

重新发现算术里的秘密

苑明理 2017年4月

目录

• 数的历史: 人类思维的多样

• 数的表示法: 语言与世界如何共处

• 数的独立性: 通过自我表示获得意义

数的历史

人类思维的多样

Ishango 骨刻

旧石器时代晚期, 约公元前 18,000 年 - 公元前 20,000 年

刻痕记事

最原始的系统:一进数字系统

最自然的数字表示,但却难于表达大数字

原始的加法

原始的乘法

为什么会是乘法?

加法的重复就是乘法

古埃及的数字

数值		+	百	千	万	十万	百万
符号	1	Ω	9	<u>\text{\tin}\text{\tin}\exitt{\text{\tetx}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex</u>	8	B	SA CONTRACTOR
描述	单竖线	踵骨	绳圈	水莲	屈指	蝌蚪	Heh 神

古埃及象形文字里的整数符号

古埃及的数乘

1*	35
2*	70
4	140
8*	280
1+2+8=11	35+70+280=385

在这个时期大数的 表示与运算都比较困难

Ahmes Papyrus

巴比伦的数字

7 1	∢? 11	((7 21	(((7 31	₹ 7 41	₹ 7 51
99 2	(77 12	∜(77 22	44(99 32	12/17 42	12 77 52
777 3	√777 13	4(997 23	(((7)) 33	1177 43	12 111 53
Ø 4	₹\$7 14	(1777 24	((()) 34	12 37 44	11 54
X 5	√∰ 15	(1777 25	(((X) 35	₹ ₩ 45	₹ ₩ 55
77 6	∜∰ 16	*** 26	₩₩ 36	14 🐺 46	*** 56
3 7	₹₹ 17	() 27	₩₩ 37	17 47	12/18/25 57
8	18	∜₩ 28	₩ ₩ зв	12 48	12€ 58
# 9	19	(4) 29	*** 39	** 49	*** 59
(10	∜ 20	₩ 30	₩ 40	44 50	

第一个数位制系统巴比伦数制

60 进制系统的起源

玛雅文化的数字

或许是第一个带零的数位制系统 20进制

九九乘表与筹算

数位制表示法和运算法则都已经成熟

《夏侯阳算经》

夫乘除之法,先明九九,一丛十横,百立千僵,千十相望,万百相当。 满六已上,五在上方。六不积算,五不单张。上下相乘,实居中央。 言十自当。已法除之,宜得上商,横算相当。以次右行,极于左方。

阿拉伯的格子乘法

竖式乘法

						2	3	9	5	8	2	3	3
×										5	8	3	0
						0	0	0	0	0	0	0	0
					7	1	8	7	4	6	9	9	
			1	9	1	6	6	5	8	6	4		
	+	1	1	9	7	9	1	1	6	5			
		1	3	9	6	7	6	4	9	8	3	9	0

第谷·布拉赫的 Prosthaphaeresis 法

计算 I05 与 720 乘积的近似值

● 缩小: 0.105, 0.720

● 查表求角度: cos(84°) = 0.105, cos(44°) = 0.720

● 作和与差: 84 + 44 = 128,84 - 44 = 40

● 求余弦的平均: ½[cos(128°) + cos(40°)] = ½[-0.616 + 0.766] = 0.075

● 放大: 75,000

● 真实值:75,600

Karatsuba 算法

第一个快速算法,发现于 1960 年代

- \bullet 12345 = 12 \cdot 1000 + 345
- \bullet 6789 = 6 · 1000 + 789
- $z2 = 12 \times 6 = 72$
- \bullet z0 = 345 × 789 = 272205

•
$$zI = (12 + 345) \times (6 + 789) - z2 - z0 = 357 \times 795 - 72$$

- $272205 = 283815 - 72 - 272205 = 11538$

Kolmogorov 曾经认为不存在快速算法

他的学生 Karatsuba 发现了一个快速算法

数的表示法

语言与世界的共处

假如你是发明者

- 数位制系统是晚近的发明,说明它有内在的困难
- 假如你是发明者,你会做什么?
- 让我们继续深入一点……

我们出发的基础和方向

两看相不厌, 唯有敬亭山

数位制表示符号的语言

一进数字符号的世界

一致性的证明概要

XX YY

- 下述算法并没有改变小物件的总数,只是在分堆
 - <u>带余除法</u>: 十个、十个的归拢成一小堆,然后记录下 余数,得到的小堆给下一步使用
 - 递归的施加带余除法,把小堆化成更大的堆,每步统 计的是余下的堆数

完全性的证明概要

- ●数位制的字串可以按照数字 0~9 的字符顺序建立一个非常自然的字典排序
- 这个字典顺序就是自然数的计数顺序

```
7 1 ↔ 7
```

$$\P$$
11 \leftrightarrow P 7 P 7 P 7 P 7 P 7 P 7

数的意义

数的自我自由之路

为什么可以信任"数"?

- 我们从实体抽象出来"数",但是:
 - 古人看到一、二、三只猴子
 - 今人看到一、二、三辆汽车
 - 未来的人说不准又在数什么……

为什么我们可以信赖它?难道它能不依赖实体存在吗?

需要论证"数"有无需依赖其他而独立存在的模型

其他的"数"的模型都是和这个独立模型是相容洽的

语言层面的规范

• 表征计数的类型 N 由如下的需求规范定义:

• zero: → N

• succ: N → N

初始代数模型

- 考虑类型 N 的所有可能的表达式
- zero
- (succ zero)
- (succ (succ zero))
- (succ (succ zero)))
- •

自我的自由之路

- 初始代数模型没有依赖任何外部资源
- 初始代数模型的构造只依赖规范本身
- 这个自然数 N 的例子是非常平凡的
- 但这个自我表达的思想并不平凡,在逻辑学里证明一 阶系统完全性时的 Herbrand 论域的构造也是如此。

谢谢

