NEC Microcomputers, Inc.

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION The µPD650 is a µCOM-43 4-bit single chip microcomputer manufactured with a low-power-consumption CMOS process, allowing use of a single +5V power supply. The $\mu PD650$ provides all of the hardware features of the $\mu COM-43$ family, and executes all 80 instructions of the µCOM-43 instruction set.

PIN CONFIGURATION

CL1 C 42 CL0 41 VSS 40 PB3 39 PB2 PC1 | PC2 | 38 7 PB 1 INŤ d 37 D PB0 RESET 36 PA3 PDO 35 PA2 34 PA1 33 PA0 32 PI2 31 PI1 PD1 🗆 PD2 10 μ PD 650 PE0 12 PE1 13 30 Pin PE2 14 29 PH₃ 28 F PH2 PF0 ☐ 16 27 PH 1 PF1 | 17 PF2 | 18 PF3 | 19 26 PHO 25 FG3 24 F PG2 TEST ☐ 20 23 F PG1 22 F PG0

PIN NAMES

PA ₀ -PA ₃	Input Port A					
PB ₀ -PB ₃	Input Port B					
PC ₀ -PC ₃	Input/Output Port C					
PD ₀ -PD ₃	Input/Output Port D					
PE ₀ -PE ₃	Output Port E					
PF ₀ -PF ₃	Output Port F					
PG ₀ -PG ₃	Output Port G					
PH ₀ -PH ₃	Output Port H					
PI ₀ -PI ₂	Output Port I					
INT	Interrupt Input					
CL ₀ -CL ₁	External Clock Signals					
RESET	Reset					
vcc	Power Supply Positive					
VSS	Ground					
TEST	Factory Test Pin (Connect to V _{CC})					

ABSOLUTE MAXIMUM RATINGS*

Operating Temperature
Storage Temperature
Supply Voltage
Input Voltages (Port A through D, INT, RESET)0.3 to +7.3 Volts
Output Voltages
Output Current (Ports C through I, each bit) 2.5 mA
(Total, all ports)

COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device

$$T_a = 25^{\circ}C$$

μPD650

DC CHARACTERISTICS

T₈ = -30°C to +85°C; V_{CC} = +5V ±10%

		LIMITS				TEST
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Input Voltage High	VIH	0.7 V _{CC}		Vcc	v	Ports A through D, INT RESET
Input Voltage Low	VIL	0		0.3 V _{CC}	v	Ports A through D, INT RESET
Clock Voltage High	V _φ H	0.7 V _{CC}		Vcc	٧	CL ₀ Input, External Clock
Clock Voltage Low	V _Ø L	0		0.3 V _{CC}	V	CL _O Input, External Clock
input Leakage Current High	¹ LIH			+10	μА	Ports A through D, INT RESET, V _I = V _{CC}
Input Leakage Current Low	ILIL			-10	μА	Ports A through D, INT, RESET, V _I = 0V
Clock Input Leakage Current High	lLφΗ			+200	μА	CL ₀ Input, V _{ØH} = V _{CC}
Clock Input Leakage Current Low	l _L øL			-200	μА	CL ₀ Input, V _{ØL} = 0V
Output Voltage High	V _{OH1}	V _{CC} -0.5			v	Ports C through I, I _{OH} ≈ −1.0 mA
	VOH ₂	V _{CC} -2.5			v	Ports C through I, IOH = -2.0 mA
Output Voltage Low	VOL1			+0.6	v	Ports E through I, IOL = +2.0 mA
	VOL2			+0.4	v	Ports E through I, I _{OL} = +1.2 mA
Output Leakage Current Low	ILOL			-10	μΑ	Ports C, D, V _O = 0V
Supply Current	¹ CC		+0.8	+2.0	mA	

T_a = 25°C

PARAMETER		LIMITS				TEST
	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Input Capacitance	CI			15	pF	
Output Capacitance	co			15	pF	f = 1 MHz
Input/Output Capacitance	CIO		1	15	pF	1

 $T_a = -30^{\circ}C \text{ to } +85^{\circ}C; V_{CC} = +5 \pm 10\%$

		LIMITS				TEST
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Oscillator Frequency	f	150		440	KHz	
Rise and Fall Times	t _r , t _f	0		0.3	μS	
Clock Pulse Width High	tφW _H	0.5		5.6	μS	EXTERNAL CLOCK
Clock Pulse Width Low	tφWL	0.5		5. 6	μS	

CAPACITANCE

AC CHARACTERISTICS.

CLOCK WAVEFORM