Rupadarshi Ray

rupadarshiray.github.io

Fifth year mathematics major IISER Mohali

rupadarshi2014@gmail.com

Education —
MS21, IISER Mohali
\star current CPI: 8.42
Techno India Group Public School (TIGPS), Balurghat 2007-2020 · Balurghat, West Bengal Primary, Middle and High Scool
 ★ Standard XII CBSE board exams: 93.6% ★ Standard X CBSE board exams: 90.6%
Thesis —
Rigidity of locally symmetric spaces Fall 2025-Spring 2026 · IISER Mohali Masters thesis under Dr. Arghya Mondal
\star Mostow rigidity theorem for locally symmetric spaces of non-compact type
——————————————————————————————————————
My primary interests lie in
• Differential geometry: Riemannian manifolds, symplectic manifolds and Lie groups

- Representation theory of Lie groups and Lie algebras

• Symplectic geometry and Hamiltonian flows

• Riemann surfaces, complex manifolds and complex analytic geometry

______ Talks _____

Dynamics on manifolds: Hamiltonian flows, geodesic flows and ergodic theory

I have done coursework and reading/also am interested in the following areas

• A talk on **irrational rotations on the torus** titled "Are you dense in chaos?" for the mathematics club of IISER Mohali, Infinity, in Spring 2024

Symmetric spaces of non-compact type, their boundaries and rigidity of locally symmetric spaces

- A talk on some comparison theorems in Riemannian geometry for the course on Riemannian geometry, IISER Mohali, Semester 7
- A talk on **knower's and liar's paradoxes and their formalizations** titled "What does a knower and a liar have in common?", course on Philosophy of language, IISER Mohali, Semester 7
- A short talk on **topological conjuacy of linear flows** for the course on seminar delivery, IISER Mohali, Semester 7

- A talk on periods of elliptic curves for the course on Arithmetic of elliptic curves, IISER Mohali,
 Semester 8
- A short talk on **construction of Riemann surface of holomorphic functions** for the course on seminar delivery, IISER Mohali, Semester 8
- A talk on construction of Haar measure on locally compact Hausdorff groups for the course on Fourier analysis, IISER Mohali, Semester 8
- Symplectic manifolds and Hamiltonian flows

Introductory talk titled "When does a vector field kill area?" in the Graduate Students Seminar, IISER Mohali, Spring 2025

Talk with regards to the orbit method in representation theory, Summer 2025

- Abel's theorem and Jacobi's inversion theorem, Meromorphic functions on Riemann surfaces seminar, IISER Mohali, Summer 2025
- Ergodic theorems for actions of locally compact groups, Summer reading presentation, IISER Mohali, Summer 2025
- Reductive subgroups of $GL(n,\mathbb{R})$ and totally geodesic submanifolds of $P(n,\mathbb{R})$, Boundary of symmetric spaces seminar, IISER Mohali, Fall 2025

— Background ——

First and second year of BSMS

Ordinary differential equations, Hamiltonian dynamics and quantum mechanics \dots Summer 2022 · Personal reading from lectures by V Balakrishnan

- \star Classification of linear flows in \mathbb{R}^2
- \star Some theorems in Hamiltonian dynamics
- ★ Quantum mechanical systems as a representation of the Hisenberg Lie algebra

- * Curvature of curves and surfaces in \mathbb{R}^3
- * Gauss's theorema egregium

NIUS 19.1, HBCSE-TIFR December $2022 \cdot \text{HBCSE-TIFR}$, Mumbai Undergraduate physics camp

- * Attended talks about quantum computation, history of phase transitions, phase transitions in Ising model and neural networks, etc.
- * Attended laboratory sessions "experimental problem solving".

- \star Fundamental group, singular homology, categories and functors
- \star Differential forms (derivative and integrals) and vector fields (bracket and flows) on manifolds

Sheaf theoretic proof of de Rham isomorphism Summer 2023 ·IISER Mohali $Summer\ reading\ under\ Dr.\ Shane\ D'\ Mello$

- * Lee on de Rham cohomology of differential forms
- ★ Griffiths and Harris on sheaf cohomology of differential forms
- * Bott and Tu on Cech-de Rham double complex

Third and fourth year of BSMS
Representation theory of groups and Lie algebras
\star Fulton and Harris on representation theory of finite groups and Lie algebras \star Woit on quantum mechanics and representation theory
Knots and braids
 ⋆ Jones polynomial of knots and links ⋆ Universal Abelian cover of knot complements and Alexander polynomial
Riemannian geometry
Arithmetic of elliptic curves
Meromorphic functions on Riemann surfaces
 Etale space of sheaf of holomorphic and meromorphic functions, ringed space definition of Riemann surfaces Constructing meromorphic functions on Riemann surfaces Riemann-Roch theorem, Abel's theorem and Jacobi's inversion theorem
Rigidity of Discrete Groups
\star Attended talks on the Mostow rigidity theorem for hyperbolic 3-manifolds by Dr. Arghya Mondal
Ergodic theorems for actions of locally compact groups Summer 2025 ·IISER Mohali Summer reading under Dr. Jotsaroop Kaur
\star Following Einsiedler and Ward, I presented proofs of ergodic theorems for measure preserving transformations and actions of Amenable groups with tripling property
Fifth year of BSMS
Boundary of symmetric spaces
* Symmetric spaces of non-compact type * $P(n,\mathbb{R})$ and its totally geodesic submanifolds
Involvement

- Electronics project in Standard XII: Implementation of $A \cdot B + C$ using resistance-transistor logic
- Wrote a route-map for introductory resources for mathematics and physics.
- $\bullet\,$ Volunteered in official help sessions on linear algebra for first year students in IISER Mohali in Monsoon 2023
- Volunteered to give a talk on Fourier series in a summer camp in IISER Mohali