Programming Languages: Recitation 1

Goktug Saatcioglu

01.31.2019

1 Grammar

- Do this part fast (examples are more important).
- A grammar G is a tuple (Σ, N, P, S) where
 - $-\Sigma$ is the set of terminal symbols, a.k.a the alphabet,
 - -N is the set of non-terminal symbols,
 - -S is the root or start symbol,
 - P is the set of re-write rules (or productions) (or a transition function) in the form

$$ABC \cdots \rightarrow XYZ \dots$$

where A, B, C, X, Y, Z are terminal and non-terminal symbols.

- We require that $\Sigma \cap N = \emptyset$ (i.e. they are disjoint).
- A sequence of terminal and non-terminals is called a string.
- The language of a grammar is the set of all strings generated using the re-write rules of the grammar.

2 Regular expressions

- Describe a regular language over an alphabet Σ .
- We say that the regular expression R denotes the regular language \mathbb{R} .
- We have the following rules:
 - $-\epsilon$ denotes \emptyset (i.e. the empty language),
 - -a denotes $\{a\}$ where $a \in \Sigma$ (i.e. the language that contains the string a),
 - -RS denotes $\{ab \mid a \in \mathbb{R}, b \in \mathbb{S}\}\$ (i.e the concatenation of a string in R and a string in S),
 - $-R \mid S$ denotes $\mathbb{R} \cup \mathbb{S}$ (i.e. the union of the sets of strings described by R and S, a.k.a alternation),
 - $-R^*$ denotes the concatenation of zero or more strings from \mathbb{R} (known as Kleene star),
 - $-R^+$ denotes the concatenation of one or more string from \mathbb{R} (known as Kleene plus) [question: what is another way to express R^+ , answer: $R^+ = RR^*$],
 - $-R^?$ denotes $\epsilon \mid R$,
 - use paranthesis.
- Practice: Given the alphabet $\{a, b, c\}$ give a regular expression for the following (don't do all of them, 2 max):

- The language that contains the string aaa at some point. Answer: $(a \mid b \mid c)^*aaa(a \mid b \mid c)^*$.
- The language that must end with either the string a or the string bc. Answer: $(a \mid b \mid c)^*(a \mid bc)$.
- The language that does not contain the string cab. Answer: $(a \mid b \mid cb \mid ca(a \mid c))^*(\epsilon \mid c \mid ca)$. (Hard, ignore this).

3 Context-free grammars

- Do the example for arithmetic expressions.
- Ambigious one given below (do 2 different parse tree derivations).

$$x \in \mathbb{Z}$$

$$E ::= EOE \mid (E) \mid x$$

$$O ::= + \mid - \mid \times \mid \div$$

Derive the string " $3 \times 2 + 4$ " in two different ways. Why is this a problem?

- The problem of detecting ambiguity is undecidable. Thus, we must reason by looking at the grammar to find an unambiguous version. Any ideas? Notice that \times and \div have higher precedence thus this serves as our hint. We want \times and \div to bind stronger.
- Almost unambigious version given below.

$$x \in \mathbb{Z}$$

$$E ::= EAE \mid T$$

$$A ::= + \mid -$$

$$T ::= TMT \mid F$$

$$A ::= \times \mid \div$$

$$F ::= x \mid (E)$$

• Again the grammar is ambigious for the string "3+2+4". This is also a problem, why? Arithmetic operations are not usually associative because of potential arithmetic overflows (bounded representation of integers, floats). Thus, we want to parse the operations in a specific order: left-associative vs. right associative (1+2+3=(1+2)+3) vs. 1+2+3=1+(2+3). We make the grammar left-associative in this case. [Achieve this by replacing the right side of each binary expression by the base case of that expression type.]

$$x \in \mathbb{Z}$$

$$E ::= EAT \mid T$$

$$A ::= + \mid -$$

$$T ::= TMF \mid F$$

$$A ::= \times \mid \div$$

$$F ::= x \mid (E)$$

• Finally, we can use a regular expression to replace the statement $x \in \mathbb{Z}$. What would this look like? Answer: $(\epsilon \mid -)(0 \mid (1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9)(0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9)^*)$. Can also be achieved using a context free grammar too (see lecture notes).