PRÁCTICA 2

Siendo las variables:

x₁ = número de televisores

x₂ = número de equipos de sonido

 x_3 = número de altavoces

La función a maximizar sería: $f(x_1, x_2, x_3) = 75^*x_1 + 50^*x_2 + 35^*x_3$

Sujeto a:

 $x_1 + x_2 \le 450$

 $x_1 \le 250$

 $2^*x_1 + 2^*x_2 + x_3 \le 800$

 $x_1 + x_2 \le 450$

 $2^*x_1 + x_2 + x_3 \le 600$

Si lo resolvemos por el método simplex las tablas inicial y final que nos quedaría serían:

- La tabla inicial:

Tabla 1			75	50	35	0	0	0	0	0
Base	Cb	P ₀	P 1	P2	P 3	P 4	P 5	P ₆	P 7	Ps
P4	0	450	1	1	0	1	0	0	0	0
P 5	0	250	1	0	0	0	1	0	0	0
P6	0	800	2	2	1	0	0	1	0	0
P 7	0	450	1	1	0	0	0	0	1	0
P8	0	600	2	1	1	0	0	0	0	1
Z		0	-75	-50	-35	0	0	0	0	0

- La tabla final:

Tabla 4			75	50	35	0	0	0	0	0
Base	Cb	P 0	P1	P2	P 3	P 4	P 5	P 6	P 7	Ps
P4	0	50	0	0	-0.5	1	0	-0.5	0	0
P 1	75	200	1	0	0.5	0	0	-0.5	0	1
P 5	0	50	0	0	-0.5	0	1	0.5	0	-1
P 7	0	50	0	0	-0.5	0	0	-0.5	1	0
P 2	50	200	0	1	0	0	0	1	0	-1
Z		25000	0	0	2.5	0	0	12.5	0	25

a) La solución óptima es Z =25000, con P_1 = 200, P_2 = 200 y P_3 = 0.

b) Hay que introducir la variable P3 en la tabla

			75	50	C ₃	0	0	0	0	0
BASE	Сь	P ₀	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	P ₇	P ₈
P ₄	0	50	0	0	-0.5	1	0	-0.5	0	0
P ₁	75	200	1	0	0.5	0	0	-0.5	0	1
P ₅	0	50	0	0	-0.5	0	1	0.5	0	-1
P ₇	0	50	0	0	-0.5	0	0	-0.5	1	0
P ₂	50	200	0	1	0	0	0	1	0	1
Z		25000	0	0	37.5-	0	0	12.5	0	25
					C_3					

Para que entre P_3 , se debe cumplir que $37.5 - C_3 \le 0$, por lo que $C_3 \ge 37.5$.

Entra P₃ y sale P₁, ya que es el único valor estrictamente positivo. La nueva tabla sería:

			75	50	C ₃	0	0	0	0	0
BASE	Сь	P ₀	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	P ₇	P ₈
P ₄	0	250	1	0	0	1	0	-1	0	1
P ₃	C ₃	400	2	0	1	0	0	-1	0	2
P ₅	0	250	1	0	0	0	1	0	0	0
P ₇	0	250	1	0	0	0	0	-1	1	1
P ₂	50	200	0	1	0	0	0	1	0	1
Z		10000 + 400* C ₃	2*C₃ - 75	0	0	0	0	-1*C ₃ + 50	0	2*C ₃ + 50

Para que la tabla sea óptima se debe cumplir:

$$2*C_3 - 75 \ge 0 \implies C_3 \ge 37.5$$

-1*C₃ + 50 \ge 0 \Rightarrow C₃ \le 50

$$2*C_3 + 50 \ge 0 -> C_3 \ge 37.5$$

 $37.5 \le C_3 \le 50$

c) Para este apartado vamos a calcular la forma dual del problema, que quedaría:

Función a minimizar:

$$f(y_1, y_2, y_3, y_4, y_5) = 450^*y_1 + 250^*y_2 + 800^*y_3 + 450^*y_4 + 600^*y_5$$

Sujeto a:

$$y_1 + y_2 + 2^*y_3 + y_4 + 2^*y_5 \ge 75$$

 $y_1 + 2^*y_3 + y_4 + y_5 \ge 50$
 $y_3 + y_5 \ge 35$
 $y_1, y_2, y_3, y_4, y_5 \ge 0$

La tabla final del simplex del dual es:

Tabla 1			-450	-250	-800	-450	-600	0	0	0
Base	Съ	P 0	P 1	P2	P 3	P4	P 5	P6	P 7	P8
P8	0	2.5	0.5	0.5	0	0.5	0	-0.5	0	1
P 3	-800	12.5	0.5	-0.5	1	0.5	0	0.5	-1	0
P 5	-600	25	0	1	0	0	1	-1	1	0
Z		-25000	50	50	0	50	0	200	200	0

La solución óptima es Z = 25000, con P_1 , P_2 = 0, P_3 = 12.5, P_4 = 0, P_5 =25 Precios sombra:

P₃ indica el incremento de beneficio por cada unida más producida de conos de altavoces.

El precio sombra de y_3 es: $Z^* = 12.5 + \Delta b_3$

P₄ indica el incremento de beneficio por cada unidad más producida de componentes electrónicos.

El precio sombra de y_5 es: **Z*** = **25** + Δ **b**₅

d) El precio sombra de y_3 es: $Z^* = 12.5 + \Delta b_3$, por lo que para que la tabla final se mantenga óptima se debe cumplir:

$$0.5*(12.5 + \Delta b_3) + 450 \ge 0$$

 $-0.5*(12.5 + \Delta b_3) + 250 - 600 \ge 0$
 $0.5*(12.5 + \Delta b_3) + 600 \ge 0$
 $-12.5 - \Delta b_3 - 600 \ge 0$

∆b₃ ≥ 612.5