Задача А. Конфетное настроение

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

У вас есть коробка одинаковых на вид шоколадных конфет с различными начинками. Некоторые из начинок вам кажутся вкусными, некоторые же, наоборот, невкусными. Вы выбираете случайным образом равновероятно любую конфету из оставшихся и съедаете её, после чего ваше настроение изменяется на некоторую величину, зависящую от начинки. Если попалась вкусная конфета, то эта величина будет неотрицательной, если невкусная — отрицательной; к тому же, после первой же невкусной конфеты желание есть конфеты пропадает. Ну а если невкусной конфеты так и не попалось, то все конфеты в коробке будут съедены.

Вам известно, сколько конфет с какой начинкой содержится в коробке и каким образом каждая начинка влияет на ваше настроение. Требуется узнать математическое ожидание величины, на которую изменится ваше настроение после того, как вы по той или иной причине закончите есть конфеты.

Формат входного файла

Первая строка ввода содержит число n — количество конфет в коробке $(1 \le n \le 100)$. Вторая строка содержит n целых чисел a_i : i-е из этих чисел указывает, на какую величину изменится настроение после поедания i-й конфеты $(|a_i| \le 100)$. Если значение a_i отрицательно, i-я конфета считается невкусной.

Формат выходного файла

В единственной строке выведите математическое ожидание изменения настроения с абсолютной или относительной погрешностью, не превышающей 10^{-9} .

Примеры

stdin	stdout
5	10.000000000
4 1 3 0 2	
2	-1.500000000
-1 -2	

Note

Математическое ожидание случайной величины — это ожидаемое среднее значение этой величины, которое получилось бы, если бы удалось провести бесконечное количество экспериментов.

Задача В. Шарики

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Прямоугольное поле состоит из $N \cdot M$ клеток (N рядов по M клеток). В каждой клетке лежит по одному шарику, причём все шарики разного цвета, отличающегося от цвета поля.

За один ход можно взять шарик в клетке (r, c) и переместить его в одну из соседних по стороне клеток (x, y), при этом шарик, находившийся в клетке (x, y), убирается с поля (если он, конечно, там был).

Мальчик Костя проделал несколько таких операций, затем взял фотоаппарат и сфотографировал вид сверху на поле. Когда папа Кости увидел эту фотографию, то у него возник логичный вопрос: сколько разных фотографий можно получить из начального поля (т. е. берётся поле, заполненное шариками, последовательно выполняется некоторое, возможно нулевое, количество ходов, затем делается фото, после чего поле восстанавливается в первоначальное состояние и вновь делаются ходы до следующего фото). Все фотографии Костя делает одинаково, не меняя положения фотоаппарата, при этом само поле также не двигается и не поворачивается. На каждой фотографии видно всё поле.

Формат входного файла

В единственной строке ввода содержится два целых числа N и M ($1 \le N, M \le 50$) — количество строк и столбцов поля соответственно.

Формат выходного файла

В единственной строке выведите количество различных фотографий, которые может получить мальчик Костя. Так как это количество может быть слишком большим, то выведите только остаток от деления этого числа на $1\,000\,200\,013$.

Примеры

stdin	stdout
1 1	1
2 2	137

Задача С. Конфетное настроение

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

У вас есть коробка одинаковых на вид шоколадных конфет с различными начинками. Некоторые из начинок вам кажутся вкусными, некоторые же, наоборот, невкусными. Вы выбираете случайным образом равновероятно любую конфету из оставшихся и съедаете её, после чего ваше настроение изменяется на некоторую величину, зависящую от начинки. Если попалась вкусная конфета, то эта величина будет неотрицательной, если невкусная — отрицательной; к тому же, после первой же невкусной конфеты желание есть конфеты пропадает. Ну а если невкусной конфеты так и не попалось, то все конфеты в коробке будут съедены.

Вам известно, сколько конфет с какой начинкой содержится в коробке и каким образом каждая начинка влияет на ваше настроение. Требуется узнать математическое ожидание величины, на которую изменится ваше настроение после того, как вы по той или иной причине закончите есть конфеты.

Формат входного файла

Первая строка ввода содержит число n — количество конфет в коробке $(1 \le n \le 100)$. Вторая строка содержит n целых чисел a_i : i-е из этих чисел указывает, на какую величину изменится настроение после поедания i-й конфеты $(|a_i| \le 100)$. Если значение a_i отрицательно, i-я конфета считается невкусной.

Формат выходного файла

В единственной строке выведите математическое ожидание изменения настроения с абсолютной или относительной погрешностью, не превышающей 10^{-9} .

Примеры

stdin	stdout
5	10.000000000
4 1 3 0 2	
2	-1.500000000
-1 -2	

Note

Математическое ожидание случайной величины — это ожидаемое среднее значение этой величины, которое получилось бы, если бы удалось провести бесконечное количество экспериментов.

Задача D. Интересный язык

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Изучая древний байтрусский язык, учёные столкнулись с любопытным явлением: в языке использовались только первые 12 букв современного латинского алфавита, из-за чего многие пары слов в языке были очень похожи друг на друга. В процессе подготовки отчёта об исследованиях учёные столкнулись со следующей задачей.

Пусть все слова языка пронумерованы начиная с 1. Обозначим i-е слово в языке как S_i , а его длину как L_i . Необходимо посчитать количество четвёрок индексов (i, j, a, b), для которых выполняются следующие условия:

- i < j,
- $L_a > L_i$,
- $L_b > L_i$,
- первые L_i символов строки S_a образуют строку S_i ,
- первые L_i символов строки S_b образуют строку S_i ,
- ullet если из строк S_a и S_b убрать первые L_i и L_j символов соответственно, то останутся одинаковые строки.

Смотрите пример для пояснения.

Помогите учёным посчитать требуемую статистику.

Формат входного файла

В первой строке находится целое число N — количество слов в древнем байтрусском языке. В следующих N строках находятся слова байтрусского языка по одному в строке. Все слова непустые и содержат только строчные латинские буквы от «a» до «1» включительно. Все слова различны. Суммарная длина всех слов не превосходит 10^6 .

Формат выходного файла

Выведите единственное число — количество четвёрок индексов, удовлетворяющих условию задачи.

Яндекс. Алгоритм Третий отборочный раунд, 22 июля 2013 года

Примеры

stdin	stdout
7	4
a	
b	
ab	
bb	
ac	
bc	
abc	
8	4
d	
f	
dd	
ff	
ddd	
fff	
ddfff	
fffff	

Note

В первом примере подходят следующие четвёрки индексов: (1,2,3,4), (1,2,5,6), (1,3,5,7), (2,3,6,7).

Во втором примере подходят следующие четвёрки индексов: (1,3,3,5), (2,4,4,6), (3,4,7,8), (2,6,6,8).

Задача Е. Дорожный вопрос

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 4 секунды
Ограничение по памяти: 256 мегабайт

Дорожная сеть Байтруссии пришла в упадок: по каждой дороге можно проехать только в одном направлении, одни и те же два города могут соединять несколько дорог, а между другими двумя городами вообще может не быть пути по дорогам...

Чтобы спасти положение, парламент Байтруссии издал закон, согласно которому за въезд в каждый город путешественник обязан заплатить налог. Величина налога фиксирована для каждого города и определяется бургомистром.

Закон вызвал недовольство торговых гильдий, которые обратились к королю с петицией. В результате король своим указом запретил требовать налог за въезд в город X с путешественника, который уже заплатил налог в некотором городе Y, в который можно добраться из X напрямую или через некоторые другие города (не обязательно те, через которые тот уже прошёл). Тем не менее, в этой ситуации путешественник может по собственной инициативе заплатить налог в городе X, если сочтёт это для себя выгодным. Платить налог можно только в момент въезда в город.

Купцу первой гильдии Биту Битычу Байтоградскому нужно добраться из столицы Байтруссии М. в крупный портовый город С. При этом купец, естественно, хочет заплатить как можно меньшую сумму в качестве налогов. Обратите внимание, что Бит уже находится в городе М., а значит, не обязан — и не может — заплатить в нём налог до начала движения.

По информации о карте дорог Байтруссии и величине въездного налога для каждого города проложите оптимальный маршрут для купца. Гарантируется, что путь из М. в С. по дорогам Байтруссии существует.

Формат входного файла

В первой строке ввода записано два целых числа n и m ($2 \le n \le 100\,000$, $1 \le m \le 500\,000$) — количество городов и дорог в Байтруссии. Во второй строке содержится n целых чисел C_i ($0 \le C_i \le 10\,000$) — величины налогов за въезд в города. Далее в m строках записано по два целых числа x_i и y_i ($1 \le x_i, y_i \le n, x_i \ne y_i$), описывающих i-ю дорогу, идущую из города x_i в город y_i . Между парой городов может быть несколько дорог. Для удобства город M. имеет номер M0, а город M0. Гарантируется, что из города M1, можно добраться в город M2. Числа в строках разделяются одиночными пробелами.

Формат выходного файла

Выведите единственное число — минимальную сумму налогов, которую нужно заплатить на пути из М. в С.

Яндекс. Алгоритм Третий отборочный раунд, 22 июля 2013 года

Примеры

stdin	stdout
3 2	1
1 1 1	
1 3	
1 3	
4 4	6
1 2 3 4	
1 2	
2 3	
3 2	
3 4	
2 2	2
1 2	
1 2	
2 1	

Задача F. Место под столицу

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Древнебайтландский князь Георгий Длинноногий во время своего похода нашёл огромное плоское поле со странной аномалией: по этому полю можно было передвигаться или по любым прямым, проходящим через фиксированную точку K, или по любым окружностям с центром в той же самой точке. Попытки движения по другой траектории к успеху не приводили.

Удивился князь и решил основать на этом месте город, который впоследствии стал столицей Байтруссии, а точку K сделать точкой отсчёта для всех дорог княжества. Но прежде задумался: какое наименьшее расстояние по полю ему придётся пройти от заданной точки A до заданной точки B?

При движении можно в любой момент сменить траекторию и начать двигаться по другой дуге или радиусу, проходящим через данную точку. Пройденным расстоянием считается сумма расстояний, пройденных по каждому радиальному или кольцевому участку.

Формат входного файла

В первой строке ввода заданы четыре целых числа: сначала координаты точки A (x_A и y_A), а затем координаты точки B (x_B и y_B). Точка K расположена в начале координат. Все координаты являются целыми числами, по модулю не превосходящими 10^6 .

Формат выходного файла

Одно число — минимальное расстояние, которое придётся пройти князю Георгию по пути из точки A в точку B. Ответ считается верным, если абсолютная или относительная погрешность не превосходит 10^{-6} .

Примеры

stdin	stdout
0 5 4 3	4.636476090008
0 5 4 -3	10.00000000000