Announcements

PSI Due Friday

From last time

Our first "functional groups:" alkenes and alkynes

"Conjugated" polyalkenes: two alkenes are separated by only one single bond

Aromatic compounds: cyclic, fully conjugated molecules that follow Hückel's Rule (4n + 2)

Alkanes, Alkenes, and Alkynes have Different Properties

Key trends:

bond length:

$$C - C$$
 > $C = C$ > $C = C$ 1.54 Å 1.20 Å

• C–H acidity:

reactivity:

It bonds are higher in energy than
$$\sigma$$
 bonds; they "react"

First.

 $H_3C-CH_3 + HD + H_2O \longrightarrow \text{no reaction}$

Then altanes

 $H_3C+CH_3 + HD + H_2O \longrightarrow CH_3CH_2OH$

Alkenes + Alkynes are more "reactive" than altanes

Carbanions, Carbocations, and Radicals: Reactive Species

Carbocation: a trivalent carbon

• sp² hybridized carbon, planar geometry, p-orbital is vacant

Carbanion: a carbon with a lone pair

- isolated carbanions are sp³ hybridized
- conjugated carbanions are sp² hybridized

Carbon-based radical: a carbon with an unpaired electron

- isolated radicals are sp³ hybridized w/low barrier to inversion
- conjugated radicals are sp² hybridized

Delocalization of charge is stabilizing! (resonance stabilization) the more resonance structures, the better! (more delocalized)

Drawing Resonance Structures

Resonance structures show the delocalization of electrons

- bonds, unshared electron pairs, carbocations, or single electrons can be moved using the curved arrow notation without moving any atoms
- arrows should originate at a source of electron density (i.e. a bond or a lone pair)

examples:

· resonance contributors that minimize charge are more dominant contributors

all resonance intermediates must still obey the octet rule... for a discussion of resonance, see RC Ch 6 sec. 5

Drawing Resonance Structures

Resonance structures show the delocalization of electrons

- curved arrows are used to demonstrate that π -electrons, unshared electron pairs (lone pairs), carbocations, or single electrons (radicals) can be delocalized over multiple atoms
- arrows should originate at a source of electron density (i.e. a bond or a lone pair)
- you must be able to push the electrons without moving any atoms

Which carbons share the positive charge?

Functional Groups

Functional groups: the substitution of carbon chains with atoms other than C and H

- A carbon bearing a more electronegative substituent is formally oxidized
- Different functional groups result in different oxidation levels at carbon

Electronegativity

electronegativity (EN): the measure of the ability of a bonded atom (or functional group) to attract electrons toward itself.

- EN increases as you move up and to the right in the periodic table
- as you move up a column, shielding of outer electrons decreases
- as you move to the right in a column, the nuclear charge increases

(increases effective nuclear charge)

it more difficult to remove an e and makes it more favorable to accommodate

The Chlb	Electronegativity	Chart:
----------	-------------------	--------

	Н						an e	
	2.2							Pauling scale is most commonly used
	Li	Ве	В	С	Ν	0	F	most commonly used
start at 1.	1.0	1.6	2.0	2.6	3.0	3.4	4.0	Pauling value
start at 1, add 0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	Ch Ib scale
	N a	Мg	ΑI	Si	Р	S	CI	
start at 0.9,	0.9	1.25	1.6	1.9	2.2	2.6	3.2	Pauling value
add 0.35	0.9	1.25	1.6	1.95	2.3	2.65	3.	Ch Ib scale
	K						Br	
	0.8						3.0	
							I	
a use	ful tool	for estim	nating &	electronego	tivities.		2.7	

0xtoby p69-72

Functional Groups

Functional groups: the substitution of carbon chains with atoms other than C and H

Functional groups with one bond to more EN substituent:

generic name:	alcohol	amine	thiol	alkyl halide	ether
	∕ он	∕NH₂	SH	CI	∕ _0 ∕
	ethanol (ethyl alcohol)	ethyl amine	ethane thiol	ethyl chloride	diethylether
		<u> </u>		Br	
		N,N-diethyl amine		ethyl bromide	
		N		<u> </u>	
		N,N,N-triethyl amine		ethyl iodide	

Functional Groups

Functional groups: the substitution of carbon chains with atoms other than C and H

Functional groups with two bonds to more EN substituents:

generic name:	ketone	imine	aldehyde	acetal	
		NH	Ů _H	MeOOMe	
	acetone (2-propanone)	propan-2-imine	acetaldehyde (ethanal)	2,2-dimethoxy- propane	
Functional groups	with three bonds	to more EN sub	stituents:	nitrile	
generic name:	carboxylic acid	ester	amide	(cyano-)	
	ОН	Ů.	NMe ₂	—c≣n	
	acetic acid	ethyl acetate	N,N-dimethyl-	acetonitrile	

Naming Compounds with Functional Groups

identify the parent hydrocarbon (the longest straight chain)

- number the carbons of the parent hydrocarbon, minimizing the sum of the substituent #'s, and assigning the highest priority functional group the lowest number
- the highest priority substituent is listed as a suffix
- the fragments are listed in alphabetical order
- for detailed IUPAC rules, see: http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/nomen1.htm

Revisiting Electronegativity

electronegativity (EN): the measure of the ability of a bonded atom (or functional group) to attract electrons toward itself.

Bonds between ator	ms of different electron	egativities have dipole m	noments.	C	2.6
• these are 'polar co	ovalent bonds'			F	4.0
•				0	3.4
Rule of Thums:	+->	4		CI	3.2
	C-F	C-H		В	2.0
a bond between				Li	1.0
two atoms with an	+>			Н	2.2
EN difference	$C \longrightarrow O$	C - B	you should be		-1.1-
between 0.4 and			able to do this	qual	litatively
2.7 is generally	C +> Co	C-Li	well return to	this wh	en we
considered "covalent"	8€ 8€	4 €	discuss organic	rea c	tion s
(e ⁶ s are shared)		indicates partia	I charge on the 1	atom	

dipole moment (μ): describes the distribution of two charges (q) of equal magnitude and opposite sign separated by distance R (bond length), reported in Debyes (D)

larger the μ , the more polarited the bond $\mu = qR$ The polarited the bond $\mu = qR$ The polarited the bond $\mu = qR$

1 Debye = 3.34×10^{-30} coulomb · meter

1 Debye = μ for +1/-1 charge separated by 0.2082 Å

Laipole moment, typically experimentally determined.

A If Scharges are known, it can be calculated OGC, p. 82-85

EN

atom

Polarity: Molecules with Dipole Moments

molecular dipole moment: a molecule in which the center of positive charge is not coincident with the center of negative charge.

	atom	EN	
molecular dipoles can be analyzed as the vector sum of the bond			
dipoles	F	4.0	
can calculate using vector mathematics	0	3.4	
	CI	3.2	
$\uparrow \circ$	В	2.0	
can calculate >> On	Li	1.0	
	Н	2.2	
fyou know H + H H3C CH3 Lorder	bond		
$\mu = 1.85$ D $\mu = 2.91$ D $\mu = 4.00$			
asea on the			
sond angle in H20			
(104.6°) and			
the O-H bord length o=c=o			
(1.0 Å) no permanent Ce l'Ce,			
L = 1.0 cos 52.3 = 0.618 dipole no permanent dipole			

Hydrogen Bonding

weak: 0-5 kcel/nol

moderate: 5-14 kcal /mol

Strong: 15-40 Ecal mol

We have learned about:

• Ionic Bonds

Covalent Bonds

vary in strength: from 0 to ~40 kcal /mol

Hydrogen bonds are a non-covalent interaction between an H and an electronegative atom.

examples of hydrogen bonding:

H bond length can be a 1.6 to 2.8 Å

Hydrogen Bonding in Water

Hydrogen bonding is plentiful in water:

• each water can hydrogen bond with 4 other waters

the high boiling point and low melting point of water can be attributed to hydrogen bonding

• for an interesting website on ice and snowcrystals: http://www.its.caltech.edu/~atomic/snowcrystals/ice/ice.htm (Ken Libbrecht)

Chydrogen bonds are considerable stronger than vanderwaal forces, which govern mp and bp of alkanes)