MATH401: Lecture 2 (08/21/2025)

Today: * xsets and operations

Sets and Operations (LSIRA 1.2)

Set: Collection of mathematical objects.

They can be finite, e.g., 82,5,9,1,63, or infinite, e.g., to,1], the collection of all $x \in \mathbb{R}$ with $0 \le x \le 1$.

The lement of " > set of all real numbers

Given sets A, B we have

A ⊆ B: A is a subset of, or equal to, B.

ACB: A is a strict subset of B, i.e., there is at least one $\times \in B$ such that $X \notin A$.

But $\forall x \in A, x \in B$ holds.

To prove A=B, we often prove A ⊆ B and A ⊇ B (or B⊆A).

Here are some standard sets we will use regularly.

 ϕ : empty set.

N=21,2,3,... 3, set of all natural numbers

IR = set of all real numbers

I = 2 ..., -2,-1,0,1,2,... 2, set of all integers

Q = set of rational numbers, C = set of complex numbers.

IR": set of all real n-tuples, or n-vectors

Notation for sets: $[-2,1] = \{x \in \mathbb{R} \mid -2 \le x \le 1\}$.

closed interval from -2 to 1

 \Rightarrow "such that" could also use ": " instead of "!". More generally, A = {a & B | P(a) }.

If Ai are sets for i=1,...,n, i.e., A,, Az,..., An are sets, then U Ai = A, UAzU···UAn={a|a ∈ Ai for at least one i? is their union, $\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \cdots \cap A_n = \{a \mid a \in A_i \mid \forall i \} \text{ is their intersection.}$

LSIRA 1.2 Prob1 Show [0,2]U[1,3] = [0,3].

We show $[0,2]\cup[1,3]\subseteq[0,3]$ and [0,2] U[1,3] = [0,3].

(=) let x e (0,2] U[1,3]

=> X E [92] or X E [1,3] (definition of U).

 $\times \in [0,2] \Rightarrow \times \in [0,3]$ (as [0,3] contains [0,2])

 $\times \in [1,3] \implies \times \in [0,3]$. In either case, $\times \in [0,3]$.

Hence [0,2] U[1,3] ⊆ [0,3].

(2) Let $x \in [0,3]$. Hence $0 \le x \le 3$. Then we get that either $X \leq 2$, and hence $X \in [0, 2]$, or $X \in (2, 3]$.

But if $x \in (2,3]$ then $x \in [1,3]$ (as [1,3] includes (2,3]).

> x ∈ [0,2] U[1,3].

Hence [,0,3] [[0,2]U[i,3].

The result is an obvious one. But we go through the steps of a formal proof more for practice!

Distributive Laws of Union and Intersection

For all sets B, A1, ..., An, we have

 $(1.2.1) \quad B \cap (A_1 \cup A_2 \cup \cdots \cup A_n) = (B \cap A_1) \cup (B \cap A_2) \cup \cdots \cup (B \cap A_n).$

Using more compact notation, we can write

 $B \cap (U A_i) = U (B \cap A_i)$

Proof

We will prove

BN(A,U... UAn) = (BNA) U... U (BNAn), and

B (A, U ... UAn) = (B) A) U ... U (B) An).

('=') Let x & B \(\text{A}_1 \text{U... UAn}\).

 \Rightarrow $\times \in \mathbb{B}$ and $\times \in (A_1 \cup ... \cup A_n)$ (definition of (1)

 \Rightarrow XEB and XEA; for at least one A; (defin. of U)

⇒ × ∈ B∩Ai for at least one Ai.

> XE (BNA) U... U (BNAn).

(2) let x e (BNA) U--- U (BNAn).

=> X E (BnAi) for at least one Ai.

 \Rightarrow \times EB and \times EA; for at least one A;

 \Rightarrow XEB and XE ($\dot{A}_1U\cdots UA_n$)

⇒ X ∈ B ∩ (A,U... UAn).

LSIRA (1.2.2) is assigned in Homework 1.

Set Difference and Complement

We write AB or A-B "setminus"

Caution!

* AB + BA!

"A setminus B" is $A \setminus B = \{a \mid a \in A, a \notin B\}$.

of U is the universe, i.e., $A \subseteq U$ for all sets A, then $A' = U \setminus A = \{a \in U \mid a \notin A\}$ is the

complement of A (or A-complement).

De Morgan's Laws

LSIRA (1.2.3) $(A_1 \cup \cdots \cup A_n)^c = A_1^c \cap \cdots \cap A_n^c$ "complement of union = intersection of complements"

LSIRA (1.2.4) $(A_1 \cap A_n) = A_1 \cup A_2 \cup A_n$ complements.

I See LSIRA for the proof.

Lets illustrate (1.2.4) for n=2, i.e., with A, and A2 first.

We will prove subset inclusion in both directions.

(
$$\subseteq$$
) Let $x \in (A_1 \cap \dots \cap A_n)^c$
 $\Rightarrow x \notin A_1 \cap \dots \cap A_n$ (definition of complement)
 $\Rightarrow x \notin A_j$ for some j . (definition of \cap)
 $\Rightarrow x \in A_j^c$ for some j
 $\Rightarrow x \in A_i^c \cup \dots \cup A_n^c$.
Hence $(A_1 \cap \dots \cap A_n)^c \subseteq A_i^c \cup \dots \cup A_n^c$.

(2) Let
$$x \in A_1^{C}U \cdots UA_n$$
.
 $\Rightarrow x \in A_j^{C}$ for some j
 $\Rightarrow x \notin A_j^{C}$ for some j
 $\Rightarrow x \notin A_1 \cap A_n^{C}$.
 $\Rightarrow x \in (A_1 \cap A_n)^{C}$.

Hence $A_1^c \cup \dots \cup A_n^c \subseteq (A_1 \cap \dots \cap A_n)^c$.

Cartesian Products

 A_1B_2 sets, we define sortesian product of A and B $A \times B = \{(a_1b) \mid a \in A, b \in B\} \}$ Given A_i , i=1,...,n $(A_1,...,A_n)$, we define T: product $A_1 \times A_2 \times ... \times A_n = \prod_{i=1}^n A_i = \{(a_1,...,a_n) \mid a_i \in A_i \neq i\}.$ For A,B: sets, we define $a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n$

e.g., iRn. set of n-tuples of real numbers (or set of real n-vectors)

1918A1.2 Rob9 (Pg11) Prove that (AUB) xC = (AXC) U(BXC).

We'll finish the proof in the next leetare...