Homework due Friday. No homework over the break. Happy New Year!

3. [Maximum mark: 6]

Let $f(x) = x^3 - 2x - 4$. The following diagram shows part of the curve of f.

The curve crosses the x-axis at the point P.

(a) Write down the x-coordinate of P.

[1 mark]

(b) Write down the gradient of the curve at P.

[2 marks]

(c) Find the equation of the normal to the curve at P, giving your equation in the form y = ax + b.

[3 marks]

	•		 . ,			•	•	•					•	• :			•	•	٠	٠			•	•	•	•					 	٠		٠	٠		•	 			•	•			٠						٠					•				
			 		•		٠										•			٠	¥								•		 								٠	٠						٠			•	•1	×			٠	٠					
	• •				•	•		•		 														٠	٠	٠	•				 	٠		٠			•					•	•		•		٠			•	•			•	è	٠	•			
	•	•	 				•			 				. 0					٠		٠	•	•		٠	٠				•	 		٠	٠	•				٠			٠			,		•	•	•	٠	٠	*:		٠	٠		٠	•		
					•					 				. ,		. ,			•					•		•				•	 		•				•				¥	٠	•		٠	٠	•	•	•	•			•	•	٠	٠	٠	•		
al a	•	•	 		•	•				 				• •		 			•			٠					٠				 	,		•			•										•			×	•	•	٠	٠		٠	٠	٠	•	
•	•		 	,				•				•	•							٠			٠	٠	•				•	•	 	+		•		•		 		٠	٠								•		+			÷			٠			
e 1			 	30	•	•			κ ,		•	. :	. :	•	• =	 				•		,			٠			٠	٠	•	 		•			٠		 									•					•	٠	•		•	÷	٠	•	

7. [Maximum mark: 7]

A particle's displacement, in metres, is given by $s(t) = 2t \cos t$, for $0 \le t \le 6$, where t is the time in seconds.

(a) On the grid below, sketch the graph of s.

[4 marks]

(This question continues on the following page)

(Question 7 continued)

(b)	Find the maximum velocity of the particle.	3 marks

Do NOT write solutions on this page.

SECTION B

Answer all questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 15]

The following diagram shows a circular play area for children.

The circle has centre O and a radius of 20 m, and the points A, B, C and D lie on the circle. Angle AOB is 1.5 radians.

(a) Find the length of the chord [AB]. [3 marks]

(b) Find the area of triangle AOB. [2 marks]

Angle BOC is 2.4 radians.

(c) Find the length of arc ADC. [3 marks]

(d) Find the area of the shaded region. [3 marks]

(e) The shaded region is to be painted red. Red paint is sold in cans which cost \$32 each. One can covers 140 m². How much does it cost to buy the paint? [4 marks]

