HOMEWORK 6

JESSE COBB - 2PM SECTION

5.1.1 *Proof.* Let A be a set then $A \approx A$ since there exists a bijection $I_A: A \to A$ given by $I_A(x) = x$. Thus \approx is a reflexive relation.

Let A and B be sets and $A \approx B$ so there exists a bijection $f: A \to B$. Then by definition there exists an inverse bijection $f^{-1}: B \to A$ so $B \approx A$. Thus \approx is a symmetric relation.

Now Let A,B, and C be sets and let $A \approx B$ and $B \approx C$ so that there exists bijections $f:A\to B$ and $g:B\to C$. By definition there exists a bijection $g \circ f: A \to C$ that is a composite of two bijections. This implies $A \approx C$ so \approx is a transitive relation.

Thus we've shown \approx to be an equivalence relation as it is reflexive, symmetric, and transitive.

a. $A = \{1, 2, 4, 8, 16, 32, 64, 128, 256, 512\} \approx \mathbb{N}_{10}$

$$f: \mathbb{N}_{10} \to A \text{ where } f(n) = 2^{n-1} \text{ so } \overline{\overline{A}} = 10$$
 c. $B = \{x \in \mathbb{Z} : x^2 < 11\} \approx \mathbb{N}_7$

$$g: \mathbb{N}_7 \to B \text{ where } g(n) = \begin{cases} \frac{n}{2} & 2 \mid n \\ -\frac{n-1}{2} & 2 \nmid n \end{cases} \text{ so } \overline{\overline{B}} = 7$$

d. $C = \{(x,y) \in \mathbb{N} : x + y < 6\} \approx \mathbb{N}_{10}$ $h : \mathbb{N}_{10} \to C \text{ where } h(1,2,3,4,5,6,7,8,9,10)$

=
$$(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2), (4,1)$$
 so $\overline{\overline{C}} = 10$

- 5.1.13 *Proof.*
- 5.1.14
- 5.2.2a.
 - b.
- 5.2.3
 - e.
 - f.
- 5.2.4a.
 - b.
- 5.3.1
- 5.3.4
- 5.3.13
- 5.4.1a.
 - b.
 - c. d.
- 5.4.5