Assignment 5

Group Number 32

Software used: Matlab

Sanit Prashant Bhatkar (173109003) Omkar Anil Pawar (173106001)

1. Integration of $\int_0^3 e^{-x} \sin x \, dx$

a. Trapezoidal Method

Code	Output
clc fprintf('Trapezoidal Integration\n\n'); n=input('Enter the number of subinterval = '); la=input('Actual value of Integration = '); a=0; b=3; h=(b-a)/n; x=a:h:b; y=exp(-x).*sin(x); %Trapezoidal Rule Formula sum=sum(y(2:n)); l=h/2*(y(1)+y(n+1)+(2*sum)); error=l-la; fprintf('\nIntegration by Trapezoidal Rule'); l fprintf('Deviation from actual value '); error Enter Actual O.51 b. F Trape Enter Actual Integration by Trapezoidal Rule'; l co.00 Devia error	or n = 30 zoidal Integration the number of subinterval = 30 I value of Integration = .5211314363 ration by Trapezoidal Rule

Trapezoidal Integration

Enter the number of subinterval = 60 Actual value of Integration = .5211314363

Integration by Trapezoidal Rule

0.520911388830059

Deviation from actual value error =

-2.200474699414201e-04

N	Numerical Value	Error
10	0.513232627813492	-0.007898808486508
30	0.520251463655403	-8.799726445967160e-04
60	0.520911388830059	-2.200474699414201e-04

b. Simpsons 1/3rd Rule

clearvars clc fprintff(Simpson 1/3 Rule Integration\n\n\n); na-input(Enter the number of subinterval = '); la-input(Actual value of Integration = '); a-0; b-3; h-(b-a)/n; x-a:h:b; y-exp(x).*sin(x); %Simpson 1/3 Rule Formula sum1-0; sum2-0; sum2-0; for i=2:n %For choosing even and odd index in fromula if rem(i,2) == 0 sum1-sum2+y(i); end end l=h/3*(y(1)+y(n+1)+(2*sum2)+(4*sum1)); error=l-la; fprintf('Integration by Trapezoidal Rule'); lfprintff('Integration by Trapezoidal Rule'); lfprintff('Deviation from actual value'); error la: fprintf('Simpson 1/3 Rule Integration lntegration by Trapezoidal Rule l= -9.580213989079933e-05 b. For n = 30 Simpson 1/3 Rule Integration Actual value of integration error = -9.580213989079933e-05 b. For n = 30 Simpson 1/3 Rule Integration lntegration by Trapezoidal Rule l= -9.580213989079933e-05 b. For n = 30 Actual value of integration = .5211314363 Integration by Trapezoidal Rule l= 0.521130275452745 Deviation from actual value error = -1.160847255432529e-06

Simpson 1/3 Rule Integration

Enter the number of subinterval = 60 Actual value of Integration = .5211314363

Integration by Trapezoidal Rule I =

0.521131363888277

Deviation from actual value error =

-7.241172295113785e-08

N	Numerical Value	Error
10	0.521035634160109	-9.580213989079933e-05
30	0.521130275452745	-1.160847255432529e-06
60	0.521131363888277	-7.241172295113785e-08

c. Gauss Quadrature Rule

Integration by Trapezoidal Rule

0.521131436311284

Deviation from actual value error =

1.128408477768517e-11

b. For n = 30

Gauss Quadrature Integration

Specify order of gauss quadrature: 30 Actual value of Integration = .5211314363

Table points and weights are for interval [-1,1]

Weights

Table =

Points

	0
-0.996893484074649	0.0079681924961671
-0.983668123279747	0.0184664683110903
-0.960021864968308	0.0287847078833241
-0.926200047429274	0.0387991925696271
-0.882560535792053	0.0484026728305933
-0.829565762382768	0.0574931562176187
-0.767777432104826	0.0659742298821809
-0.697850494793316	0.0737559747377054
-0.620526182989243	0.08075589522942
-0.53662414814202	0.0868997872010829
-0.447033769538089	0.0921225222377862
-0.352704725530878	0.0963687371746441
-0.25463692616789	0.0995934205867952
-0.153869913608584	0.101762389748405
-0.0514718425553178	0.102852652893558
0.0514718425553176	0.102852652893559
0.153869913608583	0.101762389748406
0.25463692616789	0.0995934205867953
0.352704725530878	0.0963687371746442
0.447033769538089	0.0921225222377858
0.53662414814202	0.0868997872010828
0.620526182989243	0.0807558952294205
0.697850494793316	0.0737559747377052
0.767777432104826	0.0659742298821799
0.829565762382768	0.0574931562176193
0.882560535792052	0.0484026728305945
0.926200047429274	0.0387991925696271
0.960021864968307	0.0287847078833229
0.983668123279747	0.0184664683110908
0.996893484074649	0.00796819249616663

Table points and weights are for interval [0,3]

Table =

Points Weights

0.110699928856088 0.0387991925696271 0.176159196311921 0.0484026728305933 0.255651356425847 0.0574931562176187 0.0659742298821809 0.348333851842761 0.453224257810027 0.0737559747377054 0.569210725516136 0.08075589522942 0.69506377778697 0.0868997872010829 0.829449345692866 0.0921225222377862 0.970942911703683 0.0963687371746441 1.11804461074817 0.0995934205867952 1.26919512958712 0.101762389748405 1.42279223616702 0.102852652893558 1.57720776383298 0.102852652893559 1.73080487041288 0.101762389748406 2.30493622221303 0.0868997872010828 2.43078927448386 0.0807558952294205 2.88930007114391 0.0387991925696271

Integration by Trapezoidal Rule

0.521131436311284

Deviation from actual value error =

1.128375171077778e-11

Gauss Quadrature Integration

Specify order of gauss quadrature: 60 Actual value of Integration = .5211314363

Table points and weights are for interval [-1,1]

Table =

Points Weights

-0.955722255839996 -0.939166276116423 -0.920078476177628 -0.898510310810046 -0.874519922646898

-0.848171984785929 -0.819537526162146 -0.788693739932264 -0.755723775306585

-0.683766327381355 -0.644972828489477 -0.60444059704851 -0.562278900753944

-0.427173741583078 -0.379670056576798

-0.231543551376029 -0.180739964873426 -0.129449135396945

0.0778093339495365 0.129449135396945 0.180739964873426

0.331142848268448 0.379670056576798

0.473525841761707 0.51860140005857 0.562278900753945

-0.981067201752598 0.0100475571822884 0.0152746185967853 0.017829901014208 0.0203371207294569 0.0227895169439974 0.0251804776215212 0.0275035567499242 0.029752491500789 0.0319212190192966 0.034003892724946 -0.72071651335573 0.0359948980510852 0.0378888675692432 0.0396806954523805 0.041365551235585 0.0429388928359354 -0.51860140005857 0.0443964787957871 -0.473525841761707 0.0457343797161145 0.0469489888489121 0.0480370318199712 -0.331142848268448 0.048995575455757 -0.281722937423262 0.0498220356905501 0.0505141845325096 0.0510701560698554 0.0514884515009808 -0.0778093339495365 0.0517679431749103 0.0519078776312202 -0.0259597723012477 0.025959772301248 0.0519078776312207 0.0517679431749105 0.0514884515009808 0.0510701560698562 0.231543551376029 0.0505141845325093 0.281722937423262 0.0498220356905503 0.0489955754557568 0.0480370318199711 0.427173741583078 0.046948988848912

> 0.0457343797161142 0.0443964787957868 0.0429388928359357

0.60444059704851 0.0413655512355851 0.0359948980510841 0.720716513355731 0.755723775306586 0.0340038927249463 0.788693739932264 0.0319212190192959 0.920078476177627 0.0203371207294572 0.999210123227436 0.00202681196887372

Table points and weights are for interval [0,3]

Weights

Table =

Points

0.00440404545004564	0.00202504405007255
0.00118481515884561	
0.00623921232174252	
0.0153181571666674	0.00738993116334517
0.0283991973711024	0.0100475571822884
0.045447316852421	0.0126781664768159
0.0664166162400055	0.0152746185967853
0.0912505858253647	0.017829901014208
0.119882285733558	0.0203371207294569
0.152234533784931	0.0227895169439974
0.188220116029652	0.0251804776215212
0.227742022821106	0.0275035567499242
0.270693710756782	0.029752491500789
0.316959390101604	0.0319212190192966
0.366414337040122	0.034003892724946
0.418925229966404	0.0359948980510852
0.474350508927967	0.0378888675692432
0.532540757265785	0.0396806954523805
0.593339104427235	0.041365551235585
0.656581648869083	0.0429388928359354
0.722097899912145	0.0443964787957871
0.789711237357439	0.0457343797161145
0.859239387625382	0.0469489888489121
0.930494915134803	0.0480370318199712
1.00328572759733	0.048995575455757
1.07741559386511	0.0498220356905501
1.15268467293596	0.0505141845325096
1.22889005268986	0.0510701560698554
1.30582629690458	0.0514884515009808
1.3832859990757	0.0517679431749103
1.46106034154813	0.0519078776312202

1.84731532706404 0.0505141845325093 1.92258440613489 0.0498220356905503 2.6830406098984 0.0319212190192959 2.77225797717889 0.0275035567499249 2.93358338375999 0.0152746185967845

Integration by Trapezoidal Rule

I =

0.521131436311284

Deviation from actual value error =

1.128397375538270e-11

N	Numerical Value	Error	
10	0.521131436311284	1.128408477768517e-11	
30	0.521131436311284 1.128375171077778e-1		
60	0.521131436311284	1.128397375538270e-11	

d. Modified Trapezoidal Rule

c. For n = 60
Modified Trapezoidal Rule Integration
Number of subintervals: 60 Actual value of Integration = .5211314363 Integration by Trapezoidal Rule
sum1 = 0.521863419767683
Deviation from actual value error =
7.319834676834391e-04

N	Numerical Value	Error	
10	0.538934247733972	0.017802811433972	
30	0.523400712781964	0.002269276481964	
60	0.521863419767683	7.319834676834391e-04	

> Comparision of Results

Error Table for all methods and different intervals

Method/Sub Interval	10	30	60
Trapezoidal	-0.007898808486508	-8.799726445967160e-04	-2.200474699414201e-04
Simpson 1/3	-9.580213989079933e-05	-1.160847255432529e-06	-7.241172295113785e-08
Gauss Quadrature	1.128408477768517e-11	1.128375171077778e-11	1.128397375538270e-11
Modified Trapezoidal	0.017802811433972	0.002269276481964	7.319834676834391e-04

> Comparison in Method

a) <u>Trapezoidal Rule</u>

- The error goes on decreasing as interval increases
- Method underestimates the results for all N and the converges to exact solution

b) Simpson 1/3 rule

- The error goes on decreasing as interval increases
- Method underestimates the results for all N and the converges to exact solution

c) Gauss Quadrature Rule

- The error goes on decreasing as interval increases
- Method over estimates the results for all N and the converges to exact solution

d) Modified Trapezoidal Rule

- The error goes on decreasing as interval increases
- Method over estimates the results for all N and the converges to exact solution
- Comparison in Intervals considering only absolute values of error
 - a) N = 10
 - Error in Modified trapezoidal>Trapezoidal rule>Simpson 1/3 rule>Gauss Quadrature
 - b) N = 30
 - Error in Modified trapezoidal>Trapezoidal rule>Simpson 1/3 rule>Gauss Quadrature
 - c) N = 60
 - Error in Modified trapezoidal>Trapezoidal rule>Simpson 1/3 rule>Gauss Quadrature

2. Differentiation of $e^{-x} \sin(x)$

a. Differentiation scheme

Code	Output
clc clearvars a=0; b=3; fprintf('Differntiation schemes\n\n'); n=input('Number of intervals: '); h=(b-a)/n; x=a:h:b; y=exp(-x).*sin(x); dxf=zeros(1,n+1); dxb=dxf; dxc=dxf; for i= 1:n	a. For n = 10 Differntiation schemes Number of intervals: 10 Table = x Forward_diff Backward_diff Central_diff 0 0.72976 NA NA 0.3 0.30319 0.72976 0.51647 0.6 0.028649 0.30319 0.16592 0.9 -0.12584 0.028649 -0.048596 1.2 -0.19385 -0.12584 -0.15984 1.5 -0.20532 -0.19385 -0.19958 1.8 -0.18423 -0.20532 -0.19478 2.1 -0.1481 -0.18423 -0.16617 2.4 -0.10851 -0.1481 -0.12831 2.7 -0.072321 -0.10851 -0.090418 3 NA -0.072321 NA

b. For n = 30

Differntiation schemes

Number of intervals: 30

Table =

0	0.90333	NA	NA
0.1	0.72324	0.90333	0.81328
0.2	0.5627	0.72324	0.64297
0.3	0.42108	0.5627	0.49189
0.4	0.29751	0.42108	0.3593
0.5	0.19096	0.29751	0.24424
0.6	0.10027	0.19096	0.14561
0.7	0.024198	0.10027	0.062233
0.8	-0.038519	0.024198	-0.0071604
0.9	-0.089171	-0.038519	-0.063845
1	-0.12903	-0.089171	-0.1091
1.1	-0.15932	-0.12903	-0.14418
1.2	-0.18125	-0.15932	-0.17028
1.3	-0.19591	-0.18125	-0.18858
1.4	-0.20438	-0.19591	-0.20015
1.5	-0.20761	-0.20438	-0.20599
1.6	-0.2065	-0.20761	-0.20705
1.7	-0.20185	-0.2065	-0.20417
1.8	-0.19439	-0.20185	-0.19812
1.9	-0.18477	-0.19439	-0.18958
2	-0.17354	-0.18477	-0.17916
2.1	-0.16122	-0.17354	-0.16738
2.2	-0.1482	-0.16122	-0.15471
2.3	-0.13487	-0.1482	-0.14154

 2.4
 -0.12151
 -0.13487
 -0.12819

 2.5
 -0.10837
 -0.12151
 -0.11494

 2.6
 -0.095658
 -0.10837
 -0.10202

 2.7
 -0.083516
 -0.095658
 -0.089587

 2.8
 -0.072064
 -0.083516
 -0.07779

 2.9
 -0.061383
 -0.072064
 -0.066723

-0.061383

NA

3

NA

x Forward_diff Backward_diff Central_diff

Differntiation schemes

Number of intervals: 60

Table =

0	0.95083	NA	NA
0.05	0.85583	0.95083	0.90333
0.1	0.76579	0.85583	0.81081
0.15	0.68068	0.76579	0.72324
0.2	0.60043	0.68068	0.64056
0.25	0.52497	0.60043	0.5627
0.3	0.45418	0.52497	0.48958
0.35	0.38798	0.45418	0.42108
0.4	0.32623	0.38798	0.3571
0.45	0.2688	0.32623	0.29751
0.5	0.21556	0.2688	0.24218
0.55	0.16636	0.21556	0.19096
0.6	0.12105	0.16636	0.14371
0.65	0.079481	0.12105	0.10027
0.7	0.041486	0.079481	0.060483
0.75	0.0069104	0.041486	0.024198
0.8	-0.024408	0.0069104	-0.0087489
0.85	-0.05263	-0.024408	-0.038519
0.9	-0.077916	-0.05263	-0.065273
0.95	-0.10043	-0.077916	-0.089171
1	-0.12031	-0.10043	-0.11037
1.05	-0.13774	-0.12031	-0.12903
1.1	-0.15285	-0.13774	-0.1453
1.15	-0.1658	-0.15285	-0.15932
1.2	-0.17672	-0.1658	-0.17126
1.25	-0.18577	-0.17672	-0.18125
1.3	-0.19307	-0.18577	-0.18942
1.35	-0.19876	-0.19307	-0.19591
1.4	-0.20296	-0.19876	-0.20086
1.45	-0.2058	-0.20296	-0.20438
1.5	-0.20738	-0.2058	-0.20659
1.55	-0.20783	-0.20738	-0.20761
1.6	-0.20725	-0.20783	-0.20754
1.65	-0.20574	-0.20725	-0.2065
1.7	-0.20339	-0.20574	-0.20457
1.75	-0.2003	-0.20339	-0.20185
1.8	-0.19655	-0.2003	-0.19843
1.85	-0.19223	-0.19655	-0.19439
1.9	-0.1874	-0.19223	-0.18981
1.95	-0.18214	-0.1874	-0.18477
2	-0.17651	-0.18214	-0.17932
2.05	-0.17058	-0.17651	-0.17354
2.1	-0.1644	-0.17058	-0.16749
2.15	-0.15803	-0.1644	-0.16122
2.2	-0.15151	-0.15803	-0.15477
2.25	-0.1449	-0.15151	-0.1482

		2.3	-0.13822	-0.1449	-0.14156	
		2.35	-0.13152	-0.13822	-0.13487	
		2.4	-0.12483	-0.13152	-0.12818	
		2.45	-0.11819	-0.12483	-0.12151	
		2.5	-0.11161	-0.11819	-0.1149	
		2.55	-0.10513	-0.11161	-0.10837	
		2.6	-0.098772	-0.10513	-0.10195	
		2.65	-0.092545	-0.098772	-0.095658	
		2.7	-0.08647	-0.092545	-0.089508	
		2.75	-0.080562	-0.08647	-0.083516	
		2.8	-0.074834	-0.080562	-0.077698	
		2.85	-0.069294	-0.074834	-0.072064	
		2.9	-0.063952	-0.069294	-0.066623	
		2.95	-0.058814	-0.063952	-0.061383	
		3	NA	-0.058814	NA	

3) Estimation of distance travelled

a. Trapezoidal Method

Code	Output
clearvars clc fprintf('Trapezoidal Integration\n\n'); x=[0 1 2 2.5 3]; y=[0 10 12 13 14]; Table= table(x',y'); Table.Properties.VariableNames = {'Time','Velocity'} [n n]=size(y); %Trapezoidal Rule Formula sum1=0; sum2=0; for i=1:1:4 h=((x(i+1)-x(i))); sum1=sum2+((h/2)*(y(i)+y(i+1))); sum2=sum1;	Trapezoidal Integration Table = Time Velocity 0 0 1 10 2 12 2.5 13 3 14 Distance Travelled in 0-3 sec is 29.000000
<pre>fprintf('Distance Travelled in 0-3 sec is %f\n\n',sum2);</pre>	

b. Simpsons 1/3rd Rule

Code	Output
clearvars	Simpson 1/3 Rule Integration
clc	
fprintf('Simpson 1/3 Rule Integration\n\n');	
x=[0 1 2 2.5 3];	Table =
y=[0 10 12 13 14];	
Table= table(x',y');	Time Velocity
Table.Properties.VariableNames = {'Time','Velocity'}	
[n n]=size(y);	
%Simpson 1/3 Rule Formula	0 0
sum1=0;	1 10
sum2=0;	2 12
for i=1:2:4	2.5 13
h=((x(i+2)-x(i))/2);	3 14
sum1=sum2+((h/3)*(y(i)+4*y(i+1)+y(i+2)));	
sum2=sum1;	Distance Travelled in 0-3 sec is 30.333333
end	
fprintf('Distance Travelled in 0-3 sec is %f\n\n',sum2);	