CS233 B Linear Algebra

Quiz 1

Part 1 choices (30%)

- 1. Find x such that $\begin{bmatrix} 2x & 7 \\ 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -7 \\ -1 & 4 \end{bmatrix}$
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4 送分
- 2. Let AX = B be a system of linear equations with solution X_1 and X_2 . What is incorrect step about the following proof?
 - $(A)AX_1 = B$ and $AX_2 = B$
 - **(B)** $AX_1 = AX_2$
 - $(C)X_1 = X_2$
 - (D) Thus every system of linear equations has at most one solution
- 3. Consider the partitioned matrix $A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ 0 & 0 & A_{23} \end{bmatrix}$, where A_{II} is invertible.
 - rank(A)=?
 - $(A) \operatorname{rank}(A_{11})$
 - $(B) \, rank(A_{11}) + \, rank(A_{23})$
 - $(C) \operatorname{rank}(A_{23})$
 - $(D) \, rank(A_{12}) \!\!+ rank(A_{23})$
- 4. Solve the linear system

$$\begin{cases} 2x + 8y + 4z = 2\\ 2x + 5y + z = 5\\ 4x + 10y - z = 1 \end{cases}$$

- z = ?
- (A) 1
- (B) 2
- (C) 3
- (D) 4
- 5. If A is a n x n matrix and $A = -A^T$, that trace(A) = ?
 - (A)0
 - (B) 1
 - (C)n
 - (D) n/2

6. Find the largest possible number of independent vectors from the following vector

set:
$$v_1 = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$, $v_4 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$, $v_5 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$, $v_6 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$

- (A)3
- (B)4
- (C)5
- (D)6

Part 2 True of False (30%)

- 1. If A and B are diagonal matrices of the same size, that AB = BA. T
- 2. Let A and B be $n \times n$ matrices. The operator [A, B] is defined as [A, B] = AB BA, that [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = O
- 3. Let A and B be $m \times n$ matrices. If both the system of linear equations Ax=0 and Bx=0 have nontrivial solution, i.e. $\exists x \neq 0, Ax=0$, then (A+B)x=0 has nontrivial solutions. F
- 4. If [A|b] is in row echelon form, then the system Ax = b must have a solution. F
- 5. Every matrix can be transformed into a unique matrix in row echelon form by a sequence of elementary row operations. *F*
- 6. $\operatorname{trace}((A+B)C)) = \operatorname{trace}(AC) + \operatorname{trace}(BC) T$
- 7. trace(AB) = trace(A) * trace(B) F
- 8. Given any vectors $x_1, x_2 ... x_l \in \mathbb{R}^n$. Define an $l \times l$ matrix A with $A_{ij} = x_i^T x_j, i, j = 1, 2, ..., l$. Then A is invertible matrix. F
- 9. If w_1 , w_2 , w_3 are independent vectors, the differences $v_1 = w_2 w_3$ and $v_2 = w_1 w_3$ and $v_3 = w_1 w_2$ are independent. F
- 10. If v_i and v_j are linear independent for $i, j = 1, 2, 3, i \neq j$, then v_1, v_2, v_3 are linear independent. F

Part 3 Essay (40%)

- 1. Consider the systems of linear equations defined by augmented matrices P of the following sizes. The ranks of the augmented matrix and matrix of coefficient Q are given in each case. Will the systems have a single, many, or no solutions? (6%)
 - (a) P is 4 x 5. rank(P) = 4, rank(Q) = 4 single
 - (b) P is 3 x 4. rank(P) = 3, rank(Q) = 2
 - (c) P is 4 x 4. rank(P) = 2, rank(Q) = 2

2.
$$A = \begin{bmatrix} -1 & 0 & -1 & -1 \\ -3 & -1 & 0 & -1 \\ 5 & 0 & 4 & 3 \\ 3 & 0 & 3 & 2 \end{bmatrix},$$

Please using the Gauss elimination to determine the inverse of A (8%)

$$\begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & -1 & -3 & 4 \\ 1 & 0 & -1 & 2 \\ -3 & 0 & 0 & -1 \end{bmatrix}$$

3. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$, and $AM = BA$, where M is a $3x3$

matrix. Find M⁵. (10%)

$$M = A^{-1}BA$$
$$M^{5} = A^{-1}B^{5}A$$

$$\begin{bmatrix} 32 & 0 & 0 \\ -64 & -32 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

4. Let $k \in \mathbb{R}$, and define $S = \{(1,0,0), (0,1,1), (1,k,1)\}$. For which values of k is it true that span(S) = \mathbb{R}^3 (6%)

5. Support the complete solution to the equation
$$Ax = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$$
 is $x = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} +$

$$t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
. Find A. (10%)

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 3 & 0 & -3 \end{bmatrix}$$

Part 4 Bonus (20%)

1. Prove or disprove if $G = AA^T$ and $P = A^TA$, for any arbitrary matrix A, that G and P are both symmetric matrices. (10%)

$$G^T = (AA^T)^T = AA^T = G$$
$$P^T = (A^TA)^T = A^TA = P$$

2. 對本門課的建議 (10%)