Universidade de São Paulo - USP Instituto de Ciências Matemáticas e de Computação -ICMC

Departamento de Matemática Aplicada e Estatística - SME

Introdução à Inferência Estatística

Trabalho 3

Fernando Henrique Cardoso - Número USP: 10365671

Gabriel Ribeiro - Número USP: 8531000

Nelson Ricardo Coelho do Nascimento - Número USP: 11218448

Stéfane Tame Monteiro Oliveira - Número USP: 10829970

Profa. Dra. Katiane Silva Conceição

1. Queremos determinar o tamanho da amostra n de modo que

$$P(|X - \mu| \le \varepsilon) \ge \gamma = 1 - \alpha$$

 $P(|\overline{X} - \mu| \le \varepsilon) \ge \gamma = 1 - \alpha$ com $0 < \gamma < 1$ e ε , o erro amostral máximo que podemos suportar, ambos valores fixos.

Sabemos que $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$, logo $\overline{X} - \mu \sim N\left(0, \frac{\sigma^2}{n}\right)$ e, portanto, pode ser escrita

$$P(-\varepsilon \leq \overline{X} - \mu \leq \varepsilon) = P(\frac{-\sqrt{n\varepsilon}}{\sigma} \leq Z \leq \frac{-\sqrt{n\varepsilon}}{\sigma}) \approx \gamma$$

$$\operatorname{com} Z = (\overline{X} - \mu) \sqrt{\frac{n}{\sigma}}.$$

Dado γ , podemos obter z_{γ} da N(0, 1), tal que

$$P(-z_{\gamma} \le Z \le z_{\gamma}) = \gamma$$
, de modo que

$$\frac{\sqrt{n\varepsilon}}{\sigma} = z_{\gamma}$$

do que, finalmente, obtemos

$$n = \frac{\sigma^2 z_{\gamma}^2}{\varepsilon^2}$$

porém, não conhecemos a variância σ^2 da população.

Como nosso estudo tem distribuição de Bernoulli, com média $\mu = p$ e variância $\sigma^2 = p(1 - p)$ e são duas a duas independentes, podemos escrever

$$Y_n = n\overline{X}$$

Mas pelo TLC, \overline{X} terá distribuição aproximadamente normal, com média p e variância p(1 - p)/n, ou seja

$$\overline{X} \sim N\left(p, \frac{p(1-p)}{n}\right)$$

Logo a transformação $Y_n = n\overline{X}$ terá a distribuição

$$Y_n \sim N(np, np(1-p))$$

Observe que \overline{X} , na expressão acima, é a própria variável $\stackrel{\circ}{p}$ e desse modo para ngrande podemos considerar a distribuição amostral de p como aproximadamente normal. Sendo assim,

$$n = \frac{p(1-p)z_{\gamma}^{2}}{\varepsilon^{2}}$$

Caso não conheçamos p, a verdadeira proporção populacional, podemos usar o fato de que $p(1-p) \le 1/4$, para todo p, então podemos obter um valor conservador

$$n \approx \frac{z_{\gamma}^2}{4s^2}$$

Para
$$\gamma = 1 - \alpha = 1 - 0,05 = 0,95$$

Tem-se

$$P(|\overline{X} - \mu| \le \varepsilon) \ge \gamma = P(|\overline{X} - \mu| \le 0, 02) \ge 0, 95$$

 $P(-z_{\gamma} \le Z \le z_{\gamma}), \text{ para } Z = \overline{X} - \mu \text{ e } z_{0,95} = 1, 96$

Determina-se o tamanho da amostra da região R_i , com i=1,2,3,4e5, para um grau de confiança maior do que 95% e um erro menor do que 2%, pela igualdade.

$$n = \frac{p(1-p)z_{\gamma}^{2}}{\varepsilon^{2}}$$

Considere o tamanho da amostra do colégio eleitoral igual a 10002 e, para n da tabela, o novo valor da amostra sobre o erro e o grau de confiança predeterminados será arredondado para o inteiro maior.

Tabela 1 - Distribuição de votantes da amostra do colégio eleitoral.

	C_{1}	C_{2}	$C_{\overline{3}}$	0	В	N	Ι
Total	4015	3297	1452	268	278	169	181

Tabela 2 - Proporções e o tamanho da amostra referente ao colégio eleitoral.

	C_{1}	C_{2}	C_{3}	0	В	N	I
р	4015 10002	3297 10002	1452 10002	268 10002	278 10002	169 10002	181 10002
1 - p	5987 10002	6705 10002	8550 10002	9734 10002	9724 10002	9833 10002	9821
n	2308	2123	1192	251	260	160	171

2. A partir dos dados apresentados da amostra 4, temos que os intervalos com os erros percentuais de 2% para mais e para menos para as regiões 1-5, e esses seguem na Tabela 3.

Tabela 3 – Intervalo de confiança para a proporção de votos das respectivas regiões estudadas.

	C 1	C2	C3	0	В	N	I		
	R1								
-2%	0,4072	0,3312	0,1120	0,0072	0,0152	0,0000	0,0000		
+2%	0,4472	0,3712	0,1520	0,0472	0,0552	0,0336	0,0336		
			R	2					
-2%	0,3715	0,3614	0,1249	0,0025	0,0064	0,0000	0,0000		
+2%	0,4115	0,4014	0,1649	0,0425	0,0464	0,0353	0,0377		
			R	.3					
-2%	0,3893	0,3362	0,1269	0,0088	0,0058	0,0000	0,0000		
+2%	0,4293	0,3762	0,1669	0,0488	0,0458	0,0388	0,0340		
	R4								
-2%	0,3789	0,3369	0,1245	0,0159	0,0058	0.0004	0,0000		
+2%	0,4189	0,3769	0,1645	0,0560	0,0458	0,0404	0,0374		

			R	R5			
-2%	0,3687	0,3539	0,1309	0,0048	0,0088	0,0000	0,0000
+2%	0,4087	0,3939	0,1709	0,0448	0,0488	0,0352	0,0374

A partir da análise da tabela 3, com uma confiança de 95%, podemos concluir que i) Região 1: candidato C1 ganha; ii) Região 2: Empate técnico de C1 e C2; iii) Região 3: candidato C1 ganha; iv) Região 4: candidato C1 ganha; v) Região 5: Empate técnico de C1 e C2.

Nas tabelas 5, 6 e 7, que estão adiante no trabalho, podemos ver que as regiões 1, 2 e 4 tem o erro amostral maior que 2%, logo podemos perceber que o tamanho da amostra de cada uma destas regiões não é o suficiente para atingir o erro proposto.

3. É possível visualizar melhor por meio de gráficos de pizza na Figura 1 e da Tabela 3 o desempenho de cada candidato, pela figura sem os erros percentuais, e pela tabela computando os erros percentuais.

Como se pode observar, e como dito na questão anterior, é notório que na Região 1 o C1 é favorito, na Região 2, a disputa se equilibra entre os C1 e C2, já na Região 3 e 4, os respectivos C1 lideram a disputa, e , por fim, na Região 5, há um empate técnico entre os C1 e C2.

Figura 1 – Proporção de votos de cada candidato em cada região de acordo com a Amostra 4.

4. Utilizando os dados da amostra fornecida e implementando em R, foram feitos os cálculos para encontrar os erros amostrais, considerando as abordagens otimista e conservativa, e os intervalos de confiança. Sendo assim, temos as seguintes tabelas:

Tabela 4 - Erro amostral numa visão conservativa para cada região.

Região	$R_{1}^{}$	$R_{2}^{}$	R_{3}	$R_{_{f 4}}$	R_{5}
Erro	0,028	0,021	0,019	0,024	0,020

Tabela 5 - Intervalos de confiança numa visão otimista das regiões R_1 e R_2 .

		R_{1}		R_{2}			
	Lim. inf.	Lim. sup.	ε amostral	Lim. inf.	Lim. sup.	ε amostral	
C_{1}	0,400	0,455	0,027	0,370	0,413	0,021	
C_2	0,325	0,378	0,026	0,361	0,402	0,021	
C_3	0,113	0,151	0,019	0,130	0,160	0,015	
0	0,018	0,036	0,001	0,016	0,029	0,006	
В	0,025	0,045	0,010	0,020	0,033	0,007	
N	0,007	0,020	0,006	0,010	0,021	0,005	
I	0,007	0,020	0,006	0,012	0,023	0,006	

Tabela 6 - Intervalos de confiança numa visão otimista das regiões $R_3 e R_4$.

		$R_{_3}$	$R_{\underline{4}}$			
	Lim. inf.	Lim. sup.	ε amostral	Lim. inf.	Lim. sup.	ε amostral
C_{1}	0,391	0,428	0,019	0,375	0,422	0,024
C_2	0,338	0,374	0,018	0,334	0,380	0,023
C_3	0,134	0,160	0,013	0,128	0,161	0,017
0	0,022	0,035	0,006	0,027	0,045	0,009
В	0,020	0,032	0,006	0,018	0,161	0,008
N	0,014	0,024	0,007	0,014	0,027	0,007
I	0,010	0,018	0,006	0,011	0,024	0,006

Tabela 7 - Intervalos de confiança numa visão otimista da região $R_{\rm 5}$.

	Limite inferior	LIMITE SUPERIOR	Erro amostral
C_{1}	0,369	0,409	0,020
C_2	0,354	0,394	0,020
C_3	0,136	0,166	0,015
0	0,018	0,031	0,006
В	0,022	0,036	0,007
N	0,010	0,020	0,005
I	0,012	0,023	0,005

Tabela 8 - Intervalos de confiança numa visão conservativa das regiões $R_1,\,R_2$ e $R_3.$

	R_{1}		1	R_2	R_3		
	Lim. Inf.	Lim. Sup.	Lim. Inf.	Lim. Sup.	Lim. Inf.	Lim. Sup.	
C_{1}	0,399	0,455	0,370	0,413	3,905e-01	0,428	
C_2	0,323	0,379	0,360	0,401	3,374e-01	0,375	
C_3	0,104	0,160	0,123	0,166	1,281e-01	0,166	
0	-0,001	0,055	0,001	0,044	9,964e-03	0,048	
В	0,007	0,063	0,005	0,048	7,011e-03	0,045	
N	-0,014	0,041	-0,006	0,037	-2,619e-06	0,038	
I	-0,014	0,041	-0,004	0,039	-4,801e-03	0,033	

Tabela 9 - Intervalos de confiança numa visão conservativa da região R_4 e R_5 .

		R_{4}	$R_{_{5}}$			
	Lim. inferior Lim. superior		Lim. inferior	Lim. superior		
C_{1}	0,375	0,423	0,368	0,409		
C_2	0,333	0,381	0,353	0,394		
C_3	0,125	0,169	0,130	0,171		
0	0,012	0,060	0,004	0,045		
В	0,002	0,050	0,008	0,049		
N	0,002	0,044	-0,005	0,036		
I	-0,004	0,041	-0,003	0,038		

Tabela 10 - Distribuição de probabilidades.

REGIÕES	C_{1}	C_{2}	C_{3}	0	В	N	I
R_{1}	0,427	0,351	0,132	0,027	0,035	0,014	0,014
R_{2}	0,392	0,381	0,145	0,023	0,026	0,015	0,018
R_3	0,409	0,356	0,150	0,029	0,026	0,019	0,014
R_{4}	0,399	0,357	0,145	0,036	0,026	0,020	0,017
R_{5}	0,389	0,374	0,151	0,025	0,029	0,015	0,017