## 8 Лабораторная работа №8. Подпрограммы

**Цель:** освоить навыки составления подпрограмм для задержки времени.

## 8.1 Общие сведения

Подпрограммы применяют в тех случаях, когда в нескольких местах алгоритма требуется выполнить одинаковые действия. Отсчет времени можно организовать с помощью подпрограмм со счетчиками, что и реализовано в алгоритме, показанном на рисунке 8.1.



Рисунок 8.1 – Блок-схема

Часто программу разбивают на подпрограммы, чтобы упростить её чтение.

Рассмотрим сначала работу внутреннего цикла подпрограммы Timer. Сначала счетчику внутреннего цикла Sch\_in задается какое-то значение N. Затем значение счетчика Sch\_in уменьшается на 1 и проверяется: не стало ли оно нулевым. Если значение счетчика не равно нулю, то выполняется инструкция перехода GOTO M\_in, повторяющая цикл. Если счетчик

обнулился, программа выходит из цикла. Длительность задержки времени определяется начальной величиной счетчика Sch\_in и временем выполнения инструкций в МК. Поскольку микропроцессор работает с высокой частотой, приходится создавать внешний цикл со счетчиком Sch\_out для увеличения времени задержки. Аналогично, сначала задается значение Sch\_out=W. На каждый цикл уменьшения Sch\_out на единицу, внутренний цикл сработает N раз. Время задержки будет определяться произведением Sch\_out\*Sch\_in и частой работы генератора МК.

Подпрограммы пишут после инструкции GOTO\$ основной программы. Подпрограмма всегда начинается с имени, а заканчивается - инструкцией возврата в основную программу RETURN. Подпрограмма из основной программы вызывается по имени инструкцией CALL ИМЯ, например, CALL Timer. Значение аккумулятора W является аргументом для подпрограммы Timer. После завершения ее работы управление передается в главную программу на следующую инструкцию после инструкции CALL Timer.

Задание на проектирование. Создать программу для автоматической окрасочной камеры, описанной в лабораторной работе 5, выполняющую следующую работу:

- при подаче питания включить световую сигнализацию на пульт оператора L2 и звуковую предупреждающую сигнализацию S1 на 2 секунды;
- включить двигатель краскораспылителя D1 на 3 секунды, а также двигатель вентилятора D2 и лампочку L1;
- выключить краскораспылитель D1, вентилятор D2 и лампочка L1 должны работать еще 2 секунды;
  - выключить D2 и L1 на 1 секунду для замены заготовки в камере;
  - повторить процесс окрашивания новой заготовки.

Временная диаграмма работы камеры показана на рисунке 8.2.



Рисунок 8.2 – Временная диаграмма работы окрасочной камеры

Программа 8.1 include<p16F877.inc> Sch in EQU H'22' ; счетчик внутреннего цикла задержки Sch\_out EQU H'24' ; счетчик внешнего цикла задержки Sch3 EQU H'23' ; счетчик третьего цикла задержки ; инструкции настройки МК опущены ; рабочая часть программы MOVLW B'10000000' MOVWF PORTC ; включаем сигнализацию L2 на пульт оператора Sled\_det BSF PORTC, 0 ; включаем звуковую сигнализацию S1 MOVLW d'40' ; аргумент W задает время таймера. При отладке d'2' **CALL** Timer MOVLW B'10001110' MOVWF PORTC ; выключаем S1, включаем D1, D2 и L1 MOVLW d'60' ; задаем время окраски **CALL** Timer BCF PORTC, 2 ; выключаем D1, продолжают работать D2, L1 и L2 MOVLW d'40' ; задаем время работы D2 и L1 **CALL** Timer MOVLW B'10000000' MOVWF PORTC ; окраска закончена, сигнализация на пульте L2 работает MOVLW d'20' ; задаем время для замены заготовки **CALL** Timer GOTO Sled\_det ; на метку Sled det для нового включения камеры GOTO\$ ; разделитель основной программы и подпрограмм Timer ; Подпрограмма Timer. Применено два вложенных цикла. MOVWF Sch3 ; значение W является аргументом для таймера MOVLW D'150' M3 MOVWF Sch out ; устанавливаем значение внешнего счетчика M\_out ; метка внешнего счетчика MOVLW D'255' MOVWF Sch\_in ; устанавливаем значение внутреннего счетчика M in ; метка внутреннего счетчика DECF Sch\_in, F ; уменьшаем значение счетчика Sch in на 1 BTFSS STATUS, Z ; если оно равно нулю (Z=1), пропускаем GOTO GOTO M\_in ; срабатывает только при Z=0 DECF Sch\_out, F ; уменьшаем значение счетчика Sch out на 1, BTFSS STATUS, Z ; если оно равно нулю (Z=1), пропускаем GOTO GOTO M\_out ; срабатывает только при Z=0 DECF Sch3, F ; уменьшаем значение счетчика Sch3 на 1, BTFSS STATUS, Z ; если оно равно нулю (Z=1), пропускаем GOTO GOTO M3 ; срабатывает только при Z=0 **RETURN** ; конец подпрограммы Timer

## 8.2 Порядок выполнения

Разработайте программу, включающую и выключающую оборудование на заданное время, согласно варианту задания из таблицы 8.1.

Отладка программы. Оставьте только первый вызов подпрограммы Timer, установив аргумент W=2. Остальные вызовы выключите, напечатав перед инструкцией Call символ «;». Установите значения для счетчиков Sch\_in и Sch\_out равные 2. Введите разработанную программу в микроконтроллер. Создайте окно наблюдения. После отладки программы в пошаговом режиме, установите первоначальные значения аргумента W, счетчиков Sch\_in и Sch\_out и запустите ее в автоматическом режиме. Рассчитайте W для заданного времени работы оборудования по варианту методом пропорций. Для уточнения времени задержки можно добавить в циклы дополнительные бесполезные инструкции, например, пор.

Таблица 8.1 – Варианты заданий

| IT      | Биты          | Время работы, сек |    |    | Вариант | Биты          | Время работы, |    | оты, |
|---------|---------------|-------------------|----|----|---------|---------------|---------------|----|------|
| Пан     | подключения   |                   |    |    |         | подключения   | сек           |    |      |
| Вариант | S1, D1, D2    | <b>S</b> 1        | D1 | D2 | apı     | S1, D1, D2    | <b>S</b> 1    | D1 | D2   |
| B       | L1, L2        |                   |    |    | В       | L1, L2        |               |    |      |
| 1       | 1, 2, 3, 4, 5 | 5                 | 6  | 3  | 6       | 6, 7, 0, 1, 2 | 6             | 6  | 4    |
| 2       | 2, 3, 4, 5, 6 | 6                 | 7  | 4  | 7       | 7, 0, 1, 2, 3 | 7             | 7  | 5    |
| 3       | 3, 4, 5, 6, 7 | 7                 | 6  | 5  | 8       | 0,1,2,3,4     | 8             | 6  | 6    |
| 4       | 4, 5, 6, 7, 0 | 8                 | 5  | 6  | 9       | 1, 3, 5, 7, 0 | 9             | 5  | 7    |
| 5       | 5, 6, 7, 0, 1 | 9                 | 7  | 7  | 10      | 2, 4, 6, 0, 1 | 10            | 6  | 3    |

Результаты занесите в таблицу 8.2. Продемонстрируйте работу программы преподавателю.

Таблица 8.2- Результаты настройки циклов задержки

|         |              | Параметры подпрограммы Timer |                    |         |      |  |  |  |  |
|---------|--------------|------------------------------|--------------------|---------|------|--|--|--|--|
| Вариант | Оборудование | Время работы, с              | Значение счетчиков |         |      |  |  |  |  |
|         |              |                              | Sch_in             | Sch_out | Sch3 |  |  |  |  |
|         | S1           |                              |                    |         |      |  |  |  |  |
|         | D1, D2, L1   |                              |                    |         |      |  |  |  |  |
|         | D2, L1       |                              |                    |         |      |  |  |  |  |

## 8.3 Контрольные вопросы

- 8.3.1 Почему создан третий цикл в подпрограмме Timer?
- 8.3.2 Почему в счетчики циклов записаны указанные значения?
- 8.3.3 Назначение подпрограмм.

- 8.3.4 Цикл, вложенный цикл.
- 8.3.5 Почему в Timer выбраны указанные значения Sch\_in и Sch\_out?
- 8.3.6 Что такое машинный цикл? За сколько машинных циклов выполняются команды в Timer?
  - 8.3.7 Как вызывается подпрограмма на выполнение?
  - 8.3.8 Опишите работу инструкции DECF Sch\_out, F.
  - 8.3.9 Как разделяются главная программа и подпрограммы?
- 8.3.10 Какими операторами начинается и заканчивается подпрограмма?
  - 8.3.11 Почему в Timer применено два вложенных цикла?