

Data Munging with SPSS Modeler

Node의 기능 (1/4)

√ Sources nodes

- ▶ 분석에 필요한 모든 데이터에 직접 접근 가능 (개방형 구조)
- ▶ 분석 자료의 저장소(win-win)

Node의 기능 (2/4)

✓ Data handling nodes

➤ 데이터 선택, 파 생, 병합 등 다양한 기능들과 Function 으로 Data Manipulation 부분 을 유연하게 사용 가 능

Node의 기능 (3/4)

√ Modeling nodes

▶ 가장 많은 종류의모델링 알고리즘 보유

Node의 기능 (4/4)

√ Graphs nodes

- ▶ 다양하고 수려한그래프와 모델링의평가 기능
- ➤ Text, Excel, SPSS, SAS 파일 등 으로 결과를 출력할 수 있는 기능

Super Node

- ✔ 여러 노드들을 하나의 노드로 함축 시킴으로 복잡한 노드의 진행을 단순화한다.
- ✓ 복잡한 과정의 반복 수행의 경우 수퍼 노드로 만들어 저장하여 필요 시 불러 사용함으로 작업 시간을 단축 시킨다.
- ✓ 수퍼 노드 내에 다른 수퍼 노드의 사용이 가능하다.

캐쉬(Cashe)

- ✓ 스트림의 특정시점까지의 작업데이터를 일시적 캐쉬에 저장하는 기능
- ✓ 반복적인 탐색의 과정을 수행할 경우에 이전 처리과정을 거 친 작업데이터를 캐쉬에 저장하여 사용하면 작업 시간을 단축 시킬 수 있다.
- ✓ 캐시로 저장된 작업데이터를 SPSS Save 파일로 저장 또는 Save 파일의 캐쉬 로드가 가능하다.

시스템 옵션 (언어 및 가용 메모리 선택)

- ✓최대 메모리: Clementine 구동에 활용할 PC의 가용 메모리 설정
- ✔시스템 로케일 사용. 사용자 로케일 선택 가능

Annotations

Cancel

OΚ

변수의 파생

Apply

<u>R</u>eset

소득을 자녀수를

이용하여 구함

변수

(★)

변수 제거 & 변수명 변경

■ **필터(Filter) 노드:** 특정한 필드를 선택하거나 제외하고 필드명을 바꾸는 노드

Filter 컬럼의 화살 표를 클릭하면 필드 의 포함/제거 설정 가능 (소득, 자녀수 테이블 노드 로 변경사항 확인

변수 유형 설정 (1/2)

변수의 유형과 역할

필드 유형

Icon	Measurement level
4	Default
<i>A</i>	Continuous
81	Categorical
8	Flag
&	Nominal
	Ordinal
· · ·	Typeless

필드 역할

1	Input	입력필드
0	Target	출력필드
9	Both	양방향필드
	None	사용안함

변수 유형 설정 (2/2)

Data의 선택

- 선택(Select) 노드
- : 일정 조건을 만족하는 특정 레코드를 선택이나 제외하는 노드이다. 조건에는 선택이나 제외에 대한 조건을 지정한다.

Data의 결합

- 무엇을 하는가?
 - File과 file, data와 data를 결합한다.
- 왜 하는가?
 - Data들이 절대로 한 file에 있지 않다.
 - 결합을 통한 DATA의 표준/통합 작업
 - 가장 먼저 직면하는 Manipulation 작업
- 어디에서?
 - 거의 모든 Data Mining Process에서 사용된다.

사용되는 Node

- ♣ 추가(Append) 노드
 - 서로 같은 변수끼리의 결합, 레코드의 증가
 - 종적 결합에 이용

- <u>병합(Merge) 노드</u>
 - 서로 다른 변수끼리의 결합, 변수의 증가
 - 횡적 결합에 이용

Append Node (1/2)

실습 DATA

- 연금보험_학습.dat
- 연금보험_검증.dat

변수를 기준으로 서로 같은 변수끼리의 결합 • 연금보험_학습 (12개 변수, 300개 데이터)

• 연금보험_검증 (12개 변수, 300개 데이터)

Append Node (2/2)

Merge Node (1/2)

실습 DATA

- 고객_통화.dat
- 요금제.dat

'요금제'라는 변수가['] 병합키가 되어 서로 다른 변수끼리의 결합 • 고객_통화 (25개 변수, 3155개 데이터)

+

• 요금제 (9개 변수, 5개 데이터)

Merge Node (2/2)

테이블 노드로 요금제 를 기준으로 병합된 데 이터 확인. (33(=25+9) 개 변수, 3155개 데이 터)

고객_통화 데이터에 요금제 데이터를 '요 금제' 라는 변수를 병합키로 하여 결합 함.

Sampling

- 무엇을 하는가?
 - 전체 data에서 사용자 필요에 따른 일부 data의 추출

- 왜 하는가?
 - Modeling : Hold-out sample (test & train & validation)
 - Data 감소로 Performance 향상
 - 불필요한 Data 제거

사용되는 Node

- 표본(Sample) 노드
 - 전체자료에서 일부자료만을 추출을 할 수 있는 노드
 - First, 1-in-n, Random% 3가지 방법이 있다.

- 선택(Select) 노드 + 파생(Derive) 노드
 - 사용자정의에 의해서 일부 자료만을 추출할 수 있는 노드
 - 연산기호와 CLEM에 의한 방법이 있다.

Sample Node

Select + Derive Node

0K

적인 data set을 생성할 수 있다.

파생노드와 선택노드를 이용하여 한 data set에서 여러 개의 임의

중복제거와 Balance

- 무엇을 하는가?
 - 자료에서의 중복된 data의 제거와 자료의 균형 맞추기
- 왜 하는가?
 - 효율적인 Modeling 작업을 위해서
 - Data cleansing
 (결측값 제거와 함께 대표적인 방법)

사용되는 Node

- 구별(Distinct) 노드
 - 중복된 자료를 제거하는 기능을 가진 노드

- <u>균형(Balance) 노드</u>
 - 자료의 균형을 맞추기 위한 노드

- 채움(Filler) 노드
 - 결측값을 대체하기 위한 노드

Distinct Node

실습 DATA

• 통화.dat

Balance Node

❖ 균형 조정의 목적

- 효율적인 Modeling 작업 수행
- 목표필드의 분포가 심하게 분균형인 경우
- 인위적으로 균형을 맞출 경우

실습 DATA

• 금융신용.dat

Filler Node (1/2)

- 실습 DATA FILE
 - filler.sav

Filler Node (2/2)

Data의 재조정

- 무엇을 하는가?
 - Clementine에서의 기타 data 조정에 관하여 알아본다.
- 왜 하는가?
 - 데이터의 축약과 요약
 - 데이터의 정리
 - 데이터의 또 다른 변환

사용되는 Node

통합(Aggregate) 노드

 자료를 기준에 맞추어 통합하여 산출하는 노드 (SQL의 Group by 기능과 동일)

<u> 정렬(Sort) 노드</u>

 자료를 기준에 맞추어 정렬하는 노드 (SQL의 Order by 기능과 동일)

이분변환(Set to flag) 노드

■ 필드의 조합을 이진 자료(T or F)로 변환시키는 노드

Aggregate Node

실습 DATA

• 통화.dat

■ 통합(Aggregate) 노드

: 합계, 평균, 최소값, 최대값 등의 통합함수를 적용하여 파생 데이터를 만든다.

Sort Node

실습 DATA

• 고객정보.dat

테이블 노드로 ID를 기준으로 정렬 확인

Set To Flag Node

실습 DATA

• 고객정보.dat

데이터 구간화

❖ 구간화의 필요성

Super Node

- 무엇을 하는가?
 - 노드의 압축 노드인 슈퍼노드의 생성
- 왜 하는가?
 - 수 많은 노드의 통합
 - 일정한 process 노드를 고정시켜 다른 Stream에서도 활용 (저장후 load)
- 어디에서?
 - 모형화 완료 후 Stream 정리時 주로 사용

Super Node의 종류

■ Source Supernode: 슈퍼노드에 Source 노드를 포함한 경우

■ Manipulation Supernode: Source 노드와 Output노드를 포함하지 않은 경우

■ Terminal Supernode: 슈퍼노드에 Output노드를 포함한 경우

Super Node의 생성 (1/2)

실습 DATA

• 금융신용.dat

ΟK

Cancel

Apply

Reset

Super Node의 생성 (2/2)

그래프를 이용한 데이터 탐색 (1/2)

범주형 데이터 탐색

■ 분포(Distribution) 노드

: 범주형 데이터 자료를 탐색할 때 활용된다.

그래프를 이용한 데이터 탐색 (2/2)

데이터의 다양한 결과 분석

데이터의 다양한 출력

❖ 출력의 필요성

- 결과의 저장 작업
- 결과의 파일화 작업
- 다른 시스템에서 활용 가능한 형태로의 변환

■ 데이터베이스(Database) 노드

: ODBC(Open Database Connectivity)를 이용하여, 데이터베이스 테이블을 생성 또는 삽입할 수 있다.

■ 플랫 파일(Flat File) 노드

: 출력 결과를 구분자에 의한 텍스트 파일로 저장하는 기능을 한다.

■ SPSS 출력(SPSS Export) 노드

: '*.sav' 형식으로 데이터를 내보내는 기능을 한다. SPSS 제품에서 불러올 수 있다.

■ SAS 출력(SAS Export) 노드

: '*.sd2', '*.SSD*', '*.sas7bdat' 형식으로 데이터를 내보내는 기능을 한다. SAS 제품에서 불러올 수 있다.

■ EXCEL 노드

: 데이터를 내보내고 Microsoft Excel에서 파일을 여는 기능을 제공한다.

CLEM 언어 (1/3)

CLEM(Clementine Language for Expression Manipulation)

CLEM 언어는 Clementine 스트림 내에서 데이터의 변환 및 정제 등의 기능을 하는 함수를 의미하며 CLEM은 Derive, Select, Filter, Balance, Report 노드에 사용할 수 있다.

❖ 자주 사용하는 CLEM 함수

- substring(N, LEN, STRING)
- : 특정 필드의 N번째 위치로부터 LEN만큼의 문 자열을 반화
- date_days_difference(DATE1, DATE2)
- : 날짜1에서 날짜2까지 시간(일)을 정수로 반환
- @OFFSET(FIELD, EXPR)
- : 특정 필드로부터 EXPR만큼의 이전 레코드 필드 값을 반환
- Field1><Field2
- : 두 개의 필드값을 연결시켜 하나의 필드값으로 반환
- to string(ITEM)
- : 필드의 유형을 문자열로 변경
- @INDEX
- : index의 생성

CLEM 언어 (2/3)

CLEM 언어를 이용한 새로운 변수 생성

CLEM 언어 (3/3)

CLEM 언어를 이용한 새로운 변수 생성

전역값 설정

- 윈도우의 "시작">"프로그램 및 파일 검색"에서 C:\Windows\Sys\WOW64\odbcad32.exe 입력 후 실행
- 아래와 같이 "사용자 DSN" 탭을 선택한 후 "추가" 버튼을 클릭

ODBC 설정 (2/4)

■ 아래와 같이 "Microsoft Access Driver (*.mdb)" 선택 후 "마침" 클릭

ODBC 설정 (3/4)

■ 아래와 같이 데이터 원본 이름(HDS)을 입력하고 "HDS.mdb"를 선택

ODBC 설정 (4/4)

▪ 아래와 같이 HDD 이름의 ODBC가 설정된 것을 확인

Database 노드 설정 (1/3)

 Clementine에서 소스 노드로 Database 노드를 생성한 후 아래의 화면과 같이 데이터소스를 선택

데이터베이스 연결 화면에서 데이터소스로 (방금 전에 ODBC 설정한) HDS를 선택한 후 "연결"버튼과 "확인"버튼을 순서대로 클릭

아래 화면과 같이 읽어오길 원하는 Table이나 Query를 선택
 (이 후의 과정은 기존에 학습한 다른 Source 노드와 동일)

