Matt Kinsinger, MAT 372 Final

[4] Suppose that $w \in C^2(\Omega) \cap C(\overline{\Omega})$ is a solution to the given partial differential equation. Since $\Omega \subseteq \mathbb{R}^3$ is bounded, $\overline{\Omega}$ is both closed and bounded in \mathbb{R}^3 , hence $\overline{\Omega}$ is compact. w is continuous on a compact set, thus w attains a maximum and a minimum on $\overline{\Omega}$.

• Case 1: Suppose that both the max and min of w on $\overline{\Omega}$ occur on $\partial\Omega$. Then

$$\max w = \min w = 0.$$

So
$$w = 0$$
 on $\overline{\Omega}$.

• Case 2: Suppose that max w occurs at $x_M \in \Omega$. x_M is an interior point of Ω since Ω is open.