Data- og Informasjonsteknologi

Mats B.

Skoleåret 2021/2022

Innhold

1	Tallsystemer og Logikk			
	1.1	Formler	2	2
2	Des	bel	3	
	2.1	Formler	3	
3	Ant	enner	4	
	3.1	Antennetyper	4	
			4	
		3.1.2 Monopol	4	
			4	
	3.2		5	
	3.3		5	
		3.3.1 Strålingsdiagram	5	
		3.3.2 Gain	5	
	3.4	Antenneareal	5	
		3.4.1 Areal i enkelte antenner	5	
			5	
	3.5		6	
	3.6		8	

Kapittel 1 Tallsystemer og Logikk

1.1 Formler

Kapittel 2

Desibel

2.1 Formler

Kapittel 3

Antenner

3.1 Antennetyper

3.1.1 Dipol

Den vanligste antennen. Består av to ledere der den totale lengden for optimal effekt er lik $\lambda/2$. Den har en impedans på $Z=75\Omega$, og denne må sammsvare med koaksialkabelen som brukes. Dette fører til match, og er viktig for å unngå refleksjon.

3.1.2 Monopol

Tilsvarende en dipol, men består av én leder, og bruker jordplanet som sin andre leder.

3.1.3 Yagi-antenne

Bruker en reflektor og deflektor for å hjelpe antennen til å fange opp feltet. Mye brukt til tv-sendinger.

3.2 Impedanstransformator

3.3 Direktivitet

3.3.1 Strålingsdiagram

Et tre-dimensjonalt polardiagram der ringene tilsvarer desibel. Sier, i form av *lober*, noe om antennens effektivitet og gain ved forskjellige retninger, og definerer antennens optimale åpningsvinkel.

3.3.2 Gain

Hvor mye loben øker i forhold til om antennen skulle vært rundtstrålenede. Høy direktivitet gir høy gain. Antall desibell sterkere i hovedretning enn isotropantenne. En parabol er veldig rettningsbestemt, og har da også veldig høy gain. Eks: $G=+4{\rm dbi}$

3.4 Antenneareal

Arealet en antenne klarer å plukke opp.

3.4.1 Areal i enkelte antenner

Parabol:

 $A_e = \pi r^2$

Dipol:

 $A_e = \frac{G \cdot \lambda^2}{4\pi}$

3.4.2 Eksempler

Parabol:

$$A_e = \pi \cdot 0.5m^2 = 0.78m^2$$

3.5 Oppgaver

6

Dipol:

$$G=10db$$

$$f = 12GHz$$

$$\lambda=\frac{3\cdot 10^8m/s}{12\cdot 10^9}=2.5cm$$

$$A_e = \frac{10(2.5cm)^2}{4\pi} = 5cm^2$$

3.5 Oppgaver

Exercise 1

Antennediagram

- a) Dette diagrammet viser en bestemt b) Hva er antennens Gain ca.? antennes direktivitet. Hva menes med dette? Forklar også *skalaene* i diagrammet.
- c) Hva er antennens fremover/bakover forhold?
- d) Antenna blir stilt inn(hovedretning) mot en sender. Du tar også inn en sender som ligger 30° til høyre som sender med samme styrke som den første. Hvor mye svakere signal mottas fra 30°?

Solution 1

- a) Direktivitet betyr at antennen er bed-b) Ca. 10° re i enkelte retninger. Skalaen er et polarskjema og viser desibel ved ringene, og vinkel rundt.

c) $G \approx 25 \text{dbi}$

d) 25db

e) 15db

f) 12 lober

3.5 Oppgaver

Exercise 2

Solution 2

a) Størst gain: Parabol Nest størst gain: Yagi-TV

- c) Terminering er en måte å stoppe en bølge ved å knytte den til jord gjennom en 75Ω motstand.
- e) *Lengden* på en dipol er lik:

$$\frac{\lambda}{2}$$

Lengden blir da lik:

$$\lambda = \frac{c}{f}$$
$$= \frac{3 \cdot 10^8}{6 \cdot 10^7}$$

$$\lambda = 5 \text{m}$$
$$l_d = 2.5 \text{m}$$

b) Kabler med impedans lik 75Ω er viktig for å sørge for match i systemet. Hvis dette ikke oppfylles kan vi få refleksjon som forstyrrer signalet.

7

- d) Forsterkeren skal sitte rett bak antennen for å unngå å forsterne støy
- f) Et antennediagram er et polarskjema som forteller oss noe om effektiviteten og direktiviteten til en antenne. Det oppgir desiBel per vinkel, og kan brukes til å finne en antennes gain.

g) Parabol:

$$A_e = \pi r^2$$
$$= \pi \cdot 4$$
$$A_e = 12.6 \text{m}^2$$

Dipol:

$$A_e = \frac{G \cdot \lambda^2}{4\pi}$$
$$= \frac{3dB \cdot 16m}{4\pi}$$

$$A_e = 3.8 \text{m}^2$$

h) En *isotrop* antenne er en antenne som er like god i alle retninger. Antenne-diagrammet vil være en kule.

Exercise 3

Solution 3

- a) 14 lober
- c) -35dB
- e) ca. 15°

- b) Ca. -33dB
- d) 60°, 135°, 210°, 300°

Exercise 4

Solution 4

- a) 120x40m
- c) 3 Megawatt

- b) Dipol antennearray
- d) 224 Megahertz

3.6 Formler