L2 SM – Computer Graphics Summative Assignment

Coursework Description and Assessment

You are required to complete all questions. The deadline for submission is the 17th March 2017 (2pm). You should submit your work as a pdf file containing your answers to Question 1, and separately submit all required programming codes for question 2.

Essential background reading

- Lecture slides.
- "WebGL Programming Guide," Kouichi Matsuda and Rodger Lea, Addison Wesley, 2013.

Assignment

- 1. This question relates to the concepts involved in WebGL programming.
 - a) Describe the difference between **attribute**, **uniform** and **varying** in shader programming.

 [6 marks]
 - b) Suppose you want to use a single array in the main() function of a WebGL programme, storing both the (x,y,z)-coordinates and the (r,g,b) colour information for every vertex of a polygon model. Show a programming statement for constructing such an array. Assume the polygon model contains 6 vertices.

Also write down the programming statements for constructing the corresponding vertex buffer objects and assigning the array data to become the position and colour attributes of the vertex shader.

[10 marks]

c) Draw the scene graph of the 3D car model as described in question 2. [6 marks]

- d) (Reference: WebGL Prog. Guide Chapter 4, Table 4.1) Suppose drawBox(m) is a function to draw a transformed box according to the transformation matrix m. That is, if m is a rotation matrix, the function will draw a rotated box.
 - i) Explain the meaning of the following code segment and state the result obtained:

```
m.setRotate(angle, 0.0, 1.0, 0.0);
m.translate(1.0, 3.0, -5.0);
drawBox(m);
[5 marks]
```

ii) Explain whether you will get the same result if m.setRotate() has been replaced by m.rotate().[3 marks]

2. Using WebGL, implement a program to render a 3D car model and its movement. The car should comprise a body, two doors and four wheels. You can construct each of the car parts by a simple shape, e.g. 3D rectangular box. Figure 1 is an example illustrating the side view of such a 3D car model, which is constructed by 3D rectangular boxes.

The wheels of the car should be rotatable, and the car doors should be openable. In addition, your implementation should include a large plain, allowing the car to move on the plain within its boundary. The car movement is controlled by hotkeys.

You should include the following features in the implementation:

•	Construct the 3D car model and the plain as described above.	[28 marks]
•	Provide a proper view of the car and its movements.	[12 marks]
•	Render each part of the car model with a different color.	[6 marks]
•	Provide model shading by both directional lighting and point lighting.	[12 marks]
•	Provide hotkeys to control the car movement.	[12 marks]

Note: Be aware of plagiarism rules (https://www.dur.ac.uk/learningandteaching.handbook/6/2/4/).