Introduction/Business Problem

Let say if you are a buisiness manerger who want to invest a Indian food restaruant in a mid-

size city which has fast growth. You have to decide where or which neighborhoods to open the restaruant. In order to answer this question, you maty need a model get some recommendations where to start your business.

Therefore, we will base our model on a mature city/metropolitan city. Because your city will also become a metropolis some day.

Introduction/Business Problem

1. Introduction/Business Problem

Let say if you are a buisiness manerger who want to invest a *Chinese restaruant* in your resident city. You are live in the mid-size city which has fast growth. You have to decide where or which **neighberhoods** to open the restaruant. In order to answer this question, you have to build a model get some recommendations where to start your business.

- Therefore, we will learn a model from a mature city/metropolitan city since we believe that it is more developed. Your city will become a metropolis some day.
- Another thing you believe is that any one of business venue does not exist alone, and "Chinese restaruant" always tends to be find with some other type of shops, because neighberhoods have "cultures" to like them both.

Data import (Toronto)

Neighborhood information get from Wiki

 Scrap from website and organize into Dataframe

	PostalCode	Borough	Neighborhood
0	M1B	Scarborough	Rouge,Malvern
1	M1C	Scarborough	Highland Creek,Rouge Hill,Port Union
2	M1E	Scarborough	Guildwood, Morningside, West Hill
3	M1G	Scarborough	Woburn
4	M1H	Scarborough	Cedarbrae

Get location information

Use geocoder package to get location information:

	PostalCode	Borough	Neighborhoo	d	Latitude	Longitude
0	M1B	Scarborough	Rouge,Malvern		43.806686	-79.194353
1	M1C	Scarborough	Highland Creek,Rouge Hill,Port Unicr		43.784535	-79.160497
2	M1E	Scarborough	Guildwood,Morningside,West Hill		43.763573	-79.188711
3	M1G	Scarborough	Woburn		43.770992	-79.216917
4	M1H	Scarborough	Cedarbrae		43.773136	-79.239476

• Plot the location using folium package

Neighborhood location in Toronto on map

Get venues information

 Use Foursquare API, we can explore the venues around on specific location, so we could achieve venues' name and category

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude		Venue Category
0	Rouge,Malvern	43.806686	-79.194353	African Rainforest Pavilion	43.817725	-79.183433	Zoo Exhibit
1	Rouge,Malvern	43.806686	-79.194353	Toronto Pan Am Sports Centre	43.790623	-79.193869	Athletics & Sports
2	Rouge,Malvern	43.806686	-79.194353	Toronto Zoo	43.820582	-79.181551	Zoo
3	Rouge,Malvern	43.806686	-79.194353	Polar Bear Exhibit	43.823372	-79.185145	Zoo
4	Rouge,Malvern	43.806686	-79.194353	Canadiana exhibit	43.817894	-79.193260	Zoo Exhibit

Create one-hot encoding for each catogory

	Neighborhood	Afghan Restaurant	African Restaurant	Airport	Airport Lounge	American Restaurant	Aquarium	Art Gallery	Arts & Crafts Store	A: Restau
0	Adelaide,King,Richmond	0	0	0	0	1	1	2	2	0
1	Agincourt	0	0	0	0	1	0	0	1	1
2	Agincourt North,L'Amoreaux East,Milliken,Steel	0	0	0	0	1	0	0	1	2
3	Albion Gardens,Beaumond Heights,Humbergate,Jam	0	0	0	0	0	0	0	0	3
4	Alderwood,Long Branch	0	0	0	0	1	0	0	1	1

Build Model for prediction

We will use number of venues in each neighborhoods except Chinese restaurant as inputs and number of Chinese restaurant as output.

Use SVR (rbf kernel) as learning algorithm

Step 1. optimize the hyperparameter using GridSearchCV on parameter 'gamma' and 'C'. 5 fold cross validation is used.

```
svr_rbf = GridSearchCV(SVR(kernel='rbf', gamma=0.1),
cv=5, param_grid={"C": [1e0, 1e1, 1e2, 1e3], "gamma":
np.logspace(-2, 2, 5)})
```

Best parameter is here

```
SVR(C=100.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma=0.01,
kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
```

Step 2. Train the dataset the plot prediction form the model and True value

Get information of target city

Neighborhoods infomation is get from

http://www.city-data.com/nbmaps/neigh-Columbus-Ohio.html

And GPS location is get from

https://www.gps-coordinates.net/

	Neighborhood	Latitude	Longitude		
0	Arena District	39.968959	-83.005251		
1	Brewery District	39.951159	-83.001111		
2	Cassady	39.998355	-82.930182		
3	Clintonville	40.052178	-83.009280		
4	Discovery District	39.963340	-82.996524		

Get venues information similar to Toronto

	Neighborhood	Neighborhood Latitude		Venue	Venue Latitude	Venue Longitude	Venue Category
1	Arena District	39.968959	-83.005251	Nationwide Arena	39.969135	-83.006098	Hockey Arena
	1 Arena District	39.968959	-83.005251	North Market	39.971891	-83.004321	Market
	2 Arena District	39.968959	-83.005251	Hilton Columbus Downtown	39.970826	-83.002724	Hotel
;	Arena District	39.968959	-83.005251	Jeni's Splendid Ice Creams	39.971903	-83.004322	Ice Cream Shop
	4 Arena District	39.968959	-83.005251	Hot Chicken Takeover	39.971527	-83.004470	Fried Chicken Joint

Predict using trained model

Top 10 recommendations for start your business in Columbus (Map)

Top 10 recommendations for start your business in Columbus

Conclusion

- We used the Foursquare API get the venues information on given locations
- We build predictive models with SVR algorithm
- We get the top 10 recommendations of location to invest "Chinese Restaurant" in Columbus

These things can make it better:

- 1. This model is built on the assumption that the target city will have a trend to grow to "big-city" like we used into model training.
- 2. The training dataset still very small, if we can get more data from more big cities , we can make the model better
- 3. Foursquare app can only give 100 venues exploration on free version, it is better to conclude all of the venues to avoid bias coming from the sampling