Тригонометрическими уравнениями называют уравнения, в которых переменная содержится под знаком тригонометрических функций. К их числу прежде всего относятся простейшие тригонометрические уравнения, т.е. уравнения вида sinx = a, cosx = a, tgx = a, где a- действительное число.

Перед решением уравнений разберем некоторые тригонометрические выражения и формулы.

$$1$$
 радиан $=\frac{180}{\pi}\approx 57$ градусов

1 градус
$$=\frac{\pi}{180}$$
 радиан

Значения тригонометрических функций некоторых углов

Периоды повтора значений тригонометрических функций

Период повторения у синуса и косинуса 2π , у тангенса и котангенса π

Знаки тригонометрических функций по четвертям

Эта информация нам пригодится для использования формул приведения. Формулы приведения необходимы для понижения углов до значения от 0 до 90 градусов.

Чтобы правильно раскрыть формулы приведения необходимо помнить, что:

- 1. если в формуле содержатся углы 180° и 360° (π и 2π), то наименование функции не изменяется; (если же в формуле содержатся углы 90° и 270° ($\frac{\pi}{2}$ и $\frac{3\pi}{2}$), то наименование функции меняется на противоположную (синус на косинус, тангенс на котангенс и т. д.);
- 2. чтобы определить знак в правой части формулы (+ или), достаточно, считая угол α острым, определить знак преобразуемого выражения.

Преобразовать $cos\left(90^{\circ}+\alpha\right)$. Прежде всего, мы замечаем, что в формуле содержится угол 90, поэтому cos измениться на sin.

$$cos(90^{\circ} + \alpha) = sin\alpha$$

Чтобы определить знак перед $sin\alpha$, предположим, что угол α острый, тогда угол $90^\circ + \alpha$ должен оканчиваться во 2-й четверти, а косинус угла, лежащего во 2-й четверти, отрицателен. Поэтому, перед $sin\alpha$ нужен знак -.

 $\cos\left(90^\circ + lpha\right) = -\sin\!lpha$ - это конечный результат преобразования

Четность тригонометрических функций

Косинус четная функция: cos(-t) = cost

Синус, тангенс и котангенс нечетные функции:

$$sin(-t) = -sint; tg(-t) = -tgt; ctg(-t) = -ctgt$$

Тригонометрические тождества

1.
$$tg\alpha = \frac{\sin\alpha}{\cos\alpha}$$

2.
$$ctg\alpha = \frac{cos\alpha}{sin\alpha}$$

 $3. \ sin^2 \alpha + cos^2 \alpha = 1$ (Основное тригонометрическое тождество)

Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса

$$sin\alpha = \pm \sqrt{1 - cos^2 \alpha}$$

$$\cos\alpha = \pm\sqrt{1 - \sin^2\alpha}$$

4.
$$tg\alpha \cdot ctg\alpha = 1$$

$$5. 1 + tg^2\alpha = \frac{1}{\cos^2\alpha}$$

$$6. \ 1 + ctg^2\alpha = \frac{1}{\sin^2\alpha}$$

Вычислить sint, если $cost = \frac{5}{13}$; $t \in \left(\frac{3\pi}{2}; 2\pi\right)$

Найдем sint через основное тригонометрическое тождество. И определим знак, так как $t \in \left(\frac{3\pi}{2}; 2\pi\right)$ -это четвертая четверть, то синус в ней имеет знак минус

$$sint = -\sqrt{1 - cos^2 t} = -\sqrt{1 - \frac{25}{169}} = -\sqrt{\frac{144}{169}} = -\frac{12}{13}$$

Формулы двойного угла

1.
$$sin2\alpha = 2sin\alpha \cdot cos\alpha$$

2.
$$cos2\alpha = cos^2\alpha - sin^2\alpha = 2cos^2\alpha - 1 = 1 - 2sin^2\alpha$$

$$3. tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$$

Формулы суммы и разности

$$\cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2} \cdot \cos\frac{\alpha-\beta}{2}$$
$$\cos\alpha - \cos\beta = 2\sin\frac{\alpha+\beta}{2} \cdot \sin\frac{\beta-\alpha}{2}$$
$$\sin\alpha + \sin\beta = 2\sin\frac{\alpha+\beta}{2} \cdot \cos\frac{\alpha-\beta}{2}$$
$$\sin\alpha - \sin\beta = 2\sin\frac{\alpha-\beta}{2} \cdot \cos\frac{\alpha+\beta}{2}$$

Формулы произведения

$$cos\alpha \cdot cos\beta = \frac{cos(\alpha - \beta) + cos(\alpha + \beta)}{2}$$
$$sin\alpha \cdot sin\beta = \frac{cos(\alpha - \beta) - cos(\alpha + \beta)}{2}$$
$$sin\alpha \cdot cos\beta = \frac{sin(\alpha + \beta) + sin(\alpha - \beta)}{2}$$

Формулы сложения

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$
$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$
$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$
$$\sin(\alpha - \beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta$$

Вычислить sin12cos18 + cos12sin18

Данное выражение является синусом суммы

$$sin12cos18 + cos12sin18 = sin(12 + 18) = sin30 = 0.5$$

Задача (Вписать в ответ число)

Вычислить
$$sin\frac{5\pi}{12}cos\frac{\pi}{12}+cos\frac{\pi}{12}sin\frac{5\pi}{12}$$

Решение:

Данное выражение является синусом суммы

$$sin\frac{5\pi}{12}cos\frac{\pi}{12} + cos\frac{\pi}{12}sin\frac{5\pi}{12} = sin\left(\frac{\pi}{12} + \frac{5\pi}{12}\right) = sin\frac{6\pi}{12} = sin\frac{\pi}{2} = 1$$

Ответ: 1

Обратные тригонометрические функции и простейшие тригонометрические уравнения

Арккосинус

Если, $|a| \le 1$, то arccosa — это такое число из отрезка $[0;\pi]$, косинус которого равен a.

Если,
$$|a| \le 1$$
, то $arccosa = t \Leftrightarrow \begin{cases} \cos(t) = a \\ 0 \le t \le \pi \end{cases}$

$$arcos(-a) = \pi - arccosa$$
, где $0 \le a \le 1$

Уравнение вида cost = a, если, $|a| \le 1$, имеет решение

$$t = \pm arccosa + 2\pi k; k \in \mathbb{Z}$$

Частные случаи

$$cost = 1, t = 2\pi k; k \in \mathbb{Z}$$

$$cost = 0, t = \frac{\pi}{2} + \pi k; k \in \mathbb{Z}$$

$$cost = -1, t = \pi + 2\pi k; k \in \mathbb{Z}$$

Найдите наименьший положительный корень уравнения $\cos \frac{2\pi x}{3} = -\frac{\sqrt{3}}{2}$

$$\cos\frac{2\pi x}{3} = -\frac{\sqrt{3}}{2}$$

$$\frac{2\pi x}{3} = \pm \arccos\left(-\frac{\sqrt{3}}{2}\right) + 2\pi k; k \in \mathbb{Z}$$

$$\frac{2\pi x}{3} = \pm \left(\pi - \arccos\frac{\sqrt{3}}{2}\right) + 2\pi k; k\epsilon Z$$

$$\frac{2\pi x}{3} = \pm \left(\pi - \frac{\pi}{6}\right) + 2\pi k; k \in \mathbb{Z}$$

$$\frac{2\pi x}{3} = \pm \frac{5\pi}{6} + 2\pi k; k \in \mathbb{Z}$$

Далее избавимся от всех величин, мешающих иксу. Для этого разделим обе части уравнения на $\frac{2\pi}{3}$

$$x = \pm \frac{5\pi \cdot 3}{6 \cdot 2\pi} + \frac{2\pi \cdot 3}{2\pi} k$$

$$x = \pm 1,25 + 3k$$

Чтобы найти наименьший положительный корень, подставим вместо \boldsymbol{k} целые значения

$$k = 0$$

$$x_1 = -1,25$$

$$x_2 = 1,25$$

$$\kappa = 1$$

$$x_1 = 3 - 1,25 = 1,75$$

$$x_2 = 3 + 1,25 = 4,25$$

Нам подходит 1, 25 – это и есть результат

Ответ: 1, 25

Арксинус

Если, $|a| \le 1$, то arcsina — это такое число, из отрезка $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, синус которого равен a.

Если,
$$|a| \le 1$$
, то $arcsina = t \Leftrightarrow \begin{cases} sint = a \\ -\frac{\pi}{2} \le t \le \frac{\pi}{2} \end{cases}$

$$arcsin(-a) = -arcsina$$
, где $0 \le a \le 1$

Если, $|a| \le 1$, то уравнение sint = a можно решить и записать двумя способами:

$$1.t_1 = \arcsin a + 2\pi k; k \in \mathbb{Z}$$

$$t_2 = (\pi - \arcsin a) + 2\pi k; k \in \mathbb{Z}$$

$$2.t = (-1)^n \arcsin a + \pi n; n \in \mathbb{Z}$$

3. Частные случаи

$$sint = 0, t = \pi k; k \in Z$$

 $sint = 1, t = \frac{\pi}{2} + 2\pi k; k \in Z$
 $sint = -1, t = -\frac{\pi}{2} + 2\pi k; k \in Z$

Арктангенс

arctga - это такое число, из отрезка $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$, тангенс которого равен a.

$$arctga = t \Leftrightarrow \begin{cases} tgt = a \\ -\frac{\pi}{2} \le t \le \frac{\pi}{2} \end{cases}$$

$$arctg(-a) = -arctga$$

Уравнение tgt = a имеет решение $t = arctga + \pi k; k \in Z$