

Masterthesis

Change-Adaptive Active Learning on Data Streams

Julien Aziz

Motivation - Active Learning & Data Streams

Active Learning

- Model Accuracy vs. Labeling Costs
- Accurate classifier with less training
- Algorithm chooses instances to label
- Main aspects:
 - Input scenario
 - Labeling strategy
 - Labeling budget

Data Stream Mining

- Time-sequenced streams of data
- Rising data volume and arrival rate
 - Labeling every instance unfeasible
 - Active Learning to maximize accuracy
- Main aspects
 - Time requirements
 - Memory requirements
 - Change adaption

Motivation – Active Learning

- Main Challenge: find most valuable training instances (Labeling Strategy)
- Labeling Strategy assesses instances
 - Uncertainty Based: Labels around decision boundary
 - Representation Based: Labels reflect feature space distribution
- Only "valuable" instances presented to Oracle
 - Pool-based
 - Entire dataset available
 - Instance ranking
 - Stream-based
 - Instance at a time
 - Threshold comparison

Motivation – Data Stream Active Learning

- Data Stream $D = ..., (X_{t-1}, y_{t-1}), (X_t, y_t), ...$
 - $\blacksquare X_t \sim p_t(X)$: feature vector
 - $y_t \sim p_t(y)$: class label
 - (X_t, y_t) is sample from joint distribution $p_t(X, y)$
- Label selection
 - Batch-processing: Pool-based techniques on stream batches
 - Instance-incremental: Decision on each instance at a time
- Challenges:
 - Thresholds must be constantly adjusted
 - Concept drifts

Motivation – Concept Drifts

- Data changes over time: $p_t(X, y) \neq p_{t+1}(X, y)$
 - Caused by change in $p_t(X)$, $p_t(y)$ or $p_t(X, y)$
 - Acquired Labels may become outdated
 - Different types possible:

- Further differentiations:
 - Abrupt
 - Gradual
 - Reoccuring

- Reacting to changes challenging with Active Learning
 - Data is sparsely labeled
 - Labeled instances not representative

Implicit Change Adaption

Dual Query & Cognition Window [Lui et al. – 2021]

ACLStream: Clustering-Based [Lenco et al. – 2018]

Periodically update the model

Batch-Incremental Methods
[Zhu et al.- 2007]

■ Window-Based Methods [Kottke et al. – 2015]

Explicit Change Detection Frameworks

AL Framework for Data Streams [Žliobaitė et al. – 2014]

■ PEFAL: Extention of Žliobaitė et al. (2014) [Xu et al. – 2016]

Problems:

- 1. Overadaption of samples around decision boundary [Zhang et al. 2019]
- 2. Tradeoff: Discard potentially valuable information / Consider old concepts [Gama et al. 2014]
- 3. Delayed reaction to abrupt changes [Lui et al. 2021]

Illustration – Overadaption

- 1. Overadaption of samples around decision boundary [Zhang et al. 2019]
- Uncertainty-based strategies acquire labels at decision boundary
 - Most valuable instances to learn the classification problem
 - Problems:

Balanced Labeling Strategy: Uncertainty + Representation based

Illustration – Preserving vs. Forgetting

- 2. Tradeoff: Discard potentially valuable information / Consider old concepts [Gama et al. 2014]
- Forgetting mechanisms or preserving knowledge
 - Periodic retraining vs incremental training

Experiment Setup:

- Hyperplane Generator
- Length: 5000 Samples
- Classifier: Hoeffding's Trees
- Label Budget: 10%
- Repetitions: 10

Frequent Changes (30%)

Explicit Change Detection: Retrain only when changes are identified

Illustration – Regional Changes

3. Delayed reaction to abrupt changes [Lui et al. – 2021]

- Changes can occur everywhere in feature space
 - Decision Boundary might change
- Explicit Change Detection based Approaches
 - Completely discard old information
 - Need to retrain from scratch after change

- Changes might only affect a specific region [Liu et al. 2017]
 - Labels in this Region are outdated
 - Labels outside the Region still yield current concept
- Forget only outdated information
 - Faster recovery from abrupt drifts

Requirements – Adaptive Online AL

- Requirements for adaptive active learning algorithms in data streams
 - R1: Employ balanced labeling strategies (Overadaption)
 - R2: Continuously learn in stable stream states (Stability)
 - R3: Actively detect concept drifts (Adaptivity)
 - R4: Adjust the model by forgetting outdated knowledge (Adaptivity)
 - **R5**: Preserve knowledge unaffected by concept drifts (Recovery time)
- Challenges:
 - Identify the region of changes
 - Adapt the model without losing intact knowledge

Our Approach – CORA

- Clustering-Based Online ReActive Learning Framework (CORA)
- Local adaption framework for active learning in data streams
- Main components:
 - Clustering Algorithm: Online clustering enrichened with labeling statistics
 - Change Detector Ensemble: Each monitoring individual cluster
- Interchangable components:
 - Classifier: Any incremental trainable probabilistic classifier
 - Labeling Strategy: Any online instance-incremental labeling strategy
- 4 Different configurations
 - Single Classifier Model or Ensemble
 - Change Detection on Local Prediction Error or Class Entropy

12

CORA – Clustering

- Based on CluStream: Unsupervised clustering algorithm for data streams
 - Cluster-Feature: $(LS_i^x, SS_i^x, LS_i^t, SS_i^t, n)$
 - Adaption through merging and deleting clusters based on their relevance
- Enrichened Cluster-Feature: $CF_i = (LS_i^x, SS_i^x, LS_i^t, SS_i^t, n, LI_i, LD_i)$
 - $LI_i = \{(x_0, y_0, i_0), \dots, (x_{w-1}, y_{w-1}, i_{w-1})\}$
 - Sliding window of recent labeled instances and their timestamps
 - $LD_i = [D_i^0, ..., D_i^{c-1}]$
 - D_i^j = sum of occurrence of *j*-th class in cluster *i*
 - Class Distribution
- Cluster deletions can be triggered externally by change detectors

CORA – Classifier Model

- Base Classifier (M): Any incremental probabilistic classifier
 - Outputs probability score $p_M(y|x_i)$
 - Learns global context
- Clustering Model (C)
 - $p_{\mathcal{C}}(y|x_i)$ approximated using the class distribution $\mathbf{L}\mathbf{D}_i$ in cluster
 - Captures local classification problem

1. Single Classifier Approach

- Base Classifier (M)
- $\hat{y}_i = \arg\max_{y} p_M(y|x_i)$

2. Ensemble Classifier Approach

- Dual Model:
 - Base Classifier (M)
 - Clustering Model (C)
- $p_E(y|x_i) = 0.5 * (p_M(y|x_i) + p_C(y|x_i))$
- $\hat{y}_i = \arg\max_{y} p_M(y|x_i)$

CORA – Change Adaption

Change Detection

- Drift Detection Modules (DDM)
 - Each DDM monitors own cluster
- Procedure
 - Find closest cluster
 - Update corresponding detector

Adaption Mechanism

- Procedure
 - Delete affected cluster
 - 2. Retrain classifier on remaining cluster
- Recent training data in cluster

Drift Indicator

1. Local Prediction Error

$$e_i \begin{cases} 0, & if \ \hat{y}_i = y_i \\ 1, & if \ \hat{y}_i \neq y_i \end{cases}$$

2. Class Entropy in cluster

$$H(CF_k) = -\sum_{j=0}^{c} p_j \log_c p_j$$

Detector Threshold δ

- Sensitivity of Change Detectors
- Trade-off
 - Too small False Alarms
 - Too high Missed Drifts
- $\delta = 1$ good balance

Number of Cluster n_c

- Influences quality of clustering
 - Predictions and Adaptivity
- Trade-off
 - Too small Coarse clustering
 - Too high Sparse cluster
- $n_c = n_{classes} + 8$

Evaluation – Setup

CORA - Configurations

Config	Prediction Model	Detection Indicator
CORA-SP CORA-SE CORA-EP CORA-EE	Single Single Ensemble Ensemble	Prediction Error Entropy Prediction Error Entropy

- Interchangable Components
 - Hoeffding's Trees
 - **OPAL** [Kottke et al. 2015]
 - Online Probabilist Active Learning

Datasets

Real World							
Dataset Features Classes Cat. Feature Length Drift							
Electricity	8	2	1	45,312	Unknown		
Airlines			2 2 7 44	,	Unknown		
Covertype					Unknown		
Pokerhand	10	10	5	829,201	Unknown		
Artificial							
Dataset Features Classes Cat Feature Length Drift Type							

Dataset	Features	Classes	Cat. Feature	Length	Drift Type
Hyperplane	2	2	0	Inf	Increm. + Global
SEA	3	2	0	100,000	Abrupt + Global
RBF	2	15	0	Inf	Abrupt + Local
Chessboard	2	8	0	200,000	Abrupt + Global

Evaluation – Comparison

Baselines

- OPAL-NA [Kottke et al. 2015]
 - No active adaption mechanism
 - Balanced Labeling Strategy
- Zliobaite [Zliobatie et al. 2014]
 - Explicit change detection
 - Replacement when change detected
- PEFAL [Xu et al. 2016]
 - Implicit change detection
 - Two classifier trained parallel
 - Swaped when change detected

Configurations

Baseline	Labeling Strategy	Change Detection	Classifier
OPAL-NA	OPAL + BIQF	-	Hoeffding's Tree
Zliobaite	OPAL + BIQF	DDM	Hoeffding's Tree
PEFAL	VarUncertainty	Implicit	Hoeffding's Tree

Parameters as in original source

Experimental Setup

- Prequential evaluation
- Stream Partitions: 10 000 Instances
- Budgets: $b \in [0.01, 1]$
- Repetitions: 30

Dataset	CORA-EE	EP	SE	SP	OPAL-NA	PEFAL	Zliobaite
Airlines	0.6157	0.6013	0.6256	0.6079	0.6253	0.6086	0.6236
ChessBoard	0.5625	0.5832	0.4128	0.4580	0.2981	0.4736	0.4498
Covertype	0.9506	0.9506	0.8389	0.8389	0.8389	0.8389	0.8817
Electricity	0.8020	0.7999	0.7659	0.7491	0.7646	0.7728	0.7932
Hyperplane	0.8536	0.8598	0.8525	0.8619	0.8085	0.9146	0.8477
PokerHand	0.7171	0.724	0.6361	0.6603	0.6361	0.6715	0.6950
RbfGenerator	0.9064	0.9251	0.8778	0.8970	0.6270	0.7253	0.8267
SEA	0.8068	0.7854	0.8364	0.8072	0.8615	0.8402	0.8599

- CORA superior on most data sets
- Change detection designs deviate
 - Error based better with sever changes
 - Entropy more robust against noise
- Limitations
 - Categorical attributes with many values
 - High dimensions

Evaluation – Change Adaption

- Faster recovery from abrupt change
- CORA preserves intact knowledge

Evaluation – Requirements

Requirements

- R1: Employ balanced labeling strategies (Overadaption)
- R2: Continuously learn in stable stream states (Stability)
- R3: Actively detect concept drifts (Adaptivity)
- R4: Adjust the model by forgetting outdated knowledge (Adaptivity)
- **R5**: Preserve knowledge unaffected by concept drifts (Recovery time)

CORA

- Modular structure
 - Balanced Labeling Strategy
 - Incremental learning Classifier
- Explicit Change Detection
 - Adjust when necessary
- Local Adaption Mechanism
 - Forgetting affected areas
 - Preserving unaffected knowledge

Conclusion & Future Work

- Local Adaption Mechansim
 - Based on clustering
 - Maintain valuable knowledge
 - Faster recovery from local abrupt drifts
- Further usage of Clustering
 - Minimal additional complexity
 - Valuable prediction support
- Future Works:
 - Develop a Labeling Strategy based on our clustering
 - More efficient retraining and merging techniques

References

Previous Works

- Zhu, X., Zhang, P., Lin, X., Shi, Y.: Active learning from data streams. In: ICDM. pp. 757–762. IEEE Computer Society (2007)
- Zliobaite, I., Bifet, A., Pfahringer, B., Holmes, G.: Active learning with drifting streaming data. IEEE Trans. Neural Networks Learn. Syst. 25(1), 27–39 (2014)
- Liu, Sanmin, et al. "Online active learning for drifting data streams." *IEEE Transactions on Neural Networks and Learning Systems* (2021).
- lenco, D., Bifet, A., Zliobaite, I., Pfahringer, B.: Clustering based active learning for evolving data streams. In: Discovery Science. Lecture Notes in Computer Science, vol. 8140, pp. 79–93. Springer (2018)
- Kottke, D., Krempl, G., Spiliopoulou, M.: Probabilistic Active Learning in Datastreams (2015)

Evaluation – Sensitivity Analysis

Hyperparameters

- Detector Threshold $\delta \in [0.1, 3]$
 - Sensitivity of Change Detectors
 - Trade-off
 - Too small False Alarms
 - Too high Missed Drifts
- Number of Cluster $n_c \in [1, 50]$
 - Influences quality of clustering
 - Predictions and Adaptivity
 - Trade-off
 - Too small Coarse clustering
 - Too high Sparse cluster

Evaluation

- Hyperplane Generator
 - 2 Classes
 - Hyperplane constantly rotates
 - Incremental Global Drift
- Rbf Generator
 - 15 Classes (15 Rbfs)
 - Random Rbfs swap positions
 - Abrupt Local Drift
- Experiments
 - Partitions: 5000 Instances
 - Budgets: (10%, 40%, 70%)
 - Repetitions: 30

Evaluation – Detector Threshold

- Dependency to number of cluster
 - High sensitivity when small
 - Especially on Rbf Generator
- Entropy based more sensitive

Evaluation – Number of Cluster

- Observation
 - Rise until optimum
 - Degradation beyond
 - Depends on dataset
- Trade-off:
 - Small Clustering too coarse
 - High Sparse cluster
- Ensemble more sensitive
 - Direct dependency
- Slightly above number of classes
 - $n_{cluster} = n_{classes} + 8$

Motivation – Stream Active Learning

- Traditional Active Learning assumes stationary relationships between features and target variable
- Data Stream $D = ..., (X_{t-1}, y_{t-1}), (X_t, y_t), ...$
 - $X_t \sim p_t(X)$: feature vector
 - $y_t \sim p_t(y)$: class label
 - (X_t, y_t) is sample from joint distribution $p_t(X, y)$

Concept Drifts

- Streams can change over time: $p_t(X, y) \neq p_{t+1}(X, y)$
 - Caused by change in $p_t(X)$, $p_t(y)$ or $p_t(X, y)$
 - Acquired Labels may become outdated
 - Model trained on old concept
- Reacting to changes challenging with Active Learning
 - Data is sparsely labeled
 - Labeled instances not representative

Original Concept

Concept Drift

Illustration – Influence of changes on incremental classifier

Incremental Training

Experiment Setup:

- Data : Hyperplane Dataset
- Classifier: Incremental
- Label Budget: 10%

Retraining

- Common approaches fail to adapt to Abrupt Drifts
 - Fix labeling budget prevents fast adaption
 - Predictions after change still based on old concepts

- Detecting changes early allows acting appropriately
 - Storing instances once a Concept Drift occurred
 - Retrain model on new concept

Our Idea

- Detect changes early: Based on labeled & unlabeled data
 - In any region of the feature space
- Differentiate between states of the Data Stream
- In Stationary states:
 - Preserve labeling budget
 - Discard irrelevant information

- In **Drift states**:
 - Use labeling budget
 - Discard old labels in change region
 - Obtain labels in region of the drift
- Meet Label Budget: Number of labels average the pre-defined budget
- Main Challenge: How to detect regional changes early in Active Learning scenario?

Approach – CluStream AL

- CluStream: Clustering Approach for Data Streams
 - Each cluster stored as Feature Vector: $C_i = (LS_i^x, SS_i^x, LS_i^t, SS_i^t, n)$
 - Clustering evolves over time
- Idea: Extend the Feature Vectors with labeling statistics
 - Change Detection: Indicators for Concept Drifts can be derived
 - Cluster Radius
 - Cluster Density
 - Class Entropy inside cluster
 - Locality of Changes is considered
 - Relevant Information stored in cluster features
 - Cluster deleted when outdated

Approach – CluStream AL

Clustering

Experiment Setup:

- Data: Toy Data Set
- Based on Iris Data set
- CluStream
- Labeling Strategy: PAL

Label distributions per Cluster

31

Approach – Open Questions

Cluster Statistics

- Which additional information should be stored in Feature Vectors?
- How to derive a "Drift Score" for each cluster?

Active Learning Policy

- How to combine these statistics with an Active Learning Policy?
- Distribute budget to cluster?

Model Structure

- Single Classifier or Ensemble?
- One classifier for each cluster?

Adaption over Time

- Which information should remain
- Incremental vs. Batch Learning

Appendix– Properties

- Random based: Label each instance with a certain probability
 - No historical data required
 - Labeled Instances uniformly distributed over entire Feature Space
- Uncertainty based: Label instances the classifier is least confident
 - E.g. margin posterior probability margin(X) = $p(y_{c1}|X) p(y_{c2}|X)$
 - No historical data required
 - Only labels around decision boundary
- Local Density based: Label most representative instances
 - Based on number of nearest neighbours
 - Historical data required

Appendix - Batch Incremental Methods

Window-Based Approach

- Uncertainty Sampling on Batch
- Labeled instances in window
- Classifier trained on window

Problems:

- Determine the training period
 - Overhead
 - Changes might get missed

Appendix - Uncertainty Based AL

- Drift Detection based on Model accuracy or Label distribution
 - Slow detection in sparsely labeled streams

Appendix – Dual Query & Cognition Window

- Idea: use Uncertainty and Local Density Strategies
- Data is maintained in a specific Cognition Window
 - Based on time and Euclidian distances to each other
 - Used to calculate the local density

Appendix - Clustering Based

- Each incoming batch is classified and clustered
- Two-step-process to identify the instances to label
 - **Macro Step:** Finding important clusters
 - Clusters ranked by class homogeneity metric
 - Further steps inside n best clusters
 - 2. Micro Step: Finding important instances
 - Selection based on two properties
 - Distance to centroid
 - Uncertainty of classifier
- Classifier is learned incrementally
- Representation property considered

Appendix - PAL

Uncertainty Based Sampling

- Label instances the classifier is least confident
 - E.g., margin posterior probability margin(X) = $p(y_{c1}|X) p(y_{c2}|X)$
 - if margin(X) > θ then label(X)

Probabilistic Balanced Quantile Filter

- Instances accessed based on
 - Spatial Usefulness
 - **Model Uncertainty**
- Threshold implemented as ordered list
 - Ordered by utility
 - Balancing Measurement to ensure Budget is met

Appendix – Time & Memory Requirements

■ Time Complexity influenced by Learning and Labeling

Time required for	Batch-Window	Basic-Incremental	DualQuery	ClusterBased	
Learning	New Classifier each batch	Updated every instance	Updated every instance	Updated every instance	
Labeling	Pool-Based sampling	Online sampling	2 * Online Sampling + Window calculations	Clustering + Pool-Based sampling	

Memory requirements influenced by

C : size of model structure

■ *W*: window size

 \blacksquare *B* : Batch size

	Batch-Window	Basic-Incremental	DualQuery	ClusterBased
Memory	O(C+W+B)	O(2 * C)	O(C+W)	O(C + Clustering + B)

Handling Data Streams – Concept Drifts

Real Concept Drift

- Change in $p(y \mid X)$
- Effects Decision Boundary

Virtual Concept Drift

- Only change in p(X)
- No effects on Decision Boundary

Labeling Strategies – Labeling Budget

- Cost of labelling depends on application
 - Budget is defined a priori
 - Labeling only allowed if Budget not exceeded
- Problem: infinite sequence of data
 - Fixed Budget size for whole Stream unfeasible
- Batch-incremental setting
 - Fixed budget $B \in [0, 1]$ each Batch
 - Instances ranked by strategy
 - Label fraction B of best instances

Instance-incremental setting

- Current budget spend $\hat{B} = \frac{\hat{v}}{w}$
 - w: Fixed size sliding window
 - \hat{v} : Number of labels in current window
- Label allowed if $\hat{B} < B$

Approaches - Batch Incremental Methods

Window-Based Approach

- Uncertainty Sampling on Batch
- Labeled instances in window
- Classifier trained on window

Ensemble Approach

- Sampling on each Batch
- Classifier for each Batch

Motivation – Data Stream Active Learning

- Data Stream $D = ..., (X_{t-1}, y_{t-1}), (X_t, y_t), ...$
 - $\blacksquare X_t \sim p_t(X)$: feature vector
 - $y_t \sim p_t(y)$: class label
 - (X_t, y_t) is sample from joint distribution $p_t(X, y)$
- Challenges in Data Stream Mining
 - 1. Volumes and arrival rates
 - 2. Memory constraints
 - 3. Real-time processing
 - 4. Changes in the data distribution (Concept Drifts)
- Label selection
 - Batch-processing: Pool-based techniques on stream batches
 - Instance-incremental: Decision on each instance at a time