Report for the Markov model (cohort state-transition model)

Data and parameters

Table 1: Data from Global Health Data Exchange

	index	sex	incidence	$death_CVD$	death_nonCVD
1	40	male	0.003888	0.000819	0.002494
2	45	$_{\mathrm{male}}$	0.006729	0.001340	0.003399
3	50	$_{\mathrm{male}}$	0.010564	0.002302	0.004951
4	55	male	0.015291	0.003665	0.007282
5	60	male	0.022078	0.006404	0.011159
6	65	male	0.030980	0.011155	0.016946
7	70	male	0.043589	0.019978	0.026305
8	40	female	0.004545	0.000351	0.001137
9	45	female	0.007094	0.000643	0.001620
10	50	female	0.010133	0.001206	0.002475
11	55	female	0.013734	0.002014	0.003705
12	60	female	0.018272	0.003872	0.005850
13	65	female	0.023744	0.006996	0.009060
_14	70	female	0.033907	0.013398	0.014907

```
population_data <- read_csv("data/Normal3Stra_data.csv")
population_data <- data.frame(population_data)</pre>
```

```
year <- c(1,1,0,0)
HR_cvdhistory_cvd <- 1.37
HR_cvdhistory_cvdth <- 3.12
HR_high_live_cvdth <- 1.17

p_live_oth_death <- rate_to_prob(r=rate_data$death_nonCVD, t = 1)
p_live_cvd <- rate_to_prob(r=rate_data$incidence, t=1)
p_live_cvdth <- rate_to_prob(r=rate_data$death_CVD, t=1)
p_ccvd_acvd <- rate_to_prob(rate_data$incidence*HR_cvdhistory_cvd, t=1)
p_ccvd_cvdth <- rate_to_prob(rate_data$death_CVD*HR_cvdhistory_cvdth, t=1)
# p_acvd_cvddth</pre>
```

A transition probability matrix P_t

状态转换概率矩阵

状态	未患心血管病	患有心血管病	死于心血管病	死于非心血管病
未患心血管病	P4	P1	P2	P3
患有心血管病		P6	P5	P3

$$P_t = \begin{cases} p_{[1,1,t]} & p_{[1,2,t]} & p_{[1,3,t]} & p_{[1,4,t]} \\ p_{[2,1,t]} & p_{[2,2,t]} & p_{[2,3,t]} & p_{[2,4,t]} \\ p_{[3,1,t]} & p_{[3,2,t]} & p_{[3,3,t]} & p_{[3,4,t]} \\ p_{[4,1,t]} & p_{[4,2,t]} & p_{[4,3,t]} & p_{[4,4,t]} \end{cases}$$

Thus,

```
\begin{split} P4 &= 1 - P1 - P2 - P3 \\ P1 &= p\_live\_cvd * (1 - p\_acvd\_cvdth) \\ P2 &= p\_live\_cvdth + p\_live\_cvd * p\_acvd\_cvdth \\ P3 &= p\_live\_oth\_death \\ P6 &= 1 - (p\_ccvd\_cvdth + p\_ccvd\_acvd * p\_acvd\_cvdth) - p\_live\_oth\_death \\ P5 &= p\_ccvd\_cvdth + p\_ccvd\_acvd * p\_acvd\_cvdth \end{split}
```

Strategy0

Table 2: Distribution of the population

	index	sex	num
1	40	male	229
2	45	$_{\mathrm{male}}$	444
3	50	male	422
4	55	male	410
5	60	male	322
6	65	male	160
7	70	male	116
8	40	female	498
9	45	female	856
10	50	female	822
11	55	female	842
12	60	female	519
13	65	female	394
_14	70	female	187

```
prob_CVD_group0 <- matrix(0, ncol=14, nrow=10,</pre>
                      dimnames=list(paste0("t",0:9),names_population))
prob_CVDlive_group0 <- matrix(0, ncol=14, nrow=10,</pre>
                      dimnames=list(paste0("t",0:9),names population))
result_CVD <- matrix(0, ncol = 1, nrow = 14,
                      dimnames=list(names_population, ""))
result CVDlive <- matrix(0, ncol = 1, nrow = 14,
                      dimnames=list(names population, ""))
result_QALY <- matrix(0, ncol = 1, nrow = 14,
                      dimnames=list(names_population, ""))
result_Lifeyear <- matrix(0, ncol = 1, nrow = 14,</pre>
                      dimnames=list(names_population, ""))
result_CVDeath <- matrix(0, ncol = 1, nrow = 14,
                      dimnames=list(names_population, ""))
result_nonCVDeath <- matrix(0, ncol = 1, nrow = 14,
                      dimnames=list(names_population, ""))
# create a matrix for p_acvd_cvdth
for(i in 1:14){
  # construct a P
  if(i == 7 | i == 14){
    a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v names states, v names states, 1:10))
    a_P["S1", "S1", 1:10] \leftarrow 1-(p_live_cvd[i]*(1-p8[1:10,i]) +
                                 p live cvdth[i]*p live cvd[i]*p8[1:10,i] +
                                 p_live_oth_death[i])
    a_P["S1", "S2", 1:10] \leftarrow p_live_cvd[i]*(1-p8[1:10,i])
    a_P["S1", "S3", 1:10] <- p_live_cvdth[i]*p_live_cvd[i]*p8[1:10,i]
    a_P["S1", "S4", 1:10] <- p_live_oth_death[i]</pre>
    a_P["S2", "S1", 1:10] <- 0
    a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[i]-
      (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p8[1:10,i])
    a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[i]+
      p_ccvd_acvd[i]*p8[1:10,i]
    a_P["S2", "S4", 1:10] <- p_live_oth_death[i]</pre>
    a_P["S3", "S3", 1:10] <- 1
    a_P["S4", "S4", 1:10] <- 1
    p9[1:10,i] \leftarrow p \ ccvd \ acvd[i]*(1-p8[1:10,i])
    p10[1:10,i] <- p_live_cvd[i]
  if(i != 7 && i != 14){
    a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
    a_P["S1", "S1", 1:5] \leftarrow 1-(p_live_cvd[i]*(1-p8[1:5,i]) +
                                p_live_cvdth[i]*p_live_cvd[i]*p8[1:5,i] +
                                 p_live_oth_death[i])
    a_P["S1", "S2", 1:5] <- p_live_cvd[i]*(1-p8[1:5,i])
    a_P["S1", "S3", 1:5] <- p_live_cvdth[i]*p_live_cvd[i]*p8[1:5,i]
    a_P["S1", "S4", 1:5] <- p_live_oth_death[i]</pre>
    a_P["S2", "S1", 1:5] <- 0
    a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-</pre>
      (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p8[1:5,i])
```

```
a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
      p_ccvd_acvd[i]*p8[1:5,i]
    a_P["S2", "S4", 1:5] <- p_live_oth_death[i]
    a_P["S3", "S3", 1:5] <- 1
    a_P["S4", "S4", 1:5] <- 1
    a_P["S1", "S1", 6:10] <- 1-(p_live_cvd[i+1]*(1-p8[6:10,i+1])+
                              p_live_cvdth[i+1]*p_live_cvd[i+1]*p8[6:10,i+1]
                              +p live oth death[i+1])
    a_P["S1", "S2", 6:10] \leftarrow p_live_cvd[i+1]*(1-p8[6:10,i+1])
    a_P["S1", "S3", 6:10] <- p_live_cvdth[i+1]*p_live_cvd[i+1]*p8[6:10,i+1]
    a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
    a P["S2", "S1", 6:10] <- 0
    a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
       (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p8[6:10,i+1])
    a_P["S2", "S3", 6:10] <- p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p8[6:10,i+1]
    a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]
    a_P["S3", "S3", 6:10] <- 1
    a_P["S4", "S4", 6:10] <- 1
    p9[1:5,i] \leftarrow p_ccvd_acvd[i]*(1-p8[1:5,i])
    p9[6:10,i] <- p_ccvd_acvd[i+1]*(1-p8[6:10,i])
    p10[1:5,i] <- p_live_cvd[i]
    p10[6:10,i] <- p_live_cvd[i+1]
  # construct m_M
    v s init \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
    m M \leftarrow matrix(0, nrow = (n t), ncol = n states,
                  dimnames = list(0:(n t-1), v names states))
    m_M[1, ] <- v_s_init</pre>
    for(t in 1:9){
      m_M[t + 1, ] \leftarrow m_M[t, ] %*% a_P[, , t]
  # calculate result
    prob_CVD_group0[ ,i] <- m_M[ ,1] * p10[ ,i] # new occurence = S1*p10
    # new occurence = s1*p1+s2*p9
    prob_CVDlive_group0[ ,i] <- m_M[ ,1]*(a_P["S1", "S2", 1:10]) + m_M[ ,2]*p9[ ,i]</pre>
    result_m_M[ , , i] <- m_M
  result_CVD[i] <- sum(prob_CVD_group0[, i] * patient_group[i])</pre>
  result_CVDlive[i] <- sum(prob_CVDlive_group0[, i] * patient_group[i])</pre>
  result_Lifeyear[i] <- sum(t(t(m_M) * year) * patient_group[i])</pre>
  result_QALY[i] <- sum(t(t(m_M) * uti_values)*patient_group[i] +</pre>
                           prob_CVDlive_group0[, i]*out_trans_to_cvd*patient_group[i])
 result_CVDeath[i] <- m_M[10, 3] * patient_group[i]</pre>
 result nonCVDeath[i] <- m M[10, 4] * patient group[i]</pre>
result_m_M[ , ,1] # an example for the patient group 40-45, male
             S1
                          S2
                                        S3
## t0 1.0000000 0.000000000 0.000000e+00 0.000000000
## t1 0.9937886 0.003720419 1.310130e-07 0.002490893
## t2 0.9876486 0.007365092 1.076639e-05 0.004975580
## t3 0.9816080 0.010905609 3.234439e-05 0.007454052
## t4 0.9757065 0.014301390 6.583269e-05 0.009926297
## t5 0.9696266 0.017875894 1.051874e-04 0.012392300
```

```
## t6 0.9602222 0.023844594 1.900998e-04 0.015743123
## t7 0.9510221 0.029588420 3.071864e-04 0.019082288
## t8 0.9420499 0.035081879 4.584556e-04 0.022409725
## t9 0.9328536 0.040799589 6.214720e-04 0.025725358
```

Table 3: New CVD events for patients under Strategy0

	V1
m40	11.69
m45	36.16
m50	49.99
m55	67.49
m60	71.23
m65	45.94
m70	37.09
f40	28.02
f45	70.19
f50	91.50
f55	122.55
f60	95.88
f65	94.67
f70	50.84
sum	873.24

Table 4: Result for Strategy0

	CVD.events	CVD.Death	non.CVD.Death	QALY	Life.Year
1	873.24	59.76	337.15	59978.71	60447.68

Table 5: Incidence rate				
Item		CVD incidence(HR)	CVD cause-specific mortality (HR)	
	Low risk	0.63	1	
Strategy 1	Medium risk	1.56	1	
	High risk	1.6	1.7	
	Low risk	0.43	1	
Strategy 2	Medium risk	0.97	1	
	High risk	2.06	1.7	
	Low risk	0.45	1	
Strategy 3	Medium risk	1.09	1	
	High risk	2.11	1.7	
Intervention	Weight control	0.93	0.93	
	Smoke cession	0.85	0.72	
	Salt reduction	0.81	0.66	
Medication	Statin and antihypertensive	0.7	0.82	

```
HR_l_stg1 <- 0.63
HR_m_stg1 <- 1.56
HR_h_stg1 <- 1.6
HR_1_stg2
          <- 0.43
HR_m_stg2
          <- 0.97
HR_h_stg2
          <- 2.06
HR_1_stg3 <- 0.45
HR_m_stg3 <- 1.09
HR_h_stg3 <- 2.11
# lifestyle intervention for medium risk and above
HR_smk_cvd <- 0.85
HR_smk_cvdth <- 0.72
HR_salt_cvd <- 0.81</pre>
HR_salt_cvdth <- 0.66</pre>
HR\_wtc\_cvd <- 0.93
HR_wtc_dth <- 0.93
# treatment intervention for high risk (additional)
HR_hpt_lip_cvd <- 0.7</pre>
HR_hpt_lip_cvdth <- 0.82</pre>
```

Strategy 1

p_live_cvd_l <- ProbFactor(p_live_cvd,HR_l_stg1)
p_live_cvd_m <- ProbFactor(p_live_cvd,HR_m_stg1*</pre>

Table 6: Distribution of the population under different strategies

	index	sex	strategy	low	medium	high
1	40	male	strategy1	159	8	62
2	45	$_{\mathrm{male}}$	strategy1	173	64	207
3	50	male	strategy1	188	63	171
4	55	male	strategy1	200	89	121
5	60	male	strategy1	129	89	104
6	65	$_{\mathrm{male}}$	strategy1	71	42	47
7	70	male	strategy1	48	28	40
8	40	female	strategy1	444	6	48
9	45	female	strategy1	738	18	100
10	50	female	strategy1	677	20	125
11	55	female	strategy1	440	217	185
12	60	female	strategy1	216	164	139
13	65	female	strategy1	128	136	130
_14	70	female	strategy1	65	55	67

```
risk_levels <- c("low", "medium", "high")</pre>
result_CVD_lmh <- matrix(0, nrow = 14,ncol = 3,
                          dimnames = list(names_population, risk_levels))
p_live_cvd_lmh <- matrix(cbind(p_live_cvd_l,p_live_cvd_m,p_live_cvd_h), ncol=3,</pre>
                          dimnames = list(names_population,risk_levels))
p live cvdth lmh <- matrix(cbind(p live cvdth 1,p live cvdth m,p live cvdth h), ncol=3,
                            dimnames = list(names_population,risk_levels))
patient_group <- matrix(cbind(population_data[which(population_data$strategy=="strategy1"),]$low,</pre>
                               population_data[which(population_data$strategy=="strategy1"),]$medium,
                               population_data[which(population_data$strategy=="strategy1"),]$high),
       ncol = 3, nrow=14,dimnames = list(names_population,risk_levels))
prob_CVD_group1 <- matrix(0, ncol=14, nrow=10,</pre>
                      dimnames=list(paste0("t",0:9),names_population))
prob_CVDlive_group1 <- matrix(0, ncol=14, nrow=10,</pre>
                      dimnames=list(paste0("t",0:9),names_population))
result_CVD_stg1 <- matrix(0, ncol = 3, nrow = 14,</pre>
                      dimnames=list(names_population, risk_levels))
result_CVDlive_stg1 <- matrix(0, ncol = 3, nrow = 14,
                      dimnames=list(names_population, risk_levels))
result_QALY_stg1 <- matrix(0, ncol = 3, nrow = 14,</pre>
                      dimnames=list(names population, risk levels))
result_Lifeyear_stg1 <- matrix(0, ncol = 3, nrow = 14,
                      dimnames=list(names population, risk levels))
result_CVDeath_stg1 <- matrix(0, ncol = 3, nrow = 14,</pre>
```

```
dimnames=list(names_population, risk_levels))
result_nonCVDeath_stg1 <- matrix(0, ncol = 3, nrow = 14,
                      dimnames=list(names_population, risk_levels))
p8 <-array(runif(140,min=0.02,max=0.1),dim=c(10,14),dimnames=list(1:10,names_population))
p9 <- array(NA, dim=c(10,14),dimnames=list(1:10,names_population))
p10 <- array(NA, dim=c(10,14), dimnames=list(1:10,names_population))
for(r in 1:3){ # three rish groups
  # create a matrix for p acud cudth
 for(i in 1:14){
 # construct a P
 if(i == 7 | i == 14){
    a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
    a_P["S1", "S1", 1:10] \leftarrow 1-(p_live_cvd_lmh[i,r]*(1-p8[1:10,i]) +
                                p_live_cvdth_lmh[i,r]*p_live_cvd_lmh[i,r]*(1-p8[1:10,i]) +
                                p_live_oth_death[i])
    a_P["S1", "S2", 1:10] \leftarrow p_live_cvd_lmh[i,r]*(1-(1-p8[1:10,i]))
    a_P["S1", "S3", 1:10] <- p_live_cvdth_lmh[i,r]*p_live_cvd_lmh[i,r]*(1-p8[1:10,i])
    a_P["S1", "S4", 1:10] <- p_live_oth_death[i]</pre>
    a_P["S2", "S1", 1:10] <- 0
    a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[i]-
      (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*(1-p8[1:10,i]))
    a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[i]+
      p ccvd acvd[i]*(1-p8[1:10,i])
    a_P["S2", "S4", 1:10] <- p_live_oth_death[i]
    a_P["S3", "S3", 1:10] <- 1
    a_P["S4", "S4", 1:10] <- 1
    p9[1:10,i] <- p_ccvd_acvd[i]*(1-p8[1:10,i])
    p10[1:10,i] <- p_live_cvd[i]
  if(i != 7 && i != 14){
    a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
    a_P["S1", "S1", 1:5] < -1-(p_live_cvd_lmh[i,r]*(1-p8[1:5,i]) +
                                p_live_cvdth_lmh[i,r]*p_live_cvd_lmh[i,r]*p8[1:5,i] +
                                p_live_oth_death[i])
    a_P["S1", "S2", 1:5] \leftarrow p_live_cvd_lmh[i,r]*(1-p8[1:5,i])
    a_P["S1", "S3", 1:5] \leftarrow p_live\_cvdth_lmh[i,r]*p_live\_cvd_lmh[i,r]*p8[1:5,i]
    a_P["S1", "S4", 1:5] <- p_live_oth_death[i]</pre>
    a_P["S2", "S1", 1:5] <- 0
    a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-</pre>
      (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p8[1:5,i])
    a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
      p_ccvd_acvd[i]*p8[1:5,i]
    a_P["S2", "S4", 1:5] <- p_live_oth_death[i]</pre>
    a_P["S3", "S3", 1:5] <- 1
    a_P["S4", "S4", 1:5] <- 1
    a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd_lmh[i+1,r]*(1-p8[1:5,i+1])+
                              p_live_cvdth_lmh[i+1,r]*p_live_cvd_lmh[i+1,r]*p8[1:5,i+1]
                              +p_live_oth_death[i+1])
    a_P["S1", "S2", 6:10] <- p_live_cvd_lmh[i+1,r]*(1-p8[1:5,i+1])
```

```
a_P["S1", "S3", 6:10] <- p_live_cvdth_lmh[i+1,r]*p_live_cvd_lmh[i+1,r]*p8[1:5,i+1]
    a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
    a_P["S2", "S1", 6:10] <- 0
    a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
       (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1] * p8[1:5,i+1])
    a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p8[1:5,i+1]
    a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]
    a P["S3", "S3", 6:10] <- 1
    a_P["S4", "S4", 6:10] <- 1
    p9[1:5,i] <- p_ccvd_acvd[i]*(1-p8[1:5,i])
    p9[6:10,i] <- p_ccvd_acvd[i+1]*(1-p8[6:10,i])
    p10[1:5,i] <- p_live_cvd[i]
    p10[6:10,i] <- p_live_cvd[i+1]
     # construct m_M
    v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
    m_M \leftarrow matrix(0, nrow = (n_t), ncol = n_states,
                  dimnames = list(0:(n_t-1), v_names_states))
    m_M[1, ] <- v_s_init</pre>
    for(t in 1:9){
      m_M[t + 1, ] <- m_M[t, ] %*% a_P[, , t]</pre>
    # calculate result
    prob_CVD_group1[ ,i] <- m_M[ ,1]* p10[ ,i] # new occurrence = $1*p9
    prob_CVDlive_group1[ ,i] <- m_M[ ,1]*(a_P["S1", "S2", 1:10]) + m_M[ ,2]*p9[ ,i] # new occurence = s
  result_CVD_stg1[i,r] <- sum(prob_CVD_group1[,i]*patient_group[i,r])</pre>
  result_CVDlive_stg1[i,r] <- sum(prob_CVDlive_group1[,i]*patient_group[i,r])</pre>
  result_Lifeyear_stg1[i,r] <- sum(t( t(m_M) * year )*patient_group[i,r])
 result_QALY_stg1[i,r] <- sum(t(t(m_M) * uti_values)*patient_group[i,r] +</pre>
                           prob_CVDlive_group1[, i]*out_trans_to_cvd*patient_group[i,r])
 result_CVDeath_stg1[i,r] <- m_M[10,3]*patient_group[i,r]</pre>
  result_nonCVDeath_stg1[i,r] <- m_M[10,4]*patient_group[i,r]
}
```

Table 7: New CVD events for patients under Strategy1

	•	1.	
	low	medium	$_{ m high}$
m40	8.18	0.41	3.19
m45	14.28	5.21	17.12
m50	22.72	7.47	20.72
m55	33.86	14.66	20.57
m60	29.66	19.68	24.04
m65	21.51	12.06	14.34
m70	16.25	8.91	13.68
f40	25.21	0.34	2.73
f45	61.29	1.48	8.32
f50	76.75	2.23	14.21
f55	65.63	31.60	27.68
f60	41.19	30.32	26.62
f65	32.03	32.62	32.73
f70	18.51	14.89	19.22
sum	467.08	181.87	245.17

Table 8: Result for Strategy1

	CVD.events	CVD.Death	non.CVD.Death	QALY	Life.Year
1	894.12	34.14	333.70	59952.71	60249.97

Strategy 2

Table 9: Distribution of the population under different strategies

			P - P			
	index	sex	strategy	low	medium	high
15	40	male	strategy2	163	50	16
16	45	$_{\mathrm{male}}$	strategy2	212	168	64
17	50	$_{\mathrm{male}}$	strategy2	106	231	85
18	55	male	strategy2	35	210	165
19	60	male	strategy2	5	81	236
20	65	male	strategy2	1	15	144
21	70	male	strategy2	0	3	113
22	40	female	strategy2	478	17	3
23	45	female	strategy2	734	108	14
24	50	female	strategy2	537	238	47
25	55	female	strategy2	277	433	132
26	60	female	strategy2	44	282	193
27	65	female	strategy2	4	104	286
28	70	female	strategy2	0	23	164

```
p_live_cvd_l <- ProbFactor(p_live_cvd, HR_l_stg2)</pre>
p_live_cvd_m <- ProbFactor(p_live_cvd, HR_m_stg2*</pre>
                              HR_smk_cvd*HR_salt_cvd*HR_wtc_cvd) # lifestyle intervention
p_live_cvd_h <- ProbFactor(p_live_cvd, HR_h_stg2*</pre>
                              HR_smk_cvdth*HR_salt_cvdth*HR_wtc_dth*
                                                                           # lifestyle intervention
                              HR_hpt_lip_cvdth) # treatment intervention
p_live_cvdth_l <- ProbFactor(p_live_cvdth,1)</pre>
                                                   # equal
p_live_cvdth_m <- ProbFactor(p_live_cvdth,1*</pre>
                                 HR_smk_cvd*HR_salt_cvd*HR_wtc_cvd) # lifestyle intervention
p_live_cvdth_h <- ProbFactor(p_live_cvdth,1.7*</pre>
                                 HR_smk_cvdth*HR_salt_cvdth*HR_wtc_dth* # lifestyle intervention
                                 HR_hpt_lip_cvdth) # treatment intervention
risk_levels <- c("low", "medium", "high")</pre>
result_CVD_lmh <- matrix(0, nrow = 14,ncol = 3,
                          dimnames = list(names_population, risk_levels))
p_live_cvd_lmh <- matrix(cbind(p_live_cvd_l,p_live_cvd_m,p_live_cvd_h), ncol=3,</pre>
                          dimnames = list(names_population,risk_levels))
p_live_cvdth_lmh <- matrix(cbind(p_live_cvdth_1,p_live_cvdth_m,p_live_cvdth_h), ncol=3,</pre>
                            dimnames = list(names_population,risk_levels))
patient_group <- matrix(cbind(population_data[which(population_data$strategy=="strategy2"),]$low,</pre>
                               population_data[which(population_data$strategy=="strategy2"),]$medium,
```

population_data[which(population_data\$strategy=="strategy2"),]\$high),

dimnames=list(paste0("t",0:9),names population))

ncol = 3, nrow=14,dimnames = list(names_population,risk_levels))

prob_CVD_group2 <- matrix(0, ncol=14, nrow=10,</pre>

prob_CVDlive_group2 <- matrix(0, ncol=14, nrow=10,</pre>

```
dimnames=list(paste0("t",0:9),names_population))
result_CVD_stg2 <- matrix(0, ncol = 3, nrow = 14,
                      dimnames=list(names_population, risk_levels))
result_CVDlive_stg2 <- matrix(0, ncol = 3, nrow = 14,</pre>
                      dimnames=list(names_population, risk_levels))
result_QALY_stg2 <- matrix(0, ncol = 3, nrow = 14,
                      dimnames=list(names_population, risk_levels))
result_Lifeyear_stg2 <- matrix(0, ncol = 3, nrow = 14,</pre>
                      dimnames=list(names_population, risk_levels))
result_CVDeath_stg2 <- matrix(0, ncol = 3, nrow = 14,
                      dimnames=list(names_population, risk_levels))
result_nonCVDeath_stg2 <- matrix(0, ncol = 3, nrow = 14,
                      dimnames=list(names population, risk levels))
p8 <-array(runif(140,min=0.02,max=0.1),dim=c(10,14),dimnames=list(1:10,names_population))
p9 <- array(NA, dim=c(10,14),dimnames=list(1:10,names_population))
p10 <- array(NA, dim=c(10,14), dimnames=list(1:10,names_population))
for(r in 1:3){ # three rish groups
  # create a matrix for p_acvd_cvdth
  for(i in 1:14){
  # construct a_P
  if(i == 7 | i == 14){
    a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
    a_P["S1", "S1", 1:10] \leftarrow 1-(p_live_cvd_lmh[i,r]*(1-p8[1:10,i]) +
                                p_live_cvdth_lmh[i,r]*p_live_cvd_lmh[i,r]*(1-p8[1:10,i]) +
                                p_live_oth_death[i])
    a_P["S1", "S2", 1:10] \leftarrow p_live_cvd_lmh[i,r]*(1-(1-p8[1:10,i]))
    a_P["S1", "S3", 1:10] <- p_live_cvdth_lmh[i,r]*p_live_cvd_lmh[i,r]*(1-p8[1:10,i])
    a_P["S1", "S4", 1:10] <- p_live_oth_death[i]</pre>
    a_P["S2", "S1", 1:10] <- 0
    a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[i]-
      (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*(1-p8[1:10,i]))
    a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[i]+
      p_ccvd_acvd[i]*(1-p8[1:10,i])
    a_P["S2", "S4", 1:10] <- p_live_oth_death[i]</pre>
    a_P["S3", "S3", 1:10] <- 1
    a_P["S4", "S4", 1:10] <- 1
    p9[1:10,i] \leftarrow p_ccvd_acvd[i]*(1-p8[1:10,i])
    p10[1:10,i] <- p_live_cvd[i]
  if(i != 7 && i != 14){
    a_P <- array(0, dim = c(n_states, n_states, 10),</pre>
               dimnames = list(v_names_states, v_names_states, 1:10))
    a_P["S1", "S1", 1:5] <- 1-(p_live_cvd_lmh[i,r]*(1-p8[1:5,i]) +
                                p_live_cvdth_lmh[i,r]*p_live_cvd_lmh[i,r]*p8[1:5,i] +
                                p_live_oth_death[i])
    a_P["S1", "S2", 1:5] <- p_live_cvd_lmh[i,r]*(1-p8[1:5,i])
    a_P["S1", "S3", 1:5] \leftarrow p_live\_cvdth_lmh[i,r]*p_live\_cvd_lmh[i,r]*p8[1:5,i]
    a_P["S1", "S4", 1:5] <- p_live_oth_death[i]</pre>
    a_P["S2", "S1", 1:5] <- 0
    a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-
      (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p8[1:5,i])
    a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
```

```
p_ccvd_acvd[i]*p8[1:5,i]
    a P["S2", "S4", 1:5] <- p_live_oth_death[i]</pre>
    a_P["S3", "S3", 1:5] <- 1
    a_P["S4", "S4", 1:5] <- 1
    a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd_lmh[i+1,r]*(1-p8[1:5,i+1])+
                              p_live_cvdth_lmh[i+1,r]*p_live_cvd_lmh[i+1,r]*p8[1:5,i+1]
                              +p_live_oth_death[i+1])
    a P["S1", "S2", 6:10] <- p live cvd lmh[i+1,r]*(1-p8[1:5,i+1])
    a_P["S1", "S3", 6:10] \leftarrow p_live_cvdth_lmh[i+1,r]*p_live_cvd_lmh[i+1,r]*p8[1:5,i+1]
    a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
    a_P["S2", "S1", 6:10] <- 0
    a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
       (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p8[1:5,i+1])
    a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] *p8[1:5,i+1]
    a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]
    a_P["S3", "S3", 6:10] <- 1
    a_P["S4", "S4", 6:10] <- 1
    p9[1:5,i] <- p_ccvd_acvd[i]*(1-p8[1:5,i])
    p9[6:10,i] \leftarrow p_ccvd_acvd[i+1]*(1-p8[6:10,i])
    p10[1:5,i] <- p_live_cvd[i]
    p10[6:10,i] <- p_live_cvd[i+1]
     # construct m M
    v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
    m M \leftarrow matrix(0, nrow = (n t), ncol = n states,
                  dimnames = list(0:(n t-1), v names states))
    m_M[1, ] <- v_s_init
    for(t in 1:9){
      m_M[t + 1, ] <- m_M[t, ] %*% a_P[, , t]
    }
    # calculate result
    prob_CVD_group2[ ,i] <- m_M[ ,1]* p10[ ,i] # new occurrence = S1*p9
    prob_CVDlive_group2[ ,i] <- m_M[ ,1]*(a_P["S1", "S2", 1:10]) + m_M[ ,2]*p9[ ,i]</pre>
  result_CVD_stg2[i,r] <- sum(prob_CVD_group2[,i]*patient_group[i,r])</pre>
  result_CVDlive_stg2[i,r] <- sum(prob_CVDlive_group2[,i]*patient_group[i,r])
  result_Lifeyear_stg2[i,r] <- sum(t( t(m_M) * year )*patient_group[i,r])</pre>
 result_QALY_stg2[i,r] <- sum(t(t(m_M) * uti_values)*patient_group[i,r] +
                           prob_CVDlive_group2[, i]*out_trans_to_cvd*patient_group[i,r])
  result_CVDeath_stg2[i,r] <- m_M[10,3]*patient_group[i,r]</pre>
  result_nonCVDeath_stg2[i,r] <- m_M[10,4]*patient_group[i,r]</pre>
}}
```

Table 10: New CVD events for patients under Strategy1

	low	medium	high
	8.43	2.57	0.82
	00		0.0-
m45	17.63	13.87	5.26
m50	12.94	27.91	10.20
m55	6.02	35.56	27.68
m60	1.17	18.65	53.63
m65	0.31	4.55	42.93
m70	0.00	1.02	37.61
f40	27.27	0.97	0.17
f45	61.41	8.97	1.16
f50	61.50	27.00	5.30
f55	41.86	64.61	19.53
f60	8.53	53.77	36.41
f65	1.03	26.10	70.77
f70	0.00	6.58	46.17
sum	248.10	292.16	357.64

Table 11: Result for Strategy2

			0,		
	CVD.events	CVD.Death	non.CVD.Death	QALY	Life.Year
1	897.89	32.83	333.78	59998.92	60261.35

Strategy 3

Table 12: Distribution of the population under different strategies

			r . r			
	index	sex	strategy	low	medium	high
29	40	male	strategy3	0	0	0
30	45	male	strategy3	0	0	0
31	50	male	strategy3	106	231	85
32	55	$_{\mathrm{male}}$	strategy3	35	210	165
33	60	male	strategy3	5	81	236
34	65	male	strategy3	1	15	144
35	70	male	strategy3	0	3	113
36	40	female	strategy3	0	0	0
37	45	female	strategy3	0	0	0
38	50	female	strategy3	537	238	47
39	55	female	strategy3	277	433	132
40	60	female	strategy3	44	282	193
41	65	female	strategy3	4	104	286
42	70	female	strategy3	0	23	164

```
p_live_cvd_l <- ProbFactor(p_live_cvd, HR_l_stg3)</pre>
p_live_cvd_m <- ProbFactor(p_live_cvd, HR_m_stg3*</pre>
                              HR_smk_cvd*HR_salt_cvd*HR_wtc_cvd) # lifestyle intervention
p_live_cvd_h <- ProbFactor(p_live_cvd, HR_h_stg3*</pre>
                              HR_smk_cvdth*HR_salt_cvdth*HR_wtc_dth*
                                                                           # lifestyle intervention
                              HR_hpt_lip_cvdth) # treatment intervention
p_live_cvdth_l <- ProbFactor(p_live_cvdth,1)</pre>
                                                   # equal
p_live_cvdth_m <- ProbFactor(p_live_cvdth,1*</pre>
                                 HR_smk_cvd*HR_salt_cvd*HR_wtc_cvd) # lifestyle intervention
p_live_cvdth_h <- ProbFactor(p_live_cvdth,1.7*</pre>
                                 HR_smk_cvdth*HR_salt_cvdth*HR_wtc_dth* # lifestyle intervention
                                 HR_hpt_lip_cvdth) # treatment intervention
risk_levels <- c("low", "medium", "high")</pre>
result_CVD_lmh <- matrix(0, nrow = 14,ncol = 3,
                          dimnames = list(names_population, risk_levels))
p_live_cvd_lmh <- matrix(cbind(p_live_cvd_l,p_live_cvd_m,p_live_cvd_h), ncol=3,</pre>
                          dimnames = list(names_population,risk_levels))
p_live_cvdth_lmh <- matrix(cbind(p_live_cvdth_1,p_live_cvdth_m,p_live_cvdth_h), ncol=3,</pre>
                            dimnames = list(names_population,risk_levels))
patient_group <- matrix(cbind(population_data[which(population_data$strategy=="strategy3"),]$low,</pre>
                               population_data[which(population_data$strategy=="strategy3"),]$medium,
```

population_data[which(population_data\$strategy=="strategy3"),]\$high),

dimnames=list(paste0("t",0:9),names population))

ncol = 3, nrow=14,dimnames = list(names_population,risk_levels))

prob_CVD_group3 <- matrix(0, ncol=14, nrow=10,</pre>

prob_CVDlive_group3 <- matrix(0, ncol=14, nrow=10,</pre>

```
dimnames=list(paste0("t",0:9),names_population))
result_CVD_stg3 <- matrix(0, ncol = 3, nrow = 14,
                      dimnames=list(names_population, risk_levels))
result_CVDlive_stg3 <- matrix(0, ncol = 3, nrow = 14,</pre>
                      dimnames=list(names_population, risk_levels))
result_QALY_stg3 <- matrix(0, ncol = 3, nrow = 14,
                      dimnames=list(names_population, risk_levels))
result_Lifeyear_stg3 <- matrix(0, ncol = 3, nrow = 14,</pre>
                      dimnames=list(names_population, risk_levels))
result_CVDeath_stg3 <- matrix(0, ncol = 3, nrow = 14,
                      dimnames=list(names_population, risk_levels))
result_nonCVDeath_stg3 <- matrix(0, ncol = 3, nrow = 14,</pre>
                      dimnames=list(names_population, risk_levels))
p8 <-array(runif(140,min=0.02,max=0.1),dim=c(10,14),dimnames=list(1:10,names_population))
p9 <- array(NA, dim=c(10,14),dimnames=list(1:10,names_population))
p10 <- array(NA, dim=c(10,14), dimnames=list(1:10,names_population))
for(r in 1:3){ # three rish groups
  # create a matrix for p_acvd_cvdth
  for(i in 1:14){
  # construct a P
 if(i == 7 | i == 14){
    a_P <- array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
    a P["S1", "S1", 1:10] <- 1-(p live cvd lmh[i,r]*(1-p8[1:10,i]) +
                                p_live_cvdth_lmh[i,r]*p_live_cvd_lmh[i,r]*(1-p8[1:10,i]) +
                                p_live_oth_death[i])
    a_P["S1", "S2", 1:10] \leftarrow p_live_cvd_lmh[i,r]*(1-(1-p8[1:10,i]))
    a_P["S1", "S3", 1:10] \leftarrow p_live_cvdth_lmh[i,r]*p_live_cvd_lmh[i,r]*(1-p8[1:10,i])
    a_P["S1", "S4", 1:10] <- p_live_oth_death[i]</pre>
    a_P["S2", "S1", 1:10] <- 0
    a_P["S2", "S2", 1:10] <- 1-p_live_oth_death[i]-
      (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*(1-p8[1:10,i]))
    a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[i]+
      p_ccvd_acvd[i]*(1-p8[1:10,i])
    a_P["S2", "S4", 1:10] <- p_live_oth_death[i]
    a_P["S3", "S3", 1:10] <- 1
    a_P["S4", "S4", 1:10] <- 1
    p9[1:10,i] <- p_ccvd_acvd[i]*(1-p8[1:10,i])
    p10[1:10,i] <- p_live_cvd[i]
  if(i != 7 && i != 14){
    a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
    a_P["S1", "S1", 1:5] \leftarrow 1-(p_live_cvd_lmh[i,r]*(1-p8[1:5,i]) +
                                p_live_cvdth_lmh[i,r]*p_live_cvd_lmh[i,r]*p8[1:5,i] +
                                p_live_oth_death[i])
    a_P["S1", "S2", 1:5] \leftarrow p_live_cvd_lmh[i,r]*(1-p8[1:5,i])
    a_P["S1", "S3", 1:5] <- p_live_cvdth_lmh[i,r]*p_live_cvd_lmh[i,r]*p8[1:5,i]
    a_P["S1", "S4", 1:5] <- p_live_oth_death[i]</pre>
    a_P["S2", "S1", 1:5] <- 0
    a_P["S2", "S2", 1:5] <- 1-p_live_oth_death[i]-
      (p_ccvd_cvdth[i]+p_ccvd_acvd[i]*p8[1:5,i])
```

```
a_P["S3", "S3", 1:5] <- 1
    a_P["S4", "S4", 1:5] <- 1
    a_P["S1", "S1", 6:10] \leftarrow 1-(p_live_cvd_lmh[i+1,r]*(1-p8[1:5,i+1])+
                               p_live_cvdth_lmh[i+1,r]*p_live_cvd_lmh[i+1,r]*p8[1:5,i+1]
                               +p live oth death[i+1])
    a_P["S1", "S2", 6:10] \leftarrow p_live_cvd_lmh[i+1,r]*(1-p8[1:5,i+1])
    a_{p}["S1", "S3", 6:10] \leftarrow p_{live\_cvdth\_lmh[i+1,r]*p_{live\_cvd\_lmh[i+1,r]*p8[1:5,i+1]}
    a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
    a P["S2", "S1", 6:10] <- 0
    a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
       (p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p8[1:5,i+1])
    a_P["S2", "S3", 6:10] <- p_ccvd_cvdth[i+1]+p_ccvd_acvd[i+1]*p8[1:5,i+1]
    a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]
    a_P["S3", "S3", 6:10] <- 1
    a_P["S4", "S4", 6:10] <- 1
    p9[1:5,i] \leftarrow p_ccvd_acvd[i]*(1-p8[1:5,i])
    p9[6:10,i] <- p_ccvd_acvd[i+1]*(1-p8[6:10,i])
    p10[1:5,i] <- p_live_cvd[i]
    p10[6:10,i] <- p_live_cvd[i+1]
     # construct m_M
    v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
    m M \leftarrow matrix(0, nrow = (n t), ncol = n states,
                   dimnames = list(0:(n t-1), v names states))
    m_M[1, ] <- v_s_init</pre>
    for(t in 1:9){
      m_M[t + 1, ] \leftarrow m_M[t, ] %*% a_P[, , t]
     # calculate result
    prob_CVD_group3[ ,i] <- m_M[ ,1]* p10[ ,i] # new occurence = S1*p9
    prob_CVDlive_group3[ ,i] <- m_M[ ,1]*(a_P["S1", "S2", 1:10]) + m_M[ ,2]*p9[ ,i]</pre>
  result_CVD_stg3[i,r] <- sum(prob_CVD_group3[,i]*patient_group[i,r])</pre>
  result_CVDlive_stg3[i,r] <- sum(prob_CVDlive_group3[,i]*patient_group[i,r])</pre>
  result_Lifeyear_stg3[i,r] <- sum(t( t(m_M) * year )*patient_group[i,r])</pre>
  result_QALY_stg3[i,r] <- sum(t(t(m_M) * uti_values)*patient_group[i,r] +
                           prob_CVDlive_group3[, i]*out_trans_to_cvd*patient_group[i,r])
  result_CVDeath_stg3[i,r] <- m_M[10,3]*patient_group[i,r]</pre>
  result_nonCVDeath_stg3[i,r] <- m_M[10,4]*patient_group[i,r]</pre>
}
}
# There is another group for Strategy3
noncreen_names <- c("m40","m45","f40","f45")
noscreen\_group < -matrix(c(229,498,444,856),ncol = 1, nrow = 4,
                          dimnames = list(noncreen_names,""))
noscreen_group_CVD <- matrix(NA,ncol = 1, nrow = 4,</pre>
                               dimnames = list(noncreen names,""))
noscreen_group_CVDlive <- matrix(NA,ncol = 1, nrow = 4,</pre>
                               dimnames = list(noncreen names,""))
```

a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+

a_P["S2", "S4", 1:5] <- p_live_oth_death[i]

p_ccvd_acvd[i]*p8[1:5,i]

```
noscreen_group_Lifeyear <- matrix(NA,ncol = 1, nrow = 4,</pre>
                               dimnames = list(noncreen_names,""))
noscreen_group_QALY <- matrix(NA,ncol = 1, nrow = 4,</pre>
                               dimnames = list(noncreen names,""))
noscreen_group_CVDeath <- matrix(NA,ncol = 1, nrow = 4,</pre>
                               dimnames = list(noncreen names,""))
noscreen_group_nonCVDeath <- matrix(NA,ncol = 1, nrow = 4,</pre>
                               dimnames = list(noncreen names,""))
m_M1 <- result_m_M[ , , 1]</pre>
m_M2 <- result_m_M[ , , 2]</pre>
m_M3 <- result_m_M[ , , 7]</pre>
m_M4 <- result_m_M[ , , 8]</pre>
noscreen_m_M <- list(m_M1, m_M2, m_M3, m_M4)</pre>
for(i in 1:4){
  name <- noncreen_names[i]</pre>
  noscreen_group_CVD[i] <- sum(prob_CVD_group0[,noncreen_names][,i] * noscreen_group[i])</pre>
  noscreen_group_Lifeyear[i] <- sum(t(t(result_m_M[,,name]) * year) * noscreen_group[i])</pre>
  noscreen_group_QALY[i] <- sum(t(t(result_m_M[,,name]) * uti_values)*noscreen_group[i] +</pre>
                            prob_CVDlive_group0[, i]*out_trans_to_cvd*noscreen_group[i])
  noscreen_group_CVDeath[i] <- sum(data.frame(noscreen_m_M[i])[10,3]*noscreen_group[i])</pre>
  noscreen_group_nonCVDeath[i] <- sum(data.frame(noscreen_m_M[i])[10,4]*noscreen_group[i])
}
```

Table 13: New CVD events for patients under Strategy1

	low	medium	high
m40	0.00	0.00	0.00
m45	0.00	0.00	0.00
m50	12.93	27.80	10.19
m55	6.00	35.35	27.63
m60	1.17	18.47	53.43
m65	0.31	4.50	42.83
m70	0.00	1.01	37.53
f40	0.00	0.00	0.00
f45	0.00	0.00	0.00
f50	61.45	26.90	5.30
f55	41.80	64.27	19.51
f60	8.51	53.40	36.34
f65	1.02	25.85	70.55
f70	0.00	6.51	46.00
sum	133.20	264.07	349.30

 Table 14: Result for Strategy3

 CVD.events
 CVD.Death
 non.CVD.Death
 QALY
 Life.Year

 1
 893.99
 62.97
 416.32
 59904.48
 60238.40

Conclusion

 Table 15: CVD events for patients under 3 strategies

 Strategy0
 Strategy1
 Strategy2
 Strategy3

 1
 873.24
 894.12
 897.89
 893.99

 Table 16: QALY for patients under 3 strategies

 Strategy0
 Strategy1
 Strategy2
 Strategy3

 1
 59978.71
 59952.71
 59998.92
 59904.48

Table 17: Life year for patients under 3 strategies

	Strategy0	Strategy1	Strategy2	Strategy3
1	60447.68	60249.97	60261.35	60238.40