GMetis - Xeon Phi

David Pereira Rui Brito

August 9, 2013

Outline

- Introduction
- 2 Algorithm Description
- **3** System characteristics
- 4 Conclusion

Introduction

- GMetis is a graph partitioning application which uses the Galois framework
- Consists of three major phases
 - Coarsening
 - ★ Find matching nodes
 - ★ Create Coarse Edges
 - Initial Partitioning (Clustering)
 - Refinement

Algorithm Description

Formal Description

- Given a graph $G_0 = (V_0, E_0)$:
 - Coarsening
 - **★** G_0 is transformed into a sequence of smaller graphs G_1, G_2, \cdots, G_m such that $|V_0| > |V_1| > |V_2| > \cdots > |V_m|$
 - Partitioning
 - ★ A 2-way partition P_m of the graph $G_m = (V_m, E_m)$ is computed that partitions V_m into two parts, each containing half the vertices of G_0
 - Refinement
 - ★ The partition P_m of G_m is projected back to G_0 by going through intermediate partitions $P_{m-1}, P_{m-2}, \dots, P_1, P_0$

Coarsening

Partitioning

Refinement

Stampede Host

Manufacturer	Intel
Model	Xeon E5-2680
μ Arch	Sandy Bridge
Clock freq	2.70 GHz
#CPUs (sockets)	2
#Cores/CPU	8
#Thread/Core	1
L1 cache size/core	32 KB
L2 cache size/core	256 KB
L3 shared cache size/CPU	20 MB
Main Memory/CPU	16 GB
Vector width	256 bits (AVX)

Table 1: Intel Xeon E5-2680

Stampede Co-processor - Xeon Phi

Manufacturer	Intel
Model	Xeon Phi SE10P
μ Arch	Many Integrated Cores - MIC
Clock freq	1.1 GHz
#CPUs (sockets)	1
#Cores/CPU	61
#Thread/Core	4
L1 cache size/core	32KB
L2 cache size/core	512 KB
Main Memory/CPU	8 GB
Vector width	512 bits

Table 2: Intel Xeon Phi

Important characteristics

- Four hardware threads per core
- In-order dual issue pipeline
- Pipeline does not issue instructions from the same hardware context for two consecutive clock cycles
- Maximum issue rate only attainable with at least 2 threads per core

Xeon Phi Coprocessor Core¹

knights-corner

¹http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-

GMetis²

GMetis - 128 partitions

David Pereira, Rui Brito GMetis - Xeon Phi August 9, 2013 13 / 19

²USA-road-d.W.gr with 6262104 nodes and 15248146 edges → ✓ ≥ → ✓ ≥ → ○ ○

Mt-metis

mt-metis - 128 partitions

Enhancements

- Package Mapping (HW Topology)
 - Default Mapping
 - Load Balance
 - Dense Package
- Use of Random Match and Heavy Weight Match
- WorkList schedulers
- Software prefetching

Metis Comparison

Edgecut comparison

Edgecut comparison

Conclusion

- Metis and mt-metis have better edgecut;
- Metis and mt-metis have lower runtimes for a smaller number of partitions;
- GMetis is faster for a high number of partitions;
- Metis graph partitioning algorithm is not suitable to run on MIC as it does not use SIMD extensions;
- Lack of software/profilers made progress difficult;

GMetis - Xeon Phi

David Pereira Rui Brito

August 9, 2013

?