2^{nde}3, mars 2018 Fonctions de référence

1 Rappels sur les inégalités

Exercice 1. 1 à 10 p. 144

Axiome 1

Soit A, B, C, et T des réels.

- (a) Si $A \leq B$ et $B \leq C$, alors $A \leq C$ (transitivité).
- (b) $A \leq B$ si et seulement si $A + T \leq B + T$ (invariance par translation).
- (c) La règle des signes. il est toujours clair de présenter sont utilisation dans un tableau de signes.

Théorème 1 (Résultats d'algèbre)

Soit A, B, A', B' et K des réels.

- (a) $A^2 \geq 0$.
- **(b)** $A \leq B$ si et seulement si $A B \leq 0$.
- (c) Si $A \le A'$ et $B \le B'$, alors $A + B \le A' + B'$ (somme d'inégalités).
- (d) Si K > 0, alors : $A \le B$ si et seulement si $KA \le KB$ (homothétie de rapport positif).
- (e) Si K < 0, alors : $A \le B$ si et seulement si $KA \ge KB$ (homothétie de rapport négatif).

Exemple 1. Démontrer que pour tout x > 1, $x^2 > x$. Démontrer que pour tout 0 < x < 1, $x^2 < x$. Résoudre une inéquation du premier degré.

2 Fonctions affines

2.1 Définition et exemples

Définition 1

Les fonctions affines sont les fonctions de la forme $x \mapsto ax + b$, où a et b sont deux nombres réels.

Remarque 1. Lorsque b=0, on dit aussi que la fonction est linéaire (l'image est proportionnelle à l'antécédent et le coefficient de proportionnalité est a).

Exemple 2. On modélise la fréquence cardiaque maximale à l'effort en fonction de l'âge par la fonction f(x) = 220 - x, définie sur [0, 120]. On a a = -1 et b = 220. Preuve de la décroissance de f.

Exemple 3. Les prix diminuent de 15%. La fonction n qui à l'ancien prix x associe le nouveau prix n(x) est définie sur \mathbb{R}_+ par :

$$n(x) = x - \frac{15}{100}x.$$

Pour tout $x \in \mathbb{R}_+$, on peut factoriser :

$$n(x) = (1 - 0.15)x = 0.85x.$$

Ainsi on voit que n est une fonction affine c'est à dire de la forme $x \mapsto ax + b$ avec a = 0,85 et b = 0 (c'est donc aussi une fonction linéaire). Preuve de la croissance de n.

Exercice 2. 3 et 4 p. 68

2^{nde}3, mars 2018 Fonctions de référence

2.2 Variations des fonctions affines

Théorème 2

Soit $f: x \mapsto ax + b$ une fonction affine. Les variations de f sont données par le signe de a:

- Si a>0, alors f est strictement croissante sur son ensemble de définition.
- Si a < 0, alors f est strictement décroissante sur son ensemble de définition.

Remarque 2. Évidemment, si a = 0 alors f est constante.

DÉMONSTRATION : Supposons que a > 0. Alors si $x_1 < x_2$ sont deux réels de l'ensemble de définition de f, on a ... donc $f(x_1) < f(x_2)$.

Supposons que a < 0. Alors si $x_1 < x_2$ sont deux réels de l'ensemble de définition de f, on a ... donc $f(x_1) > f(x_2)$.

Exercice 3. 23, 24 p. 69

2.3 Représentation graphique des fonction affines

Théorème 3 (Admis)

Une fonction est affine si et seulement si sa représentation graphique est une droite. Alors, en notant f(x) = ax + b, a est le coefficient directeur de la droite et b son ordonnée à l'origine.

Exemple 4. < Représenter graphiquement
$$f(x) = 2x - 3$$

Exercice 4. 11 p. 68

Ainsi, quand on connaît la valeur d'une fonction affine en deux points, on peut retrouver a puis b.

Exercice 5. 15, 16, 17 p. 69

3 La fonction carré : $f(x) = x^2$

Exercice 6. 18 p. 118

3.1 Ensemble de définition

3.2 Représentation graphique

Sur [-2;2], unité 2 carreaux.

Exercice 7. 20 et 21 p. 118.

3.3 Variations

Théorème et preuve.

Exercice 8. 26 et 29 p. 119; 31 et 38 p. 119

4 La fonction inverse : $f(x) = \frac{1}{x}$

Exercice 9. 44 et 47 p. 120

2^{nde}3, mars 2018 Fonctions de référence

4.1 Ensemble de définition

4.2 Représentation graphique

Sur [-5;5], unité 1 carreaux.

Exercice 10. 50 p. 121

4.3 Variations

Théorème et preuve.

Exercice 11. 48 p. 120; 51 p. 121