例题 F矩阵的RU, VR分解

Morelay, June 26,723% 838 PM
Morelay, June 26,723% 838 PM

$$X_1 = Z_1$$
 $X_2 = -3Z_3$ $X_3 = 2X_3$
有: $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ -3 \end{bmatrix} \begin{bmatrix} X_2 \\ X_3 \end{bmatrix}$ $F = \begin{bmatrix} 1 & -3 \\ 2 \end{bmatrix}$
では「こう」、「有
 $C = F^T F = \begin{bmatrix} 1 & -3 \end{bmatrix} \begin{bmatrix} 1 & -3 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 9 \end{bmatrix}$
引: 通はこう通知 $U_1 \to F = RU$
 $U = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, $R = FU^T = \begin{bmatrix} 1 & -3 \\ 2 & 3 \end{bmatrix}$ $= \begin{bmatrix} 1 & -3 \\ 1 & 3 \end{bmatrix}$ $= \begin{bmatrix} 1 & -3 \\ 2 & 3 \end{bmatrix}$ $= \begin{bmatrix} 1 & -3 \\ 1 & 3 \end{bmatrix}$ $= \begin{bmatrix} 1 & -3 \\ 2 & 3 \end{bmatrix}$ $= \begin{bmatrix} 1 & -3 \\ 2 & 3 \end{bmatrix}$ $= \begin{bmatrix} 1 & -3 \\ 2 & 3 \end{bmatrix}$ $= \begin{bmatrix} 1 & 3 \\ 2 & 3 \end{bmatrix}$ $=$

Continuum_Mechanics Page 1

由: F=VR → R= V-F= 1/2 | [// -] = [// -/]

