```
Jsentopenindex
innée Energie:
 - ungeordnete Energie und Bindungs energie
  ergeben inner Energie U
1. Hauptoute de Themodynumik:
  du = TdS + puv
d\mathring{a} \quad d\mathring{w}
Warne kapazitat:
   c = dQ sperifische Wk: c mit c= m
              molare WK: GH wit Gm = G
 Ally. Zustundsgl. d. ideulen jases:
  PV = nRT mit R = 8/3/4 mock
  Poisson - Gerbungen:
  Sie bescheben isentrope Varganje
  für dus idente für.
   wentsp
              Helitasie
  Ilia punsh
 (kin theyic-
               Cohur Entro
               fill scuring,
  moransia,
da=Tds=0

(=> du=pdv
     PV^{k} = const ; T.V^{k-1} = const
  einselsen u. Zustumissyi. pV=nRT
  P^{1-K}T^{K} = const
   K-Jentropeninder, Adiabaten exponent
   Veshaltnis des spez. Wasmen bei const.p
```

PVT = const.

PV(T)

Pr (V)

 $V_{p}(\tau)$

4(4)

TV(T)

Tp(V)

odes const. V

kinetische Gastheorie: reinerts ysude. Die "Bewegungsfeiheit enes Atoms wird deuch . Sindung lingeschränet. Für einatomige gase ist $k = \frac{1}{4} = \frac{5}{3}$ Treiheitsgrade " zwei atom. " " $\frac{7}{4} = \frac{5}{3}$ Treiheitsgrade oder & Freiheisquide " dieiatom (F table d. Atome resleitung des Poisson gleichungen: · Zoul d. Raum -richtempen) da = du + p dw ativitarishe Zustandsünderung da = 0 -> du = -pdv ; c= 44; c= 44-、デ 引用ロアニーアリン はこいM=美水 专业=-av => V-T-1/2=-1/11-K) $k = \frac{GP}{P} = \frac{1+2}{P} \qquad ; T = \frac{PV}{VR}$ PV+1 - tr P = p.VK = wonst

Clement - Desormes: Hier wird state Tp gemessen. Durch 3 druelle Eswasmung ist des Wasme= austausch die Warnekapazität des glasgefaßes zu venachlassigen. P wird mit einem Hanomekt gemessen Untersucht werden die adiabaten Zustandsunderungen: PAITA=TA mir PA>PA TA = Raumfemperatus; P2 = PA; T2 und (P3: T3 = T4) - das gas hat Wedenck, Temperaturusga, Finder state Pa, Ta=TA, Pa>PA - dann kunnsich des Druck angleichen; du cin Ventil geoffnet wird. Die Temperatur sinkt bein dusdennen: P2 = P4 1 12 Die Blonanme von Them aus de Poissongleichung beschner woden. - Eswasmung d. gases and Ty 1 V= const Berechnung von K wus den Steighöhen um hunometer $k = \frac{dp_0}{dp_0 + dp_1} = \frac{\Delta h_1}{\Delta h_0 - \Delta h_0}$ 1 suf. 3 Ende

Flammers feld-Rucher:

143 gens wird mir einem frei Genegichen

1 Lieppen verschieberen. Die Druckunderen

1 wit im Vernichnis zu der Ergenforegann zu

1 wit der Höppfern Echningt.

Rüdestellemorunge D=-4F = 54P = REST.

Signifequent 25 = Fr. = R. Fr.

Ulit folgends Formel wird des Isentropenindex bestimmt: $K = \frac{4\pi^2}{L^2} \cdot \frac{mV}{7S^2}$ Vessuch

2.3.05

Juliu Henr Hause goez,

Tutor: Hr. Horzec

Gesäte:

Glus - Apparatus (Eulpen)

V/cm³

1145 114+ 1142 ± 3m³

Stopfen m/g

4,58 4,50 4,52 ± 5,014

Stopfen Durlimesse:

11,40 11,90 11,90 ± 6,05 nm

Messung des Luft drucks am vouventet im Vesouchsraum (Apres = 3 hPa)

Stoppins Lichtschen Ke

200

Versuch 2 Flummesfeld - Rucher Freiheitsgrude $k = \frac{f+2}{f} = \frac{9}{7} = 1,29$ CO2 3ahomiq Schwingenger Zeit, sel ±0,5 1234567890 200 7210 100 30,5 100 100 200 100 100 200 200

_0,

neue M	lessung:	120-182	a ^r
	Schwaguya 100	30,+8	±0,50
2 3			
4 5	:	_ *	
44,			
† P. 9		e e e e e e e e e e e e e e e e e e e	
	A COLUMN TO THE PROPERTY OF TH	A PARTY OF THE PAR	

Fighersquale $f = 3 \quad K = \frac{5}{3} = 1/67$ $\pm cit / our$ latomiy Shungupen 200 200 200 200 200 200) 6418 6319 6319 6339 6339 6339 Druck de Vessegnyspasche 200 200

Luftdeick P= 1002 mbas ± 3 mbas

100Pa=1hPu 1hPa = 1mba

PFEasche = Pry + Psropjen = 1400,65 100599 Pa

 $F = m \cdot g$ $\frac{mg}{F_{shipken} A} = \frac{mg}{S} = 39B \cdot Fa$

N 2 atomig
$$f = 5$$
 $k = \frac{7}{5} = 1.40$

Soluting	Zeit/sec	
200	7915	Schlechtes satisfy the harman
200	6917	
200	6917	
5	200	6915
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6915	
200	6918	

	V	'esu	ch 1				
	(Clem	ent-I	esormes	Left (A	1,02) 28	itomit == 1/40
		George and the specific		ho/cm	hs_	h_2^{f}	=5 K#美型似
143 = 47	(12345678910	26 ±1 26 25 25 25 26 66 25 25 25 25 25	44444460565	33333333333333333333333333333333333333	
VIO = DAI							AND

zu Vesuch 2

CO_2

Literaturwert

$$\kappa_{id} = 7/5//N$$

1.4

Richtiger Wert: 1.30

Messwert

$$V = 1147 \times 10^{-6}; \pm 3.40^{-6} \text{ m}^{3} \qquad \delta V = 2_{1} \text{b} \cdot 10^{-3}$$

$$m = 4.50 \times 10^{-3}; \pm 0_{1}04 \cdot 10^{-3} \text{ kg} \qquad \delta m = 2_{1}2.40^{-3}$$

$$g = 9.81;$$

$$p0 = 1002 \times 10^{2};$$

$$\pm 0_{1}03.40^{-3} \text{ m}$$

$$S = \pi \left(\frac{11.9 \times 10^{-3}}{2}\right)^{2} \qquad \delta d = 2_{1}6.40^{-3}$$

$$S = 0.00011122 \qquad r = 0.0595 \qquad \delta r = 2_{1}6.40^{-3} \qquad \Delta r = r.\delta r.415.40.4$$

$$p = p0 + \frac{mg}{s}$$

$$100597. \qquad 2.65: 10.4.70^{-3}$$

$$x[\tau_{-}] = 4 \frac{\pi^{2}}{r^{2}} \text{m} \frac{V}{ps^{2}} \qquad \delta k = \sqrt{dV^{2} + dm^{2} + (2.ds)^{2}} = 1/1.40^{-2}$$

$$\frac{0.163751}{r^{2}} \approx 4_{1}22 \pm 0_{1}62 \qquad \Delta k = \delta k.k = 1/4.40^{-2}$$

nur mit Luftdruck

zu Versuch 2

Argon

Literaturwert

$$\kappa_{id} = 5/3//N$$

1.66667

Messwert

$$V = 1142 \times 10^{-6}; \quad = 2.40^{-6} \qquad dV = 2.6 \cdot 10^{-3}$$

$$S = \pi \left(\frac{11.9 \times 10^{-3}}{2}\right)^{2}; \qquad ?.55 = 10.4 \cdot 10^{-3}$$

$$m = 4.52 \times 10^{-3}; \quad = 0.01.40^{-3} \qquad dm = 2.2 \cdot 10^{-3}$$

$$g = 9.81;$$

$$p0 = 1002 \times 10^{2};$$

$$p = p0 + \frac{mg}{s};$$

p-p0

398.679

$$\kappa[\tau_{-}] = 4 \frac{\pi^{2}}{\tau^{2}} m \frac{v}{p s^{2}} \qquad \delta k = \sqrt{dV^{2} + dsn^{2}} + (2 \delta s)^{2} = -11 A \cdot A \delta^{-2}$$

$$\frac{0.163759}{\tau^{2}} \approx 16 \lambda^{2} \pm 0.02$$

$$\Delta k = 1/8 \cdot A \delta^{-2}$$

$$\kappa 2 [\tau_{-}] = 4 \frac{\pi^2}{\tau^2} m \frac{V}{p0 S^2}$$

$$\frac{0.16441}{\tau^2}$$

$$\kappa \left[\frac{63.2}{200} \right]$$

1.63995

$$\kappa 2 \left[\frac{63.2}{200} \right]$$

1.64647

Stickstoff

Literaturwert

$$\kappa_{id} = 7/5//N$$

1.4

Zu Versuch 2

Messwert

$$V = 1145 \times 10^{-6}; \pm 3.40^{-6} \qquad \text{AV} = 246.40^{-3}$$

$$S = \pi \left(\frac{11.9 \times 10^{-3}}{2}\right)^{2}; \qquad 2.55 = 40.14.40^{-5}$$

$$m = 4.58 \times 10^{-3}; + 0.04.40^{-5} \text{ of } m = 2.72.40^{-5}$$

$$g = 9.81;$$

$$p0 = 1002 \times 10^{2};$$

$$p = p0 + \frac{mg}{S};$$

$$p - p0$$

$$x[\tau] = 4 \frac{\pi^{2}}{\tau^{2}} m \frac{V}{pS^{2}}$$

$$\frac{0.16636}{\tau^{2}} \approx 4.37 \pm 0.02$$

$$\kappa 2 [\tau_{-}] = 4 \frac{\pi^2}{\tau^2} m \frac{V}{p0 S^2}$$

$$\frac{0.16703}{\tau^2}$$

$$\kappa \left[\frac{63.2}{200}\right]$$

1.666

$$\kappa 2 \left[\frac{63.2}{200} \right]$$

1.67271

hill abs.fehler h3 abs.fehler h1-h3 abs.fehler k1 fel.fehler h2 fehler h2 fehler h1-h3 abs.fehler h2-h3 h1-h3	tortseku Rülksek	
abs.fehler h3 abs.fehler h1-h3 abs.fehler k 12 12 133 0.19 141 4 1.41 12 2 1.33 0.19 141 141 15 2 1.33 0.19 141 141 15 2 1.27 0.15 15 15 15 15 15 15 15 15 15 15 15 15 1	quadrate d.abs	
abs.fehler h3 abs.fehler h1-h3 abs.fehl	abs.fehle	4 8 0 4 0 0
abs.fehler h3 abs.fehler h1-h3 abs.fehler k 16 141 4 4 141 12 17 141 4 141 13 19 141 4 141 13 20 141 4 141 13 21 141 4 141 15 22 141 6 141 15 23 141 6 141 15 24 141 15 25 141 15 27 $-h$ 0 $\Delta h = \sqrt{t^2 + t^2}$ h t	rel.fehler	$\begin{cases} dk = \sqrt{(0'h1)^2 + (0(h1-h2))^2} \end{cases}$
abs.fehler h3 abs.fehler h1 16 17 17 18 19 18 18 18 18 18 18 18 18	abs.fehler	25 25 25 25 25 25 25 25 25 25 25 25 25 2
abs.fehler h3 16 17 17 19 141 19 141 20 141 20 141 20 141 20 141 20 141 50 141 141	44444	1 4 4 4 4 1 C C C C C C C C C
abs.fehler 16 abs.fehler 17 17 19 18 18 18 17 17 17 19 20 20 20 $\Delta h = \sqrt{1}$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1
	abs.fehler 16 17 19 18 17 20	44 = 12 = 12 = 12 = 12 = 12 = 12 = 12 =
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	h_2 42 30 43 30 45 30 43 30 42 29 46 30	8 8 8 8
26 26 26 26 26 26 26 26 26 26 26 27 27 28 26 26 26 26 26 26 27 28 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	ର ର ର ର ର ର ର	26 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26

age 1

H Park
r r
Z
dem dem
oll de
53
rel.feh.vonMW abs.feh.von MW 0.05 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.05 0.07 0.05
MW K 1.30

 $\frac{1}{n^2 \cdot n} \sum_{\lambda} (x_{\lambda} - \overline{x})^2$

	$(\sqrt{n} M_{H})$	000	000	00:0	00:0	000	000	00.0	00.0	00.0						
		62	1.62	1.62	1.62	1.62	1.62	162	1.62	1.62						
	tropenindex k MW vc	1.64	1.63	1.64	1.64	1.62	1.6	1.61	1.61	1.6		the Vm	720 27	6,7	0,46370	4
7	Zeit pro schwingungT isentropenindex k MW von k	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	J		Y		16	
			63.4	63.2	63.2	63.5	63.9	63.8	63.8	63.9						
,	Schwingungen Zeit/sec	200	200	200	200	200	200	200	200	200						
	Messung	_	2	က	4	5	9	7	8	6						

	Zeit pro schwingung T isentropenindex k MW von k 0.36 0.36 1.26 0.37 1.23 0.37 1.23 0.36 0.37 1.24 0.37 1.22 0.37 1.22 0.37 1.18 0.37 1.18 0.37 1.19 0.37 1.22 0.37 1.18 0.37 1.22 0.37 1.22 0.37 1.22
	Zeit pro schwingungT is 36 0.36 36.5 0.37 36.5 0.37 36.5 0.37 36.7 0.37 37.3 0.37 37.1 0.37 36.7 0.37 36.7 0.37 37.3 0.37 36.7 0.37 36.7 0.37 36.7 0.37 36.7 0.37 36.7 0.37
	Schwingungen Zeit/sec 1 100 2 100 3 100 5 100 6 100 7 100 10 100 11 100 12 100
(02	Messung

index k MW von k	1.37 1.37		1.37	1.37	1.38	1.38	1.36	1.38	1.37	>	D S T	16636	6
Zeit pro schwingungT isentropenindex k MW von k	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	7-1-4		0,16	,
	2.69			9.69					8.69				
Schwingungen Zeit/sec	1 200	2 200	3 200	4 200	5 200	6 200	7 200	8 200	9 200				

Messung

```
Fehlos rechnung Versuch 2

Tessung 1

t = 63.2 \text{ B} \Delta t = 0.5 \text{ B} \delta t = 8.10^{-3} so t = 0.32 \text{ B} \delta t = 8.10^{-3} von t = 0.32 \text{ B} \delta t = 9.10^{-3} \delta t = 2.15.10^{-3}

The sum of the sum
```

couch 1

uft als Genisch von N_2 und O_2 ist in 2 atomiges Gas. Es ergeben sich ils vreineitsgrude die 3 Rummichtungen + 2 Rotationen. $f = 5 \implies k = \frac{7}{5} = 1.4$ Literatur: $K_{Luft} = 1.4$ Vesuch: $K_{Luft} = 1.30 \pm 0.07$ Die Werte sind vertsüflice.

Vesuch 2

Ar

Ar ist einatomig. Als Freineits quale experient sich die 3 Rauminktungen. $f = 3 \implies K = \frac{5}{3} = 1.67$

Liveratus west: 1,67

Vesuch: 1,62 ± 0,02

Die Were sind vetriglich.

N2

N2 ist ein 2atomiges gas. Als Freineitsgrade erfeben sich die 3 Ruum vichtungen + 2 Rotationen.

f=5 ⇒ K = = 1.4

Literaturet: 114

Vesuh: 1,37 ±0,02

Die Weste sind verträgzich

CO2

Co2 ist ein déciderniques gas. Chit Vierbindig und hat eine Doppel-Bindung zu jedem O. Dus Holekill ist daher gestreckt.

Als Freiheits grade esgeben sich die 3 Paumichtungen + 2 Rotation en.

Zusüzlich sind bei höher Tempera tuen Schwingungen möglich. 0-0-0 asymmerische Symmetrische Streckschwingen, Buyeschwin-Streikschwinzung (83 meV) 2 Treine: ts-Tragen die Schwingungen rude bei ergift sich: 1=7 = 4=1129 Diskunion = bedaf bei Literaluswer: 1,3 Vesuch: 1,22 ± 0,02 Die Wete sind signifikant unter-Fehlorechnung schiedlich. Trayen alle 3 Schwingem gen bei egibr sich: 1=8 = K= 125 Mit unsers Messing sind wir restrigeich mit diesem wert. 1,30 der richtige troteden ist Es ist etwas komplizieler i vollständig "aufgetante" Thorngung freihitsgrade tragen k (nicht t/2) zur Warnehapablat bei. Die CO2-Book Biegerchwingung (2-fach entartet) ist nur "angetant". How