L'evoluzione di IP: Internet Protocol Versione 6

Introduzione al nuovo protocollo di livello network della suite TCP/IP

Limiti di IPv4

- Esaurimento spazio indirizzamento IPv4
- Problematiche di scalabilità del routing
- Richiesta di servizi nuovi e/o più efficienti

Esaurimento dello spazio di indirizzamento (1)

- Max teorico con IPv4 (32 bit) : ~ 4 MId
- Apparentemente non esiste il problema dell'esaurimento degli indirizzi

Esaurimento dello spazio di indirizzamento (2)

Inefficienza uso spazio di indirizzamento

- Ogni livello gerarchico inserisce uno spreco
- Indirizzi inutilizzati in una rete non possono essere riassegnati ad un'altra
- Necessità di indirizzi "di gestione" (indirizzi ai router)
- Necessità di indirizzi riservati (reti private, multicast, ...)
- Necessità di indirizzi liberi per espansioni future
- Determinazione max reale (RFC 1715):
- Parametro H di efficienza nell'assegnazione indirizzi
- Massimo valore teorico: H=0.301
- Stima reale in base a reti esistenti (telefonia, etc): ~0.26
- ~ 200 milioni di host

$$H = \frac{Log_{10}(n_{indivizzi})}{n_{bit}}$$

Problematiche di scalabilità del routing (2)

Problematiche di scalabilità del routing (1)

- Cause della crescita delle tabelle di routing
- crescita vertiginosa delle dimensioni di Internet
- ogni singola rete deve essere annunciata
- assegnazione "disordinata" degli indirizzi IP
- Problemi
- Limiti dei router
- Gestione di troppe informazioni
- Limiti dei protocolli di routing
- Alta probabilità che ci sia almeno una route che cambia nel giro di poco tempo
- Rimedi con IPv4
- CIDR (Classless Inter-Domain Routing)
- Problema presente principalmente sui router di backbone

9

Nuove esigenze si affacciano ad inizio anni 90

Richiesta di nuovi servizi

- Mobilità
- Sicurezza
- Autoconfigurazione (Plug & Play)
- Qualità del Servizio (QoS)
- Multicast

Il lungo percorso all'adozione di IPv6

- Lunga gestione della definizione e della migrazione ad IPv6
- Molti problemi hanno dovuto essere risolti con soluzioni "tampone"
- Nelmomento in cui IPv6 è arrivato "in produzione", alcuni problemi erano già stati risolti
- n Quando le specifiche IPv6 sono entrate in una fase matura, molte delle problematiche di IPv4 non erano più tali

Indirizzi allocati: situazione attuale

Esaurimento dello spazio di indirizzamento

- Introduzione delle reti a dimensione "personalizzata"
- Netmask
- Indirizzamento privato
- Intranet, RFC 1918
- Non sufficiente, da solo, a risolvere i problemi
- Deve essere accoppiato con NAT o ALG
- Network Address Translator (NAT
- Diffusione capilalre
- RSIP (Realm Specific IP)
- Ancora una proposta
- ALG (Application Level Gateway)

유

Problematiche di scalabilità del routing

- CIDR
- Classless Inter-Domain Routing
- Maggior rigidezza nell'assegnazione di indirizzi IP
- Regional Internet Registry: assegnano solamente reti a grossi clienti
- Spesso l'allocazione minima è una rete /20 (1024 indirizzi)
- Scalabilità dei protocolli di routing
- Problematica attualmente senza soluzione
- Problematica in parte irrisolta
- Dei problemi originari di IPv4, è quello più impellente ancora rimasto

12

Supporto di nuovi servizi: Mobilità (1)

Mobilità può avere più significati

- Mobilità "limitata": capacità di operare da punti diversi dalla
- Portabilità: capacità di spostarsi da un punto all'altro della rete rendendo la cosa trasparente

Mobilità "limitata"

- Favorire l'operatività di host che possono essere connessi alla rete in punti diversi in momenti diversi
- Si tratta di facilitare l'assegnazione degli indirizzi agli host mobili
- Soluzioni: DHCP, PPP, etc.
- Permette, ad un host, di poter contattare il resto del mondo
- Interazione di tipo "client" verso un server, ma non viceversa

13

4

Supporto di nuovi servizi: Sicurezza

Necessità

- Autenticazione del mittente
- Criptatura del canale

Soluzione

- IPsec (RFC 2401)
- IP Authentication Header (AH)
- Encapsulating Security Paylod (ESP)

Supporto di nuovi servizi: Mobilità (2)

- Portabilità (implica Raggiungibilità)
- Problema duale rispetto al punto precedente
- Permette all'host mobile di essere raggiunto sempre allo stesso indirizzo "ufficiale"
- Ammette una interazione di tipo "server" da parte di client Può avere maggiori requisiti di sicurezza (protezione dei remoti
- dati in transito)
- Soluzione: Mobile IP (RFC 2002). sostanzialmente mai implementata in IPv4
- Mobile IP richiede indirizzi IP, che scarseggiano
- Problematica fondamentale per il supporto di reti di telefonia di tipo 3G
- Ogni apparato (telefono) è contemporaneamente un server e un client

Supporto di nuovi servizi:

Autoconfigurazione

Assegnazione "stateless"

Dinamic Host Configuration Protocol

- Modo di funzionamento normale
- Assegnazione "stateful"
- Basata sul riconoscimento dell'indirizzo MAC della scheda
- Non garantisce l'assegnazione dello stesso indirizzo IP nel momento in cui si cambi la scheda di rete

Problematiche

- Necessita di un server ad hoc
- Non gestisce problematiche di rinumerazione della rete
- "Autoconfigurazione" è inteso nei confronti degli host finali, non della rete

15

16

Supporto di nuovi servizi: QoS e **Multicast**

Qualità del Servizio

- Modello IntServ
- Qualità "deterministica"
- Resource reSerVation Protocol
- Modello DiffServ
- Qualità "statistica"
- Definizione di classi di servizio

Multicast

- Non vi sono particolari soluzioni esplicitamente pensate per Pv4
- Gli avanzamenti nel mondo della ricerca possono essere applicati sia ad IPv4 che IPv6
- Il multicast è ancora un problema aperto

_

17

18

La nascita di IPv6

- Meeting IETF Boston (1992), "Call for proposals"
 - Creazione di Working Groups appositi
- Numerose proposte
- TUBA: adozione OSI CNLP come nuovo IP
- CATNIP: integrazione diversi protocolli di rete (IP, CLNP, IPX) e di trasporto (TP4, SPX, TCP, UDP)
 - Ammesso TCP/IP ad un lato della connessione TCP/CLNP all'altro
- SIPP: proposta evolutiva di IPv4 (mantenimento delle caratteristihe positive, correzione di quelle nagative
- Semplicità; estendere gli indirizzi ed eliminare campi superflui

Proposta vincente

- Formulazione di una lista comprendente 17 obiettivi
- Vincintore: doveva soddisfare il maggior numero di obiettivi
 - SIPP con indirizzi a 128 bit

20

Perchè migrare ad IPv6

- da ostacolata successo delle "soluzioni tampone" fortemente Ф, migrazione
- giustificare per Non vi sono ragioni così impellenti l'immediata migrazione ad IPv6
- Maggiori problematiche
- Scalabilità del routing
- Necessità di indirizzi pubblici da parte di applicativi peer-topeer
- Ad esempio Telefonia su IP

Pv6 Header IPv6 e IPv4 a confronto (1) 3 Next Header | Hop Limit Total Length 24 Flow Label **Destination IP Address** Source IP Address 16 16 12 Vers. | HLEN | Traffic Class Payload Length Version Traffic Class

Pv4

Fragment Offset

Flags

Identification

Protocol

Time To Live

Header Checksum PAD

Destination IP Address

Options

Header IPv6 e IPv4 a confronto (2)

Semplificazione

■ Obiettivo: limitare il numero di informazioni gestite dai router all'interno del *critical router loop*

In dettaglio

- 8 campi in IPv6 anzichè 12 in IPv4
- Alcuni campi rinominati, altri aggiunti
- L'header ha un formato fisso (40 bytes); viene rimosso il campo Header Length
- Rimozione della checksum
- Rimozione delle procedure di frammentazione dai nodi intermedi (router)

Campi dell'header IPv6 (1)

- Version (4 bit)
- Fisso e pari a 6
- Flow label (20 bit)
- Indica pacchetti appartenenti allo stesso flusso
- Migliora prestazioni di IPv4
- Valore compreso tra 1 e FFFFF

Header IPv6 e IPv4 a confronto (3) Risultati: non completamente positivi Indirizzo IPv6 molto grosso (128 bit) Maggiore complicazione nelle operazioni di *route lookup*Maggiore dimensione delle CAM / TCAM dei router per la velocizzazione delle access list Difficoltà nel localizzare campi di livello 4 (porta TCP/UDP) Spesso usate per classificazione, access list

22

7

Campi dell'header IPv6 (2)

- Hop Limit (8 bit)
- Sostituisce il Time-To-Live di IPv4
- E' decrementato di una unità da ogni router attraversato
- Payload length (16 bit)
- Indica la lunghezza del carico dati del pacchetto
 - Header IPv6 è fisso
- Attenzione: comprende anche eventuali extension headers
 - Posto a zero nel caso di Jumbo Payload
- Traffic class (8 bit)
- Permette di assegnare ai pacchetti differente priorità
- Valori relativi a particolari categorie di traffico

Campi dell'header IPv6 (3)

Next Header (8 bit)

- Indica tipo di header successivo a IPv6
- Principali valori ammessi:

0	НВН	Hop by Hop option
9	TCP	Transmission Control Protocol
17	UDP	User Datagram Protocol
43	ВН	Routing Header
44	Æ	Fragment Header
51	АН	Authentication Header
52	ESP	Encrypted Security Payload
28	ICMPv6	Internet Control Message
29	Null	No next header
09	рон	Destination Option Header (IPv6)
89	OSPF	Open Shortest Path First

_

22

Gli Extension Header

- Attualmente sono definiti sei tipi :
- Hop By Hop Option Header
- Routing Header
- Fragment Header
- Authentication Header
- **Encrypted Security Payload Header**
 - **Destination Option Header**
- Ordine elaborazione = ordine Extension header
- Esiste un ordine preferenziale
- Il Destination Option Header può essere presente anche in seconda posizione nel caso in cui questa opzione sia utilizzata contemporaneamente al Routing Header

La catena degli headers

	TCP Header + Payload	
IPv6 Header	Next Header =	TCP

TCP Header + Payloa
Routing Header Next Header = TCP
IPv6 Header Next Header = Routing

Fragment Header Next Header = TCP Routing Header = Next Header = Fragment Next Header = **IPv6 Header** Routing

TCP header

Payload

26

Caratteristiche comuni degli Extension Header

- Campo Next Header: sempre presente per primo
- Tranne Encrypted Security Payload
- Campo Extension Header Length: spesso presente

3 Type Specific Data 16 Header Length Extension Next Header

27

28

Caratteristiche comuni degli Extension Header con opzioni (1)

- Alcuni Extension Header comprendono header opzionali che possono essere ripetuti più volte
- Formato Type Length Value
- Negli Extension Header IPv6, Type e Length sono sempre
- Opzioni "comuni"
- Pad1 e PadN per allineare il pacchetto a multipli di 8 byte
- Gli extension header classici non hanno bisogno del padding per riallineare i dati

3

Hop-by-Hop Options Header

- Viene letto da TUTTI i nodi che il pacchetto Stesso formato e stessa codifica del Destination **Options Header** attraversa
- Opzioni definite:
- Router Alert (RFC 2711)
- Payload Jumbogram (RFC 2675)
- Le opzioni di padding (Pad1, PadN)

Caratteristiche comuni degli Extension Header con opzioni (2)

- Codice opzione (campo Type)
- Viene assegnato un significato particolare ai primi 3 bit

2 bit	Primi 2 bit: azione da intraprendere nel caso in cui l'opzione non sia riconosciuta
Codifica	Significato
00	L'opzione corrent può essere ignorata; è possibile continuare con l'opzione successiva
	Il pacchetto deve essere scartato
0	Il pacchetto deve essere scartato e deve essere generato un messaggio ICMPv6 Parameter Problem
_	Il pacchetto deve essere scartato e deve essere generato un messaggio ICMPv6 Parameter Problem a meno che l'indirizzo di destinazione del pacchetto fosse un indirizzo multicast

Terzo bit:	Terzo bit: indica se il contenuto dell'opzione può essere modificato in transito
Codifica	Significato
0	Il valore dell'opzione non può essere cambiato in transito
1	Il valore dell'opzione può essere cambiato in transito

30

Routing Header

- La sorgente indica percorso da seguire per arrivare a destinazione
- Simile a Source Routing IPv4
- Campi principali
- Segment Left: numero dei segmenti di percorso rimanenti
 - Routing Typs: attualmente '0' (source routing classico)
- Header Length: lunghezza dell'header in multipli di 8 ottetti, esclusi gli 8 iniziali

3

32

_

elaborato il Routing Header (può non coincidere con i router attraversati dal pacchetto) Elenco dei router che hanno Routing Header: esempio Segment Left(1) Hop 1: R1 Hop 2: D NextHdr: Routing Routing Hdr From: S To: R2 IPv6 Hdr (E) NextHdr: Routing Segment Left(2) Hop 1: R2 Hop 2: D Routing Hdr From: S Pv6 Hdr

To: R1

ഗ

Meccanismo di frammentazione

ဗ္ဗ

- Ogni pacchetto è formato da due parti:
- Parte frammentabile
- Comprende l'Header IPv6 e gli Extension Header che precedono il Fragment Header (ossia fino a Routing Parte non frammentabile Header incluso)
- Devono essere ripetuti in tutti i frammenti

32

Fragment Header

La frammentazione in IPv4 e in IPv6

- IPv4: qualunque nodo del percorso può frammentare
- IPv6: solo il nodo mittente può frammentare
- In IPv6 si cerca di evitare frammentazione
 - Path MTU Discovery (RFC 1981)
- Se la frammentazione è necessaria si inserisce un Fragment Header

Pv6 e sicurezza (1)

Due opzioni distinte

- Authentication Header
- Garantisce autenticità ed integrità del pacchetto
- Encrypted Security Payload Header
- Definisce la criptatura di tutto ciò che segue l'header ESP
- Deve essere l'ultimo header del pacchetto corrente
- Operano sul pacchetto IPv6 normalizzato
- essere modificate lungo il cammino sono poste a zero e l'eventuale Routing Header è posto al valore che avrà a Pacchetto risultante quando tutte le opzioni che possono destinazione
- maggiori caratteristiche di sicurezza, è possibile utilizzare il tunnel mode

37

38

Authentication Header

Authentication Header

- Autenticazione del mittente
- **Authentication Data**
- Contiene Integrity Check Value

	8	16 31
xt Header	Next Header Payload Length	Reserved
	Security Parameters Index (SPI)	iters Index (SPI)
	Sequence number	number
	Authentication Data (variabile)	Data (variabile)

Pv6 e sicurezza (2)

Parametro fondamentale: SPI

aq associato crescente, Numero sempre crescen comunicazione unidirezionale Numero

una

- Usato per determinare la Security Association
- Security Association
- Relazione tra due o più entità che descrive come queste utilizzano i servizi di sicurezza per comunicare
- Unidirezionale
- Definita in ogni host dalla tripletta SPI, Destination Address, tipologia di sicurezza richiesta (AH/ESP)
- Negoziata attraverso una fase precedente allo scambio di pacchetti
- Internet Key Exchange (IKE)

Encrypted Security Payload Header

- Encrypted Security Payload
- Cifratura del payload (segretezza)

40

Modalità di utilizzo

Tunnel mode

- Evita la presenza di dati in chiaro (ad esempio gli indirizzi) nel pacchetto originale
- Problemi: frammentazione, maggiore overhead, necessità di ulteriori entità per gestire il tunnel

Architettura di indirizzamento

Tre tipi di indirizzo IP:

- Unicast: indirizzi di stazioni
- Anycast: indirizzi di servizi
- Multicast : indirizzi di gruppi di stazioni
- Non si usano più gli indirizzi broadcast

 - Indirizzi associati alle interfacce
- Possibilità di avere più indirizzi per ogni interfaccia

Modalità di scrittura degli indirizzi

42

- Si scrivono in esadecimale come 8 numeri naturali separati da ":"
- FEDC:BA98:0876:45FA:0562:CDAF:3DAF:BB01
 - 1080:0000:0000:0007:0200:A00C:3423
- Esistono delle semplificazioni:
- si possono omettere gli zero iniziali
 - 1080:0:0:7:200:A00C:3423
- Si possono sostituire gruppi di zero con "::"
 - 1080::7:200:A00C:3423
- ::1 (indirizzo di loopback)
- Gli indirizzi di compatibilità IPv4 si scrivono:
- 0:0:0:0:0:0:A00:1
- -::A00:1
- **.::10.0.0.1**

44

Indirizzi: Unicast Globali

- Public topology
- Format Prefix
- Top Level Aggregation Identifier
- Reserved
- Next-Level Aggregation Identifier
- Site topology
- Site-Level Aggregation Identifier (instradamento intra-sito)
- Interface ID
- ID dell'host

Indirizzi unicast speciali Unspecified :: Loopback :: IPv4 compatible e IPv4 mapped ::100.1.2.3 (indirizzo IPv4) :::FFFF:100.1.2.3 (indirizzo IPv4 mapped)

Interface ID 64 Interface ID 64 sostituiscono le RFC 1597 e lo RFC 1918 Subnet ID 54 0 0 38 1111-1110-10 (FE80) Indirizzi Privati 10 site local 1111-1110-11 Site local Link local (FECO) link local 20

Indirizzi: Unicast Locali

Indirizzi Anycast

- Non hanno spazio indirizzamento proprio
- Sono indirizzi unicast assegnati ad un insieme di interfacce
- Ai nodi deve essere esplicitamente detto che quello è un indirizzo anycast
- Indica il server più vicino al mittente che fornisce un dato servizio
- Possono essere assegnati solo a router IPv6, non a generici host

NSAP address

IPX address

51

Indirizzi Anycast: formati

- In IPv6, per ora, è stato definito solo un anycast address:
- subnet router anycast address:

n 128-n Subnet prefix 000..00

Generico indirizzo Anycast :

Subnet prefix 111111011....11 Anycast ID identificatore di interfaccia

53

_

Multicast Listener Discovery

- Sostituisce il protocollo IGMP di IPv4
- Messaggi
- Multicast Listener Query, a sua volta suddiviso in:
 - General Query
- Multicast Address Specific Query
- Multicast Listener Report
- Multicast Listener Done

Checksum	Reserved	
Code	onse Delay	Multicast Address
Туре	Maximum Response Delay	

Scope: usato per limitare lo scopo del multicast ■ T indica se è un indirizzo transiente (1) o permanente (0) 112 ■ Usato (più propriamente) al posto del TTL di IPv4 **Group ID** Scope 8 - organization local assume il formato 000T Indirizzi Multicast Flag 1 - node local 4 2 - link local 5 - site local E - global 1111-1111 ω group 54

- Internet Control Message Protocol
- Tre impieghi principali
- Diagnostica
- Neighbor Discovery
- Gestione dei gruppi multicast
- Riunisce funzionalità che IPv4 suddivideva tra:
- ICMP
- ARP (Address Resolution Protocol)
- IGMP (Internet Group Membership Protocol)

Checksum	ody
Code	Message Body
Туре	

22

II campo Type

Il campo type attualmente assume i seguenti valori

achable			m:			ip Query	ip Report	ip Termination	ū	ment	tion	sement	
Destination Unreachable	Packet too big	Time exceeded	Parameter Problem	Echo Request	Echo Reply	Group Membership Query	Group Membership Report	Group Membership Termination	Router Solicitation	Router Advertisement	Neighbor Solicitation	Neighbor Advertisement	Redirect
-	N	က	4	128	129	130	131	132	133	134	135	136	137

ICMPv6: Messaggi di errore

- Tipi di messaggi
- Destination Unreachable (type = 1)
- Packet too big (type = 2)
- Time exceeded (type = 3)
- Parameter Problem (type = 4)
- Pacchetto ICMPv6: non può essere più lungo di 576 ottetti

16	Checksum	Parameter	Headers del pacchetto che ha causato l'errore
∞	Code	Parai	rs del pacchetto
œ	Туре		Heade

28

22

Tipi di messaggi

ICMPv6: Echo

- Echo request (type= 128)
 - Echo reply (type= 129)

16	Checksum	Sequence Number	E
∞	Code	ifier	Data
∞	Type	Identifier	

ICMPv6: Group Management

- Tipi di messaggi
- (type=130) Group Membership Query
- (type=131) Group Membership Report

Group Membership Termination (type=132)

Checksum
Code
Tvpe

Multicast Address

Unused

Maximum Response Delay

.

9

29

Stato dell'arte di IPv6

- Definizione aspetti base di IPv6 è completa e stabile
- In via di defizione meccanismi di supporto a servizi più innovativi
- Implementazioni :
- router: principali costruttori integrano IPv6
- host: scarsa diffusione nei sistemi operativi Windows

61

Conclusioni

- IPv6 è ormai maturo, anche se non è ancora disponibile su tutte le piattaforme
- La sua adozione è fortemente influenzata dalla enorme base di applicazioni IPv4
- L'affermazione di IPv6 nel lungo periodo sembra molto probabile
- Difficile stabilire cosa vuol dire "lungo periodo"

83

E' necessario migrare a IPv6?

Retrofitting

- La quasi totalità delle migliorie studiate in funzione di IPv6 sono state rese compatibili IPv4
- DHCP
- lbsec
- Quality of Service
- MobileIP
- Problema esaurimento indirizzi IPv4
- il NAT è potente ma molto complesso e difficile da realizzare in hardware
- Sì, è necessario migrare a IPv6