Appendix: Derivation of Cubic Spline Algorithm

Recap precevise cubic polynomial interpolation - thermite cubic cubic spline Set-up Given (1/2, yi) for i=1, ..., n,

Stud a precessise cubic interpolant P(x) $P(x) = \begin{cases} P_1(x), & [1_1, 1_2) \\ P_2(x), & [1_2, 1_3) \end{cases} \leftarrow half-open, half-closed \\ \vdots & \vdots \\ P_{n-1}(x), & [1_{n-1}, 1_n] \leftarrow dosed interval \end{cases}$ where the ith local cubic Pi(x) is written as $P(d) = C_{i,1} + C_{i,2}(1-1) + C_{i,3}(1-1)^{2} + C_{i,4}(1-1)^{3}$

Hermite Cubic Interpolation

· In addition to tilyi, is given. For each $i=1, \dots, m-1$, we require $\frac{4}{2} \operatorname{eqn}_{0}$ $\begin{cases}
P_{i}(\lambda_{i}) = y_{i}, \\
P_{i}'(\lambda_{i}) = \sigma_{i},
\end{cases}$ Pi(diti) = Yiti $Pi'(diti) = \sigma_{i+1}$ ti the interval

Cubic Spline: Problem Set-Up

Given $\{(x_i, y_i) | i = 1, 2, ..., n\}$, find a piecewise polynomial $p(x) = p_i(x)$ on

$$[x_i,x_{i+1}]$$
 with $[x_i,x_{i+1}]$ with

$$p_i(x) = c_{i,1} + c_{i,2}(x-x_i) + c_{i,3}(x-x_i)^2 + c_{i,4}(x-x_i)^3,$$
 satisfying $\frac{1}{2}$

Cî,, Ci,z, Ci,3, Ci,4

=> 4(n-1) = (4n-4) unknowns

 $p_i(x) = c_{i,1} + c_{i,2}(x-x_i) + c_{i,3}(x-x_i)^2 + c_{i,4}(\frac{x-x_i}{x})^3, \qquad \text{ with only } (\lambda_i, y_i),$

 $p(x_i) = y_i \text{ for } i = 1, \dots, n;$ (interpolation)

¹Let us not worry about the boundary conditions yet.

(4n-b) egns.

Find a piecewise cubic interpolant which is in Coldinary

Pris twice continuously differentiable.

n-2 3 $p_i'(x_{i+1}) = p_{i+1}'(x_{i+1})$ for $i=1,\ldots,n-2$; (matching deriv.)

n-2 2 $p_i(x_{i+1}) = p_{i+1}(x_{i+1})$ for $i=1,\ldots,n-2$; (matching values)

N-2 $q p_i''(x_{i+1}) = p_{i+1}''(x_{i+1})$ for $i=1,\ldots,n-2$. (matching in derive) (smooth)

Connection to Hermite Cubic Interpolation

Key Observation. If $c_{i,j}$'s are set to be

$$c_{i,1} = y_i, c_{i,3} = \frac{3y[x_i, x_{i+1}] - 2\sigma_i - \sigma_{i+1}}{\Delta x_i},$$

$$c_{i,2} = \sigma_i, c_{i,4} = \frac{\sigma_i + \sigma_{i+1} - 2y[x_i, x_{i+1}]}{(\Delta x_i)^2},$$
(*)

as in the Hermite cubic interpolation for some constants $\sigma_1, \sigma_2, \dots, \sigma_n$ to be determined, then p(x) satisfies the first three requirements from the previous slide.

Reduction. Determine $\sigma_1, \sigma_2, \dots, \sigma_n$ so that the fourth requirement is satisfied.

Derivation of a Linear System for Cubic Splines (1)

Using (*), write out the fourth requirement $p''_{i-1}(x_i) = p''_i(x_i)$ in terms of $\sigma_{i-1}, \sigma_i, \sigma_{i+1}$, where $i \in \mathbb{N}[2, n-1]$.

Derivation of a Linear System for Cubic Splines (2)

Express the system of n-2 equations for $\sigma_1, \ldots, \sigma_n$ as a matrix equation $X\boldsymbol{\sigma} = \mathbf{r}$, where $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_n)^T$ and $X \in \mathbb{R}^{n \times n}$ and $\mathbf{r} \in \mathbb{R}^n$ are to be found².

²Since two equations are still missing, leave the first and last rows of X and \mathbf{r} empty for now.

Tridiagonal System for Cubic Splines

Notation.
$$\Delta x_i = x_{i+1} - x_i$$
 and $\nabla x_i = \Delta x_{i-1} + \Delta x_i = x_{i+1} - x_{i-1}$.

Notation.
$$\Delta x_i = x_{i+1} - x_i$$
 and $\nabla x_i = \Delta x_{i-1} + \Delta x_i = x_{i+1} - x_{i-1}$.
$$X = \begin{bmatrix} * & * & * & \cdots & * & * & * \\ \Delta x_2 & 2\nabla x_2 & \Delta x_1 & & & & \\ & \Delta x_3 & 2\nabla x_3 & \Delta x_2 & & & & \\ & & \ddots & \ddots & & \ddots & & \\ & & & \Delta x_{n-2} & 2\nabla x_{n-2} & \Delta x_{n-3} & \\ * & * & * & * & \cdots & * & * & * \end{bmatrix},$$

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \sigma_{n-2} \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix}, \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} * \\ 3 \left(y[x_1, x_2] \Delta x_2 + y[x_2, x_3] \Delta x_1 \right) \\ 3 \left(y[x_2, x_3] \Delta x_3 + y[x_3, x_4] \Delta x_2 \right) \\ \vdots \\ 3 \left(y[x_{n-3}, x_{n-2}] \Delta x_{n-2} + y[x_{n-2}, x_{n-1}] \Delta x_{n-3} \right) \\ 3 \left(y[x_{n-2}, x_{n-1}] \Delta x_{n-1} + y[x_{n-1}, x_n] \Delta x_{n-2} \right) \\ * \end{bmatrix}.$$

Implementation of Boundary Conditions (1)

• (clamped cubic spline) If slopes at each end are known, fill in the first and the last equation of $X\sigma = \mathbf{r}$ with

$$\sigma_1 = y_1', \quad \sigma_n = y_n'.$$

 (natural cubic spline) If the second derivatives at the endpoints are known, then use

$$2\sigma_1 + \sigma_2 = 3y[x_1, x_2] - \frac{1}{2}\Delta x_1 y_1''$$

$$\sigma_{n-1} + 2\sigma_n = 3y[x_{n-1}, x_n] + \frac{1}{2}\Delta x_{n-1} y_n''.$$

Implementation of Boundary Conditions (2)

• (periodic boundary condition) If the data points come from a periodic function with period $P=x_n-x_1$ so that $\sigma_1=\sigma_n$, then use

$$\Delta x_1 \sigma_{n-1} + 2\nabla x_1 \sigma_1 + \Delta x_{n-1} \sigma_2 = 3 \left(y[x_{n-1}, x_n] \Delta x_1 + y[x_1, x_2] \Delta x_{n-1} \right)$$
$$\sigma_1 - \sigma_n = 0.$$

Here, take
$$\nabla x_1 = x_2 - x_0 = x_2 - (x_{n-1} - P)$$
.

Implementation of Boundary Conditions (3)

• (not-a-knot boundary condition) If nothing is known about the endpoints, require $p_1(x) \equiv p_2(x)$ and $p_{n-2}(x) = p_{n-1}(x)$:

$$(\Delta x_2)^2 \sigma_1 + ((\Delta x_2)^2 - (\Delta x_1)^2) \sigma_2 - (\Delta x_1)^2 \sigma_3$$

= $2 (y[x_1, x_2] (\Delta x_2)^2 - y[x_2, x_3] (\Delta x_1)^2),$

$$- (\Delta x_{n-1})^2 \sigma_{n-2} + ((\Delta x_{n-2})^2 - (\Delta x_{n-1})^2) \sigma_{n-1} + (\Delta x_{n-2})^2 \sigma_n$$

$$= 2 \left(y[x_{n-1}, x_n] (\Delta x_{n-2})^2 - y[x_{n-2}, x_{n-1}] (\Delta x_{n-1})^2 \right).$$

Exercise. Derive the equations shown above.