Tensor Operations: einsum & tensordot

Powerful Functions for Multi-dimensional Array Manipulation

Introduction and Mathematical Foundation

What are einsum and tensordot?

- Two powerful functions for tensor operations in NumPy and PyTorch.
- They provide concise ways to perform dot products, outer products, transpositions, matrix math, and more complex tensor contractions.

Mathematical Foundation

Einstein Summation Convention

The Einstein summation convention implies summation over repeated indices. For example, Cik=AijBjk represents: Cik=j∑AijBjk This convention simplifies tensor notation by removing explicit summation symbols.

Tensor Contraction

Tensor contraction generalizes matrix multiplication to higher-dimensional arrays. It involves element-wise multiplication followed by summation along specific dimensions.

Einsum - Core Concepts

Einstein Summation (einsum)

- A versatile function in NumPy and PyTorch using a special string notation.
- Basic Idea: einsum('input_specs -> output_spec', tensor1, tensor2, ...)
 - Indices repeated in inputs but not in the output are summed out (contracted).
 - Indices appearing in an input but not the output are also summed out.
 - The order of indices in output_spec defines the final tensor's axis order.
 - If -> output_spec is missing, einsum infers it from unsummed input indices, ordered alphabetically.

Syntax:

```
numpy.einsum(subscripts, *operands, ...)
torch.einsum(equation, *operands)
```

Einsum - Vector Operations

einsum for Vector Operations

Result: 6

```
Let u=[1,2,3] and v=[4,5,6].
        Element-wise Product (Hadamard Product): wi=ui · vi
                einsum('i,i->i', u, v)
                Result: [4, 10, 18]
        Dot Product (Inner Product): s=∑iuivi
                einsum('i,i->', u, v) or einsum('i,i', u, v)
                 Result: 32
        Outer Product: Mij=uivj
                einsum('i,j->ij', u, v)
Result:
[[ 4, 5, 6],
[8, 10, 12],
[12, 15, 18]]
           0
        Sum of Elements: s=∑iui
                einsum('i->', u)
```

einsum - Basic Matrix Operations

einsum for Matrix Operations

Let A be (2×3) and B be (3×2) .

einsum - Advanced Matrix Operations

Advanced Matrix Operations with einsum

- Matrix Multiplication with Reduction:
 - Sum columns of P: einsum('ij, jk->i', M1, M2)
 - Sum rows of P: einsum('ij, jk->k', M1, M2)
 - Sum all elements of P: einsum('ij, jk->', M1, M2)
- Trace of a Matrix: tr(M)=∑iMii
 - o einsum('ii->', C_mat)
- **Diagonal Extraction**: di=Mii
 - o einsum('ii->i', C_mat)
- Frobenius Norm (Squared): ||A||F2=∑i∑jAij2
 - o einsum('ij,ij->', A_mat, A_mat)

einsum - Axis Operations & Hadamard

Axis Operations & Hadamard Product with einsum

- Sum along an Axis:
 - Sum over columns (for each row): einsum('ij->i', A_mat)
 - Sum over rows (for each column): einsum('ij->j', A_mat)
- Element-wise Matrix Product (Hadamard): Pij=(M1)ij(M2)ij
 - o einsum('ij,ij->ij', C_mat, D_mat)

einsum - Chained & Tensor Operations

Chained Operations and Higher-Rank Tensors with einsum

- Chained Operations: einsum can combine multiple tensor operations efficiently.
 - \circ Example: (M1M2)w: einsum('ij, jk, k->i', M1, M2, w)
 - \circ Example: M1M2M3: einsum('ij,jk,kl->il', M1, M2, M3)
- Tensor Operations (Rank 3+): einsum excels here.
 - Ellipsis (...) Operator: Placeholder for leading batch dimensions.
 - Example: Batch matrix multiplication einsum('...ij,...jk->...ik', T_A, T_B) for T_A and T_B with shared batch dimensions.
 - Permutation of Axes: Reorders tensor dimensions.
 - Example: Tijk→Tkij': einsum('ijk->kij', Tensor_permute)

tensordot - Introduction & Examples

tensordot

- Performs tensor contractions by summing over specified axes.
- Available in NumPy and PyTorch.

Syntax:

```
numpy.tensordot(a, b, axes) torch.tensordot(a, b, dims)
```

axes / dims Parameter is Key:

- Integer N: Sums over the last N axes of tensor a and the first N axes of b.
 - \circ Example: torch.tensordot(A_ex3, B_ex3, dims=2) where A_ex3 ends with matching dimensions to B_ex3's start (e.g., A(...,4,5), B(4,5,...)). Result shape: (2,3,6,7).
- Tuple of two lists ([a_axes_list], [b_axes_list]):
 - Sums over specified axes: a_axes_list[k] is contracted with b_axes_list[k].
 - o Resulting tensor has a's remaining axes, then b's remaining axes, in that order.
 - Example: torch.tensordot(A_td_torch, B_td_torch, dims=([0,3], [0,2])) (contract A[0] with B[0], A[3] with B[2]). Result shape: (3,4,3,6).

Practical Applications

1. Batch Processing in Neural Networks (Convolution-like Operation)

einsum can express parts of convolutions.

```
# Simulate batch of images and a convolutional kernel
```

```
# Input patch: bchw (batch, channels in, kernel h, kernel w)
```

Kernel: ochw (kernel_out_channels, channels_in, kernel_h, kernel_w)

```
conv_like_op = np.einsum('bcij,ocij->boij', image_patch, kernel_conv)
```

Output: bohw (batch, kernel_out_channels, kernel_h, kernel_w)

Practical Applications - Cont.

2. Attention Mechanisms in Transformers

```
einsum is crucial for attention scores and weighted sums.

# Compute attention scores: Q @ K^T

# Q: bqd, K: bkd -> Scores: bqk

attention_scores = np.einsum('bqd,bkd->bqk', Q_att, K_att)

# Apply attention to values: weights @ V

# weights: bqk, V: bkd -> Output: bqd

attention_output = np.einsum('bqk,bkd->bqd', attention_weights_simplified, V_att)
```

Practical Applications - Cont.

3. Statistical Operations (Covariance Matrix)

```
einsum simplifies statistical computations.

# Covariance matrix: (1/(N-1)) * X_centered^T @ X_centered

# Data_centered: sn (samples, features)

cov_matrix_einsum = np.einsum('sn,sm->nm', data_centered, data_centered) / (num_samples - 1)

# Output: nm (features, features)
```

Performance & Best Practices

Performance Tips and Best Practices

1. Memory Layout and Performance Considerations

For very large arrays, memory layout (Fortran vs. C order) can influence performance. einsum operations are generally efficient, but specific performance can vary.

2. optimize=True Parameter in numpy.einsum

NumPy's einsum has an optimize parameter to significantly improve performance for complex operations (three or more operands) by finding an optimal contraction order.

- # Complex multi-tensor operation: 'ijk,jkl,klm->ilm'
- # Use optimize=True for potential speedups:

np.einsum('ijk,jkl,klm->ilm', A_complex_perf, B_complex_perf, C_complex_perf, optimize=True)

Performance & Best Practices - Cont.

3. Memory Efficiency

Be mindful of memory implications for intermediate arrays, especially with large tensors. einsum strives for efficiency.

Common Patterns

einsum excels with clear, descriptive index strings.

- Matrix transpose: 'ij->ji'
- Batch matrix multiplication: 'bij,bjk->bik'
- Vector dot product: 'i,i->'
- Matrix trace (sum of diagonal): 'ii->'
- Sum all elements (tensor): ' . . . -> '
- Quadratic form (vector-matrix-vector): 'i,ij,j->'

Conclusion

Key Takeaways:

- 1. **Concise Notation**: einsum offers a powerful and concise domain-specific language for tensor operations using Einstein summation convention.
- 2. **Versatility**: Both functions perform a wide array of operations including dot products, outer products, transpositions, permutations, and complex tensor contractions.
- 3. **Performance**: einsum can be highly performant, especially with the optimize flag for complex contractions. tensor dot is also optimized for its specific tasks.
- 4. Readability: While initially cryptic, einsum strings become very readable for those familiar with the notation, clearly expressing tensor manipulation intent.
- 5. Framework Support: Both are available in NumPy for CPU-bound tasks and PyTorch (often with GPU acceleration) for deep learning.

When to Use Each:

- einsum: For flexible control over indices (summing, keeping, reordering), complex multi-tensor contractions, or operations hard to express concisely with standard routines (e.g., attention mechanisms).
- tensordot: When contracting specific pairs of axes between two tensors. It's a good general-purpose tensor dot product when the axes argument clearly defines the contraction.
- Standard operators (@, np.dot, np.multiply, etc.): For very common and simple operations, as they are often the most readable and highly optimized.

Best Practices:

- Clarity: Add comments to complex einsum strings.
- 2. **Optimization**: For numpy.einsum with three or more tensors, use optimize=True.
- 3. **Profiling**: For critical sections, profile einsum against alternatives.
- 4. **Readability vs. Conciseness:** Balance einsum's conciseness with the readability of standard operations.
- 5. **Start Simple**: Begin by reformulating simple operations with einsum and gradually move to complex ones.