

Fractional Cascading: Reporting the intersections between a polygonal path and a query line

Giordano Da Lozzo | last update: 2025-10-13

geometric intersections

Important problem in Computational Geometry

- Constructive solid modeling: complex shapes are constructed by applying set operations (intersection, union, ...) to simple shapes
- Robotics and motion planning: collision detection and avoidance
- Geographic information systems: Overlay two subdivisions (e.g., road network and river network)
- Computer graphics: determine the intersections of a ray with objects (*ray shooting*)

cities, rivers, railroads, and their overlay in western Canada

Task: given a **polygonal path** P, we wish to **preprocess it** into a data structure so that, given **any query line** ℓ , we can quickly **report all the intersections of** P **and** ℓ .

The obvious method

check each side of P for intersection with ℓ : This method requires O(n) storage and query time, if n is the length of P.

Task: given a **polygonal path** P, we wish to **preprocess it** into a data structure so that, given **any query line** ℓ , we can **quickly report all the intersections of** P **and** ℓ .

1

we aim at O(f(n) + h), where f(n) = o(n) and h is the number of intersections reported.

Task: given a **polygonal path** P, we wish to **preprocess it** into a data structure so that, given **any query line** ℓ , we can **quickly report all the intersections of** P **and** ℓ .

we aim at O(f(n) + h), where f(n) = o(n) and h is the number of intersections reported.

using fractional cascading, we are able to develop a technique that achieves $O((h+1)\log[n/(h+1)])$ query time

Task: given a **polygonal path** P, we wish to **preprocess it** into a data structure so that, given **any query line** ℓ , we can **quickly report all the intersections of** P **and** ℓ .

we aim at O(f(n) + h), where f(n) = o(n) and h is the number of intersections reported.

using fractional cascading, we are able to develop a technique that achieves $O((h+1)\log\lceil n/(h+1)\rceil)$ query time

query time is $O(\log n)$, which is optimal!

Task: given a **polygonal path** P, we wish to **preprocess it** into a data structure so that, given **any query line** ℓ , we can **quickly report all the intersections of** P **and** ℓ .

₩

we aim at O(f(n) + h), where f(n) = o(n) and h is the number of intersections reported.

using fractional cascading, we are able to develop a technique that achieves $O((h+1)\log[n/(h+1)])$ query time

query time is O(h), which is optimal!

when *h* is a small constant

query time is $O(\log n)$, which is optimal!

Task: given a **polygonal path** P, we wish to **preprocess it** into a data structure so that, given **any query line** ℓ , we can **quickly report all the intersections of** P **and** ℓ .

₩

we aim at O(f(n) + h), where f(n) = o(n) and h is the number of intersections reported.

using fractional cascading, we are able to develop a technique that achieves $O((h+1)\log[n/(h+1)])$ query time

for intermediate values of *h*

the discovery of each intersection incurs the cost of a binary search

query time is O(h), which is optimal!

copyright © 2025 G. Da Lozzo

query time is $O(\log n)$, which is optimal!

key observation

Lemma 1 [Condition for intersection]

A straight-line ℓ intersects a polygonal line path P if and only if ℓ intersects the convex hull CH(P) of P.

key observation

Lemma 1 [Condition for intersection]

A straight-line ℓ intersects a polygonal line path P if and only if ℓ intersects the convex hull CH(P) of P.

Proof.

Necessity is obvious. For the sufficiency, observe that ℓ splits CH(P) into two convex polygons C' and C''. Since P is connected, the segment $C' \cap C''$ shared by C' and C'' must be traversed by (or incident to) an edge e of P, and thus e crosses ℓ .

F(P) := the **first half** of P, i.e., the subpath of P consisting of the first $\lfloor n/2 \rfloor$ edges

F(P) := the **first half** of P, i.e., the subpath of P consisting of the first $\lfloor n/2 \rfloor$ edges S(P) := the **secod half** of P, i.e., the subpath of P consisting of the last $\lceil n/2 \rceil$ edges

F(P) := the **first half** of P, i.e., the subpath of P consisting of the first $\lfloor n/2 \rfloor$ edges S(P) := the **secod half** of P, i.e., the subpath of P consisting of the last $\lceil n/2 \rceil$ edges

Observation. Even if ℓ intersects CH(P) of P, it may intersect the convex hull of only one of F(P) and S(P)

F(P) := the **first half** of P, i.e., the subpath of P consisting of the first $\lfloor n/2 \rfloor$ edges S(P) := the **secod half** of P, i.e., the subpath of P consisting of the last $\lceil n/2 \rceil$ edges

Observation. Even if ℓ intersects CH(P) of P, it may intersect the convex hull of only one of F(P) and S(P)

Algorithm to report all the intersections of P and ℓ

■ the algorithm implements a recursive strategy based on Lemma 1

```
Intersect(P, \ell):
  if |P| = 1 (single edge e) then
       if \ell intersects e then \ell \cap P can be computed directly in O(1) time
             return (e)
        else
             return (\emptyset) //exit!
  else
       if \ell does not intersects CH(P) then //Lemma 1
             return (\emptyset) //exit!
        else
            F \leftarrow \text{Intersect}(F(P), \ell)
            S \leftarrow \text{Intersect}(S(P), \ell)
return (F \cup S)
```

Algorithm to report all the intersections of P and ℓ

■ the algorithm implements a recursive strategy based on Lemma 1

```
Intersect(P, \ell):
  if |P| = 1 (single edge e) then
       if \ell intersects e then \ell \cap P can be computed directly in O(1) time
            return (e)
       else
           return (\emptyset) //exit!
  else
       if \ell does not intersects CH(P) then //Lemma 1
            return (∅) //exit!
       else
                                                This test is (in general) expensive:
           F \leftarrow \text{Intersect}(F(P), \ell)
           S \leftarrow \text{Intersect}(S(P), \ell)
return (F \cup S)
                                                    it costs O(\log m) time to test
                                                 whether a line intersects a convex
                                                          polygon of m sides
```

running time analysis

To decide whether to descend into a subtree, we test for intersections between the convex hull stored in its root and ℓ

Even if we were to report **only one intersection** (i.e., we track only one path down to the intersected edge), **the total cost of all these tests would be:**

$$\Omega(\sum_i \log \frac{n}{2^i}) = \Omega(\log^2 n)$$

This is already too expensive!!
Here is where **fractional cascading comes in.**

preprocessing

Since we are allowed to preprocess P, we can precompute and store in a binary tree all the convex hulls we may need in $O(n \log n)$ time, where n = |P|

preprocessing

Since we are allowed to preprocess P, we can precompute and store in a binary tree all the convex hulls we may need in $O(n \log n)$ time, where n = |P|

This can be done by a recursion similar to the previous one, where:

- first, we recursively compute CH(F(P)) and CH(S(P))
- then, we obtain CH(P) from CH(F(P)) and CH(S(P)) (using any linear-time algorithms for computing the convex hull of (the union of) two convex polygons [PH])

rotating calipers (calibri rotanti)

- the n leaves are the edges of our path P (which coincide with their own convex hulls and from left to right occur in the same order as in P)
- \blacksquare the interior nodes correspond to subpaths of P and store the respective convex hull

Def. Let *C* be a convex polygon. The **slope of the segment** $\overline{c_i c_{i+1}}$ of *C* is the angle $\alpha_i \in [0, 2\pi)$ bw the horizontal ray originating at c_i and direct rightward and the segment $\overline{c_i c_{i+1}}$.

Def. Let *C* be a convex polygon. The **slope of the segment** $\overline{c_i c_{i+1}}$ of *C* is the angle $\alpha_i \in [0, 2\pi)$ bw the horizontal ray originating at c_i and direct rightward and the segment $\overline{c_i c_{i+1}}$.

Def. Let *C* be a convex polygon. The **slope of the segment** $\overline{c_i c_{i+1}}$ of *C* is the angle $\alpha_i \in [0, 2\pi)$ bw the horizontal ray originating at c_i and direct rightward and the segment $\overline{c_i c_{i+1}}$.

- Since *C* is convex, there exists a circular permutation of the edges of *C* such that **the sequence of slopes is nondecreasing**.
- This sequence is **unique**, and is called **the slope-sequence of** *C*.

Observation:

 ℓ crosses C iff it lies between the two tangents at C parallel to ℓ

copyright © 2025 G. Da Lozzo

Proof of Lemma 2: The positions of s' and s'' in the slope-sequence tell us the vertices of C where the tangents parallel to ℓ occur. ...

Proof of Lemma 2: The positions of s' and s'' in the slope-sequence tell us the vertices of C where the tangents parallel to ℓ occur. ...

Proof of Lemma 2: The positions of s' and s'' in the slope-sequence tell us the vertices of C

where the tangents parallel to ℓ occur. ...

Proof of Lemma 2: The positions of s' and s'' in the slope-sequence tell us the vertices of C

... If we have such vertices, we have ℓ' and ℓ'' (given that we also have s' and s''). Also, by Observation 1, $C \cap \ell \neq \emptyset$ iff ℓ lies between ℓ' and ℓ'' , which can be tested in O(1) time.

GET READY FOR FRACTIONAL CASCADING

A Data Structure for Reporting All Intersections

previously: fractional cascading

Task: Given sets $B_r \subseteq \cdots \subseteq B_2 \subseteq B_1 \subseteq A \subset \mathbb{R}$ stored in sorted order in arrays $A[1 \dots n], B_1[1 \dots m_1], B_2[1 \dots m_2], \dots, B_r[1 \dots m_r]$, perform a 1D range query [x : x']

on the **multiset** $U = A \cup (\bigcup_{i=1}^{r} B_i)$ in $O(h + r + \log n)$ time (where $h = |[x : x'] \cap U|)$

previously: fractional cascading

Task: Given sets $B_r \subseteq \cdots \subseteq B_2 \subseteq B_1 \subseteq A \subset \mathbb{R}$ stored in **sorted order** in **arrays**

 $A[1 \dots n], B_1[1 \dots m_1], B_2[1 \dots m_2], \dots, B_r[1 \dots m_r],$ perform a **1D range query** [x : x'] on the **multiset** $U = A \cup (\bigcup_{i=1}^r B_i)$ in $O(h + r + \log n)$ time (where $h = |[x : x'] \cap U|)$

key tool: we allow $n \log m_1 + \sum_{i=1}^{r-1} m_i \log m_{i+1}$ bits extra space

link $a \in A$ with smallest $b \ge a$ in B_1

link $b \in B_i$ with smallest $\hat{b} \ge b$ in B_{i+1} copyright © 2025 G. Da Lozzo

previously: fractional cascading

Task: Given sets $B_r \subseteq \cdots \subseteq B_2 \subseteq B_1 \subseteq A \subset \mathbb{R}$ stored in **sorted order** in **arrays**

 $A[1 \dots n], B_1[1 \dots m_1], B_2[1 \dots m_2], \dots, B_r[1 \dots m_r],$ perform a **1D range query** [x : x'] on the **multiset** $U = A \cup (\bigcup_{i=1}^r B_i)$ in $O(h + r + \log n)$ time (where $h = |[x : x'] \cap U|$)

key tool: we allow $n \log m_1 + \sum_{i=1}^{r-1} m_i \log m_{i+1}$ bits extra space

- 1. perform binary search on A in $O(\log n)$ time to find the smallest element $x_a = 23$ in $A \cap [20:65]$
- 2. scan *A* from x_a and report $A \cap [20:65]$
- 3. follow pointer from $x_a \in A$ to $x_b = 30 \in B_1$
- 4. scan B_1 from x_b and report $B_1 \cap [20:65]$
- 5. repeat 3 and 4, for B_2, \ldots, B_{r-1}

note: $x_b := \min \text{ element}$ in $B_1 \cap [20:65]$

example:

Strategy:

query with range [20:65]

link $a \in A$ with smallest $b \ge a$ in B_1

link $b \in B_i$ with smallest $\hat{b} \ge b$ in B_{i+1} copyright © 2025 G. Da Lozzo

fractional cascading

THE DATA STRUCTURE:

fractional cascading

THE DATA STRUCTURE:

Each **node** μ of \mathcal{T} , associated with the **convex hull** C_{μ} of a polygonal path, is equipped with:

- a sorted array A_{μ} of all the slopes occurring in the convex hulls associated with the nodes of the subtree rooted at μ
- **a sorted array** B_{μ} containing the slope-sequence of C_{μ}

fractional cascading

THE DATA STRUCTURE:

Each **node** μ of \mathcal{T} , associated with the **convex hull** C_{μ} of a polygonal path, is equipped with:

- a sorted array A_{μ} of all the slopes occurring in the convex hulls associated with the nodes of the subtree rooted at μ
- **a sorted array** B_{μ} containing the slope-sequence of C_{μ}

Consider a node μ with children ν and χ . **Each entry** x **of** A_{μ} has a pointer to:

- the smallest entry $\alpha_i \geq x$ of B_{μ}
- the smallest entry $\delta_i \geq x$ of A_{ν}
- the smallest entry $\rho_i \ge x$ of A_{χ}

Space: still only $O(n \log n)$

QUERY TIME:

- The data structure allows us to implement all the (convex polygon, line) intersection tests except for the one at the root, in O(1) time per test.
 - ♦ By Lemma 2, to decide whether to descend into the subtree rooted at μ , we just look up the slopes s' and s'' of ℓ in B_{μ} .
- There is an $O(\log n)$ cost at the root of \mathcal{T} to get the whole process started.

Query time:

 $O(\log n + \text{size of subtree of } \mathcal{T} \text{ actually visited})$

QUERY TIME:

- The data structure allows us to implement all the (convex polygon, line) intersection tests except for the one at the root, in O(1) time per test.
 - ♦ By Lemma 2, to decide whether to descend into the subtree rooted at μ , we just look up the slopes s' and s'' of ℓ in B_{μ} .
- There is an $O(\log n)$ cost at the root of \mathcal{T} to get the whole process started.

Query time:

 $O(\log n + \text{size of subtree of } \mathcal{T} \text{ actually visited})$

Our claimed query time bound of $O((h+1)\log[n/(h+1)])$ follows from the next lemma.

Lemma 3

Let \mathcal{T} be a perfectly balanced tree on n leaves and consider any subtree \mathcal{S} of \mathcal{T} with h leaves chosen among the leaves of \mathcal{T} . Then,

$$|\mathcal{S}| \le h(\lceil \log n \rceil - \lfloor \log h \rfloor) + 2h - 1.$$

Proof:

4 leaves

Our claimed query time bound of $O((h+1)\log[n/(h+1)])$ follows from the next lemma.

Lemma 3

Let \mathcal{T} be a perfectly balanced tree on n leaves and consider any subtree \mathcal{S} of \mathcal{T} with h leaves chosen among the leaves of \mathcal{T} . Then,

$$|S| \le h(\lceil \log n \rceil - \lfloor \log h \rfloor) + 2h - 1.$$

Proof:

■ In S there are h leaves and h-1 branching nodes (outdegree 2).

4 leaves

copyright © 2025 G. Da Lozzo

Our claimed query time bound of $O((h+1)\log[n/(h+1)])$ follows from the next lemma.

Lemma 3

Let \mathcal{T} be a perfectly balanced tree on n leaves and consider any subtree \mathcal{S} of \mathcal{T} with h leaves chosen among the leaves of \mathcal{T} . Then,

$$|\mathcal{S}| \le h(\lceil \log n \rceil - \lfloor \log h \rfloor) + 2h - 1.$$

Proof:

- In S there are h leaves and h-1 branching nodes (outdegree 2).
- |S| is maximized when all the **branching** nodes occur as high in \mathcal{T} as possible.

Our claimed query time bound of $O((h+1)\log[n/(h+1)])$ follows from the next lemma.

Lemma 3

Let \mathcal{T} be a perfectly balanced tree on n leaves and consider any subtree \mathcal{S} of \mathcal{T} with h leaves chosen among the leaves of \mathcal{T} . Then,

$$|\mathcal{S}| \le h(\lceil \log n \rceil - \lfloor \log h \rfloor) + 2h - 1.$$

Proof:

- In S there are h leaves and h-1 branching nodes (outdegree 2).
- |S| is maximized when all the **branching** nodes occur as high in \mathcal{T} as possible.
- Then the number of remaining **nonbranching nodes** in S is at $most h(\lceil \log n \rceil - \lceil \log h \rceil)$. \square

 $\lceil \log h \rceil$ h leaves

copyright © 2025 G. Da Lozzo

h-1 internal

final result

Theorem

Given a polygonai path P of length n, it is possible in time $O(n \log n)$ to build a data structure of size $O(n \log n)$, so that given any line ℓ , if ℓ intersects P in h edges, then these edges can be found and reported in time $O((h+1)\log[n/(h+1)])$.

final result

Theorem

Given a polygonai path P of length n, it is possible in time $O(n \log n)$ to build a data structure of size $O(n \log n)$, so that given any line ℓ , if ℓ intersects P in h edges, then these edges can be found and reported in time $O((h+1)\log[n/(h+1)])$.

Query time:

 $O(\log n + \text{size of subtree of } \mathcal{T} \text{ actually visited})$

$$\leq h(\lceil \log n \rceil - \lfloor \log h \rfloor) + 2h - 1$$

$$= h(\lceil \log n \rceil - \lfloor \log h \rfloor + 2) - 1$$

$$< h(\lceil \log n \rceil - \lfloor \log h \rfloor + \log 4)$$

$$\in O(h(\lceil \log \frac{n}{h+1} \rceil)$$

references

- [dBCvKO08] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, Mark H. Overmars: Computational geometry: algorithms and applications, 3rd Edition. Springer 2008, ISBN 9783540779735, pp. I-XII, 1-386
- [K20] Philipp Kindermann. Youtube channel on Computational Geometry. https://www.youtube.com/channel/UCuAzKw_VngkAsQh7ummYq0A
- [CG86a] Bernard Chazelle, Leonidas J. Guibas: Fractional Cascading: I. A Data Structuring Technique. Algorithmica 1(2): 133-162 (1986)
- [CG86b] Bernard Chazelle, Leonidas J. Guibas: Fractional Cascading: II. Applications. Algorithmica 1(2): 163-191 (1986)
- [PH] Pirzadeh, Hormoz: Computational geometry with the rotating calipers. PhD Thesis (1999). https://escholarship.mcgill.ca/concern/theses/fx719p46g