

GLOSSARY

- Physical and Chemical Change
- Chemical Equations
- Balancing a Chemical Equation
- Combination Reactions
- Decomposition Reactions
- Displacement Reactions
- Double Displacement Reactions
- Redox Reactions
- Oxidation → Corrosion and Rancidity

PHYSICAL AND CHEMICAL CHANGES

- The changes that are reversible and in which no new substance is formed are known as physical changes
- For Example → Cutting of Apple, Tearing of Paper
- The changes that cannot be reversed and in which a new substance is formed are known as chemical change
- For Example → Ripening of Mango, Cooking of Food

CHEMICAL REACTIONS

- The reaction between **reactants** to form **products** is known as chemical reaction.
- We can determine whether a chemical reaction has take place or not by observing:
 - I. Change in State
 - 2. Change in Colour
 - 3. Evolution of a Gas
 - 4. Change in Temperature
 - 5. Formation of Precipitate

- Evolution of Gas : Zn + HCl → ZnCl₂ + H₂
- Dil. HCl + Na₂CO₃ \rightarrow NaCl + CO₂ + H₂O
- Formation of PPT.
- $H_2SO_4 + BaCl_2 \rightarrow BaSO_4 + 2HCl$
- KI + PbNO₃ → PbI + KNO₃
- Change in Color
- Potassium dichromate or Potassium Permanganate
- Change in Temperature : Quicklime/Lime + Water → Heat + Slaked lime
- $Ba(OH)_2 + NH_4CI \rightarrow BaCl_2 + NH_3 + H_2O$
- Change in State
- Burning of solid camphor/ Melting of ice

CHEMICAL EQUATIONS

- It is the simplest way to write a chemical reaction.
- The substances that are on the left side of equation are reactants and those which are in right side are products.
- The substances that undergoes chemical change are the reactants.
- The new substance which are formed after reaction between reactants are called products.
- Example:

$$Mg + O_2 \rightarrow MgO$$
(Reactants) (Product)

BALANCING A CHEMICAL EQUATION

- Balancing a chemical reaction is necessary so that the mass of reactants became equal to the mass of products as mass can neither be created nor be destroyed.
- For Example for the equation →

$$Mg + O_2 \rightarrow MgO$$
(Reactants) (Product)

The Balanced equation will be →

$$2Mg + O_2 \rightarrow 2MgO$$
(Reactants) (Product)

Hints to Balancing Chemical Equations

- Adjust the coefficients not the subscripts.
- Even/Odd Multiply by 2 to make all even.
- Balance polyatomic ions as a whole.
- Check the balanced equation.

Example:

```
ZnS + O_2 \Rightarrow ZnO + SO_2 (O is even on the left and odd on the right)
ZnS + O_2 \Rightarrow 2ZnO + SO_2 (multiply by 2 to make O even)
2ZnS + 3O_2 \Rightarrow 2ZnO + 2SO_2 (balance the Zn, S and O)
```

Example:

Pb(NO₃)₂ + NaCl \Rightarrow NaNO₃ + PbCl₂ (balance NO₃ as a whole) (NO₃ is even on the left and odd on the right) Pb(NO₃)₂ + NaCl \Rightarrow 2NaNO₃ + PbCl₂ (multiply by 2 to make NO₃ even)

 $Pb(NO_3)_2 + 2NaCl \Rightarrow 2NaNO_3 + PbCl_2$ (balance the Na)

NATURE OF REACTIONS

- Endothermic Reactions: The reactions in which heat is absorbed. These are generally bond-breaking reactions.
- Example: $CaCO_3 + Heat \rightarrow CaO + CO_2$
- Exothermic Reactions: The reactions in which heat is evolved/released along the products. These are geneally bond-forming reactions.
- Example : $CaO + H_2O \rightarrow Ca(OH)_2 + Heat$

TYPES OF REACTIONS

- Combination Reactions
- Decomposition Reactions
- Displacement Reactions
- Double Displacement Reactions
- Redox Reactions

COMBINATION REACTIONS

• The reactions in which two or more reactants combines to form single product are known as combination reactions

• For Example : $C(s) + O_2(g) \rightarrow CO_2(g)$ (Carbon) (Oxygen) (Carbon Dioxide)

$$CaO(s) + H_2O(I) \rightarrow Ca(OH)_2(aq)$$

(Calcium Oxide) (Water) (Calcium Hydroxide)

Combination Reaction

DECOMPOSITION REACTIONS

• The reaction in which a single reactant breaks to give simpler products.

• For Example:
$$2H_2O$$
 Electricity $2H_2 + O_2$

(Electric Decomposition)

$$2Pb(NO_3)_2 \xrightarrow{Heat} 2PbO + 4NO + O_2$$

(Thermal Decomposition)

$$2AgBr \xrightarrow{Sunlight} 2Ag + Br_2$$

(Photo Decomposition)

DISPLACEMENT REACTIONS

- One element displaces another element from its salt/compound.
- Not all the elements do; Only the reactive ones.
- $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$
- Pb + CuCl₂ → PbCl₂ + Cu

Li

K

Na

Mg

ΑI

Zn

Fe

Ni

Pb

Н

Cu

Hg

 Ag

Au

Pt

DOUBLE DECOMPOSITION REACTIONS

- Each of the two elements displace each other from their salts.
- $Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 + 2NaCl$
- Displacement of two ions therefore is called double displacement reaction.

REDOX REACTIONS

• One compound/element gets oxidised while simultaneously the other gets reduced.

OXIDATION -> CORROSION & RANCIDITY

- The gradual destruction of a metal surface due to its interaction with environment is referred to as corrosion.
- Corrosion of iron is called rusting.
- Fe + O₂ \rightarrow Fe₂O₃; Fe₂O₃ + x H₂O \rightarrow Fe₂O₃.x H₂O
- Expensive.
- Galvanisation. Application of layer of oil. Sacrificial Protection. Absence of any of these: Moisture, Acidic environment, $O_2 => No$ corrosion.

RANCIDITY

- Oxidation of fats and oils contained in food materials marked by unpleasant smell and taste.
- Prevention: Antioxidants(BHT, BHA) or absence of light or Lower Temperatures or using air tight containers or N_2 .

