1 plochy

Definice 1.1 (Regulární plocha)

Nechť k < n jsou přirozená čísla. Nechť je φ spojitě diferencovatelné zobrazení otevřené podmnožiny $\mathcal{O} \subseteq \mathbb{R}^k$ do \mathbb{R}^n . Řekněme, že φ je regulární, pokud je to homeomorfismus \mathcal{O} na $M = \varphi(\mathcal{O})$ a pokud má Jacobiho matice $J\varphi$ hodnost rovnou k ve všech bodech \mathcal{O} . Množinu $\varphi(\mathcal{O})$ pak nazveme lokální k-plochou.

Řekněme, že množina $M \subseteq \mathbb{R}^n$ je k-plocha pokud pro každý bod $x \in M$ existuje okolí U_x v \mathbb{R}^n takové, že $M \cap U$ je lokální k-plocha.

Podobný začátek jako Analýza na varietách (AnVar).

Definice 1.2 (Difeomorfismus)

Standardně.

Věta 1.1 (Věta o lokálním difeomorfismu)

Pokud je Jakobián nenulový, pak existuje difeomorfní okolí.

Definice 1.3 (Hladký bod hranice)

Nechť $\Omega \subseteq \mathbb{R}^n$ je otevřená podmnožina. Označme symbolem \mathbb{H}^n otevřený podprostor. Řekněme, že bod $a \in H(\Omega) = \overline{\Omega} \setminus \Omega$ je hladký bod hranice, pokud existuje okolí U bodu a a difeomorfismus Φ na? U takový, že

$$\Phi(\Omega \cap U) = \Phi(U) \cap \mathbb{H}^n.$$

(Narovnání hranice pomocí difeomorfismu.)

Množinu všech hladkých bodů hranice značíme $H^*(\Omega)$.

Definice 1.4 (Vnější algebra vektorového prostoru)

Nechť \mathbf{V} je vektorový prostor nad reálnými čísly a $\{e_1, \ldots, e_n\}$ je jeho pevně zvolená báze. Vnější algebra $\Lambda^*(\mathbf{V})$ vektorového prostoru \mathbf{V} je definována jako algebra nad tělesem reálných čísel, jejíž báze je množina

$$\{e_I|I\subseteq\{1,\ldots n\}\}$$
.

A prvky báze splňují

$$e_I \wedge e_J := \begin{cases} 0 & I \cap J \neq \emptyset \\ \operatorname{sgn} \binom{I,J}{I \cup J} e_{I \cup J} \end{cases}.$$

Vzhledem k bilinearitě násobení v algebře je tímto výrazem násobení vektorů již plně definováno.

Poznámka

 e_{\emptyset} je podle definice jednotka.

 $\Lambda^k(\mathbf{V})$, což je lineární obal bází $\Lambda^*(\mathbf{V})$ velikosti k, se nazývá k-tá vnější algebra a její prvky jsou k-vektory.

Věta 1.2

Pro vektorový prostor \mathbf{V} s bází e_1, \ldots, e_n a pro libovolná $k, l \in \{1, \ldots, n\}$.

- 1. dim $\Lambda^k(\mathbf{V}) = \binom{n}{k}$, dim $\Lambda^*(\mathbf{V}) = 2^n$.
- 2. \land je asociativní.
- 3. $e_I = e_{i_1} \wedge \ldots \wedge e_{i_k}, |I| = k$.
- 4. Je-li $\omega \in \Lambda^k(\mathbf{V}), \tau \in \Lambda^l(\mathbf{V}), \ pak \ \omega \wedge \tau = (-1)^{kl} \tau \wedge \omega.$
- 5. Nechť $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbf{V}$ jsou vektory. Potom (matice V_I má za sloupce vektory \mathbf{v}_i a řádky jsou vybrány pouze ty s indexem I)

$$\mathbf{v}_1 \wedge \ldots \wedge \mathbf{v}_k = \sum_{I \subseteq [n], |I| = k} \det \mathbf{V}_I \cdot e_I.$$

 $D\mathring{u}kaz$

Jednoduchý. (Ve skriptech anvar...).