Analysis in einer Variable für das Lehramt

Sommersemester 2022, 3. Termin, 19.12.2022, Roland Steinbauer Prüfungsausarbeitung

Teil 1: Multiple Choice Aufgaben

1 Zentrale Begriffe und Definitionen

- 1. (Zum Begriff des Häufungswerts.) Welche Aussagen sind korrekt? Sei $(a_n)_n$ eine reelle Folge. Ein $a \in \mathbb{R}$ ist Häufungswert von $(a_n)_{n \in \mathbb{N}}$, falls
 - (a) [true] a Grenzwert einer Teilfolge $(a_{n_k})_k$ von $(a_n)_n$ ist.
 - (b) [false] innerhalb einer ε -Umgebung von a unendlich viele a_n liegen.
 - (c) [true] innerhalb jeder ε -Umgebung von a jedes zweite a_n liegt (also z.B. alle a_{2k} für $k \in \mathbb{N}$).
 - (d) [false] $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \exists n \geq N \colon |a a_n| < \varepsilon.$
- 2. (Grenzwert vs. Häufungswert.) Welche Aussagen sind korrekt? Sei $(a_n)_n$ eine reelle Folge und sei $a \in \mathbb{R}$.
 - (a) [true] Wenn a Grenzwert von (a_n) ist, dann auch Häufungswert.
 - (b) [true] Hat (a_n) zwei verschiedene Häufunsgwerte dann divergiert sie.
 - (c) [false] Hat (a_n) genau einen Häufungswert, dann konvergiert sie.
 - (d) [false] Ist a Häufungswert und (a_n) beschränkt, dann ist a auch Grenzwert.
- 3. (Absolute Konvergenz von Reihen.) Sei $\sum_{k=0}^{\infty} a_k$ eine reelle Reihe. Welche Aussagen sind korrekt?
 - (a) [true] Falls $\sum_{k=0}^{\infty} |a_k| < \infty$, dann konvergiert $\sum_{k=0}^{\infty} a_k$ absolut.
 - (b) [false] Falls $|a_k| \to 0 \ (n \to \infty)$, dann konvergiert $\sum_{k=0}^{\infty} a_k$ absolut.
 - (c) [true] Falls $a_k \geq 0$ für alle k und $\sum_{k=0}^{\infty} a_k < \infty$, dann konvergiert $\sum_{k=0}^{\infty} a_k$ absolut.
 - (d) [false] Falls unendlich viele a_k negativ sind, dann kann $\sum_{k=0}^{\infty} a_k$ nicht absolut konvergieren.
- 4. (b-adische Entwicklung.) Welche Aussagen sind korrekt? Bei einer b-adischen Entwicklung $a=\pm\sum_{n=N}^{\infty}a_nb^{-n}$ einer beliebigen reellen Zahl a gilt:
 - (a) [true] Die Ziffern a_n können alle Werte $0, 1, \ldots, b-1$ annehmen.
 - (b) [false] Die Summe beginnt immer bei einem $N \in \mathbb{N}$ zu laufen.
 - (c) [false] Als Basis kommen nur ganze Zahlen b > 2 in Frage.
 - (d) [true] Bei der Dezimaldarstellung (d.h. b=10) einer Zahl a mit |a|>10 muss N negativ sein.
- 5. ((Un-)Stetigkeit.) Welche Aussagen sind korrekt? Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ ist nicht stetig in $a \in \mathbb{R}$, falls
 - (a) [false] $\exists \varepsilon > 0 \quad \forall \delta > 0 \quad \forall x \in \mathbb{R} : |x a| < \delta \implies |f(x) f(a)| \ge \varepsilon$.
 - (b) [true] es eine reelle Folge $a_n \to a$ gibt mit $f(a_n) \not\to f(a)$.
 - (c) [true] falls f bei a eine Sprungstelle hat.
 - $\text{(d) [true] } \exists \varepsilon > 0 \quad \forall \delta > 0 \quad \exists x \in \mathbb{R}: \ |x-a| < \delta \text{ mit } |f(x) f(a)| \geq \varepsilon.$
- 6. (Gleichmäßige Stetigkeit.) Welche Aussagen sind korrekt? Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ ist gleichmäßig stetig auf \mathbb{R} , falls
 - (a) [true] in der ε - δ -Definition δ nicht von den betrachteten Punkten $x, x' \in \mathbb{R}$ abhängt.
 - (b) [false] für jedes $x \in \mathbb{R}$ und für jede reeelle Folge $x_n \to x$ gilt, dass $f(x_n) \to f(x)$.
 - (c) [false] für jede Cauchyfolge x_n in \mathbb{R} gilt, dass $f(x_n)$ ebenfalls Cauchyfolge ist.
 - $\text{(d) [true] } \forall \varepsilon > 0 \quad \exists \delta > 0: \quad \forall x, x' \in \mathbb{R} \text{ mit } |x x'| < \delta \text{ gilt, dass } |f(x) f(x')| < \varepsilon.$
- 7. (Elementar transzendente Funktionen.) Welche Aussagen sind korrekt?
 - (a) [false] Für die Exponentialfunktion gilt $\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{x!}$ $(x \in \mathbb{R}).$

- (b) [false] Die Logarithmusfunktion ist für alle $x \in \mathbb{R}$ definiert als die Umkehrfunktion von \exp .
- (c) [true] Für die Cosinusfunktion gilt $(x \in \mathbb{R})$

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

- (d) [false] Die allgemeine Exponentialfunktion ist definiert als $(a>0 \ x\in\mathbb{R}) \exp_a(x)=a^x=\exp(a\log(x)).$
- 8. (Stammfunktionen.) Welche Aussagen sind korrekt? Eine Funktion $F:I\to\mathbb{R}$ (I ein Intervall) ist Stammfunktion von $f:I\to\mathbb{R}$, falls
 - (a) [true] F differenzierbar ist und F'(x) = f(x) für alle $x \in I$ gilt.
 - (b) [true] f stetig ist und $F(x) := \int_{a}^{x} f(t) dt$ (mit $a \in I$ beliebig).
 - (c) [false] G Stammfunktion von f ist und $F = G \cdot c$ für eine Konstante c gilt.
 - (d) [false] gilt, dass $\int_a^b f(t) dt = F(b) F(a)$.

2 Sätze & Resultate

- 9. (Beschränktheit & Konvergenz von Folgen). Welche Aussagen über reelle Folgen sind korrekt?
 - (a) [true] Es gibt beschränkte Folgen die nicht konvergieren.
 - (b) [false] Jede beschränkte Folge hat genau einen Häufungswert.
 - (c) [false] Es gibt monoton wachsende nach oben beschränkte Folgen, die nicht beschränkt sind.
 - (d) [true] Jede nach unten beschränkte, monoton fallende Folge konvergiert gegen ihr Infimum.
- 10. (Grenzwertsätze strukturell). Welche der folgenden Aussagen über reelle Folgen und deren Konvergenz sind korrekt?
 - (a) [true] Der Grenzwert konvergenter Folgen respektiert die ≤-Beziehung.
 - (b) [true] Eine Linearkombination konvergenter Folgen konvergiert gegen die Linearkombination der Grenzwerte.
 - (c) [false] Der Quotient zweier konvergenter Folgen konvergiert nur dann gegen den Quotienten der Grenzwerte, falls die Folge (b_n) im Nenner niemals Null wird (d.h. $b_n \neq 0 \quad \forall n \in \mathbb{N}$).
 - (d) [false] Der Grenzwert konvergenter Folgen respektiert die <-Beziehung.
- 11. ($Zur\ Vollständigkeit$.) Welche der folgenden Aussagen beruhen auf der Ordnungsvollständigkeit von \mathbb{R} (in dem Sinn, dass sie in ihren Beweis eingeht)?
 - (a) [false] Jede konvergente (reelle) Folge ist eine Cauchyfolge.
 - (b) [true] Jede absolut konvergente (reelle) Reihe konvergiert.
 - (c) [true] Jede stetige Funktion auf einem abgeschlossenen Intervall, die am linken Randpunkt negativ und am rechten positiv ist, hat eine Nullstelle.
 - (d) [false] Jede beschränkte (reelle) Folge konvergiert.
- 12. (Eigenschaften stetiger Funktionen.) Welche der folgenden Aussagen über Funktionen sind korrekt?
 - (a) [false] Ist $f:[a,b)\to\mathbb{R}$ stetig, dann ist f auch gleichmäßig stetig.
 - (b) [true] Ist $f:[a,b]\to\mathbb{R}$ stetig, dann ist f auch beschränkt.
 - (c) [false] Jede stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ hat einen Fixpunkt.
 - (d) [true] Ist f stetig und es gilt f(0) < 0, dann gibt es eine Umgebung $U = (-\delta, \delta)$ (mit einem $\delta > 0$) sodass f(x) < 0 für alle $x \in U$.
- 13. (Differenzierbarkeit.) Welche der folgenden Aussagen über Funktionen $f,g:\mathbb{R}\to\mathbb{R}$ sind korrekt?
 - (a) [true] Falls f und g in $\xi \in \mathbb{R}$ differenzierbar sind, dann auch f+g und $f \cdot g$.

(b) [true] f ist differenzierbar in einem Punkt $\xi \in \mathbb{R}$, falls es eine Zahl a gibt und eine Funktion $r: \mathbb{R} \to \mathbb{R}$, sodass

$$f(\xi+h)-f(\xi)=ah+r(h)\quad \mathrm{und}\lim_{0\neq h\to 0}\frac{r(h)}{h}\,=\,0.$$

- (c) [true] Falls f stetig differenzierbar in $\xi \in \mathbb{R}$ ist, dann ist f dort auch differenzierbar.
- (d) [false] Falls f differenzierbar auf $\mathbb{R} \setminus \{0\}$ ist mit auf $\mathbb{R} \setminus \{0\}$ stetiger Ableitung f', dann ist f schon auf ganz \mathbb{R} differenzierbar.
- 14. (*Extremwerte.*) Welche Aussagen für eine 2-mal differenzierbare Funktion $f:(a,b)\to\mathbb{R}$ und einen Punkt $\xi\in(a,b)$ sind korrekt?
 - (a) [false] Falls $f'(\xi) = 0$, dann hat f in ξ eine Extremstelle.
 - (b) [false] Falls f an der Stelle ξ einen Hochpunkt hat, dann gilt $f'(\xi) = 0$ und $f''(\xi) < 0$.
 - (c) [true] Falls f an der Stelle ξ ein Extremum hat, dann gilt $f'(\xi) = 0$.
 - (d) [true] Falls $f'(\xi) = 0$ und $f''(\xi) \neq 0$, dann hat f in ξ eine Extremstelle.
- 15. (Zur Integralrechnung.) Welche der folgenden Aussagen sind korrekt? (Mit integrierbar ist immer Riemannintegrierbar gemeint.)
 - (a) [false] Der MWS der Integralrechnung besagt, dass für integrierbares $f:[a,b]\to\mathbb{R}$ ein $\xi\in[a,b]$ existiert, sodass die Fläche unter dem Graphen von f zwischen a und b gleich der Rechtecksfläche $f(\xi)$ (b-a) ist.
 - (b) [true] Ist $f:[a,b]\to\mathbb{R}$ stetig, dann ist f auch integrierbar.
 - (c) [false] Ist $f:(a,b)\to\mathbb{R}$ differenzierbar, dann ist f auch integrierbar.
 - (d) [false] Für integrierbare $f:[a,b]\to\mathbb{R}$ gilt, dass das Integral von a nach b über den Betrag |f| von f durch den Betrag des Integrals nach oben beschränkt ist.
- 16. (Zum Hauptsatz der Differential- und Integralrechnung.) Sei $f:[a,b]\to\mathbb{R}$ stetig. Welche der folgenden Aussagen sind korrekt?
 - (a) [true] Die Differenz zweier beliebiger Stammfunktionen von f ist konstant.
 - (b) [true] Für $F(x) := \int_b^x f(t) dt$ gilt F'(x) = f(x) für alle $x \in [a, b]$.
 - (c) [false] Für jede Stammfunktion F von f gilt $\int_a^b F(x) \, dx = f(b) f(a)$.
 - (d) [false] Es gilt $\int_a^x f'(t) dt = f(x) f(a)$.

3 Beispiele & Gegenbeispiele

- 17. (Konvergenz.) Welche der Aussagen über reelle Folgen sind korrekt?
 - (a) [true] Es gibt unbeschränkte Folgen mit genau einem Häufungswert.
 - (b) [false] Es gibt monotone beschränkte Folgen, die nicht konvergieren.
 - (c) [false] Jede Folge mit genau einem Häufungswert ist schon konvergent.
 - (d) [true] Es gibt konvergente Reihen $\sum_{k=0}^{\infty} a_k$ mit $a_k < 0$ für alle k.
- 18. (Konvergenz, 2) Welche der folgenden Aussagen sind korrekt?
 - (a) [false] $\left(1+\frac{1}{n}\right)^n \to 1 \ (n\to\infty)$.
- (c) [false] $\sum_{k=1}^{\infty} \frac{1}{n}$ konv. absolut.
- (b) [false] $\sum_{k=1}^{\infty} \frac{(-1)^n}{n}$ konvergiert absolut
- (d) [true] $(1/n)_{n>0}$ ist nach dem Archimedischen Axiom eine Nullfolge.
- 19. (Exponential- und Logarithmusfunktion). Welche der folgenden Aussagen sind korrekt?
 - (a) [false] $f(x) = \exp(-x)$ ist nach oben beschränkt

- (b) [true] log ist auf seinem gesamten Definitionsbereich differenzierbar.
- (c) [false] $f(x) = \exp(-x)$ ist monoton wachsend.
- (d) [true] $\lim_{x \searrow 0} x \log(x) = 0$.
- 20. (Polynomfunktion.) Welche der Aussagen trifft auf die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = -x^4 \quad \text{zu}$$
?

- (a) [true] f ist auf dem Intervall [-5,5] beschränkt.
- (b) [false] f hat in x = 0 ein Minumum.
- (c) [false] f hat in x = 0 ein Maximum, weil f'(0) = 0 und $f''(0) \ge 0$ gilt.
- (d) [false] f hat in x = 0 einen Wendepunkt, weil f''(0) = 0 gilt.
- 21. (Wurzelfunktion.) Welche der Aussagen trifft auf die Wurzelfunktion

$$f: [0,\infty) \to \mathbb{R}, \quad f(x) = \sqrt{x} \quad \text{zu?}$$

(a) [true] f ist überall stetig.

- (c) [false] f ist auf $[0,\infty)$ differenzierbar
- (b) [true] f auf [0,1] gleichmäßig stetig.
- (d) [true] $\lim_{r \to 0} f'(0) = \infty$.
- 22. (Funktionsgrenzwerte.) Welche der folgenden Aussagen sind korrekt?
 - (a) [true] $\lim_{x \to \infty} \arctan(x) = \pi/2$.
- (c) [true] $\lim_{x \to 0} \log(x) = -\infty$.

(b) [true] $\lim_{x \to 0} \frac{\sin(x)}{x} = 1.$

- (d) [false] $\lim_{0 \neq x \to 0} \frac{e^x 1}{x} = \frac{\pi}{2}$.
- 23. (Monotonie und Ableitung.) Welche der folgenden Aussagen sind korrekt?
 - (a) [true] $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^5$ ist streng monoton steigend, obwohl f'(0) = 0 gilt.
 - (b) [true] $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x| ist auf [-10, 0] streng monoton fallend, weil f'(x) = -1 < 0 für alle -10 < x < 0 gilt.
 - (c) [false] $f: \mathbb{R} \to \mathbb{R}, \ f(x) = |x|$ ist auf [-10,0] streng monoton fallend und daher gilt f'(x) = -1 < 0 für alle $-10 \le x \le 0$.
 - (d) [false] Für die Funktion f(x)=1/x gilt auf ihrem ganzen (maximal möglichen) Definitionsbereich $\mathbb{R}\setminus\{0\}$, dass $f'(x)=-1/x^2<0$ ist. Daher ist sie auf ganz $\mathbb{R}\setminus\{0\}$ monoton fallend.
- 24. (Integrierbare Funktionen.) Welche der folgenden Aussagen sind korrekt?
 - (a) [true] sin und cos sind stetig und daher auf jedem abgeschlossenen Intervall Riemann-integrierbar
 - (b) [false] \sin ist auf $[0,\pi]$ monoton wachsend und daher dort auch Riemann-integrierbar
 - (c) [false] Die Funktion $f(x) = \frac{1}{\sqrt{x}}$ ist auf [0,1] Riemann-integrierbar.
 - (d) [true] Es gilt $\int_0^1 \frac{1}{\sqrt{x}} < \infty$.

Teil 2: Offene Aufgaben

1. Folgen, Reihen & Konvergenz

- (a) (Reihen und -konvergenz.) Sei $(a_n)_{n\in\mathbb{N}}$ eine (relle) Folge. Definieren Sie (exakt) den Begriff der (unendlichen) Reihe mit Gliedern a_n sowie der Konvergenz von Reihen. (3 Pkte)
- (b) (Konvergente Folgen sind Cauchyfolgen.) Beweisen Sie (exakt), dass jede konvergente (reelle) Folge eine Cauchyfolge ist. (3 Pkte)
- (c) (*Eindeutigkeit des Grenzwerts*.) Argumentieren Sie in eigenen Worten, warum jede konvergente (reelle) Folge genau einen Grenzwert hat. Fertigen Sie eine Skizze an. (3 Pkte)

2. Stetige und differenzierbare Funktionen

(a) (Sprünge machen unstetig.) Argumentieren Sie, dass die Sprungfunktion

$$H(x) := \begin{cases} 0 & x \le 0 \\ 1 & x > 0 \end{cases} \tag{1}$$

unstetig im Punkt $x_0 = 0$ ist. Verwenden Sie dabei entweder die ε - δ -Definition der Stetigkeit (Umgebungsstetigkeit) oder ihrer äquivalente Umformulierung mittels konvergenter Folgen (Folgenstetigkeit). Fertigen Sie eine Skizze an. (3 Pkte)

(b) (Ableitung der Umkehrfunktion.) Sei $f: I \to J$ eine bijektive und differenzierbare Funktion von einem Intervall I in ein Intervall J. Unter der Annahme, dass die Umkehrfunktion $f^{-1}: J \to I$ (ebenfalls) differenzierbar ist, berechnen Sie die Ableitung $(f^{-1})'$. (3 Pkte)

3. Differenzieren & Integrieren

- (a) (Mittelwertsatz der Differentialrechung) Formulieren Sie exakt den Mittelwertsatz der Differentialrechung und erläutern Sie seine Aussage in eigenen Worten. Fertigen Sie dazu eine Skizze an. (3 Pkte)
- (b) (Monotonie via Ableitung) Verwenden Sie den Mittelwertsatz der Differentialrechung, um zu zeigen, dass für Funktionen $f:[a,b]\to\mathbb{R}$, die die Voraussetzungen des Mittelwertsatzes erfüllen, folgendes gilt: (3 Pkte)

$$f'(x) > 0$$
 auf $(a, b) \implies f$ streng monoton wachsend auf $[a, b]$

(c) (Hauptsatz der Differential- und Integralrechnung — zweiter Teil.) Formulieren Sie (exakt) den zweiten Teil des Hauptsatzes der Differential- und Integralrechnung und erklären Sie, was dieses Resultat mit dem konkreten Berechnen von Integralen zu tun hat. (3 Pkte)

(Toil) OFFENE AUTGASEN

[1] (0) Die Rehe mit Glieden on ist definiet als die Folge de Pochiel semmen (Sm)m mit Sm = 2 Qn [and sie wied mit Z on bir. Zon herichnet]. h=0

Die Reihe Zon konverpiert, folls die Folge de Parhiol-Summen (Sm) m konverpiert. L'une un bezeichnen diesen Limes, lim Sm, chenfolls mit Zon bru Zon J.

(b) Sci (on) konsegent; 72 (on) (F, cl. h.
27 48>0 JN 4m,n2N: |on-on| < E

Sei olso Ex O beliebig and

Si $0 = \lim_{n \to \infty} O_n \xrightarrow{\text{Kano.}} \int N \in \mathbb{N} : |O_n - o| < \frac{\ell}{2} \quad \text{first}$ $Donngeill \quad \text{finn} \geq N$ $|O_n - o_m| = |O_n - o + o - o_m| \leq |o_n - o| + |O_m - o| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ $\int \int \frac{|O_n - o_m|}{|O_n - o|} = |O_n - o| + |O_n - o| + |O_m - o| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

(c) 24 organistiven: Tolls On so, down ist a cindenty bestimmt

Augenommen on hobe duei verschiedene Grenduck a und b.

Down biegen in jedu & Umpeberg von a fost oble Folgenpliele.

Ebenso liegen in jedu & Umpeberg von b — u — .

Wöhle ich diese beiden Umpebergen obsjunkt (dosist möglist, und 0 \delta b; wähle f. B. \(\varepsilon_1 = \varepsilon_2 = \varepsilon_1 \) so apiht dos ahen

O-E O+E — fost oble holb von Us, (a), cho insbes.

O b-E b+E On G in Us, (b) now end bich viele

Ob biegen lännen.

