Import Libraries

```
In [33]:
!pip install MultiColumnLabelEncoder
```

```
Collecting MultiColumnLabelEncoder
Downloading MultiColumnLabelEncoder-1.1.3-py3-none-any.whl (14 kB)
Installing collected packages: MultiColumnLabelEncoder
Successfully installed MultiColumnLabelEncoder-1.1.3
```

In [1]:

```
# Importing important libraries
import pandas as pd
import numpy as np
from scipy import stats
from prettytable import PrettyTable
import pickle
#import pyforest
from lazypredict.Supervised import LazyRegressor
from pandas.plotting import scatter matrix
# Scikit-learn packages
from sklearn.linear model import LinearRegression, Ridge, Lasso, ElasticNet
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model selection import train test split
from sklearn.metrics import mean squared error, mean absolute error, r2 score
# Neural Network packages
from tensorflow.keras.models import Model, load model, Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.optimizers import Adam, SGD
from tensorflow.keras.callbacks import ModelCheckpoint
# Hide warnings
import warnings
```

```
warnings.filterwarnings("ignore")

# plotting
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib import style
from matplotlib.gridspec import GridSpec
%matplotlib inline
```

Load Dataset

In [2]:

df = pd.read_csv("D:/Freelancing/Mortality Detection/Dataset/Mortality-5.csv")
df.head(20)

Out[2]:

	Country	Admin1	SubDiv	Year	List	Cause	Sex	Frmat	IM_Frmat	Deaths1	 Deaths21	Deaths22	
0	4303	nan	NaN	2017	101	1000	1	1	8	281784	 43174.00	29856.00	
1	4303	nan	NaN	2017	101	1000	2	1	8	292339	 56037.00	52655.00	
2	4303	nan	NaN	2017	101	1001	1	1	8	6198	 62.00	36.00	
3	4303	nan	NaN	2017	101	1001	2	1	8	2516	 86.00	45.00	
4	4303	nan	NaN	2017	101	1002	1	1	8	0	 0.00	0.00	
5	4303	nan	NaN	2017	101	1002	2	1	8	0	 0.00	0.00	
6	4303	nan	NaN	2017	101	1003	1	1	8	1	 0.00	0.00	
7	4303	nan	NaN	2017	101	1003	2	1	8	1	 0.00	1.00	
8	4303	nan	NaN	2017	101	1004	1	_ 1	8	18	 1.00	0.00	7
4												•	

In [3]:

```
#check for datatypes and null values
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 610184 entries, 0 to 610183
Data columns (total 39 columns):
    Column
                Non-Null Count
                                 Dtype
    Country
                610184 non-null int64
0
    Admin1
                                 float64
 1
                0 non-null
 2
    SubDiv
                3931 non-null object
 3
    Year
                610184 non-null int64
 4
    List
                610184 non-null int64
                610184 non-null object
 5
    Cause
 6
    Sex
                610184 non-null int64
 7
                610184 non-null int64
    Frmat
 8
    IM Frmat
                610184 non-null int64
    Deaths1
                610184 non-null int64
 9
    Deaths2
                608592 non-null float64
 10
    Deaths3
                608592 non-null float64
 11
    Deaths4
                594046 non-null float64
 12
 13
    Deaths5
                594046 non-null float64
    Deaths6
                594046 non-null float64
 14
 15
    Deaths7
                608592 non-null float64
```

```
Deaths8
 16
                 608194 non-null
                                 float64
 17
    Deaths9
                 608592 non-null
                                 float64
    Deaths10
                 608194 non-null
                                 float64
 18
    Deaths11
                608592 non-null float64
 19
    Deaths12
                 608194 non-null float64
 20
 21
    Deaths13
                608592 non-null float64
 22
    Deaths14
                608194 non-null float64
    Deaths15
 23
                 608592 non-null
                                float64
 24
    Deaths16
                 608194 non-null
                                 float64
    Deaths17
                                 float64
 25
                608592 non-null
    Deaths18
                608194 non-null float64
 26
 27
    Deaths19
                 608592 non-null float64
    Deaths20
                608194 non-null float64
 28
 29
    Deaths21
                608592 non-null float64
                607847 non-null float64
 30
    Deaths22
 31
    Deaths23
                 607847 non-null float64
 32
    Deaths24
                540474 non-null float64
    Deaths25
 33
                540474 non-null float64
 34
    Deaths26
                608592 non-null float64
 35
    IM Deaths1 608592 non-null float64
 36
    IM Deaths2 516532 non-null float64
 37
    IM Deaths3 522331 non-null float64
    IM Deaths4 522331 non-null float64
 38
dtypes: float64(30), int64(7), object(2)
memory usage: 181.6+ MB
```

In [4]:
▶

```
# check data type of each columns for further processing
df.dtypes
```

Out[4]:

Country	int64
Admin1	float64
SubDiv	object
Year	int64
List	int64
Cause	object
Sex	int64
Frmat	int64
IM_Frmat	int64
Deaths1	int64
Deaths2	float64
Deaths3	float64
Deaths4	float64
Deaths5	float64
Deaths6	float64
Deaths7	float64
Deaths8	float64
Deaths9	float64
Deaths10	float64

Deaths11	float64
Deaths12	float64
Deaths13	float64
Deaths14	float64
Deaths15	float64
Deaths16	float64
Deaths17	float64
Deaths18	float64
Deaths19	float64
Deaths20	float64
Deaths21	float64
Deaths22	float64
Deaths23	float64
Deaths24	float64
Deaths25	float64
Deaths26	float64
<pre>IM_Deaths1</pre>	float64
IM_Deaths2	float64
IM_Deaths3	float64
IM_Deaths4	float64
<pre>dtype: object</pre>	

```
In [5]: 
▶
```

```
# check unique values for each feature vector and output
df.nunique()
```

Out[5]:

Country	99
Admin1	0
SubDiv	2
Year	4
List	3
Cause	10073
Sex	3
Frmat	6
IM_Frmat	4
Deaths1	5894
Deaths2	766
Deaths3	247
Deaths4	179
Deaths5	151
Deaths6	140
Deaths7	266
Deaths8	280
Deaths9	460
Deaths10	557
Deaths11	627

Deaths12	702	
Deaths13	800	
Deaths14	911	
Deaths15	1070	
Deaths16	1266	
Deaths17	1500	
Deaths18	1714	
Deaths19	1875	
Deaths20	1918	
Deaths21	2156	
Deaths22	2365	
Deaths23	2531	
Deaths24	1805	
Deaths25	1243	
Deaths26	216	
<pre>IM_Deaths1</pre>	472	
<pre>IM_Deaths2</pre>	341	
<pre>IM_Deaths3</pre>	307	
<pre>IM_Deaths4</pre>	418	
dtype: int64		

```
In [6]:
```

df = df.drop(columns= ['Admin1','Cause'], axis = 1)
df.head(20)

Out[6]:

	Country	SubDiv	Year	List	Sex	Frmat	IM_Frmat	Deaths1	Deaths2	Deaths3	 D	
0	4303	NaN	2017	101	1	1	8	281784	1608.00	133.00	 4	
1	4303	NaN	2017	101	2	1	8	292339	1178.00	99.00	 5	
2	4303	NaN	2017	101	1	1	8	6198	41.00	11.00		
3	4303	NaN	2017	101	2	1	8	2516	29.00	7.00		
4	4303	NaN	2017	101	1	1	8	0	0.00	0.00		
5	4303	NaN	2017	101	2	1	8	0	0.00	0.00		
6	4303	NaN	2017	101	1	1	8	1	0.00	0.00		
7	4303	NaN	2017	101	2	1	8	1	0.00	0.00		
8	4303	NaN	2017	101	1	1	8	18	6.00	0.00		
9	4303	NaN	2017	101	2	1	8	4	1.00	0.00		
10	4303	NaN	2017	101	1	1	8	1864	1.00	0.00		

	Country	SubDiv	Year	List	Sex	Frmat	IM_Frmat	Deaths1	Deaths2	Deaths3	 D
11	4303	NaN	2017	101	2	1	8	417	0.00	0.00	
12	4303	NaN	2017	101	1	1	8	1186	0.00	0.00	
13	4303	NaN	2017	101	2	1	8	268	1.00	1.00	
14	4303	NaN	2017	101	1	1	8	0	0.00	0.00	
15	4303	NaN	2017	101	2	1	8	0	0.00	0.00	
16	4303	NaN	2017	101	1	1	8	1	0.00	0.00	
17	4303	NaN	2017	101	2	1	8	4	0.00	0.00	
18	4303	NaN	2017	101	1	1	8	0	0.00	0.00	
19	4303	NaN	2017	101	2	1	8	0	0.00	0.00	

20 rows × 37 columns

In [7]: ▶

general overview of dataset characteristics
df.describe().T

Out[7]:

	count	mean	std	min	25%	50%	75%	max
Country	610184.00	3372.06	969.38	1125.00	2310.00	4010.00	4210.00	5198.00
Year	610184.00	2018.15	0.99	2017.00	2017.00	2018.00	2019.00	2020.00
List	610184.00	103.92	0.32	101.00	104.00	104.00	104.00	104.00
Sex	610184.00	1.50	0.67	1.00	1.00	1.00	2.00	9.00
Frmat	610184.00	0.16	0.63	0.00	0.00	0.00	0.00	9.00
IM_Frmat	610184.00	2.02	2.46	1.00	1.00	1.00	1.00	9.00
Deaths1	610184.00	201.33	7401.58	0.00	1.00	3.00	13.00	1473823.00
Deaths2	608592.00	2.50	110.72	0.00	0.00	0.00	0.00	20964.00
Deaths3	608592.00	0.26	11.90	0.00	0.00	0.00	0.00	2663.00
Deaths4	594046.00	0.15	6.99	0.00	0.00	0.00	0.00	1519.00
Deaths5	594046.00	0.11	4.94	0.00	0.00	0.00	0.00	1119.00

	count	mean	std	min	25%	50%	75%	max
Deaths6	594046.00	0.09	4.00	0.00	0.00	0.00	0.00	873.00
Deaths7	608592.00	0.33	14.70	0.00	0.00	0.00	0.00	2982.00
Deaths8	608194.00	0.37	15.81	0.00	0.00	0.00	0.00	2828.00
Deaths9	608592.00	0.96	51.11	0.00	0.00	0.00	0.00	17763.00
Deaths10	608194.00	1.48	78.95	0.00	0.00	0.00	0.00	24445.00
Deaths11	608592.00	1.83	91.10	0.00	0.00	0.00	0.00	21425.00
Deaths12	608194.00	2.37	113.20	0.00	0.00	0.00	0.00	25135.00
Deaths13	608592.00	3.09	141.96	0.00	0.00	0.00	0.00	34168.00
Deaths14	608194.00	3.91	168.98	0.00	0.00	0.00	0.00	40125.00
Deaths15	608592.00	5.29	215.27	0.00	0.00	0.00	0.00	44424.00
Deaths16	608194.00	7.52	300.88	0.00	0.00	0.00	1.00	63581.00
Deaths17	608592.00	11.07	454.88	0.00	0.00	0.00	1.00	98387.00
Deaths18	608194.00	14.64	595.65	0.00	0.00	0.00	1.00	130870.00
Deaths19	608592.00	17.89	696.98	0.00	0.00	0.00	1.00	150938.00
Deaths20	608194.00	19.15	717.37	0.00	0.00	0.00	1.00	169309.00
Deaths21	608592.00	24.12	900.68	0.00	0.00	0.00	1.00	176496.00
Deaths22	607847.00	28.42	1055.30	0.00	0.00	0.00	1.00	185065.00

	count	mean	std	min	25%	50%	75%	max
Deaths23	607847.00	32.94	1325.49	0.00	0.00	0.00	1.00	268423.00
Deaths24	540474.00	17.83	822.92	0.00	0.00	0.00	1.00	202170.00
Deaths25	540474.00	8.40	474.17	0.00	0.00	0.00	0.00	128337.00
Deaths26	608592.00	0.19	13.85	0.00	0.00	0.00	0.00	3560.00
IM_Deaths1	608592.00	1.01	60.52	0.00	0.00	0.00	0.00	19846.00
IM_Deaths2	516532.00	0.51	23.73	0.00	0.00	0.00	0.00	5676.00
IM_Deaths3	522331.00	0.41	22.23	0.00	0.00	0.00	0.00	5954.00
IM_Deaths4	522331.00	0.83	44.53	-1.00	0.00	0.00	0.00	10658.00

Data Visualization and Preprocessing

Look for Missing and NAN Values

```
In [8]: ▶
```

```
# check for null or missing values
df.isnull().sum()
```

Out[8]:

Country	0
SubDiv	606253
Year	0
List	0
Sex	0
Frmat	0
IM_Frmat	0
Deaths1	0
Deaths2	1592
Deaths3	1592
Deaths4	16138
Deaths5	16138
Deaths6	16138
Deaths7	1592
Deaths8	1990
Deaths9	1592
Deaths10	1990
Deaths11	1592
Deaths12	1990
Deaths13	1592

Deaths14	1990
Deaths15	1592
Deaths16	1990
Deaths17	1592
Deaths18	1990
Deaths19	1592
Deaths20	1990
Deaths21	1592
Deaths22	2337
Deaths23	2337
Deaths24	69710
Deaths25	69710
Deaths26	1592
<pre>IM_Deaths1</pre>	1592
<pre>IM_Deaths2</pre>	93652
IM_Deaths3	87853
IM_Deaths4	87853
dtype: int64	

There are several columns that have missing values. We will replace these values with zero

```
In [9]: ▶
```

```
df.columns.isna()
```

Out[9]:

```
array([False, False, False)
```

In [10]: ▶

```
# inplace
df.replace(np.nan, 0, inplace=True)
df.head(30)
```

Out[10]:

	Country	SubDiv	Year	List	Sex	Frmat	IM_Frmat	Deaths1	Deaths2	Deaths3	 Death
0	4303	0	2017	101	1	1	8	281784	1608.00	133.00	 43174
1	4303	0	2017	101	2	1	8	292339	1178.00	99.00	 56037
2	4303	0	2017	101	1	1	8	6198	41.00	11.00	 62
3	4303	0	2017	101	2	1	8	2516	29.00	7.00	 86
4	4303	0	2017	101	1	1	8	0	0.00	0.00	 C
5	4303	0	2017	101	2	1	8	0	0.00	0.00	 C
6	4303	0	2017	101	1	1	8	1	0.00	0.00	 C
7	4303	0	2017	101	2	1	8	1	0.00	0.00	 C
8	4303	0	2017	101	1	1	8	18	6.00	0.00	 1
9	4303	0	2017	101	2	1	8	4	1.00	0.00	 C
10	4303	0	2017	101	1	1	8	1864	1.00	0.00	 27

	Country	SubDiv	Year	List	Sex	Frmat	IM_Frmat	Deaths1	Deaths2	Deaths3	 Death
11	4303	0	2017	101	2	1	8	417	0.00	0.00	 33
12	4303	0	2017	101	1	1	8	1186	0.00	0.00	 18
13	4303	0	2017	101	2	1	8	268	1.00	1.00	 11
14	4303	0	2017	101	1	1	8	0	0.00	0.00	 C
15	4303	0	2017	101	2	1	8	0	0.00	0.00	 C
16	4303	0	2017	101	1	1	8	1	0.00	0.00	 C
17	4303	0	2017	101	2	1	8	4	0.00	0.00	 1
18	4303	0	2017	101	1	1	8	0	0.00	0.00	 C
19	4303	0	2017	101	2	1	8	0	0.00	0.00	 C
20	4303	0	2017	101	1	1	8	1	1.00	0.00	 C
21	4303	0	2017	101	2	1	8	1	1.00	0.00	 C
22	4303	0	2017	101	1	1	8	32	11.00	8.00	 C
23	4303	0	2017	101	2	1	8	17	4.00	1.00	 C
24	4303	0	2017	101	1	1	8	250	10.00	3.00	 7
25	4303	0	2017	101	2	1	8	160	11.00	3.00	 14
26	4303	0	2017	101	1	1	8	12	0.00	0.00	 C
27	4303	0	2017	101	2	1	8	3	0.00	0.00	 С

	Country	SubDiv	Year	List	Sex	Frmat	IM_Frmat	Deaths1	Deaths2	Deaths3	 Death
28	4303	0	2017	101	1	1	8	0	0.00	0.00	 С
29	4303	0	2017	101	2	1	8	0	0.00	0.00	 C

30 rows × 37 columns


```
In [11]:
```

```
# check for null or missing values
df.isnull().sum()
```

Out[11]:

Country	0
SubDiv	0
Year	0
List	0
Sex	0
Frmat	0
IM_Frmat	0
Deaths1	0
Deaths2	0
Deaths3	0
Deaths4	0
Deaths5	0
Deaths6	0
Deaths7	0
Deaths8	0
Deaths9	0
Deaths10	0
Deaths11	0
Deaths12	0
Deaths13	0

Deaths14	0
Deaths15	0
Deaths16	0
Deaths17	0
Deaths18	0
Deaths19	0
Deaths20	0
Deaths21	0
Deaths22	0
Deaths23	0
Deaths24	0
Deaths25	0
Deaths26	0
<pre>IM_Deaths1</pre>	0
<pre>IM_Deaths2</pre>	0
<pre>IM_Deaths3</pre>	0
<pre>IM_Deaths4</pre>	0
dtype: int64	

In [12]: ▶

```
#heatmap
plt.figure(figsize=(30,30))
cor_map = df.corr()
sns.heatmap(cor_map, annot=True)
```

Out[12]:

<AxesSubplot:>

Deaths11	0.0092-0.001			0.0014		0.75	0.76		0.67	0.69	0.7	0.73	0.84	0.93	0.97	1	0.97	0.93	0.91	0.91	0.89	0.85	0.82	0.78	0.76	0.68						0.71			
Deaths12	0.0056-0.001		-0.0068			0.78	0.71				0.67	0.71	0.81	0.84	0.88	0.97	1	0.99	0.98	0.96	0.93	0.9	0.88	0.84	0.79	0.72					0.67	0.67			
Deaths13	0.00380.0009		-0.0064			0.8	0.69					0.69	0.79	0.79	0.83	0.93	0.99	1	0.99	0.97	0.95	0.93	0.9	0.87	0.8	0.74					0.67				
Deaths14	0.00310.000€	2-0.058	-0.0062			0.83	0.69				0.67	0.7	0.79	0.78	0.81	0.91	0.98	0.99	1	0.99	0.97	0.95	0.92	0.89	0.83	0.77	0.7				0.67				
Deaths15	0.00330.0005					0.88	0.72			0.67	0.69	0.72	0.81	0.78	0.82	0.91	0.96	0.97	0.99	1	0.99	0.97	0.96	0.93	0.89	0.83	0.75								
Deaths16	0.0035-0.000					0.91	0.72			0.68	0.69	0.72	0.8	0.77	0.8	0.89	0.93	0.95	0.97	0.99	1	0.99	0.98	0.96	0.92	0.86	0.79								
Deaths17	0.00210.0007	1-0.054	-0.0055	0.00066		0.92	0.67						0.74	0.7	0.74	0.85	0.9	0.93	0.95	0.97	0.99	1	1	0.98	0.93	0.88	0.81	0.67							
Deaths18	0.00140.0004	5-0.054	-0.0051			0.93							0.71	0.67	0.71	0.82	0.88	0.9	0.92	0.96	0.98	1	1	0.99	0.95	0.9	0.84	0.69							
Deaths19	0.000740.0005	2-0.054	-0.0043			0.96							0.69		0.69	0.78	0.84	0.87	0.89	0.93	0.96	0.98	0.99	1	0.97	0.95	0.89	0.76	0.67						
Deaths20	0.00170.0004					0.98							0.68		0.69	0.76	0.79	0.8	0.83	0.89	0.92	0.93	0.95	0.97	1	0.96	0.93	0.82	0.76						
Deaths21	0.0016-0.001					0.98										0.68	0.72	0.74	0.77	0.83	0.86	0.88	0.9	0.95	0.96	1	0.98	0.88	0.77						
Deaths22	0.00341.1e-0	-0.046			0.0089	0.97													0.7	0.75	0.79	0.81	0.84	0.89	0.93	0.98	1	0.94	0.79	0.67					
Deaths23	0.00440.0004					0.88																0.67	0.69	0.76	0.82	0.88	0.94	1	0.71						
Deaths24	6.1e-050.001			-0.0053		0.81																		0.67	0.76	0.77	0.79	0.71	1	0.96					
Deaths25	0.00180.000€					0.7																					0.67		0.96	1					
Deaths26	-0.008-0.0004																0.67	0.67	0.67												1		0.18		
IM_Deaths1	-0.011 -0.002	3 -0.018	-0.0009				0.7						0.67	0.71	0.71	0.71	0.67															1	0.24		
IM_Deaths2	-0.013-0.0002						0.81	0.79	0.79	0.79	0.79	0.79	0.76																				1	0.87	0.85
IM_Deaths3	-0.016-0.0009	3-0.018		-0.0028			0.81	0.84	0.84	0.84	0.81	0.77	0.71																				0.87	1	0.96
IM_Deaths4	0.016-0.0009						0.82	0.89	0.89	0.88	0.86	0.83	0.75																				0.85	0.96	1
	Country -	List -	Sex	- Frmat	IM Frmat -	Deaths1 -	Deaths2 -	Deaths3 -	Deaths4 -	Deaths5 -	Deaths6 -	Deaths7 -	Deaths8 -	Deaths9 -	Deaths10 -	Deaths11 -	Deaths12 -	Deaths13 -	Deaths14 -	Deaths15 -	Deaths16 -	Deaths17 -	Deaths18 -	Deaths19 -	Deaths20 -	Deaths21 -	Deaths22 -	Deaths23 -	Deaths24 -	Deaths25 -	Deaths26 -	IM_Deaths1 -	IM_Deaths2 -	IM_Deaths3 -	IM_Deaths4 -

```
In [13]: ▶
```

```
# check data type of each columns for further processing
df.dtypes
```

Out[13]:

Country	int64
SubDiv	object
Year	int64
List	int64
Sex	int64
Frmat	int64
IM_Frmat	int64
Deaths1	int64
Deaths2	float64
Deaths3	float64
Deaths4	float64
Deaths5	float64
Deaths6	float64
Deaths7	float64
Deaths8	float64
Deaths9	float64
Deaths10	float64
Deaths11	float64
Deaths12	float64
Deaths13	float64

Deaths14 float64 Deaths15 float64 float64 Deaths16 Deaths17 float64 Deaths18 float64 float64 Deaths19 Deaths20 float64 float64 Deaths21 Deaths22 float64 Deaths23 float64 float64 Deaths24 Deaths25 float64 Deaths26 float64 IM Deaths1 float64 IM Deaths2 float64 IM Deaths3 float64 IM_Deaths4 float64 dtype: object

Heatmap shows correlation of each attribute values amonst each other.

```
In [14]:
```

```
In [15]:
```

numerical_features = [features for features in df.columns if len(df[features].unique())!=3]
categorical_features = [features for features in df.columns if features not in numerical_fe

```
In [16]:
```

numerical_features

Out[16]:

```
['Country',
 'Year',
 'Frmat',
 'IM_Frmat',
 'Deaths1',
 'Deaths2',
 'Deaths3',
 'Deaths4',
 'Deaths5',
 'Deaths6',
 'Deaths7',
 'Deaths8',
 'Deaths9',
 'Deaths10',
 'Deaths11',
 'Deaths12',
 'Deaths13',
 'Deaths14',
 'Deaths15',
 'Deaths16',
 'Deaths17',
```

```
'Deaths18',
 'Deaths19',
 'Deaths20',
 'Deaths21',
 'Deaths22',
 'Deaths23',
 'Deaths24',
 'Deaths25',
 'Deaths26',
 'IM_Deaths1',
 'IM_Deaths2',
 'IM Deaths3',
 'IM_Deaths4']
                                                                                              M
In [17]:
categorical_features
Out[17]:
['SubDiv', 'List', 'Sex']
```

Split Dataset into Train and Test Set

```
In [18]:
```

split dataset into train and test set

X = df.drop(columns=output_columns, axis = 1)

Y = df[output_columns]

X.head()

Out[18]:

	Country	SubDiv	Year	List	Sex	Frmat	IM_Frmat	IM_Deaths1	IM_Deaths2	IM_Deaths3	I
0	4303	0	2017	101	1	1	8	1608.00	0.00	0.00	_
1	4303	0	2017	101	2	1	8	1178.00	0.00	0.00	
2	4303	0	2017	101	1	1	8	41.00	0.00	0.00	
3	4303	0	2017	101	2	1	8	29.00	0.00	0.00	
4	4303	0	2017	101	1	1	8	0.00	0.00	0.00	

4

In [19]:

Y.head()

Out[19]:

	Deaths1	Deaths2	Deaths3	Deaths4	Deaths5	Deaths6	Deaths7	Deaths8	Deaths9	Deaths
0	281784	1608.00	133.00	87.00	77.00	60.00	214.00	254.00	633.00	1492.
1	292339	1178.00	99.00	59.00	47.00	36.00	177.00	148.00	257.00	416.
2	6198	41.00	11.00	7.00	4.00	7.00	7.00	7.00	10.00	41.
3	2516	29.00	7.00	4.00	5.00	3.00	6.00	5.00	13.00	27.
4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0

5 rows × 26 columns

→

In [20]:

H

Dataset is split into 80:20 ratio in which 80% of the total is allocated for training set
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=24)

```
In [21]: ▶
```

```
X_train.dtypes
```

Out[21]:

Country int64 SubDiv object Year int64 List int64 Sex int64 Frmat int64 IM Frmat int64 IM Deaths1 float64 IM Deaths2 float64 IM Deaths3 float64 IM_Deaths4 float64 dtype: object

le = MultiColumnLabelEncoder() encoded_dataframe = le.fit_transform(dataframe)

[Note: columns argument can also be passed if we want encoding only for certain columns. By default it will be none and it will encode all the categorical columns]

In [22]: ▶

```
class MultiColumnLabelEncoder:
   def init (self,columns = None):
        self.columns = columns
   def fit(self,X,y=None):
        return self
   def transform(self,X):
       output = X.copy()
        if self.columns is not None:
            for col in self.columns:
                output[col] = LabelEncoder().fit_transform(output[col])
        else:
            for colname,col in output.iteritems():
                output[colname] = LabelEncoder().fit_transform(col)
        return output
   def fit transform(self,X,y=None):
        return self.fit(X,y).transform(X)
```

```
In [23]:
#MultiColumnLabelEncoder(columns = ['SubDiv', 'Cause']).fit transform(X train)
In [24]:
# Normalize input feature vector using standard scalar
le = LabelEncoder()
X train['SubDiv'] = le.fit transform(X train['SubDiv'].astype(str))
X_test['SubDiv'] = le.fit_transform(X_test['SubDiv'].astype(str))
In [25]:
# Normalize input feature vector using standard scalar
scalar = StandardScaler()
X train = scalar.fit transform(X train)
X test = scalar.fit transform(X test)
```

```
In [26]:

X_train = np.array(X_train)
y_train = np.array(y_train)
X_test = np.array(X_test)
y_test = np.array(y_test)

# print shape
print("x train Shape",X_train.shape)
print("y train Shape",y_train.shape)
print("x test Shape",X test.shape)
```

```
x train Shape (488147, 11)
y train Shape (488147, 26)
x test Shape (122037, 11)
y test Shape (122037, 26)
```

print("y test Shape",y test.shape)

Train Linear Regression Model

```
In [27]:
```

```
x_train = X_train
x_test = X_test
```

In [28]:

```
## Train Linear Regression Model
linear model = LinearRegression()
linear model.fit(x train,y train)
pred = linear model.predict(x train)
print("Performace of trained model on Training Data")
print("======="")
mse linear = mean squared error(y train,pred)
print("MSE: ",np.round(mse linear,2))
rmse linear = np.sqrt(mean_squared_error(y_train, pred))
print("RMSE: ",np.round(rmse linear,2))
mae linear = mean absolute error(y train,pred)
print("MAE: ",np.round(mae linear,2))
r2 linear = r2 score(y train, pred)
print ("R2: ",np.round(r2 linear,2))
print ("Score (train): ",np.round(linear model.score(x train, y train),2))
```

MSE: 1349387.55 RMSE: 1161.63

MAE: 27.85 R2: 0.58

Score (train): 0.58

In [30]:

```
pred = linear model.predict(x test)
print("Performace of trained model on Testing Data")
print("======="")
mse linear = mean squared error(y test,pred)
print("MSE: ",np.round(mse linear,2))
rmse linear = np.sqrt(mean squared error(y test, pred))
print("RMSE: ",np.round(rmse linear,2))
mae linear = mean absolute error(y test,pred)
print("MAE: ",np.round(mae linear,2))
r2 linear = r2 score(y test,pred)
print ("R2: ",np.round(r2 linear,2))
print ("Score (test): ",np.round(linear model.score(x test, y test),2))
```

R2: 0.59

Score (test): 0.59

Train GradientBoosting Regressor

In [33]: ▶

```
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.multioutput import MultiOutputRegressor
## Train GradientBoosting Regression Model
gbr model = GradientBoostingRegressor()
gbr model=MultiOutputRegressor(gbr model)
gbr model.fit(x train,y train)
pred = gbr model.predict(x train)
print("Performace of trained model on Training Data")
print("======="")
mse gbr = mean squared error(y train,pred)
print("MSE: ",np.round(mse gbr,2))
rmse gbr = np.sqrt(mean squared error(y train, pred))
print("RMSE: ",np.round(rmse gbr,2))
mae gbr = mean_absolute_error(y_train,pred)
print("MAE: ",np.round(mae gbr,2))
r2 gbr = r2 score(y_train,pred)
print ("R2: ",np.round(r2 gbr,2))
print ("Score (train): ",np.round(gbr_model.score(x_train, y_train),2))
```

Performace of trained model on Training Data

MSE: 238888.23 RMSE: 488.76 MAE: 15.39

R2: 0.92

Score (train): 0.92

In [34]: ▶

```
pred = gbr model.predict(x test)
print("Performace of trained model on Testing Data")
print("======="")
mse gbr = mean squared error(y test,pred)
print("MSE: ",np.round(mse gbr,2))
rmse gbr = np.sqrt(mean squared error(y test, pred))
print("RMSE: ",np.round(rmse gbr,2))
mae gbr = mean absolute error(y test,pred)
print("MAE: ",np.round(mae gbr,2))
r2 gbr = r2 score(y test,pred)
print ("R2: ",np.round(r2 gbr,2))
print ("Score (test): ",np.round(gbr model.score(x test, y test),2))
```

Performace of trained model on Testing Data

MSE: 366270.29 RMSE: 605.2 MAE: 16.96

```
R2: 0.79
Score (test): 0.79

In [35]:

# set path to save model here
pickle.dump(gbr_model,open('D:/Freelancing/Mortality Detection/Saved Model/gbr.pkl','wb'))
```

Train Ridge Regression Model

In [36]:

```
ridge model = Ridge()
ridge model.fit(x train,y train)
pred = ridge model.predict(x train)
print("Performace of trained model on Training Data")
print("======="")
mse ridge = mean squared error(y train,pred)
print("MSE: ",np.round(mse ridge,2))
rmse ridge = np.sqrt(mean squared error(y train, pred))
print("RMSE: ",np.round(rmse ridge,2))
mae ridge = mean absolute error(y train,pred)
print("MAE: ",np.round(mae ridge,2))
r2 ridge = r2 score(y train, pred)
print ("R2: ",np.round(r2 ridge,2))
print ("Score (train): ",np.round(ridge model.score(x train, y train),2))
```

RMSE: 1161.63 MAE: 27.85

R2: 0.58

Score (train): 0.58

In [37]:

```
pred = ridge model.predict(x test)
print("Performace of trained model on Testing Data")
print("======="")
mse gbr = mean squared error(y test,pred)
print("MSE: ",np.round(mse gbr,2))
rmse gbr = np.sqrt(mean squared error(y test, pred))
print("RMSE: ",np.round(rmse_gbr,2))
mae gbr = mean absolute error(y test,pred)
print("MAE: ",np.round(mae gbr,2))
r2 gbr = r2_score(y_test,pred)
print ("R2: ",np.round(r2 gbr,2))
print ("Score (test): ",np.round(ridge model.score(x test, y test),2))
```

Performace of trained model on Testing Data

MSE: 1336810.4 RMSE: 1156.21 MAE: 27.8 R2: 0.59

Score (test): 0.59

In [38]:

```
lasso model = Lasso()
lasso model.fit(x train,y train)
pred = lasso model.predict(x train)
print("Performace of trained model on Training Data")
print("======="")
mse lasso = mean squared error(y train,pred)
print("MSE: ",np.round(mse lasso,2))
rmse lasso = np.sqrt(mean squared error(y train, pred))
print("RMSE: ",np.round(rmse lasso,2))
mae lasso = mean absolute error(y train,pred)
print("MAE: ",np.round(mae lasso,2))
r2 lasso = r2 score(y train, pred)
print ("R2: ",np.round(r2 lasso,2))
print ("Score (train): ",np.round(lasso_model.score(x_train, y_train),2))
```

RMSE: 1161.65 MAE: 26.8

R2: 0.57

Score (train): 0.57

In [39]:

```
pred = lasso model.predict(x test)
print("Performace of trained model on Testing Data")
print("======="")
mse gbr = mean squared error(y test,pred)
print("MSE: ",np.round(mse gbr,2))
rmse gbr = np.sqrt(mean squared error(y test, pred))
print("RMSE: ",np.round(rmse_gbr,2))
mae gbr = mean absolute error(y test,pred)
print("MAE: ",np.round(mae gbr,2))
r2 gbr = r2_score(y_test,pred)
print ("R2: ",np.round(r2 gbr,2))
print ("Score (test): ",np.round(lasso model.score(x test, y test),2))
```

Performace of trained model on Testing Data

MSE: 1337422.39 RMSE: 1156.47 MAE: 26.78 R2: 0.58

Score (test): 0.58

H

```
In [42]:
```

```
from sklearn.ensemble import RandomForestRegressor
rf model = RandomForestRegressor(n estimators = 300)
rf model.fit(x train,y train)
pred = rf model.predict(x train)
print("Performace of trained model on Training Data")
print("======="")
mse rf = mean squared error(y train,pred)
print("MSE: ",np.round(mse rf,2))
rmse_rf = np.sqrt(mean_squared_error(y_train, pred))
print("RMSE: ",np.round(rmse rf,2))
mae rf = mean absolute error(y train,pred)
print("MAE: ",np.round(mae rf,2))
r2 rf = r2 score(y train, pred)
print ("R2: ",np.round(r2 rf,2))
print ("Score (train): ",np.round(rf_model.score(x_train, y_train),2))
```

MSE: 103814.92 RMSE: 322.2 MAE: 11.58

R2: 0.95

Score (train): 0.95

In [43]:

```
pred = rf model.predict(x test)
print("Performace of trained model on Testing Data")
print("======="")
mse gbr = mean squared error(y test,pred)
print("MSE: ",np.round(mse gbr,2))
rmse gbr = np.sqrt(mean squared error(y test, pred))
print("RMSE: ",np.round(rmse_gbr,2))
mae gbr = mean absolute error(y test,pred)
print("MAE: ",np.round(mae gbr,2))
r2 gbr = r2_score(y_test,pred)
print ("R2: ",np.round(r2 gbr,2))
print ("Score (test): ",np.round(rf model.score(x test, y test),2))
```

Performace of trained model on Testing Data

MSE: 428002.18 RMSE: 654.22 MAE: 15.88

```
R2: 0.74
Score (test): 0.74

In [45]:
# set path to save model here
pickle.dump(rf_model,open('D:/Freelancing/Mortality Detection/Saved Model/rf.pkl','wb'))
```

Train Decision Tree Regressor

H

```
In [46]:
```

```
from sklearn.tree import DecisionTreeRegressor
dt model = DecisionTreeRegressor()
dt model.fit(x train,y train)
pred = dt model.predict(x train)
print("Performace of trained model on Training Data")
print("======="")
mse rf = mean squared error(y train,pred)
print("MSE: ",np.round(mse rf,2))
rmse_rf = np.sqrt(mean_squared_error(y_train, pred))
print("RMSE: ",np.round(rmse rf,2))
mae rf = mean absolute error(y train,pred)
print("MAE: ",np.round(mae rf,2))
r2 rf = r2 score(y train, pred)
print ("R2: ",np.round(r2 rf,2))
print ("Score (train): ",np.round(dt_model.score(x_train, y_train),2))
```

MSE: 65196.21 RMSE: 255.34 MAE: 9.94

R2: 0.98

Score (train): 0.98

In [47]: ▶

```
pred = dt model.predict(x test)
print("Performace of trained model on Testing Data")
print("======="")
mse dt = mean squared error(y test,pred)
print("MSE: ",np.round(mse dt,2))
rmse dt = np.sqrt(mean squared error(y test, pred))
print("RMSE: ",np.round(rmse dt,2))
mae dt = mean absolute error(y test,pred)
print("MAE: ",np.round(mae dt,2))
r2 dt = r2 score(y test, pred)
print ("R2: ",np.round(r2 dt,2))
print ("Score (test): ",np.round(dt model.score(x test, y test),2))
```

Performace of trained model on Testing Data

MSE: 651022.45 RMSE: 806.86 MAE: 16.47 R2: 0.62

Score (test): 0.62

M

```
In [49]:
```

```
from sklearn.ensemble import ExtraTreesRegressor
et model = ExtraTreesRegressor()
et model.fit(x train,y train)
pred = et model.predict(x train)
print("Performace of trained model on Training Data")
print("======="")
mse et = mean squared error(y train,pred)
print("MSE: ",np.round(mse et,2))
rmse_et = np.sqrt(mean_squared_error(y_train, pred))
print("RMSE: ",np.round(rmse et,2))
mae et = mean absolute error(y train,pred)
print("MAE: ",np.round(mae et,2))
r2 et = r2 score(y train, pred)
print ("R2: ",np.round(r2 et,2))
print ("Score (train): ",np.round(et_model.score(x_train, y_train),2))
```

MSE: 65196.21 RMSE: 255.34 MAE: 9.94

R2: 0.98

Score (train): 0.98

In [51]:

```
pred = et model.predict(x test)
print("Performace of trained model on Testing Data")
print("======="")
mse et = mean squared error(y test,pred)
print("MSE: ",np.round(mse et,2))
rmse et = np.sqrt(mean squared error(y test, pred))
print("RMSE: ",np.round(rmse et,2))
mae et = mean absolute error(y test,pred)
print("MAE: ",np.round(mae et,2))
r2 et = r2 score(y test,pred)
print ("R2: ",np.round(r2 et,2))
print ("Score (test): ",np.round(et model.score(x test, y test),2))
```

Performace of trained model on Testing Data

MSE: 526791.79 RMSE: 725.8 MAE: 15.75

```
R2: 0.83
Score (test): 0.83

In [52]:

# set path to save model here

pickle.dump(et_model,open('D:/Freelancing/Mortality Detection/Saved Model/et.pkl','wb'))
```

Application Phase

In [57]:

```
# Take input from the user
country = int (input("Enter country: "))
subDiV = input ("Enter SubDiV: ")
cause = input ("Cause of death: ")
year = int (input("Enter Year (Year to which data refer): "))
List = int (input("Enter List of ICD revision used : "))
gender = int (input("Enter Gender (1 male, 2 female and 9 sex unspecified): "))
Frmat = int (input ("Enter Frmat (Age-group format for breakdown of deaths at 0-95+ yrs): "
IM_Frmat = int (input ("Enter IM_Frmat (Age format for breakdown of infant deaths (0 year))
IM_deaths1 = float(input ("Enter Number of Infant deaths at age 0 day: "))
IM_deaths2 = float(input ("Enter Number of Infant deaths at age 1-6 day: "))
IM_deaths3 = float(input ("Enter Number of Infant deaths at age 7-27 day: "))
IM_deaths4 = float(input ("Enter Number of Infant deaths at age 28-364 day: "))
```

```
Enter country: 4303
Enter SubDiV: 0
Cause of death: 1000
Enter Year (Year to which data refer): 2017
Enter List of ICD revision used : 101
Enter Gender (1 male, 2 female and 9 sex unspecified): 1
Enter Frmat (Age-group format for breakdown of deaths at 0-95+ yrs): 1
Enter IM_Frmat (Age format for breakdown of infant deaths (0 year)): 8
Enter Number of Infant deaths at age 0 day: 20
```

Enter Number of Infant deaths at age 1-6 day: 10 Enter Number of Infant deaths at age 7-27 day: 5 Enter Number of Infant deaths at age 28-364 day: 2

User Input Feature Vector:

```
In [59]: ▶
```

```
user_input.dtypes
```

Out[59]:

Country int64 SubDiV object Year int64 List int64 Sex int64 Frmat int64 IM Frmat int64 IM_Deaths1 float64 float64 IM Deaths2 IM_Deaths3 float64 IM_Deaths4 float64 dtype: object

In [60]: ▶

```
# Load trained model
model = pickle.load(open('D:/Freelancing/Mortality Detection/Saved Model/et.pkl','rb')) # s
```

```
In [62]:
#Le = LabelEncoder()
user_input['SubDiV'] = le.transform(user_input['SubDiV'].astype(str))

In [63]:
# convert into numpy arrays
user_input = np.array(user_input)
```

In [64]: ▶

```
pred = model.predict(user input)
print("Predicted Values: ")
print("=======\n")
print("Deaths 1 = ",pred[0][0])
print("Deaths 2 = ",pred[0][1])
print("Deaths 3 = ",pred[0][2])
print("Deaths 4 = ",pred[0][3])
print("Deaths 5 = ",pred[0][4])
print("Deaths 6 = ",pred[0][5])
print("Deaths 7 = ",pred[0][6])
print("Deaths 8 = ",pred[0][7])
print("Deaths 9 = ",pred[0][8])
print("Deaths 10 = ",pred[0][9])
print("Deaths 11 = ",pred[0][10])
print("Deaths 12 = ",pred[0][11])
print("Deaths 13 = ",pred[0][12])
print("Deaths 14 = ",pred[0][13])
print("Deaths 15 = ",pred[0][14])
print("Deaths 16 = ",pred[0][15])
print("Deaths 17 = ",pred[0][16])
print("Deaths 18 = ",pred[0][17])
print("Deaths 19 = ",pred[0][18])
print("Deaths 20 = ",pred[0][19])
print("Deaths 21 = ",pred[0][20])
```

```
print("Deaths 22 = ",pred[0][21])
print("Deaths 23 = ",pred[0][22])
print("Deaths 24 = ",pred[0][23])
print("Deaths 25 = ",pred[0][24])
print("Deaths 26 = ",pred[0][25])
```

Predicted Values:

```
Deaths 1 = 151866.48
Deaths 2 = 1109.07
Deaths 3 = 83.67
Deaths 4 = 37.56
Deaths 5 = 29.45
Deaths 6 = 20.98
Deaths 7 = 95.98
Deaths 8 = 102.85
Deaths 9 = 231.08
Deaths 10 = 392.78
Deaths 11 = 582.49
Deaths 12 = 850.64
Deaths 13 = 1180.75
Deaths 14 = 1592.06
Deaths 15 = 2355.79
Deaths 16 = 3725.59
Deaths 17 = 5903.05
```

Deaths 18 = 8097.23

Deaths 19 = 10819.33 Deaths 20 = 13095.52 Deaths 21 = 19587.78 Deaths 22 = 24903.24 Deaths 23 = 41795.13 Deaths 24 = 9941.38 Deaths 25 = 5330.45 Deaths 26 = 2.63 In [67]:

```
# Use pretty table to show detail analysis
x = PrettyTable()
print("\nDetailed Performance of all Models")
print("=======\n")
x.field names=["Model","MSE", "MAE", "RMSE", "R2"]
x.add row(["Linear Regression", np.round(mse linear, 2), np.round(mae linear, 2), np.round(rms
x.add row(["Gadient Boosting Regression", 366270.29, 605.2, 16.96, 0.79])
x.add row(["Ridge Regression",np.round(mse ridge,2), np.round(mae ridge,2), np.round(rmse r
x.add row(["Lasso Regression",np.round(mse lasso,2), np.round(mae lasso,2), np.round(rmse l
x.add row(["Random Forest Regression",428002.18, 654.22, 15.88, 0.74])
x.add row(["Decision Tree Regression",np.round(mse dt,2), np.round(mae dt,2), np.round(rmse
x.add row(["Extra Regression",np.round(mse_et,2), np.round(mae_et,2), np.round(rmse_et,2),
print(x)
print("\nBest Model")
print("======\n")
v = PrettyTable()
y.field names=["Model","MSE", "MAE", "RMSE", "R2"]
y.add row(["Extra Regression",np.round(mse et,2), np.round(mae et,2), np.round(rmse et,2),
print(y)
```

Detailed Performance of all Models

+	+				+
Model	MSE	MAE	RMSE	R2	İ
Linear Regression	1336808.71	27.8	1156.2	0.59	
Gadient Boosting Regression	366270.29	605.2	16.96	0.79	l
Ridge Regression	1349387.55	27.85	1161.63	0.58	ĺ
Lasso Regression	1349428.81	26.8	1161.65	0.57	ĺ
Random Forest Regression	428002.18	654.22	15.88	0.74	l
Decision Tree Regression	651022.45	16.47	806.86	0.62	ĺ
Extra Regression	526791.79	15.75	725.8	0.83	ĺ
+	+				+

Best Model

