Session 6: Eigenvalues, eigenvectors & Markov chains

Optimization and Computational Linear Algebra for Data Science

e you want: exercise: let S be a sobspace

of Rⁿ and Ps the arthogonal projection onto S. Show that

Léo Miolane

rank (Ps) = Tr(Ps)

Contents

- Orthogonal matrices
- 2. Eigenvalues & eigenvectors
- 3. Properties of eigenvalues and eigenvectors
- 4. Markov chains

Orthogonal matrices

Orthogonal matrices 1/24

Orthogonal matrices

If PERMAN is orthogonal

- . P "preserves the norm"
- . P " preserves the "angles"

||Pa|| = ||a||

thats why we should undustand or thogonal matries as "rotations" in R"

Eigenvalues & eigenvectors

Introduction

Eigenvalues & eigenvectors

Definition

Definition

Puxm

Let $A \in \mathbb{R}^{n \times n}$. A **non-zero** vector $v \in \mathbb{R}^n$ is said to be an eigenvector of A is there exists $\lambda \in \mathbb{R}$ such that

 $\mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$

Ida=1)2

The scalar λ is called the eigenvalue (of A) associated to v.

Remark: If $\sigma \in \text{ke(A)}$ and if $\boxed{\sigma \neq 0}$ then σ is an eigenvector of A associated to the eigenvalue O: $A\sigma = O = O \cdot \sigma$

Eigenvalues & eigenvectors

Example: diagonal matrices

$$D = Diag(\lambda_1, \lambda_2, ... \lambda_n) = \begin{pmatrix} \lambda_1 \lambda_2 & ... & \lambda_n \\ 0 & \lambda_2 & ... & \lambda_n \end{pmatrix}$$

$$De_1 = \lambda_1 e_1 \qquad e_1 \quad \text{is the associated eigenvalue}$$

$$h_1 \text{ is the associated eigenvalue}$$

$$De_n = \lambda_n e_n \qquad e_n \qquad \qquad \lambda_n$$

Matrix with no eigenvalues/vectors

Consider
$$R_0 = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 for $\theta \in (0,T)$
 $\begin{cases} \cos \theta \\ \sin \theta \end{cases}$ for all $\alpha \in \mathbb{R}^2$, for all $\beta \in \mathbb{R}$
 $\begin{cases} \cos \theta \\ \cos \theta \end{cases}$ $\begin{cases} \cos \theta$

Example: orthogonal projection

Eigenspaces

Definition

If $\lambda \in \mathbb{R}$ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$, the set

$$(A - \lambda Id) 2 = C$$

envalue of
$$A \in \mathbb{R}^{n \times n}$$
, the set
$$E_{\lambda}(A) = \{\underline{x} \in \mathbb{R}^{n} \mid \underline{Ax} = \lambda x\} = \underbrace{\ker \left(A - \lambda T A\right)}_{\text{envalue}}$$

is called the eigenspace of A associated to λ . The dimension of $E_{\lambda}(A)$ is called the multiplicity of the eigenvalue λ .

$$|S| = E_0(P_s) \stackrel{\text{dim}}{=} 1$$

$$|f| = |f| = |f$$

Properties

Properties 10/24

Let $A \in \mathbb{R}^{n \times n}$. Suppose that A has an eigenvalue $\lambda \in \mathbb{R}$ and let $x \in \mathbb{R}^n$ be an eigenvector associated to λ .

Fact #1

For all $\underline{\alpha} \in \mathbb{R}$, $\underline{\alpha}\lambda$ is an eigenvalue of the matrix $\underline{\alpha}A$ and \underline{x} is an associated eigenvector.

$$\frac{\text{Proof}}{\text{e}}$$
 $\frac{\text{(aA)}}{\text{a}}$ $2 = \text{a}$ $Ax = \frac{\text{(aA)}}{\text{a}}$ $2 = \frac{\text{(aA)}}{\text{a}}$

Let $A \in \mathbb{R}^{n \times n}$. Suppose that A has an eigenvalue $\lambda \in \mathbb{R}$ and let $x \in \mathbb{R}^n$ be an eigenvector associated to λ .

Fact #2

For all $\alpha \in \mathbb{R}$, $\lambda + \alpha$ is an eigenvalue of the matrix $A + \alpha \operatorname{Id}$ and x is an associated eigenvector.

$$\frac{\text{Roof:}}{\text{Roof:}} \frac{(A+a)}{(A+a)} = Ax + a \times Ax$$

$$= (\lambda+a) \times Ax$$

$$= (\lambda+a) \times Ax$$

Properties 11/24

Let $A \in \mathbb{R}^{n \times n}$. Suppose that A has an eigenvalue $\lambda \in \mathbb{R}$ and let $x \in \mathbb{R}^n$ be an eigenvector associated to λ .

Fact #3

For all $k \in \mathbb{N}$, λ^k is an eigenvalue of the matrix A^k and x is an associated eigenvector.

Proof:
$$Ax = \lambda x$$

$$A^{2}x = A(\lambda x) = \lambda Ax = \lambda^{2}x$$

$$A^{3}x = A(\lambda^{2}x) = \lambda^{3}x$$

Let $A \in \mathbb{R}^{n \times n}$. Suppose that A has an eigenvalue $\lambda \in \mathbb{R}$ and let $x \in \mathbb{R}^n$ be an eigenvector associated to λ .

Fact #4

If A is invertible then $1/\lambda$ is an eigenvalue of the matrix inverse A^{-1} and x is an associated eigenvector.

Properties 11/24

Spectrum

Definition

The set of all eigenvalues of A is called the spectrum of A and denoted by $\operatorname{Sp}(A)$.

Theorem

$$Sp(Diag(\lambda_1,...\lambda_n)) = \{\lambda_1,...\lambda_n\}$$

 $A \times n \times n$ matrix A admits at most n different eigenvalues:

$$\#\operatorname{Sp}(A) \le n.$$

cardinal

$$Sp(P_s) = \{0,1\}$$

Ez(Ps)

Proof that $\#\mathrm{Sp}(A) \leq n$

Proposition

Let v_1, \ldots, v_k be eigenvectors of A corresponding (respectively) to the eigenvalues $\lambda_1, \ldots, \lambda_k$. If the λ_i are all distinct $\lambda_i \neq \lambda_j$ for all $i \neq j$) then the vectors v_1, \ldots, v_k are linearly independent.

Assuming that the proposition holds. If λ_1 he are distinct eigenbal. A associated with ν_1 — ν_2 : ν_2 — ν_3 — ν_4 lin indep This implies that ν_4 ν_5 — ν_6 .

Properties 13/24

Proof of the proposition

Propertie

Proof of the proposition

 $d_1 V_1 = 0$ but $v_2 \neq 0$ therefore $d_1 = 0$ Repeating this, we get $d_1 = d_2 = --= d_0 = 0$.

In the general case, let min = min (12 -- 20)

We apply what we have proved to the matrix $(A - \lambda_{\min}) \subset eigenvalues \lambda_1 - \lambda_{\min} - \lambda_{e} - \lambda_{\min}$

eigonvectors 05_ --- ver >0

I get that Vn... Ver are lin. independent.

Even better!

Theorem

 $A \times n \times n$ matrix A admits at most n different eigenvalues:

$$\#\operatorname{Sp}(A) \leq n$$
.

Theorem

1 Stronger!

Let $A \in \mathbb{R}^{n \times n}$. If $\lambda_1, \dots, \lambda_k$ are distinct eigenvalues of A of multiplicities m_1, \dots, m_k respectively, then

$$m_1 + \dots + m_k \le n.$$

Properties 15/24

Example

$$\rightarrow | \dim E_1(\mathbb{R}) = 2 \quad \text{multip. if } 1$$

$$\lim E_0(\mathbb{R}) = 1 \quad \longrightarrow \quad | E_1$$

2 = () = S¹

Markov chains

Markov chains 17/24

An example

Consider a "cat" that has only 3 "states": 1 Sleeping @ Eating 3 Playing We represent the evolution in time by the sequence Xo, X1 ... Xt E. C 11,2,34 state of cut at three to 0,6 0,2 We can put these prob. in a "franktian matrix" $P = \begin{pmatrix} 0,6 & 0,5 & 0,3 \\ 0,2 & 0,3 & 0 \\ 0,2 & 0,2 & 0,2 \end{pmatrix}$ $3 < 0.7 \quad | (X_{t+2} = 3 \mid X_t = j) = | (X_t = j) = | (X$

Stochastic matrices

Definition

A matrix $P \in \mathbb{R}^{n \times n}$ is said to be stochastic if:

- 1. $P_{i,j} \geq 0$ for all $1 \leq i, j \leq n$.
- 2. $\sum_{i=1}^{n} P_{i,j} = 1$, for all $1 \le j \le n$.

Probability vectors

Question: what is the prob. that the cat is sleeping at a time to pluying at
$$R(X_t = 1)$$
 $R(X_t = 3)$

Markov chains 20/24

The key equation

Proposition

For all t > 0

$$x^{(t+1)} = Px^{(t)}$$

 $x^{(t+1)} = Px^{(t)}$ and consequently, $x^{(t)} = P^t x^{(0)}$.

Long-term behavior

We observe that $x^{(t)} \xrightarrow{t \to t} N \in \mathbb{R}^3$ We know that 2(4M) = P 2(4) N = PN . p has to verify p = Pp. p is an eigenvector of P associated to the eighvalue 1.

Next week

- 1 Does 2⁽⁴⁾ always converge?
- 2) Is there only one limiting distribution p?
 - 3) How do we make \$\$\$ with that?

_ all answered next week.

Markov chains 23/24

Eigenvalues in physics

Markov chains 24/24

Questions?

Questions?

