Unsupervised Learning

Understanding Distance

	x =	y	z [‡]
1	0	0	0
2	50	50	50
3	100	100	100

	x	у =	z [‡]
1	0	0	0
2	50	50	50
3	100	100	100

	x	y	z [‡]
1	0	0	0
2	50	50	50
3	100	100	100

5 6 7 8 10

3 4 5 6 7 8 9 10

distance = X2 - X1 1 2 3 4 5 6 7 8 9 10

distance = X1 - X2 3 4 5 6 7 8 9

distance = X1 - X2 3 4 5 6 7 8 9

 $distance = \sqrt{(x_1 - x_2)^2}$ 1 2 3 4 5 6 7 8 9

$$(a+b)^2 = 4\frac{ab}{2} + c^2$$

$$a^2 + 2ab + b^2 = 2ab + c^2$$

$$a^2 + b^2 = c^2$$

$$(a+b)^2 = 4\frac{ab}{2} + c^2$$

$$a^2 + 2ab + b^2 = 2ab + c^2$$

$$a^2 + b^2 = c^2$$

$$(a+b)^2 = 4\frac{ab}{2} + c^2$$

$$a^2 + 2ab + b^2 = 2ab + c^2$$

$$a^2 + b^2 = c^2$$

$$d(\mathbf{p},\mathbf{q}) = d(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2}$$

$$d(\mathbf{p},\mathbf{q}) = d(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2}$$

$$= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}.$$

$$d(\mathbf{p},\mathbf{q}) = d(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2}$$

$$= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}.$$

euclidian distance

Watson IoT © Copyright IBM Corp. 2018

$$d_1(\mathbf{p}, \mathbf{q}) = \|\mathbf{p} - \mathbf{q}\|_1 = \sum_{i=1}^{n} |p_i - q_i|$$

n

 $d_1(\mathbf{p},\mathbf{q}) = \|\mathbf{p}-\mathbf{q}\|_1 = \sum |p_i-q_i|$

Summary