Problem 6.6. Describe two different Turing machines, M and N, where M outputs $\langle N \rangle$ and N outputs $\langle M \rangle$, when started on any input.

Solution. Construct **TM**s M and N, so that $L(M) = \Sigma^*$ and $L(N) = \emptyset$. Also, both M and N obtain intersection of their own description and print it.

M = "On any input:

- 1. Obtain, via the recursion theorem, own description $\langle SELF \rangle$.
- 2. Construct a new **TM** S, such that $L(S) = \overline{\langle SELF \rangle}$.
- 3. Print $\langle S \rangle$.
- 4. Accept."

N = "On any input:

- 1. Obtain, via the recursion theorem, own description $\langle SELF \rangle$.
- 2. Construct a new **TM** S, such that $L(S) = \overline{\langle SELF \rangle}$.
- 3. Print $\langle S \rangle$.
- 4. Reject."