LP	Niveau	Biblio	Manips
28.Gravitation. Méca	1ère année ou 2ème année CPGE ? • Établir et connaître les expressions des énergies potentielles de pesanteur (champ uniforme), énergie potentielle gravitationnelle (champ créé par un astre ponctuel) • Force centrale • Lois de Kepler • Forces centrales • conservatives • Interaction newtonienne • champ de pesanteur : définition, évolution qualitative avec la latitude, ordres de grandeur ; - équilibre d'un fluide dans un référentiel non galiléen en translation ou en rotation uniforme autour d'un axe fixe dans un référentiel galiléen. • Analogies formelles entre champ électrostatique et champ gravitationnel.	 Mécanique, Tome 1. Bertin-Faroux-Renault H-prépa, exercices et problèmes, Physique 1ère année P. Brasselet, Mécanique. PCSI-MPSI Mécanique. Fondements et applications. JP. Pérez. Physique PCSI/MPSI, Tout-en-un Dunod, Nouveau programme Precis Mecanique PCSI, Clerc, Breal Mécanique H-prépa 1ère année MPSI-PCSI-PTSI Tec&Doc, mécanique Physique: 1re année PCSI, Augier, Tec & Doc, Lavoisier 	• Cavendish •Pendule
29. Lois de conservation en dynamique Méca	 CPGE Conservation quantité de mvt Energie mécanique Moment cinétique Déduire de la loi du moment cinétique la conservation du moment cinétique. Connaître les conséquences de la conservation du moment cinétique : mouvement plan, loi des aires. Exprimer la conservation de l'énergie mécanique et construire une énergie potentielle effective. Équation locale de conservation de la masse. Conservation de la charge 	 • Mécanique 1ère année, P. Brasselet • Dunod PC-PC* ou PSI-PSI*, M.N. Sanz : chapitre sur les bilans en mécanique des fluides • 1001 questions sup, C. Garing • Dunod Sup, M.N. Sanz •] P. Brasselet. Mécanique, PCSI-MPSI. Presses universtaires de France, 2000. • J-P Faroux and J. Renault. Mécanique 1, Cours et 162 exercices corrigés. Dunod, 2014. • Hecht. Physique 1. Mécanique. de boeck, 2006 • JPh Pérez. Mécanique : fondements et applications. Dunod, 2014. • Tec et Doc PCSI ou MPSI • Bocquet, Faroux, Renault, Toute la mécanique. • H. Gié, Physique Spé. MP*, MP et PT*, PT. 	 Conservation de la quantité de mouvement (exp des autoporteurs) Vidéo tabouret Choc a une dimension entre deux billes Table à coussins d'air avec mobiles entourés d'aimants (interaction à distance) Rebond balle

LP	Niveau	Biblio	Manips
30. Notion de viscosité d'un fluide. Écoulements visqueux.	PC •Contraintes tangentielles dans un écoulement v = vx(y) ux au sein d'un fluide newtonien; viscosité. •Équivalent volumique des forces de viscosité dans un écoulement incompressible. •https://www.dropbox.com/sh/r5ludizflag vo9x/AADzV- 2hfNJ4mOGN2HAIDF4Ja/Archives% 20 CR/Comptes-rendus% 202019-2020/2019-2020% 20-% 20CR% 20Le% C3% A7ons/Apr% C3% A8s% 20les% 20% C3% A9crits/CR% 20LP% 2003% 20Metzdorff.doc?dl=0	 •Hydrodynamique physique, Guyon-Hulin-Petit (2001). •Physique PC/PC*. H. Gié et coll. •Physique PC/PC*. Tout-en-un, Dunod (4e édition) •Cap Prépa PC-PC* ou PSI-PSI*, V. Renvoizé •BUP 81 4 Expériences de mécanique des fluides-Mécanique des fluides et expérimentation 	•Bille tombant dans un tube rempli de silione : loi de Stokes (avec Caméra Jeulin N 196) •Former une colonne d'encre avec une seringue dans un bac de glycérine. Montrer en déplaçant une plaque de polystyrène à la surface du liquide qu'on a mise en mouvement des couches inférieures par frottement des couches supérieures. •Écoulement de Poiseuille (mesure de la perte de charge) (N 611)
31.Modèle de l'écoulement parfait d'un fluide.	 •Notion d'écoulement parfait et de couche limite. •Équation d'Euler. •Relation de Bernoulli pour un écoulement parfait, stationnaire, incompressible et homogène dans le champ de pesanteur uniforme dans un référentiel galiléen, interprétation énergétique 	 Hydrodynamique Physique, Guyon-Hulin-Petit Physique Spé. PC*,PC, Gié Physique PC/PC*, Tout-en-un, Dunod (4e édition) Gouttes, bulles, perles et ondes & David Quéré, Françoise Brochard-Wyart et Pierre-Gilles de Gennes Notes de cours sur les fluides (2019-2020), Marc Rabaud Expériences de physique (Fluides), Bellier, Dunod Physique tout-en-un pour la licence, Laurent Gautron Cap prépa PC-PC* ou PSI-PSI*, Renvoizé Cours de Marc Rabaut L3 	• tube de Pitot • Effet Venturi : mettre un capteur de pression sur une trompe à eau pour Büchner (N610) OU Tubes de Venturi (N299) OU Balle de ping-pong placée dans un jet d'air relié à un entonnoir • Effet Coanda : balle de ping- pong dans un jet de sèche- cheveu • Tourniquet hydraulique • expériences qualitatives avec films de savon
32. Phénomènes interfaciaux impliquant des fluides. MF	L3 Cf. ma leçon	 Capillarité (cours), P. Lidon Expériences de physique (Fluides), Bellier, Dunod Cours de Marc Rabaut L3 Hydrodynamique Physique, Guyon-Hulin-Petit 	• Laplace • Jurin

d'un corps p différents)	 Physique, tout-en-un PCSI PHYSIQUE TOUT-EN-UN 1re année MPSI - PCSI – PTSI, Marie-noëlle Sanz, Anne- emmanuelle Badel, François Clausset Thermodynamique, B. Diu Thermodynamique 1ère année MPSI-PCSI- PTSI, Jean-Marie Brébec, H Prépa Les 1001 questions en prépa, Garing Ellipse Thermodynamique, Bertin, Faroux, Dunod 	Calorimétrie Expérience de Joule
ns de phase. •Définition d'un corps p différents)		
pour la coex Discontinuit latente, forn liquide-vape ordre. •Transition definition de continue du Pas de discontinuite l'ordre des t la discontinu successives. •Application •https://www.AAA_P9K7 wVpwama/Arendus%202 %20CR%20	 Dictionnaire de physique experimentale 2, Quaranta Thermodynamique, Diu Transition de phase, Généralité, Modèle de Laudau (p.48) TD Jules Landau et Lifshitz, Mécanique statistique et Electrodynamique des milieux continus pour divers exemples d'utilisation de la théorie de Landau Bertin, Faroux, Renault, Thermodynamique, le chapitre sur la transition liquide-vapeur, Dunod Thermodynamique, DGLR Éventuellement le DGLR de phy stat. Thermodynamique, BFR. Thermodynamique, Perez Cours de P. Puzo en ligne, chap. 7. Cours de G. Ferlat en ligne. TD de Matthieu Pierce : énoncé et corrigé. Quaranta tome II, Thermodynamique Expériences de physique (Elect), Bellier, Dunod 	 Mesure de température lors de la fusion. Mesure de chaleur latente de vaporisation. Mesure de la température de Curie. Lévitation d'un supraconducteur. Les isothermes de SF6 la transition alpha-beta du fer l'opalescence critique (++ si on veut parlerde phénomènes critiques) la température de Curie le point triple de l'azote liquide la chaleur latente de N2 voir le poly de TP consacré manip de la recalescence du fer. p 472 Bellier

LP	Niveau	Biblio	Manips
35. Phénomènes de transport. Attention au « s »	PC •Transport diffusif, équation de diffusion, solution gaussienne. Equilibre local, aspects thermodynamiques de la diffusion thermique •Schéma feu de camp •Diffusion thermique, diffusion de particules	 Hydrodynamique physique, Guyon-Hulin-Petit (2001). Physique PC/PC*. H. Gié et coll Physique PC/PC*. Tout-en-un, Dunod (4e édition) Tout en un PC, Sanz, Dunod Electrocinétique Les 1001 questions en physique PC, Garing, Ellipse Thermodynamique, J-P Perez, Dunod H-prépa thermodynamique PC-PSI, Brébec, Hachette Thermodynamique, Diu, Hermann Dictionnaire Thermo, Quaranta, Pierron Exercices et pbs de thermodynamique, Galecki, Hermann BUP n.944, Toutain (2012) Cap Prépa PC-PC* ou PSI-PSI*, V. Renvoizé 	 •Faire couler différents fluides (qualitative) •Expérience montrant la conduction dans deux tiges de conductivités différentes •Diffusion du glycérol dans l'eau (on visualise le gradient d'indice qui apparaît par la déviation d'un faisceau laser) (N 569) •Diffusion de charges électriques (20 blocs R-C en série) -référence BUP 944 (mai 2012) p525-547- •Expérience sur la conductivité thermique du cuivre
36. Conversion de puissance électromécanique	PSI (Chap. 3) •Mettre en œuvre une machine à courant continu •Contacteur électromagnétique •Machine synchrone •Machine à courant continu	 Physique Tout-en-un PSI/PSI*, Dunod 2017 (4e édition) Electronique 2ème année PSI-PSI*, HPrépa, 2004 Actualisation des connaissances sur les moteurs électriques, C.H. Vigouroux, BUP 846, juillet 2002 Christophe MORE. Physique, 2e année, PSI-PSI*. Lavoisier, 2014 Pierre BRENDERS. Electrotechnique, PSI. Bréal, 2004 Stéphane CARDINI. Physique, tout-en-un, PSI-PSI*. Dunod, 2014 Cours Jérémy Électrotechnique, Brenders, Bréal Dico Électricité IV, Quaranta, Pierron BUP n846, Vigouroux (2002) Niard, machines électriques 	 Expériences avec haut-parleurs: résonance d'une membrane de haut-parleur avec/sans masse supplémentaire. Principe du moteur à courant continu Moteur asynchrone "didactique" (avec la cage d'écureuil): génération d'un champ magnétique tournant (N 8) rendement d'une machine synchrone ou d'une machine à courant continu. On illustrera expérimentalement l'intérêt des machines à courant continu pour le contrôle de la vitesse de rotation. On dédiera une partie de la leçon à l'étude d'un alternateur.

LP	Niveau	Biblio	Manips
37.Induction électromagnétique	CPGE Modifier ma leçon	 Electromagnatisme 3: magnétostatique, induction, équations de Maxwell et compléments électroniques. M. Bertin, J. P. Faroux, J. Renault. Dunod Université (1986) Physique Spé. MP*, MP et PT*, PT. Hubert Gié, Jean-Pierre Sarmat, Stéphane Olivier, Christophe More. Editions Tec&Doc (2000) Physique Spé. PSI*, PSI. Stéphane Olivier, Christophe More, Hubert Gié & Editions Tec&Doc (2000) 	•Expérience de mise en évidence avec un aimant et une bobine reliée à un oscilloscope à mémoire •Chute d'un aimant dans un tube de cuivre (N 331) •Dynamo démontable et dynamo câblée •Pendule amorti par courants de Foucault (ENSP 3836) •Mise en évidence de l'énergie emmagasinée dans une bobine (Quaranta) •Rail de Laplace •Mesure de L par transitoire RL • Inductance propre : mesure de L dans un RLC par modification de C et mesure de f_0 (le déphasage entre R et le générateur vaut 0 en f_0). •Étude d'un transformateur
38. Rétroaction et oscillations.	PSI Système asservi, rétroaction,. Oscillateurs, Pont de Wien, Condition de Barkhausen, Nyquist	 Physique Tout en un PC-PC*, Sanz, Dunod Physique Tout en un PSI, Cardini, Dunod Mécanique, Perez, Dunod Électronique PSI, Brenders, Bréal Expériences de physique, Bellier, Dunod Électronique, Perez Dunod Jean BERGUA. Physique, PSI. Bréal, 2004 Stéphane OLIVIER. Physique, 2e année, PC-PC*. Lavoisier, 2014 Stéphane CARDINI. Physique, tout-en-un, PSI-PSI*. Dunod, 2014 Polycopié d'électronique de J. Neuveu Electronique expériementale, Krob, ellipses 	 cf TP Systèmes Bouclés (oscillateurs sinusoïdaux, oscillateurs à relaxation, etc) Asservissement de température (N 205) (la partie tout ou rien) Expérience avec un Soxhlet Oscillateur à pont de Wien Oscillateur à Quartz (extension directe du pont de Wien) Oscillateur à Relaxation (plus simple mais moins riche que le pont de Wien)

LP	Niveau	Biblio	Manips
39.Traitement d'un signal. Étude spectrale.	MPSI/MP Analyse de Fourier, filtrage, Bode, Modulation	 Dunod MP, nouveau programme F. Cottet, pour quasiment toute la leçon Nouveau précis bréal, PSI/PT Stéphane OLIVIER. Physique, 2e année, PC-PC*. Lavoisier, 2014 Stéphane CARDINI. Physique, tout-en-un, PSI-PSI*. Dunod, 2014 Vincent RENVOIZÉ. Physique, PSI-PSI*, cours complet avec tests, exercices et problèmes corrigés. Pearson, 2010 Précis Bréal, Électronique PSI, P. Brenders Expériences d'électronique, R. Duffait Cap Prépa PSI-PSI*, V. Renvoizé Physique Tout en un PSI, Cardini, Dunod 	•cf TP électronique (par exemple: détection synchrone, modulation d'amplitude, filtrage, FFT) •Quantitatif: filtre PB RC •Qualitatif: modulaton FFT, démodulation par détection synchrone
40. Ondes progressives, ondes stationnaires.	PC Déf, eq de prop, sols de d'Alembert, ondes stats	 Physique Tout en un PC-PC*, Sanz, Dunod H-prépa Ondes, Hachette supérieur Ondes mécaniques et diusion, Garing Ellipse Éric BELLANGER. Physique, PC-PC*, cours complet avec tests, exercices et problèmes corrigés. Pearson, 2010 Jean-Marie BRÉBEC. Ondes, 2e année, MP-MP*-PC-PC*-PSI-PSI*-PT-PT*. Hachette supérieur, 2004 MP Tec&Doc, Gié, Sarmant et al. http://www.etienne-thibierge.fr/agreg/ondes poly 2015.pdf C. Garing, Ondes mécaniques et diffusion. C. Garing, Ondes électromagnétiques dans le vide et les milieux conducteurs Hprépa, Ondes 2e année 	•Impulsion le long d'une longue corde ou d'un long ressort •Ondes à la surface de l'eau (cuve à ondes) (N 614) •Ondes sonores/ultrasonores (N 436): montrer la variation du déphasage lorsqu'on éloigne le récepteur, ondes stationnaires, etc (pédagogiquement, les ondes sonores sont plus intéressantes mais ces expériences fonctionnent mieux avec les ultrasons car on est moins gêné par les réflexions parasites) •Corde de Melde avec vibreur •Qualitative: ondes progressives?

LP	Niveau	Biblio	Manips
41. Ondes acoustiques. Ondes	PC Dans fluide (Lire dans solide)	 Dunod PC-PC* ou PSI-PSI*, M.N. Sanz Tec&Doc PC-PC*, S. Olivier, Gié, Sarmant Ondes mécaniques et diffusion, C. Garing Cours M. Rabaud Dictionnaire de physique, Taillet Physique PC, Dunod, Sanz, 2009 Physique PC, Cap prepa, Renvoize, 2010 Ondes 2e annee, H Prepa, Brebec, 2004 La physique par les objets quotidiens, Ray Ondes acoustiques, A. Chaigne - Pour les sources. 	•Ondes sonores/ultrasonores (N 436) •Vitesse du son dans l'air et dans l'eau (N 243) •Effet Doppler
42. Propagation guidée des ondes. Ondes	L3 Guidage, vitesse de groupe et de phase, fibre optique, câble coax, modes et de fréquence de coupure, modes TE et TM	 •Tec&Doc MP-MP*, S. Olivier, Gié, Sarmant •http://www.etienne-thibierge.fr/agreg/ondes poly 2015.pdf •Hprépa, Ondes 2ème année, J.M.brébec •Ondes EM dans les milieux diélectriques, Garing Ellipse •Ondes électromagnétiques dans le vide et les conducteurs, C. Garing •Optique physique, Taillet Deboeck Richard TAILLET. Optique physique : propagation de la lumière. De Boeck, 2015 •Florence WEIL. Optique moderne : polarisation, lasers, fibres optiques, cours et exercices corrigés. Ellipses, 2006 •Éric BELLANGER. Physique, MP-MP*-PT-PT*, cours complet avec tests, exercices et problèmes corrigés. Pearson, 2010 •Marie-Noëlle SANZ. Physique, tout-en-un, MP-MP* OU PC-PC*. Dunod, 2009 •Cap Prépa MP-MP*, V. Renvoizé 	•Ultrasons dans un tuyau cylindrique •Ondes centimétriques (N 311) •Fibre optique •Câble coaxial

LP	Niveau	Biblio	Manips
43.Microscopies optiques.	L3 Le microscope à deux lentilles Microscopie optique en champ proche Microscope à contraste de phase Microscope optique de fluorescence	 Optique, une approche expérimentale et pratique, S.Houard. La microscopie optique moderne, G.Wastiaux, Tec& Doc, Lavoisier, 1994 TD de C. Sayrin <i>Optique géométrique & Diffraction II</i> Cours de M. Dahan (PWP en annexe) Sextant Site microscopyU Optique, José-Philippe Perez, Dunod H-prépa Optique 1er année, Brébec, Hachette Exp. de physique (Optique), Bellier, Dunod Composition physique agrég. opt. physique (2015) L. Aigouy. Les nouvelles microscopies : à la découverte du nanomonde. Belin, 2006 J.Ph. Pérez. Optique : fondements et applications. Dunod, 2011. 	Caméra CCD filmant l'image fournie par un microscope (N 564) Mesure du grossissement commercial d'un microscope Diaphragmes de champ et d'ouverture, aberrations Diffraction et pouvoir séparateur
44.Interférences à deux ondes en optique. Optique	2eme année CPGE Cohérence, interférence, différence de marche, ordre d'interférence Fentes d'Young	 Eugene HECHT. Optique. Pearson, 2005 Marie-Noëlle SANZ. Physique, tout-en-un, PC-PC*. Dunod, 2009 Sextant Optique, José-Philippe Perez, Dunod Exp. de physique (Optique), Bellier, Dunod Cap Prépa PC, Renvoizé, Pearson MP ou PC Tec&Doc Physique PC, Cap prepa, Renvoize, 2010 Optique physique, R. Taillet (2e édition) Optique physique et électronique, D.Mauras Optique ondulatoire, Pascal Legagneux-Piquemal, PC, MP, PSI, PT 	•Franges d'Young – DFO Laser-élargisseur-fente source- bifente-lentille-écran Mesure de a via interfrange •Interféromètre de Michelson http://ressources.agreg.phys.ens.fr/st atic/TP/serie2/Interferences.pdf Il reste à comprendre le calcul

LP	Niveau	Biblio	Manips
45.Interférométrie à division d'amplitude Optique	2eme année CPGE/L3 Théorème de localisation Michelson, Fabry-Perrot, Interféromètre à faces non-parallèles Distinction entre divisions du front d'onde et d'amplitude doit être Précise	 Optique physique, Mauras, PUF Optique expérimentale, Sextant, Hermann Tout en un PC, Sanz, Dunod H-prépa Optique ondulatoire, Brébec, Hachette Optique, Perez, Dunod Optique physique, Taillet, De Boeck Jean-Marie BRÉBEC. Optique ondulatoire, 2e année, MP-MP*-PC-PC*-PSI-PSI*-PT-PT*. Hachette supérieur, 2004 Sylvain HOUARD. Optique. De Boeck, 2011 Cap Prépa d'une filière de spé, V. Renvoizé Optique ondulatoire, Pascal Legagneux-Piquemal, PC, MP, PSI, PT TD Clément Sayrin interférences 	•Michelson en lame d'air pour déterminer le doublet du Sodium •Cavité confocale Fabry-Pérot •TP interférences
46. Diffraction de Fraunhofer. Optique	PC ou L3 ? conditions de l'approximation de Fraunhofer, Huygens-Fresnel, Propriétés, Babinet, critère de Rayleigh	•Optique ondulatoire, Pascal Legagneux- Piquemal, PC, MP, PSI, PT •Physique PC, Cap prepa, Renvoize, 2010 •Optique, Perez, Dunod •Optique expérimentale, Sextant, Hermann •Physique PC-PC*, Renvoizé, Pearson •Optique physique, Taillet, De Boeck •Optique ondulatoire, Brébec, Hachette •Éric BELLANGER. Physique, PC-PC*, cours complet avec tests, exercices et problèmes corrigés. Pearson, 2010 •Stéphane OLIVIER. Physique, 2e année, PC-PC*. Lavoisier, 2009 •Ondes lumineuses, J.R. Champeau •TD de C. Sayrin, Diffraction I & II.	•cf TP diffraction •Intro: Fermer progressivement une fente devant un laser •Diffraction par une fente en lumière laser: mesurer la distance entre les lobes de la figure de diffraction ainsi que les intensités des maxima successifs, puis de confronter ces mesures à la théorie.

LP	Niveau	Biblio	Manips
47. Diffraction par des structures périodiques Optique	L3 Interférences à N ondes, réseaux, échographie, Diffraction des rayons X par les cristaux, Diffraction des électrons par les cristaux	 Cédric RAY. La physique par les objets quotidiens. Belin, 2014 Éric BELLANGER. Physique, PC-PC*, cours complet avec tests, exercices et problèmes corrigés. Pearson, 2010 José-Philippe PÉREZ. Optique: fondements et applications, avec 250 exercices et problèmes résolus. Dunod, 2004 Christian GARING. Ondes mécaniques et diffusion, exercices et problèmes corrigés et commentés posés à l'écrit et à l'oral des concours et examens de l'enseignement supérieur. Ellipses, 1998 Neil W. ASHCROFT. Physique des solides. EDP Sciences, 2002 TD de C. Sayrin, Diffraction I & II. Physique du solide, Ashcroft Expériences de phys. Optique, Bellier, Dunod Les mêmes réfs que diffraction. 	•spectroscopie par réseau : doublet du mercure •Réseaux (visible, ondes centimétriques, ondes capillaires) •Diffraction d'un faisceau laser en incidence rasante par les traits d'un réglet métallique •Diffraction d'un CD •Diffraction par les pixels d'une barrette CCD •Diffraction par un réseau de phase avec la cuve à ultrason (cf TP ondes) •Tube permettant de montrer la diffraction des électrons dans le graphite (N 304) •Détermination des longueurs d'onde d'une lampe spectrale (Hg)
48. Absorption et émission de la lumière Optique	PC (laser, corps noir) L3 si on veut aller loin Source thermique Spectre de Raies de l'atome d'hydrogène, source spectrale Émission induite et spontanée Absorption Laser Emission corps noir Coeff d'Einstein Fluorescence	 Physique tout en un PC-PC*, Sanz, Dunod Quantique: fondements et applications, Perez, De Boeck Expériences d'optique, Duffait, Bréal Les lasers, Hennequin, Dunod Physique atomique, Cagnac, Dunod Optique, Houard, De Boeck Bernard CAGNAC. Physique atomique 1, Atomes et rayonnement: interactions électromagnétiques. Dunod, 2005 Tec&Doc 	 Si on veut mettre en évidence la grande cohérence temporelle d'un laser, utiliser le Michelson « de poche ». Ampoule de sodium éclairée par une lampe à vapeur de sodium (résonance optique) ou à vapeur de mercure (rien). Absorption par une solution colorée. Absorption et fluorescence de la rhodamine. Lampe à filament lampe d'hydrogène et spectromètre à fibre optique pour la mesure de la constante de Rydberg , page 134 du Duffait. absorption du KMnO4 page 130 du Duffait

LP	Niveau	Biblio	Manips
49. Propriétés macroscopiques des corps ferromagnétiques Phy du solide	L3 Magnétostatique dans un milieu aimanté Courbe de première aimantation Interprétation microscopique Cycle d'hystérésis Comparaison ferro dur/doux Etude du noyau de fer d'un transformateur Appli : disque dur	 Électromagnétisme 4, Bertin, Dunod Électrotechnique PSI, Brenders, Breal p.55 Dict. de phys. exp. II Thermo., Quaranta, Pierron La physique par les objets quotidiens, Ray, Belin Dict. de phys. exp. IV Elec., Quaranta, Pierron p.491 H-prepa Électromagnétisme PC, Brébec , Hachette Electromagnétisme - Fondements et applictions, Perez Physique Spé. PSI*, PSI, Tec&Doc, Olivier et al. Physique de l'état solide, Kittel 	•Visualisation des lignes de champ dans différents entrefers et illustration de la notion de perméabilité (ENSP 2290) •Cycle d'hystérésis •Électroaimant •Expériences sur le transformateur (cf TP conversion de puissance)
50.Mécanismes de la conduction électrique dans les solides. Phy du solide	Drude, loi d'Ohm Métaux, semi-conducteurs, isolants Effet Hall Limites Drude, théorie des bandes	 •Neil W. ASHCROFT. Physique des solides. EDP Sciences, 2002 •Charles KITTEL. Physique de l'état solide, cours et problèmes. Dunod, 2007 •Marie-Noëlle SANZ. Physique, tout-en-un, PC-PC*. Dunod, 2009 •José-Philippe PÉREZ. Électromagnétisme: fondements et applications, avec 300 exercices et problèmes résolus. Dunod, 2001 •Dico Elec. III et IV, Quaranta (1996) et (2002), Pierron p. 139 •H-Prépa Électromagnétisme 2e année, J.M. Brébec •H-Prépa Chimie des matériaux inorganiques, A. Durupthy •Propriétés électroniques des solides, BUP 550, décembre 1972, A. Guinier •Cap Prépa d'une filière de spé, V. Renvoizé •Tec&Doc MP OGS 	•Résistance de fils d'un même matériau et de différentes sections et longueurs. •Barreau pour mesurer l'effet Hall dans un matériau semiconducteur (en déduire le signe des porteurs) (N 535) •Mesurer B avec un teslamètre à effet Hall (N 468 (teslamètres à aiguille) ou N630 (teslamètres numériques)) •Application à la thermomètrie différences entre thermomètre à résistance de platine et thermistance. •Mesure de la résistivité du cuivre (4 pointes). Variation avec la température.

LP	Niveau	Biblio	Manips
51. Phénomènes de résonance dans différents domaines de la physique. Transverse	L2 Elec: Circuit RLC Méca: corde de Melde, oscillateurs couplés Optique: cavités résonnantes aspect énergétique de la résonance Application en microscopie	 Dictionnaire de physique, Taillet Physique PCSI, Dunod, Sanz, 2009 Physique PCSI, Cap prépa, Perez, 2009 Mécanique des fluides et ondes mécaniques, Faroux Renault Optique physique, Taillet Les lasers, Dangoisse Physique PC, Cap prépa, Renvoize, 2010 Supermanuel de Physique, J. Majou & S. Komilikis. Hprépa, Mécanique. Première année. Physique, une approche moderne. C. Lagoute et coll. Mécanique, José-Philippe Perez, Dunod Optique, José-Philippe Perez, Dunod Jérôme PÉREZ. Physique, MPSI-PCSI-PTSI, cours complet avec tests, exercices et problèmes corrigés. Pearson, 2009 Éric BELLANGER. Physique, PC-PC*, cours complet avec tests, exercices et problèmes corrigés. Pearson, 2010 Daniel HENNEQUIN. Les lasers, cours et exercices corrigés. Dunod, 2013 José-Philippe PÉREZ. Mécanique : fondements et applications, avec 320 exercices et problèmes résolus. Dunod, 2014 Physique PCSI, Tec&Doc, Grecias, 2009 Toute la physique, Stöcker Electronique experimentale, Krob 	•Circuit RLC •Oscillateur mécanique (N 236) •Résonance optique (lampe au sodium fraîchement éteinte, éclairée par une autre lampe au sodium puis par une lampe au mercure) •Résonateur de Helmholtz (N 83) •Corde de Melde
52. Oscillateurs; portraits de phase et non-linéarités Transverse	L3 Déf portrait de phase oscillations libres du pendule pesant Formule de Bordas	 Mecanique 1, Faroux Renault, 1996 Physique PCSI, Tec&Doc, Grecias, 2009 Les lasers, Dangoisse Toute la physique, Stöcker Electronique expérimentale, Krob Mécanique. PCSI-MPSI. P. Brasselet. Polycopié de TP de Montrouge Physique non linéaire. H-prépa Mécanique I, Brébec, Hachette Expériences de phys. (Méca.), Bellier, Dunod Expériences de phys. (Elec.), Bellier, Dunod La physique par la pratique, Portelli, HK http://mpechaud.fr/scripts/pendule/pendule.html https://femto-physique.fr/simulations/simple-pendulum.php 	Période d'un pendule simple en fonction de son amplitude Elastica pour étude du ralentissement critique (N 20) Oscillateur de Van der Pol (N 586) Pendule conique (N 10) Oscillateur paramétrique

LP	Niveau	Biblio	Manips
. 53. Cinématique relativiste. Expérience de Michelson et Morley.	L3 Insuffisance de la théorie classique Relativité restreinte, postulats et conséquences (cf cours Laurent)	 BFR, Mécanique 1,1989 D. Langlois, «Introduction à la relativité», Vuibert (2011) Y. Simon, «Relativité restreinte», Armand Colin (1971) Article original de Bertozzi décrivant son expérience et les résultats J. Hladik, Introduction à la relativité restreinte JP. Perez, Relativité. Fondements et appliations. [Morlay p.10] C. Semay, Relativité restreinte, bases et applications. Claude SEMAY. Relativité restreinte. Dunod, 2016 [Morlay p.10] José-Philippe PÉREZ. Relativité et invariance : fondements et applications, avec 150 exercices et problèmes résolus. Dunod, 2005 Claude FABRE. Introduction à la physique moderne : relativité et physique quantique, cours et exercices. Dunod, 2015 http://www.phys.ens.fr/~nascimbene/enseignement/electromag/Notes_cours.pdf http://supernovae.in2p3.fr/~llg/Enseignements/Agregation/Relativite/ 	 Présenter et discuter les expériences historiques les plus marquante expérience de Fizeau mesures de durée de vie des muons atmosphériques
54. Effet tunnel : application à la radioactivité alpha.	Faisable en CPGE L3 Modèle de Gamov de la radioactivité alpha Barrière de potentiel et effet tunnel Microscope à effet tunnel •https://www.slate.fr/life/71883/ibm-produit-la-premiere-video-atomique Voir pour le calcul formel: https://www.wolframalpha.com/input ?i2d=true&i=A_1%2BB_1+%3D+A _2+%2B+B_2%5C%2844%29+ik% 5C%2840%29A_1+-	 •Mécanique quantique, J.L. Basdevant : attention, l'ammoniac est dans deux chapitres différents •Mécanique quantique, tome I, C. Cohen-Tannoudji •Le microscope à effet tunnel, BUP 699, décembre 1987, B. Leroy •Quantique – Rudiments, J.M. Lévy-Leblond •Effet tunnel : quelques applications, BUP 734, mai 1991, C. Matta •Mécanique quantique 1, Cohen-Tannoudji •Mécanique quantique, Basdevant •Quantique, Levy-Leblond [alpha] •BUP 699 : Le microscope a effet tunnel •BUP 734 : L'effet tunnel : quelques applications [alpha] •MN. Sanz, F Vandenbrouck, B. Salamito, and D. Chardon, Physique, tout-en-up, PC/PC*, Dunod. 	• http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/alpdec.html • https://phet.colorado.edu/sims/cheerpj/quantum-tunneling/latest/quantum-tunneling.html?simulation=quantum-tunneling