Методы оптимизации. Семинар 1. Введение.

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

5 сентября 2016 г.

Зачем этот курс?

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов
 - оценка параметров в статистике
 - и другие¹

http://www.cvxpy.org/en/latest/examples/index.html

О чём этот курс?

Первый семестр (теоретический):

- Основы выпуклого анализа
- Теория двойственности
- Условия оптимальности

Второй семестр (практический):

- Методы безусловной минимизации первого и второго порядка
- Методы условной оптимизации
- Линейное программирование: симплекс-метод и пр.
- Оптимальные методы
- ..

План на семестр

- Семинар и лекция раз в неделю
- 2 задания
- Итоговая контрольная в конце семестра (и промежуточная в середине семестра)
- Экзамен в конце семестра. Оценка усредняется по оценкам за:
 - 2 задания
 - итоговую контрольную
 - ответ на экзамене
- Миниконтрольные в начале каждого семинара
- Домашнее задание на каждый семинар LATEX

Предварительные навыки

- Линейная алгебра
- Математический анализ
- Программирование: Python (NumPy, SciPy, CVXPY) or MATLAB
- Элементы вычислительной математики

Методология

- Определение целевой функции
- Определение допустимого множества решений
- Постановка и анализ оптимизационной задачи
- Выбор наилучшего алгоритма для решения поставленной задачи
- Реализация алгоритма и проверка его корректности

Постановка задачи

$$\min_{\mathbf{x} \in X} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, i = 1, ..., p$

$$f_j(\mathbf{x}) \le 0, j = n + 1, ..., m,$$

- \bullet $\mathsf{x} \in \mathbb{R}^n$ искомый вектор
- $f_0(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ целевая функция
- ullet $f_k(\mathbf{x}): \mathbb{R}^n o \mathbb{R} ullet$ функции ограничений

Пример: выбор активов

- х размер инвестиций в каждый актив
- f_0 суммарный риск или вариация прибыли
- f_k бюджетные ограничения, min/max вложения в актив, минимально допустимая прибыль

Как решать?

В общем случае:

- NP-полные
- рандомизированные алгоритмы: время vs стабильность

НО определённые классы задач могут быть решены быстро!

- Линейное программирование
- Метод наименьших квадратов
- Малоранговое приближение порядка k
- Выпуклая оптимизация

Линейное программирование

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
s.t. $\mathbf{a}_i^{\mathsf{T}} \mathbf{x} \le c_i, \ i = 1, \dots, m$ (1)

- нет аналитического решения
- существуют эффективные алгоритмы
- разработанная технология
- симлекс-метод для решения задачи (1) входит в Top-10 алгоритмов XX века 2

Метод наименьших квадратов

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2, \tag{2}$$

где $\mathbf{A} \in \mathbb{R}^{m \times n}$ и $\mathbf{b} \in \mathbb{R}^m$.

- ullet имеет аналитическое решение: $\mathbf{x}^* = (\mathbf{A}^\mathsf{T} \mathbf{A})^{-1} \mathbf{A}^\mathsf{T} \mathbf{b}$
- существуют эффективные алгоритмы
- разработанная технология
- имеет статистическую интерпретацию

Малоранговое приближение ранга k

$$\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \|\mathbf{A} - \mathbf{X}\|$$
s.t. rank(\mathbf{X}) $\leq k$ (3)

Theorem (Eckart-Young, 1993)

Пусть $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} - \mathbf{c}$ ингулярное разложение матрицы \mathbf{A} , где $\mathbf{U} = [\mathbf{U}_k, \mathbf{U}_{r-k}] \in \mathbb{R}^{m \times r}$, $\mathbf{\Sigma} = \operatorname{diag}(\sigma_1, \dots, \sigma_k, \dots, \sigma_r)$, $V = [V_k, V_{r-k}] \in \mathbb{R}^{n \times r}$ и r = rank(A). Тогда решение задачи (3) можно записать в виде:

$$X = \hat{U}\hat{\Sigma}\hat{V}^{\mathsf{T}},$$

где
$$\hat{\mathbf{U}} \in \mathbb{R}^{m \times k}$$
, $\hat{\mathbf{\Sigma}} = \mathrm{diag}(\sigma_1, \ldots, \sigma_k)$, $\hat{\mathbf{V}} \in \mathbb{R}^{n \times k}$.

Алгоритм вычисления сингулярного разложения и быстрый и **устойчивый.**

Выпуклая оптимизация

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) \le b_i, \ i = 1, \dots, m$ (4)

f₀, f_i — выпуклые функции:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \leq \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные алгоритмы
- часто сложно «увидеть» задачу выпуклой оптимизации
- существуют приёмы для преобразования задачи к виду (4)

Пример

Независимый под-алфавит максимальной мощности

$$\max_{\mathbf{x} \in \mathbb{R}^n} \sum_{i=1}^n x_i$$
s.t. $x_i^2 - x_i = 0$ $i = 1, \dots, n$

$$x_i x_j = 0$$
 $\forall (i, j) \in \Gamma,$

где Г — множество пар

Truss design

$$\min -2 \sum_{i=1}^{k} \sum_{j=1}^{m} c_{ij} x_{ij} + x_{00}$$

$$\sum_{i=1}^{k} x_{i} - 1$$

s.t.
$$\sum_{i=1}^{k} x_i = 1$$
 $\lambda_{\min}(\mathbf{A}) \geq 0$,

где
$$\mathbf{A} =$$

$$\begin{bmatrix} x_1 & \dots & \sum\limits_{j=1}^m b_{pj} x_{1j} \\ \vdots & \ddots & \vdots \\ x_k & \sum\limits_{j=1}^m b_{pj} x_{kj} \end{bmatrix}$$

$$\sum_{j=1}^m b_{pj} x_{1j} & \dots & \sum_{j=1}^m b_{pj} x_{kj} & x_{00} \end{bmatrix}$$

Почему выпуклость так важна?

R. Tyrrell Rockafellar

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

Вопросы:

- Любую ли задачу выпуклой оптимизации можно эффективно решить?
- Можно ли эффективно решить невыпуклые задачи оптимизации?

Резюме

- Организация работы
- Предмет курса по оптимизации
- Общая формулировка оптимизационной задачи
- Классические оптимизационные задачи