Força e movimento

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

19 de outubro de 2022

Sumário

- 1 Introdução
- 2 As três leis de Newton
- Algumas forças específicas
- Apêndice

As três leis de Newton Algumas forças específicas

Mecânica newtoniana

- ✓ A mecânica newtoniana consiste no estudo do movimento através as três Leis de Newton, que exprime a relação entre a força e a aceleração produzida por essa força;
- ✓ A mecânica newtoniana pode ser aplicado no estudo dos mais diversos objetos;
- ✓ A mecânica newtoniana não se aplica a todos os casos:
 - X Para velocidades muito elevadas, se comparadas a velocidade da luz, a mecânica newtoniana é substituída pela teoria da relatividade restrita;
 - X Para objetos muito pequenos, de dimensões subatômicas, a mecânica newtoniana é substituída pela mecânica quântica.

Referencial e movimento relativo

Considerando o movimento de três pessoas, podemos dizer que João vê o movimento da Maria com velocidade \vec{v}_{JM} . Além disso, João vê o movimento da Inês como \vec{v}_{JI} . Vetorialmente, podemos dizer que

$$\vec{v}_{JI} = \vec{v}_{JM} + \vec{v}_{MI}.$$

Agora, como a Maria enxerga o movimento da Inês. Para isso, mudamos o referencial do João para Maria, ou seja,

$$\vec{v}_{MI} = \vec{v}_{JI} - \vec{v}_{JM}$$
.

Vetores posição de João, Maria e Inês.

Referenciais inerciais

Referencial inercial

Referencial no qual as Leis de Newton são válidas.

Objeto com maior inércia.

Objeto com menor inércia.

Corollary

A taxa de variação do estado de movimento de um objeto depende da massa desse objeto, definido como a inércia do movimento.

Referenciais não inerciais

O trem e a pessoa dentro dele são considerados referenciais não-inerciais para o observador exterior. Por isso a pessoa que está no vagão vê a bola inclinada, como se existisse uma força fictícia empurrando ela para trás, contradizendo as Leis de Newton do movimento.

Primeira Lei de Newton

Corollary

Se nenhuma força resultante atua sobre um objeto, a velocidade não pode mudar, ou seja, o objeto não pode sofrer aceleração.

Na figura ao lado, se $F_1 = F_2$ e $F_3 = F_4$ temos que a força resultante será zero, portanto o objeto permanecerá com a mesma velocidade \vec{v} .

Corollary

Mesmo que um objeto esteja submetido a várias forças, se a resultante das forças for zero, o objeto não sofrerá aceleração.

Forças atuando em um objeto se movendo com velocidade constante.

Segunda Lei de Newton

Corollary

A força resultante que age sobre um objeto é igual ao produto da massa do objeto pela aceleração. Em termos matemáticos, podemos escrever como

$$\vec{F}_{res} = m\vec{a}$$
.

Corollary

No SI a unidade de medida da força é Newton (N),

$$1 N = 1 kg m/s^2$$

Relação entre força, massa e aceleração.

Diagrama de objeto isolado

Sabendo que a segunda lei de Newton é uma equação vetorial, é conveniente separá-la em três equações, uma para cada eixo do sistema de coordenadas xvz.

$$ec{F}_{\mathsf{res},x} = m a_x, \quad ec{F}_{\mathsf{res},y} = m a_y, \quad ec{F}_{\mathsf{res},z} = m a_z,$$

A componente da aceleração em relação a um dado eixo é causada apenas pela soma das componentes das forças em relação a esse eixo e não por componentes de forças em relação a qualquer outro eixo.

Diagrama de objeto isolado da esfera M.

Terceira Lei de Newton - Ação e reação

Terceira Lei de Newton

Quando dois objetos (1 e 2) interagem, as forças qua cada objeto exerce sobre o outro são iguais em módulo e têm sentidos opostos,

$$\vec{F}_{12} = -\vec{F}_{21}$$
.

Corollary

A somatória das forcas no sistema é zero.

Sistema carregador+caixa e representação da terceira lei de Newton.

Força gravitacional

Considere o objeto de massa m caindo em quedra livre. Nesse caso a única força atuando nele é a força da gravidade. Relacionando com a segunda lei de Newton $(\vec{F}=m\vec{a})$ temos

$$\vec{F}=m\vec{g}$$
.

Considerando que o deslocamento que o objeto realiza é insignificante ao tamanho da Terra, podemos dizer que \vec{g} é praticamente constante.

Aceleração da gravidade em diferentes latitudes.

Latitude	$g(m/s^2)$
0	9,7803
30	9,7932
45	9,8017
60	9,8191
90	9,8322

Corollary

O peso P de um objeto é igual ao módulo da força gravitacional que age sobre o objeto, aplicando nele uma aceleração igual a g.

Força Normal

Considere um bloco de massa m pressionando uma mesa para baixo devido a força da gravidade \vec{F}_g . Pela terceira lei de Newton, a mesa irá empurrar o bloco para cima aplicando uma força \vec{F}_N com a mesma intensidade.

Forças peso \vec{P} e normal \vec{N} .

Corollary

- ✓ Quando um objeto exerce uma força sobre uma superfície, a superfície (ainda que aparentemente rígida) se deforma e empurra o objeto com uma força normal que é perpendicular à superfície;
- ✓ A força normal será sempre perpendicular a superfície de contanto.

Tração

Quando uma corda é presa a um objeto e esticada, a corda aplica ao objeto uma forca \vec{T} orientada na direção da corda. Essa forca é chamada forca de tração.

- ✓ A corda é frequentemente considerada sem massa:
- ✓ As forças nas duas extremidades da corda são iquais em módulo.

Tração atuando na corda e nos blocos A e B.

Força de atrito

A experiência mostra que, quando um objeto não lubrificado pressiona uma superfície nas mesmas condições, a força de atrito possui três propriedades:

- ✓ Se o objeto não se move, a força de atrito se iguala em módulo a força \vec{F} ;
- ✓ A força de atrito possui valor máximo de $f_{max} = \mu_s N$, onde μ_s é o coeficiente de atrito estático e N o módulo da força normal;
- ✓ Se o objeto começa a deslizar na superfície, o módulo da força de atrito diminui rapidamente para um valor dado por $f_k = \mu_k N$, onde onde μ_k é o coeficiente de atrito cinético, $\mu_k < \mu_s$.

Relação entre força de atrito e a força atuando no objeto (continuação)

- ✓ A força de atrito é zero se não há outras forças atuando no objeto;
- ✓ A força de atrito é igual a força externa se o objeto está em repouso;
- ✓ A força de atrito máxima é igual a $\mu_s N$.
- ✓ Se o objeto está em movimento a força de atrito é igual a $\mu_k N$.

Relação entre força de atrito e a tração na corda.

Prof. Flaviano W. Fernandes IFPR-Irati

Introdução

Força de arrasto

Quando um objeto se movimenta na presença de um fluido como o ar, ele experimenta uma força de resistência ao seu movimento chamada força de arrasto dado por

$$F_{arrasto} = bv^2$$
,

onde b é o coeficiente de arrasto que depende da densidade do ar e da área de contato do objeto. $F_{arrasto}$ aumenta com o quadrado da velocidade, portanto à medida que o objeto acelera $F_{arrasto}$ aumenta.

Força de arrasto atuando em um objeto em queda.

Força de arrasto (continuação)

A força de arrasto é contrária a força da gravidade, portanto à medida que $F_{arrasto}$ aumenta a aceleração diminui. Portanto, a velocidade atinge um limite chamado velocidade terminal v_t . Aplicando a segunda lei de Newton,

$$bv^2 - F_g = 0.$$

Velocidade terminal

$$v_t = \sqrt{\frac{F_g}{b}}.$$

Velocidade terminal.

Força centrípeta

Vimos que um objeto que descreve uma trajetória circular de raio r está sujeito a uma aceleração apontada para o centro da circunferência chamada aceleração centrípeta, $a=v^2/r$. Pelas leis de Newton, a aceleração em um objeto é devido a uma força resultante, portanto podemos dizer que existe uma força sendo aplicada no caso do movimento circular. Essa força é chamada de força centrípeta,

$$F=m\frac{v^2}{r}$$
.

Força centrípeta e velocidade tangencial em um movimento circular.

Transformar um número em notação científica

Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

$$1~\text{mm} = 1 \times 10^{(-1) \times \textcolor{red}{2}}~\text{dm} \rightarrow 1 \times 10^{-2}~\text{dm}$$

$$2,5~kg=2,5\times10^{(1)\times6}~mg\rightarrow2,5\times10^6~mg$$

$$10 \text{ ms} = 10 \times 10^{(-1) \times 3} \text{ s} \rightarrow 10 \times 10^{-3} \text{ s}$$

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5~\text{m}^2 = 2,5 \times 10^{(2) \times 3}~\text{mm}^2 \rightarrow 2,5 \times 10^6~\text{mm}^2$$

$$10 \text{ ms}^2 = 10 \times 10^{(-2) \times \textcolor{red}{3}} \text{ s}^2 \rightarrow 10 \times 10^{-6} \text{ s}^2$$

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times \textcolor{red}{3}} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

$$2,5 \text{ km}^3 = 2,5 \times 10^{(3) \times 6} \text{ mm}^3 \rightarrow 2,5 \times 10^{18} \text{ mm}^3$$

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	Κ	κ
Lambda	٨	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Р	ho
Sigma	Σ	σ
Tau	Τ	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Observações¹

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.

Referências

D. Halliday, R. Resnick, J. Walker, Fundamentos de física. Mecânica, v.1, 10. ed., Rio de Janeiro, LTC (2016)