(SD 4 B 07 B 1/46

ГОСУДАРСТВЕННЫЙ НОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТНРЫТИЯМ ПРИ ГНИТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4332313/29-03

(22) 23.11.87

(46) 23.06.89. Бюл. № 23

(71) Специальное конструкторско-технологическое бюро Института геотехнической механики АН УССР

(72) А. А. Гольдин, А. Г. Червоненко

й В. П. Надутый

(53) 621.928.2 (088.8)

(56) Авторское свидетельство СССР № 385633, кл. В 07 В 1/46, 1971.

Авторское свидетельство СССР № 1276371, кл. В 07 В 1/12, 1985.

(54) **FPOXOT**

(57) Изобретение относится к горной технике, в частности к вибрационным грохотам, и может быть использовано для классификации по крупности сылучих материалов и позволяет повысить качество разделения за

счет увеличения фактической длины грохочения материала. Грохот включает наклонно установленный на упругих опорах 4 короб (К) 3, между бортами 8 которого размещено сито I, разделенное на участки (У) 9 поперечными ребрами (ПР) 5, расположенными периодически по длине сита. При этом с К 3 связан вибровозбудитель 6, плоскость вращения неуравновешивающей массы 7 которого ориентирована вдоль продольной плоскости симметрии сита 1. Смежные У 9 и ПР 5 имеют противоположный угол наклона относительно бортов 8 К 3. Величина угла наклона каждого последующего У 9 меньше предыдущего. Исходный материал подают на сито 1. Мелкие частицы перед ПР 5 дополнительно перемещаются поперек сита 1 и возвратно-поступательно за счет противоположного угла наклона У 9. 1 з.п. ф-лы, 7 ил.

BEST AVAILABLE COPY

SU 1488026

Изобретение относится к горной технике, в частности к вибрационным грохотам, и может быть использовано для классификации по крупности сыпучих материалов и пульп в металлургической, угольной и других отраслях промышленности.

Цель изобретения — повышение качества разделения за счет увеличения фактической

длины грохочения материала.

На фиг. 1 показано устройство для грохочения, продольный разрез; на фиг. 2 вид А на фиг. 1; на фиг. 3 — разрез Б—Б на фиг. 1; на фиг. 4 — разрез В—В фиг. 1; на фиг. 5 — 7 — устройство, поперечный раз-

рез: примеры использования.

Грохот (фиг. 1) содержит сито 1 с отверстиями 2 размером d, закрепленное на коробе 3 между его бортами. Короб установлен на упругих опорах 4. На рабочей поверхности сита периодически с шагом t расположены поперечные ребра 5 высотой Н. 20 Короб 3 снабжен вибровозбудителем 6 с неуравновешенной массой (дебалансом) 7, плоскость вращения которой ориентирована вдоль продольной плоскости XOZ симметрии сита, и имеет стенки 8. Обращенная к загрузочному концу сита стенка а ребра 5 перпендикулярна к рабочей поверхности сита. Разделенные ребрами 5 смежные участки 9 сита выполнены с противоположным уклоном («н «) и сами ребра имеют противоположный угол наклона относительно бортов короба (фиг. 3 и 4), причем верхняя часть последующего участка 9 является продолжением нижнего конца предыдущего участка 9, т.е. продольные стороны смежных участков, примыкающих к одной стенки 8, находятся на одном уровне. Величина угла 🛪 наклона участков сита 9 уменьшается в направлении к разгрузочному концу сита. т.e.

a,>d,>a,

где «» - угол наклона участка сита 9.

Ребра 5 могут быть выполнены с переменной высотой Н по ширине сита, причем торцы смежных ребер с одинаковой высотой Н расположены противоположно относительно оси ОХ сита и примыкают к противоположным стенкам 8. Максимальное значение высоты Н_{ты = 5 d} выбирается из условий раздельного перемещения кусков различной крупности, а также обеспечения циркуляционного перемещения частиц мелких фракций перед стенкой а ребра. Минимальное значение высоты Н тым = 0 принимается из условий обеспечения перетекания (пересыпания) непросеявшихся частиц из одного участка сита на последующий. Поэтому высоту Н каждого ребра следует принимать из 55 **КИНЭШОНТООЭ**

H = (0-5) d

В зависимости от условий грохочения выс та Н ребер в указанном пределе может

изменяться или ступенчато (фиг. 6), или плавно (фиг. 5 и 7), а шаг t между ребрами принимается из соотношения

t≽ 2H_{max} >5d

Грохот работает следующим образом. Исходный материал, содержащий крупные куски 10 надрешетного продукта и частицы 11 мелких фракций, подают в месте загрузки на рабочую поверхность сита 1, которому посредством вибровозбудителя 6 сообщают колебания. Под действием сил вибрации и гравитационных сил исходный материал перемещается по ситу и, попадая в отверстие 2, разделяется на фракции. При этом крупные куски 10 перемещаются вдоль сита известным образом с подбрасыванием по непрерывно чередующимся по длине сита траекториям б. т.е. куски 10 перескакивают над ребрами 5, которые являются преградой только для мелких частиц 11.

При расположении плоскости вращения дебаланса 7 вдоль продольной плоскости XOZ симметрии сита на участке сита перед стенкой а ребер 5 мелкие частицы учавствуют в обусловленном вибробункеризацией циркуляционном движении, вектор скорости $\overline{V}_{\mathbf{z}}$ которого направлен вдоль продольной оси ОХ. Благодаря выполнению смежных участков 9 с противоположным уклоном поперек сита, т.е. бортов короба, мелкие часперед стенкой а ребер дополнительно перемещаются поперек сита с вектором скорости V_y , величина которой зависит от величины угла 🚜 наклона участка. На нижерасположенных участках сита перед стенкой а происходит накопление частиц 11 и толщина слоя материала в этом месте имеет максимальное значение h не (фиг. 3 и 4). Наличие постоянного подпора движущихся поперек сита частиц 11 приводит к превышению слоем материала высоты Н ребра на размер І. В этом месте частицы І І перекатываются через ребро 5 и попадают на следующий участок сита. Возвратно-поступательное (пиркуляционное) перемещение мелких частиц вдоль сита под действием вибрационных сил и поперечное перемещение благодаря противоположным уклонам смежных участков сита обуславливает результирующую траекторию движения частиц в виде зигзагообразной линии. По сравнению с известным грохотом указанная траектория движения мелких фракций обеспечивает увеличение фактической длины грохочения и улучшение условий попадания частиц 11 в отверстия 2 за счет повышения вероятности их поперечных поворотов.

При выполнении омежных участков сита с уклоном, уменьшающимся к разгрузочному концу сита, результирующая скорость перемещения частиц 11 имеет минимальное значение в конце сита, где материал содержит наибольшее количество «трудных» час-

BEST AVAILABLE COP

тиц, что способствует большему выделению мелких частиц в подрешетный продукт.

Время пребывания мелких частиц на сите и качество готового продукта могут дополнительно регулироваться в зависимости от условий грохочения выбором соответствующей формы ребер (перегородок) 5 в поперечном сечении за счет изменения высоты Н по ширине сита и ширины і канала, в котором частицы перемещаются между участками сита, разделенными ребрами, т.е. за счет изменения длины перегородок относительно бортов.

Формула изобретения

1 Грохот, включающий установленный на упругих опорах короб, между бортами которого размещено сито, разделенное на

участки поперечными ребрами, расположенными периодически по длине на его рабочей поверхности, и связанный с коробом вибровозбудитель, плоскость вращения неуравновешенной массы которого ориентирована вдоль продольной плоскости симметрии сита, отличающийся тем, что, с целью повышения качества разделения за счет увеличения фактической длины грохочения материала, смежные участки сита и разделительные поперечные ребра имеют противоположный угол наклона относительно бортов короба, причем величина угла наклона каждого последующего участка меньше предыдущего.

2. Грохот по п. 1, отличающийся тем, что ребра выполнены с переменной высотой по ширине сита.

Составитель Б. Левчаев
Редактор И. Дербак Техред И. Верес Корректор О. Кравцова
Заказ 3484/10 Тираж 542 Подписное
ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж—35, Раушская наб., д. 4/5
Производственно-издательский комбинат «Патент», г. Ужгород, ул. Гагарина, 101

BEST AVAILABLE COPY