1 Actividad Ejemplo: Diseño de Gráficos de Barras para Fuentes de Energía Renovable

Contexto:

Como estudiantes de ingeniería, es probable que encuentren diversos tipos de datos en sus futuras carreras. Una forma efectiva de visualizar y comunicar datos es a través de gráficos de barras. En esta actividad, practicarán la creación de gráficos de barras para comparar el crecimiento de diferentes fuentes de energía renovable durante la última década.

Instrucciones:

- 1. Revisen la tabla a continuación, que muestra el crecimiento de diferentes fuentes de energía renovable (solar, eólica, hidroeléctrica y geotérmica) en términos de capacidad instalada (en gigavatios) desde 2010 hasta 2020.
- 2. Diseñen un gráfico de barras que comunique de manera efectiva el aspecto de los datos que seleccionaron. Consideren lo siguiente:
 - ¿Qué tipo de gráfico de barras es más adecuado para sus datos (por ejemplo, simple, apilado o agrupado)?
 - ¿Cómo etiquetarán los ejes, el título y la leyenda?
 - ¿Qué colores y fuentes utilizarán para que el gráfico sea visualmente atractivo y fácil de leer?
- 3. Elijan un aspecto específico de los datos que deseen destacar, como el crecimiento de la energía solar o la comparación entre la energía eólica e hidroeléctrica.
- 4. Escriban una breve descripción de su gráfico, explicando los principales hallazgos y tendencias que revela.

Tabla: Fuentes de Energía Renovable (2010-2020)

Año	Solar (GW)	Eólica (GW)	Hidroeléctrica (GW)	Geotérmica (GW)
2010	15.6	194.3	1,015.6	10.7
2012	30.1	282.5	1,055.3	11.8
2014	53.4	369.6	1,104.2	12.8
2016	89.5	486.8	1,154.8	13.3
2018	136.6	623.2	1,205.3	13.9
2020	208.5	740.5	1,255.9	14.5

Solución

Discusión

En el gráfico de barras se visualiza el crecimiento de diversas fuentes de energía renovable—solar, eólica, hidroeléctrica y geotérmica—entre 2010 y 2020. Los principales hallazgos incluyen:

- 1. Energía Solar: El mayor crecimiento se dio en la energía solar, con un aumento considerable de 15.6 GW en 2010 a 208.5 GW en 2020. Esto resalta la rápida adopción de las tecnologías solares.
- 2. Energía Eólica: La energía eólica también mostró un crecimiento constante, subiendo de 194.3 GW en 2010 a 740.5 GW en 2020. Aunque no tan dramático como el de la solar, el incremento sostenido refleja su importancia como fuente de energía renovable.
- 3. Energía Hidroeléctrica: La energía hidroeléctrica experimentó un crecimiento lento pero constante, lo que refleja su papel consolidado en el ámbito de las energías renovables. Creció de 1,015.6 GW a 1,255.9 GW.
- 4. Energía Geotérmica: En contraste, la energía geotérmica mostró solo un crecimiento modesto, lo que indica una adopción más lenta o avances tecnológicos más limitados en comparación con otras energías renovables.

2 Actividad: Análisis de Gráficos de Barras sobre la Eficiencia Energética en Procesos Industriales

Contexto:

La eficiencia energética es una preocupación vital en la ingeniería, especialmente en las industrias

que buscan reducir costos e impactos ambientales. Esta actividad se centra en visualizar y analizar el consumo de energía y las tasas de recuperación de energía en varios sectores industriales, ayudándote a comprender las complejidades involucradas en la optimización del uso de energía.

- 1. Revisa la tabla a continuación, que muestra el consumo de energía y las tasas de recuperación de energía (en gigajulios por año) para diferentes industrias durante cuatro años. Observa que algunos sectores han mejorado significativamente su recuperación de energía debido a avances tecnológicos o nuevos procesos, mientras que otros muestran poco o ningún avance.
- 2. Diseña un gráfico de barras que comunique eficazmente el aspecto elegido. Piensa en:
 - ¿Deberías usar barras agrupadas o apiladas para comparar el consumo de energía y la recuperación?
 - ¿Cómo destacarás las industrias con mejoras significativas o ineficiencias?
 - ¿Qué etiquetas, colores y disposición comunicarán mejor tus hallazgos?
- 3. Elige un aspecto de los datos para destacar, como qué industrias mejoraron más en la recuperación de energía, o una comparación entre el consumo de energía y las tasas de recuperación.
- 4. Escribe una breve descripción (100-150 palabras) explicando las tendencias, los hallazgos clave y cómo ha evolucionado la eficiencia energética en diferentes industrias.

Tabla: Consumo de Energía y Recuperación por Industria (2019-2022)

Año	Industria	Consumo de Energía (GJ)	Recuperación de Energía (GJ)
2019	Manufactura	10,000,000	1,000,000
2019	Sector Energético	8,000,000	500,000
2019	Industria Química	6,500,000	1,200,000
2019	Construcción	4,000,000	100,000
2020	Manufactura	10,500,000	1,500,000
2020	Sector Energético	8,200,000	600,000
2020	Industria Química	6,600,000	1,300,000
2020	Construcción	4,100,000	200,000
2021	Manufactura	9,500,000	3,000,000
2021	Sector Energético	8,300,000	1,200,000
2021	Industria Química	6,400,000	3,000,000
2021	Construcción	4,200,000	250,000
2022	Manufactura	9,000,000	4,500,000
2022	Sector Energético	8,400,000	2,500,000
2022	Industria Química	6,300,000	4,200,000
2022	Construcción	4,500,000	400,000

Consejos: Enfócate en cómo la recuperación de energía reduce el consumo total de energía y su impacto ambiental.

3 Actividad: Análisis de Gráficos de Barras sobre Soluciones de Almacenamiento en la Nube

Contexto:

Como ingenieros, comprender el rendimiento y la eficiencia en costos de diferentes soluciones de almacenamiento en la nube es crucial. Los proveedores de la nube optimizan continuamente sus sistemas de almacenamiento para reducir costos, mejorar el rendimiento y aumentar la velocidad de recuperación de datos. Esta actividad se centra en comparar el rendimiento y la eficiencia de costos de diferentes tecnologías de almacenamiento en la nube en los últimos cuatro años.

Instrucciones:

- 1. Revisa la tabla a continuación, que muestra el rendimiento (en velocidad de recuperación de datos) y el costo por terabyte para tres soluciones populares de almacenamiento en la nube (Almacenamiento de Objetos, Almacenamiento en Bloques y Almacenamiento de Archivos) entre 2019 y 2022. Nota que algunas soluciones mejoran significativamente en una métrica mientras mantienen o aumentan los costos en otra.
- 2. Elige un aspecto de los datos que desees destacar, como cuál solución de almacenamiento tiene el mejor equilibrio entre rendimiento y costo o cómo ha evolucionado el rendimiento de una tecnología a lo largo del tiempo.
- 3. Diseña un gráfico de barras para comunicar eficazmente el aspecto de los datos que seleccionaste. Considera lo siguiente:
 - ¿Deberías comparar el rendimiento y el costo lado a lado o enfocarte en una sola métrica?
 - ¿Cómo enfatizarás la solución de almacenamiento que ofrece el mejor equilibrio?
 - ¿Cómo etiquetarás los ejes, títulos y leyendas para mayor claridad?
- 4. Crea tu gráfico de barras utilizando una herramienta de tu elección (por ejemplo, Excel, Python, etc.).
- 5. Escribe una breve descripción (100-150 palabras) explicando las tendencias y los hallazgos clave que puedes extraer del gráfico, en particular sobre las proporciones rendimiento-costo.

Tabla: Rendimiento y Costo de las Soluciones de Almacenamiento en la Nube (2019-2022)

Año	Solución de Almacenamiento	Velocidad de Recuperación de Datos (GB/s)	Costo por Terabyte (USD)
2019	Almacenamiento de Objetos	120	23
2019	Almacenamiento en Bloques	200	40
2019	Almacenamiento de Archivos	150	35

Año	Solución de Almacenamiento	Velocidad de Recuperación de Datos (GB/s)	Costo por Terabyte (USD)
2020	Almacenamiento de Objetos	150	22
2020	Almacenamiento en Bloques	220	39
2020	Almacenamiento de Archivos	160	34
2021	Almacenamiento de Objetos	190	21
2021	Almacenamiento en Bloques	250	38
2021	Almacenamiento de Archivos	170	32
2022	Almacenamiento de Objetos	230	19
2022	Almacenamiento en Bloques	300	35
2022	Almacenamiento de Archivos	190	30

Consejos: Enfócate en cómo la eficiencia en costos se alinea con las mejoras de rendimiento en cada tecnología.

4 Actividad: Análisis de Gráficos de Barras sobre Inversión de Capital y ROI en Proyectos de Ingeniería

Contexto:

En ingeniería, los proyectos a gran escala a menudo requieren inversiones de capital significativas, y comprender el retorno de inversión (ROI) es crucial para la sostenibilidad financiera. Esta actividad se centrará en visualizar cómo evoluciona la inversión de capital en varios sectores de ingeniería y cómo se correlaciona con el ROI durante un período de cuatro años.

- Revisa la tabla a continuación, que muestra la inversión de capital (en millones de dólares) y el ROI (como porcentaje) para cuatro sectores de ingeniería—Infraestructura, Energía, Tecnología y Manufactura—entre 2019 y 2022.
- 2. Elige un aspecto de los datos que desees destacar, como qué sector tiene el mejor ROI en relación con su inversión, o cómo las tendencias de inversión de capital se correlacionan con los cambios en el ROI.

- Diseña un gráfico de barras para comunicar de manera efectiva el aspecto elegido de los datos.
 Considera:
 - ¿Utilizarás barras agrupadas o apiladas para comparar la inversión de capital y el ROI lado a lado?
 - ¿Cómo representarás el ROI (porcentaje) comparado con la inversión de capital (en millones)?
 - ¿Cómo puedes resaltar los sectores con cambios significativos o mejor rendimiento?
- 4. Crea tu gráfico de barras utilizando la herramienta de tu elección (Excel, Python, etc.).
- 5. Escribe una breve descripción (100-150 palabras) del gráfico, explicando las tendencias, los hallazgos clave y si las inversiones de capital están generando retornos satisfactorios en los diferentes sectores.

Tabla: Inversión de Capital y ROI por Sector (2019-2022)

Año	Sector	Inversión de Capital (M USD)	ROI (%)
2019	Infraestructura	5,000	7.5
2019	Energía	4,000	6.0
2019	Tecnología	3,500	10.0
2019	Manufactura	6,000	8.0
2020	Infraestructura	5,200	7.8
2020	Energía	4,300	6.5
2020	Tecnología	3,800	11.5
2020	Manufactura	6,300	8.2
2021	Infraestructura	5,400	8.0
2021	Energía	4,600	6.8
2021	Tecnología	4,100	12.0
2021	Manufactura	6,500	8.4
2022	Infraestructura	5,600	8.2
2022	Energía	5,000	7.0
2022	Tecnología	4,500	13.0
2022	Manufactura	6,800	8.6

Consejos: Enfócate en si la inversión de capital en ciertos sectores está justificada por los retornos correspondientes.

5 Actividad: Análisis de Gráficos de Barras sobre Costos y Eficiencia de la Cadena de Suministro

Contexto:

En ingeniería industrial, optimizar la cadena de suministro es crucial para reducir costos y mejorar los tiempos de entrega. Esta actividad se centra en analizar cómo varían los costos de producción, los costos de transporte y los tiempos de entrega entre diferentes proveedores, y cómo estos factores impactan la eficiencia general de la cadena de suministro.

- 1. Revisa la tabla a continuación, que muestra los costos de producción, los costos de transporte y los tiempos promedio de entrega de cuatro proveedores clave durante cuatro años. Observa que algunos proveedores mejoran en un área pero pueden tener un rendimiento inferior en otras, lo que lleva a interesantes compensaciones.
- 2. Elige un aspecto de los datos que desees destacar, como qué proveedor ofrece el mejor equilibrio entre costos bajos y entrega rápida, o cómo ha evolucionado el rendimiento de un proveedor a lo largo del tiempo.
- 3. Diseña un gráfico de barras para comunicar de manera efectiva el aspecto elegido de los datos. Considera:
 - ¿Cómo compararás las tres variables (costo de producción, costo de transporte y tiempo de entrega)?
 - ¿Te enfocarás en un proveedor específico o compararás a todos los proveedores a lo largo de los años?
 - ¿Cómo etiquetarás los ejes, el título y la leyenda para que tu gráfico sea claro y revelador?
- 4. Crea tu gráfico de barras utilizando la herramienta de tu elección (Excel, Python, etc.).
- 5. Escribe una breve descripción (100-150 palabras) explicando las tendencias, los hallazgos clave y cualquier compensación entre costos y eficiencia en la cadena de suministro.

Tabla: Costos y Eficiencia de la Cadena de Suministro por Proveedor (2019-2022)

Año	Proveedor	Costo de Producción (USD/unidad)	Costo de Transporte (USD/unidad)	Tiempo de Entrega (días)
2019	Proveedor A	50	12	5
2019	Proveedor B	45	10	7
2019	Proveedor C	52	15	4
2019	Proveedor D	48	8	8
2020	Proveedor A	48	11	6
2020	Proveedor B	46	9	6
2020	Proveedor C	50	14	5

Año	Proveedor	Costo de Producción (USD/unidad)	Costo de Transporte (USD/unidad)	Tiempo de Entrega (días)
2020	Proveedor D	49	7	7
2021	Proveedor A	46	10	7
2021	Proveedor B	44	8	5
2021	Proveedor C	51	13	6
2021	Proveedor D	50	9	6
2022	Proveedor A	45	9	6
2022	Proveedor B	43	7	5
2022	Proveedor C	48	12	5
2022	Proveedor D	49	8	6

Consejos: Enfócate en cómo las reducciones o aumentos en los costos se correlacionan con los cambios en los tiempos de entrega y la eficiencia general.

6 Actividad: Análisis de Gráficos de Barras sobre Métricas de Rendimiento de Redes

Contexto:

En informática, optimizar el rendimiento de la red es esencial para garantizar una transmisión de datos rápida y confiable. Esta actividad se centra en analizar las principales métricas de rendimiento de la red: el rendimiento de datos, la latencia y la pérdida de paquetes, en diferentes soluciones de red a lo largo del tiempo. Explorarás cómo varias tecnologías de red afectan la eficiencia y confiabilidad general.

- 1. Revisa la tabla a continuación, que muestra el rendimiento de datos (en Mbps), la latencia (en ms) y la pérdida de paquetes (como porcentaje) para tres tecnologías comunes de redes—Fibra Óptica (Config A), Red 5G Inalámbrica (Config B) e Internet Satelital (Config C)—durante cuatro años. Observa que algunas configuraciones mejoran en rendimiento, pero pueden sufrir una mayor latencia o pérdida de paquetes, lo que lleva a compensaciones en el rendimiento.
- 2. Elige un aspecto de los datos para destacar, como la mejor tecnología de red en general o una comparación de cómo ha cambiado el rendimiento de una red con el tiempo.

- 3. Diseña un gráfico de barras para comunicar de manera efectiva el aspecto elegido. Considera:
 - ¿Deberías comparar las tres métricas (rendimiento, latencia, pérdida de paquetes) en un solo gráfico o crear varios gráficos para enfocarte en métricas específicas?
 - ¿Cómo destacarás las tecnologías que han mejorado o empeorado con el tiempo?
 - ¿Qué etiquetas, títulos y esquemas de color harán que el gráfico sea más revelador?
- 4. Crea tu gráfico de barras utilizando la herramienta de tu elección (Excel, Python, etc.).
- 5. Escribe una breve descripción (100-150 palabras) del gráfico, explicando las tendencias y los hallazgos clave, como qué tecnología de red ofrece el mejor equilibrio de rendimiento.

Tabla: Rendimiento de Red por Tecnología (2019-2022)

Año	Tecnología	Rendimiento de Datos (Mbps)	Latencia (ms)	Pérdida de Paquetes (%)
2019	Fibra Óptica	500	25	0.5
2019	Red 5G Inalámbrica	400	20	0.8
2019	Internet Satelital	350	30	0.3
2020	Fibra Óptica	550	24	0.4
2020	Red 5G Inalámbrica	450	18	0.6
2020	Internet Satelital	400	28	0.2
2021	Fibra Óptica	600	22	0.4
2021	Red 5G Inalámbrica	480	16	0.5
2021	Internet Satelital	450	26	0.2
2022	Fibra Óptica	650	20	0.3
2022	Red 5G Inalámbrica	500	14	0.4
2022	Internet Satelital	500	24	0.1

Consejos: Resalta las mejoras o compensaciones en el rendimiento utilizando codificación de colores y anotaciones.

7 Actividad: Análisis de Gráficos de Líneas sobre Eficiencia de Máquinas y Costos de Mantenimiento

Contexto:

En la ingeniería industrial, el mantenimiento de equipos es fundamental para garantizar una producción constante y reducir los tiempos de inactividad. Esta actividad se centra en analizar la eficiencia de las máquinas, las tasas de fallos y los costos de mantenimiento a lo largo del tiempo para diferentes máquinas. Los gráficos de líneas son ideales para visualizar estas tendencias e

identificar períodos clave donde el rendimiento disminuye o los costos aumentan, lo que te permitirá desarrollar estrategias de mantenimiento.

- Revisa la tabla a continuación, que muestra la eficiencia de las máquinas (como porcentaje), el número de fallos por año y los costos de mantenimiento (en USD) para tres máquinas: Máquina CNC (Máquina A), Moldeadora por Inyección (Máquina B) y Robot de Ensamblaje (Máquina C) durante cinco años.
- 2. Elige un aspecto de los datos para destacar, como qué máquina tiene la mayor disminución en la eficiencia o cómo han evolucionado los costos de mantenimiento en respuesta a los fallos.
- 3. Diseña un gráfico de líneas para comunicar de manera efectiva el aspecto elegido. Considera:
 - ¿Usarás múltiples líneas para comparar las tres máquinas o te enfocarás en el rendimiento de una máquina específica?
 - ¿Cómo destacarás los puntos clave donde la eficiencia cae o los costos aumentan significativamente?
 - ¿Cómo puedes hacer que el gráfico sea claro y revelador con etiquetas, títulos y esquemas de color?
- 4. Crea tu gráfico de líneas utilizando la herramienta de tu elección (Excel, Python, etc.).
- 5. Escribe una breve descripción (100-150 palabras) del gráfico, explicando las tendencias, los hallazgos clave y cualquier recomendación de mantenimiento basada en los datos.

Tabla: Eficiencia de Máquinas, Fallos y Costos de Mantenimiento (2018-2022)

Año	Máquina	Eficiencia (%)	Fallos (por año)	Costo de Mantenimiento (USD)
2018	Máquina CNC	98	1	3,000
2018	Moldeadora por Inyección	95	3	5,000
2018	Robot de Ensamblaje	97	2	4,000
2019	Máquina CNC	96	2	3,500
2019	Moldeadora por Inyección	93	4	5,500
2019	Robot de Ensamblaje	95	3	4,200
2020	Máquina CNC	93	4	4,500
2020	Moldeadora por Inyección	90	5	6,200
2020	Robot de Ensamblaje	92	4	5,000
2021	Máquina CNC	89	6	6,000
2021	Moldeadora por Inyección	88	7	7,000
2021	Robot de Ensamblaje	90	6	6,500

Año	Máquina	Eficiencia (%)	Fallos (por año)	Costo de Mantenimiento (USD)
2022	Máquina CNC	85	8	8,000
2022	Moldeadora por Inyección	83	9	8,500
2022	Robot de Ensamblaje	88	7	7,500

Consejos: Resalta los puntos donde los costos de mantenimiento se disparan, lo que sugiere la necesidad de reparaciones más frecuentes o intensivas.

8 Actividad: Análisis de Gráficos de Líneas sobre Depreciación y Costos Operativos por Volumen de Producción

Contexto:

En las finanzas industriales, comprender cómo la depreciación y los costos operativos cambian con el volumen de producción es clave para optimizar el rendimiento financiero. Esta actividad se centra en visualizar y analizar la depreciación del capital, los costos operativos y los márgenes de beneficio para diferentes máquinas o instalaciones a medida que aumenta el volumen de producción. Explorarás cómo la expansión de la producción impacta las variables financieras y harás recomendaciones sobre los niveles óptimos de producción para maximizar el beneficio.

Instrucciones:

- 1. Revisa la tabla a continuación, que muestra la depreciación del capital (en USD), los costos operativos (en USD) y los márgenes de beneficio (como porcentaje) para tres máquinas—Moldeadora por Inyección (Máquina A), Fresadora CNC (Máquina B) y Línea de Empaque (Máquina C)—en diferentes volúmenes de producción (en unidades).
- 2. Elige un aspecto de los datos que desees destacar, como qué máquina tiene el mayor aumento en costos operativos a medida que aumenta la producción o cómo cambian los márgenes de beneficio a lo largo de los volúmenes de producción.
- 3. Diseña un gráfico de líneas para comunicar de manera efectiva el aspecto elegido. Considera:
 - ¿Vas a seguir el rendimiento de las tres máquinas en un solo gráfico o te centrarás en una métrica financiera específica como la depreciación o el margen de beneficio?
 - ¿Cómo puedes representar la depreciación y los márgenes de beneficio de manera efectiva en el mismo gráfico, si es necesario?
 - ¿Cómo etiquetarás los ejes, títulos y leyendas para hacer que el gráfico sea claro e informativo?
- 4. Crea tu gráfico de líneas utilizando la herramienta de tu elección (Excel, Python, etc.).
- 5. Escribe una breve descripción (100-150 palabras) del gráfico, explicando las tendencias, los hallazgos clave y cualquier recomendación sobre cómo optimizar el volumen de producción basándote en las métricas financieras.

Tabla: Depreciación, Costos Operativos y Márgenes de Beneficio por Volumen de Producción

Volumen de Producción (unidades)	Máquina	Depreciación (USD)	Costo Operativo (USD)	Margen de Beneficio (%)
1,000	Moldeadora por Inyección	5,000	20,000	15
1,000	Fresadora CNC	4,500	18,000	18
1,000	Línea de Empaque	3,500	15,000	20
5,000	Moldeadora por Inyección	4,800	19,000	16
5,000	Fresadora CNC	4,300	17,500	19
5,000	Línea de Empaque	3,400	14,500	21
10,000	Moldeadora por Inyección	4,500	18,500	17
10,000	Fresadora CNC	4,200	17,000	20
10,000	Línea de Empaque	3,300	14,000	22
20,000	Moldeadora por Inyección	4,000	18,000	18
20,000	Fresadora CNC	3,800	16,500	21
20,000	Línea de Empaque	3,100	13,500	23
50,000	Moldeadora por Inyección	3,500	17,500	19
50,000	Fresadora CNC	3,500	16,000	22
50,000	Línea de Empaque	2,900	13,000	24

Consejos: Utiliza colores diferentes para resaltar las diferencias clave en el rendimiento entre las máquinas a medida que se escala la producción.

9 Actividad: Análisis de Gráficos de Línea en el Rendimiento de Sistemas Informáticos

Contexto: En ingeniería informática, optimizar el rendimiento del sistema es esencial para asegurar tiempos de respuesta rápidos y confiabilidad en el procesamiento de datos. Esta actividad se centrará en analizar el uso de CPU, uso de memoria y tiempos de respuesta (latencia) de diferentes servidores a medida que el número de solicitudes aumenta. Los gráficos de línea serán útiles para visualizar cómo estos recursos se ven afectados por la carga de trabajo.

Instrucciones:

- Revisa la tabla a continuación, que muestra el uso promedio de CPU (en %), el uso de memoria (en GB) y la latencia (en ms) para tres servidores: Servidor Web (Servidor A), Servidor de Base de Datos (Servidor B) y Servidor de Aplicaciones (Servidor C) a medida que el número de solicitudes por segundo aumenta.
- 2. Elige un aspecto de los datos que desees destacar, como cuál servidor experimenta el mayor aumento en el uso de CPU o cómo cambia la latencia a medida que las solicitudes aumentan.
- 3. Diseña un gráfico de línea para comunicar de manera efectiva el aspecto que has elegido. Considera:
 - ¿Compararás todos los servidores en un gráfico o te centrarás en un solo servidor o variable (por ejemplo, latencia)?
 - ¿Cómo representarás múltiples variables como el uso de CPU y memoria en el mismo gráfico?
 - ¿Cómo etiquetarás los ejes, títulos y leyendas para hacer el gráfico claro y comprensible?
- 4. Crea tu gráfico de línea usando la herramienta de tu preferencia (Excel, Python, etc.).
- 5. Escribe una breve descripción (100-150 palabras) del gráfico, explicando las tendencias, los datos más relevantes y posibles recomendaciones sobre cómo mejorar el rendimiento del sistema.

Tabla: Uso de CPU, Memoria y Latencia por Número de Solicitudes por Segundo

Solicitudes por segundo	Servidor	Uso de CPU (%)	Uso de Memoria (GB)	Latencia (ms)
100	Servidor Web	40	2	100
100	Servidor de BD	35	4	90
100	Servidor de Aplicaciones	45	3	110
500	Servidor Web	60	3	150
500	Servidor de BD	50	5	130
500	Servidor de Aplicaciones	65	4	180
1000	Servidor Web	80	4	250
1000	Servidor de BD	70	6	200
1000	Servidor de Aplicaciones	85	5	300
2000	Servidor Web	95	5	350
2000	Servidor de BD	85	7	300
2000	Servidor de Aplicaciones	95	6	450

Consejos: Utiliza colores distintos para los servidores y resalta puntos clave donde el rendimiento disminuye drásticamente.

10 Actividad: Análisis de Gráficos de Línea en el Consumo Energético de Centros de Datos

Contexto:

En informática, el consumo energético de los centros de datos es una preocupación clave debido a su impacto tanto en costos como en la sostenibilidad. Esta actividad se centrará en analizar el consumo energético (en kWh), la eficiencia energética (medida por el PUE, Power Usage Effectiveness), y la capacidad de procesamiento (en petaflops) de tres centros de datos a medida que su carga de trabajo aumenta. El uso de gráficos de línea permitirá identificar patrones y tomar decisiones sobre cómo mejorar la eficiencia energética y optimizar los recursos.

Instrucciones:

- Revisa la tabla a continuación, que muestra el consumo energético, el índice de eficiencia energética (PUE) y la capacidad de procesamiento de tres centros de datos—Centro de Datos A (hiperescala), Centro de Datos B (colocation), y Centro de Datos C (corporativo)—a medida que la carga de trabajo en terabytes procesados aumenta.
- 2. Elige un aspecto de los datos que desees destacar, como el centro de datos con el mayor aumento en eficiencia energética o la relación entre capacidad de procesamiento y consumo energético.
- 3. **Diseña un gráfico de línea** para comunicar de manera efectiva el aspecto que has elegido. Considera:
 - ¿Vas a comparar todos los centros de datos en un solo gráfico o te vas a centrar en una variable específica (por ejemplo, PUE)?
 - ¿Cómo representarás múltiples variables como el consumo energético y la capacidad de procesamiento en un mismo gráfico?
 - ¿Cómo etiquetarás los ejes, títulos y leyendas para que el gráfico sea claro y comprensible?
- 4. Crea tu gráfico de línea utilizando la herramienta de tu preferencia (Excel, Python, etc.).
- 5. Escribe una breve descripción (100-150 palabras) del gráfico, explicando las tendencias, los datos más relevantes y posibles recomendaciones sobre cómo mejorar la eficiencia energética del centro de datos.

Tabla: Consumo Energético, Eficiencia Energética y Capacidad de Procesamiento por Carga de Trabajo

Carga de Trabajo (TB procesados)	Centro de Datos	Consumo Energético (kWh)	PUE	Capacidad de Procesamiento (petaflops)
100	Centro de Datos A	10,000	1.8	2.0

Carga de Trabajo (TB procesados)	Centro de Datos	Consumo Energético (kWh)	PUE	Capacidad de Procesamiento (petaflops)
100	Centro de Datos B	12,000	2.0	1.8
100	Centro de Datos C	9,000	2.1	1.5
500	Centro de Datos A	45,000	1.7	2.5
500	Centro de Datos B	50,000	1.9	2.2
500	Centro de Datos C	42,000	2.0	2.0
1000	Centro de Datos A	85,000	1.6	3.0
1000	Centro de Datos B	95,000	1.8	2.6
1000	Centro de Datos C	90,000	1.9	2.4
5000	Centro de Datos A	420,000	1.5	4.0
5000	Centro de Datos B	450,000	1.7	3.6
5000	Centro de Datos C	410,000	1.8	3.2

Consejos: Utiliza colores distintos para cada centro de datos y resalta puntos donde las mejoras en la eficiencia son más evidentes.

11 Actividad: Análisis de Gráficos de Línea en la Rentabilidad y Costos de Proyectos de Ingeniería a lo Largo de los Años

Contexto:

En la ingeniería financiera, evaluar la evolución de la rentabilidad y los costos de grandes proyectos a lo largo del tiempo es crucial para tomar decisiones de inversión informadas. Esta actividad se centrará en analizar el Retorno sobre la Inversión (ROI), los costos de inversión y los ingresos generados a lo largo de 5 años para tres tipos de proyectos: Construcción de Infraestructura (Proyecto A), Energía Renovable (Proyecto B) y Automatización Industrial (Proyecto C). Los gráficos de línea serán útiles para visualizar cómo estas variables cambian con el tiempo y qué proyectos ofrecen mayores rendimientos.

- Revisa la tabla a continuación, que muestra el ROI, los costos de inversión (en millones de USD) y los ingresos generados (en millones de USD) para los tres proyectos a lo largo de 5 años (2018-2022).
- 2. Elige un aspecto de los datos que desees destacar, como cuál proyecto tiene el ROI más alto en los primeros años o cómo los costos e ingresos evolucionan a lo largo del tiempo.
- 3. Diseña un gráfico de línea para comunicar de manera efectiva el aspecto que has elegido. Considera:
 - ¿Vas a comparar todos los proyectos en un solo gráfico o te centrarás en un solo proyecto o variable (por ejemplo, costos de inversión)?
 - ¿Cómo representarás múltiples variables como el ROI y los ingresos generados en el mismo gráfico?
 - ¿Cómo etiquetarás los ejes, títulos y leyendas para hacer el gráfico claro y comprensible?
- 4. Crea tu gráfico de línea usando la herramienta de tu preferencia (Excel, Python, etc.).
- 5. Escribe una breve descripción (100-150 palabras) del gráfico, explicando las tendencias, los datos más relevantes y posibles recomendaciones sobre la viabilidad financiera de los proyectos.

Tabla: ROI, Costos de Inversión e Ingresos Generados por Proyecto (2018-2022)

Año	Proyecto	ROI (%)	Costos de Inversión (M USD)	Ingresos Generados (M USD)
2018	Infraestructura	5	50	70
2018	Energía Renovable	8	40	60
2018	Automatización	6	35	50
2019	Infraestructura	7	55	90
2019	Energía Renovable	10	45	80
2019	Automatización	9	40	65
2020	Infraestructura	8	60	100
2020	Energía Renovable	12	50	90
2020	Automatización	10	42	75
2021	Infraestructura	10	65	110
2021	Energía Renovable	14	55	100
2021	Automatización	12	45	85
2022	Infraestructura	12	70	130
2022	Energía Renovable	16	60	120
2022	Automatización	14	50	100

ingresos aumentan significativamente.					

Consejos: Utiliza colores distintos para cada proyecto y resalta puntos clave donde el ROI o los