

PETEE apoio acadêmico

Conteúdos

ELT084 - Dispositivos e Circuitos Eletrônicos Básicos Amplificadores Operacionais

Amplificadores operacionais

 $V_{IN} \circ V_{OUT}$

Entradas

Modos de operação

Aplicações

Impedâncias Generalizadas

Imperfeições DC e AC

Página anterior

Entradas do amplificador

Página inicial

Vs+ Alimentação positiva

V+Entrada não-inversora

V–Entrada inversora

Vout Saída

Vs-Alimentação negativa

Modos de operação

Malha aberta

Não se tem controle sobre o ganho do circuito (A) que é definido pelo fabricante. Muito usado em comparadores.

Realimentação positiva

Apresenta somente dois pontos de estabilidade, a saturação positiva e a saturação negativa. Muito utilizado em circuitos comparadores por histerese e osciladores.

Realimentação negativa

Devido à estabilidade, linearidade e o controle do ganho, é o modo de operação mais utilizado.

Aplicações

Somador

A tensão de saída é uma soma ponderada das tensões de entrada

$$v_O = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \dots + \frac{R_f}{R_n}v_n\right)$$

Amplificador de instrumentação

Amplificador de instrumentação

Configuração não inversora

Na configuração não inversora, o sinal de entrada é conectado à entrada não inversora.

Configuração não inversora

Amplificador de instrumentação

Possui alta resistência de entrada e alto ganho diferencial.

Sendo A1 e A2 e seus resistores correspondentes, os dois caminhos de sinal são simétricos.

O ganho pode ser variado simplesmente alterando o resistor 2R1

O ganho diferencial é dado por:

$$A_d \equiv \frac{v_O}{v_{Id}} = \frac{R_4}{R_3} \left(1 + \frac{R_2}{R_1} \right)$$

Aplicações

÷

Configuração não inversora

Página inicial

Aplicações

O ganho da configuração não inversora é positivo, daí o nome "não inversor".

A impedância de entrada desse amplificador de malha fechada é idealmente infinito.

$$v_O = v_I + \frac{v_I}{R_1} R_2 = v_I \left(1 + \frac{R_2}{R_1} \right)$$

Seguidor de tensão

A configuração não inversora é muito usada como buffer (seguidor de tensão), devido a sua característica de impedância de entrada infinita.

Apesar de possuir um ganho nulo, o seguidor de tensão é muito útil por isolar dois circuitos, pegando a tensão no primeiro circuito e aplicando no segundo. Por possuir impedância de entrada infinita, ele não interfere no primeiro circuito ao ser conectado nele. E por possuir impedância de saída nula, não sofre diminuição de tensão.

Impedâncias generalizadas

Página inicial

Inversor genérico

A função de transferência com impedâncias generalizadas é:

$$\frac{V_o(s)}{V_i(s)} = -\frac{Z_2(s)}{Z_1(s)}$$

Integrador Inversor

Colocando um capacitor no caminho de feedback e um resistor na entrada, o circuito realiza a função de integração.

Integrador Inversor Diferenciador

Trocando o capacitor de lugar com o resistor, o circuito passa a realizar a operação de diferenciação

Diferenciador

Integrador Inversor

Página inicial

A tensão de saída é dada por:

$$v_O(t) = -\frac{1}{CR} \int_0^t v_I(t) dt - V_C$$

$$\frac{V_o}{V_c} = -\frac{1}{sCR}$$

O integrador se comporta como um filtro passa baixas com frequência de corte em 0 Hz.

Na frequência de 0 Hz, a magnitude da função de transferência do integrador é infinita.

Impedâncias Generalizadas

Continuação

Integrador Inversor

Página inicial

Devido às imperfeições DC e ao ganho muito elevado para frequências nulas, o integrador sofre restrições práticas.

O problema DC do circuito integrador pode ser reduzido adicionando um resistor em paralelo com o capacitor, como no circuito ao lado:

Com essa alteração, a função de transferência do integrador se torna:

$$\frac{V_o(s)}{V_i(s)} = -\frac{R_F/R}{1 + sCR_F}$$

Voltar

Impedâncias Generalizadas

Diferenciador

A tensão de saída é dada por:

$$v_O(t) = -\frac{1}{CR} \int_0^t v_I(t) dt - V_C$$

$$\frac{V_o}{V_i} = -\frac{1}{sCR}$$

O diferenciador tem o comportamento de um passa altas com frequência de corte no infinito.

Impedâncias Generalizadas

Imperfeições DC e AC

Página inicial

Tensão de offset

Em um amplificador real, existe uma pequena diferença de tensão entre as entradas, mesmo quando ambas estão em um nível igual.

Tensão de offset

Corrente de polarização

Para funcionar, o AmpOp deve ser alimentado nos dois terminais com correntes DC, chamadas corrente de polarização

Corrente de polarização

Próxima página

Imperfeições DC e AC

Página inicial

Ganho finito de malha aberta

|A| (dB)

|A| (dB)

|B| -20 dB/decade
|Comparison of the comparison of the compariso

Página anterior

O ganho diferencial de malha aberta A de um amplificador operacional não é infinito e possuem reposta em frequência típica de um filtro passa-baixa de primeira ordem

Ganho finito de malha aberta

Saturação e slew rate

Aplicar tensões ou frequências muito altas faz com que a saída do amplificador deixe de ser linear

Saturação e slew rate

Tensão de offset

Página inicial

A tensão na saída do AmpOp real não é nula quando ambas entradas estão no potencial zero.

A tensão de offset surge como resultado de desequilíbrios inevitáveis presentes no estágio diferencial de entrada dentro do amplificador operacional.

O offset do AmpOp pode ser modelado como um AmpOp ideal, sem offset, com uma fonte DC conectada a uma das entradas.

Para medir o offset, curto-circuite a fonte de tensão da configuração inversora ou não-inversora e substitua pelo modelo acima. A saída do AmpOp será dada por:

$$V_O = V_{OS} \left(1 + \frac{R_2}{R_1} \right)$$

Imperfeições DC e AC

Corrente de polarização

Página inicial

A corrente de polarização pode ser modelada como duas fontes de corrente ligadas nas entradas do amplificador. A corrente média é chamada de corrente de polarização.

$$I_{B} = \frac{I_{B1} + I_{B2}}{2}$$

A tensão de saída devido à corrente de polarização é:

$$V_O = I_{B1}R_2 \simeq I_BR_2$$

Isso determina um limite superior para a resistência de feedback
Isso pode ser resolvido colocando uma resistência específica R3 na entrada não inversora.

E a diferença entre as correntes é chamada de corrente de offset.

$$I_{OS} = |I_{B1} - I_{B2}|$$

Imperfeições DC e AC

Página inicial

Ganho finito de malha aberta

Imperfeições DC e

A característica passa baixa em malha aberta é projetada com o objetivo de garantir estabilidade aos circuitos com amplificador operacional.

O produto ganho x banda passante (GBW) é uma figura de mérito usada para comparar os diferentes amplificadores operacionais.

O ganho A de um amplificador operacional compensado internamente pode ser expresso por:

$$A(s) = \frac{A_0}{1 + s/\omega_b}$$

Para frequências ω>10ωb, pode-se aproximar o ganho por:

$$|A(j\omega)| = \frac{A_0\omega_b}{\omega}$$

Outro parâmetro muito comum em datasheets de AmpOps é a largura de banda de ganho unitário ωt.

$$\omega_t = A_0 \omega_b$$

Os ganhos do malha fechada considerando ganho de malha aberta finito para as configurações inversora e não inversora são de:

$$\frac{V_o(s)}{V_i(s)} \simeq \frac{1 + R_2/R_1}{1 + \frac{s}{\omega_t/(1 + R_2/R_1)}}$$

Inversora

$$\frac{V_o(s)}{V_i(s)} \simeq \frac{-R_2/R_1}{1 + \frac{s}{\omega_t/(1 + R_2/R_1)}}$$

Não inversora

Página inicial

Saturação e slew rate

Imperfeições DC e AC

Saturação AmpOps operam de forma linear por uma faixa limitada de tensões de saída. Para evitar que a tensão de saída seja grampeada, o sinal de entrada deve ser limitado.

A corrente de saída também é um fator limitante. O projetista de circuitos deve garantir que, sob nenhuma condição, o amplificador operacional seja exigido a fornecer uma corrente de saída superior a esse valor.

Slew rate

Definido como a taxa máxima da variação da tensão de saída em amplificador operacional real.

Entrada

Saída