LU2ME003: Méthodes mathématiques et numériques pour la mécanique 1

TP2 - Résolution numérique des Equations Différentielles Ordinaires

On souhaite déterminer une approximation de la solution de l'équation différentielle ordinaire (EDO) suivante :

$$\frac{dy}{dx} = f(x, y) = x^2 \cos y$$

sur l'intervalle [0,1] avec la condition initiale y(0) = 0, par plusieurs méthodes numériques d'intégration de ce problème de Cauchy, afin de les comparer.

L'intervalle d'étude est discrétisé en $(n_{\text{max}} + 1)$ points régulièrement espacés : On se donne n_{max} , et on en déduit le pas $h = 1./n_{\text{max}}$. On introduit alors les points $x_i = i h$ pour i=0, ..., n_{max} . On note y_i l'approximation de la fonction y en x_i .

La solution analytique de l'équation différentielle s'écrit explicitement

$$y_{\text{ana}}(x) = 2 \operatorname{atan}(e^{x^3/3}) - \pi/2,$$

.

- 1. Fixer $n_{\text{max}} = 10$. Programmer l'intégration de l'équation différentielle par la méthode d'Euler. On introduira une fonction f permettant d'évaluer f(x, y) et on fera écrire à l'écran :
 - les couples (x_i, y_i) sur tout l'intervalle d'étude;
 - la valeur de l'erreur en $x = x_{n_{\text{max}}} = 1$, définie par $Eh = |y_{n_{\text{max}}} y_{\text{ana}}(1)|$.
- 2. Pour $n_{\text{max}} = 10$, créer un fichier xy_euler contenant deux colonnes : x_i , y_i . Tracer sur une même figure les points (x_i, y_i) et la solution analytique $y_{\text{ana}}(x)$.
- 3. Faire varier $n_{\text{max}} = 10$, 100, 1000, 10000 et 100000. Créer un fichier err_euler contenant deux colonnes : h et les valeurs correspondantes de Eh obtenues. Tracer les valeurs de l'erreur Eh en fonction de h en échelle log—log.
- 4. Faire de même pour une méthode de Runge–Kutta d'ordre 2 avec au choix Euler modifié ou Heun d'ordre 2. Créer les nouveaux fichiers qui permettront de tracer les nouveaux résultats sur les graphes précédents.
- 5. © Programmer la méthode de Runge–Kutta d'ordre 4 usuelle et ajouter les résultats correspondants aux graphes précédents.