T.D. VIII - Intégration

Solution de l'exercice 1.

1. a) 0

b)

2. a) On dérive par rapport à y, puis on évalue en y = 1. On obtient k = f'(1).

- **b)** $x \mapsto \lambda x + 4x \ln x$.
- **c**) $f(1) = \lambda = 0$.
- **d)** Non.
- **3. a)** On intègre par rapport à y, sur \mathbb{R}_+^* , puis sur \mathbb{R}_-^* et enfin en 0.

b)

4.

I - Primitives & Intégrales

II - Suites d'intégrales

III - Calculs d'intégrales généralisées

IV - Intégrations par parties - Changement de variable

Solution de l'exercice 20. f est continue sur]0,1[.

 $f(x) \to 0$ lorsque x tend vers 0, donc elle est prolongeable par continuité en 0.

Sous réserve d'existence, $\int_0^1 \frac{x-1}{\ln(x)} dx = \int_0^1 \frac{u}{\ln(1-u)} du$. Or, $g(u) \to 1$ lorsque $u \to 0$ donc g est prolongeable par continuité en 1.

En effectuant le changement de variables $\varphi(u) = e^{-u}$, on obtient

$$I = \int_0^{+\infty} \frac{e^{-u} - e^{-2u}}{u} \, \mathrm{d}u.$$

Or,
$$\int_{\varepsilon}^{+\infty} \frac{e^{-2u}}{u} du = \int_{2\varepsilon}^{+\infty} \frac{e^{-u}}{u} du$$
. Ainsi,

$$\int_{\varepsilon}^{+\infty} \frac{e^{-u} - e^{-2u}}{u} du = \int_{\varepsilon}^{2\varepsilon} \frac{e^{-t}}{t} dt$$

Or, pour tout ε , il existe ε_0 et M_0 tel que pour tout $\varepsilon \leqslant \varepsilon_0$ et tout $M \geqslant M_0$, $\left| \int_{\varepsilon}^{2\varepsilon} \frac{e^{-t} - 1}{t} dt \right| \leqslant \varepsilon \ln(2)$ et $\left| \int_{M}^{2M} \frac{e^{-t}}{t} \right| \leqslant \varepsilon \ln(2)$. Ainsi,

$$I = \ln(2)$$
.

V - Calculs d'équivalents