Cichoń's maximum の証明

後藤 達哉

2022年8月26日

目次

L	イントロダクション	1
	1.1 relational systems	2
	1.2 Cohen, ランダム, Hechler, アメーバ, eventually different 強制法	4
	1.3 goodness	6
	1.4 LCU と COB	6
2	Cichoń の図式の左半分	6
3	ブール超冪	6

1 イントロダクション

実数全体の集合 $\mathbb R$ を Lebesgue 測度 0 集合たちで覆うには,それらが最低何個必要かという問いを考える.Lebesgue 測度 0 集合の可算和は Lebesgue 測度 0 だから可算個では足りない.一方, $\bigcup_{r\in\mathbb R}\{r\}=\mathbb R$ だから連続体濃度個あれば十分である.これで非可算かつ連続体濃度以下とわかるわけだが,ここで問いを終えてしまうのはもったいない.連続体濃度の下に非可算基数が存在することもありえると分かっているからだ.そこで問の答えを

$$\operatorname{cov}(\mathcal{N}) = \min\{|\mathcal{A}| : \mathcal{A}$$
 はルベーグ測度 0 集合の族で $\bigcup \mathcal{A} = \mathbb{R}\}$

とおいて、これがいろんな集合論のモデルでどうなっているのか調べよう。また、他の似たような問いの答えを文字でおいてそれらの間の関係を調べよう:ZFC の範囲内で大小関係がつくのか、等しいのか、ZFC で等しいことを証明できないなら実際にどんなモデルで破れているのか。これが基数不変量の研究である。

基数不変量という言葉に厳密な定義はないが、「実数の構造によって定義される基数」のことであり、その多くは \aleph_1 以上 2^{\aleph_0} 以下であることが証明される.

いくつかの基数不変量を定義しよう.

 2^{ω} 上のイデアル I に対して

- $add(\mathcal{I}) = min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} \notin \mathcal{I}\}$
- $cov(\mathcal{I}) = min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, \bigcup \mathcal{J} = 2^{\omega}\}$

- $\operatorname{non}(\mathcal{I}) = \min\{|A| : A \subseteq 2^{\omega}, A \notin \mathcal{I}\}\$
- $\operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I}, (\forall A \in \mathcal{I})(\exists B \in \mathcal{J})(A \subseteq B)\}$

とおく. これらにルベーグ測度 0 集合のイデアル N, 痩せ集合のイデアル M を代入したものが考察の対象である.

また,

- $\mathfrak{d} = \min\{|F| : F \subseteq \omega^{\omega}, (\forall f \in \omega^{\omega})(\exists g \in F)(f \leq^* g)\}.$
- $\mathfrak{b} = \min\{|F| : F \subseteq \omega^{\omega}, \neg(\exists f \in \omega^{\omega})(\forall g \in F)(g \leq^* f)\}.$

という基数不変量も考えられる。 t dominating number, t は bounding number と呼ばれる. 以上の 10 個の基数不変量の ZFC で示せる大小関係については以下の図式が知られていて, Cichoń の図式と呼ばれる.

ここで矢印 $A \to B$ は $A \le B$ を ZFC で証明できることを意味する. また $\operatorname{add}(\mathcal{M}) = \min\{\operatorname{cov}(\mathcal{M}), \mathfrak{d}\}$ かつ $\operatorname{cof}(\mathcal{M}) = \max\{\operatorname{non}(\mathcal{M}), \mathfrak{d}\}$ が ZFC で証明できる.

Cichoń の図式に表示されている基数不変量以外にも Blass の図式と呼ばれる図式の基数不変量: \mathfrak{m} , \mathfrak{p} , \mathfrak{h} , \mathfrak{g} , \mathfrak{s} , \mathfrak{e} , \mathfrak{r} , \mathfrak{a} , \mathfrak{u} , \mathfrak{i} などもある. しかし、本稿ではこれらには焦点を当てない.

表 1 に Cichoń の図式の歴史をまとめた.

連続体仮説の否定の無矛盾性以前に Rothberger の結果があるのがすごいが,この結果は「Luzin 集合と Sierpinski 集合の両方が存在するならば連続体仮説が成り立つ」という定理の補題として証明された. Cantor の $\aleph_0 < \mathfrak{c}$ 以前に du Bois-Reymond が $\aleph_0 < \mathfrak{b}$ を示していたことも驚くべきところであろう.

Kunen-Miller の表というのは図 1 のようなものである. [Mil81] から抜粋した. Cichoń の図式ができる前はどの組合せが可能かこのような表で表していた.

表題にもなっている Cichoń's maximum であるが、これは Cichoń の図式において (他の基数不変量の値に束縛されている $\operatorname{add}(\mathcal{M}),\operatorname{cof}(\mathcal{M})$ を除いて) すべての基数不変量の値を同時に別々の値にするモデルである.そのようなモデルの構成法を本稿では見ていく.

1.1 relational systems

定義 1. 1. $C = \{(q_n)_{n \in \omega} : A_n \in \mathbb{Z} \}$ とおく.

2. $\Omega_n = \{a \in [2^{<\omega}]^{<\aleph_0} : \mu(\bigcup_{s \in a}[s]) \le 2^{-n}\}$ とおき、 $\Omega = \prod_{n \in \omega} \Omega_n$ とおく. 各 $x \in \Omega$ について $N_x = \bigcap_{n \in \omega} \bigcup_{s \in x(n)}[s]$ とおく.

定義 2. 1. $\mathbf{R}_1 = (\mathcal{C}, \mathcal{C}, \{(x, y) : (\forall^{\infty} n)(x(n) \leq y(n))\})$

表1 Cichoń の図式の歴史

年	人物	出来事		
1875 年	du Bois-Reymond	$leph_0 < \mathfrak{b}$ の証明		
1891年	Cantor	ℵ ₀ < ¢ の証明		
1938年	Rothberger	$\operatorname{cov}(\mathcal{M}) \leq \operatorname{non}(\mathcal{N})$ と $\operatorname{cov}(\mathcal{N}) \leq \operatorname{non}(\mathcal{M})$ の証明		
1963年	Cohen	連続体仮説の独立性		
1970年	Martin-Solovay	Martin の公理およびその帰結の $\operatorname{add}(\mathcal{N})=\mathfrak{c}>leph_1$ の		
		証明		
1977年	Truss	$\min\{\operatorname{cov}(\mathcal{M}),\mathfrak{b}\} \leq \operatorname{add}(\mathcal{M})$ の証明		
1981 年	Miller	$\operatorname{add}(\mathcal{M}) \leq \min\{\operatorname{cov}(\mathcal{M}), \mathfrak{b}\}$ の証明およびこの時点で		
		知られていたモデルでの Cichon の図式の中の基数不		
		変量の値の決定,Kunen-Miller の表 (5x5 マス)		
1984年	Miller	$add(\mathcal{N}) \leq \mathfrak{b}$ の証明; Kunen-Miller の表 ($6x6$ マス)		
1984年	Bartoszyński	$\operatorname{add}(\mathcal{N}) \leq \operatorname{add}(\mathcal{M})$ の証明		
1984年	Fremlin	$\operatorname{cof}(\mathcal{M}) = \max\{\operatorname{non}(\mathcal{M}),\mathfrak{d}\}$ の証明; Cichoń's dia-		
		gram 登場		
1985 年	Raisonnier-Stern	$\operatorname{cof}(\mathcal{M}) \leq \operatorname{cof}(\mathcal{N})$ の証明		
1989年	Bartoszyński–Judah–Shelah	$\mathrm{PT}_{f,g}$ 強制法の開発および連続体濃度が $leph_2$ のときの		
		Cichoń の図式の分離すべて完成		
2019年	Goldstern–Kellner–Shelah	巨大基数を仮定した Cichoń's maximum の証明		
2021年	Goldstern–Kellner–Mejía–Shelah	巨大基数を仮定しない Cichoń's maximum の証明		

		Add	т	P	F	F	F
measure	category	Baire	T	T	F	T	F
Add	Baire	Unif	Т	T	т	F	F
т	т	т	MA [MS]	?	?		
F	T	T	See Conjecture §9 (2)	Iterated random reals §4	Infinitely equal and random reals §7		
F	F	т	Dominating reals §5	Eventually different reals §5	Mathias reals §6	Cohen reals [K1]	Infinitely equal reals §7
F	т	F			Random reals [K1]		
F	F	F			See conjecture §9 (3)		Silver or Sack's reals §7

図1 Kunen-Miller の表

- 2. $\mathbf{R}_2 = (\Omega, 2^{\omega}, \{(x, y) : y \notin N_x\})$
- 3. $\mathbf{R}_3 = (\omega^{\omega}, \omega^{\omega}, \{(x, y) : (\forall^{\infty} n)(x(n) \leq y(n))\})$
- 4. $\mathbf{R}_4 = (\omega^{\omega}, \omega^{\omega}, \{(x, y) : (\forall^{\infty} n)(x(n) \neq y(n))\})$

- 2. $\mathfrak{d}_{\mathbf{R}_2} = \text{non}(\mathcal{N}), \mathfrak{b}_{\mathbf{R}_2} = \text{cov}(\mathcal{N}),$
- 3. $\mathfrak{d}_{\mathbf{R}_3} = \mathfrak{d}, \mathfrak{b}_{\mathbf{R}_3} = \mathfrak{b},$
- 4. $\mathfrak{d}_{\mathbf{R}_4} = \operatorname{cov}(\mathcal{M}), \mathfrak{b}_{\mathbf{R}_4} = \operatorname{non}(\mathcal{M}).$

1.2 Cohen, ランダム, Hechler, アメーバ, eventually different 強制法

1.2.1 Cohen 強制法

 $\mathbb{C}=2^{<\omega}$ で順序を延長関係で入れたもの $q\leq p\iff p\subseteq q$ は Cohen 強制法と呼ばれる. \mathbb{C} ジェネリックフィルター G から作られる実数 $c=\bigcup G$ を Cohen 実数という. Cohen 実数から G を復元できる: $G=\{c\upharpoonright n:n\in\omega\}$. Cohen 強制法は可算なので,明らかに σ -centered を満たす. 特に ccc を満たす.Cohen 実数は \mathbf{R}_4^{\perp} を解決する:

$$(\forall x \in \omega^{\omega} \cap V)(\exists^{\infty} n)(x(n) = \dot{c}(n)).$$

1.2.2 ランダム強制法

 $\mathbb{B}=\{T: T$ は $2^{<\omega}$ の部分木で $\mu([T])>0\}$ で順序を包含関係で入れたもの $T'\leq T\iff T'\subseteq T$ をランダム強制法という. \mathbb{B} ジェネリックフィルター G から作られる実数 $r=\bigcap\{[T]: T\in G\}$ をランダム実数という.ランダム実数から G を復元できる: $G=\{T\in\mathbb{B}: r\in [T]\}$.ランダム強制法は CC を満たす.ランダム実数は \mathbf{R}_2 を解決する:

$$(\forall x \in \Omega^V) (\dot{r} \notin N_x).$$

1.2.3 Hechler 強制法

 $\mathbb{D} = \{(n, f) : n \in \omega, f \in \omega^{\omega}\}$ で順序を

$$(m,g) \le (n,f) \iff n \le m \land f \upharpoonright n = g \upharpoonright n \land (\forall k \in \omega)(f(k) \le g(k))$$

で入れたものを Hechler 強制法という. $\mathbb D$ ジェネリックフィルター G から作られる実数 $d=\bigcup\{f\upharpoonright n:(n,f)\in G\}$ を Hechler 実数という. Hechler 実数から G を復元できる: $G=\{(n,f):f\upharpoonright n=d\upharpoonright n\}$. Hechler 強制法は σ -centered である. Hechler 実数は $\mathbf R_3$ を解決する:

$$(\forall x \in \omega^{\omega} \cap V)(\forall^{\infty} n)(x \leq^* \dot{d}).$$

1.2.4 アメーバ強制法

 $\mathbb{A}=\{T:T$ は $2^{<\omega}$ の subtree で $\mu([T])\geq 1/2\}$ で順序を $T'\leq T$ \iff $T'\subseteq T$ で入れたものをアメーバ強制法という。 \mathbb{D} ジェネリックフィルター G に対して測度 1/2 の閉集合 $K_G=\bigcap G$ が定まる。そのコードの一つ a をアメーバ実数という。アメーバ実数 a から G を復元できる: $G=\{T\in\mathbb{A}:\hat{a}\subseteq [T]\}$ 。アメーバ実数を Borel な方法で加工して得られる実数 $b\in \mathcal{C}$ があって、それは \mathbf{R}_1 を解決する:

$$(\forall x \in \mathcal{C})(x \leq b).$$

アメーバ強制法は ccc である.

1.2.5 eventually different 強制法

 $\mathbb{E} = \{(s,k,\varphi): s \in \omega^{<\omega}, k \in \omega, \varphi \colon \omega \to [\omega]^{\leq k}, (\forall i \in \mathrm{dom}(s))(s(i) \not\in \varphi(i))\} \ \text{で順序を}$

$$(s', k', \varphi') \le (s, k, \varphi) \iff s \subseteq s' \land k \le k' \land (\forall i)(\varphi(i) \subseteq \varphi'(i))$$

を入れたものを eventually different 強制法という. \mathbb{E} ジェネリックフィルター G から作られる 実数 $e = \bigcup \{s: (s,k,\varphi) \in G\}$ を eventually different generic 実数という. eventually different 強制法は σ -centered である. eventually different generic 実数は \mathbf{R}_4 を解決する:

$$(\forall x \in \omega^{\omega} \cap V)(\forall^{\infty} n)(x(n) \neq \dot{e}(n)).$$

1.2.6 Borel reading of names

Cohen, ランダム, Hechler, アメーバ, eventually different 強制法は共通して次の性質を持つ。

性質 4. $\mathbb P$ を ccc かつ Borel な強制半順序であり、かつ $\mathbb P$ はジェネリック実数を持つ。すなわち、実数の名前 $\dot x_{\rm gen}$ と Borel な関係 $B\subseteq \mathbb P\times 2^\omega$ があって

$$\mathbb{P} \Vdash p \in \dot{G} \iff B(p, \dot{x})$$

となる。

この性質を持つ強制法による強制拡大での実数はジェネリック実数から Borel な方法で計算できる。

命題 5. $\mathbb P$ を上記性質 4 を持つ強制法とする。 $\dot x$ を 2^ω の元の名前とする。このとき Borel 関数 $C\colon 2^\omega\to 2^\omega$ があって、

$$\Vdash \dot{x} = C(\dot{x}_{gen})$$

となる。

これは有限台反復でも同様である。

命題 6. $(P_{\alpha},Q_{\alpha}:\alpha<\delta)$ を有限台反復とする。各 Q_{α} は上記性質 4 を持つ (ことが P_{α} によって強制される) 強制法とする。 \dot{x} を 2^{ω} の元の P_{δ} 名前とする。このとき Borel 関数 $C\colon (2^{\omega})^{\omega}\to 2^{\omega}$ と可算個の添字 $\alpha_{0},\alpha_{1},\ldots$ があって、

$$\Vdash \dot{x} = C(\dot{x}_{\text{gen}}^{\alpha_0}, \dot{x}_{\text{gen}}^{\alpha_1}, \dots)$$

となる。

- 1.3 goodness
- 1.4 LCU と COB
- 2 Cichoń の図式の左半分
- 3 ブール超冪

参考文献

 $[Mil81] \quad \text{Annold W. Miller. "Some properties of measure and category"}. \ \textit{Transactions of the American Mathematical Society 266 (1981)}, pp. 93–114.$