Universidad de Granada

Análisis Matemático II Ejercicios resueltos

Doble Grado de Informática y Matemáticas $$\operatorname{Curso}\ 2016/17$$

Análisis	Matemático	H: E	iercicios	resueltos

,					
т		1	•		
•	n	$\boldsymbol{\alpha}$	1	r	Δ
•		٠,		ι,	•

1.	Sucesiones y series de funciones	3
	Succession of Series are randomes	•

2. Integral asociada a una medida 10

1. Sucesiones y series de funciones

Ejercicio 1.1. Probar que el espacio $C_B(A, \mathbb{R}^M)$ es un espacio de Banach, esto es, un espacio normado y completo.

Demostración. Empezamos probando que $(\mathcal{C}_B(A,\mathbb{R}^M),\|\cdot\|_{\infty})$ es un espacio normado:

- Positividad. En primer lugar puesto que la norma se ha definido como supremo de un conjunto de numeros positivos, tendremos que $||f||_{\infty} \geq 0$ para toda $f \in (\mathcal{C}_B(A, \mathbb{R}^M)$. Además, $|f||_{\infty} = 0 \iff sup_{x \in A}|f(x)| = 0 \iff f(x) = 0, \ \forall x \in A \iff f$ es la función 0.
- Homogeneidad. Si $k \in \mathbb{R}$ entonces $||kf||_{\infty} = |k|||f||_{\infty} \iff \sup_{x \in A} |kf(x)| = \sup_{x \in A} |k||f(x)| = |k|\sup_{x \in A} |f(x)| = |k|||f||_{\infty}.$
- Desigualdad triangular. $|f + g|_{\infty} \leq |f|_{\infty} + |g|_{\infty} \iff \sup_{x \in A} |f(x) + g(x)| \leq \sup_{x \in A} |f(x)| + \sup_{x \in A} |g(x)|$. para cualesquiera $f, g \in \mathcal{C}_B(A, \mathbb{R}^M)$.

Para demostrar que $f_n \to f$ c.u. en A $\iff f_n \to f$ en $\mathcal{C}_B(A, \mathbb{R}^M)$, solo tenemos que observar que $f_n \to f$ c.u. en A significa que:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : n \ge n_0 \Rightarrow |f_n(x) - f(x)| < \varepsilon, \ \forall x \in A,$$

lo cual equivale a decir

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : n \ge n_0 \Rightarrow ||f_n - f||_{\infty} = \sup_{x \in A} |f_n - f| \le \varepsilon, \ \forall x \in A,$$

es decir, $f_n \to f$ en $\mathcal{C}_B(A, \mathbb{R}^M)$.

Por último, $C_B(A, \mathbb{R}^M)$ es de Banach si es completo, es decir si toda sucesión $\{f_n\}$ (de funciones en $C_B(A, \mathbb{R}^M)$) de Cauchy converge. La prueba es análoga a la que se hizo para ver que $C(A, \mathbb{R}^M)$, con $A \subseteq \mathbb{R}^N$ compacto, era completo. La única diferencia será que tras probar la convergencia uniforme de f_n a una función f, deberemos probar que $f \in C_B(A, \mathbb{R}^M)$, es decir que el límite uniforme de la sucesión $\{f_n\}$ de funciones continuas y acotadas es una función continua y acotada. Veámoslo.

Recordemos que ya sabemos por teoría que f es continua. Para la acotación, tomando $\varepsilon = 1$ en la definición de convergencia uniforme, obtenemos un $n_0 \in \mathbb{N}$ tal que $n \geq n_0 \Rightarrow |f_n(x) - f(x)| < 1 \ \forall x \in A$. Por otro lado, como f_{n_0} es acotada, existe un M > 0 tal que $|f_{n_0}(x)| \leq M \ \forall x \in A$. Entonces, se tiene que:

$$|f(x)| = |f(x) - f_{n_0}(x) + f_{n_0}(x)| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x)| < 1 + M, \quad \forall x \in A$$

Por tanto, f está acotada.

Página 3 de 11

Ejercicio 1.2. Sea $A \subseteq \mathbb{R}^n$ compacto, y funciones $f_k : A \to \mathbb{R}$ continuas, verificando:

- (i) $f_k \geq 0$
- (ii) $f_k(x) \ge f_{k+1}(x) \ \forall x \in A$ (la sucesión $\{f_k\}$ es monótona decreciente).
- (iii) $f_k(x) \to 0$ c.p. $\forall x \in A$

Entonces, $\{f_k\} \to 0$ uniformemente en A.

Demostración. Como $f_k(x) \to 0 \ \forall x \in A$, entonces:

$$\forall x \in A, \ \forall \varepsilon > 0 \ \exists k_x \in \mathbb{N}: \ k \ge k_x \implies |f_k(x)| < \frac{\varepsilon}{2}$$

Por otro lado, como f_{k_x} es continua en A, en particular f_{k_x} es continua en x. Por tanto, $\exists U_x$ entorno abierto de x en A tal que

$$|f_{k_x}(y) - f_{k_x}(x)| < \frac{\varepsilon}{2} \quad \forall y \in U_x$$

Observamos que $\forall x \in A, \ x \in U_x$. Por tanto $A \subseteq \bigcup_{x \in A} U_x \implies \{U_x : x \in A\}$ es un recubrimiento por abiertos de A. Entonces, como A es compacto, $\exists x_1, ..., x_n \in A$ tales que $A \subseteq \bigcup_{i=1}^n U_{x_i}$. Sea ahora $k_0 = \max\{k_{x_1}, ..., k_{x_n}\}$, y es claro que $k \ge k_0 \implies k \ge k_{x_i} \ \forall i$.

Entonces, dado $k \geq k_0$ se tiene que $|f_k(x_i)| < \varepsilon/2 \quad \forall i = 1, ..., n$. También se verifica, puesto que f_{kx_i} es continua, que $|f_{kx_i}(y) - f_{kx_i}(x_i)| < \varepsilon/2 \quad \forall y \in U_{x_i}, \ \forall i = 1, ..., n$.

Sea $y \in A \subseteq \bigcup_{i=1}^n U_{x_i} \implies \exists i \in \{1, ..n\} : y \in U_{x_i} \implies |f_{k_{x_i}}(y) - f_{k_{x_i}}(x_i)| < \varepsilon/2$, y también $f_{k_{x_i}}(x_i) < \varepsilon/2$. Sumando ambas expresiones, y utilizando la monotonía y la positividad de $\{f_k\}$, tenemos que:

$$|f_k(y)| \le |f_{k_{x_i}}(y)| \le |f_{k_{x_i}}(x_i)| + |f_{k_{x_i}}(y) - f_{k_{x_i}}(x_i)| < \frac{2\varepsilon}{2} = \varepsilon$$

En resumen, hemos probado que $\forall \varepsilon > 0 \quad \exists k_0 \in \mathbb{N}$ (depediente de ε y $x_1, ..., x_n$) tal que $k \geq k_0 \implies |f_k(y)| = f_k(y) < \varepsilon \quad \forall y \in A$.

Ejercicio 1.3. Probar que en el espacio $\mathcal{C}(A, \mathbb{R}^M)$, con $A \subseteq \mathbb{R}^N$ compacto, cualquier bola cerrada y centrada en el origen es homeomorfa a una bola cerrada y centrada en un punto arbitrario.

Demostración. Sea $\varepsilon > 0$, y $\tilde{f} \in \mathcal{C}(A, \mathbb{R}^M)$. Consideremos la aplicación $\varphi : \overline{B}_{\infty}(0, \varepsilon) \to \overline{B}_{\infty}(\tilde{f}, \varepsilon)$ dada por $\varphi(f) = f + \tilde{f}$. Por un lado, φ está bien definida, pues:

$$\|\widetilde{f} - \varphi(f)\|_{\infty} = \|\widetilde{f} - f - \widetilde{f}\|_{\infty} = \|f\|_{\infty} \le \varepsilon \Rightarrow \varphi(f) \in \overline{B}_{\infty}(\widetilde{f}, \varepsilon)$$

Tenemos que φ es continua, pues la preimagen de un entorno básico (bolas abiertas) es un entorno básico. Para verlo, en lugar de φ vamos a tomar su extensión a todo el espacio (la

llamaremos φ'), definiéndola de la misma forma $(f \mapsto f + \tilde{f})$. Entonces, se tiene que:

$$\varphi'^{-1}(B_{\infty}(f,\varepsilon)) = \{g \in \mathcal{C}(A,\mathbb{R}^M) : \varphi'(g) = g + \tilde{f} \in B(f,\varepsilon)\} =$$

$$= \{g \in \mathcal{C}(A,\mathbb{R}^M) : \|f - \tilde{f} - g\|_{\infty} < \varepsilon\} = B(f - \tilde{f},\varepsilon)$$

Además, la inversa de φ existe: $\varphi^{-1}(g) = g - \tilde{f} \ \forall g \in \overline{B}_{\infty}(\tilde{f}, \varepsilon)$. Es continua por el mismo motivo que φ .

Por tanto, φ es un homeomorfismo.

Ejercicio 1.4. Sea $\{f_n\}$ una sucesión de funciones reales uniformemente continuas en todo \mathbb{R} que converge uniformemente a una función real f. ¿Puede concluirse que la función f es necesariamente uniformemente continua?.

Solución. La respuesta es afirmativa. Veamos la prueba.

Dado $\varepsilon > 0$, como $f_n \to f$ converge uniformemente, $\exists k > 0$ tal que

$$n > k \Rightarrow |f_n(x) - f(x)| < \varepsilon/3, \ \forall x \in A.$$

De otro lado, por ser f_k uniformemente continua en $A, \exists \delta > 0$ tal que

$$\forall x, y \in A \ con \ |x-y| < \delta, \ se \ tiene \ |f_k(x) - f_k(y)| < \varepsilon/3$$

Juntando ambas informaciones:

$$|f(x) - f(y)| \le |f(x) - f_k(x)| + |f_k(x) - f_k(y)| + |f_k(y) - f(y)| < \varepsilon$$

Es decir, hemos probado que dado $\varepsilon > 0$, existe $\delta > 0$ tal que

$$\forall x, y \in A \ con \ |x - y| < \delta \ se \ verifica \ |f(x) - f(y)| < \varepsilon$$

Por tanto, f es uniformemente continua.

Ejercicio 1.5. Estudiar la convergencia puntual y uniforme de la sucesión de funciones f_n definidas en [0,1] mediante $f_n(x) = x - x^n$ para todo $x \in [0,1]$.

Solución. Sabemos que para $0 \le x < 1$, $f_n(x) = x - x^n \to x$, y para x = 1, tenemos que $f_n(x) = 1 - 1^n = 0 \to 0$. Por tanto, el límite puntual es:

$$f(x) = \begin{cases} x & si \quad 0 \le x < 1 \\ 0 & si \quad x = 1 \end{cases}$$

Como cada f_n es continua y f no es continua, no hay convergencia uniforme.

Ejercicio 1.6. Estudiad la convergencia uniforme de la sucesión de funciones f_n definidas en [0,99999] mediante $f_n(x) = x^n$ para todo $x \in [0,99999]$.

Solución. En efecto, la sucesión de funciones converge uniformemente. En primer lugar, $\{f_n\} \xrightarrow{c.p} f = 0$ por ser potencia de base menor que 1. Además, por ser una función potencial, el valor máximo que toma es $0,99999^n$. Por tanto: $|x^n| \le 0,99999^n \to 0$, luego $\{f_n\}$ converge uniformemente a f = 0.

Ejercicio 1.7. Estudiad la convergencia puntual y uniforme de la sucesión de funciones f_n definidas en [0,1] mediante $f_n(x) = (x - \frac{1}{n})^2$ para todo $x \in [0,1]$.

Solución. Sabemos que $\{\frac{1}{n}\}\to 0$, por lo que podemos afirmar que $\{f_n(x)\}\to x^2$ puntualmente en [0,1]. Veamos que también hay convergencia uniforme:

$$|f_n(x) - x^2| = \left| -\frac{2x}{n} + \frac{1}{n^2} \right| \le \frac{2}{n} + \frac{1}{n^2} \to 0, \ \forall x \in [0, 1].$$

Ejercicio 1.8. Estudiar el carácter de la siguientes series de funciones.

a)
$$\sum_{n>1} \frac{sen^k(nx)}{n^2}, \quad k>0$$

 $Solución. \ \, \text{Notemos lo siguiente: } |sen(nx)| \leq 1 \implies \left|\frac{sen^k(nx)}{n^2}\right| \leq \frac{1}{n^2}. \ \, \text{Además, ya sabemos que la serie} \sum_{n\geq 1} \frac{1}{n^2} \text{ es convergente. Por tanto, aplicando el } Criterio \ \, de \ \, Weierstrass, tenemos que: }$

$$\sum_{n\geq 1} \frac{sen^k(nx)}{n^2} \text{ converge uniformemente (y absolutamente)}.$$

$$\mathbf{b)} \sum_{n \ge 1} \left(\frac{x^n}{n!} \right)^2$$

Solución (1). Podemos reescribir la serie tal que así: $\sum_{n\geq 1} \frac{x^{2n}}{(n!)^2}$. Entonces, dado M>0, se tiene que, si $|x|\leq M$:

$$\frac{x^{2n}}{(n!)^2} \le \frac{M^{2n}}{(n!)^2}$$

$$\sum_{n \ge 1} \frac{M^{2n}}{(n!)^2} converge$$
Criterio Weierstrass $\left(\frac{x^n}{n!}\right)^2$ es c.u en $[-M, M]$

Donde la convergencia de $\sum_{n\geq 1} \frac{M^{2n}}{(n!)^2}$ viene dada por el *Criterio del cociente:*

$$\lim_{n \to \infty} \frac{\frac{M^{2(n+1)}}{\overline{((n+1)!)^2}}}{\frac{M^{2n}}{(n!)^2}} = \lim_{n \to \infty} \frac{M^2}{(n+1)^2} = 0 < 1.$$

Como M era una constante arbitraria, concluímos que la serie converge uniformemente en cualquier intervalo acotado de \mathbb{R} .

Solución (2). Podemos ver la serie como una serie de potencias $\sum_{k\geq 1} a_k x^k$, donde:

$$a_k = \begin{cases} 0 & \text{si } k \text{ impar} \\ \frac{1}{(n!)^2} & \text{si } k \text{ par} \end{cases}$$

Podemos aplicar el *Criterio del cociente*, de forma muy similar al caso anterior, para ver que el radio de convergencia de la serie es $R = \infty$. Por tanto, $D(0,R) = \mathbb{R}$, y se tiene que $\forall M \in \mathbb{R}^+$ la serie converge uniformemente en [-M, M].

c)
$$\sum_{n>1} \frac{1}{x^2 + n^2}$$

Solución. Nos basta la simple observación de que podemos acotar el término general de la serie (es siempre positivo) por una constante M_n , de tal suerte que $\sum_{n\geq 1} M_n$ es convergente, y aplicar el Criterio de comparación. Así:

$$0 \leq \frac{1}{x^2 + n^2} \leq \frac{1}{n^2} \ \forall x \in \mathbb{R} \implies \sum_{n \geq 1} \frac{1}{x^2 + n^2} \text{ converge uniformemente en } \mathbb{R}.$$

$$\mathbf{d}) \sum_{k \ge 1} \frac{x^k}{k^2}$$

Solución. Como es una serie de potencias, calculamos su radio de convergencia:

$$R^{-1} = \lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{\frac{1}{(k+1)^2}}{\frac{1}{k^2}} = \lim_{k \to \infty} \left(\frac{k}{k+1}\right)^2 = 1 \implies R = 1$$

Por tanto, ya sabemos que la serie converge uniformemente cuando |x| < 1, y no converge cuando |x| > 1. Solo nos falta por estudiar el caso |x| = 1:

$$|x| = 1 \implies \left| \frac{x^k}{k^2} \right| = \frac{|x|^k}{k^2} = \frac{1}{k^2}$$

Sabemos que $\sum_{k\geq 1} \frac{1}{k^2}$ es convergente, por lo que, en virtud del *Criterio de Weierstrass*, la serie $\sum_{k\geq 1} \frac{x^k}{k^2}$ converge uniformemente cuando |x|=1.

$$e) \sum_{k \ge 1} k! x^k$$

Solución. Se trata de una serie de potencias, donde $a_k=k!$. Calculamos su radio de convergencia:

$$R^{-1} = \lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{(k+1)!}{k!} = \lim_{k \to \infty} k + 1 = \infty \implies R = 0$$

Por tanto, la serie no converge si |x| > R = 0 (es decir, si $x \neq 0$). Si |x| = 0, tenemos que:

$$\sum_{k\geq 1} k! \cdot 0^k = \sum_{k\geq 1} 0 = 0 \text{ (convergente)}$$

En general, una serie de potencias siempre es convergente en su centro.

Ejercicio 1.9. Probar que
$$\frac{1}{(1-x)^2} = \sum_{k=1}^{\infty} kx^{k-1} \ \forall x \in (-1,1)$$

Demostración. Para probarlo, se podría estudiar la convergencia de la serie de potencias, o también desarrollar el término de la izquierda como su suma de Taylor, y ver que coinciden. Sin embargo, procederemos de otro modo.

En primer lugar, notemos que $kx^{k-1} = \frac{d}{dx}(x^k)$. Por tanto, estudiemos el carácter de la serie $\sum_{k\geq 0} x^k$. Como es una serie de potencias, calculamos su radio de convergencia, y tenemos que R=1, pues $a_k=1 \ \forall k\geq 0$.

Por otro lado, consideramos la función $f(x) = \frac{1}{1-x}$. Sin mucho esfuerzo, podemos probar por inducción que $f^{k)}(0) = k! \quad \forall k \geq 0$. Tenemos entonces que, tomando a = 0 en el Teorema de Taylor aplicado a f(x):

$$f(x) = \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \quad \forall x \in (-1,1),$$

pues, en este caso, el resto de Taylor tiende a 0 dentro del disco de convergencia. Sabemos también que la serie es derivable, y dentro del disco de convergencia, se da la siguiente igualdad, derivando en ambos miembros:

$$\frac{1}{(1-x)^2} = \sum_{k=1}^{\infty} kx^{k-1} \quad \forall x \in (-1,1)$$

Ejercicio 1.10. Encontrar un ejemplo de una sucesión de funciones $f_k : A \subseteq \mathbb{R} \to \mathbb{R}$ que cumpla:

(i)
$$\{f_k\} \to 0$$
 c.u.

(ii)
$$\int_A f_k \not\to \int_A 0 = 0$$

Solución. Sea $A = [0, +\infty)$, y tomo f_k tales que $0 \le f_k(x) \le \frac{1}{k}$, y que además su integral se mantenga constante y distinta de 0. Un ejemplo de una tal función es:

$$f_k(x) = \begin{cases} 1/k & si \ 0 \le x \le k \\ 0 & si \ x \ge k \end{cases}$$

Entonces, tenemos que
$$\int_0^\infty f_k(x) \ dx = \int_0^k \frac{1}{k} \ dx = 1 \to 1 \neq 0.$$

2. Integral asociada a una medida

Ejercicio 2.1. Sean $B_1, B_2, \dots, B_m \subseteq \Omega$ medibles y $\beta_1, \dots, \beta_m \in [0, \infty)$. Entonces, la función

$$t := \sum_{k=1}^{m} \beta_k \chi_{B_k}$$

es simple positiva.

Ejercicio 2.2. Dado $p \in (1, +\infty)$ y sea $q = \frac{p}{p-1} \in (1, +\infty)$. Entonces $\frac{1}{p} + \frac{1}{q} = 1$.

Ejercicio 2.3. Con p, q definidos como en el ejercicio anterior:

1.
$$ab \leq \frac{a^p}{p} + \frac{b^q}{q} \ \forall a, b \geq 0$$
 (Desigualdad de Young).

2. Si
$$ab = \frac{a^p}{p} + \frac{b^q}{q} \Leftrightarrow a^p = b^q$$
.

Ejercicio 2.4. 1. $\mathcal{L}^1(\Omega)$ es un espacio vectorial.

- 2. $\mathcal{L}^{\infty}(\Omega)$ es un espacio vectorial.
- 3. $\mathcal{L}^p(\Omega)$ es un espacio vectorial.

Solución. 3. Dado $\alpha \in \mathbb{K}$, $f \in \mathcal{L}^p(\Omega)$. Entonces $|\alpha f|^p = |\alpha|^p \cdot |f|^p$. Como $f, g \in \mathcal{L}^p(\Omega) \Rightarrow f + g \in \mathcal{L}^p(\Omega)$ y $\left[\int_{\Omega} |f + g|^p d\mu\right]^{\frac{1}{p}} \leq \left(\int_{\Omega} |f|^p d\mu\right)^{\frac{1}{p}} + \left(\int_{\Omega} |g|^p d\mu\right)^{\frac{1}{p}}$

$$\int_{\Omega} |f+g|^p d\mu = \int_{\Omega} |f+g|^{p-1} |f+g| d\mu \leq \int_{\Omega} |f+g|^{p-1} |f| d\mu + \int_{\Omega} |f+g|^{p-1} |g| d\mu$$

Utilizando la desigualdad de Young:

$$\leq \left[\int_{\Omega} \left(|f+g|^{p-1} \right)^{q} d\mu \right]^{\frac{1}{q}} \left[\int_{\Omega} |f|^{p} d\mu \right]^{\frac{1}{p}} + \left[\int_{\Omega} \left(|f+g|^{p-1} \right)^{q} d\mu \right]^{\frac{1}{q}} \left[\int_{\Omega} |g|^{p} d\mu \right]^{\frac{1}{p}}$$

$$= \left[\int_{\Omega} |f+g|^{p} d\mu \right]^{\frac{1}{q}} \left[\int_{\Omega} |f|^{p} d\mu \right]^{\frac{1}{p}} + \left[\int_{\Omega} |f+g|^{p} d\mu \right]^{\frac{1}{q}} \left[\int_{\Omega} |g|^{p} d\mu \right]^{\frac{1}{p}}$$

$$= \left[\int_{\Omega} |f+g|^{p} d\mu \right]^{\frac{1}{q}} \left[\left(\int_{\Omega} |f|^{p} d\mu \right)^{\frac{1}{p}} + \left(\int_{\Omega} |g|^{p} d\mu \right)^{\frac{1}{p}} \right]$$

$$= \left[\int_{\Omega} [|f| + |g|]^{p} d\mu \right]^{\frac{1}{q}} \left[\left(\int_{\Omega} |f|^{p} d\mu \right)^{\frac{1}{p}} + \left(\int_{\Omega} |g|^{p} d\mu \right)^{\frac{1}{p}} \right]$$

$$\leq 2^{p-1} \int_{\Omega} \left(|f|^{p} + |g|^{p} \right) d\mu \right)^{\frac{1}{q}} < \infty$$

Ejercicio 2.5. Dada $g:\Omega\to\mathbb{R}$ medible positiva. Entonces:

$$\int_{\Omega}gd\mu=0\Leftrightarrow g=0$$
a. e. $x\in\Omega$

Ejercicio 2.6. Dado $\Omega \subset \mathbb{R}^N$ compacto, $g: \Omega \to \mathbb{R}$ cont. \Rightarrow g es integrable. Si además $\int_{\mathbb{R}} |g| d\mu = 0 \Rightarrow g(\omega) = 0 \ \forall \omega \in \Omega$.