Analog Lab

Experiment 4: Charge Pump

Name - Pushkal Mishra ROLL - EEZOBTECH 11042

1) Initially the charge on capacitors are O so they act as short circuits.

when Vin = VDD, $V_A = V_{DD} \quad \xi \quad V_B = 0$ (due to inverter)

So
$$V_{GS}$$
 for MI, $V_{GS} = V_B - V_A = -V_{DD}$
 V_{GS} for M2, $V_{GS} = V_A - V_B = V_{DD}$

So MI acts as a closed switch and M2 acts as an open switch. Because of this, C, gets charged to VDD welts.

so the circuit becomes -

After the capacitor is charged

$$V_A = OV$$
 $V_B = OV$

Now when Vin = OV -

$$V_{A} = V_{in} - V_{CI} = 0 - V_{DD} = -V_{DD}$$

So
$$V_{GS}$$
 for $M1$, $V_{GS} = V_B - V_A = 2V_{DD}$
 V_{GS} for $M2$, $V_{GS} = V_A - V_B = -2V_{DD}$

MI acts as open switch and Mz acts as closed switch.

Due to that, C2 gets charged to VDD

The circuit becomes -

As soon as C2 gets charged to V_{DD} , V_{B} decomes OV. So, $V_{A} = -V_{DD}$, $V_{B} = OV$

Now when Vin = 1/20-

SO V_{GS} bon M1, $V_{GS} = V_B - V_A = -V_{DD} \Rightarrow$ Closed switch V_{GS} bon M2, $V_{GS} = V_A - V_B = V_{DD} \Rightarrow$ Open switch

Now when $V_{in} = OV$. $V_A = V_{in} - V_{Cl} = O - V_{DD} = -V_{DD}$ $V_B = V_{Dut} - V_{Cl} = V_{DD} - V_{DD} = OV$

So V_{GS} for MI, $V_{GS} = V_B - V_A = +V_{DD} \Rightarrow$ Open Switch V_{GS} for M2, $V_{GS} = V_A - V_B = -V_{DD} \Rightarrow$ Closed Switch

Following the pattern, we get the graphs as -

