	Assignment is at the bottom!
In []:	<pre>from sklearn.linear_model import LogisticRegression import pandas as pd</pre>
	<pre>import matplotlib.pyplot as plt %matplotlib inline import numpy as np from pylab import rcParams</pre>
	<pre>rcParams['figure.figsize'] = 20, 10</pre>
In []:	<pre>from sklearn.linear_model import LogisticRegression as Model y = np.concatenate([np.zeros(10), np.ones(10)]) x = np.linspace(0, 10, len(y))</pre>
In []:	<pre>plt.scatter(x, y, c=y)</pre>
In []:	<pre>model = LogisticRegression() model.fit(x.reshape(-1, 1),y)</pre>
In []:	<pre>plt.scatter(x,y, c=y) plt.plot(x, model.predict_proba(x.reshape(-1, 1))[:,1])</pre>
	<pre>b, b0 = model.coef_, model.intercept_ model.coef_, model.intercept_ plt.plot(x, 1/(1+np.exp(-x)))</pre>
In []:	
In []: In []:	<pre>plt.plot(x, 1/(1+np.exp(-(b[0]*x +b0)))) from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import</pre>
	<pre>import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter</pre>
	<pre>fig = plt.figure()</pre>
	<pre>ax = fig.gca(projection='3d') # Make data. X = np.arange(-10, 10, 0.25) Y = np.arange(-10, 10, 0.25)</pre>
	<pre>Y = np.arange(-10, 10, 0.25) X, Y = np.meshgrid(X, Y) R = np.sqrt(X**2 + Y**2) Z = 1/(1+np.exp(-(b[0]*X +b[0]*Y +b0))) gurf = ax plot gurfage(Y, Y, Z, gman=gm goolkarm)</pre>
In []:	<pre>surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,</pre>
In []:	Y What if the data doesn't really fit this pattern?
In []:	<pre>y = np.concatenate([np.zeros(10), np.ones(10), np.zeros(10)]) x = np.linspace(0, 10, len(y))</pre>
In []:	plt.scatter(x,y, c=y)
In []:	<pre>model.fit(x.reshape(-1, 1),y) plt.scatter(x,y) plt.plot(x, model.predict_proba(x.reshape(-1, 1)))</pre>
In []:	<pre>model1 = LogisticRegression() model1.fit(x[:15].reshape(-1, 1),y[:15])</pre>
	<pre>model2 = LogisticRegression() model2.fit(x[15:].reshape(-1, 1),y[15:])</pre>
	<pre>plt.scatter(x,y, c=y) plt.plot(x, modell.predict_proba(x.reshape(-1, 1))[:,1] * model2.predict_proba(x.reshape(-1, 1))[:,1]) df = pd.read_csv('/data/adult.data', index_col=False)</pre>
In []:	<pre>golden = pd.read_csv('/data/adult.test', index_col=False) from sklearn import preprocessing</pre>
In []:	<pre>enc = preprocessing.OrdinalEncoder() transform_columns = ['sex', 'workclass', 'education', 'marital-status',</pre>
In []:	<pre>'occupation', 'relationship', 'race', 'sex',</pre>
	<pre>x[transform_columns] = enc.fit_transform(df[transform_columns]) golden['salary'] = golden.salary.replace(' <=50K.', ' <=50K').replace(' >50K.', ' >50K')</pre>
	<pre>xt = golden.copy() xt[transform_columns] = enc.transform(golden[transform_columns])</pre>
In []: In []:	<pre>df.salary.unique() golden.salary.replace(' <=50K.', ' <=50K').replace(' >50K.', ' >50K').unique()</pre>
	<pre>model.fit(preprocessing.scale(x.drop('salary', axis=1)), x.salary) pred = model.predict(preprocessing.scale(x.drop('salary', axis=1))) pred = model.predict(preprocessing.scale(x.drop('salary', axis=1)))</pre>
	<pre>pred = model.predict(preprocessing.scale(xt.drop('salary', axis=1))) pred_test = model.predict(preprocessing.scale(xt.drop('salary', axis=1))) x.head()</pre>
In []:	<pre>from sklearn.metrics import (accuracy_score, classification_report, confusion_matrixaucrec_curve</pre>
In []:	confusion_matrix, auc, roc_curve) accuracy_score(x.salary, pred)
In []:	<pre>confusion_matrix(x.salary, pred)</pre>
In []: In []:	<pre>print(classification_report(x.salary, pred)) print(classification_report(xt.salary, pred_test))</pre>
	Assignment
	1. Use your own dataset (Heart.csv is acceptable), create a train and a test set, and build 2 models: Logistic Regression and Decision Tree (shallow). Compare the test results using classification_report and confusion_matrix.
	Explain which algorithm is optimal
	2. Repeat 1. but let the Decision Tree be much deeper to allow over-fitting. Compare the two models' test results again, and explain which is optimal
	ANSWER 1
In [1]: In [2]:	<pre>import pandas as pd from sklearn import preprocessing heart = pd.read_csv('/data/Heart.csv')</pre>
In [3]:	heart.head()
Out[3]:	Unnamed: 0 Age Sex ChestPain RestBP Chol Fbs RestECG MaxHR ExAng Oldpeak Slope Ca Thal AHD 0 1 63 1 typical 145 233 1 2 150 0 2.3 3 0.0 fixed No 1 2 67 1 asymptomatic 160 286 0 2 108 1 1.5 2 3.0 normal Yes
	2 3 67 1 asymptomatic 120 229 0 2 129 1 2.6 2 2.0 reversable Yes 3 4 37 1 nonanginal 130 250 0 0 187 0 3.5 3 0.0 normal No
In [4]:	4 5 41 0 nontypical 130 204 0 2 172 0 1.4 1 0.0 normal No transform_cols = ['ChestPain', 'Thal', 'AHD']
In [5]:	<pre>enc = preprocessing.OrdinalEncoder() heart[transform_cols] = enc.fit_transform(heart[transform_cols])</pre>
In [6]:	heart.head()
Out[6]:	Unnamed: 0 Age Sex ChestPain RestBP Chol Fbs RestECG MaxHR ExAng Oldpeak Slope Ca Thal AHD 0 1 63 1 3.0 145 233 1 2 150 0 2.3 3 0.0 0.0 0.0 0.0 1 2 67 1 0.0 160 286 0 2 108 1 1.5 2 3.0 1.0 1.0
	2 3 67 1 0.0 120 229 0 2 129 1 2.6 2 2.0 2.0 1.0 3 4 37 1 1.0 130 250 0 0 187 0 3.5 3 0.0 1.0 0.0
In [7]:	4 5 41 0 2.0 130 204 0 2 172 0 1.4 1 0.0 1.0 0.0 print(heart.isna().sum().sum())
	<pre>print(len(heart)) 6 303</pre>
In [8]:	<pre>heart = heart.dropna() print(heart.isna().sum().sum()) print(len(heart))</pre>
In [9]:	0 297 from sklearn.linear_model import LogisticRegression as LOGmodel
	<pre>from sklearn.tree import DecisionTreeClassifier as DTCmodel from sklearn.metrics import (accuracy_score,</pre>
	confusion_matrix, auc, roc_curve) from sklearn.metrics import * from sklearn import model_selection
In [10]:	<pre>X_train, X_test, y_train, y_test = model_selection.train_test_split(heart.drop('AHD', axis=1),</pre>
	<pre>LOGmodel = LOGmodel() DTCmodel = DTCmodel(criterion='entropy', max_depth=2)</pre>
<pre>In [12]: Out[12]:</pre>	LOGmodel.fit(preprocessing.scale(X_train), y_train) DTCmodel.fit(X_train, y_train) DecisionTreeClassifier
Tn [40]	DecisionTreeClassifier(criterion='entropy', max_depth=2) LOG predict = LOGmodel.predict(preprocessing.scale(X test))
In [13]: In [14]:	<pre>LOG_predict = LOGmodel.predict(preprocessing.scale(X_test)) DTC_predict = DTCmodel.predict(X_test) confusion_matrix(y_test, LOG_predict)</pre>
Out[14]:	array([[27, 3], [11, 19]])
In [15]:	<pre>print(classification_report(y_test, LOG_predict)) precision recall f1-score support 0.0 0.71 0.90 0.79 30</pre>
	1.0 0.86 0.63 0.73 30 accuracy 0.77 60 macro avg 0.79 0.77 0.76 60
In [16]:	weighted avg 0.79 0.77 0.76 60 confusion_matrix(y_test, DTC_predict)
Out[16]:	<pre>array([[21, 9],</pre>
[I/]:	precision recall f1-score support 0.0 0.64 0.70 0.67 30
	1.0 0.67 0.60 0.63 30 accuracy 0.65 60 macro avg 0.65 0.65 0.65 60
	weighted avg 0.65 0.65 0.65 60
	When comparing the logistic and shallow decision tree models, the logistic model is optimal. The confusion matrix for the logistic model predicted significantly more true negatives, and one more true positive, than the shallow decision tree model. The confusion matrix values are refelcted in the classification reports as well (i.e. recall for true negatives
In []:	significantly higher in logisitic model and higher f1 scores overall).
	Answer 2
In [18]:	<pre>from sklearn.tree import DecisionTreeClassifier as DTCmodel DTCmodel2 = DTCmodel(criterion='entropy', max_depth=None)</pre>
<pre>In [19]: Out[19]:</pre>	DTCmodel2.fit(X_train, y_train) DecisionTreeClassifier
	DecisionTreeClassifier(criterion='entropy')
In [20]: In [21]:	<pre>DTC_predict2 = DTCmodel2.predict(X_test)</pre> DTCmodel2.get_depth()
Out[21]: In [22]:	<pre>print(accuracy_score(y_test, DTC_predict), accuracy_score(y_test, DTC_predict2), accuracy_score(y_test, LOG_predict))</pre>
In [23]:	0.65 0.7166666666666 0.7666666666667 confusion_matrix(y_test, DTC_predict2)
Out[23]: In [24]:	<pre>array([[23, 7], [10, 20]]) confusion_matrix(y_test, DTC_predict)</pre>
Out[24]:	array([[21, 9], [12, 18]])
In [25]: Out[25]:	<pre>confusion_matrix(y_test, LOG_predict) array([[27, 3],</pre>
In [26]:	<pre>print(classification_report(y_test, DTC_predict2)) precision recall f1-score support</pre>
	0.0 0.70 0.77 0.73 30 1.0 0.74 0.67 0.70 30 accuracy 0.72 60
	macro avg 0.72 0.72 0.72 60 weighted avg 0.72 0.72 0.72 60
In [27]:	<pre>print(classification_report(y_test, DTC_predict)) precision recall f1-score support </pre>
	0.0 0.64 0.70 0.67 30 1.0 0.67 0.60 0.63 30 accuracy 0.65 60
- ·	macro avg 0.65 0.65 0.65 60 weighted avg 0.65 0.65 0.65 60
In [28]:	<pre>print(classification_report(y_test, LOG_predict)) precision recall f1-score support 0.0 0.71 0.90 0.79 30</pre>
	1.0 0.86 0.63 0.73 30 accuracy 0.77 60 macro avg 0.79 0.77 0.76 60
	weighted avg 0.79 0.77 0.76 60
	With no limits placed on the decision tree, the depth maxed out at 7. This led to better results than the orginal tree model, but inferior results compared to the logistic model. The true positive rate was higher for the maxed out decision tree, but the logistic model was much better at predicting true negatives. The logistic model aslo performs better than the other
In []:	models when taking into account the f1-scores. Overall, the logistic model is still optimal.
20 []:	