DATA CLEANSING & PRE-PROCESSING (1/2)

1. LIBRARIES & DATA IMPORT

Only two packages are required for data cleansing at first. The next step is to import the file.

2. INSPECT DATA SET

Draw a random sample of rows in order to get an idea of the content of the data frame.

```
>>> a = pd.DataFrame({
          'CO': ['1', '2', '3', '4'],
          'C1': [.321, .654, .987, .741],
          'C2': ['abc', 'def', 'ghi', 'jkl']},
          index=['obj0', 'obj1', 'obj2', 'obj3'])
>>> a.sample(n=2)
             0.741
obj3
             0.654
obj1
       describe(include='all')
        CO
             4.000
count
               NaN
unique
               NaN
               NaN
freq
```

3. DATA TYPES

If columns are not correctly recognized as numeric data types, this must be corrected.

```
>>> a.dtypes # C0 should be int64 but is object
C0    object
C1    float64
C2    object
dtype: object
>>> a['C0'] = pd.to_numeric(a['C0'])
```

4. MISSINGS

```
>>> b = pd.DataFrame(
... {'Name': ['Anna', 'Bill', 'Charly', 'Diana'],
... 'Job': ['Data Scientist',
... 'DATA SCIENTIST',
... 'Data Engineer ',
... 'Data Science'],
... 'Age': [26, np.nan, 30, 32],
... 'CompCar': [np.nan, np.nan, np.nan, 'BMW']},
... index=['emp01', 'emp02', 'emp03', 'emp04'])
```

4.1 Missing Statistics

How much columns contain missing values (% of columns)? How much missing data is in the data frame (% of cells)?

```
>>> len(b.columns[b.isna().any()])/len(b.columns)
0.5
>>> b.isnull().sum().sum()/np.product(b.shape)
0.25
```

4.2 Missing Types

It must be considered which origin missing values (probably) have. A distinction must be made between (a) non-existent and (b) non-recorded values. The processing is different here.

```
(a) Non-existent
Example: Employee has no company car, so no
manufacturer is recorded.
Handling: Keep NaN; maybe replaced by specific value,
e.g. (0, 'nothing')
(b) Non-recorded
Example: No information about age of employee
Handling: Imputation
```

4.3 Imputation

1) Use mean/median of column (numerical features only)

```
>>> b['Age'] = b['Age'].fillna(b['Age'].mean())
```

2) Use most frequent value in column (numerical and categorical features)

```
>>> b['Age'] = b['Age'].fillna(b['Age'].mode()[0])
```

3) Hot-deck imputation; use a random value of one of the other objects (numerical and categorical features)

More sophisticated approachs are among others:

- 4) Regression and stochastic regression imputation
- 5) Imputation via k-NN
- 6) Deep Learning imputation
- 7) Multivariate Imputation by Chained Equations (MICE) Some methods (e.g. stochastic regression, hot-deck, MICE) can be used with multiple imputation. Here, the uncertainty is incorporated by using not only a single but multiple imputation values.

5. INCONSISTENCIES

The meaning of categorical data can be corrupted by incorrect spelling or useless characters. These irregularities must be removed.

5.1 Upper and lower cases

```
>>> b['Job'] = b['Job'].str.lower()
```

5.2 Leading and trailing white spaces

```
>>> b['Job'] = b['Job'].str.strip()
```

5.3 Notation similarities

The meaning of expressions can be the same despite different spellings. Here it is possible to make a quantitative comparison of strings and to visualize the permutations. Then it must be decided whether and if so how certain values are adapted/overwritten.

```
>>> from fuzzywuzzy import process
>>> import seaborn as sns; sns.set();
>>> def SpellCheck(df, col):
       instances=np.unique(df[col])
       dt=[(col, object),('score', int)]
       result=np.zeros(shape=(len(instances),
                               len(instances)))
• • •
       for i, inst in enumerate(instances):
           result[i]=np.sort(np.array(
• • •
               process.extract(inst,instances),
• • •
               dtype = dt),
                              order = col)['score']
• • •
       result=pd.DataFrame(result,
                            index=instances,
• • •
                            columns=instances)
       return result
>>> # Adjust vmin and vmax to accepted similarities
>>> ax = sns.heatmap(mapping, vmin=60, vmax=100,
                    annot=True, fmt=".0f",
• • •
                    cmap="Reds")
```


6. DATES

The pandas inclusive method to_datetime can convert entire columns. It detects standard date formats, but a format string can be optionally provided.

```
>>> c = pd.DataFrame(
       {'Name': ['Anna', 'Bill', 'Charly'],
        'DOB': ['25.08.1986',
                 '21.01.1988',
                 '10.12.1992'],
        'Entry': ['06/01/2016',
                   '08/01/2015',
• • •
                   '04/01/2018'],
• • •
        'Term': ['18-12-31',
                  '19-04-30',
                  '19-07-31']},
       index=['emp01', 'emp02', 'emp03'])
>>> pd.to_datetime(c['DOB])
emp01 1986-08-25
        1988-01-21
emp02
        1992-10-12
emp03
Name: DateOfBirth, dtype: datetime64[ns]
>>> c['Entry]=pd.to_datetime(c['Entry],
                              format = '%m/%d/%Y)
>>> c['Term']=pd.to_datetime(c['Term'],
                              format = '%y - %m - %d')
```

Plain calculations lead to timedelta objects in order to get time differences.

```
>>> c['Duration']=c['Term']-c['Entry']
>>> c['Duration']
emp01    943 days
emp02    1368 days
emp03    486 days
Name: Duration, dtype: timedelta64[ns]
```

7. RENAMING COLUMNS

If columns are not correctly recognized as numeric data types, this must be corrected.

8. COLUMN SELECTION

```
>>> c.loc[:,'entry':'duration'] # range of names
>>> c.loc[:,['entry','duration']] # explicit names
>>> c.iloc[:,1:3] # range of indices
>>> c.iloc[:,[1,3]] # explicit indices
```

9. JOINING DATAFRAMES

```
>>> pd.merge(b,c,how='left',on='Name')
```

If tables are to be joined over several and also differently named columns, this is done by specifying the column names in an array.

```
>>> pd.merge(df_1,df_2,how='left',
... left_on=['col1','col2'],
... right_on=['ColumnA','ColumnB'])
```

10. FEATURE ENCODING

Feature encoding transforms categorical data to numerical value in order to make them processable for an algorithm. Two types of categorical data are of main interest here:

```
(a) Nominal data
Different discrete categorical values without any
rank/order or metric.
Examples: Colors of cars, genre of movies
(b) Ordinal data
Series of discrete categorical values with a defined order
Examples: Hierarchy levels in an organization, version of
a technical gadget
```

10.1 One-hot-encoding

Unique column for each occurence of a categorical value per feature; three possible packages are e.g.:

10.2 Ordinal encoding

Transformation of categorical values to sequence of integers

For other classical encoders or further ones like contrast or bayesian encoders refer to the package documentations.