%matplotlib inline ### import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style import seaborn as sns

```
In [2]:
```

```
data = pd.read_csv('health care diabetes.csv')
```

In [3]:

```
data.head()
```

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

In [4]:

```
data.isnull().any()
```

Out[4]:

Pregnancies	False
Glucose	False
BloodPressure	False
SkinThickness	False
Insulin	False
BMI	False
DiabetesPedigreeFunction	False
Age	False
Outcome	False
dtype: bool	

<class 'pandas.core.frame.DataFrame'>

In [5]:

```
data.info()
```

```
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
Pregnancies
                           768 non-null int64
                           768 non-null int64
Glucose
BloodPressure
                           768 non-null int64
SkinThickness
                           768 non-null int64
Insulin
                           768 non-null int64
                           768 non-null float64
                           768 non-null float64
DiabetesPedigreeFunction
                           768 non-null int64
Age
Outcome
                           768 non-null int64
dtypes: float64(2), int64(7)
```

In [41]:

memory usage: 54.1 KB

```
Positive = data[data['Outcome']==1]
Positive.head(5)
```

Out[41]:

0	Pregnancie ⁶	Glucose	BloodPressure	SkinThickne 35	Insulin	33 √6	DiabetesPedigreeFunction	A 50	Outcome 1
2	8	183	64	0	0	23.3	0.672	32	1
4	0	137	40	35	168	43.1	2.288	33	1
6	3	78	50	32	88	31.0	0.248	26	1
8	2	197	70	45	543	30.5	0.158	53	1

In [43]:

```
data['Glucose'].value_counts().head(7)
```

Out[43]:

100 17 99 17 129 14 125 14 111 14 106 14

13

Name: Glucose, dtype: int64

In [35]:

95

```
plt.hist(data['Glucose'])
```

Out[35]:

In [33]:

```
data['BloodPressure'].value_counts().head(7)
```

Out[33]:

40

Name: BloodPressure, dtype: int64

In [36]:

```
plt.hist(data['BloodPressure'])
```

Out[36]:

In [32]:

```
data['SkinThickness'].value_counts().head(7)
```

Out[32]:

23 22 33 20 18 20

Name: SkinThickness, dtype: int64

In [37]:

```
plt.hist(data['SkinThickness'])
```

Out[37]:

```
(array([231., 107., 165., 175., 78., 9., 2., 0., 0., 1.]),
array([ 0., 9.9, 19.8, 29.7, 39.6, 49.5, 59.4, 69.3, 79.2, 89.1, 99. ]),
<a list of 10 Patch objects>)
```


In [30]:

```
data['Insulin'].value_counts().head(7)
```

Out[30]:

```
0 374
105 11
140 9
130 9
120 8
```

```
100
        7
Name: Insulin, dtype: int64
In [38]:
plt.hist(data['Insulin'])
Out[38]:
(array([487., 155., 70., 30., 8., 9., 5., 1., 2., 1.]), array([ 0., 84.6, 169.2, 253.8, 338.4, 423., 507.6, 592.2, 676.8, 761.4, 846.]),
 <a list of 10 Patch objects>)
 500
 400
 300
 200
 100
   0
                 200
                            400
                                       600
                                                 800
In [29]:
data['BMI'].value_counts().head(7)
Out[29]:
32.0
       13
31.6
        12
31.2
         12
0.0
          11
33.3
          10
32.4
        10
32.8
        9
Name: BMI, dtype: int64
In [39]:
plt.hist(data['BMI'])
Out[39]:
(array([ 11., 0., 15., 156., 268., 224., 78., 12., 3., 1.]), array([ 0. , 6.71, 13.42, 20.13, 26.84, 33.55, 40.26, 46.97, 53.68,
        60.39, 67.1 ]),
 <a list of 10 Patch objects>)
 250
 200
 150
 100
```

50

0

10

20

30

50

In [9]:

```
data.describe().transpose()
```

Out[9]:

	count	mean	std	min	25%	50%	75%	max
Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.00000	17.00
Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.0000	140.25000	199.00
BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	72.0000	80.00000	122.00
SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	23.0000	32.00000	99.00
Insulin	768.0	79.799479	115.244002	0.000	0.00000	30.5000	127.25000	846.00
ВМІ	768.0	31.992578	7.884160	0.000	27.30000	32.0000	36.60000	67.10
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.62625	2.42
Age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.00000	81.00
Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.00000	1.00

In []:

Week 2

In [49]:

```
plt.hist(Positive['BMI'], histtype='stepfilled', bins=20)
```

Out[49]:

In [55]:

```
Positive['BMI'].value_counts().head(7)
```

Out[55]:

```
32.9 8
31.6 7
33.3 6
30.5 5
32.0 5
```

```
4
32.4
Name: BMI, dtype: int64
In [61]:
plt.hist(Positive['Glucose'], histtype='stepfilled', bins=20)
Out[61]:
(array([ 2., 0., 0., 0., 0., 0., 0., 1., 4., 9., 28., 26., 36., 27., 29., 22., 24., 21., 25., 14.]),
 array([ 0. , 9.95, 19.9 , 29.85, 39.8 , 49.75, 59.7 , 69.65, 79.6 , 89.55, 99.5 , 109.45, 119.4 , 129.35, 139.3 , 149.25,
        159.2 , 169.15, 179.1 , 189.05, 199. ]),
 <a list of 1 Patch objects>)
 35
 30
 25
 20
15
10
 5
 0 -
                       100
                           125
                                150
                                     175
In [56]:
Positive['Glucose'].value_counts().head(7)
Out[56]:
      7
125
158
      6
128
      6
115
      6
      6
129
146
       5
162
       5
Name: Glucose, dtype: int64
In [62]:
plt.hist(Positive['BloodPressure'], histtype='stepfilled', bins=20)
Out[62]:
<a list of 1 Patch objects>)
 50
 40
 30
 20
```

J + • L

```
0 20 40 60 80 100
```

In [57]:

```
Positive['BloodPressure'].value_counts().head(7)
```

Out[57]:

70 23

76 18

78 17

74 17

72 16

0 16

82 13

Name: BloodPressure, dtype: int64

In [63]:

```
plt.hist(Positive['SkinThickness'], histtype='stepfilled', bins=20)
```

Out[63]:

In [60]:

```
Positive['SkinThickness'].value_counts().head(7)
```

Out[60]:

```
0 88
32 14
```

33 9

30 9

39 8

35 8 36 8

Name: SkinThickness, dtype: int64

In [64]:

```
plt.hist(Positive['Insulin'], histtype='stepfilled',bins=20)
```

Out[64]:

```
380.7, 423., 465.3, 507.6, 549.9, 592.2, 634.5, 676.8, 719.1, 761.4, 803.7, 846. ]), <a list of 1 Patch objects>)

140
120
100
80
40
20
```

600

800

400

In [59]:

0

```
Positive['Insulin'].value_counts().head(7)
```

Out[59]:

```
0 138
130 6
180 4
156 3
175 3
194 2
125 2
```

Name: Insulin, dtype: int64

In [65]:

```
#Scatter plot
```

In [68]:

```
BloodPressure = Positive['BloodPressure']
Glucose = Positive['Glucose']
SkinThickness = Positive['SkinThickness']
Insulin = Positive['Insulin']
BMI = Positive['BMI']
```

In [85]:

```
plt.scatter(BloodPressure, Glucose, color=['b'])
plt.xlabel('BloodPressure')
plt.ylabel('Glucose')
plt.title('BloodPressure & Glucose')
plt.show()
```



```
In [101]:
g =sns.scatterplot(x= "Glucose" ,y= "BloodPressure",
                hue="Outcome",
                data=data);
  120
           Outcome
  100
BloodPressure
   80
   60
   40
    20
    0
        ò
             25
                  50
                            100
                                 125
                                       150
                                            175
                                                  200
                           Glucose
In [100]:
B =sns.scatterplot(x= "BMI" ,y= "Insulin",
                hue="Outcome",
                data=data);
           Outcome
  800
  600
  400
  200
    0
        ò
              10
                                             60
                                                    70
In [107]:
S =sns.scatterplot(x= "SkinThickness", y= "Insulin",
                hue="Outcome",
                data=data);
                                             Outcome
  800
                                             0
  600
uinsul
400
```

100

80

60

SkinThickness

200

```
data.corr()
```

Out[104]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Αç
Pregnancies	1.000000	0.129459	0.141282	-0.081672	0.073535	0.017683	-0.033523	0.54434
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	0.137337	0.2635
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	0.041265	0.23952
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	0.183928	0.11397
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	0.185071	0.04216
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	0.140647	0.03624
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	1.000000	0.03356
Age	0.544341	0.263514	0.239528	-0.113970	0.042163	0.036242	0.033561	1.00000
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	0.173844	0.2383
4)

In [105]:

```
### create correlation heat map
sns.heatmap(data.corr())
```

Out[105]:

<matplotlib.axes._subplots.AxesSubplot at 0x2278a586278>

In [106]:

```
plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True,cmap='viridis') ### gives correlation value
```

Out[106]:

<matplotlib.axes._subplots.AxesSubplot at 0x2278a71d710>

In [116]:

```
plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True) ### gives correlation value
```

Out[116]:

<matplotlib.axes._subplots.AxesSubplot at 0x2278bde9f28>


```
# Logistic Regreation and model building
In [117]:
data.head(5)
Out[117]:
        Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
 0
                                                                         72
                                         148
                                                                                                                        0 33.6
                                                                                                                                                                             0.627
                                                                                                                                                                                                                  0
  1
                           1
                                           85
                                                                         66
                                                                                                      29
                                                                                                                        0 26.6
                                                                                                                                                                             0.351
                                                                                                                                                                                             31
 2
                           8
                                         183
                                                                         64
                                                                                                        0
                                                                                                                        0 23.3
                                                                                                                                                                             0.672
                                                                                                                                                                                             32
                                                                                                                                                                                                                   1
                                                                         66
                                                                                                      23
                                                                                                                     94 28.1
                                                                                                                                                                             0.167
                                                                                                                                                                                             21
                                                                                                                                                                                                                  0
  3
                           1
                                           89
                           0
                                         137
                                                                         40
                                                                                                      35
                                                                                                                    168 43.1
                                                                                                                                                                             2.288
                                                                                                                                                                                             33
                                                                                                                                                                                                                   1
In [130]:
 features = data.iloc[:,[0,1,2,3,4,5,6,7]].values
label = data.iloc[:,8].values
In [136]:
 #Train test split
 from sklearn.model selection import train test split
 X train, X test, y train, y test = train test split(features,
                                                                                                                           test size=0.2,
                                                                                                                           random state =10)
In [137]:
 #Create model
 from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train,y_train)
\verb|C:\Pr| programData\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py: 433: Future Warning: Define a property of the packages of t
fault solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
    FutureWarning)
Out[137]:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                          intercept_scaling=1, max_iter=100, multi_class='warn',
                         n jobs=None, penalty='12', random state=None, solver='warn',
                          tol=0.0001, verbose=0, warm start=False)
In [138]:
print(model.score(X train, y train))
print(model.score(X test,y test))
0.7833876221498371
0.7337662337662337
In [139]:
from sklearn.metrics import confusion matrix
 cm = confusion matrix(label, model.predict(features))
cm
Out[139]:
```

array([[452, 48],

In [140]:

```
from sklearn.metrics import classification_report
print(classification_report(label, model.predict(features)))
```

		precision	recall	f1-score	support
	0	0.78	0.90	0.84	500
	1	0.75	0.53	0.62	268
micro	avg	0.77	0.77	0.77	768
macro	avg	0.76	0.72	0.73	768
weighted	avg	0.77	0.77	0.76	768

In [141]:

```
#Preparing ROC Curve (Receiver Operating Characteristics Curve)
from sklearn.metrics import roc curve
from sklearn.metrics import roc auc score
# predict probabilities
probs = model.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc_auc_score(label, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc curve(label, probs)
# plot no skill
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(fpr, tpr, marker='.')
```

AUC: 0.834

Out[141]:

[<matplotlib.lines.Line2D at 0x2278c4fba90>]

In [152]:

```
#Applying Decission Tree Classifier
from sklearn.tree import DecisionTreeClassifier
model3 = DecisionTreeClassifier(max_depth=5)
model3.fit(X_train,y_train)
```

Out[152]:

```
min weight_fraction_leaf=0.0, presort=False, random_state=None,
                                 splitter='best')
In [163]:
model3.score(X_train,y_train)
Out[163]:
0.990228013029316
In [164]:
model3.score(X test,y test)
Out[164]:
0.7532467532467533
In [162]:
 #Applying Random Forest
 from sklearn.ensemble import RandomForestClassifier
model4 = RandomForestClassifier(n_estimators=11)
model4.fit(X_train,y_train)
Out[162]:
{\tt RandomForestClassifier(bootstrap=True,\ class\_weight=None,\ criterion='gini',\ class\_weight=None,\ c
                                max_depth=None, max_features='auto', max_leaf_nodes=None,
                                min_impurity_decrease=0.0, min_impurity_split=None,
                                min_samples_leaf=1, min_samples_split=2,
                                min weight fraction leaf=0.0, n estimators=11, n jobs=None,
                                oob score=False, random state=None, verbose=0,
                                warm_start=False)
In [165]:
model4.score(X train,y train)
Out[165]:
0.990228013029316
In [166]:
model4.score(X_test,y_test)
Out[166]:
0.7532467532467533
In [169]:
 #Support Vector Classifier
 from sklearn.svm import SVC
model5 = SVC(kernel='rbf',
                             gamma='auto')
model5.fit(X train,y train)
Out[169]:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
    decision function shape='ovr', degree=3, gamma='auto', kernel='rbf',
     max_iter=-1, probability=False, random_state=None, shrinking=True,
     tol=0.001, verbose=False)
```

F1 701

```
in [1/0]:
model5model.score(X_test, y_test).score(X_train, y_train)
Out[170]:
1.0
In [171]:
model5.score(X_test,y_test)
Out[171]:
0.6168831168831169
In [142]:
#Applying K-NN
from sklearn.neighbors import KNeighborsClassifier
model2 = KNeighborsClassifier(n neighbors=7,
                             metric='minkowski',
                             p = 2)
model2.fit(X_train,y_train)
Out[142]:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric params=None, n jobs=None, n neighbors=7, p=2,
           weights='uniform')
In [143]:
#Preparing ROC Curve (Receiver Operating Characteristics Curve)
from sklearn.metrics import roc curve
from sklearn.metrics import roc auc score
# predict probabilities
probs = model2.predict proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc_auc_score(label, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc_curve(label, probs)
print("True Positive Rate - {}, False Positive Rate - {} Thresholds -
{}".format(tpr,fpr,thresholds))
# plot no skill
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(fpr, tpr, marker='.')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
AUC: 0.836
True Positive Rate - [0.
                                 0.06716418 0.23880597 0.44776119 0.60074627 0.75373134
0.88059701 0.98507463 1.
                                 ], False Positive Rate - [0. 0. 0.02 0.056 0.12 0.248 0.42
8 0.668 1. ] Thresholds - [2.
                                        1.
                                                   0.85714286 0.71428571 0.57142857 0.42857143
 0.28571429 0.14285714 0.
4
Out[143]:
Text(0, 0.5, 'True Positive Rate')
  1.0
  0.8
  0.6
```


In [144]:

```
#Precision Recall Curve for Logistic Regression
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1 score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model.predict proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model.predict(features)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(label, probs)
# calculate F1 score
f1 = f1_score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.620 auc=0.728 ap=0.728

Out[144]:

[<matplotlib.lines.Line2D at 0x2278d0052e8>]

In [145]:

```
#Precision Recall Curve for KNN

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1_score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model2.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model2.predict(features)
# calculate precision_recall_curve
```

```
precision, recall, thresholds = precision_recall_curve(label, probs)
# calculate F1 score
f1 = f1_score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.658 auc=0.752 ap=0.709

Out[145]:

[<matplotlib.lines.Line2D at 0x2278d025908>]

In [167]:

```
#Precision Recall Curve for Decission Tree Classifier
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1 score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model3.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model3.predict(features)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(label, probs)
# calculate F1 score
f1 = f1_score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average precision score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.916 auc=0.966 ap=0.958

Out[167]:

[<matplotlib.lines.Line2D at 0x2278bde2a20>]

```
0.9
```


In [168]:

```
#Precision Recall Curve for Random Forest
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1 score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model4.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model4.predict(features)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(label, probs)
# calculate F1 score
f1 = f1 score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.914 auc=0.968 ap=0.960

Out[168]:

[<matplotlib.lines.Line2D at 0x2278a747cf8>]

In []: