Multi-View Generative Models for Breast Cancer Screening

Neural Network - Project

Francesca Andreotti - 1696976

Sapienza University of Rome

September 2025

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Motivations and Aim

Motivation

- Breast cancer is the most common malignancy in women
- Mammography is a gold standard
- Main challenges:
 - * Limited data availability
 - * Inter-view variability
 - → Cranio-caudal **CC**
 - \rightarrow Mediolateral oblique **MLO**

Idea

Develop **multi-view generative models** to synthesize realistic and coherent CC/MLO mammograms, handling the trade-off between **breast shape preservation** and **image sharpness**.

Method - Radiomics-Conditioned cGAN

Task

Perform **multi-view mammogram synthesis**, generating complementary views (e.g., MLO from CC) conditioned on radiomic features.

Conditional GAN model (cGAN)

UNet-based Generator with residual connections, conditioned on radiomic features, synthesizing complementary views

PatchGAN-style Discriminator enforcing realistic and coherent image fidelity.

Input

- * CC mammogram image
- Lesion mask corresponding to the CC image
- * Radiomic feature vector

Output

Synthetic MLO mammogram corresponding to the input CC, preserving anatomical structure and lesion-specific features.

$$\mathcal{L}_{G} = \lambda_{GAN} \mathcal{L}_{GAN} + \mathcal{L}_{view} + \lambda_{L1} \mathcal{L}_{L1} + \lambda_{percep} \mathcal{L}_{percep} + \lambda_{SSIM} \mathcal{L}_{SSIM} + \lambda_{rad} \mathcal{L}_{rad}$$

Implementation

Generative Framework

- CBIS-DDSM and INbreast datasets, containing high-resolution mammograms and radiomic features.
- Pre-processing stage for converting, analysing and loading mammogram images and metadata
- Radiomic features extraction through cropped ROIs and metadata for generating radiomic vectors

Training setup

- * **Optimizer:** Adam (Ir = 2e-4 for generator/discriminator)
- * Batch size: 4 with gradient accumulation to handle memory limits.
- * **Stability measures:** Gradient clipping and Early stopping based on validation SSIM.
- Evaluation metrics: L1, SSIM, PSNR; qualitative inspection of generated MLO images.
- * Checkpointing & logging → results.csv.

Results Analysis - Quantitative metrics

Evaluation Metrics

L1 (Mean Absolute Error)

SSIM (Structural Similarity Index Measure)

PSNR (Peak Signal-to-Noise Ratio)

Metric	L1	SSIM	PSNR
Val	10977.29	0.6431	16.49 dB
Test	11519.74	0.6156	16.26 dB

Loss	Value	
$loss_G$	1.7476	
$loss_D$	0.0350	
$loss_GAN$	0.6441	
$loss_L1$	0.1885	
loss_percep	0.6301	
loss_rad	0.2120	

Results Analysis - Qualitative Metrics

Visualizations:

MLO output from training

MLO output from test

Limitations and Future Works

Main Limitations

- Dataset Size and Diversity: Limited training data may reduce generalization capability.
- Metric Limitations: SSIM, PSNR, and L1 measure image similarity but do not fully reflect clinical relevance or lesion-level fidelity.
- **Computational Resources**: High-resolution training requires substantial GPU memory and time, limiting scalability.

Future Works

- Multi-Modal Integration using attention or fusion.
- * Feed in **Multi-View Classification Systems** the generated output to exploit interview correlations and improve lesion detection.
- * Introduce Clinical Evaluation Metrics
- * Additional **Data Augmentation** and **Synthetic Data** generation
- * Explore **Diffusion Models** for higher fidelity synthesis (considering computational requirements)

Thank you for listening!

Multi-View Generative Learning for Mammography

Neural Network - Project