Recognizing faces

Histogram Equalization

Image normalization

• Due to lighting or shadow, intensity can vary significantly in an image.

Histogram equalized

- Normalization of pixel intensity helps correct variations in imaging parameters in cameras as well as changes in illumination conditions.
- One widely used technique is <u>histogram equalization</u>, which is based on image histogram. It helps reduce extreme illumination.

Histogram Equalization

• Examples

Source: https://docs.opencv.org/4.x/d5/daf/tutorial_py_histogram_equalization.html

- Image Histogram
 - digital image with gray levels [0, L-1]
 - $p(r_k) = n_k/N$, probability of occurrence of gray level r_k

255

- r_k is the kth gray level
- n_k = number of pixels with kth gray level
- N = total number of pixels
- $k = 0, 1, 2, 3, 4, 5 \dots, L-1$

- p(r_k) is the probability of the occurrence of gray-level r_k
- $p_r(r_k)$ is the probability density function (PDF) of the variable r_k , k=0,...,L-1

- Histogram can tell you a lot about an image
- Gray level distribution
- It can be modeled by a statistical distribution (red line)

Gray level distribution helps define intensity threshold

- Histograms are not unique. Two images below give the same image histogram.
- No spatial information is captured

Image types

Image types

Some Examples

a b c d

FIGURE 3.16 Four image types and their corresponding histograms. (a) dark; (b) light; (c) low contrast; (d) high contrast. The horizontal axis of the histograms are values of r_k and the vertical axis are values of $p(r_k)$.

Contrast Stretching

Low Contrast

Contrast Compressing

Histogram Equalization

- We want an image with equally many pixels at every gray level, or the output intensity approximately follows a *uniform distribution*.
- That is, a flat histogram, where each gray level,
 r_k, appears (N/r_m) times
 - where "r_m" is the maximum gray level
 - N is number of pixels in the image

Example

https://demonstrations.wolfram.com/HistogramEqualization/

Histogram Equalization

 The weighted cumulative distribution function (CDF) of r is represented by (in continuous form), (T is the transformation function)

$$s = T(r) = (L-1) \int_0^r \underbrace{p_r(w)} dw$$

• This transformation function seeks to generate an output image with a uniform (flat) probability density function (PDF), independently of the form of $p_r(r)$

a b

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying Eq. (3-11) to the input PDF. The resulting PDF is always uniform, independently of the shape of the input.

The figure is provided by Pearson Education, Digital Image Processing, Gonzalez & Woods, www.ImageProcessingPlace.com

a b

FIGURE 3.22

image (a).

image (b).

NASA.)

(d) Histogram of

(Original image courtesy of

(a) Image from Phoenix Lander. (b) Result of histogram equalization. (c) Histogram of

Use T(r) to equalize the histogram

 Assume the input variable r has been normalized between [0,1]

- s = T(r), there are two properties
 - (a) T(r) is single-valued in the interval 0 <= r</p>
 - (b) 0 <= T(r) <= 1 for 0 <= r <= 1

Conditions (a) and (b)

- (a) T(r) is single-valued and non-decreasing in the interval 0 <= r <= 1
 - Can preserve the order from black to white in the gray scale.
 - Can preserve the basic appearance of an image.
- (b) for $0 \le r \le 1$, $0 \le T(r) \le 1$
 - Can guarantee a mapping that is consistent with the allowed range of pixel values. No intensity rescaling is needed.

Discrete approximation of T

Let's look at the discrete approximation

$$s_k = T(r_k) = (L-1) \sum_{j=0}^k \frac{n_j}{N} = (L-1) \sum_{j=0}^{k} p_r(r_j)$$

 s_k is the output continuous intensity value, $0 \le s_k \le L-1$ r_k is the input continuous intensity value, $0 \le r_k \le L-1$ n_j is number of pixels with the j^{th} gray level k = 0, 1, 2, 3, ... L-1 (gray levels)

Example 1

3 bīts		
r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

TABLE 3.1 Intensity distribution and histogram values for a 3-bit, 64×64 digital image.

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

Total number of pixels = 64*64 = 4096 pixels

										<i></i>
	k	0	1	2	3	4	5	6	7	2 ⁸ -1=255
	$r_{\rm k}$	0	1	2	3	4	5	6	7	
I	Pr(r _k)	790	1023	850	656	329	245	122	81	$\sum Pr(r_k) = 1$
1	1 1 (1 k)	4096	4096	4096	4096	4096	4096	4096	4096	$\int \int $
		0.19	0.25	0.21	0.16	0.08	0.06	0.03	0.02	
S_k	s*(1/7)	0.19	0.44	0.65	0.81	0.89	0.95	0.98	1	
	Gray evels	0.19x7	3	<i>1</i> 5	6	6	7	7	7	

Stretching Compressing Compressing

0 1 2 3 4 5 6 7

1 3 5 6 7

The discrete formulation of histogram equalization is given by

$$s_k = T(r_k) = \sum_{j=0}^k p_r(r_j), k = 0, 1, 2, ..., L-1$$

where r_k and s_k represent the original and transformed grey levels respectively, L denotes the number of discrete grey levels, T is the transformation function, p_r is the probability density function $p_r(r_j) = n_j/n$, n is the total number of pixels and n_j is the number of pixels having intensity level r_j .

(a) Perform histogram equalization on a 3×3 input image, as shown below. Show all steps.

Input image

mput m	1450	
0	0.33	0.67
0.33	1	0.33
0.67	0.33	0.67

Answers:

Histogram equalized image

0.11	0.56	0.89
0.56	1	0.56
0.89	0.56	0.89

Round to 2 decimal places '

(b) Explain why the transformation function $T(r_j)$ is increasing in the interval $0 \le r_j \le 1$, where j = 0, 1, 2, ..., L - 1.

Answers:

$$S_k = T(r_k) = \sum_{j=0}^k P_r(r_j)$$

FIGURE 3.20 Left column: Images from Fig. 3.16. Center column: Corresponding histogram-equalized images. Right column: histograms of the images in the center column (compare with the histograms in Fig. 3.16).

The figure is provided by Pearson Education, Digital Image Processing, Gonzalez & Woods, www.ImageProcessingPlace.com

Example 2

Image

Histogram is not normalized, y axis is n_k To normalize, let y axis = $p_r(r_k) = n_k / N$

Histogram is not normalized, y axis is n_k To normalize, let y axis = $p_r(r_k) = n_k / N$

Histogram equalized

Example 3

Image

Histogram Notice, this is not normalized, y axis is n_k . To normalize, let y axis = $p_r(r_k) = n_k / N$

Histogram Notice, this is not normalized, y axis is n_k . To normalize, let y axis = $p_r(r_k) = n_k/N$

Histogram equalized

Histogram equalization

- Histogram equalization can significantly improve image appearance
 - Automatic
 - User doesn't have to perform windowing
- Nice pre-processing step before face detection
 - Account for different lighting conditions
 - Account for different camera/device properties

Local Enhancement

- Histogram equalization is a global operation
 - Each pixel is processed based on information of the entire image
 - Often enhances global details
- We would like to enhance details over small areas
 - Each pixel is processed based on information of a small area/sub-image

Local Histogram Equalization

calculate histogram using neighborhood of mxm about (x,y) each pixel has a table.

Result

Local Histogram

- Apply histogram equalization about a neighborhood around (x,y)
- Transform the gray level for pixel (x,y)
- Move the neighborhood over the rest of the image

Local Histogram

Reveals detail in local areas

Original

Global Histogram

Local Histogram

Adaptive Histogram Equalization

Figure 4: Left: Basic histogram equalization. Right: Adaptive histogram equalization.

Source: https://pyimagesearch.com/2021/02/01/opencv-histogram-equalization-and-adaptive-histogram-equalization-clahe/