Homework 5

Jim Zieleman

September 28, 2020

1 (a) Suppose that $A \subseteq B \subseteq \mathbf{R}$. Prove that if B is closed, then $\bar{A} \subseteq B$.

Let A be closed in B. Then B-A is open in B. So there exists a set X open in \mathbf{R} such that $X \cap B = B - A$. Since X is open in \mathbf{R} , the set $C = \mathbf{R} - X$ is closed in \mathbf{R} . $C \cap B$ is closed since both B and C are closed.

 $C \cap B = (\mathbf{R} - X) \cap B = B - X \cap B = B - B + A = A$. So A is closed by an intersection of closed sets.

Since B is a closed subset of \mathbf{R} which contains A. Then B is one of the sets in the intersection of closed sets in \mathbf{R} , thus \bar{A} is in the intersection of closed sets that are subsets of B.

So if B is closed, then $\bar{A} \subseteq B$.

(b) For $A \subseteq \mathbf{R}$ show that the closure \bar{A} equals the intersection of all closed sets $B \subseteq \mathbf{R}$ that contain A.

Let $B = \{B_i : A \subseteq B_i, B_i \text{ is closed}\}$ Then let $\bar{A} = \cap B$, thus \bar{A} is closed.

Let $x \in A$. Then for all $i, x \in B_i$. Then it follows that $x \in \cap B = \bar{A}$. Thus $A \subseteq \bar{A}$.

Now suppose there exists a closed set C with $A \subseteq C \subseteq \bar{A}$. But since $C \supseteq A$ implies $C \in B$ so $\bar{A} \subseteq C$ implies $\bar{A} = C$. Thus \bar{A} is the smallest closed set containing A and it is the closure of A

2 (a) Let $A_1,...,A_n\subseteq \mathbf{R}$ be a finite collection of sets, and set $B_n=\cup_{i=1}^n A_i$. Prove that $\bar{B_n}=\cup_{i=1}^n \bar{A_i}$. WTS closure $\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \bar{A}_i$.

For each $1 \leq k \leq n$. $A_k \subseteq \bigcup_{i=1}^n A_i \subseteq \bigcup_{i=1}^n A_i$. $\bar{A}_k \subseteq \bigcup_{i=1}^n A_i$. Since this holds for $1 \leq k \leq n$. $\bigcup_{i=1}^n \bar{A}_i \subseteq \bigcup_{i=1}^n A_i$.

For each $1 \leq k \leq n$ $A_k \subseteq \bar{A_k} \subseteq \cup_{i=1}^n \bar{A_i}$ Since this holds for $1 \leq k \leq n$. $\cup_{i=1}^n A_i \subseteq \cup_{i=1}^n \bar{A_i}$

Since the closure is the smallest superset of open sets $\bigcup_{i=1}^{n} A_i \subseteq \bigcup_{i=1}^{n} \bar{A}_i$.

So
$$\bar{B_n} = \bigcup_{i=1}^n \bar{A_i} = \bigcup_{i=1}^n \bar{A_i}$$

(b) Let $A_1, A_2, ..., A_n \subseteq \mathbf{R}$ be a finite collection of sets, and set $B = \bigcup_{i=1}^{\infty} A_i$. Is the closure \bar{B} necessarily equal to the union $\bigcup_{i=1}^{\infty} \bar{A}_i$ of the closures? Either prove these are equal or give a counter-example.

Let $A_i \subseteq \mathbf{R}$ and $A_i = [\frac{1}{i}, 1]$ for all i > 1. Then $\bar{A}_i = A_i$. $\cup_{i>1} \bar{A}_i = (0, 1] = \cup_{i>1} A_i$. However, $\cup_{i>1} \bar{A}_i = [0, 1]$. So $\cup_{i>1} A_i \neq \cup_{i>1} \bar{A}_i$

- 3 Suppose that $E \subseteq \mathbf{R}$ has the property that every infinite subset of E has a limit point which is an element of E.
 - (a) Prove that such a set E must be bounded.

Suppose E is not bounded.

Then for all $n \in \mathbb{N}$ there exists $x_n \in E$ such that $|x_n| > n$.

So if we construct a set of x_n .

 $\{x_1, x_2,, x_n\}: x_\infty > \infty$ then $\bigcup_{n=1}^{\infty} \{x_n\}$ is an infinite subset of E.

However it has no limit points which is a contradiction. So E must be bounded.

(b) Now we will prove that such a set E must be closed. Let x be a limit point of E. Construct an infinite subset of E that has x as its sole limit point (and thus that $x \in E$).

(Be careful with part (b). It is not enough to just use that if x is

a limit point, for $\epsilon > 0$, that $(x - \epsilon, x + \epsilon)$ contains infinitely many points from E. What the property gives you at that point is that the $(x - \epsilon, x + \epsilon)$ contains some limit point in E, not that x has to be that limit point. You need to create an infinite subset of E which can *only* have x as its limit point.)

Suppose E is not closed.

Then there exists $x_0 \in E^c$ where x_0 is a limit point of E.

Then for all $\epsilon > 0$ there exists $y \in E \setminus \{x_0\}$ with $y \in (x_0 - \epsilon, x_0 + \epsilon)$.

For all $n \in \mathbb{N}$ there exists $x_n \in E$ such that the difference between x_n and x_0 will be less than 1/n or in other words $|x_n - x_0| < 1/n$.

Let $X = \bigcup_{n=1}^{\infty} \{x_n\}$ which is an infinite subset of E.

So X has a limit point $x_{\infty} \in E$.

WTS $x_{\infty} = x_0$, hence $x_0 \in E$.

Let $n, m \in \mathbb{N}$ since x_{∞} is a limit point of X there exists $m \geq n$ such

that
$$|x_m - x_\infty| < 1/n$$
. So $|x_m - x_\infty| < 1/m < 1/n$. $|x_0 - x_\infty| \le |x_m - x_\infty| + |x_m - x_0| \le 1/n + 1/n = 2/n$

Since this is true for all $n \in \mathbf{N}$ we conclude $|x_0 - x_\infty| = 0$, so $x_\infty = x_0$.

So $x_0 \in E$ which contradicts $x_0 \in E^c$ thus E is closed and has x_0 as its sole limit point.

4 For each set, find its boundary. Prove one of your answers.

(a)
$$[-1,3]$$
 $\partial = -1,3$

(b) 7

For all
$$\epsilon > 0$$
.
 $(7 - \epsilon, 7 + \epsilon) \cap 7 = 7$.
 $(7 - \epsilon, 7 + \epsilon) \cap 7^c = 7^c$.
So $\partial = 7$

(c)
$$\mathbf{Q}$$
 $\partial = \mathbf{R}$

5 Let $A \subseteq \mathbf{R}$ be a set that is bounded above. Prove that $lub(A) \in \partial A$.

Let u = lub(A) and let $\epsilon > 0$.

Then no element of $u + \epsilon$ is in A. and every element of $u + \epsilon$ is in A^c . and every element of $u - \epsilon$ is in A. and no element of $u - \epsilon$ is in A^c . So then it follows that $(u - \epsilon, u + \epsilon) \cap A \neq \emptyset$

$$(u - \epsilon, u + \epsilon) \cap A^c \neq \emptyset$$

So $lub(A) \in \partial A$.

6 Let $A \subseteq \mathbf{R}$, and set $B = A^c$. Prove that $\partial A = \bar{A} \cap \bar{B}$ is the intersection of the closures of A and A^c .

Let $S=((A^c)^\circ)^c$ so $(A^c)^\circ$ is open and contained in A^c . Then $((A^c)^\circ)^c$ is closed containing A. Then $\bar{A}\subseteq S$.

If T is a closed set containing A then T^c is an open subset of A^c . $T^c \subseteq (A^c)^\circ$ so $T \supseteq S$. Since T is an arbitrary closed set containing A.

Since T is an arbitrary closed set containing A. $S \subseteq \bar{A}$ thus $\bar{A} = S$.

Now let $B=A^c$. Then by using the above; $((\bar{A}^c))^c=(\bar{B})^c=(((A^c)^\circ)^c)^c=(A^c)^\circ=A^\circ.$ So $A^\circ=((\bar{A}^c))^c.$ $\partial A=\bar{A}\backslash A^\circ=\bar{A}\cap A^\circ=\bar{A}\cap (((\bar{A}^c))^c)^c=\bar{A}^c=\bar{A}\cap \bar{B}.$ Thus $\partial A=\bar{A}\cap \bar{B}.$