Морозов Д. І.

ІЗОМЕТРИЧНІСТЬ ПОЛІНОМІВ НАД КІЛЬЦЕМ ЦІЛИХ 2-АДИЧНИХ ЧИСЕЛ 1

Роботу присвячено побудові критерію ізометричності поліноміальних функцій над кільцем Z_2 цілих 2-адичних чисел. Вказано необхідні й достатні умови на коефіцієнти полінома, при яких цей поліном зберігає метрику відповідного ультраметричного простору Z_2 .

Ключові слова: поліном, метрика, кільце, ультраметричний простір, кільце поліномів, кільце цілих 2-адичних чисел.

Робота продовжує дослідження 2-адичних групових автоматів за допомогою представлення 2-адичними ізометріями. Дослідження ізометрій кільця Z_2 є важливим з погляду теорії групових автоматів, оскільки кожен двійковий груповий автомат можна розглядати як таку ізометрію. Важливий клас ізометрій утворюють поліноміальні функції, дослідженню яких на ізометричність і присвячена дана стаття.

Отже, розглянемо многочлени кільця $Z_2[x]$. У цьому розділі ми сформулюємо умови, за яких многочлен $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ буде ізометрією кільця Z_2 .

Означення 1. Означимо $S_n(x_1, x_2)$ як

$$S_n(x_1, x_2) = \sum_{k=0}^{n-1} x_1^{n-k-1} \cdot x_2^k.$$

Приклад 1. $S_1(x_1,x_2)=1$, $S_2(x_1,x_2)=x_1+x_2$, $S_3(x_1,x_2)=x_1^2+x_1\cdot x_2+x_2^2$ i m. ∂ .

Означення 2. *Означимо функцію* $\mu(x) = \overline{x}$:

$$\mu(x) = \begin{cases} 0, x \in 2Z_2 \\ 1, x \in Z_2^* \end{cases} .$$

Лема 1. $\overline{S_{2k}}(x_1, x_2) = \overline{x}_1 \oplus \overline{x}_2, k \in \mathbb{N}.$

Доведення. S_{2k} складається з парної кількості доданків, кожен з яких буде непарним, якщо x_1 та x_2 непарні. Тому S_{2k} є парним, якщо x_1 та x_2 непарні. Очевидно, що S_{2k} є парним, якщо x_1 та x_2 парні. Крім того, $S_{2k} = x_1 + S_{2k-1} \cdot x_2 = S_{2k-1} \cdot x_1 + x_2$, тому S_{2k} є непарним, якщо x_1 та x_2 — різної парності. Отже, таблиця значень для $\overline{S_{2k}}(x_1,x_2)$ і таблиця істинності для $\overline{x}_1 \oplus \overline{x}_2$ однакові.

Лема 2.
$$\overline{S_{2k+1}}(x_1,x_2)=\overline{x}_1\cup\overline{x}_2,k\in\mathbb{N}.$$

Доведення. S_{2k+1} складається з непарної кількості доданків, кожен з яких буде непарним, якщо x_1

та x_2 непарні. Тому S_{2k} є непарним, якщо x_1 та x_2 непарні. Очевидно, що S_{2k} є парним, якщо x_1 та x_2 парні. Крім того, $S_{2k} = x_1 + S_{2k-1} \cdot x_2 = S_{2k-1} \cdot x_1 + x_2$, тому S_{2k} є непарним, якщо x_1 та x_2 — різної парності. Отже таблиця значень для $\overline{S}_{2k+1}(x_1,x_2)$ та таблиця істинності для $\overline{x}_1 \cup \overline{x}_2$ олнакові.

Означення 3.

$$D_f(x_1, x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2}.$$

Лема 3. Для многочлена $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ виконується рівність

$$D_f(x_1, x_2) = \sum_{k=1}^{n} a_k S_k(x_1, x_2).$$

Доведення. Дійсно, $f(x_1)-f(x_2)=(a_0+a_1x_1+a_2x_1^2+\ldots+a_nx_1^n)-(a_0+a_1x_2+a_2x_2^2+\ldots+a_nx_2^n)=\sum_{k=1}^n a_k(x_1^k-x_2^k).$

Очевилно, що для всіх $k \in \mathbb{N}$

$$(x_1^k - x_2^k)/(x_1 - x_2) = \sum_{t=0}^{k-1} x_1^{k-t-1} \cdot x_2^t = S_k(x_1, x_2).$$

Звідси маємо потрібну рівність:

$$D_f(x_1, x_2) = \sum_{k=1}^n a_k S_k(x_1, x_2).$$

Лема 4. Многочлен $f(x) \in Z_2[x]$ ϵ ізометрією тоді і тільки тоді, коли

$$\forall x_1, x_2 \in Z_2 \ \overline{D_f}(x_1, x_2) = 1.$$

Доведення. Дійсно, оскільки f — ізометрія, то $(f(x_1)-f(x_2))$ та (x_1-x_2) мають однакову кількість 0 на початку двійкового запису, а отже, їх відношення буде непарним 2-адичним числом.

¹ Робота частково підтримана Міжнародним благодійним фондом відродження Києво-Могилянської академії.

Означення 4. Для многочлена $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ означимо A_f та B_f :

$$A_f = \mu \left(\sum_{k=1}^{\left[\frac{n+1}{2}\right]} a_{2k} \right),$$

$$B_f = \mu \left(\sum_{k=2}^{\left[\frac{n+1}{2}\right]} a_{2k-1} \right).$$

Теорема 1. Має місце наступна рівність:

$$\overline{D_f}(x_1, x_2) = \overline{a}_1 \oplus (A_f \cap (\overline{x}_1 \oplus \overline{x}_2)) \oplus (B_f \cap (\overline{x}_1 \cup \overline{x}_2)).$$

Доведення. За лемою 3 маємо:

$$\overline{D_f}(x_1, x_2) = \sum_{k=1}^n a_k S_k(x_1, x_2).$$

Далі, оскільки $\overline{a+b} = \overline{a} \oplus \overline{b}$, то:

$$\sum_{k=1}^{n} a_k S_k(x_1, x_2) = \bigoplus_{k=1}^{n} \overline{a_k S_k(x_1, x_2)}.$$

оскільки $\overline{a*b} = \overline{a}*\overline{b}$, то:

$$\overline{\sum_{k=1}^{n} a_k S_k(x_1, x_2)} = \bigoplus_{k=1}^{n} \overline{a}_k \overline{S_k(x_1, x_2)}$$
 (1)

Скориставшись лемами 1 та 2 отримуємо з (1) потрібну рівність.

Наслідок 1. За лемою 4 і теоремою 1 многочлен $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ є ізометрією тоді і тільки тоді, коли формула $\overline{a}_1 \oplus (A_f \cap (\overline{x}_1 \oplus x_2)) \oplus (B_f \cap (\overline{x}_1 \cup \overline{x}_2))$ є тотожно-істиною.

Теорема 2. $\overline{a}_1 \oplus (A_f \cap (\overline{x}_1 \oplus \overline{x}_2)) \oplus (B_f \cap (\overline{x}_1 \cup \overline{x}_2))$ ε тотожно-істиною тоді і тільки тоді, коли $\overline{a}_1 = 1, \ A_f = 0, \ B_f = 0.$

Доведення. Побудуємо таблицю вигляду формули $\overline{a}_1 \oplus (A_f \cap (\overline{x}_1 \oplus \overline{x}_2)) \oplus (B_f \cap (\overline{x}_1 \cup \overline{x}_2))$ для різних значень \overline{a}_1 , A_f , B_f (див. таб. 1.):

Таблиця 1.

\overline{a}_1	A_f	B_f	Результат	
0	0	0	0	
0	0	1	$\overline{x}_1 \cup \overline{x}_2$	
0	1	0	$\overline{x}_1 \oplus \overline{x}_2$	
0	1	1	$(\overline{x}_1 \oplus \overline{x}_2) \oplus (\overline{x}_1 \cup \overline{x}_2)$	
1	0	0	1	
1	0	1	$\neg(\overline{x}_1 \cup \overline{x}_2)$	
1	1	0	$ eg(\overline{x}_1 \oplus \overline{x}_2)$	
1	1	1		

Таблиці істинності формул $\overline{x}_1 \cup \overline{x}_2$, $\overline{x}_1 \oplus \overline{x}_2$ та $(\overline{x}_1 \oplus \overline{x}_2) \oplus (\overline{x}_1 \cup \overline{x}_2)$ мають такий вигляд (див. таб. 2):

Таблиця 2.

\overline{x}_1	\overline{x}_2	$\overline{x}_1 \oplus \overline{x}_2$	$\overline{x}_1 \cup \overline{x}_2$	$(\overline{x}_1 \oplus \overline{x}_2) \oplus (\overline{x}_1 \cup \overline{x}_2)$
				$(\overline{x}_1 \cup \overline{x}_2)$
0	0	0	0	0
0	1	1	1	0
1	0	1	1	0
1	1	0	1	1

Отже, формула ϵ тотожньо-хибною для

$$\overline{a}_1 = 0, \ A_f = 0, \ B_f = 0$$

і тотожньо-істиною для

$$\overline{a}_1 = 1, \ A_f = 0, \ B_f = 0$$

та виконливою у всіх інших випадках.

Теорема 3. За наслідком 1 та теоремою 2 многочлен $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ є ізометрією тоді і тільки тоді, коли коефіцієнт a_1 є непарним 2-адичним числом, сума коефіцієнтів з парними номерами більше 0 є парним 2-адичним числом та сума коефіцієнтів з непарними номерами більше 3 є парним 2-адичним числом.

Приклад 2. За теоремою 3 наступні многочлени ϵ ізометріями:

$$f(x) = 5x + 1$$

$$f(x) = x^4 + x^2 + x$$

$$f(x) = x^5 + 2x^4 + x^3 + 3x,$$

а многочлени

$$f(x) = 4x + 1$$

$$f(x) = x^3 + x^2 + x$$

$$f(x) = x^5 + x^4 + x^3 + 3x$$

не ϵ ізометріями кільця Z_2 .

1. Коблиц Н. р-адические числа, р-адический анализ и дзета-функции / Н. Коблиц, М. : Мир — 1982-190 с.

D. Morozov

ISOMETRICAL POLYNOMIALS OVER THE RING OF INTEGER 2-ADIC NUMBERS

The aim of the work is to construct requirements which describes isometrical polynomials over the ring of integer 2-adic numbers.

This work continues investigations of 2-adic groups' automatous with the 2-adic isometrical functions' technique. Polynomials build the important class of izometrical function that's why we investigate them in this paper.

Keywords: polynomial, ultrametrics, ring, polynomials' ring, ring of integer 2-adic numbers.