

Searching in a Splay Tree: Starts the Same as in a BST

- Search proceeds down the tree to found item or an external node.
- Example: Search for time with key 11.

© 2004 Goodrich, Tamassia, Dickerson

Splay Trees do Rotations after **Every Operation (Even Search)** new operation: splay splaying moves a node to the root using rotations ■ left rotation ■ right rotation \blacksquare makes the left child x of a node y into \blacksquare makes the right child y of a node x y's parent; y becomes the right child into x's parent; x becomes the left child of v a right rotation about y a left rotation about x (structure of tree above x (structure of tree above v is not modified) is not modified)

Splay Trees

© 2004 Goodrich, Tamassia, Dickerson

Splaying Example, Continued

Example Result of Splaying tree might not be more balanced e.g. splay (40,X) before, the depth of the shallowest leaf 3 and the deepest is 7 after, the depth of shallowest leaf is 1 and deepest is 8 (33,8) (340,X) (35,8) (36,1) (37,9) (30,1) (37,9) (30,1) (37,9) (30,1) (37,9) (30,1) (37,9) (30,1) (37,9) (30,1) (31,0) (32,1) (33,8) (340,X) (35,8)

Splay Tree Definition

- a splay tree is a binary search tree where a node is splayed after it is accessed (for a search or update)
 - deepest internal node accessed is splayed
 - splaying costs O(h), where h is height of the tree
 - which is still O(n) worst-case
 - O(h) rotations, each of which is O(1)

Splay Trees & Ordered Dictionaries

method	splay node
get(k)	if key found, use that node if key not found, use parent of ending external node
put(k,v)	use the new node containing the entry inserted
erase(k)	use the parent of the internal node that was actually removed from the tree (the parent of the node that the removed item was swapped with)

Splay Trees

Amortized Analysis of Splay Trees

- Running time of each operation is proportional to time for splaying.
- Define rank(v) as the logarithm (base 2) of the number of nodes in subtree rooted at v.
- ◆ Costs: zig = \$1, zig-zig = \$2, zig-zag = \$2.
- Thus, cost for playing a node at depth d = \$d.
- Imagine that we store rank(v) cyber-dollars at each node v of the splay tree (just for the sake of analysis).

© 2004 Goodrich, Tamassia, Dickerson

Splay Trees

13

Cost per zig

- Doing a zig at x costs at most rank'(x) rank(x):

© 2004 Goodrich, Tamassia, Dickerson

Splay Trees

1/

Cost per zig-zig and zig-zag

Doing a zig-zig or zig-zag at x costs at most3(rank'(x) - rank(x)) - 2

Cost of Splaying

- Cost of splaying a node x at depth d of a tree rooted at r:
 - at most 3(rank(r) rank(x)) d + 2:
 - Proof: Splaying x takes d/2 splaying substeps:

$$cost \le \sum_{i=1}^{d/2} cost_{i}$$

$$\le \sum_{i=1}^{d/2} (3(rank_{i}(x) - rank_{i-1}(x)) - 2) + 2$$

$$= 3(rank(r) - rank_{0}(x)) - 2(d/d) + 2$$

Splay Trees

15

© 2004 Goodrich, Tamassia, Dickerson

Splay Trees

 $\leq 3(\operatorname{rank}(r) - \operatorname{rank}(x)) - d + 2.$

Performance of Splay Trees

- Recall: rank of a node is logarithm of its size.
- Thus, amortized cost of any splay operation is O(log n)
- In fact, the analysis goes through for any reasonable definition of rank(x)
- ◆ This implies that splay trees can actually adapt to perform searches on frequentlyrequested items much faster than O(log n) in some cases

© 2004 Goodrich, Tamassia, Dickerson

Splay Trees

17

