

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition

• Example: 7 + 6

- · Overflow if result out of range
 - Adding +ve and -ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

;

Arithmetic for Computer

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)
 - +7: 0000 0000 ... 0000 0111 -6: 1111 1111 ... 1111 1010 +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
 - Subtracting two +ve or two -ve operands, no overflow
 - Subtracting +ve from -ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - · Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

5

Arithmetic for Computer

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

/ and an out of compute

Multiplication

• Start with long-multiplication approach

Arithmetic for Computers

Multiplication Hardware

Example

Using 4-bit numbers, multiply 2₁₀x3₁₀

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: 1 ⇒ Prod = Prod + Mcand	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	00003)	0000 0100	0000 0010
2	1a: 1 ⇒ Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0 ⇒ No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001.0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 ⇒ No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

.

Arithmetic for Computers

Optimized Multiplier

• Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

1

Arithmetic for Computer

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

minmetic for Computer

Division

n-bit operands yield *n*-bit quotient and remainder

- · Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- · Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

13

Division Hardware Service of the second of

Example

• Using 4-bit numbers, let's try dividing 7_{10} by 2_{10}

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem - Div	0000	0010 0000	@110 0111
1	0 Initial values 0000 00 1: Rem = Rem - Div 0000 00 1: Rem < 0 ⇒ +Div, sll Q, Q0 = 0 0000 00 3: Shift Div right 0000 00 2: Rem < 0 ⇒ +Div, sll Q, Q0 = 0 0000 00 3: Shift Div right 0000 00 4: Rem = Rem - Div 0000 00 3: Shift Div right 0000 00 1: Rem = Rem - Div 0000 00 4: Rem ≥ 0 ⇒ sll Q, Q0 = 1 0001 00 3: Shift Div right 0001 00 1: Rem = Rem - Div 0001 00 3: Shift Div right 0001 000 3: Shift Div right 0001 000 3: Shift Div right 0001 000	0010 0000	0000 0111	
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	@111 0111
2	2b: Rem < 0 ⇒ +Div, sli Q, Q0 = 0	0000	0001 0000	0000 0111
55000	3: Shift Div right	0000	0000 1000	0000 0111
	1: Rem = Rem - Div	0000	0000 1000	@111 1111
3 4	2b: Rem < 0 => +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
19700	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	0000 0011
4	2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0 0000 3: Shift Div right 0000 1: Rem = Rem – Div 0000 2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0 0000 3: Shift Div right 0000 1: Rem = Rem – Div 0000 2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0 0000 3: Shift Div right 0000 2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0 0000 3: Shift Div right 0000 1: Rem = Rem – Div 0000 2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1 0001 3: Shift Div right 0001 1: Rem = Rem – Div 0001	0000 0100	0000 0011	
250	3: Shift Div right	0001	0000 0010	0000 0011
	1: Rem = Rem - Div	0001	0000 0010	0000 0001
5	2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Arithmetic for Computers

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Reminder (finally) Quotient (finally)

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division, use a backup table instead of restoring) generate multiple quotient bits per step
 - Still require multiple steps

17

Arithmetic for Computer

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - -div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Floating Point

normalized

not normalized

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

 -2.34×10^{56}

 $-+0.002 \times 10^{-4}$

 $-+987.02 \times 10^{9}$

In binary

 $-\pm 1.xxxxxxx_2 \times 2^{yyyy}$

Types float and double in C

1

Arithmetic for Computer

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ | significand | < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

single: 8 bits double: 23 bits double: 52 bits

S Exponent Fraction

 $x = (-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$

21

Arithmetic for Computer

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001
 - \Rightarrow actual exponent = 1 127 = –126
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $-\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 111111110
 - \Rightarrow actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $-\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001
 ⇒ actual exponent = 1 1023 = -1022
 - Fraction: 000...00 ⇒ significand = 1.0
 - $-\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110
 ⇒ actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $-\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

2

Arithmetic for Computers

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - − Single: approx 2⁻²³
 - Equivalent to $23 \times \log_{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Real to IEEE 754 Conversion

- Step 1: Decide S
- Step 2: Decide Fraction
 - Convert the integer part to Binary
 - Convert the fractional part to Binary
 - Adjust the integer and fractional parts according the Significand format (1.xxx)
- Step 3: Decide exponent

25

Arithmetic for Computer

Floating-Point Example

- Represent –0.75
 - $--0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - -S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: -1 + 127 = 126 = 011111110₂
 - Double: -1 + 1023 = 1022 = 011111111110₂
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example

 What number is represented by the singleprecision float

11000000101000...00

- -S = 1
- Fraction = $01000...00_2$
- Fxponent = 10000001_2 = 129
- $x = (-1)^1 \times (1 + 01_2) \times 2^{(129 127)}$ = $(-1) \times 1.25 \times 2^2$ = -5.0

27

Arithmetic for Computer

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Addition

- Consider a 4-digit decimal example
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1}$
- 2. Add significands
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
 - -1.0015×10^{2}
- 4. Round and renormalize if necessary
 - -1.002×10^{2}

30

Arithmetic for Computer

Floating-Point Addition

- Now consider a 4-digit binary example
 - $-\ 1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} \ (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $-1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $-1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $-1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $-1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

32

FP Adder Hardware

Example

- 12.75+7.5 ⇔ 0x414C0000 + 0x40F00000
- Calculate the following operator:
 0x41A20000 + 0xC14C0000

34

Arithmetic for Computers

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $-1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- · 2. Multiply significands
 - $-1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - -1.0212×10^{6}
- · 4. Round and renormalize if necessary
 - -1.021×10^{6}
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^{6}$

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $-1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $-1.000_2 \times 1.110_2 = 1.110_2 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $-1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $-1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve × −ve ⇒ −ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

36

Arithmetic for Computers

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - $FP \leftrightarrow integer conversion$
- · Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Odd-number registers: right half of 64-bit floating-point numbers
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

38

Arithmetic for Computer

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - -c.xx.s, c.xx.d (xx is eq, 1t, 1e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

FP Example: °F to °C

• C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

40

Arithmetic for Computer

FP Instruction Fields

Name	me Format Example					Comments		
add.s	枝	17	16	- 6	4	2	0	add.s \$f2.\$f4.\$f6
sub.s	R	47	16	-6	-4	2	1	sub.s \$f2.\$f4,\$f6
mul.s	B	17	10	- 6	4	2	2	mul.s \$f2,\$f4,\$f6
div.s	R	37	16	ē	4	2	3	div.s \$f2,\$f4,\$f6
add.d	R	17	17	-6	4	2	0	add.d \$f2,\$f4,\$f6
sub.d	R	17	17	6	4	2	1	sub.d \$f2,\$f4,\$f6
mul.d	R	17	17	6	4	2	2	mul.d \$12,\$14,\$16
div.d	R	17	17	6	4	2)	3	div.d \$f2,\$f4,\$f6
TwcI	- E	49	20	2	100			lwcl \$f2,100(\$s4)
swc1	1.1	57	20	2	100			swcl \$f2,100(\$s4)
bclt	- 1	17	080	1	25			bclt 25
bclf	L.	-17		0.	25			bclf 25
c.lt.s	R	17	10	4	2	0	80	c.1t.s \$f2.\$f4
c.lt.d	R.	17	17	41	2	0	60	c.1t.d \$f2.\$f4
Field size		6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	All MIPS instructions 32 bits

FP Example: Array Multiplication

- X = X + Y × Z
- All 32 × 32 matrices, 64-bit double-precision elements
- C code:

4

Arithmetic for Computer

FP Example: Array Multiplication

MIPS code:

```
$t1, 32
                       # $t1 = 32 (row size/loop end)
         $s0, 0
    Ιi
                      # i = 0; initialize 1st for loop
         $s1, 0
L1: li
                      \# j = 0; restart 2nd for loop
L2: 1i
        $s2, 0
                      # k = 0; restart 3rd for loop
        $t2, $s0, 5
                      # $t2 = i * 32 (size of row of x)
   addu t2, t2, s1 # t2 = i * size(row) + j
        $t2, $t2, 3  # $t2 = byte offset of [i][j]
    addu t2, a0, t2 # t2 = byte address of <math>x[i][j]
    ldc1 $f4, 0($t2)
                      # f4 = 8 bytes of x[i][j]
L3: sll $t0, $s2, 5
                      # $t0 = k * 32 (size of row of z)
    addu t0, t0, s1 # t0 = k * size(row) + j
        $t0, $t0, 3
                      # $t0 = byte offset of [k][j]
    addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
         f16, 0(t0) # f16 = 8 bytes of z[k][j]
                                                       43
```


FP Example: Array Multiplication

```
$t0, $s0, 5
                       # $t0 = i*32 (size of row of y)
addu $t0, $t0, $s2
                      # $t0 = i*size(row) + k
     $t0, $t0, 3
                      # $t0 = byte offset of [i][k]
s11
                      # $t0 = byte address of y[i][k]
addu $t0, $a1, $t0
      $f18, 0($t0)
                       # $f18 = 8 bytes of y[i][k]
mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j]
add.d $f4, $f4, $f16
                      # f4=x[i][j] + y[i][k]*z[k][j]
addiu $s2, $s2, 1
                       #  k  k  +  1
     $s2, $t1, L3
                       # if (k != 32) go to L3
bne
sdc1 $f4, 0($t2)
                      \# x[i][j] = $f4
addiu $s1, $s1, 1
                       # $j = j + 1
                      # if (j != 32) go to L2
     $s1, $t1, L2
addiu $s0, $s0, 1
                       # $i = i + 1
     $s0, $t1, L1
                       # if (i != 32) go to L1
bne
```

44

Arithmetic for Computers

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

46

Arithmetic for Computer

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- · Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent