Задание 5. Ряд урана

Образец радиоактивного изотопа урана-238 массой 80 г распадается со скоростью 1 миллион атомов в секунду. Продукты его распада — тоже радиоактивные, причём распадаются во много раз быстрее. Конечным продуктом распада является устойчивый свинец-206, а среди промежуточных продуктов распада есть уран-234.

- 1. Объясните, как из урана-238 образовался уран-234. Напишите уравнения ядерных реакций.
 - 2. Сколько α- и β-распадов происходит на пути от урана-238 к свинцу-206?
- 3. Чему равен объём гелия (н. у.), который образуется из образца урана за 10 миллионов лет? Считайте, что скорость распада остаётся постоянной в течение этого времени.

Задание 5. Ряд урана

Решение:

1. При α-распаде заряд ядра уменьшается на 2, при β-распаде увеличивается на 1. По условию, заряд ядра остался прежним, изменилось только массовое число, следовательно, происходят один α-распад и два β-распада. Уравнения реакций:

$$^{238}\text{U} \rightarrow ^{234}\text{Th} + ^{4}\text{He};$$

 $^{234}\text{Th} \rightarrow ^{234}\text{Pa} + e;$
 $^{234}\text{Pa} \rightarrow ^{234}\text{U} + e.$

(Поскольку школьники не обязаны знать радиоактивные ряды, принимается любая последовательность из одного α - и двух β -распадов.)

- 2. Массовое число от урана-238 до свинца-206 уменьшилось на 32. Это означает, что произошло 32/4=8 α -распадов (при β -распаде массовое число не меняется). За 8 α -распадов заряд ядра уменьшается на 16, а в ряду от урана (Z=92) до свинца (Z=82) он уменьшается всего на 10. Следовательно, дополнительно к α -распадам произошло ещё 16-10=6 β -распадов.
- 3. За 10 миллионов лет распадётся:

$$N_{\text{расп.}}(\text{U}) = 10^6$$
 атомов/с · $(10^7 \cdot 365 \cdot 24 \cdot 3600)$ с = $3,15 \cdot 10^{20}$ атомов урана; $\nu_{\text{расп.}}(\text{U}) = 3,15 \cdot 10^{20}$ / $(6,02 \cdot 10^{23}) = 5,24 \cdot 10^{-4}$ моль.

При распаде одного атома в течение всей цепочки распадов образуется 8 атомов гелия, поэтому

$$v(\text{He}) = 5.24 \cdot 10^{-4} \cdot 8 = 4.19 \cdot 10^{-3} \text{ моль};$$

 $V(\text{He}) = 4.19 \cdot 10^{-3} \cdot 22.4 = 0.094 \text{ л} = 94 \text{ мл}.$

Критерии оценивания:

1. Уравнения ядерных реакций – по 1 баллу, всего	3 балла
2. Число α- и β-распадов	3 балла
3. Расчёт объёма гелия	4 балла
из них	

расчёт числа атомов урана — 2 балла, расчёт числа молей гелия — 1 балл, расчёт объёма гелия — 1 балл.