Participants:

- 5 participants over 5 days, performing 5 tasks per day.
 - Planar
 - Projective
 - Defacto with rested elbow
 - De facto unrested
 - TouchPad
- Some form of Latin Squares design. Probably a Latin Hypercube Sampling.
 - Rudimentary design (simple rotation from a balanced latin squares design, probably not vertically balanced)
 - Subject 1:

```
day 1: A B E C D Done
day 2: B C A D E Done
day 3: C D B E A Done
day 4: D E C A B Done
day 5: E A D B C Done
```

■ Subject 2:

```
day 1: B C A D E Done
day 2: C D B E A Done
day 3: D E C A B Done
day 4: E A D B C Done
day 5: A B E C D Done
```

■ Subject 3:

```
day 1: C D B E A Done
day 2: D E C A B Done
day 3: E A D B C Done
day 4: A B E C D Done
day 5: B C A D E Done
```

Subject 4:

```
day 1: D E C A B Done
day 2: E A D B C Done
day 3: A B E C D Done
day 4: B C A D E Done
day 5: C D B E A Done
```

Subject 5:

```
day 1: E A D B C Done
day 2: A B E C D Done
day 3: B C A D E Done
day 4: C D B E A Done
day 5: D E C A B
```

- Taken from the R williams project.
- Subject pool: try to get from whatever other classes are going on now.

- Remuneration: Each participant given a coupon a day. Cost: \$8 x 5 x 5 = \$200. Problem will be if some participant chooses to not come in on the last day. Alternative is to give 1 coupon the first day, another on the third day, and 3 on the last day.
- Conditions: Participants have to agree to come in **5 days in a row**. Otherwise we stand to introduce errors with the expected learning effect.
- Ideally, we would use participants who have not used the system before. Getting the undergrads who are around for summer classes would be good.
- PROBLEM: If defacto gorilla needs for the leap to be flat, while rested requires the leap to be tilted. How to swap from one to the other?
 Solution: ??
 - Maybe making the calibration blind will not be needed if *ALL* participants are fresh, with no prior experience.
 - That way we don't need to perform all calibrations up-front.

•

Duration:

	mouse	defacto gorilla	defacto rested	PS - matrix	PS - surface	total
calibration	0	0	0	1	1	2
practice	.5	.5	.5	1	1	3.5
video	.5	1	1	2	2	6.5
task	2	4	4	4	4	18
total	3	5.5	5.5	8	8	<u>30</u>

This estimation is quite optimistic and relies on the calibration duration being quite low. However, doubling the calibration and corresponding practice time only increases the total duration by 4 minutes. Assuming participants need 3 calibrations for both PS-matrix and PS-surface, we increase the total time to 30 + 4 + 4 minutes, giving us a pessimistic duration of 40 minutes which is still within scope. Enforcing 1 minute of rest time between each task only increases pessimistic time to 44 minutes.

Adding another item for benchmark, eg the touchpad, is not a good idea. It would change the way the Latin Squares design is done. We will therefore need either 6 days or 6 people or both. Not ideal.

Experiment:

- Perform and persist all calibrations first.
 - Watch video
 - Perform Calibration
 - Perform test/practice
 - o IF OK then continue, ELSE repeat
- Perform task as per Latin Squares
 - Ensure all gesture-related experiment has a non-descriptive name so that subjects do not know which version they are using.

TODO

- 1. Ensure surface fitting technique
- 2. Persist and load calibration. Ensure if program crashes, can still continue.
- 3. Front End changes -- nondescript version
- 4. do IRB
- 5. do Pilot
- 6. recruit participants