INDICES DE DIVERSIDADE

MARILIA MELO FAVALESSO

THAÍS MAYLIN SOBJAK

Ecólogos estão interessados em medir a diversidade por diversas razões, sobretudo por sua utilidade em biologia da conservação e avaliação ambiental.

INDICES DE DIVERSIDADE

Indices de diversidade caracterizam a composição de espécies em um determinado lugar e tempo.

■ Na ecologia teórica, medidas de diversidade podem ser usadas para comparar diferentes comunidades, ou a mes comunidade em diferentes momentos.

- Diversidade pode também ser comparada com outras características que podem mudar dentro da comunidade, como produtividade, maturidade, estabilidade e heterogeneidade espacial.
- Em estudos que comparam muitas comunidades, diversidade de espécie pode serem comparada com variáveis químicas, geomorfológicas ou clima.

Não é usual medir a diversidade de espécie de uma comunidade inteira. O ideal é por meios de uma taxocenose, que é um conjunto de espécies pertencentes à um táxon supraespecifico que representa um segmento taxonômico de uma comunidade ou associação.

RIQUEZA DE ESPÉCIES

■ É simplesmente o número total de espécies (S) em uma unidade amostral. Conseqüentemente, a riqueza de espécies é muito dependente do tamanho amostral — quanto maior a amostra, maior o número de espécies que poderão ser amostradas. Assim, a riqueza de espécies diz pouco a respeito da organização da comunidade, aumentando em função da área, mesmo sem modificação do habitat.

EQUITABILIDADE

Expressa a maneira pela qual o número de indivíduos está distribuído entre as diferentes espécies, isto é, indica se as diferentes espécies possuem abundância (número de indivíduos) semelhantes ou divergentes.

DIVERSIDADE

■ Há uma necessidade de um índice que capture ambas, a riqueza e a uniformidade, que são características de uma assembleia.

ÍNDICE DE RIQUEZA

- Os diversos índices procuram compensar os efeitos de amostragem dividindo a riqueza, S, o número de espécies registradas, por N, o número total de indivíduos a amostra.
- Dentre esses índices está o de Margalef e o de Menhinick

$$D_{Mg} = (S-1)/\ln N$$

$$D_{Mn} = S / \sqrt{N}$$

RAREFAÇÃO

Consiste em calcular o número esperado de espécies em cada amostra para um tamanho de amostra padrão, ou seja, fazer comparações diretas entre comunidades tendo por base o número de indivíduos da amostra.

$$E(S) = \sum_{i=1}^{S} \left[1 - \frac{\binom{N - N_i}{n}}{\binom{N}{n}} \right]$$
Número total de spp registradas

Tabela 1. Amostras de espécies de duas comunidades hipotéticas A e B.

Espécies	Comunidade	
	A	В
Espécie 1	9	1
Espécie 2	3	0
Espécie 3	0	1
Espécie 4	4	0
Espécie 5	2	0
Espécie 6	1	0
Espécie 7	1	1
Espécie 8	0	2
Espécie 9	1	0
Espécie 10	0	5
Espécie 11	1	3
Espécie 12	1	0
Total	23	13

Figura 2. Curva de rarefação para duas comunidades. A amostra da comunidade A (■) tem 23 indivíduos representando nove espécies, enquanto a amostra da comunidade B (▲) tem apenas 13 indivíduos representando seis espécies. O número de espécies esperado na comunidade A para uma amostra de 13 indivíduos é 6,56.

A rarefação deve ser usada apenas para amostras obtidas com métodos padronizados, e em habitats iguais ou similares. Outra restrição é que as curvas não podem ser extrapoladas para além do número de indivíduos (N) na maior amostra. O método de rarefação permite ainda o cálculo da variância do número esperado de espécies. A fórmula para calcular a variância é descrita em Krebs (1999).

1- Riqueza "numérica" = contagem de espécies (S)

- Dependente do tamanho da amostra área ou número de indivíduos (N)
- Não apresenta uma relação LINEAR com área ou n°ind ivíduos
- Espécies raras têm mesmo peso que espécies abundantes

DIVERSIDADE

Todas as medidas precisam enfatizar um ou outro componente da diversidade (riqueza ou uniformidade), não é possível um índice perfeitamente unificado OS ÍNDICES MAIS POPULARES
 <u>NÃO</u> SÃO NECESSARIAMENTE
 OS MELHORES....

ÍNDICE DE SHANNON

Uma das mais duradouras medidas X muitos autores falam sobre as desvantagens

ÍNDICE DE SHANNON

Uma das mais dur

INDICE DE SHANNON

Baseado no raciocínio de que a diversidade, ou informação, em um sistema natural pode ser medida de forma similar à informação contida em um código ou mensagem. Ele assume que indivíduos são aleatoriamente amostrados de uma comunidade infinitamente grande e, que todas as espécies são representadas na amostra.

INDICE DE SHANNON

$$H' = -\sum_{i=1}^{S} p_i \ln p_i$$

INDICE DE SIMPSON

 Calcula a probabilidade de dois indivíduos quaisquer, retirados aleatoriamente de uma comunidade infinitamente grande, pertencerem à mesma espécie

$$D = \sum_{i=1}^{s} p_i^2$$

Por isso, em geral, ele é expresso como 1-D, 1/D ou – In (D), sendo:

$$D_{comp} = \int_{i=1}^{s} -\sum_{j=1}^{s} p_{j}^{2}$$

$$D_{rec} = 1/\sum_{i=1}^{s} p_i^2$$

$$D_{ln} = -ln\sum_{i=1}^{s} p_i^2$$

Também muito fácil de calcular:

ni		pi	pi2
	91	0.91	0.8281
	1	0.01	0.0001
	1	0.01	0.0001
	1	0.01	0.0001
	1	0.01	0.0001
	1	0.01	0.0001
	1	0.01	0.0001
	1	0.01	0.0001
	1	0.01	0.0001
	1	0.01	0.0001
N=100	S=10		D=0.829

$$D_{comp} = 1-D = 0,1710$$

$$D_{rec} = 1/D = 1,2063$$

$$D_{ln} = -ln(D) = 0.1875$$

Também pode ser expresso em Espécie-equivalente: $S_D = 1/D$ Nesse caso, $S_D = 1,2$ espécies (= D_{rec})

