1. Problem

We can estimate the mean of a symmetric distribution.

$$\bar{x} pprox rac{\max(x) + \min(x)}{2}$$

We can roughly estimate the standard deviation of certain distributions.

Shape	SD estimate
bell	range/6
uniform	range/4
bimodal	range/2

Random Variable G

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

- (a) Estimate the mean of F.
- (b) Estimate the mean of G.
- (c) Estimate the mean of H.
- (d) Estimate the standard deviation of F.
- (e) Estimate the standard deviation of G.
- (f) Estimate the standard deviation of H.

2. Problem

We can estimate the mean of a **symmetric** distribution.

$$\bar{x} pprox \frac{\max(x) + \min(x)}{2}$$

We can roughly estimate the standard deviation of certain distributions.

Shape	SD estimate
bell uniform bimodal	range/6 range/4 range/2

- (a) Estimate the mean of F.
- (b) Estimate the mean of G.
- (c) Estimate the mean of H.
- (d) Estimate the standard deviation of F.
- (e) Estimate the standard deviation of G.
- (f) Estimate the standard deviation of H.

3. Problem

Random Variable G

- (a) Which distribution has the highest mean? (F, G, or H)
- (b) Which distribution has the lowest mean? (F, G, or H)
- (c) Which distribution has the largest standard deviation? (F, G, or H)
- (d) Which distribution has the smallest standard deviation? (F, G, or H)

4. Problem

We can estimate the mean of a **symmetric** distribution.

$$\bar{x} pprox rac{\max(x) + \min(x)}{2}$$

We can roughly estimate the standard deviation of certain distributions.

Shape	SD estimate
bell	range/6
uniform bimodal	range/4 range/2
	3 /

- (a) Estimate the mean of F.
- (b) Estimate the mean of G.
- (c) Estimate the mean of H.
- (d) Estimate the standard deviation of F.
- (e) Estimate the standard deviation of G.
- (f) Estimate the standard deviation of H.

5. Problem

We can estimate the mean of a **symmetric** distribution.

$$\bar{x} pprox rac{\max(x) + \min(x)}{2}$$

We can roughly estimate the standard deviation of certain distributions.

Shape	SD estimate
bell	range/6
uniform bimodal	range/4 range/2
	3 /

- (a) Estimate the mean of F.
- (b) Estimate the mean of G.
- (c) Estimate the mean of H.
- (d) Estimate the standard deviation of F.
- (e) Estimate the standard deviation of G.
- (f) Estimate the standard deviation of H.

6. Problem

Random Variable F

Random Variable G

- (a) Which distribution has the highest mean? (F, G, or H)
- (b) Which distribution has the lowest mean? (F, G, or H)
- (c) Which distribution has the largest standard deviation? (F, G, or H)
- (d) Which distribution has the smallest standard deviation? (F, G, or H)

7. Problem

Random Variable F

Random Variable G

- (a) Which distribution has the highest mean? (F, G, or H)
- (b) Which distribution has the lowest mean? (F, G, or H)
- (c) Which distribution has the largest standard deviation? (F, G, or H)
- (d) Which distribution has the smallest standard deviation? (F, G, or H)

- 1. (a) 30
 - (b) 20
 - (c) 50
 - (d) 20
 - (e) 3.3333333
 - (f) 5
- 2. (a) 40
 - (b) 30
 - (c) 50
 - (d) 10
 - (e) 5
 - (f) 3.3333333
- 3. (a) F
 - (b) H
 - (c) H
 - (d) F
- 4. (a) 20
 - (b) 40
 - (c) 30
 - (d) 5
 - (e) 20
 - (f) 7.5
- 5. (a) 30
 - (b) 40
 - (c) 60
 - (d) 3.3333333
 - (e) 10
 - (f) 5
- 6. (a) H
 - (b) G
 - (c) G
 - (d) H
- 7. (a) H
 - (b) G
 - (c) F
 - (d) H