Kraftfahrzeugtechnik

Dr.-Ing. Klaus Herzog

Inhalt der Vorlesungsreihe Kraftfahrzeugtechnik

- Räder und Reifen
- Fahrwiderstände
- Fahrwerke
- Bremsen
- Fahrsicherheitssysteme
- Kfz-Elektronik

Kraftfahrzeugtechnik

1 Räder und Reifen

Dr.-Ing. Klaus Herzog

1 Räder und Reifen

- Bauarten, Abmessungen und Kennzeichnungen von Reifen
- Bauarten, Abmessungen und Kennzeichnungen von Felgen
- Kraftübertragung

1.1 Reifen

- Bauarten
- Abmessungen
- Kennzeichnungen
- Pannensichere Reifensysteme

Anforderungen an einen Kfz-Reifen

- Übertragung von Brems- und Antriebskräften
- Übertragung von Seitenführungskräften
- Übertragung von Vertikalkräften
- geringes Gewicht (ungefederte Masse)
- lange Lebensdauer
- gute Notlaufeigenschaften
- niedriger Rollwiderstand
- geringe Geräuschemissionen

Aufbau eines Pkw-Reifens

Aufbau

1 Gewebeunterbau/Karkasse Mehrere Lagen Cordgewebe

2 Gürtel (Stahlcord) Mehrere Lagen Stahl- oder Textilcord

3 Wulstkern Mehrere in Gummi eingebettete Stahldrähte

4 Seitenwand mit Scheuerleiste Schütz das Cordgewebe und leitet Wärme ab

5 Lauffläche Bewirkt den Kraftschluss mit der Straße

6 Innere Gummischicht Dient der Abdichtung bei schlauchlosen Reifen

Materialien zur Reifenherstellung

Quelle: Bridgestone

Herstellung eines Pkw-Reifens

Quelle: Bridgestone

Diagonalreifen

- Die Kordlagen erstrecken sich von Wulst zu Wulst
- Abwechselnd in Winkeln << 90° zur Mittellinie der Lauffläche
- Anwendung teilweise bei Motorrädern und Nfz
- Starke Federung und Dämpfung durch die Konstruktion
- Bezeichnung Beispielsweise: 3.25 19 (Reifenbreite – Felgendurchmesser in Zoll)

Radialreifen (Gürtelreifen)

- Kordlagen erstrecken sich im Winkel von ca. 90° zur Mittellinie von Wulst zu Wulst
- Karkasse ist durch einen umlaufenden undehnbaren Gürtel verstärkt
- Kennzeichnung mittels "R" in der Größenbezeichnung
- Vorteile gegenüber Diagonalbereifung
 - Niedriger Rollwiderstand
 - Geringer Verschleiß (höhere Laufleistung)
 - Bessere Bodenhaftung

Bias-Belted-Reifen

- Gürtelreifen mit Diagonalkarkasse
- Bias = schräg; belted = gegürtelt
- Einsatz teilweise bei Motorrädern
- Angabe des Buchstaben "B" vor dem Felgendurchmesser oder "bias-belted"
- Entwicklung aus den 80ern zur Reduzierung des fliehkraftbedingten Durchmesserwachstums (ungegürtelt bis zu 30 mm, gegürtelt bis zu 6mm)
- Bezeichnungsbeispiel: 140/90 B 17

Reifenabmessungen

Reifenhauptmaße nach DIN, ETRTO (European Tire and Rim Technical Organisation), und WdK (Wirtschaftsverband der deutschen Kautschukindustrie

A: Betriebsbreite Breite des Reifens von Seitenwand zu Seitenwand

B: *Nennbreite* auf Messfelge bei Luftdruck von 2,5 bar ohne Scheuerleisten und Beschriftung

Höhen-Breitenverhältnis von Reifen

Querschnittsverhältnis

Trag- und Geschwindigkeitsindex

Tragindex (Load Index)

li	kg	li	kg	li	kg	li	kg	li	kg	li	kg	li	kg
50	190	61	257	72	355	83	487	94	670	105	925	116	1250
51	195	62	265	73	365	84	500	95	690	106	950	117	1285
52	200	63	272	74	375	85	515	96	710	107	975	118	1320
53	206	64	280	75	387	86	530	97	730	108	1000	119	1360
54	212	65	290	76	400	87	545	98	750	109	1030	120	1400
55	218	66	300	77	412	88	560	99	775	110	1060		
56	224	67	307	78	425	89	580	100	800	111	1090		
57	230	68	315	79	437	90	600	101	825	112	1120		
58	236	69	325	80	450	91	615	102	850	113	1150		
59	243	70	335	81	462	92	630	103	875	114	1180		
60	250	71	345	82	475	93	650	104	900	115	1215		

Geschwindigkeitsindex (Speed Index)

Geschwindigkeitsindex (si)	N	Р	Q	S	Т	U	Н	V	W	Υ	ZR
Höchstgeschwindigkeit	140	150	160	180	190	200	210	240	270	300	>240

Reifenkennzeichnungen

Weitere Reifenkennzeichnungen

•TWI "tread wear indicator"

Profilabnutzungsanzeige

•DA Reifen mit Nebenfehlern (2. Wahl)

•DOT "Department of Transportation" US-

Kennzeichnung

•DOT...159 Fertigungswoche und -Jahr

•TUBELESS Kennzeichnung für "Schlauchlose" Bereifung

•REGROOVABLE "Nachschneidbares"- Reifenprofil

•REINFORCED verstärkter Reifen

•PR - "Ply Rating" Ausdruck für höhere Tragfähigkeit

•ROTATION Laufrichtungsbindung

•RETREATED Runderneuert

•M&S Winterreifen

•E 2 0291614 Land nach Homologation ECE R30

Reifenbezeichnung

Beispiel einer Nutzfahrzeugreifen-Bezeichnung

Kennzeichen des Herstellungsdatums

Pannensichere Reifensysteme

- Run Flat Tires (Reifen, die bei Druckverlust noch mit geringer Geschwindigkeit weiter gefahren werden können)
- Selbstabdichtende Reifen
- Reifen mit Stützring

Run Flat Tires

Kennzeichnungen verschiedener "Run Flat" Systeme

RFT - Run-Flat-Tires

ROF - Run (on) Flat Tires

RSC - Runflat System

Component

EMT - Extended Mobility

Tires

SST - Self Supporting Tires

ZP - Zero Pressure

Run Flat Tires

Vorteile

- Kein Abspringen von der Felge möglich
- Weiterfahrt möglich (max. 80km/h)
- Kein Notrad erforderlich (Gewichts- und Platzersparnis)

Nachteile

- Höhere Kosten
- Höheres Reifengewicht (höhere ungefederte Masse)
- Aufwendige Montage, spezielle Felge erforderlich
- Reifendruckkontrollsystem erforderlich
- Komforteinbußen
- Keine Reparatur möglich

Selbstabdichtende Reifen

KLEBER – Protectis

Ein Standard-Reifen, in den der Hersteller ein selbstabdichtendes Polymer einbringt, dass unmittelbar und anhaltend Schäden bis zu einem Durchmesser von 4,7mm versiegelt

Quelle: Kleber

Reifen mit Stützring

Michelin PAX

Ein Kunststoff-Stützring trägt bei Druckverlust die Last und verhindert ein Plattrollen des Reifens und damit weitere Beschädigungen

Quelle: Michelin

Reifen mit Stützring

ContiSupportRing

- 1 Edelstahlring
- 2 Flexible Auflage

Montage auf Standardfelge mit Standardreifen

Quelle: Conti

1.2 Felgen

- Bauarten
- Abmessungen

Anforderungen an eine Kfz-Felge

- Übertragung von Kräften und Momenten vom Reifen auf die Radnabe
- geringes Gewicht (ungefederte Masse)
- hohe Steifigkeit
- niedrige Herstellungskosten

Felgenbauarten

Stahlscheibenräder

- Herstellung durch Tiefziehen
- Felge und Radschüssel werden verschweißt

Leichtmetallräder

- Gegossen, geschmiedet oder aus mehreren Teilen verschraubt
- Werkstoffe: AL-Legierungen, für Rennsport auch MG-Legierungen
- Geringe Masse
- Gute Bremsenkühlung möglich

Drahtspeichenräder

- Einsatz bei Motorrädern oder Klassikern
- Geringe Masse
- Hohe Elastizität

Felgen

Felgenbezeichnung

Beispiel: 5 1/2 J X 14 H2 B ET 45

```
5 ½ Maulweite in Zoll
```

J Hornausführung, hier: Typ "J"

X Tiefbett

14 Durchmesser in Zoll

H2 Doppelhump

B Asymmetrisches Tiefbett

ET 45 Einpresstiefe in mm

Humpausführungen

1.3 Kraftübertragung Fahrbahn-Reifen

- Schlupf
- Längskräfte
- Schräglaufwinkel
- Seitenkräfte
- Überlagerung von Längs- und Seitenkräften
- Seitenkraftübertragung durch Sturz

Schlupfdefinition

Antriebsschlupf
$$s_A = \frac{\omega_R \cdot r_{dyn} - v_F}{\omega_R \cdot r_{dyn}}$$

 ω_R = Radwinkelgeschwindigkeit

r_{dyn} = dynamischer Rollradius

v_F = Fahrzeuggeschwindigkeit

$$Bremsschlupf \ s_B = \frac{v_F - \omega_R \cdot r_{dyn}}{v_F}$$

Übungsaufgabe

Ein Fahrzeug bewegt sich mit 80 km/h. Die Raddrehzahlen aller Räder sind gleich und betragen 540 U/min. Der dynamische Rollradius beträgt 315 mm. Wie groß ist der Schlupf?

Abhängigkeit des Kraftschlusses vom Schlupf beim Bremsen

Quelle: ika

Schräglaufwinkel

Vorderansicht

Draufsicht

Für kleine Schräglaufwinkel kann ein linearer Zusammenhang zwischen Seitenkraft und Schräglauf angenommen werden: $F_s = c_s \cdot \alpha$ mit $c_s = Schräglaufsteifigkeit$

Seitenführungskraft in Abhängigkeit vom Schräglaufwinkel für einen Renn-Reifen

Reifengröße: 205 R13

Quelle der Datenbasis: Continental

Seitenführungskraft in Abhängigkeit vom Schräglaufwinkel für einen Pkw-Reifen

Quelle: ika

Übungsaufgaben

Gegeben ist der Zusammenhang zwischen Seitenführungskraft, Schräglauf und Radlast entsprechend der beigefügten Diagramme (Renn- und Pkw-Reifen).

Bestimmen Sie für eine Radlast von 3150 N und einer Seitenführungskraft von 3300 N den Schräglaufwinkel für den Pkw-Reifen.

Bestimmen Sie für beide Reifen die Schräglaufsteifigkeit für kleine Schräglaufwinkel. Stellen Sie jeweils den Zusammenhang zwischen Seitenkraft und Radlast für einen Schräglaufwinkel von 4° grafisch dar.

Krempel-Diagramm

Reifen: 165 SR15, Radlast: 3 kN,

Reifendruck: 1,8 bar, Geschwindigkeit:14 m/s

Vereinfachter Zusammenhang zwischen Längs- und Seitenkraft

Seitenkraft-Traktionskennfeld in Abhängigkeit vom Bremsschlupf

Quelle: ika

Übungsaufgabe

Gegeben ist ein Seitenkraft-Traktionskennfeld. Stellen Sie die Seitenkraft in Abhängigkeit der Bremskraft für konstante Schräglaufwinkel von 6°, 8° und 10° grafisch dar.

Definition Sturzwinkel

Seitenkrafterzeugung durch Sturz

Sturzkräfte in Abhängigkeit vom Sturzwinkel

Quelle: ika