

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique-Université de Monastir Institut Supérieur d'Informatique et de Mathématiques de Monastir

licence en

PRÉSENTATION DU PROJET DE FIN D'ÉTUDES

Conception et réalisation d'un pousse seringue électrique connecté

Réalisé par :

Mohamed Aziz MNASSER & Majdi RHIM

Devant le jury composé de :

Président : Skander DOSS

Rapporteur : Ibtihel NOUIRA Encadrant Pédagogique :M. Sadok BAZINE

Encadrant Professionnel: M. Ferid Kamel

O1 Cadre général du projet

Problématique & cahier de charge

O3 Architecture globale

Conception & Réalisation

Conclusion et perspectives

Cadre général du projet

Titre

Objectis ...

compléter les phrases

Un système de commande

Une interface homme machine

☐ Un moyen de communication TCP/IP

☐ Une solution logicielle

Architecture globale

Schéma synoptique du PSC

Architecture logicielle

Schéma synoptique du PSC

Architecture logicielle

Conception & Réalisation

03

Le noyau FreeRTOS

> Le noyau FreeRTOS

Titre

Task B

> Contrôle du moteur pas à pas

□NEMA 1742HS

Moteur PAS à PAS (NEMAI17)

Vitesse VS torque

□ Driver L6474

□Flux de données & calculs

- FlowRateQHandle
- RadiusQHandle
- VolumeQHandle
 - ModeQHandle

Titre

$V = q_v / S$

Avec:

vitesse du fluide

q_v: débit volumique en [m³/s]
v: vitesse du fluide en [m/s]
S: section de passage en [m²]

N=v/p

la vitesse de l'arbre récepteur

Avec:

N : nombre de tours par seconde(tr/s)

V : vitesse de déplacement nécessaire(m/s)

P: le pas de la vis(m)

N=D*N/d

la vitesse de l'arbre moteur

Avec:

N : Nombre de tours par seconde(tr/s) de l'arbre moteur

D : Diamètre de la poulie montée sur l'arbre moteur

N : Nombre de tours par seconde(tr/s) de l'arbre récepteur

D : Diamètre de la poulie montée sur l'arbre récepteur

➤ Interface homme-machine (IHM):

1. Présentation des interfaces

20

Touch GFX

SyriWave

New Patient

Last Patient

Patients DataBase

Special Modes

2. Architecture MVP

3. LTDC (LCD-TFT display Controller) et contrôleur de touches résistives.

framebuffer

8 configurable pixel formats:

ARGB8888 RGB888 RGB565 ARGB1555 ARGB4444 L8 (8 bit luminance) AL44 (4 bit alpha, 4 bit luminance) AL88 (8 bit alpha, 8 bit luminance)

ARGB8888 internal pixel format

to RGB data lines

➤ Stockage en local

Carte SD

≻Connectivité

Connectivity

Id de la seringue

Débit

Volume restant

Temps restant

Alarmes et Alertes

Address offset: 0x00

Read only = 0xXXXX XXXX where X is factory-programmed

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

	U_ID(31:0)																														
г	r	г	r	г	г	г	г	г	г	г	r	г	r	г	г	г	г	г	г	г	r	г	r	r	г	г	г	г	г	Γ	г

Bits 31:0 U_ID(31:0): 31:0 unique ID bits

Address offset: 0x04

Read only = 0xXXXX XXXX where X is factory-programmed

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	U_ID(63:48)														
r	г	г	г	г	г	r	r	r	r	г	г	г	Г	Γ	г
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	U_ID(47:32)														
г	г	г	Γ	г	Γ	r	r	r	ſ	г	г	r	г	Γ	ı

Bits 31:0 U_ID(63:32): 63:32 unique ID bits

Address offset: 0x08

Read only = 0xXXXX XXXX where X is factory-programmed

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	U_ID(95:80)														
r	r	r	r	r	r	r	Γ	r	г	r	r	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	U_ID(79:64)														
г	r	г	r	r	г	r	г	r	г	г	г	г	г	r	г

Registre UID

Titre

> Acquisition des données

Capteur de position

Capteur de diamètre

Capteur de température

Conclusion & **暗富富** 02 01 04

Conclusion

HARDWARE

SOFTWARE

RÉSEAUX

Préspective

Application mobile

Capteur de pression

Clavier à Membrane

Gestion d'alimentation

