Université d'Ottawa Faculté de génie

School of Electrical Engineering and Computer Science

University of Ottawa Faculty of Engineering

École de science informatique et de génie électrique

CSI2120 Programming Paradigms

MIDTERM EXAM

Length of Examination: 75 minutes	February 11, 2014, 13:00	
Professor: Jochen Lang	Page 1 of 10	
Family Name:		
Other Names:		
Student Number:		
Signature		

You are allowed one single-sided letter-sized sheet of notes.

At the end of the exam, when time is up: Stop working and close your exam booklet. Remain silent.

Question	Marks	Out of
1		2
2		3
3		2
4		4
5		5
6		2
7		6
Total		24

Question 1 [2 marks]

Given the following program:

```
postIt([]).
postIt([c|R]):- postIt(R), !, nl.
postIt([X|R]):- postIt(R), write(X).
```

What will be printed as response to the following query?

```
?- postIt([a,b,c,d,e]).
ed
ba
true.
```

Question 2 [3 marks]

Complete the predicate negCount below such that it counts the negative numbers in a list, e.g.,

```
?- negCount([0,4,-3,-1,6,-7], N). N = 3
```

Note: You are not allowed to change the order of the following rules.

```
\label{eq:negCount} \begin{split} &\operatorname{negCount}\left([\texttt{X}|\texttt{L}],\texttt{N}\right) := \frac{\texttt{X}<\texttt{0, negatif}\left(\texttt{L,N1}\right), \; \texttt{N is N1+1.}} \\ &\operatorname{negCount}\left([\texttt{X}|\texttt{L}],\texttt{N}\right) := \; \texttt{X}>=\texttt{0, negCount}\left(\texttt{L,N}\right). \end{split}
```

Question 3 [2 marks]

The following predicate q3 below is designed to operate on binary trees:

```
\begin{array}{l} q3\,(t\,(V,\;nul,\;nul)\,,\;0)\,.\\ q3\,(t\,(V,\;Q,\;nul)\,,\;1)\,.\\ q3\,(t\,(V,\;nul,\;Q)\,,\;1)\,.\\ q3\,(t\,(V,\;Q1,\;Q2)\,,\;T)\,:-\,q3\,(Q1,\;T1)\,,\;q3\,(Q2,\;T2)\,,\;T\;is\;1+T1+T2\,. \end{array}
```

What value for T is obtained with the following query?

```
T=5
```

Question 4 [4 marks]

The following facts describe which license or permit is held by whom. The list includes driving licenses, fishing permits and licensed weapons.

```
permitted(robert, fishing).
permitted(jochen, driving).
permitted(paul, fishing).
permitted(jean, weapons).
permitted(jean, driving).
permitted(sam, weapons).
permitted(sam, fishing).
```

a) Give a query which finds a person who is **not** permitted to drive.

```
?- permitted(P,_),\+permitted(P,conduire).
```

b) List in order all solutions found by the following query.

```
?- permitted(X,Y), permitted(X,Z),Y==Z.
```

```
X = jean,
Y = weapons,
Z = driving;
X = jean,
Y = driving,
Z = weapons;
X = sam,
Y = waepons,
Z = fishing;
X = sam,
Y = fishing,
Z = weapons;
false.
```

Question 5 [5 marks]

a) Given the following Prolog program

```
p(X) :- b(X), c(Y).
p(X) :- a(X).
c(X) :- d(X).
a(1).
a(2).
a(3).
b(4).
b(5).
d(6).
d(7).
```

Draw the complete Prolog search tree for the following query (clearly mark the solutions found and the **order** in which they are found).

```
Y = P(X).

X = 4;

X = 5;

X = 5;

X = 1;

X = 2;

X = 3.
```

Question 5 (continued)

b) List the solutions which are found by the same query when a Cut is added as below:

```
p(X) :- b(X), !, c(Y).
p(X) :- a(X).
c(X) :- d(X).
a(1).
a(2).
a(3).
b(4).
b(5).
d(6).
d(7).
```

```
X = 4;
X = 4.
```

c) List the solutions which are found by the same query when a Cut is added as below:

```
p(X) :- b(X), c(Y).
p(X) :- a(X).
c(X) :- d(X).
a(1).
a(2):- !.
a(3).
b(4).
b(5).
d(6).
d(7).
```

```
X = 4;

X = 4;

X = 5;

X = 5;

X = 1;

X = 2.
```

Question 6 [2 marks]

Which of the predicates below works correctly? The predicate is to substitute all elements of the list equal the first argument with the second argument. For example:

```
?- subElement(apple, orange, [apple, celery, pear, pear, apple, raisin],L).
L = [orange, celery, pear, pear, orange, raisin]
```

a)	b)	
subElement(_,_,[],[]).	subElement(_,_,[],[]).	
subElement(X,Y,[X R],[Y R]) :-	subElement(X,Y,[X R],[Y R1]) :-	
subElement(X,Y,R,R).	subElement(X,Y,R,R1).	
subElement(X,Y,[Z R],[Z R]) :- X == Z,	subElement($X,Y,[Z R],[Z R1]$) :- $X==Z,$	
subElement(X,Y,R,R).	subElement(X,Y,R,R1).	
c)	d)	
subElement(_,_,[],[]).	subElement(_,_,[],[]).	
subElement(X,Y,[Z R],[Z R1]) :-	subElement(X,Y,[X R],[Y R1]) :-	
subElement(X,Y,R,R1).	subElement(X,Y,R,R1).	
subElement(X,Y,[X R],[Y R1]) :- X==Z,	subElement(X,Y,[Z R],[Z R1]) :- X == Z,	
subElement(X,Y,R,R1).	subElement(X,Y,R,R1).	
e)	f)	
subElement(_,_,[],[]).	subElement(_,_,[],[]).	
subElement(X,Y,[Z R],[Z R1]) :-	subElement(X,Y,[X R],[X R1]) :-	
subElement(X,Y,R,R1).	subElement(X,Y,R,R1).	
subElement(X,Y,[X R],[Y R1]) :- X = Z,	subElement(X,Y,[Z R],[Z R1]) :- X = Z,	
subElement(X,Y,R,R1).	subElement(X,Y,R,R1).	

Question 7 [6 marks]

Given the following database:

```
prerequisite(csi2520,csi2510).
prerequisite(csi2520,csi2610).
prerequisite(csi2510,iti1521).
prerequisite(csi2510,mat1748).
prerequisite(csi2510,csi2772).
```

What is the value of L obtained by each of the following queries (if multiple solutions are possible, list only the first solution that will be found)?

```
?- bagof(X,Y^prerequisite(X,Y),L).
```

```
L=[csi2520, csi2520, csi2510, csi2510, csi2510].
```

?- setof(X,Y^prerequisite(X,Y),L).

```
L= [csi2510, csi2520].
```

?- setof(Y, prerequisite(X, Y), L)

```
X = csi2510,

L = [csi2772, iti1521, mat1748]
```