Busca Adaptativa em Grandes Vizinhanças Aplicada à Determinação de Leiautes de Circuitos Eletrônicos

Vinicius Gandra Martins Santos

Universidade Federal de Ouro Preto gandra.vinicius@gmail.com

1 de Agosto de 2017

Sumário

- Introdução
- Pundamentação Teórica
- 3 Desenvolvimento
- 4 Experimentos
- Conclusão

Circuitos Integrados

- Interconexão de componentes (diodos, transistores, capacitores, etc);
- Componentes ligados por fios condutores;
- Componentes dispostos sobre um substrato fino de material semicondutor;
- Diferentes disposições dos componentes geram diferentes leiautes.

Circuitos Integrados de Larga Escala

A microeletrônica promove a miniaturização dos componentes e da origem aos Circuitos Integrados de Larga Escala (*Very Large Scale Integration*, VLSI)

- Circuitos compostos por milhares de componentes;
- Disposição dos componentes influenciam no tamanho do circuito;
- Circuitos menores, com leiaute mais compactado, são mais rápidos e baratos.

Representação

Figura: Matriz de portas programáveis (a) original, permutada (b), e compactada (c).

Determinação de Leiautes de Matrizes de Portas

 O Problema de Determinação de Leiaute de Matrizes de Portas (GMLP, do inglês Gate Matrix Layout Problem) consiste em determinar a permutação ótima de portas de modo a minimizar a quantidade de trilhas necessárias para implementar o circuito integrado correspondente e consequentemente minimizar a área e custo de produção do mesmo.

Motivação e Objetivos

Motivação

- O problema possui aplicações práticas na engenharia e indústria;
- Este trabalho tem equivalência com outros problemas na literatura;
- O GMLP é um problema NP-Difícil.

Objetivos

- Realizar pesquisa para geração de embasamento teórico e revisão bibliográfica sobre o GMLP e o ALNS;
- Implementar o ALNS e avaliar os resultados obtidos com os melhores resultados da literatura.

Instância

Matriz
$$m \times n$$
 $M = m_{ij} \rightarrow \{1, 0\}$
$$m_{ij} = \begin{cases} 1 & \text{se somente se, a rede } i \text{ incluir a porta } j, \\ 0 & \text{caso contrário.} \end{cases}$$
 (1)

	P1	P2	Р3	P4	P5
R1	0	0	0	1	1
R2	1	0	0	0	1
R3	0	0	1	0	1
R4	0	0	1	1	0
R5	1	0	0	0	0
R6	0	1	0	0	0

Propriedade dos 1s Consecutivos

	P1	P2	Р3	P4	P5		P1	P2	Р3	P4	P5
R1	0	0	0	1	1	R1	0	0	0	1	1
R2	1	0	0	0	1	R2	1	1	1	1	1
R3	0	0	1	0	1	R3	0	0	1	1	1
R4	0	0	1	1	0	R4	0	0	1	1	0
R5	1	0	0	0	0	R5	1	0	0	0	0
R6	0	1	0	0	0	R6	0	1	0	0	0
(a)				(b)							

A solução para o GMLP é avaliada de acordo com a soma de cada coluna da matriz M^{π} .

$$Z_{GMLP}(M^{\pi}) = \max_{j \in \{1, \dots, n\}} \sum_{i=1}^{m} m_{ij}^{\pi}$$
 (2)

Função Objetivo

$$\min_{\pi \in \Pi} Z_{GMLP}(M) \tag{3}$$

Determinar uma matriz M^{π} corresponde que minimize a quantidade necessária de trilhas para implementar o circuito equivalente, ou seja, encontrar a permutação que possuir o menor gargalo.

Busca Adaptativa em Grandes Vizinhanças

 Ropke e Pisinger (2006) propuseram a metaheurística Busca Adaptativa em Grandes Vizinhanças (Adaptive Large Neighborhood Search, ALNS). O ALNS utiliza buscas locais e perturbações para explorar uma porção ampla das possíveis soluções para problemas combinatórios.

Vizinhanças

Vizinhanças

Conjunto de soluções similares obtidas através de simples movimentos.

Vizinhanças de Remoção

- Recebe solução representada por uma sequência de portas π ;
- Remove q portas da solução.

Vizinhanças de Inserção

- Recebe solução parcial e um conjunto γ de portas para inserção;
- Cada porta de γ é selecionada aleatoriamente e inserida na solução.

Vizinhanças de Remoção

- Remoção de Colunas Críticas;
- Remoção de Uns Consecutivos em Colunas Críticas;
- Remoção de Uns Consecutivos em Linhas;
- Remoção Aleatória;
- Remoção de Portas Relacionadas.

Vizinhanças de Inserção

- Inserção Aleatória;
- Inserção Limitada por Coluna;
- Inserção na Melhor Posição;
- Inserção por Arrependimento.

Roleta

A seleção das vizinhanças são feitas através do método da roleta.

- Roleta é representada no intervalo R = [0...1] ∈ ℝ;
- Cada vizinhança i recebe uma fatia proporcional à sua probabilidade de ser selecionada;
- v1 = 60, v2 = 125, v3 = 115, v4 = 200.

Pontuação

A cada iteração as vizinhanças selecionadas recebem pontos de acordo com seu desempenho.

- σ_1 , quando as heurísticas (remoção e inserção) resultaram na melhor solução até o momento;
- σ_2 , quando as heurísticas resultaram em uma solução cujo custo seja menor que o da solução corrente; e
- σ₃, quando as heurísticas resultaram em uma solução que é aceita por um critério de aceitação, porém com o custo maior que o da solução corrente.

Critério de aceitação

Uma solução π' gerada a partir de outra solução π é aceita com probabilidade calculada de acordo com a Equação:

$$e^{-(f(\pi')-f(\pi))/T} \tag{4}$$

- T Temperatura;
- $T_{start} = 0.05 f(\pi_0) / \ln 2$ Temperatura inicial;
- $T = T \times c$ Expressão de resfriamento.
- $c \in \{0...1\}$ Taxa de resfriamento;

Suavização

As execuções do ALNS são divididas em segmentos de θ iterações. Ao final de cada segmento os pontos acumulados das vizinhanças são suavizados no intuito de diminuir a discrepância entre eles.

- r_{i,j} são os pontos observados da heurística i no segmento j;
- a_i é o número de vezes que a heurística i foi chamada durante o segmento j;
- $\rho \in (0,1)$ é o fator de reação.

$$r_{i,j+1} = \rho \frac{\overline{r}_{i,j}}{a_i} + (1 - \rho)r_{i,j}$$

$$r_j =$$

$$[29.48, 3.28, 1.50, 2.69]$$

$$r_{j+1} =$$

$$[2.56, 1.28, 0.62, 1.17]$$

Ambiente Computacional

- Processador Intel Core i5 3.0 GHz;
- 8 GB RAM;
- Ubuntu 15.10;
- \bullet Código escrito em C++, compilado com g++ 5.2.1.

Parâmetros Utilizados

Para os experimentos apresentados neste trabalho, os parâmetros necessários foram determinados usando a ferramenta *irace* (López-Ibáñez et al., 2016)

Parâmetros	Valor Escolhido	Intervalo
σ_1	15	[5, 10,, 45, 50]
σ_2	25	[5, 10,, 45, 50]
σ_3	5	[5, 10,, 45, 50]
Taxa de Resfriamento c	0,23	[0,00 1,00]
Fator de Reação $ ho$	0,66	[0,00 1,00]
Número de Iterações	800	[300, 400,, 900, 1000]
Tamanho de cada Segmento	60	[30, 40,, 90, 100]

Conjuntos de Instâncias

- VLSI 25 instâncias reais;
- SCOOP Consortium 24 instâncias MOSP reais de duas empresas moveleiras europeias;
- Faggioli & Bentivoglio (F & B) 300 instâncias artificiais;
- First Constraint Modeling Challenge 46 instâncias artificiais;
- Instâncias MOSP 200 instâncias MOSP de maiores dimensões geradas aleatoriamente por Chu e Stuckey (2009).

10 testes foram executados para cada conjunto de instâncias.

Resultados Médios

Conjunto	OPT	<i>S</i> *	T	σ	gap	Р
VLSI	7,12	8,88	40,62	0,13	9,16	84,00
SCOOP	7,75	8,21	4,24	0,22	3,70	79,16
F&B	9,30	10,12	4,02	0,29	6,97	54,00
Challenge	24,35	26,14	391,62	0,17	5,35	84,78
MOSP	41,16	46,72	513,86	0,38	11,89	7,00

Conclusão

- Este trabalho propôs pela primeira vez a utilização do método ALNS para solução do GMLP. Os resultados preliminares foram satisfatórios e demonstraram a eficiência e robustez do método proposto;
- Os trabalhos futuros serão concentrados em aprimorar as vizinhanças utilizadas e o ALNS com o intuito de obter melhores resultados, e também otimizar o código em busca de melhores tempos de execução.

Introdução Fundamentação Teórica Desenvolvimento Experimentos Conclusão

Fim