

EDUCATION

OREGON HEALTH & SCIENCE UNIVERSITY (OHSU)

Ph.D in Neuroscience 2016 - 2022

UNIVERSIDAD NACIONAL DE COLOMBIA (UNAL)

BS IN BIOLOGY 2010 - 2015

SKILLS

PROGRAMMING

Experienced:

• Python (NumPy, Pandas, SciPy, Plotly) • git

Familiar:

• Python (SQLAlchemy, FastAPI) • ML frameworks (TensorFlow, PyTorch) • SQL (MySQL, Postgres) • Linux • ŁTFX

LABORATORY

- *In-vivo* multi-electrode array electrophysiology
- *in-vitro* patch-clamp
- sterile surgery
- histology and immunolabeling
- cloning and basic molecular biology

CONCEPTUAL

- Biological neuronal networks
- Deep artificial neural networks
- Supervised and unsupervised learning
- High dimensional latent spaces and neuronal representations
- Statistics and Montecarlo simulations
- Time series forecasting

SOFT

- Scientific writing
- Scientific illustration (Inkscape)
- Public speaking and science communication
- Teaching and mentoring
- 3D Modeling and printing (FreeCad)

LINKS

∠ mateo.lopez.espejo@gmail.com

G Github

G Google Scholar

A Personal Page

Dr. Mateo López Espejo

Neuroscientist, Data scientist, Swordsman

PROFILE

Scientist with emphasis in sensory systems, and computational neuroscience focused on building explainable models to predict and explain neuronal activity from sensory stimuli.

EXPERIENCE

OHSU LABORATORY OF BRAIN, HEARING AND BEHAVIOR

GRADUATE RESEARCHER

Oct. 2017 - Dec. 2022 | Portland, OR

Work explaining how past sound information changes the response to ongoing sound in population of auditory cortex neurons. Related publications listed below.

- Develop sound stimulation paradigm optimizing sound combinations for a limited recording time. Done as an instance of an exact cover problem and solved with the Knuth's Algorithm X.
- Acquire *in vivo*, awake, neuronal population responses of ferrets to auditory stimuli, using silicon microelectrode arrays.
- Identify neuronal sub types using viraly transfected optogenetic tools for optotagging, and spike wave shape analysis.
- Quantify difference between inherently noisy neuronal responses with high sensitivity and low false positive rate using a combination of parametric statistics and Montecarlo methods.
- Quantify the effects of different brain region, sound relationships, and cell types on the measured auditory responses using multivariate linear regression.
- Implement interpretable linear Non-linear models to predict neuronal auditory responses as a function of sound and prior neuronal activity.
- Quantify sound information present in the neuronal population activity using decoder models based on support vector machines.

UNAL NASI & GOMEZ LABORATORY

UNDERGRADUATE RESEARCHER 2013 – June 2016 | Bogota, Colombia

- develop snail single neuron dissociation protocol for patch clamp
- Identify protein complex implicated in light transduction in squid retina using co-immunoprecipitation
- Amplify and clone genes associates with the identified proteins

PUBLICATIONS

• Lopez Espejo, M, & David, S. V. (2023). A sparse code for natural sound context in auditory cortex. BioRχiv.

https://doi.org/10.1101/2023.06.14.544866.

• Lopez Espejo, M, Schwartz Z. P., & David, S. V. (2019). Spectral tuning of adaptation supports coding of sensory context in auditory cortex. PLoS Comput Biol 15(10): e1007430.

https://doi.org/10.1371/journal.pcbi.1007430.

REFERENCES

DR. STEPHEN V. DAVID

Ph.D Advisor

Email: davids@ohsu.edu

DR. ENRICO NASI LIGNAROLO

BS ADVISOR

Email: enasil@unal.edu.co

SELECTED ABSTRACTS

- López Espejo M., David, S. V. Sparse representation of sensory context by single neurons in auditory cortex. San Diego, CA: Society for Neuroscience (SFN), 2022.
- López Espejo M., David, S. V. Differential temporal modulation tuning in auditory responses between inhibitory and excitatory neurons in ferret auditory cortex. Chicago, II: Society for Neuroscience (SFN), 2021.
- Heller C. R., Saderi D, López Espejo M., David, S. V. Task engagement selectively enhances population discrimination of behavior-relevant categories in primary auditory cortex. Denver, CO: Computational and Systems Neuroscience (COSYNE), 2020
- López Espejo M., David, S. V. Long lasting contextual discrimination in non primary auditory cortex. Chicago II: Advances and Perspectives in Auditory Neuroscience (APAN), 2019.
- Prieto J.D., López Espejo M., Gómez M., & Nasi E. A phototransduction complex in the retina of squid: generality of the transducisome for light signaling. Buenos Aires, Argentina: Congreso latinoamericano de neurociencias, 2017.

HONORS/AWARDS

- 2016 Promising scholar award CDI, OHSU.
- 2010 Best admission exams for Biology, B.S, UNAL.

TEACHING EXPERIENCE

- 2017 Systems Neuroscience, TA, OHSU.
- 2015 Microbiology, TA, UNAL.
- 2014 Animal physiology, TA, UNAL.