

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T Y \text{ им. H. Э. Баумана})$

ФАКУЛЬТЕТ	Фундаментальные науки
—— КАФЕДРА	Прикладная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Поиск потенциала электрического поля между заряженными пластинами

Студент	ФН2-62Б		А.Д. Егоров
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Руководитель курсовой работы			К.Е. Казаков
т уповодите	is if people puoorbi	(Подпись, дата)	(И.О. Фамилия)

Оглавление

B	веден	ие	3	
1.	Пос	становка задачи	3	
2.	. Обзор задачи			
	2.1.	Физическая составляющая задачи	3	
	2.2.	Математическая постановка задачи	3	
3.	Реш	пение двумерного уравнения Лапласа	4	
	3.1.	Аппроксимация уравнения Лапласа методом конечных элементов	4	
	3.2.	Метод конечных элементов на треугольной сетке	6	
		3.2.1. Триангуляция области	6	
		3.2.2. Сборка глобальной матрицы жесткости	7	
		3.2.3. Применение граничных условий первого рода	8	
		3.2.4. Применение периодических граничных условий	9	
4.	Прі	имеры решения задачи	10	
	4.1.	Задача №1 (задача с граничными условиями первого рода)	10	
		4.1.1. Условие задачи	10	
		4.1.2. Построение сетки	11	
		4.1.3. Оценка погрешности аппроксимации решения	12	
	4.2.	Задача №2 (периодические граничные условия и граничные условия		
		первого рода)	17	
		4.2.1. Условие задачи	17	
		4.2.2. Решение	17	
5 .	Про	ограммная реализация алгоритма	19	
За	клю	чение	19	
C-		Z HOHO III DODDIIIII IV HOTOIIIIIIIVOD	20	

Введение 3

Введение

1. Постановка задачи

Найти потенциал электрического поля между двумя бесконечными пластинами, профиль одной из которых плоский, а профиль другой описывается некоторой периодической функцией. Значения потенциала на пластинах заданы и константны.

2. Обзор задачи

2.1. Физическая составляющая задачи

Для постоянного электрического (электростатического) поля уравнения Максвелла имеют вид

$$\operatorname{div}\mathbf{E} = 4\pi\rho,\tag{1}$$

$$rot \mathbf{E} = 0, \tag{2}$$

где ρ — объемная плотность внешних зарядов. Электрическое поле **E** выражается через только скалярный потенциал соотношением

$$\mathbf{E} = -\mathrm{grad}\varphi,\tag{3}$$

подставляя (3) в (1), получим уравнение, которому удовлетворяет потенциал постоянного электрического поля:

$$\Delta \varphi = -4\pi \rho. \tag{4}$$

Уравнение (4) есть уравнение Пуассона. При $\rho=0$, т.е. при отсутствии внешних сил, потенциал удовлетворяет уравнению Лапласа

$$\Delta \varphi = 0. \tag{5}$$

2.2. Математическая постановка задачи

Из условия поставленной задачи известно, что внешних сил нет, следовательно, потенциал электростатического поля должен удовлетворять уравнению (5). Через функцию w(x) зададим профиль искривленной пластины, w(x) — некоторая периодическая функция с периодом T, т.е. w(x) = w(x+T). Пусть плоская пластина находится над искривленной на уровне y_a . Значение потенциала на пластинах заданы и константны, обозначим значение на верхней (плоской) пластине как φ_a , на нижней (искривленной) — φ_w . Так как профиль профиль задан периодической функцией,

следовательно необходимо использовать условие равенства потенциалов в точках x и x+T, т.е. $\varphi(x,y)=\varphi(x+T,y)$.

Из этих условий составим систему, которую требуется решить:

$$\begin{cases}
\Delta\varphi(x,y) = 0, \\
\varphi(x,y_a) = \varphi_a, \\
\varphi(x,w(x)) = \varphi_w, \\
\varphi(x,y) = \varphi(x+T,y).
\end{cases}$$
(6)

Рис. 1. Иллюстрация области, в которой будет решаться задача

3. Решение двумерного уравнения Лапласа

3.1. Аппроксимация уравнения Лапласа методом конечных элементов

Рассмотрим уравнение Лапласа в двумерной области $\Omega \subset \mathbb{R}^2$

$$\begin{cases} -\Delta u = 0 & \text{в } \Omega, \\ u = g & \text{на } \Gamma_D, \end{cases}$$

где Γ_D — часть границы области, на которой заданы граничные условия первого рода, $\Gamma_D = \partial \Omega, \, \Gamma_D \neq \varnothing.$

Опираясь на сведения из источника [1], представим решение задачи в виде $u=u_0+u_g$, где функция u_0 обращается в ноль на границе Γ_D а u_g — некоторая, произвольная, но наперед заданная функция, значения которой совпадают с g на границе области, $u_g|_{\Gamma_D}=g$.

И переходим к следующей задаче с однородными граничными условиями первого рода на Γ_D относительно функции u_0 :

$$\begin{cases} -\Delta u = \Delta u_g & \text{в} & \Omega, \\ u_0 = 0 & \text{на} & \Gamma_D. \end{cases}$$

Запишем слабую постановку задачи для определения u_0 , способом описанным в разделе **16.3.1** источника [1]: необходимо определить $u_o \in V_D$, такое, что

$$\int_{\Omega} \nabla u_0 \cdot \nabla v \, d\Omega = -\int_{\Omega} \nabla u_g \cdot \nabla v \, d\Omega, \quad v \in V_D,$$

где пространство V_D состоит из функций, имеющих суммируемые с квадратом первые производные и обращающихся в ноль на части Γ_D границы расчетной области:

$$V_D = \{ v \in V : v |_{\Gamma_D} = 0 \},$$

а пространство V состоит из произвольных заданных в Ω функций, имеющих суммируемые с квадратом первые производные.

Для аппроксимации задачи с помощью МКЭ рассмотрим конечномерное пространство V_h , аппроксимирующее пространство V и пространство $V_{D,h} = V_h \cap V_D(\Omega)$, элементы которого приближают элементы пространства V_D .

Пусть функция $u_{g,h} \in V_h$ представляет собой аппроксимацию функции u_g , задающей граничное условие первого рода. В качестве функции $u_{g,h}$.

Тогда конечномерная задача примет вид:

$$\int_{\Omega} \nabla u_{0,h} \cdot \nabla v_h \, d\Omega = -\int_{\Omega} \nabla u_{g,h} \cdot \nabla v_h \, d\Omega, \quad v_h \in V_D,$$

Пусть φ_i , $\mathbf{i} = \overline{1,N}$, — базис в пространстве V_h , причем часть функций φ_i с номерами $i \in I$ образуют базис в пространстве $V_{D,h}$, т.е. обращаются в ноль на границе Γ_D . Количество таких индексов будем считать равным $M = |I| < N, \ |I| > 1$.

Тогда последнее уравнение будет эквивалентно

$$\int_{\Omega} \nabla u_{0,h} \cdot \nabla \varphi_i \, d\Omega = -\int_{\Omega} \nabla u_{g,h} \cdot \nabla \varphi_i \, d\Omega, \quad i \in I.$$

Представляя неизвестное решение в виде линейной комбинации базисных функций:

$$u_{0,h} = \sum_{i \in I} u_{0,h,i} \varphi_i, \quad u_{g,h} = \sum_{i=1}^{N} u_{g,h,i} \varphi_i,$$

окончательно получим СЛАУ для определения неизвестных коэффициентов $U_h = \{u_{0,h,i}\}$:

$$Au_{0,h} = b,$$

где $A = A_{M \times M}$ — матрица жесткости, $b = b_{M \times 1}$,

$$A_{ij} = \int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j \, d\Omega, \quad i, j \in I, \tag{7}$$

$$b_{i} = -\sum_{j=1}^{N} u_{g,h,j} \int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, d\Omega, \quad i \in I.$$
 (8)

3.2. Метод конечных элементов на треугольной сетке

3.2.1. Триангуляция области

Зададим в нашей области Ω правильную триангуляцию \mathcal{T} , т. е. такое разбиение области Ω на треугольные ячейки, что любые два треугольника имеют либо общее ребро, либо общую вершину, либо пустое пересечение. Таким образом,

$$\Omega = \bigcup_{T \in \mathcal{T}} T.$$

Каждый треугольник T при этом задается набором трех своих узлов P_k с координатами $P_k = (x_k, y_k)$. Будем считать, что узлы треугольника обходятся в положительном направлении (против хода часовой стрелки).

Рассмотрим простейший случай: выберем базисные функции φ_k такие, что φ_k — кусочно-линейная функция, принимающая значение единица в узле P_k и ноль во всех остальных узлах, в пределах одного треугольника она продолжена линейно.

В силу аддитивности интеграла относительно области интегрирования формулы (7) и (8) могут быть записаны в виде

$$A_{ij} = \sum_{T \in \mathcal{T}} \int_{T} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, d\Omega, \quad i, j \in I,$$

$$(9)$$

$$b_i = -\sum_{j=1}^{N} u_{g,h,j} \sum_{T \in \mathcal{T}} \int_{T} \nabla \varphi_i \cdot \nabla \varphi_j \, d\Omega, \quad i \in I.$$
 (10)

Таким образом, задача вычисления интегралов для коэффициентов матрицы жесткости задачи и ее правой части сводится к задаче вычисления тех же интегралов по отдельным треугольникам.

Рассмотрим один из треугольников T триангуляции \mathcal{T} . Будем считать, что его вершины имеют координаты $P_i = (x_i, y_i), \ i = \overline{1,3}$. Пусть $\varphi_i, \ i = \overline{1,3}$, — базисные функции соответствующие этим вершинам и данному треугольнику. Таким образом

$$\varphi_i(x_i, y_i) = \delta_{ij}, \ i, j = 1, 2, 3.$$

Функции φ_i являются линейными в пределах T и имеют следующий вид

$$\varphi_{i}(x,y) = \frac{\det \begin{pmatrix} 1 & x & y \\ 1 & x_{i+1} & y_{i+1} \\ 1 & x_{i+2} & y_{i+2} \end{pmatrix}}{\det \begin{pmatrix} 1 & x_{i} & y_{i} \\ 1 & x_{i+1} & y_{i+1} \\ 1 & x_{i+2} & y_{i+2} \end{pmatrix}}, \quad i = 1, 2, 3, \tag{11}$$

где для удобства обозначения считается, что $P_4 = P_1$, $x_4 = x_1$, $y_4 = y_1$, аналогично индекс 5 идентичен индексу 2.

Из формулы (11) получаем следующие соотношения:

$$\nabla \varphi_i(x, y) = \frac{1}{2|T|} \begin{pmatrix} y_{i+1} - y_{i+2} \\ x_{i+2} - x_{i+1} \end{pmatrix},$$

где |T| — площадь треугольника T, такая, что

$$|T| = \frac{1}{2} det \begin{pmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{pmatrix}.$$

В результату получаем следующее выражение для матрицы жесткости конечного элемента T:

$$A_{T,ij} = \int_{T} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, d\Omega = \frac{|T|}{(2|T|)^{2}} \begin{pmatrix} y_{i+1} - y_{i+2} \\ x_{i+2} - x_{i+1} \end{pmatrix}^{T} \begin{pmatrix} y_{j+1} - y_{j+2} \\ x_{j+2} - x_{j+1} \end{pmatrix}, \quad i, j = 1, 2, 3.$$
 (12)

3.2.2. Сборка глобальной матрицы жесткости

В предыдущем пункте было рассмотрено, как составляется матрица жесткости для одного элемента T триангуляции \mathcal{T} . Основываясь на формулах (9, 10, 12) для каждого элемента T триангуляции \mathcal{T} имеем:

- A_T симметричная матрица размером 3×3 ,
- b_T вектор правой части, состоящий из 3, компонент,
- u_T вектор неизвестных, состоящий из 3 компонент.

Для решения задачи необходимо составить полную систему Au = b, где A — матрица жесткости размером $N \times N$, b — вектор правой части длины N, u — вектор неизвестных длины N, N — количество узлов триангуляции \mathcal{T} , для этого нужно собрать все локальные матрицы жесткости A_T , т. е. учесть вклад каждого конечного элемента.

Проиллюстрируем эту процедуру на примере. У нас есть треугольник T, составленный из узлов $P_1 = (x_1, y_1), P_3 = (x_3, y_3), P_5 = (x_5, y_5)$ (номера узлов взяты из

глобальной нумерации), для него были получены следующая матрица жесткости A_T и вектор правой части b_T

$$A_T = \begin{pmatrix} 1.3 & -0.5 & 7 \\ -0.5 & -0.45 & 0.3 \\ 7 & 0.3 & 2.1 \end{pmatrix}, \quad b_T = \begin{pmatrix} 2 \\ 2.1 \\ 1 \end{pmatrix}.$$

Допустим, что полная система состоит из 7 узлов. Тогда мы расширяем матрицу A_T до размера 7×7 , добавляя нулевые строки и столбцы на место отсутствующих узлов, аналогично для вектора b_T . Таким образом получаем следующие матрицу и вектор правой части

$$\widehat{A}_T = \begin{pmatrix} 1.3 & 0 & -0.5 & 0 & 7 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.5 & 0 & -0.45 & 0 & 0.3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 7 & 0 & 0.3 & 0 & 2.1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad \widehat{b}_T = \begin{pmatrix} 2 \\ 0 \\ 2.1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

Тогда для полной системы матрица A и вектор правой правой части b имеют следующий вид

$$A = \sum_{T \in \mathcal{T}} \widehat{A}_T, \quad b = \sum_{T \in \mathcal{T}} \widehat{b}_T.$$

3.2.3. Применение граничных условий первого рода

Полную систему уравнений Au = b можно записать в виде

$$\sum_{j=1}^{N} a_{ij} u_j = b_i, \quad i = \overline{1, N}, \tag{13}$$

где a_{ij} — компоненты матрицы A, а b_j , и u_j — компоненты вектора правой части b и вектора неизвестных u соответственно. Значения решения в узлах, принадлежащих границе Γ_D известны и равны $u_k = g(P_k), \forall k \in K$, где K — множество индексов узлов принадлежащих границе Γ_D . Тогда уравнения (13) могут быть перезаписаны следующим образом

$$\sum_{j \in I} a_{ij} u_j = b_i - \sum_{k \in K} a_{ij} g(P_j), \quad i \in I,$$

$$(14)$$

где, как было указано выше, I — множество индексов узлов, лежащих внутри области, |I| + |K| = N. Что приводит к уменьшению размера матрицы A от $N \times N$ до $M \times M$, по средствам удаления строк и столбцов с номерами $k \in K$ [1].

3.2.4. Применение периодических граничных условий

В поставленной задаче помимо условий первого рода дополнительно наложены условия периодичности на левой и правой границах. Обозначим множество индексов узлов, принадлежащих данной данной части границы, как PB. Это множество такое, что

$$PB = PB_l \cup PB_r$$

где PB_l — множество индексов узлов принадлежащих левой границе, PB_r — множество индексов узлов принадлежащих правой границе. Зададим такое разбиение исходной области, что количество узлов на левой и правой границах будет одинаково, т. е. $|PB_l| = |PB_r|$ и будет выполнено следующее условие: для любого узла P, принадлежащего левой границе PB_l , найдется единственный узел \widetilde{P} , принадлежащий правой границе PB_r , такой, что вертикальные координаты этих узлов будут совпадать, т. е.

$$\forall P = P(x, y) \in PB_l \ \exists ! \ \widetilde{P} = P(\widetilde{x}, \widetilde{y}) \in PB_r : \ y = \widetilde{y}.$$

Тогда можно задать массив с парами индексов таких узлов, а условие периодичности, предполагает равенство значений в соответствующих парах узлов.

Пусть на узлы P_p и P_q наложено условие периодичности, т. е.

$$u_p = u(P_p) = u(P_q) = u_q.$$

Тогда, чтобы учесть периодичность нужно изменить систему, полученную на предыдущем этапе. Применяется следующий алгоритм:

- заменить все значения в p-ом ряду матрицы A на $a_{pj}+a_{qj}$, т. е. сложить p-ую и q-ую строки, аналогично для вектора правой части b: заменить b_p на b_p+b_q ,
- заметь q-ую системы на условие $u_p u_q = 0$.

Однако, при данном подходе симметричность матрицы системы теряется. Если симметричность важна, можно поступить, как в случае с граничными условиями первого рода:

- заменить все значения в p-ой строке матрицы A на $a_{pj}+a_{q,j}$, т. е. сложить p-ую и q-ую строки, аналогично для вектора правой части b: заменить b_p на b_p+b_q ,
- заменить все значения в p-ого столбца матрицы A на $a_{jp}+a_{jq}$, т. е. сложить p-ый и q-ый столбцы,
- \bullet удалить q-ую строку и q-ый столбец из системы.

В результате размер решаемой системы уменьшится на единицу, а условие $u_p = u_q$ будет применено уже к итоговому решению [2]. Таким образом рассматриваются все узлы, на которые наложено условие периодичности.

4. Примеры решения задачи

4.1. Задача № 1 (задача с граничными условиями первого рода)

4.1.1. Условие задачи

Для проверки алгоритма, рассмотрим его работу на примере задачи для которой решение известно: поиск потенциала в прямоугольной области $\Omega = [0,4] \times [0,2]$ с граничными условиями первого рода:

$$\begin{cases} \Delta \varphi(x, y) = 0, \\ \varphi(x, 0) = \varphi(0, y) = \varphi(4, y) = 0, \\ \varphi(x, 2) = 10. \end{cases}$$

Точное решение этой задачи:

$$\varphi(x,y) = \sum_{n=1}^{\infty} \frac{20\left(1 - (-1)^n\right)}{\pi n \left[\exp\left(-\frac{\pi n}{2}\right) - \exp\left(\frac{\pi n}{2}\right)\right]} \left[\exp\left(-\frac{\pi n}{4}y\right) - \exp\left(\frac{\pi n}{4}y\right)\right] \sin\left(\frac{\pi n}{4}x\right)$$
(15)

Естественно, все члены ряда вычислить не получится, ограничимся первыми 350. Тогда точное решение в области $[0,4] \times [0,2]$ выглядит как на рис. 2.

Рис. 2. Точное решение задачи № 1

4.1.2. Построение сетки

Численное решение будем искать на сетках с разными размерами конечного элемента: будет варьироваться параметр S_{max} , отвечающий за максимальную площадь конечного элемента.

Построим сетки, на которых площадь конечного элемента ограничена следующими значениями: 0.05, 0.01, 0.001, они выглядят следующим образом:

C

Рис. 3. Иллюстрации разбиения области Ω задачи N2 1:

a — иллюстрация разбиения области Ω с параметром $S_{max} \rightarrow 0.05$;

b — иллюстрация разбиения области Ω с параметром $S_{max} \rightarrow 0.01;$

c — иллюстрация разбиения области Ω с параметром $S_{max} o 0.001$

4.1.3. Оценка погрешности аппроксимации решения

Для оценки погрешности полученного решения u_{approx} относительно точного решения u_{exact} возьмем среднее значении абсолютной погрешности по всем узлам (16) и погрешность решения в норме L_2 (17):

$$AbsErr = \frac{1}{N} \sum_{i=1}^{N} |u_{exact,i} - u_{approx,i}|, \qquad (16)$$

где N — количество узлов, $u_{exact,i},\ u_{approx,i}$ — точное и приближенное решения в i-ом узле;

$$\operatorname{Err}_{L_2} = ||u_{exact} - u_{approx}||_{L_2} = \int_{S} (u_{exact} - u_{approx})^2 dS, \tag{17}$$

где S — площадь области Ω . Численная аналог формулы (17) получается следующим образом:

$$\int_{S} (u_{exact} - u_{approx})^{2} dS = \sum_{i=1}^{N_{el}} \int_{S_{i}} (u_{exact} - u_{approx})^{2} dS,$$

$$\int_{S_{i}} (u_{exact} - u_{approx})^{2} dS \approx \frac{S_{i}}{N_{v}} \sum_{j=1}^{N_{v}} (u_{exact, ij} - u_{approx, ij})^{2},$$

$$u_{approx, ij} = \sum_{k=1}^{N_{v}} u_{approx, ij} \varphi_{k},$$

где где N_{el} — количество конечных элементов, S_i — площадь i-ого конечного элемента, N_v — количество узлов конечного элемента, $u_{exact,ij}$, $u_{approx,ij}$ — точное и приближенное значения решения в j-ом узле i-ого элемента, φ_k — базисная функция в k-ом узле i-ого кочечного элемента.

Так как в качестве конечного элемента выбран треугольный элемент, а базисные функции такие, что имеют значение 1 в своем узле и 0 во всех остальных, то формула для вычисления погрешности решения в норме L_2 примет вид

$$\operatorname{Err}_{L_2} \approx \sum_{i=1}^{N_{el}} S_i \sum_{j=1}^{3} \frac{(u_{exact, ij} - u_{approx, ij})^2}{3}.$$
 (18)

Решение задачи № 1 при разбиение Ω с параметром $S_{max} \to 0.05$ выглядит следующим образом:

Рис. 4. Численное решение задачи № 1 с разбиением области Ω на элементы с параметром $S_{max} \to 0.05$

Таблица 1. Сравнение значений точного решения и численного решения с разбиением области Ω с параметром $S_{max} \to 0.05$ задачи N = 1

Узел №	Точное решение	Приближенное решение	Абсолютная	Относительная
9 30,1 11-	точное решение приолиженное решение		погрешность	погрешность
40	1.27392652	1.25634191	0.01758461	0.01380348
60	3.72330814	3.70649274	0.0168154	0.00451625
80	1.95722711	1.93729186	0.01993525	0.01018546
100	2.69063261	2.68065981	0.0099728	0.00370649
120	1.9138927	1.90537176	0.00852094	0.00445215

Количество конечных элементов: 216.

Средняя площадь элемента: 0.04.

Максимальная площадь элемента: 0.05.

Среднее значение абсолютной погрешности: 0.01087074.

Среднее значение относительной погрешности: 0.02889112.

Максимальное значение абсолютной погрешности: 0.66276194.

Погрешность в норме L_2 : 0.05392223.

Решение задачи № 1 при разбиение Ω с параметром $S_{max} \to 0.01$ выглядит следующим образом:

Рис. 5. Численное решение задачи № 1 с разбиением области Ω на элементы с параметром $S_{max} \to 0.01$

Таблица 2. Сравнение значений точного решения и численного решения с разбиением области Ω с параметром $S_{max} \to 0.01$ задачи N = 1

Узел №	Точное решение	Приближенное решение	Абсолютная	Относительная
9 30,1 11-	то тое решение	приолиженное решение	погрешность	погрешность
100	8.79692038	8.7754521	0.02146828	0.00244043
200	4.20092245	4.18212546	0.01879699	0.00447449
300	1.26335365	1.26129625	0.0020574	0.00162853
400	2.55278075	2.5283193	0.02446145	0.00958228
500	2.88063844	2.68968953	0.19094891	0.06628701

Количество конечных элементов: 1020.

Средняя площадь элемента: 0.008.

Максимальная площадь элемента: 0.01.

Среднее значение относительной погрешности: 0.00395515.

Среднее значение абсолютной погрешности: 0.01213012.

Максимальное значение абсолютной погрешности: 0.66741336.

Погрешность в норме L_2 : 0.01467814.

Решение задачи № 1 при разбиение Ω с параметром $S_{max} \to 0.001$ выглядит следующим образом:

Рис. 6. Численное решение задачи № 1 с разбиением области Ω на элементы с параметром $S_{max} \to 0.001$

Таблица 3. Сравнение значений точного решения и численного решения с разбиением области Ω с параметром $S_{max} \to 0.001$ задачи № 1

Узел №	Точное решение	Приближенное решение	Абсолютная	Относительная
0 3031 31	то тое решение	приолиженное решение	погрешность	погрешность
1000	7.01809786	7.0179319	0.00016596	2.365e-05
2000	3.09142766	3.09091957	0.00050809	0.00016436
3000	2.36605127	2.36557367	0.0004776	0.00020185
4000	6.36926022	6.36913706	0.00012316	1.934e-05
5000	4.37751466	4.37639743	0.00111723	0.00025522

Количество конечных элементов: 10778.

Средняя площадь элемента: 0.0007.

Максимальная площадь элемента: 0.001.

Среднее значение относительной погрешности: 0.00030776.

Среднее значение абсолютной погрешности: 0.00107663.

Максимальное значение абсолютной погрешности: 0.62899979.

Погрешность в норме L_2 : 0.00096066.

Таблица 4. Оценка погрешности аппроксимации решения в зависимости от максимальной площади конечного элемента для задачи N = 1

Количество конечных элементов	Максимальная площадь элемента	Среднее значение абсолютной погрешности	Погрешность решения в норме L_2
216	0.05	0.02889112	0.05392223
1020	0.01	0.01213012	0.01467814
1874	0.005	0.00438909	0.00417991
10778	0.001	0.00107663	0.00096066
22124	0.0005	0.00052738	0.00046246

4.2. Задача № 2 (периодические граничные условия и граничные условия первого рода)

4.2.1. Условие задачи

Найти потенциал в области $\Omega = \{-\infty \leqslant x \leqslant \infty, \ w(x) \leqslant y \leqslant 2\}$, где w(x) — периодическая функция с периодом T=2, такая что $w(x)=|x-1|+1, \forall x \in [0,2]$.

4.2.2. Решение

Рассмотрим задачу на отрезке [0, 2]. Запишем систему, которую нужно решить:

$$\begin{cases} \Delta \varphi(x, y) = 0, \\ \varphi(x, 2) = 0, \\ \varphi(x, w(x)) = 10, \\ \varphi(0, y) = \varphi(2, y). \end{cases}$$

Тогда численное решение задачи N 2, полученное методом конечных элементов при разбиение Ω с параметром $S_{max} \to 0.01$ выглядит следующим образом:

Рис. 7. Иллюстрации разбиения области Ω задачи № 1:

a — иллюстрация разбиения области Ω с параметром $S_{max} \rightarrow 0.01;$

b — Численное решение задачи № 2 с разбиением области Ω на элементы с параметром $S_{max} \to 0.01;$

Аналогично рассмотрим задачу, расширив область до трех периодов функции w(x):

5. Программная реализация алгоритма

Построение сеток — Wolfram Mathematica и CALFEM, алгоритм метода конечных элементов реализован на языке $\mathrm{C}++$

Заключение

Список использованных источников

- 1. Галанин, М.П. Методы численного анализа математических моделей / М. П Галанин, Е.Б. Савенков. 2-е изд., испр. Москва : Издательство МГТУ им. Н.Э. Баумана, 2018. 591 с.: ил. ISBN 978-5-7038-4796-1.
- 2. Stahel, A. Calculus of Variations and Finite Elements. 2003. P. 151–152.