

Name:_					
Class:					

ACTIVITY SHEET

4.2 Energy from the nucleus

1	а	Find the magnitude of the force of electrostatic repulsion between two protons inside a nucleus, when
		their centres are separated by:

i 2 fm (approximately) closest approach.

ii 4fm (Round up your answer to part i, then use the inverse-square proportionality to find your answer.).

- **b** Find the magnitude of the strong nuclear force at 2 fm.
- **2** What is the most likely reason that neutrons are able to moderate the electrostatic force of protons on protons?
- 3 The first eight elements have stable nuclides for N = Z, apart from beryllium-9, which is the only stable nuclide of beryllium. All the others have two stable nuclides, although oxygen has three. Except for ${}_{1}^{1}H$ and helium-3, in all the stable nuclides the number of neutrons is equal to or greater than the number of protons.
 - a Place all these stable nuclides on the stability chart on the next page. Label the axes as well.
 - **b** Tritium is an unstable nuclide of hydrogen. Place this on the chart.

c Carbon nuclides range from A = 9 to A = 16. Place these on the chart.

Carbon machaes range from 11 7 to 11 10. That there on the chart.								
16								
15								
14								
13	Stability cha	art						
12								
11								
10								
9								
8								
7								
6								
5				⁹ ₄ Be				
4								
3								
2								
1								
0	1	2	3	4	5	6	7	8

4 Show that $1 u = 1.66 \times 10^{-27} \text{kg}$.

Hence, show that 1 u is equivalent to 931.5 MeV c^{-2} .

(Hint: Use $E=mc^2$) $m=E/c^2$ and the conversion between joules and electron-volts, $1\,{\rm eV}=1.602\times 10^{-19}\,{\rm J.})$

5 Complete the table.

Particle	Mass					
	kg	u	MeV/c^2			
Proton	1.673×10^{-27}					
Neutron		1.00867				
Electron			0.511			