MATLAB

Lecture 8

Matlab allows to do symbolic algebra

Learn by examples:

factorising

log-linearisation

primes

Generate list of prime numbers

p = primes(n)

p = primes(n) returns a row vector of the prime numbers less than or equal to n. A prime number is one that has no factors other than 1 and itself.

```
p = primes(37)
p = 2 3 5 7 11 13 17 19 23 29 31 37
```

```
factor
    Prime factors

f = factor(n)
    f = factor(n) returns a row vector containing the prime factors of n.

f = factor(123)
    f =
        3 41
```

syms

Shortcut for constructing symbolic objects

```
syms arg1 arg2 ... is a shortcut for
arg1 = sym('arg1');
arg2 = sym('arg2');
```

Example

```
syms x y;
f = x^2 - y^2;
fff = factor(f)

fff =
    (x - y)*(x + y)
```

Examples:

```
exp(sym(pi))

ans =

exp(pi)
```

suppose you want to study the quadratic function f

```
syms a b c x

f = a*x^2 + b*x + c

f =

a*x^2 + b*x + c
```

Examples:

```
syms a b c
A = [a b c; c a b; b c a]
A =
[ a, b, c]
[c, a, b]
[b, c, a]
sum(A(1,:))
return
ans = a + b + c
```

Functions:

Suppose we created symbolic function f

After creating a symbolic function, you can differentiate, integrate, or simplify it, substitute its arguments with values, and perform other mathematical operations.

Functions:

To differentiate a symbolic expression, use the diff command

```
syms x
f = \sin(x)^2;
diff(f)
ans =
2*\cos(x)*\sin(x)
    syms x y
    f = x^3*y^3
    diff(f)
     ans =
    3*x^2*y^3
```

Functions:

For multivariable expressions, you can specify the differentiation variable. If you do not specify any variable, MATLAB® chooses a default variable

(X in previous example)

To differentiate the symbolic expression **f** with respect to a variable **y**, enter:

diff(f,y)

ans =

3*x^3*y^2

Functions:

Second Partial and Mixed Derivatives

To take a second derivative of the symbolic expression f with respect to a variable y, enter:

```
diff(f,y,2)
ans =
6*x^3*y

syms x y
f = sin(x)^2 + cos(y)^2;
diff(f, y, 2)

ans =
2*sin(y)^2 - 2*cos(y)^2
```

integrate Symbolic Expressions

```
syms x
     f = \sin(x)^2;
To find the indefinite integral
    int(f)
    ans =
    x/2 - \sin(2*x)/4
        syms x y n
        f = x^n + y^n;
         int(f, y)
        ans =
        x^n*y + (y*y^n)/(n + 1)
        int(f, n)
        ans =
         x^n/\log(x) + y^n/\log(y)
```

- Solve Equations
- You can solve different types of symbolic equations including:
- Algebraic equations with one symbolic variable
- Algebraic equations with several symbolic variables
- Systems of algebraic equations

Solve Equations

- Define an equation.
- Then you can <u>solve</u> the equation by calling the solve function

```
syms a b c x
>> eqn = a*x^2 + b*x + c;
>> sol = solve(eqn)
sol =
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)
-(b - (b^2 - 4*a*c)^(1/2))/(2*a)
```

simplify

Simplify representation of an expression

```
syms x a b c
simplify(sin(x)^2 + cos(x)^2)
simplify(exp(c*log(sqrt(a+b))))
ans =

1
ans =
(a + b)^(c/2)
```

```
simplify
syms x
M = [(x^2 + 5*x + 6)/(x + 2), \sin(x)*\sin(2*x) + \cos(x)*\cos(2*x);
                (\exp(-x^*i)^*i)/2 - (\exp(x^*i)^*i)/2, \operatorname{sqrt}(16)];
simplify(M)
ans =
[ x + 3, cos(x)]
[ sin(x),
    syms x
    f = ((exp(-x*i)*i)/2 - (exp(x*i)*i)/2)/(exp(-x*i)/2 + ...
                              \exp(x*i)/2);
    simplify(f)
     ans =
     tan(x)
```

EXPAND

Symbolic expansion.

EXPAND(S) writes each element of a symbolic expression S as a product of its factors. EXPAND is most often used on polynomials, but also expands trigonometric, exponential and logarithmic functions.

Examples:

```
expand((x+1)^3) returns x^3+3*x^2+3*x+1
expand(sin(x+y)) returns sin(x)*cos(y)+cos(x)*sin(y)
expand(exp(x+y)) returns exp(x)*exp(y)
```

```
syms x

f = (x^2-1)^*(x^4 + x^3 + x^2 + x + 1)^*(x^4 - x^3 + x^2 - x + 1);

expand(f)

ans = x^10 - 1 The same result as simplify(f)
```

```
syms x
g = x^3 + 6*x^2 + 11*x + 6;
factor(g)
ans =
(x + 3)*(x + 2)*(x + 1)
>> simplify(g)
ans =
(x + 1)*(x + 2)*(x + 3)
horner(g)
ans =
x*(x*(x+6)+11)+6
```

The nested (Horner) representation of a polynomial is the most efficient for numerical evaluations

Substitutions in Symbolic Expressions

You can substitute a symbolic variable with a numeric value by using the **subs** function. For example, evaluate the symbolic expression at the point x = 1/3:

```
syms x
f = 2*x^2 - 3*x + 1;
subs(f, 1/3)
ans =
```

Substitutions in Symbolic Expressions

 When your expression contains more than one variable, you can specify the variable for which you want to make the substitution. For example, to substitute the value x = 3 in the symbolic expression

```
syms x y
f = x^2*y + 5*x*sqrt(y);
subs(f, x, 3)

ans =
9*y + 15*y^(1/2)
```

Substitutions in Symbolic Expressions

- Substitute One Symbolic Variable for Another
- You also can substitute one symbolic variable for another symbolic variable. For example to replace the variable y with the variable x

```
syms x y

f = x^2*y + 5*x*sqrt(y);

subs(f, y, x)

ans = x^3 + 5*x^3(3/2)
```

To find symbolic variables in an expression, function, or matrix, use **symvar**

```
syms a b n t x;

g = sin(a*t + b);

symvar(g)

ans = [ a, b, t]
```

- Find a Default Symbolic Variable
- If you do not specify an independent variable when performing substitution, differentiation, or integration, MATLAB® uses a default variable. The default variable is typically the one closest alphabetically to x or, for symbolic functions, the first input argument of a function. To find which variable is chosen as a default variable, use the symvar(f, 1) command

```
syms s t f = s + t;

symvar(f, 1)

ans = t
```

plotting symbolic functions

ezplot

2-D

```
syms x;
f = x^3 - 6*x^2 + 11*x - 6;
ezplot(f)
```

plotting symbolic functions

```
Ezplot 2-D
syms t
x = t*sin(5*t);
y = t*cos(5*t);
>> X
x =
t*sin(5*t)
>> y
y =
t*cos(5*t)
>> ezplot(x, y)
```

plotting symbolic functions

EZSURF

Easy to use 3-D colored surface plotter

EZSURF(FUN) plots a graph of the function FUN(X,Y) using SURF.

FUN is plotted over the default domain -2*PI < X < 2*PI, -2*PI < Y < 2*PI.

```
syms x y
f = x^2*y + 5*x*sqrt(y);
>> ezsurf(f)
```

plotting symbolic functions

EZSURF f=real(5*tan(x+i*y)); >> ezsurf(f) f=real(5*atan(x+i*y)); >> ezsurf(f) syms s t $r = 2 + \sin(7*s + 5*t);$ $x = r*\cos(s)*\sin(t);$ y = r*sin(s)*sin(t);z = r*cos(t);>> ezsurf(x,y,z)

Taylor expansion

Any smooth function f(x) can be approximated by a polynomial. The higher degree of polynomial is, the more accurate approximation is.

Example: Taylor expansion up to 3d order:

$$f(x) = f(x_0) + f'(x_0)(x-x_0) + (1/2!)f''(x_0)(x-x_0)^2 + (1/3!)f'''(x_0)(x-x_0)^3 + O((x-x_0)^4)$$

Where $O((x-x_0)^4)$ is of order $(x-x_0)^4$

Taylor expansion

```
Example: f(x) = \exp(x) at x_0 = 0
\exp(x) = 1 + x + (1/2!) x^2 + (1/3!) x^3 + O(x^4)
Example: f(x) = log(1+x) at x_0 = 0
log(1+x) = x-(1/2!) x^2+2(1/3!) x^3+O(x^4)
Example: f(x) = (1+x)^a \text{ at } x_0 = 0
(1+x)^a = 1+ax+a(a-1)(1/2!) x^2
+a(a-1)(a-2)(1/3!) x^3+O(x^4)
```

Why do we need it: often equations are very complex, and their approximations are simple. You need to decide around which point x_0 to approximate.

```
syms x y x0 y0;
f =y*exp(x-x0)-x*log(y);
ft=taylor(f,[x,y],[x0,y0],'order',3)
```

In Economics we often log-linearise: instead of polynomials of x- x_0 , we use polynomials of $log(x/x_0)$

- Functuon f(x, y) should be log-linearised up to second order around point (x_0, y_0)
- Taylor expansion gives us

$$f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

$$+ \frac{1}{2} f_{xx}(x_0, y_0)(x - x_0)^2 + \frac{1}{2} f_{yy}(x_0, y_0)(y - y_0)^2$$

$$+ f_{xy}(x_0, y_0)(x - x_0)(y - y_0) + O(3)$$

We want

$$f(x,y) = f(x_0, y_0) + C_x \ln \frac{x}{x_0} + C_y \ln \frac{y}{y_0}$$
$$+ C_{xx} \left(\ln \frac{x}{x_0} \right)^2 + C_{yy} \left(\ln \frac{y}{y_0} \right)^2$$
$$+ C_{xy} \left(\ln \frac{x}{x_0} \right) \left(\ln \frac{y}{y_0} \right) + O(3)$$

this representation is frequently used in macroeconomic problems because terms can be interpreted as 'percentage deviations from the steady state', recall that $\ln\left(\frac{x}{x_0}\right) = \ln\left(\frac{x-x_0}{x_0}+1\right) \approx \frac{x-x_0}{x_0}$ is the first-order Taylor approximation.

Introduce new variables

$$u = \ln \frac{x}{x_0}$$

$$v = \ln \frac{y}{y_0}$$

Then

$$f(x,y) = f(x_0e^u, y_0e^v) = g(u, v)$$

• We do standard Taylor expansion up to second order around $(u_0, v_0) = (0, 0)$

```
syms x y x0 y0 u v;
f = y*exp(x - x0) - x*log(y);
ft = taylor(f, [x, y], [x0, y0], 'Order', 3)
g = subs(f,[x, y],[x0*exp(u),y0*exp(v)]);
gt = taylor(g, [u, v], [0, 0], 'Order', 3)
```

- What if taylor is unavailable?
- Taylor expansion

```
syms x y x0 y0 u v;
f = y*exp(x - x0) - x*log(y);
df = jacobian(f,[x, y]);
d2f = jacobian(df, [x, y]);
ft = subs(f,[x, y],[x0, y0]) ...
+ subs(df,[x, y],[x0, y0])*[x-x0;y-y0] ...
+ 1/2*[x-x0,y-y0]*subs(d2f,[x, y],...
[x0, y0])*[x-x0;y-y0];
```