Gradient Descent with Momentum RMSprop Adam

4th December 2023

Overview

Gradient descent with momentum

2 RMSprop

3 Adam

Problem with gradient descent

Figure: Gradient descent ¹

¹https://engmrk.com/gradient-descent-with-momentum/.

Problem with gradient descent

Figure: Gradient descent ²

²https://engmrk.com/gradient-descent-with-momentum/.

Example: How to model/forecast the stock/share price of a certain company?

$$egin{aligned} m_{100} &= eta m_{99} + (1-eta) extit{price}_{100} \ m_{99} &= eta m_{98} + (1-eta) extit{price}_{99} \ & \dots \ m_t &= eta m_{t-1} + (1-eta) extit{price}_t \ & \dots \ m_1 &= eta m_0 + (1-eta) extit{price}_1 \end{aligned}$$

$$\beta = 0.9$$

$$m_{100} = 0.9m_{99} + (1 - 0.9)price_{100}$$

$$= 0.1price_{100} + 0.9m_{99}$$

$$= 0.1price_{100} + 0.9(0.1price_{99} + 0.9m_{98})$$

$$= 0.1price_{100} + 0.9 \cdot 0.1price_{99} + (0.9)^2m_{98}$$

$$= 0.1price_{100} + 0.09price_{99} + (0.9)^2(0.1price_{98} + 0.9m_{97})$$

$$= 0.1price_{100} + 0.09price_{99} + 0.081price_{98} + (0.9)^3m_{97}$$

7 / 15

Actually, without the below correction, we will get the orange line instead of the red line. Why?

$$m_t = eta m_{t-1} + (1-eta) extit{price}_t \ m_t^{corrected} = rac{m_t}{1-eta^t}$$

Gradient descent with momentum

Update weights at iteration t:

$$\begin{aligned} \mathbf{g}_{\{t\}} &\longleftarrow \nabla L(\mathbf{W}_{\{t-1\}}) \\ \mathbf{m}_{\{t\}} &\longleftarrow \beta_1 \mathbf{m}_{\{t-1\}} + (1-\beta_1) \mathbf{g}_{\{t\}} \\ \mathbf{W}_{\{t\}} &\longleftarrow \mathbf{W}_{\{t-1\}} - \gamma \mathbf{m}_{\{t\}} \end{aligned}$$

Initialization: $m_{\{0\}}=0$

Hyperparameters: $eta_1=$ 0.9; learning rate γ

Gradient descent with momentum

Figure: Gradient descent with momentum ³

 $^{^3} https://engmrk.com/gradient-descent-with-momentum/.\\$

Problem with gradient descent

Figure: Gradient descent ⁴

⁴https://github.com/hengluchang/visualizing_momentum.

Gradient descent with momentum

Figure: Gradient descent with momentum $\beta_1 =$ 0.8 5

⁵https://github.com/hengluchang/visualizing_momentum.

RMSprop

Update weights at iteration t:

$$\begin{aligned} \mathbf{g}_{\{t\}} &\longleftarrow \nabla L(\mathbf{W}_{\{t-1\}}) \\ \mathbf{s}_{\{t\}} &\longleftarrow \beta_2 \mathbf{s}_{\{t-1\}} + (1 - \beta_2) \mathbf{g}_t^2 \\ \mathbf{W}_{\{t\}} &\longleftarrow \mathbf{W}_{\{t-1\}} - \gamma \frac{\mathbf{g}_{\{t\}}}{\sqrt{\mathbf{s}_{\{t\}}} + \epsilon} \end{aligned}$$

Initialization: $s_{\{0\}} = 0$

Hyperparameters: $\beta_2 = 0.9$; $\epsilon = 10^{-8}$; learning rate γ

Adam - Adaptive moment estimation

Update weights at iteration *t*:

$$\begin{split} \mathbf{g}_{\{t\}} &\longleftarrow \nabla L(\mathbf{W}_{\{t-1\}}) \\ \mathbf{m}_{\{t\}} &\longleftarrow \beta_1 \mathbf{m}_{\{t-1\}} + (1-\beta_1) \mathbf{g}_{\{t\}} \\ \mathbf{s}_{\{t\}} &\longleftarrow \beta_2 \mathbf{s}_{\{t-1\}} + (1-\beta_2) \mathbf{g}_t^2 \\ \mathbf{m}_{\{t\}}^{corrected} &\longleftarrow \frac{\mathbf{m}_{\{t\}}}{1-\beta_1^t} \\ \mathbf{s}_{\{t\}}^{corrected} &\longleftarrow \frac{\mathbf{s}_{\{t\}}}{1-\beta_2^t} \\ \mathbf{W}_{\{t\}} &\longleftarrow \mathbf{W}_{\{t-1\}} - \gamma \frac{\mathbf{m}_{\{t\}}^{corrected}}{\sqrt{\mathbf{s}_{\{t\}}^{corrected}} + \epsilon} \end{split}$$

Initialization: $m_{\{0\}} = s_{\{0\}} = 0$

Hyperparameters: $\beta_1=$ 0.9; $\beta_2=$ 0.999; $\epsilon=$ 10⁻⁸; learning rate γ

References

- Visualizing Gradient Descent with Momentum in Python: https://github.com/hengluchang/visualizing_momentum.
- Coursera Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization: https://www.coursera.org/learn/deep-neural-network/
- Occurred Section 1

 Coursera Neural Networks and Deep Learning:
 https:
 //www.coursera.org/learn/neural-networks-deep-learning/