1 Homogene lineare partielle Differentialgleichungen 1. Ordnung

- 1. Umstellen in Normalform: $\sum_{i=1}^{n} a_i(\vec{x}) \cdot u_i = 0$, weitere Beispiele für n=2.
- 2. Charakteristische DGLs sind zu lösen: $\dot{x}(t) = a_1(x(t), y(t)); \dot{y}(t) = a_2(x(t), y(t))$
 - (a) Dabei darf man alle Gleichungen z.B. durch eine andere teilen
 - (b) Hat man dies getan, erhält man z.B. $\dot{x}(t)=1$ und somit x(t)=t+c und c=0 ist zulässig, also x=t
- 3. Eine der Gleichungen durch Variablen der anderen darstellen: $y = \psi(x, C)$, nach $C(\vec{c})$ umstellen $C(\vec{c}) = \phi(x, y)$
- 4. $\Phi(\phi(x,y))$ mit beliebigem Φ aus C^1 ist die Lösung
- 5. Allgemein: $\Phi(\phi_1(x), ..., \phi_{n-1}(\vec{x}))$