Optimal synaptic strategies for different timescales of memory

Subhaneil Lahiri and Surya Ganguli

Stanford University, Applied Physics

February 26, 2016

What is a synapse?

What is a synapse?

Theorists

What is a synapse?

Theorists

Experimentalists

[Klann (2002)]

Storage capacity of synaptic memory

Hopfield, perceptron have capacity \propto N, (# synapses).

Assumes unbounded analog synapses

With discrete, finite synapses:

 \implies memory capacity $\sim \mathcal{O}(\log N)$.

[Amit and Fusi (1992), Amit and Fusi (1994)]

[Petersen et al. (1998), O'Connor et al. (2005)]

New memories overwrite old \implies stability-plasticity dilemma.

- $\bullet \ \ Internal \ functional \ state \ of \ synapse \rightarrow synaptic \ weight.$
- weakstrong
- $\bullet \ \ \mathsf{Candidate} \ \mathsf{plasticity} \ \mathsf{events} \to \mathsf{transitions} \ \mathsf{between} \ \mathsf{states} \\$

States: #AMPAR, #NMDAR, NMDAR subunit composition, CaMK II autophosphorylation, activating PKC, p38 MAPK,...

[Fusi et al. (2005), Fusi and Abbott (2007), Barrett and van Rossum (2008)]

- ullet Internal functional state of synapse o synaptic weight.
- weak
- $\bullet \ \, \text{Candidate plasticity events} \, \to \, \text{transitions between states} \\$
- strong

States: #AMPAR, #NMDAR, NMDAR subunit composition, CaMK II autophosphorylation, activating PKC, p38 MAPK,...

[Fusi et al. (2005), Fusi and Abbott (2007), Barrett and van Rossum (2008)]

- $\bullet \ \, \text{Internal functional state of synapse} \to \text{synaptic weight}. \\$
- weakstrong
- ullet Candidate plasticity events o transitions between states

Serial model

[Ben-Dayan Rubin and Fusi (2007), [Benna and Fusi (2015)] Leibold and Kempter (2008)]

Synaptic memory curves

Synapses store a sequence of memories.

General principles relating structure and function?

Synaptic structure

Synaptic function

- What are the fundamental limits of memory?
- Which models achieve these limits?
- What are the theoretical principles behind the optimal models?

Proven envelope: memory frontier

Upper bound on memory curve at any timescale.

Proven envelope: memory frontier

Upper bound on memory curve at any timescale.

Models that maximize memory for one timescale

Models that maximize memory for one timescale

Models that maximize memory for one timescale

Synaptic diversity and timescales of memory

Different synapses have different molecular structures.

[Emes and Grant (2012)]

Synaptic diversity and timescales of memory

Different synapses have different molecular structures.

[Emes and Grant (2012)]

Memories stored in different places for different timescales

[Squire and Alvarez (1995)] [McClelland et al. (1995)]

[Born and Wilhelm (2012)]

Also: Cerebellar cortex \rightarrow nuclei.

[Attwell et al. (2002)]

[Cooke et al. (2004)]

Synaptic structure and function: general principles

Synaptic structure and function: general principles

Synaptic structure and function: general principles

Experimental tests?

Traditional experiments:

Experimental tests?

Traditional experiments:

To fit a model: long sequence of small plasticity events. Observe the changes in synaptic efficacy.

Summary

- We have formulated a general theory of learning and memory with complex synapses.
- We find a memory envelope: a single curve that cannot be exceeded by the memory curve of *any* synaptic model.
- We understood which types of synaptic structure are useful for storing memories for different timescales.
- We studied more than a single model. We studied *all possible models*, to extract general principles relating synaptic structure to function

Acknowledgements

Thanks to:

- Surya Ganguli
- Stefano Fusi
- Marcus Benna
- David Sussillo
- Jascha Sohl-Dickstein

Funding:

- Swartz foundation
- Stanford Bio-X
- Genentech

References I

Eric Klann.

"Metaplastic Protein Phosphatases".

Learning and Memory, 9(4):153-155, (2002),

http://learnmem.cshlp.org/content/9/4/153.full.pdf+html.

D. J. Amit and S. Fusi.

"Constraints on learning in dynamic synapses".

Network: Comp. Neural, 3(4):443-464, (1992).

D. J. Amit and S. Fusi.

"Learning in neural networks with material synapses".

Neural Comput., 6(5):957-982, (1994) .

References II

Carl C. H. Petersen, Robert C. Malenka, Roger A. Nicoll, and John J. Hopfield.

"All-or-none potentiation at CA3-CA1 synapses".

Proc. Natl. Acad. Sci. U.S.A., 95(8):4732-4737, (1998) .

Daniel H. O'Connor, Gayle M. Wittenberg, and Samuel S.-H. Wang.

"Graded bidirectional synaptic plasticity is composed of switch-like unitary events".

Proc. Natl. Acad. Sci. U.S.A., 102(27):9679-9684, (2005) .

2 / 7

References III

Johanna M. Montgomery and Daniel V. Madison.

"State-Dependent Heterogeneity in Synaptic Depression between Pyramidal Cell Pairs".

Neuron, 33(5):765 – 777, (2002).

S. Fusi, P. J. Drew, and L. F. Abbott.

"Cascade models of synaptically stored memories".

Neuron, 45(4):599-611, (February, 2005).

S. Fusi and L. F. Abbott.

"Limits on the memory storage capacity of bounded synapses".

Nat. Neurosci., 10(4):485-493, (Apr., 2007).

References IV

A. B. Barrett and M. C. van Rossum.

"Optimal learning rules for discrete synapses".

PLoS Comput. Biol., 4(11):e1000230, (November, 2008).

Daniel D Ben-Dayan Rubin and Stefano Fusi.

"Long memory lifetimes require complex synapses and limited sparseness".

Front. Comput. Neurosci., 1:1-14, (November, 2007).

Christian Leibold and Richard Kempter.

"Sparseness Constrains the Prolongation of Memory Lifetime via Synaptic Metaplasticity".

Cereb. Cortex, 18(1):67-77, (2008).

References V

Marcus K. Benna and Stefano Fusi.

"Computational principles of biological memory".

(2015), arXiv:1507.07580 [q-bio.NC].

Richard D. Emes and Seth G.N. Grant.

"Evolution of Synapse Complexity and Diversity".

Annual Review of Neuroscience, 35(1):111-131, (2012).

Larry R Squire and Pablo Alvarez.

"Retrograde amnesia and memory consolidation: a neurobiological perspective".

Current Opinion in Neurobiology, 5(2):169–177, (April, 1995).

References VI

James L McClelland, Bruce L McNaughton, and Randall C O'Reilly.

"Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory.", 1995.

Jan Born and Ines Wilhelm.

"System consolidation of memory during sleep.".

Psychological research, 76(2):192-203, (mar, 2012).

Phillip J.E. Attwell, Samuel F. Cooke, and Christopher H. Yeo.

"Cerebellar Function in Consolidation of a Motor Memory".

Neuron, 34(6):1011-1020, (jun, 2002).

References VII

Samuel F Cooke, Phillip J E Attwell, and Christopher H Yeo.

"Temporal properties of cerebellar-dependent memory consolidation.".

J. Neurosci., 24(12):2934-41, (mar, 2004).

