fuerzasExternas

June 9, 2020

1 Euler-Lagrange: fuerzas externas

l' 2020 Víctor A. Bettachini Mecánica General Departamento de Ingeniería e Investigación Tecnológica Universidad Nacional de La Matanza

1.1 Descomposición en fuerzas generalizadas

El efecto de fuerzas que no sean de vínculo que actua sobre un sistema que no dependen de un potencial V no está tenido en cuenta en la formulación de la ecuación de Euler-Lagrange homogénea (igualada a 0).

Para dar cuenta de las mismas vimos que hay un agregado a la ecuación que son las **fuerzas generalizadas** Q_i relacionadas a cada coordenada q_i .

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_i}L - \frac{\partial}{\partial q_i}L = Q_i,$$

1.1.1 £Como se obtienen las fuerzas generalizadas Q_i ?

- Las Q_i para cada q_i se obtienen de una descomposición de una fuerza externa conocida
- Su planteo no es necesariamente vectorial pues está basada en estimar el trabajo virtual δW que tal fuerza cuasaría ante un desplazamiento virtual en esa coordenada δq_i .

1.1.2 Repasemos trabajo y energía

En un desplazamiento enter un punto 1 y un 2 puede variar la energía total del sistema a causa del trabajo de una fuerza no conservativa $W_{1\rightarrow2}^{\rm nc}$, y entre estos puntos tanto la energía cinética como potencial haber variado

$$(T_2 - T_1) + (V_2 - V_1) = W_{1 \to 2}^{\text{nc}}.$$

Si estos 1 y 2 representan una variación infinitesimal en la posición del sistema

$$\delta T_+ \delta V = \delta W^{\rm nc}$$

y esto podemos calcularlo instante a instante para cualquier desplazamiento virtual en cualquier coordenada generalizada δq_i .