6. Binomialkoeffizienten

 $\binom{n}{k}$ (gesprochen: n über k)

die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge.

$$\binom{n}{0} = 1$$
$$\binom{n}{n} = 1$$

$$\binom{n}{n} = 1$$

...sind Extremfälle

Schreiben n! für $1 \cdot 2 \cdot ... \cdot n$, definieren 0! := 1

Proposition

Für alle natürlichen Zahlen n, k gilt: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Insbesondere gilt:
$$\binom{n}{2} = \frac{n \cdot (n-1)}{2}$$

Wollen zeigen: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ Bilden k-elementige Teilmenge einer n-elementigen Menge: wähle erstes Element, dann ein zweites usw., bis zum k-ten Element.

Dafür gilt: $n \cdot (n-1) \cdot (...) \cdot (n-k+1) = \frac{n!}{(n-k!)}$ Möglichkeiten.

Auswahlreihenfolge spielt keine Rolle:

jeweils k! Möglichkeiten führen zur gleichen Teilmenge. \square

Beobachtung: Für alle natürlichen Zahlen n,k gilt:

$$\binom{n}{k} = nn \cdot k$$

(kombinatorischer Beweis:) Doppeltes Abzählen:

- 1. Aus n Spielern einer Mannschaft mit k Spielern aufstellen.
- 2. Aus n Spielern n-k Spieler auswählen, die nicht spielen.

(algebraischer Beweis:)

Folgt direkt aus
$$\binom{n}{k} = n\binom{n!}{k!(n-k)!}$$

Beobachtung: Für alle natürlichen Zahlen n,k gilt:

$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

(kombinatorischer Beweis): Doppeltes Abzählen

- 1. Aus n Spielern einer Mannschaft mit k Spielern inklusive Kapitän aufstellen.
- 2. Aus n Spielern einen Kapitän auswählen und dann aus den übrigen k-1 Spieler auswählen

1

(algebraischer Beweis):
$$k\binom{n}{k} = k \frac{n!}{k!(n-k)!} = \frac{n!}{(k-1)!(n-k)!} = n \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} = n \binom{n-1}{k-1} \qquad \Box$$

Beobachtung: Für alle natürlichen Zahlen n, k gilt:

$$\sum_{k=0}^{n} = \binom{n}{k} = 2^{n}$$

Es gilt 2^n Teilmengen einer n-elementigen Menge.

Pascalsches Dreieck

$$n = 0$$
: 1
 $n = 1$: 1 1
 $n = 2$: 1 2 1
 $n = 3$: 1 3 3 1
 $n = 4$: 1 4 6 4 1

Für alle natürlichen Zahlen
n, k gilt: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Beweis: Sei M eine (n+1) elementige Menge und $x \in M$ wählen x aus $\binom{n}{k-1}$ Möglichkeiten. wählen x nicht aus $\binom{n}{k}$ Möglichkeiten.