NEURAL NETWORKS AND DEEP LEARNING

Course Code: CSA 401 Credit Units: 03
Total Hours: 45

Course Objective:

The main objective of the course is to introduce major deep learning algorithms, the problem settings, and their applications to solve real world problems.

Course Contents:

Module I: Introduction: (9 Hours)

Various paradigms of learning problems, Perspectives and Issues in deep learning framework, review of fundamental learning techniques.

Module II: Artificial Neural Network: (9 Hours)

Artificial Neural Network, Basics of ANN, Activation Functions, Architectures of Neural Network. Learning Process in ANN, Error functions, Back Propagation Neural network.

Module III: Probabilistic Neural Network(9 Hours)

Speech Recognition, Probabilistic Neural Networks, Convolutional Neural Network, Recurrent Neural Network.

Module IV: Deep Learning: (9 Hours)

Deep Feed Forward network, regularizations, training deep models, dropouts,, Deep Belief Network, Limitations of Deep Learning.

Module V: Deep Learning Research and Tools: (9 Hours)

Object recognition, sparse coding, computer vision, natural language processing, Deep Learning Tools: Caffe, Theano, Torch.

Course Outcomes:

At the end of this course, students will demonstrate ability to:

- Identify the deep learning algorithms which are more appropriate for various types of learning tasks in various domains.
- Implement deep learning algorithms and solve real-world problems.

Examination Scheme:

Components	A	CT	S/V/Q/HA	EE
Weightage (%)	5	15	20	60

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; A: Attendance

Text & References:

Text:

- Machine Learning by Saikat Dutt, Subramanian Chandramouli, Pearson Education; First edition (1 October 2018)
- Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016...
- Bishop, C., M., Pattern Recognition and Machine Learning, Springer, 2006.

References:

- Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- Golub, G., H., and Van Loan, C., F., Matrix Computations, JHU Press, 2013.

• Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

NEURAL NETWORKS AND DEEP LEARNING LAB

Course Code: CSA 421 Credit Unit: 01
Total Hours: 30

Course Objective:

The course objective is to understand major deep learning algorithms.

SOFTWARE REQUIREMENTS: Python

List of experiments/demonstrations:

- Introductory session on neural network tools
- Neural Network with Python
- Implementing, training, and evaluating neural networks
- Image Classification with Deep Convolutional Networks
- Feedforward Networks for Handwritten Digit Recognition
- Deep Feedforward Networks.
- Recurrent and Recursive Networks.
- Convolutional Networks.
- R Adversarial Learning.

Course Outcomes:

Learner will learn

- Identify the deep learning algorithms which are more appropriate for various types of learning tasks in various domains.
- Implement deep learning algorithms and solve real-world problems.

Examination Scheme:

IA			EE				
A	PR	Practical Based Test	Major Experiment	Minor Experiment	LR	Viva	
5	20	15	25	15	10	10	

Note: IA -Internal Assessment, EE- External Exam, A- Attendance PR- Performance, LR - Lab Record, V - Viva.

Text & References:

Text:

- Machine Learning by Saikat Dutt, Subramanian Chandramouli, Pearson Education; First edition (1 October 2018)
- Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016..
- Bishop, C., M., Pattern Recognition and Machine Learning, Springer, 2006.

References:

- Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- Golub, G., H., and Van Loan, C., F., Matrix Computations, JHU Press, 2013.
- Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.