Algebra Review

1. If
$$4^{x+1} = 16$$
, then $x =$

- (A) 1
- (B) 3
- (C)5

$$4^{X+1} = 4^{2}$$
 $x+1=2$
 $x=1$

2. If f(x) = 2x + 1, then the inverse function $f^{-1}(x) =$

- (A) 2x 1 (B) $\frac{x}{2} 1$ (C) $\frac{x 1}{2}$ (D) 2(x 1)

$$y = 2x + 1 \rightarrow x = 2y + 1 \rightarrow x - 1 = 2y \rightarrow \frac{x - 1}{2} = y = f^{-1}(x)$$

- 3. What are all values of x for which |x + 3| = x + 3?
- (A) All real numbers

- (B) All $x \ge -3$ |x+3| = x+3 |x+3| = x+3 |x+3| = x+3 |x+3| = x+3

(C) All $x \ge 0$

(D) All x > 3

x 3-3

4. If
$$f(x) = 3x - 1$$
 then $f(f(2)) =$

- (A) 5

$$f(2) = S(2) - 1 = S$$

(B) 14 (C) 25 (D) $(3x-1)^2$ f(2) = 3(2)-1=5, f(f(2)) = f(5) = 3(5)-1=14

5.
$$\frac{x^2 + 5x + 6}{x + 1}$$
 is not defined for $x =$

- (A) -3
- (B) -2
- (C) -1
- (D) 1

6. If $3^6 \times 3^x = 1$, then x equals

- (A) 6
- (B) $\frac{1}{6}$ (C) $-\frac{1}{6}$
- $(D) 6) 3^{6} \cdot 3^{x} = 3^{6+x}$ $l_0+x=0 \rightarrow x=-6$

7. You are asked to write a quadratic equation where the sum of the roots is -3, and the product of the roots is -9. Which equation meets these requirements?

(A) $x^2 + 3x + 7 = 0$

(B) $2x^2 + 6x - 18 = 0$ $2(x^2 + 3x - 9) = 0$

- (C) $x^2 12x + 27 = 0$

$$(x-9)(x-3)=0$$

 $(x-9)(x-3)$

(D)
$$(x + 3)(x + 9) = 0$$

 $(x - 3) - 9 \times$

8. If
$$f(x) = \frac{x}{2}$$
, then $f(x + 3) = \frac{x + 3}{2}$

- (A) $\frac{x+3}{2}$
- (B) $\frac{x}{2} + 3$ (C) $x + \frac{3}{2}$
- (D) x + 6

9. If $y = 5^x$, which of the following indicates all possible values of y?

(A) All real numbers

(B) All $y \ge 0$

(C) All y > 0

(D) All $v \geq 5$

10. If a and b are positive, $\log\left(\frac{a^2b}{3}\right) = \log\left(\alpha^2\right) + \log\left(b\right) - \log\left(3\right) = 2\log \alpha + \log b - \log 3$

- (A) $2 \log a + 2 \log b \log 3$
- (B) $2 \log a + \log b \log 3$ (D) $\log 2 + \log a + \log b \log 3$

(C) $2 \log ab - 3$

11. What is the domain of $f(x) = \sqrt{3-x}$? $3-x \ge 0$ $3 \ge x$ $x \le 3$

$$(A) x \le 3$$

- (B) x < 3
- (C) x > -3 (D) $x \ge -3$

12. The graph of $y = -\frac{1}{4^x}$ is the same as the graph of which of the following?

$$(A) \ y = \left(-\frac{1}{4}\right)^x$$

$$(B) y = -(4^{-x})$$

$$-\frac{1}{4^{\times}}=-\left(4^{-\times}\right)$$

(C) $y = -(4^x)$

(D)
$$y = 4^{-x}$$

13. Which of the following is NOT the graph of a function y = f(x)?

14. What is the solution set for the equation |2x - 3| = 6?

2x-3=-6

- (A) {}
- (B) {4.5}
- (C) {4.5, -1.5}
- (D) {-4.5, -1.5}

=-1.5

15. What is one solution for the accompanying system of equations?

$$y = x^2 - 9$$
, $y = x + 3$

$$x^2 - 9 = x + 3$$

 $x^{2}-x-12=0$

- (A)(3,0)
- (B) (4, 7)
- (C)(0,-3)
- (D)(7,4)

$$(x-4)(x+3)=0$$

$$x=4,-3$$

 $y=4^2-9=7$

- 16. The expression $(\sqrt[3]{a^4})(a^{-\frac{1}{2}})$ when simplified, is equivalent to
- (A) $\sqrt[3]{a^{-2}}$

- (B) $\sqrt[4]{a^3}$ (C) $\sqrt[5]{a^{-4}}$ (D) $\sqrt[6]{a^5}$ ($\sqrt[4]{a^5}$) $\sqrt[4]{a^3}$ $\sqrt[4]{a^3}$
- 17. Which interval represents the range of the function $y = 2^x 1$?

 (A) $(1, \infty)$ (B) $(-1, \infty)$ (C) $[1, \infty)$ (D) $[-1, \infty)$ for $x \in \mathbb{R}$ with $x \in \mathbb{R}$ $(-1, \infty)$

- 18. The fraction $\frac{\frac{x}{y} + x}{\frac{1}{y} + 1}$ is equal to
- $\frac{\frac{x}{y} + x}{\frac{1}{y} + 1} \cdot \frac{y}{y} = \frac{x + xy}{1 + y} = \frac{x(1+y)}{1+y} = x$

- (A) $\frac{2xy}{1+y}$
- (B) $\frac{x^2y}{1+y}$
- (C) x
- (D) 2x

- 19. The graph corresponds to which function?
- $(A) (e^{2+x})$
- (B) ln(x + 1)
- (C) ln(x-1)
- (D) $\frac{-2}{a^x}$

- 20. What is the solution set of the equation $|x^2 2x| = 3x 6$?
- (A) $\{2, \pm 3\}$
- (B) $\{2\}$
- (C) $\{\pm 3\}$
- (D) $\{2,3\}$
- $X^2 2x = 3x 6$ x(x-2) = 3(x-2) x(x-2) = -3(x-2)
- Check: |4-4| = 3(2)-6 19-61=9-61 19+61=-9-6X

21. Given
$$f(x) = 2x^2 - 2x + 1$$
, find $f(x + 3)$.

$$2(x+3)^{2}-2(x+3)+1$$

(A)
$$2x^2 + 10x + 13$$

(B)
$$2x^2 + 10x + 25$$

(B)
$$2x^2 + 10x + 25$$
 $2(x^2 + 6x + 9) - 2x - 6 + 1$

(C)
$$2x^2 + 14x + 13$$

(D)
$$2x^2 + 14x + 25$$
 $2x^2 + 12x + 18 - 2x - 5$

$$x + 12x + 18 - 2x - 5$$

$$2x^2 + 10x + 13$$

22. Find the domain of the function $f(x) = \frac{x+2}{\sqrt{x-3}}$

(A)
$$(-\infty, \infty)$$

$$(C)[3,\infty)$$

23. Simplify the expression
$$\frac{6x^2+3x}{3x}$$
. $\frac{3\times(2\times+1)}{3\times}=2\times+1$

$$\frac{3\times(2\times+1)}{3\times}=2\times+$$

(A)
$$6x^2$$

(B) 2x

(C)
$$2x + 1$$

(D) Not Given

24. Determine the slope of a line that contains the point (12,-3) and (12,5). $\frac{5--3}{12-12} = \frac{8}{0}$

$$\frac{S--3}{12-12}=\frac{8}{0}$$

$$(B) - 8$$

25. Find the difference
$$\frac{6}{8x} - \frac{x}{6}$$
, $x \neq 0$ $\frac{6}{2.4x} - \frac{x}{2.3} = \frac{6}{2.4x} \cdot \frac{3}{3} - \frac{x}{2.3} \cdot \frac{4x}{4x} = \frac{18 - 4x^2}{24x} = \frac{9 - 2x^2}{12 \times 4x}$

(A)
$$\frac{6-x}{8x-6}$$

(B)
$$\frac{1}{8}$$

(A)
$$\frac{6-x}{8x-6}$$
 (B) $\frac{1}{8}$ (C) $\frac{-2x^2+9}{12x}$ (D) $\frac{6-x}{48x}$

$$(D) \frac{6-x}{48x}$$

26. Simplify the expression
$$\frac{9x^2y^3}{12xy^4} \qquad \frac{\cancel{3} \cdot \cancel{3} \cancel{x}^{\cancel{x}} \cancel{y}^{\cancel{x}}}{\cancel{x} \cdot \cancel{4} \cancel{x} \cancel{y}^{\cancel{x}}} = \frac{\cancel{3} \cancel{x}}{\cancel{4} \cancel{y}}$$

$$\frac{\cancel{3} \cdot \cancel{3} \cancel{\cancel{x}}^{\cancel{x}} \cancel{\cancel{x}}}{\cancel{\cancel{x}} \cdot \cancel{\cancel{x}} \cancel{\cancel{x}} \cancel{\cancel{x}}} = \frac{\cancel{3} \cancel{x}}{\cancel{\cancel{x}} \cancel{\cancel{x}}}$$

(A)
$$\frac{3}{4}xy$$

(A)
$$\frac{3}{4}xy$$
 (B) $3xy^3\left(\frac{3x}{4y}\right)$ (C) $\frac{3x}{4y}$ (D) Not Given

(C)
$$\frac{3x}{4y}$$

27. Add the fractions
$$\frac{3}{x-y} + \frac{3}{x+y}$$

27. Add the fractions
$$\frac{3}{x-y} + \frac{3}{x+y}$$
. $\frac{3(x+y) + 3(x-y)}{(x-y)(x+y)} = \frac{3x + 3y + 3x - 3y}{x^2 - y^2} = \frac{6x}{x^2 - y^2}$

$$(A) \ \frac{6}{x+y^2}$$

(B)
$$\frac{6x + 6y}{x^2 - y^2}$$

(C)
$$\frac{12}{x-y}$$

$$(D) \frac{6x}{x^2 - y^2}$$

(A)
$$y = \frac{1}{5}x + 1$$

(B)
$$y = 6x + 7$$

$$y - 1 = \frac{1}{6}(x+1)$$

$$y - 1 = \frac{1}{6}x + \frac{1}{6}$$

$$y = \frac{1}{6}x + \frac{7}{6}$$

 $M = \frac{2-1}{8-1} = \frac{1}{6}$

(C)
$$y = \frac{1}{6}x + \frac{7}{6}$$

29. Determine the point at which the lines
$$x + 2y = 9 \& -2x - 3y = -3$$
 intersect.

$$(A)(-3,3)$$

(D) No Solution
$$2(x+2y=9)$$

30. Simplify the fraction
$$\left(\frac{8x^3}{27y^6}\right)^{-\frac{1}{3}} = \left(\frac{27y^6}{8x^3}\right)^{\frac{1}{3}} = \frac{27^{\frac{1}{3}}y^2}{8^{\frac{1}{3}}x} = \frac{3\sqrt{27}y^2}{\frac{3}{8}x^3} = \frac{3\sqrt{27}y^2}{2x} + \frac{2x+4y=18}{-2x-3y=-3} + \frac{2x+4y=18}{-2x-3y=-3}$$
(A) $-\frac{2x}{3y^2}$ (B) $\frac{8}{27}xy^2$ (C) $\frac{3y^2}{2x}$ (D) Not Given

$$(A) -\frac{2x}{3y^2}$$

(B)
$$\frac{8}{27}xy^2$$

$$(C) \frac{3y^2}{2x}$$

31. Given the function
$$f(x) = \begin{cases} 6x - 1, & \text{if } x \le -1 \\ 3x + 1, & \text{if } x > -1 \end{cases}$$
, find $f\left(-\frac{1}{3}\right)$

(A) 2

(B) 0

(C) -3

(D) -1

 $-\frac{1}{3} > -\frac{1}{3} > -\frac$

32. Find the
$$x$$
 – intercepts of the graph of the function $f(x) = x^2 - 3x + 1$ $0 = x^2 - 3x + 1$

$$(A) \{0, 2\}$$

(B)
$$\{1, 0\}$$

(C) {-1, -2} (D) Not Given
$$\chi = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(1)^2}}{2}$$

= $\frac{3 \pm \sqrt{9 - 4^2}}{2}$

33. Find and simplify
$$f(x + h) - f(x)$$
, where $f(x) = 2x^2 - 5$

(A)
$$2h^2 - 5$$

(B)
$$2h^2 + 4xh + 4x^2 - 10$$

(C)
$$2h^2 - 10$$

$$(D) 2h^2 + 4xh$$

(D)
$$2h^2 + 4xh$$
 $2(x+h)^2 - 5 - (2x^2 - 5)$
= $2(x^2 + 2xh + h^2) - 5 - 2x^2 + 5$
= $2x^2 + 4xh + 2h^2 - 2x^2 = 4xh + 2h^2$

34. State the domain of the function
$$f(x) = \sqrt{3x + 2}$$

(A)
$$x \le -\frac{2}{3}$$

(B)
$$x < -\frac{2}{3}$$

(C)
$$x \ge -\frac{2}{3}$$

(D)
$$x > -\frac{2}{3}$$

35. Solve the exponential equation
$$5^{-n} = 125^{3n+5}$$

$$5^{-n} = (5^3)^{3n+5}$$

$$5^{-n} = (5^3)^{3n+5}$$

(A)
$$n = -\frac{3}{2}$$

(C) $n = -\frac{1}{2}$

(B)
$$n = -\frac{5}{4}$$

(B)
$$n = -\frac{5}{4}$$
 $5^{-n} = 5^{3(3n+5)}$

(C)
$$n = -\frac{1}{2}$$

(D) Not Given
$$-0 = 90 + 15$$

$$-15 = 100$$

$$0 = -1.5$$

36. Simplify the expression $2 \log(x) + \log(y)$

$$(A) \log 2(x+y)$$

(B)
$$\log(x^2y)$$

$$2 log(x) + log(y)$$

(C)
$$\log\left(\frac{x^2}{y}\right)$$

(D)
$$\log(xy)^2$$

(A)
$$\log 2(x + y)$$
 (B) $\log(x^2y)$
$$= \log(x^2) + \log(y)$$
 (C) $\log\left(\frac{x^2}{y}\right)$ (D) $\log(xy)^2$
$$= \log(x^2y) + \log(y)$$

$$= \log(x^2y)$$

37. A 12ft-long ladder is leaning against the side of a building. The base of the ladder is 6ft from the base of the building. Approximately how far up the side of the building does the ladder reach?

- (A) 13.4 feet
- (B) 10.4 feet
- (C) 8 feet
- (D) Not enough information.

$$a^{2} + b^{2} = 12^{2}$$

$$a^{2} + 3b = 144$$

$$a^{2} = 108$$

$$a = \sqrt{108} \approx 10.4 \text{ ft}$$