Model Predictive Control using MATLAB 9: Feasibility, Stability and Optimality

by Midhun T. Augustine

Overview

- 1 Feasibility
 - Feasible set

- 2 Stability
 - \bullet Lyapunov Approach
- 3 Optimality

Feasibility

Feasible set

• Feasible set of control sequences: $\mathbb{U}_{fk} = \mathbb{U}_f(\mathbf{x}_k)$ is defined as

$$\mathbb{U}_{fk} = \{ \mathbf{U}_k \in \mathbb{U}^N : \mathbf{X}_k(\mathbf{x}_k, \mathbf{U}_k) \in \mathbb{X}^{N+1} \}$$
 (1)

- The number of elements in $\mathbb{U}_{fk} \subseteq \mathbb{U}^N$ decreases when \mathbf{x}_k is closer to the boundary of \mathbb{X} .
- The MPC problem is said to be feasible for $\mathbf{x}_k \in \mathbb{X}$, if \mathbb{U}_{fk} is nonempty.
- Feasible set of states: $X_{fk} \subseteq X$ is defined as

$$\mathbb{X}_{fk} = \{ \mathbf{x}_k \in \mathbb{X} : \mathbb{U}_{fk} \neq \phi \}$$
 (2)

Feasibility

- Let X_{fk} and U_{fk} are the feasible set of states and control sequences during time instant k.
- Then the MPC control law is computed by solving the optimization problem

$$\begin{aligned} &\inf_{\mathbf{U}_k \in \mathbb{U}_{f_k}} & J_k(\mathbf{x}_k, \mathbf{U}_k) & subject \ to \\ &\mathbf{x}_{i+1|k} = \mathbf{f}(\mathbf{x}_{i|k}, \mathbf{u}_{i|k}), & k \in \mathbb{T}, i = k, ..., k+N-1. \end{aligned}$$

- Persistent feasibility: feasibility of initial state \mathbf{x}_0 guarantees the feasibility of future states $\mathbf{x}_k, k = 1, 2, ..., N_T$, i.e. $\mathbb{U}_{f0} \neq \phi \implies \mathbb{U}_{fk} \neq \phi, \forall k = 1, 2, ..., N_T$.
- Persistent feasibility depends on the system dynamics, prediction horizon N, and the constrained sets \mathbb{X}, \mathbb{U} .

Stability

Stability

• Lyapunov approach: design the control scheme in such a way that the optimal cost function becomes a Lyapunov function, i.e. $V_k = J_k^*$ and it satisfies

$$\Delta V = J_{k+1}^*(\mathbf{x}_{k+1}) - J_k^*(\mathbf{x}_k) < 0 \tag{4}$$

- In general for stabilizable LTI systems, by properly selecting the terminal weighting matrix and constraints the value function for the MPC scheme can be made as a Lyapunov function.
- The terminal weighting matrix \mathbf{Q}_N and terminal constraints $\mathbf{F}_{\mathbf{x}_N}, \mathbf{g}_{\mathbf{x}_N}$ can be easily incorporated in the MPC algorithm by adding them in Q_{x}, F_{x}, g_{x} .

Optimality

Optimality

- MPC usually results in suboptimal solution.
- As the prediction horizon increases the MPC control law becomes more optimal.
- In general as $N \to N_T$ the control law becomes optimal.
- ullet N is selected based on a trade off between optimality and computation.

Thank you