การจำแนกกลุ่มของสัญญาณโจมตีแบบจำลองการเรียนรู้เชิงลึก Clustering Analysis of Deep Learning Adversarial Perturbations

บทคัดย่อ

บทความวิชาการนี้กล่าวถึงการฝึกสอนแบบจำลองอย่างง่าย เพื่อค้นหารูปแบบของสัญญาณรบกวนที่สามารถโจมตีชุดข้อมูลรับเข้าให้ ได้ผลลัพธ์ของแบบจำลองที่ผิดเพี้ยนไปได้ โดยพิจารณาการโจมตีบนโครง ข่ายประสาทเทียมแบบเชื่อมถึงกันทั่ว และโครงข่ายประสาทเทียมแบบสัง วัฒนาการ โครงข่ายประสาทเทียมทั้งสองแบบถูกฝึกสอนด้วยชุดข้อมูล MNIST ซึ่งมีชุดข้อมูลสำหรับฝึกสอนจำนวน 60,000 จุด หลังจากการฝึกสอนโครงข่ายประสาทเทียม นำข้อมูลทดสอบจำนวน 10,000 จุด มาทำการหาสัญญาณโจมตีความยาวเท่าจำนวนจุดทดสอบ และพยายาม ทำการเรียนรู้จัดหมวดหมู่ ผลลัพธ์ที่ได้คือ...

คำสำคัญ: ปัญญาประดิษฐ์, จักรกลเรียนรู้, การเรียนรู้เชิงลึก, การโจมตี การเรียนรู้

Abstract

blablabla

Keywords: Artificial Intelligence, Machine Learning, Deep Learning, Adversarial Attack

1. ความสำคัญและที่มา

แบบจำลองจักรกลเรียนรู้ (machine learning models) นั้น ถูกใช[้]อย่างกว้างขวางในบัจจุบัน อย่างไรก็ตามแบบจำลองใดๆ นั้นอาจมี ความผิดพลาดต่อการทำการโจมตีประสงค์ร้าย (adversarial attacks) เพื่อจงใจให้ผลลัพธ์ที่แบบจำลองนั้นคาดเดามีความผิดพลาดจากผลลัพธ์ที่ ควรจะเป็น

ในการเรียนรู้เชิงตัวแปรเสริม (parameter-based learning) นั้น ตัวแปรเสริม (parameters) ค่าน้ำหนัก (weights) บนแบบจำลอง การเรียนรู้เชิงลึก (deep learning models) เป็นตัวกำหนดความฉลาด ของแบบจำลอง อาจมีตัวแปรเสริมบางชุดที่ทำให้แบบจำลองมีช่องโหวต่อ การโจมตีประสงค์ร้าย การโจมตีนั้นอาจเกิดจากการเพิ่มสัญญาณรบกวน

ซึ่งผ่านการคำนวน (calculated artefacts) เข้าสู่ข้อมูลรับเข้า (inputs) ซึ่งทำให้ความผิดพลาดของแบบจำลองในการพยากรณ์คำตอบนั้นเปลี่ยน ไปอย่างชัดเจน

2. ชุดวรรณกรรมและกระบวนวิธี

2.1 การโจมตีการเรียนรู้

เราจะกล่าวถึงแบบจำลองที่ถูกฝึกสอนให้จัดจำแนกข้อมูลชุด X และ Y และพิจารณาข้อมูลรับเข้า (x,y) หนึ่งจุดบนชุดทดสอบ จะ นิยามข้อมูลโจมตี (adversarial) \tilde{x} ว่า

$$\tilde{x} = x + \eta \tag{1}$$

เมื่อเรียก η ว่าสัญญาณรบกวน (perturbations)

ข้อสังเกตที่เกิดขึ้นคือเราอาจะนิยามชุดสัญญาณรบกวนดัง
กล่าว ว่ามีความเข้มข้น (intensity) ในระดับที่ต่ำกว่าตามนุษย์จะมอง
เห็น กล่าวคือเมื่อเทียบกับชุดข้อมูลรับเข้าแล้ว ช่วง (range) ของสัญญาณ
รบกวนนั้นน้อยกว่าช่วงของข้อมูลรับเข้าที่เป็นไปได้มาก การนิยามดัง
กล่าวจะใช้การนิยามเซตของสัญญาณรบกวนที่เป็นไปได้ทั้งหมด (พิจารณา
ว่ามีค่า η ที่เป็นไปได้หลายค่า และแต่ละค่าโจมตีแบบจำลองได้แตกต่าง
กันออกไป) ว่า

$$H = \{ \eta : \|\eta\|_{\infty} \le \epsilon \} \tag{2}$$

เมื่อนิยามให[้]ตัวดำเนินการนอร์มอนันต[์] (infinity norm) เป็น

$$||x||_{\infty} = \max_{i} x_i \tag{3}$$

และค่า ϵ เป็นค่าคงที่บ่งบอกความเข้มข้นของสัญญาณมากสุดที่รับได้ โดย มากมักมีค่าน้อย

2.2 การหาสัญญาณรบกวนด้วยวิธีการก้าวเคลื่อนถอย หลัง

พิจารณาการเรียนรู้แบบจำลอง M จะพบว[่]าการหาตัวแปร เสริม (parameters) heta ที่ดีที่สุดของ M นั้นทำได้ด้วยการนิยามพังก์ชันสูญ

เสีย (loss function) ℓ_i ของจุดฝึกหัด (training point) i ได้ โดยให้ฟังก์ชัน สูญเสียเป็นฟังก์ชันที่เปรียบเทียบเป้าหมาย (target) y_i จากชุดฝึกหัด และ คำตอบ $\hat{y}_i = M(x_i)$ จากชุดคุณสมบัติ (features) x_i ที่ถูกป้อนเข้า แบบจำลอง

เราอาจนิยามพังก์ชันสูญเสียอย่างง่ายได้เป็นพังก์ชันผลของผล ต่างกำลังสอง

$$\ell_i = \sum_{i=1}^{M} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{M} (M(x_i) - y_i)^2$$
 (4)

เมื่อ M เป็นขนาดของเป้าหมาย (target) สังเกดว่ายิ่งค่าของ \hat{y}_i และ y_i ต่างกันมากเท่าใด (มองอีกมุมหนึ่ง คือยิ่งตอบผิดมากเท่าใด) ค่าดังกล่าวก็ จะยิ่งเพิ่มขึ้นมากเท่านั้น อย่างไรก็ดี ในการฝึกสอนแบบจำลองการเรียนรู้ เชิงการจำแนก (classification) ส่วนมาก มักใช้พังก์ชันสูญเสียเป็นพังก์ชัน สูญเสียแบบความวุ่นวายข้ามชั้น (cross entropy loss)

$$\ell = -\sum_{c=1} M y_{o,c} \ln(p_{o,c}) \tag{5}$$

เมื่อ M เป็นจำนวนชั้น (class) ที่เป็นไปได้ y เป็นค่าฐานสองที่ บ่งบอกว่าชั้นข้อมูล (class) c เป็นคำตอบที่ถูกต้องสำหรับการคาดเดา (observation) o และ p เป็นค่าความน่าจะเป็นที่การคาดเดา o ตอบว่า เป็นชั้นข้อมูล c

นอกจากนี้เราอาจนิยามผลรวมของพังก์ชันสูญเสียทั่วทั้งชุด ฝึกสอน

$$\mathcal{L} = \sum_{i=1}^{N} l_i \tag{6}$$

เป็นผลรวมของพังก์ชันสูญเสียบนทุกจุดฝึกหัด เมื่อ N เป็นขนาดของชุด ฝึกหัด (training set)

คำอธิบายต่อการเกิดขึ้นของสัญญาณรบกวน

มีหลายทฤษฎีพยายามอธิบายการเกิดขึ้นของการโจมตีแบบ จำลอง ซึ่งอาจยกตัวอย^{่า}งทฤษฎีและคำอธิบายได[้]ดังนี้

2.3.1 การประพฤติตัวเป็นเส้นตรง

Goodfellow และคณะ พิจารณาลของการโจมตีที่เกิดจาก $ilde{x}$ อาจพิจารณาได้จากการคูณสมการเพื่อหาค่าส่งออกจากชุดน้ำหนัก (weights) ของชั้นแบบจำลองการเรียนรู้เชิงลึก (deep learning layers)

$$w^{\top}\tilde{x} = w^{\top}x + w^{\top}\eta \tag{7}$$

คณะวิจัยสังเกตพฤติกรรมว[่]าสัญญาณรบกวน η กระตุ้นส[่]วนของชุด น้ำหนักและพังก์ชันกระตุ้น (activation function) ในแบบจำลอง ให้ประพฤติตัวเยี่ยงฟังก์ชันเส้นตรง (linear functions) ซึ่งการแสดง พฤติกรรมดั่งเส้นตรง (linearity) ในกรณีชายขอบ (edge case) ของข้อมูล รับเข้านั้นก่อให้เกิดความเป็นไปได้ที่แบบจำลองจะถูกโจมตี

เพื่อพิสูจน์ทฤษฎีดังกล่าว Goodfellow พิจารณาผลความน่า จะเป็นของคำตอบที่ออกจากแบบจำลองเมื่อปรับค่า ϵ ดังแสดงในสมการ ที่ 2 และพบว่าความน่าจะเป็นของข้อมูลส่งออก (output) ของแต่ละชั้น ข้อมูล (class) มีความสัมพันธ์เชิงเส้นตรงกับค่า ϵ ที่เพิ่มขึ้นเรื่อยๆ

2.4 การทดลองหาสัญญาณรบกวนบนชุดข้อมูล MNIST

- 2.5 การจำแนกกลุ่มของสัญญาณรบกวน
- 3. ผลลัพธ์
- 4. อภิปรายผล
- 5. สรุป