Introduction to Databases

Tutorial 5

Dr Paolo Guagliardo

Fall 2020 (week 6)

Problem 1 (mandatory). Consider the following set of FDs:

$$D \to AC$$

$$D \to AC$$
, $AB \to DE$,

$$FD \to E$$
 , $C \to F$

$$C \to F$$

(a) Indicate which of the above FDs hold in the following relation:

A	B	C	D	E	F
1	1	2	3	0	4
2	1	2	3	1	4
1	1	3	3	0	5

Moreover, for each FD that does not hold provide two tuples (from the above relation) constituting a violation.

(b) Determine whether each of the following FDs is implied by the FDs above:

$$AC \to E$$

$$BD \to EF$$

$$EF \to BC$$

$$BC \to BF$$

$$AD \to CF$$

$$BD \to EF$$
 $EF \to BC$ $ABC \to DF$ $DEF \to AB$

$$DEF \rightarrow AB$$

$$DF \to AE$$

$$CD \rightarrow DE$$

$$BE \to AC$$

$$CD \to ED$$

$$DE \to AF$$

(c) For each FD in point (b) that is implied, write a derivation using Armstrong's axioms (including union and decomposition). Requirement for tutorial marks: attempt at least one derivation.

Problem 2 (optional). Let R, S and T be relations on attributes A, B, C. Given the following set of INDs:

$$R[A,B] \subseteq S[B,C]$$

$$S[C, B] \subseteq T[C, A]$$

determine which of the following INDs are implied:

$$R[A] \subseteq T[A]$$

$$R[B] \subseteq T[B]$$

$$R[C] \subseteq T[C]$$

$$R[A] \subseteq T[B]$$

$$R[B] \subseteq T[A]$$

$$R[B] \subseteq T[C]$$

$$R[A] \subseteq T[B]$$

 $R[C] \subseteq T[B]$

$$R[A] \subseteq T[C]$$

$$R[C] \subseteq T[A]$$