PATENT SPECIFICATION

897,581

DRAWINGS ATTACHED.

Date of Application and filing Complete Specification:
Nov. 11, 1959.
No. 38219/59.

Application made in United States of America (No. 773,957) on Nov. 14, 1958.

Complete Specification Published: May 30, 1962.

Index at Acceptance:—Classes 2(3), AA1(B:C1B:C1D2:C2A), AA2A(1:3); 5(2), J3(D:F1:F2); and 140, P3(B:F2:G4:G5).

International Classification:—C12d. A23k. D06m.

COMPLETE SPECIFICATION.

Preparation of a New Antibiotic Aspartocin.

We, AMERICAN CYANAMID COMPANY, a corporation organized under the laws of the State of Maine, United States of America, of 30 Rockefeller Plaza, New York 20, State of New York, United States of America, do hereby declare this invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

This invention relates to a new antibiotic designated aspartocin, and to salts thereof. The invention also relates to the production of aspartocin by fermentation, to methods for its recovery and concentration from crude solutions thereof, to processes for its purification and to methods for the preparation of its salts.

The present invention includes within its scope the antibiotic in dilute forms, as crude concentrates, and in pure crystalline forms. These novel products are active against a variety of microorganisms including grampositive bacteria. The effects of the new antibiotic on specific microorganisms together with the chemical and physical properties of the antibiotic differentiate it from previously described antibiotics.

In accordance with the invention a process
for the production of the new antibiotic aspartocin which comprises cultivating an antibiotic aspartocin producing strain of Streptomyces griseus var. spiralis or Streptomyces violaceus in an aqueous nutrient medium containing assimilable sources of carbon, nitrogen and inorganic salts under submerged aerobic conditions.

[Price 4s. 6d.]

The following is a general description of the organism S. griseus var. spiralis based on the diagnostic characteristics observed. The underscored descriptive colors are those of Ridgeway—"Color Standards and Color Nomenclature. Amount of Growth-Growth moderate to good on many media, spreading on starch-containing media; poorer, restricted growth on certain synthetic media. Aerial Mycelium and or spore colour-50 Spores en masse are Pale Olive-Buff; non-sporing aerial mycelium colourless to whitish. Soluble Pigments—None. Reverse Colour-In shades of buff to 55 vellowish on most media. Miscellaneous Physiological Reactions-No growth on cellulose; complete liquefaction of gelatin; formation of acid curd and clearing of purple milk; and negative H₂S reaction on peptoneiron agar media. Morphology-Sporiferous appendages arise from aerial mycelium as coils of a few turns or short spirals. Spores elongate, rod - like, truncate, $(1.0-1.2\mu\times0.6\mu)$ spaced regularly apart in chains.

Temperature affect—Optimal range for growth and sporulation 18° C. to 37° C.

Maximum temperature for growth 42° C.,

no growth at 48° C. Minimum temper-

75

The cultural characteristics of the new

variety of S. griseus are set forth in the following table. The underscored descrip-

ature 10° C., no growth at 4° C.

tive colours were taken from Ridgeway.

TABLE 1.

Streptomyces griseus var. spiralis.

Medium.	Amount of Growth.	Aerial Mycelium and Spore Colour.	Soluble Pigment.	Reverse Colour.	Remarks.
Waksman's Starch Agar	Good; spreading	Pale Olive-Buff; Sporulation heavy	None	Deep Colonial Buff	Moderate starch
Asparagine dextrose meat extract agar	Moderate	Pale Olive-Buff Sporulation moderate	Мопе	Colonial Buff	Limited colourless exudate
Aoid asparagine dextrose meat extract agar	Moderate restricted	Pale Olive-Buff; Sporulation very slight	None	Colonial Buff	
Synthetio Agar (Czapek's Agar)	Thin; restrioted	White powdery aerial mycelium; feathery margins	None	White	
Emerson's Agar	Moderate	Pale Olive-Buff; Sporulation light; colonies lightly rimose	Мопе	Colonial Buff	
Nutrient Agar	Poor, thin growth	None	None	Colourless	
Caloium malate Agar	Moderate; restricted	Pale Olive-Buff; Sporulation light			Moderate zone of malate clearing
Cobalt Amidex Agar	God ; spreading	Olive-Buff to Pale Olive-Buff; Sporulation heavy	None	Honey Yellow	Lightly zonate
Potato dextrose Agar	Moderate	Pale Olive-Buff; Sporulation heavy	None	Colonial Buff	

Table 1—continued.

Streptomyces griseus var. spiralis.

		1			
Medium.	Amount of Growth.	Aerial Mycelium and Spore Colour.	Soluble Pigment.	Reverse Colour.	Remarks.
Bennett's Agar	Moderate	Pale Olive-Buff; Sporulation heavy	None	Honey Yellow	Limited colourless exudate
Corn steep Liquor Agar	Moderate	Pale Olive-Buff; Sporulation moderate	None	Gream Colour	
Sabouraud's maltose	Moderate	Aerial mycelium white; no sporulation; central colony zones barren	Nono	Ochraceous-Buff	
Yeast-Malt Agar	Moderate	$Pale\ Olive-Buff;$ Sporulation heavy	None	Ochraceous-Buff	Moderate colourless

In gross appearance this new strain bears close resemblance to several strains of S. griseus. Spore coloration, reverse colours and growth habits are similar. However, when the sporophores are compared microscopically, all of the S. griseus strains have straight to flexuous chains of globose to elliptical spores, in contrast to the coiled and spiralled chains of truncate, rod-like spores of the new strain. The combination of helicoidal sporophores and bacillary-type spores justifies varietal status for this strain in the S. griseus complex. The name S. griseus var. spiralis has been chosen to be descriptive of the sporiferous structures of the organism. The new isolate, when keyed according to Waksman and Lachevalier, "Actinomycetes and Their Antibiotics," falls into subdivision III—no soluble pigment 20 in organic media-and fits best into the category (g)—growth colourless to yellowish to olive-buff—in which S. griseus is the representative species. A viable culture of S. griseus var. spiralis has been deposited at the American Type Culture Collection in Washington, D.C., where it has been assigned the accession number ATCC 13733.

Additionally, it has been found that aspartocin can also be produced by a species of Streptomyces which we have designated Streptomyces violaceus.

The following is a general description of the organism Streptomyces violaceus based on the diagnostic characteristics observed. The underscored descriptive colours were taken from Ridgway.

Amount of Growth—Moderate to good growth on most media; spreading on

growth on most media; spreading on growth on most media; spreading on Waksman's Starch, Czapek's, Corn Steep Liquor, and Cobalt-amidex agars.

Aerial Mycelium and or Spore Colour—

40

45

Spores en masse Light Mouse Gray on most media which support sporulation.

Soluble Pigment—In reddish to vinaceous

to bluish shades on media which permit pigment formation.

Reverse Colour—In reddish to vinaceous to bluish or even brownish shades, depending upon the medium.

Miscellaneous Physiological Reactions— Moderate starch hydrolysis; no H₂S produced; moderate gelatin liquefaction; cellulose decomposed.

Morphology—Sporiferous appendages arising as coils or loose spirals from aerial hyphae. Spores smooth, typically globose, but with occasional elliptical ones in chain, 1.0—1.2μ.

Temperature Relations—Growth fair at 60

24—28° C.; good at 32—37° C. The cultural, physiological and morphological characteristics of the organism Streptomyces violaceus are set forth in the following tables. The underscored descriptive colours were taken from Ridgway.

. .

TABLE 2.

Characteristics of Streptomyces Violaceus when Grown on Several Differential Agar Media in Petri Dishes,

Medium.	Amount of Growth.	Aerial Mycelium and Spore Colour.	Soluble Pigment.	Reverse Colour.	Remarks.
Waksman's Staroh Agar	Good; spreading Broadly	Spores Light Mouse Gray; dark non-spor- ing sectors prominent; sporulation moderate	None	Dusky Drab	Moderate Starch hydrolysis
Asparagine dextrose meat extract agar	Moderate	Spores Light Mouse Gray; sporulation thin	None	Light brownish with <i>Vinaceous-Gray</i> patches	Faintly zonate; margins thin, submerged
Acid asparagine dextrose meat ex- tract agar	Poor; restricted	Йопе	None	Colourless	
Synthetic Agar (Czapek's Agar)	Good; spreading	Spores Light Mouse Gray; moderate sporulation with sectoring	Bluish-purple; moderate	Anthracene purple	
Emerson's Agar	Good	Spores Light Mouse Gray; sporulation heavy	Reddish; very light	Deep Mouse Gray	
Nutrient Agar	Moderate	Trace of whitish to grayish aerial growth	None	Colourless to brownish	
Calcium malate	Moderate	Very poor sporulation; aerial growth Pale Mouse Gray	None	Vinaceous-Fawn	Large zone of malate clearing
Yeast extract—Malt extract agar	Moderate	Spores Light Mouse Gray; sporulation moderate	None	. Fuscous to Bone Brown	Thin submerged margins

TABLE 2—continued.

Characteristics of Streptomyces Violaceus when Grown on Several Differential Agar Media in Petri Dishes.

		_	No.		-
Medium	Amount of Growth	Aerial Myoelium and Spore Colour	Soluble Pigment.	Reverse Colour.	. Remarks.
Waksman's Glucose Agar	Moderate	Spores Pale Mouse Gray; sporulation light	Vinaceous moderate	Deep Brownish Drab	Marginal zones wrinkled and with- out aerial growth
Krainsky's dextrose	Moderate	Spores Pale Mouse Gray; sporulation very light	None	Pinkish Buff to Faun colour	
Potato dextrose Agar	Moderate	Aerial growth scanty; sporulation Light Mouse Gray, sparse	Pinkish-vinaceous light	Vinaceous-slate to Deep Slaty Brown	Thin submerged margins
Bennett's Agar	Good	Spores <i>Light Mouse</i> Gray; spornlation moderate	None	Deep Mouse Gray	Thin submerged margins
Corn Steep liquor Agar	Moderate; thin spreading	Sporulation Light Mouse Gray to Light Drab; sporulation moderate	None	Faun colour	Thin submerged margins
Sabouraud's maltose Agar	Good	Spores Light Mouse Gray; sporulation moderate	None	Orange cinnamon	
Cobalt-amidex Agar	Moderate; spreading	Light Mouse Gray	Reddish; light	Vinaceous-Slate to Deep Slaty Brown	Margin thin, submerged
Czapek's-Dox Mannitol Agar	Good; spreading	Aerial mycelium white with spores Pale Mouse Gray; sporulation moderate	Vinaceous; light	Vinaceous Slate	·

TABLE 3.

Observations of Some Miscellaneous Physiological Tests on Streptomyces violaceus.

Medium	Amount of Growth	Aerial Mycelium and Spore Color	Soluble Pigment	Reverse Colour	Remarks
Peptone-Iron Agar	Good			1	Negative H ₂ S Reaction
Gelatin	Moderate	Мопе	None	1	Moderate lique- faction; part of tube not liquefied
Potato Plugs	Good; covering entire exposed surface	Light Mouse Gray in sporulating areas	Reddish; light		Plug slightly darkened
Carrot Plugs	Moderate; covering entire exposed surface	Light Mouse Grey in sporulating areas	None		
Litmus Milk	Moderate	Clearing of Purple milk, and ourd precipitated; $pH 7.0$			·
 * Cellulose (filter paper in Czapek's solution) 	Moderate	None	Vinaceous light		Filter paper de- composed in growth areas

* Incubation 21 days.

Table 4.

Morphological Features of Streptomyces violaceus.

MEDIUM: Waksman's Starch Agar.

5	Culture No.	Aeria	al Mycelium	S	Spore Shape	Spore Size	Remarks.	_
	Streptomyces violaceus	dages a	erous appen- rising as coils e spirals from ial hyphae	but '	pically globose, with occasional tical spore in chains	1.0— 1.2µ	Spores, when view under the electron microscope, had smooth walls	
10	has been deposit Culture Collect where it has be	ted with ion in	Washington, I	ype O.C.,	For the prod	uction o	rously for 48 hours. of the antibiotic in lowing fermentation ed.	60
15	number 13734. It is to be u duction of the the present invettwo organisms growth and mid	antibiotic ntion is i fully an	not limited to t swering the al	tion, hese bove	Ferm Molasses Corn Starch Bactopepton Calcium carb	2 1 e 1	Medium 20 grams per litre 10 grams per litre 10 grams per litre 1 gram per litre	65
20	fact, it is desired use of any ant mutants obtained ism by various	l and inte ibiotic as ed from t means, s	ended to include spartocin produ the described or uch as X-radia	the cing gan- tion,	Each tank is ino broth fermentat shaker flask feri	culated y ted as c mentation	with 1% of a culture described above for n. Aeration is sup- 0.2—2.0 volumes of	70
25	griseus var. spire may take place	on of th alis, as w in a vari	e new strain of ell as of S. viola ety of liquid cu	of S. ceus, lture	sterile air per v and the broth driven at about perature is main	olume o is agita 120—16 tained a	of broth per minute ted by an impeller 30 r.p.m. The tem- t 20—35° C., usually	
30	media. Media duction of aspa source of carb molasses, or gly of nitrogen suc	rtocin incom on such ycerol, a	clude an assimi . as starch, s n assimilable sc	lable ugar, ource	tinued for from the activity is h After the fer	24—240 arvested mentatio	tation may be con- hours, at which time. on is completed, the ug the antibiotic of	75 .
35	lysate, polypep steep liquor, cations, such as sulphate, phos	tides, an and ino potassiu phate, o	nino acids, or rganic anions m, sodium, calc or chloride. T	corn and ium, frace	this invention pH 5.0 to remobroth. Diatom conventional file	is filte ove the aceous e tration a	ered at preferably mycelium from the earth or any of the aids may be used to h is carried out using	80
40	elements such copper are supp impurities by of Aeration in ta- by forcing ster surface of the i	olied as n her const nks and ile air t	eeded in the for ituents of the m bottles is prov hrough or onto	m of edia. vided the	standard equipmay be recovered extraction processing a spartocin of the standard equipment of th	nent. T ed from edures as nay be	the reafter, aspartocin the mycelial cake by described below. extracted from the first solvent at pH	85
45	agitation is pro cal impeller. A 1% octadecano needed.	vided in An antifo l in lard	tanks by a mec aming agent su oil may be add	hani- ch as ed as	1—2 and or solvent extracted or partially in butanol at pH	9—10 tl ed using mmiscibl 1—3 whe	hen precipitated or a second immiscible e solvent, such as en the first solvent is	90
50	litre portions of in 500 millilitre agar slant of th	the follo flasks and e culture	e inoculated wi	ulum	When the later trated (1/25 to drous butanol,	the mycoutanol 1/ ₅₀ of the antil	solution is concen- its volume) to anhy- biotic is precipitated.	95
55	Soy bean m Starch	liquor	20 grams per li 80 grams per li 5 grams per li 3 grams per li	tre tre	The butanol-pr with acetone of precipitate rem antibiotic is the dried yielding a	recipitate or petro oved by en washe an amorj	e mixture is stirred leum ether and the centrifugation. The ed with acetone, and	100
	The flasks ar	e incubat	ted on a reciproc	ating	alkalin earth sa	lts may	be added to produce	105

-				
	the corresponding salt of aspartocin and facilitate precipitation and/or crystalliza-	Rf Value	Solvent System	
	tion thereof. Purification of aspartocin may be obtained	. 0.01	100 <i>n</i> -amyl acetate 30 dibutyl ether	
.5	by crystallization of calcium aspartocin from		5 acetal acid	60
.0	solvent mixtures such as butanol-water or		50 water	00
	methanol-water, in a standard manner.			
	The novel antibiotic aspartocin of this	0.90	100 chloroform	
	invention is composed of the elements		35 90% phenol	
ΤÜ	carbon, hydrogen, nitrogen, sulphur and		4 acetic acid	
	oxygen. Elemental analyses of aspartocin		2 pyridine	65
	show values in substantially the following		50 water	
	proportions by weight:			
	<i>a</i> , , , , , , , , , , , , , , , , , , ,	0.01	200 benzene	
	Carbon 53.58		100 cyclohexane	
15	Hydrogen 7.58		15 acetic acid	=0
	Nitrogen 13.58		50 water	70
	Sulphur 0.36 Oxygen (by difference) 24.90	0.95	200 m-cresol	
	Oxygen (by difference) 24.90	0.50	1 HOAc	
	The product has an optical rotation of		1 pyridine	
			100 water	
20]	$[\alpha] \frac{25^{\circ}}{D} = +26.4^{\circ}$ (c, 2.1% solution in meth-		200 11002	
	anol). The product shows no characteristic	0.05	200 n-butanol	75
	ultraviolet absorption. The product is soluble		50 pyridine	
	in water below pH 3.0 and above pH 3.6.		200 water	
	The isoelectric point is near 3.3. The free			
25	acid of aspartocin is soluble in methanol,	0.30	200 m-cresol	
	ethanol, butanol, glacial acetic acid, water		100 0.1M phosphate	
	and wet butanol. It is soluble to the		pH 7.0	80
	extent of 0.6 mg. /ml. in acetone and 0.1 mg. /	•	5% NaCl	
30	ml. in ethyl acetate and ether.	0.48	- 200 <i>m</i> -cresol	
90	An infra-red absorption spectrum of the free acid of aspartocins was prepared in a		100 0.1M phosphate	
	standard manner by mixing with crystals		pH 6.0	•
	of KBr and pressing into a disc. The com-			
	pound exhibits characteristic absorption in	0.80	200 n-butanol	85
35	the infra-red region of the spectrum at the		50 pyridine	
	following wavelengths expressed in microns:		50 acetic acid	
	3.07, 3.45, 6.03, 6.53, 6.89, 7.15, 8.10 and	•	100 water	
	9.82. The infra-red curve is shown in the			
	accompanying drawing.	0.01	Water adjusted to pH 2.3	
40	Microbiological and paper chromatographic		with tartaric acid	90
	analyses of aspartocin acid hydrolysates	0.01	000 - h-to	
	indicate the following amino acid contents:	0.01	200 n-butanol	
	Molar		$100\% \cdot \text{NaHCO}_3$	
	% Ratio	0.01	100 1,2-dichloroethane	
45	D or L-Aspartic Acid 35 4		100 carbon tetrachloride	
	L-Proline 8 1		25 acetic acid	95
	L-Valine 8 1		50 water	
	Glyc 1			
	Glutamic acid 10 1	0.01	100 CHCl ₃	
~-			40 pyridine	
50	Aspartocin shows the following Rf values		40 HOAc	
	in the solvent systems indicated below:		50 water	100
	DATELLA CALLANA COLLANA	0.07	900 000/	-
	Rf Value Solvent System	0.97	200 90% phenol	
	0.25 5% NH.Cl		50 m-cresol 8 HOAc	
	0.25 5% NH ₄ Cl		8 pyrdine	
	0.38 s-collidine saturated		50 water	105
	with water,		OO WOOL	100
	VI AUGE TO COUNTY	Aspartocin is	clearly distinguished from	
.55	0.14 O-2M phosphate $pH 6.0$	other antibiotic		
			•	

physical properties as evidenced by those described above, by its antimicrobial spectrum and by paper chromatography. The specific antimicrobial activity of the antibiotic of this invention is presented in the table below which shows the concentration of aspartocin required to inhibit the growth of representative microorganisms in trypticase soy broth:

10	Table 2.	
		Minimum
		Inhibitory
	(Concentration,
	Organism	mcg./ml.
15	Staphylococcus aureus	20001
19	ATCC 6538	15.5
		15.5
	Staphylococcus aureus 209P	
	Streptococcus pyogenes C-203	
	Streptococcus pyogenes NY-5	4.0
20	Cornynebacterium xerosis	
	NRRL B-1397	1.0
	Bacillus cereus	4.0
	Sarcina lutea	2.0
	Bacillus polymyxa	4.0
25	Bacillus megatherium	0.25
	Erysipelothrix rhusophthiae	0.5
	Bacillus subtilis ATCC 6633	4.0
	Klebsiella pneumoniae	>250
	Pasteurella multocida	>250
30	Salmonella gallinarum	∑250
90	Escherichia coli	>250
	Proteus vulgaris	>250
	Candida albicans	∑250
•		62.0
0~	Mycobacterium ranae	62.0
35	Mycobacterium 607	04.0

Aspartocin is highly active in vitro against Staphylococci tested including S. aureus and S. albus, coagulase positives and negatives. Streptococci including à-haemolytic, β-haemolytic and non-haemolytic strains are sensitive to the new antibiotic. Many of the above-mentioned organisms are isolates obtained from clinical sources and are to some extent resistant to either penicillin or the tetracycline antibiotics. Aspartocin is also highly active subcutaneously against the standardized infections in mice, Streptococcus C203, Diplococcus pneumoniae SV1 and Staphylococcus aureus.

Aspartoein has also been found to be substantive from aqueous or organic solution to cloth such as cotton fabric and may be added to cotton cloth for the purpose of rendering the cloth bacteriostatic in substantially the same manner as has been found useful with

the antibiotic neomycin.

Aspartocin is especially valuable because of its growth promoting properties in fowl, i.e. chickens. The antibiotic may be added to a purified chick diet containing casein as the protein source and sucrose as the carbohydrate source supplied with all of the known vitamins and minerals. It has been found

that aspartocin may be usefully added to such diets in amounts as little as 5 or 10 parts per million per kilogram of diet. More may be added if desired but so far no need has been found for adding more than 500 milligrams per kilogram of diet. The per cent increase in weight of the chickens over the controls ranges from about 25% to 30%. Aspartocin has not as yet been demonstrated to be useful in human therapy.

65

The invention will be described in greater detail in conjunction with the following

specific examples.

EXAMPLE 1.

Inoculum Preparation.

A typical medium used to grow the primary inoculum is prepared according to the 80 following formula:

Soy bean meal	• •	20 grams	
Starch		$20 \mathrm{grams}$	
Corn steep liquor		5 grams	
Calcium carbonate		3 grams	85
Water to 1.000	millili	itres.	

A yeast-malt agar slant of a culture of the species S. griseus var. spiralis is incubated for a week. At this time the spores and mycelium are transferred to two 500 millilitre flasks which contain 100 millilitres of the above medium. The flasks are placed on a reciprocating shaker and agitated vigorously for 48 hours at 28° C. The flask inocula are transferred to 9 litre bottles which contain 6 litres of the above liquid medium. These bottles are aerated for 24 hours to encourage further growth. At the end of this time the 9 litre bottles are used to seed fermenter tanks.

EXAMPLE 2.

Fermentation.

A fermentation medium is prepared according to the following formula:

Molasses		20 grams	105
Corn starch		10 grams	•
Bactopeptone		10 grams	
Calcium carbonate	• •	l gram	
Water to 1,000	millili	tres.	

The fermentation medium is sterilized at 110 120° C. with steam at 15 pounds pressure for 60 minutes. The pH of the medium before and after sterilization is 6.75. 1500 litres of the sterile medium in 1000 gallon fermenters are inoculated with 12 litres of the 115 bottle inoculum described above and the fermentation is carried out at 28° C. for 90 hours. The medium is agitated by an impeller operating at 100 revolutions per minute. At the end of the fermentation the 120 mash is assayed.

65

70

75

95

120

EXAMPLE 3.

Isolation.

Two hundred litres of fermented mash are mixed with 6000 grams of diatomaceous earth, adjusted to pH 5.0, filtered and the filtrate discarded. The mycetral cake is washed twice—first with 40 litres of H₂O at pH 5.0 and then with 40 litres of acetone. Both washes are discarded. The mycelial cake is extracted twice with 50 litres of H₂O at pH 2.0 adjusted with H₂SO₄, and once with 45 litres of H₂O at pH 9.5 adjusted with NaOH. The acid H_2O and alkaline H_2O extracts are each extracted with $\frac{1}{2}$ volume of n-butanol at pH 2-3. The separated butanol extracts are adjusted to pH 5—6 and concentrated to $^{1}/_{25}$ to $^{1}/_{50}$ of their volume causing the antibiotic to precipitate. The butanol concentrate of the acid H₂O extract is stirred with three volumes of acetone, and the precipitate removed by centrifugation, washed with acetone and dried. The yield of product is The butanol concentrate of the 25 alkaline H2O is stirred with three volumes of petroleum ether, the precipitate centrifuged off, washed with acetone and dried. The yield of product is 41 grams.

EXAMPLE 4.

Isolation of Calcium Aspartocin.

Ten grams of calcium chloride and 300 grams of diatomaceous earth are added to 10 litres of fermented broth. The mixture is stirred, adjusted to pH 5.0 and maintained at this pH for 10 minutes during stirring. The precipitated calcium aspartocin is filtered off with the mycelial cake and the spent filtrate discarded. The mycelial cake is washed by stirring in 2 litres of H₂O at pH 5.0. After filtration, the inactive H_2O wash is discarded. The mycelial cake is further washed by stirring with 2 litres of acetone. The mycelial cake is filtered and the inactive acetone wash discarded. The mycelial cake is extracted twice by stirring 10 minutes with 2 litres of H₂O at pH 1.0 adjusted with HCl. The antibiotic enriched acid H_2O is extracted with $\frac{1}{2}$ volume of *n*-butanol. The butanol extract is adjusted to pH 5.0 and concentrated under reduced pressure with the addition of H₂O to maintain a wet butanol solution. The solution is concentrated to approximately 500 millitres and a wet butanolic solution of $CaCl_2$ is added at pH 5.0until there is no further precipitation. The precipitated calcium aspartocin is removed by centrifugation, washed with wet butanol, followed by an acetone wash and dried. The yield of crude crystalline product is 6 grams. This product assays approximately 90% pure.

EXAMPLE 5.

Crystallization of Calcium Aspartocin. Forty grams of product prepared according to the procedure of Example 3, is dissolved in 200 millilitres of H₂O. An aqueous solution of 40 grams of CaCl₂ is added and the solution adjusted to pH 9.0 with NaOH and filtered. The filtered solution is readjusted to pH 5.0 with HCl and the precipitated calcium aspartocin is removed by centrifugation. The precipitate is dissolved in 400 millilitres of $H_2\bar{O}$ at pH 2.5 and 200 millilitres of methanol added. The solution is filtered and the methanol-H2O solution adjusted to pH 5.0 and stored at 5° C. The crystalline calcium aspartocin is removed by centrifugation. The crystalline product is dissolved in 200 millilitres of methanol at pH 3.0 adjusted with HCl. The solution is stirred with 4 grams of carbon and filtered. The filtered solution is adjusted to pH 5.0 using NH₄OH. An immediate crystalline precipitate is formed which is removed by filtration washed with methanol and dried. The first crop of crystalline calcium aspartocin yields 3.85 grams. The mother liquor of the first crop of crystals is stored at 5° C. for 16 hours. A second crop of crystalline calcium aspartocin is removed by filtration, washed with methanol and acetone and dried. The second crop yields 3.37 grams. Additional crops are recovered by concentrating the mother liquor under reduced pressure and storing at 5° C.

EXAMPLE 6.
Preparation of the Free Acid
of Aspartocin.

One gram of calcium aspartocin similar to 100 that prepared according to the procedure of Example 5 is dissolved in 25 millilitres of H_2O by adjusting with HCl to pH 1.5. aqueous solution is adjusted to pH 3.0 and mixed with 15 millilitres of an aqueous 105 solution saturated with NaCl. The precipitated free acid is washed freely with H_2O . The precipitate is dissolved in 50 millilitres of methanol, filtered and concentrated to approximately 10 millilitres. Forty milli- 110 litres of H₂O is added to the methanol solution precipitating the free acid. The precipitate is washed with H2O, followed by an acetone wash, removed by centrifugation and dried. Yield of free acid of aspartocin is 115 340 milligrams. The chemical analysis of this product and its other chemical, physical and biological properties have already been described.

EXAMPLE 7. Preparation of the Picrate Salt of Aspartocin.

Ten grams of product prepared according to the procedure of Example 3 is dissolved in 250 millilitres of H₂O at pH 2.0. An 125

BNSDOCID: <GB______ 897581A |

30

20

25

30

85

aqueous solution saturated with picric acid is added until no further precipitate forms. The precipitate is removed by centrifugation and washed with H2O. The picrate is dissolved in 200 millilitres of acetone, concentrated under reduced pressure, to about 100 millilitres, and the picrate precipitated by the addition of H₂O until precipitation is complete. The supernatant is decanted and the picrate dissolved in 200 millilitres of acetone. Butanol is added, and the solution concentrated under reduced pressure to approximately 100 millilitres of an anhydrous butanol solution. The butanol solution is mixed with three volumes of ether, the precipitated picrate removed by centrifugation, washed with ether and dried. The yield of picrate is 8.5 grams.

EXAMPLE 8. Preparation of Sodium and Potassium Salts of Aspartocin.

One hundred grams of calcium aspartocir similar to that described in Example 4, is dissolved in 1 litre of $\rm H_2O$ at $p\rm H$ 2.0 adjusted with HCl. The aqueous solution is adjusted to $p\rm H$ 3.3 and extracted 2 times with approximately 1 litre of butanol each time. The butanol extract after washing with $\rm H_2O$ at $p\rm H$ 3.4, is dried over $\rm Na_2SO_4$ and filtered.

A $\frac{1}{3}$ portion, 777 millilitres, of the butanol solution is stirred with 200 millilitres of H_2O , adjusted with NaOH to pH 8.5 and concentrated to approximately 200 millilitres of an anhydrous butanol solution. A crystalline sodium salt which precipitates is removed by centrifugation, washed with

butanol, ethanol, acetone and dried. The yield of crystalline sodium salt, is 3.0 grams. A second crop of sodium salt is collected by stirring the mother liquor with 10 volumes of acetone and removing the precipitate by centrifugation. The precipitate is washed with acetone and dried to yield 13.1 grams of material.

40

50

55

60

70

A potassium salt is prepared from a 45 second $\frac{1}{3}$ portion of the butanol solution by the same procedure except that KOH is used to adjust to pH 8.5.

Five hundred milligrams of the free acid aspartocin is dissolved in 5 millilitres of ethanol. A saturated ethanolic solution of KOH is added dropwise to the ethanol solution of aspartocin until no further precipitate results. The precipitated potassium salt is removed by centrifugation, washed with 8 millilitres of ethanol and 10 millilitres of acetone. The salt is dried under vacuum to yield 220 milligrams.

The sodium salt is prepared as described above using the same concentration of free acid and adding a saturated ethanolic solution of NaOH to form the salt. The yield of dried sodium salt is 185 milligrams.

EXAMPLE 9.

Production of Aspartocin by 65
S. violaceus.

The conditions of inoculum preparation and fermentation are the same as previously described in Examples 1 and 2 of this application. The culture is fermented in two tanks using 100 litres of fermentation medium in each tank.

	Tank	1	Tank 2	
	Fermentation Medium	Grams per litre	Fermentation Medium.	Grams per litre
7 5	Peptone	25.0	Soy Bean Meal	40.0
	Corn Starch	10.0	Corn Starch	10.0
	Molasses	20.0	Molasses	20.0
	Lactalbumin	5,0	$CaCO_3$	3.0
80	${ m Mg_2SO_4.7H_2O} \ { m CaCO_3}$	5.0 1.0		

After 137 hours of fermentation, the tank mashes are harvested, pooled, and processed as follows:

Isolation and Purification of Aspartocin from S. violaceus.

190 Grams of calcium chloride and 5700 grams of diatomaceous earth are added to 190 litres of fermented mash. The mixture is adjusted to pH 5.5, stirred for 20 minutes and filtered. The precipitated antibiotic is filtered off with the mycelial cake and the

spent filtrate discarded. The mycelial cake is washed with 60 litres of water at pH 5.0—5.5 and filtered. The inactive water wash is discarded. The mycelial cake is extracted 95 twice by stirring 20 minutes with 60 litres of water at pH 9.8—10.0. After filtration the alkaline water extracts are pooled, adjusted to pH 1.0—3.0 with HCl and extracted twice with ½ volume of n-butanol. 100 The 65 litres of pooled butanol extract are adjusted to pH 5.0—7.0 and concentrated under reduced pressure to approximately

BNSDOCID: <GB_____897581A_I_>

60

65

80

4 litres of anhydrous butanol. The antibiotic precipitates and is removed by centrifugation and the butanol supernatant discarded. The precipitate is dissolved in approximately 500 millilitres of water at H 1.5 and the solution is filtered. The aqueous solution is extracted 3 times with 300 millilitre portions of n-butanol. The butanol extract 950 millilitres, is adjusted to pH 5.0 to 5.5 and stirred with 50 millilitres of a wet butanol solution containing 3 grams of calcium chloride at a pH of 5.0—5.5. The precipitated calcium aspartocin is removed by centrifugation, washed with wet butanol, washed again with acetone and dried. The yield of product is 7.2 grams.

WHAT WE CLAIM IS:-

The new antibiotic aspartocin containing the elements carbon, hydrogen,
 nitrogen, sulphur and oxygen in substantially the following proportions by weight:

Carbon	 53.58
Hydrogen	 7.58
Nitrogen	 13.58
Sulphur	 0.36
Oxygen (by difference)	 24.90

and having an optical rotation [α] $^{25^{\circ}}_{D}$ = $+26.4^{\circ}$ (c, 2.1% solution in methanol), no characteristic ultraviolet spectrum and when suspended in a potassium bromide pellet exhibiting characteristic absorption in the infra-red region of the spectrum (as indicated in the accompanying drawing) at the following wavelengths expressed in microns: 3.07, 3.45, 6.03, 6.53, 6.89, 7.15, 8.10, and 9.82; and having hydrolysates of the following amino acid contents:

40	D or L-aspartic Acid	% 35	Molar Ratio 4
	L-Proline	8	1
	L-Valine	8	1

1. 1. 1 × 1.	%	Molar Ratio		
Glycine	% 10	2		45
Glutamic acid	10	1	•	
and salts of aspartocin.				

2. A process for the production of the new antibiotic aspartocin which comprises cultivating an antibiotic aspartocin producing strain of Streptomyces griseus var. spiralis or Streptomyces violaceus in an aqueous nutrient medium containing assimilable sources of carbon, nitrogen and inorganic salts under submerged aerobic conditions.

3. A process according to Claim 2, in which the cultivation is carried out for a period of from 24 to 240 hours and at a temperature of from 20 to 35° C.

4. A process according to Claim 2 or 3, in which an alkaline earth metal salt such as a calcium salt is added to said medium so that a corresponding salt of aspartocin is produced.

5. A process according to Claim 4, in which aspartocin is recovered from the fermented medium by filtering, and extracting aspartocin from the mycelial cake.

6. A process according to Claim 5, which includes extracting aspartocin from the mycelial cake with water at a pH of 1—2 and/or 9—10, solvent extracting the aspartocin from the aqueous extract so produced using a water-immiscible or partially water-immiscible organic solvent, such as butanol, and separating the aspartocin therefrom.

7. A process for the production of the new antibiotic aspartocin substantially as hereinbefore described.

8. The new antibiotic aspartocin whenever produced by the process according to any of Claims 2 to 7.

STEVENS, LANGNER, PARRY & ROLLINSON,
Chartered Patent Agents,
Agents for the Applicants.

Abingdon: Printed for Her Majesty's Stationery Office, by Burgess & Son (Abingdon), Ltd.—1962.

Published at The Patent Office, 25, Southampton Buildings, London, W.C.2,
from which copies may be obtained.

BNSDOCID: <GB______897581A__I_>

25

INFRARED ABSORPTION

FREQUENC

SORPTION SPECTRUM OF ASPARTOCIN

FREQUENCY IN CM-1

YELENGTH IN MICRONS

INFRARED ABSORPTION SPECTRUM OF ASPARTOCIN

BNSDOCID: <GB_____897581A_1_>

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: __

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

