Non-ideal Effects

Transmitter/Receiver Pair

Key Assumption

Our analysis has assumed that the cosines used in the mixers of the transmitter and receiver are exactly matched

- They have exactly the same frequency.
- They have exactly the same phase.

What if this is not true?

Frequency Offset

baseband signal is corrupted!

This cannot be fixed by filtering!

90 Degree Phase Shift

baseband signal disappears!

Coherent modulation/demodulation

When transmitter and receiver local oscillators are 90 degree offset in phase:

- Demodulated signal destructively adds at baseband.
- We suddenly receive no baseband signal!

We need to synchronize the phase local oscillators creating the carrier frequency cosines at the transmitter and receiver

- The phases must be the same (i.e. both cosines or both sines).
- This is known as coherent modulation/demodulation
- This phenomenon can be exploited to double transmission capacity using I-Q modulation.