Protocolos da Camada de Transporte

Comunicações por Computador

Etienne Costa(A76089)

Joana Cruz(A76270)

Hugo Moreira(A43148)

Resumo

Neste primeiro trabalho abordamos os diferentes protocolos de aplicação e de transporte. Para cada protocolo de aplicação exploramos qual o respetivo protocolo de transporte utilizado, a porta de atendimento, e comparamos esses diversos protocolos conforme diversos parâmetros pedidos.

Questão 1

Através dos comandos executados ao longo do trabalho, conseguimos retirar as seguintes informações.

Comando	Protocolo de	Protocolo de	Porta de	Overhead de
utilizado	Aplicação	Transporte	atendimento	transporte
ping				
traceroute		UDP	33434-33450	8
Telnet	Telnet	TCP	23	20
FTP	FTP	TCP	21	20
TFTP	TFTP	UDP	69	8
browser/HTTP	HTTP	TCP	80	20
nslookup	DNS	UDP	53	8
SSH	SSH	TCP	22	20

Figura 1 - Captura no wireshark usando o comando SSH

Figura 2 – Captura no wireshark usando o comando HTTP

Figura 3 – Captura no wireshark usando o comando FTP

Figura 4 - Captura no wireshark usando o comando TFTP

Figura 5 – Captura no wireshark usando o comando Telnet

Figura 6 – Captura no wireshark usando o comando nslookup

Figura 7 – Captura no wireshark usando o comando traceroute

Questão 2

FTP - File Transfer Protocol

Inicialmente, não entendemos que apenas seria para representar a transferência para a conexão de dados, daí termos representado todo o diagrama temporal da transferência incluindo todas as mensagens de controlo.

Figura 8 – Diagrama temporal da transferência por FTP

De seguida, apresentamos uma lista dos segmentos trocados pelo cliente e pelo servidor e o seu significado:

- Cliente para Servidor
- 1. **USER ANONYMOUS** utilizador informa que pretende entrar como anónimo;
- 2. PASS password de acesso;
- **3. SYST** comando status inserido na bash;
- 4. PWD comando pwd inserido na bash;
- **5. PORT** o cliente FTP para estabelecer uma segunda conexão(de dados) indica a porta e o endereco:
- **6. LIST** utilizador requer a listagem de uma diretoria;
- 7. TYPE 1 indica que pretende o ficheiro 1;
- 8. **RETR** utilizador insere na bash o comando get, para obter um certo ficheiro;
- 9. QUIT cliente FTP pretende terminar a conexão;

• Servidor para Cliente

- 1. FTP 220 o servidor FTP está pronto para aceitar um login;
- 2. FTP 331 o servidor FTP indica que o login como anónimo é permitido;
- 3. FTP 230 mensagem de welcome após ser efetuado o login;
- 4. FTP 215 resposta dada ao comando SYST;
- 5. FTP 257 resposta dada ao comando PWD;
- 6. FTP 200 o servidor FTP server dá conhecimento positivo sobre o comando PORT;
- 7. FTP 150 o servidor FTP notifica o cliente que está pronto a transferir a lista pedida;
- 8. FTP 226 indica que está a transferência pedida foi efetuada;
- 9. FTP 221 mensagem de obrigado pela visita.

Figura 9 – Captura wireshark da transferência do ficheiro 1 por FTP

Por último, apresentamos o diagrama apenas para a conexão de transferência de dados do ficheiro mais pequeno. Para a conceção deste diagrama guiamo-nos pela troca de segmentos obtida apenas na figura acima apresentada.

Figura 10 – Diagrama temporal para a transferência por FTP

TFTP – Trivial File Transfer Protocol

Figura 11 – Captura wireshark da transferência do ficheiro 1 por TFTP

Através dos dados que conseguimos capturar na imagem acima, obtemos o seguinte diagrama temporal.

Figura 12 – Diagrama temporal da transferência por TFTP

O servidor escuta sempre na porta 69 (porta padrão do TFTP), mas encaminha para outra porta todas as respostas (DATA, ACK) para libertar a porta 69 para outros possíveis pedidos(o servidor gera um novo socket UDP para manipular o TFTP pedido). Daí a nossa representação deste diagrama temporal da transferência por TFTP.

Mensagens TFTP usadas

RRQ – Read Request Message, usada para notificar que pretende ler dados;

DATA – mensagem usada pelo cliente ou o servidor para o envio de um bloco de dados;

ACK - mensagem de reconhecimento da recepção do bloco de dados;

Questão 3

Para esta questão e a próxima já achamos necessário inserir os diferentes tempos das transferências do ficheiro 2 entre o Cliente 1 e o Servidor 1, usando diferentes protocolos.

Protocolo	Cliente 1(tempo em s)
FTP	0.63
TFTP	0.079
НТТР	3.9
SFTP	5

Estes tempos foram obtidos pelos diversos comandos, em que tínhamos que executar manualmente o servidor, ou apenas verificar se já se encontrava à escuta.

Figura 13 - Transferência do ficheiro 2 por FTP

Figura 14 - Transferência do ficheiro 2 por TFTP

Figura 15 - Transferência do ficheiro 2 por HTTP

Figura 16 - Transferência do ficheiro 2 por SFTP

A tabela a seguir apresentada, inclui certas conclusões que retiramos ao longo das experiências efetuadas, ao mesmo tempo que obtemos alguma informação extra para obtermos uma análise crítica dos diferentes parâmetros.

Protocolo	Uso da	Eficiência na	Complexidad	Segurança
	camada de	transferência	е	
	transporte	(tempo)		
FTP – File Transfer Protocol	O FTP usa o TCP, com duas conexões distintas, uma para controlo e outra para dados. O canal de controlo é usado na porta 21 no servidor, e é responsável pela troca de comandos simples entre o cliente e o servidor. Enquanto o canal de dados é usado na porta 20 para troca de dados na forma de listagens de diretorias e transferências de dados.	Transferência por FTP envolve o cliente enviar comandos para os quais o servidor responde. Uma única transferência pode envolver uma série de comandos. Isso obviamente tem um impacto negativo, já que há um atraso de ida e volta para cada comando.	Dado o FTP usar o TCP que é um protocolo fiável e orientado à conexão, o software usado utiliza mais memória que por exemplo o do TFTP, necessita sempre de estabelecer duas conexões (uma de controlo e uma de dados), e tem bastantes comandos disponíveis, é considerado um protocolo com algum nível de complexidade.	Para uma transferência FTP entre cliente e servidor é necessário uma autenticação com username e password, apesar disso, é grande risco quanto à segurança porque a transferência de arquivos é feita sem encriptação, ou seja, se alguém intercetar o segmento TCP durante a transmissão, terá acesso a todas informações dos seus arquivos e credenciais pondo em risco o seu servidor local e computador local.

Figura – Tabela para comparação dos diferentes protocolos conforme os parâmetros pedidos

Protocolo	Uso da	Eficiência na	Complexidad	Segurança
	camada de	transferência	е	
	transporte	(tempo)		
TFTP - Trivial	O TFTP usa o UDP	Dado o TDTP usar	Dado o TFTP usar	Comparando
File Transfer	como protocolo	o UDP, este	o UDP que é um	TFTP com os
Protocol	de transporte na	acaba por ganhar	protocolo de	outros
	porta 69, mas	em termos de	transporte não	protocolos este é
	encaminha para	tempo de	orientado à	considerado o
	outra porta,	transferência,	conexão e não	menos seguro,
	possibilitando	pois não ter que	fiável(não existe	pois nem
	outros pedidos.	efetuar uma	garantia na	mecanismos de
		conexão antes da	entrega de	autenticação ou
		transferência.	segmentos), o	de encriptação
			software usado	fornece.
			utiliza pouca	
			memória, e tem	
			apenas cinco	
			mensagens	
			disponíveis, é	
			considerado um	
			protocolo com	
	ļ		baixo nível de	
			complexidade.	

Figura – Tabela para comparação dos diferentes protocolos conforme os parâmetros pedidos(continuação)

Protocolo	Uso da	Eficiência na	Complexidad	Segurança
	camada de	transferência	е	
	transporte	(tempo)		
HTTP – HyperText Transfer Protocol	O HTTP usa o TCP na porta 80.	Dado que o HTTP usa uma única conexão TCP, contrariamente ao FTP, consegue alcançar um melhor tempo de resposta mesmo para o primeiro arquivo solicitado. Apesar de que existem algumas ineficiências pois o TCP estabelece uma conexão antes de transferir qualquer dados, ou seja, esse mecanismo e reiniciado para cada pedido de um ficheiro, resultando numa possível sobrecarga.	Dado o HTTP usar o TCP, e necessitar de estabelecer apenas uma conexão (de dados), é considerado um protocolo com algum nível de complexidade.	O HTTP tem vulnerabilidades que podem prejudicar os utilizadores, da mesma forma que o FTP. Para se conseguir uma conexão segura usando este protocolo deverá se usar o HTTPS.

Figura – Tabela para comparação dos diferentes protocolos conforme os parâmetros pedidos(continuação)

Protocolo	Uso da camada de transporte	Eficiência na transferência (tempo)	Complexidad e	Segurança
SFTP – Secure File Transfer Protocol	O SFTP utiliza o TCP na porta 22.	Devido ao uso de encriptação, este protocolo acaba por ser o único devidamente seguro, mas por outro lado perde a nível de eficiência de transferência, pois o seu tempo de transmissão aumenta.	Dado o SFTP ser baseado no FTP, sendo as únicas diferenças que no SFTP apenas existe um canal, e a informação circula encriptada devido ao protocolo SSH, consideramos este protocolo também com algum nível de complexidade.	Como o SFTP é executado sobre o SSH, ele é inerentemente seguro. Ao reutilizar a conexão principal, nenhuma outra conexão é aberta entre o cliente e o servidor, resultando em uma única conexão segura e eficiente por meio de firewalls. Isto significa que mesmo que alguém intercete os segmentos TCP estará impossibilitado de decifrar os dados transmitidos.

Figura – Tabela para comparação dos diferentes protocolos conforme os parâmetros pedidos(continuação)

Questão 4

Para esta questão achamos necessário incluir a mesma tabela inserida na questão anterior mas com a particularidade que agora comparamos os tempos entre as transferências do ficheiro 2 entre o Cliente 1 e o Servidor 1, e entre o Alfa e o Servidor 1. Eles estão situados em diferentes LANs, com ligações com diferentes larguras de banda, sendo que a ligação entre o Alfa e o Cliente 1 funciona com perdas, atrasos e duplicações.

Protocolo	Cliente 1(tempo em s)	Alfa(tempo em s)
FTP	0.63	2.10
TFTP	0.079	1.928
НТТР	3.9	2.3
SFTP	5	4

Figura 17 – Ping do Cliente1 para o Servidor1 e do Alfa para o Servidor1

Primeiro analisando quanto ao tempo de transferência, podemos retirar da tabela acima, que o tempo que mais aumentou, foi o da transferência por TFTP. A causa deve-se ao uso do UDP como transporte, fazendo o controlo de erros a nível da aplicação. Enquanto que a transferência por FTP, por utilizar o TCP como transporte, dado a ser fiável, utiliza internamente o mecanismo ACK para detetar informação em falta e automaticamente retransmite essa informação. Quanto à diminuição dos tempos com HTTP e SFTP apenas deve-se a fatores externos.

	TCP	74 49136 > http [SYN] Seg=0 Win=14600 Len=0 MSS=1460 SACK PERM=1 TSval=12158303 TSecr=0 WS=16
.3.3.1		74-49150 F 1100 [51N] Seq-0 WIN-14000 Cen-0 WSS-1400 SACK_I CKW-1 15V8I-12150505 15eci-0 WS-10
	TCP	74 http > 49136 [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS=1460 SACK_PERM=1 TSval=12158304 TSecr=12158303 WS
.3.3.1	TCP	74 http > 49136 [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS=1460 SACK_PERM=1 TSval=12158304 TSecr=12158303 WS
.1.1.1	TCP	66 49136 > http [ACK] Seq=1 Ack=1 Win=14608 Len=0 TSval=12158304 TSecr=12158304
.1.1.1	TCP	66 [TCP Dup ACK 133#2] 49136 > http [ACK] Seq=1 Ack=1 Win=14608 Len=0 TSval=12158304 TSecr=12158304
.1.1.1	HTTP	179 GET /file2 HTTP/1.1
.3.3.1	TCP	66 http > 49136 [ACK] Seq=1 Ack=114 Win=14480 Len=0 TSval=12158305 TSecr=12158304
.3.3.1	TCP !	534 [TCP segment of a reassembled PDU]
.3.3.1	НТТР	66 HTTP/1.1 404 Not Found (text/html)
.1.1.1	TCP	66 49136 > http [ACK] Seq=114 Ack=469 Win=15680 Len=0 TSval=12158306 TSecr=12158306
.1.1.1	TCP	66 49136 > http [RST, ACK] Seq=114 Ack=470 Win=15680 Len=0 TSval=12158306 TSecr=12158306
:00:00_aa:00:16	ARP	42 Who has 10.1.1.1? Tell 10.1.1.254
:00:00_aa:00:12	ARP	42:10.1.1.1 is at 00:00:00:aa:00:16
4.0.0.5	OSPF	78 Hello Packet
	OSPF OSPF	78 Hello Packet 90 Hello Packet
02::5		
02::5 4.0.0.5	OSPF	90 Hello Packet
02::5 4.0.0.5 02::5	OSPF OSPF	90 Hello Packet 78 Hello Packet
.1	.1.1 .1.1 .1.1 .3.1 .3.3.1 .3.3.1 .1.3.1 .1.1 .1.1	11.1 TCP 11.1 TCP 1.1.1 HTTP 1.3.1 TCP 1.3.1 TCP 1.3.1 TCP 1.1.1 TCP 1.1.1 TCP 0:00_aa:00:16 ARP

Figura 18 – Captura no wireshark da transferência por HTTP usando a ligação não segura

No.	Time	Source	Destination	Protocol	Length Info
35	75.605633	10.3.3.1	10.1.1.1	SSHv2	82 [TCP Retransmission] Encrypted request packet len=16
36	75.606556	10.1.1.1	10.3.3.1	TCP	78 ssh > 56450 [ACK] Seq=1650 Ack=1410 Win=17376 Len=0 TSval=12104642 TSecr=12104641 SLE=1394 SRE=1410
37	75.611867	10.3.3.1	10.1.1.1	SSHv2	114 Encrypted request packet len=48
38	75.612033	10.1.1.1	10.3.3.1	TCP	66 ssh > 56450 [ACK] Seq=1650 Ack=1458 Win=17376 Len=0 TSval=12104644 TSecr=12104643
39	75.612100	10.1.1.1	10.3.3.1	TCP	114 [TCP segment of a reassembled PDU]
40	75.617241	10.3.3.1	10.1.1.1	TCP	66 56450 > ssh [ACK] Seq=1458 Ack=1698 Win=19408 Len=0 TSval=12104644 TSecr=12104644
41	75.617241	10.3.3.1	10.1.1.1	TCP	66 [TCP Dup ACK 40#1] 56450 > ssh [ACK] Seq=1458 Ack=1698 Win=19408 Len=0 TSval=12104644 TSecr=12104644
42	75.617274	10.3.3.1	10.1.1.1	SSHv2	130 Encrypted request packet len=64
43	75.618340	10.1.1.1	10.3.3.1	TCP	130 [TCP segment of a reassembled PDU]
44	75.664032	10.3.3.1	10.1.1.1	TCP	66 56450 > ssh [ACK] Seq=1522 Ack=1762 Win=19408 Len=0 TSval=12104656 TSecr=12104645
45	78.864010	10.3.3.1	10.1.1.1	SSHv2	210 Encrypted request packet len=144
46	78.901836	10.1.1.1	10.3.3.1	TCP	66 ssh > 56450 [ACK] Seq=1762 Ack=1666 Win=19920 Len=0 TSval=12105467 TSecr=12105456
47	80.009997	10.1.1.254	224.0.0.5	OSPF	78 Hello Packet
48	80.172494	fe80::200:ff:feaa:1	ff02::5	OSPF	90 Hello Packet
49	80.594383	10.1.1.1	10.3.3.1	TCP	130 [TCP segment of a reassembled PDU]
50	80.599543	10.3.3.1	10.1.1.1	TCP	66 56450 > ssh [ACK] Seq=1666 Ack=1826 Win=19408 Len=0 TSval=12105890 TSecr=12105890
51	83.024213	10.3.3.1	10.1.1.1	SSHv2	210 Encrypted request packet len=144
52	83.024213	10.3.3.1	10.1.1.1	SSHv2	210 [TCP Retransmission] Encrypted request packet len=144
53	83.033524	10.1.1.1	10.3.3.1	TCP	66 ssh > 56450 [ACK] Seq=1826 Ack=1810 Win=22464 Len=0 TSval=12106497 TSecr=12106496
54	83.033573	10.1.1.1	10.3.3.1	TCP	78 [TCP Dup ACK 53#1] ssh > 56450 [ACK] Seq=1826 Ack=1810 Win=22464 Len=0 TSval=12106497 TSecr=12106496 SLE=1
▶ Frame	1: 90 byte	es on wire (720 bits	(), 90 bytes capture	d (720 b	its)
	•	_	•		IPv6mcast_00:00:00:05 (33:33:00:00:00:05)
		•	e80::200:ff:feaa:12	(fe80:::	200:ff:feaa:12), Dst: ff02::5 (ff02::5)
▶ Open :	Shortest Pa	ath First			

Figura 19 – Captura no wireshark da transferência por SFTP usando a ligação não segura

Pelas capturas efetuadas nesta ligação não segura retiramos as seguintes informações:

- Perda e duplicação de pacotes são problemas relacionados com protocolos orientados à mensagem como o UDP. No UDP quando uma mensagem é enviada ela pode chegar duplicada, fora de ordem ou nem chegar. Não existe nenhum mecanismo para resolver situações de perda de mensagem.
- Relativamente à perda de pacotes utilizando TCP, este deteta o segmento em falta e automaticamente retransmite esse segmento. Quanto à duplicação, pode acontecer de os dois pacotes chegarem ao destino, o TCP resolve esse problema de pacotes de IP duplicados. Podemos ver as mensagens de erro de duplicação e retransmissão nas figuras acima.

Conclusão

Quanto ao TCP concluímos que:

- orientado à conexão pois para conseguir transmitir os dados para um destino, é preciso, antes, estabelecer uma conexão com este. O protocolo TCP tem 3 fases durante uma conexão (estabelecimento da ligação, transferência de dados, e encerramento da ligação);
- bastante confiável pois há sempre garantia da entrega dos segmentos, devido aos seguintes fatores:
 - 1. Retransmissão de um segmento pois o TCP, ao enviar um segmento, inicializa um temporizador (mecanismo de *timeout*) para receber a confirmação do recepção. Se, após o *timeout*, a confirmação não for recebida, o segmento é retransmitido;
 - 2. Controle de fluxo para que o recetor não receba mais segmentos do que a sua capacidade permite, evitando, assim, a perda de segmentos por parte do recetor (ex.: um transmissor rápido enviando segmentos para um recetor lento);
 - 3. Controle de congestionamento, ou seja, o transmissor não pode enviar mais segmentos do que a rede pode suportar, evitando, assim, a perda de segmentos durante a transmissão.

Quanto ao UDP concluímos que é não orientado à conexão, e não fiável. Sendo a aplicação em si que tem que lidar com perdas de segmentos, duplicação e atraso.

Concluímos que a maioria das aplicações utiliza o TCP por existir a certeza que os dados são entregues, e na transferência de ficheiros isso é muito importante. Contudo, para uma aplicação em que a velocidade na entrega dos dados é mais útil do que a confiabilidade (como, por exemplo, streaming de vídeo e áudio), o protocolo UDP é mais adequado.