mni practica 03.wxmx 1 / 3

Práctica 3: Interpolación MNI, Curso 20/21

El bagaje alcanzado en las prácticas anteriores permite resolver las cuestiones que se plantean a continuación.

 \rightarrow

1 Ejercicios

- 1.- Programa la forma de Lagrange del polinomio p de grado menor o igual que N que resuelve el problema de interpolación polinómica: dados $(x0,y0),(x1,y1),\ldots,(xN,yN)$ (abscisas distintas dos a dos), se tiene que $j=0,1,\ldots,N \Rightarrow p(xj)=yj$. Para ello, calcula previamente los polinomios de Lagrange. Aplícalo al problema: encuentra el polinomio p de grado menor o igual que 8 de forma que p(j/8)=sen(j/8)-j/4, $(j=0,1,\ldots,8)$. Dibuja simultáneamente las gráficas de p y de f(x)=senx-2x en el intervalo [0,1].
- 2.- Programa la forma de Newton del polinomio p que resuelve el problema de interpolación polinómica anterior. Para ello, calcula previamente los polinomios nodales y las diferencias divididas. Aplícalo a los mismos datos del ejercicio anterior y comprueba que el resultado que obtienes es el mismo.

mni practica 03.wxmx 2 / 3

3 Sea f la función en C[-1,1] definida como $f(x)=7.21 \cos(2x/\pi)$. Considera los nodos $xj=1-2j/21$, $j=0,1,\ldots,21$, los datos $(xj,f(xj))$ y los datos perturbados (xj,fj) , siendo $fj=f(xj)+10^{(-3)}(-1)^{j}$. \square Halla $\max\{ f(xj)-fj : j=0,\ldots,21\}$. \square Estima gráficamente la distancia (norma ∞) de los interpolantes obtenidos
para las dos series de datos. ¿Qué se puede decir del condicionamiento del problema de interpolación anterior?
\square Da una estimación de la constante de Lebesgue L y relaciona el valor de este número con el apartado anterior.
□ Determina los 22 nodos de Chebyshev en el intervalo [-1,1] y resuelve el problema de interpolación para esos nodos y la misma función f. Analiza el condicionamiento de este nuevo problema.
4 Resuelve el problema de interpolación de Hermite: encuentra el polinomio p de grado menor o igual que 9 de forma que $p(j)=\log j$, $p'(j)=j/2.36$, $j=1,2,3,4,5$
5 Calcula la solución del problema de interpolación de Taylor: determina el polinomio p de grado menor o igual que 5 tal que la derivada de orden j en 1.47 coincide con la integral entre 0 y 1 de la función x^j , para $j=0,1,2,3,4,5$.
6 Considera un intervalo real cualquiera [a,b], con a <b, <math="" partición="" suya="" una="" y="">P=\{x0,x1,,xN\}.</b,>

☐ Halla una base del espacio E de funciones splines continuas y afines a trozos. ☐ Utiliza la base anterior para encontrar el único elemento s de dicho espacio

E de forma que $s(xj)=\alpha j$, (j=0,1,...,N), siendo αj 's escalares dados.

conjuntamente las gráficas de s y de $f(x)=1-x^2/20.78$.

 \square Aplica lo anterior a la partición P={x0=0.4, x1=0.5, x2=2.34, x3=3.45,

elemento s de E de forma que $s(xj)=1-xj^2/20.78$, (j=0,1,...,6). Dibuja

x4=4.567, x5=5.081,x6=5.26} del intervalo [0.4,5.26] para encontrar el único

mni practica 03.wxmx 3 / 3

```
7.- Partiendo de una partición uniforme P=\{x0,x1,...,xN\} de in intervalo real cualquiera [a,b],

\square halla el único spline natural s de clase 2 y grado 3 de forma que s(xj)=\alpha j,

(j=0,1,...,N), siendo \alpha j's escalares dados,

\square aplica lo anterior a la partición P del intervalo [-2.09,4,56] en 8 subintervalos iguales y con s(xj)=\log\sqrt{(1+|xj|)}, (j=0,1,...,8) y

\square dibuja conjuntamente las gráficas de s y de f(x)=\log\sqrt{(1+|x|)}.
```