11 DGM

Conditional Generative Adversarial Networks (cGANs) continued!

Prof. Leal-Taixé and Prof. Niessner

Paired vs Unpaired Setting

pix2pix: Image-to-Image Translation

$$\min_{C} \max_{D} \mathbb{E}_{z,x}[\log D(G(z)) + \log(1 - D(x))]$$

slides credit: Isola / Zhu [Goodfellow et al. 2014]

$$\min_{G} \max_{D} \mathbb{E}_{x,y}[\log D(G(x)) + \log(1 - D(y))]$$

$$\min_{G} \max_{D} \mathbb{E}_{x,y}[\log D(G(x)) + \log(1 - D(y))]$$

$$\min_{G} \max_{D} \mathbb{E}_{x,y}[\log D(G(x)) + \log(1 - D(y))]$$

pix2pix

pix2pix: Paired Setting

Great when we have 'free' training data

Often called self-supervised

Think about these settings ©

Edges → Images

Edges from [Xie & Tu, 2015]

Sketches → Images

Trained on Edges → Images

Data from [Eitz, Hays, Alexa, 2012]

#edges2cats [Christopher Hesse]

Ivy Tasi @ivymyt

@matthematician

Vitaly Vidmirov @vvid

https://affinelayer.com/pixsrv/

Data from
[maps.google.com]
slides credit: Isola / Zhu

$BW \rightarrow Color$

Data from [Russakovsky et al. 2015]

Ideas behind Pix2Pix

• $L = L_{GAN} + \lambda L_1$ (makes it more constrained)

Unet / skip connections for preserving structure

- Noise only through dropout
 - cGANs tend to learn to ignore the random vector z
 - Still want probabilistic model

Ideas behind Pix2Pix

L1 or L2 loss for low frequency details

GAN discriminator for high frequency details

- -> PatchGAN
 - GAN discriminator applied only to local patches
 - It's fully-convolutional; i.e., can run on arbitrary image sizes

• Expand the pix2pix idea to multi-scale

• Coarse-to-fine generator + discriminator

• G' s and D' s are the same but since they operate on different resolutions, they have effectively a larger receptive field

Prof. Leal-Taixé and Prof. Niessner [Wang et al. 18]

Use of multi-scale discriminators

•
$$\min_{G} \max_{D_1,D_2,D_3} \sum_{k=1,2,3} L_{GAN}(G,D_k)$$

- Can make various combinations of stacking discriminator and generator
 - E.g., have a single G and downsample generated and real images – or have intermediate real images (cf. ProGAN)

Prof. Leal-Taixé and Prof. Niessner [Wang et al. 18]

Prof. Leal-Taixé and Prof. Niessner

Pix2PixHD (interactive results)

Prof. Leal-Taixé and Prof. Niessner

Label ↔ photo: per-pixel labeling

Horse \leftrightarrow zebra: how to get zebras?

- Expensive to collect pairs.
- Impossible in many

scenarios

No input-output pairs!

GANs doesn't force output to correspond to input

mode collapse!

Cycle-Consistent Adversarial Networks

Cycle-Consistent Adversarial Networks

Cycle Consistency Loss

Cycle Consistency Loss

Cycle Consistency Loss

Cycle GAN - Overview

Cycle GAN: Objective

$$\begin{split} \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) &= \mathbb{E}_{y \sim p_{\text{data}}(y)}[\log D_Y(y)] \\ &+ \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log (1 - D_Y(G(x))], \\ \text{Domain X} \quad \text{Domain Y} \\ \\ \mathcal{L}_{\text{cyc}}(G, F) &= \mathbb{E}_{x \sim p_{\text{data}}(x)}[\|F(G(x)) - x\|_1] \\ &+ \mathbb{E}_{y \sim p_{\text{data}}(y)}[\|G(F(y)) - y\|_1]. \end{split}$$

Full Loss:
$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y) + \mathcal{L}_{GAN}(F, D_X, Y, X) + \lambda \mathcal{L}_{cyc}(G, F),$$

Monet' s paintings → photos

slides credit: Isola / Zhu

r et al. 17.1

Administrative

Administrative

- Deadline for final projects
 - Wed Feb 6th, 11:59pm
 - Submission via moodle
 - Submission must contain
 - Code (results must be replicable)
 - 2-3 pages of final report (at most 1 page of text, rest results; i.e., images and tables)
 - Use CVPR templates: <u>http://cvpr2019.thecvf.com/submission/main_conference/author_guidelines</u>

Administrative

- Poster presentation
 - Friday Feb 8th, 1pm-3pm
 - Location:
 - Magistrale (preliminary will update if it changes)
 - In the area next to the back entrance (parking lot direction)
 - Poster stands will be provided
 - You need to print posters yourself (<u>poster@in.tum.de</u>)
 - Hang posters 15 mins before presentation session starts

Guest Speakers

- Oriol Vinyals:
 - https://ai.google/research/people/OriolVinyals
 - Time: January 31st, 6pm 8pm
 - Location: HS-1 (CS building the big one)

Next Lectures

• Next Lecture -> Jan 21st

Keep working on the projects!

