Cálculo Diferencial e Integral: Notas de Aula Domínio e Imagem em gráficos, e Noção de limite

Prof: Felipe Figueiredo

http://sites.google.com/site/proffelipefigueiredo

Versão: 20160303

1 Objetivos de aprendizagem

Ao final desta aula o aluno deve saber ...

2 Pré-requitos da aula

• Domínio e imagem

• Tabela de valores de uma função

3 Conteúdo

O aluno deve consultar o livro texto na seção 1.7 para se aprofundar no conteúdo desta aula.

3.1 Problema

Como identificar no plano cartesiano o domínio e a imagem do gráfico de uma função?

3.2 Domínio e Imagem no gráfico

Começar com alguns gráficos (ainda sem mostrar a expressão de cada função) e perguntar qual é o intervalo que corresponde ao domínio e à imagem de cada função.

3.2.1 Exemplo 1

Figura 1: Gráfico

Resposta: A função da Figura 1:

$$f(x) = 3x - 7$$

3.2.2 Exemplo 2

Figura 2: Gráfico

Resposta: a função da Figura 2:

$$f(x) = x^2 - 1$$

está definida para $-1 \leq x \leq 2,$ e sua imagem é [-1,3].

3.2.3 Exemplo 3

Podemos também concatenar duas funções

Figura 3: Gráfico

Resposta: a função da Figura 3:

$$f(x) = \begin{cases} 2, & 2 \le x \le 4 \\ \frac{x}{4} + 1, & x > 4 \end{cases}$$

está definida para $-1 \leq x \leq 2,$ e sua imagem é [-1,3].

3.2.4 Exemplo 4

Para uma concatenação de mais funções, podemos colar duas retas em uma parábola:

Figura 4: Gráfico

Função da Figura 4:

$$f(x) = \begin{cases} x+2, & x < -1 \\ -x^2 + 2, & -1 \le x \le 1 \\ 1, & x > 1 \end{cases}$$

Resposta: o domínio é \mathbb{R} , e a imagem é $[-\infty, 2]$.

3.3 Noção de Limite

3.3.1 Exemplo 1

- Juntar os alunos em duplas;
- Pegar as calculadoras;
- \bullet Lembrar que na prova ${\bf n\tilde{a}o}$ será permitida a calculadora
- Calcular os valores de f(x) para os valores de x abaixo, e preencher a tabela.
- Caso falte tempo, fazer somente esse na calculadora, e entregar os valores para oos dois últimos exemplos.

"Para que valor a função f(x) se aproxima, quando x se aproxima de 1?"

$$f(x) = 2x + 3$$

x	$x \mid f(x)$	
0,95	4,90	
0,96	4,92	
0,97	4,94	
0,98	4,96	
0,99	4,98	

x	f(x)
1,010	5,020
1,009	5,018
1,008	5,016
1,007	5,014
1,006	5,012

3.3.2 Exemplo 2

(Neste exemplo, a calculadora ainda vai encontrar uma boa aproximação do limite).

$$f(x) = \frac{x-2}{x^2 - 4}$$

, definida no intervalo]-2,2[.

O que acontece com f quando x se aproxima de 2?

x	f(x)		$x \mid$	f(x)
1,95	0,25316	2,01	0	0,2423
1,96	0,25253	2,00	9	0,2494
1,97	0,25189	-2,00	8	0,2495
1,98	0,25126	-2,00	7	0,2495
1,99	0,25063	-2,00	6	0,2493

Neste ponto, explicar como proceder algebricamente (produto notável, diferença de dois quadrados).

3.3.3 Exercício

$$f(x) = \frac{x^2 - 25}{x + 5}$$

f(x), definida no intervalo]-5,5[.

Usar álgebra para descobrir o que acontece com f quando x se aproxima de -5?

3.3.4 Exemplo 3

Agora os alunos verão **porque** não é permitido calculadora nesta disciplina! Eis um exemplo em que a calculadora "erra".

$$f(x) = \frac{\sqrt{x^2 + 9} - 3}{x^2}$$

 $f: \mathbb{R}^* \to \mathbb{R}$, estudar o comportamento de f para x próximo de 0.

Quando x está perigosamente próximo de 0, a função parece assumir o valor 0. Será que este é o limite?

Não! O limite é $\frac{1}{6}$!

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^2} = \lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^2} \times \frac{(\sqrt{x^2 + 9} + 3)}{(\sqrt{x^2 + 9} + 3)}$$

$$= \lim_{x \to 0} \frac{\sqrt{x^2 + 9}^2 - 3^2}{x^2(\sqrt{x^2 + 9} + 3)} = \lim_{x \to 0} \frac{\sqrt{x^2 + 9}^2 - 3^2}{x^2(\sqrt{x^2 + 9} + 3)}$$

$$= \lim_{x \to 0} \frac{x^2 + (9 - 9)}{x^2(\sqrt{x^2 + 9} + 3)} = \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 9} + 3}$$

$$= \lim_{x \to 0} \frac{1}{\sqrt{9} + 3} = \frac{1}{6}$$

Não confie cegamente na calculadora!