

PROGRAMA DE RESIDÊNCIA EM SISTEMAS EMBARCADOS - EMBARCATECH

Jorge Wilker

Mauricio Gonçales

Roger De Lima Araújo De Melo

Projeto Integrado de IoT com Monitoramento e Atualização OTA

CAMPINAS

2025

RESUMO

O projeto tem como objetivo implementar dispositivos inteligentes de monitoramento em pontos estratégicos da rede de distribuição de água urbana. Esses dispositivos serão capazes de medir em tempo real o fluxo e a pressão da água, permitindo a detecção automática de vazamentos e outras anomalias na rede. A iniciativa visa reduzir perdas, melhorar a eficiência operacional das concessionárias e garantir maior confiabilidade no abastecimento, utilizando tecnologias como comunicação LoRa, análise em nuvem e atualizações remotas via OTA para garantir flexibilidade, segurança e escalabilidade do sistema.

INTRODUÇÃO

O desperdício de água no Brasil é um desafio crítico para a sustentabilidade das cidades. De acordo com o Instituto Trata Brasil, mais de 40% da água potável produzida no país foi perdida em 2021, principalmente por vazamentos invisíveis nas redes de distribuição. Para mitigar esse problema, propõe-se o desenvolvimento e a implantação de uma solução tecnológica voltada para o monitoramento remoto das redes pluviais.

SOLUÇÃO PROPOSTA

O projeto consiste na instalação de dispositivos inteligentes de monitoramento em pontos estratégicos da rede de distribuição de água urbana. Esses dispositivos serão responsáveis por monitorar, em tempo real, o fluxo e a pressão da água em diferentes trechos da rede, detectar automaticamente vazamentos ou anomalias na rede de distribuição de água. Abaixo um diagrama, mostrando como pensamos em implementar essa solução:

Figura 1 - Diagrama da solução proposta.

A rede é composta por tubulações (linhas verdes) que conectam reservatórios de água aos quarteirões da cidade. Em pontos estratégicos das tubulações, serão instalados os dispositivos responsáveis pela medição contínua do fluxo.

FUNCIONAMENTO DO SISTEMA

O sistema de monitoramento inicia com a medição de vazão no ponto em que o dispositivo está instalado, registrando em tempo real o volume de água que atravessa aquele trecho. Esses dados são confrontados simultaneamente com as leituras dos sensores distribuídos pela rede e com os registros de consumo dos clientes atendidos a jusante, já que o volume que percorre o cano deve, em última análise, deve corresponder à soma do consumo mais as perdas naturais aceitáveis. Em seguida, o sistema executa o cálculo do balanço hídrico, verificando se a diferença entre a água medida em um ponto, a que chega ao sensor seguinte e a efetivamente consumida pelos clientes mantém-se dentro do limite de tolerância. Caso o sistema detecte maior vazão do que consumo — indicando que parte da água não está sendo contabilizada por nenhum hidrômetro — o trecho é sinalizado para inspeção de maior precisão, mas permanece em operação normalmente. Todas as informações são atualizadas em tempo real no sistema central, que envia alertas aos operadores e destaca o segmento suspeito no mapa da rede para que equipes de campo possam planejar uma verificação detalhada.

Para maximizar a eficácia desse monitoramento contínuo — e evitar deslocamentos caros até sensores enterrados, o firmware do dispositivo será projetado para receber atualizações OTA (Over-the-Air). Assim, sempre que o algoritmo de balanço hídrico precisar incorporar novas regras de correlação entre vazão e consumo, ajustar limites de tolerância ou adicionar suporte a sensores recém-instalados, é possível enviar o novo firmware remotamente pela rede do sistema. Em minutos, cada nó recebe a versão mais recente, reinicia com os ajustes aplicados e retoma as medições sem interrupção do serviço, suportando que o conjunto de sensores evolua tão rapidamente quanto as demandas da rede de distribuição.

ORGANIZAÇÃO NAS 6 CAMADAS DO MODELO DE REFERÊNCIA IOT

Camada de Sensor

O sensor utilizado para monitorar o fluxo de água é o WATERFLUX 3070 – Conaut. O princípio de funcionamento do sensor é baseado na Lei de Indução de Faraday, onde um líquido condutor em movimento em um campo magnético gera uma tensão elétrica proporcional à sua velocidade. O sensor converte essa tensão em pulsos elétricos, cuja frequência é proporcional ao volume de água.

Camada de Conectividade

- Responsável pela transmissão dos dados dos sensores para os níveis superiores da arquitetura.
- Utiliza tecnologia LoRa/LoRaWAN como principal meio de comunicação de longa distância.
- Emprega o transceptor LoRa SX1276, com comunicação SPI entre o microcontrolador e o transceptor.
- A biblioteca lorawan.h é usada para configurar o protocolo LoRaWAN.
- Uma rede mesh é implementada para ampliar o alcance da comunicação e garantir robustez mesmo em áreas subterrâneas.

Camada de Borda

- Realiza o pré-processamento e análise inicial dos dados próximos à fonte (sensor).
- O microcontrolador STM32L0 recebe os pulsos do sensor, realiza a contagem e estrutura os dados.
- Utiliza constantes (#defines) que descrevem características da tubulação para interpretar os dados e identificar possíveis vazamentos.

Camada de Armazenamento

- Os dados processados na borda s\u00e3o enviados para a nuvem via Google Cloud Platform (GCP).
- Armazenamento primário em Cloud Storage, organização em Cloud SQL, e análise em larga escala via BigQuery.
- A comunicação com a nuvem é feita por API REST autenticada via OAuth
 2.0, protegida por HTTPS.
- Garante segurança, escalabilidade e integração com ferramentas analíticas e de machine learning.

Camada de Abstração

Esta camada tem a função de transformar os dados brutos provenientes dos sensores em informações úteis e estruturadas para os sistemas superiores.

A contagem de pulsos feita pelo microcontrolador é convertida em dados de vazão, e esses valores são interpretados em conjunto com as constantes definidas (#defines) que representam características da tubulação.

Para aprimorar a análise e a tomada de decisões, esta camada incorpora modelos de Inteligência Artificial, capazes de classificar automaticamente os vazamentos quanto à severidade (por exemplo: leve, moderado ou crítico).

Essa classificação é feita com base em variáveis como volume de vazão anormal, tempo de duração do vazamento, histórico de eventos semelhantes e localização geográfica.

O uso de IA nessa camada permite priorizar os casos mais críticos para as equipes de manutenção, reduzindo perdas e otimizando recursos.

Dessa forma, a camada de abstração não apenas interpreta os dados, mas também atribui contexto e prioridade, gerando uma visão estratégica da integridade da rede.

Camada de Apresentação

- · Interage diretamente com o usuário final, apresentando os dados de maneira acessível.
- A solução disponibiliza uma interface (com dashboard, app web e mobile)
 que permite: Visualização dos vazamentos detectados.
- Exibição de um mapa dinâmico da rede de encanamentos, constantemente atualizado.

JUSTIFICATIVA DA CONECTIVIDADE

A escolha da tecnologia LoRa/LoRaWAN para a conectividade é justificada por vários fatores:

- Comunicação de Longa Distância: O transceptor LoRa SX1276 permite alcances de até 3 km em ambientes abertos, o que é crucial para monitorar redes de distribuição de água que cobrem vastas áreas.
- Instalação em Áreas Subterrâneas: O dispositivo será instalado em áreas subterrâneas, onde sinais de tecnologias como WiFi ou Ethernet seriam fracos ou inacessíveis. O LoRa, operando em frequências mais baixas (862 a 930 MHz), tem melhor penetração em ambientes urbanos e subterrâneos.
- Necessidade de Rede Mesh: Devido à instalação subterrânea, a implementação de uma rede mesh é essencial. Esta configuração permite que os dispositivos retransmitam dados, ampliando o alcance da comunicação e garantindo a transferência de dados mesmo em locais remotos onde a comunicação direta seria difícil. LoRaWAN suporta arquiteturas de rede adequadas para essa configuração
- Eficiência Energética: a solução é projetada para operação contínua e manutenção reduzida, utilizando o microcontrolador STM32L0 que tem baixo consumo. LoRa é uma tecnologia conhecida por seu baixo consumo energético, o que a torna ideal para dispositivos que precisam operar por longos períodos sem necessidade de troca frequente de baterias ou manutenção constante.

Em resumo, a escolha do LoRa/LoRaWAN se alinha perfeitamente com os requisitos de longo alcance, operação em ambientes desafiadores (subterrâneos), capacidade de formar redes mesh para garantir a cobertura e a eficiência energética necessária para uma solução de monitoramento contínuo e de baixa manutenção. Tecnologias como WiFi ou Ethernet seriam inadequadas devido ao seu curto alcance, dificuldade em ambientes subterrâneos e, no caso do Ethernet, necessidade de infraestrutura cabeada.

FLUXO SIMPLIFICADO DE ATUALIZAÇÃO OTA

Para garantir a segurança e robustez no processo de atualização de firmware via OTA (Over-The-Air), algumas etapas fundamentais devem ser seguidas.

O dispositivo, conectado à rede do servidor por meio da tecnologia LoRaWAN, realizará periodicamente uma verificação junto ao servidor para identificar a existência de uma nova versão de firmware. Caso uma versão mais recente seja detectada, o dispositivo iniciará o download do novo firmware.

Após o término do download, será realizada uma verificação de integridade e autenticidade, utilizando algoritmos de hash (como SHA-256), com o objetivo de evitar a instalação de firmwares corrompidos ou maliciosos.

Uma vez validado, o novo firmware é gravado em uma partição separada da memória do dispositivo, permitindo a coexistência com a versão anterior. Em seguida, o dispositivo executa um reboot e tenta inicializar o novo firmware.

Caso o boot seja bem-sucedido, o dispositivo envia uma confirmação ao servidor, informando que a atualização foi concluída com êxito. Se ocorrer qualquer falha durante o processo de inicialização, o sistema realizará um rollback automático, restaurando a versão anterior do firmware para garantir a continuidade segura da operação.

Figura 2 - Fluxograma atualização OTA.

Pontos de atenção

O sistema será implantado em ambientes subterrâneos, dentro de tubulações de redes hídricas, com o objetivo de monitorar o fluxo de água, detectar vazamentos e manter o mapeamento dos canos atualizado em tempo real. Dadas as condições de operação e o ambiente hostil, três pilares fundamentais devem guiar o projeto: segurança, eficiência energética e robustez.

A estratégia é começar pelos bairros e condomínios recém-construídos, onde a tubulação ainda está exposta e as vias não foram pavimentadas definitivamente. Instalar o dispositivo logo nessa fase evita custos extras de escavação, garante que a rede já entre em operação com monitoramento de vazão ativo.

Nos bairros antigos, porém, o cenário é mais reativo: só quando surgem vazamentos ou a pavimentação precisa ser aberta é que o sensor é inserido, evitando novas escavações futuras e permitindo que o trecho volte a ser fechado com a rede já monitorada. Dessa forma, a solução equilibra implantação preventiva onde é barato intervir e corretiva onde os custos de quebra de asfalto e transtorno à população seriam maiores.

Por estar inserido em uma rede LoRa local, sem acesso à internet ou a outros dispositivos externos, o sistema deve contar com mecanismos internos de segurança contra-ataques físicos e lógicos, especialmente no processo de atualização de firmware via OTA. Mesmo em ambientes isolados, é essencial garantir que apenas firmware autenticado e verificado criptograficamente seja aceito pelo dispositivo, prevenindo a instalação de código malicioso que possa comprometer a integridade dos dados ou da rede.

Além disso, o dispositivo será instalado em locais de difícil acesso, onde manutenções frequentes são inviáveis. Por isso, o consumo de energia deve ser extremamente otimizado, visando a máxima autonomia da bateria. O sistema deve operar por longos períodos sem intervenção humana, o que exige estratégias eficientes de gerenciamento de energia, como modos de sono profundo e transmissão de dados em intervalos otimizados.

No que diz respeito à robustez, o hardware e o firmware devem ser projetados para garantir resiliência a falhas e confiabilidade contínua, mesmo sob variações de temperatura, umidade e outras condições adversas típicas de ambientes subterrâneos. O sistema deve ser capaz de operar de forma autônoma e estável, com mecanismos de fallback seguros em caso de falha de atualização, e tolerância a erros que garantam a consistência dos dados coletados.