Радиофизика

проф. Руденко В.Н., снс Гусев А.В.

Радиофизика

Дисклеймер

Черновая версия: возможно большое количество различного рода ошибок!

Содержание

vie	сто курса. История радиофизики.				
L J	Линейные радиотехнические цепи.				
1	1.1 Условие квазистационарности				
1	1.2 Линейные элементы цепей				
1	1.3 Источники энергии				
	1.4 Уравнения простейших линейных цепей				
	1.5 Метод комплексных амплитуд (МКА)				
	1.6 Расчет цепей методом комплексных амплитуд				
	1.7 Метод преобразования Лапласа. Расчёт переходных режимов				
	V I				
	1.9 Параллельный колебательный контур				
	1.10 Осциллятор в радиофизике				
	1.11 Метод ММА — в гармоническом приближении				
	1.12 Линейные четырёхполюсники				
1	1.13 Связанные колебательные контуры				
(Сигналы и спектры.				
_	2.1 Спектр непериодического сигнала				
	2.2 Спектр периодического сигнала				
	2.3 Спектр периодического сигнала				
	2.4 Свойства спектров. Спектральный анализ линейных систем				
	2.5 Конечные аппроксимации сигналов и спектров				
	2.6 Оцифровка аналоговых сигналов. Теорема Котельникова				
2	2.7 Дискретное преобразование Фурье. Ошибка оцифровки				
Ć	Флуктуации в радиофизике.				
3	3.1 Случайные процессы /Методы описания. Понятие плотности вероятности				
3	3.2 Свойства корреляционной функции стационарного процесса				
9	3.3 Теорема Винера-Хинчина				
	3.4 Типы шумов в радиоэлектронных цепях. Их спектральные плотности				
	3.5 Прохождение случайных сигналов через линейные цепи				
	3.6 Броуновский осциллятор.				
	Нелинейные цепи. 4.1 Нелинейные элементы радиоцепей				
	• ' ' '				
	4.2 Аппроксимация нелинейных характеристик				
	4.3 Воздействие узкополосного сигнала на нелинейную цепь				
	4.4 Воздействие бигармонического сигнала				
	4.5 Детектирование амплитудно-модулированного сигнала				
4	4.6 Резонанс в нелинейном контуре				
4	4.7 Преобразование частоты сигнала				
]	Цепи с переменными параметрами.				
	5.1 Принцип параметрического возбуждения осциллятора				
	5.2 Математическая теория параметрического осциллятора				
	5.3 Эквивалентная схема параметрического контура				
	5.5 Соотношения Мэнли-Poy				
	5.6 Вырожденный параметрический усилитель				
5	5.7 Шумы параметрических усилителей				

СОДЕРЖАНИЕ

6	Уси	ление электромагнитных сигналов.	11	
	6.1	Усилитель как активный четырёхполюсник	11	
	6.2	Измерение усиления в децибелах	11	
	6.3	Типы управляющих элементов	11	
	6.4	Элементарные усилительные ячейки на биполярном транзисторе	11	
	6.5	Типы усилителей: широкополосные, резонансные, полосовые.	11	
	6.6	Согласование каскадов; усилитель – повторитель (катодный, эмиттерный)	11	
	6.7	Шумы усилителей. Шумовая температура, шум-фактор.	11	
	6.8	Оптимизация каскадов по мощности и по отношению сигнал/шум	11	
7	Генерация электромагнитных сигналов.			
	7.1	Усилители с отрицательной обратной связью	12	
	7.2	Положительная обратная связь, условия самовозбуждения	12	
	7.3	LC-генератор гармонических колебаний	12	
	7.4	Импульсные генераторы, мультивибратор	12	
	7.5	RC-генераторы гармонических колебаний, генератор Вина	12	
	7.6	Мягкий и жесткий режимы генерации.	12	
	7.7	Ширина линии генерации	12	
8	Вы,	деление сигнала из шума.	13	
9	Цепи с распределёнными параметрами.			
	9.1	Понятие распределённых радиофизических систем	14	
	9.2	Двухпроводные линии, коаксиальные кабели, волноводы	14	
	9.3	Формулы погонных параметров.	14	
	9.4	Телеграфные уравнения длинных линий, волновое уравнение	14	
	9.5	Линия с отражениями, режимы работы	14	
	9.6	Длинная линия как четырёхполюсник, z-параметры	14	
	9.7	Линия с комплексной нагрузкой, входное сопротивление	14	
	9.8	Волны в длинной линии, вынужденные колебания и резонансы	14	
	9.9	Телеграфные уравнения для волновода	14	
	9.10	Дисперсионное уравнение, фазовая и групповая скорости	14	
10	Анз	генны.	15	
		Физические принципы изучения и приема ЭМ волн	15	
	10.2	Дипольная и рамочная антенны	15	
	10.3	Влияние земли и несимметричный вибратор	15	
		Понятия сопротивления излучения и эффективной площади.	15	
		Мультидипольные решетки. Диаграмма направленности	15	
	10.6	Зеркальные антенны (параболоиды)	15	
	10.7	Большие антенны радиоастрономии (РАТАН-600, Аресибо, АКЦ Пущино)	15	
	10.8	Общая схема радиосвязи	15	

Введение

Место курса. История радиофизики.

Роль радиофизики в развитии астрономии.

1 Линейные радиотехнические цепи.

1.1 Условие квазистационарности.

В общем случае электрические сигналы, проходя по цепям, изменяются во времени:

$$i = i(t), \ u = u(t), \ \Phi = \Phi(t)$$
 и т.д.

В окружающем пространстве имеется электромагнитное поле в виде электромагнитной волны, возникающей при переменных токах, зарядах и др. Волны несут информацию об "изменениях" в соседних точках цепи, что описывается функциями вида

$$f = f(t - \frac{x}{v}),$$

где v — скорость электромагнитной волны в данной среде, x — пространственная координата. Пусть τ_0 — характерное время изменения сигнала. Тогда, если $x \ll v\tau_0$ ($0 \leqslant x \leqslant L$), во всех точках приближенно можно считать функцию f(t,x) одинаковой, т.е. независимой в данный момент момент t от координаты x:

$$f(t,x)\Big|_{x=0} \simeq f(t,x)\Big|_{x=vt} \simeq f(t).$$

Другими словами, мы пренебрегаем эффектами запаздывания. Если L — характерный размер цепи, тогда потребуется:

$$x_{max} = L \ll v au_0 = \lambda$$
 (для гармонического сигнала: $\tau_0 = \frac{2\pi}{\omega}$)

и "условие квазистационарности":

$$\boxed{L \ll \lambda}$$
 или $\frac{\tau}{\tau_0} \ll 1$,

где au — время передачи информации.

Цепи, удовлетворяющие этому условию, называются сосредоточенными цепями. Пример: $\nu=50~\Gamma$ ц, $\lambda=c/\nu\simeq 6\cdot 10^3~$ км. Любая более короткая линия может считаться "сосредоточенной". Это, конечно, следствие низкой частоты.

1.2 Линейные элементы цепей.

Общим свойством простых сосредоточенных цепей является "линейность т.е. подчинение принципу суперпозиции: реакция цепи на суммарный сигнал равна сумме реакций на каждый из сигналов в отдельности. Элементами таких цепей будут: сопротивление (резисторы), емкость (конденсаторы), индуктивность (катушки).

1. Сопротивление R.

Также вводится понятие проводимости $G=\frac{1}{R}$. Размерности $R=[{\rm OM}],\ G=[{\rm Om}^{-1}].$ Связь тока, напряжения и сопротивления (закон Oma): $i=\frac{U}{R}=GU.\ P=Ui-$ мощность. $\Delta W_R=\int\limits_0^t Uidt-$ энергия, выделяемая на резисторе за время от 0 до t.

По отношению к реальным сопротивлениям — это идеализация. Предполагается, что нет зависимостей R(i) или R(U) (в ином случае можно говорить о локальных R и G в окрестности точки i=const, их называют "дифференциальными" характеристиками: $R_{\partial} = \frac{dU}{di} \Big|_{i=0}$, $G_{\partial} = R_{\partial}^{-1}$). На практике зависимость

R(i) может возникнуть, благодаря температурной вариации сопротивления R(T): рост тока сопровождается нагревом и изменением R. Обычно на резисторе указывается предельно допустимая мощность, ниже которой "линейность" с заданной точностью гарантируется.

2. Ёмкость C.

Заряд $q=CU_C$. "Ток смещения": $i=\frac{dq}{dt}=C\frac{dU_C}{dt}$. Энергия, выделяемая за время от 0 до t: $W_C=\frac{1}{C}\int\limits_0^t idt$. Вариация энергии: $\Delta W_C=W_C(t)-W(0)=\frac{C}{2}[U_C^2(t)-U_C^2(0)]$.

Здесь также предполагается C=const, т.е. нет зависимости C(U). Примеры, когда это не выполняется: конденсатор с сегнетоэлектриком, pn-переход и др. Если C=C(U), то при $U=U_0=const$ вводят $C_{\partial}=\frac{dq}{dU}$.

$$arepsilon=rac{arepsilon(0)}{1+\left(rac{arepsilon(0)}{4\pi}
ight)^3BE^2}$$
 — постоянная материала, где $B=const,\,E$ — электрическое поле. Тогда, $C_U=rac{C(0)}{1+bU^2}.$ В

линейных системах эти эффекты опускаются.

3. Индуктивность L.

Магнитный поток $\Phi=Li$. Напряжение $U=\frac{d\Phi}{dt}=L\frac{di}{dt}$. Выделяемая энергия на элементе $W_L=\frac{1}{2}Li^2$. Вариация энергии $\Delta W_L=\frac{L}{2}[i^2(t)-i^2(0)]$.

Для этого элемента также возможно L=L(i). Например, для катушки с сердечником $\mu=\mu(i)\Rightarrow L_{\partial}=\frac{d\Phi}{di}$.

1.3 Источники энергии.

Это тоже элементы радиотехнических цепей: постоянные (батареи, аккумуляторы), переменные (генераторы). Эквивалентная схема источника должна содержать его внутреннее сопротивление.

Здесь известны два предельных случая ("две абстракции" или "идеализации"):

- 1. Генератор тока (идеальный источник тока). Внутреннее сопротивление велико по сравнению с сопротивлением внешней цепи (нагрузки): $R_i \gg R(G_i \to 0)$. Тогда, $i = \frac{U}{R_i + R} \simeq \frac{U}{R_i} = const$ т.е. ток не зависит от R! (источник снабжает нагрузку фиксированным током).
- 2. Генератор напряжения (идеальный источник напряжения). Внутреннее сопротивление мало по сравнению с сопротивлением внешней цепи: $R_i \ll R(R_i \to 0)$. Тогда, $i \simeq \frac{U}{R}$ или $U \simeq iR = U_0$ (напряжение, создаваемое во внешней цепи не зависит от нагрузки).

Реальные источники только приближенно могут быть отнесены к одному из этих генераторов.

- 1.4 Уравнения простейших линейных цепей.
- 1.5 Метод комплексных амплитуд (МКА).
- 1.6 Расчет цепей методом комплексных амплитуд.
- 1.7 Метод преобразования Лапласа. Расчёт переходных режимов.
- 1.8 Последовательный колебательный контур.
- 1.9 Параллельный колебательный контур.
- 1.10 Осциллятор в радиофизике.
- 1.11 Метод ММА в гармоническом приближении.
- 1.12 Линейные четырёхполюсники.
- 1.13 Связанные колебательные контуры.

2 Сигналы и спектры.

- 2.1 Спектр непериодического сигнала.
- 2.2 Спектр периодического сигнала.
- 2.3 Спектр периодической последовательности видео- и радиоимпульсов.
- 2.4 Свойства спектров. Спектральный анализ линейных систем.
- 2.5 Конечные аппроксимации сигналов и спектров.
- 2.6 Оцифровка аналоговых сигналов. Теорема Котельникова.
- 2.7 Дискретное преобразование Фурье. Ошибка оцифровки.

- 3 Флуктуации в радиофизике.
- 3.1 Случайные процессы /Методы описания. Понятие плотности вероятности.
- 3.2 Свойства корреляционной функции стационарного процесса.
- 3.3 Теорема Винера-Хинчина.
- 3.4 Типы шумов в радиоэлектронных цепях. Их спектральные плотности.
- 3.5 Прохождение случайных сигналов через линейные цепи.
- 3.6 Броуновский осциллятор.

4 Нелинейные цепи.

- 4.1 Нелинейные элементы радиоцепей.
- 4.2 Аппроксимация нелинейных характеристик.
- 4.3 Воздействие узкополосного сигнала на нелинейную цепь.
- 4.4 Воздействие бигармонического сигнала.
- 4.5 Детектирование амплитудно-модулированного сигнала.
- 4.6 Резонанс в нелинейном контуре.
- 4.7 Преобразование частоты сигнала.

- 5 Цепи с переменными параметрами.
- 5.1 Принцип параметрического возбуждения осциллятора.
- 5.2 Математическая теория параметрического осциллятора.
- 5.3 Эквивалентная схема параметрического контура.
- 5.4 Параметрические цепи в радиотехнике.
- 5.5 Соотношения Мэнли-Роу.
- 5.6 Вырожденный параметрический усилитель.
- 5.7 Шумы параметрических усилителей.

6 Усиление электромагнитных сигналов.

- 6.1 Усилитель как активный четырёхполюсник.
- 6.2 Измерение усиления в децибелах.
- 6.3 Типы управляющих элементов.
- 6.4 Элементарные усилительные ячейки на биполярном транзисторе.
- 6.5 Типы усилителей: широкополосные, резонансные, полосовые.
- 6.6 Согласование каскадов; усилитель повторитель (катодный, эмиттерный).
- 6.7 Шумы усилителей. Шумовая температура, шум-фактор.
- 6.8 Оптимизация каскадов по мощности и по отношению сигнал/шум.

7 Генерация электромагнитных сигналов.

- 7.1 Усилители с отрицательной обратной связью.
- 7.2 Положительная обратная связь, условия самовозбуждения.
- 7.3 LC-генератор гармонических колебаний.
- 7.4 Импульсные генераторы, мультивибратор.
- 7.5 RC-генераторы гармонических колебаний, генератор Вина.
- 7.6 Мягкий и жесткий режимы генерации.
- 7.7 Ширина линии генерации.

8 Выделение сигнала из шума.

- 9 Цепи с распределёнными параметрами.
- 9.1 Понятие распределённых радиофизических систем.
- 9.2 Двухпроводные линии, коаксиальные кабели, волноводы.
- 9.3 Формулы погонных параметров.
- 9.4 Телеграфные уравнения длинных линий, волновое уравнение.
- 9.5 Линия с отражениями, режимы работы.
- 9.6 Длинная линия как четырёхполюсник, z-параметры.
- 9.7 Линия с комплексной нагрузкой, входное сопротивление.
- 9.8 Волны в длинной линии, вынужденные колебания и резонансы.
- 9.9 Телеграфные уравнения для волновода.
- 9.10 Дисперсионное уравнение, фазовая и групповая скорости.

- 10 Антенны.
- 10.1 Физические принципы изучения и приема ЭМ волн.
- 10.2 Дипольная и рамочная антенны.
- 10.3 Влияние земли и несимметричный вибратор.
- 10.4 Понятия сопротивления излучения и эффективной площади.
- 10.5 Мультидипольные решетки. Диаграмма направленности.
- 10.6 Зеркальные антенны (параболоиды).
- 10.7 Большие антенны радиоастрономии (РАТАН-600, Аресибо, АКЦ Пущино).
- 10.8 Общая схема радиосвязи.

Приложение

тут что-то важное