Planche nº 29. Comparaison des suites en l'infini

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice no 1 (***I)

Déterminer un équivalent le plus simple possible de chacune des suites suivantes quand n tend vers $+\infty$.

1)
$$\operatorname{Arccos}\left(\frac{n-1}{n}\right)$$
 2) $\operatorname{Arccos}\left(\frac{1}{n}\right)$ 3) $\operatorname{ch}\left(\sqrt{n}\right)$ 4) $\left(1+\frac{1}{n}\right)^n$ 5) $\frac{\ln\left(n+\sqrt{n^2+1}\right)}{\sqrt{n^4+n^2-1}}$ 6) $\left(1+\sqrt{n}\right)^{-\sqrt{n}}$ 7) $\ln\left(\cos\frac{1}{n}\right)\ln\left(\sin\frac{1}{n}\right)$ 8) $\left(\frac{\pi}{2}\right)^{3/5}-(\operatorname{Arctan} n)^{3/5}$ 9) $\sqrt{1+\frac{(-1)^n}{\sqrt{n}}-1}$ 10) $\ln\left(\frac{n^2+n+1}{n^2+n-1}\right)$

$$2) \operatorname{Arccos}\left(\frac{1}{n}\right)$$

3)
$$\operatorname{ch}\left(\sqrt{n}\right)$$

4)
$$\left(1+\frac{1}{n}\right)^{r}$$

5)
$$\frac{\ln (n + \sqrt{n^2 + 1})}{\sqrt{n^4 + n^2 - 1}}$$

$$6) \left(1+\sqrt{n}\right)^{-\sqrt{n}}$$

7)
$$\ln\left(\cos\frac{1}{n}\right)\ln\left(\sin\frac{1}{n}\right)$$

8)
$$\left(\frac{\pi}{2}\right)^{3/5} - (Arctan \, n)^{3/5}$$

Exercice nº 2 (**I)

$$\mathrm{Montrer\ que}\ \sum_{k=0}^n k! \underset{+\infty}{\sim} n!.$$

Exercice no 3 (***I)

- 1) Soient u et v deux suites réelles strictement positives. Pour $n \in \mathbb{N}$, on pose $U_n = \sum_{k=0}^n u_k$ et $V_n = \sum_{k=0}^n v_k$. Montrer que $\mathrm{si}\ u_n\underset{+\infty}{\sim}\nu_n\ \mathrm{et}\ \mathrm{si}\ \underset{n\to+\infty}{\lim}V_n=+\infty,\ \mathrm{alors}\ U_n\underset{+\infty}{\sim}V_n.$
- 2) Application. Trouver un équivalent de $\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$ et $\sum_{k=1}^{n} \ln(k)$.

Exercice nº 4 (****)

Soit (u_n) une suite réelle de limite nulle. Montrer que si $u_n + u_{2n} \sim \frac{3}{2n}$, alors $u_n \sim \frac{1}{n}$. A-t-on: si $u_n + u_{n+1} \sim \frac{2}{n}$, alors $u_n \sim \frac{1}{n}$?

Exercice no 5 (***I)

Soit u la suite définie par $u_0 = \frac{\pi}{2}$ et, $\forall n \in \mathbb{N}, \ u_{n+1} = \sin(u_n)$.

- 1) Montrer que la suite u est strictement positive, décroissante de limite nulle.
- 2) On admet que si $\mathfrak u$ est une suite de limite nulle, alors, quand $\mathfrak n$ tend vers $+\infty$, $\sin(\mathfrak u_\mathfrak n) = \mathfrak u_\mathfrak n \frac{\mathfrak u_\mathfrak n^3}{6} + o(\mathfrak u_\mathfrak n^3)$. Déterminer un réel α tel que la suite $\nu_n=u_{n+1}^\alpha-u_n^\alpha$ ait une limite réelle non nulle. En appliquant le lemme de Césaro à la suite (v_n) , déterminer un équivalent simple de u_n quand n tend vers $+\infty$.

Exercice nº 6 (**I)

On admet que $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$ où γ est la constante d'Euler.

Pour $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n \frac{1}{n+k}$. Déterminer $\lim_{n \to +\infty} u_n$.