Cybersecurity at the National Laboratories

Wayne Austad

Director, CYBERCORE Integration Center

Teaming for control systems cybersecurity

INL – A History of Supporting National Security

The Science behind: 1) Core capabilities, 2) Full-scale test & validation, 3) Systematic engineering, 4) Deployment

- Testing naval large caliber guns
- National Reactor Testing Station 1949, INEL 1974, INEEL 1994, INL 2005
- Design, modeling, testing of 52 unique nuclear reactors, Navy prototypes
- Fuel cycle development & demonstration reprocessing, signatures, protection
- Specific Manufacturing Capability (SMC) Tank armor and special armor systems
- Critical Infrastructure Test Range Complex

Research – Development – **Demonstration** – Deployment

INL's Cybersecurity Focus

- International leader in control systems cybersecurity
- Full-scale test & validation infrastructure
- Innovation to identify and prevent cyber-physical failures
- Research, Development, Demo & Deployment (RDD&D), modeled and validated at large scale
- Interdependencies of infrastructure and technology
- DOE, DHS, DOD, and Industry partnerships

We resemble a "well-characterized, reconfigurable city/region" enabling holistic solutions and mitigations of technology and infrastructure interdependencies.

Daunting Cybersecurity Challenge

Enterprise IT

- OPM 2015
 - 21.5M individuals affected
 - \$133M for ID theft protection
- Sony Pictures 2014
 - 47,000 unique Social Security numbers stolen
 - \$8M employee settlement
 - \$35M investigation, remediation, and restoration
- Target 2013
 - 70 million shoppers affected
 - \$309M cost to Target (attack and security upgrades)
 - \$200M cost of attack to financial institutions

Control Systems (Infrastructure)

- Aurora Demonstration 2007
 - DHS demonstration, conducted by INL, that proved a cyber attack could cause physical damage
- Ukraine 2015
 - 225,000 customers affected
 - 1st destructive attack against operational technology systems in a nation's civilian critical infrastructure

Control Systems Cyber: Different from IT

Control systems are the components that govern and execute complex processes within chemical, critical manufacturing, <u>energy</u>, nuclear, transportation, defense, water and wastewater sectors

Critical National Challenges in Control Systems

National measure/
countermeasure
approach is not
sustainable, scalable,
or anticipatory

Fundamental science & engineering

of cyber challenges are inadequately advanced

R&D and complex solutions require expensive systems and large-scale proving grounds

Technical expertise is in limited supply and mostly consumed in operations

Diverse Missions Have Common R&D Challenges

DOD	Military forces (base & platform security)	Common Control System R&D Needs
		Operating in contested cyber space
Sector Specific Agencies, DHS, Asset Owners	Defend critical infrastructure functions Energy and national security R&D	ICS situational awareness in operational technologies
Asset Owners		Protecting high impact common
DOE		systems across domains
		Cyber-physical fundamentals and complex interdependencies

Focus Key Resources on Common & Critical National Security Challenges

Lab Capabilities and R&D Portfolio Approach

Energy Infrastructure & Big Data Visualization

Military Systems & Combined Cyber Hardware/Software

Cyber-Physical Science & Disruption Zones

Data Analytics & Visualization

Advanced Cyber HW/SW Research

Consequence- & Cyber-Informed Engineering

Cyber Situational Awareness

HW/SW Virtualization & Emulytics™

Operational Technologies: Monitoring & Defense

Power Systems
Engineering
& Analysis

DOD Systems, Embedded Supply Chain

Long-Term National Benefit of Integrated Approach

- Science of New Cyber-Informed Control
 Theories and Engineering Practices
- Enhance the Security of Embedded Systems, Nuclear Facilities, and Energy Infrastructure

- Establish a Dedicated R&D National Workforce
- Effectively Integrate Control Systems Cyber Investments

