Simulation

April 18, 2015

1 Simulation Design

RCT eligibility, complier status, and treatment assignment in the population depend on observed covariates. The observed covariates (W_1, W_2, W_3) are multivariate normal with mean (0.5, 1, -1) and covariances $Cov(W_1, W_2) = 1$ and $Cov(W_1, W_3) = Cov(W_2, W_3) = 0.5$. The equation for selection into studies is

$$S = \mathbb{I}(e_2 + q_1W_1 + q_2W_2 + q_3W_3 + R > 0)$$

where R is standard normal. e_2 controls the fraction of the population eligible for the RCT. We set g_1, g_2 , and g_3 to be 0.5, 0.25, and 0.75, respectively. The compliance indicator is determined by

$$C = \mathbb{I}(e_3 + h_2W_2 + h_3W_3 + Q > 0)$$

where Q is standard normal. e_3 controls the fraction of compliers in the population. We set h_2 and h_3 to 0.5. In the population (individuals with S=0), treatment is assigned by

$$T = \mathbb{I}(e_1 + f_1 W_1 + f_2 W_2 + V > 0)$$

Varying e_1 controls the fraction eligible for treatment in the population. V is standard normal. We set f_1 to 0.25 and f_2 to 0.75. For individuals in the RCT (S=1), treatment assignment is a sample from a Bernoulli distribution. We set treatment received D according to T and C: D=T if C=1 and D=0 if C=0. Finally, the response Y is determined by

$$Y = a + bD + c_1 W_1 + c_2 W_2 + dU$$

We assume that the treatment effect b is heterogeneous depending on W_1 : b = 1 if $W_1 > 0.75$ and b = -1 if $W_1 \le 0.75$. We set a, c_1 , and d to 1 and c_2 to 2. U is standard normal and $U, V, R, Q, (W_1, W_2, W_3)$ are mutually independent.

We generate a population of 30,000 individuals and randomly sample 5,000. Those among the 5,000 who are eligible for the RCT (S=1) are selected. Similarly, we sample 5,000 individuals from the population and select those who are not eligible for the RCT (S=0); these are a sample of the "target population". We set each individual's treatment received D according to their treatment assignment and complier status and observe their responses Y. In the assigned-treatment RCT group (S=1,T=1), we fit a logistic regression to compliance status using the covariates. With this model, we predict who in the control group (S=1,T=0) has C=1, since this is unobservable. These individuals would have complied had they been assigned to the treatment group. We do the same for the target population control group.

For this group of observed compliers to treatment and predicted compliers from the control group of the RCT, we estimate the response curve using a random forest with features (W_1, W_2, W_3) and D. Then population local average treatment effect on the treated is estimated according to Theorem 1.

2 Results

Figure 1: Simulated mean squared error, transformed by $-\log$. Darker tiles correspond to lower mean squared error.

Figure 2: default

Figure 3: Simulated mean squared error, transformed by $-\log$. Darker tiles correspond to lower mean squared error.