

Grundlagenpraktikum: Rechnerarchitektur

Gruppe 175 - Abgabe zu Aufgabe A316

Viktor Bayo, Hans Preinfalk, Georgy Chomakhashvili

Lehrstuhl für Rechnerarchitektur und Parallelsysteme Fakultät der Informatik Technische Universität München

August 31st, 2022

- Problemstellung
- Lösungsansatz
- Genauigkeit
- 4 Performanz
- 5 Zusammenfassung

Problemstellung

- Approximation der Umkehrfunktion von sinh (also von arcsin)
- Theoretischer Teil
 - Herleitung
 - Reiehndarstellung
 - Lookup-Tabellen
 - Analyse
 - Genauigkeit
 - Laufzeit
- Praktischer Teil
 - \square double approxArsinh_series(double x)
 - $\ \, \square \ \, double \, approxArsinh_lookup(double \, x) \\$

Problemstellung Eigenschaften der Funktion

- Die Funktion: $arsinh(x) = \ln(x + \sqrt{x^2 + 1})$ mit $x \in \mathbb{R}$
- Definitionsbereich] $-\infty; +\infty$ [
- Wertebereich] $-\infty$; $+\infty$ [
- punktsymmetrisch zum Ursprung
- streng monoton steigend
- Asymptote: $f(x) \to \pm \ln(2|x|)$ für $x \to \pm \infty$
- Ableitung: $\frac{d}{dx}$ arsinh $(x) = \frac{1}{\sqrt{x^2+1}}$

- Problemstellung
- Lösungsansatz
- Genauigkeit
- 4 Performanz
- 5 Zusammenfassung

Lösungsansatz Rahmenprogramm

- Flags: V < int >, B < int >,< float >,h,help
- Hauptimplementierung Reihendarstellung
 - V, V0 Hauptimplementierung
 - □ V1 Lookup-Tabellen
 - V2 Vergleichsimplementierung
- lacksquare optionale Argumente ≥ 0 und $\in N$
- Standardwerte
 - Zahl 0
 - Hauptimplementierung
 - Ein Durchlauf
- nur eine oder keine Zahl

Lösungsansatz Reihendarstellung(Herleitung)

|x| < 1

$$\begin{array}{l} \square \ \, \operatorname{arsinh}(x) = \ln(x + \sqrt{x^2 + 1}) \\ &= \int \frac{dx}{\sqrt{1 + x^2}} \\ &= \int (1 + x^2)^{-\frac{1}{2}} dx \qquad \qquad \text{binomische Reihe} \\ &= \int \sum_{k=0}^{\infty} (-1)^k \cdot \binom{-\frac{1}{2}}{k} \cdot (x^2)^k \qquad \qquad \text{Binomialkoeffizienten} \\ &= \int \sum_{k=0}^{\infty} (-1)^k \cdot \frac{(2k-1)!!}{(2k)!!} \cdot x^2 \qquad \qquad \text{Taylorreihe} \\ &= \mathbf{x} \cdot \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3 \cdot x^5}{2 \cdot 4 \cdot 5} - \frac{1 \cdot 3 \cdot 5 \cdot x^5}{2 \cdot 4 \cdot 6 \cdot 7} + \ldots + (-1)^k \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2k-1) \cdot x^{2k+1}}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2k \cdot (2k+1)} + \ldots \\ &= \mathbf{x} \cdot \sum_{k=0}^{\infty} \frac{(2k-1)!! (-x^2)^k}{(2k)!! (2k+1)} \end{aligned}$$

Lösungsansatz Reihendarstellung(Herleitung)

- $|x| \ge 1$
 - □ Nach der Relation zwischen zwei hyperbolischen Funktionen Areasinus und Areakosinus

$$arsinh(x) = (sign(x)) \ arcosh(\sqrt{x^2 + 1})$$

wobei sign(x))—Signumfunktion

wobei
$$\operatorname{arcosh}(\mathbf{x}) = \ln(2x) - \sum_{k=0}^{\infty} \frac{(2k-1)!!}{(2k)\cdot(2k)!!} \cdot x^{-2k}$$

Lösungsansatz

- Reihendarstellung (Implementierung)
 - |x| < 1
 - Taylorreihe
- |x| >= 1
 - ☐ Taylorreihe der Areakosinus Hyperbolicus
- |x| < 12
 - ☐ Reihendarstellung des Logarithmus
- |x| > = 12
 - Logarithmus rekursiv berechnen

Lösungsansatz Lookup Tabellen(Herleitung)

- lineare Interpolation
 - Die Werte der Geraden als Approximation

$$f(x) = m \cdot x + b \quad \text{mit} \quad m = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \quad \text{und} \quad b = f(x_0) - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \cdot x_0$$

$$f(x) = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \cdot x + f(x_0) - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \cdot x_0$$
 Einsetzen
$$f(x) = f(x_0) + \frac{(x - x_0)}{x_1 - x_0} \cdot (f(x_1) - f(x_0))$$
 lineare Interpolation

Punkte proportional zueinander wählen

Lösungsansatz Lookup Tabellen(Implementierung)

- 1. Mit dem Betrag arbeiten, da punktsymmetrisch
- 2. Mit aufsteigenden Standartwerten vergleichen
- 2. Passende Tabelle finden (insgesamt 93)
- 3. Passendes Intervall finden ($x_{i-1} < x <= x_i \text{ mit } x_{i-1} \cdot 1.08 = x_i$)
- 4. Wenn $x == x_i \rightarrow \text{arsinh-Wert von der Tabelle ablesen}$
- 5. Wenn $x < x_i$ und $x > x_{i-1}$, dann lineare Interpolation mit x_{i-1} und x_i berechnen
- 6. Berechneten arsinh-Wert je mit 1 oder -1 multiplizieren
- 7. Wert zurückgeben

- Problemstellung
- Lösungsansatz
- Genauigkeit
- 4 Performanz
- 5 Zusammenfassung

Genauigkeit

- Präzision von Fließkommazahlen ist hardwarebedingt!
- Die Variation der Genauigkeit abhängig von der Eingabegröße
 - $\square |x| < 1$
 - |x| == 1 (oder nahe 1)
 - \Box 1 < |x| < 12
 - $\square |x| > 12$
- V1
 - Zwischen 0 und 3 Nachkommastellen
 - ☐ Je kleiner der Abstand zwischen Punkten, desto genauer die Approximation
 - \square Verbesserungsvorschlag: Proportionalitätsfaktor c verkleinern

Genauigkeit

■ Beispielausgaben (rot markierte Bereiche sind fehlerhaft)

х	VO	V1	V2	Erwartet
0.5	0.481211825059603471	0.481148178453539133	0.481211825059603471	0.481211825059603447
1.0	0.881373587019542493	0.881122391422050288	0.881373587019543270	0.881373587019543025
9.37545	2.934073864818847799	2.933432601961815767	2.9340738648188526 <mark>84</mark>	2.934073864818852671
4324356.456	15.9729210715362 <mark>00444</mark>	15.972582216140555289	15.972921071536228865	15.972921071536229602
9888888888.5	26.010409902892391187	26.009677936276474952	26.010409902892391187	26.010409902892390020

- Problemstellung
- Lösungsansatz
- Genauigkeit
- 4 Performanz
- 5 Zusammenfassung

Performanz

- Wall Time
 - □ Während der Messung verstrichene Gesamtzeit
- CPU Time
 - Zeit für Verarbeitung des Programmes in CPU
- Monotonic Time vs Real Time
- Die steigende bzw. sinkende Laufzeit von V0 und V2 abhängig von der Eingabegröße
 - $\square |x| < 1$
 - $\square |x| < 12$
 - \square |x| >= 12
- V1 Gewinner!

Performanz

Performanz

- Problemstellung
- Lösungsansatz
- Genauigkeit
- 4 Performanz
- 5 Zusammenfassung

Zusammenfassung

- Rahmenprogramm
 - □ Entgegennahme bestimmter Optionen
 - Eingabeprüfung
- Reihendarstellung
 - mathematische Umformungen
 - höhere Genauigkeit
- Lookup-Tabellen
 - ☐ die Wahl zwischen Interpolationen
 - höhere Performanz

Zusammenfassung

- Genauigkeit
 - □ abhängig von Eingabe
 - □ V0: 4-16 Nachkommastellen
 - □ V1: 0-3 Nachkommastellen
 - □ V2: 4-16 Nachkommastellen
- Performanz
 - abhängig vom Definitionsbereich
 - V0 schneller als V1 f
 ür kleine Eingabewerte
 - V1 um ein Vielfaches schneller als V0 und V2

Durch dieses Programm erfolgt eine genaue und performante Berechnung