VŠB TECHNICKÁ |||| UNIVERZITA OSTRAVA VSB TECHNICAL
UNIVERSITY
OF OSTRAVA

www.vsb.cz

Komprese stromových struktur Semestrální projekt

Marek Beran

VŠB – Technická univerzita Ostrava marek.beran.st@vsb.cz

27. května 2025

VŠB TECHNICKÁ FAKULTA
UNIVERZITA ELEKTROTECHNIKY
OSTRAVA A INFORMATIKY

- 1 Úvod
- 2 Implementace knihovny
- 3 Převod textu do stromové struktury
- 4 Algoritmy
- 5 Testování
- 6 Literatura

- Je možné efektivně komprimovat textové data převedením do stromové struktury?
- Cíl: Proof of Concept

Použité technologie

Programovací jazyk a platforma:

- C# 9.0
- .NET 5.0 a vyšší
- Visual Studio 2022

Knihovny:

- UDPipe (rozpoznávání syntaktických stromů)
- MorphoDiTa (morfologická analýza)

Další nástroje:

- R (datová analýza a vizualizace)
- Mkdocs (dokumentace)
- Bash skripty (podpůrné nástroje)

Bindings:

- C# wrapper pro UDPipe (nativní knihovna)
- C# wrapper pro MorphoDiTa (nativní knihovna)

եկլի

Implementace knihovny

Obrázek: Třídní diagram části implementace zaměření na řetězení filtrů

الزاك

Převod textu do stromové struktury

- Dependency parsing závislosti mezi slovy ve větě.
- Využití knihovny UDPipe pro syntaktickou analýzu textu
- Vytvoření syntaktického stromu pro každou větu

- Rozšíření stromu pro podporu více vět bez nutnosti práce s lesem
- Pro zajištění dostatečné velikosti syntaktického stromu pro testování a kompresi

- Zaměření na gramatickou kompresi
- Zpočátku exaktní metody (generování hashů pro všechny podstromy)
- Komprimace pomocí linearizace převod stromu na posloupnost uzlů a jejich následná komprese pomocí algoritmů pro kompresi textu
- Pokus o optimalizaci linearizovaného RePair (Recursive Pairing) algoritmu pro kompresi linearizovaných stromových struktur (maximální komprimace redundantních struktur) – hledání n-tic
- TreeRePair algoritmus pro kompresi stromových struktur inspirovaný RePair algoritmem
- Opět pokus o optimalizaci TreeRePair algoritmu pro kompresi závislostních stromů

Typy průchodů stromem:

- Preorder
- Inorder
- Postorder
- Průchod do šířky

Preorder linearizace:

- Nejlepší výsledky pro TreeRePair
- Asymptotická složitost: O(n)

TreeRePair pro závislostní stromy

Algorithm 1 TreeRePair – zjednodušený pseudokód

Require: Závislostní strom T

- 1: Inicializuj čítač pravidel a slovník digramů
- 2: Projdi strom a vytvoř index všech digramů (rodič, dítě, pozice)
- 3: **while** existuje digram D s četností ≥ 2 **do**
- 4: Najdi digram D s nejvyšší četností
- 5: Vytvoř nový neterminál N_i a pravidlo $N_i o D$
- 6: Nahraď všechny výskyty digramu D neterminálem N_i
- 7: Aktualizuj index digramů
- 8: Pokud komprese není efektivní, ukonči
- 9: end while
- 10: Odstraň nepoužitá pravidla
- 11: **return** Komprimovaný strom T a pravidla gramatiky

TreeRePair algoritmus - podrobněji

- Celková časová složitost:
 - Dominantní částí je kompresní cyklus: $O(k \cdot n)$
 - Vzhledem k tomu, že k je v implementaci omezeno konstantou MAX_ITERATIONS(100), lze říci, že asymptotická složitost je O(n)
 - lacksquare Bez omezení na počet iterací je složitost $O(n^2)$
- Prostorová složitost:
 - Slovník digramů: O(n) v nejhorším případě máme O(n) unikátních digramů

 - lacktriangle Celková prostorová složitost: O(n)

Metriky pro hodnocení podstromů:

- Četnost výskytu: počet identických instancí
- Velikost: počet uzlů v podstromu
- Kompresní zisk: $(velikost \times četnost) (velikost + četnost)$ vyjadřuje zisk z komprese tzn. rozdíl mezi velikostí podstromu a velikostí gramatického pravidla
- Hloubka a vyváženost struktury

Optimalizační techniky:

- Efektivní hašování podstromů
- Inkrementální aktualizace metrik pouze pro změněné podstromy

34

Testovací data

- 4 různé typy textu
- Celkový počet souborů: 242
- Celkový objem 10 MB
- Všechny texty jsou v angličtině

Typ textu	Počet souborů	Rozsah velikostí
Beletrie	23	28 – 120 KB
Právní dokumenty	103	1 KB – 800 KB
Technická dokumentace	96	<1 KB – 100 KB
Vědecké články	20	1 KB – 100 KB

Tabulka: Typy textu a jejich velikosti

Kompresní poměr podle velikosti souboru pro každou metodu zvlášť

Průměrný kompresní poměr podle typu souboru a metody

Literatura I

- Katja Filippova a Michael Strube. "Dependency tree based sentence compression". In: *Proceedings of the Fifth International Natural Language Generation Conference.* 2008, s. 25–32.
- Daniel Jurafsky a James H Martin. "Speech and Language Processing: An introduction to Natural Language Processing". In: Computational Linguistics, and Speech Recognition with Language Models. Third Edition draft (2024).
- Sandra Kübler, Ryan McDonald a Joakim Nivre. "Dependency parsing". In: *Dependency parsing*. Springer, 2009, s. 11–20.
- Colt McAnlis a Aleks Haecky. *Understanding compression. data compression for modern developers.* 1st Edition. Sebastopol, CA: O'Reilly, 2016. ISBN: 978-1-491-96153-7.

- F. Oquendo, J. Leite a T. Batista. "Pipe-filter architectural style". In: *Undergraduate Topics in Computer Science* (2016), s. 171–177. DOI: 10.1007/978-3-319-44339-3_13.
- Milan Straka a Jana Straková. "Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe". In: Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Vancouver, Canada: Association for Computational Linguistics, srp. 2017, s. 88–99. URL: http://www.aclweb.org/anthology/K/K17/K17-3009.pdf.

Literatura III

Jana Straková, Milan Straka a Jan Hajič. "Open-Source Tools for Morphology, Lemmatization, POS Tagging and Named Entity Recognition". In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Baltimore, Maryland: Association for Computational Linguistics, čvn. 2014. s. 13–18. URL:

http://www.aclweb.org/anthology/P/P14/P14-5003.pdf.

Děkuji za pozornost

Marek Beran

VŠB – Technická univerzita Ostrava marek.beran.st@vsb.cz

27. května 2025

VŠB TECHNICKÁ FAKULTA
UNIVERZITA ELEKTROTECHNIKY
OSTRAVA A INFORMATIKY