AZEOTROPIC DATA FOR BINARY MIXTURES

J. Gmehling, J. Menke, J. Krafczyk, K. Fischer, J.-C. Fontaine, and H. V. Kehiaian

Binary homogeneous (single-phase) liquid mixtures having an extremum (maximum or minimum) vapor pressure P at constant temperature *T*, as a function of composition, are called azeotropic mixtures, or simply azeotropes. The composition is usually expressed as mole fractions, where x_1 for component 1 in the liquid phase and y_1 for component 1 in the vapor phase are identical. Mixtures that do not show a maximum or minimum are called zeotropic. A maximum (minimum) of the $P(x_1)$ or $P(y_1)$ curves corresponds to a minimum (maximum) of the boiling temperature T at constant P, plotted as a function of x_1 or y_1 [see $T(x_1)$ and $T(y_1)$ curves, Types I and III, in Fig. 1]. Azeotropes in which the pressure is a maximum (temperature is a minimum) are often called positive azeotropes, while pressure-minimum (temperature-maximum) azeotropes are called negative azeotropes. The coordinates of an azeotropic point are the azeotropic temperature $T_{\rm Az}$, pressure $P_{\rm Az}$, and the vapor-phase composition $y_{\rm 1,Az}$, which is the same as the liquid-phase composition $x_{1,Az}$.

In the two-phase liquid-liquid region of partially miscible (heterogeneous) mixtures, the vapor pressure at constant T (or the boiling temperature at constant P) is independent of the global composition x_1 of the two coexisting liquid phases between the equilibrium compositions x_1 and x_1'' ($x_1' < x_1''$).

The constant vapor pressure (boiling temperature) above the two-phase region of certain partially miscible mixtures is usually larger (smaller) than the vapor pressure (boiling temperature) at any other liquid-phase composition in the homogeneous region. In this case, the vapor-phase composition is inside the miscibility gap. Mixtures of this type are called heteroazeotropic mixtures, or simply heteroazeotropes. (Fig. 1, Type II), as opposed to the other types of azeotropes, called homoazeotropes.

Only in a few cases partially miscible mixtures present a positive or negative azeotropic point in the single-phase region, outside the miscibility gap, similar to the azeotropic points of homogeneous mixtures (Fig. 1, Types IV and VI).

A few binary mixtures, for example the system perfluorobenzene + benzene, may present two azeotropic points at constant temperature (pressure), a positive and a negative one. They are called double azeotropic mixtures, or simply double azeotropes. (Fig. 1, Type V).

The knowledge of the occurrence of azeotropic points in binary and higher systems is of special importance for the design of distillation processes. The number of theoretical stages of a distillation column required for the separation depends on the separation factor α_{12} , i.e., the ratio of the K_i -factors ($K_i = y_i/x_i$) of the components i (i = 1, 2). The required separation factor can be calculated with the following simplified relation (Reference 1):

$$\alpha_{12} = K_1/K_2 = (\gamma_1/x_1)/(\gamma_2/x_2) = (\gamma_1 P_1^s)/(\gamma_2 P_2^s)$$
 (1)

where γ_i is the activity coefficient of component i in the liquid phase and P_i^s is the vapor pressure of the pure component i.

In distillation processes, only the difference between the separation factor and unity $(\alpha_{12}-1)$ can be exploited for the separation. If the separation factor is close to unity, a large number of theoretical stages is required for the separation. If the binary system to be separated shows an azeotropic point $(\alpha_{12}=1)$, the separation is the separated shows an azeotropic point $(\alpha_{12}=1)$, the separation is the separated shows an azeotropic point $(\alpha_{12}=1)$, the separation is the separation in the separation is the separation is the separation in the separation in the separation is the sepa

ration is impossible by ordinary distillation, even with an infinitely large number of stages.

Following eq. (1) azeotropic behavior will always occur in homogeneous binary systems when the vapor pressure ratio P_1^s/P_2^s is equal to the ratio of the activity coefficients γ_2/γ_1 .

Various thermodynamic methods based on *g*^E-models (Wilson, NRTL, UNIQUAC) or group contribution methods (UNIFAC, modified UNIFAC, ASOG, PSRK) can be used for either calculating or predicting the required activity coefficients for the components under given conditions of temperature and composition (Reference 2).

Because of the importance of azeotropic data for the design of distillation processes, compilations have been available in book form for quite some time (References 3-7). The most recent printed data collection was published in 1994 (Reference 8). A revised and extended version appeared in 2004 (Reference 9).

A collection of approximately 47,400 zeotropic and azeotropic data sets, compiled from 6600 references, are stored in a comprehensive computerized data bank (Reference 10). The references from the above-mentioned compilations and from the vapor-liquid equilibrium part of the Dortmund Data Bank (Reference 11) were supplemented by references found from CAS online searches, private communications, data from industry, etc.. Over 24,000 zeotropic data and over 20,000 azeotropic data are available for binary systems. Nearly 90% of the binary azeotropic data show a pressure maximum. In most cases (ca. 90%) these are homogeneous azeotropes, and in approximately 7–8% of the cases heterogeneous azeotropes are reported. Less than 10% of the data stored show a pressure minimum. Approximately 21,000 of the data sets stored were published after 1970.

The table below provides information about azeotropes for 808 selected binary systems. Compounds are listed in the modified Hill order, with carbon-containing compounds following those compounds not containing carbon. In columns 1 and 2 are the molecular formulas of components 1 and 2 written in the Hill convention. In column 3 the names of the components are given, either a systematic IUPAC name or a name in ubiquitous use. Columns 4, 5, and 6 contain the azeotropic coordinates of the mixtures: temperature $T_{\rm Az}$, pressure $P_{\rm Az}$, and vapor-phase composition $y_{\rm 1,Az}$. The explanation of the type of azeotrope (column 7) is given by the following codes:

- O: homogeneous azeotrope in a completely miscible system
- L: homogeneous azeotrope in a partially miscible system
- E: heterogeneous azeotrope
- X: pressure maximum
- N: pressure minimum
- D: double azeotrope
- C: system contains a supercritical compound

References

- Gmehling, J. and Brehm, A., Grundoperationen, Thieme-Verlag, Stuttgart, 1996.
- Gmehling, J. and Kolbe, B., Thermodynamik, VCH-Verlag, Weinheim, 1992.
- 3. Lecat, M., Doctoral Dissertation, 1908.

Figure 1 Different types of binary azeotropic systems: I - homogeneous pressure-maximum azeotrope in a completely miscible system (OX); II - heterogeneous pressure-maximum azeotrope (EX); III - homogeneous pressure-minimum azeotrope in a completely miscible system (ON); IV - homogeneous pressure-maximum azeotrope in a partially miscible system (LX); V - D: double azeotrope (OND, OXD); VI - homogeneous pressure-minimum azeotrope in a partially miscible system (LN). A - $y_1(x_1)$; B - $P(x_1)$ and $P(y_1)$; C - $T(x_1)$ and $T(y_1)$. Continuous line - $T(x_1)$; Dashed line - $T(x_1)$.

- 4. Lecat, M., L'Azeotropisme, Monograph, L'Auteur, Brussel, 1918.
- 5. Lecat, M., *Tables Azeotropiques*, Monograph, Lamertin, Brussel
- Ogorodnikov, S. K., Lesteva, T. M., and Kogan V. B., Azeotropic Mixtures, Khimia, Leningrad, 1971.
- 7. Horsley, L. H., *Azeotropic Data III*, American Chemical Society, Washington, 1973.
- 8. Gmehling, J., Menke, J., Krafczyk, J., and Fischer, K., *Azeotropic Data*, 2 Volumes, VCH Verlag, Weinheim, 1994.
- 9. Gmehling, J., Menke, J., Krafczyk, J., and Fischer, K., *Azeotropic Data*, 2nd Ed., 3 Volumes, VCH Verlag, Weinheim, 2004.
- Gmehling, J., Menke, J., Krafczyk, J., and Fischer, K., A Data Bank for Azeotropic Data, Status and Applications, Fluid Phase Equilib. 103, 51, 1995.
- 11. Dortmund Data Bank, www.ddbst.de

Molecula	ar formula	_				
Comp. 1	Comp. 2	Name	$T_{ m Az}/{ m K}$	${\cal Y}_{1,{ m Az}}$	$P_{\rm Az}/{ m kPa}$	Туре
AlCl ₃		Aluminum chloride				
ClH	Cl ₃ OP	Phosphoryl trichloride Hydrogen chloride	660.15	0.5150	101.33	ONC
	H_2O	Water	389.34	0.1083	133.32	ONC
Cl ₂ OS	Cl ₃ P	Thionyl chloride Phosphorus(III) chloride	345.85	0.4200	101.33	OX
Cl_2O_2S	CI D	Sulfuryl chloride	2514		4.44.00	017
CI OD	Cl_3P	Phosphorus(III) chloride	364.15	0.5000	101.33	ON
Cl ₃ OP	Cl Nih	Phosphoryl trichloride	F26 1F	0.4020	101 22	ON
	Cl₅Nb Cl₅Ta	Niobium(V) chloride Tantalum(V) chloride	536.15 558.85	0.4020 0.4650	101.33 101.33	ON
Cl₄Ge	CI ₅ I a	Germanium(IV) chloride	550.65	0.4030	101.55	ON
CI ₄ Ge	$C_2H_4Cl_2$	1,2-Dichloroethane	350.75	0.4630	101.33	OX
Cl ₄ Si	C_{2}^{1} I_{4} C_{12}^{2}	Tetrachlorosilane	330.73	0.1050	101.55	OA
C1451	C_2H_3N	Acetonitrile	321.05	0.6900	101.33	EX
Cl ₅ Mo	0211311	Molybdenum(V) chloride	321.03	0.0700	101.00	LA
0151110	Cl ₆ W	Tungsten(VI) chloride	274.70	0.9750	101.33	OX
FH	016 **	Hydrogen fluoride	27 177 0	0,5,7,0,0	101.00	0.1.
	H ₂ O	Water	382.15	0.3508	101.33	ON
	CCl₃F	Trichlorofluoromethane	283.15	0.7840	129.45	EX
HNO ₃	3	Nitric acid				
3	H_2O	Water	393.20	0.3820	101.33	ON
H_2O	2	Water				
_	CHCl ₃	Trichloromethane	329.27	0.1603	101.33	EX
	CH ₂ O	Formaldehyde	355.75	0.9300	53.33	OX
	CH_2O_2	Formic acid	380.35	0.4272	101.33	ON
	CH ₃ NO ₂	Nitromethane	356.90	0.5160	101.33	EX
	C_2HCl_3	Trichloroethene	346.55	0.3560	101.33	EX
	C_2H_3N	Acetonitrile	349.95	0.3100	101.33	OX
	$C_2H_4Cl_2$	1,2-Dichloroethane	345.43	0.3570	101.33	EX
	C_2H_6O	Ethanol	351.25	0.1030	101.33	OX
	$C_2H_8N_2$	1,2-Ethanediamine	391.85	0.4450	101.33	ON
	C_3H_3N	Acrylonitrile	344.05	0.2850	101.33	EX
	C_3H_4O	Acrolein	325.45	0.0730	101.33	LX
	C_3H_6O	Propanal	320.65	0.0600	101.33	LX
	C_3H_6O	Allyl alcohol	361.15	0.5562	101.33	OX
	$C_3H_6O_2$	Methyl acetate	330.05	0.1060	103.62	LX
	$C_3H_6O_2$	1,3-Dioxolane	344.95	0.2520	101.30	OX
	$C_3H_6O_2$	Ethyl formate	325.75	0.0700	101.33	EX
	$C_3H_6O_2$	Propanoic acid	373.05	0.9500	101.33	OX
	C_3H_7Br	1-Bromopropane	336.35	0.2210	101.33	EX
	C_3H_8O	1-Propanol	360.80	0.5680	101.33	OX
	C_3H_8O	2-Propanol	353.70	0.3260	101.33	OX
	$C_3H_8O_2$	2-Methoxyethanol	372.65	0.9441	99.99	OX
	$C_3H_8O_2$	Dimethoxymethane	315.05	0.0269	101.38	LX
	C_4H_5N	cis-2-Butenenitrile	358.45	0.3832	101.33	EX
	C_4H_5N	trans-2-Butenenitrile	363.05	0.6843	101.33	EX
	C_4H_5N	Pyrrole	348.15	0.7514	50.13	EX
	$C_4H_6O_2$	Methacrylic acid	372.25	0.9464	98.93	OX
	C ₄ H ₈ O	2-Butanone	346.54	0.3480	101.33	LX
	C ₄ H ₈ O	Tetrahydrofuran	336.67	0.1828	101.33	OX
	C ₄ H ₈ O	Isobutanal	332.80	0.1698	100.99	EX
	$C_4H_8O_2$	Ethyl acetate	343.55	0.2990	101.33	EX
	$C_4H_8O_2$	Butanoic acid	372.95	0.9559	101.33	OX
	$C_4H_8O_2$	1,4-Dioxane	360.65	0.5280	101.33	OX
	$C_4H_8O_2$	Propyl formate	344.85	0.3090	101.33	EX
	$C_4H_8O_2$	Methyl propanoate	344.75	0.3050	101.33	EX
	C_4H_9Br	1-Bromobutane	353.95	0.4950	101.33	EX

3.6			c i	
VIO	lecu	lar i	formu	la i

Molecula	ar ioimua	-				
Comp. 1	Comp. 2	Name	$T_{ m Az}/{ m K}$	$y_{1,Az}$	$P_{\rm Az}/{ m kPa}$	Type
	C_4H_9Br	1-Bromo-2-methylpropane	348.45	0.3730	101.33	EX
	C_4H_9Cl	1-Chloro-2-methylpropane	333.95	0.1970	101.33	LX
	$C_4H_{10}O$	1-Butanol	365.45	0.7540	101.33	EX
	$C_4H_{10}O$	2-Butanol	360.50	0.6200	101.33	LX
	$C_4H_{10}O$	2-Methyl-2-propanol	353.00	0.4011	101.33	OX
	$C_4H_{11}N$	Butylamine	349.85	0.0700	101.33	OX
	C_5H_5N	Pyridine	367.30	0.7500	101.33	OX
	C_5H_8	2-Methyl-1,3-butadiene	305.85	0.0520	101.33	EX
	C_5H_8	Methylenecyclobutane	313.15	0.0212	101.30	EX
	C_5H_8O	Cyclopropyl methyl ketone	361.65	0.7060	101.19	EX
	$C_5H_8O_2$	Methyl methacrylate	354.45	0.4996	101.33	EX
	C_5H_{10}	2-Methyl-2-butene	309.75	0.0650	101.33	EX
	$C_5H_{10}O$	3-Methyl-2-buten-1-ol	369.55	0.9141	101.33	EX
	$C_5H_{10}O$	3-Methyl-3-buten-1-ol	333.15	0.8680	101.33	EX
	$C_5H_{10}O$	2-Methyl-3-buten-2-ol	359.25	0.5770	101.33	LX
	$C_5H_{10}O$	3-Pentanone	356.05	0.4750	101.33	EX
	$C_5H_{10}O_2$	Isopropyl acetate	349.75	0.3960	101.33	EX
	$C_5H_{10}O_2$	Propyl acetate	355.91	0.5228	101.33	EX
	$C_5H_{10}O_2$	Butyl formate	356.95	0.5360	101.33	EX
	$C_5H_{10}O_2$	Isobutyl formate	352.75	0.4460	101.33	EX
	$C_5H_{12}O$	3-Methyl-1-butanol	367.97	0.8265	101.33	EX
	$C_5H_{12}O$	2-Methyl-2-butanol	360.85	0.6355	101.75	EX
	$C_5H_{12}O$	1-Pentanol	369.08	0.8633	101.33	EX
	$C_5H_{12}O$	2-Pentanol	363.15	0.7550	92.49	EX
	C_6H_6	Benzene	342.35	0.2980	101.33	EX
	C_6H_7N	Aniline	372.55	0.9580	101.33	EX
	C_6H_7N	4-Methylpyridine	370.50	0.8972	101.33	OX
	C_6H_{10}	Cyclohexene	343.95	0.3090	101.33	EX
	$C_6H_{10}O$	Cyclohexanone	369.45	0.8694	101.33	EX
	$C_6H_{10}O$	Methyldihydropyran (unspecified isomer)	360.75	0.5841	100.93	EX
	$C_6H_{10}O_2$	4-Vinyl-1,3-dioxane	367.65	0.8955	101.33	EX
	C_6H_{12}	1-Hexene	318.15	0.1510	63.35	EX
	$C_6H_{12}O_2$ $C_6H_{12}O_2$	Butyl acetate Isobutyl acetate	363.35 361.05	0.7013 0.6440	101.33 101.33	EX EX
	$C_6H_{12}O_2$ $C_6H_{12}O_2$	4,4-Dimethyl-1,3-dioxane	366.00	0.7779	101.33	EX
	$C_6H_{12}O_2$ $C_6H_{12}O_2$	4,5-Dimethyl-1,3-dioxane (unspecified isomer)	365.05	0.7779	101.50	EX
	$C_6H_{12}O_2$ $C_6H_{12}O_2$	4-Ethyl-1,3-dioxane	365.75	0.7257	101.30	EX
	$C_6H_{12}O_2$ $C_6H_{12}O_2$	Diacetone alcohol	370.00	0.9900	90.79	OX
	$C_6H_{12}O_2$ $C_6H_{12}O_2$	Propyl propanoate	362.05	0.6600	101.33	EX
	$C_6H_{12}O_2$ $C_6H_{13}N$	Cyclohexylamine	369.55	0.8692	101.33	OX
	C_6H_{13}	Hexane	334.75	0.2110	101.33	EX
	$C_6H_{14}O$	Butyl ethyl ether	349.85	0.4070	101.33	EX
	$C_6H_{14}O$	1-Hexanol	367.89	0.9432	101.33	EX
	$C_6H_{14}O_3$	Di(ethylene glycol) dimethyl ether	372.70	0.9679	101.33	OX
	$C_6H_{15}N$	Diisopropylamine	347.25	0.3654	101.33	EX
	$C_{6}H_{15}N$	Dipropylamine	359.00	0.6046	101.33	EX
	C_7H_8	Toluene	357.25	0.5230	101.33	EX
	C_7H_8O	Benzyl alcohol	373.05	0.9840	101.33	EX
	C_7H_9N	2,6-Dimethylpyridine	369.17	0.8647	101.33	EX
	$C_7H_{12}O_4$	1,2-Propanediol diacetate	358.15	0.9740	59.41	EX
	C_7H_{14}	1-Heptene	350.20	0.4100	101.33	EX
	$C_7H_{14}O_2$	Isopentyl acetate	367.05	0.7990	101.46	EX
	$C_7H_{14}O_2$	Butyl propanoate	367.95	0.8340	101.33	EX
	C_7H_{16}	Heptane	352.35	0.4510	101.33	EX
	$C_7H_{16}O$	1-Heptanol	371.99	0.9703	101.33	EX
	C_8H_8	Styrene	367.15	0.8000	101.33	EX
	C_8H_8O	Acetophenone	371.15	0.9675	101.19	EX
	C_8H_{10}	<i>m</i> -Xylene	365.15	0.7667	101.33	EX

Molecul	ar formula	_				
Comp. 1	Comp. 2	Name	$T_{ m Az}/{ m K}$	${\cal Y}_{1,{ m Az}}$	$P_{\rm Az}/{ m kPa}$	Туре
	C_8H_{10}	<i>p</i> -Xylene	365.15	0.7450	101.33	EX
	C_8H_{10}	Ethylbenzene	364.15	0.7221	101.33	EX
	$C_8H_{16}O_2$	Butyl butanoate	369.85	0.9110	101.33	EX
	C_8H_{18}	Octane	362.75	0.6850	101.33	EX
	C_8H_{18}	2,2,4-Trimethylpentane	351.95	0.4420	101.33	EX
	$C_8H_{18}O$	Dibutyl ether	368.65	0.7628	101.33	EX
	$C_8H_{18}O$	1-Octanol	372.75	0.9820	101.33	EX
	$C_8H_{19}N$	Dibutylamine	370.05	0.8850	101.33	EX
	C_9H_{10}	Isopropenylbenzene	369.95	0.8880	101.33	EX
	C_9H_{12}	Isopropylbenzene	368.15	0.8340	101.33	EX
	$C_9H_{12}O$	2-Phenyl-2-propanol	371.25	0.9718	101.33	EX
	C_9H_{20}	Nonane	367.95	0.8280	101.33	EX
	$C_9H_{20}O$	1-Nonanol	373.00	0.9846	101.33	EX
	$C_{10}H_{22}$	Decane	370.75	0.9180	101.33	EX
	$C_{10}H_{22}O$	1-Decanol	373.13	0.9865	101.33	EX
	$C_{12}H_{27}N$	Tributylamine	372.80	0.9762	101.46	EX
CCl_4		Tetrachloromethane				
	C_2H_6O	Ethanol	338.19	0.6140	101.33	OX
	C_3H_6O	Acetone	341.25	0.0337	149.93	OX
	C_3H_8O	1-Propanol	346.28	0.8032	101.33	OX
	C_3H_8O	2-Propanol	341.83	0.6686	101.33	OX
	C_4H_6O	2-Butenal	348.15	0.6500	97.86	OX
	C_4H_6O	2-Methylpropenal	339.15	0.6000	97.86	OX
	C_4H_8O	2-Butanone	346.99	0.6630	101.33	OX
	$C_4H_8O_2$	Ethyl acetate	347.95	0.5700	101.33	OX
	$C_4H_{10}O$	1-Butanol	349.71	0.9500	101.33	OX
	$C_4H_{10}O$	2-Methyl-1-propanol	348.95	0.9080	101.33	OX
	$C_5H_{10}O$	2-Methyl-3-buten-2-ol	348.45	0.9009	101.06	OX
CS_2		Carbon disulfide				
	CH_4O	Methanol	310.65	0.7000	101.33	LX
CHCl ₃		Trichloromethane				
	CH_4O	Methanol	328.15	0.6480	107.99	OX
	C_2H_6O	Ethanol	332.45	0.8410	101.33	OX
	C_3H_6O	Acetone	337.58	0.6398	101.33	ON
	$C_3H_6O_2$	Methyl acetate	337.51	0.6760	101.33	ON
	C_3H_8O	2-Propanol	334.15	0.9500	101.33	OX
	C_4H_6O	2-Butenal	329.15	0.9950	97.86	OX
	C_6H_{12}	2-Methyl-1-pentene	333.95	0.6235	101.19	OX
	C_6H_{14}	Hexane	333.45	0.7840	101.33	OX
CHN		Hydrogen cyanide				
	C_3H_5Cl	3-Chloropropene	296.45	0.8016	101.33	OX
CH_2Cl_2		Dichloromethane				
	C_2H_6O	Ethanol	312.05	0.9600	101.33	OX
CH_2O_2	G 11 GI	Formic acid	252.45		404.00	0.11
	$C_2H_4Cl_2$	1,2-Dichloroethane	350.17	0.4275	101.33	OX
	$C_5H_{10}O_2$	Butyl formate	372.15	0.8700	101.33	OX
G	C_8H_{10}	<i>m</i> -Xylene	365.95	0.8545	101.33	EX
CH_3NO_2	G.11.0	Nitromethane	222.45		F0 64	0.11
	C ₂ H ₆ O	Ethanol	333.15	0.2850	53.61	OX
	C_3H_7Br	1-Bromopropane	343.25	0.1020	99.82	OX
	$C_4H_8O_2$	1,4-Dioxane	373.25	0.4101	101.48	OX
	C_5H_{10}	2-Methyl-2-butene	311.15	0.0570	101.33	LX
	C_7H_{14}	Methylcyclohexane	354.85	0.5123	101.33	EX
	C_7H_{16}	Heptane	353.25	0.4790	101.33	EX
	C_8H_{18}	Octane	363.38	0.6964	99.73	EX
	C_9H_{20}	Nonane	369.29	0.8403	99.73	EX
	$C_{10}H_{22}$	Decane	371.96	0.9239	99.73	EX
	$C_{11}H_{24}$	Undecane	373.16	0.9619	99.73	EX

MA	0011	0.22	formu	la i

Comp. 1	Comp. 2	Name	$T_{ m Az}/{ m K}$	2/	P _{Az} /kPa	Type
Comp. 1	$C_{12}H_{26}$	Dodecane	373.75	y _{1,Az} 0.9846	99.73	Type EX
CH_4O	$C_{12}^{\Gamma} C_{26}^{\Gamma}$	Methanol	373.73	0.7040	77.13	LA
C11 ₄ O	C ₂ HBrClF ₃	2-Bromo-2-chloro-1,1,1-trifluoroethane	317.25	0.1890	93.33	OX
	C_2H_5Br	Bromoethane	308.05	0.1610	101.33	OX
	C_2H_5DI C_3H_5CI	3-Chloropropene	312.15	0.2570	100.39	OX
	C_3H_6O	Acetone	328.29	0.2400	101.33	OX
	$C_3H_6O_2$	Methyl acetate	328.15	0.3480	107.19	OX
	$C_3H_6O_2$	1,3-Dioxolane	334.66	0.6910	101.30	OX
	$C_3H_6O_2$ $C_3H_6O_2$	Ethyl formate	318.15	0.3000	81.34	OX
	$C_3H_6O_3$	Dimethyl carbonate	337.25	0.8504	102.52	OX
	C ₃ H ₇ Cl	1-Chloropropane	313.35	0.2500	101.59	OX
	$C_4H_4F_6O$	Bis(2,2,2-trifluoroethyl) ether	326.28	0.4450	101.30	OX
	$C_4H_6O_2$	Vinyl acetate	332.05	0.6182	101.33	OX
	C_4H_8O	2-Butanone	323.15	0.8020	58.80	OX
	C_4H_8O	Tetrahydrofuran	332.75	0.5040	101.33	OX
	$C_4H_8O_2$	Ethyl acetate	335.66	0.7120	101.33	OX
	$C_4H_{10}O$	Diethyl ether	305.15	0.0500	93.33	OX
	$C_4H_{10}O_2$	Dimethylacetal	330.35	0.4700	101.33	OX
	$C_5H_3F_9O$	1,1,1,2,3,3-Hexafluoro-3-				
	3 3 7	(2,2,2-trifluoroethoxy)propane	330.67	0.5600	101.30	OX
	C_5H_6	1,3-Cyclopentadiene	309.05	0.2120	101.33	OX
	C_5H_8	2-Methyl-1,3-butadiene	303.55	0.1670	101.33	OX
	C_5H_8	Methylenecyclobutane	309.05	0.2190	101.33	OX
	C_5H_8	1-Methylcyclobutene	304.85	0.1900	101.33	OX
	C_5H_8	cis-1,3-Pentadiene	311.10	0.2300	101.33	OX
	C_5H_8	trans-1,3-Pentadiene	309.65	0.2110	101.33	OX
	C_5H_{10}	2-Methyl-1-butene	300.55	0.1720	101.33	OX
	C_5H_{10}	3-Methyl-1-butene	291.05	0.0890	101.33	OX
	C_5H_{10}	2-Methyl-2-butene	306.25	0.2160	101.33	OX
	C_5H_{10}	1-Pentene	300.05	0.1469	102.47	OX
	$C_5H_{10}O$	2,3-Epoxy-2-methylbutane	334.95	0.6590	101.33	OX
	C_5H_{12}	Isopentane	297.05	0.0930	101.33	OX
	C_5H_{12}	Pentane	303.20	0.1930	101.30	OX
	$C_5H_{12}O$	Butyl methyl ether	330.00	0.5515	100.08	OX
	$C_5H_{12}O$	Methyl <i>tert</i> -butyl ether	325.00	0.3140	103.15	OX
	$C_5H_{12}O$	Ethyl propyl ether	330.00	0.4050	112.25	OX
	$C_5H_{12}O_2$	Diethoxymethane	336.03	0.8127	101.52	OX
	$C_5H_{12}O_2$	2,2-Dimethoxypropane	334.15	0.7250	100.00	OX
	$C_5H_{14}N_2$	<i>N,N,N,N,</i> '.Tetramethylmethanediamine	335.15	0.7670	101.33	OX
	C_6F_6	Hexafluorobenzene	318.15	0.6100	61.73	OX
	C_6H_5F	Fluorobenzene	333.35	0.6625	101.62	OX
	C_6H_6	Benzene	331.56	0.6090	101.33	OX
	C_6H_{12}	Cyclohexane	328.75	0.6090	106.66	OX
	C_6H_{12}	2-Methyl-1-pentene	330.00	0.4517	141.80	OX
	C_6H_{14}	2,3-Dimethylbutane	313.15	0.3620	85.50	OX
	C_6H_{14}	Hexane	333.15	0.5160	149.64	OX
	$C_6H_{14}O$	tert-Butyl ethyl ether	330.95	0.6002	101.54	OX
	$C_6H_{14}O$	Diisopropyl ether	330.00	0.5390	101.61	OX
	$C_6H_{14}O$	Butyl ethyl ether	335.00	0.8010	98.84	OX
	$C_6H_{14}O$	2-Methoxy-2-methylbutane	335.55	0.7735	101.69	OX
	C_7H_8	Toluene	336.65	0.8820	101.33	OX
	C_7H_{14}	Methylcyclohexane	333.15	0.7520	102.87	EX
	C_7H_{16}	Heptane	331.95	0.7279	101.33	OX
	$C_7H_{16}O$	2-Ethoxy-2-methylbutane	335.15	0.8736	97.28	OX
	C_8H_{18}	Octane	335.55	0.8830	101.33	LX
	C_9H_{20}	Nonane	337.25	0.9526	101.33	OX
$C_2Cl_3F_3$		1,1,2-Trichloro-1,2,2-trifluoroethane				
	$C_2H_3F_3O$	2,2,2-Trifluoroethanol	316.58	0.7770	101.33	EX

Molecular formula		_				
Comp. 1	Comp. 2	Name	$T_{ m Az}/{ m K}$	${\cal Y}_{1,{ m Az}}$	$P_{\rm Az}/{ m kPa}$	Туре
•	C_2H_6O	Ethanol	317.75	0.8456	101.42	OX
	C_3H_8O	2-Propanol	319.35	0.9159	100.95	OX
	$C_4H_{10}O$	2-Methyl-2-propanol	319.95	0.9426	101.09	OX
C_2Cl_4	4 10	Tetrachloroethene				
	$C_2H_3Cl_3$	1,1,2-Trichloroethane	385.95	0.2115	101.33	OX
	C_8H_{16}	1-Octene	393.15	0.5900	101.33	OX
	C_8H_{16}	cis-4-Octene	393.65	0.7100	101.33	OX
	C ₈ H ₁₆	trans-4-Octene	393.45	0.6700	101.33	OX
	C_8H_{18}	Octane	371.90	0.8781	53.44	OX
$C_2Cl_4F_2$	- 8 18	1,1,2,2-Tetrachloro-1,2-difluoroethane				
-24-2	$C_2H_4Cl_2$	1,2-Dichloroethane	353.80	0.2700	101.33	OX
C ₂ HBrClF ₃	-242	2-Bromo-2-chloro-1,1,1-trifluoroethane				
-23	$C_4H_{10}O$	Diethyl ether	323.65	0.7200	93.33	ON
C ₂ HCl ₃	0411100	Trichloroethene	020100	0.7.200	70.00	011
0211013	$C_2H_4Cl_2$	1,2-Dichloroethane	355.35	0.3324	101.36	OX
	$C_2H_4CI_2$ C_2H_6O	Ethanol	343.85	0.4741	101.33	OX
	C_2H_6O C_4H_6O	2-Butenal	360.15	0.9000	97.86	OX
		Cyclohexane	353.40	0.9000	101.32	OX
C ₂ H ₂ Cl ₂	C_6H_{12}	trans-1,2-Dichloroethene	333.40	0.0973	101.52	OA
$C_2H_2CI_2$	CHEO	1,1,1,2,3,3-Hexafluoro-3-				
	$C_5H_3F_9O$		210.50	0.0200	101 20	OV
CHN		(2,2,2-trifluoroethoxy)propane	318.50	0.8390	101.30	OX
C_2H_3N	G 11 O	Acetonitrile	240.15	0.5005	100.01	OW
	C ₃ H ₈ O	2-Propanol	348.15	0.5287	100.81	OX
	$C_4H_6O_2$	Vinyl acetate	344.65	0.1948	98.33	OX
	C_4H_8O	2-Butanone	352.15	0.3195	101.15	OX
	C_4H_8O	Tetrahydrofuran	338.95	0.0784	101.13	OX
	$C_4H_{10}O$	2-Methyl-2-propanol	333.15	0.6200	56.93	OX
	C_5H_8	2-Methyl-1,3-butadiene	306.75	0.0410	101.33	OX
	C_5H_8	Methylenecyclobutane	312.45	0.1450	101.33	OX
	$C_5H_8O_2$	Methyl methacrylate	355.25	0.9866	102.07	OX
	C_5H_{10}	2-Methyl-2-butene	308.95	0.1320	101.33	OX
	C_5H_{10}	1-Pentene	301.85	0.0830	101.33	OX
	C_5H_{12}	Isopentane	298.45	0.1040	101.33	EX
	C_6H_6	Benzene	328.15	0.4560	54.65	OX
	$C_6H_{14}O$	2-Methoxy-2-methylbutane	346.13	0.5835	100.56	OX
	$C_7H_{16}O$	2-Ethoxy-2-methylbutane	348.85	0.7219	98.99	OX
	$C_{10}H_{20}$	1-Decene	354.55	0.9924	100.51	OX
$C_2H_4Cl_2$		1,1-Dichloroethane				
	C_3H_8O	2-Propanol	329.55	0.8928	101.60	OX
	C_6H_{14}	Hexane	329.30	0.8025	101.21	OX
$C_2H_4Cl_2$		1,2-Dichloroethane				
	C_3H_8O	2-Propanol	347.25	0.5258	100.32	OX
	$C_4H_{10}O$	2-Methyl-1-propanol	356.05	0.9173	101.26	OX
	$C_4H_{10}O$	2-Methyl-2-propanol	349.45	0.5336	101.43	OX
	C_7H_{14}	Methylcyclohexane	354.65	0.8036	101.21	OX
	C_8H_{18}	2,2,4-Trimethylpentane	343.15	0.7600	73.13	OX
C_2H_4O	C ₈ 11 ₁₈	Acetaldehyde	343.13	0.7000	75.15	OA
$C_2\Pi_4O$	СН	1,3-Butadiene	268.15	0.0520	101.33	OX
	C_4H_6	2-Methyl-1,3-butadiene	292.23	0.0520	101.33	OX
CHO	C_5H_8	•	292.23	0.8140	101.55	OX
$C_2H_4O_2$	CHN	Acetic acid	411.05	0.5700	101.22	ONT
	C_5H_5N	Pyridine	411.25	0.5780	101.33	ON
	$C_5H_{12}O$	3-Methyl-2-butanol	392.65	0.7210	101.33	ON
	C ₆ H ₇ N	2-Methylpyridine	417.27	0.5120	101.33	ON
	$C_6H_{10}O_2$	Vinyl butanoate	386.45	0.5750	101.33	OX
	C_6H_{14}	Hexane	341.40	0.0839	101.33	OX
	C_7H_9N	2,4-Dimethylpyridine	435.45	0.3022	101.33	ON
	C_7H_{16}	Heptane	364.95	0.4490	101.33	OX
	C_8H_{10}	o-Xylene	389.75	0.8640	101.33	OX

Molecul	ar formula	_				
Comp. 1	Comp. 2	Name	$T_{ m Az}/{ m K}$	$y_{1,Az}$	P _{Az} /kPa	Туре
	C_8H_{10}	<i>p</i> -Xylene	388.40	0.8200	101.33	OX
	C_8H_{18}	Octane	378.85	0.6870	101.33	OX
	C_9H_{20}	Nonane Decane	386.05 390.05	0.8250 0.9250	101.33 101.33	OX OX
	$C_{10}H_{22}$	Undecane				
CHO	$C_{11}H_{24}$	Methyl formate	391.15	0.9720	101.33	OX
$C_2H_4O_2$	C_2H_5Br	Bromoethane	303.05	0.7360	101.33	OX
	C_2H_5DI $C_4H_{10}O$	Diethyl ether	301.55	0.6030	101.33	OX
	$C_4H_{10}O$ C_5H_8	2-Methyl-1,3-butadiene	298.90	0.5150	101.33	OX
	C_5H_8 C_5H_{10}	2-Methyl-2-butene	297.75	0.5760	101.33	OX
	C_5H_{12}	Isopentane	291.55	0.4920	101.33	OX
	C_5H_{12}	Pentane	294.85	0.5740	101.33	OX
	C_6H_{14}	Hexane	302.65	0.8490	101.33	OX
C ₂ H ₅ Br	061 114	Bromoethane	002.00	0.0120	101.00	0.1
0211521	C_5H_{10}	2-Methyl-2-butene	308.55	0.5110	101.33	OX
	C_5H_{12}	Isopentane	300.55	0.2180	101.33	OX
$C_2H_5NO_2$	-512	Nitroethane				
021151102	$C_4H_{10}O$	2-Methyl-1-propanol	375.81	0.4080	101.33	OX
	C_7H_{16}	Heptane	362.95	0.3520	101.33	OX
C ₂ H ₆ O	-/16	Ethanol				
-26	C_3H_3N	Acrylonitrile	343.95	0.4440	101.33	OX
	$C_3H_6O_2$	Methyl acetate	329.79	0.0362	101.33	OX
	$C_4H_3F_7O$	1,1,2,2-Tetrafluoroethyl 1,1,1-				
	-43-7-	trifluoroethyl ether	326.67	0.2000	101.30	OX
	$C_4H_4F_6O$	Bis(2,2,2-trifluoroethyl) ether	331.90	0.2840	101.30	OX
	C_4H_8O	Butanal	345.45	0.3690	101.33	OX
	C_4H_8O	2-Butanone	347.15	0.5080	101.33	OX
	$C_4^{4}H_8^{0}O$	Tetrahydrofuran	344.95	0.1290	125.00	OX
	$C_4H_8O_2$	Ethyl acetate	344.85	0.4590	101.33	OX
	$C_4H_8O_2$	1,4-Dioxane	351.33	0.9480	101.33	OX
	$C_4H_8O_2$	Methyl propanoate	346.30	0.5140	103.91	OX
	$C_4H_{11}N$	Butylamine	354.99	0.5900	101.33	ON
	$C_5H_3F_9O$	1,1,1,2,3,3-Hexafluoro-3-				
		(2,2,2-trifluoroethoxy)propane	337.88	0.3980	101.30	OX
	C_5H_8	2-Methyl-1,3-butadiene	305.95	0.1500	101.33	OX
	C_5H_8	Cyclopentene	323.40	0.1440	134.00	OX
	C_5H_{10}	2-Methyl-2-butene	309.79	0.0795	101.33	OX
	C_5H_{10}	Cyclopentane	323.44	0.1800	121.00	OX
	$C_5H_{10}O$	2,3-Epoxy-2-methylbutane	343.45	0.2930	101.33	OX
	$C_5H_{10}O$	3-Methyl-2-butanone	350.85	0.8250	101.33	OX
	$C_5H_{10}O$	2-Pentanone	351.15	0.9779	100.50	OX
	$C_5H_{10}O$	3-Pentanone	351.33	0.9590	101.33	OX
	$C_5H_{10}O_2$	Isopropyl acetate	349.85	0.7010	101.33	OX
	$C_5H_{10}O_2$	Methyl butanoate	346.30	0.8800	83.88	OX
	C_5H_{12}	Isopentane	299.95	0.0540	101.33	OX
	C_5H_{12}	Pentane	307.15	0.0537	101.33	OX
	$C_5H_{12}O$	Methyl tert-butyl ether	327.75	0.0380	101.33	OX
	$C_5H_{12}O_2$	Diethoxymethane	348.30	0.6497	102.35	OX
	C_6H_5F	Fluorobenzene	343.85	0.4752	101.54	OX
	C_6H_6	Benzene	341.25	0.4600	101.33	OX
	C_6H_{12}	Cyclohexane	337.95	0.4540	102.26	OX
	C_6H_{14}	Hexane	331.65	0.3410	101.33	OX
	$C_6H_{14}O$	tert-Butyl ethyl ether	339.95	0.3728	101.72	OX
	$C_6H_{14}O$	2-Methoxy-2-methylbutane	346.81	0.5820	101.32	OX
	C_7H_8	Toluene	349.75	0.8152	101.33	OX
	$C_7H_{16}O$	2-Ethoxy-2-methylbutane	349.35	0.7644	101.54	OX
	C_8H_{18}	Octane	349.85	0.8250	101.33	OX
	C_8H_{18}	2,2,4-Trimethylpentane	344.42	0.6450	101.33	OX

Mal	التعما	ar	form	ula
VIO.	lecui	ar	TOTHI	uia

Comp. 1	Comp. 2	Name	$T_{ m Az}/{ m K}$	$y_{1,Az}$	$P_{\rm Az}/{ m kPa}$	Type
•	C_9H_{20}	Nonane	351.35	0.9400	101.33	OX
$C_2H_6O_2$, 20	1,2-Ethanediol				
	$C_5H_{12}O_3$	Di(ethylene glycol) monomethyl ether	463.95	0.4388	101.33	OX
	$C_6H_{14}O_3$	Di(ethylene glycol) monoethyl ether	467.15	0.6480	101.33	OX
	C_7H_8O	o-Cresol	462.67	0.3797	101.33	OX
	$C_7H_{16}O_3$	Di(ethylene glycol) monoisopropyl ether	466.35	0.6964	101.33	OX
	$C_7H_{16}O_3$	Di(ethylene glycol) monopropyl ether	468.55	0.8448	101.33	OX
	$C_7H_{16}O_3$	Di(propylene glycol) monomethyl ether				
		(unspecified isomer)	457.65	0.3500	101.33	OX
	$C_8H_{11}N$	2,4,6-Trimethylpyridine	443.65	0.1734	101.33	OX
	$C_8H_{18}O_3$	Di(ethylene glycol) monobutyl ether	469.15	0.9102	101.33	OX
	$C_8H_{18}O_3$	Di(ethylene glycol) monoisobutyl ether	467.55	0.8355	101.33	OX
	$C_8H_{18}O_3$	Di(propylene glycol) monoethyl ether				
		(unspecified isomer)	458.65	0.4800	101.33	OX
	$C_9H_{20}O_3$	Di(propylene glycol) monopropyl ether				
		(unspecified isomer)	463.15	0.6590	101.33	OX
	$C_{10}H_{22}O_3$	Di(propylene glycol) monobutyl ether				
		(unspecified isomer)	465.75	0.8130	101.33	OX
C_3H_3N		Acrylonitrile				
	C_5H_8	Methylenecyclobutane	313.80	0.1275	101.33	OX
	C_6H_6	Benzene	347.45	0.5575	101.46	OX
	C_6H_{12}	Cyclohexane	337.75	0.4836	101.94	OX
	C_6H_{14}	Hexane	330.90	0.4048	101.05	OX
C_3H_4O		Acrolein				
	C_5H_8	2-Methyl-1,3-butadiene	306.45	0.1980	101.33	OX
C_3H_6O		Propanal				
	C_5H_8	2-Methyl-1,3-butadiene	306.35	0.1700	101.33	OX
	C_5H_8	Methylenecyclobutane	311.30	0.3600	101.33	OX
C_3H_6O		Acetone				
	$C_3H_6O_2$	Methyl acetate	328.85	0.6470	101.33	OX
	C_3H_7Br	1-Bromopropane	328.75	0.9915	99.75	OX
	C_4H_8O	Tetrahydrofuran	328.85	0.9603	100.35	OX
	C_4H_9Cl	2-Chloro-2-methylpropane	322.05	0.1944	102.11	OX
	C_5H_8	2-Methyl-1,3-butadiene	306.95	0.0610	101.33	OX
	C_5H_8	Methylenecyclobutane	311.25	0.2800	101.33	OX
	C_5H_8	1-Methylcyclobutene	307.75	0.2220	101.33	OX
	C_5H_{10}	2-Methyl-1-butene	303.25	0.1400	101.33	OX
	C_5H_{10}	2-Methyl-2-butene	308.75	0.2440	101.33	OX
	C_5H_{12}	Isopentane	298.75	0.1730	101.33	OX
	$C_5H_{12}O$	Methyl <i>tert</i> -butyl ether	324.35	0.4824	102.19	OX
	C_6H_{12}	Cyclohexane	330.05	0.7590	109.32	OX
	C_6H_{12}	1-Hexene	323.35	0.5973	101.40	OX
	C_6H_{12}	2-Methyl-1-pentene	333.40	0.5793	140.60	OX
	C_6H_{14}	Hexane	322.95	0.6480	101.33	OX
	$C_6H_{14}O$	Diisopropyl ether	327.10	0.7424	100.17	OX
	$C_6H_{15}N$	Triethylamine	318.15	0.9800	68.13	OX
a	C_7H_{14}	Methylcyclohexane	318.15	0.9500	68.66	OX
C_3H_6O		Allyl alcohol	267.65	0.5505	00 50	01/
	$C_5H_{10}O_2$	Ethyl propanoate	367.65	0.5597	99.79	OX
	C ₆ H ₆	Benzene	349.90	0.2203	101.33	OX
CHO	C_6H_{12}	Cyclohexane	333.15	0.2790	63.98	OX
$C_3H_6O_2$	CILD	Methyl acetate	220.62	0.0505	00.54	037
	C_3H_7Br	1-Bromopropane	329.60	0.9727	99.56	OX
	6.11	6 11				() V
	C_6H_{10}	Cyclohexene	330.35	0.9121	102.87	OX
	C_6H_{12}	Cyclohexane	328.65	0.8000	101.33	OX
	$C_6H_{12} \\ C_6H_{12}$	Cyclohexane Methylcyclopentane	328.65 325.85	0.8000 0.6917	101.33 99.50	OX OX
	C_6H_{12}	Cyclohexane	328.65	0.8000	101.33	OX

Molecul	ar formula	_				
Comp. 1	Comp. 2	Name	$T_{ m Az}/{ m K}$	$y_{1,\mathrm{Az}}$	$P_{\rm Az}/{ m kPa}$	Type
	C_6H_{14}	Hexane	326.65	0.6590	106.66	OX
	C_7H_{16}	Heptane	323.15	0.9570	79.48	OX
$C_3H_6O_2$		Ethyl formate				
	C_3H_7Br	2-Bromopropane	326.15	0.7090	101.33	OX
	C_6H_{12}	Cyclohexane	323.15	0.8210	91.46	OX
$C_3H_6O_2$		Propanoic acid				
	C_5H_5N	Pyridine	421.75	0.6860	101.33	ON
$C_3H_6O_3$		Dimethyl carbonate				
	$C_5H_{12}O_2$	Diethoxymethane	358.71	0.4437	100.42	OX
	C_6H_6	Benzene	353.50	0.1366	100.48	OX
	C_6H_{12}	Cyclohexane	346.95	0.3780	101.49	OX
	C_6H_{12}	Methylcyclopentane	342.35	0.2680	103.46	OX
	C_6H_{14}	Hexane	338.15	0.2540	98.46	OX
	$C_6H_{14}O$	Dipropyl ether	356.45	0.5044	100.73	OX
	C_7H_{16}	Heptane	355.15	0.5930	99.67	OX
C ₃ H ₇ Br	-/16	1-Bromopropane				
-3/	C ₃ H ₈ O	2-Propanol	339.15	0.7349	99.97	OX
	C_6H_{12}	Cyclohexane	343.35	0.9219	98.84	OX
C ₃ H ₇ NO	61 112	N,N-Dimethylformamide	0 10.00	0.5215	70.01	0.1
0322/210	C_7H_{16}	Heptane	370.15	0.0800	101.33	OX
	$C_{10}H_{16}$	1,4-Dimethyl-4-vinylcyclohexene	415.65	0.5880	101.33	OX
	$C_{10}H_{16}$ $C_{10}H_{16}$	1-Methyl-3-	115.00	0.5000	101.55	On
	0101116	(1-methylethylidene)cyclohexene	419.05	0.7250	101.33	OX
C ₃ H ₇ NO ₂		1-Nitropropane	117.03	0.7230	101.55	OA
031171102	C_7H_{16}	Heptane	369.25	0.1630	101.33	OX
C ₃ H ₇ NO ₂	C71 1 ₁₆	2-Nitropropane	307.23	0.1050	101.55	OA
C ₃ 11 ₇ 11O ₂	C_7H_{16}	Heptane	367.55	0.2920	101.33	OX
C ₃ H ₈ O	$C_{7}^{11}_{16}$	1-Propanol	307.33	0.2720	101.55	OA
031180	$C_4H_3F_7O$	1,1,2,2-Tetrafluoroethyl 1,1,1-				
	C ₄ 1 1 ₃ 1 ₇ O	trifluoroethyl ether	329.23	0.0350	101.30	OX
	$C_4H_4F_6O$	Bis(2,2,2-trifluoroethyl) ether	336.22	0.1100	101.30	OX
	$C_4H_4I_6O$ $C_4H_6O_2$	2,3-Butanedione	359.30	0.3600	100.67	OX
	$C_4H_8O_2$	1,4-Dioxane	365.30	0.6418	101.30	OX
		Propyl acetate	367.88	0.6190	101.33	OX
	$C_5H_{10}O_2$	Diethoxymethane	359.01	0.2320	99.43	OX
	$C_5H_{12}O_2$	Benzene	350.20	0.2320	101.33	OX
	C_6H_6	Cyclohexane	347.68	0.2490	101.33	OX
	C_6H_{12}	Methylcyclopentane	340.85	0.1729	101.33	OX
	C_6H_{12}	4,4-Dimethyl-1,3-dioxane	368.20	0.1729	101.30	OX
	$C_6H_{12}O_2$	•				
	C_6H_{14}	Hexane Toluene	348.15	0.1900 0.6770	137.23	OX
	C_7H_8		365.35 357.65		101.33	OX
	C_7H_{16}	Heptane Styrene	357.65 369.08	0.4830 0.9884	101.33 98.13	OX OX
	C_8H_8	•		0.9886		
	C_8H_{10}	o-Xylene	369.85		98.66	OX
	C_8H_{10}	m-Xylene	369.90	0.9531	99.06	OX
	C_8H_{10}	p-Xylene	369.60	0.9531	99.99	OX
	C_8H_{14}	1-Octyne	369.00	0.8600	101.33	OX
	C_8H_{18}	Octane	366.85	0.7483	101.33	OX
	C_8H_{18}	2,2,4-Trimethylpentane	357.89	0.4580	101.30	OX
CHO	C_9H_{20}	Nonane	369.95	0.9225	101.33	OX
C_3H_8O	CHEC	2-Propanol	224.55	0.0000	101.00	037
	$C_4H_4F_6O$	Bis(2,2,2-trifluoroethyl) ether	334.16	0.2230	101.30	OX
	$C_4H_6O_2$	2,3-Butanedione	350.85	0.6454	100.95	OX
	C ₄ H ₈ O	2-Butanone	350.55	0.3830	101.33	OX
	$C_4H_{10}O$	2-Methyl-2-propanol	343.05	0.5551	60.27	ON
	$C_5H_3F_9O$	1,1,1,2,3,3-Hexafluoro-3-				
		(2,2,2-trifluoroethoxy)propane	341.23	0.3420	101.30	OX
	C_5H_8	2-Methyl-1,3-butadiene	307.05	0.0150	101.33	OX

Molecul	ar formula	_				
Comp. 1	Comp. 2	Name	$T_{ m Az}/{ m K}$	$y_{1,Az}$	P _{Az} /kPa	Type
	C_5H_{10}	2-Methyl-2-butene	310.95	0.0460	101.33	OX
	$C_5H_{10}O$	2,3-Epoxy-2-methylbutane	346.10	0.1400	101.33	OX
	$C_5H_{10}O$	3-Methyl-2-butanone Isopentane	354.75 298.15	0.8500 0.1370	101.33 101.33	OX OX
	C_5H_{12}	Diethoxymethane	351.45	0.6107	98.61	OX
	$C_5H_{12}O_2$ C_6H_5F	Fluorobenzene	347.75	0.4666	101.25	OX
	C_6H_6	Benzene	345.03	0.3960	101.33	OX
	C_6H_{10}	Cyclohexene	344.65	0.4271	101.40	OX
	C_6H_{10} C_6H_{12}	Cyclohexane	342.75	0.4050	101.33	OX
	C_6H_{12} C_6H_{12}	Methylcyclopentane	336.45	0.2900	98.14	OX
	C_6H_{14}	Hexane	338.15	0.2900	112.66	OX
	$C_6H_{14}O$	Diisopropyl ether	340.00	0.2050	103.36	OX
	$C_6H_{15}N$	Diisopropylamine	352.94	0.4890	101.33	OX
	C_7H_8	Toluene	354.65	0.8370	101.33	OX
	C_7H_{14}	Methylcyclohexane	350.85	0.6530	101.33	OX
	C_7H_{16}	Heptane	349.55	0.6023	101.33	OX
	$C_7H_{16}O$	tert-Butyl isopropyl ether	349.95	0.5306	102.70	OX
	C_8H_{18}	Octane	354.63	0.8990	101.33	OX
	C_8H_{18}	2,2,4-Trimethylpentane	349.58	0.6350	101.30	OX
$C_3H_8O_2$		2-Methoxyethanol				
	C_8H_8	Styrene	393.95	0.7787	98.93	OX
	C_8H_{10}	o-Xylene	392.65	0.7127	98.79	OX
	C_8H_{10}	<i>m</i> -Xylene	392.15	0.6397	99.73	OX
	C_8H_{10}	<i>p</i> -Xylene	392.65	0.6303	99.99	OX
	C_8H_{16}	1-Octene	380.75	0.4700	101.33	OX
	C_8H_{16}	cis-4-Octene	381.25	0.4900	101.33	OX
CHO	C_8H_{16}	trans-4-Octene	381.05	0.4900	101.33	OX
$C_3H_8O_2$	CH	Dimethoxymethane	212.65	0.2250	101.22	OV
	C_5H_6	1,3-Cyclopentadiene	313.65	0.3350	101.33	OX
	C_5H_8	2-Methyl-1,3-butadiene	306.80	0.0160	101.33	OX
	C ₅ H ₈	Methylenecyclobutane 1-Methylcyclobutene	310.35 309.05	0.4630 0.2900	101.33 101.33	OX OX
$C_3H_8O_2$	C_5H_8	1,2-Propanediol	309.03	0.2900	101.55	OA
3 6 2	$C_7H_{16}O_3$	Di(propylene glycol) monomethyl ether				
	7 10 3	(unspecified isomer)	456.85	0.5691	101.33	OX
	$C_8H_{18}O_3$	Di(propylene glycol) monoethyl ether				
	0 10 5	(unspecified isomer)	458.75	0.7778	101.33	OX
	$C_9H_{20}O_3$	Di(propylene glycol) monoisopropyl ether				
		(unspecified isomer)	458.95	0.8130	101.33	OX
	$C_9H_{20}O_3$	Di(propylene glycol) monopropyl ether				
		(unspecified isomer)	458.95	0.9010	101.33	OX
	$C_{10}H_{22}O_3$	Di(propylene glycol) monobutyl ether				
		(unspecified isomer)	459.65	0.9721	101.33	OX
	$C_{10}H_{22}O_3$	Di(propylene glycol) monoisobutyl ether				
		(unspecified isomer)	459.05	0.9255	101.33	OX
$C_3H_8O_2$		1,3-Propanediol				
	$C_5H_{12}O_3$	Di(ethylene glycol) monomethyl ether	455.25	0.6300	101.33	OX
	$C_6H_{14}O_3$	Di(ethylene glycol) monoethyl ether	459.25	0.9350	101.33	OX
C_4H_6	-	1,3-Butadiene				
	C_4H_8	2-Butene (unspecified isomer)	267.59	0.7650	101.33	OX
C_4H_6O		2-Butenal			0=05	0.11
	C_7H_8	Toluene	374.15	0.5950	97.86	OX
	C_8H_{18}	Octane	353.15	0.4950	97.86	OX
$C_4H_6O_2$	CII	Vinyl acetate	240.45	0.6066	101.00	077
	C_6H_{12}	Cyclohexane	340.45	0.6200	101.33	OX
CHO	C_6H_{14}	Hexane	335.25	0.4450	101.33	OX
$C_4H_6O_2$	CII	2,3-Butanedione	262.70	0.0512	101.04	OV
	C_7H_8	Toluene	362.70	0.9513	101.34	OX

 C_7H_8

Toluene

Molecul	ar formula	_				
Comp. 1	Comp. 2	Name	$T_{ m Az}/{ m K}$	$y_{1,\mathrm{Az}}$	$P_{\mathrm{Az}}/\mathrm{kPa}$	Туре
$C_4H_6O_3$	CH	Acetic anhydride	267.52	0.2040	F2.00	OV
	C ₈ H ₁₆	1-Octene Octane	367.53 397.65	0.2840 0.3500	53.88 129.80	OX OX
C ₄ H ₈ O	C_8H_{18}	Butanal	397.03	0.5500	129.00	OA
C ₄ 11 ₈ O	C_6H_{12}	2-Methyl-1-pentene	334.15	0.2293	101.48	OX
C ₄ H ₈ O	C ₆ 1 1 ₁₂	2-Butanone	334.13	0.2293	101.40	OA
C ₄ 11 ₈ O	$C_4H_8O_2$	Ethyl acetate	349.55	0.1700	101.33	OX
	$C_4H_8C_2$ C_6H_6	Benzene	351.53	0.4790	101.33	OX
	C_6H_{10}	Cyclohexene	343.29	0.5110	89.35	OX
	C_6H_{12}	1-Hexene	334.75	0.1760	100.58	OX
	C_6H_{14}	Hexane	337.15	0.3280	101.33	OX
	$C_6H_{14}O$	Diisopropyl ether	340.55	0.1938	101.56	OX
	$C_6H_{14}O$	Dipropyl ether	351.40	0.7785	100.88	OX
	C_7H_{14}	Methylcyclohexane	350.50	0.7984	98.93	OX
	C_7H_{16}	Heptane	350.15	0.7670	101.33	OX
C_4H_8O	-/16	Tetrahydrofuran				
* 0 -	C_6H_{12}	2-Methyl-1-pentene	334.65	0.2867	101.29	OX
	C_6H_{12} C_6H_{14}	Hexane	323.15	0.5900	65.83	OX
$C_4H_8O_2$	62 - 14	Ethyl acetate	020110	0.000	00.00	011
4 8 2	$C_4H_{10}O$	2-Methyl-2-propanol	349.75	0.7778	101.28	OX
	C_6H_6	Benzene	350.55	0.9453	102.45	OX
	C_6H_{10}	Cyclohexene	347.45	0.6183	100.87	OX
	C_6H_{12}	Cyclohexane	345.00	0.5390	102.45	OX
	C_6H_{12}	1-Hexene	333.15	0.1230	91.47	OX
	C_6H_{14}	Hexane	338.00	0.3430	101.32	OX
	C_7H_{14}	Methylcyclohexane	349.90	0.9001	101.83	OX
$C_4H_8O_2$	- / 14	Butanoic acid				
4 8 2	C_5H_5N	Pyridine	436.35	0.9117	101.33	ON
	$C_8H_{16}O_2$	Butyl butanoate	434.60	0.6532	93.33	OXD
	$C_8H_{16}O_2$	Butyl butanoate	434.78	0.8639	93.33	OND
	$C_{11}H_{24}$	Undecane	435.55	0.9060	101.33	OX
$C_4H_8O_2$	C ₁₁ 1 1 ₂₄	1,4-Dioxane	133.33	0.5000	101.55	OA
0411802	$C_4H_{10}O$	2-Butanol	371.75	0.4732	100.77	OX
	$C_5H_{10}O_2$	Propyl acetate	373.35	0.6334	101.13	OX
	$C_5H_{10}O_2$ $C_5H_{12}O$	2-Methyl-2-butanol	373.75	0.8119	99.62	OX
	C_6H_{10}	Cyclohexene	355.75	0.1065	101.44	OX
	C_6H_{10}	Methylcyclopentane	343.85	0.0538	99.79	OX
	C_6H_{12} $C_6H_{15}N$	Triethylamine	343.15	0.2500	56.80	OX
	C_7H_{16}	Heptane	364.30	0.4868	101.06	OX
	$C_7H_{16}O$	2-Ethoxy-2-methylbutane	369.15	0.5452	100.27	OX
$C_4H_8O_2$	-/16	Propyl formate				
0411802	C_6H_6	Benzene	343.15	0.3770	76.08	OX
$C_4H_8O_2$	06.16	Methyl propanoate	0.10.110	0.07,70	7 0.00	011
0411802	C_7H_{14}	Methylcyclohexane	352.45	0.8956	101.33	OX
C ₄ H ₉ Cl	-/14	1-Chlorobutane				
0411901	C_6H_{12}	Cyclohexane	348.31	0.5800	95.85	OX
C ₄ H ₉ NO	061 112	N,N-Dimethylacetamide	010.01	0.000	70.00	011
-49-	C_8H_{10}	o-Xylene	416.95	0.0591	103.40	OX
	C_8H_{10}	Ethylbenzene	408.95	0.0037	101.70	OX
$C_4H_{10}O$	-810	1-Butanol	100,70			211
- 410 V	C_5H_5N	Pyridine	392.00	0.7050	101.33	ON
	C_5H_{51} $C_5H_{10}O_3$	Diethyl carbonate	370.85	0.6346	53.20	OX
	$C_5H_{10}O_3$ C_6H_5Cl	Chlorobenzene	388.25	0.6950	101.33	OX
	C_6H_{12}	Cyclohexane	352.68	0.0787	101.33	OX
	C_6H_{12} $C_6H_{12}O_2$	Butyl acetate	389.97	0.7700	101.33	OX
	$C_6H_{12}O_2$ $C_6H_{12}O_2$	Isobutyl acetate	387.15	0.5980	101.33	OX
		Hexane	341.35	0.0370	101.33	OX
	C ₆ H ₁₄	Toluene	341.35 378.85	0.0370	101.33	OX

378.85

0.3320

101.33

OX

Comp. 1 Comp. 2 C.H ₁ , C.H ₂ , C.H ₃ , C.H ₄ , C.H	Molecul	ar formula	_				
C.H ₁₁		C 0	- N	77 /77		D /ID	T
C, H ₁	Comp. 1	-					
C, H ₁ Syrcme 388.01 0.8923 89.39 OX C, H ₁₀ e-Xylene 387.75 0.7865 101.46 OX C, H ₁₀ p-Xylene 387.75 0.7865 101.46 OX C, H ₁₁ 1-Octyne 386.50 0.6200 101.33 OX C, H ₁₄ 1-Octyne 398.30 0.7910 101.33 OX C, H ₁₄ cl-Octnee 382.35 50.500 101.33 OX C, H ₁₄ cl-Cetne 382.15 0.5300 101.33 OX C, H ₁₄ cl-d-Octene 382.15 0.5300 101.33 OX C, H ₁₄ Octane 383.15 0.5500 102.79 OX C, H ₁₄ 1-But/scydopentene 380.65 0.8450 79.99 OX C, H ₁₄ 1-But/scydopentene 356.70 0.8450 79.99 OX C, H ₁₄ 1-But/scydopentene 356.70 0.8450 79.99 OX C, H ₁₄ 2-But/scydopen			, , 1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			_				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			•				
C ₁ H ₁₀ P-Xylene 387.85 0.7823 99.73 OX OX C ₁ H ₁₄ 1-Octyne 386.80 0.6200 101.33 OX OX C ₁ H ₁₄ 2-Octyne 398.30 0.7910 101.33 OX OX OX OX OX OX OX			•				
C ₁ H ₁₁ 1-Octyne 386.50 0.6200 101.33 OX C ₁ H ₁₄ 2-Octyne 398.30 0.7910 101.33 OX C ₁ H ₁₅ cis ±-Octene 382.35 0.5300 101.33 OX C ₁ H ₁₆ cis ±-Octene 382.35 0.5300 101.33 OX C ₁ H ₁₆ cis ±-Octene 382.35 0.5300 101.33 OX C ₁ H ₁₆ Octane 383.15 0.5500 101.279 OX OX C ₁ H ₁₆ Octane 383.15 0.5500 102.79 OX OX C ₁ H ₁₆ Ox Ox Ox Ox Ox Ox Ox O			•				
C _i H ₁ , C _i H ₁ , C _i C _i H ₁ , Cotene 398.30 (7910) (10133) (7) (2014) (1013) (7) (7) (1013) (1013) (7) (7) (1113) (1013) (7) (7) (1113) (1013) (7) (7) (1113) (7) (7) (7) (1113) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7							
C _i H _{1a} l-Octene 38.345 0.4530 53.33 OX C _i H _{1a} cis-4-Octene 382.35 0.5300 101.33 OX C _i H _{1a} Octane 382.15 0.5301 101.33 OX C _i H _{1a} Octane 383.15 0.5500 102.79 OX C _i H _{1a} 1-Butyleyclopentene 366.70 0.8450 79.99 OX C _i H _{1a} 1-Butyleyclopentene 366.70 0.8450 79.99 OX C _i H _{1a} 1-Butyleyclopentene 366.70 0.8450 79.99 OX C _i H _{1a} 1-Butyleyclopentene 366.70 0.8450 79.99 OX C _i H _{1a} 1-Nonne 380.05 0.8075 79.99 OX C _i H _{1a} 2-Butanone 370.50 0.6075 99.98 OX C _i H _{1a} 2-Butanone 352.75 0.2046 101.25 OX C _i H _{1a} 4-butanone 352.75 0.2046 101.25 OX C _i H _{1a} </th <th></th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th></th>			•				
C, H ₁ , class cls-H ₂ cluss cls-H			•				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
C, H ₁ , O Octane 383.15 0.5500 102.79 OX C ₄ H ₁₆ 1-Butyleychpentene 390.59 0.8754 101.33 OX C ₄ H ₁₆ 1-Butyleychpentene 390.69 0.9400 101.33 OX C ₄ H ₁₆ Nonane 389.05 0.8128 101.33 OX C ₄ H ₁₆ C ₂ H ₂ Nonane 389.05 0.6075 99.98 OX C ₄ H ₁₆ Cyclohexne 352.75 0.2046 101.25 OX C ₄ H ₁₆ Cyclohexne 352.75 0.2046 101.25 OX C ₄ H ₁₆ Cyclohexne 349.90 0.1892 101.02 OX C ₄ H ₁₆ Hesane 349.15 0.0991 102.12 OX C ₄ H ₁₆ Cyclohexne 359.15 0.0991 102.12 OX C ₄ H ₁₆ Cyclohexne 359.15 0.0991 102.12 OX C ₄ H ₁₆ Toluene 350.15 0.0991 102.12 OX C ₄ H							
C _c H ₁₆ 1- Butylcyclopentene 356.70 0.8450 79.99 OX CH ₁₆ C _c H ₁₆ 1- Nonyne 390.60 0.9400 101.33 OX CX C _c H ₁₆ C _c H ₁₆ 2- Butanol 389.05 0.8128 101.133 OX CX							
C _a H ₁₆ 1-Nonyne 390.60 0.9400 101.33 OX CX CyH ₁₀ C _a H ₁₀ O 2-Batanol 380.5 0.8128 101.33 OX OX CyH ₁₀ C _a H ₁₀ O 3-Pentanone 370.50 0.6075 99.98 OX CyCohexene C _a H ₁₂ Cyclohexene 352.75 0.2046 101.25 OX CX CyH ₁₂ Cyclohexane 349.90 0.1892 101.02 OX CX CyH ₁₄ CyH ₁₆ OX CX CyH ₁₆ <th< th=""><th></th><td></td><td>•</td><td></td><td></td><td></td><td></td></th<>			•				
C ₄ H ₁₀ O 2-Butanol C ₃ H ₁₀ O 3-Pentanone 370.50 0.6075 99.98 OX C ₄ H ₁₀ C Cyclohexene 352.75 0.2046 101.25 OX C ₄ H ₁₂ C Cyclohexane 349.90 0.1892 101.02 OX C ₄ H ₁₄ C Hexane 348.15 0.0091 102.12 OX C ₄ H ₁₆ C 2-Methoxy-2-methylbutane 359.15 0.0991 102.12 OX C ₄ H ₁₆ C Heptane 361.95 0.4116 102.70 OX C ₄ H ₁₀ C 2-Ethoxy-2-methylbutane 367.75 0.4931 102.29 OX C ₄ H ₁₀ C 2-Ethoxy-2-methylbutane 369.85 0.9717 101.06 OX C ₄ H ₁₀ C 3-Ethoxy-2-methylbutane 369.85 0.9717 101.06 OX C ₄ H ₁₀ C 3-Ethoxy-2-methylbutane 369.85 0.9917 101.06 OX C ₄ H ₁₀ C 3-Ethoxy-2-methylbutane 371.05 0.8001 101.30 OX C ₄ H ₁₀ C 3-H ₁₀ C<			•				
C ₁ H ₁₀ O 3-Pentanone 370.50 0.6075 99.98 OX CH ₁₀ Cyclohexene 352.75 0.2046 101.25 OX CX CH ₁₀ OX Cyclohexane 349.90 0.1892 101.02 OX CX Cyclohexane 349.90 0.1892 101.02 OX CX Cyclohexane 349.90 0.1892 101.02 OX CYCLON OX CYCLOHY		C_9H_{20}		389.05	0.8128	101.33	OX
C _i H ₁₀ Cyclohexene 352.75 0.2046 101.25 OX C _i H ₁₂ Cyclohexane 349.90 0.1892 101.02 OX C _i H ₁₄ Hexane 348.15 0.1010 128.66 OX C _i H ₁₄ O 2-Methoxy-2-methylbutane 359.15 0.0991 102.12 OX C _i H ₁₆ Heptane 353.44 0.5550 56.67 OX C _i H ₁₆ O 2-Ethoxy-2-methylbutane 367.75 0.4931 102.89 OX C _i H ₁₀ O 2-Ethoxy-2-methylbutane 369.85 0.9717 101.06 OX C _i H ₁₀ O p-Xylene 369.85 0.9740 101.06 OX C _i H ₁₀ O p-Xylene 369.55 0.9646 101.46 OX C _i H ₁₀ D p-Xylene 369.85 0.5500 101.33 OX C _i H ₁₀ D Diethyl ether 306.85 0.5500 101.33 OX C _i H ₁₀ C S-Methyl-1-propanol 101.33 OX OX OX OX	$C_4H_{10}O$			250.50	0.6055	00.00	0.17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			•				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			•				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
			-				
			•				
C_8H_{18} Octane 371.05 0.8001 101.30 OX C_4H_{10} O Diethyl ether Use of the policy of			•				
C_8H_{12} Pentane 306.85 0.5500 101.33 OX $C_4H_{10}O$ 2-Methyl-1-propanol	a	C_8H_{18}		3/1.05	0.8001	101.30	OX
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$C_4H_{10}O$	a	•	226.25		404.00	0.11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C_5H_{12}		306.85	0.5500	101.33	OX
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_4H_{10}O$	a		2=2.22			0.11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			•				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			•				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			•				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, , 1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			•				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			• •				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CHO	$C_8\Pi_{18}$		3/0.38	0.6700	101.50	OΛ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_4\Pi_{10}O$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0 11					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c} \textbf{C}_8\textbf{H}_{18} & 2,2,4\text{-Trimethylpentane} & 339.28 & 0.6040 & 59.49 & OX \\ \textbf{C}_4\textbf{H}_{10}\textbf{O}_2 & \textbf{1,4-Butanediol} & & & & \\ \textbf{C}_{15}\textbf{H}_{32}\textbf{O} & 1\text{-Pentadecanol} & 502.75 & 0.9980 & 101.33 & OX \\ \textbf{C}_4\textbf{H}_{10}\textbf{O}_2 & \textbf{1,2-Dimethoxyethane} & & & & & \\ \textbf{C}_7\textbf{H}_{14} & \text{Methylcyclohexane} & 350.00 & 0.8190 & 79.42 & OX \\ \end{array}$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$C_{15}H_{32}O$ 1-Pentadecanol 502.75 0.9980 101.33 OX $C_4H_{10}O_2$ 1,2-Dimethoxyethane C_7H_{14} Methylcyclohexane 350.00 0.8190 79.42 OX	a •	C_8H_{18}		339.28	0.6040	59.49	OX
$\mathbf{C_4H_{10}O_2}$ 1,2-Dimethoxyethane $\mathbf{C_7H_{14}}$ Methylcyclohexane 350.00 0.8190 79.42 OX	$C_4H_{10}O_2$	a	·		0.05	404.0-	0.7-
C_7H_{14} Methylcyclohexane 350.00 0.8190 79.42 OX		$C_{15}H_{32}O$		502.75	0.9980	101.33	OX
C_7H_{14} Methylcyclohexane 350.00 0.8190 79.42 OX $C_4H_{10}O_2$ 2-Ethoxyethanol	$C_4H_{10}O_2$	a					
C ₄ H ₁₀ O ₂ 2-Ethoxyethanol	G 17 . 0	C_7H_{14}		350.00	0.8190	79.42	OX
	$C_4H_{10}O_2$		2-Ethoxyetnanoi				

	formu	

Comp. 1	Comp. 2	Name Styrene	$T_{ m Az}/{ m K}$ 405.75	$y_{1,Az}$ 0.6438	$P_{\mathrm{Az}}/\mathrm{kPa}$ 101.33	Type OX
	C_8H_{10}	o-Xylene	404.95	0.5965	101.36	OX
	C_8H_{10}	<i>m</i> -Xylene	401.75	0.5159	101.33	OX
	C_8H_{10}	<i>p</i> -Xylene	402.55	0.5042	102.19	OX
	C_8H_{10}	Ethylbenzene	401.05	0.4632	100.94	OX
$C_4H_{10}O_3$	081110	Di(ethylene glycol)	101100	0.1002	1000,71	0.1
0411003	$C_9H_{20}O$	1-Nonanol	486.65	0.0095	101.33	OX
$C_4H_{11}N$	-920 -	Butylamine				
-411-	C_6H_6	Benzene	343.15	0.7000	80.89	OX
C ₅ H ₅ N	-66	Pyridine				
-55-	C_7H_8	Toluene	383.19	0.2250	101.33	OX
	C_7H_{16}	Heptane	368.61	0.3002	101.33	OX
	C_9H_{20}	Nonane	388.15	0.9350	101.33	OX
C_5H_6	C91 120	2-Methyl-1-buten-3-yne	500,15	0,5000	101.00	011
05116	C_5H_8	2-Methyl-1,3-butadiene	305.88	0.7210	101.33	OX
	C_5H_8 C_5H_{10}	2-Methyl-1-butene	303.15	0.3450	101.33	OX
	C_5H_{10} C_5H_{12}	Isopentane	299.35	0.3620	101.33	OX
C ₅ H ₆	○ 51 112	1,3-Cyclopentadiene	277.33	0.5020	101.00	OA
○ 5116	C_5H_{10}	2-Methyl-2-butene	310.85	0.3000	101.33	OX
	C_5H_{10} C_5H_{12}	Pentane	307.75	0.1959	101.30	OX
C ₅ H ₈	C ₅ 1 1 ₁₂	2-Methyl-1,3-butadiene	307.73	0.1737	101.50	OΛ
C ₅ 11 ₈	C_5H_{12}	Pentane	310.55	0.7421	114.66	OX
	$C_5 \Gamma_{12}$ $C_6 F_{15} N$	Tris(perfluoroethyl)amine	303.35	0.8200	101.33	EX
СU	C ₆ F ₁₅ IV	3-Methyl-1-butyne	505.55	0.8200	101.55	LA
C_5H_8	СИ	•	207.15	0.5650	101 22	OX
C II	C_5H_{12}	Isopentane	297.15	0.5650	101.33	OΛ
C_5H_8	СИ	1-Pentyne	210.05	0.2200	101 22	OV
	C_5H_{10}	2-Methyl-2-butene	310.95	0.3300	101.33	OX
C II O	C_5H_{12}	Pentane	307.55	0.3050	101.33	OX
C_5H_8O	CHO	Cyclopentanone	402.02	0.5044	101.22	OV
	$C_5H_{12}O$	3-Methyl-1-butanol 1-Pentanol	402.02	0.5944	101.33	OX
CHO	$C_5H_{12}O$		403.84	0.9196	101.33	OX
$C_5H_8O_2$	CH	Methyl methacrylate	266.25	0.4507	00.04	OV
	C_7H_{16}	Heptane	366.35	0.4597	99.94	OX
CII	C_8H_{18}	Octane	373.70	0.9651	100.16	OX
C_5H_{10}	CEN	2-Methyl-1-butene Tris(perfluoroethyl)amine	201.05	0.9450	101 22	OX
CH	$C_6F_{15}N$	1	301.95	0.8450	101.33	ΟX
C_5H_{10}	C F M	2-Methyl-2-butene	207.65	0.0170	101.00	OV
CHO	$C_6F_{15}N$	Tris(perfluoroethyl)amine	307.65	0.8170	101.33	OX
$C_5H_{10}O$	CH	3-Methyl-3-buten-1-ol	252.65	0.0015	101 10	OV
	C_6H_{12}	Cyclohexane	352.65	0.0215	101.10	OX
	$C_6H_{12}O_2$	4,4-Dimethyl-1,3-dioxane	403.05	0.7590	102.26	OX
	C_7H_8	Toluene	381.55	0.2391	101.60	OX
a	C_7H_{16}	Heptane	370.00	0.2100	101.30	OX
$C_5H_{10}O$		2-Methyl-3-buten-2-ol	250.45		101.00	0.11
	C_6H_{12}	Cyclohexane	350.15	0.1904	101.20	OX
	C_6H_{12}	1-Hexene	336.55	0.0479	101.30	OX
	C_7H_8	Toluene	366.55	0.7788	101.20	OX
$C_5H_{10}O$		3-Pentanone				
	C_7H_{14}	Methylcyclohexane	366.95	0.4441	99.82	OX
	$C_7H_{16}O$	2-Ethoxy-2-methylbutane	371.15	0.4764	100.21	OX
$C_5H_{10}O_2$		Propyl acetate				
	C_6H_{12}	Cyclohexane	353.15	0.0598	100.43	OX
	C_7H_{14}	Methylcyclohexane	368.40	0.4746	100.90	OX
	C_7H_{16}	Heptane	366.75	0.4215	101.38	OX
	$C_7H_{16}O$	2-Ethoxy-2-methylbutane	370.95	0.6529	100.03	OX
C_5H_{12}	0	Isopentane				
	$C_6F_{15}N$	Tris(perfluoroethyl)amine	299.65	0.9020	101.33	OX
$C_5H_{12}O$	0 13	2-Methyl-1-butanol				
3 12						

Molecul	ar formula	_				
Comp. 1	Comp. 2	Name	$T_{ m Az}/{ m K}$	$y_{1,\mathrm{Az}}$	$P_{\rm Az}/{ m kPa}$	Туре
	C_8H_{10}	o-Xylene	402.05	0.7417	101.87	OX
	C_8H_{10}	<i>m-</i> Xylene	400.65	0.6316	101.85	OX
	C_8H_{10}	<i>p-</i> Xylene	400.15	0.6273	101.07	OX
	C_8H_{10}	Ethylbenzene	398.75	0.5657	99.46	OX
$C_5H_{12}O$		3-Methyl-1-butanol				
	$C_6H_{10}O$	Cyclohexanone	404.87	0.9094	101.33	OX
	C_7H_8	Toluene	383.15	0.1250	101.33	OX
	$C_7H_{14}O_2$	Isopentyl acetate	403.95	0.9900	101.33	OX
	C_7H_{16}	Heptane	368.15	0.1016	95.06	OX
$C_5H_{12}O$, 10	2-Methyl-2-butanol				
5 12	C_6H_6	Benzene	352.35	0.1500	101.33	OX
	C_6H_{12}	Cyclohexane	351.95	0.1100	101.33	OX
	C_6H_{12}	Methylcyclopentane	344.75	0.0551	101.80	OX
	C_6H_{14}	Hexane	339.06	0.0436	93.55	OX
	C_7H_{14}	Methylcyclohexane	366.60	0.3965	99.87	OX
	C_7H_{16}	Heptane	348.15	0.3140	56.83	OX
	$C_7H_{16}O$	2-Ethoxy-2-methylbutane	369.85	0.3904	100.52	OX
$C_5H_{12}O$	0/11/60	1-Pentanol	307,00	0.0001	100.02	0.11
0511120	$C_6H_{10}O$	Cyclohexanone	392.37	0.9748	53.32	OX
	$C_6H_{10}O$ $C_7H_{14}O_2$	Isopentyl acetate	407.45	0.6000	101.33	OX
	$C_7H_{14}O_2$ C_7H_{16}	Heptane	371.45	0.0576	101.33	OX
	C_7H_{16} C_8H_{18}	Octane	393.15	0.2847	101.33	OX
		Nonane	404.45			OX
	C_9H_{20}	Decane		0.6242	101.33	OX
CHO	$C_{10}H_{22}$		410.65	0.9221	101.33	OX
$C_5H_{12}O$	CH	3-Pentanol	260.15	0.0001	00.60	OV
	C_7H_{16}	Heptane	368.15	0.2001	98.62	OX
$C_5H_{12}O_2$	CH	Diethoxymethane	252.01	0.1774	101.20	OV
	C_6H_{12}	Cyclohexane	353.21	0.1774	101.39	OX
C.F.	C_6H_{14}	Hexane	361.27	0.9101	102.30	OX
C_6F_6	CH	Hexafluorobenzene	252.60	0.7600	101.00	ONID
	C_6H_6	Benzene	353.60	0.7600	101.33	OND
a = 1.	C_6H_6	Benzene	352.50	0.1832	101.33	OXD
$C_6F_{15}N$		Tris(perfluoroethyl)amine	222.25			
	C_6H_6	Benzene	329.95	0.5900	101.33	EX
	C_6H_{12}	Cyclohexane	329.35	0.5690	101.33	EX
	C_6H_{14}	Hexane	327.65	0.4840	101.33	OX
C ₆ H ₅ Br		Bromobenzene				
	$C_6H_{12}O$	Cyclohexanol	403.15	0.7390	52.45	OX
C_6H_6		Benzene				
	C_6H_{12}	Cyclohexane	353.15	0.5460	109.18	OX
	C_6H_{12}	Methylcyclopentane	333.15	0.1390	69.93	OX
	C_6H_{14}	Hexane	341.45	0.0500	101.33	OX
	C_7H_{16}	Heptane	353.25	0.9922	101.32	OX
	C_8H_{18}	2,2,4-Trimethylpentane	353.25	0.9751	101.32	OX
C_6H_6O		Phenol				
	C_6H_7N	Aniline	459.09	0.3884	101.33	ON
	C_6H_7N	2-Methylpyridine	458.33	0.7852	101.32	ON
	C_6H_7N	3-Methylpyridine	462.93	0.6918	101.32	ON
	C_7H_5N	Benzonitrile	465.11	0.2345	101.33	ON
	C ₇ H ₆ O	Benzaldehyde	447.00	0.6001	73.00	ON
	C_7H_9N	2,6-Dimethylpyridine	459.32	0.7539	101.32	ON
	C_8H_{18}	Octane	398.17	0.0690	101.32	OX
	C_9H_{12}	Propylbenzene	428.15	0.1150	91.85	OX
	C_9H_{12} C_9H_{12}	1,2,3-Trimethylbenzene	443.45	0.3936	101.33	OX
	C_9H_{12} C_9H_{12}	1,2,4-Trimethylbenzene	440.65	0.2409	101.33	OX
	C_9H_{12} C_9H_{12}	1,3,5-Trimethylbenzene	436.95	0.1828	101.33	OX
	C_9H_{18}	1-Nonene	413.15	0.1828	86.57	OX
		Nonane	419.18		101.32	OX
	C_9H_{20}	ronalie	417.10	0.2180	101.32	OΛ

Molecul	ar formula	_				
Comp. 1	Comp. 2	Name 1,2,3,4-Tetrahydronaphthalene	$T_{ m Az}/{ m K}$ 448.15	<i>y</i> _{1,Az} 0.9031	$P_{ m Az}/{ m kPa}$ 84.25	Type OX
	$C_{10}H_{12}$ $C_{10}H_{14}$	Butylbenzene	447.05	0.5535	101.33	OX
	$C_{10}H_{14}$ $C_{10}H_{14}$	sec-Butylbenzene	441.15	0.3129	101.33	OX
	$C_{10}H_{14}$ $C_{10}H_{14}$	tert-Butylbenzene	439.95	0.2773	101.33	OX
	$C_{10}H_{14}$ $C_{10}H_{14}$	Diethylbenzene (unspecified isomer)	446.45	0.4705	101.33	OX
	$C_{10}H_{14}$ $C_{10}H_{14}$	o-Diethylbenzene	447.15	0.5565	101.33	OX
	$C_{10}H_{14}$	<i>m</i> -Diethylbenzene	445.95	0.5152	101.33	OX
	$C_{10}H_{14}$	1-Ethyl-3,5-dimethylbenzene	447.95	0.5840	101.33	OX
	$C_{10}H_{14}$	2-Ethyl-1,4-dimethylbenzene	447.95	0.5840	101.33	OX
	$C_{10}H_{14}$	Isobutylbenzene	441.75	0.3522	101.33	OX
	$C_{10}H_{14}$	1-Isopropyl-2-methylbenzene	443.75	0.4643	101.33	OX
	$C_{10}H_{14}$	1-Isopropyl-3-methylbenzene	443.05	0.4027	101.33	OX
	$C_{10}H_{14}$	1-Isopropyl-4-methylbenzene	443.65	0.4430	101.33	OX
	$C_{10}H_{14}$	1-Methyl-2-propylbenzene	447.75	0.5801	101.33	OX
	$C_{10}H_{14}$	1-Methyl-3-propylbenzene	446.35	0.5264	101.33	OX
	$C_{10}H_{14}$	1-Methyl-4-propylbenzene	447.15	0.5575	101.33	OX
	$C_{10}H_{14}$	1,2,3,5-Tetramethylbenzene	454.25	0.7957	101.33	OX
	$C_{10}H_{14}$	1,2,4,5-Tetramethylbenzene	453.36	0.7857	101.33	OX
	$C_{10}H_{18}$	trans-Decahydronaphthalene	443.15	0.5419	99.85	OX
	$C_{10}H_{22}$	Decane	434.15	0.4450	101.32	OX
	$C_{11}H_{16}$	1-Butyl-2-methylbenzene	455.55	0.8504	101.33	OX
	$C_{11}H_{16}$	1-Butyl-3-methylbenzene	454.15	0.8099	101.33	OX
	$C_{11}H_{16}$	1-Butyl-4-methylbenzene	454.55	0.8230	101.33	OX
	$C_{11}H_{22}$	1-Undecene	443.15	0.6426	92.31	OX
	$C_{12}H_{26}$	Dodecane	450.73	0.7900	101.32	OX
	$C_{14}H_{30}$	Tetradecane	452.48	0.9650	101.32	OX
C_6H_7N		Aniline				
	C_7H_8O	o-Cresol	464.29	0.0953	101.33	ON
	C_9H_{12}	1,2,3-Trimethylbenzene	444.65	0.3331	101.33	OX
	C_9H_{12}	1,2,4-Trimethylbenzene	441.80	0.1850	101.33	OX
	C_9H_{12}	1,3,5-Trimethylbenzene	437.68	0.1071	101.33	OX
	C_9H_{20}	Nonane	422.35	0.1770	101.33	OX
	$C_{10}H_{14}$	Butylbenzene	448.65	0.4993	101.33	OX
	$C_{10}H_{14}$	sec-Butylbenzene	443.15	0.3021	101.33	OX
	$C_{10}H_{14}$	<i>tert</i> -Butylbenzene	438.25	0.2104	101.33	OX
	$C_{10}H_{14}$	o-Diethylbenzene	448.75	0.5024	101.33	OX
	$C_{10}H_{14}$	<i>m</i> -Diethylbenzene	447.45	0.4584	101.33	OX
	$C_{10}H_{14}$	p-Diethylbenzene	448.85	0.5086	101.33	OX
	$C_{10}H_{14}$	1-Ethyl-3,5-dimethylbenzene	449.65	0.5310	101.33	OX
	$C_{10}H_{14}$	2-Ethyl-1,4-dimethylbenzene	449.65	0.5310	101.33	OX
	$C_{10}H_{14}$	Isobutylbenzene	442.75	0.2890	101.33	OX
	$C_{10}H_{14}$	1-Isopropyl-2-methylbenzene	445.95	0.4052	101.33	OX
	$C_{10}H_{14}$	1-Isopropyl-3-methylbenzene	444.15	0.3419	101.33	OX
	$C_{10}H_{14}$	1-Isopropyl-4-methylbenzene	445.35	0.3829	101.33	OX
	$C_{10}H_{14}$	1-Methyl-2-propylbenzene	449.45	0.5270	101.33	OX
	$C_{10}H_{14}$	1-Methyl-3-propylbenzene	447.85 448.75	0.4711 0.5035	101.33	OX
	$C_{10}H_{14}$	1-Methyl-4-propylbenzene			101.33	OX
	$C_{10}H_{14}$	1,2,3,5-Tetramethylbenzene	456.55	0.7504	101.33	OX
	$C_{10}H_{14}$	1,2,4,5-Tetramethylbenzene	455.36	0.7349	101.33	OX
	$C_{10}H_{22}$	Decane	440.43	0.4660	101.33	OX OX
	$C_{11}H_{16}$	1-Butyl 2 methylbenzene	458.15 456.55	0.8091	101.33	OX
	$C_{11}H_{16}$	1-Butyl 4 methylbenzene	456.55 457.05	0.7661	101.33	
	$C_{11}H_{16}$	1-Butyl-4-methylbenzene Undecane	457.05	0.7807	101.33	OX
	$C_{11}H_{24}$	Dodecane	449.05 453.53	0.6970	101.33	OX
	$C_{12}H_{26}$	Dodecane Tridecane	453.52 456.22	0.8220 0.9300	101.33 101.33	OX OX
	$C_{13}H_{28}$	Tetradecane	456.22 457.05	0.9300	101.33	OX
CHN	$C_{14}H_{30}$		437.03	0.7//0	101.33	ΟΛ
C_6H_7N		2-Methylpyridine				

 $\mathbf{C_7H_8O}$

 $C_{10}H_8$

p-CresolNaphthalene

Comp. 1	Comp. 2	Name	$T_{ m Az}/{ m K}$	$y_{1,Az}$	P _{Az} /kPa	Туре
	C_8H_{18}	Octane	394.27	0.4610	101.33	OX
	C_9H_{20}	Nonane	402.35	0.8790	101.33	OX
C_6H_7N		3-Methylpyridine				
	C_7H_8O	m-Cresol	477.01	0.1556	101.32	ON
	C_7H_9N	2,6-Dimethylpyridine	416.64	0.2940	101.33	OX
C_6H_7N		4-Methylpyridine				
	C_7H_8O	m-Cresol	477.74	0.1822	101.32	ON
	C_7H_9N	2,6-Dimethylpyridine	417.08	0.2000	101.32	OX
$C_6H_{10}O$		Methyldihydropyran (unspecified isomer)				
	C_7H_8	Toluene	381.85	0.0207	101.30	OX
$C_6H_{10}O$		4-Methylenetetrahydropyran				
	C_7H_8	Toluene	381.15	0.5253	101.20	OX
$C_6H_{12}O$		Cyclohexanol				
	C_8H_{10}	o-Xylene	415.95	0.1426	101.33	OX
	C_8H_{10}	<i>m</i> -Xylene	411.85	0.0503	101.33	OX
	C_8H_{10}	p-Xylene	410.95	0.0505	101.33	OX
	C_9H_{20}	Nonane	410.20	0.3350	79.99	OX
CHO	C ₉ 1 1 ₂₀		410.20	0.5550	/ フ.フブ	OΛ
$C_6H_{12}O_2$		Butyl acetate	202.00	0.0000	101.00	037
C II O	C_8H_{16}	1-Octene	393.00	0.3030	101.33	OX
$C_6H_{12}O_2$		4,4-Dimethyl-1,3-dioxane				
	C_8H_{10}	o-Xylene	404.65	0.9662	101.30	OX
	C_8H_{18}	Octane	393.95	0.3343	101.20	OX
	C_9H_{20}	Nonane	402.15	0.8864	101.30	OX
	$C_{10}H_{22}$	Decane	405.35	0.9999	100.60	OX
$C_6H_{14}O$		1-Hexanol				
	C_8H_{18}	Octane	398.55	0.0886	101.33	OX
	C_9H_{20}	Nonane	416.95	0.3649	101.33	OX
	$C_{10}H_{22}$	Decane	427.05	0.7123	101.33	OX
$C_6H_{14}O_2$		2,2-Dimethoxybutane				
	C_7H_8	Toluene	380.15	0.9180	101.44	OX
C_7F_{16}		Perfluoroheptane				
, 10	C_7H_{16}	Heptane	328.16	0.6100	53.60	OX
C_7H_5N	7 10	Benzonitrile				
-/5-	C ₇ H ₈ O	o-Cresol	468.91	0.5100	101.33	ON
	C_7H_8O	m-Cresol	476.10	0.1441	101.33	ON
	C_7H_8O	p-Cresol	476.95	0.0898	101.33	ON
		2,6-Xylenol	477.15	0.0807	101.33	ON
C ₇ H ₈ O	$C_8H_{10}O$	o-Cresol	4//.13	0.0807	101.55	ON
C ₇ H ₈ O	CHN		470.25	0.6561	101.22	OM
	$C_8H_{11}N$	2,4,6-Trimethylpyridine	470.35	0.6561	101.33	ON
	$C_{10}H_{14}$	sec-Butylbenzene	444.65	0.0938	101.33	OX
	$C_{10}H_{14}$	Diethylbenzene (unspecified isomer)	453.10	0.2694	101.33	OX
	$C_{10}H_{14}$	1,2,4,5-Tetramethylbenzene	462.37	0.6273	101.33	OX
	$C_{10}H_{22}$	Decane	433.15	0.3100	78.71	OX
	$C_{11}H_{22}$	1-Undecene	448.15	0.5516	83.07	OX
	$C_{11}H_{24}$	Undecane	433.15	0.5800	56.40	OX
	$C_{12}H_{26}$	Dodecane	458.15	0.8466	93.55	OX
C_7H_8O		m-Cresol				
	C_7H_9N	2,6-Dimethylpyridine	475.66	0.9869	101.32	ON
	C_9H_7N	Quinoline	511.20	0.0356	101.33	ON
	C_9H_{20}	Nonane	413.15	0.0400	76.54	OX
	$C_{10}H_8$	Naphthalene	474.65	0.9680	101.33	OX
	$C_{10}H_{8}$ $C_{10}H_{12}$	1,2,3,4-Tetrahydronaphthalene	468.45	0.5900	93.10	OX
	$C_{10}H_{12}$ $C_{10}H_{14}$	sec-Butylbenzene	445.85	0.0136	101.33	OX
	$C_{10}H_{14}$ $C_{10}H_{14}$	Diethylbenzene (unspecified isomer)	454.10	0.1010	101.33	OX
		1,2,4,5-Tetramethylbenzene		0.1010	101.33	OX
	$C_{10}H_{14}$	•	466.87			
	$C_{10}H_{22}$	Decane	433.15	0.2170	75.85	OX

474.55

0.9414

101.33

OX

Mol	ecul	lar	forn	nul	a

Comp. 1	Comp. 2 $C_{10}H_{14}$	Name sec-Butylbenzene	$T_{ m Az}/{ m K}$ 446.05	$y_{1,Az}$ 0.0186	<i>P</i> _{Az} /kPa 101.33	Type OX
	$C_{10}H_{14}$	Diethylbenzene (unspecified isomer)	454.50	0.1105	101.33	OX
C_7H_8O	-10 14	Benzyl alcohol				
, 0	$C_{10}H_{22}$	Decane	445.75	0.2490	101.33	OX
C ₇ H ₉ N		2-Methylaniline				
	$C_{10}H_{22}$	Decane	446.91	0.1770	101.33	OX
	$C_{11}H_{24}$	Undecane	461.40	0.4930	101.33	OX
	$C_{12}H_{26}$	Dodecane	468.90	0.7650	101.33	OX
	$C_{13}H_{28}$	Tridecane	472.55	0.9070	101.33	OX
$C_7H_{14}O_2$		Pentyl acetate				
	C_9H_{20}	Nonane	419.20	0.5380	101.32	OX
$C_7H_{16}O$		1-Heptanol				
	C_9H_{20}	Nonane	423.45	0.1071	101.33	OX
	$C_{10}H_{22}$	Decane	438.75	0.4308	101.33	OX
	$C_{11}H_{24}$	Undecane	447.85	0.8014	101.33	OX
C_8H_{10}		o-Xylene				
	C_9H_{20}	Nonane	417.40	0.8498	101.33	OX
$C_8H_{10}O$		2,6-Xylenol				
	C_9H_7N	Quinoline	511.00	0.0890	101.33	ON
	$C_{10}H_{8}$	Naphthalene	475.70	0.9381	101.33	OX
	$C_{10}H_{14}$	1,2,4,5-Tetramethylbenzene	468.85	0.3480	101.33	OX
$C_8H_{10}O$		2,3-Xylenol				
	C_9H_7N	Quinoline	513.30	0.2684	101.33	ON
	$C_{10}H_{8}$	Naphthalene	485.45	0.4123	101.33	OX
$C_8H_{10}O$		2,4-Xylenol				
	C_9H_7N	Quinoline	512.30	0.1717	101.33	ON
	$C_{10}H_{8}$	Naphthalene	481.25	0.6435	101.33	OX
	$C_{10}H_{14}$	1,2,4,5-Tetramethylbenzene	474.05	0.1869	101.33	OX
$C_8H_{10}O$	10 11	2,5-Xylenol				
	C_9H_7N	Quinoline	512.30	0.1717	101.33	ON
	$C_{10}H_{8}$	Naphthalene	481.25	0.6435	101.33	OX
	$C_{10}H_{14}$	1,2,4,5-Tetramethylbenzene	474.35	0.1763	101.33	OX
$C_8H_{10}O$		3,4-Xylenol				
	C_9H_7N	Isoquinoline	519.75	0.2955	101.33	ON
	C_9H_7N	Quinoline	514.77	0.3907	101.33	ON
	$C_{10}H_{8}$	Naphthalene	490.95	0.1158	101.33	OX
	$C_{10}H_{9}N$	3-Methylisoquinoline	524.35	0.0811	101.33	ON
	$C_{10}H_{9}N$	2-Methylquinoline	521.17	0.1647	101.33	ON
	$C_{10}H_9N$	3-Methylquinoline	523.60	0.1152	101.33	ON
	$C_{10}H_{9}N$	7-Methylquinoline	525.85	0.0466	101.33	ON
	$C_{11}H_{11}N$	2,3-Dimethylquinoline	521.60	0.2113	101.33	ON
$C_8H_{10}O$		3,5-Xylenol				
	C_9H_7N	Isoquinoline	518.05	0.1915	101.33	ON
	C_9H_7N	Quinoline	513.58	0.3287	101.33	ON
	$C_{10}H_{8}$	Naphthalene	489.33	0.2601	101.33	OX
	$C_{10}H_{9}N$	2-Methylquinoline	520.65	0.0094	101.33	ON
	$C_{11}H_{11}N$	2,3-Dimethylquinoline	520.70	0.0530	101.33	ON
$C_8H_{10}O$		2-Ethylphenol				
	C_9H_7N	Quinoline	511.75	0.1041	101.33	ON
	$C_{10}H_{8}$	Naphthalene	478.35	0.8005	101.33	OX
	$C_{10}H_{14}$	1,2,4,5-Tetramethylbenzene	471.45	0.3707	101.33	OX
$C_8H_{10}O$		3-Ethylphenol				
- 10	C_9H_7N	Quinoline	512.70	0.2089	101.33	ON
	$C_{10}H_{8}$	Naphthalene	483.45	0.5551	101.33	OX
	$C_{10}H_{14}$	1,2,4,5-Tetramethylbenzene	475.95	0.1249	101.33	OX
$C_8H_{10}O$	10 14	4-Ethylphenol				
J 10	C_9H_7N	Quinoline	513.45	0.2832	101.33	ON
	$C_{10}H_{8}$	Naphthalene	486.10	0.3762	101.33	OX
	- 10 8	1			-	

Mal	التعما	lar	formu	la
VIO.	ıecu	ıar	iormu	ıa

Comp. 1	Comp. 2	Name	$T_{ m Az}/{ m K}$	$y_{1,Az}$	$P_{\rm Az}/{ m kPa}$	Type
$C_8H_{11}N$		2,4-Dimethylaniline				
	$C_{11}H_{24}$	Undecane	468.13	0.1490	101.33	OX
	$C_{12}H_{26}$	Dodecane	482.95	0.4520	101.33	OX
	$C_{13}H_{28}$	Tridecane	488.43	0.7880	101.33	OX
	$C_{14}H_{30}$	Tetradecane	490.53	0.9840	101.33	OX
$C_8H_{18}O$		1-Octanol				
	$C_{10}H_{22}$	Decane	446.45	0.1029	101.33	OX
	$C_{11}H_{24}$	Undecane	460.05	0.4772	101.33	OX
	$C_{12}H_{26}$	Dodecane	466.95	0.8836	101.33	OX
C_9H_7N		Isoquinoline				
	$C_{11}H_{10}$	2-Methylnaphthalene	513.90	0.2074	101.33	OX
C_9H_7N		Quinoline				
	$C_9H_{12}O$	3-Isopropylphenol	514.70	0.6109	101.33	ON
	$C_9H_{12}O$	2-Isopropylphenol	512.75	0.8015	101.33	ON
	$C_9H_{12}O$	2-Propylphenol	513.60	0.7243	101.33	ON
	$C_9H_{12}O$	3-Propylphenol	514.70	0.6109	101.33	ON
	$C_9H_{12}O$	4-Propylphenol	515.35	0.5451	101.33	ON
	$C_{10}H_{14}O$	2-Butylphenol	515.70	0.5350	101.33	ON
	$C_{10}H_{14}O$	2-tert-Butylphenol	513.70	0.7299	101.33	ON
	$C_{10}H_{14}O$	3-tert-Butylphenol	517.05	0.4315	101.33	ON
	$C_{10}H_{14}O$	4-Isobutylphenol	515.95	0.5061	101.33	ON
	$C_{10}H_{14}O$	2-sec-Butylphenol	514.70	0.6339	101.33	ON
	$C_{10}H_{14}O$	4-sec-Butylphenol	516.45	0.4551	101.33	ON
	$C_{11}H_{10}$	2-Methylnaphthalene	511.05	0.9213	101.33	OX
	$C_{11}H_{16}O$	2-tert-Butyl-5-methylphenol	515.45	0.5854	101.33	ON
	$C_{11}H_{16}O$	2-sec-Butyl-4-methylphenol	516.10	0.5139	101.33	ON
C_9H_{12}		1,2,3-Trimethylbenzene				
	$C_{10}H_{22}$	Decane	433.35	0.4010	72.54	OX
C_9H_{12}		1,2,4-Trimethylbenzene				
,	$C_{10}H_{22}$	Decane	433.35	0.8600	80.25	OX
$C_9H_{12}O$		2-Ethyl-4-methylphenol				
, 12	$C_{10}H_{8}$	Naphthalene	488.20	0.2218	101.33	OX
$C_9H_{12}O$		2-Ethyl-5-methylphenol				
, 12	$C_{10}H_{8}$	Naphthalene	489.45	0.1710	101.33	OX
$C_9H_{12}O$	10 0	2-Isopropylphenol				
, 12	$C_{10}H_{8}$	Naphthalene	483.15	0.5102	101.33	OX
	$C_{10}H_{14}$	1,2,4,5-Tetramethylbenzene	476.25	0.1036	101.33	OX
$C_9H_{12}O$	10 14	2,4,6-Trimethylphenol				
- 9 12 -	$C_{10}H_{8}$	Naphthalene	486.70	0.3161	101.33	OX
C ₀ H ₂₀ O	C_{10}^{11}	1-Nonanol	400.70	0.5101	101.55	OA
C ₉ 11 ₂₀ U	$C_{11}H_{24}$	Undecane	468.45	0.0925	101.33	OX
		Dodecane	480.65	0.0925	101.33	OX
$C_{10}H_{22}O$	$C_{12}H_{26}$	1-Decanol	400.03	0.5255	101.55	OΛ
$C_{10}\Pi_{22}U$	CH		400.05	0.1060	101.22	OV
	$C_{12}H_{26}$	Dodecane	489.25	0.1068	101.33	OX