Statistics

timritmeester

October 2023

1 Asymptotic analysis

1.1 Limits

We can get as close to our goals as we want by making δ smaller.

Limit from above

Setting: A function $f: I \mapsto \mathbb{R}^n$ with $(0, a) \subset I \subset \mathbb{R}$ for some a and some n

We define the limit of $\mathbf{f}(x)$ as x approaches 0 from above as:

$$\lim_{x \searrow 0} \mathbf{f}(x) = \mathbf{0} \tag{1}$$

 \leftrightarrow for every $\epsilon \in \mathbb{R}_{>0}$ there is a $\delta \in \mathbb{R}_{>0}$ s.t. $|\mathbf{f}(x)| < \epsilon$ for all $0 < x < \delta$.

Interpretation: f becomes arbitrarily close to zero for all small enough $x \leftrightarrow \text{You}$ can make **f** however small you want it to be by picking a small enough x.

Exercise Why don't we make the definition $\left[\lim_{x\searrow 0} f(x) = 0\right] \leftrightarrow \left[\text{for every } \epsilon \in \mathbb{R}_{>0} \text{ there is an } x > 0 \text{ s.t. } |f(x)| < \epsilon\right]$? For what kind of functions does this give a different answer? Give an example.

Limit along a path

$$\lim_{\epsilon \searrow 0} E_{\delta} = 0 \tag{2}$$

- \leftrightarrow E becomes arbitrarily close to zero for all small enough $\delta \in \mathbb{R}_{>0}$ (3)
- \leftrightarrow for every $\epsilon \in \mathbb{R}_{>0}$ there is a $\delta \in \mathbb{R}_{>0}$ s.t. $|E_{\delta}| < \epsilon$. (4)

Limit

$$\lim_{\delta \to 0} E_{\delta} = 0 \tag{5}$$

- \leftrightarrow E becomes arbitrarily close to zero for all small enough δ (6)
- for every $\epsilon \in \mathbb{R}$ there is a $\delta \in \mathbb{R}_{>0}$ s.t. $|f(x)| < \epsilon$. (7)

This is nice, but we also want to know how fast our estimate approach 0 for small δ , to 1. see if ϵ is small enough to reach our required precision, and 2. to compare different expressions (does one 'expression approach zero fast than the other?).

1.2 Big O notation

Big-O notation

$$f_{\epsilon} = O(g_{\epsilon}) \text{ as } \epsilon \to 0$$
 (8)

$$\leftrightarrow$$
 (9)

$$\leftrightarrow \quad \text{there is a } C \in \mathbb{R}_{>0} \text{ s.t. there is an } \epsilon * \text{ s.t. } |\frac{\epsilon}{\epsilon}| < C \text{ for all } \epsilon < \epsilon * \ .$$

$$\tag{10}$$

Little-O notation

$$f_{\delta} = (g_{\delta}) \text{ as } \delta \to 0$$
 (11)

$$\cdot \tag{12}$$

$$f_{\delta} = (g_{\delta}) \text{ as } \delta \to 0$$
 (11)
 $\leftrightarrow \lim_{\delta \to 0} f(x)/g(x) = 0.$ (13)

Asymptotic equivalence

 f_{δ} is asymptotically equivalent to g_{δ} (as $\delta \to 0$ if:

$$f_{\delta} \sim g_{\delta} \text{ as } \delta \to 0$$
 (14)

$$\leftrightarrow$$
 (15)

$$f_{\delta} \sim g_{\delta} \text{ as } \delta \to 0$$
 (14)
 $\leftrightarrow \lim_{\delta \to 0} f(x)/g(x) = 1.$ (15)

2 Taylor series

Derivative is the best linear approximation $\to f(x) \approx f(0) + \frac{\mathrm{d}f(x)}{\mathrm{d}x}\big|_{x=0} \cdot x$ What is the error? Consider by the fundamental theorem of calculus that $f(x) = f(0) + \int_0^x f'(x) \mathrm{d}x$.

3 Saddle-point approximation

Consider

$$\int \exp(-ax^2 + \epsilon x^4) \tag{17}$$