Exercise 10.9

Solvers: Ethan Writeup: Ethan

Let $U \subseteq \mathbb{R}^n$ be open, and let $\Phi : \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 mapping. Suppose that there is a point $p_0 \in U$ such that $\Phi'(p_0) : \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism.

Define the function $\Psi = \Phi^{-1}$. From the previous exercises, we know that $\Psi'(q) = \Phi'(\Psi(q))^{-1}$. It remains to show that Ψ' is continuous.

Exercise 10.9 Ψ' is continuous.

Proof. Consider the inversion map $T: \mathrm{GL}(\mathbb{R}^n) \to \mathrm{GL}(\mathbb{R}^n)$. That is, for an invertible linear mapping A in \mathbb{R}^n , $T(A) = A^{-1}$. It will be shown that T is continuous.

Fix $A \in GL(\mathbb{R}^n)$ and let $\varepsilon > 0$. Since $GL(\mathbb{R}^n)$ is open, for some δ_0 , $B(A, \delta_0) \subseteq GL(\mathbb{R}^n)$. Let $\delta = \min\{\delta_0, \|A^{-1}\|_{op}^{-2}\}$. Let $h \in GL(\mathbb{R}^n)$ so that $\|h\|_{op} < \delta$. Fix $x \in \mathbb{R}^n$ such that $\|x\| = 1$. Since $(A + h)^{-1}$ is surjective, we have x = (A + h)(y), for some $y \in \mathbb{R}^n$. We see that

$$\|(A+h)^{-1}(x) - A^{-1}(x)\| = \|y - (y + A^{-1}(h(y)))\| = \|A^{-1} \circ h(y)\| \le \|A^{-1}\|_{\mathrm{op}} \|h\|_{\mathrm{op}} \|y\|$$

Since A is a bounded linear operator,

$$||y|| = ||A^{-1}(A(y))|| \le ||A^{-1}||_{\text{op}}||A(y)|| = ||A^{-1}||_{\text{op}}||x - h(y)|| \le ||A^{-1}||_{\text{op}}(||x|| + ||h(y)|)$$

$$||T(A+h) - T(A)||_{\text{op}} = ||(A+h)^{-1} \circ (A+h) \circ ((A+h)^{-1} - A^{-1})||_{\text{op}}$$

$$= ||(A+h)^{-1} \circ ((A+h) \circ (A+h)^{-1} - (A+h) \circ A^{-1})||_{\text{op}} = ||(A+h)^{-1} \circ (-h \circ A^{-1})||_{\text{op}}$$

$$\le ||(A+h)^{-1}||_{\text{op}}||h||_{\text{op}}||A^{-1}||_{\text{op}}$$