Practical No: 7

Aim: Interfacing DAC0808 with 8051 microcontroller.

Theory:

The Digital to Analog converter (DAC) is a device, that is widely used for converting digital pulses to analog signals. There are two methods of converting digital signals to analog signals. These two methods are binary weighted method and R/2R ladder method. In this article we will use the MC1408 (DAC0808) Digital to Analog Converter. This chip uses R/2R ladder method. This method can achieve a much higher degree of precision. DACs are judged by its resolution. The resolution is a function of the number of binary inputs. The most common input counts are 8, 10, 12 etc. Number of data inputs decides the resolution of DAC. So if there are n digital input pin, there are 2^n analog levels.

DAC0808 Pinout

DAC0808 Pin Description:

pin	Pin Name	Description	
Number	NC	No connection	
1	GND	Ground	
2	VEE	Negative power supply	
3	10	Output signal pin	
5	Al	Digital input bit 1 (Most Significant Bit)	
6	A2	Digital input bit 2	
7	A3	Digital input bit 3	
8	A4	Digital input bit 4	
9	A5	Digital input bit 5	
10	A6	Digital input bit 6	
11	A7	Digital input bit 7	
12	A8	Digital input bit 8 (Least Significant Bit)	
13	VCC	Positive power supply	
14	VREF+	Positive reference voltage	
15	VREF-	Negative reference voltage	
16	COMPENSATION	Compensation capacitor pin	

Generating Sinewave using DAC and 8051 Microcontroller:

For generating sinewave, at first we need a look-up table to represent the magnitude of the sine value of angles between 0° to 360°. The sine function varies from -1 to +1. In the table only integer values are applicable for DAC input. In this example we will consider 30° increments and calculate the values from degree to DAC input. We are assuming full-scale voltage of 10V for DAC output. We can follow this formula to get the voltage ranges.

$$V_{out} = 5V + (5 \times \sin\theta)$$

Let us see the lookup table according to the angle and other parameters for DAC.

Angle(in θ)	sinθ	Vout (Voltage Magnitude)	Values sent to DAC
0	0	5	128
30	0.5	9.33	238
60			
90	1.0	10	255
120	0.866	9.33	238
150	0.5	7.5	192
180	0	5	128
210	-0.5	2.5	64
240	-0.866	0.669	17
270	-1.0	0	0
300	-0.866	0.669	17
330	-0.5	2.5	64
360	0	5	128

Circuit Diagram -

The output will look like this -

Rajdhani Name - Amey Sonjay Vanave

Rolling - 20151206

Rolling - ETX Am: Interfacing DAC0808 with 80'SI microcontrollers. Program: # 9ncwde <reg 51.h?

9ncwde <math.h?

unsigned chax: val [] = {0 x 86,0 x 86,0 x 86,

8x 93...0 x 7A]; Il vord delay consigned ant atime? Pot 9,5; for (9=0; 9 <= 9 Hme; 9++) 11 for (9=0; 9 (=50; 3++); Vold main (vold) proximal Plas of post unsigned char 9; while (1) PI = Val [9]; 9f (97=112) 11 delay (1);

Procede < reg 51. h7 unsigned int 9=0;
vord delay (unsigned int 9time); 27 word main (word) P1 = 0 × 00; 11 P1 AS 0/P POX While (1) PI=OXFF; delay (s); delay (S); void delay (wasigned ant atome for (i=0; i<= i++);

```
# Producte (regs.h?

unsigned int P=0;

void delay wospaned int 97me);
  vold maln (vold)
     unsigned char i, i;
p1 = 0x00 /P1 as output post
       while (1)
       for ( = 0 × 00); i < = 0 × 00; P++)
         for (9=0xF0;3>=0x01;9--)
     11 delay (1)
    void delay (unsigned tent 9 time)
       for (1=0;9<=979me;3++)
      tor (3=0; 36=5; 3++);
```