Chapter 8

\mathbf{RSA}

- 1. Most popular public-key cryptosystem.
- 2. Invented by Rivest/Shamir/Adleman in 1977 at MIT.
- 3. Patented until 2000.

8.1 Cryptosystem

Set-up Stage

- 1. Choose two large primes p and q.
- 2. Compute $n = p \cdot q$.
- 3. Compute $\Phi(n) = (p-1)(q-1)$.
- 4. Choose random $b; 0 < b < \Phi(n)$, with $gcd(b, \Phi(n)) = 1$. Note that b has inverse in $Z_{\Phi(n)}$.
- 5. Compute inverse $a = b^{-1} \mod \Phi(n)$:

$$b \cdot a \equiv 1 \mod \Phi(n)$$
.

6. Public key: $k_{pub} = (n, b)$.

Private key: $k_{pr} = (p, q, a)$.

Encryption: done using public key, k_{pub} . $y = e_{k_{pub}}(x) = x^b \mod n.$

$$y = e_{k_{pub}}(x) = x^b \bmod n$$

$$x \in Z_n = \{0, 1, \dots, n-1\}.$$

Decryption: done using private key, k_{pr} .

$$x = d_{k_{pr}}(y) = y^a \bmod n.$$

Example:

Alice sends encrypted message (x = 4) to Bob after Bob sends her the public key.

<u>Alice</u>

$$\underline{\text{Bob}}$$

(1) choose
$$p = 3$$
; $q = 11$

(2)
$$n = p \cdot q = 33$$

(3)
$$\Phi(n) = (3-1)(11-1) = 2 \cdot 10 = 20$$

(4) choose
$$b = 3$$
; $gcd(20, 3) = 1$

x = 4

$$k_{pub}(3,33)$$

 $\xrightarrow{y=31}$

$$\stackrel{k_{pub}(3,33)}{\longleftarrow}$$
 (5) $a = b^{-1} = 7 \mod 20$

$$y = x^b \mod n = 4^3 = 64 \equiv 31 \mod 33$$

$$x = y^a = 31^7 \equiv 4 \mod 33$$

Why does RSA work?

We have to show that: $d_{k_{pr}}(y) = d_{k_{pr}}(e_{k_{pub}}(x)) = x$.

$$d_{k_{pr}} = y^a = x^{ba} = x^{ab} \bmod n.$$

 $a \cdot b \equiv 1 \mod \Phi(n) \iff a \cdot b \equiv 1 + t \cdot \Phi(n)$; t is an integer.

$$d_{k_{pr}} = x^{ab} = x^{t \cdot \Phi(n)} \cdot x^1 = (x^{\Phi(n)})^t \cdot x \bmod n.$$

if $x^{\Phi(n)} \equiv 1 \mod n$ then $d_{k_{pr}} = (x^{\Phi(n)})^t \cdot x = 1^t \cdot x = 1 \cdot x = x \mod n$.

1. Case: $gcd(x, n) = gcd(x, p \cdot q) = 1$

Euler's Theorem: $x^{\Phi(n)} \equiv 1 \mod n$, q.e.d.

2. Case: $gcd(x, n) = gcd(x, p \cdot q) \neq 1$

either $x = r \cdot p$ or $x = s \cdot q$; r, s are integers such that; r < q, s < p.

assume
$$x = r \cdot p \Rightarrow \gcd(x, q) = 1$$

$$x^{\Phi(n)} = x^{(q-1)(p-1)} = x^{\Phi(q)(p-1)} = (x^{\Phi(q)})^{p-1} = 1 \mod q$$

 $x^{\Phi(n)} = 1 + c \cdot q$; where c is an integer

$$x \cdot x^{\Phi(n)} = x + x \cdot c \cdot q = x + r \cdot p \cdot c \cdot q = x + r \cdot c \cdot p \cdot q = x + r \cdot c \cdot n$$

$$x \cdot x^{\Phi(n)} \equiv x \bmod n$$

$$x^{\Phi(n)} \equiv 1 \mod n, \quad q.e.d.$$

8.2 Computational Aspects

8.2.1 Choosing p and q

Problem: Finding two large primes p, q (each > 250 bits).

Principle:

Pick a large integer and apply primality test. In practice, a "Monte Carlo" test developed by Miller-Rabbin (pg. 136 in [Sti95]) is used. Note that a primality test does NOT require factorization.

Miller-Rabin Algorithm:

Input: p or q and arbitrary number r < p, q.

Output 1: Statement "p, q is composite" \rightarrow always true.

Output 2: Statement "p, q is prime" \rightarrow true with probability > 0.75.

In practice, the above algorithm is run 3 times (for a 1000 bit prime) and up to 12 times (for a 150 bit prime) [AM97, Table 4.4 page 148] with different parameters r. If the answer is always "p is prime", then p is with very high probability a prime.

 $\mathcal{P}(p \text{ is composite }) \leq 0.25^t \text{ where } t = \text{number of tries.}$

Question: What is the likelihood that a randomly picked integer p or q is prime?

Answer: $\mathcal{P}(p \text{ is prime }) \approx \frac{1}{\ln(p)}$.

Example: $p \approx 2^{250} \rightarrow (250 \text{ bits}).$

 $\mathcal{P}(p \text{ is prime }) = \frac{1}{\ln(2^{250})} \approx \frac{1}{173}.$

8.2.2 Choosing a and b

 $k_{pub}=b;$ condition: $\gcd(b,\Phi(n))=1;$ where $\Phi(n)=(p-1)\cdot(q-1).$ $k_{pr}=a;$ where $a=b^{-1}$ mod $\Phi(n).$

Pick arbitrary b (large!) and compute:

- 1. Euclidean Algorithm: $s \cdot \Phi(n) + t \cdot b = \gcd(b, \Phi(n))$
- 2. Test if $gcd(b, \Phi(n)) = 1$
- 3. Calculate a:

Question: What is $t \cdot b \mod \Phi(n)$?

$$t \cdot b = (-s)\Phi(n) + 1$$

$$\Rightarrow t \cdot b \equiv 1 \mod \Phi(n)$$

$$\Rightarrow t = b^{-1} = a \mod \Phi(n)$$

Remark:

It is not necessary to find s for the computation of a.

8.2.3 Encryption/Decryption

encryption: $e_{k_{pub}}(x) = x^b \mod n = y$.

decryption: $d_{k_{pr}}(y) = y^a \mod n = x$.

Question: How many multiplications are required for computing x^8 ?

Answer: $\underbrace{x \cdot x = x^2}_{1}$; $\underbrace{x^2 \cdot x^2 = x^4}_{2}$; $\underbrace{x^4 \cdot x^4 = x^8}_{3}$. if $0 < b < \Phi(n)$ then $\mathcal{O}(\Phi(n)) \approx \mathcal{O}(n)$.

Question: How many multiplications are required for computing x^{13} ?

Answer: $\underbrace{x \cdot x = x^2}_{\text{SQ}}$; $\underbrace{x^2 \cdot x = x^3}_{\text{MUL}}$; $\underbrace{x^3 \cdot x^3 = x^6}_{\text{SQ}}$; $\underbrace{x^6 \cdot x^6 = x^{12}}_{\text{SQ}}$; $\underbrace{x^{12} \cdot x = x^{13}}_{\text{MUL}}$.

Square-and-multiply algorithm

First: binary representation of the exponent $\rightarrow x^B$; $B \le 15$

$$B = b_3 \cdot 2^3 + b_2 \cdot 2^2 + b_1 \cdot 2^1 + b_0$$

$$B = (b_3 \cdot 2 + b_2)2^2 + b_1 \cdot 2 + b_0 = ((b_3 \cdot 2 + b_2)2 + b_1)2 + b_0$$

$$x^B = x^{((b_3 \cdot 2 + b_2)2 + b_1)2 + b_0}$$

Step
$$x^{B}$$
#1 $x^{b_3 \cdot 2}$
#2 $(x^{b_3 \cdot 2} \cdot x^{b_2})$
#3 $(x^{b_3 \cdot 2} \cdot x^{b_2})^2$
#4 $(x^{b_3 \cdot 2} \cdot x^{b_2})^2 \cdot x^{b_1}$
#5 $((x^{b_3 \cdot 2} \cdot x^{b_2})^2 \cdot x^{b_1})^2$
#6 $((x^{b_3 \cdot 2} \cdot x^{b_2})^2 \cdot x^{b_1})^2 \cdot x^{b_0}$

Example: $x^{13} = x^{1101_2} = x^{(b_3,b_2,b_1,b_0)_2}$

#1
$$x^{b_3 \cdot 2} = x^2$$
 SQ
#2 $x^2 \cdot x^{b_3} = x^2 \cdot x = x^3$ MUL
#3 $(x^3)^2 = x^6$ SQ
#4 $x^6 \cdot x^0 \ x^6 \cdot 1 = x^6$
#5 $(x^6)^2 = x^{12}$ SQ
#6 $x^{12} \cdot x^{b_0} = x^{12} \cdot x = x^{13}$ MUL

Complexity: $[\log_2 n] \cdot \text{SQ} + [\frac{1}{2} \log_2 n] \cdot \text{MUL}$.

Comparison: $B = 2^{1000}$

Straight forward exponentiation: $2^{1000} \approx 10^{300}$ multiplications

 \rightarrow computationally impossible.

Square-and-multiply: $1.5 \cdot \log_2(2^{1000}) = 1500$ multiplications and squarings \rightarrow relatively easy.

Remark: Remember to apply modulo reduction after every multiplication and squaring operation.

Algorithm [Sti95]: computes x^B , where $B = \sum_{i=0}^{l-1} b_i 2^i$

- 1. z = x
- 2. for i = l 1 downto 0 do:
 - (a) $z = z^2 \mod n$
 - (b) if $(b_i = 1)$ then $z = z \cdot x \mod n$

8.3 Attacks

8.3.1 Brute Force

Given $y = x^b \mod n$, try all possible keys $a; 0 \le a < \Phi(n)$ to obtain $x = y^a \mod n$. In practice $|\mathcal{K}| = \Phi(n) \approx n > 2^{500} \Rightarrow$ impossible.

8.3.2 Finding $\Phi(n)$

Given $n, b, y = x^b \mod n$, find $\Phi(n)$ and compute $a = b^{-1} \mod \Phi(n)$. \Rightarrow computing $\Phi(n)$ is believed to be as difficult as factoring n.

8.3.3 Finding a directly

Given $n, b, y = x^b \mod n$, find a directly and compute $x = y^a \mod n$. \Rightarrow computing a directly is believed to be as difficult as factoring n.

8.3.4 Factorization of n

Given $n, b, y = x^b \mod n$, find $p \cdot q = n$ and compute:

$$\Phi(n) = (p-1)(q-1)$$

$$b=a^{-1} \text{ mod } \Phi(n)$$

$$x = y^a \mod n$$

 \rightarrow This approach is the only attack believed to be practical.

Factoring Algorithms:

- 1. Quadratic Sieve (QS): speed depends on the size of n; record: in 1994 factoring of n = RSA129, $\log_{10} n = 129$ digits, $\log_2 n = 426$ bits.
- 2. Elliptic Curve: similar to QS; speed depends on the size of the smallest prime factor of n, i.e., on p and q.
- 3. Number Field Sieve: asymptotically better than QS; record: in 1996 factoring of n = RSA140; $\log_{10} n = 140 \text{ digits}$; $\log_2 n = 466 \text{ bits}$.

Algorithm	Complexity
Quadratic Sieve	$\mathcal{O}(e^{(1+o(1))\sqrt{\ln(n)\ln(\ln(n))}})$
Elliptic Curve	$\mathcal{O}(e^{(1+o(1))\sqrt{2\ln(p)\ln(\ln(p))}})$
Number Field Sieve	$\mathcal{O}(e^{(1.92+o(1))(\ln(n))^{1/3}(\ln(\ln(n)))^{2/3}})$

number	${f month}$	MIPS-years	algorithm
RSA-100	April 1991	7	quadratic sieve
RSA-110	April 1992	75	quadratic sieve
RSA-120	June 1993	830	quadratic sieve
RSA-129	April 1994	5000	quadratic sieve
RSA-130	April 1996	500	generalized number field sieve
RSA-140	February 1999	1500	generalized number field sieve
RSA-155	August 1999	8000	generalized number field sieve

8.4 Implementation

- Hardware: 1024 bit decryption in less that 5 ms.
- Software: 1024 bit decryption in 43 ms; 1024 bit encryption in 0.65 ms
- hybrid systems, consisting of public-key and private-key algorithms: most commonly used in practice
 - 1. key exchange and authentication with (slow) public-key algorithm
 - 2. bulk data encryption with (fast) block ciphers