Lecture 7

October 14, 2024

- Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) 1:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline

- Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) 1:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline
- Requirements: $A \in \{0,1\}^{F \cdot I}$ with $A_{f,i} = 1 \Leftrightarrow$ itinerary i needs seat on flight leg f

		Itinerary 1	Itinerary 2		Itinerary $ I $
Resource matrix A :	Flight leg 1	1	0		1
	Flight leg 2	0	1		0
	:	•	:	:	:
	Flight leg $ F $	1	1		0

- · Airline is planning operations for a specific day in the future
- Airline operates a set F of direct flights in its (hub-and-spoke) network
- For each flight leg $f \in F$, we know the capacity of the aircraft c_f
- The airline can offer a large number of "products" (i.e., itineraries) 1:
 - each itinerary refers to an origin-destination-fare class combination
 - each itinerary i has a price r_i that is fixed
 - for each itinerary, the airline estimates the demand d_i
 - each itinerary requires a seat on several flight legs operated by the airline
- Requirements: $A \in \{0,1\}^{F \cdot I}$ with $A_{f,i} = 1 \Leftrightarrow$ itinerary i needs seat on flight leg f

		Itinerary 1	Itinerary 2		Itinerary $ I $
Resource matrix A :	Flight leg 1	1	0		1
	Flight leg 2	0	1		0
	:	:	:	:	:
	Flight leg F	1	1		0

• Goal: decide how many itineraries of each type to sell to maximize revenue

- x_i : number of itineraries of type i that the airline plans to sell
- Airline Network RM problem:

$$\max_{x \in \mathbb{R}^l} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$: constraints on plane capacity
- ullet $x \leq d$: planned sales cannot exceed the demand
- In practice, would not include all possible itineraries

- x_i : number of itineraries of type i that the airline plans to sell
- Airline Network RM problem:

$$\max_{x \in \mathbb{R}^l} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$: constraints on plane capacity
- $x \le d$: planned sales cannot exceed the demand
- In practice, would not include all possible itineraries
 - gargantuan LP
 - poor demand estimates for some itineraries

- x_i : number of itineraries of type i that the airline plans to sell
- Airline Network RM problem:

$$\max_{x \in \mathbb{R}^l} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$: constraints on plane capacity
- $x \le d$: planned sales cannot exceed the demand
- In practice, would not include all possible itineraries
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints

- x_i : number of itineraries of type i that the airline plans to sell
- Airline Network RM problem:

$$\max_{x \in \mathbb{R}^l} \left\{ r^\mathsf{T} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$: constraints on plane capacity
- $x \le d$: planned sales cannot exceed the demand
- In practice, would not include all possible itineraries
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $-p \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f

- x_i : number of itineraries of type i that the airline plans to sell
- Airline Network RM problem:

$$\max_{x \in \mathbb{R}^{I}} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$: constraints on plane capacity
- $x \le d$: planned sales cannot exceed the demand
- In practice, would not include all possible itineraries
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $-p \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f
 - For an "exotic" itinerary that requires seats on several flights $f \in E$, the **minimum** price to charge is given by the sum of the shadow prices, $\sum_{f \in E} p_f$

- x_i : number of itineraries of type i that the airline plans to sell
- Airline Network RM problem:

$$\max_{x \in \mathbb{R}^{l}} \left\{ r^{\mathsf{T}} x : Ax \le c, \ x \le d \right\}$$

- $Ax \le c$: constraints on plane capacity
- $x \le d$: planned sales cannot exceed the demand
- In practice, would not include all possible itineraries
 - gargantuan LP
 - poor demand estimates for some itineraries
- To sell "exotic itineraries", use the shadow prices for the capacity constraints
 - $-p \in \mathbb{R}^F$: dual variables for capacity constraints $Ax \leq c$
 - At optimality, p_f is marginal revenue lost if airline loses one seat on flight f
 - For an "exotic" itinerary that requires seats on several flights $f \in E$, the **minimum** price to charge is given by the sum of the shadow prices, $\sum_{f \in E} p_f$
- Bid-price heuristic in network revenue management
- Broader principle of how to price "products" through resource usage/cost

Discrete Optimization

Today, we consider optimization problems with discrete variables:

min
$$c^T x + d^T y$$

 $Ax + By = b$
 $x, y \ge 0$
 x integer

This is called a mixed integer programming (MIP) problem

Without continuous variables y, it is called an **integer program** (IP)

If instead of $x \in \mathbb{Z}^n$ we have $x \in \{0,1\}^n$: **binary optimization** problem

Very powerful modeling paradigm

Example: Knapsack

- *n* items
- Item j has weight w_j and reward r_j
- Have a bound K on the weight that can be carried in the knapsack
- Want to select items to maximize the total value

Example: Knapsack

- *n* items
- Item j has weight w_j and reward r_j
- Have a bound K on the weight that can be carried in the knapsack
- Want to select items to maximize the total value

maximize
$$\sum_{j=1}^n r_j x_j$$
 subject to $\sum_{j=1}^n w_j x_j \leq K$ $x_j \in \{0,1\}, \quad j=1,\ldots,n.$

Example: Facility Location

- n potential locations to open facilities
- Cost c_j for opening a facility at location j
- *m* clients who need service
- Cost d_{ij} for serving client i from facility j
- Smallest cost for opening facilities while serving all clients

Example: Facility Location

- n potential locations to open facilities
- Cost c_j for opening a facility at location j
- m clients who need service
- Cost d_{ij} for serving client i from facility j
- Smallest cost for opening facilities while serving all clients

$$\min \sum_{j=1}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$
$$\sum_{j=1}^{n} x_{ij} = 1, \quad \forall i$$
$$x_{ij} \leq y_j, \quad \forall i, \ \forall j$$
$$x_{ij}, y_j \in \{0, 1\}$$

Example: Facility Location

- n potential locations to open facilities
- Cost c_i for opening a facility at location j
- *m* clients who need service
- Cost d_{ij} for serving client i from facility j
- Smallest cost for opening facilities while serving all clients

$$\min \ \sum_{j=1}^{n} c_{j}y_{j} + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij}x_{ij}$$

$$\min \ \sum_{j=1}^{n} c_{j}y_{j} + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij}x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = 1, \quad \forall i$$

$$\sum_{j=1}^{n} x_{ij} = 1, \quad \forall i$$

$$\sum_{j=1}^{m} x_{ij} \leq y_{j}, \quad \forall i, \quad \forall j$$

$$\sum_{i=1}^{m} x_{ij} \leq my_{j}, \quad \forall j$$

$$x_{ij}, y_{j} \in \{0, 1\}.$$

- Idea: $\mathbf{x} = \sum_{i=1}^{k} \lambda_i a_i$
- Cost: $\sum_{i=1}^{k} \frac{\lambda_i}{\lambda_i} f(a_i)$
- How to impose adjacency?

$$x = \lambda_i a_i + \lambda_{i+1} a_{i+1}$$

• Idea:
$$\mathbf{x} = \sum_{i=1}^k \lambda_i a_i$$

- Cost: $\sum_{i=1}^{k} \lambda_i f(a_i)$
- How to impose adjacency?

$$x = \lambda_i a_i + \lambda_{i+1} a_{i+1}$$

• New binary variables *y_i* to impose:

$$y_j = 1 \implies \lambda_i = 0 \text{ for } i \notin \{j, j+1\}$$

• Idea:
$$\mathbf{x} = \sum_{i=1}^{k} \lambda_i a_i$$

• Cost:
$$\sum_{i=1}^{k} \lambda_i f(a_i)$$

• How to impose adjacency?

$$x = \lambda_i a_i + \lambda_{i+1} a_{i+1}$$

• New binary variables y_i to impose:

$$y_j = 1 \implies \lambda_i = 0 \text{ for } i \notin \{j, j+1\}$$

$$\sum_{i=1}^{k} \lambda_{i} = 1,
\lambda_{1} \leq y_{1},
\lambda_{i} \leq y_{i-1} + y_{i}, i = 2, \dots, k-1,
\lambda_{k} \leq y_{k-1},
\sum_{i=1}^{k-1} y_{i} = 1,
\lambda_{i} \geq 0,
y_{i} \in \{0, 1\}, \forall i.$$

- Set U of jobs/tasks to complete; set V of persons available to work
- Each task assigned to at most one person; a person can only complete some tasks
- ullet Reward w_{ij} if task $i \in U$ completed by person $j \in V$

- Set U of jobs/tasks to complete; set V of persons available to work
- Each task assigned to at most one person; a person can only complete some tasks
- Reward w_{ij} if task $i \in U$ completed by person $j \in V$
- Graph representation $G = (\mathcal{N}, \mathcal{E})$
- $e \equiv \{i, j\} \in \mathcal{E}$ indicates $j \in V$ can complete task $i \in U$

- Set U of jobs/tasks to complete; set V of persons available to work
- Each task assigned to at most one person; a person can only complete some tasks
- Reward w_{ii} if task $i \in U$ completed by person $j \in V$
- Graph representation $G = (\mathcal{N}, \mathcal{E})$
- $e \equiv \{i, j\} \in \mathcal{E}$ indicates $j \in V$ can complete task $i \in U$

 $x_e \in \{0,1\}$: whether edge selected

maximize
$$\sum_{e \in E} w_e x_e$$

$$\sum_{e \in \delta(i)} x_e \leq 1, \quad \forall \, i \in N,$$
 $x_e \in \{0,1\},$

 $\delta(i) := \{j : \{i, j\} \in \mathcal{E}\}$: all neighbors of i

- Set U of jobs/tasks to complete; set V of persons available to work
- Each task assigned to at most one person; a person can only complete some tasks
- Reward w_{ij} if task $i \in U$ completed by person $j \in V$
- Graph representation $G = (\mathcal{N}, \mathcal{E})$
- $e \equiv \{i, j\} \in \mathcal{E}$ indicates $j \in V$ can complete task $i \in U$

 $x_e \in \{0,1\}$: whether edge selected

maximize
$$\sum_{e \in E} w_e x_e$$

$$\sum_{e \in \delta(i)} x_e \leq 1, \quad \forall \, i \in N,$$
 $x_e \in \{0,1\},$

 $\delta(i) := \{j : \{i, j\} \in \mathcal{E}\}$: all neighbors of i

Many variations: minimize cost, require jobs completed, perfect matching, ...

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find minimum spanning tree (MST)
 (subset of edges that connect all nodes in N at minimum cost)

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- ullet Edge $e \in \mathcal{E}$ has associated cost $c_{
 m e}$
- Find minimum spanning tree (MST)
 (subset of edges that connect all nodes in N at minimum cost)

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E}); |\mathcal{N}| = n, |\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find minimum spanning tree (MST) (subset of edges that connect all nodes in $\mathcal N$ at minimum cost)

$$\min \ \sum_{e \in \mathcal{E}} c_e x_e$$

$$x_e \in \{0,1\}$$
 (Connectivity)
$$\sum_{e \in \mathcal{E}} x_e = n-1$$
 (Cutset)
$$\sum_{e \in \delta(S)} x_e \geq 1, \ S \subset \mathcal{N}, S \neq \emptyset$$

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- ullet Edge $e \in \mathcal{E}$ has associated cost $c_{
 m e}$
- Find minimum spanning tree (MST) (subset of edges that connect all nodes in $\mathcal N$ at minimum cost)

$$\begin{aligned} &\min \ \sum_{e \in \mathcal{E}} c_e x_e \\ &x_e \in \{0,1\} \end{aligned}$$
 (Connectivity)
$$\sum_{e \in \mathcal{E}} x_e = n-1$$
 (Cutset)
$$\sum_{e \in \delta(\mathcal{S})} x_e \geq 1, \ S \subset \mathcal{N}, S \neq \emptyset$$

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- ullet Edge $e \in \mathcal{E}$ has associated cost $c_{
 m e}$
- Find minimum spanning tree (MST) (subset of edges that connect all nodes in $\mathcal N$ at minimum cost)

$$\min \sum_{e \in \mathcal{E}} c_e x_e$$

$$x_e \in \{0,1\}$$
 (Connectivity)
$$\sum_{e \in \mathcal{E}} x_e = n-1$$
 (Cutset)
$$\sum_{e \in \delta(\mathcal{S})} x_e \geq 1, \ \mathcal{S} \subset \mathcal{N}, \mathcal{S} \neq \emptyset$$
 ... or ...

(Subtour-elimination)
$$\sum_{e \in \mathcal{E}(S)} x_e \leq |S| - 1, \ S \subset \mathcal{N}, S \neq \emptyset$$

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E}); |\mathcal{N}| = n, |\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find minimum spanning tree (MST) (subset of edges that connect all nodes in $\mathcal N$ at minimum cost)

$$\min \sum_{e \in \mathcal{E}} c_e x_e$$

$$x_e \in \{0,1\}$$
 (Connectivity)
$$\sum_{e \in \mathcal{E}} x_e = n-1$$
 (Cutset)
$$\sum_{e \in \delta(S)} x_e \geq 1, \ S \subset \mathcal{N}, S \neq \emptyset$$
 ... or ...

(Subtour-elimination) $\sum_{e \in \mathcal{E}(S)} x_e \le |S| - 1, \ S \subset \mathcal{N}, S \ne \emptyset$

Again exponentially-sized formulations! Any preference between them?

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E})$; $|\mathcal{N}| = n$, $|\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find a **tour** (cycle that visits each node exactly once) with minimum cost

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E}); |\mathcal{N}| = n, |\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find a **tour** (cycle that visits each node exactly once) with minimum cost

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E}); |\mathcal{N}| = n, |\mathcal{E}| = m$
- ullet Edge $e \in \mathcal{E}$ has associated cost $c_{
 m e}$
- Find a tour (cycle that visits each node exactly once) with minimum cost

$$\begin{aligned} & \min \ \sum_{e \in \mathcal{E}} c_e x_e \\ & x_e \in \{0,1\} \\ & \textbf{(Connectivity)} \ \sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in \textit{N} \\ & \textbf{(Cutset)} \ \sum_{e \in \delta(S)} x_e \geq 2, \forall S \subset \textit{N}, S \neq \emptyset \end{aligned}$$

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E}); |\mathcal{N}| = n, |\mathcal{E}| = m$
- ullet Edge $e \in \mathcal{E}$ has associated cost c_e
- Find a **tour** (cycle that visits each node exactly once) with minimum cost

$$\begin{aligned} \min & \sum_{e \in \mathcal{E}} c_e x_e \\ & x_e \in \{0,1\} \end{aligned}$$
 (Connectivity)
$$\sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in \mathcal{N}$$
 (Cutset)
$$\sum_{e \in \delta(S)} x_e \geq 2, \forall S \subset \mathcal{N}, S \neq \emptyset$$

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E}); |\mathcal{N}| = n, |\mathcal{E}| = m$
- ullet Edge $e \in \mathcal{E}$ has associated cost $c_{
 m e}$
- Find a tour (cycle that visits each node exactly once) with minimum cost

$$\begin{aligned} & \min \ \sum_{e \in \mathcal{E}} c_e x_e \\ & x_e \in \{0,1\} \\ & \textbf{(Connectivity)} \ \sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in \mathcal{N} \\ & \textbf{(Cutset)} \ \sum_{e \in \delta(S)} x_e \geq 2, \forall S \subset \mathcal{N}, S \neq \emptyset \\ & \dots \ \text{or} \ \dots \end{aligned}$$

(Subtour-elimination) $\sum_{e \in \mathcal{E}(S)} x_e \leq |S| - 1, \forall S \subset N, S \neq \emptyset$

- Given an undirected graph $G = (\mathcal{N}, \mathcal{E}); |\mathcal{N}| = n, |\mathcal{E}| = m$
- Edge $e \in \mathcal{E}$ has associated cost c_e
- Find a tour (cycle that visits each node exactly once) with minimum cost

$$\min \ \sum_{e \in \mathcal{E}} c_e x_e$$

$$x_e \in \{0,1\}$$
 (Connectivity)
$$\sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in \mathcal{N}$$
 (Cutset)
$$\sum_{e \in \delta(S)} x_e \geq 2, \forall S \subset \mathcal{N}, S \neq \emptyset$$
 ... or ...

(Subtour-elimination) $\sum_{e \in \mathcal{E}(S)} x_e \leq |S| - 1, \forall S \subset N, S \neq \emptyset$

Again exponentially-sized formulations! Any preference between them?

Example. The optimal solution is the following IP **does not exist**:

$$\sup_{x,y} x + \sqrt{2}y$$
$$x + \sqrt{2}y \le \frac{1}{2}$$
$$x, y \in \mathbb{Z}.$$

Example. The optimal solution is the following IP **does not exist**:

$$\sup_{x,y} x + \sqrt{2}y$$

$$x + \sqrt{2}y \le \frac{1}{2}$$

$$x, y \in \mathbb{Z}.$$

Example. Consider the following pair of optimization programs:

$$(\mathscr{P}) \min_{x \ge 0} x \qquad (\mathscr{D}) \max_{p} p$$
$$2x = 1 \qquad 2p \le 1$$

Example. The optimal solution is the following IP **does not exist**:

$$\sup_{x,y} x + \sqrt{2}y$$

$$x + \sqrt{2}y \le \frac{1}{2}$$

$$x, y \in \mathbb{Z}.$$

Example. Consider the following pair of optimization programs:

$$(\mathscr{P}) \min_{x \ge 0} x \qquad (\mathscr{D}) \max_{p} p$$
$$2x = 1 \qquad 2p \le 1$$

• $x, p \in \mathbb{R} \Rightarrow$ this is a primal-dual pair; optimal value $\frac{1}{2}$ by strong duality

Example. The optimal solution is the following IP **does not exist**:

$$\sup_{x,y} x + \sqrt{2}y$$

$$x + \sqrt{2}y \le \frac{1}{2}$$

$$x, y \in \mathbb{Z}.$$

Example. Consider the following pair of optimization programs:

$$(\mathscr{P}) \min_{x \ge 0} x \qquad (\mathscr{D}) \max_{p} p$$
$$2x = 1 \qquad 2p \le 1$$

- $x, p \in \mathbb{R} \Rightarrow$ this is a primal-dual pair; optimal value $\frac{1}{2}$ by strong duality
- $x, p \in \mathbb{Z} \Rightarrow (\mathscr{P})$ infeasible, (\mathscr{D}) has optimal value 0.

Strong duality does not hold in IPs

Unfortunately, (M)IPs are significantly harder than LPs

Theorem

Given a matrix $A \in \mathbb{Q}^{m \times n}$ and a vector $b \in \mathbb{Q}^m$, the problem: "does $Ax \leq b$ have an integral solution x" is **NP-complete**.

• IP "feasibility problem" is already in the hardest class of problems in NP

Unfortunately, (M)IPs are significantly harder than LPs

Theorem

Given a matrix $A \in \mathbb{Q}^{m \times n}$ and a vector $b \in \mathbb{Q}^m$, the problem: "does $Ax \leq b$ have an integral solution x" is **NP-complete**.

- IP "feasibility problem" is already in the hardest class of problems in NP
- Despite this, substantial body of theory and scalable algorithms exist for IPs
- We will focus on optimization problems with rational entries: $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m, c \in \mathbb{Q}^n$ (in fact, often integer)
- We assume that the feasible set is bounded

Lower Bounds Again

Same question as in LP: how can we find a good lower bound?

Lower Bounds Again

Same question as in LP: how can we find a good lower bound?

LP Relaxation for Facility Location IP

Recall the two formulations of the Facility Location Problem

(FL) (AFL)
$$\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, ..., m$$

$$\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, ..., m$$

$$x_{ij} \le y_{j}, \quad i = 1, ..., m, \quad j = 1, ..., n$$

$$\sum_{j=1}^{m} x_{ij} \le my_{j}, \quad j = 1, ..., n$$

$$x_{ij}, y_{j} \in \{0, 1\}.$$

• $P_{\text{FL}}, P_{\text{AFL}}$: feasible sets for LP relaxations

LP Relaxation for Facility Location IP

Recall the two formulations of the Facility Location Problem

(FL)
$$\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, ..., m$$

$$x_{ij} \le y_{j}, \quad i = 1, ..., m, \quad j = 1, ..., n$$

$$x_{ij}, y_{j} \in \{0, 1\}$$

(AFL)

$$\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} \le my_{j}, \quad j = 1, \dots, n$$

$$x_{ij}, y_{j} \in \{0, 1\}.$$

- P_{FI} , P_{AFI} : feasible sets for LP relaxations
- $P_{\mathsf{FL}} \subseteq P_{\mathsf{AFL}}$ and can have **strict** inclusion
- (FL) provides better lower bound than (AFL)
- Same IP feasible set, different LP feasible set!

LP Relaxation for Minimum Spanning Tree Problem

(Cutset MST)

$\sum x_{\rm e}=n-1,$ $e \in \delta(S)$ $x_e \in \{0, 1\}$

(Subtour-elimination MST)

$$\begin{split} \sum_{e \in \mathcal{E}} x_e &= n-1, \\ \sum_{e \in \delta(S)} x_e &\geq 1, \quad S \subset \mathcal{N}, S \neq \emptyset \\ x_e &\in \{0,1\} \end{split} \qquad \begin{aligned} \sum_{e \in \mathcal{E}} x_e &= n-1, \\ \sum_{e \in \mathcal{E}(S)} x_e &\leq |S|-1, \quad S \subset \mathcal{N}, S \neq \emptyset, \\ x_e &\in \{0,1\}. \end{aligned}$$

• P_{cut} , P_{sub} : feasible sets for LP relaxations

LP Relaxation for Minimum Spanning Tree Problem

(Cutset MST)

$$\begin{split} &\sum_{e \in \mathcal{E}} x_e = n-1, \\ &\sum_{e \in \delta(S)} x_e \geq 1, \quad S \subset \mathcal{N}, S \neq \\ &x_e \in \{0,1\} \end{split}$$

(Subtour-elimination MST)

$$\begin{split} \sum_{e \in \mathcal{E}} x_e &= n - 1, \\ \sum_{e \in \delta(S)} x_e &\geq 1, \quad S \subset \mathcal{N}, S \neq \emptyset \\ x_e &\in \{0, 1\} \end{split} \qquad \sum_{e \in \mathcal{E}(S)} x_e &\leq |S| - 1, \quad S \subset \mathcal{N}, S \neq \emptyset, \\ x_e &\in \{0, 1\}. \end{split}$$

- $P_{\text{cut}}, P_{\text{sub}}$: feasible sets for LP relaxations
- $P_{\text{sub}} \subseteq P_{\text{cut}}$ and can have **strict** inclusion (Proof in the notes)
- (SUB) provides better lower bound than (CUT)
- Same IP feasible set, different LP feasible set!

LP Relaxation for Traveling Salesperson Problem (TSP)

(Cutset TSP)

(Subtour-elimination TSP)

$$\sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in N$$

$$\sum_{e \in \delta(S)} x_e \ge 2, \forall S \subset N, S \ne \emptyset$$

$$\sum_{\substack{i:\delta(\{i\})\\ e\in\delta(S)}} x_e = 2, \forall i \in \mathbb{N}$$

$$\sum_{\substack{e\in\delta(\{i\})\\ e\in\mathcal{E}(S)}} x_e = 2, \forall i \in \mathbb{N}$$

$$\sum_{\substack{e\in\delta(\{i\})\\ e\in\mathcal{E}(S)}} x_e \leq |S| - 1, \forall S \subset \mathbb{N}, S \neq \emptyset.$$

• P_{cut} , P_{sub} : feasible sets for LP relaxations

LP Relaxation for Traveling Salesperson Problem (TSP)

(Cutset TSP)

 $e \in \delta(S)$

(Subtour-elimination TSP)

$$\sum_{e \in \delta(\{i\})} x_e = 2, \forall i \in \mathbb{N}$$

$$\sum_{e \in \delta(S)} x_e \ge 2, \forall S \subset \mathbb{N}, S \ne \emptyset$$

$$\sum_{e \in \delta(S)} x_e \le |S| - 1, \forall S \subset \mathbb{N}, S \ne \emptyset.$$

- P_{cut} , P_{sub} : feasible sets for LP relaxations
- $P_{\text{sub}} = P_{\text{cut}}$

• Different formulations of the same IP can result in different LP relaxations

• What is an "ideal" formulation?

- T: all feasible points to an IP and conv(T) is their convex hull
 - T finite because we assumed bounded feasible set
 - conv (T) is a polyhedron

- T: all feasible points to an IP and conv(T) is their convex hull
 - T finite because we assumed bounded feasible set
 - conv (T) is a polyhedron
- If P is the feasible region of an LP relaxation to our IP, then

$$T \subseteq \operatorname{conv}(T) \subseteq P$$
.

- T: all feasible points to an IP and conv (T) is their convex hull
 - T finite because we assumed bounded feasible set
 - conv (T) is a polyhedron
- If *P* is the feasible region of an LP relaxation to our IP, then

$$T \subseteq \operatorname{conv}(T) \subseteq P$$
.

• **Ideal** LP relaxation would have P = conv(T)

- T : all feasible points to an IP and conv (T) is their convex hull
 - T finite because we assumed bounded feasible set
 - conv (T) is a polyhedron
- If *P* is the feasible region of an LP relaxation to our IP, then

$$T \subseteq \operatorname{conv}(T) \subseteq P$$
.

• **Ideal** LP relaxation would have P = conv(T)

Key take-aways:

- ullet Quality of IP formulation : how closely its LP relaxation approximates $\operatorname{conv}\left(T\right)$
- Formulation A is better than formulation B for some IP if $P_A \subset P_B$
- Constraints play a more subtle role in IPs than in LPs
 - Adding valid constraints for T that cut off fractional points from P is very useful!
 - More constraints not necessarily worse in IP!

Ideal Formulations

Setup:

- $T = \{x \in \mathbb{Z}_+^n \mid Ax \leq b\}$: feasible set for an IP with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$
- P: feasible set of its LP relaxation, $P = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$.
- Goal: conditions on A so that P is integral, i.e., P = conv(T)

Can anyone recall Cramer's rule?

(Total) Unimodularity

Definition

- 1. Matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if the $det(A_B) \in \{1, -1\}$ for every basis B.
- 2. Matrix $A \in \mathbb{Z}^{m \times n}$ is **totally unimodular** if the determinant of each square submatrix of A is 0, 1, or -1.
 - **Unimodularity** allows handling standard form $\{x \in \mathbb{Z}_+^n \mid Ax = b\}$
 - **Total Unimodularity (TU)** allows handling inequality form $\{x \in \mathbb{Z}_+^n \mid Ax \leq b\}$

(Total) Unimodularity

Definition

- 1. Matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if the $det(A_B) \in \{1, -1\}$ for every basis B.
- 2. Matrix $A \in \mathbb{Z}^{m \times n}$ is **totally unimodular** if the determinant of each square submatrix of A is 0, 1, or -1.
 - **Unimodularity** allows handling standard form $\{x \in \mathbb{Z}_+^n \mid Ax = b\}$
 - **Total Unimodularity (TU)** allows handling inequality form $\{x \in \mathbb{Z}_+^n \mid Ax \leq b\}$
 - **Note:** a TU matrix must belong to $\{0,1,-1\}^{m\times n}$, but not a unimodular matrix:

e.g.
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

(Total) Unimodularity

Definition

- 1. Matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if the $det(A_B) \in \{1, -1\}$ for every basis B.
- 2. Matrix $A \in \mathbb{Z}^{m \times n}$ is **totally unimodular** if the determinant of each square submatrix of A is 0, 1, or -1.
 - **Unimodularity** allows handling standard form $\{x \in \mathbb{Z}_+^n \mid Ax = b\}$
 - **Total Unimodularity (TU)** allows handling inequality form $\{x \in \mathbb{Z}_+^n \mid Ax \leq b\}$
 - **Note:** a TU matrix must belong to $\{0,1,-1\}^{m\times n}$, but not a unimodular matrix:

e.g.
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

• Will provide easier ways to test for U and TU, but first let's see why we care...

Theorem

- 1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax = b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
- 2. The matrix A is totally unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

Theorem

- 1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax = b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
- 2. The matrix A is totally unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

Proof. (a) " \Rightarrow " Because A unimodular, for any $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$, any basic feasible solution $x = (x_B, x_N) \in P(b)$ must satisfy $x_B = A_B^{-1}b \in \mathbb{Z}^{|B|}$.

Theorem

- 1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax = b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
- 2. The matrix A is totally unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

Proof. (a) " \Rightarrow " Because A unimodular, for any $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$, any basic feasible solution $x = (x_B, x_N) \in P(b)$ must satisfy $x_B = A_B^{-1}b \in \mathbb{Z}^{|B|}$.

" \Leftarrow " We have that $P(b) \neq \emptyset$ is integral $b \in \mathbb{Z}^m$. Let B be any basis of A.

• Sufficient to prove that A_B^{-1} is integral; $(A_B \text{ integral and } \det(A_B) \cdot \det(A_B^{-1}) = 1$ would imply that $\det(A_B) \in \{1, -1\}$ and thus A is unimodular)

Theorem

- 1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax = b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
- 2. The matrix A is totally unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

Proof. (a) " \Rightarrow " Because A unimodular, for any $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$, any basic feasible solution $x = (x_B, x_N) \in P(b)$ must satisfy $x_B = A_B^{-1}b \in \mathbb{Z}^{|B|}$.

" \Leftarrow " We have that $P(b) \neq \emptyset$ is integral $b \in \mathbb{Z}^m$. Let B be any basis of A.

- Sufficient to prove that A_B⁻¹ is integral; (A_B integral and det(A_B) · det(A_B⁻¹) = 1 would imply that det(A_B) ∈ {1, −1} and thus A is unimodular)
- To prove A_B^{-1} integral, consider $b = A_B \cdot z + e_i$ where z is an integral vector
- Then $A_B^{-1} \cdot b = z + A_B^{-1} e_i$

Theorem

- 1. The matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax = b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.
- 2. The matrix A is totally unimodular if and only if the polyhedron $P(b) = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}$ is integral for all $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$.

Proof. (a) " \Rightarrow " Because A unimodular, for any $b \in \mathbb{Z}^m$ with $P(b) \neq \emptyset$, any basic feasible solution $x = (x_B, x_N) \in P(b)$ must satisfy $x_B = A_B^{-1}b \in \mathbb{Z}^{|B|}$.

" \Leftarrow " We have that $P(b) \neq \emptyset$ is integral $b \in \mathbb{Z}^m$. Let B be any basis of A.

- Sufficient to prove that A_B⁻¹ is integral; (A_B integral and det(A_B) · det(A_B⁻¹) = 1 would imply that det(A_B) ∈ {1, −1} and thus A is unimodular)
- To prove A_B^{-1} integral, consider $b = A_B \cdot z + e_i$ where z is an integral vector
- Then $A_B^{-1} \cdot b = z + A_B^{-1} e_i$
- By choosing z large so $z + A_B^{-1}e_i \ge 0$, we obtain a b.f.s. for P(b)
- Because P(b) integral, $A_B^{-1}e_i$ must be integral
- Repeat argument for all e_i to proves that A_B^{-1} is integral.
- (b) Similar logic, omitted (see notes)

Checking for Total Unimodularity

Proposition

Consider a matrix $A \in \{0, 1, -1\}^{m \times n}$. The following are equivalent:

- 1. A is totally unimodular.
- 2. A^T is totally unimodular.
- 3. $[A^T A^T I I]$ is totally unimodular.
- 4. $\{x \in \mathbb{R}^n_+ \mid Ax = b, 0 \le x \le u\}$ is integral for all integral b, u.
- 5. $\{x \mid a \leq Ax \leq b, \ell \leq x \leq u\}$ is integral for all integral a, b, ℓ, u .
- 6. Each collection of columns of A can be partitioned into two parts so that the sum of the columns in one part minus the sum of the columns in the other part is a vector with entries 0,+1, and -1. (By part 2, a similar result also holds for the rows of A.)
- 7. Each nonsingular submatrix of A has a row with an odd number of non-zero components.
- 8. The sum of entries in any square submatrix with even row and column sums is divisible by four.
- 9. No square submatrix of A has determinant +2 or -2.

#6 perhaps most useful in practice...

- $G = (\mathcal{N}, \mathcal{E})$ undirected graph
- $A \in \{0,1\}^{|\mathcal{N}|\times|\mathcal{E}|}$ is the node-edge incidence matrix of G $A_{i,e} = 1$ if and only if $i \in e$

	$ \{1, 5\}$	$\{2,3\}$	$\{2,6\}$	$\{4,3\}$	$\{4,5\}$	$\{4,6\}$
1	1	0	0	0	0	0
2	0	1	1	0	0	0
3	0	1	0	1	0	0
4	0	0	0	1	1	1
5	1	0	0	0	1	0
6	0	0	1	0	0	1

- $G = (\mathcal{N}, \mathcal{E})$ undirected graph
- $A \in \{0,1\}^{|\mathcal{N}|\times|\mathcal{E}|}$ is the node-edge incidence matrix of G $A_{i,e} = 1$ if and only if $i \in e$

	$ \{1, 5\}$	$\{2,3\}$	$\{2,6\}$	$\{4,3\}$	$\{4,5\}$	$\{4, 6\}$
1	1	0	0	0	0	0
2	0	1	1	0	0	0
3	0	1	0	1	0	0
4	0	0	0	1	1	1
5	1	0	0	0	1	0
6	0	0	1	0	0	1

- A is **TU** if and only if G is bipartite
- Bipartite matching problems have integral LP relaxations...

- D = (V, A) is a **directed graph**
- *M* is the *V* × *A* incidence matrix of *D*

$$M_{v,a} = \begin{cases} 1 & \text{if and only if } a = (\cdot, v) \text{ (arc } a \text{ enters node } v) \\ -1 & \text{if and only if } a = (v, \cdot) \text{ (arc } a \text{ leaves node } v) \\ 0 & \text{otherwise.} \end{cases}$$

(1, 2)	(1, 3)	(2, 4)	(4, 3)	(3, 5)	(5, 4)	(4, 6)	(5, 6)
					0	0	0
1	0	-1	0	0	0	0	0
					0	0	0
0	0	1	-1	0	1	-1	0
0	0	0	0	1	-1	0	-1
0	0	0	0	0	0	1	1
	$ \begin{array}{c} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{ccc} -1 & -1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ccccc} -1 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- D = (V, A) is a **directed graph**
- *M* is the *V* × *A* incidence matrix of *D*

$$M_{v,a} = \begin{cases} 1 & \text{if and only if } a = (\cdot, v) \text{ (arc } a \text{ enters node } v) \\ -1 & \text{if and only if } a = (v, \cdot) \text{ (arc } a \text{ leaves node } v) \\ 0 & \text{otherwise.} \end{cases}$$

							(4, 6)	
							0	0
2	1	0	-1	0	0	0	0	0
3	0	1	0	1	-1	0	0	0
4	0	0	1	-1	0	1	-1	0
5	0	0	0	-	1	-1	0	-1
6	0	0	0	0	0	0	1	1

- Then M is TU
- Network flow problems (e.g., Prosche Motors) with integral arc capacities and integral supply/demand have integral LP relaxations

• D = (V, A) is a **directed graph**, $T = (V, A_0)$ is a directed tree on V

• D = (V, A) is a **directed graph**, $T = (V, A_0)$ is a directed tree on V

• M is the $A_0 \times A$ matrix defined as follows: for $a = (v, w) \in A$ and $a' \in A_0$,

$$M_{a',a} = \begin{cases} +1 & \text{if the unique } v-w \text{ path in } T \text{ passes through } a' \text{ forwardly} \\ -1 & \text{if the unique } v-w \text{ path in } T \text{ passes through } a' \text{ backwardly} \\ 0 & \text{if the unique } v-w \text{ path in } T \text{ does not pass through } a'. \end{cases}$$

Examples of TU Matrices #3

• D = (V, A) is a **directed graph**, $T = (V, A_0)$ is a directed tree on V

• M is the $A_0 \times A$ matrix defined as follows: for $a = (v, w) \in A$ and $a' \in A_0$,

$$M_{a',a} = \begin{cases} +1 & \text{if the unique } v - w \text{ path in } T \text{ passes through } a' \text{ forwardly} \\ -1 & \text{if the unique } v - w \text{ path in } T \text{ passes through } a' \text{ backwardly} \\ 0 & \text{if the unique } v - w \text{ path in } T \text{ does not pass through } a'. \end{cases}$$

- Then M is TU
- All previous examples were special cases of this
- Paul Seymour: all TU matrices generated from network matrices and two other matrices

Dual Integrality and Submodular Functions

- Alternative way to show integrality of polyhedra based on LP duality
- Simple observation: to show that LP relaxation is integral, it suffices to check that the optimal value of any LP with integer cost vector *c* is an integer

Dual Integrality and Submodular Functions

- Alternative way to show integrality of polyhedra based on LP duality
- Simple observation: to show that LP relaxation is integral, it suffices to check that the optimal value of any LP with integer cost vector *c* is an integer

Proposition

P polyhedron with at least one extreme point. Then P is integral if and only if the optimal value $Z_{LP} := \min\{c^{\mathsf{T}}x \mid x \in P\}$ is an integer for all $c \in \mathbb{Z}^n$.

Proof. Straightforward; omitted.

• To show integrality of P, we construct an integral dual-optimal solution (for any $c \in \mathbb{Z}^n$)

Dual Integrality and Submodular Functions

- Alternative way to show integrality of polyhedra based on LP duality
- Simple observation: to show that LP relaxation is integral, it suffices to check that the optimal value of any LP with integer cost vector *c* is an integer

Proposition

P polyhedron with at least one extreme point. Then P is integral if and only if the optimal value $Z_{LP} := \min\{c^{\mathsf{T}}x \mid x \in P\}$ is an integer for all $c \in \mathbb{Z}^n$.

Proof. Straightforward; omitted.

- To show integrality of P, we construct an integral dual-optimal solution (for any $c \in \mathbb{Z}^n$)
- Our discussion here is quite specific
 - broader concepts possible related to Totally Dual Integrality
 - if interested, see notes for references

Definition

A function f(S) defined on subsets S of a finite set $N = \{1, \dots, n\}$ is **submodular** if

$$f(S) + f(T) \ge f(S \cap T) + f(S \cup T), \quad \forall S, T \subset N$$
 (1)

and it is **supermodular** if the reverse inequality holds.

Definition

A function f(S) defined on subsets S of a finite set $N = \{1, \dots, n\}$ is **submodular** if

$$f(S) + f(T) \ge f(S \cap T) + f(S \cup T), \quad \forall S, T \subset N$$
 (1)

and it is **supermodular** if the reverse inequality holds.

$$(1) \Leftrightarrow f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

Definition

A function f(S) defined on subsets S of a finite set $N = \{1, \dots, n\}$ is **submodular** if

$$f(S) + f(T) \ge f(S \cap T) + f(S \cup T), \quad \forall S, T \subset N$$
 (1)

and it is **supermodular** if the reverse inequality holds.

(1)
$$\Leftrightarrow f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

 $\Leftrightarrow f((S \cap T) \cup (S \setminus T)) - f(S \cap T) \ge f(T \cup (S \cap T)) - f(T)$

Definition

A function f(S) defined on subsets S of a finite set $N = \{1, \dots, n\}$ is **submodular** if

$$f(S) + f(T) \ge f(S \cap T) + f(S \cup T), \quad \forall S, T \subset N$$
 (1)

and it is **supermodular** if the reverse inequality holds.

(1)
$$\Leftrightarrow f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

 $\Leftrightarrow f((S \cap T) \cup (S \setminus T)) - f(S \cap T) \ge f(T \cup (S \cap T)) - f(T)$

- Set difference between arguments on the left is $S \setminus (S \cap T) = S \setminus T$
- Set difference between arguments on the right is $(S \cup T) \setminus T = S \setminus T$

Definition

A function f(S) defined on subsets S of a finite set $N = \{1, \dots, n\}$ is **submodular** if

$$f(S) + f(T) \ge f(S \cap T) + f(S \cup T), \quad \forall S, T \subset N$$
 (1)

and it is **supermodular** if the reverse inequality holds.

(1)
$$\Leftrightarrow f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

 $\Leftrightarrow f((S \cap T) \cup (S \setminus T)) - f(S \cap T) \ge f(T \cup (S \cap T)) - f(T)$

- Set difference between arguments on the left is $S \setminus (S \cap T) = S \setminus T$
- Set difference between arguments on the right is $(S \cup T) \setminus T = S \setminus T$
- (1): gains when adding something $(S \cap T)$ to a smaller set $(S \setminus T)$ are larger than when adding it to a larger set (T)

Definition

A function f(S) defined on subsets S of a finite set $N = \{1, \dots, n\}$ is **submodular** if

$$f(S) + f(T) \ge f(S \cap T) + f(S \cup T), \quad \forall S, T \subset N$$
 (1)

and it is **supermodular** if the reverse inequality holds.

(1)
$$\Leftrightarrow f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

 $\Leftrightarrow f((S \cap T) \cup (S \setminus T)) - f(S \cap T) \ge f(T \cup (S \cap T)) - f(T)$

- Set difference between arguments on the left is $S \setminus (S \cap T) = S \setminus T$
- Set difference between arguments on the right is $(S \cup T) \setminus T = S \setminus T$
- (1): gains when adding something (S ∩ T) to a smaller set (S \ T) are larger than when adding it to a larger set (T)
 - Submodular functions exhibit "diminishing returns" or "decreasing differences"
 - Might resemble concavity in economic intuition, but not computationally! (submodular functions are more like convex functions!)

Proposition

A set function $f: 2^N \to \mathbb{R}$ is submodular if and only if:

(a) For any $S, T \subseteq N$ such that $S \subseteq T$ and $k \notin T$:

$$f(S \cup \{k\}) - f(S) \ge f(T \cup \{k\}) - f(T).$$

(b) For any $S \subseteq N$ and any j, k with $j, k \notin S$ and $j \neq k$:

$$f(S \cup \{j\}) - f(S) \ge f(S \cup \{j, k\}) - f(S \cup \{k\}).$$
 (3.2)

Proposition

A set function $f: 2^N \to \mathbb{R}$ is submodular if and only if:

(a) For any $S, T \subseteq N$ such that $S \subseteq T$ and $k \notin T$:

$$f(S \cup \{k\}) - f(S) \ge f(T \cup \{k\}) - f(T).$$

(b) For any $S \subseteq N$ and any j, k with $j, k \notin S$ and $j \neq k$:

$$f(S \cup \{j\}) - f(S) \ge f(S \cup \{j, k\}) - f(S \cup \{k\}).$$
 (3.2)

- Submodular: "diminishing returns" or "decreasing differences"
 - cost: economies of scale/scope
 - profit: substitutability
- Supermodular is the opposite

Proposition

A set function $f: 2^N \to \mathbb{R}$ is submodular if and only if:

(a) For any $S, T \subseteq N$ such that $S \subseteq T$ and $k \notin T$:

$$f(S \cup \{k\}) - f(S) \ge f(T \cup \{k\}) - f(T).$$

(b) For any $S \subseteq N$ and any j, k with $j, k \notin S$ and $j \neq k$:

$$f(S \cup \{j\}) - f(S) \ge f(S \cup \{j, k\}) - f(S \cup \{k\}).$$
 (3.2)

- Submodular: "diminishing returns" or "decreasing differences"
 - cost: economies of scale/scope
 - profit: substitutability
- Supermodular is the opposite
- Subsequently, interested in non-negative and increasing submodular functions

$$f(S) \leq f(T), \quad \forall S \subset T \subseteq N.$$

- Linear functions. For $w \in \mathbb{R}^n$, $f(A) = \sum_{i \in A} w_i$ is both sub- and super-modular.
- Composition 2. If $w \ge 0$ and g concave, then $f(S) = g\left(\sum_{i \in S} w_i\right)$ is submodular.
- Optimal TSP cost on tree graphs. Consider undirected tree graph
 G = (N, E) with a positive cost for traversing the edges (c_e ≥ 0 for every edge
 e ∈ E). For every S ⊆ N, define f(S) as the optimal (i.e., smallest) cost for a TSP
 that goes through all the nodes in S. Then, f(S) is submodular.
- **Network optimization:** consider directed graph with capacities on edges that constrain how much flow can be transported; if f(S) is the maximum flow that can be received at a set of sink nodes S, f(S) is submodular.
- **Inventory and supply chain management:** perishable inventory systems, dual sourcing, and inventory control problems with trans-shipment.

Main Result

• For a submodular function *f* , consider the problem:

$$\begin{aligned} \text{maximize } & \sum_{j=1}^n r_j \cdot x_j \\ & \sum_{j \in S} x_j \leq f(S), \ \forall S \subseteq N \\ & x \in \mathbb{Z}_+^n. \end{aligned}$$

- T: set of feasible integer solutions
- P(f) the feasible set of the LP relaxation:

$$P(f) = \left\{ x \in \mathbb{R}^n_+ \mid \sum_{j \in S} x_j \le f(S), \ \forall S \subset N \right\}$$

Main Result

• For a submodular function *f* , consider the problem:

$$\begin{aligned} \text{maximize } & \sum_{j=1}^n r_j \cdot x_j \\ & \sum_{j \in S} x_j \leq f(S), \ \forall S \subseteq N \\ & x \in \mathbb{Z}_+^n. \end{aligned}$$

- *T*: set of feasible integer solutions
- P(f) the feasible set of the LP relaxation:

$$P(f) = \left\{ x \in \mathbb{R}^n_+ \mid \sum_{j \in S} x_j \le f(S), \ \forall S \subset N \right\}$$

Theorem

If f is submodular, increasing, integer valued, and $f(\emptyset) = 0$, then

$$P(f) = \operatorname{conv}(T)$$
.

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

maximize
$$\sum_{j=1}^{n} r_{j}x_{j}$$

$$\sum_{j \in S} x_{j} \leq f(S), \quad S \subset N,$$

$$x_{j} \geq 0, \ j \in N$$

- Key idea: construct feasible solutions for both, with equal value
- Key intuition: use a **greedy** construction in the primal!

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

maximize
$$\sum_{j=1}^{n} r_{j}x_{j}$$

 $\sum_{j\in S} x_{j} \leq f(S), \quad S \subset N,$
 $x_{j} \geq 0, \ j \in N$

- Key idea: construct feasible solutions for both, with equal value
- Key intuition: use a **greedy** construction in the primal!
- Suppose $r_1 \ge r_2 \ge \ldots \ge r_k > 0 \ge r_{k+1} \ge \ldots \ge r_n$.
- Let $S^0 = \emptyset$ and $S^j = \{1, \dots, j\}$ for $j \in N$.

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

maximize
$$\sum_{j=1}^{n} r_{j}x_{j}$$

 $\sum_{j\in S} x_{j} \leq f(S), \quad S \subset N,$
 $x_{j} \geq 0, \ j \in N$

- Key idea: construct feasible solutions for both, with equal value
- Key intuition: use a greedy construction in the primal!
- Suppose $r_1 \ge r_2 \ge ... \ge r_k > 0 \ge r_{k+1} \ge ... \ge r_n$.
- Let $S^0 = \emptyset$ and $S^j = \{1, \dots, j\}$ for $j \in N$.
- We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, & 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

• We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

$$\begin{array}{ll} \text{maximize} \ \sum_{j=1}^n r_j x_j & \text{minimize} \ \sum_{S \subset N} f(S) y_S \\ \\ \sum_{j \in S} x_j \leq f(S), \quad S \subset N & \sum_{S: j \in S} y_S \geq r_j, \ j \in N. \end{array}$$

• We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

$$\sum_{j \in T} x_j = \sum_{j \in T, j \le k} \left(f(S^j) - f(S^{j-1}) \right)$$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

• We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

$$\sum_{j\in\mathcal{T}} x_j = \sum_{j\in\mathcal{T}, j\leq k} \left(f(S^j) - f(S^{j-1}) \right)$$
 (because f submodular) $\leq \sum_{j\in\mathcal{T}, j\leq k} \left(f(S^j\cap\mathcal{T}) - f(S^{j-1}\cap\mathcal{T}) \right) =$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

• We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

$$\sum_{j \in T} x_j = \sum_{j \in T, j \le k} \left(f(S^j) - f(S^{j-1}) \right)$$
(because f submodular) $\leq \sum_{j \in T, j \le k} \left(f(S^j \cap T) - f(S^{j-1} \cap T) \right) = f(S^k \cap T) - f(\emptyset)$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^n r_j x_j & \text{minimize} & \sum_{S \subset \mathcal{N}} f(S) y_S \\ & \sum_{j \in S} x_j \leq f(S), \quad S \subset \mathcal{N} & \sum_{S:j \in S} y_S \geq r_j, \ j \in \mathcal{N}. \end{array}$$

We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

$$\sum_{j \in T} x_j = \sum_{j \in T, j \le k} \left(f(S^j) - f(S^{j-1}) \right)$$
(because f submodular) $\leq \sum_{j \in T, j \le k} \left(f(S^j \cap T) - f(S^{j-1} \cap T) \right) = f(S^k \cap T) - f(\emptyset)$
(because f monotone) $\leq f(T) - f(\emptyset)$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then $P(f) = \operatorname{conv}(T)$.

Proof. Consider the linear relaxation and its dual:

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^{\infty} r_j x_j & \text{minimize} & \sum_{S \subset \mathcal{N}} f(S) y_S \\ & \sum_{j \in S} x_j \leq f(S), \quad S \subset \mathcal{N} & \sum_{S: j \in S} y_S \geq r_j, \ j \in \mathcal{N}. \end{array}$$

We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, & 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

• f is integer-valued $\Rightarrow x \in \mathbb{Z}^n$. f increasing $\Rightarrow x_j \geq 0$. For all $T \subset N$, we have:

(because $f(\emptyset) = 0$) = f(T).

$$\sum_{j \in T} x_j = \sum_{j \in T, j \le k} \left(f(S^j) - f(S^{j-1}) \right)$$
(because f submodular) $\leq \sum_{j \in T, j \le k} \left(f(S^j \cap T) - f(S^{j-1} \cap T) \right) = f(S^k \cap T) - f(\emptyset)$
(because f monotone) $\leq f(T) - f(\emptyset)$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

• We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

• To show y is dual feasible, note that $y_S \ge 0$ and:

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

$$\begin{array}{ll}
\text{maximize} \sum_{j=1}^{n} r_{j} x_{j} & \text{minimize} \sum_{S \subset N} f(S) y_{S} \\
\sum_{j \in S} x_{j} \leq f(S), \quad S \subset N & \sum_{S: j \in S} y_{S} \geq r_{j}, \ j \in N.
\end{array}$$

We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

• To show y is dual feasible, note that $y_S \ge 0$ and:

$$\sum_{S:j\in S}y_S=y_{S^j}+\ldots+y_{S^k}=r_j, \text{ if } j\leq k \quad \text{and} \quad \sum_{S:j\in S}y_S=0\geq r_j, \text{ if } j>k.$$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

• We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

• To show y is dual feasible, note that $y_S \ge 0$ and:

$$\sum_{S:j\in S}y_S=y_{S^j}+\ldots+y_{S^k}=r_j, \text{ if } j\leq k \quad \text{and} \quad \sum_{S:j\in S}y_S=0\geq r_j, \text{ if } j>k.$$

• The primal objective: $\sum_{i=1}^{k} r_j \left(f(S^j) - f(S^{j-1}) \right)$

To show: f is submodular, increasing, integer-valued, $f(\emptyset) = 0$, then P(f) = conv(T).

Proof. Consider the linear relaxation and its dual:

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^n r_j x_j & \text{minimize} & \sum_{S \subset N} f(S) y_S \\ & \sum_{j \in S} x_j \leq f(S), \quad S \subset N & \sum_{S:j \in S} y_S \geq r_j, \ j \in N. \end{array}$$

• We prove that the following x and y are optimal for the primal and dual, respectively.

$$x_{j} = \begin{cases} f(S^{j}) - f(S^{j-1}), & 1 \leq j \leq k, \\ 0, & j > k. \end{cases} \quad y_{S} = \begin{cases} r_{j} - r_{j+1}, & S = S^{j}, \quad 1 \leq j < k, \\ r_{k}, & S = S^{k}, \\ 0, & \text{otherwise.} \end{cases}$$

• To show y is dual feasible, note that $y_S \ge 0$ and:

$$\sum_{S:i\in S}y_S=y_{S^j}+\ldots+y_{S^k}=r_j, \text{ if } j\leq k \quad \text{and} \quad \sum_{S:i\in S}y_S=0\geq r_j, \text{ if } j>k.$$

- The primal objective: $\sum_{i=1}^{k} r_j \left(f(S^j) f(S^{j-1}) \right)$
- The dual objective $\sum_{j=1}^{k-1} (r_j r_{j+1}) f(S^j) + r_k f(S^k) = \sum_{j=1}^k r_j \left(f(S^j) f(S^{j-1}) \right)$.