线性代数(1)期末考题(A卷)答案

一、填空题(每空4分,共36分)

1.
$$(-3,2,1)$$

3.
$$1,\sqrt{3}(2x-1)$$

4.
$$n+1$$

5.
$$b-a, b-a, 2a+b$$

6.
$$V=L(\alpha_1,\alpha_2,\alpha_3)$$

8.
$$\frac{x - \frac{4}{3}}{5} = \frac{y + \frac{2}{3}}{-1} = \frac{z}{-3}$$

9.
$$(1,-1,2)^T$$

二、计算和证明题(64分)

10. (18 分) (1) 从基 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 到基 $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 - \alpha_3, \alpha_1 + \alpha_2 + \alpha_3 - \alpha_4$ 的

过渡矩阵是
$$C = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
,4分

从而
$$C^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
,所以 σ 在基 $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 - \alpha_3, \alpha_1 + \alpha_2 + \alpha_3 - \alpha_4$

(2)
$$\gamma$$
 在基 α_1 , α_1 + α_2 , α_1 + α_2 - α_3 , α_1 + α_2 + α_3 - α_4 下的坐标为

 $\sigma(\gamma)$ 在基 $\alpha_1,\alpha_1+\alpha_2,\alpha_1+\alpha_2-\alpha_3,\alpha_1+\alpha_2+\alpha_3-\alpha_4$ 下的坐标为为

11. (16 分)(1)由 $\ker \sigma \neq \{\theta\}$ 得 |A| = 0,解得 $\lambda = 3$ 或 $\lambda = -1$ 。

因为 $\beta = \alpha_1 + 3\alpha_2 \in \text{Im}\,\sigma$,所以令 $b = (1,3,0)^T$,则线性方程组Ax = b有解。

将 $\lambda=-1$ 代入,方程组Ax=b无解;将 $\lambda=3$ 代入,方程组有解。

故 $\lambda = 3$ 。 ·············6分

(2)解方程组 Ax=0,得其基础解系为 $(-7,3,1)^T$,因此 ker 的基为 $-7\alpha_1+3\alpha_2+\alpha_3$ 。 ……………5分

对 A 进行初等行变换可得 $\begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & 3 \\ 0 & 0 & 0 \end{pmatrix}$, 故 A 的前两列为其列向量组的极大线性无

关组。所以, $Im \sigma$ 的基为 $\alpha_1 + 2\alpha_2 + \alpha_3, 2\alpha_1 + 3\alpha_2 + 3\alpha_3$ 。 ························5分

12. (16分)采用初等变换法:

$$\begin{pmatrix} A \\ I \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & -1 & -\frac{3}{\sqrt{2}} \\ 0 & 1 & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} . \dots 10 \, 27$$

规范形为 $Q(\alpha) = y_1^2 - y_2^2 - y_3^2$ 。3分

13. (8分) $\forall \gamma \in V_1^{\perp} \cap V_2^{\perp}$,由 $V = V_1 \oplus V_2$ 知存在唯一的 γ_1 , γ_2 ,使得 $\gamma = \gamma_1 + \gamma_2$ 。

故
$$(\gamma,\gamma)=(\gamma,\gamma_1+\gamma_2)=(\gamma,\gamma_1)+(\gamma,\gamma_2)=0$$
,所以 $\gamma=0$,

从而
$$V_1^{\perp} \cap V_2^{\perp} = \{0\}$$
。 ·······················4 分

又因为 $V=V_1\oplus V_1^\perp$, $V=V_2\oplus V_2^\perp$,所以 $\dim V=\dim V_1+\dim V_1^\perp=\dim V_2+\dim V_2^\perp$ 。

又因为 $\dim V = \dim V_1 + \dim V_2$,

因此, $V = V_1^{\perp} \oplus V_2^{\perp}$ 。

14. (6分) 法一: 因为A, B是正定矩阵, 所以存在可逆矩阵 P, Q, 使得 $A = P^T P$,

$$B = Q^T Q$$
, $\text{MI} QABQ^{-1} = QP^T PQ^T = (PQ^T)^T PQ^T$.

又因为 PQ^T 可逆,所以 $QABQ^{-1}$ 正定,所有特征值为正数。

因为AB与 $QABQ^{-1}$ 相似,所以AB的特征值都大于零。

法二: 因为A是正定矩阵, 所以存在可逆矩阵P, 使得 $A=P^TP$, 所以

 $f_{AB}(\lambda)$ = $\lambda I - AB$ = $\lambda I - P^T PB$ = $\lambda I - PBP^T$ | ,因为 PBP^T 正定,所以 AB 的特征值都大于零。