

Politechnika Wrocławska

Wydział Matematyki

Kierunek studiów: Matematyka Stosowana

Specjalność: –

Praca dyplomowa – inżynierska

ANALIZA STATYSTYCZNA CZASÓW NA WYKONYWANIE RUCHÓW W SZACHACH

Piotr Rogula

słowa kluczowe: tutaj podajemy najważniejsze słowa kluczowe (łącznie nie powinny być dłuższe niż 150 znaków).

krótkie streszczenie:

Tutaj piszemy krótkie streszczenie pracy (nie powinno być dłuższe niż 530 znaków).

Opiekun pracy	Prof. dr hab. inż. Marcin Magdziarz		
dyplomowej	Tytuł/stopień naukowy/imię i nazwisko	ocena	podpis

Do celów archiwalnych pracę dyplomową zakwalifikowano do:*

- a) kategorii A (akta wieczyste)
- $b)\ kategorii\ BE\ 50\ (po\ 50\ latach\ podlegające\ ekspertyzie)$

pieczątka wydziałowa

Wrocław, rok 2021

^{*} niepotrzebne skreślić

Faculty of Pure and Applied Mathematics

Field of study: Applied Mathematics

Specialty: -

Engineering Thesis

TYTUŁ PRACY DYPLOMOWEJ W JĘZYKU ANGIELSKIM

Piotr Rogula

keywords:

tutaj podajemy najważniejsze słowa kluczowe w języku angielskim (łącznie nie powinny być dłuższe niż 150 znaków)

short summary:

Tutaj piszemy krótkie streszczenie pracy w języku angielskim (nie powinno być dłuższe niż 530 znaków).

Supervisor	Prof. dr hab. inż. Marcin Magdziarz		
	Title/degree/name and surname	grade	signature

For the purposes of archival thesis qualified to:*

- a) category A (perpetual files)
- b) category BE 50 (subject to expertise after 50 years)

stamp of the faculty

^{*} delete as appropriate

Spis treści

W	m step	3
1	ZAGADNIENIE TEORETYCZNE I - DOTYCZĄCE SZACHÓW 1.1 OPISAĆ ZASADY GRY W SZACHY ?? 1.2 OPISAĆ NOTACJĘ szachową????? - nie będę w sumie nic z nią robić, ale jest	5 5 5 6 6 6
2	ZAGADNIENIE TEORETYCZNE II - użyte metody, teoria stojąca za rozwiązaniami problemów	9
3	sformuowanie problemów analitycznych, które chce zbadać	11
4	analiza / rozwiązanie problemów4.1Dane4.1.1Odfiltrowanie danych4.2Analiza pierwszego problemu4.3analiza drugiego problemu4.4analiza trzeciego problemu	13 13 14 14 15 15
5	wnioski, podsumowanie	17
6	tabelka	19
7	rysunek	21
8	Definicje, lematy, twierdzenia, przykłady i wnioski	23
9	cytowanie	25
D	odatek	27

Wstęp

We wstępie zapowiadamy, o czym będzie praca. Próbujemy zachęcić czytelnika do dalszej lektury, np. krótko informując, dlaczego wybraliśmy właśnie ten temat i co nas w nim zainteresowało.

Wraz z rozwojem technologii komputerowej, rozpoczęła się nowa era szachów. Technologia korzystając z dużej mocy obliczeniowej, bezpowrotnie wyprzedziła człowieka w grach deterministycznych, a ostatnio też i tych niedeterministycznych (?). Profesjonalni szachiści zaczęli wykorzystywać nowe strategie korzystając z coraz lepszych silników szachowych. Silniki te oceniają wprowadzoną pozycję pod kątem przewagi jednej ze stron.

W dobie internetu gra w szachy stała się dużo wygodniejsza niż przed laty. Ludzie grają w różnych miejscach i praktycznie o każdej porze. W związku z tym dużo większą popularnością zaczęły cieszyć się szachy szybkie, czyli takie, w których każdy z zawodników ma relatywnie mało czasu na wykonanie wszystkich ruchów. Wiąże się to z dużo większym znaczeniem dysponowania czasem w trakcie gry. W każdym ruchu zawodnik musi ustalić równowagę pomiędzy dokładnością ruchu, a czasem, który jest w stanie na ten ruch poświęcić.

Przedmiotem badań tej pracy jest analiza zależności między dokładnością ruchu, a czasem, który został na niego poświęcony dla zawodników prezentujących różny poziom umiejętności i dla różnych formatów czasowych. Zbadanie takiej zależności może pozwolić na określenie optymalnego czasu na wykonanie ruchu dla odpowiedniej fazy gry i formatu czasowego.

DODAĆ TUTAJ TROCHE I OGÓLNY CEL

W PIERWSZEJ CZĘŚCI - ZAGADNIENIA TEORETYCZNE DOTY-CZĄCE SZACHÓW W pierwszej części pracy przedstawione i wyjaśnione zostaną podstawowe zagadnienia teoretyczne związane z szachami. JAKIE?

W DRUGIEJ CZĘŚCI ZAGADNIENIA TEORETYCZNE ZE STATY-STYKI I METODOLOGII

PÓŹNIEJ DOKŁADNE SFORMUOWANIE PROBLEMU DOKŁADNE ROZWIĄZANIE PROBLEMU PODSUMOWANIE

ZAGADNIENIE TEORETYCZNE I -DOTYCZĄCE SZACHÓW

1.1 OPISAĆ ZASADY GRY W SZACHY ??

Początki szachów nie są znane, jednak ich historia trwa już ok. 1500 lat i zaczyna się w Indiach. Na przestrzeni wieków zasady szachów były wielokrotnie zmieniane. Powszechnie stosowane przepisy pochodzą z roku 1851.

krótko na czym polegają szachy i cite gdzie można znaleźć pełne przepisy,
isbn: $002028540\mathrm{X}$

- 1.2 OPISAĆ NOTACJĘ szachową????? nie będę w sumie nic z nią robić, ale jest
- 1.3 OPISAĆ szachowy system Glicko-2 (oparty na rozkładzie normalnym)

opisać ogólnie troche historii o systemach rankingowych? System rankingowy ELO został zaprezentowany w latach 50 XX wieku przez Węgierskiego fizyka i szachistę Arpada Elo (1903-1992) [CITE]. Początkowo był używany jedynie w szachach, jednak wraz ze wzrostem jego popularności zaczął być stosowany również w innych rozgrywkach. System ten jest pierwszym systemem mającym podłoże probabilistyczne i jest oparty na rozkładzie normalnym z ustaloną średnią. Przyznaje odpowiednią liczbę punktów zwycięzcy rozgrywki i odbiera przegranemu bazując na różnicy między ich aktualnym rankingiem.

System Glicko-2 używany przez stronę **Lichess.com**, na danych której oparta jest niniejsza praca, opracowany został przez Marka Glickmana jako ulepszenie systemu ELO. Podstawową zmianą jest uwzględnienie historycznych wyników każdego z zawodników w celu ustalenia wariancji aktualnego rankingu. Glickman w swojej pracy z roku 1998 [cite] przedstawia problem dwóch graczy o takim samym rankingu, z których jeden gra regularnie, a drugi wrócił po długiej przerwie. System Glicko-2 przyznając punkt za grę bierze pod uwagę wiarygodność każdego z rankingów. Zawodnikowi grającemu regularnie zostanie przyznane bądź odebrane mniej punktów ze względu na duże potencjalne odchylenie rankingu przeciwnika od zadeklarowanej wartości. Innymi słowy, w miarę zwiększania się

liczby partii gracza, przedział ufności dla jego realnego rankingu zawęża się i przypisany mu ranking zbiega do realnego poziomu i ta wiarygoność przypisanego rankingu jest uwzględniana w zmianie punktów zawodników po zakończeniu partii.

WRZUCIĆ MATEMATYKĘ STOJĄCĄ ZA GLICKO-2???

1.3.1 z uwzględnieniem ELO na platformie Lichess, z której bierzemy dane

1.4 Funkcja oceny

Przed przystąpieniem do opisania funkcji, należy wytłumaczyć działanie silnika szachowego, który dokonuje oceny pozycji.

1.4.1 Stockfish

Stockfish jest najpopularniejszym obecnie używanym silnikiem szachowym, zaprojektowanym przez Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad, Stéphane Nicolet, Stefan Geschwentner, and Joost VandeVondele i stale ulepszany jako oprogramowanie typu open-source. Strona **Lichess.com**[1] wykorzystuje go do oceny aktualnej pozycji.

Stockfish poprzez przeszukiwanie wg strategii mini-max z odcięciem, za pomocą algorytmu alfa-beta, analizuje legalne (czyli następujące po ruchu zgodnym z zasadami gry) pozycje, które mogą wyniknąć z aktualnej sytuacji na szachownicy. Dobierają na podstawie najlepszego możliwego zestawu ruchów (zakłada się, że każdy z graczy wykona najlepszy w ocenie silnika ruch) pozycje, które wystąpią dla określonej głębokości (głębokość 18 oznacza 18 ruchów białych i 18 czarnych) i na ich podstawie ocenia aktualną pozycję.

1.4.2 Ewaluacja

Wspomniana wcześniej ewaluacja, wyliczana przez silnik szachowy jest wynikiem liniowej funkcji ważonej sumy cech:

 f_b, f_c oznaczających wartość figur odpowiednio białych i czarnych k_b, k_c oznaczających bezpieczeństwo króla odpowiednio białych i czarnych m_b, m_c oznaczających mobilność figur odpowiednio białych i czarnych z_b, z_c oznaczających potencjalne zagrożenia wykonane odpowiednio białych i czarnych oraz innych.

Funkcję można dla zapewnienia intuicji zapisać w uproszeniu:

$$f(f_b, f_c, k_b, k_c, m_b, m_c, \dots) = c_1(f_b - f_c) + c_2(k_b - k_c) + c_3(m_b - m_c) + \dots$$
(1.1)

gdzie: c_i są stałymi określającymi wagę danej pary zmiennych.

Wraz ze wzrostem wartości funkcji zwiększa się przewaga białych, natomiast wraz z jej spadkiem, przewaga czarnych. Wartość wynosząca 0 oznacza stan równowagi. Dodatkowo, w przypadku nieuniknionego zwycięstwa jednej ze stron w n ruchach, wynikiem funkcji zamiast odpowiedniej wartości jest tekst #-n w przypadku wygranej czarnych lub #n w przypadku wygranej białych.

Funkcja oceny 7

rodzaje błędów szachowych

OPISAĆ DEFINICJE INNACURACY, MISTAKE I BLUNDER

W notacji szachowej obok zapisanego ruchu mogą pojawić się symbole określające jakość danego ruchu. Dla analizowanych danych, ruch oceniany jest przez silnik szachowy za pomocą skomplikowanych algorytmów.

(opisać te algorytmy w urposzczeniu - tj. blunder gdy delta eval jest wieksze niż pewna wartość (np. 2), ale tylko gdy sytuajca nie jest przesądzona, np zmiana 0 -> 2.5 BLUNDER, zmiana 22 -> 25, nie BLUNDER)

?? - duży błąd

OPIS

? - pomyłka

OPIS

?! - WATPLIWE POSUNIECIE

!? - posunięcie zasługujące na uwagę

! - bardzo dobre posunięcie

!! wyśmienite posunięcie

LEPIEJ OPISANE NA WIKI ANG

ZAGADNIENIE TEORETYCZNE II

 użyte metody, teoria stojąca za rozwiązaniami problemów

sformuowanie problemów analitycznych, które chce zbadać

analiza / rozwiązanie problemów

4.1 Dane

Dane, [...] zostały pobrane z platformy Lichess [2]. Są one przechowywane w plikach o rozmiarze kilkudziesięciu Gb. Każdy z nich zawiera wszystkie gry rozegrane na platformie w ciągu całego miesiąca. Ponadto, ok. 7% gier zostało wcześniej przeanalizowane przez silnik szachowy Stockfish WYJAŚNIĆ CZYM JEST STOCKFISH I EVAL??? i posiadają dane punktowe o nazwie Eval, określające unormowaną przewagę jednego z graczy. Przykładowy zapis jednej takiej gry został zaprezentowany na rysunku 4.1. Informacje potrzebne do rozwiązania problemu to:

- WhiteElo ranking białych
- BlackElo ranking czarnych
- TimeControl czas na wykonanie ruchów każdego z graczy w formacie "sekundy + sekundy dodane za wykonanie ruchu"
- % eval aktualna przewaga jednej ze stron
- % clk pozostały czas w formacie "godziny : minuty : sekundy"

napisać o rysunKu Z DANYMI Z EVAL

Rysunek 4.1: Przykładowy zapis jednej partii

4.1.1 Odfiltrowanie danych

TUTAJ INFORMATYCZNA CZĘŚĆ O TYM JAK POZYSKAŁEM DANE Z PLIKU

4.2 Analiza pierwszego problemu

Pierwszym problemem, który zostanie poruszony jest zbadanie statystycznej zależności jakości wykonanego ruchu wg oceny silnika Stockfish od czasu potrzebnego na jego wykonanie.

TUTAJ rozkłady,

oś x \rightarrow czas

oś y -> nieznormalizowana liczba ruchów typu 'blunder' (te najcięższe pomyłki)

rozkład wykładniczy...

np dla formatu 300+0 (300 sekund, brak dodawanego czasu po wykonaniu ruchu)

Rysunek 4.2: xxx

TO DO:

sprawdzenie zmian dla rankingu graczy, różnicy rankingu graczy porównanie z czasem na wykonanie każdego ruchu

TO DO:

czy różnica pomiędzy formatem z dodawanym czasem po ruchu, a bez dodawanego czasu jest widoczna?

4.3 analiza drugiego problemu...

tutaj statystyczne prawdopodobieństwo wykonania złego ruchu pod warunkiem poświęceniu mu konkretnego czasu,

tj, w formacie czasowym 60+0 na ruch zostały poświęcone 4 sekundy, jaka jest szansa, że został popełniony błąd

CEL: ile powinno się poświęcić czasu na ruch by obniżyć prawdopodobieństwo wykonania błędu?

Tego jeszcze nie analizowałem

4.4 analiza trzeciego problemu... and so on...

Rozdział 5 wnioski, podsumowanie

tabelka

Tabela??

Tabela 6.1: Podstawowa Tabela

Państwo	PKB (w milionach USD)	Stopa bezrobocia
Stany Zjednoczone	75 278 049	4,60%
Chiny	11 218 281	$4{,}10\%$
Japonia	$4\ 938\ 644$	$3{,}10\%$
Niemcy	3 466 639	$6{,}00\%$
Wielka Brytania	2 629 188	$4{,}60\%$

 $\'{Z}r\'{o}d\'{e}o:\ opracowanie\ w\'{e}asne$

rysunek

Rysunki do pracy dyplomowej należy wstawiać w sposób podobny do wstawiania tabel, z zasadniczą różnicą polegającą na tym, że podpis powinno umieszczać się centralnie pod rysunkiem, a nie powyżej niego. Numeracja i sposób cytowania pozostają bez zmian, przy czym tabele i rysunki nie mają numeracji wspólnej, np. po Tabeli 6.1 występuje Rysunek 7.1 (o ile jest to pierwszy rysunek rozdziału pierwszego), a nie Rysunek 1.3.

Rysunek 7.1: Podstawowy Rysunek

Definicje, lematy, twierdzenia, przykłady i wnioski

Definicje, lematy, twierdzenia, przykłady i wnioski piszemy w pracy tak:

Definicja 8.1 (Martyngał). Tu piszemy treść definicji martyngału.

Lemat 8.2. Tu piszemy treść lematu.

cytowanie

Do cytowania używamy komendy cite. W nawiasie klamrowym podajemy klucz, którego użyliśmy w pliku bibliografia.bib. Przykład: [3] lub [4, chap. 2].

Dodatek

Dodatek w pracach matematycznych również nie jest wymagany. Można w nim przedstawić np. jakiś dłuższy dowód, który z pewnych przyczyn pominęliśmy we właściwej części pracy lub (np. w przypadku prac statystycznych) umieścić dane, które analizowaliśmy.

Bibliografia

- [1] Lichess computer engine used from 2014. https://lichess.org/blog/U4mtoEQAAEEAgZRL/strongest-chess-player-ever. Accessed: 2010-09-30.
- [2] Lichess database. https://database.lichess.org/. Accessed: 2010-09-30.
- [3] Albert Einstein. Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]. *Annalen der Physik*, 322(10):891–921, 1905.
- [4] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LaTEX Companion. Addison-Wesley, Reading, Massachusetts, 1993.