GENETIC ALGORITHMS

Nature is all we need Hyper parameter tuning

Diego Klabjan

Northwestern ENGINEERING

Acknowledgment

- Images and examples created by
 - Mayank Jain

Black-box Optimization

- $\min f(x)$
 - No assumption on f
 - Gradient not available or hard to compute
- Hyper parameter selection
 - x = vector of all hyper parameters
 - Mixture of discrete and continuous values
- Objective function f
 - Accuracy or F1 on validation
 - Not differentiable although easy to compute

Genetic Algorithm (GA)

- Search-based optimization technique based on the principles of Genetics and Natural Selection.
 - Frequently used to find optimal or near-optimal solutions to difficult problems
- Search based algorithms based on the concepts of natural selection and genetics
- Subset of a much larger branch of computation known as Evolutionary Computation

Terminology

- Population
 - Subset of all the possible (encoded) solutions to the given problem
- Chromosomes
 - A chromosome one such solution to the given problem
- Gene
 - A gene one element position of a chromosome
- Allele
 - Value a gene takes for a particular chromosome

The Knapsack Problem

- Pack a set of items into a backpack
 - The backpack has a capacity
 - Each item has volume and benefits
 - Maximize benefits subject to items fitting in the backpack

Framework

Northwestern | ENGINEERING

Genotype representation

- Representation
 - Binary for continuous
 - One hot for categorical
 - Integer for integer

Population

- Subset of solutions in current generation
 - Set of chromosomes
 - Highest level
- Initial population
 - Random initialization
 - Heuristic initialization

Fitness function

- Candidate solution/chromosome as input
 - Computes output/fitness
- Objective to either minimize or maximize a given objective function

knapsack capacity = 15, profit = 18

Parent selection: Roulette

- Select several chromosomes
- Roulette wheel selection
 - Turn fitness scores to probabilities
 - Softmax, division by sum
 - Lack of diversity

Parent selection: SUS

- Stochastic Universal Sampling
- One random number
 - Start from the number
 - Step in equidistant steps
 - Number of them equal to the desired number of selected
 - Select chromosomes encountered
- Much larger variety
- Efficient since only a single random number required

Single selection

- Several chromosomes
- Tournament selection select a single one
 - Best fitting value

Crossover

- One parent has been selected
- One or more offsprings are produced using the genetic material of the parents

5

6

5

8

One point crossover

Crossover

Multi-point crossover

Crossover

Uniform crossover

Mutation

- Used to maintain and introduce diversity in the genetic population
- Bit flip mutation

- Random resetting
- Swap mutation

Mutation

Scramble mutation

Inversion mutation

Selection

- Current chromosomes and newly generated chromosomes
 - By means of mutation and crossover
- Selection about how to combine them
- Age based selection
 - Replace the oldest chromosomes
- Fitness based
 - Replace the worst quality (fitness) chromosomes

Age based selection

Fitness based selection

Termination criteria

- No improvement in the population in the last given number of iterations
- Reaching a certain number of iterations
- Fitness is good enough