$\Delta(1620) \; 1/2^-$

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^-)$$
 Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

Δ (1620) POLE POSITION

RFA	I PA	RT

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1590 to 1610 (≈ 1600) OUR ESTIM	MATE			
1597± 5	SOKHOYAN	15A	DPWA	Multichannel
1603± 7±2	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
1595	ARNDT	06	DPWA	π N $ ightarrow$ π N, η N
1608	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1600 ± 15	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	, fits,	limits, e	tc. • • •
1597± 4	ANISOVICH	12A	DPWA	Multichannel
1587	SHRESTHA	12A	DPWA	Multichannel
1607	VRANA	00	DPWA	Multichannel
2. IMACINADY DADT				
-2×IMAGINARY PART	DOCUMENT ID		TECN	COMMENT
<u>VALUE (MeV)</u> 120 to 140 (≈ 130) OUR ESTIMAT	_		TLCN	COMMENT
134± 8	SOKHOYAN	15 A		Multichannel
	¹ SVARC			$\pi N \rightarrow \pi N$
135	ARNDT			$\pi N \rightarrow \pi N, \eta N$
116	HOEHLER			$\pi N \rightarrow \pi N$
120±20	CUTKOSKY	80	_	$\pi N \rightarrow \pi N$
• • • We do not use the following				
130± 9	ANISOVICH			Multichannel
107	SHRESTHA			Multichannel
148	VRANA	00		Multichannel

△(1620) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
15 to 20 (≈ 17) OUR ESTIMATE				
20 ± 3	SOKHOYAN	15A	DPWA	Multichannel
$17\pm2\pm1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
15	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN
19	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
15 ± 2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •
18 ± 2	ANISOVICH	12A	DPWA	Multichannel

PHASE θ

VALUE (°)	DOCUMENT ID		TECN	COMMENT				
- 90 to $-$ 110 ($pprox -$ 100) OUR ESTIMATE								
-90 ± 15	SOKHOYAN	15A	DPWA	Multichannel				
$-106\pm10\pm4$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$				
- 92	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN				
- 95	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$				
-110 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$				
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •				
$-100\pm$ 5	ANISOVICH	12A	DPWA	Multichannel				

△(1620) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized residue in $N\pi \to \Delta(1620) \to \Delta\pi$, *D*-wave

MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.42 ± 0.06	-90 ± 20	SOKHOYAN	15A	DPWA	Multichannel
ullet $ullet$ We do not	use the following data	for averages, fit	s, lim	its, etc.	• • •
0.38 ± 0.09	-85 ± 30	ANISOVICH	12A	DPWA	Multichannel

Normalized residue in $N\pi \to \Delta(1620) \to N(1440)\pi$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.10±0.06	-65 ± 30	SOKHOYAN 15	A DPWA	Multichannel

△(1620) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1600 to 1660 (≈ 1630) OUR EST	IMATE			
1595 ± 8	SOKHOYAN	15A	DPWA	Multichannel
1615.2 ± 0.4	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN
1620 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1610 ± 7	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	tc. • • •
1600 ± 8	ANISOVICH	12A	DPWA	Multichannel
1600 ± 1	SHRESTHA	12A	DPWA	Multichannel
1612 ± 2	PENNER	02 C	DPWA	Multichannel
1617 ± 15	VRANA	00	DPWA	Multichannel

△(1620) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
130 to 150 (≈ 140) OUR ESTIMATE						
135 ± 9	SOKHOYAN	15A	DPWA	Multichannel		
146.9 ± 1.9	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN		
140 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$		
139 ± 18	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$		

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

130	± 11	ANISOVICH	12A	DPWA	Multichannel
112	± 2	SHRESTHA	12A	DPWA	Multichannel
202	± 7	PENNER	02 C	DPWA	Multichannel
143	± 42	VRANA	00	DPWA	Multichannel

Δ (1620) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$N\pi$	20–30 %
Γ_2	$N\pi\pi$	55–80 %
Γ_3	$\Delta(1232)\pi$	
Γ_4	$\Delta(1232)\pi$, $ extit{D} ext{-wave}$	52–72 %
Γ_5	$N \rho$	
Γ_6	$N\rho$, $S=1/2$, S -wave	seen
Γ_7	$N\rho$, $S=3/2$, D -wave	seen
Γ ₈	$N(1440)\pi$	3–9 %
Γ_9	N γ , helicity $=1/2$	0.03-0.10 %

△(1620) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$						Γ ₁ /Γ
VALUE (%)	DOCUMENT ID		TECN	COM	IMENT	
20 to 30 OUR ESTIMATE						
28 ± 3	SOKHOYAN	15A	DPW	'A Mul	tichannel	
31.5 ± 0.1	ARNDT	06	DPW	'A π <i>N</i>	\rightarrow π N, η N	
25 ± 3	CUTKOSKY	80	IPWA	πN	$\rightarrow \pi N$	
35 ± 6	HOEHLER	79	IPWA	πN	$\rightarrow \pi N$	
• • • We do not use the follow	ing data for ave	erages	, fits, I	imits, e	etc. • •	
28 ±3	ANISOVICH	12A	DPW	'A Mul	tichannel	
33 ±2	SHRESTHA	12A	DPW	'A Mul	tichannel	
34 ± 1	PENNER	02C	DPW	'A Mul	tichannel	
45 ±5	VRANA	00	DPW	'A Mul	tichannel	
$\Gamma(\Delta(1232)\pi, D\text{-wave})/\Gamma_{to}$ VALUE (%)	otal <u>DOCUMEN</u>	T ID		TECN_	<u>COMMENT</u>	Γ ₄ /Γ
62±10	SOKHOY	ΆN	15A	DPWA	Multichannel	
• • • We do not use the follow	ing data for ave	erages	, fits, I	imits, e	etc. • •	
60 ± 17 32± 2 39± 2	ANISOVI SHRESTI VRANA	_	12A	DPWA	Multichannel Multichannel Multichannel	

$\Gamma(N\rho, S=1/2, S-wave)/\Gamma_{total}$					Γ_6/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following of	lata for averages	, fits,	limits, e	etc. • • •	
26 ± 2 14 ± 3	SHRESTHA VRANA	12A 00		Multichannel Multichannel	
$\Gamma(N\rho, S=3/2, D-wave)/\Gamma_{total}$					Γ_7/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following of	lata for averages	, fits,	limits, e	etc. • • •	
2 ± 1	VRANA	00	DPWA	Multichannel	
$\Gamma(N(1440)\pi)/\Gamma_{total}$					Г ₈ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
6±3	SOKHOYAN	15A	DPWA	Multichannel	
• • • We do not use the following of	lata for averages	s, fits,	limits, e	etc. • • •	
9 ± 1	SHRESTHA	12A	DPWA	Multichannel	
0±1	VRANA	00	DPWA	Multichannel	

Δ (1620) PHOTON DECAY AMPLITUDES AT THE POLE

$\Delta(1620) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

$MODULUS (GeV^{-1/2})$	PHASE (°)	DOCUMENT ID		TECN	COMMENT
$0.054 \!\pm\! 0.007$	-6 ± 7	SOKHOYAN	15A	DPWA	Multichannel
$-0.028 ^{\color{red}+0.006}_{-0.002}$	-166^{+1}_{-4}	ROENCHEN	14	DPWA	

△(1620) BREIT-WIGNER PHOTON DECAY AMPLITUDES

$\Delta(1620) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
+0.040±0.015 OUR ESTIMATE				
$0.055\!\pm\!0.007$	SOKHOYAN	15A	DPWA	Multichannel
0.029 ± 0.003	WORKMAN	12A	DPWA	$\gamma N \rightarrow N \pi$
0.050 ± 0.002	DUGGER	07	DPWA	$\gamma {\sf N} ightarrow \pi {\sf N}$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
$0.052\!\pm\!0.005$	ANISOVICH	12A	DPWA	Multichannel
$-0.003\!\pm\!0.003$	SHRESTHA	12A	DPWA	Multichannel
0.066	DRECHSEL	07	DPWA	$\gamma {\sf N} ightarrow \pi {\sf N}$
-0.050	PENNER	02 D	DPWA	Multichannel

Δ (1620) FOOTNOTES

 $^{^{1}}$ Fit to the amplitudes of HOEHLER 79.

△(1620) REFERENCES

For early references, see Physics Letters 111B 1 (1982).

SOKHOYAN PDG ROENCHEN Also	15A 14 14	EPJ A51 95 CP C38 070001 EPJ A50 101 EPJ A51 63 (errat.)	K. Olive <i>et al</i> . D. Roenchen <i>et al</i> . D. Roenchen <i>et al</i> .	CBELSA/TAPS Collab.) (PDG Collab.)
SVARC	14	PR C89 045205	A. Svarc et al.	(BONN BNB)
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
WORKMAN	12A	PR C86 015202	R. Workman et al.	(ĞWU)
DRECHSEL	07	EPJ A34 69	D. Drechsel, S.S. Kamalov, L. Tiato	r (MAINZ, JINR)
DUGGER	07	PR C76 025211	M. Dugger et al.	(JLab CLAS Collab.)
ARNDT	06	PR C74 045205	R.A. Arndt et al.	(GWU)
PENNER	02C	PR C66 055211	G. Penner, U. Mosel	(GIES)
PENNER	02D	PR C66 055212	G. Penner, U. Mosel	(GIES)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H. L	.ee (PITT, ANL)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMÙ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al</i> .	` (KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP