Научная и компьютерная коммуникация в современных условиях

«Обнаружение разладки с помощью метода SSA»

Кононыхин Иван Александрович

группа 20.М03-мм Санкт-Петербургский государственный университет Прикладная математика и информатика

2022

Введение в теорию

Основные обозначения

Обозначения

```
F^{(1)} = F_{N_1}^{(1)}, \ F^{(2)} = F_{N_2}^{(2)} - временные ряды. 
 L: 2 \leq L \leq \min(N_1-1,N_2) - длина окна. 
 U_l^{(1)}, \ l=1,\ldots,L- собственные векторы траекторной матрицы ряда F^{(1)} 
 \mathfrak{L}^{(L,1)} — линейное пространство, натянутое на L—сдвинутые векторы ряда F^{(1)}, \ d \stackrel{\text{def}}{=} \dim \mathfrak{L}^{(L,1)} 
 I = \{i_1,\ldots,i_r\} — подмножество \{1,\ldots,L\} 
 \mathfrak{L}_r^{(1)} \stackrel{\text{def}}{=} \operatorname{span}(U_l^{(1)}, \ l \in I) 
 X_1^{(2)},\ldots,X_{K_2}^{(2)}-L-сдвинутые векторы ряда F^{(2)}
```

Индекс неоднородности

Определение

Индекс неоднородности:

$$g(F^{(1)}; F^{(2)}) = \frac{\sum_{l=1}^{K_2} \operatorname{dist}^2(X_l^{(2)}, \mathfrak{L}_r^{(1)})}{\sum_{l=1}^{K_2} \|X_l^{(2)}\|^2} = \frac{\sum_{l=1}^{K_2} (\|X_l^{(2)}\|^2 - \sum_{i=1}^r \langle X_l^{(2)}, U_i^{(1)} \rangle^2)}{\sum_{l=1}^{K_2} \|X_l^{(2)}\|^2} = 1 - \frac{\sum_{l=1}^{K_2} \sum_{i=1}^r \langle X_l^{(2)}, U_i^{(1)} \rangle^2}{\sum_{l=1}^{K_2} \|X_l^{(2)}\|^2}.$$

Индекс неоднородности характеризует несоответствие между рядом $F^{(2)}$ и структурой ряда $F^{(1)}$ (описываемого подпространством $\mathfrak{L}_r^{(1)}$). $g \in [0,1]$.

Обозначения

```
F_N:F_N=(f_0,\ldots,f_{N-1}),\,N>2 — исходный временной ряд; F_{i,j} — подряды ряда F_N:F_{i,j}=(f_i,\ldots,f_j),\,\,0\leq i< j\leq N-1; B — длина базовых подрядов ряда F_N:B>L; T — длина тестовых подрядов ряда F_N:T\geq L; F_{i,i+B-1} — Базовый подряд. F_{i,i+T-1} — Тестовый подряд.
```

Строковая функция обнаружения неоднородности

Определение

Ряд $D_{T,N}^{(r)}$, элементы которого задаются как

$$d_{n-1}^{(r)} \stackrel{\text{def}}{=} g(F_{1,B}; F_{n-T+1,n}), T \leq n \leq N.$$

есть строковая функция обнаружения.

Постановка задачи

Задача

Попробуем аналитически упростить индекс неоднородности g, чтобы явно увидеть, как разности частот ряда до и после разладки влияют на его значения.

Рассмотрим ряд

$$F_N = \begin{cases} C_1 \sin(2\pi\omega_1 n + \phi_1), & n \in [0, Q - 1], \\ C_2 \sin(2\pi\omega_2 n + \phi_2), & n \in [Q, N - 1]. \end{cases}$$

Пусть $\omega_1 \neq \omega_2$; $C_1 = C_2$. Для простоты зададим амплитуды $C_1 = C_2 = 1$.

Индекс неоднородности

$$\begin{split} g(F^{(1)};F^{(2)}) &= \frac{\sum\limits_{l=1}^{K_2} \operatorname{dist}^2(X_l^{(2)},\mathfrak{L}_r^{(1)})}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2} = \frac{\sum\limits_{l=1}^{K_2} (\|X_l^{(2)}\|^2 - \sum\limits_{i=1}^r \langle X_l^{(2)},U_i^{(1)}\rangle^2)}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2} = \\ &= 1 - \frac{\sum\limits_{l=1}^{K_2} \sum\limits_{i=1}^r \langle X_l^{(2)},U_i^{(1)}\rangle^2}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2}. \end{split}$$

Индекс неоднородности: аппроксимация

Пусть $F^{(1)}$ - часть ряда F_N при n < Q, а $F^{(2)}$, при n >= Q.

$$g(F^{(1)}; F^{(2)}) = 1 - \frac{\sum_{l=0}^{K_2 - 1} \sum_{i=0}^{r-1} \langle X_l^{(2)}, U_i^{(1)} \rangle^2}{\sum_{l=0}^{K_2 - 1} ||X_l^{(2)}||^2} \approx$$

$$1 - \frac{\left[\left(\frac{\sin(2\pi Lb)}{4\pi b} - \frac{\sin(2\pi La)}{4\pi a}\right)^2 + \left(\frac{\cos(2\pi Lb) - 1}{4\pi b} - \frac{\cos(2\pi La) - 1}{4\pi a}\right)^2\right]}{\frac{L^2}{4}} = g_a(\omega_1, \omega_2),$$

где $a = \omega_1 + \omega_2, b = \omega_1 - \omega_2$.

Проверка точности аппроксимации: изменения L

Зададим параметры:

N = 700, Q = 301, B = 200, T = 200

Зафиксируем частоты и будем изменять L.

Система обнаружения структурной неоднородности ряда с автоматически выстраиваемым порогом срабатывания на основе выведенной аналитической формулы.

Постановка задачи

Рассмотрим ряд

$$F_{N} = \begin{cases} C \sin(2\pi\omega_{1}n + \phi_{1}), & n \in [0, Q - 1], \\ C \sin(2\pi\omega_{2}n + \phi_{2}), & n \in [Q, N - 1], \end{cases}$$

где Q — момент возмущения.

Система:

- Вход:
 - \bullet F_N ;
 - ② k длина интервала, за который нужно определить момент возмущения \hat{Q} .
- Выход:
 - **1** \hat{Q} момент обнаружения неоднородности.
- Алгоритм:
 - $lue{1}$ Вычисляем порог γ ;
 - $oldsymbol{arrho}$ Определяем \hat{Q} как преодоление порога γ кривой d_n .

Задача:

Выбрать порог γ так, чтобы $\hat{Q} \in [Q, Q+k]$.

Оценка γ

В качестве верхней границы γ можно взять значение переходного интервала в точке k.

При добавлении шума с дисперсией σ^2 строковая функция неоднородности d_n до разладки смещается от 0. Если взять слишком маленькое значение γ , $\hat{Q} < Q$, поэтому нижняя граница зависит от дисперсии шума σ^2 .

Для таких рядов надо либо знать σ^2 , либо иметь данные для оценки значений d_n где точно отсутствует неоднородность.

Оценка γ : нижняя граница

Предположим, у нас есть нужные данные и мы смогли оценить нижнюю границу $\gamma = \gamma_{min}$.

Если мы знаем σ^2 , то $\gamma_{min} pprox rac{\sigma^2}{C^2/2+\sigma^2}.$

Оценка у: верхняя граница

Для определения верхней границы γ мы можем воспользоваться аналитической аппроксимацией $g_a(\omega_1,\omega_2)$, однако для этого нам нужно знать частоты до и после разладки.

Предпосылки: влияние изменения частот.

По свойству индекса неоднородности, чем больше $|\omega_2-\omega_1|$, тем ближе g к 1 после переходного интервала, следовательно, кривая d_n на переходном интервале будет иметь более крутой наклон.

Оценка γ : верхняя граница

Добавим еще 2 параметра, подаваемых на вход системе:

- ω_1 начальная частота ряда;
- $\omega_{min} = \omega_1 + \Delta_{min}$, где Δ_{min} минимальное для обнаружения неоднородности отклонение частоты ряда от ω_1 ;

Таким образом, имея значение $g(\omega_1,\omega_{min})$, для определения порога γ , мы можем попытаться аппроксимировать переходный интервал функции обнаружения d_n .

Обозначим эту аппроксимацию a_{T} .

Предпосылки: переходный интервал

Матрица \mathbb{X} имеет размерность $L \times K$. Рассмотрим траекторные матрицы $\mathbb{X}_{test}^{(j)}$ размерности $L \times K_{test}$ тестовых рядов $F_{j,j+T}$, где $K_{test} = T - L + 1$, $j \in [0, N - T)$. $\forall j \in [0, Q - T), \forall n \in [1, K_{test}] : \mathbf{X}_n \in \mathbb{X}_{test}^{(j)}, \mathbf{X}_n \in \mathfrak{L}_r^{(1)}$.

$$\forall j \in [0, Q - T), \forall n \in [1, K_{test}] : X_n \in \mathbb{X}_{test}^{(j)}, X_n \in \mathfrak{L}_r^{(1)}.$$

$$\forall j \in [Q + T, N - T), \forall n \in [1, K_{test}] : X_n \in \mathbb{X}_{test}, X_n \notin \mathfrak{L}_r^{(1)}.$$

При $T>2\cdot L$, $\forall\,j\in[Q-T+L,Q-L)$, $X_{test}^{(j)}$ состоит из:

- $n_B = n_B(j)$ векторов вложений, лежащих в $\mathfrak{L}_r^{(1)}$;
- $n_Q = n_Q(j)$ векторов вложений, содержащих момент возмущения;
- $n_A = n_A(j)$ векторов вложений, содержащих только значения ряда после разладки.

Причем $K_{test} = n_B + n_Q + n_A$

Предпосылки: переходный интервал Пусть L — фиксировано.

$$1 - \frac{\sum_{l=1}^{K_{test}} \sum_{i=1}^{r} \langle X_{l}, U_{l}^{(1)} \rangle^{2}}{\sum_{l=1}^{K_{test}} \|X_{l}\|^{2}} =$$

$$= 1 - \frac{\sum_{l=1}^{n_{B}} \sum_{i=1}^{r} \langle X_{l}, U_{l}^{(1)} \rangle^{2} + \sum_{l=n_{B}}^{n_{B}+n_{Q}} \sum_{i=1}^{r} \langle X_{l}, U_{l}^{(1)} \rangle^{2} + \sum_{l=n_{B}+n_{Q}}^{K_{test}} \sum_{i=1}^{r} \langle X_{l}, U_{l}^{(1)} \rangle^{2}}{\sum_{l=1}^{n_{B}} \|X_{l}\|^{2} + \sum_{l=n_{B}}^{K_{test}} \|X_{l}\|^{2}} =$$

$$= 1 - \frac{0 + \sum_{l=n_{B}}^{n_{B}+n_{Q}} \sum_{i=1}^{r} \langle X_{l}, U_{l}^{(1)} \rangle^{2} + n_{A}(j) \cdot c_{H}}{c_{1} + c_{2}} \approx 1 - \frac{n_{A}(j) \cdot c_{H}}{c_{1} + c_{2}}.$$

при $T \to \infty$ в силу $n_O = o(T)$.

Так как для вычисления d_n мы последовательно смещаем тестовые ряды на 1 элемент, $n_A(i)$ возрастает линейно, начиная с i = Q - T + L, $n_{\Delta}(i) = i - Q + T - L$

Предпосылки: переходный интервал

Аналогично, при уменьшении L переходный интервал также становится более линейным в силу увеличения $K_{test}^{(j)}$ и, следовательно, $n_A(j)$.

Аппроксимация: Идея

Таким образом, мы можем аппроксимировать переходный интервал от γ_{min} до $g(\omega_1, \omega_{min})$ прямой a_T .

Важно отметить, раз мы хотим брать γ как значение a_T в точке k, нам важно чтобы начало прямой a_T было не больше, чем значения d_n на переходном интервале. Однако такая аппроксимация не всегда корректна.

Алгоритм выбора γ

Таким образом, мы выбраем γ как значение линейной аппроксимации a_T переходного интервала функции d_n в точке k.

Алгоритм:

- lacktriangle Оцениваем γ_{min} ;
- **2** Вычисляем $g(\omega_1, \omega_{min})$;
- Строим а_т;
- 🐠 Фиксируем γ .

Алгоритм работы

Собирая все вместе, получаем систему:

- Входные данные: F_N , ω_1 , ω_{min} , k;
- Результат: Q̂;
- Алгоритм:
 - lacktriangle Оцениваем $oldsymbol{\gamma}_{min}$;
 - $oldsymbol{2}$ Вычисляем $g(\omega_1,\omega_{min});$
 - \bigcirc Строим a_T ;
 - ullet Фиксируем γ .
 - $oldsymbol{\circ}$ Определение \hat{Q} как момент преодоления d_n значения γ_a .

Пример работы

Зафиксируем параметры: $\omega_1=\frac{1}{10}$, $\omega_{min}=\frac{1}{100}$, k=30, $\omega_2=\frac{1}{5}$, Q=301, L=60, B=100, T=100, $\sigma^2=0.25$.

При таких параметрах, для графика ниже $\gamma_{min}=0.13, \gamma_{max}=0.725,$ $\gamma_a=0.311,~\hat{Q}=326.$

Параметры

Все параметры, используемые выше можно разделить на категории:

- **1** Входные: ω_1 , ω_{min} , k;
- ② Зависимые от входных параметров: γ_{min} , γ_{max} , γ_{a} .
- \odot Неизвестные: ω_2 , Q;
- Произвольные, выбираемые системой: L, B, T.

Первую категорию параметров можно интерпретировать как заданные пользователем системы. Они фиксированы и не могут меняться для определения более хорошего порога.

Вторая категория зависит от входных параметров и определяется алгоритмом работы.

Третья категория зависит от ряда, подаваемого системе и вообще говоря не известны.

Четвертая категория параметров - те, которые система может подстраивать под тот или иной ряд. Позже попробуем оценить их влияние на оценку системы.

Оценка системы

Зафиксируем дисперсию шума $\sigma^2=0.25$ и введем характеристики системы:

- ullet $FP(\gamma)$ преодоление порога γ кривой d_n до момента Q
- ullet $TP(\gamma)$ преодоление порога γ кривой d_n в промежутке [Q,Q+k]

Значения параметров рассмотренных категорий оставим такими же.

Промоделируем реализации шума $n_{iter}=200$ раз и для $\forall \gamma \in [0,1]$ с шагом 0.01 определим $FPR(\gamma)=\frac{FP}{n_{iter}}$ и $TPR(\gamma)=\frac{TP}{n_{iter}}$. Также будем смотреть на $FPR(\gamma_a)$.

Оценка системы

Оценка влияния параметров: Т=70

Оценка влияния параметров: T=130

Из изображений видно, что влияя на параметр T мы можем регулировать скорость возрастания d_n на переходном интервале и добиться основного требования к a_T — значения должны быть не больше чем у d_n .

Оценка влияния параметров: $T \approx L$

Выше было видно, что уменьшая T, мы можем уменьшить значение $FPR(\gamma_a)$. Однако при $T\to L$, количество элементов в тестовых рядах для подсчета индекса неоднородности g сокращается, усиливая влияние шума на подсчет элементов d_n , что приводит к усилению колебаний и увеличению $FPR(\gamma_a)$.

Оценка влияния параметров: L

Как было отмечено ранее, сходимость g_a и g достигается при достаточно больших L, однако уменьшая L, переходный интервал d_n более линеен.

Изменяя параметр L, мы регулируем скорость возрастания кривой d_n . Таким образом, подстраивая параметр L мы можем определять \hat{Q} раньше момента Q+k.

Оценка влияния параметров: В

В целом, параметр B не влияет на устойчивость системы в силу предположении о наличии исторических данных и отсутствия влияния на переходный интервал d_n .

Дальнейшие планы

💶 Исследовать применимость описанной системы.

Литература:

Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. (2001). Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC.