

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ **ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ**КАФЕДРА **КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)**НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 **ПРОГРАММНАЯ ИНЖЕНЕРИЯ**

ОТЧЕТ

Название:	Синхронные	односту	упенчать	<u>іе т</u>	риггер	ы со	статич	<u>ческим</u>	И
линамическ	им управлен	ием зап	исью						

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-44Б	Н. А. Гурова	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель		(Подпись, дата)	 (И.О. Фамилия)

Цель работы

Изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

Задание

1. Исследовать работу **асинхронного RS-триггера** с инверсными входами в статическом режиме

Puc. 1 (схема асин. RS-триггера, построенная в Multisim)

Таблица переходов					
S_n	R_n	Q_n	Q_{n+1}		
0	0	0	0		
0	0	1	1		
0	1	0	0		
0	1	1	0		
1	0	0	1		
1	0	1	1		
1	1	0	х		
1	1	1	х		

Асинхронный RS - триггер сохраняет одно из устойчивых состояний независимо от многократного изменения информационного сигнала на одном входе при нулевом значении информационного сигнала на другом входе.

Можно заметить, что при S=0 и R=0 триггер находится в режиме сохранения, иначе S устанавливает состояние 1, а R состояние 0. S=1, R=1 – запрещенное состояние (рис. 2)

Файл: 1.ms14

Puc. 2

2. Исследовать работу **синхронного RS-триггера** в статическом режиме.

Puc. 3 (схема син. RS-триггера, построенная в Multisim)

Таблица переходов						
C_n	S_n	R_n	Q_n	Q_{n+1}		
0	0	0	0	0		
0	0	0	1	1		
0	0	1	0	0		
0	0	1	1	1		
0	1	0	0	0		
0	1	0	1	1		
0	1	1	0	0		
0	1	1	1	1		
1	0	0	0	0		
1	0	0	1	1		
1	0	1	0	0		
1	0	1	1	0		
1	1	0	0	1		
1	1	0	1	1		
1	1	1	0	х		
1	1	1	1	х		

Синхронный RS-триггер - триггер, который имеет два информационных входа R и S и вход синхронизации C. ЛЭ 1 и 2 образуют схему управления, ЛЭ3 и 4 – асинхронный RS - триггер (запоминающую ячейку).

Если С = 0, то будет сохраняться предыдущее состояние.

Если С = 1, то синхронный триггер переключается как асинхронный.

Одновременная подача сигналов C = S = R = 1 запрещена.

При S = R = 0 триггер не изменит своего состояния (рис. 4)

Файл: 2.ms14

3. Исследовать работу синхронного **D-триггера** в статическом режиме.

Puc. 5 (схема син. D-триггера, построенная в Multisim)

Таблица переходов					
C_n	D_n	Q_n	Q_{n+1}		
0	0	0	0		
0	0	1	1		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	0		
1	1	0	1		
1	1	1	1		

1 1 Файл: 3.ms14

Синхронный D-триггер - элемент задержки (хранения) входных сигналов на один такт.

Данный триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы.

Можно заметить, что состояние D-триггера с каждым синхронизирующим импульсом передается на выход, то есть выходные сигналы представляют собой задержанные входные (рис. 6)

Puc. 6

4. Исследовать схему синхронного **D-триггера с динамическим управлением** записью в статическом режиме.

Рис. 7 (схема син. D-триггера, построенная в Multisim с помощью макросхемы)

Рис. 8 (схема син. D-триггера, построенная в Multisim с помощью ЛЭ НЕ-И)

Таблица переходов					
D_n	C_n	Q_{n+1}			
0	0	0			
0	1	0			
1	0	1			
1	1	1			
Х	Х	Х			

D-триггер с динамическим управлением отличается от D триггера со статическим управлением тем, что запись информации происходит только при изменении сигнала C.

(Изменение состояния триггера происходит в момент изменения синхросигнала С с 0 на I или с I на 0)

Файл: 4.ms14

Puc.9

5. Исследовать схему **синхронного DV-триггера с динамическим управлением** записью в динамическом режиме.

Синхронный DV триггер - триггер, который имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

Рис. 10 (схема син. DV-триггера, построенная в Multisim)

Рис. 11 (временная диаграмма син. DV-триггера, построенная в Multisim)

Таблица переходов						
С	D	V	Qt	Qt+1		
0	0	0	0	ol 🔻		
0	0	0	1	1		
0	0	1	0	0		
0	0	1	1	1		
0	1	0	0	0		
0	1	0	1	1		
0	1	1	0	0		
0	1	1	1	1		
1	0	0	0	0		
1	0	0	1	1		
1	0	1	0	0		
1	0	1	1	0		
1	1	0	0	0		
1	1	0	1	1		
1	1	1	0	1		
1	1	1	1	1		

При С = 0 сохраняется предыдущее состояние. При C = 0 и V = 1 сохраняется предыдущее состояние.

При C = V = 1 триггер сохраняется сигнал, который пришел на вход D.

(рис. 12)

Файл: 5.ms14

Puc. 12

6. Исследовать работу **DV-триггера**, **включенного по схеме TV-триггера**.

Т-триггер - триггер, который имеет один информационный вход Т, называемый счетным входом.

Асинхронный Т-триггер переход в противоположное состояние каждый раз при подаче на Т-вход сигнала 1

Синхронный Т-триггер имеет вход С. Он переключается в противоположное состояние, если на входе Т действует единичный сигнал.

Рис. 13 (схема DV-триггера, включенного по схеме TV-триггера, вариант 1)

Puc. 14 (временная диаграмма DV-триггера, включенного по схеме TV-триггера, вариант 1)

Рис. 15 (схема DV-триггера, включенного по схеме TV-триггера, вариант 2)

Рис. 16 (схема DV-триггера, включенного по схеме TV-триггера, вариант 2)

Файлы: 6.ms14 и 7.ms14

Вывод

В результате данной лабораторной работы были изучены принципы построения и практического применения, а также экспериментально исследованы триггеры.

Контрольные вопросы

- 1. Что называется триггером? Триггер – это запоминающий элемент с двумя устойчивыми состояниями, которые кодируются цифрами 0 и 1.
- 2. Какова структурная схема триггера?

- 3. По каким основным признакам классифицируют триггеры?
 - По способу организации логических связей (RS, T, D и т.д.)
 - По способу записи информации (асинхронные/синхронные)
 - По способу синхронизации (статическое/динамическое управление записью)
 - По способу передачи информации с входов на выход (одноступенчатое/двухступенчатое запоминание информации)
- 4. Каково функциональное назначение входов триггеров?

Номер п/п	Наименование входов	Обозначение
1	S-вход — вход для раздельной установки триггера в состояние "1" (Set – установка)	S
2	R-вход — вход для раздельной установки триггера в состояние "0" (Reset – сброс, очистка)	R
3	Ј-вход – вход для установки состояния "1" в универсальном ЈК-триггере (Jerk – внезапное включение)	J
4	К-вход — вход для установки состояния "0" в универсальном JK-триггере (Kill – внезапное отключение)	K
5	Т -вход -счетный вход (Toggle - релаксатор)	T
6	D-вход –информационный вход для установки триггера в состояния "1" или "0" (Data – данные, Delay – задержка)	D
7	V-вход – подготовительный управляющий вход для разрешения приема информации (Valve –клапан, вентиль)	V
8	С-вход - исполнительный управляющий (командный) вход для осуществления приема информации, вход синхронизации (Clock – источник синхросигналов)	С

5. Что такое асинхронный и синхронный триггеры?

Если триггер асинхронный, то запись информации будет осуществляться с поступлением информационных сигналов.

Запись в синхронный будет происходить только, если на вход синхронизации С подан разрешающий импульс.

6. Что такое таблица переходов?

Таблица переходов — таблица, которая отражает зависимость выходного сигнала в момент времени t_{n+1} от входных сигналов и от состояние триггера в момент времени t_{n} .

7. Как работает асинхронный RS-триггер?

Сохраняет одно из устойчивых состояний независимо от многократного изменения инф сигнала на одном входе при 0 на другом входе.

Время t_n			Время t_{n+1}		
Sn	R _n	Qn	Q_{n+1}	$\overline{\boldsymbol{Q}}_{n+1}$	
0	0	0	0	1	
0	0	1	1	0	
0	1	0	0	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	1	0	
1	1	0	X	X	
1	1	1	X	X	

- 8. Как работает синхронный RS -триггер? Какова его таблица переходов? При C = 0 сохраняется предыдущее состояние.
 - При C = 1 синхронный RS-триггер переключается как асинхронный RS -триггер.
- 9. Что такое D-триггер?

D-триггер имеет только один вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы.

10. Объясните работу синхронного D-триггера.

При С = 0 триггер сохраняет свое состояние.

При C = 1 триггер выходной сигнал будет равен сигналу, пришедшему на вход D

11. Что такое DV –триггер?

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

12. Объясните работу DV-триггера

Если C = 0 или V = 0, то триггер сохраняет свое состояние.

Если C = 1 и V = 1, то триггер на выходе повторит сигнал, который пришел на D-вход.

13. Что такое Т-триггер? Какова его таблица переходов?

Т-триггер имеет один информационный вход Т, называемый счетным входом. Асинхронный Т-триггер переходит в противоположное состояние каждый раз при подаче на Т-вход единичного сигнала.

\mathbf{B} ремя t_n			Время t_{n+1}		
C_n	D_n, T_n	Q_n	Q_{n+1}		
			D-триггер	Т-триггер	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	0	0	
0	1	1	1	1	
1	0	0	0	0	
1	0	1	0	1	
1	1	0	1	1	
1	1	1	1	0	

14. Объясните работу схемы синхронного RS-триггера со статическим управлением

Время t_n				\mathbf{B} ремя t_{n+1}	
Входы				Выход Q_{n+1}	
C_n	S_n, V_n	R_n, D_n	Q_n	RS-триггер	DV-триггер
1	2	3	4	5	7
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	1	1
0	1	1	0	0	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	1	1
1	0	1	0	0	0
1	0	1	1	0	1
1	1	0	0	1	0
1	1	0	1	1	0
1	1	1	0	X	1
1	1	1	1	X	1

Если С = 0, сохраняется предыдущее состояние.

Если С = 1, синхронный работает как асинхронный.

При S = R = 0 триггер не изменит своего состояния.

Одновременная подача C = S = R = 1 запрещена.

15. Какова характерная особенность переключения синхронных триггеров с динамическим управлением записью?

Изменения состояния происходит в момент изменения синхросигнала C с 0 на 1 или из 1 в 0.

16. Как работает схема синхронного D -триггера с динамическим управлением записью на основе трех RS -триггеров?

Триггер имеет асинхронные входы Sa и Ra начальной установки в состояния 1 и

- 0. Если схему D-триггера дополнить входом V, то получим структуру DV-триггера. Временные диаграммы D-триггера соответствуют временным диаграммам DV-триггера при V = 1.
- 17. Составьте временные диаграммы работы синхронного D-триггера с динамическим управлением записью. см выше
- 18. Какова структура и принцип действия синхронного DV-триггера с динамическим управлением записью?

Изменение состояния может произойти только, если изменяется импульс на синхронизирующем входе C (с 0 на 1 или с 1 на 0). При этом если V = 1

При С = 0 триггер сохраняет предыдущее состояние.

При C = 1 V = 1 триггер принимает сигнал, действующий на входе D.

При C = 1 V = 0 триггер сохраняет предыдущее состояние.

19. Составьте временные диаграммы синхронного DV-триггера см выше

20. Объясните режимы работы D-триггера.

D-триггер имеет только один вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы.