

Universidade Federal de Ouro Preto

 1° semestre de 2024

Data: 10/04/24

NOÇÕES DE ANÁLISE DE COMPLEXIDADE DE ALGORITMOS

Curso: Engenharia Elétrica/Sistemas de Informação Disciplina: Algoritmos e Estrutura de Dados I

Professor: Alexandre Magno de Sousa

1 FUNÇÕES DE CUSTO E ANÁLISE ASSINTÓTICA

1. Encontre a função de custo associada à complexidade de tempo para a instrução de interesse indicada em cada trecho de código a seguir.

```
(a) void function(int n){
        if (n == 1)
            return;
        for (i = 1; i <= n; i++){</pre>
            for (j = 1; j \le n; j++)
                printf("*"); // <-- instrução de interesse</pre>
                break;
        }
(b) int count = 0;
   for (i = 0; i < n; i++) {</pre>
       if (i % 2 == 0) {
          for (j = 0; j < n; j++)
             count++; // <-- instrução de interesse
       else {
          for (j = 0; j < 10; j++)
             count++; // <-- instrução de interesse
   }
(c) for(i = 0; i < n; i++){
       for (j = n; j > i+1; j--)
          printf("plus"); // <-- instrução de interesse</pre>
          printf("minus"); // <-- instrução de interesse</pre>
(d) int count = 0;
   for (i = 0; i < n; i++) {</pre>
      for (j = i; j < 2*n; j++) {
          count++; // <-- instrução de interesse
(e) for (i = 0; i < n; i++) {
      for (j = i+1; j < n/2; j++) {
          printf("fee"); // <-- instrução de interesse</pre>
          printf("fi"); // <-- instrução de interesse</pre>
   }
```


Universidade Federal de Ouro Preto

Departamento de Computação e Sistemas Campus João Monlevade

(f) Para o trecho de código a seguir, assuma que n é uma potência de 2, ou seja 2^m

```
for (i = 1; i < n/4; i *= 2) {
    printf("stop short"); // <-- instrução de interesse
}
for (i = 0; i < 2*n; i += 2) {
    printf("more stuff"); // <-- instrução de interesse
}</pre>
```

(h) Para o trecho de código a seguir, assuma que n é uma potência de 3, ou seja 3^m

```
for (i = 1; i < n; i++) {
    count++; // <-- instrução de interesse
}
for (j = 1; j < n; j *= 3) {
    count++; // <-- instrução de interesse
}</pre>
```

(i) Para o trecho de código a seguir, assuma que n é uma potência de 2, ou seja 2^m

```
int count = 0;
for (i = n/2; i < n; i++)
   for (j = 1; j < n; j = 2*j)
      for (k = 1; k < n; k *= 2)
            count++; // <-- instrução de interesse</pre>
```

(j) Para o trecho de código a seguir, assuma que n é uma potência de 2, ou seja 2^m

```
int count = 0;
for (i = n/2; i <= n; i++)
   for (j = 1; j + n/2 <= n; j++)
      for (k = 1; k <= n; k = k*2)
            count++; // <-- instrução de interesse</pre>
```

```
(k) int i = 1;
  int s = 1;
  while (s <= n) {
     i++;
     s += i;
     printf("*"); // <-- instrução de interesse
}</pre>
```


Universidade Federal de Ouro Preto

Departamento de Computação e Sistemas Campus João Monlevade

2. **Busca Bitônica**: Um vetor é bitônico se ele é formado por uma sequência crescente de inteiros seguida imediatamente por uma sequência decrescente de inteiros. Faça uma função que, dado um vetor bitônico de n inteiros distintos, determine se um dado inteiro está dentro do vetor. A função deverá utilizar aproximadamente $3\log_2 n$ comparações para o pior caso.

 $\underline{\mathbf{DICA}}$: utilize uma versão adaptada da busca binária para encontrar o valor máximo em $\log_2 n$ comparações, então utilize a busca binária para pesquisar em cada partição do vetor em $\log_2 n$ comparações para cada partição.

3. Assuma que cada uma das expressões a seguir representa a função de custo de complexidade por um algoritmo para resolver um problema de tamanho n. Selecione o termo dominante da expressão que tem o crescimento mais acentuado em função de n e especifique o limite assintótico superior mais próximo possível da função de custo de complexidade de algoritmo e complete a Tabela 1.

Tabela 1: Expressões de funções de custo de complexidade de algoritmos.

Expressão	Maior Termo	Limite Superior
$5 + 0.001n^3 + 0.025n$		
$500n + 100n^{1.5} + 50n\log_{10}n$		
$0.3n + 5n^{1.5} + 2.5n^{1.75}$		
$n^2 \log_2 n + n(\log_2 n)^2$		
$n \log_3 n + n \log_2 n$		
$3\log_8 n + \log_2 \log_2 \log_2 n$		
$100n + 0.01n^2$		
$0.01n + 100n^2$		
$2n + n^{0.5} + 0.5n^{1.25}$		
$0.01n\log_2 n + n(\log_2 n)^2$		
$100n\log_3 n + n^3 + 100n$		
$0.003\log_4 n + \log_2 \log_2 n$		

- 4. Para cada função a seguir encontre os pares de valores para c e n_0 para cada função de acordo com o limite assintótico superior e inferior, isto é, O-grande e Ω -grande:
 - (a) $f(n) = 3n^3 + 2n^2 + n$.
 - (b) $f(n) = 2n^2 + 4n 15$.
 - (c) f(n) = 3n + 7.
 - (d) $g(n) = 3n^2 + 1$.
 - (e) $f(n) = 5 \log_2 n$.
 - (f) $f(n) = 2^n + n^3 + n(\log_2 n)^2$.

Agora utilizando um programa de planilhas como, por exemplo, Microsoft Excel¹ ou Google Sheets², apresente gráficos para cada uma das funções anteriores para os limites assintóticos superior (O-grande) e inferior (Ω -grande) para valores de $n \in [0, 10^2]$.

ATENÇÃO: verifique se as constantes c e n_0 encontradas estão corretas, ou seja:

- A linha do gráfico referente ao limite superior mostra que a inequação para O-grande é verdadeira para todo $n \ge n_0$?
- Ou, a linha do gráfico que representa o limite inferior mostra que a inequação para Ω -grande é verdadeira pra todo $n \geq n_0$?

https://www.microsoft.com/pt-br/microsoft-365/excel

²https://www.google.com/sheets/about/

Universidade Federal de Ouro Preto

Departamento de Computação e Sistemas Campus João Monlevade

- 5. Qual das seguintes afirmações sobre o crescimento assintótico das funções não é verdadeira:
 - (a) $2n^2 + 3n + 1 = O(n^2)$.
 - (b) $\log n^2 = O(\log n)$.
 - (c) Se f(n) = O(g(n)) e g(n) = O(h(n)), então f(n) = O(h(n)).
 - (d) Se f(n) = O(g(n)), então g(n) = O(f(n))
 - (e) $2^{n+1} = O(2^n)$.
 - (f) $2^{2n} = O(2^n)$.
 - (g) f(n) = O(u(n)) e g(n) = O(v(n)) então f(n) + g(n) = O(u(n) + v(n)).
 - (h) f(n) = O(u(n)) e g(n) = O(v(n)) então f(n) g(n) = O(u(n) v(n)).
- 6. As afirmações apresentas na Tabela 2 mostram algumas propriedades da notação O-grande para as funções $f \equiv f(n), h \equiv h(n)$ e $g \equiv g(n)$. Determine se cada afirmação é VERDADEIRA ou FALSA e, neste caso, quando a afirmação for falsa, faça a correção da fórmula.

Tabela 2: Afirmações da notação O -grande para as funções $f \in g$.			
Afirmação	É VERDADEIRA ou FALSA?	Se a afirmação é FALSA, então es-	
		creva a fórmula correta	
Regra das somas:			
O(f+g) = O(f) + O(g)			
Regra dos produtos:			
$O(f \times g) = O(f) \times O(g)$			
Transitividade:			
se $g = O(f)$ e $h = O(f)$, então			
g = O(h)			
$5n + 8n^2 + 100n^3 = O(n^4)$			
$5n + 8n^2 + 100n^3 = O(n^2 \log n)$			