Notes for lecture 6

- 1. Date: May 19th.
- 2. Reading: the lecture material is based on Sections 2.7 of Chapter 2 of the main textbook (refer to Chapter 2.7.pdf file).
- 3. The lecture (see LectureNotes5.pdf file) generalizes polar coordinates to 3D space and considers the following coordinates
 - a. Cylindrical coordinates.
 - i. This is a straightforward generalization. The position of a particle is measured by r and θ (as in polar coordinates) together with height z.
 - ii. Velocity and acceleration vectors can be represented with respect to some moving (changing) coordinate system (e_r, e_θ, e_z) .
 - b. Spherical coordinates.
 - i. The position of a particle is now measured not by x, y, z, but by the radial distance r and two angles θ and φ .
 - ii. Velocity and acceleration vectors can be represented with respect to some moving (changing) coordinate system (e_r, e_θ, e_ϕ) .
- 4. Ch2D.swf file in the Resources (same as before) is provided
 - a. When playing the file please do not push Main Menu button, when returning please use Chapter Menu button.
 - b. The content of Ch2D.swf file relevant to this lecture (yellow text corresponding to Coordinate Systems-> Three-dimensional)
- 5. Additional Internet resources.
 - a. Cylindrical coordinates
 https://en.wikipedia.org/wiki/Cylindrical coordinate system
 - b. Spherical coordinates https://en.wikipedia.org/wiki/Spherical coordinate system
 - c. Please pay attention to the fact that the notation in the Internet resources can be different from the one we use in this class!
- 6. Additional Internet resources (curves). If want to know more about the curves we used in the illustrative examples
 - a. Helix https://en.wikipedia.org/wiki/Helix
 - b. Conical spiral https://en.wikipedia.org/wiki/Conical spiral
- 7. Loxodrome https://en.wikipedia.org/wiki/Rhumb line
- 8. The deadline for submitting assignment (see Quiz6.pdf) is May 26.