FACULTY OF ENGINEERING CHULALONGKORN UNIVERSITY

2110327 Algorithm Design

YEAR III, First Semester, Final-term Examination, November 30, 2015, Time 8:30 – 11:30

ชื่อ-นามสกุล_		ki	ลขประจำตัว	CR58						
<u>หมายเหตุ</u>										
1.	ข้อสอเ	มีทั้งหมด 9 ข้อในกระดาษคำถามคำตอบ รวม จำนวน 8 หน้า	คะแนนเต็ม 92 คะเ	เนน						
2.	ไม่อนุถุ	ุาตให้นำตำราและเครื่องคำนวณต่างๆ ใดๆ เข้าห้องสอบ								
3.	ควรเขีย	บนตอบด้วยลายมือที่อ่านง่ายและชัดเจน								
4.	ห้ามกา	รหยิบยืมสิ่งใดๆ ทั้งสิ้น จากผู้สอบอื่นๆ เว้นแต่ผู้คุมสอบจะหยิบยื	มให้							
5.	ห้ามนำ	ส่วนใดส่วนหนึ่งของข้อสอบออกจากห้องสอบ ข้อสอบเป็นทรัพย	์เสินของราชการซึ่งผู้ลัก	าพาอาจมีโทษทางคดีอาญา						
6.	ผู้เข้าสอบสามารถออกจากห้องสองได้ หลังจากผ่านการสอบไปแล้ว 45 นาที									
7.	เมื่อหม	ดเวลาสอบ ผู้เข้าสอบต้องหยุดการเขียนใดๆ ทั้งสิ้น								
8.		ระทำผิดเกี่ยวกับการสอบ ตามข้อบังคับจุฬาลงกรณ์มหาวิทยาส ษาอย่างน้อย 1 ภาคการศึกษา	รัย มีโทษ คือ ได้รับ สั่	ัญลักษณ์ F ในรายวิชาที่ทุจริต และพัก						
<u>ห้าม</u>	มนิสิตพก	เโทรศัพท์หรืออุปกรณ์สื่อสารไว้กับตัวระหว่างสอบ หากตรวจท	เบจะถือว่านิสิตกระทำ	<u>าผิดเกี่ยวกับการสอบ ให้ได้รับ F และอาจะ</u>						
		้ พักการศึกษา **								
	ข้	าพเจ้ายอมรับในข้อกำหนดที่กล่าวมานี้ ข้าพเจ้าเป็นผู้ทำข้อสอบเ	ไ้ด้วยตนเองโดยมิได้รับ	เการช่วยเหลือ หรือให้ความช่วยเหลือในการทำ						
ข้อส	สอบนี้	·								
		ลงที่อนิสิต								
		79.19Å								
		น) จงระบุว่า ข้อย่อยต่อไปนี้ข้อใดจริง ข้อใดเท็จ (<u>ไม่ต้องอธิเ</u> ะแนน คำตอบที่ผิดจะติดลบ 0.5 คะแนน คะแนนติดลบในข้								
1))	อัลกอริทึมของ Floyd-Warshall อาศัย recurrence $d_{ij}(k)$	$0 = \min(d_{ij}(k-1), c$	$d_{ik}(k-1)+d_{ki}(k-1)$						
2))	เราหา maximum spanning tree ของกราฟ G ได้ง่าย ๆ น้ำหนักเป็นค่าติดลบของน้ำหนักเส้นเชื่อมใน G จะได้ว่า r Prim) ก็เป็น maximum spanning tree ของ G เช่นกัน								
3,)	ให้ G เป็น directed acyclic graph เราหา longest pat เชื่อมของ H มีน้ำหนักเป็นค่าติดลบของน้ำหนักเส้นเชื่อมใน Dijkstra) ก็เป็น longest path ของ G เช่นกัน								
4))	ให้ G เป็น dense graph ซึ่งคือกราฟที่มีจำนวนเส้นเชื่อม								
		อัลกอริทีมของ Prim กับ Kruskal จะมี time complexity		•						
5))	เป็นได้ใหม ที่ directed graph G ที่มี ν ปม เป็น weakly	connected graph	แต่มี v – 1 strongly connected						
		components		ו						
6))	โดยปกติเรานิยามให้ความยาวของ path หนึ่งคือ ผลรวม ของ ของ path หนึ่งเป็น ผลคูณ ของ edge ทุกเส้นใน path นั้ง อัลกอริทึม Dijkstra หา shortest path (ด้วยนิยามความย	ุ่ม อยากทราบว่า ถ้าไ	ไม่มีเส้นเชื่อมใดที่ความยาวเป็นลบ จะใช้						
7))	โดยปกติเรานิยามให้ความยาวของ path หนึ่งคือ <u>ผลรวม</u> ขอ ของ path หนึ่งเป็น ผลคูณ ของ edge ทุกเส้นใน path นั้า	· ·							

shortest path (ด้วยนิยามความยาวแบบผลคูณ) ได้หรือไม่

- 8) กราฟที่มี topological sort แค่แบบเดียว เป็นกราฟที่หา shortest path ระหว่างปมใด ๆ ได้ใน O(v)
- 9) การเพิ่มความยาวให้กับเส้นเชื่อมทุกเส้นในกราฟด้วยค่าคงตัว K ไม่ได้ทำให้ shortest path ในกราฟเปลี่ยน
- 10) ให้ G เป็น directed graph ขนาด 10,000 ปม ที่มี 1 strongly connected component และทุก vertex มี indegree = 1 และ out-degree = 1 จะได้ว่าหน่วยความจำที่ใช้เพื่อทำ depth-first search มีปริมาณน้อยกว่าเมื่อทำ breadth-first search กับกราฟ G
- 11) การทำ depth-first search กับกราฟ G ที่มี v ปม e เส้น ที่แทนด้วย adjacency matrix ใช้เวลา $O(v^2)$
- 12) หลังจากอัลกอริทึมของ Ford-Fulkerson หยุดทำงานแล้ว เราสามารถหาปริมาณ max-flow ได้ง่าย ๆ ด้วยการรวม flow ของเส้นเชื่อมทุกเส้นที่พุ่งออกจากปม source ของ network
- 13) หลังจากอัลกอริทึมของ Ford-Fulkerson หยุดทำงานแล้ว เราสามารถหาปริมาณ min-cut ได้ง่าย ๆ ด้วยการรวม flow ของเส้นเชื่อมทุกเส้นที่พุ่งเข้าหาปม sink ของ network
- 14) การทดสอบว่ากราฟ G เป็น directed acyclic graph หรือไม่ ทำได้ในเวลา O(v+e) ด้วย depth-first search ดังนั้น ปัญหาการทดสอบว่ากราฟ G เป็น directed acyclic graph หรือไม่ จึงไม่จัดอยู่ในกลุ่ม NP
- 15) เราเรียก decision-problem $\,q\,$ ว่า เป็น NP-complete ก็ต่อเมื่อทุก ๆ ปัญหาใน NP สามารถลดรูป (reduce) ไปเป็น ปัญหา $\,q\,$ ได้
- 16) ทุกปัญหาใน P มีอัลกอริทึมหาคำตอบได้ใน polynomial time ดังนั้น ปัญหาใน P จึงมีความง่ายเท่ากันหมด
- 17) ปัญหาใน NP ที่ไม่อยู่ใน P ก็ต้องเป็น NP-complete
- 18) หากมีวิธี reduce (ในเวลา polynomial) ปัญหา S ไปเป็นปัญหา q สรุปได้ว่า ปัญหา S ไม่ง่ายกว่าปัญหา q
- 2. (4 คะแนน) จงเขียน<u>ลำดับของชื่อเส้นเชื่อม</u>ที่ถูกเลือกให้เป็นส่วนหนึ่งของ minimum spanning tree ด้วยการใช้ Kruskal's algorithm กับกราฟข้างล่างนี้ (ไม่ต้องแสดงวิธีทำ)

- 3. ตอบคำถามต่อไปนี้ โดยบรรยายการทำงานของอัลกอริทึมอย่างกระชับได้ใจความ สามารถใช้อัลกอริทึมที่นำเสนอในวิชานี้ได้เลย
 - 1) (5 คะแนน) G เป็น connected undirected graph ในรูปของ adjacency matrix จงบรรยายอัลกอริทึมที่ใช้เวลาที่มี ประสิทธิภาพดีสุด ๆ เพื่อหาว่า มี edge ใน G ไหม ที่เมื่อลบออกแล้ว G ยังคง connected

2) (5 คะแนน) จงบรรยายอัลกอริทึมที่หา spanning tree สักหนึ่งต้น (ไม่จำเป็นต้อง minimal) ของ undirected graph G ใน เวลาเชิง asymptotic ที่เร็วสุด ๆ

3) (5 คะแนน) จงบรรยายขั้นตอนการหา shortest path ระหว่างคู่ปมที่กำหนดให้ของกราฟ G ที่เส้นเชื่อมทุกเส้นยาวเท่ากัน หมดในเวลาเชิง asymptotic ที่เร็วสุด ๆ

4. (5 คะแนน) จงแสดงวิธีการเปลี่ยนปัญหาข้างล่างนี้ให้เป็นปัญหา max flows ยกตัวอย่างการแปลงประกอบด้วย (โดยใช้ตัวอย่างของ รูปที่แสดง) จงหาวิธีการวาง "เรือ" ที่ไม่ "กินกัน" ให้ได้จำนวนมากสุด ในช่องต่าง ๆ ของตารางขนาด r × c (แถวแนวนอน r แถว, แถวแนวตั้ง c แถว) โดยตารางนี้มีบางช่องที่กำหนดให้ห้ามวางเรือ (หมายเหตุ เรือในหมากรุก มีการเดินและกินยาวได้ในแนวตั้ง- แนวนอน ดังนั้นจึงห้ามวางเรือมากกว่าหนึ่งตัวในแถวแนวนอน หรือแถวแนวตั้งเดียวกัน) ดังสองตัวอย่างข้างล่างนี้ ช่องสีดำคือช่อง ที่ห้ามวางเรือ

- 5. (10 คะแนน) จงแสดงให้เห็นจริงว่า ปัญหาต่อไปนี้ อยู่ในกลุ่ม *NP*
 - 1) "กราฟ G มี spanning tree ที่ผลรวมของน้ำหนักของเส้นเชื่อมไม่เกิน K หรือไม่ ?"

2) "กราฟ G มี clique ขนาดไม่น้อยกว่า K หรือไม่ ?" (เราจะเรียกกราฟย่อยนั้นเป็น complete subgraph คือมีเส้นเชื่อมระหว่างทุกคู่ ปมในกราฟย่อยนั้น ขนาดของ clique ก็คือจำนวนปมของ clique นั้น)

6. (5 คะแนน) เราจะเรียกกราฟย่อยใดของกราฟ G ว่าเป็น clique ถ้ากราฟย่อยนั้นเป็น complete subgraph (คือมีเส้นเชื่อม ระหว่างทุกคู่ปมในกราฟย่อยนั้น) จงเขียน pseudo-code ของอัลกอริทึมที่ใช้ state space search แบบ depth-first เพื่อหาว่า กราฟ G มี clique ที่ใหญ่สุดขนาดเท่าใด (ขนาดของ clique คือจำนวนปมใน clique) ให้รับกราฟ G ในรูปของ adjacency matrix (depth-first search ธรรมดา ไม่ต้องมี backtrack ไม่ต้อง branch & bound)

7. ข้อนี้เราจะพิจารณาปัญหาชื่อว่า Minimum Set Cover ซึ่งนิยามได้ดังต่อไปนี้ กำหนดให้มี set $U=\{1,2,...,N\}$ และมี subset จำนวน m subsets คือ $s_1,s_2,...,s_m$ โดยที่ $s_i\subseteq U$ เราต้องการเลือก subset เหล่านี้มาสักชุดหนึ่ง (กำหนดให้ตัวที่ เลือกคือ $s_{c1},s_{c2},...,s_{ck}$) โดยมีข้อบังคับคือ $s_{c1}\cup s_{c2}\cup...\cup s_{ck}$ จะต้องเท่ากับ U แน่นอนว่าเราสามารถเลือก subset ดังกล่าวได้ง่าย ๆ โดยการเลือก s_i ทุกตัว แต่โจทย์ข้อนี้มีการกำหนดเพิ่มเติมคือ การเลือก s_i นั้นจะต้องเสีย cost s_i (s_i 0 เสมอ) ดังนั้น เราต้องการเลือก s_i 1 พุกตัว แต่โจทย์ข้อนี้มีการกำหนดเพิ่มเติมคือ การเลือก s_i 2 นั้นมีค่าน้อยที่สุด จงตอบคำถามต่อไปนี้

1) (5 คะแนน) จงพิสูจน์ว่า Minimum Set Cover เป็น NP-Complete โดยให้ Reduce ปัญหา minimum vertex cover ให้เป็นปัญหา Minimum Set Cover กำหนดให้ปัญหา minimum vertex cover เป็นดังนี้ มี Graph G = (V,E) โดยที่ ปม v_i นั้นกำกับด้วยน้ำหนัก w_i เราต้องการหา $V' \subseteq V$ ที่ทำให้เส้นเชื่อมทั้งหมดของ G นั้นตกกระทบกับอย่างน้อย ปมใดปมหนึ่งใน V' และทำให้น้ำหนักรวมของปมใน V' มีค่าน้อยที่สด

2) (5 คะแนน) จงออกแบบ State Space Search algorithm แบบ DFS ที่ไม่ใช้ backtracking หรือ branch & bound ใด ๆ สำหรับปัญหา Minimum Set Cover โดยให้ระบุ state ที่ใช้ และวิเคราะห์ประสิทธิภาพในการทำงาน พร้อมกับ ยกตัวอย่าง 1 ตัวอย่างของ minimum set cover ที่มีค่า m ไม่น้อยกว่า 3 และเขียน state space tree ประกอบ

3) (5 คะแนน) ถ้าต้องการใช้เทคนิค Backtracking และ/หรือ Branch & Bound จงระบุรายละเอียดของวิธีการดังกล่าว ว่า ใช้อะไรเป็นข้อจำกัดในการ backtracking และ/หรือ ยกตัวอย่าง bounding function ที่ใช้ พร้อมทั้งยกตัวอย่างประกอบ ให้เห็นภาพ (อย่าลืมว่า $p_i > 0$ เสมอ) พร้อมทั้งระบุประสิทธิภาพเชิงเวลาของ bounding function มาด้วย

8. (10 คะแนน) ให้คุณเป็นผู้คุมเหมืองเพชรแห่งหนึ่งโดยเหมืองนี้จะมีอุโมงค์อยู่ N อุโมงค์ที่จะสามารถเข้าไปขุดเพชรออกมาได้ คุณมี คนงานอยู่ M (1<=M<=10N) คน โดยที่แต่ละคนจะสามารถเข้าไปในอุโมงค์เพียงหนึ่งอันเพื่อทำการขุดเพชรขึ้นมา และเพื่อความ ปลอดภัยแต่ละอุโมงค์นั้นจะมีคนงานเข้าไปขุดได้ไม่เกิน 10 คน เพื่อการวางแผนการแบ่งคนงานที่ดี คุณจึงได้ใช้เครื่อง DMPS (Diamond Mine Positioning System) ในการวัดมูลค่าของเพชรที่มีในอยู่ในแต่ละอุโมงค์ โดยเครื่อง DMPS นี้ได้คำนวณ Array 2 มิติ ของตัวเลข V[i][j] (1<=i<N, 1<=j<=10) ให้คุณโดย V[i][j] ระบุมูลค่าเพชรที่จะขุดได้ในอุโมงค์ที่ i หากใช้คนงาน j คนขุดใน อุโมงค์ที่ i โดยที่ V[i][j] นั้นมีคุณสมบัติดังนี้ V[i][k] >= V[i][k-1] (2 <= k <= 10) เนื่องจากยิ่งคนงานมากก็ยิ่งได้เพชรมาก และ V[i][l]- V[i][l-1] >= V[i][l+1]-V[i][l] (2<=l<=9) เนื่องจากกฎผลิตภาพหน่วยท้ายสุดลดลง (Law of diminishing return) งานของคุณคือออกแบบอัลกอริทีมที่มีประสิทธิภาพดีที่สุดเพื่อจะหาว่าจะให้คนงานเข้าไปในอุโมงค์แต่ละอุโมงค์กี่คน เพื่อให้ผลรวม ของมูลค่าเพชรที่ขุดได้สูงสุดเท่าที่จะทำได้

ตัวอย่าง มีอุโมงค์ 3 อุโมงค์ คนงาน 6 คน

อุโมงค์	1 คน	2 คน	3 คน	4 คน	5 คน	6 คน	7 คน	8 คน	9 คน	10 คน
1	100	180	250	300	330	350	350	350	350	350
2	120	230	330	400	450	500	540	570	600	620
3	200	300	320	330	330	330	330	330	330	330

วิธีที่ดีที่สุดคือให้คนงาน 1 คนขุดเพชรในอุโมงค์ที่ 1, คนงาน 3 คนขุดเพชรในอุโมงค์ที่ 2, คนงาน 2 คนขุดเพชรในอุโมงค์ที่ 3 โดย มูลค่ารวมคือ 100 + 330 + 300 = 730

9.	เ (10 คะแนน) ในข้อนี้ให้ถือว่าคุณมีฟังก์ชั่น float shortestPath(int n, int s, int t, vector <edge>& e) ซึ่งสามารถเรียกใช้ได้เลย</edge>
	ฟังก์ชันนี้คืนค่าความยาวของ shortest path จาก ปม s ไป ปม t ของกราฟมีน้ำหนักระบุทิศทางที่มี n ปมที่มีเส้นเชื่อม
	e[0]e[e.size()-1] โดยนิยามของ Edge คือ
	class Edge{
	public:
	int i; //ปมตันทาง int j; //ปมปลายทาง

float w; //ระยะทาง โดยที่ w >= 0 เสมอ

ปัญหาที่คุณต้องแก้ในข้อนี้คือคุณจะต้องเขียนฟังก์ชั่น

};

____เลขประจำตัว _

ชื่อ-นามสกุล_

float shortestPathDiv2Twice(int m, int a, int b, vector<Edge>& f)

เพื่อหาระยะทางที่สั้นสุดจากปม a ไปยังปม b โดยเดินผ่านเส้นเชื่อมต่างๆที่ระบุใน f โดยที่คุณสามารถที่จะสามารถลดระยะทาง เส้น เชื่อมใดๆก็ได้ 2 เส้นลงครึ่งหนึ่ง

ตัวอย่าง

shortestPathDiv2Twice(6,0,3,f) เมื่อ f เก็บเส้นในกราฟระบุทิศทางข้างบนเอาไว้ จะต้องคืนค่า 9 ออกมา (โดยเดินจาก 0->4->5->3 และใช้การลดระยะครึ่งหนึ่งที่เส้น 0->4 และ 5->3 ทำให้ระยะรวมคือ 4+1+4 = 9)

จงเขียน code เพื่อเรียกใช้ฟังก์ชั่น shortestPath (ด้วยกราฟอื่นที่สร้างจาก input) เพื่อให้คำนวณค่า shortestPathDiv2Twice ให้ถูกต้องในช่องว่างข้างล่างนี้

```
float shortestPathDiv2Twice(int m, int a, int b, vector<Edge>& f) {
         int n,s,t;
         vector<Edge> e;
         // เขียน code ตรงนี้
         return shortestPath(n,s,t,e);
```