EARTHQUAKE DAMAGE MODELLING

G1 Team 2

Cerulean, Si Yun, Sean Jin, Genice, Xiao Yue

TABLE OF CONTENTS

PROBLEM STATEMENT & MOTIVATION

02

LITERATURE REVIEW

03

DATASETS,
TOOLS & RESOURCES

04

BASELINE MODEL

05

ENCODING & FEATURE ENGINEERING

06

MODELS & MODEL TUNING

07

FUTURE WORK & REFERENCES

Predict the level of damage to the building that was hit by the earthquake

Assumptions: Constant earthquake magnitude of 7.8

BUILDING DAMAGES

Major component of the losses

EARTHQUAKES

Leads to major economics losses

SAFETY

Safer building structures reduce fatality rates & losses

LITERATURE REVIEW - MODELLING

23 attributes on building structures & mixture of binary, categorical and integer data types

OBSERVATIONS

760, 000 independent observations i.e. buildings

3 Ordinal variables but focusing only on the 5 levels of damage

PRELIMINARY RESULTS

No Duplication

Imbalance

Minimal Missing Values

PRELIMINARY RESULTS

No. of Floors Distribution against Damage Level

No Outliers

Age Distribution against Damage Level

Presence of Outliers

PRELIMINARY RESULTS

Richter's Predictor: Modeling Earthquake Damage

HOSTED BY DRIVENDATA

HOME PROBLEM DESCRIPTION ABOUT

	User or team	Best	public score 0	Timestamp 0	Trend (last 10)	# Entries
(B)	inoddy	Ť	0.7558	2019-12-31 09:54:30	~	64
10 2	seismicnz	2	0.7553	2019-12-19 09:47:12	~	27
	Gillesvdw	3	0.7536	2019-05-08 20:01:38		15
	SKOL_BOOMERS	4	0.7534	2019-10-23 17:56:55		6
	DeereHunters	5	0.7528	2019-08-09 02:10:37	\	71

BASELINE MODEL

Ordinal Logistic Regression

ENCODING METHOD

One Hot Encoding

F MEASURE

0.3381

	precision	recall	f1-score	support
1	0.56	0.28	0.37	15763
2	0.26	0.20	0.23	17451
3	0.26	0.10	0.14	27283
4	0.28	0.69	0.40	36769
5	0.54	0.28	0.37	55153
accuracy			0.34	152419
macro avg	0.38	0.31	0.30	152419
weighted avg	0.39	0.34	0.32	152419

Accuracy: 0.33811401465696533

Misclassification Rate: 0.6618859853430347

Precision: 0.33811401465696533

Recall: 0.33811401465696533

F-measure: 0.33811401465696533

TYPES OF ENCODING

#1. ONE-HOT ENCODING

One-Hot

	land_surface_condition	foundation_type	roof_type	ground_floor_type	other_floor_type	position	plan_configuration
394964	Moderate slope	Mud mortar-Stone/Brick	Bamboo/Timber-Light roof	Mud	Timber/Bamboo-Mud	Not attached	Rectangular
130914	Moderate slope	Mud mortar-Stone/Brick	Bamboo/Timber-Light roof	Mud	Timber-Planck	Not attached	Rectangular
47552	Flat	Bamboo/Timber	Bamboo/Timber-Heavy roof	Mud	Timber/Bamboo-Mud	Not attached	Rectangular
91671	Steep slope	Bamboo/Timber	Bamboo/Timber-Heavy roof	Mud	TImber/Bamboo-Mud	Not attached	Rectangular
448138	Flat	Mud mortar-Stone/Brick	Bamboo/Timber-Heavy roof	Mud	TImber/Bamboo-Mud	Attached-1 side	Rectangular

#1. RANDOM FOREST CLASSIFIER

One Hot Encoding

F MEASURE 0.4254

	precision	recall	f1-score	support
1	0.51	0.54	0.52	15763
2	0.26	0.21	0.23	17451
3	0.28	0.24	0.26	27283
4	0.35	0.34	0.35	36769
5	0.53	0.61	0.57	55153
accuracy			0.43	152419
macro avg	0.39	0.39	0.39	152419
weighted avg	0.41	0.43	0.42	152419

Accuracy: 0.42542596395462506

Misclassification Rate: 0.5745740360453749

Precision: 0.42542596395462506 Recall: 0.42542596395462506 F-measure: 0.42542596395462506

#2. MIXTURE OF ONE-HOT & ORDINAL ENCODING

#2. RANDOM FOREST CLASSIFIER

ENCODING METHOD

Ordinal & One-Hot Encoding

F MEASURE 0.4258

	precision	recall	f1-score	support	
1	0.51	0.54	0.52	15763	
2	0.26	0.21	0.23	17451	
3	0.28	0.24	0.26	27283	
4	0.35	0.34	0.34	36769	
5	0.53	0.61	0.57	55153	
accuracy			0.43	152419	
macro avg	0.39	0.39	0.39	152419	
weighted avg	0.41	0.43	0.42	152419	

Accuracy: 0.4258064939410441

Misclassification Rate: 0.5741935060589559

Precision: 0.4258064939410441 Recall: 0.4258064939410441 F-measure: 0.4258064939410441

#3. MIXTURE OF ONE-HOT & MANUAL ORDINAL ENCODING

#3. RANDOM FOREST CLASSIFIER

ENCODING METHOD

Manual Ordinal & One-Hot Encoding

F MEASURE 0.4260

	precision	recall	f1-score	support
1	0.51	0.54	0.53	15763
2	0.26	0.21	0.23	17451
3	0.28	0.24	0.26	27283
4	0.35	0.33	0.34	36769
5	0.53	0.61	0.57	55153
accuracy			0.43	152419
macro avg	0.39	0.39	0.39	152419
weighted avg	0.41	0.43	0.42	152419

Accuracy: 0.4259901980724188

Misclassification Rate: 0.5740098019275812

Precision: 0.4259901980724188 Recall: 0.4259901980724188 F-measure: 0.4259901980724188

#4. MOSTLY ORDINAL ENCODING

#4. RANDOM FOREST CLASSIFIER

ENCODING METHOD

Mostly Ordinal Encoding

F MEASURE 0.4272

	precision	recall	f1-score	support
1	0.51	0.54	0.52	15763
2	0.26	0.21	0.23	17451
3	0.28	0.24	0.26	27283
4	0.35	0.33	0.34	36769
5	0.53	0.62	0.57	55153
accuracy			0.43	152419
macro avg	0.39	0.39	0.39	152419
weighted avg	0.41	0.43	0.42	152419

Accuracy: 0.42724988354470245

Misclassification Rate: 0.5727501164552975

Precision: 0.42724988354470245 Recall: 0.42724988354470245 F-measure: 0.4272498835447024

#5. MOSTLY MANUAL ORDINAL ENCODING

#5. RANDOM FOREST CLASSIFIER

ENCODING METHOD

Mostly Manual Ordinal Encoding

F MEASURE 0.4274

	precision	recall	f1-score	support
1	0.51	0.54	0.52	15763
2	0.26	0.20	0.23	17451
3	0.29	0.24	0.26	27283
4	0.36	0.34	0.35	36769
5	0.53	0.62	0.57	55153
accuracy			0.43	152419
macro avg	0.39	0.39	0.39	152419
weighted avg	0.41	0.43	0.42	152419

Accuracy: 0.42742702681424233

Misclassification Rate: 0.5725729731857576

Precision: 0.42742702681424233 Recall: 0.42742702681424233 F-measure: 0.42742702681424233

FEATURE ENGINEERING - DISTANCE

- Created a Google Geolocation API account
- Called the API using Python, using municipals + the string "Nepal" as inputs
- Got the outputs in JSON, parsed to extract the latitude and long values
- Used GeoPY to get our distance between the epicentre and respective points

FEATURE ENGINEERING - INTENSITY

- We used intensity against distance to get an estimation of the intensity of the Earthquake at the distance from the epicentre
- Shows a MCS at epicenter of 8.21, which correlates to a magnitude of around 6.3.
 Assuming linearity between MCS and magnitude, the Ghorka earthquake of magnitude 7.8 would score 10.2 on the MCS. As such, we use that value as our intercept
- By using y=-0.03x+10.2, where x is our distance from the epicentre, we can get our new magnitude

FE INTENSITY - RANDOM FOREST CLASSIFIER

Intensity

F MEASURE 0.5340

	precision	recall	f1-score	support
1	0.59	0.67	0.63	13537
2	0.35	0.26	0.30	14523
3	0.38	0.33	0.35	23075
4	0.45	0.42	0.44	31780
5	0.65	0.75	0.70	49342
accuracy			0.53	132257
macro avg	0.48	0.49	0.48	132257
weighted avg	0.52	0.53	0.52	132257

Accuracy: 0.5340208835827215

Misclassification Rate: 0.4659791164172785

Precision: 0.5340208835827215 Recall: 0.5340208835827215 F-measure: 0.5340208835827215

FE DISTANCE - RANDOM FOREST CLASSIFIER

Distance

F MEASURE 0.5346

	precision	recall	f1-score	support
1	0.59	0.67	0.62	13537
2	0.35	0.27	0.30	14523
3	0.39	0.33	0.36	23075
4	0.45	0.42	0.43	31780
5	0.65	0.75	0.70	49342
accuracy			0.53	132257
macro avg	0.49	0.49	0.48	132257
weighted avg	0.52	0.53	0.52	132257

Accuracy: 0.5345804002812705

Misclassification Rate: 0.4654195997187295

Precision: 0.5345804002812705 Recall: 0.5345804002812705 •F-measure: 0.5345804002812705

F1 SCORE

01	Baseline (Ordinal Logistic Regression)	0.3381
02	XGBoost Classifier	0.5618
03	Random Forest Classifier	0.5340
04	Adaboost-Decision Tree	0.5276
05	Extra Trees Classifier	0.5207
06	Multi-Layer Perceptron	0.5179

07	Adaboost Classifier	0.4693
08	Lasso Regression	0.4505
09	Ridge Regression	0.4500
10	Elastic Net Regression	0.4238
11	One-Versus-Rest Logistic Regression	0.4227
12	Multinomial Logistic Regression	0.4149

F1 SCORE

MODEL TUNING - EXTRA TREES CLASSIFIER

MODEL TUNING - EXTRA TREES CLASSIFIER

0.5208

Randomized SearchCV

Ran but failed

MODEL TUNING - RANDOM FOREST CLASSIFIER

MODEL TUNING - RANDOM FOREST CLASSIFIER

MODEL TUNING - XGBOOST CLASSIFIER

MODEL TUNING - XGBOOST CLASSIFIER

SMOTE & Class Weight

Ran but failed

Randomized SearchCV

Ran but failed

MODEL TUNING - ADABOOST-DECISION TREE

MODEL TUNING - ADABOOST-DECISION TREE

RESULTS & DISCUSSION

		F1 SCORE	Difference to Baseline
00	Baseline (Ordinal Logistic Regression)	0.3381	-
01	XGBoost Classifier	0.5618	+ 59.0%
02	Random Forest Classifier	0.5467	+ 54.7%
03	Adaboost-Decision Tree	0.5286	+ 49.6%
04	Extra Trees Classifier	0.5209	+ 47.5%

Conclusion

- Dataset is hard to do modelling on
- **Feature engineering** improves F-score of our models the most
- Feature selection contributes significantly in model improvement as well

FUTURE WORKS - CONSIDERATIONS

BETTER ACCURACY

- 1.Zitzman, L., 2019. How Earthquake-Proof Buildings Are Designed. [Blog] *BigRentz*, Available at:
- https://www.bigrentz.com/blog/earthquake-proof-buildings William Harris
- 2."How Earthquake-resistant Buildings Work" 13 September 2011. HowStuffWorks.com.
- https://science.howstuffworks.com/engineering/structural/earthquake-resistant-buildings.htm
- 3.DrivenData. 2020. Richter's Predictor: Modeling Earthquake Damage. [online] Available at:
- https://www.drivendata.org/competitions/57/nepal-earthquake/
- 4.Eq2015.npc.gov.np. 2020. Municipality Codes. [online] Available at: http://eq2015.npc.gov.np/docs/#/location_codes?id=municipality-codes
- 5.GitHub. 2020. SVM-Hyper-Parameter-Tuning-Using-Gridsearchcv. [online] Available at:
- https://github.com/clareyan/SVM-Hyper-parameter-Tuning-using-GridSearchCV/blob/master/SVM_Iris.ipynb>
- $6. Lightgbm. read the docs. io.\ 2020.\ Welcome\ To\ Lightgbm'S\ Documentation! -- Lightgbm\ 2.3.2\ Documentation.\ [online]\ Available\ at:$
- https://lightgbm.readthedocs.io/en/latest/
- 7.Liu, C., 2020. SVM Hyperparameter Tuning using GridSearchCV. [Blog] towards data science, Available at:
- https://towardsdatascience.com/svm-hyper-parameter-tuning-using-gridsearchcv-49c0bc55ce29
- 8.Data Science Stack Exchange. 2020. Parameters In Gridsearchcv In Scikit-Learn. [online] Available at:
- https://datascience.stackexchange.com/questions/13410/parameters-in-gridsearchcv-in-scikit-learn-
- 9.Scikit-learn.org, 2020. Sklearn.Model_Selection.Gridsearchcv Scikit-Learn 0.22.2 Documentation. [online] Available at:
- https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
- 10.Scikit-learn.org. 2020. Sklearn.Svm.SVC Scikit-Learn 0.22.2 Documentation. [online] Available at:
- https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
- 11.Scikit-learn.org. 2020. Sklearn.Feature_Selection.RFE Scikit-Learn 0.22.2 Documentation. [online] Available at:
- <https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html>
- 12. Imbalanced-learn.readthedocs.io. 2020. Imblearn.Over_Sampling.SMOTE Imbalanced-Learn 0.5.0 Documentation. [online] Available at:
- $< https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling. SMOTE. html>$
- 13.Marketplace. 2018. Why Bamboo And Earth Are Better Than Steel And Concrete After A Himalayan Earthquake Marketplace. [online]

 Available at: https://www.marketplace.org/2018/04/25/why-bamboo-and-earth-are-better-steel-and-concrete-after-himalayan-earthquake/>
- 14.Mishra, G., 2020. Performance Of Various Types Of Buildings During Earthquake. [online] The Constructor. Available at:
- https://theconstructor.org/earthquake/performance-buildings-types-earthquake/2224/
- 15.Scikit-learn.org. 2020. Sklearn.Utils.Class_Weight.Compute_Class_Weight Scikit-Learn 0.22.2 Documentation. [online] Available at:
- <https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html>
- 16.Scikit-learn.org. 2020. Decision Tree Regression With Adaboost Scikit-Learn 0.22.2 Documentation. [online] Available at:
- https://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_regression.html
- $17. Scikit-learn. org.\ 2020.\ sklearn. ensemble. Extra Trees Classifier-Scikit-Learn\ 0.22.2\ Documentation.\ [online]\ Available\ at$
- https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
- 18.Rikunet, 2019. Modelling rating data correctly using ordered logistic regression. Available at: http://rikunert.com/ordinal_rating
- 19. Fabian Pedregosa-Izquierdo. Feature extraction and supervised learning on fMRI: from practice to theory. PhD thesis. Available at:

https://pythonhosted.org/mord/

- 20.Bhattacharyya, S., 2018. Ridge and Lasso Regression: L1 and L2 Regularization [Blog] towards data science, Available at:
- $21. Scikit-learn. org.\ 2020.\ \underline{sklearn. linear_model}, Logistic Regression-Scikit-Learn\ 0.22. 2\ Documentation.\ [online]\ Available\ at$
- 22. Stackoverflow. Getting distance between two points based on latitude/longitude. Available at:
- https://stackoverflow.com/guestions/19412462/getting-distance-between-two-points-based-on-latitude-longitude

REFERENCES

THANK You! Questions?

