Perceptrón Simple y Multicapa

Integrantes

Perceptrón Simple Escalonado

AND y XOR

Datos de entrada y salida

AND

ξμ	ξμ	Çμ
-1	1	-1
1	-1	-1
-1	-1	-1
1	1	1

XOR

ξμ	ξμ	Çμ
-1	1	1
1	-1	1
-1	-1	-1
1	1	-1

AND - Gráfico

AND - Comparación de η

$$\eta = 0.001$$

Epochs = 1000

$$\eta = 0,1$$

Epochs = 1000

AND - Comparación de epochs

$$\eta = 0.001$$

$$\eta = 0.001$$

XOR - Gráfico

XOR - Resultado esperado

Conclusiones

AND

Es un problema *linealmente* separable (se puede trazar una recta que separa las dos clases de datos).

XOR

No es un problema que se pueda resolver con este tipo de perceptrón, se requiere de dos rectas que separen las dos categorías.

Perceptrón simple lineal (según η)

$$\eta = 0.01$$

$$\beta = 0.8$$

$$\eta = 0,001$$

Epochs = 500

$$\beta = 0.8$$

Perceptrón simple no lineal (según η)

$$\eta = 0.01$$

$$\beta = 0.8$$

$$\eta = 0.001$$

Epochs = 500

$$\beta = 0.8$$

No lineal - Comparación de errores

$$\eta = 0.01$$

Epochs = 500

$$\beta = 0.8$$

Rojo -> error del test set

Azul -> error del training set

Porcentaje de datos de entrenamiento 50%

Conclusiones

Sobre la capacidad de cada perceptrón para aprender la función:

• Si se observan los gráficos de error se puede ver que la capacidad de aprendizaje aumenta ya que el error disminuye.

Sobre el conjunto de entrenamiento:

 La elección del mejor conjunto de entrenamiento dependerá de cuál es el que menor error presenta.

Funcion XOR

- Un nodo inicial por input
- Dos nodos intermedios
- Unico nodo final
- Tasa de aprendizaje de 0.1

Funcion PAR

 Dos capas intermedias de 10 y 5 nodos respectivamente + bias en cada capa

Unico nodo final (par o impar)

Tasa de aprendizaje de 0.1

Funcion NUMBER

- Un nodo inicial por cada "pixel" (7x5)
- Dos capas intermedias de 20 y 15 nodos respectivamente + bias en cada capa
- 10 nodos finales (uno para cada número posible)
- Tasa de aprendizaje de 0.1

Función NUMBER con más neuronas

- Un nodo inicial por cada "pixel" (7x5)
- 4 capas intermedias de 20, 15, 10 y 10 neuronas respectivamente
- Unico nodo final (par o impar)
- Tasa de aprendizaje de 0.1

Funcion NUMBER modificando la entrada de testeo (η=0.01, max_gen=10000)

Output: 0.989

0 0 0

Output: 0.951

[0.02456512784112388,

0.9511763216951983,

0.051938191669900336,

0.09183692027195284,

0.00033930331488810794,

0.04888153528028594,

0.022396364953118676,

0.055789033930245554,

0.00190426705474464532,

0.096713890558338231

Funcion NUMBER modificando la entrada de testeo (η=0.01, max_gen=10000)

[0.03157905214412388, 0.036708911613961436. 0.04344992027195284. 0.9218252214835786, 0.000125303968012734, 0.02375153528028594. 0.018746364953118676. 0.047846715604245554, 0.0001 326705474464532,

0.0440 7/89055833823]

- Sé puede representar la operación XOR usando dos neuronas de entrada que eventualmente convergen en una neurona de salida
- Modificar un poco el bitmap que se usó para entrenar el modelo no modifica la salida. Sin embargo, al tratarse de poca cantidad de "pixeles", un par de cambios puede alterar mucho la salida esperada
- Incrementar la cantidad de nodos/layers no necesariamente lleva a un error menor