

Enric Pérez Canals

FÍSICA LIZICA

ELECTROMAGNETISME

Semestre de primavera, curs 2020/2021

Enginyeria Informàtica

2.1 Electrostàtica

Introducció. Les lleis de Maxwell

Llei de Coulomb

Camp elèctric. Línies de força

Energia potencial electrostàtica

Teorema de Gauss. Condensadors planoparal·lels

2.2 Corrent elèctric

Intensitat i resistència

Llei d'Ohm

Bateries i aparells de mesura

Energia i potència en circuits. Lleis de Kirchhoff

2.3 Magnetisme

Força magnètica

Llei de Biot-Savart

Fonts elèctriques de camps magnètics

Llei d'Ampère

2.4 Inducció electromagnètica

Inducció electromagnètica

Llei de Faraday. Generadors

Llei de Lenz

Autoinducció

Shock & Awe, *The story of electricity* BBC, Jim Al-Khalili, 2011

- Electrostàtica
- Corrent elèctric [pila de Volta, 1800]

- Electrostàtica
- Corrent elèctric [pila de Volta, 1800]
- Magnetisme
- Electromagnetisme [experiment d'Oersted/Ampère 1820]

- Electrostàtica
- Corrent elèctric [pila de Volta, 1800]
- Magnetisme
- Electromagnetisme [experiment d'Oersted 1820]

Treatise on electricity and magnetism, 1873, J.C. Maxwell

Equacions de Maxwell (en el buit)

Llei de Gauss

$$\oint \vec{E} \cdot d\vec{S} = \frac{Q_{\rm int}}{\epsilon_o}$$

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_{o}}$$

Absència de monopols magnètics

$$\oint \vec{B} \cdot d\vec{S} = 0$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

Inducció magnètica: fonts magnètiques de corrents

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{S}$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Llei d'Ampère: fonts elèctriques de camps magnètics

$$\oint \vec{B} \cdot d\vec{l} = \mu_o \int \vec{J} \cdot d\vec{S} + \mu_o \epsilon_o \frac{d}{dt} \int \vec{E} \cdot d\vec{S}$$

$$\vec{\nabla} \times \vec{B} = \mu_o \vec{J} + \mu_o \varepsilon_o \frac{\partial \vec{E}}{\partial t}$$

Satisfà l'electromagnetisme la mecánica newtoniana?

- Tercera llei de Newton
- Transformacions de velocitats
- Intervenció del medi

[Concepte de camp]

Lleis de Newton (1687)

- 1. Tot cos persevera en el seu estat de repòs o moviment a menys que una força externa l'obligui a canviar el seu estat [Principi d'inèrcia]
- 2. El canvi de moviment és proporcional a la força i té lloc en la direcció en que aquesta s'imprimeix

$$\vec{F} = \frac{d\vec{p}}{dt}$$
 Si $m = ct$. \Rightarrow $\vec{F} = m\vec{a}$

 $ec{p}=mec{v}$ es la "quantitat" de movimient: magnitud amb què es quantifica el moviment

3. Amb tota acció sempre té lloc una reacció igual i contrària: les accions mútues de dos cossos són sempre iguals i de sentit oposat [Acció-reacció]

Movimients relatius

$$\vec{r}_{BA} + \vec{r}_{CB} = \vec{r}_{CA}$$
 \downarrow
 $\vec{r}_{CB} = \vec{r}_{CA} - \vec{r}_{BA}$
 \downarrow
 $\frac{d\vec{r}_{CB}}{dt} = \frac{d\vec{r}_{CA}}{dt} - \frac{d\vec{r}_{BA}}{dt}$
 \downarrow
 $\vec{v}_{CB} = \vec{v}_{CA} - \vec{v}_{BA}$

Camp elèctric i camp gravitatori

2.1 Electrostàtica

Introducció. Les lleis de Maxwell

Llei de Coulomb

Camp elèctric. Línies de força

Energia potencial electrostàtica

Teorema de Gauss. Condensadors planoparal·lels

2.2 Corrent elèctric

Intensitat i resistència

Llei d'Ohm

Bateries i aparells de mesura

Energia i potència en circuits. Lleis de Kirchhoff

2.3 Magnetisme

Força magnètica

Llei de Biot-Savart

Fonts elèctriques de camps magnètics

Llei d'Ampère

2.4 Inducció electromagnètica

Inducció electromagnética

Llei de Faraday. Generadors

Llei de Lenz

Autoinducció

Càrrega. Llei de conservació de la càrrega

Hi ha dos tipus de càrrega: positiva i negativa

En un sistema aïllat la càrrega es conserva

Electrostàtica

Estudiem la interacció entre càrregues en repòs.

En el Sistema Internacional s'introdueix una nva unitat per a la càrrega [Q]:

Coulomb

que es defineix a partir de la mesura de corrents elèctrics: quantitat de càrrega transportada en 1 segon en un corrent d' 1 Ampère $[I=\Delta Q/\Delta t]$

Mem. de l'Ac. R. dec Sc. An. 1785. Pay. 576. Pl. XIII

Llei de Coulomb

Força entre càrregues puntuals

$$\vec{F} = \kappa \frac{Qq}{\vec{r}^2} \hat{r}$$

 κ És una constant universal (al buit)

$$\kappa = 8.98 \cdot 10^9 \frac{\text{Nm}^2}{\text{Coul}^2} = \frac{1}{4\pi \varepsilon_o \varepsilon_r} \frac{\text{Nm}^2}{\text{Coul}^2} \qquad \begin{cases} \varepsilon_o & \text{constant dielèctrica del buit} \\ \varepsilon_r & \text{constant dielèctrica respecte} \end{cases}$$

constant dielèctrica del buit el buit (en aquest cas =1).

Si comparem la força eléctrica i la gravitatoria entre dos electrons:

$$\vec{F}_e = \kappa \frac{q_e^2}{\vec{r}^2} \hat{r}$$

$$\vec{F}_g = G \frac{m_e^2}{\vec{r}^2} \hat{r}$$

$$\frac{F_e}{F_a} = \frac{\kappa q_e^2}{Gm_e^2} \approx 10^{46}$$

$$G = 6,67384 \cdot 10^{-11} \frac{\text{Nm}}{\text{Kg}^2}$$

$$m_e = 9.1 \cdot 10^{-31} \text{Kg}$$

$$q_e = -1.6 \cdot 10^{-19} \, \text{Cou}$$