Układ jednostek SI

1 Jednostki podstawowe

W układzie wykorzystuje się 7 jednostek podstawowych:

Wielkość podstawowa	Jednostka podstawowa	
długość	metr (m)	
\max	kilogram (kg)	
czas	sekunda (s)	
natężenie prądu elektrycznego	amper (A)	
${ m temperatura}\ { m termodynamiczna}$	kelwin (K)	
liczność materii	mol (mol)	
światłość	kandela (cd)	

Table 1: Jednostki podstawowe

Jednostki takie jak amper i kelwin zapisuje się z małej litery według wymowy, a nie jak nazwiska Ampère oraz Kelvin. Symbole się nie odmieniają $2\,\mathrm{mol}$, ale czyta się $2\,\mathrm{mole}$.

2 Jednostki pochodne

 $\label{eq:constraint} Z\, jednostek\, podstawowych\, można skonstruować\, jednostki\, pochodne,\, na\, przykład:$

Wielkość podstawowa	Jednostka podstawowa	
miara kąta płaskiego	radian $(rad = m/m)$	
miara kąta bryłowego	steradian (sr = m^2/m^2)	
$\operatorname{częstotliwo}$ ść	$herc (Hz = s^{-1})$	
siła	niuton $(N = kg m s^{-2})$	
ciśnienie	paskal (Pa = $N/m^2 = kg m^{-1} s^{-2}$)	
$_{ m energia}$	$dzul (J = N m = kg m^2 s^{-2})$	
moc	wat $(W = J/s = kg m^2 s^{-3})$	
napięcie elektryczne	wolt $(V = J/C = kg m^2 s^{-3} A^{-1})$	
strumień świetlny	lumen (lm = cd sr = cd)	
natężenie oświetlenia	$luks (lx = lm/m^2 = cd m^{-2})$	
aktywność promieniotwórcza	bekerel (Bq = s^{-1})	

Table 2: Przykładowe jednostki pochodne

Jednostki, które wyglądają na identyczne, np. Hz oraz Bq, w rzeczywistości nie są, ponieważ występują jako miara innych procesów. Hz jako ilość cykli w fali, która jest zjawiskiem ciągłym, a Bq jako ilość rozpadów promieniotwórczych na sekundę, co jest zjawiskiem losowym.

3 Przedrostki układu SI

Do każdej jednostki podstawowej oraz pochodnej można dodać przedrostek oznaczający potęgę 10.

Przedrostek	Mnożnik	Przedrostek	Mnożnik
deka (da)	10^{1}	decy (d)	10^{-1}
hekto (h)	10^{2}	centy (c)	10^{-2}
kilo (k)	10^{3}	mili (m)	10^{-3}
mega (M)	10^{6}	$mikro(\mu)$	10^{-6}
giga (G)	10^{9}	nano (n)	10^{-9}
tera (T)	10^{12}	piko(p)	10^{-12}
peta (P)	10^{15}	femto (f)	10^{-15}
eksa (E)	10^{18}	atto (a)	10^{-18}
zetta (Z)	10^{21}	zepto (z)	10^{-21}
jotta (Y)	10^{24}	jokto(y)	10^{-24}
ronna (R)	10^{27}	ronto(r)	10^{-27}
quetta (Q)	10^{30}	quecto (q)	10^{-30}

Table 3: Przedrostki układu SI

W każdej jednostce można użyć tylko jednego przedrostka. Aby uniknąć pomyłek powinno się pisać przedrostek razem z jednostką, a każde jednostki oddzielone, ms to milisekunda, a ms to metr razy sekunda. W przypadku potęg

przedrostek odnosi się do niepotęgowanej jednostki, fm² jest równy 10^{-30} m², a nie 10^{-15} m².

4 Przykładowe zadania

Zadanie 24

(a) $980 \,\mathrm{Ps};$ (b) $980 \,\mathrm{fs};$ (c) $17 \,\mathrm{ns};$ (d) $577 \,\mathrm{\mu s}.$

Odpowiedź do zadania 24

- (a) $980 \,\mathrm{Ps} = 980 * 10^{15} \,\mathrm{s} = 9,80 * 10^{17} \,\mathrm{s};$
- (b) $980 \,\mathrm{fs} = 980 * 10^{-15} \,\mathrm{s} = 9,80 * 10^{-13} \,\mathrm{s};$
- (c) $17 \text{ ns} = 17 * 10^{-9} \text{ s} = 1,7 * 10^{-8} \text{ s};$
- (d) $577 \,\mu s = 577 * 10^{-6} \, s = 5,77 * 10^{-4} \, s.$

Zadanie 25

(a) $9,57*10^5 \,\mathrm{s}$; (b) $0,045 \,\mathrm{s}$; (c) $5,5*10^{-7} \,\mathrm{s}$; (d) $3,16*10^7 \,\mathrm{s}$.

Odpowiedź do zadania 25

- (a) $9.57 * 10^5 \text{ s} = 957 * 10^3 \text{ s} = 957 \text{ ks};$
- (b) $0.045 \,\mathrm{s} = 45 * 10^{-3} \,\mathrm{s} = 45 \,\mathrm{ms};$
- (c) $5.5 * 10^{-7} \text{ s} = 550 * 10^{-9} \text{ s} = 550 \text{ ns};$
- (d) $3,16*10^7 s = 31,6*10^6 s = 31,6 Ms.$

Zadanie 26

(a) 89 Tm; (b) 89 pm; (c) 711 mm; (d) 0,45 µm.

Odpowiedź do zadania 26

- (a) $89 \,\mathrm{Tm} = 89 * 10^{12} \,\mathrm{m} = 8,9 * 10^{13} \,\mathrm{m};$
- (b) $89 \text{ pm} = 89 * 10^{-12} \text{ m} = 8,9 * 10^{-11} \text{ m};$
- (c) $711 \text{ mm} = 711 * 10^{-3} \text{ m} = 7,11 * 10^{-1} \text{ m};$
- (d) $0.45 \, \mu \text{m} = 0.45 * 10^{-6} \, \text{m} = 4.5 * 10^{-7} \, \text{m}.$

Zadanie 30

(a) $10 * 21 \text{ m}^3 \text{ w km}^3$; (b) $10 * 21 \text{ m}^3 \text{ w cm}^3$.

Odpowiedź do zadania 30

- (a) $10 * 21 \,\mathrm{m}^3 = 10^{21} \,(10^{-3} \,\mathrm{km})^3 = 10^{21} * 10^{-9} \,\mathrm{km}^3 = 10^{12} \,\mathrm{km}^3$;
- (b) $10 * 21 \,\mathrm{m}^3 = 10^{21} \,(10^2 \,\mathrm{cm})^3 = 10^{21} * 10^6 \,\mathrm{cm}^3 = 10^{27} \,\mathrm{cm}^3$.

Zadanie 32

 $33\,\mathrm{m/s}$ w km/h.

Odpowiedź do zadania 32

$$33\,\mathrm{m/s} = 33\,\tfrac{10^{-3}\mathrm{km}}{\tfrac{1}{3600}\mathrm{h}} = 33 * \tfrac{3600}{1000}\,\mathrm{km/h} = 118, 8\,\mathrm{km/h}.$$

Zadanie 41

 $10 * 18 \text{ kg/m}^3 \text{ w Mg/}\mu\text{L}.$

Odpowiedź do zadania 41

$$\begin{array}{l} 1\,\mathrm{kg} = 10^3\,\mathrm{g} = 10^{-3} * 10^6\,\mathrm{g} = 10^{-3}\,\mathrm{Mg} \\ 1\,\mathrm{m}^3 = 10^6\,\mathrm{cm}^3 = 10^6\,\mathrm{mL} = 10^3\,\mathrm{L} = 10^9\,\mu\mathrm{L} \\ 10^{18}\,\mathrm{kg/m}^3 = 10^{18}\,\frac{10^{-3}\mathrm{Mg}}{10^9\mu\mathrm{L}} = 10^6\,\mathrm{Mg/\mu\mathrm{L}} \end{array}$$