Symmetrische Verschlüsselungsverfahren [WIP] Sommersemester 2023

Alle Angaben ohne Gewähr. Keine Garantie auf Vollständigkeit oder Richtigkeit.

1	Einführung			
	1.1	Ausgar	ngspunkte für Angriffe	2
			sarten	
	1.3	Historis	sche Verschlüsselungsverfahren	2
_				_
2	Blockchiffren			
	2.1	Definitionen		
		2.1.1	Definition: Blockchiffre	2
		2.1.2	Anforderungen an Blockchiffren	2
		2.1.3	Definition: Ideal Cipher	2
		2.1.4	Anforderungen an Ideal Cipher	3
	2.2	DES (I	Data Encryption Standard)	3
		2.2.1	Beispiel für Encryption-Schritt	3
		2.2.2	Beispiel für Decryption-Schritt	3

mail@nilslambertz.de

nilslambertz

Sommersemester 2023

1 Einführung

1.1 Ausgangspunkte für Angriffe

Angriffe können nach den zur Verfügung stehenden Informationen unterteilt werden:

- Ciphertext-Only-Attack: Nur das Chiffre, also die verschlüsselte Nachricht, ist bekannt
- Known-Plaintext-Attack: Es gibt bekannte Klartext-Chiffre-Paare. Hilfreich sind bekannte Anfangsund Endphrasen, die in mehreren Nachrichten vorkommen.
- Chosen-Plaintext-Attack: Es besteht die Möglichkeit, beliebige Texte zu verschlüsseln und somit Klartext-Chiffre-Paare zu erzeugen.

1.2 Angriffsarten

- Brute-Force (z.B. alle Schlüssel ausprobieren)
- Statistische Methoden (z.B. Häufigkeitsanalysen von Buchstaben)
- Strukturelle Angriffe (z.B. Lineare Kryptoanalyse)

1.3 Historische Verschlüsselungsverfahren

Historisch wurden zur Verschlüsselung zwei grundlegende Operationen verwendet:

- Substitution
- Permutation

Alleine sind beide Verfahren meistens nicht sicher, jedoch verwenden moderne Verschlüsselungsverfahren eine Kombination beider Operationen.

2 Blockchiffren

2.1 Definitionen

2.1.1 Definition: Blockchiffre

Gegeben seien zwei endliche Alphabete A, B und $n, m \in \mathbb{N}$ sowie ein Schlüsselraum K. Eine **Blockchiffre** ist gegeben durch eine Familie von injektiven Abbildungen $f_k : A^n \to B^m$ mit $k \in K$. In der Regel gilt $A = B = \{0, 1\}$ und n = m.

2.1.2 Anforderungen an Blockchiffren

- Gegeben den Schlüssel k müssen sowohl f_k als auch f_k^{-1} effizient berechenbar sein
- Ein Angreifer soll nicht zwischen einer *zufälligen Abbildung* und der Blockchiffre mit *zufälligem Schlüssel* unterscheiden können

2.1.3 Definition: Ideal Cipher

Eine Ideal Cipher (IC) ist eine (Über-)Idealisierung einer Blockchiffre. Jedem Schlüssel $k \in \{0,1\}^{\lambda}$ ist eine vollkommen zufällige Permutation $P_k: \{0,1\}^n \to \{0,1\}^n$ zugeordnet (hierbei sind λ und n Sicherheitsparameter) und per Orakelzugriff kann jede Maschine im Modell die Funktionen P_k und P_k^{-1} auswerten. Die Existenz einer solchen IC wird zur Vereinfachung von Beweisen angenommen, man spricht dann von dem Ideal-Cipher-Modell.

2.1.4 Anforderungen an Ideal Cipher

- ullet Alle Parteien können über Orakelzugriff P_k und P_k^{-1} auswerten
- Ideal Cipher liefert zu jedem Paar (k, m) ein c "zufällig" gewählt
- Ideal Cipher liefert zu jedem Paar (k, c) ein m "zufällig" gewählt
- Orakel muss jede Ausgabe speichern, damit für gleiche Nachrichten immer das gleiche Chiffre zurückgegeben wird (nicht parallelisierbar)

2.2 DES (Data Encryption Standard)

Der **Data Encryption Standard** ist eine Blockchiffre mit Schlüssellänge k=56 und Blocklänge n=64, die Verschlüsselungsfunktion ist also $\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$. Er besteht aus einer **Feistel-Struktur** mit 16 Runden und wurden aufgrund der kurzen Schlüssellänge **gebrochen**.

2.2.1 Beispiel für Encryption-Schritt

$$L_{1} = R_{0}$$

$$R_{1} = L_{0} \oplus F_{k_{1}}(R_{0})$$

$$L_{16} = R_{15}$$

$$R_{16} = L_{15} \oplus F_{k_{16}}(R_{15})$$

2.2.2 Beispiel für Decryption-Schritt

$$R_{15} = L_{16}$$
 $L_{15} = R_{16} \oplus F_{k_{16}}(R_{15})$
 $= R_{16} \oplus F_{k_{16}}(L_{16})$

Figure 1: DES-Verschlüsselungsalgorithmus