Discrete Distributions

Recall that a Combination (unordered subset) is given by: $C_{b,a} = \begin{pmatrix} a \\ b \end{pmatrix} = \frac{a!}{b!(a-b)!}$ and a Permutation (ordered subset) is given by $P_{b,a} = \frac{a!}{(a-b)!}$

Distribution	Experiment Type	Notation	Use When	pmf P(X=k)	Valid for k :	Mean E(X) = μ	Variance $V(X) = \sigma^2$	Special Case Of:
Bernoulli	Bernoulli (S or F)		Binary	p^kq^{1-k}	= 0, 1	p	$p \cdot q$	Binomial
Binomial		$b(x; n, p) = X \sim Bin(n, p)$	With replacement	$\binom{n}{k} \cdot p^k \cdot q^{n-k}$	= 0, 1, 2, n	$n \cdot p$	$n \cdot p \cdot q$	Multinomial: k = 2
Hypergeometric		h(x; n, M, N)	Random Sample Without replacement	$\frac{\binom{M}{k}\binom{L}{n-k}}{\binom{N}{n}}$	≤ n and M AND ≥ 0 and n-L	$n \cdot \frac{M}{N}$	$n \cdot \frac{M}{N} \cdot \left(\frac{N-n}{N-1}\right) \cdot \left(1 - \frac{M}{N}\right)$ $= n \cdot p \cdot q \cdot \left(\frac{N-n}{N-1}\right)$	
Negative Binomial	Bernoulli (S or F)	nb(x; r, p)	Trials independent, P(S) same for each, go until r successes	$\binom{k+r-1}{r-1} \cdot p^r \cdot q^k$	= 0, 1, 2,	$r \cdot \frac{q}{p}$	$r \cdot \frac{q}{p^2}$	
Geometric	Bernoulli (S or F)	nb(x; 1, p)	r = 1 above	$p\cdot q^k$	= 0, 1,b 2 ∞	$\frac{q}{p}$	$\frac{q}{p^2}$	Negative Binomial: r = 1
Poisson	None	$p(x; \lambda) = X \sim P(\lambda)$	Binomial has $n > 50$ AND $\lambda = n \cdot p < 5$	$\frac{e^{-\lambda}\cdot\lambda^k}{k!}$	= 0, 1, 2 ∞	λ	λ	
Multinomial		p(x ₁ ,, x _k)		$\frac{n!}{x_1! x_2! \dots x_k!} \cdot p_1^x \cdot \dots p_k^x$	= 0, 1, 2 ∞ $x_1 + x_k = n$			

p = the probability of a success (S)

N = total # of possible outcomes = M + L

p = M/N

q = the probability of a failure (F) = 1- p

M = total # of *possible* successes (S)

q = 1 - M/N

r = total # of successes *needed* to end the experiment

L = total # of *possible* failures (F)

k + r - 1 = = "waiting time"

n = total # of actual outcomes (# of trials)

 $\frac{N-n}{N-1}$ = "Finite Population Correction Factor". If N>>n, this is ≈ 1 and V(X) = npq

k = total # of actual successes

 $\lambda = \text{either} \begin{cases} a & given, \quad positive \quad const. \quad (Poisson.Distribution) \\ f(t) = \lambda(t) = \alpha \cdot t \quad (Poisson.Process) \end{cases}$

n – k = total # of actual failures

 $\alpha = \lambda(1)$ = average # of observations in unit time (rate)

Continuous Distributions

Distribution	Notes	Notation	Use When	pmf, pdf P(X)	cdf = P(X ≤ x)	Mean E(X) = μ	Variance $V(X) = \sigma^2$	Special Case Of:
Uniform		$f(x) = X \sim U(A, B)$		$\begin{cases} \frac{1}{B-A} & A \le x \le B\\ 0 & otherwise \end{cases}$	$F(x) = \int_{-\infty}^{x} f(t)dt$	$\frac{A+B}{2}$	$\frac{(B-A)^2}{12}$	
Gamma	α > 0 β > 0	$f(x; \alpha, \beta) = f(x)$		$\begin{cases} \frac{1}{\beta^{\alpha} \cdot \Gamma(\alpha)} \cdot x^{\alpha - 1} \cdot e^{-\frac{x}{\beta}} & x \ge 0\\ 0 & otherwise \end{cases}$	$F(x;\alpha,\beta) = F\left(\frac{x}{\beta};\alpha\right)$	$\alpha \cdot \beta$	$lpha \cdot eta^2$	
Standard Gamma		f(x; α, 1)	use table A.4	$\begin{cases} \frac{1}{\Gamma(\alpha)} \cdot x^{\alpha - 1} \cdot e^{-x} & x \ge 0\\ 0 & otherwise \end{cases}$	$F(x;\alpha) = \int_{0}^{x} f(t;\alpha,1)dt = \text{the}$ "incomplete gamma function"	α	α	Gamma: β = 1
Exponential	λ > 0 memoryless	f(x; λ)		$\begin{cases} \lambda \cdot e^{-\lambda \cdot x} & x \ge 0 \\ 0 & otherwise \end{cases}$	$F(x) = \begin{cases} 1 - e^{-\lambda \cdot x} & x \ge 0 \\ 0 & x < 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	Gamma: $\alpha = 1$ $\beta = 1/\lambda$
r - Erlang	r > 0 Continuous analog of neg. binom.	f _r (t; λ, r)		$\begin{cases} \frac{\lambda^{r} \cdot t^{r-1}}{(r-1)!} \cdot e^{-\lambda \cdot t} & t \ge 0\\ 0 & otherwise \end{cases}$	$F_r(t) = \begin{cases} 1 - \sum_{n=0}^{r-1} \left(\frac{(\lambda \cdot t)^n}{n!} \right) \cdot e^{-\lambda \cdot t} & t > 0 \\ 0 & t \le 0 \end{cases}$	$\frac{r}{\lambda}$	$\frac{r}{\lambda^2}$	Gamma: $\alpha = r$ $\beta = 1/\lambda$
Chi-Squared	v = degrees of freedom (+ real #)	$f(x; v) = X \sim \chi^{2}(v)$		$\begin{cases} \frac{x^{\left(\frac{v}{2}\right)-1}}{2^{\frac{v}{2}} \cdot \Gamma\left(\frac{v}{2}\right)} \cdot e^{-\frac{x}{2}} & x \ge 0\\ 0 & otherwise \end{cases}$		V	2v	Gamma: $\alpha = v/2$ $\beta = 2$
Normal	"Bell Curve" $-\infty < x < \infty$ "Gaussian"	((((((((((((((((((((use table	$\frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2}$	$\Phi(z) = F(z) = \int_{-\infty}^{z} f(x)dx$	μ	σ^2	
Standard Normal		$f(z; 0, 1) = X \sim N(0,1)$	use table A.3	$rac{1}{\sqrt{2\pi}}\cdot e^{-\left(rac{x^2}{2} ight)}$	$\Phi(z) = P(Z \le z)$	0	1	Normal: $\mu = 0$ $\sigma = 1$

Note: the gamma function is $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} \cdot e^{-x} dx$ and:

1.
$$\Gamma(\alpha) = (\alpha - 1) \cdot \Gamma(\alpha - 1)$$
 for $\alpha > 1$

2.
$$\Gamma(n) = (n-1)!$$
 for any integer $n > 0$

3.
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{2}$$

 β = "Scale Parameter": stretches or compresses pdf in x

$$P(a \le X \le b) = F(b) - F(a)$$

$$P(X \ge a) = 1 - F(a)$$

 50^{th} percentile = Median = $\widetilde{\mu}$

$$F(\widetilde{\mu})=cdf(\widetilde{\mu})=0.5$$

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) \cdot dx$$

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) \cdot f(x) \cdot dx$$