Synthesizing Safe Smart Contracts using Session Types

ANONYMOUS AUTHOR(S)

Abstract

CCS Concepts: •Software and its engineering \rightarrow General programming languages; •Social and professional topics \rightarrow History of programming languages;

Additional Key Words and Phrases: keyword1, keyword2, keyword3

ACM Reference format:

Anonymous Author(s). 2017. Synthesizing Safe Smart Contracts using Session Types. *PACM Progr. Lang.* 1, 1, Article 1 (January 2017), 4 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 NETWORK SEMANTICS

We define the valid transitions on the entire system, assuming abstract specification of the clients and the (single) server. The network behavior is simple: a client can enqueue messages in its own queue. The miner dequeues a tx from some arbitrary queue, executes it, and appends the resulting event (assumed to be a single item) to the list of events.

types: State, Event, TX; $i \in Agent$

 $c_i: State \times \text{list of Event} \times (State \times TX)$

 q_i : queue of TX Σ^s : $State \times (Agent \times TX) \rightarrow (State \times Event)$

 σ : State

e: list of Event

$$\frac{(c_i, e, (c_i', tx)) \in \Sigma_i^c \quad \forall i \neq j, c_j = c_j'}{(c, q, \sigma, e) \leadsto (c', enque_i(q, tx), \sigma, e)} Send$$

$$\frac{\Sigma^{s}(\sigma,(i,peek(q_{i})) = (\sigma',e')}{(c,q,\sigma,e) \leadsto (c,deque_{i}(q),\sigma',e'::e)} Perform$$

A note.

2017. 2475-1421/2017/1-ART1 \$15.00 DOI: 10.1145/nnnnnnnnnnnnnn

1:2 Anon.

1.1 Server Language

We define a language SL whose programs $p \in SL$ has meaning

$$\llbracket p \rrbracket \in State \times (Agent \times TX) \rightarrow (State \times Event)$$

The intention is that yield expressions will be the only suspension points, and evaluation of such an expression always translates to the sequence:

- (1) finish execution with ev as an output event
- (2) wait for the network to send a request
- (3) inspect the request and continue execution

We use a function $[p] \in State \rightarrow (State \times Event)$ to define the internal state change, without explicitly referring to the input (i, tx) after its binding in the match construct.

$$\frac{-}{[\![\text{match (i, tx) Cs end, } (i', tx')]\!]} = [\![\text{Cs[i/i', tx/tx']}]\!]^{Receive}$$

$$\frac{-}{[\![\text{yield ev; p}]\!]} = (p, ev)$$

 $\frac{\llbracket p1,(i,tx)\rrbracket = (p1',ev1)}{\llbracket \text{par p1 and p2 end},(i,tx)\rrbracket = (\text{par p1' and p2 end},ev1)} ParallelLeft \text{ and symmetrically for p2}$

 $\frac{-}{[par done and p2 end]] = (p2, ev1)} ParallelDone and symmetrically for p2$

$$\frac{-}{\llbracket \text{if * then C1 else C2} \rrbracket = \llbracket C1 \rrbracket} Then \qquad \frac{-}{\llbracket (\textbf{i, *}) \Rightarrow \textbf{p; Cs} \rrbracket = \llbracket p \rrbracket} CaseGo$$

$$\frac{-}{\llbracket \text{if * then C1 else C2} \rrbracket = \llbracket C2 \rrbracket} Else \qquad \qquad \frac{-}{\llbracket (\text{i, *}) \Rightarrow \text{p; Cs} \rrbracket = \llbracket Cs \rrbracket} CaseDrop$$

$$\frac{-}{\llbracket \text{while * do p end; p'} \rrbracket = \llbracket p' \rrbracket} While Done \qquad \frac{\llbracket p \rrbracket = (p', ev)}{\llbracket \text{while * do p end} \rrbracket = (p'; \text{while * do p end}, ev)} While$$

```
3
4
5
6
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
37
38
39
40
41
42
43
44
45
46
47
48
49
```

1 2

```
E: Append-only list
                                                                 R_i: A Queue for actor i
\langle cmd \rangle
                 ::= publish \langle V \rangle
                  | yield; take \langle T \rangle
                        if * then \( cmdList \) else \( cmdList \)
                        while * do \( cmdList \)
             \frac{-}{(E,(i,L,M)::R,\Sigma,\mathsf{take}\; \mathsf{L}.P) \leadsto (E,R,\Sigma,P)} TAKE \quad \frac{\Sigma \vdash \upsilon \leadsto x}{(E,R,\Sigma,\mathsf{publish}\; \mathsf{v}.P) \leadsto (x::E,R,\Sigma,P)} PUB
\frac{L' \neq L}{(E, (i, L', M) :: R, \Sigma, \text{take L}.P)} DROP \qquad \frac{(E, R, \Sigma, \text{take L}.P)}{(E, R, \Sigma, \text{yield; take T}.P) \rightsquigarrow (E, R, \Sigma, \text{takes T}.P)} YL
```

 $\llbracket p \rrbracket \in State \times \text{list of Event} \times (State \times TX)$

1.2 Client Language

We define a language CL whose programs $p \in CL$ has meaning

 $\langle cmd \rangle$::= send $\langle V \rangle : \langle T \rangle$ | read latest $\langle T \rangle$ $deq \langle T \rangle$ if * then \(cmdList \) else \(cmdList \) while * do ⟨*cmdList*⟩

$$\frac{\forall M', (L, M') \notin E'}{(E'.(L, M).E, R_i, \Phi, \text{read latest L}.P) \leadsto (E, R_i, \Phi, P)} RL \qquad \frac{\Sigma \vdash v \leadsto x}{(E, R_i, \Phi, \text{send v: L}.P) \leadsto (E, (i, L, x) :: R_i, \Phi, P)} SEND$$

$$\frac{-YIELD}{((T, M) :: E, R_i, \Phi, \text{deq T}.P) \leadsto (E, R_i, \Phi, P)} DEQ \qquad \frac{-}{-} YIELD$$

2 NOTATIONS

We write $_$ to denote an immaterial value, which is implicitly existentially quantified, and \bot to denote the undefined value. We denote the *size* (number of elements) of a set A by |A|. We write $f: A \to B$ and $f: A \to B$ to denote a *total*, respectively, *partial*, function from A to B. We denote the domain of definition and range of a function $f: A \rightarrow B$ by dom(f) and range(f), respectively, i.e., $dom(f) = \{a \in A \mid f(a) \neq \bot\}$ and $range(f) = \{b \in B \mid \exists a. \ f(a) = b\}$. We write $f : A \longrightarrow_{fin} B$ to denote that f has a finite domain. We denote the set of natural numbers (including zero) by \mathbb{N} . We write $\{m..n\}$, for some $m, n \in \mathbb{N}$, to denote the set of integers $\{i \in \mathbb{N} \mid m \le i \land i \le n\}$. A sequence $\pi = a_1, \ldots, a_n$ over a set A is a function $\pi : \{1..n\} \to A$, from $\{1..n\}$, for some $n \in \mathbb{N}$, to A. We denote the *length* of π by $|\pi| = |\operatorname{dom}(\pi)|$, and its *i*th element, for $i \in \{1..|\pi|\}$, by $\pi(i)$. We denote the *empty sequence* by ϵ , and the concatenation of sequences π_1 and π_2 by $\pi_1 \cdot \pi_2$. We denote the set of sequences over a set A by A.

1:4 Anon.

REFERENCES