

Universidade do Minho Dep. de Matemática e Aplicações

- Números Reais -

2. (a)
$$\frac{3}{8} > 0,37$$

(b)
$$0,33 < \frac{1}{3}$$

(c)
$$\sqrt{2} > 1,414$$

(d)
$$5 = \sqrt{25}$$

(e)
$$\frac{3}{7} > 0.428571$$

(f)
$$\frac{22}{7} > \pi$$

3. (a)
$$x = 2, 25 = \frac{9}{4}$$

(b)
$$x = 3,721 = \frac{3721}{1000}$$

(c)
$$x = 5, (4) = \frac{49}{9}$$

(d)
$$x = 0, (17) = \frac{17}{99}$$

(e)
$$x = 3, 2(7) = \frac{59}{18}$$

(f)
$$x = 3,66(087) = \frac{365721}{99900}$$

4. (a) Por exemplo,
$$\frac{\pi}{100}$$

(b) Por exemplo,
$$\frac{32}{11 \times 10} = \frac{32}{110}$$
.

5. (a) Afirmação falsa. Por exemplo, para
$$x=-5$$
 e $y=1$, tem-se $-5<1$ e, no entanto, $|-5|=5>1=|1|$.

- (b) Afirmação falsa. Por exemplo, para x=-5 e y=2, tem-se -5<2 e, no entanto, $(-5)^2=25>4=2^2$.
- (c) Afirmação falsa. Por exemplo, para x=2 e y=4, tem-se 2<4 e, no entanto, $\frac{1}{2}>\frac{1}{4}.$
- (d) Afirmação verdadeira. Basta observar que a função $f(x)=x^3,\,x\in\mathbb{R},$ é estritamente crescente.
- (e) Afirmação verdadeira. Para quaisquer $x, y \in \mathbb{R}$, tem-se que:

$$x < y \implies x + x < x + y \implies 2x < x + y \implies x < \frac{x + y}{2}$$

e

$$x < y \Rightarrow x + y < y + y \Rightarrow x + y < 2y \Rightarrow \frac{x + y}{2} < y.$$

- (f) Afirmação falsa. Por exemplo, para x=5 e y=10, tem-se 5<10 e, no entanto, $\frac{1}{|5|}>\frac{1}{|10|}.$
- 6. (a) |x-0| < 2
 - (b) |x (-2)| < 2
 - (c) |x-2| < 2
 - (d) |x-2| < 5
 - (e) |x (-2)| < 5
- 7. (a) $[-1, +\infty[$

- (b) $[0,\frac{1}{2}]$
- (c) $]-\infty,-\sqrt{5}[\cup]\sqrt{5},+\infty[$
- (d) $]-\infty,-1] \cup \{0\} \cup [1,+\infty[$

(e) $\left[-\frac{3}{5}, -\frac{1}{5}\right]$

(f) $]-\infty,1] \cup [5,+\infty[$

(g) $[-2,0] \cup [2,+\infty[$

(h) $\left[\frac{1}{3}, \frac{1}{2}\right]$

(i) $]-3,-2[\cup]2,3[$

(j) $]-\frac{3}{2},1[$

(k) $[-\sqrt{2}, \sqrt{2}]$

(1) $[-\sqrt{2}, \sqrt{2}]$

(m) $]-3,-2[\cup]2,3[$

- (n) [0, 2[
- (o) $]-\infty, -3[\cup]1, +\infty[$
- (p) $]1, +\infty[$

- 8. (a) $\{-7, -1\}$ (b) $\{-4, 2\}$
 - (c) $\{-1\}$ (d) $\{-\sqrt{7}, \sqrt{7}\}$
- 9. (a) Afirmação falsa. Por exemplo, para x=4 e y=4, tem-se $\sqrt{4+4}=\sqrt{8}\neq 4=\sqrt{4}+\sqrt{4}$.
 - (b) Afirmação falsa. Por exemplo, para n=2, x=2 e y=1, tem-se $(2+1)^2=9\neq 4+1=2^2+1^2.$
 - (c) Afirmação verdadeira. Justifique.
- 10. (a) Conjunto dos majorantes: $[7, +\infty[; \sup A = 7; \max A = 7$ Conjunto dos minorantes: $]-\infty, 0]; \inf A = 0; \min A = 0$ A é limitado porque é majorado e minorado
 - (b) Majorantes: $[2, +\infty[$; sup B=2; não existe máximo Conjunto dos minorantes: \emptyset ; não existe ínfimo nem mínimo B não é limitado porque não é minorado
 - (c) Conjunto dos majorantes: $[2, +\infty[$; sup C=2; não existe máximo Conjunto dos minorantes: $]-\infty,1]$; inf C=1; não existe mínimo C é limitado porque é majorado e minorado
 - (d) Conjunto dos majorantes: $[\sqrt{2}, +\infty[$; sup $D = \sqrt{2}$; não existe máximo Conjunto dos minorantes: $]-\infty,1]$; inf D=1; min D=1 D é limitado porque é majorado e minorado
 - (e) Conjunto dos majorantes: \emptyset ; não existe supremo nem máximo Conjunto dos minorantes: $]-\infty,1]$; inf E=1; min E=1 E não é limitado porque não é majorado
 - (f) Conjunto dos majorantes: $[\sqrt{5}, +\infty[; \sup F = \sqrt{5}; \text{ não existe máximo Conjunto dos minorantes: }] \infty, -\sqrt{5}]; \inf F = -\sqrt{5}; \text{ não existe mínimo } F$ é limitado porque é majorado e minorado
 - (g) Conjunto dos majorantes: $[0, +\infty[$; $\sup G = 0$; $\max G = 0$ Conjunto dos minorantes: $]-\infty, 0]$; $\inf G = 0$; $\min G = 0$ G é limitado porque é majorado e minorado
 - (h) Conjunto dos majorantes: $[1, +\infty[$; $\sup H = 1$; $\max H = 1$ Conjunto dos minorantes: $]-\infty, 0]$; $\inf H = 0$; não existe mínimo H é limitado porque é majorado e minorado
 - (i) Conjunto dos majorantes: $[\frac{1}{2}, +\infty[$; $\sup I = \frac{1}{2}; \max I = \frac{1}{2}$ Conjunto dos minorantes: $]-\infty, -1]$; $\inf I = -1$; $\min I = -1$ I é limitado porque é majorado e minorado

- 11. (a) Seja $X=\mathbb{N}$. Então, $\inf X=\emptyset. \ X \text{ não \'e aberto porque int } X\neq X$ $\overline{X}=\mathbb{N}. \ X \text{ \'e fechado porque } \overline{X}=X$ $X'=\emptyset$
 - (b) Seja $X=\mathbb{R}$. Então, $\operatorname{int} X=\mathbb{R}.\ X \text{ \'e aberto porque int } X=X$ $\overline{X}=\mathbb{R}.\ X \text{ \'e fechado porque } \overline{X}=X$ $X'=\mathbb{R}$
 - (c) Seja $X=\mathbb{Z}$. Então, $\operatorname{int} X=\emptyset. \ X \text{ não \'e aberto porque int } X\neq X$ $\overline{X}=\mathbb{Z}. \ X \text{ \'e fechado porque } \overline{X}=X$ $X'=\emptyset$
 - (d) Seja $X=\mathbb{R}\backslash\mathbb{Q}$. Então, $\operatorname{int} X=\emptyset.\ X \text{ não \'e aberto porque int }X\neq X$ $\overline{X}=\mathbb{R}.\ X \text{ não \'e fechado porque }\overline{X}\neq X$ $X'=\mathbb{R}$
 - (e) Seja $X=\mathbb{Q}$. Então, $\operatorname{int} X=\emptyset.\ X \text{ não \'e aberto porque int } X\neq X$ $\overline{X}=\mathbb{R}.\ X \text{ não \'e fechado porque } \overline{X}\neq X$ $X'=\mathbb{R}$
 - (f) Seja X=[0,2[. Então, $\operatorname{int} X=]0,2[$. X não é aberto porque $\operatorname{int} X\neq X$ $\overline{X}=[0,2].$ X não é fechado porque $\overline{X}\neq X$ X'=[0,2]

 - (i) Seja $X=\mathbb{Q}\cap[-2,0[$. Então, int $X=\emptyset$. X não é aberto porque int $X\neq X$ $\overline{X}=[-2,0]$. X não é fechado porque $\overline{X}\neq X$ X'=[-2,0]
 - (j) Seja $X=(\mathbb{R}\backslash\mathbb{Q})\cap[0,2]$. Então, int $X=\emptyset$. X não é aberto porque int $X\neq X$ $\overline{X}=[0,2]$. X não é fechado porque $\overline{X}\neq X$ X'=[0,2]

- (k) Seja $X=]0,3[\backslash\{1\}\cup\{4,5\}$. Então, $\inf X=]0,3[\backslash\{1\}.\ X$ não é aberto porque int $X\neq X$ $\overline{X}=[0,3]\cup\{4,5\}.\ X$ não é fechado porque $\overline{X}\neq X$ X'=[0,3]
- (l) Seja $X = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$. Então, $\operatorname{int} X = \emptyset. \ X \text{ não \'e aberto porque int } X \neq X$ $\overline{X} = X \cup \{0\}$. $X \text{ não \'e fechado porque } \overline{X} \neq X$ $X' = \{0\}$
- 12. (a) Por exemplo, [1,2[ou $\mathbb Q$
 - (b) \emptyset ou \mathbb{R}
 - (c) Por exemplo, [1, 2]
 - (d) Por exemplo, $[1, +\infty)$
 - (e) Por exemplo, \mathbb{N} , \mathbb{Z} , \mathbb{Q} , $\mathbb{R}\setminus\mathbb{Q}$
 - (f) Por exemplo, [1, 2]
 - (g) Por exemplo, [1, 2]
 - (h) Por exemplo, [1, 3]
 - (i) Por exemplo, $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
 - (j) Por exemplo, {2}
 - (k) Por exemplo, $]1,2[\cup]2,3[$
 - (l) Por exemplo, $\left\{ (-1)^n + \frac{1}{n} : n \in \mathbb{N} \right\}$
- 13. (a) Afirmação falsa. Por exemplo, para A=]0,2[tem-se que A é aberto (justifique) e, no entanto, A é limitado (justifique).
 - (b) Afirmação falsa. Por exemplo, para A =]1, 3[e $B = \{2\}$ tem-se que $A \cup B =]1, 3[$, que é aberto (justifique que A é aberto, que B é fechado e que $A \cup B$ é aberto).
 - (c) Afirmação falsa. Por exemplo, para A=]1,3] e B=[3,5[tem-se que $A\cap B=\{3\},$ que é fechado (justifique que A e B não são abertos nem fechados e que $A\cap B$ é fechado).
 - (d) Afirmação falsa. O conjunto $A =]0, 4[\cap \mathbb{Q}]$ não é aberto porque int $A = \emptyset \neq A$.
 - (e) Afirmação falsa. O conjunto $A=[0,7] \cap \mathbb{Q}$ não é fechado porque $\overline{A}=[0,7] \neq A$.
 - (f) Afirmação falsa. Tem-se que $A =]-\infty, -\sqrt{5}[\,\cup\,]\sqrt{5}, +\infty[$. Consequentemente, o conjunto dos majorantes é o conjunto vazio e, portanto, A não é limitado superiormente.

- (g) Afirmação verdadeira. Justifique.
- 14. (a) int $A = \mathbb{R} \setminus \mathbb{Z}$; $\overline{A} = A' = \mathbb{R}$

Conjunto dos majorantes: \emptyset ; não existe supremo nem máximo Conjunto dos minorantes: \emptyset ; não existe ínfimo nem mínimo

- (b) $B =]-\sqrt{2}, \sqrt{2}[$ $\operatorname{int} B =]-\sqrt{2}, \sqrt{2}[; \overline{B} = B' = [-\sqrt{2}, \sqrt{2}]$ Conjunto dos majorantes: $[\sqrt{2}, +\infty[; \sup B = \sqrt{2}; \operatorname{n\~{ao}} existe m\'{aximo}$ Conjunto dos minorantes: $]-\infty, -\sqrt{2}[; \inf B = -\sqrt{2}; \operatorname{n\~{ao}} existe m\'{n}imo]$
- (c) $C =]-\sqrt{50}, \sqrt{50}[\cap \mathbb{R} \setminus \mathbb{Q}]$ int $C = \emptyset$; $\overline{C} = C' = [-\sqrt{50}, \sqrt{50}]$ Conjunto dos majorantes: $[\sqrt{50}, +\infty[; \sup C = \sqrt{50}; \text{ não existe máximo}]$ Conjunto dos minorantes: $]-\infty, -\sqrt{50}[; \inf B = -\sqrt{50}; \text{ não existe mínimo}]$
- (d) $D=]-\infty,0[$ int $D=]-\infty,0[;$ $\overline{D}=D'=]-\infty,0]$ Conjunto dos majorantes: $[0,+\infty[;$ sup D=0; não existe máximo Conjunto dos minorantes: $\emptyset;$ não existe ínfimo nem mínimo
- (f) $F = (]-2,2[\cap \mathbb{Q}) \cup ([1,\pi] \cap \mathbb{R} \setminus \mathbb{Q})$ $\operatorname{int} F =]1,2[; \overline{F} = F' = [-2,\pi]$ Conjunto dos majorantes: $[\pi,+\infty[; \sup F = \pi; \max F = \pi$ Conjunto dos minorantes: $]-\infty,-2]; \inf F = -2;$ não existe mínimo
- (g) $G=(]-7,-1[\cap\mathbb{Q})\cup(]-\sqrt{3},\sqrt{3}[\cap\mathbb{R}\setminus\mathbb{Q})$ int $G=]-\sqrt{3},-1[;\ \overline{G}=G'=[-7,\sqrt{3}]$ Conjunto dos majorantes: $[\sqrt{3},+\infty[;\ \sup G=\sqrt{3};\ \text{não existe máximo}$ Conjunto dos minorantes: $]-\infty,-7];\ \text{inf } G=-7;\ \text{não existe mínimo}$
- (h) int $H = H \setminus \{0\}$; $\overline{H} = H' = [0, 1]$ Conjunto dos majorantes: $[1, +\infty[$; sup H = 1; não existe máximo Conjunto dos minorantes: $]-\infty, 0]$; inf H = 0; min H = 0