

On the convergence of eigenvalues for mixed formulations

PAPER BY: Daniele Boffi*, Franco Brezzi* and Lucia Gastaldi*

Presented by:
Umberto Zerbinati

*University of Pavia

Finite Element Reading Group, 25th of October 2022

Oxford Mathematics

Virtual Handouts

All code to reproduce what shown in this slides can be found in the following git repository:

https://github.com/UZerbinati/BrezziBoffiGastaldi

On the convergence of eigenvalues for mixed formulations Mixed Eigenvalue Problem

- Solved Bernstein's minimal surface problem together with Enrico Bombieri.
- Solved 19th Hilbert problem, regarding the regularity of elliptic PDE.
- He is the father of modern calculus of variation and he is responsible for introducing the notion of Γ-convergence.

Enio De Giorgi 1928–1996

The Abstract Problem Mixed Eigenvalue Problem

- ▶ Two Hilbert spaces Φ and Ξ are considered.
- Two continuous bilinear forms are also considered,

$$a(\cdot,\cdot):\Phi\times\Phi\to\mathbb{R}, \qquad b(\cdot,\cdot):\Phi\times\Xi\to\mathbb{R}.$$

$$A: \Phi \to \Phi^*, \ (A\phi): \Phi \to \mathbb{R}, \ (A\phi)\varphi \mapsto \mathsf{a}(\phi,\varphi), \\ B: \Phi \to \Xi^*, \ (B\phi): \Xi \to \mathbb{R}, \ (B\phi)\xi \mapsto \mathsf{b}(\phi,\xi), \\$$

• We assume $a(\cdot, \cdot)$ is **symmetric** and **positive semidefinite**.

The Abstract Problem Mixed Eigenvalue Problem

Given any
$$(f,g) \in \Phi^* \times \Xi^*$$
 find $(\psi,\chi) \in \Phi \times \Xi$ such that
$$\begin{cases} a(\psi,\varphi) + b(\varphi,\chi) = \langle f,\varphi \rangle & \forall \varphi \in \Phi \\ b(\psi,\xi) = \langle g,\xi \rangle & \forall \xi \in \Xi \end{cases}$$
 (1)

Given any
$$(f,g) \in \Phi^* \times \Xi^*$$
 find $(\psi,\chi) \in \Phi \times \Xi$ such that
$$\begin{cases} A\psi + B^*\chi = f \\ B\psi = g \end{cases}$$

The Inf-Sup Stability A Gentle Introduction to **Brezzi**'s Theory

Banach Closed Range Theorem

Given a closed linear operator $B: \Phi \to \Xi^*$, the following statements are equivalent:

- ▶ Range(B) is closed in Ξ^* ,
- ► Range(B) = $\left[Ker(B^T)\right]^0$, where Z^0 is the the **polar** set of Z, i.e. $Z^0 = \left\{f \in Z^* \text{ s.t } \langle f, z \rangle = 0 \ \forall z \in Z\right\}$.
- ▶ it exists $L_B \in \mathcal{L}\Big(Range(B), Ker(B)^{\perp}\Big)$ and $\beta \geq 0$ such that:

$$\beta \|L_B g\|_{\Phi} \leq \|g\|_{\Xi^*}, \ \forall g \in Range(B).$$

The Inf-Sup Stability A Gentile Introduction to **Brezzi**'s Theory

Brezzi's **Theorem**

Assuming that the range of B is Ξ^* and that $a(\cdot, \cdot)$ is coercive in the kernel of B, then it exists one and only one solution to (1).

How do can one verify that B is a onto ?

Inf-Sup Condition

The operator B is surjective if and only if it exists $\beta > 0$ such that

$$\inf_{\xi\in\Xi_{\varphi\in\Phi}}\sup_{\|\varphi\|_{\Phi}\|\xi\|_{\Xi}}\geq\beta$$

The Discrete Case Inf-Sup Stable Finite Element Pairs

- ▶ We introduce two discrete spaces $\Phi_h \subset \Phi$ and $\Xi_h \subset \Xi$.
- Previous result holds also for the discrete problem,

Given any $(f,g) \in \Phi^* \times \Xi^*$ find $(\psi_h, \chi_h) \in \Phi_h \times \Xi_h$ such that

$$\begin{cases} a(\psi_h, \varphi_h) + b(\varphi_h, \chi_h) = \langle f, \varphi_h \rangle & \forall \varphi \in \Phi_h \\ b(\psi_h, \xi_h) = \langle g, \xi_h \rangle & \forall \xi \in \Xi_h \end{cases}$$
 (2)

The pair (Φ_h, Ξ_h) is **inf-sup stable** if it exists β_h independent from h such that:

$$\inf_{\xi_h \in \Xi_h \varphi_h \in \Phi_h} \sup_{\|\varphi_h\|_{\Phi} \|\xi_h\|_{\Xi}} \geq \beta_h$$

On the Necessity of the Inf-Sup For the Source Problem

We introduce the **solution operator**, i.e.

$$S: \Phi^* \times \Xi^* \to \Phi \times \Xi \ s.t \ S(f,g) = (\psi,\chi) \ as \ in \ (1),$$

 $S_h: \Phi_h^* \times \Xi_h^* \to \Phi_h \times \Xi \ s.t \ S_h(f,g) = (\psi_h,\chi_h) \ as \ in \ (2).$

Proposition Necessity of the Inf-sup

If it exists a constant C>0 such that for all $(f,g)\in\Phi^*\times\Xi^*$ and for all h>0

$$||S_h(f,g)||_{\Phi \times \Xi} \le C \Big(||f||_{\Phi_h^*} + ||g||_{\Xi_h^*} \Big)$$
 (3)

then the bilinear form $a(\cdot, \cdot)$ is elliptic in the kernel of B and the pair (Φ_h, Ξ_h) is **inf-sup** stable.

On the Necessity of the Inf-Sup For the Source Problem

When dealing with an mixed problem such that $a(\cdot, \cdot)$ is elliptic in the kernel the **inf-sup stability** condition is not only **sufficient** it is also **necessary**.

Remark

When proving the existence and uniqueness of solution for 1 and 2, hypothesis can be weaken, i.e. we can require

 $A: Ker(B) \rightarrow Ker(B)^*$ to be an isomorphism.

Eigenvalue Problems Abstract Setting for Compact Selfadjoint Operators

We are now ready to introduce an eigenvalue problem. Given an Hilbert space H and a selfadjoint compact operator $T:H\to H$, we call eigenvalue of T the $\lambda\in\mathbb{R}$ such that

$$\lambda Tu = u \text{ with } u \in H \setminus \{0\}.$$

In particular it is well known that for the above described operator T it exists a sequence $\{\lambda_i\}_{i\in\mathbb{N}}$ such that

$$\lambda_i T u_i = u_i,$$
 $\lim_{i \to \infty} \lambda_i = +\infty \text{ and } \lambda_i \ge 0 \ \forall i \in \mathbb{N}.$ (4)

Eigenvalue Problems The Discrete Case

We now consider for all h > 0 the selfadjoint non negative operator $T_h: H \to H$, with finite range H_h . Let's denote N(h) is the dimension of H_h . We are interested in the eigenvalues,

$$\lambda^h T u^h = u^h \text{ with } u^h \in H_h \setminus \{0\}.$$

The same characterization of the eigenvalue presented above holds also in the discrete case.

Eigenvalue Problems Discrete Approximation

If we assume that the discrete approximation operator T_h converges to T with respect to the norm of $\mathcal{L}(H,H)$, i.e.

$$\lim_{h\to 0}\|T-T_h\|_{\mathcal{L}(H,H)}=0$$

then $\forall \varepsilon > 0$ and $\forall n \in \mathbb{N}$ it exists $h_0 > 0$ such that $\forall h > h_0$

$$\max_{i=1,\dots,m(N)} \left| \lambda_i - \lambda_i^h \right| \le \varepsilon, \tag{5}$$

$$\delta\left(\bigoplus_{i=1}^{m(N)} E_i, \bigoplus_{i=1}^{m(N)} E_i^h\right) \le \varepsilon.$$
 (6)

m(N) is the number of eigenvalues corresponding to N distinct ones, $E_i = \langle u_i \rangle$ and $E_i^h = \langle u_i^h \rangle$. The converse also holds true.

Eigenvalue Problems Necessity and Sufficiency of the Inf-Sup

We consider two Hilbert space H_{Φ} and H_{Ξ} such that we cam identify H_{Φ} with H_{Φ}^* , H_{Ξ} with H_{Ξ}^* and

$$\Phi \subset H_{\Phi} \subset \Phi^*, \qquad \Xi \subset H_{\Xi} \subset \Xi^*.$$

Proposition Convergence of Discrete Eigenvalue Problem

Assuming that $a(\cdot,\cdot)$ is elliptic in the kernel of B_h and the discrete inf-sup condition holds then S_h converges in $\mathcal{L}(H_{\Phi},H_{\Xi})$ to S if and only if $S:H_{\Phi}\times H_{\Xi}\to H_{\Phi}\times H_{\Xi}$ is compact. The converse holds true.

The Story Doesn't End Here Motivating Example – Stokes Eigenvalue Problem with Q1-P0


```
\begin{array}{lll} \mathsf{msh} &= & \mathsf{UnitSquareMesh}(10,10,\mathsf{quadrilateral=True}) \\ \mathsf{V} &= & \mathsf{VectorFunctionSpace}(\mathsf{msh}, \ "Q", \ 1) \\ \mathsf{Q} &= & \mathsf{FunctionSpace}(\mathsf{msh}, \ "DG", \ 0) \\ \mathsf{X} &= & \mathsf{V*Q} \\ \mathsf{u},\mathsf{p} &= & \mathsf{TrialFunctions}(\mathsf{X}) \\ \mathsf{v},\mathsf{q} &= & \mathsf{TestFunctions}(\mathsf{X}) \\ \mathsf{a} &= & (\mathsf{inner}(\mathsf{grad}(\mathsf{u}), \ \mathsf{grad}(\mathsf{v})) - \mathsf{inner}(\mathsf{p}, \ \mathsf{div}(\mathsf{v})) \\ &+ & \mathsf{inner}(\mathsf{div}(\mathsf{u}), \ \mathsf{q})) * \mathsf{dx} + 1e8 * \mathsf{inner}(\mathsf{u}, \mathsf{v}) * \mathsf{ds} \\ \mathsf{m} &= & \mathsf{inner}(\mathsf{u}, \mathsf{v}) * \mathsf{dx} \\ \mathsf{sol} &= & \mathsf{Function}(\mathsf{X}) \\ \end{array}
```

The Story Doesn't End Here Motivating Example – Stokes Eigenvalue Problem Q1-P0


```
A = assemble (a)
M = assemble (m)
Asc, Msc = A.M. handle, M.M. handle
E = SLEPc.EPS().create()
E.setType(SLEPc.EPS.Type.ARNOLDI)
E.setProblemType(SLEPc.EPS.ProblemType.GHEP);
E.setOperators(Asc,Msc)
PC = ST.getKSP().getPC();
PC.setType("svd");
E.setST(ST);
E.solve();
```

The Story Doesn't End Here Motivating Example – Stokes Eigenvalue Problem Q1-P0

N	Reference	Q1-P0
1	52.34468	53.56885
2	92.12438	97.57386
3	92.12438	97.57386
4	128.209	97.573867

- ▶ The numerical experiment for the Q1-P0 are obtained using a 10×10 uniform square grid, while the reference value are obtained using Hood-Taylor finite element pair on a 20×20 square mesh.
- ▶ As $h \rightarrow 0$ we would see a degraded rate of convergence.

Two Type Of Problems The $(f \quad 0)$ Example

More often the note in practice when we are interested in eigenvalue problem where either f or g is zero. For example we call problem of type $(f \ 0)$,

Find
$$(\psi, \chi) \in \Phi \times \Xi$$
 and $\lambda \in \mathbb{R}$ such that
$$\begin{cases} a(\psi, \varphi) + b(\varphi, \chi) = \lambda \langle \psi, \varphi \rangle & \forall \varphi \in \Phi, \\ b(\psi, \xi) = 0 & \forall \xi \in \Xi. \end{cases}$$
(7)

Which $\underline{\operatorname{can not}}$ be cast as an eigenvalue problem of the form of (1).

To recast (7) as an eigenvalue problem we need to introduce

$$C_{\Phi}: \Phi^* \to \Phi^* \times \Xi^*$$
 $C_{\Phi}^*: \Phi \times \Xi \to \Phi$ $f \mapsto (f, 0)$ $(\varphi, \xi) \mapsto \varphi$

then we can study the eigenvalue problem corresponding to

$$T_{\Phi} := C_{\Phi}^* \circ S \circ C_{\phi} : \Phi^* \to \Phi \tag{8}$$

▶ What are the necessary and sufficient conditions to solve an eigenvalue problem like (7) ?

Proposition Existence of Solutions

If $a(\cdot, \cdot)$ is elliptic in the kernel of B_h , then problem (7) admits at least one solution (ψ_h, χ_h) . Moreover ψ_h in uniquely determined by f and

$$\|\psi_h\|_{\Phi} \leq C\|f\|_{\Phi_h^*}.$$

Furthermore if it exists C>0 such that for every h>0 and for every $(\psi_h,\chi_h,f)\in\Phi_h\times\Xi_h\times\Phi^*$ the above inequality is verified then the operator T_Φ^h is defined for all element in Φ and a elliptic in the kernel of B_h .

Problem of Type $(f \quad 0)$ Weak Approximability

Definition Weak Approximability

Let Ξ_0^H be the range of $C_{\Xi}^* \circ S \circ C_{\Phi}$. We say that Ξ_0^H verifies the **weak approximability** if for every $\chi \in \Xi_0^H$

$$\sup_{\varphi_h \in \mathit{Ker}(\mathcal{B}_h)} \frac{b(\varphi_h, \chi)}{\|\varphi\|_{\Phi}} \leq \omega_1(h) \|\chi\|_{\Xi_0^H}, \ \lim_{h \to 0} \omega_1(h) = 0.$$

Remark

The above definition is an approximability condition in fact using the fact that $b(\varphi_h,\chi^I)=0$ for all $\chi^I\in\Xi_h$ to rewrite the weak approximability as for all $\chi\in\Xi_0^H\inf_{\chi^I\in\Xi_h}\|\chi-\chi^I\|_{\Xi}\leq\omega_1(h)\|\chi\|_{\Xi_0^H}.$

25th of October 2022 Mixed Eigenvalue Problem

Definition Strong Approximability

Let Φ_0^H be the range of $C_{\Phi}^* \circ S \circ C_{\Phi}$. We say that Φ_0^H verifies the **strong approximability** if for every $\psi \in \Phi_0^H$

$$\inf_{\psi^I \in Ker(B_h)} \left\| \psi - \psi^I \right\|_{\Phi} \le \omega_2(h) \|\psi\|_{\Phi_0^H}, \ \lim_{h \to 0} \omega_2(h) = 0.$$

Proposition Convergence

If $a(\cdot,\cdot)$ is elliptic in the kernel of B_h and the weak approximability of Ξ_0^H and strong approximability of Φ_0^H are verified, then for all $f\in H_\Phi$

$$\left\| T_{\Phi}f - T_{\Phi}^{h}f \right\|_{\Phi} \leq \omega_{3}(h), \lim_{h \to 0} \omega_{3}(h) = 0.$$
 (9)

Vice versa if the sequence T_{Φ}^h is bounded in $\mathcal{L}(\Phi^*, \Phi)$ and converges uniformly to T_{Φ} in $\mathcal{L}(\Phi^*, \Phi)$ then $a(\cdot, \cdot)$ is elliptic in the kernel of B_h , moreover the strong and weak approximability conditions are verified respectively for Φ_0^H and Ξ_0^H .

An additional Example

A Connection with Charlie's presentation

We solve the Stokes eigenvalue problem using Scott-Vogelious(**ish**) finite element pair and criss-cross. mesh.

```
\label{eq:msh} \begin{split} & \mathsf{msh} = \mathsf{UnitSquareMesh}(5,5,\mathsf{diagonal} = \mathsf{"crossed"}) \\ & \mathsf{V} = \mathsf{VectorFunctionSpace}(\mathsf{msh}, \ \mathsf{"CG"}, \ \mathsf{4}) \\ & \mathsf{Q} = \mathsf{FunctionSpace}(\mathsf{msh}, \ \mathsf{"DG"}, \ 3) \\ & \mathsf{X} = \mathsf{V*Q} \\ & \mathsf{u}, \mathsf{p} = \mathsf{TrialFunctions}(\mathsf{X}) \\ & \mathsf{v}, \mathsf{q} = \mathsf{TestFunctions}(\mathsf{X}) \\ & \mathsf{a} = (\mathsf{inner}(\mathsf{grad}(\mathsf{u}), \ \mathsf{grad}(\mathsf{v})) - \mathsf{inner}(\mathsf{p}, \ \mathsf{div}(\mathsf{v})) \\ & + \mathsf{inner}(\mathsf{div}(\mathsf{u}), \ \mathsf{q})) * \mathsf{dx} + 1e8 * \mathsf{inner}(\mathsf{u}, \mathsf{v}) * \mathsf{ds} \\ & \mathsf{m} = \mathsf{inner}(\mathsf{u}, \mathsf{v}) * \mathsf{dx} \\ & \mathsf{sol} = \mathsf{Function}(\mathsf{X}) \end{split}
```

An additional Example A Connection with Charlie's presentation

Figure: On the LHS the first mode of the Stokes eigenvalue problem, on the RHS the corresponding pressure computed with a SV(ish) method.

Numerical Example

The Mixed Laplacian Eigenvalue Problem - Q1-P0


```
msh = SquareMesh (64,64,np.pi,quadrilateral=True)
S = VectorFunctionSpace (msh, "Q", 1)
V = FunctionSpace(msh, "DG", 0)
X = S*V
s, u = TrialFunctions(X); t, v = TestFunctions(X)
a = (inner(s,t)+inner(div(t),u)+inner(div(s),v))*dx
m = -inner(u,v)*dx
bc = DirichletBC (X.sub(0), as_vector([0.0,0.0]),
   [1,2,3,4])
A = assemble (a, bcs=bc)
M = assemble (m)
```

Numerical Example The Mixed Laplacian Eigenvalue Problem – Q1-P0

N	Ref	Q1-P0
1	1	0.99111
2	1	0.99111
3	2	1.96374
4	4	3.96531
5	4	3.96669
6	5	4.91019
7	5	4.91019
8	8	7.85488
9	9	8.73856
10	9	8.73856
11	10	8.92934

What happens when f is null rather then g? We call problem of this type $\begin{pmatrix} 0 & g \end{pmatrix}$,

Find
$$(\psi, \chi) \in \Phi \times \Xi$$
 and $\lambda \in \mathbb{R}$ such that
$$\begin{cases} a(\psi, \varphi) + b(\varphi, \chi) = 0 & \forall \varphi \in \Phi, \\ b(\psi, \xi) = -\lambda \langle \chi, \xi \rangle & \forall \xi \in \Xi. \end{cases}$$
(10)

Which once again $\underline{\underline{can not}}$ be cast as an eigenvalue problem of the form of (1).

To recast (10) as an eigenvalue problem we need to introduce

$$C_{\Xi}: \Xi^* \to \Phi^* \times \Xi^*$$
 $C_{\Xi}^*: \Phi \times \Xi \to \Xi$ $g \mapsto (0, g)$ $(\varphi, \xi) \mapsto \xi$

then we can study the eigenvalue problem corresponding to

$$T_{\Xi} := C_{\Xi}^* \circ S \circ C_{\Xi} : \Xi^* \to \Xi$$
 (11)

▶ What are the necessary and sufficient conditions to solve an eigenvalue problem like (10) ?

Proposition Existence of Solutions

If the discrete inf-sup stability condition holds, then problem (10) admits at least one solution (ψ_h, χ_h) . Moreover χ_h in uniquely determined by g and

$$\|\chi_h\|_{\Xi} \leq C\|g\|_{\Xi_h^*}.$$

Furthermore if it exists C>0 such that for every h>0 and for every $(\psi_h,\chi_h,g)\in\Phi_h\times\Xi_h\times\Xi^*$ the above inequality is verified then the operator T^h_{Ξ} is defined for all element in Ξ and the **discrete** inf-sup condition is verified.

Definition Weak Approximability

Let Ξ_0^H be the range of $C_{\Xi}^* \circ S \circ C_{\Phi}$. We say that Ξ_0^H verifies the weak approximability if for every $(\chi, \varphi_h) \in \Xi_0^H \times Ker(B_h)$

$$b(\varphi_h,\chi) \leq \omega_4(h) \|\chi\|_{\Xi_0^H} \sqrt{a(\varphi_h,\varphi_h)}, \lim_{h \to 0} \omega_4(h) = 0.$$

Notice that this is an approximability condition similar to the one presented for the $\begin{pmatrix} f & 0 \end{pmatrix}$ problems.

Definition Strong Approximability

Let Ξ_0^H be the range of $C_{\Xi}^* \circ S \circ C_{\Xi}$. We say that Ξ_0^H verifies the **strong approximability** if for every $\chi \in \Xi_0^H$ it exists $\chi^I \in \Xi_h$ such that,

$$\|\chi - \chi'\|_{\Xi} \le \omega_5(h) \|\chi\|_{\Xi_H^0}, \lim_{h \to 0} \omega_5(h) = 0.$$
 (12)

Definition Fortin Operator

Given a subspace Φ_{Π} of Φ we say an operator $\Pi_h : \Phi_{\Pi} \to \Phi_h$ is a **Fortin** operator with respect to the bilinear form $b(\cdot, \cdot)$ and the subspace Ξ_h if for all $\varphi \in \Phi_{\Pi}$ we have that:

$$b(\varphi - \Pi_h \varphi, \xi_h) = 0, \ \forall \xi_h \in \Xi_h.$$

Proposition Sufficient Conditions for Convergence

Assuming that it exists a **bounded Fortin operator**

 $\Pi_h: \mathit{Range}(\mathit{C}_\Phi^* \circ \mathit{S} \circ \mathit{C}_\Xi) o \Phi_h$ such that for every $\phi \in \Phi_H^0$,

$$\sqrt{a(\varphi - \Pi_h \varphi, \varphi - \Pi_h \varphi)} \le \omega_6(h) \|\varphi\|_{\Phi_H^0}, \lim_{h \to 0} \omega_6(h) = 0.$$
 (13)

If the weak and strong approximability condition of Ξ_H^0 are verified then

$$\left\| T_{\Xi}f - T_{\Xi}^{h}f \right\|_{\Xi} \leq \omega_{7}(h) \|g\|_{H_{\Xi}}, \lim_{h \to 0} \omega_{7}(h) = 0,$$

for any $g \in H_{\Xi}$.

Proposition Necessary Conditions for Convergence

If the sequence of operators T^h_{Ξ} is bounded in $\mathcal{L}(\Xi^*,\Xi)$ and it converges to T_{Ξ} in $\mathcal{L}(H_{\Xi},\Xi)$ and the following bounds holds when f=0,

$$\|\varphi_h\|_{\Phi} \leq C\|g\|_{\Xi},$$

then it exists a **bounded Fortin operator** verifying (13), moreover we have that the discrete inf-sup condition is verified together with the weak approximation property of Ξ_H^0 .

- ► The inf-sup condition is neither necessary nor sufficient when dealing with eigenvalue problem.
- ▶ For (f 0) problem the inf-sup condition is **not necessary**.
- For (0 g) problem the inf-sup condition is **neither** sufficient nor necessary.

Conclusion

Is the Approximation Of Mixed Eigenvalue Problem Closed?

- Why does everything work when dealing with a complex? Thank you Boris!
- Can we create new element pairs specifically to solve the solve (f − 0) problems ?
- What happens if we use Babuska version of the inf-sup conditions?

