MODULE THREE: DETERMINING CAUSE AND MAKING RELIABLE FORECASTS

TOPIC 9: INTRODUCTION TO MULTIPLE REGRESSION

Learning Objectives

At the completion of this topic, you should be able to:

- construct a multiple regression model and analyse model output
- differentiate between independent variables and decide which ones to include in the regression model, and determine which independent variables are more important in predicting a dependent variable
- incorporate categorical variables in regression model
- detect collinearity

+The Multiple Regression Model

Idea: Examine the linear relationship between 1 dependent (Y) and 2 or more independent variables (X_i)

Multiple Regression Model with k Independent Variables:

+Multiple Regression Equation

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + ... + \beta_{k}X_{ki} + \epsilon_{i}$$

The <u>estimated</u> Multiple regression equation with **k** independent variables:

In this topic we will use Excel to obtain the regression slope coefficients and other regression summary measures

+Pie Sales Example:

Week	Pie Sales (Y)	Price (\$) (X ₁)	Advertising (\$100s) (X ₂)
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7

A distributor of frozen dessert pies wants to evaluate factors thought to influence demand

Dependent variable:

Pie sales (units per week)

Independent variables:

Advertising (\$100s), Price (in \$)

Data are collected for 15 weeks

Multiple regression equation:

Sales =
$$b_0 + b_1$$
 (Price \$) + b_2 (Advertising \$100)

+Multiple Regression Output

Regression	Statistics						
Multiple R	0.72213						
R Square	0.52148	Salar - 2	06.526 24	075 (Dri ac	N + 74 121(A dv	. outidia	~)
Adjusted R Square	0.44172	Sales = 3	00.320 - 24.	.9/3(Pri ce	(e) + 74.131(Adv)	erusing	<u>g)</u>
Standard Error	47.46341		1				
Observations	15						
ANOVA	df	ss	MS	F	Significance F		
Regression	2	29460.027	14730.01	6.53861	0.01201		
Residual	12	27033.306	2252.776				
Total	14/	56493.333					
		Standard					
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper	95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.4	16404
Price (X ₁)	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.3	37392
Advertising (X ₂)	74.13096	25.96732	2.85478	0.01449	17.55303	130.7	70888

+The Multiple Regression Equation

Where:

- Sales is in number of pies per week (Y)
- Price is in (X_1)
- Advertising is in \$100s (X₂)

b₁ = **-24.975**: sales will decrease, on average, by 24.975 pies per week for each \$1 increase in selling price, net of the effects of changes due to advertising

$$Y = b_{01} + b_{11} X_1$$

$$Y = b_{02} + b_{12} X_2$$

$$Y = b_0 + b_1 X_1 + b_2 X_2$$

b₂ = **74.131**: sales will increase, on average, by 74.131 pies per week for each \$100 increase in advertising, net of the effects of changes due to price

+Using The Equation to Make Predictions

Predict sales for a week in which the selling price is \$5.50 and advertising is \$350:

```
Sales = 306.526 - 24.975(Price) + 74.131(Advertising)
= 306.526 - 24.975 (5.50) + 74.131 (3.5)
= 428.62
```

Note: Advertising is in \$100s, so \$350 means that $X_2 = 3.5$

Predicted sales is 428.62 pies

Week	Pie Sales (Y)	Price (\$) (X ₁)	Advertising (\$100s) (X ₂)
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7

+Coefficient of MultipleDetermination (R Square/r²)

Reports the proportion of total variation in Y explained by all X variables taken together

$$r^2 = \frac{SSR}{SST} = \frac{regression sum of squares}{total sum of squares}$$

+Coefficient of Multiple Determination (Cont)

Regression S	Statistics									
Multiple R	0.72213		SSR 2946	SO 0						
R Square	0.52148 —		=	=.521	148					
Adjusted R Square	0.44172		SST 56493.3							
Standard Error	47.46341	52 1% of t	he variati	on in nie	sales is expla	ained				
Observations	15			-		anrea				
		by the var	flation in p	rice and	advertising					
ANOVA	df	ss	MS	F	Significance F					
Regression	2	29460.027	14730.01	6.53861	0.01201					
Residual	12	27033.306	2252.776							
Total	14	56493.333								
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%				
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404				
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392				
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888				

+Adjusted r²

r² <u>never decreases</u> when a new X variable is added to the model - this can be a disadvantage when comparing models

What is the <u>net effect</u> of adding a new variable?

- we <u>lose a degree of freedom</u> when a new X variable is added
- did the <u>new X variable add enough explanatory power</u> to offset the loss of one degree of freedom?

SE of the Estimate =
$$\sqrt{\frac{26,993.33}{11}}$$
 = 49.54

ANOVA	df	ss	MS	F	Significance F
Regression	2 +1 =3	29460.027	29,500 730.01	6.53861	0.01201
Residual	12 -1 =1	27033.306	26,993.33		r ² =29,500/56,493.33 = 52.2
Total	14	56493.333			

$$r^2 = \frac{\text{SSR}}{\text{SST}} = \frac{29460.0}{56493.3} = .52148$$
 Standard Error of the Estimate = $\sqrt{\frac{SSE}{Residual - DF}} = \sqrt{\frac{27033.306}{12}} = 47.46$

+Adjusted r² (Cont)

Shows the proportion of variation in Y explained by all X variables <u>adjusted for the number of X variables used</u>

$$r_{adj}^2 = 1 - \left[(1 - r^2) \left(\frac{n-1}{n-k-1} \right) \right]$$

(where: n = sample size, k = number of independent variables)

- <u>Penalises excessive use</u> of unimportant independent variables
- Smaller than r²
- Useful in <u>comparing among models</u>

+Adjusted r² (Cont)

Regression Statistics								
Multiple R	0.72213							
R Square	0.52148							
Adjusted R Square	0.44172							
Standard Error	47.46341							
Observations	15							

 $r_{adj}^2 = .44172$

44.2% of the variation in pie sales is explained by the variation in price and advertising, taking into account the sample size and number of independent variables

ANOVA	df	SS	MS	F	Significance F
Regression	2	29460.027	14730.01	6.53861	0.01201
Residual	12	27033.306	2252.776		
Total	14	56493.333			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

*Is the Model Significant?

F Test for Overall Significance of the Model

Shows if there is a linear relationship between all of the X variables considered together and Y

Hypotheses:

 H_0 : $\beta_1 = \beta_2 = ... = \beta_k = 0$ (no linear relationship)

 H_1 : at least one $\beta_i \neq 0$ (at least one independent variable affects Y)

+F Test for Overall Significance

ANOVA	df	ss	MS	F	Significance F
Regression	2	29460.027	14730.01	6.53861	0.01201
Residual	12	27033.306	2252.776		t
Total	14	56493.333			

Test statistic

where F has:

(numerator) = k, and

															0			FLNIL, df	$_{i}$, m_{2}
									- N	umerator,	ett _a								
Denominator df ₂	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	- 00
1	161,40	199.50	215.70	224.60	230.20	234.00	236.80	238.90	240.50	241.90	243.90	245.90	248.00	249.10	250.10	251.10	252.20	253.30	254.3
2	18.51	19.00	19.16	19.25	19.30	19,33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8,89	8.85	8.81	8.79	B.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7,71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	6,61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3,68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.22
B	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.5
11	4.84	3,98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	4.75	3,29	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	4.67	3,81	3,41	3,18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	4.60	3.74	3,34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	213
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
*0	4.44	9.00	9.40	0.00	0.77	0.00	0.00	0.00	0.40	10.00	2.24	15 mm	0.40	0.45	244	0.00	0.00	4 400	4 00

(denominator) = (n - k - 1) degrees of freedom

+F Test for Overall Significance (Cont)

Regression S	Statistics		10D 4	4700.0		
Multiple R	0.72213		= _	4730.0	= 6.5386	
R Square	0.52148	_ N	MSE 2	252.8	0.0000	
Adjusted R Square	0.44172	_				
Standard Error	47.46341	With 2 an	d 12		P-valu	
Observations	15	degrees o	of freedom	1 /	the F	Test
ANOVA	df	SS	MS	F	Significance F	
Regression	2 /	29460.027	14730.01	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				_
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

+F Test for Overall Significance (Cont)

 H_0 : $\beta_1 = \beta_2 = 0$

 H_1 : β_1 and β_2 not both zero

$$\alpha$$
 = .05

$$df_1 = 2$$
 $df_2 = 12$

Critical Value: $F_{\alpha} = 3.885$ (<u>Table E.5</u>)

Test Statistic:

$$F = \frac{MSR}{MSE} = 6.5386$$

Decision:

Since F test statistic is in the rejection region (p-value < .05), reject H_0

Conclusion:

There is evidence that at least one independent variable affects Y

+Are Individual Variables Significant?

Shows if there is a linear relationship between the variable X_i and Y

 $Y_{i} = \beta_{0} + \frac{\beta_{1}}{\beta_{1}} X_{1i} + \frac{\beta_{2}}{\beta_{2}} X_{2i} + ... + \frac{\beta_{k}}{\beta_{k}} X_{ki} + \varepsilon_{i}$ Hypotheses:

 H_0 : $\beta_j = 0$ (no linear relationship)

 H_1 : $\beta_i \neq 0$ (linear relationship does exist)

Use t tests of <u>individual</u> variable slopes (between X_j and Y)

$$\hat{Y}_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + ... + b_k X_{ki}$$

+Are Individual Variables Significant? (Cont)

Regression S	tatistics								
Multiple R	0.72213								
R Square	0.52148	t-stat for Price	is: t	= -2.306, v	with p-value .039	98			
Adjusted R Square	0.44172	t-stat for Adve	t-stat for Advertising is: t = 2.855, with p-value .0145						
Standard Error	47.46341								
Observations	15								
ANOVA	df	SS	MS	F	Significance F				
Regression	2	29460.027	14730.01	6.53861	0.01201				
Residual	12	27033.306	2252.776						
Total	14	56493.333							
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%			
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404			
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392			
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888			

+Are Individual Variables Significant?

(Cont)

$$H_0$$
: $\beta_i = 0$
 H_1 : $\beta_i \neq 0$

d.f. = 15-2-1 = 12

$$\alpha$$
 = .05 $t_{\alpha/2}$ = 2.1788

From Excel output:

	Coefficients	Standard Error	t Stat	P-value
Price	-24.97509	10.83213	-2.30565	0.03979
Advertising	74.13096	25.96732	2.85478	0.01449

Decision:

The test statistic for each variable falls in the rejection region (p-values < .05)

Conclusion:

Reject H₀ for each variable.

There is evidence that both Price and Advertising affect pie sales at $\alpha = .05$

+Confidence Interval Estimate for the

Slope

Confidence interval for the population slope β_i

$$b_j \pm t_{n-k-1}S_{b_j}$$
 Where t has: $(n-k-1)$ d.f.

	Coefficients	Standard Error
Intercept	306.52619	114.25389
Price	-24.97509	10.83213
Advertising	74.13096	25.96732

Here, t has: (15 - 2 - 1) = 12 d.f. t = 2.1788

Example: Form a 95% confidence interval for the effect of changes in price (X_1) on pie sales: -24.975 \pm (2.1788)(10.832)

So the interval is (-48.576, -1.374)

(This interval does not contain zero, so price has a significant effect on sales)

21

+Confidence Interval Estimate for the Slope (Cont)

Confidence interval for the population slope β_i

	Coefficients		Standard Error		Upper 95%	
Intercept	306.52619	114.25389	•••	57.58835	555.46404	
Price	-24.97509	10.83213	•••	-48.57626	-1.37392	
Advertising	74.13096	25.96732	•••	17.55303	130.70888	

Example: Excel output also reports these interval endpoints:

With 95% confidence, weekly sales are estimated to be reduced by between 1.37 to 48.58 pies on average for each increase of \$1 in the selling price (assuming no change in the Advertising)

Using Dummy Variables

Examples: Gender/Department Productivity/Job Satisfaction
Training course Salesperson's performance

A dummy variable is a categorical explanatory variable with two levels:

- yes or no, on or off, male or other
- coded as 0 or 1

Regression intercepts are different if the variable is significant

Assumes <u>equal slopes</u> for other variables

If more than two levels, the <u>number of dummy variables</u> <u>needed is number of levels minus 1</u>

e.g. Department: Admin, Production, Distribution > 3 levels > 2 Dummy variables

+Dummy Variable Example (with 2 Levels):

$$\mathbf{\hat{Y}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{X}_1 + \mathbf{b}_2 \mathbf{X}_2$$

Let: Y = pie sales

 X_1 = price (Numerical variable)

X₂ = holiday (categorical variable)

 $(X_2 = 1 \text{ if a holiday occurred during the week})$

 $(X_2 = 0 \text{ if there was no holiday that week})$

+Dummy Variable Example (with 2 Levels):

*Interpreting the Dummy Variable Coefficient - with 2 Levels

$$\widehat{\text{Sales}} = 300 - 30(\text{Price}) + 15 \text{ (Holiday)}$$

Sales: number of pies sold per week

Price: pie price in \$

Holiday: $\begin{cases} 1 & \text{If a holiday occurred during the week} \\ 0 & \text{If no holiday occurred} \end{cases}$

 b_2 = 15: on average, sales were 15 pies greater in weeks with a holiday than in weeks without a holiday, given the same price

+Dummy Variable Models - more than 2 Levels

The number of dummy variables is one less than the number of levels

Example:

Y = apartment price (\$000)

 X_1 = size of apartment in hundreds of square metres

If number of bedrooms is incorporated:

Bedrooms = one, two, three (Number of levels =3)

Three levels, so two dummy variables are needed

+Dummy Variable Models - more than 2 Levels (Cont)

Example:

Let '1-bedroom' be the default category, and let X_2 and X_3 be used for the other two categories

Y = apartment price

 X_1 = size in hundreds of square metres

 $X_2 = 2$ bedroom, 0 otherwise

 $X_3 = 3$ bedroom, 0 otherwise

Apartment price	Apartment size	Number of Bedrooms	X2	ХЗ
XXXXX	XXX	1	0	0
XXXXX	XXX	2	1	0
		3	0	1

The estimated multiple regression equation is:

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$$

+Dummy Variable Models - more than 2 Levels (Cont)Dummy Variables

Consider the regression equation:

$$\hat{Y} = 20.43 + 0.045X_1 + 18.84X_2 + 33.53X_3$$

For 1-bedroom: $X_2 = X_3 = 0$

$$\hat{Y} = 20.43 + 0.045X_{1}$$

For 2-bedroom: $X_2 = 1$; $X_3 = 0$

$$\hat{Y} = 20.43 + 0.045X_1 + 18.84$$

For 3-bedroom: $X_2 = 0$; $X_3 = 1$

$$\hat{\mathbf{Y}} = 20.43 + 0.045 \mathbf{X}_1 + 33.53$$

With the same size in hundreds of square meters, a 2-bedroom will have an estimated average price of **18.84** thousand dollars more than a 1-bedroom apartment

With the same size in hundreds of square meters, a 3-bedroom will have an estimated average price of **33.53** thousand dollars more than a 1-bedroom apartment

+Collinearity (Multi-collinearity)

High <u>correlation</u> exists <u>among two or more independent variables</u>

Example: IVs – Height, Weight; DV – Pulse rate

Example: IVs – Income, Tax; DV – Amount spent on groceries

This means the correlated variables contribute <u>redundant</u> <u>information</u> to the multiple regression model

Including two highly correlated independent variables can <u>adversely</u> <u>affect</u> the regression results

No new information provided:

- Can lead to unstable coefficients (large standard error and low t-values)
- Coefficient signs may not match prior expectations

+Some Indications of Strong Collinearity

- <u>Incorrect signs</u> on the coefficients
- <u>Large change</u> in the value of a <u>previous coefficient</u> when a new variable is added to the model
- A previously significant variable becomes non-significant when a new independent variable is added
- The estimate of the <u>standard error of the model increases</u> when <u>a variable is added</u> to the model

To detect Collinearity – check correlations between IVs

check the coefficients and/or p-values

*Measuring Collinearity Variance **Inflationary Factor**

The variance inflationary factor VIF_i can be used to measure collinearity:

VIF
$$_{j} = \frac{1}{1 - R_{j}^{2}}$$

VIF $_{j} = \frac{1}{1 - R_{j}^{2}}$ Where: R_{j}^{2} is the coefficient of multiple determination of independent variable X_{j} DV with all other X variables IVs

If: $VIF_i = 1$, X_i is uncorrelated with the other Xs

 X_1 and X_2 ; X_1 and X_3 ; X_1 and X_2 ...

If: $VIF_i > 10$, X_i is highly correlated with the other Xs (conservative estimate reduces this to $VIF_i > 5$)