Лабораторная работа №3.5.1 Изучение плазмы газового разряда в неоне

Рожков А. В.

25 сентября 2024 г.

Цель работы: изучение вольт-амперной характеристики тлеющего разряда, изучение свойств плазмы методом зондовых характеристик.

В работе используются: стеклянная газоразрядная трубка, наполненная изотопом неона, высоковольтный источник питания (ВИП), источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

1 Теория

Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

div
$$\mathbf{E} = 4\pi\rho$$
,

а с учётом сферической симметрии и $\mathbf{E} = -\mathrm{grad} \ \varphi$:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_c}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$ – радиус Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2. (4)$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды $\sigma = nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем nлазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi ne^2}{m}}. (5)$$

Одиночный зонд

При внесении в плазму уединённого проводника — sonda — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электронов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновесного напряжения $-U_f$ — плавающего потенциала.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока $I_{e\mathrm{H}}$ — электронный ток насыщения, а минимальное $I_{i\mathrm{H}}$ — ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4neS\sqrt{\frac{2kT_e}{m_i}}. (7)$$

Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U = U_2 - U_1 = \Delta U_2 - \Delta U_1$.

Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS\langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right). \tag{8}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов ($I_1 = -I_2 = I$):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{iii}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{iii}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} th \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

$$I = I_{iH} th \frac{eU}{2kT_e} + AU. \tag{11}$$

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём I_{in} , продифференцируем в точке U=0 и с учётом th $\alpha \approx \alpha$ при малых α и $A \to 0$ получим:

$$I_{i_{\mathrm{H}}}$$
 U

$$kT_e = \frac{1}{2} \frac{eI_{i_{\rm H}}}{dI}.$$
(12)

2 Описание установки

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и semmephuiu узел — стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (semmep). Трубка наполнена изотопом неона 22 Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (≈ 450 кОм) к регулируемому ВИП с выходным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке через высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяется с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

3 Ход работы

3.1 ВАХ разряда

Построим ВАХ разряда

$$R_{\mathrm{диф}} = \frac{dU}{dI} = (-3.06 \pm 0.12) \; \mathrm{кOm}$$

Рис. 1: ВАХ разряда $I_p(U_p)$

Как видим по рисунку 2, наш график соответствует участку $Д\Gamma$ - поднормальному тлеющему разряду.

Рис. 2: ВАХ разряда

3.2 Зондовые характеристики

Построим BAX зондов для различных значений тока разряда. На графиках представлены отцентрированные по вертикали значения. Также проведены асимптоты

Рис. 3: ВАХ зонда I(U)притокеразряда5мА

Рис. 4: ВАХ зонда I(U)притокеразряда3мА

Из точек пересечения асимптот с осью U=0 найдём I_{iH} . Также определим $\frac{dI}{dU}$ в окрестности точки U=0. При помощи этого рассчитаем температуру электронов.

$$kT_{e_1} = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U_0=0}}$$

Рис. 5: ВАХ зонда I(U)притокеразряда1.5мА

Также температуру электронов можно найти из разности напряжений в точках 1 и 2, где 1 - точка пересечения асимптоты с осью $U=0;\,2$ - точка пересечения горизонтали из точки 1 с касательной к графику в $(0,\,0).$

$$kT_{e_2} = \frac{\Delta Ue}{2}$$

В таблице 1 видим, что kT_{e_1} совпали. Для дальнейших расчётов будем использовать kT_{e_1} , так как она имеет меньшую погрешность.

Найдём также температуру электронов в кельвинах. Энергии 1 эВ соответствует температура $T \simeq 11800^{o} K$.

I_{pasp}	5 мА	3 мА	1,5 мА
$R_{\text{диф}}$, кОм	0.17 ± 0.05	0.9 ± 0.2	3.06 ± 0.12
I_iH , MKA	88 ± 3	51.5 ± 0.8	25.1 ± 0.5
$\Delta U, B$	7 ± 2	7.2 ± 0.8	6.8 ± 0.4
$kT_{e_1}, \ni \mathbf{B}$	3.3 ± 0.7	3.6 ± 0.4	3.4 ± 0.2
$kT_{e_2}, \mathrm{9B}$	3.3 ± 0.8	3.6 ± 0.4	3.4 ± 0.2
T_e, K	39000 ± 8000	42000 ± 4000	40000 ± 2000

Таблица 1: Промежуточные результаты

Полные результаты дальнейших расчётов представлены в таблице 2. Полагая концентрацию электронов n_e равной концентрации n_i , рассчитаем её:

$$n_e = \frac{I_{iH}}{0.4eS} \sqrt{\frac{m_i}{2kT_e}},$$

где $S=\pi dl$ - площадь поверхности зонда (d=0.2 мм, l=5.2 мм), $m_i=22\cdot 1.66\cdot 10^{-27}$ кг - масса иона неона.

Плазменная частота колебаний электронов:

$$\omega_p = 5.6 \cdot 10^4 \sqrt{n_e} \frac{\text{рад}}{\text{сек}}$$

Рис. 6: ВАХ зонда I(U)

При падении на волну электромагнитных волн будут проходить частоты более ω_p . Электронная поляризационная длина r_{D_e} :

$$r_{D_e} = \sqrt{\frac{kT_e}{4\pi n_e e^2}} \text{cm}$$

Дебаевский радиус $(T_i \simeq 300^o K)$:

$$r_D = \sqrt{\frac{kT_i}{4\pi n_e e^2}} \text{cm}$$

Плазму можно считать квазинейтральной, так как линейные размеры трубки много меньше поляризационной длины r_{D_e}

Среднее число ионов в дебаевской сфере:

$$N_D = \frac{4}{3}\pi r_D^3 n_i$$

Плазму можно считать идеальной, так как число Дебая на порядок больше 1. Степень ионизации плазмы (доля ионизированных атомов α):

$$\alpha = \frac{n_i}{n},$$

где n - общее число частиц в единице объёма $P = nkT_i$

4 Вывод

Изучили вольт-амперную характеристику тлеющего разряда, изучили свойства плазмы методом зондовых характеристик.

Плазму можно считать квазинейтральной, так как линейные размеры трубки много меньше поляризационной длины $4.8~{\rm cm}^{-3}>r_{D_e}$

Плазму можно считать идеальной, так как число Дебая $(N_D > 25)$ на порядок больше 1.

Рис. 7: Зависимость $T_e(I_p)$

Рис. 8: Зависимость $n_e(I_p)$

$I_{ m pasp}$	5 мА	3 мА	1,5 мА
$R_{\text{диф}}$, кОм	0.17 ± 0.05	0.9 ± 0.2	3.06 ± 0.12
I_iH , мкА	88 ± 3	51.5 ± 0.8	25.1 ± 0.5
ΔU , B	7 ± 2	7.2 ± 0.8	6.8 ± 0.4
$kT_{e_1}, \ni \mathbf{B}$	3.3 ± 0.7	3.6 ± 0.4	3.4 ± 0.2
$kT_{e_2}, \ni \mathbf{B}$	3.3 ± 0.8	3.6 ± 0.4	3.4 ± 0.2
T_e, K	39000 ± 8000	42000 ± 4000	40000 ± 2000
$n_e, 10^{-9} \text{cm}^{-3}$	78 ± 10	44 ± 3	22 ± 1
$\omega_p, 10^9 \frac{\mathrm{рад}}{\mathrm{cek}}$	15.7 ± 1.0	11.7 ± 0.4	8.3 ± 0.2
$r_{D_e}, 10^{-3}$ cm	4.8 ± 0.6	6.7 ± 0.4	9.3 ± 0.4
$r_D, 10^{-3}$ cm	0.42 ± 0.03	0.57 ± 0.02	0.80 ± 0.02
N_D	25 ± 3	33 ± 3	47 ± 3
$\alpha, 10^{-7}$	12 ± 1	6.7 ± 0.5	3.3 ± 0.2

Таблица 2: Результаты расчётов