Error Correcting Codes for High Altitude Balloons

Matthew Brejza

The author acknowledges the use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton, in the completion of this work

Why Error Correction Codes are Needed

- Reducing transmitted power
- Maintain reliable communication in unfavourable conditions
 - Bursts of interference
 - Fading signal
 - Low SNR
- Increase throughput

Some Error Correcting Codes

- Block
 - BCH (1960)
 - Reed Solomon (1960)CDs/DVDs, DVB-T
 - LDPC (1963, 1996) DVB-S2
- Convolutional
 - Viterbi decoded (1967)
 DVB-T, deep space
 - BCJR decoded (1974)
 - Turbo (1993) LTE

A Very Basic Code

- Repetition code
- 1/3 rate code
- Encoder: simple
- Decoder: simple
- Performance: bad

An Improvement

- Soft information conveys probabilities for each bit
- Usually expressed in the log domain, numbers have much smaller dynamic range
 - Known as Log Likelihood Ratio (LLR)

Reed Solomon (RS) Code

- Developed in 1960s
- Block Code
- Non-binary
- Adds t parity symbols, can correct up to t/2 symbol errors
- Examples
 - -RS(7,3) R=0.43, symbol = 3 bits, 4 parity symbols
 - RS(255,223) R=0.87, symbol = 8 bits, 32 parity symbols

Bit Error Rate (BER) Plot

AWGN channel, BPSK modulation

E_b/N_0 vs. SNR

- SNR provides unfair comparison between codes of different rates
- E_b/N₀ 'SNR per data bit'
 - $-E_b/N_0 = SNR 10log_{10}(R)$
 - Two schemes at the same E_b/N_0 use the same energy to transmit a sequence
 - Takes into account extra bits that need to be sent
 - Either extra bits take more bandwidth
 - Extra bits are added on at the end take more time

BER - E_b/N_0 Plot

AWGN channel, BPSK modulation

Turbo Code

- Combines two convolutional codes
- 1/3 rate code (min)
 - Puncture the output to get desired rate
- Uses soft information
- Uses iterative decoding

BER for Turbo Code, Varying Iterations

AWGN channel, BPSK modulation, message length = 6144

BER - E_b/N_0 Plot

FER

AWGN, BPSK, message length = 992 (turbo & RS(7,3)); 1784 (RS(255,223))

Capacity

- Theoretical max throughput for given SNR
- Graph shows capacity limit for FER = 10⁻²

•
$$C = B \cdot log_2 \left(\frac{S}{N} + 1\right)$$

AWGN, BPSK

 E_b/N_0 (dB)

A Fading Channel

 Often swinging or falling payloads produce time fading signals

 Simple model produced to test performance in a fading channel

fading channel

Fading channel, BPSK, message length = 992 (turbo & RS(7,3)); 1784 (RS(255,223))

Capacity (Fading)

fading, BPSK

BPSK, FSK and MFSK

- Frequency shift schemes (FSK/MFSK)
 - Power efficient
 - bandwidth inefficient
- Phase/Amplitude shift schemes (BPSK,QAM)
 - Power inefficient
 - Bandwidth efficient

bits/s/Hz vs. E_b/η for Probability of Error = 10^{-5} taken from "Principle of Communication Systems" Taub & Schilling, page 482

Deep Space Code Usage

http://www.ee.caltech.edu/EE/Faculty/rjm/papers/Viterbi70.pdf

Potential New Telemetry String

- Turbo code $R \in \{\frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{2}{3}, 1\}$
- Parity bits interleaved and split into four groups
 - Send as many as needed depending on stage of flight
- Ideally keep the same length (of the data part) throughout flight

Concluding Remarks

Questions?

- What goes 'pieces of 7, pieces of 7'?
 - A parity error

Examples of Code Applications

Application	Code	Rate
DVB-T (digital TV)	Reed Solomon & convolutional	1/2 -> 7/8
DVB-T2 / DVB-S2 (digital TV)	LDPC & BCH	1/2 -> 5/6
LTE	Turbo	
WiMAX	Turbo or LDPC	
Voyager	Convolutional (k=5)	1/2
Mars Pathfinder/Cassini probe	Convolutional (k=7)	1/6