ICS5510 Assignment

Carmel Gafa

Abstract—TODO: abstract here Index Terms—TODO: keywords

I. Introduction

This exercise will explore the well-known COMPAS dataset using several machine-learning techniques. We will also look into the ethical implications of predictive risk assessment models. We have taken the opportunity of this study to implement some of the techniques discussed in ICS5510, like imputation and encoding, to help in data preparation, linear regression, neural networks and others as the tools used for prediction.

Wherever possible, we preferred the manual implementation of some of the steps over the functionality available in popular Python libraries to appreciate the techniques implemented more thoroughly.

A. History of the COMPAS tool

The COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) dataset and tool have a controversial history rooted in its use for assessing the likelihood of recidivism among criminal defendants. Developed by Northpointe, COMPAS gained widespread adoption in the U.S. judicial system for pretrial risk assessments and sentencing decisions. This tool is helpful in various stages of the criminal justice process, including bail, sentencing, and parole decisions.

However, in 2016, an investigative report by ProPublica revealed significant racial biases in the tool's predictions. The report found that COMPAS disproportionately labelled Black defendants as high risk for reoffending while underestimating the risk for white defendants, even when both groups had similar criminal histories. This revelation sparked a broader debate about using algorithmic tools in criminal justice and their transparency and fairness.

The COMPAS tool has not been directly the subject of lawsuits, but its use in judicial decisions has led to legal challenges. For instance, in State v. Loomis (2016), the Wisconsin Supreme Court upheld using COMPAS in sentencing. However, judges must be informed about its limitations, particularly its proprietary nature and potential biases. The case highlighted the broader tension between the utility of predictive algorithms and their application's need for accountability and fairness.

B. The COMPAS dataset

The dataset that originates from the COMPAS tool is widely used in criminology and machine learning studies.

The dataset contains attributes such as demographic information, prior charges, juvenile records, and risk scores, including the widely analysed 'decile score', which categorises individuals into ten different risk groups.

The decile score is a critical feature, assigning a numerical value to an individual's likelihood of reoffending. Other important features include the number of prior offences priors_count and the type of offence c_charge_degree, provide context for these predictions. At the same time, the label two_year_recid indicates whether an individual reoffended within two years of their COMPAS assessment.

While the dataset has been instrumental in research aimed at understanding and improving risk prediction models, it has also been the subject of extensive scrutiny due to its implications for fairness and equity in the justice system. A couple of thoughts resulting from this scrutiny include:

- Multiple studies, including the influential ProPublica investigation in 2016, have highlighted racial disparities in the COMPAS predictions. African-American defendants were found to be nearly twice as likely as Caucasian defendants to be labelled as high-risk for recidivism but not reoffend. Conversely, Caucasian defendants were more likely to be classified as low-risk but later reoffend, raising concerns about systemic bias embedded in the algorithm, which could exacerbate existing inequalities in the justice system.
- The COMPAS tool operates as a proprietary black-box model, meaning its internal workings and feature weights are not disclosed to the public or even to the defendants it evaluates. This lack of transparency prevents meaningful scrutiny and accountability, leaving users unable to fully understand or challenge the tool's predictions.
- The COMPAS algorithm relies on historical criminal justice data, which may reflect social and systemic biases.
 For example, law enforcement practices that can result in sentencing disparities can all influence the patterns observed in the data. Using such data as input, the COMPAS tool risks perpetuating these biases into an electronic tool.
- Some features in the COMPAS dataset, such as age and criminal history, are static and cannot change over time, as this data is based on the date of the COMPAS assessment. We can argue that these features in risk predictions without considering the period after the COMPAS assessment undermines the potential for individuals to reform and leads to insensible punitive outcomes.
- The ethical implications of using predictive algorithms

- in high-stakes decisions, such as sentencing and parole, constitute a significant area of concern. The potential for false positives can lead to unjustly harsher treatment, while false negatives can impact public safety.
- The dataset available for research purposes is a reduced version of the original COMPAS data, with several features anonymised or removed. Missing important data introduces limitations for academic studies aiming to replicate or validate the findings from real-world COM-PAS applications.

The criticism of the COMPAS tool emphasises the challenges of deploying machine learning systems in sensitive domains like justice. These challenges are not unique to COMPAS but highlight broader issues in applying algorithmic decision-making tools in socially important contexts. They highlight the need for transparency, fairness-aware modelling techniques, and careful ethical evaluations when designing and implementing such tools.

C. Objectives of this work

The main objectives of this study are:

- Analyse the COMPAS dataset and its predictions.
- Prepare the dataset for machine learning through cleaning, transformation, and feature engineering.
- Train and evaluate machine learning models for ethical analysis.
- Investigate potential biases and ethical implications in predictions.

II. DOWNLOADING AND FIRST LOOK AT THE DATASET

The COMPAS dataset used in this study is publicly available through ProPublica's GitHub repository. This repository contains the dataset and other assets used by ProPublica to investigate the biases present in the COMPAS risk assessment tool.

The file chosen for this analysis is compas-scores-two-years.csv, as it provides the cleanest and most relevant data for general recidivism prediction. This CSV file contains the key data required for our study, including several attributes related to demographics, criminal history, COMPAS risk scores, and the two-year recidivism outcomes that are important for exploring the predictive capabilities and the ethical implications of machine learning models in the context of recidivism prediction.

The dataset includes important information about individuals. Following an initial analysis, a list of the key fields in the dataset is below.

- Personal Information, includes attributes such as age, race, age_category, etc.
- Case and Event-Related Details are the fields prefixed with c_ that provide a timeline and details of a person's interactions with the criminal justice system.
- Violence Risk Assessment are the fields prefixed with v_ and are associated with the violence risk assessment in COMPAS. This dimension predicts violent recidivism risk.

- Case-Level Details for Violent Recidivism are the fields prefixed with vr_. These fields provide additional details specific to violent recidivism events.
- Juvenile Criminal Record are the fields prefixed with juv_. These fields capture information about an individual's juvenile criminal record, which is a key predictor of future adult criminal behaviour.
- Previous Charges and Severity can be deduced from fields such as priors_count and juv_ fields.
- Additional fields, including r_charge_, r_offense_', vr_ fields, c_charge_degree, and c_charge_desc, provide a broader perspective on criminal history and severity.
- Two-Year Recidivism, or the two_year_recid field in the COMPAS dataset, indicates whether an individual reoffended (recidivated) within two years of their initial assessment or release. This field is critical for evaluating the predictive accuracy of the COMPAS risk assessment tool.
- Decile Score is a standardized risk score in the COMPAS dataset. It categorizes an individual's likelihood of recidivism into ten equal groups (deciles) where 1 is the lowest risk, and 10 is the highest risk. Each decile represents approximately 10% of the sample when applied to a norm group.

Suppose that we observe the following data:

Field	Value
priors_count	5
juv_felony_count	2
juv_misdemeanor_count	3
r_charge_degree	Felony

We can interpret this as an individual who has five total prior charges, including:

- 2 juvenile felonies
- 3 juvenile misdemeanours
- The severity of previous charges includes felonies (r_charge_degree).

III. PREPARING THE DATA FOR FURTHER ANALYSIS AND TRAINING

Before we can perform any analysis or apply machine learning techniques, it is important to pre-process and prepare the dataset so that we can handle missing values, encode categorical features, and split the data into training, testing, and validation sets. This step will produce a clean dataset for building accurate and unbiased models. The following steps outline the procedures to prepare the dataset for further analysis and training.

A. Initial look at data and missing values handling

After downloading the dataset for this exercise, the first step is to perform some preliminary analysis; namely, we look at the dataset structure, the first few records and some statistical information related to the numerical fields. The size of the dataset makes it very hard to visualise all the information on the screen. For this reason, we have developed a **ReportWriter** class to save **DataFrame** objects and images into an Excel file to analyse and manipulate data easily. We have used this class for all reporting requirements in this exercise instead of **print** statements that are cumbersome and not persistent.

Some considerations after this initial analysis:

- There are a total of 7214 records in this dataset
- There is one field, violent_recid, where all the fields are null.
- vr_case_number, vr_charge_degree,
 vr_offense_date, vr_charge_desc and
 c_arrest_date have over 6000 missing entries.
- r_days_from_arrest, r_jail_in and r_jail_out have nearly 5000 null entries.
- r_charge_desc, r_case_number, r_charge_degree and r_offense_date have over 3000 missing records, c_jail_in, c_jail_out, in_custody and out_custody have a few hundred missing entries,

After considering all the columns with a high proportion of missing data, we decided to remove all columns with less than 50% of fields that were not null. As a result of this step c_arrest_date, r_case_number, r_charge_degree, r_charge_desc, r_days_from_arrest, r_jail_in, r_jail_out, r_offense_date, violent_recid, vr_case_number, vr_charge_degree, vr_charge_desc and vr_offense_date were removed from the dataset.

B. Data cleaning, missing values and imputation

The featurescompas_screening_date, sex, age, age_cat, race, juv_misd_count, juv_other_count, priors_count, days_b_screening_arrest, c_charge_degree, two_year_recid, decile_score, score_text are considered important to the dataset are then extracted so that they can be further analysed.

While examining the resultant dataset, we noticed that days_b_screening_arrest has 6907 values that are not null. Whilst it is possible to eliminate the rows that contain the null values at this stage, we replaced the missing values using a KNN imputation technique by grouping the numeric values of this dataset so that we can calculate the missing values. We checked this process by plotting the distribution of days_b_screening _arrest before and after imputation to see if any variations occurred.

IV. AIM AND OBJECTIVES

- A. Aim
- B. Objectives

V. BACKGROUND

- A. Abbreviations and Acronyms
- B. Technologies
- C. Techniques
- D. Similar System
- E. Consistency
- F. Length

REFERENCES

- G. Eason, B. Noble, and I. N. Sneddon, "On certain integrals of Lipschitz-Hankel type involving products of Bessel functions," Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.
- [2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.
- [3] I. S. Jacobs and C. P. Bean, "Fine particles, thin films and exchange anisotropy," in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.
- [4] K. Elissa, "Title of paper if known," unpublished.
- [5] R. Nicole, "Title of paper with only first word capitalized," J. Name Stand. Abbrev., in press.
- [6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, "Electron spectroscopy studies on magneto-optical media and plastic substrate interface," IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].
- [7] M. Young, The Technical Writer's Handbook. Mill Valley, CA: University Science, 1989.

APPENDIX

Field Name	Description	Type	Options (if Categorical)	Used
id	Unique identifier for each individual.	Numeric	N/A	No
name	Full name of the defendant	Text	N/A	No
first	First name of the defendant (anonymized).	Text	N/A	No
last	Last name of the defendant (anonymized).	Text	N/A	No
compas_screening_date	Date of the COMPAS assessment.	Date	N/A	Yes
sex	Gender of the defendant.	Categorical	Male, Female	Yes
dob	Date of birth of the defendant.	Date	N/A	No
age	Age of the defendant at the time of assessment.	Numeric	N/A	Yes
age_cat	Age category of the defendant.	Categorical	Less than 25 25 - 45 Greater than 45	Yes
race	Race of the defendant.	Categorical	African-American Caucasian Hispanic Asian Native American Other	Yes
juv_fel_count	Number of juvenile felony offenses.	Numeric	N/A	Yes
juv_misd_count	Number of juvenile misdemeanor offenses.	Numeric	N/A	Yes
juv_other_count	Number of other juvenile offenses.	Numeric	N/A	Yes
priors_count	Number of prior offenses (adult and juvenile).	Numeric	N/A	Yes
days_b_screening_arrest	Days between arrest and COMPAS screening.	Numeric	N/A	Yes
c_jail_in	Jail booking date for the charge.	Date	N/A	No
c_jail_out	Jail release date for the charge.	Date	N/A	No
c_case_number	Case number associated with the charge.	Text	N/A	No
c_offense_date	Date of the alleged offense.	Date	N/A	No
c_arrest_date	Arrest date for the charge.	Date	N/A	No
c_charge_degree	Degree of the charge.	Categorical	F (Felony) M (Misdemeanor)	Yes
c_charge_desc	Description of the charge.	Text	Free text	No
is_recid	reoffended after COMPAS screening.	Binary	0 (No), 1 (Yes)	No
r_case_number	Case number for the re-offense.	Text	N/A	No
r_charge_degree	Degree of the re-offense charge.	Categorical	F (Felony) M (Misdemeanor)	No
r_charge_desc	Description of the re-offense charge.	Text	Free text	No
r_jail_in	Jail booking date for the re-offense.	Date	N/A	No
r_jail_out	Jail release date for the re-offense.	Date	N/A	No
two_year_recid	Label: offense within two years.	Binary	0 (No), 1 (Yes)	Yes
decile_score	COMPAS risk score (1-10).	Numeric	1–10	Yes
score_text	Risk category for general recidivism.	Categorical	Low, Medium, High	Yes
v_type_of_assessment	Type of COMPAS assessment conducted.	Text	Risk of Recidivism	No
v_decile_score	Violent recidivism COMPAS score (1-10).	Numeric	1–10	No
v_score_text	Risk category for violent recidivism.	Categorical	Low, Medium, High	No
start	Start date of the two-year recidivism period.	Date	N/A	No
end	End date of the two-year recidivism period.	Date	N/A	No
event	offense during the two-year period.	Binary	0 (No), 1 (Yes)	No