1
$$Z_{12}$$
 φ Z_{3}

1 Z_{12} φ Z_{3}

2 Z_{12} φ Z_{3}

2 Z_{12} φ Z_{2}

2 Z_{3}

2 Z_{4}

3 Z_{12} φ Z_{4}

3 Z_{12} φ Z_{4}

3 Z_{12} φ Z_{4}

3 Z_{12} φ Z_{4}

3 Z_{13} φ Z_{4}

3 Z_{14} φ Z_{4}

4 Z_{14}

5 Z_{14}

6 Z_{14}

7 Z_{14}

7 Z_{15}

8 Z_{15}

8 Z_{15}

9 Z_{15}

1 Z_{15}

1 Z_{15}

1 Z_{15}

2 Z_{15}

1 Z_{15}

2 Z_{15}

1 Z_{15}

1 Z_{15}

2 Z_{15}

1 Z_{15}

2 Z_{15}

3 Z_{15}

4 Z_{15}

4 Z_{15}

5 Z_{15}

7 Z_{15}

1 Z_{15}

2 Z_{15}

2 Z_{15}

2 Z_{15}

3 Z_{15}

4 Z_{15}

4 Z_{15}

4 Z_{15}

4 Z_{15}

5 Z_{15}

6 Z_{15}

7 Z_{15}

8 Z_{15}

8 Z_{15}

8 Z_{15}

8 Z_{15}

8 Z_{15}

9 Z_{15}

9 Z_{15}

1 Z_{15}

2 Z_{15}

2 Z_{15}

3 Z_{15}

4 Z_{15}

4 Z_{15}

5 Z_{15}

6 Z_{15}

7 Z_{15}

8 Z_{15}

9 Z_{1

5	Find	all	Sylan	3-subgraps	of	Sy i	ad	demonstrate
	that	rhy	ore co	jugal.				
	No m	, 75		sub for a gro			10	3
				Take the				
								the too
for	N gri	Nys	Zener	ared by	(re)	spe univ	ebs)	
	12	34		$\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$	3	4)		2
	13	4 0		(32	C sametaris	2	3	4
	12	3 1	1)	and (2	3	1	4)0
13y t	he th	rird	Sylon	theren	we	have	fond	oil Sylan
5 5465	oups			4			V S	
ho is	s lazy	10	Sle	they are c	enfue	gre-	We s	how nr 1 is
Conjugare	n 69 2	7	24	The a	= 0	(2)		
der	9= (2	1	34)	Than g ¹	<i>J</i> ~	, .	52.00	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0)		34	-l = 1	3	2 4	9

Sonon 36 1) Any Sylow 3-subgr is by def a workind 3-group and the so sine 12= 3:14 We must have only 3. 2) Same 54= 9.6= 27.2, so a Sylow-3-5ul have orler 27. 3) The no. of Sylan 2-subgroups sonsly $\#S_2 = 1 \# 6d 2 \mod \#S_2 | 24$ we look or the possibilities: {1, 3, 5, 7, 9, 11, 13, 15, 12, 19, 24, 235 of these, only 1 and 3 divide 24. 1,85 (9) Same smays Assner: 1,51

20 103 2402 < 60Z < 20Z < 47 < Z @ 503≤2001<751 € 2457 € 497 € 77 € 1 The glorins one The 1/2 1/3 1/5 1/4 43 45 Th 47 3 1 24 = Z8 < 324 **43** $\left(\frac{5}{2}\right)$ 0 $Q \leq$ < 74 ② 0 € 11 8 Z24 ~ Z3 The quotients of so the series are already isomorphic.

$$0 + k = \{0,3,6,9\} + \rightarrow 0$$

$$1 + k = \{1, 4,7,10\} + \rightarrow 2$$

$$2 + k = \{2,5,8,11\} + \rightarrow 1$$

a) by
$$\varphi = \begin{cases} n \in \mathbb{Z}_{18} | 10n = 0 \text{ mod } 12 \end{cases}$$

$$= \begin{cases} n \in \mathbb{Z}_{18} | 2n = 0 \text{ mod } 12 \end{cases} \text{ in } \mathbb{Z}_{2}$$

3) The oxes are
$$0+196,125 = \{0,6,125\}$$

$$1+K = \{1,7,135\}$$

$$2+K = \{3,9,155\}$$

$$3+K = \{4,19,165\}$$

$$5+K = \{5,11,173\}$$