

Advanced Thermal Control Technologies for "CEV" (New Name: ORION)

RION

NASA Glenn Research Center **Eric Golliher**

David Westheimer and Michael Ewert **NASA Johnson Space Center**

NASA Glenn Research Center Mojib Hasan

Molly Anderson and George Tuan NASA Johnson Space Center

NASA Glenn Research Center Duane Beach

Spacecraft Thermal Control Workshop Aerospace Corporation March 1, 2007 The opinion and statements made are my own and do not necessarily reflect NASA's position

Abstract

technology options for advanced human NASA is currently investigating several to NASA's Orion spacecraft and future some recent developments that relate spaceflight. This presentation covers Lunar missions.

Active Thermal Control Systems (ATCS)

- Control and maintain a suitable and comfortable environment for the crew and vehicle hardware
- Has been on every human rated space vehicle
- Historically have utilized single-phase (liquid), pumped fluid loops
- for the Crew Exploration Vehicle (CEV), Lunar Surface Technologies under development have been targeted Access Module (LSAM), and a Lunar Outpost (LO)
- Three main functions
- Heat Acquisition
- Heat Transfer
- Heat Rejection

Advanced Hardware Research and Development

- Support NASA's Exploration Systems Mission Directorate
- Collaborations
- Johnson Space Center, Glenn Research Center, Goddard Space Flight Center, and the Jet Propulsion Laboratory
- Industry Partners
- Hamilton Sundstrand
- Jacobs-Sverdrup
- Mainstream
- Oceaneering Space Systems
- Paragon Space Development Corporation
- Sundanzer, Inc.

Heat Acquisition

Collect waste heat from sources such as Crew life support, avionics, motors, and refrigeration systems

- Liquid cooled coldplates
- Used on every human rated vehicle that has flown
- More efficient to transfer heat directly into fluid loop with out heating cabin air
 - More important for CEV due to requirement to depressurize the cabin
- Provide cooling for electronics
- Potential Research Areas:
- Composite coldplates
 Integrating coldplates into vehicle structure,
- hermal interface materials

Heat Acquisition

Collect waste heat from sources such as Crew life support, avionics, motors, and refrigeration systems

- Air to liquid heat exchangers
- Control cabin air temperature and humidity
- Condensate removal and phase separation with either porous material (Apollo) or rotary separator (Shuttle, ISS)
- Liquid to liquid heat exchangers
- Transfers energy from one fluid loop to another without mixing of fluids
 - Internal to external fluid loops on Shuttle and ISS
- Scrutinized as a potential failure source
 A single failure could allow fluids to mix
- Potential Research Areas:
- Heat exchangers with two barriers to prevent fluids from mixing

Heat Transport

Transport heat from heat acquisition hardware to heat rejection hardware

Current state of the art includes:

- loops connected by a liquid to Shuttle and ISS use two fluid liquid heat exchanger
- Internal water loops
- External Freon or Ammonia loop
- Shuttle and ISS use Water-Freon or **Nater-Ammonia Interchanger**

Shuttle

• |SS

Thermal Control System Fluids

- Objective: Find a fluid that can flow inside the crew module as well as outside, eliminate the interchanger
- Technologies Under Development
- Propylene Glycol "PG" (DOWFROST ➤ "Inhibited")
- 60/40 mix of PG/water
- Very low toxicity, esp. DOWFROST HD
- Corrosion resistant to Aluminum, esp. DOWFROST
- However: relatively high viscosity at low temperatures
- Mainstream is developing other fluids under an SBIR contract with JSC
- Long Life Mechanical Fluid Pump for Space Applications, Shen, Drolen, Prabhu, Harper, Very Good Summary of non-PG Candidates:

Thermal Control System Fluids

- have common concerns: Stainless or Unmanned/Manned Spacecraft Aluminum? Or both?
- Materials/Fluids Compatibility
- Aluminum great heat transfer

- Stainless great corrosion resistance, lower conductivity
- Dowfrost/Stainless Steel: Good
- Dowfrost/Aluminum:

Not as good

Recent Activities

- Evaluations have been performed on aqueous Dowfrost HD (inhibited propylene-glycol) solutions with respect to the follow:
- Low temperature performance
- Compatibility with life support equipment
- Flammability (Apollo 1 fire: ethylene glycol
- High temperature decomposition by-products
- Materials compatibility
- Especially critical for aluminum tubing and heat exchangers
- Potential for microbial activity
- Potential Research Areas
- Identify or develop new fluids
- Methods to minimize corrosion in systems with multiple metals (aluminum, SS, nickel) and propylene glycol

Sparks Generated When Ethylene Glycol Drips on Silver Clad Wiring

Vapor Compression Cycle Heat Pump

- performance of 50°C lift to a heat sink above Objective: Demonstrate gravity independent 300 K
- Technologies Under Development
- Vapor compression heat pump system
- 15 kW capacity
- COP ~3.0
- Can operate in low to microgravity environments
- Applicable to Lunar Lander and Lunar Outpost
- Hot environments during Lunar day

Vapor Compression Cycle Heat Pump

Recent Activities

Evaluating Fairchild 54 mm Helirotor Compressor for performance in different gravity environments

outlet inlet

- Trading compact plate-fin versus tube-intube heat exchangers
- Performed tilt tests on plate fin heat exchangers
- Performance decreased as a function of tilt angle

- Evaporators, condensers, and two-phase mixing devices for use in low to microgravity environments
 - Analysis and testing techniques to evaluate system components and complete systems for performance in different gravity environments
- Compressors that can operate in different gravity environments or orientations
 Lubrication and bearing design
 - Effects of gravity on system performance Start up and shutdown
- System oil management

Tube-in-Tube HX

Vapor Compression Cycle Heat Pump

- Sinda/Fluint model
- Compressor
- Evaporation
- Condensation

Heat Rejection

Radiators use heat transfer via radiation to reject energy to space

Current state of the art:

- Aluminum radiators
- Shuttle and ISS use deployable radiators
- Gemini and Apollo used body mounted radiators
- Silver Teflon or Z-93 coating

Advanced Radiator Developments

- Objectives: Decrease radiator mass and operate during mission transients
- Technologies Under Development
- Carbon composite radiators
- Coatings and coating application for composite radiators
- Integrating flow channels into composite panels
- MMOD impacts on composite radiators
- Structurally Integrated Radiator Paragon Space Development Corp
- Stagnation flow radiator designs
- Applicable to all spacecraft

Shuttle Radiator MMOD Damage

JPL/Cal Tech Hypervelocity Test Chamber

Tube Bonding Test Coupon

Advanced Radiator Developments

Recent Activities

- Environmental testing numerous coating coupons
- Application on carbon composite and aluminum substrates
- Coatings include Lithium based white paints, OSRs, Electrochromic thin films, Z93, Z93 with different overcoats, Silver Teflon, and S13
- Environments include thermal cycling, combined UV and Solar Wind, and launch pad weathering
- Analysis and testing of stagnation radiator concept
- Testing of tube to panel bond coupons

Stagnation Radiator Manifold

- Design and analysis of composite, sandwich panel radiator
- Thermal and structural testing for Structural Radiators

Potential Research Areas

- Applying coatings to composites
- Integrating flow channels with composites
- Coating degradation in anticipated environments, including Lunar dust
- Flow control methods for multiple radiator systems that use propylene glycol based fluids

 Low temperature viscosity driven stagnation

Heat Rejection

Evaporative heat rejection transfers energy into a fluid, causing the fluid to evaporate and the vapor is vented to space

Current state of the art:

Sublimators

- Used on Extravehicular Mobility Unit (EMU) and Apollo Lunar Module
- Self regulating
- Sensitive to contamination of porous sublimation region

Fluid Evaporators

- Previous designs have used water, ammonia, and other fluids
- Shuttle Flash Evaporator System (FES) sprays water onto a heated surface
- Shuttle Ammonia boiler is used below 120,000 ft during re-entry and post landing

Apollo LM Sublimator

Shuttle FES

Contaminant Insensitive Sublimator

- Objective: Improve sublimator reliability by decreasing sensitivity to contamination in feedwater
- Technology Under Development
- Developing design of a sublimator with a two stage feedwater distribution
- Small pore sized material controls the water distribution
- Freezing and sublimation occur in material with larger pore size
- Applicable to CEV and Lunar Lander

Contaminant Insensitive Sublimator

- Fabricated and tested mini-sublimator
- representative scale sublimator engineering unit Oceaneering Space Systems fabricated a
- Tested at JSC
- Research Areas:
- Flow and phase change in porous media
- Multiple pore sizes
- Flow distribution between porous disks and porous plate
 - Evaporation, freezing, and sublimation

Sublimator Testing

Multi-environment Evaporative Heat Sink

- Objective: Develop evaporative heat sinks that can operate both in space vacuum and in the Earth's atmosphere post-landing
- Technology Under Development
- Multi-Fluid Evaporator uses different fluids for evaporant during different mission phases
- Flow boiling device
- Under development by Hamilton Sundstrand
- Applicable to CEV and Lunar Lander

Multi-Fluid Evaporator Concept

Multi-environment Evaporative Heat Sink

- Recent Activities
- Completed flow testing to select fin materials
- Completed testing of engineering unit to map thermal performance
- Fabricating a prototype
- Potential Research Areas

 Evaporating flow through heat transfer fins and porous foams
- Heat exchanger manufacturing with composites

MFE Engineering Unit

Compact Flash Evaporator System

- Objective: Provide the maximum heat flux per mass for an evaporative heat sink by spraying evaporant onto a heated surface,
- Technology Under Development
- Compact Flash Evaporator System (CFES)
- Sprays onto a flat micro channel heat exchanger
- Utilizes both sides
- Can spray multiple evaporants for both in space and post landing cooling

Compact Flash Evaporator Svstem

Recent Activities

- Single nozzle and nozzle array spray tests in vaccum
- Single nozzle R 134a spray tests
- CFES design
- Potential Research Areas
- Spray optimization over a rectangular surface
- Control methods for evaporant
- Correlations for heat transfer of sprays in reduced gravity

Single Nozzle Test

Multi-nozzle Array Testing

Forward Work

- Complete fabrication of prototype technologies under development that are applicable to CEV
- Control System made up of prototype technologies Thermal vacuum test of integrated Active Thermal
- Evaluate technologies needed for a Lunar lander and Lunar outpost
- Dust
- Hot Lunar surface and environments
- Longer duration technologies
- Partial gravity
- Evaluate secondary system components
- valves, instrumentation, fluid connecters and Quick Disconnects