```
In [236]:
## importing required library
import warnings
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
warnings.filterwarnings("ignore")
%matplotlib inline
pd.set option("display.max columns", None)
In [237]:
wine = pd.read csv("wine reviews small.csv")
In [238]:
## Droping unwanted column
wine.drop("Unnamed: 0", axis=1, inplace=True)
EDA
In [239]:
for feature in wine.columns:
   print("The unique values in ", feature, "is", wine[feature].nunique())
The unique values in country is 41
The unique values in description is 29169
The unique values in designation is 13454
The unique values in points is 21
The unique values in price is 242
The unique values in province is 330
The unique values in region 1 is 964
The unique values in region_2 is 17
The unique values in taster name is 19
The unique values in taster twitter handle is 15
The unique values in title is 29107
The unique values in variety is 478
The unique values in winery is 9881
In [240]:
## Creating variable having all the numerical feature
numeric feature = [feature for feature in wine.columns if wine[feature].dtype != "O"]
numeric feature
Out [240]:
['points', 'price']
In [241]:
## Creating variable having catogorical Feature names
cat feature = [feature for feature in wine.columns if wine[feature].dtype == "O"]
cat feature
Out[241]:
['country',
 'description'.
```

```
'designation',
 'province',
 'region 1',
 'region 2',
 'taster name',
 'taster_twitter_handle',
 'title',
 'variety',
 'winery']
In [242]:
## feature with Nan or missing Values
feature with nan = [
    feature for feature in wine.columns if wine[feature].isnull().sum() > 0
feature_with_nan
Out[242]:
['country',
 'designation',
 'price',
 'province',
 'region_1',
 'region_2',
 'taster_name',
 'taster twitter handle']
In [243]:
## checking the relation between missing values and dependent feature
feature with nans = ["country", "designation"]
data = wine.copy()
for feature in feature_with_nans:
    data[feature] = np.where(data[feature].isnull(), 1, 0)
    data.groupby(feature)["price"].median().plot.bar()
    plt.show()
 25
 20
 15
```


The Nan values Have no realtion with output feature so we can replace the values by Median

```
In [244]:
```

```
wine.isnull().sum()
## data having more missing values so we drop the some of unwanted columns
data = wine.copy()
data.drop(["region_2", "taster_twitter_handle", "region_1"], axis=1, inplace=True)
```

In [245]:

```
## price feature missing values is replaced by median
data["price"] = data["price"].fillna(data["price"].median())
```

In [246]:

```
## their is no change in distribution
sns.kdeplot(data["price"], color="r", label="without nan", shade=True)
sns.kdeplot(wine["price"], color="b", label="with nan", shade=True)
```

Out[246]:

<AxesSubplot:xlabel='price', ylabel='Density'>


```
0.000 0 500 1000 1500 2000 2500 price
```

In [247]:

```
data.dropna(subset=["country"], inplace=True)
```

In [248]:

```
## missing values is replace as 'Missing'
data["designation"].fillna("Missing", inplace=True)
data["taster_name"].fillna("Missing", inplace=True)
data.drop_duplicates().isnull().sum()
```

Out[248]:

0 country description designation points price 0 province 0 0 taster_name 0 title 0 variety winery dtype: int64

In [249]:

```
## exporting the Clean Csv
data.to_csv("wine_review_clean.csv")
```

In [250]:

```
## Now the Data is clean so WE CAN START ANALYSISNG
## univarient analysis
```

univarient analysis

In [251]:

```
data.head()
```

Out[251]:

	country	description	designation	points	price	province	taster_name	title	variety	winery
0	Italy	Aromas include tropical fruit, broom, brimston	Vulkà Bianco	87	25.0	Sicily & Sardinia	Kerin O'Keefe	Nicosia 2013 Vulkà Bianco (Etna)	White Blend	Nicosia
1	Portugal	This is ripe and fruity, a wine that is smooth	Avidagos	87	15.0	Douro	Roger Voss	Quinta dos Avidagos 2011 Avidagos Red (Douro)	Portuguese Red	Quinta dos Avidagos
2	US	Tart and snappy, the flavors of lime	Missing	87	14.0	Oregon	Paul Gregutt	Rainstorm 2013 Pinot Gris	Pinot Gris	Rainstorm

	country	description	designation	points	price	province	taster_name	Va liitle)	variety	winery
3	us	Pineapple rind, lemon pith and orange blossom 	Reserve Late Harvest	87	13.0	Michigan	Alexander Peartree	St. Julian 2013 Reserve Late Harvest Riesling	Riesling	St. Julian
4	us	Much like the regular bottling from 2012, this	Vintner's Reserve Wild Child Block	87	65.0	Oregon	Paul Gregutt	Sweet Cheeks 2012 Vintner's Reserve Wild Child	Pinot Noir	Sweet Cheeks

In [252]:

```
# distribution of numeric variable
sns.distplot(data["price"])
```

Out[252]:

<AxesSubplot:xlabel='price', ylabel='Density'>

The feature price is right skewed

In [253]:

```
sns.distplot(data["points"])
```

Out[253]:

<AxesSubplot:xlabel='points', ylabel='Density'>

the points feature more or less follows normal distribution

In [254]:

```
# country feature count plot
plt.figure(figsize=(15, 5))
sns.countplot(data["country"]).set_title("Country wise Count Plot")
a = plt.xticks(rotation=90)
```


In this reviews the most of the wine is from United States over 12000 and after that France

In [255]:

```
# Designation: the vineyard within the winery where the grapes that made the wine are fr
om
desig = data["designation"].value_counts().reset_index()
sns.barplot(data=desig.head(10), x="index", y="designation")
a = plt.xticks(rotation=45)
```


So we can see the above plot it shows the designation has more missing values after tha 'reserver designation' is more in the review Dataset

In [256]:

```
prov = data["province"].value_counts().reset_index()
sns.barplot(data=prov.head(10), x="index", y="province")
a = plt.xticks(rotation=45)
```


The Data set of wine reviews the state california is having more counts and next is Washington

```
taster_name = data["taster_name"].value_counts().reset_index()
sns.barplot(data=taster_name.head(10), x="index", y="taster_name")
a = plt.xticks(rotation=45)
```


The plot show that many people tast the wine are not provide the name so many values are missing

In [258]:

The variety pinot Noir wine is tasted many time in the wine review data over 3000 times

In [259]:

```
winery = data["winery"].value counts().reset index()
sns.barplot(data=winery.head(10), x="index", y="winery").set title(
   "count plot on winery"
plt.xlabel("winery Name")
plt.ylabel("winery count")
a = plt.xticks(rotation=45)
```


winery Name

Multivariant Analysis

```
In [260]:
```

```
data.groupby("country")["price"].median().sort_values(ascending=False).plot.bar()
```

Out [260]:

<AxesSubplot:xlabel='country'>

The Swizerland wine are most costly among the other country

In [261]:

```
data.groupby("country")["points"].mean().sort_values(ascending=False).plot.bar()
```

Out[261]:

<AxesSubplot:xlabel='country'>

England is the country which having high average points

In [262]:

```
## varibale with 50 or less tha 50 unique categories
cat_feature_50 = [feature for feature in data.columns if data[feature].dtype == "0"]
cat_feature_50

Out[262]:
['country',
   'description',
   'designation',
   'province',
   'taster_name',
   'title',
   'variety',
   'winery']
```

In [263]:

The taster_name feature is about the people who tast the wine the most wine tasted by Christina pickard

In [264]:

```
## log Trasnform
data["pricelog"] = np.log1p(data["price"])
```

In [265]:

```
##vReg plot
sns.regplot(y=data["pricelog"], x=data["points"])
```

Out[265]:

<AxesSubplot:xlabel='points', ylabel='pricelog'>

In [266]:

Out[266]:

Text(0.5, 1.0, 'after Log transform on price')

In [267]:

```
## correlatio before log transform
print("before applying log")
print(data[["points", "price"]].corr())
## correlatio after log transform
print("after applying log")
print(data[["points", "pricelog"]].corr())
```

There is a strong relation between the (price and point) The correlation of price and points is 40% before log transform The correlation of price and points is 58% after log transform it shows that the log transform make the distribution close to normal

In [268]:

```
top_5_country = list(
   data["country"]
   .value_counts()
```

```
.sort_values(ascending=False)
    .reset_index()["index"]
    .head()
)
top_5_country
top_5_co = data[data["country"].isin(top_5_country)]
```

In [269]:

```
## Top 5 country in sactter plot
sns.scatterplot(data=data, x="points", y="pricelog", hue=top_5_co["country"])
```

Out[269]:

<AxesSubplot:xlabel='points', ylabel='pricelog'>

Top 5 countrys points plotted in scatter plot it shows mostly the points are from US

].median().sort values(ascending=False).reset index()

```
In [270]:
```

```
for feature in data.columns:
    print("The unique values in ", feature, "is", data[feature].nunique())
The unique values in country is 41
The unique values in description is 29154
The unique values in designation is 13445
The unique values in points is 21
The unique values in price is 242
The unique values in province is 330
The unique values in taster name is 20
The unique values in title is 29092
The unique values in variety is 474
The unique values in winery is 9873
The unique values in pricelog is 242
In [271]:
data.groupby(["country", "winery", "variety", "province"])[
    "price"
```

Out[271]:

	country	winery	variety	province	price
0	France	Château Pétrus	Bordeaux-style Red Blend	Bordeaux	2500.0
1	Spain	Marco Abella	Carignan	Catalonia	770.0
2	France	Château Haut-Brion	Bordeaux-style Red Blend	Bordeaux	765.0
3	France	Château La Mission Haut-Brion	Bordeaux-style White Blend	Bordeaux	698.0
4	us	Yao Ming	Cabernet Sauvignon	California	625.0
18622	Argentina	Terrenal	Malbec	Mendoza Province	5.0
18623	France	Belle Made For You	Cabernet Sauvignon	France Other	5.0
18624	Argentina	Broke Ass	Malbec-Syrah	Mendoza Province	4.0
18625	Spain	Felix Solis	Syrah	Central Spain	4.0
18626	us	Dancing Coyote	White Blend	California	4.0

18627 rows × 5 columns

In [272]:

```
data.groupby(["country", "winery", "variety", "province"])["points"].mean().sort_values(
          ascending=False
).reset_index()
```

Out[272]:

0 US Quilceda Creek Cabernet Sauvignon Washington 99.0 1 France Château La Mission Haut-Brion Bordeaux-style White Blend Bordeaux 97.0 2 Italy Passopisciaro Nerello Mascalese Sicily & Sardinia 97.0 3 Italy Tenuta dell'Ornellaia Red Blend Tuscany 97.0 4 France Château Haut-Brion Bordeaux-style Red Blend Bordeaux 96.5 18622 US Hermes Nebbiolo Ohio 80.0		country
2 Italy Passopisciaro Nerello Mascalese Sicily & Sardinia 97.0 3 Italy Tenuta dell'Ornellaia Red Blend Tuscany 97.0 4 France Château Haut-Brion Bordeaux-style Red Blend Bordeaux 96.8	0	0 US
3 Italy Tenuta dell'Ornellaia Red Blend Tuscany 97.0 4 France Château Haut-Brion Bordeaux-style Red Blend Bordeaux 96.5	1	1 France
4 France Château Haut-Brion Bordeaux-style Red Blend Bordeaux 96.5	2	2 Italy
	3	3 Italy
	4	4 France
18622 US Hermes Nehhiolo Ohio 80.0	•••	
Total Co.	18622	22 US
18623 US California's Jewel Zinfandel California 80.0	18623	:3 US
18624 France Mont Tauch Red Blend Languedoc-Roussillon 80.0	18624	4 France
18625 US Pianetta Cabernet Sauvignon California 80.0	18625	.5 US
18626 Spain Reula Tempranillo-Merlot Northern Spain 80.0	18626	26 Spain

18627 rows × 5 columns

In [273]:

```
data.groupby("province")["points"].mean().sort_values(ascending=False)
```

Out[273]:

province	
Mittelrhein	94.000000
Eisenberg	93.000000
Santa Cruz	92.500000
Tokaji	91.714286
England	91.636364
San Jose	82.500000

```
Middle and South Dalmatia 82.000000
Molina 82.000000
Serra do Sudeste 82.000000
Table wine 81.000000
Name: points, Length: 330, dtype: float64
```

Sampling

```
In [274]:
```

```
country_stata = data.groupby("country", group_keys=False).apply(
    lambda x: x.sample(100, replace=True)
)
country_stata.head(2)
```

Out[274]:

	country	description	designation	points	price	province	taster_name	title	variety	winery	priceloç
13606	Argentina	With its tropical melony aromas and crisp pala	Missing	89	14.0	Mendoza Province	Michael Schachner	Gauchezco 2010 Torrontés (Mendoza)	Torrontés	Gauchezco	2.708050
9006	Argentina	Earthy and meaty, with aromas of dark cherry,	Alberto Furque	88	15.0	Mendoza Province	Michael Schachner	Bodega Aconquija 2005 Alberto Furque Syrah (Uc	Syrah	Bodega Aconquija	2.77258

In [275]:

country_stata.groupby("country")["price"].mean().sort_values(ascending=False)

Out[275]:

country	100.00
Switzerland	102.80
France	64.02
England	56.21
Hungary	55.34
Lebanon	41.38
Germany	38.80
US	35.60
Canada	35.28
Italy	34.76
Austria	32.63
Israel	32.34
Serbia	29.72
Australia	29.23
Uruguay	28.59
New Zealand	27.67
Croatia	26.71
Argentina	26.68
Spain	26.03
Czech Republic	24.96
Slovenia	24.77
Turkey	24.46
Portugal	24.40
Mexico	24.40
South Africa	22.54
Greece	22.47

Morocco	22.44
Brazil	22.39
Chile	21.22
Moldova	18.93
Georgia	17.72
Slovakia	16.00
Luxembourg	16.00
Cyprus	16.00
India	15.76
Macedonia	15.00
Armenia	14.00
Peru	13.15
Bosnia and Herzegovina	13.00
Bulgaria	12.60
Romania	12.44
Ukraine	10.00
Name: price, dtype: float6	4

After sampling equal proportion the 'Switzerland' wine are More Costly

In [276]:

```
country_stata.groupby("country")["points"].mean().sort_values(ascending=False)
```

Out[276]:

country

England	91.60
India	90.88
Austria	90.50
	89.73
Germany Switzerland	89.44
Lebanon	89.37
Hungary	89.30
Canada	89.15
Luxembourg	89.00
Australia	88.81
France	88.79
Turkey	88.75
Italy	88.63
US	88.47
Israel	88.34
New Zealand	88.18
Morocco	88.14
Macedonia	88.00
South Africa	87.96
Portugal	87.91
Slovenia	87.90
Serbia	87.86
Croatia	87.77
Bulgaria	87.72
Greece	87.59
Georgia	87.42
Moldova	87.25
Argentina	87.21
Spain	87.20
Armenia	87.00
Slovakia	87.00
Uruguay	86.88
Czech Republic	86.70
Chile	86.58
Romania	86.31
Cyprus	85.68
Mexico	85.35
Bosnia and Herzegovina	85.00
Brazil	83.94
Peru	83.59
Ukraine	83.00

```
Name: points, dtype: float64
```

After sampling england is having highest average points (or) we can say that the wine from England are get high points form the taster in the wine review Dataset

```
In [277]:
```

```
# relation Between province and Price
data.groupby("province")["price"].median().sort values(ascending=False)
Out [277]:
province
                             160.0
Switzerland
                             103.5
Puente Alto
                              95.0
Santa Cruz
Apalta
                              82.0
Middle and South Dalmatia
                              65.0
Dealurile Munteniei
                               8.0
Alenguer
                               8.0
Molina
                               8.0
Viile Timisului
                               7.0
```

The above Data having unequal proportion of province so we have to equal the proption for that we can use stratified Sampling

7.0

Name: price, Length: 330, dtype: float64

```
In [278]:
```

Recas

```
# Appling Stratified Sampling
province_stata = data.groupby("province", group_keys=False).apply(
    lambda x: x.sample(1000, replace=True)
)
province_stata.head(2)
```

Out[278]:

	country	description	designation	points	price	province	taster_name	title	variety	winery	pricelo
22328	Chile	Oceanic aromas of grass, scallion, baby garlic	Missing	90	22.0	Aconcagua Costa	Michael Schachner	Errazuriz 2015 Sauvignon Blanc (Aconcagua Costa)	Sauvignon Blanc	Errazuriz	3.13549
2205	Chile	Nutty aromas of popcorn, buttered toast, peach	Missing	88	20.0	Aconcagua Costa	Michael Schachner	Arboleda 2014 Chardonnay (Aconcagua Costa)	Chardonnay	Arboleda	3.04452
4											•

In [279]:

```
# after sampling grouping Province with Points to check which province have high average
point
province_stata.groupby("province")["points"].median().sort_values(ascending=False)
```

Out[279]:

```
province
Eisenberg 94.0
Mittelrhein 94.0
```

```
Nasnık
                            93.U
Santa Cruz
                            93.0
Puente Alto
                            92.0
Canterbury
                           82.0
Middle and South Dalmatia 82.0
Serra do Sudeste
                           82.0
                           81.0
Vale dos Vinhedos
Table wine
                           81.0
Name: points, Length: 330, dtype: float64
```

In [280]:

after sampling grouping Province with Price to check which province have high average
price
province_stata.groupby("province")["price"].median().sort_values(ascending=False)

Out[280]:

```
province
                 160.0
Switzerland
                 120.0
Puente Alto
Olifants River
                 100.0
Santa Cruz
                  95.0
Apalta
                  82.0
Molina
                   8.0
Alenquer
                   8.0
                    7.0
Recas
Primorska
                    7.0
Viile Timisului
                   7.0
Name: price, Length: 330, dtype: float64
```

Findings in this analysis

Univariate

- 1 The Nan values Have no realtion with output feature so we can replace the values by Median
- 2 The points feature more or less follows normal distribution
- 3 In this reviews the most of the wine is from 'United States' over 12000 and after that 'France'
- 4 The designation has more missing values after tha 'reserver designation' is more in the review Dataset
- 5 The Data set of wine reviews the state 'California' is having more counts and second is 'Washington'
- 6 Many people tast the wine are not provide the name so many values are missing in Taster_Name feature
- 7 The variety 'Pinot Noir' wine is tasted many time in the wine review data over 3000 times
- 8 The winery 'Georges Duboeuf' is the most tasted wine based on this wine Dataset

Multivariate

- 1 The 'Swizerland' wine are most costly among the other country
- 2 England is the country which having high average points

- 3 The 'Price' Feature is Right Skewed so we can perform Log transform
- 4 There is a strong relation between the (price and point)

The correlation of price and points is 40% before log transform The correlation of price and points is 58% after log transform it shows that the log transform make the distribution close to normal

Sampling

- 1 The Data having unequal proportion of province so we have to equal the proption for that we can use stratified Sampling
- 2 After sampling equal proportion the 'Switzerland' wine are More Costly
- 3 After sampling england is having highest average points (or)

we can say that the wine from England are get high points form the taster in the wine review Dataset

In []: