

KIỂM TRA CUỐI KỲ

Môn: **Toán ứng dụng và thống kê** - MTH00051 - 18CLC

Thời gian: **90 phút** Học kỳ: III – Năm học: 2019-2020

Giảng viên:

Tên SV: MSSV:

(Ghi chú: Không được phép sử dụng tài liệu, ĐTDĐ, laptops)

Câu 1. (2.5 điểm) Cho hàm số 3 biến $f: \mathbb{R}^3 \to \mathbb{R}$ được xác định bởi

$$f(\mathbf{x}) = f(x_1, x_2, x_3) = 2x_1^2 - 2x_1x_2 + x_1 + 2x_2^2 + 5x_3^2 - 3x_3 - 1.$$

- a) Xét tính lồi/lõm của f.
- b) Xác định các điểm cực tiểu/cực đại toàn cục và giá trị nhỏ nhất/lớn nhất tương ứng của f (nếu có).

Đáp án:

Ta có $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} - 1$ với

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \, \boldsymbol{b} = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}.$$

Do đó

$$\nabla f(\mathbf{x}) = 2A\mathbf{x} + b,$$

$$\nabla^2 f(\mathbf{x}) = 2A.$$

Khảo sát tính xác định của A (hoặc 2A), ta có A có các trị riêng là 1, 3, 5 đều lớn hơn 0 nên A là ma trận xác định dương. Do đó f lồi ngặt. Do đó f có điểm cực tiểu toàn cục duy nhất là nghiệm của hệ PTTT

$$\nabla f(x) = 0 \Leftrightarrow 2Ax + b = 0 \Leftrightarrow 2Ax = -\mathbf{b}.$$

Hệ trên có nghiệm: $x = \left(-\frac{1}{3}, -\frac{1}{6}, \frac{3}{10}\right)$. Thế vào f ta có giá trị nhỏ nhất của f là $-\frac{97}{60}$.

Điểm: tính ∇f , $\nabla^2 f$ (1 đ); lồi ngặt (0.5 đ); điểm cực tiểu (0.75 đ); giá trị lớn nhất (0.25 đ).

Câu 2. (3 điểm) Khảo sát 2 đại lượng x, y. Cho bảng dữ liệu như sau:

x	1	2	3	4
---	---	---	---	---

у	5.5	7.0	9.5	12.0

Với mỗi mô hình được cho sau, dùng phương pháp *bình phương nhỏ nhất* (least squares) xác định các tham số a, b của mô hình, tính chuẩn vector *phần dư* (residual) và dự đoán giá trị của y tại $x_0 = 5$.

- a) Mô hình logarit: $y = a + b \ln x$.
- b) Mô hình mũ: $y = ae^{bx}$.

Đáp án:

a) Đặt $x' = \ln x$, mô hình y = a + bx'.

Giải bài toán bình phương nhỏ nhất minimize $||A\boldsymbol{\theta} - \boldsymbol{y}||^2$ với

$$A = \begin{bmatrix} 1 & 0.0000 \\ 1 & 0.6931 \\ 1 & 1.0986 \\ 1 & 1.3863 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} 5.5 \\ 7.0 \\ 9.5 \\ 12.0 \end{bmatrix}, \boldsymbol{\theta} = \begin{bmatrix} a \\ b \end{bmatrix}.$$

Nghiệm: $\hat{\theta} = (\hat{a}, \hat{b}) = (4.9012, 4.5295).$

Chuẩn vector phần dư: $||r|| = ||A\widehat{\theta} - y|| = 1.5020$.

Dự đoán giá trị của y tại $x_0 = 5$: $y = \hat{a} + \hat{b} \ln 5 = 12.2$.

b) Lấy ln 2 vế: $\ln y = \ln a + bx$. Đặt $y' = \ln y$, mô hình $y' = \ln a + bx$.

Giải bài toán bình phương nhỏ nhất minimize $||A\theta - y'||^2$ với

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}, \mathbf{y}' = \begin{bmatrix} 1.7047 \\ 1.9459 \\ 2.2513 \\ 2.4849 \end{bmatrix}, \boldsymbol{\theta} = \begin{bmatrix} \ln a \\ b \end{bmatrix}.$$

Nghiệm: $\hat{\theta} = (\ln \hat{a}, \hat{b}) = (1.4352, 0.2646)$. Do đó $(\hat{a}, \hat{b}) = (4.2007, 0.2646)$.

Chuẩn vector phần dư: $||r|| = ||A\widehat{\boldsymbol{\theta}} - \mathbf{y}'|| = 0.0306$.

Dự đoán giá trị của y tại $x_0 = 5$: $y = \hat{a}e^{\hat{b}x} = 15.8$.

Điểm: Mỗi câu (a), (b) 1.5 đ: thiết lập bài toán (0.5), giải tham số (0.5), chuẩn phần dư (0.25 đ), dự đoán (0.25 đ).

Câu 3. (2.5 điểm) Cho xích Markov (Markov chain) $\{X_0, X_1, X_2 ...\}$ có ma trận chuyển (transition matrix)

$$P = \begin{array}{cccc} & 1 & 2 & 3 \\ 1 & \begin{bmatrix} 0.6 & 0.3 & 0.1 \\ 0.2 & 0.5 & 0.3 \\ 3 & 0.2 & 0.1 & 0.7 \end{bmatrix}$$

và phân phối đầu (initial distribution) $\alpha = (0.2, 0.3, 0.5)$. Tìm:

- a) $Pr(X_{10} = 1 | X_8 = 1, X_7 = 1)$
- b) $Pr(X_3 = 3)$
- c) $Pr(X_2 > X_1 > X_0)$
- d) $E(X_2)$ (kì vọng của X_2)
- e) $Pr(X_9 = 2|X_{10} = 3, X_8 = 1)$

Đáp án:

a)
$$\Pr(X_{10} = 1 | X_8 = 1, X_7 = 1) = \Pr(X_{10} = 1 | X_8 = 1) = P_{11}^2 = 0.44.$$

$$1 \quad 2 \quad 3$$

$$1 \quad \begin{bmatrix} 0.44 & 0.34 & 0.22 \\ 0.28 & 0.34 & 0.38 \\ 0.28 & 0.18 & 0.54 \end{bmatrix}$$

b) $Pr(X_3 = 3) = (\alpha P^3)_3 = 0.4088.$

$$\alpha P^3 = (0.3248, 0.2664, 0.4088)$$

- c) $\Pr(X_2 > X_1 > X_0) = \Pr(X_0 = 1, X_1 = 2, X_2 = 3) = \Pr(X_0 = 1) \Pr(X_1 = 2 | X_0 = 1) \Pr(X_2 = 3 | X_1 = 2) = \alpha_1 P_{12} P_{23} = 0.2 \times 0.3 \times 0.3 = 0.018.$
- d) $E(X_2) = 0.312 \times 1 + 0.26 \times 2 + 0.428 \times 3 = 2.116$. Phân phối của X_2

$$\alpha P^2 = (0.312, 0.26, 0.428).$$

e)
$$\Pr(X_9 = 2 | X_{10} = 3, X_8 = 1) = \frac{\Pr(X_9 = 2, X_{10} = 3, X_8 = 1)}{\Pr(X_{10} = 3, X_8 = 1)} = \frac{\Pr(X_8 = 1) \Pr(X_9 = 2 | X_8 = 1) \Pr(X_{10} = 3 | X_9 = 2)}{\Pr(X_8 = 1) \Pr(X_{10} = 3 | X_8 = 1)} = \frac{\Pr(X_9 = 2 | X_8 = 1) \Pr(X_{10} = 3 | X_9 = 2)}{\Pr(X_{10} = 3 | X_8 = 1)} = \frac{P_{12} P_{23}}{P_{13}^2} = \frac{0.3 \times 0.3}{0.22} = 0.41.$$

Điểm: mỗi câu (a)-(e) 0.5 đ.

Câu 4. (2 điểm) Một con chuột sống trong căn nhà gồm 4 phòng bố trí như hình sau

Giả sử mỗi ngày con chuột chỉ ở một phòng nào đó và lựa chọn ngẫu nhiên giữa việc tiếp tục ở lại và di chuyển sang "phòng bên" trong ngày kế tiếp. Chẳng hạn nếu đang ở Phòng 4 thì con chuột sẽ tiếp tục ở Phòng 4 hoặc di chuyển sang Phòng 2 hay Phòng 3 trong ngày kế tiếp với xác suất đều là $\frac{1}{3}$.

- a) Giả sử con chuột đang ở Phòng 1, tính xác suất con chuột vẫn ở Phòng 1 sau đó 5 ngày.
- b) Sau rất nhiều ngày, xác suất con chuột ở trong mỗi phòng là bao nhiêu?

Đáp án:

Đặt X_n là phòng mà con chuột ở trong ngày thứ n. Vì X_{n+1} chỉ phụ thuộc X_n nên $\{X_0, X_1, X_2, ...\}$ là xích Markov với tập trạng thái $\{1, 2, 3, 4\}$ và ma trận chuyển

$$P = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1/2 & 1/2 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 3 & 0 & 1/3 & 1/3 & 1/3 \\ 4 & 0 & 1/3 & 1/3 & 1/3 \end{bmatrix}$$

- a) $Pr(X_{n+5} = 1 | X_n = 1) = P_{11}^5 = 0.2033.$
- b) Ta thấy P^2 gồm toàn các số dương nên P chính qui. Do đó xích có phân phối giới hạn π cũng là phân phối dừng duy nhất. Giải hệ

$$\begin{cases} \pi = (a, b, c, d) \\ a, b, c, d \ge 0 \\ a + b + c + d = 1 \\ \pi = \pi P \end{cases}$$

được
$$\pi = (\frac{1}{6}, \frac{1}{3}, \frac{1}{4}, \frac{1}{4}).$$

Như vậy, sau rất nhiều ngày, xác suất con chuột ở trong các Phòng 1, 2, 3, 4 tương ứng là $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{4}$.

Điểm: mỗi câu (a), (b) 1 điểm. Lưu ý: sinh viên có thể không dùng xích Markov.