Оценивание ускорения Солнечной системы из глобального уравнивания РСДБ-наблюдений

С. Л. Курдубов, С. М. Миронова

ИПА РАН, г. Санкт-Петербург, Россия

kurdubov@iaaras.ru

Абстракт

Солнечная система вращается относительно центра Галактики с периодом приблизительно 200 млн. лет. Вследствие достаточно длительного интервала РСДБ-наблюдений возможно определить величину аберрации и, следовательно, ускорение Солнечной системы. Рядом авторов было показано, что ускорение достигает порядка 10^{-13} км с⁻², например, в работе [1]. Начиная с 2010-х годов, рядом авторов были предприняты попытки получить величину и направление ускорения из глобального уравнивания РСДБнаблюдений. Оценки модуля ускорения, полученные различными авторами и перечисленные в [2], совпадают по порядку, а направления различаются на единицы градусов по прямому восхождению и на десятки градусов по склонению. В данной работе была получена оценка ускорения Солнечной системы из глобального уравнивания РСДБ наблюдений программой QUASAR [3] за 1978-2019 г. Также были получены оценки скорости по каждой из рассматриваемых РСДБ-сессий. Было выяснено, начиная с какого количества наблюдений в сессии точность оценивания скорости Солнечной системы перестает значительно возрастать. После отбрасывания сессий с малым количеством наблюдений получена оценка ускорения как тренд скоростей.

Вычисленные различными методами оценки ускорения Солнечной системы

Согласно современным представлениям, центр Галактики располагается в направлении объекта Стрелец A^* , экваториальные координаты которого равны 266.4° , -29.0° .

Рядом авторов было выполнено оценивание расстояния от Солнца до центра Галактики. Согласно сводной таблице из [1], расстояния находятся в пределах 7-9 кпк. В табл. 1 приведены оценки расстояний и вычислены соответствующие скорости Солнечной системы в предположении, что гравитационная постоянная Солнца равна $GM_{sun} = 1.3 \cdot 10^{20} \text{ м}^3 \text{ c}^{-2}$, а масса Галактики в пределах орбиты Солнца равна 1.5 млн масс Солнца.

Таблица 1: Оценки расстояния до центра Галактики и скорости Солнечной системы различными авторами

автор, год	метод	r, кпк	$ a_G , { m MKC}/{ m I}$
Majaess et al. (2009)	type II Cepheids	7.8 ± 0.6	7.0 ± 2.2
Matsunaga et al. (2009)	Mira variables	8.2 ± 0.4	6.4 ± 1.2
Yanhollebeke et al. (2009)	bulge stars	8.7 ± 0.5	5.7 ± 1.3
Ando et al. (2011)	H_2O masers	7.8 ± 0.3	7.0 ± 1.1
Sofue et al. (2011)	HI regions	7.5 ± 0.8	7.6 ± 3.3
Morris et al. (2012)	HI regions	7.7 ± 0.4	7.2 ± 1.5
Schonrich et al. (2012)	stellar kinematics	8.3 ± 0.3	6.2 ± 0.9
Francis & Anderson (2014)	red clump stars	7.5 ± 0.3	7.6 ± 1.2
Reid et al. (2014)	star forming regions	8.3 ± 0.2	6.2 ± 0.6
Chatzopoulos et al. (2015)	old nuclear stars	8.3 ± 0.2	6.2 ± 0.6
Boehle et al. (2016)	S-star cluster	7.9 ± 0.2	6.9 ± 0.7
Catchpole et al. (2016)	Mira variables	8.9 ± 0.4	5.4 ± 1.0
Fritz et al. (2016)	nuclear star cluster	8.5 ± 0.2	5.9 ± 0.6
Bhardwaj et al. (2017)	type II Cepheids	8.3 ± 0.3	6.2 ± 0.9
McMillan et al. (2017)	mass model	8.2 ± 0.1	6.4 ± 0.3
Braga et al. (2018)	type II Cepheids	8.5 ± 0.1	5.9 ± 0.3
Contreras R. et al. (2018)	RR Lyrae variables	8.1 ± 0.1	6.5 ± 0.3
Majaess et al. (2018)	RR Lyrae variables	8.3 ± 0.4	6.2 ± 1.2

Оценивание ускорения Солнечной системы методом РСДБ

Ускорение Солнечной системы может быть определено как один из параметров глобального уравнивания РСДБ наблюдений. В таблице 2 представлены оценки модуля ускорения Солнечной системы и его направления [2,5]. Направление задается двумя углами α_G° , δ_G° в экваториальной системе координат. Ускорение представлено в микросекундах дуги в год. В последнем столбце таблицы представлен один из параметров глобального решения — количество источников, позволяющий косвенно узнать то, насколько различались по количеству РСДБ-данных различные глобальные решения.

Таблица 2: Определение модуля и направления ускорения из глобальной обработки РСДБ наблюдений

	$ a_G $, MKC/ Γ	α_G°	δ_G°	ГОД	автор	источников
4	4.7 ± 0.5	288 ± 5	0 ± 5	2010	Курдубов	3009
(6.4 ± 1.5	263 ± 11	-20 ± 12	2011	Титов	555
	5.8 ± 0.4	243 ± 4	-11 ± 4	2012	Xu	3492
(6.4 ± 1.1	266 ± 7	-26 ± 7	2013	Титов	3635
ŗ	5.6 ± 0.4	267 ± 3	-11 ± 3	2014	MacMillan	_
	5.9 ± 1.0	273 ± 13	-56 ± 9	2016	Титов	около 3800

Оценивание скорости Солнечной системы из глобального уравнивания РСДБ-сессий

Проведено глобальное уравнивание РСДБ-сессий с 1979 по 2019 гг. В решении оказалось 11 млн задержек, 196 станций (со скачками), 4213 источников.

- Определяемые параметры:
- 1. Координаты и скорости станций (глобальные),
- 2. Скорость и ускорение Земли (глобальные),
- 3. ПВЗ (локальные),
- 4. Тропосферная задержка с линейным трендом (локальные),
- 5. Рассинхронизация часов с квадратичным трендом (локальные),
- 6. Тропосферные градиенты (локальные).

Поправки к скорости Земли вычислялись в глобальном решении с помощью следующих формул:

$$\frac{\partial \tau}{\partial v_E} = \frac{(1+h)\left((sb)\frac{v_E - w}{c^2} - \frac{b}{c}\left(1 + \frac{(sv_E)}{2c}\right) - \frac{(v_E b)u}{2c^2}\right)}{1+h} - \frac{\left(G - (sb)g - \frac{(v_E b)}{c}\left(1 + \frac{(sv_E)}{2c}\right)\right)}{1+h}$$
(1)

$$h = \frac{(sv_E) + (sw)}{c} \tag{2}$$

$$g = 1 - (1 - \gamma) \frac{GM_S}{|x_S|c^2} - \frac{|v_E|^2}{2c^2} - \frac{(v_E w)}{c^2}$$
 (3)

где τ – задержка, v_E – вектор барицентрической скорости геоцентра, b – вектор базы в небесной системе координат, s – единичный вектор направления на источник в небесной системе координат, w – геоцентрическая скорость станции в небесной системе координат, GM_S – гравитационная постоянная для Солнца, x_S – геоцентрические координаты Солнца в небесной системе координат, c – скорость света, G – гравитационная постоянная. Круглые скобки вокруг двух векторов обозначают их скалярное произведение.

Компоненты ускорения представлены в табл. 3. Модуль ускорения получился равным 6.66 ± 0.73 мкс/год. Направление: $\alpha_G^{\circ}=263.4\pm2.1,\,\delta_G^{\circ}=-48.4\pm1.2.$

Таблица 3: Компоненты ускорения Солнечной системы из глобальной обработки РСДБ-наблюдений 1979-2019 гг.

компонента ускорения i	<u> </u>	<u> </u>
X	$-0.28 \cdot 10^{-13}$	
У	$-2.41 \cdot 10^{-13}$	$0.08 \cdot 10^{-13}$
${f Z}$	$-2.16 \cdot 10^{-13}$	$0.17 \cdot 10^{-13}$

Оценивание скорости Солнечной системы из одиночных РСДБсессий

Было построено глобальное решение, в котором скорость Земли определялась как локальный параметр. В получившийся ряд скоростей был вписан полином, одна из компонент которого является ускорением. До вписывания полинома из ряда скоростей были отброшены скорости по критерию трех сигм.

X компонента скорости и ее формальная ошибка в зависимости от времени в формате модифицированной юлианской даты представлены на рис. 1. Зависимость модулей скоростей от времени представлена на рис. 2.

Рис. 1: X компонента скорости Солнечной системы (слева), ее формальная ошибка (справа) в зависимости от даты наблюдения

Рис. 2: Модуль скорости Солнечной системы в зависимости от даты наблюдения

Компоненты ускорения представлены в табл. 4.

Таблица 4: Ускорение Солнечной системы из глобальной обработки, скорость Земли определялась для каждой сессии отдельно

компонента ускорения і	\mathcal{L}	\mathcal{L}
X	$0.14 \cdot 10^{-13}$	
У	$-2.11 \cdot 10^{-13}$	$0.15 \cdot 10^{-13}$
Z	$-1.73 \cdot 10^{-13}$	$0.23 \cdot 10^{-13}$

Модуль ускорения получился равным 5.60 ± 1.08 мкс/год. Направление: $\alpha_G^{\circ} = 309.5 \pm 4.3, \, \delta_G^{\circ} = -90.0 \pm 2.0.$

Оценивание ускорения Солнечной системы из глобального уравнивания уменьшенного набора РСДБ-сессий

Для оценивания ускорения Солнечной системы из глобального уравнивания уменьшенного набора РСДБ-сессий из решения были исключены сессии, оценка скорости Земли как суточного параметра для которых оказалась больше 10 м/c. Результаты оценивания представлены в табл. 5. Модуль ускорения получился равным $5.53 \pm 0.90 \text{ мкс/год}$. Направление: $\alpha_G^{\circ} = 266.4 \pm 2.8$, $\delta_G^{\circ} = -47.7 \pm 1.2$.

Таблица 5: Компоненты ускорения Солнечной системы из глобальной обработки ограниченного РСДБ-наблюдений 1979-2019 гг

компонента ускорения і	$\mathcal{L}_{\mathcal{L}}$	\mathcal{L}_{i}
X	$0.14 \cdot 10^{-13}$	
У	$-2.16 \cdot 10^{-13}$	
${ m Z}$	$-2.38 \cdot 10^{-13}$	$0.20 \cdot 10^{-13}$

Заключение

Получена оценка ускорения Солнечной системы как глобального и локального параметра из обработки РСДБ-сессий с 1979 по 2019 гг (табл. 6). Оценки модуля и направления находятся в пределах оценко других авторов (табл. 2). Произведен анализ полученных из обработки одиночных РСДБ-сессий оценок скоростей Солнечной системы.

Таблица 6: Определение модуля и направления ускорения из глобальной обработки РСДБ наблюдений программным комплексом QUASAR

решение	$ a_G , ext{MKC}/\Gamma$	α_G°	δ_G°
глобальный, все сессии	6.66 ± 0.73	263.4 ± 2.1	-48.4 ± 1.2
локальный, все сессии	5.60 ± 1.08	309.5 ± 4.3	-90.0 ± 2.0
глобальный, хорошие сессии	5.53 ± 0.90	266.4 ± 2.8	-47.7 ± 1.2

Список литературы

- 1. Zakamska N. L., Tremaine S. Constraints on the acceleration of the solar system from high-precision timing // The Astronomical Journal 2005. Vol. 130. P. 1939–1950.
- 2. Titov O., Krásná H. Measurement of the solar system acceleration using the Earth scale factor // A&A. 2018.
- 3. Курдубов С. Л., Губанов В. С. Основные результаты глобального уравнивания РСДБ-наблюдений // Письма в астрономический журнал 2011. Vol. $37 N^{\circ}4$ Р. 294—302.
- 4. E. Griv, M. Gedalin, Ing-Guey Jiang The distance to the Galactic centre: globular clusters and SEKBO RR Lyrae survey stars // Monthly Notices of the Royal Astronomical Society 2019. Vol. 484. P. 218–225.
- 5. S. Kurdubov Estimation of Solar System acceleration from VLBI // Transactions of IAA RAS 2010. Vol. 21 P. 240–242.