.59	2.34	2.38	20.78
10	107.14	131.19	2.00	2.18	20.39
11	108.88	136,58	1.68	2.05	26.01
12	104.64	143.14	1.87	2.17	25.29
13	113.72	122.54	1.63	2.15	24.68
17	106.80	140.61	2.23	2.23	24.28

#### HODE S

UNIT	NI SPEED PER CENT	NZ SPEED	CORR NI	CORR NZ
		********		
1	36.40	64.00	16.54	54.25
2	36.00	64.00	36.16	64.28
5	37.50	64.50	37.76	64.94
7	36.00	64.00	36.05	64.09
A	36.00	64.00	36.03	64.05
10	-35.00	64.00	-35.05	64.09
11	36.00	64.00	36.03	64.06
12	36.00	64.00	36.03	64.06
13	37.00	64.00	37.04	64.06
17	37.00	64.50	37.04	64.56

MODE 2

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	1350.	.8590	.8150	1041.	1.035	1476.
5	1340.	.8300	.8060	1032.	1.045	1479.
5	1400.	.8300	.8270	1032.	1.040	1526.
7	1420.	.8260	.8590	1050.	1.030	1460.
8	1390.	.8490	.8210	1014.	1.050	1457.
10	1350.	.8300	.7960	996.	1.030	1459-
11	1300.	.7970	.7630	996.	1.030	1451.
12	1330.	.8150	.7940	1032.	1.040	1451.
13	1410.	.8190	.8490	1050.	1.040	1451.
17	-1500.	.8540	.8740	996.	1.040	1500.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

1742764111

#### MODE 2

UNIT	CORR FU FL LRM/HR	COR CH F/A (	COR PF F/A	CORR TT7 COR	THRUST LRF
1	1340.	.8660	.8210	1049.	1471.
2	1330.	.8380	.A130		1474.
5	1394.	.8420	.8390	1046.	1530.
7	1416.	.8290	.9620	1053.	1458.
8	1377.	.8500	.9220	1016.	1455.
10	1347.	.8320	.7980	999.	145A.
11	-1303.	.7980	.7650	998.	1455.
12	1377.	.8160	.7960	1034.	1455.
13	1413.	.8210	.8510	1052.	1455.
17	-1497.	.8560	.9750	998.	1494.

NOTE- MIMIS SIGNS DENOTE OUTLYING VALUES

· 1.1. 1.1.

S 300M

UNIT	COS CONC	CO CONC	HC CONC	NO CONC	NOX CONC
	PER CENT	PPH	PPM	PPM	PPH
		********			
1	1.540	. 920.4	550.3	9.9	9.5
2	1.485	884.8	544.5	10.1	10.1
5	1.485	854.5	556.1	8.7	10.1
7	1.479	868.9	536.0	7.8	10.8
8	1.537	889.2	497.0	10.7	11.3
10	1.480	868.8	560.2	10.1	10.4
11	1.427	631.1	526.5	7.A	. 10.4
12	1.457	942.6	551.6	8.8	10,6
13	1.466	933.3	521.0	7.3	10,6
17	1.541	843.9	538.3	11.0	11.7

MODE 2

UNIT	COS EI	CO ET	HC EI	NO FI LR/KLR FU	NOX ET	SHK NUMBER FRONT STOE
1	2706.	102.92	105.73	1.81	1.81	18.16
5	2700.	102.40	108.26	1.92	1.92	20.26
5	2699.	98.88	110.55	1.65	1.92	28.28
7	2703.	101.06	107.09	1.49	2.05	21.72
8	2777.	100.61	96.62	1.99	2.09	20.85
10	2692.	100.60	111.43	1.93	1.98	20.26
11	2706.	100.27	109.11	1.55	2,07	25.46
15	2700.	99.40	111.78	1.70	2.06	25.42
13	2703.	-109.51	105.02	1.41	2.04	24.42
17	27?>.	94.88	103.97	2.03	2.16	25.76

# JT30-38 . SANO HOUR TEST SERIES .

MODE 2

INTT	500	Euc	CNO	CY0 FC0	590 FH6	
UNIT	FC0 X100	FHC X100	FN0 X100	STO FCO X100	STO FHC	STO FNO
	*100	*********	×100	×100	×100	~100
1	.2300	.0970	17,4160	.2320	.1020	20.5120
5	•5300	.0970	17.5170	.2320	.1020	20.5290
5	.2350	.1030	18,1750	.2370	.1100	20.8840
7	.2300	.0980	17,6070	.2310	.1000	20.4290
8	.2300	.0990	17.5020	.2300	.1000	20.4120
10	.2300	.0980	17,6100	.2310	.1000	20.4290
11	.2310	.0990	17.9190	.2300	.1000	20.4120
12	.2310	.0990	17.7370	.2300	.1000	20.4120
13	.2310	.0990	17.7370	.2300	.1000	20.4120
17	.2340	.1040	17.3530	.2340	.1060	20.6810

400E 2

UNIT			The second secon	NR CNOX ET	and the second second second second
	LB/KLB FU	LB/KLB FU	LBYKLB EII	LA/KLA FU	CORRECTED.
	**********		~~~~~~		******
1	102.00	100.80	2.13	2.13	18.16
5	101.40	102.68	2.25	2.25	20.26
5	97.92	103.15	2.03	2.37	28.28
7	100.71	105.18	1.73	2.38	21.72
A	100.35	95.39	2.32	2.44	20.85
10	100.28	109.50	2.23	2.30	20.26
11	100.33	109.57	1.76	2.36	25.46
12	99.46	111.23	1.96	2.37	25.42
13	-109.5A	104.50	1.62	2.35	24.42
17	94.63	107.64	2.42	2.57	25.76

MODE 3

UNIT	N1 SPEED PER CENT	N2 SPEED PER CENT	CORR NI PER CENT	CORR NZ
1	102.40	101.00	102.80	101.39
5	102.50	101.00	102.95	101.44
5	104.00	100.20	104.71	100.88
7	103.00	99.60	103.15	-99.74
A	104.00	100.30	104.10	100.40
10	102.00	101.00	102.15	101.15
11	103.00	101.00	103.10	101.10
15	103.20	101.00	103.30	101.10
13	103.50	101.00	103.60	101.10
17	102.00	100.00	102.10	100.10

MODE 3

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	9600.	1.5200	1.3660	1428.	1.840	17968.
5	9700.	1.5690	1.3800	1428.	1.840	17968.
5	9500.	1.6040	1.3360	1410.	1.840	17866.
7	9500.	1.5400	1.3410	1410.	1.840	17932.
8	9500.	1.5900	1.3320	1392.	1.840	17932.
10	-9100.	1.5590	1.2750	1392.	1.840	17926.
11	9800.	1.6530	1.3590	1374.	1.840	17854.
12	9400.	1.5790	1.3210	1410.	1.840	17854.
13	9600.	1.6370	1.3580	1428.	1.840	17854.
17	9800.	1.6310	1.3740	1392.	1.840	17932.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

MAN MAN STATE OF STAT

TITAL TO

HODE 3

UNIT	CORR FU FL LBM/HR	COR CB F/A C	X100	CORR TT7 COR	THRUST
	********				
1	9531.	1.5320	1.3770	1439.	17908.
2	9626.	1.5820	1.3930	1440.	17908.
5	9458.	1.6260	1.3540	1429.	17908.
7	9474.	1.5440	1.3450	1414.	17908.
8	9478.	1.5940	1.3350	1394.	17908.
10	-9078.	1.5640	1.2790	1396.	17908.
11	9820.	1.6570	1.3620	1376.	17908.
12	9419.	1.5820	1.3230	1412.	17908.
13	9620.	1.6400	1.3600	1430.	17908.
17	9777.	1.6340	1.3770	1394.	17908.

MODE 3

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
				******	
1	3.206	18.8	7.4	A9.8	83.9
S	3.312	17.9	5.7	96.1	87.1
5	3.397	19.2	5.2	85.8	81.2
7	3.248	21.8	4.3	A7.9	84.6
А	3.357	16.9	4.2	97.9	94.6
10	3.290	19.4	3.0	91.2	84.9
11	3,499	~7.5	4.7	98.7	95.2
12	3.378	50.5	4.0	91.9	89.6
13	3,460	-56.3	1.8	94.8	94.0
17	3.443	19.3	3.0	103.5	97.5

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

大きているとうとしていくというとうと

MODE 3

UNIT	COZ ET	CO EI	HC EI LB/KLB FU	NO EI LB/KLB FU	NOX ET	SHK NUMBER FRONT SIDE
*						
1	3154.	1.17	.80	9.24	9.24	51.51
2	3155.	1.08	.60	9.57	9.57	50.39
5	3155.	1.14	•53	-R. 36	-8.36	57.79
7	3153.	1.35	.45	8.92	8.92	52.94
8	3153.	1.01	.43	9.61	9.61	48.89
10	3153.	1.18	•31	9.14	9.14	51.30
11	-3161.	-,43	.47	9.32	9.32	54.07
12	-3160.	1,21	•41	9.10	9.10	56.04
13	3157.	-3.27	.18	9.04	9.04	55,96
17	3153.	1.12	.30	9.91	9.91	55,69

MODE 3

UNIT	FCO X100	FHC X100	FN0 X100	STD FCO	STD FHC	STD FNO
		*********	********	*******		
1	A1.9320	80.5560	81.4880	87.6380	86.7980	96.9830
2	90.0840	A0.6610	82.4170	97.4090	A7.6650	97.1950
5	88.8690	69.5080	A1.7390	99.9610	78.3120	94.9170
. 7	72.9790	60.3940	-77.4950	74,9060	62.0770	90.0940
8	86.9910	69.5850	79.4430	88,6770	70.9410	92.7790
10	88.4200	80.3660	82.5270	90.8180	A2.6010	95 9340
11	107.4570	80.8400	83.9190	109,3170	81.7890	95.7760
12	92.2040	80.8400	A3.0550	93,6870	81.7890	95.7260
13	103.8410	80.8400	83.0650	105.6100	A1.7890	95,7260
17	91.1800	65.4520	-76.7060	92,9991	66.7220	91.5360

M( 3

UNIT	NREC CO EI		NRE CNO EI		
	********	*********		******	
1	1.10	.74	10.94	10.94	51.51
2	1.00	.55	11.29	11.29	50.39
5	1.01	.47	10.41	10.41	57.79
7	1.32	.44	10.37	10.37	52.94
8	.99	.42	11.23	11.23	48.89
10	1.15	.30	10.62	10.62	51.30
11	42	.46	10.64	10.64	54.07
12	1.20	.41	10.48	10.48	56.04
13	-3.21	.18	10.42	10.42	55.96
17	1.10	.30	11.83	11.83	55.69

MODE 4

UNIT	N1 SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR N2 PER CENT
1	96.80	99.00	97.18	99.38
2	95.80	95.00	96.22	98.43
5	97.00	97.50	97.66	98.16
7	97.00	97.50	97.14	97.64
8	99.00	94.00	98.09	98.09
10	95.00	94.40	96.14	98.94
11	96.40	99.00	96.89	99.10
12	97.20	99.00	97.29	99.10
13	97.00	98.20	97.09	98.29
17	96.00	97.20	96.09	97.29

MODE 4

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST
1	8000.	1.3690	1.2590	1338.	1.650	15261.
2	7800.	1.3780	1.2270	1338.	1.650	15261.
5	7600.	1.3770	1.1480	-124R.	1,650	15174.
7	7900.	1.3720	1.2320	1320.	1.650	15230,
	8000.	1.4230	1.2390	1302.	1.650	15230,
10	7500.	1.4080	1.1530	1284.	1.650	15225.
11	8100.	1.4290	1.2410	1284.	1,650	15164.
12	7700.	1.3930	1.2200	-1374.	1.650	15164.
13	8000.	-1.4720	1.2430	1320.	1.650	15164.
17	7800.	1.4120	1.2000	1284.	1.650	15230.

#### MODE 4

UNIT	CORR FU FL	COR CR F/A	COR PF F/A	CORR TT7 CO	R THRUST
1	7947.	1.3790	1.2690	1348.	15210.
5	7740.	1.3900	1.2380	1349.	15210.
5	7546.	1.3960	1.1640	1265.	15210.
7	7979.	1.3760	1.2360	1324.	15210•
8	7987.	1.4260	1.2420	1304.	15210.
10	7482.	1.4130	1.1570	1287.	15210•
11	8117.	1.4320	1.2430	1286.	15210•
15	7716.	1.3960	1.2220	-1376.	15210.
13	8016.	-1.4750	1.2450	1322.	15210.
17	7782.	1.4150	1.2020	1286.	15210.

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

小小"小"

MOFF 4

UNIT	COZ CONC	CO CONC	HC CONC	NO CONC	NOX CONC
1	2.442	26.0	4.9	71.2	67.5
2	2.902	26.1	3.7	73.0	66.8
5	2.901	30.8	3.0	-62.4	-61.0
7	2.887	31.6	3.0	68.3	66.8
8	2,998	22.0	3.0	75.7	74.9
10	2.967	27.4	1.8	69.8	70.0
11	3.018	-15.3	2.6	74.5	74.6
12	2.940	26.6	2.4	70.4	69.9
13	-3.106	-56.4	3.3	71.4	72.0
17	2.975	27.4	1.9	76.2	74.9

MODE 4

UNIT	COS ET	CO ET	HC EI	NO FI	NOX EI LR/KLR FU	SMK NIMBER FRONT SIDE
1	3154.	1.81	.59	R-15	8.15	51.82
S	3154.	1.80	.45	8.29	8.29	51.32
5	3154.	2.13	. 15	-7.09	-7.09	58.50
7	3151.	5.50	. 16	7.79	7.79	54.21
8	3157.	1.47	.35	8.32	8.32	53,11
10	3152.	1.85	.21	7.75	7.7A	52.04
11	-3160.	-1.02	.30	8.16	8.17	56.60
12	-3159.	1.82	.29	7.90	7.90	56,09
13	3154.	-3.65	.36	7.59	7.64	55.79
17	3152.	1.45	.22	R.44	9.44	56.23

MODE 4

UNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO
1	50.6620	53.6090	74.8710	53.7190	57.6420	88.6340
2	46.2230	43.6580	71.9970	49,3250	47.2820	84.8440
5	43,9990	39.8810	72.2300	48,3590	44.5180	83.7000
7	42.9820	38.3610	70.0440	43.9500	39.3980	81.4170
8	49.5800	42.9880	71.4150	50.3950	43.7990	A3.3920
10	52.9460	51.2450	74.7460	54.1810	52.6250	86.8730
11	56.1650	53.7090	76,6970	56,9200	54.3110	87.4790
12	52.8940	53.7090	75.9170	53.5720	54.3110	87,4790
13	55.3950	45.3830	73.1380	56.1590	45.8820	84.2730
17	44.2450	35.6380	-66.9840	44.9570	36,3030	-79.9720

MODE 4

UNIT	NREC CO FI LB/KLR FU			NR CNOX EI	SMK NUMBER CORRECTED
1	1.71	•55	9.65	9.65	51.42
?	1.69	.41	9.77	9.77	51.32
5	1.94	.32	8.83	-9.83	58.50
7	2.15	.35	9.06	9.06	54.21
A .	1.45	.34	9.72	9.72	53.11
10	1.91	.20	9.01	9.04	52.04
11	-1.00	.30	9.30	9.35	56.60
12	1.40	.28	9.11	9.11	56.09
13	-3.60	.36	A.74	-A.A1	55.79
17	1.82	•55	10.07	10.07	56.23

MODE 5

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT
****	**********		PER CERT	
1	85.30	94.00	A5.63	94.36
2	85.00	93.00	A5.37	93.41
5	86.00	93.00	A6.59	93.53
7	85.00	92.80	85.12	-92.93
8	87.00	93.80	87.08	93.89
10	85.00	94.00	A5.12	94.14
11	85.50	94.00	A5.5A	94.19
12	86.00	94.00	86.08	94.09
13	86,50	94.00	86.58	94.09
17	85.00	93.10	85,08	93.19

MODE 5

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST LAF
1	5500.	1.1350	1.0750	1221.	1.390	10766.
5	5700.	1.1410	1.1100	1212.	1.390	10766.
5	5300.	1.1410	1.0110	1176.	1.390	10705.
7	5500.	1.1220	1.0690	1212.	1.390	10744.
A	SANN.	-1.2210	1.1110	1176.	1.390	10744.
10	5000.	1.1490	.9470	-1140.	1.390	10741.
11	5500.	1.1550	1.0490	1176.	1.390	10698.
12	5200.	1.1500	1.0140	1230.	1.390	10698.
13	5600.	-1.2190	1.0940	1212.	1.390	10698.
17	5400.	1.1800	1.0340	1176.	1.390	10744.

MODE 5

UNIT	CORR FU FL LRM/HR	COR CB F/A (	COR PF F/A (X100	CORR TT7 COR	THRUST LAF
1	5460.	1.1450	1.0830	1230.	10730.
2	5656.	1.1510	1.1200	1222.	10730.
5	5276.	1.1570	1.0250	1192.	10730.
7	5485.	1.1260	1.0720	1215.	10730.
8	· 5787.	-1.2240	1.1130	1178.	10730.
10	4988.	1.1510	.9450	-1143.	10730.
11	5511.	1.1570	1.0510	1178.	10730.
12	5211.	1.1530	1.0160	1535.	10730.
13	5611.	-1.2220	1.0860	1214.	10730.
17	5398.	1.1820	1.0360	1178.	10730.



#### MODE 5

UNIT	COR CONC	CO CONC	HC CONC	NO CONC	NOX CONC
1	2.392	69.5	4.6	43.1	43.1
2	2.393	74.1	3.A	44.2	42.4
. 5	2.391	87.1	4.7	38.0	40.6
7	2.34A	-93.9	5.4	43.1	44.1
A	-7.564	59.6	3.1	47.5	49.2
10	2.404	S. AR	3.5	40.9	44.5
11	2.427	61.5	3.6	42.3	45.6
12	2.415	75.4	1.3	40.9	44.3
13	-2.563	67.R	3.7	41.0	46.4
17	2.474	74.3	7.9	44.5	47,4

#### MODE 5

UNIT	COS EI	CO EI LB/KLB FU	HC EI LB/KLB FU	NO FI LB/KLB FU	NOX EI LR/KLB FU	SMK NUMRER FRONT SIDE
1	3147.	5.85	.66	5.95	5.95	47.58
5	3147.	6.20	.55	6.07	6.07	51.90
5	3145.	7.29	.60	5.22	5.58	56.8A
7	3141.	-8.00	.79	6.02	6.17	52.80
8	3147.	4.66	.41	4.09	6.32	51.69
10	3143.	7.34	•50	5.58	6.09	49.87
11	-3153.	5.09	•5?	5.74	6-19	56.24
12	-3152.	6.30	.46	5.59	6.05	55.73
13	-3154.	4.92	•50	5.28	5.97	55.09
17	3145.	6.01	.40	5.91	6.36	56.34

MODE 5

UNIT	FC0 x100	FH2 X100	FN0 X100	STD FCO	STD FHC	STO FNO
1	20.3630	16.6090	57.4160	21.3330	17.7650	67.8960
S	18.1780	12.9130	54.5210	19.1350	13.9620	64.1710
5	18,4030	13.3200	56.2310	19.8200	14.7450	45.0480
7	17.3010	12.1770	53.8740	17.6050	12.4930	67.5980
4	22.0340	15.4740	56.5690	22.3280	15.7480	66.0420
10	20.5500	16.3570	57,6700	20,9190	16.7660	47.0000
11	20.7750	16.4110	58.6020	20.9720	16.5730	66.8220
12	20.6500	16.4110	58.0060	20.8450	16.5730	66.8220
13	22.5930	16.4110	58,0060	22.8200	16.5730	66,8220
17	19.1430	12.9330	-53.1190	19.3890	13.1610	53.3450

PODE 5

UNIT	NREC CO ET		NRE CNO EI LB/KLR FU		
1	5.5A	.62	7.04	7.04	47.59
5	5.49	•51	7.14	7.14	51.90
5	6.77	•54	6.49	6.94	56.A8
7	-7.86	.77	6.99	7.17	52.R0
8	4.60	.41	7.11	7.37	51.69
10	7.21	,49	6.4R	7.07	49.87
11	5.04	.51	6.55	7.06	56.24
12	6.74	.46	6.43	6.97	55.73
13	4.87	.50	-6.08	6.88	55.09
17	5.93	.39	7.05	7.59	56.34

## JT30-38 * PAGG HOUR TEST SERIES *

MODE 6

UNIT .	NI SPEED PER CENT	NE SPEED PER CENT	CORR NI	CORR NZ
****	*******		*******	
1	67.20	86.00	67.46	86.33
S	66,10	A5.00	66.39	85.37
5	67.00	85.00	67.46	85.58
7	66.00	84.50	66.10	-84.62
8	70.00	86.50	70.07	86.58
10	67.00	86.00	67.10	86.12
11	67.20	86.00	67.26	86.08
15	68.80	A6.80	68.87	86.88
13	69.20	86.00	69.27	86.08
17	67.00	85.00	67.06	85.08

NOTE- MINUS SIGN. ENOTE OUTLYING VALUES

and the selection of th

MODE 6

UNIT	FUFL FLOW LBM/HR	CR F/A X100	PERF F/A	TT7 DEG R	EPR	THRUST LAF
1	2980.	.8840	.8450	1104.	1.170	5699.
5	2850.	.8450	.8010	1085.	1.170	5699.
5	2930.	.8720	·A160	1077.	1.170	5667.
7	2900.	.8540	.8200	1104.	1.170	5688.
A	3110.	.9330	.8730	1086.	1.170	56A8.
10	3020.	.8750	.8330	1050.	. 1.170	5686.
11	2970.	·A550	.8230	1064.	1.170	5663.
15	3060.	.8780	.8690	1122.	1.170	5663.
13	3170.	.9230	.8930	1104.	1.170	5663.
17	3080.	.8950	.8570	1068.	1.170	5688.

MODE 6

UNIT	CORR FU FL I BM/HR	COR CB F/A CO		TTT COR	THRUST LAF
1	2959.	8910	.A510	1112.	5680.
2	-2828.	.8530	.8080	1095.	5680 •
5	2917.	.8840	.8270	1091.	5680.
7	2992.	.6570	.8230	1107.	5690.
8	3103.	•9350	.8740	1088.	5680.
10	3013.	.A770	.8360	1053.	5680 •
11	2976.	.6570	.8250	1070.	5680 •
15	3064.	.8800	.9700	1124.	5690.
13	3176.	•9250	.4950	1106.	5680.
17	3073.	.8970	.8590	1070.	5680.

MODE 6

UNIT	COZ CONC	CO CONC	HC CONC	NO CONC	NOX CONC
	*******		********	*******	
1	1.876	224.2	21.4	24.7	24.3
S	1.744	218.6	22.3	74.7	-22.4
5	1.804	194.3	23.0	24.1	23.7
7	1.766	209.1	22,5	26.4	25.2
A	1.936	189.1	14.A	28.1	28.4
10	1.806	214.0	22.2	24.1	25.2
11	1.772	194.3	14.4	24.4	25.2
12	1.423	174.8	14.7	25.3	25.9
13	1.494	-416.0	19.3	20.4	25.7
17	1.855	178.2	14.5	24.0	27.0

HODE 6

UNIT	COS ET	CO EI	HC ET	NO EI	NOX EI LB/KLB FU	SMK NUMBER FRONT STDE
				******		
1	3109.	24.29	3.98	4.40	4.40	17.34
5	3107.	24.78	4.35	4.61	4.61	37.93
5	3112.	21.56	4,33	4.34	4.34	47.40
7	3107.	23,44	4.33	4.86	4.86	40.79
8	3114.	19.40	5.61	4.73	4.79	44.62
10	310A.	23.44	4.18	4.33	4.53	. 41.48
11	3119.	21.77	3.63	4,49	4.64	48.83
12	3125.	19.07	2.76	4,53	4.65	49.22
13	-3084.	-43,14	3,44	3,48	4.38	47.78
17	3119.	19.07	2.66	4.21	4.74	48.57

MODE 6

UNIT	FCO X100	FHC X100	FNO X100	STD FCO X100	STD FHC X100 -	STD FNO
ı	6.8680	2.9850	39.2300	7.1210	7.0650	45.1450
	6.0700	2.3800	36.7860	6.3110	2.5430	43.2300
5	6.2620	2.4210	37.A170	6.6210	2.6490	43,6420
7	5.8460	2.1440	35.9610	-5.9250	5.1920	-41.7630
A	7.5160	3.1640	39.1120	7.5920	3.2150	45.6470
10	6.8090	2.8A00	38.5180	6.9020	2.9440	44.7760
11	6.7060	2.8970	39.1650	6.7480	5.9210	44.6430
15	7.3430	3.3760	40.1640	7.3910	3.4040	46.2530
13	7.1510	2.8970	38.7670	7.1990	2.9210	44.6430
17	6.3460	2.3650	-35.7760	6.4080	2.4020	47.6620

MODE 6

UNIT	NREC CO EI LB/KLB FU	NREC HC EI LB/KLB FU	NRE CNO EI LB/KLB FU	NR CNOX EI LB/KLB FU	SMK NUMBER CORRECTED
	*********				
1	23.43	3,74	5.20	5.20	37.34
2	23.84	4.07	5.42	5.42	37.93
5	20.39	3,96	5.38	5.3A	47.40
7	23.13	4,23	5.65	5.65	40.79
8	19.21	2.57	5.52	5.59	44.62
10	23.13	4.09	5.03	5.26	41.48
11	21.63	3,60	5.11	5.29	48.83
12	18.95	2,74	5.21	5.35	49.22
13	-42.85	3,41	-4.01	-5.04	47.78
17	18.88	2.52	5.03	5.66	48.57

MODE 7

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR N2 PER CENT
1	35.00	63,00	35.14	63.24
2	35,80	64.00	35.96	64.28
5	36,00	64.00	36.25	64.44
7	37.00	64,00	37.05	64.09
A	36.00	64,00	36.03	64.06
10	36.00	64.00	36.05	64.09
11	36.00	64.00	36.03	64.06
12	36.00	64.00	36.03	64.06
13	36.50	64.00	36.54	64.06
17	36.00	63.00	36.03	63.06

MODE 7

UNIT	FUEL FLOW	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THRUST LRF
1	1260.	8050	.7760	1032.	1.035	1390.
5	1280.	.7990	.7690	1032.	1.045	1479.
5	1320.	.8140	.7890	1032.	1.050	1484.
. 7	1350.	.7910	.A100	1032.	1,030	1460.
8	1330.	.8270	.7910	1014.	1.050	1457.
10	1340.	.7990	.7900	996.	1.030	1459.
11	1260.	.7690	.7400	996.	1.040	1451.
12	1300.	.7910	.7830	1050.	1.040	1451.
13	1330.	.8290	.8010	1050.	1.040	1451.
17.	-1400.	.7930	8460	996.	1.040	1372.

MODE 7

UNIT	CORR FU FL	COR CB F/A C	OR PF F/A (	CORR TT7 COR	THRUST
	********				
1	1251.	.9120	.7920	1040.	1385.
2	1270.	.8060	.7760	1041.	1474.
5	1314.	.8250	.8000	1046.	1497.
7	1346.	.7930	.8120	1035.	1458.
A	1327.	.8280	.7930	1016.	1455•
10	1337.	.8020	.7920	999.	1454.
11	1267.	.7700	.7410	998.	1455•
12	1303.	.7930	.7850	1052.	1455.
13	1333.	.9310	.4030	1052.	1455•
17	-1397.	.7950	8470	998.	1370.

MODE 7

UNIT	CO2 CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.418	904.7	586.5	11.2	10.1
2	1.409	881.2	576.5	11.2	9,4
5	1.432	970.8	609.0	11.1	10.2
7	1.394	961.4	572.A	11.6	11.1
8	1.496	881.9	480.7	12.0	11.5
10	1.422	851.4	546.0	10.7	10.7
11	1.363	823.3	546.6	10.1	10.3
12	1.407	829.4	556.7	10.6	10.6
13	1.476	-94:.9	556.3	8.3	10,5
17	1.392	842.7	602.6	11.6	11.5

MODE 7

UNIT	COP ET	CO ET	HC ET	NO FI LB/KLR FU	NOX EI LR/KLB FU	SMY NUMBER FRONT SIDE
1	2659.	107.99	120.27	2.20	2.20	19.82
S	2664.	106.08	117.23	2.21	2.21	21.88
5	2658.	102.85	123.58	2.15	2.15	28,94
7	2663.	104.73	119.66	2.31	2.31	72.32
8	2732.	102.46	95.94	2.29	2.29	21.00
10	2686.	102.36	112.79	2.11	-11	20.39
11	2479.	102.97	117.45	2.07.	2.13	26.47
12	2686.	100.76	116.18	2.12	2.12	26.27
13	2687.	109.14	110.74	1.58	2.00	26.87
17	2651.	102.13	125.46	2.30	2.30	27.97

MODF 7

UNIT	FC0 X100	FHC X100	FNO X100	STO FCO X100	STO FHC X100	STO FNO X100
1	2220	.0870	16.9630	.2240	.0910	19.9760
2	.2300	.0970	17.5170	.2320	.1020	20.5290
5	.2310	.0970	17.9400	.2330	.1040	20,6130
7	.2300	.0980	17.6070	.2310	.1000	20.4790
8	.2300	.0990	17.5020	.2300	.1000	20.4120
10	.2300	.0980	17.6100	.2310	.1000	20.4290
11	.2310	.0990	17.9190	.2300	.1000	20.4120
12	.2310	.0990	17.7370	.2300	.1000	20.4120
13	.2310	.0990	17.7370	.2300	.1000	20.4120
17	.2230	.0880	-16.6800	.2230	.0890	19.8780

MODE 7

UNIT				NR CNOX ET	
1	107.02	114.71	2,59	2.54	19.42
2	105.04	113.08	2.40	2.60	21.88
5	101.86	115.35	2.65	2.65	28.94
7	104.37	117.52	2.6A	2.6R	22.32
8	102.19	94.72	2.67	7.67	21.00
10	102.04	110.84	7.45	2.45	20.39
11	103.03	116.87	2.36	7.42	26.47
12	100.42	115.60	2.44	2.44	26.27
-13	-109.2;	110.19	1.82	2.30	26.87
17	101.47	123.AR	2.74	7.74	27.97

MODE 8

UNIT	NI SPEED PER CENT	NZ SPEED PER CENT	CORR NI PER CENT	CORR NZ PER CENT
	33.00	60.00	33.13	60.23
5	33.00	61.00	33.14	61.27
5	32.50	59.00	32.72	59.40
7	35.00	61.50	35.05	61.59
8	33.00	60.40	33.03	60.46
10	33.00	61.00	33.05	61.09
11	32.00	59.50	32.03	59.56
12	34.20	61.00	34.23	61.06
13	34.50	61.50	34.53	61.56
17	33.00	60.00	33.03	60.06

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

÷.

MODE 8

UNIT	FUEL FLOW LBM/HR	CR F/A X100	PERF F/4 *100	TT7 DEG R	EPR	THRUST LRF
1	1210.	·A350	.8070	1032.	1.030	1160.
2	1220.	.8280	.7910	1032.	1.040	1233.
5	1550.	.8560	.4360	1032.	1.030	1096.
7	1310.	.8100	.9360	1012.	1.030	1253.
A	1790.	.A540	.A340	996.	1.050	1174.
10	1540.	.8160	.7870	-940.	1,030	1217.
11	1180.	.8030	.7740	974.	1.030	1106.
12	1270.	.8180	.4140	1032.	1,040	1210.
13	1290.	.8440	.4270	1050.	1.040	1245.
17	-1360.	.8480	9900	996.	1.030	1146.

MODE 8

UNIT	CORR FU FL LRM/HR	COR CB F/A CO		R TT7 COR	THRUST
1	1201.	.8410	.8130	1040.	1156.
2	1211.	.8350	.7980	1041.	1229.
. 5	1215.	.8670	.8470	1046.	1098.
7	1306.	.9120	.A390	1035.	1251.
8	1287.	.8550	.8360	998.	1172.
10	1257.	.8190	.7890	-962.	1216.
11	1182.	.8050	.7760	980.	1109.
12	1273.	.8190	.8200	1034.	1214.
13	1293.	.8460	.8290	1052.	1249.
17	-1357.	.8500	4910	998.	1144.

MODE 8

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
****	*******	*******		*******	
1	1.444	968.6	47A.2	10.9	9,1
5	1.419	959.6	716.2	10.4	8.4
5	1.452	991.4	788.6	10.1	9,4
7	1.404	923.3	652.A	10.5	10.2
A	1.503	977.5	613.1	11.3	10.5
10	1.418	915.0	652.9	9.1	9.6
11	1.374	733.5	712.1	8.9	9.7
12	1.476	895.4	653.4	9.9	10.4
13	1.472	997.4	651.4	7.2	10.0
17	1.453	939.9	749.4	10.5	10.6

MODE 8

UNIT	CO2 EI	CO EI	HC ET	NO EI LA/KLA FU	NOX ET	SMK NIMBER FRONT STOE
	*********					*******
1	2615.	111.59	134.23	2.06	2.06	19.01
2	2591.	111.51	142.97	1.99	1.99	22.79
5	2565.	111.45	152.29	1.87	1.87	28.26
7	2618.	109.61	133.15	2.04	2.04	23.28
8	2658.	110.04	118,58	2.09	2.09	20.39
10	2624.	107.76	132.09	1.76	1.87	21.53
11	2585.	111.80	146.51	1.75	1.90	76.62
12	2635.	105.31	132.02	1.91	2.01	25.58
13	2635.	113.61	127.46	1.36	1.86	26.01
17	258A.	166.57	145.98	1.95	1.97	27.45

MODE 8

UNIT	FCO	FHC	FNO	STO FCO	STO FHC	STO FNO
	X100	X100	X100	X100	X100 ·	X100
					********	
1	.2040	.0560	15.9330	.2090	.0690	18,7590
2	.2110	. ,0710	16.3030	.2130	.0750	19.1010
5	.2030	.0600	16.1000	.2050	,0650	19.4960
7	.2130	.0750	16.5560	.2140	.0770	19.2080
8	.2090	.0690	16.1490	.2090	.0700	18.8330
	•6040	.01,70	100140		.0.00	111619 130
10	.2110	.0720	16.4160	.2120	.0740	19.0410
11	.2050	.0650	16.2740	.2050	.0650	18.5770
12	.2120	.0730	16.5380	.5150	.0740	19.0720
	2012		14 4000	-144	0740	10 1000
13	.2140	.0760	16.6830	.2140	.0760	19.1980
17	.2070	.0670	-15.6930	.2070	.0580	18.7010
	*2010	.00,70	-1300910	• 20111	• 0.775	1.401.010

HODE B

UNIT	NREC CO EI L8/KL8 FU	NREC HC EI LB/KLB FU	NRE CNO EI LB/KLB FU	NR CNOX ET	SMK NUMBER CORRECTED
1	110.60	128.17	2.42	2.42	19.01
2	110.42	135.77	2.33	2.33	22.79
5	110.40	142.61	2.30	5.30	28.26
7	109.24	130.82	2,37	2.37	23.28
8	109.76	117.11	2.44	2.44	20.39
10	107.42	129.87	2.04	2.16	21.53
11	111.87	145.84	2.00	2.17	26.62
12	105.38	131.40	5.50	2.31	25.58
13	113,68	126,86	1.56	2.14	26.01
17	106.29	144.17	2.32	2.35	27.45

UNIT	TSO	TSB	AMR TEMP	AMB PRESS	CIMUH PMA
	HR	HR	DEG R	IN HG	LB H20/4IR
		•••••			
1	23470.	3022.	521.7	29.86	.009980
2	24095.	3021.	521.7	29.86	.009980
7	23380.	3029.	517.7	30.00	.009060
10	25371.	3024.	515.7	30.00	.0083R0
12	20704.	3031.	514.2	30.00	.008170
13	23051.	3031.	513.7	30.00	.008290

## JT30-38 . 3000 HOUR TEST SERIES .

MODE 1

UNIT	N1 SPEED	NZ SPEED	CORR N1	CORR N2
	PER CENT	PER CENT	PER CENT	PER CENT
1	. 33.00	60.00	32.90	59.83
5	33.50	61.00	33.40	58.09
7	35.00	62.00	35.03	62.06
10	35.00	60.00	35.10	60.17
12	35.00	62.00	35.15	62.27
13	35.00	65.00	35.17	-62.30

MODE 1

UNIT	FUEL FLOW	CR F/A	PERF F/A	TT7 DEG R	EPR	THRUST
						*
1	1240.	.9050	.8400	-1068.	1.030	1130.
5	1250.	.8620	.8160	1050.	1.040	1200.
7	1330.	.8580	.8350	1032.	1.040	1282.
10	1320.	.8650	.8600	996.	1.040	1149.
12	1320.	.8360	.A250	1023.	1.050	1300.
13	1310.	.8510	.8190	1023.	1.050	-1302.

MODE 1

UNIT	CORR FU FL LBM/HR	COR CR F/A	COR PF F/A	CORR TT7 COR	THRUST LBF
		**********			
1	1241.	.9000	.8350	1062.	1128.
2	1251.	.8570	.A120	1044.	1198•
7	1332.	.8590	.8360	1034.	1285.
10	1320.	.8700	.8650	1001.	1152•
12	1318.	.8440	.8320	1032.	1303.
13	1307.	.8590	.8270	1033.	-1306.

### JY30-38 . 3000 HOUR TEST SERIES .

MODE 1

TINU	COP CONC	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.595	1011.5	650.0	6.1	8,5
2	1.511	973.7	639.1	6.1	9.2
. 7	1.507	937.8	647.0	6.4	9,1
10	1.547	890.9	580.R	6.0	9.9
12	1.477	871.7	608.4	4.5	9,5
13	1.493	929.2	635.9	6.9	-6.9

MODE 1

UNIT	COS EI	CO EI	HC ET	NO ET	NOX E!	SMK NIMBER
	LB/KLB FU	LB/KLB FU	LR/KLB FU	LB/KLB FU	LR/KLR FU	FRONT SIDE
1	2640.	107.35	114.51	1.06	1.48	17.27
2	2647.	108,59	122.45	1.12	1.69	18.16
7	2654.	105.09	124.54	1.17	1.67	18.50
10	2741.	-99.01	110.89	1.10	1.80	15.67
12	2667.	-100.16	120.09	.86	1.80	20.21
1.3	2655.	104.98	123.40	1.29	-1.29	70.78

MODE 1

UNIT	FC7 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO
1	.2070	.0690	15.4900	.2060	.0670	18.6750
2	.2110	.0740	15.7540	.2110	.0720	18.9540
7	.2160	.0790	16.2950	.2160	.0790	19.3650
10	.2070	.0670	15.9130	.2090	.0690	18.7390
12	.2160	.0780	16.5400	.2170	.0810	19.4600
13	.2140	.0780	14.5020	-,2180	.0810	-19.4760

MODE 1

UNIT		NREC HC EI LB/KLR FU			
	*******			*******	*******
1	107.70	121.69	1.27	1.78	17.27
2	108.95	125.76	1.35	2.04	18.16
7	105.13	123.87	1.39	1.99	18.50
10	-98.73	108.12	1.29	2.12	16.47
12	-99.63	115.25	1.01	5.15	20.21
13	104.34	117.81	1.52	-1.52	20.78

400E S

UNIT	NI SPFFD	NS SPEED	CORR NI	CORR NZ
	PER CENT	PER CENT	PER CENT	PER CENT
1	36.00	64.00	35.90	63.82
5	36,30	64.00	36.20	63.RS
7	37.00	64.00	37.04	64.06
10	-78.00	64.00	38.11	64.19
12	36.20	64.00	36.36	64.28
13	37.00	64.00	37.1A	- 64-31

. MODE 2

UNIT	FUEL FLOW	CB F/A	PERF F/A	TT7 DEG R	EPR .	THRUST
	*******	••••••		*******		*******
1	1340.	8770	.8180	1068.	1.030	1437。
2	1335.	. 8400	.8080	1050.	1,040	1437.
7	1450.	.8370		1064.	1.040	1451.
10	1400.	.8500	.8220	996.	1.040	1462.
12	1350.	.8210	.8030	1023.	1.050	1470.
13	1400.	.8350	.8350	102A.	1.040	1472.

# JT3D-3B + 3000 HOUR TEST SERIES +

MODE S

UNIT	CORR FU FL	COR CB F/A CO	R PF F/A C	DEG R	THRUST LBF
				*******	
1	1341.	.8720	.9130	1062.	1434.
2	1334.	.8350	.8040	1044.	1434.
7	1452.	.A380	.8830	1070.	1455.
10	1400.	.8550	.8770	1001.	1466.
12	1344.	.8280	.8100	1032.	1474.
13	1397.	.8430	.8430	103A.	1476.

MODE 2

UNIT	COZ CONC	CO CONC	HC CONC	NO CONC	NOX CONC
	•••••				
1	1.582	922.8	526.8	6.8	9,9
2	1.514	886.3	506.8	6.4	10.5
7	1.514	849.5	510.3	6.5	10.2
10	1.551	827.2	489.6	6.1	10.2
12	1.472	824.3	538.0	4.5	10.3
13	1.500	862.6	52A.A	6.9	-7.9

MODE S

UNIT	COS ET	CO EI	HC ET	NO EI	NOX ET	SHE NUMBER
	LB/KLB FU	LR/KLB FU	LR/KLR FU	LA/KLA FU	LR/KLB FU	FRONT SIDE
		********				********
1	2723.	101.11	99.16	1.23	1.78	16.88
2	2771.	101.36	99.57	1.21	1.97	17.75
7	2731.	97.53	100.65	1.22	1.92	18.37
10	2753.	93.47	95.04	1.13	1.89	17.69
12	2705.	96.46	108.14	.86	1.98	19.21
13	2711.	99.21	104.48	1.31	-1.48	20.65

MODE 2

UNIT	FCO X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO
1	.2290	.1000	-16.8600	.8290	.0970	20.2810
2	.2290	.1000	-14.8600	.2290	.0970	20.2810
7	.2310	.0990	17.1750	.2300	.1000	20.4120
10	.2310	.0990	17.3850	.2310	.1010	20.4790
12	.2310	.0980	17.4450	.2320	.1020	20.5290
13	.2310	.0980	17.4050	.2320	.1030	20.5460

MODE 2

UNIT	NREC CO FI	NREC HC EI	NRE CNO EI	NR CNOX EI	SMK NUMBER
	LB/KLB FU	LB/KLB FU	LR/KLR FU	LB/KLB FU	CORRECTED
••••					
1	101.45	101.92	1.47	2.15	16.88
S	101.70	102.35	1.46	2.37	17.75
7	97.57	100.09	1.45	2.28	18.37
10	93.20	92.56	1.34	2.23	17.69
12	95.94	103.68	1.01	2.34	19.21
13	98.60	99.65	1.55	-1.75	20.65

NOTE- MINUS SIGNS DENOTE OUTLYING VALUES

1. . .

MODE 3

UNIT	NI SPEED	NZ SPEED	CORP N1	CORR N2
	PER CENT	PER CENT	PER CENT	PER CENT
	********		*****	
1	103.00	101.00	102.70	100.71
5	103.00	101.00	102.70	100.71
7	103.00	100.00	103.10	100.10
10	102.00	101.00	102.30	101.29
12	104.00	100.00	104.45	100.44
13	103.00	101.00	103.50	101.49

MODE 3

UNIT	FUEL FLOW	CB F/A	PERF F/A	TT7 DEG R	EPR	THRUST
			***********			*********
1	9600.	1.5220	1.3820	-1464.	1.840	17944.
S	9700.	1.5740	1.3790	1428.	1.840	17944.
7	9800.	1.5230	1.3860	1428.	1.840	17860.
10	9200.	1.5270	1.2760	1374.	1.840	17860.
12	9700.	1.5310	1.3630	1410.	1.840	17860.
13	9700.	1.5310	1.3550	1392.	1.840	17860.

MODE 3

UNIT	CORR FU FL LBM/HR	COR C9 F/A X100	COR PF F/A X100	CORR TT7 DEG R	COR THRUST
1	9608.	1.5140	1.374	0 -145	5. 17908.
5	9709.	1.5650	1.371	0 141	9. 17908.
7	9817.	1.5260	1.389	0 143	17908.
30	9198.	1.5360	1.284	0 138	2. 1790A.
12	9684.	1.5440	1.375	0 142	2. 17908.
13	9679.	1.5460	1.368	0 140	5. 17908.

MODE 3

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
1	3.208	20.5	5.5	98.8	93.9
5	3.319	19.3	5.0	97.7	95.5
. 7	3.216	20.2	4.9	91.6	90.9
10	3.225	17.3	1.7	91.9	93.7
12	3.224	22.4	-12.7	89.5	90.4
13	3.228	14.6	4.4	94.2	90.1

MODE 3

UNIT	COS EL	CO EI	HC ET	NO EI	NOX EI	SMK NUMBER
	LB/KLB FU	FRAKEH EO	LB/KL5 FU	LH/KLR FU	LB/KLB FU	PRONT SIDE
1	3150.	1.28	.59	10.14	10.14	45.98
2	3150.	1.16	.52	9,69	99	44.92
7	3157.	1.26	•53	9.40	9.40	47.11
10	3159.	1.08	.19	9.41	9.59	46.54
12	3148.	1.39	-1.35	9.14	9.23	47.63
13.	3151.	1.16	.47	9.61	9.61	49.29

MODE 3

UNTT	FCO	FHC	FNO	STD FCO	STD FHC	STD FNO
	X100	X100	X100	X100	X100	X100
	•••••		••••••	•••••		
1	82.1020	79.2570	78.5370	78.6150	75.5970	94.0840
5	90.4130	79.2570	74.5370	86.8040	75.5970	94.0440
7	74.1240	65.9260	-76.9170	75.2530	66.7770	91.5760
10	83.3540	81.2200	81.6350	A7.3850	85.0920	96.5410
15	75.4060	66.6000	78,5080	80.9010	71.5190	92,9440
13	84.1810	R1.6450	P1.9400	91.1510	88.5410	97.4070

MODE 3

UNIT		NREC HC EI	NRE CNO EI	NR CNOX EI	
			********		
1	1.34	.62	-12.14	12.14	45.98
2	1.22	.55	11.61	11.61	44.92
7	1.24	•52	11.18	11.18	47-11
10	1.03	.18	12.03	12.26	46.54
12	1.30	-1.26	10.82	10.92	47.63
13	1.07	.43	11.43	11.43	49.29

MODE 4

UNIT	NI SPEED	NS SPEED	CORR NI	CORR NS
	PER CENT	PER CENT	PER CENT	PER CENT
1	97.00	98.00	96.72	97.72
S	95.00	98.00	95.72	97.72
7	97.00	97.50	97.09	97.59
10	96.00	99.00	96.28	99.29
12	97.00	94.00	97.42	98.43
13	97.50	98.00	97.97	98.48

MODE 4

UNIT	FUEL FLOW	CB F/A	PERF F/A	117	EPR	THRUST
	LBM/HR	X100	X100	DEG R		LRF
****		********	*******			
1	7900.	1.3770	1.2580	-1374.	1.650	15241.
S	7900.	1.3900	1.2500	-1356.	1.650	15241.
. 7	7800.	1.3540	1.2120	1320.	1.650	15169.
10	-7400.	1.3770	-1.1340	1284.	1.650	15169.
12	7700.	1.3490	1.2240	-1343.	1.650	15169.
13	-8300.	1.4050	1.2760	1293.	1.650	15169.

#### JT3D-3R + 3000 HOUR TEST SERIES +

MODE 4

UNIT	CORP FU FL LRM/HR	COR CB F/A C	COR PF F/A	CORR TT7 COR	LAF
1	7907.	1.3690	1,2510	-1366.	15210.
2	7907.	1.3820	1.2430	1349.	15210•
7	7813.	1.3570	1.2140	1322.	15210.
10	-739A.	1.3850	-1.1400	1791.	15210.
12	76A7.	1.3610	1.2350	-1395.	15210.
13	-8297.	1.4190	1.2890	1305.	15210.

MODE 4

UNIT	COS CONC	CO CONC	HC CONC	NO CONC	NOX CONC
****	*********	*******			
1	2.897	27.7	3.9	76.6	75,1
2	2.924	25.7	3.4	75.6	74.4
7	2.853	30.5	3.5	67.3	69.4
10	2.903	25.1	1.8	68.5	72.9
12	2.837	29.5	6.4	49.2	69.6
13	2,958	23,8	3.6	74.4	72.8

MODE 4

UNIT	COS EI	CO EI	HC EI	NO EI	NOX ET	SHK NUMBER
	LB/KLR FII	LR/KLR FU	LB/KLB FU	LH/KLR FU	LR/KLB FU	FRONT STOE
1	3149.	1.92	.46	R.70	8.70	48.59
5	3150.	1.76	.40	A.51	8.51	48.10
7	3156.	2.15	.42	7.7A	8.03	49.47
10	3157.	1.73	.21	7.79	8.28	46.34
12	314A.	2,09	77	8.03	8.08	50.33
13	3150.	1.61	.42	85.8	8.28	50.59

MODE 4

UNIT	FCO X100	FHC .	FN0 X100	STO FCO	STO FHC	STO FNO
				********		*******
1	45.5500	41.9550	-68.2070	43.8870	40.1110	81.7490
2	46.4960	41.9550	-69.2070	44.7840	40.1110	81.7490
7	41.8750	38.5240	-6A.2520	42.3960	38.9640	81.2130
10	51.5320	54.0210	74.6300	53.6630	56.50A0	88.2470
12	44.3860	44.1340	71.7010	47.0920	47.2820	84.8440
13	48.6210	44.2100	71.5880	52.0810	47.7560	85.0310

MODE 4

UNIT			NRE CNO ET	NR CNOX ET	SMK NUMBER CORRECTED
	*********				
1	1.99	.48	10.43	10.43	48.59
2	1.83	.42	10.20	10.20	48.10
7	2.12	.42	9.26	9.56	49.47
10	1.67	.20	9.21	9.80	46.34
12	1.97	.72	9.50	9.56	50.33
13	1.51	.39	9.83	9.83	50.59

MODE 5

UNIT	NI SPEED	NZ SPEED	CORR NI	CORR NZ
			COUN IST	COME IN
	PER CENT	PER CENT	PER CENT	PER CENT
	*******		*******	********
1	84.50	94.00	-84.26	93.73
2	-84.00	93.00	-A3.76	-92.73
7	85.00	93.00	85.08	93.09
10	-84.00	93.50	=84.24	93.77
12	86.00	94.00	86.38	94.41
13	87.00	94.00	87.42	94.46

MODE 5

UNIT	FUEL FLOW	CR F/4 X100	PERF F/4 X100	TT7 DEG R	EPR	THRUST LRF
	*********					
1	5400.	1.1310	1.0950	-1248.	-1.370	-10311.
5	4945.	1.1270	.9880	1212.	-1.370	-10311.
7	5500.	1.1310	1.0650	1212.	1.390	10701.
10	5000.	1.1280	.9390	-1140.	1.390	10701.
12	5300.	1.1250	1.0330	1230.	1.390	10701.
13	5710.	1.1890	1.0870	1176.	1.390	10701.

MODE 5

UNIT	CORR FU FL	COR CB F/A	COR PF F/A	CORR TT7 CO	R THRUST
	********		•••••••		
1	5405.	1.1240	1.0880	1241.	-10290•
2	4949.	1.1200	.9820	1205.	-10290•
7	5509.	1.1330	1.0670	1214.	10730.
10	4999.	1.1340	.9440	-1146.	10730.
12	5291.	1.1350	1.0420	1240.	10730.
13	568A.	1.2000	1.0980	1187.	10730.

MODE 5

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
					******
1	2.368	72.8	4.3	43.7	46.9
5	2.358	7A.5	4.5	41.3	44.9
. 7	2.371	88.7	4.6	38.9	44.6
10	2.365	83.0	3.9	36.4	44.6
12	2.356	67.7	5.2	39.6	45.9
13	2.490	59.9	4.4	46.3	48.3

MODE 5

UNIT	COS EI	CO EI	HC ET	NG EI	NOX ET	SMK NIMAER
	LB/KLB FU	LA/KLB FU	LB/KLB FU	LB/KLB FU	LR/KLB FU	FRONT SIDE
	*********			*******	•••••	*******
1	3142.	6.15	.62	6.07	6.51	46.81
S	3141.	6.66	.45	5.75	6.25	48.29
7	3147.	7.49	.67	5.40	6.19	48,95
10	3148.	7.04	•56	5.06	6.21	48,32
12	3143.	5.74	.75	5.52	6.40	49.66
13	3144.	4.81	.61	6.11	6.37	51.44

MONE 5

UNIT	FCO	FHC	FNO	STD FCO	STD FHC	STO FNO
Odfi	X100	x100	X100	X100	X1.00	X100
••••	*100	×1100	*104	~1110	*1.00	*********
1	19.8260	15.7560	54,5440	19.2510	15.1110	65,4170
5	17.6470	12.4710	-51.6420	-17.1440	11.9690	-61.9930
7	17.8760	12.7610	-57.0120	18.0440	12.8910	63.0640
10	18.9970	14.6670	55.5110	19.5890	15.2760	65.5A00
12	50.5500	16.8550	57.5440	21.1960	17.9710	64.0770
13	21.9340	16.9200	57.5290	23.1730	18.1810	68,2580

MODE 5

UNIT				NR CNOX ET	
	LB/KLB FU	FRIKER LA	LA/KLA FU	LA/KLB FU	CORRECTED
	*******	*******		******	
1	6.34	.65	7.28	7.81	46.81
5	6.45	.68	6.89	7.50	48.29
7	-7.42	.66	6.42	7.37	48.95
10	6.82	.54	-5.98	7.34	48.32
12	5.48	.71	6.53	7.57	49.66
13	4.55	.57	7.25	7.56	51.44

MODE 6

UNIT	NI SPEED	NZ SPEED	CORR NI	CO-9 N2
	PER CENT	PER CENT	PER CENT	PER CENT
	********		******	
1	6A.00	A7.00	67.80	86.75
5	68.00	86.00	67.80	85.75
7	-65.00	-84.00	-65.06	-84-08
10	68.00	86.50	68.20	86.75
12	69.00	86.00	69.30	86.3A
13	70.00	86.00	70.34	86.42

MODE 6

TINU	FUEL FLOW	CR F/A	PERF F/A	777	EPR	THRUST
	LBM/HR	X100	X100	DEG R		LAF
****	********	********	*********	******		
1	3030.	9030	.8710	-1140.	1,170	5691.
5	3000.	. 8990	.8490	1104.	1.170	5691.
7	-2800.	.8440	7890	1104.	1.170	5665.
10	3120.	.8950	.8360	-996.	1,170	5665.
15	3090.	.8630	.8780	1122.	1.170	5665.
13	3220.	.9050	.8930	1068.	1.170	5665.

HODE 6

UNIT	CORR FU FL	COR CR F/A C	COR PF F/A	CORR TT7 COR	THRUST
	•••••				
1	3037.	.8970	.8660	1133.	5680.
5	3003.	.8940	.9440	1097.	5680.
7	-2805.	.8460	7900	1106.	5680.
10	3119.	.9000	.8410	-1001.	5680.
12	3085.	.8710	.4450	1132.	56A0.
13	3213.	.9140	.9010	1079.	5640.

MODE 6

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
				••••••	*******
1	1.866	215.2	21.2	26.2	28.1
5	1.856	555.0	18.7	24.A	27.0
7	1.743	216.0	25.1	22.6	24,6
10	1.852	201.1	23.4	21.3	26,3
15	1.786	172.6	19.8	22.7	26.0
13	1.872	177.3	25.8	22.9	25.8.

MODE 6

						C
UNIT	CO2 FT	CO EI	HC EI	NO FI	NOX ET	SMK NUMBER
	LB/KLA FU	LA/KLB FU	LA/KLB FU	LR/KLB FU	LR/KLB FU	FRONT SIDE
	••••••			•••••		
1	3107.	22.84	3.87	4.57	4.89	38.81
5	3107.	23,65	3.43	4.35	4.73	39.38
. 7	3109.	24.52	4.89	4.21	4.59	37.52
10	3115.	21.52	4.30	3.74	4.62	19.22
12	3113.	19.15	3.78	4.13	4.74	44.41
13	3111.	18.75	4.70	3.98	4.49	43.16

MODE 6

UNIT	FC0 X100	FHC X100	FNO X100	STD FCO X100	STD FHC X100	STD FNO X100
1	7.6030	3.4450	38.3050	7.4290	3.3180	45.9820
2	6.9380	2.8420	36.6370	6.7820	2.7400	43.9850
7	-5.5500	-1.9500	-34.2360	-5.5850	-1.9660	-40.7130
10	7.2760	3.2010	38.9600	7.4500	43.3190	45.9850
12	6.7700	2.9200	38.3210	7.0130	3.0900	45.2790
13	7.0440	2.9240	38.2590	7,3350	3.1150	45,3130

MODE 6

SMK NUMBER CORRECTED	Control of the Contro	NRE CNO EI		NREC CO EI	UNIT
				**********	
38.81	5.AA	5.4R	4.02	23.37	1
39.38	5.68	5.22	3.56	24.20	2
37.52	5.46	5.00	-4.84	24.37	7
39.22	5.45	4.42	4.15	21.02	10
44.41	5.59	4.98	3,57	18.48	12
43.16	5.31	4.71	4.41	18.01	13

MODE 7

1 SPEED	N2 SPEED	CORR NI	CORR NZ
		00114 .48	CURR ME
EK CENI	PER CENT	PER CENT	PER CENT
******		********	******
35.50	64.00	35.40	63.82
35.00	64.00	34.90	63.82
-38.00	64.00	-38.04	64.06
-38.00	64.00	-38.11	64.19
36.00	63.00	36.16	63.28
36.00	63.00	36.17	63.31
	35.00 -38.00 -38.00 36.04	35.50 64.00 35.00 64.00 -38.00 64.00 -38.00 64.00 36.00 63.00	35.50 64.00 35.40 35.00 64.00 34.90 -38.00 64.00 -38.04 -38.00 64.00 -38.11 36.00 63.00 36.16

MODE 7

UNIT	FUEL FLOW	CB F/A	PERF F/A	TTT DEG R	EPR	THRUST
						*******
1	1290.	.8060	.7870	-1068.	1.040	1437.
5	1260.	.8160	.7630	1050.	1.040	1437.
7	1360.	.7880	.8260	-1068.	1.040	1451.
10	1330.	.7960	.7810	996.	1.040	1462.
12	1300.	.7840	.8020	1050.	-1.060	1385.
13	1330.	.7990	.A110	1023.	1.040	1387.

MODE 7

TINU	CORR FU FL LBM/HR	COR CR F/A C	OR PF F/A C	ORR TT7 COR DEG R	THRUST
1	1291.	.8020	.7830	1062.	1434.
2	1261.	.8120	.7580	1044.	1434.
7	1362.	.7900	.8280	1070.	1455.
10	1330.	.8000	.7860	1001.	1466.
12	1298.	.7910	.8090	1059.	1384.
13	1327.	.8060	.8180	1033.	1391.

MODE 7

UNIT	CO2 CONC	CO CONC	HC CONC	NO CONC	NOX CONC
1	1.440	983.8	520.2	9.4	11.0
2	1.446	898.5	562.6	8.4	10.6
. 7	1.408	835.9	524.7	10.4	10.9
10	1.446	782.1	471.8	9.1	11.0
12	1.387	823.6	561.0	7.5	10.6
13	1.420	934.7	545.7	9.3	9.7

MODE 7

UNIT	CO2 EI	CO EI	HC EI	NO EI LB/KLB FU	NAX EI	SMK NUMBER FRONT SIDE
1	2696.	105,32	106.50	1.83	2.15	17.78
2	2675.	105.77	113.79	1.62	2.04	19.66
7	2699.	101.96	109.94	2.07	2.19	19.45
10	2743.	-94.47	97.90	1.80	2.18	17.58
12	2671.	100.93	118.12	1.51	2.14	19.68
13	2686.	100.47	112.83	1.84	1.91	21.72

MODE 7

UNIT	FC0 X100	FHC X100	FN0 X100	STO FCO X100	STO FHC K100	STO FNO
1	2290	.1000	16.8600	.2290	.0970	20.2A10
2	.2296	.1000	16.8600	.2290	.0970	20.2810
7	.2310	.0990	17.1750	.2300	.1000	20.4120
10	.2310	.0990	17.3850	.2310	.1010	20.4790
12	.2230	.0870	16.9910	.2250	.0910	19.9920
13	.2240	.0870	16.9510	.2250	.0920	20.0090

MODE 7

UNIT	MR C CO EI	NREC HC EI	NRE CNO ET	NR CNOX ET	SHK NUMBER
	LU/KLB FU	LB/KLB FU	LA/KLB FU	LB/KLB FU	CORRECTED
	*********	********	********	*********	
1	105.67	109.47	5.20	2.59	17.78
5	106.13	116.96	1.94	2.46	19.66
7	102.00	109.33	2.47	2.60	19.45
10	-94.20	95.34	2.12	2.57	17.58
12	100.39	113.30	1.78	2.52	19.68
13	99.86	107.67	2.18	2.26	21.72

MODE 8

UNIT	NI SPEED PER CENT	N2 SPEED PER CENT	CORP NI PER CENT	CORR NZ
••••	••••••		••••••	
1	32.30	59.00	32.21	-58.83
5	32.00	60.00	31.91	59.83
,	35.00	62.00	35.03	62.05
10	33.00	61.00	33.10	61-18
12	34.50	51.00	34.65	61.27
13	35.00	67.00	35.17	.62.30

HODE 8

UNIT	FUEL FLOW LBM/HR	CB F/A X100	PERF F/A X100	TT7 DEG R	EPR	THPUST
1	1190.	.8420	.6330	1068.	1.040	-1060.
2	1190.	.8520	,7990	1050.	1.040	1130.
7	1320.	.8080	.8290	1032.	1.040	1282.
10	1210.	.825	-,7530	-960.	1.040	1219.
12	1290.	.6050	.8380	1050.	-1.060	1225.
13	1300.	.8240	.8120	1023.	1.040	1302.

HODE 8

UNIT	CORR FU FL	COR CR F/A	COR PF F/A	CORR TT7 DEG R	COR THRUST
	********		**********		*******
1	1191.	.8370	.878	1062	-105A.
5	1191.	.8470	.795	1044	. 1128.
7	1377.	.8100	.8300	1034	. 1285.
10	1210.	.8300	757	-965	1272.
12	1288.	.8120	.846	1059	1229.
13	1297.	.8320	.820	1033	. 1306.

MONE 8

UNIT	COZ CONC PER CENT	CO CONC	HC CONC	NO CONC	NOX CONC
	*********	********		••••••	********
1	1.457	998.0	672.5	8.1	10.0
2	1.468	986.8	707.A	7.5	9,8
7	1.412	908.8	626.3	9.4	10.2
10	1.447	884.1	634.2	7.6	9.7
12	1.399	887.8	644.9	6.5	9,8
13	1.436	910.7	642.A	8.3	9.0

MODE 8

UNIT	COS E1	CO EI	HC EI	NO EI	NOX ET	SMK NUMBER
	LR/KLB FU	LB/KLB FU	LB/KLB FU	LA/KLB FU	LB/KLB FU	FRONT SIDE
	********		********		*********	********
1 .	2613.	13.93	131.88	1.52	1.87	-16.54
2	5605.	111.35	137.22	1.39	1.83	19.95
7	2639.	108.14	128.04	1.83	1.99	19.53
10	2650.	103.03	126.97	1.46	1.86	18.13
12	2524.	105.99	132.26	1.27	1.92	20.00
13	2633.	106.25	128.84	1.59	1.73	20.57

MODE 8

JNIT	FC0 X100	FHC X100	FN0 X100	STD FCO X100	STD FHC X100	STD FNO X100
1	•2030	.0630	-15.2090	2020	-,0620	-18.3000
5	.2070	.0690	-15.4800	.2060	.0670	18.6250
7	.2160	.0790	16.2950	.2160	.0790	19.3650
10	.2120	.0720	16.1930	.2120	.0740	19.0710
12	.2120	.0720	16.2360	.2130	.0750	19.1010
13	.2160	.0780	16.5020	2180	.0810	19,4760

MODE 8

UNIT	NREC CO EI		NRE CNO FI	NR CNOX ET	
	********				
1	114.30	135.37	1.83	2.25	-16.54
s	111.72	140.89	1.67	2.20	19.95
7	108.18	127.35	2.17	2.37	19.53
10	102.74	123.77	1.72	2.19	18.13
12	105.43	126.97	1.49	2.25	20.00
13	105.41	123.01	1.88	2.04	20.57

5. FUEL ANALYSIS DATA

Unit No.	Test Series	deg AP I	H/C Ratio	FIA, ercent Paraffin 0 fin Aromatic		
1	Baseline 600-Hour 1200-Hour 1800-Hour 2400-Hour 3000-Hour	43.6 40.9 43.2 44.1 43.0 44.9	1.93 1.90 1.91 1.89 1.91 1.93	85 83 84 86 83 82	2 2 1 1 1 1	13 15 15 13 16 17
. 2	Baseline 600-Hour 1200-Hour 1800-Hour 2400-Hour 3000-Hour	43.6 40.9 43.2 44.1 44.1 44.9	1.93 1.90 1.91 1.89 1.91 1.93	85 83 84 86 83 82	2 2 1 1 1 1 1	13 15 15 13 16 17
3	Baseline 600-Hour	43.6 40.9	1.93 1.90	85 83	2 2	13 15
4	Baseline 600-Hour 1200-Hour	43.6 42.3 43.4	1.92 1.91 1.92	85 84 85	2 2 1	13 14 14
5	Baseline 600-Hour 1200-Hour 1800-Hour 2400-Hour	42.6 42.1 41.3 43.2 42.6	1.91 1.93 1.92 1.91 1.91	83 34 84 85 84	2 2 2 2 2	15 14 14 13
6	Baseline 600-Hour 1200-Hour	42.6 42.1 41.3	1.91 1.93 1.92	83 84 84	2 2 2	15 14 14
7	Baseline 600-Hour 1200-Hour #	41.9 42.1	1.90 1.93	84 84	2 2	14 14
	1800-Hour 2400-Ho 3000-Pr	43.4 43.2 46.3	1.92 1.92 1.90	85 85 84	2 2 1	13 13 15

[#] Fuel analysis data not available

Unit	Test	deg	H/C	FI	A, perce	nt
No.	Series	API	Ratio	Paraffin	Olefin	Aromatic
8	Baseline 600-Hour 1200-Hour *	41.9 42.1	1.90 1.93	84 84	2 2	14 14
	1800-Hour 2400-Hour	43.4 43.2	1.92 1.92	85 85	2 2	13 13
9	Baseline 600-Hour 1200-Hour ★	41.9 42.1	1.90 1.93	84 84	2 2	14 14
	1800-Hour	43.4	1.92	85	2	13
10	Baseline 600-Hour 1200-Hour *	41.9 42.1	1.90	84 84	2 2	14
	1800-Hour 2400-Hour 3000-Hour	43.4 43.2 46.3	1.92 1.92 1.90	85 85 84	2 2 1	13 13 15
11	Baseline 600-Hour 1200-Hour 1800-Hour *	43.4 43.8 43.0	1.93 1.94 1.93	84 84 86	2 2 1	14 14 13
	2400-Hour	44.5	1.89	83		
12	Base'ine 600~Hour 1200~Hour 1800~Hour *	43.4 43.8 43.0	1.93 1.94 1.93	84 84 86	2 2 1	14 14 13
	2400-Hour Ju00-Hour	44.4 45.2	1.89	83 82	1	16
13	Baseline 600-Hour 1200-Hour 1800-Hour *	43.4 43.8 43.4	1.93 1.94 1.92	84 84 84	2 2 2	14 14 14
	2400-Hour 3000-Hour	44.5 45.2	1.89	83 82	1	16

^{*} Fuel analysis data not available

Unit	Test	deg	H/C	FIA, percent		
No.	Series	API	Ratio	Paraffin	Olefin	Aromatic
14	20001100	43.4	1.93	84	2	14
14	Baseline 600-Hour	43.8	1.94	84	2	14
		43.4	1.92	84	2	14
	1200-Hour *	47.4	1.52	04	-	1-
	1300-Hour ×					
15	Baseline	43.0	1.92	83	3	14
16	Baseline	43.0	1.92	83	3	14
17	Baseline	43.0	1.92	83	3	14
	600-Hour	43.0	1.88	84	3 2	14
	1200-Hour	43.4	1.92	86	1	13
	1800-Hour *					
	2400-Hour *					
18	Baseline 600-Hour 1200-Hour 1800-Hour *	43.0 43.0 43.4	1.92 1.88 1.92	83 84 86	3 2 1	14 14 13

* Fuel analysis data not available

#### 6. REFERENCES

- 1. Adams, H. T., Elements of Internal Combustion Turbine Theory, Cambridge University Press, 1949.
- "T53 and T55 Gas Turbine Combustor and Engine Exhaust Emission Measurements", USAAMP.DL Technical Report 73-47, December 1973.
- "Control of Air Pollution from Aircraft and Aircraft Engines, Emissions Standards and Test Procedures for Aircraft", Federal Register, vol. 38 no. 136, Part 11, July 17, 1973.

