

Regular Languages and Regular Expressions

Shashank Gupta
Assistant Professor
Department of Computer Science and Information Systems

Regular Expressions

It is a declarative way of representing a regular language.

- Algebraic representation of a regular language.
- In order to represent regular language using regular expression, some operators will be utilized.

It has applications in designing and development of compilers.

Regular Language

• Regular Language (also known as Type 3 language) is a restricted formal language that can be denoted by the regular expression.

$$L1 = \{01, 001, 011, 0011, ---\}$$

$$L2 = \{0^n \ 1^m \mid n, m \ge 1\}$$

Conditions for Formal Language to be Regular

- Conditions
 - Finite in Length
 - OR
 - Non-existence of Memory Element

Language	Identification (Regular or Non-Regular)
$L = \{a^n b^n \mid n \le 1\}$	Regular
$L = \{a^n \ b^m \ c^k \ \ n, m, k \ge 1\}$	Regular
$L = \{a^n b^m \mid n, m \ge 1, m > n\}$	Non-Regular
$L = \{a^n b^m c^{n+m} \mid n, m \ge 1\}$	Non-Regular

innovate achieve lead

Rules for Generating the Regular Expression

Regular Language	Pattern of the	Regular Expression
	Language	
$L = \{ \in \} \text{ (Epsilon)}$	Null String	€
$L = \{a\}$	Single Character	a
$L = \{bb\}$	Single String	b.b (Concatenation)
$L = \{a, b\}$	Two Characters	a + b (Union)
$L = \{a, aa, aaa, aaaa,\}$	Repetition of a's	a ⁺ (Positive Closure)
$L = \{ \in, a, aa, aaa, aaaa, \}$	Repetition of a's	a* (Kleene Closure)
	(including the null	OR
	string i.e. \in)	∈+ a ⁺
$L = \{a, b, ab, ba, aa, aaa, aba,$	Any combination	$(a+b)^+$
baab, aba}	of a's and b's	
$L = \{ \in, a, b, ab, ba, aa, aaa, aba,$	Any combination	$(a+b)^*$
baab, aba,}	of a's and b's	OR
	(including the null	$\in +(a+b)^+$
	string i.e. ∈)	

Regular Expressions

For every regular expression R, there is a unique language L(R) corresponding to it.

- It's converse is not true.
- We often drop this . (concatenation) operator symbol from the regular expression. (ab is also a regular expression).

Precedence of the operators of regular expression is from high to low. (), Kleene Closure/Positive Closure, Concatenation, Union.

• The language corresponding to the RE $\phi^* = \{ \in \}$ Note that ϕ is the regular expression for Null set $\{ \}$ (the empty set) and this set does not contain the epsilon.

Designing of Regular Expression

• Design a regular expression that accepts all strings of 0's and 1's where each string starts with '0'.

Step 1

•
$$L = \{ 0, 01, 00, 010, \dots \}$$

Step 2

• Minimal length String is '0'

Designing of Regular Expression (Cont....)

• Construct a regular expression that accepts all strings of 0's and 1's where each string starts and ends with different symbol.

Step 1

•
$$L = \{ 01, 10, 011, 110, --- \}$$

Step 2

• Minimal length String is '01' and '10'

•
$$0.(0+1)*.1+1.(0+1)*.0$$

Designing of Regular Expression (Cont....)

Construct a regular expression that accepts all strings of 0's and 1's where the length of the string is exactly three.

Step 1

•
$$L = \{ 000, 111, 010, 110, -- \}$$

Step 2

• Minimal Length String is Three

•
$$((0+1) \cdot (0+1) \cdot (0+1))$$

Designing of Regular Expression (Cont....)

Construct a regular expression that accepts all strings of 0's and 1's where the length of the string is exactly divisible by 3.

Step 1

• L= $\{ \in, 010, 010101, ---- \}$

Step 2

• Minimal length String is Epsilon.

- $((0+1) \cdot (0+1) \cdot (0+1))$ *
- OR
- $\in +((0+1) \cdot (0+1) \cdot (0+1))^+$