RJESENJA ZADATAKA 8.1-8.8.

Rjesavanje mnogih problema (zadataka) iz tzv. izmjeničnih krugova postaje jednostavnije ako se najprije skicira vektorski prikaz kao i "trokut otpora" . Problem se nakon toga uglavnom svodi na primjenu raznih formula vezani uz odnose u trokutima (tg, sin,cos, Pitagora, kosokutan trokut....) koje neka "rješavac" posebno istakne (obiljezi) u svom "matematičkom" priručniku.... U nastavku pogledajte nekoliko karakterističnih primjena takvog pristupa.

Z8-1.
$$U = 100$$
 $Uv = 100$ $R = 20$ $I_A = 4$ $L = 0.048$

$$I_A \cdot \sqrt{R^2 + XL^2} = Uv \qquad XL = \sqrt{\frac{Uv^2}{I_A^2} - R^2} \qquad XL = 15 \qquad \omega = \frac{XL}{L} \qquad \omega = 312.5$$

potrebno je skicirati vektorski prikaz. Struju staviti pod nula stupnjeva. Suma vektora napona Uv (predhodi struji za kut ϕ_s) i U_C (zaostaje iza struje za $\pi/2$) mora dati vektor U. Duljine vektora Uv i U su jednake. To je moguće samo ako vektori U_c Uv i U čine jednakokračan trokut (Uv i U su jednaki krakovi). Očito je da U_C mora biti $2U_L$.

$$U_C = 2 \cdot I_A \cdot \omega \cdot L$$
 $U_C = 120$

$$C = \frac{I_A}{U_C \cdot \omega}$$

$$C = 1.067 \times 10^{-4}$$

Z8-2 Iz podataka razabiremo da prividni otpor mora biti jednak kada je kondenzator u krugu i kada je kratko spojen.

$$U = 120 \qquad \omega = 3000 \qquad C = 6.95 \cdot 10^{-6} \qquad I = 4$$

$$\sqrt{R^2 + XL^2} = \sqrt{R^2 + (X_L - X_C)^2} \qquad \text{o```eta je da mora biti } X_C = 2X_L \qquad Z = \frac{U}{I} \qquad X_C = \frac{1}{\omega \cdot C}$$

$$X_L = \frac{X_C}{2} \qquad L = \frac{X_L}{\omega} \qquad Z = 30 \qquad R = \sqrt{Z^2 - X_L^2} \qquad X_C = 47.962$$

$$L = 7.994 \times 10^{-3} \qquad R = 18.026$$

Z8-3. potrebno je skicirati opisani spoj, a zatim vektorski dijagram Vektor napona postaviti pod nula stupnjeva. Ukupna struja je zbroj vektora struje Is (koji zaostaje za naponom za neki kut φs) i vektora struje I_C koji je 90 stupnjeva ispred napona. Prema uvjetu zadatka vektor ukupne struje mora biti pod nula stupnjeva (u fazi s naponom)

Zadano: U = 24 $X_C = 10$ $I_S = 4$

$$I_C = \frac{U}{X_C}$$
 $I_C = 2.4$ $I = \sqrt{Is^2 - I_C^2}$ $\varphi_s = atan\left(\frac{I_C}{I}\right)$ $\varphi_s = 0.644$ $I = 3.2$

iz "trokuta otpora" svitka odredimo Rs i X_L jer znamo φs i Zs=U/Is

$$Zs = \frac{U}{Is}$$
 $Zs = 6$ $Rs = Zs \cdot cos(\varphi_s)$ $X_L = Zs \cdot sin(\varphi_s)$ $X_L = 3.6$

napomena: Kada bi bila poznata frekvencija mogli bi izračunati induktivitet : Ls=X_I/ ω .

Z8-4. . Na temelju rezultata mjerenja napona treba odrediti parametre svitka. Kao i u predhodnim zadacima potrebno je skicirati vektore napona U_1 U_2 i U_3 . Struju postaviti pod nula stupnjeva. U_2 je u fazi sa strujom dok U_3 predhodi struji za fazni kut svitka ϕ s. Vektori U_2 i U_3 zbrojeni daju U_1 i čine kosokutan trokut u kojem preko kosinusovog poučka (formule) izračunamo ϕ s.

$$U_1 = 36$$
 $U_2 = 20$ $U_3 = 22.4$ $f = 60$ $R = 10$

$$\phi s = \pi - acos \left(\frac{U_1^2 - U_2^2 - U_3^2}{-2 \cdot U_2 \cdot U_3} \right)$$

$$\phi s = 1.115 \quad \text{radijana} \quad \phi s \cdot \frac{180}{\pi} = 63.896 \quad \text{stupnjeva}$$

$$\mathbf{U}_2$$

$$\mathbf{U}_3$$

Impedancija svitka je U_3/I . Struja je U_2/R . Iz trokuta otpora svitka odredimo R_L i L.

$$I = \frac{U_2}{R}$$
 $Z_S = \frac{U_3}{I}$ $R_L = Z_S \cdot cos(\phi_S)$ $X = Z_S \cdot sin(\phi_S)$ $I = 2$ $Z_S = 11.2$ $R_L = 4.928$ $L = \frac{X}{2 \cdot \pi \cdot f}$ $L = 0.014$

Z8-5. Fazni kut (impedancije) opisanog RLC spoja je kapacitivan tj φ=-63,4 (treba gledati fazni pomak napona u odnosu na struju)

$$L = 0.025 C = 50 \cdot 10^{-6} \omega = 400 U = 12$$

$$\varphi = -63.4 \cdot \frac{\pi}{180} \varphi = atan\left(\frac{XL - XC}{R}\right)^{\blacksquare} tan(\varphi) = \frac{XL - XC}{R}$$

$$XL = \omega \cdot L$$
 $XC = \frac{1}{\omega \cdot C}$ $R = \frac{XL - XC}{tan(\varphi)}$ $R = 20.031$ $XL = 10$ $XC = 50$ $Z = \sqrt{R^2 + (XL - XC)^2}$ $I = \frac{U}{Z}$ $UR = I \cdot R$ $UC = I \cdot XC$ $UL = I \cdot XL$ $I = 0.268$ $UR = 5.373$ $UC = 13.412$ $UL = 2.682$

Z8-6. problem se rješava na sličan način kao u zadatku Z8-4. Kosokutan trokut ovaj puta čine vektori struja I_2 , I_3 koji zbrojeni daju I_1 . Pretpostavimo da je napon na prikazanoj paraleli pod kutem nula. Tada je vektor I_3 također pod nula dok I_2 zaostaje iza napona za neki kut ϕ_2 koji odredimo preko kosinusovog poučka.

$$R = 4$$
 $II = 30$ $I2 = 18$ $I3 = 15$

$$U = I3 \cdot R \qquad \qquad U = 60$$

$$\phi_2 = \pi - a\cos\left(\frac{II^2 - I2^2 - I3^2}{-2 \cdot I2 \cdot I3}\right)$$

$$\phi_2 \cdot \frac{180}{\pi} = 49.458 \qquad \text{stupnjeva}$$

struja I₂ sastoji se iz dvije komponente:

$$I_{RL} = I2 \cdot cos(\phi_2)$$
 $I_{RL} = 11.7$ $I_{XL} = I2 \cdot sin(\phi_2)$ $I_{XL} = 13.679$
$$RL = \frac{U}{I_{RL}}$$

$$RL = 5.128$$

$$XL = \frac{U}{I_{XL}}$$

$$XL = 4.386$$

Z8-7.
$$U = 55$$
 $Rs = 2.3$ $Ls = 0.030$ $I = 5$

najprije odredimo prividni otpor svitka: $Zs = \frac{U}{I}$ Zs = 11

preko "trokuta otpora" odredimo
$$X_L$$
: $XL = \sqrt{Zs^2 - Rs^2}$ $XL = 10.757$

frekvencija je:
$$f = \frac{XL}{2 \cdot \pi \cdot Ls}$$
 $f = 57.067$ Hz

Z8-8. svaki paralelni spoj radnog i reaktivnog otpora ima svoj ekvivalentni serijski spoj. To je tzv. *Y-Z transformacija*. (jasno je da vrijedi i obrnuto)

Lakše je izračunati elemente nadomjesnog spoja za poznatu frekvenciju. Tada u paraleli imamo Rp i Xp odnosno preko vodljivosti G i B. U kompleksnom području dobivamo:

$$Rp=100$$
 $\omega=314$ $Lp=0.100$ $Xp=\omega\cdot Lp\cdot j$ $Xp=31.4j$ $G=\frac{1}{Rp}$ $B=\frac{1}{Xp}$ $G=0.01$ $B=-0.032j$ induktivno

$$Z = \frac{1}{G+B}$$
 $Z = 8.975 + 28.582j$ $Rs = Re(Z)$ $Xs = Im(Z)$ $Rs = 8.975$ $Xs = 28.582$

ako su poznati parametri Rp i Lp postupamo ovako: najprije napišemo izraz za Y:

$$Y = \frac{1}{Rp} + \frac{1}{j\omega Lp}$$
 $Y = \frac{j\omega Lp + Rp}{j\omega LpRp}$ a zatim : $Z = \frac{j\omega LpRp}{Rp + j\omega Lp}$

nakon množenja brojnika i nazivnika sa $(Rp-j\omega Lp)$ te odvajanja realnog i imaginarnog dijela u dobivenom izrazu slijedi da je :

$$Rs = \frac{\omega^2 \cdot Rp \cdot Lp^2}{\omega^2 \cdot Lp^2 + Rp^2}$$

$$Ls = \frac{Rp^2 \cdot Lp}{\omega^2 \cdot Lp^2 + Rp^2}$$

$$parametri nadomjesnog serijskog spoja (Rs i Ls) različiti su na različitim frekvencijama. Na 50 Hz dobivamo:$$

$$Rs = 8.975$$

$$Ls = 0.091$$

detaljnije o transformaciji Y-Z odnosno Z-Y pogledati PINTER II str.85.

napomena: U prikazanom postupku nisu korištene posebne oznake za kompleksne brojeve. Prije nego se upuštato u rješavanje strujnih krugova u "kompleksnom području" svakako ponovite znanje iz matematike vezano uz računske operacije s kompleksnim brojevima.

I.Felja 2005.