

INTRODUCTION

- Heart disease causes the deaths of 18 million people per year (WHO, 2019)
- Costs the United States approximately \$240 billion each year
- This project intends to use anonymous data collected from patients regarding age, weight, blood pressure and glucose measurements to classify potential heart disease
- The expected outcome is to train a classification model to assist in identifying patients who are susceptible to cardiovascular disease earlier in their health history

Variable	Description			
Age	Age of participant (integer)			
Gender	Gender of participant (male/female).			
Height	Height measured in centimeters (integer)			
Weight	Weight measured in kilograms (integer)			
Ap_hi	Systolic blood pressure reading taken from patient (integer)			
Ap_lo	Diastolic blood pressure reading taken from patient (integer)			
Cholesterol	Total cholesterol level read as mg/dl on a scale 0 - 5+ units (integer). Each unit denoting increase/decrease by 20 mg/dL respectively.			
Gluc	Glucose level read as mmol/l on a scale 0 - 16+ units (integer). Each unit denoting increase Decrease by 1 mmol/L respectively.			
Smoke	Whether person smokes or not (binary; 0=No, 1=Yes).			
Alco	Whether person drinks alcohol or not (binary; 0=No,1=Yes).			
Active	Whether person physically active or not (binary; 0=No,1=Yes).			
Cardio	Whether person suffers from cardiovascular diseases or not (binary; 0=No, 1=Yes).			

- No missing values within the dataset
- No duplicates within the dataset
- Eliminated logical outliers, such as age < 0, weight < 25 kg, height > 240 cm which equaled less than 2% of the dataset

DATA COLLECTION

DESCRIPTIVE ANALYSIS

- The dataset consisted of 70,000 patient records; after dropping logical outliers, analysis was performed on 68,885 records
- The average patient possessed the following attributes:
 - Age: 69 years
 - Weight: 74 kg
 - Height: 164 cm
 - Blood pressure 129/96
 - Non-smoker, female, physically active

DESCRIPTIVE ANALYSIS

- After performing data visualization, no significant relationship was found between age and diastolic blood pressure
- More significant was correlated relationship between gender/smoking and glucose/cholesterol

DATA ANALYSIS

Utilized Logistic Regression and Random Forest classification models

Both models were able to perform at 72% and above accuracy rate

Dropped glucose as a predictor variable after fine tuning the model - no significant impact on the dependent variable

PERFORMANCE MEASURES

	Befor	e Tuning	After Tuning	
	Logistic Regression	Random Forest	Logistic Regression	Random Forest
F-l score	0.67	0.73	0.72	0.73
Precision	0.67	0.73	0.72	0.73
Accuracy	0.67	0.73	0.72	0.73
Recall			0.72	0.73

PERFORMANCE MEASURES: TOP PREDICTORS

Top Predictors of CVD Diagnosis:

- age
- weight
- ap_hi (systolic blood pressure)
- ap_lo (diastolic blood pressure)
- cholesterol

glucose

SUMMARY

Logistic Regression & Random Forest results indicate that cholesterol, followed by weight and systolic blood pressure were the strongest indicators of CVD – of the variables included within the dataset

Random Forest model performed better than Logistic regression, but only by $\sim 1\%$

IMPLICATIONS

- Early prediction for high- risk individuals of cardiovascular disease is vital
 - Enable healthcare providers to intervene early
 - Improving patient outcomes
 - Reducing healthcare costs
 - Enhancing overall quality of care

LIMITATIONS

- Dataset
- Too few variables. Useful to have
 - Family history
 - Other chronic diseases (co-morbidities)
 - Other vital metrics (LDL & HDL cholesterol, etc.)
- Cholesterol, Alcohol use, physical activity, etc. depicted within a range/binary instead of actual cholesterol level; would need actual numbers to be helpful in real world

THANK YOU

