МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ Директор ИЩИТР

А.С.Фадеев

«22» <u>мая</u> 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2023 г. ФОРМА ОБУЧЕНИЯ ОЧНАЯ

Дискретная математика			
Направление подготовки	09.03.02 Информационные системы и технологии		
Основная профессиональная	Информационные технологии и интеллектуальный		
образовательная программа	анализ данных		
Специализация	Бизнес-анализ и разработка информационных систем		
Уровень образования			
•		•	•
Курс	2	семестр	4
Трудоемкость в кредитах	4.0		
(зачетных единицах)			
Виды учебной деятельности	Временной ресурс		
TC.	Лекции		32,0
Контактная	Практ	ические занятия	32,0
(аудиторная) работа, ч	ВСЕГО		64,0
	Самостоятельная работа, ч		ч 80,0
	ИТОГО, ч 144,0		

Вид промежуточной аттестации	Зачет	Обеспечивающее подразделение	ОИТ
Заведующий кафедрой - руководитель отделения на правах кафедры ОИТ	L	Alle	В. С. Шерстнев
Руководитель ОПОП		of n	И. В. Цапко
Преподаватель			Ю. Б. Буркатовская

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ОПОП (п. 5 Общей характеристики ОПОП) состава компетенций для подготовки к

профессиональной деятельности.

Код	Наименование	Индикаторы достижения компетенций		Индикаторы достижения компетенций			вляющие результатов освоения дескрипторы компетенции)	
компетенции	компетенции	Код	Наименование	Код	Наименование			
ОПК(У)- 1	Способен применять естественно- научные и общеинже- нерные зна- ния, методы математиче- ского анализа и моделиро- вания, теоре- тического и эксперимен- тального ис- следования в профессио- нальной дея- тельности	И.ОПК(У)- 1.3	Демонстрирует спо- собность применять методы математиче- ского анализа и моде- лирования, теоретиче- ского и эксперимен- тального исследования в профессиональной деятельности	ОПК(У)- 1.3В3 ОПК(У)- 1.3У3	Владеет навыками использования методов и алгоритмов теории графов и теории булевых функций Умеет применять методы булевых функций и теории графов при решении профессиональных задач повышенной сложности Знает основные понятия и методы дискретной математики			

2. Место дисциплины в структуре ОПОП

Дисциплина относится к базовой части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

	Индикатор	
Код	Наименование	достижения компетенции
РД-1	Знать основные определения и понятия теории графов, уметь ставить задачи на языке теории графов.	И.ОПК(У)-1.3.
РД-2	Знать основные понятия и постановки классических оптимизационных задач теории графов, уметь использовать методы решения этих задач в практических приложениях.	И.ОПК(У)-1.3.
РД-3	Знать основные понятия теории булевых функций, уметь применять теорию для решения практических задач.	И.ОПК(У)-1.3.
РД-4	Уметь минимизировать булеву функцию и систему булевых функций, применять методы минимизации булевой функции для решения практических задач.	И.ОПК(У)-1.3.

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
		Лекции	4
Раздел 1. Основы теории графов	РД-1	Практические занятия	4
		Самостоятельная работа	4
Раздел 2. Оптимизационные задачи теории графов	РД-1, РД-2	Лекции	12
		Практические занятия	12
		Самостоятельная работа	36
Doores 2 Evisones de vivia vivia		Лекции	8
Раздел 3. Булевы функции и их нормальные формы	РД-3	Практические занятия	8
		Самостоятельная работа	16
Раздел 4. Минимизация булевых функций и систем булевых функций.		Лекции	8
	РД-3, РД-4	Практические занятия	8
		Самостоятельная работа	24

Содержание разделов дисциплины:

Раздел 1. Основы теории графов

История развития теории графов и область ее применения. Графы, их классификация и способы задания. Изоморфные графы. Подграф. Маршруты в графе, диаметр, радиус и центры графа. Связность простых графов. Теорема об оценке числа ребер в графе и следствие о связном графе. Связность орграфов: сильная, слабая, односторонняя. Выделение компонент сильной связности.

Темы лекций:

- 1. История развития теории графов и область ее применения. Графы, их классификация и способы задания. Изоморфные графы. Подграф.
 - 2. Маршруты в графе. Связность простых и ориентированных графов.

Темы практических занятий:

- 1. Постановка задач на языке теории графов. Методы доказательств в теории графов (метод математической индукции, от противного, конструктивное доказательство, подсчет двумя способами).
- 2. Поиск маршрутов в графе. Алгоритмы выявления компонент сильной связности (алгоритм на основе умножения булевых матриц, алгоритм Уоршалла).

Раздел 2. Оптимизационные задачи теории графов

Обход графа. Поиск кратчайшего и минимального пути. Поиск минимальных путей между всеми парами вершин. Деревья. Теорема о шести эквивалентных утверждениях о дереве. Поиск кратчайшего остова. Ориентированные деревья. Сети и потоки, теорема Форда-Фалкерсона. Поиск максимального потока в сети. Эйлеровы графы. Необходимое и достаточное условие эйлеровости графа. Задача почтальона. Гамильтоновы графы. Теорема Дирака. Задача коммивояжера. Планарность графа, необходимые и достаточные условия планарности. Укладка графа на плоскости. Раскраска графа. Хроматическое число произвольных и планарных графов. Точные и приближенные алгоритмы раскраски.

Темы лекций:

- 3. Обходы графа: обход в глубину и в ширину. Поиск кратчайших и минимальных путей.
- 4. Деревья и их применение. Теорема о шести эквивалентных утверждениях о дереве. Задача о кратчайшем остове. Ориентированные, упорядоченные и бинарные деревья.
- 5. Сети и потоки, теорема Форда-Фалкерсона. Максимальный поток и поток минимальной стоимости.
- 6. Эйлеровы графы. Необходимое и достаточное условие эйлеровости. Задача почтальона.

- 7. Гамильтоновы графы. Необходимое условие гамильтоновости: теорема Дирака. Задача коммивояжера.
- 8. Планарность графов. Теорема Понтрягина-Куратовского. Раскраска графов. Теоремы о хроматическом числе произвольных и планарных графов.

Темы практических занятий:

- 3. Алгоритмы поиска путей: волновой алгоритм, алгоритмы Дейкстра, Беллмана-Мура, Флойда.
 - 4. Поиск кратчайшего остова: алгоритмы Прима и Краскала. Деревья поиска.
- 5. Поиск кратчайшего потока: алгоритмы Форда-Фалкерсона, Диница. Поиск потока минимальной стоимости: алгоритмы, основанные на поиске кратчайших путей и циклов отрицательного веса в остаточной сети.
- 6. Поиск эйлерова цикла: алгоритм Флери и алгоритмы, основанные на объединении простых циклов. Решение задачи почтальона для неориентированного и ориентированного графа.
- 7. Поиск гамильтонова цикла: поиск с возвратами. Точные и приближенные методы решения задачи коммивояжера.
 - 8. Алгоритм укладки графа на плоскости. Алгоритмы раскраски графа.

Раздел 3. Булевы функции и их нормальные формы

Булевы константы и векторы. Булево пространство. Интервал в булевом пространстве. Булевы переменные. Булева функция, способы ее задания. Фиктивные переменные. Элементарные булевы функции. Формула как способ задания функции. Двойственная функция и двойственная формула. Формула Шеннона, разложение булевой функции по к переменным. Совершенная дизъюнктивная нормальная форма (СовДНФ). Совершенная конъюнктивная нормальная форма (СовКНФ). Дизъюнктивная нормальная форма (ДНФ).

Темы лекций:

- 9. Булевы константы и векторы. Булево пространство и его задание матрицей Грея. Интервал в булевом пространстве. Теорема о мощности интервала. Способы задания интервала.
- 10. Булевы переменные. Булева функция, способы ее задания. Теорема о числе булевых функций. Фиктивные переменные, их выявление и удаление. Элементарные булевы функции.
- 11. Формула как способ задания функции. Равносильность формул, способы доказательства равносильностей. Двойственная функция и двойственная формула. Принцип двойственности.
- 12. Разложение Шеннона. Разложение функции по k переменным. Совершенные нормальные формы: дизъюнктивная и конъюнктивная. Дизъюнктивная нормальная форма. Теорема о конъюнкции и интервале.

Темы практических занятий:

- 9. Длина и вес булева вектора, представление подмножеств булевыми векторами. Сравнение векторов. Распознавание интервала.
- 10. Построение булевых функций. Способы задания булевых функций. Выявление и удаление фиктивных переменных.
- 11. Проверка равносильностей. Двойственные функции и формулы. Построение двойственной функции.
- 12. Разложение функции по переменным. Построение ДНФ по таблице истинности и матрице Грея. Построение матрицы Грея по ДНФ.

Раздел 4. Минимизация булевых функций и систем булевых функций.

Сокращенная, минимальная, кратчайшая и безызбыточная ДНФ. Построение ДНФ по формуле. Двухэтапный метод минимизации булевой функции. Поиск сокращенной ДНФ: теорема Квайна и алгоритм Квайна-МакКласки, теорема Блейка и алгоритм Блейка-Порецкого. Поиск кратчайщей ДНФ: таблица Квайна, покрытие, его длина, минимальное, кратчайшее и безызбыточное покрытие. Алгоритмы поиска одного и всех безызбыточных покрытий, кратчайшего покрытия. Приближенная кратчайшая ДНФ, метод Закревского. Определение и способы задания не полностью определенных (частичных) булевых функций, доопределение. Минимизация частичных булевых функций. Системы булевых функций. Кратчайшая и безызбыточная системы ДНФ.

Темы лекций:

- 13. Импликанты и простые импликанты функции. Сокращенная, кратчайшая, минимальная и безызбыточная ДНФ. Теорема о кратчайшей ДНФ. Теорема о минимальных ДНФ.
- 14. Двухэтапный метод минимизации булевой функции. Поиск сокращенной ДНФ: теорема Квайна и алгоритм Квайна-МакКласки, теорема Блейка и алгоритм Блейка-Порецкого.
- 15. Поиск кратчайщей ДНФ: таблица Квайна, покрытие, его длина, минимальное, кратчайшее и безызбыточное покрытие. Алгоритмы поиска одного и всех безызбыточных покрытий, кратчайшего покрытия.
- 16. Определение и способы задания не полностью определенных (частичных) булевых функций, доопределение. Минимизация частичных булевых функций. Системы булевых функций. Кратчайшая и безызбыточная системы ДНФ.

Темы практических занятий:

- 13. Выявление импликант и простых импликант. Визуальный поиск сокращенной, кратчайших, минимальных и безызбыточных ДНФ. Построение ДНФ по формуле.
- 14. Поиск сокращенной ДНФ: алгоритм Квайна-МакКласки, алгоритм Блейка-Порецкого.
- 15. Поиск кратчайших и минимальных покрытий таблицы Квайна и построение кратчайшей ДНФ.
 - 16. Минимизация частичных булевых функций и систем булевых функций.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Работа в электронном курсе (изучение теоретического материала, выполнение индивидуальных заданий и контролирующих мероприятий и др.);
 - Изучение тем, вынесенных на самостоятельную проработку;
 - Поиск, анализ, структурирование и презентация информации;
- Выполнение домашних заданий, расчетно-графических работ и домашних контрольных работ;
 - Подготовка к лабораторным работам, к практическим и семинарским занятиям;
 - Подготовка к оценивающим мероприятиям.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература

- 1. Быкова, Светлана Васильевна. Булевы функции : учебное пособие / С. В. Быкова, Ю. Б. Буркатовская; Томский государственный университет (ТГУ). Томск: Изд-во ТГУ, 2010. 192~c.. Библиогр.: с. 188.. ISBN 5-94621-319-9.. —
- 2. Хаггарти, Род. Дискретная математика для программистов : учебное пособие : пер. с англ. / Р. Хаггарти. 2-е изд., испр.. Москва: Техносфера, 2020. 399 с.: ил.. Мир программирования; 8-02. Библиогр.: с. 395-396. Предметный указатель: с. 397-399.. ISBN 978-5-94836-303-5.. —
- 3. Таранников, Юрий Валерьевич. Дискретная математика. Задачник: учебное пособие для академического бакалавриата / Ю. В. Таранников. Москва: Юрайт, 2016. 386 с.: ил.. Бакалавр. Академический курс. Библиогр.: с. 384-385.. ISBN 978-5-9916-6283-3.. —

Дополнительная литература

- 4. Тишин, Владимир Викторович. Дискретная математика в примерах и задачах : учебное пособие / В. В. Тишин. 2-е изд.. Санкт-Петербург: БХВ-Петербург, 2016. 335 с.: ил.. Учебная литература для вузов. Список литературы: с. 335.. ISBN 978-5-9775-3752-0..
- 5. Новиков, Федор Александрович. Дискретная математика для программистов : учебное пособие / Ф. А. Новиков. 3-е изд.. СПб.: Питер, 2008. 384 с.: ил.. Учебник для вузов. Список литературы: с. 368-369. Предметный указатель: с. 370-383.. ISBN 978-5-91180-759-7.. —
- 6. Кузнецов, Олег Петрович. Дискретная математика для инженера / О. П. Кузнецов. 5-е изд., стер.. СПб.: Лань, 2007. 400 с.: ил.. Учебники для вузов. Специальная литература. Библиогр.: с. 388-389. Предметный указатель: с. 390-393.. ISBN 978-5-8114-0570-1.. —

6.2. Информационное и программное обеспечение

Профессиональные базы данных и информационно-справочные системы доступны по ссылке: https://www.lib.tpu.ru/html/irs-and-pdb

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного** программного обеспечения **ТПУ**):

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее оборудование:

Nº	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения	Комплект мебели на 26 посадочных мест;
	учебных занятий всех типов,	
	курсового проектирования,	
	консультаций, текущего	
	контроля и промежуточной	
	аттестации	
	634028, Томская область, г.	
	Томск, Ленина проспект, д. 2,	
	аудитория 410	
2.	Аудитория для проведения	Комплект мебели на 120 посадочных мест;
	учебных занятий всех типов,	
	курсового проектирования,	
	консультаций, текущего	
	контроля и промежуточной	
	аттестации	
	634050, Томская область, г.	
	Томск, Ленина проспект, д. 30,	
	аудитория 204	

Рабочая программа составлена на основе Общей характеристики основной профессиональной образовательной программы «Информационные технологии и интеллектуальный анализ данных» по направлению 09.03.02 Информационные системы и технологии (прием 2023 г., очная форма обучения).

Разработчик(и):

Должность	Подпись	ФИО
Доцент		Ю. Б. Буркатовская

Программа одобрена на заседании Отделения информационных технологий (протокол от 25.04.2023 г. № 32).

Alla

Заведующий кафедрой руководитель отделения на правах кафедры ОИТ

В. С. Шерстнев