ANALISIS MUTU AIR MINUM EMBUN YANG BERKHASIAT UNTUK KESEHATAN

Laporan Praktik Kimia Terpadu Tahun Ajaran 2018/2019

oleh Kelompok PKT 26, Kelas XIII-4:

Dhiyah Putri Andhisa	15.61.08019
Muhammad Arbi	15.61.08121
Pandu Putra Pratama	15.61.08170
Syahrizal Daffa Aditya	15.61.08238

KEMENTERIAN PERINDUSTRIAN REPUBLIK INDONESUA

Pusat Pendidikan dan Pelatihan Industri

Sekolah Menengah Kejuruan - SMAK

Bogor

2018

LEMBAR PERSETUJUAN DAN PENGESAHAN

Analisis Mutu Minuman Air Embun yang Berkhasiat Untuk Kesehatan oleh kelompok PKT 26, XIII-4
Disetujui dan disahkan oleh:
Disetujui oleh,
Pembimbing
Rusman, M.Si
NIP 197811132005 021001
Disahkan oleh,
Kepala Laboratorium SMK-SMAK Bogor

Ir. Tin Kartini, M.Si

NIP 196404161994032003

KATA PENGANTAR

Laporan praktrikum kimia terpadu yang berjudul Analisis Mutu Air Minum Embun yang Berkhasiat Untuk Kesehatan ini disusun untuk memenuhi tugas peserta didik dalam rangkaian mata praktikum kimia terpadu. Khususnya peserta didik dilingkungan sekolah menengah kejuruan – SMAK Bogor. Peserta didik yang dimaksud adalah peserta didik kelas XIII yang duduk di semester gasal tahun ajaran 2018/2019.

Adapun sebagian besar isi panduan ini meliput: Pendahuluan, tinjauan pustaka, metode analisis, hasil dan pembahasan, serta simpulan dan saran. Pendahuluan ini berisi tentang latar belakang, pentingnya masalah yang harus dipecahkan, dan tujuan dari pembuatan laporan. Tinjauan pustaka berisi tentang pengertian atau penjelasan dari kata-kata yang terdapat di dalam judul. Metode analisis berisi tentang dasar dari masing-masing parameter yang akan di analisis. Dalam metode analisis terdapat panduan atau cara kerja untuk menganalisis parameter tersebut. Hasil dan pembahasan melampirkan hasl serta penjelasan jika terjadi penyimpangan atau ketidakcocokan antara standar dan hasil. Lalu hasil akhir akan di simpulkan dan diberikan saran untuk analisis selanjutnya.

Tim penyusun menaikan puji syukur kehadirat Tuhan yang maha esa karena telah menganugerahi segala kepandaian dan segala yang baik. Sehingga panduan ini dapat selseai pada waktunya. Dan, ucapan terimakasih pantas disampaikan kepada:

- Dwika Riandari, M.Si selaku Kepala Sekolah Menengah Kejuruan SMAKBogor
- Ir.Tin Kartini. M.Si selaku kepala laboratorium Sekolah Menengah Kejuruan – SMAK Bogor
- 3. Rusman, M.Si selaku pembimbing dari PKT 26
- 4. Para wakil kepala sekolah menengah kejuruan SMAK Bogor
- Semua unsur pendidik dan tenaga kependidikan Sekolah Menengah Kejuruan – SMAK Bogor

Tim penyusun masih membuka pintu kritik dan saran atas laporan ini. Kami menyadari bahwa dalam penulisan laporan ini terdapat banyak sekali kekurangan. Oleh karena itu, kami sangat mengharapkan kritik dan saran yang sifatnya membangun demi kesempurnaan laporan ini. Kritik dan saran tersebut

kami gunakan untuk memperbaiki segala kesalahan agar tidak terulang di kemudian hari.

Tim penyusun amat berharap kepada seluruh pembaca dan pengguna laporan ini agar laporan ini dapat bermanfaat secara langsung maupun tidak langsung. Kami berharap agar laporan ini dapat menambah pengetahuan dan wawasan para pembaca. Semoga laporan ini dapat dipahami bagi yang membacanya. Sekiranya laporan ini juga berguna bagi Tim Penyusun maupun pembaca. Demikian yang dapat disampaikan. Atas segala aspirasi dan materi yang diberikan Tim Penyusun ucapkan terima kasih.

Bogor, Desember 2018

Tim Penyusun

DAFTAR ISI

KAT	ΓA PENGANTAR	i
DAF	-TAR ISI	iii
DAF	TAR TABEL	v
DAF	TAR GAMBAR	vi
BAB	3	7
PEN	NDAHULUAN	7
Α.	Latar Belakang	7
В.	. Pentingnya Masalah	8
C	. Tujuan	8
BAB	3	10
TIN	JAUAN PUSTAKA	10
Α.	. Analisis	10
В.	. Mutu	10
C	. Minuman	11
D	. Air	11
Ε.	. Air Minum Embun	12
BAB	3 III	13
MET	TODE ANALISIS	13
Α.	. Uji Organoleptik	13
	1. Bau	13
	2. Rasa	13
В.	. Uji Fisika	14
	Uji Kekeruhan Metode Nephelometri	14
C	. Uji Kimia	15
	2. Uji pH	15
	3. Uji Zat Terlarut Metode TDS-meter	15
	4. Penetapan Kadar Nitrat sebagai NO ₃ Metode Spektrofotometri.	16
	5. Penetapan Kadar Nitrit sebagai NO ₂ Metode Spektrofotometri	16
	6. Penetapan Kadar Sulfat sebagai SO ₄ Metode Spektrofotometri	17
	7. Penetapan Kadar Klorida sebagai Cl ⁻ Metode Titrimetri	18
	8. Uji Cemaran Logam Metode SSA Nyala	19
	9. Uji Cemaran Logam As dan Hg	20

D.	Uji Mikrobiologi	21
1	. Perhitungan Angka Lempeng Total	21
2	. Penetapan Uji Bakteri Coliform Metode Angka Paling Mungkin (APM)	23
3	. Pengujian Bakteri Salmonella sp	23
4	. Pengujian Bakteri E.coli Metode Angka Paling Mungkin (APM)	24
5	. Pengujian Bakteri <i>Pseudomonas aeruginosa</i>	25
ANAL	ISIS KEWIRAUSAHAAN	26
A.	Organoleptik (Uji Rasa, Warna dan Bau)	26
B.	Argentometri	26
C.	Uji pH	26
D.	Kadar Zat Terlarut	27
E.	Oksigen Terlarut	27
F.	Kekeruhan	27
G.	Cemaran Logam Cr	27
Н.	Cemaran Logam Cd	27
I.	Cemaran Logam As	28
J.	Cemaran Logam Cu	28
K.	Cemaran Logam Hg	28
L.	Angka Lempeng Total	28
M.	Bakteri Coliform Cara APM	28
N.	Bakteri Patogen	29
BAB I	V	30
HASII	L DAN PEMBAHASAN	30
BAB \	V	33
KESII	MPULAN DAN SARAN	33
A.	Kesimpulan	33
B.	Saran	33
DAFT	AR PUSTAKA	34
\ N / E	DIDAN	36

DAFTAR TABEL

Tabel 1 Pelaporan Kadar Kekeruhan	14
Tabel 2 Uji Organoleptik	26
Tabel 3 Argentometri	26
Tabel 4 Uji pH	27
Tabel 5 Kadar Zat Terlarut	27
Tabel 6 Kadar Oksigen Terlarut	27
Tabel 7 Uji Kekeruhan	27
Tabel 8 Cemaran Logam Cr	27
Tabel 9 Cemaran Logam Cd	27
Tabel 10 Cemaran Logam As	28
Tabel 11 Cemaran Logam Cu	28
Tabel 12 Cemaran Logam Hg	28
Tabel 13 Angka Lempeng Total	28
Tabel 14 Bakteri Coliform Cara APM	29
Tabel 15 Bakteri Patogen	29
Tabel 16 Hasil uii dengan standar SNI	30

DAFTAR GAMBAR

Gambar 1. Minuman	11
Gambar 2. Air	11
Gambar 3. Air Minum Embun	12

BAB I

PENDAHULUAN

A. Latar Belakang

Tubuh manusia mengandung air sekitar 60-70% yang berguna sebagai pelarut, pengatur suhu tubuh, katalisator, dan lainnya. Maka dari itu setiap manusia diharuskan meminum air putih sesuai dengan kebutuhan tubuhnya. Setiap orang memiliki kebutuhan terhadap air putih yang berbeda beda tergantung dari berat badan, usia serta kondisi tubuh. Sekarang ini sudah banyak beredar air minum dalam kemasan dengan berbagai merek serta khasiat, tidak sedikit pula yang menawarkan produk air minum dengan proses dan sumber yang berbeda beda.

Berbeda dengan air minum yang biasanya diambil dari tanah, air minum embun diambil dari udara yang ditarik masuk ke ruang *micro* particle separator system dan diproses pada systemized dew process yang setelahnya akan ditampung dalam tangki besar untuk diproses lebih lanjut. Sisa dari penyaringan dan proses pemurnian embun ini berupa udara bersih dan sejuk yang dapat digunakan sebagai pendingin ruangan.

Sebagai air minum dalam kemasan yang masih baru terdengar dikalangan masyarakat, maka analisis terhadap air minum embun ini dinilai wajib untuk dilakukan karena air minum merupakan hal yang wajib dikonsumsi. Air minum embun yang berasal dari udara ini diklaim memiliki oksigen yang lebih banyak dibandingkan air minum pada umumnya yang berasal dari tanah. Jika air minum biasanya hanya mengandung oksigen sebanyak 4 – 6 ppm, maka air minum embun mengandung oksigen alami 14 – 16 ppm. Oksigen yang lebih banyak inilah yang menyebabkan air minum embun berkhasiat bagi kesehatan karena oksigen sangat bermanfaat bagi tubuh.

B. Pentingnya Masalah

Air minum embun merupakan Air Minum Dalam Kemasan (AMDK) yang belum terdengar luas oleh masyarakat. Air minum embun ini diklaim memiliki banyak khasiat untuk kesehatan jadi perlu dilakukan analisis untuk mengetahui mutu dari air minum embun tersebut.

C. Tujuan

Tujuan dalam analisis mutu air minum embun yaitu:

- 1. Menganalisis kandungan air minum embun yang mulai beredar di lingkungan masyarakat.
- Menentukan layak atau tidaknya produk berdasarkan Standar Nasional Indonesia (SNI).
- 3. Memperkenalkan produk air minum embun sebagai alternatif air minum.

BAB II

TINJAUAN PUSTAKA

A. Analisis

Menurut Kamus Besar Bahasa Indonesia, arti kata analisis adalah penyelidikan terhadap suatu peristiwa (karangan, perbuatan, dan sebagainya) untuk mengetahui keadaan yang sebenarnya (sebabmusabab, duduk perkaranya, dan sebagainya).

Secara bahasa, analisis adalah kajian yang dilaksanakan terhadap sebuah bahasa guna meneliti struktur bahasa tersebut secara mendalam. Sedangkan pada kegiatan laboratorium, kata analisis atau analisis dapat juga berarti kegiatan yang dilakukan di laboratorium untuk memeriksa kandungan suatu zat dalam cuplikan.

Dalam perkembangannya, penggunaan kata analisis mendapat sorotan dari kalangan akademisis, terutama kalangan ahli bahasa. Penggunaan yang seharusnya adalah kata analisis. hal ini dikarenakan kata analisis merupakan kata serapan dari bahasa asing (inggris) yaitu *analisys*. Dari akhiran -isys bila diserap ke dalam bahasa Indonesia menjadi -isis. Jadi sudah seharusnya bagi kita untuk meluruskan penggunaan setiap bahasa agar tercipta praktik kebahasaan yang baik dan benar demi tatanan bangsa Indonesia yang semakin baik.

B. Mutu

Menurut Kamus Besar Bahasa Indonesia, mutu adalah (ukuran) baik buruk suatu benda; kadar; taraf atau derajat (kepandaian, kecerdasan, dan sebagainya). Mutu biasanya mengarah kepada kualitas suatu produk. Mutu merupakan hal yang penting dalam membangun dan mengelola fungsi produksi. Mutu akan mempengaruhi seluruh aktivitas perusahaan dari pemasok sampai konsumen dan dari manajemen produk sampai aspek dalam pemeliharaan peralatan. Tujuan akhir adalah menjadi perusahaan yang efektif dan efisien serta mempunyai keunggulan kompetitif terhadap produk yang dihasilkan.

C. Minuman

Minuman adalah salah satu kebutuhan pokok manusia yang harus dipenuhi setiap hari. Jumlah penduduk yang semakin bertambah, akan berpengaruh terhadap peningkatan jumlah konsumsi air oleh manusia. Tingginya tingkat kebutuhan manusia terhadap air sebagai minuman, membuat produsen berlomba menciptakan produk-produk inovatif yang berkualitas untuk memenuhi kebutuhan tersebut.

Gambar 1. Minuman

D. Air

Menurut Kamus Besar Bahasa Indonesia, arti kata air adalah cairan jernih tidak berwarna, tidak berasa, dan tidak berbau yang diperlukan dalam kehidupan manusia, hewan, dan tumbuhan yang secara kimiawi mengandung hidrogen dan oksigen.

Menurut Hefni Effendi, air merupakan salah satu sumber energi gerak dalam kehidupan.

Gambar 2. Air

E. Air Minum Embun

Menurut Kamus Besar Bahasa Indonesia, arti kata embun adalah titik-titik air yang jatuh dari udara (terutama pada malam hari). Embun ini bisa digolongkan sebagai air murni dan tidak memiliki kandungan anorganik layaknya garam dan klorida, logam berat layaknya timbal dan merkuri, serta pestisida dan karena alasan inilah, air minum embun dianggap ideal bagi kesehatan dan kecantikan tubuh. Sebagaimana diketahui, tubuh membutuhkan nutrisi yang bisa membantu kesehatan dan lancarnya berbagai sistem di dalamnya, khususnya mineral. Biasanya, kandungan mineral ini bisa didapatkan dari makanan dan minuman yang kita konsumsi layaknya sayuran, buah, atau bahkan air putih.

Gambar 3. Air Minum Embun

BAB III

METODE ANALISIS

Metode yang kami lakukan untuk analisis mutu air minum embun ini sesuai dengan SNI No. 01-7812-2013 yaitu :

A. Uji Organoleptik

1. Bau

a. Prinsip

Pengamatan contoh uji dengan indera penciuman yang dilakukan oleh panelis yang terlatih atau kompeten untuk pengujian organoleptik.

b. Cara kerja

- Ambil contoh uji secukupnya dan letakkan di atas gelas arloji yang bersih dan kering;
- 2) cium contoh uji untuk mengetahui baunya; dan
- 3) lakukan pengerjaan minimal oleh 3 orang panelis atau 1 orang tenaga ahli.

c. Cara menyatakan hasil

- Jika tercium bau khas air embun, maka dinyatakan "normal";
 dan
- 2) jika tercium selain bau khas air minum embun, maka hasil dinyatakan "tidak normal".

2. Rasa

a. Prinsip

Pengamatan contoh uji dengan indera pengecap (lidah) yang dilakukan oleh panelis yang terlatih atau kompeten untuk pengujian organoleptik.

b. Cara kerja

- Ambil contoh uji secukupnya dan rasakan dengan indera pengecap (lidah); dan
- 2) lakukan pengerjaan minimal oleh 3 orang panelis atau 1 orang tenaga ahli.

- c. Cara menyatakan hasil
 - Jika terasa khas air minum embun, maka hasil dinyatakan "normal"; dan
 - 2) jika tidak terasa khas air minum embun, maka hasil dinyatakan "tidak normal".

B. Uji Fisika

1. Uji Kekeruhan Metode Nephelometri

a. Prinsip

Membandingkan intensitas cahaya dari contoh dengan intensitas cahaya dari suspensi standar pada kondisi tertentu.

b. Cara kerja

- Kalibrasi alat; alat nephelometer dikalibrasi dengan beberapa standar kekeruhan.
- Contoh dikocok dengan sempurna, didiamkan sampai gelembung udara hilang, kemudian contoh dituangkan ke dalam tabung nephelometer;
- dibaca nilai kekeruhan pada skala alat tersebut. Untuk contoh yang derajat kekeruhan > 40 NTU, maka cuplikan diencerkan dengan air bebas kekeruhan hingga mencapai kekeruhan 30 NTU sampai dengan 40 NTU.

c. Pelaporan data

Jarak kekeruhan (NTU)	Pelaporan paling mendekati (NTU)
0 – 1,0	0,05
1 – 10	0,1
10 – 40	1
400 – 1000	50
>1000	100

Tabel 1 Pelaporan Kadar Kekeruhan

C. Uji Kimia

1. Uji pH

a. Prinsip

Metode pengukuran pH secara elektrometri berdasarkan pengukuran aktivitas ion hidrogen dengan menggunakan metode pengukuran secara potensiometri dengan elektroda gelas hidrogen sebagai standar primer dan elektrode kalomel atom perak klorida sebagai pembanding.

b. Cara kerja

- pH meter dikalibrasi dengan larutan bufer setiap kali akan melakukan pengukuran;
- 2) elektroda yang telah dibersihkan dengan air suling dicelupkan ke dalam contoh yang akan diukur pH-nya; dan
- 3) nilai pH dibaca dan dicatat.

2. Uji Zat Terlarut Metode TDS-meter

a. Prinsip

Kandungan padatan terlarut total yang bersifat elektrolit dapat ditentukan berdasarkan daya hantar larutan yang sebanding dengan kadarnya.

b. Cara kerja

- 1) Elektroda dicuci dengan larutan KCl 0,01M sebanyak 3 kali;
- 2) suhu larutan KCl 0,01M diatur pada 25 °C;
- 3) elektrode dicelupkan ke dalam larutan KCl 0,01M;
- 4) tombol kalibrasi ditekan;
- alat diatur sampai menunjukkan angka baca 1413 μS/cm (sesuai dengan instruksi kerja alat);
- 6) dilakukan kalibrasi dengan larutan KCl 0,1 M jika DHL ± 12900
 μS/cm, dan dengan larutan KCL 0,5 M jika DHL ± 58460 μS/cm;
- probe diangkat dari larutan uji, bilas dengan air bebas mineral hingga bersih, bersihkan hingga kering menggunakan tisu halus dan kering;
- 8) elektrode dibilas dengan contoh uji sebanyak 3 kali;

- 9) elektrode dicelupkan ke dalam contoh uji hingga didapat pembacaan DHL yang tetap;
- 10) mode pembacaan alat diubah ke satuan mg/L (TDS); dan
- 11) dicatat hasil baca dan suhu uji.

c. Pehitungan

Hasil yang terbaca pada TDS-meter merupakan kandungan padatan terlarut total.

3. Penetapan Kadar Nitrat sebagai NO₃ Metode Spektrofotometri

a. Prinsip

Penambahan sejumlah larutan asam klorida ke dalam larutan yang mengandung ion nitrat menyebabkan perubahan pada spektrum absorben nitrat yang dapat diukur dengan spektrofotometer ultraviolet pada panjang gelombang 220 nm dan 275 nm.

b. Reaksi

Tidak ada reaksi.

c. Cara kerja

- Dipipet 5 mL standar induk NO₃ 500 ppm ke dalam labu ukur 50 mL, menjadi standar 50 ppm.
- 2) Dibuat deret standar 0-5 ppm dari standar NO₃ 50 ppm ke dalam labu ukur 50 mL.
- Dipipet 50 mL larutan contoh dan dimasukkan ke dalam Erlenmeyer 100 mL
- Deret standar, dan sampel masing-masing ditambahkan 1 mL HCl
 1N. Diencerkan dengan air suling sampai tanda tera dan dihomogenkan.
- 5) Diperiksa deret standar dan sampel dengan spektrofotometer pada panjang gelombang 220 nm dan 275 nm.

d. Perhitungan

ppm NO₃ =
$$\frac{Abs(\lambda 220 - \lambda 275) - Intersep}{Slope} \times FP$$

4. Penetapan Kadar Nitrit sebagai NO₂ Metode Spektrofotometri

a. Prinsip

Dalam suasana asam, nitrit direaksikan dengan asam sulfanilat membentuk garam diazonium. Hasil reaksi direaksikan

dengan α -Naftilamin membentuk senyawa azo berwarna pink yang dapat diukur aborbansinya dengan spektrofotometer pada panjang gelombang 525 nm.

b. Reaksi

$$NH_1CI$$
 $N'WNCI$ NH_2 NH_2 NH_3 NH_2 NH_3 $N=N$ $N=N$ NH_2 $N=N$ $N=N$ NH_2 $N=N$ NH_3 $N=N$ NH_2 NH_3 $N=N$ NH_3 NH_3 $N=N$ NH_3 NH_3

c. Cara kerja

- Pipet larutan standar induk nitrit 200 ppm sebanyak 5 mL, masukkan ke dalam labu ukur 500 mL, encerkan dan impitkan dengan air suling sampai tanda tera dan homogenkan (standar induk nitrit 2 ppm)
- 2) Buat deret standar 0,05;0,10;0,25;0,5 ppm dari standar nitrit 2 ppm yang telah diencerkan terlebih dahulu ke dalam labu ukur 100 ml.
- 3) Pipet 50 mL contoh ke dalam Erlenmeyer 100 mL
- 4) Tambahkan 1 mL asam sulfanilat 0,6% ke dalam larutan standar dan contoh. Biarkan larutan tersebut bereaksi selama 10 menit sambal sesekali diaduk.
- 5) Tambahkan 1 mL natrium asetat 16,4% dan 1 mL a-naftilamin 0,48% ke dalam deret standar dan contoh. Lalu deret standar diimpitkan dengan air suling, dan homogenkan.
- 6) Periksa deret standar dan contoh dengan spektrofotometer pada panjang gelombang 525 nm.

d. Perhitungan

$$ppm NO_2^- = \frac{Abs - Intersep}{Slope} \times FP$$

5. Penetapan Kadar Sulfat sebagai SO₄ Metode Spektrofotometri

a. Prinsip

Ion sulfat akan diendapkan dalam media asam asetat dengan barium klorida (BaCl₂) membentuk kristal barium sulfat (BaSO₄). Absorben dari suspense BaSO₄ diukur dengan spektrofotometer pada panjang gelombang 420 nm.

b. Reaksi

$$Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4$$

c. Cara kerja

- Buat deret standar sulfat dengan konsentrasi 0 ppm sampai dengan 40 ppm dengan jarak standar 5 ppm
- Ukur dengan teliti 100 mL sampel, masukkan ke dalam Erlenmeyer 250 mL
- Tambahkan 2 mL larutan kondisi ke dalam deret standar dan sampel
- 4) Kemudian tambahkan BaCl₂ seujung sudip ke dalam deret standar dan sampel (penambahan dilakukan ketika larutan siap diaduk)
- 5) Aduk larutan dengan magnetic stirrer selama 60 detik
- 6) Periksa deret standar dan sampel dengan spektrofotometer pada panjang gelombang 420 nm.

d. Perhitungan

ppm
$$SO_4^{2-} = \frac{Abs - Intersep}{Slope} \times FP$$

6. Penetapan Kadar Klorida sebagai Cl Metode Titrimetri

a. Prinsip

Dalam larutan netral atau sedikit alkali, kalium kromat, K₂CrO₄, dapat menunjukkan titik akhir pada penitaran klorida dengan perak nitrat, AgNO₃. Perak klorida, AgCl, diendapkan seluruhnya sebelum terbentuk perak kromat, Ag₂CrO₄ yang berwarna kuning kemerah-merahan.

b. Cara kerja

- diukur dengan teliti 100 mL contoh (V) yang mempunyai nilai pH 7 sampai dengan 10, apabila contoh tidak berada dalam kisaran pH tersebut, ditambahkan H₂SO₄ N atau NaOH 1 N sehingga menjadi pH 7 sampai dengan pH 10;
- 2) ditambahkan 1 mL indikator K₂CrO₄;
- 3) dititrasi dengan larutan standar perak nitrat (AgNO₃) sampai timbul warna kuning kemerah-merahan (V1);

- 4) dilakukan titrasi blanko dengan mengukur dengan teliti 100 mL air suling dan selanjutnya kerjakan sama dengan perlakuan contoh (V2);
- 5) dilakukan pengerjaan duplo; dan f) hitung kadar klorida (Cl⁻) dalam contoh.

c. Perhitungan

Kadar Cl⁻ (mg/L) =
$$\frac{(V1-V2) x N x 35450}{V}$$

Keterangan:

V1 adalah volume AgNO₃ yang dipakai penitaran contoh, dinyatakan dalam mililiter (mL);

V2 adalah volume AgNO₃ yang dipakai penitaran blanko, dinyatakan dalam mililiter (mL);

N adalah normalitas AgNO₃, dinyatakan dalam normal (N);

V adalah volume contoh, dinyatakan dalam mililiter (mL).

7. Uji Cemaran Logam Metode SSA Nyala

a. Prinsip:

Kadar Cr, Cd, As, Cu, dan Pb dapat ditetapkan dengan metode Spektrofotometri Serapan Atom (SSA). Contoh didestruksi dengan campuran HNO_3 : $HCIO_4$: H_2SO_4 (1:1:5) untuk logam As dan Hg, atau didestruksi dengan HNO_3 untuk logam Pb dan Cd. Untuk logam Pb dan Cd , di dalam nyala oleh panas, larutan garam nitratnya dijadikan atom bebas yang akan mengabsorb energi cahaya. Dengan membandingkan absorbansi contoh dan standar maka kadar suatu logam dapat ditentukan.

b. Reaksi:

c. Cara Kerja:

- 1) Persiapan contoh untuk logam Hg dan As
 - a) Ditimbang ± 1 gram contoh (Duplo)
 - b) Ditambahkan 15 mL campuran pereaksi (HNO₃:HClO₄:H₂SO₄ dengan perbandingan 1:1:5).

- c) Dipanaskan (digest) 300 °C hingga larutan jernih dan volume ± 5 mL.
- d) Dimasukkan ke dalam labu ukur 50 mL.
- e) Dihimpitkan dengan HCl 1N.
- f) Dibaca absorbansi dengan AAS.
- 2) Persiapan Contoh untuk logam Cu dan Pb
 - a) Ditimbang ± 1 gram contoh.
 - b) Ditambah 15 ml HNO_{3 (P)}.
 - c) Dipanaskan (digest)150 °C sampai jernih.
 - d) Dimasukkan ke dalam labu ukur 50 ml.
 - e) Dihimpitkan dengan aquadest.
 - f) Dibaca absorbansi dengan AAS
- d. Perhitungan:

$$\% \ logam = \frac{\frac{absorbansi-Intersep}{slope} xFpx \frac{Volume\ Labu}{1000} x100\%}{bobot\ contoh\ (Mg)}$$

9. Uji Cemaran Logam As dan Hg

a. Prinsip

Sampel direaksikan dengan NaBH₄ atau SnCl₂ sehingga menghasilkan gas Hg. Dengan membandingkan A (absorbansi) sampel dan standar, kadar logam dapat diketahui. Sedangkan untuk logam As. Sampel direaksikan dengan NaBH₄ sehingga menghasilkan gas hidridanya. Dengan membandingkan A (absorbansi) sampel dan standar, kadar logam dapat diketahui.

b. Reaksi:

b. Reaksi:
Hg As
$$BH^{4-} + 3H_2O \rightarrow H_3BO_3 + 4H^+ \qquad 2BH^{4+} + 2H^+ \rightarrow B_2H_6 + 2H_2$$

$$Hg^{2+} + H_2 \rightarrow Hg_{(g)} + 2H^+ \qquad As^{3+} + 3H_2 \rightarrow AsH_3 + 3H^+$$

$$2AsH_3 \rightarrow 2As + 3H_2$$

c. Cara Kerja

1) Pembuatan Deret Standar

- a) Pipet 1 mL larutan induk Hg 1000 mg/L ke dalam labu ukur 1000 mL tambahkan akuabides yang mengandung HNO3 (1,5 mL/L) sampai tanda garis.
- b) Deret standar dibuat dengan konsentrasi 0;1;2;3;4;5 ppb ke dalam labu ukur 100 mL tambahkan akuabides yang mengandung HNO₃ p.a. (1,5 mL/L) sampai tanda garis.
- c) Dibaca absorbansi dengan SSA uap dingin.

2) Pembacaan Contoh

- a) Ukur dengan teliti 100 mL contoh dan akuabides sebagai blanko ke dalam labu Erlenmeyer 250 mL;
- b) Tambahkan 5 mL H₂SO₄ pa, 2,5 mL HNO₃ dan 15 mL larutan KMnO₄, ke dalam contoh larutan standar dan blanko, biarkan paling sedikit 15 menit;
- c) Tambah 8 mL larutan K₂S₂O₈ dan panaskan selama 2 jam dalam penangas air pada suhu 95 °C;
- d) Dinginkan pada suhu ruang dan tambah 6 mL larutan (NH₂OH)₂.H₂SO₄ untuk mengurangi kelebihan permanganat;
- e) Periksa larutan standar dan contoh dengan menggunakan SSA uap dingin.

4. Perhitungan

Hitung kadar merkuri dalam contoh dengan menggunakan kurva kalibrasi atau persamaan garis regresi linier.

D. Uji Mikrobiologi

1. Perhitungan Angka Lempeng Total

a. Prinsip

Perhitungan jumlah bakteri cara tuang ini dilakukan dengan pengenceran contoh 10⁻¹ s/d 10⁻³ dan blanko kemudian dari masing-masing pengenceran dipipet sebanyak 1 ml ke dalam cawan petri dan dihitung media PCA (Plate Count Agar) sebanyak 15 ml lalu diinkubasi pada suhu 37 °C selama 24 jam. Hitung jumlah koloni pada setiap cawan petri dengan alat instrumen *colony counter* yang dilengkapi dengan kaca pembesar kemudian dihitung rata-rata dari 2 cawan dengan pengenceran yang setingkat sesuai dengan kaidah yang berlaku.

b. Cara Kerja

- 1) APD: lengkap (sarung tangan, masker, penutup kepala, jas lab, dan sepatu lab).
- 2) Dilakukan teknik aseptik untuk area kerja, kemudian dinyalakan pembakar.
- 3) Dilakukan *labelling* pada setiap alat.
- 4) Disiapkan botol contoh yang sudah disanitasi dengan menggunakan alkohol 70%.
- 5) Dipipet 9 ml BPW (*Buffered Pepton Water*) ke masing-masing tabung: blanko, 10⁻¹,10⁻² dan 10⁻³.
- 6) Dipipet 1 ml BPW (*Buffered Pepton Water*) dari tabung blanko ke dalam petri (blangko).
- 7) Dipipet 1 ml contoh ke dalam tabung pengenceran 10⁻¹, lalu dihomogenkan 3x pembilasan pipet serologi, kemudian dimasukkan ke dalam petri steril simplo (S) 10⁻¹ dan duplo (D) 10⁻¹.
- 8) Dipipet 1 ml contoh dari tabung pengenceran 10⁻¹ ke dalam tabung pengenceran 10⁻² lalu dihomogenkan, kemudian dimasukkan ke dalam petri simplo (S) 10⁻² dan duplo (D) 10⁻².
- 9) Dipipet 1 ml contoh dari tabung pengenceran 10⁻² ke dalam tabung pengenceran 10⁻³, lalu dihomogenkan, kemudian dimasukkan ke dalam petri simplo (S) 10⁻³ dan duplo (D) 10⁻³.
- 10) ituangkan media PCA bersuhu 40-45 °C sebanyak ± 15 ml atau sepertiga volume petri dihomogenkan dan tunggu sampai beku.
- 11)
 iinkubasi pada suhu 37 °C selama 24 jam (posisi terbalik).

D

D

D

- 12)
 ihitung jumlah koloni bakteri dengan colony counter.
- Dihitung jumlah koloni bakteri pada tabel: data pengamatan

Penetapan Uji Bakteri Coliform Metode Angka Paling Mungkin (APM)

a. Prinsip:

Pertumbuhan bakteri bentuk koli ditandai dengan adanya gas di dalam tabung durham setelah diinkubasi ke dalam pembenihan yang cocok selama 24-48 jam pada suhu 37 °C dan selanjutnya dirujuk pada table Angka Paling Mungkin (APM).

b. Cara Kerja:

- 1) Meja kerja dan tangan praktikan dibersihkan dengan alkohol 70 %.
- 2) Dipipet 9 ml larutan fisiologi ke dalam 4 buah tabung reaksi.
- 3) Dipipet contoh dari tabung I sebanyak 1 ml dan dimasukkan ke dalam tabung II, dihomogenkan, dan diberi label pengenceran 10⁻²
- 4) Dipipet contoh dari tabung II sebanyak 1 ml dan dimasukkan ke dalam tabung II, dihomogenkan, dan diberi label pengenceran 10⁻³.
- 5) Tabung IV diberi label blanko.
- 6) Disiapkan 10 buah tabung ulir yang didalamnya terdapat tabung durham terbalik dan berisi 5 ml media Lb (*Lactose Broth*). Diberi label pengenceran 10⁻¹,10⁻²,10⁻³, blanko, dan media kontrol.
- 7) Dipipet contoh dari masing-masing tabung sebanyak 1 ml dan dimasukkan ke dalam 3 buah tabung berisi *Lactose Broth* yang telah disediakan tadi, untuk perlakuan simplo, duplo, dan triplo. Untuk blanko cukup simplo saja. Dilakukan dari pengenceran terendah.
- 8) Semua tabung dimasukkan kedalam piala gelas yang beralas Koran, ditutup Koran, dan diikat dengan tali kasur.
- 9) Diinkubasi pada suhu 37 °C selama 24 jam.

c. Perhitungan:

Dihitung jumlah koloni bakteri dengan cara membandingkan data hasil pengamatan dengan data pada tabel APM (Angka Paling Mungkin).

3. Pengujian Bakteri Salmonella sp.

a. Prinsip:

Pemeriksaan bakteri pathogen ini dilakukan dengan pengenceran contoh 10⁻¹, kemudian dipipet sebanyak 1 ml dan dimasukkan ke dalam cawan petri steril dituangkan media selektif *Brilliant Green Agar* untuk bakteri patogen *Salmonella sp.*

b. Cara Kerja:

- 1) Tabung-tabung steril untuk pengenceran dan cawan petri steril disiapkan dan diberi label.
- 2) Dibuat pengenceran 10⁻¹
- 3) Dipipet 1 ml pada cawan petri.
- 4) Dituangkan sebanyak 15 ml media *Brilliant Green Agar* (45°C) kedalam cawan untuk bakteri *Salmonella sp* dan goyangkan mendatar membentuk angka delapan di atas meja kerja.
- 5) Setelah media padat atau membeku, cawan diinkubasi pada suhu 37 °C selama 24 jam.
- 6) Diamati cawan petri yang mengandung biakkan, bila terbentuk koloni kecil transparan tidak berwarna atau pink sampai putih kadang dikelilingi zona pink sampai merah, maka *Salmonella sp* positif dan dengan ciri yaitu koloni berbentuk bulat, licin, basah, berdiameter 2 mm sampai 3 mm, berwarna abu-abu sampai hitam mengkilat dengan lingkaran buram di sekelilingnya dan seringkali lingkaran jernih.

4. Pengujian Bakteri *E.coli* Metode Angka Paling Mungkin (APM)

a. Prinsip:

Bakteri patogen memiliki karakteristik tersendiri apabila dimutilasikan ke dalam suatu media selektif, meskipun tanpa pengamatan mikroskop.

b. Cara Kerja:

- 1) Dilakukan preparasi seperti pada penetapan angka paling mungkin dan dibuat pengenceran 10-1 sampai 10-3.
- 2) Dipipet 1 ml hasil positif APM ke dalam petri steril.
- 3) Dituang media selektif yaitu Mac Conkey Agar (MCA).
- 4) Diinkubasi pada suhu 37 °C selama 24 jam.
- 5) Diamati cawan petri yang mengandung biakan, bila terbentuk koloni merah keunguan sekelilingnya maka E.coli positif.

5. Pengujian Bakteri Pseudomonas aeruginosa

a. Prinsip

Pemeriksaan bakteri patogen ini dilakukan setelah proses perhitungan jumlah koliform cara APM . Hasil pengujian yang positif (keruh dan bergas) dari pengerjaan sebelumnya digoreskan di media selektif steril (plate) lalu diinkubasi pada suhu 30-40 °C selama 24 jam.

b. Cara Kerja

- 1) APD: lengkap (sarung tangan, masker, penutup kepala, jas lab, dan sepatu lab).
- 2) Dilakukan teknik aseptik untuk area kerja, kemudian dinyalakan pembakar.
- 3) Dilakukan labelling pada setiap alat.
- 4) Disiapkan Erlenmeyer yang sudah berisi media selektif steril *Cetrimide Agar* ± 40 °C.
- 5) Dituangkan media selektif ke dalam cawan petri sebanyak ± 15 ml (1/3 tinggi cawan petri) secara merata dan tunggu media membeku.
- 6) Diambil satu mata ose hasil pengujian yang positif (keruh dan bergas) dari pengerjaan sebelumnya kemudian gores (bentuk goresan zigzag) secara aseptik.
- 7) Dimasukkan ke dalam inkubator pada suhu 30-35 °C selama 24 jam (posisi terbalik).
- 8) Diamati dan dicatat hasilnya. Hasil pengamatan dibandingkan dengan standar bakteri patogen.

ANALISIS KEWIRAUSAHAAN

A. Organoleptik (Uji Rasa, Warna dan Bau)

No	Bahan	Jumlah	Harga
1	Sampel	1 botol (@389mL)	Rp 16.000,-
2	Gelas Plastik	24 pcs	Rp 8.500,-
Jasa A	Analisis		Rp 120.000,-
Keunt	ungan 10%		Rp 14.450,-
Total E	Biaya		Rp 158.950,-

Tabel 2 Uji Organoleptik

B. Argentometri

No	Bahan	Jumlah	Harga	
1	K2CrO4	5.0 g	Rp 42.560,-	
2	AgNO3	0.5 g	Rp 26.560,-	
Jasa An	nalisis		Rp 20.000,-	
Keuntur	ngan 15%		Rp 13.359,-	
Total Bia	aya		Rp 89.120,-	

Tabel 3 Argentometri

C. Uji pH

No	Bahan	Jumlah	Harga
1	Larutan Buffer pH 4	10 mL	Rp 4.634,-
2	Larutan Buffer pH 7	10 mL	Rp 3.530,-
3	Larutan Buffer pH 10	10 mL	Rp 8.820

Jasa Analisis	Rp 20.000,-
Keuntungan 10%	Rp 3.698,-
Total	Rp 40.682,-

Tabel 4 Uji pH

D. Kadar Zat Terlarut

No	Bahan	jumlah	Harga
1	KCI	1 g	Rp 1.552,-
Jasa a	analisis		Rp 15.000,-
Keunt	tungan 10%		Rp 1.655,-
Total			Rp 18.207,-

Tabel 5 Kadar Zat Terlarut

E. Oksigen Terlarut

No	Bahan	Jumlah	Harga
1	KCI	1 g	Rp 1.552,-
Jasa a	analisis	-	Rp 15.000,-
Keunt	ungan 10%		Rp 1.655,-
Total	-		Rp 18.207,-

Tabel 6 Kadar Oksigen Terlarut

F. Kekeruhan

No	Bahan	jumlah	Harga
1	-	-	-
Jasa analisis			Rp 15.000,-
Keuntu	ngan 10%		Rp 1.500,-
Total			Rp 16.500,-

Tabel 7 Uji Kekeruhan

G. Cemaran Logam Cr

No	Bahan	Jumlah	Harga
1	Standar induk Cr 1000ppm	10 ml	Rp 65.570,-
2	HNO3 p.a	20 ml	Rp 9.900,-
Jasa	analisis		Rp 30.000,-
Keunt	tungan 25%		Rp 26.367,-
Total			Rp 131.837,-

Tabel 8 Cemaran Logam Cr

H. Cemaran Logam Cd

Rp 68.100,-
Rp 9.900,-
Rp 30.000,-
Rp 27.000,-
Rp 135.000,-

Tabel 9 Cemaran Logam Cd

I. Cemaran Logam As

No	Bahan	Jumlah	Harga
1	Standar induk As	10 ml	Rp 54.500,-
2	HCl p.a	20 ml	Rp 47.320,-
Jasa	analisis		Rp 30.000,-
Keuntungan 25%			Rp 32.955,-
Total	-		Rp 164.775,-

Tabel 10 Cemaran Logam As

J. Cemaran Logam Cu

No	Bahan	Jumlah	Harga
1	Standar induk Cu	10 ml	Rp 58.300,-
2	HNO3 pa	20 ml	Rp 9.900,-
Jasa a	analisis		Rp 30.000,-
Keuntungan 25%			Rp 24.550,-
Total	_		Rp 122.750,-

Tabel 11 Cemaran Logam Cu

K. Cemaran Logam Hg

No	Bahan	Jumlah	Harga
1	Standar induk Hg	10 mL	Rp 66.900,-
2	HCl pa	20 mL	Rp 47.320,-
Jasa analisis		Rp 30.000,-	
Keuntu	ungan 25%		Rp 36.005,-
Total			Rp 180.275,-

Tabel 12 Cemaran Logam Hg

L. Angka Lempeng Total

No	Bahan	Jumlah	Harga
1	Buffered peptone water	130 ml	Rp 10.000,-
2	Media PCA	220 ml	Rp 18.000,-
3	Alkohol	50 ml	Rp 22.750,-
Jasa analisis			Rp 30.000,-
Keunt	tungan 20%		Rp 16.150,-
Total			Rp 96.900,-

Tabel 13 Angka Lempeng Total

M. Bakteri Coliform Cara APM

No	Bahan	Jumlah	Harga
1	Buffered peptone water	130 ml	Rp 10.000,-
2	BGBB	75 ml	Rp 18.995,-
3	Alkohol	50 ml	Rp 22.750,-
Jasa analisis			Rp 25.000,-
Keun	tungan 20%		Rp 15.349,-

Total
Tabel 14 Bakteri Coliform Cara APM Rp 92.094,-

N. Bakteri Patogen

No	Bahan	Jumlah	Harga
1	Mcconkey agar	5 g	Rp 9.625,-
2	Centrimide agar	5 g	Rp 15.400,-
3	Brilliant green agar	5 g	Rp 13.259,-
Jasa a	analisis		Rp 25.000,-
Keuntungan 20%			Rp 12.656,-
Total	_		Rp 75.940,-

Tabel 15 Bakteri Patogen

BAB IV
HASIL DAN PEMBAHASAN

Hasil analisis jika dibandingkan dengan SNI No. 01-7812-2013

			Hasil			
No.	Kriteria uji	Satuan Standar Pr		Produk	Keterangan Produk	
1.	Keadaan	-	-	-	-	
2	Bau	-	Tidak Berbau	Tidak Berbau	Sesuai	
3	Rasa	-	Normal	Normal	Sesuai	
4	Warna	Unit Pt-Co	Maks. 1,000	-	-	
5	PH	-	6,0-7,5	6,870	Sesuai	
6	Zat yang terlarut	mg/L	Maks. 5,000	5,460	Tidak sesuai	
7	Kekeruhan	NTU	Maks. 0,500	0,320	Sesuai	
8	Nitrat (sebagai NO ₃ -)	mg/L	Maks. 0,500	0,217	Sesuai	
9	Nitrit (sebagai NO ₂ -)	mg/L	Maks. 0,005	0,012	Tidak sesuai	
10	Amonia (NH ₃)	mg/L	Maks. 1,500	-	-	
11	Sulfat (SO ₄ ²⁻)	mg/L	Maks. 1,000	0,829	Sesuai	
12	Klorida (Cl ⁻)	mg/L	Maks. 1,000	0,110	Sesuai	
13	Flourida (F ⁻)	mg/L	Maks. 0,500	-	-	
14	Sianida (CN ⁻)	mg/L	Maks. 0,010	-	-	
15	Besi (Fe)	mg/L	Maks. 0,050	<0,020	Sesuai	
16	Mangan (Mn)	mg/L	Maks. 0,020	-	-	
17	Klor bebas (Cl ₂)	mg/L	Maks. 0,050	-	-	
18	Kromium (Cr)	mg/L	Maks. 0,020	<0,083	Tidak dapat ditentukan	
19	Barium (Ba)	mg/L	Maks. 0,020	-	-	
20	Boron (B)	mg/L	Maks. 0,020	-	-	
21	Timbal (Pb)	mg/L	Maks. 0,005	<0,108	Tidak dapat ditentukan	
22	Kadmium (Cd)	mg/L	Maks. 0,003	<0,003	Sesuai	
23	Tembaga (Cu)	mg/L	Maks. 0,010	<0,018	Tidak dapat ditentukan	
24	Merkuri (Hg)	mg/L	Maks. 0,001	<0,002	Tidak dapat ditentukan	
25	Arsen (As)	mg/L	Maks. 0,010	<0,002	Sesuai	
26	Almunium (Al)	mg/L	Maks. 0,010	-	-	
27	Angka lempeng total	Koloni/ml	Maks. 1,0 x 10 ²	1x10 ¹	Sesuai	
28	Bakteri Coliform	APM/100 ml	< 2	< 2	Sesuai	
29	E. Coli	APM/100 ml	< 2	< 2	Sesuai	
30	Salmonella	-	Negatif/100 ml	Negatif	Sesuai	
31	Pseudomonas aeruginosa	Koloni/ml	0	0	Sesuai	

Tabel 16 Hasil uji dengan standar SNI

Hasil analisis pada tabel tersebut dibandingkan dengan SNI No. 01-7812-2013 tentang air minum embun. Pada hasil analisis organoleptik semua parameternya dinyatakan sesuai karena memenuhi syarat pada SNI, yaitu warna, rasa dan bau nya normal jika dibandingkan dengan Air Minum Dalam Kemasan lainnya. Hasil ini diperoleh dari pengujian oleh 24 panelis yang merupakan siswa-siswi SMK-SMAK Bogor.

Pada analisis parameter kimia, yakni uji pH, kadar klorida dan kadar oksigen terlarut semuanya memenuhi syarat pada SNI. Hasil dari analisis kadar oksigen terlarut pada sampel sebesar 8,09 ppm yang jika dibandingkan dengan AMDK merek lain hasil dari air minum embun lebih besar karena kadar oksigen terlarut pada AMDK merek lain sebesar 5,60 ppm. Hal ini sesuai dengan klaim produk yang mengatakan bahwa air minum embun memiliki kadar oksigen terlarut yang lebih banyak dari AMDK merek lain.

Hasil dari analisis parameter uji kimia tersebut sama dengan hasil parameter uji kekeruhan pada analisis fisika, yaitu sesuai dengan standar yang ditetapkan SNI.

Dalam analisis parameter cemaran anion yang dilakukan pada anion SO_4^{2-} , NO_2^- , dan NO_3^- terdapat satu anion yang tidak memenuhi standar, yaitu nitrit atau NO_2^- . Kadar NO_2^- yang didapatkan dari analisis sebesar 0,012 ppm lebih besar dua kali lipat dari standar nya yaitu 0,005 ppm. Nitrit atau NO_2^- yang berlebih pada sampel dapat disebabkan oleh tereduksinya nitrat atau NO_3^- oleh bakteri denitrifikasi. Hal ini dapat disebabkan karena sampel tidak langsung dianalisis kadar nitritnya. Analisis seharusnya dilakukan dari parameter yang hasilnya sekiranya dapat berubah-ubah, seperti kadar oksigen terlarut, kadar zat terlarut, kadar nitrat dan kadar nitrit.

Hasil pada kadar nitrit ini sebanding dengan hasil kadar zat terlarut yang melebihi standar juga. Kadar zat terlarut sebesar 5,460 ppm. Hasil ini 0,460 ppm lebih besar dari standar yang sebesar 5,000 ppm. Adanya kelebihan kadar zat terlarut ini diasumsikan dari kadar nitrit yang melebihi standar.

*Pada analisis cemaran logam beberapa kadar logam tidak dapat dipastikan kesesuaiannya dengan standar. Hal ini dikarenakan limit deteksi alat yang lebih besar dari standar maksimum logam yang menjadikan kadar logam bisa jadi berada dibawah limit deteksi alat namun berada di atas standar

maksimum logam pada SNI air minum embun. Logam-logam yang tidak dapat dipastikan kesesuaiannya dengan standar adalah logam kromium (Cr), timbal (Pb), tembaga (Cu), dan merkuri (Hg).

Parameter pada analisis mikrobiologi yang diujikan adalah angka lempeng total, bakteri coliform, *E.coli, Salmonella*, dan *Pseudomonas aeruginosa*. Bakteri-bakteri tersebut diujikan karena merupakan bakteri patogen yang dapat dijadikan standar kelayakan pada air minum embun. Semua parameter pada analisis mikrobiologi memenuhi standar pada SNI 01-7812-2013 tentang air minum embun.

BAB V

KESIMPULAN DAN SARAN

A. Kesimpulan

Berdasarkan hasil analisis yang dilakukan, sampel dinyatakan tidak lulus uji mutu minuman air embun. Hal tersebut dikarenakan ada 2 parameter yang tidak sesuai dengan SNI 01-7812-2013 tentang Air Minum Embun yaitu kadar zat terlarut dan kadar nitrit. Beberapa cemaran logampun tidak dapat dipastikan kesesuaiannya dengan SNI karena alat yang kurang sensitif sehingga limit deteksi alat lebih besar dibandingkan dengan standard maksimum logam tersebut.

B. Saran

Adapun saran yang diberikan adalah analisis harus dilakukan sesuai dengan prioritasnya, yaitu analisis dilakukan dari parameter yang kadarnya cepat atau mudah terpegaruh dari lingkungan luar. Alat yang digunakanpun harus sensitif sehingga dapat menjangkau kadar yang sangat kecil.

DAFTAR PUSTAKA

- Badan Pengembangan dan Pembinaan Bahasa. Tanpa Tahun. "Analisis." https://kbbi.kemdikbud.go.id/entri/analisis, diakses tanggal 27 Desember 2018.
- Badan Pengembangan dan Pembinaan Bahasa. Tanpa Tahun. "Air." https://kbbi.kemdikbud.go.id/entri/air, diakses tanggal 27 Desember 2018.
- Badan Pengembangan dan Pembinaan Bahasa. Tanpa Tahun. "Embun." https://kbbi.kemdikbud.go.id/entri/embun, diakses tanggal 27 Desember 2018.
- Badan Pengembangan dan Pembinaan Bahasa. Tanpa Tahun. "Mutu." https://kbbi.kemdikbud.go.id/entri/mutu, diakses tanggal 27 Desember 2018.
- Badan Standarisasi Nasional. 2013. SNI No. 01-7812-2013 tentang Minuman Air Embun. Jakarta: Badan Standarisasi Nasional.
- DetikHealth. 2010. "Benarkah Air Embun Berkhasiat?"

 https://health.detik.com/hidup-sehat-detikhealth/1338702/benarkah-air-embun-berkhasiat, diakses tanggal 19 Juli 2018.
- Dokter Sehat. Tanpa Tahun. "Keajaiban Air Embun" http://doktersehat.com/keajaiban-air-embun/, diakses tanggal 19 Juli 2018.
- Effendi, Hefni. 2003. Telaah Kualitas Air (hlm. 22). Yogyakarta: PT Kanisius.
- Marliana, Nina.dkk.2016. *Mikrobiologi*. Bogor: SMK SMAK Bogor.
- Pokja AMPL. 2013. "Pengusaha Budhi Haryanto Temukan Teknologi Pembuat Air Embun." http://www.ampl.or.id/digilib/read/59-pengusaha-budhi-haryanto-temukan-teknologi-pembuat-air-embun/49010, diakses tanggal 19 Juli 2018.
- Purence. 2015. "Kenapa Embun Dapat Menjadi Alternatif Kesehatan?" http://tips.purence.com/kenapa-embun-dapat-menjadi-alternatif-kesehatan/, diakses tanggal 19 Juli 2018.

- Purence. 2015. "Keajaiban Yang Dimiliki Air Embun." http://tips.purence.com/keajaiban-yang-dimiliki-air-embun/, diakses tanggal 19 Juli 2018.
- Purence. 2015. "Perbedaan Air Embun Dan Air Putih Pada Umumnya." http://tips.purence.com/perbedaan-air-embun-dan-air-putih-pada-umumnya/, diakses tanggal 19 Juli 2018.
- Wildan Abdussalam. 2013. "Pengembunan."

https://www.kompasiana.com/waladun/552fe8df6ea83430628b45e7/p engembunan-boseeinstein, diakses tanggal 19 Juli 2018.

LAMPIRAN

A. Uji Fisika

1. Kekeruhan

B. Uji Kimia

1. Uji pH

2. Kadar Oksigen Terlarut

3. Kadar Zat Terlarut

C. Volumetri

1. Kadar Klorida

Kelas: 13-4 PICT 26 Cacher CIT Gol.:

Stat Ag NO3 = mg Nacl

PP XUP X b5 Nacl

= 117.3

rox 19.4 x 18 st = 0,063 M

PPM CICS : (U,-U2) XNP Xb st CIT

: (1.65 - 1.62) × 0,0103 × 35450

= 0.1095 PPM

PPM CICd) : (1.68 - 1.65) × 0,0103 × 35450

- 0,1095 PPM

PPM CICd) : (1.68 - 1.65) × 0,0103 × 35450

- 0,1095 PPM

R = 0,1095 + 0,1095 = 0,0095 PPM

X = 0,1095 + 0,1095 = 0,0095 PPM

A = 0,1095 + 0,1095 = 0,1095 PPM

D. Cemaran Logam

1. Cr

2. Cd

3. As

4. Cu

5. Fe

E. Mikrobiologi

1. Angka Lempeng Total, Bakteri Coliform dan E.coli.

2. Bakteri Patogen pemipetan 1

3. Bakteri Patogen pemipetan 2

