Skript zur Vorlesung Analysis II bei Prof. Dr. Dirk Hundertmark

Karlsruher Institut für Technologie ${\bf Sommersemester}~2024$

Dieses Skript ist inoffiziell. Es besteht kein Anspruch auf Vollständigkeit oder Korrektheit.

Inhaltsverzeichnis

1	[*]]	Das eindimensionale Riemann-Integral	9
	1.1	Das Riemann-Integral	
	1.2	Integrabilitätskriterien	(
	1.3	Mittelwertsätze der Integralrechnung	19
		t $[*]$ markierten Kapitel sind noch nicht Korrektur gelesen und bedürfen eventuell nongen.	cł

1.1 Das Riemann-Integral

[16. Apr] Frage: Was ist die Fläche unter einem Graphen?

Definition 1.1.1 (Zerlegung). Eine Zerlegung Z eines kompakten Intervalls I = [a, b] in Teilintervalle I_j (j = 1, ..., k) der Längen $|I_j|$ ist eine Menge von Punkten $x_0, x_1, ..., x_k \in I$ (Teilpunkte von Z) mit

$$a = x_0 < x_1 < x_2 < \cdots < x_k = b$$

und $I_j = [x_{j-1}, x_j]$. Wir setzen $\Delta x_j := x_j - x_{j-1} =: |I_j|$.

Definition 1.1.2 (Feinheit einer Zerlegung). Die Feinheit der Zerlegung Z ist definiert als die Länge des längsten Teilintervalls von Z:

$$\Delta(z) := \max(|I_1|, |I_2|, \dots, |I_k|) = \max(\Delta x_1, \Delta x_2, \dots, \Delta x_k)$$

Notation 1.1.3 (Riemannsche Zwischensumme). Wir setzen

$$B(I) = \left\{ f: I \to \mathbb{R} \mid \sup_{x \in I} |f(x)| < \infty \right\}$$

als die Menge aller beschränkten reellwertigen Funktionen auf I. In jedem I_j wählen wir ein $\xi_j \in I_j$ und setzen $\xi = (\xi_1, \xi_2, \dots, \xi_k)$. Für $f \in B(I)$ setzen wir die Riemannsche Zwischensumme

$$S_Z(f) = S_Z(f,\xi) := \sum_{j=1}^k f(\xi_j) \cdot \Delta x_j = \sum_{j=1}^k f(\xi_j) \cdot |I_j|$$

Notation 1.1.4 (Ober- und Untersumme). Für $f \in B(I)$ setzen wir

$$\underline{m}_{j} \coloneqq \inf_{I_{j}} f = \inf \{ f(x) : x \in I_{j} \}$$

$$\overline{m}_{j} \coloneqq \sup_{I_{j}} f = \sup \{ f(x) : x \in I_{j} \}$$

$$\overline{S}_{Z}(f) \coloneqq \sum_{j=1}^{k} \overline{m}_{j} \cdot \Delta x_{j}$$
(Obersumme)
$$\underline{S}_{Z}(f) \coloneqq \sum_{j=1}^{k} \underline{m}_{j} \cdot \Delta x_{j}$$
(Untersumme)

Damit gilt für $x \in I_j$

$$\underline{m}_{j} \leq f(x) \leq \overline{m}_{j}$$

$$\Rightarrow \underline{m}_{j} \leq f(\xi_{j}) \leq \overline{m}_{j}$$

$$\Rightarrow \underline{S}_{Z}(f) \leq S_{Z}(f, \xi) \leq \overline{S}_{Z}(f)$$

Wir wollen die Zerlegung Z systematisch verfeinern.

Definition 1.1.5 (Verfeinerung einer Zerlegung). Eine Zerlegung Z^* von I ist eine Verfeinerung der Zerlegung Z von I, falls alle Teilpunkte von Z auch Teilpunkte von Z^* sind.

Definition 1.1.6 (Gemeinsame Verfeinerung). Die gemeinsame Verfeinerung $Z_1 \vee Z_2$ zweier Zerlegungen Z_1, Z_2 von I ist die Zerlegung von I, deren Teilpunkte gerade die Teilpunkte von Z_1 und Z_2 sind.

Lemma 1.1.7. Ist Z^* eine Verfeinerung der Zerlegung Z von I und $f \in B(I)$. Dann gilt

$$\underline{S}_{Z}(f) \leq \underline{S}_{Z^{*}}(f) \leq \overline{S}_{Z^{*}}(f) \leq \overline{S}_{Z}(f)$$

Beweis. Z^* enthält alle Teilpunkte von Z, nur mehr.

SCHRITT 1: Angenommen Z^* enthält genau einen Teilpunkt $(y_{(l+1)})$ mehr als Z. Das heißt

$$y_j = x_j \quad \forall \, 0 \le j \le l$$

$$x_l < y_{l+1} < x_{l+1}$$

$$y_{j+1} = x_j \quad \forall \, l+1 \le j \le k$$

Dann gilt

$$\underline{S}_{Z}(f) = \sum_{j=1}^{k} \underline{m}_{j} \Delta x_{j} = \sum_{j=1}^{l} \underline{m}_{j} \Delta x_{j} + \underline{m}_{l+1} \Delta x_{l+1} + \sum_{j=l+2}^{k} \underline{m}_{j} \Delta x_{j}$$

$$\underline{m}_{j} = \inf_{I_{j}} f = \inf_{I_{j}^{*}} f = \underline{m}_{j}^{*} \quad \forall 0 \leq j \leq l$$

$$\underline{m}_{j} = \inf_{I_{j}} f = \inf_{I_{j+1}^{*}} f = \underline{m}_{j+1}^{*} \quad \forall j \geq l+2$$

$$I_{j} = [x_{j}, x_{j-1}] = [y_{j+1}, y_{j}] = I_{j+1}^{*} \quad \forall j \geq l+2$$

$$\Rightarrow \sum_{j=l+2}^{k} \underline{m}_{j} \Delta x_{j} = \sum_{j=l+2}^{k} \underline{m}_{j+1}^{*} \Delta y_{j+1} = \sum_{j=l+3}^{k+1} \underline{m}_{j}^{*} \Delta y_{j}$$

$$\underline{m}_{l+1} \Delta x_{l+1} = \underline{m}_{l+1} (x_{l+1} - x_{l}) = \underline{m}_{l+1} (y_{l+2} - y_{l})$$

$$= \underline{m}_{l+1} (y_{l+2} - y_{l+1} + y_{l+1} - y_{l})$$

$$= \underline{m}_{l+1} \Delta y_{l+2} + \underline{m}_{l+1} \Delta y_{l+1}$$

$$\leq \underline{m}_{l+2}^{*} \Delta y_{l+2} + \underline{m}_{l+1}^{*} \Delta y_{l+1}$$

Insgesamt ergibt sich

$$\underline{S}_{Z}(f) \leq \sum_{j=1}^{l} \underline{m}_{j}^{*} \Delta y_{j} + \underline{m}_{l+1}^{*} \Delta y_{l+1} + \underline{m}_{l+2}^{*} \Delta y_{l+2} + \sum_{j=l+3}^{k+1} \underline{m}_{j}^{*} \Delta y_{j} = \underline{S}_{Z^{*}}(f)$$

ähnlich zeigt man $\overline{S}_Z(f) \geq \overline{S}_{Z^*}(f)$.

SCHRITT 2: Sei Z^* eine beliebige Verfeinerung von Z. Wir nehmen eine endliche Folge von Einpunkt-Verfeinerungen $Z = Z_0, Z_1, Z_2, \ldots, Z_r = Z^*$. Dabei hat Z_{s+1} genau einen Punkt mehr als Z_s . Dann gilt nach SCHRITT 1, dass

$$\underline{S}_{Z}(f) \leq \underline{S}_{Z_{1}}(f) \leq \dots \leq \underline{S}_{Z^{*}}(f)$$

$$\overline{S}_{Z}(f) \geq \overline{S}_{Z_{1}}(f) \geq \dots \geq \overline{S}_{Z^{*}}(f)$$

Schritt 3: Sei $\xi^* = (\xi_1^*, \xi_2^*, \dots, \xi_l^*)$ der Zwischenpunkt zur Zerlegung Z^* . Dann gilt

$$S_{Z^*}(f) \le S_{Z^*}(f, \xi^*) \le \overline{S}_{Z^*}(f)$$

Lemma 1.1.8. Seien Z_1 , Z_2 Zerlegungen von I. Dann gilt

$$\underline{S}_{Z_1}(f) \le \overline{S}_{Z_2}(f) \qquad \forall f \in B(I)$$

Beweis. Es gilt nach Lemma 1.1.7, dass

$$\underline{S}_{Z_1}(f) \le \underline{S}_{Z_1 \vee Z_2}(f) \le \overline{S}_{Z_1 \vee Z_2}(f) \le \overline{S}_{Z_2}(f)$$

Bemerkung 1.1.9. Für I = [a, b] und $f \in B(I)$ gilt immer

$$|I| \cdot \inf_{I} f \le \underline{S}_{Z}(f) \le \overline{S}_{Z}(f) \le |I| \cdot \sup_{I} f$$

für alle Zerlegungen Z von I. Somit sind

$$\left\{ \overline{S}_{Z}(f):Z\text{ ist eine Zerlegung von }I\right\}$$

und

$$\{\underline{S}_{Z}(f): Z \text{ ist eine Zerlegung von } I\}$$

beschränkte, nicht-leere Teilmengen von \mathbb{R} .

Definition 1.1.10 (Ober- und Unterintegral). Es sei I = [a, b] und $f \in B(I)$. Dann definieren wir

$$\overline{J}(f) \coloneqq \inf \left\{ \overline{S}_Z(f) : Z \text{ ist Zerlegung von } I \right\}$$
 (Oberintegral)
$$\underline{J}(f) \coloneqq \sup \left\{ \underline{S}_Z(f) : Z \text{ ist Zerlegung von } I \right\}$$
 (Unterintegral)

Lemma 1.1.11. Es sei Z eine Zerlegung von I. Dann gilt

$$\underline{S}_{Z}(f) \leq \underline{J}(f) \leq \overline{J}(f) \leq \overline{S}_{Z}(f)$$

Beweis. Nach Lemma 1.1.8 gilt für zwei beliebige Zerlegungen $\mathbb{Z}_1,\,\mathbb{Z}_2$

$$\underline{S}_{Z_1}(f) \le \overline{S}_{Z_2}(f)$$

Wir fixieren Z_2 und erhalten

$$\Rightarrow \sup \big\{ \underline{S}_{Z_1}(f) : Z_1 \text{ ist eine Zerlegung von } I \big\} \leq \overline{S}_{Z_2}(f)$$

$$\Rightarrow \underline{J}(f) \leq \overline{S}_{Z_2}(f)$$

$$\Rightarrow \underline{J}(f) \leq \inf \big\{ \overline{S}_{Z_2}(f) : Z_2 \text{ ist eine Zerlegung von } I \big\}$$

$$\Rightarrow \underline{J}(f) \leq \overline{J}(f)$$

$$\Rightarrow \underline{S}_Z(f) \leq \underline{J}(f) \leq \overline{J}(f) \leq \overline{S}_Z(f)$$

Definition 1.1.12 (Integral). Es sei I = [a, b]. $f \in B(I)$ heißt (Riemann-)integrierbar, falls

$$J(f) = \overline{J}(f)$$

In diese Fall nennen wir $J(f)\coloneqq \underline{J}(f)=\overline{J}(f)$ das bestimmte Integral von f über [a,b] und schreiben

$$\int_a^b f(x) dx = \int_a^b f dx = \int_I f(x) dx = \int_I f dx =: J(f)$$

Die Klasse der Riemann-integrierbaren Funktionen $f \in B(I)$ nennen wir R(I).

[18. Apr] Beispiel 1.1.13 (Konstante Funktion). f(x) := c auf [a, b] für eine Konstante $c \in \mathbb{R}$. Dann gilt

$$\int_{a}^{b} f(x) \, \mathrm{d}x = c \cdot (b - a)$$

Beispiel 1.1.14. Die Funktion $f:[0,1] \to \mathbb{R}$

$$f(x) \coloneqq \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & \text{sonst} \end{cases}$$

ist nicht Riemann-integrierbar, weil $\overline{J}(f) = 1$ und $\underline{J}(f) = 0$.

1.2 Integrabilitätskriterien

Satz 1.2.1 (1. Kriterium). Es sei $f \in B(I)$. Dann gilt $f \in R(I)$ genau dann, wenn

$$\forall \varepsilon > 0 \; \exists \, \text{Zerlegung} \; Z \; \text{von} \; I \; \text{mit} \; \overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon$$

Beweis. "←" Nach Lemma 1.1.11 gilt

$$\underline{S}_Z(f) \le \underline{J}(f) \le \overline{J}(f) \le \overline{S}_Z(f)$$

Sei $\varepsilon > 0$, dann gilt

$$0 \le \overline{J}(f) - \underline{J}(f) \le \overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon$$

$$\Rightarrow 0 \le \overline{J}(f) - \underline{J}(f) \le 0$$

$$\Rightarrow f \in R(I)$$

" \Rightarrow "Angenommen $f \in R(I)$, das heißt

$$\begin{split} \overline{J}(f) &= \underline{J}(f) \\ \overline{J}(f) &= \inf \left\{ \overline{S}_Z(f) : Z \text{ ist eine Zerlegung von } I \right\} \\ \underline{J}(f) &= \sup \left\{ \underline{S}_Z(f) : Z \text{ ist eine Zerlegung von } I \right\} \end{split}$$

Das heißt zu $\varepsilon > 0$ existieren Zerlegungen Z_1, Z_2 von I mit

$$\overline{J}(f) + \frac{\varepsilon}{2} > \overline{S}_{Z_1}(f)$$

$$\underline{J}(f) - \frac{\varepsilon}{2} < S_{Z_2}(f)$$

Da $f \in R(I)$ gilt $\underline{J}(f) = \overline{J}(f)$. Wir definieren die gemeinsame Verfeinerung $Z \coloneqq Z_1 \vee Z_2$. Dann gilt

$$\overline{S}_{Z}(f) - \underline{S}_{Z}(f) < \overline{J}(f) + \frac{\varepsilon}{2} - \left(\underline{J}(f) - \frac{\varepsilon}{2}\right)$$

$$= \overline{J}(f) - \underline{J}(f) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Satz 1.2.2 (2. Kriterium). Sei $f \in B(I)$. Dann gilt $f \in R(I)$ genau dann, wenn

 $\forall\,\varepsilon>0\;\exists\,\delta>0\;\forall\,\text{Zerlegungen}\,\,Z\,\,\text{von}\,\,I\,\,\text{mit Feinheit}\,\,\Delta(Z)<\delta\colon\overline{S}_Z(f)-\underline{S}(f)<\varepsilon$

Beweis. "←" wird von Satz 1.2.1 bereits impliziert.

" \Rightarrow " Sei $f \in R(I)$ und $\varepsilon > 0$. Dann gilt nach Satz 1.2.1, dass eine Zerlegung $Z' = (x'_0, x'_1, \dots, x'_l = b)$ von I mit

$$\overline{S}_Z(f) - \underline{S}_Z(f) < \frac{\varepsilon}{2}$$

existiert. Wähle eine andere Zerlegung Z von I mit $\Delta(Z) < \delta$, wobei $\delta > 0$ noch später gewählt wird. Setze $Z^* = Z' \vee Z$. Nach Lemma 1.1.7 und Satz 1.2.1 gilt

$$\overline{S}_{Z^*}(f) - \underline{S}_{Z^*}(f) < \frac{\varepsilon}{2}$$

Wir wollen die Ober- und Untersumme von Z^* mit denen in Z vergleichen.

$$\overline{S}_{Z}(f) - \underline{S}_{Z^{*}}(f) = \sum_{j} \overline{m}_{j} \cdot |I_{j}| - \sum_{t} \overline{m}_{t} \cdot |I_{t}|$$

wobei $I_j = [x_{j-1}, x_j]$. Da Z^* eine Verfeinerung von Z ist, sind alle Teilpunkte von Z auch Teilpunkte von Z^* . Das heißt die Intervalle I_j (zu Z) unterscheiden sich von den Intervallen I_j^* (zu Z^*) sofern Punkte x'_{ν} (Teilpunkte von Z^*) im Inneren von I_j liegen. Also gilt

$$I_Z^* \cap I_i \neq \varnothing \Rightarrow I_Z^* \subseteq I_i$$

Frage: Wie viele Intervalle I_j existieren maximal, für die I_j eine Verfeinerung von Z oder ? hinter reellen I_j^* ist? Dann muss mindestens ein Punkt von der Zerlegung Z' unterhalb von I_j liegen. Wir haben l Punkte in Zerlegung Z'. Das heißt die Anzahl solcher Intervalle I_j ist maximal l.

$$\overline{S}_{Z}(f) - \overline{S}_{Z^{*}}(f) = \sum_{j} \overline{m}_{j} \cdot |I_{j}| - \sum_{t} \overline{m}_{t}^{*} \cdot \left|I_{j}^{*}\right|$$

$$= \sum_{j} \left(\overline{m}_{j} \cdot |I_{j}| - \sum_{t:I_{z}^{*} \subseteq I_{j}} \overline{m}_{t}^{*} \cdot |I_{t}^{*}|\right)$$

$$= \sum_{j} \sum_{t:I_{t}^{*}} (\overline{m}_{j} - \overline{m}_{t}^{*}) \cdot |I_{t}^{*}|$$

$$\overline{S}_{Z}(f) - \overline{S}_{Z}(f) = \sum_{j} \sum_{t:I_{t}^{*}} \left(\underline{\overline{m}_{j} - \overline{m}_{t}^{*}}\right) \cdot |I_{t}^{*}|$$

$$= \sum_{j} \sum_{t:I_{t}^{*}} (\overline{m}_{j} - \overline{m}_{t}^{*}) \cdot |I_{z}^{*}|$$

$$f(x) = f(y) + f(x) - f(y)$$

$$\leq f(y) + \sup_{s_{1}, s_{2} \in I} \{f(s_{1}) - f(s_{2})\}$$

$$f(x) \leq f(y) + 2 \|f\|_{\infty}$$

genauso

$$f(x) = f(y) + f(x) - f(y)$$

$$\geq f(y) + \inf_{s_1, s_2 \in I} \{ f(s_1) - f(s_2) \}$$

$$\geq f(y) - 2 \| f \|_{\infty}$$

$$\Rightarrow \overline{m}_j = \sup_{s \in I_j} f(x) \le 2 \|f\|_{\infty} + f(y) \quad \forall y \in I_t^*$$

$$\Rightarrow \overline{m}_j \le 2 \|f\|_{\infty} + \sup_{?} f = 2 \|f\|_{\infty} + \overline{m}_z^*$$

$$\vdots \quad ????$$

Genauso zeigt man

$$\underline{S}_{Z}(f) - \underline{S}_{Z^{*}}(f) \geq -2 \|f\|_{\infty} l \cdot \delta$$

$$\Rightarrow \overline{S}_{Z}(f) \leq \overline{S}_{Z^{*}} + 2 \|f\|_{\infty} l \cdot \delta$$

$$\underline{S}_{Z}(f) \geq \underline{S}_{Z^{*}} - 2 \|f\|_{\infty} l \cdot \delta$$

$$\Rightarrow \overline{S}_{Z}(f) - \underline{S}_{Z}(f) \leq \overline{S}_{Z^{*}}(f) + 2 \|f\|_{\infty} l \delta - (\underline{S}_{Z^{*}}(f) - 2 \|f\|_{\infty} l \cdot \delta)$$

$$=?$$

$$< \frac{\varepsilon}{2} + 4 \|f\|_{\infty} l \cdot \delta$$

Jetzt wähle $\delta = \frac{\varepsilon}{\delta(\|f\|_{\infty} + 1) \cdot l}$

$$\Rightarrow \ \leq \frac{\varepsilon}{2} + 4 \left\| f \right\|_{\infty} \cdot \frac{\varepsilon}{\delta \left(\left\| f \right\| + 1 \right) \cdot l} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

sofern um $\Delta(z) < \delta$ ist.

Anwendung 1.2.3. Zerlegung Z_n von I mit Feinheit $\Delta(Z_n) \to 0$ für $n \to \infty$. ξ_n Zwischenpunkt von Zerlegung Z_n . Die Riemannnsumme

$$S_{z_n}(f,\xi_n) = \sum_{j=1}^{k_n} f(\xi_j^n) \cdot \left| I_j^n \right|$$

konvergiert gegen J(f) falls $f \in R(I)$.

[19. Apr] **Bemerkung 1.2.4.** Sei $z=(x_0,x_1,\ldots,x_k)$ Zerlegung von I=[a,b] und $\zeta=(\zeta_1,\zeta_2,\ldots,\zeta_k)$ Zwischenpunkt zur Zerlegung Z, sodass

$$x_{j-1} \le \zeta_j \le x_j \quad \forall j = 1, \dots, k$$

Dann ist die Riemannsche Zwischensumme

$$S_Z(f) = \sum_{j=1}^k f(\zeta_j) \cdot |I_j|$$

linear in f.

Korollar 1.2.5. Sei $f \in B(I)$. Dann gilt $f \in R(I)$ genau dann, wenn für jede Folge $(Z_n)_n$ von Zerlegungen Z_n von I mit Feinheit $\Delta(z_n) \to 0$ für $n \to \infty$ und jede Folge $(\xi_n)_n$ von Zwischenpunkten ξ_n zugehörig zu Z_n ein Grenzwert $\lim_{n \to \infty} S_{Z_n}(f, \xi_n)$ existiert.

Darüber hinaus ist in diesem Fall obiger Grenzwert unabhängig von der Wahl der Zerlegung Z_n und der Zwischenpunkten ξ_n und es gilt

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} S_{Z_n}(f, \xi_n)$$

Beweis. "⇒ " Sei $f \in R(I)$ zu $\varepsilon > 0$ $\exists \, \delta > 0$: $\overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon \, \forall$ Zerlegungen Z von I mit $\Delta(z) < \delta$. Da $\Delta(z_n) \to 0$ für $n \to \infty$

$$\Rightarrow \exists N \in \mathbb{N}_0 : \Delta(Z_n) < \delta \quad \forall n \ge N$$

und

$$\underline{S}_{Z}(f) \leq \underline{J}(f) = J(f) \leq \overline{S}_{Z}(f)$$

$$\underline{S}_{Z}(f) \leq S_{Z_{n}}(f, \xi_{n}) \leq \overline{S}_{Z_{n}}(f)$$

$$\Rightarrow |J(f) - S_{Z_{n}}(f, \xi_{n})| < \varepsilon \quad \forall n \geq N$$

das heißt

$$\lim_{n \to \infty} S_{Z_n}(f, \xi_n) = J(f) = \int_a^b f \, \mathrm{d}x$$

" \Leftarrow " SCHRITT 1: Angenommen $\lim_{n\to\infty} S_{Z_n}(f,\xi_n)$ existiert für jede Folge $(Z_n)_n$ von Zerlegungen von I mit $\Delta(Z_n)\to 0$ und jede Wahl von Zwischenpunkten $(\xi_n)_n$ zu Z_n . Seien $(Z_n^1)_n$, $(Z_n^2)_n$ zwei solche Folgen von Zerlegungen mit $(\xi_n^1)_n$, $(\xi_n^2)_n$ zugehörigen Folgen von Zwischenpunkten. Sei $(Z_n)_n$ eine neue Folge von Zerlegungen von I, wobei $Z_{2k}=Z_k^2$ und $Z_{2k-1}=Z_k^1$, außerdem sei $\xi_{2k}=\xi_k^2$ und $\xi_{2k-1}=\xi_k^1$. Dann wissen wir, dass

$$\lim_{n\to\infty} S_{Z_n}(f,\xi_n)$$

existiert und gilt

$$\lim_{n \to \infty} S_{Z_n}(f, \xi_n) = \lim_{n \to \infty} S_{Z_{2n}}(f, \xi_{2n})$$

$$= \lim_{n \to \infty} S_{Z_{2n-1}}(f, \xi_{2n-1})$$

$$= \lim_{n \to \infty} S_{Z_n^2}(f, \xi_n^2)$$

$$= \lim_{n \to \infty} S_{Z_n^1}(f, \xi_n^1)$$

SCHRITT 2: (Später)

Satz 1.2.6. Der Raum R(I) auf einem kompakten Intervall I = [a, b] ist ein Vektorraum und $J: R(I) \to \mathbb{R}$ $f \mapsto J(f) = \int_a^b f \, \mathrm{d}x$ ist eine lineare Abbildung. Für $f, g \in R(I)$ und $\alpha, \beta \in \mathbb{R}$ folgt $\alpha f + \beta g \in R(I)$ und $J(\alpha f + \beta g) = \alpha J(f) + \beta J(g)$.

Beweis. Schritt 1: Sei $h:I\to\mathbb{R}$ und Zerlegung Z von Imit zugehörigen Intervallen Ij. Dann gilt

$$\begin{split} \overline{m}_j &= \sup_{x \in I_j} h(x) \quad \underline{m}_j = \inf_{y \in I_j} h(y) \\ &\Rightarrow \overline{m}_j - \underline{m}_j = \sup_{x \in I_j} h(x) - \inf_{y \in I_j} h(y) \\ &= \sup_{x \in I_j} h(x) + \sup_{y \in I_j} (-h(y)) \\ &= \sup_{x, y \in I_j} (h(x) - h(y)) \\ &= \sup_{x, y \in I_j} (h(y) - h(x)) \qquad \text{(Vertauschen von } x, y) \\ &= \sup_{x, y \in I_j} (|h(x) - h(y)|) \end{split}$$

$$\overline{m}_j(h) - \underline{m}_j(h) = \sup_{x,y \in I_j} (|h(x) - h(y)|) \tag{1}$$

Nehmen $h = \alpha f + \beta g$; $f, g \in R(I)$; $\alpha, \beta \in \mathbb{R}$

$$\begin{split} h(x) - h(y) &= \alpha \left(f(x) - f(y) \right) + \beta \left(g(x) - g(y) \right) \\ |h(x) - h(y)| &\leq |\alpha| \left| f(x) - f(y) \right| + |\beta| \left| g(x) - g(y) \right| \\ \Rightarrow \overline{m}_j(h) - \underline{m}_j(h) &= \sup_{x \in I_j} h(x) - \inf_{y \in I_j} h(y) \\ &\stackrel{(1)}{=} \sup_{x,y \in I_j} \left(|h(x) - h(y)| \right) \\ &\leq |\alpha| \cdot \sup_{x,y \in I_j} \left| f(x) - f(y) \right| + |\beta| \cdot \sup_{x,y \in I_j} \left| g(x) - g(y) \right| \\ \Rightarrow \overline{S}_Z(h) - \underline{S}_Z(h) &= \sum_j \left(\overline{m}_j(h) - \underline{m}_j(h) \right) \left| I_j \right| \\ &\leq |\alpha| \sum_j \left(\overline{m}_j(f) - \underline{m}_j(f) \right) \left| I_j \right| + |\beta| \sum_j \left(\overline{m}_j(g) - \underline{m}_j(g) \right) \left| I_j \right| \\ \Rightarrow \overline{S}_Z(h) - \underline{S}_Z(h) &\leq |\alpha| \left(\overline{S}_Z(f) - \underline{S}_Z(f) \right) + |\beta| \left(\overline{S}_Z(g) - \underline{S}_Z(g) \right) \\ \Rightarrow \forall \varepsilon > 0 \ \exists \ Z_1 \colon \overline{S}_{Z_1}(f) - \underline{S}_{Z_1}(f) < \frac{\varepsilon}{2\left(1 + |\alpha| + |\beta|\right)} \\ \forall \varepsilon > 0 \ \exists \ Z_2 \colon \overline{S}_{Z_2}(g) - \underline{S}_{Z_2}(g) < \frac{\varepsilon}{2\left(1 + |\alpha| + |\beta|\right)} \end{split}$$

Wähle $Z = Z_1 \vee Z_2$

$$\Rightarrow \overline{S}_{Z}(h) - \underline{S}_{Z}(h) < |\alpha| \frac{\varepsilon}{2(1 + |\alpha| + |\beta|)} + |\beta| \frac{\varepsilon}{2(1 + |\alpha| + |\beta|)}$$
$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

nach Satz 1.2.1 ist $h = \alpha f + \beta g$ Riemann-integrierbar.

Schritt 2: Für Zwischensummen

$$S_Z(h,\xi) = \sum_j h(\xi_j) |I_j|$$
$$= \alpha S_Z(f,\xi) + \beta S_Z(g,\xi)$$

haben wir Linearität!

Für $h, f, g \in R(I)$ gilt nach Korollar 1.2.5

$$J(h) = \lim_{n \to \infty} S_{Z_n}(h, \xi_n)$$

$$= \lim_{n \to \infty} (\alpha S_{Z_n}(f, \xi_n) + \beta S_{Z_n}(g, \xi_n)) \qquad (\Delta(Z_n) \to 0)$$

$$\stackrel{1.2.5}{=} \alpha \lim S_{Z_n}(f, \xi_n) + \beta \lim_{n \to \infty} S_{Z_n}(g, \xi_n)$$

$$= \alpha J(f) + \beta J(g)$$

Satz 1.2.7. Seien $f, g \in R(I)$. Dann folgt $f \cdot g \in R(I)$ sowie $|f| \in R(I)$. Ist außerdem $|g| \ge c > 0$ auf I für ein konstantes c > 0, so ist auch $\frac{f}{g} \in R(I)$.

Beweis. Es sei $h(x) = f(x) \cdot g(x)$ für $x \in I$. Dann gilt

$$|h(x) - h(y)| = |f(x)g(x) - f(y)g(y)|$$

$$\begin{split} &=\left|g(x)\left(f(x)-f(y)\right)+f(y)\left(g(x)-g(y)\right)\right|\\ &\leq \left\|g\right\|_{\infty}\cdot\left|f(x)-f(y)\right|+\left\|f\right\|_{\infty}\cdot\left|g(x)-g(y)\right|\\ \left\|f\right\|_{\infty}&=\sup_{x\in I}\left|f(x)\right|<\infty \end{split}$$

Z Zerlegung von I ist I_i ; Teilintervalle

$$\begin{split} \overline{S}_{Z}(h) - \underline{S}_{Z}(h) &= \sum_{j} \left(\overline{m}_{j}(h) - \underline{m}_{j}(h) \right) \cdot |I_{j}| \\ \overline{m}_{j}(h) - \underline{m}_{j}(h) &= \sup_{I_{j}} h - \inf_{I_{j}} h = \sup_{x,y \in I_{j}} |h(x) - h(y)| \\ &\leq \|g\|_{\infty} \left(\overline{m}_{j}(f) - \underline{m}_{j}(f) \right) + \|f\|_{\infty} \left(\overline{m}_{j}(y) - \underline{m}_{j}(g) \right) \\ \overline{S}_{Z}(h) - \underline{S}_{Z}(h) &\leq \|f\|_{\infty} \cdot \left| \overline{S}_{Z}(g) - \underline{S}_{Z}(g) \right| + \|g\|_{\infty} \left(\overline{S}_{Z}(f) - \underline{S}_{Z}(f) \right) \end{split}$$

Zu $\varepsilon > 0$

$$\exists Z_1 \colon \overline{S}_{Z_1}(f) - \underline{S}_{Z_1}(f) < \frac{\varepsilon}{2(1 + ||f||_{\infty})}$$
$$\exists Z_2 \colon \overline{S}_{Z_2}(f) - \underline{S}_{Z_2}(f) < \frac{\varepsilon}{2(1 + ||g||_{\infty})}$$

Es sei $Z := Z_1 \vee Z_2$

$$\Rightarrow \overline{S}_Z(h) - \underline{S}_Z(h) \le \|f\|_{\infty} \cdot \left(\overline{S}_Z(g) - \underline{S}_Z(g)\right) + \|g\|_{\infty} \cdot \left(\overline{S}_Z(f) - \underline{S}_Z(f)\right) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Das heißt $h = f \cdot g \in R(I)$ nach Satz 1.2.1.

Für |f| verwende

$$||f(x)| - |f(y)|| \le |f(x) - f(y)|$$

$$\Rightarrow \overline{m}_j(|f|) - \underline{m}_j(|f|) = \sup_{x,y \in I_j} (||f(x)| - |f(y)||)$$

$$\le \sup_{x,y \in I_j} (|f(x) - f(y)|)$$

$$= \overline{m}_j(f) - \underline{m}_j(f)$$

wie vorher folgt also $|f| \in R(I)$.

Für $\frac{f}{g}$ muss nur $\frac{1}{g}$ betrachtet und die Multiplikationsregel angewendet werden. Es gilt

$$\left| \frac{1}{g(x)} - \frac{1}{g(y)} \right| = \frac{|g(x) - g(y)|}{|g(x)| |g(y)|}$$

$$\leq \frac{1}{\varepsilon^2} |g(x) - g(y)|$$

$$\Rightarrow \overline{m}_j \left(\frac{1}{y} \right) - \underline{m}_j \left(\frac{1}{y} \right) \leq \frac{1}{\varepsilon^2} \left(\overline{m}_j(y) - \underline{m}_j(y) \right)$$

Dann wie vorher.

[23. Apr] **Beispiel 1.2.8** (Exponentialfunktion). Sei $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{\alpha x}, n \in \mathbb{N}$ und I = [a, b]. Wir betrachte eine äquidistante Zerlegung $Z_n = (x_0^n, x_1^n, \dots, x_n^n)$ und $h_n = \frac{b-a}{n}$. sowie $x_j = x_j^n = a + jh_n$. Wenn $\alpha > 0$ gilt

$$\overline{m}_j = \sup_{I_j} f = f(x_j) = f\left(x_j^n\right) = e^{\alpha x_j} = e^{\alpha a + \alpha h_j}$$

$$\underline{m}_{j} = \inf_{I_{j}} f = f(x_{j-1}) = f\left(x_{j-1}^{n}\right) = e^{\alpha x_{j-1}}$$

$$\Rightarrow \overline{S}_{Z}(f) = \overline{S}_{Z_{n}}(f) = \sum_{j=1}^{n} \overline{m}_{j} \cdot |I_{j}| = \sum_{j=1}^{n} e^{\alpha x_{j}} \cdot h$$

$$= h \cdot \sum_{j=1}^{n} e^{\alpha(a+jh)} = h \cdot \sum_{j=1}^{h} e^{\alpha a} \cdot e^{\alpha jh}$$

$$= h \cdot e^{\alpha a} \cdot e^{\alpha h} \cdot \sum_{j=1}^{n} \left(e^{\alpha h}\right)^{j-1} = \sum_{j=0}^{n-1} \left(e^{\alpha h}\right)^{j}$$

$$= \frac{\left(e^{\alpha h}\right)^{h} - 1}{e^{\alpha h} - 1} \qquad (Geometrische Summe)$$

$$\overline{S}_{Z}(f) = \frac{h}{e^{\alpha h} - 1} \cdot e^{\alpha h} \cdot e^{\alpha a} \cdot \left(e^{\alpha h \cdot n} - 1\right)$$

$$= \frac{h_{n}}{e^{\alpha h_{n}} - 1} e^{\alpha h_{n}} \left(e^{\alpha b - e^{\alpha a}}\right)$$

$$\lim_{n \to \infty} \overline{S}_{Z_{n}}(f) = \frac{1}{\alpha} \left(e^{\alpha h} - e^{\alpha a}\right)$$

$$\underline{S}_{Z} = \underline{S}_{Z_{n}} = \sum_{j=1}^{n} \underline{m}_{j} \cdot |I_{j}| = h \cdot \sum_{j=1}^{n} \left(e^{\alpha h}\right)^{j}$$

$$= h \cdot e^{\alpha a} \cdot \sum_{j=1}^{n} \left(e^{\alpha h}\right)^{j-1} = h \cdot e^{\alpha a} \sum_{j=0}^{n-1} \left(e^{\alpha h}\right)^{j}$$

$$= h \cdot e^{\alpha a} \cdot \left(e^{\alpha h}\right)^{n} - 1$$

$$= \frac{h}{e^{\alpha h} - 1} \cdot e^{\alpha a} \cdot \left(e^{\alpha (b-a)} - 1\right) \Rightarrow \frac{1}{\alpha} \left(e^{\alpha b} - e^{\alpha a}\right)$$

$$\Rightarrow f \in R(I)$$

$$\int_{a}^{b} e^{\alpha x} \, dx = \frac{1}{\alpha} \left(e^{\alpha b} - e^{\alpha a}\right)$$

Beispiel 1.2.9. Es sei $f:[0,\infty)\to (0,\infty),\ x\mapsto x^{\alpha}\ (\alpha\neq 1).$ Dann ist $f\in R(I)$ und es gilt

$$\int_{a}^{b} x^{\alpha} dx = \frac{1}{\alpha + 1} \left(b^{\alpha + 1} - a^{\alpha + 1} \right)$$

Wir wählen eine geometrische Zerlegung

$$q = q_n = \sqrt[n]{\frac{b}{a}}$$

$$z = z_n = (x_0^n, x_1^n, \dots, x_n^n)$$

$$I_j = [x_{j-1}, x_j]$$

$$|I_j| = \Delta x_j = x_j - x_{j-1} = a \cdot q^j - -a \cdot qj - 1$$

$$= a \cdot q^{j-1} (q-1) \le b \cdot (q_n - 1) \to 0$$

Beobachtung: Ober- und Untersumme lassen sich "leicht" mittels geometrischer Summen ausrechnen

$$\overline{m}_{j} = \sup_{i_{j}} = x_{j}^{\alpha} = \left(q \cdot q^{j}\right)^{\alpha}$$

$$\underline{m}_{j} = \inf_{I_{j}} = x_{j-1}^{\alpha} = \left(a \cdot q^{j-1}\right)^{\alpha}$$
:

Satz 1.2.10 (Monotonie des Integrals). Seien $f, g \in R(I), I = [a, b]$. Aus $f \leq g$ folgt $J(f) \leq J(g)$, das heißt

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} g(x) dx \tag{1}$$

insbesondere

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \int_{a}^{b} (|f|) (x) \, \mathrm{d}x \tag{2}$$

$$\left| \int_{a}^{b} f g \, \mathrm{d}x \right| \le \sup_{I} |f| \cdot \int_{a}^{b} |g| \, \mathrm{d}x \tag{3}$$

Beweis. Sei $h=g-f\geq 0$. Dann gilt nach Satz 1.2.6 $h\in R(I)$ und damit

$$\int_{a}^{b} h \, dx \ge 0$$

$$\Rightarrow 0 \le \int_{a}^{b} h \, dx = \int_{a}^{b} g \, dx + \int_{a}^{b} (-f) \, dx = \int_{a}^{b} g \, dx - \int_{a}^{b} f \, dx$$

Damit folgt (1).

$$\pm f \leq |f|$$

$$\Rightarrow \int_{a}^{b} (\pm f) \, \mathrm{d}x \leq \int_{a}^{b} |f| \, \mathrm{d}x = \pm \int_{a}^{b} f \, \mathrm{d}x$$

$$\Rightarrow \left| \int_{a}^{b} f \, \mathrm{d}x \right| = \max \left(\int_{a}^{b} f \, \mathrm{d}x, - \int_{a}^{b} f \, \mathrm{d}x \right)$$

$$\leq \int_{a}^{b} |f| \, \mathrm{d}x \Rightarrow (2)$$

$$\left| \int_{a}^{b} f g \, \mathrm{d}x \right| \leq \int_{a}^{b} |fg| \, \mathrm{d}x$$

$$= |f| \cdot |g| \leq \left(\sup_{I} |f| \right) \cdot |g|$$

$$\leq \int_{a}^{b} \left(\sup_{I} |f| \right) |g| \, \mathrm{d}x = \sup_{I} (|f|) \cdot \int_{a}^{b} |g| \, \mathrm{d}x$$

Satz 1.2.11 (Cauchy-Schwarz). Seien $f, g \in R(I)$ und I = [a, b]. Dann gilt

$$\left| \int_{a}^{b} fg \, \mathrm{d}x \right|^{2} \le \left(\int_{a}^{b} |fg| \, \mathrm{d}x \right)^{2}$$

$$\leq \int_a^b |f|^2 \, \mathrm{d}x \cdot \int_a^b |g|^2 \, \mathrm{d}x$$

mit

$$||f|| = \sqrt{\int_a^b |f|^2 dx}$$

$$\Rightarrow \left| \int fg dx \right| \le ||f|| \cdot g$$

Beweis.

$$0 \le (a \pm b)^2 = a^2 \pm 2ab + b^2$$

$$\Rightarrow \mp ab \le \frac{a^2 + b^2}{2}$$

$$\Rightarrow |ab| \le \frac{1}{2} (a^2 + b^2)$$

t > 0

$$|\alpha\beta| = \left|t\alpha - \frac{\beta}{t}\right| \le \frac{1}{2} \left(t\alpha^2 + \frac{1}{t}\beta^2\right)$$

$$\left|\int_a^b fg \, \mathrm{d}x\right| \le \int_a^b |f(x)| \, |g(x)| \, \mathrm{d}x$$

$$\le \frac{1}{2} \left(t \cdot \underbrace{\int_a^b |f(x)|^2 \, \mathrm{d}x}_A + \frac{1}{t} \underbrace{\int_a^b |g|^2 \, \mathrm{d}x}_B\right)$$

$$\le \frac{1}{2} \left(t \cdot |f(x)|^2 + \frac{1}{t} |g(x)|^2\right) = \frac{1}{2} \left(tA + \frac{1}{t}B\right)$$

Frage: Welches t > 0 maximiert h?

$$A = 0 \Rightarrow h(t) = \frac{1}{2t}B \to 0 \text{ für } n \to \infty$$

$$B = 0 \Rightarrow h(t) = \frac{1}{2}A \to 0 \text{ für } n \to \infty$$

$$\Rightarrow \lim_{t \to 0} h(t) = \infty, \lim_{t \to 0} h(t) = \infty$$

Minimum existiert für ein $t_0 > 0$ und es gilt $0 = h'(t_0)$

$$\Rightarrow 0 = \frac{1}{2} \left(A - \frac{1}{t_0} B \right)$$

$$\Rightarrow (t_0)^2 = \frac{B}{A} \quad t_0 = \sqrt{\frac{b}{A}}$$

$$\Rightarrow \inf_{(0,\infty)} h(t) = \frac{1}{2} t_0 \left(A + \frac{1}{t_0^2} B \right)$$

$$= \frac{1}{2} \sqrt{\frac{b}{A}} \left(A + \frac{A}{B} B \right) = \sqrt{AB}$$

Bemerkung 1.2.12.

$$\begin{split} \langle f,g\rangle &= \int_a^b f(x)g(x)\,\mathrm{d}x\\ \|f\| &\coloneqq \sqrt{\int_a^b |f|^2\,\mathrm{d}x} \text{ ist eine Norm} \\ \Rightarrow |\langle f,g\rangle| &\le \|f\|\,\|g\| \end{split}$$

Satz 1.2.13. Sei C(I) = C([a, b]) der Raum der stetigen reellen Funktionen auf einem I = [a, b]. Es gilt $C(I) \subseteq R(I)$.

Beweis. I = [a, b] ist kompakt und $f : [a, b] \to \mathbb{R}$ ist stetig und damit auch gleichmäßig stetig. Das heißt

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon |f(x) - f(y)| < \delta \quad \forall x, y \in I \ \text{mit} \ |x - y| < \delta$$

Sei Z eine Zerlegung von I mit $\Delta(Z) < \delta$. $I_i = [x_{i-1}, x_i]$ und $Z = (x_0, x_1, \dots, x_k)$. Dann gilt

$$\overline{m}_j - \underline{m}_j = \sup_{x \in I_j} f(x) - \inf_{y \in I_j} f(y)$$
$$= \sup_{x, y \in I_j} |f(x) - f(y)| = \sup_{x, y \in I_j} (f(x) - f(y))$$

Da $|x-y| \le |I_j| < \delta$ gilt

$$\overline{m}_{j} - \underline{m}_{j} \leq \varepsilon$$

$$\Rightarrow \overline{S}_{Z}(f) - \underline{S}_{Z}(f) = \sum_{j=1}^{n} \left(\overline{m}_{j} - \underline{m}_{j} \right) \cdot |I_{j}|$$

$$\leq \varepsilon \sum_{j=1}^{n} |I_{j}| = \varepsilon \cdot |I| = \varepsilon \cdot (b - a)$$

$$\Rightarrow 0 \leq \overline{J}(f) - \underline{J}(f) \leq \overline{S}_{Z}(f) - \underline{S}_{Z}(f)$$

$$\leq \varepsilon (b - a) \quad \forall \varepsilon > 0$$

$$\Rightarrow \overline{J}(f) = \underline{J}(f) \Rightarrow f \in R(I)$$

Definition 1.2.14. Eine Funktion $f: I \to \mathbb{R}$ auf I = [a, b] heißt stückweise stetig, falls es eine Zerlegung $Z = (x_0, x_1, \dots, x_k)$ von I gibt so, dass f auf jedem der offenen Intervalle (x_{j-1}, x_j) stetig ist und die einseitigen Grenzwerte

$$f(a+) = \lim_{x \to a+} f(x), f(b-) = \lim_{x \to b-} f(x)$$
$$f(x_j-) = \lim_{x \to x_j-} f(x), f(x_j+) = \lim_{x \to x_j+} f(x)$$

für $j = 1, \dots, k-1$ existieren.

 $f((x_{j-1}, x_j))$ können zu stetigen Funktionen auf $I_j = [x_{j-1}, x_j]$ fortgesetzt werden. Wir nennen diese Klasse von Funktionen $PC(I)^1$.

 $^{^{1}}$ Piecewise continuos function in I

Satz 1.2.15. Es gilt $PC(I) \subseteq R(I)$. I = [a, b]. Ist $Z = (x_0, ..., x_k)$ eine Zerlegung von $f \in PCI(I)$ und f stetig auf $(x_{j-1}, x_j) \ \forall j$ und f_j eine stetige Fortsetzung von $f|_{(x_{j-1}, x_j)}$ auf $I_j = [x_{j-1}, x_j]$. So gilt

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \sum_{l=1}^{k} \int_{x_{l-1}}^{x_{l}} f_{l}(x) \, \mathrm{d}x$$

Beweis. Arbeite auf $I_l = [x_{l-1}, x_l]$ dann ist f_l stetig nach Satz 1.2.13 und summiere zusammen. (Details selber machen).

Bemerkung 1.2.16 (Treppenfunktion). Ist f stückweise konstant auf I. Das heißt es existiert eine Zerlegung $Z = (x_0, \ldots, x_{\nu})$ von I mit f ist konstant auf $(x_{k-1}, x_k) \quad \forall k = 1, \ldots, \nu$. So heißt f Treppenfunktion. Schreiben J(I) für die Klasse der Treppenfuktionen.

[26. Apr] Satz 1.2.17. Sei $I = [a, b], f : I \to \mathbb{R}$ mit den folgenden Eigenschaften

- (a) In jedem Punkt $x \in (a, b)$ existieren die rechts- und linksseitigen Grenzwerte.
- (b) In a existiert der rechtsseitige und in b der linksseitige Grenzwert.

Dann gilt $f \in R(I)$.

Zum Beweis dieses Satzes benötigen wir zunächst das folgende Approximationslemma 1.2.19.

Bemerkung 1.2.18. Insbesondere erfüllt PC(I) die Bedingungen a) und b) aus Satz 1.2.17.

Lemma 1.2.19. Sei $f: I \to \mathbb{R}$ eine Funktion, die die Bedingungen aus Satz 1.2.17 erfüllt. Dann gibt es eine Folge $(\varphi_n)_n$ von Treppenfunktionen $\varphi_n: I \to \mathbb{R}$, die gleichmäßig gegen f konvergiert. Das heißt

$$\lim_{n \to \infty} \|f - \varphi_n\|_{\infty} = \lim_{n \to \infty} \sup_{x \in [a,b]} |f(x) - \varphi_n(x)| = 0$$

Also

$$\forall \, \varepsilon > 0 \; \exists \, \text{Treppenfunktion} \; \varphi : I \to \mathbb{R} \; \text{mit} \; \left\| f - \varphi \right\|_{\infty} = \sup_{x \in I} |f(x) - \varphi(x)| < \varepsilon$$

Beweis. (Später)
$$\Box$$

Mithilfe dieses Lemmas können wir nun Satz 1.2.17 beweisen.

Beweis. Sei $f:[a,b] \to \mathbb{R}$ wie in Satz 1.2.17 verlangt und $\varepsilon > 0$, sowie $\varphi: I \to \mathbb{R}$ Treppenfunktion mit $||f - \varphi||_{\infty} < \frac{\varepsilon}{2}$. Wir definieren $\Psi_1 := \varphi - \frac{\varepsilon}{2}$, $\Psi_2 = \varphi + \frac{\varepsilon}{2}$ auch als Treppenfunktionen. Dann gilt $\Psi_1 = \varphi - \frac{\varepsilon}{2} \le f$ und $\Psi_2 \ge f$. Für alle Zerlegungen Z von I mit

$$\begin{split} &\underline{S}_Z(\Psi_1) \leq \underline{S}_Z(f) \\ \Rightarrow &\underline{S}_Z(f) \geq \underline{S}_Z\bigg(\varphi - \frac{\varepsilon}{2}\bigg) = \underline{S}_Z(\varphi) - \frac{\varepsilon}{2} \cdot |I| = \underline{S}_Z(\varphi) - \frac{\varepsilon}{2} \left(b - a\right) \end{split}$$

Analog gilt

$$\overline{S}_Z(\varphi) + \frac{\varepsilon}{2}(b-a) \ge \overline{S}_Z(f)$$

Damit folgt insgesamt

$$\underline{S}_{Z}(\varphi) - \frac{\varepsilon}{2} (b - a) \le \underline{S}_{Z}(f) \le \underline{J}(f)$$

$$\overline{S}_Z(\varphi) + \frac{\varepsilon}{2} (b-a) \ge \overline{S}_Z(f) \le \overline{J}(f)$$

Da φ eine Treppenfunktion ist, ist $\varphi \in PC(I) \subseteq R(I)$. Also existiert eine Folge $(z_n)_n$ von Zerlegungen von I mit

$$\lim_{n \to \infty} \overline{S}_{Z_n}(\varphi) = \lim_{n \to \infty} \underline{S}_{Z_n}(\varphi) = \int_a^b \varphi(x) \, \mathrm{d}x$$

(sofern $\Delta(Z_n) \to 0$ für $n \to \infty$)

$$\Rightarrow \overline{J}(f) - \underline{J}(f) \leq \overline{S}_{Z_n}(\varphi) + \frac{\varepsilon}{2} (b - a) - \left(\underline{S}_{Z_n}(\varphi) - \frac{\varepsilon}{2} (b - a)\right)$$

$$= \overline{S}_{Z_n}(\varphi) - \underline{S}_{Z_n}(\varphi) + \varepsilon (b - a)$$

$$\to {}_{n \to \infty} \int_a^b \varphi(x) \, \mathrm{d}x - \int_a^b \varphi(x) \, \mathrm{d}x + \varepsilon (b - a)$$

$$= \varepsilon (b - a)$$

$$\Rightarrow \overline{J}(f) - \underline{J}(f) \leq \varepsilon (b - a) \quad \forall \varepsilon > 0$$

$$\Rightarrow \overline{J}(f) - \underline{J}(f) \leq 0$$

$$\Rightarrow \overline{J}(f) = \underline{J}(f)$$

$$\Rightarrow f \in R(I)$$

Bemerkung 1.2.20. Welche $f \in B(I)$ sind genau Riemann-integrierbar?

Definition 1.2.21 (Nullmenge). Eine Menge $N \subseteq \mathbb{R}$ heißt Nullmenge, falls zu jedem $\varepsilon > 0$ höchstens abzählbar viele Intervalle I_1, I_2, \ldots existieren mit

$$N \subseteq \bigcup_{j} I_{j}$$
 $(I_{j} \text{ überdecken } N)$

und

$$\sum_{j} |I_{j}| < \varepsilon$$

Beispiel 1.2.22. \mathbb{Q} ist eine Nullmenge.

$$\mathbb{Q}\subseteq\bigcup_{j\in\mathbb{N}}I_j$$

Nehme $\varepsilon > 0$

$$\mathcal{Q} = \{q_i | j \in \mathbb{N}\}$$

Zu q_j nehme $I_J = \left[q_j - \frac{\varepsilon}{2}, q_j + \frac{\varepsilon}{2}\right]$

$$q_j \in I_j \quad |I_j| = \varepsilon 2^{-j}$$

$$\sum_{j \in \mathbb{N}} |I_j| = \varepsilon \sum_{j=1}^{\infty} 2^{-j}$$

$$= \varepsilon \cdot \frac{1}{2-1} = \varepsilon$$

Definition 1.2.23. Eine Funktion $f: I \to \mathbb{R}$ heißt fast überall stetig auf I, falls die Menge der Unstetigkeitsstellen von f eine Nullmenge ist.

1.2.24 (Lebesgue'sches Integrabilitätskriterium). $R(I) = \{ f \in B(I) : f \text{ ist fast überfall stetig auf } I \}$

Bemerkung 1.2.25. Sei f wie in Satz 1.2.17. Dann ist die Menge der Unstetigkeitsstelle von f höchstens abzählbar, also eine Nullmenge.

Ist $f \in PC(I)$ so ist die Menge der Unstetigkeitsstellen endlich.

Beweis von Lemma 1.2.19. Wir führen einen Widerspruchsbeweis. Angenommen die Aussage stimmt nicht, dann existiert ein $\varepsilon_0 > 0$ sowie ein $f: I \to \mathbb{R}$ wie in Satz 1.2.17, sodass

$$\forall \text{ Treppenfunktionen } \varphi: I \to \mathbb{R} \colon \left\| f - \varphi \right\|_{\infty} = \sup_{x \in [a,b]} \left| f(x) - \varphi(x) \right| \ge \varepsilon_0 > 0$$

SCHRITT 1: $I_1 = [a, b], a_1 = a, b_1 = b$. Dann weiter mit Divide & Conquer:

$$\sup_{I_1} |f - \varphi| \ge \varepsilon_0$$

Behauptung: Es existiert eine Folge $(I_n)_n$ von Intervallschachtelungen $I_{n+1} \subseteq I_n$ mit $|I_n| = b - a \to 0$ für $n \to \infty$ mit

$$\sup_{x \in I_n} |f(x) - \varphi(x)| \ge \varepsilon_0 \quad \forall n \in \mathbb{N} \text{ und alle Treppen funktion en } \varphi \text{ (auf } I_n)$$
 (*)

Beweis: Angenommen $I_n = [a_n, b_n]$ ist gegeben und erfüllt die obige Bedingung

$$M_N = \frac{b_n + a_n}{2}$$

$$\Rightarrow \sup_{x \in [a_n, M_n]} |f(x) - \varphi(x)| \ge \varepsilon_0 \text{ oder } \sup_{x \in [M_n, b_n]} |f(x) - \varphi(x)| \ge \varepsilon_0$$
 (Für alle Treppenfunktionen φ)

Im ersten Fall wählen wir die linke Hälfte des Intervalls, also $a_{n+1} = a_n$, $b_{n+1} = M_n$. Im zweiten Fall die rechte Hälfte, also $a_{n+1} = M_n$, $b_{n+1} = b_n$. Damit gilt im Sinne der Intervallhalbierung

$$\Rightarrow I_{n+1} \subseteq I_n$$

sowie

$$b_n - a_n = \frac{1}{2} (b_{n-1} - a_{n-1}) \le \frac{1}{2^n} (b - a) \to 0$$

Nehme $c_n \subseteq I_n$

$$a = a_1 \le a_2 \le \dots \le a_n \le b_n \le b_{n-1} \le \dots \le b_1 = b$$

 $\lim_{n\to\infty}a_n$ existiert und $\lim_{n\to\infty}b_n$ texistiert aufgrund der monotonen Konvergenz

und

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n =: \xi$$

$$\Rightarrow \forall n \in \mathbb{N} : a_n \le \xi \le b_n$$

$$\Rightarrow a_n \le \xi \quad \forall n \in \mathbb{N}$$
(da $b_n - a_n \to 0$)

Analog ergibt sich

$$b_n \ge \xi \quad \forall n \in \mathbb{N}$$

$$\Rightarrow \xi \in I_n = [a_n, b_n] \quad \forall n \in \mathbb{N}$$

$$\Rightarrow \bigcap_{n \in \mathbb{N}} I_n = \{\xi\}$$

Schritt 2: Angenommen $a < \xi < b$. Dann ist

$$c_l = f(\xi -) = \lim_{x \to \xi -} f(x)$$
$$c_r = f(\xi +) = \lim_{x \to \xi +} f(x)$$

Nehmen $\delta > 0$

$$|f(x) - c_l| < \varepsilon_0 \quad \xi - \delta \le x \le \xi$$
$$|f(x) - c_r| < \varepsilon_0 \quad \xi < x \le \xi + \delta$$

Wir definieren $\varphi : [\xi - \delta, \xi + \delta]$ durch

$$\varphi(x) := \begin{cases} c_r & \xi < x < \xi + \delta \\ f(x) & x = \xi \\ c_l & \xi - \delta < x < \xi + \delta \end{cases}$$

und

$$\sup_{\xi - \delta < x \le \xi + \delta} |f(x) - \varphi(x)| < \varepsilon_0 \tag{**}$$

Aber $I_n \subseteq [\xi - \delta, \xi + \delta]$ für fast alle $n \in \mathbb{N}$. Für n groß genug ist (**) im Widerspruch zu (*). Damit folgt die Aussage des Lemmas.

Satz 1.2.26. Seien $f, g \in R(I)$???.

Lemma 1.2.27. Seien $f, g \in R(I)$ und gebe es eine Menge $G \subseteq I$ welche in I dicht liegt und für die $f(x) = g(x) \ \forall x \in G$ gilt. Dann folgt $\int_a^b f(x) dx = \int_a^b g(x) dx$

1.3 Mittelwertsätze der Integralrechnung

Definition 1.3.1. Sei $f \in R(I)$, I = [a, b]. Dann ist

$$\oint_I f(x) dx = \oint_a^b f(x) dx := \frac{1}{b-a} \int_a^b f(x) dx$$

definiert als der Mittelwert von f über I. Wir schreiben auch

$$\overline{f}_I = \int_a^b f(x) \, \mathrm{d}x$$

Satz 1.3.2. Es sei $I = [a, b], f \in C(I)$. Dann gilt

$$\exists \, \xi \colon a < \xi < b \text{ mit } f(\xi) = \int_a^b f(x) \, \mathrm{d}x$$

Beweis.

$$\overline{m} = \sup_{I} f = \max_{I} f$$

$$\underline{m} = \inf_{I} f = \min_{I} f$$

Nach Satz ?? gilt

$$\underline{m} \le f(x) \le \overline{m} \quad \forall x \in I$$

$$\Rightarrow \underline{m} (b - a) = \int_{a}^{b} \underline{m} \, \mathrm{d}x \le \int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} \overline{m} \, \mathrm{d}x = \overline{m} (b - a)$$

$$\Rightarrow \underline{m} \le \int_{a}^{b} f(x) \, \mathrm{d}x \le \overline{m}$$

Ist $\underline{m} = \overline{m} \Rightarrow f$ ist konstant auf [a, b]

$$\Rightarrow \underline{m} = \overline{m} = \int_a^b f(x) \, \mathrm{d}x$$

und $\forall a < \xi < b$ ist $f(x) = \underline{m}$. Damit gilt die Behauptung. Sei also $\underline{m} < \overline{m}$. Dann folgt aus der Stetigkeit von f, dass x_1 und x_2 in I existieren, sodass $f(x_1) = \underline{m}$ und $f(x_2) = \overline{m}$ mit $x_1 \neq x_2$. Außerdem folgt aus $\underline{m} < \overline{m}$, $f \in C(I)$ auch

$$\underline{m} \le \int_a^b f(x) \, \mathrm{d}x < \overline{m}$$

Nach dem Zwischenwertsatz für stetige Funktionen folgt

$$\Rightarrow \exists \xi \text{ zwischen } x_1, x_2 \text{ mit } f(x) = \int_a^b f(x) dx$$