

Teste de Matemática 10.º ANO

2022

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO

A prova é formada por itens de escolha múltipla e de resposta restrita. Os critérios de classificação dos itens de resposta restrita estão organizados por etapas, atribuindo-se uma pontuação a cada uma delas.

Caso os alunos adotem um processo não previsto nos critérios específicos, cabe ao professor corretor adaptar a distribuição da cotação atribuída.

Deve ser atribuída a classificação de zero pontos nas seguintes situações:

- Caso um aluno apresente apenas o resultado final de um item ou de uma etapa,
 quando é pedida a apresentação de cálculos ou justificações;
- Caso o aluno utilize de forma inequívoca a calculadora, uma vez que tal não é solicitado nesta prova.

Nas seguintes situações deve descontar-se um ponto às cotações estabelecidas para a etapa respetiva:

- Ocorrência de um erro de cálculo;
- Apresentação de uma resposta com o formato que não esteja de acordo com o que foi solicitado;
- Apresentação de expressões com erros do ponto de vista formal.

Caso ocorram erros que revelem desconhecimento de conceitos, de regras ou de propriedades ou o aluno apresente uma resolução incompleta de uma etapa, deve descontar-se até metade da cotação dessa etapa.

CRITÉRIOS ESPECÍFICOS DE CLASSIFICAÇÃO

QUESTÃO	1.1	1.2	2	3.1	3.2.1	3.2.2	4.	5.1	5.2	5.3	6.	7.	8.	9.	10.1	10.2	10.3	TOTAL
COTAÇÃO	14	8	8	14	13	8	8	14	14	14	8	13	14	8	14	14	14	200

QUES	STÃO	DESCRIÇÃO			
1				22	
	1.1		14		
		■ Identifica as condições:			
		• $x^2 + y^2 \le 10$)			
		• $y \le 2x - 5$ 6 pontos			
		• Escreve a condição $x^2 + y^2 \le 10 \land y \le 2x - 5$ 4 pontos			
	1.2	Versão 1 (D); Versão 2 (C)	8		
2		Versão 1 (C); Versão 2 (D)		8	
3				35	
	3.1	Constrói corretamente um quadro de estudo da monotonia e extremos, identificando:	14		
		• As abcissas dos pontos A, B, C e D			
		A monotonia nos intervalos considerados			
		Indica corretamente:			
		Os intervalos de monotonia			
		Os máximos e os mínimos relativos 3 pontos			
		O máximo e o mínimo absolutos			
	3.2		21		
		3.2.113 pontos			
		 Indica os zeros de b ({2,6,10})			
		3.2.2 Versão 1 (A); Versão 2 (D) 8 pontos			
4		Versão 1 (B); Versão 2 (C)		8	
5				42	
	5.1		14		
		 Coloca x em evidência			
		• as raízes do polinómio $A(x)$ 5 pontos			
		• o sinal do polinómio $A(x)$ 5 pontos			
		 Indica o conjunto solução (] − 3,0[∪]3, +∞[)			

	5.2			14	
		• Mostra que $A(-2) = B(-2)$ e $A(4) = B(4)$	pontos		
		• Justifica que como $C(-2) = A(-2) - B(-2) = 0$ (ou $C(4) = 0$), $C(x) = 0$	= 0		
		tem pelo menos uma solução6 r	oontos		
	5.3			14	
		• Mostra que $C(x) = x^3 - 12x - 16$			
		• Mostra que -2 e 4 são as únicas raízes de $\mathcal{C}(x)$ 5	ontos		
		Identifica a multiplicidade de cada uma das raízes			
		Apresenta a factorização	ontos		
6					8
7					13
		Processo 1			
		• Indica que a altura do triângulo [ABC] relativamente à base [AB]			
		é 2 2 ₁			
		• Determina $\overline{AB}=2$ 4	pontos		
		• Justifica que como $A \in B$ são equidistantes da reta $x=2$, eixo de sim	etria		
		do gráfico de f , então as suas coordenadas são, respetivamente,			
		$(1,0) \ e \ (3,0) \dots 3_1$			
		• Determina $d\left(f(1)=0 \Leftrightarrow d=3 \text{ ou condição equivalente}\right)$ 4	pontos		
		Processo 2			
		ullet Determina os zeros de f em função de d 3 $ullet$			
		• Determina a expressão que traduz a distância entre A a B			
		• Identifica a altura do triângulo [ABC]2			
		• Estabelece a condição $\overline{AB}=2$ 4			
		Determina d	pontos		
8					14
		Processo 1	_		
		Define a função g por ramos	ontos		
		Apresenta a equação reduzida de cada uma das retas que contêm as			
		semirretas do gráfico de g	pontos		
		Processo 2			
		Indica o vértice do gráfico			
		Determina as coordenadas de dois pontos – um à esquerda do vértice outro à direita			
		 outro à direita			
9		Versão 1 (B); Versão 2 (A)	JUILUS		8
10		VC1300 I (D), VC1300 Z (N)			42
	10.1		T	14	
	1	Processo 1		-	
		• Determina o raio da superfície esférica $(\overline{GE} = \sqrt{69})$	pontos		
		Escreve a equação da superfície esférica			
		• Mostra que $P(6, 10, 13 + \sqrt{69}) e Q(6, 10, 13 - \sqrt{69})$:			
		Verificam a condição que define a superfície esférica	ontos		
		• Estão a uma distância de $2r=2\sqrt{69}$			

	Processo 2	
	• Determina o raio da superfície esférica $(\overline{GE} = \sqrt{69})$	
	• Mostra que G é o ponto médio do segmento de reta $[PQ]$ 4 pontos	
	• Mostra que $\overline{PQ} = 2\sqrt{69}$ 4 pontos	
	ullet Conclui que o segmento $[PQ]$ é um diâmetro 2 pontos	
10.2		14
	• Mostra que \overrightarrow{AB} e \overrightarrow{FG} são iguais 6 pontos • Justifica que se o vértice A pertence ao eixo Ox e o vértice B pertence ao	
	eixo Oy , então $\overrightarrow{AB} = (-a, b, 0)$ 6 pontos	
	• Conclui que \overrightarrow{FG} = $(-a,b,0)$	
10.3		14
	ullet Justifica que as coordenadas de F podem ser obtidas através da expressão	
	$(1, -2, 19) + k(-3, -2, 2)$, para certo valor de $k \in \mathbb{R}$	
	• Determina k de modo que $\overrightarrow{FG} = (-a, b, 0)$ $(k = -3)$	
	• Determina as coordenadas de $F\left((10,4,13)\right)$ 5 pontos	