Logique propositionnelle

David Delahaye

Faculté des Sciences David.Delahaye@lirmm.fr

Licence L3 2020-2021

La logique en informatique : preuve de programmes

Ligne de métro 14 (Meteor)

- Ouverte en 1998;
- Développée par Siemens (Matra);
- Utilisation de la méthode B;
- Théorie des ensembles en première page des journaux;
- Siemens continue à développer des métros sans conducteur.

La logique en informatique : preuve de programmes

JavaCard (Gemalto)

- Formalisation de l'architecture JavaCard;
- Utilisation de Coq.

Le compilateur certifié CompCert (Inria, Gallium)

- Produit du code assembleur pour PowerPC, ARM, et x86;
- Développé en Coq et certifié correct.

Projet L4.verified (NICTA)

- Formalisation du micro-noyau seL4;
- Utilisation d'Isabelle/HOL.

Preuves formelles

Plusieurs pré-requis

- Avoir une bonne connaissance de la sémantique de son langage;
- Être capable d'exprimer cette sémantique formellement;
- Savoir spécifier précisément le comportement de son programme;
- Faire en sorte que la spécification soit totale.

Plusieurs langages en jeu

- Le langage de programmation;
- Le langage de spécification;
- Le langage de preuve.

Si ces trois langages sont réunis au sein du même environnement, c'est beaucoup plus pratique pour le développeur!

Spécification

Qu'est-ce que c'est?

- C'est le « quoi » du programme, ce qu'il doit faire;
- Peut-être exprimé dans le langage naturel (mais ambigu) :
 - Exemple : « ce programme calcule la racine carrée ».
- Plus formellement : spécification = type d'un programme.

Plusieurs degrés de spécifications

- Spécifications partielles :
 - Exemple : sqrt : float -> float;
 - Donne de l'information mais pas assez;
 - Beaucoup de fonctions ont ce type (pas seulement racine carrée).
- Spécifications totales :
 - Exemple : $\forall x \in \mathbb{R}^+ . f(x) \ge 0 \land f(x) \times f(x) = x$;
 - Seule racine carrée vérifie cette proposition;
 - Nécessite un langage basé sur la logique.

Preuves

Objectifs

- Mettre en adéquation un programme et sa spécification;
- Apporter une garantie sur l'exécution du programme.

Remarques

- C'est plus simple de faire des preuves sur des programmes fonctionnels.
- Le fonctionnel sert aussi à encoder les preuves pour certains outils.
- Outils basé sur du fonctionnel : Coq, HOL, PVS, etc.
- Outils basé sur de l'impératif : Atelier B.

Peut-on automatiser ce processus?

- Pas totalement (problème semi-décidable);
- Certains fragments sont décidables :
 - Logique propositionnelle, arithmétique linéaire, réels, géométrie, etc.

Une preuve triviale

Spécification

• On cherche à écrire une fonction *f* telle que :

$$\forall x \in \mathbb{N}. f(x) = x \times x$$

Programme

• On considère le programme (fonction) suivant :

$$g(x) = x \times x$$

Preuve d'adéquation

• On doit prouver que le programme g vérifie la spécification :

$$\forall x \in \mathbb{N}. g(x) = x \times x$$

ullet On « déplie » la définition de g :

$$\forall x \in \mathbb{N}.x \times x = x \times x$$

• Ce qui est trivial.

Une preuve plus difficile

Spécification

• La même que précédemment, c'est-à-dire : $\forall x \in \mathbb{N}. f(x) = x \times x$

Programme

• On considère le programme (fonction) suivant :

$$h(x,i) = \begin{cases} x, & \text{si } i = 0,1\\ x + h(x,i-1), & \text{sinon} \end{cases}$$

$$g(x) = h(x,x)$$

Preuve?

• Par récurrence.

Mécanisation des preuves

Outils d'aide à la preuve

- Beaucoup d'outils existants;
- Développés par des équipes de recherche;
- Mais pas que : Atelier B (Alstom, ClearSy);
- Mécanisation ne signifie pas automatisation :
 - Outils de preuve interactive (Coq, HOL, etc.);
 - Outils de preuve automatique (Vampire, Zenon, etc.).

Transfert industriel?

- Difficile au début;
- Investit les milieux R&D progressivement;
- Plus facile si l'outil vient d'une initiative industrielle (Atelier B);
- Plusieurs succès académiques récents changent la donne.

Logique propositionnelle

Il s'agit d'un rappel

- Cours de HLIN402 (Logique 1) en L2;
- Sensiblement la même chose;
- Quelques différences essentiellement dans les notations.

Définition préliminaire

• $V \equiv$ ensemble de variables de propositions A, B, etc.

Formules

- ullet Plus petit ensemble ${\mathcal F}$ t.q. :
 - ▶ Si $A \in \mathcal{V}$ alors $A \in \mathcal{F}$:
 - \bot , $\top \in \mathcal{F}$;
 - ▶ Si $\Phi \in \mathcal{F}$ alors $\neg \Phi \in \mathcal{F}$:
 - $\qquad \mathsf{Si} \ \Phi, \Phi' \in \mathcal{F} \ \mathsf{alors} \ \Phi \wedge \Phi', \Phi \vee \Phi', \Phi \Rightarrow \Phi', \Phi \Leftrightarrow \Phi' \in \mathcal{F}.$

Logique propositionnelle

Associativité des connecteurs

- \bullet \land , \lor , et \Leftrightarrow associent à gauche :
 - $A \wedge B \wedge C \equiv (A \wedge B) \wedge C.$
- ⇒ associe à droite :
 - $A \Rightarrow B \Rightarrow C \equiv A \Rightarrow (B \Rightarrow C).$

Précédence des connecteurs

- On a la précédence suivante : ¬ ≻ ∧ ≻ ∨ ≻ ⇒ ≻ ⇔;
- Exemples :
 - $A \wedge B \Rightarrow C \equiv (A \wedge B) \Rightarrow C;$
 - $A \wedge \neg B \vee C \Rightarrow D \equiv ((A \wedge \neg B) \vee C) \Rightarrow D;$
 - $A \Rightarrow B \Leftrightarrow C \land D \equiv (A \Rightarrow B) \Leftrightarrow (C \land D).$

Logique propositionnelle classique

- Chaque formule est censée être soit vraie, soit fausse;
- Ensemble des valeurs de vérité : $\mathcal{B} = \{T, F\}$ (booléens), où $T \neq F$;
- Tables de vérité :

Α	В	$\neg_{\mathcal{B}}A$	$A \wedge_{\mathcal{B}} B$	$A \vee_{\mathcal{B}} B$	$A \Rightarrow_{\mathcal{B}} B$	$A \Leftrightarrow_{\mathcal{B}} B$
F	F	T	F	F	T	T
F	T	T	F	T	T	F
T	F	F	F	T	F	F
T	T	F	T	T	T	T

- $\wedge_{\mathcal{B}}$, $\vee_{\mathcal{B}}$, $\Rightarrow_{\mathcal{B}}$, et $\Leftrightarrow_{\mathcal{B}}$: fonctions de $\mathcal{B} \times \mathcal{B}$ vers \mathcal{B} ;
- $\neg_{\mathcal{B}}$: fonction de \mathcal{B} vers \mathcal{B} .

Définition

- Affectation (ou interprétation) ρ : application de l'ensemble $\mathcal V$ des variables de propositions vers $\mathcal B$;
- La sémantique $[\![\Phi]\!]_{\rho}$ d'une formule Φ dans l'affectation ρ est définie par récurrence structurelle sur Φ par :

```
Si A \in \mathcal{V} alors \llbracket A \rrbracket_{\rho} = \rho(A);

\llbracket \top \rrbracket_{\rho} = T, \llbracket \bot \rrbracket_{\rho} = F;

Si \Phi \in \mathcal{F} alors \llbracket \neg \Phi \rrbracket_{\rho} = \neg_{\mathcal{B}} \llbracket \Phi \rrbracket_{\rho};

Si \Phi, \Phi' \in \mathcal{F} alors :

\llbracket \Phi \wedge \Phi' \rrbracket_{\rho} = \llbracket \Phi \rrbracket_{\rho} \wedge_{\mathcal{B}} \llbracket \Phi' \rrbracket_{\rho};
\llbracket \Phi \vee \Phi' \rrbracket_{\rho} = \llbracket \Phi \rrbracket_{\rho} \vee_{\mathcal{B}} \llbracket \Phi' \rrbracket_{\rho};
\llbracket \Phi \Rightarrow \Phi' \rrbracket_{\rho} = \llbracket \Phi \rrbracket_{\rho} \Rightarrow_{\mathcal{B}} \llbracket \Phi' \rrbracket_{\rho};
\llbracket \Phi \Leftrightarrow \Phi' \rrbracket_{\rho} = \llbracket \Phi \rrbracket_{\rho} \Leftrightarrow_{\mathcal{B}} \llbracket \Phi' \rrbracket_{\rho}.
```

Vocabulaire

- Soit Φ une formule et ρ une affectation;
- ρ est un modèle de Φ ou ρ satisfait Φ , noté $\rho \models \Phi$, ssi $\llbracket \Phi \rrbracket_{\rho} = T$;
- Un ensemble G de formules entraîne Φ, noté G ⊨ Φ, ssi toutes les affectations satisfaisant toutes les formules de G en même temps (les modèles de G) sont aussi des modèles de Φ, c'est-à-dire quand ρ ⊨ Φ' pour tout Φ' ∈ G implique ρ ⊨ Φ;
- Φ est valide ssi Φ est vraie dans toute affectation ($\llbracket \Phi \rrbracket_{\rho} = T$ pour tout ρ , noté $\models \Phi$), et est invalide sinon;
- Une formule valide est aussi appelée une tautologie;
- Φ est satisfiable ssi elle est vraie dans au moins une affectation ($\llbracket \Phi \rrbracket_{\rho} = T$ pour un certain ρ , c'est-à-dire elle a un modèle), et est insatisfiable sinon.

Vocabulaire

- Toutes les formules valides sont satisfiables, et toutes les formules insatisfiables sont invalides;
- Ceci divise l'espace des formules en trois catégories :
 - Les valides (toujours vraies);
 - Les insatisfiables (toujours fausses);
 - Les formules contingentes (parfois vraies, parfois fausses).
- La validité et l'insatisfiabilité se correspondent via négation : Φ est valide ssi ¬Φ est insatisfiable, Φ est insatisfiable ssi ¬Φ est valide.

Exemples

- $A \wedge B \Rightarrow A$ est valide, c'est-à-dire $\models A \wedge B \Rightarrow A$;
- On a : $A \wedge B \models A$;
- $A \wedge B \Rightarrow C$ est contingent;
- $A \land \neg A$ est insatisfiable.

Exercice

• Le démontrer (à faire à la maison).

Preuves

Séquents

• Un séquent de Gentzen est un couple Γ, Δ d'ensembles finis de formules, noté $\Gamma \vdash \Delta$.

Système de preuve

- Calcul des séquents de Gentzen;
- Version propositionnelle : LK₀.

Calcul des séquents propositionnel (LK₀)

Calcul des séquents propositionnel (LK₀)

Règles

$$\frac{\Gamma \vdash \Delta, A \qquad \Gamma, B \vdash \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow_{\mathsf{left}} \qquad \frac{\Gamma, A \vdash \Delta, B}{\Gamma \vdash \Delta, A \Rightarrow B} \Rightarrow_{\mathsf{right}}$$

$$\frac{\Gamma \vdash \Delta, A, B, C \qquad \Gamma, A, B \vdash \Delta, C}{\Gamma, A \Leftrightarrow B \vdash \Delta} \Leftrightarrow_{\mathsf{left}}$$

$$\frac{\Gamma, A \vdash \Delta, B \qquad \Gamma, B \vdash \Delta, A}{\Gamma \vdash \Delta, A \Leftrightarrow B} \Leftrightarrow_{\mathsf{right}}$$

Calcul des séquents propositionnel (LK₀)

Règles

$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta} \land_{\mathsf{left}} \frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \land B} \land_{\mathsf{right}}$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, A \lor B \vdash \Delta} \land_{\mathsf{left}} \frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \lor B} \lor_{\mathsf{right}}$$

$$\frac{\Gamma \vdash \Delta, A}{\Gamma, \neg A \vdash \Delta} \lnot_{\mathsf{left}} \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \lnot_{\mathsf{right}}$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, \neg A \vdash \Delta} \lnot_{\mathsf{left}} \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \lnot_{\mathsf{right}}$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, \neg A \vdash \Delta} \lnot_{\mathsf{left}} \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \lnot_{\mathsf{right}}$$

$$A, B \vdash A$$
$$A \land B \vdash A$$
$$\vdash A \land B \Rightarrow A$$

$$\frac{A \land B \vdash A}{\vdash A \land B \Rightarrow A} \Rightarrow_{\mathsf{right}}$$

$$\frac{A, B \vdash A}{A \land B \vdash A} \stackrel{\wedge_{\mathsf{left}}}{\Rightarrow_{\mathsf{right}}}$$

$$\frac{\overline{A, B \vdash A} \xrightarrow{\text{ax}} \land_{\text{left}}}{A \land B \vdash A} \xrightarrow{\text{right}}$$

$$A, B \vdash A \qquad A, B \vdash B$$

$$A, B \vdash A \land B$$

$$A \vdash B \Rightarrow A \land B$$

$$\vdash A \Rightarrow B \Rightarrow A \land B$$

$$A, B \vdash A \qquad A, B \vdash B$$

$$A, B \vdash A \land B$$

$$A \vdash B \Rightarrow A \land B$$

$$\vdash A \Rightarrow B \Rightarrow A \land B$$

$$\Rightarrow_{\mathsf{right}}$$

$$A, B \vdash A \qquad A, B \vdash B$$

$$A, B \vdash A \land B$$

$$A \vdash B \Rightarrow A \land B$$

$$A \vdash A \Rightarrow B \Rightarrow A \land B$$

$$\Rightarrow_{right}$$

$$\frac{A, B \vdash A \qquad A, B \vdash B}{A, B \vdash A \land B} \underset{\text{right}}{\Rightarrow_{\text{right}}}$$

$$\frac{A, B \vdash A \land B}{A \vdash B \Rightarrow A \land B} \underset{\text{right}}{\Rightarrow_{\text{right}}}$$

$$\frac{ \overline{A, B \vdash A} \text{ ax } \overline{A, B \vdash B} \text{ ax} }{ A, B \vdash B} \land_{\text{right}}$$

$$\frac{A, B \vdash A \land B}{A \vdash B \Rightarrow A \land B} \Rightarrow_{\text{right}}$$

$$\frac{A \vdash B \Rightarrow A \land B}{\vdash A \Rightarrow B \Rightarrow A \land B} \Rightarrow_{\text{right}}$$

Propriétés

Prouvabilité

• $\Gamma \vdash \Delta$ est prouvable dans LK_0 , noté $\Gamma \vdash_{\mathsf{LK}_0} \Delta$, ssi il existe une dérivation dans LK_0 se terminant sur $\Gamma \vdash \Delta$.

Correction

- Notation : $\Gamma \models \Delta \equiv \Gamma \models \bigvee_{\Phi \in \Delta} \Phi$;
- Si $\Gamma \vdash_{\mathsf{LK}_0} \Delta$ alors $\Gamma \models \Delta$.

Complétude

• Si $\Gamma \models \Delta$ alors $\Gamma \vdash_{\mathsf{LK}_0} \Delta$.

Élimination des coupures

• Il existe un algorithme qui prend une preuve dans LK₀ et la transforme en une preuve sans coupure du même séquent.

Déduction automatique

Méthode naïve : tester toutes les assignations

- On donne toutes les valeurs possibles aux variables propositionnelles;
- Les valeurs d'une variable propositionnelle sont \top et \bot ;
- La proposition est valide si elle donne ⊤ dans tous les cas;
- ullet La proposition est insatisfiable si elle donne $oldsymbol{\perp}$ dans tous les cas;
- La proposition est non valide si elle donne ⊥ dans certains cas;
- La proposition est satisfiable si elle donne ⊤ dans certains cas.

Remarques

- Méthode naïve car exponentielle (donc inefficace);
- Pour *n* variables, on a 2ⁿ cas à tester.

Exemple

Tester la validité d'une formule

- $A \wedge B \Rightarrow A$:
- On fait une table de vérité :

Α	В	$A \wedge B$	$A \wedge B \Rightarrow A$	
T	Т	Т	Т	
Т	1	上	T	
上	Т	上	T	
1	1	上	Т	

• On peut faire un arbre aussi, puis annoter les noeuds/feuilles par les valeurs de vérité, c'est plus visuel.

Mise en forme clausale

Règles de transformation

$$\neg \neg F \to F \quad \neg \top \to \bot \quad \neg \bot \to \top
\neg (F_1 \land F_2) \to \neg F_1 \lor \neg F_2 \quad \neg (F_1 \lor F_2) \to \neg F_1 \land \neg F_2
F_1 \Rightarrow F_2 \to \neg F_1 \lor F_2
F_1 \land \top \to F_1 \quad \top \land F_1 \to F_1 \quad F_1 \land \bot \to \bot \quad \bot \land F_1 \to \bot
F_1 \lor \top \to \top \quad \top \lor F_1 \to \top \quad F_1 \lor \bot \to F_1 \quad \bot \lor F_1 \to F_1
(F_1 \land F_2) \lor F_3 \to (F_1 \lor F_3) \land (F_2 \lor F_3)
F_3 \lor (F_1 \land F_2) \to (F_3 \lor F_1) \land (F_3 \lor F_2)$$

Mise en forme clausale

Exemple

- Proposition : $A \wedge B \Rightarrow A$.
- Étapes de clausification :

$$A \wedge B \Rightarrow A \rightarrow \neg (A \wedge B) \vee A \rightarrow \neg A \vee \neg B \vee A$$

• L'ensemble de clauses est : $\{\neg A \lor \neg B \lor A\}$.

Exercice

Nier et mettre en forme clausale les propositions suivantes

- $A \Rightarrow B \Rightarrow A$
- $A \wedge B \Rightarrow B$

- $\bigcirc \bot \Rightarrow A$

Résolution

Principe de la méthode

- Méthode clausale par réfutation :
 - On nie la proposition initiale;
 - On la met ensuite en forme clausale.
- Règle de résolution entre deux clauses :

$$\frac{C \vee A \qquad \neg A \vee C'}{C \vee C'}$$

- Les clauses au-dessus de la barre sont les prémisses;
- La clause en-dessous est le résolvant entre les clauses prémisses.

Procédure de résolution

Algorithme

```
Sat := \emptyset:
tant que S \neq \emptyset faire
   choisir C \in S:
   S := S \setminus \{C\}:
   si C = \square alors retourner « insatisfiable » :
   si C est une tautologie alors; (* passer à la clause suivante *)
   sinon, si C \in Sat alors; (* idem *)
   sinon pour tout résolvant C_1 entre C
   et une clause de Sat \cup \{C\} faire
       S := S \cup \{C_1\};
   Sat := Sat \cup \{C\};
retourner « satisfiable ».
```

Exécution

Exemple

- Démontrer la validité de la formule : $A \land B \Rightarrow A$;
- $S = \{A, B, \neg A\}$;
- On applique la résolution :
 - ► $Sat = \emptyset$, $S = \{A, B, \neg A\}$;
 - On choisit la clause $A: Sat = \{A\}, S = \{B, \neg A\}$;
 - ▶ On choisit la clause $B : Sat = \{A, B\}$, $S = \{\neg A\}$;
 - \triangleright On choisit la clause $\neg A$:
 - ⋆ Résolution entre $\neg A$ et A : résolvant \square ;
 - * $Sat = \{A, B, \neg A\}, S = \{\Box\};$
 - \triangleright On choisit la clause \square , on retourne « insatisfiable ».

Exercice

Appliquer la résolution sur les propositions suivantes

- $A \wedge B \Rightarrow B$

- $\bigcirc \bot \Rightarrow A$

UE HLIN602 : Logique du premier ordre

Page Moodle du cours

- https://moodle.umontpellier.fr/course/view.php?id=5919;
- Clé d'inscription : hlin602;2020

Supports

- Cours et TD disponibles sous Moodle uniquement;
- Aide-mémoire (sous Moodle) autorisé au CC et à l'examen.