Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

Claims 8, 9 and 11 are amended.

Listing of Claims:

- 1. (ORIGINAL) An optical waveguide device comprising:
 - a substrate composed of a nonlinear optical material and
- a periodically domain-inverted structure having the same composition as the nonlinear optical material, wherein

the domain-inverted structure has a refractive index distribution relying on the domain-inverted structure.

- 2. (ORIGINAL) The optical waveguide device according to claim 1, wherein the domain-inverted structure is formed by applying a voltage in a polarization direction of the substrate.
- 3. (ORIGINAL) The optical waveguide device according to claim 1, wherein the substrate composed of a nonlinear optical material is an offcut substrate.
- 4. (ORIGINAL) The optical waveguide device according to claim 3, wherein the substrate has an offcut angle inclined in a range of 1° to 10° with respect to the substrate surface.
- 5. (ORIGINAL) The optical waveguide device according to claim 1, wherein the substrate is a thin film, having an optical substrate bonded via a bonding layer to one face of the substrate.

- 6. (ORIGINAL) The optical waveguide device according to claim 5, wherein at least either the surface or a back face of the substrate is provided with a convex, and the domain-inverted structure is formed in stripes at the convex.
- 7. (ORIGINAL) The optical waveguide device according to claim 1, wherein the nonlinear optical material is a Mg-doped LiNb_(1-x)Ta_xO₃ ($0 \le x \le 1$).
- 8. (CURRENTLY AMENDED) The optical waveguide device according to claim 1, wherein

the nonlinear optical material is a Mg-doped LiNbO3 crystal,

a phase matching wavelength harmonizes with a Bragg reflection wavelength, and

the Bragg reflection wavelength λ satisfies a relationship of $\lambda_1 < \lambda < \lambda_2$ when $\lambda_1 = 635 + 48 \times n$ (nm), $\lambda_2 = 1.02 \times \lambda_1$ (nm) where (n = 0, 1, 2), or $\lambda_1 = 774$ [[nm]] + 40 × n (nm), $\lambda_2 = 1.02 \times \lambda_1$ (nm) where (n = 0, 1, 2, 3, 4...).

9. (CURRENTLY AMENDED) The optical waveguide device according to claim 1, wherein

the nonlinear optical material is a Mg-doped LiNbO3 crystal,

a phase matching wavelength harmonizes with a Bragg reflection wavelength, and

the Bragg reflection wavelength λ satisfies a relationship of $\lambda_1 < \lambda < \lambda_2$ when $\lambda_1 = 613 + 48 \times n$ (nm), $\lambda_2 = 1.02 \times \lambda_1$ (nm) where (n = 0, 1, 2), or $\lambda_1 = 754$ [[nm]] + 40 × n (nm), $\lambda_2 = 1.02 \times \lambda_1$ (nm) where (n = 0, 1, 2, 3, 4...).

10. The optical waveguide device according to claim 1, wherein the domain-inverted structure is composed of a wavelength-converting portion and a DBR portion, and

the phase matching wavelength of the wavelength-converting portion is equal to the Bragg reflection wavelength of the DBR portion, and a difference between the phase matching wavelength of the wavelength-converting portion and the Bragg reflection wavelength of the wavelength-converting portion is at least 5 nm.

- 11. (CURRENTLY AMENDED) A coherent light source comprising a semiconductor laser and an optical waveguide device according to any one of claims 1-10 claim 1, where a light beam emitted from the semiconductor laser enters the optical waveguide device.
- 12. (ORIGINAL) An optical apparatus comprising the coherent light source according to claim 11.