Consider the braid ${}^p\!B$ in B_{pk} . Not bad ... Let's try $\Phi^L_{{}^p\!\sigma_n}$ or $\Phi^L_{{}^p\!B}$. And how about $\Phi_{{}^p\!\sigma_n^{\pm 1}}$ or ${}^2\!B$, ${}^2\!\sigma_n$, or even $\Phi_{{}^2\!\sigma_n}$ Closure?? ${}^p\!\widehat{BB'}$ vs. $\widehat{\alpha_p\gamma}$. what about $\operatorname{ar}(\widehat{\alpha})$ vs. $\operatorname{ar}(\widehat{\alpha})$ Just say that $\alpha_p \in B_{pk}$ is the p-copy of $\alpha \in B_k$ $\Phi^L_{\alpha_p}$ and $\Phi^L_{\alpha_p\beta}$ and $\widehat{\alpha_p\gamma}$ (or $\widehat{\alpha_p\beta}$)